Ray: A Distributed Framework for Emerging AI Applications &

Lineage Stash: Fault Tolerance Off the Critical Path

Shucheng Zhong, Han You, Joshua Segal

Overview

- Ray
 - Background & Motivation
 - o API
 - Architecture
- Lineage Stash
 - Background & Motivation
 - Architecture
- Evaluations of Ray and Lineage Stash

Systems for reinforcement learning

Three parts of RL:

- Simulation
- Training
- Serving

^{*} Figure from Ray: A Distributed Framework for Emerging Al Applications

Machine learning ecosystem nowadays

Distributed Training

(e.g. Tensorflow, MXNet, Horovod)

Model Serving

(e.g. Tensorflow Serving, Clipper)

Simulation

(e.g. CIEL, Dask)

Many other systems

.

Glue a bunch of distributed systems together

Or build your own system from scratch

What is Ray?

A general-purpose cluster-computing framework that supports

- fine-grained computations (millions of tasks within millisecond-level latency)
- Heterogeneity both in time and in resource usage
- dynamic execution

Overview of Ray

Ray Libraries

Programming Model

Computation Model

Motivation

The Old Way: Glueing a bunch of systems together -- or build from

scratch

Ray's Computation Model

Dependencies represented as edges in task graph.

```
@ray.remote
def func():
    foo_result = foo.remote()
    bar_result = bar.remote(foo_result)
```


Control dependency

Dataflow dependency

Ray's Computation Model

Tasks and Actors are automatically triggered when inputs become available.

Ray API: Tasks

```
@ray.remote
def matrixMut(A, B):
    return A * B
@ray.remote
def matrixFunction(A, B):
    return np.eiq(A) * np.eiq(B)
@ray.remote
def matrixSum(A, B):
    return A + B
```

$A \times B + f(B, C)$

```
AxB = matrixMut.remote(A, B)
f_BC = matrixFunction.remote(B, C)
result = matrixSum.remote(AxB, f_BC)
print ray.get(result)
```

Ray API: Actor

```
@ray.remote
class Shuffler:
    def __init__(self, A):
        self.A = A
    def shuffle(self, seed):
        self.A = shuffle(self.A, seed)
        return self.A
shuffler = Shuffler.remote(result)
iter1 = shuffler.shuffle.remote(seed)
iter2 = shuffler.shuffle.remote(seed)
iter3 = shuffler.shuffle.remote(seed)
```

$$A' = \text{shuffle}(A, s)$$

Architecture

A: node A

B: node B

C: node B

Node A

Storage: A

Node B

Storage: B C

A: node A

B: node B

C: node B

Node A

Storage: A

Node B

Storage: B C

A: node A

B: node B

C: node B

Node A

Node B

Storage: A

Storage: B C

Local scheduler of A: Let's do this ourselves

Local scheduler of A: Let's do this ourselves

A: node A

B: node A, node B

C: node B

Node A

Storage: A B

Node B

Storage: B C

Local scheduler of A: Let's do this ourselves

A: node A

B: node A, node B

C: node B AxB: node A

Node A

Storage: A B AxB

Node B

Storage: B C

Local scheduler of A: Let's do this ourselves

A: node A

B: node A, node B

C: node B AxB: node A

Node A

Storage: A B AxB

Node B

Storage: B C

A: node A

B: node A, node B

C: node B AxB: node A

Node A

Node B

Storage: A B AxB

Storage: B C

Local scheduler of A: I don't want to do this

A: node A

B: node A, node B

C: node B AxB: node A

Node A

Schedule line 2

Node B

Storage:

Storage: A B AxB

Local scheduler of A: I don't want to do this

Node A

Storage: A B AxB

A: node A

B: node A, node B

C: node B AxB: node A

Node B
Storage: B C

Local scheduler of A: I don't want to do this

A: node A

B: node A, node B

C: node B

AxB: node A

f_BC: node B

Node B

Storage: A B AxB

Node A

Storage: B C f BC

A: node A

B: node A, node B

C: node B AxB: node A

f_BC: node B

Node B

Storage: B C f_BC

Node A

Storage: A B AxB

A: node A

B: node A, node B

C: node B

AxB: node A

f_BC: node B

Node B

Storage: A B AxB

Node A

Storage: B C f_BC

Local scheduler of A: Let's do this ourselves

AxB = matrixMut.remote(A, B)

f_BC = matrixFunction.remote(B, C)

result = matrixSum.remote(AxB, f_BC)

print ray.get(result)

Local scheduler of A: Let's do this ourselves

AxB = matrixMut.remote(A, B)
f_BC = matrixFunction.remote(B, C)
result = matrixSum.remote(AxB, f_BC)
print ray.get(result)

Node B

f BC

Local scheduler of A: Let's do this ourselves

A: node A

B: node A, node B

C: node B

AxB: node A

f_BC: node A, node B

Node B

Storage: A B AxB f BC

Node A

Storage:

С

f_BC

Local scheduler of A: Let's do this ourselves

A: node A

B: node A, node B

C: node B

AxB: node A

f_BC: node B

Node B

Node A

Storage: A B AxB

Local scheduler of A: Let's do this ourselves

AxB = matrixMut.remote(A, B)

f_BC = matrixFunction.remote(B, C)

result = matrixSum.remote(AxB, f_BC)

print ray.get(result)

Break!

A: node A

B: node A, node B

C: node B

AxB: node A

f_BC: node B

Node B

Node A

Local scheduler of A: Let's do this ourselves

AxB = matrixMut.remote(A, B)
f_BC = matrixFunction.remote(B, C)

result = matrixSum.remote(AxB, f_BC)

print ray.get(result)

Attempt I: Global Checkpoint

save the entire state of the workers periodically

Local scheduler of A: Let's do this ourselves

A: node A B: node A, node B

C: node B

AxB: node A

f_BC: node B

Node A

Storage: A B AxB

Local scheduler of A: Let's do this ourselves

A: node A

B: node A, node C

C: node C

AxB: node A

f BC:

Storage: B C f_BC

Node A

Storage: A B AxB

Local scheduler of A: Let's do this ourselves

AxB = matrixMut.remote(A, B)
f_BC = matrixFunction.remote(B, C)
result = matrixSum.remote(AxB, f_BC)
print ray.get(result)

Storage: A B AxB

Global Checkpoint

high recovery time

Global Checkpoint

- high recovery time
- low overhead
 - State is sent in the background asynchronously

Global Checkpoint

- high recovery time
- low overhead
 - State is sent in the background asynchronously
- good for fine grained tasks (millisecond)
 - small batches
 - streams of data

Attempt 2: Lineage Logging

• Store the lineage

Attempt 2: Lineage Logging

Save the logs on what's dependent on what

```
AxB = matrixMut.remote(A, B)
f_BC = matrixFunction.remote(B, C)
result = matrixSum.remote(AxB, f_BC)
print ray.get(result)
```


$A \times B + f(B, C)$

A: node A

B: node A, node B

C: node B

AxB: node A

f_BC: node B

Node B

Node A

Storage: A B AxB

Storage: B C f_BC

Local scheduler of A: Let's do this ourselves

AxB = matrixMut.remote(A, B)

f_BC = matrixFunction.remote(B, C)

result = matrixSum.remote(AxB, f_BC)

print ray.get(result)

$A \times B + f(B, C)$

A: node A

B: node A, node B

C: node B

AxB: node A

f_BC: node B

Node A

Storage: A B AxB

Local scheduler of A: Let's do this ourselves

AxB = matrixMut.remote(A, B)

f_BC = matrixFunction.remote(B, C)

result = matrixSum.remote(AxB, f_BC)

print ray.get(result)

Local scheduler of A: Let's do this ourselves

Local scheduler of A: Let's do this ourselves

$A \times B + f(B, C)$

A: node A

B: node A

C: node A

AxB: node A

Node A

Storage: A B AxB C

Local scheduler of A: Let's do this ourselves

$A \times B + f(B, C)$

A: node A

B: node A

C: node A

AxB: node A

f_BC: node A

Node A

Storage: A B AxB C f BC

Local scheduler of A: Let's do this ourselves

$A \times B + f(B, C)$

A: node A

B: node A

C: node A

AxB: node A

f_BC: node A

Result: node A

Node A

Storage: A B AxB C f BC result

Local scheduler of A: I don't want to do this

(f_BC

В

Node B

f BC

Lineage Logging

Lineage Logging

- Fast recovery time
- Large overhead
 - need to commit lineage before each task
 - need to wait for ack before starting each task

Lineage Logging

- Fast recovery time
- Large overhead
 - need to commit lineage before each task
 - need to wait for ack before starting each task
- Good for coarse grained tasks (seconds)
 - Big data

Lineage Stashing

Lineage Stashing

- low recovery time
- · low overhead

result = matrixSum.remote(AxB, f_BC)

result2 = matrixSum(result, A)

61

AxB = matrixMut.remote(A, B)
f_BC = matrixFunction.remote(B, C)
result = matrixSum.remote(AxB, f_BC)

result2 = matrixSum(result, A)

A: node A B: node A

C: node A

AxB: node A

f_BC: node A

Node A

log gapendencies

Node B

Storage: B C f_BC

Local scheduler of A: I don't want to do this

Evaluation

Ray: Locality-aware task placement

Ray: End-to-end scalability

60 nodes

~1,000,000 tasks per sec

The design of GCS & bottom-up scheduler enables high horizontal scalability

Evaluation: Allreduce

Ray vs OpenMPI

Scheduler performance is critical

Ray scheduler ablation

Evaluation: RL Application

- The reference system fails to scale to 2048 cores, due the capacity of application driver
- Ray implementation uses an aggregation tree of actors

2x cores ~ average 1.6x speedup

Evolution Strategies

Lineage Stash: Fault tolerance for free?

When uncommitted lineage grows too large, the performance of lineage stash will be greatly reduced

Lineage Stash: Latency during failure

Lineage Stash: Throughput during failure

Summary

Ray: a general-purpose system that

- supports training, serving and simulation efficiently
- unifies stateless (task) and stateful (actor) computations
- has high throughput, low latency and horizontal scalability

Lineage Stash:

asynchronously log the lineage and forward uncommitted lineage to guarantee recovery correctness