# Inferencia, Causalidad y Políticas Públicas ECO-60116

Week 03: Variables Instrumentales

Eduard F. Martinez Gonzalez, Ph.D.

Departamento de Economía, Universidad Icesi

September 12, 2025

# Roadmap

- Motivación
- Variables Isntrumentales
  - Fundamentos de IV
  - Mecánica de 2SLS
  - Estimador de Wald
  - Interpretación
  - Limitaciones
- 3 Does Compulsory School Attendance Affect Schooling and Earnings?
  - Estrategía de Identificación
  - Datos
  - Resultados
- 4 Hands-on: replicar un RD en R

- Experimentos Aleatorios (RCTs): el estándar de oro para estimar efectos causales.
  - Asignación aleatoria asegura comparabilidad entre grupos.
  - ▶ Validez interna fuerte, aunque limitada validez externa.

- Experimentos Aleatorios (RCTs): el estándar de oro para estimar efectos causales.
  - Asignación aleatoria asegura comparabilidad entre grupos.
  - ▶ Validez interna fuerte, aunque limitada validez externa.

#### Validez de los RCTs

- Alta validez interna.
- Posibles limitaciones en validez externa.

- Experimentos Aleatorios (RCTs): el estándar de oro para estimar efectos causales.
  - Asignación aleatoria asegura comparabilidad entre grupos.
  - ▶ Validez interna fuerte, aunque limitada validez externa.

#### Validez de los RCTs

- ► Alta validez interna.
- Posibles limitaciones en validez externa.

#### • Amenazas a la validez:

- Incumplimiento en la asignación.
- Attrition (deserción de participantes).
- Spillovers o contaminación entre grupos.

- Experimentos Aleatorios (RCTs): el estándar de oro para estimar efectos causales.
  - Asignación aleatoria asegura comparabilidad entre grupos.
  - ▶ Validez interna fuerte, aunque limitada validez externa.

#### Validez de los RCTs

- Alta validez interna.
- Posibles limitaciones en validez externa.

#### • Amenazas a la validez:

- Incumplimiento en la asignación.
- Attrition (deserción de participantes).
- Spillovers o contaminación entre grupos.
- **Ejemplo aplicado:** incentivos para mejorar asistencia de maestros en India (Duflo et al., 2012).

# Roadmap

- Motivación
- 2 Variables Isntrumentales
  - Fundamentos de IV
  - Mecánica de 2SLS
  - Estimador de Wald
  - Interpretación
  - Limitaciones
- 3 Does Compulsory School Attendance Affect Schooling and Earnings?
  - Estrategía de Identificación
  - Datos
  - Resultados
- 4 Hands-on: replicar un RD en R

- Los RCTs son el estándar de oro, pero no siempre son factibles:
  - Costos altos o barreras éticas.
  - Incumplimiento en la asignación (non-compliance).
  - Disponibilidad limitada de programas o tratamientos.

- Los RCTs son el estándar de oro, pero no siempre son factibles:
  - Costos altos o barreras éticas.
  - Incumplimiento en la asignación (non-compliance).
  - Disponibilidad limitada de programas o tratamientos.
- En muchos contextos de política pública debemos trabajar con datos observacionales.

- Los RCTs son el estándar de oro, pero no siempre son factibles:
  - Costos altos o barreras éticas.
  - Incumplimiento en la asignación (non-compliance).
  - ▶ Disponibilidad limitada de programas o tratamientos.
- En muchos contextos de política pública debemos trabajar con datos observacionales.
- Problema central: endogeneidad
  - Variables omitidas.
  - Causalidad inversa.
  - Error de medición.

- Los RCTs son el estándar de oro, pero no siempre son factibles:
  - Costos altos o barreras éticas.
  - Incumplimiento en la asignación (non-compliance).
  - Disponibilidad limitada de programas o tratamientos.
- En muchos contextos de política pública debemos trabajar con datos observacionales.
- Problema central: endogeneidad
  - Variables omitidas.
  - Causalidad inversa.
  - Error de medición.
- Idea de IV: aprovechar una fuente de variación exógena que afecte la variable endógena de interés, pero no al resultado directamente.

# Roadmap

- Motivación
- Variables Isntrumentales
  - Fundamentos de IV
  - Mecánica de 2SLS
  - Estimador de Wald
  - Interpretación
  - Limitaciones
- 3 Does Compulsory School Attendance Affect Schooling and Earnings?
  - Estrategía de Identificación
  - Datos
  - Resultados
- 4 Hands-on: replicar un RD en R

• **Contexto:** Queremos estimar el efecto de la educación  $(X_i)$  sobre los ingresos  $(Y_i)$ :

$$Y_i = \alpha + \beta X_i + \varepsilon_i$$

 Contexto: Queremos estimar el efecto de la educación (X<sub>i</sub>) sobre los ingresos (Y<sub>i</sub>):

$$Y_i = \alpha + \beta X_i + \varepsilon_i$$

• **Dificultad:**  $X_i$  (años de escolaridad) puede estar correlacionado con factores no observados ( $\varepsilon_i$ ).

 Contexto: Queremos estimar el efecto de la educación (X<sub>i</sub>) sobre los ingresos (Y<sub>i</sub>):

$$Y_i = \alpha + \beta X_i + \varepsilon_i$$

- **Dificultad:**  $X_i$  (años de escolaridad) puede estar correlacionado con factores no observados ( $\varepsilon_i$ ).
  - Habilidad o motivación influyen en educación y salarios.
  - Expectativas de ingresos afectan la decisión de estudiar.

• **Contexto:** Queremos estimar el efecto de la educación  $(X_i)$  sobre los ingresos  $(Y_i)$ :

$$Y_i = \alpha + \beta X_i + \varepsilon_i$$

- **Dificultad:**  $X_i$  (años de escolaridad) puede estar correlacionado con factores no observados ( $\varepsilon_i$ ).
  - Habilidad o motivación influyen en educación y salarios.
  - Expectativas de ingresos afectan la decisión de estudiar.
- Consecuencia: El estimador OLS de  $\beta$  es sesgado e inconsistente.

 Contexto: Queremos estimar el efecto de la educación (X<sub>i</sub>) sobre los ingresos (Y<sub>i</sub>):

$$Y_i = \alpha + \beta X_i + \varepsilon_i$$

- **Dificultad:**  $X_i$  (años de escolaridad) puede estar correlacionado con factores no observados ( $\varepsilon_i$ ).
  - Habilidad o motivación influyen en educación y salarios.
  - Expectativas de ingresos afectan la decisión de estudiar.
- Consecuencia: El estimador OLS de  $\beta$  es sesgado e inconsistente.
- ¿Cómo responder a la endogeneidad?

• **Contexto:** Queremos estimar el efecto de la educación  $(X_i)$  sobre los ingresos  $(Y_i)$ :

$$Y_i = \alpha + \beta X_i + \varepsilon_i$$

- **Dificultad:**  $X_i$  (años de escolaridad) puede estar correlacionado con factores no observados ( $\varepsilon_i$ ).
  - Habilidad o motivación influyen en educación y salarios.
  - Expectativas de ingresos afectan la decisión de estudiar.
- Consecuencia: El estimador OLS de  $\beta$  es sesgado e inconsistente.
- ¿Cómo responder a la endogeneidad?
  - ¿Agregar más variables explicativas?

• **Contexto:** Queremos estimar el efecto de la educación  $(X_i)$  sobre los ingresos  $(Y_i)$ :

$$Y_i = \alpha + \beta X_i + \varepsilon_i$$

- **Dificultad:**  $X_i$  (años de escolaridad) puede estar correlacionado con factores no observados ( $\varepsilon_i$ ).
  - Habilidad o motivación influyen en educación y salarios.
  - Expectativas de ingresos afectan la decisión de estudiar.
- Consecuencia: El estimador OLS de  $\beta$  es sesgado e inconsistente.
- ¿Cómo responder a la endogeneidad?
  - ¿Agregar más variables explicativas?
  - Diseños cuasi-experimentales: aprovechar variación externa o reglas institucionales. Hablaremos de esto después...

 Contexto: Queremos estimar el efecto de la educación (X<sub>i</sub>) sobre los ingresos (Y<sub>i</sub>):

$$Y_i = \alpha + \beta X_i + \varepsilon_i$$

- **Dificultad:**  $X_i$  (años de escolaridad) puede estar correlacionado con factores no observados ( $\varepsilon_i$ ).
  - Habilidad o motivación influyen en educación y salarios.
  - Expectativas de ingresos afectan la decisión de estudiar.
- Consecuencia: El estimador OLS de  $\beta$  es sesgado e inconsistente.
- ¿Cómo responder a la endogeneidad?
  - ¿Agregar más variables explicativas?
  - Diseños cuasi-experimentales: aprovechar variación externa o reglas institucionales. Hablaremos de esto después...

#### Siguiente paso

Hoy introduciremos una estrategia clave: Variables Instrumentales (IV)  $\rightarrow$  una fuente de variación en X exógena respecto a  $\varepsilon$ .

# Idea de Variables Instrumentales (IV)

Permite identificar el efecto causal de X sobre Y a pesar de la endogeneidad.

# Idea de Variables Instrumentales (IV)

Permite identificar el efecto causal de X sobre Y a pesar de la endogeneidad.

#### Definición

Una variable instrumental Z es una fuente de variación en X que cumple con la condición de **relevancia** (Z debe estar correlacionada con X) y **exclusión** (Z no debe afectar Y excepto a través de X).



# Idea de Variables Instrumentales (IV)

Permite identificar el efecto causal de X sobre Y a pesar de la endogeneidad.

#### Definición

Una variable instrumental Z es una fuente de variación en X que cumple con la condición de **relevancia** (Z debe estar correlacionada con X) y **exclusión** (Z no debe afectar Y excepto a través de X).



#### Intuición

El instrumento genera variación "como si fuera aleatoria" en X, y nos permite estimar  $\beta$  sin que la correlación  $X \leftrightarrow \varepsilon$  sesgue el resultado.

# Supuestos: Condición de Relevancia

#### Definición conceptual

El instrumento Z debe estar **fuertemente correlacionado** con la variable endógena X:

$$Cov(Z_i, X_i) \neq 0$$

# Supuestos: Condición de Relevancia

#### Definición conceptual

El instrumento Z debe estar **fuertemente correlacionado** con la variable endógena X:

$$Cov(Z_i, X_i) \neq 0$$

#### ¿Por qué importa?

- Si Z no explica suficiente variación en X, el instrumento es **débil**.
- Con instrumentos débiles:
  - Los estimadores IV/2SLS son imprecisos y pueden estar sesgados hacia OLS.
  - Los intervalos de confianza se vuelven poco informativos.
- En la práctica, se requieren instrumentos que muevan X de manera sustancial.

# Supuestos: Condición de Relevancia

#### Definición conceptual

El instrumento Z debe estar **fuertemente correlacionado** con la variable endógena X:

$$Cov(Z_i, X_i) \neq 0$$

#### ¿Por qué importa?

- Si Z no explica suficiente variación en X, el instrumento es **débil**.
- Con instrumentos débiles:
  - Los estimadores IV/2SLS son imprecisos y pueden estar sesgados hacia OLS.
  - ▶ Los intervalos de confianza se vuelven poco informativos.
- En la práctica, se requieren instrumentos que muevan X de manera sustancial.

#### Ejemplo intuitivo

Un instrumento que apenas cambia un poco la educación (por ejemplo, un incentivo mínimo) difícilmente servirá para estimar su efecto en los ingresos.

### Supuestos: Condición de Exclusión

**Definición:** El instrumento Z no debe afectar el resultado Y por vías distintas a X:  $Cov(Z_i, \varepsilon_i) = 0$ 



### Supuestos: Condición de Exclusión

**Definición:** El instrumento Z no debe afectar el resultado Y por vías distintas a X:  $Cov(Z_i, \varepsilon_i) = 0$ 



#### Implicaciones prácticas:

- Si Z afecta Y por otra vía distinta de X, el estimador IV identifica un efecto contaminado (violación de exclusión).
- No hay un test concluyente que pruebe la condición de exlución (no se considera que Sargan/Hansen prueben exogenidad).
- Se debe argumentar que no existe un camino causal directo  $Z \to Y$  (ni a través de factores omitidos).

# Roadmap

- Motivación
- Variables Isntrumentales
  - Fundamentos de IV
  - Mecánica de 2SLS
  - Estimador de Wald
  - Interpretación
  - Limitaciones
- 3 Does Compulsory School Attendance Affect Schooling and Earnings?
  - Estrategía de Identificación
  - Datos
  - Resultados
- 4 Hands-on: replicar un RD en R

#### 2SLS: idea general

**Objetivo:** Identificar el efecto causal de X sobre Y usando sólo la variación de X inducida por Z.

$$\underbrace{Y_{i}}_{\text{outcome}} = \beta_{0} + \beta_{1} \underbrace{X_{i}}_{\text{endógena}} + W'_{i}\beta + u_{i}, \qquad \underbrace{X_{i}}_{\text{endógena}} = \alpha_{0} + \alpha_{1} \underbrace{Z_{i}}_{\text{instrumento}} + W'_{i}\alpha + \nu_{i}$$

### 2SLS: idea general

**Objetivo:** Identificar el efecto causal de X sobre Y usando sólo la variación de X inducida por Z.

$$\underbrace{Y_{i}}_{\text{outcome}} = \beta_{0} + \beta_{1} \underbrace{X_{i}}_{\text{endógena}} + W'_{i}\beta + u_{i}, \qquad \underbrace{X_{i}}_{\text{endógena}} = \alpha_{0} + \alpha_{1} \underbrace{Z_{i}}_{\text{instrumento}} + W'_{i}\alpha + \nu_{i}$$

- Primera etapa: aisla la parte de X explicada por Z (y W)  $\Rightarrow \hat{X}_i$ .
- **Segunda etapa:** regresa Y sobre  $\hat{X}$  (y W)  $\Rightarrow$  estima  $\beta_1$  con variación exógena.
- Claves: (i) misma muestra en ambas etapas, (ii) mismos controles W, (iii) usar un estimador IV (no OLS con  $\hat{X}$  "a mano").

### Primera etapa



#### Regresión de X sobre Z y controles

$$X_i = \alpha_0 + \alpha_1 Z_i + W_i' \alpha + \nu_i \implies \hat{X}_i = \hat{\alpha}_0 + \hat{\alpha}_1 Z_i + W_i' \hat{\alpha}_i$$

### Primera etapa



#### Regresión de X sobre Z y controles

$$X_i = \alpha_0 + \alpha_1 Z_i + W_i' \alpha + \nu_i \implies \hat{X}_i = \hat{\alpha}_0 + \hat{\alpha}_1 Z_i + W_i' \hat{\alpha}_i$$

#### Interpretación

- $\hat{X}_i$  = parte de  $X_i$  explicada por el instrumento Z (y los controles W).
- Equivalente a "filtrar" X: quitamos la variación de X que está contaminada por  $\varepsilon$ .
- Nos quedamos sólo con la variación exógena de X inducida por Z.

### Primera etapa



#### Regresión de X sobre Z y controles

$$X_i = \alpha_0 + \alpha_1 Z_i + W_i' \alpha + \nu_i \implies \hat{X}_i = \hat{\alpha}_0 + \hat{\alpha}_1 Z_i + W_i' \hat{\alpha}_i$$

#### Interpretación

- $\hat{X}_i$  = parte de  $X_i$  explicada por el instrumento Z (y los controles W).
- Equivalente a "filtrar" X: quitamos la variación de X que está contaminada por  $\varepsilon$ .
- Nos quedamos sólo con la variación exógena de X inducida por Z.

#### Diagnósticos de fuerza del instrumento

- $\hat{\alpha}_1$  significativo y con el signo esperado.
- F de instrumentos excluidos (regla rápida: F > 10).
- (Opc.)  $R^2$  parcial de Z dado W.

### Segunda etapa



# Regresión de Y sobre $\hat{X}$ y controles

$$Y_i = \beta_0 + \beta_1 \hat{X}_i + W_i' \beta + u_i$$

#### Interpretación

•  $\hat{\beta}_1$  mide el efecto causal de X sobre Y, usando sólo la variación en X inducida por Z.

### Segunda etapa



# Regresión de Y sobre $\hat{X}$ y controles

$$Y_i = \beta_0 + \beta_1 \hat{X}_i + W_i' \beta + u_i$$

#### Interpretación

•  $\hat{\beta}_1$  mide el efecto causal de X sobre Y, usando sólo la variación en X inducida por Z.

#### Buenas prácticas

- Estimar con un **comando IV/2SLS** (no OLS "a mano" con  $\hat{X}$ ).
- Usar los mismos controles W y la misma muestra que en la  $1^{\underline{a}}$  etapa.
- Reportar primera etapa, forma reducida y 2SLS (consistencia de signos).
- Utilizar errores estándar robustos / clustered acorde al diseño.

# Forma reducida



# Regresión de Y sobre Z y controles

$$Y_i = \gamma_0 + \gamma_1 Z_i + W_i' \gamma + \eta_i$$

## Forma reducida



# Regresión de Y sobre Z y controles

$$Y_i = \gamma_0 + \gamma_1 Z_i + W_i' \gamma + \eta_i$$

#### Interpretación

- $\hat{\gamma}_1$  captura el efecto total de Z sobre Y.
- Es la relación directa  $Z \rightarrow Y$  (sin pasar por X explícitamente).
- Permite tener una visión más transparente, en una sola regresión (si esta regresión corta no da significativa, es poco probable que el estimador de primera etapa salga significativo).
- A veces la forma reducida tiene una interpretación que es interesante en sí misma.

# Roadmap

- Motivación
- Variables Isntrumentales
  - Fundamentos de IV
  - Mecánica de 2SLS
  - Estimador de Wald
  - Interpretación
  - Limitaciones
- 3 Does Compulsory School Attendance Affect Schooling and Earnings?
  - Estrategía de Identificación
  - Datos
  - Resultados
- 4 Hands-on: replicar un RD en R

## El Estimador de Wald

Cuando Z es binario:

$$\hat{\beta}^{Wald} = \frac{\mathbb{E}[Y|Z=1] - \mathbb{E}[Y|Z=0]}{\mathbb{E}[X|Z=1] - \mathbb{E}[X|Z=0]}$$

- **Numerador:** efecto total de *Z* sobre *Y* (*forma reducida*).
- **Denominador:** efecto de Z sobre X (primera etapa).
- Cociente: efecto de X sobre Y usando sólo la variación inducida por Z:

$$\frac{\text{Efecto de } Z \text{ en } Y}{\text{Efecto de } Z \text{ en } X}$$

# Ejemplo intuitivo

La edad de entrada y salida de la escuela, determinada por reglas externas, genera diferencias en años de educación independientes de la habilidad individual.

# Forma reducida y conexión con Wald

Forma reducida (efecto de Z sobre Y):

$$Y_i = \gamma_0 + \gamma_1 Z_i + W_i' \gamma + \eta_i$$

Primera etapa:

$$X_i = \alpha_0 + \alpha_1 Z_i + W_i' \alpha + \nu_i$$

Wald (para Z binaria):

$$\hat{\beta}^{Wald} = \frac{\mathbb{E}[Y|Z=1] - \mathbb{E}[Y|Z=0]}{\mathbb{E}[X|Z=1] - \mathbb{E}[X|Z=0]}$$

# Forma reducida y conexión con Wald

Forma reducida (efecto de Z sobre Y):

$$Y_i = \gamma_0 + \gamma_1 Z_i + W_i' \gamma + \eta_i$$

Primera etapa:

$$X_i = \alpha_0 + \alpha_1 Z_i + W_i' \alpha + \nu_i$$

Wald (para Z binaria):

$$\hat{\beta}^{Wald} = \frac{\mathbb{E}[Y|Z=1] - \mathbb{E}[Y|Z=0]}{\mathbb{E}[X|Z=1] - \mathbb{E}[X|Z=0]}$$

#### Relación con 2SLS

- Con un solo instrumento binario y sin controles, Wald y 2SLS coinciden.
- Con controles y/o múltiples instrumentos, 2SLS generaliza la misma intuición:

$$\hat{\beta}_{2SLS} \approx \frac{\hat{\gamma}_1}{\hat{\alpha}_1}$$

# Forma reducida y conexión con Wald

Forma reducida (efecto de Z sobre Y):

$$Y_i = \gamma_0 + \gamma_1 Z_i + W_i' \gamma + \eta_i$$

Primera etapa:

$$X_i = \alpha_0 + \alpha_1 Z_i + W_i' \alpha + \nu_i$$

Wald (para Z binaria):

$$\hat{\beta}^{Wald} = \frac{\mathbb{E}[Y|Z=1] - \mathbb{E}[Y|Z=0]}{\mathbb{E}[X|Z=1] - \mathbb{E}[X|Z=0]}$$

#### Relación con 2SLS

- Con un solo instrumento binario y sin controles, Wald y 2SLS coinciden.
- Con controles y/o múltiples instrumentos, 2SLS generaliza la misma intuición:

$$\hat{\beta}_{2SLS} \approx \frac{\hat{\gamma}_1}{\hat{\alpha}_1}$$

# Roadmap

- Motivación
- Variables Isntrumentales
  - Fundamentos de IV
  - Mecánica de 2SLS
  - Estimador de Wald
  - Interpretación
  - Limitaciones
- 3 Does Compulsory School Attendance Affect Schooling and Earnings?
  - Estrategía de Identificación
  - Datos
  - Resultados
- 4 Hands-on: replicar un RD en F

**Pregunta:** ¿Cuál es el retorno de la educación secundaria en los ingresos laborales?

**Pregunta:** ¿Cuál es el retorno de la educación secundaria en los ingresos laborales?

**Problema:** La decisión de continuar en secundaria está correlacionada con factores no observados (U), como motivación o apoyo familiar.

**Pregunta:** ¿Cuál es el retorno de la educación secundaria en los ingresos laborales?

**Problema:** La decisión de continuar en secundaria está correlacionada con factores no observados (U), como motivación o apoyo familiar.

**Instrumento:** Disponibilidad de transporte escolar gratuito en el municipio (Z).

- Relevancia: facilita la asistencia y aumenta los años de estudio (X).
- Exclusión: no afecta los ingresos futuros directamente, salvo a través de la educación.

Pregunta: ¿Cuál es el retorno de la educación secundaria en los ingresos laborales?

**Problema:** La decisión de continuar en secundaria está correlacionada con factores no observados (U), como motivación o apoyo familiar.

**Instrumento:** Disponibilidad de transporte escolar gratuito en el municipio (Z).

- Relevancia: facilita la asistencia y aumenta los años de estudio (X).
- Exclusión: no afecta los ingresos futuros directamente, salvo a través de la educación.

## Interpretación

El estimador IV mide el efecto de la educación sobre ingresos para los jóvenes cuya decisión de estudiar cambia gracias a la política de transporte gratuito (cumplidores).

# Ejemplo: Transporte escolar gratuito (modelo)

## Primera etapa (Relevancia):

$$X_i = \alpha_0 + \alpha_1 Z_i + W_i' \alpha + \nu_i$$

- X<sub>i</sub>: años de educación secundaria completados.
- $Z_i$ : acceso a transporte escolar gratuito.
- $\hat{\alpha}_1 > 0$ : el transporte aumenta la probabilidad de terminar la secundaria.

# Ejemplo: Transporte escolar gratuito (modelo)

## Primera etapa (Relevancia):

$$X_i = \alpha_0 + \alpha_1 Z_i + W_i' \alpha + \nu_i$$

- X<sub>i</sub>: años de educación secundaria completados.
- $Z_i$ : acceso a transporte escolar gratuito.
- $\hat{\alpha}_1 > 0$ : el transporte aumenta la probabilidad de terminar la secundaria.

#### Forma reducida:

$$Y_i = \gamma_0 + \gamma_1 Z_i + W_i' \gamma + \eta_i$$

- $Y_i$ : ingresos laborales en la adultez.
- $\hat{\gamma}_1$ : efecto total de Z sobre ingresos.

# Ejemplo: Transporte escolar gratuito (modelo)

## Primera etapa (Relevancia):

$$X_i = \alpha_0 + \alpha_1 Z_i + W_i' \alpha + \nu_i$$

- X<sub>i</sub>: años de educación secundaria completados.
- $Z_i$ : acceso a transporte escolar gratuito.
- $\hat{\alpha}_1 > 0$ : el transporte aumenta la probabilidad de terminar la secundaria.

#### Forma reducida:

$$Y_i = \gamma_0 + \gamma_1 Z_i + W_i' \gamma + \eta_i$$

- Y<sub>i</sub>: ingresos laborales en la adultez.
- $\hat{\gamma}_1$ : efecto total de Z sobre ingresos.

## Segunda etapa (2SLS):

$$Y_i = \beta_0 + \beta_1 \hat{X}_i + W_i' \beta + u_i$$

- $\hat{X}_i$ : parte de la educación explicada solo por Z.
- $\hat{\beta}_1$ : efecto causal local de la educación sobre ingresos para los jóvenes cuya decisión cambia gracias al transporte (*cumplidores*).

# Ejemplo numérico (Wald): Transporte escolar como Z Supongamos (cifras ilustrativas):

$$\hat{lpha}_1 = 0.50$$
 (años)  $\hat{\gamma}_1 = 1000$  (USD/año)

# Ejemplo numérico (Wald): Transporte escolar como Z

## Supongamos (cifras ilustrativas):

$$\hat{lpha}_1 = 0.50$$
 (años)  $\hat{\gamma}_1 = 1000$  (USD/año)

#### Interpretación de etapas

- **Primera etapa**  $(Z \to X)$ : acceso a transporte escolar gratuito aumenta en 0.50 años la educación secundaria completada.
- Forma reducida  $(Z \to Y)$ : acceso a transporte incrementa el ingreso anual en 1000 USD.

# Ejemplo numérico (Wald): Transporte escolar como Z

## Supongamos (cifras ilustrativas):

$$\hat{lpha}_1 = 0.50$$
 (años)  $\hat{\gamma}_1 = 1000$  (USD/año)

#### Interpretación de etapas

- **Primera etapa**  $(Z \to X)$ : acceso a transporte escolar gratuito aumenta en 0.50 años la educación secundaria completada.
- Forma reducida  $(Z \to Y)$ : acceso a transporte incrementa el ingreso anual en 1000 USD.

#### Estimador de Wald

$$\hat{\beta}^{Wald} = \frac{\hat{\gamma}_1}{\hat{\alpha}_1} = \frac{1000}{0.50} = 2000$$
 USD por año adicional de educación.

# Ejemplo numérico (Wald): Transporte escolar como Z

Supongamos (cifras ilustrativas):

$$\hat{lpha}_1 = 0.50$$
 (años)  $\hat{\gamma}_1 = 1000$  (USD/año)

#### Interpretación de etapas

- Primera etapa  $(Z \to X)$ : acceso a transporte escolar gratuito aumenta en 0.50 años la educación secundaria completada.
- Forma reducida  $(Z \to Y)$ : acceso a transporte incrementa el ingreso anual en 1000 USD.

#### Estimador de Wald

$$\hat{\beta}^{Wald} = \frac{\hat{\gamma}_1}{\hat{\alpha}_1} = \frac{1000}{0.50} = 2000$$
 USD por año adicional de educación.

#### Lectura

Usamos sólo la variación de X inducida por Z. El retorno local a un año adicional de educación (para quienes cambian su conducta por el transporte) es de  $\sim \$2000$  anuales.

**Supongamos además:** sólo un 30% de los estudiantes (*cumplidores*) cambia su decisión de asistir gracias al transporte. Descomposición intuitiva:

$$\hat{\gamma}_1 = \hat{\alpha}_1 \times \hat{\beta}^{Wald}$$
 E. Promedio inducido por Z en Y V. Promedio inducido por Z en X efecto local (LATE) 
$$1000 = 0.50 \times 2000$$

**Supongamos además:** sólo un 30% de los estudiantes (*cumplidores*) cambia su decisión de asistir gracias al transporte. Descomposición intuitiva:

$$\hat{\gamma}_1 \qquad \qquad = \qquad \hat{\alpha}_1 \qquad \times \qquad \hat{\beta}^{\textit{Wald}}$$
 E. Promedio inducido por  $Z$  en  $Y$  V. Promedio inducido por  $Z$  en  $X$  efecto local (LATE)

$$1000 = 0.50 \times 2000$$

**Intuición con cumplidores:** Si sólo el 30% responde al instrumento, entonces el cambio medio en escolaridad es mayor.

$$\Delta X_C pprox rac{\hat{lpha}_1}{p_c} = rac{0.50}{0.30} pprox 1.67$$
 años.

En general, con  $p_c$  (proporción de cumplidores):

**Supongamos además:** sólo un 30% de los estudiantes (*cumplidores*) cambia su decisión de asistir gracias al transporte. Descomposición intuitiva:

$$\hat{\gamma}_1 \qquad \qquad = \qquad \hat{\alpha}_1 \qquad \times \qquad \hat{\beta}^{\textit{Wald}}$$
 E. Promedio inducido por  $Z$  en  $Y$  — V. Promedio inducido por  $Z$  en  $X$  — efecto local (LATE)

$$1000 = 0.50 \times 2000$$

**Intuición con cumplidores:** Si sólo el 30% responde al instrumento, entonces el cambio medio en escolaridad es mayor.

$$\Delta X_C pprox rac{\hat{lpha}_1}{p_c} = rac{0.50}{0.30} pprox 1.67$$
 años.

En general, con  $p_c$  (proporción de cumplidores):

$$\hat{\alpha}_1 = p_c \, \Delta X_C, \qquad \hat{\gamma}_1 = p_c \, \Delta Y_C, \qquad \hat{\beta}^{Wald} = rac{\hat{\gamma}_1}{\hat{\alpha}_1} = rac{\Delta Y_C}{\Delta X_C} = \mathsf{LATE}.$$

**Supongamos además:** sólo un 30% de los estudiantes (*cumplidores*) cambia su decisión de asistir gracias al transporte. Descomposición intuitiva:

$$\hat{\gamma}_1 \qquad \qquad = \qquad \hat{\alpha}_1 \qquad \times \qquad \hat{\beta}^{\textit{Wald}}$$
 E. Promedio inducido por  $Z$  en  $Y$  V. Promedio inducido por  $Z$  en  $X$  efecto local (LATE)

$$1000 = 0.50 \times 2000$$

**Intuición con cumplidores:** Si sólo el 30% responde al instrumento, entonces el cambio medio en escolaridad es mayor.

$$\Delta X_C pprox rac{\hat{lpha}_1}{p_c} = rac{0.50}{0.30} pprox 1.67$$
 años.

En general, con  $p_c$  (proporción de cumplidores):

$$\hat{\alpha}_1 = p_c \, \Delta X_C, \qquad \hat{\gamma}_1 = p_c \, \Delta Y_C, \qquad \hat{\beta}^{Wald} = \frac{\hat{\gamma}_1}{\hat{\alpha}_1} = \frac{\Delta Y_C}{\Delta X_C} = \mathsf{LATE}.$$

# Moraleja

Cuando la relevancia es baja ( $\hat{\alpha}_1$  pequeño), el efecto promedio inducido por el instrumento ( $\hat{\gamma}_1$ ) se diluye y es más difícil de detectar (menor poder).

# Roadmap

- Motivación
- Variables Isntrumentales
  - Fundamentos de IV
  - Mecánica de 2SLS
  - Estimador de Wald
  - Interpretación
  - Limitaciones
- 3 Does Compulsory School Attendance Affect Schooling and Earnings?
  - Estrategía de Identificación
  - Datos
  - Resultados
- 4 Hands-on: replicar un RD en R

# ¿Como encontrar un buen instrumento?



Aun cuando Z parece válido, hay limitaciones importantes:

• Validez externa limitada: El efecto estimado (LATE) aplica solo a los *cumplidores*, no a toda la población.

- Validez externa limitada: El efecto estimado (LATE) aplica solo a los *cumplidores*, no a toda la población.
- **Instrumentos débiles:** Si *Z* explica muy poca variación en *X*, las estimaciones IV/2SLS son imprecisas y sesgadas hacia OLS.

- Validez externa limitada: El efecto estimado (LATE) aplica solo a los *cumplidores*, no a toda la población.
- **Instrumentos débiles:** Si Z explica muy poca variación en X, las estimaciones IV/2SLS son imprecisas y sesgadas hacia OLS.
- Difícil de defender la exclusión: Puede existir un canal no observado
  Z → Y distinto a través de X. Ejemplo: clima afecta educación pero
  también productividad agrícola.

- Validez externa limitada: El efecto estimado (LATE) aplica solo a los *cumplidores*, no a toda la población.
- **Instrumentos débiles:** Si *Z* explica muy poca variación en *X*, las estimaciones IV/2SLS son imprecisas y sesgadas hacia OLS.
- Difícil de defender la exclusión: Puede existir un canal no observado Z → Y distinto a través de X. Ejemplo: clima afecta educación pero también productividad agrícola.
- **Sensibles a la especificación:** Resultados pueden depender de los controles W, definiciones de muestra o clusters de errores.

- Validez externa limitada: El efecto estimado (LATE) aplica solo a los cumplidores, no a toda la población.
- **Instrumentos débiles:** Si *Z* explica muy poca variación en *X*, las estimaciones IV/2SLS son imprecisas y sesgadas hacia OLS.
- Difícil de defender la exclusión: Puede existir un canal no observado Z → Y distinto a través de X. Ejemplo: clima afecta educación pero también productividad agrícola.
- **Sensibles a la especificación:** Resultados pueden depender de los controles W, definiciones de muestra o clusters de errores.
- Interpretación restringida: IV no recupera el ATE ni el TOT en general, sino el efecto local para los inducidos por Z.

Aun cuando Z parece válido, hay limitaciones importantes:

- Validez externa limitada: El efecto estimado (LATE) aplica solo a los *cumplidores*, no a toda la población.
- **Instrumentos débiles:** Si *Z* explica muy poca variación en *X*, las estimaciones IV/2SLS son imprecisas y sesgadas hacia OLS.
- Difícil de defender la exclusión: Puede existir un canal no observado Z → Y distinto a través de X. Ejemplo: clima afecta educación pero también productividad agrícola.
- **Sensibles a la especificación:** Resultados pueden depender de los controles W, definiciones de muestra o clusters de errores.
- Interpretación restringida: IV no recupera el ATE ni el TOT en general, sino el efecto local para los inducidos por Z.

# Moraleja

Un buen instrumento es raro: debe ser **relevante, creíble en la exclusión y suficientemente fuerte**. La interpretación debe hacerse con cautela.

# Roadmap

- Motivación
- 2 Variables Isntrumentales
  - Fundamentos de IV
  - Mecánica de 2SLS
  - Estimador de Wald
  - Interpretación
  - Limitaciones
- 3 Does Compulsory School Attendance Affect Schooling and Earnings?
  - Estrategía de Identificación
  - Datos
  - Resultados
- 4 Hands-on: replicar un RD en R

# Acercda de este paper

- Pregunta central: ¿La asistencia escolar obligatoria afecta la escolaridad y los ingresos?
- Contexto: En EE.UU., la edad de inicio escolar y las leyes de asistencia obligatoria generan variación en la escolaridad según el trimestre de nacimiento.
- Enfoque: Usar el trimestre de nacimiento como variable instrumental para educación.
- Conclusión: La escolaridad inducida por leyes obligatorias aumenta los ingresos.
- Contribución: Evidencia empírica novedosa sobre retornos a la educación con un "experimento natural".

# Estrategía de Identificación

#### • Idea clave:

- La edad mínima para ingresar a la escuela es 6 años cumplidos antes de enero.
- ▶ Los nacidos a inicio de año (Q1) entran a la escuela más viejos que los nacidos a final de año (Q4).
- ► Con leyes de asistencia obligatoria (hasta 16–17 años), los nacidos en Q1 pueden abandonar antes y acumulan menos años de estudio.

# Estrategía de Identificación

#### • Idea clave:

- La edad mínima para ingresar a la escuela es 6 años cumplidos antes de enero
- ▶ Los nacidos a inicio de año (Q1) entran a la escuela más viejos que los nacidos a final de año (Q4).
- ► Con leyes de asistencia obligatoria (hasta 16–17 años), los nacidos en Q1 pueden abandonar antes y acumulan menos años de estudio.

#### • Fuente de variación:

- La interacción entre reglas de entrada escolar y edad mínima de abandono.
- Genera diferencias "forzadas" en años de escolaridad según trimestre de nacimiento.

# Estrategía de Identificación

#### • Idea clave:

- La edad mínima para ingresar a la escuela es 6 años cumplidos antes de enero
- ► Los nacidos a inicio de año (Q1) entran a la escuela más viejos que los nacidos a final de año (Q4).
- ► Con leyes de asistencia obligatoria (hasta 16–17 años), los nacidos en Q1 pueden abandonar antes y acumulan menos años de estudio.

#### • Fuente de variación:

- La interacción entre reglas de entrada escolar y edad mínima de abandono.
- Genera diferencias "forzadas" en años de escolaridad según trimestre de nacimiento.

#### Supuesto central:

- El trimestre de nacimiento es asignado aleatoriamente respecto a habilidad, motivación o condiciones familiares.
- No hay un efecto directo de nacer en cierto trimestre sobre salarios, excepto vía educación.

## Estimación IV

- Trimestre de nacimiento ⇒ fuente de variación exógena en educación.
- Se convierte en un instrumento válido bajo el supuesto de exclusión:
  - Afecta la educación acumulada.
  - ▶ No afecta directamente los salarios, excepto a través de la educación.

## Estimación IV

- Trimestre de nacimiento ⇒ fuente de variación exógena en educación.
- Se convierte en un **instrumento válido** bajo el supuesto de exclusión:
  - Afecta la educación acumulada.
  - No afecta directamente los salarios, excepto a través de la educación.
- Estimación con Variables Instrumentales (2SLS):

$$\underbrace{\mathsf{Educaci\acute{o}n}_i}_{\mathsf{1ra\ etapa}} \leftarrow f(\mathsf{Trimestre\ de\ Nacimiento},\, \mathsf{cohorte},\, X_i)$$

$$\underbrace{\ln(\mathsf{Salario}_i)}_{\mathsf{2da\ etapa}} \leftarrow \beta \ \widehat{\mathsf{Educacion}}_i + X_i + \varepsilon_i$$

## Estimación IV

- Trimestre de nacimiento ⇒ fuente de variación exógena en educación.
- Se convierte en un instrumento válido bajo el supuesto de exclusión:
  - Afecta la educación acumulada.
  - ▶ No afecta directamente los salarios, excepto a través de la educación.
- Estimación con Variables Instrumentales (2SLS):

$$\underbrace{\mathsf{Educaci\'on}_i}_{\mathsf{1ra\ etapa}} \leftarrow f(\mathsf{Trimestre\ de\ Nacimiento},\, \mathsf{cohorte},\, X_i)$$

$$\underbrace{\mathsf{In}(\mathsf{Salario}_i)}_{\mathsf{2da\ etapa}} \leftarrow \beta \ \widehat{\mathsf{Educacion}}_i + X_i + \varepsilon_i$$

• Interpretación:  $\beta$  mide el retorno a la educación inducida por leyes de asistencia obligatoria.

## **Datos**

- Fuentes: Censos de Población de EE.UU. (1960, 1970, 1980).
- Muestra principal:
  - ▶ Hombres nacidos entre 1920–1949 en EE.UU.
  - Se usan diferentes cohortes para observar efectos en distintos períodos.

#### Variables clave:

- Años de educación completados (años escolares).
- ► Tasas de matrícula y abandono escolar (en la adolescencia).
- Ingresos semanales (log del salario).
- Controles: edad precisa (años + trimestre), estado civil, residencia en zona metropolitana, raza.

## • Estrategia de análisis:

- Comparación de cohortes por trimestre de nacimiento.
- Construcción de instrumentos: interacciones QOB × cohorte y QOB × estado.

## Resultados

## Evidencia descriptiva:

- Los nacidos en el primer trimestre (Q1) acumulan, en promedio, menos años de escolaridad.
- Menor probabilidad de graduarse de secundaria en comparación con los nacidos en el último trimestre (Q4).
- ▶ Patrón consistente en varias cohortes (1930s, 1940s), aunque se atenúa con el tiempo.

## Resultados

## Evidencia descriptiva:

- Los nacidos en el primer trimestre (Q1) acumulan, en promedio, menos años de escolaridad.
- Menor probabilidad de graduarse de secundaria en comparación con los nacidos en el último trimestre (Q4).
- Patrón consistente en varias cohortes (1930s, 1940s), aunque se atenúa con el tiempo.

#### • Mecanismo:

- La brecha se origina en la interacción entre edad de entrada escolar y edad mínima legal de abandono.
- ► Evidencia adicional: diferencias de matrícula al comparar estados con leyes de abandono a los 16 vs 17 años.

## Resultados

## Evidencia descriptiva:

- ▶ Los nacidos en el primer trimestre (Q1) acumulan, en promedio, menos años de escolaridad.
- Menor probabilidad de graduarse de secundaria en comparación con los nacidos en el último trimestre (Q4).
- Patrón consistente en varias cohortes (1930s, 1940s), aunque se atenúa con el tiempo.

#### • Mecanismo:

- La brecha se origina en la interacción entre edad de entrada escolar y edad mínima legal de abandono.
- ► Evidencia adicional: diferencias de matrícula al comparar estados con leyes de abandono a los 16 vs 17 años.

#### • Estimaciones econométricas:

- ► Retorno a un año adicional de educación (2SLS): **7–10%**.
- ► Estimaciones cercanas a OLS ⇒ sesgo por habilidad omitida es pequeño o incluso negativo.
- Robustez: no se encuentran efectos de trimestre de nacimiento en educación superior ni en graduados universitarios (apoya la validez del instrumento).

# Roadmap

- Motivación
- 2 Variables Isntrumentales
  - Fundamentos de IV
  - Mecánica de 2SLS
  - Estimador de Wald
  - Interpretación
  - Limitaciones
- 3 Does Compulsory School Attendance Affect Schooling and Earnings?
  - Estrategía de Identificación
  - Datos
  - Resultados
- 4 Hands-on: replicar un RD en R

# Replication Package

**Repositorio en R (GitHub):** Descarga directa del paquete de replicación (código y datos en R): replication\_package.zip

Instrucciones: Antes de salir al break:

- Descarguen y descompriman el paquete.
- Ejecuten el script inicial para cargar librerías:

#### Script en R:

- require(pacman)
- p\_load(tidyverse, rio, fixest, broom)

Cuando regresemos de la pausa, las librerías ya estarán cargadas y listas para usar.