

Eight Discipline Report (8D Report)

8D report No.:				
RMA claim No.:				
Chicony Power P/N: A20-180P1A				
Customer P/N:				
Product description: 180W				
Defect D/C or Lot No.:				

Subject:試產時發生樣機點膠組裝後,在通電測試時發生異常,使樣機無法正常動作,經檢查發現 CK1 電容已 有防爆孔膨脹損壞現象。

(ME 類, 電容)

D1.) 問題解決成員:Use Team Approach

主持者 (Team Leader):

內部成員 (Internal Team Members):

外部成員 (External Team Member):

D2.) 問題說明: Problem Description:

(Note: Use who, what, when, where, why, how, how many to specify the Customer's problem.)

問題說明:

試產時發生樣機點膠組裝後,在通電測試時,發生異常使樣機無法正常動作,經檢查發現 CK1 電容已有防爆孔 膨脹損壞現象。

- 1. 分析時檢查周邊有無異常
- 2. 當移除異常樣機 HS2 時, 發現 HS2 底部 Trace 有綠漆脫落現象, 對應 HS2 有跳火痕跡

3. 先比對 X01 與 X02 HS2 PCB 組裝位置,因 CNC 製作 HS 的公差問題,發現 X02 HS2 折彎部分較 X01 靠近 SUPHV trace,所以容易碰觸到 SUPHV trace,這是為何 X01 沒有發生問題的原因。

X01 試產數量 320PCS,工廠無反饋不良,不良率 0%

X02 試產數量 155PCS,工廠反饋不良 5PCS,不良率 3.2%.

D3.)內部或客戶的暫時解決辦法及實施日期:Implement and Verify Containment Action:

(Note: Internal / external containment action effectiveness and date.)

1. 從工廠端取得樣機並做進一步分析

Date:2020/9/15

D4.)不良原因確認: Define and Verify Root Causes:

(Note: Identify and verify all suspect causes, which needs explain why the problem occurred.)

複製異常現象

- 1.取一樣機複製SUPHV Trace 與 HS2接觸跳火的狀況
- 2.刮除Trace 綠漆,使裸銅露出
- 3.只讓HS2接地Pin 焊接,使HS2 先浮高,當開機正常後,將HS2下壓與裸銅Trace輕微接觸產生跳火,觀察有何現象發生?

線路跳火路徑分析,量測TEA19162 PFC IC SNSBOOST 、 PFCCOMP、SUPIV、SNSCUR、GATEPFC

觀察正常及異常時波形

Form No.SMQA061 2.0 版

保存期限:5年

- 1. 正常開機後,使HS2輕微接觸Trace產生跳火,從波形發現PFC IC的SNSBOOST及PFCCOMP Pin腳有電 壓異常且CK1電壓異常升高,從下圖可看到CK1電壓已上升到571V。
- 2. 正常開機後,使HS2輕微接觸Trace產生跳火,從波形發現PFC IC的GND 有異常電壓

A. 正常開機時

CH1: CK1_Vbulk CH2: SNSBOOST_V CH3: PFCCOMP_V CH4: SUPIC_V

CH1: CK1_Vbulk CH2: SNSBOOST_V CH3: PFCCOMP_V CH4: SUPIC_V

3. 從波形發現PFC IC的SNSBOOST電壓在異常時,電壓2.5V掉下到2.1V左右

CH1: CK1_Vbulk CH2: SNSBOOST_V CH3: PFCCOMP_V CH4: IC GND to HS2 GND_V

4. 從波形發現PFC IC的PFCCOMP電壓在異常時,電壓有掉下到1.28V,將造成PFC on-time 往maximum on-time增加

Form No.SMQA061 2.0 版 保存期限: 5 年

PFC on-timer (PFC	FCCOMP pin)						
V _{tonzero(PFCCOMP)}	zero on-time voltage on pin PFCCOMP		3.40	3.50	3.60	V	
V _{tonmax} (PFCCOMP)	maximum on-time voltage on pin PFCCOMP		1.18	1.23	1.28	V	

5. 從波形發現PFC IC的SNSCUR電壓在異常時,電壓會上升到Vreg(oc) 0.5V

6. 當正常時SNSCUR 電壓較低,PFC on-time 較小,當HS2與Trace 輕微碰觸跳火時,此時PFCCOMP_V 被拉低到1.28V,導致PFC on-time 增加到maximum on-time,直到PFC Current 觸發到SNSCUR 0.5V 後,PFC能量被限制住,使Boost電壓停止上升

CH1: CK1_Vbulk CH2: SNSBOOST_V CH3: PFCCOMP_V CH4: SNSCUR

實驗一:將HS2 接地及浮接時,碰觸SUPHV Trace,觀察是否為SUPHV 對HS2跳火,而影響 的IC GND電位?

實驗當HS2 有接地時,此時與SUPHV trace 接觸跳火,發現GND有被干擾,使SNSBOOST_V下降,讓PFC以為Bulk電壓變低,為了使SNSBOOST_V回到2.5V,此時PFCCOMP_V將變低到1.28V,使PFC 加大ontime,PFC持續升壓到頂到SNSCUR 限制點才結束升壓。

CH1: CK1_Vbulk CH2: SNSBOOST_V CH3: PFCCOMP_V CH4: IC_GND to HS2 GND

實驗當HS2 不接地時(floating),此時與SUPHV trace 接觸跳火,並未造成GND被干擾, SNSBOOST電位維持正常,所以沒有發生異常現象。

CH1: CK1_Vbulk CH2: SNSBOOST_V CH3: PFCCOMP_V CH4: IC _GND to HS2 GND

改善對策1: 修改HS2切除與PCB trace 接觸的部分

修改HS2, 將與SUPHV trace 碰觸部分切除, 防止 SUPHV trace 綠漆脫落,

對HS2 發生跳火現象,改善此跳火導致IC偵測異常以致產生高壓損壞CK1的問題。

改善對策2: SUPHV trace 增加白漆絕緣

防止SUPHV trace 綠漆脫落,增加白漆絕緣

Form No.SMQA061 2.0 版 保存期限: 5 年

D5.)改善措施:Corrective Action Verification:

(**Note**: Be make sure the corrective actions is effective in process as well as able to fix the customer complaint problem)

- 繪製 HS 時需與 ME 確實比對,避開與 PCB trace 碰觸的部分
- 修改 HS2 切除與 PCB trace 接觸的部分
- SUPHV trace 增加白漆絕緣

Date:2020/9/20

D6.)改善措施實施日期:Implement Permanent Corrective Actions:

(Note: Be provide the phase-in date or lot# of corrective actions implementation in process)

Immediately

D7.)預防再發生措施:Prevent Recurrence:

(**Note:** Modified the management, operating systems, practices, and procedures to prevent recurrence for the problems as well as lessons learned cases.)

Same as D5

D8.)確認並感謝問題解決成員:Check and Congratulate the Team:

(Note: Recognize the collective efforts of the team.)

Thanks to you all!!!

Signature	Arthur Wu		
Team Leader:			
	Name – Title		
Signature by Approver:	Mark Meng		
	Name-Title		