Lyra Leaf SPAD Calibration

W Objectif

Ce projet propose une méthode opérationnelle, reproductible et à faible coût pour estimer la teneur en chlorophylle des feuilles (valeurs de type SPAD) à partir d'images scannées. Il repose sur :

- Un scanner à plat
- ImageJ (Fiji)
- Des mesures SPAD manuelles (SPAD-502 Minolta)
- Une charte RVB, utilisée pour valider la densité optique verte
- Une modélisation statistique (régression polynomiale)

Le but est de démocratiser le diagnostic physiologique végétal à l'aide d'outils libres, reproductibles et sans dépendance propriétaire.

Méthodologie (chronologie complète)

1. Inspection visuelle de la charte de calibration

- Une charte RVB type Kodak imprimée en 2009 a été retrouvée.
- L'échelle de vert vertical (valeurs imprimées 0 à 100) est intacte et contrastée.
- L'inspection à la lumière naturelle n'a révélé aucune altération visible.
- Un scan haute résolution à 600 dpi en PNG a été utilisé pour l'analyse numérique.

2. Vérification de la stabilité colorimétrique dans le temps

- Les 10 patchs de la mire (valeurs imprimées 10 à 100) ont été extraits.
- Les intensités du canal vert ont été mesurées avec Python.
- Une décroissance linéaire nette a été observée.
- Les deux derniers patchs (90 et 100), pourtant visuellement très proches, montrent un écart de 5 points en G → détectable par le scanner.

3. Comparaison historique avec les mesures densitométriques de 2009

- En 2009, la densité jaune des patchs avait été mesurée au densitomètre.
- Ces valeurs ont été comparées aux mesures du canal vert du scanner.
- Une fois normalisées, les deux courbes coïncident (R² ≈ 0.99).
- Le scanner se révèle donc un bon substitut au densitomètre.

4. Validation manuelle ImageJ + Excel

- L'image a été convertie en niveaux de gris 8 bits.
- Chaque patch a été sélectionné à la main (freehand selection) et mesuré.
- Les données ont été exportées vers Excel.
- Une régression polynomiale d'ordre 2 a été calculée.
- Le modèle est fortement linéaire et confirme la détectabilité sur l'ensemble du gradient.

Expérimentation sur feuilles réelles (citronnier)

Échantillonnage

- 5 feuilles issues d'un même citronnier en pot (stades divers : sain, mâture, chlorosé).
- Chaque feuille a été scannée avec indication manuelle de la valeur SPAD.
- 3 à 6 mesures SPAD par feuille, moyennées.

Mesures

- Analyse ImageJ avec calibration préalable (Image > Calibrate...).
- ROI tracés manuellement autour des zones mesurées.

Données obtenues

DO vert (ImageJ) SPAD (moyenne)

227.9	18.1
322.5	27.0
384.0	32.0
323.3	30.0
481.4	56.0

Modélisation

- Régression polynomiale (ordre 2): R² = 0.9705
- La courbe capte bien la dynamique réelle : lente montée, croissance rapide, puis saturation

Résultat visuel

Voir l'image Modele_SPAD_DO_verte.jpg dans le répertoire result.

Ce graphique représente le modèle ajusté à partir des 5 feuilles mesurées. On observe une relation physiologique classique : progression lente aux faibles DO, accélération autour de 300–400, puis plateau. Cette courbe servira à générer des données synthétiques pour l'entraînement Lyra_Leaf.

Intégration dans l'écosystème Lyra

- Ce protocole est compatible avec Lyra_Leaf et les pipelines IA de science participative.
- Il permet la génération de jeux de données .jsonl pour entraînement de modèles GPT.
- Il fonctionne sans capteur propriétaire, ni cloud, ni matériel spécialisé.

Arborescence du dépôt
/calibration/
— calibration mire ImageJ Jérôme
— calibration ImageJ
— comparaison densitomètre scanner
— corrélation gris vert ImageJ
— mire densité gris
├— mire Kodack 100 dpi
— gradation RVB sur la mire
/data/
├— citronnier couleur
├— citronnier greyscale
/result/
├— SPAD DO Vert
├— Modèle_SPAD_DO_verte
/docs_fr/
— Validation scanner et mire_Fr
└── README_Er

Points clés

- Une charte RVB de 2009 reste utilisable en 2025 si bien conservée
- Les scanners à plat offrent une sensibilité suffisante pour capter des variations invisibles à l'œil nu
- L'analyse ImageJ manuelle rejoint l'analyse Python automatisée
- Un diagnostic foliaire de type SPAD est possible sans aucun matériel propriétaire

Ce dépôt illustre la validité d'une **démarche scientifique participative rigoureuse**, reproductible, et ouverte, en préparation de l'agentisation IA à venir.

© Jérôme-X1, 2025