PUI/UL 2004/001289

BUNDESREPUBLIK DEUTSCHLAND

REC'D 0 9 AUG 2004 WIPO PCT

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

103 34 785.2

Anmeldetag:

30. Juli 2003

Anmelder/Inhaber:

Robert Bosch GmbH, 70469 Stuttgart/DE

Bezeichnung:

Brennstoffeinspritzventil und Verfahren zu dessen

Montage

IPC:

F 02 M 57/00

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 15. Juli 2004 Deutsches Patent- und Markenamt Der Präsident Im Auftrag

Stanschus

A 9161 06/00 EDV-L

BEST AVAILABLE COPY

5 R. 306064

ROBERT BOSCH GMBH, 70442 Stuttgart

10

Brennstoffeinspritzventil und Verfahren zu dessen Montage

Stand der Technik

Die Erfindung geht aus von einem Brennstoffeinspritzventil nach der Gattung des Anspruchs 1 und einem Verfahren zur Montage eines Brennstoffeinspritzventils nach Anspruch 8.

20

Brennstoffeinspritzventilen bereits bekannten Bei Brennstoffilter in einen Brennstoffeinlaßstutzen eingepreßt mittels eines Messingrings darin befestigt. Befestigungsart bringt einerseits die Gefahr der Bildung von Abrieb und Spänen mit sich, die zu funktionalen Störungen des Brennstoffeinspritzventils führen können. Andererseits des Materials Messing ein Verwendung teuren ist die für das welche die Kosten Kostenfaktor, Brennstoffeinspritzventil wesentlich erhöht.

30

35

25

DE 43 25 842 A1 ist bereits ein Aus der Brennstoffeinspritzventil bekannt, bei dem ein Brennstoffilter einteilig mit einem Haltekragen ausgeführt erstreckt sich radial über Haltekragen Brennstoffeinlaßstutzen hinaus und besitzt außerhalb Brennstoffeinlaßstutzens eine Nase. Die umlaufende Nase des Haltekragens bildet zusammen mit einer Nut am äußeren Umfang des Brennstoffeinlaßstutzens eine Rastverbindung, durch die der Brennstoffilter definiert befestigt ist. Zwischen dem Grundkörper des Brennstoffilters und der inneren Wandung des Brennstoffeinlaßstutzens liegt nur eine Spielpassung vor, so Spanbildung jegliche im Brennstoffeinspritzventils vermieden wird.

5

10

20

Nachteilig an dem aus der DE 43 25 842 A1 bekannten Brennstoffeinspritzventil ist insbesondere der hohe Fertigungsaufwand, der zur Fixierung des Filters entweder an Einstellhülse oder an dem Brennstoffeinlaßstutzen anfällt. Ferner bestehen Filter und Einstellhülse unterschiedlichen Materialien, wobei an den Kontaktflächen vorwiegend am Kunststoff des Filters Abspanungen und Abrieb was zu Fehlfunktionen Brennstoffeinspritzventils durch die Ablagerung der Partikel führen kann.

Vorteile der Erfindung

Brennstoffeinspritzventil erfindungsgemäße mit den kennzeichnenden 1 Merkmalen des Anspruchs und das erfindungsgemäße Verfahren zur Montage eines Brennstoffeinspritzventils mit den kennzeichnenden Merkmalen Anspruchs 8 haben demgegenüber den Vorteil schnellen und kostengünstigen Herstellung und Montage sowie 25 einer spanfreien und zuverlässigen Fixierung des Filterelements im Brennstoffeinspritzventil.

Dies wird dadurch erreicht, daß das Filterelement mit einer Außenkontur eines Stützrohres des Brennstoffeinspritzventils verpreßt ist.

Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterentwicklungen und Verbesserungen des im Anspruch 1 angegebenen Brennstoffeinspritzventils möglich.

35

30

Vorteilhafterweise weist die Außenkontur des Stützrohres Rillen auf, in welche eine Glasfaserkunststoffumspritzung des Filterelements unter Druck eingepreßt wird.

Weiterhin ist von Vorteil, daß die Rillen in einfacher Weise durch Drehen oder mit Hilfe eines Formstahls in das Stützrohr einbringbar sind.

- 5 Ebenso ist von Vorteil, daß die Preßpassung des Filterelements durch die Montage einer Verlängerungshülse erfolgt, deren Innendurchmesser geringfügig kleiner als ein Außendurchmesser des Filterelements ist.
- 10 Das Filterelement ist vorteilhafterweise wie herkömmliche Filterelemente topfförmig aus einem Gewebematerial und einer Glasfaserkunststoffumspritzung herstellbar.

Zeichnung

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen:

- 20 Fig. 1A einen schematischen Schnitt durch ein Ausführungsbeispiel eines Brennstoffeinspritzventils gemäß dem Stand der Technik,
- Fig. 1B einen auszugsweisen schematischen Ausschnitt aus
 25 dem in Fig. 1A dargestellten
 Brennstoffeinspritzventil im Bereich IB in Fig.
 1A,
- Fig. 2A eine schematische Darstellung eines
 30 Ausführungsbeispiels eines Filterelements für ein erfindungsgemäß ausgestaltetes Brennstoffeinspritzventil, und
- Fig. 2B eine ausschnittsweise schematische Darstellung 35 eines erfindungsgemäß ausgestalteten Brennstoffeinspritzventils mit einem Filterelement gemäß Fig. 2A.

Beschreibung des Ausführungsbeispiels

Fig. 1 zeigt zur besseren Verständlichkeit der zunächst Maßnahmen erfindungsgemäßen in einer ausschnittsweisen, schematisierten Schnittdarstellung einen Längsschnitt durch ein Brennstoffeinspritzventil 1 gemäß dem Stand der Technik, welches insbesondere zum Einspritzen von Brennstoff in ein nicht näher dargestelltes Saugrohr einer Brennkraftmaschine geeignet ist.

5

15

20

25

30

35

10 Das Brennstoffeinspritzventil 1 umfaßt eine Magnetspule 2, die auf einen Spulenträger 3 gewickelt ist. Der Spulenträger 3 ist in einem Ventilgehäuse 4 gekapselt und durch einen Deckel 5 abgeschlossen. Am Spulenträger 3 ist eine Kontaktfahne 6 ausgebildet.

Der Spulenträger wird von einer Ventilhülse durchgriffen, die rohrförmig ausgestaltet ist und ein darin eingespreiztes oder verschweißtes Stützrohr 8 welches als Innenpol der Magnetspule 2 dient. Als Außenpol der Magnetspule 2 kann beispielsweise das Ventilgehäuse 4 Abströmseitig des Stützrohres 8 ist ein Anker angeordnet, der einstückig mit einer Ventilnadel 10 der Ventilnadel 10 sind ausgebildet ist. In die Durchströmöffnungen 11 vorgesehen, den das Brennstoffeinspritzventil 1 durchströmenden Brennstoff zu einem Dichtsitz leiten.

Im Bereich der Durchströmöffnungen 11 kann ein Ringfilter 12 zur Brennstoffs angeordnet sein. Die Filterung des Ventilnadel Schweißen 10 steht vorzugsweise durch Wirkverbindung mit einem im Ausführungsbeispiel Ventilschließkörper 13, der mit kugelförmigen Ventilsitzkörper 14 einen Dichtsitz bildet. Stromabwärts des Dichtsitzes ist in einer Spritzlochscheibe 34 wenigstens eine Abspritzöffnung 15 ausgebildet, aus der der Brennstoff in das nicht weiter dargestellte Saugrohr eingespritzt wird.

Der Anker 9 ist im Ruhezustand des Brennstoffeinspritzventils 1 von einer Rückstellfeder 16 so beaufschlagt, daß das Brennstoffeinspritzventil 1 durch den Andruck des Ventilschließkörpers 13 auf den Ventilsitzkörper 14 geschlossen gehalten wird. Die Rückstellfeder 16 ist in einer Ausnehmung 17 des Ankers 9 bzw. des Stützrohres 8 angeordnet und wird durch eine Einstellhülse 18 auf Vorspannung gebracht.

5

10

20

25

30

35

Zulaufseitig der Einstellhülse 18 ist ein topfförmiges Filterelement 19 in die Ventilhülse 7 vorzugsweise eingepreßt. Das Filterelement ist 19 dabei mit Messingring 20 versehen, welcher einen sicheren Halt des Filterelements 19 im Brennstoffeinspritzventil 1 ermöglicht.

Der Brennstoff, der durch eine zentrale Brennstoffzufuhr 22 zugeleitet wird, durchströmt das Brennstoffeinspritzventil 1 durch die Ausnehmung 17 und die Durchströmöffnungen 11 zum Dichtsitz und zur Abspritzöffnung 15.

Wird der Magnetspule 2 über eine nicht weiter dargestellte elektrische Leitung und die Kontaktfahne 6 ein elektrischer Strom zugeführt, baut sich ein magnetisches Feld auf, das bei ausreichender Stärke den Anker 9 entgegen der Kraft der Rückstellfeder 16 entgegen der Strömungsrichtung Brennstoffs in die Magnetspule 2 hineinzieht. Dadurch wird ein zwischen dem Anker 9 und dem Stützrohr 8 ausgebildeter Arbeitsspalt 23 geschlossen. Durch die Bewegung des Ankers 9 wird auch die mit dem Anker 9 einstückig in Hubrichtung mitgenommen, Ventilnadel 10 so Ventilschließkörper 13 vom Ventilsitzkörper 14 abhebt und Brennstoff zur Abspritzöffnung 15 geleitet wird.

Das Brennstoffeinspritzventil 1 wird geschlossen, sobald der die Magnetspule 2 erregende Strom abgeschaltet und das Magnetfeld soweit abgebaut ist, daß die Rückstellfeder 16 den Anker 9 vom Stützrohr 8 abdrückt, wodurch sich die Ventilnadel 10 in Abströmrichtung bewegt und der Ventilschließkörper 13 auf dem Ventilsitzkörper 14 aufsetzt.

Fig. 1B zeigt in einer auszugsweisen Schnittdarstellung den in Fig. 1A mit IB bezeichneten Ausschnitt aus dem in Fig. 1A dargestellte Brennstoffeinspritzventil 1. Gleiche Bauteile sind dabei mit übereinstimmenden Bezugszeichen versehen. Auf eine wiederholende Beschreibung bereits bekannter Bauteile kann verzichtet werden.

Wie bereits weiter oben erwähnt, ist das Filterelement 19 topfförmig ausgebildet und besteht aus einem Filter 21, der vorzugsweise aus einem Gewebematerial 24 besteht, und einem zur Fixierung des Filterelements Messingring 20 Brennstoffeinspritzventil 1. Bei der Herstellung wird der Messingring 20 in ein Spritzwerkzeug eingelegt und gemeinsam mit dem eigentlichen Filter 21 mit Glasfaserkunststoffumspritzung 25 versehen. Der Messingring 20 ist vorzugsweise als Tiefziehteil ausgelegt. Der die Messingring 20 und aufwendige Abdichtung des Herstellungskosten Spritzwerkzeugs bedingen hohe des Filterelements 19 mit dem Messingring 20.

20

25

5

10

Im Gegensatz dazu ist ein erfindungsgemäß ausgestaltetes Brennstoffeinspritzventil 1 mit einem Filterelement 19 gemäß Fig. 2A und 2B ausgestattet, welches ohne Zuhilfenahme eines Messingrings 20 direkt am Innenpol 8 des Brennstoffeinspritzventils 1 fixiert ist.

30

Fig. 2A zeiqt dabei in · einer schematischen Schnittdarstellung ein Ausführungsbeispiel eines Filterelements 19, welches zur Ausstattung erfindungsgemäß ausgestalteten Brennstoffeinspritzventils 1 geeignet ist. Das Filterelement 19 ist ähnlich zu den 19 topfförmig bekannten Filterelementen ausgebildet. besteht aus einem Gewebematerial 24, welches mit einer Glasfaserkunststoffumspritzung 25 versehen ist.

35

Die Montage des Filterelements 19 erfolgt jedoch erfindungsgemäß, wie in Fig. 2B dargestellt, auf dem als Innenpol dienenden Stützrohr 8 des Brennstoffeinspritzventils 1. An einem zuströmseitigen Ende

Stützrohrs 8 sind dabei Rillen 27 in einer Stützrohrs Außenkontur 28 des 8 vorgesehen, welche beispielsweise mittels Drehen oder durch einen Formstahl in einfacher Weise herstellbar sind. Das Filterelement 19 wird im Bereich der Glasfaserkunststoffumspritzung 25 auf diese Rillen 27 aufgesteckt. Das Filterelement 19 stützt sich dabei an einer Schulter 29 des Stützrohres ab. Filterelement weist aufgesteckte 19 einen geringfügig größeren Durchmesser als das Stützrohr 8 auf.

10

20

25

Wird danach auf das Stützrohr 8 eine Verlängerungshülse 30 montiert, welches beispielsweise dem Anschluß an eine nicht weiter dargestellte Brennstoffverteilerleitung dient, wird 19 Außendurchmesser Filterelements auf der des den Verlängerungshülse Innendurchmesser der 30 kalibriert, welcher geringfügig kleiner als der Außendurchmesser des Filterelements 19 ist. Dadurch wird das Filterelement 19 im Bereich der Glasfaserkunststoffumspritzung 25 in die Rillen 27 des Stützrohrs 8 eingepreßt. Dadurch ist ein sicherer Halt des Filterelements im Brennstoffeinspritzventil 1 auch starken Temperaturschwankungen gewährleistet. Brennstoffeinspritzventil 1 ist durch die erfindungsgemäßen Maßnahmen in einfacher Weise durch den Wegfall Messingrings 20 kostengünstiger ohne Verteuerung anderer Bauteile herstellbar.

30

nicht auf Die Erfindung ist das dargestellte Ausführungsbeispiel beschränkt und für beliebige Bauweisen geeignet, z. Brennstoffeinspritzventilen 1 B. Brennstoffeinspritzventile 1 für Direkteinspritzung oder für Brennstoffeinspritzventile 1 mit Anbindung an ein Common-Rail-System. Insbesondere sind beliebige Kombinationen der einzelnen Merkmale möglich.

5 R. 306064

ROBERT BOSCH GMBH, 70442 STUTTGART

10

Ansprüche

- 15 1. Brennstoffeinspritzventil (1) für Brennstoffeinspritzanlagen von Brennkraftmaschinen mit einer Magnetspule (10), einem als Innenpol der Magnetspule (10) wirkenden Stützrohr (8) und einem Filterelement (19), dadurch gekennzeichnet,
- 20 daß das Filterelement (19) an einer Außenkontur (28) des Stützrohres (8) des Brennstoffeinspritzventils (1) befestigt ist.
 - 2. Brennstoffeinspritzventil nach Anspruch 1,
- 25 dadurch gekennzeichnet,
 daß die Außenkontur (28) des Stützrohres (8) Rillen (27)
 aufweist.
 - 3. Brennstoffeinspritzventil nach Anspruch 2,
- daß die Rillen (27) mittels Drehen oder unter Verwendung eines Formstahls in das Stützrohr (8) eingebracht sind.
- Brennstoffeinspritzventil nach einem der Ansprüche 1 bis
 35

dadurch gekennzeichnet,

daß das Stützrohr (8) abströmseitig der Rillen (27) eine Schulter (29) aufweist. 5. Brennstoffeinspritzventil nach Anspruch 4, dadurch gekennzeichnet,

daß sich das Filterelement (19) an der Schulter (29) abstützt.

5

20

6. Brennstoffeinspritzventil nach einem der Ansprüche 1 bis 5,

dadurch gekennzeichnet,

daß eine Preßpassung zwischen Filterelement (19) und 10 Stützrohr (8) durch die Montage einer Verlängerungshülse (30) erreicht wird, welche einen Innendurchmesser aufweist, der geringfügig kleiner als ein Außendurchmesser des Filterelements (19) ist.

7. Brennstoffeinspritzventil nach einem der Ansprüche 1 bis 6,

dadurch gekennzeichnet,

daß das Filterelement (19) aus einem topfförmigen Filter (21) aus einem Gewebematerial (24) und einer Glasfaserkunststoffumspritzung (25) besteht.

- 8. Verfahren zur Montage eines Brennstoffeinspritzventils für Brennstoffeinspritzanlagen von Brennkraftmaschinen Magnetspule (10), einem als Innenpol der einer (8) 25 (10)wirkenden Stützrohr und einem Magnetspule Filterelement (19), wobei das Filterelement (19) an einer des Stützrohres (8) (26)Außenkontur Brennstoffeinspritzventils (1) befestigt ist, umfassend folgende Verfahrensschritte:
- 30 Herstellen eines topfförmigen Filters (21) aus einem Gewebematerial (24),
 - Umspritzen des Filters (21) mit einer Glasfaserkunststoffumspritzung (25),
- Einbringen von Rillen (27) in die Außenkontur (28) des
 Stützrohres (8) des Brennstoffeinspritzventils (1),
 - Aufstecken des Filterelements (19) auf die Außenkontur (28) des Stützrohres (8),

- Montieren einer Verlängerungshülse (30), deren Innendurchmesser geringfügig kleiner als ein Außendurchmesser des Filterelements (19) ist, und
- Verpressen der Glasfaserkunststoffumspritzung (25) des
 Filterelements (19) mit den Rillen (27) der Außenkontur (28) des Stützrohres (8) durch den Montagedruck der Verlängerungshülse (30).

5 R. 306064

ROBERT BOSCH GMBH, 70442 STUTTGART

10

Zusammenfassung

15 Ein Brennstoffeinspritzventil (1) für Brennstoffeinspritzanlagen von Brennkraftmaschinen umfaßt eine Magnetspule (10), ein als Innenpol der Magnetspule (10) wirkendes Stützrohr (8) und ein Filterelement (19), wobei das Filterelement (19) mit einer Außenkontur (26) eines Stützrohres (8) des Brennstoffeinspritzventils (1) verpreßt ist.

(Fig. 2B)

25

Fig. 1B

Fig. 2B

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.