Concept Learning, Classification and Regression First Assignment for the Lecture Machine Learning

Ulf Krumnack Axel Schaffland

Institute of Cognitive Science Biologically Motivated Computer Vision

05.04.19

Outline

Organisation

Definitions

Assignments

Resources

Organisation

- Three practice sessions this week
- Assignment 0 will be solved during practice sessions and as homework
- Three task you can choose from
 - Concept learning
 - Classification
 - Regression
- Presentation in tomorrows practice session
 - Each task is presented by one group

Definitions: Supervised Learning

- Learn from example input-output pairs
- Labeled training data: A set of training examples
- Validate and optimize algorithm on validation data
- Test on test data once at the end
- Goal: Learn mapping from input data to output label
- Predict output label of new input data
- Example:
 - Object classification
 - Concept learning, classification, regression
- Statistical interpretation: Learn p(Y|X)

Definitions: Unsupervised Learning

- Learning without a teacher
- Self-organisation
- Unlabeled training data
- Goal: Learn relations and grouping in the data
- Examples:
 - Clustering Lego bricks
 - Density estimation, clustering
- Statistical interpretation: Learn something about p(X)

Definitions: Concept Learning

- Acquire the definition of a general category given a sample of positive and negative training examples
- Binary classification
- Indicator function: $C: x \rightarrow \{0,1\}$
- Set theory: $C: x \in A$
- Predicate logic: $C: x \to P(x)$
- Example
 - EnjoySport dataset
 - Detection of medical conditions

Definitions: Classification

- Identifying group/class membership
- Predict unordered categorical/discrete variable
- Target function: $C: x \to \{c_1, c_2, \dots, c_n\}$
- Examples
 - Handwritten digit classification
 - Object classification

Definitions: Regression

- Estimate a parameter
- Predict value from ordered continuous set (of real numbers)
- Target function: $R: x \to \mathbb{R}$
- Examples
 - House price estimation
 - Diabetes disease progression

Your Task

- Select one of the three presented datasets
- Load a dataset
- Visualize the data
- Train on the data
- Visualize the results
- · Focus on visualisation and data handling
- Learning algorithms will be covered later
- Algorithms from scikit-learn

Demo

- Iris Dataset
- Classification of three sub-species: I. setosa, I. versicolor, I. virginica
- Features: Length & Width of Petal & Sepal Leaves

sepal length	sepal width	petal length	petal width	label
5.1 5.9	3.5 3.0	1.4 5.1	0.2 1.8	setosa virginica

Topic I: Concept Learning

- Adult Data Set
- Predict whether income exceeds \$50K/yr based on census data.
- Also known as "Census Income" dataset
- Features
 - Age: continuous
 - Workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, . . .
 - Education: Bachelors, Some-college, 11th, HS-grad, Prof-school, . . .
 - o ...

Topic I: Assignment

- Use csv to parse the data file
- Pre-process the data with the LabelEncoder of sklearn
- Use only continuous attributes (complications with scikit)
- Use only subset of data (else decision tree becomes huge)
- Follow the Decision Trees Tuturial
- Use the class decisionTreeClassifier and its fit function
- Use graphviz for visualisation
- Test on the test data set

Topic II: Classification

- Wine Data Set
- Classify the cultivar of grape based on chemical analysis of wine
- Three cultivars/classes, 13 attributes

Topic II: Assignment

- Use csv to parse the data file
- Use a similar approach as shown in the demo
- Refer to scikit learn examples 1 and 2
- Use all attributes and all classes, opposed to the demo

Topic III: Regression

• Old Faithful Geyser Data

Sample	Eruptions	Waiting
1	3.600	79
2	1.800	54
3	3.333	74
4	2.283	62
5	4.533	85
6	2.883	55

Topic III: Assignment

- Remove the header of the data file
- Use csv to parse the data file
- Use scikits linear regression models
- Test your model with the live webcam

Resources

- scikit-learn tutorials
- matplotlib pyplot tutorial
- numpy documentation
- graphviz
- pandas
- xarray