Capstone Design 2 Final Design Review

Team Theseus

박영진 지도교수님 강동희 김경서 김성헌 배재웅 손지혁 조현근 장신원

Outline

System Overview

Distinguishing Features

Engineering Design Issue

DQN involved Ball Collection

System Overview

System Overview

Size: 420mm* 600mm* 427mm

Weight: 8.3kg

Driving Unit

4 wheel motors

1 sort/release motor

1 collecting motor

Why three cameras?

Distinguishing Features

Is your design reasonable engineering-wise?

Feature #1 Compact Size

Feature #2 Safety System

Collect

Park

Submit

Compact Size

Feature #1
Compact Size

Feature #1 Compact Size

minimum number of motors

minimum path of ball

Distinguishing Features

Feature #2

Safety System

Collect

sub webcam

Safety System

Safety System

Park

Do not start parking unless,

Safety System

Park

Safety System

Park

if marker positions have not changed for a while,

stop immediately to detect the markers again

Safety System

Submit

Engineering Design Issue

Feature to improve

unreliable ramp design (reliability)

Undesired Result

uncertain engineering specification (use of energy by moving object)

solution: Periodic action

Move the vehicle back and forth

Problem Interpretation

Free Body Diagram

Acceleration Requirement for the ball to detach on point 1

Acceleration Requirement for the ball to detach on point 1

10RPM

 $a > 0.514 \text{m/s}^2$

 $a = 0.76 \text{m/s}^2 \sim 0.91 \text{m/s}^2$

motor speed test

Acceleration Time Requirement for the ball to overcome point 2 and roll over

$$\theta_0 = -8^{\circ}$$

$$I = \frac{2}{3}mr^2 + ml^2$$

$$I\ddot{\theta} = (ma_x \cos\theta - ma_y \sin\theta)l$$

$$a = 0.91 \text{m/s}^2$$

 $\ddot{\theta} = 28.13 \cos\theta - 154.6 \sin\theta$
 $t = 0.0472s < t_{acceleration} = 0.05s$

$$a = 0.76 \text{m/s}^2$$

 $\ddot{\theta} = 25.72 \cos\theta - 154.8 \sin\theta$
 $t = 0.0493s < t_{acceleration} = 0.06s$

"10RPM"

DQN involved Ball Collection

Previously on Capstone Design 1...

Precise,
but too
basic and primitive

"Reinforcement Learning"

= training based on sequential actions and corresponding rewards (no fixed answers)

Q'(state, action) = reward

Final
Q function

Update Q function

Negative Rewards

Thank You