2. Osnovni koncepti

Strojno učenje 1, UNIZG FER, ak. god. 2022./2023.

Jan Šnajder, vježbe, v2.3

1 Zadatci za učenje

- 1. [Svrha: Na stvarim problemima razlikovati klasifikaciju od regresije.] Objasnite razliku između klasifikacije i regresije. Koji je od ta dva pristupa prikladan za: (a) filtriranje neželjene e-pošte (spam), (b) predviđanje kretanja dionica, (c) rangiranje rezultata tražilice? Kako biste u ovim slučajevima definirali ciljne oznake y?
- 2. [Svrha: Razumjeti što je hipoteza, što je model i koja je veza između njih.]
 - (a) Dopunite praznine:

Hipoteza je funkcija koja preslikava ______ u _____, definirana do na ______.

Model je ______ hipoteza, indeksiranih ______. Model također nazivamo prostorom _____, a dimenzija tog prostora jednaka je ______. Učenje modela odgovara pretraživanju _____ u potrazi za ______ hipotezom. To je ona hipoteza koja ______ klasificira označene primjere, što procjenjujemo pomoću _____ mjerene na ______.

Drugim riječima, učenje modela svodi se na _____ parametara modela s _____ kao kriterijskom funkcijom.

- (b) Rješavamo problem binarne klasifikacije u prostoru primjera $\mathcal{X} = \{0,1\}^2$. Definirajte linearan model koji će primjere odvajati pravcem.
- (c) Koja je dimenzija prostora parametra? Koliko različitih hipoteza postoji u \mathcal{H} ?
- (d) Neka je skup označenih primjera sljedeći:

$$\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\} = \{((0, 0), 0), ((1, 1), 0), ((1, 0), 1), ((0, 1), 1)\}.$$

Odredite konkretnu hipotezu $h \in \mathcal{H}$ koja ima najmanju empirijsku pogrešku.

- 3. [Svrha: Shvatiti što je to induktivna pristranost i kako ona određuje klasifikaciju neviđenih primjera.] Pročitajte poglavlje 2.3 u skripti (tu temu nismo obradili na predavanju).
 - (a) Definirajte induktivnu pristranost (neformalno i formalno). Koje su dvije vrste pristranosti koje sačinjavaju induktivnu pristranost?
 - (b) Raspolažemo skupom označenih primjera u ulaznome prostoru $\mathcal{X} = \{0, 1\}^3$:

$$\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\} = \left\{((0, 0, 0), 0), ((1, 0, 0), 1), ((1, 0, 1), 1), ((0, 1, 0), 1), ((0, 1, 1), 1)\right\}.$$

Koja je klasifikacija neviđenih primjera?

- (c) Definirajte linearan model \mathcal{H} za $\mathcal{X} = \{0,1\}^3$. Koja je to vrsta pristranosti?
- (d) Možete li odrediti klasifikaciju neviđenih primjera uz odabrani model \mathcal{H} ? Je li pristranost koja proizlazi iz odabira modela dovoljna za jednoznačnu klasifikaciju primjera iz \mathcal{D} ?
- (e) Definirajte (neformalno) neku dodatnu pristranost takvu da klasifikacija svakog primjera slijedi jednoznačno na temelju skupa primjera \mathcal{D} . Koje je vrste ta dodatna pristranost?
- 4. [Svrha: Znati nabrojati osnovne komponente algoritma strojnog učenja i povezati ih s induktivnom pristranošću.]
 - (a) Nabrojite tri osnovne komponente algoritma strojnog učenja.

- (b) Identificirajte uz koje se komponente veže koja vrsta induktivne pristranosti.
- 5. [Svrha: Razumjeti vezu između funkcije gubitka i empirijske pogreške te mogućnost njihove prilagodbe konkretnom problemu.]
 - (a) Pogreška hipoteze je očekivanje funkcije gubitka L. Nad kojom distribucijom je definirano to očekivanje? Koji je problem s takvom definicijom u praksi?
 - (b) Definirajte *empirijsku* pogrešku preko funkcije gubitka L. Koja je pretpostavka implicitno ugrađena u tu definiciju?
 - (c) Kod asimetričnih gubitaka funkciju L možemo definirati preko matrice gubitka (v. skriptu: poglavlje 2.7 i primjer 2.6). Definirajte takvu matricu za problem klasifikacije neželjene e-pošte te izračunajte funkciju pogreške za slučaj pet pogrešno negativnih i dvije pogrešno pozitivne klasifikacije od ukupno deset (N=10) primjera.
- 6. [Svrha: Razviti ispravnu intuiciju za odabir modela temeljem unakrsne provjere.]
 - (a) Skicirajte krivulje pogreške učenje i ispitne pogreške u ovisnosti o složenosti modela. Naznačite područje prenaučenosti i podnaučenosti.
 - (b) Objasnite zašto pogreška učenja s povećanjem složenosti modela teži k nuli.
 - (c) Raspolažemo modelom \mathcal{H}_{α} koji ima hiperparametar α kojim se može ugađati složenost modela. Za odabrani α naučili smo hipotezu koja minimizira empirijsku pogrešku. Unakrsnom provjerom utvrdili smo da je ispitna pogreška znatno veća od pogreške učenja. Je li naš odabir hiperparametra α suboptimalan?
 - (d) Raspolažemo modelom \mathcal{H}_{α} s hiperparametrom α (veći α daje složeniji model). Raspolažemo dvama optimizacijskim algoritmima: L_1 i L_2 . Algoritam L_2 lošiji je od algoritma L_1 , u smislu da L_2 pronalazi parametre $\boldsymbol{\theta}_2$ koji su lošiji od parametara $\boldsymbol{\theta}_1$ koje pronalazi L_1 , tj. $E(\boldsymbol{\theta}_2|\mathcal{D}) > E(\boldsymbol{\theta}_1|\mathcal{D})$. Neka α_1^* označava optimalnu vrijednost hiperparametra za \mathcal{H}_{α} učenog algoritmom L_1 , a α_2^* optimalnu vrijednost za \mathcal{H}_{α} učenog algoritmom L_2 . Načinite skicu analognu onoj iz zadatka (a) i naznačite vrijednosti pogrešaka za modele $\mathcal{H}_{\alpha_2^*}$ i $\mathcal{H}_{\alpha_3^*}$.
 - (e) Može li model učen lošijim algoritmom L_2 imati manju ispitnu pogrešku od modela koji je učen boljim algoritmom L_1 , ali nije optimalan? Skicirajte takvu situaciju na prethodnoj skici.

2 Zadatci s ispita

1. (T) Model \mathcal{H} je skup svih parametriziranih funkcija $h(\mathbf{x}; \boldsymbol{\theta})$ indeksiran parametrima $\boldsymbol{\theta}$. To jest:

$$\mathcal{H} = \{h(\mathbf{x}; \boldsymbol{\theta})\}_{\boldsymbol{\theta}}$$

Što to zapravo znači?

- A Da različite funkcije h imaju različite parametre θ , i da su sve one sadržane u modelu, to jest za sve njih vrijedi $h \in \mathcal{H}$
- B Da za različite parametre θ dobivamo različite funkcije h, i da su sve one sadržane u modelu, to jest za sve njih vrijedi $h \in \mathcal{H}$
- $\fbox{\fill}$ Da model sadrži beskonačno mnogo funkcija hčija konkretna definicija ovisi o vrijednostima parametara $\pmb{\theta}$
- \square Da su funkcije h definirane sa slobodnim parametrima θ i da broj različitih funkcija odgovara broju parametara
- 2. (P) U ulaznom prostoru $\mathcal{X} = \{0, 1\}^3$ definiramo sljedeći klasifikacijski model:

$$h(\mathbf{x}; \boldsymbol{\theta}) = \mathbf{1} \{ \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 \geqslant 0 \}$$

Koja je dimenzija prostora parametara te koliko različitih hipoteza postoji u ovom modelu?

- A Dimenzija prostora parametara je 4, a hipoteza ima beskonačno mnogo
- B Dimenzija prostora parametara je 4, a hipoteza ima manje od 256
- C Dimenzija prostora parametara i broj hipoteza su beskonačni
- D Dimenzija prostora parametara je 256, a hipoteza ima 14

3. (P) Za ulazni prostor $\mathcal{X} = \{0,1\}^3$ definiramo klasifikacijski model \mathcal{H} kao skup parametriziranih funkcija definiranih na sljedeći način:

$$h(\mathbf{x}; \boldsymbol{\theta}) = \mathbf{1} \{ (\theta_{1.1} \leqslant x_1 \leqslant \theta_{1.2}) \land (\theta_{2.1} \leqslant x_2 \leqslant \theta_{2.2}) \land (\theta_{3.1} \leqslant x_3 \leqslant \theta_{3.2}) \}$$

Parametri su trodimenzijski vektori realnih brojeva, tj. prostor parametara definiran je kao $\theta \in \mathbb{R}^6$. Koliko iznosi $|\mathcal{H}|$?

- lacksquare A 42 lacksquare B ∞ lacksquare C 56 lacksquare D 28
- 4. (P) Skup označenih primjera u dvodimenzijskome ulaznom prostoru je:

$$\mathcal{D} = \{((0,0),0), ((0,1),0), ((1,1),1)\}$$

Koliko hipoteza ostvaruje empirijsku pogrešku jednaku nuli?

- A 16 B Pitanje nema smisla jer nije definiran model C Beskonačno mnogo D 14
- 5. (P) Za linearan klasifikator u $\mathcal{X} = \{0,1\}^3$ zadan je sljedeći skup primjera za učenje:

$$\mathcal{D} = \{ (\mathbf{x}^{(i)}, y^{(i)}) \} = \{ ((0, 0, 0), 0), ((1, 0, 0), 1), ((1, 0, 1), 1), ((0, 1, 0), 1), ((0, 1, 1), 1), ((1, 1, 0), 0) \}$$

Razmatramo dva modela:

$$\mathcal{H}_a : h_a(\mathbf{x}|\boldsymbol{\theta}) = \mathbf{1} \{ \theta_0 + x_1 \theta_1 + x_2 \theta_2 + x_3 \theta_3 \ge 0 \}$$

$$\mathcal{H}_b : h_b(\mathbf{x}|\boldsymbol{\theta}) = h_a(\mathbf{x};\boldsymbol{\theta}_1) \cdot h_a(\mathbf{x};\boldsymbol{\theta}_2)$$

Uočite da svaka hipoteza iz modela \mathcal{H}_b kombinira dvije hipoteze iz modela \mathcal{H}_a (operacijom množenja). Neka:

$$h_a^* = \operatorname{argmin}_{h \in \mathcal{H}_a} E(h|\mathcal{D})$$

 $h_b^* = \operatorname{argmin}_{h \in \mathcal{H}_b} E(h|\mathcal{D})$

Koja je od navedenih tvrdnji točna?

- $B E(h_a^*|\mathcal{D}) > E(h_b^*|\mathcal{D}) = 0$
- $| C | 0 < (E(h_a^*|\mathcal{D}) < E(h_b^*|\mathcal{D}) < 1$
- $\boxed{\mathsf{D}} E(h_a^*|\mathcal{D}) = E(h_b^*|\mathcal{D}) = 0$
- 6. (P) Za linearan model u $\mathcal{X} = \{0,1\}^3$ zadan je sljedeći skup primjera za učenje:

$$\mathcal{D} = \{ (\mathbf{x}^{(i)}, y^{(i)}) \} = \{ ((0, 0, 0), 0), ((1, 0, 0), 1), ((1, 0, 1), 1), ((0, 1, 0), 1), ((0, 1, 1), 1) \}$$

Optimizacijski postupak klasifikatora funkcionira tako da minimizira empirijsku pogrešku, definiranu kao očekivanje funkcije gubitka 0-1, i postupak u tome uvijek uspijeva. Želimo znati koju bi klasu ovaj klasifikator dodijelio primjeru $\mathbf{x}=(1,1,1)$. Možemo li, na temelju iznesenih informacija, odrediti klasifikaciju dotičnog primjera i što nam to govori o induktivnoj pristranosti ovog algoritma?

- A Ne možemo, jer nije definirana induktivna pristranost preferencijom, pa činjenica da je model linearan nije dovoljan skup pretpostavki da bismo jednoznačno odredili klasifikaciju svih novih primjera
- B Možemo, klasifikacija je y = 1, i ovaj klasifikator ima definiranu induktivnu pristranost pomoću koje može jednoznačno odrediti klasifikaciju svakog primjera
- D Možemo, y = 1, jer klasifikator ima induktivnu pristranost jezikom (linearan model) i preferencijom (primjeri za koje je $h(x) \ge 0$ klasificiraju se pozitivno)

7. (P) Optimizacija parametara modela temelji se na funkciji gubitka $L: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_0^+$, gdje je $L(y,h(\mathbf{x}))$ gubitak na primjeru (\mathbf{x},y) . U većini primjena koristimo simetričan gubitak 0-1. Međutim, u nekim primjenama ima više smisla definirati asimetričan gubitak. Jedan takav primjer je zadatak detekcije karcinoma iz medicinskih slika. Taj zadatak možemo formalizirati kao problem binarne klasifikacije s oznakama $\mathcal{Y} = \{0,1\}$, gdje y=1 označava postojanje karcinoma, a y=0 nepostojanje karcinoma. Koje od sljedećih svojstava bi trebala zadovoljiti asimetrična funkcija gubitka za takav zadatak?

$$A L(0,1) = 1 i L(1,0) = L(1,1) = L(0,0) = 0$$

B
$$L(0,1) > L(1,0)$$
 i $L(1,1) = L(0,0) > 0$

$$C$$
 $L(1,0) > L(0,1)$ i $L(1,1) = L(0,0) = 0$

$$D L(0,1) = L(1,0) > 0 i L(1,1) = L(0,0) = 0$$

- 8. (T) Pogreška hipoteze definirana je kao očekivanje funkcije gubitka na primjerima iz $\mathcal{X} \times \mathcal{Y}$. Međutim, u praksi tu pogrešku aproksimiramo empirijskom pogreškom, koju računamo kao srednju vrijednost funkcije gubitka na skupu označenih primjera $\mathcal{D} \subseteq \mathcal{X} \times \mathcal{Y}$. Zašto pogrešku hipoteze aproksimiramo empirijskom pogreškom i na kojoj se pretpostavci temelji ta aproksimacija?
 - A Očekivanje gubitka ne možemo izračunati jer primjera iz $\mathcal{X} \times \mathcal{Y}$ ima potencijalno beskonačno, stoga pogrešku računamo na temelju skupa \mathcal{D} za koji pretpostavljamo da je konačan
 - B Različitih primjera iz $\mathcal{X} \times \mathcal{Y}$ potencijalno ima beskonačno mnogo, pa pogrešku računamo na uzorku \mathcal{D} za koji pretpostavljamo da je reprezentativan
 - C Funkciju gubitka jednostavnije je definirati nego funkciju pogreške, a aproksimacija je točna uz pretpostavku i.i.d.
 - D Ne možemo izračunati očekivanje gubitka jer nam nije poznata distribucija primjera iz $\mathcal{X} \times \mathcal{Y}$, no pretpostavljamo da je \mathcal{D} reprezentativan uzorak iz te distribucije
- 9. (P) Zadan je sljedeći skup sa N=6 označenih primjera iz \mathbb{R}^3 :

$$\mathcal{D} = \{ (\mathbf{x}^{(i)}, y^{(i)}) \}$$

$$= \{ ((0, 0, 0), 0), ((1, 1, 0), 0), ((1, 0, 0), 1), ((1, 0, 1), 1), ((0, 1, 0), 1), ((0, 1, 1), 1) \}$$

Razmatramo linearan model i računamo empirijsku pogrešku $E(h|\mathcal{D})$ hipoteza iz tog modela definiranu kao očekivanje asimetričnog gubitka. Gubitak je definiran tako da lažno negativne primjere kažnjava sa 1, a lažno pozitivne primjere sa 0.5. Koliko iznosi najmanja a koliko najveća moguća vrijednost tako definirane empirijske pogreške $E(h|\mathcal{D})$?

$$\boxed{\mathsf{A}} \ 0 \leqslant E(h|\mathcal{D}) \leqslant 1/4$$

$$\boxed{\mathsf{B}} \ 1/4 \leqslant E(h|\mathcal{D}) \leqslant 2/3$$

$$| C | \frac{1}{48} \leqslant E(h|\mathcal{D}) \leqslant 2/3$$

$$\boxed{\mathsf{D}} \ 1/12 \leqslant E(h|\mathcal{D}) \leqslant 3/4$$

10. (P) Na slici ispod prikazan je graf funkcije pogreške učenje i pogreške ispitivanja za neku familiju modela i neki označeni skup primjera:

Crvenom linijom označena je složenost nekog modela \mathcal{H} . Crvene točke odgovaraju ispitnoj pogrešci i pogrešci učenja za hipotezu $h \in \mathcal{H}$ iz tog modela, dobivenoj nekim optimizacijskim algoritmom. Što možemo reći o modelu \mathcal{H} i o hipotezi h?

- $oxed{A}$ Model $\mathcal H$ nije optimalne složenosti, a čak ni hipoteza h ne mora biti optimalna na skupu za učenje, ako je optimizacijski algoritam loš
- \square Model \mathcal{H} je nedovoljne složenosti, ali je barem hipoteza h optimalna u smislu najmanje moguće pogreške na skupu za učenje
- D Model \mathcal{H} je prenaučen, a hipoteza h će loše generalizirati na neviđene primjere
- 11. (T) Modeli strojnog učenja tipično imaju i parametre i hiperparametre. **Koja je razlika između** parametara i hiperparametara?
 - Algoritam strojnog učenja minimizira parametre te istovremeno maksimizira hiperparametre
 - B Hiperparametri mogu biti diskretni ili kontinuirani, dok su parametri uvijek kontinuirani
 - C Parametre optimira algoritam strojnog učenja, dok optimizacija hiperparametara nije u nadležnosti tog algoritma
 - D Parametri određuju iznos empirijske pogreške na skupu za učenje, a hiperparametri iznos te pogreške na skupu za provjeru
- 12. (P) Raspolažemo modelom \mathcal{H}_{α} , koji ima hiperparametar α kojim se može ugađati složenost modela. Isprobavamo dvije vrijednosti hiperparametra: α_1 i α_2 . Treniramo modele \mathcal{H}_{α_1} i \mathcal{H}_{α_2} te dobivamo hipoteze h_{α_1} i h_{α_2} . Zatim računamo empirijske pogreške tih hipoteza na skupu za učenje \mathcal{D}_u i na skupu za ispitivanje \mathcal{D}_i . Utvrđujemo da vrijedi:

$$E(h_{\alpha_1}|\mathcal{D}_i) - E(h_{\alpha_1}|\mathcal{D}_u) < E(h_{\alpha_2}|\mathcal{D}_i) - E(h_{\alpha_2}|\mathcal{D}_u)$$

Što iz toga možemo zaključiti?

- $\boxed{\mathsf{A}}$ Model \mathcal{H}_{α_2} je prenaučen
- $\ensuremath{\,\,\overline{}}$ Optimalan model je onaj s vrijednošću hiperparametra iz intervala $[\alpha_1,\alpha_2]$
- \square Model \mathcal{H}_{α_1} je manje složenosti od modela \mathcal{H}_{α_2}