



# Projet robot Kuka: Perception et Mouvement

# Objectifs:

Vous devez développer le logiciel pour permettre au robot de dessiner :

- Etre capable de dessiner un fichier SVG.
- Etre capable de dessiner une chaîne de caractère depuis une police TrueType (TTF).
- Dessiner une photo prise depuis une Webcam.
- Etre capable de dessiner en temps réel depuis votre ordinateur sur le bras.
  - A vous de faire un logiciel de dessin pour bras robotique!





### Techniquement:

- Votre logiciel communique avec le bras robot à travers le réseau Ethernet.
- Sur le bras robot, vous devez coder en Java dans l'IDE Kuka Sunrise Workbench (Eclipse):
  - Un projet de base est à utiliser pour créer votre projet.
    - La sécurité de base est activé : arrêt urgence et détection effort.
    - La base « Paper » est déjà apprise pour dessiner dessus.
    - 1 point « NearPaper » pour approcher la base « Paper ».
    - Des applications d'exemples :
      - TestBaseMove et TestSpl
    - Ce projet est à récupérer sur <a href="https://github.com/batitous/IMERIR-Kuka">https://github.com/batitous/IMERIR-Kuka</a>.
- Vous êtes libre de choisir votre environnement de développement pour votre ordinateur et l'architecture de votre logiciel.

# Ce qui est évalué :

- La sécurité du bras et des mouvements sur le robot
- La rapidité d'exécution du dessin
- Revue de votre code!
  - Code à envoyer à l'adresse baptiste@evotion.fr

# Matériels et Logiciels à votre disposition :

- 1 bras robot Kuka iiwa
- Pour programmer le bras robot Kuka iiwa:
  - Eclipse Kuka Sunrise Workbench
  - o Documentations techique du robot Kuka iiwa
    - Le logiciel et les documents sur le robot sont à récupérer auprès de Baptiste
- Pour programmer sur l'ordinateur : environnement de développement que vous maitrisez.





### Le bras robot Kuka

### Type de robot :

- Robot : LBR iiwa 14 R820

- Tête: Media Flange Touch pneumatic

- Outil: Outil de dessin

### Différents mode de fonctionnement :

- T1

Mode pour tester les trajectoires, vitesse autorisée : < 250 mm/s</li>

- T2

Mode pour tester les trajectoires, vitesse autorisée > 250 mm/s

- AUT

Mode automatique, pleine plage de vitesse

O ATTENTION:

Dispositif homme mort désactivé

Tester les trajectoires en T1 avant de passer en AUT

#### ATTENTION: TOUJOURS TRAVAILLER EN T1 AVANT DE PASSER EN AUTO

#### Communication réseaux :

- Le robot a une adresse IP fixe

**192.168.1.7** 

masque de sous réseau : 255.255.255.0

- Les ports TCP / UDP utilisable coté robot :

o 30 000 à 30 010

### Mouvements possibles:

- PTP: Point to Point

- o Mouvement le plus rapide pour aller d'un point à un autre
- o Ce mouvement n'est pas le plus court...
- ATTENTION
  - PTP N'EST PAS À UTILISER PROCHE D'UNE PIECE
  - LE ROBOT VA FAIRE UNE COURBE ET HEURTER LA PIECE
- LIN et LINREL: Linear ou Linear Relative
  - o Mouvement rectiligne d'un point à un autre

Vous pouvez retrouver le reste des informations dans la documentation KUKA.





## Prise en main du matériel et du logiciel

Pour prendre en main le robot, vous devez cloner le dépôt Git suivant :

- https://github.com/batitous/IMERIR-Kuka
- Installer le logiciel Kuka Sunrise Workbench
  - o Récupérer le logiciel auprès de Baptiste
  - Lancer le logiciel et sélectionner votre workspace
- Le projet KUKAIMERIR dans le dépôt précédent est à utiliser pour programmer le robot
  - Ce projet est configuré avec :
    - Sécurité : Arrêt urgence et détection effort
    - Une base « Paper » avec 4 points dans cette base pour commencer à dessiner
    - 2 points pour s'approcher de la base « Paper » sans risque
    - 3 points dans la base « World » pour apprendre à bouger le bras
    - Du code source d'exemple pour débuter avec les mouvements du robot



- Le code source d'exemple vous permet d'approcher du chevalet pour dessiner de façon sécurisé, sans casser l'outil ou le chevalet.
  - Les points et les outils sont affichés à droite dans Sunrise Workbench
  - o La base « Paper » représente le chevalet de dessin
  - L'outil « penTool » représente le stylo pour dessiner.
    - Le point « penToolTCP » représente la pointe du stylo





- Pour installer le projet :
  - o Copier le répertoire KUKAIMERIR dans le workspace Sunrise Workbench
  - o Renommer le répertoire KUKAIMERIR en nom de votre projet
  - Dans Sunrise Workbench, aller dans « File → Import → Existing projet into workspace »
    - « Select root repertory » Sélectionner le répertoire workspace Sunrise
      Workspace et cliquer sur « Next »
- Pour compiler et envoyer votre application sur le bras robot, cliquer sur le bouton
  « Synchronize Project » :



- Pour lancer votre application sur le bras robot, il faut sélectionner le nom de votre application dans la liste sur le SmartPAD.
- Si vous apprenez des points sur le bras, n'oubliez pas de synchroniser votre projet pour ne pas perdre vos points !
- Problèmes connus sur le logiciel du bras :
  - Si votre application sur le bras plante (vous ne capturez pas l'exception) et vous avez une socket ouverte sur un port : Le port n'est plus utilisable
    - Il faut redémarrer le bras.









# Quelques pistes pour l'évaluation de votre projet :

### Le projet n'est pas que technique :

- Il vous faut présenter votre projet dans son ensemble (planning, solutions, problèmes, démos)
- o II vous faut justifier de vos choix.
- o II vous faut justifier d'un planning.
- o Il vous faut justifier de vos échecs.
- o Il vous faut expliquer votre démarche pour réaliser le projet.
- o Il vous faut faire une présentation visuelle claire, précise et agréable
  - Vidéo de démo par exemple.
- o ... et avoir un code source propre et de qualité!

#### - Il vous faut donc:

- o Explorer différentes solutions techniques.
- o Choisir une solution.
- o Implémenter la solution finale.
- o Préparer votre présentation : diapos de présentation, vidéos, démos...
- o Planifier le temps et les ressources des points précédents.