MULTIPLE CHOICE QUESTIONS

TAYLOR AND MACLAURIN SERIES

1. The expansion of $f(a + h) = \cdots$

(I)
$$f(a) + \frac{h}{1!}f'(a) + \frac{h^2}{2!}f''(a) + \cdots$$
 (II) $f(a) + \frac{h}{1!}f'(a) + \frac{h^2}{2!}f''(a) + \cdots + \frac{h^n}{n!}f^n(a)$

- (III) $f(a) + f'(a) + f''(a) + \cdots$ (IV) None of these
- 2. The approximate value of $\sqrt{26}$ is
 - a)5 b)6.001 c) 5.09 d) none of these
- 3. If $f(x) = x^3 2x + 5$ then value of f(2.001) is
 - a) 9.01 b)9.11 c)8.99 d) none of these
- 4. If in Taylor's series we put a=0 and h=x, we get
- (I)Exponential Series (II)Logarithmic Series
- (III) Maclaurin's Series (IV) None of these
- 5. By applying Taylor's theorem in the powers of $(x-\pi/2)$ in $f(x) = e^{\cos x}$, 2nd term in $e^{\cos x}$ is
- a) 1
- b) $(x-\pi/2)$
- c) $(x-\pi/2)$
- d) $(x+\pi/2)$
- 6. The necessary condition for the Maclaurin expansion to be true for function f(x) is _____
- a) f(x) should be continuous
- b) f(x) should be differentiable

c) f(x) should exists at every point

d) f(x) should be continuous and differentiable

7. Second term in Maclaurin's formula for the function sin⁻¹x is:

a) X

b) $x^2/2$

c) $x^{3}/6$

 $d)3/40(x^5)$

8. In Lagrange's remainder the value of θ :

a)) $0 < \theta < 1$ b) $-1 < \theta < 1$ c) $-1 < \theta < 0$ d) $\theta > 1$