Idea Factory Intensive Program #2

답생닝 뢀로서기

이론강의/PyTorch실습/코드리뷰

딥러닝(Deep Learning)에 관심이 있는 학생 발굴을 통한 딥러닝의 이론적 배경 강의 및 오픈소스 딥러닝 라이브러리 PyTorch를 활용한 실습

Acknowledgement

Sung Kim's 모두를 위한 머신러닝/딥러닝 강의

- https://hunkim.github.io/ml/
- https://www.youtube.com/playlist?list=PLIMkM4tgfjnLSOjrEJN31gZATbcj_MpUm

Andrew Ng's and other ML tutorials

- https://class.coursera.org/ml-003/lecture
- <u>http://www.holehouse.org/mlclass/</u> (note)
- Deep Learning Tutorial
- Andrej Karpathy's Youtube channel

WooYeon Kim & SeongOk Ryu's KAIST CH485 Artificial Intelligence and Chemistry

- https://github.com/SeongokRyu/CH485---Artificial-Intelligence-and-Chemistry

SungJu Hwang's KAIST CS492 Deep Learning Course Material

Many insightful articles, blog posts and Youtube channels

Facebook community

- Tensorflow KR (https://www.facebook.com/groups/TensorFlowKR/)
- Pytorch KR (https://www.facebook.com/groups/PyTorchKR/)

Medium Channel and Writers

- Toward Data Science (https://towardsdatascience.com/)

What is Machine Learning?

"A Field of study that gives computer the ability to learn without being explicitly programmed"

if else (x)

- Arthur Samuel, 1959

Deep Learning, Machine Learning, Artificial Intelligence

Leaning method Space	()(14) Supervised Learning	ア -> ५ Unsupervised Learning	X — veward function Reinforcement Learning	
Discrete	Classification	Clustering	Discrete Action Space Agent	
Continuous	Regression	Dimensionality Reduction	Continuous Action Space Agent	
Mではいり Semi-Supervised Learning (と)、 mvsic → clustering; したりせ → Semi-SL: 'Rock'、'Ballard' 등 라면 일부 지정 → 그에 막혀 나눠 중				

Regression Problem

Price Prediction Based on Gi-Young Style Chart Analysis

Regression Problem

Fit the prediction function f(x) to the training data, to predict continuous real value

Classification Problem

Chihuahua or Muffin?

Classification Problem

Identifying which of a set of categories a new instance belongs

Clustering Problem

Grouping smilar samples into K groups

Clustering Problem

Automatic grouping of instances, such that the instances that belong to the same clusters are more similar to each other than to those in the other groups

Dimensionality Reduction Problem

Curse of dimension: feature increases Exponentially as dimension increases

Reduce the dimension of input data, to avoid the effect of the curse of dimensionality

Feature & Data Representation

Feature & Data Representation

Case 2

x1: first pixel value

x2: second pixel value

x3: third pixel value

x784: 784th pixel value

Feature & Data Representation

h3: feature3

x3: third pixel value

x784: 784th pixel value