

Задания для 4 класса

В каждой из трёх задач сформулировано по четыре вопроса. Ответ на вопрос подразумевает полное развернутое решение. Если в вопросе требуется привести пример, то нужно просто привести пример. Если в вопросе требуется что-либо вычислить, то нужно привести всю последовательность вычислений. Если вопрос сформулирован в виде «может ли», то нужно привести пример, если считаете, что может, а если считаете, что не может, то необходимо доказать это. Если вопрос сформулирован в виде «какое наибольшее/наименьшее...», то требуется предъявить пример, для которого достигается наибольшее/наименьшее значение, и показать, что больше/меньше получить нельзя. Если в вопросе требуется перечислить варианты или сказать «сколько может быть», то необходимо перечислить все возможные варианты и доказать, что других вариантов нет.

За полный ответ на вопрос начисляется количество баллов, указанное рядом с вопросом. За неполный ответ начисляется меньшее число баллов в зависимости от полноты ответа. Результат по олимпиаде равен сумме набранных баллов.

- 1. На рисунке изображена одна сторона пятиэтажного дома, у которого в некоторых окнах горит свет (они нарисованы белыми). В этом доме всё как обычно: все квартиры одноэтажные, расположение квартир на каждом этаже одинаковое, каждая квартира хотя бы одним окном выходит на эту сторону, окна от одной квартиры могут идти только подряд.
- (а) Какое наибольшее число квартир может быть в этом доме? (1 балл)
- (б) Может ли в этом доме быть 13 квартир? (3 балла)
- **(в)** Сколько квартир может быть в доме, если на первом этаже свет горит ровно в двух квартирах? (6 баллов)
- (г) Пусть известно, что свет горит ровно в 9 квартирах. Перечислите все возможные расположения квартир на этажах и докажите, что других вариантов нет. (10 баллов)

- 2. В этой задаче рассматриваются фигурки, нарисованные на клетчатой бумаге. Каждая такая фигурка состоит из целых клеток, склеенных по сторонам и вместе образующих один кусок. Если из фигурки вырезать какие-то клетки, то она может развалиться на несколько кусков (когда два куска касаются только уголком, они разваливаются).
- (а) Приведите пример фигурки, состоящей более чем из двух клеток, которая не развалится, какую бы клетку из нее ни вырезали. (1 балл)
- (6) Приведите пример такой фигурки, из которой можно вырезать ровно 4 клетки так, чтобы фигурка без этих четырёх клеток не развалилась на куски, и можно четырьмя способами вырезать всего по одной клетке так, чтобы остальная часть развалилась. (3 балла)
- (в) Пять одинаковых фигурок лежали стопкой, одна под другой. Потом одну фигурку сместили на клетку влево, другую на клетку вправо, третью на клетку вниз, а четвертую на клетку вверх. Затем из каждой фигурки вырезали одну клетку, причем все вырезанные клетки оказались строго одна под другой. Могло ли оказаться так, что одна фигурка развалились, а четыре других нет? (6 баллов)
- (г) Докажите, что любую фигурку из 533 клеток можно развалить, вырезав из нее не более двух клеток. (10 баллов)
- 3. В кружке магии и волшебства все ученики первого и второго годов обучения ходят в красных мантиях, ученики третьего года в синих, а четвёртого в чёрных.

В прошлом году на общем собрании учеников было 15 красных, 7 синих и несколько чёрных мантий, а в этом году — синих и чёрных — поровну, а красных — вдвое больше, чем синих.

- (а) Сколько черных мантий будет на общем собрании в следующем году? (1 балл)
- (б) Сколько в этом году учеников первого года обучения? (3 балла)
- (в) Через какое наименьшее число лет синих и чёрных мантий снова может быть поровну? (6 баллов)
- (r) Пусть дополнительно известно, что каждый год количество учеников первого года обучения на 1 меньше количества учеников четвертого года обучения. Через сколько лет количество красных мантий впервые станет втрое больше количества синих? (10 баллов)

Оформление работы.

На обложке тонкой тетради крупно укажите номер класса, за который Вы пишете работу. На первой странице напишите печатными буквами: фамилию и имя, класс; номер школы, в которой Вы учитесь, город и район её расположения; Ваш телефон и электронный адрес (если есть). Если Вы занимаетесь в математическом кружке, то укажите фамилию руководителя и место занятий кружка.

Решение каждой задачи рекомендуем начинать с новой страницы. Условия задач переписывать не нужно. Помните, что кроме ответа почти всегда необходимо полное его обоснование.

Работы с признаками списывания или коллективного творчества рассматриваться не будут.

Сдать решения нужно одним из следующих способов:

- а) не позже 7 октября прислать работу через веб-форму на сайте ЮМШ: http://yumsh.ru;
- б) с 1 по 7 октября в рабочие дни отдать тетрадь с решениями по адресу: Санкт-Петербург, 14 линия Васильевского острова, д. 29 (можно привезти сразу несколько работ или даже работы всей школы);
- в) до 7 октября отправить свою работу по почте (указав номер класса работы на конверте): 198504, Санкт-Петербург, Ст. Петергоф, Университетский пр., д. 28, математико-механический факультет СПбГУ, ЮМШ.

Результаты проверки станут доступны на нашем сайте http://yumsh.ru в середине ноября. Вопросы по условиям задач можно задавать с помощью веб-формы на сайте ЮМШ, а также по тел. +7 (812) 573-97-32.

Задания для 5 класса

- 1. В доме 300 квартир. В квартирах, номера которых делятся на 5, живут кошки, а в остальных квартирах кошек нет. Если же сумма цифр номера квартиры делится на 5, то в такой квартире обязательно живёт собака, а в остальных квартирах собак нет. Сколько квартир, в которых живут и кошка, и собака?
- **2.** Существует ли такая клетчатая фигурка, из которой можно вырезать ровно 7 клеток так, чтобы оставшаяся часть не развалилась на два куска, и можно семью способами вырезать всего по одной клетке так, чтоб остальная часть развалилась? Если два куска касаются только уголком, то они разваливаются.
- **3.** Мила писала в прописях буквы М и Л. В конце она сосчитала, что 59 раз буква совпала с предыдущей, а 40 раз не совпала. Определите, какое наибольшее число букв М могла написать Мила, и докажите, что оно действительно наибольшее.
- **4.** Можно ли расставить целые числа от 2 до 17 в табличку 4×4 так, чтобы суммы во всех строках были равны и ни в какой строке не было двух чисел, делящихся одно на другое?
- 5. На столе лежат 20 шоколадных конфет. Маша и Медведь играют в игру по следующим правилам. Игроки ходят по очереди. За один ход можно взять одну или несколько конфет со стола и съесть их. Первой ходит Маша, но на этом ходу ей нельзя брать все конфеты. Во всех остальных ходах игрокам нельзя брать больше конфет, чем кто-либо уже брал за один ход. Выигрывает тот, кто возьмёт последнюю конфету. За это он получит целый торт! Кто из игроков может обеспечить себе победу?
- **6.** Никита выписывает числа одно за другим по следующему правилу: сначала он пишет три каких-то натуральных числа. Затем повторяет одну и ту же процедуру: складывает три последних числа и дописывает в конец полученную сумму. Может ли Никита написать 9 простых чисел подряд, действуя таким образом?
- 7. Петя задумал какое-то 9-значное число, полученное перестановкой цифр из числа 123 456 789. Витя пытается угадать его. Для этого он выбирает любое 9-значное число (возможно, с повторяющимися цифрами и нулем) и сообщает его Пете, а Петя отвечает, сколько совпадений у цифр этого числа с его задуманным. Может ли Витя не более чем за 4 хода узнать первую цифру в Петином числе? (Совпадение это цифра, стоящая на том же месте.)

Оформление работы.

На обложке тонкой тетради крупно укажите номер класса, за который Вы пишете работу. На первой странице напишите печатными буквами: фамилию и имя, класс; номер школы, в которой Вы учитесь, город и район её расположения; Ваш телефон и электронный адрес (если есть). Если Вы занимаетесь в математическом кружке, то укажите фамилию руководителя и место занятий кружка.

Решение каждой задачи рекомендуем начинать с новой страницы. Условия задач переписывать не нужно. Помните, что кроме ответа почти всегда необходимо полное его обоснование.

Работы с признаками списывания или коллективного творчества рассматриваться не будут.

Сдать решения нужно одним из следующих способов:

- а) не позже 7 октября прислать работу через веб-форму на сайте ЮМШ: http://yumsh.ru;
- 6) с 1 по 7 октября в рабочие дни отдать тетрадь с решениями по адресу: Санкт-Петербург, 14 линия Васильевского острова, д. 29 (можно привезти сразу несколько работ или даже работы всей школы);
- в) до 7 октября отправить свою работу по почте (указав номер класса работы на конверте): 198504, Санкт-Петербург, Ст. Петергоф, Университетский пр., д. 28, математико-механический факультет СПбГУ, ЮМШ.

Результаты проверки станут доступны на нашем сайте http://yumsh.ru в середине ноября. Вопросы по условиям задач можно задавать с помощью веб-формы на сайте ЮМШ, а также по тел. +7 (812) 573-97-32.

Задания для 6 класса

- 1. Словосочетание «три слога» описывает само себя, потому что в нем действительно три слога. Найдите такое числительное, чтобы словосочетание, состоящее из него и слова «буква» в правильном падеже («буква», «буквы» или «букв»), тоже описывало само себя.
- **2.** Как-то ночью часы (со стрелками) сломались. Часовая стрелка пошла вдвое быстрее, а минутная вдвое медленнее, чем они шли изначально. Андрюша проснулся, когда часовая стрелка указывала на 6, а минутная на 12. Могли ли часы сломаться в полночь?
- **3.** Можно ли в каждую клетку шахматной доски поставить ладью, коня или слона так, чтобы ладьи били только коней, кони только слонов, а слоны только ладей?
- 4. В школе в день Святого Валентина мальчики дарили валентинки девочкам, и наоборот. Каждый мальчик подарил пяти девочкам валентинки с признанием в любви. Девочки же оказались гораздо скромнее: каждая подарила валентинки с признанием в любви всего четырём мальчикам. Пять школьников (три Валентины и два Валентина) получили поровну валентинок, а все остальные школьники— по две валентинки. Докажите, что мальчиков и девочек в школе поровну.
- **5.** Натуральное число n таково, что сумма четырёх его некоторых различных натуральных делителей (возможно, включая само это число) равна 2n. Чему может быть равна сумма четырёх наименьших натуральных делителей этого числа? Перечислите все варианты ответа и докажите, что других нет.
- **6.** Каждый мальчик дружит с 5 девочками, а все девочки—с разным числом мальчиков. Какое наименьшее количество детей может быть в этой компании?
- 7. По одиннадцатикилометровой круговой трассе ездит много машин с постоянной скоростью 120 км/ч. В одном злополучном месте дороги стоит электронный полицейский. В каждый момент его жезл может находиться в одном из двух положений: поднятом или опущенном. Если машина проезжает мимо электронного полицейского с опущенным жезлом, она мгновенно сбрасывает скорость до 60 км/ч, а через минуту мгновенно разгоняется обратно. Если же жезл поднят, машина мгновенно останавливается, а через минуту срывается с места с первоначальной скоростью. Электронным полицейским управляет программист, который не видит расположения машин на дороге. Докажите, что программист может записать такую последовательность команд полицейского (сколько минут стоять с поднятым жезлом, затем сколько с опущенным, и т. д.), чтобы сразу после последней команды все машины на трассе остановились.

Оформление работы.

На обложке тонкой тетради крупно укажите номер класса, за который Вы пишете работу. На первой странице напишите печатными буквами: фамилию и имя, класс; номер школы, в которой Вы учитесь, город и район её расположения; Ваш телефон и электронный адрес (если есть). Если Вы занимаетесь в математическом кружке, то укажите фамилию руководителя и место занятий кружка.

Решение каждой задачи рекомендуем начинать с новой страницы. Условия задач переписывать не нужно. Помните, что кроме ответа почти всегда необходимо полное его обоснование.

Работы с признаками списывания или коллективного творчества рассматриваться не будут.

Сдать решения нужно одним из следующих способов:

- а) не позже 7 октября прислать работу через веб-форму на сайте ЮМШ: http://yumsh.ru;
- 6) с 1 по 7 октября в рабочие дни отдать тетрадь с решениями по адресу: Санкт-Петербург, 14 линия Васильевского острова, д. 29 (можно привезти сразу несколько работ или даже работы всей школы);
- в) до 7 октября отправить свою работу по почте (указав номер класса работы на конверте): 198504, Санкт-Петербург, Ст. Петергоф, Университетский пр., д. 28, математико-механический факультет СПбГУ, ЮМШ.

Результаты проверки станут доступны на нашем сайте http://yumsh.ru в середине ноября. Вопросы по условиям задач можно задавать с помощью веб-формы на сайте ЮМШ, а также по тел. +7 (812) 573-97-32.

Задания для 7 класса

- 1. Словосочетание «три слога» описывает само себя, потому что в нем действительно три слога. Найдите такое числительное, чтобы словосочетание, состоящее из него и слова «буква» в правильном падеже («буква», «буквы» или «букв»), тоже описывало само себя.
- 2. Алёна вычеркнула из пятизначного числа, делящегося на 99, одну цифру, и оказалось, что получившееся четырёхзначное число снова делится на 99. Какая по порядку цифра могла была быть вычеркнута? (Ни исходное, ни получившееся числа не могут начинаться с нуля.)
- 3. В школе в день Святого Валентина мальчики дарили валентинки девочкам, и наоборот. Каждый мальчик подарил пяти девочкам валентинки. Девочки же оказались скромнее каждая подарила валентинки всего четырём мальчикам. Пять школьников (три Валентины и два Валентина) получили поровну валентинок, а все остальные школьники по две валентинки. Докажите, что мальчиков и девочек в школе поровну.
- **4.** Расстояние между двумя дворцами королевства Зенития 4 км. Король повелел построить между ними круглую Арену диаметром 2 км. Докажите, что где бы король ни повелел построить Арену, ГИБДД сможет провести дорогу между дворцами так, чтобы она была не длиннее 6 км.
- 5. Сумма трех наибольших натуральных делителей натурального числа N в 10 раз больше суммы трёх наименьших его натуральных делителей. Найдите все возможные значения N.
- 6. На окружности через равные промежутки расставили 33 точки. Соседние точки соединили отрезками так, что получился 33-угольник. Каждую сторону этого 33-угольника покрасили в один из трёх цветов, и оказалось, что отрезков каждого цвета поровну. Докажите, что можно разбить 33-угольник непересекающимися диагоналями на треугольники, покрасив каждую диагональ в один из тех же трёх цветов, чтобы каждый треугольник имел по стороне каждого цвета.
- 7. Два игрока по очереди выписывают друг за другом единицы или двойки. Тот, после чьего хода сумма нескольких последних цифр станет равной (a) 533; (б) 1000, проиграл. Кто выиграет, если оба игрока будут стремиться к победе?

Оформление работы.

На обложке тонкой тетради крупно укажите номер класса, за который Вы пишете работу. На первой странице напишите печатными буквами: фамилию и имя, класс; номер школы, в которой Вы учитесь, город и район её расположения; Ваш телефон и электронный адрес (если есть). Если Вы занимаетесь в математическом кружке, то укажите фамилию руководителя и место занятий кружка.

Решение каждой задачи рекомендуем начинать с новой страницы. Условия задач переписывать не нужно. Помните, что кроме ответа почти всегда необходимо полное его обоснование.

Работы с признаками списывания или коллективного творчества рассматриваться не будут.

Сдать решения нужно одним из следующих способов:

- а) не позже 7 октября прислать работу через веб-форму на сайте ${\rm HOMIII: http://yumsh.ru};$
- 6) с 1 по 7 октября в рабочие дни отдать тетрадь с решениями по адресу: Санкт-Петербург, 14 линия Васильевского острова, д. 29 (можно привезти сразу несколько работ или даже работы всей школы);
- в) до 7 октября отправить свою работу по почте (указав номер класса работы на конверте): 198504, Санкт-Петербург, Ст. Петергоф, Университетский пр., д. 28, математико-механический факультет СПбГУ, ЮМШ.

Результаты проверки станут доступны на нашем сайте http://yumsh.ru в середине ноября. Вопросы по условиям задач можно задавать с помощью веб-формы на сайте ЮМШ, а также по тел. +7 (812) 573-97-32.

Задания для 8 класса

- 1. В классе 10 человек, у каждого три друга среди одноклассников. Они разбились на 5 команд по 2 человека, в каждой команде друзья. Учительница сказала переделиться по другому, так как Вася и Петя не должны быть в одной команде. Вася заметил: «Но тогда какая-то из команд обязательно не будет дружной». Приведите пример, как такое может быть.
- 2. У пяти патрициев есть по пять статуй, каждая стоит натуральное число сестерциев. Сначала патриции померились, у кого суммарная стоимость статуй больше, потом каждый расколотил свою самую дешёвую статую. Затем они померились опять, расколотили самые дешёвые из своих оставшихся статуй, и так ещё три раза, пока не уничтожили все статуи. Могло ли быть так, что единоличным победителем каждый раз оказывался кто-то новый?
- 3. Андрей расставил в клетках доски 10×10 фишки ста различных цветов. Каждую минуту одна из фишек меняет цвет, причём меняться может только такая фишка, которая перед этой операцией была уникальной (то есть отличалась цветом от всех остальных) в своей строке или в своём столбце. Через N минут оказалось, что ни одна фишка больше не может перекраситься. Чему, самое меньшее, могло равняться N?
- **4.** Даны три вещественных числа, больших 1. Произведение любых двух из них больше, чем сумма этих двух. Докажите, что произведение всех трёх чисел больше, чем их сумма, увеличенная на 2.
- 5. Сумма трёх наибольших натуральных делителей натурального числа N в 10 раз больше суммы трёх наименьших его натуральных делителей. Найдите все возможные значения N.
- **6.** В треугольнике ABC угол A равен 50°, BH высота. Точка M на BC такова, что BM = BH. Серединный перпендикуляр к отрезку MC пересекает AC в точке K. Оказалось, что $AC = 2 \cdot HK$. Найдите углы треугольника ABC.
- 7. На окружности через равные промежутки расставили 33 точки. Соседние точки соединили отрезками так, что получился 33-угольник. Каждую сторону этого 33-угольника покрасили в один из трёх цветов, и оказалось, что отрезков каждого цвета поровну. Докажите, что можно разбить 33-угольник непересекающимися диагоналями на треугольники, покрасив каждую диагональ в один из тех же трёх цветов, чтобы каждый треугольник имел по стороне каждого цвета.
- 8. Два игрока по очереди выписывают друг за другом единицы или двойки. Тот, после чьего хода сумма нескольких последних цифр станет равной (a) 533; (б) 1000, проиграл. Кто выиграет, если оба игрока будут стремиться к победе?

Оформление работы.

На обложке тонкой тетради крупно укажите номер класса, за который Вы пишете работу. На первой странице напишите печатными буквами: фамилию и имя, класс; номер школы, в которой Вы учитесь, город и район её расположения; Ваш телефон и электронный адрес (если есть). Если Вы занимаетесь в математическом кружке, то укажите фамилию руководителя и место занятий кружка.

Решение каждой задачи рекомендуем начинать с новой страницы. Условия задач переписывать не нужно. Помните, что кроме ответа почти всегда необходимо полное его обоснование.

Работы с признаками списывания или коллективного творчества рассматриваться не будут.

Сдать решения нужно одним из следующих способов:

- а) не позже 7 октября прислать работу через веб-форму на сайте ${\rm HOMIII: http://yumsh.ru};$
- 6) с 1 по 7 октября в рабочие дни отдать тетрадь с решениями по адресу: Санкт-Петербург, 14 линия Васильевского острова, д. 29 (можно привезти сразу несколько работ или даже работы всей школы);
- в) до 7 октября отправить свою работу по почте (указав номер класса работы на конверте): 198504, Санкт-Петербург, Ст. Петергоф, Университетский пр., д. 28, математико-механический факультет СПбГУ, ЮМШ.

Результаты проверки станут доступны на нашем сайте http://yumsh.ru в середине ноября. Вопросы по условиям задач можно задавать с помощью веб-формы на сайте ЮМШ, а также по тел. +7 (812) 573-97-32.