

Arm Solutions at Lightspeed

openEuler上通过 UADK加速大数据应用 的最佳实践

Kevin Zhao - Linaro openEuler Summit 2024

Agenda

- 概述
- UADK-Bigdata应用场景
- 使用UADK加速的性能结果

概述

- 1. 数据规模爆炸式增长
 - a. 数字化转型使全球数据量呈指数级增长,企业面临存储效率与成本压力
 - b. 数据压缩技术可提升存储效率, 但需要平衡压缩率与处理性能
- 2. AI时代的数据安全需求
 - a. AI和大数据分析需要海量数据支撑,数据全生命周期的加密保 护成为刚性需求
 - b. 合规要求推动加密需求:中国的商用密码应用推广,美国的HIPAA和FISMA规定
- 3. 硬件加速的价值
 - a. 加解密与压缩都是计算密集型操作,消耗大量 CPU资源
 - b. 专用硬件加速器可显著提升性能,降低系统负载
 - c. 新型加速架构助力数据安全与 AI应用协同发展

UADK软件生态建设

UADK(User Space Accelerator Development Kit), 支持共享虚拟地址(SVA)技术, 为用户提供高效利用硬件加速器能力的统一编程接口。UADK提供了一组不断扩展的高性能算法实现, 涵盖了加密、压缩等功能。目前已经对接的生态链加速组件:

- OpenSSL 1.1.1f+ /OpenSSL 3.0+
- DPDK/SPDK, 支持UADK crypto PMD 和 UADK compress PMD
- OpenJDK / BishengJDK
- Zlib 压缩库
- GmSSL3.0, 服务于国密算法SM2/3/4
- Nginx 1.20.0, 对https短连接场景有很好的加速效果

通过对JDK和zlib库的原生支持, UADK能够更加有利于大数据组件原生应用。

大数据领域的应用场景

1. 加密

HDFS Transparent Encryption

在HDFS透明加密中,首先需要定义加密区 (Encryption Zone),每个加密区都会使用一个密钥 来加密其中的文件。这些密钥由一个集中的密钥管 理服务(如Apache Ranger或Cloudera Navigator Key Trustee)进行管理,确保密钥的安全性和生命周期管理。

当用户访问加密区中的文件时, HDFS透明地对数据进行解密, 用户感受不到加密解密的过程。这样, 即使HDFS的物理存储被非法访问, 数据也因为被加密而保持安全。

在实践中, 我们使用 SM4 作为加密算法。

大数据领域的应用场景识别

2. 压缩

HBase

作为列式存储数据库,与传统行式数据库比较,通常HBase会占用更大的存储空间,以换取更高的查找和定位速度,满足大数据领域对特定数据检索的要求。

HBase的写入顺序为先写入memstore, 再刷入HDFS, 即后端存储。为了降低从memstore flush到磁盘的数据大小, 在Flush过程中, 通常会针对storeFile进行压缩, 支持LZ4, SNAPPY, BZIP2, GZIP等压缩算法。

HBase数据存储结构

HBase 写入和读取数据过程

HBase GZ压缩

GZIP 压缩使用的 CPU 资源比 Snappy 或 LZO 更多,但可提供更高的压缩比。GZIP 通常是不常访问的冷数据的不错选择。而 Snappy 或 LZO 则更加适合经常访问的热数据。

GZ压缩的配置:

- HBase建表时指定
- HBase PE测试也可以对压缩算法进行测试
- GZ压缩依赖于HadoopNativeLibrary中对Zlib的支持

<u>zlib-uadk</u>:

- Wrap the Zlib to UADK
- 上层应用无感知, 无缝兼容zlib生态

∞linaro Arm Solutions at Lightspeed

HBase压缩性能测试 - TBD数据待披露

UADK 与 JDK 的对接

Bring the Abilities to the Java World

⇒ KAEProvider is an encryption interface based on JCA (Java Cryptography Architecture) that uses the EVP interface to call the computing power provided by OpenSSL.

⇒ With addition of UADK, it is possible to use hardware accelerations into Java world, powering even more applications.

UADK 与 JDK 的对接

Bring the Abilities to the Java World

java.security:

```
security.provider.1=org.openeuler.security.openssl.KAEProvider
security.provider.2=sun.security.provider.Sun
security.provider.3=sun.security.rsa.SunRsaSign
                                                                                HBase 2.5.7 / Hadoop 3.4
security.provider.4=sun.security.ec.SunEC
security.provider.5=com.sun.net.ssl.internal.ssl.Provider
                                                                                      毕昇 BiSheng JDK 1.8.0
security.provider.6=com.sun.crypto.provider.SunJCE
                                                                                       JCE / KAEProvider
security.provider.7=sun.security.jgss.SunProvider
                                                                       Zlib
                                                                                       OpenSSL v3.0+
security.provider.8=com.sun.security.sasl.Provider
                                                                                        load-balancer
                                                                                             Software accelerators
                                                                     uadk support
                                                                                uadk provider
security.provider.9=org.jcp.xml.dsig.internal.dom.XMLDSig
                                                                                               SVE/SVE2
security.provider.10=sun.security.smartcardio.SunPCSC
                                                                            UADK
security.provider.11=sun.security.mscapi.SunMSCAPI
                                                                      uacce + Kunpeng920 accelerators
```

Benchmark - TeraSort - 待确认是否披露

Measured with 100GB data in TeraSort, on the HDFS Transparent Encryption.

```
# hdfs crypto -getFileEncryptionInfo -path
/zone2/terasort-input/part-m-00000

{cipherSuite: {name: SM4/CTR/NoPadding,
    algorithmBlockSize: 16}, ...}

# hadoop jar
$HADOOP_HOME/share/hadoop/mapreduce/hadoop-*exam
ples*.jar terasort /zone2/terasort-input
/zone2/terasort-output
```

