UFRGS – INSTITUTO DE MATEMÁTICA E ESTATÍSTICA

Departamento de Matemática Pura e Aplicada

MAT01168 - P2X2S

Prova da área IIA

1 - 4	5	6	Total

Nome: GABARITO

Cartão:

Nesta prova $u(\cdot)$ representa a função degrau unitário.

- \bullet Questão 1. Marque a alternativa correta.
- (B) Sobre $\mathcal{L}^{-1}\left\{\frac{e^{-s}}{\pi^2 + s^2}\right\}$, é correto: Solução: (A) aplique form. lin (B) aplique prop. 4 com a = 1,
- $(\)\ \frac{\cos(\pi t)}{\pi}$

- () $sen(\pi t)$
- () $\cos(\pi t)$

Solução: (A) aplique form. linha 13

$$\mathcal{L}^{-1}\left\{\frac{e^{-s}}{\pi^2 + s^2}\right\} =$$

$$= \frac{u(t-1)\operatorname{sen}(\pi(t-1))}{\pi}$$

- (C) Sobre o regime de amortecimento do oscilador $\begin{cases} y'' + 4y' + 4y &= 1 \\ y(0) = 0 &, y'(0) = 1 \end{cases}, \text{ \'e correto:}$
- () é superamortecido

) é não-amortecido

() é subamortecido

() é assintoticamente amortecido

(X) é criticamente amortecido

- () é exponencialmente amortecido
- Questão 2. Considere a função f(t) definida abaixo

$$f(t) = \left\{ \begin{array}{ll} t & , 0 < t < 1 \\ 2 - t & , 1 < t \leq 2 \\ 0 & , t > 2 \end{array} \right.$$
 (A) Sobre representação para f , é correto:

- (X) f = tu(t) + 2(1-t)u(t-1) + (t-2)u(t-2)
- () f = tu(t) + (2-t)u(t-1)
- () f = tu(t) + (2-2t)u(t-1) + (2-t)u(t-2)() f = tu(t) + (2-t)u(t-1) + u(t-2)
- () f = tu(t) + (2-t)u(t-1) + (t-2)u(t-2)
- () nenhuma das anteriores

(B) Sobre $\mathcal{L}\{f(t)\}\$, é correto:

$$\left(\ \right) \ \frac{1-e^{-s}}{s^2} + \frac{2e^{-s}}{s}$$

()
$$\frac{1}{s} + \frac{2e^{-s}}{s} + \frac{2e^{-s}}{s^2} - \frac{2e^{-2s}}{s^2}$$

(X)
$$\frac{1 - 2e^{-s} + e^{-2s}}{e^2}$$

(X)
$$\frac{1 - 2e^{-s} + e^{-2s}}{s^2}$$
()
$$\frac{1}{s^2} + \frac{2e^{-s}}{s} - \frac{e^{-s}}{s^2} + \frac{e^{-2s}}{s^2}$$

$$1 - 2e^{-s}$$

- () nenhuma das anteriores

Solução de (B): rescreve f = tu(t) - 2(t-1)u(t-1) + (t-2)u(t-2) e aplica a prop. linha 4 $F(s) = \frac{1}{s^2} - 2e^{-1s} \frac{1}{s^2} + e^{-2s} \frac{1}{s^2} = \frac{1 - 2e^{-s} + e^{-2s}}{s^2}$ • Questão 3. Considere $F(s) = \frac{s^2 - 6s + 4}{s^3 - 3s^2 + 2s}$.

- - $() 1 + e^t + e^{2t}$
- () $2 + \operatorname{senh}(t) \operatorname{senh}(\sqrt{2}t)$
- () $1 + \sin(t) \sin(\sqrt{2}t)$
- () $2u(t) + e^{-t} 2e^{-2t}$
- (X) $2 + e^t 2e^{2t}$
- () nenhuma das anteriores

- (A) Sobre $\mathcal{L}^{-1}\{F(s)\}$ é correto: (B) Sobre $\mathcal{L}^{-1}\{F(s-3)\}$ é correto:
 - () $u(t-3)(2+e^t-2e^{2t})$

 - $() 2 + e^{t-3} 2e^{2(t-3)}$
 - () $2 + e^{3-t} 2e^{6-2t}$

 - (X) nenhum dos anteriores

Solução:

(A) fatorando o denominador temos: decomposição em frações parciais produz $F(s) = \frac{A}{s} + \frac{B}{s-1} + \frac{C}{s-2}$

onde são encontrados A = 2, B = 1 e

()
$$u(t-3)(2+\mathrm{senh}(t-3)-\mathrm{senh}(2t-6))$$
 (B) $\mathcal{L}^{-1}\{F(s-3)\}=e^{3t}\mathcal{L}^{-1}\{F\}=e^{3t}(2+e^t-2e^{2t})$

- Questão 4. Considere y tal que $\begin{cases} ty' \frac{3y}{2} = 3 \\ y(1) = 2 \end{cases}, t > 1$
- (A) sobre solução particular y_p para a EDO contida acima, é correto:
- $(\)\ y_p = 3$

- (X) $y_p = -2$
- Solução (A): como o termo não homogêneo

() $y_p = 3t$

- () $y_p = -2t$
- é constante, procuramos por uma solução par-

- ticular constante, então $y_p' = 0$ produz

- $t(0) 3y_p/2 = 3 \Rightarrow y_p = -2$
- () $y_p = 3t^{-1}$ () nenhuma das anteriores $t(0) 3y_p/2 = 3 \Rightarrow y_p = \frac{1}{2}$ (B) sendo $U' = \frac{dU}{ds}$ a derivada da transformada da respectiva solução homogênea, é correto:

$$(X) \frac{U'}{U} = -\frac{5/2}{s}$$

$$(\)\ \frac{U'}{U} = -\frac{1/2}{s-1}$$

Solução (B): sol homogênea
$$u$$
 satisfaz $tu' - \frac{3u}{2} = 0$

$$() \frac{U'}{U} = -\frac{3/2}{s}$$

$$(\)\ \frac{U'}{U} = -\frac{1/2}{s+1}$$

$$-\frac{d}{ds}(sU - 0) = \frac{3U}{2} \Leftrightarrow -sU' - U = \frac{3U}{2} \Leftrightarrow \frac{U'}{U} = \frac{-5/2}{s}$$

 $(\)\ \frac{U'}{U} = -\frac{1/2}{s}$

- () nenhuma das anteriores
- (C) Obtenha a solução y(t) do PVI usando transformada de Laplace.

Solução: integrando, $\ln(U) = C - \frac{5}{2} \ln(s) = C + \ln(s^{-5/2})$, C constante indeterminada $\Rightarrow U = C_1 s^{-5/2} \Rightarrow u = \mathcal{L}^{-1}(U) = C_2 t^{3/2}$ (aplicamos linha 6 com k = 5/2) então solução geral é $y = C_2 t^{3/2} - 2$ então y(1) = 2 implica $C_2 - 2 = 2$ e segue $y(t) = 4t^{3/2} - 2$.

 \bullet Questão 5. Para f(t) dada à direita, considere y satisfazendo $\int y'' + y = f(t)$ y(0) = 0 , y'(0) = 0

- (A) Obtenha F(s), a transformada de Laplace de f(t).
- (B) Usando transformada de Laplace, obtenha y(t).

Por outro lado, usando degraus, tanto f = tu(t) - (t-2)u(t-2) - 2(t-4)u(t-4) + 2(t-5)u(t-5) quanto

$$f' = u(t) - u(t-2) - 2u(t-4) + 2u(t-5) \text{ conduzem diretamente à expressão acima.}$$
(B) $s^2Y + Y = F(s) \Rightarrow Y = \frac{F(s)}{s^2 + 1} = \frac{1 - e^{-2s} - 2e^{-4s} + 2e^{-5s}}{s^2(s^2 + 1)}$

Observamos $\mathcal{L}^{-1}\left(\frac{1}{s^2+1}\right) = \operatorname{sen}(t)$, que implica $\mathcal{L}^{-1}\left(\frac{1}{s(s^2+1)}\right) = \int_0^t \operatorname{sen}(u)du = 1 - \cos(t) \# \operatorname{prop} \operatorname{da linha} 5$ $\Rightarrow \mathcal{L}^{-1}\left(\frac{1}{s^2(s^2+1)}\right) = \int_0^t (1-\cos(u))du = t - \sin(t) \text{ } \# \text{ pode usar a linha 20 e obter direct amente}$ $\Rightarrow \mathcal{L} = \left(\frac{1 - \cos(u)}{s^2(s^2 + 1)}\right) = \int_0^{1} (1 - \cos(u)) du - t - \sin(t) du - t - \cos(t) du - t - \cos$

• Questão 6. Considere o seguinte problema de valor inicial (aqui
$$\delta(t)$$
 é Delta de Dirac):
$$\begin{cases} x' &= -x - 2y + \delta(t) \\ y' &= x - y + \delta(t) \end{cases} \quad \text{com } x(0) = 0 \text{ e } y(0) = 0. \text{ Aqui } x' = \frac{dx}{dt}, \ y' = \frac{dy}{dt}.$$

- (A) Aplicando a Transformada de Laplace, obtenha um sistema de equações entre as quantidades $s, X = \mathcal{L}\{x\}$ e $Y = \mathcal{L}\{y\}$. Obtenha a solução desse sistema de equações.
- (B) Obtenha x(t) e y(t) via transformada inversa

Solução: (A) já que
$$\mathcal{L}(\delta(t)) = 1$$
, segue
$$\begin{cases} sX + X + 2Y &= 1 \\ -X + sY + Y &= 1 \end{cases} \Leftrightarrow \begin{cases} (s+1)X + 2Y &= 1 \\ -X + (s+1)Y &= 1 \end{cases}$$

Solução: (A) já que $\mathcal{L}(\delta(t)) = 1$, segue $\begin{cases} sX + X + 2Y = 1 \\ -X + sY + Y = 1 \end{cases} \Leftrightarrow \begin{cases} (s+1)X + 2Y = 1 \\ -X + (s+1)Y = 1 \end{cases}$ Cálculo de X: sist equiv $\begin{cases} (s+1)^2X + 2(s+1)Y = s+1 \\ 2X - 2(s+1)Y = -2 \end{cases} \Rightarrow [(s+1)^2 + 2]X = s+1 - 2 \Rightarrow X(s) = \frac{s-1}{(s+1)^2 + 2}$ Cálculo de Y: sist equiv $\begin{cases} (s+1)X + 2Y = 1 \\ -(s+1)X + (s+1)^2Y = s+1 \end{cases} \Rightarrow [(s+1)^2 + 2]Y = s+1+1 \Rightarrow Y(s) = \frac{s+2}{(s+1)^2 + 2}$

(B) Finalmente, identificando $w = \sqrt{2}$, aplicamos a transformação inversa

$$x(t) = \mathcal{L}^{-1}X(s) = \mathcal{L}^{-1}\left(\frac{s+1}{(s+1)^2 + 2} - \frac{2}{(s+1)^2 + 2}\right) = e^{-t}\cos(\sqrt{2}t) - \frac{2e^{-t}\sin(\sqrt{2}t)}{\sqrt{2}}$$

$$y(t) = \mathcal{L}^{-1}Y(s) = \mathcal{L}^{-1}\left(\frac{s+1}{(s+1)^2 + 2} + \frac{1}{(s+1)^2 + 2}\right) = e^{-t}\cos(\sqrt{2}t) + \frac{e^{-t}\sin(\sqrt{2}t)}{\sqrt{2}}$$