# Методы оптимизации Лекция 10: Введение в линейное программирование

#### Александр Катруца

Физтех-школа прикладной математики и информатики Московский физико-технический институт



16 ноября 2020 г.

▶ Условие Слейтера

- Условие Слейтера
- ▶ Выпуклость + условие Слейтера = сильная двойственность

- Условие Слейтера
- ▶ Выпуклость + условие Слейтера = сильная двойственность
- ▶ Теорема Каруша-Куна-Таккера

- Условие Слейтера
- ▶ Выпуклость + условие Слейтера = сильная двойственность
- Теорема Каруша-Куна-Таккера
- Геометрическая интерпретация

#### Основная книга



## Постановка задачи: напоминание

- lackbox Дано:  $\mathbf{c} \in \mathbb{R}^n$ ,  $\mathbf{A} \in \mathbb{R}^{m imes n}$  и  $\mathbf{b} \in \mathbb{R}^m$
- Стандартная форма

$$\begin{aligned} \min_{\mathbf{x}} \ \langle \mathbf{c}, \mathbf{x} \rangle \\ \text{s.t. } \mathbf{A}\mathbf{x} &= \mathbf{b} \\ \mathbf{x} &\geq 0 \end{aligned}$$

- Преобразование задач
  - $Ax \le b \to Ax + y = b, y \ge 0$
  - ► Свободная переменная  $x \to x = y z, y \ge 0, z \ge 0$
  - lacktriangle Замена знака достигается за счёт умножения на -1
- Минимизация максимума линейных функций сводится к задаче линейного программирования

# Геометрия задачи



Если допустимое множество задано как  $\mathbf{A}\mathbf{x} \leq \mathbf{b}$ 

## Ключевые элементы допустимого множества

#### Определение

Множество P вида  $P = \{\mathbf{x} \mid \mathbf{A}\mathbf{x} \geq \mathbf{b}\}$ , где  $\mathbf{A} \in \mathbb{R}^{m \times n}$ , называется многогранником (polyhedron).

## Ключевые элементы допустимого множества

#### Определение

Множество P вида  $P = \{\mathbf{x} \mid \mathbf{A}\mathbf{x} \geq \mathbf{b}\}$ , где  $\mathbf{A} \in \mathbb{R}^{m \times n}$ , называется многогранником (polyhedron).

#### Определение

Точка  $\mathbf{y} \in P$  называется крайней точкой многоугольника, если не существует двух других точек из P, между которыми она лежит.

## Ключевые элементы допустимого множества

#### Определение

Множество P вида  $P = \{\mathbf{x} \mid \mathbf{A}\mathbf{x} \geq \mathbf{b}\}$ , где  $\mathbf{A} \in \mathbb{R}^{m \times n}$ , называется многогранником (polyhedron).

## Определение

Точка  $\mathbf{y} \in P$  называется крайней точкой многоугольника, если не существует двух других точек из P, между которыми она лежит.

#### Определение

Точка  $\mathbf{z} \in P$  называется вершиной многоугольника, если найдётся такой вектор  $\mathbf{c} \in \mathbb{R}^n$ , что  $\langle \mathbf{c}, \mathbf{z} \rangle < \langle \mathbf{c}, \mathbf{x} \rangle$  для всех других точек  $\mathbf{x} \in P$  и  $\mathbf{x} \neq \mathbf{z}$ .

Пусть многогранник задан в виде  $\{\mathbf{x} \mid \langle \mathbf{a}_i, \mathbf{x} \rangle = b_i \ \langle \mathbf{a}_j, \mathbf{x} \rangle \leq b_j, \ \langle \mathbf{a}_k, \mathbf{x} \rangle \geq b_k \}.$ 

## Теорема

Пусть  $\mathbf{x}\in\mathbb{R}^n$  и  $\mathcal{I}=\{i\mid \langle \mathbf{a}_i,\mathbf{x}\rangle=b_i\}$  — индексы активных ограничений. Тогда следующие утверждения эквивалентны

- 1. Найдётся n линейно независимых векторов в множестве  $\{\mathbf{a}_i \mid i \in \mathcal{I}\}$
- 2. Они образуют базис в  $\mathbb{R}^n$
- 3. Система  $\langle \mathbf{a}_i, \mathbf{x} \rangle = b_i, \; i \in \mathcal{I}$  имеет единственное решение

Пусть многогранник задан в виде  $\{\mathbf{x} \mid \langle \mathbf{a}_i, \mathbf{x} \rangle = b_i \ \langle \mathbf{a}_j, \mathbf{x} \rangle \leq b_j, \ \langle \mathbf{a}_k, \mathbf{x} \rangle \geq b_k \}.$ 

## Теорема

Пусть  $\mathbf{x}\in\mathbb{R}^n$  и  $\mathcal{I}=\{i\mid \langle \mathbf{a}_i,\mathbf{x}\rangle=b_i\}$  — индексы активных ограничений. Тогда следующие утверждения эквивалентны

- 1. Найдётся n линейно независимых векторов в множестве  $\{\mathbf{a}_i \mid i \in \mathcal{I}\}$
- 2. Они образуют базис в  $\mathbb{R}^n$
- 3. Система  $\langle {f a}_i, {f x} \rangle = b_i, \ i \in {\cal I}$  имеет единственное решение Доказательство

Пусть многогранник задан в виде  $\{\mathbf{x} \mid \langle \mathbf{a}_i, \mathbf{x} \rangle = b_i \ \langle \mathbf{a}_j, \mathbf{x} \rangle \leq b_j, \ \langle \mathbf{a}_k, \mathbf{x} \rangle \geq b_k \}.$ 

## Теорема

Пусть  $\mathbf{x} \in \mathbb{R}^n$  и  $\mathcal{I} = \{i \mid \langle \mathbf{a}_i, \mathbf{x} \rangle = b_i\}$  — индексы активных ограничений. Тогда следующие утверждения эквивалентны

- 1. Найдётся n линейно независимых векторов в множестве  $\{\mathbf{a}_i \mid i \in \mathcal{I}\}$
- 2. Они образуют базис в  $\mathbb{R}^n$
- 3. Система  $\langle \mathbf{a}_i, \mathbf{x} \rangle = b_i, \; i \in \mathcal{I}$  имеет единственное решение

## Доказательство

lacktriangle  $1\Leftrightarrow 2$  — очевидно из линейной алгебры

Пусть многогранник задан в виде  $\{\mathbf{x} \mid \langle \mathbf{a}_i, \mathbf{x} \rangle = b_i \ \langle \mathbf{a}_j, \mathbf{x} \rangle \leq b_j, \ \langle \mathbf{a}_k, \mathbf{x} \rangle \geq b_k \}.$ 

## Теорема

Пусть  $\mathbf{x} \in \mathbb{R}^n$  и  $\mathcal{I} = \{i \mid \langle \mathbf{a}_i, \mathbf{x} \rangle = b_i\}$  — индексы активных ограничений. Тогда следующие утверждения эквивалентны

- 1. Найдётся n линейно независимых векторов в множестве  $\{\mathbf{a}_i \mid i \in \mathcal{I}\}$
- 2. Они образуют базис в  $\mathbb{R}^n$
- 3. Система  $\langle \mathbf{a}_i, \mathbf{x} \rangle = b_i, \; i \in \mathcal{I}$  имеет единственное решение

#### Доказательство

- lacktriangle  $1\Leftrightarrow 2$  очевидно из линейной алгебры
- $ightharpoonup 2\Rightarrow 3$ : если два решения  ${f x}_1$  и  ${f x}_2$ , то  ${f d}={f x}_1-{f x}_2$  ортогонален всем  ${f a}_i$ , противоречие

Пусть многогранник задан в виде  $\{\mathbf{x} \mid \langle \mathbf{a}_i, \mathbf{x} \rangle = b_i \ \langle \mathbf{a}_j, \mathbf{x} \rangle \leq b_j, \ \langle \mathbf{a}_k, \mathbf{x} \rangle \geq b_k \}.$ 

## Теорема

Пусть  $\mathbf{x} \in \mathbb{R}^n$  и  $\mathcal{I} = \{i \mid \langle \mathbf{a}_i, \mathbf{x} \rangle = b_i\}$  — индексы активных ограничений. Тогда следующие утверждения эквивалентны

- 1. Найдётся n линейно независимых векторов в множестве  $\{\mathbf{a}_i \mid i \in \mathcal{I}\}$
- 2. Они образуют базис в  $\mathbb{R}^n$
- 3. Система  $\langle \mathbf{a}_i, \mathbf{x} \rangle = b_i, \; i \in \mathcal{I}$  имеет единственное решение

#### Доказательство

- lacktriangle  $1\Leftrightarrow 2$  очевидно из линейной алгебры
- ▶  $2 \Rightarrow 3$ : если два решения  ${\bf x}_1$  и  ${\bf x}_2$ , то  ${\bf d} = {\bf x}_1 {\bf x}_2$  ортогонален всем  ${\bf a}_i$ , противоречие
- $3 \Rightarrow 2$ : если не базис, то возьмём  ${\bf d}$  ортогональный подпространству для  ${\bf a}_i$ , тогда из любого решения  ${\bf x}^*$  получим другое решение  ${\bf x}^*+{\bf d}$

## Ещё одно определение

#### Базисное решение

Пусть P задан ограничениями равенствами и неравенствами и  $\mathbf{x} \in \mathbb{R}^n$ . Тогда

- $ightharpoonup {f x}$  базисное решение, если все ограничения равенства активны и среди всех активных ограничений n линейно независимых
- х базисное допустимое решение, если оно базисное и удовлетворяет всем ограничениям

## Сопряжённые базисные решения

Два базисных решения называются сопряжёнными, если найдётся n-1 линейно независимых ограничений, которые активны в этих точках.

#### Теорема

Пусть P многогранник и пусть  $\mathbf{x} \in P$ . Тогда следующие факты об  $\mathbf{x}$  эквивалентны

- 1. x вершина
- х крайняя точка
- 3.  $\mathbf{x}$  базисное допустимое решение

## Теорема

Пусть P многогранник и пусть  $\mathbf{x} \in P$ . Тогда следующие факты об  $\mathbf{x}$  эквивалентны

- 1. x вершина
- $2. \ \mathbf{x}$  крайняя точка
- 3. х базисное допустимое решение

#### Доказательство

## Теорема

Пусть P многогранник и пусть  $\mathbf{x} \in P$ . Тогда следующие факты об  $\mathbf{x}$  эквивалентны

- 1. x вершина
- 2. x крайняя точка
- 3.  $\mathbf{x}$  базисное допустимое решение

#### Доказательство

Без ограничения общности будем считать, что многогранник представлен в виде  $\mathbf{a}_i^{\top}\mathbf{x} \geq b_i$  и  $\mathbf{a}_j^{\top}\mathbf{x} = b_j$ .

1. Вершина ightarrow крайняя точка

## Теорема

Пусть P многогранник и пусть  $\mathbf{x} \in P$ . Тогда следующие факты об  $\mathbf{x}$  эквивалентны

- 1. x вершина
- 2. x крайняя точка
- 3. х базисное допустимое решение

## Доказательство

- 1. Вершина ightarrow крайняя точка
  - lacktriangle Пусть  ${f x}^*$  вершина, тогда найдётся  ${f c}$  такой что  $\langle {f c}, {f x}^* 
    angle < \langle {f c}, {f y} 
    angle$  для всех  ${f y} \in P$  и  ${f y} 
    eq {f x}^*$

## Теорема

Пусть P многогранник и пусть  $\mathbf{x} \in P$ . Тогда следующие факты об  $\mathbf{x}$  эквивалентны

- 1. x вершина
- 2. x крайняя точка
- 3.  $\mathbf{x}$  базисное допустимое решение

#### Доказательство

- 1. Вершина  $\rightarrow$  крайняя точка
  - lacktriangle Пусть  ${f x}^*$  вершина, тогда найдётся  ${f c}$  такой что  $\langle {f c}, {f x}^* 
    angle < \langle {f c}, {f y} 
    angle$  для всех  ${f y} \in P$  и  ${f y} 
    eq {f x}^*$
  - lacktriangle Возьмём произвольные точки  $\mathbf{y} \in P$  и  $\mathbf{z} \in P$  не равные  $\mathbf{x}^*$

## Теорема

Пусть P многогранник и пусть  $\mathbf{x} \in P$ . Тогда следующие факты об  $\mathbf{x}$  эквивалентны

- 1. x вершина
- $2. \ \mathbf{x}$  крайняя точка
- 3. х базисное допустимое решение

## Доказательство

- 1. Вершина  $\rightarrow$  крайняя точка
  - lacktriangle Пусть  ${f x}^*$  вершина, тогда найдётся  ${f c}$  такой что  $\langle {f c}, {f x}^* 
    angle < \langle {f c}, {f y} 
    angle$  для всех  ${f y} \in P$  и  ${f y} 
    eq {f x}^*$
  - lacktriangle Возьмём произвольные точки  $\mathbf{y} \in P$  и  $\mathbf{z} \in P$  не равные  $\mathbf{x}^*$
  - lacktriangle Тогда  $\langle {f c}, {f x}^* 
    angle < \langle {f c}, {f y} 
    angle$  и  $\langle {f c}, {f x}^* 
    angle < \langle {f c}, {f z} 
    angle$

## Теорема

Пусть P многогранник и пусть  $\mathbf{x} \in P$ . Тогда следующие факты об  $\mathbf{x}$  эквивалентны

- 1. x вершина
- 2. x крайняя точка
- 3. х базисное допустимое решение

## Доказательство

- 1. Вершина  $\rightarrow$  крайняя точка
  - lacktriangle Пусть  ${f x}^*$  вершина, тогда найдётся  ${f c}$  такой что  $\langle {f c}, {f x}^* 
    angle < \langle {f c}, {f y} 
    angle$  для всех  ${f y} \in P$  и  ${f y} 
    eq {f x}^*$
  - lacktriangle Возьмём произвольные точки  $\mathbf{y} \in P$  и  $\mathbf{z} \in P$  не равные  $\mathbf{x}^*$
  - lacktriangle Тогда  $\langle {f c}, {f x}^* 
    angle < \langle {f c}, {f y} 
    angle$  и  $\langle {f c}, {f x}^* 
    angle < \langle {f c}, {f z} 
    angle$
  - lacktriangle A значит  $\langle {f c}, {f x}^* 
    angle < \langle {f c}, \lambda {f y} + (1-\lambda) {f z} 
    angle$ , где  $\lambda \in [0,1]$

#### Теорема

Пусть P многогранник и пусть  $\mathbf{x} \in P$ . Тогда следующие факты об  $\mathbf{x}$  эквивалентны

- 1. x вершина
- $2. \ \mathbf{x}$  крайняя точка
- 3.  $\mathbf{x}$  базисное допустимое решение

#### Доказательство

- 1. Вершина  $\rightarrow$  крайняя точка
  - lacktriangle Пусть  ${f x}^*$  вершина, тогда найдётся  ${f c}$  такой что  $\langle {f c}, {f x}^* 
    angle < \langle {f c}, {f y} 
    angle$  для всех  ${f y} \in P$  и  ${f y} 
    eq {f x}^*$
  - lacktriangle Возьмём произвольные точки  $\mathbf{y} \in P$  и  $\mathbf{z} \in P$  не равные  $\mathbf{x}^*$
  - lacktriangle Тогда  $\langle {f c}, {f x}^* 
    angle < \langle {f c}, {f y} 
    angle$  и  $\langle {f c}, {f x}^* 
    angle < \langle {f c}, {f z} 
    angle$
  - lacktriangle A значит  $\langle \mathbf{c}, \mathbf{x}^* 
    angle < \langle \mathbf{c}, \lambda \mathbf{y} + (1-\lambda) \mathbf{z} 
    angle$ , где  $\lambda \in [0,1]$
  - ► Таким образом,  $\mathbf{x}^* \neq \lambda \mathbf{y} + (1 \lambda)\mathbf{z}$

- 2. Крайняя точка  $\rightarrow$  базисное допустимое решение
  - ightharpoonup Пусть точка  $\mathbf{x}^*$  не базисное допустимое решение. Покажем, что тогда она не крайняя точка.

- 2. Крайняя точка  $\rightarrow$  базисное допустимое решение
  - ▶ Пусть точка  $\mathbf{x}^*$  не базисное допустимое решение. Покажем, что тогда она не крайняя точка.
  - ▶ Пусть  $\mathcal{I} = \{i \mid \mathbf{a}_i^\top \mathbf{x}^* = b_i\}$

- Пусть точка  $\mathbf{x}^*$  не базисное допустимое решение. Покажем, что тогда она не крайняя точка.
- ▶ Пусть  $\mathcal{I} = \{i \mid \mathbf{a}_i^\top \mathbf{x}^* = b_i\}$
- ▶ Тогда раз  $\mathbf{x}^*$  не является базисным допустимым решением, то среди  $\mathbf{a}_i, i \in \mathcal{I}$  не найдётся n линейно независимых.

- ightharpoonup Пусть точка  $\mathbf{x}^*$  не базисное допустимое решение. Покажем, что тогда она не крайняя точка.
- ▶ Пусть  $\mathcal{I} = \{i \mid \mathbf{a}_i^\top \mathbf{x}^* = b_i\}$
- ▶ Тогда раз  $\mathbf{x}^*$  не является базисным допустимым решением, то среди  $\mathbf{a}_i, i \in \mathcal{I}$  не найдётся n линейно независимых.
- > Значит они лежат в некотором подпространстве, к которому можно построить нормаль  ${\bf d}$  такую что  ${\bf a}_i^{\top}{\bf d}=0$  для всех  $i\in\mathcal{I}$

- ightharpoonup Пусть точка  $\mathbf{x}^*$  не базисное допустимое решение. Покажем, что тогда она не крайняя точка.
- ▶ Пусть  $\mathcal{I} = \{i \mid \mathbf{a}_i^\top \mathbf{x}^* = b_i\}$
- ▶ Тогда раз  $\mathbf{x}^*$  не является базисным допустимым решением, то среди  $\mathbf{a}_i, i \in \mathcal{I}$  не найдётся n линейно независимых.
- > Значит они лежат в некотором подпространстве, к которому можно построить нормаль  ${\bf d}$  такую что  ${\bf a}_i^{\sf T}{\bf d}=0$  для всех  $i\in\mathcal{I}$
- lacktriangle Пусть arepsilon>0 малое число, рассмотрим два вектора  ${f y}={f x}^*+arepsilon{f d}$  и  ${f z}={f x}^*-arepsilon{f d}$

#### 2. Крайняя точка o базисное допустимое решение

- Пусть точка  $\mathbf{x}^*$  не базисное допустимое решение. Покажем, что тогда она не крайняя точка.
- ▶ Пусть  $\mathcal{I} = \{i \mid \mathbf{a}_i^\top \mathbf{x}^* = b_i\}$
- ▶ Тогда раз  $\mathbf{x}^*$  не является базисным допустимым решением, то среди  $\mathbf{a}_i, i \in \mathcal{I}$  не найдётся n линейно независимых.
- > Значит они лежат в некотором подпространстве, к которому можно построить нормаль  ${\bf d}$  такую что  ${\bf a}_i^{\sf T}{\bf d}=0$  для всех  $i\in\mathcal{I}$
- ightharpoonup Пусть arepsilon>0 малое число, рассмотрим два вектора  $\mathbf{y}=\mathbf{x}^*+arepsilon\mathbf{d}$  и  $\mathbf{z}=\mathbf{x}^*-arepsilon\mathbf{d}$
- ▶ Для этих векторов выполнено, что для  $i\in\mathcal{I}$ :  $\mathbf{a}_i^{\top}\mathbf{y}=\mathbf{a}_i^{\top}\mathbf{z}=\mathbf{a}_i^{\top}\mathbf{x}^*=b_i$

#### 2. Крайняя точка o базисное допустимое решение

- ightharpoonup Пусть точка  $\mathbf{x}^*$  не базисное допустимое решение. Покажем, что тогда она не крайняя точка.
- ▶ Пусть  $\mathcal{I} = \{i \mid \mathbf{a}_i^\top \mathbf{x}^* = b_i\}$
- ▶ Тогда раз  $\mathbf{x}^*$  не является базисным допустимым решением, то среди  $\mathbf{a}_i, i \in \mathcal{I}$  не найдётся n линейно независимых.
- > Значит они лежат в некотором подпространстве, к которому можно построить нормаль  ${\bf d}$  такую что  ${\bf a}_i^{\sf T}{\bf d}=0$  для всех  $i\in\mathcal{I}$
- ightharpoonup Пусть arepsilon>0 малое число, рассмотрим два вектора  $\mathbf{y}=\mathbf{x}^*+arepsilon\mathbf{d}$  и  $\mathbf{z}=\mathbf{x}^*-arepsilon\mathbf{d}$
- ▶ Для этих векторов выполнено, что для  $i \in \mathcal{I}$ :  $\mathbf{a}_i^{\top} \mathbf{y} = \mathbf{a}_i^{\top} \mathbf{z} = \mathbf{a}_i^{\top} \mathbf{x}^* = b_i$
- lacktriangle А для  $j \notin \mathcal{I} \ \mathbf{a}_j^{ op} \mathbf{y} > b_j$  так как  $\mathbf{a}_j^{ op} \mathbf{x}^* > b_j$  и  $\varepsilon$  достаточно малое число (найдите оценку на  $\varepsilon$ !)

- ightharpoonup Пусть точка  $\mathbf{x}^*$  не базисное допустимое решение. Покажем, что тогда она не крайняя точка.
- ▶ Пусть  $\mathcal{I} = \{i \mid \mathbf{a}_i^\top \mathbf{x}^* = b_i\}$
- ▶ Тогда раз  $\mathbf{x}^*$  не является базисным допустимым решением, то среди  $\mathbf{a}_i, i \in \mathcal{I}$  не найдётся n линейно независимых.
- > Значит они лежат в некотором подпространстве, к которому можно построить нормаль  ${\bf d}$  такую что  ${\bf a}_i^{\sf T}{\bf d}=0$  для всех  $i\in\mathcal{I}$
- ightharpoonup Пусть arepsilon>0 малое число, рассмотрим два вектора  $\mathbf{y}=\mathbf{x}^*+arepsilon\mathbf{d}$  и  $\mathbf{z}=\mathbf{x}^*-arepsilon\mathbf{d}$
- ▶ Для этих векторов выполнено, что для  $i \in \mathcal{I}$ :  $\mathbf{a}_i^{\top} \mathbf{y} = \mathbf{a}_i^{\top} \mathbf{z} = \mathbf{a}_i^{\top} \mathbf{x}^* = b_i$
- $lackbox{ A для } j 
  otin \mathcal{I} \ \mathbf{a}_j^{ op} \mathbf{y} > b_j \ \text{так как } \mathbf{a}_j^{ op} \mathbf{x}^* > b_j \ \text{и } arepsilon \ \text{достаточно} \$ малое число (найдите оценку на arepsilon!)
- Аналогичное неравенство справедливо для z

## 2. Крайняя точка o базисное допустимое решение

- ightharpoonup Пусть точка  $\mathbf{x}^*$  не базисное допустимое решение. Покажем, что тогда она не крайняя точка.
- ▶ Пусть  $\mathcal{I} = \{i \mid \mathbf{a}_i^\top \mathbf{x}^* = b_i\}$
- ▶ Тогда раз  $\mathbf{x}^*$  не является базисным допустимым решением, то среди  $\mathbf{a}_i, i \in \mathcal{I}$  не найдётся n линейно независимых.
- ightharpoonup Значит они лежат в некотором подпространстве, к которому можно построить нормаль  ${f d}$  такую что  ${f a}_i^{\sf T}{f d}=0$  для всех  $i\in\mathcal{I}$
- ightharpoonup Пусть arepsilon>0 малое число, рассмотрим два вектора  $\mathbf{y}=\mathbf{x}^*+arepsilon\mathbf{d}$  и  $\mathbf{z}=\mathbf{x}^*-arepsilon\mathbf{d}$
- ▶ Для этих векторов выполнено, что для  $i \in \mathcal{I}$ :  $\mathbf{a}_i^{\top} \mathbf{y} = \mathbf{a}_i^{\top} \mathbf{z} = \mathbf{a}_i^{\top} \mathbf{x}^* = b_i$
- $lackbox{ A для } j 
  otin \mathcal{I} \ \mathbf{a}_j^{ op} \mathbf{y} > b_j \ \text{так как } \mathbf{a}_j^{ op} \mathbf{x}^* > b_j \ \text{и } arepsilon \ \text{достаточно} \$ малое число (найдите оценку на arepsilon!)
- Аналогичное неравенство справедливо для z
- ightharpoonup 3 начит  $m {f y}$  и  $m {f z}$  лежат в P

## 2. Крайняя точка o базисное допустимое решение

- Пусть точка  $\mathbf{x}^*$  не базисное допустимое решение. Покажем, что тогда она не крайняя точка.
- ▶ Пусть  $\mathcal{I} = \{i \mid \mathbf{a}_i^\top \mathbf{x}^* = b_i\}$
- ▶ Тогда раз  $\mathbf{x}^*$  не является базисным допустимым решением, то среди  $\mathbf{a}_i, i \in \mathcal{I}$  не найдётся n линейно независимых.
- > Значит они лежат в некотором подпространстве, к которому можно построить нормаль  ${\bf d}$  такую что  ${\bf a}_i^{\sf T}{\bf d}=0$  для всех  $i\in\mathcal{I}$
- ightharpoonup Пусть arepsilon>0 малое число, рассмотрим два вектора  $\mathbf{y}=\mathbf{x}^*+arepsilon\mathbf{d}$  и  $\mathbf{z}=\mathbf{x}^*-arepsilon\mathbf{d}$
- ▶ Для этих векторов выполнено, что для  $i \in \mathcal{I}$ :  $\mathbf{a}_i^{\top} \mathbf{y} = \mathbf{a}_i^{\top} \mathbf{z} = \mathbf{a}_i^{\top} \mathbf{x}^* = b_i$
- $lackbox{ A для } j 
  otin \mathcal{I} \ \mathbf{a}_j^{ op} \mathbf{y} > b_j \ \text{так как } \mathbf{a}_j^{ op} \mathbf{x}^* > b_j \ \text{и } arepsilon \ \text{достаточно} \$ малое число (найдите оценку на arepsilon!)
- Аналогичное неравенство справедливо для z
- ightharpoonup Значит  ${f y}$  и  ${f z}$  лежат в P
- ▶ Но  ${f x}^* = {1\over 2} ({f y} + {f z})$  и значит не является крайней точкой

- 3. Базисное допустимое решение ightarrow вершина
  - ▶ Пусть  $\mathbf{x}^*$  базисное допустимое решение и  $\mathcal{I}=\{i\mid \langle \mathbf{a}_i,\mathbf{x}^*\rangle=b_i\}$  множество индексов активных ограничений

- ▶ Пусть  $\mathbf{x}^*$  базисное допустимое решение и  $\mathcal{I}=\{i\mid \langle \mathbf{a}_i,\mathbf{x}^*\rangle=b_i\}$  множество индексов активных ограничений
- $lack ext{Обозначим } \mathbf{c} = \sum_{i \in \mathcal{I}} \mathbf{a}_i$ , тогда  $\langle \mathbf{c}, \mathbf{x}^* 
  angle = \sum_{i \in \mathcal{I}} \langle \mathbf{a}_i, \mathbf{x}^* 
  angle = \sum_{i \in \mathcal{I}} b_i$

- 3. Базисное допустимое решение ightarrow вершина
  - ▶ Пусть  $\mathbf{x}^*$  базисное допустимое решение и  $\mathcal{I}=\{i\mid \langle \mathbf{a}_i,\mathbf{x}^*\rangle=b_i\}$  множество индексов активных ограничений
  - ▶ Обозначим  $\mathbf{c} = \sum_{i \in \mathcal{I}} \mathbf{a}_i$ , тогда  $\langle \mathbf{c}, \mathbf{x}^* \rangle = \sum_{i \in \mathcal{I}} \langle \mathbf{a}_i, \mathbf{x}^* \rangle = \sum_{i \in \mathcal{I}} b_i$
  - ▶ Для любого  $\mathbf{x} \in P$  выполнено  $\langle \mathbf{a}_i, \mathbf{x} \rangle \geq b_i$  для всех i

- ▶ Пусть  $\mathbf{x}^*$  базисное допустимое решение и  $\mathcal{I}=\{i\mid \langle \mathbf{a}_i,\mathbf{x}^*\rangle=b_i\}$  множество индексов активных ограничений
- ▶ Обозначим  $\mathbf{c} = \sum_{i \in \mathcal{I}} \mathbf{a}_i$ , тогда  $\langle \mathbf{c}, \mathbf{x}^* \rangle = \sum_{i \in \mathcal{I}} \langle \mathbf{a}_i, \mathbf{x}^* \rangle = \sum_{i \in \mathcal{I}} b_i$
- ▶ Для любого  $\mathbf{x} \in P$  выполнено  $\langle \mathbf{a}_i, \mathbf{x} \rangle \geq b_i$  для всех i
- ▶ Тогда  $\langle \mathbf{c}, \mathbf{x} \rangle = \sum_{i \in \mathcal{I}} \langle \mathbf{a}_i, \mathbf{x} \rangle \geq \sum_{i \in \mathcal{I}} b_i = \langle \mathbf{c}, \mathbf{x}^* \rangle$

- ▶ Пусть  $\mathbf{x}^*$  базисное допустимое решение и  $\mathcal{I}=\{i\mid \langle \mathbf{a}_i,\mathbf{x}^*\rangle=b_i\}$  множество индексов активных ограничений
- lacktriangle Обозначим  $\mathbf{c} = \sum_{i \in \mathcal{I}} \mathbf{a}_i$ , тогда  $\langle \mathbf{c}, \mathbf{x}^* 
  angle = \sum_{i \in \mathcal{I}} \langle \mathbf{a}_i, \mathbf{x}^* 
  angle = \sum_{i \in \mathcal{I}} b_i$
- ▶ Для любого  $\mathbf{x} \in P$  выполнено  $\langle \mathbf{a}_i, \mathbf{x} \rangle \geq b_i$  для всех i
- ▶ Тогда  $\langle \mathbf{c}, \mathbf{x} \rangle = \sum_{i \in \mathcal{I}} \langle \mathbf{a}_i, \mathbf{x} \rangle \geq \sum_{i \in \mathcal{I}} b_i = \langle \mathbf{c}, \mathbf{x}^* \rangle$
- lacktriangle Значит  $\mathbf{x}^*$  является точкой минимума линейной функции  $\langle \mathbf{c}, \mathbf{x} 
  angle$  для  $\mathbf{x} \in P$

- Пусть  ${f x}^*$  базисное допустимое решение и  ${\cal I}=\{i\mid \langle {f a}_i,{f x}^*\rangle=b_i\}$  множество индексов активных ограничений
- lack lack lack Обозначим  $\mathbf{c} = \sum_{i \in \mathcal{I}} \mathbf{a}_i$ , тогда  $\langle \mathbf{c}, \mathbf{x}^* 
  angle = \sum_{i \in \mathcal{I}} \langle \mathbf{a}_i, \mathbf{x}^* 
  angle = \sum_{i \in \mathcal{I}} b_i$
- ▶ Для любого  $\mathbf{x} \in P$  выполнено  $\langle \mathbf{a}_i, \mathbf{x} \rangle \geq b_i$  для всех i
- lacktriangle Тогда  $\langle \mathbf{c}, \mathbf{x} 
  angle = \sum_{i \in \mathcal{I}} \langle \mathbf{a}_i, \mathbf{x} 
  angle \geq \sum_{i \in \mathcal{I}} b_i = \langle \mathbf{c}, \mathbf{x}^* 
  angle$
- lacktriangle Значит  $\mathbf{x}^*$  является точкой минимума линейной функции  $\langle \mathbf{c}, \mathbf{x} 
  angle$  для  $\mathbf{x} \in P$
- ▶ Покажем единственность. Поскольку равенство в оценке выше достигается при условии  $\langle {\bf a}_i, {\bf x} \rangle = b_i$  для  $i \in \mathcal{I}$ , а  ${\bf x}^*$  базисное допустимое решение, значит найдётся n линейно независимых активных ограничений и система будет иметь единственное решение.

- Пусть  $\mathbf{x}^*$  базисное допустимое решение и  $\mathcal{I}=\{i\mid \langle \mathbf{a}_i,\mathbf{x}^*\rangle=b_i\}$  множество индексов активных ограничений
- ullet Обозначим  $\mathbf{c} = \sum_{i \in \mathcal{I}} \mathbf{a}_i$ , тогда  $\langle \mathbf{c}, \mathbf{x}^* 
  angle = \sum_{i \in \mathcal{I}} \langle \mathbf{a}_i, \mathbf{x}^* 
  angle = \sum_{i \in \mathcal{I}} b_i$
- ▶ Для любого  $\mathbf{x} \in P$  выполнено  $\langle \mathbf{a}_i, \mathbf{x} \rangle \geq b_i$  для всех i
- ▶ Тогда  $\langle \mathbf{c}, \mathbf{x} \rangle = \sum_{i \in \mathcal{I}} \langle \mathbf{a}_i, \mathbf{x} \rangle \geq \sum_{i \in \mathcal{I}} b_i = \langle \mathbf{c}, \mathbf{x}^* \rangle$
- lacktriangle Значит  $\mathbf{x}^*$  является точкой минимума линейной функции  $\langle \mathbf{c}, \mathbf{x} 
  angle$  для  $\mathbf{x} \in P$
- Покажем единственность. Поскольку равенство в оценке выше достигается при условии  $\langle {\bf a}_i, {\bf x} \rangle = b_i$  для  $i \in \mathcal{I}$ , а  ${\bf x}^*$  базисное допустимое решение, значит найдётся n линейно независимых активных ограничений и система будет иметь единственное решение.
- ightharpoonup Таким образом,  $\mathbf{x}^*$  вершина

#### Следствие

Если многогранник задан конечным числом ограничений типа неравенств, то у него будет конечное число базисных и базисных допустимых решений

#### Следствие

Если многогранник задан конечным числом ограничений типа неравенств, то у него будет конечное число базисных и базисных допустимых решений

#### Следствие

Если многогранник задан конечным числом ограничений типа неравенств, то у него будет конечное число базисных и базисных допустимых решений

#### Доказательство

lacktriangle Каждое базисное решение соответствует набору из n активных линейно независимых ограничений

#### Следствие

Если многогранник задан конечным числом ограничений типа неравенств, то у него будет конечное число базисных и базисных допустимых решений

- ightharpoonup Каждое базисное решение соответствует набору из n активных линейно независимых ограничений
- Число базисных точек ограничено количеством способов которыми можно выбрать n активных линейно независимых ограничений из конечного набора ограничений равенств и неравенств

#### Следствие

Если многогранник задан конечным числом ограничений типа неравенств, то у него будет конечное число базисных и базисных допустимых решений

- Каждое базисное решение соответствует набору из n активных линейно независимых ограничений
- Число базисных точек ограничено количеством способов которыми можно выбрать n активных линейно независимых ограничений из конечного набора ограничений равенств и неравенств
- ▶ Значит это можно сделать конечным числом способов

#### Следствие

Если многогранник задан конечным числом ограничений типа неравенств, то у него будет конечное число базисных и базисных допустимых решений

#### Доказательство

- ightharpoonup Каждое базисное решение соответствует набору из n активных линейно независимых ограничений
- Число базисных точек ограничено количеством способов которыми можно выбрать n активных линейно независимых ограничений из конечного набора ограничений равенств и неравенств
- ▶ Значит это можно сделать конечным числом способов

Q: сколько вершин может быть у многогранника в  $\mathbb{R}^n$ ? Рассмотрите например множество вида  $\{\mathbf{x}\in\mathbb{R}^n\mid 0\leq x_i\leq 1\}$ 

Уточним результаты для  $P=\{{f x}\mid {f A}{f x}={f b},\; {f x}\geq 0\}$ , где строки матрицы  ${f A}$  линейно независимы.

### Теорема

Вектор  ${\bf x}$  базисное решение тогда и только тогда, когда  ${\bf A}{\bf x}={\bf b}$  и найдутся индексы  $B(1),\dots,B(m)$  такие что

- lacktriangle столбцы  ${f A}_{B(1)},\ldots,{f A}_{B(m)}$  линейно независимы
- ▶ если  $i \not\in \{B(1), \dots, B(m)\}$  то  $x_i = 0$ .

Уточним результаты для  $P=\{{f x}\mid {f A}{f x}={f b},\; {f x}\geq 0\}$ , где строки матрицы  ${f A}$  линейно независимы.

### Теорема

Вектор  ${\bf x}$  базисное решение тогда и только тогда, когда  ${\bf A}{\bf x}={\bf b}$  и найдутся индексы  $B(1),\dots,B(m)$  такие что

- lacktriangle столбцы  ${f A}_{B(1)},\ldots,{f A}_{B(m)}$  линейно независимы
- ▶ если  $i \not\in \{B(1),\ldots,B(m)\}$  то  $x_i=0.$

Уточним результаты для  $P=\{\mathbf{x}\mid \mathbf{A}\mathbf{x}=\mathbf{b},\; \mathbf{x}\geq 0\}$ , где строки матрицы  $\mathbf{A}$  линейно независимы.

### Теорема

Вектор  ${\bf x}$  базисное решение тогда и только тогда, когда  ${\bf A}{\bf x}={\bf b}$  и найдутся индексы  $B(1),\dots,B(m)$  такие что

- lacktriangle столбцы  ${f A}_{B(1)},\ldots,{f A}_{B(m)}$  линейно независимы
- ▶ если  $i \not\in \{B(1), \dots, B(m)\}$  то  $x_i = 0$ .

#### Доказательство

▶ Пусть  ${\bf x}$  такой что  ${\bf A}{\bf x}={\bf b}$  и выполнены условия для некоторого набора индексов  ${\cal B}$  такого что  $|{\cal B}|=m$ 

Уточним результаты для  $P=\{\mathbf{x}\mid \mathbf{A}\mathbf{x}=\mathbf{b},\; \mathbf{x}\geq 0\}$ , где строки матрицы  $\mathbf{A}$  линейно независимы.

### Теорема

Вектор  ${\bf x}$  базисное решение тогда и только тогда, когда  ${\bf A}{\bf x}={\bf b}$  и найдутся индексы  $B(1),\dots,B(m)$  такие что

- lacktriangle столбцы  ${f A}_{B(1)},\ldots,{f A}_{B(m)}$  линейно независимы
- ▶ если  $i \not\in \{B(1), \dots, B(m)\}$  то  $x_i = 0$ .

- ▶ Пусть  ${\bf x}$  такой что  ${\bf A}{\bf x}={\bf b}$  и выполнены условия для некоторого набора индексов  ${\cal B}$  такого что  $|{\cal B}|=m$
- lacktriangle Тогда есть m-n активных ограничений  $x_i=0$  для  $i
  ot\in\mathcal{B}$

Уточним результаты для  $P=\{\mathbf{x}\mid \mathbf{A}\mathbf{x}=\mathbf{b},\; \mathbf{x}\geq 0\}$ , где строки матрицы  $\mathbf{A}$  линейно независимы.

### Теорема

Вектор  ${\bf x}$  базисное решение тогда и только тогда, когда  ${\bf A}{\bf x}={\bf b}$  и найдутся индексы  $B(1),\dots,B(m)$  такие что

- lacktriangle столбцы  ${f A}_{B(1)},\ldots,{f A}_{B(m)}$  линейно независимы
- ▶ если  $i \not\in \{B(1), \dots, B(m)\}$  то  $x_i = 0$ .

- ▶ Пусть  ${\bf x}$  такой что  ${\bf A}{\bf x}={\bf b}$  и выполнены условия для некоторого набора индексов  ${\cal B}$  такого что  $|{\cal B}|=m$
- lacktriangle Тогда есть m-n активных ограничений  $x_i=0$  для  $i
  ot\in\mathcal{B}$
- ▶ Вместе с тем  $\sum_{i \in \mathcal{B}} \mathbf{A}_i x_i = \sum_{i=1}^n \mathbf{A}_i x_i = \mathbf{b}$

Уточним результаты для  $P=\{\mathbf{x}\mid \mathbf{A}\mathbf{x}=\mathbf{b},\; \mathbf{x}\geq 0\}$ , где строки матрицы  $\mathbf{A}$  линейно независимы.

#### Теорема

Вектор  ${\bf x}$  базисное решение тогда и только тогда, когда  ${\bf A}{\bf x}={\bf b}$  и найдутся индексы  $B(1),\dots,B(m)$  такие что

- lacktriangle столбцы  ${f A}_{B(1)},\ldots,{f A}_{B(m)}$  линейно независимы
- ▶ если  $i \not\in \{B(1), \dots, B(m)\}$  то  $x_i = 0$ .

- ▶ Пусть  ${\bf x}$  такой что  ${\bf A}{\bf x}={\bf b}$  и выполнены условия для некоторого набора индексов  ${\cal B}$  такого что  $|{\cal B}|=m$
- lacktriangle Тогда есть m-n активных ограничений  $x_i=0$  для  $i
  ot\in\mathcal{B}$
- ▶ Вместе с тем  $\sum_{i \in \mathcal{B}} \mathbf{A}_i x_i = \sum_{i=1}^n \mathbf{A}_i x_i = \mathbf{b}$
- ightharpoonup Так как  $\mathbf{A}_i$  для  $i \in \mathcal{B}$  линейно независимы, то система, образованная активными ограничениями, имеет единственное решение

ightharpoonup Значит найдётся n линейно независимых активных ограничений и точка является базисным решением

- ightharpoonup Значит найдётся n линейно независимых активных ограничений и точка является базисным решением
- ightharpoonup Пусть  $x_{B(1)},\ldots,x_{B(k)}$  ненулевые компоненты базисного решения  ${f x}$

- ightharpoonup Значит найдётся n линейно независимых активных ограничений и точка является базисным решением
- ightharpoonup Пусть  $x_{B(1)},\ldots,x_{B(k)}$  ненулевые компоненты базисного решения  ${f x}$
- lacktriangle Тогда система из уравнений  $\mathbf{A}\mathbf{x}=\mathbf{b}$  и  $x_i=0$  для  $i 
  ot\in B(1),\dots,B(k)$  имеет единственное решение

- ightharpoonup Значит найдётся n линейно независимых активных ограничений и точка является базисным решением
- ightharpoonup Пусть  $x_{B(1)},\ldots,x_{B(k)}$  ненулевые компоненты базисного решения  ${f x}$
- lacktriangle Тогда система из уравнений  $\mathbf{A}\mathbf{x}=\mathbf{b}$  и  $x_i=0$  для  $i 
  ot\in B(1),\dots,B(k)$  имеет единственное решение
- ▶ Тогда система  ${f A}{f x}={f b}$  сводится к системе  $\sum_{i=1}^k {f A}_{B(i)} x_{B(i)}={f b}$ , которая также имеет единственное решение.

- ightharpoonup Значит найдётся n линейно независимых активных ограничений и точка является базисным решением
- ightharpoonup Пусть  $x_{B(1)},\ldots,x_{B(k)}$  ненулевые компоненты базисного решения  ${f x}$
- lacktriangle Тогда система из уравнений  $\mathbf{A}\mathbf{x}=\mathbf{b}$  и  $x_i=0$  для  $i 
  ot\in B(1),\dots,B(k)$  имеет единственное решение
- ▶ Тогда система  $\mathbf{A}\mathbf{x} = \mathbf{b}$  сводится к системе  $\sum_{i=1}^k \mathbf{A}_{B(i)} x_{B(i)} = \mathbf{b}$ , которая также имеет единственное решение.
- lacktriangle Значит столбцы  ${f A}_{B(1)},\ldots,{f A}_{B(k)}$  линейно независимы и k < m

- ightharpoonup Значит найдётся n линейно независимых активных ограничений и точка является базисным решением
- ightharpoonup Пусть  $x_{B(1)},\ldots,x_{B(k)}$  ненулевые компоненты базисного решения  ${f x}$
- lacktriangle Тогда система из уравнений  $\mathbf{A}\mathbf{x}=\mathbf{b}$  и  $x_i=0$  для  $i 
  ot\in B(1),\dots,B(k)$  имеет единственное решение
- ▶ Тогда система  $\mathbf{A}\mathbf{x} = \mathbf{b}$  сводится к системе  $\sum_{i=1}^k \mathbf{A}_{B(i)} x_{B(i)} = \mathbf{b}$ , которая также имеет единственное решение.
- lacktriangle Значит столбцы  ${f A}_{B(1)},\ldots,{f A}_{B(k)}$  линейно независимы и  $k\leq m$
- ▶ Поскольку строчный ранг равен столбцовому, то существует m линейно независимых столбцов. Дополним найденные k линейно независимых столбцов столбцами  $B(k+1),\ldots,B(m)$ , которые вместе будут образовывать базис в  $\mathbb{R}^m$

- ightharpoonup Значит найдётся n линейно независимых активных ограничений и точка является базисным решением
- ightharpoonup Пусть  $x_{B(1)}, \dots, x_{B(k)}$  ненулевые компоненты базисного решения  ${f x}$
- lacktriangle Тогда система из уравнений  $\mathbf{A}\mathbf{x}=\mathbf{b}$  и  $x_i=0$  для  $i 
  ot\in B(1),\dots,B(k)$  имеет единственное решение
- ▶ Тогда система  $\mathbf{A}\mathbf{x} = \mathbf{b}$  сводится к системе  $\sum_{i=1}^k \mathbf{A}_{B(i)} x_{B(i)} = \mathbf{b}$ , которая также имеет единственное решение.
- lacktriangle Значит столбцы  ${f A}_{B(1)},\ldots,{f A}_{B(k)}$  линейно независимы и k < m
- ▶ Поскольку строчный ранг равен столбцовому, то существует m линейно независимых столбцов. Дополним найденные k линейно независимых столбцов столбцами  $B(k+1),\ldots,B(m)$ , которые вместе будут образовывать базис в  $\mathbb{R}^m$
- lacktriangle Также если  $i 
  eq B(1), \dots, B(m)$ , то  $i 
  eq B(1), \dots, B(k)$  и  $x_i = 0$

1. Выбрать m линейно независимых столбцов в матрице  $\mathbf{A}$ :  $B(1),\dots,B(m)$ 

- 1. Выбрать m линейно независимых столбцов в матрице  ${\bf A}$ :  $B(1),\ldots,B(m)$
- 2.  $x_i = 0$ , где  $i \neq B(1), \ldots, B(m)$

- 1. Выбрать m линейно независимых столбцов в матрице  $\mathbf{A}$ :  $B(1),\dots,B(m)$
- 2.  $x_i = 0$ , где  $i \neq B(1), \ldots, B(m)$
- 3. Составить из выбранных столбцов матрицу  ${f B}$ , решить систему  ${f By}={f b}$  и  $x_{B(i)}=y_i$

- 1. Выбрать m линейно независимых столбцов в матрице  $\mathbf{A}$ :  $B(1),\ldots,B(m)$
- 2.  $x_i = 0$ , где  $i \neq B(1), \ldots, B(m)$
- 3. Составить из выбранных столбцов матрицу  ${f B}$ , решить систему  ${f By}={f b}$  и  $x_{B(i)}=y_i$

#### Базисное допустимое решение

Если найденные  $\mathbf{y} \geq 0$ , то базисное решение будет допустимым.

- 1. Выбрать m линейно независимых столбцов в матрице  ${\bf A}$ :  $B(1),\ldots,B(m)$
- 2.  $x_i = 0$ , где  $i \neq B(1), \ldots, B(m)$
- 3. Составить из выбранных столбцов матрицу  ${f B}$ , решить систему  ${f By}={f b}$  и  $x_{B(i)}=y_i$

#### Базисное допустимое решение

Если найденные  $\mathbf{y} \geq 0$ , то базисное решение будет допустимым.

### Определение

Матрица  ${f B}$ , составленная из столбцов матрицы  ${f A}$  и соответствующая некоторому базисному решению, называется матрицей базиса.

- 1. Выбрать m линейно независимых столбцов в матрице  ${\bf A}$ :  $B(1),\ldots,B(m)$
- 2.  $x_i = 0$ , где  $i \neq B(1), \ldots, B(m)$
- 3. Составить из выбранных столбцов матрицу  ${f B}$ , решить систему  ${f By}={f b}$  и  $x_{B(i)}=y_i$

#### Базисное допустимое решение

Если найденные  $y \ge 0$ , то базисное решение будет допустимым.

### Определение

Матрица  ${f B}$ , составленная из столбцов матрицы  ${f A}$  и соответствующая некоторому базисному решению, называется матрицей базиса.

### Упражнение

Покажите, что разным базисным решениям соответствуют разные матрицы базиса, но разные матрицы базиса могут соответствовать одному и тому же базисному решению.

# Что если матрица ${f A}$ неполного строчного ранга?

#### Теорема

Пусть  $P = \{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \geq 0 \}$  непустой многогранник, такой что  $\mathbf{A} \in \mathbb{R}^{m \times n}$ , но  $\mathrm{rank}(\mathbf{A}) = k < m$ . Пусть строки  $\mathbf{a}_{i_1}, \dots \mathbf{a}_{i_k}$  линейно независимы, тогда многогранник  $Q = \{ \mathbf{x} \mid \langle \mathbf{a}_{i_1}, \mathbf{x} \rangle = b_{i_1}, \dots, \langle \mathbf{a}_{i_k}, \mathbf{x} \rangle = b_{i_k}, \ \mathbf{x} \geq 0 \} = P$ .

# Что если матрица ${f A}$ неполного строчного ранга?

### Теорема

Пусть  $P = \{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \geq 0 \}$  непустой многогранник, такой что  $\mathbf{A} \in \mathbb{R}^{m \times n}$ , но  $\mathrm{rank}(\mathbf{A}) = k < m$ . Пусть строки  $\mathbf{a}_{i_1}, \dots \mathbf{a}_{i_k}$  линейно независимы, тогда многогранник  $Q = \{ \mathbf{x} \mid \langle \mathbf{a}_{i_1}, \mathbf{x} \rangle = b_{i_1}, \dots, \langle \mathbf{a}_{i_k}, \mathbf{x} \rangle = b_{i_k}, \ \mathbf{x} \geq 0 \} = P.$ 

### Доказательство

Без ограничения общности будем считать, что первые k строк в  ${\bf A}$  линейно независимы.

# Что если матрица ${f A}$ неполного строчного ранга?

### Теорема

Пусть  $P = \{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \geq 0 \}$  непустой многогранник, такой что  $\mathbf{A} \in \mathbb{R}^{m \times n}$ , но  $\mathrm{rank}(\mathbf{A}) = k < m$ . Пусть строки  $\mathbf{a}_{i_1}, \dots \mathbf{a}_{i_k}$  линейно независимы, тогда многогранник  $Q = \{ \mathbf{x} \mid \langle \mathbf{a}_{i_1}, \mathbf{x} \rangle = b_{i_1}, \dots, \langle \mathbf{a}_{i_k}, \mathbf{x} \rangle = b_{i_k}, \ \mathbf{x} \geq 0 \} = P.$ 

### Доказательство

Без ограничения общности будем считать, что первые k строк в  ${\bf A}$  линейно независимы.

lacktriangle Поскольку ограничения равенства в Q есть подмножество таких ограничений в P, то  $P\subset Q$ . Покажем, что  $Q\subset P$ .

# Что если матрица ${f A}$ неполного строчного ранга?

#### Теорема

Пусть  $P = \{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \geq 0 \}$  непустой многогранник, такой что  $\mathbf{A} \in \mathbb{R}^{m \times n}$ , но  $\mathrm{rank}(\mathbf{A}) = k < m$ . Пусть строки  $\mathbf{a}_{i_1}, \dots \mathbf{a}_{i_k}$  линейно независимы, тогда многогранник  $Q = \{ \mathbf{x} \mid \langle \mathbf{a}_{i_1}, \mathbf{x} \rangle = b_{i_1}, \dots, \langle \mathbf{a}_{i_k}, \mathbf{x} \rangle = b_{i_k}, \ \mathbf{x} \geq 0 \} = P.$ 

#### Доказательство

Без ограничения общности будем считать, что первые k строк в  ${\bf A}$  линейно независимы.

- lacktriangle Поскольку ограничения равенства в Q есть подмножество таких ограничений в P, то  $P\subset Q$ . Покажем, что  $Q\subset P$ .
- $lacktriank(\mathbf{A})=k$ , то  $\mathbf{a}_i=\sum_{j=1}^k lpha_{ij}\mathbf{a}_j$  для любой строки  $i=1,\ldots,m$

# Что если матрица ${f A}$ неполного строчного ранга?

#### Теорема

Пусть  $P = \{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \geq 0 \}$  непустой многогранник, такой что  $\mathbf{A} \in \mathbb{R}^{m \times n}$ , но  $\mathrm{rank}(\mathbf{A}) = k < m$ . Пусть строки  $\mathbf{a}_{i_1}, \dots \mathbf{a}_{i_k}$  линейно независимы, тогда многогранник  $Q = \{ \mathbf{x} \mid \langle \mathbf{a}_{i_1}, \mathbf{x} \rangle = b_{i_1}, \dots, \langle \mathbf{a}_{i_k}, \mathbf{x} \rangle = b_{i_k}, \ \mathbf{x} \geq 0 \} = P.$ 

#### Доказательство

Без ограничения общности будем считать, что первые k строк в  ${\bf A}$  линейно независимы.

- ightharpoonup Поскольку ограничения равенства в Q есть подмножество таких ограничений в P, то  $P\subset Q$ . Покажем, что  $Q\subset P$ .
- ► Так как  $\operatorname{rank}(\mathbf{A})=k$ , то  $\mathbf{a}_i=\sum_{j=1}^k \alpha_{ij}\mathbf{a}_j$  для любой строки  $i=1,\ldots,m$
- lacktriangle Пусть  $\mathbf{x} \in P$ , тогда  $b_i = \langle \mathbf{a}_i, \mathbf{x} \rangle = \sum_{j=1}^k lpha_{ij} \langle \mathbf{a}_j, \mathbf{x} \rangle = \sum_{j=1}^k lpha_{ij} b_j$

# Что если матрица ${f A}$ неполного строчного ранга?

#### Теорема

Пусть  $P = \{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \geq 0 \}$  непустой многогранник, такой что  $\mathbf{A} \in \mathbb{R}^{m \times n}$ , но  $\mathrm{rank}(\mathbf{A}) = k < m$ . Пусть строки  $\mathbf{a}_{i_1}, \dots \mathbf{a}_{i_k}$  линейно независимы, тогда многогранник  $Q = \{ \mathbf{x} \mid \langle \mathbf{a}_{i_1}, \mathbf{x} \rangle = b_{i_1}, \dots, \langle \mathbf{a}_{i_k}, \mathbf{x} \rangle = b_{i_k}, \ \mathbf{x} \geq 0 \} = P.$ 

Без ограничения общности будем считать, что первые k строк в  ${\bf A}$  линейно независимы.

- ▶ Поскольку ограничения равенства в Q есть подмножество таких ограничений в P, то  $P \subset Q$ . Покажем, что  $Q \subset P$ .
- ▶ Так как  $\operatorname{rank}(\mathbf{A}) = k$ , то  $\mathbf{a}_i = \sum_{j=1}^k \alpha_{ij} \mathbf{a}_j$  для любой строки  $i = 1, \dots, m$
- ▶ Пусть  $\mathbf{x} \in P$ , тогда  $b_i = \langle \mathbf{a}_i, \mathbf{x} \rangle = \sum_{j=1}^k \alpha_{ij} \langle \mathbf{a}_j, \mathbf{x} \rangle = \sum_{j=1}^k \alpha_{ij} b_j$
- Рассмотрим элемент  $\mathbf{y} \in Q$  и покажем, что  $\mathbf{y} \in P$ :  $\langle \mathbf{a}_i, \mathbf{y} \rangle = \sum_{j=1}^k \alpha_{ij} \langle \mathbf{a}_j, \mathbf{y} \rangle = \sum_{j=1}^k \alpha_{ij} b_j = b_i$

### Вырожденное базисное решение

#### Определение

Пусть  $P=\{{f x}\mid {f A}{f x}={f b},\; {f x}\geq 0\}$  и  ${f x}$  базисное решение. Тогда оно вырождено, если больше n-m его элементов нули.

#### Свойства

- ightharpoonup Если в базисном решении нулей больше чем n-m, значит активных ограничений больше, чем n
- ▶ На плоскости это значит, что в вершине пересекается больше двух прямых

# Существование крайней точки

#### Определение

Многогранник  $P\subset\mathbb{R}^n$  содержит прямую, если найдётся вектор  ${f x}$  и ненулевой вектор  ${f d}$  такие что для любого скаляра  $\gamma$ :  ${f x}+\gamma{f d}\in P$ 

#### Теорема

Пусть многоугольник задан в виде  $\{\mathbf{x}\mid \mathbf{A}\mathbf{x}\geq \mathbf{b}\}$ , где  $\mathbf{A}\in\mathbb{R}^{m imes n}.$  Тогда следующие утверждения эквивалентны

- 1) у P есть хотя бы одна крайняя точка
- 2) P не содержит прямой
- 3) найдётся n линейно независимых векторов среди векторов  $\mathbf{a}_1,\dots,\mathbf{a}_m.$

2) 
$$ightarrow$$
 1)  $ightharpoonup$  Пусть  $\mathbf{x} \in P$  и  $\mathcal{I} = \{i \mid \langle \mathbf{a}_i, \mathbf{x} \rangle = b_i\}$ 

- 2) ightarrow Пусть  $\mathbf{x} \in P$  и  $\mathcal{I} = \{i \mid \langle \mathbf{a}_i, \mathbf{x} \rangle = b_i\}$ 
  - ightharpoonup Если n векторов с индексами из  $\mathcal I$  линейно независимы, значит  $\mathbf x$  допустимое базисное решение

- 2) ightarrow Пусть  $\mathbf{x} \in P$  и  $\mathcal{I} = \{i \mid \langle \mathbf{a}_i, \mathbf{x} \rangle = b_i\}$ 
  - Если n векторов с индексами из  $\mathcal I$  линейно независимы, значит  $\mathbf x$  допустимое базисное решение
  - ightharpoonup Если это не так, то все  $\mathbf{a}_i$  для  $i\in\mathcal{I}$  лежат в подпространстве  $\mathbb{R}^n$ , и найдётся  $\mathbf{d}$ , такой что  $\langle \mathbf{a}_i,\mathbf{d}\rangle=0$

- 2) ightarrow Пусть  $\mathbf{x} \in P$  и  $\mathcal{I} = \{i \mid \langle \mathbf{a}_i, \mathbf{x} \rangle = b_i\}$ 
  - ▶ Если n векторов с индексами из  $\mathcal I$  линейно независимы, значит  $\mathbf x$  допустимое базисное решение
  - ightharpoonup Если это не так, то все  $\mathbf{a}_i$  для  $i\in\mathcal{I}$  лежат в подпространстве  $\mathbb{R}^n$ , и найдётся  $\mathbf{d}$ , такой что  $\langle \mathbf{a}_i,\mathbf{d}\rangle=0$
  - ightharpoonup Рассмотрим прямую вида  $\mathbf{y}=\mathbf{x}+lpha\mathbf{d}$ . Тогда  $\langle \mathbf{a}_i,\mathbf{x}+lpha\mathbf{d} \rangle=b_i$  для  $i\in\mathcal{I}$

- $\mathbf{2}) o \mathbf{1})$  Ристь  $\mathbf{x} \in P$  и  $\mathcal{I} = \{i \mid \langle \mathbf{a}_i, \mathbf{x} \rangle = b_i \}$ 
  - Если n векторов с индексами из  $\mathcal I$  линейно независимы, значит  $\mathbf x$  допустимое базисное решение
  - ightharpoonup Если это не так, то все  ${f a}_i$  для  $i\in {\cal I}$  лежат в подпространстве  ${\Bbb R}^n$ , и найдётся  ${f d}$ , такой что  $\langle {f a}_i, {f d} \rangle = 0$
  - ightharpoonup Рассмотрим прямую вида  $\mathbf{y}=\mathbf{x}+lpha\mathbf{d}$ . Тогда  $\langle \mathbf{a}_i,\mathbf{x}+lpha\mathbf{d} \rangle=b_i$  для  $i\in\mathcal{I}$
  - ▶ Но P не содержит прямой, тогда для некоторого  $\alpha^*$  будет выполнено:  $\langle \mathbf{a}_j, \mathbf{x} + \alpha^* \mathbf{d} \rangle = b_j$ ,  $j \notin \mathcal{I}$

- $\mathbf{2}) o \mathbf{1})$  Р Пусть  $\mathbf{x} \in P$  и  $\mathcal{I} = \{i \mid \langle \mathbf{a}_i, \mathbf{x} \rangle = b_i \}$ 
  - ightharpoonup Если n векторов с индексами из  $\mathcal I$  линейно независимы, значит  $\mathbf x$  допустимое базисное решение
  - ightharpoonup Если это не так, то все  ${f a}_i$  для  $i\in {\cal I}$  лежат в подпространстве  ${\Bbb R}^n$ , и найдётся  ${f d}$ , такой что  $\langle {f a}_i, {f d} \rangle = 0$
  - ightharpoonup Рассмотрим прямую вида  $\mathbf{y}=\mathbf{x}+lpha\mathbf{d}$ . Тогда  $\langle \mathbf{a}_i,\mathbf{x}+lpha\mathbf{d} \rangle=b_i$  для  $i\in\mathcal{I}$
  - ▶ Но P не содержит прямой, тогда для некоторого  $\alpha^*$  будет выполнено:  $\langle \mathbf{a}_j, \mathbf{x} + \alpha^* \mathbf{d} \rangle = b_j, j \notin \mathcal{I}$
  - lacktriangle Покажем, что  ${f a}_j 
    ot\in {
    m span}\left(igcup_{i\in\mathcal{I}}{f a}_i
    ight)$

- $\mathbf{2}) o \mathbf{1})$  Ристь  $\mathbf{x} \in P$  и  $\mathcal{I} = \{i \mid \langle \mathbf{a}_i, \mathbf{x} \rangle = b_i \}$ 
  - Если n векторов с индексами из  $\mathcal I$  линейно независимы, значит  $\mathbf x$  допустимое базисное решение
  - lacktriangle Если это не так, то все  ${f a}_i$  для  $i\in \mathcal{I}$  лежат в подпространстве  $\mathbb{R}^n$ , и найдётся  ${f d}$ , такой что  $\langle {f a}_i, {f d} \rangle = 0$
  - ightharpoonup Рассмотрим прямую вида  $\mathbf{y}=\mathbf{x}+\alpha\mathbf{d}$ . Тогда  $\langle \mathbf{a}_i,\mathbf{x}+\alpha\mathbf{d} \rangle = b_i$  для  $i\in\mathcal{I}$
  - ▶ Но P не содержит прямой, тогда для некоторого  $\alpha^*$  будет выполнено:  $\langle \mathbf{a}_j, \mathbf{x} + \alpha^* \mathbf{d} \rangle = b_j, j \notin \mathcal{I}$
  - lacktriangle Покажем, что  ${f a}_j 
    ot\in {
    m span}\left(igcup_{i\in\mathcal{I}}{f a}_i
    ight)$
  - ▶ Так как  $j \notin \mathcal{I}$ , то  $\langle \mathbf{a}_j, \mathbf{x} \rangle \neq b_j$ . Однако по определению  $\alpha^*$  выполнено  $\langle \mathbf{a}_j, \mathbf{x} + \alpha^* \mathbf{d} \rangle = b_j$ , следовательно  $\langle \mathbf{a}_j, \mathbf{d} \rangle \neq 0$

- $\mathbf{2}) o \mathbf{1})$  Ристь  $\mathbf{x} \in P$  и  $\mathcal{I} = \{i \mid \langle \mathbf{a}_i, \mathbf{x} \rangle = b_i \}$ 
  - ightharpoonup Если n векторов с индексами из  $\mathcal I$  линейно независимы, значит  $\mathbf x$  допустимое базисное решение
  - ightharpoonup Если это не так, то все  ${f a}_i$  для  $i\in {\cal I}$  лежат в подпространстве  ${\Bbb R}^n$ , и найдётся  ${f d}$ , такой что  $\langle {f a}_i, {f d} \rangle = 0$
  - ightharpoonup Рассмотрим прямую вида  $\mathbf{y}=\mathbf{x}+lpha\mathbf{d}$ . Тогда  $\langle \mathbf{a}_i,\mathbf{x}+lpha\mathbf{d} \rangle=b_i$  для  $i\in\mathcal{I}$
  - ▶ Но P не содержит прямой, тогда для некоторого  $\alpha^*$  будет выполнено:  $\langle {\bf a}_j, {\bf x} + \alpha^* {\bf d} \rangle = b_j, j \notin \mathcal{I}$
  - lacktriangle Покажем, что  ${f a}_j 
    ot\in {
    m span}\left(\bigcup_{i\in \mathcal{I}}{f a}_i\right)$
  - ▶ Так как  $j \notin \mathcal{I}$ , то  $\langle \mathbf{a}_j, \mathbf{x} \rangle \neq b_j$ . Однако по определению  $\alpha^*$  выполнено  $\langle \mathbf{a}_j, \mathbf{x} + \alpha^* \mathbf{d} \rangle = b_j$ , следовательно  $\langle \mathbf{a}_j, \mathbf{d} \rangle \neq 0$
  - ▶ Но так как  $\langle \mathbf{a}_i, \mathbf{d} \rangle = 0$  для всех  $i \in \mathcal{I}$ , значит равенство выполнено и для любой линейной комбинации  $\mathbf{a}_i$ . Значит  $\mathbf{a}_j \not\in \mathrm{span}\left(\bigcup_{i \in \mathcal{I}} \mathbf{a}_i\right)$

- $\mathbf{2}) o \mathbf{1})$  Ристь  $\mathbf{x} \in P$  и  $\mathcal{I} = \{i \mid \langle \mathbf{a}_i, \mathbf{x} \rangle = b_i \}$ 
  - ightharpoonup Если n векторов с индексами из  $\mathcal I$  линейно независимы, значит  $\mathbf x$  допустимое базисное решение
  - ightharpoonup Если это не так, то все  ${f a}_i$  для  $i\in {\cal I}$  лежат в подпространстве  ${\Bbb R}^n$ , и найдётся  ${f d}$ , такой что  $\langle {f a}_i, {f d} \rangle = 0$
  - ightharpoonup Рассмотрим прямую вида  $\mathbf{y}=\mathbf{x}+\alpha\mathbf{d}$ . Тогда  $\langle \mathbf{a}_i,\mathbf{x}+\alpha\mathbf{d} \rangle = b_i$  для  $i\in\mathcal{I}$
  - ▶ Но P не содержит прямой, тогда для некоторого  $\alpha^*$  будет выполнено:  $\langle \mathbf{a}_j, \mathbf{x} + \alpha^* \mathbf{d} \rangle = b_j, j \notin \mathcal{I}$
  - lacktriangle Покажем, что  $\mathbf{a}_j 
    ot\in \mathrm{span}\left(\bigcup_{i\in\mathcal{I}}\mathbf{a}_i\right)$
  - ▶ Так как  $j \notin \mathcal{I}$ , то  $\langle \mathbf{a}_j, \mathbf{x} \rangle \neq b_j$ . Однако по определению  $\alpha^*$  выполнено  $\langle \mathbf{a}_j, \mathbf{x} + \alpha^* \mathbf{d} \rangle = b_j$ , следовательно  $\langle \mathbf{a}_j, \mathbf{d} \rangle \neq 0$
  - ▶ Но так как  $\langle \mathbf{a}_i, \mathbf{d} \rangle = 0$  для всех  $i \in \mathcal{I}$ , значит равенство выполнено и для любой линейной комбинации  $\mathbf{a}_i$ . Значит  $\mathbf{a}_j \not\in \mathrm{span}\left(\bigcup_{i \in \mathcal{I}} \mathbf{a}_i\right)$
  - ▶ Таким образом, перейдя из  ${\bf x}$  в  ${\bf x} + \alpha^* {\bf d}$  количество активных линейно независимых ограничений равенств увеличено на 1

- $\mathbf{2}) o \mathbf{1})$  Пусть  $\mathbf{x} \in P$  и  $\mathcal{I} = \{i \mid \langle \mathbf{a}_i, \mathbf{x} \rangle = b_i\}$ 
  - ightharpoonup Если n векторов с индексами из  $\mathcal I$  линейно независимы, значит  $\mathbf x$  допустимое базисное решение
  - ightharpoonup Если это не так, то все  ${f a}_i$  для  $i\in {\cal I}$  лежат в подпространстве  ${\Bbb R}^n$ , и найдётся  ${f d}$ , такой что  $\langle {f a}_i, {f d} \rangle = 0$
  - ightharpoonup Рассмотрим прямую вида  $\mathbf{y}=\mathbf{x}+\alpha\mathbf{d}$ . Тогда  $\langle \mathbf{a}_i,\mathbf{x}+\alpha\mathbf{d} \rangle = b_i$  для  $i\in\mathcal{I}$
  - ▶ Но P не содержит прямой, тогда для некоторого  $\alpha^*$  будет выполнено:  $\langle \mathbf{a}_j, \mathbf{x} + \alpha^* \mathbf{d} \rangle = b_j, j \notin \mathcal{I}$
  - lacktriangle Покажем, что  ${f a}_j 
    ot\in {
    m span}\left(igcup_{i\in\mathcal{I}}{f a}_i
    ight)$
  - ▶ Так как  $j \notin \mathcal{I}$ , то  $\langle \mathbf{a}_j, \mathbf{x} \rangle \neq b_j$ . Однако по определению  $\alpha^*$  выполнено  $\langle \mathbf{a}_j, \mathbf{x} + \alpha^* \mathbf{d} \rangle = b_j$ , следовательно  $\langle \mathbf{a}_j, \mathbf{d} \rangle \neq 0$
  - ▶ Но так как  $\langle \mathbf{a}_i, \mathbf{d} \rangle = 0$  для всех  $i \in \mathcal{I}$ , значит равенство выполнено и для любой линейной комбинации  $\mathbf{a}_i$ . Значит  $\mathbf{a}_j \not\in \mathrm{span}\left(\bigcup_{i \in \mathcal{I}} \mathbf{a}_i\right)$
  - ▶ Таким образом, перейдя из  ${\bf x}$  в  ${\bf x} + \alpha^* {\bf d}$  количество активных линейно независимых ограничений равенств увеличено на 1
  - Продолжим эту процедуру до тех пор пока не наберём n линейно независимых активных ограничений

- 1)  $\to$  3) 
   Если есть крайняя точка, то она же является допустимым базисным решением.
  - ightharpoonup Тогда по определению найдётся n активных ограничений и соответствующие векторы линейно независимы
- $(3) \rightarrow 2)$  Римпи Векторы  $\mathbf{a}_1, \dots, \mathbf{a}_n$  линейно независимы
  - ▶ Предположим, что P содержит прямую  $\mathbf{x}+\alpha\mathbf{d}$  , тогда  $\langle \mathbf{a}_i,\mathbf{x}+\alpha\mathbf{d}\rangle \geq b_i$  для всех  $\alpha\in\mathbb{R}$
  - lacktriangle Отсюда следует, что  $\langle {f a}_i, {f d} \rangle = 0$
  - ightharpoonup Так как векторы  ${f a}_i$  линейно независимы и их n штук, то  ${f d}=0$
  - ightharpoonup Получили противоречие, значит P не содержит прямой

#### Следствие

Любой ограниченный многоугольник и любой многоугольник в стандартной форме имеют крайнюю точку.

#### Теорема

Если многоугольник имеет хотя бы одну крайнюю точку, а задача линейного программирования имеет решение, тогда это решение в крайней точки.

#### Теорема

Если многоугольник имеет хотя бы одну крайнюю точку, а задача линейного программирования имеет решение, тогда это решение в крайней точки.

#### Теорема

Если многоугольник имеет хотя бы одну крайнюю точку, а задача линейного программирования имеет решение, тогда это решение в крайней точки.

#### Доказательство

Множество решений

$$Q=\{\mathbf{x}\mid \mathbf{A}\mathbf{x}=\mathbf{b},\; \mathbf{x}\geq 0, \langle \mathbf{c},\mathbf{x}
angle=c^*\}$$
 — многогранник

#### Теорема

Если многоугольник имеет хотя бы одну крайнюю точку, а задача линейного программирования имеет решение, тогда это решение в крайней точки.

- $oldsymbol{\mathsf{M}}$  Множество решений  $Q=\{\mathbf{x}\mid \mathbf{A}\mathbf{x}=\mathbf{b},\; \mathbf{x}\geq 0, \langle \mathbf{c},\mathbf{x}
  angle=c^*\}$  многогранник
- $ightharpoonup Q \subset P$ . В P есть крайняя точка, значит в P не лежит ни одной прямой.

#### Теорема

Если многоугольник имеет хотя бы одну крайнюю точку, а задача линейного программирования имеет решение, тогда это решение в крайней точки.

- ullet Множество решений  $Q=\{{f x}\mid {f A}{f x}={f b},\; {f x}\geq 0, \langle {f c},{f x}
  angle=c^*\}$  многогранник
- $ightharpoonup Q \subset P$ . В P есть крайняя точка, значит в P не лежит ни одной прямой.
- lacktriangle В Q не лежит ни одной прямой ightarrow в Q есть крайняя точка

#### Теорема

Если многоугольник имеет хотя бы одну крайнюю точку, а задача линейного программирования имеет решение, тогда это решение в крайней точки.

- ullet Множество решений  $Q=\{{f x}\mid {f A}{f x}={f b},\; {f x}\geq 0, \langle {f c},{f x}
  angle=c^*\}$  многогранник
- $ightharpoonup Q \subset P$ . В P есть крайняя точка, значит в P не лежит ни одной прямой.
- lacktriangle В Q не лежит ни одной прямой ightarrow в Q есть крайняя точка
- lacktriangle Пусть  ${f x}^*$  крайняя точка в Q, тогда она крайняя для P

#### Теорема

Если многоугольник имеет хотя бы одну крайнюю точку, а задача линейного программирования имеет решение, тогда это решение в крайней точки.

- lacktriangle Множество решений  $Q=\{\mathbf{x}\mid \mathbf{A}\mathbf{x}=\mathbf{b},\; \mathbf{x}\geq 0, \langle \mathbf{c},\mathbf{x}
  angle=c^*\}$  многогранник
- $ightharpoonup Q \subset P$ . В P есть крайняя точка, значит в P не лежит ни одной прямой.
- lacktriangle В Q не лежит ни одной прямой ightarrow в Q есть крайняя точка
- lacktriangle Пусть  ${f x}^*$  крайняя точка в Q, тогда она крайняя для P
- f E Если это не так, то найдутся точки  ${f y},{f z}\in P$  такие что  ${f x}^*=lpha{f y}+(1-lpha){f z},\ lpha\in[0,1]$

#### Теорема

Если многоугольник имеет хотя бы одну крайнюю точку, а задача линейного программирования имеет решение, тогда это решение в крайней точки.

- ullet Множество решений  $Q=\{{f x}\mid {f A}{f x}={f b},\; {f x}\geq 0, \langle {f c},{f x}
  angle=c^*\}$  многогранник
- $ightharpoonup Q \subset P$ . В P есть крайняя точка, значит в P не лежит ни одной прямой.
- lacktriangle В Q не лежит ни одной прямой ightarrow в Q есть крайняя точка
- lacktriangle Пусть  ${f x}^*$  крайняя точка в Q, тогда она крайняя для P
- f E Если это не так, то найдутся точки  ${f y},{f z}\in P$  такие что  ${f x}^*=lpha{f y}+(1-lpha){f z},\ lpha\in[0,1]$
- $oldsymbol{c}^* = \langle \mathbf{c}, \mathbf{x}^* 
  angle = lpha \langle \mathbf{c}, \mathbf{y} 
  angle + (1 lpha) \langle \mathbf{c}, \mathbf{z} 
  angle$ , а  $\langle \mathbf{c}, \mathbf{y} 
  angle \geq c^*$ , и  $\langle \mathbf{c}, \mathbf{z} 
  angle \geq c^*$ . Значит  $\langle \mathbf{c}, \mathbf{z} 
  angle = \langle \mathbf{c}, \mathbf{y} 
  angle = c^*$ ,  $\mathbf{z}, \mathbf{y} \in Q$

#### Теорема

Если многоугольник имеет хотя бы одну крайнюю точку, а задача линейного программирования имеет решение, тогда это решение в крайней точки.

- ullet Множество решений  $Q=\{{f x}\mid {f A}{f x}={f b},\; {f x}\geq 0, \langle {f c},{f x}
  angle=c^*\}$  многогранник
- $ightharpoonup Q \subset P$ . В P есть крайняя точка, значит в P не лежит ни одной прямой.
- lacktriangle В Q не лежит ни одной прямой ightarrow в Q есть крайняя точка
- lacktriangle Пусть  ${f x}^*$  крайняя точка в Q, тогда она крайняя для P
- ▶ Если это не так, то найдутся точки  $\mathbf{y}, \mathbf{z} \in P$  такие что  $\mathbf{x}^* = \alpha \mathbf{y} + (1 \alpha) \mathbf{z}, \ \alpha \in [0, 1]$
- $oldsymbol{c}^* = \langle \mathbf{c}, \mathbf{x}^* 
  angle = lpha \langle \mathbf{c}, \mathbf{y} 
  angle + (1-lpha) \langle \mathbf{c}, \mathbf{z} 
  angle$ , а  $\langle \mathbf{c}, \mathbf{y} 
  angle \geq c^*$ , и  $\langle \mathbf{c}, \mathbf{z} 
  angle \geq c^*$ . Значит  $\langle \mathbf{c}, \mathbf{z} 
  angle = \langle \mathbf{c}, \mathbf{y} 
  angle = c^*$ ,  $\mathbf{z}, \mathbf{y} \in Q$
- lacktriangle Противоречие с тем, что  ${f x}^*$  крайняя точка в Q

▶ Применение линейного программирования в экономике (Л. В. Канторович, 1930-ые гг.) — нобелевская премия по экономике 1975 г.

- ▶ Применение линейного программирования в экономике (Л. В. Канторович, 1930-ые гг.) — нобелевская премия по экономике 1975 г.
- ▶ Симплекс-метод (Дж. Данциг, 1949 г.)

- ▶ Применение линейного программирования в экономике (Л. В. Канторович, 1930-ые гг.) — нобелевская премия по экономике 1975 г.
- ▶ Симплекс-метод (Дж. Данциг, 1949 г.)
- Доказана полиномиальность задачи линейного программирования (Л. Хачиян, 1979)

The New York Times

#### A Soviet Discovery Rocks World of Mathematics



https://www.nvtimes.com/1979/11/07/archives/

a-soviet-discovery-rocks-world-of-mathematics-russians-surprise.html?\_r=0

- ▶ Применение линейного программирования в экономике (Л. В. Канторович, 1930-ые гг.) — нобелевская премия по экономике 1975 г.
- ▶ Симплекс-метод (Дж. Данциг, 1949 г.)
- Доказана полиномиальность задачи линейного программирования (Л. Хачиян, 1979)

The New York Times

A Soviet Discovery Rocks World of Mathematics

Discovery Rocks World of Mathematics

https://www.nytimes.com/1979/11/07/archives/

a-soviet-discovery-rocks-world-of-mathematics-russians-surprise.html?\_r=0

 Первый практически полезный полиномиальный алгоритм (Н. Кармаркар, 1984)

#### Резюме

- Постановки и преобразования задач линейного программирования
- История исследования и приложения
- Свойства допустимого множества
- Крайние точки, вершины и базисное допустимое решение
- Где искать решение?