

NTE4583B Integrated Circuit CMOS – Dual Schmitt Trigger

Description:

The NTE4583B is a dual Schmitt trigger constructed with complementary P-channel and N-channel MOS devices on a monolithic silicon substrate. Each Schmitt trigger is functionally independent except for a common 3-state input and an internally-connected Exclusive OR output for use in line receiver applications. Trigger levels are adjustable through the positive, negative, and common terminals with the use of external resistors. Applications include the speed-up of a slow waveform edge in interface receivers, level detectors, etc.

Features:

- Diode Protection on All Inputs
- Supply Voltage Range: 3V to 18V
- Single Supply Operation
- Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load Over the Rated Temperature Range
- Resistor Adjustable Trigger Levels

Absolute Maximum Ratings: (Voltages Referenced to V _{SS} , Note 1)	
DC Supply Voltage, V _{DD}	0.5 to +18.0V
Input or Output Voltage (DC or Transient), V _{in} , V _{out}	-0.5 to $V_{DD} + 0.5V$
Input or Output Current, per Pin (DC or Transient), I _{in} , I _{out}	$\dots \dots \pm 10 mA$
Power Dissipation, per Package, P _D	
Operating Temperature Range, Topr	-40° to $+85^{\circ}$ C
Storage Temperature Range, T _{stg}	\dots -65° to +150°C
Lead Temperature (During Soldering, 8sec), T _L	+260°C

- Note 1. Maximum Ratings are those values beyond which damage to the device may occur.
- Note 2. This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

<u>Electrical Characteristics:</u> (Voltages Referenced to V_{SS}, Note 3)

			-40°C		+25°C			+85°C		
Parameter	Symbol	V_{DD}	Min	Max	Min	Тур	Max	Min	Max	Unit
Output "0" Level Voltage V _{in} = V _{DD} or 0	V _{OL}	5	ı	0.05	-	0	0.05	_	0.05	٧
		10	_	0.05	_	0	0.05	-	0.05	V
		15	_	0.05	_	0	0.05	_	0.05	V
Output "1" Level Voltage V _{in} = 0 or V _{DD}	V _{OH}	5	4.95	-	4.95	5	-	4.95	-	٧
		10	9.95	-	9.95	10	_	9.95	-	V
		15	14.95	-	14.95	15	_	14.95	-	V
Input "0" Level Voltage, A and B V _O = 4.5V or 0.5V	V _{IL}	5	1	1.5	_	2.25	1.5	_	1.5	V
V _O = 9.0V or 1.0V		10	1	3.0	_	4.50	3.0	_	3.0	V
V _O = 13.5V or 1.5V]	15	_	4.0	_	6.75	4.0	_	4.0	V
Input "1" Level Voltage, A and B V _O = 0.5V or 4.5V	V _{IH}	5	3.5	_	3.5	2.75	_	3.5	_	V
V _O = 1.0V or 9.0V		10	7.0	-	7.0	5.50	-	7.0	-	V
V _O = 1.5V or 13.5V	1	15	11.0	-	11.0	8.25	_	11.0	-	V
Output Drive Source Current V _{OH} = 2.5V	Іон	5	-1.0	_	-0.8	-1.7	_	-0.6	_	mA
V _{OH} = 4.6V		5	-0.2	-	-0.16	-0.36	_	-0.12	-	mA
V _{OH} = 9.5V		10	-0.5	-	-0.4	-0.9	_	-0.3	-	mA
V _{OH} = 13.5V		15	-1.4	-	-1.2	-3.5	_	-1.0	-	mA
Output Drive Sink Current V _{OL} = 0.4V	l _{OL}	5	0.52	_	0.44	0.88	-	0.36	_	mA
V _{OL} = 0.5V	1	10	1.3	-	1.1	2.25	-	0.9	-	mA
V _{OL} = 1.5V	1	15	3.6	-	3.0	8.8	_	2.4	-	mA
Input Current	l _{in}	15	-	±0.3	_	±0.00001	±0.3	-	±1.0	μΑ
Input Capacitance, V _{in} = 0	C _{in}	_	_	-	-	5.0	7.5	-	-	рF
Quiescent Current, Per Package	I _{DD}	5	_	1.0	_	0.0005	1.0	_	7.5	μΑ
		10	_	2.0	_	0.0010	2.0	_	15.0	μΑ
		15	_	4.0	-	0.0015	4.0	-	30.0	μΑ
Total Supply Current	Ι _Τ	5	$I_{T} = (1.33\mu\text{A/kHz}) \text{ f} + I_{DD}$							μΑ
Dynamic plus Quiescent, Per Package C ₁ = 50pF on all outputs, all buffers		10	$I_T = (2.65\mu A/kHz) f + I_{DD}$							μΑ
switching (Note 4)		15	$I_T = (3.98\mu\text{A/kHz}) \text{ f} + I_{DD}$						μΑ	
Three-State Leakage Current	I _{TL}	15	_	±1.0	-	±0.0001	±1.0	_	±7.5	μΑ

- Note 3. Data labeled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
- Note 4. The formulas given are for the typical characteristics only at +25°C. To calculate total supply current at loads other than 50pF:

$$I_T(C_L) = I_T(50pF) + (C_L -50) Vfk$$

where: I_T is in μA , C_L in pF, $V=(V_{DD}-V_{SS})$ in volts, f in kHz is input frequency, and k=0.005.

Switching Characteristics: ($C_L = 50 pF$, $T_A = +25 °C$, Note 3, Note 5)

Parameter	Symbol	V _{DD}	Min	Тур	Max	Unit
Output Rise Time t _{TLH} = (3.0ns/pF) C _L + 30ns	t _{TLH}	5	_	180	360	ns
t _{TLH} = (1.5ns/pF) C _L +15ns		10	_	90	180	ns
t _{TLH} = (1.1ns/pF) C _L + 10ns		15	_	65	130	ns
Output Fall Time t _{THL} = (1.5ns/pF) C _L + 25ns	t _{THL}	5	_	100	200	ns
t _{THL} = (0.75ns/Pf) C _L + 12.5ns		10	_	50	100	ns
$t_{THL} = (0.55 \text{ns/pF}) C_L + 9.5 \text{ns}$		15	_	40	80	ns
Propagation Delay Time, A _{in} , B _{in} to A _{out} , B _{out} t _{PLH} , t _{PHL} = (1.7ns/pF) C _L + 565ns	t _{PLH} , t _{PHL}	5	-	650	1300	ns
t_{PLH} , t_{PHL} = (0.66ns/pF) C_L + 197ns		10	_	230	460	ns
t_{PLH} , $t_{PHL} = (0.5 \text{ns/pF}) C_L + 125 \text{ns}$		15	-	150	300	ns
Propagation Delay Time, A_{in} , B_{in} to A_{out} , B_{out} t_{PLH} , t_{PHL} = (1.7ns/pF) C_L + 1015ns	t _{PLH} , t _{PHL}	5	_	1100	2200	ns
t_{PLH} , t_{PHL} = (0.66ns/pF) C_L + 347ns		10	_	380	760	ns
t_{PLH} , t_{PHL} = (0.5ns/pF) C_L + 235ns		15	_	260	520	ns
Propagation Delay Time, A _{in} , B _{in} to Exclusive OR t _{PLH} , t _{PHL} = (1.7ns/pF) C _L + 665ns	t _{PLH} , t _{PHL}	5	-	750	1500	ns
$t_{PLH}, t_{PHL} = (0.66ns/pF) C_L + 257ns$		10	_	280	560	ns
t_{PLH} , t_{PHL} = (0.5ns/pF) C_L + 145ns		15	_	170	340	ns
3–State Enable, Disable Delay Time t _{on} , t _{off} = (1.7ns/pF) C _L + 140ns	t _{on} , t _{off}	5	-	225	450	ns
$t_{on}, t_{off} = (0.66 \text{ns/pF}) C_{L} + 57 \text{ns}$		10	_	90	180	ns
$t_{on}, t_{off} = (0.5 \text{ns/pF}) C_{L} + 30 \text{ns}$		15	_	55	110	ns
Positive Threshold Voltage	V _{T+}	5	_	3.30	_	V
R1, R2 = 5.0 k Ω		10	_	5.70	_	V
		15	-	8.20	-	V
Negative Threshold Voltage	V _{T-}	5	_	1.70	_	V
R1, R2 = 5.0 k Ω		10	-	4.30	-	V
		15	_	6.80	-	V
Hysteresis Voltage R1, R2 = 5.0 k Ω	V _H	5	0.85	1.70	3.40	V
111,112=0.0022		10	0.70	1.40	2.80	V
		15	0.70	1.40	2.80	V
Threshold Voltage Variation, A to B R1, R2 = $5.0k\Omega$	ΔV_{T}	5	_	1.10	_	V
111, 112 = 3.0622		10	_	0.15	_	V
		15	_	0.20	_	V

Note 3. Data labeled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

Note 5. The formulas given are for the typical characteristics only at $+25^{\circ}$ C.

Truth Table

	Inputs		Outputs				
Α	В	Dis	A _{out}	A _{out}	B _{out}	Bout	Exclusive OR
0	0	0	0	Z	0	Z	0
0	0	1	0	1	0	1	0
0	1	0	0	Z	1	Z	1
0	1	1	0	1	1	0	1
1	0	0	1	Z	0	Z	1
1	0	1	1	0	0	1	1
1	1	0	1	Z	1	Z	0
1	1	1	1	0	1	0	0

Z = High impedance at output

