Матричные разложения и их применения в анализе данных

Руслан Хайдуров, Анастасия Иовлева

16 октября 2017

Содержание

- 🕕 Постановка задачи
- 2 Сингулярное разложение
- Овойства сингулярного разложения
- Ф Вероятностный взгляд на SVD
- **5** SVD в рекомендательных системах
- 6 Разложение Холецкого

Постановка задачи

Пусть есть некая матрица $M \in \mathbb{R}^{m \times n}$.

$$M\approx U\times V^T$$

Постановка задачи

$$||A-UV^T|| \to \min_{U,V}$$

Если $M \in \mathbb{R}^{m \times n}$

$$||M|| = \sum_{i=1}^{m} \sum_{j=1}^{n} m_{ij}^{2}$$

— норма Фробениуса.

Зачем нужны матричные разложения

• В машинном обучении данные представляются в матричном виде. (матрица объекты-признаки, картинка, матрица частот слов и т.д.)

	T1	T2	T3	T4	T5	T6	T7	T8
Doc1	2	0	4	3	0	1	0	2
Doc2	0	2	4	0	2	3	0	0
Doc3	4	0	1	3	0	1	0	1
Doc4	0	1	0	2	0	0	1	0
Doc5	0	0	2	0	0	4	0	0
Doc6	1	1	0	2	0	1	1	3
Doc7	2	1	3	4	0	2	0	2

Зачем нужны матричные разложения

Популярные направления использования

- Понижение размерности данных и визуализация
- Рекомендательные системы
- Поиск структур в данных

Сингулярное разложение матрицы (SVD)

Произвольная матрица $M \in \mathbb{R}^{m \times n}$ может быть представлена в виде произведение трёх матриц

$$\mathbf{M} = \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathrm{T}}$$

где матрицы U, V^T квадратные ортогональные, а $\Sigma \in \mathbb{R}^{m \times n}$ — диагональная с числами $\sigma_1 \geqslant \sigma_2 \geqslant \ldots \geqslant \sigma_{\min(m,n)} \geqslant 0$. Эти числа называются сингулярными числами матрицы.

Сингулярное разложение матрицы (SVD)

Усечённым сингулярным разложением называется представление произвольной матрицы M в виде

$$M = U\Sigma V^{T}$$

Где матрицы U и V $^{\rm T}$ — прямоугольные ортогональные, а Σ — квадратная с сингулярными значениями на диагонали.

Построение разложения

- Ищутся левые и правые сингулярные векторы. Это собственныее векторы матриц ММ^Т и М^ТМ соответственно.
- В базис из сингулярных векторов можно перейти при помощи ортогональных преобразований U и V.
- В базисе из сингулярных векторов матрица имеет искомый вид.

Из построения видно, что сингулярное разложение сложно вычислять.

Геометрическая интерпретация

Выбрать такие базисы в \mathbb{R}^m и в \mathbb{R}^n , что пребразование М будет просто растяжением вдоль осей.

$$M = U \cdot \Sigma \cdot V^*$$

Свойства сингулярного разложения

Даёт наилучшее низкоранговое приближение матрицы

Свойства сингулярного разложения

Сингулярное разложение может быть использовано для сжатия данных.

Свойства сингулярного разложения


```
U, S, VT = svd(img)
k = 10
Us = U[:, :k]
Vs = VT[:k, :]
Ss = np.diag(S)[:k, :k]
yup = (Us.dot(Ss)).dot(Vs)
plt.imshow(yup, cmap='gray')
```

Вероятностный взгляд на SVD

- Будем рассматривать точки выборки как многомерные случайные величины.
- Наибольшее значение дисперсии проекции случайного вектора достигается при проекции на собственный вектор матрицы XX^T с наибольшим собственным значением.

Метод главных компонент (РСА)

- Найти сингулярное разложение матрицы.
- Выбрать направления сингулярных векторов, соответствующие наибольшим сингулярным числам (главные компоненты)
- Прибавить к векторам среднее значение по выборке и спроецировать на аффинное подпространство, натянутое на главные компоненты.

SVD в рекомендательных системах

Name	Jazz	Rock	Dubstep	Rap
Steve	1	3	2	1
Sam	4 2		3	4
Max	0	5	1	1
Helene	5	1	2	0
Michael	0	1	5	0

$$M pprox U_k \hat{V_k}^T,$$
 где $\hat{V_k}^T = \Sigma_k V_k^T.$

Можно интерпретировать это разложение как две новые матрицы признаков — одна содержит характеристики жанра, другая — предпочтения слушателя.

Разложение Холецкого

Пусть есть матрица А, квадратная и положительно определённая. Тогда найдётся такое её разложение

$$A = LL^T$$

Что L — нижнетреугольная матрица со строго положительными элементами на диагонали.

Построение разложения

Итеративно для каждого элемента матрицы L.

$$L_{ii} = \sqrt{A_{ii} - \sum_{k=1}^{i-1} L_{ik}^2},$$
(1)

$$L_{ij} = \frac{1}{L_{jj}} \left(A_{ij} - \sum_{k=1}^{j-1} L_{ik} L_{jk} \right).$$
 (2)

Применение

- Для быстрого решения систем линейных уравнений и обращения матриц;
- Для генерации многомерных случайных величин.