Twitter in the Parliament - A Text-based Analysis of German Political Entities

Patrick Schulze, Simon Wiegrebe

Supervisors:

Prof. Dr. Christian Heumann, Prof. Dr. Paul W. Thurner

7. Juli 2020

Outline

- Introduction
- Topic Modeling: Motivation and Theory
- Data: Collection and Preprocessing
- Model Selection and Global Characteristics
- Metadata Analysis
- Causal Inference
- Discussion

Introduction

- Rise in popularity of social media is producing huge amounts of data, especially text.
- Politics is a field of particular interest in the context of social media and big data (Brexit, 2016 presidential election in the US, Facebook data scandal).
- Simultaneously, advances in Natural Language Processing (NLP) are providing tools of analysis for such data.
- One instance of such analysis is the discovery and exploration of latent thematic clusters within text - topic analysis.
- In this project, we apply the Structural Topic Model (STM) to a self-created dataset containing Twitter posts by members of the German Bundestag (and a variety of metadata)

Topic Modeling: Motivation and Theory

Notation and Terminology

- A word is an instance of a vocabulary of V unique terms.
- A document $d \in \{1, ..., D\}$ is a sequence of words of length N_d . The n-th word of document d is denoted by $w_{d,n}$.
- A corpus is a collection (or set) of D documents. Therefore, $d \in \{1, ..., D\}$ means that our corpus contains D documents.
- A topic $k \in \{1, ..., K\}$ is a latent thematic cluster within a text corpus. That is, we imply a corpus can be represented by K topics.
- A topic-word distribution β is a probability distribution over words. We denote the word distribution corresponding to the k-th topic by β_k .
- A topic assignment $\mathbf{z}_{d,n}$ assign $w_{d,n}$ to a specific topic $k \in \{1, \ldots, K\}$. We represent the word distribution for $w_{d,n}$ as $\boldsymbol{\beta}_{d,n}$.
- Topic proportions θ_d are the proportions of the document d's terms assigned to each of the topics. $\sum_{k=1}^K \theta_{d,k} = 1$, for all $d \in \{1, \ldots, D\}$.

Topic Modeling: Motivation and Theory

Latent Dirichlet Allocation (LDA)

- LDA by blei2003latent is the first probabilistic topic model.
- ullet Its generative process for each document $d \in \{1,\dots,D\}$ is:
 - ① Draw topic proportions $\theta_d \sim \mathsf{Dir}_K(\alpha)$.
 - ② For each word $n \in \{1, \ldots, N_d\}$:
 - ① Draw a topic assignment $z_{d,n} \sim \mathsf{Multinomial}_K(\theta_d)$.
 - Draw a word $w_{d,n} \sim \mathsf{Multinomial}_V(\boldsymbol{\beta}_{d,n})$.
- Graphical model representation (roberts2016model, p. 990):

Topic Modeling: Motivation and Theory

Latent Dirichlet Allocation (LDA)

 The topic assignment of a document's words can be illustrated as follows:

Data

Data Collection

 MP-level data was scraped from www.bundestag.de/abgeordnete using Python's BeautifulSoup and a selenium web driver

 Socioeconomic data and 2017 German federal election results were extracted from www.bundeswahlleiter.de.

Data

Data Collection

- Tweets (and further Twitter features) were downloaded via the official Twitter API using Python's tweepy library.
- Monthly tweets (after dropping MPs without electoral district) for our period of analysis, September 24, 2017 through April 24, 2020:

Henceforth, we grouped each MP's tweets on a monthly basis.

Data Preprocessing

- For preprocessing, we used the quanteda package in R.
- We immediately transcribed German umlauts (\(\bar{a}\), \(\bar{o}\), \(\bar{u}\)) and ligature (\(\bar{B}\)) and removed hyphens due to the presence of compound words in the German language (\(Corona-Krise\) vs \(Coronakrise\)).
- Next, we transformed the text data into a document-feature matrix (DFM), converted all characters to lowercase, and removed stopwords, units, interjections, etc.
- Finally, we performed word stemming, which cuts off word endings to remove discrepancies arising purely from declensions or conjugations (e.g., $politisch \rightarrow polit$).

Results

- Hyperparameter search yields 15 distinct topics
- Topic labeling conducted manually (human judgment)
- Descriptive discussion of relationship between metadata and topics
- Causal inference: estimation of cause-effect relationships between document-sepcific features (e.g. political party) and topics

${\sf Bibliography}$