Systèmes et fonctions électroniques – Projet : Etude théorique

Problème 1 : Réalisation de la commande d'un ascenseur

Contexte:

On souhaite réaliser la commande d'un ascenseur pouvant desservir quatre niveaux : 0, 1, 2 et 3. À tout moment, l'ascenseur se trouve dans l'un des trois états suivant : arrêt, montée, descente.

Postulats:

L'utilisateur interagit avec l'ascenseur en demandant un étage sur les quatre desservis. Ainsi, la demande de l'utilisateur sera codée sur deux bits :

• u_1u_0

L'ascenseur possède un attribut étage représentant l'étage actuel de l'ascenseur (codé également sur deux bits) et un attribut état indiquant si l'ascenseur se trouve à l'arrêt ou non (un bit) et s'il doit monter ou descendre (un bit) :

- a_1a_0 : étage de l'ascenseur
- e_1e_0 : pour e_1 : 0 = arrêt, 1 = non-arrêt, pour e_0 : 1 = monter, 0 = descendre

Il s'agit alors de comparer la demande de l'utilisateur avec l'étage actuel de l'ascenseur. Si la

demande est plus petite, on passe e_1 à 1 et e_0 à 0 car l'ascenseur doit descendre. On répète le processus jusqu'à ce que l'ascenseur parviennent jusqu'à l'utilisateur. Le tout à l'aide de comparateurs et d'un compteur JK.

<u>Comparateur</u>:

Niveau	Utilisateur		Etage de l'ascenseur		Arrêt/ Non-arrêt	Montée/ Descente
	u_1	u_0	a_1	a_0	e_1	e_0
	0	0	0	0	0	X
0	0	0	0	1	1	0
U	0	0	1	0	1	0
	0	0	1	1	1	0
	0	0	0	0	1	1
1	0	0	0	1	0	X
1	0	0	1	0	1	0
	0	0	1	1	1	0
	1	1	0	0	1	1
2	1	1	0	1	1	1
2	1	1	1	0	0	X
	1	1	1	1	1	0
3	1	1	0	0	1	1
	1	1	0	1	1	1
	1	1	1	0	1	1
	1	1	1	1	0	Х

On obtient alors:

$$e_1 = (u_1 \oplus a_1) + (u_0 \oplus a_0)$$

$$e_0 = \overline{a_1} \, \overline{a_0} + u_1 \overline{a_1} + u_1 \overline{a_0}$$

Bascule JK:

Pour incrémenter ou décrémenter a_0 et a_1 on utilise un compteur JK. Il existe quatre état possible : 0 -> 3. On utilise alors un compteur synchrone modulo 4 et donc 2 bascules JK.

<u>Table de vérité du compteur synchrone</u> :

INC	a_1	a_0	a_1^+	a_0^+	J_1	K_1	J_0	K_0
0	0	0	0	0	0	Χ	0	Χ
0	0	1	0	0	0	0	Χ	1
0	1	0	0	1	Χ	1	1	Χ
0	1	1	1	0	Χ	0	Χ	1
1	0	0	0	1	0	Χ	1	Χ
1	0	1	1	0	1	Χ	Χ	1
1	1	0	1	1	Χ	0	1	Χ
1	1	1	1	1	Χ	0	Χ	0

<u>Tables de Karnaugh</u>:

J1:

e_0 a_1 a_0	00	01	11	10
0	0	0	Χ	Χ
1	0	1	Χ	Χ

K1:

e_0 a_1 a_0	00	01	11	10
0	Χ	0	0	1
1	Χ	Χ	0	0

JO:

e_0 a_1 a_0	00	01	11	10
0	0	X	X	1
1	1	Χ	Χ	1

K0:

e_0 a_1 a_0	00	01	11	10
0	Х	1	1	Х
1	Х	1	0	Χ

Ainsi :

$$J1 = INC. a_0$$

$$K1 = INC. \overline{a_0}$$

$$J0 = \overline{a_0}(INC + a_1)$$

$$K0 = a_0(INC + \overline{a_1})$$

On obtient alors le circuit suivant :

Problème 2 : Réalisation d'un chronomètre avec bouton de commande et affichage en décimal

Contexte:

On souhaite réaliser un chronomètre qui pourra mesurer des temps entre 0 et 15 secondes, par pas d'une seconde. Le chronomètre sera contrôlé grâce à un bouton poussoir, BP, qui fera varier successivement l'état du compteur entre marche, arrêt et mise à zéro. Le compteur n'augmentera pas au-delà des 15 secondes. La valeur du chronomètre sera affichée.

Postulats:

Le comptage des secondes se fera à l'aide de bascules JK. Puisqu'on a 16 valeurs (0-15), 4 bascules seront utilisées pour cette partie. La fréquence de l'horloge en entrée de ces bascules sera 1 Hz (période : 1 s) pour avoir un incrément toutes les secondes. Le mot binaire, T, associée à la valeur du chronomètre se décompose selon les bits suivants :

 \bullet $t_3t_2t_1t_0$

L'état du chrono, E, sera déterminé par deux bits :

• e_1e_0 : pour e_1 : 0 = 'activation de e_0 ' (M/A), 1 = mise à zéro (Z), pour e_0 : 1 = démarrage (M), 0 = arrêt (A)

On bouclera de façon systématique entre ces valeurs lors de l'appui du bouton poussoir, en partant de Z.

Les entrées des bascules pour le comptage sont déterminées grâce à la table de transition (Tableau 2). L'astuce utilisée pour remettre à zéro le compteur est de faire un ET-logique entre T et e_1 . De ce fait, si e_1 vaut 1, e_1 sera égal à 0000.

Tableau 1 Récapitulatif des variables utilisées

Symbole	Description	Nombre de bits	Valeurs possibles
BP	Bouton Poussoir	1	{0,1}
Т	Valeur du chronomètre	4	{0000 - 1111}
E	Etat du chronomètre	2	{00,01,10}

Tableau 2 Table de transition de T

t_3	t_2	t_1	t_0	t_3 ⁺	t_2^+	t_1^+	t_0^+	J_3K_3	J_2K_2	J_1K_1	J_0K_0
0	0	0	0	0	0	0	1	0X	0X	0X	1X
0	0	0	1	0	0	1	0	0X	OX	1X	X1
0	0	1	0	0	0	1	1	0X	0X	X0	1X
0	0	1	1	0	1	0	0	0X	1X	X1	X1
0	1	0	0	0	1	0	1	0X	X0	0X	1X
0	1	0	1	0	1	1	0	0X	X0	1X	X1
0	1	1	0	0	1	1	1	0X	X0	X0	1X
0	1	1	1	1	0	0	0	1X	X1	X1	X1
1	0	0	0	1	0	0	1	X0	0X	0X	1X
1	0	0	1	1	0	1	0	X0	0X	1X	X1
1	0	1	0	1	0	1	1	X0	OX	X0	1X
1	0	1	1	1	1	0	0	X0	1X	X1	X1
1	1	0	0	1	1	0	1	X0	X0	0X	1X
1	1	0	1	1	1	1	0	X0	X0	1X	X1
1	1	1	0	1	1	1	1	X0	X0	X0	1X
1	1	1	1	1	1	1	1	X0	X0	X0	X1

A partir de cette table, on retrouve les équations suivantes pour les J_iK_i :

$$J_3 = \bar{t}_3 t_2 t_1 t_0$$
 et $K_3 = 0$

$$J_2 = \bar{t}_2 t_1 t_0$$
 et $K_2 = \bar{t}_3 t_2 t_1 t_0 = J_3$

$$J_1 = \bar{t}_1 t_0 \text{ et } K_1 = t_1 t_0 (\bar{t}_1 \bar{t}_0 + (t_1 \oplus t_0)) = J_3$$

$$J_0 = 1$$
 et $K_0 = 1$

On peut donc en déduire le circuit suivant :

Figure 1 Schéma logique du problème 2 (en excluant la mise à zéro)