

Introducción a la Minería de Datos

Verónica Guarín Escudero Escuela de Estadística

Correo: jvguarine@unal.edu.co

Temas

- □Reglas de asociación
- ☐Conceptos básicos:
 - □itemset, itemset frecuente,
 - □itemset máximo e itemset cerrado.
- □Algoritmo Apriori.

Dado un conjunto de transacciones, encontrar reglas que puedan predecir la ocurrencia de un ítem basado en la presencia de otros.

Análisis del "Carrito de compras"

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

```
Ejemplo de Reglas de Asociación:
```

```
{Diaper} → {Beer}
{Milk, Bread} → {Eggs,Coke}
{Beer, Bread} → {Milk}
```

La implicación indica "co-ocurrencia" no causalidad

Itemsets

Itemset: Una colección de 1 o más ítems:

Ejemplo: {Milk, Bread, Diaper}

k-itemset: Un itemset que contiene k items

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

•1-itemset: {Bread}, {Beer}

•2-itemset: {Milk, Eggs}, {Diaper, Beer}

•3-itemset: {Diaper, Beer, Bread}

Support Count (σ)

Support count (σ): Cantidad de ocurrencias de un itemset.

Ejemplo:

 $\sigma(\{\text{Milk}, \text{Diaper}\}) = 3$

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
 3	Milk, Diaper, Beer, Coke
 4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Support

Support (s): Fracción de transacciones que contiene a un itemset.

$$s(x) = \frac{\sigma(x)}{|T|}$$

Support

Support (s): Fracción de transacciones que contiene a un itemset.

$$s(x) = \frac{\sigma(x)}{|T|}$$

Ejemplo:
$$s(\{Milk, Diaper\}) = \frac{3}{5}$$

¿Cuál es el soporte de Beer?

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Itemsets Frecuentes

Itemset frecuente: Un itemset cuyo *support* es mayor o igual al umbral establecido como mínimo soporte (minsup).

Supongamos que minsup = 0.6

¿Es frecuente?
$$s(\{Milk, Diaper\}) = \frac{3}{5}$$

¿Y el 1-itemset {Beer}?

¿Y {Milk, Diaper, Beer}?

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

¿Cuales son los 1-itemsets infrecuentes?

Regla de Asociación: Una expresión de la forma $X \rightarrow Y$, donde X e Y son itemsets frecuentes.

```
Ejemplo:
{Milk, Diaper} → {Beer}
```

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Métricas de Evaluación de Reglas

- •Support (s): Fracción de transacciones que contiene a X e Y.
- •Confidence (c): Mide con qué frecuencia Y aparece en transacciones en las que también aparece X.

$$C(X o Y)=rac{\sigma(X\cup Y)}{\sigma(X)}$$

Ejemplo:

 $\{Milk, Diaper\} \rightarrow \{Beer\}$

$$S=rac{\sigma(Milk,Diaper,Beer)}{|T|}=rac{2}{5}=0.4$$

$$C = \frac{\sigma(Milk, Diaper, Beer)}{\sigma(Milk, Diaper)} = \frac{2}{3} = 0.67$$

Métricas de Evaluación de Reglas

Ejemplos de Reglas de Asociación

```
Reglas

S C

{Milk,Diaper} → {Beer} 0.4 0.67

{Milk,Beer} → {Diaper} 0.4 1.0

{Diaper,Beer} → {Milk} 0.4 0.67

{Beer} → {Milk,Diaper} 0.4 0.67

{Diaper} → {Milk,Beer} 0.4 0.5

{Milk} → {Diaper,Beer} 0.4 0.5
```

Reglas creadas a partir del itemset: {Milk, Diaper, Beer}

- Tienen el mismo soporte.
- •¿Por qué tienen distinta confianza?

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Descubrimiento de Reglas

Dado un conjunto de transacciones **T**, el objetivo del descubrimiento de reglas de asociación es encontrar todas las reglas que cumplen:

- Soporte ≥ minsup
- Confianza ≥ minconf

Aproximación de fuerza bruta:

- 1.Listar todas las posibles reglas de asociación.
- 2. Calcular el soporte y la confianza para cada una.

Eliminar las que no satisfacen los umbrales predefinidos

⇒ Computacionalmente Prohibitivo!

Problema de Escala

- Un supermercado como WalMart
- ovende unos 100K items y puede guardar millones de canastas!
- La Web
- otiene más de 100M de palabras y miles de millones de páginas.

¿Por qué es prohibitivo?

Supongamos que tenemos itemset frecuentes de 100 items:

- Vamos a tener para:
 - \circ 1-itemset frecuentes $\binom{100}{1}=100$
 - \circ 2-itemset frecuentes $\binom{100}{2}=4950$
 - \circ 3-itemset frecuentes $\binom{100}{3} =$

Association Rule Mining

ARM puede ser visto como un problema de 2 pasos:

- 1. Generación de los itemsets frecuentes
 - •Generar todos los itemsets con support ≥ minsup

2. Generación de reglas

 Generar a partir de la división de los itemsets frecuentes los subconjuntos con las reglas que satisfacen la confianza

El primer paso es computacionalmente muy caro

Aplicaciones

- Encontrar conceptos relacionados:
 - Supongamos que las palabras son los ítems y los "documentos" las canastas (los itemsets).
 - Podríamos buscar términos del problema que aparecen juntos con altos valores de soporte y confianza.
- •Plagio: En este caso los ítems son los documentos y las canastas las oraciones.
 - ODonde un "ítem/documento" está en una "canasta/oración" si la oración pertenece al documento.
 - Una o dos oraciones en común en distintos documentos son un buen indicador de plagio.

Generación de Itemsets Frecuentes

Los candidatos son todos los kitemsets donde los items co-ocurren.

Generación de Itemsets Frecuentes

Aproximación de fuerza bruta:

- Cada itemset en el lattice es un candidato
- Contar el soporte de cada itemset barriendo las transacciones

- Comparar cada transacción contra cada itemset
- •Complejidad ~ $O(NMw) \Rightarrow Caro porque M = 2^d !!!$

Estrategias para la generación de itemsets

Reducir el número de candidatos (M)

- Búsqueda completa: M = 2^d
- Utilice técnicas de poda para reducir M

Reducir el número de comparaciones (NM)

- Utilice las estructuras de datos eficientes para almacenar los candidatos y las transacciones.
- No hay necesidad de comparar cada candidato contra cada transacción.

Reducir el número de transacciones (N)

- Reducir el tamaño de N como el incremento del tamaño de los itemsets.
- Esto es utilizando algoritmos como Direct Hashing and Pruning (DHP)

Utiliza una función de hash para filtrar la próxima generación candidatos

Database D				
TID	TID Items			
100	ACD			
200	BCE			
300	ABCE			
400	BE			

Principio Apriori

Es una estrategia de reducción del número de candidatos.

Si un itemset es frecuente, entonces todos sus subsets deben además ser frecuentes.

El Principio Apriori se sostiene debido a las siguiente propiedades de la medida de support:

```
\forall X,Y : (X \subseteq Y) \Rightarrow s(X) \geq s(Y)
```

- •El support de un itemset (Y) nunca excede el support de sus subsets (X).
- •Esto es conocido como la propiedad de antimonotonía del *support*.

Anti - Monotonía

Si un itemset X no satisface el umbral de *min_support* entonces X no es frecuente. Es decir:

Si agrego X₂ al itemset X, (X U X₂) entonces el resultado del itemset no puede ser más frecuente que X.

X U X₂ es no frecuente, por lo tanto:

$$S(X \cup X_2) < min_support$$

Algoritmo Apriori

El algoritmo Apriori fue propuesto por R. Agrawal and R. Srikant en 1994 para *mining frecuent itemsets* de reglas de asociación binarias (como los ejemplos de la canasta).

El algoritmo maneja 2 conjuntos de itemsets:

- Candidatos (C_k)
- •Frecuentes (L_k)

Y se divide en dos pasos: uno de **Join** y otro de **Prune**

Algoritmo Apriori: Pseudo Código

Join Step: C_k es generado uniendo L_{k-1} con sigo mismo.

Prune Step: Un (k-1)-itemset que no es frecuente no puede ser un subset de un k-itemset frecuente.

```
 \begin{array}{l} \textbf{Pseudo-code:} \\ \textbf{C}_k \text{: Candidate itemset of size } k \\ \textbf{L}_k \text{: frequent itemset of size } k \\ \textbf{L}_1 = \{ \text{frequent items} \}; \\ \textbf{for} ( \ k = 1; \ L \ k \ ! = \emptyset; \ k \ + +) \ \textbf{do begin} \\ \textbf{C}_{k+1} = \textbf{candidates generated from } \textbf{L}_k \\ \textbf{for each transaction t in database do} \\ \text{increment the count of all candidates} \\ \text{in } \textbf{C}_{k+1} \text{that are contained in t} \\ \textbf{L}_{k+1} = \text{candidates in } \textbf{C}_{k+1} \text{ with } \textit{min\_support} \\ \textbf{end} \\ \textbf{return } \textbf{U}_k \ \textbf{L}_k \\ \end{array}
```


Generación de Candidatos: Ejemplo

Tenemos una lista de frecuentes:

```
L_3 = \{ abc, abd, acd, ace, bcd \}
```

Join: L₃ * L₃

abcd de abc y abd acde de acd y ace

Pruning: Como ade no está en L₃ se elimina acde

$$C_4 = \{ abcd \}$$

Generación de Candidatos: Ejemplo

L₃ = {abc, abd, acd, ace, bcd}

abcd de abc y abd acde de acd y ace

 $C_4 = \{ abcd \}$

Obtención de Reglas

```
Para cada frequent itemset X ,
   Para cada subset A <> Ø de X,
        Dado B = X - A
        A ⇒ B es una regla de asociación SI
        Confidence(A ⇒ B) ≥ minConf,

Donde:
   support(A ⇒ B) = support(AB) y
   confidence(A ⇒ B) = support(AB)/support(A)
```

Como las reglas se construyen a partir de los itemsets frecuentes, todas satisfacen el min_support.

Factores que afectan la complejidad

- Elegir el umbral de min_support
 - OBajar el umbral de support resulta en más itemsets frecuentes
 - OEsto puede incrementar el número de candidatos y la longitud máxima de itemsets frecuentes
- Dimensionalidad del dataset (cantidad de ítems)
 - OSe necesita más espacio para almacenar el count support de cada uno de los items.
 - OSi la cantidad de items frecuentes aumenta, tanto el costo computacional como las operaciones de I/O se incrementan.
- Tamaño de la base de datos (# de transacciones)
 - Dado que Apriori hace varias pasadas, el tiempo de ejecución del algoritmo va a aumentar con el número de transacciones

Tipos "especiales" de itemsets

- •El # de itemsets frecuentes generados a partir de datos transaccionales puede ser muy elevado.
- •Es útil identificar un **pequeño conjunto representativo de itemsets** y a partir de estos derivar conjuntos de itemsets frecuentes.
 - Maximal Frequent Itemset
 - Closed Frequent Itemset

Maximal Frequent Items

Un itemset es maximal si ninguno de su superset es frecuente

Los MFI proporcionan una representación compacta del conjunto de elementos frecuentes.

¿Por qué ocurre eso?

Closed Frequent Itemsets

- •Un itemset es closed si ninguno de sus inmediatos superset tiene el mismo support que el itemset.
- Closed itemsets proveen una representación mínima de los itemsets sin perder información del soporte.
- •Podemos usar el CFI para determinar el support de un item que no es Closed. Ejemplo: {a,d}
- •CFI permite remover reglas redundantes.

Reglas Redundantes

Una regla de asociación **X** → **Y** es redundante si existe otra regla X'→ Y'

Donde X es un subconjunto de X' e Y es subconjunto de Y'

Tal que el soporte y la confianza de ambas reglas son idénticas

{a, b} No es CFI

{a, c} Si es CFI

La regla {a}→{b} es redundante porque el soporte y la confianza es similar a:

 ${a} \rightarrow {b, c}.$

Estas reglas redundantes no se generan si se utilizan *Closed Frequent Itemsets* para la generación de reglas.

Maximal es Closed

Todos los Maximal Frequent Itemsets son

Closed porque ninguno superset tiene el

mismo soporte.

Limitaciones de la Confianza

Nos interesa analizar la relación entre las personas que beben té y café.

Evaluamos la regla: {Tea} → {Coffee}

 $S(Tea \rightarrow Coffee) = 150 / 1000 = 0.15$

 $C(Tea \rightarrow Coffee) = 150 / 200 = 0.75$

	Coffee	\overline{Coffee}	
Tea	150	50	200
\overline{Tea}	650	150	800
	800	200	1000

El problema es que la fracción de personas que beben café, independientemente de si beben té, es del 80%, mientras que la fracción de consumidores de té que beben café es del 75%.

La regla {Tea} → {Coffee} es engañosa a pesar de su alto valor de confianza.

- •Reglas con alta confianza pueden ocurrir por casualidad.
- Tales reglas espurias pueden detectarse determinando si el antecedente y el consecuente son estadísticamente independientes.

$$P(A \cap B) = P(A)P(B)$$

LIFT

ulletEl Lift de una regla es X \to Y es la confianza de la regla dividido la confianza esperada, <u>asumiendo que los ítems son independientes</u>.

	Coffee	\overline{Coffee}	
Tea	150	50	200
\overline{Tea}	650	150	800
	800	200	1000

Lift mide qué tan lejos de la independencia están X e Y

$$Lift(X\Rightarrow Y)=rac{conf(X\Rightarrow Y)}{sup(Y)}$$

Valores cercanos a 1 implican que X e Y son independientes y por lo tanto la regla es poco interesante

Volvemos a la regla: {Tea} → {Coffee}

C(Tea
$$\rightarrow$$
 Coffee) = 75%
P(Coffee) = 80%

El valor de Lift es cercano a 1, Te y Café son estadísticamente independientes.

Bibliografía

- □ Jiawei Han, Micheline Kamber, Jian Pei. 2012. Tercera edición. Data Mining: Concepts and Techniques. Cap. 5
- □ Daniel T. Larose. 2014. Segunda edición. Discovering Knowledge in Data: An Introduction to Data Mining.
- □Introduction to Data Mining (Second Edition) Pang-Ning Tan et al. https://www-users.cs.umn.edu/ ~kumar001/dmbook/ch6.pdf

Gracias