IN THE SPECIFICATIONS:

Please amend the paragraph beginning on page 3, line 24 as follows.

Figs. $4\underline{a-4i}$ illustrate[[s]] steps in a 2N-shot process, with N=2.

Please amend the paragraph beginning on page 6, line 10 as follows.

Figs. 4a-4i illustrate[[s]] steps in a 2N-shot process, with N=2. Recently, a new method, the 2N-shot method, was developed to increase process throughput. The 2N-shot method uses beam-shaping mask designs and/or scanning schemes for the substrate. In the 2N-shot method, an amorphous silicon (a-Si) film is exposed to a series of 2-shot laser irradiation steps with 'N' equal to the number of steps. For each step, the substrate (or beamlets) is rotated 90° with respect to the direction of lateral growth of the previous step. The sequence of abovementioned steps are shown in Fig. 4, in alphabetical order. The 2N-shot method can provide very high throughput, on the order of less than 5 minutes for a glass substrate of 620x750mm². The resulting poly-Si material has square grains within a square grid of grain boundaries. The 2N-shot method generally sweeps defects in the silicon material, however, within the square grains, a certain percentage of defects remain. In addition, the grid boundaries also cause some deterioration of the TFT characteristics. The grid boundaries are ridged, causing the poly-Si surface to be rough. This roughness requires the use of relatively thick

gate insulating layers, for example, about 1000 angstroms (A), in TFT applications. Also, it is difficult to vary the location of the grain boundary grid. For each step in the 2N-shot process, grain boundary locations are determined by the fixed configuration of the apertures in the mask. That is, an individual aperture, corresponding to an individual grain boundary, cannot be moved without moving all the apertures (i.e., moving the mask). There may be some flexibility in the alignment of the mask for the first 2N-shot iteration in a sequence, however, there is likely a preferred alignment. To maximize use of a substrate, subsequent iterations will require aligning the mask with the boundaries from previous iterations. That is, there is little flexibility in mask alignments for subsequent iterations.