References

- [1] David Bau, Jun-Yan Zhu, Hendrik Strobelt, Bolei Zhou, Joshua B. Tenenbaum, William T. Freeman, and Antonio Torralba. GAN Dissection: Visualizing and Understanding Generative Adversarial Networks. *arXiv:1811.10597 [cs]*, December 2018. arXiv: 1811.10597.
- [2] Prakash D, Uma Mageshwari T, Prabakaran K, and Suguna A. Detection of Heart Diseases by Mathematical Artificial Intelligence Algorithm Using Phonocardiogram Signals.
- [3] PhysioNet/CinC Challenge 2016: Training Sets.
- [4] Nabina N Rawther and Jini Cheriyan. Detection and Classification of Cardiac Arrhythmias based on ECG and PCG using Temporal and Wavelet features. 4(4):6, 2015.
- [5] Shahid Ismail, Imran Siddiqi, and Usman Akram. Localization and classification of heart beats in phonocardiography signals —a comprehensive review. EURASIP Journal on Advances in Signal Processing, 2018(1):26, December 2018.
- [6] Omer Deperlioglu, Utku Kose, Deepak Gupta, Ashish Khanna, and Arun Kumar Sangaiah. Diagnosis of heart diseases by a secure Internet of Health Things system based on Autoencoder Deep Neural Network. *Computer Communications*, 162:31–50, October 2020.
- [7] Dinesh Surukutla, Karan Bhanushali, and Trupti Patil. Cardiac Arrhythmia Detection Using CNN. SSRN Electronic Journal, 2020.
- [8] Abdulhamit Subasi. Biomedical Signals. In *Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques*, pages 27–87. Elsevier, 2019.
- [9] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning Deep Features for Discriminative Localization. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2921–2929, Las Vegas, NV, USA, June 2016. IEEE.
- [10] Palani Thanaraj Krishnan, Parvathavarthini Balasubramanian, and Snekhalatha Umapathy. Automated heart sound classification system from unsegmented phonocardiogram (PCG) using deep neural network. *Physical and Engineering Sciences in Medicine*, 43(2):505–515, June 2020.
- [11] Abhishek Das, Harsh Agrawal, C. Lawrence Zitnick, Devi Parikh, and Dhruv Batra. Human Attention in Visual Question Answering: Do Humans and Deep Networks Look at the Same Regions? *arXiv:1606.03556 [cs]*, June 2016. arXiv: 1606.03556.
- [12] Pranav Rajpurkar, Awni Y. Hannun, Masoumeh Haghpanahi, Codie Bourn, and Andrew Y. Ng. Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks. *arXiv:1707.01836 [cs]*, July 2017. arXiv: 1707.01836.
- [13] Tharindu Fernando, Houman Ghaemmaghami, Simon Denman, Sridha Sridharan, Nayyar Hussain, and Clinton Fookes. Heart Sound Segmentation using Bidirectional LSTMs with Attention. *IEEE Journal of Biomedical and Health Informatics*, 24(6):1601–1609, June 2020. arXiv: 2004.03712.
- [14] A. Almasi, M. B. Shamsollahi, and L. Senhadji. A dynamical model for generating synthetic Phonocardiogram signals. In 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pages 5686–5689, Boston, MA, August 2011. IEEE.
- [15] V. Kalaivani. DIAGNOSIS OF ARRHYTHMIA DISEASES USING HEART SOUNDS AND ECG SIGNALS. *Russian Journal of Cardiology*, (1-ENG):35–41, January 2014.
- [16] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature Visualization. *Distill*, 2(11):10.23915/distill.00007, November 2017.
- [17] M Finlay. The "mobile-phonocardiogram", a new tool in the arrhythmia clinic. Heart, 92(7):898–898, May 2006.
- [18] Varsha Garg, Arpit Mathur, Nishant Mangla, and Aman Singh Rawat. Heart Rhythm Abnormality Detection from PCG Signal. In 2019 Twelfth International Conference on Contemporary Computing (IC3), pages 1–5, Noida, India, August 2019. IEEE.
- [19] L. Jordaens. A clinical approach to arrhythmias revisited in 2018: From ECG over noninvasive and invasive electrophysiology to advanced imaging. *Netherlands Heart Journal*, 26(4):182–189, April 2018.
- [20] Serkan Kiranyaz, Morteza Zabihi, Ali Bahrami Rad, Turker Ince, Ridha Hamila, and Moncef Gabbouj. Real-time phonocardiogram anomaly detection by adaptive 1D Convolutional Neural Networks. *Neurocomputing*, 411:291–301, October 2020.

- [21] P. Lubaib and K.V. Ahammed Muneer. The Heart Defect Analysis Based on PCG Signals Using Pattern Recognition Techniques. *Procedia Technology*, 24:1024–1031, 2016.
- [22] Lars-Jochen Thoms, Giuseppe Collichia, and Raimund Girwidz. Real-life physics: phonocardiography, electrocardiography, and audiometry with a smartphone. *Journal of Physics: Conference Series*, 1223:012007, May 2019.
- [23] Preecha Yupapin, Wardkein, Preecha Yupapin, Phanphaisarn, Koseeyaporn, Roeksabutr, Roeksabutr, Wardkein, and Koseeyapon. Heart detection and diagnosis based on ECG and EPCG relationships. *Medical Devices: Evidence and Research*, page 133, August 2011.
- [24] Matthew D. Zeiler and Rob Fergus. Visualizing and Understanding Convolutional Networks. *arXiv:1311.2901* [cs], November 2013. arXiv: 1311.2901.
- [25] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. WaveNet: A Generative Model for Raw Audio. *arXiv:1609.03499* [cs], September 2016. arXiv: 1609.03499.
- [26] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg. SmoothGrad: removing noise by adding noise. *arXiv:1706.03825 [cs, stat]*, June 2017. arXiv: 1706.03825.
- [27] Siddique Latif, Muhammad Usman, Rajib Rana, and Junaid Qadir. Phonocardiographic Sensing using Deep Learning for Abnormal Heartbeat Detection. *arXiv:1801.08322 [cs]*, July 2020. arXiv: 1801.08322.
- [28] Stephanie Ger and Diego Klabjan. Autoencoders and Generative Adversarial Networks for Imbalanced Sequence Classification. *arXiv:1901.02514 [cs, stat]*, August 2020. arXiv: 1901.02514.
- [29] Chaoqiang Zhao, Qiyu Sun, Chongzhen Zhang, Yang Tang, and Feng Qian. Monocular Depth Estimation Based On Deep Learning: An Overview. *Science China Technological Sciences*, 63(9):1612–1627, September 2020. arXiv: 2003.06620.
- [30] Amy T. Dao. Wireless laptop-based phonocardiograph and diagnosis. *PeerJ*, 3:e1178, August 2015.
- [31] Sumair Aziz, Muhammad Umar Khan, Majed Alhaisoni, Tallha Akram, and Muhammad Altaf. Phonocardiogram Signal Processing for Automatic Diagnosis of Congenital Heart Disorders through Fusion of Temporal and Cepstral Features. *Sensors*, 20(13):3790, July 2020.
- [32] Md. Khayrul Bashar, Samarendra Dandapat, and Itsuo Kumazawa. Heart Abnormality Classification Using Phonocardiogram (PCG) Signals. In 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), pages 336–340, Sarawak, Malaysia, December 2018. IEEE.
- [33] Cristhian Potes, Saman Parvaneh, Asif Rahman, and Bryan Conroy. Ensemble of Feature:based and Deep learning:based Classifiers for Detection of Abnormal Heart Sounds. September 2016.
- [34] S1 and S2 Heart Sound Recognition Using Deep Neural Networks. *IEEE Transactions on Biomedical Engineering*, 64(2):372–380, February 2017.
- [35] Grzegorz Redlarski, Dawid Gradolewski, and Aleksander Palkowski. A System for Heart Sounds Classification. *PLoS ONE*, 9(11):e112673, November 2014.
- [36] Chengyu Liu, David Springer, Qiao Li, Benjamin Moody, Ricardo Abad Juan, Francisco J Chorro, Francisco Castells, José Millet Roig, Ikaro Silva, Alistair E W Johnson, Zeeshan Syed, Samuel E Schmidt, Chrysa D Papadaniil, Leontios Hadjileontiadis, Hosein Naseri, Ali Moukadem, Alain Dieterlen, Christian Brandt, Hong Tang, Maryam Samieinasab, Mohammad Reza Samieinasab, Reza Sameni, Roger G Mark, and Gari D Clifford. An open access database for the evaluation of heart sound algorithms. *Physiological Measurement*, 37(12):2181–2213, December 2016.
- [37] Ye Jia, Ron J. Weiss, Fadi Biadsy, Wolfgang Macherey, Melvin Johnson, Zhifeng Chen, and Yonghui Wu. Direct speech-to-speech translation with a sequence-to-sequence model. *arXiv:1904.06037 [cs, eess]*, June 2019. arXiv: 1904.06037.
- [38] Mohammed Nabih Ali, EL-Sayed A. El-Dahshan, and Ashraf H. Yahia. Denoising of Heart Sound Signals Using Discrete Wavelet Transform. *Circuits, Systems, and Signal Processing*, 36(11):4482–4497, November 2017.
- [39] K. Ajay Babu, Barathram Ramkumar, and M. Sabarimalai Manikandan. S1 and S2 heart sound segmentation using variational mode decomposition. In *TENCON 2017 2017 IEEE Region 10 Conference*, pages 1629–1634, Penang, November 2017. IEEE.
- [40] Wenjie Zhang, Jiqing Han, and Shiwen Deng. Heart sound classification based on scaled spectrogram and partial least squares regression. *Biomedical Signal Processing and Control*, 32:20–28, February 2017.

Employing Adversarial Machine Learning and Computer Audition for Smartphone-Based Real-Time Arrhythmia Classification in Heart Sounds

- [41] M. Abo-Zahhad, Mohammed Farrag, Sherif N. Abbas, and Sabah M. Ahmed. A comparative approach between cepstral features for human authentication using heart sounds. *Signal, Image and Video Processing*, 10(5):843–851, July 2016.
- [42] Elmar Messner, Matthias Zohrer, and Franz Pernkopf. Heart Sound Segmentation—An Event Detection Approach Using Deep Recurrent Neural Networks. *IEEE Transactions on Biomedical Engineering*, 65(9):1964–1974, September 2018.
- [43] Patrick Esser, Robin Rombach, and Björn Ommer. Taming Transformers for High-Resolution Image Synthesis. arXiv:2012.09841 [cs], February 2021. arXiv: 2012.09841.
- [44] Photo Posters Create Custom Photo Posters | Walgreens Photo.
- [45] Ye Jia, Ron J. Weiss, Fadi Biadsy, Wolfgang Macherey, Melvin Johnson, Zhifeng Chen, and Yonghui Wu. Direct speech-to-speech translation with a sequence-to-sequence model. *arXiv:1904.06037 [cs, eess]*, June 2019. arXiv: 1904.06037.