# ELEC 2531

#### Lab 3

#### Introduction to **DEO-Nano board** & **Cyclone IV FPGA**:

- Generation of a SystemVerilog design for the Cyclone IV FPGA using Altera's SystemBuilder
- Synthesis, Place & Route using Quartus, RTL and Gate Level Simulation using ModelSim
- Programming the FPGA using Quartus
- In-circuit SignalTap II logic analyzer







## Electronic Design Automation (EDA) Flow for FPGA

 We use a programming language - (System)Verilog - to describe (HDL) a circuit (our design entry) that we can simulate at different levels (ModelSim) and use to program a physical device (our FPGA, using Quartus).



A circuit description (HDL) file is called a **netlist**. The netlist your write in (System) Verilog is processed by Quartus into lower abstraction level netlists (Synthesis + Place&Route) and then finally into a configuration file (Assembler) intended to program the FPGA (Device Programmer).

# A quick reminder on the Raspberry-Pi

- Part of your personal tasks for this course consist of
  - Setting up your Raspberry-Pi (WiFi connection, SSH remote access, SFTP file transfer)
  - Getting familiar with the Linux environment (master the basics of the command line)
  - Integrate the basics of the Python programming language
- -> 100% of you should these three points by the end of Week 7 (hence for the 4th lab)





In constrast to HDL design for FPGA, embedded systems and especially the Raspberry-Pi benefit from large online resources and communities. It is hence important to use that as much as possible

**Primary to consult**: concise while complete resource to get familiar with SSH connection, Linux environment, DDD and SFTP transfer

## Quick Restructuring: the DEO-Nano board

 The cyclone IV FPGA, yes, but many other stuff; let's review them:



```
This code is generated by Terasic System Builder
module My Design(
     //////// CLOCK ////////
     input CLOCK 50.
     //////// LED ////////
     input [7:0] LED,
     /////// KEY ////////
     input [1:0] KEY,
     //////// SW ////////
     input [3:01 SW.
     //////// SDRAM ////////
     input [12:0] DRAM ADDR,
     // (...)
     input
                 DRAM WE N,
     //////// EPCS ////////
     output EPCS ASDO,
     input EPCS DATA0,
     output EPCS DCLK,
     output EPCS NCSO,
     //////// Accelerometer and EEPROM ///////
     output inputG SENSOR CS N,
     input G SENSOR INT,
     output I2C SCLK,
     inout I2C_SDAT,
     output ADC CS N,
     output ADC SADDR,
     output ADC SCLK,
     input ADC SDAT,
     //////// 2x13 GPIO Header ////////
     inout [12:0] GPIO 2,
     input [2:0] GPIO 2 IN,
     /////// GPIO 0, GPIO 0 connect to GPIO Default ///////
     inout [33:0] GPIO 0,
     input [1:0] GPIO 0 IN,
     /////// GPIO 1, GPIO 1 connect to GPIO Default ///////
     inout [33:0] GPIO 1,
     input [1:0] GPIO 1 IN
```

### Quick Restructuring: the DEO-Nano board

#### Digital clock:

- > CLOCK 50: on-board 50MHz clock oscillator (chip in red box, on the previous slide)
- ➤ Other clocks may be derived from CLOCK 50 using PLLs (4 available in the FPGA), see Lab-3B

#### Supply voltages:

- ➤ Main source = mini-USB (5V)
- ➤ The Cyclone IV FPGA is fed with 1.2V, 2.5V and 3.3V DC supply voltages, produced by dedicated chips on the board (linear regulators)
- > 5.0V and 3.3V pins are available on the GPIO-0 and GPIO-1 headers

|            |            |    | JP1      |    |          |
|------------|------------|----|----------|----|----------|
|            | GPIO_0_IN0 | _  |          | 2  | GPIO_00  |
|            | GPIO_0_IN1 |    |          | 4  | GPIO_01  |
|            | GPIO_02    | 5  |          | 6  | GPIO_03  |
|            | GPIO_04    | 7  |          | 8  | GPIO_05  |
|            | GPIO_06    | 9  |          | 10 | GPIO_07  |
| VCC_SYS O- |            | 11 |          | 12 | -        |
|            | GPIO_08    | 13 |          | 14 | GPIO_09  |
|            | GPIO_010   | 15 |          | 16 | GPIO_011 |
|            | GPIO_012   | 17 |          | 18 | GPIO_013 |
|            | GPIO_014   | 19 |          | 20 | GPIO_015 |
|            | GPIO_016   | 21 | * *      | 22 | GPIO_017 |
|            | GPIO_018   | 23 |          | 24 | GPIO_019 |
|            | GPIO_020   | 25 |          | 26 | GPIO_021 |
|            | GPIO_022   | 27 |          | 28 | GPIO_023 |
| VCC3P3 O-  |            | 29 | 2        | 30 |          |
|            | GPIO_024   | 31 | <u> </u> | 32 | GPIO_025 |
|            | GPIO 026   | 33 | ××       | 34 | GPIO 027 |
|            | GPIO_028   | 35 |          | 36 | GPIO_029 |
|            | GPIO_030   | 37 | ××       | 38 | GPIO_031 |
|            | GPIO 032   | 39 | ¥ ¥      | 40 | GPIO 033 |
|            | 1          |    | •        | -  | <u></u>  |

#### Memories:

- ➤ Is used to store designs on the board (see INGI2315, ELEC2103):
  - > 8MB Flash (Spansion EPCS64, non-volatile)
- > Can be addressed explicitly by the user in designs (see INGI2315, ELEC2103):
  - > 32MB SDRAM (volatile)
  - > 2kB EEPROM (non-volatile)
- > Are used by the Quartus compiler to build the required memory blocks of your design:
  - ➤ 1kB M9K blocks (volatile, x 66 => max. 600kbits)
  - Logic elements: contain dedicated logic registers (max. 22kbits)

## Quick Restructuring: Timing & Delays

- Time is an important factor in digital circuits:
  - Every wire, gate or component introduce delays (e.g. propagation)
  - Sequential devices (flip-flops, latches, ...) need a digital clock to work ...



... and therefore introduce timing considerations in the design







## Quick Restructuring: Signal Tap II

 In-circuit logic analyzer: often neglected by students (tired of new tools?) but (1) it is an incredibly useful tool (ELEC2103!) and (2) we will ask you to deliver Signal Tap waves at evaluations 2 and/or 3 (!PIPE!)
 you should take as seriously as the rest





Quartus Handbook, vol. III, chap. 13



