Davey & Priesley, Introduction to Lattices and Order

Danny Nygård Hansen 20th December 2022

1 • Ordered sets

REMARK 1.1: Duality in ordered sets.

We elaborate on the duality principle. Consider the elementary language \mathcal{L}_{Pos} of ordered sets. This is a (single sorted) first-order language with identity, variable symbols x, y, z, \ldots and a single binary relation symbol ' \leq '. If φ is a wff of \mathcal{L}_{Pos} , then its *dual* φ^{∂} is the wff obtained by reversing the order of all inequalities, so that ' $X \leq Y$ ' becomes ' $Y \leq X$ '.

Recall that a *sentence* in a first-order language is a wff with no free variables. The duality principle then says the following:

Let φ be a \mathcal{L}_{Pos} -sentence. If the order axioms entail φ , then they also entail the dual claim φ^{∂} .

In other words, if φ holds in all ordered sets, then so does φ^{∂} . We give both a syntactic and a semantic proof of this claim. (Of course either is sufficient since the theory of ordered sets is a first-order theory.)

First notice that the axioms of ordered sets (reflexivity, antisymmetry and transitivity) are self-dual: That is, each is their own dual. For instance, the transitive axiom states that

$$\forall x \forall y \forall z (x \le y \land y \le z \Rightarrow x \le z),$$

and this is obviously equivalent to its dual:

$$\forall x \forall y \forall z (y \le x \land z \le y \Rightarrow z \le x).$$

Now say that there is a (first-order) proof of φ from the order axioms. Then taking the dual of every wff in this proof yields a proof of the dual claim φ^{∂}

1. Ordered sets 2

from the duals of the order axioms. But these are themselves axioms, so the order axioms entail φ^{∂} .

For a semantic proof, say that φ holds in every ordered set P. Then φ^{∂} holds in every dual P^{∂} of an ordered set. But these are precisely all the ordered sets, so φ^{∂} holds in all ordered sets.

This obviously extends to set theories augmented with inequality.

REMARK 1.2. An injective monotone map is not necessarily an order-embedding: For instance, the identity map $\iota \colon \overline{2} \to 2$ is obviously injective, but it is not an embedding since 0 < 1 in 2 but not in $\overline{2}$.

REMARK 1.3: Order-isomorphisms.

Let $f: P \to Q$ be a monotone map. We claim that f is an order-isomorphism if and only if it is bijective, and its inverse f^{-1} is also monotone.

First assume that f is an order-isomorphism, let $u, v \in Q$, and let $x, y \in P$ such that f(x) = u and f(y) = v. Then $f^{-1}(u) = x \le y = f^{-1}(v)$ if and only if $u \le v$, so f^{-1} is monotone.

Conversely assume that f^{-1} exists and is monotone, and assume that $f(x) \le f(y)$. Then $x = f^{-1}(f(x)) \le f^{-1}(f(y)) = y$, so f is an order-embedding, hence an order-isomorphism.

REMARK 1.4: The category of ordered sets.

The category **Pos** of (partially) ordered sets has as objects posets and as arrows monotone maps. We claim that **Pos** has all small products and coproducts.

Let A be an index set, and let $(P_{\alpha})_{\alpha \in A}$ be a collection of posets. We define an order on the Cartesian product $P = \prod_{\alpha \in A} P_{\alpha}$ by letting $(x_{\alpha})_{\alpha \in A} \leq (y_{\alpha})_{\alpha \in A}$ if and only if $x_{\alpha} \leq y_{\alpha}$ for all $\alpha \in A$. The projections $\pi_{\alpha} \colon P \to P_{\alpha}$ are then clearly monotone. Notice that the above definition means that for $x, y \in P$ we have $x \leq y$ if and only if $\pi_{\alpha}(x) \leq \pi_{\alpha}(y)$ for all $\alpha \in A$. Given monotone maps $\varphi_{\alpha} \colon Q \to P_{\alpha}$, there is a unique set map $\varphi \colon Q \to P$ making the diagram

commute for all $\alpha \in A$. But φ is clearly also monotone: For $x, y \in Q$ with $x \le y$, since φ_{α} is monotone we have

$$\pi_{\alpha}(\varphi(x)) = \varphi_{\alpha}(x) \le \varphi_{\alpha}(y) = \pi_{\alpha}(\varphi(y)),$$

so $\varphi(x) \leq \varphi(y)$.

Next we define an order on the disjoint union $P = \coprod_{\alpha \in A} P_{\alpha}$. Denoting the canonical injections by $\iota_{\alpha} : P_{\alpha} \to P$, each element in P is on the form $\iota_{\alpha}(x)$ for

1. Ordered sets 3

precisely one $\alpha \in A$ and $x \in P_{\alpha}$. Given another element $\iota_{\beta}(y)$ in P, we thus let $\iota_{\alpha}(x) \leq \iota_{\beta}(y)$ if and only if $\alpha = \beta$ and $x \leq y$ in P_{α} . Given monotone maps $\varphi_{\alpha} \colon P_{\alpha} \to Q$, there is a unique *set map* $\varphi \colon P \to Q$ making the diagram

commute for all $\alpha \in A$. But φ is clearly also monotone: If two elements in P are comparable, then they are on the form $\iota_{\alpha}(x)$ and $\iota_{\alpha}(y)$ for a common $\alpha \in A$ and $x, y \in P_{\alpha}$. If $\iota_{\alpha}(x) \leq \iota_{\alpha}(y)$, then by definition we must have $x \leq y$ in P_{α} . Since φ_{α} is monotone it follows that

$$\varphi(\iota_{\alpha}(x)) = \varphi_{\alpha}(x) \le \varphi_{\alpha}(y) = \varphi(\iota_{\alpha}(y)),$$

showing that φ is monotone.

For finite coproducts we prefer the notation $P \sqcup Q$.

REMARK 1.5: Linear sums of ordered sets.

We may also define a (potentially) different order on the disjoint union $\coprod_{\alpha \in A} P_{\alpha}$ in the case where the index set A is itself (partially) ordered. For $x, y \in P$ we let $x \leq y$ if and only if

- (a) $x, y \in P_{\alpha}$ for a common $\alpha \in A$, and $x \le y$ in P_{α} , or
- (b) $x \in P_{\alpha}$ and $y \in P_{\beta}$ for distinct $\alpha, \beta \in A$ with $\alpha \leq \beta$.

We denote the disjoint union equipped with this order by $\bigoplus_{\alpha \in A} P_{\alpha}$. In the case where $A = \{1, \dots n\}$ is finite and totally ordered (in the obvious way) we also write

$$P_1 \oplus \cdots \oplus P_n$$
.

Despite the additive notation, this operation is clearly *not* commutative, even up to isomorphism.

Notice that if A has the discrete order, then the second clause above is never satisfied, and the order reduces to the coproduct order.

REMARK 1.6: The functor \mathcal{O} .

We claim that $\mathcal{O} \colon \mathbf{Pos}^{\mathrm{op}} \to \mathbf{Pos}$ is a (contravariant) functor, when its action on arrows is given by $\mathcal{O}(\varphi) = \varphi^{-1}$, i.e. it is the pullback of φ .

Exercise 1.24 shows that \mathcal{O} is well-defined as a map between categories, and the identity

$$\mathcal{O}(\psi \circ \varphi) = (\psi \circ \varphi)^{-1} = \varphi^{-1} \circ \psi^{-1} = \mathcal{O}(\varphi) \circ \mathcal{O}(\psi),$$

where o denotes composition in **Pos** and not in **Pos**^{op}, shows that it is indeed a functor (its action on identity arrows is obvious).

EXERCISE 1.24

Let *P* and *Q* be ordered sets.

- (a) Show that $\varphi: P \to Q$ is order-preserving if and only if $\varphi^{-1}(A)$ is a downset in P whenever A is a down-set in Q.
- (b) Assume $\varphi: P \to Q$ is order-preserving. Then, by (i), the map $\varphi^{-1}: \mathcal{O}(Q) \to \mathcal{O}(P)$ is well defined.
 - (a) Show that φ is an order-embedding if and only if φ^{-1} maps $\mathcal{O}(Q)$ onto $\mathcal{O}(P)$.
 - (b) Show that φ maps onto Q if and only if the map $\varphi^{-1}: \mathcal{O}(Q) \to \mathcal{O}(P)$ is one-to-one.

SOLUTION. (a) First assume that φ is order-preserving, let $A \subseteq Q$ be a downset, and let $x \in \varphi^{-1}(A)$ and $y \in P$ with $y \le x$. Then $\varphi(y) \le \varphi(x)$, and since $\varphi(x)$ lies in the down-set A we also have $\varphi(y) \in A$. Hence $y \in \varphi^{-1}(A)$ as claimed.

Conversely, let $x, y \in P$ with $x \le y$. If A is a down-set of Q with $\varphi(y) \in A$, then y lies in the down-set $\varphi^{-1}(A)$ in P. By Lemma 1.30, x also lies in $\varphi^{-1}(A)$, so $\varphi(x) \in A$. The lemma then implies that $\varphi(x) \le \varphi(y)$.

(b) Assume that φ is an order-embedding, and let $B \in \mathcal{O}(P)$. We claim that $B = \varphi^{-1}(\downarrow \varphi(B))$. The inclusion ' \subseteq ' is obvious, so let $x \in P$ with $\varphi(x) \in \downarrow \varphi(B)$. Then there is a $y \in B$ such that $\varphi(x) \leq \varphi(y)$, and this implies that $x \leq y$ since φ is an embedding. But then $x \in B$, proving the other inclusion, so φ^{-1} is surjective.

Next assume that φ^{-1} is surjective, and consider $x, y \in P$ such that $\varphi(x) \le \varphi(y)$. There is a down-set A in Q such that $\downarrow y = \varphi^{-1}(A)$, so in particular $\varphi(y) \in A$. But then $\varphi(x) \in A$, so $x \in \downarrow y$. Hence $x \le y$ as desired.

Now assume that φ is surjective. For $A, B \subseteq Q$ we have

$$A = \varphi(\varphi^{-1}(A)) = \varphi(\varphi^{-1}(B)) = B,$$

so φ^{-1} is injective even on the larger domain 2^Q .

Finally assume that φ is *not* surjective, and choose an element $y \in Q$ not in the image of φ . Then if $B \subseteq Q$ contains y, we have $\varphi^{-1}(B) = \varphi^{-1}(B \setminus \{y\})$, so φ^{-1} is not injective on the domain 2^Q . Letting $B = \bigcup y$ we notice that $\bigcup y \setminus \{y\}$ is also a down-set, so φ^{-1} is also not injective on $\mathcal{O}(Q)$.

2 • Lattices and complete lattices

REMARK 2.1: Duality in lattices.

We elaborate on the duality principle for lattices. Consider the elementary language \mathcal{L}_{Lat} of lattices, which is an extension of \mathcal{L}_{Pos} : It further includes

binary function symbols ' \lor ' and ' \land ' (not to be confused with the logical operators), which satisfy the axioms

$$\forall x \forall y \forall z \Big[(x \le z) \land (y \le z) \Leftrightarrow x \lor y \le z \Big]$$

and

$$\forall x \forall y \forall z [(z \le x) \land (z \le y) \Leftrightarrow z \le x \land y].$$

Notice that there is no uniqueness assumption in the above axioms. Of course, in any model the values of the functions corresponding to the symbols ' \vee ' and ' \wedge ' will be unique given arguments, and we may prove that the axioms above are satisfied only by these values.

If φ is a wff of \mathcal{L}_{Lat} , then its *dual* φ^{∂} is the wff obtained by reversing the order of all inequalities, as well as exchanging ' \vee ' and ' \wedge '. Notice that the two axioms above are each other's duals.

The duality principle for lattices says the following:

Let φ be a \mathcal{L}_{Lat} -sentence. If the lattice axioms entail φ , then they also entail the dual claim φ^{∂} .

In other words, if φ holds in all lattices, then so does φ^{∂} . This follows just as the duality principle for ordered sets, either syntactically or semantically.

As with ordered sets, this extends to set theories as well.

REMARK 2.2: Order-isomorphisms and lattice isomorphisms.

Proposition 2.19(i) says that a lattice homomorphism is also monotone. To show that a lattice isomorphism $f: L \to K$ is also an order-isomorphism, it suffices to recall Remark 1.3: For both f and f^{-1} are lattice homomorphisms, hence monotone, so f is an order-isomorphism. (The converse is proved in Proposition 2.19(ii).)

REMARK 2.3: The category of lattices.

The category **Lat** is the subcategory of **Pos** whose objects are lattices and whose arrows are lattice homomorphisms. We claim that this has all small products [TODO coproducts?].

Let A be an index set, and let $(L_{\alpha})_{\alpha \in A}$ be a collection of lattices. Then $L = \prod_{\alpha \in A} L_{\alpha}$ is a product in **Pos**, and it is easy to show that L is also a lattice, where the lattice operations are given coordinatewise, i.e.

$$(x_{\alpha}) \lor (y_{\alpha}) = (x_{\alpha} \lor y_{\alpha})$$
 and $(x_{\alpha}) \land (y_{\alpha}) = (x_{\alpha} \land y_{\alpha}).$

Furthermore, the projections $\pi_{\alpha} \colon L \to L_{\alpha}$ are also lattice homomorphisms, since if $x = (x_{\alpha})$ and $y = (y_{\alpha})$, then

$$\pi_{\alpha}(x \vee y) = \pi_{\alpha}((x_{\alpha} \vee y_{\alpha})_{\alpha \in A}) = x_{\alpha} \vee y_{\alpha} = \pi_{\alpha}(x) \vee \pi_{\alpha}(y),$$

and similarly for meets. To show that L is a product in **Lat**, it thus suffices to show that a collection of lattice homomorphisms $f_{\alpha}: K \to L_{\alpha}$ factors uniquely through L. Uniqueness is clear, and the product map $f: K \to L$ is a lattice homomorphism since

$$f(x \lor y) = (f_{\alpha}(x \lor y))_{\alpha \in A} = (f_{\alpha}(x) \lor f_{\alpha}(y))_{\alpha \in A}$$
$$= (f_{\alpha}(x))_{\alpha \in A} \lor (f_{\alpha}(y))_{\alpha \in A} = f(x) \lor f(y),$$

and similarly for meets.

Denote by **CLat** the (full) subcategory of **Lat** whose objects are complete lattices. This category also has all small products, since if $S \subseteq L = \prod_{\alpha \in A} L_{\alpha}$ with all L_{α} complete, then it is easy to show that

$$\bigvee S = \left(\bigvee \pi_{\alpha}(S)\right)_{\alpha \in A},$$

and dually for meets.

REMARK 2.4: Linear sums of lattices.

Let $(L_{\alpha})_{\alpha \in A}$ be a collection of lattices, where the index set A is itself a lattice. We wish to find further constraints on either A or the L_{α} that ensure that the linear sum $L = \bigoplus_{\alpha \in A} L_{\alpha}$ is also a lattice.

First assume that A is totally ordered. For elements $x,y \in L$, say that $x,y \in L_{\alpha}$ for a common index α . Then the join $x \vee y$ in L is simply the join of x and y in L_{α} . If instead $x \in L_{\alpha}$ and $y \in L_{\beta}$ for distinct $\alpha, \beta \in A$, then

$$x \vee y = \begin{cases} x, & \alpha > \beta, \\ y, & \alpha < \beta. \end{cases}$$

Meets are given dually. In particular, finite linear sums of lattices are themselves lattices.

Next, instead assume that each L_{α} is bounded. Then if $x \in L_{\alpha}$ and $y \in L_{\beta}$ for $\alpha \neq \beta$, then $x \vee y$ is the zero in $L_{\alpha \vee \beta}$. Dually for meets.

Finally we consider complete lattices. Assume that each L_{α} is complete, and that A is also complete. Then L is a lattice by the above, and we claim that it is also complete. Let $S \subseteq L$ and define

$$B = \{ \alpha \in A \mid \pi_{\alpha}(S) \neq \emptyset \}.$$

Letting $\beta = \bigvee B$ we have $\bigvee S = \bigvee \pi_{\beta}(S)$. Again we in particular see that finite linear sums of complete lattices are complete.

REMARK 2.5: Ideals and filters in posets.

Ideals and filters may be defined more generally for a partially ordered set (P, \leq) . An *ideal* in P is a nonempty subset I that is

- (a) upward directed: for every $x, y \in I$ there is a $z \in I$ such that $x, y \le z$; and
- (b) downward closed (i.e. a down-set): for every $x \in P$ and $y \in I$, $x \le y$ implies that $x \in I$.

Dually, a *filter* in *P* is a nonempty, downward directed up-set.

If P is also a lattice and I is an ideal in the above sense, then it is also an ideal in the sense of Definition 2.20 (the converse is obvious). For if $x, y \in I$, then there is some $z \in I$ with $x, y \le z$. But $x \lor y \le z$, so since I is downward closed we also have $x \lor y \in I$.

REMARK 2.6: Generating ideals and filters.

If P is a partially ordered set and $A \subseteq P$, then it is easy to show that A is upward directed if and only if $\downarrow A$ is upward directed. Thus if $A \neq \emptyset$, then $\downarrow A$ is an ideal if and only if A is upward directed, and dually for filters. Clearly $\downarrow A$ is the smallest ideal containing A (compare Exercise 2.22).

In topology it is common to consider filters in powerset lattices. All filters are usually assumed to be proper in this context. If X is a set, then a *prefilter* or *filter basis* is a nonempty, downward directed collection \mathcal{B} of nonempty subsets of X. It generates the filter $\mathcal{F} = \uparrow \mathcal{B}$, and this is indeed proper since $\emptyset \notin \mathcal{F}$. By the above, a filter basis is precisely a collection $\mathcal{B} \subseteq 2^X$ such that $\uparrow \mathcal{B}$ is a (proper) filter.

EXERCISE 2.6

Let *P* be an ordered set.

(a) Prove that if $A \subseteq P$ and $\bigwedge A$ exists in P, then

$$\bigcap \{ \downarrow a \mid a \in A \} = \bigcup (\bigwedge A).$$

(b) Formulate and prove the dual result.

SOLUTION. (a) This is obvious, since $x \le a$ for all $a \in A$ if and only if $x \le \bigwedge A$.

(b) The dual result is

$$\bigcap \{ \uparrow a \mid a \in A \} = \uparrow (\bigvee A),$$

whenever $\bigvee A$ exists in P. This follows by duality or by an argument analogous to the above. \Box

EXERCISE 2.17

Let *L* and *K* be lattices with 0 and 1. Show that there exist $a, b \in L \times K$ such that

(a) $\downarrow a \cong L$ and $\downarrow b \cong K$,

(b)
$$a \wedge b = (0,0)$$
 and $a \vee b = (1,1)$.

SOLUTION. Let a = (1,0) and b = (0,1). Then

$$\downarrow (1,0) = \{(x,y) \in L \times K \mid x \le 1, y \le 0\} = L \times \{0\}.$$

The map $x \mapsto (x,0)$ is clearly an isomorphism¹ $L \to L \times \{0\}$, proving that $\downarrow (1,0) \cong L$. Similarly we find that $\downarrow (0,1) \cong K$.

Furthermore notice that

$$(1,0) \land (0,1) = (1 \land 0, 0 \land 1) = (0,0)$$

and

$$(1,0) \lor (0,1) = (1 \lor 0,0 \lor 1) = (1,1)$$

as desired.

EXERCISE 2.22

Let *L* be a lattice and let $\emptyset \neq A \subseteq L$. Show that

$$(A] := \bigcup \{a_1 \vee \cdots \vee a_n \mid n \in \mathbb{N}, a_1, \dots, a_n \in A\}$$

is an ideal and moreover it is contained in any ideal *J* of *L* which contains *A*.

SOLUTION. Clearly (A] is a down-set, so it suffices to show that it is closed under binary joins. If $x, y \in (A]$, then by definition there exist $a_1, \ldots, a_n, b_1, \ldots, b_m \in A$ such that

$$x \le a_1 \lor \dots \lor a_n$$
 and $y \le b_1 \lor \dots \lor b_m$.

It follows that

$$x \vee y \leq a_1 \vee \cdots \vee a_n \vee b_1 \vee \cdots \vee b_m$$

so $x \lor y \in (A]$.

To show that $(A] \subseteq J$, notice that it suffices (since J is a down-set) to show that all finite joins of elements in A lie in J. But this is obvious since $A \subseteq J$ and J is an ideal.

EXERCISE 2.29

Let *P* be a complete lattice. Prove that there is a topped \cap -structure $\mathfrak L$ on the set *P* such that $P \cong \mathfrak L$.

¹ Indeed, if $c \in K$ is any fixed element, then the map $L \to L \times K$ given by $x \mapsto (x,c)$ is an injective homomorphism.

П

SOLUTION. Consider the map $\varphi \colon P \to \mathcal{O}(P)$ given by $\varphi(x) = \downarrow x$. This is clearly an order-embedding, so restricting its codomain to its image $\mathfrak{L} \coloneqq \varphi(P)$ yields an order isomorphism, hence a lattice isomorphism. It remains to be shown that \mathfrak{L} is a topped \cap -structure.

Clearly $\mathfrak L$ is topped since $P=\downarrow 1$, so it suffices to show that it is an \cap -structure. Let $\{A_i\}_{i\in I}$ be a nonempty family of elements in $\mathfrak L$, and write $A_i=\downarrow x_i$ for appropriate $x_i\in P$. Now notice that Exercise 2.6 implies that

$$\bigcap_{i \in I} A_i = \bigcap_{i \in I} \downarrow x_i = \downarrow \left(\bigwedge_{i \in I} x_i \right) \in \mathfrak{L}$$

as desired.

EXERCISE 2.31

Let G_1 and G_2 be finite groups such that $gcd(|G_1|, |G_2|) = 1$. Show that

$$\operatorname{Sub}(G_1 \times G_2) \cong \operatorname{Sub} G_1 \times \operatorname{Sub} G_2$$
,

where on the left we have the usual coordinatewise product of groups and on the right the coordinatewise product of ordered sets.

SOLUTION. Write $n_i = |G_i|$. If H is a subgroup of $G_1 \times G_2$, then $|H| = k_1 k_2$ with $k_i \mid n_i$. Consider the subgroups $H_i = \pi_i(H)$ of G_i . Then $|H_i|$ divides both n_i and |H|, so since $\gcd(n_1, n_2) = 1$ it divides k_i . It follows that $|H_1 \times H_2| \le k_1 k_2 = |H|$, and the opposite inequality follows since $H \subseteq H_1 \times H_2$. Hence this inclusion is in fact an equality, so the map

$$\operatorname{Sub}(G_1 \times G_2) \to \operatorname{Sub} G_1 \times \operatorname{Sub} G_2,$$

 $H \mapsto \pi_1(H) \times \pi_2(H),$

is a bijection. It is also clearly monotone, proving the claim.

REMARK 2.7. The assumption that $|G_1|$ and $|G_2|$ be relatively prime is necessary. This hinges on the fact that a subgroup of a product is not necessarily a product of subgroups of each factor. For instance, the subgroup $\langle (1,1) \rangle$ of $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ is clearly not a product of subgroups. It is, however, isomorphic to the subgroup $\mathbb{Z}/2\mathbb{Z} \times \{0\}$, but we can find examples of subgroups of products that are not even isomorphic to any product of subgroups:

Consider for instance the subgroup of $S_3 \times S_3$ given by the kernel K of the homomorphism $\varphi \colon S_3 \times S_3 \to \{\pm 1\}$ given by $\varphi(g,h) = \operatorname{sgn}(gh)$. Since φ is surjective we have $[S_3 \times S_3 : K] = 2$, so |K| = 18. Now assume towards a contradiction that K is isomorphic to a product of two subgroups of S_3 . By Lagrange's theorem, the possible orders of such a subgroup are 1, 2, 3, 6. Hence

one factor must be S_3 itself, and the other must be of order 3, i.e. it must be A_3 . Hence $K \cong S_3 \times A_3$. Now notice that $S_3 \times A_3$ contains an element of order 6, e.g. ((12),(123)), but K does not: For an element of order 6 in $S_3 \times S_3$ must be a pair (τ, σ) , where τ is a transposition and σ a 3-cycle, and $\text{sgn}(\tau\sigma) = -1$.

EXERCISE 2.32

(a) Use the Knaster–Tarski Fixpoint Theorem to prove Banach's Decomposition Theorem:

Let X and Y be sets and let $f: X \to Y$ and $g: Y \to X$ be maps. Then there exist disjoint subsets X_1 and X_2 of X and disjoint subsets Y_1 and Y_2 of Y such that $f(X_1) = Y_1$, $g(Y_2) = X_2$, $X = X_1 \cup X_2$ and $Y = Y_1 \cup Y_2$.

(b) Use (i) to obtain the Schröder-Bernstein Theorem:

Let X and Y be sets and suppose there exist one-to-one maps $f: X \to Y$ and $g: Y \to X$. Then there exists a bijective map h from X onto Y.

SOLUTION. (a) Consider the map $F: 2^X \to 2^X$ given by $F(S) = X \setminus g(Y \setminus f(S))$. This is easily seen to be monotone, so the Knaster–Tarski fixpoint theorem yields the existence of a fixpoint $X_1 \subseteq X$. Letting $Y_1 = f(X_1)$, $Y_2 = Y \setminus Y_1$ and $X_2 = g(Y_2)$, the fact that $F(X_1) = X_1$ implies that

$$X_1 = X \setminus g(Y \setminus f(X_1)) = X \setminus g(Y \setminus Y_1) = X \setminus g(Y_2) = X \setminus X_2$$

which proves the claim.

(b) Let X_1, X_2, Y_1, Y_2 be a Banach decomposition. Since g is injective it restricts to a bijection from Y_2 onto X_2 . Let g^{-1} denote the inverse of this restriction and define h by

$$h(x) = \begin{cases} f(x), & x \in X_1, \\ g^{-1}(x), & x \in X_2. \end{cases}$$

This is easily seen to be both injective and surjective.

EXERCISE 2.34

Prove that $P \times Q$ satisfies (ACC) if and only if both P and Q do.

SOLUTION. Assume that *P* and *Q* satisfy (ACC), and let

$$(x_1, y_1) \le (x_2, y_2) \le \dots \le (x_n, y_n) \le \dots$$

be a sequence in $P \times Q$. By definition of the product order, this implies that $x_1 \le x_2 \le \cdots$ and $y_1 \le y_2 \le \cdots$. But then there exist $k_1, k_2 \in \mathbb{N}$ such that $x_{k_1} = x_{k_1+1} = \ldots$ and $y_{k_2} = y_{k_2+1} = \ldots$ Letting $k = \max\{k_1, k_2\}$ we thus have

$$(x_k, y_k) = (x_{k+1}, y_{k+1}) = \dots,$$

so $P \times Q$ also satisfies (ACC).

Conversely, assume that $P \times Q$ satisfies (ACC), and let $x_1 \le x_2 \le \cdots$ be a sequence in P. If y is any element of Q, this implies that $(x_1, y) \le (x_2, y) \le \cdots$ in $P \times Q$. Hence we must have $x_k = x_{k+1} = \cdots$ for some $k \in \mathbb{N}$, so P satisfies (ACC). Obviously so does Q.

EXERCISE 2.35

Let P and Q be ordered sets of finite length. Prove that

$$\ell(P \times Q) = \ell(P) + \ell(Q).$$

SOLUTION. Write $n = \ell(P)$ and $m = \ell(Q)$ and let $x_0 < x_1 < \cdots < x_n$ and $y_0 < y_1 < \cdots < y_m$ be chains in P and Q respectively. Then

$$(x_0, y_0) < (x_1, y_0) < \dots < (x_n, y_0) < (x_n, y_1) < \dots < (x_n, y_m)$$

is a chain in $P \times Q$ of length n+m, so $\ell(P \times Q) \ge n+m$. To prove the other inequality, let

$$(x_0, y_0) < (x_1, y_1) < \cdots < (x_k, y_k)$$

be a chain in $P \times Q$ of length k. For each i = 1, ..., k we must have either $x_{i-1} < x_i$ or $y_{i-1} < y_i$. Let I be the set of i such that the former holds, and let J be the set of i such that the latter holds. Then $\{x_i \mid i \in I\}$ is a chain in P of length |I|, and $\{y_i \mid i \in J\}$ is a chain in Q of length |J|, so we must have $|I| \le n$ and $|J| \le m$. Since each i lies in either I or J we have

$$k \le |I| + |J| \le n + m,$$

which implies that $\ell(P \times Q) \le n + m$ as desired.

EXERCISE 2.37

Let *L* be a lattice.

- (a) Let $J_1 \subseteq J_2 \subseteq \cdots$ be a chain of ideals of L. Show that their union $\bigcup_{n \in \mathbb{N}} J_n$ is an ideal of L.
- (b) Show that every ideal of *L* is principal if and only if *L* satisfies (ACC).

SOLUTION. (a) If $a, b \in J = \bigcup_{n \in \mathbb{N}} J_n$, then $a \in J_n$ and $b \in J_m$ for some $n, m \in \mathbb{N}$. But then $a, b \in J_{n \vee m} \subseteq J$ as required. Furthermore, if $a \in L$ and $b \in J_m$ with $a \le b$, then $a \in J_m \subseteq J$.

(b) First assume that every ideal in L is principal, and let $x_1 \le x_2 \le \cdots$ be a chain in L. Then there is an inclusion $\downarrow x_1 \subseteq \downarrow x_2 \subseteq \cdots$ of ideals, and the above shows that $J = \bigcup_{n \in \mathbb{N}} (\downarrow x_n)$ is also an ideal. Thus there is an $a \in L$ such that $J = \downarrow a$. But then $a \in \downarrow x_n$ for some $n \in \mathbb{N}$, and since a is the maximum of J we must have $a = x_n$. Hence this chain is of finite length.

Now assume that L satisfies (ACC) and let J be an ideal in L. By Lemma 2.39, J has a maximal element a. If $x \in J$, then since J is an ideal we have $x \lor a \in J$. Obviously $a \le x \lor a$, and since a is maximal in J we also have $x \lor a \le a$, so $x \lor a = a$. Hence $x \le a$, so a is in fact the maximum of J. It follows that $J \subseteq \downarrow a$, and the opposite inequality is obvious by minimality of $\downarrow a$.

3 • Formal concept analysis

4 • Modular, distributive and Boolean lattices

EXERCISE 4.9

Let *L* be a distributive lattice and let $a, b, c \in L$. Prove that

$$(a \lor b = c \lor b \text{ and } a \land b = c \land b) \implies a = c.$$

SOLUTION. This follows from the calculation

$$a = a \land (a \lor b)$$

$$= a \land (c \lor b)$$

$$= (a \land c) \lor (a \land b)$$

$$= (a \land c) \lor (c \land b)$$

$$= c \land (a \lor b)$$

$$= c \land (c \lor b)$$

$$= c.$$

EXERCISE 4.12

(a) Prove that a lattice L is distributive if and only if for each $a \in L$, the map

 $f_a: L \to \downarrow a \times \uparrow a$ defined by

$$f_a(x) = (x \land a, x \lor a)$$
 for all $x \in L$

is a one-to-one homomorphism.

(b) Prove that, if L is distributive and possesses 0 and 1, then f_a is an isomorphism if and only if a has a complement in L.

SOLUTION. (a) First assume that L is distributive and fix $a \in L$. For $x, y \in L$ we then have

$$f_a(x \wedge y) = ((x \wedge y) \wedge a, (x \wedge y) \vee a)$$

$$= ((x \wedge a) \wedge (y \wedge a), (x \vee a) \wedge (y \vee a))$$

$$= (x \wedge a, x \vee a) \wedge (y \wedge a, y \vee a)$$

$$= f_a(x) \wedge f_a(y),$$

and similarly for joins. Thus f_a is a homomorphism. Injectivity follows immediately from Exercise 4.9.

Conversely, given $a, b, c \in L$ and using that f_a is a homomorphism, it follows that

$$f_a((a \wedge b) \vee (a \wedge c)) = ((a \wedge b) \vee (a \wedge c), a),$$

and that

$$f_a\Big(a\wedge(b\vee c)\Big)=\Big(a\wedge((a\wedge b)\vee(a\wedge c)),a\Big)=\Big((a\wedge b)\vee(a\wedge c),a\Big),$$

where the second equality follows since $(a \land b) \lor (a \land c) \le a$. Distributivity then follows since f_a is injective.

(b) Since f_a is already shown to be an injective homomorphism, it is an isomorphism if and only if it is surjective. First, if f_a is surjective then there exists a $b \in L$ such that

$$(0,1) = f_a(b) = (b \land a, b \lor a),$$

which precisely says that *b* is a complement of *a*.

Conversely, say that a has a complement a' in L, and let $c \in J$ a and $d \in \uparrow a$. Then $c \leq d$, so since L is modular we have

$$x := c \lor (a' \land d) = (c \lor a') \land d.$$

We furthermore have

$$((c \lor a') \land d) \land a = ((c \land a) \lor (a' \land a)) \land d = (c \lor 0) \land d = c$$

$$(c \vee (a' \wedge d)) \vee a = c \vee ((a' \vee a) \wedge (d \vee a)) = a \vee (1 \wedge d) = d.$$

Hence
$$f_a(x) = (c, d)$$
, so f_a is surjective.