Efficient Sleep State Tracking

Leveraging Data Science for Health

Problem

- Sleep is vital for human health.
- Accurate sleep monitoring is challenging due to a lack of naturalistic data and accurate annotation (Esper et al., 2023).
- Data science can enhance sleep research and consumer health tracking.

Recommendations

- 1. Utilize the model's predictions to automatically annotate sleep onset and wake-up times.
- 2. Incorporate these annotations into sleep research to study its overall health effects.
- 3. Apply the annotations in a business context to help individuals understand their sleep patterns' impact on health.

Proposed Solution

- Deep learning model for predicting "onset" and "wakeup" events
- Frame as segmentation problem
- Use encoder decoder framework
- Confidence scores (0-1) for predicted events
- Inputs: data from wrist-worn accelerometer
- Labels: (asleep/awake, onset, wakeup)
- Metric: Average precision for event detection

Deliverables

Develop a predictive model for sleep onset and wakeup times.

Create a comprehensive report and presentation.

Stakeholders

Researchers studying sleep.

Companies interested in using accelerometer data for health-related sleep tracking.

Data

The dataset contains around 500 multi-day wrist-worn accelerometer recordings annotated with "onset" and "wakeup" events. Data may have gaps where the accelerometer was removed.

Files and Field Descriptions

- train_series.parquet: Contains continuous accelerometer data with unique series IDs.
- train_events.csv: Sleep logs with series IDs, night enumeration, event types, and timestamps.

Exploratory Data Analysis

- No missing values for enmo and anglez columns.
- Some nights lack "onset" or "wakeup" annotations, likely due to accelerometer removal.
- A few nights have only one event annotated.

During sleep, **enmo** and **anglez** values exhibit distinct patterns.

sid 038441c925bb: chunk 2 of 8: interval 3 days

Preprocessing

Features: shape, sine, cosine, differences, rolling medians.

Labels: shape, values, Gaussian labels.

Labels

Final Model

- Segmentation model with encoder and decoder
- Encoder: LSTM feature extractor
- Decoder: UNet decoder
- Post processing: Select peak predictions for onset and wakeup events.

Validation

- 20% validation set (valid_set 1).
- Kaggle public leaderboard (valid_set 2).
- Kaggle private leaderboard (final test set).

Notable Experiments

Model	Brief Description	Valid_1 Score
Baseline	Config defaults	0.74
v1_ds3	Downsample_rate 2 to 3	0.7546
v2_ds3	Added rolling median features	0.7565
v2_ds3_fe_LSTMFeatureExtractor	Chosen Model	0.7598

Manual Post-processing

- Lower threshold (threshold == 0.005, valid_1 score: 0.765).
- Filter_by_min_max_th (Remove predictions if min(max of onset and wakeup score) < 0.03, valid_1 score: 0.767).
- Filter_(onset of wakeup)_threshold (Keep max prediction if above 0.82, valid_1 score: 0.768).
- Filter_max_score_by_night (Eliminate predictions if max is not above 0.03, valid_1 score: 0.769).
- Inflate_max_wakeup (Inflate max wakeup score by a multiplier of 3.2, valid_1 score: 0.771).
- Inflate_max_onset (Inflate max onset score by a multiplier of 13.4, valid_1 score: 0.774).

Final test score: .758

Sample Final Predictions

