

INPUT NORMALIZATION

NORMALIZATION AND RESCALING OF INPUTS

Ideally, we want all inputs to have roughly the same scale

Helps stabilize learning

How to adjust inputs?

SHIFTING AND RESCALING

To have inputs range [0, 1]:

$$x_i = \frac{x_i - x_{min}}{x_{max} - x_{min}}$$

To have inputs range [-1, 1]:

$$x_i = 2\left(\frac{x_i - x_{min}}{x_{max} - x_{min}}\right) - 1$$

NORMALIZING

Mean zero, standard deviation one

$$x_i = \frac{x_i - \bar{x}}{\sigma};$$
 $\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2}$

OVERHEAD VIEW OF COST CURVE

REGULARIZATION

REGULARIZATION

Goal: prevent overfitting

Want network to generalize beyond training data

How to do this?

One way: stop large weights from dominating

How? Penalize models with large weights

L2 REGULARIZATION

Adjust loss function to include a second term

$$J = \frac{1}{2n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2 + \lambda \sum_{j=1}^{m} w_i^2$$

- Bigger sum of weights costs us more
- λ is the regularization hyper-parameter
 - Bigger λ means more regularization
 - More penalty for big weights
 - Less attention to raw data fit

SCATTER PLOT

OVERFITTING

POSSIBLE MODEL AFTER REGULARIZATION

TOO MUCH REGULARIZATION!

DIFFERENT TYPES OF REGULARIZATION

We'll see different techniques that act as a form of regularization

- Not always just a term of the loss function
- Dropout (next class!)

Key takeaway:

regularization = less memorization

NEURAL NETWORKS

BASIC IDEA

Use biology as inspiration for math model

Neurons:

- Get signals from previous neurons
- Generate signal (or not) according to inputs
- Pass that signal on to future neurons

By layering many neurons, can create complex model

THE BASIC "NEURON" VISUALIZATION

$$z = b + \sum_{i=1}^{m} W_i \cdot x_i$$
$$= W^t x + b$$
$$a = f(z)$$

$$z = b + \sum_{i=1}^{m} W_i \cdot x_i$$

$$= W^t x + b$$

$$a = f(z)$$

$$z = b + \sum_{i=1}^{m} W_i \cdot x_i$$
Vectorized
$$= W^t x + b$$

$$a = f(z)$$

$$z = b + \sum_{i=1}^{m} W_i \cdot x_i$$

$$= W^t x + b$$
Activation value
$$a = f(z)$$

Represents the function $z = W^t X + b$

X: [m x 1] vector of inputs (leaving out transpose op for now) **Inputs** matmul W: [m x 1] vector of weights activation add var var

X: [n x m] matrix of inputs (batched)

A CLASSICAL VISUALIZATION OF NEURONS

A CLASSICAL VISUALIZATION OF NEURONS

A CLASSICAL VISUALIZATION OF NEURONS

WHERE ARE THE WEIGHTS?

Weights are shown to be arrows in classical visualizations of NNs

WHERE ARE THE WEIGHTS?

WHERE IS THE NET VALUE (Z)?

Not shown! Usually given via formulas in papers

To keep visual noise down, we'll use this notation for now

OUR FIRST ACTIVATION FUNCTION

BASIC IDEA

Model inspired by biological neurons

Biological neurons either pass no signal, full signal, or something in between

Want a function that is like this and has an easy derivative.

SIGMOID (LOGISTIC)

Value at z≪0? ≈0

Value at z=0? =0.5

Value at $z\gg 0$?

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

SIGMOID (LOGISTIC)

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

EASY DERIVATIVE?

Quotient rule

$$\sigma(z) = \frac{1}{1 + e^{-z}} \qquad \frac{\frac{d}{dx} \cdot \frac{f(x)}{g(x)} = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}}{g(x)^2}$$

$$\sigma'(z) = \frac{0 - (-e^{-z})}{(1 + e^{-z})^2} = \frac{e^{-z}}{(1 + e^{-z})^2}$$

$$= \frac{1 + e^{-z} - 1}{(1 + e^{-z})^2} = \frac{1 + e^{-z}}{(1 + e^{-z})^2} - \frac{1}{(1 + e^{-z})^2}$$

$$= \frac{1}{1 + e^{-z}} - \frac{1}{(1 + e^{-z})^2} \frac{1}{1 + e^{-z}} \left(1 - \frac{1}{1 + e^{-z}}\right)$$

$$= \sigma(1 - \sigma)$$

We can plug in the sigmoid as our activation function

Depending on the inputs and weights, the neuron will output a value between (0, 1)

As an example, assume that x_1 outputs 0.5, and x_2 outputs 1.0

Recall that the bias neuron always outputs 1.0

We can now indicate the weights on the connecting edges

When training, we adjust the weights parameters to create outputs that better fit the data

With these values, we end up with net z=-10

We then plug z into the sigmoid function to get our output

The output can then be passed onto another neuron, with a weight associated with that connection

Inputs don't need to be limited to passing data into a single neuron. They can pass data to as many as we like.

LAYERS OF NEURONS

NEURAL LAYERS

Typically, neurons are grouped into *layers*.

Each neuron in the layer receives input from the same neurons

Weights are different for each neuron

All neurons in this layer output to the same neurons in a subsequent layer

A SINGLE NEURAL LAYER

WHAT DOES A LAYER OF NEURONS LOOK LIKE IN TF?

Almost identical to single neuron!

WEIGHTS: NOW A MATRIX (INSTEAD OF VECTOR)

X: [n x m] matrix of inputs **Inputs** matmul W: [m x h] activation add matrix of weights h is # neurons b var var

BIAS IS NOW A VECTOR (INSTEAD OF A SCALAR)

ZIS A MATRIX

Each row corresponds to the z values at each neuron for an individual example Inputs matmul Z activation add W var var

Add outputs an [n x h] matrix.

ACTIVATION IS A MATRIX

MATRIX MULTIPLICATION AS LAYER TRANSFORMS

We dictate the size of each layer by defining different sized weights

Bias isn't shown here (usually "implied")

$current_{value} = X \in \mathbb{R}^{n \times 3}$

X is [n x 3] (n data points)

$current_value = XW^{(1)} \in \mathbb{R}^{n \times 4}$

X is [n x 3] (n data points)

 $W^{(1)}$ is [3 x 4]

$current_value = XW^{(1)}W^{(2)} \in \mathbb{R}^{n \times 4}$

$current_value = XW^{(1)}W^{(2)} \in \mathbb{R}^{n \times 4}$

WEIGHT SIZES, IN GENERAL:

A FEEDFORWARD NETWORK

FEEDFORWARD NEURAL NETWORK

WEIGHTS

INPUT LAYER

HIDDEN LAYERS

OUTPUT LAYER

ANNOTATIONS

LAYER NUMBERS

ACTIVATIONS

WEIGHTS

NET INPUTS

