Digital Logic Design Experiments Experiment Report

WIREFRAME FORMATION

電機一甲 110310138 劉千榮

數位邏輯設計實習報告

第6週:半加器與全加器

組員 110310138 劉千榮 110310147 王瑞鴻

壹、基本題

兩個1位元半加器組成之1位元全加器

實驗原理

使用Quartus prime lite編輯邏輯 間電路,燒入DE-10 stander板子,則可確認電路功能。先製作半加器模組,再利用剛做好的模組成新的全加器模組。在完成實驗後,驗證波型輸出,再將其燒錄製至開發板,執行功能驗證。

設計程序

先確認電路功能,畫出真值表並且轉換成布林代數,則可 以使用邏輯閘組合成電路。

模擬驗證

先確認電路功能,畫出真值表並且轉換成布林代數,則可 以使用邏輯閘組合成電路。

設計程序 (Verilog HDL)

```
module hw5(a, b, cin, sum, cout);
 2
 3
          // Input Port(s)
 4
          input a, b, cin;
 5
          // Output Port(s)
 7
          output sum, cout;
 8
 9
          wire summary, carry, carryTocout;
10
11
          assign cout = carry | carryTocout;
12
13
          halfadder hal(a, b, summary, carry);
          halfadder ha2(summary, cin, sum, carryTocout);
14
15
16
17
       endmodule
18
19
       module halfadder(a, b, sum, cout);
20
21
          // Input Port(s)
22
          input a, b;
23
24
          // Output Port(s)
25
          output sum, cout;
26
27
          assign {cout, sum} = a + b;
28
       endmodule
29
```


接腳設定簡介

本次實驗我們把輸入與輸出端接角以下列表格定義。

Node Name	Direction	Location	
in_a	Input	PIN_AB30	
in_ a	Input	PIN_Y27	
in_ cin	Input	PIN_AB28	
out cout	Output	PIN_AA24	
out sum	Output	PIN_AB23	

Pin Assignment of Slide Switches

		ssignment of share switte	
Signal Name	FPGA Pin No.	Description	I/O Standard
SW[0]	PIN_AB30	Slide Switch[0]	Depend on JP3
SW[1]	PIN_Y27	Slide Switch[1]	Depend on JP3
SW[2]	PIN_AB28	Slide Switch[2]	Depend on JP3
SW[3]	PIN_AC30	Slide Switch[3]	Depend on JP3
SW[4]	PIN_W25	Slide Switch[4]	Depend on JP3
SW[5]	PIN_V25	Slide Switch[5]	Depend on JP3
SW[6]	PIN_AC28	Slide Switch[6]	Depend on JP3
SW[7]	PIN_AD30	Slide Switch[7]	Depend on JP3
SW[8]	PIN_AC29	Slide Switch[8]	Depend on JP3
SW[9]	PIN_AA30	Slide Switch[9]	Depend on JP3

Pin Assignment of LEDs

Signal Name	FPGA Pin No.	Description	I/O Standard
LEDR[0]	PIN_AA24	LED [0]	3.3V
LEDR[1]	PIN_AB23	LED [1]	3.3V
LEDR[2]	PIN_AC23	LED [2]	3.3V
LEDR[3]	PIN_AD24	LED [3]	3.3V
LEDR[4]	PIN_AG25	LED [4]	3.3V
LEDR[5]	PIN_AF25	LED [5]	3.3V
LEDR[6]	PIN_AE24	LED [6]	3.3V
LEDR[7]	PIN_AF24	LED [7]	3.3V
LEDR[8]	PIN_AB22	LED [8]	3.3V
LEDR[9]	PIN_AC22	LED [9]	3.3V

輸出模擬 (ModelSim)

問題與心得

110310138 劉千榮

對於製作半加器模型,同學們可能會透過真值表來化簡電路,使用閘模型來敘述電路。Verilog HDL有支援使用行為模型的描述,便可以更簡單的製作出半加器模型。

貳、進階題(一)

請設計一個完整的4位元加法器 其中包括有一個1位元半加器和3個1位元全加器

實驗原理

使用Quartus prime lite編輯邏輯 間電路,燒入DE-10 stander板子,則可確認電路功能。將剛做好的全加器模型引入,再宣告內部接線後,便能完成HDL的撰寫。在完成實驗後,驗證波型輸出,再將其燒錄製至開發板,執行功能驗證。

設計程序

先確認電路功能,畫出真值表並且轉換成布林代數,則可 以使用邏輯閘組合成電路。

模擬驗證

先確認電路功能,畫出真值表並且轉換成布林代數,則可 以使用邏輯閘組合成電路。

設計程序 (Verilog HDL)

```
module hw5 extra1(a, b, s, cout);
 2
 3
         // Input Port(s)
          input [3:0] a;
          input [3:0] b;
 5
 7
          // Output Port(s)
         output [3:0] s;
 9
          output cout;
10
11
          wire f1T0f2, f2T0f3, f3T0f4;
12
          fulladder fa1_LSB (a[0], b[0], 0, s[0], f1TOf2);
13
14
         fulladder fa2 (a[1], b[1], f1TOf2, s[1], f2TOf3);
          fulladder fa3 (a[2], b[2], f2TOf3, s[2], f3TOf4);
15
          fulladder fa4 MSB (a[3], b[3], f3TOf4, s[3], cout);
16
17
       endmodule
18
19
20
       module fulladder(a, b, cin, sum, cout);
21
22
         // Input Port(s)
23
          input a, b, cin;
24
25
         // Output Port(s)
26
         output sum, cout;
27
28
          assign {cout, sum} = a + b + cin;
29
       endmodule
30
```


接腳設定簡介

本次實驗我們把輸入與輸出端接角以下列表格定義。

Node Name	Direction	Location	I/O Bank	VREF Group	Fitter Location	I/O Standard
in_ a[3]	Input	PIN_AC30	5B	B5B_N0	PIN_AA26	2.5 V (default)
in_ a[2]	Input	PIN_AB28	5B	B5B_N0	PIN_AB30	2.5 V (default)
in_ a[1]	Input	PIN_Y27	5B	B5B_N0	PIN_AB27	2.5 V (default)
in_ a[0]	Input	PIN_AB30	5B	B5B_N0	PIN_AA28	2.5 V (default)
<mark>-</mark> b[3]	Input	PIN_AD30	5B	B5B_N0	PIN_Y26	2.5 V (default)
in b[2]	Input	PIN_AC28	5B	B5B_N0	PIN_V25	2.5 V (default)
<mark>-</mark> b[1]	Input	PIN_V25	5B	B5B_N0	PIN_AA30	2.5 V (default)
<u>in_</u> b[0]	Input	PIN_W25	5B	B5B_N0	PIN_AE29	2.5 V (default)
cout cout	Output	PIN_AG25	4A	B4A_N0	PIN_AB28	2.5 V (default)
out s[3]	Output	PIN_AD24	4A	B4A_N0	PIN_AC29	2.5 V (default)
out s[2]	Output	PIN_AC23	4A	B4A_N0	PIN_W25	2.5 V (default)
out s[1]	Output	PIN_AB23	5A	B5A_N0	PIN_AD29	2.5 V (default)
out s[0]	Output	PIN_AA24	5A	B5A_N0	PIN_AC28	2.5 V (default)

Pin Assignment of Slide Switches

		ssignment of share switte	
Signal Name	FPGA Pin No.	Description	I/O Standard
SW[0]	PIN_AB30	Slide Switch[0]	Depend on JP3
SW[1]	PIN_Y27	Slide Switch[1]	Depend on JP3
SW[2]	PIN_AB28	Slide Switch[2]	Depend on JP3
SW[3]	PIN_AC30	Slide Switch[3]	Depend on JP3
SW[4]	PIN_W25	Slide Switch[4]	Depend on JP3
SW[5]	PIN_V25	Slide Switch[5]	Depend on JP3
SW[6]	PIN_AC28	Slide Switch[6]	Depend on JP3
SW[7]	PIN_AD30	Slide Switch[7]	Depend on JP3
SW[8]	PIN_AC29	Slide Switch[8]	Depend on JP3
SW[9]	PIN_AA30	Slide Switch[9]	Depend on JP3

Pin Assignment of LEDs

Signal Name	FPGA Pin No.	Description	I/O Standard
LEDR[0]	PIN_AA24	LED [0]	3.3V
LEDR[1]	PIN_AB23	LED [1]	3.3V
LEDR[2]	PIN_AC23	LED [2]	3.3V
LEDR[3]	PIN_AD24	LED [3]	3.3V
LEDR[4]	PIN_AG25	LED [4]	3.3V
LEDR[5]	PIN_AF25	LED [5]	3.3V
LEDR[6]	PIN_AE24	LED [6]	3.3V
LEDR[7]	PIN_AF24	LED [7]	3.3V
LEDR[8]	PIN_AB22	LED [8]	3.3V
LEDR[9]	PIN_AC22	LED [9]	3.3V

模擬 Simulation

問題與心得

110310138 劉千榮

此題與上題在DE-10上的展示效果不好,便只放出模擬訊號來。這題我直接使用4個FA來執行,只要將低一級FA的Cin接地,其功能就和HA相同,其他都只是將內部電路組合,便完成本次實習。

貳、進階題(二)

請利用4位元加法器之輸出於七段顯示器顯示

其中包括有一個1位元半加器和3個1位元全加器,並請利用3個先前實習實作之七段解碼器,將 Ao-3 + Bo-3 加後之和So-3顯示於七段顯示器中,請外加一個進位輸出LED C1 顯示進位。

實驗原理

使用Quartus prime lite編輯邏輯 閘電路,燒入DE-10 stander板子,則可確認電路功能。將會用到的模型引入,再宣告內部接線後,便能完成HDL的撰寫。在完成實驗後,驗證波型輸出,再將其燒錄製至開發板,執行功能驗證。

設計程序

先確認電路功能,畫出真值表並且轉換成布林代數,則可 以使用邏輯閘組合成電路。

模擬驗證

先確認電路功能,畫出真值表並且轉換成布林代數,則可 以使用邏輯閘組合成電路。

設計程序 (Verilog HDL)

Top-Level Entity

```
module hw5 extra2(a, b, OutA, OutB, OutS, cout);
 2
          // Input Port(s)
 3
 4
          input [3:0] a;
          input [3:0] b;
 5
 7
          // Output Port(s)
          output [6:0] OutA;
          output [6:0] OutB;
10
          output [6:0] OutS;
          output cout;
11
12
13
          wire f1T0f2, f2T0f3, f3T0f4;
14
         wire [3:0] s;
15
          fulladder fa1_LSB (a[0], b[0], 0, s[0], f1TOf2);
16
         fulladder fa2 (a[1], b[1], f1TOf2, s[1], f2TOf3);
17
18
          fulladder fa3
                            (a[2], b[2], f2TOf3, s[2], f3TOf4);
19
          fulladder fa4 MSB (a[3], b[3], f3TOf4, s[3], cout);
20
          mydecoder decoderA(a, OutA);
21
          mydecoder decoderB(b, OutB);
22
          mydecoder decoderS(s, OutS);
23
24
25
       endmodule
```


設計程序 (Verilog HDL)

Full Adder Module

```
module fulladder(a, b, cin, sum, cout);
27
28
         // Input Port(s)
29
          input a, b, cin;
30
31
          // Output Port(s)
32
33
          output sum, cout;
34
          assign {cout, sum} = a + b + cin;
35
36
       endmodule
37
```

Seven Segment Decoder Module

```
module mydecoder (input [3:0] in, output reg [6:0] Out);
40
         always@(in)
41
42
    曱
          begin
43
44
             case(in)
45
                4'b0000:
                             Out <= 7'b000 0001; // 0
                4'b0001:
                             Out <= 7'b100 1111; // 1
46
                             Out <= 7'b001 0010; // 2
                4'b0010:
47
                             Out <= 7'b000 0110; // 3
48
                4'b0011:
                4'b0100:
49
                             Out <= 7'b100 1100; // 4
50
                4'b0101:
                             Out <= 7'b010 0100; // 5
                4'b0110:
51
                             Out <= 7'b110 0000; // 6
52
                4'b0111:
                             Out <= 7'b000 1111; // 7
53
                4'b1000:
                             Out <= 7'b000 0000; // 8
                4'b1001:
                             Out <= 7'b000 1100; // 9
54
                4'b1010:
                             Out <= 7'b000 1000; // A
55
                             Out <= 7'b110 0000; // b
56
                4'b1011:
                             Out <= 7'b011_0001; // C
57
                4'b1100:
58
                4'b1101:
                             Out <= 7'b100 0010; // d
               4'b1110:
59
                             Out <= 7'b011 0000; // E
               4'b1111:
                             Out <= 7'b011 1000; // F
             endcase
61
62
63
          end
64
       endmodule
```

接腳設定簡介(Input & Cout)

本次實驗我們把輸入與輸出端接角以下列表格定義。

in_ a[3]	Input	PIN_AC30	5B	B5B_N0	PIN_AC30	2.5 V
in_ a[2]	Input	PIN_AB28	5B	B5B_N0	PIN_AB28	2.5 V
in_ a[1]	Input	PIN_Y27	5B	B5B_N0	PIN_Y27	2.5 V
in_ a[0]	Input	PIN_AB30	5B	B5B_N0	PIN_AB30	2.5 V
in_ b[3]	Input	PIN_AD30	5B	B5B_N0	PIN_AD30	2.5 V
in_ b[2]	Input	PIN_AC28	5B	B5B_N0	PIN_AC28	2.5 V
in_ b[1]	Input	PIN_V25	5B	B5B_N0	PIN_V25	2.5 V
in_ b[0]	Input	PIN_W25	5B	B5B_N0	PIN_W25	2.5 V
out cout	Output	PIN AA24	5A	B5A NO	PIN AA24	2.5 V

接腳設定簡介(Output)

本次實驗我們把輸入與輸出端接角以下列表格定義。

Node Name	Direction	Location	I/O Bank	VREF Group	Fitter Location	I/O Standard
out OutA[6]	Output	PIN_W17	4A	B4A_N0	PIN_W17	2.5 V
out OutA[5]	Output	PIN_V18	4A	B4A_N0	PIN_V18	2.5 V
out OutA[4]	Output	PIN_AG17	4A	B4A_N0	PIN_AG17	2.5 V
out OutA[3]	Output	PIN_AG16	4A	B4A_N0	PIN_AG16	2.5 V
out OutA[2]	Output	PIN_AH17	4A	B4A_N0	PIN_AH17	2.5 V
out OutA[1]	Output	PIN_AG18	4A	B4A_N0	PIN_AG18	2.5 V
out OutA[0]	Output	PIN_AH18	4A	B4A_N0	PIN_AH18	2.5 V
out OutB[6]	Output	PIN_AF16	4A	B4A_N0	PIN_AF16	2.5 V
out OutB[5]	Output	PIN_V16	4A	B4A_N0	PIN_V16	2.5 V
out OutB[4]	Output	PIN_AE16	4A	B4A_N0	PIN_AE16	2.5 V
out OutB[3]	Output	PIN_AD17	4A	B4A_N0	PIN_AD17	2.5 V
out OutB[2]	Output	PIN_AE18	4A	B4A_N0	PIN_AE18	2.5 V
OutB[1]	Output	PIN_AE17	4A	B4A_N0	PIN_AE17	2.5 V
OutB[0]	Output	PIN_V17	4A	B4A_N0	PIN_V17	2.5 V
out OutS[6]	Output	PIN_AA21	4A	B4A_N0	PIN_AA21	2.5 V
OutS[5]	Output	PIN_AB17	4A	B4A_N0	PIN_AB17	2.5 V
out OutS[4]	Output	PIN_AA18	4A	B4A_N0	PIN_AA18	2.5 V
out OutS[3]	Output	PIN_Y17	4A	B4A_N0	PIN_Y17	2.5 V
out OutS[2]	Output	PIN_Y18	4A	B4A_N0	PIN_Y18	2.5 V
out OutS[1]	Output	PIN_AF18	4A	B4A_N0	PIN_AF18	2.5 V
out OutS[0]	Output	PIN_W16	4A	B4A_N0	PIN_W16	2.5 V

RTL Module

模擬 Simulation

實驗成果

實驗成果

問題與心得

110310138 劉千榮

這是組合電路中,稍微複雜的一題。不是電路很複雜只是要處裡的Pin腳好多,定完Pin腳比我寫完程式還要久。整題只是無腦的把所有線接起來,基本上就是看起來複雜,做完只要10分鐘的題型。希望有有趣一些的題目。

貳、進階題(三)

兩個1位元半加器組成之1位元全加器 使用VHDL

實驗原理

使用Quartus prime lite編輯邏輯 間電路,燒入DE-10 stander板子,則可確認電路功能。先製作半加器模組,再利用剛做好的模組成新的全加器模組。在完成實驗後,驗證波型輸出,再將其燒錄製至開發板,執行功能驗證。

設計程序

先確認電路功能,畫出真值表並且轉換成布林代數,則可 以使用邏輯閘組合成電路。

模擬驗證

先確認電路功能,畫出真值表並且轉換成布林代數,則可 以使用邏輯閘組合成電路。

設計程序 (VHDL)

```
library ieee;
 1
                                           26
                                                  signal summary, HATocarry1, HATocarry2 : std logic;
 2
      use ieee.std logic 1164.all;
                                           27
 3
                                           28
                                                  begin
    ⊟entity hw5 extra3 is
 4
                                           29
 5
                                           30
                                                  cout <= HATocarry1 or HATocarry2;
 6
         port
                                           31
 7
                                           32
                                                 HA1: HA VHDL port map
 8
            a, b, cin : in std_logic;
                                           33
 9
            sum, cout
                         : out std logic
                                           34
                                                        a = > a,
10
         );
                                                        b \Rightarrow b,
                                           35
11
                                           36
                                                        sum => summary,
      end hw5_extra3;
12
                                           37
                                                        carry => HATocarry1
13
                                           38
                                                     );
14
    □architecture FA of hw5 extra3 is
                                           39
15
                                           40
                                                 HA2: HA VHDL port map
16
    ⊡component HA VHDL
                                           41
17
                                           42
                                                        a => summary,
18
         port
                                           43
                                                        b \Rightarrow cin
19
                                           44
                                                        sum => sum,
20
                      : in std logic;
            a, b
                                           45
                                                        carry => HATocarry2
21
            sum, carry : out std logic
                                           46
                                                     );
22
         );
                                           47
23
                                           48
                                                 Lend FA;
24
      end component;
```


接腳設定簡介

本次實驗我們把輸入與輸出端接角以下列表格定義。

Node Name	Direction	Location
in_a	Input	PIN_AB30
in_ a in_ b	Input	PIN_Y27
in_ cin	Input	PIN_AB28
cout	Output	PIN_AA24
out sum	Output	PIN_AB23

Pin Assignment of Slide Switches

		ssignment of share switte	
Signal Name	FPGA Pin No.	Description	I/O Standard
SW[0]	PIN_AB30	Slide Switch[0]	Depend on JP3
SW[1]	PIN_Y27	Slide Switch[1]	Depend on JP3
SW[2]	PIN_AB28	Slide Switch[2]	Depend on JP3
SW[3]	PIN_AC30	Slide Switch[3]	Depend on JP3
SW[4]	PIN_W25	Slide Switch[4]	Depend on JP3
SW[5]	PIN_V25	Slide Switch[5]	Depend on JP3
SW[6]	PIN_AC28	Slide Switch[6]	Depend on JP3
SW[7]	PIN_AD30	Slide Switch[7]	Depend on JP3
SW[8]	PIN_AC29	Slide Switch[8]	Depend on JP3
SW[9]	PIN_AA30	Slide Switch[9]	Depend on JP3

Pin Assignment of LEDs

Signal Name	FPGA Pin No.	Description	I/O Standard
LEDR[0]	PIN_AA24	LED [0]	3.3V
LEDR[1]	PIN_AB23	LED [1]	3.3V
LEDR[2]	PIN_AC23	LED [2]	3.3V
LEDR[3]	PIN_AD24	LED [3]	3.3V
LEDR[4]	PIN_AG25	LED [4]	3.3V
LEDR[5]	PIN_AF25	LED [5]	3.3V
LEDR[6]	PIN_AE24	LED [6]	3.3V
LEDR[7]	PIN_AF24	LED [7]	3.3V
LEDR[8]	PIN_AB22	LED [8]	3.3V
LEDR[9]	PIN_AC22	LED [9]	3.3V

輸出模擬 (ModelSim)

問題與心得

110310138 劉千榮

VHDL的宣告比Verilog複雜許多,光是觀察本題與基本題就有明顯的差異,所以我才建議自學Verilog。雖然老師叫我當助教的助教,不過整段時間也都沒有人來問我問題,我就直接回家了。直到進入循序電路之前這些組合電路都沒有難度可言。

