

University of Applied Sciences

Regenerative Wärmetechnik (PÜ)

Laboreinführung zum Versuch "Adsorptionswärmespeicher"

FB1 / SoSe 2022

Allgemeine Hinweise

Versuchsbetreuerin: Prof. Dr. Asnakech Laß-Seyoum

E-Mail: Asnakech.Lass-Seyoum@htw-berlin.de

Sprechzeiten: nach Vereinbarung

Laboringenieurin: Dipl.-Ing.(M.Sc.) Sabine Kupzok

Sabine.Kupzok@HTW-Berlin.de

Protokolle müssen innerhalb von 3 Wochen abgegeben werden!

Arten von thermischen Energiespeichern

- Thermische Energiespeicherung kann nach unterschiedlichen Prinzipien physikalisch oder chemisch erfolgen.
- Thermische Energiespeichersysteme werden prinzipiell in drei einander sich unterscheidenden Kategorien eingeteilt.
 - Sensibler bzw. fühlbarer Wärmespeicher (SHS)
 - Latentwärmespeicher (LHS)
 - Thermochemischer Speicher (TCS)

Thermochemische Adsorptionsspeicher

 Die adsorptive TCS nutzt die Energie der reversiblen Physisorption des Adsorptivs (B = meistens Wasser) an der Oberfläche des Adsorbents (A).

$$AB + W\overline{arme} \leftrightarrow A(s) + B(g)$$

- Die Energie wird dabei nicht in Form von Wärme, sondern als Reaktionsenergie (potentielle Energie) gespeichert.
- Dadurch treten keine thermischen Verluste während der Speicherperiode auf. Dies wiederum ermöglicht eine sehr lange Speicherdauer.
- Diese Form der Wärmespeicherung zeichnet sich besonders durch eine hohe Energiedichte aus.

Funktionsprinzip eines adsorptiven Wärmespeichers

- Die Wärmespeicherung kann als ein unterbrochener Kreisprozess verstanden werden.
- Sie setzt sich aus zwei Teilprozessen (Speicherladung und Speicherentladung) zusammen.

- Der Aufbau der adsorptiven Wärmespeicher lässt sich grob in zwei Prinzipien unterteilen:
 - offene und
 - geschlossene

thermodynamische Systeme.

Speichermaterialien

- Als Speichermaterial für thermochemische Adsorptionsspeicher (TCM) kommen verschiedenste poröse Feststoffe zum Einsatz
- Beispiele für handelsübliche Speichermaterialien inklusiv der Ladebzw. Desorptionstemperaturen sind u.a.:

Zeolithe ca. 150 – 400 °C

Silikagel ca. 40 – 100 °C

MOF's ca. 40 – 250 °C

Metallhydride ca. 280 – 500 °C

TCM – Thermochemical Materials

1,5 L Laboranlage

Heiz-thermostat

thermostat

---- Ende ----