

ข้อมูล Hospital facility type และ Medical school เลือกได้ จาก tables "Code_HospType" และ "Code_School"

เช่นจากตัวอย่างที่ School = 4 จะมีค่าต่าง ๆ ดังนี้

Code_School							
Code	School	bSchoolUTI	bSchooolBSI	bSchoolVAE			
4	Major	0.3744	0.2627	0.404			

และจากที่ BedSize=850 จะได้ค่า bBedSizeUTI = 0.4901 ดังนี้

	DAI_BedSize_Coef							
Site	BedSize	CodeBedSize	Coef					
CAUTI	>214	3	0.4901					

และค่า bBedSizeVAE = 0.2571 ดังนี้

DAI_BedSize_Coef							
Site	BedSize	CodeBedSize	Coef				
CLABSI	>223	3	0.2571				

ให้โปรแกรมดึงข้อมูลค่า beta coefficient ของ CAUTI, CLABSI, และ VAE ซึ่งคือค่าใน bSchoolUTI, bSchoolBSI, bSchoolVAE ที่มีอยู่ใน table "Code_School" และค่า coefficient ใน bHospTypeUTI, bHospTypeBSI, และ bHospTypeVAE ใน table "Code_HospType" มาใส่ พร้อมทั้งคำนวณค่าสัมประสิทธิ bBedSizeUTI, bBedSizeBSI, และ bBedSizeVAE โดยจากข้อมูลตัวเลข BedSize ให้จัด แบ่งกลุ่มตามจำนวนเป็นกลุ่มต่าง ๆ ดังใน table DAI_BedSize_Coef นำค่า coefficient ใน fields "Coef" ของ table "DAI_BedSize_Coef" มาใส่ใน fields "bBedSizeUTI", bBedSizeBSI, และ "bBedSizeVAE" ของ table "HospChar" Code ของ field "School" และ "HospType" อยู่ ใน table "Code_School" และ "Code_Hosp Type" ดึงค่า coefficient จาก table "Code_School" และ "Code_Hosp Type" ดึงค่า coefficient จาก table "Code_School" และ "Code_Hosp Type" ก็งค่า coefficient จาก table "Code_School" และ "Code_Hosp Type"

เมื่อใส่ข้อมูลข้อมูลเบื้องต้นที่จำเป็นหมดแล้ว ต่อไปก็สามารถเลือก module ที่จะเข้าข้อมูลได้ สมมติว่าเลือกที่จะเข้า module "DAI & SSI" ก่อน

เมื่อเลือก DAI & SSI จะนำมาที่หน้า DAI & SSI Main Menu เพื่อเลือกว่าจะเข้าข้อมูลเพิ่ม (Append data) หรือ วิเคราะห์/ทำ รายงานข้อมูลที่เข้าแล้ว (Data Analysis/Report) หรือจะ Backup ข้อมูล สมมติว่าเลือกที่ Append data

ข้อมูลที่ต้องเข้าก่อนคือ Patient characteristics เพื่อเข้าข้อมูลใน table "Patient" ข้อมูลวัน Discharge จะนำมาลบกับข้อมูลวัน Admission แล้ว+1 เป็น Length of stay (LOS) ต้องมากกว่า 0 และไม่เกิน 365 วัน ถ้าเกินให้เตือนและแก้ไขให้ถูกต้องก่อน ข้อมูลที่เข้าแล้วจะแสดงในหน้าต่างขวามือ สามารถคลิกที่ record ในหน้าต่างนี้เพื่อเรียกข้อมูลมาแก้ไข่ได้ และถ้าใส่ Serial number ซ้ำ โปรแกรมจะให้ข้อมูลเดิมในช่องใส่ข้อมูล ดังนั้นที่หน้าต่างนี้ สามารถค้นหาข้อมูลเดิมได้ โดยการใส่ Serial number เมื่อใส่ข้อมูลเสร็จแล้ว สมมติว่าต้องการใส่ข้อมูล Device-associated ให้คลิก tab "Device-associated"

เมื่อคลิกเลือก tap "Device-associated" จะได้ tap ย่อยอยู่แถว ล่าง และมี Device indwelling เป็น tap ย่อยอันแรก ข้อมูลในหน้าต่างนี้ จะบันทึกใน table "DeviceDay" โดยเลือก code จาก table "Wards" และ "Code_device" ดัง slide ถัดไป ข้อมูล Number of patients with the device จะถูก บันทึกใน field ชื่อ Duration เมื่อได้ข้อมูล Date survey แล้ว ให้คำนวณค่า Monthly, Bimonth, Quarter, Trimester, SemiAnnual, และ Annual ใส่ใน fields ชื่อเดียวกัน โดย Monthly = เดือนที่, Bimonth = 2 เดือนที่, Quarter = 3 เดือนที่, Trimester = 4 เดือนที่, SemiAnnual = 6 เดือนที่ ของปี; Annual = ปี ค.ศ

ข้อมูล Date survey จะเก็บไว้ใน field "dDate" ในภูปแบบ ddmm-yyyy โดยปีใช้เป็นปี ค.ศ ข้อมูลที่เข้าจะใส่ใน table "DeviceDay" พร้อมค่า dDate ที่ถูก แบ่งเป็นช่วงต่าง ๆ คือ Monthly, Bimonth, Quarter, Trimester, SemiAnnual, และ Annual แต่ fileds เหล่านี้ไม่ต้อง แสดงในหน้าต่างขวามือ

ข้อมูลของ table ที่เข้าข้อมูลแล้ว และคำนวณค่าของ Monthly, Bimonth, Quarter, Trimester, SemiAnnual, และ Annual จะเป็นลักษณะดังนี้

เมื่อเข้าข้อมูล Device indwelling เสร็จแล้วให้คลิก tap

"Device-associated infection" เพื่อเข้าข้อมูลของ table "DAI" เมื่อ key in เลข Serial number โปรแกรมจะค้นหา Serial_no ใน table "Patient" ที่ตรงกัน แล้วให้ข้อมูลแสดงในกรอบข้างบน เพื่อให้ตรวจสอบความถูกต้องตรงกัน

DAI

Serial_no
Site
DOE
Ward
Pathogen.Value
Monthly
Bimonth
Quater
Trimester
SemiAnnual
Annual

Code_Site_DAI

Site
Description
Group
SontOrder
Intercept

Site of infection เลือกจาก table "Code_Site_DAI" เมื่อใส่วันที่ใน Date of event ครบแล้ว โปรแกรมจะคำนวณ ระยะเวลาระหว่าง Admission และ Date of event (DOE) มาให้ ในช่องข้างล่างเพื่อให้ตรวจสอบว่าไม่ใช่ตัวเลขติดลบ หรือค่าสูงมาก ผิดปกติ เช่นสูงกว่า system date

เมื่อได้ข้อมูล Date of event แล้ว ให้คำนวณค่า Monthly, Bimonth, Quarter, Trimester, และ Annual ใส่ใน fields ชื่อ เดียวกัน

Code ของ Site of infection, Ward of Unit, และ Pathogen ได้จาก table "Code_Site_DAI", "Wards", และ "Code_Pathogen" ข้อมูลที่เข้าแล้วจะบันทึกใน table "DAI"

เมื่อใส่ข้อมูลครบ ให้เลือกว่าต้องการรายงานเป็นตารางหรือ รูปกราฟ เมื่อคลิกเลือก Data Analysis/Report โปรแกรมจะพาไปที่หน้า Analysis of Device-associated infection & Surgical site infection

ที่หน้านี้จะมี tap ย่อยให้เลือก 2 tap โดย default จะเป็น tap แรกคือ "Device-associated infection"

ให้ผู้ใช้เติมว่าจะใช้ช่วงข้อมูลจาก เดือนใด ปีใด ถึง เดือนใด ปีใด; ของ Wards ใด; และการแบ่งช่วงในรายงาน เป็นแบบใดระหว่าง 1, 2, 3, 4, 6, หรือ 12 เดือน

Ward or Unit มีค่าแบบ multiple value คือเลือกวิเคราะห์ พร้อมกันที่ละหลาย ๆ Ward

การเลือก Site of infection สามารถเลือกได้หลาย site รวมทั้ง site ย่อยด้วย (ตัวที่ย่อหน้าเข้ามา)

เมื่อเลือก Table report จะมีหน้าจอใหม่แสดงผลการวิเคราะห์ เป็นตาราง และเนื่องจาก CA-SUTI และ CA-ABUTI เป็น complement ของ CAUTI ดังนั้นจึงมีการรวมค่า CA-SUTI กับ CA-ABUTI เป็น CAUTI

ถ้าไม่เลือก Site ย่อยด้วยเช่นไม่เลือก CA-ABUTI ก็ให้ผลวิเคราะห์ เพียงแค่ CA-SUTI และ CAUTI เท่านั้น จากหน้าจอนี้จะมี tap ให้เลือกว่าจะให้แสดงเป็น กราฟ, Export, s หรือพิมพ์ตาราง

ถ้ามีการเลือกหลาย Site of infection หลัก โปรแกรมจะให้ จำนวนตารางตาม Site of infection หลัก ถ้าต้องการดูตารางอื่นให้คลิกเลือกที่ Go to table

ถ้าเลือก Chart report โปรแกรมจะให้ tap สำหรับเลือกว่าจะเป็น กราฟแบบ SPC-Chart หรือ Forest plot ถ้าเลือก SPC-Chart โปรแกรมจะให้ SPC-Chart ของค่า Total SIR ตามจำนวน Site ที่เลือก

ถ้าต้องการดู SPC-Chart อื่นให้คลิกเลือกที่ Go to chart

ถ้าเลือก tap "Forest plot" โปรแกรมจะให้กราฟ high-low ใน แนวนอน โดยใช้ LCL เป็นค่า low ค่า UCL เป็นค่า high และค่า CL เป็นค่ากลาง ของค่า Total SIR ตามจำนวน Site ที่เลือก ถ้าต้องการดู Forest plot อื่นให้คลิกเลือกที่ Go to chart

CAUTI

3.1

15.5

21.7

15.9

10.1

21.7

22.6

25.8

23.1

14.2

17.4

I J

CAUTI

n Rate

9.7

12.7

8.7

4.3

3.1

0.0

3.1

17.7

8.5

25.5

4 3

n Rate

Н

CA-ABUTI

Rate

0.0

2.2

2.2

0.0

0.0

3.3

0.0

0.0

3.8

0.0

0.0

1.6

H

3.2

0.0

0.0

0.0

0.0

4.3

0.6

CA-ABUTI

n Rate

0.0

0 0.0

0 0.0

0.0

D E

CA-SUTI

n Rate

7 3.1

6 13.3

4 21.7

5 15.9

6 20.1

3 10.1

3 21.7

5 18.8

5 25.8

4 23.1

51 15.8

E F

CA-SUTI

n Rate

6.5

12.7

8.7

4.3

3.1

6 17.7

1 4.3

4 25.5

8.4

2.2

1 act infection rate and SIR

229

451

184

314

138

266

194

3,219

D

1 lct infection rate and SIR

309

394

229

231

318

292 0 0.0

322

339

157

3,322

6.541

12

19

20

22

23

24

25

Catheter days

วิธีการคำนวณ Rate, SIR, LCL, LWL, CL, UWL, และ UCL

- จาก table "DeviceDay" ให้บวกรวมค่าใน field
 "Duration" ที่ Ward = NEU และ Annual = 2005 และ
 Device = F และ Trimester = 1 มาใส่ไว้ในเชล D4
- 2. ทำในทำนองเดียวกันจนถึงเซล D15
- 3. บวกรวม D4 ถึง D15 ใส่ไว้ใน D16
- 4. ทำในทำนองเดียวกัน เพียงแต่เปลี่ยน Ward เป็น TRA
- 5. บวกรวม D16 และ D29 ใส่ใน D30
- จาก table "DAI" ให้นับรวมจำนวนที่ Ward = NEU และSite
 = CA-SUTI และ Annual = 2005 และ Trimester = 1 มาใส่
 ไว้ในเซล E4
- 2. ทำในทำนองเดียวกันจนถึงเซล D15
- 3. บวกรวม E4 ถึง E15 ใส่ไว้ใน E16
- 4. ทำในทำนองเดียวกัน เพียงแต่เปลี่ยน Site เป็น CA-ABUTI ใส่ใน G4 ถึง G16
- 5. ทำซ้ำในทำนองเดียวกันกับข้อ 1 ถึง 4 แต่เปลี่ยน Ward เป็น TRA เพื่อใส่ตัวเลขใน F17 ถึง F29. และ G17 ถึง G29
- 6. บวกรวม E4 และ G4 เป็นค่า CAUTI ใน I4
- 7. บาวกรวมเช่นเดียวกันนี้ลงเรื่อยมาจนถึง 129
- บวกรวมค่าทั้งหมดคือ E16+E29, G16+G29, I16+I29 เป็น GRAND TOTAL
- 9. คำนวณค่า Rate โดยการคูณ n ด้วย 1,000 แล้วหารด้วย Catheter-days ใส่ค่าในคอลัมน์ Rate ของทุก Site

จากข้อมูลที่ได้จะนำมาหา SIR (standardized infection ratio) ของ CAUTI หลักการของการคำนวณเป็นดังนี้

30 9.0

$$SIR = \frac{O}{E}$$

โดย

O คือจำนวนครั้งของการติดเชื้อ CAUTI ซึ่งในกรณีนี้คือค่า **n** ของ CAUTI หรือตัวเลขในคอลัมน์ I ค่านี้คือค่า **observed**

E คือจำนวนครั้งของการติดเชื้อ CAUTI ที่คำนวณได้จากค่ามาตรฐาน ค่านี้คือ expected number โดยใช้สูตรการคำนวณดังนี้ $E=DeviceDay imes e^{(eta_0+eta_1+eta_2+eta_3+eta_4)}$

โดย

DeviceDay คือจำนวนวันที่ใส่ device ในกรณีนี้คือ Catheter-days ตัวเลขในคอลัมน์ D e คือ exponential function

- คือค่า intercept ของการติดเชื้อ DAI ซึ่งในกรณีคือค่า intercept ของ CAUTI มีบันทึกไว้ใน table "Code_Site_DAI" ใน field "Intercept" ที่ field "Group" เท่ากับ CAUTI ซึ่งเท่ากับ -7.047
- คำ คือค่าสัมประสิทธิ (beta coefficient) ของ Ward ซึ่งในกรณีที่ Ward = NEU มีบันทึกไว้ใน field "bUTI" ของ table "Wards" ที่ field "Code" = NEU ซึ่งเท่ากับ 2.8223

และในกรณีที่ Code = TRA ค่า bUTI จะเท่ากับ 3.1104

- คือค่าสัมประสิทธิ (beta coefficient) ของ School ซึ่งในกรณีนี้มีบันทึกไว้ใน field "bSchoolUTI" ของ table "HospChar" ซึ่ง เท่ากับ 2.8223
- β₃ คือค่าสัมประสิทธิ (coefficient) ของ BedSize ซึ่งในกรณีนี้มีบันทึกไว้ใน field "bBedSizeUTI" ของ table "HospChar" ซึ่ง เท่ากับ 0.4901
- คืน คือค่าสัมประสิทธิ (coefficient) ของ HospType ซึ่งในกรณีนี้มีบันทึกไว้ใน field "bHospTypeUTI" ของ table "HospChar" ซึ่งเท่ากับ 0.3927

4	K	L	M	N	0	P	Q	R	S
1									
2	Intercept	Ward	School	Bed size	HospType				
3	bo	b1	b2	b3	b4	Sum_b	exp(Sum_b)	*CathDay	SIF
4	-10.2667	2.8223	0.3744	0.4901	0.3927	-6.1872	0.002055574	0.470726517	14.9
5	-10.2667	2.8223	0.3744	0.4901	0.3927	-6.1872	0.002055574	0.95378648	2.:
6	-10.2667	2.8223	0.3744	0.4901	0.3927	-6.1872	0.002055574	0.927064014	7.6
7	-10.2667	2.8223	0.3744	0.4901	0.3927	-6.1872	0.002055574	0.378225673	10.6
8	-10.2667	2.8223	0.3744	0.4901	0.3927	-6.1872	0.002055574	0.645450334	7.
9	-10.2667	2.8223	0.3744	0.4901	0.3927	-6.1872	0.002055574	0.614616719	11.4
10	-10.2667	2.8223	0.3744	0.4901	0.3927	-6.1872	0.002055574	0.608449996	4.9
11	-10.2667	2.8223	0.3744	0.4901	0.3927	-6.1872	0.002055574	0.283669255	10.6
12	-10.2667	2.8223	0.3744	0.4901	0.3927	-6.1872	0.002055574	0.546782767	11.0
13	-10.2667	2.8223	0.3744	0.4901	0.3927	-6.1872	0.002055574	0.398781416	12.
14	-10.2667	2.8223	0.3744	0.4901	0.3927	-6.1872	0.002055574	0.355614356	11.
15	-10.2667	2.8223	0.3744	0.4901	0.3927	-6.1872	0.002055574	0.43372618	6.
16	-10.2667	2.8223	0.3744	0.4901	0.3927	-6.1872	0.002055574	6.616893707	8.
17	-10.2667	3.1104	0.3744	0.4901	0.3927	-5.8991	0.002741911	0.847250632	3.5
18	-10.2667	3.1104	0.3744	0.4901	0.3927	-5.8991	0.002741911	1.080313103	4.
19	-10.2667	3.1104	0.3744	0.4901	0.3927	-5.8991	0.002741911	0.627897717	3.:
20	-10.2667	3.1104	0.3744	0.4901	0.3927	-5.8991	0.002741911	0.63338154	1.6
21	-10.2667	3.1104	0.3744	0.4901	0.3927	-5.8991	0.002741911	0.781444757	2.
22	-10.2667	3.1104	0.3744	0.4901	0.3927	-5.8991	0.002741911	0.871927834	1.3
23	-10.2667	3.1104	0.3744	0.4901	0.3927	-5.8991	0.002741911	0.800638137	0.0
24	-10.2667	3.1104	0.3744	0.4901	0.3927	-5.8991	0.002741911	0.88289548	1.1
25	-10.2667	3.1104	0.3744	0.4901	0.3927	-5.8991	0.002741911	0.929507974	6.5
26	-10.2667	3.1104	0.3744	0.4901	0.3927	-5.8991	0.002741911	0.641607274	3.
27	-10.2667	3.1104	0.3744	0.4901	0.3927	-5.8991	0.002741911	0.581285223	5.2
28	-10.2667	3.1104	0.3744	0.4901	0.3927	-5.8991	0.002741911	0.430480094	9.
29	-10.2667	3.1104	0.3744	0.4901	0.3927	-5.8991	0.002741911	9.108629767	3.
30								15.72552347	5

ขั้นตอนการคำนวณ

 บวกรวมค่า intercept และ coefficient ทั้งหมด ไว้ที่ column P

$$(\beta_0+\beta_1+\beta_2+\beta_3+\beta_4)$$

- 2. ใส่ exponential ค่าใน column P ใส่ใน column Q $_{\rho}(\beta_0+\beta_1+\beta_2+\beta_3+\beta_4)$
- น้ำค่าใน column Q มาคูณด้วยค่าใน column D ใส่ใน column R เป็นค่า expected (E)

 $E=DeviceDay imes e^{(eta_0+eta_1+eta_2+eta_3+eta_4)}$ ค่านี้คือค่า expected number of infection

4. นำค่าใน column I มาหารด้วยค่าใน column R ใส่ใน column S

$$SIR = \frac{O}{E}$$

ผลหารที่ได้เรียกว่า SIR

4		В	С	1	J	R	S	X
1	Catheter-	associate	ed urinary tra					
2				CA	UTI			
3	Ward	Year	Trimester	n	Rate	*CathDay	SIR	CI
4	NEU	2005	1	7	3.1	0.470726517	14.9	5.5
5			2	2	4.3	0.95378648	2.1	5.5
6			3	7	15.5	0.927064014	7.6	5.5
7		2006	1	4	21.7	0.378225673	10.6	5.5
8			2	5	15.9	0.645450334	7.7	5.5
9			3	7	23.4	0.614616719	11.4	5.5
10		2007	1	3	10.1	0.608449996	4.9	5.5
11			2	3	21.7	0.283669255	10.6	5.5
12			3	6	22.6	0.546782767	11.0	5.5
13		2008	1	5	25.8	0.398781416	12.5	5.5
14			2	4	23.1	0.355614356	11.2	5.5
15			3	3	14.2	0.43372618	6.9	5.5
16			Total	56	17.4	6.616893707	8.5	5.5
17	TRA	2005	1	3	9.7	0.847250632	3.5	5.5
18			2	5	12.7	1.080313103	4.6	5.5
19			3	2	8.7	0.627897717	3.2	5.5
20		2006	1	1	4.3	0.63338154	1.6	5.5
21			2	2	7.0	0.781444757	2.6	5.5
22			3	1	3.1	0.871927834	1.1	5.5
23		2007	1	0	0.0	0.800638137	0.0	5.5
24			2	1	3.1	0.88289548	1.1	5.5
25			3	6	17.7	0.929507974	6.5	5.5
26		2008	1	2	8.5	0.641607274	3.1	5.5
27			2	3	14.2	0.581285223	5.2	5.5
28			3	4	25.5	0.430480094	9.3	5.5
29			Total	30	9.0	9.108629767	3.3	5.5
30		GRAN	D TOTAL	86		15.72552347	5.5	5.5

- บวกค่า Total ของเซล R16 และ R29 ใส่ใน GRAND TOTAL R30
- 6. คำนวณค่า GRAND TOTAL SIR ใส่ในเซล S30
- นำค่า GRAND TOTAL SIR ในเซล S30 มา copy ใส่ใน column X เป็นค่า CL (central limit)

วิธีการหาค่า control limits ของ SIR

Control limits มีทั้งหมด 5 limits คือ

- 1. Lower control limit
- 2. Lower warning limit
- 3. Central limit
- 4. Upper warning limit
- 5. Upper control limit

สูตรการคำนวณค่า lower limit คือ

$$SIR_{LL} = \frac{O_{LL}}{E}$$

 SIR_{LL} = Lower limit of SIR

E = Expected number of infection ซึ่งคำนวณมาได้ก่อนหน้านี้แล้วใน column R ของไฟล์ Excel

 O_{LL} = Lower limit of observed

ในกรณีของ lower control limit

$$O_{LCL} = \frac{\chi_{0.025,2n}^2}{2}$$

โดย

 O_{LCL} = Lower limit of observed number of infection

 $\chi^2_{0.025,2n}$ = ค่า chi-square ที่ probability = 0.025 และ degree of freedom = 2n

n = observed number of infection ซึ่งในกรณีนี้คือตัวเลขใน column I ของไฟล์ Excel

ในกรณีของ lower warning limit

$$O_{LWL} = \frac{\chi_{0.1,2n}^2}{2}$$

โดย

 O_{LWL} = Lower warning limit of observed number of infection

 $\chi^2_{0.1,2n}$ = ค่า chi-square ที่ probability = 0.1 และ degree of freedom = 2n

n = observed number of infection ซึ่งในกรณีนี้คือตัวเลขใน column I ของไฟล์ Excel

สูตรการคำนวณค่า upper limit คือ

$$SIR_{UL} = \frac{O_{UL}}{F}$$

 SIR_{UL} = Upper limit of SIR

E = Expected number of infection ซึ่งคำนวณมาได้ก่อนหน้านี้แล้วใน column R ของไฟล์ Excel

 O_{UL} = Upper limit of observed ในกรณีของ Upper control limit

$$O_{UCL} = \frac{\chi_{0.975,2(n+1)}^2}{2}$$

โดย

 O_{UCL} = Upper limit of observed number of infection

 $\chi^2_{0.975,2(n+1)}$ = ค่า chi-square ที่ probability = 0.975 และ degree of freedom = 2(n+1)

n = observed number of infection ซึ่งในกรณีนี้คือตัวเลขใน column I ของไฟล์ Excel

ในกรณีของ Upper warning limit

$$O_{UWL} = \frac{\chi_{0.9,2(n+1)}^2}{2}$$

โดย

 O_{UWL} = Upper warning limit of observed number of infection

 $\chi^2_{0.9,2(n+1)}$ = ค่า chi-square ที่ probability = 0.9 และ degree of freedom = 2(n+1)

n = observed number of infection ซึ่งในกรณีนี้คือตัวเลขใน column I ของไฟล์ Excel

	S	T	U	V	W	X	Υ	Z	AA	AB
1										
2										
3	SIR	nLCL	LCL	nLWL	LWL	CL	nUWL	UWL	nUCL	UCL
4	14.9	2.814363	6.0	3.894767	8.3	5.5	11.77091	25.0	14.42268	30.6
5	2.1	0.242209	0.3	0.531812	0.6	5.5	5.32232	5.6	7.224688	7.6
6	7.6	2.814363	0.4	3.894767	4.2	5.5	11.77091	12.7	14.42268	15.6
7	10.6	1.089865	0.3	1.74477	4.6	5.5	7.99359	21.1	10.24159	27.1
8	7.7	1.623486	0.3	2.432591	3.8	5.5	9.274674	14.4	11.66833	18.1
9	11.4	2.814363	0.4	3.894767	6.3	5.5	11.77091	19.2	14.42268	23.5
10	4.9	0.618672	0.2	1.102065	1.8	5.5	6.680783	11.0	8.767273	14.4
11	10.6	0.618672	0.2	1.102065	3.9	5.5	6.680783	23.6	8.767273	30.9
12	11.0	2.201894	0.4	3.151898	5.8	5.5	10.53207	19.3	13.05947	23.9
13	12.5	1.623486	0.3	2.432591	6.1	5.5	9.274674	23.3	11.66833	29.3
14	11.2	1.089865	0.3	1.74477	4.9	5.5	7.99359	22.5	10.24159	28.8
15	6.9	0.618672	0.2	1.102065	2.5	5.5	6.680783	15.4	8.767273	20.2
16	8.5	42.3018	0.8	46.64928	7.1	5.5	66.86429	10.1	72.72066	11.0
17	3.5	0.618672	0.2	1.102065	1.3	5.5	6.680783	7.9	8.767273	10.3
18	4.6	1.623486	0.3	2.432591	2.3	5.5	9.274674	8.6	11.66833	10.8
19	3.2	0.242209	0.1	0.531812	0.8	5.5	5.32232	8.5	7.224688	11.5
20	1.6	0.025318	0.0	0.105361	0.2	5.5	3.88972	6.1	5.571643	8.8
21	2.6	0.242209	0.1	0.531812	0.7	5.5	5.32232	6.8	7.224688	9.2
22	1.1	0.025318	0.0	0.105361	0.1	5.5	3.88972	4.5	5.571643	6.4
23	0.0	#NUM!	#####	#NUM!	#####	5.5	2.302585	2.9	3.688879	4.6
24	1.1	0.025318	0.0	0.105361	0.1	5.5	3.88972	4.4	5.571643	6.3
25	6.5	2.201894	0.4	3.151898	3.4	5.5	10.53207	11.3	13.05947	14.0
26	3.1	0.242209	0.1	0.531812	0.8	5.5	5.32232	8.3	7.224688	11.3
27	5.2	0.618672	0.2	1.102065	1.9	5.5	6.680783	11.5	8.767273	15.1
28	9.3	1.089865	0.3	1.74477	4.1	5.5	7.99359	18.6	10.24159	23.8
29	3.3	20.24087	0.7	23.22944	2.6	5.5	38.3151	4.2	42.82687	4.7
30	5.5	68.7889	0.8	74.35002	4.7	5.5	99.14714	6.3	106.2093	6.8

3	Ward	Year	Trimester	SIR	LCL	LWL	CL	UWL	UCL
31	Combined	2005	1st	7.6	0.5	4.7	5.5	11.7	14.0
32			2nd	3.4	0.4	1.9	5.5	5.8	7.1
33			3rd	5.8	0.5	3.5	5.5	9.1	11.0
34		2006	1st	4.9	0.3	2.4	5.5	9.2	11.5
35			2nd	4.9	0.4	2.7	5.5	8.2	10.1
36			3rd	5.4	0.4	3.1	5.5	8.7	10.6
37		2007	1st	2.1	0.2	0.8	5.5	4.7	6.2
38			2nd	3.4	0.3	1.5	5.5	6.9	8.8
39			3rd	8.1	0.5	5.3	5.5	12.0	14.2
40		2008	1st	6.7	0.4	3.7	5.5	11.3	13.9
41			2nd	7.5	0.4	4.2	5.5	12.6	15.4
42			3rd	8.1	0.4	4.5	5.5	13.6	16.7
43			Total	5.5	0.8	4.7	5.5	6.3	6.8

ขั้นตอนการคำนวณ

- หาค่า lower control limit of observed number of infection ใส่ใน column T สังเกตว่าที่ cell T23 ไม่สามารถคำนวณได้เพราะค่า chisquare ที่ degree of freedom = 0 ไม่มี จึงให้ข้ามไป
- คำนวณค่า lower control limit of SIR ใส่ใน column U
 โดยการหารตัวเลขใน column T ด้วยตัวเลขใน column R
 สังเกตว่าที่ cell U23 ไม่สามารถคำนวณได้เพราะค่าใน cell
 T23 คำนวณไม่ได้ จึงให้ข้ามไป
- หาค่า lower warning limit of observed number of infection ใส่ใน column V
 สังเกตว่าที่ cell V23 ไม่สามารถคำนวณได้เพราะค่า chi-square ที่ degree of freedom = 0 ไม่มี จึงให้ข้ามไป
- คำนวณค่า lower control limit of SIR ใส่ใน column W
 โดยการหารตัวเลขใน column W ด้วยตัวเลขใน column R
 สังเกตว่าที่ cell W23 ไม่สามารถคำนวณได้เพราะค่าใน cell
 V23 คำนวณไม่ได้ จึงให้ข้ามไป
- หาค่า upper warning limit of observed number of infection ใส่ใน column Y
- 6. คำนวณค่า upper warning limit of SIR ใส่ใน column Z โดยการหารตัวเลขใน column Y ด้วยตัวเลขใน column R
- หาค่า upper control limit of observed number of infection ใส่ใน column AA
- 8. คำนวณค่า upper control limit of SIR ใส่ใน column AB โดยการหารตัวเลขใน column AA ด้วยตัวเลขใน column R

9. รวมข้อมูลในแต่ละช่วงเวลาของทุก Ward เพื่อนำมาทำกราฟ เส้นของ SIR

ตัวอย่างวิธีการคำนวณดูได้จากไฟล์ DAI-Table-Neu & TRA.xlsx

การวินิจฉัย out of control

- 10. หาดูว่า ณ ที่เวลาใดที่ warning limit มีค่าสูงหรือต่ำกว่า central limit (CL)
- 11. ถ้า warning limit มีค่าสูงหรือต่ำกว่า CL ณ ที่เวลาใดให้เปลี่ยน marker ของเส้นกราฟที่เวลานั้นให้เป็นรูปข้าวหลามตัดสีเหลือง
- 12. หาดูว่า ณ ที่เวลาใดที่ upper limit มีค่าสูงหรือต่ำกว่า central limit (CL)
- 13. ถ้า control limit สูงหรือต่ำกว่า CL ณ ที่เวลาใดให้เปลี่ยน marker ของเส้นกราฟที่เวลานั้นให้เป็นรูปข้าวหลามตัดสีแดง
- 14.ถ้า control limit สูงหรือต่ำกว่า CL ณ ที่เวลาใด ค่าของ lower limit ก็จะสูงหรือต่ำกว่า CL ณ ที่เวลานั้นด้วยเสมอ เพราะ probability <0.05 ต้องน้อยกว่า probability <0.2 เสมอ ดังนั้นให้ยึดค่า control limit เป็นสำคัญ

ตัวอย่างของกราฟดูได้จากไฟล์ DAI-Chart.xlsx

ตัวตั้งและตัวหารของ Site ต่าง ๆ

Site	ตัวตั้ง	ตัวหาร
CA-SUTI	จำนวน records ที่ Site = CA-SUTI	ผลบวกรวมของ Duration ที่ Device = F
CA-ABUTI	จำนวน records = ที่ Site CA-ABUTI	ผลบวกรวมของ Duration ที่ Device = F
CAUTI	จำนวน records = ที่ Site CA-ABUTI หรือ CA-SUTI	ผลบวกรวมของ Duration ที่ Device = F
CLABSI	จำนวน records = ที่ Site CLABSI	ผลบวกรวมของ Duration ที่ Device = C
MBI-CLABSI	จำนวน records = ที่ Site CA-ABUTI	ผลบวกรวมของ Duration ที่ Device = C
VAC	จำนวน records = ที่ Site VAC	ผลบวกรวมของ Duration ที่ Device = V
IVAC	จำนวน records = ที่ Site IVAC	ผลบวกรวมของ Duration ที่ Device = V
PVAP	จำนวน records = ที่ Site PVAP	ผลบวกรวมของ Duration ที่ Device = V
PedVAE	จำนวน records = ที่ Site PedVAE	ผลบวกรวมของ Duration ที่ Device = V