HAI816I Logique pour le génie logiciel et l'IA 2^e Contrôle Continu Mercredi 5 avril 2023 15h–16h30

durée : 1h30 (tiers temps 2h) sujet et rappels de cours : 4 pages aucun document n'est autorisé

salle 36.405: IA-SD — salle 36.406: algo et al.

Il est dans votre intérêt de lire tout le sujet avant de commencer à le traiter. Vous veillerez à la qualité de la rédaction de vos réponses; en particulier vos justifications doivent être claires et convaincantes.

Le barème est sur 24. Nous laisserons la note sur 20, tant pis pour ceux qui auront plus que 20;-) La note de session 1 sera : (2*CC1+3*CC2+5*EX)/10

Exercice 1 (2 points). Donner des formules LTL φ_1 , φ_2 , φ_3 et φ_4 qui traduisent les phrases suivantes :

- 1. La propriété p arrivera à un instant.
- 2. La propriété p est toujours vraie.
- 3. La propriété p se produira infiniment souvent.
- 4. La propriété p se produira infiniment souvent, à moins que chaque occurrence de p ne soit immédiatement suivie d'une occurrence de q.

Exercice 2 (2 point). Montrer que les deux formules LTL qui suivent sont équivalentes.

- X(φ∪ψ)
- 2. $(X\varphi)U(X\psi)$

Exercice 3 (4 points). Soit T le système de transitions ci-dessous :

Et soient $\varphi_1, \varphi_2, \varphi_3$ et φ_4 les formules suivantes :

$$\varphi_1 = FGr$$

$$\varphi_2 = GFr$$

$$\varphi_3 = Xr \rightarrow XXr$$

$$\varphi_4 = pUG(q \lor p)$$

Pour chaque i, déterminer si $\mathcal{T} \models_{\forall} \varphi_i$. Si c'est le cas, aucune justification n'est demandée. Si c'est n'est pas le cas, donner chemin ρ sur \mathcal{T} (qui part de 1) tel que $\mathcal{L}(\rho)$ n'est pas un modèle linéaire de φ_i .

Exercice 4 (2 points). Soit $Ap = \{p\}$

- 1. Donner un automate de Buchi qui reconnaît tout mot infini sur $2^{Ap} = \{\emptyset, \{p\}\}$ ayant uniquement un nombre fini (éventuellement nul) de positions qui vérifient p.
- 2. Donner une formule LTL φ qui caractérise le langage reconnu par l'automate de la question précédente. On rappelle qu'une formule LTL caractérise un langage quand l'ensemble des modèles de la formule est égal à l'ensemble de mots du langage.

Exercice 5 (4 points). Si φ est une formule LTL, on écrit $X^n \varphi$ pour dénoter la formule $X \cdots X \varphi$ autrement dit, φ précédé $n \ge 1$ fois par l'opérateur "X" (next). Étant donnés Γ un ensemble de formules et π un modèle LTL, on écrit $\pi \models \Gamma$ (π satisfait Γ) lorsque $\pi \models \varphi$ pour tout $\varphi \in \Gamma$. Considérons l'ensemble infini de formules Γ défini par :

$$\Gamma = \{p, \mathsf{FG} \neg p, \mathsf{X} p, \mathsf{X}^2 p, \mathsf{X}^3 p, \dots, \mathsf{X}^n p, \dots\}$$

montrer que

- 1. Il n'existe pas de modèle linéaire π telle que $\pi \models \Gamma$
- 2. Pour tout sous-ensemble fini Δ de Γ il existe un modèle linéaire π telle que $\pi \models \Delta$.

Exercice 6 (5 points). Si $\mathscr{T} = \langle S, S_I, R, \mathscr{L} \rangle$ est un système de transition et ψ une formule CTL, on écrit $\mathscr{T} \models \psi$ lorsque $\mathscr{T}, s \models \psi$ pour tout état initial $s \in S_I$. Soient \mathscr{T}_1 et \mathscr{T}_2 les deux systèmes suivants :

- 1. Montrer que $\mathcal{T}_1 \models \mathsf{EX}(\mathsf{EX}_p \land \mathsf{EX}_q)$
- 2. Montrer que $\mathscr{T}_2 \not\models \mathsf{EX}(\mathsf{EX}_p \land \mathsf{EX}_q)$
- 3. Montrer que $Ex(\mathcal{T}_1) = Ex(\mathcal{T}_2)$.
- 4. Soit ψ une formule CTL. On dit que ψ est exprimable en LTL quand il existe une formule LTL ψ' tel que $\mathcal{T} \models \psi$ ssi $\mathcal{T} \models_{\forall} \psi'$. Déduire, par le point 1,2 et 3 que $\mathsf{EX}(\mathsf{EX}\,p \land \mathsf{EX}\,q)$ n'est pas exprimable en LTL.

Exercice 7 (5 points). Soit $\mathcal T$ un système de transition. On définit la sémantique de l'operateur $\mathsf E \mathsf R$ par la clause suivante

 $\mathcal{F}, s \models \mathsf{E}(\varphi \mathsf{R} \psi)$ ssi il existe un chemin ρ tel que $\rho_1 = s$ et soit $\mathcal{F}, \rho_i \models \psi$ pour tout nombre naturel $i \geq 1$ ou bien il existe un nombre naturel $j \geq 1$ tel que $\mathcal{F}, \rho_j \models \varphi$ et $\mathcal{F}, \rho_k \models \psi$ pour tout $1 \leq k \leq j$.

Montrer que:

- *I.* $E(\varphi R \psi) \equiv \psi \wedge (\varphi \vee EX(\varphi R \psi))$
- 2. $[(\varphi R \psi)]^{\mathscr{T}}$ est un point fixe de la fonction monotone $R_{\varphi,\psi}: 2^S \to 2^S$ définie par $R_{\varphi,\psi}(A) = [\![\psi]\!]^{\mathscr{T}} \cap ([\![\varphi]\!]^{\mathscr{T}} \cup Pre(A))$
- 3. $[\![(\phi R \psi)]\!]^{\mathscr{T}}$ est le plus grand point fixe de la fonction monotone $R_{\phi,\psi}$

1 Rappels sur LTL

Soit Ap un ensemble de formules atomiques. Une *interprétation* (ou modèle) linéaire est une fonction $\pi: \mathbb{N} \to 2^{Ap}$, autrement dit un mot ou séquence infini $\pi = \pi_1, \pi_2, \dots$ d'ensembles de formules atomiques.

Soit π une interprétation linéaire, $i \in \mathbb{N}$ un nombre naturel et φ une formule LTL. Nous écrivons $\pi, i \models \varphi$ pour dénoter que φ est vraie à la position i dans le modèle π . Cette notion est définie par induction sur la structure de φ comme il suit :

- $-\pi, i \models \top$ pour toute position i;
- π , i |= p ssi p ∈ π _i pour toute formule atomique p;
- $-\pi, i \models \varphi \land \psi \text{ ssi } \pi, i \models \varphi \text{ et } \pi, i \models \psi;$
- $-\pi, i \models \neg \varphi$ ssi c'est n'est pas le cas que $\pi, i \models \varphi$ (dénoté par $\pi, i \not\models \varphi$);
- $-\pi, i \models X \varphi \operatorname{ssi} \pi, i+1 \models \varphi;$
- $-\pi, i \models \mathsf{F} \varphi$ ssi il existe $j \ge i$ tel que $\pi, j \models \varphi$;
- $\pi, i \models G \varphi$ ssi pour tout $j \ge i$ on a que $\pi, j \models \varphi$;
- $-\pi, i \models \varphi \cup \psi$ ssi il existe $k \ge i$ tel que $\pi, k \models \psi$ et $\pi, j \models \varphi$ pour tout $i \le j < k$.

Nous disons qu'une formule φ est **vraie** dans un modèle linéaire π lorsque $\pi_1 \models \varphi$. Nous dénotons cette notion par $\pi \models \varphi$. L'ensemble des modèles linéaires dont la formule φ est vraie est dénoté par $Mod(\varphi)$.

Une formule φ est valide lorsqu'elle est vraie dans tout modèle. φ . Deux formules φ et ψ sont équivalents (dénoté par $\varphi \equiv \psi$) lorsque pour toute interprétation π on a que $\pi \models \varphi$ ssi $\pi \models \psi$.

Si $\mathscr{T} = \langle S, S_1, R, \mathscr{L} \rangle$ est un système de transition, et $\rho = s_1, s_2, s_3 \ldots$ est un chemin sur \mathscr{T} , on rappelle que $\mathscr{L}(\rho)$ dénote la séquence infinie d'ensemble de proposition atomique obtenue en appliquant la fonction \mathscr{L} à chaque état de ρ . C'est-à-dire $\mathscr{L}(\rho) = \mathscr{L}(s_1), \mathscr{L}(s_2), \mathscr{L}(s_3), \ldots$ On appelle ce type de séquences infinies **exécutions**

Si φ est une formule LTL, on écrit $\mathscr{T} \models_{\forall} \varphi$ ssi pour tout état initial, $s \in S_i$ pour tout chemin ρ sur \mathscr{T} qui commence à s on a que $\mathscr{L}(\rho) \models \psi$.

Si \mathscr{T} est un système de transition, alors $Ex(\mathscr{T})$ dénote l'ensemble des exécutions sur \mathscr{T} . C'està-dire $Ex(\mathscr{T}) = \{\mathscr{L}(\rho) \mid \rho \text{ est un chemin sur } \mathscr{T} \text{ et } \rho \text{ commence à un état initial}\}$

2 Rappels sur CTL

Soit $\mathscr{T}=\langle S,S_I,R,\mathscr{L}\rangle$ un système de transition. Comme d'habitude, un chemin (dans \mathscr{T}) est une séquence infinie s_1,s_2,s_3,\ldots d'états telle que $(s_i,s_{i+1})\in R$ pour tout nombre naturel i. Comme d'habitude pour tout $i\in\mathbb{N}$, ρ_i désigne le i-ème élément du chemin. On définit " \mathscr{T} satisfait φ à l'état s" (écrit $\mathscr{T},s\models\varphi$) par induction sur la structure de φ

- \mathscr{T} , $s \models \top$ pour tout $s \in S$;
- $-\mathscr{T},s\models p$ ssi $p\in\mathscr{L}(s)$;
- $-\mathscr{T}, s \models \neg \varphi$ ssi c'est n'est pas le cas que $\mathscr{T}, s \models \varphi$;
- $-\mathscr{T}, s \models \varphi \land \psi \text{ ssi } \mathscr{T}, s \models \varphi \text{ et } \mathscr{T}, s \models \psi$
- $\mathscr{T}, s \models \mathsf{EX}\,\varphi$ ssi il existe un chemin ρ tel que $\rho_1 = s$ et $\mathscr{T}, \rho_2 \models \varphi$
- $\mathscr{T}, s \models \mathsf{AX}\,\varphi$ ssi pour tout chemin ρ tel que $\rho_1 = s$ on a que $\mathscr{T}, \rho_2 \models \varphi$
- $-\mathscr{T}, s \models \mathsf{EF}\varphi$ ssi, il existe un chemin ρ tel que $\rho_1 = s$ et il existe $j \ge 1$ tel que $\mathscr{T}, \rho_j \models \varphi$
- $\mathscr{T}, s \models \mathsf{AF}\varphi$ ssi, pour tout chemin ρ tel que $\rho_1 = s$ il existe $j \ge 1$ tel que $\mathscr{T}, \rho_j \models \varphi$
- $\mathscr{T}, s \models \mathsf{EG}\,\varphi$ ssi il existe un chemin ρ tel que $\rho_1 = s$ et pour tout $j \ge 1$ on a que $\mathscr{T}, \rho_j \models \varphi$
- $\mathcal{T}, s \models AG\varphi$ ssi pour tout chemin ρ tel que $\rho_1 = s$ et pour tout $j \ge 1$ on a que $\mathcal{T}, \rho_j \models \varphi$
- $\mathscr{T}, s \models \mathsf{E} \varphi \mathsf{U} \psi$ ssi il existe un chemin ρ tel que $\rho_1 = s$ et il existe $j \ge 1$ tel que $T, \rho_j \models \psi$ et $\mathscr{T}, \rho_k \models \varphi$ pour tout $1 \le k < j \mathscr{T}, \rho_j \models \varphi$
- \mathscr{T} , $s \models A φ U ψ$ ssi pour tout chemin ρ tel que $ρ_1 = s$ il existe $j \ge 1$ tel que T, $ρ_j \models ψ$ et \mathscr{T} , $ρ_k \models φ$ pour tout $1 \le k < j$

Si \mathscr{T} est un système de transition et φ une formule CTL, alors $[\![\varphi]\!]^{\mathscr{T}}$ dénote l'ensemble d'états de \mathscr{T} qui satisfont φ . C'est-à-dire $[\![\varphi]\!]^{\mathscr{T}} = \{s \in S \mid \mathscr{T}, s \models \varphi\}$.

Si X est un sous-ensemble de S alors $Pre(X) = \{s \in S \mid \text{ il existse } s' \in X \text{ tel que } \langle s, s' \rangle \in R\}$. On rappelle que pour toute formule φ et tout système de transition $\mathscr T$ on obtient que :

$$[\![\mathsf{EX}\,\boldsymbol{\varphi}]\!]^{\mathscr{T}} = Pre([\![\boldsymbol{\varphi}]\!]^{\mathscr{T}})$$

Si \mathscr{T} est un système de transition et $f: 2^S \to 2^S$ est une fonction, on dit qu'un sous-ensemble A de S est un **point fixe** de f si, f(A) = A. De plus, X est le plus petit point fixe de f si A est contenu dans tout autre pointe fixe B. Si tout autre point fixe B de A est contenu grand point fixe de A.