GATE ALL BRANCHES

ENGINEERING MATHEMATICS

Probability and Statistics

Lecture No. 07

Random Variable

Types of Random Variables

CDF (Cumulative Distribution)

PDF (Probability Density Function)

Statistical Averages (Mean, Median, Mode)

Expectation, Variance, Standard Deviation

Random Variable: Random variable is a mathematical

Infint (NN, NT, TN, TT) Function

Probi (Vingne Value) S= & HY, XT, TY, TT? No of HEADS No of Tanks

We define The Random variable

X = No. of HEADS/ No. of tails

	SAMPLE	ИН	KT	TH	TT	
If	X	2	1	1	0	2
X=No.of HEADS	χ=	0, 1,	2			
Y= No. of Tauls: x= 0, 1, 2					SMN	YT
	2	0, 1,	2		YO	1

X = No of HEADS.

P[X=x] = Proh of

P[X=0] = 4

Function

variable

P[X=1]=4

P[x=2]=1

X= No. of HEADS.

An Event

Vrugne value

Event) PlonEAD

= Random vas.

P[Y=0] = 1 P[Y=1] = 2

Jossing A TAREE coms

T) (NTN) (NTT	THT (NIT)	TTN TTT
1/8	/ _R / _R	1/8 1/8
		0 0
8) LIX-INEAD).	(3) 1(x=2)	$\left(\frac{2}{3}\right)$
	1/8	MIN (UTT) (THE) (THT) /8 PIX=INEAD) = (3) PIX=2)

1) SVM of all people = 1 P[X=QN)+P[X=1N)+P[X=2N)+P[X=3N]=1 P[X=X:]=1Total People 1

Different Knd of Random Vas: Throwing A Dze X= No. of dats
X=1,2,3,4,5,6 X value (JMA2) dosed Vinform Randonn Varnable 1 2 3 4 5 6 X= No. of data

N=1 coms

Tossing A Two com

2		0	X
<u> </u>	2/2	1/4	P (= 76)
	77		
DS 0,	77		

Number

Infinite Pts

A) SE Integrate

Integration = Insinute Took vnc

Vncountable No (Add)

Consider distribution function: (cdf) Fx(xi) = P[x≤xi] = cdf

$$\int FX(D) = P[X \le D] = PD$$

$$\int FX(I) = P[X \le I] = P[X = D] + P[X = I] FX[X] FX[X] FX[X] FX[X]$$

$$= PD + P.$$

$$F_{x}(z) = P[x \le 2] = P[x = 0] + P[x = 1] + P[x = 2] = P_0 + P_1 + P_2$$

$$f_{x}(3) = P[x \leq 3] = R_{0} + R_{1} + R_{2} + P_{3} = P[x = 0] + P[x = 1] + P[x = 2] + P[x = 3]$$

Caf Throwing A Die: Fx(xi)=P[x<xi] Function always + S= {1,2,3,4,5,6} $fx(1) = P[x \leq 1] = P[x = 1] = \frac{1}{6}$ Fx(2) = P[X < 2] = P[X=1] + P[X=2] Fx(3)=P[X<3]=3 Fx (4) = P[X < 4] = 4 Discrete graphi $f_{X}(5) = P[X \leq 5] = \frac{5}{6}$ Fx (6) = P[X < 6] = 1 discrete random variable) 5) always Monotonic Increasing

								Pw
2		1	7	2	3	4	5	6
3		1	2	3	4	5	6	7
5		2	3	4	5	6	7	8.
7		3	4	5	6	7	8	9
8		4	5	6	7	8	9	10
10		5	6	7	8	9	10	1)
		6	7	8	9	10	11	12
	Do yourself							

1
$$\sqrt{F_X(0)} = D$$
 $\sqrt{F_X(0)} = 1$

2 Addes Function

Nonotonic In

 $\frac{y}{8}$
 $\frac{1}{8}$
 $\frac{1}{8}$
 $\frac{1}{8}$
 $\frac{1}{8}$
 $\frac{1}{8}$
 $\frac{1}{8}$
 $\frac{1}{8}$
 $\frac{1}{8}$

$$F_{X}(0) = P(X \le 0) = P_{0} = \frac{1}{8}$$

 $F_{X}(1) = P(X \le 1) = P_{0} + P_{1}$
 $F_{X}(2) = P(X \le 2) = \frac{1}{8} + \frac{3}{8} = \frac{4}{8}$
 $F_{X}(3) = \frac{7}{8} + \frac{1}{8} = \frac{3}{8} = \frac{7}{8}$

