

Aim: Plan The BEST Vacation!

Step 1: Collect votes from all of you to gather information about individual preferences

Step 2: Analyze votes and pick cities that maximize utilities

Quadratic Voting

- Set of alternatives
- Budget of some number of coins to spend
- Allocate coins to reveal preferences
- N coins spent on an alternative, buys you \sqrt{N} votes for that alternative
 - An additional vote is more expensive than the previous vote, for the same alternative.
- Incorporates true intensity of preferences

Quadratic Voting Example

Voting for or against construction of a bridge

- Total value to you = \$1000
- Every vote sways the decision in your favor by 1%
 - Value from an additional vote = 1% of \$1000 = \$10

	Total Cost	Marginal Cost	Additional Benefit
Buy 1 Vote	\$1	\$1	\$10
Buy 2 Votes	\$4	\$(4-1)=\$3	\$10
Buy 3 Votes	\$9	\$(9-4)=\$5	\$10
Buy 4 Votes	\$16	\$(16-9)=\$7	\$10
Buy 5 Votes	\$25	\$(25-16)=\$9	\$10
Buy 6 Votes	\$36	\$(36-25)=\$11	\$10

Quadratic Voting

- 6 alternatives
- 100 coins to spend

Quadratic Voting

	Alt1	Alt2	Alt3	Alt4	
Vote 1:					
# of coins spent	25	25	49	1	
Corresponding votes	5	5	7	1	
Vote 2:					
# of coins spent	9	16	36	39	
Corresponding votes	3	4	6	6.245	

Optimal Outcome: Pick Alt2 and Alt3, giving a total utility of 22 Further Questions: Collusion? Efficiency? Fairness?

- Idea
- Maximization
 - get_city{ i in voters, j in cities }
 - Does this voter get at least j cities?
 - If we pick top k cities
 - sum{ i in voters, j in 1..k } 1/j*get_city[i,j]

Constraint

- The cities this voter gets are at most the ones visited and also he approves of.
- If a voter gets 2 cities, then he must get at least 1 city.
- The number of city visited is at most k cities

Does the voter "like" the city?

	London	Paris	Zurich	Venice
Voter1	1	0	1	1
Voter2	0	1	0	0
Voter3	1	1	0	1

- If we pick 3 cities...
- The optimal choice would be
 - London
 - Paris
 - Venice

- Let's make the problem more interesting!!
- If there is a time budget and a matrix of distance constraints
 - Visit as many cities as possible under the constraint

- Time Budget: 6
- Distance Constraint

	London	Paris	Zurich	Venice
London	_	1	3	4
Paris	1	-	2	3
Zurich	3	2	_	1
Venice	4	3	1	-

- The optimal choice would be
 - London
 - Paris
 - Zurich
- The optimal tour is
 - We depart from RDU
 - Starting the tour and leaving Europe at London
 - London -> Zurich -> Paris -> London

We will send out a survey to collect your votes by the end of the week, PLEASE fill it out as soon as you can.

Your participation is integral to our success! We really appreciate your help:)