

12/22/98
JC588 U.S. PTO

Commissioner of Patents and Trademarks
Washington, D.C. 20231

A
PATENT

Docket No. D-350

JC542 U.S. PTO
09/22/98
12/22/98

NEW APPLICATION TRANSMITTAL

Transmitted herewith for filing is the patent application of
Inventor(s): Robert B. Dybdal

For (title): ORTHOGONAL POLARIZATION AND FREQUENCY SELECTABLE WAVEGUIDE

1. Type of Application

This new application is an **ORIGINAL** application.

2. Benefit of Prior U.S. Application(s) (35 USC 120) - None

CERTIFICATION UNDER 37 CFR 1.10

I hereby certify that this New Application Transmittal and the documents referred to as enclosed therein are being deposited with the United States Postal Service on this date December 22, 1998 in an envelope as "Express Mail Post Office to Addressee" Mailing Label Number EE890426003US addressed to the: Commissioner of Patents and Trademarks, Washington, D.C. 20231

Carole A. Mulchinski
(Type or print name of person mailing paper)
Carole A. Mulchinski
(Signature of person mailing paper)

**3. Papers Enclosed Which Are Required for Filing Date Under 37 CFR 1.53(b) (Regular) or
37 CFR 1.153 (Design) Application**

25 Pages of specification
9 Pages of claims
1 Pages of Abstract
5 Sheets of drawing

/ / informal
/X/ in triplicate

4. Additional papers enclosed

Preliminary Amendment
 Information Disclosure Statement
 Form PTO-1449
 Small Entity Statement

5. Declaration or oath executed by INVENTOR(S)

Enclosed

6. Inventorship Statement

The inventorship for all the claims in this application is THE SAME.

7. Language: ENGLISH

8. Assignment

/X/ An assignment of the invention to The Aerospace Corporation
P. O. Box 92957 (M1/040), Los Angeles, CA 90009-2957

/X/ is attached

/ / will follow

9. Certified Copy

10. Fee Calculation

Regular application

CLAIMS AS FILED

Number Filed	Number Extra	Rate	Basic Fee
Total Claims	- 14 -20= 0	X \$ 22.00	\$790.00
Independent Claims	- 3 -3= 1	X \$ 41.00	00.00
<u>Multiple dependent claim(s), if any</u>			\$270.00

Amendment cancelling extra claims enclosed

Amendment deleting multiple dependencies enclosed

Fee for extra claims is not being paid at this time

Filing Fee Calculation \$790.00

11. Small Entity Statement(s)

Verified Statement(s) that this is a filing by a small entity under 37 CFR 1.9 and 1.27 is(are) attached.

\$395.00

12. Fee Payment Being Made At This Time

No filing fee is to be paid at this time. (This and the surcharge required by 37 CFR 1.16(e) can be paid subsequently.)

Enclosed

Basic filing fee \$ 395.00

Recording assignment (\$40.00; 37 CFR 1.21(h)(1)) \$ 40.00

Total fees enclosed \$ 435.00

(Application Transmittal [4-1]--page 3 of 4)

13. **Method of Payment of Fees**

charge Account No. 01-0428 in the amount of \$ 435.00.
A duplicate of this transmittal is attached.

14. **Authorization to Charge Additional Fees**

The Commissioner is hereby authorized to charge the following additional fees by this paper and during the entire pendency of this application to Account No. 01-0428.

37 CFR 1.16 (filing fees)

37 CFR 1.16 (presentation of extra claims)

37 CFR 1.16(e) (surcharge for filing the basic filing fee and/or declaration on a date later than the filing date of the application)

37 CFR 1.17 (application processing fees)

37 CFR 1.18 (issue fee at or before mailing of Notice of Allowance, pursuant to 37 CFR 1.311(b)).

15. **Instructions As To Overpayment**

credit Account No. 01-0428.

Reg. No.: 32,096

Derrick Michael Reid
Signature of Attorney

Tel. No. (310) 336-6708

Derrick Michael Reid
Type or print name of attorney

THE AEROSPACE CORPORATION
P.O. Box 92957 (M1/040)
Los Angeles, CA 90009-2957

This transmittal ends with this page.

(Application Transmittal [4-1]--page 4 of 4)

Applicant or Patentee: Robert B. Dybdal

Serial or Patent No.: _____

Filed or Issued: _____

For: Orthogonal Polarization and Frequency Selectable Waveguide

VERIFIED STATEMENT (DECLARATION) CLAIMING SMALL ENTITY STATUS (37 CFR 1.9(f) and 1.27(d))--NONPROFIT ORGANIZATION

I hereby declare that I am an official empowered to act on behalf of the nonprofit organization identified below:

NAME OF ORGANIZATION The Aerospace Corporation

ADDRESS OF ORGANIZATION P. O. Box 92957 (M1/040)
Los Angeles, CA 90009-2957

TYPE OF ORGANIZATION

TAX EXEMPT UNDER INTERNAL REVENUE SERVICE CODE (26 USC 501 (a) and 501 (c) (3))

I hereby declare that the nonprofit organization identified above qualifies as a nonprofit organization as defined in 37 CFR 1.9(e) for purposes of paying reduced fees under Section 41(a) and (b) of Title 35, United States Code with regard to the invention entitled Dual Polarized Selectable

Waveguide

by inventor(s) Robert B. Dybdal

described in

the specification filed herewith

application serial No. _____, filed _____.

I hereby declare that rights under contract or law have been conveyed to and remain with the nonprofit organization with regard to the above identified invention.

If the rights held by the nonprofit organization are not exclusive, each individual, concern or organization having rights to the invention is listed and no rights to the invention are held by any person, other than the inventor, who could not qualify as a small business concern under 37 CFR 1.9(d) or by any concern which would not qualify as a small business concern under 37 CFR 1.9(d) or a nonprofit organization under 37 CFR 1.9(e).

I acknowledge the duty to file, in this application or patent, notification of any charge in status resulting in loss of entitlement to small entity status prior to paying, or at the time of paying, the earliest of the issue fee or any maintenance fee due after the date on which status as a small entity is no longer appropriate. (37 CFR 1.28(b))

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application, any patent issuing thereon, or any patent to which this verified statement is directed.

NAME OF PERSON SIGNING Robert Donald Matthews

TITLE IN ORGANIZATION Assistant General Counsel

ADDRESS OF PERSON SIGNING The Aerospace Corporation

P. O. Box 92957 (M1/040), Los Angeles, CA 90009-2957

SIGNATURE Robert Donald Matthews DATE 12/17/98

Applicant or Patentee: Robert B. Dybdal

Serial or Patent No.: _____

Filed or Issued: _____

For: Orthogonal Polarization and Frequency Selectable Waveguide

VERIFIED STATEMENT (DECLARATION) CLAIMING SMALL ENTITY STATUS (37 CFR 1.9(f) and 1.27(d))--NONPROFIT ORGANIZATION

I hereby declare that I am an official empowered to act on behalf of the nonprofit organization identified below:

NAME OF ORGANIZATION The Aerospace Corporation

ADDRESS OF ORGANIZATION P. O. Box 92957 (M1/040)
Los Angeles, CA 90009-2957

TYPE OF ORGANIZATION

/ TAX EXEMPT UNDER INTERNAL REVENUE SERVICE CODE (26 USC
501 (a) and 501 (c) (3)

I hereby declare that the nonprofit organization identified above qualifies as a nonprofit organization as defined in 37 CFR 1.9(e) for purposes of paying reduced fees under Section 41(a) and (b) of Title 35, United States Code with regard to the invention entitled Dual Polarized Selectable

Waveguide

by inventor(s) Robert B. Dybdal

described in

/ the specification filed herewith

/ application serial No. _____, filed _____.

I hereby declare that rights under contract or law have been conveyed to and remain with the nonprofit organization with regard to the above identified invention.

If the rights held by the nonprofit organization are not exclusive, each individual, concern or organization having rights to the invention is listed and no rights to the invention are held by any person, other than the inventor, who could not qualify as a small business concern under 37 CFR 1.9(d) or by any concern which would not qualify as a small business concern under 37 CFR 1.9(d) or a nonprofit organization under 37 CFR 1.9(e).

I acknowledge the duty to file, in this application or patent, notification of any charge in status resulting in loss of entitlement to small entity status prior to paying, or at the time of paying, the earliest of the issue fee or any maintenance fee due after the date on which status as a small entity is no longer appropriate. (37 CFR 1.28(b))

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application, any patent issuing thereon, or any patent to which this verified statement is directed.

NAME OF PERSON SIGNING Robert Donald Matthews

TITLE IN ORGANIZATION Assistant General Counsel

ADDRESS OF PERSON SIGNING The Aerospace Corporation

P. O. Box 92957 (M1/040), Los Angeles, CA 90009-2957

SIGNATURE Robert Donald Matthews DATE 12/17/98

Applicant or Patentee: Robert B. Dybdal

Serial or Patent No.: _____

Filed or Issued: _____

For: Orthogonal Polarization and Frequency Selectable Waveguide

VERIFIED STATEMENT (DECLARATION) CLAIMING SMALL ENTITY STATUS (37 CFR 1.9(f) and 1.27(d))--NONPROFIT ORGANIZATION

I hereby declare that I am an official empowered to act on behalf of the nonprofit organization identified below:

NAME OF ORGANIZATION The Aerospace Corporation

ADDRESS OF ORGANIZATION P. O. Box 92957 (M1/040)

Los Angeles, CA 90009-2957

TYPE OF ORGANIZATION

TAX EXEMPT UNDER INTERNAL REVENUE SERVICE CODE (26 USC 501 (a) and 501 (c) (3))

I hereby declare that the nonprofit organization identified above qualifies as a nonprofit organization as defined in 37 CFR 1.9(e) for purposes of paying reduced fees under Section 41(a) and (b) of Title 35, United States Code with regard to the invention entitled Dual Polarized Selectable

Waveguide

by inventor(s) Robert B. Dybdal

described in

the specification filed herewith

application serial No. _____, filed _____.

I hereby declare that rights under contract or law have been conveyed to and remain with the nonprofit organization with regard to the above identified invention.

If the rights held by the nonprofit organization are not exclusive, each individual, concern or organization having rights to the invention is listed and no rights to the invention are held by any person, other than the inventor, who could not qualify as a small business concern under 37 CFR 1.9(d) or by any concern which would not qualify as a small business concern under 37 CFR 1.9(d) or a nonprofit organization under 37 CFR 1.9(e).

(Small Entity-Nonprofit-- page 1 of 2)

I acknowledge the duty to file, in this application or patent, notification of any change in status resulting in loss of entitlement to small entity status prior to paying, or at the time of paying, the earliest of the issue fee or any maintenance fee due after the date on which status as a small entity is no longer appropriate. (37 CFR 1.28(b))

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application, any patent issuing thereon, or any patent to which this verified statement is directed.

NAME OF PERSON SIGNING Robert Donald Matthews

TITLE IN ORGANIZATION Assistant General Counsel

ADDRESS OF PERSON SIGNING The Aerospace Corporation

P. O. Box 92957 (M1/040), Los Angeles, CA 90009-2957

SIGNATURE Robert Donald Matthews DATE 12/17/98

1
2 PATENT APPLICATION
3
4

5 Docket No.: D350
6
7

8 Inventor(s): Robert B. Dybdal
9
10

11 Title: Orthogonal Polarization and Frequency Selectable Waveguide
12
13

14 SPECIFICATION
15
16 Statement of Government Interest
17
18 The invention was made with Government support under
19 contract No. F04701-93-C-0094 by the Department of the Air Force.
20 The Government has certain rights in the invention.
21
22

23 Field of the Invention
24
25 The invention relates to the field of antenna systems used
26 in satellite communications where orthogonal polarizations are
27 employed to increase system capacity.
28

Background of the Invention

The demands for satellite communication capacity have resulted in the implementation of several different techniques. One technique is to extend satellite capacity using orthogonal polarization states to send two independent signals to the same coverage region thereby doubling the information that can be delivered to that region. This technique is referred to as polarization reuse. The success of this technique depends in part on the ability to maintain the separation of the two signals to avoid mutual interference that degrades communication performance. The required signal separation in turn imposes requirements on the polarization purity of the signals.

Polarization reuse is very commonly used on commercial satellites operating at the C band (4-6 GHz) and Ku band (11-14 GHz) frequencies. The required separation between signals used in these systems depends on the power differences in the signal levels and the susceptibility of the reception to co-channel interference. A typical requirement for the polarization purity needed for signal separation is to limit the reception of the undesired signal to a level that is 27 dB lower, that is, 1/500 of the power, than the desired signal component. The degree of polarization purity needed to satisfy this requirement is significantly more stringent than the polarization purity required to insure minimal signal loss caused by polarization mismatch.

1 Different satellite systems, however, are not consistent in
2 the polarization states used. Some systems use orthogonal linear
3 polarization states while other systems use orthogonal circular
4 polarization states. Within a given satellite system, antenna
5 systems for a single polarization state have been developed.
6 However, if antenna systems are developed for use with several
7 different satellite systems, the antenna system requires the
8 capability to select the polarization state depending on the
9 satellite system being used. Clearly, antenna systems capable of
10 operating with different satellite systems afford advantages in
11 flexibility and potential cost effectiveness. However, such
12 antenna designs have to be fully compatible with the requirements
13 for each satellite system. In view of the various polarization
14 signaling methods, antenna systems designed for inter-program
15 compatibility must be capable of processing dual polarization
16 signals with either linear or circular polarization states and
17 must meet system requirements for polarization purity.

18

19 The design requirements to achieve the requisite
20 polarization purity must address the antenna, its feed system,
21 and the ports for each polarization. These design requirements
22 must be maintained over the entire bandwidth spanned by the
23 satellite systems. The antenna, for example, must be designed
24 with a high degree of symmetry so that cross polarized components
25 are not generated that would degrade polarization purity.
26 Similarly, the feed system must be designed to produce
27 rotationally symmetric illumination of the antenna system and
28 attention must be paid to the excitation of higher order modes

1 that produce cross polarized components that degrade polarization
2 purity. The terminals of the feed system must be constructed
3 with precision to avoid polarization coupling, and any combining
4 circuitry used to transform polarization states must satisfy
5 stringent matching requirements to avoid the generation of cross
6 polarized components that degrade polarization purity. The
7 satisfaction of the overall system requirements for polarization
8 purity is limited by the aggregate of the imperfections in the
9 antenna, feed system, terminals and transforming circuitry.

10

11 One fundamental limitation in the development of designs
12 that permit selection of the polarization state results from the
13 inherent imperfections when hybrid combining circuitry is used to
14 transform polarization states. The conventional approach to this
15 problem is to combine one of the polarization states with hybrid
16 circuitry to obtain the other polarization state. The limitation
17 of this approach lies with the inherent imperfections of the
18 hybrid. Quadrature hybrids needed to convert the linearly
19 polarized state to the circular polarized state can maintain a
20 ninety degree phase shift but the amplitude response is unequal
21 over the bandwidth. This amplitude imbalance results in coupling
22 between the two polarization states resulting in co-channel
23 interference. When linearly polarized components are transformed
24 to circularly polarized components, for example, the circular
25 components are obtained from the addition of equal levels of each
26 linearly polarized component with a ninety degree phase shift
27 between the components. Such combining is typically implemented
28 using a quadrature hybrid. Practical hybrids provide the

1 appropriate ninety degree phase shift but exhibit the problem of
2 an imbalance when combining the amplitudes that then varies over
3 the required bandwidth. This amplitude combining imbalance is a
4 limiting factor in achieving the polarization isolation needed to
5 maintain signal separation. A similar limitation exists with one
6 hundred and eighty degree hybrids used to combine circularly
7 polarized components to obtain linearly polarized components.
8 One problem with one hundred and eighty degree hybrids is the
9 resulting phase imbalance. A second problem is the insertion
10 loss inherent when using combining circuitry results. Such
11 insertion loss degrades system sensitivity. The insertion loss
12 reduces transmitted power delivered to the antenna and also
13 limits the power handling because the thermal energy resulting
14 from the insertion loss must be dissipated. The insertion loss
15 in receiving antennas not only reduces the received signal
16 strength but also increases the total system temperature, a
17 factor that is extremely important when modern low noise
18 receivers are used.

19

20 A means of switching is also required to select between the
21 polarization states. Three distinct switch technologies exist.
22 Diode switch devices can switch very rapidly but are relatively
23 lossy and limited in their power handling capability. Ferrite
24 switching technology has somewhat less loss, slower switching
25 time, and greater power handling capability and very low loss,
26 but with disadvantageous slow switching times. The low loss and
27 power handling capabilities are desired in this polarization
28 reuse applications and rapid switching may not present a problem.

1 Thus, waveguide switch technology is preferred in this
2 polarization reuse application having low loss and high power
3 handling capabilities, but with slow switching times.
4 Conventional waveguide switch has a single dominant waveguide
5 mode. A dominant waveguide mode may be TE01 or TE10 for square
6 polarized signals and orthogonally disposed TE11 for circular
7 polarized signals. Tapers and frequency selective surfaces have
8 long been used for frequency isolation. The most familiar
9 waveguide switch uses rotating waveguide bends to route the
10 signals between four ports. The conventional waveguide switch
11 has two selectable position settings for aligning two curved
12 waveguide section bends symmetrical about a rotating axis. The
13 curved selectable waveguide section does not use reflecting
14 surfaces, but rather circular or rectangular cross section
15 waveguide sections. This dual position arrangement is analogous
16 to a double-pole double throw switch. This configuration is
17 commonly referred to as a baseball switch, because the waveguide
18 bends resemble the stitching on a baseball. However, this switch
19 technology is not capable of switching orthogonally polarized
20 signals because the bends inherently result in coupling between
21 the linear and circular polarized signals. These and other
22 disadvantages are solved or reduced using this invention.

23

24

25

26

27

28

Summary of the Invention

An object of the invention is the capability to receive and/or transmit dual orthogonally polarized signals with selection between linear and circular states.

Another object of the invention is to achieve a high degree of polarization purity over a wide bandwidth to avoid co-channel interference of one signal to another.

Yet another object of the invention is to achieve a low loss design to increase system efficiency in antenna systems.

A further object of the present invention is to provide the means of transmitting and/or receiving two orthogonally polarized antenna signals with a high degree of polarization purity and with low loss and the capability to select either linearly or circularly polarized polarization states.

Yet a further object of the present invention is to provide the capability for a dual polarized, selectable polarization state waveguide capable of operation for multiple frequency bands.

The present invention is directed towards a waveguide switch having a plurality of switch positions for communicating a signal between at least one input port and a respective plurality of output ports through a respective plurality of dissimilar

1 waveguide sections. In the preferred form, the waveguide switch
2 has two output ports respectively connected to the input port
3 through a straight waveguide section and a bent waveguide
4 section. The waveguide switch is preferably used to receive
5 and/or transmit dual polarized signals through an antenna feed
6 input port between a linear output port using the bent waveguide
7 section coupled to a linear polarization state sensitive probe
8 and a circular output port coupled to a circular polarized probe
9 using the straight waveguide section providing the capability to
10 select either linearly or circularly polarized polarization state
11 signal transmitted through the antenna feed port. This present
12 invention provides a high level of polarization purity needed to
13 separate two independent signals by polarization. The present
14 invention is directed to selectable waveguides having selectable
15 waveguide sections to perform the polarization state selection,
16 and the loss incurred by these sections is much less than the
17 losses in hybrid combining circuitry used in the conventional
18 polarization state transformations. The waveguide sections can
19 be sized, cascaded and coupled to frequency sensitive tapers and
20 couplers for both polarization state selection and frequency
21 selection of signals in applications where multiple frequency or
22 multiple polarization state operation is required, for example,
23 in simultaneous C band and Ku band operation.

24

25 The preferred selectable waveguide has two positions for
26 respectively selecting one of two waveguide sections within the
27 selectable waveguide. The selectable waveguide is capable of
28 propagating the two independent orthogonal channels. A waveguide

1 is connected to an antenna feed capable of propagating two
2 independent orthogonally polarized communication channels. A
3 selector switch, knob, or other mechanical means on the waveguide
4 is used to select one of the two waveguide sections to thereby
5 select one of the two independent orthogonally polarized
6 communication channels. Output ports of the selectable waveguide
7 are used for separating the respective polarization states of the
8 channels using respective polarization sensitive probes. The
9 waveguide switch is thus used to route the transmitting or
10 receive channel signals into either the circular polarized output
11 port realized by an orthomode transducer capable of high
12 polarization purity over wide bandwidths or to the linear
13 polarized output port realized by an orthogonal linear polarized
14 probe in the waveguide capable of high polarization purity over
15 wide bandwidths.

16
17 Preferably, the selector switch is used to transfer either
18 linear or circular polarization signal components to respective
19 ports. Like the conventional waveguide switch, the selection is
20 preferably accomplished by mechanical rotation. Unlike
21 conventional switches, however, the improved selectable waveguide
22 has dissimilar waveguide sections that can respectively operate
23 in two dominant modes. One switch setting consists of a straight
24 waveguide section so that higher order modes and mode coupling
25 does not occur. The second switch setting changes the direction
26 of propagation by ninety degrees using a waveguide miter bend to
27 avoid higher order mode generation. The axis of rotation is
28 offset to permit the rotation of the switch and the port

1 alignment. The improved selectable waveguide switch of the
2 present invention is effectively a single-pole double-throw
3 waveguide switch using three ports.

4

5 These selectable waveguide switches can be frequency sized
6 and cascaded for multiple frequency applications. Such cascading
7 can be readily performed when the switch has the straight
8 waveguide section. When the switch is placed in the position of
9 bent section containing a miter bend, the conducting miter is
10 replaced by a frequency selective surface to allow passage of the
11 higher frequency signals to subsequent selector waveguide
12 switches. Frequency sensitive couplers and tapers can be coupled
13 to the switches to various operational configurations for
14 selecting the signal of desired frequency and polarization. In
15 addition to the ability to maintain polarization purity, the
16 waveguide sections of the selector switch have little loss in
17 comparison to hybrid network losses in the conventional approach.
18 These and other advantages will become more apparent from the
19 following detailed description of the preferred embodiment.

20

21

22

23

24

25

26

27

28

Brief Description of the Drawings

Figure 1 is a drawing of a selectable waveguide switch shown in the straight position.

Figure 2 is a drawing of the selectable waveguide switch shown in the bent position.

Figure 3a is a drawing of a modified selectable waveguide having a modified bent waveguide section.

Figure 3b is a drawing of the modified selectable waveguide in the straight position with an attached coupler for multiple frequency operation.

Figure 4 is a drawing illustrating a cascade arrangement of selectable waveguides for multiple frequency operation.

Detailed Description of the Preferred Embodiment

An embodiment of the invention is described with reference to the figures using reference designations as shown in the figures. Referring to both Figures 1 and 2, a selectable waveguide can be positioned into one of two positions, a straight waveguide position shown in Figure 1 and a bent waveguide position shown in Figure 2. An antenna feed port 10 communicates a feed signal 12 to and from an antenna feed 13. In the straight

1 position, the antenna feed port 10 communicates the feed signal
2 12 through a straight waveguide section 14 to a circular port 16
3 communicating a circular port signal 18. The waveguide sections
4 14 and 20 are physically sized to transmit and receive signals
5 within desired frequencies bands. The circular port signal 16
6 may be either a linearly polarized signal or a circularly
7 polarized signal or may comprise a plurality of differing
8 polarized signals. The circular port 16 is coupled a circular
9 port probe 19 for communicating the circular port signals 18 to
10 and from the antenna feed port 10. The feed signal 12 is either
11 a linear polarized signal or a circular polarized signal, or may
12 be a composite signal having a plurality of differing polarized
13 signals having respective polarized states. In the bent
14 position, the selectable waveguide communicates the feed signal
15 12 through a bent waveguide section 20 to a linear port 22
16 communicating a linear port signal 24 that may be either a
17 linearly polarized signal or a circular polarized signal and that
18 may comprise a plurality of differing polarized signals. The
19 linear port 22 is coupled to a linear port probe 25 for
20 communicating the linear port signal 24 to and from the antenna
21 feed port 10.

22

23 The bent waveguide section 20 has a reflecting surface 26
24 for reflecting the feed signal 12 and linear port signal 24
25 communicated through the bent waveguide section 20. The
26 direction of the signal path through the bent waveguide section
27 20 is reflected by ninety degrees using the reflecting surface 26
28 in the path of the bent waveguide section 20 to communicate

1 linear polarized signals between the linear port 22 and the
2 antenna feed port 10. The reflecting surface 26 is for
3 reflecting signals 24 and 12 communicated through the bent
4 waveguide section 26. This reflection is achieved by a miter
5 bend to avoid mode conversion and coupling between the polarized
6 component signals of the signals 24 and 12 that would reduce the
7 separation between component signals.

8

9 It should be apparent that the bent waveguide section 20
10 could be a curved waveguide or other suitable waveguide section
11 so long at it connects the feed port 10 to the port 22 when in a
12 first position, and is therefore dissimilar to in shape to the
13 straight waveguide section 20. Also, the straight waveguide
14 section 20 could be a curved waveguide section or other suitable
15 waveguide section so long at it connects the feed port 10 to the
16 port 16 when in a second position, and is also therefore
17 dissimilar in shape to the bent waveguide section 20. That is,
18 the two waveguide sections 14 and 20 must be dissimilar in shape
19 for connecting the feed port 10 to respective output ports 16 and
20 22. However, curved waveguide sections are limited to a single
21 polarization state. Additionally, while the preferred form has
22 only two sections 14 and 20, additional sections could be added,
23 so that there is at least a plurality of the dissimilar waveguide
24 with respective sections and output ports.

25

26 The port 10 is designated generally as an input port, and,
27 the ports 22 and 16 are designated generally as output ports,
28 but, ports 16 and 22 may transceive signals 24 and 18 to and from

1 the port 10 as the feed signal 12. The signal 12 is generally
2 designated as an input signal having a plurality of component
3 signals, such as signals 24 and 18, having differing orthogonal
4 polarization states, such as linear or circular polarization
5 states, left hand circular or right hand circular polarization
6 states, and linear horizontal or linear vertical polarization
7 states. The signal separation and isolation by desired
8 polarization states are realized by polarization sensitive probes
9 19 and 25 and waveguide switch selection at the respective
10 straight and bent switch positions.

11

12 To change positions from a bent waveguide position to and
13 from a straight waveguide position, the selectable waveguide has
14 a rotating selector knob 28 or other mechanical means for
15 rotating a rotating element 30 supporting the bent waveguide
16 section 20 and straight waveguide section 14 on a stationary
17 housing 32. The selectable waveguide preferably uses the
18 rotating element 30 in the stationary housing 32 to change
19 positions for respectively communicating signals 18 or 24. As
20 preferably designated, the selectable waveguide uses the bent
21 waveguide 20 to communicate linearly polarized signals 24 and
22 uses the straight waveguide 14 to preferably communicate
23 circularly polarized signals 182. The bent waveguide section 20
24 and the straight waveguide section 14 can have either a square or
25 circular cross section and sized for the frequencies of interest.
26 The manually actuated rotating knob 28 is rotated to connect
27 either the bent waveguide 20 or the straight waveguide 14 between
28 the antenna feed port 10 and either of the linear port 22 or the

1 circular port 16, respectively. Hence, the bent waveguide
2 section 20 preferably communicates a linearly polarized signal 24
3 as feed signal 12 between the linearly polarized port 22 and the
4 antenna feed port 10, and, the straight waveguide section 14
5 preferably communicates circular polarized signals 12 as feed
6 signal 12 between the circularly polarized port 16 and the
7 antenna feed port 12. Hence, the rotating knob 28 only has two
8 positions, the first position connecting the linear port 22 to
9 the antenna feed port 10 for linearly polarized signal
10 communication, and the second position connecting the circular
11 port 16 to the antenna feed port 10 for circularly polarized
12 signal communication.

13

14 The polarization sensitive probes 19 and 25 are preferably
15 used to separate by polarization states the two orthogonal
16 polarized signals 18 and 24. The linear port 22 may communicate
17 two independent signals separated by orthogonal polarization
18 states, such as, linear horizontal and linear vertical
19 polarization states. Likewise, the circular port 22 may
20 communicate two independent signals separated by orthogonal
21 polarization states, such as, left hand and right hand circular
22 polarization signals. Each of the probes 19 or 25 are preferably
23 responsive to a predetermined polarization state and as such are
24 used to isolate and separate two independent orthogonally
25 polarized component signals.

26

27 By rotating the rotating element for waveguide section
28 alignment, the probes 19 and 25 are thereby rotated into a

1 position for receiving or transmitting one of the plurality of
2 differing polarized signals, thereby perfecting a polarization
3 state selection. The waveguide cross sections 14 and 20 remains
4 unaltered from the antenna feed port 10 to either of the linear
5 port 22 and the circular port 16. The cross section areas of the
6 waveguide sections 14 and 20 remain fixed within the selectable
7 waveguide. Because the waveguide cross section remains
8 unchanged, no mechanism exists for polarization modifications
9 from antenna feed port 10 through the waveguide sections 14 and
10 20 to the ports 22 and 16. Consequently, the waveguide does not
11 degrade polarization isolation. The waveguide cross sections 14
12 and 20 may be square and in this case the signals are propagated
13 on TE01 and TE10 waveguide modes. The waveguide cross section
14 can also be circular and the signals 18 and 24 are propagated on
15 orthogonal TE11 waveguide modes. Hence, the waveguide cross
16 section of the sections 14 and 20 is preferably preserved
17 throughout the rotating member 30.

18

19 The waveguide section selection, and hence polarization
20 state selection, by rotating the knob 28, may be by conventional
21 mechanical means to route the feed signals 12 to one of port 22
22 and 16 to thereby place a respective polarization sensitive probe
23 19 or 25 in the path of feed signal 12. Like conventional
24 waveguide baseball switches, the rotation can be manually
25 performed or accomplished by using a motor drive that can be
26 remotely controlled. However, the waveguide section selection
27 knob 28 has the improved features of offering polarization state
28 selection using dissimilar waveguide sections 14 and 20 and using

1 respective dissimilar polarization state sensitive probes 19 and
2 25. The rotating knob 28 is used to both select one waveguide
3 section 14 or 20, and to simultaneously select the one of the two
4 respective probes 19 and 25 to perfect polarization state
5 selection. The first switch selection position selects the
6 straight waveguide section 14 and probe 19 to connect the antenna
7 feed port 10 to the circular port 16, and to select the
8 polarization sensitive probe 19 communicating signal 24 of one
9 polarization state. The second switch selection position is
10 obtained by rotating the knob one hundred and eighty degrees to
11 select the bent waveguide section 20 of the selectable waveguide
12 to connect the antenna feed port 10 to the linear port 22, and to
13 select the probe 24 communicating signal 18 having a differing
14 polarization state. Hence, the knob 28 is in effect a
15 polarization state selection knob 28 to select one of a plurality
16 of orthogonally polarized signals without coupling energy between
17 the signals that would otherwise degrade the signal separation.
18

19 Communication devices, such as probes 19 and 25, connected
20 at the circular port 16 and the linear port 22, are designed to
21 separate the component signals by their polarization states. A
22 means for separating polarized signals 10 is to place probes in a
23 waveguide section located ninety degrees apart in adjacent walls
24 of the waveguides. Similarly, the ports 22 and 16 would separate
25 polarized signals typically by an orthomode probe. These probes
26 for separating signals by polarization are well known and capable
27 of operation over wide bandwidths.

1 The losses in dual polarized signal communication through
2 the selectable waveguide result from the losses within the
3 waveguide sections 14 and 22 which losses are very small. The
4 losses in the waveguide sections 14 and 20 are less than the
5 insertion losses associated with conventional hybrid networks.
6 Thus, signal reception and transmission for the present invention
7 are more efficient. The waveguide sections 14 and 20 are
8 preferably used to select one of the two orthogonally polarized
9 signals by virtue of the polarization sensitivity of the probes
10 19 and 25, but can also be used to select signals 18 and 24 of
11 differing frequencies.

12

13 Referring to Figures 3a, a modified selectable waveguide 39
14 may be used for both polarization state and frequency selection
15 of the feed signal 12 communicated to the antenna feed 13. The
16 modified selectable waveguide section 40 can be used in
17 applications where multiple frequency operation is required. The
18 waveguide 39 is initially sized to communicate signals within
19 desired frequency bands. The modified selectable waveguide 39
20 includes a modified bent waveguide section 40 having an extended
21 straight portion 42 and a frequency selective reflective surface
22 44. The extended portion 42 is aligned to the port 16 when the
23 bent waveguide section 40 is aligned to port 22 when the modified
24 selectable waveguide 39 is switched to the bent position. The
25 frequency selective reflective surface 44 is used to reflect
26 signals 24 of one frequency, such as low frequency signals, to
27 the port 22, and to pass signals of another frequency, such as
28 high frequency signals, to the port 16. The probes 19 and 25 can

1 then be used to select signals of differing polarization states,
2 and by virtue of the frequency sensitive reflective surface 44,
3 concurrently select signals of differing frequencies.

4

5 Referring to Figure 3b, the modified selectable waveguide 39
6 is attached to a coupler 46 having a left hand port 48
7 communicating left hand port signal 47 to a left hand probe 49,
8 and, having a right hand port 50 communicating right hand port
9 signals 51 to a right hand probe 53. As such, the probes 53 and
10 49 are used to isolate orthogonally polarized signals, such as
11 right hand circular and left hand circular polarized signals. It
12 should be apparent that the coupler 46 functions as a splitter
13 providing two outputs, and that the coupler 46 and probes 49 and
14 53 could, as well, be attached to port 22 for respectively
15 communicating horizontal linear and vertical linear orthogonally
16 polarized signals 24. The coupler 46 has a taper port 52 for
17 attenuating low frequency component signals and passing high
18 frequency component signals 54 to the probe 19. Hence, the
19 modified selectable waveguide 39 can be modified to include means
20 that provide frequency selection while the probes 15 and 19 can
21 be used to select desired polarization states to isolate signals
22 of interest. It should now be equally apparent, that the
23 selectable waveguide of Figures 1 and 2, and or the modified
24 selectable waveguide 39 of Figures 3a and 3b, can be used in
25 combination with various probes, couplers and tapers to isolate
26 signal of desired polarization states and frequencies. Further
27 still, the selectable waveguide of Figures 1 and 2, and or the
28 modified selectable waveguide 39 of Figures 3a and 3b, can be

1 cascaded and used in combination with various probes, couplers
2 and tapers to isolate many different signals of respective
3 desired polarization states and frequencies.

4

5 Referring to Figure 4, two modified selectable waveguides, a
6 front end waveguide 39a and a back end waveguide 39b, are
7 cascaded for multiple frequency and multiple polarization state
8 communication applications. Frequency selection and polarization
9 state selection are enabled by the cascaded arrangement in
10 combination with various probes, couplers and tapers. The two
11 waveguides 39a and 39b are both shown in the straight position,
12 but either or both may be rotated to the bent position, thereby
13 providing a four position cascaded arrangement providing a
14 straight-straight position, a straight-bent position, a
15 bent-straight position and a bent-bent position.

16

17 In the straight position, the waveguide dimension is chosen
18 to permit propagation of all system frequencies. The straight
19 position is preferably used for communicating circularly
20 polarized signals at the lower frequencies. All of the signals
21 propagate unmodified through the straight waveguide sections
22 14ab. At the output circular port 16a of the modified selectable
23 waveguide 39a, the coupler 46a is used to separate the lowest
24 frequency signals into ports 48a and 50a. The port 48a can be
25 used for left hand polarized signals, and the port 50a can be
26 used for selecting right hand polarized signals in the lowest
27 frequency band. The coupler 46a is transparent to the higher
28 frequencies. The design of such couplers is well known and

1 commonly used. The waveguide taper 52a follows the coupler 46a
2 so that the waveguide size is reduced permitting propagation of
3 signals of all frequencies except the lowest frequency signals.
4 The second modified selectable waveguide 39b has smaller
5 dimensions and follows the taper port 52a. The selectable
6 waveguide 39a is transparent to frequency bands above the lowest
7 frequencies. The coupling of the lower frequency band to ports
8 22ab is enabled in the bent positions. The miter bends have
9 frequency selection surfaces 44ab in place of a conducting
10 surface 26 used by the single frequency selectable waveguide
11 switch design. These frequency selective miter surfaces 44ab
12 reflect the lowest frequency signals 24ab into the linearly
13 polarized ports 22ab for connection to respective probes 25ab.
14 The frequency selective miter surfaces 44ab are transparent to
15 higher frequencies so that the higher frequency signals 54a can
16 be communicated through the cascaded arrangement at the higher
17 frequencies.

18

19 Each of the modified selectable waveguides 39ab,
20 respectively includes ports 16ab, 22ab, 48ab and 50ab, tapers
21 52ab, straight waveguide sections 14ab, and bent waveguide
22 sections 40ab. Waveguide 39a has the feed port 10a receiving the
23 feed signal 12 and provides the output signal 54a that is fed
24 into the feed port 10b of waveguide 39b to provide the output
25 signal 54b to probe 19. Probes 25ab respectively communicating
26 signals 24ab, probes 49ab respectively communicating signals
27 47ab, probes 53ab respectively communicating signals 51ab, and
28 probe 19 communicating signal 54b, all of which can be used for

1 selecting signals of differing frequencies and polarization
2 states.

3

4 The cascaded arrangement places the low frequency band
5 modified selectable waveguide 39a closest to the antenna feed
6 port 10a and the antenna feed 13, whereas the high frequency band
7 modified selectable waveguide 39b may be used to communicate
8 signals in a high frequency band. In the polarized selectable
9 waveguide 39a closest to the antenna feed 13, a modification can
10 be made to miter bend. In single frequency designs, the miter
11 bend 44a consists of a conducting surface 26. In the multiple
12 frequency design, the conducting miter surface 26 is replaced by
13 a frequency selective surface 44a capable of reflecting the
14 lowest frequency components and passing the higher frequency
15 components. The coupler 46a passes only low frequency signals to
16 ports 48a and 50b. The coupler 46b passes only high frequency
17 signals to the ports 48b and 50b. Another frequency selective
18 surface 44b can be used to prevent mode conversion and signal
19 loss for the higher frequency components. The frequency
20 selective surfaces 44a and 44b and taper ports 52a and 52 can be
21 used for low, high, higher frequency band isolation.

22

23 In the straight-straight position, the arrangement passes
24 low frequency signals 47a and 51a, passes high frequency signals
25 54a, 47b and 50b, and passes higher frequency signals 54b. In
26 the bent-straight position, the arrangement passes low frequency
27 signals 25a, passes high frequency signals 54a, 47b and 50b, and
28 passes higher frequency signals 54b. In the straight-bent

position, the arrangement passes low frequency signals 47a and 51a, passes high frequency signals 54a, 25b, 47b and 51b, and passes higher frequency signals 54b. In the bent-bent position, the arrangement passes low frequency signals 25a, passes high frequency signals 54a and 25b, and passes higher frequency signals 47b, 50b, and 54b. Preferably, the port 22a communicates low frequency linearly polarized signals 24a to probe 25a, port 48a communicates low frequency left hand circularly polarized signals 47a to probe 49a, port 50a communicates low frequency right hand circularly polarized signals 51a to probe 53a, port 52a communicates high frequency signals to port 10b, port 22b communicates high frequency linearly polarized signals 24b to probe 25b, port 48b communicates high frequency left hand circularly polarized signals 47b to probe 49b, port 50b communicates high frequency right hand circularly polarized signals 51b to probe 53b, and port 52b communicates higher frequency signals to probe 19.

As may now be apparent, several selectable waveguides in combination with various frequency sensitive couplers and tapers can be coupled together and cascaded to provide a plurality of polarization states and frequency selections, all by means of simple rotation of the selectable waveguides. Hence, the selectable waveguide can be used for multiple frequency and multiple polarization selection and operation using both the straight and bent positions and using frequency selective tapers, coupler, and surfaces. These switches are cascaded so that the polarization selection can be made at desired frequencies. This

1 cascade arrangement permits independent polarization selection at
2 each of the used frequencies.

3

4 The selectable waveguide switch can be readily applied a
5 frequency selection application. However, other applications
6 exist for the selectable waveguide. Waveguide switches are
7 commonly used to connect other alternatives or redundant
8 electronics into systems. For antennas designed to operate with
9 several different satellites, the selectable switch can be used
10 advantageously with different transmitters. As an example, a
11 system may be required to provide both low and high data rate
12 communications with different satellite systems. The transfer of
13 high data rate information generally requires higher transmitted
14 power than low data rate communications, and the frequency
15 assignments within the band may differ somewhat between the
16 satellite systems. The selectable waveguide switch can be used
17 to connect two different transmitters having different power
18 capabilities to the same antenna feed. Another common
19 requirement is to be able to switch transmitters between the
20 antenna and a dummy load. The dummy load permits operating the
21 transmitters for diagnostic testing without radiating through the
22 antenna causing needless interference. The selectable waveguide
23 switch can be used advantageously in this application permitting
24 use of a single dummy load for both orthogonal polarization
25 states. Such a design can be more compact than one using two
26 dummy loads for each polarization state. Those skilled in the
27 art can make enhancements, improvements, and modifications to
28 enhance the invention and extend the application of the

1 selectable waveguide switch. However, those enhancements,
2 improvements and modifications may nonetheless fall within the
3 spirit and scope of the following claims.

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

1 What is claimed is

2

3 1. A selectable waveguide having a first position and second
4 position for communicating a signal between an input port and a
5 first output port and a second output port, the selectable
6 waveguide comprising,

7 a first waveguide section having a first waveguide shape for
8 communicating the signal between the input port and the first
9 output port when the selectable waveguide is in the first
10 position, and

11 a second waveguide section having a second waveguide shape
12 for communicating the signal between the input port and the
13 second output port when the selectable waveguide is in the second
14 position.

15

16 2. The selectable waveguide of claim 1 wherein

17 the input port is an antenna feed port,

18 the first waveguide shape is straight between the input port
19 and the first output port, and

20 the second waveguide shape is bent defined by a reflecting
21 surface for reflecting the signal between input port and the
22 second port.

23

24

25

26

27

28

1 3. The selectable waveguide of claim 1 wherein,
2 the signal is communicated between an antenna feed coupled
3 to the input port and a first probe coupled to the first output
4 port through the first waveguide section when the signal is a
5 first polarized signal, and
6 the signal is communicated between an antenna feed coupled
7 to the input port and a second probe coupled to the second output
8 port through the second waveguide section when the signal is a
9 second polarized signal.

10

11

12 4. The selectable waveguide of claim 1 further comprising,
13 a rotating element for supporting the first and second
14 waveguide sections, the rotating element can be rotated into the
15 first and second positions,
16 a knob for manually rotating the rotating element between
17 the first and second position, and
18 a stationary housing for supporting the rotating element.

19

20

21

22

23

24

25

26

27

28

1 5. A selectable waveguide having a first and second position
2 for respectively communicating first or second signals from an
3 antenna feed to respective first and second probes, the
4 selectable waveguide comprising,

5 an antenna feed port coupled to the antenna feed for
6 communicating the signals between the antenna feed and the first
7 and second probes,

8 a first waveguide section having a first shape and coupled
9 to the antenna feed port for communicating the first signal,

10 a first port coupled between the first probe and the first
11 waveguide section for communicating the first signal between the
12 first probe and the first waveguide section,

13 a second waveguide section having a second shape and coupled
14 to the antenna feed port for communicating the second signal,

15 a second port coupled between the second probe and the
16 second waveguide section for communicating the second signal
17 between the second probe and the second waveguide section, and

18 an element for supporting the first and second waveguide
19 sections, the element having a first position for communicating
20 the first signal between the antenna feed port through the first
21 waveguide section to the second port, the element having a second
22 position for communicating the second signal between the antenna
23 feed port through the second waveguide section to the second
24 port.

25

26

27

28

1 6. The selectable waveguide of claim 5 wherein,
2 the element is a rotating element,
3 the first signal is a first polarized signal,
4 the first waveguide shape is straight,
5 the second signal is a second polarized signal,
6 the second waveguide shape is bent at ninety degrees having
7 a forty-five degree reflective surface, and
8 the selectable waveguide is for selecting the communicating
9 of either the first or second polarized signals, the first and
10 second polarized signals are orthogonal to each other.

11
12 7. The selectable waveguide of claim 5 wherein,
13 the element is a rotating element,
14 the first signal is a circularly polarized signal,
15 the first waveguide shape is straight,
16 the second signal is a linearly polarized signal,
17 the second waveguide shape is bent at ninety degrees having
18 a forty-five degree reflective surface, and
19 the selectable waveguide is for selecting the communication
20 of either the circularly polarized signal or the linearly
21 polarized signal.

22
23
24
25
26
27
28

8. The selectable waveguide of claim 5 wherein,
the second signal comprises a high frequency signal and a
low frequency signal,
the reflective surface is a frequency selective reflective
surface for reflecting low frequency signals to the second port
and for passing high frequency signals to the first port,
the second waveguide section comprises a waveguide extension
extending from the frequency selective reflective surface and the
first port for communicating the high frequency signals to the
first probe through the first port when the selectable waveguide
is in the second position.

9. A selectable waveguide arrangement for respectively
communicating first, second or third signals from an antenna feed
to respective first, second and third probes, the selectable
waveguide arrangement comprising a front end selectable waveguide
and a back end selectable waveguide, wherein,
the front end selectable waveguide comprises:
an antenna feed port coupled to the antenna feed for
communicating the first, second and third signals between the
antenna feed and the first, second and third probes;
a first front end waveguide section having a first front end
shape and coupled to the antenna feed port for communicating the
second and third signals;
a first front end port coupled to back end selectable
waveguide for communicating the second and third signals between
the antenna feed port and the back end selectable waveguide;

1 a second front end waveguide section having a second front
2 end shape and coupled to the antenna feed port for communicating
3 the first signal;

4 a second front end port coupled between the first probe and
5 the second front end waveguide section for communicating the
6 first signal between the antenna feed port and the first probe
7 through the second front end waveguide section; and

8 a front end element for supporting the first front end
9 waveguide section and the second front end waveguide section, the
10 front end element has a first front end position for
11 communicating the second and third signals between the antenna
12 feed port through the first front end waveguide section through
13 the first front end port to the back end selectable waveguide,
14 the front end element has a second front end position for
15 communicating the first signal between the antenna feed port
16 through the second front end waveguide section through the second
17 front end port to the first probe, and wherein,

18 the back end selectable waveguide comprises:

19 a back end input port coupled to the first front end port
20 for communicating the second and third signals between the first
21 front end port respectively to the second and third probes;

22 a first back end waveguide section having a first back end
23 shape and coupled to the back end input port for communicating
24 the second and third signals;

25 a first back end port coupled to the first back end
26 waveguide section for communicating the third signal between the
27 back end input port and the third probe through the first back
28 end waveguide section;

1 a second back end waveguide section having a second back end
2 shape and coupled to the back end input port for communicating
3 the second signal;

4 a second back end port coupled between the second back end
5 waveguide section and the second probe for communicating the
6 second signal between the back end input port and the second
7 probe through the second back end waveguide section; and

8 a back end element for supporting the first back end
9 waveguide section and the second back end waveguide section, the
10 back end element has a first back end position for communicating
11 the third signal between the back end input port through the
12 first back end waveguide section through the first back end port
13 to the third probe, the back end element has a second back end
14 position for communicating the second signal between the back end
15 input port through the second back end waveguide section through
16 the second back end port to the second probe.

17
18 10. The selectable waveguide arrangement of claim 9 wherein,
19 the first front end waveguide section shape is straight and
20 uniform in cross section between the antenna feed port and the
21 first front end port,

22 the first back end waveguide section shape is straight and
23 uniform in cross section between the back end input port and the
24 first back end port,

25 the second front end waveguide section shape is bent at
26 ninety degrees having a forty-five degree reflective surface and
27 uniform in cross section between the antenna feed port and the
28 second front end port, and

1 the second back end waveguide section shape is bent at
2 ninety degrees having a forty-five degree reflective surface and
3 uniform in cross section between the back end input port and the
4 second back end port.

5

6

7 11. The selectable waveguide arrangement and claim 9 wherein,
8 the first and second front end waveguide sections have a
9 smaller cross section than the first and second back end
10 waveguide sections.

11

12

13 12. The selectable waveguide arrangement of claim 9 wherein the
14 second and third signals are polarized signals and are
15 orthogonally polarized respecting each other.

16

17

18 13. The selectable waveguide arrangement of claim 9, wherein the
19 first front end port is a tapered port for attenuating low
20 frequency components of the second and third signals.

21

22

23

24

25

26

27

28

1 14. The selectable waveguide arrangement of claim 9, wherein the
2 third signal comprises a fourth signal and a fifth signal, the
3 selectable waveguide arrangement is coupled to a fourth probe and
4 a fifth probe, selectable waveguide arrangement further
5 comprises,

6 a coupler coupled to the first front end port and comprising
7 a fourth port and fifth port respectively coupled to the fourth
8 and fifth probes, the fourth and fifth signals are orthogonally
9 polarized and the fourth and fifth probes are polarization
10 sensitive to respectively communicate the fourth and fifth
11 signals between the antenna feed port and the fourth and fifth
12 probes through the first front end waveguide section and fourth
13 and fifth ports.

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Abstract of the Disclosure

A selectable waveguide transitions between two positions to at least two independent signals by their polarization or frequency. This waveguide consists of dissimilar wave sections coupled to an antenna feed and is mechanically actuated for signal selection switching to route signals to output ports and respective probes that are polarization sensitive. The waveguide sections offer high polarization purity so that signal components remain separated to avoid mutual interference and low insertion loss to maintain system efficiency. Selectable waveguide can be extended for multiple polarization and frequency operation. Frequency selective surfaces and tapers establish pass bands and attenuation levels for frequency selection. The selectable waveguide is suitable for both frequency and polarization selectively in antenna system. Selectable waveguides can be cascaded and mechanically actuated for creating selectable waveguides arrangements enabling a wide variety of frequency and polarization selectively operating through a single apparatus.

PATENT

Attorney's Docket No. D-350

COMBINED DECLARATION AND POWER OF ATTORNEY

As a below named inventor, I hereby declare that:

TYPE OF DECLARATION

This declaration is of the following type:

/X/ original

INVENTORSHIP IDENTIFICATION

My residence, post office address and citizenship are as stated below next to my name, I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

TITLE OF INVENTION

ORTHOGONAL POLARIZATION AND FREQUENCY SELECTABLE WAVEGUIDE

SPECIFICATION IDENTIFICATION

The specification of which is attached hereto.

ACKNOWLEDGEMENT OF REVIEW OF PAPERS AND DUTY OF CANDOR

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to the examination of this application in accordance with Title 37, Code of Federal Regulations section 1.56(a).

/X/ In compliance with this duty there is attached an information disclosure statement. 37 CFR 1.97.

(Declaration & Power of Attorney --page 1 of 2)

POWER OF ATTORNEY

As a named inventor, I hereby appoint the following attorney(s) and/or agents(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith:

Derrick Michael Reid, Reg. No. 32,096

SEND CORRESPONDENCE TO:

Derrick M. Reid
Patent Attorney
The Aerospace Corporation
P. O. Box 92957 (M1/040)
Los Angeles, CA 90009-2957

DIRECT TELEPHONE CALLS TO:

Derrick M. Reid
(310) 336-6708

DECLARATION

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

SIGNATURE(S)

Full name of sole or first inventor: Robert B. Dybdal

Inventor's signature: *Robert B. Dybdal*

Date: December 16, 1998 Country of Citizenship: U.S.A.

Residence: 2549 Palos Verdes Dr. West, Palos Verdes Estates, CA 90274

Post Office Address: 2549 Palos Verdes Dr. West, Palos Verdes Estates, CA 90274

Full name of second joint inventor, if any, _____

Inventor's signature: _____

Date: _____ Country of Citizenship: U.S.A.

Residence: _____

Post Office Address: _____

Full name of third joint inventor, if any: _____

Inventor's signature: _____

Date: _____ Country of Citizenship: _____

Residence: _____

Post Office Address: _____

X This Declaration ends with this page-- page 2 of 2)

STRAIGHT POSITIONED SELECTABLE WAVEGUIDE

FIG. 1

BENT POSITIONED SELECTABLE WAVEGUIDE

FIG. 2

MODIFIED BENT POSITIONED WAVEGUIDE

FIG. 3A

STRAIGHT POSITIONED WAVEGUIDE

FIG. 3B

CASCADED SELECTABLE WAVEGUIDES

FIG. 4

PATENT

Attorney's Docket No. D-350

COMBINED DECLARATION AND POWER OF ATTORNEY

As a below named inventor, I hereby declare that:

TYPE OF DECLARATION

This declaration is of the following type:

/X/ original

INVENTORSHIP IDENTIFICATION

My residence, post office address and citizenship are as stated below next to my name, I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

TITLE OF INVENTION

ORTHOGONAL POLARIZATION AND FREQUENCY SELECTABLE WAVEGUIDE

SPECIFICATION IDENTIFICATION

The specification of which is attached hereto.

ACKNOWLEDGEMENT OF REVIEW OF PAPERS AND DUTY OF CANDOR

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to the examination of this application in accordance with Title 37, Code of Federal Regulations section 1.56(a).

/X/ In compliance with this duty there is attached an information disclosure statement. 37 CFR 1.97.

(Declaration & Power of Attorney --page 1 of 2)

POWER OF ATTORNEY

As a named inventor, I hereby appoint the following attorney(s) and/or agents(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith:

Derrick Michael Reid, Reg. No. 32,096

SEND CORRESPONDENCE TO:

Derrick M. Reid
Patent Attorney
The Aerospace Corporation
P. O. Box 92957 (M1/040)
Los Angeles, CA 90009-2957

DIRECT TELEPHONE CALLS TO:

Derrick M. Reid
(310) 336-6708

DECLARATION

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

SIGNATURE(S)

Full name of sole or first inventor: Robert B. Dybdal

Inventor's signature: Robert B. Dybdal

Date: December 16, 1998 Country of Citizenship: U.S.A.

Residence: 2549 Palos Verdes Dr. West, Palos Verdes Estates, CA 90274

Post Office Address: 2549 Palos Verdes Dr. West, Palos Verdes Estates, CA 90274

Full name of second joint inventor, if any, _____

Inventor's signature: _____

Date: _____ Country of Citizenship: U.S.A.

Residence: _____

Post Office Address: _____

Full name of third joint inventor, if any: _____

Inventor's signature: _____

Date: _____ Country of Citizenship: _____

Residence: _____

Post Office Address: _____

X This Declaration ends with this page-- page 2 of 2)

PATENT

Attorney's Docket No. D-350

COMBINED DECLARATION AND POWER OF ATTORNEY

As a below named inventor, I hereby declare that:

TYPE OF DECLARATION

This declaration is of the following type:

/X/ original

INVENTORSHIP IDENTIFICATION

My residence, post office address and citizenship are as stated below next to my name, I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

TITLE OF INVENTION

ORTHOGONAL POLARIZATION AND FREQUENCY SELECTABLE WAVEGUIDE

SPECIFICATION IDENTIFICATION

The specification of which is attached hereto.

ACKNOWLEDGEMENT OF REVIEW OF PAPERS AND DUTY OF CANDOR

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to the examination of this application in accordance with Title 37, Code of Federal Regulations section 1.56(a).

/X/ In compliance with this duty there is attached an information disclosure statement. 37 CFR 1.97.

(Declaration & Power of Attorney --page 1 of 2)

POWER OF ATTORNEY

As a named inventor, I hereby appoint the following attorney(s) and/or agents(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith:

Derrick Michael Reid, Reg. No. 32,096

SEND CORRESPONDENCE TO:

Derrick M. Reid
Patent Attorney
The Aerospace Corporation
P. O. Box 92957 (M1/040)
Los Angeles, CA 90009-2957

DIRECT TELEPHONE CALLS TO:

Derrick M. Reid
(310) 336-6708

DECLARATION

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

SIGNATURE(S)

Full name of sole or first inventor: Robert B. Dybdal

Inventor's signature: *Robert B. Dybdal*

Date: December 16, 1998 Country of Citizenship: U.S.A.

Residence: 2549 Palos Verdes Dr. West, Palos Verdes Estates, CA 90274

Post Office Address: 2549 Palos Verdes Dr. West, Palos Verdes Estates, CA 90274

Full name of second joint inventor, if any, _____

Inventor's signature: _____

Date: _____ Country of Citizenship: U.S.A.

Residence: _____

Post Office Address: _____

Full name of third joint inventor, if any: _____

Inventor's signature: _____

Date: _____ Country of Citizenship: _____

Residence: _____

Post Office Address: _____

X This Declaration ends with this page-- page 2 of 2)