Guidelines for Using State-of-the-Art Methods to Estimate Propensity Score and Inverse Probability of Treatment Weights When Drawing Causal Inferences

Session 4. Alternative Propensity Score Estimation Methods

Beth Ann Griffin Dan McCaffrey

Propensity Score Estimation

- We have discussed two methods for propensity score estimation
 - GBM
 - Logistic regression
- Many other methods exist
 - Super learning (Polley and van der Laan)
 - High Dimensional Propensity Scores (hd-PS, Schneeweiss and Rassan)
 - Covariate Balancing Propensity Scores (CBPS, Imai and Ratkovic)
 - Entropy Balancing, exponential tilting, minimum discriminant information adjustment (Hainmueller, Graham et al., Haberman)

Achieving Balance in the Parameter Estimation Criteria

- □ For GBM and logistic regression we use balance to guide model selection
 - Art of logistic regression is picking and choosing terms to get good balance and improving balance guides choice – similar to using AIC or BIC in other contexts
 - For GBM we use balance to pick the number of iterations which controls the variables included and functional form of the models
 replaces cross-validation
- Parameter estimation criteria does not involve balance
 - For logistic regression, we find the MLE for the parameters of the model at each step of modeling process
 - For GBM, the algorithm select the tree models that maximize the likelihood for each iteration
- What if it did?

 Copyright © 2019 by Educational Testing Service. (3)

Achieving Balance in the Parameter Estimation Criteria

For logistic regression

$$p(X,\beta) = Pr(Z = 1|X) = 1/(1 + \exp(-\beta'X))$$

- lacksquare $\ell(X;eta)$ is the log likelihood and find the value of eta to maximize $\ell(X;eta)$ or find eta that solves $\psi(X;eta)=0$
- Suppose we added the criteria that β should also satisfy $\sum_{i=1}^n \frac{1}{p(X,\beta)} X_i Z_i = \sum_{i=1}^n \frac{1}{1-p(X,\beta)} X_i (1-Z_i) \text{ when estimating the coefficients}$
- $lue{}$ We are no longer just using balance to pick the Xs (including interactions and polynomial terms)
- □ Using balance to determine the values of β coefficient values will differ from traditional logistic regression fit

Covariate Balancing Propensity Scores

- Covariate Balancing Propensity Scores (CBPS) follows this logic
- \blacksquare For logistic regression, maximizing the likelihood solves the estimating equation $\psi(X;\beta)=0$
- CBPS includes balance in the parameter estimation criteria when estimating the parameters of the logistic regession model
 - **Extends** estimating equation from $\psi(X;\beta)=0$ to

$$\left(\begin{array}{c} \psi(X;\beta) \\ \sum_{i=1}^{n} \frac{1}{p(X,\beta)} X_i Z_i - \sum_{i=1}^{n} \frac{1}{1-p(X,\beta)} X_i (1-Z_i) \end{array}\right) = 0$$

 Developed by Imai and Ratkovic (2014) who also developed the R package CBPS to implement the method

SuperLearner Ensemble (using Weightlt)

- ☐ Greifer developed the Weightlt package to implement SuperLearner, among other methods, with ease.
- The "super" method in Weightlt estimates propensity scores using the SuperLearner algorithm (Polley et al.) for stacking predictions and then converting those propensity scores into weights
- The selected ensemble estimates propensity scores as the predicted probability of being in each treatment given covariates
- We use all possible methods for the ensemble, including gbm, glm, glmnet, randomForest, xgboost among others

Selecting Weights to Get Exact Balance

- For a given reasonable target, τ_1 or τ_0 , there are weights such that $\sum_{i=1}^n w_i X_i Z_i = \tau_1$ and $\sum_{i=1}^n w_i X_i (1-Z_i) = \tau_0$
- □ For example, in ATT, we would let $\tau_0 = \bar{X}_1$, the vector of treatment group means, and find weights that give exact balance
 - Such weights will exists as long as groups are not too distinct
 - Multiple sets of such weights exist!

Entropy Balancing or MDIA Weights

- For entropy balance or minimum discriminant information adjustment (MDIA), select weights to
 - 1. Minimize $\sum_{(i|Z=0)} w_i log(w_i)$
 - 2. Subject to

$$\sum_{(i|Z=0)} w_i = 1$$
$$\sum_{(i|Z=0)} w_i X_i = \tau_0$$

igsquare $\sum_{(i|Z=0)} w_i log(w_i)$ is the Kullback discriminant information or Kullback-Leibler distance comparing weights to equal weighting

Form for Entropy Balance Weights

- Entropy balancing weights are of the form $\exp(\alpha + \gamma' X)$
- $lue{}$ Same form as ATT weights (p(X)/[1-p(X)]) with logistic regression propensity scores using X
 - But the coefficients will differ

Alternative Criteria for Exact Balance Weights

- Can replace the Kullback-Leibler distance with other distance measure
- ☐ Zubizarreta (2015) minimized variance of the weights
- □ Survey sampling calls these Generalized Regression weighting and consider several alternative distances (see Deville and Särndal, 1992 for examples)
- ☐ Entropy balancing has nice property that weights are positive

Minimal Approximately Balancing Weights

- $\square \mid \sum_{(i|Z=0)} w_i X_{ki} \tau_0 \mid < \delta_k \text{ for } k = 1, \dots, K$
- lacksquare Select δ_k to control variance of the weights and MSE of the treatment effect estimator

Selecting X

- $lue{}$ Entropy balancing weights give exact balance to linear function of covariates used in balancing eta'X
- lacksquare If $E[Y_0 \mid X]$ is not linear in X then there can be remaining bias
- $lue{}$ We can balance functions of the covariates to create "X" for balancing
 - For example, include covariates and their squares and cross-products

Exact Balance Versus Propensity Scores

- ☐ If we can obtain exact balance why bother with propensity scores?
 - **Exact balance only on selected** *X***s and only for the means**
 - Not clear how well other functions of covariates will balance
 - With good propensity score model all functions of covariates will balance (at least in expectation) if strong ignoribility holds
 - We have model building schemes so propensity score models will tend to be good (for large samples)
 - We don't have modeling building schemes for picking the covariates and functions of the covariates to balance exactly
 - Exact balance may come at the price of greater variability in the weights (smaller effective sample sizes) – that may not be useful if we pick the wrong covariates or functions of covariates to exactly balance

Using Exact Balance

- Pick functions of the covariates and obtain exact balance
- Obtain propensity scores and the apply exact balance to selected covariates on top of propensity score weighting
- ebal package in R and ebalance package in Stata will conduct entropy balancing

Example: CBPS with the AOD Data

- Compare the Usual care and MET/CBT-5 conditions from AOD data
- Test the relative effects of two treatment among youth like those that receive usual care
- □ Treatment on the treated with Usual Care as "the treated" and MET/CBT-5 as the "control"
- □ For this demonstration we use casewise deletion to remove records with incomplete covariate data
- Conduct the analysis in R

Prepare the Data

```
library(CBPS)
aod <- read.csv("AOD.csv")</pre>
atmeat <- subset(aod,</pre>
                    subset=(trtvar %in% c("ATM", "EAT")))
nrow(atmeat)
atmeat <- na.omit(atmeat)</pre>
nrow(atmeat)
atmeat$race4g <- as.factor(atmeat$race4g)</pre>
```

Compare to Logistic Regression: Fit the Model

- □ CBPS is a modification of standard logistic regression model for propensity scores, so we will compare the results of logistic regression to CBPS
- Use the covariates discussed earlier

Compare to Logistic Regression: Use dx.wts to Check Balance

Run CBPS: Fit the Model and Get Weights

atmeat\$ps2 <- pcbps\$weights</pre>

Run CBPS: Use dx.wts to Check Balance

Run GBM: Fit the Model and Get Weights

Run SuperLearner: Fit the Model and Get Weights

```
SL.library = listWrappers(what="SL")
SL.library = SL.library[startsWith(SL.library, "SL.")]
SL.library = SL.library[!(SL.library %in%
      c("SL.bartMachine", "SL.svm", "SL.template"))]
pSL <- weightit(atm ~ age + female + race4g + sfs + sps +
                  sds + ias + ces + eps + imds + bcs +
                  prmhtx, data = atmeat, method = "super",
                estimand = "ATT", SL.library = SL.library)
atmeat$psSL = pSL$weights
```

Run SuperLearner: Use dx.wts to Check Balance

Compare Weights

Compare the summary tables to check overall balance and effective sample sizes

b1\$summary b2\$summary summary (pgbm) bSL\$summary

Compare Weights

 Compare the summary tables to check overall balance and effective sample sizes

```
rbind(b1$summary[2,],b2$summary[2,],summary(pgbm)[2,-8],bSL$summary[2,])
  type
            n.treat n.ctrl ess.treat ess.ctrl
                                                 max.es
                                                          mean.es
1
                442
                      2408
                                 442 84.3727 0.6248657 0.1277555
                     2408 442 254.6165 0.0096218 0.0052786
                442
3 es.max.ATT
                442
                     2408
                                 442 498.6925 0.2944589 0.0892948
                442
                      2408
                                 442 442.5542 0.3514092 0.0971101
     max.ks
            mean.ks iter
1 0.2120477 0.0782432
                        NA
2 0.2579716 0.0545864
                        NA
3 0.1491926 0.0535904 710
4 0.1714221 0.0602218
                        NA
```

- Substance use frequency and illegal activities remain imbalanced with logistic weights
- □ The environment scale remains imbalanced with GBM (only ES > 0.20)

Compare ATT Estimates

```
d1 <- svydesign(id=~1, weights=~ps1, data=atmeat)</pre>
d2 <- svydesign(id=~1, weights=~ps2, data=atmeat)</pre>
d3 <- svydesign(id=~1, weights=~ps3, data=atmeat)</pre>
dSL <- svydesign(id=~1, weights=~psSL, data=atmeat)</pre>
f1 <- svyglm(sfs8p12 ~ atm, design=d1)</pre>
f2 <- svyglm(sfs8p12 ~ atm, design=d2)</pre>
f3 <- svyglm(sfs8p12 ~ atm, design=d3)</pre>
f4 <- svyglm(sfs8p12 ~ atm, design=dSL)</pre>
res <- list(logit=summary(f1)$coef,
             cbps=summary(f2)$coef,
             gbm=summary(f3)$coef,
             SL=summary(f4)$coef)
```

Compare ATT Estimates

```
> print(res)
$logit
             Estimate Std. Error t value
                                               Pr(>|t|)
(Intercept) 0.10139089 0.01884309 5.3807991 8.017795e-08
atm
           0.01297383 0.01999528 0.6488445 5.164912e-01
$cbps
             Estimate Std. Error t value
                                               Pr(>|t|)
(Intercept) 0.08779229 0.009401344 9.338270 1.912081e-20
           0.02657243 0.011538391 2.302958 2.135292e-02
atm
$gbm
             Estimate Std. Error t value
                                                Pr(>|t|)
(Intercept) 0.09421772 0.006259164 15.052766 2.487814e-49
atm
           0.02014700 0.009161131 2.199183 2.794505e-02
$SL
             Estimate Std. Error t value
                                                Pr(>|t|)
(Intercept) 0.10011597 0.006874258 14.563894 2.129116e-46
           0.01424875 0.009591903 1.485498 1.375227e-01
atm
```

Get Exact Balance Using Entropy Balancing or MDIA Weights

- The package ebal and the function ebalance find the entropy balancing or MDIA weights
- ebalance requires a data matrix of covariates including transforming class variables, I use model.matrix to generate this matrix

drop the intercept

tmp < -tmp[,-1]

Get Exact Balance Using Entropy Balancing or MDIA Weights: Run Fit and Get Weights

```
pbal <- ebalance(Treatment=atmeat$atm, X=tmp)</pre>
```

```
atmeat$ps4 <- 1
atmeat$ps4[atmeat$atm==0] <- pbal$w</pre>
```

Generates weights only for the control cases

Compare Weights

Compare the summary tables to check overall balance and effective sample sizes

```
rbind(b1$summary[2,],b2$summary[2,],
     summary(pgbm)[2,-8], bSL$summary[2,], b4$summary[2])
  type n.treat n.ctrl ess.treat
                               ess.ctrl
                                            max.es
                                                      mean.es
          442
2
                2408
                          442
                                84.3727 0.6248657
                                                     0.1277555
                     442 254.6165 0.0096218
2
          442
                2408
                                                    0.00527861
es.max.ATT 442 2408
                         442 498.6925 0.2944589 0.0892948
          442 2408
                         442 442.5542 0.3514092
                                                    0.09711015
              2408
          442
                          442 257.4996 2.21122e-05 4.91149e-06
           max.ks
                     mean.ks
                               iter
2
           0.2120477 0.0782432
                                 NA
           0.2579716 0.05458636
                                 NA
es.max.ATT
           0.1491926 0.05359044
                                710
           0.1714221 0.06022182
                                 NA
2
           0.2613977 0.05403091
                                 NA
```

ebalance yields ES of effectly zero but the KS is not zero, only balances the means

Compare ATT Estimates

```
logit
             Estimate Std. Error t value
                                               Pr(>|t|)
(Intercept) 0.10139089 0.01884309 5.3807991 8.017795e-08
atm
            0.01297383 0.01999528 0.6488445 5.164912e-01
cbps
             Estimate Std. Error t value
                                               Pr(>|t|)
(Intercept) 0.08779229 0.009401344 9.338270 1.912081e-20
           0.02657243 0.011538391 2.302958 2.135292e-02
atm
gbm
             Estimate Std. Error t value
                                                Pr(>|t|)
(Intercept) 0.09421772 0.006259164 15.052766 2.487814e-49
atm
            0.02014700 \ 0.009161131 \ 2.199183 \ 2.794505e-02
SL
             Estimate Std. Error t value
                                                Pr(>|t|)
(Intercept) 0.10011597 0.006874258 14.563894 2.129116e-46
           0.01424875 0.009591903 1.485498 1.375227e-01
atm
ebal
             Estimate Std. Error t value
                                               Pr(>|t|)
(Intercept) 0.08734734 0.009234442 9.458866 6.291983e-21
           0.02701738 0.011402811 2.369361 1.788516e-02
atm
```

Compare Coefficients

	logit	CBPS	entropy
(Intercept)	-3.24975893	-2.13708597	-2.189729100
age	0.03101638	-0.03416526	-0.029536458
female	-0.17825380	-0.30058025	-0.322173568
race4g2	0.33919320	0.32815272	0.348741470
race4g3	-1.14100021	-1.05909266	-1.061779956
race4g4	-0.93096936	-0.96710013	-0.985629576
sfs	-0.05263512	-0.26199278	-0.258247705
sps	0.03433795	0.07466073	0.070599036
sds	0.04362259	-0.01342978	-0.008163907
ias	6.23940874	4.98807125	4.920726580
ces	2.71148703	2.77443999	2.801470226
eps	3.49192440	3.37508938	3.261896874
imds	-0.09699256	-0.08302634	-0.080216288
bcs	-0.02381459	-0.02660521	-0.023874070
prmhtx	-0.02625957	-0.16914946	-0.199614380

Copyright © 2019 by Educational Testing Service. (32)

Combining GBM and Entropy

- GBM gets good balance but not exact mean balance
- We could combine GBM with entropy to get exact balance on the means of all or select variables while still fitting a more flexible propensity score model

Combining GBM and Entropy (2)

- ebalance with ias as the only covariate because GBM did not balance the mean for this variable
- Improved mean balance: max.es fell from 0.29 for GBM alone to 0.16 with GBM and entropy
- Reduced ESS from 498 to 248
- Improved balance comes at the cost of more variable weights and possibly less precision in ATT estimate

Combining GBM and Entropy (3)

- ebalance using all covariates
- Improved mean balance: max.es fell from 0.29 for GBM alone to zero with GBM and entropy
- Reduced ESS from 498 to 158
- Further improvement really reduces the ESS

Combining GBM and Entropy – R Code

SAS Code for Running CBPS

```
%CBPS(treatvar=atm,
          vars=age female race4g sfs sps sds
               ias ces eps imds bcs prmhtx,
          class=race4q,
          dataset=atmeat,
          estimand=ATT,
          method=over,
          output_dataset=cbpswts,
          permtestiters=0,
          Rcmd=C:\Program Files\R\R-3.0.2\bin\x64\r.EXE,
          objpath=c:\Users\dmccaffrey\twang);
```

■ Returns dataset with the weights and prints summary and balance table information