

7. Supervised Learning: Logistic Regression

Logistic Regression

Example

- Prediction of sepsis mortality based on features such as APACHE II score at baseline
- It is a supervised learning problem because one has access to inputoutput examples
- It is a classification problem because the output variable is discrete-valued
- Input variables also known as features
- Output variable also known as labels

Training set

Input Variable (APACHE II Score)	Output Variable (Survived / Died)	
3	Survived	Training sample (x_i, y_i)
6	Survived	
15	Survived	
29	Died	
38	Died	

Testing set

Logistic Regression

Process

- One is given access to a training data –
 consisting of various feature-label pairs and
 testing data consisting of features points
 with unknown label.
- One is also given a hypothesis (or model)
 class containing a series of hypotheses (or
 models) that potentially explain the
 relationship between the features and labels.
- The learning algorithm selects a hypothesis (or model) from the hypothesis (or model) class that fits the training data.
- Such selected hypothesis can then be used on the testing data to determine the label associated with the new features.

Predictions

Can we solve this classification problem using simple linear regression?

Example 1

Classification Rule (Classification with Simple Linear Regression)

- If output of linear regressor is less than 0.5 declare SURVIVED
- If output of linear regressor is more than 0.5 declare DIED

Can we solve this classification problem using simple linear regression?

Example 1

Classification Rule (Classification with Simple Linear Regression)

- If output of linear regressor is less than 0.5 declare SURVIVED
- If output of linear regressor is more than 0.5 declare DIED

Classification performance is relatively good!

Can we solve this classification problem using simple linear regression?

Classification Rule (Classification with Simple Linear Regression)

- If output of linear regressor is less than 0.5 declare SURVIVED
- If output of linear regressor is more than 0.5 declare DIED

Can we solve this classification problem using simple linear regression?

Example 2

Classification Rule (Classification with Simple Linear Regression)

- If output of linear regressor is less than 0.5 declare SURVIVED
- If output of linear regressor is more than 0.5 declare DIED

Classification performance is very poor!

Can we solve this classification problem using simple linear regression?

Example 2

Classification Rule (Classification with Simple Linear Regression)

- If output of linear regressor is less than 0.5 declare SURVIVED
- If output of linear regressor is more than 0.5 declare DIED

Classification

The output should be 0 or 1

Linear Regression

The output can be less than 0 and can be greater than 1.

Logistic Regression

The output is between 0 and 1

Logistic Regression: Model

Model

The hypothesis is such that:

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = g(\boldsymbol{\theta}^t \boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^t \boldsymbol{x}}}$$

where $\boldsymbol{\theta} = (\theta_0, \theta_1, ..., \theta_m)^t$ is the param. vector and $\boldsymbol{x} = (1, x_1, ..., x_m)^t$ is the feature vector

Logistic or Sigmoid Function

$$g(u) = \frac{1}{1 + e^{-u}}$$

Interpretation

$$\Pr(\hat{y} = 1 | x; \boldsymbol{\theta}) = h_{\boldsymbol{\theta}}(x) \implies \Pr(\hat{y} = 0 | x; \boldsymbol{\theta}) = 1 - h_{\boldsymbol{\theta}}(x)$$

 $Pr(\hat{y} = 1 | x; \theta) = 0.7 \implies A$ patient has a 70% chance of a tumor being malignant

Logistic Regression: Decision Regions

Classifier

$$\hat{y} = 1 \iff \Pr(\hat{y} = 1 | x; \theta) \ge 0.5$$

$$\hat{y} = 0 \qquad \Longleftrightarrow \qquad \Pr(\hat{y} = 1 | x; \theta) < 0.5$$

$\boldsymbol{\theta}^t \boldsymbol{x} \geq 0$

$$\hat{y} = 0 \iff \boldsymbol{\theta}^t \boldsymbol{x} < 0$$

Nonlinear Classifiers

Linear Classifiers

The hypothesis is $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$ Linear with $\theta = (-3,1,1)^t$.

The hypothesis is $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2)$ with $\theta = (-1,0,0,1,1)^t$.

Logistic Regression: Cost Function

How does the learning algorithm select the linear hypothesis / model? We need a cost function... ι_{ph}

$$J(\boldsymbol{\theta}) = -\frac{1}{n} \sum_{i=1}^{n} y_i \cdot \log_2 \left(\Pr(\hat{y} = 1 | x_i; \boldsymbol{\theta}) \right) + (1 - y_i) \cdot \log_2 \left(1 - \Pr(\hat{y} = 1 | x_i; \boldsymbol{\theta}) \right)$$

Why this cost function?

$$y^{(i)} = 1 \land \Pr(\hat{y} = 1 | x^{(i)}; \boldsymbol{\theta}) \approx 1 \Longrightarrow \text{cost is small}$$

$$y^{(i)} = 1 \land \Pr(\hat{y} = 1 | x^{(i)}; \boldsymbol{\theta}) \approx 0 \implies \text{cost is large}$$

Logistic Regression: Cost Function

How does the learning algorithm select the linear hypothesis / model? We need a cost function...

Cost Function

$$J(\boldsymbol{\theta}) = -\frac{1}{n} \sum_{i=1}^{n} y_i \cdot \log_2 \left(\Pr(\hat{y} = 1 | x_i; \boldsymbol{\theta}) \right) + (1 - y_i) \cdot \log_2 \left(1 - \Pr(\hat{y} = 1 | x_i; \boldsymbol{\theta}) \right)$$

Why this cost function?

$$y^{(i)} = 0 \land \Pr(\hat{y} = 1 | x^{(i)}; \boldsymbol{\theta}) \approx 1 \Longrightarrow \text{cost is large}$$
 $y^{(i)} = 0 \land \Pr(\hat{y} = 1 | x^{(i)}; \boldsymbol{\theta}) \approx 0 \Longrightarrow \text{cost is small}$

Logistic Regression: Learning Algorithm

Learning Algorithm

We should select the logistic regression model parameters that minimize the cost function as follows:

$$\boldsymbol{\theta}^* = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} J(\boldsymbol{\theta})$$

New Predictions

The new predictions are then given by:

$$Pr(\hat{y} = 1 | \boldsymbol{x}; \boldsymbol{\theta}^*) = g(\boldsymbol{\theta}^{*t} \boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{*t} \boldsymbol{x}}}$$

There is no closed-form solution for the optimal parameters

Gradient descent algorithm

Multiclass Classification

Binary Classification Problem

x_2 x_2 x_2 x_3 x_4 x_4

Multiclass Classification Problem

Multiclass Classification: One-vs-All

Procedure

- (1) Convert a *M*-class classification problem onto *M* binary classification problems.
- (2) Learn a binary classifier e.g. a logistic regressor for each binary classification problem delivering a confidence score.

- (3) Apply the *M* binary classifiers on new data to obtain *M* confidence scores.
- (4) Report the class with the highest confidence score.

Multiclass Classification: One-vs-One

Procedure

- (1) Convert a *M*-class problem onto (*M*-1)*M*/2 binary classification problems.
- (2) Learn a binary classifier e.g. a logistic regressor for each binary classification problem delivering a confidence score.

- (3) Apply the *M* binary classifiers on new data to obtain *M* confidence scores.
- (4) Report the class that has been "voted" the highest by the different classifiers.

Precision vs Recall

• We want to predict y=1 only in very confident sets

Predict 1 if
$$h(x) \ge 0.5$$
 0.7
Predict 1 if $h(x) < 0.5$ 0.7

High-precision and low recall classifier

We want to predict y=1 avoiding false negative

Predict 1 if
$$h(x) \ge 0.5$$
 0.3
Predict 1 if $h(x) < 0.5$ 0.3

Low-precision and high recall classifier

Confusion Matrix

The Poct Actual Values Positive (1) Negative (0) **Predicted Values** Positive (1) FΡ Negative (0) FΝ ΤN