

CS215 DISCRETE MATH

Dr. QI WANG

Department of Computer Science and Engineering

Office: Room413, CoE South Tower

Email: wangqi@sustech.edu.cn

Injective (One-to-One) Function

• A function f is called *one-to-one* or *injective*, if and only if f(x) = f(y) implies x = y for all x, y in the domain of f. In this case, f is called an *injection*.

Alternatively: A function is *one-to-one* if and only if $f(x) \neq f(y)$ whenever $x \neq y$. (contrapositive!)

Not injective

Injective function

Surjective (Onto) Function

■ A function f is called *onto* or *surjective*, if and only if for every $b \in B$ there is an element $a \in A$ such that f(a) = b. In this case, f is called a *surjection*.

Alternatively: A function is *onto* if and only if all codomain elements are covered (f(A) = B).

Bijective Function (One-to-One Correspondence)

■ A function *f* is called *bijective*, if and only if it is both one-to-one and onto.

Composition of Functions

■ Suppose that f is a bijection from A to B. Then $f \circ f^{-1} = I_B$ and $f^{-1} \circ f = I_A$, Since

$$(f^{-1} \circ f)(a) = f^{-1}(f(a)) = f^{-1}(b) = a$$

 $(f \circ f^{-1})(b) = f(f^{-1}(b)) = f(a) = b,$

where I_A , I_B denote the *identity functions* on the sets A and B, respectively.

- The *floor function* assigns a real number x the largest integer that is $\leq x$, denoted by $\lfloor x \rfloor$.
- The *ceiling function* assigns a real number x the smallest integer that is $\ge x$, denoted by $\lceil x \rceil$.

- The *floor function* assigns a real number x the largest integer that is $\leq x$, denoted by $\lfloor x \rfloor$.
- The *ceiling function* assigns a real number x the smallest integer that is $\ge x$, denoted by $\lceil x \rceil$.

TABLE 1 Useful Properties of the Floor and Ceiling Functions.

(n is an integer, x is a real number)

- (1a) $\lfloor x \rfloor = n$ if and only if $n \le x < n + 1$
- (1b) $\lceil x \rceil = n$ if and only if $n 1 < x \le n$
- (1c) $\lfloor x \rfloor = n$ if and only if $x 1 < n \le x$
- (1d) $\lceil x \rceil = n$ if and only if $x \le n < x + 1$

(2)
$$x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$$

- $(3a) \quad \lfloor -x \rfloor = -\lceil x \rceil$
- (3b) $\lceil -x \rceil = -\lfloor x \rfloor$

$$(4a) \quad \lfloor x + n \rfloor = \lfloor x \rfloor + n$$

(4b)
$$\lceil x + n \rceil = \lceil x \rceil + n$$

Ex. 1: Prove or disprove that if x is a real number, then $\lfloor 2x \rfloor = \lfloor x \rfloor + \lfloor x + \frac{1}{2} \rfloor$.

Ex. 2: Prove or disprove that $\lceil x + y \rceil = \lceil x \rceil + \lceil y \rceil$ for all real numbers x and y.

Ex. 1: Prove or disprove that if x is a real number, then $\lfloor 2x \rfloor = \lfloor x \rfloor + \lfloor x + \frac{1}{2} \rfloor$.

Ex. 2: Prove or disprove that $\lceil x + y \rceil = \lceil x \rceil + \lceil y \rceil$ for all real numbers x and y.

■ The factorial function $f: \mathbb{N} \to \mathbb{Z}^+$ is the product of the first n positive integers when n is a nonnegative integer, denoted by f(n) = n!.

■ A sequence is a function from a subset of the set of integers (typically the set $\{0, 1, 2, ...\}$ or $\{1, 2, 3, ...\}$ to a set S. We use the notation a_n to denote the image of the integer n. ($\{a_n\}$ represents the ordered list $a_1, a_2, a_3, ...$)

• A sequence is a function from a subset of the set of integers (typically the set $\{0, 1, 2, ...\}$ or $\{1, 2, 3, ...\}$ to a set S. We use the notation a_n to denote the image of the integer n. ($\{a_n\}$ represents the ordered list $a_1, a_2, a_3, ...$)

1.1 Basic Concepts and Notation

In general, a sequence is an ordered list of elements from a set S. Formally, a finite sequence with elements over S is a function from the index set $\{0, 1, ..., N-1\}$ to S for some integer $N \geq 0$, and N is called the length of the sequence. An infinite sequence with elements over S is a function from the integer group \mathbb{Z} to S, and a semi-infinite sequence with elements over S is a function from the semi-group $\{0, 1, ...\}$ to S. If the set S is a finite field \mathbb{F}_q with q elements, we say that the sequence is a q-ary sequence over \mathbb{F}_q . In particular, if $S = \mathrm{GF}(2)$, the sequence is called a binary sequence.

For a sequence $\mathbf{s} = (s_i)_{i \geq 0}$, if there exist integers r > 0 and $u \geq 0$ such that

$$s_{i+r} = s_i \quad \text{for all } i \ge u,$$
 (1.1)

the sequence is said to be *ultimately periodic* with parameters (r, u), and r is called a period of the sequence s. The smallest number r satisfying (1.1) is called the *least period*

Examples:

- $\Rightarrow a_n = n^2$, where n = 1, 2, 3, ... $\Rightarrow a_n = (-1)^n$, where n = 0, 1, 2, ...
- $\diamond a_n = 2^n$, where $n = 0, 1, 2, \dots$

Examples:

 $\Rightarrow a_n = n^2$, where n = 1, 2, 3, ... $\Rightarrow a_n = (-1)^n$, where n = 0, 1, 2, ... $\Rightarrow a_n = 2^n$, where n = 0, 1, 2, ...

• An arithmetic progression is a sequence of the form $a, a+d, a+2d, a+3d, \ldots, a+nd, \ldots$, where the initial term a and common difference d are real numbers.

Examples:

 $\Rightarrow a_n = n^2$, where n = 1, 2, 3, ... $\Rightarrow a_n = (-1)^n$, where n = 0, 1, 2, ... $\Rightarrow a_n = 2^n$, where n = 0, 1, 2, ...

An arithmetic progression is a sequence of the form $a, a+d, a+2d, a+3d, \ldots, a+nd, \ldots$, where the initial term a and common difference d are real numbers.

Example:

$$\diamond a_n = -1 + 4n$$
, where $n = 0, 1, 2, 3, ...$

A geometric progression is a sequence of the form $a, ar, ar^2, \ldots, ar^n, \ldots$, where the *initial term a* and the *common ratio r* are real numbers.

A geometric progression is a sequence of the form $a, ar, ar^2, \ldots, ar^n, \ldots$, where the *initial term a* and the *common ratio r* are real numbers.

Example:

$$\diamond a_n = (1/2)^n$$
, where $n = 0, 1, 2, 3, ...$

A geometric progression is a sequence of the form $a, ar, ar^2, \ldots, ar^n, \ldots$, where the *initial term a* and the *common ratio r* are real numbers.

Example:

$$\diamond a_n = (1/2)^n$$
, where $n = 0, 1, 2, 3, ...$

Question:

Given a sequence, how to find a rule for generating the sequence?

A geometric progression is a sequence of the form $a, ar, ar^2, \ldots, ar^n, \ldots$, where the *initial term a* and the *common ratio r* are real numbers.

Example:

$$\diamond a_n = (1/2)^n$$
, where $n = 0, 1, 2, 3, ...$

Question:

Given a sequence, how to find a rule for generating the sequence?

```
8, 42, 226, 1232, 6646, 35362, 185868, . . .
```


Recursively Defined Sequences

■ The *n*-th element of the sequence $\{a_n\}$ is defined recursively in terms of the previous elements of the sequence and the initial elements of the sequence.

Recursively Defined Sequences

■ The n-th element of the sequence $\{a_n\}$ is defined recursively in terms of the previous elements of the sequence and the initial elements of the sequence.

Examples:

```
\Rightarrow a_n = a_{n-1} + 2 assuming a_0 = 1, for n \ge 1
\Rightarrow f_n = f_{n-1} + f_{n-2} for n = 2, 3, 4, ... (Fibonacci sequence)
```


Summations

■ The summation of the terms of a sequence is

$$\sum_{j=m}^n a_j = a_m + a_{m+1} + \cdots + a_n$$

The variable j is referred to as the index of summation and the choice of the letter j is arbitrary.

- ⋄ m is the lower limit
- ⋄ n is the upper limit of the summation

Summations

■ The summation of the terms of a sequence is

$$\sum_{j=m}^n a_j = a_m + a_{m+1} + \cdots + a_n$$

The variable j is referred to as the index of summation and the choice of the letter j is arbitrary.

- ⋄ *m* is the *lower limit*
- ⋄ n is the upper limit of the summation

$$\sum_{j=1}^{n} (ax_j + by_j) = a \sum_{j=1}^{n} x_j + b \sum_{j=1}^{n} y_j$$
$$\sum_{i=1}^{m} \sum_{j=1}^{n} a_i b_j = \sum_{i=1}^{m} a_i \sum_{j=1}^{n} b_j$$

Summations

■ The sum of the first n terms of the arithmetic progression $a, a + d, a + 2d, \ldots, a + nd$ is

$$S = \sum_{j=0}^{n} (a+jd) = (n+1)a + d\sum_{j=0}^{n} j = (n+1)a + d\frac{n(n+1)}{2}$$

■ The sum of the first n terms of the geometric progression $a, ar, ar^2, \ldots, ar^k$ is

$$S = \sum_{j=0}^{n} (ar^{j}) = a \sum_{j=0}^{n} r^{j} = a \frac{r^{n+1} - 1}{r - 1}$$

Examples

Examples:

Examples

Examples:

$$\diamond S = \sum_{i=1}^{5} (2+3i)$$
 55

$$\diamond S = \sum_{i=3}^{5} (2+3i)$$
 42

$$\diamond S = \sum_{i=1}^{4} \sum_{j=1}^{2} (2i - j)$$
 28

$$\diamond S = \sum_{i=0}^{3} 2(5)^{i}$$
 312

$$\diamond S = \sum_{i=1}^{4} \sum_{j=1}^{3} ij$$
 60

Infinite Series

• Infinite geometric series can be computed in the closed form for |x| < 1.

Infinite Series

• Infinite geometric series can be computed in the closed form for |x| < 1.

$$\sum_{k=0}^{\infty} x^k = \lim_{n \to \infty} \sum_{k=0}^{n} x^k = \lim_{n \to \infty} \frac{x^{n+1} - 1}{x - 1} = \frac{1}{1 - x}$$

Infinite Series

• Infinite geometric series can be computed in the closed form for |x| < 1.

$$\sum_{k=0}^{\infty} x^k = \lim_{n \to \infty} \sum_{k=0}^{n} x^k = \lim_{n \to \infty} \frac{x^{n+1} - 1}{x - 1} = \frac{1}{1 - x}$$

$$\sum_{k=0}^{\infty} kx^{k-1} = \frac{1}{(1-x)^2}$$

Some Useful Summation Formulas

TABLE 2 Some Useful Summation Formulae.	
Sum	Closed Form
$\sum_{k=0}^{n} ar^k \ (r \neq 0)$	$\frac{ar^{n+1}-a}{r-1}, r \neq 1$
$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$
$\sum_{k=1}^{n} k^2$	$\frac{n(n+1)(2n+1)}{6}$
$\sum_{k=1}^{n} k^3$	$\frac{n^2(n+1)^2}{4}$
$\sum_{k=0}^{\infty} x^k, x < 1$	$\frac{1}{1-x}$
$\sum_{k=1}^{\infty} kx^{k-1}, x < 1$	$\frac{1}{(1-x)^2}$

Cardinality of Sets

■ Recall: the cardinality of a finite set is defined by the number of the elements in the set.

Cardinality of Sets

Recall: the cardinality of a finite set is defined by the number of the elements in the set.

■ The sets A and B have the same cardinality if there is a one-to-one correspondence between elements in A and B.

Cardinality of Sets

- Recall: the cardinality of a finite set is defined by the number of the elements in the set.
- The sets A and B have the same cardinality if there is a one-to-one correspondence between elements in A and B.
- If there is a one-to-one function from A to B, the cardinality of A is less than or the same as the cardinality of B, denoted by $|A| \le |B|$. Moreover, when $|A| \le |B|$ and A and B have different cardinalities, we say that the cardinality of A is less than the cardinality of B, denoted by |A| < |B|.

Countable Sets

A set that is either finite or has the same cardinality as the set of positive integers Z⁺ is called *countable*. A set that is **not countable** is called *uncountable*.

Countable Sets

A set that is either finite or has the same cardinality as the set of positive integers Z⁺ is called *countable*. A set that is **not countable** is called *uncountable*.

Why are these called **countable**?

Countable Sets

A set that is either finite or has the same cardinality as the set of positive integers Z⁺ is called *countable*. A set that is **not countable** is called *uncountable*.

Why are these called **countable**?

♦ The elements of the set can be enumerated and listed.

Hilbert's Grand Hotel

■ The Grand Hotel has **countably infinite number of rooms**, each occupied by a guest. We can always accommodate a new guest at this hotel. How is this possible?

Hilbert's Grand Hotel

■ The Grand Hotel has **countably infinite number of rooms**, each occupied by a guest. We can always accommodate a new guest at this hotel. How is this possible?

FIGURE 2 A New Guest Arrives at Hilbert's Grand Hotel.

Example 1

 $A = \{0, 2, 4, 6, \ldots\}$ – set of even numbers. Is it countable?

Example 1

 $A = \{0, 2, 4, 6, \ldots\}$ – set of even numbers. Is it countable?

Using the definition: Is there a bijection $f: \mathbf{Z}^+ \to A$?

Example 1

```
A = \{0, 2, 4, 6, \ldots\} – set of even numbers. Is it countable?
```

Using the definition: Is there a **bijection** $f: \mathbf{Z}^+ \to A$?

Define a function $f: x \mapsto 2x - 2$. This is a bijection!

one-to-one Why?

onto Why?

Example 1

 $A = \{0, 2, 4, 6, \ldots\}$ – set of even numbers. Is it countable?

Using the definition: Is there a **bijection** $f: \mathbf{Z}^+ \to A$?

Define a function $f: x \mapsto 2x - 2$. This is a bijection!

one-to-one Why?

if
$$2x - 2 = 2y - 2$$
, then $x = y$

onto Why?

 $\forall x \in A$, (x+2)/2 is the preimage in \mathbf{Z}^+

Example 2 (Theorem)

The set of integers **Z** is countable.

Example 2 (Theorem)

The set of integers **Z** is countable.

Solution:

We can list a sequence:

$$0, 1, -1, 2, -2, 3, -3, \dots$$

or define a bijection from \mathbf{Z}^+ to \mathbf{Z} :

- when *n* is even: f(n) = n/2
- when *n* is odd: f(n) = -(n-1)/2

Example 3 (Theorem)

The set of (positive) rational numbers is countable.

Example 3 (Theorem)

The set of (positive) rational numbers is countable.

Solution:

Constructing the list: first list p/q with p+q=2, next list p/q with p+q=3, and so on.

$$1, 1/2, 2, 3, 1/3, 1/4, 2/3, \dots$$

Example 4 (Theorem)

The set of finite strings S over a finite alphabet A is countably infinite. (Assume an alphabetical ordering of symbols in A)

Example 4 (Theorem)

The set of finite strings S over a finite alphabet A is countably infinite. (Assume an alphabetical ordering of symbols in A)

Solution:

We show that the strings can be listed in a sequence. First list

- (i) all the strings of length 0 in alphabetical order.
- (ii) then all the strings of length 1 in lexicographic order.
- (iii) and so on.

This implies a bijection from \mathbf{Z}^+ to S.

Example 5

The set of all Java programs is countable.

Example 5

The set of all Java programs is countable.

Solution:

Let S be the set of strings constructed from the characters which may appear in a Java program. Use the ordering from the previous example. Take each string in turn

- feed the string into a Java compiler
- if the complier says YES, this is a syntactically correct Java program, we add this program to the list
 - we move on to the next string

In this way, we construct a bijection from \mathbf{Z}^+ to the set of Java programs.

Theorem

The set of real numbers \mathbf{R} is uncountable.

Theorem

The set of real numbers \mathbf{R} is uncountable.

Proof by contradiction:

Assume that **R** is countable. Then every subset of **R** is countable (why?), in particular, the interval from 0 to 1 is countable. This implies that the elements of this set can be listed as r_1, r_2, r_3, \ldots , where

```
-r_1 = 0.d_{11}d_{12}d_{13}d_{14}\cdots
-r_2 = 0.d_{21}d_{22}d_{23}d_{24}\cdots
-r_3 = 0.d_{31}d_{32}d_{33}d_{34}\cdots
all d_{ii} \in \{0, 1, 2, \dots, 9\}.
```


Theorem

The set of real numbers \mathbf{R} is uncountable.

Proof by contradiction:

We want to show that not all real numbers in the interval between 0 and 1 are in this list.

Form a new number called $r = 0.d_1d_2d_3d_4\cdots$, where $d_i = 2$ if $d_{ii} \neq 2$, and $d_i = 3$ if $d_{ii} = 2$.

Theorem

The set of real numbers \mathbf{R} is uncountable.

Proof by contradiction:

We want to show that not all real numbers in the interval between 0 and 1 are in this list.

Form a new number called $r = 0.d_1d_2d_3d_4\cdots$, where $d_i = 2$ if $d_{ii} \neq 2$, and $d_i = 3$ if $d_{ii} = 2$.

Example: sup	ose $r1 = 0.75243$	d1 = 2
	r2 = 0.524310	d2 = 3
	r3 = 0.131257	d3 = 2
	r4 = 0.9363633	d4 = 2
	rt = 0.23222222	dt = 3

Theorem

The set of real numbers \mathbf{R} is uncountable.

Proof by contradiction:

We claim that r is different from each number in the list.

Each expansion is unique, if we exclude an infinite string of 9's. r and r_i differ in the i-th decimal place for all i.

Theorem

The set of real numbers \mathbf{R} is uncountable.

Proof by contradiction:

We claim that r is different from each number in the list.

Each expansion is unique, if we exclude an infinite string of 9's. r and r_i differ in the i-th decimal place for all i.

This is called *Cantor diagonalization argument*.

Theorem

The set $\mathcal{P}(\mathbb{N})$ is uncountable.

Theorem

The set $\mathcal{P}(\mathbb{N})$ is uncountable.

Proof by contradiction:

Assume that $\mathcal{P}(\mathbb{N})$ is countable. This implies that the elements of this set can be listed as S_0, S_1, S_2, \ldots , where $S_i \subseteq \mathbb{N}$, and each S_i can be represented uniquely by the bit string $b_{i0}b_{i1}b_{i2}\ldots$, where $b_{ij}=1$ if $j\in S_i$ and $b_{ij}=0$ if $j\not\in S_i$

```
-S_0 = b_{00}b_{01}b_{02}b_{03}\cdots
-S_1 = b_{10}b_{11}b_{12}b_{13}\cdots
-S_2 = b_{20}b_{21}b_{22}b_{23}\cdots
\vdots
all b_{ij} \in \{0,1\}.
```


Theorem

The set $\mathcal{P}(\mathbb{N})$ is uncountable.

Proof by contradiction:

Form a new set called $R = b_0 b_1 b_2 b_3 \cdots$, where $b_i = 0$ if $b_{ii} = 1$, and $b_i = 1$ if $b_{ii} = 0$.

Theorem

The set $\mathcal{P}(\mathbb{N})$ is uncountable.

Proof by contradiction:

Form a new set called $R = b_0 b_1 b_2 b_3 \cdots$, where $b_i = 0$ if $b_{ii} = 1$, and $b_i = 1$ if $b_{ii} = 0$.

We claim that R is different from each set in the list.

Each bit string is unique, and R and S_i differ in the i-th bit for all i.

Theorem

If A and B are sets with $|A| \le |B|$ and $|B| \le |A|$, then |A| = |B|. In other words, if there are one-to-one functions f from A to B and g from B to A, then there is a one-to-one correspondence between A and B.

Theorem

If A and B are sets with $|A| \le |B|$ and $|B| \le |A|$, then |A| = |B|. In other words, if there are one-to-one functions f from A to B and g from B to A, then there is a one-to-one correspondence between A and B.

Example

Show that |(0,1)| = |(0,1]|.

$$f(x) = x; g(x) = x/2$$

Theorem

If A and B are sets with $|A| \le |B|$ and $|B| \le |A|$, then |A| = |B|. In other words, if there are one-to-one functions f from A to B and g from B to A, then there is a one-to-one correspondence between A and B.

Example

Show that |(0,1)| = |(0,1]|.

$$f(x) = x; g(x) = x/2$$

Example

Show that $|(0,1)| = |\mathbb{R}|$.

Theorem

If A and B are sets with $|A| \le |B|$ and $|B| \le |A|$, then |A| = |B|. In other words, if there are one-to-one functions f from A to B and g from B to A, then there is a one-to-one correspondence between A and B.

Example

Show that |(0,1)| = |(0,1]|.

$$f(x) = x; g(x) = x/2$$

Example

Show that $|(0,1)| = |\mathbb{R}|$.

$$f(x) = x$$
; $g(x) = (2 \arctan(x)/\pi + 1)/2$

Definition

We say that a function is *computable* if there is a computer program in some programming language that finds the values of this function. If a function is not computable, we say it is *uncomputable*.

Definition

We say that a function is *computable* if there is a computer program in some programming language that finds the values of this function. If a function is not computable, we say it is *uncomputable*.

Theorem*

There are functions that are not computable.

Definition

We say that a function is *computable* if there is a computer program in some programming language that finds the values of this function. If a function is not computable, we say it is *uncomputable*.

Theorem*

There are functions that are not computable.

Proof.

- (1) prove that the set of computer programs is *countably infinite* (Example 5)
- (2) prove that the number of functions is *uncountable*

Definition

We say that a function is *computable* if there is a computer program in some programming language that finds the values of this function. If a function is not computable, we say it is *uncomputable*.

Theorem*

There are functions that are not computable.

Proof.

- (1) prove that the set of computer programs is *countably infinite* (Example 5)
- (2) prove that the number of functions is *uncountable*The set of functions from \mathbf{Z}^+ to the set $\{0, 1, 2, ..., 9\}$ is *uncountable*.

 Proof?

■ Theorem*

If S is a set, then
$$|S| < |\mathcal{P}(S)|$$
.

■ Theorem*

If S is a set, then
$$|S| < |\mathcal{P}(S)|$$
.

Proof.

$$(1) |S| \leq |\mathcal{P}(S)|$$

■ Theorem*

If S is a set, then
$$|S| < |\mathcal{P}(S)|$$
.

Proof.

$$(1) |S| \leq |\mathcal{P}(S)|$$

$$(2) |S| \neq |\mathcal{P}(S)|$$

■ Theorem*

If S is a set, then $|S| < |\mathcal{P}(S)|$.

Proof.

(1)
$$|S| \leq |P(S)|$$

?

$$(2) |S| \neq |\mathcal{P}(S)|$$

We only need consider the case that $S \neq \emptyset$

?

■ Theorem*

If S is a set, then $|S| < |\mathcal{P}(S)|$.

Proof.

$$(1) |S| \leq |\mathcal{P}(S)|$$

$$(2) |S| \neq |\mathcal{P}(S)|$$

We only need consider the case that $S \neq \emptyset$

Proof by contradiction.

There is a bijective function f from S to $\mathcal{P}(S)$.

Theorem*

If S is a set, then $|S| < |\mathcal{P}(S)|$.

Proof.

- $(1) |S| \leq |\mathcal{P}(S)|$
- (2) $|S| \neq |\mathcal{P}(S)|$

We only need consider the case that $S \neq \emptyset$

Proof by contradiction.

There is a bijective function f from S to $\mathcal{P}(S)$.

Consider the set $T = \{s \in S | s \notin f(s)\}$. Note that $T \neq \emptyset$.

Theorem*

If S is a set, then $|S| < |\mathcal{P}(S)|$.

Proof.

- $(1) |S| \leq |\mathcal{P}(S)|$
- (2) $|S| \neq |\mathcal{P}(S)|$

We only need consider the case that $S \neq \emptyset$

Proof by contradiction.

There is a bijective function f from S to $\mathcal{P}(S)$.

Consider the set $T = \{s \in S | s \notin f(s)\}$. Note that $T \neq \emptyset$.

Now f is bijective, and T is a subset of S, so there is an element $s_0 \in S$ s.t. $f(s_0) = T$.

Theorem*

If S is a set, then $|S| < |\mathcal{P}(S)|$.

Proof.

$$(1) |S| \leq |\mathcal{P}(S)|$$

(2)
$$|S| \neq |\mathcal{P}(S)|$$

We only need consider the case that $S \neq \emptyset$

Proof by contradiction.

There is a bijective function f from S to $\mathcal{P}(S)$.

Consider the set $T = \{s \in S | s \notin f(s)\}$. Note that $T \neq \emptyset$.

Now f is bijective, and T is a subset of S, so there is an element $s_0 \in S$ s.t. $f(s_0) = T$.

$$Q$$
: Is $s_0 \in T$?

Next Lecture

complexity ...

