COSY and TOCSY

BCMB/CHEM 8190

COSY: Correlated Spectroscopy

- One of the first, and most useful 2D experiments
 - one of the most common homonuclear experiments
 - workhorse experiment for small molecules to correlate coupled ¹H nuclei
 - 2- and 3-bond couplings mostly, but possible for longer range
 - good for correlating nuclei in small spin systems
- Deceptively simple looking experiment
 - preparation period: relaxation delay (d₁), then 90° *x* nonselective pulse to generate transverse magnetization for all ¹H nuclei
 - evolution period (t_1) , all evolve according to chemical shifts and J couplings

- coherence transfer resulting from the mixing period (second 90° *x* nonselective pulse) causes a portion of the magnetization for each spin to precess at the frequencies of coupled spins!
- crosspeaks (off-diagonal peaks) then identify frequencies of coupled spins

COSY Spectra

- Correlate chemical shifts of coupled nuclei in two dimensions
 - signals on diagonal are autocorrelated
 - signals off of the diagonal, crosspeaks, correlate chemical shifts of coupled nuclei (spectrum is symmetrical, each crosspeak appearing twice)

- for proteins, is challenging to analyze some regions of COSY spectra for even small proteins

COSY for an AX Spin System

- Simple Hamiltonian and basis set (AX, first order system):
 - evolution due to chemical shift for spins A and X, and first order J_{AX}

$$\hat{\boldsymbol{H}} = -\gamma B_0 (1 - \sigma_A) \hat{\boldsymbol{I}}_{Az} - \gamma B_0 (1 - \sigma_X) \hat{\boldsymbol{I}}_{Xz} + h J_{AX} \hat{\boldsymbol{I}}_{Az} \hat{\boldsymbol{I}}_{Xz} \qquad \left| \alpha \alpha \right\rangle \ \left| \alpha \beta \right\rangle \ \left| \beta \alpha \right\rangle \ \left| \beta \beta \right\rangle$$

- Not so simple to analyze COSY (HSQC easier)
 - use Kanters' "POF" implementation in MAPLE to analyze COSY (limited to first-order spectra, and spin ½ nuclei)
- Initial equilibrium (I_z) magnetization converted to $-I_y$ with 90°_x
 - red (input) and blue (output) from MAPLE using Kanters' "POF"
 - step1: define spin system ("spinsystem" is a defined function/object that allows the spins to be named and sets up equilibrium properties)
 - step2: 90°_{x} ($\pi/2_{x}$) pulse/rotation on step 1 for both spins, get expected *y*-magnetization

```
step1:=spinsystem([A,X]); \\ step1:=Iz_A+Iz_X \quad \text{i.e. equilibrium magnetization} \\ step2:=xpulse(step1, \{A,X\}, Pi/2); \\ step2:=-Iy_A-Iy_Y \quad \text{transverse $y$-magnetization} \\
```

Evolution Step Combines All parts of Hamiltonian in Kanters' POF Approach

- Evolution step ("evolve" function/object) by default includes both chemical shift evolution and scalar coupling
 - step 3: magnetization evolves with chemical shifts of A and X, and $J_{\rm AX}$
 - no surprises, straightforward
 - first type of term: 'A' (I_{yA} , I_{xA}) and antiphase 'A' ($I_{xA}I_{zA}$, $I_{yA}I_{zA}$) magnetization (red boxes, solid and dashed, respectively) evolving with the chemical shift of A (W_A) and J_{AX} , as a function of t_1 (first 4 terms)
 - second type of term: same as first, but for 'X' spin (second 4 terms)
 - no mixing of terms (X evolving at W_A , or A evolving with W_X) yet.....
 - if you were to observe the magnetization, would just be two signals, each a doublet

> step3:=evolve(step2,{A,X}, t1); $step3 := -Cos(2 \pi W, t1) Iv \cdot Cos(\pi J, -t1) + 2 Cos(2 \pi W, t1)$

$$step 3 \coloneqq \begin{bmatrix} -Cos\left(2\,\pi\,W_A\,t1\right)\,Iy_A\,Cos\left(\pi\,J_{A,\,X}\,t1\right) \\ +Sin\left(2\,\pi\,W_A\,t1\right)\,Ix_A\,Cos\left(\pi\,J_{A,\,X}\,t1\right) \\ +2\,Sin\left(2\,\pi\,W_A\,t1\right)\,Iy_A\,Iz_X\,Sin\left(\pi\,J_{A,\,X}\,t1\right) \\ -Cos\left(2\,\pi\,W_X\,t1\right)\,Iy_X\,Cos\left(\pi\,J_{A,\,X}\,t1\right) \\ +2\,Sin\left(2\,\pi\,W_X\,t1\right)\,Ix_X\,Iz_A\,Sin\left(\pi\,J_{A,\,X}\,t1\right) \\ +Sin\left(2\,\pi\,W_X\,t1\right)\,Ix_X\,Cos\left(\pi\,J_{A,\,X}\,t1\right) \\ +2\,Sin\left(2\,\pi\,W_X\,t1\right)\,Iy_X\,Iz_A\,Sin\left(\pi\,J_{A,\,X}\,t1\right) \\ +2\,Sin\left(2$$

Second Pulse: Coherence Transfer

- The second 90° pulse does many interesting things, but the most interesting is coherence transfer to create A magnetization precessing at W_X , and X magnetization precessing at W_A
 - I_{yA} and I_{yX} terms $\rightarrow I_{z}$ (not observable)
 - $I_{xA}I_{zX}$ and $I_{xX}I_{zA}$ terms \rightarrow - $I_{xA}I_{vX}$ and - $I_{xX}I_{vA}$ (MQ, not observable)
 - I_{xA} , modulated by $W_A t_1$ (and J_{AX}) remains the same, as does I_{xX} , modulated by $W_X t_1$ (and J_{AX})
 - during t_2 , I_A will be modulated by $W_A t_2$ as well (and J_{AX}), giving a signal in the 2D spectrum centered at W_A (f_2) and W_A (f_1) (diagonal peak/auto peak)
 - same for I_X (modulated at W_X (f_2) and W_X (f_1), diagonal peak)
 - > step4:= xpulse(step3, {A,X}, Pi/2);

```
\begin{split} \mathit{step4} &\coloneqq -\mathit{Cos} \left( 2 \: \pi \: W_{_{\!A}} \: t1 \right) \: Iz_{_{\!A}} \: \mathit{Cos} \left( \pi \: J_{_{\!A},_{\,X}} \: t1 \right) - 2 \: \mathit{Cos} \left( 2 \: \pi \: W_{_{\!A}} \: t1 \right) \: Ix_{_{\!A}} \: Iy_{_{\!X}} \: \mathit{Sin} \left( \pi \: J_{_{\!A},_{\,X}} \: t1 \right) \\ &+ \mathit{Sin} \left( 2 \: \pi \: W_{_{\!A}} \: t1 \right) \: Ix_{_{\!A}} \: \mathit{Cos} \left( \pi \: J_{_{\!A},_{\,X}} \: t1 \right) - 2 \: \mathit{Sin} \left( 2 \: \pi \: W_{_{\!A}} \: t1 \right) \: Iz_{_{\!A}} \: Iy_{_{\!A}} \: \mathit{Sin} \left( \pi \: J_{_{\!A},_{\,X}} \: t1 \right) \\ &- \mathit{Cos} \left( 2 \: \pi \: W_{_{\!X}} \: t1 \right) \: Iz_{_{\!X}} \: \mathit{Cos} \left( \pi \: J_{_{\!A},_{\,X}} \: t1 \right) - 2 \: \mathit{Cos} \left( 2 \: \pi \: W_{_{\!X}} \: t1 \right) \: Ix_{_{\!X}} \: Iy_{_{\!A}} \: \mathit{Sin} \left( \pi \: J_{_{\!A},_{\,X}} \: t1 \right) \\ &+ \mathit{Sin} \left( 2 \: \pi \: W_{_{\!X}} \: t1 \right) \: Ix_{_{\!X}} \: \mathit{Cos} \left( \pi \: J_{_{\!A},_{\,X}} \: t1 \right) - 2 \: \mathit{Sin} \left( 2 \: \pi \: W_{_{\!X}} \: t1 \right) \: Iz_{_{\!X}} \: Iy_{_{\!A}} \: \mathit{Sin} \left( \pi \: J_{_{\!A},_{\,X}} \: t1 \right) \end{split}
```

- antiphase A ($I_{yA}I_{zX}$) modulated by W_At_1 (and J_{AX}) \rightarrow antiphase X ($-I_{zA}I_{yX}$) modulated by W_At_1 (and J_{AX})! During t_2 this will be modulated by W_Xt_2 (and J_{AX}) as well, giving a signal centered at $W_A(f_1)$ and $W_X(f_2)$! This is a crosspeak that correlates the two chemical shifts! (same for $-I_{zX}I_{vA}$)

Observation: t₂ evolution

- During t_2 , observable terms evolve with $W_A t_2$ and $W_X t_2$
 - ignore terms from previous step that are not observable
 - also, the program essentially takes the trace of the density matrix with \mathbf{I}_{xA} , \mathbf{I}_{xX} , \mathbf{I}_{yA} and \mathbf{I}_{yX} operators to give the observables (Mx and My), so there are no longer any operators in the terms
 - note (T) are y (imaginary) components
 - > step5:=observe(step4, {A,X}, t2,0);

$$\begin{split} step 5 &:= \frac{1}{2} \operatorname{Sin} \left(2 \operatorname{\pi} \overline{W_A} t I \right) \operatorname{Cos} \left(\operatorname{\pi} J_{A,X} t I \right) \operatorname{Cos} \left(2 \operatorname{\pi} \overline{W_A} t 2 \right) \operatorname{Cos} \left(\operatorname{\pi} J_{A,X} t 2 \right) \\ &+ \frac{1}{2} \operatorname{Sin} \left(2 \operatorname{\pi} \overline{W_X} t I \right) \operatorname{Sin} \left(\operatorname{\pi} J_{A,X} t I \right) \operatorname{Cos} \left(2 \operatorname{\pi} \overline{W_A} t 2 \right) \operatorname{Sin} \left(\operatorname{\pi} J_{A,X} t 2 \right) \\ &+ \frac{1}{2} \operatorname{I} \operatorname{Sin} \left(2 \operatorname{\pi} \overline{W_X} t I \right) \operatorname{Sin} \left(\operatorname{\pi} J_{A,X} t I \right) \operatorname{Sin} \left(2 \operatorname{\pi} \overline{W_X} t 2 \right) \operatorname{Sin} \left(\operatorname{\pi} J_{A,X} t 2 \right) \\ &+ \frac{1}{2} \operatorname{Sin} \left(2 \operatorname{\pi} \overline{W_X} t I \right) \operatorname{Cos} \left(\operatorname{\pi} J_{A,X} t I \right) \operatorname{Cos} \left(2 \operatorname{\pi} \overline{W_X} t 2 \right) \operatorname{Cos} \left(\operatorname{\pi} J_{A,X} t 2 \right) \\ &+ \frac{1}{2} \operatorname{I} \operatorname{Sin} \left(2 \operatorname{\pi} \overline{W_X} t I \right) \operatorname{Cos} \left(\operatorname{\pi} J_{A,X} t I \right) \operatorname{Sin} \left(2 \operatorname{\pi} \overline{W_X} t 2 \right) \operatorname{Cos} \left(\operatorname{\pi} J_{A,X} t 2 \right) \\ &+ \frac{1}{2} \operatorname{Sin} \left(2 \operatorname{\pi} \overline{W_X} t I \right) \operatorname{Cos} \left(\operatorname{\pi} J_{A,X} t I \right) \operatorname{Sin} \left(2 \operatorname{\pi} \overline{W_X} t 2 \right) \operatorname{Cos} \left(\operatorname{\pi} J_{A,X} t 2 \right) \\ &+ \frac{1}{2} \operatorname{Sin} \left(2 \operatorname{\pi} \overline{W_X} t I \right) \operatorname{Sin} \left(\operatorname{\pi} J_{A,X} t I \right) \operatorname{Cos} \left(2 \operatorname{\pi} \overline{W_X} t 2 \right) \operatorname{Sin} \left(\operatorname{\pi} J_{A,X} t 2 \right) \\ &+ \frac{1}{2} \operatorname{I} \operatorname{Sin} \left(2 \operatorname{\pi} \overline{W_X} t I \right) \operatorname{Cos} \left(\operatorname{\pi} J_{A,X} t I \right) \operatorname{Cos} \left(2 \operatorname{\pi} \overline{W_X} t 2 \right) \operatorname{Cos} \left(\operatorname{\pi} J_{A,X} t 2 \right) \\ &+ \frac{1}{2} \operatorname{I} \operatorname{Sin} \left(2 \operatorname{\pi} \overline{W_X} t I \right) \operatorname{Cos} \left(\operatorname{\pi} J_{A,X} t I \right) \operatorname{Sin} \left(2 \operatorname{\pi} \overline{W_X} t 2 \right) \operatorname{Cos} \left(\operatorname{\pi} J_{A,X} t 2 \right) \\ &+ \frac{1}{2} \operatorname{I} \operatorname{Sin} \left(2 \operatorname{\pi} \overline{W_X} t I \right) \operatorname{Cos} \left(\operatorname{\pi} J_{A,X} t I \right) \operatorname{Sin} \left(2 \operatorname{\pi} \overline{W_X} t 2 \right) \operatorname{Cos} \left(\operatorname{\pi} J_{A,X} t 2 \right) \\ &+ \frac{1}{2} \operatorname{I} \operatorname{Sin} \left(2 \operatorname{\pi} \overline{W_X} t I \right) \operatorname{Cos} \left(\operatorname{\pi} J_{A,X} t I \right) \operatorname{Sin} \left(2 \operatorname{\pi} \overline{W_X} t 2 \right) \operatorname{Cos} \left(\operatorname{\pi} J_{A,X} t 2 \right) \\ &+ \frac{1}{2} \operatorname{I} \operatorname{Sin} \left(2 \operatorname{\pi} \overline{W_X} t I \right) \operatorname{Cos} \left(\operatorname{\pi} J_{A,X} t I \right) \operatorname{Sin} \left(2 \operatorname{\pi} \overline{W_X} t 2 \right) \operatorname{Cos} \left(\operatorname{\pi} J_{A,X} t 2 \right) \\ &+ \frac{1}{2} \operatorname{I} \operatorname{Sin} \left(2 \operatorname{\pi} \overline{W_X} t I \right) \operatorname{Cos} \left(\operatorname{\pi} J_{A,X} t I \right) \operatorname{Sin} \left(2 \operatorname{\pi} \overline{W_X} t 2 \right) \operatorname{Cos} \left(\operatorname{\pi} J_{A,X} t 2 \right) \\ &+ \frac{1}{2} \operatorname{I} \operatorname{Sin} \left(2 \operatorname{\pi} \overline{W_X} t I \right) \operatorname{Cos} \left(\operatorname{\pi} J_{A,X} t I \right) \operatorname{Cos} \left(\operatorname{\pi} \overline{W_X} t I \right) \operatorname{Cos} \left(\operatorname{\pi} J_{A,X} t I \right) \\ &+ \operatorname{I} \operatorname{I} \operatorname{I} \operatorname{I} \left(\operatorname{I} \overline{W_X} t I \right) \operatorname{Cos} \left(\operatorname{I} \overline{W_X} t I \right) \operatorname{I} \left(\operatorname{I} \overline{W_X} t I \right)$$

- diagonal peaks (autocorrelation peaks) appear on the diagonal, at the same chemical shift in both dimensions (rectangular boxes)
- crosspeaks appear off of the diagonal, at WX in one dimension and WA in the other, correlating the chemical shifts of coupled nuclei (elliptical symbols)
- note the $\sin(J_{AX}t_1)$ and $\sin(J_{AX}t_2)$ dependencies in crosspeak terms: t_1 must reach ~1/(2J) or sin terms make crosspeaks small (so, collect lots of t_1 points)

Analysis of Terms

- Each of the terms corresponds to a signal comprised of 4 peaks
 - the following trigonometric identities can be used to express these in a familiar looking manner (may not be obvious otherwise)

```
sin(A)cos(B) = \frac{1}{2}[sin(A+B) + sin(A-B)] cos(A)sin(B) = \frac{1}{2}[sin(A+B) - sin(A-B)]

sin(A)sin(B) = \frac{1}{2}[cos(A-B) - cos(A+B)] cos(A)cos(B) = \frac{1}{2}[cos(A+B) + cos(A-B)]
```

Examine one of the crosspeak terms

$$= \frac{1}{2} I \sin(2\pi W_x t_1) \sin(\pi J_{AX} t_1) \sin(2\pi W_A t_2) \sin(\pi J_{AX} t_2)$$

- this suggests magnetization precessing at $W_{\rm x}$ during ${\rm t_1}$ and $W_{\rm A}$ during ${\rm t_2}$ (and modulated by $J_{\rm AX}$)
- apply the following identity: $\sin(A)\sin(B) = \frac{1}{2}[\cos(A-B) \cos(A+B)]$ = $\frac{1}{2}I\frac{1}{2}[\cos(2\pi W_x t_1 - \pi J_{AX}t_1) - \cos(2\pi W_x t_1 + \pi J_{AX}t_1)]\frac{1}{2}[\cos(2\pi W_A t_2 - \pi J_{AX}t_2) - \cos(2\pi W_A t_2 + \pi J_{AX}t_2)]$
- writing this in a familiar way (frequencies ± J) gives

1.
$$+(v_X - J_{AX})t_1$$
 2. $-(v_X + J_{AX})t_1$ **3.** $+(v_A - J_{AX})t_2$ **4.** $-(v_A + J_{AX})t_2$

- this shows two antiphase doublets, the first (1 and 2) at v_X in t_1 , and the second (3 and 4) at v_A in t_2

Fourier Transforming these in t_1 and t_2 Gives a series of Absorptive and Dispersive peaks at $v \pm J/2$

- Fourier transformation changes time domains to frequencies
 - FT in t_1 and t_2 changes t_1 to v_1 , t_2 to v_2
 - MAPLE does the FT (first t_2 to v_2 , then t_1 to v_1 , output shown below)
- Example: look at first term
 - in v_2 , frequency of X-J (absorptive), and in v_1 , frequency of A-J (dispersive)
- Should be 16 peaks (4 signals x 4 peaks each), but are 32 terms. Why? No quadrature detection (yet).

```
> spec1:= evalc(Re(FT(FT(step5,0,t2,v2),0,t1,v1))); spec1:= -\frac{1}{16}Ab(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v1)+\frac{1}{16}Ab(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{X}v2)Di(-\frac{1}{2}J_{A,X}+W_{
```

Quadrature Detection in t₁

- Without quadrature detection, can't tell if signals are faster or slower than reference (so, FT gives both, so 2x actual number of peaks)
 - placing RF transmitter frequency to one side of the spectrum results in decreased S/N

- In the experiment, initial pulse created -y magnetization, so it evolved as such
 - the second pulse sampled it only along one axis
 - result of FT is two signals, one on either side of the RF transmitter (reference/carrier) frequency
- Can set up quadrature by alternating phase of second pulse (x,y)
 - so change the phase of the second pulse to get quadrature detection
- Additional cycling of pulses (and receiver)
 phase also assists in removing artifacts (such
 as "axial peaks")

Elementary "Phase Cycle" for COSY

- Implementing quadrature detection in t₁
 - alternate phase of second pulse (constant receiver phase), store in memory as real and imaginary
- Removal of "axial" peaks
 - during t_1 , T_1 relaxation occurs, creating z-magnetization
 - this z-magnetization doesn't precess during t_1 , so is not modulated by chemical shift or J coupling
 - appears as peaks at zero frequency (center of spectrum with quadrature) in t_1 ("axial" peaks): annoying, no information content, obscure other peaks
 - remove by cycling first pulse and receiver (below)
- Important consideration: number of scans must be integral multiple of number of steps in the phase cycle

Phase cycle for COSY:

ϕ_1	ϕ_2	ϕ_3	memory
X	X	+	real, imag
X	У	+	imag, real
-X	X	-	real, imag
-X	у	-	imag, real

Another problem: Dispersive and Twisted Auto-Peaks (or Cross-Peaks)

- Diagonal signals are products of dispersive components
 - they give a twisted, dispersive lineshape
 - these are problematic, especially in crowded regions of spectra, as they overlap and obscure (important) crosspeaks

 A

- still, the long "tails" of the diagonal peaks remain (crosspeaks obscured)
- are many ways to collect COSY spectra, and some alleviate this problem

Double-Quantum Filtered COSY

- Double-quantum filtered COSY is one variation on the COSY method that helps to alleviate the diagonal peak problem
 - consider what happens to the multiple quantum terms that follow the second 90°x pulse when the third 90°x pulse is applied:

$$-2I_{xA}I_{yX} \xrightarrow{\frac{\pi}{2}I1x} \frac{\pi}{2}I2x \longrightarrow -2I_{xA}I_{zX} \qquad -2I_{xX}I_{yA} \xrightarrow{\frac{\pi}{2}I1x} \frac{\pi}{2}I2x \longrightarrow -2I_{xX}I_{zA}$$

- during the evolution period, these multiple quantum terms were precessing with the frequencies of A and X, and now have been converted back to observable single quantum magnetization
- With appropriate phase cycling, other terms are removed, so only those terms that precessed as multiple quantum survive
- The advantage is that all terms (those governing both diagonal and cross peaks) are pure absorptive (antiphase)
- Other types of signals are also filtered out by the doublequantum filter (contaminants, spurious peaks, solvent, any single line signals)

Example of 2Q-Filtered COSY

- Double quantum filtered COSY spectrum of β-methyl galactose
 - nice clean diagonal peaks and crosspeaks (pure absorptive, antiphase)
- See how many signals you can assign
 - start with anomeric hydrogen (H1): easy to pick out.....only H on a C that is bonded directly to two oxygen atoms.....
 - one crosspeak is very weak. Why? How might it be possible to make it stronger?

β-Me-Galactose

Recall: 2Q Spectrum of β-Me-Galactose:

- Some advantages of the two-quantum method we saw earlier
 - no peaks on the diagonal
 - no peaks from single line signals (like solvent, same as DQF COSY)

TOCSY - Total Correlation Spectroscopy

- Method to correlate "all" spins in a given spin system
 - COSY crosspeaks indicate direct 2- or 3-bond coupling (larger *J* values)
 - TOCSY crosspeaks indicate that magnetization can be transferred through mutually coupled spins via 2- and 3-bond couplings
 - also useful in alleviating ambiguity in crowded regions (i.e. COSY aliphatic region) when one spin in the spin system is well resolved (anomeric proton in carbohydrates, amide proton in proteins)
 - a useful element in higher dimensional experiments (3D TOCSY-HSQC)

- Pulse sequence similar to COSY
 - mixing element is now 90°x-τ_m-90°x rather than a single 90°x in COSY
 - Δ a short instrumental delay (transmitter power and pulse phase changes)
 - isotropic mixing sequence (sometimes called a "spin-lock") is a complex series of pulses that locks magnetization in the transverse plane
 - the behavior of the spins is similar to dozens of back-to-back spin-echo sequences: the relative frequencies now are ~identical (governed by the low rotation frequency in the transverse plane promoted by $B_{\rm eff}$ <<< B_0), but (homonuclear) couplings still active and independent of magnetic field or $B_{\rm eff}$ (so Δv ~J, strong coupling, highly second order behavior)

Isotropic Mixing

- Product operators we've developed can't describe isotropic mixing
 these assume first-order, isotropic mixing based on second order processes
 - First order Hamiltonian: $\mathbf{H} = \Sigma_i \omega_i \mathbf{I}_{iz} + \Sigma_{i\neq j} \pi 2 \mathbf{J}_{ij} \mathbf{I}_{iz} \mathbf{I}_{jz}$
 - Hamiltonian in small B_{eff} : $H = \Sigma_i \omega_i I_{iz} + \Sigma_{i\neq j} \pi 2 J_{ij} I_i \cdot I_j$
 - $\mathbf{I}_i \cdot \mathbf{I}_j = \mathbf{I}_{iX} \mathbf{I}_{jX} + \mathbf{I}_{iY} \mathbf{I}_{jY} + \mathbf{I}_{iZ} \mathbf{I}_{jZ}$
 - The additional operators mix all coupled spin states
 - Cartesian product operators no longer have nice one-toone inter-conversion rules (only apply to first order)
 - Could be done with simple B_1 field but complex pulse sequences work better and suppress relaxation effects:
 - "DIPSI-2" (Shaka) uses super cycles R R R R
 - R=320° 410° 290° 285° 30° 245° 375° 265° 370°

Practical Considerations for TOCSY

- Advantage: both cross-peaks and auto-peaks are in-phase and can be phased absorptive (unlike COSY)
 - good for large molecules where often get lots of peak overlap, so overlapping peaks with + and intensities don't cancel one another
- Cross-peaks do not necessarily indicate direct coupling but show virtual coupling as in second order spectra; J₁₃≠0, J₂₃≠0, J₁₂=0; still see 1-2 splitting and cross-peak.
- The magnitude of cross-peaks depends on:
 - the topology of the spin system
 - magnitudes of all couplings involved
 - efficiency of mixing sequence
 - relaxation during τ_{m} .
- Chose τ_m 75-100 ms for long transfer, 30-50 ms for one to two couplings.

Virtual Coupling Exampls

- Three spins (1, 2, and 3), $J_{1,3}$ =5 hz, $J_{2,3}$ =10 Hz, $J_{1,2}$ =0 Hz
 - no coupling between 1 and 2 $(J_{1,2}=0 \text{ Hz})$
 - however, as system becomes second order ($\Delta v_{3,2} \to 0$), virtual coupling to 1 from 2 (via 3) occurs

TOCSY Transfers in Isoleucine

- Transfer functions indicate complex magnetization exchange
 - in general, shorter mixing times favor short-range transfers
 - longer mixing times favor better transfer to all spins in the system

 $H\alpha$ —, $H\beta$ ----, $H\gamma 1$ -..., $H\gamma 2$ -.-, $H\delta$ $^3J_{HNH\alpha}$ = 10 Hz, $^3J_{H\alpha H\beta}$ = 12 Hz, $^3J_{HCH3}$ = 7 Hz, $^3J_{geminal}$ = -15 Hz, From Cavanagh .. and Palmer

Example TOCSY for Lysine

- Results depend on mixing time
 - compromise between mixing time length and magnetization losses due to relaxation
 - often a good idea to collect a TOCSY at 2 or 3 mixing times to get most complete set of data
 - TOCSY data also can assist in amino acid type identification

- Mixing times of 48, 83, and 102 ms
- From Cavanagh, Fairbrother, Palmer and Skelton