

Design and Analysis of Algorithms

Lecture - 19

Single Source Shortest Path

Success is always inevitable with Hard Work and Perseverance

N. Ravitha Rajalakshmi

Learning Objective

• Learn the greedy strategy for a classical Problem used in transportation and packet transfer problem

Shortest path

Given a directed / undirected graph of nodes (locations/systems) and a source node. Find the shortest path from the source node to another node

in the graph. [Only Positive weights in the edges]

Shortest path

Min cost path from a to e
 Only vertices f and d will help you to connect with
 Minimum (Min cost path from a to f + cost[f,e],
 Min cost path from a to d + cost[d,e])

Let us consider the Minimum cost path from a to d
 You can reach d either from b (or) c
 Which ever vertex has a shortest path from a will be used to reach d

Single source shortest path

- Shortest path from source vertex to every other vertex is to be known
- Greedy method
 - Find shortest path to one vertex
 - Reduce the problem
- From a , b can be reached at a distance of 7.
- Can you reduce this cost to b through alternate paths?

a

b from a at a distance of 7

С	from a	at a distance of 9
d	from a	∞
е	from a	8
f	from a	at a distance of 14

Vertex C
Can it be reached using the shortest path found?

What will be the cost

Cost of path (A,B) + Cost of edge [B,C] Should be less a

b from a at a distance of 7

С	from a	at a distance of 9
d	from b	at a distance of 22
е	from a	∞
f	from a	at a distance of 14

Vertex D

Can it be reached using the shortest path found?

What will be the cost

Cost of path (A,B) + Cost of edge [B,D] Should be less

Procedure

Let S indicate the vertices for which shortest path is found Initialize the distance matrix with cost of edges from source vertex

- 1. Find the vertex u^* with min cost in distance matrix
- 2. Include the vertex u^* to set S
- 3. Update the distance matrix for remaining vertices v^* which are not part of S

Update only if there is an edge from u^* to v^* and existing dist value $\operatorname{dist}[v^*] > \operatorname{dist}[u^*] + \operatorname{cost}[u^*, v^*]$

а	b	С	d	е	f
-	7(a)	9(a)	∞	∞	14(a)

а	b	С	d	е	f
1	7(a)	9(a)	22(b)	8	14(a)

а	b	С	d	е	f	
-	7(a)	9(a)	20(c)	∞	11(c)	ć

а	0	С	d	е	f
-	7(a)	9(a)	20(c)	20(f)	11(c)

$$a-> c = 9$$

$$a -> c -> f = 9$$

$$a -> c -> d = 20$$

а	b	С	d	е	f
_	7(a)	9(a)	20(c)	20(f)	11(c)

$$a -> c -> f -> e = 20$$

Summary

 Discussed about greedy strategy for identifying shortest path between nodes in a graph

Thank You Happ Learning

Success is always inevitable with Hard Work and Perseverance