Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-229. Вариант 17

- 1. Пусть $z=2\sqrt{3}+2i$. Вычислить значение $\sqrt[5]{z^2}$, для которого число $\frac{\sqrt[5]{z^2}}{1-\sqrt{3}i}$ имеет аргумент $-\frac{2\pi}{5}$.
- 2. Решить систему уравнений:

$$\begin{cases} x(11-4i) + y(11-6i) = 55-62i \\ x(12-8i) + y(-5+6i) = 179-123i \end{cases}$$

- 3. Найти корни многочлена $-4x^6 + 4x^5 40x^4 + 160x^3 + 4x^2 804x + 680$ и разложить его на множители над \mathbb{R} и \mathbb{C} , если известны корни $x_1 = -1 4i$, $x_2 = 2 + i$, $x_3 = -2$.
- 4. Даны 3 комплексных числа: -21-12i, -11+29i, -20-18i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = -3$, $z_2 = -\frac{3\sqrt{3}}{2} \frac{3i}{2}$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z - 3 + 5i| < 2\\ |arg(z - 6 - 3i)| < \frac{3\pi}{4} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (-10, -3, 9), b = (7, -3, 0), c = (5, -3, 1). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(-11,6,-14) и плоскость P:-12x-14y+122=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(-6, -8, 12), $M_1(-3, -11, 6)$, $M_2(10, 2, 6)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} -31x + 3y - 14z + 499 = 0 \\ -12x - 14y - 10z + 178 = 0 \end{cases}$$

$$L_2: \begin{cases} -19x + 17y - 4z + 2985 = 0 \\ -6x - 20y - 11z - 652 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L_1 и L_2 .