Superspace coinvariants and hyperplane arrangements

arXiv:2404.17919

by Trevor K. Karn (U. Minnesota) (joint with Robert Angarone, Patricia Commins, Satoshi Murai, and Brendon Rhoades) on Monday, 4 November, 2024 Main problem:

find a linear basis for the algebra SR_n .

Approach:

 $\overline{\mathcal{ST}}$ algebras of southwest arrangements

What is SR_n ?

What are SW arrangements and \mathcal{ST} algebras?

Proof ideas

What is SR_n ?

The symmetric group \mathfrak{S}_n acts on

$$\mathbb{C}[\underline{\mathbf{x}}] = \mathbb{C}[\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n].$$

The symmetric group \mathfrak{S}_n acts on

$$\mathbb{C}[\underline{\mathbf{x}}] = \mathbb{C}[x_1, x_2, \dots, x_n].$$

Let

$$p_k = x_1^k + x_2^k + \cdots + x_n^k.$$

and let

$$I_n^+=(p_1,p_2,\ldots,p_n)$$

Definition

 $R_n = \mathbb{C}[\underline{\mathtt{x}}]/I_n^+$ is the coinvariant ring.

Let
$$n=3$$
, $\mathbb{C}[\underline{x}]=\mathbb{C}[x,y,z]$,
$$p_1=x+y+z$$

$$p_2=x^2+y^2+z^2$$

$$p_3=x^3+y^3+z^3$$

Let
$$n = 3$$
, $\mathbb{C}[\underline{x}] = \mathbb{C}[x, y, z]$,

$$p_1 = x + y + z$$

 $p_2 = x^2 + y^2 + z^2$

$$p_3 = x^3 + y^3 + z^3$$

SO

$$x^4 + xy^3 + xz^3 \in I_3^+$$

Let
$$n = 3$$
, $\mathbb{C}[\underline{x}] = \mathbb{C}[x, y, z]$,

$$p_1 = x + y + z$$

$$p_2 = x^2 + y^2 + z^2$$

$$p_3 = x^3 + y^3 + z^3$$

SO

$$x^4 + xy^3 + xz^3 \in I_3^+$$

and

$$x^2 + y^2 \not\in I_3^+$$

In
$$\mathbb{C}[\underline{\mathbf{x}}]/I_3^+$$
,

$$x + y + z \equiv 0$$

and

$$x^2 + y^2 + z^2 \equiv (-y - z)^2 + y^2 + z^2$$
.

SO

$$y^2 \equiv -yz - z^2.$$

Similar computation shows that

$$z^3 \equiv 0.$$

Observation: x_i^i can always be rewritten "nicely"

Observation: x_i^i can always be rewritten "nicely"

Definition

The staircase monomials are \mathbf{x}^{α} where $\alpha_i < i$.

Observation: x_i^i can always be rewritten "nicely"

Definition

The staircase monomials are \mathbf{x}^{α} where $\alpha_i < i$.

Theorem (E. Artin)

The staircase monomials are a basis for R_n .

What is SR_n ?

Superspace is

$$\mathbb{C}[\underline{\mathbf{x}},\underline{\theta}] = \mathbb{C}[x_1, x_2, \dots, x_n, \theta_1, \theta_2, \dots, \theta_n]$$

where
$$\theta_i \theta_i = -\theta_i \theta_i$$
. Write[†]

$$\underline{\theta}^J = \prod_{j \in J} \theta_j.$$

Superspace is

$$\mathbb{C}[\underline{\mathbf{x}},\underline{\theta}] = \mathbb{C}[x_1, x_2, \dots, x_n, \theta_1, \theta_2, \dots, \theta_n]$$

where $\theta_i \theta_i = -\theta_i \theta_i$. Write[†]

$$\underline{\theta}^J = \prod_{j \in J} \theta_j.$$

 \mathfrak{S}_n acts simultaneously, so $sp_k = x_1^k \theta_1 + x_2^k \theta_2 + \cdots + x_n^k \theta_n$ is symmetric.

Superspace is

$$\mathbb{C}[\underline{\mathbf{x}},\underline{\theta}] = \mathbb{C}[x_1, x_2, \dots, x_n, \theta_1, \theta_2, \dots, \theta_n]$$

where $\theta_i \theta_i = -\theta_i \theta_i$. Write[†]

$$\underline{\theta}^J = \prod_{j \in J} \theta_j.$$

 \mathfrak{S}_n acts simultaneously, so $sp_k = x_1^k \theta_1 + x_2^k \theta_2 + \cdots + x_n^k \theta_n$ is symmetric.

Let
$$SI_n^+ = (p_1, \dots, p_n, sp_0, \dots, sp_{n-1}).$$

Definition

The superspace coinvariant ring is

$$SR_n = \mathbb{C}[\underline{\mathbf{x}}, \underline{\theta}]/SI_n^+.$$

Sagan and Swanson [SS24] introduced

$$\mathcal{M} = \bigcup_{J\subseteq[n]} \{\underline{\mathbf{x}}^{\alpha}\underline{\theta}^{J} : \alpha < (J\text{-staircase})\}$$

Sagan and Swanson [SS24] introduced

$$\mathcal{M} = \bigcup_{J \subseteq [n]} \{ \underline{\mathbf{x}}^{\alpha} \underline{\theta}^{J} : \alpha < (J\text{-staircase}) \}$$

Definition

Let $J \subseteq [n]$. A *J*-staircase is $(st(J)_1, st(J)_2, \dots, st(J)_n)$

$$\operatorname{st}(J)_1 = \begin{cases} 0 & 1 \in J \\ 1 & 1 \notin J \end{cases}$$

and

$$\operatorname{st}(J)_i = \begin{cases} \operatorname{st}(J)_{i-1} & i \in J \\ \operatorname{st}(J)_{i-1} + 1 & i \notin J \end{cases}$$

Let $J = \{2, 4, 5\} \subseteq [6]$. Then the *J*-staircase is (1, 1, 2, 2, 2, 3).

Let $J = \{2, 4, 5\} \subseteq [6]$. Then the *J*-staircase is (1, 1, 2, 2, 2, 3).

Let $J = \{2, 4, 5\} \subseteq [6]$. Then the *J*-staircase is (1, 1, 2, 2, 2, 3).

So ${\mathcal M}$ contains monomials

 $x_3x_6\theta_2\theta_4\theta_5$ and

 $x_4x_6^2\theta_2\theta_4\theta_5$

but not

 $x_5^2\theta_2\theta_4\theta_5$

» Punchline

Elements of ${\mathcal M}$ correspond to filled diagrams like

 $\mathsf{shape} \quad \longleftrightarrow \quad \mathsf{skew\text{-}commutative} \,\, \theta \,\, \mathsf{factor}$

 $\mathsf{filling} \quad \longleftrightarrow \qquad \mathsf{commutative} \; x \; \mathsf{factor}$

Conjecture [SS24]/Theorem [ACK+24]

$$\mathcal{M} = \bigcup_{J \subseteq [n]} \{ \mathsf{X}^{\alpha} \theta_J : \alpha \le (J\text{-staircase}) \}$$

is a basis for SR_n .

What are SW arrangements and \mathcal{ST} algebras?

For the rest of the talk $S = \mathbb{C}[x_1, x_2, \dots, x_n]$.

A hyperplane H is a codimension-1 affine linear subspace of \mathbb{K}^n .

A (hyperplane) arrangement ${\cal A}$ is a union of hyperplanes.

A hyperplane H is a codimension-1 affine linear subspace of \mathbb{K}^n .

A (hyperplane) arrangement A is a union of hyperplanes.

Geometrically, H is a variety cut out by a degree-1 polynomial.

 ${\cal A}$ is a variety cut out by a product of degree-1 polynomials.

An arrangement in \mathbb{R}^2 :

"Definition"

Define by example the diagram $\tilde{\Phi}_n$ for n=5:

Definition/example

An arrangement \mathcal{A} is called a *southwest arrangement* if its defining polynomial $Q(\mathcal{A})$ is a product of terms of a southwest-closed subset of $\tilde{\Phi}_n$.

The *h*-function of a southwest arrangement is the number of hyperplanes on each southeast diagonal.

is a southwest arrangement with h-function (1,2).

$$x_1x_2(x_1-x_2)(x_1-x_3)(x_1-x_4)(x_2-x_3)(x_2-x_4)(x_2-x_5)(x_3-x_4)$$

is southwest. It has h-function (1, 2, 2, 3, 1).

There are myriad algebraic tools available to study arrangements.

There are myriad algebraic tools available to study arrangements.

Definition

There is a free S-module $\mathbb{Der}(S)$ with basis $\{\partial_i\}_{i=1}^n$. The module of derivations of \mathcal{A} is

$$Der(A) = \{d \in Der(S) : d(H) \in span_S H \forall H \in A\}.$$

An arrangement is called $\underline{\mathsf{free}}$ if $\mathsf{Der}(\mathcal{A})$ is a free S-module.

There are myriad algebraic tools available to study arrangements.

Definition

There is a free S-module $\mathbb{Der}(S)$ with basis $\{\partial_i\}_{i=1}^n$. The module of derivations of \mathcal{A} is

$$Der(A) = \{d \in Der(S) : d(H) \in span_S H \forall H \in A\}.$$

An arrangement is called $\underline{\mathsf{free}}$ if $\mathsf{Der}(\mathcal{A})$ is a free S-module.

Example

The arrangement $x_1x_2(x_2-x_1)$ is free with basis

$$\{x_1\partial_1 + x_2\partial_2, x_2(x_2 - x_1)\partial_2\}$$

If A is a free arrangement, then Der(A) has a homogeneous basis.

The degrees of polynomials in the homogeneous basis are called the exponents of \mathcal{A} .

Exponents are independent of choice of basis and give combinatorial information about A.

Theorem [ACK+24]

Let \mathcal{A} be a southwest arrangement. Then \mathcal{A} is free with exponents given by the h-function.

Definition [AMMN19

Let $\mathfrak{a}: \mathbb{D}\mathrm{er}(\mathcal{A}) \to S$ be an S-module homomorphism. Define the Solomon-Terao algebra to be

$$\mathcal{ST}(\mathcal{A};\mathfrak{a})=\mathcal{S}/\operatorname{im}\mathfrak{a}$$

» Example

Define i to be the map that sends $\partial_i \mapsto 1$.

Recall that the arrangement \mathcal{A} defined by $x_1x_2(x_2-x_1)$ is free with basis

$$\{x_1\partial_1+x_2\partial_2,\ x_2(x_2-x_1)\partial_2\}.$$

Then

$$\mathcal{ST}(\mathcal{A},\mathfrak{i})=\mathbb{C}[x_1,x_2]/(x_1+x_2,x_2^2-x_1x_2)\cong \mathbb{C}[x_2]/(x_2^2).$$

The colon ideal (I:f) is the kernel of $\times f$ so that

$$0 \to S/(I:f) \stackrel{\times f}{\to} S/I$$

is exact.

Geometrically, for a variety X,

$$(I(X):f)=I(X-V(f)))$$

» Transfer principle

Rhoades and Wilson [RW23] showed that in order to show \mathcal{M} is a basis for SR_n , it suffices to show

$$\mathcal{M}(J) = \{ \mathbf{x}^{\alpha} : \alpha \leq (J\text{-staircase}) \}$$

is a basis for

$$S/(I^+:f_J)$$

where

$$f_J = \prod_{j \in J} x_j \prod_{i > j} (x_j - x_i).$$

» Transfer principle

Rhoades and Wilson [RW23] showed that in order to show \mathcal{M} is a basis for SR_n , it suffices to show

$$\mathcal{M}(J) = \{ \mathbf{x}^{\alpha} : \alpha \leq (J\text{-staircase}) \}$$

is a basis for

$$S/(I^+:f_J)$$

where

$$f_J = \prod_{j \in J} x_j \prod_{i > j} (x_j - x_i).$$

Upshot

Trade a skew-commutative problem for a family of commutative problems.

The arrangement defined by f_J is not a southwest arrangement. E.g. $J = \{2, 3\}$:

Theorem [ACK+24_]

Let $\mathcal A$ be an essential southwest arrangement in $\mathbb C^n$ with h-function $h(\mathcal A)$. Let $\mathfrak i: \mathbb Der(\mathcal A) \to S$ be defined by $\partial_i \mapsto 1$. Then the monomials

$$\{\mathbf{x}^\alpha:\alpha<\mathbf{h}(\mathcal{A})\}$$

descend to a basis for $\mathcal{ST}(A; i)$.

Theorem [ACK+24]

Let $\mathcal A$ be an essential southwest arrangement in $\mathbb C^n$ with h-function $h(\mathcal A)$. Let $\mathfrak i: \mathbb Der(\mathcal A) \to S$ be defined by $\partial_i \mapsto 1$. Then the monomials

$$\{\mathbf{x}^{\alpha}: \alpha < h(\mathcal{A})\}$$

descend to a basis for $\mathcal{ST}(A; i)$.

Example

We saw $\{1, x_2\}$ is a basis for $\mathcal{ST}(\mathcal{A}; \mathfrak{i})$ of

Definition

Let $J \subseteq [n]$. Let \mathcal{A}_J denote the southwest arrangement defined by

$$x_1x_2\cdots x_n\prod_{j\not\in J}\prod_{i>j}(x_j-x_i)$$

Example

Let $J = \{2, 4\}$, then \mathcal{A}_J is

Definition

Let

$$\tilde{f}_J = \prod_{j \in J} \prod_{i > j} (x_j - x_i)$$

This is almost f_J but without the monomial factors.

Definition

Let

$$\tilde{f}_J = \prod_{j \in J} \prod_{i > j} (x_j - x_i)$$

This is almost f_J but without the monomial factors.

Lemma [ACK+24⁻

$$S/(I_n^+: \tilde{f}_J) \cong \mathcal{ST}(\mathcal{A}_J; t)$$

I emma

The *J*-staircase is bounded above by the *h*-function of \mathcal{A}_J . In particular

$$h_k = \begin{cases} \operatorname{st}(J)_k & k \notin J \\ \operatorname{st}(J)_k + 1 & k \in J \end{cases}$$

Theorem [ACK+24]

 $\mathcal{M}(J)$ is a basis for $S/(I^+:f_J)$

Proof: A general fact about colon ideals tells us

$$(I^+: \tilde{f}_J): \underline{\mathbf{x}}^J = (I^+: \tilde{f}_J\underline{\mathbf{x}}^J) = (I^+: f_J).$$

Thus,

$$0 \to S/(I^+: f_J) \stackrel{\times \times^J}{\to} S/(I^+: \tilde{f}_J) = \mathcal{ST}(\mathcal{A}_J, \mathfrak{i})$$

is exact.

Theorem | ACK+24

 $\mathcal{M}(J)$ is a basis for $S/(I^+:f_J)$

Proof: A general fact about colon ideals tells us

$$(I^+: \tilde{f}_J): \underline{\mathbf{x}}^J = (I^+: \tilde{f}_J\underline{\mathbf{x}}^J) = (I^+: f_J).$$

Thus,

$$0 \to \mathcal{S}/(\mathit{I}^{+}:\mathit{f}_{\mathit{J}}) \overset{\times \times \mathit{J}}{\to} \mathcal{S}/(\mathit{I}^{+}:\tilde{\mathit{f}}_{\mathit{J}}) = \mathcal{ST}(\mathcal{A}_{\mathit{J}},\mathfrak{i})$$

is exact.

Corollary

 \mathcal{M} is a basis for SR_n , resolving conjecture of [SS24]

What next?

THANK YOU!

» References

- Robert Angarone, Patricia Commins, Trevor Karn, Satoshi Murai, and Brendon Rhoades, Superspace coinvariants and hyperplane arrangements, 2024.
- Takuro Abe, Toshiaki Maeno, Satoshi Murai, and Yasuhide Numata, Solomon-Terao algebra of hyperplane arrangements, J. Math. Soc. Japan **71** (2019), no. 4, 1027–1047. MR 4023295
- Brendon Rhoades and Andy Wilson, The hilbert series of the superspace coinvariant ring, 2023.
- Bruce E. Sagan and Joshua P. Swanson, *q*-Stirling numbers in type *B*, European J. Combin. **118** (2024), Paper No. 103899, 35. MR 4674564

In case Sarah asks "What about type-B?":

