AMENDMENT TO THE CLAIMS

- 1. (Canceled)
- 2. (Currently Amended) A glide test system comprising:
 - a glide test apparatus including a glide head having
 a glide body including a leading edge, a trailing edge
 and a contoured disc facing surface having a raised
 bearing surface elevated from a recessed bearing
 surface: and
 - at least one thermal transducer <u>formeddeposited</u> on the raised bearing surface having a surface portion extending along a portion of the raised bearing surface to form a glide interface to detect asperities and a thickness portion intersecting the surface portion and the thickness portion forming a contour profile of the contoured disc facing surface of the glide body relative to the raised bearing surface and the recessed bearing surface.

3. (Canceled)

- 4. (Previously Presented) The glide head of claim 28 wherein the raised bearing surface includes opposed side rails oriented along a length of the glide body and the at least one thermal transducer is formed along a portion of a length of at least one of the opposed side rails.
- 5.(Previously Presented) The glide head of claim 4 wherein each of the opposed side rails includes at least one thermal transducer.
- 6.(Previously Presented) The glide head of claim 28 wherein the at least one thermal transducer is in electrical contact with

electrically conductive pads proximate to the trailing edge of the glide body.

7. (Previously Presented) The glide head of claim 6 including conductive strips conductively coupled to the at least one thermal transducer and the conductive pads to provide an electrical contact between the thermal transducer and the pads.

8. (Canceled)

- 9. (Previously Presented) The glide head of claim 28 wherein the at least one thermal transducer extends along at least half of a length distance between the leading edge and the trailing edge of the glide body.
- 10. (Previously Presented) The glide head of claim 28 wherein the at least one thermal transducer extends substantially from the leading edge to the trailing edge of the glide body.
- 11. (Previously Presented) The glide head of claim 28 and comprising a plurality of thermal transducers.
- 12. (Previously Presented) The glide head of claim 11 wherein the plurality of thermal transducers comprise a first thermal transducer and a second thermal transducer and the first and second thermal transducers share a common electrical ground.
- 13. (Previously Presented) The glide head of claim 11 wherein the plurality of thermal transducers are spaced along the raised bearing surface and the glide head further comprises electrically conductive strips in electrical contact with the plurality of thermal transducers, the strips being formed on athe recessed bearing surface offset from the raised bearing surface.

14. (Previously Presented) The glide head of claim 28 further comprising a piezoelectric transducer.

15. (Canceled)

16. (Currently Amended) A method of fabricating a glide head comprising:

fabricating an air bearing surface on a disc facing surface of the glide head including a raised bearing surface and a recessed bearing surface; and

depositing a thermal transducer on the raised bearing surface to form a surface portion providing a glide interface to detect asperities and a thickness portion forming a contour profile of the disc facing surface relative to the recessed bearing surface and the raised bearing surface.

17. (Canceled)

18. (Previously Presented) A method of fabricating a glide head from a wafer comprising;

slicing a plurality of glide bodies from the wafer; and depositing thermal transducers on the plurality of glide bodies sliced from the wafer.

19. (Canceled)

- 20. (Original) The method of claim 16 wherein the deposition is performed using a thin film deposition technique.
- 21. (Currently Amended) The method of claim 18 and further comprising:

- fabricating an—air bearing surfaces on the plurality of glide bodies sliced from the wafer including a raised bearing surface and a recessed bearing surface prior to depositing the thermal transducers; and
- depositing the thermal transducers on the raised bearing surfaces of the plurality of glide bodies sliced from the wafer.

22. (Canceled)

- 23. (Previously Presented) The glide head of claim 28 including a plurality of spaced thermal transducers spaced along a length of the glide body between the leading edge and the trailing edge of the glide body.
- 24. (Previously Presented) The glide head of claim 28 including a protective layer deposited on the at least one thermal transducer.

25. (Cancelled)

26. (Previously Presented) The method of claim 16 wherein the step of fabricating the raised bearing surface and the recessed surface and the deposition of the thermal transducer is performed on a surface of a wafer prior to slicing a plurality of glide heads from the wafer.

27. (Currently Amended) A head comprising:

- a body portion including a leading edge, a trailing edge and a raised bearing surface extending along a portion of a length of the body portion between the leading edge and the trailing edge; and
- at least one thermal transducer formed on the raised bearing surface

- at least one conductive pad on the trailing edge of the body portion and a conductive strip electrically connecting the at least one conductive pad and the at least one thermal transducer along the raised bearing surface.
- 28. (Currently Amended) A glide head comprising:
 - a glide body including a leading edge, a trailing edge and a contoured disc facing—surface having a raised bearing surface elevated from a recessed bearing surface; and
 - least one thermal transducer <u>formedfabricated</u> on the raised bearing surface having a surface portion extending along the raised bearing surface to form a glide interface to detect asperities and a thickness portion intersecting the surface portion and forming a contour profile of the contoured disc facing surface relative to the raised bearing surface and the recessed bearing surface.
- 29. (Previously Presented) The method of claim 16 wherein the air bearing surface is fabricated prior to the step of depositing the thermal transducer on the raised bearing surface.