Pair Production: (see book)

Whether light acts as a particle or a wave depends on the size of the object it interacts with (call this size D)

If $\lambda > D$, acts like a wave

If $\lambda < D$, acts like a particle

Even if you decrease intensity to the point that only one photon passes through the apparatus at a time, you will still get an interference pattern.

Each photon passes through BOTH slits and interferes with itself.

(Unless you put a detector to try to see which slit the photon passes through, the interference pattern disappears.)

Detect the interference pattern with a series of detectors, and each photon that passes through registers on one of the detectors at random (following the interference patterns above: dark spots get no photons registered)

Probabilistic.

The interference pattern tells you the probability of where you will detect any individual photon.

Chapter 4: Matter acts like Waves

Light acts as a particle when its wavelength is small. Matter almost always acts like particles. Therefore, matter has really really tiny wavelengths.

de Broglie wavelength: $\lambda = h/p$

This is true for light too: $h/p = h/(E/c) = hc/E = hc/hf = c/f = \lambda$

e.g. Electrons moving at 1% c.

$$\lambda = h/(mv) = 6.636e-34 / (9.11e-31)/(3e6) = 2.4e-10 m = 0.24 nm$$

More massive objects will have much larger momentum, much smaller wavelengths

What if v=0? Well, you can't have v exactly = 0...we'll talk about that later.

But electrons can have a large enough λ so that they will behave as waves and can interfere with themselves.

Intensity as a function of position = the probability that you'll detect the electron at that spot.

Intensity of a wave = Amplitude squared

Wavefunction of electron

 $\Psi(x,t)$

 $|\Psi(x,t)|^2$ is probability that I will find the electron at point x at time t.

What is waving? I dunno.

But matter waves are not observable as waves, only their probability (amplitude squared) is observable.

Intensity is "wave language", probability is "particle language"

ller		
hat later.		
waves and		
etect the		
time t.		