

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COMPUTER NETWORKS

Course Code: 22CSE103 Credits: 03

L: T: P: 2:0:2 Contact Hours: 60

Prerequisite: "Basics of data structures and Programming for problem solving".

CA: UE: 50:50

Course Objectives:

• To make the students comfortable with a general overview and fundamentals of computer networks.

• Familiarize with the standard models for the layered approach in a network and the protocols of the various layers.

Course Outcomes

Course	Description	Blooms		
Outcome		Taxonomy		
		Level		
CO1	CO1 understand general overview of the concepts and fundaments			
	of computer networks	(2)		
CO2	Explain the standard models for the layered approach and the	Understanding		
	protocols of the various layers.	(2)		
CO3	Understanding of subnetting and routing mechanisms	Understanding		
		(2)		
CO4	Demonstrate the various protocols at network layer. Applying (3)			
CO5	Comparison between TCP and UDP protocols at transport layer	Analysing (4)		
CO6	Design of an application layer protocol. Create (6)			

Course Contents:

UNIT – I

[12hr]

Basics of computer network like hardware, software, OSI model, TCP/IP Reference models, ARPANET, Internet.

Physical Layer: Guided Transmission media: twisted pairs, coaxial cable, fiber optics, Wireless transmission.

UNIT - II

Data link layer: Various Design issues, Error detection and correction. Data link protocols, Example data link protocols. Medium Access sub layer: The channel allocation problem, Multiple access protocols: ALOHA, CSMA/CDMA protocols, collision free protocols. Wireless LANs, Data link layer switching.

UNIT – III [12 hr]

Network Layer: Various Design issues, Routing algorithms: shortest path routing, Flooding, Hierarchical routing, Broadcast, Multicast, distance vector routing, Congestion Control Algorithms, Quality of Service, Internetworking, The Network layer in the internet.

UNIT - IV [12hr]

Transport Layer: Transport Services, Elements of Transport protocols, Connection management, TCP and UDP protocols.

UNIT - V [12hr]

Application Layer –Domain name system, SNMP, Electronic Mail; the World WEB, HTTP, Streaming audio and video.

TEXT BOOK:

1. Computer Networks -- Andrew S Tanenbaum, David. j. Wetherall, 5th Edition. Pearson Education/PHI

REFERENCE BOOKS:

- 1. An Engineering Approach to Computer Networks-S. Keshav, 2nd Edition, Pearson Education
- 2. Data Communications and Networking Behrouz A. Forouzan. Third Edition TMH.
- 3. Behrouz A. Forouzan (2006), Data communication and Networking, 4th Edition, Mc Graw-Hill, India.
- 4. Kurose, Ross (2010), Computer Networking: A top down approach, Pearson Education, India

Tools

NS3, Packet Tracer/ GNS3

List of Experiments

- 1. Implement the data link layer framing methods such as character, character-stuffing and bit stuffing.
- 2. Write a program to compute CRC code for the polynomials CRC-12, CRC-16 and CRC CCIP
- 3. Develop a simple data link layer that performs the flow control using the sliding window protocol, and loss recovery using the Go-Back-N mechanism.
- 4. Implement Dijsktra's algorithm to compute the shortest path through a network
- 5. Implement distance vector routing algorithm for obtaining routing tables at each node.
- 6. Write a program for congestion control using Leaky bucket algorithm.
- 7. Write a program for frame sorting technique used in buffers.
- 8. Wireshark

- a) Packet Capture Using Wire shark
- b) Starting Wire shark
- c) Viewing Captured Traffic
- d) Analysis and Statistics & Filters.
- 9. Explain and run Nmap scan
- 10. Operating System Detection using Nmap
- 11. Do the following using NS3 Simulator
- a) NS3 Simulator-Introduction
- b) Simulate to Find the Number of Packets Dropped
- c) Simulate to Find the Number of Packets Dropped by TCP/UDP
- d) Simulate to Find the Number of Packets Dropped due to Congestion
- e) Simulate to Compare Data Rate& Throughput.
- f) Simulate to Plot Congestion for Different Source/Destination
- g) Simulate to Determine the Performance with respect to Transmission of Packets

Bloom's Taxonomy-Revised

LEVEL	DESCRIPTION	MEANING	ACTION VERBS
6	Creating	Can the student create a new product or POV?	Assemble, construct, create, change, combine, compose, design, develop, formulate, invent, modify, organize, propose, theorize, write
5	Evaluating	Can the student justify a stand or decision?	Appraise, agree, assess, argue, conclude, decide, defend, judge, prioritize, prove, rate, recommend, select, support, value
4	Analyzing	Can the student distinguish between different parts?	Contrast, compare, criticize, differentiate, discriminate, dissect, distinguish, examine, experiment, operate, question, simplify, test
3	Applying	Can the student use information in a new way?	Choose, demonstrate, dramatize, employ, illustrate, interpret, schedule, sketch, solve, use
2	Understanding	Can the student explain ideas and concepts?	Classify, describe, discuss, explain, identify, infer, locate, outline paraphrase, recognize, report, summarize, select, translate
1	Remembering	Can the student recall or remember information?	Define, duplicate, find, list, label, match, memorize, name, omit, recall, repeat, state, spell, tell