Robótica e Automação

Raphael Barros Parreira

Questão 1

A figura 1 mostra a representação do manipulador Kinova Gen3 usando o método do Enfoque de Exponenciais. Os eixos de rotação estão na mesma direção e sentido dos eixos Z em cada origem.

A figura 2 mostra a validação do modelo de Cinemática Direta achado. As três configurações (A, B e C) podem ser vistas na tabela 2. A função usada para desenhar o manipulador é a *showarm()*, disponibilizada pelo professor no *Moodle* da Poli.

$$\vec{h}_1 = \vec{z} \quad \vec{h}_2 = \vec{x} \quad \vec{h}_3 = \vec{z} \quad \vec{h}_4 = \vec{x} \quad \vec{h}_5 = \vec{z} \quad \vec{h}_6 = \vec{x} \quad \vec{h}_7 = \vec{z}$$

$$R_{01} = e^{\vec{h}_1\theta_1} = e^{\widehat{z}\theta_1} \quad R_{12} = e^{\vec{h}_2\theta_2} = e^{\widehat{x}\theta_2} \quad R_{23} = e^{\vec{h}_3\theta_3} = e^{\widehat{z}\theta_3}$$

$$R_{34} = e^{\vec{h}_4\theta_4} = e^{\widehat{x}\theta_4} \quad R_{45} = e^{\vec{h}_5\theta_5} = e^{\widehat{z}\theta_5} \quad R_{56} = e^{\vec{h}_6\theta_6} = e^{\widehat{x}\theta_6} \quad R_{67} = e^{\vec{h}_7\theta_7} = e^{\widehat{z}\theta_7}$$

$$\vec{p}_{01} = l_0\vec{z}_0 \quad \vec{p}_{12} = l_{1z}\vec{z}_1 - l_{1x}\vec{x}_1 \quad \vec{p}_{23} = l_{2z}\vec{z}_2 - l_{2x}\vec{x}_2 \quad \vec{p}_{34} = l_{3z}\vec{z}_3 - l_{3x}\vec{x}_3$$

$$\vec{p}_{45} = l_{4z}\vec{z}_4 - l_{4x}\vec{x}_4 \quad \vec{p}_{56} = l_5\vec{z}_5 \quad \vec{p}_{67} = l_6\vec{z}_6 \quad \vec{p}_{7e} = l_7\vec{z}_7$$

$$T_{0e} = T_{01}T_{12}T_{23}T_{34}T_{45}T_{56}T_{67}T_{7e}$$

Table 1: Dimensões dos elos da representação do manipulador Kinova Gen3 (figura 1)

	l_0	l_{1x}	l_{1z}	:	l_{2x}		l_{2z}	:	l_{3x}		l_{3z}	l_{4x}	l_{4z}
Dimensão (m)	0.1564	0.1284	0.00	54	0.21	04	0.00	54	0.210	04	0.0064	0.2084	0.0064
					l_5		l_6		l_7				
		Dimensão (m)		0.	1059	0.	1059	0.0	0615				

Table 2: Configurações do manipulador Kinova Gen3

Configuração	Α	В	С
θ_1	0	0	0
θ_2	0	$-\pi/2$	$-\pi/2$
θ_3	0	0	0
θ_4	0	0	$\pi/2$
θ_5	0	$\pi/2$	0
θ_6	0	$\pi/2$	0
θ_7	0	0	0

Z_E H_6 **Z_2 Z_1**

Figure 1: Representação do Enfoque de Exponencias do Manipulador Kinova Gen3.

Questão 2

A figura 3 mostra a representação do Manipulador pelo método de Denavit-Hartenberg Standard. A tabela 3 exibe os parâmetros encontrados para o método.

Figure 2: Representação do manipulador Kinova Gen3 no Enfoque de Exponenciais nas configurações A, B e C (tabela 2)

Table 3: Tabela Denavit Hartenberg Standard para o Manipulador

Elo i	θ_i	d_i	a_i	α_i	type	offset
1	θ_1	$l_0 + l_{1z}$	0	$\pi/2$	0	$-\pi/2$
2	θ_2	$l_{2x} + l_{3x}$	0	$-\pi/2$	0	0
3	θ_3	$l_{2z} + l_{3z}$	0	$\pi/2$	0	0
4	θ_4	$l_{3x} + l_{4x}$	0	$-\pi/2$	0	0
5	θ_5	$l_{4z} + l_5$	0	$\pi/2$	0	0
6	θ_6	0	0	$-\pi/2$	0	0
7	θ_7	$l_6 + l_7$	0	0	0	$\pi/2$

Questão 3

O item a da figura 4 exibe o modelo gerado pela classe SerialLink do Robot Toolbox. O manipulador se encontra na posição zero.

Figure 3: Representação do Denavit-Hartenberg Standard do Manipulador Kinova Gen3.

Questão 4

A figura 4 exibe as três configurações usadas presentes na tabela 2.

Questão 5

Para se fazer a Cinemática Inversa é necessário escolher uma posição p_{be} e uma orientação R_{Be} finais do manipulador, e uma configuração inicial do manipulador. A posição zero no manipulador é uma região de singularidade. Portanto, para que a função *ikine()* convirja, é necessário

Figure 4: Representação do manipulador no Denavit Hartenberg Standard nas configurações A, B e C (tabela 2)

mudar a configuração inicial.

A tabela 4 exibe os ângulos das juntas escolhidos e os encontrados. A figura 5 mostra o manipulador com as duas configurações.

$$T_{be} = \begin{bmatrix} R_{be} & p_{be} \\ 0 & 1 \end{bmatrix} \tag{1}$$

$$R_{be} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \qquad p_{be} = \begin{bmatrix} 0.7 \\ 0 \\ 0.4 \end{bmatrix}$$
 (2)

Table 4: Configuração inicial para a função ikine.

Juntas	θ_1	θ_2	θ_3	θ_4	θ_5	θ_6	θ_7
Inicial	0	$-\pi/2$	0	0	0	0	0
Resultante	1.1630	-0.8868	0.8339	-1.4722	0.2492	0.7224	0.7613

Figure 5: Representações do manipulador nas configurações inicial e na resultante. (tabela 4)

Questão 6

$$J_{7} = \begin{bmatrix} \vec{h}_{1} \times \vec{p}_{17} & \vec{h}_{2} \times \vec{p}_{27} & \vec{h}_{3} \times \vec{p}_{37} & \vec{h}_{4} \times \vec{p}_{47} & \vec{h}_{5} \times \vec{p}_{57} & \vec{h}_{6} \times \vec{p}_{67} & \vec{h}_{7} \times \vec{p}_{77} \\ \vec{h}_{1} & \vec{h}_{2} & \vec{h}_{3} & \vec{h}_{4} & \vec{h}_{5} & \vec{h}_{6} & \vec{h}_{7} \end{bmatrix}$$

$$(J_{7})_{0} = \begin{bmatrix} (\vec{h}_{1})_{0} \times (\vec{p}_{17})_{0} & (\vec{h}_{2})_{0} \times (\vec{p}_{27})_{0} & (\vec{h}_{3})_{0} \times (\vec{p}_{37})_{0} & (\vec{h}_{4})_{0} \times (\vec{p}_{47})_{0} \\ (\vec{h}_{1})_{0} & (\vec{h}_{2})_{0} & (\vec{h}_{3})_{0} & (\vec{h}_{4})_{0} \end{bmatrix}$$

$$(\vec{h}_{5})_{0} \times (\vec{p}_{57})_{0} & (\vec{h}_{6})_{0} \times (\vec{p}_{67})_{0} & (\vec{h}_{7})_{0} \times (\vec{p}_{77})_{0} \\ (\vec{h}_{5})_{0} & (\vec{h}_{6})_{0} & (\vec{h}_{7})_{0} \end{bmatrix}$$

Questão 7