Project Management: Achieving Competitive Advantage

Fifth Edition

Chapter 3

Project Selection and Portfolio Management

Learning Objectives

- **3.1** Explain six criteria for a useful project selection/screening model.
- **3.2** Understand how to employ a variety of screening and selection models to select projects.
- 3.3 Learn how to use financial concepts, such as the efficient frontier and risk/return models.
- **3.4** Identify the elements in the project portfolio selection process and discuss how they work in a logical sequence to maximize a portfolio.

PMBOK Core Concepts

Project Management Body of Knowledge (PMBoK) covered in this chapter includes:

Portfolio Management (PMBoK 1.4.2)

Project Selection

Screening models help managers pick winners from a pool of projects. Screening models are **numeric** or **nonnumeric** and should have:

- Realism
- Capability
- Flexibility
- Ease of use
- Cost effectiveness
- Comparability

Screening and Selection Issues (1 of 2)

- Risk—unpredictability to the firm
 - a. Technical
 - b. Financial
 - c. Safety
 - d. Quality
 - e. Legal exposure
- Commercial—market potential
 - a. Expected return on investment
 - b. Payback period
 - c. Potential market share
 - d. Long-term market dominance
 - e. Initial cash outlay
 - f. Ability to generate future business/new markets

Screening and Selection Issues (2 of 2)

Internal operating—changes in firm operations

- a. Need to develop/train employees
- b. Change in workforce size or composition
- c. Change in physical environment
- d. Change in manufacturing or service operations

4. Additional

- a. Patent protection
- b. Impact on company's image
- c. Strategic fit

All models only partially reflect reality and have both objective and subjective factors imbedded.

Approaches to Project Screening

- Checklist model
- Simplified scoring models
- Analytic hierarchy process
- Profile models

Checklist Model

A checklist is a list of criteria applied to possible projects.

- Requires agreement on criteria
- Assumes all criteria are equally important

Checklists are valuable for recording opinions and stimulating discussion.

Simplified Scoring Models

Each project receives a score that is the weighted sum of its grade on a list of criteria.

Scoring models require:

- agreement on criteria
- agreement on weights for criteria
- a score assigned for each criteria

$$Score = \sum (Weight \times Score)$$

Relative scores can be misleading!

Analytic Hierarchy Process

The AHP is a four step process:

- 1. Construct a hierarchy of criteria and subcriteria.
- 2. Allocate weights to criteria.
- 3. Assign **numerical values** to evaluation dimensions.
- 4. **Determine scores** by summing the products of numeric evaluations and weights.

Unlike the simple scoring model, these scores can be compared!

Figure 3.1 Sample AHP with Rankings for Salient Selection Criteria

Rank Information Systems Project Proposals Goal (1.000)Information Finance Strategy Technology (0.520)(0.340)(0.140)Market Share 7 Short-term Poor Retention Long-term Fair Cost Mgmt. Good Very Good Excellent

Figure 3.4 Profile Model

Financial Models

- Payback period
- Net present value
- Discounted payback period
- Internal rate of return

Payback Period

Determines **how long** it takes for a project to reach a breakeven point.

Payback Period =
$$\frac{Investment}{Annual Cash Savings}$$

Cash flows should be discounted.

Lower numbers are better (faster payback).

Payback Period Example (1 of 3)

Table 3.5 Initial Outlay and Projected Revenues for Two Project Options

	Project A Revenues	Project A Outlays	Project B Revenues	Project B Outlays
Year 0		\$500,000		\$500,000
Year 1	\$50,000		\$75,000	
Year 2	150,000		100,000	
Year 3	350,000		150,000	
Year 4	600,000		150,000	
Year 5	500,000		900,000	

Payback Period Example (2 of 3)

Table 3.6 Comparison of Payback for Projects A and B

Project A	Year	Cash Flow	Cum. Cash Flow	
	0	(\$500,000)	(\$ 500,000)	
	1	50,000	(450,000)	
	2	150,000	(300,000)	
	3	350,000	50,000	
	4	600,000	650,000	
	5	500,000	1,150,000	
Payback =	2.857 y	ears		
3	,000 0,000	=2.857		

Payback Period Example (3 of 3)

Table 3.6 [continued]

			Cum. Cash	1	
Project B	Year	Cash Flow	Flow		
	0	(\$500,000)	(\$ 500,000)		
	1	75,000	(425,000)		
	2	100,000	(325,000)		
	3	150,000	(175,000)		Divid
	4	150,000	(25,000)		cum
	5	900,000	875,000	$ \setminus $	by th
Payback =	4.028 y	ears			amo
					year
<u>~</u>			_		from
1 07/		1		l l	

Divide the cumulative amount by the cash flow amount in the third year and subtract from 3 to find out the moment the project breaks even.

Net Present Value

Projects the change in the firm's value if a project is undertaken.

$$NPV = I_o + \sum \frac{F_t}{(1 + r + p_t)^t}$$

Where

 F_t = net cash flow for period t

r = required rate of return

I = initial cash investment

 p_t = inflation rate during period t

Higher *NPV* values are better!

Net Present Value Example

Table 3.8 Discounted Cash Flows and NPV (I)

Year	Inflows	Outflows	Net Flow	Discount Factor	NPV
0		\$100,000	\$(100,000)	1.0000	\$(100,000)
1	\$20,000		20,000	0.8772	17,544
2	50,000		50,000	0.7695	38,475
3	50,000		50,000	0.6749	33,745
4	25,000		25,000	0.5921	14,803
Total					\$ 4,567

The NPV column total is positive, so invest!

Table 3.9 Discounted Payback Method

	Project Cash Flow*	
Year	Discounted	Undiscounted
1	\$8,900	\$10,000
2	7,900	10,000
3	7,000	10,000
4	6,200	10,000
5	5,500	10,000
Payback Period	4 Years	3 Years

Discount sum of cash flows by the company's required rate of return to get a more accurate payback period.

^{*}Cash flows rounded to the nearest \$100.

Internal Rate of Return

A project must meet a **minimum rate of return** before it is worthy of consideration.

$$IO = \sum_{n=1}^{t} \frac{ACF_t}{(1 + IRR)^t}$$

Higher *IRR* values are better!

where

 ACF_t = annual after tax cash flow for time period t

IO = initial cash outlay

n = project's expected life

IRR = the project's internal rate of return

Internal Rate of Return Example

This table has been calculated using a discount rate of 15%.

Year	Discount Factor Inflows	Discount Factor at 15%	Discount Factor NPV
1	\$2,500	.870	\$2,175
2	2,000	.756	1,512
3	2,000	.658	1,316
Present value of inflows			5,003
Cash investment			5,000
Difference			\$ 3

The project does meet our 15% requirement and **should be considered further**.

Project Portfolio Management

The systematic process of selecting, supporting, and managing the firm's collection of projects.

Portfolio management objectives and initiatives require:

- decision making
- prioritization
- review
- realignment
- reprioritization of a firm's projects

The Portfolio Selection Process

The portfolio selection process is an integrated framework of interrelated steps and activities.

- Preprocess Phase
 - Methodology of selection and strategy
- Process Phase
 - Prescreening, individual project analysis, screening, portfolio selection, and portfolio adjustment
- Postprocess Phase
 - Project development, project evaluation, and portfolio completion

Figure 3.8 Project Portfolio Selection Process

Developing a Proactive Portfolio

The project portfolio matrix classifies projects into four types according to commercial potential and technical feasibility:

- Bread and butter
- Pearls
- Oysters
- White elephant

Figure 3.9 Project Portfolio Matrix

Commercial Potential - Why do it? Maintain Gain strategic competitiveness advantage Net Present Value Given Success High Low Low Technical Feasibility - How easy is it? White Elephants Oysters Probability of Success Bread and Butter Pearls High

Keys to Successful Project Portfolio Management

- Flexible structure and freedom of communication
- Low-cost environmental scanning
- Time-paced transition

Problems in Implementing Portfolio Management

- Conservative technical communities
- Out-of-sync projects and portfolios
- Unpromising projects
- Scarce resources

Summary

- 1. Explain six criteria for a useful project selection/screening model.
- 2. Understand how to employ a variety of screening and selection models to select projects.
- 3. Learn how to use financial concepts, such as the efficient frontier and risk/return models.
- Identify the elements in the project portfolio selection process and discuss how they work in a logical sequence to maximize a portfolio.

Copyright

This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.

