_	
Contents	1.1 Introduction
	1.2 Euler's Formula
	1.3 Applications
1	1 1.4 Transformations and Euclidean Geometry

Geometry and Complex Arithmetic

1.1 Introduction

Complex numbers form the set \mathbb{C} and have form a+ibwhere $a, b \in \mathbb{R}$ and $i^2 = -1$. Initially regarded with suspicion, confusion, even hostility.

Geometric interpretation discovered independently and simultaneously by Gauss, Wessel, Argand. The number a + ib can be represented by a vector from the origin to the point (a, b). Then \mathbb{C} is called the complex plane. There was now a way of making sense of complex numbers; the floodgates of innovation were about to open.

Sum of two complex numbers is given by the parallelogram rule of ordinary vector addition.

Multiplication The length of *AB* is the product of the lengths of A and B, and the angle of AB is the sum of the angles of A and B.

Symbolic form of addition and multiplication were first discovered by Bombelli. A general cubic can always be reduced to $x^3 = 3px + 2q$. Finding x is tantamount to finding the intersection between a line and x^3 . This can always be solved with the remarkable formula $x = \sqrt[3]{q} + \sqrt{q^2 - p^3} + \sqrt[3]{q} - \sqrt{q^2 - p^3}$. Obviously, there should always be a point of intersection, but what if $p^3 > q^2$? This question gave rise to symbolic addition and multiplication of complex numbers and a practical use for \mathbb{C} .

Symbolic addition $(a + i\tilde{a}) + (b + i\tilde{b})$ $= (a+b)+i(\tilde{a}+b)$

Symbolic multiplication $(a + i\tilde{a})(b + i\tilde{b})$

 $= (a\tilde{a} - bb) + i(ab + b\tilde{a})$

Modulus is the length of z = ||z||.

Argument of z is the angle $\theta = \arg(z) = \tan^{-1}(y/x)$.

Real part of z is its x-coordinate Re(z).

Imaginary part of z is its y-coordinate Im(z).

Complex conjugate of z is the reflection of z in the

real axis, \overline{z} .

Geometric Shorthand (outdated, Euler's formula preferred) a complex number can be represented as $R \angle \phi$.

Geometric multiplication $(R \angle \phi)(r \angle \theta) = (Rr)\angle(\phi + \theta)$

Geometric inverse $\frac{1}{r\angle\theta} = (1/r)\angle(-\theta)$ Symbolic inverse $\frac{1}{r} = \frac{x - iy}{\sqrt{2} \pm \sqrt{2}}$

1.1.1 Equivalence of Symbolic and Geometric Arithmetic

Easy to show addition rules are equivalent.

Geometrically, multiplication by a complex number $A = R \angle \phi$ is a rotation of the plane through angle ϕ and an expansion by factor R.

Proof: the symbolic multiplication rule will be derived from the geometric multiplication rule and then vice versa. (i) Using geometric multiplication, observe that $i^2 = -1$.

Figure [5] shows the lightly shaded being transformed into the darkly shaded shapes by being multiplied by $2\angle \frac{\pi}{3}$. (ii) Rotations and expansions preserve parallelograms, so A(B+C) = AB + AC. See Figure [5].

Figure [6a] demonstrates the transformation $z \mapsto iz$. It is just a rotation by $\frac{\pi}{2}$.

Figure [6b] is transformed into figure [6c] by multiplying by 4 + 3i. It can be interpreted as $z \mapsto Az =$ $(4+3i)z = 4z + 3(iz) = 4z + 3(z \text{ rotated by } \frac{\pi}{2}). \blacksquare$

1.2 Euler's Formula

$$e^{i\theta} = \cos\theta + i\sin\theta$$

1.3 Applications

1.3.1 Trigonometry

1.3.2 Geometry	
1.3.3 Calculus	
1.3.4 Algebra	
1.4 Transformations and Euclidean Geometry	
2 Complex Functions as Transformations	
2.1 Polynomials	
2.2 Power Series	
2.3 The Exponential Function	
2.4 Cosine and Sine	
2.5 Multifunctions	
2.6 Logarithm Function	
2.7 Averaging Over Circles	
3 Differentiation: The Amplitwist Concept	
3.1	