

AD-A103 756 NEW JERSEY DEPT OF ENVIRONMENTAL PROTECTION TRENTON --ETC F/6 13/13  
NATIONAL DAM SAFETY PROGRAM, ROCK ISLAND LAKE DAM (NJ 00819) WA--ETC(U)  
AUG 81 W A GUINAN. DACW61-79-C-0011

UNCLASSIFIED

DAEN/NAP-53842/NJ00819-81/ NL

1 of 1  
ADA  
33156

8



END  
DATE  
FILED  
10-81  
DTIC

DA103756

LEVEL II



WALLKILL RIVER BASIN  
ROCK ISLAND LAKE, SUSSEX COUNTY  
NEW JERSEY

# ROCK ISLAND LAKE DAM NJ 00819

PHASE 1 INSPECTION REPORT  
NATIONAL DAM SAFETY PROGRAM



APPROVED FOR PUBLIC RELEASE;  
DISTRIBUTION UNLIMITED.

DTIC FILE COPY

DEPARTMENT OF THE ARMY

Philadelphia District  
Corps of Engineers  
Philadelphia, Pennsylvania

DTIC  
ELECTRONIC  
SEP 4 1981

S

AUGUST 1981

D

REP. NO: DAEN/NAP - 538421 NJ 00819 - 81/08

81 9 03.067

Xb





IN REPLY REFER TO

NAPEN-N

DEPARTMENT OF THE ARMY  
PHILADELPHIA DISTRICT, CORPS OF ENGINEERS  
CUSTOM HOUSE—2 D & CHESTNUT STREETS  
PHILADELPHIA, PENNSYLVANIA 19106

Honorable Brendan T. Byrne  
Governor of New Jersey  
Trenton, New Jersey 08621

31 AUG 1931

| Accession For            |                                           |
|--------------------------|-------------------------------------------|
| NTIS                     | GRA&I <input checked="" type="checkbox"/> |
| DTIC TAB                 | <input type="checkbox"/>                  |
| Unannounced              | <input type="checkbox"/>                  |
| Justification _____      |                                           |
| By _____                 |                                           |
| Distribution/ _____      |                                           |
| Availability Codes _____ |                                           |
| Dist                     | Avail and/or Special                      |
| A                        |                                           |

Dear Governor Byrne:

Inclosed is the Phase I Inspection Report for Rock Island Lake Dam in Sussex County, New Jersey which has been prepared under authorization of the Dam Inspection Act, Public Law 92-367. A brief assessment of the dam's condition is given in the front of the report.

Based on visual inspection, available records, calculations and past operational performance, Rock Island Lake Dam, initially listed as a high hazard potential structure, but reduced to a significant hazard potential structure as a result of this inspection, is judged to be in fair overall condition. The dam's spillway is considered inadequate because a flow equivalent to 25 percent of the Spillway Design Flood (SDF) would cause the dam to be overtopped. To ensure adequacy of the structure, the following actions, as a minimum, are recommended:

a. The spillway's adequacy should be determined by a qualified professional consultant engaged by the owner using more sophisticated methods, procedures and studies within six months from the date of approval of this report. Within three months of the consultant's findings remedial measures to ensure spillway adequacy should be initiated:

b. Within six months from the date of approval of this report the owner should engage a qualified professional consultant to perform the following:

(1) Evaluate the leakage into the spillway discharge pipe and design and oversee corrective measures as required.

(2) Design and oversee the procedure for the removal of brush, debris and trees from the downstream slope and for a distance of 25 feet from the downstream toe of the dam or to the property line whichever is the lesser distance.

(3) Design and oversee repairs for the eroded areas on the upstream slope of the dam and specify erosion protection for the upstream slope.

APPROVED FOR PUBLIC RELEASE;  
DISTRIBUTION UNLIMITED.

NAPEN-N.

Honorable Brendan T. Byrne

(4) Investigate the cause of the seepage and wet, soft areas at and downstream of the downstream toe of the dam and design remedial measures as required.

c. Within six months from the date of approval of this report the following remedial actions should be initiated:

(1) Begin a program of periodically checking the condition of the dam and monitoring the seepage and wet areas along and downstream of the downstream toe of the dam.

(2) Point the stone masonry headwall containing the spillway discharge pipes.

(3) Establish permanent cover along the crest after filling ruts with suitable material.

(4) Clear inlet box of debris.

d. Within one year from the date of approval of this report the owner should clear trees and brush on either side of the discharge channel for a distance of 100 feet from the toe of the dam or the property line whichever is the lesser.

e. The owner of the dam should develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam within one year from the date of approval of this report.

f. An emergency action plan should be developed which outlines actions to be taken by the owner to minimize the downstream effects of an emergency at the dam within six months from the date of approval of this report.

A copy of the report is being furnished to Mr. Dirk C. Hofman, New Jersey Department of Environmental Protection, the designated State Office contact for this program. Within five days of the date of this letter, a copy will also be sent to Congressman Courter of the Thirteenth District. Under the provision of the Freedom of Information Act, the inspection report will be subject to release by this office, upon request, five days after the date of this letter.

Additional copies of this report may be obtained from the National Technical Information Services (NTIS), Springfield, Virginia 22161 at a reasonable cost. Please allow four to six weeks from the date of this letter for NTIS to have copies of the report available.

NAPEN-N:

Honorable Brendan T. Byrne

An important aspect of the Dam Inspection Program will be the implementation of the recommendations made as a result of the inspection. We accordingly request that we be advised of proposed actions taken by the State to implement our recommendations.

Sincerely,



ROGER L. BALDWIN  
Lieutenant Colonel, Corps of Engineers  
Commander and District Engineer

1 Incl  
As stated

Copies furnished:

Mr. Dirk C. Hofman, P.E., Deputy Director  
Division of Water Resources  
N.J. Dept. of Environmental Protection  
P.O. Box CN029  
Trenton, NJ 08625

Mr. John O'Dowd, Acting Chief  
Bureau of Flood Plain Regulation  
Division of Water Resources  
N.J. Dept. of Environmental Protection  
P.O. Box CN029  
Trenton, NJ 08625

ROCK ISLAND LAKE DAM (NJ00819)

CORPS OF ENGINEERS ASSESSMENT OF GENERAL CONDITIONS

This dam was inspected on 23 April 1981 by Anderson-Nichols and Co., Inc., under contract to the State of New Jersey. The State, under agreement with the U.S. Army Engineer District, Philadelphia, had this inspection performed in accordance with the National Dam Inspection Act, Public Law 92-367.

Rock Island Lake Dam, initially listed as a high hazard potential structure, but reduced to a significant hazard potential structure as a result of this inspection, is judged to be in fair overall condition. The dam's spillway is considered inadequate because a flow equivalent to 25 percent of the Spillway Design Flood (SDF) would cause the dam to be overtopped. To ensure adequacy of the structure, the following actions, as a minimum, are recommended:

a. The spillway's adequacy should be determined by a qualified professional consultant engaged by the owner using more sophisticated methods, procedures and studies within six months from the date of approval of this report. Within three months of the consultant's findings remedial measures to ensure spillway adequacy should be initiated:

b. Within six months from the date of approval of this report the owner should engage a qualified professional consultant to perform the following:

(1) Evaluate the leakage into the spillway discharge pipe and design and oversee corrective measures as required.

(2) Design and oversee the procedure for the removal of brush, debris and trees from the downstream slope and for a distance of 25 feet from the downstream toe of the dam or to the property line whichever is the lesser distance.

(3) Design and oversee repairs for the eroded areas on the upstream slope of the dam and specify erosion protection for the upstream slope.

(4) Investigate the cause of the seepage and wet, soft areas at and downstream of the downstream toe of the dam and design remedial measures as required.

c. Within six months from the date of approval of this report the following remedial actions should be initiated:

(1) Begin a program of periodically checking the condition of the dam and monitoring the seepage and wet areas along and downstream of the downstream toe of the dam.

(2) Point the stone masonry headwall containing the spillway discharge pipes.

(3) Establish permanent cover along the crest after filling ruts with suitable material.

(4) Clear inlet box of debris.

d. Within one year from the date of approval of this report the owner should clear trees and brush on either side of the discharge channel for a distance of 100 feet from the toe of the dam or the property line whichever is the lesser.

e. The owner of the dam should develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam within one year from the date of approval of this report.

f. An emergency action plan should be developed which outlines actions to be taken by the owner to minimize the downstream effects of an emergency at the dam within six months from the date of approval of this report.

APPROVED:



ROGER L. BALDWIN  
Lieutenant Colonel, Corps of Engineers  
Commander and District Engineer

DATE:



PHASE I INSPECTION REPORT  
NATIONAL DAM SAFETY PROGRAM

Name of Dam: Rock Island Lake  
Identification No.: Fed ID No. NJ00819  
State Located: New Jersey  
County Located: Sussex  
Stream: Wallkill River Tributary  
River Basin: Wallkill  
Date of Inspection April 23, 1981

ASSESSMENT OF GENERAL CONDITIONS

Rock Island Lake Dam is probably at least 50 years old and is in poor condition. It is a small dam, 500 feet long, 19.1 feet in height, and was initially rated as high hazard but downgraded to a significant hazard classification as a result of this inspection. Sixty percent of the downstream area at the toe is wet and seepage, noted by orange colored flocs, shows that water is passing though and under the dam. The three 12-inch concrete spillway pipe system is connected to a 20-inch RCP with a 24-inch RCP outlet that discharges beyond the toe of the dam. An 8-inch blowoff pipe also discharges through the 24-inch RCP. The downstream slope is covered with debris and dump materials. Brush and large trees are growing on the downstream face and at the toe. Erosion gullies have developed on the upstream slope and erosion has left patches of rip rap on the upstream slope. A small discharge of whitish foul-smelling effluent is coming from the 24-inch RCP spillway outlet. The spillway is capable of passing 24 percent of the Spillway Design Flood inflow hydrograph, which is one-half the Probable Maximum Flood, without overtopping. Therefore, the spillway is considered inadequate.

The owner should engage a professional engineer qualified in the design and construction of dams to accomplish the following in the near future: Investigate the adequacy of the spillway capacity and design and oversee remedial measures as needed; evaluate the leakage into the spillway discharge pipe; design and oversee the procedure for the removal of brush, debris, and trees from the downstream slope for a distance of 25 feet from the downstream toe of the dam or to the property line, whichever is less; design and oversee repairs for the eroded areas on the upstream slope of the dam and specify erosion protection for the upstream slope; and investigate the seepage and wet, soft areas at and downstream of the downstream toe of the dam and design remedial measures as required.

It is further recommended that the owner accomplish the following tasks as part of operation and maintenance procedures. Starting soon: Begin a program of periodically checking the condition of the dam and monitoring the seepage and wet areas along and downstream of the downstream toe of the dam; point stone masonry headwall containing the spillway discharge pipes; establish permanent cover along the crest after filling ruts with suitable material; clear inlet box of debris; and develop an emergency plan which outlines actions to be taken by the owner to minimize downstream effects of an emergency at the dam. In the near future: Develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam, and clear trees and brush on either side of the discharge channel for a distance of 100 feet from the toe of the dam or to the property line whichever is the lesser.

ANDERSON-NICHOLS & COMPANY, INC.



Warren A. Guinan, P.E.  
Project Manager  
New Jersey 16848

February 17, 1981

OVERVIEW PHOTO  
ROCK ISLAND LAKE DAM



## CONTENTS

### PHASE I INSPECTION REPORT NATIONAL DAM SAFETY REPORT

ROCK ISLAND LAKE DAM FED ID NO. NJ00819

| SECTION 1  | PROJECT INFORMATION                                                                                                                                                                    | <u>Page</u> |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|            | 1.1 <u>General</u><br>1.2 <u>Project Description</u><br>1.3 <u>Pertinent Data</u>                                                                                                      |             |
| SECTION 2  | ENGINEERING DATA                                                                                                                                                                       |             |
|            | 2.1 <u>Design</u><br>2.2 <u>Construction</u><br>2.3 <u>Operation</u><br>2.4 <u>Evaluation</u>                                                                                          |             |
| SECTION 3  | VISUAL INSPECTION                                                                                                                                                                      |             |
| SECTION 4  | OPERATIONAL PROCEDURES                                                                                                                                                                 |             |
|            | 4.1 <u>Procedures</u><br>4.2 <u>Maintenance of Dam</u><br>4.3 <u>Maintenance of Operating Facilities</u><br>4.4 <u>Warning System</u><br>4.5 <u>Evaluation of Operational Adequacy</u> |             |
| SECTION 5  | HYDRAULIC/HYDROLOGIC                                                                                                                                                                   |             |
| SECTION 6  | STRUCTURAL STABILITY                                                                                                                                                                   |             |
| SECTION 7  | ASSESSMENT, RECOMMENDATIONS/REMEDIAL MEASURES                                                                                                                                          |             |
|            | 7.1 <u>Assessment</u><br>7.2 <u>Recommendations/Remedial Measures</u>                                                                                                                  |             |
| FIGURES    | 1. Essential Project Features<br>2. Essential Project Features<br>3. Regional Vicinity Map                                                                                             |             |
| APPENDICES | 1. Check List Visual Inspection<br>2. Photographs<br>3. Hydrologic Computations<br>4. HEC 1 Output<br>5. References                                                                    |             |

## PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test Flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonable possible storm runoff), or fractions thereof. The test flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

PHASE I INSPECTION REPORT  
NATIONAL DAM SAFETY INSPECTION PROGRAM  
ROCK ISLAND LAKE POND DAM  
FED ID NO. #NJ00819

SECTION 1  
PROJECT INFORMATION

1.1 General

a. Authority. Authority to perform the Phase I Safety Inspection of Rock Island Lake Dam was received from the State of New Jersey, Department of Environmental Protection, Division of Water Resources by letter dated 12 December 1980 under Basic Contract No. FPM-39 and Contract No. A01093 dated 10 October, 1979. This Authority was given pursuant to the National Dam Inspection Act, Public Law 92-367 and by agreement between the State and the U.S. Army Engineers District, Philadelphia. The inspection discussed herein was performed by Anderson-Nichols & Company, Inc.

b. Purpose: The purpose of the Phase I Investigation is to develop an assessment of the general conditions with respect to the safety of Rock Island Lake Dam and appurtenances. Conclusions are based upon available data and visual inspection. The results of this study are used to determine any need for emergency measures and to conclude if additional studies, investigations, and analyses are necessary and warranted.

1.2 Project Description

a. Description of Dam and Appurtenances. Rock Island Lake Dam is a 500 foot long earth embankment dam with a hydraulic height of 18.1 feet and a structural height of 19.1 feet. The spillway is a concrete weir leading to three 12-inch concrete pipes, located at the left center of the dam, and connecting to a 20-inch RCP with a 24-inch reinforced concrete pipe outlet that discharges downstream of the toe of the dam. An 8-inch blow-off pipe also discharges through the 24-inch RCP. The dam's crest width ranges from 30 to 100 feet. The crest of the dam is bare and rutted because it serves as an access road to homes on the right (north) side of the lake. The dam's upstream face has a 3H:1V slope with small erosion gullies at and above the water line. The downstream embankment has a 2H:1V slope and is covered with extensive debris, including large boulders, brush, tree stumps, and trash. The downstream toe is wet and soft, with a high concentration of orange colored flocs.

b. Location. The dam is located on a tributary to the Wallkill River in Sparta Township, Sussex County, New Jersey. The dam is at 41° 02.5' north latitude and 74° 35.2' west longitude on the Franklin, N.J. Quadrangle. The dam may be reached by exiting from Interstate 80 on Route 15 north to Sparta, exiting right on Route 517 north at the center of Sparta, turning right immediately on Route 620 (Glen Road). Rock Island Dam is a left turn approximately 0.5 mile after Glen Road branches left from Milton Road. A location map has been included as Figure 3.

c. Size Classification. Rock Island Lake Dam is classified as being small in size on the basis of storage at the dam crest of 61 acre-feet, which is less than 1000 acre-feet but more than 50 acre-feet, and on the basis of its structural height of 19.1 feet, which is less than 40 feet, in accordance with criteria given in the Recommended Guidelines for Safety Inspection of Dams.

d. Hazard Classification. Visual inspection of the downstream area shows that the failure of Rock Island Dam would cause the surface of the small pond about 200 feet downstream to rise about 5-1/2 feet. Two houses and a shed or garage are located downstream of the small pond. The porch, and presumably the first floor, elevation of the lower of the two houses, about 4 occupants, is about 5 feet above the present pond surface. Although damage to the lower house may be appreciable, few, if any, lives would be lost. Therefore, the dam is considered significant hazard.

e. Ownership. The dam is co-owned by Mr. Carl Aherns and Mr. Franz Montane. Information may be obtained by writing Mr. Aherns at Galen Road, Sparta, New Jersey.

f. Purpose. Mr. Aherns said that the dam was built to provide road access and to create a lake.

g. Design and Construction History. No information regarding the original plan or design of the dam was available.

h. Normal Operational Procedure. No operational procedures were disclosed for the dam.

i. Site Geology. No site specific geologic information (such as borings) was available at the time the dam was inspected. Information derived from the Geology of Franklin and part of Hamburg Quadrangles, New Jersey (Buddington and Baker, 1961) and Glacial Drift Map of New Jersey (Salisbury, Kummel, Peet and Whitson, 1902) indicates soils within the immediate site consist of glacial till over bedrock.

Bedrock was observed in one outcrop adjacent to the downstream toe of the dam during the site visit. The previously mentioned map indicates that bedrock in the area consists of medium granitoid gneiss of Precambrian age.

### 1.3 Pertinent Data

#### a. Drainage Area

0.09 square miles

#### b. Discharge at Damsite (cfs)

Maximum flood at damsite - unknown

Total ungated spillway capacity at maximum pool elevation (at top of dam) - 9

#### c. Elevation (ft. above NGVD)

Top of dam - 1251.1

Test flood (1/2 PMF) - 1251.9

Recreation pool (at time of inspection) - 1250

Spillway crest - 1250

Streambed in channel near the toe of the dam - 1233.0

Maximum tailwater - (estimated) - 1237.0

#### d. Reservoir (length in feet)

Length of maximum pool - 1000 (estimated)

Spillway crest - 900

#### e. Storage (acre-feet)

Spillway crest - 50

Test Flood (1/2 PMF) - 69

Top of dam - 61

#### f. Reservoir Surface (acres)

Top of dam - 11 (estimated)

Spillway crest - 10

g. Dam

Type - earth

Length - 500 feet

Height - 18.1 feet (hydraulic)

- 19.1 feet (structural)

Top width - ranges from 30 to 100 feet

Side slopes - upstream 3H:1V, downstream 2H:1V

Zoning - unknown

Impervious core - unknown

Cutoff - unknown

Grout curtain - unknown

h. Spillway

Type - Three 12-inch concrete pipes set in a stone masonry headwall connected to a 20-inch RCP and discharging through a 24-inch RCP

Length of weir - 3 feet

Crest elevation - 1250 feet NGVD

Low level outlet - one 8-inch diameter blowoff pipe  
(see 1.2 i below)

U/S Channel - Rock Island Lake

D/S Channel - tributary to Wallkill River

i. Regulating Outlets

Type - one 8-inch diameter blow off pipe  
connected to 24-inch RCP spillway outlet pipe.

Length (estimated) - 60 feet

Access - along crest of dam to valve box on up-stream side to the right of the spillway.

SECTION 2  
ENGINEERING DATA

2.1 Design

No hydraulic, hydrologic, or other engineering data were disclosed. However a property map, showing some dimensions of the dam, was made available by Mr. Carl Aherns, a co-owner.

2.2 Construction

No recorded data concerning construction of the Rock Island Lake Dam were found.

2.3 Operation

No written operational data were found.

2.4 Evaluation

a. Availability. A search of the New Jersey Department of Environmental Protection files revealed no information.

b. Adequacy. Data obtained in the visual inspection are deemed adequate to complete this Phase 1 Inspection Report

SECTION 3  
VISUAL INSPECTION

3.1 Findings

a. Dam. The downstream slope and downstream toe of the dam are covered with extensive debris, including large boulders, brush, tree stumps, leaves and a considerable amount of trash which makes it impossible to inspect the downstream slope adequately. It appeared during the site visit that dumping of debris over the crest had taken place over a considerable period of time. The area at the downstream toe is wet and soft for approximately sixty percent of the length of the dam. Several seeps were observed discharging water which had a pronounced chemical odor and a high concentration of orange colored flocs with no evidence of suspended fines. Near the center of the dam, the 24-inch-diameter reinforced concrete pipe (RCP) outlet, connected to the three 12-inch concrete spillway pipes, was discharging water with a strong chemical odor which flowed in the channel bypassing a small pond downstream from the dam. A large wet and soft area was observed approximately 50 feet downstream from the dam. This area was opposite the three 12-inch-diameter concrete pipes which are located on the upstream slope.

Trees are growing in the area at the downstream toe of the dam. Brush and small trees are growing on the upstream slope. Erosion has left sporadic patches of riprap on the upstream face and developed erosion gullies at and above the waterline.

b. The crest is bare and rutted because of vehicular traffic; the crest serves as access road to several houses on the right (north) side of the dam.

b. Appurtenant Structures. The inlet box leading to the three 12-inch-diameter concrete pipes is clogged with leaves and debris. The concrete of the structure is surface eroded and the mortar in the stone-masonry headwall is missing or cracked. The outlet for these pipes is a 24-inch RCP, located near the downstream toe.

c. Reservoir Area. The watershed above the lake is gently to moderately sloping and wooded. Several homes were noted around the perimeter of the reservoir. Slopes on the shore of the lake appear stable. No appreciable sedimentation was observed.

d. Downstream Channel. Erosion has occurred on the right and left banks of the channel immediately downstream from the 24-inch-diameter RCP. Approximately 150 feet downstream from the pipe, the stream flows adjacent to and around the toe of the slope of the dike which contains a downstream pond. Trees are growing on the banks of the channel downstream of the 24-inch RCP.

SECTION 4  
OPERATIONAL PROCEDURES

4.1 Procedures

No formal operating procedures were revealed.

4.2 Maintenance of Dam

No formal maintenance procedures for the dam were found.

4.3 Maintenance of Operating Facilities

No formal maintenance procedures for the operating facilities were discovered.

4.4 Warning System

No description of any warning system was found.

4.5 Evaluation of Operational Adequacy

Because of the lack of operation and maintenance procedures, the remedial measures described in Section 7.2 should be implemented as described.

SECTION 5  
HYDROLOGIC/HYDRAULIC

5.1 Evaluation of Features

a. Design Data. Because no original hydrologic/hydraulic design data were revealed, an evaluation of such data could not be performed.

b. Experience Data. No experience data were found.

c. Visual Inspection. The inlet box for the spillway pipes contain debris and sediment. The downstream outlet is a 24-inch RCP. At that time, this pipe was discharging a small quantity of whitish-colored, foul-smelling effluent. This may be caused by infiltration through the pipe joints of leachate from dumped material on the downstream face of the dam.

d. Rock Island Lake Dam Overtopping Potential. The hydraulic/hydrologic evaluation for the dam is based on a Selected Spillway Design Flood (SDF) equal to one-half the Probable Maximum Flood (PMF) in accordance with the range of test floods given in the evaluation guidelines, for dams classified as significant hazard and small in size. The PMF was determined by application of a 24-hour Probable Maximum Precipitation of 22.2 inches to the SCS dimensionless unit hydrograph. Hydrologic computations are given in Appendix 3. The routed half-PMF peak discharge for the subject drainage area is 288 cfs.

Water will rise to a depth of 1.1 foot above the spillway crest before overtopping the low point on the dam embankment crest. Under this head the spillway capacity is 9 cfs, which is less than the selected SDF.

Flood routing calculations indicate that Rock Island Lake Dam will be overtopped for 6.8 hours to a maximum depth of 0.8 feet under half-PMF conditions. It is estimated that the spillway can pass 24 percent of the half-PMF inflow hydrograph without overtopping the dam. Thus, the spillway is considered inadequate.

e. Draw-down Capacity. If the low level outlet currently in place is fully operable and free of siltation, it is estimated that the pond can be drained in approximately 15 days, assuming no significant inflow. This time period is considered marginal for draining the reservoir under emergency conditions, but adequate, considering the small drainage area.

## SECTION 6 STRUCTURAL STABILITY

**6.1 Evaluation of Structural Stability.** The presence of boulders, brush, leaves, and extensive debris on the downstream slope makes it impossible to make an adequate inspection of the embankment.

The soft, wet area and seepage at the downstream toe of the dam is indicative of seepage either through or under the dam which, if not properly controlled, could lead to failure of the dam by piping or sloughing of the downstream slope.

The trees growing at the downstream toe of the embankment and in the area downstream of the toe may blow over and pull out their roots or they may die with the result that their roots rot. In either case, serious seepage and erosion problems could result.

Erosion gullies which are developing on the crest and upstream face of the dam are susceptible to erosion by rainfall or by overtopping of the dam or wave action on the upstream face, and erosion could, in turn, lead to breaching of the dam.

Parts of the crest of the dam which are bare of vegetation would be susceptible to erosion if the dam were overtopped, which might, in turn, lead to breaching of the dam.

**6.2 Design and Construction Data.** No design or construction data pertinent to the structural stability of the dam are available.

**6.3 Operating Records.** No operating records pertinent to the structural stability of the dam were available.

**6.4 Post-Construction Changes.** No record of post-construction changes was available.

**6.5 Seismic Stability** - This dam is in Seismic Zone 1. According to the Recommended Guidelines, dams located in Seismic Zone 1 "may be assumed to present no hazard from earthquake provided static stability conditions are satisfactory and conventional safety margins exist." None of the visual observations made during the inspection are indicative of unstable slopes. However, because no data are available concerning the engineering properties of the embankment and foundation materials for this dam, it is not possible to make an engineering evaluation of the stability of the slopes or the factor of safety under static conditions.

SECTION 7  
ASSESSMENT, RECOMMENDATIONS/REMEDIAL MEASURES

**7.1 Dam Assessment**

a. Condition. Rock Island Lake Dam is estimated to be at least 50 years old and is in poor condition.

b. Adequacy of Information. The information available is such that the assessment of the dam must be based primarily on the results of the visual inspection.

c. Urgency. The recommendations made in 7.2.a and 7.2.b should be implemented by the owner as prescribed.

d. Necessity for Additional Data/Evaluation. The information available from the visual inspection is adequate to identify the potential problems which are listed in 7.2.a. These problems require the attention of a professional engineer who will have to make additional engineering studies to design or specify remedial measures to rectify the problems. If left unattended, the problems could lead to failure of the dam.

**7.2 Recommendation/Remedial Measures**

a. Recommendations. The owner should engage a professional engineer qualified in the design and construction of dams to accomplish the following in the near future:

- (1) Investigate the adequacy of the spillway capacity and design and oversee remedial measures as needed.
- (2) Evaluate the leakage into the spillway discharge pipe and design and oversee corrective measures as required.
- (3) Design and oversee the procedure for the removal of brush, debris and trees from the downstream slope and for a distance of 25 feet from the downstream toe of the dam or to the property line whichever is the lesser distance.
- (4) Design and oversee repairs for the eroded areas on the upstream slope of the dam and specify erosion protection for the upstream slope.
- (5) Investigate the cause of the seepage and wet, soft areas at and downstream of the downstream toe of the dam and design remedial measures as required.

b. Alternatives: None, however, if the dam and reservoir are considered non-essential, the dam could be breached and a bridge over the stream could be provided to replace the embankment.

c. Operating and Maintenance Procedures. The owner should accomplish the following in the time periods specified.

Starting soon:

- (1) Begin a program of periodically checking the condition of the dam and monitoring the seepage and wet areas along and downstream of the downstream toe of the dam.
- (2) Point the stone masonry headwall containing the spillway discharge pipes.
- (3) Establish permanent cover along the crest after filling ruts with suitable material.
- (4) Clear inlet box of debris.
- (5) Develop an emergency action plan which outlines actions to be taken by the owner to minimize downstream effects of an emergency at the dam.

In the near future:

- (1) Develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam.
- (2) Clear trees and brush on either side of the discharge channel for a distance of 100 feet from the toe of the dam or the property line whichever is the lesser.



|                                                |                                                                                                 |
|------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Anderson-Nichols & Co, Inc<br>BOSTON           | U.S. ARMY ENGINEER DIST PHILADELPHIA<br>CORPS OF ENGINEERS<br>PHILADELPHIA, PA<br>MASSACHUSETTS |
| NATIONAL PROGRAM OF INSPECTION OF NON-FED.DAMS |                                                                                                 |
| ROCK ISLAND LAKE DAM<br>PLAN                   |                                                                                                 |
| ROCK ISLAND LAKE                               | NEW JERSEY                                                                                      |
| SCALE NOT TO SCALE                             |                                                                                                 |
| DATE JUNE 1981                                 |                                                                                                 |

FIGURE.-1



|                                                    |  |                                                                                |  |
|----------------------------------------------------|--|--------------------------------------------------------------------------------|--|
| Anderson-Nichols & Co, Inc<br>BOSTON MASSACHUSETTS |  | U.S.ARMY ENGINEER DIST PHILADELPHIA<br>CORPS OF ENGINEERS<br>PHILADELPHIA, PA. |  |
| NATIONAL PROGRAM OF INSPECTION OF NON-FED.DAMS     |  |                                                                                |  |
| ROCK ISLAND LAKE DAM<br>ELEVATION                  |  |                                                                                |  |
| ROCK ISLAND LAKE                                   |  | NEW JERSEY                                                                     |  |
|                                                    |  | SCALE NOT TO SCALE                                                             |  |
|                                                    |  | DATE JUNE 1981                                                                 |  |

FIGURE-?



Anderson-Nichols & Co., Inc.

BOSTON

MASSACHUSETTS

U.S. ARMY ENGINEER DIST. PHILADELPHIA  
CORPS OF ENGINEERS  
PHILADELPHIA, PA.

### NATIONAL PROGRAM OF INSPECTION OF NON-FED.DAMS

## ROCK ISLAND LAKE DAM LOCATION MAP

MAP BASED ON STATE OF NEW JERSEY  
OFFICIAL MAP & GUIDE.

ROCK ISLAND LAKE

NEW JERSEY

SCALE: 1" = 4 Miles Approx.

DATE: JUNE 1981

FIGURE - 5

**APPENDIX 1**  
**CHECK LIST**  
**VISUAL INSPECTION**

**ROCK ISLAND LAKE**

Check List  
Visual Inspection  
Phase 1

|                                      |            |                      |                                 |                                   |             |            |             |       |
|--------------------------------------|------------|----------------------|---------------------------------|-----------------------------------|-------------|------------|-------------|-------|
| Name                                 | Dam        | Rock Island Lake Dam | County                          | Sussex                            | State       | NJ(00819)  | Coordinator | NJDEP |
| Date(s)                              | Inspection | 2/17/81<br>4/23/81   | Weather                         | Cool & Overcast<br>Rain, Overcast | Temperature | 45°<br>55° |             |       |
| pool elevation at time of inspection | 1250'      | NGVD                 | tailwater at time of inspection | 1233'                             | NGVD        |            |             |       |

Inspection Personnel:

|            |             |
|------------|-------------|
| W. Guinan  | F. D. Deane |
| S. Gilman  | K. Stuart   |
| R. Murdock |             |

R. Murdock/K. Stuart Recorder

Owner not present

## UNGATED SPILLWAY OUTLET WORKS

| VISUAL EXAMINATION OF | OBSERVATIONS                                                                                                                                                                                                  | REMARKS OR RECOMMENDATIONS                  |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| CONCRETE WEIR         | 3-foot wide concrete weir in poor condition leads to three 12-inch concrete pipes                                                                                                                             | Locate and clean outlet or replace spillway |
| APPROACH CHANNEL      | Unobstructed on right side. Building foundation runs perpendicular to spillway at left abutment for approx. 25 feet                                                                                           | Investigate source of discharge.            |
| DISCHARGE CHANNEL     | Outlet at center of dam - 24-inch reinforced concrete pipe. Discharging liquid smelling of chemicals. Maybe infiltrating through joints. Ground and rocks around discharge end are discolored and malodorous. | N/A                                         |

| VISUAL EXAMINATION OF<br>EMBANKMENT                          |               | OBSERVATIONS                                                                                                                           | REMARKS OR RECOMMENDATIONS                              |
|--------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| SURFACE CRACKS                                               | None observed | UNUSUAL MOVEMENT OR<br>CRACKING AT OR BEYOND<br>THE TOE                                                                                | Unable to observe toe, covered by leaves<br>and debris. |
| SLoughing or erosion of<br>embankment and abutment<br>slopes |               | Erosion along crest, upstream and downstream<br>slopes. Trees and brush on upstream slopes,<br>trees up to 16-inch diameter along toe. | Clear trees and brush.                                  |
| Vertical and horizontal<br>alignment of the crest            |               | Horizontal - Okay<br>Vertical - Slight undulation in elevation<br>along crest                                                          |                                                         |
| RIPRAP FAILURES                                              |               | Riprap appears to be missing above water level.<br>Some riprap noted on slope below water surface.                                     | Provide erosion protection.                             |

## EMBANKMENT

## VISUAL EXAMINATION OF

|                                                       | OBSERVATIONS                                                                                                                       | REMARKS OR RECOMMENDATIONS |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| RAILINGS                                              | None                                                                                                                               |                            |
| JUNCTION OF EMBANKMENT AND ABUTMENT, SPILLWAY AND DAM | Some erosion evident on upstream slope adjacent to spillway intake.                                                                |                            |
| ANY NOTICEABLE SEEPAGE                                | Ground wet and soggy along majority of toe. Visible seepage at toe near outlet pipe. Standing water along toe near right abutment. |                            |
| STAFF GAGE AND RECORDER                               | N/A.                                                                                                                               |                            |
| DRAINS                                                | None found                                                                                                                         |                            |

DOWNSTREAM CHANNEL

| <u>VISUAL EXAMINATION OF</u>                        | <u>OBSERVATIONS</u>                   | <u>REMARKS OR RECOMMENDATIONS</u> |
|-----------------------------------------------------|---------------------------------------|-----------------------------------|
| <u>CONDITION</u><br>(OBSTRUCTIONS,<br>DEBRIS, ETC.) | Poor flowline meanders through woods. |                                   |
| <u>SLOPES</u>                                       | Moderately steep. Wooded.             |                                   |

APPROXIMATE NO.  
OF HOMES AND  
POPULATION

RESERVOIR

| VISUAL EXAMINATION OF | OBSERVATIONS                                                                         | REMARKS OR RECOMMENDATIONS |
|-----------------------|--------------------------------------------------------------------------------------|----------------------------|
| SLOPES                | Gradual to moderately sloped, wooded, some structures present adjacent to reservoir. |                            |
| SEDIMENTATION         | No appreciable sedimentation observed.                                               |                            |

CHECK LIST  
ENGINEERING DATA  
DESIGN, CONSTRUCTION, OPERATION

| ITEM                       | REMARKS                                                                                                                |
|----------------------------|------------------------------------------------------------------------------------------------------------------------|
| PLAN OF DAM                | None found                                                                                                             |
| REGIONAL VICINITY MAP      | Prepared for this report                                                                                               |
| CONSTRUCTION HISTORY       | None found                                                                                                             |
| TYPICAL SECTIONS OF DAM    | None found                                                                                                             |
| HYDROLOGIC/HYDRAULIC DATA  | None found                                                                                                             |
| OUTLETS - PLAN             | <ul style="list-style-type: none"><li>- DETAILS None found</li><li>- CONSTRAINTS</li><li>- DISCHARGE RATINGS</li></ul> |
| RAINFALL/RESERVOIR RECORDS | None found                                                                                                             |

| ITEM                                                                              | REMARKS    |
|-----------------------------------------------------------------------------------|------------|
| DESIGN REPORTS                                                                    | None found |
| GEOLOGY REPORTS                                                                   | None found |
| DESIGN COMPUTATIONS<br>HYDROLOGY & HYDRAULICS<br>DAM STABILITY<br>SEEPAGE STUDIES | None found |
| MATERIALS INVESTIGATIONS<br>BORING RECORDS<br>LABORATORY<br>FIELD                 | None found |
| POST-CONSTRUCTION SURVEYS OF DAM                                                  | None found |
| BORROW SOURCES                                                                    | Unknown    |

| ITEM                                                  | REMARKS    |
|-------------------------------------------------------|------------|
| MONITORING SYSTEMS                                    | None found |
| MODIFICATIONS                                         | None found |
| HIGH POOL RECORDS                                     | None found |
| POST CONSTRUCTION ENGINEERING STUDIES AND REPORTS     | None found |
| PRIOR ACCIDENTS OR FAILURE OF DAM DESCRIPTION REPORTS | None found |
| Maintenance OPERATION RECORDS                         | None found |

| ITEMS         | REMARKS    |
|---------------|------------|
| SPILLWAY PLAN |            |
| SECTIONS      | None found |
| DETAILS       |            |

OPERATING EQUIPMENT  
PLANS & DETAILS

CHECK LIST  
HYDROLOGIC AND HYDRAULIC DATA  
ENGINEERING DATA

DRAINAGE AREA CHARACTERISTICS: 0.09 square miles, moderate slope,

wooded

ELEVATION TOP NORMAL POOL (STORAGE CAPACITY): 1250' NGVD (50 acre-feet)

ELEVATION TOP FLOOD CONTROL POOL (STORAGE CAPACITY) \_\_\_\_\_  
Not applicable

ELEVATION MAXIMUM TEST FLOOD POOL: 1251.9' NGVD

ELEVATION TOP DAM: 1251.1' NGVD (61 acre-feet)

SPILLWAY CREST: Pipes broad-crested, concrete box with one-foot stoplog notch.

a. Elevation 1250' NGVD

b. Type Stone masonry headwall with three 12-inch concrete pipes connected to a 20-inch RCP discharging through a 24-inch RCP

c. Width Three foot apron with training walls

d. Length 3 feet

e. Location Spillover near center of dam

f. Number and Type of Gates None

OUTLET WORKS: Blow-off pipe

a. Type One 8-inch pipe

b. Location Right of spillway

c. Entrance Invert Estimated at 1240.0' NGVD

d. Exit Invert 1236.6' NGVD

HYDROMETEOROLOGICAL GAGES: None

MAXIMUM NON-DAMAGING DISCHARGE: 9 cfs

APPENDIX 2  
PHOTOGRAPHS

ROCK ISLAND LAKE



April 23, 1981

Spillway Intake



April 23, 1981

Crest of dam from left abutment



April 23, 1981

Upstream face, some riprap visible



April 23, 1981

Large wet area downstream of dam



April 23, 1981

Looking along toe toward 24-inch RCP spillway outlet pipe



April 23, 1981

Close-up view of 24-inch RCP spillway outlet pipe



April 23, 1981

Erosion in crest of dam directly above seep  
at toe of slope



April 23, 1981

Close-up of seep



April 23, 1981

Wet area at toe of slope, orange flocs, no visible sedimentation or flow, leaves and brush obscure toe



April 23, 1981

View of extensive debris along downstream slope



April 23, 1981

Spillway pipe retreat channel



April 23, 1981

Discharge channel looking downstream

**APPENDIX 3**  
**HYDROLOGIC COMPUTATIONS**

**ROCK ISLAND LAKE**



**NATIONAL PROGRAM OF INSPECTION OF  
NON-FED. DAMS**

**ROCK ISLAND LAKE DAM  
SPARTA TOWNSHIP, NEW JERSEY  
REGIONAL VICINITY MAP**

**SCALE IN MILES**

MAP BASED ON U.S.G.S. 7.5 MINUTE QUADRANGLE  
SHEET FRANKLIN, N.J. 1954. REVISED 1971.

DEPARTMENT OF THE ARMY  
PHILADELPHIA DISTRICT, CORPS OF ENGINEERS  
PHILADELPHIA, PENNSYLVANIA

**Anderson-Michalek Company, Inc.**

BOSTON, MA.

JOB NO.

QUARES 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30  
1/4 IN. SCALE1 Determine Time of Concentration  
2  
34 method #1 Texas Highway method  
56 overland flow  
78 Reach length = 1000 ft  
9

slope =  $\frac{1310 - 1250}{1000} = 0.06 = 6.0\%$   
10

11 From TABLE "Woodlands"  
1213 Ave. Velocity = 2.0 fps  
14

1000 ÷ 2.0 fps = 500 sec = 8.3 min = .14 hr  
15

16 channel flow  
17 no channel  
1820 method #2 Soil & water conservation  
21

22  $L = 0.6 T_C \quad L = \frac{l^{0.8} (C+1)^{1.67}}{9000 \cdot y^{0.5}} \quad S = \frac{1000}{l} - 10$   
23

25 Take C = 70 for woodlands  $S = \frac{1000}{70} - 10 = 4.3$   
26

27  $l = 1000 + 0 = 1000 \text{ ft.}$

29  $y = \frac{1310 - 1250}{1000} = 0.06 = 6.0\%$   
30

32  $L = \frac{(1000)^{0.8} (4.3+1)^{1.67}}{9000 \cdot (6)^{0.5}} = .18 \text{ hours}$   
33

35  $T_C = \frac{.18}{.6} = 0.30 \text{ hours}$   
36

JOB NO.

IQUARES 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30  
1/4 IN. SCALE

1

2

3 Method \*3 SCS TR \*55

4

5 overland

6 length = 1,000 ft

7 head = 60 ft

8 slope = 0.06 = 6.0%

9

10 from Figure 3-1 page 3-2

11 V = .60 fps

12

13  $T_c = \frac{L}{V} = \frac{1000}{0.6} = 1,667 \text{ sec} = 27.8 \text{ min} = .46 \text{ hr}$

14

15

16

17 Method \*4 Kirby method

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Overland flow

$$T_c = 0.83 \left( \frac{Nl}{S} \right)^{0.467}$$

$$N = 0.6$$

$$S = 0.06$$

$$l = 1,000$$

$$T_c = 0.83 \left( \frac{(0.6)(1000)}{0.06} \right)^{0.467} = 31.75 \text{ min} = .53 \text{ hrs}$$

average  $T_c$  from 4 methods

$$\frac{.14 \text{ hr} + .30 \text{ hr} + .46 \text{ hr} + .53 \text{ hr}}{4} = .36 \text{ hrs}$$

$$\text{Lag} = T_L = 0.6 \times .36 = .22 \text{ hrs}$$

JOB NO.

 SQUARES 1/4 IN. SCALE 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Stage Versus Discharge

Hydraulic profile on page 4. Numbers in circles (①, ②, etc.) refer to section numbers from page 4.

Spillway - 3-12" pipes, inverts at 1250.0.

$$Q = C A \sqrt{2g} \sqrt{H}$$

$$C = 0.61$$

$$A = 3 \left( \frac{\pi}{4} \right) = 2.36 \text{ ft}^2$$

$$\sqrt{H} = \sqrt{E - 1250.0}$$

$$Q = 0.61(2.36) \sqrt{64.4} \quad (E - 1250.0)^{\frac{1}{2}} = 11.55 (E - 1250.0)^{\frac{1}{2}}$$

Top of dam (sections 2, 3, 4, 5, & 6)

Discharge will be calculated at 1238.0, 1250.0, 1251.1, 1251.2, 1251.4, 1251.6, 1251.8, 1252.0, 1252.5, 1253.0.  $C = 1.7$  for dam crest,  $Z = 2H:1V$

Section Description

- 245.5 Section ② is a 100-ft. sloping weir, avg ht. 1252.4, ends at 1251.3 & 1251.7
- 500 Section ③ is a 100-foot sloping weir, avg. ht. 1251.2, ends at 1251.1 & 1251.3.
- 166.7 Section ④ is a 100-foot sloping weir, avg. ht. 1251.4, ends at 1251.1 & 1251.7
- 250 Section ⑤ is a 100-foot sloping weir, avg. ht. 1251.9, ends at 1251.7 and 1252.1
- 62.5 Section ⑥ is a 100-foot sloping weir, avg. ht. 1252.9, ends at 1252.1 and 1253.7

For a partially submerged sloping weir:



$$Q = CL_{\text{submerged}} H^{3/2}_{\text{ave}}$$

$$L_{\text{submerged}} = 2(E - E_{\text{low}})$$

$$H_{\text{ave}} = \frac{0.5(E - E_{\text{low}})}{L} = 0.5(E - E_{\text{low}})$$

fully submerged sloping weir:  $Q = C(L)(E - E_{\text{low}})^2 (0.5(E - E_{\text{low}}))^{3/2}$



$$Q = CL H_{\text{ave}}^{3/2} = CL (E - E_{\text{avg}})^{3/2}$$



ANDERSON - NICHOLS

|                  |                           |                  |
|------------------|---------------------------|------------------|
| VERNON           | BOSTON                    | CONCORD          |
| Rock Island Lake | Hydraulic Profile         |                  |
| DATE 6/30/81     | SCALE: 1"-1' V<br>1"-1' H | JOB NO. P-40F 14 |

⊗ - 1-24" pipe, d/s  
invert at 1256.6,  
elev at 1254.

Anderson-Nichols &amp; Company, Inc.

Subject ROCK ISLANDSheet No. 5 of '4  
Date 6/30/61  
Computed 7/7/61  
Checked 7/7/61

JOB NO.

SQUARES  
1/4 IN. SCALE 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1

2

3 for  $E = 1238.0, 1250.0, 1251.1$  :  $Q = 0, 0$ 

4

5 for  $E = 1251.2$  :  $Q = 2.7 (500) (E - 1251.1) (0.5(E - 1251.1))^{3/2}$ 

6

7 +  $2.7 (166.7) (E - 1251.1) (0.5(E - 1251.1))^{3/2}$ 

8

9 for  $E = 1251.4, 1251.6$  :  $Q = 2.7 (45.5) (E - 1251.3) (0.5(E - 1251.3))^{3/2}$ 

10

11 +  $2.7 (100) (E - 1251.2)^{3/2} + 2.7 (166.7) (E - 1251.1) (0.5(E - 1251.1))^{3/2}$ 

12

13 for  $E = 1251.8, 1252.0$  :  $Q = 2.7 (45.5) (E - 1251.3) (0.5(E - 1251.3))^{3/2} + 2.7 (100) (E - 1251.2)^{3/2}$ 

14

15 +  $2.7 (100) (E - 1251.4)^{3/2} + 2.7 (250) (E - 1251.7) (0.5(E - 1251.7))^{3/2}$ 

16

17 for  $E = 1252.5, 1253.0$  :  $Q = 2.7 (45.5) (E - 1251.3) (0.5(E - 1251.3))^{3/2} + 2.7 (100) (E - 1251.2)^{3/2}$ 

18

19 +  $2.7 (100) (E - 1251.4)^{3/2} + 2.7 (100) (E - 1251.9)^{3/2}$ 

20

21 +  $2.7 (62.5) (E - 1252.1) (0.5(E - 1252.1))^{3/2}$ 

22

23

24

25 Side Slopes = (sections ① and ⑦)

26

27 for  $1238.0 - 1253.0$  :  $Q = 0$ 

28

29

30

31

32

33

34

35

36

37

38

39

40

## **Anderson-Nichols & Company, Inc.**

Subject Kock Island

Sheet No. 6 of 14  
Date 6/30/81  
Computed ICL  
Checked ...-5

JOB NO.

SQUARES    0    1    2    3    4    5    6    7    8    9    10    11    12    13    14    15    16    17    18    19    20    21    22    23    24    25    26    27    28    29    30  
1/4 IN. SCALE

| Elevation<br>(Ft. above NGVD) | Description         | $Q_{\text{spillway}}$<br>(cfs) | $Q_{\text{top of dam}}$<br>(cfs) | $Q_{\text{sideslopes}}$<br>(cfs) | $Q_{\text{Total}}$<br>(cfs) |
|-------------------------------|---------------------|--------------------------------|----------------------------------|----------------------------------|-----------------------------|
| 1238.0                        | approx. pond lowpt. | 0                              | 0                                | 0                                | 0                           |
| 1240.0                        |                     | 0                              | 0                                | 0                                | 0                           |
| 1250.0                        | spillway crest      | 0                              | 0                                | 0                                | 0                           |
| 1251.1                        | top of Dam          | 8.9                            | 0                                | 0                                | 8.9                         |
| 1251.2                        |                     | 9.7                            | 2                                | 0                                | 11.7                        |
| 1251.4                        |                     | 11                             | 32                               | 0                                | 43                          |
| 1251.6                        |                     | 12                             | 98                               | 0                                | 110                         |
| 1251.8                        |                     | 13                             | 202                              | 0                                | 215                         |
| 1252.0                        |                     | 14                             | 348                              | 0                                | 362                         |
| 1252.5                        |                     | 16                             | 912                              | 0                                | 928                         |
| 1253.0                        |                     | 18                             | 1,716                            | 0                                | 1,734                       |



JOB NO.

SQUARES  
1/4 IN. SCALE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1

Stage Versus Storage

4 Surface Area at normal pool (1250.0) = 10 acres

5 Surface Area at elevation 1260 = 15.8 acres

7 Assume a linear increase in surface area with elevation. Assume

9 Storage = 0.0 at 1238.0, 50 ac-ft. at 1250 (average depth = 5 feet).

| Elevation<br>(ft. above NGVD) | Surface Area<br>(Acres) | Avg. S. A.<br>(Acres) | Incremental Storage<br>(Ac - ft.) | Cumulative Storage<br>(Ac - ft.) |
|-------------------------------|-------------------------|-----------------------|-----------------------------------|----------------------------------|
| 1238.0                        | -                       | -                     | -                                 | 0                                |
| 1250.0                        | 10                      | 10.00                 | 11.0                              | 50                               |
| 1251.1                        | 10.06                   | 10.09                 | 1.0                               | 61                               |
| 1251.2                        | 10.12                   | 10.175                | 2.0                               | 62                               |
| 1251.4                        | 10.23                   | 10.29                 | 2.1                               | 64                               |
| 1251.6                        | 10.35                   | 10.405                | 2.1                               | 66.1                             |
| 1251.8                        | 10.46                   | 10.52                 | 2.1                               | 68.2                             |
| 1252.0                        | 10.58                   | 10.725                | 5.4                               | 70.3                             |
| 1252.5                        | 10.87                   | 10.985                | 5.5                               | 75.7                             |
| 1253.0                        | 11.10                   |                       |                                   | 81.2                             |

33

34

35

36

37

38

39

40



Anderson-Nichols & Company, Inc.

Subject Rock Island

Sheet No. 10 of 14

Date 6/30/61

Computed TCC

Checked CRD

JOB NO.

SQUARES 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30  
1/4 IN. SCALE



JOB NO.

 SQUARES 1/4 IN. SCALE 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1

2

Breach Analysis

4 Assume breach width of 100'

6 Time to develop of 0.25 hour

8 Straight walls on breach

10 Bottom elevation of 1238' NGVD

13 The damage center is a pond about 500 feet downstream, with  
 14 3 houses around it, 2 about 5 feet above the pond and one  
 15 about 15 feet up. The stream below Rock Island Dam actually  
 16 routes around the pond to the north, beside the two lower houses.  
 17

21 The following cross section approximates the control at the dam:



$$27 Q = 3.0 \overset{(1)}{H}^{3/2} + 2.7 \overset{(2)}{(100)} \overset{(2)}{(H-1)}^{3/2} + 2 (2.7) (10) \overset{(3)}{(H-1)} \overset{(4)}{(0.5(H-1))}^{3/2}$$

29 For storage, Assume 2 acre-ft at spillway crest, and large  
 30 surface area  $\rightarrow S = 2 + H(Ac/F_f)$ . Assume constant surface area  
 31 as pond rises (effect of pond storage on Q negligible anyway)

JOB NO.

 QUARES  
 14 IN. SCALE 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

 1  
 2 H (ft above S/W) Q (cfs) Storage (Ac-Ft)  
 3

|    |   |       |    |
|----|---|-------|----|
| 4  | 0 | 0     | 2  |
| 5  | 1 | 15    | 3  |
| 6  | 2 | 332   | 4  |
| 7  | 3 | 950   | 5  |
| 8  | 4 | 1,821 | 6  |
| 9  | 5 | 2,939 | 7  |
| 10 | 6 | 4,306 | 8  |
| 11 | 7 | 5,930 | 9  |
| 12 | 8 | 7,815 | 10 |

A HEC-1 shows that dam breach upon overtopping would have the following impact:

 20 Flow      Stage  
 21

22 Before failure 9 cfs      0.6'

23 After failure 3,532 cfs      5.43'

This would cause about 0.4 feet of flooding at the two houses. Thus, the dam is considered to be significant hazard, since there is little threat of loss of life.

Anderson-Nichols &amp; Company, Inc.

Subject Rock Island Dam

Sheet No. 13 of 14

Date 8/16/71

Computed K.P

Checked K.C.J.

JOB NO.

SQUARES 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30  
1 IN. SCALE

1  
2 Determination of "C" for  
3 low level outlet  
4  
5

6  $D = \text{diameter} = 8 \text{ inches}$

7  $n = 0.015 \text{ for RCP (K+B 6-15)}$

8  $A_p = \text{area of pipe opening} = 0.35$

9  $L_p = \text{length of pipe} = 60 \text{ feet}$

10  $K_f = \text{friction loss through pipe}$

$$11 K_f = \frac{5087 n^2}{D^{4/3}} = \frac{5087 (.015)^2}{(8)^{4/3}} = .072$$

12  $K_l = \text{entrance loss to pipe} = 0.8 \text{ (K+B 6-18)}$

13  $C_p = \text{coefficient of discharge}$

$$14 C_p = A_p \sqrt{\frac{2g}{1 + k_l + k_f L_p}} = .35 \sqrt{\frac{64.4}{1 + .8 + (.072)(60)}} = 1.14$$

$$15 C = C_p / A_p / \sqrt{2g}$$

$$16 C = 1.14 / .35 / \sqrt{64.4} = 0.40$$

JOB NO.

 SQUARES 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30  
 1/4 IN. SCALE

1

2

3

4

5

- Assume:
- ① no significant inflow
  - ② one 8" PIPE
  - ③ invert estimated at 1240.' NGVD
  - ④  $Q_p = C_p H^{\frac{1}{2}} = 1.14 H^{\frac{1}{2}}$
  - ⑤ Acre-ft/day = 1.9835  $\times Q_{ave}$
  - ⑥ Days =  $\Delta \text{storage} / \text{Acre-ft/day}$

| Elev (NGVD) | Storage (acre-ft) | $\Delta S$ | H (ft) | Q (cfs) | Ave Q (cfs) | Acre-ft day <sup>-1</sup> | Days |
|-------------|-------------------|------------|--------|---------|-------------|---------------------------|------|
| 1250        | 50                | 10         | 9.7    | 3.6     | 3.4         | 6.7                       | 1.5  |
| 1248        | 40                | 10         | 7.7    | 3.2     | 2.95        | 5.9                       | 1.7  |
| 1246        | 30                | 10         | 5.7    | 2.7     | 2.45        | 4.9                       | 2.0  |
| 1244        | 20                | 10         | 3.7    | 2.2     | 1.85        | 3.7                       | 2.7  |
| 1242        | 10                | 10         | 1.7    | 1.5     | 1.75        | 1.5                       | 6.7  |
| 12110.3     | 0                 |            | 0      |         |             |                           |      |

141.6 day

**APPENDIX 4**  
**HEC 1 OUTPUT**  
**ROCK ISLAND LAKE**

PAGE 1

IEC-1 INPUT

卷之三

**RUCK ISLAND LAKE DAM** OVERSTOPPING ANALYSIS  
**NEW JERSEY DAM NO. 619 - SULLIVAN COUNTY - SPARTA TOWNSHIP**  
**DETAILED RUN OF TEST FLOOD WITH 0.5 PMF FROM 24-HOUR PMP**

ALL DEVELOPED INFLOW HYDROGRAPH TO ROCK ISLAND LAKE DAM

|    | 0.69 | 0.27 | 1 | ND | 113 | 123 | 132 |
|----|------|------|---|----|-----|-----|-----|
| AM | 0.64 |      |   |    |     |     |     |
| PM | 0.27 |      |   |    |     |     |     |
| LU | 0.2  |      |   |    |     |     |     |
| LU | 0.1  |      |   |    |     |     |     |
| LU | 0.2  |      |   |    |     |     |     |

卷之三



## PRECIPITATION DATA

11 PM - PROBABLE MAXIMUM STORM INDEX PRECIPITATION COEFFICIENT  
TPSPC 22.20  
TPSDA 0.60  
TPSDW 0.09  
SWD NO

TRANSPOSITION AREA  
USE SWD DISTRIBUTION  
PERCENT OF INDEX PRECIPITATION OCCURRING IN GIVEN TIME  
6-HR 46-HR 72-HR 96-HR  
113.0 123.0 0.0 0.0

12 LU UNIFORM LOSS RATE 1.00 INITIAL LOSS  
STOTL 0.10 UNIFORM LOSS RATE AREA  
CNSTL 0.0 PERCENT IMPERVIOUS AREA  
RTMP 0.0

13 UD SCS DIMENSIONLESS UNITGRAPH  
LAG 0.22 LAG

\*\*\*

35. 120. 166. 146. 15 FNC-OF-ERIOD ORDINATES  
4. 2. 2. 1. 54. 33. 20. 12. 7.

## HYDROGRAPH AT STATION A1



କରିବାକୁ ପାଇଁ ଏହାର ବିଷୟରେ ଆମଙ୍କୁ ବିଶ୍ଵାସ ନାହିଁ ।

A decorative horizontal border featuring a repeating pattern of small circles and dots. The pattern alternates between solid black circles and smaller white circles with black outlines. It is set against a white background.

—  
—  
—

\*\*\*\*\*

www.ijerpi.org | ISSN: 2278-5626 | Impact Factor: 5.21 | DOI: 10.18488/journal/2278-5626/10000

A decorative horizontal border consisting of a repeating pattern of small circles and dots. The pattern alternates between solid black circles and white circles with black outlines. These are arranged in a staggered grid-like structure.



HYDROGRAPHY AT STATION 1, RATIO = 0.50 AL

| PEAK FLOW<br>(CFS) | TIME<br>(HR) | MAXIMUM FLOW<br>24-HR<br>(CFS) | AVERAGE FLOW<br>72-HR<br>(INCHES) | 24-HR<br>10.638 | 92-HR<br>10.538 |
|--------------------|--------------|--------------------------------|-----------------------------------|-----------------|-----------------|
| 369.               | 15.75        | 9.624                          | 10.435                            | 10.638          | 10.538          |

COMMUNIST LEADERSHIP

卷之三

| HYDROGRAPH ROUTING DATA |                         |                             |                           |                          |                           |         |         |
|-------------------------|-------------------------|-----------------------------|---------------------------|--------------------------|---------------------------|---------|---------|
| IS RS                   | STORAGE ROUTING<br>HSTS |                             | NUMBER OF SUBREACHES<br>1 |                          | TYPE OF INITIAL CONDITION |         |         |
|                         | ST                      | TYP                         | STUR                      |                          |                           |         |         |
|                         | RSVRIC                  | X                           | 50.00                     | INITIAL CONDITION        |                           |         |         |
|                         | 0.00                    | WORKING R AND D COEFFICIENT |                           |                          |                           |         |         |
| 16 SV                   | STORAGE                 | 0.0                         | 50.0                      | 61.0                     | 62.0                      | 64.0    | 68.2    |
| 17 SE                   | ELEVATION               | 1238.00                     | 1250.00                   | 1251.10                  | 1251.20                   | 1251.40 | 1251.60 |
| 18 SQ                   | DISCHARGE               | 0.                          | 0.                        | 9.                       | 12.                       | 43.     | 110.    |
| 19 SE                   | ELEVATION               | 1238.00                     | 1250.00                   | 1251.10                  | 1251.20                   | 1251.40 | 1251.60 |
| 20 SS                   | SPILLWAY                | SPACREL                     | 1250.00                   | 1251.10                  | 1251.20                   | 1251.40 | 1251.60 |
|                         | SPW10                   | SPW10                       | 3.00                      | SPILLWAY CREST ELEVATION |                           |         |         |
|                         | CQGW                    | CQGW                        | 3.00                      | SPILLWAY WIDTH           |                           |         |         |
|                         | EXPH                    | EXPH                        | 1.50                      | WEIR COEFFICIENT         |                           |         |         |
|                         |                         |                             |                           | IF HEAD                  |                           |         |         |
| 21 ST                   | TOP OF DAM              | 1251.10                     | 1251.10                   | ELEVATION AT TOP OF DAM  |                           |         |         |
|                         | CANL10                  | 500.00                      | 500.00                    | DATA WITH                |                           |         |         |
|                         | EXPO                    | 0.0                         | 0.0                       | WEIR COEFFICIENT         |                           |         |         |
|                         |                         | 1.0                         | 1.0                       | EXponent OF HEAD         |                           |         |         |

|         |     |       |       |          |         |                 |       |       |       |       |       |       |
|---------|-----|-------|-------|----------|---------|-----------------|-------|-------|-------|-------|-------|-------|
| STORAGE | 0.0 | 50.00 | 61.00 | COMPUTED | \$12.00 | STORAGE-OUTFLOW | CURVE | 66.10 | 68.20 | 70.30 | 75.70 | 81.20 |
|---------|-----|-------|-------|----------|---------|-----------------|-------|-------|-------|-------|-------|-------|

OUTFLOW : 0.0 0.0 8.90 11.70 43.00 110.00 215.00 362.00 928.00 1734.00

**HYDROGRAPH AT STATION  
PLAY 1, RATIO = 0.50 A2**



| AK GULFLOW IS      | TIME      | TIME          | MAXIMUM AVERAGE FLOW                |
|--------------------|-----------|---------------|-------------------------------------|
| EAK FLOW (CFS)     | TIME (HR) | TIME (INCHES) | 24-HR 72-HR                         |
| 288.               | 15.92     | (CFS)         | 24.92-HR<br>200 R. 200              |
|                    |           | (INCHES)      | R. 526 R. 526                       |
|                    |           | (AC-FT)       | 41. 41.                             |
| AK STORAGE (AC-FT) | TIME (HR) | TIME (INCHES) | MAXIMUM AVERAGE STORAGE 24-HR 72-HR |
| 69.                | 15.92     | (AC-FT)       | 24.92-HR 56.                        |
|                    |           | (INCHES)      | 56.                                 |
|                    |           | (AC FT)       | 1250.56                             |
| EAK STAGE (FT)     | TIME (HR) | TIME (INCHES) | MAXIMUM AVERAGE STAGE 24-HR 72-HR   |
| 1251.90            | 15.92     | (FT)          | 24.92-HR 1250.56                    |
|                    |           | (INCHES)      | 1250.56                             |
|                    |           | (AC FT)       | 1250.56                             |
| CUMULATIVE AREA    | 0.00      | 0.00          | 0.00                                |

PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS  
 FLOW IN CUBIC FEET PER SECOND AREA IN SQUARE MILES  
 TIME TO PEAK IN HOURS

| OPERATION     | STATION | AREA | PLAN | RATIO .1                  | RATIOS APPLIED TO FLOWS |
|---------------|---------|------|------|---------------------------|-------------------------|
| HYDROGRAPH AT | A1      | 0.09 | 1    | FLOW<br>TIME              | 36.9<br>15.75           |
| ROUTED TO     | A2      | 0.09 | 1    | FLOW<br>TIME              | 288.<br>15.92           |
|               |         |      |      | ** PEAK STAGES IN FEET ** |                         |
|               |         |      | 1    | STAGE<br>TIME             | 125.90<br>15.92         |

## SUMMARY OF DAM OVERTOPPING/BREACH ANALYSIS FOR STATION A2

| PLAN                                     | ELEVATION<br>STORAGE<br>OUTFLK | INITIAL VALUE               | SPILLWAY CREST            | TOP OF DAM                    |                             |
|------------------------------------------|--------------------------------|-----------------------------|---------------------------|-------------------------------|-----------------------------|
|                                          | 1250.00<br>50.<br>0.           | 1250.00<br>50.<br>0.        | 1250.00<br>50.<br>0.      | 1251.10<br>61.<br>9.          |                             |
| RATIO<br>OF<br>PRESRVR<br>TO<br>W.S.FLEV | MAXIMUM<br>DEPTH<br>OVER DAM   | MAXIMUM<br>STORAGE<br>AC-FT | MAXIMUM<br>OUTFLOW<br>CFS | DURATION<br>OVER TOP<br>HOURS | TIME OF<br>FAILURE<br>HOURS |
| 0.50                                     | 1251.90                        | 0.80                        | 69.                       | 288.                          | 6.75                        |
| <del>*** NORMAL END OF JOB ***</del>     |                                |                             |                           |                               |                             |



PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLANT-RATIO ECONOMIC COMPUTATIONS  
 PEAK FLOWS IN CFS/SEC, STAGE AREA IN SQUARE MILES  
 TIME TO PEAK IN HOURS

| OPERATION     | STATION | AREA | PLAN           | RATIOS APPLIED TO FLOWS |            |            |            |            |            |
|---------------|---------|------|----------------|-------------------------|------------|------------|------------|------------|------------|
|               |         |      |                | RATIO 1                 | RATIO 2    | RATIO 3    |            |            |            |
| HYDROGRAPH AT | A1      | 0.09 | 1              | FLOW                    | 15.75      | 18.4       | 36.9       | 138.6      | 15.75      |
| PLANT 10      | A2      | 0.09 | 1              | FLOW                    | 16.25      | 16.17      | 15.92      | 15.83      | 16.00      |
|               |         |      | ** PEAK STAGES | 125 C.F.S.              | 125 C.F.S. | 125 C.F.S. | 125 C.F.S. | 125 C.F.S. | 125 C.F.S. |
|               |         |      | TIME           | 18.25                   | 16.17      | 15.92      | 15.83      | 15.75      | 15.62      |

## SUMMARY OF CAVERTCFFING/BREACH ANALYSIS FOR STATION A2

| PLAN 1 ..... | ELEVATION<br>STORAGE<br>OUTFLOW | INITIAL VALUE<br>50. | SPILLWAY EREST<br>50. | TOFF DAM<br>1251.61. | MAXIMUM RESERVOIR<br>W.S.ELEV<br>PHF | MAXIMUM<br>PACIFIC<br>CVR CAP | MAXIMUM<br>STORAGE<br>CFS | MAXIMUM<br>OUTFLOW<br>CFS | CURATION<br>OVER 100<br>HOURS | MAX OUTS OF CW | TIME OF<br>FAILURES |
|--------------|---------------------------------|----------------------|-----------------------|----------------------|--------------------------------------|-------------------------------|---------------------------|---------------------------|-------------------------------|----------------|---------------------|
| C:10         | 1250.79                         | 6.0                  | 58.                   | 6.                   | 6.                                   | 6.0                           | 6.                        | 6.                        | 4.75                          | 16.17          | 0.0                 |
| C:20         | 1251.48                         | 0.36                 | 65.                   | 62.                  | 62.                                  | 0.36                          | 62.                       | 62.                       | 6.75                          | 15.62          | 0.0                 |
| C:30         | 1252.29                         | 0.095                | 79.                   | 75.                  | 75.                                  | 0.095                         | 75.                       | 75.                       | 8.75                          | 15.83          | 0.0                 |
| C:40         | 1252.25                         | 0.1                  | 93.                   | 64.0                 | 64.0                                 | 0.1                           | 64.0                      | 64.0                      | 10.0                          | 15.0           | 0.0                 |

\*\*\* ACTUAL ENC OF JMB \*\*\*

PAGE 1

MEC-1 INPUT

10.....1.....2.....3.....4.....5.....6.....7.....8.....9.....10

18 ROCK JERSEY LAKE DAM - BREACH ANALYSIS - TOM COOCH ANCO  
NEW JERSEY DAM NC. #19 - SUSSEX COUNTY - SPARTA TOWNSHIP

**INFLOW HYDROGRAPH FOR ROCK ISLAND LAKE**

**A2 ACUTE INFELCH HYDROGRAPH THROUGH ROCK ISLAND LAKE**

|     |        |     |     |
|-----|--------|-----|-----|
| 557 | 1250.0 | 3.0 | 1.5 |
| 558 | 1251.1 | 0.0 | 1.5 |
| 559 | 1251.1 | 0.0 | 1.5 |
| 560 | 1251.1 | 0.0 | 1.5 |

--- A3 - ROUTE OUTFLOW TO DAMAGE-CENTER ---

FLCN 8.8 5.6 6.0 4.3 7.5 8.0 9.1 7.0 10.0

15. 332. 950. 1821. 2932. 4300. 5930. 7815.  
1. 32. 3. 4. 5. 6. 7. 8.

卷之三

卷之三

卷之三

卷之三

卷之三

卷之三

卷之三

\*\*\*\*\*  
FLCDN HYDROGRAPH PACKAGE (HLCL-1)  
FEBRUARY 1981  
  
RUN DATE 07/07/81 TIME 17.06.58  
\*\*\*\*\*

\*\*\*\*\*  
U.S. ARMY CORPS OF ENGINEERS  
THE HYDROLOGIC ENGINEERING CENTER  
609 SECOND STREET  
DAVIS, CALIFORNIA 95616  
(916) 440-3285 OR (FTS) 44R-3285  
\*\*\*\*\*

ROCK ISLAND LAKE DAM - BREACH ANALYSIS - TOM GOODCH - ANCO  
NEW JERSEY DAM NC. #19 - SUSSEX COUNTY - SPARTA TOWNSHIP

\* 10 OUTPUT CONTROL VARIABLES

PRINT CONTROL

1 PRINT CONFOIL

0 HYDROGRAPH PLOT SCALE

YES PRINT DIAGNOSTIC MESSAGES

\* 11 HYDROGRAPH TIME DATA

1 MINUTES IN COMPUTATION INTERVAL

LOCATE 1 0 STARTING DATE

TIME 0000 STARTING TIME

NO 100 NUMBER OF HYDROGRAPH ORDINATES

LOCATE 1 0139 ENDING DATE

NAME 0139 ENDING TIME

COMPUTATION INTERVAL 0.02 HOURS

TOTAL TIME BASL 1.65 HOURS

ENGLISH UNITS AREA SQUARE MILES

PRECIPITATION DEPTH INCHES

LENGTH, ELEVATION FEET

FLOW CUBIC FEET PER SECOND

STORAGE VOLUME ACRES-FEET

SURFACE AREA ACRES

TEMPERATURE DEGREES FAHRENHEIT

\*\*\*\*\*  
5 MK 3 A1 INFLOW HYDROGRAPH FOR ROCK ISLAND LAKE  
0 BA SUBBASIN AREA CHARACTERISTICS 0.0 SUBBASIN AREA  
\*\*\*\*\*

HYDROGRAPH AT STATION A1

| EFF. FUNC.<br>( $\frac{CFS}{CFS_0}$ ) | TIME<br>( $\frac{Hr}{Hr_0}$ )                                                           | MAX. FLOW<br>24-HR         | AVERAGE FLOW<br>72-HR      | 1.65-HR                    |
|---------------------------------------|-----------------------------------------------------------------------------------------|----------------------------|----------------------------|----------------------------|
| 0.07                                  | { $\frac{(CFS)}{(CFS_0)}$<br>$\frac{(INCHS)}{(INCHS_0)}$<br>$\frac{(ACFT)}{(ACFT_0)}$ } | 6-HR<br>49<br>0.00<br>0.07 | 49<br>0.00<br>0.00<br>0.07 | 49<br>0.00<br>0.00<br>0.00 |

CUMULATIVE AREA = 0.0 50 100

卷之三

卷之三

卷之三

卷之三

## ROUTE INFLOW HYDROGRAPH

卷之三

CONTROLLING VARIABLES

PRINT CONTROL VARIABLE

卷之三

יְהוָה יְהוָה יְהוָה יְהוָה יְהוָה

ROUTING DATA

SOUTING

SUSTAINABILITY

INITIAL CLOUD TEMPLATES

WORKING AND D

ACE 61.

1238.00 1250.00 1251.1

卷之三

RANGE 0. 0.

## ROUTE INFLOW HYDROGRAPH THROUGH ROCK ISLAND LAKE

| OUTPUT | CONTROL VARIABLES | PRINT CONTROL      |
|--------|-------------------|--------------------|
| IPRINT | 1                 | PILOT CONTROL      |
| INLOT  | 2                 | HYDROGRAPHIC SCALE |
| OSCILL | 3                 | PILOT SCALE        |
|        | 4                 |                    |

TANAKA ET AL.

| STORAGE FLOWING | ROUTING TYPE      | NUMBER OF SUBREACHES | TYPE OF INITIAL CONDITION |
|-----------------|-------------------|----------------------|---------------------------|
| 1               | FLOW A-HO R-SYRIC | 1                    | INITIAL CONDITION         |

| STORAGE   | 0.0     | WORKING-<br>R AND D-EFFICIENT | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|-----------|---------|-------------------------------|---------|---------|---------|---------|---------|---------|---------|
| ELEVATION | 1238.00 | 1250.00                       | 1251.10 | 1251.20 | 1251.40 | 1251.60 | 1251.80 | 1252.00 | 1252.50 |
| DISCHARGE | 0.      | 0.                            | 9.      | 12.     | —       | 43.     | 110.    | —       | 215.    |
| ELEVATION | 1238.00 | 1250.00                       | 1251.10 | 1251.20 | 1251.40 | 1251.60 | 1251.80 | 1252.00 | 1252.50 |

14 SS SPILLWAY CREL 1250.00 SPILLWAY CREST ELEVATION  
SPWID 3.00 SPILLWAY WIDTH  
CCOM 3.00 WEIR COEFFICIENT  
EXPW 1.50 EXPONENT OF HEAD

15 ST TOP OF DAM 1251.10 ELEVATION AT TOP OF DAM  
DWHD 1500.00 DAN WIDTH  
COCO 0.00 WEIR COEFFICIENT  
EXPO 1.50 EXPONENT OF HEAD

16 SB BREACH DATA ELEVATION AT BOTTOM OF BREACH  
DPH0 100.00 BREACH DEPTH  
TBL2 0.05 BREACH SLOPE  
FAIL 0.25 TIME FOR BREACH TO DEVELOP  
FAIL 1251.10 W.S. ELEVATION TO TRIGGER FAILURE

\*\*\*

|  | STORAGE | OUTFLOW | COMPUTED STORAGE-OUTFLOW CURVE |
|--|---------|---------|--------------------------------|
|  | 0.0     | 50.00   | 61.00 62.00 64.00 66.10        |
|  | OUTFLOW | 0.0     | 8.90 11.70 43.00 110.00        |
|  |         |         | 215.00 362.00 928.00 1734.00   |

EGIN DAP FAILURE AT 0.10 HOURS

| DA | MUN  | HRMN | ORD  | OUTFLW | STORAGE | STAGE | DA | MUN | HRMN | ORD | OUTFLW | STORAGE | STAGE |
|----|------|------|------|--------|---------|-------|----|-----|------|-----|--------|---------|-------|
| 1  | 6000 | 1    | 60.9 | 1251.1 | 1       | 0034  | 36 | 264 | 3    | 6   | 1238.9 | 1       | 0108  |
|    | 6001 | 2    | 60.9 | 1251.1 | 1       | 0035  | 36 | 264 | 3    | 6   | 1238.9 | 1       | 0109  |
|    | 6002 | 2    | 60.9 | 1251.1 | 1       | 0036  | 37 | 264 | 3    | 6   | 1238.9 | 1       | 0110  |
|    | 6003 | 2    | 60.9 | 1251.1 | 1       | 0037  | 37 | 264 | 3    | 6   | 1238.9 | 1       | 0111  |
|    | 6004 | 2    | 60.9 | 1251.1 | 1       | 0038  | 37 | 264 | 3    | 6   | 1238.9 | 1       | 0112  |
|    | 6005 | 2    | 60.9 | 1251.1 | 1       | 0039  | 37 | 264 | 3    | 6   | 1238.9 | 1       | 0113  |
|    | 6006 | 2    | 60.9 | 1251.1 | 1       | 0040  | 37 | 264 | 3    | 6   | 1238.9 | 1       | 0114  |
|    | 6007 | 2    | 60.9 | 1251.1 | 1       | 0041  | 37 | 264 | 3    | 6   | 1238.9 | 1       | 0115  |
|    | 6008 | 2    | 60.9 | 1251.1 | 1       | 0042  | 37 | 264 | 3    | 6   | 1238.9 | 1       | 0116  |
|    | 6009 | 2    | 60.9 | 1251.1 | 1       | 0043  | 37 | 264 | 3    | 6   | 1238.9 | 1       | 0117  |
|    | 6010 | 2    | 60.9 | 1251.1 | 1       | 0044  | 37 | 264 | 3    | 6   | 1238.9 | 1       | 0118  |
|    | 6011 | 2    | 60.9 | 1251.1 | 1       | 0045  | 37 | 264 | 3    | 6   | 1238.9 | 1       | 0119  |
|    | 6012 | 2    | 60.9 | 1251.1 | 1       | 0046  | 37 | 264 | 3    | 6   | 1238.9 | 1       | 0120  |
|    | 6013 | 2    | 60.9 | 1251.1 | 1       | 0047  | 37 | 264 | 3    | 6   | 1238.9 | 1       | 0121  |
|    | 6014 | 2    | 60.9 | 1251.1 | 1       | 0048  | 37 | 264 | 3    | 6   | 1238.9 | 1       | 0122  |
|    | 6015 | 2    | 60.9 | 1251.1 | 1       | 0049  | 37 | 264 | 3    | 6   | 1238.9 | 1       | 0123  |
|    | 6016 | 2    | 60.9 | 1251.1 | 1       | 0050  | 37 | 264 | 3    | 6   | 1238.9 | 1       | 0124  |
|    | 6017 | 2    | 60.9 | 1251.1 | 1       | 0051  | 37 | 264 | 3    | 6   | 1238.9 | 1       | 0125  |
|    | 6018 | 2    | 60.9 | 1251.1 | 1       | 0052  | 37 | 264 | 3    | 6   | 1238.9 | 1       | 0126  |
|    | 6019 | 2    | 60.9 | 1251.1 | 1       | 0053  | 37 | 264 | 3    | 6   | 1238.9 | 1       | 0127  |
|    | 6020 | 2    | 60.9 | 1251.1 | 1       | 0054  | 37 | 264 | 3    | 6   | 1238.9 | 1       | 0128  |
|    | 6021 | 2    | 60.9 | 1251.1 | 1       | 0055  | 37 | 264 | 3    | 6   | 1238.9 | 1       | 0129  |
|    | 6022 | 2    | 60.9 | 1251.1 | 1       | 0056  | 37 | 264 | 3    | 6   | 1238.9 | 1       | 0130  |
|    | 6023 | 2    | 60.9 | 1251.1 | 1       | 0057  | 37 | 264 | 3    | 6   | 1238.9 | 1       | 0131  |
|    | 6024 | 2    | 60.9 | 1251.1 | 1       | 0058  | 37 | 264 | 3    | 6   | 1238.9 | 1       | 0132  |
|    | 6025 | 2    | 60.9 | 1251.1 | 1       | 0059  | 37 | 264 | 3    | 6   | 1238.9 | 1       | 0133  |
|    | 6026 | 2    | 60.9 | 1251.1 | 1       | 0060  | 37 | 264 | 3    | 6   | 1238.9 | 1       | 0134  |
|    | 6027 | 2    | 60.9 | 1251.1 | 1       | 0061  | 37 | 264 | 3    | 6   | 1238.9 | 1       | 0135  |
|    | 6028 | 2    | 60.9 | 1251.1 | 1       | 0062  | 37 | 264 | 3    | 6   | 1238.9 | 1       | 0136  |
|    | 6029 | 2    | 60.9 | 1251.1 | 1       | 0063  | 37 | 264 | 3    | 6   | 1238.9 | 1       | 0137  |
|    | 6030 | 2    | 60.9 | 1251.1 | 1       | 0064  | 37 | 264 | 3    | 6   | 1238.9 | 1       | 0138  |
|    | 6031 | 2    | 60.9 | 1251.1 | 1       | 0065  | 37 | 264 | 3    | 6   | 1238.9 | 1       | 0139  |
|    | 6032 | 2    | 60.9 | 1251.1 | 1       | 0066  | 37 | 264 | 3    | 6   | 1238.9 | 1       | 0140  |
|    | 6033 | 2    | 60.9 | 1251.1 | 1       | 0067  | 37 | 264 | 3    | 6   | 1238.9 | 1       | 0141  |

#### HYDROGRAPH AT STATION A2

|      |     |      |     |        |   |      |    |     |        |
|------|-----|------|-----|--------|---|------|----|-----|--------|
| 0026 | 3.9 | 531. | 6.7 | 1239.6 | 1 | 0102 | 63 | 91. | 1628.3 |
| 0027 | 3.0 | 531. | 5.4 | 1237.4 | 1 | 0103 | 64 | 60. | 1628.3 |
| 0030 | 3.1 | 453. | 5.4 | 1237.3 | 1 | 0104 | 65 | 59. | 1628.3 |
| 0031 | 3.2 | 350. | 4.9 | 1239.2 | 1 | 0105 | 66 | 58. | 1628.3 |
| 0032 | 3.3 | 350. | 4.4 | 1239.1 | 1 | 0106 | 67 | 57. | 1628.3 |
| 0033 | 3.4 | 296. | 4.1 | 1239.0 | 1 | 0107 | 68 | 56. | 1628.3 |

AN OUTFLOW IS 3537. AT TIME 0.32 HOURS

| EAK FLOW<br>(CFS)   | TIME<br>(HR) | TIME<br>(HR)     | MAXIMUM AVERAGE FLOW<br>24-HR    |
|---------------------|--------------|------------------|----------------------------------|
| 3537.               | 0.32         | (CFS)<br>(AC-FT) | 4.66.<br>0.000<br>0.66.          |
| AN STAGE<br>(AC-FT) | -            | -                | 4.66.<br>0.000<br>0.66.          |
| EAK STAGE<br>(FEET) | 0.12         | TIME<br>(HR)     | MAXIMUM AVERAGE STORAGE<br>24-HR |
| 1251.1              | -            | -                | 13.                              |
| EAK STAGE<br>(FEET) | 0.12         | TIME<br>(HR)     | MAXIMUM AVERAGE STAGE<br>24-HR   |
| 1251.1              | -            | -                | 1240.98                          |
| CUMULATIVE AREA =   | -            | -                | 1240.98                          |
|                     | -            | -                | 0.0 SQ MI                        |





17 PK                  \* 43                  ROUTE OUTFLOW TO DAMAGE CENTER

18 RD                  OUTPUT CONTROL VARIABLES                  PRINT CONTROL  
1PNT                  1PLOT                  2 PLOT CONTROL  
CSCL                  0. HYDROGRAPH PLOT SCALE

HYDROGRAPH ROUTING DATA

| 19 RS | STORAGE   | ROUTING | NUMBER OF SUBREACHES | FLOW | TYPE OF INITIATION          | CONDITION |       |
|-------|-----------|---------|----------------------|------|-----------------------------|-----------|-------|
|       | STAGE     | TYPE    |                      | 8.00 | INITIAL CONDITION           |           |       |
|       | RSVRIC    | X       |                      | 0.0  | WORKING R AND D COEFFICIENT |           |       |
| 20 SV | SURFACE   |         | 2.0                  | 3.0  | 4.0                         | 5.0       | 6.0   |
| 21 SE | ELEVATION |         | 0.0                  | 1.00 | 2.00                        | 3.00      | 4.00  |
| 22 SO | DISCHARGE |         | 0.                   | 15.  | 332.                        | 950.      | 1821. |
| 23 SE | ELEVATION |         | 0.0                  | 1.00 | 2.00                        | 3.00      | 4.00  |

\*\*\*\*\*  
STORAGE                  2.00                  3.00                  4.00 COMPUTED STORAGE-DUTFLOW CURVE  
OUTFLOW                  0.0                  15.00                  332.00                  950.00                  1821.00                  2939.00                  4306.00                  5930.00                  7815.00  
\*\*\*\*\*  
WARNING \*\*\* USE SPECIFIED PULSES INOUTTING WILL ORIGINALLY UNSTABLE FOR OUTFLOWS BETWEEN 4306.10 7815.

| PEAK FLOW<br>(CFS)   | TIME<br>(HRS) | MAXIMUM AVERAGE FLOW<br>24-HR    | AVERAGE FLOW<br>72-HR    | MAXIMUM AVERAGE FLOW<br>1.65-HR    |
|----------------------|---------------|----------------------------------|--------------------------|------------------------------------|
| 0.33                 | {CFS}         | 6.48                             | 4.62                     | 1.65-HR                            |
|                      | {INC-1}       | 0.000                            | 0.000                    | 4.62                               |
|                      |               | 0.66                             | 0.66                     | 0.000                              |
| AK STORAGE<br>(AC-F) | TIME<br>(HRS) | MAXIMUM AVERAGE STORAGE<br>24-HR | AVERAGE STORAGE<br>72-HR | MAXIMUM AVERAGE STORAGE<br>1.65-HR |
| 7.                   | 6-HR          | 6-HR                             | 4-HR                     | 4-HR                               |
| PEAK STAGE<br>(FT)   | TIME<br>(HRS) | MAXIMUM AVERAGE STAGE<br>24-HR   | AVERAGE STAGE<br>72-HR   | MAXIMUM AVERAGE STAGE<br>1.65-HR   |
| 5.43                 | 1.76          | 6-HR                             | 1.76                     | 1.76                               |
|                      |               | CUMULATIVE AREA = 0.0            | SO M1                    | 1.76                               |

| OPERATION<br>HYDROGRAPH AT | STATION | PEAK<br>FLOW | TIME OF<br>PEAK | AVERAGE FLOW FOR MAXIMUM PERIOD |         | BASIN<br>AREA | MAXIMUM<br>STAGE | TIME OF<br>MAX STAGE |
|----------------------------|---------|--------------|-----------------|---------------------------------|---------|---------------|------------------|----------------------|
|                            |         |              |                 | 6-HOUR                          | 24-HOUR |               |                  |                      |
| ROUTED TO                  | A1      | 50.          | 0.07            | 49.                             | 49.     | 49.           | 0.0              | 0.12                 |
| ROUTED TO                  | A2      | 3537.        | 0.32            | 486.                            | 486.    | 486.          | 0.0              | 0.33                 |
| ROUTED TO                  | A3      | 3532.        | 0.33            | 482.                            | 482.    | 482.          | 0.0              | 5.43                 |

## SUMMARY OF DAM OVERTOPPING/BREACH ANALYSIS FOR STATION

A2

| PLAN 1 .....            | LEVACI<br>STORAG<br>E OUTFLU     | INITIAL VALUE<br>1251.09<br>61. | SPILLWAY<br>CPFST<br>1250.00<br>1250.<br>12803. | TOP OF DAM<br>1251.0<br>1250.<br>1463. |                                 |                             |
|-------------------------|----------------------------------|---------------------------------|-------------------------------------------------|----------------------------------------|---------------------------------|-----------------------------|
| RATIO<br>OF<br>PFM -    | MAXIMUM<br>RESERVOIR<br>W.S.ELEV | MAXIMUM<br>DEPTH<br>OVER DAM    | MAXIMUM<br>STORAGE<br>AC-FT                     | DURATION<br>OVER<br>TOP<br>HOURS       | TIME OF<br>MAX OUTFLOW<br>HOURS | TIME OF<br>FAILURE<br>HOURS |
| 1.00                    | 1251.11                          | 0.01                            | 61.                                             | 3537.                                  | 0.06                            | 0.32                        |
| * NORMAL END OF JOB *** |                                  |                                 |                                                 |                                        |                                 | 0.10                        |

APPENDIX 5  
REFERENCES  
ROCK ISLAND LAKE

**APPENDIX 5**  
**REFERENCES**

**ROCK ISLAND LAKE DAM**

Buddington and Baker, The Geology of Franklin and part of Hamburg Quadrangles, New Jersey, 1961.

Chow, Ven Te, Open Channel Hydraulics, McGraw Hill Book Company, New York, 1959.

King, H.W. and E.F. Brater, Handbook of Hydraulics, McGraw Hill Book Company, New York, Fifth Edition 1963.

Salisbury, Kummel, Peet and Whitson, Glacial Drift Map of New Jersey, 1902.

Schway, G.O., R.K. Frevert, T.W. Edmister, and K.K. Barnes, Soil and Water Conservation Engineering, The Ferguson Foundation Agricultural Engineering Series, John Wiley and Sons, Inc., New York, 1966, 683 pp.

U.S. Army Corps of Engineers, Hydrologic Engineering Center, Flood Hydrograph Package (HEC-1) Users Manual Preliminary, Davis, California, March 1981.

U.S. Department of Agriculture, Soil Conservation Service, Urban Hydrology for Small Watersheds, Technical Release No. 55, Washington, 1975.

U.S. Department of Commerce, Weather Bureau, "Seasonal Variation of the Probable Maximum Precipitation East of the 105th Meridian for Areas from 10 to 1000 Square Miles and Durations of 6, 12, 24, and 48 Hours", Hydrometeorological Report No. 33, Washington.

United States Department of Interior, Bureau of Reclamation, Design of Small Dams, U.S. Government Printing Office, Washington, 1977, 816 pp.

U.S. Department of Interior, Geological Survey, 7.5-Minute Series (topographic) maps, scale 1:24000, Contour Interval 20 feet: Franklin, New Jersey, (1954), Photorevised 1971.

Viessman, Warren, Jr., J.W. Knapp, G.L. Lewis, T.E. Harbaugh, Introduction to Hydrology, Harper and Row, Publishers, New York, Second Edition 1977, 704 pp.

DATE  
ILMED  
-8