Basic Indexed Mode

IOHNS HOPKINS

- Pre-indexed effective address (EA) = contents of base register plus a signed offset
- Load (LDR) & store (STR) instructions will be used to illustrate addressing modes

Format for Load and Store instructions.

High 4 bits in all instructions specify a condition that determines whether the instruction is executed.

Pre-indexed mode

- A bit within the opcode indicates whether the offset is in the low 12 bits or whether the offset is in a register indicated by the low 4 bits of the instruction.
- Offset is treated as an unsigned value (a bit within the opcode indicates sign for offset).

Examples:

```
    LDR Rd,[Rn, #offset] ; Rd ← [[Rn] + offset]
    LDR Rd,[Rn, Rm] ; Rd ← [[Rn]+[Rm]]
    LDR Rd,[Rn] ; Rd ← [[Rn] + 0]
```

ARM Addressing Modes

- Relative Addressing Mode
 - The PC is used as the base register.
 - Programmer uses label and assembler determines offset
 - Offset = operand address PC+8
 - Examples:
 - ; loads contents of memory location LDR R1,ITEM ITEM into R1.

- Pre-indexed with writeback
 - Computed EA overwrites Rn
 - Post-indexed

IOHNS HOPKINS

- EA = [Rn]
- Rn is then overwritten with EA + offset
- Offset in register may be scaled by power of 2
 - shifted right or left a specified amount (0 31)
 - direction & shift amount are encoded in Rm field

Example:

- LDR R0,[R1, -R2,LSL #4]!
 - $R0 \leftarrow [[R1] 16*[R2]]$
 - R1 is overwritten by EA (! specifies writeback)

ARM Addressing Modes

ARM indexed addressing modes.		
Name	Assembler syntax	Addressing function
With immediate offset: Pre-indexed	[Rn, #offset]	EA = [Rn] + offset
Pre-indexed with writeback	[Rn, #offset]!	$EA = [Rn] + offset;$ $Rn \leftarrow [Rn] + offset$
Post-indexed	[Rn], #offset	EA = [Rn]; $Rn \leftarrow [Rn] + offset$
With offset magnitude in Pre-indexed	R m : [R n , \pm R m , shift]	$EA = [Rn] \pm [Rm]$ shifted
Pre-indexed with writeback	$[Rn, \pm Rm, shift]!$	$EA = [Rn] \pm [Rm]$ shifted; $Rn \leftarrow [Rn] \pm [Rm]$ shifted
Post-indexed	$[Rn]$, $\pm Rm$, shift	EA = [Rn]; $Rn \leftarrow [Rn] \pm [Rm] \text{ shifted}$
Relative (Pre-indexed with immediate offset)	Location	EA = Location $= [PC] + offset$
	SL for left shift or LSR for igned number specifying the in register Rm can be add	he shift amount

ARM Addressing Modes

- Register mode
 - Used for arithmetic & logic instructions
 - 2 source registers and a result register
- Absolute mode
 - If base register contains 0, 12-bit offset = absolute address

Immediate mode

TOHNS HOPKINS

- Provided via pseudo-instructions
- Format: LDR Rd,=value
- Equal sign indicates immediate value
 - Examples:
 - LDR R2,=127 ; replaced by MOV R2,#127
 - LDR R2,=&ABCD3456 ;replaced by LDR R2,MEMLOC where MEMLOC contains hex ABCD3456 "&" prefix denotes a hex value

Load 32-bit addresses

- Examples:
- ADR Rd, LOCATION; loads 32-bit address into Rd
 - Assembler computes offset from current PC value
 - If LOCATION is in forward direction Rd,R15,#offset ;is substituted
 - If LOCATION is in backward direction Rd,R15,#offset ; is substituted
- In either case, offset is an unsigned 8-bit number
- Rotating the 8-bit number can give larger offsets