# Topological Data Analysis

"Data has shape and shape has meaning"

- Gunnar Carlsson

**Anthony Gillan-Anderson** 

Data Visualization-ers 28.03.2017

### What is TDA?

- Active area of research, with multiple approaches.
- One approach in particular Mapper

Topological Methods for the Analysis of High Dimensional Data Sets and 3D Object Recognition, Singh, Memoli & Carlsson (2007).

point cloud: a pair of pants



point cloud: a pair of pants





Choose a "lens":

Here *f* is the vertical height of a data point on the pair of pants.

Through lens f, shape is summarised by a Y: the inverse image of f has a single isoline split in two.

Illustration borrowed from Anthony Bak

point cloud: a pair of pants







Choose a "lens":

Here g is the horizontal position of a data point on the pair of pants.

Through lens **g**, shape is summarised by a **O-O**: the inverse image of **g** has contours splitting through the legs.

\*\*Illustration borrowed from Anthony Bak\*\*



A good lens will often isolate some feature of



A good lens will often isolate some feature of









### Simplicial Complex



Partial clusters on each interval become nodes in a simplicial complex or similarity graph.

Nodes are connected by edge if their clusters share common data points. This is made possible be over sampling with overlapping intervals.

### Simplicial Complex





### Implementation decisions:

- Distance/dissimilarity metric
- Filter function(s)
- Partition of f
- Clustering algorithm









The data is drawn from a bimodal distribution













The data has two qualitatively distinct outlier types

e.g. Type I & Type II diabetes

## Example: Image Analysis



Singh, Memoli & Carlsson (2007)

## Example: Breast Cancer



#### Data sets:

- (a) NKI patient survival based on 1.5k gene expression levels.
- (b) GSE2034 patient relapse time on 1.5k genes with highest variance.

#### **Dissimilarity metric:**

Correlation distance

#### **Filter functions:**

Survival outcome, L-infinity centrality

### **Clustering:**

single-linkage clustering

Lum et al, Nature (2013)

## Example: NBA



Alagappan, Ayasdi (2012) MIT Slone Sports Analytics Conference

#### Data set:

452 players, 7 stats categories (pts, rebs, blk, ast, stl, tov, pf)

### **Dissimilarity metric:**

variance-normalised Euclidean

#### **Filter functions:**

1st & 2nd SVD components

### **Clustering:**

single-linkage clustering

## Open-source Libraries

- Python
  - Mapper (<a href="http://danifold.net/mapper/">http://danifold.net/mapper/</a>)
  - KeplerMapper (https://github.com/MLWave/kepler-mapper)
- R
  - TDAMapper (<a href="https://cran.r-project.org/web/packages/TDA">https://cran.r-project.org/web/packages/TDA</a>)
- Matlab
  - Original Mapper paper

demos: NBA, hand-written digits

### More Resources

- Anthony Bak is an actual expert in TDA and speaks very well on this topic from the viewpoint of a practitioner:
  - How Ayasdi used TDA to Solve Complex Problems
  - TDA for the Working Data Scientist
- The <u>Ayasdi website</u> has an archive of blog postings and white papers describing their platform and applications for TDA.
- Technical articles:
  - Original Mapper article
  - TDA for breast cancer outcomes (including statistical analysis of shape).
  - If you're interested in the maths, see Carlsson's <u>seminal article</u>.
- My GitHub page (@amanderson) has a TDA repo with a (hopefully growing) set of notebooks.