函数的类型

Lijie Wang

类!

必安余什

证明

函数的类型

王丽杰

Email: ljwang@uestc.edu.cn

电子科技大学 计算机学院

2016-

函数的类型

Lijie Wang

类

必要条件

数学化描述

Definition

设 f 是从集合 A 到 B 的函数,

函数的类型

Lijie Wang

类!

必要条件

证明

Definition

设 f 是从集合 A 到 B 的函数,

• 对任意 $x_1, x_2 \in A$, 如果 $x_1 \neq x_2$, 都有 $f(x_1) \neq f(x_2)$, 则称 f 为从 A 到 B 的单射;

函数的类型

Lijie Wang

类:

必要条件

双字1七抽过

Definition

设 f 是从集合 A 到 B 的函数,

- 对任意 $x_1, x_2 \in A$, 如果 $x_1 \neq x_2$, 都有 $f(x_1) \neq f(x_2)$, 则称 f 为从 A 到 B 的单射;
- 如果 ranf = B, 则称 f 为从 A 到 B 的满射;

函数的类型

Lijie Wang

类生

必要条件

致子化抽火

Definition

设 f 是从集合 A 到 B 的函数,

- 对任意 $x_1, x_2 \in A$, 如果 $x_1 \neq x_2$, 都有 $f(x_1) \neq f(x_2)$, 则称 f 为从 A 到 B 的单射;
- 如果 ranf = B, 则称 f 为从 A 到 B 的满射;
- 如果 f 既是单射又是满射, 则称 f 为从 A 到 B 的双射.

函数的类型

Lijie Wang

类

必要条件

双子16抽丝

Definition

设 f 是从集合 A 到 B 的函数,

- 对任意 $x_1, x_2 \in A$, 如果 $x_1 \neq x_2$, 都有 $f(x_1) \neq f(x_2)$, 则称 f 为从 A 到 B 的单射;
- 如果 ranf = B, 则称 f 为从 A 到 B 的满射;
- 如果 f 既是单射又是满射, 则称 f 为从 A 到 B 的双射.

Example

函数的类型

Lijie Wang

类!

必要条件

et no

Definition

设 f 是从集合 A 到 B 的函数,

- 对任意 $x_1, x_2 \in A$, 如果 $x_1 \neq x_2$, 都有 $f(x_1) \neq f(x_2)$, 则称 f 为从 A 到 B 的单射;
- 如果 ranf = B, 则称 f 为从 A 到 B 的满射;
- 如果 f 既是单射又是满射, 则称 f 为从 A 到 B 的双射.

Example

• 设 $A = \{1, 2, 3, 4, 5\}, B = \{a, b, c, d\}, f: A \rightarrow B$ 定义为: $\{<1, a>, <2, c>, <3, b>, <4, a>, <5, d>\};$

函数的类型

Lijie Wang

类<u></u>

必要条件

TERRE

Definition

设 f 是从集合 A 到 B 的函数,

- 对任意 x₁, x₂ ∈ A, 如果 x₁ ≠ x₂, 都有 f(x₁) ≠ f(x₂), 则称 f 为从 A 到 B 的单射;
- 如果 ranf = B, 则称 f 为从 A 到 B 的满射;
- 如果 f 既是单射又是满射, 则称 f 为从 A 到 B 的双射.

Example

- 设 $A = \{1, 2, 3, 4, 5\}, B = \{a, b, c, d\}.f: A \rightarrow B$ 定义为: $\{<1, a>, <2, c>, <3, b>, <4, a>, <5, d>\}; 满射$
- 设 $A = \{1, 2, 3\}, B = \{a, b, c, d\}. f: A \rightarrow B$ 定义为: $f = \{<1, a>, <2, c>, <3, b>\};$

Definition

设 f 是从集合 A 到 B 的函数,

- 对任意 x₁, x₂ ∈ A, 如果 x₁ ≠ x₂, 都有 f(x₁) ≠ f(x₂), 则称 f 为从 A 到 B 的单射;
- 如果 ranf = B, 则称 f 为从 A 到 B 的满射;
- 如果 f 既是单射又是满射, 则称 f 为从 A 到 B 的双射.

${\sf Example}$

- 设 $A = \{1, 2, 3, 4, 5\}, B = \{a, b, c, d\}.f: A \rightarrow B$ 定义为: $\{<1, a>, <2, c>, <3, b>, <4, a>, <5, d>\}$;满射
- 设 $A = \{1, 2, 3\}, B = \{a, b, c, d\}. f: A \rightarrow B$ 定义为: $f = \{<1, a>, <2, c>, <3, b>\};$ 单射
- 设 $A = \{1, 2, 3\}, B = \{a, b, c\}. f: A \rightarrow B$ 定义为: $f = \{\langle 1, b \rangle, \langle 2, c \rangle, \langle 3, a \rangle\}.$

Definition

设 f 是从集合 A 到 B 的函数,

- 对任意 $x_1, x_2 \in A$, 如果 $x_1 \neq x_2$, 都有 $f(x_1) \neq f(x_2)$, 则称 f 为从 A 到 B 的单射;
- 如果 ranf = B, 则称 f 为从 A 到 B 的满射;
- 如果 f 既是单射又是满射, 则称 f 为从 A 到 B 的双射.

Example

- 设 $A = \{1, 2, 3, 4, 5\}, B = \{a, b, c, d\}.f: A \rightarrow B$ 定义为: $\{<1, a>, <2, c>, <3, b>, <4, a>, <5, d>\}$;满射
- 设 $A = \{1, 2, 3\}, B = \{a, b, c, d\}. f: A \rightarrow B$ 定义为: $f = \{<1, a>, <2, c>, <3, b>\};$ 单射
- 设 $A = \{1, 2, 3\}, B = \{a, b, c\}. f: A \rightarrow B$ 定义为: $f = \{\langle 1, b \rangle, \langle 2, c \rangle, \langle 3, a \rangle\}.$ 双射

微的类型

Lijie Wang

迷思

必要条件

数学化描述

>Trop

函数的类型

Lijie Wang

型类型

必要条件

数学化描述

证明

3

函数的类型

Lijie Wang

类型

必要条件

数学化描述

证明

若 f 是从有限集 A 到有限集 B 的函数 , 则有

• f 是单射的必要条件为 $|A| \leq |B|$;

函数的类型

Lijie Wang

类型

必要条件

....

YEAR

3P

- f 是单射的必要条件为 |A| ≤ |B|;
- f是满射的必要条件为 |A| ≥ |B|;

函数的类型

Lijie Wang

类型

必要条件

数学化描述

STEER

3P

- *f* 是单射的必要条件为 |*A*| ≤ |*B*|;
- f是满射的必要条件为 |A| ≥ |B|;
- f 是双射的必要条件为 |A| = |B|.

函数的类型

Lijie Wang

类型

必要条件

387-324 / L-444 /

证明

3

- f 是单射的必要条件为 |A| ≤ |B|;
- f是满射的必要条件为 |A| ≥ |B|;
- f 是双射的必要条件为 |A| = |B|.

函数的类型

Lijie Wang

类型

必要条件

数学化描述

证明

38

- f 是单射的必要条件为 |A| ≤ |B|;
- f是满射的必要条件为 |A| ≥ |B|;
- f 是双射的必要条件为 |A| = |B|.

函数的类型

Lijie Wang

类型

必要条件

数学化描述

证明

38

- *f* 是单射的必要条件为 |*A*| ≤ |*B*|;
- f是满射的必要条件为 |A| ≥ |B|;
- f 是双射的必要条件为 |A| = |B|.

函数的类型

Lijie Wang

类

必要条件

米ケージ(レナボン)

证明

387

- f 是单射的必要条件为 |A| ≤ |B|;
- f是满射的必要条件为 |A| ≥ |B|;
- f 是双射的必要条件为 |A| = |B|.

函数的类型

Lijie Wang

类

必要条件

数学化描述

Example

函数的类型

Lijie Wang

类型

必要条件

数学化描述

Example

•
$$f_1 = \{ \langle x, x^2 \rangle | x \in \mathbf{R} \};$$

函数的类型

Lijie Wang

类

必要条件

数学化描述

Example

- $f_1 = \{ \langle x, x^2 \rangle | x \in \mathbf{R} \};$ 一般函数
- $f_2 = \{ \langle x, x+1 \rangle | x \in \mathbf{R} \};$

函数的类型

Lijie Wang

突至

必要条件

数学化描述

正明

Example

- $f_1 = \{ \langle x, x^2 \rangle | x \in \mathbf{R} \};$ 一般函数
- $f_2 = \{ \langle x, x+1 \rangle | x \in \mathbf{R} \}; \ \overline{\mathbf{X}}$
- $f_3 = \{ \langle x, e^x \rangle | x \in \mathbf{R} \}.$

函数的类型

Lijie Wang

类型

必要条件

数学化描述

TERE!

Example

- $f_1 = \{ \langle x, x^2 \rangle | x \in \mathbf{R} \};$ 一般函数
- $f_2 = \{ \langle x, x+1 \rangle | x \in \mathbf{R} \}; \text{ } \nabla \mathbb{M}$
- $f_3 = \{ \langle x, e^x \rangle | x \in \mathbf{R} \}$. $\mathbf{\mathring{p}h}$

函数的类型

Lijie Wang

类型

必要条件

数学化描述

TERES

Example

设 $A = B = \mathbf{R}$, 试判断下列函数的类型。

- $f_1 = \{ \langle x, x^2 \rangle | x \in \mathbf{R} \};$ 一般函数
- $f_2 = \{ \langle x, x+1 \rangle | x \in \mathbf{R} \}; \text{ } \nabla \mathbf{M}$
- $f_3 = \{ \langle x, e^x \rangle | x \in \mathbf{R} \}$. **\pi**

☞ 函数类型的数学化描述

- $f: A \to B$ 是单射当且仅当对 $\forall x_1, x_2 \in A$, 若 $x_1 \neq x_2$, 则 $f(x_1) \neq f(x_2)$
- $f: A \to B$ 是满射当且仅当对 $\forall y \in B$, 一定存在 $x \in A$, 使得 f(x) = y ;

函数的类型

Lijie Wang

类型

必要条件

数学化描述

证明

Example

设 $A = B = \mathbf{R}$, 试判断下列函数的类型。

- $f_1 = \{ \langle x, x^2 \rangle | x \in \mathbf{R} \};$ 一般函数
- $f_2 = \{ \langle x, x+1 \rangle | x \in \mathbf{R} \}; \text{ } \nabla \mathbf{M}$
- $f_3 = \{ \langle x, e^x \rangle | x \in \mathbf{R} \}$. **\psi**

☞ 函数类型的数学化描述

- $f: A \to B$ 是单射当且仅当对 $\forall x_1, x_2 \in A$, 若 $x_1 \neq x_2$, 则 $f(x_1) \neq f(x_2)$
- $f: A \to B$ 是满射当且仅当对 $\forall y \in B$, 一定存在 $x \in A$, 使得 f(x) = y ;
- f: A → B 是双射当且仅当满足以上两点.

典型 (自然) 映射

函数的类型

Lijie Wang

类型

必要条件

数学化描述

Example

设 R 是集合 A 上的一个等价关系, $g: A \to A/R$ 称为 A 对商集 A/R 的典型 (自然) 映射, 其定义为 $g(a) = [a]_R, a \in A$. 证明典型映射是一个满射.

典型 (自然) 映射

函数的类型 Lijie Wang

Example

数学化描述

设 R 是集合 A 上的一个等价关系, $g: A \to A/R$ 称为 A 对商集 A/R 的典型 (自然) 映射, 其定义为 $g(a) = [a]_R, a \in A$. 证明典型映射是一个满射.

Proof.

由等价类的定义,对任意 $[a]_R \in A/R$,都有 $a \in A$,使得 $g(a) = [a]_R$,即任意 A/R 中的元素都有原像,根据满射的定义知,典型映射是满射.

函数的类型

Lijie Wang

必要条件

数学化描述

Example

设 $< A, \le >$ 是偏序集, 对任意 $a \in A$, 令 $f(a) = \{x | x \in A, x \le a\}$. 证明 f 是从 A 到 P(A) 的单射函数, 并且 f 保持 $< A, \le >$ 与 < P(A), $\subseteq >$ 的偏序关系, 即对任意 $a, b \in A$, 若 $a \le b$, 则 $f(a) \subseteq f(b)$.

函数的类型

Lijie Wang

必要条件

数学化描述

正明

Example

设 $< A, \le >$ 是偏序集, 对任意 $a \in A$, 令 $f(a) = \{x | x \in A, x \le a\}$. 证明 f 是从 A 到 P(A) 的单射函数, 并且 f 保持 $< A, \le >$ 与 < P(A), $\subseteq >$ 的偏序关系, 即对任意 $a, b \in A$, 若 $a \le b$, 则 $f(a) \subseteq f(b)$.

Proof.

函数的类型

Lijie Wang

必要条件

双于心脏

Example

设 $< A, \le >$ 是偏序集, 对任意 $a \in A$, 令 $f(a) = \{x | x \in A, x \le a\}$. 证明 f 是从 A 到 P(A) 的单射函数, 并且 f 保持 $< A, \le >$ 与 < P(A), $\subseteq >$ 的偏序关系, 即对任意 $a, b \in A$, 若 $a \le b$, 则 $f(a) \subseteq f(b)$.

Proof.

• 证明 f 是函数:

任取 $a \in A$, 由于 $f(a) = \{x | x \in A, x \leq a\} \subseteq A$, 所以 $f(a) \in P(A)$, 即 f 是从 A 到 P(A) 的函数。

函数的类型

Lijie Wang

必要条件

证明

Example

设 $< A, \le >$ 是偏序集, 对任意 $a \in A$, 令 $f(a) = \{x | x \in A, x \le a\}$. 证明 f 是从 A 到 P(A) 的单射函数, 并且 f 保持 $< A, \le >$ 与 < P(A), $\subseteq >$ 的偏序关系, 即对任意 $a, b \in A$, 若 $a \le b$, 则 $f(a) \subseteq f(b)$.

Proof.

- 证明 f 是函数:
 任取 a ∈ A, 由于 f(a) = {x|x ∈ A, x ≤ a} ⊆ A, 所以 f(a) ∈ P(A), 即 f 是从 A 到 P(A) 的函数。
- 证明 f 是单射:...

函数的类型

Liiie Wang

必要条件

致子 化加比

Example

设 $< A, \le >$ 是偏序集, 对任意 $a \in A$, 令 $f(a) = \{x | x \in A, x \le a\}$. 证明 f 是从 A 到 P(A) 的单射函数, 并且 f 保持 $< A, \le >$ 与 < P(A), $\subseteq >$ 的偏序关系, 即对任意 $a, b \in A$, 若 $a \le b$, 则 $f(a) \subseteq f(b)$.

Proof.

- 证明 f 是函数:
 任取 a ∈ A, 由于 f(a) = {x|x ∈ A, x ≤ a} ⊆ A, 所以 f(a) ∈ P(A), 即 f 是从 A 到 P(A) 的函数。
- 证明 f 是单射:...
- 证明保序性:...

函数的类型

Lijie Wang

类型

必要条何

数学化描述

证明

Continue...

Continue...

- 证明 f 是单射:
 对任意 a, b ∈ A, a ≠ b,
 - 1) 若 $a, b \in A, a \neq b$, 1) 若 a, b 存在偏序关系. 不妨设 $a \leq b$ (可
 - 1) 若 a, b 存在偏序关系, 不妨设 $a \le b$ (或 $b \le a$), 由于" \le "是反对称的, 所以 $b \ne a$ (或 $a \ne b$), 从而 $b \notin f(a) = \{x | x \in A, x \le a\}$, 而" \le "是自反的, 所以 $b \le b$, 即 $b \in f(b)$, 所以 $f(a) \ne f(b)$, 此时, f 是单射;
 - 2) 若 a, b 不存在偏序关系,则有 $a \nleq b$, 从而 $a \notin f(b) = \{x | x \in A, x \leqslant b\}$,而" \leqslant "是自反的,所以 $a \leqslant a$,即 $a \in f(a)$,所以 $f(a) \neq f(b)$,此时,f 仍是单射.因此对任意 a, $b \in A$,当 $a \neq b$,总有 $f(a) \neq f(b)$. 从而 f 是从 A 到 P(A) 的单射函数.

Continue...

- 证明 f 是单射:
 对任意 a, b ∈ A, a ≠ b.
 - 1) 若 a, b 存在偏序关系, 不妨设 $a \le b$ (或 $b \le a$), 由于" \le "是反对称的, 所以 $b \ne a$ (或 $a \ne b$), 从而 $b \notin f(a) = \{x | x \in A, x \le a\}$, 而" \le "是自反的, 所以 $b \le b$, 即 $b \in f(b)$, 所以 $f(a) \ne f(b)$, 此时, f 是单射;
 - 2) 若 a, b 不存在偏序关系,则有 $a \nleq b$, 从而 $a \notin f(b) = \{x | x \in A, x \leqslant b\}$,而" \leqslant "是自反的,所以 $a \leqslant a$,即 $a \in f(a)$,所以 $f(a) \neq f(b)$,此时,f 仍是单射.因此对任意 $a, b \in A$,当 $a \neq b$,总有 $f(a) \neq f(b)$. 从而 f 是从 A 到 P(A) 的单射函数.
- 证明保序性. 对任意 a, b ∈ A, 若 a ≤ b, 则任取 y ∈ f(a), 则 y ≤ a, 由 a ≤ b, 根据"≤"的传递性, 有 y ≤ b, 从而 y ∈ f(b), 所以 f(a) ⊆ f(b), 即保序性成立.

函数的类型

Lijie Wang

类型

北安水川

证明

THE END, THANKS!