

ENHANCING MUSIC DISCOVERY AND ANNOTATION WORKFLOWS WITH

AUTOMATED

CHORUS

DETECTION

Data Science Intensive Capstone Project

Author: Dennis Dang

Mentor: Andrea Constantinof PhD

CHALLENGES OF MUSIC DISCOVERY

100M+ SONGS

- User data-driven recommendation systems are biased towards popular artists
- Manual music annotation is costly
- Solution: Automated Music Annotation

AUTOMATED MUSIC ANNOTATION

• Design intelligent systems to...

Encode music into data

Learn relevant patterns

Make predictions

STAKEHOLDERS

MUSIC STREAMING PLATFORMS

ÉMusic

MUSIC SOFTWARE

MEDIA & MARKETING

AUTOMATED CHORUS DETECTION

- Automatically identify the most memorable and representative parts of a song
- Automatically generate engaging content for artists on streaming platforms
- Automatically generate labeled segments (for DJing or Music Research)

DATA COLLECTION

• What is a chorus?

- A distinctive section of a song that showcases the primary or recurring theme, and significantly contributes to the song's identity and emotional impact
- Established criteria for labeling choruses (refer to <u>Annotation Guide</u>)
- 332 songs from mostly electronic music genres

EXPLORATORY DATA ANALYSIS

Using visualizations to identify choruses

- Chorus labels overlaid in green
- o Musical meters overlaid as dotted lines. Every 4th meter emphasized
- Which features can I visually identify the chorus with?
- Which features behave differently during the chorus vs. non-chorus?
- Does this feature align with the meter structure of the song, particularly in chorus sections?

ROOT MEAN SQUARE ENERGY:

- Average magnitude (loudness) of an audio signal over a specific time window
- Low dimensional feature
 (1 x n_timesteps)
 (1 x 40000 audio frames)

BEAT-SYNCED RMS ENERGY:

- Mean interpolation of RMS Energy between each beat
- Chorus sections become distinguishable
- Highlights the importance of rhythmic structure when analyzing audio features

MEL SPECTROGRAM:

- Frequency (Hz) of an audio signal over time
- High-dimensional feature
 (n_mel_bins x n_timesteps)
 (128 x 40000)

DECOMPOSED MEL SPECTROGRAM:

- Decompose using Non-negative Matrix Factorization (NMF) into 3 components and time-varying activations
- Reduces dimensionality, memory/compute requirements (n_components, n_timesteps) (3, 40000)

TEMPOGRAM:

- Rhythmic/tempo stability over time
- Illuminates "conflict resolution" song structure
- High-dimensional feature
 (autocorr_window_size X n_timesteps)
 (384 x 40000)

DECOMPOSED TEMPOGRAM:

Decomposed using NMF into 3 components and activations

CHROMAGRAM:

 Captures tonal content represented as energy across the 12 pitch classes (C, C#, D, D#, E, F, F#, G, G#, A, A#, B)

MEL-FREQUENCY CEPSTRAL COEFFICIENTS (MFCC)

Captures timbral characteristics of the audio signal

MODEL PREPROCESSING

- Convolutional Recurrent Neural Network (CRNN)
- Features extracted: RMS energy, chromagram activations, tempogram activations, MFCC activations, mel spectrogram activations (15 dimensions)
- Meter-based timesteps: Input shape = (201, 300, 15) (meters, frames, features)
- Positionally encode each meter AND each frame in a meter

Extract Features,
Standardize, Concatenate

Divide into meter-based timesteps

Multi-level positional encoding

MODEL ARCHITECTURE

CRNN Input Shape

- Each song contains 201 meters
- Each meter contains 300 audio frames
- Each audio frame consists of 15 features
- Input shape: (201, 300, 15)
- Three Convolutional layers to extract frame-level features from each meter
 - Input shape: (300, 15) (i.e. a meter)
 - 1D convolutional layer -> ReLU activation function -> 1D max-pooling layer (x3)
- One Recurrent layer for temporal summarization of the features extracted by CNN
 - o Bidirectional LSTM processes the input sequence in both forward and backward directions
 - Output shape is (201, 512) (512 LSTM units)
- Dense layer applies sigmoid activation function to each time step (meter)
 - o Output shape is (201, 1) representing the probability of a chorus being present at each meter in a song

MODEL TRAINING

- Trained over 50 epochs using the training and validation datasets
- Callbacks:
 - ModelCheckpoint: Save the best model based on minimizing validation loss (binary cross entropy)
 - EarlyStopping: Stop training if validation loss doesn't improve for 3 epochs
 - ReduceLROnPlateau: Reduce learning rate if validation loss plateaus

MODEL EVALUATION

Evaluated model on unseen test set of 50 songs

Results:

Accuracy: 0.891

• **F1 Score:** 0.864

■ **Precision:** 0.831 (17% false positive rate)

■ **Recall:** 0.900 (10% false negative rate)

TEST PREDICTIONS

TEST PREDICTIONS

TEST PREDICTIONS

FUTURE CONSIDERATIONS

- Prediction post-processing
- Experiment on wider variety of genres
- Experiment using multiple time-resolutions (e.g. frames, beats, meters)
- Tuning feature weights and hyperparameters (e.g. filter size, batch size, LSTM units)