Stochastics

1. Measure-Theoretic Probability

In this chapter, measure-theoretic probability theory is presented simply.

1.1 Events and Probability

Definition 1.1.1 $(\sigma - algebra)$

Let Ω be an non-empty set. A σ -algebra \mathcal{F} on Ω is a family of subsets of Ω such that:

- 1. The empty set \emptyset belongs to \mathcal{F} .
- 2. if $A \in \mathcal{F}$, then $\Omega \setminus A \in \mathcal{F}$.
- 3. if A_1, A_2, \ldots is a sequence of sets in \mathcal{F} , then their union $\bigcup_{i=1}^{\infty} A_i$ belongs to \mathcal{F} .

Definition 1.1.2 (probability measure)

Let (Ω, \mathcal{F}) be a measurable space. Then a probability measure P on (Ω, \mathcal{F}) is a function

$$P:\mathcal{F} o [0,1]$$

such that:

- 1. $P(\Omega) = 1$;
- 2. if A_1, A_2, \ldots is a pairwise disjoint sets belonging to \mathcal{F} , then

$$P\left(igcup_{i=1}^{\infty}A_i
ight)=\sum_{i=1}^{\infty}P(A_i).$$

The triple (Ω, \mathcal{F}, P) is called a *probability space*.

Theorem 1.1.3 (increasing and decreasing sequence of sets)

Let (Ω, \mathcal{F}, P) be a probability space. Let

$$A_1 \subset A_2 \subset A_3 \ldots$$

be an increasing sequence of sets that belongs to \mathcal{F} . Then,

$$P\left(igcup_{i=1}^{\infty}A_i
ight)=\lim_{n o\infty}P\left(A_n
ight)$$

Similary, let

$$A_1 \supset A_2 \supset \dots$$

be an decreasing sequece of sets that belongs to \mathcal{F} . Then,

$$P\left(igcap_{i=1}^{\infty}A_i
ight)=\lim_{n o\infty}P\left(A_n
ight)$$

[1]

Lemma 1.1.4 (Borel-Cantelli Lemma)

Let A_1, A_2, \ldots be a sequence of events of such that $\sum_{i=1}^{\infty} P(A_i) < \infty$ and let $B_n = \bigcup_{i=n}^{\infty} A_i$. Then

$$P\left(\bigcap_{i=1}^{\infty}B_i
ight)=0.$$

[2]

1.2 Random Variables

Definition 1.2.1 (random variable)

Let (Ω, \mathcal{F}, P) be a probability space. Then a \mathcal{F} -measurable function $\xi : \Omega \to \mathbb{R}$ is called a random variable.

Definition 1.2.2 (σ -algebra generated by a random variable)

- Let (Ω, \mathcal{F}, P) be a probability space, and let $\xi : \Omega \to \mathbb{R}$ be a random variable. Then, a σ -algebra $\sigma(\xi)$ generated by a random variable ξ is defined to be a familiy of sets containing all sets of the form $\xi^{-1}(B)$, where B is a Borel set in \mathbb{R} .
- Furthermore, let $\{\xi_i : i \in I\}$ be a familiy of random variables. Then a σ -algebra σ $\{\xi : i \in I\}$ generated by $\{\xi_i : i \in I\}$ is defined to be a smallest σ -algebra that contains all sets of the form $\xi_i^{-1}(B)$, where $i \in I$ and B is a Borel set in \mathbb{R} .

Lemma 1.2.3 (Doob-Dynkin)

Let ξ be a random variable. Then each $\sigma(\xi)$ – measurable random variable η can be written as

$$\eta = f(\xi)$$

for some Borel function $f: \mathbb{R} \to \mathbb{R}$.

[3]

Definition 1.2.4 (distribution and distribution function)

Every random variable $\xi:\Omega\to\mathbb{R}$ gives rise to a probability measure

$$P_\xi(B)=P(\xi^{-1}(B))$$

on \mathbb{R} defined on the σ -algebra of Borel sets $B \in \mathcal{B}(\mathbb{R})$. We call P_{ξ} the distribution of ξ [4]. The function $F_{\xi}: \mathbb{R} \to [0,1]^{[5]}$ defined by

$$F_{\xi}(x) = P_{\xi}((-\infty, x))$$

is called the distribution function of ξ .

Theorem 1.2.5 (property of the distirbution function)

Let F_{ξ} be the distribution function of a random variable ξ . Then, F_{ξ} satisfies the following conditions:

1. F_{ξ} is non-decreasing;

2. F_{ξ} is right-continuous;

$$\lim_{x o -\infty} F_\xi(x) = 0, \quad \lim_{x o \infty} F_\xi(x) = 1.$$

[6]

Definition 1.2.6 (absolutely continuous distribution, discrete distribution)

• If there is a Borel function $f_{\xi}:\mathbb{R}\to\mathbb{R}$ such that for any Borel set $B\subset\mathbb{R}$

$$P\{\xi\in B\}=\int_B f_\xi(x)\,dx,$$

then ξ is said to be a random variable with absolutely continuous distribution and f_{ξ} is called the density of ξ .

• If there is a (finite or infinite) sequence of pairwise distinct real numbers x_1, x_2, \ldots such that for any Borel set $B \in \mathbb{R}$

$$P\{\xi\in B\}=\sum_{x_i\in B}P\{\xi=x_i\},$$

then ξ is said to have discrete distribution with values x_1, x_2, \ldots and mass $P\{\xi = x_i\}$ at x_i .

- 1. pf) try to use the definition of measure. \rightleftharpoons
- 2. pf) use the Theorem 1.1 above.
- 3. pf) not in this book... study it later. ←
- 4. Note that $P(a \le X < b) = P_X((a, b)), P(X = x) = P_X(x),...$ try to compare with the classic probability theory.
- 5. In the classic probability theory, we learned that its called as CDF. \rightleftharpoons
- 6. pf) We can use the property of measure and probability measure.