>>introduction

Continuous-time state-space model. Model Properties

sys =

$$\frac{1}{s^2 + 0.2 + 1}$$

Continuous-time transfer function. Model Properties

$$\frac{1}{s^2 + 0.2 s + 1}$$

Continuous-time transfer function.
Model Properties
>>

```
State-space model:
```

cruise_ss =

Continuous-time state-space model.

Model Properties

Transfer function model:

P_cruise =

$$1000 s + 50$$

Continuous-time transfer function.

Model Properties

>>

MATLAB Command Window

Page 1

Continuous-time transfer function. Model Properties

State-space model for motor:

motor_ss =

A =		_
	x1	x2
x1	-5000	1
x2	-0.02	-2
B =		
	u1	
x1	0	
x2	2	
C =		
	x1 x	2
у1	1	0
D =		
	u1	

Continuous-time state-space model. Model Properties

>>

y1 0

Transfer function model:

P_cruise =

$$\frac{1}{1000 \text{ s} + 50}$$

Continuous-time transfer function.
Model Properties
State-space model for motor:

motor_ss =

$$B = u1$$

$$x1 \quad 0$$

$$x2 \quad 2$$

$$D = u1$$
$$y1 0$$

Continuous-time state-space model.
Model Properties
>> Motor_speed

Transfer function model:

P_cruise =

Continuous-time transfer function.
Model Properties
State-space model for motor:

motor_ss =

Continuous-time state-space model.
Model Properties
>> Motor_Position

P motor =

 $8.878e-12 \text{ s}^3 + 1.291e-05 \text{ s}^2 + 0.0007648 \text{ s}$

Continuous-time transfer function. Model Properties

motor ss =

$$D = u1$$
$$y1 \quad 0$$

Continuous-time state-space model.
Model Properties
>> Motor Position

P_motor =

0.0274

 $8.878e-12 s^3 + 1.291e-05 s^2 + 0.0007648 s$

Continuous-time transfer function. Model Properties

motor_ss =

$$B = \begin{array}{ccc} & & & u1 \\ & x1 & & 0 \\ & x2 & & 0 \\ \end{array}$$

D = u1y1 0

Continuous-time state-space model.
Model Properties
>>

>> suspension
Transfer function G1:

G1 =

 $800000 \text{ s}^4 + 3.854e07 \text{ s}^3 + 1.481e09 \text{ s}^2 + 1.377e09 \text{ s} + 4e10$

Continuous-time transfer function.

Model Properties

Transfer function G2:

G2 =

$$-3.755e07$$
 s³ - 1.25e09 s²

 $800000 \text{ s}^4 + 3.854e07 \text{ s}^3 + 1.481e09 \text{ s}^2 + 1.377e09 \text{ s} + 4e10$

Continuous-time transfer function.

Model Properties

>>

>> Inverted pendulum

 $sys_t =$

From input "u" to output...

4.182e-06 s^2 - 0.0001025

x: 2.3e-06 s^4 + 4.182e-07 s^3 - 7.172e-05 s^2 - 1.025e-05 s

1.045e-05 s

phi: 2.3e-06 s^3 + 4.182e-07 s^2 - 7.172e-05 s - 1.025e-05

Continuous-time transfer function.

Model Properties

sys_ss =

A =

	X	x_dot	phi	phi_dot
X	0	1	0	0
x_dot	0	-0.1818	2.673	0
phi	0	0	0	1
phi dot	0	-0.4545	31.18	0

B =

x 0
x_dot 1.818
phi 0
phi dot 4.545

C =

D =

x 0 phi 0

Continuous-time state-space model. Model Properties

 $sys_tf_ss =$

```
From input "u" to output...

1.818 s^2 + 4.845e-15 s - 44.55

x:

s^4 + 0.1818 s^3 - 31.18 s^2 - 4.455 s

4.545 s - 7.774e-16

phi:

s^3 + 0.1818 s^2 - 31.18 s - 4.455
```

Continuous-time transfer function.
Model Properties
>>

>> Aircraft_pitch

pitch ss =

$$B = u1$$
 $x1 \quad 0.232$
 $x2 \quad 0.0203$
 $x3 \quad 0$

$$D = u1$$
$$y1 0$$

Continuous-time state-space model. Model Properties

$$\frac{1.151 \text{ s} + 0.1774}{\text{s}^3 + 0.739 \text{ s}^2 + 0.921 \text{ s}}$$

Continuous-time transfer function.
Model Properties
>>

Continuous-time transfer function. Model Properties

$$D = u1$$
$$y1 \qquad 0$$

Continuous-time state-space model.
Model Properties
>>