In [52]:	Generative Adversarial Networks (GANs) So far in class, all the applications of neural networks that we have explored have been discriminative models that take an input and are trained to produce a labeled output. This has ranged from straightforward classification of image categories to sentence generation (which was still phrased as a classification problem, our labels were in vocabulary space and we'd learned a recurrence to capture multi-word labels). In this notebook, we will expand our repetoire, and build generative models using neural networks. Specifically, we will learn how to build models which generate novel images that resemble a set of training images. What is a GAN? In 2014, Goodfellow et al. presented a method for training generative models called Generative Adversarial Networks (GANs for short). In a GAN, we build two different neural networks. Our first network is a traditional classification network, called the discriminator. We will train the discriminator to take images, and classify them as being real (belonging to the training set) or fake (not present in the training set). Our other network, called the generator, will take random noise as input and transform it using a neural network to produce images. The goal of the generator is to fool the discriminator into thinking the images it produced are real.
	We can think of this back and forth process of the generator (G) trying to fool the discriminator (D) , and the discriminator trying to correctly classify real vs. fake as a minimax game: $\min_{G} \max_{D} \mathbb{E}_{x \sim p_{\text{data}}} \left[\log D(x) \right] + \mathbb{E}_{z \sim p(z)} \left[\log (1 - D(G(z))) \right]$ where $x \sim p_{\text{data}}$ are samples from the input data, $z \sim p(z)$ are the random noise samples, $G(z)$ are the generated images using the neural network generator G , and D is the output of the discriminator, specifying the probability of an input being real. In Goodfellow et al., they analyze this minimax game and show how it relates to minimizing the Jensen-Shannon divergence between the training data distribution and the generated samples from G . To optimize this minimax game, we will aternate between taking gradient descent steps on the objective for G , and gradient ascent steps on the objective for D : 1. update the generator (G) to minimize the probability of the discriminator making the correct choice.
	2. update the discriminator (D) to maximize the probability of the discriminator making the correct choice . While these updates are useful for analysis, they do not perform well in practice. Instead, we will use a different objective when we update the generator: maximize the probability of the discriminator making the incorrect choice . This small change helps to allevaiate problems with the generator gradient vanishing when the discriminator is confident. This is the standard update used in most GAN papers, and was used in the original paper from Goodfellow et al In this assignment, we will alternate the following updates: 1. Update the generator (G) to maximize the probability of the discriminator making the incorrect choice on generated data: $\max_{G} \mathbb{E}_{z \sim p(z)} \left[\log D(G(z)) \right]$ 2. Update the discriminator (D), to maximize the probability of the discriminator making the correct choice on real and generated data:
	What else is there? Since 2014, GANs have exploded into a huge research area, with massive workshops, and hundreds of new papers. Compared to other approaches for generative models, they often produce the highest quality samples but are some of the most difficult and finicky models to train (see this github repo that contains a set of 17 hacks that are useful for getting models working). Improving the stability and robustness of GAN training is an open research question, with new papers coming out every day! For a more recent tutorial on GANs, see here. There is also some even more recent exciting work that changes the objective function to Wasserstein distance and yields much more stable results across model architectures: WGAN, WGAN-GP. GANs are not the only way to train a generative model! For other approaches to generative modeling check out the deep generative model chapter of the Deep Learning book. Another popular way of training neural networks as generative models is Variational Autoencoders (co-discovered here and here). Variational autoencoders combine neural networks with variational inference to train deep generative models. These models tend to be far more stable and easier to train but currently don't produce samples that are as pretty as GANs. Example pictures of what you should expect (yours might look slightly different):
In [1]:	<pre>import tensorflow.comput.v1 as tf # I am using tensorflow version 1.14 . If there are any discrepencies due to tensorflow versions please # install tensorflow version 1.14 for this assignment. import numby as no import numby as no import matplotlib.pyplot as plt import matplotlib.gydapec as gydapec **matplotlib inline plt.roParams['ingure.figsize'] = (10.0, 8.0) # set default size of plots plt.roParams['ingure.figsize'] = (10.0, 8.0) # set default size of plots plt.roParams['ingure.figsize'] = 'reary' # for suco-reloading external modules # see http://stockoverflow.com/questions/1907993/sutoreload-of-modules-in-ipython *load ext autoreload **autoreload 2 # A bunch of utility functions def show inages(inages): images = np.roPhape(inages, [images.shape[0], -1]) # images reshape to (batch_size, D) septin = int(np.cell(np.sept(images.shape[1]))) fig = plt.figure(figsize=(septin, septin) gs = gridapec.oridapec(septin, septin) gs = gridapec.oridapec(septin, septin) gs = gridapec.oridapec(septin, septin) gs = gridapec.oridapec(septin, septin) gs.update(xspace=0.05, hapace=0.05) for i, ing in enumerate(images): ax = plt.subplot(qs[i]) ax.set_sapect("equal") plt.insibov(ing.reshape([sqrting,sqrting])) return 2 * x - 1.0</pre>
	<pre>def rel_error(x,y): return np.max(np.abs(x - y) / (np.maximum(le-8, np.abs(x) + np.abs(y)))) def count_params(): """Count the number of parameters in the current TensorFlow graph """ param_count = np.sum([np.prod(x.get_shape().as_list()) for x in tf.global_variables()]) return param_count def get_session(): config = tf.ConfigProto() config.gpu_options.allow_growth = True session = tf.Session(config=config) return session answers = np.load('gan-checks-tf.npz') NOISE_DIM = 96 print(tfversion_) 2.7.0 Dataset GANs are notoriously finicky with hyperparameters, and also require many training epochs. In order to make this assignment approachable without a GPU, we will be working on the MNIST dataset, which is 60,000 training and 10,000 test images. Each picture contains a centered</pre>
<pre>In [2]:</pre> <pre>In [3]:</pre>	<pre>image of white digit on black background (0 through 9). This was one of the first datasets used to train convolutional neural networks and it is fairly easy a standard CNN model can easily exceed 99% accuracy. Heads-up: Our MNIST wrapper returns images as vectors. That is, they're size (batch, 784). If you want to treat them as images, we have to resize them to (batch,28,28) or (batch,28,28,1). They are also type np.float32 and bounded [0,1]. class MNIST(object): def</pre>
In [54]:	LeakyReLU In the cell below, you should implement a LeakyReLU. See the class notes (where alpha is small number) or equation (3) in this paper. LeakyReLUs keep ReLU units from dying and are often used in GAN methods (as are maxout units, however those increase model size and therefore are not used in this notebook). HINT: You should be able to use tf.maximum Test your leaky ReLU implementation. You should get errors < 1e-10 def leaky_relu(x, alpha=0.01): """Compute the leaky ReLU activation function. Inputs: - x: TensorFlow Tensor with arbitrary shape - alpha: leak parameter for leaky ReLU
In [55]:	Returns: TensorFlow Tensor with the same shape as x """ # TODO: implement leaky ReLU # ******START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)**** return tf.maximum(alpha*x, x) # ****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)**** def test_leaky_relu(x, y_true): tf.reset_default_graph() with get_session() as sess: y_tf = leaky_relu(tf.constant(x)) y = sess.run(y_tf) print('Maximum error: %g'%rel_error(y_true, y)) test leaky relu(answers['lrelu x'], answers['lrelu y'])
In [56]:	Maximum error: 0 Random Noise Generate a TensorFlow Tensor containing uniform noise from -1 to 1 with shape [batch_size, dim]. Make sure noise is the correct shape and type: def sample_noise(batch_size, dim, seed=None): """Generate random uniform noise from -1 to 1. Inputs: - batch_size: integer giving the batch size of noise to generate - dim: integer giving the dimension of the noise to generate Returns: TensorFlow Tensor containing uniform noise in [-1, 1] with shape [batch_size, dim] """ if seed is not None: tf.random.set_seed(seed)
In [57]:	<pre># TODO: sample and return noise # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE) ***** return tf.random_uniform([batch_size,dim], -1, 1) # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE) ***** def test_sample_noise(): batch_size = 3 dim = 4 tf.reset_default_graph() with get_session() as sess: z = sample_noise(batch_size, dim) # Check z has the correct shape assert z.get_shape().as_list() == [batch_size, dim] # Make sure z is a Tensor and not a numpy array assert isinstance(z, tf.Tensor) # Check that we get different noise for different evaluations z1 = sess.run(z) z2 = sess.run(z) assert not np.array_equal(z1, z2) # Check that we get the correct range assert not np.array_equal(z1, z2) # Check that we get the correct range assert not np.all(z1 >= -1.0) and np.all(z1 <= 1.0)</pre>
	print ("All tests passed!") test_sample_noise() All tests passed! Discriminator Our first step is to build a discriminator. Hint: You should use the layers in tf.keras.layers to build the model. All fully connected layers should include bias terms. For initialization, just use the default initializer used by the tf.keras.layers functions. Architecture: Fully connected layer with input size 784 and output size 256 LeakyReLU with alpha 0.01 Fully connected layer with output size 256 LeakyReLU with alpha 0.01 Fully connected layer with output size 1
In [58]:	The output of the discriminator should thus have shape [batch_size, 1], and contain real numbers corresponding to the scores that each of the batch_size inputs is a real image. Test to make sure the number of parameters in the discriminator is correct: def discriminator(x): """Compute discriminator score for a batch of input images. Inputs: - x: TensorFlow Tensor of flattened input images, shape [batch_size, 784] Returns: TensorFlow Tensor with shape [batch_size, 1], containing the score for an image being real for each input image. """ ###############################
In [59]:	<pre># HINT: tf.keras.models.Sequential might be helpful. # ###################################</pre>
	cur_count = count_params() if cur_count != true_count: print('Incorrect number of parameters in discriminator. {0} instead of {1}. Check your achitecture. else: print('Correct number of parameters in discriminator.') test_discriminator() Correct number of parameters in discriminator. Generator Now to build a generator. You should use the layers in tf.keras.layers to construct the model. All fully connected layers should include bias terms. Note that you can use the tf.nn module to access activation functions. Once again, use the default initializers for parameters. Architecture:
In [60]:	 Fully connected layer with inupt size tf.shape(z)[1] (the number of noise dimensions) and output size 1024 ReLU Fully connected layer with output size 1024 ReLU Fully connected layer with output size 784 TanH (To restrict every element of the output to be in the range [-1,1]) Test to make sure the number of parameters in the generator is correct: def generator(z): """Generate images from a random noise vector. Inputs: - z: TensorFlow Tensor of random noise with shape [batch_size, noise_dim] Returns: TensorFlow Tensor of generated images, with shape [batch_size, 784]. """
In [61]:	######################################
	with $\operatorname{get_session}()$ as $\operatorname{sess}:$ $y = \operatorname{generator}(\operatorname{tf.ones}((1,\ 4)))$ $\operatorname{cur_count} = \operatorname{count_params}()$ if $\operatorname{cur_count}! = \operatorname{true_count}:$ $\operatorname{print}('\operatorname{Incorrect} number of parameters in generator.\ \{0\} \text{ instead of } \{1\}. \text{ Check your achitecture.'.}$ else: $\operatorname{print}('\operatorname{Correct} number of parameters in generator.')$ test_generator() Correct number of parameters in generator. GAN Loss Compute the generator and discriminator loss. The generator loss is: $\ell_G = -\mathbb{E}_{z \sim p(z)} \left[\log D(G(z)) \right]$
In [25]:	and the discriminator loss is: $\ell_D = -\mathbb{E}_{x \sim p_{\text{data}}} \left[\log D(x) \right] - \mathbb{E}_{z \sim p(z)} \left[\log (1 - D(G(z))) \right]$ Note that these are negated from the equations presented earlier as we will be <i>minimizing</i> these losses. $ \begin{aligned} \textbf{HINTS:} & \text{Use tf.ones and tf.zeros to generate labels for your discriminator. Use tf.keras.losses.BinaryCrossentropy to help compute your loss function.} \end{aligned} $ Test your GAN loss. Make sure both the generator and discriminator loss are correct. You should see errors less than 1e-8. $ \begin{aligned} \textbf{def gan_loss(logits_real, logits_fake):} \\ & \text{"""Compute the GAN loss.} \end{aligned} $ Inputs: $ - \log t \mathbf{s}_{z} \mathbf{s}$
In [15]:	<pre>- logits_fake: Tensor, shape[batch_size, 1], output of discriminator</pre>
	tf.reset_default_graph() with get_session() as sess: d_loss, g_loss = sess.run(gan_loss(tf.constant(logits_real), tf.constant(logits_fake))) print("Maximum error in d_loss: %g"%rel_error(d_loss_true, d_loss)) print("Maximum error in g_loss: %g"%rel_error(g_loss_true, g_loss)) test_gan_loss(answers['logits_real'], answers['logits_fake'], answers['d_loss_true'], answers['g_loss_true']) Maximum error in d_loss: 1.20519e-16 Maximum error in g_loss: 7.19722e-17 Optimizing our loss Make an Adam optimizer with a 1e-3 learning rate, beta1=0.5 to mininize G_loss and D_loss separately. The trick of decreasing beta was shown to be effective in helping GANs converge in the Improved Techniques for Training GANs paper. In fact, with our current hyperparameters, if you set beta1 to the Tensorflow default of 0.9, there's a good chance your discriminator loss will go to zero and the
In [44]:	<pre>generator will fail to learn entirely. In fact, this is a common failure mode in GANs; if your D(x) learns too fast (e.g. loss goes near zero), your G(z) is never able to learn. Often D(x) is trained with SGD with Momentum or RMSProp instead of Adam, but here we'll use Adam for both D(x) and G(z). def get_solvers (learning_rate=le-3, betal=0.5): """Create solvers for GAN training. Inputs: - learning_rate: learning rate to use for both solvers - betal: betal parameter for both solvers (first moment decay) Returns: - D_solver: instance of tf.optimizers.Adam with correct learning_rate and betal - G_solver: instance of tf.optimizers.Adam with correct learning_rate and betal """ # TODO: create an AdamOptimizer for D_solver and G_solver D_solver = None G_solver = None # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE) ***** D_solver = tf.train.AdamOptimizer (learning_rate = learning_rate, betal = betal) G_solver = tf.train.AdamOptimizer (learning_rate = learning_rate, betal = betal)</pre>
In [62]:	<pre># ******EMD OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)**** return D_solver, G_solver tf.reset_default_graph() # number of images for each batch batch_size = 128 # our noise dimension noise_dim = 96 tf.compat.vl.disable_eager_execution() # placeholder for images from the training dataset x = tf.placeholder(tf.float32, [None, 784]) # random noise fed into our generator z = sample_noise(batch_size, noise_dim) # generated images G_sample = generator(z) with tf.variable_scope("") as scope: #scale_images to be -1 to 1 logits_real = discriminator(preprocess_img(x)) # Re-use discriminator weights on new inputs scope.reuse_variables() logits_fake = discriminator(G_sample) # Get the list of variables for the discriminator and generator D_vars = tf.get collection(tf.GraphKeys_TRAINBLE_VARIABLES, 'discriminator')</pre>
	<pre>G_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'generator') # get our solver D_solver, G_solver = get_solvers() # get our loss D_loss, G_loss = gan_loss(logits_real, logits_fake) # setup training steps D_train_step = D_solver.minimize(D_loss, var_list=D_vars) G_train_step = G_solver.minimize(G_loss, var_list=G_vars) D_extra_step = tf.get_collection(tf.GraphKeys.UPDATE_OPS, 'discriminator') G_extra_step = tf.get_collection(tf.GraphKeys.UPDATE_OPS, 'generator')</pre> Training a GAN! Well that wasn't so hard, was it? After the first epoch, you should see fuzzy outlines, clear shapes as you approach epoch 3, and decent
In [46]:	shapes, about half of which will be sharp and clearly recognizable as we pass epoch 5. In our case, we'll simply train D(x) and G(z) with one batch each every iteration. However, papers often experiment with different schedules of training D(x) and G(z), sometimes doing one for more steps than the other, or even training each one until the loss gets "good enough" and then switching to training the other. If you are a Colab user, it is recommeded to change colab runtime to GPU. Train your GAN! This should take about 10 minutes on a CPU, or about 2 minutes on GPU. def run_a_gan(sess, G_train_step, G_loss, D_train_step, D_loss, G_extra_step, D_extra_step,\
In [29]:	<pre>print() for (minibatch, minbatch_y) in mnist: # run a batch of data through the network _, D_loss_curr = sess.run([D_train_step, D_loss], feed_dict={x: minibatch}) _, G_loss_curr = sess.run([G_train_step, G_loss]) # print loss every so often. # We want to make sure D_loss doesn't go to 0 if epoch % print_every == 0: print('Epoch: {}, D: {:.4}, G:{:.4}'.format(epoch,D_loss_curr,G_loss_curr)) print('Final images') samples = sess.run(G_sample) fig = show_images(samples[:16]) plt.show() with get_session() as sess: sess.run(tf.global_variables_initializer()) run a gan(sess,G train step,G loss,D train step,D loss,G extra step,D extra step)</pre>
	# The output is shown for your reference Epoch: 0, D: 1.214, G:0.8564 Epoch: 1, D: 0.8893, G:2.593
	Epoch: 2, D: 1.045, G:1.113 Epoch: 3, D: 1.123, G:1.034 Epoch: 4, D: 1.615, G:0.4843 Epoch: 5, D: 1.241, G:1.092
	Epoch: 6, D: 1.286, G:0.9477 Epoch: 7, D: 1.286, G:0.8095 Epoch: 8, D: 1.259, G:0.8469 Epoch: 9, D: 1.188, G:1.016 Final images
	Deep Convolutional GANs In the first part of the notebook, we implemented an almost direct copy of the original GAN network from Ian Goodfellow. However, this network architecture allows no real spatial reasoning. It is unable to reason about things like "sharp edges" in general because it lacks any convolutional layers. Thus, in this section, we will implement some of the ideas from DCGAN, where we use convolutional networks as our discriminators and generators. Discriminator We will use a discriminator inspired by the TensorFlow MNIST classification tutorial, which is able to get above 99% accuracy on the MNIST dataset fairly quickly. Be sure to check the dimensions of x and reshape when needed, fully connected blocks expect [N,D] Tensors while conv2d blocks expect [N,H,W,C] Tensors. Please use tf.keras.layers to define the following architecture: Architecture: Conv2D: 32 Filters, 5x5, Stride 1, padding 0 Leaky ReLU(alpha=0.01) Max Pool 2x2, Stride 2 Conv2D: 64 Filters, 5x5, Stride 1, padding 0 Leaky ReLU(alpha=0.01) Max Pool 2x2, Stride 2 Flatten Fully Connected with output size 4 x 4 x 64
In [63]:	 Leaky ReLU(alpha=0.01) Fully Connected with output size 1 Once again, please use biases for all convolutional and fully connected layers, and use the default parameter initializers. Note that a padding of 0 can be accomplished with the 'VALID' padding option. def discriminator(x): """Compute discriminator score for a batch of input images. Inputs: - x: TensorFlow Tensor of flattened input images, shape [batch_size, 784] Returns: TensorFlow Tensor with shape [batch_size, 1], containing the score for an image being real for each input image. """ with tf.variable_scope("discriminator"): # TODO: implement architecture x = tf.reshape(x, [-1, 28, 28, 1]) conv = tf.layers.conv2d(x, 32, 5, 1, padding='valid', activation=leaky_relu) pool = tf.layers.max_pooling2d(conv, 2, 2)
In [64]:	
In [64]:	
	<pre># placeholders for images from the training dataset x = tf.placeholder(tf.float32, [None, 784]) z = sample_noise(batch_size, noise_dim) # generated images G_sample = generator(z) with tf.variable_scope("") as scope: #scale images to be -1 to 1 logits_real = discriminator(preprocess_img(x)) # Re-use discriminator weights on new inputs scope.reuse_variables() logits_fake = discriminator(G_sample) # Get the list of variables for the discriminator and generator D_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'discriminator') G_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'generator') D_solver,G_solver = get_solvers() D_loss, G_loss = gan_loss(logits_real, logits_fake) D_train_step = D_solver.minimize(D_loss, var_list=D_vars) G_train_step = G_solver.minimize(G_loss, var_list=G_vars) D_extra_step = tf.get_collection(tf.GraphKeys.UPDATE_OPS, 'discriminator')</pre>
	G_extra_step = tf.get_collection(tf.GraphKeys.UPDATE_OPS, 'generator')

In [33]:		ignificantly benefits from us up on CPU (feel free to use 3			
	Epoch: 0, D: 0.9574, G:1 Epoch: 1, D: 0.9385, G:1	.514 .152			
	Epoch: 2, D: 1.136, G:0. Epoch: 3, D: 1.032, G:0.	1 8 6918			
	9 4 1 1 2 7 9 3 3 2	0- 4 3 8			
	Epoch: 4, D: 0.9284, G:1 Final images	.269 0			
In []:	5 8 3 6 9 3 6 check	\$ 3			
	INLINE QUESTION If the generator loss decreases of Why or why not? A qualitative at Your answer: No, it is not a good sign.	during training while the dis	scriminator loss stays at a consta	int high value from the start, is	this a good sign?
In []:	If the loss of generator is decreated classify our real img, and it is contained.				n hardly correctly