Métodos Matemáticos de la Física II

Espacios lineales

Un espacio vectorial (EV) o lineal es un conjunto de vectores $V=\{\vec{v}\}$ asociado a un cuerpo $\mathbb C$ que es **cerrado** bajo las operaciones de suma y el producto escalar que cumplan con las propiedades:

- $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$
- $\vec{a} + \vec{b} = \vec{b} + \vec{a}$
- $\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}$
- $(\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a}$
- $\lambda(\mu \vec{a}) = \mu(\lambda \vec{a})$
- $\exists ! \ \vec{0} \in V : \vec{a} + \vec{0} = \vec{a} \ \forall \vec{a} \in V$
- $\bullet \quad \exists ! \ 1 \in \mathbb{C} : 1 \cdot \vec{a} = \vec{a} \ \ \forall \vec{a} \in V$
- $\forall \vec{a} \in V, \ \exists ! (-\vec{a}) : \vec{a} + (-\vec{a}) = \vec{0}$

Independencia Lineal

Un conjunto de n vectores no nulos $\{\vec{a}\}_{i=1}^n$ es **linealmente independiente** (LI) si cumple que si $\sum \lambda_i \vec{a}_i = 0 \Rightarrow \lambda_i = 0 \ \forall i$. Si un conjunto no es LI, es un conjunto **linealmente dependiente** (LD).

Dimensión

La dimensión es la cardinalidad del conjunto LI más grande que se puede formar en el EV. Se puede definir para dimensión finita como:

$$dim(V) = \max_{\mathbb{N}_0} \{n \in \mathbb{N}_0 / \exists \{ec{x}_i\}_{i=1}^n \subset V \ \mathrm{LI} \}$$

Base de un espacio vectorial

Si $\dim(V)=n<\infty$ cualquier conjunto de n vectores $\{\vec{e}_i\}\subset V$ LI es **base** de V, y los \vec{e}_i son los vectores base.

Teorema: Sea $\dim(V)=n<\infty$, $\{\vec{e}_i\}$ base de $V\Rightarrow \forall \vec{x}\neq \vec{0}\in V,\ \exists !\{x^i\}\subset\mathbb{C}: \vec{x}=x^i\vec{e}_i.$

Componentes de un vector

Las componentes de un vector \vec{x} en una base son los coeficientes x^i tal que:

$$x = x^i \vec{e}_i$$

Subespacios lineales

W es subespacio de V si $\forall \vec{x} \in W \Rightarrow \vec{x} \in V$, y W es un EV.

Suma directa

Si se tiene una colección finita de subespacios V_i de V disjuntos y $\forall \vec{x} \in V \; \exists ! \vec{x}_i / \vec{x} = \vec{x}_i$, entonces V es suma directa de los subespacios V_i :

$$V=\oplus_{i=1}^r V_i \ \dim(V)=\sum\dim(V_i)$$

Donde la suma direct se define como $U\oplus W=\{\vec x+\vec y/\vec x\in U\land \vec y\in W\}$ y $U\cap W=\{\vec 0\}.$

Operadores lineales

Los **operadores lineales** son aplicaciones que llevan a cada elemento de un EV V a otro EV W, y es lineal. Es decir:

$$egin{aligned} V
i ec{x} & \stackrel{\mathcal{A}}{ o} \mathcal{A}(ec{x}) \in W \ \mathcal{A}(\lambda ec{x} + \mu ec{y}) = \lambda \mathcal{A}(ec{x}) + \mu \mathcal{A}(ec{y}) \end{aligned}$$

El kernel de un operador lineal es:

$$ker(\mathcal{A}) = \{\vec{x} \in V / \mathcal{A}(\vec{x}) = 0\}$$

Si se tiene un operador lineal $\mathcal{A}:V\to W$ la **imagen** de un \vec{x} bajo \mathcal{A} es $\vec{y}=\mathcal{A}\vec{x}$ y \vec{x} es la **preimagen** de \vec{y} sobre \mathcal{A} . Para un operador lineal la imagen es única para cada \vec{x} , pero la preimagen puede no ser única para cada \vec{y} .

Un subespacio W de V es **invariante** bajo el operador $\mathcal{A}:V\to V$ si $\forall \vec{x}\in W\Rightarrow \mathcal{A}\vec{x}\in W$. Así se puede definir una restricción del operador sobre el subespacio si se piensa $\mathcal{A}/W:W\to W$ (esto solo se puede hacer si W es invariante bajo \mathcal{A}). $\mathcal{A}/W:=\mathcal{AP}_W$, donde \mathcal{P}_W es la proyección sobre W.

Componentes de un operador

Si \vec{e}_i base de V y \vec{f}_j base de W entonces existen únicos coeficientes A_i^j , que son las componentes del operador, tal que:

$$\mathcal{A}ec{e}_i=A_i^jec{f}_j$$

Nota: las operaciones elementales entre operadores se comportan como las operaciones entre matrices.

Inversa

Sea $\mathcal{A}:V\to W$ si existe $\mathcal{B}:W\to V$ tal que $\mathcal{BA}=\mathcal{I}$, entonces \mathcal{B} es la inversa de \mathcal{A} .

Propiedad: la inversa existe $\Leftrightarrow \dim(W) \ge \dim(V)$.

Propiedad: un operador A es invertible \Leftrightarrow dim(ker(A))=0.

Conmutatividad

 \mathcal{A} y \mathcal{B} conmutan si $\mathcal{AB} = \mathcal{BA}$, y se define el conmutador $[\mathcal{A},\mathcal{B}] = \mathcal{AB} - \mathcal{BA}$

Funciones de operadores

Se puede definir:

$$f(\mathcal{A}) = \sum_{n=0}^{\infty} a_n \mathcal{A}^n$$

$$f(\mathcal{A})ec{v} = \sum_{n=0}^{\infty} a_n \mathcal{A}^n ec{v}$$

Matrices

El producto de matrices se define como $\left[AB\right]_{i}^{j}=A_{i}^{k}B_{k}^{j}.$ i mapea columnas y j filas.

Tipos de matrices

Si la matriz A tiene componentes A_i^j :

- ullet Conjugada $A^*/[A^*]_i^j=(A_i^j)^*.$
- Traspuesta $A^t/[A^t]_i^j=A^i_j$.

- ullet Adjunta $A^\dagger/[A^\dagger]_i^j=(A_i^i)^*$
- Inversa $A^{-1}/[A^{-1}]_i^j=rac{cofA_j^i}{det(A)}$. Donde $cofA_i^j=(-1)^{i+j}\cdot det(A\sin$ su fila ${f j}$ y columna ${f i}$).

Matrices notables

- $\bullet \ \ \operatorname{Real} A^* = A.$
- Simétrica $A^t = A$.
- Antisimétrica $A^t = -A$.
- Autoadjunta o Hermitiana $A^\dagger=A$.
- Ortogonal $A^{-1} = A^t$.
- Unitaria $A^{-1} = A^{\dagger}$.
- Diagonal $A_i^j = 0 \ \forall i \neq j$.
- Idempotente $A^2 = A$.
- ullet Nilpotente $\exists k \in \mathbb{N}/A^k = 0$

Nota: las matrices para realizar productos se pueden trabajar por bloques tal que tenga sentido multiplicarlos (mismo numero de filas y columnas). Así para el proceso de diagonalización es útil.

Funciones de matrices

$$f(A) = \sum_{n=0}^{\infty} a_n A^n$$

Transformaciones de coordenadas

Para dos bases de V, \vec{e}_i y \vec{e}'_j , como la base primada es un vector de V se puede escribir como combinación de la base no primada:

$$\left[ec{e}_{j}^{\prime }=\gamma _{j}^{i}ec{e}_{i}
ight]$$

Los coeficientes γ^i_j se pueden ver como elementos de una matriz cuadrada γ . Si se acomodan los vectores de la base como columnas de una matriz E y E' para cada base:

$$E' = E\gamma$$

Covarianza y contravarianza

Todo elemento que ante un cambio de base cambie como los vectores base se denomina **covariante**, y se colocan sus índices como subíndices. Si lo hace de forma inversa se llama **contravariante** y sus índices se colocan como superíndices.

Transformación de un componente de un vector

$$oxed{x'^j = [\gamma^{-1}]_i^j x^i}$$

Componentes de un operador

Si un operador va de V con matriz de cambio de base γ ($\vec{e}'_j=\gamma^i_j\vec{e}_i$), a W con matriz de cambio de base δ ($\vec{f}'_l=\delta^i_j\vec{f}_k$).

$$A_j^{\prime k} = [\delta^{-1}]_l^k A_i^l \gamma_j^i$$

Transformaciones de semejanza

Una transformación de semejanza es toda transformación lineal tal que $A'=S^{-1}AS$. Cumplen que:

- det(A') = det(A)
- Tr(A') = Tr(A)
- $f(A') = S^{-1}f(A)S$
- $A=A^\dagger\Rightarrow A'=A'^\dagger$ si S es unitaria.
- $A^{-1}=A^{\dagger}\Rightarrow A'^{-1}=A'^{\dagger}$ si S es unitaria.
- $A^{-1} = A^t \Rightarrow A'^{-1} = A'^t$ si S es ortogonal.
- $AB = BA \Rightarrow A'B' = B'A'$.
- $B = A^{-1} \Rightarrow B' = (A')^{-1}$

Formas y espacio dual

Forma

Una n-forma es una aplicación tal que $V \oplus V \oplus \ldots \oplus V \ni (\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_n) \stackrel{\phi}{\to} \phi(\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_n) \in \mathbb{C}$. Es una forma lineal si $\phi(\lambda \vec{x} + \mu \vec{y}) = \lambda \phi(\vec{x}) + \mu \phi(\vec{y})$.

Espacio dual

Se define el espacio dual V^* de V como el espacio de todas las formas lineales definidas sobre V.

$$V^* = \{\phi: V \to \mathbb{C}/\phi \text{ lineal}\}$$

Componentes de una forma

Se define $\phi_i := \stackrel{\longleftarrow}{\phi}(\vec{e}_i)$, entonces $\stackrel{\longleftarrow}{\phi}(\vec{x}) = \phi_i x^i$. Se define también, la base dual de una base \vec{e}_i de V tal que:

$$\stackrel{\longleftarrow}{e^i}(\vec{e}_j) = \delta^i_j \ \Rightarrow \stackrel{\longleftarrow}{\phi} = \phi_i \stackrel{\longleftarrow}{e^i}$$

Transformaciones de coordenadas en V^st

Las componentes de las formas ϕ_i son covariantes, es decir:

$$\phi_j' = \phi_i \gamma_j^i$$

Y los vectores base son contravariantes:

$$\stackrel{\longleftarrow}{e'^j} = [\gamma^{-1}]_i^j \stackrel{\longleftarrow}{e^i}$$

Producto interno, métrica y norma

Producto interno

El producto interno es una 2-forma tal que $\Phi:V\oplus V o \mathbb{C}$, y satisface:

- $\Phi(\vec{a}, \vec{b}) = \Phi(\vec{b}, \vec{a}).$
- $\Phi(\vec{a},\lambda\vec{b})=\lambda\Phi(\vec{a},\vec{b});\ \Phi(\lambda\vec{a},\vec{b})=\lambda^*\Phi(\vec{a},\vec{b}).$
- $\Phi(\vec{a}, \vec{a}) > 0 \ \forall \vec{a} \lor \Phi(\vec{a}, \vec{a}) = 0 \Leftrightarrow \vec{a} = 0$

Métrica

Se define la métrica como $g_{ij} = \Phi(\vec{e}_i, \vec{e}_j)$. Y la matriz métrica $g = [g_{ij}]$.

Se puede aplicar:

$$ec{x}\cdotec{y}=\mathtt{x}^{\,\dagger}g\mathtt{y}$$

La métrica es hermitiana y definida positiva.

Norma

Se puede definir la norma a partir del producto interno:

$$||\vec{x}|| = \sqrt{\vec{x} \cdot \vec{x}} = \sqrt{x^{*i} g_{ij} x^j}$$

Se puede pensar el producto interno de la siguiente forma:

$$\overset{\leftarrow}{\phi}_{ec{x}} := \Phi(ec{x}, \cdot)$$

Se puede deducir que:

$$\phi_{ec{x}j} = x^{*i} g_{ij}$$

Por lo que la métrica lleva las componentes de un vector a las componentes de la correspondiente forma $V\ni\vec{x}\stackrel{g}{\to}\phi_{\vec{x}}^{\leftarrow}\in V^*.$

Autovalores y autovectores

Autovectores a derecha

Si se tiene un operador lineal con una matriz asociada $A:V o V\Rightarrow\ \exists ec{v}\in V/Aec{v}=\lambdaec{v},\ ec{v}
eq 0.$

$$egin{aligned} A ec{v} &= \lambda ec{v} \ \Rightarrow (A - \lambda I) ec{v} &= 0 \ \Rightarrow \mathcal{P}(\lambda) = det(A - \lambda I) = \sum_{j=0}^n lpha_j \lambda^{n-j} \end{aligned}$$

Donde los λ son los invariantes algebraicos.

Teorema: si se tienen n autovalores distintos con $\dim(V)$ =n, entonces los autovectores asociados forman base de V.

A partir de los autovalores de una matriz se puede definir una noción de norma para las matrices, llamada **norma espectral**:

$$||A||_2 = \sqrt{\lambda_{max}(A^\dagger A)}$$

Si la norma es menor al radio de convergencia de una serie, entonces la serie converge. Puede ser que a pesar, de que la norma sea mayor la serie converja, ya que la matriz puede ser nilpotente y se trunca la serie.

Autovalores a izquierda

Los autovalores a izquierda cumplen que $A^{\dagger} \vec{u} = \mu \vec{u}$, y se puede demostrar que:

$$\mu_i \equiv \lambda_i^*$$

Los autovectores a izquierda cumplen que si los μ_i son distintos (si los λ_i son distintos), forman base de V. Para calcularlos se utiliza que:

Diagonalización de un operador

Si se tiene un operador lineal $A:V\to V$, n=dim(V), con autovalores distintos entonces:

Se cumple que:

$$\mathbf{u}\mathbf{v} = I$$
 $\mathbf{u}A\mathbf{v} = D$

Con D matriz diagonal con los autovalores en orden en la diagonal.

Operadores Hermitianos

Teorema: si se tiene un operador tal que $\mathcal{P}_A(\lambda)=(\lambda-\lambda_1)^{q_1}(\lambda-\lambda_2)^{q_2}\dots(\lambda-\lambda_r)^{q_r}$, donde q_i es la multiplicidad, si A hermitiana $A\vec{v}=\lambda_i\vec{v}$ tiene q_i soluciones LI, por lo que los autovectores generan un subespacio de dimensión q_i . Y A diagonalizable.

Teorema: si A y B hermitianas, $\exists S/S^{-1}AS=D_A$ y $S^{-1}BS=D_B\Leftrightarrow [A,B]=0.$

Operadores normales

A es **normal** si cumple:

$$AA^\dagger=A^\dagger A$$

Si A es normal \Rightarrow A es diagonalizable.

Formas de Jordan

Falta el teorema de descomposición primaria.

Si se tiene una matriz A, se realiza la descomposición primaria (ya viene descompuesta), se calculan $(A-\lambda I)^n$, hasta llegar a una matriz nula. En una tabla se coloca la potencia n, la dim(ker($(A-\lambda I)^n$)) y se calcula n_p :

$$n_{p_i} = 2dim(ker(A-\lambda_iI)^p) - dim(ker(A-\lambda_iI)^{p-1}) - dim(ker(A-\lambda_iI)^{p+1})$$

Este n_p da el numero de filas y columnas de los bloques de Jordan, y se acomodan de cualquier forma. Ver apunte para saber la forma de estos bloques. Es en la diagonal el autovalor y en la diagonal superior todos 1, el tamaño depende de la multiplicidad del autovalor.

La forma de Jordan es independiente de la base en la que se expresa A.

Tensores

Un tensor es una aplicación tal que $T:\Pi_r^s=V^*\times V^*\times\ldots V^*\times V\times V\times\ldots\times V\to\mathbb{C}$ (r veces el dual y s veces V).

Un espacio tensorial es el conjunto de tensores $V^s_r=\{T:\Pi^s_r o\mathbb{C}\}.$

• Suma de tensores:

$$T,S:\Pi_r^s o\mathbb{C}, (T+S)(ec{w}^1,\ldots,ec{w}^r,ec{u}_1,\ldots,ec{u}_s)=T(ec{w}^1,\ldots,ec{w}^r,ec{u}_1,\ldots,ec{u}_s)+S(ec{w}^1,\ldots,ec{w}^r,ec{u}_1,\ldots,ec{u}_s)$$

• Producto por una escalar: $(\lambda T)(\vec{w}^1,\ldots,\vec{w}^r,\vec{u}_1,\ldots,\vec{u}_s) = \lambda \cdot T(\vec{w}^1,\ldots,\vec{w}^r,\vec{u}_1,\ldots,\vec{u}_s)$.

Producto tensorial

 $T \in V^{s_1}_{r_1}, \ S \in V^{s_2}_{r_2}$ entonces $T \otimes S \in V^{s_1+s_2}_{r_1+r_2}$ se define como:

$$(T\otimes S)(ec{w}^1,\ldots,ec{w}^{r_1},ec{ au}^1,\ldots,ec{ au}^{r_2},ec{u}_1,\ldots,ec{u}_{s_1},ec{v}_1,\ldots,ec{v}_{s_2}) = \ = T(ec{w}^1,\ldots,ec{w}^{r_1},ec{u}_1,\ldots,ec{u}_{s_1})\cdot S(ec{ au}^1,\ldots,ec{ au}^{r_2}ec{v}_1,\ldots,ec{v}_{s_2})$$

Base y componente de un tensor

Las componentes de un tensor $S \in V^s_r$ para una base de $V^* \, ec{e}^j$, y una base de $V \, ec{e}_i$ son:

$$S^{i_1...i_r}_{j_1...j_s} = S(ec{e}^{i_1}, \ldots ec{e}^{i_r}, ec{e}_{j_1}, \ldots, ec{e}_{j_s})$$

Y la base de V_r^s es el producto tensorial:

$$\vec{e}_{i_1} \otimes \ldots \otimes \vec{e}_{i_r} \otimes \vec{e}^{j_1} \otimes \ldots \otimes \vec{e}^{j_s}$$

Entonces el tensor S se puede escribir como:

$$S = S_{i_1 \dots i_r}^{i_1 \dots i_r} ec{e}_{i_1} \otimes \dots \otimes ec{e}_{i_r} \otimes ec{e}^{j_1} \otimes \dots \otimes ec{e}^{j_s}$$

Cambio de base de un tensor

Para un tensor $S\in V^s_r$ con componentes $S^{i_1\dots i_r}_{j_1\dots j_s}$. Si la base de V, \vec{e}_i cambia a la base \vec{e}'_j con el operador A $\vec{e}'_j=A^i_j\vec{e}_i$. Por lo tanto, las bases de V^* cambian como $\vec{e}'^j=[A^{-1}]^j_i\vec{e}^i$. El tensor S cambia de base de la siguiente forma:

$$S_{l_1...l_s}^{\prime k_1...k_r} = [A^{-1}]_{i_1}^{k_1} [A^{-1}]_{i_2}^{k_2} \dots [A^{-1}]_{i_r}^{k_r} A_{l_1}^{j_1} A_{l_2}^{j_2} \dots A_{l_s}^{j_s} S_{j_1...j_s}^{i_1...i_r}$$

$$(1)$$

Se dice que S es r veces contravariante y s veces covariante.

A partir de ver como cambia de base un tensor, se puede definir tensor como cualquier objeto con r+s índices que van de 1 a n=dim(V), y que ante un cambio de base transforma como (1). Lo llamaremos tensor de **rango** r+s del **tipo** (r,s).

Contracción de índices

Si se tiene un tensor $S \in V_r^s$ con componentes $S_{j_1\dots j_s}^{i_1\dots i_r}$ el contraído de S con respecto a los índices i_n y j_m como:

$$S_{j_{1}...j_{m-1}\,k\,j_{m+1}...j_{s}}^{i_{1}...i_{n-1}\,k\,i_{n+1}...i_{r}}=S_{j_{1}...j_{s}}^{i_{1}...i_{r}}\delta_{i_{n}}^{j_{m}}$$

Se obtiene un tensor de tipo (r-1, s-1).

Nota: un contraído se un tensor es un tensor, si y solo si se contraen índices de a pares, uno covariante y otro contravariante.

Simetría

Un tensor $S \in V_r^s$ es **simétrico** respecto a los índices i_n e i_m si:

$$S^{i_1\dots i_m\dots i_r}_{j_1\dots j_s}=S^{i_1\dots i_n\dots i_r}_{j_1\dots j_s}$$

Equivalentemente se define para índices covariantes.

Si un tensor es simétrico respecto a cualquier par de índices, se dice que el tensor es **simétrico**.

Un tensor $S \in V^s_r$ es **antisimétrico** respecto a los índices i_n e i_m si:

$$S^{i_1...i_m...i_n...i_r}_{j_1...j_s} = -S^{i_1...i_n...i_m...i_r}_{j_1...j_s}$$

Equivalentemente se define para índices covariantes.

 $S \in V_r^0$ es totalmente antisimétrico si:

$$S^{\Pi(i_1...i_r)}=sqn(\Pi)S^{(i_1...i_r)}$$

Donde $\Pi(i_1...i_r)$ es una permutación de los índices y $sgn(\Pi)$ es 1 si es un número de permutaciones es par y -1 si es impar. De igual modo se define para índices covariantes.

Simetrización y antisimetrización de tensores

Dado un tensor $T \in V^0_r$ su **parte simétrica** es $\mathcal{S}T \in V^0_r$ con componentes:

$$(\mathcal{S}T)^{i_1...i_r} = rac{1}{r!} \sum_{\Pi} T^{\Pi(i_1...i_r)}$$

La **parte antisimétrica**, $\mathcal{A}T \in V_r^0$, con componentes:

$$(\mathcal{A}T)^{i_1...i_r} = rac{1}{r!} \sum_{\Pi} sgn(\Pi) T^{\Pi(i_1...i_r)}$$

De manera análoga se define para tensores covariantes.

- {} denota la simetrización.
- [] denota la antisimetrización.

Producto exterior

Sean tensores $S\in V_0^s$ con componentes $S_{j_1...j_s}$ totalmente antisimétrico, y $T\in V_0^t$ con componentes $T_{j_1...j_t}$ totalmente antisimétrico. Se define su producto exterior:

$$S \wedge T = rac{(s+t)!}{s!t!} \mathcal{A}(S \otimes T)$$

Tal que $S \wedge T \in V_0^{s+t}$ totalmente antisimétrico con componentes $S_{[j_1...j_s}T_{l_1...l_t]}.$

Este producto cumple:

- $S \wedge (T_1 + T_2) = S \wedge T_1 + S \wedge T_2$.
- $(S \wedge T) \wedge R = S \wedge (T \wedge R) = S \wedge T \wedge R$.
- $S \wedge T = (-1)^{st}T \wedge S$

Densidades tensoriales

Una densidad tensorial de peso p es un objeto tal que transforma tal que:

$$oxed{S'^{k_1...k_r}_{l_1...l_s} = det(A)^p \cdot [A^{-1}]^{k_1}_{i_1} [A^{-1}]^{k_2}_{i_2} \dots [A^{-1}]^{k_r}_{i_r} \, A^{j_1}_{l_1} A^{j_2}_{l_2} \dots A^{j_s}_{l_s} \, S^{i_1...i_r}_{j_1...j_s}}$$

Símbolo de Levi-Civita

$$\varepsilon_{i_1\dots i_s} = \begin{cases} 1 \text{ si se tiene una permutación par de } i_1\dots i_s \\ -1 \text{ si se tiene una permutación impar de } i_1\dots i_s \\ 0 \text{ si se repite índice} \end{cases}$$

Este símbolo es una densidad tensorial de peso -1.

•
$$\varepsilon^{ijk}\varepsilon_{klm}=\delta^i_l\delta^j_m-\delta^i_m\delta^j_l$$
.

Tensor adjunto

Se define al tensor adjunto como:

$$\overline{T}_{i_1...i_{n-r}} = \varepsilon_{i_1...i_{n-r}j_1...j_r} T^{j_1...j_r}$$

Se cumple para el producto vectorial que:

$$ec{u} imesec{v}=\overline{ec{u}\wedgeec{v}}$$

Coordenadas curvilíneas

Cambio de coordenadas locales

Ante un cambio de coordenadas las ecuaciones para calcular componentes en unas coordenadas con respecto a los componentes en otras puede ser altamente complicado, ya que las ecuaciones pueden ser no lineales. Pero, la relación entre los diferenciales siempre es lineal y homogénea:

$$dx'^i = \langle \mathbf{par} x'^i x^j dx^j \rangle$$

Esto hace que se tome la matriz Jacobiana como la matriz de cambio de base entre coordenadas.

$$\boxed{J = \left[\sqrt{\mathbf{par}} x^i x'^j \right]_{ij}}$$

$$J^{-1} = \left[ackslash \mathbf{par} x'^i x^j
ight]_{ij}$$

Donde i son las filas y j las columnas.

Base tangente o covariante

Una curva coordenada es una curva producida por mantener todas las coordenadas de la nueva base constantes, excepto por una, la cual varia:

$$ec{x}(x'^i) = x^j(x'^1 = cte, \ldots, x'^i, \ldots, x'^n = cte) ec{e}_j$$

La base covariante o tangente para el cambio de coordenadas es:

$$oxed{ec{e}_j' = igwedge ext{par} ec{x} x'^j = igwedge ext{par} x^i x'^j ec{e}_i}$$

Vectores contravariantes

Un vector covariante se define como cualquier vector con componentes u^i que transforme de acuerdo a:

$$u'^i = \langle \mathbf{par} x'^i x^j u^j
angle$$

Vectores covariantes

Un vector covariante se define como cualquier objeto con componentes u_i que ante cambio de coordenadas transforme de acuerdo a:

$$u_i' = ackslash \mathbf{par} x^j x'^i u_j$$

Base dual o contravariante

Para calcular la base dual se puede aplicar la métrica a la base covariante o utilizando la regla de transformación y aplicándose la a la base dual de las coordenadas que ya se tenían. La regla de transformación de la base contravariante es:

$$oxed{ec{e}^{\prime j} = ackslash \mathbf{par} x^{\prime j} x^i ec{e}^i}$$

Tensores en curvilíneas

Análogo a las definiciones anteriores un objeto con componentes $S^{i_1...i_r}_{j_1...j_s}$, que ante cambios de coordenadas transforme como:

$$S_{l_1...l_s}^{\prime k_1...k_r} = \backslash \mathbf{par} x^{\prime k_1} x^{i_1} \ldots \backslash \mathbf{par} x^{\prime k_r} x^{i_r} \backslash \mathbf{par} x^{j_1} x^{\prime l_1} \ldots \backslash \mathbf{par} x^{j_s} x^{\prime l_s} \ S_{j_1...j_s}^{i_1...i_r}$$

Densidades tensoriales

Un objeto con componentes $S^{i_1...i_r}_{i_1...i_s}$ que ante cambios de coordenadas transforma de acuerdo a:

$$S_{l_1...l_s}^{\prime k_1...k_r} = det(\mathbb{J})^p \backslash \underset{\mathbf{par}}{\mathbf{par}} x^{\prime k_1} x^{i_1} \ldots \backslash \underset{\mathbf{par}}{\mathbf{par}} x^{\prime k_r} x^{i_r} \backslash \underset{\mathbf{par}}{\mathbf{par}} x^{j_1} x^{\prime l_1} \ldots \backslash \underset{\mathbf{par}}{\mathbf{par}} x^{j_s} x^{\prime l_s} S_{j_1...j_s}^{i_1...i_r}$$

Se denomina densidad tensorial de peso p.

Tensor métrico

La métrica se puede obtener a partir de plantear un diferencial de arco, y expresarlo en ambas coordenadas:

$$ds^2 = dx^i \delta_{ij} dx^j = dx'^k \backslash \operatorname{par} x^i x'^k \delta_{ij} \backslash \operatorname{par} x^j x'^l dx'^l$$

 $ds^2 = dx'^k \backslash \operatorname{par} x^i x'^k \backslash \operatorname{par} x^i x'^l dx'^l = dx'^k a_{ij} dx'^l$

Entonces se define la métrica:

$$g_{ij} := ackslash extstyle{\mathsf{par}} x^k x'^i ackslash extstyle{\mathsf{par}} x^k x'^j$$

En notación matricial:

$$g := [g_{ij}] = J^t J$$

Y se tiene que:

$$g' = J^t g J$$

Se define la inversa de la métrica como:

$$\lceil q^{ij} \rceil = \mathbf{g}^{-1}$$

El determinante de la métrica es un pseudoescalar de peso 2, $g^\prime = J^2 g$.

Para coordenadas ortogonales se definen los factores de escala como:

$$h_i^2 := g_{ii}'$$

Si las coordenadas son ortogonales:

$$g' = h_1^2 \dots h_n^2$$

$$\Rightarrow J = h_1 h_2 \dots h_n$$

Aunque ${\cal J}$ no sea diagonal.

Ascenso y descenso de índices

Para un vector contravariante se definen sus componentes covariantes como:

$$u_i := g_{ij}u^j$$

Para un vector covariante se definen sus componentes contravariantes como:

$$v^i := g^{ij}v_j$$

Esto se extiende a tensores $T_{i}^{i}=g_{jk}T^{ik}$.

Producto escalar y norma

Usando la norma para subir y bajar índices se puede definir un producto escalar para dos vectores contravariantes o covariantes:

$$ec{u}\cdotec{v}=u^iv_i=g_{ij}u^iv^j=g^{ij}u_iv_j$$

Usando que $||\vec{u}||^2 = \vec{u} \cdot \vec{u}$ sale la norma.

La métrica permite traducir de la base covariante a la base contravariante y viceversa:

$$egin{aligned} ec{e}^i &= g^{ij}ec{e}_j \ ec{e}_i &= g_{ij}ec{e}^j \end{aligned}$$

En un sistema de coordenadas ortogonales se pueden extender estas ideas haciendo uso de los factores de escala (pág. 96).

Integración en coordenadas curvilíneas

Integral de volumen

El diferencial de volumen es una densidad escalar de peso -1:

$$dV = JdV'$$

En cualquier sistema de coordenadas:

$$egin{aligned} dV := Jdet(egin{bmatrix} dec{x}_1 \ldots dec{x}_n \ \downarrow & \downarrow \end{pmatrix}) \end{aligned}$$

Donde $dec{x}_i = dx^{\underline{i}} ec{e}_i.$

Integral de superficie

Sea $ec{S}(u^1,u^2)$ la parametrización de la superficie, se define la métrica inducida:

$$ilde{g}_{ij} = ackslash extbf{par} ec{S} u^i \cdot ackslash extbf{par} ec{S} u^j$$

Tal que los diferenciales en cada dirección quedan:

$$d\vec{S}_1 = \langle \mathbf{par} \vec{S} u^1 du^1 \rangle$$

 $d\vec{S}_2 = \langle \mathbf{par} \vec{S} u^2 du^2 \rangle$

Entonces los diferenciales de área quedan:

$$egin{aligned} dA &= \sqrt{ ilde{g}} \ du^1 du^2 \ \hline ec{dA} &= dec{S}_1 imes dec{S}_2 \end{aligned}$$

Diferencial de línea

Si se tiene una curva $\vec{c}(t) = c^i(t) \vec{e}_i$, el largo de la curva es:

$$\ell\left(c
ight)=\int_{a}^{b}\sqrt{rac{dc'^{i}}{dt}}g_{ij}rac{dc'^{j}}{dt}dt$$

Derivación en coordenadas curvilíneas

Conexión de Levi-Civita

Son coeficientes tal que:

$$ec{e}_{j,k} = \Gamma^i_{jk} ec{e}_i$$

Entonces la derivada de un vector:

$$ec{u}_{,k} = (u_{,k}^i + \Gamma_{jk}^i u^j) ec{e}_i$$

Estos son los elementos de conexión afín de Levi-Civita. Y son tal que:

$$\Gamma^i_{jk} = \vec{e}^i \vec{e}_{j,k}$$

Además, cumplen que:

$$\Gamma^i_{jk} = \Gamma^i_{kj}$$

Derivada covariante

Si u^i es un vector contravariante su derivada covariante es:

$$u^i_{;k} := u^i_{,k} + \Gamma^i_{jk} u^j$$

Se pueden definir las derivadas covariantes de tensores de rango arbitrario:

$$\begin{split} h_{;i} & \equiv h_{,i} \;, \\ v_{i;j} & = v_{i,j} - \Gamma^k_{ij} v_k \;, & \vec{v} & = v_i \vec{e}^{\;i} & \Rightarrow \vec{v}_{,j} = v_{i;j} \vec{e}^{\;i} \;, \\ u^i_{\;;j} & = u^i_{\;,j} + \Gamma^i_{kj} u^k \;, & \vec{u} & = u^i \vec{e}_i & \Rightarrow \vec{u}_{,j} = u^i_{\;;j} \vec{e}_i \;, \\ t_{ij;k} & = t_{ij,k} - \Gamma^h_{ik} t_{hj} - \Gamma^h_{jk} t_{ih} \;, & T & = t_{ij} \vec{e}^{\;i} \otimes \vec{e}^{\;j} \Rightarrow T_{,k} = t_{ij;k} \vec{e}^{\;i} \otimes \vec{e}^{\;j} \;, \\ t^i_{\;j;k} & = t^i_{\;j,k} + \Gamma^i_{hk} t^h_{\;j} - \Gamma^h_{jk} t^i_{\;h} \;, & T & = t^i_{\;j} \vec{e}_i \otimes \vec{e}^{\;j} \Rightarrow T_{,k} = t^i_{\;j;k} \vec{e}_i \otimes \vec{e}^{\;j} \;, \\ t^{ij}_{\;;k} & = t^{ij}_{\;,k} + \Gamma^i_{hk} t^{hj} + \Gamma^j_{hk} t^{ih} \;, & T & = t^{ij} \vec{e}_i \otimes \vec{e}_j \; \Rightarrow T_{,k} = t^{ij}_{\;;k} \vec{e}_i \otimes \vec{e}_j \;, \end{split}$$

Los elementos de conexión afín pueden calcularse usando la métrica:

$$oxed{\Gamma^m_{jk} = rac{1}{2} g^{mi} (g_{ij,k} + g_{ik,j} - g_{kj,i})}$$

$$\begin{split} &\Gamma^{\underline{i}}_{\underline{i}j} = (\ln h_i)_{,j}, \quad i,j=1,2,3, & h_i \text{ dependiente de } x^j, \\ &\Gamma^{\underline{i}}_{\underline{j}\underline{j}} = -\frac{(h_j^2)_{,\underline{i}}}{2h_i^2}, \quad i,j=1,2,3. \ i \neq j, \quad h_j \text{ dependiente de } x^i. \end{split}$$

Gradiente

Se define el gradiente abla arphi de una escalar como el vector covariante:

$$oxed{
abla arphi = arphi_{;i} ec{e}^i = arphi_{,i} ec{e}^i}$$

Rotor

Se define para un vector covariante (si se quiere para un contravariante usar la métrica):

$$oxed{
abla imes ec{u} = \sqrt{g^{-1}} arepsilon^{ijk} u_{i,j} ec{e}_k}$$

Divergencia

Se define para un vector contravariante (si se quiere para uno covariante usar la métrica):

$$oxed{
abla\cdotec{u}=rac{1}{\sqrt{g}}(\sqrt{g}u^i)_,i}$$

Laplaciano

$$abla^2 arphi = rac{1}{\sqrt{g}} (\sqrt{g} \ g^{ij} arphi_{,\,j})_{,i} \, .$$

Componentes físicas

Si se tienen coordenadas ortogonales (la métrica es diagonal), defino:

$$\hat{e_i} := rac{ec{e_i}}{||ec{e_i}||} = rac{ec{e^i}}{||ec{e^i}||}$$

Con coordenadas ortogonales y componentes físicas, los operadores diferenciales vectoriales quedan:

$$egin{aligned} egin{aligned} \dot{J} & h_i u_i \end{pmatrix}_{,i} \end{aligned} \end{aligned} \end{aligned}$$
 $egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} \dot{J} & h_i u_i \end{pmatrix}_{,i} \end{aligned}$

Distribuciones y espacios \mathcal{L}^2

Funciones de prueba

Una función de prueba se define como $\varphi:\mathbb{R}^n\to\mathbb{C}$ tal que $\varphi(\vec{x})\in\mathcal{C}^\infty[\mathbb{R}^n]$ y es de soporte compacto (\mathcal{C}_0^∞) $\exists a<\infty/\ \varphi(\vec{x})=0$ si $||\vec{x}||\geq a$, o es una función de Schwartz (\mathcal{S}) que significa que φ tiende más rápido a 0 que cualquier polinomio.

Propiedades básicas:

- Tanto los conjuntos de las funciones de soporte compacto como las de Schwartz son espacios lineales.
- Si $\varphi\in\mathcal{C}_0^\infty$ y $f(\vec{x})\in\mathcal{C}^\infty$ entonces el producto también es de soporte compacto.
- Si $arphi \in \mathcal{S}$ y $f(ec{x}) \in p_N$ entonces el producto también es de Schwartz.
- Si φ es de soporte compacto o de Schwartz sus derivadas pertenecen al mismo conjunto.

Funciones lineales

Dado un espacio lineal $V=\{\varphi:\mathbb{R}^n \to \mathbb{C}\}$, un **funcional** es cualquier aplicación F de V al cuerpo escalar. Es decir, un funcional es una forma sobre V.

Dada $f\in\mathcal{C}^\infty$ y $\varphi\in\mathcal{C}^\infty_0,\mathcal{S}$, el funcional lineal asociado a f como:

$$F[arphi] = \langle f, arphi
angle := \int\! \ldots \int_{-\infty}^{\infty} f(ec{x}) arphi(ec{x}) d^n x$$

Propiedades fundamentales:

- Bilinealidad $\langle af+bg, \varphi \rangle = a \langle f, \varphi \rangle + b \langle g, \varphi \rangle.$
- $\langle \psi f, \varphi \rangle = \langle f, \psi \varphi \rangle$
- $\langle f^*, \varphi \rangle = \langle f, \varphi^* \rangle^*$

Distribuciones

Se define una distribución como un funcional lineal tal que:

$$\langle f,\cdot
angle: \mathcal{C}_0^\infty, \mathcal{S}
ightarrow \mathbb{C}$$

Convergencia de Schwartz

Se define la convergencia Schwartz (o continuidad de Schwartz) dadas $\psi, \varphi_j \in \mathcal{C}_0^\infty$ se dice que $\varphi_j \stackrel{\mathcal{D}}{\to} \psi$ siempre que:

- $\exists B \subset \mathbb{R}^n$ acotado tal que $\varphi_j(\vec{x}) = 0 \ \forall \vec{x} \notin B \forall j$, es decir B contiene el soporte de todas las φ_j .
- $\varphi_i(\vec{x})$ tiende a $\psi(\vec{x})$ uniformemente $\forall \vec{x} \in B$
- Toda derivada de φ_i converge uniformemente a la correspondiente derivada de ψ .

Entonces, si $\langle f, \varphi_j \rangle o \langle f, \psi \rangle$ siempre que $\varphi_j \overset{\mathcal{D}}{\to} \psi$ se tiene una **distribución de Schwartz**.

Se puede definir otro tipo de convergencias, dadas $\psi, \varphi_j \in \mathcal{C}_0^\infty \vee \in \mathcal{S}$, se dice que $\varphi_j \overset{\mathcal{S}}{\to} \psi$ siempre que para todo p y para todo k:

$$\sup |x^p(arphi_j^{(k)} - \psi^{(k)}| \mathop{
ightarrow}_{j
ightarrow \infty} 0$$

si $\langle f, \varphi_j \rangle o \langle f, \psi \rangle$ siempre que $\varphi_j \overset{\mathcal{S}}{ o} \psi$ se tiene una **distribución temperada**.

La delta de Dirac

Se define el funcional $\langle \delta, \cdot \rangle$ con la propiedad:

$$egin{aligned} \mathbf{ra}\delta,\phi &= \phi(0) \ \mathbf{ra}\delta(x),\phi(x) &= \int_{-\infty}^{\infty}\delta(x)\phi(x)dx \end{aligned}$$

Cumple $\forall \phi \in \mathcal{C}_0^\infty, \mathcal{S}$:

$$egin{aligned} \mathbf{ra}\delta(x-a), \phi(x) &= \phi(a) \end{aligned}$$
 $egin{aligned} \mathbf{ra}\delta(ax+b), \phi &= \frac{1}{a}\phi(-b/a) \end{aligned}$ $egin{aligned} \mathbf{ra}(x-x_0)\delta(x-x_0), \phi(x) &= 0 \end{aligned}$

Derivadas de la delta de Dirac

$$\operatorname{ra}\delta^{(n)}, \phi := (-1)^n \operatorname{ra}\delta, \phi^{(n)} = (-1)^n \phi^{(n)}(0)$$

Delta de Dirac multidimensional

$$\operatorname{ra}\delta(\vec{x}), \phi(\vec{x}) = \phi(\vec{0})$$

Y se puede escribir:

$$\delta(\vec{x}) = \delta(x)\delta(y)\delta(z)$$

Análogamente:

$$egin{aligned} igl(\mathbf{ra}\delta(\vec{x}-\vec{x}_0),\phi(\vec{x})&=\phi(\vec{x}_0) \end{aligned}$$
 $igl(\mathbf{ra}\partial_x^n\partial_y^m\partial_z^l\delta(\vec{x}-\vec{x}_0),\phi(\vec{x})&=(-1)^{n+m+l}\partial_x^n\partial_y^m\partial_z^l\phi(\vec{x}_0)$

Sucesiones de distribuciones

Si $\{f_n\}$ es una sucesión de funciones tal que el limite de $\int_{-\infty}^{\infty} f_n \varphi dx$ existe para toda función de prueba φ entonces se dice que la sucesión de funciones $\langle f_n, \varphi \rangle$ converge a la distribución:

$$ackslash extbf{ra} f, arphi := \lim_{n o \infty} \int_{-\infty}^{\infty} f_n(x) arphi(x) dx$$

Tipos de distribuciones:

- $\langle f,\cdot \rangle$ es **regular** si f es una función localmente integrable. Lo que se puede resumir en que f debe ser continua exepto en un número finito de puntos y $\langle f,\varphi \rangle = \int_{-\infty}^{\infty} f(x) \varphi(x) dx$ existe y es finita par toda función de prueba.
- Una distribución $\langle f,\cdot\rangle$ es **singular** si la función f(x) es singular.

Teorema: toda distribución f es el limite de una sucesión de distribuciones regulares f_n .

Derivación

Se define la derivada de una distribución como:

$$\operatorname{ra} f', \varphi = -\operatorname{ra} f, \varphi'$$

A partir de esto se puede demostrar que la función de Heaviside Θ cumple:

$$\Theta' = \delta$$

Integración

Dada una distribución g sobre $\mathbb R$ existe otra distribución f tal que f'=g y es única a menos de una constante aditiva. Si:

$$arphi(x) = -\int_{-\infty}^{\infty} \psi(x') dx'$$

Entonces si $\varphi' = -\psi$ y ψ es continuamente diferenciable:

Cambios de variable

Llevando a la forma integral:

$$ackslash \mathbf{ra} f, arphi = \int f(ec{x}) arphi(ec{x}) d^n x = \int f(ec{x}(ec{y})) arphi(ec{x}(ec{y})) J d^n y = \int g(ec{y}) \psi(ec{y}) d^n y$$

Entonces se define:

$$g(\vec{y}) = J \vec{f}(\vec{x}(\vec{y}))$$

 $\psi(\vec{x}) = \varphi(\vec{x}(\vec{y}))$

Se puede decir que las distribuciones transforman como densidades escalares de peso 1.

Espacios \mathcal{L}^2

Si tomamos un espacio lineal de funciones en un intervalo [a,b] a valores complejos, y se define un **producto interno** como:

En base a esta se define una **norma**:

$$||f||:=\sqrt{rac{ extsf{ra}f,f}{a}}=\sqrt{\int_a^b|f(x)|^2dx}$$

Se define:

$$\mathcal{L}^2[a,b] = \{f: [a,b]
ightarrow \mathbb{C}/||f|| < \infty\}$$

Por la definición de \mathcal{L}^2 es directo que $\mathcal{L}^2[a,b]=\mathcal{L}^2(a,b]=\mathcal{L}^2[a,b)=\mathcal{L}^2(a,b)$.

Propiedades:

- Designaldad de Cauchy-Schwartz: $|\langle f,g \rangle| \leq ||f|| \cdot ||g||$
- Designaldad triangular: $||f + g|| \le ||f|| + ||g||$

Luego a partir de la noción de **distancia** ||f-g|| se puede definir la igualdad en \mathcal{L}^2 como:

$$f \stackrel{\mathcal{L}^2}{=} g \Longleftrightarrow ||f - g|| = 0$$

Dos funciones f y g son **ortogonales** si:

$$\backslash \mathbf{ra} f, q = 0$$

Espacio \mathcal{L}_{o}^{2}

Se puede pensar en un espacio similar que \mathcal{L}^2 solo que el producto interno este definido a partir de una función peso ρ :

$$ackslash {f ra} f, g_
ho := \int_a^b f^*(x) g(x)
ho(x) dx$$

Entonces la norma se define como:

$$||f||_
ho = \sqrt{{f ra}f, f_
ho}$$

Convergencia

Convergencia puntual:

$$f_n o f ext{ si } \lim_{n o \infty} f_n(x) = f(x) \ \ orall x \in [a,b]$$

Convergencia uniforme:

$$f_n \stackrel{u}{
ightarrow} f ext{ si } orall \epsilon > 0 \ \exists N/\ n \geq N \Rightarrow |f_n(x) - f(x)| < \epsilon \ orall x \in [a,b]$$

Convergencia en \mathcal{L}^2 :

$$f_n \overset{\mathcal{L}^2}{ o} f ext{ si } \lim_{n o \infty} ||f_n - f|| = 0$$

La convergencia uniforme implica la puntual y en \mathcal{L}^2 , pero no al revés.

La convergencia en \mathcal{L}^2 no implica la puntual ni al revés. Pero si una sucesión converge en \mathcal{L}^2 y puntualmente lo hace al mismo límite.

Sucesión de Cauchy

Un sucesión es de Cauchy si:

$$\forall \epsilon > 0 \; \exists N/n, m > N \Rightarrow ||f_n - f_m|| < \epsilon$$

Y se cumple que toda sucesión convergente en \mathcal{L}^2 es de Cauchy. Además, para toda sucesión de Cauchy $f_n \in \mathcal{L}^2$ existe una función en $f \in \mathcal{L}^2$ tal que $f_n \overset{\mathcal{L}^2}{\to} f$. Se puede demostrar que el conjunto de funciones continuas en [a,b] es denso en \mathcal{L}^2 .

Funciones ortogonales

Dado un conjunto $\{\varphi_k\}_{k=1}^\infty$ todas ortogonales entre si, se cumple la desigualdad de Bessel:

$$\sum_{k=1}^{\infty} rac{| \langle {
m ra} arphi_k, f |^2}{\langle {
m ra} arphi_k, arphi_k} \leq ||f||^2$$

Si se cumple la igualdad el conjunto $\{\varphi_k\}$ se dice que es **completo** en \mathcal{L}^2 y forma una base para \mathcal{L}^2 . Si esto sucede se cumple que para toda función $f \in \mathcal{L}^2$:

$$\sum_{k=1}^{\infty} rac{ackslash \mathrm{ra} arphi_k, f}{ackslash \mathrm{ra} arphi_k, arphi_k} arphi_k \stackrel{\mathcal{L}^2}{=} f$$

Y se cumple la **relación de Parseval o de completitud**:

$$||f||^2 = \sum_{k=1}^{\infty} rac{| \langle \mathbf{ra} arphi_k, f |^2}{\langle \mathbf{ra} arphi_k, arphi_k |}$$

Teorema de Parseval: Un conjunto ortogonal $\{\varphi_k\}_{k=1}^\infty$ es completo en \mathcal{L}^2 si y solo si satisface la relación de Parseval para toda $f \in \mathcal{L}^2$.

Condiciones de contorno

Problemas de valores iniciales

Dada un EDO $y'' + r(x)y' + s(x)y = f(x)/x \in I$ si las funciones s, r y f son continuas en I y se da el valor de la derivada y la función en un punto $x_0 \in I$, existe una única solución que cupla las condiciones.

Ceros aislados

Teorema: Si y es una solución no trivial de la ecuación $y'' + r(x)y' + s(x)y = f(x)/x \in I$ homogénea entonces todo cero de y en I es aislado.

Alternancia de ceros:

Teorema de separación de Sturm: Si y_1 e y_2 son dos soluciones de la ecuación $y''+r(x)y'+s(x)y=f(x)/x\in I$ homogénea y son LI en I entonces los ceros de y_1 e y_2 son diferentes y se alternan.

Reducción a la forma normal de Liouville

Si tenemos la ecuación diferencial:

$$y'' + r(x)y' + s(x)y = f(x)/x \in I$$

Se toma:

$$y(x) = u(x)v(x)$$

Si se elije:

$$v(x) = \expigg(-rac{1}{2}\int^x r(x')dx'igg)$$

Y si se define:

$$\rho(x) = s(x) - \frac{1}{4}r^2(x) - \frac{1}{2}r'(x)$$

Entonces la ecuación diferencial para u queda:

$$u'' + \rho(x)u = 0$$

Y es llamada forma normal de Liouville.

Teorema de comparación de Sturm: sean φ y ψ soluciones no triviales de:

$$y'' + \rho_1(x)y = 0$$
$$y'' + \rho_2(X)y = 0$$

Respectivamente, si $\rho_1(x) \geq \rho_2(x) \ \forall x \in I$, entonces φ tiene al menos un cero entre cada par ceros consecutivos de ψ .

Problemas de contorno

Si se tiene la ecuación diferencial con operador diferencial $\it L$:

$$p(x)y'' + q(x)y' + r(x)y = 0$$

$$Ly = 0$$

$$L = p(x) \sqrt{\operatorname{der}^2 x^2} + q(x) \sqrt{\operatorname{der} x} + r(x)$$

Se define el operador adjunto formal de L como:

$$L^{\dagger} = p^* \backslash \text{der}^2 x^2 + (2p'^* - q^*) \backslash \text{der} x + (p''^* q'^* + r^*)$$

El operador L se dice **formalmente autoadjunto** cuando $L^\dagger=L$, y esto se cumple cuando p,q y r son reales y p'=q.

Reducción a un operador formalmente autoadjunto

Si se tiene el operador:

$$\tilde{L}y = a_0(x)y'' + a_1(x)y' + a_2(x)y = f(x)$$
 $x \in (a,b)$

Para llevarlo a la forma formalmente autoadjunto se multiplica por:

$$ho(x) = rac{c}{a_0(x)} \mathrm{exp} \left(\int^x rac{a_1(x')}{a_0(x')} dx'
ight)$$

Y queda de la forma deseada:

$$L(y) = \rho(x)f(x)$$

Con:

$$\rho \tilde{L} = L$$

Clasificación y tipo de condiciones de contorno

Dado un operador formalmente autoadjunto:

$$L(y) = \left| \operatorname{der} x \left[p(x) \right| \operatorname{der} yx \right] - q(x)y = f(x) - \infty \le a < x < b \le \infty$$

Con a y b puntos regulares.

La condiciones de contorno (CC) pueden ser **separadas** donde una solo involucra condiciones sobre a y otra sobre b, o **no separadas** si involucran ambos extremos. Las mas comunes:

- CC de Dirichlet: separada, $y(a) = u_1$ o $y(b) = u_2$.
- CC de Neumann: separada, $y'(a) = u_1$ o $y'(b) = u_2$.
- CC de Robin: separada, $y'(a) + c_1 y(a) = u_1$ o $y'(b) + c_2 y(b) = u_2$.
- CC periódicas: no separada, y(a) = y(b) e y'(a) = y'(b).
- CC de función finita: separada, $\lim_{x \to a^+} |y(x)| < \infty$ o $\lim_{x \to b^-} |y(x)| < \infty$.

Además, las CC se clasifican en CC **homogéneas** si $u_i=0$ o **inhomogéneas** si es distinto de cero. Las CC periódicas y de función finita se tratan como condiciones homogéneas.

En un mismo problema se pueden tener un tipo de condición sobre a y otra sobre b, si sucede se llaman condiciones de contorno **mixtas**.

Un problema de contorno es:

- **Homogéneo**: si $f(x) \equiv 0$ y las CC homogéneas.
- Inhomogéneo: si f(x)
 eq 0 y/o al menos una CC es inhomogénea.

Homogeneización de las CC

Para homogeneizar las condiciones de contorno basta con encontrar una función g que cumpla las CC y se define la nueva variable de la ecuación como $\tilde{y}(x):=y(x)-g(x)$.

Identidad de Lagrange y fórmula de Green

Dadas dos funciones y y z que cumplen:

$$L(y) = f(x)$$

$$L(z) = q(x)$$

La identidad de Lagrange es:

$$\left| \operatorname{der} \left[p(x) \left(z \middle| \operatorname{der} yx - y \middle| \operatorname{der} zx \right) \right] \right| = f(x) z(x) - g(x) y(x)$$

Y la fórmula de Green:

$$\int_a^b [zL(y)-yL(z)]dx = \left[p(x)igg(zackslash \mathrm{der} yx-yackslash \mathrm{der} zxigg)
ight]_a^b = \int_a^b [f(x)z(x)-g(x)y(x)]dx$$

Problemas de Sturm-Liouville

Dado un operador formalmente autoadjunto L:

$$L(y) = \langle \operatorname{der} x \left(p(x) \rangle \operatorname{der} yx \right) - q(x)y$$

Con $p \in \mathcal{C}^1(a,b)$ y $q \in \mathcal{C}^0(a,b)$ reales, y p(x) positivo. Si el conjunto de las funciones que cumplen las CC cumplen que:

$$[p(f^*g' - f'^*g)]_a^b = 0$$

Es decir las condiciones de contorno son Hermitianas.

El **problema de Sturm-Liouville (PSL)**, es el problema de contorno:

$$L(y) + \lambda \rho(x)y = 0$$
, $a < x < b$

Con L formalmente autoadjunto, $\rho \in \mathcal{C}[a,b]$, y CC hermitianas para L.

Si [a,b] no contiene puntos singulares de L se dice que el PSL es **regular**, en caso contrario se lo llama **singular**. Toda constante λ para la que exista solución **no trivial** se llama **autovalor** del problema.

Propiedades:

• Los autovalores de un PSL son reales.

Subespacio característico

• Dado un autovalor λ este tiene asociado a lo sumo dos autofunciones LI, es decir $\dim(\ker(L+\rho\lambda))\leq 2$. Si las CC son separadas cada autovalor tiene asociada una sola autofunción, $\dim(\ker(L+\lambda\rho))=1$.

Ortogonalidad de las autofunciones

• Las autofunciones de un PSL correspondientes autovalores diferentes son ortogonales en $\mathcal{L}^2_{\rho}(a,b)$. En caso de autovalores degenerados las autofunciones LI correspondientes a un mismo autovalor pueden ortogonalizarse.

Espectro de autovalores

- El espectro de autovalores es generalmente acotado por debajo.
- El espectro de autovalores en general puede contener una parte continua y una discreta.

Completitud de las autofunciones

• Las autofunciones φ_λ correspondientes a los diferentes autovalores del PSL forman un conjunto completo en $\mathcal{L}^2_\rho(a,b)$ entonces:

$$f \stackrel{\mathcal{L}^2_
ho}{=} \sum_{\lambda} rac{ackslash {f ra} arphi_{\lambda}, f_{
ho}}{ackslash {f ra} arphi_{\lambda}, arphi_{\lambda_{
ho}}} arphi_{\lambda}$$

Notación de Dirac

Se piensa el corchete $\langle f,g \rangle$ como una conjunción entre el bra $\langle f|$ y el ket $|g\rangle$, así se tiene:

$$\int_a^b f^*(x)g(x)
ho(x)dx = \langle \mathbf{ra}f,g = \langle f||g \rangle = \langle \mathbf{ra}f|g \rangle$$

De esta forma se puede pensar un operador diferencial como un operador de un espacio vectorial, el bra como un elemento del espacio dual y el ket como un elemento del espacio. Si L es hermitiano:

Y se puede pensar que L actúa hacia delante o hacia atrás.

Desarrollando en autofunciones normalizadas ψ_{λ} se puede deducir el desarrollo para el operador identidad, la delta de Dirac y la proyección:

$$egin{aligned} P_{\lambda} &= |\psi_{\lambda}
angle \langle \psi_{\lambda}| \ I &= \sum_{\lambda} |\psi_{\lambda}
angle \langle \psi_{\lambda}| \ \delta(x-x') &= \sum_{\lambda} \psi_{\lambda}(x)
ho(x) \psi_{\lambda}(x') \end{aligned}$$

Problemas inhomogéneos

Dado el problema:

$$(L + \rho \mu)y = \rho f$$
 $a < x < b$

Y sea λ los autovalores del problema homogéneo, usando la completitud de sus autofunciones asociadas se puede desarrollar:

$$egin{aligned} |y
angle &= \sum_{\lambda} |\psi_{\lambda}
angle \langle \psi_{\lambda}| |y
angle \ |f
angle &= \sum_{\lambda} |\psi_{\lambda}
angle \langle \psi_{\lambda}| |f
angle \end{aligned}$$

Entonces remplazando en la ecuación y usando que $L|\psi_{\lambda}\rangle = -\lambda \rho |\psi_{\lambda}\rangle$:

$$egin{aligned} \sum_{\lambda} (L|\psi_{\lambda}
angle +
ho\mu|\psi_{\lambda}
angle) \langle\psi_{\lambda}||y
angle &=
ho \sum_{\lambda} |\psi_{\lambda}
angle \langle\psi_{\lambda}||f
angle \ \Rightarrow \sum_{\lambda} (\mu - \lambda) |\psi_{\lambda}
angle \langle\psi_{\lambda}||y
angle &= \sum_{\lambda} |\psi_{\lambda}
angle \langle\psi_{\lambda}||f
angle \end{aligned}$$

Igualando termino a termino:

$$(\mu - \lambda)\langle\psi_{\lambda}||y\rangle = \langle\psi_{\lambda}||f\rangle$$

Así:

$$|y
angle = \sum_{\lambda} |\psi_{\lambda}
angle rac{{
m \backslash ra}\psi_{\lambda}|f}{(\mu-\lambda)} = igg(\sum_{\lambda} rac{|\psi_{\lambda}
angle \langle \psi_{\lambda}|}{(\mu-\lambda)}igg)|f
angle$$

Entonces el siguiente operador es la inversa formal del operador $L+\rho\mu$:

$$\sum_{\lambda} \frac{|\psi_{\lambda}\rangle\langle\psi_{\lambda}|}{(\mu-\lambda)}$$

Funciones Especiales

PSL para la ecuación armónica

El PSL esta dado por:

$$y'' + \lambda y = 0$$

Se puede encontrar para $\lambda>0$ que las autofunciones son $\cos(k_nx)$ y $\sin(k_nx)$

Desarrollo en autofunciones (Desarrollo de Fourier)

$$f(x)=a_0+\sum_{n=1}^{\infty}[a_n\cos(k_nx)+b_n\sin(k_nx)]=\sum_{n=-\infty}^{\infty}c_ne^{ik_nx}$$

Usando ortogonalidad:

$$a_0 = rac{\langle 1, f
angle}{\langle 1, 1
angle} \ a_n = rac{\langle \cos(k_n x), f
angle}{\langle \cos(k_n x), \cos(k_n x)
angle} \ b_n = rac{\langle \sin(k_n x), f
angle}{\langle \sin(k_n x), \sin(k_n x)
angle} \ c_n = rac{\langle e^{i k_n x}, f
angle}{\langle e^{i k_n x}, e^{i k_n x}
angle}$$