Electromagnetismo 2024

Guía 7: Magnetostática

29 de mayo de 2024

Problema 1: Consideremos una espira circular de radio a, situada en el plano x-y, con centro en el origen y por la que pasa una corriente I. Calcule las componentes de la inducción magnética para el caso $r \gg a$.

Problema 2: Sea una cáscara esférica de radio interior a y radio exterior b construida con material magnético de permeabilidad μ . Dicha esfera es colocada dentro de una región con campo de inducción magnética constante y uniforme \vec{B} . Calcular el campo en todas partes, discutir el caso $\mu \gg 1$ y graficar las líneas de \vec{B} . Mostrar el efecto del blindaje del campo en la zona interior de la esfera.

Problema 3: Considere un conductor cilíndrico de radio R, infinito en longitud, por el que circula una corriente con densidad uniforme J.

- (a) Calcule \vec{B} dentro y fuera del alambre.
- (b) Si ahora el cilindro tiene un agujero también cilíndrico, de radio a, centrado a una distancia d del eje del cilindro principal donde (a + d) < R, calcule nuevamente \vec{B} en todo el espacio.

Problema 4: Sea una espira que se obtiene doblando por su diámetro una espira circular de radio R de tal manera que un semicirculo queda sobre el plano x - y y el restante en el plano x - z. Calcule el momento dipolar magnético si por ella circula una corriente estacionaria de intensidad I.

Problema 5: Sea un semiespacio z < 0 lleno con un medio de permeabilidad μ y el semiespacio z > 0 con un medio de permeabilidad arbitraria. Una distribución de corriente $\vec{J}(\vec{x})$ existe en el medio z > 0. Muestre que el problema puede resolverse reemplazando el medio de permeabilidad μ por corrientes imágenes adecuadas. Encuentre las corrientes imágenes como funcion de $\vec{J}(\vec{x})$.

Problema 6: Sea un cilindro de radio a y altura L con una magnetización uniforme paralela al eje del mismo.

- (a) Determine \vec{B} y \vec{H} sobre el eje del cilindro dentro y fuera del mismo.
- (b) Grafique \vec{B} y \vec{H} en función de z en unidades de $4\pi M_0$ para L=a/5.

F@CENA © 2024