## **ITMO University**

# LABORATORY WORK REPORT №2 «Operational amplifiers circuits design» **Principles of Circuits**

Student: CAO Xinyang 20321308 Program of Computer Science and Technology

> group CS Name Surname

## 1. Work purpose: to study parameters of Operational Amplifier and basis of Operational amplifiers circuits design

Goals:

- 1) Design amplifier model on the basis of operational amplifier «Inverting amplifier»
- 2) Simulate amplifier scheme and analyze dependencies of output voltage from load and resistor values variation
- 3) Analyze time domain and frequency domain of amplifier
- 4) Simulate underpower state/power supply check

### 2. Starting data

- Required gain of amplifier  $K_{NI} = -2.000$
- Required tolerance:  $\Delta K_{NI_{OPAMP}} = 3\%$
- Operational Amplifier: Inverting amplifier
- Voltage source power supply VPP+= 9 (V) / VPP-= 9(V)
- Frequency for time domain simulation

$$f_{test_{-1}} = 100 \text{ (Hz)}$$
  
 $f_{test_{2}} = 2000 \text{ (Hz)}$ 

 $f_{test_3} = 200000 \text{ (Hz)}$ 

• Test signal voltage magnitude

$$V_{test_{AC}} = V_{test} = 0.5 \text{ (V)}$$

• Resistor parameters

$$R_1 = 11000 (\Omega)$$
  
 $R_{fb} = 6000 (\Omega)$   
 $R_3 = 19500 (\Omega)$   
 $R_4 = 20001 (\Omega)$ 

$$R_{Load} = 1000000 (\Omega)$$

• Amplifier scheme: Inverting amplifier

#### 3. Simulation



Figure 3.1 – Inverting amplifier scheme

#### 3.1. Gain evaluation:

Gain evaluation with new resistors

$$K_{NI} = -\frac{R_{fb}}{R_1} = -0.5455$$

$$K_{NI_{max}} = -\frac{R_{fbmax}}{R_{1min}} = -\frac{R_{fb}(1+M)}{R_{1min}(1-M)} = -0.5565$$

$$K_{NI_{min}} = -\frac{R_{fbmin}}{R_{1max}} = -\frac{R_{fb}(1-M)}{R_{1min}(1+M)} = -0.5347$$

Define maximum deviation from  $K_{NI}$  defined by resistance tolerance

$$E_{NI_{R+}} = \left| \frac{K_{NI_{max}} - K_{NI}}{K_{NI}} \right| = 0.0202$$

$$E_{NI_{R-}} = \left| \frac{K_{NI_{min}} - K_{NI}}{K_{NI}} \right| = 0.0198$$

$$\Delta K_{NI_{OPAMP}}$$
 =max of  $E_{NI_{R+}}$  and  $E_{NI_{R-}}$ = 0.0202

Table 1. Parameters of the amplifier

| Обозначение             | Simulation      | Simulation               |  |  |  |  |
|-------------------------|-----------------|--------------------------|--|--|--|--|
|                         | Nominal         | With tolerance variation |  |  |  |  |
| $R_1, k\Omega$          | 11              | 1%                       |  |  |  |  |
| $R_2, k\Omega$          | 6               | 1%                       |  |  |  |  |
| $R_{Load}, k\Omega$     | 1 000 k (ideal) | 100, 1000, 10000, 100000 |  |  |  |  |
| $K_{NI}$                | -0.5455         | 0.0202                   |  |  |  |  |
| $K_{NI_{max}}$          | -0.5565         | 0.0202                   |  |  |  |  |
| $K_{NI_{min}}$          | -0.5347         | 0.0198                   |  |  |  |  |
| $\Delta K_{NI_{OPAMP}}$ | 0.0202          | 0                        |  |  |  |  |

#### 3.2. Time domain simulation results

## $3.2.1. f_{test\_1} = 100 \text{ (Hz)}$



Figure 3.2 – Input and output voltages of ideal and real operational amplifiers  $f_{test\_1} = 100, K_{NI} = 4, R_1 \text{ variation } 1\%, R_{fb} \text{ variation } 1\%$ 

## $3.2.2. f_{test\_2} = 2000 \text{ (Hz)}$



Figure 3.3 – Input and output voltages of ideal and real operational amplifiers  $f_{test_2} = 2000$ ,  $K_{NI} = 4$ ,  $R_1$  variation 1%,  $R_{fb}$  variation 1%

## $3.2.3. f_{test\_3} = 200000 \text{ (Hz)}$



Figure 3.4 – Input and output voltages of ideal and real operational amplifiers  $f_{test\_3} = 200000, K_{NI} = 4, R_1 \text{ variation } 1\%, R_{fb} \text{ variation } 1\%$ 

## 3.3. Frequency domain simulation results



Figure 3.5 – Input and output voltages of ideal and real operational amplifiers  $K_{NI} = -0.5455$ ,  $R_1$  variation 1%,  $R_{fb}$  variation 1%



Figure 3.6 – Input and output voltages of ideal and real operational amplifiers  $K_{NI} = -0.5455$ ,  $R_1$  variation 1%,  $R_{fb}$  variation 1% and  $R_{Load}$  variation

#### 3.3.1. Simulation results

|                              | Ideal  | VarNo  | Ideal  | VarNo  | Ideal  | VarNo  |
|------------------------------|--------|--------|--------|--------|--------|--------|
| frequency, kHz               | 100    |        | 2000   |        | 200000 |        |
| $V_{ m test}, V$             | 0.5    | 0.499  | 0.5    | 0.501  | 0.5    | 0.5    |
| Vout, V                      | -0.27  | 0.269  | -0.27  | 0.271  | -0.27  | 0.27   |
| $\mathbf{K}_{	ext{NI\_exp}}$ | -0.55  | -0.54  | -0.55  | -0.54  | -0.55  | -0.55  |
| $\Delta K_{ m NI}$           | 0.0202 | 0.0182 | 0.0202 | 0.0182 | 0.0202 | 0.0202 |
| $E_{NI_{max}}$               | 0.0202 | 0.0182 | 0.0202 | 0.0182 | 0.0202 | 0.0202 |
| $K_{OL}$                     | -27.23 | -15.13 | -27.23 | -15.13 | -27.23 | -27.72 |

#### 4. Conclusions

Conclusions should contain:

- 1) Is it possible to realize amplifier with defined gain and gain tolerance? Yes.
- 2) In which range can be load resintace  $R_{Load}$  variated?  $10k \sim 100k$
- 3) How was operational amplifier power supply modified? By using vpp.