浙江大学 20 <u>19</u> —20 <u>20</u> 春夏学期 《数理统计》课程期末考试试卷

考生姓名: ______ 学号: ______ 所属院系: _____

由 CC98 @Serapay 回忆整理

一. (30 分) 设 X_1, X_2, \cdots, X_n 是取自正态总体 $N(\mu, \sigma^2)$ 的简单样本, 其中 μ, σ 是未知参数. 记

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2, \quad S_n^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2.$$

判断以下说法的正误, 并说明理由:

- 1. μ , \overline{X} , $\frac{X_1 + X_2}{2}$ 的期望都是 μ , 它们都是 μ 的无偏估计;
- 2. 在均方误差意义下, S^2 对 σ^2 的估计优于 S_n^2 ;
- 3. $\overline{X}S^2$ 是 $\mu\sigma^2$ 的无偏估计, 且是相合估计;
- 4. $\frac{\sqrt{n}(X_1-\overline{X})}{S}$ 的分布与参数无关, 且与 \overline{X} 相独立;
- 5. 设 $T \sim t(n-1)$, \overline{x} , s 分别是 \overline{X} , S 的观测值, 记

$$\gamma(x_1, x_2, \cdots, x_n) = P\left(|T| > \frac{\sqrt{n}|\overline{x} - \mu_0|}{s}\right).$$

假设检验

$$H_0: \mu = \mu_0 \longleftrightarrow H_1: \mu \neq \mu_0$$

在检验水平 α 下的拒绝域为 $\{(x_1, x_2, \dots, x_n) : \gamma(x_1, x_2, \dots, x_n) < \alpha\}$.

- 6. 设 σ 已知, 参数 μ 的广义先验分布 $\pi(\mu) \equiv 1$, 则 μ 的期望型 Bayes 估计量为 \overline{X} .
- 二. (25 分) 设 $X_1, X_2, \dots, X_m, Y_1, Y_2, \dots, Y_n$ 分别是取自 $\Gamma(\alpha_1, \lambda_1), \Gamma(\alpha_2, \lambda_2)$ 的简单样本, 其中 α_1, α_2 已知, λ_1, λ_2 未知, 且 $2m\alpha_1, 2n\alpha_2$ 是整数, $\overline{X}, \overline{Y}$ 分别是它们的样本均值.
 - 1. 求 λ_1/λ_2 的 MLE;
 - 2. 求 $\frac{\lambda_1 \overline{X}/\alpha_1}{\lambda_2 \overline{Y}/\alpha_2}$ 的分布;
 - 3. 求 λ_1/λ_2 的置信水平为 $1-\alpha$ 的置信下限.
- 三. $(20 \, \mathcal{G})$ 设 X_i 是取自正态总体 $N(\mu, \sigma_i^2)$ 的简单样本 $(i = 1, 2, \dots, n)$, 其中 $\sigma_1, \sigma_2, \dots, \sigma_n$ 已知, μ 是未知参数.
 - 1. 求样本 X_1, X_2, \cdots, X_n 的联合密度;
 - 2. 求 μ 关于样本的 Fisher 信息函数;
 - 3. 求 μ 的充分完备统计量;
 - 4. 关于以上充分完备统计量给出 μ 的置信水平为 $1-\alpha$ 的置信区间.

四. (10 分) 现有一个问卷如下:

问题 I: 你母亲的出生月份是奇数还是偶数? (A) 奇数; (B) 偶数.

问题 II: 你在考试中是否曾经有过作弊行为? (A) 有; (B) 没有.

现在某高校随机抽取 400 人回答该问卷 (有放回),每个人需要选择一个问题回答.假设每个人选择问题 I、II 的概率相同,且母亲的出生月份为奇数或者偶数的概率相同. 若在这 400人中有 135 人选择了 B 选项, 求该校作弊率 θ 的点估计值.

五. (15 分)根据遗传学理论,某种花的花瓣颜色是红色、白色、粉红色的概率分别为 p^2 , $(1-p)^2$,2p(1-p). 现随机观测 120 朵花,花瓣为红色、白色、粉红色的频数分别为 24,36,60. 在 $\alpha=0.05$ 的水平下,以上数据是否与理论相符合?