Catégorisez automatiquement des questions

Soutenance de projet

Nicolas FAUCONNIER Parcours Ingénieur ML 17/06/2022

Plan

Problématique

Projet et missions

4.

LDA

Approche non supervisée et interprétation des résultats

2.

Data Cleaning

Données et prétraitements effectués

5.

Modélisation supervisée

Extraction de features et entrainement des modèles

3.

Analyse exploratoire

Analyse des données quantitatives et des questions

6.

API

Démonstration de l'API REST

1. Problématique

Projet et missions

1. Problématique

Contexte

StackOverflow est un site de questions-réponses liées au développement informatique. Chaque auteur d'une question lui attribue des « tags » afin qu'elle soit facilement retrouvable et mieux référencée. Trouver les bons tags pour une question n'est pas une tâche intuitive, notamment pour les utilisateurs novices.

Missions

- Créer un système de suggestion de tags pour les nouvelles questions StackOverflow
- Rendre accessible ces suggestions via une API REST
- Analyser les données utilisées

2. Data Cleaning

Données et prétraitements effectués

Dataset

Le dataset est la concaténation des résultats de deux requêtes SQL effectuées sur l'outil StackExchange Data Explorer. Il s'agit des questions StackOverflow ayant:

- ayant étés mises en favoris par au moins 6 utilisateurs
- ayant obtenues un score d'au moins 7
- ayant reçu au moins une réponse
- avant au moins 5 tags

2 .csv pour un total de 89Mo

Preprocessings

- Concaténation Titre et Body
- Retrait des cellules de code
- Retrait des balises html
- Retrait des accents
- Retrait des charactères spéciaux
- Expansion des formes contractées
- Lemmatization
- Retrait des stopwords
- Tokenization

```
# Check du texte preprocessed
df["cleaned_Text"][27024]
```

'database remove uninstall android applicationi two major question database delete uninstall app downloaded file delete unstable app database android application create java specific pat h define code database code download file specific path allow create folder android datum com myapp well please help sorry bad english'

```
# Check Titre de la guestion
df["Title"][27024]
'Database won't remove when uninstall the Android Application'
# Check corps de la question
print(df["Body"][27024])
I have two major questions. 
Cli>Database won't delete when uninstall app.
Downloaded files won't delete while unstable the app.
There is a database in my android application. I create it by java
<code>class as follows.
public DataBaseHelper(Context context) {
   super(context, DATABASE NAME, null, DATABASE VERSION);
public DataBaseHelper(Context context, String name, SQLiteDatabase.CursorFactory factory, int version, DatabaseErrorHandler errorHandler) {
   super(context, name, factory, version, errorHandler);
public void onCreate(SOLiteDatabase db) {
   // creating required tables
   db.execSQL(CREATE_TABLE_QUOTES);
   db.execSQL(CREATE TABLE FILTERS);
public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
   // on upgrade drop older tables
   db.execSQL("DROP TABLE IF EXISTS " + TABLE QUOTES);
   db.execSQL("DROP TABLE IF EXISTS " + TABLE QUOTES);
   // create new tables
   onCreate(db);
There is no specific path defined at the code for database.
This is the code how I download files. And there is specific path, But it is not allowed to create folder in Android>data>com.myapp as well
<code>public String downloadImage(String img_url, int i) {
       File sdCard = Environment.getExternalStorageDirectory();
       File dir = new File (sdCard.getAbsolutePath() + "/fog/images/filters");
       // Make sure the Pictures directory exists.
       dir.mkdirs();
       File destinationFile = new File(dir, "filter"+i);
       String filepath = null;
           URL url = new URL("http://fog.wrapper.io/uploads/category/"+img url+".png");
```

3. Analyse exploratoire

Analyse des données quantitatives et des questions

Variables annexes

	ViewCount	FavoriteCount	AnswerCount	n_token
count	53750	53750	53750	53750
mean	67231	25	5	69
std	175777	109	5	63
min	141	6	1	1
25%	11055	7	2	33
50%	26280	11	4	52
75%	62908	19	7	84
max	9771619	11552	125	1643

- Distribution log-normales
- Corrélations positives (0,3 à 0,5) sauf pour le nombre de tokens

Distribution des tags et des tokens

Réduction dimentionnelle

- Application sur un TF-IDF pour les deux méthodes
- T-SNE effectué sur un échantillon de 4000 questions
- → Aucune des deux méthode n'offre de résultats satisfaisants. (nb. overlapping des tags et sujets)

4. LDA

Approche non supervisée et interprétation des résultats

Latent Dirichlet Allocation

Effectuée sur 6600 questions

CountVectorizer, puis TF-IDF (inclus dans sklearn.LatentDirichletAllocation)

GridSearch, et surtout expérimentation manuelle (interprétabilité) pour trouver le bon nombre de topics

Librairie pyLDAvis pour les visualisation, et Gensim pour le calcul du score de « Topic Coherence » :

```
print("Coherence Model - LDA: ", coherence_lda)
Coherence Model - LDA: 0.31660799608139767
```

- 1: Système d'exploitation, bash/shell, paths, versions, etc
- 2: algorithmes, classes et Programmation Orientée
- Objets
 3: API
- <u>3</u>: API
- 4: strings/textes
- <u>5</u>: Java
- 6: JavaScript et développement web
- <u>7</u>: développement mobile (Apple/iOs)
- 8: SQL et bases de données, par exemple:

5. Modélisation supervisée

Extraction de features et entrainement des modèles

Classification MultiLabels des 50 tags les plus communs

Extractions de feature

TF-IDF	Word2Vec	Bert	USE
_	w2v_window=5 w2v_min_count=1 w2v_epochs=50 maxlen = 150	<pre>max_length = 150 batch_size = 25 Small Bert: -4 Layers (L) -128 Hidden Layer size (H) -2 Attention Heads (A)</pre>	batch_size = 10
2000 dimensions	300 dimensions	128 dimensions	512 dimensions

https://radimrehurek.com/gensim/models/word2vec.html

https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-4_H-128_A-2/2

https://tfhub.dev/google/universal-sentence-encoder/4

Modélisation

Test set: 1/3 du dataset

Modèlisation: MultiOutputClassifier avec Régression Logistique sur les 4 extractions de feature

On retient TF-IDF:

- Performances relativement bonnes
- Moins de ressources nécessaires (RAM limitée sur Heroku pour le déploiement de l'API)

		Accuracy	Score Jaccard	Hamming Loss
	TF-IDF	0.2936	0.3063	0.0223
3	Word2Vec	0.2778	0.2913	0.0236
	Bert	0.1386	0.0830	0.0298
	USE	0.3326	0.3546	0.0205

6. API

Démonstration de l'API REST

API REST

Développée avec FastAPI

Déploiement sur une instance Heroku

Repository:

https://github.com/fauconnier-n/stackoverflow_app

2 endpoints (POST):

- https://stackoverflow-tags-pred.herokuapp.com/proba
- https://stackoverflow-tags-pred.herokuapp.com/prediction

Swagger (UI & doc):

https://stackoverflow-tags-pred.herokuapp.com/docs

Pistes d'amélioration

- Entrainement sur plus d'observations (besoin de plus de ressources)
- Entrainer des modèles plus complexes
- Traiter et exploiter les cellules de code (eg. extraire les commentaires)
- Regrouper certains tags (eg. sql et mysql, langages et leurs librairies)

Merci

fauconnier.n@gmail.com