Geometría Básica. Mayo 2015.

Duración 2 horas. No se permite ningún tipo de material.

Justificar concisa y razonadamente todas las respuestas.

Ejercicio 1. (3 puntos)

Se tienen dos triángulos $\Delta\{A, B, C\}$ y $\Delta\{D, E, F\}$ de modo que $r_{A,C} = r_{F,D} = r$ y B, E están en semiplanos distintos de los dos determinados por r. Además $F \in [A, C]$, $C \in [F, D]$, AB = DE, BC = EF y AF = CD. Probar que $r_{B,C}$ es paralela a r_{EF} .

Ejercicio 2. (4 puntos)

- A. Dados dos puntos A y B del plano, describir como construir con regla y compás un punto $C \in [A, B]$ de modo que $AB \cdot BC = AC^2$.
- B. Demostrar que el punto C, con la construcción del apartado A, verifica $AB \cdot BC = AC^2$.

Ejercicio 3. (3 puntos)

Sea \mathcal{C} un cubo, C una de sus caras, a una arista de C y V un vértice de a. Encontrar rotaciones ρ_1 , ρ_2 , ρ_3 que son simetrías de \mathcal{C} , de modo que el eje de ρ_1 pase por el centro de C, el eje de ρ_2 pase por el punto medio de a y el eje de ρ_3 pase por el vértice V y además:

$$\rho_3 \circ \rho_2 \circ \rho_1 = \mathrm{id}_{\mathbf{E}}.$$

SOLUCIONES

Ejercicio 1. El triángulo $\triangle \{A, B, C\}$ es congruente con $\triangle \{D, E, F\}$, pues AB = DE, BC = EF, y dado que A, C, F y D están alineados:

$$AC = AF + FC = FC + CD = FD$$

Entonces $\angle_{\triangle\{A,B,C\}}F$ es congruente con $\angle_{\triangle\{A,B,C\}}C$ por lo que $r_{B,C}$ es paralela a r_{EF} .

Ha habido otras soluciones también válidas. Por ejemplo se prueba que $\Delta\{D, E, F\}$ es la imagen de $\Delta\{A, B, C\}$ por una mediavuelta con centro en el punto medio[C, F]. Como además las medias vueltas llevan rectas a rectas paralelas: $r_{B,C}$ es paralela a r_{EF} .

Ejercicio 2.

A. Construcción del Teorema 10.24.

B. Ejercicio 10.2.

Ejercicio 3.

Sea C = (V, W, X, Y) y a = [V, W]. Sea D = (V, W, Z, T) la cara adyacente a C y con la arista [V, W] en común.

Hay dos rotaciones cuyo eje pasa por el centro de C y que son rotaciones de ángulo $\pi/2$. Sea ρ_1 la rotación cuyo eje es ortogonal a C y que es simetría de C tal que $\rho_1(V) = W$, $\rho_1(W) = X$, $\rho_1(X) = Y$, $\rho_1(Y) = V$.

Hay una única media vuelta ρ_2 que es simetría de \mathcal{C} y con eje que pasa por el punto medio de a = [V, W].

Por último hay dos rotaciones que son simetrías de \mathcal{C} , cuyo eje pasa por V. Una de ellas es ρ_3 que verifica $\rho_3(T) = W$.

Veamos como actúa $\rho_3 \circ \rho_2 \circ \rho_1$ sobre algunos vértices de \mathcal{C} :

$$\rho_3 \circ \rho_2 \circ \rho_1(V) = \rho_3 \circ \rho_2(W) = \rho_3(V) = V
\rho_3 \circ \rho_2 \circ \rho_1(W) = \rho_3 \circ \rho_2(X) = \rho_3(T) = W
\rho_3 \circ \rho_2 \circ \rho_1(Y) = \rho_3 \circ \rho_2(V) = \rho_3(W) = Y$$

Al tener $\rho_3 \circ \rho_2 \circ \rho_1$ tres puntos fijos: V, W, Y más el centro del cubo, entonces $\rho_3 \circ \rho_2 \circ \rho_1 = \mathrm{id}_{\mathbf{E}}$.