Motivação e análise descritiva univariada para variáveis quantitativas.

Prof. Me. Lineu Alberto Cavazani de Freitas

CE003 - Estatística II

Departamento de Estatística Laboratório de Estatística e Geoinformação

- Parte primordial de qualquer análise estatística é chamada análise descritiva ou exploratória.
- Consiste basicamente de tabelas, resumos numéricos e análises gráficas das variáveis disponíveis em um conjunto de dados.
- ► Trata-se de uma etapa de extrema importância e deve preceder qualquer análise mais sofisticada.
- ► As técnicas de análise exploratória visam **resumir** e **apresentar** as informações de um conjunto de dados brutos.

- Tentar compreender um conjunto de dados sem algum método que permita resumir as informações é inviável.
- A análise exploratória é a primeira forma de tentarmos enteder o que acontece nos nossos dados.
- Uma das tarefas é a etapa de consistência dos dados, isto é, verificar se os dados coletados são condizentes com a realidade.

Figura 1. Extraído de pixabay.com.

- O conjunto de técnicas aplicáveis está diretamente associado ao tipo das variáveis de interesse (quantitativas x qualitativas) e suas ramificações.
- Podemos conduzir análises focadas nas variáveis uma a uma (análises univariadas).
- Bem como conduzir análises focadas em avaliar a relação entre as variáveis (análises multivariadas).

Figura 2. Extraído de pixabay.com.

Podemos fazer uso diversas técnicas, tais como

- ► Tabelas de frequência absolutas.
- ► Tabelas de frequência relativas.
- ► Tabelas de frequência acumuladas.
- ► Tabelas para múltiplas variáveis.
- Gráficos (para análise uni e multivariada).

- Medidas de posição central.
- Medidas de posição relativa.
- ► Medidas de forma.
- Medidas de dispersão.
- Medidas de associação.

- ► Uma variável quantitativa é uma característica que pode ser representada numericamente.
- Podem ser classificadas em discretas (finitos valores em um dado intervalo) ou contínuas (infinitos valores em um dado intervalo).
- Quando estamos lidando com variáveis quantitativas discretas com poucos possíveis valores, as técnicas apresentadas para variáveis qualitativas se aplicam.

Tabelas de frequência

Tabela 1. Tabela de frequências para o número de irmãos.

Irmãos	Frequência	Percentual	Freq. Acumulada	Percentual Acumulado	
0	4	15.4 %	4	15.4 %	
1	8	30.8 %	12	46.2 %	
2	8	30.8 %	20	77 %	
3	3	11.5 %	23	88.5 %	
4	2	7.7 %	25	96.2 %	
5	1 5	3.8 %	26	100 %	
Total	26	100 %	26	100 %	

Gráfico de barras verticais

Figura 3. Gráfico de barras verticais para o número de irmãos.

- ► Para variáveis quantitativas contínuas ou discretas com muitos possíveis valores, precisamos de técnicas específicas.
- Uma estratégia comum é o agrupamento em faixas de valores, e avaliação das frequências nestas faixas.
- ► Podem ser usadas tabelas de frequências absolutas, relativas e acumuladas para as faixas de valores.
- ▶ Utilizando a razão entre frequência relativa e a amplitude das faixas de valores, geramos a densidade.

Faixas de valores

- Cuidados devem ser tomados quanto às notações e tipos de faixas (aberto e fechado à esquerda ou direita).
- Em geral definimos intervalos abertos à esquerda e fechados à direita.
- Considerando dois valores a e b, em que a < b, os intervalos consideram que a não está incluído na faixa, b está.

- Notações usuais:
 - $ightharpoonup a < y \le b$
 - $ightharpoonup a \vdash b$
 - ► (a,b]
- ▶ $5 < y \le 10$ ou $5 \vdash 10$ ou [5,10)
 - Valores maiores que 5 até valores menores ou iguais a 10. 5 não está no intervalo.

- Como agrupar em classes?
- Qual o tamanho ideal das faixas de valores?
- Classes definidas com a mesma amplitude é o procedimento mais usual.
- Existem procedimentos que podem ser usados para obter a amplitude, como Sturges.
- ▶ Em geral, 5 a 15 faixas são suficientes.

Tabelas de frequência para uma variável quantitativa

Tabela 2. Tabela de frequências usando faixas de altura.

Faixas	Frequência	Freq. Relativa	Freq. Acumulada	Freq. Rel. Acumulada	
[160,165]	6	0.23	6	0.23	
(165,170]	2	0.08	8	0.31	
(170,175]	6	0.23	14	0.54	
(175,180]	6	0.23	20	0.77	
(180,185]	4	0.15	24	0.92	
(185,190]	1 5	0.04	25	0.96	
(190,195]	1	0.04	26	1.00	

Tabelas de frequência para uma variável quantitativa

Tabela 3. Tabela de frequências usando faixas de altura.

Faixas	Frequência	Percentual	Freq. Acumulada	Percentual Acumulado
[160,165]	6	23 %	6	23 %
(165,170]	2	8 %	8	31 %
(170,175]	6	23 %	14	54 %
(175,180]	6	23 %	20	77 %
(180,185]	4	15 %	24	92 %
(185,190]	15	4 %	25	96 %
(190,195]	1//	4 %	26	100 %

Tabelas de frequência para uma variável quantitativa

Tabela 4. Tabela de frequências usando faixas de altura.

Faixas	Frequência	Percentual	Freq. Acum.	Perc. Acum.	Amplitude	Densidade
[160,165]	6	23 %	6	23 %	5	0.046
(165,170]	2	8 %	8	31 %	5	0.016
(170,175]	6	23 %	14	54 %	5	0.046
(175,180]	6	23 %	20	77 %	5	0.046
(180,185]	4	15 %	24	92 %	5 11111	0.030
(185,190]	1 5	4 %	25	96 %	5	0.008
(190,195]	1	4 %	26	100 %	5	0.008

Gráficos para representação de frequências de uma variável quantitativa

Assim como no caso de variáveis qualitativas ou quantitativas discretas com poucos possíveis valores, a representação por meio de gráficos pode ser bastante benéfica para análise de variáveis quantitativas.

Algumas possibilidades são

- ► Histograma.
- Gráfico de densidade empírica.
- ► Box-plot

Histograma

- ► Consiste em **retângulos contíguos** de base dada pelas faixas de valores definindas para uma variável.
- Algumas possibilidades são:
 - ► A área representar a frequência da rescpectiva faixa.
 - A altura representar a frequência absoluta na faixa.
 - ▶ A altura representar o quociente da área pela amplitude da faixa: a densidade.

Histograma

Figura 4. Histograma das alturas dos alunos.

Efeito do número de classes

- ▶ O número de classes pode afetar diretamente as tabelas e gráficos.
- ► Com poucas classes, os dados ficam excessivamente resumidos e as classes ficam muito heterogêneas.
- Com muitas classes, os dados ficam segmentados em excesso e as representações são comprometidas.

Efeito do número de classes

Figura 5. Efeito do número de classes em histogramas.

Gráfico de densidade empírica

Intuição

- Imagine uma sequência de histogramas de densidade em que o número de observações aumenta, juntamente com o número de faixas.
- ▶ No limite, teremos uma curva.
- Esta curva é chamada de gráfico de densidade empírica.
- ▶ É um gráfico "computacionalmente intensivo", depende da definição de uma função kernel e do tamanho da banda.
- A área sob a curva é igual a 1.

Figura 6. Gráfico de densidade para as alturas dos alunos.

Box-plot

- ► Outra importante visualização é o box-plot.
- ▶ É possível analisar a distribuição dos dados, aspectos quanto a posição, variabilidade, assimetria e também a presença de valores atípicos.
- ► Retomaremos o box-plot após estudar quartis, em medidas descritivas.

Figura 7. Box-plot das alturas dos alunos.

Histograma, densidade e box-plot

Figura 8. Combinação de representações.

Assimetria

- Um conjunto pode ser aproximadamente simétrico, assimétrico à esquerda ou à direita.
- ► Tais características são facilmente diagnosticadas por meio de análise gráfica usando um histograma, gráfico de densidade ou box-plot.
- ► Futuramente veremos como diagnosticar assimetria por meio de medidas descritivas.

Figura 9. Gráfico de setores para a variável...

O que foi visto:

- Introdução à análise exploratória.
- Análise exploratória univariada para variáveis qualitativas.
- Análise exploratória univariada para variáveis quantitativas.

Próximos assuntos:

- Resumos numéricos.
- Medidas de posição central.
- Medidas de posição relativa.
- ► Medidas de dispersão.