

PATENT COOPERATION TREATY

From the INTERNATIONAL BUREAU

PCT

NOTIFICATION OF ELECTION
(PCT Rule 61.2)

Date of mailing (day/month/year)

05 April 2001 (05.04.01)

To:

Commissioner
US Department of Commerce
United States Patent and Trademark
Office, PCT
2011 South Clark Place Room
CP2/5C24
Arlington, VA 22202
ETATS-UNIS D'AMERIQUE

in its capacity as elected Office

International application No.

PCT/GB00/02512

Applicant's or agent's file reference

42.73369

International filing date (day/month/year)

27 June 2000 (27.06.00)

Priority date (day/month/year)

28 June 1999 (28.06.99)

Applicant

LEXOW, Preben

1. The designated Office is hereby notified of its election made:

in the demand filed with the International Preliminary Examining Authority on:

25 January 2001 (25.01.01)

in a notice effecting later election filed with the International Bureau on:

2. The election was

was not

made before the expiration of 19 months from the priority date or, where Rule 32 applies, within the time limit under Rule 32.2(b).

The International Bureau of WIPO
34, chemin des Colombettes
1211 Geneva 20, Switzerland

Facsimile No.: (41-22) 740.14.35

Authorized officer

Pascal Piriou

Telephone No.: (41-22) 338.83.38

PCT

NOTIFICATION RELATING TO PRIORITY CLAIM

(PCT Rules 26bis.1 and 26bis.2 and
Administrative Instructions, Sections 402 and 409)

From the INTERNATIONAL BUREAU

To:

JONES, Elizabeth, Louise
Frank B. Dehn & Co.
179 queen Victoria Street
London EC4V 4EL
ROYAUME-UNI

Date of mailing (day/month/year) 08 November 2000 (08.11.00)	
Applicant's or agent's file reference 42.73369	IMPORTANT NOTIFICATION
International application No. PCT/GB00/02512	International filing date (day/month/year) 27 June 2000 (27.06.00)
Applicant COMPLETE GENOMICS AS et al	

The applicant is hereby **notified** of the following in respect of the priority claim(s) made in the international application.

1. **Correction of priority claim.** In accordance with the applicant's notice received on: 27 October 2000 (27.10.00), the following priority claim has been corrected to read as follows:

NO 28 June 1999 (28.06.99) 19991325

- even though the indication of the number of the earlier application is missing.
- even though the following indication in the priority claim is not the same as the corresponding indication appearing in the priority document:

2. **Addition of priority claim.** In accordance with the applicant's notice received on: , the following priority claim has been added:

- even though the indication of the number of the earlier application is missing.
- even though the following indication in the priority claim is not the same as the corresponding indication appearing in the priority document:

3. As a result of the correction and/or addition of (a) priority claim(s) under items 1 and/or 2, the (earliest) priority date is:
28 June 1999 (28.06.99)

4. **Priority claim considered not to have been made.**

- The applicant failed to respond to the Invitation under Rule 26bis.2(a) (Form PCT/IB/316) within the prescribed time limit.
- The applicant's notice was received after the expiration of the prescribed time limit under Rule 26bis.1(a).
- The applicant's notice failed to correct the priority claim so as to comply with the requirements of Rule 4.10.

The applicant may, before the technical preparations for international publication have been completed and subject to the payment of a fee, request the International Bureau to publish, together with the international application, information concerning the priority claim. See Rule 26bis.2(c) and the PCT Applicant's Guide, Volume I, Annex B2(1B).

5. In case where **multiple priorities** have been claimed, the above item(s) relate to the following priority claim(s):

NO 28 June 1999 (28.06.99) 19991325

6. A copy of this notification has been sent to the receiving Office and

- to the International Searching Authority (where the international search report has not yet been issued).
- the designated Offices (which have already been notified of the receipt of the record copy).

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland Facsimile No. (41-22) 740.14.35	Authorized officer R. Chrem Telephone No. (41-22) 338.83.38
--	---

PCT

REQUEST

The undersigned requests that the present international application be processed according to the Patent Cooperation Treaty.

For receiving Office use only	
International Application No.	
International Filing Date	
Name of receiving Office and "PCT International Application"	
Applicant's or agent's file reference (if desired) (12 characters maximum)	42 · 73369

Box No. I TITLE OF INVENTION		
METHOD		
Box No. II APPLICANT		
<p>Name and address: (Family name followed by given name; for a legal entity, full official designation. The address must include postal code and name of country. The country of the address indicated in this Box is the applicant's State (that is, country) of residence if no State of residence is indicated below.)</p> <p>COMPLETE GENOMICS AS P.O. Box 64 Blindern N-0313 Oslo Norway</p>		<input type="checkbox"/> This person is also inventor. <input type="text"/> Telephone No. <input type="text"/> Facsimile No. <input type="text"/> Teleprinter No.
State (that is, country) of nationality: NO	State (that is, country) of residence: NO	
This person is applicant <input type="checkbox"/> all designated States <input checked="" type="checkbox"/> all designated States except the United States of America <input type="checkbox"/> the United States of America only <input type="checkbox"/> the States indicated in the Supplemental Box		
Box No. III FURTHER APPLICANT(S) AND/OR (FURTHER) INVENTOR(S)		
<p>Name and address: (Family name followed by given name; for a legal entity, full official designation. The address must include postal code and name of country. The country of the address indicated in this Box is the applicant's State (that is, country) of residence if no State of residence is indicated below.)</p> <p>LEXOW, Preben Bloksbergveien 16 3132 Husoysund Norway</p>		This person is: <input type="checkbox"/> applicant only <input checked="" type="checkbox"/> applicant and inventor <input type="checkbox"/> inventor only (If this check-box is marked, do not fill in below)
State (that is, country) of nationality: NO	State (that is, country) of residence: NO	
This person is applicant <input type="checkbox"/> all designated States <input type="checkbox"/> all designated States except the United States of America <input checked="" type="checkbox"/> the United States of America only <input type="checkbox"/> the States indicated in the Supplemental Box		
<input checked="" type="checkbox"/> Further applicants and/or (further) inventors are indicated on a continuation sheet.		
Box No. IV AGENT OR COMMON REPRESENTATIVE; OR ADDRESS FOR CORRESPONDENCE		
The person identified below is hereby/has been appointed to act on behalf of the applicant(s) before the competent International Authorities as:		<input checked="" type="checkbox"/> agent <input type="checkbox"/> common representative
<p>Name and address: (Family name followed by given name; for a legal entity, full official designation. The address must include postal code and name of country.)</p> <p>JONES, Elizabeth Louise Frank B. Dehn & Co. 179 Queen Victoria Street London EC4V 4EL GB</p>		Telephone No. +44 20 7206 0600 Facsimile No. +44 20 7206 0700 Teleprinter No.
<input type="checkbox"/> Address for correspondence: Mark this check-box where no agent or common representative is/has been appointed and the space above is used instead to indicate a special address to which correspondence should be sent.		

Continuation of Box No. III FURTHER APPLICANT(S) AND/OR (FURTHER) INVENTOR(S)

If none of the following sub-boxes is used, this sheet should not be included in the request.

Name and address: (Family name followed by given name; for a legal entity, full official designation. The address must include postal code and name of country. The country of the address indicated in this Box is the applicant's State (that is, country) of residence if no State of residence is indicated below.)

JONES, Elizabeth Louise
Frank B. Dehn & Co.
179 Queen Victoria Street
London
EC4V 4EL
United Kingdom

This person is:

- applicant only
 applicant and inventor
 inventor only (If this check-box is marked, do not fill in below.)

State (that is, country) of nationality:

GB

State (that is, country) of residence:

GB

This person is applicant for the purposes of: all designated States all designated States except the United States of America the United States of America only the States indicated in the Supplemental Box

Name and address: (Family name followed by given name; for a legal entity, full official designation. The address must include postal code and name of country. The country of the address indicated in this Box is the applicant's State (that is, country) of residence if no State of residence is indicated below.)

This person is:

- applicant only
 applicant and inventor
 inventor only (If this check-box is marked, do not fill in below.)

State (that is, country) of nationality:

State (that is, country) of residence:

This person is applicant for the purposes of: all designated States all designated States except the United States of America the United States of America only the States indicated in the Supplemental Box

Name and address: (Family name followed by given name; for a legal entity, full official designation. The address must include postal code and name of country. The country of the address indicated in this Box is the applicant's State (that is, country) of residence if no State of residence is indicated below.)

This person is:

- applicant only
 applicant and inventor
 inventor only (If this check-box is marked, do not fill in below.)

State (that is, country) of nationality:

State (that is, country) of residence:

This person is applicant for the purposes of: all designated States all designated States except the United States of America the United States of America only the States indicated in the Supplemental Box

Name and address: (Family name followed by given name; for a legal entity, full official designation. The address must include postal code and name of country. The country of the address indicated in this Box is the applicant's State (that is, country) of residence if no State of residence is indicated below.)

This person is:

- applicant only
 applicant and inventor
 inventor only (If this check-box is marked, do not fill in below.)

State (that is, country) of nationality:

State (that is, country) of residence:

This person is applicant for the purposes of: all designated States all designated States except the United States of America the United States of America only the States indicated in the Supplemental Box

Further applicants and/or (further) inventors are indicated on another continuation sheet.

Box No.V DESIGNATION OF STATES

The following designations are hereby made under Rule 4.9(a) (mark the applicable check-boxes; at least one must be marked):

Regional Patent

- AP ARIPO Patent:** GH Ghana, GM Gambia, KE Kenya, LS Lesotho, MW Malawi, SD Sudan, SL Sierra Leone, SZ Swaziland, TZ United Republic of Tanzania, UG Uganda, ZW Zimbabwe, and any other State which is a Contracting State of the Harare Protocol and of the PCT **MZ Mozambique**
- EA Eurasian Patent:** AM Armenia, AZ Azerbaijan, BY Belarus, KG Kyrgyzstan, KZ Kazakhstan, MD Republic of Moldova, RU Russian Federation, TJ Tajikistan, TM Turkmenistan, and any other State which is a Contracting State of the Eurasian Patent Convention and of the PCT
- EP European Patent:** AT Austria, BE Belgium, CH and LI Switzerland and Liechtenstein, CY Cyprus, DE Germany, DK Denmark, ES Spain, FI Finland, FR France, GB United Kingdom, GR Greece, IE Ireland, IT Italy, LU Luxembourg, MC Monaco, NL Netherlands, PT Portugal, SE Sweden, and any other State which is a Contracting State of the European Patent Convention and of the PCT
- OA OAPI Patent:** BF Burkina Faso, BJ Benin, CF Central African Republic, CG Congo, CI Côte d'Ivoire, CM Cameroon, GA Gabon, GN Guinea, GW Guinea-Bissau, ML Mali, MR Mauritania, NE Niger, SN Senegal, TD Chad, TG Togo, and any other State which is a member State of OAPI and a Contracting State of the PCT (*if other kind of protection or treatment desired, specify on dotted line*)

National Patent (*if other kind of protection or treatment desired, specify on dotted line*):

- | | |
|--|--|
| <input checked="" type="checkbox"/> AE United Arab Emirates | <input checked="" type="checkbox"/> LR Liberia |
| <input checked="" type="checkbox"/> AL Albania | <input checked="" type="checkbox"/> LS Lesotho |
| <input checked="" type="checkbox"/> AM Armenia | <input checked="" type="checkbox"/> LT Lithuania |
| <input checked="" type="checkbox"/> AT Austria and utility model | <input checked="" type="checkbox"/> LU Luxembourg |
| <input checked="" type="checkbox"/> AU Australia | <input checked="" type="checkbox"/> LV Latvia |
| <input checked="" type="checkbox"/> AZ Azerbaijan | <input checked="" type="checkbox"/> MA Morocco |
| <input checked="" type="checkbox"/> BA Bosnia and Herzegovina | <input checked="" type="checkbox"/> MD Republic of Moldova |
| <input checked="" type="checkbox"/> BB Barbados | <input checked="" type="checkbox"/> MG Madagascar |
| <input checked="" type="checkbox"/> BG Bulgaria | <input checked="" type="checkbox"/> MK The former Yugoslav Republic of Macedonia |
| <input checked="" type="checkbox"/> BR Brazil | |
| <input checked="" type="checkbox"/> BY Belarus | |
| <input checked="" type="checkbox"/> CA Canada | |
| <input checked="" type="checkbox"/> CH and LI Switzerland and Liechtenstein | |
| <input checked="" type="checkbox"/> CN China | |
| <input checked="" type="checkbox"/> CR Costa Rica | |
| <input checked="" type="checkbox"/> CU Cuba | |
| <input checked="" type="checkbox"/> CZ Czech Republic and utility model | |
| <input checked="" type="checkbox"/> DE Germany and utility model | |
| <input checked="" type="checkbox"/> DK Denmark and utility model | |
| <input checked="" type="checkbox"/> DM Dominica | |
| <input checked="" type="checkbox"/> EE Estonia and utility model | |
| <input checked="" type="checkbox"/> ES Spain | |
| <input checked="" type="checkbox"/> FI Finland and utility model | |
| <input checked="" type="checkbox"/> GB United Kingdom | |
| <input checked="" type="checkbox"/> GD Grenada | |
| <input checked="" type="checkbox"/> GE Georgia | |
| <input checked="" type="checkbox"/> GH Ghana | |
| <input checked="" type="checkbox"/> GM Gambia | |
| <input checked="" type="checkbox"/> HR Croatia | |
| <input checked="" type="checkbox"/> HU Hungary | |
| <input checked="" type="checkbox"/> ID Indonesia | |
| <input checked="" type="checkbox"/> IL Israel | |
| <input checked="" type="checkbox"/> IN India | |
| <input checked="" type="checkbox"/> IS Iceland | |
| <input checked="" type="checkbox"/> JP Japan | |
| <input checked="" type="checkbox"/> KE Kenya | |
| <input checked="" type="checkbox"/> KG Kyrgyzstan | |
| <input checked="" type="checkbox"/> KP Democratic People's Republic of Korea | |
| <input checked="" type="checkbox"/> KR Republic of Korea and utility model | |
| <input checked="" type="checkbox"/> KZ Kazakhstan | |
| <input checked="" type="checkbox"/> LC Saint Lucia | |
| <input checked="" type="checkbox"/> LK Sri Lanka | |
| <input checked="" type="checkbox"/> Check-boxes reserved for designating States which have become party to the PCT after issuance of this sheet: | |
| <input checked="" type="checkbox"/> DZ Algeria | <input checked="" type="checkbox"/> MZ Mozambique |
| <input checked="" type="checkbox"/> AG Antigua & Barbuda | <input checked="" type="checkbox"/> BZ Belize |

Precautionary Designation Statement: In addition to the designations made above, the applicant also makes under Rule 4.9(b) all other designations which would be permitted under the PCT except any designation(s) indicated in the Supplemental Box as being excluded from the scope of this statement. The applicant declares that those additional designations are subject to confirmation and that any designation which is not confirmed before the expiration of 15 months from the priority date is to be regarded as withdrawn by the applicant at the expiration of that time limit. (*Confirmation (including fees) must reach the receiving Office within the 15-month time limit.*)

Supplemental Box *If the Supplemental Box is not used, this sheet should not be included in the request.*

1. *If, in any of the Boxes, the space is insufficient to furnish all the information: in such case, write "Continuation of Box No. ... " [indicate the number of the Box] and furnish the information in the same manner as required according to the captions of the Box in which the space was insufficient, in particular:*

- (i) *if more than two persons are involved as applicants and/or inventors and no "continuation sheet" is available: in such case, write "Continuation of Box No. III" and indicate for each additional person the same type of information as required in Box No. III. The country of the address indicated in this Box is the applicant's State (that is, country) of residence if no State of residence is indicated below;*
- (ii) *if, in Box No. II or in any of the sub-boxes of Box No. III, the indication "the States indicated in the Supplemental Box" is checked: in such case, write "Continuation of Box No. II" or "Continuation of Box No. III" or "Continuation of Boxes No. II and No. III" (as the case may be), indicate the name of the applicant(s) involved and, next to (each) such name, the State(s) (and/or, where applicable, ARIPO, Eurasian, European or OAPI patent) for the purposes of which the named person is applicant;*
- (iii) *if, in Box No. II or in any of the sub-boxes of Box No. III, the inventor or the inventor/applicant is not inventor for the purposes of all designated States or for the purposes of the United States of America: in such case, write "Continuation of Box No. II" or "Continuation of Box No. III" or "Continuation of Boxes No. II and No. III" (as the case may be), indicate the name of the inventor(s) and, next to (each) such name, the State(s) (and/or, where applicable, ARIPO, Eurasian, European or OAPI patent) for the purposes of which the named person is inventor;*
- (iv) *if, in addition to the agent(s) indicated in Box No. IV, there are further agents: in such case, write "Continuation of Box No. IV" and indicate for each further agent the same type of information as required in Box No. IV;*
- (v) *if, in Box No. V, the name of any State (or OAPI) is accompanied by the indication "patent of addition," or "certificate of addition," or if, in Box No. V, the name of the United States of America is accompanied by an indication "continuation" or "continuation-in-part": in such case, write "Continuation of Box No. V" and the name of each State involved (or OAPI), and after the name of each such State (or OAPI), the number of the parent title or parent application and the date of grant of the parent title or filing of the parent application;*
- (vi) *if, in Box No. VI, there are more than three earlier applications whose priority is claimed: in such case, write "Continuation of Box No. VI" and indicate for each additional earlier application the same type of information as required in Box No. VI;*
- (vii) *if, in Box No. VI, the earlier application is an ARIPO application: in such case, write "Continuation of Box No. VI", specify the number of the item corresponding to that earlier application and indicate at least one country party to the Paris Convention for the Protection of Industrial Property or one Member of the World Trade Organization for which that earlier application was filed.*

2. *If, with regard to the precautionary designation statement contained in Box No. V, the applicant wishes to exclude any State(s) from the scope of that statement: in such case, write "Designation(s) excluded from precautionary designation statement" and indicate the name or two-letter code of each State so excluded.*

3. *If the applicant claims, in respect of any designated Office, the benefits of provisions of the national law concerning non-prejudicial disclosures or exceptions to lack of novelty: in such case, write "Statement concerning non-prejudicial disclosures or exceptions to lack of novelty" and furnish that statement below.*

CONTINUATION OF BOX NO. IV

JONES, Elizabeth Louise is applicant in respect of the GB designation only.

The following, also of Frank B. Dehn & Co., are also appointed as agents:

Watkins, A.J.; Leale, R.G.; Woodman, D.; Skiales, H.J.; Tomlinson, K.J.; Butler, M.J.; Pett, C.P.; Cockbain, J.R.M.; Davies, C.R.; Piésold, A.J.; Matthews, D.P.; Dzieglewska, H.E.; Calamita, R.; Leckey, D.H.; Hague, A.J.; Towler, P.D.; Hughes, A.M.; Tothill, J.P.; Marsden, J.C.; Grant, A.R.; Golding, L.A.; Jackson, R.P.; Jones, E.L.; Hall, M.B.; Stevens, J.P.; Dixon, P.M.; Hancox, J.C.; Gardner, R.K.; Jeffrey, P.M.; Beacham, A.R.; Moy, D.; Samuels, A.J.; Campbell, N.B.

Box No. VI PRIORITY CLAIM		<input type="checkbox"/> Further priority claims are indicated in the Supplemental Box.		
Filing date of earlier application (day/month/year)	Number of earlier application	Where earlier application is:		
		national application: country	regional application: regional Office	international application: receiving Office
item (1) 27 June 1999	19991325	NO		
item (2) 20 June 2000	20003190	NO		
item (3) 20 June 2000	20003191	NO		

The receiving Office is requested to prepare and transmit to the International Bureau a certified copy of the earlier application(s) (only if the earlier application was filed with the Office which for the purposes of the present international application is the receiving Office) identified above as item(s):

* Where the earlier application is an ARIPO application, it is mandatory to indicate in the Supplemental Box at least one country party to the Paris Convention for the Protection of Industrial Property for which that earlier application was filed (Rule 4.10(b)(ii)). See Supplemental Box.

Box No. VII INTERNATIONAL SEARCHING AUTHORITY

Choice of International Searching Authority (ISA) (if two or more International Searching Authorities are competent to carry out the international search, indicate the Authority chosen; the two-letter code may be used):	Request to use results of earlier search; reference to that search (if an earlier search has been carried out by or requested from the International Searching Authority):		
	Date (day/month/year)	Number	Country (or regional Office)
ISA /			

Box No. VIII CHECK LIST; LANGUAGE OF FILING

This international application contains the following number of sheets:	This international application is accompanied by the item(s) marked below:	
request : 5	1. <input checked="" type="checkbox"/> fee calculation sheet	
description (excluding sequence listing part) : 77	2. <input type="checkbox"/> separate signed power of attorney	
claims : 6	3. <input type="checkbox"/> copy of general power of attorney; reference number, if any:	
abstract : 1	4. <input type="checkbox"/> statement explaining lack of signature	
drawings : 5	5. <input type="checkbox"/> priority document(s) identified in Box No. VI as item(s):	
sequence listing part of description : -	6. <input type="checkbox"/> translation of international application into (language):	
Total number of sheets : 94	7. <input type="checkbox"/> separate indications concerning deposited microorganism or other biological material	
	8. <input type="checkbox"/> nucleotide and/or amino acid sequence listing in computer readable form	
	9. <input checked="" type="checkbox"/> other (specify): CO-PENDING APPLICATION PCT/GB99/04417	

Figure of the drawings which
should accompany the abstract:

Language of filing of the
international application: English

Box No. IX SIGNATURE OF APPLICANT OR AGENT

Next to each signature, indicate the name of the person signing and the capacity in which the person signs (if such capacity is not obvious from reading the request).

JONES, Elizabeth Jones - Professional Representative

For receiving Office use only		
1. Date of actual receipt of the purported international application:	2. Drawings:	
3. Corrected date of actual receipt due to later but timely received papers or drawings completing the purported international application:	<input type="checkbox"/> received: <input type="checkbox"/> not received:	
4. Date of timely receipt of the required corrections under PCT Article 11(2):		
5. International Searching Authority (if two or more are competent): ISA /	6. <input type="checkbox"/> Transmittal of search copy delayed until search fee is paid.	

For International Bureau use only

Date of receipt of the record copy
by the International Bureau:

See Notes to the request form

This sheet is not part of and does not count as a sheet of the international application.

PCT

FEE CALCULATION SHEET Annex to the Request

For receiving Office use only

Applicant's or agent's file reference	42.73369	International application No.			
		Date stamp of the receiving Office			
Applicant COMPLETE GENOMICS AS ET AL					
CALCULATION OF PRESCRIBED FEES					
1. TRANSMITTAL FEE	GBP 55	T			
2. SEARCH FEE	GBP 605	S			
International search to be carried out by _____ <i>(If two or more International Searching Authorities are competent in relation to the international application, indicate the name of the Authority which is chosen to carry out the international search.)</i>					
3. INTERNATIONAL FEE					
Basic Fee					
The international application contains 94 sheets.					
first 30 sheets	GBP 264	b1			
64	x	6	= GBP 384	b2	
remaining sheets	additional amount				
Add amounts entered at b1 and b2 and enter total at B			GBP 648	B	
Designation Fees					
The international application contains 8 designations.					
8	x	GBP 56	= GBP 448	D	
number of designation fees	amount of designation fee payable (maximum 8)				
Add amounts entered at B and D and enter total at I			1096 GBP	I	
<i>(Applicants from certain States are entitled to a reduction of 75% of the international fee. Where the applicant is (or all applicants are) so entitled, the total to be entered at I is 25% of the sum of the amounts entered at B and D.)</i>					
4. FEE FOR PRIORITY DOCUMENT (if applicable)			P		
5. TOTAL FEES PAYABLE			1756 GBP	TOTAL	
<input type="checkbox"/> The designation fees are not paid at this time.					
MODE OF PAYMENT					
<input type="checkbox"/>	authorization to charge deposit account (see below)	<input type="checkbox"/>	bank draft	<input type="checkbox"/>	coupons
<input checked="" type="checkbox"/>	cheque	<input type="checkbox"/>	cash	<input type="checkbox"/>	other (specify): _____
<input type="checkbox"/>	postal money order	<input type="checkbox"/>	revenue stamps		
DEPOSIT ACCOUNT AUTHORIZATION <i>(this mode of payment may not be available at all receiving Offices)</i>					
The RO/	<input type="checkbox"/>	is hereby authorized to charge the total fees indicated above to my deposit account.			
<input type="checkbox"/> <i>(this check-box may be marked only if the conditions for deposit accounts of the receiving Office so permit)</i> is hereby authorized to charge any deficiency or credit any overpayment in the total fees indicated above to my deposit account.					
<input type="checkbox"/> is hereby authorized to charge the fee for preparation and transmittal of the priority document to the International Bureau of WIPO to my deposit account.					
Deposit Account No.		Date (day/month/year)	Signature		

The demand must be filed directly with the competent International Preliminary Examining Authority or, if two or more Authorities are competent, with the one chosen by the applicant. The full name or two-letter code of that Authority may be indicated by the applicant on the line below:
IPEA/ EPO

PCT

CHAPTER II

DEMAND

under Article 31 of the Patent Cooperation Treaty:

The undersigned requests that the international application specified below be the subject of international preliminary examination according to the Patent Cooperation Treaty and hereby elects all eligible States (except where otherwise indicated).

For International Preliminary Examining Authority use only

Identification of IPEA		Date of receipt of DEMAND
Box No. I IDENTIFICATION OF THE INTERNATIONAL APPLICATION		
International application No.		Applicant's or agent's file reference 42.1.73369
PCT/GB00/02512		(Earliest) Priority date (day/month/year) 28 JUNE 1999 (28/06/99)
Title of invention Methods of Cloning and Producing Fragment Chains with Readable Information Content		
Box No. II APPLICANT(S)		
Name and address: (Family name followed by given name; for a legal entity, full official designation. The address must include postal code and name of country.) Complete Genomics AS PO Box 64 Blindern N-0313 Oslo Norway		Telephone No.: Facsimile No.: Teleprinter No.:
State (that is, country) of nationality: NO	State (that is, country) of residence: NO	
Name and address: (Family name followed by given name; for a legal entity, full official designation. The address must include postal code and name of country.) LEXOW, Preben Bloksbergveien 16 N-3132 Husøyund Norway		
State (that is, country) of nationality: NO	State (that is, country) of residence: NO	
Name and address: (Family name followed by given name; for a legal entity, full official designation. The address must include postal code and name of country.) JONES, Elizabeth Louise Frank B. Dehn & Co 179 Queen Victoria Street London ECV4 E4L United Kingdom		
State (that is, country) of nationality: GB	State (that is, country) of residence: GB	
<input type="checkbox"/> Further applicants are indicated on a continuation sheet.		

Box No. III AGENT OR COMMON REPRESENTATIVE; OR ADDRESS FOR CORRESPONDENCE

The following person is agent common representative

and has been appointed earlier and represents the applicant(s) also for international preliminary examination.

is hereby appointed and any earlier appointment of (an) agent(s)/common representative is hereby revoked.

is hereby appointed, specifically for the procedure before the International Preliminary Examining Authority, in addition to the agent(s)/common representative appointed earlier.

Name and address: *(Family name followed by given name; for a legal entity, full official designation. The address must include postal code and name of country.)*

JONES, Elizabeth Louise
Frank B. Dehn & Co.
179 Queen Victoria Street
London
EC4V 4EL
GB

Telephone No.:

+44 20 7206 0600

Facsimile No.:

+44 20 7206 0700

Teleprinter No.:

Address for correspondence: Mark this check-box where no agent or common representative is/has been appointed and the space above is used instead to indicate a special address to which correspondence should be sent.

Box No. IV BASIS FOR INTERNATIONAL PRELIMINARY EXAMINATION

Statement concerning amendments: *

1. The applicant wishes the international preliminary examination to start on the basis of:

the international application as originally filed
 the description as originally filed
 as amended under Article 34
 the claims as originally filed
 as amended under Article 19 (together with any accompanying statement)
 as amended under Article 34
 the drawings as originally filed
 as amended under Article 34

2. The applicant wishes any amendment to the claims under Article 19 to be considered as reversed.

3. The applicant wishes the start of the international preliminary examination to be postponed until the expiration of 20 months from the priority date unless the International Preliminary Examining Authority receives a copy of any amendments made under Article 19 or a notice from the applicant that he does not wish to make such amendments (Rule 69.1(d)). *(This check-box may be marked only where the time limit under Article 19 has not yet expired.)*

- * Where no check-box is marked, international preliminary examination will start on the basis of the international application as originally filed or, where a copy of amendments to the claims under Article 19 and/or amendments of the international application under Article 34 are received by the International Preliminary Examining Authority before it has begun to draw up a written opinion or the international preliminary examination report, as so amended.

Language for the purposes of international preliminary examination: English.....

which is the language in which the international application was filed.
 which is the language of a translation furnished for the purposes of international search.
 which is the language of publication of the international application.
 which is the language of the translation (to be) furnished for the purposes of international preliminary examination.

Box No. V ELECTION OF STATES

The applicant hereby elects all eligible States *(that is, all States which have been designated and which are bound by Chapter II of the PCT)*

excluding the following States which the applicant wishes not to elect:

Box No. VI CHECK LIST

The demand is accompanied by the following elements, in the language referred to in Box No. IV, for the purposes of international preliminary examination:

			For International Preliminary Examining Authority use only	
			received	not received
1. translation of international application	:	sheets	<input type="checkbox"/>	<input type="checkbox"/>
2. amendments under Article 34	:	sheets	<input type="checkbox"/>	<input type="checkbox"/>
3. copy (or, where required, translation) of amendments under Article 19	:	sheets	<input type="checkbox"/>	<input type="checkbox"/>
4. copy (or, where required, translation) of statement under Article 19	:	sheets	<input type="checkbox"/>	<input type="checkbox"/>
5. letter	:	1 sheets	<input type="checkbox"/>	<input type="checkbox"/>
6. other (specify)	:	sheets	<input type="checkbox"/>	<input type="checkbox"/>

The demand is also accompanied by the item(s) marked below:

- | | |
|---|--|
| 1. <input checked="" type="checkbox"/> fee calculation sheet | 4. <input type="checkbox"/> statement explaining lack of signature |
| 2. <input type="checkbox"/> separate signed power of attorney | 5. <input type="checkbox"/> nucleotide and or amino acid sequence listing in
computer readable form |
| 3. <input type="checkbox"/> copy of general power of attorney;
reference number, if any: | 6. <input type="checkbox"/> other (specify): |

Box No. VII SIGNATURE OF APPLICANT, AGENT OR COMMON REPRESENTATIVE

Next to each signature, indicate the name of the person signing and the capacity in which the person signs (if such capacity is not obvious from reading the demand).

JONES, Elizabeth Louise - Professional Representative

For International Preliminary Examining Authority use only

1. Date of actual receipt of DEMAND:

2. Adjusted date of receipt of demand due
to CORRECTIONS under Rule 60.1(b):

3. The date of receipt of the demand is AFTER the expiration of 19 months
from the priority date and item 4 or 5, below, does not apply. The applicant has been
informed accordingly.

4. The date of receipt of the demand is WITHIN the period of 19 months from the priority date as extended by virtue of
Rule 80.5.

5. Although the date of receipt of the demand is after the expiration of 19 months from the priority date, the delay in arrival
is EXCUSED pursuant to Rule 82.

For International Bureau use only

Demand received from IPEA on:

PCT

FEE CALCULATION SHEET

Annex to the Demand for international preliminary examination

International application No. PCT/GB00/02512		For International Preliminary Examining Authority use only										
Applicant's or agent's file reference 42.1.73369		Date stamp of the IPEA										
Applicant Complete Genomics AS												
Calculation of prescribed fees <table style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 60%;">1. Preliminary examination fee</td> <td style="width: 20%; text-align: center;">EUR 1533</td> <td style="width: 20%; text-align: center;">P</td> </tr> <tr> <td>2. Handling fee (<i>Applicants from certain States are entitled to a reduction of 75% of the handling fee. Where the applicant is (or all applicants are) so entitled, the amount to be entered at H is 25% of the handling fee.</i>)</td> <td style="text-align: center;">EUR 147</td> <td style="text-align: center;">H</td> </tr> <tr> <td>3. Total of prescribed fees <i>Add the amounts entered at P and H and enter total in the TOTAL box.</i></td> <td style="text-align: center;">EUR 1680</td> <td style="text-align: center;">TOTAL</td> </tr> </table>				1. Preliminary examination fee	EUR 1533	P	2. Handling fee (<i>Applicants from certain States are entitled to a reduction of 75% of the handling fee. Where the applicant is (or all applicants are) so entitled, the amount to be entered at H is 25% of the handling fee.</i>)	EUR 147	H	3. Total of prescribed fees <i>Add the amounts entered at P and H and enter total in the TOTAL box.</i>	EUR 1680	TOTAL
1. Preliminary examination fee	EUR 1533	P										
2. Handling fee (<i>Applicants from certain States are entitled to a reduction of 75% of the handling fee. Where the applicant is (or all applicants are) so entitled, the amount to be entered at H is 25% of the handling fee.</i>)	EUR 147	H										
3. Total of prescribed fees <i>Add the amounts entered at P and H and enter total in the TOTAL box.</i>	EUR 1680	TOTAL										
Mode of Payment <table style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 50%; padding-right: 20px;"> <input checked="" type="checkbox"/> <i>authorization to charge deposit account with the IPEA (see below)</i> </td> <td style="width: 50%;"><input type="checkbox"/> cash</td> </tr> <tr> <td><input type="checkbox"/> cheque</td> <td><input type="checkbox"/> revenue stamps</td> </tr> <tr> <td><input type="checkbox"/> postal money order</td> <td><input type="checkbox"/> coupons</td> </tr> <tr> <td><input type="checkbox"/> bank draft</td> <td><input type="checkbox"/> other (<i>specify</i>): _____</td> </tr> </table>				<input checked="" type="checkbox"/> <i>authorization to charge deposit account with the IPEA (see below)</i>	<input type="checkbox"/> cash	<input type="checkbox"/> cheque	<input type="checkbox"/> revenue stamps	<input type="checkbox"/> postal money order	<input type="checkbox"/> coupons	<input type="checkbox"/> bank draft	<input type="checkbox"/> other (<i>specify</i>): _____	
<input checked="" type="checkbox"/> <i>authorization to charge deposit account with the IPEA (see below)</i>	<input type="checkbox"/> cash											
<input type="checkbox"/> cheque	<input type="checkbox"/> revenue stamps											
<input type="checkbox"/> postal money order	<input type="checkbox"/> coupons											
<input type="checkbox"/> bank draft	<input type="checkbox"/> other (<i>specify</i>): _____											
Deposit Account Authorization (<i>this mode of payment may not be available at all IPEAs</i>) <p>The IPEA/ EPO <input checked="" type="checkbox"/> is hereby authorized to charge the total fees indicated above to my deposit account.</p> <p><input checked="" type="checkbox"/> (<i>this check-box may be marked only if the conditions for deposit accounts of the IPEA so permit</i>) is hereby authorized to charge any deficiency or credit any overpayment in the total fees indicated above to my deposit account.</p>												
28050069	25 January 2001	Signature _____										
Deposit Account Number	Date (day/month/year)											

PATENT COOPERATION TREATY

by fax and post

0044 207206 0700

PCT
confirmation

WRITTEN OPINION

(PCT Rule 66)

From the:
INTERNATIONAL PRELIMINARY EXAMINING AUTHORITY

To:

JONES, Elisabeth L.
Frank B. Dehn & CO.
179 Queen Victoria Street
London EC4V 4EL
GRANDE BRETAGNE

Applicant's or agent's file reference
42.1.73369

International application No.	International filing date (day/month/year)	Priority date (day/month/year)
PCT/GB00/02512	27/06/2000	28/06/1999

International Patent Classification (IPC) or both national classification and IPC

C12N15/10

Applicant

COMPLETE GENOMICS AS et al.

1. This written opinion is the first drawn up by this International Preliminary Examining Authority.

2. This opinion contains indications relating to the following items:

- I Basis of the opinion
- II Priority
- III Non-establishment of opinion with regard to novelty, inventive step and industrial applicability
- IV Lack of unity of invention
- V Reasoned statement under Rule 66.2(a)(ii) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement
- VI Certain document cited
- VII Certain defects in the international application
- VIII Certain observations on the international application

3. The applicant is hereby invited to reply to this opinion.

When? See the time limit indicated above. The applicant may, before the expiration of that time limit, request this Authority to grant an extension, see Rule 66.2(d).

How? By submitting a written reply, accompanied, where appropriate, by amendments, according to Rule 66.3. For the form and the language of the amendments, see Rules 66.8 and 66.9.

Also: For an additional opportunity to submit amendments, see Rule 66.4. For the examiner's obligation to consider amendments and/or arguments, see Rule 66.4 bis. For an informal communication with the examiner, see Rule 66.6.

If no reply is filed, the international preliminary examination report will be established on the basis of this opinion.

4. The final date by which the international preliminary examination report must be established according to Rule 69.2 is: 28/10/2001.

Reply
Due
7/9/01

Name and mailing address of the international preliminary examining authority:

European Patent Office
D-80298 Munich
Tel. +49 89 2399 - 0 Tx: 523656 epmu d
Fax: +49 89 2399 - 4465

Authorized officer / Examiner

Barnas, C

Formalities officer (incl. extension of time limits)
Hingel, W
Telephone No. +49 89 2399 8717

I. Basis of the opinion

1. With regard to the **elements** of the international application (*Replacement sheets which have been furnished to the receiving Office in response to an invitation under Article 14 are referred to in this opinion as "originally filed"*):

Description, pages:

1-77 as originally filed

Claims, No.:

1-28 as originally filed

Drawings, sheets:

1-6 as originally filed

Sequence listing part of the description, pages:

1-23, filed with the letter of 5.9.2000

2. With regard to the **language**, all the elements marked above were available or furnished to this Authority in the language in which the international application was filed, unless otherwise indicated under this item.

These elements were available or furnished to this Authority in the following language: , which is:

- the language of a translation furnished for the purposes of the international search (under Rule 23.1(b)).
 - the language of publication of the international application (under Rule 48.3(b)).
 - the language of a translation furnished for the purposes of international preliminary examination (under Rule 55.2 and/or 55.3).
3. With regard to any **nucleotide and/or amino acid sequence** disclosed in the international application, the international preliminary examination was carried out on the basis of the sequence listing:

- contained in the international application in written form.
- filed together with the international application in computer readable form.
- furnished subsequently to this Authority in written form.
- furnished subsequently to this Authority in computer readable form.
- The statement that the subsequently furnished written sequence listing does not go beyond the disclosure in the international application as filed has been furnished.
- The statement that the information recorded in computer readable form is identical to the written sequence listing has been furnished.

4. The amendments have resulted in the cancellation of:

- the description, pages:
- the claims, Nos.:
- the drawings, sheets:
5. This report has been established as if (some of) the amendments had not been made, since they have been considered to go beyond the disclosure as filed (Rule 70.2(c)):
(Any replacement sheet containing such amendments must be referred to under item 1 and annexed to this report.)
6. Additional observations, if necessary:

IV. Lack of unity of invention

1. In response to the invitation (Form PCT/IPEA/405) to restrict or pay additional fees, the applicant has:
- restricted the claims.
- paid additional fees.
- paid additional fees under protest.
- neither restricted nor paid additional fees.
2. This Authority found that the requirement of unity of invention is not complied with for the following reasons and chose, according to Rule 68.1, not to invite the applicant to restrict or pay additional fees:
3. Consequently, the following parts of the international application were the subject of international preliminary examination in establishing this opinion:
- all parts.
- the parts relating to claims Nos. .

V. Reasoned statement under Rule 66.2(a)(ii) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement

1. Statement
- | | |
|-------------------------------|--------------------------------------|
| Novelty (N) | Claims 1-6, 8, 11-16, 18, 19, 25, 26 |
| Inventive step (IS) | Claims 10, 17, 27 |
| Industrial applicability (IA) | Claims |
2. Citations and explanations
see separate sheet

WRITTEN OPINION

International application No. PCT/GB00/02512

VI. Certain documents cited

1. Certain published documents (Rule 70.10)
and / or
2. Non-written disclosures (Rule 70.9)

see separate sheet

Re Item I

Basis of the opinion

Sequence listing pages 1-23 filed with the letter of 5.9.2000 do not form part of the application (Rule 13^{ter}.1(f) PCT).

Re Item V

Reasoned statement under Rule 66.2(a)(ii) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement

- D1: VERMERSCH P S ET AL: 'THE USE OF A SELECTABLE FOK-I CASSETTE IN DNA REPLACEMENT MUTAGENESIS OF THE R388 DIHYDROFOLATE REDUCTASE GENE' GENE (AMSTERDAM), vol. 54, no. 2-3, 1987, pages 229-238, XP002149816 ISSN: 0378-1119
- D2: BRAKE A J ET AL: 'ALPHA-FACTOR-DIRECTED SYNTHESIS AND SECRETION OF MATURE FOREIGN PROTEINS IN SACCHAROMYCES-CEREVISIAE' PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES, vol. 81, no. 15, 1984, pages 4642-4646, XP002149815 1984 ISSN: 0027-8424
- D3: MANDECKI W ET AL: 'FOK-I METHOD OF GENE SYNTHESIS' GENE (AMSTERDAM), vol. 68, no. 1, 1988, pages 101-107, XP002149817 ISSN: 0378-1119
- D4: WO 98 38326 A (ZINK MARY ANN ;XU GUOPING (US); HODGSON CLAGUE P (US); NATURE TECH) 3 September 1998 (1998-09-03)

1. Art. 33(2) PCT, Novelty

- 1.1. D1 (Fig. 4) discloses a cloning strategy identical to the method of claim 1 wherein the "fragment of the first nucleic acid molecule" is the FokI fragment derived from pPV9134-sup with SS1a being AAGC, "the second nucleic acid molecule" is pPV9124-sup with SS2 being CGCA and the "adapter molecule" is the synthetic duplex or synthetic oligonucleotide with SSA1 being TTGCG and SSA2 being TGCG. The synthetic oligonucleotide (adapter) contains a Ball restriction site.

D1 is, therefore, novelty destroying for claims 1, 4-6, 8, 11-13, and 15.

1.2. Said cloning strategy of D1 is also identical to the method of claim 16 wherein n=2 and the double strand nucleic acid fragments of step 1) are the FokI fragment derived from pPV9134-sup and the synthetic oligonucleotide with the complementary regions AAGC (FokI) and TTCA (oligonucl.). Both of the fragments contain code elements encoding for amino acids.

D1 is, therefore, also novelty destroying for **claims 16, 19, 25 and 26**.

1.3. D2 (Fig. 2ef.) discloses a method wherein a part of the EGF gene derived by HgaI digestion (fragment of the first nucleic acid molecule, SS1a: ACTCT, SS1b: AACTC) is cloned into a vector (second nucleic acid molecule, SS2: TCGA) via linkers 3 and 4 (=adapters; SSA1: TGAGA and SSA2: TCGA of linker 4; SS1b: CATG of linker 3). D2 is, therefore, novelty destroying for **claims 1-6, 8, and 11-16, 19, 25 and 26**.

1.4. D3 (p. 105, paragraph "Design of ..." and Figs. 1 and 4.) discloses a method of synthesizing a nucleic acid wherein six DNA fragments containing genetic code elements are ligated. All six fragments have single stranded (ss) regions at both termini. The 5' ss region of fragment 1 is generated by BamHI digestion, the 3' ss region of fragment six by HindIII digestion. The other ss regions which represent five complementary pairs have been generated by FokI digestion. Said method is novelty destroying for claims 16, 19, 25 and 26.

1.5. Also D4 (p. 32, ln. 25 - p. 33, ln. 1) discloses a method wherein linear DNA is synthesized by ligating 512 HgaI fragments. Said method is novelty destroying for claims 16, 18, 25 and 26.

2. Art. 33(3) PCT, Inventive Step

2.1. Claim 1 of D4 describes a method wherein at least three nucleic acid molecules (= two or more first nucleic acid molecules and one or more second nucleic acid molecules) are cleaved and ligated. Claim 4 of D4 says that adapters should not be used for the ligation. The use of adapters for the ligation is thereby made obvious. The ends of the cleaved nucleic acid molecules are complementary to only one other overhangig end (see claim 1a). The ends of the adaptors have, therefore, the same specificity. It would, therefore, be clear for the skilled person that the two or more first nucleic acid molecules

and one or more second nucleic acid molecules can be bound by adapters simultaneously in the same reaction. **Claim 10** is, therefore, not inventive.

2.2. The method of claim 16 is known as outlined above. It would be clear for the skilled person that said method can also be applied to ligate short fragments. The skilled person would, therefore, according to the circumstances, use said method to ligate fragments as described in claim 17. **Claim 17** is, therefore, not inventive.

2.3. The method of D3 is described a general method of synthesizing nucleic acid molecules. The skilled person would, therefore, apply said method by ligating 10 or more fragments. Claim 18 is, because of this reason, also not inventive over D3.

2.4. Claim 27 embraces Southern Blot hybridisation of a labelled probe complementary to the membrane linked known DNA from D1-D3 containing genetic code elements. Such a hybridisation is, however, a routine method and **claim 27** is, therefore, not inventive.

Re Item VI

Certain documents cited, Certain published documents (Rule 70.10)

Application No Patent No	Publication date (day/month/year)	Filing date (day/month/year)	Priority date (valid claim) (day/month/year)
WO 00/39333	6.7.2000	23.12.1999	13.12.1998

The above listed document was published and filed after the priority date of the present application. It does, therefore, not belong to the state of the art according to Rule 64(1)(b) PCT. However, said document claims priority dates earlier than that of the present application (28.6.1999). If this priority is valid, the document will become of relevance for the novelty of the subject matter of the present application during regional phase examination at the EPO.

The applicant is requested to file new claims and/or explanations which take account of the above comments. The attention of the applicant is drawn to the fact that the application may not be amended in such a way that it contains subject-matter which extends beyond the content of the application as filed, Art. 34 (2) PCT. Therefore, the applicant is asked to indicate the basis of any amendments to the claims in the application documents originally filed.

PATENT COOPERATION TREATY

From the INTERNATIONAL BUREAU

PCT

INFORMATION CONCERNING ELECTED
OFFICES NOTIFIED OF THEIR ELECTION

(PCT Rule 61.3)

To:

JONES, Elizabeth, Louise
 Frank B. Dehn & Co.
 179 Queen Victoria Street
 London EC4V 4EL
 ROYAUME-UNI

FILE 23369

12 APR 2001

RECEIVED

ANSO

IMPORTANT INFORMATION

Date of mailing (day/month/year) 05 April 2001 (05.04.01)
--

Applicant's or agent's file reference 42.73369

International application No. PCT/GB00/02512	International filing date (day/month/year) 27 June 2000 (27.06.00)	Priority date (day/month/year) 28 June 1999 (28.06.99)
---	---	---

Applicant COMPLETE GENOMICS AS et al

1. The applicant is hereby informed that the International Bureau has, according to Article 31(7), notified each of the following Offices of its election:

AP : GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW

EP : AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE

National : AU, BG, CA, CN, CZ, DE, IL, JP, KP, KR, MN, NO, NZ, PL, RO, RU, SE, SK, US

2. The following Offices have waived the requirement for the notification of their election; the notification will be sent to them by the International Bureau only upon their request:

EA : AM, AZ, BY, KG, KZ, MD, RU, TJ, TM

OA : BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG

National : AE, AG, AL, AM, AT, AZ, BA, BB, BR, BY, BZ, CH, CR, CU, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IN, IS, KE, KG, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MW, MX, MZ, PT, SD, SG, SI, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW

3. The applicant is reminded that he must enter the "national phase" before the expiration of 30 months from the priority date before each of the Offices listed above. This must be done by paying the national fee(s) and furnishing, if prescribed, a translation of the international application (Article 39(1)(a)), as well as, where applicable, by furnishing a translation of any annexes of the international preliminary examination report (Article 36(3)(b) and Rule 74.1).

Some offices have fixed time limits expiring later than the above-mentioned time limit. For detailed information about the applicable time limits and the acts to be performed upon entry into the national phase before a particular Office, see Volume II of the PCT Applicant's Guide.

The entry into the European regional phase is postponed until 31 months from the priority date for all States designated for the purposes of obtaining a European patent.

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland	Authorized officer: Pascal Piriou Telephone No. (41-22) 338.83.38
---	--

ATENT COOPERATION TREATY

PCT

NOTICE INFORMING THE APPLICANT OF THE COMMUNICATION OF THE INTERNATIONAL APPLICATION TO THE DESIGNATED OFFICES

(PCT Rule 47.1(c), first sentence)

From the INTERNATIONAL BUREAU

To:

JONES, Elizabeth, Louise
 Frank B. Dehn & Co.
 179 Queen Victoria Street
 London EC4V 4EL
 ROYAUME-UN

FILE 73369

12 JAN 2001

RECEIVED

WPO
IMPORTANT NOTICE

Date of mailing (day/month/year) 04 January 2001 (04.01.01)			
Applicant's or agent's file reference 42.73369			
International application No. PCT/GB00/02512	International filing date (day/month/year) 27 June 2000 (27.06.00)	Priority date (day/month/year) 28 June 1999 (28.06.99)	
Applicant COMPLETE GENOMICS AS et al			

1. Notice is hereby given that the International Bureau has communicated, as provided in Article 20, the international application to the following designated Offices on the date indicated above as the date of mailing of this Notice:
AG,AU,BZ,DZ,KP,KR,MZ,US

In accordance with Rule 47.1(c), third sentence, those Offices will accept the present Notice as conclusive evidence that the communication of the international application has duly taken place on the date of mailing indicated above and no copy of the international application is required to be furnished by the applicant to the designated Office(s).

2. The following designated Offices have waived the requirement for such a communication at this time:
**AE,AL,AM,AP,AT,AZ,BA,BB,BG,BR,BY,CA,CH,CN,CR,CU,CZ,DE,DK,DM,EA,EE,EP,ES,FI,GB,GD,
 GE,GH,GM,HR,HU,ID,IL,IN,IS,JP,KE,KG,KZ,LC,LK,LR,LS,LT,LU,LV,MA,MD,MG,MK,MN,MW,MX,
 NO,NZ,OA,PL,PT,RO,RU,SD,SE,SG,SI,SK,SL,TJ,TM,TR,TT,TZ,UA,UG,UZ,VN,YU,ZA,ZW**
 The communication will be made to those Offices only upon their request. Furthermore, those Offices do not require the applicant to furnish a copy of the international application (Rule 49.1(a-bis)).
3. Enclosed with this Notice is a copy of the international application as published by the International Bureau on
 04 January 2001 (04.01.01) under No. WO 01/00816

REMINDER REGARDING CHAPTER II (Article 31(2)(a) and Rule 54.2)

If the applicant wishes to postpone entry into the national phase until 30 months (or later in some Offices) from the priority date, a demand for international preliminary examination must be filed with the competent International Preliminary Examining Authority before the expiration of 19 months from the priority date.

It is the applicant's sole responsibility to monitor the 19-month time limit.

Note that only an applicant who is a national or resident of a PCT Contracting State which is bound by Chapter II has the right to file a demand for international preliminary examination.

REMINDER REGARDING ENTRY INTO THE NATIONAL PHASE (Article 22 or 39(1))

If the applicant wishes to proceed with the international application in the national phase, he must, within 20 months or 30 months, or later in some Offices, perform the acts referred to therein before each designated or elected Office.

For further important information on the time limits and acts to be performed for entering the national phase, see the Annex to Form PCT/IB/301 (Notification of Receipt of Record Copy) and Volume II of the PCT Applicant's Guide.

The International Bureau of WIPO 34, ch min des Colombettes 1211 G neva 20, Switzerland Facsimile No. (41-22) 740.14.35	Authorized officer J. Zahra Telephone No. (41-22) 338.83.38
--	---

Continuation of Form PCT/IB/3

NOTICE INFORMING THE APPLICANT OF THE COMMUNICATION OF
THE INTERNATIONAL APPLICATION TO THE DESIGNATED OFFICES

Date of mailing (day/month/year) 04 January 2001 (04.01.01)	IMPORTANT NOTICE
Applicant's or agent's file reference 42.73369	International application N PCT/GB00/02512
<p>The applicant is hereby notified that, at the time of establishment of this Notice, the time limit under Rule 46.1 for making amendments under Article 19 has not yet expired and the International Bureau had received neither such amendments nor a declaration that the applicant does not wish to make amendments.</p>	

European Patent Office
D-80298 München
Germany

date 12 October 2001
your ref
our ref 42.73369.ej

BY FACSIMILE

Dear Sirs

**International Patent Application No. PCT/GB00/02512 in the name of
Complete Genomics AS et al**

I refer to the Written Opinion which issued on this case to which a response is due by the extended deadline of **12 October 2001**.

An amended claim set is transmitted herewith. Duplicate copies follow with the confirmation copy of this letter. In this claim set claims 1 to 16 and 19 have been deleted. Claim 20 has been made new claim 1 by incorporating the subject matter of claims 16 and 19. Claims 21 and 22 have similarly been converted into new claims 2 and 3. Remaining sub-claims and other independent claims 17, 18 and 23 to 28 have been reordered accordingly. New claim 14 concerns a kit using the library of revised claim 13 and is based on the teaching in the specification in the passage bridging pages 43 and 44, particularly page 44, lines 16 to 23. For convenience, a hand-amended copy of the claims is enclosed. Furthermore, the amendments which have been made are tabulated in the attached schedule.

My comments on the objections raised by the Examiner are as follows:

The Examiner made no novelty objections to claims 7, 9, 10, 17, 20-24, 27 and 28. The claims have now been amended to comprise only the subject matter of claims 20 - 28 (and sub-claims 17 and 18). These claims, excluding claims 18, 25 and 26 were previously found novel by the Examiner and thus the revised claims comprising that subject matter should similarly be found novel. Claim 18 is a sub-claim and should similarly be considered novel. Claims 25 and 26 have been amended in commensurate scope with the other claims such that they now refer to the novel methods and molecules of preceding claims. As such it is submitted that these claims are similarly novel. New claim 14 contains the library of claim 13 and should similarly be considered novel.

With regard to inventive step, no objections were raised by the Examiner against claims 7, 9, 20-24 and 28. Thus claims in the amended claim set based on the subject matter of those claims should similarly be considered inventive, ie. claims 1-9 and 13. Claim 10 is based on original claim 25 which was considered to lack an inventive step. However this claim has now been restricted to incorporate the methods of preceding claims which are inventive and thus this method claim should also be considered inventive. Similarly claims 11 and 12 (based on original claims 26 and 27) refer to methods of preceding claims and the products produced by them and thus similarly should be considered inventive. New claim 14 contains the inventive library of claim 13 and again should be considered inventive.

In summary, the methods now described concern methods of synthesizing double stranded nucleic acid molecules in which fragments comprising code elements are linked together. The code elements are defined as deriving from alphanumeric (claim 1) or binary (claim 2) code or have a particular formula dictated by 4 to 10 nucleotides (claim 3). None of the cited documents are concerned with the generation of nucleic acid molecules containing code. The Examiner cites naturally occurring sequences which by their very nature provide a genetic code. Such code is however excluded in the amended claims by the restrictions to the type of code (alphanumeric or binary) or the length of the code element (4 to 10 oligonucleotides). None of the cited documents suggest the generation of code containing molecules. The naturally occurring code present in nucleic acid molecules represents at most an accidental anticipation (now removed from the scope of the claims) which does not suggest in any way that a nucleic acid molecule containing a code without biological meaning should be created. As a consequence, the aspect of the invention to which the claims are now directed should be considered to be both novel and inventive. As mentioned above, the Examiner did not previously raise any patentability objections to this subject matter.

Sub-claims 4 to 10 should similarly be considered novel and inventive by virtue of their dependence on claims 1 to 3. Claim 11 is directed to nucleic acid molecules prepared according to the novel and inventive method and similarly should be considered novel and inventive.

Claim 12 concerns the identification of code elements in a molecule prepared in accordance with the methods of the invention. In the Written Opinion, the Examiner referred to the inventiveness of this claim (previously claim 27) being compromised by Southern blot hybridisation of a labelled probe complementary to the DNA which contained genetic code elements. However, by virtue of the limitation in previous method claims, the product of methods of the invention is nucleic acid molecules having particular code elements which are not (for the reasons stated above) genetic code elements. Thus methods of identifying code from molecules prepared by inventive methods and containing artificial code is similarly novel and inventive.

The library of fragments for use in the inventive method (claim 13), to produce the inventive products of the invention should similarly be considered inventive as the motivation to produce such a library could only be derived with knowledge of the method or the intended product, which was not known or suggested in the prior art. Similarly kits containing the inventive library should be considered novel and inventive.

12 October 2001
42.73369.ej

- 3 -

It is hoped that the above described amendments and comments will overcome the objections raised by the Examiner and I therefore look forward to the issue of a positive IPER.

Please acknowledge receipt of this letter by return of the EPO Form 1037 enclosed with the confirmation copy of this letter.

Yours faithfully,
Frank B. Dehn & Co.

Elizabeth Jones

Enc.
ej

SCHEDULE : CLAIM AMENDMENTS

Amended claims	Claims previously on file
1	20 (incorporating claims 16 and 19)
2	21 (incorporating claims 16 and 19)
3	22 (incorporating claims 16 and 19)
4	20
5	21
6	23
7	24
8	17
9	18
10	25
11	26
12	27
13	28
14	New

FRANK B. DEHN & Co.

Patent and Trade Mark Attorneys

179 Queen Victoria Street, London EC4V 4EL, England

Telephone: +44 (0)20 7206 0600 Fax: +44 (0)20 7206 0700

E-mail: mail@frankbdehn.co.uk Web: www.frankbdehn.co.uk

The Patent Office
Harmsworth House
13-15 Bouverie Street
London
EC4Y 8DP

date 6 December 2000

your ref

our ref 42.73369.jc

**URGENT - IMMINENT PCT
PUBLICATION**

Dear Sirs

**International Patent Application No. PCT/GB00/02512 in the name of
Complete Genomics AS - Request for correction of Request form under Rule 91.1 PCT**

I hereby request correction of an obvious error in the Request form filed on this case.

The error appears in the priority claim which was made. Please note however that the date of 27 June 1999 (the filing date given for application No. 19991325) has already been corrected under Rule 26bis.1(a) and a copy of the communication from the International Bureau confirming this correction is enclosed.

The error for which correction is sought is in the filing dates of Norwegian Patent Applications Nos. 20001390 and 20001391 which is currently given as 20 June 2000, but which should be corrected, in both cases to read 28 June 1999. The correct filing date is clear on inspection of those documents. Furthermore, the relevant filing dates are provided for those applications in the priority claim as it stands, even though those filing dates are erroneously matched with the wrong application number. As such, all the relevant details of the priority applications and their filing dates are provided in the original priority claim and the correct numbers could readily be married with the correct application numbers. It is therefore submitted that the priority claim comprises an obvious error which should be correctable.

In this respect I enclose herewith a copy of the front page of the certification of Norwegian Patent Application Nos. 20003190 and 20003191 (which have the filing date of 28 June 1999) which describes the origin of these applications. Taking first Application No. 20003190, you will note that additional documentation was filed on Application No. 19991325 (document B) on 28 June 1999. This became Application No. 20003190 which has a filing date of 20 June 2000 but was accorded a filing date of 28 June 1999. The second document Application No. 20003191 concerns the other portion of the material filed on 28 June 1999 and similarly although filed on 20 June 2000 was given the filing date that the subject matter was first filed, i.e. 28 June 1999.

Partners

Robin G Leale
Derek Woodman BSc
Humphrey J Skales MA
Kerry J Tomlinson MA
Michael J Butler MA
Christopher P Pett MA

Julian Cockbain MA DPhil
Christopher R Davies BSc
Alexander J Piésold BSc
Derek P Matthews BSc PhD
Hanna Dzieglewska BSc PhD
Roberto Calamita MA

David Leckey BSc
Alison J Hague MA
Philip D Towler MA
Andrea M Hughes B Eng LlB
John P Tothill MA
John C Marsden MA

Associates

Anne R Grant MA DPhil
Louise A Golding MA
Robert P Jackson BSc
Elizabeth Jones MSc PhD
Matthew Hall BA MSc
Jason Stevens BA

P Matthew Dixon BSc ARCS
Jonathan Hancock MA
Rebecca Gardner BSc
Philip M Jeffrey BSc PhD
Annabel R Beacham MA DPhil
David Moy MA DPhil

Adrian Samuels BA
Neil Campbell BA
Charlotte Stirling MA

6 December 2000
42.73369.jc

- 2 -

Correction of the priority claim is therefore requested such that the following priority is claimed Norwegian Patent Application No. 20003190 filed on 28 June 1999 and Norwegian Patent Application No. 20003191 filed on 28 June 1999.

In the event that correction of this obvious error is refused, I propose to request that the International Bureau publish this request for rectification under Rule 91.1(f) PCT in the publication of this application which is due to occur on 4 January 2001. In view of the imminence of the completion of the technical preparations for publication which I am informed will be around **15 December 2000**, your immediate attention to this matter would be appreciated. A copy of this letter has been forwarded to the International Bureau.

I look forward to hearing from you regarding the above-mentioned rectification.

Yours faithfully,
Frank B. Dehn & Co.

Elizabeth Jones

Enc.

KONGERIKET NORGE
The Kingdom of Norway

Bekreftelse på patentsøknad nr
Certification of patent application no

2000 3191

Det bekreftes herved at vedheftede dokument er nøyaktig utskrift/kopi av ovennevnte søknad, som opprinnelig inngitt 2000.06.20

It is hereby certified that the annexed document is a true copy of the above-mentioned application, as originally filed on 2000.06.20

Patent application no 19991325 marked "A" was filed with the Norwegian Patent Office on 1999.03.18. Documents marked "B" were received by this Office in that application on 1999.06.28. Those documents were made subject of a separate patent application no 20003191 marked "C" which was actually filed with this Office on 2000.06.20 but which under Section 23 of the Patents Regulations shall be considered as filed on 1999.06.28.

Documents marked "C" are true copies of documents filed on 2000.06.20.
Documents marked "B" are true copies of documents filed on 1999.06.28.
Documents marked "A" are true copies of documents filed on 1999.03.18.

2000.11.08

Freddy Strømmen

Freddy Strømmen
Seksjonsleder

Ellen B. Olsen

Ellen B. Olsen

PATENTSTYRET

Styret for det industrielle rettsvern

KONGERIKET NORGE

The Kingdom of Norway

Bekreftelse på patentsøknad nr

Certification of patent application no

2000 3190

► Det bekreftes herved at vedheftede dokument er nøyaktig utskrift/kopi av ovennevnte søknad, som opprinnelig inngitt 2000.06.20

► *It is hereby certified that the annexed document is a true copy of the above-mentioned application, as originally filed on 2000.06.20*

Patent application no 19991325 marked "A" was filed with the Norwegian Patent Office on 1999.03.18. Documents marked "B" were received by this Office in that application on 1999.06.28. Those documents were made subject of a separate patent application no 20003190 marked "C" which was actually filed with this Office on 2000.06.20 but which under Section 23 of the Patents Regulations shall be considered as filed on 1999.06.28.

Documents marked "C" are true copies of documents filed on 2000.06.20.
Documents marked "B" are true copies of documents filed on 1999.06.28.
Documents marked "A" are true copies of documents filed on 1999.03.18.

2000.11.08

Freddy Strømmen

Freddy Strømmen
Seksjonsleder

Ellen B. Olsen

Ellen B. Olsen

PATENTSTYRET

Styret for det industrielle rettsvern

6/PMS

METHODS OF CLONING AND PRODUCING FRAGMENT CHAINS WITH READABLE INFORMATION CONTENT

The present invention relates to new methods of attaching first and second nucleic acid molecules, particularly methods of cloning in which adapter molecules mediate the binding between the first and second molecules, the resultant nucleic acid molecules thus formed and methods of generating DNA with a readily readable information content and kits for performing such methods.

Presently known cloning methods generally involve the use of restriction enzymes which are used to generate fragments for insertion and cleave vectors to produce corresponding and hence complementary terminal sequences. Generally, the enzymes which are used cut palindromic sequences and thus produce identical overhangs. Different sequences that are cut with the same restriction endonucleases can then be ligated together to form new, recombinant nucleic acids.

However, such methods suffer from a number of limitations. One disadvantage in using endonucleases that form two identical overhangs is the formation of different products on ligation. If for example two fragments A and B are to be ligated, as a consequence of common overhangs the products A+A and B+B as well as the desired A+B will be produced. Other by-products resulting from other fragments produced when A and B were formed will also be generated, e.g. reassociation into the original positions. It is therefore normal to use a separation process using agarose gels. The separation procedure however often results in a considerable loss of DNA.

Such methods necessarily suffer from various limitations including the by-products mentioned above, and the need to identify the desired end-products, e.g. if only a particular insert is to be cloned.

Other cloning techniques have been used in which

- 2 -

cloning has been performed using PCR techniques, e.g. in which the PCR primers have IIS enzyme recognition sites. However, the use of PCR is disadvantageous in cloning techniques as it is time consuming and requires 5 purification steps which result in significant loss of yield. The PCR reaction may also introduce point mutations and the like and the length of the fragment is limited to the polymerase capacity, e.g. a maximum of approximately 50kb.

10 It has now surprisingly been found that by generating fragments with unique single stranded regions and then mediating the binding between a first and second nucleic acid molecule, many of these disadvantages may be avoided. In this method, 15 restriction nucleases are used that form non-identical overhangs, e.g. type IIP or IIS restriction endonucleases. As will be appreciated, if one uses a restriction endonuclease that makes overhangs of 4 base pairs, each fragment that is formed will have two 20 overhangs of 4 base pairs each. It is theoretically possible therefore that 4^8 (ie. 65,536) fragments may be formed with different combinations of the two overhangs. Thus, as a rule, each fragment formed on cleavage will 25 have a unique pair of overhangs even when cleaving large nucleic acid molecules.

These unique overhangs may then be addressed and adjusted appropriately using adapters with two overhangs. For example in a cloning technique one of the overhangs is made to correspond to the overhang on the insert and the other overhang is made to correspond 30 to the overhang on the vector into which the insert is to be introduced. This method is outlined in Figure 1. In that case the DNA molecule containing the insert is cut with a restriction endonuclease which makes an 35 overhang on each side of the insert. Each of the many fragments which are formed have different overhangs such that the two overhangs at either end of the insert are

- 3 -

unique. Ligase is then added to bind two adapters with corresponding single stranded regions. This leads to the formation of two new overhangs at the termini of the insert, which are selected such that they can be used to bind to the vector into which the insert is to be cloned. Providing identical overhangs are not created on other molecules only the desired insert will be ligated to the adapters. In the final step the insert is ligated into the vector which has two overhangs which complement the adapters' overhangs. The overhangs in the vector may be constructed using the same principles as described for the insert.

Thus in this new method, an adapter molecule is used which is complementary to a single stranded region generated on the first nucleic acid molecule and therefore binds to that molecule, but has a different single stranded region at its other terminus, thus effectively modifying the single stranded region presented for binding by the first nucleic acid molecule fragment. The adapter's free single stranded region may then mediate the binding of the first nucleic acid molecule fragment to a second nucleic acid molecule exhibiting a complementary single stranded region.

This method of mediation has particular applications for effectively identifying and selecting a first nucleic acid molecule fragment and then mediating its binding to a second nucleic acid molecule where this was not previously possible.

Of particular relevance to methods of cloning is the generation of fragments for cloning which have different single stranded regions at their termini relative to other fragments, which may then be selected and cloned into an appropriate vector. As described herein, such fragments are generated by the use of enzymes which cleave outside their recognition site and thus produce overhangs that depend on the sequence surrounding the recognition site which is likely to vary

- 4 -

from fragment to fragment.

Such techniques may be used to direct only a single fragment to a particular vector or may be used to direct different fragments to different sites or indeed different vectors, even within the same reaction mix,
5 providing appropriate adapters are constructed.

These methods have particular advantages over prior art methods. In particular, the whole procedure may be carried out in one or two steps, e.g. cutting and
10 ligating simultaneously or cutting and ligating separately. Even in instances where the procedure is performed in two steps, it will often be possible to perform both steps in the same buffer, e.g. since T4 DNA ligase is known to work well in most buffers for
15 restriction endonucleases. Time- and resource-consuming precipitation procedures may therefore be avoided.

Moreover, ligations can be performed with overhangs of 4-6 bases, unlike conventional cloning where overhangs of 0-4 bases are used, thereby increasing ligation
20 efficiency considerably.

Furthermore, the need to carry out gel separations may be avoided. The quantity of DNA required initially can be reduced substantially. Mutation of DNA molecules on UV exposure, a common occurrence in gel separation,
25 may also be avoided. Furthermore, laboratory staff are not exposed to carcinogenic EtBr. Also, separation problems which can occur when restriction cleavage results in fragments of similar size may be avoided. The frequency of undesirable side-products such as empty
30 vectors, too many inserts or incorrect orientation of the inserts may also be avoided.

Since it is generally not problematic if the insert is cleaved, a small selection, e.g of type IIS or Ip restriction endonucleases could provide far more cloning possibilities than a corresponding selection of ordinary type II restriction endonuclease used for conventional cloning procedures. Having a few type IIS, IP and
35

- 5 -

similar restriction endonucleases that cleave with high frequency allows for many cloning possibilities.

In the specific instance of cloning of large DNA molecules (e.g. genomic DNA) or a solution containing many different DNA molecules in parallel (e.g. a cDNA library) it is very difficult to use conventional methods. If for example a large DNA molecule is cleaved with *Eco*RI, a large number of fragments may be formed with the same overhang, and in addition a considerable proportion of these fragments may be of roughly the same size. This may lead to the formation of a large number of undesired ligation products, even with gel separation. Moreover, gel separation can be difficult if the insert is large. Furthermore, it is also often difficult, or even impossible, to find restriction endonucleases that will not cut large inserts. These problems may be reduced/eliminated using the cloning procedure described herein.

If necessary, it is possible to increase the number of base pairs in the overhangs to (e.g.) 6 by using *Cje*I or similar endonucleases to form an even greater number of possible variables and thus increase the probability of producing unique overhangs.

The advantages of the method of the invention are even greater in complex cloning procedures. If several adapters are used for example, it is possible to clone many different inserts into one and the same vector at a corresponding number of different sites in one and the same reaction, as described hereinafter in more detail.

Deletions of small or large fragments may also be achieved using the same basic principle. This opens up the possibility of making complex recombinations of *inter alia* genomic DNA (removal of endogenous viruses in genomes to be used for xenotransplantation, the insertion of a large number of genes from other genomes, new combinations of genes etc.). The method can also be used for exon-shuffling and other recombinations that

- 6 -

are relevant in connection with artificial evolutionary systems.

Thus, in a first aspect, the present invention provides a method of attaching a fragment of a first nucleic acid molecule to a second nucleic acid molecule, wherein said method comprises at least the steps:

5 1) cleaving said first nucleic acid molecule with a nuclease which has a cleavage site separate from its recognition site to create at least one fragment of said first nucleic acid molecule having a single stranded nucleotide region (SS1a) at at least one terminus of said fragment,

10 2) if necessary generating a single stranded nucleotide region (SS2) at at least one terminus of said second nucleic acid molecule,

15 3) binding to at least one single stranded region of step 1) (SS1a) an adapter molecule comprising at one terminus a single stranded region (SSA1) complementary to the single stranded region of said first nucleic acid molecule fragment (SS1a) and additionally comprising at the other terminus a further single stranded region (SSA2) complementary to the single stranded region (SS2) at one terminus of said second nucleic acid molecule,

20 4) ligating said adapter to said first nucleic acid fragment,

25 5) binding said adapter to said second nucleic acid molecule, and

30 6) ligating said adapter to said second nucleic acid molecule.

As used herein, said first and second nucleic acid molecules are any naturally occurring or synthetic polynucleotide molecules, e.g. DNA, such as genomic or cDNA, PNA and their analogs, which are double stranded and in which single stranded regions may be generated.

Fragments of the first nucleic acid molecule are generated by use of a nuclease which cleaves outside its

- 7 -

recognition site. One or more fragments may be generated depending on the sites which are cleaved (e.g. if the site is at the extreme end of the molecule only a few bases may be removed rather than the production of 2 fragments). Other nucleic acid molecule fragments described herein may be generated by any appropriate means, as mentioned herein, including the techniques used to produce the first nucleic acid molecule fragments. Fragments are preferably more than 10 bases, e.g. 10 to 200bp, preferably more than 100 bases in length. For cloning applications, fragments having lengths in excess of 200 bases, e.g. from 200 bases to 2kb may be used. Where longer single stranded regions are generated, fragments of longer lengths are also contemplated, e.g. 10-100kb or longer.

"Single stranded regions" as referred to herein are regions of overhang at the end, ie. at the terminus of the first, second or third nucleic acid molecules or adapter molecules. These regions are sufficient to allow specific binding of molecules having complementary single stranded regions and subsequent ligation between these molecules. Thus, the single stranded regions are at least 1 base in length, preferably 3 bases in length, but preferably at least 4 bases, e.g. from 4 to 10 bases, e.g. 4, 5 or 6 bases in length. Single stranded regions up to 20 bases in length are contemplated which will allow the use of fragments in the method of the invention which are up to Mb in length.

"Binding" as used herein refers to the step of association of complementary single stranded regions (ie. non-covalent binding). Subsequent "ligation" of the sequences achieves covalent binding.

"Complementary" as used herein refers to specific base recognition via for example base-base complementarity. However, complementarity as referred to herein includes pairing of nucleotides in Watson-Crick base-pairing in addition to pairing of nucleoside

- 8 -

analogs, e.g. deoxyinosine which are capable of specific hybridization to the base in the nucleic acid molecules and other analogs which result in such specific hybridization, e.g. PNA, DNA and their analogs.

5 Complementarity of one single stranded region to another is considered to be sufficient when, under the conditions used, specific binding is achieved. Thus in the case of long single stranded regions some lack of base-base specificity, e.g. mis-match, may be tolerated, 10 e.g. if one base in a series of 10 bases is not complementary. Such slight mismatches which do not affect the ultimate binding and ligation of the single stranded regions are considered to be complementary for the purposes of this invention. The single stranded 15 regions may retain portions, on binding, which remain single stranded, e.g. when overhangs of different sizes are employed or the complementary portions do not comprise all of the single stranded regions. In such cases, as mentioned above, providing binding can be 20 achieved the single stranded regions are considered to be complementary. In those cases, prior to ligation, missing bases may be filled in e.g. using Klenow fragment, or other appropriate techniques as necessary.

"Adapters" as referred to herein are molecules 25 which adapt the first nucleic acid molecule fragment for binding to a second or third nucleic acid molecule. Adapter molecules comprise at least two regions. A first portion containing a single stranded region which is complementary to the single stranded region on the 30 first nucleic acid molecule fragment and a second portion containing a single stranded region which is complementary to the single stranded region on the second nucleic acid molecule. The single stranded regions are as described hereinbefore and are preferably on different strands making up the adapter molecule. 35 The above mentioned portions are at least as large as the single stranded regions, e.g. 4 to 6 bases in

- 9 -

length, although they may be longer, e.g. up to 20 bases in length.

A linking region between these single stranded regions is required for the stability of the molecule.

5 Conveniently this comprises a double stranded nucleic acid fragment, especially in methods of cloning where amplification, replication and/or translation are to be performed. However, this portion may be substituted by any appropriate molecule depending on the end use of the
10 resulting ligated molecule. Clearly, to achieve ligation between the first and second nucleic acid molecules appropriate attachment points and moieties for ligation must be provided.

15 The linking portion may serve more than just a linking function and may for example provide sequences appropriate for primer or probe binding, e.g. for amplification or identification, respectively, or may contain integration sites for mobile elements such as transposons and the like. Depending on how the method
20 is performed, the adapters preferably do not contain restriction sites for any restriction enzymes used in the method of the invention thus avoiding the need to inactivate or remove the enzymes prior to the addition of the adapters.

25 Conveniently adapter molecules may be exclusively comprised of a nucleic acid molecule in which the various properties of the adapter are provided by the different regions of the adapter.

30 Conveniently adapters are made up of two complementary oligonucleotides having between 10 and 100 bases each, e.g. between 20 and 50 bases.

In the method described above, preferably at least one first nucleic molecule fragment is generated having a single stranded region at either end (SS1a and SS1b)
35 to each of which an adapter binds.

Preferably the method described herein is used for cloning. Thus, in the method described above, an

- 10 -

adapter is bound at either end of the first nucleic acid molecule fragment (in which the adapters may be the same or different), and the unbound end of the first adapter is bound to the second nucleic acid molecule and the
5 unbound end of the second adapter binds either to the second nucleic acid molecule (ie. at the other end distal to the binding of the first adapter, thereby forming a circular molecule) or binds to a third nucleic acid molecule. The first of these two alternatives may
10 arise through cleavage of a circular vector to give rise to the second nucleic acid molecule to which the [adapter 1]:[first nucleic acid molecule
fragment]:[adapter 2] insert is bound to re-circularize the vector. Alternatively, a linear or circular vector
15 may be cleaved giving rise to two or more discrete fragments (herein the second and third nucleic acid molecules) which may be joined by the adapter 1:first nucleic acid molecule:adapter 2.

Thus, in a preferred feature, a first nucleic acid
20 molecule fragment is generated which has a single stranded nucleotide region at either terminus (SS1a and SS1b), each of which is bound by an adapter, which may be the same or different, and the first of said adapters is bound to said second nucleic acid molecule and the
25 second of said adapters binds either to said second nucleic acid molecule or to a third nucleic acid molecule.

Thus, alternatively stated, in a preferred embodiment, the present invention provides a method of cloning a fragment of a first nucleic acid molecule into a second nucleic acid molecule, wherein said method comprises at least the steps:

1) cleaving said first nucleic acid molecule with a nuclease which has a cleavage site separate from its recognition site to create one or more fragments of said first nucleic acid molecule, wherein at least one fragment has a single stranded nucleotide region at both
35

- 11 -

termini (SS1a and SS1b),

2) cleaving said second nucleic acid molecule to
create at least two single stranded regions (SS2a and
SS2b) at the site of said cleavage (e.g. linearizing a
5 circular vector or producing fragments in a linear or
circular vector),

3) binding to one of the single stranded regions of
step 1) (SS1a)

a first adapter molecule comprising at one terminus
10 a single stranded region (SSA1) complementary to
the single stranded region of said first nucleic
acid molecule fragment (SS1a) and additionally
comprising at the other terminus a further single
stranded region (SSA2) complementary to one of the
15 single stranded regions (SS2a) produced by cleavage
of said second nucleic acid molecule, and
binding to a second single stranded region of step 1)
(SS1b)

a second adapter molecule as defined above which
20 binds to the second single stranded region of said
first nucleic acid molecule fragment (SS1b) and to
the second single stranded region (SS2b) produced
by cleavage of said second nucleic acid molecule,

4) ligating said adapters to said first nucleic acid
25 fragment,

5) binding said, adapters to said second nucleic acid
molecule or fragments thereof, and

6) ligating said adapters to said second nucleic acid
molecule or fragments thereof.

30 In instances in which cleavage of the second
nucleic acid molecule results in the production of two
or more discrete fragments which become ligated to the
first nucleic acid molecule fragment via the adapters,
said fragments constitute second and third nucleic acid
35 molecules of the invention.

Preferably, to prevent concatemerisation of
[adapter:first nucleic acid fragment:adapter] units, the

- 12 -

single stranded region of the second and third nucleic acid molecules which bind to these adapters are not complementary. Thus, for example, where cloning into a vector is performed, preferably said vector is
5 linearized and at least of portion of said vector is removed from one terminus of that vector, e.g. at least two cleavage events occur.

In such methods, particularly for cloning, the second nucleic acid molecule, e.g. into which a first
10 nucleic acid molecule fragment is inserted is conveniently a vector (or a part thereof, e.g. where the second and third nucleic acid molecules together comprise the vector, and result through its cleavage). Such vectors include any double stranded nucleic acid
15 molecule which may be linear or circular. (However, as mentioned above in respect of the adapters, providing single stranded regions exist, or are generated at the termini of the second nucleic acid or its fragments (e.g. the vector), the adjacent regions may be made up
20 of any molecule providing ligation at the termini to the adapters is not compromised.)

Conveniently such vectors may contain sequences which aid their use in methods of the invention or their subsequent manipulation. Thus, vectors are conveniently selected with only two or a small number of restriction
25 cleavage sites for the method of cleavage used. Thus for example where restriction enzymes are used, the vector is selected to include only a minimal number, preferably only two recognition sites to that enzyme.

Vectors may additionally comprise further portions or sequences for cloning, selection, amplification, transcription or translation as appropriate. Thus vectors may be used with probe or primer sites, promoter regions, other regulatory regions, e.g. expression
30 control sequences etc. Conveniently well-known cloning vectors are employed, such as pBR322 and derived vectors, pUC vectors such as pUC19, lambda vectors, BAC,
35

- 13 -

YAC and MAC vectors and other appropriate plasmids or viral vectors.

The molecule of which a fragment is to be inserted, ie. the first nucleic acid molecule, may be any molecule which can generate single stranded regions at least one of its ends using the nucleases described herein, although the central portion may be varied as appropriate. Preferably however such molecules are double stranded nucleic acid molecules and contain appropriate sites for the use of enzymes to create the single stranded overhangs which are required in accordance with the invention. Appropriately, the first nucleic acid molecule is derived from genomic DNA and the method of the invention is used to insert fragments thereof into appropriate vectors.

Adapters which may be used include short double stranded nucleic acid molecules with single stranded regions at their termini to longer molecules which may contain further sequences for example to allow selection as described hereinafter. Appropriate single stranded regions are selected on the basis of the terminal sequence of the first, second and third nucleic acid molecules or fragments thereof. Appropriate selection may also be used to direct the orientation of the insert, e.g. to produce clones which may be used to produce antisense nucleic acid molecules.

Adapters may be used in the methods of the invention in which their single stranded overhangs have already been generated, e.g. by the combination of single stranded complementary oligonucleotides which on hybridization leave overhangs at either ends, or by appropriate cleavage or digestion.

Alternatively, during the method of the invention, adapters may be modified to provide single stranded portions, e.g. by the use of restriction enzymes or other appropriate techniques during the course of the reaction. Conveniently, to simplify the number of

- 14 -

steps, the enzymes used to generate single stranded regions in the first, second or third nucleic acid molecules (where necessary) may be used to generate the adapter single stranded regions.

5 As mentioned previously, the single stranded region may be 4 or more bases in length. When using longer overhangs or where the sequence of the full corresponding single stranded region of the first, second or third nucleic acid molecules is not known or
10 unclear, a family of adapters with one or more degenerate bases in the single stranded region may be used, for example using methods to create libraries of adapters. Degenerate bases may also be used at positions prone to mis-match ligations.

15 For convenience a universal library of adapters may be created for use in the method of the invention. Thus for example, 16 different adapters with a 4 base-pair overhang consisting of two random bases (NN) and two bases specific to each adapter (e.g. AA, CC,...TT) may
20 be created. In this way sufficient adapters may be created which are capable of distinguishing between 16 different first molecule fragment overhangs, which would suffice for many cloning purposes. Similarly a library of second molecule, e.g. vector overhangs may be
25 created.

To increase the number of permutations in an adapter library, two separate oligonucleotide libraries may be generated, one with single stranded oligonucleotides with regions that will correspond to
30 the single stranded region of the first nucleic acid molecule fragment and the second library with single stranded oligonucleotides with regions that will correspond to the single stranded region of the second nucleic acid molecule (e.g. vector). However in common
35 in each member of the library is a complementary region, such that when one member from the first library is selected and combined with a member of the second

- 15 -

library, they will hybridize leaving free the relevant single stranded regions. Thus for example to generate an adapter with an AA overhang and a TC overhang to bind to the first and second nucleic acid molecules respectively, members of the different libraries such as GGGCCCCNNAA may be combined with TCNNNCCGGGG to form:

GGCCCCCNAA,

TCNNNCCGGGG

which exhibits the appropriate overhangs. When using 10 only two 16 member libraries this allows the production of 256 different adapters.

In generating appropriate adapters conveniently the amount of mis-match which needs to be tolerated when binding to overhangs on first, second and/or third 15 nucleic acid molecules should be reduced. This may conveniently be achieved by selecting oligonucleotides on the basis of the probability of a mismatch ligation being generated. A computer program for achieving this is described in more detail in Example 6. This method 20 allows sets of oligonucleotides to be identified which can be used to construct chains with more than 100 fragments in a single ligation cycle but with very low levels of mis-match. Thus in a further feature the present invention provides computer software adapted to 25 identify adapter molecules for use in the method of the invention.

As mentioned above, the production of fragments of said first nucleic acid molecule is achieved using a nuclease which has a cleavage site separate from its 30 recognition site. In so doing, unique overhangs are created which reflect the sequence of that molecule. In a preferred feature, said nuclease is a class IIP or IIS restriction enzyme or functional derivatives thereof. Such enzymes include enzymes produced synthetically 35 through the fusion of appropriate domains to arrive at enzymes which cleave at a site distal to their recognition site.

- 16 -

These enzymes exhibit no specificity to the sequence that is cut and they can therefore generate overhangs with all types of base compositions. Cleavage with IIS enzymes result in overhangs of various lengths, e.g. from -5 to +6 bases in length. Preferably for performing the method of the invention, enzymes are chosen which generate 3-6, e.g. 4 base pair overhangs.

Preferred enzymes for use in the invention include enzymes which produce 4 base overhangs at the 3' end:

10 *BstXI*; 5 base overhangs at the 3' end: *AloI*, *BaeI*, *BplI*, *Bsp24I*; 6 base overhangs at the 3' end: *CjeI*, *CjePI*, *HaeIV*; 4 base overhangs at the 5' end: *AceIII*, *Acc36I*, *Alw26I*, *AlwXI*, *Bbr7I*, *BbsI*, *BbvI*, *BbvII*, *Bvb16II*, *Bli736I*, *BpiI*, *BpuAI*, *BsaI*, *Bsc91I*, *BseKI*, *BseXI*, *BsmAI*, *BsmBI*, *BsmFI*, *Bso31I*, *Bsp423I*, *BspBS31I*, *BspIS4I*, *BspLU11III*, *BspMI*, *BspST5I*, *BspTS514I*, *Bst12I*, *Bst71I*, *BstBS32I*, *BstGZ53I*, *BstTS5I*, *BstOZ616I*, *BstPZ418I*, *Eco31I*, *EcoA41*, *EcoO44I*, *Esp3I*, *FokI*, *PhaI*, *SfaNI*, *Sth132I*, *StsI*; and 5 base overhangs at the 5' end: *HgaI*

20 Over 100 classes of IIS restriction endonucleases have been identified and there are large variations both with respect to substrate specificity and cleaving pattern. In addition, these enzymes have proved to be well suited to "module swapping" experiments so that one can create new enzymes for particular requirements

25 (Huang-B, et al.; J-Protein-Chem. 1996, 15(5):481-9,

Bickle, T.A.; 1993 in Nucleases (2nd edn), Kim-YG et

al.; PNAS 1994, 91:883-887). In these experiments the binding domain of transcription factor *Sp1* was merged

30 with the cleavage domain of *FokI* to construct a class IIS restriction endonuclease that makes a 4-base overhang with *Sp1* sites. In other experiments a class

IIS restriction endonuclease that cuts outside the binding sites of transcription factor Ultrabithorax was generated. Corresponding experiments have been

35 conducted on class I enzymes. By merging the N-terminal part of the *hsdS* sub-unit of *StyR* 1241 (which recognizes

- 17 -

GAAN₆RTCG) with the C-terminal part of the *hsdS* sub-unit of *StyR* 1241 (which recognizes TCAN,RTTC) a new enzyme that recognizes the sequence GAAN₆RTTC was constructed. Several other experiments have been carried out with
5 similar success. Unlike in the case of ordinary class II enzymes, it is therefore reasonable to assume that a number of new IIS and IP restriction enzymes can be constructed and adapted to cloning requirements that may arise in the future. Very many combinations and
10 variants of these enzymes can therefore be used according to the principles described herein.

Generation of the single stranded regions on said first nucleic acid fragment may be achieved directly by cleavage of said first nucleic acid molecule with
15 nucleases described herein without the development of intermediate molecules. This forms a preferred feature of the invention. Alternatively, indirect and more elaborate techniques may be used. For example, the first nucleic acid molecule or a fragment thereof may be
20 "trimmed" using the nucleases described herein, in which linker molecules which carry the nuclease recognition site are bound to the first nucleic acid molecule or fragment thereof, and cleavage outside the recognition site results in cleavage within the first nucleic acid molecule or fragment thereof. This method is
25 particularly useful since it takes advantage of the fact that T4 DNA ligase (and also other ligases) works well in most buffers used for restriction cutting. Ligation and cleavage can therefore be performed simultaneously
30 in the same solution. Furthermore, this methods allows the generation of a unique overhang when the overhang generated by the first cleavage step is not unique.

The trimming procedure may be initiated using an "initiation linker" that is addressed to an overhang on
35 the first nucleic acid molecule or fragment thereof, e.g. after cleavage with one or more restriction endonucleases as described herein. As used herein, a

- 18 -

"linker" refers to a molecule which is similar to an "adapter" as described herein, except that the linker need only contain one single stranded region to allow binding to the molecule to be trimmed. Furthermore, the 5 initiation linker contains one or more cleavage sites for nucleases that cleave outside their own recognition sequence, as described herein, for example *BpI*I. The first nucleic acid molecule or fragment thereof should preferentially not contain cleavage sites for the IIS enzymes(s) used for the trimming procedure. Such 10 cleavage sites may alternatively be inactivated prior to the trimming procedure (e.g. by methylation).

Propagation linkers (if used) and a termination linker (wherein the latter may be an adapter as 15 described herein), T4 DNA ligase and the IIS enzyme(s) used for the trimming may be added together with the initiation linker. Once the initiation linker has been ligated into position, cleavage may be effected resulting in the generation of an overhang within the 20 first nucleic acid molecule or fragment thereof. If desired (ie. if further trimming is required), a propagation linker containing degenerate overhangs may be used to ligate with the overhang which has been generated. Since the linker will also carry an appropriate nuclease recognition site, cleavage will 25 again produce a further cleavage site further upstream into the first nucleic acid molecule or fragment thereof. This process will continue until an overhang is generated that is complementary to one of the 30 overhangs in the termination linker (or adapter as described herein). This final linker will not itself have the nuclease recognition site and will therefore terminate trimming. As mentioned previously, this terminator linker may have an appropriate single stranded region for binding to the adapter used in the 35 next step, or may itself be the adapter. An appropriate technique for performing the trimming method may be

- 19 -

found in Examples 4 and 9.

The trimming method is preferably not performed with IIS enzymes belonging to the *BcgI* class (e.g. *BpII*, *BaeI* etc.) as the proteins are combined methylases and endonucleases and the methylase function may inactivate the binding sites on propagation linkers. Enzymes including *FokI*, *HgaI* etc. are therefore preferred enzymes for performing this method. If *BcgI* class enzymes are to be used, the cofactor AdoMet should be replaced with AdoHcy, Sinefungine or other cofactors that can not function as methyl donors.

Thus in a preferred feature the invention provides a method of removing the end terminus of a double stranded nucleic acid molecule with at least one single stranded region, comprising at least the steps of (i) binding (ie. ligated) a double stranded linker molecule containing a recognition site for a nuclease which cleaves outside its recognition site and a single stranded region complementary to the single stranded region on said double stranded nucleic acid molecule to said molecule and cleaving using said nuclease, thereby resulting in removal of one or more bases (e.g. 3-10, which may be in single or double stranded form, or a combination thereof) from the terminus of said nucleic acid molecule, (ii) optionally binding one or more propagation linkers which contain a recognition for a nuclease as described above and a degenerate single stranded region which binds to the overhang generated by the first or subsequent cleavage steps and cleaving using said nuclease, and (iii) adding a termination linker which binds to the single stranded region generated in steps i or ii.

A similar technique may be used to remove unwanted sequences, e.g. contributed by the adapter after ligation of the first nucleic acid molecule fragment and second (or third) nucleic acid molecules. Various techniques may be used to remove the unwanted sequences,

- 20 -

e.g. if the sequence (e.g. a region from the adapter) contains a plant transposon sequence, this may be removed by adding necessary transposase enzymes to excise that sequence. Alternatively, the unwanted 5 sequence may be removed by taking advantage of nuclease that cleave outside their recognition site. Thus, for example, adapters may be used which contain recognition sites for such enzymes which on cleavage (by appropriate selection of cleavage site sequences), result in 10 overhangs generated at two distinct cleavage sites which are complementary and thus allow concomitant excision of the intervening sequence. Examples of techniques for removing intervening sequences are shown in Example 5. It will be appreciated that depending on the 15 nuclease employed, it may be necessary to inactivate sites for that enzyme at locations other than adjacent to or within the intervening sequence.

Thus, in a further preferred feature, adapters as used herein, additionally comprise one or more nuclease 20 recognition and cleavage sites whereby arrangement of said sequences allows, on cleavage, generation of complementary single stranded regions wherein each one of said pair of single stranded regions is generated by cleavage at a distinct site.

Depending on how the different steps in the method 25 of the invention are performed, as described hereinafter, where necessary the second nucleic acid molecule, and/or the adapters may also be cleaved or digested to provide appropriate single stranded regions. 30 In a preferred feature, the second nucleic acid molecule and/or the adapters are cleaved using the nucleases described above for generating the first nucleic acid molecule fragments. However, instead of cleavage with such nucleases, to generate appropriate single stranded 35 regions and/or fragments from the second or third nucleic acid molecules or adapters, alternative techniques may be used. Thus for example other

- 21 -

restriction enzymes, non-specific nucleases or appropriate exonucleases or mechanical methods such as sonication or vortexing may be used. Where enzymes are employed, small volumes are preferably used during the reactions to increase efficiency.

Ligation between the adapters and first, second and third nucleic acid molecules is achieved by any appropriate technique known in the art (see for example, Sambrook et al., in "Molecular Cloning: A Laboratory Manual", 2nd Ed., Editor Chris Nolan, Cold Spring Harbor Laboratory Press, 1989). For example, ligation may be achieved chemically or by use of appropriate naturally occurring ligases or variants thereof. Appropriate ligases which may be used include T4 DNA ligase, and thermostable ligases, such as Pfu, Taq, and TTH DNA ligase. Ligation may be prevented or allowed by controlling the phosphorylation state of the terminal bases e.g. by appropriate use of kinases or phosphatases. Appropriately large volumes may also be used to avoid intermolecular ligations. Thus, high adapter to vector/insert ratios may be used to avoid the vector or insert religating into its source material.

Other techniques may be used to avoid or remove vectors which become religated or which do not cleave. For example the insert may be cloned into a selection marker that destroys the host bacteria unless it has been inactivated by the insert. Alternatively restriction cleaving using restriction enzymes specific for the fragment removed from the vector may be performed after the ligation step. Religated and uncleaved vectors would be cleaved in this step. Thus, the ideal cloning site is therefore one which contains many unique restriction sites that are removed upon insert ligation. Alternatively well-known techniques may be used for identifying the desired product, e.g. gel separation.

If the steps of cleavage and ligation are performed

- 22 -

together, advantageously the insert and the vector into which it is inserted do not contain binding sites for the nuclease used. Similarly, it is advantageous if the fragment removed from the vector during the process of cloning contains binding sites for the nuclease. In that case, if that fragment religates with the vector it would be cleaved and thereby removed again.

Once the first and second nucleic acid molecules (and optionally third nucleic acid molecules) or fragments thereof have been covalently attached, where necessary selection of appropriate products from any side-products may be performed. Selection may be performed by any techniques known in the art. Conveniently however, labelled probes may be used to identify sequences present only in the correct product, e.g. by probing for one or more sequences formed only through the union of the correct sequences, e.g. a probe directed to the junction between the adapter and the first, second or third nucleic acid sequences.

Alternatively, the correct ligation may be detected by functional properties bestowed on the product through ligation, e.g. through the completion of sequences which allow expression of a particular product once the vector has been cloned into an appropriate host.

Alternatively, selection may be performed by sequencing of the products which have been obtained, e.g. after amplification and/or transformation.

Appropriate labels include any moieties which directly or indirectly allow detection and/or determination through the generation of a signal. Although many appropriate examples exist, examples include for example radiolabels, chemical labels (e.g. EtBr, TOTO, YOYO and other dyes), chromophores or fluorophores (e.g. dyes such as fluorescein and rhodamine), or reagents of high electron density such as ferritin, haemocyanin or colloidal gold. Alternatively, the label may be an enzyme, for example peroxidase or

- 23 -

alkaline phosphatase, wherein the presence of the enzyme is visualized by its interaction with a suitable entity, for example a substrate.

As mentioned previously, one of the significant 5 advantages which this method offers over known methods is the simplification of the techniques which are required. The steps described herein may be performed sequentially in separate tubes (e.g. when different enzymes are used and cross-reaction is undesirable) or 10 in a limited number of steps. However, ideally, the reaction is performed in a single step. This can be achieved by appropriate selection of enzymes, adapters and second/third nucleic acid molecules, e.g. vectors.

Thus for example the first nucleic acid molecule 15 may be fragmented using a particular nuclease which is also used to fragment the second nucleic acid molecule. Since the enzyme used will cleave outside its recognition site, it would be expected that the resulting single stranded regions found on both the 20 first and second nucleic acid molecule fragments will be unrelated. However, by appropriate choice of the mediating adapters (which may also be added providing they do not have restriction sites for that enzyme, or 25 that cleavage at those sites reveals appropriate single stranded regions), these unrelated sequences may be linked via the intermediacy of the adapters. Thus the entire reaction may be performed in a single step.

It will also be appreciated that the adapters may 30 be used to address the first nucleic acid fragments to different second nucleic acid fragments or cleavage sites. This would therefore allow different first nucleic acid molecule fragments to be directed and ligated to a particular vector or site within a vector. Thus multiple vectors (and corresponding appropriate 35 adapters) may be used simultaneously and take up a single first nucleic acid molecule fragment.

Alternatively, multiple fragments or copies of the

- 24 -

same fragment could be inserted at different sites within the same vector (in the latter case by the use of adapters with one common end but with the other end exhibiting variability to allow it to bind to different sites within the vector). In a further alternative, the first nucleic acid molecule fragments could be captured in the reverse orientation (again by appropriate adapter choice) and inserted into a vector, e.g. to produce antisense strands.

Thus in a preferred embodiment the method described herein is performed in a single step. The ligation steps (ie. adapter to first nucleic acid molecule fragment and final ligation) may however be conducted separately once association of the relevant molecules has been achieved. In a further preferred embodiment, the invention provides a method of simultaneously attaching two or more fragments of the first nucleic acid molecule to different second nucleic acid molecules (or different termini thereof). In cloning, this equates to the introducing of the two or more fragments into different sites in said second nucleic acid molecules or into different second nucleic acid molecules, e.g. into different sites within a vector or into different vectors.

Thus the present invention provides methods of the invention in which two or more fragments of the first nucleic acid molecule are attached to different second and optionally third nucleic acid molecules, or different termini thereof. In a preferred feature, methods are provided wherein one or more fragments of said first nucleic acid molecule are attached via adapters to single stranded regions in said second nucleic acid molecule resulting from different cleavage events. As a further preferred feature, methods are provided wherein one or more fragments of said first nucleic acid molecule are attached via adapters to single stranded regions in two or more second nucleic

- 25 -

acid molecules.

It will be appreciated that even more complex reactions may be envisaged in which multiple first nucleic acid molecules (e.g. 2 or more, e.g. 2-10) are simultaneously cleaved in the same reaction and their fragments bound to appropriate adapters which direct them to bind to different second nucleic acid molecules, e.g. different vectors or sites in vectors.

Whilst the above described methods describe an especially simplified method, the above described effects may also be achieved by performing the method in discrete steps. This is particularly appropriate where different enzymes are used which would produce undesirable products in other molecules. Thus for example, different nucleases, such as restriction enzymes may be used to cleave the first and second nucleic acid molecules. In such cases, the molecules are cleaved separately, whereafter the enzymes are removed or inactivated before the fragments are mixed together with the adapters. Similarly, even if the same enzyme is used, if the adapters contain enzyme sensitive sites, the adapters could be appropriately modified to avoid reaction, e.g. by methylation, or the enzymes used to fragment the first and/or second nucleic acid molecules would be inactivated or removed (as mentioned above) prior to the addition of the adapters.

Conveniently, inactivation of enzymes may be achieved by incubation at at least 65°C, e.g. for 20 minutes. Alternatively, appropriate techniques employing removal of the enzymes from the reaction, use of chelators, inhibitors etc. may be used to achieve inactivation.

Once appropriate clones have been generated and selected these may be treated according to standard methods of amplification, transformation, replication, expression, sequencing, depending on the proposed application of the clones. Other aspects of the

- 26 -

invention thus include the nucleic acid molecule product of the method (ie. the nucleic acid molecule that is the [first nucleic acid molecule fragment]:[adapter]:[second nucleic acid molecule] product), such as cloning and expression vectors comprising that nucleic acid molecule product as well as transformed or transfected prokaryotic or eukaryotic host cells, or transgenic organisms containing a nucleic acid molecule produced according to the method of the invention.

Appropriate expression vectors include appropriate control sequences such as for example translational (e.g. start and stop codon, ribosomal binding sites) and transcriptional control elements (e.g. promoter-operator regions, termination stop sequences) linked in matching reading frame with the nucleic acid molecules of the invention. Appropriate expression systems are well known and documented in the art as well as methods for their introduction and expression in prokaryotic or eukaryotic cells or germ line or somatic cells to form transgenic animals. Appropriate expression vectors for transformation include bacteriophages and viruses, such as baculovirus, adenovirus and vaccinia viruses.

Kits for performing the methods described herein form a preferred aspect of the invention. Thus viewed from a further aspect the present invention provides a kit for attaching a first nucleic acid molecule fragment to a second nucleic acid molecule or a fragment thereof comprising at least (i) one or more adapters as described hereinbefore or means for producing such adapters, (ii) the second nucleic acid molecule and (iii) a nuclease which cleaves outside its recognition site, wherein the terminus of one of said adapters has a single stranded region complementary to a single stranded region generated on said second nucleic acid molecule after cleavage with said nuclease.

Preferably said kit comprises a library of oligonucleotides, e.g. as described herein, particularly

- 27 -

as described in Example 3, from which appropriate adapters may be generated. The library of oligonucleotides as described herein forms a further preferred feature of the invention. Thus for example
5 said library may comprise a plurality of oligonucleotides comprising 1) a plurality of oligonucleotides of the formula XNNNNN wherein X is one or more bases (wherein said bases are as described hereinbefore) and is invariant in all of said
10 oligonucleotides and each N is a base at the 5' end which is varied in the different oligonucleotides, ie. to produce 1024 variants, 2) a plurality of oligonucleotides of the formula X'NNNN wherein X' is complementary to X and is invariant in all of said
15 oligonucleotides and each N is a base at the 5' end as described hereinbefore, 3) a plurality of oligonucleotides of the formula YNNNNN wherein Y, which is not the same as X, is one or more bases (wherein said bases are as described hereinbefore) and is invariant in
20 all of said oligonucleotides and each N is a base at the 3' end as described hereinbefore, and 4) a plurality of oligonucleotides of the formula Y'NNNNNN wherein Y' is complementary to Y and is invariant in all of said
25 oligonucleotides and each N is a base at the 3' as described hereinbefore.

Optionally the kit may contain other appropriate components selected from the list including ligases, enzymes necessary for inactivation and activation of restriction or ligation sites, primers for amplification and/or appropriate enzymes, buffers and solutions, and a data carrier containing a computer program to assist in the selection of oligonucleotides from the above mentioned library. The use of such kits for performing the method of the invention form further aspects of the invention.
30
35

The above described method may be adapted to combine multiple first, second, third etc. nucleic acid

- 28 -

molecules as described below. In this method multiple fragments are combined by appropriate selection of the single stranded regions which appear at their ends. This has application in the production of specific
5 sequences for biological purposes, but has particular utility in the production of nucleic acid molecule chains in which the units making up the chains each denotes a unit of information, ie. the chains may be used to store information, as will be described in more
10 detail below. As used herein "chain" refers to a serial arrangement of fragments as described herein. Such chains are preferably linear and include branched and unbranched fragment sequences. Thus, for example, branched DNA fragments may be used to provide chains
15 with a branched arrangement of fragments.

To produce nucleic acid molecule chains with different unit fragments, ie. fragment chains the following method may be used. Firstly it is necessary to generate fragments which have overhangs at either end, to allow them to bind to one another. (The ultimate 3' and 5' fragments may however have an overhang at only the end which will become attached to internal fragments.) As will be described in more details below, for certain applications appropriate oligonucleotides may be derived from libraries in which the members exhibit variability in at least some of their bases. If libraries are to be produced in which the members are double stranded, it will be appreciated that the number of members in such a library could be rather high. This can however effectively be reduced by using a smaller number of smaller building blocks.
20
25
30

One strategy is to make two single-stranded oligonucleotides using conventional techniques. In the example described above (6 base double stranded linker and 3 base overhangs at either end), oligonucleotides having a region of 6 bases which complement each other and so allow hybridization may be used. Since not all
35

of the molecules are involved in the hybridization, single stranded regions extend beyond the hybridizing region thus creating single stranded regions.

Conveniently the number of required library members may
5 be reduced even further if repeat sequences appear with frequency in the fragment chain. This will be described in more detail below.

Once the appropriate double stranded chain units (ie. fragments) have been created they may be ligated
10 together in the same solution, providing the different overhangs present on the sequences are unique.

Thus in a further aspect, the present invention provides a method of synthesizing a double stranded nucleic acid molecule comprising at least the steps of:

- 15 1) generating n double stranded nucleic acid fragments, wherein at least n-2 fragments have single stranded regions at both termini and 2 fragments have single stranded regions at at least one terminus, wherein (n-1) single stranded regions are complementary
- 20 2) to (n-1) other single stranded regions, thereby producing (n-1) complementary pairs,
- 25 3) contacting said n double stranded nucleic acid fragments, simultaneously or consecutively, to effect binding of said complementary pairs of single stranded regions, and
- 30 4) optionally ligating said complementary pairs simultaneously or consecutively to produce a nucleic acid molecule consisting of n fragments.

The terms "nucleic acid molecule", "single stranded regions", "complementary", "binding" and "ligating" are as described hereinbefore.

In step 1) reference is made to (n-1) single stranded regions complementary to (n-1) "other" single stranded regions. This describes two families of single stranded regions, which together comprise 2(n-1) members, forming n-1 pairs. Thus "other" refers to single stranded regions in the second family which are

- 30 -

not present in the first family.

"Contacting" as used herein refers to bring together the double stranded fragments under conditions which are conducive to association of the complementary single stranded regions. Depending on the method used, this may ultimately allow ligation of the fragments carrying those regions. It should however be noted that the fragments may be linked by methods other than ligation. For example PCR may be used with appropriate primers, e.g. pairs of primers.

Simultaneous or consecutive contacting and/or ligation refers to the possibility of adding the fragments individually or in groups to a growing chain or simultaneously adding all n fragments together, wherein ligation may be performed after each addition or once all n fragments have been combined. Preferably ligation is effected once all fragments have been combined.

"Fragments" as used herein are as defined herein before, but preferably are shorter in length. Thus fragments are preferably greater than 6 bases in length (wherein said length refers to the length of each single stranded oligonucleotide making up the fragment which may differ slightly in length from one another), e.g. between 6 and 50 bases, e.g. from 8 to 25 bases.

As referred to herein, "n" is an integer of at least 4, for example at least 10 or 100, e.g. between 25 and 200.

Preferably, as mentioned above, the fragments are generated by the use of single stranded oligonucleotides to generate appropriate double stranded molecules.

Of particular interest in such methods is the production of fragment chains that may be used to store information in the form of code which may readily be accessed.

There is currently a great need for storing information for different purposes (e.g. computer

- 31 -

software, music, films, databases etc.). It has therefore been imperative to find efficient storage media, resulting in the development of CD ROMs, DVD technology etc. Nucleic acid molecules offer far more 5 efficient methods for storing information and have several advantages over storage methods currently in use. For example, the storage capacity of nucleic acid molecules is vast. In principle, a test-tube containing DNA molecules may contain as much information as several 10 million CD ROMs or more. Nucleic acid may be copied quickly and efficiently using natural systems which are greatly enhanced by techniques which have been developed such as PCR, LCR etc. When stored appropriately, 15 nucleic acid molecules may be preserved for extremely lengthy periods. Naturally existing tools for manipulation of nucleic molecules are already available for processing of the molecules, e.g. polymerases, restriction enzymes, transcription factors, ribosomes etc. The nucleic acid molecules may also have catalytic 20 properties.

Furthermore, nucleic acid molecules may be used as secure systems since they may be made such that they are not readily copied, unlike copying of current storage systems, e.g. CDs etc., which is increasingly prevalent.

Previously however, it was not possible to take advantage of the enormous potential offered by nucleic acid molecules due to the absence of any effective 25 methods for writing DNA messages or reading DNA messages. The above described method provides methods 30 which overcome this problem allowing the rapid synthesis of large DNA molecules and methods of rapidly and efficiently scanning those molecules to retrieve the information.

The key to effective retrieve of information 35 encoded by the nucleic acid molecules produced according to the method described herein, is the expansion of the information providing unit in the molecule. In nature

- 32 -

and in methods used previously, each base in the sequence has an individual informational content. Indeed methods have been described in which a single base may signify more than a single informational unit, e.g. in binary code, the bases A="00", C="01", G="10" and T="11". Whilst this has advantages insofar as significant amounts of information can be contained in a single molecule, the system has serious drawbacks as it requires writing and reading methods in which individual bases may be attached and discriminated.

In a preferred method of the invention therefore, information units are provided which are not single bases, but are instead short sequences. The techniques described above allow the rapid production of such chains and the information may be readily accessed.

Thus units representing coded information may be generated and read. Each information unit may therefore represent an element of code, in which the code may for example be alphanumeric code or a simpler representation such as binary code. In each case it is necessary for individual elements of the code, e.g. "a", "b", "c", "1", "0" etc. to be represented by an individualized and specific sequence.

As used herein "information units" refer to discrete short sequences which represent a single piece of information, e.g. one or more (ie. combinations thereof) elements of a code.

"Elements" of code, as mentioned above, refer to the different members making up a code such as binary or alphanumeric code.

Thus, in a preferred embodiment of the method of the invention, the fragments which are linked together comprise regions representing a unit of information corresponding to one or more code elements. Preferably the code is alphanumeric. Especially preferably the code is binary. Thus for example, considering a binary system of information capture, if one wishes to produce

- 33 -

chains consisting of "0", "1" fragments, appropriate sequence combinations may be attributed to "0" or "1".

Conveniently each of said one or more code elements (together) has the formula

5 (X)_a,

wherein

X is a nucleotide A, T, G, C or a derivative thereof which allows complementary binding and may be the same or different at each position, and

10 a is an integer greater than 2, e.g. greater than 4, for example from 2 to 20, preferably from 4 to 10, e.g. 6 to 8,

wherein (X)_a is different for each one or more code elements.

15 Especially preferably, in the case of binary code, the code elements "1" and "0" may have the formulae:

"0"= (X)_a and "1"= (Y)_b,

wherein

20 (X)_a and (Y)_b are not identical,

X and Y are each a nucleotide A, T, G, C or a derivative thereof which allows complementary binding and may be the same or different at each position, and

25 a and b are integers greater than 2, e.g. greater than 4, for example from 2 to 20, preferably from 4 to 10, e.g. 6 to 8.

As referred to herein, a "derivative" which is capable of complementary binding refers to a nucleotide analog or variant which is capable of binding to a nucleotide present in a complementary strand, and includes in particular naturally occurring or synthetic variants of nucleotides, e.g uracil or methylated, amidated nucleotides etc.

35 In its simplest and preferred form, X and Y are the same at each position, e.g. "0"= GGGGGGGG and "1"=AAAAAAA. However, repeat sequences such as [AC]₆A or [GT]₆A may be used. The code sequence may also have a

- 34 -

functional property, e.g. it may be an integration element such as AttP1 or AttP2.

It will however be appreciated that the sequences described above may also denote more than a single code element. Thus for example the information unit may denote 2 or more code elements, e.g. from 2 to 32 element, preferably from 2 to 4 code elements. If for example binary code is considered, each information unit may refer to "01" or "00" or "11" or "10".

In the method, described herein, chains comprising such features may be prepared as follows. To produce a chain with for example 8 0/1 fragments, eight "0" starting fragments with different overhangs and 8 "1" starting fragments with different overhangs are generated as illustrated in Figure 2. In this case "0" fragments consist of the sequence GGGGGGGG, although this could be replaced by other sequences. In addition the fragments are synthesized such that they have unique overhangs such that they may only be ligated at one position. Thus, the fragments for position 1 in the chain are produced such that they have an overhang which is complemented by one of the overhangs in the fragments for position 2. Thus, the position 2 fragments are synthesized such that they can bind to position 1 fragments. Similarly position 3 fragments may only bind to position 2 fragments at one of their termini and position 4 fragments at the other terminus and so forth. These fragments are stored separately. In order to build up a chain, selection is made from one of the two alternative for each position such that an appropriate binary chain is produced.

Thus, in the scheme outlined above, to produce a fragment chain which represents a chain 01001011, "0" fragments from positions 1, 3, 4 and 6 are mixed with "1" fragments from positions 2, 5, 7 and 8. If the fragments are then ligated together by adding ligase or using other ligation methods mentioned previously, the

- 35 -

above described chain will be produced. As will be appreciated, this chain could also be achieved using for example only 4 fragments if the information unit carried on each fragment denoted 2 code elements.

5 It is furthermore possible to combine intermediate fragment chains (e.g. containing at least 4 fragments) with other fragment chains, which providing appropriate overhangs exist at their termini may be ligated together to form composite fragment chains. Thus, several cycles
10 could be conducted in parallel and the products combined. In the method shown in Figure 2, the end fragments have blunt ends, but clearly, appropriate fragments could be used that similarly have overhangs at the termini.

15 An appropriate technique for producing 8 fragment chains, each containing 8 fragments which can then be ligated together is illustrated in Figure 3. For fragment chain 1, end fragments are used such that it is possible for the completed fragment chain to ligate to fragment chain 2 and so on. These may then be combined
20 to produce a 64 fragment chain. Similarly, 8 such fragment chains may be combined to produce fragment chains comprising 512 fragments.

25 As will be appreciated, as with the production of shorter chains, the step of ligation, when performed, is conveniently effected once all the fragment chains have been combined. However, the step of ligation may be performed sequentially if desired on addition of each subsequent fragment chain.

30 To combine 8 binary fragments per cycle, 16 different starting fragments are required, representing the different "0", "1" alternatives at each position. To make a chain of 64 fragments using two cycles, ie. to produce 8 chains with 8 fragments which are then
35 ligated, only $16 + (4 \times 7) = 44$ starting fragments are required. Thus, the number of different starting fragments required reflects an almost linear increase in

- 36 -

contrast to the combinations of the fragment chains which can be produced which increases exponentially with the number of cycles. As a consequence, very long fragment chains may be produced with a relatively small number of starting fragments.

5 Of course, as mentioned previously, intermediate chains longer or shorter than 8 may be produced. Since a large number of permutations exist in the overhang region, more starting fragments may be used thus
10 allowing larger fragments to be built up in a single cycle. Thus, the number of cycles necessary to produce long chains may be reduced.

15 Small fragment chains produced according to the methods described herein may also be attached together by using variations of the techniques described herein. For example, complementary primer pairs may be used to link the various chains as described in Example 8. In this technique, amplification of the fragment chains is achieved using different primer pairs. The second
20 primer in primer pair 1 is complementary to the first primer in primer pair 2 and the second primer in that pair is complementary to the first primer in primer pair 3 and so on. PCR reactions are then performed which produce products which in single stranded form are able to bind to one another through their complementary ends
25 introduced by the primer pairs. These may then be ligated together.

30 Alternatively, fragment chains prepared by the methods described herein may be amplified with a primer which contains a restriction site to a nuclease which cleaves outside its recognition site. These amplification products are then digested with that nuclease to produce non-palindromic overhangs in the end of each fragment chain. By appropriate sequence
35 selection (e.g. in the primer or fragments which are used) the overhangs which are generated allow the different fragment chains to be combined in order.

- 37 -

In a preferred aspect therefore, the invention provides a method of synthesizing a double stranded nucleic acid molecule comprising at least the steps of:

1) generating fragment chains according to the method
5 described hereinbefore;

2) optionally generating single stranded regions at the end of said fragment chains, wherein said single stranded regions are complementary to other single stranded regions on said fragment chains thus forming
10 complementary pairs of single stranded regions;

3) contacting said fragment chains with one another, simultaneously or consecutively, to effect binding of said complementary pairs of single stranded regions.

Optionally said chains are ligated together,
15 however, alternative techniques may be used to form the ultimate chain, e.g. PCR may be used as described herein.

Preferably intermediate fragment chains are between
4 and 20 fragments in length, e.g. 5 to 10, and between
20 5 and 50 such fragment chains are combined e.g. between
10 and 20.

Conveniently fragments to be used in the method of the invention are contained within libraries. Methods of producing the fragments which make up the library are well known in the art. For example a series of oligonucleotides may be produced which comprise two portions. A first portion which will form an overhang at one end and a second portion which will effect binding to a complementary oligonucleotide and which contains within that portion the information unit. By producing common hybridizing portions and variant overhangs, a series of double stranded oligonucleotides for one or more code elements (denoted by at least a part of the hybridizing portion) are created. This provides a library for one (or a combination of) code elements. Different libraries may be created for different code elements (or combinations thereof), by

- 38 -

appropriate alteration of the information unit, ie. the sequence in the hybridizing portion.

Conveniently for use in the invention, these different double stranded oligonucleotides are arranged 5 in 2 dimensional arrays such that in one dimension consecutive positions within the ultimate fragment are indicated and in the second dimension the possible code element (or combinations thereof) are provided. In the simplest case, in binary code, in which "0" and "1" are represented by different sequences, the first dimension 10 would comprise fragments for each position of the proposed fragment and the second dimension would have only 2 variants ("0" and "1"). This may be viewed as a single library or two libraries, ie. the "0" or "1" 15 libraries. Once these libraries are produced, fragment chains with any desired order of fragments may be readily produced.

In order to appropriately direct library members to their correct site or well (ie. the library may be 20 comprised of separate solid supports, or a solid support with different addresses, e.g. wells, or different wells containing different solutions), any appropriate sorting technique may be used. This sorting may be achieved by virtue of the process used for production of the library 25 members, or sorting may be achieved by an appropriate technique, e.g. by binding to complementary oligonucleotides at the relevant library site.

Appropriate solid supports suitable for attaching 30 library members are well known in the art and widely described in the literature and generally speaking, the solid support may be any of the well-known supports or matrices which are currently widely used or proposed for immobilization, separation etc. in chemical or biochemical procedures. Thus for example, the 35 immobilizing moieties may take the form of beads, particles, sheets, gels, filters, membranes, microfibre strips, tubes or plates, fibres or capillaries, made for

- 39 -

example of a polymeric material e.g. agarose, cellulose, alginate, teflon, latex or polystyrene. Particulate materials, e.g. beads, are generally preferred.

Conveniently, the immobilizing moiety may comprise magnetic particles, such as superparamagnetic particles.

In a preferred embodiment, plates or sheets are used to allow fixation of molecules in linear arrangement. The plates may also comprise walls perpendicular to the plate on which molecules may be attached. Attachment to the solid support may be performed directly or indirectly and the technique which is used will depend on whether the molecule to be attached is an oligonucleotide for fixing the library member or the library member itself. For attaching the library members directly, ie. not via binding to an oligonucleotide, conveniently attachment may be performed indirectly by the use of an attachment moiety carried on the nucleic acid molecules and/or solid support. Thus for example, a pair of affinity binding partners may be used, such as avidin, streptavidin or biotin, DNA or RNA binding protein (e.g. either the lac I repressor protein or the lac operator sequence to which it binds), antibodies (which may be mono- or polyclonal), antibody fragments or the epitopes or haptens of antibodies. In these cases, one partner of the binding pair is attached to (or is inherently part of) the solid support and the other partner is attached to (or is inherently part of) the nucleic acid molecules. Alternatively, techniques of direct attachment may be used such as for example if a filter is used, attachment may be performed by UV-induced crosslinking. When attaching DNA fragments, the natural propensity of DNA to adhere to glass may also be used.

Oligonucleotides to be used for capture of the library members may be attached to the solid support via the use of appropriate functional groups on the solid support.

- 40 -

Attachment of appropriate functional groups to the solid support may be performed by methods well known in the art, which include for example, attachment through hydroxyl, carboxyl, aldehyde or amino groups which may be provided by treating the solid support to provide suitable surface coatings. Attachment of appropriate functional groups to the nucleic acid molecules of the invention may be performed by ligation or introduced during synthesis or amplification, for example using primers carrying an appropriate moiety, such as biotin or a particular sequence for capture.

In a further aspect therefore the present invention provides a library of fragments as defined herein comprising $(n)_m$ fragments, wherein n is as defined hereinbefore and corresponds to the length of chain that said library may produce, and m is an integer corresponding to the number of possible code elements or combinations thereof, such that fragments corresponding to all possible code elements for each position in the final chain are provided.

Portions of said libraries in one dimension, i.e. comprising n fragments for only a single code element (or combinations thereof) or comprising m fragments representing all code elements (or combinations thereof) for a single position on the chain, form further aspects of the invention.

Appropriate mixing may be achieved by automation. For example in the case of "0", "1" fragments, the correct combination of these elements is the critical step in terms of resource- and time-consumption. This method is described in more detail in Example 2. In particular, the procedure may be miniaturised providing appropriate amplifying methods (such as cloning and/or PCR) are employed in the last step. Thus, techniques using technology such as sorting using flow cytometers may be employed as described in Figure 4C. Such sorting procedures are well established and are able to sort

- 41 -

approximately 5-30000 droplets per second for standard equipment, but up to 300000 droplets per second for the most advance cytometers.

As mentioned previously, it is possible that each fragment may denote more than a single code element. If for example, each fragment denotes 5 code elements, using existing technology and a library of 32x100 library components, if 3200 containers were connected to a sorting device illustrated in Figure 4C, it should be possible to write several thousand chains with 500 code elements per second. Clearly, a method which can generate nucleic acid sequences with such rapidity offers significant advantages over known methods in the art.

The nucleic acid molecule (ie. the fragment chain) produced according to the above described method and the single stranded molecules thereof comprise further features of the invention. These molecules may as appropriate be included into a vector, as described hereinbefore.

Once produced, the fragment chains, in double stranded or single stranded form, may be used in various applications, as described hereinafter. One application of particular utility is to store information. In such cases appropriate means of reading the information stored in those chains is required. In some applications, fragment chains may be appropriately addressed to particular sites, e.g. through binding to oligonucleotides carried on solid supports which are complementary to overhangs on one terminus of the fragment chains. Alternatively appropriate antibody/antigen, or DNA:protein recognition systems may be used. Thus, information stored in molecules addressed in this way, or in solution may then be accessed.

Co-pending application PCT/GB99/04417, a copy of which is appended hereto, describes appropriate

- 42 -

techniques for addressing and reading information contained in nucleic acid molecules. Of particular note in this respect are techniques in which fluorescence of probes carrying fluorescent labels directed to 5 particular sequences are detected. In such techniques, probes, carrying labels as described hereinbefore, may be directed to particular fragment regions, particularly to regions denoting code elements. The signals generated (directly or indirectly) by those labels may 10 then be detected and the code element thereby identified. If a simple binary system is used only 2 discrete labels are required and their pattern of binding may be determined. Alternatively, if a more complex code is reflected in the fragment chains, 15 correspondingly more discrete labels are required for unambiguous detection.

Thus in a further aspect, the present invention provides, a method of identifying the code elements contained in a nucleic acid molecule prepared as 20 described hereinbefore (ie. fragment chain) wherein a probe, carrying a signalling means (e.g. a label), specific to one or more code elements, is bound to said nucleic acid molecule and a signal generated by said signalling means is detected, whereby said one or more 25 code elements may be identified.

Preferably said signalling means is a label as described hereinbefore.

A "probe" as referred to herein refers to an appropriate nucleic acid molecule, e.g. made up of DNA, 30 RNA or PNA sequences, or hybrids thereof, which is able to bind to the target nucleic acid molecule (which may be single or double stranded) through specific interactions, ie. is specific to particular code elements, e.g. through complementary binding to a 35 particular sequence. Probes may be any convenient length, to allow specific binding, e.g. in the order of 5 to 50 bases, preferably 8 to 20 bases in length.

- 43 -

A "signalling means" as used herein refers to a means for generating a signal directly or indirectly. A signal may be any physical or chemical property which may be detected, e.g. presence of a particular product, colour, fluorescence, radiation, magnetism, paramagnetism, electric charge, size, or volume.

5 Preferably the label is a fluorophore whose fluorescence is detected. In such cases fluorescence scanners may be used for detection of the label and thereby identification of the code elements.

10 A particular code element or combination of elements may be identified by the appearance of a particular signal. Clearly the position of each signal is crucial to determining the sequence of the code elements. As a consequence methods in which positional information (absolute or relative) may be obtained should be used. Appropriate techniques, e.g. using target molecules which have been attached to a solid support at one end, are described in co-pending application PCT/GB99/04417.

15 A number of applications exist for the fragment chains once produced in nano and pico-technology, inter alia for example by stretching of the fragment chains by means of a stream of liquid, electricity or other technology and using them as templates for nano and pico-structures. The products may also be used to label products which can then be screened to establish their identity. Alternatively, the molecules may be used to store information, e.g. pictures, text, music or as data storage in DNA computers. The rapid production and reading techniques makes such applications possible for the first time.

20 Kits for performing the methods described above form a preferred aspect of the invention. Thus viewed from a further aspect the present invention provides a kit for synthesizing a double stranded nucleic acid molecule comprising at least n double stranded nucleic

- 44 -

acid fragments, wherein at least n-2 fragments have single stranded regions at both termini and 2 fragments have single stranded regions at at least one terminus, wherein (n-1) single stranded regions are complementary
5 to (n-1) other single stranded regions, thereby producing (n-1) complementary pairs. Preferably in excess of n fragments are supplied for production of a chain of n fragments, such that selection of appropriate fragments for different positions is possible. Thus in
10 a preferred feature said kit comprises (n)_m fragments, wherein n is as defined hereinbefore, and m is an integer corresponding to the number of possible variations, e.g. unique sequences or code elements or combinations thereof, such that fragments corresponding
15 to all possible sequences or code elements for each position in the final chain are provided. Preferably these fragments are provided in appropriate libraries arranged with reference to their position within the fragment chain and the code element(s) which they represent,
20 such that desired fragments may be readily selected from the array.

Optionally the kit may contain other appropriate components selected from the list including ligases, enzymes necessary for inactivation and activation of restriction or ligation sites, primers for amplification and/or appropriate enzymes, buffers and solutions. The use of such kits for performing the method of the invention form further aspects of the invention.
25

30 The following examples are given by way of illustration only in which the Figures referred to are as follows:

35 Figure 1 shows a schematic representation of how the method of the invention may be used to introduce an insert into a vector, in which the insert is cleaved from the first nucleic acid molecule, associated with adapters and ligated thereto and then ligated into the

- 45 -

vector;

Figure 2 shows the production of a fragment chain using 8 "0" and "1" starting fragments with different overhangs;

5 Figure 3 shows the production of a 64 fragment chain in which 8 chains are produced comprising 8 fragments each, in which the termini of chains 1 and 2, and 2 and 3 etc. are complementary such that they may be ligated together;

10 Figure 4 shows 3 techniques for mixing "0", "1" fragments from a library of fragments ordered for each position, in which in A) appropriate fragments are selected by aspiration from appropriate wells, B) appropriate fragments are released from the library wells and C) a flow cytometer is used to direct appropriate droplets to the mixing chamber;

15 Figure 5 shows PCR amplification of signal chain 1-0-1-0-0 using SP6 and T7 primers. Lane 1: 1 µg of 1 kb DNA ladder (Gibco BRL), Lane 2: 10 µl of PCR amplified fragment chain DNA using SP6 and T7 primers. Lane 3: Same as lane 2 except for the use of SP6 and T7-Cy5 primers; and

20 Figure 6 shows the use of primer pairs during the process of amplification to join together fragment chains.

25

- 46 -

EXAMPLE 1: CLONING OF AN INSERT INTO A VECTOR, FOR
EXAMPLE FROM PHIX174 INTO PUC19

A general procedure to be followed using IIS and IP enzymes to achieve cloning involves the use of a cloning vector which has the following characteristics:

5 1) A multiple cloning site located within a gene (*lacZ*, *ccdB* or other) that allows the detection of successful insertion.

10 2) The multiple cloning site contains two flanking *HgaI* sites that generates overhangs that differ from other *HgaI* generated overhangs elsewhere in the vector. The orientation of the *HgaI* sites ensures excision of its sites from the vector part during digestion. To

15 minimize background due to undigested plasmids, several *HgaI* sites and other suitable restriction enzyme sites are included in the MCS. The restriction enzymes are chosen such that they cleave well in *HgaI* buffer and do not have other sites in the vector.

20 The donor plasmid is cut with the appropriate set of IIS and/or IP enzymes. Adapters are used to specify the fragment to be sub-cloned into the vector, by the use of appropriate single stranded regions on the adapters to the overhangs generated on the insert. This results in the molecule: vector - adapter I - insert (e.g. *PhiX174* gene) - adapter II - vector.

25 This method is illustrated for insertion of a *PhiX174* insert into a vector, e.g. *pUC19*. An *HgaI* site in a *pUC19* plasmid is chosen randomly to be our "polylinker" while different genes and gene combinations from the *PhiX174* genome is used as "inserts".

30 Genomes are organized in *PhiX174* as illustrated below which shows the position of genes A, B, C and E relative

- 47 -

to one another:

----- [-----A-----] -----
----- [-----B-----] -----
5 ----- [-----C-----] -----
----- [-----E-----] -----
-1----2---3---4---5---6---7-8---9

In the above, gene B is located inside gene A while gene
10 C is slightly overlapping with gene A (by 3 base pairs).

Gene D and K are located in the same area as gene C and
E, but are not shown. This genome area contains 9 *BbvI*
sites as shown on the bottom row, in which the overhang
pairs that will be generated by cutting with *BbvI* are as

15 follows with the base pair position indicated in
brackets: 1-CAGC/GTCG (3798), 2-CTGC/GACG (4215), 3-
ACGG/TGCC (4398), 3-GCAT/CGTA (4677), 5-CTAT/GATA
(5049), 6-GAGA/CTCT (158), 7-GAGC/CTCG (547), 8-

CAAC/GTTG (624), 9-CCAT/GGTA (892). The parts of the

20 PhiX174 genome not shown contain 5 more *BbvI* sites: 10-
TACC/ATGG (1488), 11-TACC/ATGG (1592), 12-CTAC/GATG
(1639), 13-GCAC/CGTG (3294), 14-CTAA/GATT (3297). Of
these only 12 give rise to non-identical overhangs
whilst 2 result in identical overhangs.

25 When *HgaI* is used to cleave pUC19, 4 non-identical sites
are cleaved, giving rise to 8 non-identical overhangs.

These are: 1-CTGCC/GACGG (573), 2-TTCTC/AAGAG (1131), 3-
CAAGG/GTTCC (1881), 4-AGACT/TCTGA (2459).

30

Method:

To sub-clone gene B from Bacteriophage PhiX174 into the
designed vector, the following protocol is used:

35 1) 2 μ g of PhiX174 DNA is digested with 2 U of *BbvI* (NEB)
in 1X buffer 2 (NEB), water added to a volume of 20 μ l,
for 1 hr at 37°C. *BbvI* is then heat inactivated at 65°C

- 48 -

for 20 minutes.

2) 2 μ g of vector (e.g. pUC19) is digested with 2 U *HgaI* (NEB) in 1X buffer 1 (NEB), water added to a volume of 20 μ l, for 1 hr at 37°C. *HgaI* is then heat inactivated at 5 65°C for 20 minutes.

3) The adapters are made in separate tubes by mixing two and two oligonucleotides (selected to obtain the desired product, ie. particular gene(s), in forward/reverse orientation) and allowing annealing.

10 4) 6 μ l of the cleavage reaction of *PhiX174* is mixed with 3 μ l of the cleavage reaction of the vector and ligated in the presence of 5-50 pmol of each adaptor, 2-10 U/ μ l T4 DNA Ligase (NEB), 1X ligase buffer (NEB) and 5% Polyethylene glycol 8000, water added to a volume 15 of 30 μ l, at 25°C for 1 hr.

5) Conventional methods are used to transform bacteria.

6) The colonies are then counted and some of them are then picked for further analysis (sequencing, and the like).

20

Materials:

Oligonucleotides used to address *PhiX174* overhangs:

BbvI overhang 1a:

5'- CGA GCG CCT CCA GTG CAG CGG AG

25

BbvI overhang 5a:

5'- TATC GCG CCT CCA GTG CAG CGG AG

BbvI overhang 6b:

5'- CTCT GCG CCT CCA GTG CAG CGG AG

BbvI overhang 6 (delC):

5'- CTCT CTC CGC TGC ACT GGA GGC GC

30

BbvI overhang 7a:

5'- CAAC GCG CCT CCA GTG CAG CGG AG

BbvI overhang 9b:

5'- GGTA GCG CCT CCA GTG CAG CGG AG

35

- 49 -

Oligonucleotides used to address pUC19 overhangs:

Cloning site 1a

5'- AAGAG CTC CGC TGC ACT GGA GGC GC

Cloning site 1b

5' CTCTT CTC CGC TGC ACT GGA GGC GC

Two important advantages with this recombination-method over the classical Cohen-Boyer method should be noted.

The procedure is very easy to perform. It involves only mixing and incubation steps before transformation. No PCR-amplifications or gel separations are required.

The methods gives significant flexibility and allows complex recombinations to be made even with only two restriction enzymes.

15

EXAMPLE 2: AUTOMATION AND MINIATURISATION OF CHAIN SYNTHESIS

This method describes a rapid process for mixing appropriate "0" and "1" fragments with the correct overhangs to produce a particular string consisting of "0"'s and "1"'s.

Two libraries are produced, one with "0" fragments and one with "1" fragments. As mentioned in the

description, these are generated with overhangs that can be ligated to corresponding overhangs for fragments at adjacent positions. These separate members are present in separate wells to form the library, such that

position 1 fragments are present in well 1, position 2 fragments are present in well 2 and so forth. The two libraries thus provide the alternatives for each position. In order to generate the chain therefore it is only necessary to select the correct fragment "0" or

"1" for position 1, and then position 2 etc. Since these fragments, as a consequence of their unique overhangs, may only hybridize to fragments for adjacent

20

25

30

35

- 50 -

positions, it is necessary only to select the correct
fragments, then mix and ligate those fragments
simultaneously. Different ways of achieving this effect
are shown in Figure 4 which shows three different
alternatives for mixing.

In Figure 4A, e.g. to produce the chain 0-1-0-0-1, the
apparatus is used to aspirate from the "0" library at
positions 1, 3 and 4, and aspirate from the "1" library
at position 2 and 5. The liquids that have been
aspirated may then be mixed together with ligase and an
appropriate buffer. In alternative B, each well in the
library is connected with a tube/nozzle that may be
closed/opened electronically. Liquid from the nozzles
is directed into the ligation chamber together with
ligase and an appropriate buffer. Different chains may
be constructed by appropriately changing the pattern of
nozzles which are opened/closed.

The procedure may also be miniaturised, e.g. using flow
cytometry technology as illustrated in Figure 4C. In
this method, library components are stored in containers
on top of the "writing-machine". Droplets from each
container are then guided either to the waste or
production well depending on the nature of the chain
that is to be constructed. The guiding mechanism is as
used in ordinary flow cytometers, ie. the droplets are
charged when they leave the container and may be guided
electronically in different directions.

30

EXAMPLE 3 - LIBRARIES COMPRISING OLIGONUCLEOTIDES FOR
USE IN THE INVENTION

Conveniently, the cloning method may be performed using
35 libraries containing oligonucleotides. For example a
library may contain:

- 51 -

1. Oligonucleotides with a common portion and 5 bases at the 5' end which vary to provide all possible permutations, ie. 1024 variants.
- 5 2. Oligonucleotides with a common portion and 4 bases at the 5' end which vary to provide all possible permutations, ie. 256 variants.
3. Oligonucleotides with a common portion and 5 bases at the 3' end which vary to provide all possible permutations, ie. 1024 variants.
- 10 4. Oligonucleotides with a common portion and 6 bases at the 3' end which vary to provide all possible permutations, ie. 4096 variants.

In the above, the oligonucleotides are produced such that all "1" oligonucleotides are complementary to "2" oligonucleotides by virtue of the invariant bases, ie. to generate a double stranded molecule with variant 4/5 base overhangs. Similarly "3" and "4" oligonucleotides are complementary.

20 Oligonucleotides combined in this way (ie. with overhangs at either end of 4-6 bases may also be combined together with complementary double stranded oligonucleotides also generated by combining certain members of the library. In this way variable overhangs of different lengths may be created in the resultant molecule, e.g. a molecule with a 4 base overhang at both the 3' and 5' end.

30 Oligonucleotides may also be provided in the library which allow 5' and 3' adapters to be linked. Thus for example oligonucleotides having the following form may be provided:

5. 5'-AAAA-[compl]-FFFFF-3'
- 35 6. 5'-DDDDD-[compl]-FFFFF-3'
7. 5'-AAAA-[compl]-HHHHHH-3'
8. 5'-DDDDD-[compl]-HHHHHH-3'

- 52 -

9. 3'-[comp1*]-5'
10. 5'-BBBB-[comp2]-3'
11. 5'-EEEE-[comp2*]-3'
12. 5'-[comp3]-GGGGG-3'
- 5 13. 5'-[comp3*]-IIIII-3'

in which "compx" refer to a region which is complementary to region "compx*", ie. "5", "6", "7" or "8" can bind to "9". Furthermore, "comp2" can bind to
10 oligonucleotide 1 above, "comp2a" can bind to oligonucleotide 2, "comp3" can bind to oligonucleotide "4" and "comp3*" can bind to oligonucleotide "3". The bases denoted "A" bind to "B", ie. "7" and "10" can bind at their ends. Similarly "D" binds to "E", "F" binds to
15 "G" and "H" binds to "I". (These bases when together may have a variable content, e.g. AAAA=GAGA and then BBBB=TCTC.)

By appropriate use of the linkers described above, 5' and 3' adapters may be combined. For example,
20 oligonucleotide "2" with a particular 4 base 5' overhang may be bound through its complementary region to an oligonucleotide linker "11" which will then leave a "EEEEEE" overlap. This may be bound to oligonucleotide "8" through the overlap which may itself bind
25 oligonucleotide "9" through its complementary region. The overlap "HHHHHH" may be bound to oligonucleotide "13" which may attach an oligonucleotide "4" through binding to the complementary region. Thus various
30 permutations may be made which result in various overlap lengths, e.g. any combination of 4, 5, or 6 base overlaps which may on the same or different strands.

EXAMPLE 4 - TRIMMING PROCEDURE FOR GENERATING UNIQUE
35 OVERHANGS

The system presented here makes it possible to perform a

- 53 -

trimming procedure with seven different IIS enzymes that make 5' 4 base overhangs (*FokI* and *Bst71I*), 5' 5 base overhangs (*HgaI*), 3' 5 base overhangs (*BplI* and *BaeI*) and 3' 6 base overhangs (*CjeI* and *HaeIV*). If the oligonucleotide system presented here is combined with the basic oligonucleotide kit described in Example 3, all permutations of 3' 5 base and 6 base overhangs and all permutations of 5' 4 base and 5 base overhangs can be addressed for the trimming procedure.

10

In this Example, the location of the binding motifs of the initiation linkers is shown below:

	<i>FokI</i>	-----GGATG---
15	<i>Bst71I</i>	--GCAGC-----
	<i>HgaI</i>	-----GACGC
	<i>BplI</i>	-----GAG-----CTC-----
	<i>BaeI</i>	-----CYATG---CA-----
	<i>CjeI</i>	-----CCA-----GT-----
20	<i>HaeIV</i>	-----GAY-----RTC-----
	Consensus	--GCAGCGACCATGAGTCCA-CTC--GTGGATGACGC

Initiation linkers:

	X=0: 5'	--GCAGCGACCATGAGTCCA-CTC--GTGGATGPPPPP
25	3'	--CGTCGCTGGTACTCAGGT-GAG--CACCTAC
	X=1: 5'	--GCAGCGACCATGAGTCCA-CTC--GTGGATG-PPPPP
	3'	--CGTCGCTGGTACTCAGGT-GAG--CACCTAC-
	X=2: 5'	--GCAGCGACCATGAGTCCA-CTC--GTGGATG--PPPPP
	3'	--CGTCGCTGGTACTCAGGT-GAG--CACCTAC--
30	X=3: 5'	--GCAGCGACCATGAGTCCA-CTC--GTGGATG---PPPPP
	3'	--CGTCGCTGGTACTCAGGT-GAG--CACCTAC---
	X=4: 5'	--GCAGCGACCATGAGTCCA-CTC--GTGGATGACGCPPPPP
	3'	--CGTCGCTGGTACTCAGGT-GAG--CACCTACTGCG
	X=5: 5'	--GCAGCGACCATGAGTCCA-CTC--GTGGATGACGC-PPPPP
	3'	--CGTCGCTGGTACTCAGGT-GAG--CACCTACTGCG-
35	X=6: 5'	--GCAGCGACCATGAGTCCA-CTC--GTGGATGACGC--PPPPP
	3'	--CGTCGCTGGTACTCAGGT-GAG--CACCTACTGCG--

- 54 -

X=7: 5' --GCAGCGACCATGAGTCCA-CTC--GTGGATGACGC---PPPPP
3' --CGTCGCTGGTACTCAGGT-GAG--CACCTACTGCG---
X=8: 5' --GCAGCGACCATGAGTCCA-CTC--GTGGATGACGC---PPPPP
3' --CGTCGCTGGTACTCAGGT-GAG--CACCTACTGCG---
5 X=9: 5' --GCAGCGACCATGAGTCCA-CTC--GTGGATGACGC----PPPPP
3' --CGTCGCTGGTACTCAGGT-GAG--CACCTACTGCG----

The 6 base 3' overhang PPPPPP is a non-palindromic sequence that can be ligated with the complementary overhang QQQQQQ. The reason 10 different initiation linkers are needed is because *BaeI* cuts 10 bases away from its binding site. These linkers therefore allow a trimming procedure where *BaeI* "jumps" 10 bases for each trimming cycle. 10 different start positions will then be necessary to cover all possibilities. On the other side, *HgaI* cuts only 5 bases away, only necessitating 5 different start positions. This is the reason the binding site for *HgaI* is not present on X=0 - X=3, above.

20

Propagation linkers:

FokI: 5'-----GGATG
3'-----CCTACNNNN
Bst71I: 5'-----GCAGC
25 3'-----CGTCGNNNN
HgaI: 5'-----GACGC
3'-----CTGCGNNNNN
BplI: 5'-----GAG----CTCNNNNN
30 3'-----CTC----GAG
BaeI: 5'-----CCATG---CANNNNN
3'-----GGTAC---GT
HaeIV: 5'-----GAC----GTCNNNNNN
3'-----CTG----CTG
CjeI: 5'-----CCA----GTNNNNNN
35 3'-----GGT----CA

- 55 -

Termination linkers:

The adapters made with the basic oligonucleotides described earlier can be used as termination linkers. There is therefore no need for a separate set of 5 termination linkers.

Method:

In this method a trimming reaction using *Bst*71I that will begin on a 3' 5 base overhang is shown. The target 10 DNA is shown below in which the first overhang that will be generated is marked "*".

-----*-----
3' CACTT-----*-----

15 The first *Bst*71I overhang in the target DNA will be located 5-8 bases downstream of the overhang CACTT-3'. X must therefore be 3 (see the figure below). The following strategy can then be applied:

20 One linker is prepared that can address the 3' GTGAA overhang by annealing 4-3' 6 bases(QQQQQQ) with 3-3' 5 bases(GTGAA) in one tube:

25 -----GTGAA -3'
3' - QQQQQQ-----

30 The 3'-GAGTGC overhang is then ligated with the X=3 initiation linker and the GTGAA-3' overhang is ligated with the CACTT-3' overhang on the target DNA molecule:

5' --GCAGCGACCATGAGTCCA-CTC--GTGGATG---PPPPP-----
3' --CGTCGCTGGTACTCAGGT-GAG--CACCTAC---QQQQQQ-----

35 -----GTGAA-----
-----CACTT-----

- 56 -

EXAMPLE 5 - REMOVAL OF INTERVENING SEQUENCES FROM CONSTRUCTS

In some instances, constructs may be prepared which
5 contain undesirable nucleic acid sequences between, e.g.
the insert sequence and the vector sequence. Strategies
for removing the linker sequences should then be
applied. Illustrated below are some possible strategies
in which binding sites for restriction enzymes are
10 provided in the adapter sequences. Cleavage with the
restriction enzymes will then result in DNA ends that
can be religated. The vector DNA is marked as ..VVVVVVV
while insert DNA is marked as IIIIIII.

15 *Method 1*

Two IIS enzymes that generate 5'-4 base overhangs (*Bbs*I
and *Esp*3I) :

..VVVVVVVGAGC-GAGACG-----GAAGAC--GAGCIIIIIIII
20 VVVVVVVVCTCG-CTCTGC-----CTTCTG--CTCGIIIIIIII..

After cleavage with *Bbs*I and *Esp*3I:

25 ..VVVVVVVV + GAGC-GAGACG-----GAAGAC-- +
VVVVVVVVCTCG -CTCTGC-----CTTCTG--CTCG

GAGCIIIIIIII
IIIIIIII..

30 After ligation with T4 DNA ligase:

GAGC-GAGACG-----GAAGAC- +
-CTCTGC-----CTTCTG-CTCG

35 ..VVVVVVVGAGCIIIIIIII
VVVVVVVVCTCGIIIIIIII..

- 57 -

Method 2

One IIS enzyme that generates two 3' 3 base overhangs (*BsaXI*) :

5

.. VVVVVVVVGAG-----AC-----CTCC-----GAGIIIIIIII
VVVVVVVVVCTC-----TG-----GAGG-----CTCIIIIIIII..

After cleavage with *BsaXI*:

10

.. VVVVVVVVGAG + -----AC-----CTCC-----GAG
VVVVVVVVV CTC-----TG-----GAGG-----

+ IIIIIIII

15

CTCIIIIIIII..

After ligation with T4 DNA ligase:

20

-----AC-----CTCC-----GAG +
CTC-----TG-----GAGG-----

.. VVVVVVVVGAGIIIIIIII
VVVVVVVVVCTCIIIIIIII..

25

Method 3

One IIS enzyme that generates blunt ends (*MlyI*) :

30

.. VVVVVVVV-----GAGTC----IIIIIIII
VVVVVVVV----CTGAG-----IIIIIIII..

After cleavage with *MlyI*:

35

.. VVVVVVVV + -----GAGTC---- +
VVVVVVVV ----CTGAG-----
IIIIIIII
IIIIIIII..

- 58 -

After ligation with T4 DNA ligase:

-----GAGTC----- +
-----CTGAG-----
5
.VVVVVVVIIIIIIII
VVVVVVVIIIIIIII..

10 EXAMPLE 6 - IDENTIFYING OLIGONUCLEOTIDE SETS WITH 6 BASE PAIR OVERHANGS WITH MINIMAL MIS-MATCH LIGATIONS

15 In order to identify oligonucleotide sets with 6 base pair overhangs which are unlikely to form mis-match ligations with one another the following steps may be taken.

1. Create all 2048 overhang pairs of 6 bases.
2. Remove the 32 palindromic pairs.

20 This produces a final set of 2016 overhang pairs.

PART 1

1. Take a pair as pair #1 and select the next pair by executing section 1.

25

Section 1

Algorithm 1

Compute the $(2016 - n)$ tables of unweighted mismatch scores between the already chosen n pair(s) and all 30 $(2016 - n)$ remaining pairs, and find among the latter the pair(s) for which the lowest score in the table is the highest (see below for details about score computation). If there is only one such pair, then select it. If there are several pairs, then compute the weighted mismatch scores of the overhang comparisons 35 that gave the lowest unweighted score and find the pair(s) for which the lowest weighted score is the

- 59 -

highest. If there is only one such pair, then select it. If there are several pairs, then redo the whole procedure using the second lowest unweighted score in the mismatch table, then the third lowest, and so on.

5 If several pairs remain tied after all mismatch scores have been considered, keep them all.

Repeat algorithm 1 for each selected pair and iterate it over the desired number of positions to obtain the chain(s) of overhang pairs. This procedure generates a tree with an overhang pair on each branch. The lowest unweighted and weighted mismatch scores of the particular combination of pairs at each point are computed. A particular pathway is stopped (1) when the

10 desired number of positions is reached, or (2) when the combination of pairs is one that has already been found earlier, or (3) when the lowest mismatch scores of that combination are lower than the lowest scores of the complete chain(s) already constructed. Point (3) ensures

15 that each new complete chain always has lowest mismatch scores that are higher than or at least equal to those of the previously constructed chain(s). Note also that, as a result of this process, all pairs in a given chain are unique and all complete chains in the tree are unique. The whole process terminates when the last pathway to be explored stops. Keep the complete

20 chain(s) whose lowest mismatch scores are the highest.

25 Repeat section 1 starting with each of the 2016 pairs as pair #1 to produce a set of 2016 overhang chains. Find the best chain(s) by applying algorithm 2

Algorithm 2

For all chains, compute the tables of unweighted mismatch scores between all the pairs that are present in the chain, and find the chain(s) for which the lowest score in the table is the highest (see below for

- 60 -

details). If there is only one such chain, then select it. If there are several chains, then compute the weighted mismatch scores of the overhang comparisons that gave the lowest unweighted score and find the
5 chain(s) for which the lowest weighted score is the highest. If there is only one such chain, then select it. If there are several chains, then redo the whole procedure using the second lowest unweighted score in the mismatch table, then the third lowest, and so on.
10 If several chains remain tied after all mismatch scores have been considered, then keep all of them.

This allows the production of a set of one or more overhang chains.

15

PART 2

Take a chain and execute section 2.

Section 2

20 **Algorithm 3**

For that chain, find the overhang pair(s) that is(are) responsible for the lowest unweighted and weighted scores in the table of mismatch scores between all pairs in the chain. Then, create new chains by substituting
25 that pair with all remaining overhang pairs that are not present in the original chain (if there are several pairs to be substituted, substitute one pair at a time). From the complete set of newly generated chains and the original chain, select one or more chains following
30 algorithm 2. Here, including the original chain into algorithm 2 ensures that the selected chains always have a mismatch score that is higher than or at least equal to the score of the original chain. The improvement (if any) may involve the lowest or nth lowest unweighted score, or the corresponding weighted score.

35 Repeat algorithm 3 for each selected chain. This

- 61 -

procedure generates a tree with a chain on each branch. Each new chain which is added to the tree has a mismatch score higher than or equal to the score of the chain found in the previous step. A particular pathway is stopped when the selected chain is one that has already been found earlier. This ensures that all chains in the tree are unique. The whole process terminates when the last pathway to be explored stops. Keep all the chains that are present in the tree.

10

Repeat section 2 (i.e., construct a tree) starting with each of the chains selected at the end of part 1.

15

From the whole set of chains present in all trees, select one or more chains following algorithm 2.

This produces a final set of one or more overhang chains.

20

COMPUTATION OF MISMATCH SCORES

Unweighted score

The unweighted score for a ligation between two 6-base overhangs is the number of mismatches observed, considering the triplets of the first 3 and the last 3 bases separately. For example, the score for the ligation AAAAAC/TTTGCA is 0-3 and the score for AAAAAC/TCAGGG is 2-2. All possible scores are ranked from highest to lowest according to the order below:

30

highest: : 3-3
 3-2/2-3
 2-2
 3-1/1-3
35 2-1/1-2
 1-1
 3-0/0-3

- 62 -

2-0/0-2
lowest:: 1-0/0-1

Weighted score

5 The weighted score (WS) for a ligation is computed as follows:

$$WS = 6 - \sum_{i=1}^6 BPS_i$$

10 where BPS_i is the score for the particular base pair at site i and is given in the table below:

AA	= 1.0	CA	= 0.6	GA	= 1.0	TA	= 0.0	
AC	= 0.6	CC	= 1.0	GC	= 0.0	TC	= 0.6	
15	AG	= 1.0	CG	= 0.0	GG	= 0.9	TG	= 0.2
	AT	= 0.0	CT	= 0.6	GT	= 0.2	TT	= 0.6

For the perfect match between an overhang and its complement, WS = 6.

20

COMPARISON AMONG PAIRS AND CONSTRUCTION OF TABLES OF SCORES

Finding the next overhang pair

25

To select the next overhang pair, tables of mismatch scores between the pairs selected at previous positions and all remaining pairs are computed. To construct such a table, all previously selected pairs are compared with the new pair and also every overhang is compared with itself. Thus, if n pairs have already been selected, the number of ligations considered for each table is $4n + 2(n+1) = 6n+2$. When comparing two overhangs that are on the same DNA strand, one of them is reversed.

35

Let us consider the following example where pairs AAAAAC/TTTTTG (1A/1B) and AAACGT/TTTGCA (2A/2B) have

- 63 -

been chosen previously and the new pair AGTCCC/TCAGGG (3A/3B) is tried at the next position:

The corresponding table is:

5

	Comparison	Overhang	Ligation	Unweighted Score	Weighted Score
10	1 vs 1	1A	AAAAAAC	3-3	0.8
		1A	CAAAAAA		
	2 vs 2	1B	TTTTTG	3-3	3.2
		1B	GTFFFF		
15	2 vs 2	2A	AAACGT	2-2	2.8
		2A	TGCAAA		
	3 vs 3	2B	TTTGCA	2-2	4.4
		2B	ACGTTT		
20	3 vs 3	3A	AGTCCC	2-2	3.6
		3A	CCCTGA		
	1 vs 3	3B	TCAGGG	2-2	3.6
		3B	GGGACT		
25	1 vs 3	1A	AAAAAAC	3-2	2.6
		3A	CCCTGA		
	2 vs 3	1A	AAAAAAC	2-2	2.4
		3B	TCAGGG		
30	2 vs 3	1B	TTTTTG	2-2	4.0
		3A	AGTCCC		
	3 vs 1	1B	TTTTTG	3-2	4.6
		3B	GGGACT		
35	3 vs 1	2A	AAACGT	3-2	2.7
		3A	CCCTGA		
	3 vs 1	2A	AAACGT	2-2	3.3
		3B	TCAGGG		
40	3 vs 1	2B	TTTGCA	2-2	3.6
		3A	AGTCCC		

- 64 -

	2B 3B	TTTGCA GGGACT	3-2	3.4
--	----------	------------------	-----	-----

5 Here, the lowest score is 2-2; 2.4 given by the ligation between overhangs 1A and 3B.

Score table for a chain

10 To compute the table of mismatch scores for a chain, all overhang pairs contained in the chain are compared with each other and also every overhang is compared with itself. Thus, for a chain of p overhang pairs, the number of ligations considered is $4p(p-1)/2 + 2p = 2(p^2)$. As above, one of the two overhangs is reversed 15 in the comparison when both are on the same DNA strand.

20 For example, let us consider the following 3-pair (i.e., 4-position) chain: AAAAAC/TTTTTG (1A/1B), AAACGT/TTTGCA (2A/2B), AGTCCC/TCAGGG (3A/3B) in which 1A is on one fragment, 1B and 2A are on a second fragment, 2B and 3A are on a third fragment and 3B is on a fourth fragment.

The corresponding table is:

Comparison	Overhang	Ligation	Unweighted Score	Weighted Score
1 vs 1	1A 1A	AAAAAC CAAAAA	3-3	0.8
	1B 1B	TTTTTG GTTTTT	3-3	3.2
2 vs 2	2A 2A	AAACGT TGCAAA	2-2	2.8
	2B 2B	TTTGCA ACGTTT	2-2	4.4

- 65 -

5	3 vs 3	3A	AGTCCC	2-2	3.6
		3A	CCCTGA		
		3B	TCAGGG	2-2	3.6
		3B	GGGACT		
	1 vs 2	1A	AAAAAC	2-3	1.8
		2A	TGCAAA		
		1A	AAAAAC	0-3	3.8
		2B	TTTGCA		
		1B	TTTTTG	0-3	5.0
		2A	AAACGT		
10	1 vs 3	1B	TTTTTG	2-3	3.8
		2B	ACGTTT		
		1A	AAAAAC	3-2	2.6
		3A	CCCTGA		
		1A	AAAAAC	2-2	2.4
		3B	TCAGGG		
15	1 vs 3	1B	TTTTTG	2-2	4.0
		3A	AGTCCC		
		1B	TTTTTG	3-2	4.6
		3B	GGGACT		
20	2 vs 3	2A	AAACGT	3-2	2.7
		3A	CCCTGA		
		2A	AAACGT	2-2	3.3
		3B	TCAGGG		
		2B	TTTGCA	2-2	3.6
		3A	AGTCCC		
		2B	TTTGCA	3-2	3.4
		3B	GGGACT		

Here, the lowest score is 0-3; 3.8 given by the ligation between overhangs 1A and 2B.

- 66 -

Results obtained:

Table of breaking points

5 PART 1

# of positions	Unweighted score	Weighted score	# of equal chains
3	3-3	1.6	48
4	2-2	4.0	48
9	2-2	2.5	12
10	3-1	3.2	12
14	3-1	2.4	6
15	2-1	4.6	6
33	2-1	3.0	12
34	3-0	4.6	12
90	3-0	3.1	

PART 2

# of positions	Unweighted score	Weighted score	# of equal chains
3	3-3	1.6	48
4	3-2	2.2	48
9	2-2	2.5	12
10	3-1	3.2	12
14	3-1	2.4	6
15	3-1	2.0	6
33	2-1	3.0	12
34	3-0	4.6	12
90			

30

It will be noted that the unweighted mis-match score (in which (9 = 3-3, 8 = 3-2, 7 = 2-2, 6 = 3-1, 5 = 2-1, 4 = 1-1, 3 = 3-0, 2 = 2-0, 1 = 1-0) reduces as the number of

- 67 -

positions increases.

Samples of chains obtained at the end of part 1 and at
the end of part 2

5

3 positions (this chain is obtained at the end of both parts):

AACTCG/TTGAGC

TCTCAC/AGAGTG

10

4 positions:

part 1

AATTGG/TTAACCC

TGCCAC/ACGGTG

15

ATAGTC/TATCAG

- 68 -

part 2

AATGGG/TTACCC
TCGGAC/AGCCTG
TTAACG/AATTGC

5

9 positions (this chain is obtained at the end of both parts) :

AATCAC/TTAGTG	TACACG/ATGTGC	AGGCTG/TCCGAC
TGAGGG/ACTCCC	ACATTC/TGTAAG	TTTAGC/AAATCG
10 TCGGAT/AGCCTA	GGCTAG/CCGATC	

10 positions (this chain is obtained at the end of both parts) :

AAAACC/TTTTGG	AGGCTC/TCCGAG	TCGATA/AGCTAT
15 TTGGGG/AACCCC	GTCATG/CAGTAC	ATTCAG/TAAGTC
TCATAG/AGTATC	TGCAGT/ACGTCA	AGAGAT/TCTCTA

14 positions (this chain is obtained at the end of both parts) :

ACGTGC/TGCACG	GTTGGC/CAACCG	TCAGCC/AGTCGG
20 TATGAG/ATACTC	TTGCGG/AACGCC	AGAGGG/TCTCCC
TGCACG/ACGTGC	AGTATC/TCATAG	CACCGC/GTGGCG
ATACAC/TATGTG	TGACTA/ACTGAT	
AACTTG/TTGAAC	ACTCCG/TGAGGC	

25 15 positions:

part 1

AAAACC/TTTTGG	TGCAGT/ACGTCA	AAGTAA/TTCATT
TTGGGG/AACCCC	TCGATA/AGCTAT	CCGTCC/GGCAGG
30 TCATAG/AGTATC	ATTCAG/TAAGTC	TGTAAC/ACATTG
AGGCTC/TCCGAG	AGAGAT/TCTCTA	ACCGTG/TGGCAC
GTCATG/CAGTAC	TACTTC/ATGAAG	

- 69 -

part 2

	AAAACC/TTTTGG	TCTGCT/AGACGA	AAGTAA/TTCATT
	TTGGGG/AACCCC	TCGATA/AGCTAT	CCGTCC/GGCAGG
	TCATAG/AGTATC	ATTCAG/TAAGTC	TGTAAC/ACATTG
5	AGGCTC/TCCGAG	AGAGAT/TCTCTA	ACCGTG/TGGCAC
	GACAAG/CTGTTTC	TACTTC/ATGAAG	

33 positions (this chain is obtained at the end of both parts) :

10	AACTAG/TTGATC	GTAAGG/CATTCC	TCGCCT/AGCGGA
	TGGAGC/ACCTCG	AAACTA/TTTGAT	TCTCGG/AGAGCC
	TCAAAT/AGTTTA	GTCTCC/CAGAGG	ACCCCC/TGGGGG
	CAGGCC/GTCCGG	ACAGCG/TGT CGC	TTTTCG/AAAAGC
	TATCAC/ATAGTG	CACATC/GTGTAG	AAGTCA/TTCAGT
15	AGATTC/TCTAAG	TGTGTA/ACACAT	GTTCTC/CAAGAG
	TTCCGT/AAGGCA	TAATGC/ATTACG	
	CCCACG/GGGTGC	GGTAAG/CCATTG	
	ATGCCG/TACGGC	AGTTAT/TCAATA	
	TCCGTC/AGGCAG	CAACAG/GTTGTC	
20	CCACGC/GGTGCG	ATCGGC/TAGCCG	
	ACTATG/TGATAC	AATGCT/TTACGA	
	TTAGCA/AATCGT	TTGGAG/AACCTC	

34 positions (this chain is obtained at the end of both parts) :

25	AACTCT/TTGAGA	TTATTC/AATAAG	CCAATC/GGTTAG
	TCGAAC/AGCTTG	CACAAG/GTGTTC	ACTTAT/TGAATA
	CAGGGC/GTCCCG	TCCGAT/AGGCTA	AAAGAG/TTTCTC
	TAAAGG/ATTTCC	AGTAGC/TCATCG	TTGATA/AACTAT
30	TGTGCG/ACACGC	CCGT CG/GGCAGC	AAGACC/TTCTGG
	ATGTAG/TACATC	TCACTA/AGTGAT	CAATCC/GTTAGG
	TTCCCC/AAGGGG	GTGACG/CACTGC	TCTCGC/AGAGCG
	AATCTC/TTAGAG	TGAAAT/ACTTTA	AGGGGG/TCCCCC
	TGGCGT/ACCGCA	AGCATG/TCGTAC	TGCCAG/ACGGTC
35	GGCTGC/CCGACG	ACCGTC/TGGCAG	TACTAC/ATGATG

- 70 -

TTTGAC/AAACTG
ACACCG/TGTGGC
TGAGGC/ACTCCG

5

90 positions (this chain is obtained at the end of part 1) :

	AAAAAA/TTTTTT	TCTGGC/AGACCG	AAACGG/TTTGCC
	CCGGCC/GGCCGG	ACGCAG/TGCGTC	TTTGCC/AAACGG
10	AGGTAG/TCCATC	TGCGTC/ACGCAG	AACCAA/TTGGTT
	TCCATC/AGGTAG	AGTCAT/TCAGTA	CAAAAC/GTTTTG
	ATCTGC/TAGACG	TCAGTA/AGTCAT	AAGGAA/TTCCTT
	TAGACG/ATCTGC	CAGCCG/GTCGGC	CGCCGC/GCGGCG
	ACTGTG/TGACAC	GTCGGC/CAGCCG	AGTGCG/TCACGC
15	TGACAC/ACTGTG	AATTTC/TTAAAG	TCACGC/AGTGCG
	CATTAC/GTAATG	TTAAAG/AATTTC	ATTTTA/TAAAAT
	ACCCCC/TGGGGT	CCAACG/GGTTGC	ATCCTA/TAGGAT
	ATGGTA/TACCAT	GGTTGC/CCAACG	AGTATC/TCATAG
	CGAACG/GCTTCG	CACCAC/GTGGTG	TCATAG/AGTATC
20	ATTACC/TAATGG	AGAATA/TCTTAT	ATGTGG/TACACC
	TAATGG/ATTACC	TCTTAT/AGAATA	TACACC/ATGTGG
	CTCCTC/GAGGAG	ATCAAT/TAGTTA	ATGCAC/TACGTG
	AGTTGA/TCAACT	TAGTTA/ATCAAT	TACGTG/ATGCAC
	AATGCT/TTACGA	ACTTCA/TGAAGT	ACTAAC/TGATTG
25	TTACGA/AATGCT	AGCCCC/TCGGGG	TGATTG/ACTAAC
	AAGCGC/TTCGCG	TCGGGG/AGCCCC	CAGTGC/GTCACG
	TTCGCG/AAGCGC	ACCATG/TGGTAC	GTCACG/CAGTGC
	CCCAAG/GGGTTC	TGGTAC/ACCATG	AATAAG/TTATTC
	GGGTTTC/CCCAAG	AGGGGA/TCCCCT	TTATTC/AATAAG
30	ACATCC/TGTAGG	CTAATC/GATTAG	AGATAT/TCTATA
	TGTAGG/ACATCC	CGAGAG/GCTCTC	TCTATA/AGATAT
	AACTTG/TTGAAC	GCTCTC/CGAGAG	AAGTCG/TTCAGC
	TTGAAC/AACTTG	ACACGT/TGTGCA	TTCAGC/AAGTCG
	ATAGAC/TATCTG	TGTGCA/ACACGT	AATCGA/TTAGCT
35	TATCTG/ATAGAC	CCTGTC/GGACAG	TTAGCT/AATCGA
	AGACCG/TCTGGC	GGACAG/CCTGTC	AGGCTC/TCCGAG

- 71 -

TCCGAG/AGGCTC
CGGGGC/GCCCCG

5 EXAMPLE 7 - CONSTRUCTION OF A 5-FRAGMENT CHAIN ENCODING
THE BINARY SEQUENCE 1-0-1-0-0

10 This experiment demonstrates the construction of a specific 5 fragment chain using a set of four non-palindromic 5' 6 base overhang pairs. The set of four unique overhang pairs was found using a computer program as described in Example 6.

15 Based upon the overhang pairs, a set of five library components was made by annealing complementary oligonucleotides in separate tubes:

signal 1:

5'-TAATACGACTCACTATAACCACAAGTTGTACAAAAAAGCAGGCTCTATTTC-3'
and 5'-TAGGAAGAATAGAGCCTGCTTTTGTACAAACTTGTGGTATAGTGA
GTCGTATTA-3';

signal 2:

5'-TTCCTATGCAGTGGACCACTTGTACAAGAAAGCTGGTTCAGT-3' and
5'-GCAACTACTGCAACCCAGCTTCTTGACAAAGTGGTCCACTGCA-3';

signal 3:

5'-AGTTGCTTGACGCCACAAGTTGTACAAAAAAGCAGGCTTGACG-3' and
5'-CGACATCGTCAAAGCCTGCTTTTGTACAAACTTGTGGCGTCAA-3';

signal 4:

5'-ATGTCGAAGGGCGGACCACTTGTACAAGAAAGCTGGTAAGGGC-3' and
5'-GACAGGGCCCTAACCCAGCTTCTTGACAAAGTGGTCCGCCCTT-3';

30 signal 5:

5'-CCTGTCATGTGGACCACTTGTACAAGAAAGCTGGTTCTATAGTGTACCT
AAATC-3' and 5'-GATTTAGGTGACACTATAGAAACCCAGCTTCTTGACAA
AGTGGTCCACAT-3';

T7: 5'-TAATACGACTCACTATAACCA-3'

35 T7-Cy5 primer: 5'-TAATACGACTCACTATA-3'

SP6 primer: 3'-AAGATATCACAGTGGATTAG-5'

- 72 -

The library components (4 pmol each) were then mixed together and ligated using 100 U T4 DNA ligase (NEB) in 1X ligase buffer at 25°C for 15 minutes. The ligase was then inactivated at 65°C for 20 min.

5

5 μ l of the ligation reaction (50 μ l) was used as template in a PCR reaction (50 μ l) containing 1X Thermopol buffer (NEB), 0.05 mM dNTPs, 0.4 μ M T7 primer, 0.4 μ M SP6 primer and 0.04 U/ μ l Vent polymerase (NEB). The PCR was hot started (95°C for 3 minutes before addition of polymerase) and cycled 30 times; 95°C, 30 sec; 55°C, 30 sec; 76°C, 30 sec, using a PTC-200 thermo cycler (MJ Research). 10 μ l of the PCR was analysed on a 1.5% agarose gel as shown in Figure 5. The gel picture showed only one intense band corresponding to approximately 240 bp as expected (243 bp). The remaining PCR product was extracted twice with chloroform and precipitated using 71% ethanol and 0.1M NaAc. The DNA was dissolved in water and sequenced. The sequence confirmed that the expected signal chain (1-0-1-0-0) was generated.

10

15

20

25

30

35

EXAMPLE 8 - CONSTRUCTION OF A 5X5 FRAGMENT CHAIN
ENCODING THE BINARY SEQUENCE USING ONE LIGATION CYCLE
FOLLOWED BY ONE PCT CYCLE OR BY TWO LIGATION CYCLES

This experiment demonstrates the use of complementary primer pairs to link fragment chains together as an alternative to the ligation strategy demonstrated in the previous example.

In this experiment 5 fragments chains with 5 positions (fragments or bits) each are ligated separately in ligation cycle 1 as demonstrated earlier (Example 7). The 5 fragment chains are then amplified with 5 different primer pairs (pair 1 is used to amplify chain 1, pair 2 is used to amplify chain 2, etc). The second primer in primer pair 1 is complementary to the first

- 73 -

primer in prime pair 2, the second primer in primer pair 2 is complementary to the first primer in primer pair 3, and so on.

5 A small aliquot is then taken from each of the 5 PCR reactions and a new PCR reactions is performed with primers that are specific to the end of signal chain 1 and 5. The method is illustrated in Figure 6.

10 Materials:

Oligonucleotides are selected which bind to the fragment chain and also serve as primers. Thus for example, for adjacent chains may be bound using for example the 15 following primer pairs:

fragment chain 2 terminal (*with bound primer*):

TTCTATAGTGTACACCTAAATC

AAGATATCACAGTGGATTTAGCCTACCAGTACATCCAACGGCAACT

20

fragment chain 3 terminal (*with bound primer*):

GTCATGTAGGTTGCCGTTGATCCATCCTAATACGACTCACTATAGCA

ATTATGCTGAGTGATATCGT

25

The above exemplified primer regions are complementary and may thus be bound together.

30

As an alternative to this method, two ligation cycles may be used in which 5 fragment chains (generated by ligation), are ligated together. Thus, several construction cycles to build up long signal chains. After the initial ligation in the first ligation cycle the 5 fragment chains are then amplified with primers containing a *FokI* site. The primers are appropriately selected such that digestion with *FokI* will then make non-palindromic overhangs in the end of each fragment chain in which the overhang generated in fragment chain

35

- 74 -

1 is able to ligate with the first overhang generated in
fragment chain 2, the second overhang generated in
fragment chain 2 is able to ligate with the first
overhang generated in fragment chain 3, and so on. The 5
5 fragment chains can thereby be ligated together in a
controlled manner to generate a final chain with 25
fragments (bits).

If we want to construct fragment chains with 100 or 500
10 fragments we can repeat this procedure 1 or 2 more
times. The polymerase capacity will, however, be a
limiting factor regarding how many ligation cycles it is
possible to perform. Other strategies will therefore
need to be employed to construct even longer chains.

15

EXAMPLE 9: CLONING OF AN INSERT FROM PHIX174 INTO PUC1
WITH A TRIMMED GENE A

This experiment demonstrates the "trimming" strategy for
20 elimination of unwanted flanking sequences. Another
important aspect of this experiment is that we
demonstrate that it is possible to link a 5' and 3'
overhang together with a single stranded oligonucleotide
alone. It should also be noted that the inserts are
25 cloned into two different IIS sites, thereby eliminating
the problem with insert concatemerisation.

In this method, Gene A from PhiX174 is cloned into a
30 pUC-19 vector. PhiX174 is prepared by cleavage with
BbvI, resulting in 15 fragments flanked by different
non-palindromic 5' 4 bases overhangs, as described in
more detail in Example 1. The two overhangs adjacent to
Gene A is then addressed with "initiation linkers"
containing a *BplI* site, while the rest of the fragments
35 is allowed to religate. T4 DNA ligase, *BplI*, a
"propagation linker" containing a *BplI* site, and two
"termination adaptors" addressed to the first and last

- 75 -

five bases of Gene A respectively are used. The solution is incubated at 37°C thereby allowing the trimming reaction to succeed until terminated when the five first and last bases in Gene A are reached.

5

The pUC-19 vector is prepared by cleavage with *Hga*I and *Bsa*I. The overhang generated by *Hga*I cleavage are described in Example 1. Cleavage with *Bsa*I results in 4 non-identical cleavages giving rise to 8 non-identical overhangs, e.g. site 1- GCCA/CGGT (1600).

10

Gene A has the following sequence at its first and last five bases (marked by underlining).

15

....GCTGGAGGCCTCCACTATGAAATCGCGTAGAG....
....CGACCTCCGGAGGTGATACTTAGCGCATIC.....
.....CTGGCGAAAATGAGAAAATTGACCTA....
....ACGACCGCTTTACTTTTAAGCTGG.....

20

When terminating the trimming procedure at the underlined sequences it is possible to clone Gene A without any unwanted flanking base pairs. The 3' 5 base overhangs generated by *Bpl*I correspond to the marked base pairs.

25

The overhang pair generated by *Hga*I and *Bsa*I in pUC19 that is used as a cloning site for the gene A from PhiX174 is TTCTC/CGGT.

30

Method:

This is as described in Example 1 except that PUC19 is cut with both *Hga*I (NEB 4, 37°C) and thereafter with *Bsa*I (NEB 4, 50°C)

35

- 76 -

Materials:

Initiation linker 1 (s) :

5'ATT CGG TCG AGA TGC TCT CA3'

5

Initiator linker 1 (as) :

5'CGA CTG AGA GCA TCT CGA CCG AAT3'

Initiation linker 2 (s) :

10 5'GCG TTA CTG AGC GTA GCT CTG3'

Initiator linker 2 (as) :

5'CTC TCA GAG CTA CGC TCA GTA ACG C3'

15 Propagation linker (s) :

5'TGC TGC AGG AGC GAA TCT CNN NNN3'

Propagation linker (as) :

5'GAG ATT CGC TCC TGC AGC A3'

20

Labeling linker 2 (s)

5'CTC TTG CTA TAG TGA GTC GTA TTA3'

Labeling linker 2 (as) :

25 5'TAA TAC GAC TCA CTA TAG CA3'

Termination linker 1 (s) :

5'AAG AGC TCA GGT CAT TGA CGT AGC TAT GAA3'

30 Termination linker 1/2 (as) :

5'AGC TAC GTC AAT GAC CTG AG3'

Termination linker 1 (short version) :

5'AAG AGA TGA A3'

35

Termination linker 2 (s) :

5'ACC GCT CAG GTC ATT GAC GTA GCT TCA TT3'

- 77 -

Termination linker 2 (short version) :

5'ACC GTC ATT3'

The efficiency of the trimming reaction may be accessed
5 as follows. Overhang 6) is addressed with a γ -³²P labelled adaptor. The trimming reaction is then allowed to start from overhang 1). Aliquots are taken out at regularly time intervals and the size distribution of the DNA fragments is then analysed on gel.

Claims:

1. A method of attaching a fragment of a first nucleic acid molecule to a second nucleic acid molecule, wherein
5 said method comprises at least the steps:
 - 1) cleaving said first nucleic acid molecule with a nuclease which has a cleavage site separate from its recognition site to create at least one fragment of said first nucleic acid molecule having a single stranded nucleotide region (SS1a) at at least one terminus of said fragment,
 - 10 2) if necessary generating a single stranded nucleotide region (SS2) at at least one terminus of said second nucleic acid molecule,
 - 15 3) binding to at least one single stranded region of step 1) (SS1a) an adapter molecule comprising at one terminus a single stranded region (SSA1) complementary to the single stranded region of said first nucleic acid molecule fragment (SS1a) and additionally comprising at the other terminus a further single stranded region (SSA2) complementary to the single stranded region (SS2) at one terminus of said second nucleic acid molecule,
 - 20 4) ligating said adapter to said first nucleic acid fragment,
 - 25 5) binding said adapter to said second nucleic acid molecule, and
 - 6) ligating said adapter to said second nucleic acid molecule.
- 30 2. A method as claimed in claim 1 wherein said first nucleic acid molecule fragment has a single stranded nucleotide region at either terminus (SS1a and SS1b), each of which is bound by an adapter, which may be the same or different, and the first of said adapters is bound to said second nucleic acid molecule and the second of said adapters binds either to said second nucleic acid molecule or to a third nucleic acid

molecule.

3. A method as claimed in claim 2, wherein said adapters bind to the termini of said second nucleic acid 5 molecule, thereby forming a circular nucleic acid molecule.

4. A method as claimed in any one of claims 1 to 3, wherein said second nucleic acid molecule is a vector or 10 a fragment thereof and single stranded regions are produced in step 2) by cleavage of said vector with a nuclease.

5. A method as claimed in an one of claims 1 to 4, 15 wherein said adapter molecule additionally comprises one or more nuclease recognition and cleave sites.

6. A method as claimed in any one of claims 1 to 5, wherein said nuclease is a restriction enzyme from the 20 class of IP or IIS enzymes.

7. A method as claimed in any one of claims 1 to 6, wherein two or more fragments of the first nucleic acid molecule are attached to different second and optionally 25 third nucleic acid molecules, or different termini thereof.

8. A method as claimed in any one of claims 4 to 7, wherein one or more fragments of said first nucleic acid molecule are attached via adapters to single stranded 30 regions in said second nucleic acid molecule resulting from different cleavage events.

9. A method as claimed in claim 7 or 8, wherein one or 35 more fragments of said first nucleic acid molecule are attached via adapters to single stranded regions in two or more second nucleic acid molecules.

- 80 -

10. A method as claimed in any one of claims 1 to 9, wherein 2 or more first nucleic acid molecules are cleaved and bound to one or more second nucleic acid molecules by adapter molecules simultaneously in the same reaction.

5

11. A method as claimed in any one of claims 1 to 10, wherein all the steps are conducted together.

10

12. A nucleic acid molecule produced according to a method as defined in any one of claims 1 to 11.

13. A cloning or expression vector containing the nucleic acid molecule as defined in claim 12.

15

14. A eukaryotic or prokaryotic cell or transgenic organism containing a vector as defined in claim 13.

20

15. A kit for attaching a first nucleic acid molecule fragment to a second nucleic acid molecule or a fragment thereof according to the method defined in any one of claims 1 to 11 comprising at least (i) one or more adapters as described in any one of claims 1 to 9, (ii) the second nucleic acid molecule and (iii) a nuclease which cleaves outside its recognition site, wherein the terminus of one of said adapters has a single stranded region complementary to a single stranded region generated on said second nucleic acid molecule after cleavage with said nuclease.

25

16. A method of synthesizing a double stranded nucleic acid molecule comprising at least the steps of:

30

1) generating n double stranded nucleic acid fragments, wherein at least n-2 fragments have single stranded regions at both termini and 2 fragments have single stranded regions at at least one terminus, wherein (n-1) single stranded regions are complementary

- 81 -

to (n-1) other single stranded regions, thereby producing (n-1) complementary pairs,

2) contacting said n double stranded nucleic acid fragments, simultaneously or consecutively, to effect binding of said complementary pairs of single stranded regions, and

3) optionally ligating said complementary pairs simultaneously or consecutively to produce a nucleic acid molecule consisting of n fragments.

10

17. A method as claimed in claim 16 wherein said fragments are each between 8 and 25 bases in length.

15

18. A method as claimed in claim 16 or 17 wherein n is at least 10.

20

19. A method as claimed in any one of claims 16 to 18 wherein said fragment comprises a region representing a unit of information corresponding to one or more code elements.

20. A method as claimed in claim 19 wherein said code is alphanumeric.

25

21. A method as claimed in claim 20 wherein said code is binary.

30

22. A method as claimed in anyone of claims 19 to 21 wherein each of said one or more code elements has the formula

(X)_a,

wherein

X is a nucleotide A, T, G, C or a derivative thereof which allows complementary binding and may be the same or different at each position, and

a is an integer from 4 to 10,

wherein (X)_a is different for each one or more code

35

- 82 -

elements.

23. A method as claimed in claim 22, wherein said code
is binary and the code elements "1" and "0" have the
5 formulae:

"0" = $(X)_a$ and "1" = $(Y)_b$,

wherein

$(X)_a$ and $(Y)_b$ are not identical,

10 X and Y are each a nucleotide A, T, G, C or a
derivative thereof which allows complementary binding
and may be the same or different at each position, and
a and b are integers from 4 to 10.

15 24. A method as claimed in claim 23 wherein in the
formulae $(X)_a$ and $(Y)_b$, X and Y are the same at each
position.

20 25. A method of synthesizing a double stranded nucleic
acid molecule comprising at least the steps of:

25 1) generating fragment chains according to the method
defined in any one of claims 16 to 24;
2) optionally generating single stranded regions at
the end of said fragment chains, wherein said single
stranded regions are complementary to other single
stranded regions on said fragment chains thus forming
complementary pairs of single stranded regions;
3) contacting said fragment chains with one another,
simultaneously or consecutively, to effect binding of
30 said complementary pairs of single stranded regions.

26. A nucleic acid molecule produced according to a
method as defined in any one of claims 16 to 25, or a
single stranded nucleic acid molecule thereof.

35

27. A method of identifying the code elements contained
in a nucleic acid molecule prepared according to a

- 83 -

method as defined in any one of claims 16 to 25, wherein
a probe, carrying a signalling means, specific to one or
more code elements, is bound to said nucleic acid
molecule and a signal generated by said signalling means
5 is detected, whereby said one or more code elements may
be identified.

28. A library of fragments as defined in any one of
claims 16 to 27, comprising $(n)_m$ fragments, wherein n is
10 as defined in any one of claims 16 to 27 and corresponds
to the length of chain that said library may produce,
and m is an integer corresponding to the number of
possible code elements or combinations thereof, such
that fragments corresponding to all possible code
15 elements for each position in the final chain are
provided.

FIG. 1

JGTS Record FORM NO. 28 DEC 2001

2 / 6

«0» starting fragments:

Position 1	GGGG GGGGAAA CCCCCCCC	AAAAAAA TTTTTTT
Position 2	GGGG GGGGAAC TTTCCCCCCCCC	AAAAAAA AC TTTTTTTTTT
	:	
	:	
	:	
	:	
Position 7	GGGG GGGGCCG GCGCCCCCCCCC	AAAAAAACCG GCGTTTTTTT
Position 8	GGGG GGGG GGCCCCCCCC	AAAAAAA GGCTTTTTT

FIG. 2

	Fragment 0	Fragment 1
Position 1.1	GGGG GGGGAAA CCCCCCCC	AAAAAAA TTTTTTT
Position 1.2	AAAGGGG GGGGAAA CCCCCCCC	AAAAAAAAAAAAA TTTTTTT
Position 1.3	AACGGGG GGGGAAA CCCCCCCC	AACAAAAAAA TTTTTTT
	:	
	:	
	:	
Position 8.1	GGGG GGGG GCCYYYYYYYYY	AAAAAAA GCTTTTTTTT
Position 8.2	GGGG GGGG GCCYYYYYYYYTG	AAAAAAA GCTTTTTTTT
Position 8.3	GGGG GGGG GCCYYYYYYYYTC	AAAAAAA GCTTTTTTTT
	:	
	:	

FIG. 3

JC13 Rec'd PCT/PTO 28 DEC 2001

FIG. 4

JC13 Rec'd PCT/PTC 28 DEC 2001

FIG. 4_{CONT'D}

DOUG HAGG PUBLISH 23 DEC 2001

FIG. 5

JC13 Rec'd PCT/PTO 28 DEC 2001

FIG. 6

JC13 Rec'd PCT/PTO 28 DEC 2001

INTERNATIONAL SEARCH REPORT

Int'l Application No
PCT/GB 00/02512

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 C12N15/10 C12N15/66 C12Q1/68

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C12N C12Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

WPI Data, PAJ, CAB Data, STRAND, BIOSIS, EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>BRAKE A J ET AL: "ALPHA-FACTOR-DIRECTED SYNTHESIS AND SECRETION OF MATURE FOREIGN PROTEINS IN SACCHAROMYCES-CEREVISIAE" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES, vol. 81, no. 15, 1984, pages 4642-4646, XP002149815 1984 ISSN: 0027-8424 figures 1,2</p> <p style="text-align: center;">-/-</p>	1-4, 6-8, 11-16, 19, 20, 25, 26

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the international search

17 October 2000

Date of mailing of the international search report

07/11/2000

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Hornig, H

INTERNATIONAL SEARCH REPORT

Inte
ional Application No
PCT/GB 00/02512

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	VERMERSCH P S ET AL: "THE USE OF A SELECTABLE FOK-I CASSETTE IN DNA REPLACEMENT MUTAGENESIS OF THE R388 DIHYDROFOLATE REDUCTASE GENE" GENE (AMSTERDAM), vol. 54, no. 2-3, 1987, pages 229-238, XP002149816 ISSN: 0378-1119 figure 4	1-4,6-8, 11-16, 19,20, 25,26
Y	WO 98 38326 A (ZINK MARY ANN ; XU GUOPING (US); HODGSON CLAQUE P (US); NATURE TECH) 3 September 1998 (1998-09-03) claims 1-26; figure 1	1-4,6-8, 11-16, 19,20, 25,26
Y	MANDECKI W ET AL: "FOK-I METHOD OF GENE SYNTHESIS" GENE (AMSTERDAM), vol. 68, no. 1, 1988, pages 101-107, XP002149817 ISSN: 0378-1119 page 102, right-hand column, line 16 - line 18	1-4,6-8, 11-16, 19,20, 25,26
Y	DATABASE BIOSIS 'Online! BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; 1982 KOROBKO V G ET AL: "OLIGO NUCLEOTIDE ADAPTORS CLEAVABLE BY RESTRICTION NUCLEASE HGA-I AND THEIR APPLICATION FOR DNA SYNTHESIS" Database accession no. PREV198375085277 XP002149821 abstract & BIOORGANICHESKAYA KHIMIYA, vol. 8, no. 6, 1982, pages 830-839, ISSN: 0132-3423	1-4,6-8, 11-16, 19,20, 25,26
Y	SZYBALSKI W ET AL: "CLASS-IIIS RESTRICTION ENZYMES A REVIEW" GENE (AMSTERDAM), vol. 100, 1991, pages 13-26, XP002149818 ISSN: 0378-1119 page 20, right-hand column, line 1 - line 9	1-4,6-8, 11-16, 19,20, 25,26
E	WO 00 39333 A (JONES ELIZABETH LOUISE ; LEXOW PREBEN (NO)) 6 July 2000 (2000-07-06) cited in the application claims 1-26; figures 1-25	1,4-6,15

-/-

INTERNATIONAL SEARCH REPORT

Int'l Application No
PCT/GB 00/02512

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 98 14619 A (COCKS BENJAMIN GRAEME ; INCYTE PHARMA INC (US); CHUNG ALICIA (US);) 9 April 1998 (1998-04-09) page 16, line 18 – line 31; figures 1-4A, 5A, 6A, 7A, 9	
A	MAHADEVA HARIN ET AL: "A simple and efficient method for the isolation of differentially expressed genes." JOURNAL OF MOLECULAR BIOLOGY, vol. 284, no. 5, 18 December 1998 (1998-12-18), pages 1391-1398, XP000952695 ISSN: 0022-2836 figure 1	
A	UNRAU PAUL ET AL: "Non-cloning amplification of specific DNA fragments from whole genomic DNA digests using DNA 'indexers'." GENE (AMSTERDAM), vol. 145, no. 2, 1994, pages 163-169, XP002149819 ISSN: 0378-1119 the whole document	
A	WO 94 01582 A (MEDICAL RES COUNCIL ; SIBSON DAVID ROSS (GB)) 20 January 1994 (1994-01-20) claims 1-37; figure 3B	
A	PADGETT KERSTIEN A ET AL: "Creating seamless junctions independent of restriction sites in PCR cloning." GENE (AMSTERDAM), vol. 168, no. 1, 1996, pages 31-35, XP004042930 ISSN: 0378-1119 the whole document	
A	LEBEDENKO E N ET AL: "METHOD OF ARTIFICIAL DNA SPLICING BY DIRECTED LIGATION (SDL)" NUCLEIC ACIDS RESEARCH, GB, OXFORD UNIVERSITY PRESS, SURREY, vol. 19, no. 24, 1991, pages 6757-6761, XP002069446 ISSN: 0305-1048 the whole document	
A	DE 196 33 427 A (BERNAUER HUBERT S DR) 19 March 1998 (1998-03-19) the whole document	

-/-

INTERNATIONAL SEARCH REPORT

International Application No

PCT/GB 00/02512

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 0 245 130 A (INNOGENETICS NV) 11 November 1987 (1987-11-11) the whole document -----	

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int'l Application No

PCT/GB 00/02512

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 9838326	A	03-09-1998	AU	6443298 A		18-09-1998
WO 0039333	A	06-07-2000	AU NO	1881000 A 996425 A		31-07-2000 26-06-2000
WO 9814619	A	09-04-1998	AU	4753397 A		24-04-1998
WO 9401582	A	20-01-1994	AT AU AU CA DE DE EP JP US	159986 T 686563 B 4575893 A 2139944 A 69315074 D 69315074 T 0650528 A 7508883 T 5728524 A		15-11-1997 12-02-1998 31-01-1994 20-01-1994 11-12-1997 05-03-1998 03-05-1995 05-10-1995 17-03-1998
DE 19633427	A	19-03-1998		NONE		
EP 0245130	A	11-11-1987	AU DK JP	7104087 A 172187 A 63017694 A		08-10-1987 05-10-1987 25-01-1988

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
4 January 2001 (04.01.2001)

(10) International Publication Number
WO 01/00816 A1

- (51) International Patent Classification⁷: C12N 15/10, 15/66, C12Q 1/68
- (72) Inventor; and
(75) Inventor/Applicant (for US only): LEXOW, Preben [NO/NO]; Bloksbergveien 16, N-3132 Husosund (NO).
- (21) International Application Number: PCT/GB00/02512
- (74) Agents: JONES, Elizabeth, Louise et al.; Frank B. Dehn & Co., 179 Queen Victoria Street, London EC4V 4EL (GB).
- (22) International Filing Date: 27 June 2000 (27.06.2000)
- (81) Designated States (national): AE, AG, AL, AM, AT, AT (utility model), AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, CZ (utility model), DE, DE (utility model), DK, DK (utility model), DM, DZ, EE, EE (utility model), ES, FI, FI (utility model), GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KR (utility model), KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (utility model), SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data:
- | | | |
|----------|---------------------------|----|
| 19991325 | 28 June 1999 (28.06.1999) | NO |
| 20003190 | 20 June 2000 (20.06.2000) | NO |
| 20003191 | 20 June 2000 (20.06.2000) | NO |
- (71) Applicant (for all designated States except US): COMPLETE GENOMICS AS [NO/NO]; P.O. Box 64, Blindern, N-0313 Oslo (NO).
- (71) Applicant (for GB only): JONES, Elizabeth, Louise [GB/GB]; Frank B. Dehn & Co., 179 Queen Victoria Street, London EC4V 4EL (GB).

[Continued on next page]

(54) Title: METHODS OF CLONING AND PRODUCING FRAGMENT CHAINS WITH READABLE INFORMATION CONTENT

WO 01/00816 A1

(57) Abstract: The present invention provides a method of attaching a fragment of a first nucleic acid molecule to a second nucleic acid molecule using adapters to mediate the binding, particularly in methods of cloning, methods of producing fragment chains with a readily readable information content, particularly comprising fragments corresponding to code, such as alphanumeric code, the nucleic acid molecules thus produced and kits for performing such methods.

Published:

- *With international search report.*
- *Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.*

— *Under Rule 91.1(f), with a request for rectification.*

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

INTERNATIONAL SEARCH REPORT

Int'l Application No

PCT/GB 00/02512

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 C12N15/10 C12N15/66 C12Q1/68

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHEDMinimum documentation searched (classification system followed by classification symbols)
 IPC 7 C12N C12Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

WPI Data, PAJ, CAB Data, STRAND, BIOSIS, EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>BRAKE A J ET AL: "ALPHA-FACTOR-DIRECTED SYNTHESIS AND SECRETION OF MATURE FOREIGN PROTEINS IN SACCHAROMYCES-CEREVISIAE" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES, vol. 81, no. 15, 1984, pages 4642-4646, XP002149815 1984 ISSN: 0027-8424 figures 1,2</p> <p style="text-align: center;">-/-</p>	1-4, 6-8, 11-16, 19, 20, 25, 26

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

17 October 2000

Date of mailing of the international search report

07/11/2000

Name and mailing address of the ISA
 European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
 Fax: (+31-70) 340-3016

Authorized officer

Hornig, H

INTERNATIONAL SEARCH REPORT

International Application No

PCT/GB 00/02512

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	VERMERSCH P S ET AL: "THE USE OF A SELECTABLE FOK-I CASSETTE IN DNA REPLACEMENT MUTAGENESIS OF THE R388 DIHYDROFOLATE REDUCTASE GENE" GENE (AMSTERDAM), vol. 54, no. 2-3, 1987, pages 229-238, XP002149816 ISSN: 0378-1119 figure 4	1-4,6-8, 11-16, 19,20, 25,26
Y	WO 98 38326 A (ZINK MARY ANN ;XU GUOPING (US); HODGSON CLAQUE P (US); NATURE TECH) 3 September 1998 (1998-09-03) claims 1-26; figure 1	1-4,6-8, 11-16, 19,20, 25,26
Y	MANDECKI W ET AL: "FOK-I METHOD OF GENE SYNTHESIS" GENE (AMSTERDAM), vol. 68, no. 1, 1988, pages 101-107, XP002149817 ISSN: 0378-1119 page 102, right-hand column, line 16 - line 18	1-4,6-8, 11-16, 19,20, 25,26
Y	DATABASE BIOSIS 'Online! BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; 1982 KOROBKO V G ET AL: "OLIGO NUCLEOTIDE ADAPTORS CLEAVABLE BY RESTRICTION NUCLEASE HGA-I AND THEIR APPLICATION FOR DNA SYNTHESIS" Database accession no. PREV198375085277 XP002149821 abstract & BIOORGANICHESKAYA KHIMIYA, vol. 8, no. 6, 1982, pages 830-839, ISSN: 0132-3423	1-4,6-8, 11-16, 19,20, 25,26
Y	SYZYBALSKI W ET AL: "CLASS-IIIS RESTRICTION ENZYMES A REVIEW" GENE (AMSTERDAM), vol. 100, 1991, pages 13-26, XP002149818 ISSN: 0378-1119 page 20, right-hand column, line 1 - line 9	1-4,6-8, 11-16, 19,20, 25,26
E	WO 00 39333 A (JONES ELIZABETH LOUISE ;LEXOW PREBEN (NO)) 6 July 2000 (2000-07-06) cited in the application claims 1-26; figures 1-25	1,4-6,15

-/-

INTERNATIONAL SEARCH REPORT

Int. Jonal Application No
PCT/GB 00/02512

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 98 14619 A (COCKS BENJAMIN GRAEME ; INCYTE PHARMA INC (US); CHUNG ALICIA (US);) 9 April 1998 (1998-04-09) page 16, line 18 - line 31; figures 1-4A, 5A, 6A, 7A, 9	
A	MAHADEVA HARIN ET AL: "A simple and efficient method for the isolation of differentially expressed genes." JOURNAL OF MOLECULAR BIOLOGY, vol. 284, no. 5, 18 December 1998 (1998-12-18), pages 1391-1398, XP000952695 ISSN: 0022-2836 figure 1	
A	UNRAU PAUL ET AL: "Non-cloning amplification of specific DNA fragments from whole genomic DNA digests using DNA 'indexers'." GENE (AMSTERDAM), vol. 145, no. 2, 1994, pages 163-169, XP002149819 ISSN: 0378-1119 the whole document	
A	WO 94 01582 A (MEDICAL RES COUNCIL ; SIBSON DAVID ROSS (GB)) 20 January 1994 (1994-01-20) claims 1-37; figure 3B	
A	PADGETT KERSTIEN A ET AL: "Creating seamless junctions independent of restriction sites in PCR cloning." GENE (AMSTERDAM), vol. 168, no. 1, 1996, pages 31-35, XP004042930 ISSN: 0378-1119 the whole document	
A	LEBEDENKO E N ET AL: "METHOD OF ARTIFICIAL DNA SPLICING BY DIRECTED LIGATION (SDL)" NUCLEIC ACIDS RESEARCH, GB, OXFORD UNIVERSITY PRESS, SURREY, vol. 19, no. 24, 1991, pages 6757-6761, XP002069446 ISSN: 0305-1048 the whole document	
A	DE 196 33 427 A (BERNAUER HUBERT S DR) 19 March 1998 (1998-03-19) the whole document	
	-/-	

INTERNATIONAL SEARCH REPORT

Int'l. Search Application No.

PCT/GB 00/02512

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 0 245 130 A (INNOGENETICS NV) 11 November 1987 (1987-11-11) the whole document -----	

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int'l. Application No.

PCT/GB 00/02512

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9838326 A	03-09-1998	AU 6443298 A		18-09-1998
WO 0039333 A	06-07-2000	AU 1881000 A NO 996425 A		31-07-2000 26-06-2000
WO 9814619 A	09-04-1998	AU 4753397 A		24-04-1998
WO 9401582 A	20-01-1994	AT 159986 T AU 686563 B AU 4575893 A CA 2139944 A DE 69315074 D DE 69315074 T EP 0650528 A JP 7508883 T US 5728524 A		15-11-1997 12-02-1998 31-01-1994 20-01-1994 11-12-1997 05-03-1998 03-05-1995 05-10-1995 17-03-1998
DE 19633427 A	19-03-1998	NONE		
EP 0245130 A	11-11-1987	AU 7104087 A DK 172187 A JP 63017694 A		08-10-1987 05-10-1987 25-01-1988

PATENT COOPERATION TREATY

From the
INTERNATIONAL PRELIMINARY EXAMINING AUTHORITY

To:

JONES, Elisabeth L.
Frank B. Dehn & CO.
179 Queen Victoria Street
London EC4V 4EL
GRANDE BRETAGNE

PCT

FILE	73369	NOTIFICATION OF TRANSMITTAL OF THE INTERNATIONAL PRELIMINARY EXAMINATION REPORT (PCT Rule 71.1)
12 NOV 2001		Date of mailing (day/month/year)
RECEIVED		
		06.11.2001

Applicant's or agent's file reference
42.1.73369

IMPORTANT NOTIFICATION

International application No. PCT/GB00/02512	International filing date (day/month/year) 27/06/2000	Priority date (day/month/year) 28/06/1999
---	--	--

Applicant
COMPLETE GENOMICS AS et al.

1. The applicant is hereby notified that this International Preliminary Examining Authority transmits herewith the international preliminary examination report and its annexes, if any, established on the international application.
2. A copy of the report and its annexes, if any, is being transmitted to the International Bureau for communication to all the elected Offices.
3. Where required by any of the elected Offices, the International Bureau will prepare an English translation of the report (but not of any annexes) and will transmit such translation to those Offices.

4. REMINDER

The applicant must enter the national phase before each elected Office by performing certain acts (filing translations and paying national fees) within 30 months from the priority date (or later in some Offices) (Article 39(1)) (see also the reminder sent by the International Bureau with Form PCT/IB/301).

Where a translation of the international application must be furnished to an elected Office, that translation must contain a translation of any annexes to the international preliminary examination report. It is the applicant's responsibility to prepare and furnish such translation directly to each elected Office concerned.

For further details on the applicable time limits and requirements of the elected Offices, see Volume II of the PCT Applicant's Guide.

Name and mailing address of the IPEA/ European Patent Office D-80298 Munich Tel. +49 89 2399 - 0 Tx: 523656 epmu d Fax: +49 89 2399 - 4465	Authorized officer Hingel, W Tel. +49 89 2399-8717
--	--

PATENT COOPERATION TREATY
PCT
INTERNATIONAL PRELIMINARY EXAMINATION REPORT
(PCT Article 36 and Rule 70)

Applicant's or agent's file reference 42.1.73369	FOR FURTHER ACTION		See Notification of Transmittal of International Preliminary Examination Report (Form PCT/IPEA/416)
International application No. PCT/GB00/02512	International filing date (day/month/year) 27/06/2000	Priority date (day/month/year) 28/06/1999	
International Patent Classification (IPC) or national classification and IPC C12N15/10			
Applicant COMPLETE GENOMICS AS et al.			

1. This international preliminary examination report has been prepared by this International Preliminary Examining Authority and is transmitted to the applicant according to Article 36.
2. This REPORT consists of a total of 5 sheets, including this cover sheet.

This report is also accompanied by ANNEXES, i.e. sheets of the description, claims and/or drawings which have been amended and are the basis for this report and/or sheets containing rectifications made before this Authority (see Rule 70.16 and Section 607 of the Administrative Instructions under the PCT).

These annexes consist of a total of 4 sheets.

3. This report contains indications relating to the following items:
 - I Basis of the report
 - II Priority
 - III Non-establishment of opinion with regard to novelty, inventive step and industrial applicability
 - IV Lack of unity of invention
 - V Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement
 - VI Certain documents cited
 - VII Certain defects in the international application
 - VIII Certain observations on the international application

Date of submission of the demand 25/01/2001	Date of completion of this report 06.11.2001
Name and mailing address of the international preliminary examining authority: European Patent Office D-80298 Munich Tel. +49 89 2399 - 0 Tx: 523656 epmu d Fax: +49 89 2399 - 4465	Authorized officer Barnas, C Telephone No. +49 89 2399 7469

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No. PCT/GB00/02512

I. Basis of the report

1. With regard to the elements of the international application (*Replacement sheets which have been furnished to the receiving Office in response to an invitation under Article 14 are referred to in this report as "originally filed" and are not annexed to this report since they do not contain amendments (Rules 70.16 and 70.17)*):
Description, pages:

1-77 as originally filed

Claims, No.:

1-14 as received on 12/10/2001 with letter of 12/10/2001

Drawings, sheets:

1-6 as originally filed

Sequence listing part of the description, pages:

1-23, filed with the letter of 5.9.2000

2. With regard to the language, all the elements marked above were available or furnished to this Authority in the language in which the international application was filed, unless otherwise indicated under this item.

These elements were available or furnished to this Authority in the following language: , which is:

- the language of a translation furnished for the purposes of the international search (under Rule 23.1(b)).
- the language of publication of the international application (under Rule 48.3(b)).
- the language of a translation furnished for the purposes of international preliminary examination (under Rule 55.2 and/or 55.3).

3. With regard to any nucleotide and/or amino acid sequence disclosed in the international application, the international preliminary examination was carried out on the basis of the sequence listing:

- contained in the international application in written form.
- filed together with the international application in computer readable form.
- furnished subsequently to this Authority in written form.
- furnished subsequently to this Authority in computer readable form.
- The statement that the subsequently furnished written sequence listing does not go beyond the disclosure in the international application as filed has been furnished.
- The statement that the information recorded in computer readable form is identical to the written sequence listing has been furnished.

4. The amendments have resulted in the cancellation of:

**INTERNATIONAL PRELIMINARY
EXAMINATION REPORT**

International application No. PCT/GB00/02512

- the description, pages:
 the claims, Nos.:
 the drawings, sheets:
5. This report has been established as if (some of) the amendments had not been made, since they have been considered to go beyond the disclosure as filed (Rule 70.2(c)):
(Any replacement sheet containing such amendments must be referred to under item 1 and annexed to this report.)
6. Additional observations, if necessary:

V. Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement

1. Statement

Novelty (N)	Yes:	Claims 1-14
	No:	Claims
Inventive step (IS)	Yes:	Claims 1-14
	No:	Claims
Industrial applicability (IA)	Yes:	Claims 1-14
	No:	Claims

2. Citations and explanations
see separate sheet

VI. Certain documents cited

1. Certain published documents (Rule 70.10)

and / or

2. Non-written disclosures (Rule 70.9)

see separate sheet

VIII. Certain observations on the international application

The following observations on the clarity of the claims, description, and drawings or on the question whether the claims are fully supported by the description, are made:

see separate sheet

**INTERNATIONAL PRELIMINARY
EXAMINATION REPORT - SEPARATE SHEET**

International application No. PCT/GB00/02512

Re Item I

Basis of the opinion

Sequence listing pages 1-23 filed with the letter of 5.9.2000 do not form part of the application (Rule 13^{ter}.1(f) PCT).

Re Item V

Reasoned statement under Rule 66.2(a)(ii) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement

- D1: VERMERSCH P S ET AL: 'THE USE OF A SELECTABLE FOK-I CASSETTE IN DNA REPLACEMENT MUTAGENESIS OF THE R388 DIHYDROFOLATE REDUCTASE GENE' GENE (AMSTERDAM), vol. 54, no. 2-3, 1987, pages 229-238, XP002149816 ISSN: 0378-1119
- D2: BRAKE A J ET AL: 'ALPHA-FACTOR-DIRECTED SYNTHESIS AND SECRETION OF MATURE FOREIGN PROTEINS IN SACCHAROMYCES-CEREVISIAE' PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES, vol. 81, no. 15, 1984, pages 4642-4646, XP002149815 1984 ISSN: 0027-8424

Arts. 33(2)(3) PCT, Novelty and Inventive Step

D1 and D2 disclose methods of synthesizing double stranded nucleic acid molecules using fragments which contain natural, genetic code elements.

Said documents do, however, not disclose methods of synthesizing a double stranded nucleic acid molecule using fragments which comprise units of information corresponding to code elements and said code is alphanumeric, binary or have a formula as described in claim 3. The cited prior art does also not contain any indication that would prompt the skilled person to arrive at such methods. Such methods, molecules produced by such methods, and libraries containing said fragments, as described in claims 1-14, are, therefore, new and inventive over the cited prior art.

**INTERNATIONAL PRELIMINARY
EXAMINATION REPORT - SEPARATE SHEET**

International application No. PCT/GB00/02512

Re Item VI

Certain documents cited, Certain published documents (Rule 70.10)

Application No Patent No	Publication date (day/month/year)	Filing date (day/month/year)	Priority date (<i>valid claim</i>) (day/month/year)
WO 00/39333	6.7.2000	23.12.1999	13.12.1998

The above listed document was published and filed after the priority date of the present application. It does, therefore, not belong to the state of the art according to Rule 64(1)(b) PCT. However, said document claims priority dates earlier than that of the present application (28.6.1999). If this priority is valid, the document will become of relevance for the novelty of the subject matter of the present application during regional phase examination at the EPO.

Re Item VIII

Certain observations on the international application

A "binary code" is a special type of an "alphanumeric code" (see the description of the specification, p. 32, ln. 31-36; and original claim 21: "...as claimed in claim 20 wherein said code is binary"). Hence, amended claim 2, contains all of the features of claim 1 and represents, therefore, a depended claim. Claim 2 is, however, formulated as an independent claim and repeats unduly the wording of claim 1. Claim 2 is, therefore, neither concise nor clear (Art. 6 PCT).

10/019258

3 Rec'd PCT/PTO 28 DEC 2001

- 78 -

Claims:

1. A method of synthesizing a double stranded nucleic acid molecule comprising at least the steps of:
 - 5 1) generating n double stranded nucleic acid fragments, wherein at least n-2 fragments have single stranded regions at both termini and 2 fragments have single stranded regions at at least one terminus, wherein (n-1) single stranded regions are complementary to (n-1) other single stranded regions, thereby producing (n-1) complementary pairs,
 - 10 2) contacting said n double stranded nucleic acid fragments, simultaneously or consecutively, to effect binding of said complementary pairs of single stranded regions, and
 - 15 3) optionally ligating said complementary pairs simultaneously or consecutively to produce a nucleic acid molecule consisting of n fragments, wherein said fragment comprises a region representing a unit of information corresponding to one or more code elements and said code is alphanumeric.
2. A method of synthesizing a double stranded nucleic acid molecule comprising at least the steps of:
 - 25 1) generating n double stranded nucleic acid fragments, wherein at least n-2 fragments have single stranded regions at both termini and 2 fragments have single stranded regions at at least one terminus, wherein (n-1) single stranded regions are complementary to (n-1) other single stranded regions, thereby producing (n-1) complementary pairs,
 - 30 2) contacting said n double stranded nucleic acid fragments, simultaneously or consecutively, to effect binding of said complementary pairs of single stranded regions, and
 - 35 3) optionally ligating said complementary pairs simultaneously or consecutively to produce a nucleic

- 79 -

acid molecule consisting of n fragments,
wherein said fragment comprises a region representing a
unit of information corresponding to one or more code
elements and said code is binary.

5

3. A method of synthesizing a double stranded nucleic acid molecule comprising at least the steps of:
 - 1) generating n double stranded nucleic acid fragments,
10 wherein at least n-2 fragments have single stranded regions at both termini and 2 fragments have single stranded regions at at least one terminus, wherein (n-1) single stranded regions are complementary to (n-1) other single stranded regions, thereby producing (n-1)
15 complementary pairs,
 - 2) contacting said n double stranded nucleic acid fragments, simultaneously or consecutively, to effect binding of said complementary pairs of single stranded regions, and
 - 20 3) optionally ligating said complementary pairs simultaneously or consecutively to produce a nucleic acid molecule consisting of n fragments,
wherein said fragment comprises a region representing a unit of information corresponding to one or more code
25 elements and each of said one or more code elements has the formula

(X)_a,

wherein

30 X is a nucleotide A, T, G, C or a derivative thereof which allows complementary binding and may be the same or different at each position, and

a is an integer from 4 to 10,
wherein (X)_a is different for each one or more code elements.

35

4. A method as claimed in claim 3 wherein said code is alphanumeric.

- 80 -

5. A method as claimed in claim 3 wherein said code is binary.

5 6. A method as claimed in claim 5, wherein said code is binary and the code elements "1" and "0" have the formulae:

"0" = $(X)_a$ and "1" = $(Y)_b$,
wherein

10 $(X)_a$ and $(Y)_b$ are not identical,

X and Y are each a nucleotide A, T, G, C or a derivative thereof which allows complementary binding and may be the same or different at each position, and a and b are integers from 4 to 10.

15

7. A method as claimed in claim 6 wherein in the formulae $(X)_a$ and $(Y)_b$, X and Y are the same at each position.

20

8. A method as claimed in any one of claims 1 to 7 wherein said fragments are each between 8 and 25 bases in length.

25

9. A method as claimed in any one of claims 1 to 8 wherein n is at least 10.

10. A method of synthesizing a double stranded nucleic acid molecule comprising at least the steps of:

- 1) generating fragment chains according to the method defined in any one of claims 1 to 9;
- 2) optionally generating single stranded regions at the end of said fragment chains, wherein said single stranded regions are complementary to the single stranded regions on said fragment chains thus forming complementary pairs of single stranded regions;
- 3) contacting said fragment chains with one another, simultaneously or consecutively, to effect binding of

said complementary pairs of single stranded regions.

11. A nucleic acid molecule produced according to a method as defined in any one of claims 1 to 10, or a 5 single stranded nucleic acid molecule thereof.

12. A method of identifying the code elements contained in a nucleic acid molecule prepared according to a method as defined in any one of claims 1 to 10, wherein 10 a probe, carrying a signalling means, specific to one or more code elements, is bound to said nucleic acid molecule and a signal generated by said signalling means is detected, whereby said one or more code elements may be identified.

15 13. A library of fragments as defined in any one of claims 1 to 12, comprising $(n)_m$ fragments, wherein n is as defined in any one of claims 1 to 12 and corresponds to the length of chain that said library may produce, 20 and m is an integer corresponding to the number of possible code elements or combinations thereof, such that fragments corresponding to all possible code elements for each position in the final chain are provided.

25 14. A kit for synthesizing a double stranded nucleic acid molecule comprising a library as defined in claim 13 and a ligase.

30

PATENT COOPERATION TREATY

PCT

REC'D 12 NOV 2001
IPO PCT

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

(PCT Article 36 and Rule 70)

14

Applicant's or agent's file reference 42.1.73369	FOR FURTHER ACTION	See Notification of Transmittal of International Preliminary Examination Report (Form PCT/IPEA/416)
International application No. PCT/GB00/02512	International filing date (day/month/year) 27/06/2000	Priority date (day/month/year) 28/06/1999
International Patent Classification (IPC) or national classification and IPC C12N15/10		
Applicant COMPLETE GENOMICS AS et al.		

1. This international preliminary examination report has been prepared by this International Preliminary Examining Authority and is transmitted to the applicant according to Article 36.

2. This REPORT consists of a total of 5 sheets, including this cover sheet.

This report is also accompanied by ANNEXES, i.e. sheets of the description, claims and/or drawings which have been amended and are the basis for this report and/or sheets containing rectifications made before this Authority (see Rule 70.16 and Section 607 of the Administrative Instructions under the PCT).

These annexes consist of a total of 4 sheets.

3. This report contains indications relating to the following items:

- I Basis of the report
- II Priority
- III Non-establishment of opinion with regard to novelty, inventive step and industrial applicability
- IV Lack of unity of invention
- V Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement
- VI Certain documents cited
- VII Certain defects in the international application
- VIII Certain observations on the international application

Date of submission of the demand 25/01/2001	Date of completion of this report 06.11.2001
Name and mailing address of the international preliminary examining authority: European Patent Office D-80298 Munich Tel. +49 89 2399 - 0 Tx: 523656 epmu d Fax: +49 89 2399 - 4465	Authorized officer Barnas, C Telephone No. +49 89 2399 7469

**INTERNATIONAL PRELIMINARY
EXAMINATION REPORT**

International application No. PCT/GB00/02512

I. Basis of the report

1. With regard to the **elements** of the international application (*Replacement sheets which have been furnished to the receiving Office in response to an invitation under Article 14 are referred to in this report as "originally filed"* and are not annexed to this report since they do not contain amendments (Rules 70.16 and 70.17)):

Description, pages:

1-77 as originally filed

Claims, No.:

1-14 as received on 12/10/2001 with letter of 12/10/2001

Drawings, sheets:

1-6 as originally filed

Sequence listing part of the description, pages:

1-23, filed with the letter of 5.9.2000

2. With regard to the **language**, all the elements marked above were available or furnished to this Authority in the language in which the international application was filed, unless otherwise indicated under this item.

These elements were available or furnished to this Authority in the following language: , which is:

- the language of a translation furnished for the purposes of the international search (under Rule 23.1(b)).
- the language of publication of the international application (under Rule 48.3(b)).
- the language of a translation furnished for the purposes of international preliminary examination (under Rule 55.2 and/or 55.3).

3. With regard to any **nucleotide and/or amino acid sequence** disclosed in the international application, the international preliminary examination was carried out on the basis of the sequence listing:

- contained in the international application in written form.
- filed together with the international application in computer readable form.
- furnished subsequently to this Authority in written form.
- furnished subsequently to this Authority in computer readable form.
- The statement that the subsequently furnished written sequence listing does not go beyond the disclosure in the international application as filed has been furnished.
- The statement that the information recorded in computer readable form is identical to the written sequence listing has been furnished.

4. The amendments have resulted in the cancellation of:

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No. PCT/GB00/02512

the description, pages:

the claims, Nos.:

the drawings, sheets:

5. This report has been established as if (some of) the amendments had not been made, since they have been considered to go beyond the disclosure as filed (Rule 70.2(c)):

(Any replacement sheet containing such amendments must be referred to under item 1 and annexed to this report.)

6. Additional observations, if necessary:

V. Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement

1. Statement

Novelty (N) Yes: Claims 1-14
 No: Claims

Inventive step (IS) Yes: Claims 1-14
 No: Claims

Industrial applicability (IA) Yes: Claims 1-14
 No: Claims

2. Citations and explanations *see separate sheet*

VI. Certain documents cited

1. Certain published documents (Rule 70.10)

and / or

2. Non-written disclosures (Rule 70.9)

see separate sheet

VIII. Certain observations on the international application

The following observations on the clarity of the claims, description, and drawings or on the question whether the claims are fully supported by the description, are made:

see separate sheet

**INTERNATIONAL PRELIMINARY
EXAMINATION REPORT - SEPARATE SHEET**

International application No. PCT/GB00/02512

R It m I

Basis of the opinion

Sequence listing pages 1.-23 filed with the letter of 5.9.2000 do not form part of the application (Rule 13^{ter}.1(f) PCT).

Re Item V

Reasoned statement under Rule 66.2(a)(ii) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement

- D1: VERMERSCH P S ET AL: 'THE USE OF A SELECTABLE FOK-I CASSETTE IN DNA REPLACEMENT MUTAGENESIS OF THE R388 DIHYDROFOLATE REDUCTASE GENE' GENE (AMSTERDAM), vol. 54, no. 2-3, 1987, pages 229-238, XP002149816 ISSN: 0378-1119
- D2: BRAKE A J ET AL: 'ALPHA-FACTOR-DIRECTED SYNTHESIS AND SECRETION OF MATURE FOREIGN PROTEINS IN SACCHAROMYCES-CEREVISIAE' PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES, vol. 81, no. 15, 1984, pages 4642-4646, XP002149815 1984 ISSN: 0027-8424

Arts. 33(2)(3) PCT, Novelty and Inventive Step

D1 and D2 disclose methods of synthesizing double stranded nucleic acid molecules using fragments which contain natural, genetic code elements.

Said documents do, however, not disclose methods of synthesizing a double stranded nucleic acid molecule using fragments which comprise units of information corresponding to code elements and said code is alphanumeric, binary or have a formula as described in claim 3. The cited prior art does also not contain any indication that would prompt the skilled person to arrive at such methods. Such methods, molecules produced by such methods, and libraries containing said fragments, as described in claims 1-14, are, therefore, new and inventive over the cited prior art.

**INTERNATIONAL PRELIMINARY
EXAMINATION REPORT - SEPARATE SHEET**

International application No. PCT/GB00/02512

R Item VI

Certain documents cited, Certain published documents (Rule 70.10)

Application No Patent No	Publication date (day/month/year)	Filing date (day/month/year)	Priority date (<i>valid claim</i>) (day/month/year)
WO 00/39333	6.7.2000	23.12.1999	13.12.1998

The above listed document was published and filed after the priority date of the present application. It does, therefore, not belong to the state of the art according to Rule 64(1)(b) PCT. However, said document claims priority dates earlier than that of the present application (28.6.1999). If this priority is valid, the document will become of relevance for the novelty of the subject matter of the present application during regional phase examination at the EPO.

Re Item VIII

Certain observations on the international application

A "binary code" is a special type of an "alphanumeric code" (see the description of the specification, p. 32, ln. 31-36; and original claim 21: "...as claimed in claim 20 wherein said code is binary"). Hence, amended claim 2, contains all of the features of claim 1 and represents, therefore, a depended claim. Claim 2 is, however, formulated as an independent claim and repeats unduly the wording of claim 1. Claim 2 is, therefore, neither concise nor clear (Art. 6 PCT).

Claims:

1. A method of attaching a fragment of a first nucleic acid molecule to a second nucleic acid molecule, wherein
5 said method comprises at least the steps:
 - 1) cleaving said first nucleic acid molecule with a nuclease which has a cleavage site separate from its recognition site to create at least one fragment of said first nucleic acid molecule having a single stranded nucleotide region (SS1a) at at least one terminus of said fragment,
 - 10 2) if necessary generating a single stranded nucleotide region (SS2) at at least one terminus of said second nucleic acid molecule,
 - 15 3) binding to at least one single stranded region of step 1) (SS1a) an adapter molecule comprising at one terminus a single stranded region (SSA1) complementary to the single stranded region of said first nucleic acid molecule fragment (SS1a) and additionally comprising at the other terminus a further single stranded region (SSA2) complementary to the single stranded region (SS2) at one terminus of said second nucleic acid molecule,
 - 20 4) ligating said adapter to said first nucleic acid fragment,
 - 25 5) binding said adapter to said second nucleic acid molecule, and
 - 6) ligating said adapter to said second nucleic acid molecule.
- 30 2. A method as claimed in claim 1 wherein said first nucleic acid molecule fragment has a single stranded nucleotide region at either terminus (SS1a and SS1b), each of which is bound by an adapter, which may be the same or different, and the first of said adapters is bound to said second nucleic acid molecule and the second of said adapters binds either to said second nucleic acid molecule or to a third nucleic acid

molecule.

3. A method as claimed in claim 2, wherein said
adapters bind to the termini of said second nucleic acid
5 molecule, thereby forming a circular nucleic acid
molecule.

4. A method as claimed in any one of claims 1 to 3,
wherein said second nucleic acid molecule is a vector or
10 a fragment thereof and single stranded regions are
produced in step 2) by cleavage of said vector with a
nuclease.

5. A method as claimed in an one of claims 1 to 4,
15 wherein said adapter molecule additionally comprises one
or more nuclease recognition and cleave sites.

6. A method as claimed in any one of claims 1 to 5,
wherein said nuclease is a restriction enzyme from the
20 class of IP or IIS enzymes.

7. A method as claimed in any one of claims 1 to 6,
wherein two or more fragments of the first nucleic acid
molecule are attached to different second and optionally
25 third nucleic acid molecules, or different termini
thereof.

8. A method as claimed in any one of claims 4 to 7,
wherein one or more fragments of said first nucleic acid
30 molecule are attached via adapters to single stranded
regions in said second nucleic acid molecule resulting
from different cleavage events.

9. A method as claimed in claim 7 or 8, wherein one or
35 more fragments of said first nucleic acid molecule are
attached via adapters to single stranded regions in two
or more second nucleic acid molecules.

- 80 -

10. A method as claimed in any one of claims 1 to 9, wherein 2 or more first nucleic acid molecules are cleaved and bound to one or more second nucleic acid molecules by adapter molecules simultaneously in the same reaction.

5

11. A method as claimed in any one of claims 1 to 10, wherein all the steps are conducted together.

10

12. A nucleic acid molecule produced according to a method as defined in any one of claims 1 to 11.

13. A cloning or expression vector containing the nucleic acid molecule as defined in claim 12.

15

14. A eukaryotic or prokaryotic cell or transgenic organism containing a vector as defined in claim 13.

20

15. A kit for attaching a first nucleic acid molecule fragment to a second nucleic acid molecule or a fragment thereof according to the method defined in any one of claims 1 to 11 comprising at least (i) one or more adapters as described in any one of claims 1 to 9, (ii) the second nucleic acid molecule and (iii) a nuclease which cleaves outside its recognition site, wherein the terminus of one of said adapters has a single stranded region complementary to a single stranded region generated on said second nucleic acid molecule after cleavage with said nuclease.

25

30

16. A method of synthesizing a double stranded nucleic acid molecule comprising at least the steps of:

1) generating n double stranded nucleic acid fragments, wherein at least n-2 fragments have single stranded regions at both termini and 2 fragments have single stranded regions at at least one terminus, wherein (n-1) single stranded regions are complementary

35

- 81 -

to (n-1) other single stranded regions, thereby producing (n-1) complementary pairs,

2) contacting said n double stranded nucleic acid fragments, simultaneously or consecutively, to effect binding of said complementary pairs of single stranded regions, and

3) optionally ligating said complementary pairs simultaneously or consecutively to produce a nucleic acid molecule consisting of n fragments.

10

17. A method as claimed in claim 16 wherein said fragments are each between 8 and 25 bases in length.

15

18. A method as claimed in claim 16 or 17 wherein n is at least 10.

20

19. A method as claimed in any one of claims 16 to 18 wherein said fragment comprises a region representing a unit of information corresponding to one or more code elements.

20. A method as claimed in claim 19 wherein said code is alphanumeric.

25

21. A method as claimed in claim 20 wherein said code is binary.

30

22. A method as claimed in anyone of claims 19 to 21 wherein each of said one or more code elements has the formula

(X)_a,

wherein

X is a nucleotide A, T, G, C or a derivative thereof which allows complementary binding and may be the same or different at each position, and

35 a is an integer from 4 to 10,

wherein (X)_a is different for each one or more code

- 82 -

elements.

23. A method as claimed in claim 22, wherein said code
is binary and the code elements "1" and "0" have the
5 formulae:

$$"0" = (X)_a \text{ and } "1" = (Y)_b,$$

wherein

$(X)_a$ and $(Y)_b$ are not identical,

10 X and Y are each a nucleotide A, T, G, C or a derivative thereof which allows complementary binding and may be the same or different at each position, and a and b are integers from 4 to 10.

15 24. A method as claimed in claim 23 wherein in the formulae $(X)_a$ and $(Y)_b$, X and Y are the same at each position.

20 25. A method of synthesizing a double stranded nucleic acid molecule comprising at least the steps of:

1) generating fragment chains according to the method defined in any one of claims 16 to 24;

25 2) optionally generating single stranded regions at the end of said fragment chains, wherein said single stranded regions are complementary to other single stranded regions on said fragment chains thus forming complementary pairs of single stranded regions;

3) contacting said fragment chains with one another, simultaneously or consecutively, to effect binding of said complementary pairs of single stranded regions.

30 26. A nucleic acid molecule produced according to a method as defined in any one of claims 16 to 25, or a single stranded nucleic acid molecule thereof.

35 27. A method of identifying the code elements contained in a nucleic acid molecule prepared according to a

- 83 -

method as defined in any one of claims 16 to 25, wherein
a probe, carrying a signalling means, specific to one or
more code elements, is bound to said nucleic acid
molecule and a signal generated by said signalling means
5 is detected, whereby said one or more code elements may
be identified.

28. A library of fragments as defined in any one of
claims 16 to 27, comprising $(n)_m$ fragments, wherein n is
10 as defined in any one of claims 16 to 27 and corresponds
to the length of chain that said library may produce,
and m is an integer corresponding to the number of
possible code elements or combinations thereof, such
that fragments corresponding to all possible code
15 elements for each position in the final chain are
provided.

PATENT COOPERATION TREATY

From the INTERNATIONAL SEARCHING AUTHORITY

PCT

To:

FRANK B. DEHN & CO.
Attn. JONES, Elisabeth L.
179 Queen Victoria Street
London EC4V 4EL
UNITED KINGDOM

NOTIFICATION OF TRANSMITTAL OF
THE INTERNATIONAL SEARCH REPORT
OR THE DECLARATION

FILE 73369

(PCT Rule 44.1)

- 6 NOV 2000

RE

Date of mailing
(day/month/year)

07/11/2000

ANSWER

FOR FURTHER ACTION

See paragraphs 1 and 4 below

Applicant's or agent's file reference

42.73369

International application No.

PCT/GB 00/02512

International filing date

(day/month/year)

27/06/2000

Applicant

COMPLETE GENOMICS AS

1. The applicant is hereby notified that the International Search Report has been established and is transmitted herewith.

Filing of amendments and statement under Article 19:

The applicant is entitled, if he so wishes, to amend the claims of the International Application (see Rule 46):

When? The time limit for filing such amendments is normally 2 months from the date of transmittal of the International Search Report; however, for more details, see the notes on the accompanying sheet.

Where? Directly to the International Bureau of WIPO
34, chemin des Colombettes
1211 Geneva 20, Switzerland
Fascimile No.: (41-22) 740.14.35

For more detailed instructions, see the notes on the accompanying sheet.

2. The applicant is hereby notified that no International Search Report will be established and that the declaration under Article 17(2)(a) to that effect is transmitted herewith.

3. With regard to the protest against payment of (an) additional fee(s) under Rule 40.2, the applicant is notified that:

the protest together with the decision thereon has been transmitted to the International Bureau together with the applicant's request to forward the texts of both the protest and the decision thereon to the designated Offices.

no decision has been made yet on the protest; the applicant will be notified as soon as a decision is made.

4. **Further action(s):** The applicant is reminded of the following:

Shortly after 18 months from the priority date, the international application will be published by the International Bureau. If the applicant wishes to avoid or postpone publication, a notice of withdrawal of the international application, or of the priority claim, must reach the International Bureau as provided in Rules 90bis.1 and 90bis.3, respectively, before the completion of the technical preparations for international publication.

Within 19 months from the priority date, a demand for international preliminary examination must be filed if the applicant wishes to postpone the entry into the national phase until 30 months from the priority date (in some Offices even later).

Within 20 months from the priority date, the applicant must perform the prescribed acts for entry into the national phase before all designated Offices which have not been elected in the demand or in a later election within 19 months from the priority date or could not be elected because they are not bound by Chapter II.

Name and mailing address of the International Searching Authority

 European Patent Office, P.B. 5818 Patentlaan 2
 NL-2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax: (+31-70) 340-3016

Authorized officer

Mireille Claudepierre

NOTES TO FORM PCT/ISA/220

These Notes are intended to give the basic instructions concerning the filing of amendments under article 19. The Notes are based on the requirements of the Patent Cooperation Treaty, the Regulations and the Administrative Instructions under that Treaty. In case of discrepancy between these Notes and those requirements, the latter are applicable. For more detailed information, see also the PCT Applicant's Guide, a publication of WIPO.

In these Notes, "Article", "Rule", and "Section" refer to the provisions of the PCT, the PCT Regulations and the PCT Administrative Instructions respectively.

INSTRUCTIONS CONCERNING AMENDMENTS UNDER ARTICLE 19

The applicant has, after having received the international search report, one opportunity to amend the claims of the international application. It should however be emphasized that, since all parts of the international application (claims, description and drawings) may be amended during the international preliminary examination procedure, there is usually no need to file amendments of the claims under Article 19 except where, e.g. the applicant wants the latter to be published for the purposes of provisional protection or has another reason for amending the claims before international publication. Furthermore, it should be emphasized that provisional protection is available in some States only.

What parts of the international application may be amended?

Under Article 19, only the claims may be amended.

During the international phase, the claims may also be amended (or further amended) under Article 34 before the International Preliminary Examining Authority. The description and drawings may only be amended under Article 34 before the International Examining Authority.

Upon entry into the national phase, all parts of the international application may be amended under Article 28 or, where applicable, Article 41.

When?

Within 2 months from the date of transmittal of the international search report or 16 months from the priority date, whichever time limit expires later. It should be noted, however, that the amendments will be considered as having been received on time if they are received by the International Bureau after the expiration of the applicable time limit but before the completion of the technical preparations for international publication (Rule 46.1).

Where not to file the amendments?

The amendments may only be filed with the International Bureau and not with the receiving Office or the International Searching Authority (Rule 46.2).

Where a demand for international preliminary examination has been/is filed, see below.

How?

Either by cancelling one or more entire claims, by adding one or more new claims or by amending the text of one or more of the claims as filed.

A replacement sheet must be submitted for each sheet of the claims which, on account of an amendment or amendments, differs from the sheet originally filed.

All the claims appearing on a replacement sheet must be numbered in Arabic numerals. Where a claim is cancelled, no renumbering of the other claims is required. In all cases where claims are renumbered, they must be renumbered consecutively (Administrative Instructions, Section 205(b)).

The amendments must be made in the language in which the international application is to be published.

What documents must/may accompany the amendments?

Letter (Section 205(b)):

The amendments must be submitted with a letter.

The letter will not be published with the international application and the amended claims. It should not be confused with the "Statement under Article 19(1)" (see below, under "Statement under Article 19(1)").

The letter must be in English or French, at the choice of the applicant. However, if the language of the international application is English, the letter must be in English; if the language of the international application is French, the letter must be in French.

NOTES TO FORM PCT/ISA/220 (continued)

The letter must indicate the differences between the claims as filed and the claims as amended. It must, in particular, indicate, in connection with each claim appearing in the international application (it being understood that identical indications concerning several claims may be grouped), whether

- (i) the claim is unchanged;
- (ii) the claim is cancelled;
- (iii) the claim is new;
- (iv) the claim replaces one or more claims as filed;
- (v) the claim is the result of the division of a claim as filed.

The following examples illustrate the manner in which amendments must be explained in the accompanying letter:

1. [Where originally there were 48 claims and after amendment of some claims there are 51]:
"Claims 1 to 29, 31, 32, 34, 35, 37 to 48 replaced by amended claims bearing the same numbers; claims 30, 33 and 36 unchanged; new claims 49 to 51 added."
2. [Where originally there were 15 claims and after amendment of all claims there are 11]:
"Claims 1 to 15 replaced by amended claims 1 to 11."
3. [Where originally there were 14 claims and the amendments consist in cancelling some claims and in adding new claims]:
"Claims 1 to 6 and 14 unchanged; claims 7 to 13 cancelled; new claims 15, 16 and 17 added." or
"Claims 7 to 13 cancelled; new claims 15, 16 and 17 added; all other claims unchanged."
4. [Where various kinds of amendments are made]:
"Claims 1-10 unchanged; claims 11 to 13, 18 and 19 cancelled; claims 14, 15 and 16 replaced by amended claim 14; claim 17 subdivided into amended claims 15, 16 and 17; new claims 20 and 21 added."

"Statement under article 19(1)" (Rule 46.4)

The amendments may be accompanied by a statement explaining the amendments and indicating any impact that such amendments might have on the description and the drawings (which cannot be amended under Article 19(1)).

The statement will be published with the international application and the amended claims.

It must be in the language in which the international application is to be published.

It must be brief, not exceeding 500 words if in English or if translated into English.

It should not be confused with and does not replace the letter indicating the differences between the claims as filed and as amended. It must be filed on a separate sheet and must be identified as such by a heading, preferably by using the words "Statement under Article 19(1)."

It may not contain any disparaging comments on the international search report or the relevance of citations contained in that report. Reference to citations, relevant to a given claim, contained in the international search report may be made only in connection with an amendment of that claim.

Consequence if a demand for international preliminary examination has already been filed

If, at the time of filing any amendments under Article 19, a demand for international preliminary examination has already been submitted, the applicant must preferably, at the same time of filing the amendments with the International Bureau, also file a copy of such amendments with the International Preliminary Examining Authority (see Rule 62.2(a), first sentence).

Consequence with regard to translation of the international application for entry into the national phase

The applicant's attention is drawn to the fact that, where upon entry into the national phase, a translation of the claims as amended under Article 19 may have to be furnished to the designated/elected Offices, instead of, or in addition to, the translation of the claims as filed.

For further details on the requirements of each designated/elected Office, see Volume II of the PCT Applicant's Guide.

PATENT COOPERATION TREATY

PCT

INTERNATIONAL SEARCH REPORT

(PCT Article 18 and Rules 43 and 44)

Applicant's or agent's file reference 42.73369	FOR FURTHER ACTION see Notification of Transmittal of International Search Report (Form PCT/ISA/220) as well as, where applicable, item 5 below.	
International application No. PCT/GB 00/02512	International filing date (day/month/year) 27/06/2000	(Earliest) Priority Date (day/month/year) 27/06/1999
Applicant COMPLETE GENOMICS AS		

This International Search Report has been prepared by this International Searching Authority and is transmitted to the applicant according to Article 18. A copy is being transmitted to the International Bureau.

This International Search Report consists of a total of 5 sheets.

It is also accompanied by a copy of each prior art document cited in this report.

1. Basis of the report

- a. With regard to the language, the international search was carried out on the basis of the international application in the language in which it was filed, unless otherwise indicated under this item.

- the international search was carried out on the basis of a translation of the international application furnished to this Authority (Rule 23.1(b)).
- b. With regard to any nucleotide and/or amino acid sequence disclosed in the international application, the international search was carried out on the basis of the sequence listing:
- contained in the international application in written form.
 - filed together with the international application in computer readable form.
 - furnished subsequently to this Authority in written form.
 - furnished subsequently to this Authority in computer readable form.
 - the statement that the subsequently furnished written sequence listing does not go beyond the disclosure in the international application as filed has been furnished.
 - the statement that the information recorded in computer readable form is identical to the written sequence listing has been furnished

2. Certain claims were found unsearchable (See Box I).

3. Unity of Invention is lacking (see Box II).

4. With regard to the title,

- the text is approved as submitted by the applicant.
- the text has been established by this Authority to read as follows:
METHODS OF CLONING AND PRODUCING FRAGMENT CHAINS WITH READABLE INFORMATION CONTENT

5. With regard to the abstract,

- the text is approved as submitted by the applicant.
- the text has been established, according to Rule 38.2(b), by this Authority as it appears in Box III. The applicant may, within one month from the date of mailing of this international search report, submit comments to this Authority.

6. The figure of the drawings to be published with the abstract is Figure No.

- as suggested by the applicant.
- because the applicant failed to suggest a figure.
- because this figure better characterizes the invention.

1

None of the figures.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/GB 00/02512

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 C12N15/10 C12N15/66 C12Q1/68

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C12N C120

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

WPI Data, PAJ, CAB Data, STRAND, BIOSIS, EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	BRAKE A J ET AL: "ALPHA-FACTOR-DIRECTED SYNTHESIS AND SECRETION OF MATURE FOREIGN PROTEINS IN SACCHAROMYCES-CEREVISIAE" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES, vol. 81, no. 15, 1984, pages 4642-4646, XP002149815 1984 ISSN: 0027-8424 figures 1,2 --- -/-	1-4, 6-8, 11-16, 19, 20, 25, 26

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

17 October 2000

Date of mailing of the international search report

07/11/2000

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Hornig, H

INTERNATIONAL SEARCH REPORT

International Application No

PCT/GB 00/02512

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	VERMERSCH P S ET AL: "THE USE OF A SELECTABLE FOK-I CASSETTE IN DNA REPLACEMENT MUTAGENESIS OF THE R388 DIHYDROFOLATE REDUCTASE GENE" GENE (AMSTERDAM), vol. 54, no. 2-3, 1987, pages 229-238, XP002149816 ISSN: 0378-1119 figure 4 ---	1-4,6-8, 11-16, 19,20, 25,26
Y	WO 98 38326 A (ZINK MARY ANN ;XU GUOPING (US); HODGSON CLAQUE P (US); NATURE TECH) 3 September 1998 (1998-09-03) claims 1-26; figure 1 ---	1-4,6-8, 11-16, 19,20, 25,26
Y	MANDECKI W ET AL: "FOK-I METHOD OF GENE SYNTHESIS" GENE (AMSTERDAM), vol. 68, no. 1, 1988, pages 101-107, XP002149817 ISSN: 0378-1119 page 102, right-hand column, line 16 - line 18 ---	1-4,6-8, 11-16, 19,20, 25,26
Y	DATABASE BIOSIS 'Online!' BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; 1982 KOROBKO V G ET AL: "OLIGO NUCLEOTIDE ADAPTORS CLEAVABLE BY RESTRICTION NUCLEASE HGA-I AND THEIR APPLICATION FOR DNA SYNTHESIS" Database accession no. PREV198375085277 XP002149821 abstract & BIOORGANICHESKAYA KHIMIYA, vol. 8, no. 6, 1982, pages 830-839, ISSN: 0132-3423 ---	1-4,6-8, 11-16, 19,20, 25,26
Y	SZYBALSKI W ET AL: "CLASS-II RESTRICTION ENYMES A REVIEW" GENE (AMSTERDAM), vol. 100, 1991, pages 13-26, XP002149818 ISSN: 0378-1119 page 20, right-hand column, line 1 - line 9 ---	1-4,6-8, 11-16, 19,20, 25,26
E	WO 00 39333 A (JONES ELIZABETH LOUISE ;LEXOW PREBEN (NO)) 6 July 2000 (2000-07-06) cited in the application claims 1-26; figures 1-25 ---	1,4-6,15
		-/-

INTERNATIONAL SEARCH REPORT

International Application No

PCT/GB 00/02512

6.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 98 14619 A (COCKS BENJAMIN GRAEME ; INCYTE PHARMA INC (US); CHUNG ALICIA (US);) 9 April 1998 (1998-04-09) page 16, line 18 - line 31; figures 1-4A, 5A, 6A, 7A, 9 ---	
A	MAHADEVA HARIN ET AL: "A simple and efficient method for the isolation of differentially expressed genes." JOURNAL OF MOLECULAR BIOLOGY, vol. 284, no. 5, 18 December 1998 (1998-12-18), pages 1391-1398, XP000952695 ISSN: 0022-2836 figure 1 ---	
A	UNRAU PAUL ET AL: "Non-cloning amplification of specific DNA fragments from whole genomic DNA digests using DNA 'indexers'." GENE (AMSTERDAM), vol. 145, no. 2, 1994, pages 163-169, XP002149819 ISSN: 0378-1119 the whole document ---	
A	WO 94 01582 A (MEDICAL RES COUNCIL ; SIBSON DAVID ROSS (GB)) 20 January 1994 (1994-01-20) claims 1-37; figure 3B ---	
A	PADGETT KERSTIEN A ET AL: "Creating seamless junctions independent of restriction sites in PCR cloning." GENE (AMSTERDAM), vol. 168, no. 1, 1996, pages 31-35, XP004042930 ISSN: 0378-1119 the whole document ---	
A	LEBEDENKO E N ET AL: "METHOD OF ARTIFICIAL DNA SPLICING BY DIRECTED LIGATION (SDL)" NUCLEIC ACIDS RESEARCH, GB, OXFORD UNIVERSITY PRESS, SURREY, vol. 19, no. 24, 1991, pages 6757-6761, XP002069446 ISSN: 0305-1048 the whole document ---	
A	DE 196 33 427 A (BERNAUER HUBERT S DR) 19 March 1998 (1998-03-19) the whole document ---	
		-/-

INTERNATIONAL SEARCH REPORT

International Application No

PCT/GB 00/02512

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 0 245 130 A (INNOGENETICS NV) 11 November 1987 (1987-11-11) the whole document -----	

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/GB 00/02512

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 9838326	A	03-09-1998	AU	6443298 A		18-09-1998
WO 0039333	A	06-07-2000	AU NO	1881000 A 996425 A		31-07-2000 26-06-2000
WO 9814619	A	09-04-1998	AU	4753397 A		24-04-1998
WO 9401582	A	20-01-1994	AT AU AU CA DE DE EP JP US	159986 T 686563 B 4575893 A 2139944 A 69315074 D 69315074 T 0650528 A 7508883 T 5728524 A		15-11-1997 12-02-1998 31-01-1994 20-01-1994 11-12-1997 05-03-1998 03-05-1995 05-10-1995 17-03-1998
DE 19633427	A	19-03-1998		NONE		
EP 0245130	A	11-11-1987	AU DK JP	7104087 A 172187 A 63017694 A		08-10-1987 05-10-1987 25-01-1988

