Suites vectorielles et normes

Exercice 1. Déterminer la nature et la limite éventuelle des suites vectorielles suivantes :

1.
$$x_n = \begin{pmatrix} \frac{1+2n^2}{1+n+n^2} \\ e^{\frac{1}{1+n}} \end{pmatrix}$$

2.
$$x_n = \begin{pmatrix} n \sin(1/n) \\ \alpha^n \cos(1/n) \end{pmatrix}$$
 où $\alpha \in \mathbb{R}$ est fixé.

3.
$$x_n = \begin{pmatrix} \left(1 + \frac{1}{n}\right)^{1/n} \\ e^{\sqrt{n+1} - \sqrt{n}} \\ (-1)^n \tan\left(\frac{1}{n}\right) \end{pmatrix}$$

4.
$$x_n = \begin{pmatrix} (-1)^n \cosh(1/n) \\ \frac{n \ln n}{n^2 + 1} \end{pmatrix}$$

Exercice 2. On considère la suite récurrente de \mathbb{R}^2 $x_{n+1} = f(x_n), x_0 \in \mathbb{R}^2$ fixé où

$$f: \mathbb{R}^2 \to \mathbb{R}^2.$$

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 2x - 2y \\ -3x + y \end{pmatrix}$$

- 1. Il n'est pas évident de prévoir le comportement de $(x_n)_{n\in\mathbb{N}}$, on pose donc $u_n=x_{n,1}+x_{n,2}$ et $v_n=3x_{n,1}-2x_{n,2}$. Exprimer u_{n+1} (resp. v_{n+1}) en fonction de u_n (resp. v_n).
- 2. Expliciter x_n en fonction de n et en déduire le comportement de la suite.

Exercice 3. Montrer que pour tout $x \in \mathbb{R}^d$, on a

$$||x||_{\infty} \le ||x||_2 \le ||x||_1 \le \sqrt{d} ||x||_2 \le d||x||_{\infty}$$

et que ces inégalités sont optimales (cela signifie que pour chacune de ces inégalités il existe un $x \neq 0$ qui réalise l'égalité).

Exercice 4. On considère la matrice $A = \frac{1}{6} \begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{pmatrix}$ et on définit la suite récurrente de \mathbb{R}^3 :

- $x_{n+1} = Ax_n$ avec $x_0 \in \mathbb{R}^3$ fixé.
 - 1. Expliciter les composantes de x_{n+1} en fonction des composantes de x_n . Peut-on facilement en conclure le comportement de $(x_n)_{n\in\mathbb{N}}$?
 - 2. Montrer que pour tout $x \in \mathbb{R}^3$, on a $||Ax||_{\infty} \leq \frac{5}{6} ||x||_{\infty}$, puis que $\lim_{n \to +\infty} ||x_n||_{\infty} = 0$ pour toute valeur de x_0 . En déduire la limite de la suite $(x_n)_{n \in \mathbb{N}}$.
 - 3. Trouver $x \in \mathbb{R}^3 \setminus \{0\}$ tel que $||Ax||_1 = \frac{7}{6}||x||_1$. Peut-on conclure de la même façon sur la convergence de la suite à l'aide de la norme ℓ^1 ?

Exercice 5. Soit $x = (x_i)_{1 \le i \le d} \in \mathbb{R}^d$ et $y = (y_i)_{1 \le i \le d} \in \mathbb{R}^d$ deux vecteurs fixés.

- 1. (Inégalité de Cauchy-Schwarz)
 - a) On définit le polynôme $P(t) = ||x||_2^2 + 2t \sum_{i=1}^d x_i y_i + t^2 ||y||_2^2$. Montrer que $P(t) \ge 0$ pour tout $t \in \mathbb{R}$.
 - b) En utilisant le discriminant du polynôme P, montrer que $\left|\sum_{i=1}^{d} x_i y_i\right| \leq ||x||_2 ||y||_2$.

- 2. En déduire l'inégalité triangulaire pour la norme ℓ^2 .
- **Exercice 6.** 1. Pour tout $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2$, on pose $N_1(x) = \max(|x_1 + x_2|, |x_1 2x_2|)$. Montrer que N_1 est une norme sur \mathbb{R}^2 et représenter l'ensemble des vecteurs de norme inférieure ou égale à 1 pour cette norme.
 - 2. Pour tout $x \in \mathbb{R}^2$, on pose $N_2(x) = \sup_{t \in [0,1]} |x_1 + tx_2|$. Montrer que N_2 est une norme sur \mathbb{R}^2 .
 - 3. Pour $x \in \mathbb{R}^2$, on pose $N_3(x) = |3x_1 + 2x_2|$. Montrer que N_3 n'est pas une norme sur \mathbb{R}^2 .
 - 4. Pour $x \in \mathbb{R}^2$, on pose $N_4(x) = |x_1| + x_2^2$. Montrer que N_4 n'est pas une norme sur \mathbb{R}^2 .

Exercice 7. Pour tout $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2$, on pose $N_1(x) = \max(\sqrt{x_1^2 + x_2^2}, |x_1 - x_2|)$ et $N_2(x) = \sqrt{x_1^2/9 + x_2^2/4}$.

- 1. Montrer que N_1 et N_2 sont des normes sur \mathbb{R}^2 et représenter l'ensemble des vecteurs de norme inférieure ou égale à 1 pour ces normes.
- 2. Montrer que $N_2 \le ||.||_{\infty} \le ||.||_2 \le N_1 \le ||.||_1 \le 4N_2$.

Exercice 8. Soit $\|.\|$ une norme sur \mathbb{R}^d et $A = (a_{i,j})_{1 \leq i,j \leq d} \in M_d(\mathbb{R})$. On pose :

$$|||A||| = \sup_{x \in \mathbb{R}^d; ||x|| = 1} ||Ax||.$$

- 1. Montrer qu'on définit ainsi une norme sur $M_d(\mathbb{R})$.
- 2. Montrer que pour tout $x \in \mathbb{R}^d \setminus \{0\}$, le vecteur $y = \frac{x}{\|x\|}$ est de norme égale à 1. En déduire que pour tout $x \in \mathbb{R}^d$, on a $\|Ax\| \le \|A\| \|x\|$.
- 3. On munit \mathbb{R}^d de la norme $\|.\|_1$. Montrer que $\|A\|_1 = \max_{1 \le j \le d} \left(\sum_{i=1}^d |a_{i,j}| \right)$.
- 4. On munit maintenant \mathbb{R}^d de la norme $\|.\|_{\infty}$. Montrer que $\|A\|_{\infty} = \max_{1 \leq i \leq d} \left(\sum_{j=1}^d |a_{i,j}| \right)$.
- 5. A-t-on $|||A|||_1 = |||A|||_{\infty}$ pour toute $A \in M_d(\mathbb{R})$?
- 6. Soit $(x_n)_{n\in\mathbb{N}}$ la suite récurrente définie par $x_0 \in \mathbb{R}^3$ et $\forall n \in \mathbb{N}$ $x_{n+1} = Ax_n$ où $A = \frac{1}{4} \begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 1 \\ 2 & 1 & 0 \end{pmatrix}$.

Calculer $|||A||_1$ et $|||A||_{\infty}$. La suite $(x_n)_{n\in\mathbb{N}}$ est-elle convergente? Si oui, quelle est sa limite?

Exercice 9. Soient p > 1 et q > 1 tel que $\frac{1}{p} + \frac{1}{q} = 1$. Soient $x = (x_i)_{1 \le i \le d} \in \mathbb{R}^d$ et $y = (y_i)_{1 \le i \le d} \in \mathbb{R}^d$. On pose

$$||x||_p = \left(\sum_{i=1}^d |x_i|^p\right)^{1/p}$$
 et $||y||_q = \left(\sum_{i=1}^d |y_i|^q\right)^{1/q}$.

- 1. En utilisant la concavité de ln, montrer que pour $a, b \ge 0$, on a $ab \le \frac{1}{p}a^p + \frac{1}{q}b^q$.
- 2. Etablir $\frac{|x_iy_i|}{\|x\|_p\|y\|_q} \leq \frac{1}{p} \frac{|x_i|^p}{\|x\|_p^p} + \frac{1}{q} \frac{|y_i|^q}{\|y\|_q^q} \quad \forall \ 1 \leq i \leq d, \text{ et en déduire } \sum_{i=1}^d |x_iy_i| \leq \|x\|_p\|y\|_q.$
- 3. En écrivant $(|x_i| + |y_i|)^p = |x_i| (|x_i| + |y_i|)^{p-1} + |y_i| (|x_i| + |y_i|)^{p-1}$, montrer $||x + y||_p \le ||x||_p + ||y||_p$.
- 4. Conclure que $\|.\|_p$ est une norme sur \mathbb{R}^d .
- 5. Pour $x \in \mathbb{R}^d$ fixé, montrer que $\lim_{p \to +\infty} \|x\|_p = \|x\|_{\infty}$.