Graph contrastive learning of subcellular-resolution spatial transcriptomics improves cell type annotation and reveals critical molecular pathways

Briefings in Bioinformatics, 2025

Qiaolin Lu, Jiayuan Ding, Lingxiao Li, Yi Chang Reporter: Fengjiao Gong

March 10, 2025

Outline

- 1. Background
- 2. Method Focus
- 3. Experiments

Background

Spatial Transcriptomics(ST) technologies

- enable quantification of RNAs
- within intact tissue sections

Address questions:

- clarify cell-type composition of tissues
- discover cellular spatial interactions rules
- explain molecular interactions between tissue components

Background

Spatial Transcriptomics(ST):

- sequencing-based methods(sST)
- ► imaging-based methods(**iST**)

 MERFISH, CosMx SMI, and Xenium

Background

iST

- quantifies gene expression level across cells in space
- directly reveals the subcellular distribution of RNA transcripts
- ▶ at the single-molecule resolution

The **subcellular localization** of RNA molecules:

- characterize cell identity
- explain subcellular regulatory mechanisms

This work — Focus

Semi-supervised Graph Contrastive Learning (GCL)-based Algorithm

- learn cell type-specific intracellular spatial distribution of RNA
- ▶ first to explicitly model RNA's **subcellular** distribution and community
- ▶ improve **cell type annotation** with limited labeled data

Method

- ► Model
- ► Unsupervised Contrastive Learning
- ► Supervised Classification
- ► Overall Objective

Gene Neighborhood Network G

- 1. $V = \{v_1, v_2, ..., v_n\}$: the node set with n transcripts in the cell.
- **2**. *E*: the edge set.
- 3. $X \in \mathbb{R}^{n \times d}$: node feature.
- 4. $A \in \mathbb{R}^{n \times n}$: adjacent matrix.

Local Neighborhood Network (graph clustering)

- 1. Subcellular spatial regions.
- **2.** Subgraphs $\{S_1, S_2, ..., S_k\}$.

Subcellular organization of RNA

Learning graph's **intrinsic** property

- ► retain highly relevant nodes or subgraph
- eliminate less critical components

[ref] Boosting graph contrastive learning via graph contrastive saliency. In: International Conference on Machine Learning, PMLR, The Fortieth International Conference on Machine Learning, 2023.

Focus uses **multiple GIN layers** to update node embeddings and subgraph embeddings.

$$H_v^{(l+1)} = \text{ReLU}\left(\left((1 + \epsilon^{(l)})H_v^{(l)} + \sum_{u \in N(v)} H_u^{(l)}\right)W^{(l)}\right)$$
 (1)

where for the *l*-th layer

- $ightharpoonup H_v^{(l)}$ is the node representation of node v
- ightharpoonup N(v) denotes the set of neighbors of node v
- ightharpoonup ReLU(·) is the nonlinear activation function
- $ightharpoonup \epsilon^{(l)}$ is a learnable parameter
- $ightharpoonup W^{(l)}$ is the weight matrix

- 1. Augmentation
 - ► Node Augmentation
 - Subgraph Augmentation
 - Sampling Strategy
- 2. Loss Design

Node Augmentation:

- ► Identical preserve the original state.
- ► Node dropping remove nodes.
- ► Node masking conceal node attributes.
- ► Edge perturbation delete edges connecting nodes.

Subgraph Augmentation:

- ► Edge perturbation remove edges between subgraphs.
- ► Subgraph swapping exchange of two subgraphs.

Sampling Strategy

Gumbel-Softmax strategy

- sample from a discrete distribution in a differentiable way
- calculate Gumbel-Softmax probability as node importance score

[ref] Categorical reparameterization with Gumbel-Softmax. 5th International Conference on Learning Representations,2017.

Sampling Strategy

For node v with augmentation i:

1. Node dropping & masking:

$$p_{v_i} = 1 - \text{GumbelSoftmax} \left(\text{MLP}_i \left(H_v \right) \right)$$
 (2)

$$p_v = \sum_i p_{v_i} \qquad Node \, Score \tag{3}$$

2. Edge perturbation:

Average{related p_v }

Method — Subgraph Augmentation

For subgraph *S* with *m* nodes:

1. Subgraph swapping:

$$p_s = \frac{1}{m} \sum_{i=1}^{m} p_v \qquad Subgraph Score \tag{4}$$

2. Edge perturbation:

Average{related p_v }

Augmented **graph embedding** from ResGCN:

$$H_G = \sum_{v=1}^{n'} H_v^{(t)},\tag{5}$$

where

- ightharpoonup n' the number of nodes.
- ▶ $H_v^{(t)}$ the node embedding at the t-th layer.

Method — Unsupervised Contrastive Learning Loss Design

Graph Contrastive Learning (GCL):

- ► **Positive pair**Two augmented views originating from the same input graph.
- Negative pair
 Two views derived from distinct input graphs.

Contrastive learning loss for cell:

$$\ell_{i,j} = -\log \frac{\exp(\operatorname{sim}(\mathbf{H}_{G_i}, \mathbf{H}_{G_j})/\tau)}{\sum_{k=1}^{2N} \mathbb{I}_{[k \neq i]} \exp(\operatorname{sim}(\mathbf{H}_{G_i}, \mathbf{H}_{G_k})/\tau)}$$
(6)

where

- \triangleright (*i,j*) represents a positive pair of samples from the same cell
- \triangleright (*i*, *k*) denotes a randomly sampled pair from the batch
- ightharpoonup 2N is the number of generated graph views
- ightharpoonup au is the temperature parameter

Contrastive learning loss for batch:

$$L_{cl} = \frac{1}{2N} \sum_{k=1}^{N} [\ell(2k-1, 2k) + \ell(2k, 2k-1)]$$
 (7)

Method — Supervised Classification

Supervised classification loss:

$$L_{cls} = -\sum_{k=1}^{N} y \log(\hat{y}) \tag{7}$$

where y and \hat{y} denote ground truth labels and predicted labels, respectively.

Method — Overall Objective

Overall objective of Focus:

$$L = L_{cl} + \lambda L_{cls} \tag{8}$$

where λ is a balance hyper-parameter.

Method — Focus

Figure 1: An overview of the Focus framework.

Experiments

Table 1: Summary of Datasets.

Dataset	CosMx Lung	CosMx Kidney	MERFISH MOp	Xenium DCIS
Cells	766313	500000	300000	300000
Genes	960	960	258	313
Types	18	8	24	19
Tissues	Human Lung	Human Kidney	Mouse Cortex	Human Breast

Experiments

- 1. Cell Type Annotation Across Diverse iST Platforms
- 2. Ablation Studies on Augmentation Strategies
- 3. Enriched Cell Type-specific Pathways from Graph-based Gene Importance Scores

Cell Type Annotation Across Diverse iST Platforms

Table 2: Performance of different methods when the reference and query samples come from the same patient or mouse.

Dataset	CosMx Lung		CosMx Kidney		MERFISH MOp		Xenium DCIS	
Model	Accuracy	F1-score	Accuracy	F1-score	Accuracy	F1-score	Accuracy	F1-score
Focus	0.904 ± 0.009	0.704 ± 0.027	0.688 ± 0.013	$\textbf{0.694} \pm \textbf{0.006}$	$\textbf{0.948} \pm \textbf{0.023}$	0.909 ± 0.082	0.871 ± 0.006	0.712 ± 0.030
scDeepSort	0.725 ± 0.026	0.391 ± 0.012	0.377 ± 0.005	0.248 ± 0.007	0.868 ± 0.052	0.685 ± 0.025	N/A	N/A
CellTypist	0.634 ± 0.018	0.429 ± 0.013	0.478 ± 0.028	0.495 ± 0.010	N/A	N/A	0.371 ± 0.011	0.144 ± 0.002
TOSICA	0.854 ± 0.021	0.638 ± 0.001	0.668 ± 0.002	0.664 ± 0.002	0.942 ± 0.004	0.885 ± 0.059	0.381 ± 0.044	0.176 ± 0.005
ACTINN	0.852 ± 0.002	0.566 ± 0.029	0.569 ± 0.009	0.551 ± 0.022	0.938 ± 0.011	0.853 ± 0.059	0.593 ± 0.013	0.193 ± 0.004
Tacco	$\textbf{0.916} \pm \textbf{0.012}$	0.729 ± 0.004	0.530 ± 0.030	0.522 ± 0.016	0.939 ± 0.011	0.902 ± 0.047	0.525 ± 0.001	0.207 ± 0.007
scDot	0.844 ± 0.009	0.637 ± 0.029	0.481 ± 0.028	0.506 ± 0.033	0.922 ± 0.029	0.868 ± 0.080	N/A	N/A

Bold text indicates the best, underlined text indicates the second-best, and 'N/A' means no meaningful results.

Cell Type Annotation Across Diverse iST Platforms

Table 3: Performance of different methods when the reference and query samples come from the different patients or mice.

Dataset	CosMx Lung		CosMx	Kidney	MERFISH MOp		
Model	Accuracy	F1-score	Accuracy	F1-score	Accuracy	F1-score	
Focus	0.692 ± 0.119	0.399 ± 0.173	0.715 ± 0.025	0.708 ± 0.020	$\textbf{0.934} \pm \textbf{0.010}$	0.865 ± 0.048	
scDeepSort	0.462 ± 0.059	0.150 ± 0.045	0.173 ± 0.119	0.065 ± 0.062	0.854 ± 0.033	0.680 ± 0.071	
CellTypist	0.450 ± 0.112	0.214 ± 0.018	0.450 ± 0.066	0.472 ± 0.062	N/A	N/A	
TOSICA	0.634 ± 0.202	0.386 ± 0.158	0.709 ± 0.002	0.703 ± 0.017	0.925 ± 0.006	0.825 ± 0.006	
ACTINN	0.636 ± 0.047	0.299 ± 0.057	0.584 ± 0.009	0.543 ± 0.023	0.931 ± 0.008	0.832 ± 0.039	
Tacco	0.640 ± 0.080	0.363 ± 0.146	0.575 ± 0.049	0.561 ± 0.056	0.922 ± 0.011	0.850 ± 0.034	
scDot	0.663 ± 0.134	0.390 ± 0.174	0.584 ± 0.062	0.554 ± 0.069	0.918 ± 0.001	0.847 ± 0.047	

Bold text indicates the best, underlined text indicates the second-best, and 'N/A' means no meaningful results.

Ablation Studies on Augmentation Strategies

Table 4: Ablation studies of different data augmentation strategies.

Augmentation Level	Augmentation Type*	CosMx Lung		Xenium DCIS		MERFISH MOp	
		Accuracy	F1-score	Accuracy	F1-score	Accuracy	F1-score
Node	Identical	0.852 ± 0.044	0.663 ± 0.023	0.838 ± 0.012	0.701 ± 0.021	0.947 ± 0.032	0.911 ± 0.021
Node	ND	0.872 ± 0.021	0.710 ± 0.017	0.842 ± 0.019	0.729 ± 0.021	0.970 ± 0.015	0.961 ± 0.018
Node	NM	0.863 ± 0.018	0.698 ± 0.018	0.832 ± 0.020	0.711 ± 0.019	0.954 ± 0.009	0.922 ± 0.010
Node	EP	0.869 ± 0.011	0.686 ± 0.014	0.834 ± 0.007	0.707 ± 0.006	0.967 ± 0.021	0.944 ± 0.011
Node	ND & NM	0.882 ± 0.015	0.699 ± 0.012	0.855 ± 0.011	0.731 ± 0.023	0.944 ± 0.014	0.887 ± 0.025
Node	ND, NM & EP	0.901 ± 0.013	0.691 ± 0.021	0.871 ± 0.018	0.733 ± 0.024	0.965 ± 0.017	0.921 ± 0.023
Subgraph	EP	0.857 ± 0.029	0.671 ± 0.030	0.852 ± 0.032	0.711 ± 0.021	0.937 ± 0.033	0.889 ± 0.029
Subgraph	SW	0.873 ± 0.016	0.681 ± 0.031	0.858 ± 0.028	0.732 ± 0.022	0.945 ± 0.018	0.889 ± 0.019
Subgraph	EP & SW	0.862 ± 0.022	0.672 ± 0.028	0.856 ± 0.026	0.700 ± 0.018	0.941 ± 0.026	0.885 ± 0.024
Node & Subgraph	ALL	0.901 ± 0.021	0.712 ± 0.008	0.867 ± 0.019	0.734 ± 0.021	0.975 ± 0.011	0.967 ± 0.018

^{*}Identical: no augmentation; ND: node dropping; NM: node masking; EP: edge perturbation; SW: subgraph swapping; ALL: all augmentations including ND, NM & EP from node level and EP & SW from subgraph level. Bold text indicates the best and underlined text indicates the second-best.

Enriched Cell Type-specific Pathways from Graph-based Gene Importance Scores

CosMx Lung dataset — cellType: mDC + T CD 8 naive

[ref] Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, Proceedings of the National Academy of Sciences,

2005

Heatmap

Conclusion

Focus

- ► Enhance *cell type annotation* by leveraging transcript's subcellular and spatial community information.
- ► To validate its *generalizability and robustness* on a broader range of cell types and tissues.

Thanks!