ST2334 Midterms Cheatsheet v1.0 (2019-05-01) by Julius Putra Tanu Setiaji, page 1 of 2	7. The Inclusion-Exclusion Principle $\Pr(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} \Pr(A_i) - \sum_{i=1}^{n-1} \sum_{i=1}^{n} \Pr(A_i \cap A_i) + \sum_{i=1}$	 Each possible value x of X represents an event that is a subset of the sample space S If S has elements that are themselves real numbers, we take X(s) = s. In this case R_x = S 	• $F(x)$ is a non-decreasing function: $x_1 < x_2 \Rightarrow F(x_1) \le F(x_2)$ • $0 < F(x) < 1$
 Basic Concepts of Probability Sample Space (S) = set of all possible outcomes of a statistical experiment 	$\sum_{i=1}^{n-2}\sum_{j=1}^{n-1}\sum_{i=1}^{n}\Pr(A_i\cap A_j\cap A_k)$	take $X(s) = s$. In this case $R_X = S$ 2.2 Equivalent Events 2.2.1 Definition	2.6. Mean and Variance of an R.V. 2.6.1 Expected Value / Mean / Mathematical Expectation • Discrete: $E(X) = \mu_X = \sum_i x_i f(x_i) = \sum_x x_i f(x)$
• Sample Points = An element of the sample space	i=1 $j=i+1$ $k=j+18. If A \subset B, then \Pr(A) \le \Pr(B)1.7 Conditional Probability, P(A \mid B)$	• Let <i>E</i> be an experiment in sample space <i>S</i> . Let <i>X</i> be an R.V. defined on <i>S</i> , and R_X its range space, i.e. $X: S \to \mathbb{R}$	• If $f(x) = \frac{1}{N}$ for each of the N values of x , $E(X) = \frac{1}{N} \sum_{i} x_{i}$
 Sample space = sure event, subset of S = Ø = null event Mutually exclusive/disjoint if A ∩ B = Ø 	• $Pr(A \mid B) = \frac{Pr(A \cap B)}{Pr(B)}$, if $Pr(A) \neq 0$	 Let B be an event w.r.t. R_X, i.e. B ⊂ R_X Suppose A = {s ∈ S X(s) ∈ B} (A consists of all sample points s in S for which X(s) ∈ B) 	 Continuous: E(X) = μ_X = ∫_{-∞}[∞] xf(x)dx Remark: The expected value exists provided the sum/integral exists
 Contained: A ⊂ B ≡ B ⊃ A. If A ⊂ B and B ⊃ A, then A = B 1.1 Basic Properties 	 For fixed <i>A</i>, Pr(<i>B</i> <i>A</i>) satisfies the postulates of probability. False positive: Pr(+ condition) 	• A and B are equivalent events, and $Pr(B) = Pr(A)$ 2.2.2 Example	2.6.2 Expectation of a function of an R.V. $\forall g(X)$ with p.f. $f_X(x)$
1. $A \cap A' = \emptyset$ 2. $A \cap \emptyset = \emptyset$ 3. $A \cup \emptyset = \emptyset$ 4. $A \cup B' = A' \cap B'$ 7. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	1.7.1 Multiplication rule • $Pr(A \cap B) = Pr(A)Pr(B \mid A) = Pr(B)Pr(A \mid B)$, providing	 Consider tossing a coin twice, S = {HH, HT, TH, TT} Let X be no of heads, then R_X = {0,1,2} A₁ = {HH} equiv B₁ = {2} A₂ = {HT, TH} equiv B₂ = {1} 	• Discrete: $E[g(X)] = \sum_{x} g(x) f_X(x)$ • Continuous: $E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$
4. $(A')' = A$ 5. $(A \cap B)' = A' \cup B'$ 9. $A \cup B = A \cup (B \cap A')$	• $Pr(A \cap B \cap C) = Pr(A)Pr(B \mid A)Pr(C \mid A \cap B)$	$A_3 = \{TT\} \text{ equiv } B_3 = \{0\}, A_4 = \{HH, HT, TH\} \text{ equiv}$	• Provided the sum/integral exists. 2.6.3 Variance $(\sigma_X^2 = V(X))$
1.2 De Morgan's Law $ \begin{array}{ccc} & n & n \\ & n & n \end{array} $	• $\Pr(A_1 \cap \cap A_n) = \Pr(A_1)\Pr(A_2 \mid A_1)\Pr(A_3 \mid A_1 \cap A_2)\Pr(A_n \mid A_1 \cap \cap A_{n-1})$ 1.7.2 The Law of Total Probability	2.3 Discrete Probability Distributions 2.3.1 Discrete R.V. Let X be an R.V. If R_X is finite or countable infinite, X is	• $g(x) = (x - \mu_X)^2$, Let X be an R.V. with p.f. $f(x)$
r=1 $r=1$ $r=1$ $r=1$ 1.3 Counting Methods	 Let A₁, A₂,, A_n be a partition of sample space S (mutually exclusive and exhaustive events s.t. A_i ∩ A_j = Ø for 	discrete R.V. 2.3.2 Probability Function (p.f.) or Probability Mass	• $E[(X-\mu_X)^2] = \begin{cases} \sum_x (x-\mu_X)^2 f_X(x) & \text{if } X \text{ is discrete} \\ \int_{-\infty}^{\infty} (x-\mu_X)^2 f_X(X) dx & \text{if } X \text{ is continuous} \end{cases}$
 1.3.1 Multiplication & Addition Principle 1.3.2 Permutation An arrangement of r objects from a set of n objects, r ≤ n, order taken into consideration 	$t \neq j$ and $\bigcup_{i=1} A_i = 5j$.	• For a discrete R.V., each value X has a certain probability $f(x)$ Such a function $f(x)$ is called the p.f.	$V \bullet V(X) \ge 0, V(X) = E(X^2) - [E(X)]^2$
order taken into consideration. • n distinct objects taken r at a time = ${}_{n}P_{r} = \frac{n!}{(n-r)!}$	• Let $A_1, A_2,, A_n$ be a partition of S	• The probability of $X = x_i$ denoted by $f(x_i)$ must satisfy:	2.6.4 K-th moment of X • Definition: $E(X^k)$, use $g(x) = x^k$ in expectation of a fn
• In a circle: $(n-1)!$ • Not all are distinct: $\sum_{k=1}^{k} n_k = n_k n_k P_{n_k} n_k = \frac{n!}{n!}$	• $\Pr(A_k \mid B) = \frac{\Pr(A_k)\Pr(B A_k)}{\sum_{i=1}^n \Pr(A_i)\Pr(B A_i)} = \frac{\Pr(A_k)\Pr(B A_k)}{\Pr(B)}, k \in [1, n]$ 1.8 Independent Events	1. $f(x_i) \ge 0 \forall x_i$ 2. $\sum_{i=1}^{\infty} f(x_i) = 1$ 2.4 Continuous Probability Distributions	2.6.5 Properties of Expectation 1. $E(aX + b) = aE(X) + b$
1.3.3 CombinationNo of ways selecting <i>r</i> from <i>n</i> objects w/o regarding order	Definition. In $\Gamma(A \cap B) = \Gamma(A)\Gamma(B)$	2.4.1 Continuous R.V. Suppose that R_X is an interval or a collection of intervals	2. $V(X) = E(X^2) - [E(X)]^2$ 3. $V(aX + b) = a^2 V(X)$ 2.7 Chebyshev's Inequality
 (ⁿ_r) =_n C_r = ^{n!}/_{r!(n-r)!}, _nC_r × r! =_n P_r (ⁿ_r) = binomial coefficient of the term a^r b^{n-r} in binomial 	$ - \tilde{Pr}(B \mid A) = Pr(B) \text{ and } Pr(A \mid B) = Pr(A) $ $- A \text{ and } B \text{ cannot be mutually exclusive (and vice versa)} $		• Let X be an R.V. with $E(X) = \mu$, $V(X) = \sigma^2$ • $\forall k > 0$, $\Pr(X - \mu > k\sigma) \le \frac{1}{1.2}$
expansion of $(a + b)^n$: 1. $\binom{n}{r} = \binom{n}{n-r}$ for $r = 0, 1,, n$	 The sample space S and Ø are independent of any event If A ⊂ B, then A and B are dependent unless B = S Warning: Indep events can't be shown using Venn Diagram, 	1. $f(x) \ge 0 \forall x \in R_X$	• Alternatively, $\Pr(X - \mu \le k\sigma) \ge 1 - \frac{1}{1.2}$
2. $\binom{n}{r} = \binom{n-1}{r} + \binom{n-1}{r-1}$ for $1 \le r \le n$ 3. $\binom{n}{r} = 0$ for $r < 0$ pr $r > n$	hence calc! Cannot use intuition 1.8.2 Theorem If A, B are indep, then so are A and B' , A' and B , A' and B' .	2. $\int_{R_X} f(x) dx = 1$ or $\int_{-\infty} f(x) dx = 1$ as $f(x) = 0$ or $x \in R_X$ 3. $\forall c, d : c < d$ (i.e. $(c, d) \subset R_X$), $\Pr(c \le X \le d) = \int_c^d f(x) dx$	 Holds for all distributions with finite mean and variance Gives a lower bound but not exact probability. MA1521 Shit
$f_A = \frac{n_A}{n}$, event A in n repetitions of experiment E, $n_A = \text{no}$	1.8.3 n Independent Events • Pairwise Independent Events:	2.4.3 Remarks • $Pr(c \le X \le d) = \int_{c}^{d} f(x)dx$ represents area under the	3.1 Taylor Series of f at a
of times that event <i>A</i> occured among the <i>n</i> repetitions. 1.4.1 Properties 1. $0 \le f_A \le 1$	Events $A_1, A_2,, A_n$ are pairwise indep iff $Pr(A_i \cap A_j) = Pr(A_i)Pr(A_j)$	graph of the p.d.f. $f(x)$ between $x = c$ and $x = d$ • Let x_0 be a fixed value, $\Pr(X = x_0) = 0$ • \leq and $<$ can be used interchangeably in a prob statement	3.2 MacLaurin Series
2. $f_A = 1$ iff A occurs every time among the n repetitions 3. $f_A = 0$ off A never occurs among the n repetitions	 Mutually Independent: Events A₁, A₂,, A_n are (mutually) independent iff for any subset {A_{i1}, A_{i2},, A_{ik}} of A₁, A₂,, A_n, 	 S and < can be used interchangeably in a prob statement Pr(A) = 0 does not necessarily imply A = Ø R_X ∈ [a, b] ⇒ f(x) = 0 ∀ x ∉ [a, b] 	3.3 List of common MacLaurin Series • $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, -1 < x < 1, R = 1$
 Events <i>A</i> and <i>B</i> are mutually exclusive → f_{A∪B} = f_A + f_B f_A "stabilises" near some definite numerical value as the experiment is repeated more and more times. 	$\Pr(A_{i_1} \cap A_{i_2} \cap \cap A_{i_k}) = \Pr(A_{i_1}) \Pr(A_{i_2}) \Pr(A_{i_k})$	2.5 Cumulative Distribution Function (c.d.f.)	• $\frac{1-x}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n, -1 < x < 1, R = 1$ • $\frac{1}{1+x^2} = \sum_{n=0}^{\infty} x^2 n, -1 < x < 1, R = 1$
1.5 Âxioms of Probability 1. $0 \le Pr(A) \le 1$	events A_i, A_k where $j \neq k$, the multiplication rule holds,	2.5.1 c.d.f. for Discrete R.V. • $F(x) = \sum_{t \le x} f(t) = \sum_{t \le x} \Pr(X = t)$	• $ln(1+x) = \sum_{n=0}^{\infty} \frac{(-1)^{n-1}x^n}{n!} - 1 < x < 1, R = 1$
 Pr(S) = 1 If A₁, A₂, are mutually exclusive (disjoint), i.e. A_i ∩ A_j = Ø when i ≠ j, then Pr(∪[∞]_{i=1} A_i) = ∑[∞]_{i=1} Pr(A_i) 	for any 3 distinct events, the multiplication rule holds, and so on $Pr(A_1 \cap A_2 \cap \cap A_n) = Pr(A_1)Pr(A_2)Pr(A_n)$ In total there are $2^n - n - 1$ different cases.	 c.d.f. of a discrete R.V. is a step function ∀ a, b s.t. a ≤ b, Pr(a ≤ X ≤ b) = Pr(X ≤ b) - Pr(X < a) = 	• $\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}, -\infty < x < \infty, R = \infty$
In particular, if events A and B are mutually exclusive, then $Pr(A \cup B) = Pr(A) + Pr(B)$	 Mutually indep ⇒ pairwise indep (not the converse) Suppose A₁, A₂,, A_n are mutually indep events, let B_i = A_i or A'_i, i ∈ [1,n]. Then B₁, B₂,, B_n are also mutually 	$V \cap V \subset \mathbb{Z}, u, v \in \mathbb{Z} \Rightarrow$	• $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}, -\infty < x < \infty, R = \infty$
1.6 Properties of Probability 1. $Pr(\emptyset) = 0$ 2. If $A_1, A_2,, A_n$ are mutually exclusive events, then	indep events.	$ - \Pr(a \le X \le b) = \Pr(X = a \text{ or } a+1 \text{ or } \text{ or } b) = F(b) - F(a-1) $ $ - \text{Taking } a = b, \Pr(X = a) = F(a) - F(a-1) $	• $\tan^{-1} x = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}, -1 \le x \le 1, R = 1$ • $\frac{1}{(1-x)^2} = \sum_{n=1}^{\infty} nx^{n-1}, -1 < x < 1, R = 1$
$\Pr(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} \Pr(A_i)$		2.5.2 c.d.f. for Continuous R.V.	• $\frac{1}{(1-x)^3} = \frac{1}{2} \sum_{n=2}^{\infty} n(n-1)x^{n-2}, -1 < x < 1, R = 1$
 Pr(A) = Pr(A ∩ B) + Pr(A ∩ B') Pr(A ∪ B) = Pr(A) + Pr(B) - Pr(A ∩ B) 	function X , which assigns a number to every element $s \in S$ 2.1.2 Notes	• $f(x) = \frac{dF(x)}{dx}$ if the derivative exists • $Pr(a \le X \le b) = Pr(a < X \le b) = F(b) - F(a)$	• $(1+x)^k = \sum_{n=0}^{\infty} {n \choose n} x^n, -1 < x < 1, R = 1$ • $(1+x)^n = 1 + nx + \frac{n(n-1)}{2!} x^2 + \frac{n(n-1)(n-2)}{3!} x^3 +, -1 < x < 1$
6. $Pr(A \cup B \cup C) = Pr(A) + Pr(B) + Pr(C) - Pr(A \cap B) - Pr(B \cap C) - Pr(A \cap C) + Pr(A \cap B \cap C)$	 X is a real-valued function Range space of X, R_X = {x x = X(s), s ∈ S}. 	$11(u \supseteq X \supseteq v) = 11(u \land X \supseteq v) = 1(v) = 1(u)$	$(1+x) = 1+nx + \frac{1}{2!}x + \frac{1}{3!}x^{3} + \dots, -1 < x < 1, R = 1$

ST2334 Midterms Cheatsheet v1.0 (2019-05-01) by Julius Putra Tanu Setiaji, page 2 of 2

3.4 Indefinite Integral

Denoted by $\int f(x)dx = F(x) + C$

3.5 Rules of Indefinite Integration

- 1. $\int kf(x)dx = k \int f(x)dx$
- $2. \quad \int -f(x)dx = -\int f(x)dx$
- 3. $[f(x) \pm g(x)]dx = \int f(x)dx \pm \int g(x)dx$

3.6 Integral Formulae

5.0 micegration	matac
Function	Integral
$\int \cot x dx$	$ln(\sin x) + C$
$\int \sec x \tan x dx$	$\sec x + C$
$\int \csc x \cot x dx$	$\csc x + C$
$\int \sec^2 x dx$	$\tan x + C$
$\int \csc^2 x dx$	$-\cot x + C$
$\int x^n dx$	$\frac{x^{n+1}}{n+1} + C, n \neq -1, n \text{ rational}$
$\int \frac{1}{\sqrt{a^2-x^2}} dx$	$\sin^{-1}(\frac{x}{a}) + C$
$\int \frac{1}{\sqrt{a^2 - x^2}} dx$ $\int \frac{1}{a^2 + x^2} dx$	$\frac{1}{a}\tan^{-1}(\frac{x}{a}) + C$
$\int 1 dx = \int dx$	x + C
$\int e^x dx$	$e^x + C$
$\int a^x dx$	$\frac{a^X}{\ln a}$
$\int \ln x dx$	$x \ln x - x + C$
$\int \frac{1}{x} dx$	$\ln x + C$
$\int \sin kx dx$	$-\frac{\cos kx}{k} + C$
$\int \cos kx dx$	$\frac{\sin kx}{k} + C$
$\int \tan^2 x dx$	$\tan x - x + C$
$\int \sec x dx$	$\ln(\sec x + \tan x) + C$
$\int \csc x dx$	$\ln(\csc x - \cot x) + C$

3.7 Riemann (Definite) Integrals
Riemann sum on f on $[a,b] \approx \sum_{k=1}^{n} f(c_k) \Delta x$ Exact area $= \lim_{n \to \infty} \sum_{k=1}^{n} f(c_k) \Delta x$

Riemann Integral of f over [a, b]:

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(c_k) \Delta x$$

3.8 Rules of Definite Integrals

- 1. $\int_{a}^{a} f(x)dx = 0$, $\int_{a}^{b} kf(x)dx = k \int_{a}^{b} f(x)dx$
- 2. $\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$
- 3. $\int_{a}^{b} [f(x) \pm g(x)] = \int_{a}^{b} f(x) \pm \int_{a}^{b} g(x)$
- 4. If $f(x) \ge g(x)$ on [a,b], then $\int_a^b f(x)dc \ge \int_a^b g(x)dx$
- If $f(x) \ge 0$ on [a, b], then $\int_a^b f(x) dx \ge 0$ 5. If f is continuous on the interval joining a, b and c, then $\int_a^b f(x)dx + \int_b^c f(x)dx = \int_a^c f(x)dx$

3.9 Fundamental Thm of Calculus F'(x) = f(x) If F is an antiderivative of f on [a,b], then

$$\int_{a}^{b} F'(x)dx = \int_{a}^{b} f(x)dx = F(b) - F(a)$$
x' Let f be continuous on [a, b]. Then

$$\frac{d}{dx} \int_{a}^{x} f(t) dt = f(x)$$

Note the 2 x's: on $\frac{d}{dx}$ and \int_a^x and f(t) is indep of x

- 1. $\frac{d}{dx} \int_0^2 t^2 dt = 0$, $\frac{d}{dx} \int_0^x \sin \sqrt{t} dt = \sin \sqrt{x}$
- 2. $\frac{d}{dx} \left(\int_{1}^{x^4} \frac{t}{\sqrt{t^3 + 2}} dt \right) = \frac{d}{dx^4} \left(\int_{1}^{x^4} \frac{t}{\sqrt{t^3 + 2}} dt \right) \frac{dx^4}{dx}$

$$= \frac{x^4}{\sqrt{(x^4)^3 + 2}} (4x^3) = \frac{4x^7}{\sqrt{x^1 + 2}}$$

- 3. $\frac{d}{dx} \int_{x}^{a} f(t)dt = -\frac{d}{dx} \int_{a}^{x} f(t)dt$
- $\frac{d}{dx} \int_{x^2}^{x^4} f(t)dt = \frac{d}{dx} \int_{a}^{x^4} f(t)dt \frac{d}{dx} \int_{a}^{x^2} f(t)dt$
- 3.10 Integration Methods
- Integration by Substitution :

Use the form $\int f(g(x))dg(x)$ OR use a dummy variable to get to a form in the Integral Formulae (taking into account chain rule)

,		
Integral	Sub	Use identity
$a^2 - u^2$	$u = a \sin \theta$	$1 - \sin^2 \theta = \cos^2 \theta$
$a^2 + u^2$	$u = a \tan \theta$	$1 + \tan^2 \theta = \sec^2 \theta$
$u^{2} - a^{2}$	$u = a \sec \theta$	$sec^2\theta - 1 = tan^2\theta$

Integration by Part:

$$\int uv'dx = uv - \int u'vdx$$

Choose u by LIATE (Logarithmic, Inverse trigo, Algebraic Trigo, Exponential)

3.11 Derivative Formulae		
Function	Derivative	
$(f(x))^n$	$nf'(x)f(x)^{n-1}$	
$\sin f(x)$	$f'(x)\cos f(x)$	
$\cos f(x)$	$-f'(x)\sin f(x)$	
$\tan f(x)$	$f'(x)\sec^2 f(x)$	
$\cot f(x)$	$-f'(x)\csc^2 f(x)$	
$\sec f(x)$	$f'(x)\sec f(x)\tan f(x)$	
$\csc f(x)$	$-f'(x)\csc f(x)\cot f(x)$	
$a^f(x)$	$f'(x)a^{f(x)}\ln a$	
k	0	
$e^f(x)$	$f'(x)e^{f(x)}$	
$\log_a f(x)$	$\frac{f'(x)}{f(x)\ln a}$	
$\ln f(x)$	$\frac{f'(x)}{f(x)}$	
$\sin^{-1} f(x)$	f'(x)	
, ,	$\sqrt{1-f(x)^2}$	
$\cos^{-1} f(x)$	$-\frac{f'(x)}{}$	
) (**)	$\sqrt{1-f(x)^2}$	
$\tan^{-1} f(x)$	f'(x)	
	$1+f(x)^2$	
3 12 Rules	of Differentiation	

- (kf)'(x) = kf'(x) $(f \pm g)'(x) = f'(x) \pm g'(x)$ $\frac{d}{dx}uv = u\frac{dv}{dx} + v\frac{du}{dx}$
- $\frac{dx}{\left(\frac{f}{g}\right)'}(x) = \frac{f'(x)g(x) f(x)g'(x)}{(g(x))^2}$ $\frac{d}{dx}f(g(x)) = f'(g(x))g'(x) \text{ or } \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$