

Methods 2 - 2

Chris Mathys

BSc Programme in Cognitive Science
Spring 2022

Data and measurement

- Data are the basis of modelling
- Aspects of data quality discuss with your neighbour for 5 mins and come up with a list
- List:
 - Validity
 - Construct validity
 - Face validity
 - Ecological validity
 - Reliability
 - Sample selection
 - Selection bias why a problem? What to do about it? Discuss for 5 mins and write down an answer

Graphs

- All graphs are comparisons
- Examples of graphs?
- Advantages, disadvantages?

Vectors and matrices (this and more: video 2a)

At the simplest level:

• *Vector:* list of numbers

• *Matrix:* rectangular array of numbers

$$\left(\begin{array}{cc}
1 & -1 \\
1 & 0 \\
1 & 3
\end{array}\right)$$

Multiplying a vector by a matrix

$$\hat{y} = X\hat{\beta}$$

$$\hat{y} = \begin{pmatrix} 43.3 \\ 46.3 \\ 55.3 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 1 & 0 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 46.3 \\ 3.0 \end{pmatrix}$$

Graphing a line

• Invent your own example (2 points in a plane) and calculate the corresponding equation!

Exponential and power-law relations

Figure 3.4 Log metabolic rate vs. log body mass of animals, from Schmidt-Nielsen (1984). These data illustrate the log-log transformation. The fitted line has a slope of 0.74. See also Figure 3.5.

 Invent your own examples for exponential and power law relations and calculate the corresponding equation!

Probability distributions

Figure 3.6 (a) Heights of women, which approximately follow a normal distribution, as predicted from the Central Limit Theorem. The distribution has mean 63.7 and standard deviation 2.7, so about 68% of women have heights in the range 63.7 ± 2.7 . (b) Heights of men, approximately following a normal distribution with mean 69.1 and standard deviation 2.9. (c) Heights of all adults in the United States, which have the form of a mixture of two normal distributions, one for each sex.

The Gaussian ("normal") distribution

Figure 3.7 Approximately 50% of the mass of the normal distribution falls within 0.67 standard deviations from the mean, 68% of the mass falls within 1 standard deviation from the mean, 95% within 2 standard deviations of the mean, and 99.7% within 3 standard deviations.

The Gaussian ("normal") distribution

Figure 3.7 Approximately 50% of the mass of the normal distribution falls within 0.67 standard deviations from the mean, 68% of the mass falls within 1 standard deviation from the mean, 95% within 2 standard deviations of the mean, and 99.7% within 3 standard deviations.

The log-Gaussian distribution

Figure 3.8 Weights of men (which approximately follow a lognormal distribution, as predicted from the Central Limit Theorem from combining many small multiplicative factors), plotted on the logarithmic and original scales.