Lösning till MVE 015 Analys i en variabel I, 5 p, 07 04 14.

Förkortningar

KE står för karakteristisk ekvation,

KK står för kvadratkomplettering,

PBU står för partialbråksuppdelning,

PI står för partiell integration.

1. (a)

$$\int \frac{1}{\sqrt{2x-x^2}} dx = \{ KK \} = \int \frac{1}{\sqrt{1-(x-1)^2}} dx = \arcsin(x-1) + C$$

Svar: $\arcsin(x-1) + C$, där C är en godtycklig konstant.

(b)

$$\int_{2}^{\infty} \frac{dx}{x(x-1)^{2}} = \{ \text{PBU} \} = \int_{2}^{\infty} \left(\frac{1}{x} - \frac{1}{x-1} + \frac{1}{(x-1)^{2}} \right) dx =$$

$$= \left[\ln \left| \frac{x}{x-1} \right| - \frac{1}{x-1} \right]_{2}^{\infty} = \ln 1 - 0 - \ln 2 + 1 = 1 - \ln 2$$

Svar: $1 - \ln 2$.

2. (a) Separering av variabler ger $y^{-3} dy = x^2 dx$ som integreras till $-y^{-2}/2 = x^3/3 + C$. Men y(1) = 1 så -1/2 = 1/3 + C, dvs C = -5/6.

Multiplikation med -2 ger $y^{-2} = (5 - 2x^3)/3$. Invertering och rotdragning ger $y = \pm \sqrt{3/(5 - 2x^3)}$. Eftersom y(1) = 1 är bara den positiva lösningen aktuell.

Svar: $y = \sqrt{3/(5-2x^3)}$.

(b) Den homogena ekvationen har den karaktäristiska ekvationen $0 = r^2 + 4$, som har rötterna $r = \pm 2i$. Detta ger $y_h = A\cos 2t + B\sin 2t$.

För att finna en partikulärlösning görs ansatsen $y = a \cos t + b \sin$ som insatt i ekvationen ger $(-a + 4a) \cos t + (-b + 4b) \sin t = \sin t$, dvs a = 0 och b = 1/3. Detta ger $y_p = (1/3) \sin t$.

Allmänna lösningen till ekvationen i uppgiften är $y = y_h + y_p = A\cos 2t + B\sin 2t + (1/3)\sin t$.

Svar: $y = A\cos 2t + B\sin 2t + (1/3)\sin t$, där A och B är godtyckliga konstanter.

3. Låt Q vara uttrycket i uppgiften. Kända Taylorutvecklingar ger då

$$Q = \frac{(2x + 4x^2/2! + \cdots)(x^3 - x^6/2 + \cdots)}{(9x^2/2! - 81x^4/4! + \cdots)^2}.$$

Division med x^4 i täljare och nämnare ger

$$Q = \frac{(2+4x/2!+\cdots)(1-x^3/2+\cdots)}{(9/2!-81x^2/4!+\cdots)^2} \to \frac{2}{81/4} = \frac{8}{81},$$

när $x \to 0$.

Svar: Gränsvärdet blir 8/81

4. Vi sätter

$$a_n = \frac{(-1)^n}{n^2 + 1}(x - 2)^n$$

och har då

$$\left| a_{n+1} \cdot \frac{1}{a_n} \right| = |x - 2| \cdot \frac{n^2 + 1}{(n+1)^2 + 1} \to |x - 2|,$$

när $n \to \infty$.

Alltså är potensserien konvergent när |x-2| < 1 och divergent när |x-2| > 1. Vi har kvar att undersöka x = 1 och x = 3 (som löser |x-2| = 1).

Vi undersöker

$$p(1) = \sum_{n=0}^{\infty} \frac{1}{n^2 + 1}.$$

Men

$$0 \le \frac{1}{n^2 + 1} \le \frac{1}{n^2}$$

och $\sum_{n=1}^{\infty} 1/n^2$ är känd som konvergent. Därför konvergerar p(1) enligt jämförelsekriteriet. Vi undersöker

$$p(3) = \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2 + 1},$$

som är alternerande. Eftersom $1/(n^2+1)$ avtar mot 0 när $n \to \infty$ är p(3) konvergent enligt kriteriet för alternerande serier.

Svar: Potensserien är konvergent när $1 \le x \le 3$.

5. En liksidig triangel med sida a har en höjd h som enligt Pythagoras sats satisfierar $h^2 + (a/2)^2 = a^2$. Detta ger $h = \sqrt{3}a/2$. Arean av en liksidig triangel är därför $a \cdot h/2 = \sqrt{3}a^2/4$. Enligt skivformeln ges volymen av $\int_1^4 A(x) \, dx$, där alltså $A(x) = \sqrt{3}x/4$. Volymen blir därför

$$\left[\sqrt{3}x^2/8\right]_1^4 = 16\sqrt{3}/8 - \sqrt{3}/8 = 15\sqrt{3}/8.$$

Svar: $15\sqrt{3}/8$.

6. Vi ser av figuren i uppgiften att h(t) kan beskrivas som $h(t) = t - tu(t-1) = t - (t-1)u(t-1) - 1 \cdot u(t-1)$.

Av tabell framgår att $t \supset 1/s^2$, $1 \cdot u(t-1) \supset e^{-s}/s$ och att $(t-1)u(t-1) \supset e^{-s}/s^2$.

Detta ger oss $h(t) \supset 1/s^2 - e^{-s}(s+1)/s^2$.

Vi sätter $y\supset \tilde{y}$ och har då $y'\supset s\tilde{y}$ samt $y''\supset s^2\tilde{y}$. Laplacetransformering av ekvationen ger därför

$$(s^2 - 1)\tilde{y} = 1/s^2 - e^{-s}(s+1)/s^2.$$

Eftersom $s^2 - 1 = (s - 1)(s + 1)$ har vi efter division

$$\tilde{y} = \frac{1}{s^2(s^2 - 1)} + e^{-s} \frac{1}{s^2(s - 1)}$$

2

Vi gör en partialbråksuppdelning:

$$\begin{split} \tilde{y} &= -\frac{1}{s^2} + \frac{1}{s^2 - 1} - e^{-s} \left(-\frac{1}{s^2} - \frac{1}{s} + \frac{1}{s - 1} \right) = \\ &= -\frac{1}{s^2} + \frac{1}{2} \cdot \frac{1}{s - 1} - \frac{1}{2} \cdot \frac{1}{s + 1} - e^{-s} \left(\frac{-1}{s^2} - \frac{1}{s} + \frac{1}{s - 1} \right) \subset \\ &\subset -t + e^t / 2 - e^{-t} / 2 - u(t - 1)(-1/(t - 1) - 1 + e^t). \end{split}$$

Svar:
$$y(t) = -t + e^t/2 - e^{-t}/2 - u(t-1)(-1/(t-1) - 1 + e^t)$$
.

JAS