

Ministerul Educației, Cercetării și Tineretului Olimpiada Națională de Fizică Piatra Neamț, 4-8 februarie 2008 Proba teoretică - barem

Oricare altă variantă corectă de rezolvare se va puncta în mod corespunzător

Subject	Soluție	Punctaj	
1	,	parțial	total
	$\begin{cases} \frac{p_1 V_1}{T_1} = \frac{p V_1'}{T_{ext}} \\ \frac{p_2 V_2}{T_2} = \frac{p V_2'}{T_{ext}} \\ V_1' + V_2' = V_1 + V_2 \end{cases}$	2,00	
a)	$\Rightarrow p = \left(\frac{p_1 V_1}{T_1} + \frac{p_2 V_2}{T_2}\right) \frac{T_{ext}}{V_1 + V_2}$	0,25	3
	$\Rightarrow V_1' = V_1 \frac{p_1(V_1 + V_2)}{\left(\frac{p_1 V_1}{T_1} + \frac{p_2 V_2}{T_2}\right) T_1}; V_2' = V_2 \frac{p_2(V_1 + V_2)}{\left(\frac{p_1 V_1}{T_1} + \frac{p_2 V_2}{T_2}\right) T_2}$	0,50	
	$T_1' = T_2' = T_{ext}$	0,25	
	$Q_1 + Q_2 = 0$	1	
	$\Rightarrow v_1 C_V (T - T_1) + v_2 C_V (T - T_2) = 0$	0,50	
b)	$\Rightarrow T = \frac{p_1 V_1 + p_2 V_2}{\frac{p_1 V_1}{T_1} + \frac{p_2 V_2}{T_2}}$	0,50	
	$\Rightarrow \begin{cases} p_1' = p_1 \frac{p_1 V_1 + p_2 V_2}{T_1 \left(\frac{p_1 V_1}{T_1} + \frac{p_2 V_2}{T_2} \right)} \\ p_2' = p_2 \frac{p_1 V_1 + p_2 V_2}{T_2 \left(\frac{p_1 V_1}{T_1} + \frac{p_2 V_2}{T_2} \right)} \end{cases}$	0,75	3
		0,25	
	$\begin{cases} V_1' = V_1 \\ V_2' = V_2 \end{cases}$		
c)	$\Delta U_1 + \Delta U_2 = 0$	2,00	
	$\Rightarrow v_1 C_V (T - T_1) + v_2 C_V (T - T_2) = 0$	0,50 0,50	3
06	\Rightarrow aceleași rezultate ca la punctul a), cu $T_{ext} = T$ găsit la b)		
Oficiu Total subject 1			1p 10p
I Viai Subject I		10h	

Ministerul Educației, Cercetării și Tineretului Olimpiada Națională de Fizică Piatra Neamț, 4-8 februarie 2008 Proba teoretică - barem

Oricare altă variantă corectă de rezolvare se va puncta în mod corespunzător

a) C_0 $C = C(T)$	Subiect	Soluție	Punctaj	
a) C_0 $C = C(T)$	2		parțial	total
b) $Q = \frac{1}{2}(C_1 + C_2)(T_1 - T_2)$ $\Rightarrow Q = C_0 \left[1 + \frac{\alpha}{2}(T_1 + T_2)\right](T_2 - T_1)$ $\Delta t = \frac{Q}{P}$ $Q_1 + Q_2 + Q_3 = 0$ $\Rightarrow \frac{1}{2}(C(T') + C(T_1))(T' - T_1) + \frac{1}{2}\left(\frac{C(T')}{5} + \frac{C(T_2)}{5}\right)(T' - T_2) + C_3(T' - T_3) = 0$ $\Rightarrow C_3 = \frac{C_0\left(1 + \alpha \frac{T' + T_1}{2}\right)(T' - T_1) + \frac{1}{5}C_0\left(1 + \alpha \frac{T' + T_2}{2}\right)(T' - T_2)}{T_3 - T'}$ 1,00 1,00 3 1,00 1,00 1,00 1,00 1,00 1,00	a)	C = C(T)	3,00	3
c) $Q_{1} + Q_{2} + Q_{3} = 0$ $\Rightarrow \frac{1}{2} \left(C(T') + C(T_{1}) \right) \left(T' - T_{1} \right) + \frac{1}{2} \left(\frac{C(T')}{5} + \frac{C(T_{2})}{5} \right) \left(T' - T_{2} \right) + $ $+ C_{3} \left(T' - T_{3} \right) = 0$ $\Rightarrow C_{3} = \frac{C_{0} \left(1 + \alpha \frac{T' + T_{1}}{2} \right) \left(T' - T_{1} \right) + \frac{1}{5} C_{0} \left(1 + \alpha \frac{T' + T_{2}}{2} \right) \left(T' - T_{2} \right)}{T_{3} - T'}$ $1,00$ $1,00$ 3	b)	C_{2} C_{1} C_{2} C_{1} C_{2} C_{1} C_{2} C_{2} C_{3} C_{4} C_{5} C_{1} C_{2} T_{2} T T_{2} T $Q = \frac{1}{2}(C_{1} + C_{2})(T_{1} - T_{2})$ $\Rightarrow Q = C_{0} \left[1 + \frac{\alpha}{2}(T_{1} + T_{2})\right](T_{2} - T_{1})$	1,00 0,50	3
Official 1n	c)	$Q_{1} + Q_{2} + Q_{3} = 0$ $\Rightarrow \frac{1}{2} (C(T') + C(T_{1})) (T' - T_{1}) + \frac{1}{2} (\frac{C(T')}{5} + \frac{C(T_{2})}{5}) (T' - T_{2}) + C_{3} (T' - T_{3}) = 0$	1,00	3
	Oficiu			1p
Total subject 2				•

Ministerul Educației, Cercetării și Tineretului Olimpiada Națională de Fizică Piatra Neamţ, 4-8 februarie 2008 Proba teoretică - barem

Oricare altă variantă corectă de rezolvare se va puncta în mod corespunzător

Subiect	Soluție	Punctaj	
3	parţ	ial	total
A			5
a)	$ \begin{cases} T_{\text{max}} = T_3 = 900 \text{ K} \\ T_{\text{min}} = T_1 = 300 \text{ K} \end{cases} $ 1,0	0	
b)	$\begin{cases} C = C_V - \frac{R}{n-1} & \Rightarrow C = \frac{R}{2} \\ n = 2 \end{cases}$ 1,0	0	
c)	$\eta = 1 - \frac{ Q_{34} + Q_{41} + Q_{12} }{Q_{23}} $ 0,5	0	
	$\eta = 1 - \frac{\left vC(T_4 - T_3) + vC_v(T_1 - T_4) + vRT_1 \ln \frac{V_2}{V_1} \right }{vC_P(T_3 - T_2)}$ 1,0	0	
	$\begin{vmatrix} \frac{T_3}{T_1} = 3; \frac{T_4}{T_1} = \frac{9}{4} \\ \eta = 27,3\% \end{aligned}$ 0,5	0	
	$\eta_{carnot} = 1 - \frac{T_1}{T_3} = 67\%$	0	
	$\Rightarrow \eta_{carnot} > \eta$ 0,5	0	
В			4
a)	$\delta = 60^{\circ}$		
b)	$F_{medie} = \frac{ \Delta p_x }{\Delta t} = \frac{mv(1 - \cos \delta)}{\Delta t} = \frac{mv}{2\Delta t}$	0	
Oficiu			1p
Total subject 3			10p

Subiect propus de: prof. Ion Toma - C.N. "Mihai Viteazul", București prof. Dorel Haralamb - C.N. "Petru Rareș", Piatra Neamț