

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Digital control	Group	9A
Degree	Electrical engineering	Due for	01/09/2016
Exam / Homework	Homework 1: Continuous-time control theory	Registration #	9132341
Professor's name	Suresh Kumar Gadi	Marks Obtained	/10
Student's name	EDGAR CERDA PEREZ		

Instructions

- 1. The student should submit the homework on or before the due date. (LATE SUBMISSION = 0 MARKS)
- 2. Answers should be hand written on the A4 or Letter size bond papers. (20% of the marks obtained will be reduced)
- 3. The student should print his/her corresponding question-paper and staple it along with his/her answer sheets. (20% of the marks obtained will be reduced)
- 4. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. Find the Laplace transformation for the following function. (2 points)

$$f(t) = (t^7 + 4)e^{5t} - e^{-7t}\cos(t) - t\cos(8t)$$

- 3. Find analytically the impulse and step response for the above system. (2 points)
- 4. Plot the above responses. (2 points)
- 5. Find the stability for the above system with the help of the Routh-Hurwitz stability criterion. (2 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Digital control	Group	9A
Degree	Electrical engineering	Due for	01/09/2016
Exam / Homework	Homework 1: Continuous-time control theory	Registration #	8053323
Professor's name	Suresh Kumar Gadi	Marks Obtained	/10
Student's name	JUAN PABLO DUARTE MONSIVAIS		

Instructions

- 1. The student should submit the homework on or before the due date. (LATE SUBMISSION = 0 MARKS)
- 2. Answers should be hand written on the A4 or Letter size bond papers. (20% of the marks obtained will be reduced)
- 3. The student should print his/her corresponding question-paper and staple it along with his/her answer sheets. (20% of the marks obtained will be reduced)
- 4. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. Find the Laplace transformation for the following function. (2 points)

$$f(t) = (t^2 + 8)e^{3t} - e^{-6t}\cos(t) - t\cos(5t)$$

- 3. Find analytically the impulse and step response for the above system. (2 points)
- 4. Plot the above responses. (2 points)
- 5. Find the stability for the above system with the help of the Routh-Hurwitz stability criterion. (2 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Digital control	Group	9A
Degree	Electrical engineering	Due for	01/09/2016
Exam / Homework	Homework 1: Continuous-time control theory	Registration #	12127844
Professor's name	Suresh Kumar Gadi	Marks Obtained	/10
Student's name	JUAN MIGUEL BARRIENTOS GARCIA		

Instructions

- 1. The student should submit the homework on or before the due date. (LATE SUBMISSION = 0 MARKS)
- 2. Answers should be hand written on the A4 or Letter size bond papers. (20% of the marks obtained will be reduced)
- 3. The student should print his/her corresponding question-paper and staple it along with his/her answer sheets. (20% of the marks obtained will be reduced)
- 4. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. Find the Laplace transformation for the following function. (2 points)

$$f(t) = (t^5 + 2)e^{7t} - e^{-8t}\cos(t) - t\cos(5t)$$

- 3. Find analytically the impulse and step response for the above system. (2 points)
- 4. Plot the above responses. (2 points)
- 5. Find the stability for the above system with the help of the Routh-Hurwitz stability criterion. (2 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Digital control	Group	9A
Degree	Electrical engineering	Due for	01/09/2016
Exam / Homework	Homework 1: Continuous-time control theory	Registration #	12132791
Professor's name	Suresh Kumar Gadi	Marks Obtained	/10
Student's name	ISRAEL GONZALEZ		

Instructions

- 1. The student should submit the homework on or before the due date. (LATE SUBMISSION = 0 MARKS)
- 2. Answers should be hand written on the A4 or Letter size bond papers. (20% of the marks obtained will be reduced)
- 3. The student should print his/her corresponding question-paper and staple it along with his/her answer sheets. (20% of the marks obtained will be reduced)
- 4. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. Find the Laplace transformation for the following function. (2 points)

$$f(t) = (t^3 + 3)e^{7t} - e^{-6t}\cos(t) - t\cos(5t)$$

- 3. Find analytically the impulse and step response for the above system. (2 points)
- 4. Plot the above responses. (2 points)
- 5. Find the stability for the above system with the help of the Routh-Hurwitz stability criterion. (2 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Digital control	Group	9A
Degree	Electrical engineering	Due for	01/09/2016
Exam / Homework	Homework 1: Continuous-time control theory	Registration #	10062268
Professor's name	Suresh Kumar Gadi	Marks Obtained	/10
Student's name	JULIO ALEJANDRO MARIN GARCIA		

Instructions

- 1. The student should submit the homework on or before the due date. (LATE SUBMISSION = 0 MARKS)
- 2. Answers should be hand written on the A4 or Letter size bond papers. (20% of the marks obtained will be reduced)
- 3. The student should print his/her corresponding question-paper and staple it along with his/her answer sheets. (20% of the marks obtained will be reduced)
- 4. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. Find the Laplace transformation for the following function. (2 points)

$$f(t) = (t^6 + 4)e^{7t} - e^{-9t}\cos(t) - t\cos(8t)$$

- 3. Find analytically the impulse and step response for the above system. (2 points)
- 4. Plot the above responses. (2 points)
- 5. Find the stability for the above system with the help of the Routh-Hurwitz stability criterion. (2 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Digital control	Group	9A
Degree	Electrical engineering	Due for	01/09/2016
Exam / Homework	Homework 1: Continuous-time control theory	Registration #	7050612
Professor's name	Suresh Kumar Gadi	Marks Obtained	/10
Student's name	BEATRIZ ELIZABETH ALBA PEREZ		

Instructions

- 1. The student should submit the homework on or before the due date. (LATE SUBMISSION = 0 MARKS)
- 2. Answers should be hand written on the A4 or Letter size bond papers. (20% of the marks obtained will be reduced)
- 3. The student should print his/her corresponding question-paper and staple it along with his/her answer sheets. (20% of the marks obtained will be reduced)
- 4. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. Find the Laplace transformation for the following function. (2 points)

$$f(t) = (t^6 + 4)e^{9t} - e^{-3t}\cos(t) - t\cos(8t)$$

- 3. Find analytically the impulse and step response for the above system. (2 points)
- 4. Plot the above responses. (2 points)
- 5. Find the stability for the above system with the help of the Routh-Hurwitz stability criterion. (2 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Digital control	Group	9A
Degree	Electrical engineering	Due for	01/09/2016
Exam / Homework	Homework 1: Continuous-time control theory	Registration #	98017052
Professor's name	Suresh Kumar Gadi	Marks Obtained	/10
Student's name	LUIZ EDUARDO		

Instructions

- 1. The student should submit the homework on or before the due date. (LATE SUBMISSION = 0 MARKS)
- 2. Answers should be hand written on the A4 or Letter size bond papers. (20% of the marks obtained will be reduced)
- 3. The student should print his/her corresponding question-paper and staple it along with his/her answer sheets. (20% of the marks obtained will be reduced)
- 4. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. Find the Laplace transformation for the following function. (2 points)

$$f(t) = (t^6 + 3)e^{4t} - e^{-7t}\cos(t) - t\cos(8t)$$

- 3. Find analytically the impulse and step response for the above system. (2 points)
- 4. Plot the above responses. (2 points)
- 5. Find the stability for the above system with the help of the Routh-Hurwitz stability criterion. (2 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Digital control	Group	9A
Degree	Electrical engineering	Due for	01/09/2016
Exam / Homework	Homework 1: Continuous-time control theory	Registration #	12125213
Professor's name	Suresh Kumar Gadi	Marks Obtained	/10
Student's name	EMMANUEL ALEJANDRO		

Instructions

- 1. The student should submit the homework on or before the due date. (LATE SUBMISSION = 0 MARKS)
- 2. Answers should be hand written on the A4 or Letter size bond papers. (20% of the marks obtained will be reduced)
- 3. The student should print his/her corresponding question-paper and staple it along with his/her answer sheets. (20% of the marks obtained will be reduced)
- 4. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. Find the Laplace transformation for the following function. (2 points)

$$f(t) = (t^8 + 3)e^{9t} - e^{-3t}\cos(t) - t\cos(4t)$$

- 3. Find analytically the impulse and step response for the above system. (2 points)
- 4. Plot the above responses. (2 points)
- 5. Find the stability for the above system with the help of the Routh-Hurwitz stability criterion. (2 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Digital control	Group	9A
Degree	Electrical engineering	Due for	01/09/2016
Exam / Homework	Homework 1: Continuous-time control theory	Registration #	12146394
Professor's name	Suresh Kumar Gadi	Marks Obtained	/10
Student's name	JOSELY ROSALES		

Instructions

- 1. The student should submit the homework on or before the due date. (LATE SUBMISSION = 0 MARKS)
- 2. Answers should be hand written on the A4 or Letter size bond papers. (20% of the marks obtained will be reduced)
- 3. The student should print his/her corresponding question-paper and staple it along with his/her answer sheets. (20% of the marks obtained will be reduced)
- 4. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. Find the Laplace transformation for the following function. (2 points)

$$f(t) = (t^5 + 4)e^{3t} - e^{-2t}\cos(t) - t\cos(8t)$$

- 3. Find analytically the impulse and step response for the above system. (2 points)
- 4. Plot the above responses. (2 points)
- 5. Find the stability for the above system with the help of the Routh-Hurwitz stability criterion. (2 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Digital control	Group	9A
Degree	Electrical engineering	Due for	01/09/2016
Exam / Homework	Homework 1: Continuous-time control theory	Registration #	12133449
Professor's name	Suresh Kumar Gadi	Marks Obtained	/10
Student's name	MARIO ALBERTO GAMEZ ROQUE		

Instructions

- 1. The student should submit the homework on or before the due date. (LATE SUBMISSION = 0 MARKS)
- 2. Answers should be hand written on the A4 or Letter size bond papers. (20% of the marks obtained will be reduced)
- 3. The student should print his/her corresponding question-paper and staple it along with his/her answer sheets. (20% of the marks obtained will be reduced)
- 4. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. Find the Laplace transformation for the following function. (2 points)

$$f(t) = (t^3 + 2)e^{4t} - e^{-8t}\cos(t) - t\cos(7t)$$

- 3. Find analytically the impulse and step response for the above system. (2 points)
- 4. Plot the above responses. (2 points)
- 5. Find the stability for the above system with the help of the Routh-Hurwitz stability criterion. (2 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Digital control	Group	9A
Degree	Electrical engineering	Due for	01/09/2016
Exam / Homework	Homework 1: Continuous-time control theory	Registration #	12146385
Professor's name	Suresh Kumar Gadi	Marks Obtained	/10
Student's name	RODRIGUEZ PEREZ RODOLFO		

Instructions

- 1. The student should submit the homework on or before the due date. (LATE SUBMISSION = 0 MARKS)
- 2. Answers should be hand written on the A4 or Letter size bond papers. (20% of the marks obtained will be reduced)
- 3. The student should print his/her corresponding question-paper and staple it along with his/her answer sheets. (20% of the marks obtained will be reduced)
- 4. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. Find the Laplace transformation for the following function. (2 points)

$$f(t) = (t^8 + 8)e^{5t} - e^{-3t}\cos(t) - t\cos(8t)$$

- 3. Find analytically the impulse and step response for the above system. (2 points)
- 4. Plot the above responses. (2 points)
- 5. Find the stability for the above system with the help of the Routh-Hurwitz stability criterion. (2 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Digital control	Group	9A
Degree	Electrical engineering	Due for	01/09/2016
Exam / Homework	Homework 1: Continuous-time control theory	Registration #	10056986
Professor's name	Suresh Kumar Gadi	Marks Obtained	/10
Student's name	ARTURO CORDERO ROBLES		

Instructions

- 1. The student should submit the homework on or before the due date. (LATE SUBMISSION = 0 MARKS)
- 2. Answers should be hand written on the A4 or Letter size bond papers. (20% of the marks obtained will be reduced)
- 3. The student should print his/her corresponding question-paper and staple it along with his/her answer sheets. (20% of the marks obtained will be reduced)
- 4. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. Find the Laplace transformation for the following function. (2 points)

$$f(t) = (t^4 + 9)e^{6t} - e^{-7t}\cos(t) - t\cos(2t)$$

- 3. Find analytically the impulse and step response for the above system. (2 points)
- 4. Plot the above responses. (2 points)
- 5. Find the stability for the above system with the help of the Routh-Hurwitz stability criterion. (2 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Digital control	Group	9A
Degree	Electrical engineering	Due for	01/09/2016
Exam / Homework	Homework 1: Continuous-time control theory	Registration #	12128743
Professor's name	Suresh Kumar Gadi	Marks Obtained	/10
Student's name	GIBRAM ALFONSO HERNANDEZ MARTINEZ		

Instructions

- 1. The student should submit the homework on or before the due date. (LATE SUBMISSION = 0 MARKS)
- 2. Answers should be hand written on the A4 or Letter size bond papers. (20% of the marks obtained will be reduced)
- 3. The student should print his/her corresponding question-paper and staple it along with his/her answer sheets. (20% of the marks obtained will be reduced)
- 4. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. Find the Laplace transformation for the following function. (2 points)

$$f(t) = (t^9 + 7)e^{8t} - e^{-6t}\cos(t) - t\cos(8t)$$

- 3. Find analytically the impulse and step response for the above system. (2 points)
- 4. Plot the above responses. (2 points)
- 5. Find the stability for the above system with the help of the Routh-Hurwitz stability criterion. (2 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Digital control	Group	9A
Degree	Electrical engineering	Due for	01/09/2016
Exam / Homework	Homework 1: Continuous-time control theory	Registration #	12157333
Professor's name	Suresh Kumar Gadi	Marks Obtained	/10
Student's name	EDGAR RICARDO CHAIREZ VILLARRIAL		

Instructions

- 1. The student should submit the homework on or before the due date. (LATE SUBMISSION = 0 MARKS)
- 2. Answers should be hand written on the A4 or Letter size bond papers. (20% of the marks obtained will be reduced)
- 3. The student should print his/her corresponding question-paper and staple it along with his/her answer sheets. (20% of the marks obtained will be reduced)
- 4. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. Find the Laplace transformation for the following function. (2 points)

$$f(t) = (t^3 + 4)e^{7t} - e^{-8t}\cos(t) - t\cos(4t)$$

- 3. Find analytically the impulse and step response for the above system. (2 points)
- 4. Plot the above responses. (2 points)
- 5. Find the stability for the above system with the help of the Routh-Hurwitz stability criterion. (2 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Digital control	Group	9A
Degree	Electrical engineering	Due for	01/09/2016
Exam / Homework	Homework 1: Continuous-time control theory	Registration #	12154267
Professor's name	Suresh Kumar Gadi	Marks Obtained	/10
Student's name	JOSE FRANCISCO TOVAR JARAMILLO-		

Instructions

- 1. The student should submit the homework on or before the due date. (LATE SUBMISSION = 0 MARKS)
- 2. Answers should be hand written on the A4 or Letter size bond papers. (20% of the marks obtained will be reduced)
- 3. The student should print his/her corresponding question-paper and staple it along with his/her answer sheets. (20% of the marks obtained will be reduced)
- 4. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. Find the Laplace transformation for the following function. (2 points)

$$f(t) = (t^2 + 9)e^{4t} - e^{-9t}\cos(t) - t\cos(2t)$$

- 3. Find analytically the impulse and step response for the above system. (2 points)
- 4. Plot the above responses. (2 points)
- 5. Find the stability for the above system with the help of the Routh-Hurwitz stability criterion. (2 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Digital control	Group	9A
Degree	Electrical engineering	Due for	01/09/2016
Exam / Homework	Homework 1: Continuous-time control theory	Registration #	12142724
Professor's name	Suresh Kumar Gadi	Marks Obtained	/10
Student's name	ALLISON DANIELA MACIAS HERNANDEZ		

Instructions

- 1. The student should submit the homework on or before the due date. (LATE SUBMISSION = 0 MARKS)
- 2. Answers should be hand written on the A4 or Letter size bond papers. (20% of the marks obtained will be reduced)
- 3. The student should print his/her corresponding question-paper and staple it along with his/her answer sheets. (20% of the marks obtained will be reduced)
- 4. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. Find the Laplace transformation for the following function. (2 points)

$$f(t) = (t^8 + 6)e^{7t} - e^{-4t}\cos(t) - t\cos(8t)$$

- 3. Find analytically the impulse and step response for the above system. (2 points)
- 4. Plot the above responses. (2 points)
- 5. Find the stability for the above system with the help of the Routh-Hurwitz stability criterion. (2 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Digital control	Group	9A
Degree	Electrical engineering	Due for	01/09/2016
Exam / Homework	Homework 1: Continuous-time control theory	Registration #	10068360
Professor's name	Suresh Kumar Gadi	Marks Obtained	/10
Student's name	KIM EDUARDO SANCHEZ REYES		

Instructions

- 1. The student should submit the homework on or before the due date. (LATE SUBMISSION = 0 MARKS)
- 2. Answers should be hand written on the A4 or Letter size bond papers. (20% of the marks obtained will be reduced)
- 3. The student should print his/her corresponding question-paper and staple it along with his/her answer sheets. (20% of the marks obtained will be reduced)
- 4. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. Find the Laplace transformation for the following function. (2 points)

$$f(t) = (t^9 + 2)e^{8t} - e^{-8t}\cos(t) - t\cos(8t)$$

- 3. Find analytically the impulse and step response for the above system. (2 points)
- 4. Plot the above responses. (2 points)
- 5. Find the stability for the above system with the help of the Routh-Hurwitz stability criterion. (2 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Digital control	Group	9A
Degree	Electrical engineering	Due for	01/09/2016
Exam / Homework	Homework 1: Continuous-time control theory	Registration #	11288180
Professor's name	Suresh Kumar Gadi	Marks Obtained	/10
Student's name	JORGE ANTONIO MOLINA RAMIREZ		

Instructions

- 1. The student should submit the homework on or before the due date. (LATE SUBMISSION = 0 MARKS)
- 2. Answers should be hand written on the A4 or Letter size bond papers. (20% of the marks obtained will be reduced)
- 3. The student should print his/her corresponding question-paper and staple it along with his/her answer sheets. (20% of the marks obtained will be reduced)
- 4. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. Find the Laplace transformation for the following function. (2 points)

$$f(t) = (t^6 + 9)e^{6t} - e^{-8t}\cos(t) - t\cos(6t)$$

- 3. Find analytically the impulse and step response for the above system. (2 points)
- 4. Plot the above responses. (2 points)
- 5. Find the stability for the above system with the help of the Routh-Hurwitz stability criterion. (2 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Digital control	Group	9A
Degree	Electrical engineering	Due for	01/09/2016
Exam / Homework	Homework 1: Continuous-time control theory	Registration #	12139200
Professor's name	Suresh Kumar Gadi	Marks Obtained	/10
Student's name	CARLOS RODOLFO MENA MONTES		

Instructions

- 1. The student should submit the homework on or before the due date. (LATE SUBMISSION = 0 MARKS)
- 2. Answers should be hand written on the A4 or Letter size bond papers. (20% of the marks obtained will be reduced)
- 3. The student should print his/her corresponding question-paper and staple it along with his/her answer sheets. (20% of the marks obtained will be reduced)
- 4. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. Find the Laplace transformation for the following function. (2 points)

$$f(t) = (t^5 + 6)e^{5t} - e^{-2t}\cos(t) - t\cos(9t)$$

- 3. Find analytically the impulse and step response for the above system. (2 points)
- 4. Plot the above responses. (2 points)
- 5. Find the stability for the above system with the help of the Routh-Hurwitz stability criterion. (2 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Digital control	Group	9A
Degree	Electrical engineering	Due for	01/09/2016
Exam / Homework	Homework 1: Continuous-time control theory	Registration #	10053330
Professor's name	Suresh Kumar Gadi	Marks Obtained	/10
Student's name	JOSE FERNANDO AGUILAR COLORADO		

Instructions

- 1. The student should submit the homework on or before the due date. (LATE SUBMISSION = 0 MARKS)
- 2. Answers should be hand written on the A4 or Letter size bond papers. (20% of the marks obtained will be reduced)
- 3. The student should print his/her corresponding question-paper and staple it along with his/her answer sheets. (20% of the marks obtained will be reduced)
- 4. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. Find the Laplace transformation for the following function. (2 points)

$$f(t) = (t^4 + 6)e^{5t} - e^{-7t}\cos(t) - t\cos(3t)$$

- 3. Find analytically the impulse and step response for the above system. (2 points)
- 4. Plot the above responses. (2 points)
- 5. Find the stability for the above system with the help of the Routh-Hurwitz stability criterion. (2 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Digital control	Group	9A
Degree	Electrical engineering	Due for	01/09/2016
Exam / Homework	Homework 1: Continuous-time control theory	Registration #	5113606
Professor's name	Suresh Kumar Gadi	Marks Obtained	/10
Student's name	OBDULIA CASTANEDA PEREZ		

Instructions

- 1. The student should submit the homework on or before the due date. (LATE SUBMISSION = 0 MARKS)
- 2. Answers should be hand written on the A4 or Letter size bond papers. (20% of the marks obtained will be reduced)
- 3. The student should print his/her corresponding question-paper and staple it along with his/her answer sheets. (20% of the marks obtained will be reduced)
- 4. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. Find the Laplace transformation for the following function. (2 points)

$$f(t) = (t^7 + 6)e^{7t} - e^{-7t}\cos(t) - t\cos(6t)$$

- 3. Find analytically the impulse and step response for the above system. (2 points)
- 4. Plot the above responses. (2 points)
- 5. Find the stability for the above system with the help of the Routh-Hurwitz stability criterion. (2 points)

Facultad de Ingeniería Mecánica y Eléctrica Unidad Torreón

Subject	Digital control	Group	9A
Degree	Electrical engineering	Due for	01/09/2016
Exam / Homework	Homework 1: Continuous-time control theory	Registration #	10073388
Professor's name	Suresh Kumar Gadi	Marks Obtained	/10
Student's name	AXEL JAVIER RODRIGUEZ MARIN		

Instructions

- 1. The student should submit the homework on or before the due date. (LATE SUBMISSION = 0 MARKS)
- 2. Answers should be hand written on the A4 or Letter size bond papers. (20% of the marks obtained will be reduced)
- 3. The student should print his/her corresponding question-paper and staple it along with his/her answer sheets. (20% of the marks obtained will be reduced)
- 4. In the calculations, the student should maintain at least a precision of 3 decimal places with a correct rounding. (20% of the marks obtained will be reduced)

Questions

1. Find the Laplace transformation for the following function. (2 points)

$$f(t) = (t^2 + 3)e^{9t} - e^{-4t}\cos(t) - t\cos(3t)$$

- 3. Find analytically the impulse and step response for the above system. (2 points)
- 4. Plot the above responses. (2 points)
- 5. Find the stability for the above system with the help of the Routh-Hurwitz stability criterion. (2 points)