Sets and Functions, Chapter Exercises

L. J.

May 26, 2020

1 Section 1

1.2 Mark each statement True or False. Justify each answer.

- (a) *False*. Let $A = \{x \in \mathbb{R} : x \text{ is prime}\}$ and let $B = \{x \in \mathbb{R} : x \text{ is divisible by 6}\}$. Then $A \cap B = \emptyset$, but $A \neq \emptyset$ and $B \neq \emptyset$.
- (b) *True*. Let $A = \{1,3,5\}$ and let $B = \{2,4,6\}$. Then $A \cup B = \{1,2,3,4,5,6\}$. If $x \in A \cup B$, then x is equal to one of those values. If x = 4, then it is also true that $x \in B$. By the same logic more generally, if $x \in A \cup B$, then $x \in A$ or $x \in B$.
- (c) False. If $x \in A \setminus B$, then $x \in A$ and $x \notin B$. Let $C = \{x : (x \in A) \land (x \in B)\}$. If $x \in C$, then if $x \in A \setminus B \Longrightarrow (x \in A) \lor (x \notin B)$, it is also true $x \in A \setminus B$. But this is at odds with the definition of the relative complement of B with respect to A.
- (d) *False*. It's fine to begin this way; the only nontrivial proof is one in which *S* is nonempty.

1.4 Let $A = \{2, 4, 6, 8\}$, $B = \{6, 8, 10\}$, and $C = \{5, 6, 7, 8\}$. Find the following sets.

- (a) $\{6, 8\}$
- (b) $\{2,4,6,8,10\}$
- (c) $\{2,4\}$
- (d) $\{6, 8\}$
- (e) {10}
- $(f) \{5,7,10\}$
- (g) Ø
- (h) $\{5,7\}$

1.6 Let A and B be subsets of a universal set U. Simplify each of the following expressions.

- (a) U
- (b) Ø
- (c) $A \cap B$
- (d) $A \cup B$
- (e) *A*
- (f) A

1.8 Let $S = \{\emptyset, \{\emptyset\}\}$. Determine whether each of the following is True or False. Explain your answers.

- (a) *True*. $\forall x \in \emptyset$, $x \in S$. Therefore, $\emptyset \subseteq S$.
- (b) *True.* S is strictly enumerated, and \emptyset is one of its elements.
- (c) *True*. $\{\emptyset\} \subseteq S$ because for all $x \in \{\emptyset\}$, $x \in S$. Unlike in (a), though, the proof is not vacuous; \emptyset is an element of both sets.
- (d) *True*. $\{\emptyset\}$ is an element in S, as defined by enumeration. (To contrast (c) and (d), $\{\{\emptyset\}\}$ would also be a valid subset of S.)

1.10 Fill in the blanks in the proof of the following theorem.

Theorem. $A \subseteq B$ iff $A \cup B = B$.

Proof. Suppose that $A \subseteq B = B$. If $x \in A \cup B$, then $x \in A$ or $x \in B$. Since $A \subseteq B$, in either case, we have $x \in B$. Thus $A \subseteq B$. On the other hand, if $x \in B$, then $x \in A \cup B$, so $A \subseteq B$. Hence $A \cup B$ B.

Conversely, suppose that $A \cup B = B$. If $x \in A$, then $x \in A \cup B$. But $A \cup B = B$, so $x \in B$. Thus $A \subseteq B$.

1.14 Which statements below would enable one to conclude that $x \in A \cup B$?

- (a) If $x \in A$ and $x \in B$, then $x \in A \cup B$.
- (b) If $x \in A$ or $x \in B$, then $x \in A \cup B$.
- (c) This statement tells us $A \subseteq B$, but does not let us conclude anything about x.
- (d) If $x \notin A$, then $x \in B$ implies that if $x \notin B$, then $x \in A$. Since x must always be either in A or B, we can conclude that $x \in A \cup B$.

1.16 Which statements below would enable one to conclude that $x \in A \setminus B$?

- (a) If $x \in A$ and $x \notin B \setminus A$, then x could be in $A \cap B$, so we cannot conclude that $x \in A \setminus B$.
- (b) If $x \in A \cup B$ and $x \notin B$, then $(A \cup B) \cap U \setminus B$. Equivalently, $A \cap U \setminus B \cup B \cap U \setminus B$, and $A \setminus B \cup \emptyset$, or $A \setminus B$. Therefore we can conclude that $x \in A \setminus B$.
- (c) If $x \in A \cup B$ and $x \notin A \cap B$, then $x \in A$ or $x \in B$. If $x \in A$, then $x \in A \setminus B$. But if $x \in B$, then $x \notin A \setminus B$. So we cannot conclude that $x \in A \setminus B$.

1.18 Prove that the empty set is unique. That is, suppose that A and B are empty and prove that A = B.

Proof. Suppose that A and B are empty sets. If A = B, then $A \subseteq B$ and $B \subseteq A$. If $A \subseteq B$, then if $x \in A$, $x \in B$. By the definition of an empty set, for all x, $x \notin \emptyset$. Therefore, for all x, $x \notin A$ and $x \notin B$. By logical implication, then, if $x \in A$, $x \in B$. This implies that $A \subseteq B$.

On the other hand. if $x \in B$, then $x \in A$. By the same argument, we conclude $B \subseteq A$. So, we have $A \subseteq B$ and $B \subseteq A$. Thus A = B.

1.20 Prove: $A \cap B$ and $A \setminus B$ are disjoint and $A = (A \cap B) \cup (A \setminus B)$.

Proof. Assume the conclusion that $(A \cap B) \cap (A \setminus B) = \emptyset$.

If $x \in (A \cap B)$, then $x \in A$ and $x \in B$. But then $x \notin (A \setminus B)$, because if $x \in A \setminus B$, then $x \in A$ and $x \notin B$. In other words, if $x \in (A \cap B)$, $x \in (A \setminus (A \setminus B))$. So $(A \cap B) \nsubseteq (A \setminus B)$.

Conversely, if $x \in (A \setminus B)$, then $x \in A$ and $x \in B$. But then $x \notin (A \cap B)$. So $(A \setminus B) \nsubseteq (A \cap B)$. Thus, $(A \cap B) \cap (A \setminus B) = \emptyset$. Therefore $(A \cap B)$ and $(A \setminus B)$ are disjoint. In other words:

$$(A \cap B) \cap (A \setminus B) \tag{1.1}$$

$$= (A \cap B) \cap (A \cap U \setminus B) \tag{1.2}$$

$$= (U \setminus A \cup U \setminus B) \cup (U \setminus A \cup B) \tag{1.3}$$

$$= (U \setminus A) \cup (U \setminus B \cup B) \tag{1.4}$$

$$= A \cap (B \cap U \setminus B) \tag{1.5}$$

$$= A \cap \emptyset \tag{1.6}$$

$$= \emptyset \tag{1.7}$$

Proof. To prove $A = (A \cap B) \cup (A \setminus B)$, first show that if $x \in (A \cap B) \cup (A \setminus B)$, then $x \in A$. If $x \in (A \cap B) \cup (A \setminus B)$, then $x \in (A \cup A \setminus B)$ and $x \in (B \cup A \setminus B)$. Suppose $x \in (A \cap B) \cup (A \setminus B)$. If $x \in A$, then $x \in (A \cup A \setminus B)$ and $x \in (B \cup A \setminus B)$, so $x \in (A \cap B) \cup (A \setminus B)$.

If $x \in B$, then $x \in (B \cup A \setminus B)$ (equivalently, $(A \cup B)$), but $x \notin (A \cup A \setminus B)$ (equivalently, A). So by necessity, we have $x \in A$, and $(A \cap B) \cup (A \setminus B) = A$.

On the other hand, suppose $x \in A$. Then $x \in (A \cap B)$ or $x \in (A \setminus B)$:

$$A \tag{1.8}$$

$$= A \cap U \tag{1.9}$$

$$= A \cap (B \cup U \setminus B) \tag{1.10}$$

$$= (A \cap B) \cup (A \cap U \setminus B) \tag{1.11}$$

$$= (A \cap B) \cup (A \setminus B) \tag{1.12}$$

Either way, $x \in (A \cap B) \cup (A \setminus B)$. So we have $A = (A \cap B) \cup (A \setminus B)$.

2 Section 2

2.2 Mark each statement True or False. Justify each answer.

- (a) *True*. If \mathscr{P} is a partition of S, then if x and y are in the same part of the partition, we can define xRy as an equivalence relation such that the equivalence classes are the same as \mathscr{P} .
- (b) *False*. If xRx for all $x \in S$, then R is reflexive. But not all relations are reflexive.
- (c) *False*. A partition of *S* can be defined by $\{E_x : x \in S\}$, where E_x represents an equivalence class. An equivalence class is defined by $E_x = \{y \in S : yRx\}$.
- (d) *True*. By definition, a partition \mathscr{P} consists of nonempty, disjoint sets such that for all $x \in S$, x belongs to some subset of \mathscr{P} .

2.4 Show that $\{a\} \times \{a\} = \{\{\{a\}\}\}\}$.

(a, b) is the set whose members are $\{a\}$ and $\{a, b\}$.

$$(a,b) = \{\{a\}, \{a,b\}\}$$

And the product of two sets *A* and *B* is

$$A \times B \{(a, b) : a \in A \text{ and } b \in B\}$$

Then,

$${a} \times {a} = {(a, a)}$$

= {{{a}, {a, a}}}.

Since a = a, $\{a, b\} = \{a\}$, and the above simplifies to

$$= \{\{\{a\}\{a\}\}\}\}\$$
$$= \{\{\{a\}\}\}\}.$$

2.6 Let A be be any set and let $B = \emptyset$. What can you conclude about $A \times B$?

Let A be any set, and let B be \emptyset . By definition,

$$A \times B = \{(a, b) : a \in A \text{ and } b \in B\}$$

and

$$\emptyset = \{x : \forall x, x \notin \emptyset\}.$$

Then if $B = \emptyset$, the product $A \times B$ requires that all the ordered pairs in the product have a first element in A and a second element in \emptyset . But now, $\forall b, b \notin B$, so there are no ordered pairs that satisfy the definition of the product of $A \times B$. Therefore, $A \times B = \emptyset$.

2.8 Let $A = \{1, 2\}$.

- (a) How many elements are in the set $A \times A$? $|A \times A| = 4$.
- (b) How many possible relations are there on the set A? A relation on A is any subset R of $A \times A$ ($R \subset A \times A$); any element can be in or out of the relation. So, what is the power set of *A*?

$$2^{|A \times A|} = 2^4 = 16$$

(c) How many possible relations are there on the set $\{1,2,3\}$? For A, we had |A| = 2. Let S be a generic set, n = |S| be the number of elements in the set, and |R| be the total number of possible relations on *S*. Then for S_n , we have $|R| = 2^{n^2}$. If $S = \{1, 2, 3\}$, then n = 3 and we have

$$|R| = 2^{(3^2)} = 2^9 = 512$$

possible relations.

2.10 Prove or give a counterexample.

(a) Let $A = \{2, 3\}$ and $B = \{0, -5\}$. Then

$$A \times B = \{(2,0), (2,-5), (3,0), (3,5)\}$$

and

$$B \times A = \{(0,2), (0,3), (-5,2), (-5,3)\}.$$

Therefore

$$A \times B \neq B \times A$$
.

(b) $(A \cup B) \times C = (A \times C) \cup (B \times C)$.

Let

$$A = \{x : x \in [0,3)\}$$

$$B = \{x : x \in (2, 4]\}$$

$$C = \{x : x \in [-2, 2]\}.$$

Then

$$(A \cup B) \times C = \{(x, y) : x \in [0, 4] \text{ and } y \in [-2, 2]$$

We have:

$$A \times C = \{(x, y) : x \in [0, 3) \text{ and } y \in [-2, 2]\}$$

$$B \times C \{(x, y) : x \in (2, 4] \text{ and } y \in [-2, 2]\}$$

and

$$(A \times C) \cup (B \times C) = \{(x, y) : x \in [0, 4] \text{ and } y \in [-2, 2]\}.$$

- (c) TK
- (d) TK

2.12 Find examples of relations with the following properties.

Let $S = \{p, q, r\}$. Then define the following relations R on S:

- (a) R is reflexive, but not symmetric or transitive. $R = \{(p, p), (q, q), (r, r,)\}$
- (b) R is symmetric, but not reflexive or transitive. $P = \{(p, q), (q, p), (r, q), (q, r)\}$
 - $R = \{(p,q), (q,p), (r,q), (q,r)\}$ R is transitive, but not symmetric or refle
- (c) R is transitive, but not symmetric or reflexive. $R = \{(p, q), (q, r), (p, r)\}$
- (d) R is reflexive and symmetric, but not transitive. $R = \{(p, p), (q, q), (r, r), (p, q), (q, p), (q, r), (r, q)\}$
- (e) R is reflexive and transitive, but not symmetric. $R = \{(p, p), (q, q), (r, r), (p, q), (q, r), (p, r)\}$
- (f) R is symmetric and transitive, but not reflexive. $R = \{(p,q), (q,p), (q,r), (r,q), (p,r), (r,p)\}$

2.14 Let $S = \mathbb{R} \times \mathbb{R}$. Verify that the relation (a, b)R(c, d) iff a + d = b + c is an equivalence relation. Describe the equivalence class $E_{(7,3)}$.

Rearrange the relation as:

$$a+d=b+c$$

$$a+d-c=b$$

$$a-c=b-d$$

The relation is reflexive: (a, b)R(a, b) gives

$$a - a = b - b$$
$$0 = 0$$

The relation is symmetric:

$$(c,d)R(a,b)$$

$$c-a=d-b$$

$$-c+a=-d+b$$

$$a-c=b-d$$

The relation is transitive:

$$(a,b)R(c,d) \land (c,d)R(m,n) \Longrightarrow (a,b)R(m,n)$$

The equivalence class $E_{(7,3)} = \{d \in S : d = c - 4\}$:

$$7 + d = 3 + c$$
$$d = c - 4$$

It describes a linear relationship.

2.16 Let $S = \mathbb{R} \times \mathbb{R}$. Define the equivalence relation R on S by (a,b)R(c,d) iff b-3a=d-3c.

(a) We can rearrange the relation as:

$$b-d=3a-3c$$
$$b-d=3(a-c)$$

So, *R* partitions *S* into parallel lines of the form y = 3x (+k).

(b) $E_{(2,5)}$ would be the part of the partition containing the point (2,5), which we obtain by substituting it for one-half of the ordered pairs:

$$b-3a = 5-3(2)$$

 $b-3a = -1x$ = $3a-1$

So the equivalence class is described by the linear relationship y = 3x - 1.

2.18 Let R be the relation $\{(1,1),(2,2),(3,1),(3,3)\}$ on the set $\{1,2,3\}$. If R is an equivalence relation, list the pieces of the partition determined by R, and if not, state why.

R is not an equivalence relation because it is not symmetric. $(3,1) \in R$ but $(1,3) \notin R$.

2.20 Let $S = \{a, b, c, d\}$ and let $P = \{\{a\}, \{b, c, d\}\}$. Describe the equivalence relation R on S determined by P by listing the ordered pairs in the relation.

We see that a is in a partition alone, but b, c and d are in a relation with each other, so the relation consists of the pairs

$$\{(a, a),$$

 $(b, b), (c, c), (d, d),$
 $(b, c), (b, d),$
 $(c, b), (c, d),$
 $(d, c), (d, b)\}.$

3 Section 3

3.2 Mark each statement True or False. Justify your answer.

(a) *True*. By the existence requirement of the definition of a function, for all a in A, there must exist some b in B such that f(a) = b. Since $C \subset A$, it follows that every

- c in C is also in A, and so for all c in C, there must be some b in B such that f(c) = b. Thus f(C) is a nonempty subset of B.
- (b) *False*. If f is surjective, it is a mapping form all elements in the domain A to all elements in B, that is to say the range of f is equal to its codomain. But though $f^{-1}(y)$ is guaranteed to exist for $y \in B$, it is not guaranteed to be one-to-one unless f is also injective. Therefore $f^{-1}(y)$ is a subset (\subset) of A, rather than an element in (\in) A.
- (c) *False*. If *B* is the codomain of *f* , and *D* is a subset of *B*, then unless *f* is surjective, there is no guarantee that *D* intersects the image of *A* in *B*.
- (d) *True*. Let $f: A \to B$ and $g: B \to C$ be surjective functions. Since g is surjective, the range of g is equal to C, and for all $b \in B$, there exists $c \in C$. Since f is surjective, the range of f is equal to g, and for all $g \in A$, there exists $g \in B$. So $g \circ f(g) = g(f(g)) = g(g) = c$. Therefore $g \circ f$ is surjective.
- (e) *True.* If f is bijective, then its domain is A and its range and codomain are B. Since f is a function, each x in f corresponds to only one y in B. Therefore, if $(x, y) \in f$, it must follow that the inverse of f is bijective as well, and $(y, x) \in f^{-1}$.
- (f) *False*. The identity function maps \mathbb{R} onto \mathbb{R} such that for all $x \in \mathbb{R}$, (i)x = x.

3.4 Find all possible functions $f: A \rightarrow B$ in each case below. Describe the functions by listing their ordered pairs.

- (a) $f = \{(1,5), (2,5), (3,5)\}.$
- (b) $f_1 = \{(4,5)\}, f_2 = \{(4,6)\}.$
- (c) $f_1 = \{(1,5), (2,6)\}, f_2 = \{(1,5), (2,5)\}, f_3 = \{(2,5), (1,6)\}, f_4 = \{(2,5), (1,6)\}$

3.6 Let $A \subset \mathbb{R}$ and define $f: A \to B$ as given below. In each case describe an A that is as large as possible while making f injective.

- (a) $A = [5, \infty)$ or $A = (-\infty, 5]$.
- (b) $A = [-0.5, \infty)$ or $A = (-\infty, -0.5]$.
- (c) $A = [-\frac{\pi}{2}, \frac{\pi}{2}]$ or $A = [\frac{\pi}{2}, \frac{3\pi}{2}]$ (for example).

3.8 Circles in the plane

- (a) Let *S* be the set of all circles in the plane. Define $f: S \to [0, \infty)$ by f(C) = the area of *C* for all $C \in S$.
 - Assuming a circle can have a radius r = 0, a function that maps all circles to the value of their area is surjective but not injective, because two circles at different coordinate positions can nonetheless have equal area.
- (b) Let T be the set of all circles in the plane that are centered at the origin. Define $g: T \to [0, \infty)$ by g(C) = the area of C for all $C \in T$.
 - Now, g is both injective and surjective; for every circle defined by radius length r in the interval $[0,\infty)$ there is an area g(C) in $[0,\infty)$, and since all circles are centered at the origin, any circle with the same area has the same radius length and is the same circle.

3.10 In each part, find a function $\mathbb{N} \to \mathbb{N}$ that has the desired properties.

(a) Surjective, but not injective:

$$f(x) = \begin{cases} x - 1, & \text{for } x > 1, \\ 1 & \text{for } x = 1. \end{cases}$$
 (3.1)

(b) Injective, but not surjective:

$$f(x) = 2x. (3.2)$$

(c) Neither surjective nor injective:

$$f(x) = 1 \tag{3.3}$$

(d) Bijective:

$$f(x) = x. (3.4)$$

3.14 Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = x^2$, Find $f^{-1}(T)$ for each of the following.

- (a) $\{-3,3\}$
- (b) $(-3, -2] \cup [2, 3)$
- (c) [-3,3]

3.16 Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = x^2$. Find examples to show that equality does not hold in parts (a), (b), and (c) of Theorem 2.3.16.

(a) Show that $C \neq f^{-1}[f(C)]$. Let C and C' be nonempty subsets of R such that $C \cap C' = \emptyset$ and f(C) = f(C'). In that case, $f^{-1}[f(C)] = C \cup C'$, and $C \subset C \cup C'$, so $C \neq f^{-1}[f(C)]$.

3.20 Suppose that $f: A \rightarrow B$ and suppose that $C \subset A$ and $D \subset B$.

(a) Prove or give a counterexample: $f(C) \subset D \iff C \subset f^{-1}(D)$. Suppose $f(C) \subset D$ and suppose $x \in C$. Since $C \subset A$, $x \in A$. Since $x \in C$, $f(x) \in f(C)$ and therefore $f(x) \in D$, by supposition. So $x \in A$, and $f(x) \in D$, meaning that $x \in f^{-1}(D)$, where $f^{-1}(D) = \{x \in C : f(x) \in D\}$.