MATH 20E FINAL EXAM Spring 2000, Lindblad.

- 1. The temperature of space is given by $\phi(x, y, z) = xy + xz$. A fly is flying in space and at each point (x, y, z) of its journey it flies in the direction $\mathbf{F}(x, y, z)$ in which the rate of increase of temperature is maximum.
- (a). Calculate $\mathbf{F}(x, y, z)$.
- (b). Find the curve along which the fly travels if it starts at the point (1,0,1).
- 2. Let T be the triangle in the xy-plane consisting of all (x, y, z) such that z = 0 and $x \ge 0$, $y \ge 0$ and $2x + y \le 2$. Let C be the boundary curve of T going in mathematically positive direction in the xy-plane, i.e. C consists of the 3 directed line segments (0,0,0) to (1,0,0), from (1,0,0) to (0,2,0) and from (0,2,0) to (0,0,0).

Let $\mathbf{F} = y\mathbf{i} + x\mathbf{k}$. Find the line integral $\int_C \mathbf{F} \cdot d\mathbf{R}$.

- 3. Let S be the surface given as the graph of $z = x^2 + y$ over the region $D = \{(x,y); x \geq 0, y \geq 0, 2x + y \leq 2\}$ in the xy-plane. Let $\mathbf{G} = x\mathbf{k}$. Find the flux of G out from S: $\iint_S \mathbf{G} \cdot \mathbf{n} \, dS$, where \mathbf{n} is the unit normal, satisfying $\mathbf{n} \cdot \mathbf{k} > 0$.
- 4. a) For $\mathbf{G} = xy\mathbf{i} + yz\mathbf{j} + zx\mathbf{k}$, determine whether or not \mathbf{G} is conservative in space.
- b) For $\mathbf{F} = \frac{-y}{x^2z}\mathbf{i} + \frac{1-xyz}{xz}\mathbf{j} \frac{y}{xz^2}\mathbf{k}$, find a potential ϕ with $\nabla \phi = \mathbf{F}$.
- c) Let C be the curve $y = e^{-x}$, z = x for $1 \le x < \infty$.

For the vector field **F** in part (b), find $\int_C \mathbf{F} \cdot d\mathbf{R}$.

- 5. a) Sketch the region R defined by $1 \le x^2 y^2 \le 4$, $0 < x/4 \le y \le x/2$.
- b) Calculate $\iint_R \frac{1}{x^2} dx dy$, by making the change of variables $u = x^2 y^2$, v = y/x.
- **6.** (a) State Greens theorem for a domain D in the plane bounded by a curve C. Explain how one can use Greens theorem to find the area of the domain D.
- (b) Find a parametrization for the ellipse C given by $x^2/a^2 + y^2/b^2 = 1$.
- (c) Compute the area D bounded by the ellipse C in (b).

7. (a) Let S be the surface of the ellipsoid given by $x^2 + y^2 + z^2/4 = 1$. Find $\iint_S \mathbf{F} \cdot \mathbf{n} dS$, where $\mathbf{F} = 2z\mathbf{k}$.

Find
$$\iint_S \mathbf{F} \cdot \mathbf{n} dS$$
, where $\mathbf{F} = 2z\mathbf{k}$

- (b) Let $E = \{(x, y, z); x^2 + y^2 + z^2/4 \le 1\}$ be the solid ellipsoid. Find $\iiint_{\mathcal{F}} \nabla \cdot \mathbf{F} \, dV$.
- (c) Find the volume of E.
- 8. Let S be the quaderalateral with vertices (1,0,0), (0,0,1), (0,1,1), (1,2,0) and let C is the boundary of S directed as shown. Let $\mathbf{F} = y\mathbf{k}$.

- a) Let \mathbf{n} be the unit normal on \mathcal{S} compatible with the direction of C. Calculate \mathbf{n} .
- b) Calculate $\iint_{\mathcal{S}} \nabla \times \mathbf{F} \cdot \mathbf{n} dS$. (Do not use Stoke's theorem.)
- c) Calculate $\int_C \mathbf{F} \cdot d\mathbf{R}$. (Don't use Stoke's theorem.)
- 9. Let S be the sphere of radius 2; $x^2 + y^2 + z^2 = 4$. Find $\iint_S y^2 dS$.