Graph Kernels

Seminário de Aprendizado de Máquina em Grafos - 2019/1 Fabricio Murai

Motivation

In many learning problems from *bio-informatics*, *chemo-informatics*, *drug discovery*, *web data mining and social networks*, data instances come in the form of graphs (learning graphs) or in the form of vertices of a given fixed graph (learning on graphs).

Questions:

- 1. How similar are two graphs to each other?
- 2. How similar are two nodes in a given graph?

E.g. is this protein an enzyme or not? Toxicity of a chemical molecule? Finding web pages with similar content (one step further: detecting mirrored sets of pages)

Kernels and Learning

In Kernel-based learning algorithms, problem solving is decoupled into:

- A general purpose learning algorithm (e.g., SVM, PCA) -- often linear
- A problem specific kernel

Credits: Koji Tsuda

Kernel methods

Is a class of **instance-based learners**. Best known member is SVM.

Classic SVM

$$\hat{y} = \operatorname{sign}(\sum_{i=1}^{n} [y_i \mathbf{x}_i^{\top} \mathbf{x}'] + b) = \operatorname{sign}(\mathbf{w}^{\top} \mathbf{x}' + b)$$

SVM is a simple linear model. Can be made more powerful by non-linear transformations of inputs into some space z.

$$\hat{y} = \operatorname{sign}(\sum_{i=1}^{n} \alpha_i y_i \phi(\mathbf{x}_i)^{\top} \phi(\mathbf{x}')) = \operatorname{sign}(\sum_{i=1}^{n} \alpha_i y_i \mathbf{z}_i^{\top} \mathbf{z}')$$

Kernel trick

The "trick" comes from the fact that we can define a function $K(\mathbf{x},\mathbf{x}') = \mathbf{z}^T\mathbf{z}'$ that corresponds to the inner product of the images of \mathbf{x} and \mathbf{x}' in the z space without having to compute (or even define) ϕ explicitly.

Example

$$\mathbf{x} = (x_1, x_2)$$

$$K(\mathbf{x}, \mathbf{x}') = (1 + \mathbf{x}^{\top} \mathbf{x}')^2 = (1 + 2(x_1 x_1' + x_2 x_2') + x_1^2 x_1'^2 + 2x_1 x_1' x_2 x_2' + x_2^2 x_2'^2)$$

$$\phi(\mathbf{x}) = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, \sqrt{2}x_1 x_2, x_2^2)$$

$$\phi(\mathbf{x}') = (1, \sqrt{2}x_1', \sqrt{2}x_2', x_1'^2, \sqrt{2}x_1' x_2', x_2'^2)$$

More examples of kernels

$$\mathbf{x}, \mathbf{x}' \in \mathbb{R}^d$$

$$K(\mathbf{x}, \mathbf{x}') = (1 + \mathbf{x}^{\top} \mathbf{x}')^{Q} = (1 + x_{1}x'_{1} + \dots + x_{d}x'_{d})^{Q}$$

For d=10, Q=100, what is the dimension of ϕ ?

$$K(\mathbf{x}, \mathbf{x}') = \exp(-\gamma \|\mathbf{x} - \mathbf{x}'\|_2^2)$$

In this case, φ has infinite dimension

Kernel methods: the mapping

Kernels for structures

How do we define kernels for other kinds of objects?

Example

Similarity between sequences of different lengths?

ACGGTTCAA

ATATCGCGGGAA

Idea (Count kernel): counts the number of symbols and take the inner product. Not good for sequences with frequent context change (e.g., coding/non-coding regions of DNA).

Marginalized kernels have been used for this purpose (but won't be covered here).

(More) motivation for graph kernels

Existing methods assume "tables"

Serial Num	Name	Age	Sex	Address	
0001	00	40	Male	Tokyo	
0002	××	31	Female	Osaka	

Structure data beyond this framework
 New methods for analysis

Graph structures in biology

Kernel methods

A natural framework to study these questions.

A kernel K(x,x') is a measure of similarity between two objects x and x'.

Set of objects X and a kernel K(.,.) define the Gram matrix K, which must satisfy two properties:

- Symmetric
- Positive semi-definite

Kernels on graphs

How to define similarity between 2 nodes u and v?

- Geodesic distance?
- Probability that a l-length random starting from u visits v?

Exponential kernels

H: symmetric matrix called generator

Exponential kernel

$$K = \exp(\beta H) = \lim_{n \to \infty} \left(\mathbb{I} + \frac{\beta H}{n} \right)^n = \mathbb{I} + \beta H + \frac{\beta^2 H^2}{2!} + \frac{\beta^3 H^3}{3!} + \dots$$

Where β is the diffusion parameter, and **exp** is matrix exponential, not element-wise.

It is well known that any power of a symmetric matrix is symmetric and positive semidefinite. Replacing n by 2n, we show that K is positive definite.

Exponential kernels: a dynamic process

Taking the derivative of K yields

$$\frac{d}{d\beta}K_{\beta} = HK_{\beta}$$

Examining the equation with initial condition K(0)=I, lends to interpretation that

- K(β) is the result of a continuous process,
- gradually transforming identity matrix I to a kernel with stronger and stronger off-diagonal effects as β increases.

Diffusion kernels on graphs

A: adjacency matrix

D: diagonal matrix of degrees

L = D-A: Graph Laplacian matrix

Diffusion kernel matrix

$$K = \exp(\beta H) = \lim_{n \to \infty} \left(\mathbb{I} + \frac{\beta H}{n} \right)^n = \mathbb{I} + \beta H + \frac{\beta^2 H^2}{2!} + \frac{\beta^3 H^3}{3!} + \dots$$

Where β is the diffusion parameter, H=-L, and **exp** is matrix exponential, not element-wise.

Relationship with heat equation in physics.

Intuition: "K(i,j) is that amount of heat transferred from node i to node j"

Relationship to random walks

A lazy random walk on graph G with parameter β_0 < 1/max degree is a stochastic process $S=\{i_0,...,i_N\}$ over V. At step t, let the state of the process be i_t =v. Then, it

- Goes to one of v's neighbors with probability β₀
- Stays at v with probability $1 \beta_0^*$ degree.

Considering the distribution $Pr(z_N \mid z_0)$ in the limit $\Delta t \rightarrow 0$ with $N=(1/\Delta t)$ and $\beta=\beta_0 \Delta t$ yields exactly the diffusion equation.

Hence, diffusion kernel is the continuous time limit of lazy random walks.

Adjacency matrix and degree matrix

Graph Laplacian Matrix L

Actual values of diffusion kernels

Closeness from the "central node"

How to compute exp(A)?

When A is a (n,n) matrix, its eigendecomposition is

$$A = \sum_{i=1}^{n} \lambda_i v_i v_i^T$$

$$\exp(A) = \sum_{i=1}^{n} \exp(\lambda_i) v_i v_i^T$$

Cost of eigendecomposition is $O(n^3)$.

Special cases where K can be computed directly

- K-regular trees
- Complete graphs
- Closed chains
- The hypercube: $x=(x_1,...,x_m)$ onde $x_i \in \{0,1\}$. Two sequences x and x' are neighbors if they differ only in a single digit.

$$K(x, x') \propto \left(\frac{1 - e^{-2\beta}}{1 + e^{-2\beta}}\right)^{d(x, x')} = (\tanh \beta)^{d(x, x')}$$

More generally, for alphabet A,

$$K(x, x') \propto \left(\frac{1 - e^{|A|\beta}}{1 + (|A| - 1)e^{-|A|\beta}}\right)^{d(x, x')}$$

Using kernels for classification

- Goal: Compare with kernel methods for classifying categorical data
- Use a large margin classifier based on the voted perceptron
- Methods:
 - Diffusion kernel
 - Kernel based on hamming distance: $K_H(x,x') = n \sum \delta(x_i,x_i')$

$$K_H(x, x') = n - \sum_{i=1}^{N} \delta(x_i, x_i')$$

Continuous features were ignored

Results

			Hamming kernei		Diffusion kernet		
Data Set	#Attr	$\max \mathcal{A} $	error	SV	error	SV	β
Breast Cancer	9	10	$7.44 \pm 1.70\%$	206.0	$3.70 \pm 0.83\%$	43.3	0.30
Hepatitis	13	2	$19.50 \pm 3.90\%$	420.0	$18.80 \pm 4.13\%$	192.0	1.80
Income	11	42	$19.19 \pm 1.20\%$	1149.5	$18.50 \pm 1.27\%$	1033.4	0.40
Mushroom	22	10	$1.40 \pm 0.44\%$	117.7	$0.007 \pm 0.018\%$	27.2	0.40
Votes	16	2	$4.79 \pm 1.16\%$	176.5	$4.53 \pm 1.44\%$	60.6	1.5

Hamming karnal

Diffusion karnal

Add some description of datasets

Graph Kernels

We now want to compare a set of graphs.

- Need to define kernel function K(G,G')
- Both vertex and edges can be labeled

Generalized Random Walk Graph Kernels

Defined for a graph G = (V,E) that can

- Be directed/undirected
- Be weighted/unweighted
- Have (or not) edge labels

Two special cases:

- Random walk graph kernels
- Marginalized graph kernels

Generalized Random Walk Graph Kernels

Idea: given a pair of graphs, perform random walks on both and count the number of matching walks

Two graphs

Adj. matrix: A and A'

Random walks

Let

- p and p' be respec. the starting probabilities
- q and q' be respec. the starting probabilities

Hence

- $\bullet \quad p_{x} = p \otimes p'$

Weight matrix

$$W_{\times} = \Phi(X) \otimes \Phi(X').$$

Continuous weights case:

$$W_x = A_x$$

• Categorical weights case (finite set of size d):

$$W_{\times} = \sum_{l=1}^{d} {}^{l}\!A \otimes {}^{l}\!A'.$$

Kernel definition

$$k(G, G') := \sum_{k=0}^{\infty} \mu(k) q_{\times}^{\top} W_{\times}^{k} p_{\times}.$$

• Choice of $\mu(k)$ allows to (de-)emphasize walks of different lengths

Two special cases:

- Marginalized graph kernel (Kashima et al., 2004)
- Random walk graph kernel

Label path

- Sequence of node and edge labels
 H = (A, e, A, d, D, a, B, c, D)
- Generated by random walks
- Simplest case: uniform initial, transition and terminal probabilities

Path-probability vector

Label path $m{h}$	Probability $p(h G)$				
AaA	0.001				
:	E				
AcDbE	0.000003				
:	:				
AeAdDaBcD	0.0000007				
:	:				

Kernel definition

Kernels for paths

$$K(\mathbf{h}, \mathbf{h}') = \begin{cases} 0 & (|\mathbf{h}| \neq |\mathbf{h}'|) \\ k_v(h_1, h'_1) k_e(h_2, h'_2) \cdots k_v(h_\ell, h'_\ell) & (|\mathbf{h}| = |\mathbf{h}'|) \end{cases}$$

- Take expectation over all possible paths!
- Marginalized graph kernels

$$K(G,G') = \sum_{h} \sum_{h'} p(h|G)p(h'|G')K(h,h')$$

In the "generalized" version...

They do not (cannot?) consider node labels

Path h =
$$(i_1, i_2, ..., i_t)$$

$$p(h|G) := q_{i_{t+1}} \prod_{j=1}^{t} P_{i_j, i_{j+1}} p_{i_1}.$$

$$\kappa(h, h') := \prod_{i=1}^{t} \kappa(h_i, h'_i) = \prod_{i=1}^{t} \left\langle \hat{\phi}(h_i), \hat{\phi}(h'_i) \right\rangle$$

$$K(G, G') = \sum_{h} \sum_{h'} p(h|G) p(h'|G') K(h, h')$$

In the "generalized" version...

They do not (cannot?) consider node labels

Path h =
$$(i_1, i_2, ..., i_t)$$

$$p(h|G) := q_{i_{t+1}} \prod_{j=1}^{t} P_{i_j, i_{j+1}} p_{i_1}.$$

$$\kappa(h, h') := \prod_{i=1}^{t} \kappa(h_i, h'_i) = \prod_{i=1}^{t} \left\langle \hat{\phi}(h_i), \hat{\phi}(h'_i) \right\rangle$$

$$K(G, G') = \sum_{h} \sum_{h'} p(h|G) p(h'|G') K(h, h')$$

Graph Kernel Applications

- Chemical Compounds (Mahe et al., 2005)
- Protein 3D structures (Borgwardt et al., 2005)
- RNA graphs (Karklin et al., 2005)
- Pedestrian detection
- Signal Processing

Concluding remarks

- Idea of measuring similarity between nodes via random walks is still very important
- Ideas from word2vec were very influential in area of graph representation
- Embedding techniques construct actual feature maps Φ and similarity is measured on that space
- Do graph embeddings build on graph kernels?

Kernels on graphs (between nodes of a single graph):

R. Kondor and J. Lafferty: Diffusion kernels on graphs and other discrete input spaces (ICML 2002) (winner of "test of time" award)

A. Smola and R. Kondor: Kernels and regularization on graphs (COLT 2003)

Graph kernels (between graphs):

Thomas Gartner, Peter A. Flach, and Stefan Wrobel: On graph kernels: Hardness results and efficient alternatives (COLT 2003)

Karsten M. Borgwardt, Cheng Soon Ong, Stefan Schonauer, S. V. N. Vishwanathan, Alexander J. Smola, and Hans-Peter Kriegel. Protein function prediction via graph kernels (ISMB 2005)

Learning on graphs:

- R. Kondor and K. M. Borgwardt: The skew spectrum of graphs (ICML 2008)
- R. Kondor, N. Shervashidze and K. M. Borgwardt: The graphlet spectrum (ICML 2009)

Survey:

S. V. N. Vishwanathan, N. N. Schraudolf, R. Kondor and K. M. Borgwardt: Graph kernels (Journal of Machine Learning Research 11, 2010)

Multi-scale structure of large graphs:

R. Kondor and H. Pan: The Multiscale Laplacian Graph Kernel (NIPS 2016)

Applications

R. Kondor and J.-P. Vert: Diffusion kernels in "Kernel Methods in Computational Biology" ed. B. Scholkopf, K. Tsuda and J.-P. Vert, (The MIT Press, 2004) Hermansson, L., Kerola, T., Johansson, F., Jethava, V. and Dubhashi, D.. Entity disambiguation in anonymized graphs using graph kernels (ACM CIKM 2013)

Fast kernels:

Kang, U., Tong, H. and Sun, J.. Fast random walk graph kernel (SDM 2012)

Koutra, D., Vogelstein, J.T. and Faloutsos, C. Deltacon: A principled massive-graph similarity function (SDM 2013 and TKDD 2014?)

Hu, B., Lu, Z., Li, H. and Chen, Q.. Convolutional neural network architectures for matching natural language sentences (NIPS 2014)