Math 525

Yiwei Fu

Oct 08

1 Continuous RV

$$Prob(a \le X \le b) = \int_a^b f_X(x) dx$$

- $f_X \ge 0$
- $f_{-\infty}^{\infty} f_X(x) dx = 1$
- sum formulas

 $F_X(x)$ cumulative distribution.

$$F_X(x) = \int_{-\infty}^x f_X(t)dt.$$

Example 1.1. Uniform[a, b]

$$\chi_{unif[a,b]}(x) = \begin{cases} 0, & x \notin [a,b] \\ 1, & x \in [a,b] \end{cases}, \ f_{unif[a,b]} = \frac{1}{a-b} \int_{-\infty}^{x} \chi(t) dt$$

Example 1.2.

$$f_X(x) = \begin{cases} 0, \\ \lambda e^{-\lambda x}, & \lambda > 0 \end{cases}$$

Exponential RV, analogues to geometric distributions

$$\mathbb{E}(X) = \frac{1}{\lambda}.$$

Example 1.3. T-distribution

$$\Gamma(s) = \int_0^\infty x^s e^{-d} dx$$

Generalities on $f_X(x)$.

Independence of 2 RV's, \mathbf{X}, \mathbf{Y} . For continuous distributions, \mathbf{X}, \mathbf{Y} are independent iff

$$f_{\mathbf{X},\mathbf{Y}}(x,y) = f_{\mathbf{X}}(x)f_{\mathbf{Y}}(y).$$

 $f_{\mathbf{X}}(x)$ is the marginal:

$$f_{\mathbf{X}}(x) = \int_{-\infty}^{\infty} f_{\mathbf{X},\mathbf{Y}}(x,y) dy.$$

So

$$\begin{split} \mathbb{P}(a \leq \mathbf{X} \leq b, c \leq \mathbf{Y}d) &= \int_{a}^{b} \int_{c}^{d} f_{\mathbf{X}, \mathbf{Y}}(x, y) dy dx \\ &= \left(\int_{a}^{b} f_{\mathbf{X}, \mathbf{Y}}(x, y) dx \right) \left(\int_{c}^{d} f_{\mathbf{X}, \mathbf{Y}}(x, y) dy \right) \\ &= \mathbb{P}(a \leq \mathbf{X} \leq b) \mathbb{P}(c \leq \mathbf{Y}d). \end{split}$$

Converse: