Problem

Given $\triangle ABC$, $\angle A=90^{\circ}.AB=AC.M$ is the midpoint of $AC.AE\perp BM$ with the feet at E. Extend AE to meet BC at D. Prove that $\angle AMB=\angle CMD$.

Solution

Draw the angle bisector of $\angle A$ to meet BM at G and BC at H. Since AB = AC, $\angle A = 90^{\circ}$, $\angle BAG = 45^{\circ}$. $\angle EBA = 90^{\circ} - \angle EAB = 90^{\circ} - (\angle BAG + \angle EAG) = 90^{\circ} - (45^{\circ} + \angle EAG) = 45^{\circ} - \angle EAG = \angle CAD$. In $\triangle ABG$ and $\triangle ADC$, since $\angle EBA = \angle CAD$, $\angle BAG = \angle C$,

 $AB = AC, \triangle ABG \cong \triangle ADC. \text{ Thus } AG = CD.$ In $\triangle AMG$ and $\triangle CMD$, since $\angle GAM = \angle DCM = 45^{\circ}, AM = CM, AG = CD, \triangle AMG \cong \triangle CMD. \text{ Thus } \angle AMB = \angle CMD.$