

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME						
CENTRE NUMBER			CANDIDAT NUMBER	E		

COMPUTER SCIENCE

0478/12

Paper 1 Theory

February/March 2017

1 hour 45 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

No calculators allowed.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

No marks will be awarded for using brand names of software packages or hardware.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The maximum number of marks is 75.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

4	Namo	throo	different	concore
	mame	ınree	amereni	sensors

Sensor 1	
Sensor 2	
Sensor 3	
	[3]

2 The diagram below shows **five** logic gate symbols and **five** names.

Draw a line between each logic gate symbol and its correct name.

		has a nand store				one site	e. Data	are tra	nsmitte	d, using a wired network, from
(a)	State,	with rea	sons, \	which d	lata tra	nsmiss	ion, ser	ial or p	arallel,	should be used.
	Туре									
	Reaso	ns								
										[3]
(b)	The tw	o regist	ers' co	ntents	shown	include	parity	bits.		
		Parity bit								_
		1	0	0	1	0	1	1	1	Register 1
		1	0	0	0	0	1	1	1	Register 2
	State v	vhich ty	ne of n	arity ea	ch rea	ister is	usina			
				-						
	Ū									
	3									[2]
(c)		ne meth iission o		ner thar	n parity	checki	ing, tha	t could	be use	d for checking for errors in the
	Method	d								
										[1]

5

ai	in te	ext																									
l	b	С	d	е	f	g	h	i	j	k	I	m	n	0	р	q	r	S	t	u	V	W	X	у	2	Z	
۷ŗ	her	tex	t																							_	
′	р	n	а	q	b	r	u	Z	s	С	0	у	k	w	f	X	i	е	m	d	j	t	ı	h	Ć	g	
)	Со	nve	rt th	e f	ollo	win	g pl	ain	tex	t to	сур	her	tex	t.													
	Pla	ain te	ext:		d a	ı t a	se	ес	u r	ity	/																
	Cvi	phe	r tex	ct:																							
)		•												ı lett													
,		ow t								-		.g o	aon		0. 0		10 u	,,,,,,			o p	iuot	, ,			···	
		ain t		icv	N C	ургіс	טו נכ	7/ L	Jeic	JVV.																	
		b	c	d	е	f	g	h	i	j	k		m	n	0	р	q	r	s	t	u	v	V	v	x	У	_
	l a						9		- 1			- -	1	-	-		۳.	1 -	-	-		-	-	- -	-	,	-
	a																										
		w c			tex	t					<u> </u>																
)	Ne	w c	yph	er			on, v	whice	ch c			text	WO	uld k	pe n	nor	e se	ecur	e.								
)	Ne	w c	yph	er			ppn, v	which	ch c	cyph	ner			uld t													
	Sta	w c	givii	er ng	a re	easc				cyph	ner																
	Ne	w c	givii	er ng	a re	easc				cyph	ner																
i∨∈	Sta	w c	givii	er ng	a re	easc	folic			erm	ner																
	Sta	w c	yph givii 	er ng	a re	easc	folic		ng t	erm	ner																
i∨¢ TN	Sta	w c	givii	er ng	a re	the	folic		ng t	erm	ner																
īv•	Sta	w c	givii	er ng	a re	the	folic		ng t	erm	ner																

6	The diagram	shows five	operating	system	functions	and five	descriptions.
---	-------------	------------	-----------	--------	-----------	----------	---------------

Draw a line between each operating system function and its description.

Function	Description
Interrupt	Many processes appear to run simultaneously
Utility	Data are temporarily held in a buffer waiting for an output device to access it
Memory management	A signal that causes the operating system to take a specified action
Spooling	A program that performs a specific task required for the operation of a computer system
Multitasking	A process of assigning blocks of memory to programs running in a computer
	[4] and a large text file are to be sent as email attachments. Both files are ding. Each file is compressed using a different type of data compression
Explain, with reasons, w	hich type of data compression algorithm should be chosen for each file.

Ø	A register in a computer	contains binary digits.

(a) The contents of the register could represent a binary integer.

0	0	1	1	0	1	1	1
---	---	---	---	---	---	---	---

Convert the binary integer to denary and nexadecimal.
Donow

Denary		 	 	 	 	 	 	
Hexade	cimal	 	 	 	 	 	 	
								[2]

(b) The contents of the register could represent the ASCII value for the single denary digit '7'. Write down the ASCII value for '9' in binary, denary and hexadecimal.

white down the Acon value for a fir binary, dentity and hexadecimal.	
Binary	
Denary	
Hexadecimal	
	[3]

(c) Write in Register X the binary number you would use with AND gates to convert the ASCII value of '7' to its binary integer value.

ASCII	1	1	1	0	1	1	0	0
Register X								

[1]

9 Passwords are used to keep data safe.

Explain the differences between a text-based password and a biometric password.

10	Describe the differences between a barcode and a Quick Response (QR) code.
	[3]
11	Three programmers are working on different projects:
	 Alice is developing a program written in a low-level language Akbar is developing a program written in a high-level language Alex is preparing a program written in a high-level language for sale
	State, with reasons, which type of translator each programmer should use. Each programmer should be using a different type of translator.
	Alice
	Akbar
	Alex
	[6]

12	(a)	Identify three uses for hexadecimal and for each one give an example of hexadecimal that matches the use.
		Use 1
		Evample
		Use 2
		Use 3
		Example[6
	(b)	Explain why hexadecimal is used to represent binary numbers.

13	(a)	Explain what is meant by primary, secondary and off-line storage. Give an example of each.
		Primary storage
		Example
		Secondary storage
		Example
		Off-line storage
		Example
		[6]
	(b)	A set of photographs has been taken for a wedding. All the guests are to be sent digitally stored copies through the ordinary postal service. There are fifty photographs and each photograph is between 1.8 and 2.5 megabytes in size.
		Work out the maximum storage space required for a set of photographs. State, with a reason, a suitable medium to use for the copies to be sent to the guests.
		Maximum storage space
		Medium
		Reason
		[3]

14 A system controls the flow of vehicles through a barrier based on three lights, A, B and C.

When a light is red, the signal is zero. When a light is green, the signal is one.

The barrier will open when the output X is one.

The barrier opens if either:

- light A is red and lights B and C are both green or
- light A is green and lights B and C are both red
- (a) Design a logic circuit for the system.

[5]

(b) Complete the truth table for the system given at the start of Question 14.

Α	В	С	Working space	х
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

[4]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.