

Instituto Superior Politécnico de Tecnologias e Ciências

LISTA DE EXERCÍCIOS PARA TRABALHOS EM CASA

CAP. II VETORES NO PLANO E NO ESPAÇO

1 - Determinar geometricamente os vetores resultantes, sabendo que cada quadrado mede 1cm de lado:

a)
$$\vec{a} + \vec{e}$$
 b) $\vec{b} - \vec{c}$ c) $\vec{a} + \vec{d}$ d) $\vec{b} + \vec{d}$ e) $\vec{b} + \vec{c} + \vec{e}$ f) $\vec{d} - \vec{e} + \vec{a}$ g) $\frac{1}{2}\vec{d} + \frac{1}{4}\vec{e}$ h) $\vec{b} + \vec{c} + \vec{e}$ i) $2 \text{versor}(\vec{c}) - \vec{d}$

2 - Determine as somas que se pedem:

$$a)\overrightarrow{AD} + \overrightarrow{CD} + \overrightarrow{DH} + \overrightarrow{GC} + \overrightarrow{HB} + \overrightarrow{AG}$$

$$b)\overrightarrow{ED} + \overrightarrow{DB} + \overrightarrow{BF}$$

$$c)\overrightarrow{BF} + \overrightarrow{BG} + \overrightarrow{BC}$$

$$d)\overrightarrow{HE} + \overrightarrow{EF} + \overrightarrow{FG} + \overrightarrow{BG} + \overrightarrow{BH}$$

$$e)\overrightarrow{AE} + \overrightarrow{EF} + \overrightarrow{FG} + \overrightarrow{GC}$$

- 3 Determinar o vetor \vec{v} sabendo que $(3;7;1) + 2\vec{v} = (6;10;4) \vec{v}$
- 4 Encontrar os número α e β , tais que $\vec{w} = \alpha \vec{u} + \beta \vec{v}$ $\vec{u} = (1; -2; 1)$ e $\vec{v} = (2; 0; -4)$, $\vec{w} = (-4; -4; 14)$.
- 5 Obtenha, algebricamente e graficamente os vetores, soma e diferença:
- a) $\vec{u} = (1; 0) e \vec{v} = (0; 1)$
- b) $\vec{u} = (0; 0) \in \vec{v} = (\frac{1}{2}; -2)$
- c) $\vec{u} = 3\vec{i} \vec{j}$ e $\vec{v} = 2\vec{i} + 2\vec{j}$
- d) $\vec{u} = 4\vec{i} 2\vec{j}$ e $\vec{v} = -32\vec{i} + 3\vec{j}$

Produto escalar

- 6 Dadas as coordenadas, x=4, y=-12, de um vetor \vec{v} do \Re^3 , calcular sua terceira coordenada z, de maneira que $|\vec{v}|=13$.
- 7 Sabendo que \vec{u} e \vec{v} são perpendiculares tais que $|\vec{u}| = 3$ e $|\vec{v}| = 9$, calcular $|\vec{u} + \vec{v}|$ e $|\vec{u} \vec{v}|$.
- 8 Os vetores $\vec{u} = a\vec{i} + \vec{k}$ e $\vec{v} = 2\vec{i} \vec{j} + 2\vec{k}$ formam um ângulo de 60°. Achar os valores de a.
- 9 Determine \vec{u} com módulo igual a 5, simultaneamente ortogonal a $\vec{v}=(2;3;-1)$ e a $\vec{w}=(1;1;2)$.
- 10 Achar um vetor \vec{x} de módulo igual a 4 e de mesmo sentido que o vetor $\vec{v} = 6\vec{\imath} + 2\vec{\jmath} 3\vec{k}$.
- 11 Determine um vetor da mesma direção de $\vec{v}=2\vec{\imath}-\vec{\jmath}+2\vec{k}$ e que:
 - a) tenha norma (módulo) igual a 9;
 - b) seja o versor de \vec{v} ;
 - c) tenha módulo igual a metade de \vec{v} .
- 12 Determine um vetor unitário ortogonal aos vetores:
 - a) $\vec{a} = (2,6,-1) \in \vec{b} = (0,-2,1)$.
 - b) $\vec{u} = (1; 0; 2) e \vec{v} = (2; 1; 0).$
- 13 Dados $\vec{u} = (2; -3; -6)$ e $\vec{v} = 3\vec{i} 4\vec{j} 4\vec{k}$, determine:
 - a) a norma do vetor projeção de $ec{v}$ sobre $ec{u}$
 - b) 0 vetor projeção de \vec{u} sobre \vec{v} .
- 14 Sendo que $|\vec{u}|=2$ e $|\vec{v}|=3$ e 90° o ângulo entre \vec{u} e \vec{v} calcular:

- a) $\vec{u} \cdot \vec{v}$ b) $|\vec{u} + \vec{v}|$ c) $|\vec{u} \vec{v}|$
- 15 Qual o valor de α para que os vetores $\vec{a} = \alpha \vec{i} + 2\vec{j} \vec{k}$ e $\vec{b} = 2\vec{i} + (1 \alpha)\vec{j} + 3\vec{k}$ sejam ortogonais?
- 16 Determinar x tal que o vetor \vec{u} sejam ortogonal a \vec{v} .
 - a) $\vec{u} = (x; 0; 3), \vec{v} = (1; x; 3)$
 - b) $\vec{u} = (x; x; 4), \vec{v} = (4; x; 1)$
 - c) $\vec{u} = (x; -1; 4), \vec{v} = (x; -3; 1)$
- 17 Quais são os valores de α para que o vetor $\vec{u}=(\alpha;6;0)$ tenha norma igual a 7.
- 18 Determinar os valores de **m** e **n** para que sejam paralelos os vetores $\vec{u} = (m+1;3;1)$ e $\vec{v} = (4;2;2n-1)$.
- 19 Determinar o ângulo entre os vetores
- a) $\vec{u} = (1; -1; -1) e \vec{v} = (-1; -1; 2)$
- b) $\vec{u} = (1; 2; -1) e \vec{v} = (-1; 1; 0)$
- 20 Considere os pontos A(3,0,0), B(0,0,1), C(0,4,1) e M(2,2,3).
- a) Qual a área do triângulo ABC ?
- b) Apresente um vetor perpendicular ao plano ABC, de módulo 5
- c) Qual o ângulo entre os vetores MA e MB?
- 21 Determinar o vetor \vec{v} , sabendo que ele é ortogonal ao vetor $\vec{a}=(2;-3;1)$ e ao vetor $\vec{b}=(1;-2;3)$ e que satisfaz a seguinte condição $\vec{v}\cdot(\vec{l}+2\vec{j}-7\vec{k})=10$
- 22 Dado o triângulo de vértice A(0;1;-1), B(-2;0;1), e C(1;-2;0), determine a medida da altura relativa ao lado BC

Produto vetorial e produto misto

- 23 Se $\vec{a} = \vec{i} \vec{j} + 2\vec{k}$; $\vec{b} = 2\vec{i} \vec{j} \vec{k}$; $\vec{c} = -\vec{i} + \vec{k}$, determinar:
 - a) $|\vec{c} \times \vec{a}|$ b) $(\vec{a} \times \vec{b}) \cdot \vec{b}$ c) $(\vec{c} \times \vec{b}) \times (\vec{b} \times \vec{a})$ d) $(\vec{a} \times \vec{b}) \times \vec{c}$
- 24 Determinar o vetor \vec{x} , paralelo ao vetor ao vetor $\vec{w}=(2,-3,0)$ e tal que $\vec{x}\times\vec{u}=\vec{v}$, onde $\vec{u}=(1,-1,0)$ e $\vec{v}=(0,0,2)$.
- 25 Resolver o sistema:

$$\begin{cases} \vec{x} \cdot (3\vec{i} + 2\vec{j}) = 6 \\ \vec{x} \times (2\vec{j} + 3\vec{k}) = 2\vec{i} \end{cases}$$

- 26 Os vetores $\vec{u}=(2;-1;-3)$, $\vec{v}=(-1;1;-4)$ e $\vec{w}=(m+1;m;-1)$, determinam um paralelepípedo de volume 42. Calcular o valor de m.
- 27 Calcular o valor de † para que o volume do paralelepípedo determinado pelos vetores $\overrightarrow{v_1} = 2\vec{i} \vec{j}$, $\overrightarrow{v_2} = 6\vec{i} + t\vec{j} 2\vec{k}$ e $\overrightarrow{v_3} = 4\vec{i} + \vec{k}$, seja igual a 7.
- 28 Calcular a área do paralelogramo definido pelos vetores $\vec{u}=(-2,-1,2)$ e $\vec{v}=(3,-1,2)$.
- 29 A medida do ângulo em radianos, entre \vec{v} e \vec{w} é $\frac{\pi}{6}$. Sabendo $|\vec{v}| = 3$ e $|\vec{w}| = 7$, determinar: a) $|\vec{v} \times \vec{v}|$ b) $\left|\frac{1}{3}\vec{v} \times \frac{3}{4}\vec{v}\right|$
- 30 Determinar o vetor \vec{u} tal que $\vec{u} \times (\vec{i} + \vec{k}) = -2\vec{i} + 2\vec{k}$ e $|\vec{u}| = \sqrt{6}$.
- 31 Dados os vetores $\vec{v}_1=(0,1,-1)$, $\vec{v}_2=(2,0,0)$ e $\vec{v}_3=(0,2,-3)$. Determine um vetor \vec{v} , tal que $\vec{v}\parallel\vec{v}_3$ e $\vec{v}\times\vec{v}_1=\vec{v}_2$.
- 32 Determinar o valor de x de modo que o volume do paralelepípedo gerado pelos vetores $\vec{\bf u}=2\,\vec{\bf i}-\vec{\bf j}+\vec{\bf k}$ e $\vec{\bf v}=\vec{\bf i}-\vec{\bf j}$ e $\vec{\bf w}={\bf x}\,\vec{\bf i}+\vec{\bf j}-3\,\vec{\bf k}$, seja unitário
- 33 Mostre que os pontos A(4;0;1), B(5;1;3), C(3;2;5) e D(2;1;3) são vértices de um paralelogramo. Calcule a sua área.