Implementasi Convolutional Neural Network (CNN) untuk Deteksi Kanker Payudara

Abstrak	Pendahuluan	Metode	Hasil	Kesimpulan
Menjelaskan latar	Pentingnya	NN, dataset citra	CNN mencapai	CNN efektif
belakang kanker	deteksi dini	payudara,	akurasi 92%.	untuk deteksi
payudara, tujuan	kanker payudara,	preprocessing,	Visualisasi	kanker payudara.
(implementasi	gap: keterbatasan	training-testing,	learning curve	Perlu dataset
CNN), dataset	metode	evaluasi akurasi.	ditampilkan.	lebih besar untuk
citra, hasil	konvensional,			generalisasi.
akurasi CNN	solusi: CNN.			
92%. Cukup jelas				
namun agak				
panjang.				

Sitasi:

Syahroni, dkk. (2023). *Implementasi Convolutional Neural Network (CNN) untuk Deteksi Kanker Payudara*. **JOINTECS (Journal of Information Technology and Computer Science)**, Vol. 8, No. 3, hlm. 95–104.

Latar & Tujuan:

Kanker payudara masih jadi penyebab kematian utama perempuan. Deteksi konvensional terbatas akurasi → tujuan penelitian adalah mengimplementasikan CNN untuk meningkatkan akurasi klasifikasi kanker payudara.

Metode:

CNN digunakan pada dataset citra payudara, dengan preprocessing, training, testing, dan evaluasi menggunakan metrik akurasi.

Hasil/Temuan kunci:

Model CNN mencapai akurasi 92%. Learning curve divisualisasikan.

Kontribusi & Keterbatasan:

- Kontribusi: Membuktikan CNN lebih akurat untuk klasifikasi citra medis kanker.
- Keterbatasan: Dataset masih terbatas sehingga generalisasi rendah.

Takeaway:

CNN adalah metode potensial untuk deteksi kanker payudara, tapi butuh dataset lebih besar agar lebih andal dalam praktek medis.

Analisis Perbandingan Algoritma Optimasi Particle Swarm Optimization dan Genetic Algorithm pada Artificial Neural Network

abstrak	pendahuluan	metode	Hasil	kesimpulan
Menjelaskan tujuan membandingkan PSO vs GA dalam ANN. Dataset dijelaskan, hasil: PSO lebih unggul. Ringkas tapi informatif.	latar belakang machine learning, gap: belum ada analisis optimasi ANN dengan PSO vs GA pada kasus spesifik.	ANN dikombinasi optimasi (PSO & GA), dataset, preprocessing, evaluasi.	ANN dengan PSO akurasi lebih tinggi dibanding GA.	PSO terbukti lebih efektif daripada GA untuk optimasi ANN

Sitasi

Syahroni, S., dkk. (2023). Analisis perbandingan algoritma optimasi *Particle Swarm Optimization* dan *Genetic Algorithm* pada *Artificial Neural Network*. *JOINTECS: Journal of Information Technology* and *Computer Science*, 8(3), 105–114.

Latar & Tujuan:

ANN banyak dipakai, tapi performanya sangat bergantung pada optimasi bobot. Tujuan: membandingkan efektivitas PSO vs GA dalam optimasi ANN.

Metode:

Menggunakan dataset numerik, preprocessing, kemudian ANN dilatih dengan optimasi PSO dan GA. Evaluasi melalui akurasi.

Hasil/Temuan kunci:

ANN+PSO menghasilkan akurasi lebih tinggi dibanding ANN+GA.

Kontribusi & Keterbatasan:

- Kontribusi: Menunjukkan keunggulan PSO dibanding GA untuk optimasi ANN.
- Keterbatasan: Pengujian terbatas pada dataset tertentu, belum diuji di berbagai domain.

Takeaway:

PSO lebih efektif dari GA untuk optimasi ANN, sehingga dapat direkomendasikan untuk penelitian serupa.

Gesture Recognition Bahasa Isyarat Indonesia (BISINDO) Menggunakan MediaPipe dan Random Forest

abstrak	pendahuluan	metode	hasil	kesimpulan
Fokus pada MediaPipe + Random Forest untuk BISINDO, dataset 25.000, akurasi 99,88%. Informatif.	Pentingnya BISINDO untuk komunikasi tunarungu, gap: kurangnya penelitian dengan dataset besar.	MediaPipe landmark extraction, preprocessing, modeling (RF, SVM, dll), evaluasi.	RF unggul akurasi 99,88%. Tantangan pada gestur mirip.	Sistem membantu inklusivitas komunikasi tunarungu, peluang pengembangan dataset & real- time.

Sitasi (APA):

Syahroni, S., dkk. (2023). *Gesture recognition* Bahasa Isyarat Indonesia (BISINDO) menggunakan *MediaPipe* dan *Random Forest. JOINTECS: Journal of Information Technology and Computer Science*, 8(3), 115–124.

Latar & Tujuan:

Komunitas tunarungu di Indonesia menggunakan BISINDO, tapi pengenalan otomatis masih jarang diteliti. Tujuan: membangun sistem pengenalan BISINDO dengan MediaPipe & Random Forest.

Metode:

Dataset 25.000 citra gestur. Tahapan: landmark extraction (MediaPipe), preprocessing, modeling (RF, SVM, dll), evaluasi.

Hasil/Temuan kunci:

Random Forest unggul dengan akurasi 99,88%. Tantangan: gestur mirip sering tertukar.

Kontribusi & Keterbatasan:

- Kontribusi: Sistem akurat untuk pengenalan BISINDO berbasis machine learning.
- Keterbatasan: Belum diuji dalam kondisi real-time, dataset masih terbatas pada kosakata tertentu.

Takeaway:

RF + MediaPipe sangat efektif untuk BISINDO, namun perlu diperluas agar bisa diaplikasikan secara praktis.

Klasifikasi Penyakit Pada Daun dan Buah Jambu Menggunakan Convolutional Neural Network

abstrak	pendahuluan	metode	hasil	kesimpulan
CNN MobileNetV2 untuk daun & buah jambu, metrik evaluasi jelas, implementasi mobile app.	Konteks hortikultura Jawa Barat, pentingnya jambu, gap: penelitian deep learning untuk penyakit jambu masih terbatas.	CRISP-DM (6 tahap), CNN MobileNetV2, augmentasi, dropout, regularisasi, implementasi Android.	Model daun: akurasi 100%, model buah: validasi 91,6%, aplikasi Android berhasil.	CNN+MobileNetV2 efektif, aplikasi mobile membantu petani, masih ada potensi overfitting.

Sitasi (APA):

Anam, F. S., Muttaqin, M. R., & Ramadhan, Y. R. (2023). Klasifikasi penyakit pada daun dan buah jambu menggunakan *Convolutional Neural Network. JOINTECS: Journal of Information Technology and Computer Science*, 8(3), 115–126.

Latar & Tujuan:

Produksi jambu di Jawa Barat menurun akibat penyakit daun & buah. Identifikasi manual sulit → tujuan: membuat model CNN (MobileNetV2) untuk klasifikasi penyakit jambu & implementasi mobile app.

Metode:

Metode CRISP-DM. CNN MobileNetV2, augmentasi data, dropout, regularisasi. Model diimplementasi ke aplikasi Android.

Hasil/Temuan kunci:

Model daun \rightarrow akurasi 100%, model buah \rightarrow akurasi validasi 91,6%. Aplikasi Android berhasil dikembangkan.

Kontribusi & Keterbatasan:

- Kontribusi: Aplikasi mobile untuk membantu petani mengidentifikasi penyakit jambu.
- Keterbatasan: Model buah masih menunjukkan overfitting; dataset terbatas.

Takeaway:

CNN MobileNetV2 terbukti efektif untuk klasifikasi penyakit tanaman, dan aplikasinya relevan untuk mendukung petani.

Evaluasi Model Klasifikasi Algoritma Terbimbing Kuantitatif terhadap Penyakit Diabetes

abstrak	pendahuluan	metode	hasil	kesimpulan
Masalah diabetes,	Data global &	Dataset 2.000	Dengan	Pemilihan
tujuan	nasional diabetes,	pasien,	SMOTE+K-Fold	algoritma
bandingkan SVM	gap:	preprocessing	→ SVM unggul.	tergantung
vs LR, dengan/	keterlambatan	(cleaning,	Tanpa SMOTE	kondisi data;
tanpa SMOTE.	diagnosis →	normalisasi,	\rightarrow LR lebih baik.	SMOTE
Hasil	butuh model	seleksi fitur),		berpengaruh
perbandingan	prediksi akurat.	SMOTE,		besar pada
disajikan singkat.		klasifikasi SVM		kinerja model.
		& LR.		

Sitasi (APA):

Wibowo, A., & Rahmawati, S. (2023). Evaluasi model klasifikasi algoritma terbimbing kuantitatif terhadap penyakit diabetes. *JOINTECS: Journal of Information Technology and Computer Science*, 8(3), 127–134.

Latar & Tujuan:

Kasus diabetes meningkat di Indonesia, diagnosis dini masih lambat. Tujuan: mengevaluasi SVM dan Logistic Regression (LR) dengan data imbalance.

Metode:

Dataset 2.000 pasien (8 variabel + 1 target). Preprocessing: cleaning, normalisasi, seleksi fitur. Teknik oversampling SMOTE. Klasifikasi dengan SVM dan LR, evaluasi K-Fold CV.

Hasil/Temuan kunci

Dengan SMOTE + K-Fold → SVM unggul (akurasi, presisi, recall). Tanpa SMOTE → LR lebih baik.

Kontribusi & Keterbatasan:

- Kontribusi: Memberi insight perbedaan performa algoritma dengan/ tanpa balancing data.
- Keterbatasan: Dataset terbatas (Kaggle), belum diuji di kondisi klinis nyata.

Takeaway:

Pemilihan algoritma bergantung pada kondisi data; balancing data (SMOTE) sangat memengaruhi hasil klasifikasi.