Existence of Prime Factorization

Prime Factorization

Recap

Principle of Complete Mathematical Induction (PCMI)

Let P(n) be any statement about n. Suppose we have proved that

$$P(1)$$
 is true (1)

and that

for each
$$n \in \mathbb{N}$$
, if $P(1), \dots, P(n)$ are all true, then $P(n+1)$ is true. (2)

Then we may conclude that for each natural number n, P(n) is true.

Proof by Complete Induction (Template)

· Declaration: Let P(n) be the sentionce

• BASE CASE: P(1) is true because

To show (Ines) P(n)
using complete induction,
modify

 $S = \frac{1}{2} N_0, N_0 + 1, N_0 + 2, \dots$

 $p(n) \rightarrow p(n_0)$ $n \in \mathbb{N} \rightarrow n \in \mathbb{S}$

NOUCTIVE STEP: Let n∈ IN such that PCI), ..., P(n) are all true.

[NTS P(n+1) is true.]

· Conclusion: Therefore, by complete induction, for each nGIN, P(W) is true.

Example: The Existence of Prime Factorization

Theorem 1 (Existence of Prime Factorization)

Each natural number greater than or equal to 2 either is a product of prime numbers or is itself a prime number.

- We used this result without proof back in Lecture 10; see Remark 4.44.
- It can now be proved using complete induction.
- It is convenient to start from 2. $S = \{x_1, x_2, x_4, \dots \}$

(∀n∈S) P(n) where P(n) stands for "n is a prime or n is a product of primes".

2: prime V
3: prime V

Before We Begin ...

Recall the definition of a prime number.

To say that x is prime means that

$$(\lambda \in IN) \land (\chi \neq I) \land (\forall a, b \in IN) [\chi = ab \Rightarrow \alpha = I \lor b = I]$$

• (S04E15) x is not a prime number iff

$$(x \notin N) \vee (x=1) \vee (\exists a,b \in IN) [x=ab \land a \neq 1 \land b \neq 1]$$

Proof of Theorem 1

Let $S = \{2, 3, 4, \cdots\}$ and let P(n) be the sentence \underline{M} is a prime or \underline{N} is a product of primes. We shall show that for each $n \in S$, P(n) is true using complete induction.

BASE CASE P(2) is true because 2 is prime.

INDUCTIVE STEP Let $n \in S$ such that $p(2), \dots, p(n)$ are all thrue. We wish to show that p(n+1) is true. That is, we wish to show that n+1 is a prime or n+1 is a product of primes.

Now wither 11 is a prime on 11 is not a prime.

Case 1

Case 1

Thus in either case, P(n+1) is true.

Case 1 Suppose that not is prime. Then P(n+1) is clearly true.

Case 2 Suppose that n+1 is not prime. Then we can pick $a,b \in \mathbb{N}$ Such that n+1=ab and $a\neq 1$ and $b\neq 1$.

Thus $a, b \in \{2, \dots, n\}$, so by the inductive hypothesis, P(a) and P(b) are both true. In other words, a is a prime or a is a product of primes, and b is a prime or b is a product of primes. Hence, nH = ab must be a product of primes. Thus P(nH) is true.

CONCLUSION Therefore, by complete induction, for each n & S, Pon) is true.

In Closing

• What would be a challenge had you attempted to prove using induction?

Example Consider the following sequence defined recursively by
$$\alpha_1 = 1$$
, $\alpha_2 = 5$,

$$\alpha_{n+1} = \alpha_n + 2\alpha_{n-1}$$
 for $n > 2$

The general formula: $a_n = 2^n + (-1)^n$ for n > 1.

$$\alpha_n = 2^n + (-1)^n$$

WTS: for each $n \in \mathbb{N}$, P(n) is true (using complete induction)

BASE CASES
$$P(1)$$
 is true because $\alpha_1 = 2^1 + (-1)^2 = 2 - 1 = 1$.
 $P(2)$ is true because $\alpha_2 = 2^2 + (-1)^2 = 4 + (-5)^2$.

INDUCTIVE STEP Let n & N with n 7/2 such that PCI), ---, PCN) are

all true. Note, by the definition, that ann = an + 2 ann

because n72. Thus, by the inductive hypothesis,

$$\Omega_{m+1} = \left[2^{n} + (-1)^{n} \right] + 2 \left[2^{n-1} + (-1)^{n-1} \right] \\
= 2^{n} + (-1)^{n} + 2^{n} + 2 (-1)^{n-1} \\
= 2 \cdot 2^{n} + (-1)^{n} (1 + 2 (-1)^{n-1}) \\
= 2^{n+1} + (-1)^{n} (1 - 2) \\
= 2^{n+1} + (-1)^{n} (-1) = 2^{n+1} + (-1)^{n+1}$$

This shows that P(n+1) is true.

CONCLUSION Therefore, by complete induction, for each NEIN, pour) is true.