Homework 4 (due on Wednesday 03/04/2020)

Problem 1. Consider the dog-leg path

$$\tilde{p}(\tau) = \begin{cases} \tau p^U, & 0 \le \tau \le 1\\ p^U + (\tau - 1)(p^B - p^U), & 1 \le \tau \le 2 \end{cases}$$

where $p^U = -\frac{\|g\|^2}{g^{\dagger}Bg}g$ and $Bp^B = -g$. Suppose the symmetric matrix B and the vector g satisfy: $1)g^TBg > 0$; $2)(p^U)^T(p^B - p^U) > 0$. Prove that

- 1. $\|\tilde{p}(\tau)\|$ is an increasing function of τ ;
- 2. $m(\tilde{p}(\tau))$ is a decreasing function of τ ,

where $m(p) = g^T p + \frac{1}{2} p^T B p$.

end

Problem 2. Code Algorithm 4.1 in the textbook with 1). the Cauchy point method for the subproblem, 2) the dog-leg method based on the results from Problem 1. Test and compare the performance of the methods on the following problem:

$$\min_{x \in R^n} f(x) = \log(1 + x^{\mathsf{T}} Q x),$$

where Q is a symmetric and positive definite matrix.

Problem 3. Exercise 6.4 in the textbook.

Problem 4. Exercise 7.1 in the textbook. Choose $\alpha = 100$ and $n \ge 1000$ in your simulation. You can code Limited Memory BFGS using either Algorithm 7.4 or the following recursive function call as we discussed in the lecture.

% Algorithm for Limited Memory BFGS. H_k^0 is set to be γI

function
$$d = \text{LBFGSrec}(S, Y, d, \gamma, k)$$

 $if \ k > 0$
 $\alpha \leftarrow \frac{s_k^{\intercal} d}{y_k^{\intercal} s_k};$
 $d \leftarrow d - \alpha y_k;$
 $d \leftarrow \text{LBFGSrec}(S, Y, d, \gamma, k - 1);$
 $d \leftarrow d + (\alpha - \frac{y_k^{\intercal} d}{y_k^{\intercal} s_k}) s_k;$
 $else$
 $d \leftarrow \gamma d;$