Functional Genomics:

- → Study of how genes and intergenic regions of genome contribute to biological process
- → Researcher studies genes on genome wide scale
- → Goal is to determine how individual components work together
- → Use current knowledge of gene function to develop a model
- → Combines data derived from process related to DNA sequence, gene expression, etc.
- → Several approaches:
 - o DNA level
 - Genomics epigenomics
 - RNA level
 - Transcriptomics
 - o Protein level
 - Proteomics
 - o Metabolite level
 - Metabolomics

cDNA and cDNA generation:

- → Complementary DNAs are double stranded DNA molecules
- → One strand is DNA complementary to mRNA
- → Other strand is mRNA sequence but Treplaced by U
- → Generation
 - Oligo(dt) primers are used to transform mRNA to cDNA
 - o Oligo(dt) hybridize with poly A of mRNA
 - o Reverse transcriptase is added, attaches to poly A tail and starts transcription
 - o After the reverse transcription is done, product contains
 - 1mRNA
 - 1cDNA
 - o RNAse is used to separate both
 - o DNA polymerase I is used to exchange nucleotides with deoxynucleotide
 - o Remaining strand is cut out
 - o New fragment is synthesized by use of DNA polymerase I
 - Ligase enzyme is used to join DNA phosphodiester bonds
 - Double stranded cDNA is formed

What is clustering? Explain hierarchical clustering types

- → Dividing data into number of groups
- → Aim is to segregate groups with similar traits and assign them into clusters
- → Hierarchical clustering
 - o Algorithm that groups similar objects into groups called clusters.
- → There are two types of hierarchical clustering
 - o Divisive

- 1 cluster containing the entire data set
- Highest dissimilarity is reassignment its own cluster
- Observations in old cluster similar to new cluster are assigned in another new cluster
- Process repeats till all data in old cluster is in its own cluster
- Agglomerative
 - Starts with each observation in own cluster
 - Two closest cluster are joined into one cluster
 - Close is defined by four metrics
 - Single linkage
 - Nearest neighbor
 - Shortest distance between pair
 - Sometimes produces clusters where observations from different clusters are closer than observations in the same cluster
 - Complete linkage
 - Farthest neighbor
 - o Farther distance between pair
 - o Produces tight clusters
 - o Clusters can end up very close together
 - Average linkage
 - Distance between each pair is added and divided by number of pairs
 - o Average and complete and two most popular linkage metrics
 - Centroid linkage
 - Distance between centroid of two clusters
 - o Possible that smaller clusters are more similar than larges cluster
 - This continues until there is only one cluster containing whole dataset

ESTS

- → Expressed Sequence Tags (ESTs) are short sequence reads
- → Range of 100-700bp
- → Obtained from randomly created cDNA clones
- → Represents portions of expressed genes
- → Present in database as cDNA/mRNA sequence
- → Application of ESTs
 - o Gene surveying
 - Gene identifications
 - Transcription mapping
 - o Gene prediction
 - o Quantification of gene expression
 - o Reagents for downstream applications such as microarray and immuno screening
- → Synthesis of ESTs
 - o Isolation of mRNA from tissue
 - o mRNAs are reverse transcribed to cDNA using oligo-DT primers
 - o Generated cDNA separated by electrophoresis
 - o Separated cDNAs will be selected on the basis of size and removed
 - Sequenced randomly from both ends

ESTs are generated and their sequences are compared using different databases

STS

- → Sequence Tagged Sites STS is relatively short compared to ESTs
- → PCR amplified sequence of 200 to 500 bp
- → DNA sequence contains repetitive elements
- → DNA primers complementary to the ends of the sequence is amplified using PCR
- → Applications of STSs
 - o Define unique, detectable landmarks
 - o Server as markers for genetic and physical mapping of genes
 - o Produces simple and reproducible pattern on agarose or polyacrylamide gel
- → Synthesis of STSs:
 - o Genome is broken up into fragments
 - o Fragments replicated 10 times in bacterial
 - PCR is used to determine STS containing fragments
 - o Primers bind to either side of STS so only the STS part is copied
 - o Two fragments have same STS = overlapping parts of genome
 - o Two different STSs = STSs must be near each other in the genome

SAGE:

- → Serial Analysis of Gene Expression
- → Global profiling of gene transcripts
- → Requires prep of cDNA but does no require prior knowledge of genes
- → Applications of SAGE:
 - o Qualitative and quantitative assessment of every transcript present in a cell
 - o Identification of differentially expressed transcripts
 - o Comprehensive analysis of changes in mRNA
- → Protocol for SAGE:
 - o mRNA isolated and reverse transcribed
 - o cDNA bound via biotin
 - o cDNA cleaved
 - o Cleaved DNA is washed out
 - o Cleaved DNA tagged by removing beads via addition of oligonucleotides with sticky ends
 - Blunt ends tags are ligated to generate ditags
 - Ditags are cleaved to remove oligonucleotides
 - o Transform concatemers into bacteria
 - o Replication
 - o Isolated concatemers form bacteria
 - o Sequence