STATS 331

Welcome back!

Introduction to Bayesian Statistics Semester 2, 2016

Today's Lecture

Bayesian Linear Regression

It's All Models Now

We have seen most of the basic principles

Now it's application time!

Linear Regression, aka "Fitting a straight line"

Least Squares

Conventional estimator for slope and intercept

```
reg = lm(y \sim x)
summary (reg)
Call:
lm(formula = y \sim x)
Residuals:
   Min 10 Median 30 Max
-9.3842 -3.0688 -0.6975 2.6970 11.7309
Coefficients:
           Estimate Std. Error t value Pr(>|t|) (Intercept)
   4.83805
          2.79361 1.732 0.0865
             1.09947 0.05386 20.412 <2e-16
 X
```

Line of Best Fit

abline (reg)

Prediction

We have a nice point estimate

Can predict new data (aka extrapolate)

 Put standard deviation around best fit line prediction

However...

This doesn't account for the uncertainty about the parameters*!

*There are classical ways to do this but we won't be discussing them

Bayesian Approach

What is the Question?

- Want to infer the intercept β_0 and the slope β_1
- Have data $\{y_1, y_2, ..., y_N\}$

[and prior information N and $\{x_1, x_2, ..., x_N\}$]

Use Bayesian parameter estimation

Need a Prior

• Want to infer the intercept β_0 and the slope β_1

$$p(\beta_0,\beta_1)$$

Sampling Distribution/Likelihood

• If we knew the parameters, how would we predict data?

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

$$\epsilon_i \sim \mathcal{N}(0, \sigma^2)$$

Or...

$$y_i|\beta_0, \beta_1 \sim \mathcal{N}(\beta_0 + \beta_1 x_i, \sigma^2)$$

If we knew the slope and intercept of our straight line, then our probability distribution for the data would be a normal distribution around the straight line.

Analytical

Bayes' rule

posterior α prior x likelihood

$$p(\beta_0, \beta_1|y_1, y_2, ..., y_N) \propto p(\beta_0, \beta_1) \times p(y_1, y_2, ..., y_N|\beta_0, \beta_1)$$

Choice of Prior

Let's be naïve

$$p(\beta_0,\beta_1) \propto 1$$

If we don't specify the endpoints, this is called an "improper" prior.

Likelihood

$$p(y_1, y_2, ..., y_N | \beta_0, \beta_1) = \prod_{i=1}^{N} \frac{1}{\sigma \sqrt{2\pi}} \exp \left[-\frac{1}{2\sigma^2} \left(y_i - (\beta_0 + \beta_1 x_i) \right)^2 \right]$$

$$\propto \exp\left[-\frac{1}{2\sigma^2}\sum_{i=1}^N (y_i - (\beta_0 + \beta_1 x_i))^2\right]$$

Prior x Likelihood

 Just proportional to likelihood in this case, due to uniform prior

Parameter values that result in small residuals are more probable

$$\propto \exp\left[-\frac{1}{2\sigma^2}\sum_{i=1}^{N}\left(y_i-(\beta_0+\beta_1x_i)\right)^2\right]$$

Least Squares

The posterior mode is the least squares estimate!

Can interpret classical method as implicitly making certain assumptions i.e. flat prior, posterior mode, known standard deviation

Implementation in JAGS

 We can implement Bayesian linear regression in JAGS, including making the standard deviation unknown

Simple Linear Regression – JAGS Model

```
model
{
    beta0 ~ dnorm(0, 1/1000^2)
    beta1 ~ dnorm(0, 1/1000^2)
    log_sigma ~ dunif(-10, 10)
    sigma <- exp(log_sigma)</pre>
    for(i in 1:N)
      mu[i] \leftarrow beta0 + beta1*x[i]
      y[i] ~ dnorm(mu[i], 1/sigma^2)
```

Normal Distributions in JAGS

The normal distribution is available with dnorm

 The first argument is the mean, the second argument is 1/(standard deviation)^2 [sometimes called the "precision"]

Over to RStudio

 Let's use the simple linear regression model on the 20X 'road' dataset

SHOUTING

TEST ON WEDNESDAY!

BRING CALCULATOR AND PENS!

ARRIVE ON TIME AT THE CORRECT ROOM!

GOOD LUCK!