DEFINING OBJECTS - 3D REPRESENTATIONS

3D surface representation - continued Height maps Parametric surfaces

Heightmaps from bitmaps

- Bitmap image data
 - Rectangular grid X × Y of values
 - Value in the bitmap corresponds to height (Z) in the heightmap
 - Image rendered using normally the Painter algorithm (see later lectures)

230 212 215 203 124 72 58 43 40	230 223 218 201 146 83 68 50 39	230 222 220 210 169 100 69 56 42 49	229 219 222 225 187 108 63 63 50 47	225 226 220 215 196 114 70 63 44 46
				46 41

Heightmaps using random number generation

- Bitmap contents created using random number generation
 - Rectangular grid X * Y of values
 - Value in the bitmap corresponds to height (Z) in the heightmap
 - Image rendered using normally the Painter algorithm (see later lectures)

grid=zeros(Nx,Ny); for xi=1:Nx for yi=1:Ny grid(xi,yi)=gmin+(gmax-gmin)*rand(); % Uniform distribution grid(xi,yi)=0.5+sqrt(0.1)*randn(); % Normal distribution end end

Por the data points defined by vertices x and y, Delaunay triangulation returns a set of triangles such that no data points are contained in any triangle's circumscribed circle.

28 20 20 20 20 20 20 30 36 40

For overview of Delunay triangulation see http://www.cs.berkeley.edu/~jrs/meshpapers/BernEppstein.pdf

Curved surfaces (and lines)

- The generation of 3D curved lines and surfaces
 - An input set of mathematical functions
 - A set of user-specified data points (splines, discussed later)
- Curve and surface equations
 - Nonparametric
 - Parametric
- **Quadric Surfaces**
 - Sphere
 - Ellipsoid
 - Torus

Parametric equations

$$P(u) = \begin{cases} x(u) \\ y(u) \\ z(u) \end{cases}$$

- · u is the parameter
- x(u), y(u) and z(u) are functions of the parameter uwhich generate x, y and z coordinates of the curve or surface P.

Curve equations - circle

Canonical form

$$\left(\frac{x}{r}\right)^2 + \left(\frac{y}{r}\right)^2 = 1$$

Generative form

$$y = \pm \sqrt{r^2 - x^2}$$

Parameter Parameter $x = r \cos \theta$

Parametric form

 $-\pi \le \theta \le \pi$ $y = r \sin \theta$

Generating a circle in Matlab

Nphi=30; Dphi=pi/Nphi; R=2; phi=(-pi : Dphi : pi); for i=1:length(phi) X(i)=R*cos(phi(i)); Y(i)=R*sin(phi(i)); end

plot(X, Y);

Examples of parametric equations: curves

Circle
$$x = r \cos \theta \\ y = r \sin \theta$$

$$-\pi \le \theta \le \pi$$

Ellipse
$$x = r_x \cos \theta \\ y = r_y \sin \theta$$

$$-\pi \le \theta \le \pi$$

Quadric Surfaces: canonical form

Sphere $\left(\frac{x}{r}\right)^2 + \left(\frac{y}{r}\right)^2 + \left(\frac{z}{r}\right)^2 = 1$ Ellipsoid $\left(\frac{x}{r_x}\right)^2 + \left(\frac{y}{r_y}\right)^2 + \left(\frac{z}{r_z}\right)^2 = 1$

Spherical coordinates $x = r\cos\phi\cos\theta$ $y = r\cos\phi\sin\theta$ $z = r\sin\phi$ $-\pi/2 \le \phi \le \pi/2$ $-\pi \le \theta \le \pi$

Quadric Surfaces

Ellipsoid
$$\begin{aligned} x &= r_x \cos \phi \cos \theta \\ y &= r_y \cos \phi \sin \theta \\ z &= r_z \sin \phi \end{aligned} - \pi/2 \le \phi \le \pi/2 \\ -\pi \le \theta \le \pi$$

Quadric Surfaces $x = r_x(r + \cos\phi)\cos\theta \qquad -\pi \le \phi \le \pi$ Torus $y = r_y(r + \cos\phi)\sin\theta \qquad -\pi \le \theta \le \pi$ $z = r_z\sin\phi$

Superquadrics

• A generalization of the quadric representations

- Incorporate additional parameters into the quadric equations
- The number of additional parameters used is equal to the dimension of the object.

Ellipse
$$\begin{aligned} x &= r_x \cos \theta \\ y &= r_y \sin \theta \end{aligned} - \pi \leq \theta \leq \pi$$

Superellipse
$$x = r_x \cos^s \theta$$

$$y = r_y \sin^s \theta - \pi \le \theta \le \pi$$

Superquadrics

Superellipsoid

$$x = r_x \cos^{s1} \phi \cos^{s2} \theta$$

$$y = r_y \cos^{s1} \phi \sin^{s2} \theta$$

$$z = r_z \sin^{s1} \phi$$

$$-\pi/2 \le \phi \le \pi/2$$

$$-\pi \le \theta \le \pi$$

Homework

- Explore the range of superellipses by further modifying parameter s
- Explore the range of superellipsoids by modifying parameters s1 and s2
- Relevant Matlab code is at ex3_surffaces.zip

Next lecture

Surface rendering - overview