华东师范大学期末试卷(B)参考答案 2011—2012 学年第一学期

计量地理学

- 一、填空题(20分,每空1分)
 - 1、地理数据分为空间数据和属性数据两种,有数量化;形式化与逻辑化、

不确定性; 多种时空尺度和多维性四个基本特征。

- 2、常见的趋势拟合方法有平滑法、趋势线法、自回归模型法。
- 3、主成分分析的计算步骤的最后一步是计算主成分载荷。
- 4、在做时间序列分析时,通常我们要先对时间序列进行平滑,常见的平滑 方法有哪三种移动平滑、滑动平滑、指数平滑。
- 5、空间统计分析中,用于说明全局空间自相关的指标有 Moran 指数和 Geary 指

数;用于说明局部相关性的有LISA; G统计; Moran 散点图。

6、AHP 决策分析方法中,根本的任务是计算判断矩阵的最大特征根及其所对应的特征 向量。实际问题中常常采用<u>方根法</u>和<u>和积法</u>两种方法来近似计算判断矩阵的最大特征 根和其对应的特征向量。

2、 标准形式: 对偶问题:

$$\begin{cases} \max Z' = -7 \ X_1 - 2 \ X_2 & \max W = 5y_1 + 8y_2 \\ X_1 + 3 \ X_2 + X_3 = 5 & y_1 + 4y_2 \le 7 \\ 4 \ X_1 + X_2 - X_4 = 8 & 3y_1 + y_2 \le 2 \\ X_1, \ X_2, \ X_3, \ X_4 \ge 0 & y_1 \le 0, y_2 \ge 0 \end{cases}$$

- 三、论述题(50分,每题25分)
- 1、(1)聚类分析,亦称群分析或点群分析,它是研究多要素事物分类问题的数量方法。其基本原理是,根据样本自身的属性,用数学方法按照某种相似性或差异性指标,定量地确定样本之间的亲疏关系,并按这种亲疏关系程度对样本进行聚类。

聚类分析方法,是定量地研究地理事物分类问题和地理分区问题的重要方法。常见的聚类分析方法有系统聚类法、模糊聚类法、动态聚类法等。(5分)

(2) d₂₄=0.02 为最小,将 G₂、G₄化为一类 G₈,得到 (3分)

	G_{I}	G_3	G_5	G_6	G_7	G_{δ}
G ₁	0					
G_3	0.19	0				
G_5	0.79	0.06	0			
G_6	0.24	0.71	0.59	0		
G_7	0.33	0.28	0.32	0.82	0	
G ₈	0.86	0.77	0.83	0.36	0.67	0

d₃₅=0.06 为最小, 将 G₃、G₅化为一类 G₉, 得到 (3分)

	G_{l}	G_6	G_7	G_8	G_9
G_1	0				
G_6	0.24	0			
G_7	0.33	0.82	0		
G_8	0.86	0.36	0.67	0	
G_9	0.79	0.71	0.32	0.83	0

d16=0.24 为最小, 将 G1、G6化为一类 G10, 得到 (3分)

	G_7	G_8	G_9	G_{10}
G_7	0		-	
G_8	0.67	0		
G_9	0.32	0.83	0	
G ₁₀	0.82	0.86	0.79	0

d₇₉=0.32 为最小, 将 G₇、G₉(G₃、G₅)化为一类 G₁₁, 得到 (3分)

	G_8	G_{10}	G_{ll}
G ₈	0		
G_{10}	0.86	0	
G_{11}	0.83	0.82	0

 $d_{10\,11}$ =0.82 为最小, 将 $G_{10}(G_1 \, {\subset} \, G_6) \, {\subset} \, G_{11}(G_3 \, {\subset} \, G_5 \, {\subset} \, G_7 \, {\subset} \, G_9)$ 化为一类 G_{12} (3

分)

	G_{8}	G_{12}
G ₈	0	
G ₁₂	0.86	0

d₈₁₂=0.86, 此时所以分类对象均被归为一类

谱系图如下(5分):

2、(1)变异函数有四个非常重要的参数,即基台值(Sill)、变程(Range)或称空间依赖范围(Range of Spatial Dependence)、块金值(Nugget)或称区域不连续性值(Localized Discontinuity)和分维数(Fractal Dimension)。(4分)

地统计学中变异函数模型分为三大类:第一类是有基台值模型,包括球状模型、指数模型、高斯模型、线性有基台值模型和纯块金效应模型;第二类是无基台值模型,包括幂函数模型、线性无基台值模型、抛物线模型;第三类是孔穴效应模型。(6分)

1) 纯块金效应模型。其一般公式为:

$$\gamma(h) = \begin{cases} 0 & h = 0 \\ c_0 & h > 0 \end{cases}$$

式中: $c_0>0$, 为先验方差。该模型相当于区域化变量为随机分布,样本点间的协方差函数对于所有距离 h 均等于 0, 变量的空间相关不存在。

2) 球状模型。其一般公式为:

$$\gamma(h) = \begin{cases} 0 & h = 0 \\ c_0 + c(\frac{3h}{2a} - \frac{h^3}{2a^3}) & 0 < h \le a \\ c_0 + c & h > a \end{cases}$$

球状模型是地统计分析中应用最广泛的理论模型,许多区域化变量的理论模型都可以用该模型去拟合。

3) 指数模型。其一般公式为:

$$\gamma(h) = \begin{cases} 0 & h = 0 \\ c_0 + c(1 - e^{-\frac{h}{a}}) & h > 0 \end{cases}$$

当 c0=0, c=1 时, 称为标准指数模型。

4) 高斯模型。其一般公式为:

$$\gamma(h) = \begin{cases} 0 & h = 0 \\ c_0 + c(1 - e^{-\frac{h^2}{a^2}}) & h > 0 \end{cases}$$

当 $c_0 = 0, c = 1$ 时,称为标准高斯函数模型。

5) 幂函数模型。其一般公式为:

$$\gamma(h) = Ah^{\theta}, 0 < \theta < 2$$

6) 对数模型。其一般公式为:

$$\gamma(h) = A \lg h$$

7) 线性有基台值模型。其一般公式为:

$$\gamma(h) = \begin{cases} c_0 & h = 0 \\ Ah & 0 < h \le a \\ c_0 + c & h > a \end{cases}$$

该模型的变程为 a, 基台值为 $c_0 + c$ 。

8) 线性无基台值模型。其一般公式为

$$\gamma(h) = \begin{cases} c_0 & h = 0 \\ Ah & h > 0 \end{cases}$$

该模型没有基台值,也没有变程。(写出一个模型即可,2分)

(2) 克立格(Kriging)插值法是建立在变异函数理论及结构分析基础之上的,是在有限区域内对区域化变量的取值进行无偏最优估计的一种方法。克立格法适用的条件是,如果变异函数和相关分析的结果表明区域化变量存在空间相关性,则可以运用克立格法对空间未抽样点或未抽样区域进行估计。其实质是利用区域化变量的原始数据和变异函数的结构特点,对未采样点的区域化变量的取值进行线性无偏、最优估计。(3分)

结合上机实习,说明克立格的应用。(10分)