Short-Term Solar Irradiance Forecasting Using Calibrated Probabilistic Models

Eric Zelikman*, Sharon Zhou*, Jeremy Irvin* Cooper Raterink, Hao Sheng, Anand Avati, Dr. Jack Kelly Professor Ram Rajagopal, Professor Andrew Y. Ng[†], Dr. David John Gagne[†]

- Adopting solar in the electricity sector is essential to reducing GHG emissions¹
- Solar is highly volatile and intermittent, so forecasting models are necessary for power system cost-effectiveness and security²
- Most are not probabilistic, but characterizing uncertainty can aid real-time grid integration of solar energy and help gauge when to deploy new storage^{3,4}

¹A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering 2016.

²Review of photovoltaic power forecasting. *Solar Energy 2016*.

³The use of probabilistic forecasts: Applying them in theory and practice. *IEEE Power and Energy Magazine 2019*.

⁴Energy storage sizing in presence of uncertainty. PESGM 2019

 Adopting solar in the electricity sector is essential to reducing GHG emissions¹

¹A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering 2016.

- Adopting solar in the electricity sector is essential to reducing GHG emissions¹
- Solar is highly volatile and intermittent, so forecasting models have become necessary²

¹A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering 2016.

²Review of photovoltaic power forecasting. *Solar Energy 2016*.

- Adopting solar in the electricity sector is essential to reducing GHG emissions¹
- Solar is highly volatile and intermittent, so forecasting models have become necessary²
- Most are not probabilistic, but characterizing uncertainty is very useful^{3,4}

¹A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering 2016.

²Review of photovoltaic power forecasting. *Solar Energy 2016*.

³The use of probabilistic forecasts: Applying them in theory and practice. *IEEE Power and Energy Magazine 2019*.

⁴Energy storage sizing in presence of uncertainty. *PESGM 2019*

Probabilistic Solar Forecasting: Current Problems

- Numerical weather prediction (NWP) models
 - Cannot be used on short timescales
 - Computational inefficiency
- ML models
 - Generally rely on traditional models
 - Perform substantially worse than NWP where comparable
- Probabilistic smart persistence
 - Can be defined in several ways
 - Some remarkably good baselines
 - Consistently worse than NWP and machine learning

Modern probabilistic ML can substantially improve solar forecasting

Methods

Data: SURFRAD Network

- NOAA's Surface Radiation (SURFRAD) Network⁵
- Seven stations throughout U.S.
- Measure solar irradiance (GHI) at 5min resolution
- Meteorological inputs

• Gaussian Process⁶

⁶Gaussian Processes for Nonlinear Signal Processing: An Overview of Recent Advances. *IEEE Signal Processing Magazine 2013.*

- Gaussian Process⁶
- Dropout Neural Network⁷

⁶Gaussian Processes for Nonlinear Signal Processing: An Overview of Recent Advances. *IEEE Signal Processing Magazine 2013.*⁷Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. *ICML 2016*.

- Gaussian Process⁶
- Dropout Neural Network⁷

Variational Neural Network⁸

⁶Gaussian Processes for Nonlinear Signal Processing: An Overview of Recent Advances. *IEEE Signal Processing Magazine 2013.*

⁷Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. *ICML 2016*.

⁸What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? *NeurIPS 2017*.

- Gaussian Process⁶
- Dropout Neural Network⁷

- Variational Neural Network⁸
- NGBoost⁹

⁶Gaussian Processes for Nonlinear Signal Processing: An Overview of Recent Advances. *IEEE Signal Processing Magazine 2013.*

⁷Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. *ICML 2016*.

⁸What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? *NeurIPS 2017*.

⁹NGBoost: Natural Gradient Boosting for Probabilistic Prediction. *ICML* 2020.

Sharpness Subject to Calibration

Calibration curve for a Gaussian process regression model forecasting in Penn State, PA

What defines a good probabilistic forecast?

Sharpness Subject to Calibration

Calibration curve for a Gaussian process regression model forecasting in Penn State, PA

- What defines a good probabilistic forecast?
- Calibration
 - Are the probabilistic forecasts consistent with the observations?
 - Measures whether predicted distributions correctly capture confidence levels.

Sharpness Subject to Calibration

Calibration curve for a Gaussian process regression model forecasting in Penn State, PA

What defines a good probabilistic forecast?

Calibration

- Are the probabilistic forecasts consistent with the observations?
- Measures whether predicted distributions correctly capture confidence levels.

Sharpness

- o Is the probability distribution tight?
- Sharper models are better, subject to calibration.

Post-hoc Calibration Methods

- Models are usually not well-calibrated by default
 - o They're often overconfident on unseen data
- Post-hoc calibration methods:
 - Gaussian MLE

Post-hoc Calibration Methods

- Models are usually not well-calibrated by default
 - They're often overconfident on unseen data
- Post-hoc calibration methods:
 - Gaussian MLE
 - Kuleshov: invert the calibration curve¹⁰

¹⁰Accurate Uncertainties for Deep Learning Using Calibrated Regression. *ICML 2018.*

Post-hoc Calibration Methods

- Models are usually not well-calibrated by default
 - They're often overconfident on unseen data
- Post-hoc calibration methods:
 - Gaussian MLE
 - Kuleshov: invert the calibration curve¹⁰
 - CRUDE: measure z-scores of observed errors¹¹

¹⁰Accurate Uncertainties for Deep Learning Using Calibrated Regression. *ICML* 2018.

¹¹CRUDE: Calibrating Regression Uncertainty Distributions Empirically. ICML 2020 Workshop on Uncertainty & Robustness in Deep Learning.

Performance Metric: CRPS

- Is there a metric which captures both calibration and sharpness?
- Continuous Ranked Probability Score (CRPS)
 - Area between the predicted
 CDF and a step function at the observed value

Performance Metric: CRPS

- Is there a metric which captures both calibration and sharpness?
- Continuous Ranked Probability Score (CRPS)
 - Area between the predicted
 CDF and a step function at the observed value

Results

Comparison Between Our Models

Station	Gaussian Process			Dropout Neural Network				Variational Neural Net				NGBoost				
	None	MLE	C	Kul.	None	MLE	C	Kul.	None	MLE	C	Kul.	None	MLE	C	Kul.
Bondville, IL	101.3	53.2	48.5	48.6	48.5	46.0	43.6	44.0	42.0	42.0	41.8	41.9	40.5	40.5	40.6	40.6
Boulder, CO	110.9	61.7	56.4	56.5	59.3	55.8	53.3	53.9	48.6	48.9	48.3	48.6	45.9	46.1	46.0	46.2
Desert Rock, NV	96.6	44.3	35.4	35.7	37.2	40.8	36.1	36.2	31.4	32.5	30.0	30.3	27.9	30.1	27.8	28.2
Fort Peck, MT	97.5	50.7	43.6	43.4	41.6	41.9	38.9	39.0	37.9	46.8	37.5	37.6	34.8	35.2	35.0	34.9
Goodwin Creek, MS	119.2	59.8	54.7	54.9	57.9	53.3	51.6	51.5	46.9	46.9	46.7	46.9	44.8	45.0	44.8	45.1
Penn State, PA	111.6	58.8	53.9	53.3	56.5	51.2	49.5	48.0	47.4	47.4	47.3	47.0	46.0	46.6	46.1	46.0
Sioux Falls, SD	107.2	54.4	49.3	49.5	48.0	46.0	43.4	43.7	43.8	41.8	42.4	43.0	37.9	39.1	38.0	38.4

- NGBoost was consistently the best performing model
- Calibration had no substantial impact for short-term forecasting

Comparison To Prior Models

	СН-Р	PeEn	MCM	NGB	$\%\Delta$	СН-Р	GAU	NWP	NGB (+ <i>C</i>)
Bondville, IL	92.1	52.8	48.7	40.5	-16.8%	78.1	52.7	50.8	53.1 (52.9)
Boulder, CO	91.3	61.6	51.6	45.9	-11.0%	75.7	64.2	64.6	60.3 (60.4)
Desert Rock, NV	47.3	35.2	29.4	27.9	-5.1%	37.7	42.5	39.2	36.1 (35.8)
Fort Peck, MT	77.0	46.3	39.8	34.8	-12.6%	64.8	49.9	48.0	46.3 (46.2)
Goodwin Creek, MS	98.4	59.7	52.5	44.8	-14.7%	82.3	58.3	56.4	56.9 (56.6)
Penn State, PA	98.1	60.0	53.0	46.0	-13.2%	83.4	55.1	57.4	58.8 (58.1)
Sioux Falls, SD	86.8	47.8	41.0	37.9	-7.6%	74.3	50.6	49.7	58.6 (56.6)

Intra-hourly Performance

Hourly Resolution Performance

- NGBoost was consistently the best short-term forecasting model
- NGBoost with CRUDE calibration often outperformed NWP models

Visualization

Future Directions

- Incorporate satellite imagery to account for clouds
- An ablation study of various inputs would help
 - Can we predict irradiance accurately with only public data?
- Could the models perform better with better hyperparameters?

Thank you!

Thank you!