Tecnologías de Red en Internet

Multiprotocol Label Switching (MPLS)

Temario

- Introducción
- Arquitectura y protocolos
- MPLS VPNs
- Ingeniería de Tráfico
- Calidad de servicio en IP y MPLS
- Otras aplicaciones de MPLS

Un poco de historia

Mediados de los 90', 2 tecnologías:

- ATM
 - tecnología de circuitos virtuales
 - Celdas de pequeño tamaño, tamaño uniforme
 - QoS garantizada
 - ALTA CAPACIDAD (para la época), facilitado por la búsqueda en la tabla de etiquetas
 - CARO
- IP
 - Tecnología de datagramas
 - Paquetes de tamaño variable (+ eficiente)
 - NO QoS
 - Capacidad moderada. Dificultad para realizar la búsqueda en la tabla de enrutamiento

Historia (cont.)

- Idea: integrar las ventajas de ambos
- Diversos fabricantes plantean soluciones propietarias
- 1997: formación del grupo de trabajo MPLS en la IETF
- Objetivos iniciales:
 - Incrementar la velocidad de forwarding de los enrutadores
 - Facilitar la interacción IP/ATM

Redes de datagramas (IP)

- Cada paquete se encamina de forma independiente, en base a la dirección de destino
- Cada enrutador realiza la búsqueda en la tabla de enrutamiento (forwarding) para cada paquete y elije el próximo salto
 - Algoritmo "longest prefix match"
- Difícil implementar QoS, reserva de recursos, etc.

Encaminamiento IP

Redes de circuitos virtuales

- Redes de CV tradicionales se basan en tener un camino (circuito virtual) establecido antes de comenzar a enviar datos
 - Puede establecerse por señalización o administrativamente
- En cada enlace, el CV se identifica por un valor de identificador de circuito virtual
- El identificador tiene sentido local al enlace
- El enrutador, de acuerdo al identificador de entrada, decide línea de salida e identificador de salida

Encaminamiento CV

Ventajas y desventajas de CV

- La búsqueda en la tabla de CV es mucho mas sencilla (y por tanto más rápida y barata)
- El camino se elige una vez, y se utiliza muchas (una por paquete)
 - Permite realizar reserva de recursos. Facilita QoS
- En principio todos los paquetes siguen el mismo camino
- Posibles dificultades ante la caída de nodos y enlaces
 - Debemos reconstruir los caminos
- Necesidad de establecer el CV para cada par origendestino

Objetivos iniciales de MPLS

- Acelerar el forwarding de paquetes IP, utilizando el paradigma de los Circuitos Virtuales
- Desacoplar el enrutamiento y el forwarding
- Permitir una mejor integración de IP y ATM
- Servir como base para el desarrollo de nuevas aplicaciones y servicios
 - Ingeniería de tráfico
 - VPNs provistas por el ISP
 - Redes multiprotocolo (no solo IP)
 - Calidad de servicio

Realidades

- La búsqueda en la tabla de forwarding IP ya no es un cuello de botella
 - ASICs especializados
- ATM prácticamente ha desaparecido
 - Y nunca fue muy popular la integración mediante MPLS
- PERO las aplicaciones que facilita MPLS lo han hecho extremadamente popular en proveedores y algunas grandes empresas

Multi Protocol Label Switching

- Definido en estándares de la IETF (múltiples RFCs)
- Arquitectura: RFC 3031, "Multiprotocol Label Switching Architecture"
- Por un lado, tendremos definiciones del formato de las etiquetas y el reenvío (forwarding)
 - Por ejemplo, RFC3032, "MPLS Label Stack Encoding"
- Por otro lado, los protocolos de señalización para definir los caminos y el significado de las etiquetas
- También definiciones de Operación y Mantenimiento, extensiones, generalizaciones...

Algunos nombres

- Etiqueta: 2 posibles usos
 - Valor de identificador de Circuito Virtual (20 bits)
 - Coloquialmente, encabezado donde va el valor de la etiqueta (32 bits)
- Upstream ("aguas arriba"): más cerca del origen
- Downstream: más cerca del destino
- LSR: Label Switch Router. Enrutador que basa el forwarding en la etiqueta MPLS
- LER: Label Edge Router. Enrutador en el borde de la red MPLS, encargado de recibir paquetes IP y reenviarlos con etiquetas
- LSP: Label Switched Path. Camino que recorre un paquete (equivalente a un Circuito Virtual)

Nomenclatura

- LSR: R1, R2, R3
- LER: R1, R3
- R1 enrutador de ingreso
- R3 enrutador de egreso
- R1 upstream de R2

- R2 upstream de R3
- R3 downstream de R2
- R2 downstream de R1

¿Qué es un LSP (Label Switched Path)?

- Camino desde el enrutador de entrada al enrutador de salida, formado por una sucesión de valores de etiqueta
- Cada enrutador tendrá la relación entre la etiqueta de entrada y la etiqueta de salida
- El enrutador de ingreso le agregará una etiqueta
- Los enrutadores intermedios harán "label swap", simplemente cambiando la etiqueta de entrada por otra de salida
- El enrutador de egreso retirará la etiqueta y encaminará el paquete

LSP

Tabla de etiquetas simplificada

 Simplificadamente, cada enrutador mantendrá una tabla con el mapeo de etiqueta de entrada a etiqueta de salida

Interfaz entrada	Etiqueta entrada	Interfaz Salida	Etiqueta Salida
i1	2001	04	18
i1	2002	02	143
i2	2003	04	17

Espacio de etiquetas

- Las etiquetas son locales
- En general la asigna el que la va a recibir

- Dos políticas de asignación de las etiquetas:
 - Espacio de etiquetas por interfaz: se asignan independientemente por cada interfaz
 - Espacio de etiquetas por plataforma: independientemente de la interfaz, el mismo valor de etiqueta tendrá el mismo comportamiento de salida

Funciones necesarias

- Las funciones primitivas a realizar sobre los paquetes son solo 3:
 - Label push: agregar una etiqueta
 - Label swap: cambiar una etiqueta por otra
 - Label pop: quitar una etiqueta

Clases de equivalencia (FEC)

- Se hace una partición de todos los paquetes en clases de equivalencia, FECs (del Inglés, Forwarding Equivalence Class)
- Grupos de paquetes que serán reenviados de la misma manera
- Por ejemplo, en enrutamiento IP tradicional, las clases se determinan de acuerdo al algoritmo de "longest prefix match" sobre la dirección IP de destino
- Los paquetes de la misma clase seguirán todos el mismo camino

FEC

- El concepto de FEC provee gran flexibilidad y escalabilidad
- En MPLS la FEC se determina en el LER de entrada no en cada router
- Paquetes con distinto destino pueden agruparse en la misma FEC
- Posibles criterios de FEC
 - IP Destino
 - IP Origen IP Destino
 - IP Origen IP Destino puerto origen puerto destino
 - "Todos los que pertenecen a la VPN de Cliente1"
 - Etc.

LSR. Asociación Label - FEC

Stack de etiquetas

- Es útil tener un modelo más general en el cual un paquete pueda llevar un conjunto de etiquetas de modo LIFO: "label stack".
- El procesamiento se basa siempre en la etiqueta externa
- Este mecanismo habilita:
 - MPLS jerárquico
 - Agregación
 - Aplicaciones de transporte y VPNs

MPLS Jerárquico

Agregación

Para enviar un paquete al LSR A no se necesita saber si su destino es C o D.

La agregación simplifica las tablas en el corazón de la red.

Mapeos

- Conceptualmente varias tablas indican qué hacer con el tráfico
- Tabla NHLFE: Next Hop Label Forwarding Entry. Indica las acciones a realizar sobre el paquete
- FTN: FEQ a NHLFE
 - Mapea la clase de equivalencia (FEC) de entrada, a la operación de salida
 - Para los paquetes que vienen sin etiquetar
- ILM: Etiqueta a NHLFE
 - Realiza el mismo mapeo para paquetes ya etiquetados

NHLFE: Next Hop Label Forwarding Entry

- Tabla que dice que hacer con el paquete: modificaciones a hacer, y a donde enviarlo
- Tabla conceptual, implementaciones varían
- Posibles acciones
 - Eliminar una etiqueta (pop)
 - Agregar una etiqueta (push)
 - Cambiar la etiqueta exterior por otra
- Información de reenvío
 - Próximo salto
 - Interfaz de salida
 - Etc.

NHLFE

NH.	Operation	Label	Interf.	Data Link
(1) Ra	Label Swap	30	i1	Frame Relay
(2) Rb	Label Swap	43	i1	Frame Relay
(3) Rc	Label Pop		i0	Ethernet
(4) Rd	Label Swap Label Push	56 70	i2	Ethernet
• • •				

UdelaR - Fing - IIE - Tecnologías de Red en Internet

Codificación de etiquetas

- RFC 3032
- Encapsulamiento genérico (frame mode)
 - Usado en Ethernet, PPP, etc.
 - Se agrega un encabezado (shim header) entre capa 2 y capa 3
- Cell mode (representación en VPI/VCI ATM)
 - En desuso

Formato del encabezado MPLS

- El stack de etiquetas es representado por una secuencia de "label stack entries". Cada entrada es representada por 4 bytes.
- El paquete de la capa de red sigue inmediatamente después del stack de etiquetas. La última entrada tiene el bit S seteado.
- Las entradas del stack de etiquetas aparecen después del encabezado de la capa de enlace pero antes de cualquier encabezado de la capa de red.

Codificación de Label Stack Entries

Etiqueta Exp S TTL

- Etiqueta (label): valor de 20 bits
- Exp: 3 bits "experimentales". Usados para QoS
- TTL: Time to live (8 bits). Contador de saltos, sirve para descartar paquetes en caso de loops
- Bit S: Bottom of Stack. Si tengo más de una etiqueta, indica cuál es la última

Etiquetas especiales

- Los valores 0 a 15 están reservados
- 0 "IPV4 Explicit NULL"
- 1 "Router Alert"
- 2 "IPV6 Explicit Null"
- 3 "Implicit NULL" se distribuye pero no aparece en el cabezal

Penultimate hop popping

- PHP: retiro de la etiqueta en el penúltimo nodo
- Optimización, ya que el último nodo debería retirarla y luego hacer la búsqueda de acuerdo al siguiente encabezado
- Se acuerda entre el último y penúltimo (se anuncia la etiqueta "implicit null")

Manejo del TTL

- El campo TTL cumple la misma función que el correspondiente de IP, descartar paquetes que quedaron en loop
- El TTL de MPLS se setea en el LER de ingreso
- En principio se copia del campo TTL de IP
- Permite que el traceroute funcione aunque pasemos por una red MPLS
- Puede evitarse este comportamiento (para que los nodos MPLS no sean visibles en el traceroute)
- Si el contenido no es IP, se pone un TTL genérico al ingreso a la red

Penultimate hop popping

- PHP: retiro de la etiqueta en el penúltimo nodo
- Opción pensada para optimización, ya que el último nodo debería retirarla y luego hacer la búsqueda de acuerdo al siguiente encabezado
- Se acuerda entre el último y penúltimo (se anuncia la etiqueta "implicit null")
- No siempre se usa

Funciones de los distintos nodos

- LER de ingreso
 - Clasificar el paquete entrante en la FEC correspondiente
 - De acuerdo al mapeo FEC NHLFE, agregarle las etiquetas que corresponda y enviarlo al próximo salto
- LER de tránsito
 - Realizar el swap de etiqueta correspondiente
 - Enviar el paquete con tag al próximo salto
- LER de egreso
 - Retirar (al menos) el tag externo. Si lo que obtengo es un paquete tagueado, enviarlo de acuerdo a la tabla NHLFE. Si no está tagueado, reenviarlo utilizando la tabla de enrutamiento
 - Puede haber recibido el paquete sin tag (si se realizó el PHP (retiro de la etiqueta en el penúltimo salto))

Plano de control: distribución de etiquetas

- Podemos configurar los mapeos de forma estática
 - Muy trabajoso
- En general, protocolos de distribución de etiquetas
- Enviarán el mapeo de cada FEC a un valor de etiqueta
- Casi todos los protocolos actuales precisan tener una red IP corriendo previamente
 - Ya que intercambian la información mediante IP

Protocolos de distribución de etiquetas

- LDP: Label distribution protocol
 - Propaga el mapeo de rutas internas a etiquetas
 - El encaminamiento obtenido coincide con el obtenido sin MPLS
- BGP
 - Carrying Label Information in BGP-4 (RFC 3107)
 - Para rutas de VPNs capa 3: Multiprotocol BGP
- RSVP-TE
 - Utilizado para ingeniería de tráfico
 - Junto con OSPF-TE (o ISIS-TE)
 - Permite fijar caminos administrativamente, o de acuerdo a restricciones como ancho de banda

Asignación y distribución de etiquetas

- Las etiquetas siempre las genera el enrutador downstream (más cerca del destino)
 - Recibirá paquetes con las etiquetas que el generó
- 2 modos de distribución de etiquetas:
 - Modo de control de LSP Ordenado
 - Si no soy el LSR de egreso, espero a recibir etiquetas del enrutador aguas abajo antes de enviar mis etiquetas
 - Modo de control de LSP Independiente
 - En cuanto genero mis propias asociaciones de etiquetas, puedo enviarlas

Modos de distribución: no solicitado vs. a demanda

- En el modo no solicitado, distribuyo todas las asociaciones locales a todos los enrutadores
 - Unsolicited Downstream
- En el modo a demanda (downstream-on-demand), solo envío las asociaciones que los demás enrutadores me solicitan
 - Utilizado en ATM e ingeniería de tráfico

Modos de retención

- Modo liberal: guardo todas las asociaciones que me hayan enviado, aunque ahora no las vaya a usar
 - Consume más memoria
 - Convergencia más rápida cuando los precise
- Modo conservador: solo retengo las asociaciones que preciso en este momento
 - Tendré que esperar a recibirlas nuevamente cuando cambie la topología

Espacios de etiquetas

- Espacio global: la etiqueta tiene un significado global, no importa por donde llegue el paquete
- Espacio por interfaz: cuando se genera una etiqueta para la FEC tomando en cuenta la interfaz de entrada
 - El mismo valor de etiqueta, para distintas interfaces de entrada, puede mapear a distinta FEC

Resumen por protocolo

Método de distribución	Control	Distribución	Retención	Espacio de etiquetas
LDP en modo frame	No ordenado	No solicitado	Liberal	Por plataforma
LDP en modo Celda	Ordenado	A demanda	Conservador	Por interface
RSVP-TE	Ordenado	A demanda	Conservador	Por plataforma

LDP: Label Distribution Protocol

- RFC 5036 (anteriormente RFC 3036)
- En el funcionamiento por defecto, LDP asigna una etiqueta a cada prefijo de la tabla de enrutamiento del IGP
 - Rutas estáticas, conectadas, aprendidas por OSPF, RIP, etc.
- Anuncia esta asignación a todos los vecinos LDP
- En la dirección downstream, utiliza la etiqueta que le anuncie el próximo salto de la tabla de enrutamiento
- Obtenemos el mismo camino que obtendríamos sin MPLS

4 funciones básicas de LDP

- Descubrimiento de vecinos
 - Paquetes Hello sobre UDP puerto 646
 - Similar a OSPF
- Establecimiento y mantenimiento de sesión
 - Sobre TCP puerto 646
- Anuncio de etiquetas
- Notificación

Descubrimiento de vecinos

- 2 tipos de sesiones:
 - Vecinos directamente conectados
 - Vecinos NO directamente conectados
 - Deben ser alcanzables por IP
 - Deben configurarse explícitamente
 - No los veremos ahora
- En el caso directamente conectado, se envían mensajes LDP Hello encapsulados en UDP, a la dirección 224.0.0.2 (all routers)
- Se configura habilitando MPLS en la interfaz
- Hello cada 5 segundos, hold-time 15 seg.

Establecimiento de sesión

- En el Hello se indica la dirección a la cual establecer la sesión TCP
 - Por defecto, elegirá una dirección de loopback del equipo (la mayor)
 - Puede configurarse explícitamente
- Esa dirección deberá ser alcanzable!!!
 - Si no se establece la sesión, verificar conectividad entre ambas direcciones
- Se elegirá uno como activo (IP mayor), este establecerá la sesión TCP

Establecimiento de sesión (cont.)

- Intercambio de parámetros (modo (no solicitado o a demanda), hold-time, etc.)
- Luego se enviarán keepalives periódicos
 - Independientes de los Hello por UDP
- Aunque tenga más de un enlace entre dos vecinos, se establecerá una única adyacencia
 - Excepto en el caso de ATM que no veremos

Intercambio de etiquetas

- 7 mensajes
 - Address
 - Address-withdraw
 - Con estos 2 mensajes, cada LSR mantiene una lista de las IPs de las interfaces del vecino
 - Necesario para saber si es el "next-hop" de una ruta
 - Label Request
 - Label Abort Request
 - En modo On Demand
 - Label Mapping
 - Label Withdraw
 - Label Release

Mapeo de etiquetas (label mapping)

- El mensaje "label mapping" incluye una FEC, y un valor de etiqueta a asociar
- En LDP básico, la FEC corresponde con una red (una IP y una máscara)
- Se avisa que deja de ser válido con el mensaje "label withdraw"

Notificación

- Informe de problemas
- Errores
 - solo para errores fatales
 - Envía el mensaje y da de baja la sesión
 - Borra todos los mapeos de etiquetas aprendidos de ese vecino
- Notificaciones "informativas"
 - Warnings, sigue funcionando

Esquema de funcionamiento

Ejemplo: Enrutamiento interno

Ejemplo: LDP

Ejemplo: LDP

Detalles sobre el ejemplo

- Ra seguramente anuncie la etiqueta "implicit null", de forma que Rb y Rc hagan PHP (penúltimo retira etiqueta)
- Aunque no los usen, todos los routers guardarán todas las asociaciones (por si cambia el mejor camino)

Interacción de MPLS/LDP con BGP

- Cuando un prefijo se propaga por BGP interno, se mantiene el próximo salto
- Podemos definir una FEC que sea "todos los paquetes que van al mismo próximo salto de BGP"
- A cada prefijo de BGP, le asociamos la etiqueta que corresponde con el next-hop
 - Muchos prefijos utilizarán la misma etiqueta
 - Esto se hace automáticamente
- Los enrutadores internos no precisarán hablar BGP, solo saber cómo llegar al next-hop

Traceroute en la red MPLS

- Importante herramienta de debug
- ¿cómo hacerla funcionar en MPLS?
 - Puede suceder que el router intermedio no tenga una ruta para llegar al origen del traceroute
 - Como el ejemplo que vimos de BGP
 - O cuando tengamos VPNs
 - Se envía el paquete ICMP por el LSP original, y el router de salida es el encargado de enviarlo al origen
 - Reutilizo el stack original de etiquetas (cambiando el TTL)
 - No es el mismo camino que seguiría en IP
 - En particular el retardo no es hasta el salto "n"

Traceroute en IP

Traceroute en IP sobre MPLS

Formato de algunos mensajes LDP

Encabezado LDP.

Común a todos los mensajes

Version	PDU Length			
LDP Identifier				
LDP Identifier (cont)				

Versión: 1

PDU Length: largo sin contar los campos Version y PDU Length

LDP Identifier: 6 octetos. Los 4 primeros son el Router-id, los últimos 2

octetos identifican un "espacio de etiquetas", en general "0"

Formato de mensajes

Tipos de mensaje

Message Name	Type
Notification Hello Initialization KeepAlive Address Address Withdraw Label Mapping Label Request	0x0001 0x0100 0x0200 0x0201 0x0300 0x0301 0x0400
Label Withdraw Label Release Label Abort Request Vendor-Private Experimental	0x0402 0x0403 0x0404 0x3E00- 0x3EFF 0x3F00- 0x3FFF

Mensaje Hello

```
0
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
101
    Hello (0x0100)
                           Message Length
               Message ID
Common Hello Parameters TLV
               Optional Parameters
Message ID
  32-bit value used to identify this message.
Common Hello Parameters TLV
  Specifies parameters common to all Hello messages.
```

Mensaje Hello (cont.)

- Dentro de los parámetros comunes tenemos el Hold time, si es un "targeted hello", y otras flags
- Dentro de los parámetros opcionales puede estar la IPv4 o IPv6 a la cual hay que establecer la sesión TCP, y el nº de secuencia de la configuración (para detectar cambios)

Ejemplo: Label mapping (binding)

MPLS e IPv6

- RFC 7439 (Enero 2015): Gap Analysis for Operating IPv6-Only MPLS Networks
- Transporte de IPv6 (plano de datos): OK
- Señalización de servicios IPv6: OK
- Plano de control y Mgmt. sobre IPv6: NOK
 - LDP: Especificación no tiene suficiente detalle para garantizar interoperabilidad
 - RFC 7552: Updates to LDP for IPv6 (Junio 2015)
 - Otras faltas
- Implementaciones "recientes"
- Aún podemos encontrar problemas si trabajamos con una red "IPv6 only"

Transición: 6PE

- Uno de los mecanismos de transición
- RFC 4798: Connecting IPv6 Islands over IPv4 MPLS Using IPv6 Provider Edge Routers (6PE)
- Utiliza BGP multiprotocolo
 - AFI: IPv6, SAFI: Label
 - Se envía el prefijo IPv6, como next-hop la IPv4 del PE mapeada en IPv6 (::FFFF:x.y.z.w), y una etiqueta
- PE de entrada utiliza un stack de 2 etiquetas
 - Etiqueta exterior: Lleva a la IPv4 del PE destino
 - Etiqueta interior: la propagada por BGP
- Enrutadores P solo ven la etiqueta exterior

6PE: distribución de rutas

6PE: Tráfico

