Trabajo Práctico 4 Aprendizaje No Supervisado

- Britos, Nicolás Ignacio 59.529
- Griggio, Juan Gabriel 59.092
- Roca, Agustín 59.160

Objetivos

- Implementar los algoritmos de Hopfield, Kohonen y Oja para problemas de aprendizaje no supervisado
- Comprender el propósito, ventajas y usos de estos algoritmos

Desarrollo del trabajo

Tecnología utilizada

Resultados

Kohonen - Ejercicio 1a

Parámetros utilizados - Kohonen

- \bullet k = 5
- 500 * n iteraciones
- $\eta(t) = 1/t$
- R = 1

Resultados - Kohonen

Resultados - Kohonen

Resultados - Kohonen

Oja - Ejercicio 1b

Parámetros utilizados - Oja

- Épocas = 10000
- $\eta = 0.0001$

Primera componente principal

	Area	GDP	Inflación	Expectativa de vida	Militarización	Crecimiento de la población	Desempleo
Sklearn	0.1248739	-0.50050586	0.40651815	-0.48287333	0.18811162	-0.47570355	0.27127044
Oja	0.12557215	-0.50037441	0.40716648	-0.48295445	0.18748873	-0.47548698	0.27127044
Diferencia (10^-4)	6.9825	1.3145	6.4833	0.8112	6.2289	2.1657	0

Primera componente principal de cada país

Oja

Hopfield - Ejercicio 2

Resultados - Hopfield, conjunto 1

 Elegido porque los productos internos entre estos patrones son cercanos a cero

Resultados - Hopfield, conjunto 1, letra I

Ruido 0.5

Ruido 0.6

Resultados - Hopfield, conjunto 1, letra X

Ruido 0.5

Ruido 0.6. Estado cíclico (espúreos)

Resultados - Hopfield, conjunto 1, letra A

Ruido 0.5

Ruido 0.6

Resultados - Hopfield, conjunto 1, letra V

Ruido 0.5

Ruido 0.6 Estado espúreo

Resultados - Hopfield, conjunto 1

Resultados - Hopfield, conjunto 2

¿Qué pasa si elegimos un conjunto lejos de ser ortogonal?

Resultados - Hopfield 2

0 10 20 30 40 50 60 70 80 90 100

30 20 10 Aciertos y estados espureos letra O

Conclusiones

Conclusiones - Kohonen

- Agrupa los elementos de entrada según su similitud
- Analogía: las neuronas se "acercan" y "agrupan" según los países que las activan y su similitud
- Para las variables que aportan mucha información, al aislarlas tienen a agruparse

Conclusiones - Oja

 Útil para encontrar las Primeras Componentes Principales dentro de un conjunto de datos

Conclusiones - Hopfield

- Puede detectar con certeza con buenos niveles de ruido, aunque no extremos
- Mientras más cercano a 0 sea el producto interno entre los patrones almacenados, más preciso será el resultado
- A mayor ruido se requieren más iteraciones

Muchas gracias!