WIKIPEDIA

Wiener's attack

The **Wiener's attack**, named after cryptologist Michael J. Wiener, is a type of <u>cryptographic attack</u> against RSA. The attack uses the continued fraction method to expose the private key d when d is small.

Contents

Background on RSA

Small private key

How Wiener's attack works

Wiener's theorem

Example

Proof of Wiener's theorem

References

Further reading

Background on RSA

Fictional characters <u>Alice and Bob</u> are people who want to communicate securely. More specifically, Alice wants to send a message to Bob which only Bob can read. First Bob chooses two <u>primes p</u> and q. Then he calculates the RSA <u>modulus</u> N = pq. This RSA modulus is made public together with the <u>encryption</u> exponent e. N and e form the public key pair (e,N). By making this information public, anyone can <u>encrypt</u> messages to Bob. The <u>decryption</u> exponent d satisfies $ed = 1 \mod \lambda(N)$, where $\lambda(N)$ denotes the <u>Carmichael function</u>, though sometimes $\varphi(N)$, the <u>Euler's phi function</u>, is used (note: this is the order of the <u>multiplicative group</u> \mathbb{Z}_N^* , which is not necessarily a cyclic group). The encryption exponent e and $\lambda(N)$ also must be <u>relatively prime</u> so that there is a <u>modular inverse</u>. The <u>factorization</u> of N and the private key d are kept secret, so that only Bob can <u>decrypt</u> the message. We denote the private key pair as (d, N). The encryption of the message M is given by $C \equiv M^e \mod N$ and the decryption of cipher text C is given by $C^d \equiv (M^e)^d \equiv M^{(ed)} \equiv M \mod N$ (using Fermat's little theorem).

Using the Euclidean algorithm, one can efficiently recover the secret key d if one knows the <u>factorization</u> of N. By having the secret key d, one can efficiently factor the modulus of N.

Small private key

In the RSA <u>cryptosystem</u>, Bob might tend to use a small value of d, rather than a large random number to improve the <u>RSA</u> <u>decryption</u> performance. However, Wiener's attack shows that choosing a small value for d will result in an insecure system in which an attacker can recover all secret information, i.e., break the <u>RSA</u> system. This break is based on Wiener's Theorem, which holds for small values of d. Wiener has proved that the attacker may efficiently find d when $d < \frac{1}{3}N^{\frac{1}{4}}$.

Wiener's paper also presented some countermeasures against his attack that allow fast decryption. Two techniques are described as follows.

Choosing large public key: Replace e by e', where $e' = e + k \cdot \lambda(N)$ for some large of k. When e' is large enough, i.e. $e' > N^{\frac{3}{2}}$, then Wiener's attack can not be applied regardless of how small d is.

Using the Chinese Remainder Theorem: Suppose one chooses d such that both $d_p = d \mod (p-1)$ and $d_q = d \mod (q-1)$ are small but d itself is not, then a fast decryption of C can be done as follows:

- 1. First compute $M_p \equiv C^{d_p} \mod p$ and $M_q \equiv C^{d_q} \mod q$.
- 2. Use the <u>Chinese Remainder Theorem</u> to compute the unique value of $M \in \mathbb{Z}_{\mathbb{N}}$ which satisfies $M \equiv M_p \mod p$ and $M \equiv M_q \mod q$. The result of M satisfies $M \equiv C^d \mod N$ as needed. The point is that Wiener's attack does not apply here because the value of $d \mod \lambda(N)$ can be large. [3]

How Wiener's attack works

Note that

$$\lambda(N) = \operatorname{lcm}(p-1,q-1) = rac{(p-1)(q-1)}{G} = rac{arphi(N)}{G}$$

where
$$G = \gcd(p-1, q-1)$$

Since

$$ed \equiv 1 \pmod{\lambda(N)}$$

there exists an integer *K* such that

$$ed = K imes \lambda(N) + 1$$

$$ed = \frac{K}{G}(p-1)(q-1) + 1$$

Defining $\pmb{k}=rac{\pmb{K}}{\gcd(\pmb{K},\pmb{G})}$ and $\pmb{g}=rac{\pmb{G}}{\gcd(\pmb{K},\pmb{G})}$, and substituting into the above gives:

$$ed=rac{k}{g}(p-1)(q-1)+1.$$

Divided by dpq:

$$rac{e}{pq}=rac{k}{dg}(1-\delta)$$
 , where $\delta=rac{p+q-1-rac{g}{k}}{pq}$.

So, $\frac{e}{pq}$ is slightly smaller than $\frac{k}{dg}$, and the former is composed entirely of public <u>information</u>. However, a method of checking and guess is still required. Assuming that ed > pq (a reasonable assumption unless G is large) the last equation above may be written as:

$$edg = k(p-1)(q-1) + g$$

By using simple $\underline{algebraic}$ manipulations and $\underline{identities}$, a guess can be checked for $\underline{accuracy}$. $\underline{^{[1]}}$

Wiener's theorem

Let N = pq with $\ q . Let <math>d < rac{1}{3}N^{rac{1}{4}}$.

Given $\langle N, e \rangle$ with $ed \equiv 1 \pmod{\lambda(N)}$, the attacker can efficiently recover $d^{[2]}$

Example

Suppose that the public keys are $\langle N,e \rangle = \langle 90581,17993
angle$

The attack shall determine d.

By using Wiener's Theorem and <u>continued fractions</u> to approximate d, first we try to find the <u>continued fractions</u> expansion of $\frac{e}{N}$. Note that this algorithm finds <u>fractions</u> in their lowest terms. We know that

$$\frac{e}{N} = \frac{17993}{90581} = \frac{1}{5 + \frac{1}{29 + \dots + \frac{1}{3}}} = [0, 5, 29, 4, 1, 3, 2, 4, 3]$$

According to the <u>continued fractions</u> expansion of $\frac{e}{N}$, all convergents $\frac{k}{d}$ are:

$$\frac{k}{d} = 0, \frac{1}{5}, \frac{29}{146}, \frac{117}{589}, \frac{146}{735}, \frac{555}{2794}, \frac{1256}{6323}, \frac{5579}{28086}, \frac{17993}{90581}$$

We can verify that the first <u>convergent</u> does not produce a factorization of N. However, the convergent $\frac{1}{5}$ yields

$$arphi(N) = rac{ed-1}{k} = rac{17993 imes 5 - 1}{1} = 89964$$

Now, if we solve the equation

$$x^{2} - ((N - \varphi(N)) + 1) x + N = 0$$

 $x^{2} - ((90581 - 89964) + 1) x + 90581 = 0$
 $x^{2} - 618x + 90581 = 0$

then we find the roots which are x = 379; 239. Therefore we have found the factorization

$$N = 90581 = 379 \times 239 = p \times q.$$

Notice that, for the modulus N=90581, Wiener's Theorem will work if

$$d<rac{N^{rac{1}{4}}}{3}pprox 5.7828.$$

Proof of Wiener's theorem

The proof is based on approximations using continued fractions. [2][4] Since $ed = 1 \mod \lambda(N)$, there exists a k such that $ed - k\lambda(N) = 1$. Therefore

$$\left| \frac{e}{\lambda(N)} - \frac{k}{d} \right| = \frac{1}{d\lambda(N)}.$$

Let $G = \gcd(p-1, q-1)$, note that if $\varphi(N)$ is used instead of $\lambda(N)$, then the proof can be replaced with G = 1 and $\varphi(N)$ replaced with $\lambda(N)$.

Then multiplying by $\frac{1}{G}$,

$$\left|rac{e}{arphi(N)}-rac{k}{Gd}
ight|=rac{1}{darphi(N)}$$

Hence, $\frac{k}{Gd}$ is an approximation of $\frac{e}{\varphi(N)}$. Although the attacker does not know $\varphi(N)$, he may use N to approximate it. Indeed, since

arphi(N)=N-p-q+1 and $p+q-1<3\sqrt{N}$, we have:

$$|p+q-1| < 3\sqrt{N} \ |N-arphi(N)| < 3\sqrt{N}$$

Using N in place of $\varphi(N)$ we obtain:

$$egin{aligned} \left| rac{e}{N} - rac{k}{Gd}
ight| &= \left| rac{edG - kN}{NGd}
ight| \ &= \left| rac{edG - karphi(N) - kN + karphi(N)}{NGd}
ight| \ &= \left| rac{1 - k(N - arphi(N))}{NGd}
ight| \ &\leq \left| rac{3k\sqrt{N}}{NGd}
ight| = rac{3k\sqrt{N}}{\sqrt{N}\sqrt{N}Gd} \leq rac{3k}{d\sqrt{N}} \end{aligned}$$

Now, $k\lambda(N) = ed - 1 < ed$, so $k\lambda(N) < ed$. Since $e < \lambda(N)$, so $k\lambda(N) < ed < \lambda(N)d$, then we obtain:

$$k\lambda(N) < \lambda(N)d$$
 $k < d$

Since k < d and $d < rac{1}{3}N^{rac{1}{4}}$. Hence we obtain:

$$(1)\left|\frac{e}{N}-\frac{k}{Gd}\right|\leq \frac{1}{dN^{\frac{1}{4}}}$$

Since $d < rac{1}{3}N^{rac{1}{4}}$, 2d < 3d , then $2d < 3d < N^{rac{1}{4}}$, we obtain:

$$2d < N^{rac{1}{4}}$$
 , so (2) $rac{1}{2d} > rac{1}{N^{rac{1}{4}}}$

From (1) and (2), we can conclude that

$$\left|rac{e}{N} - rac{k}{Gd}
ight| \leq rac{3k}{d\sqrt{N}} < rac{1}{d \cdot 2d} = rac{1}{2d^2}$$

If $\left|x-\frac{a}{b}\right|<\frac{1}{2b^2}$, then $\frac{a}{b}$ is a convergent of x, thus $\frac{k}{d}$ appears among the convergents of $\frac{e}{N}$. Therefore the algorithm will indeed eventually find $\frac{k}{Gd}$.

References

- 1. L. Render, Elaine (2007). Wiener's Attack on Short Secret Exponents. (http://personalpages.manchester.ac.uk/postgrad/elaine.render/mathtoday.pdf.)
- 2. Boneh, Dan (1999). Twenty Years of attacks on the RSA Cryptosystem. Notices of the American Mathematical Society (AMS) 46 (2). (http://crypto.stanford.edu/~dabo/papers/RSA-survey.pdf)
- 3. Cui, Xiao-lei (2005). Attacks On the RSA Cryptosystem. (https://web.archive.org/web/20190 512142109/https://pdfs.semanticscholar.org/ce82/c0d989816f52f64a012e3100f426f29964d b.pdf)
- 4. Khaled Salah, Imad (2006). Mathematical Attacks on RSA Cryptosystem. Journal of Computer Science 2 (8)). pp. 665-671. (http://www.scipub.org/fulltext/jcs/jcs28665-671.pdf.)

Further reading

- Coppersmith, Don (1996). Low-Exponent RSA with Related Messages. Springer-Verlag Berlin Heidelberg. (http://portal.acm.org/citation.cfm?id=1754497)
- Dujella, Andrej (2004). Continued Fractions and RSA with Small Secret Exponent. (https://arxiv.org/PS_cache/cs/pdf/0402/0402052v1.pdf)
- Python Implementation of Wiener's Attack. (https://sagi.io/2016/04/crypto-classics-wieners-rs a-attack/)
- R. Stinson, Douglas (2002). *Cryptography Theory and Practice* (2e ed.). A CRC Press Company. pp. 200–204. ISBN 1-58488-206-9.

This page was last edited on 30 April 2021, at 15:51 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 3.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.