Solution (18.1):

- (a) The function $f(z) = z^n$ is analytic on \mathbb{C} .
- (b) The functions $f(z) = \sin(z)$ and $f(z) = \cos(z)$ are analytic on \mathbb{C} , while $f(z) = \tan(z)$ is analytic everywhere except for singularities at $n\pi/2$.
- (c) The function f(z) = |z| is analytic nowhere.
- (d) The function $f(z) = \frac{z-i}{z+1}$ is analytic everywhere except for z = -1.
- (e) The function $f(z) = \frac{z^2+1}{z}$ is analytic everywhere except for z = 0.
- (f) The function $f(z) = \frac{p_n(z)}{q_m(z)}$ is analytic everywhere except for the roots of q.
- (g) The function $x^2 + y^2$ is analytic nowhere.
- (h) The function e^z is analytic on \mathbb{C} .
- (i) The function e^{-iy} is analytic nowhere.
- (j) The function ln(z) is analytic everywhere except for $(-\infty, 0]$.

Solution (18.2): Let w(z) = u(x, y) + iv(x, y). Then,

$$\begin{split} i\frac{\partial}{\partial x}(w(x+iy)) - \frac{\partial}{\partial y}(w(x+iy)) &= i\frac{\partial}{\partial x}(u(x,y)+iv(x,y)) - \frac{\partial}{\partial y}(u(x,y)+iv(x,y)) \\ &= i\bigg(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}\bigg) - \bigg(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\bigg). \end{split}$$

Thus, we get

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

Solution (18.4): We see that, when we have w(z) = u(x, y) + iv(x, y), that

$$\nabla \mathbf{u} = \begin{pmatrix} \frac{\mathrm{d}\mathbf{u}}{\mathrm{d}x} \\ \frac{\mathrm{d}\mathbf{u}}{\mathrm{d}y} \end{pmatrix}$$

$$\nabla \mathbf{v} = \begin{pmatrix} \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}x} \\ \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}x} \end{pmatrix}.$$

We note that curves of constant u and v are orthogonal if and only if the normal vectors are orthogonal, meaning

$$\begin{split} (\nabla u) \cdot (\nabla v) &= \frac{du}{dx} \frac{dv}{dx} + \frac{du}{dy} \frac{dv}{dy} \\ &= \frac{dv}{dy} \frac{dv}{dx} - \frac{dv}{dx} \frac{dv}{dy} \\ &= 0. \end{split}$$

Solution (18.5): We see that

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial v}{\partial x \partial y}$$
$$\frac{\partial^2 u}{\partial y^2} = -\frac{\partial v}{\partial x \partial y},$$

so

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$$

Symmetrically, we also have that ν satisfies Laplace's equation.

Solution (18.6):

(a) We start by writing everything in terms of z, so we have w(z) = u(z) + iv(z). Since w is complex-differentiable, by linearity we have

$$w'(z) = \frac{\mathrm{d}u}{\mathrm{d}z} + i\frac{\mathrm{d}v}{\mathrm{d}z}.$$

We write z = x + iy, or $x = \frac{z + \overline{z}}{2}$, $y = \frac{z - \overline{z}}{2i}$.

$$= \frac{\partial u}{\partial x} \frac{\partial x}{\partial z} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial z} + \frac{\partial v}{\partial x} \frac{\partial x}{\partial z} + \frac{\partial v}{\partial y} \frac{\partial y}{\partial z}$$
$$= \frac{1}{2} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + i \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) \right).$$

(b) We have that

$$\begin{split} \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} &= \frac{\partial u}{\partial y} + i \frac{\partial v}{\partial y} \\ &= \frac{1}{2} \bigg(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + i \bigg(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \bigg) \bigg). \end{split}$$

Thus, by tedious algebraic manipulations heavily prone to error, we recover the Cauchy-Riemann equations:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

Solution (18.7): We find that

$$\frac{dw}{dz} = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$$
$$= 1$$
$$= \frac{\partial u}{\partial y} + i \frac{\partial v}{\partial y}$$
$$= -i.$$

Since these derivatives are path-dependent, we have that $w(z) = \overline{z}$ is not differentiable.

Solution (18.11): Using the scale factors, we recall that $d\mathbf{x} = d\mathbf{r} + r d\phi$, so the derivatives with respect to ϕ pick up a scale term of $\frac{1}{r}$. This yields our desired Cauchy–Riemann equations in polar form:

$$\frac{du}{dr} = \frac{1}{r} \frac{dv}{d\phi}$$
$$\frac{1}{r} \frac{du}{d\phi} = -\frac{dv}{dr}.$$

Solution (18.14): We know that $\frac{1}{z^m}$ is defined for all $z \in \mathbb{C} \cup \{\infty\} \setminus \{0\}$, so we only need to show that if $z \neq 0$, then $\frac{1}{z^m}$ admits a derivative. We see that

$$\frac{\mathrm{d}}{\mathrm{d}z} \left(\frac{1}{z^{\mathrm{m}}} \right) = \frac{-\mathrm{m}}{z^{\mathrm{m}+1}},$$

which is yet again defined for all $z \neq 0$, so $\frac{1}{z^m}$ is analytic on its domain.

Solution (18.15):

$$\oint_C \frac{1}{z^n} dz = \oint_C \left(r^{-n} e^{-in\varphi} \right) i r e^{i\varphi} d\varphi$$

$$= \frac{1}{r^{n-1}} \int_0^{2\pi} i e^{-i(n-1)\phi} d\phi$$

= 0.

Solution (18.18):

(a)

(b)

(c)

(d)

