Nathan Walzer - nwalzer

<u>1a)</u>

Using expansion function on 101100110000111111100100010100110, we get:

010110 100110 100001 011111 111001 010001 010100 001101

1b)

Key - 000010 011100 110001 100010 110111 101011 100000 001111

^ 010110 100110 100001 011111 111001 010001 010100 001101

010100 111010 010000 111101 001110 111010 110100 000010

1c)

 S_1 - 010100 -> row 0, col 10 -> **0110**

S₂ - 111010 -> row 2, col 13 -> **0011**

 S_3 - 010000 -> row 0, col 8 -> **0001**

S₄ - 111101 -> row 3, col 14 -> **0010**

 $S_5 - 001110 -> row 0, col 7 ->$ **0110**

S₆ - 111010 -> row 2, col 13 -> **1101**

S₇ - 110100 -> row 2, col 10 -> **0110**

 $S_8 - 000010 \rightarrow row 0, col 1 \rightarrow 0010$

0110 0011 0001 0010 0110 1101 0110 0010

1d)

Using permutation table P, we get:

01010100 01010110 11100110 10001000

- 2a) Input as hex = **56E2 19B2 44B3 DB43 811E 9D3A 9E85 F34F**
- 2b) As a state diagram, bits are added sequentially to a column before filling the next column to the right:

56	44	81	9E
E2	В3	1E	85
19	DB	9D	F3
B2	43	3A	4F

2c) 2b matrix after AES S-Box

B1	1B	0C	0B
----	----	----	----

98	6D	72	97
D4	В9	5E	0D
37	1A	80	84

2d) 2c matrix after shifting row 1 by 1, row 2 by 2, and row 3 by 3 to the left

B1	1B	OC	0B
6D	72	97	98
5E	0D	D4	В9
84	37	1A	80

2e) MixColumns

The mixColumns step was performed with the help of the mixColumns python script I wrote

14	9A	74	9C
0D	DF	44	70
F7	2A	06	61
E8	3C	63	27

2f) addRoundKey

This step was performed with the help of the addRoundKey python script I wrote

20	EC	A1	6D
04	4C	40	C5
51	02	CE	13
3E	7F	AE	55

3a)

I. 37 · 3 mod 23 = 111 % 23 = 19

II. 19 · 13 *mod* 23 = **247 % 23 = 17**

III. $18 \cdot 15 \mod 12 = 270 \% 12 = 6$

IV. $15 \cdot 29 + 11 \cdot 15 \mod 23 = 600 \% 23 = 2$

3b)

V. 8⁻¹ mod 17

17 is prime, so GCD is 1 and inverse exists

Through an exhaustive search of 8*x % 17 = 1, $\{x \mid 2 -> 16\}$, we find 8 inverse to be **15**

VI. 5⁻¹ mod 17

17 is prime, so GCD is 1 and inverse exists

Through an exhaustive search of 5*x % 17 = 1, $\{x \mid 2 -> 16\}$, we find 5 inverse to be **7**

VII. 5⁻¹ mod 37

37 is prime, so GCD is 1 and inverse exists

Through an exhaustive search of 5*x % 17 = 1, $\{x \mid 2 > 16\}$, we find 5 inverse to be **15**

VIII. 10⁻¹ *mod* 15

GCD is 5, so this inverse **does not exist**

3c)

The prime factors of 216 are (2, 3), the numbers that will not have an inverse will be all multiples of 2 and all multiples of 3 (There are way too many to write)