

01MIAR - Python 101, Data Types

Luis Pilaguano

Examen del Tercer Parcial

Regresión lineal

Dado el archivo **movie_genre_classification_final.csv** se encuentra un base de datos con información de **50000 películas** que incluyen variables como:

- Título,
- Año de estreno,
- Duración,
- Puntuación promedio,
- Número de votos,
- Presupuesto,
- Ingresos en taquilla,
- Número de premios obtenidos,
- Entre otras caracterisiticas. Como parate del análisis de predicción, se desea estudiar la relación entre el:
- Presupuesto de una película y sus caracteristicas cuantitativas, para estimar la recaudación en taquilla (BoxOffice_USD). Para ello, se plantea entrenar un modelo de regresión lineal.

Objetivo

Predecir el valor de la variable **BoxOffice_USD** a partir de variables numéricas independientes disponibles en el dataset, tales como:

• Budget_USD (Presupuesto en dólares)

- Duration (Duración en minutos)
- Ratting (Calificiación Promedio"
- Votes (Número de votos)
- Num_Awards (Número de premios obtenidos)
- Critic_reviews (Números de reseñas de criticos)

El dataset fue extraido desder DataSet

Entrega esperada

- Código bien estructurado y comentado
- Gráficos claros en los pasos 2, 4 y 5.
- Breve análisis escrito de lso los resultados obtenidos.

```
In [12]: # Lectura de datos
   import pandas as pd
   # Cargar el archivo CSV
   df = pd.read_csv("res/movie_genre_classification_final.csv")
   # Mostrar Las primeras 5 filas
   df.head(20)
```

	Title	Year	Director	Duration	Rating	Votes	Description	Language	Coun
0	Winds of Fate 4	1980	R. Lee	167	4.1	182425	A touching love story with heartwarming moments.	Spanish	Ch
1	Firestorm 11	2014	S. Chen	166	4.1	449351	A fast-paced thriller with intense action scenes.	Korean	Ch
2	Silent Echo 2	2016	A. Khan	170	4.1	363328	A fast-paced thriller with intense action scenes.	Korean	Jaţ
3	City Lights 4	1982	L. Zhang	170	9.9	62371	An emotional journey exploring complex charact	Japanese	Jaţ
4	Broken Truth 1	1990	L. Zhang	91	5.3	4600	An imaginative world filled with magic and won	Korean	l
5	Broken Truth 12	1985	D. Patel	116	4.4	268620	An emotional journey exploring complex charact	English	Fra
6	Crimson Sky 20	2004	R. Lee	117	5.3	38970	A light- hearted comedy that guarantees laughter.	Spanish	Ch
7	Eternal Love 4	2016	T. Johnson	111	5.5	86559	A light- hearted comedy that guarantees laughter.	English	l
8	Broken Truth 7	1982	L. Zhang	129	4.3	288173	An emotional journey exploring complex charact	French	l
9	Winds of Fate 16	1993	S. Chen	169	7.5	355096	An emotional journey exploring complex charact	Hindi	l
10	Winds of Fate 6	1990	M. Brown	112	4.6	327982	A suspenseful plot filled	English	

	Title	Year	Director	Duration	Rating	Votes	Description	Language	Coun
							with unexpected twists.		
11	Ocean Call 20	2002	J. Smith	135	7.9	171468	A suspenseful plot filled with unexpected twists.	Spanish	Jap
12	Frozen Whisper 16	2006	M. Brown	96	9.9	426978	A spine- chilling tale that evokes fear and dread.	English	So Ko
13	Eternal Love 17	1985	N. Roy	168	4.4	370579	A suspenseful plot filled with unexpected twists.	French	Jaŗ
14	Ocean Call 19	1980	R. Lee	123	5.5	34337	An imaginative world filled with magic and won	Japanese	
15	Midnight Sun 1	1993	A. Khan	162	4.3	50482	A fast-paced thriller with intense action scenes.	Korean	Jaj
16	Crimson Sky 2	2020	M. Brown	89	4.6	487738	An imaginative world filled with magic and won	English	Ch
17	Lost World 8	2021	L. Zhang	179	7.7	15429	A spine- chilling tale that evokes fear and dread.	Mandarin	
18	Quiet Heart 11	2006	P. Adams	155	4.4	118700	A spine- chilling tale that evokes fear and dread.	Mandarin	So Ko
19	Midnight Sun 15	1988	N. Roy	86	5.3	378137	An imaginative world filled with magic and won	Japanese	L

```
import matplotlib.pyplot as plt # gráficos de forma manual
import seaborn as sns # gráficos personalizados
```

Histograma de todas las columnas numéricas del DataFrame, en este caso son 8 df.hist(bins=30, figsize=(15, 10)) # Crea un histograma para cada columna numér plt.tight_layout() # Ajusta automáticamente el espacio entre los gráficos plt.show() # Muestra todos los histogramas


```
Out[22]:
            Budget_USD Duration Rating
                                          Votes Num_Awards Critic_Reviews BoxOffice_USD
         0
               39979615
                              167
                                      4.1 182425
                                                            8
                                                                        229
                                                                                  179936008
              116404774
                                                           20
         1
                              166
                                      4.1 449351
                                                                        466
                                                                                 802121619
         2
              166261330
                              170
                                      4.1 363328
                                                           16
                                                                        539
                                                                                 225526871
                                                           15
         3
               28861315
                              170
                                      9.9
                                           62371
                                                                         606
                                                                                  69813738
         4
                               91
                                      5.3
                                                            6
                                                                        330
               43890403
                                            4600
                                                                                 375136716
In [23]: #Construcción del modelo de regresión lineal
         # Budget_USD (Presupuesto en dólares)
         # Duration (Duración en minutos)
         # Ratting (Calificiación Promedio"
         # Votes (Número de votos)
         # Num_Awards (Número de premios obtenidos)
         # Critic_reviews (Números de reseñas de criticos)
         from sklearn.linear_model import LinearRegression
         # Definir variables independientes (X) y dependiente (y)
         X = df_model.drop('BoxOffice_USD', axis=1)
         y = df_model['BoxOffice_USD']
         # Crear el modelo
         modelo = LinearRegression()
         # Entrenar el modelo con todos los datos
         modelo.fit(X, y)
         # Mostrar coeficiente (pendientes) y intercepto (constante)
         print("Intercepto (b0):", modelo.intercept_)
         print("Coeficientes (b1, b2, ...):")
         for var, coef in zip(X.columns, modelo.coef_):
             print(f" {var}: {coef}")
        Intercepto (b0): 529537671.2698003
        Coeficientes (b1, b2, ...):
          Budget_USD: 0.004876447897468708
          Duration: -71599.5862332624
          Rating: -996538.5469178511
          Votes: -8.357011648244224
          Num_Awards: 483656.8223504322
          Critic_Reviews: 2207.2402677343975
In [28]:
         from sklearn.linear_model import LinearRegression
         from sklearn.model_selection import train_test_split
         import pandas as pd
         ## POR TIEMPO Y CLASE DE SIGUIENTE HORA ------datas generados por la
         # Variables independientes (X) y objetivo (y)
         X = df_model.drop('BoxOffice_USD', axis=1)
         y = df_model['BoxOffice_USD']
         # División 80% entrenamiento, 20% prueba
         X_train, X_test, y_train, y_test = train_test_split(
             X, y, test_size=0.2, random_state=42
```

```
# Crear y entrenar el modelo
 modelo = LinearRegression()
 modelo.fit(X_train, y_train)
 # Predecir en conjunto de prueba
 y_pred = modelo.predict(X_test)
 # Crear DataFrame con resultados reales y predicciones, formateando números con
 resultados = pd.DataFrame({
     'Real': y_test.values,
     'Predicción': y_pred
 })
 # Formatear números para mejor lectura
 resultados['Real'] = resultados['Real'].apply(lambda x: f"${x:,.0f}")
 resultados['Predicción'] = resultados['Predicción'].apply(lambda x: f"${x:,.0f}"
 # Mostrar las primeras 10 filas
 print(resultados.head(10))
           Real
                  Predicción
0 $200,330,529 $517,533,775
1 $488,839,661 $520,799,513
2 $428,612,829 $514,359,671
3 $802,121,619 $510,530,996
4 $765,377,261 $524,760,739
5 $856,605,219 $515,216,590
6 $719,946,753 $513,235,545
7 $980,966,690 $515,138,661
8 $477,372,302 $515,448,445
9 $403,157,039 $510,798,174
 GIT HUB
```

In []: