1 Definitions

1. Prove that, for $n \neq 0$, $\cos(2\pi/n)$ is algebraic. Let $z = \cos(2\pi/n)$. Then, since $e^{2\pi i/n} = z + i\sqrt{1-z^2}$,

$$1 = e^{2i\pi} = (z + i\sqrt{1 - z^2})^n = p(z) + iq(z),$$

where p and q are integer-coefficient polynomials. Squaring both sides, we have

$$p(z)^{2} - q(z)^{2} - 1 = 2ip(z)q(z),$$

and finally we deduce that

$$(p(z)^{2} - q(z)^{2} - 1)^{2} + 2p(z)q(z) = 0.$$

2. Let $\alpha = i/2$. Prove that $\mathbb{Z}[\alpha]$ is dense in \mathbb{C} . Taking powers of α , we can get all $z \in \mathbb{C}$ for which Re(z) and Im(z) are both dyadic rationals. Since the dyadic rationals are dense in \mathbb{R} , $\mathbb{Z}[\alpha]$ is dense in \mathbb{C} .

2 Zerodivisors etc.

1. If a and b are zero divisors in a ring R, is a+b one as well? No. Let $R=\mathbb{Z}/(6)$, and consider [2]₆ and [3]₆.

3 Nilpotents and stuff

1. Prove that, if x is nilpotent, 1 + x is a unit. Let $x^n = 0$. Then it is easy to see that

$$(1+x)(1-x+x^2-x^3+\cdots+(-1)^{n-1}x^{n-1}=1,$$

as all terms but the 1 cancel out.

2. Prove that, in a ring R with prime characteristic p, if a is nilpotent, then 1+a is unipotent.

Let $a^k = 0$. Choose any multiple of p, say tp, greater than k. Then

$$(1+a)^{tp} = 1 + a^{tp} + \sum \binom{tp}{i} a^i.$$

Now, $a^{tp} = a^k a^{tp-k} = 0$. As for the sum, well.

4 Polynomial rings

1. Prove that the multiplication in R[x] is associative.

$$f(x) \cdot (g(x) \cdot h(x)) = \left(\sum_{k \ge 0} f_i x^i\right) \left(\sum_{k \ge 0} x^k \left(\sum_{i+j=k} g_i h_j\right)\right)$$

$$= \sum_{n \ge 0} x^n \left(\sum_{i+t=n} f_i \left(\sum_{j+k=t} g_j h_k\right)\right)$$

$$= \sum_{n \ge 0} x^n \left(\sum_{i+j+k=n} f_i g_j h_k\right)$$

$$= \sum_{n \ge 0} x^n \left(\sum_{i+j=t} f_i g_j \left(\sum_{k+t=n} h_k\right)\right)$$

$$= \left(\sum_{k \ge 0} x^k \left(\sum_{i+j=k} f_i g_j\right)\right) \left(\sum_{k \ge 0} x^k h_k\right)$$

$$= (f(x) \cdot g(x)) \cdot h(x).$$

2. What are the units in F[[t]] for F a field? Let $f = \sum f_i x^i$ be a formal power series with coefficients in F. For it to

be a unit, there must exist some formal power series $g = \sum g_i x^i$ such that fg = 1. That is,

$$fg = \sum (x_k \sum_{i+j=k} f_i g_j) = 1.$$

For this, we must have $f_0g_0 = 1$. This is possible iff f_0 is noninvertible, and the only such element in a field is 0. So polynomials with nonzero constant coefficients are units in F[[t]]. To prove the reverse inclusion, we note that

$$(\sum f_i x^i)(\sum g_i x^i) = (\sum h_i x^i)$$
 where $h_i = f_0 g_i + f_1 g_{i-1} + \dots + f_i g_0$

and choose g_j s for which all $h_{\geq 1}$ are zero. To that end, set

$$g_j = -\frac{1}{f_0}(f_1g_{i-1} + f_2g_{i-2} + \dots + f_ig_0).$$

Hence, the units in F[[t]] are all the polynomials with nonzero constant coefficients.

5 Homomorphisms and ideals

1. Prove that every nonzero ideal in the ring of Gauss integers contains a nonzero integer.

Ideals are closed under multiplication. Choose some $z \in I$ and multiply it by \bar{z} . $z\bar{z}$ is an integer $\in I$.

- 2. Find generators for the kernels of the following maps:
 - (a) $\phi : \mathbb{R}[x,y] \to \mathbb{R}$ defined by $f \mapsto f(0,0)$. For all $f \in \ker \phi$, x|f and y|f, hence $\ker \phi = (x,y)$.
 - (b) $\varphi : \mathbb{R}[x] \to \mathbb{C}$ defined by $f \mapsto f(2+i)$. Obviously, $K = \ker \varphi$ contains no polynomials of degree < 2. The minimal polynomial of (2+i), $f = x^2 4x + 5$, is quadratic and belongs to K. Since it is monic as well, and \mathbb{R} is a field, K = (f).
 - (c) $\eta: \mathbb{Z}[x] \to \mathbb{R}$ defined by $f \mapsto f(1+\sqrt{2})$. Consider the minimal polynomial of $1+\sqrt{2}$, $f=x^2-2x-1$, and let g be any polynomial in the kernel.
 - (d) $\sigma: \mathbb{Z}[x] \to \mathbb{C}$ defined by $x \mapsto \sqrt{2} + \sqrt{3}$.
- 3. Let R be a ring of prime characteristic p. Show that the Frobenius map $R \to R$ defined by $x \mapsto x^p$ is a ring homomorphism. Let $x, y \in R$. Then $(x+y)^p = x^p + y^p + \sum_{k=1}^{p-1} \binom{p}{k} x^k y^{p-k}$. Since, for prime p, all $\binom{p}{t}$ are divisible by p, the sum is zero in R, and thus we have

$$(x+y)^p = x^p + y^p$$
 in characteristic p .

This proves that F(a+b) = F(a) + F(b). By commutativity, we also have

$$(xy)^p = x^p y^p,$$

so F(ab) = F(a)F(b). Finally, F(1) = 1 is obvious.

4. Let I and J be ideals of a ring R. Show that the set I+J of elements of the form i+j, where $i \in I$ and $j \in J$, is an ideal of R. I+J is obviously the product of the subgroups I and J of R^+ . It is also closed under R-multiplication, since if

$$r(i+j) := ri + rj$$

then $r(i+j) \in I+J$ since I and J are closed under R-multiplication. Hence I+J is also an ideal.

5. For ideals I and J of a ring R, $I \cap J$ is also an ideal. For closure under addition, choose $k, k' \in I \cap J$. Since I and J are closed under addition, $k+k' \in I$ and $k+k' \in J$, so $k+k' \in I \cap J$. Similarly, if $k \in I \cap J$, closure under R-multiplication for $I \cap J$ follows from the corresponding property for I and J.