National University of Computer and Emerging Sciences, Lahore Campus Quiz5 [BS(CS): Section E] Fall 2023

Computer Networks (Code: CS3001) Quiz Date: Novemer 23, 2023

Total Marks: 15 [CLO 3] Duration: 25 -Minutes

Name ------ Section ------

Q 1: What is meant by a control plane that is based on logically centralized control? In such cases, are the data plane and the control plane implemented within the same device or in separate devices? Explain [2] Q2: Is it necessary that every autonomous system use the same intra-AS routing algorithm? Why or why not?.

[0.5+1.5=2]

Q3: Consider the following network. With the indicated link costs, use Dijkstra's shortest-path algorithm to compute the shortest path from \mathbf{x} to all network nodes. Show the working of the algorithm in the form of a tabular summary for all iterations (i.e., distance and predecessor for all network nodes during each iteration). Moreover, provide the least-cost-path tree from node \mathbf{x} and resulting forwarding table in \mathbf{x} .

[7+2+2=11]

Start writing your answers from here onwards. Yu can use backside of this sheet if needed. Answers:

Q 1: Logically centralized control means that a logically central routing controller computes and distributes the forwarding tables to be used by each and every router, and each router does not compute its forwarding table, unlike the per-router control. In the case of logically centralized control, the data plane and control plane are implemented in separate devices; the control plane is implemented in a central server or multiple servers, and the data plane is implemented in each router.

Q2: No. Each AS has administrative autonomy for routing within an AS.

Q3: Tabular Summary

Step	y and a second	D(t),p(t)	D(u),p(u)	D(v),p(v)	D(w),p(w)	D(y),p(y)	D(z),p(z)
10.1010	N'	2 (4), [4]	2 (), [()	- (-/,-(-/	= (),p ()	- (5), (5)	- (-), - (-)
0	X	∞	∞	3,x	6,x	6,x	8,x
1	XV	7,v	6,v	3,x	6,x	6,x	8,x
2	xvu	7,v	6,v	3,x	6,X	6,x	8,x
3	xvuw	7,v	6,v	3,x	6,X	6,x	8,x
4	xvuwy	7,v	6,v	3,x	6,x	6,x	8,x
5	xvuwyt	7,v	6,v	3,x	6,x	6,x	8,x
6	xvuwytz	7,v	6,v	3,x	6,x	6,x	8,x

Least cost tree:

resulting forwarding table in x:

destination	outgoing link
V	(x,v)
u	(x,v)
t	(x,v)
W	(x,w)
У	(x,y)
Z	(x,z)