Fiche de révision Traitement Audio

Alexis GRACIAS

21 novembre 2024

Table des matières

1	Les	sons -	Modèle de perception	2
	1.1	Introd	luction	2
		1.1.1	Définitions	2
		1.1.2	Histoire des sens	3
		1.1.3	Lois des sens (18ème - 19ème)	3
		1.1.4	Limite de ces lois	4
	1.2 Stimulus auditif: le son		5	
		1.2.1	Qu'est-ce que le son?	5
		1.2.2	Hypothèses du cours	5

Chapitre 1

Les sons - Modèle de perception

1.1 Introduction

1.1.1 Définitions

- **Psychophysique**: relation entre le *stimulus*¹ et la *sensasion* ressentie du stimulus.
- **Psychoacoustique** ² : étude de la relation entre les vibrations des ondes sonores et sa perception.
- Les modèles de production permettent de caractériser les osurces dans la nature.

^{1.} Phénomène physique

^{2.} Remarque : on peut tromper l'ouie comme la vue, avec des sons appelés sons de Risset

1.1.2 Histoire des sens

3

- Les sens *introseptifs*: sensations qui vienne des entrailles du corps (estomac, coeur, malaise, aise...)
- Les sens *Proprioceptifs*:
 - Sens *statique* ou *labyrinthique*⁴ : mouvements de rotation et de translation
 - Sens *kinésique* ou *kinestésique* : permet la perception des objets dans l'espace, par exemple le toucher
- Les sens extéroceptifs
 - Sens par contact direct
 - Le toucher
 - Les sens *chimique* : goût, odorat
 - Sens par contact indirect
 - Vue
 - Quie

1.1.3 Lois des sens (18ème - 19ème)

- **Loi du sens** : il existe pour chaque sens une intensité minima du stimulus, appelée intensité liminaire, au-dessous de laquelle il n'y a pas de sensation
- Loi du seuil différentiel :
 - Forme a.

Il existe un rapport constant entre l'intensité du stimulus initial et la variation minima qu'il faut lui faire subir pour que la différence soit sentie

^{3.} D'après Ch. Sherrington (1857-1952)

^{4.} Provient du "capteur" situé dans l'oreille interne

— Forme b.

Pour que la sensation subisse des accroissements en progression arithmétique (0, 1, 2...), il faut faire varier le stimulus en progression géométrique (a, a2, a3...); le rapport constant est le seuil liminaire. C'est encore la loi logarithmique, ou loi de Fechner

1.1.4 Limite de ces lois

Les lois citées précédement ne sont valables que pour les *stimulus moyens* et ne prennent pas en compte l'effet subjectif de la conscience : ne prend pas en compte l'effet des paramètres extérieurs

1.2 Stimulus auditif: le son

1.2.1 Qu'est-ce que le son?

C'est la sensation perçue par l'oreille. Variation périodique de la pression d'un milieu.

1.2.2 Hypothèses du cours

- Millieux de propagation 5 supposés parfaits, sans viscosité et au repos 6
- Vibrations de faible amplitude
- Transformations des fluides supposés adiabatiques réversibles

^{5. (}gazs, liquides, solides)

^{6.} En réalite, pour les fluides visqueux, on doit résoudre l'équation de Navier-Stokes par la méthode des éléments finis

Bibliographie

- R. Rigal, R. Paoletti, M. Portmann, Motricit´e approche psychophysiologique, 1974, Presses de l'universit´e du Qu´ebec (330 pages)
- Delorme et Fl¨uckiger, Perception et r´ealit´e Une introduction 'a la psychologie des perceptions, de Boeck (517 pages)
- E. Zwicker et R. Feldtkeller, Psychoacoustique, 1981, Masson
- R. Feynman, Mécanique 2, 1998 (version française), Dunod
- L. Landau et E. Lifchitz, Physique th'eorique en 10 tomes - Tome 6 - Mécanique des fluides, 1989, Librairie du globe/MIR
- N. H. Fletcher et T. D. Rossing, The Physics of Musical Instruments, 1991, Springer-Verlag
- A. Cuvillier, Cours de philosophie; tome 1; pages 84 85, 541; 1954; Armand Colin

— Emile Br´ehier, Histoire de la philosophie; tome 3; pages 862 – 864; 1964; Quadrige – Presses Universitaires de France