Matemática Financiera

Autor: José M. Martín Senmache Sarmiento

Capítulo 7: Teoría de Rentas o Anualidades

Solución de Ejercicio Nº6

e-financebook

- 6. ¿Cuál será el monto de la cuota que deberá pagar al final de cada bimestre, por un préstamo de S/. 32,800.00 que recibe hoy y que se encuentra afecto a una tasa nominal semestral (TNS) de 8.4% con capitalización diaria (c.d.), si planea devolverlo en un plazo de 30 meses?
 - a) ¿Cuál sería el monto de la cuota, si esta se pacta del estilo de pago vencido?
 - b) ¿Cuál sería si pacta el estilo de pago adelantado?

Respuestas: a) S/. 2,715.63, b) S/. 2,640.66

DATOS		
Nombre	Descripcion	Valor
С	Monto del préstamo	32,800.00
TN	Tasa de Interés Nominal Semestral (TNS)	8.4%
рс	Periodo de capitalización	c.d.
n	Tiempo que dura el crédito	30 meses
f	Frecuencia de pago	bimestral

FÓRMULAS		
Número	Fórmula	
18	$TEP = \left(1 + \frac{TN}{m}\right)^{n} - 1$	
49	$R = C * \left(\frac{TEP * (1+TEP)^{n}}{(1+TEP)^{n}-1}\right)$	
54	Ra = C* $\left(\frac{\text{TEP}*(1+\text{TEP})^{(n-1)}}{(1+\text{TEP})^n-1}\right)$	
55	$Ra = \frac{R}{1 + TEP}$	

SOLUCIÓN

a) Calculamos la tasa efectiva bimestral (TEB):

$$TEB = \left(1 + \frac{TNS}{m}\right)^{n} - 1$$

$$TEP = \left(1 + \frac{8.4\%}{180}\right)^{60} - 1$$

TEB = 0.02838896726

TEB = 2.838896726%

$$n=\frac{30}{2}$$

n = 15 cuotas bimenstrales

$$R = C * \left(\frac{TEB * (1 + TEB)^{n}}{(1 + TEB)^{n} - 1} \right)$$

$$R = 32,800.00 * \left(\frac{2.838896726 \% * (1 + 2.838896726 \%)^{15}}{(1 + 2.838896726 \%)^{15} - 1} \right)$$

$$R = 2,715.63$$

SOLUCIÓN

c) Aplicamos la fórmula que convierte una cuota vencida en anticipada o adelantada:

$$Ra = \frac{R}{1 + TEP}$$

$$Ra = \frac{R}{1 + TEB}$$

$$Ra = \frac{2,715.63}{1 + 2.838896726\%}$$

Ra = 2,640.66