Fuck
Fuck
Fuck

Contents

1	Day 1	2
2	Day 2	2

1 Day 1

An operation * on a set S is something that takes in two values of S and spits out one value of S. For instance,

- 1. Addition, subtraction, multiplication, and division are operations on rational numbers \mathbb{Q} .
- 2. Exponentiation is an operation on positive integers: let $a * b = a^b$.
- 3. Logic gates are an operation: they take in two numbers (each either 0 or 1) and spit out 0 or 1.

An operation * on S is called **closed** if for all $a, b \in S$, the element $a * b \in S$ too. In other words, * never "leaves" S. The operation * is associative if for all $a, b, c \in S$, we have a * (b * c) = (a * b) * c. Furthermore, * is **commutative** if a * b = b * a for all $a, b \in S$. It's possible to have one of these without the other!

2 Day 2

We often denote S with the operation * by the pair (S,*). There are two other properties of operations we care about:

- 1. (S,*) has an **identity element** if there exists e in S such that the operation "does nothing" with e for all a in S, we have a*e=e*a=a.
- 2. (S,*) has **inverses** if for all a in S, there exists some b in S that "cancels" a namely a*b=b*a=e, where e is the identity.

We often write the inverse of a as a^{-1} , where this is not necessarily 1 divided by a. It's like how the inverse of a matrix \mathbf{T} is written \mathbf{T}^{-1} . Notice that to have inverses, there must be an identity. Drill these five properties — closure, associativity, identity, inverses, commutativity — into your head!

1.

1. Find the identity of complex numbers \mathbb{C} with respect to addition. Find the identity of nonzero complex numbers with respect to multiplication. 3. \mathbb{Q} has an additive identity. Does each rational number \mathbb{Q} under + have an inverse?