Álgebra Booleana e Circuitos Digitais

- Álgebra de Boole
- Portas lógicas
- Expressões lógicas
- Tabela verdade
- Leis da álgebra booleana
- Circuitos lógicos

1

Álgebra de Boole ou Álgebra Booleana

- Sistema matemático para representar e resolver algebricamente problemas de lógica
- Proposta pelo matemático George Boole
- Aplicada no projeto de circuitos digitais
- Lógica:
 - Cada proposição pode ter valor falso ou verdadeiro
- Circuitos digitais:
 - Cada sinal pode ter valor 0 ou 1
- Operações lógicas básicas:
 - NOT, AND, OR
- Portas lógicas:
 - Circuitos digitais básicos que realizam operações booleanas
 - NOT, AND, OR, NAND, NOR, XOR, XNOR

Porta Lógica NOT (Inversor) (NÃO)

- Funcionamento:
 - Possui uma entrada e uma saída
 - Saída tem valor contrário à entrada
- Expressão lógica: $X = \overline{A}$
- Símbolo:

Tabela verdade:

Entrada	Saída
A	\overline{A}
0	1
1	0

Porta Lógica NOT

• Diagrama de tempo: $X = \overline{A}$

Exemplo: Porta Lógica NOT

Circuito para obter complemento a 1 de um número de 8 bits

Número de 8 bits

Complemento a 1 do número

Porta Lógica AND (E)

- Funcionamento:
 - Possui duas ou mais entradas e uma saída
 - Saída é 1 se todas as entradas são 1
 Caso contrário, saída é 0
- Expressão lógica: $X = A \bullet B$
- Símbolo: A
 B

 X
- Tabela verdade:

Entradas		Saída
A	B	$A \bullet B$
0	0	0
0	1	0
1	0	0
1	1	1

Porta Lógica AND

• Diagrama de tempo: $X = A \bullet B$

Porta Lógica AND com 3 entradas

• Expressão lógica: $X = A \bullet B \bullet C$

Tabela verdade:

Entradas		Saída	
A	B	C	$A \bullet B \bullet C$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Porta Lógica AND com 3 entradas

• Diagrama de tempo: $X = A \bullet B \bullet C$

Exemplo: Porta Lógica AND

• Sistema de alarme para cinto de segurança

Porta Lógica OR (OU)

- Funcionamento:
 - Possui duas ou mais entradas e uma saída
 - Saída é 1 se alguma entrada é 1
 Caso contrário, saída é 0
- Expressão lógica: X = A + B
- Símbolo: $A \longrightarrow X$
- Tabela verdade:

Entradas		Saída
A	B	A+B
0	0	0
0	1	1
1	0	1
1	1	1

Porta Lógica OR

• Diagrama de tempo: X = A + B

Porta Lógica OR com 3 entradas

• Expressão lógica: X = A + B + C

• Símbolo:

• Tabela verdade:

Entradas		Saída	
\overline{A}	B	C	A+B+C
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Porta Lógica OR com 3 entradas

• Diagrama de tempo: X = A + B + C

Exemplo: Porta Lógica OR

• Sistema de detecção de intruso e alarme

Porta Lógica NAND

NAND = NOT-AND

Porta lógica universal

- Funcionamento:
 - Possui duas ou mais entradas e uma saída
 - Saída é 0 se todas as entradas são 1
 Caso contrário, saída é 1
- Expressão lógica: $X = \overline{A \bullet B}$
- Símbolo:

 A

 B

 X
- Tabela verdade:

Entradas		Saída
A	B	$\overline{A \bullet B}$
0	0	1
0	1	1
1	0	1
1	1	0

Porta Lógica NAND

• Diagrama de tempo: $X = \overline{A \bullet B}$

Porta Lógica NAND com 3 entradas

- Expressão lógica: $X = \overline{A \bullet B \bullet C}$
- Diagrama de tempo:

Porta Lógica NOR

• NOR = NOT-OR

Porta lógica universal

- Funcionamento:
 - Possui duas ou mais entradas e uma saída
 - Saída é 0 se alguma entrada é 1
 Caso contrário, saída é 1
- Expressão lógica: $X = \overline{A + B}$
- Símbolo:

Tabela verdade:

Entradas		Saída
A	B	$\overline{A+B}$
0	0	1
0	1	0
1	0	0
1	1	0

Porta Lógica NOR

• Diagrama de tempo: $X = \overline{A + B}$

Porta Lógica NOR com 3 entradas

• Expressão lógica: $X = \overline{A + B + C}$

• Diagrama de tempo:

Porta Lógica XOR (Exclusive-OR) (OU EXCLUSIVO)

- Funcionamento:
 - Possui duas entradas e uma saída
 - Saída é 0 se entradas são iguais
 Saída é 1 se entradas são diferentes
- Expressão lógica: $X = A \oplus B$
- Símbolo:

$$A \longrightarrow X$$

Tabela verdade:

Entradas		Saída
A	B	$A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

Porta Lógica XOR

• Diagrama de tempo: $X = A \oplus B$

Exemplo: Porta Lógica XOR

• Circuito para soma de 2 bits

Porta Lógica XNOR (Exclusive-NOR)

Funcionamento:

- Possui duas entradas e uma saída
- Saída é 1 se entradas são iguais
 Saída é 0 se entradas são diferentes
- Expressão lógica: $X = \overline{A \oplus B}$
- Símbolo:

$$A \longrightarrow X$$

Tabela verdade:

Entradas		Saída
A	B	$\overline{A \oplus B}$
0	0	1
0	1	0
1	0	0
1	1	1

Porta Lógica XNOR

• Diagrama de tempo: $X = \overline{A \oplus B}$

Exemplo: Porta Lógica XNOR

- Sistema para detectar falha em circuito
 - Circuito principal replicado
 - Sinal OK será 1 se circuitos derem mesmo resultado

