Fizikai alapismeretek

3. előadás: Dinamika

Papp Ádám
papp.adam@itk.ppke.hu
407. szoba, 204. labor

Newton törvények

- Newton I. törvénye: (tehetetlenség törvénye)
 Minden test megőrzi mozgásállapotát, amíg valamilyen erőhatás a testet mozgásának megváltoztatására nem kényszeríti.
- Newton II. törvénye: (dinamika alaptörvénye) Egy test gyorsulása egyenesen arányos a testre ható erővel. F=ma
- Newton III. törvénye: (hatás-ellenhatás törvénye) Két test kölcsönhatása során mindkét testre egyező nagyságú, egymással ellentétes irányú erő hat.
- Newton IV. törvénye: (szuperpozíció elve)
 Ha egy testre egyidejűleg több erő hat, akkor ezek együttes hatása megegyezik a vektori eredőjük hatásával.

Erő jele:
$$F$$
 Mértékegysége: $N = \frac{kg m}{s^2}$ Mozgásegyenlet: $\sum \mathbf{F} = m\ddot{\mathbf{r}}$

Lendületmegmaradás

Ha a testre ható erők eredője 0, akkor impulzusának (lendületének) megváltozása nulla.

Lendület:
$$p = mv = m \frac{dr(t)}{dt}$$
 helyvektor: $r(t)$

Newton II. törvénye:
$$\pmb{F} = m\pmb{a} = m\frac{d\pmb{v}(t)}{dt} = \frac{d(m\pmb{v}(t))}{dt} = \frac{d\pmb{p}(t)}{dt} \implies \text{Newton I. törvénye}$$

Két test kölcsönhatása:

$$F_1 = -F_2 \longrightarrow \frac{dp_1(t)}{dt} = -\frac{dp_2(t)}{dt} \longrightarrow \frac{dp_1(t)}{dt} + \frac{dp_2(t)}{dt} = 0$$
 Newton III. törvénye
$$p_1 + p_2 = const.$$

A kölcsönhatás során a két test együttes impulzusa állandó marad (zárt rendszerben).

Nehézségi erő, súly

Nehézségi erő:

m mg

Gravitációs erőtörvény:

$$F = \gamma \frac{m_1 m_2}{r^2}$$

$$\gamma = 6,674 \cdot 10^{-11} \frac{m^3}{kg \, s^2}$$

Lejtő

$$F_{ny} = mg \cos \alpha$$

 $F = mg \sin \alpha$

Súrlódás

Csúszási súrlódási erő: $F_{S} = \mu F_{ny}$

Tapadási súrlódási erő: $F_{tap} = F_h$ ha $F_h < \mu_{tap} F_{ny}$

Rugóerő

Nyugalomban: $F_r = mg$

Körmozgás

Kerületi sebesség:

$$v_k = \frac{i}{t}$$

Szögsebesség:

$$\omega = \frac{\alpha}{t}$$

$$i = r\alpha$$
$$v_k = r\omega$$

Centripetális gyorsulás:

$$a_{cp} = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt}$$

$$a_{cp} = \frac{v^2}{r} = \omega^2 r$$

$$\boldsymbol{F}_{cp} = m\boldsymbol{a}_{cp} = -\boldsymbol{F}_{cf}$$

Harmonikus rezgőmozgás

$$x(t) = A\sin(\omega t)$$

$$\omega = 2\pi f = \frac{2\pi}{T}$$

$$v(t) = A\omega \cos(\omega t)$$

$$a(t) = -A\omega^2 \sin(\omega t)$$

Az erő (és gyorsulás) egyenesen arányos a kitéréssel. Példa: rugón rezgő test

$$F_r = -Dx = -m\omega^2 x$$

$$D = m\omega^2 \qquad \omega = \sqrt{\frac{D}{m}}$$