

Unsupervised ML part II: Similarity and Dissimilarity

อ.ดร.ปัญญนัท อันพงษ์

ภาควิชาคอมพิวเตอร์ คณะวิทยาศาสตร์ มหาวิทยาลัยศิลปากร aonpong p@su.ac.th

Outline

- แนวคิดและแนวทางการประยุกต์ใช้ Clustering
- ปัญหาที่พบบ่อยของกระบวนการ Clustering ในชีวิตจริง
- Definition of Clustering Problem
- Similarity / Dissimilarity measurement

- Clustering ไม่ต้องรู้ class label ล่วงหน้า แต่
 Supervised จำเป็นต้องรู้ class label ล่วงหน้า
- ให้นักศึกษาพิจารณาตัวอย่างต่อไปนี้
- จากตารางและภาพ เห็นได้ชัดเจนว่าเราใช้ข้อมูล จากตารางในการวาดแผนภาพ
 - หมายความว่าเรารู้ class label (Grade) จากข้อมูลที่มีเพื่อ ใช้ในการแบ่งประเภท (supervised classification)
- ลองจินตนาการว่าเราไม่รู้ class label (grade) ล่วงหน้า และเราต้องการจัดกลุ่มของข้อมูลเข้าด้วยกัน
 - สมมติเราต้องการแบ่งนักศึกษาออกเป็น 6 ระดับ ผลลัพธ์ จะต่างจาก supervised classification อย่างไร

Roll No	Mark	Grade
1	80	Α
2	70	Α
3	55	С
4	91	EX
5	65	В
6	35	D
7	76	А
8	40	D
9	50	С
10	85	EX
11	25	F
12	60	В
13	45	D
14	95	EX
15	63	В
16	88	Α

- ผลลัพธ์ที่ได้จะแตกต่างจากการแบ่งแยกด้วย กระบวนการ Supervised Classification
- การแบ่งแยกแบบไม่มีการ predefine จะใช้การจัดกลุ่ม โดยการหาความคล้ายคลึง (Similarity) ระหว่างข้อมูล ตามที่สามารถพบได้บนปริภูมิ
- การจัดกลุ่มแบบนี้คือ clustering (Unsupervised)

Roll No	Mark	Grade
1	80	А
2	70	Α
3	55	С
4	91	EX
5	65	В
6	35	D
7	76	А
8	40	D
9	50	С
10	85	EX
11	25	F
12	60	В
13	45	D
14	95	EX
15	63	В
16	88	Α

25-30:	25 F		
30-40:	35	40 E	
40-50:	45		
50-60:	55	50	D
60-70:	6 5	60	63
70-80:	70°C	76 B	
80-90:	80	85	88 A
90-100:	91	95	

• เพื่อให้เห็นการประยุกต์ใช้ Clustering กับข้อมูลในชีวิตจริง ลองพิจารณาข้อมูลที่มีความซับซ้อนขึ้น

Martial Status	Age	Income	Education	Number of
				children
Single	35	25000	Under Graduate	3
Married	25	15000	Graduate	1
Single	40	20000	Under Graduate	0
Divorced	20	30000	Post-Graduate	0
Divorced	25	20000	Under Graduate	3
Married	60	70000	Graduate	0
Married	30	90000	Post-Graduate	0
Married	45	60000	Graduate	5
Divorced	50	80000	Under Graduate	2

• เมื่อข้อมูลมีหลาย Feature มากขึ้น เราสามารถทำ Clustering ข้อมูล 1 attribute หรือมากกว่า (กลุ่มของ attributes) ก็ได้ หากกลุ่มของ attribute นั้นมีความคล้ายคลึงกัน (high similarity)

- มีการประยุกต์ใช้ Clustering กับงานจริงจำนวนมาก:
 - ใช้กับข้อมูลเสียงในการจำแนกเสียงพูด เพื่อจำแนกคลื่นเสียงจากเสียงพูดออกเป็น k ประเภท
 - ใช้สำหรับเลือกโทนสีบนอุปกรณ์แสดงผลกราฟิกแบบเก่าที่มีการจำกัดจำนวนสีและ Image Quantization (เรียกว่า Vector Quantization หรือ Image Segmentation)
 - การเรียกค้นเอกสาร
 - งานประเภทการเรียนรู้ของเครื่อง (machine learning) เป็นต้น

Outline

- แนวคิดและแนวทางการประยุกต์ใช้ Clustering
- ปัญหาที่พบบ่อยของกระบวนการ Clustering ในชีวิตจริง
- Definition of Clustering Problem
- Similarity / Dissimilarity measurement

ปัญหาที่พบบ่อยของกระบวนการ Clustering ในชีวิตจริง

- เราไม่ทราบจำนวนของคลัสเตอร์ที่เหมาะสมที่สุด
 - ไม่มีจำนวนคลัสเตอร์ที่เป็นคำตอบที่ถูกต้อง 100%
 - ในทางปฏิบัติ การทำการทดลองกับข้อมูลที่ใช้จริง ผู้ทำการศึกษาอาจพบว่ามีจำนวนที่เหมาะสมหลายจำนวน
 - ในข้อมูลขนาดใหญ่มาก การเลือกจำนวนที่เหมาะสมที่สุดที่แท้จริงนั้นไม่ใช่เรื่องง่าย

ปัญหาที่พบบ่อยของกระบวนการ Clustering ในชีวิตจริง

2. เราอาจไม่มีความรู้หรือความเข้าใจข้อมูลที่นำมาใช้ก็ได้

- ในทางปฏิบัติ หลายครั้งที่บริษัทหรือเจ้าของข้อมูลไม่ต้องการเปิดเผย Label ของข้อมูล เนื่องจากต้องการให้ข้อมูลนั้นเป็นความลับภายใน
- ผู้ศึกษาไม่อาจรู้ความหมายที่แท้จริงของข้อมูลได้ จึงจำเป็นต้องใช้ความรู้ ทางสถิติเข้ามาจัดการ (ทั้งที่ไม่รู้ความหมายที่แท้จริง)
- หรือบางข้อมูล อาจไม่มีใครรู้หรือเข้าใจความหมายของข้อมูลเหล่านั้นมา ก่อนเลยก็เป็นไปได้ (เราอาจเป็นคนแรกที่ทำการศึกษา)
- ปัญหานี้มักเป็นปัญหาของ clustering (เพราะถ้าไม่มีปัญหานี้ ในชีวิตจริง เรามักจะเลือกวิธีการ supervised classification)

ปัญหาที่พบบ่อยของกระบวนการ Clustering ในชีวิตจริง

3. การตีความหมายของแต่ละคลัสเตอร์เป็นเรื่องยาก

- การวิเคราะห์ด้วยวิธีการ Supervised Classification หรือการจำแนกแบบ มีผู้สอน เราจะรู้อยู่แล้วว่าแต่ละ Class มี label เป็นอะไร เพราะในข้อมูลที่ ใช้ฝึกฝนโมเดลจำเป็นต้องมี label ระบุอยู่แล้ว
- แต่ใน Unsupervised หรือ Clustering ส่วนใหญ่เราจะไม่ทราบ label แม้ว่าเราจะแยกข้อมูลเป็นกลุ่ม ๆ จากความคล้ายคลึง (Similarity) ออก จากกันได้ แต่การที่จะทราบความหมายที่แท้จริงของแต่ละกลุ่มนั้น จำเป็นต้องมีความรู้เกี่ยวกับข้อมูลมาก่อน หรือต้องมีการเข้าไปสำรวจข้อมูล ภายในเท่านั้น
- ดังนั้น เมื่อกระบวนการ Clustering สำเร็จแล้ว ความหมายที่แท้จริง ของคลัสเตอร์อาจไม่ชัดเจน

Outline

- แนวคิดและแนวทางการประยุกต์ใช้ Clustering
- ปัญหาที่พบบ่อยของกระบวนการ Clustering ในชีวิตจริง
- Definition of Clustering Problem
- Similarity / Dissimilarity measurement

Definition of Clustering Problem (แบบแฟนซี)

หนังสือเล่มหนึ่งได้กล่าวไว้ว่า

Definition: Clustering

Given a database $D = \{t_1, t_2, \dots, t_n\}$ of n tuples, the clustering problem is to define a mapping $f : D \rightarrow C$, where each $t_i \in D$ is assigned to one cluster $c_i \in C$. Here, $C = \{c_1, c_2, \dots, c_k\}$ denotes a set of clusters.

- วิธีการแก้ปัญหา Clustering คือการกำหนดสูตร (mapping function) ในการวาดผังข้อมูล
- Mapping function ที่อยู่เบื้องหลังการวาดผังข้อมูลดังกล่าวคือการระบุว่าข้อมูลภายในคลัสเตอร์หนึ่งนั้น เหมือนข้อมูลภายในคลัสเตอร์หนึ่งนั้น เหมือนข้อมูลภายในคลัสเตอร์นั้นมากกว่า และไม่เหมือนกับทูเพิลที่อยู่ภายนอก

Definition of Clustering Problem (แบบแฟนซี)

ดังนั้น mapping function จาก definition ที่ระบุไว้ อาจกล่าวได้อย่างชัดเจนว่า

$$f: D \rightarrow \{c_1, c_2, \dots, c_k\}$$

เมื่อ $t_i \in D$ ที่กำหนดให้อยู่ในคลัสเตอร์ใดคลัสเตอร์หนึ่งที่ $c_i \in C$ สำหรับทุกคลัสเตอร์ $c_i \in C$ และ t_{ip} , $t_{iq} \in c_i$ ทุกตัว เมื่อเทียบกับ $t_j \notin c_i$ จะได้ว่า

similarity (t_{ip} , t_{iq}) > similarity (t_{ip} , t_{j}) และ similarity (t_{iq} , t_{j})

Definition of Clustering Problem (แบบแฟนซี)

ลองขีดเส้นยกตัวอย่างอื่น ๆ ที่ไม่เหมือนตัวอย่างหน้าเมื่อกี้ด้วยตัวเอง

<u>อันนี้</u> จะคล้าย<u>อันนี้</u> แต่ไม่คล้าย<u>อันนี้</u>

ดังนั้น ฟังก์ชัน similarity (x, y) จึงเป็นการทดสอบความ คล้ายกัน (similarity) ของข้อมูลที่เป็นพารามิเตอร์ทั้งสองตัว

ในกระบวนการ Clustering ค่า similarity เป็นข้อมูลที่สำคัญ

Outline

- แนวคิดและแนวทางการประยุกต์ใช้ Clustering
- ปัญหาที่พบบ่อยของกระบวนการ Clustering ในชีวิตจริง
- Definition of Clustering Problem
- Similarity / Dissimilarity measurement

What is Similarity?

The quality or state of being similar; likeness; resemblance; as, a similarity of features. Webster's Dictionary

Similarity is hard to define, but... "We know it when we see it"

The real meaning of similarity is a philosophical question. We will take a more pragmatic approach.

- •ในสายงาน Unsupervised ML นั้น การวัดค่าความเหมือน (Similarity) และ ความแตกต่าง (Dissimilarity) มีความสำคัญมาก
- •ความหมายของทั้งสองคำนั้นตรงตัว คือ Similarity ใช้ในการวัดความเหมือน ของวัตถุมากกว่า 1 ชิ้นขึ้นไป ส่วน Dissimilarity ใช้ในการวัดความแตกต่างของ วัตถุมากกว่า 1 ชิ้นขึ้นไป
- เนื่องจากทั้งสองค่านี้ถูกใช้งานในลักษณะเดียวกัน เราจึงสามารถให้นิยามทั้ง สองคำนี้ร่วมกันเป็นคำเดียวว่า Proximity (แปลว่า ความใกล้ชิด)

- •ค่า Proximity จะมีค่ามากกว่าหรือเท่ากับ 0 เสมอ โดยที่
 - ค่า Proximity จะมีค่าเป็นมาก (อาจเป็น 1 หรือ +inf) เมื่อวัตถุทั้งสองชิ้นเหมือนกัน ทุกประการ หรือเป็นวัตถุชิ้นเดียวกัน (highly similar)
 - ค่า Proximity จะมีค่าเป็น 0 เมื่อวัตถุทั้งสองชิ้นแตกต่างกันโดยสิ้นเชิง (highly dissimilar)

• บ่อยครั้ง คำว่า distance มักถูกใช้เรียกแทนคำว่า dissimilarity แต่ในความจริงแล้ว distance ใช้อ้างถึง dissimilarity ที่เป็นกรณีพิเศษเท่านั้น ไม่ได้มีความหมายเหมือนกับ dissimilarity ทั้งหมด (distance – special case of dissimilarity)

Outline

- แนวคิดและแนวทางการประยุกต์ใช้ Clustering
- ปัญหาที่พบบ่อยของกระบวนการ Clustering ในชีวิตจริง
- Definition of Clustering Problem
- Similarity / Dissimilarity measurement: Nominal, Ordinal
 - Single attribute
 - Two or more attribute
 - Categorical attribute

Proximity: Single attribute

• สมมติว่ามีวัตถุอยู่จำนวนหนึ่ง แต่ละชิ้นมี Attribute เดียว (คิดง่าย ๆ ให้เป็นความยาว)

$$a_1, a_2, \ldots, a_n$$

- "Dissimilarity matrix" จะถูกสร้างขึ้นเพื่อเก็บความแตกต่างของ Attribute
- โดย Dissimilarity matrix จะเป็นเมทริกซ์ขนาด n x n

$$\begin{bmatrix} 0 & & & & & \\ p_{(2,1)} & 0 & & & \\ p_{(3,1)} & p_{(3,2)} & 0 & & \\ \vdots & \vdots & & \vdots & \\ p_{(n,1)} & p_{(n,2)} & \dots & 0 \end{bmatrix}^{n \times n}$$

- ullet โดยที่ $p_{(i,j)}$ แทนค่า proximity ของวัตถุ 2 ชิ้น ที่มีค่า attribute เป็น a_i , a_j
- Note: Proximity measure เป็นการวัดที่ให้ผลแบบ<mark>สมมาตร (symmetric)</mark> กล่าวคือ $p_{(i,j)}=p_{(j,i)}$

Proximity: Single attribute

- การคำนวณ proximity (เพื่อใส่ในแต่ละตำแหน่งของ dissimilarity matrix) นั้น แตกต่างไปตามชนิดของข้อมูล (NOIR topology)
 - Nominal attribute -> ซ้ายขวา สี กรุ๊ปเลือด เพศ ชนิดของสิ่งของ สายพันธุ์ ราศี เป็นต้น (วันนี้)
 - Ordinal attribute -> เกรด คุณภาพ ขนาด (s, m, l) เป็นต้น คือข้อมูลที่สามารถระบุ ลำดับได้ (สัปดาห์หน้า)

Proximity: Nominal attribute; single

- จากความรู้เดิม เราทราบว่า
 - ค่า Proximity จะมีค่าเป็นมาก (อาจเป็น 1 หรือ +inf) เมื่อวัตถุทั้งสองชิ้น เหมือนกันทุกประการ หรือเป็นวัตถุชิ้นเดียวกัน (highly similar)
 - ค่า Proximity จะมีค่าเป็น 0 เมื่อวัตถุทั้งสองชิ้นแตกต่างกันโดยสิ้นเชิง (highly dissimilar)

•ดังนั้น จงพิจารณาข้อมูลต่อไปนี้

Object	Gender
Ram	Male
Sita	Female
Laxman	Male

จะกล่าวได้ว่า
$$p(Ram, sita) = 0$$

$$p(Ram, Laxman) = 1$$

ในกรณีนี้ ถ้ากำหนดให้ q แทน dissimilarity ระหว่าง 2 วัตถุ i และ j ที่เป็น Single attribute จะได้ว่า

$$q_{(i,j)} = 1 - p_{(i,j)}$$

Outline

- แนวคิดและแนวทางการประยุกต์ใช้ Clustering
- ปัญหาที่พบบ่อยของกระบวนการ Clustering ในชีวิตจริง
- Definition of Clustering Problem
- Similarity / Dissimilarity measurement : Nominal, Ordinal
 - Single attribute
 - Two or more attribute
 - Categorical attribute

• สมมติว่ามีจำนวน Attribute เป็น b เราจะสามารถสร้าง contingency table เพื่อ สรุปความเหมือนหรือแตกต่างกันของวัตถุ x และ y ได้ดังนี้

		Object y	7
Object		1	0
x	1	f_{11}	f_{10}
	0	f_{01}	f_{00}

เมื่อ
$$f_{11}$$
= จำนวนของ attribute เมื่อ x =1 and y =1. f_{10} = จำนวนของ attribute เมื่อ x =1 and y =0. f_{01} = จำนวนของ attribute เมื่อ x =0 and y =1. f_{00} = จำนวนของ attribute เมื่อ x =0 and y =0.

$$f_{00} + f_{01} + f_{10} + f_{11} = b$$

• เช่น Gender = {M, F}

Food $= \{V, N\}$

Caste $= \{H, M\}$

Education = $\{L, I\}$

Hobby $= \{T, C\}$

 $Job = \{Y, N\}$

Object	Gender	Food	Caste	Education	Hobby	Job
Hari	M	V	M	L	С	N
Ram	M	N	M	1.0	Т	N
Tomi	F	N	Н	L	С	Υ

		Ram	
Hari		0	1
Пап	0	2	2
	1	1	1

● [จ{่ๆ]	Gender	$= \{M,$	F}
6 U K	dender	— (IVI,	ı j

Food $= \{V, N\}$

Caste $= \{H, M\}$

Education = $\{L, I\}$

Hobby $= \{T, C\}$

 $Job = \{Y, N\}$

Object	Gender	Food	Caste	Education	Hobby	Job
Hari	M	V	M	L	С	N
Ram	M	N	M	1	Т	N
Tomi	F	N	Н	L	С	Υ

		Ram	
Tomi		0	1
Tomi	0		
	1		

		Hari	
Tomi		0	1
Tomi	0		
	1		

เราสามารถวัดค่า proximity จากข้อมูลนี้ได้ 2 แบบ ได้แก่

- (1) Symmetric binary attribute (attribute ใบนารีสมมาตร)
- (2) Asymmetric binary attribute (attribute ใบนารีไม่สมมาตร)

• ในการวัด similarity ระหว่างสองวัตถุที่มี attribute มากกว่า 1 โดยวิธีไบนารีสมมาตร เราจะใช้วิธีการวัดที่ชื่อว่า symmetric binary coefficient หรือ ${\cal S}$

$$S = \frac{Number\ of\ matching\ attribute\ values}{Total\ number\ of\ attributes}$$

หรือ
$$\mathcal{S} = \frac{f_{00} + f_{11}}{f_{00} + f_{01} + f_{10} + f_{11}}$$

• ในการวัด dissimilarity ระหว่างสองวัตถุที่มี attribute มากกว่า 1 โดยวิธีไบนารีสมมาตร เราจะใช้วิธีการวัดที่ตรงข้ามกับ symmetric binary coefficient หรือ $\mathcal D$

$$\mathcal{D} = \frac{Number\ of\ mismatched\ attribute\ values}{Total\ number\ of\ attributes}$$

หรือ
$$\mathcal{D} = \frac{f_{01} + f_{10}}{f_{00} + f_{01} + f_{10} + f_{11}}$$

Object	Gender	Food	Caste	Education	Hobby	Job
Hari	M	V	M	L	С	N
Ram	M	N	M	1	Т	N
Tomi	F	N	Н	L	С	Υ

	4	
$\mathcal{S}(Hari,Ram) =$	1+2	= 0.5
e (Hall, Nall) –	1+2+1+2	- 0.3

S(Hari, Tomi) =

S(Ram, Tomi) =

		Ram	
Hari		0	1
Пап	0	2	2
	1	1	1

Gender	= {M, F}
Food	= {V, N}
Caste	$= \{H, M\}$
Education	= {L, I}
Hobby	= {T, C}
Job	= {Y, N}

• ในการวัด similarity ระหว่างสองวัตถุที่มี attribute มากกว่า 1 โดยวิธีไบนารีไม่ สมมาตร (asymmetric) เราจะใช้วิธีการวัดที่ชื่อว่า Jaccard coefficient หรือ ${\cal J}$

$$\mathcal{J} = \frac{Number\ of\ matching\ presence}{Number\ of\ attributes\ not\ involved\ in\ 00\ matching}$$

หรือ
$$\mathcal{J} = \frac{f_{11}}{f_{01} + f_{10} + f_{11}}$$

Object	Gender	Food	Caste	Education	Hobby	Job
Hari	M	V	M	L	С	N
Ram	M	N	M	1	Т	N
Tomi	F	N	Н	L	С	Υ

$$\mathcal{J}(\text{Hari, Ram}) = \frac{1}{2+1+1} = 0.25$$

		Ram	
Hari		0	1
Пап	0	2	2
	1	1	1

Gender	$= \{M, F\}$
Food	= {V, N}
Caste	= {H, M}
Education	= {L, I}
Hobby	= {T, C}
Job	= {Y, N}

Note: $\mathcal{J}(Hari, Ram) = \mathcal{J}(Ram, Hari)$

• จากนั้น สร้าง similarity matrix โดยใช้ Jaccard coefficient สำหรับวัตถุทั้งหมด

Object	Gender	Food	Caste	Education	Hobby	Job
Hari	M	V	M	L	С	N
Ram	M	N	M	1	Т	N
Tomi	F	N	Н	L	С	Υ

$$\mathcal{J} = \begin{bmatrix} H & R & T \\ H & 0 & 0 & 0 \\ \mathcal{J}(R,H) & 0 & 0 \\ T & \mathcal{J}(T,H) & \mathcal{J}(T,R) & 0 \end{bmatrix}$$

Outline

- แนวคิดและแนวทางการประยุกต์ใช้ Clustering
- ปัญหาที่พบบ่อยของกระบวนการ Clustering ในชีวิตจริง
- Definition of Clustering Problem
- Similarity / Dissimilarity measurement : Nominal, Ordinal
 - Single attribute
 - Two or more attribute
 - Categorical attribute

- ที่ผ่านมาเรากล่าวถึง attribute ที่มีลักษณะที่เป็นไปได้เพียง 2 รูปแบบต่อหนึ่ง attribute เท่านั้น
- Categorical attribute ก็เป็น attribute แบบ nominal อีกลักษณะหนึ่ง ที่หนึ่ง attribute มีลักษณะที่เป็นไปได้มากกว่า 1 รูปแบบ
 - เช่น สี {แดง, เขียว, น้ำเงิน, เหลือง}

• ถ้ากำหนดให้ $\mathcal{S}(x,y)$ แทน similarity ระหว่างวัตถุ x และ y แล้ว

$$\mathcal{S}(x,y) = \frac{Number\ of\ matches}{Total\ number\ of\ attributes}$$

ullet ในทางกลับกัน dissimilarity คือ d(x,y) โดยที่

$$d(x,y) = \frac{Number\ of\ mismatches}{Total\ number\ of\ attributes}$$

• ย่อสั้น ๆ ได้ว่า

$$s(x,y) = \frac{m}{a}$$
 และ $d(x,y) = \frac{a-m}{a}$

เมื่อ a แทนจำนวน attribute ทั้งหมด และ m แทนจำนวน attribute ที่ตรงกัน

• ตัวอย่าง

Object	Color	Position	Distance
1	R	L	L
2	В	С	M
3	G	R	M
4	R	L	Н

• ถ้าเราสนใจเพียง attribute สีเพียงอย่างเดียว จะสร้าง similarity matrix ได้ว่า

$$s = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 4 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Dissimilarity matrix,
$$d =$$

• แบบฝึกหัด: จงสร้าง dissimilarity matrix โดยพิจารณา categorical attributes

ทั้งหมด (เช่น สี, ตำแหน่ง, ระยะทาง)

Object	Color	Position	Distance
1	R	L	L
2	В	С	M
3	G	R	М
4	R	L	Н

สรุป

- แนวคิดและแนวทางการประยุกต์ใช้ Clustering
- ปัญหาที่พบบ่อยของกระบวนการ Clustering ในชีวิตจริง
- Definition of Clustering Problem
- Similarity / Dissimilarity measurement : Nominal, Ordinal
 - Single attribute
 - Two or more attribute
 - Categorical attribute