

Can we predict playing time for women soccer players?

Data, Tools, Algorithms

Tools

- Python
- BeautifulSoup,requests
- Pandas
- R
- Nump\
- Seaborn
- Matplotlik
- Statsmodels
- sklearr

Features considered:

- Age
- Games
- Game starts
- minutes

- Goals
- Assists
- Penalty shots made
- Penalty shots attempted

- Yellow cards
- Red cards
- Various features/90 minutes

- Data webscraped from FBref.com
- Scope of Data:
 - US National Women Soccer League
 - Years 2013-2019
- Data Cleaning
 - Excluded goal keepers
 - Missing data replaced with 0 /none
 - Reformat some data: age, minutes to convert to int
 - No outlier data needed to be removed

Preliminary Analysis

- Correlation analysis showed correlation with minutes/minutes90 and several features
- Plotting showed linear relationships

Feature Engineering

Analysis of correlation between independent variables (VIF) resulted in the following features with a target being minutes per game (minutes 90)

- Age
- Games
- Goals
- Assists

- Penalty shots made
- Yellow cards received
- Goals and Penalties per game
- Goals, Assists and Penalties per game

Results

- OLS Model Accuracy (R-squared): 0.857
- RidgeCV Model Accuracy: 0.955
- LassoCV Model Accuracy: 0.955
- ElasticNet Model Accuracy: 0.955

Future Study

Test model on Olympic Player data and compare results with NWSL model