FACE RECOGNITION

PRINCIPAL COMPONENTS ANALYSIS

by: Mohamed Hagras

Contents

- Introduction
- Material and Method
- PCA
- Implementation
- Occident of the contract of

Introduction

The wide spreading of Technology lead to the necessity of applying more Security Procedures.

 Such Security Procedures can be implemented through Pattern Recognition.

Introduction (Cont)

- Pattern Recognition Applications include:
 - 1. Face Recognition
 - 2. Finger Print Recognition
 - 3. Voice Recognition
 - 4. Speech Recognition
- In fact, Face Recognition Application is one of the most applications widely used nowadays.

Applications and Usage

Applications	Advantages	Disadvantages
Credit Card, Driver's License, Passport, and Personnal Identification:	Controlled image Controlled segmentation Good quality images	No existing database Large potential database Rare search type
Bank / Store Security:	High value Geographically localised search	Uncontrolled segmentation Low image quality
Witness Face Reconstruction:	Witness search limits	Unknown similarity
Expert Identification:	High value Enhancement possible	Low image quality Legal certainty required

Face Recognition Technique

- FRT is formulated as follows:
 - > Given still or video images of a scene
 - bidentify one or more persons in the scene using a stored database of faces
- This can be done through three stages:
 - segmentation of scenes from cluttered scenes
 - 2. extraction of features from the face region
 - 3. decision

FRT (Cont)

- At The Third Stage Three Types of decisions can be achieved depending on the application :
 - 1. Identification: in which labels of individuals must be obtained
 - recognition of a person: where it must be decided if the individual has already been seen
 - 3. Categorisation: in which the face must be assigned to a certain category

Material And Method

Face viewed as a vector

• Image Space

> The basis of the image space is composed of the following vectors:

The basis vectors of this face space are called the principal components

Principal Components Analysis (PCA)

- It is a way of identifying patterns in data, and expressing the data in such a way as to highlight their similarities and differences
- Since patterns in data can be hard to find in data of high dimension, PCA is a powerful tool for analysing data
- PCA aims to catch the total variation in the set of the training faces, and to explain this variation by a few variables

- Step 1: Get some data
- Step 2: Subtract the mean

	\boldsymbol{x}	y
Data =	2.5	2.4
	0.5	0.7
	2.2	2.9
	1.9	2.2
	3.1	3.0
	2.3	2.7
	2	1.6
	1	1.1
	1.5	1.6
	1.1	0.9

_	\boldsymbol{x}	\boldsymbol{y}
DataAdjust =	.69	.49
	-1.31	-1.21
	.39	.99
	.09	.29
	1.29	1.09
	.49	.79
	.19	31
	81	81
	31	31
	71	-1.01
		ı

Step 3: Calculate the Covariance Matrix

$$var(X) = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(X_i - \bar{X})}{(n-1)}$$

$$cov(X,Y) = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{(n-1)}$$

$$cov = \begin{pmatrix} .616555556 & .615444444 \\ .615444444 & .716555556 \end{pmatrix}$$

Step 4: Calculate
 the EigenVectors
 and
 EigenValues of
 the Covariance

$$eigenvalues = \begin{pmatrix} .0490833989 \\ 1.28402771 \end{pmatrix}$$

$$eigenvectors = \begin{pmatrix} -.735178656 & -.677873399 \\ .677873399 & -.735178656 \end{pmatrix}$$

- First Eigen Faces:
 - The first eigenface is the average face, while the rest of the eigenfaces represent variations from this average face
 - > The first eigenface is a good face filter
 - The first eigenface accounts for the maximal variation, the second one accounts for the second maximal variation, etc.

- Step 5: Choosing Components and forming a Feature Vector
 - Here's where the notation of Data Compression
 - In fact, it turns out that the eigenvector with the highest eigenvalue is the principle component of the data set

 $FeatureVector = (eig_1 \ eig_2 \ eig_3 \ \ eig_n)$

- Step 5: Deriving the new data set
 - > This the final step in PCA, and is also the easiest
 - Once we have chosen the components (eigenvectors) that we wish to keep in our data and formed a feature vector, we simplytake the transpose of the vector and multiply it on the left of the original data set, transposed

 $Final Data = Row Feature Vector \times Row Data Adjust$

Conclusion

- Finally, That's what the PCA does
 - > Define the training set
 - Define the faces to reconstruct
 - Define the faces to meet (which stores the components of the faces in order to be able to recognise them afterwards)
 - > Define the faces to recognise
 - > Define the face to classify

Thanks for Listening