

Amendment to the Specification:

Please amend the paragraph beginning at page 17, line 4 as follows:

As used herein, "PSMA" or "prostate-specific membrane antigen" protein refers to mammalian PSMA, preferably human PSMA protein and dimers thereof. Human PSMA includes the two protein products, PSMA and PSM', encoded by the two alternatively spliced mRNA variants (containing about 2,653 and 2,387 nucleotides, respectively) of the PSMA cDNA disclosed in Israeli *et al.* (1993) *Cancer Res.* 53:227-230; Su *et al.* (1995) *Cancer Res.* 55:1441-1443; US 5,538,866, US 5,935,818, and WO 97/35616, the contents of which are hereby incorporated by reference. The long transcript of PSMA encodes a protein product of about 100-120 kDa molecular weight characterized as a type II transmembrane receptor having sequence homology with the transferrin receptor and having NAALADase activity (Carter *et al.* (1996) *Proc. Natl. Acad. Sci. USA* 93:749-753). Accordingly, the term "human PSMA" refers to at least two protein products, human PSMA and PSM', which have or are homologous to (e.g., at least about 85%, 90%, 95% identical to) an amino acid sequence: ~~as shown in Israeli *et al.* (1993) *Cancer Res.* 53:227-230; Su *et al.* (1995) *Cancer Res.* 55:1441-1443; US 5,538,866, US 5,935,818, and WO 97/35616~~

MetTrpAsnLeuLeuHisGluThrAspSerAlaValAlaThrAlaArgArgProArgTrpLeuCysAlaGly
AlaLeuValLeuAlaGlyGlyPhePheLeuLeuGlyPheLeuPheGlyTrpPheIleLysSerSerAsnGluAlaThrA
snIleThrProLysHisAsnMetLysAlaPheLeuAspGluLeuLysAlaGluAsnIleLysLysPheLeuTyrAsnPh
eThrGlnIleProHisLeuAlaGlyThrGluGlnAsnPheGlnLeuAlaLysGlnIleGlnSerGlnTrpLysGluPheG
lyLeuAspSerValGluLeuAlaHisTyrAspValLeuLeuSerTyrProAsnLysThrHisProAsnTyrIleSerIleI
eAsnGluAspGlyAsnGluIlePheAsnThrSerLeuPheGluProProProGlyTyrGluAsnValSerAspIle
ValProProPheSerAlaPheSerProGlnGlyMetProGluGlyAspLeuValTyrValAsnTyrAlaArgThrGluA
spPhePheLysLeuGluArgAspMetLysIleAsnCysSerGlyLysIleValIleAlaArgTyrGlyLysValPheArg
GlyAsnLysValLysAsnAlaGlnLeuAlaGlyAlaLysGlyValIleLeuTyrSerAspProAlaAspTyrPheAlaP
roGlyValLysSerTyrProAspGlyTrpAsnLeuProGlyGlyValGlnArgGlyAsnIleLeuAsnLeuAsnG
lyAlaGlyAspProLeuThrProGlyTyrProAlaAsnGluTyrAlaTyrArgArgGlyIleAlaGluAlaValGlyLeu
ProSerIleProValHisProIleGlyTyrTyrAspAlaGlnLysLeuLeuGluLysMetGlyGlySerAlaProProAsp
SerSerTrpArgGlySerLeuLysValProTyrAsnValGlyProGlyPheThrGlyAsnPheSerThrGlnLysValL

ysMetHisIleHisSerThrAsnGluValThrArgIleTyrAsnValIleGlyThrLeuArgGlyAlaValGluProAspArgTyrValIleLeuGlyGlyHisArgAspSerTrpValPheGlyGlyIleAspProGlnSerGlyAlaAlaValValHisGluIleValArgSerPheGlyThrLeuLysLysGluGlyTrpArgProArgArgThrIleLeuPheAlaSerTrpAspAlaGluGluPheGlyLeuLeuGlySerThrGluTrpAlaGluGluAsnSerArgLeuLeuGlnGluArgGlyValAlaTyrIleAsnAlaAspSerSerIleGluGlyAsnTyrThrLeuArgValAspCysThrProLeuMetTyrSerLeuValAsnLeuThrLysGluLeuLysSerProAspGluGlyPheGluGlyLysSerLeuTyrGluSerTrpThrLysLysSerProSerProGluPheSerGlyMetProArgIleSerLysLeuGlySerGlyAsnAspPheGluValPhePheGlnArgLeuGlyIleAlaSerGlyArgAlaArgTyrThrLysAsnTrpGluThrAsnLysPheSerGlyTyrProLeuTyrHisSerValTyrGluThrTyrGluLeuValGluLysPheTyrAspProMetPheLysTyrHisLeuThrValAlaGlnValArgGlyGlyMetValPheGluLeuAlaAsnSerIleValLeuProPheAspCysArgAspTyrAlaValValLeuArgLysTyrAlaAspLysIleTyrSerIleSerMetLysHisProGlnGluMetLysThrTyrSerValSerPheAspSerLeuPheSerAlaValLysAsnPheThrGluIleAlaSerLysPheSerGluArgLeuGlnAspPheAspLysSerAsnProIleValLeuArgMetMetAsnAspGlnLeuMetPheLeuGluArgAlaPheIleAspProLeuGlyLeuProAspArgProPheTyrArgHisValIleTyrAlaProSerSerHisAsnLysTyrAlaGlyGluSerPheProGlyIleTyrAspAlaLeuPheAspIleGluSerLysValAspProSerLysAlaTrpGlyGluValLysArgGlnIleTyrValAlaAlaPheThrValGlnAlaAlaAlaGluThrLeuSerGluValAla (SEQ ID NO:1) or

MetLysAlaPheLeuAspGluLeuLysAlaGluAsnIleLysLysPheLeuTyrAsnPheThrGlnIleProHisLeuAlaGlyThrGluGlnAsnPheGlnLeuAlaLysGlnIleGlnSerGlnTrpLysGluPheGlyLeuAspSerValGluLeuAlaHisTyrAspValLeuLeuSerTyrProAsnLysThrHisProAsnTyrIleSerIleIleAsnGluAspGlyAsnGluIlePheAsnThrSerLeuPheGluProProProGlyTyrGluAsnValSerAspIleValProProPheSerAlaPheSerProGlnGlyMetProGluGlyAspLeuValTyrValAsnTyrAlaArgThrGluAspPhePheLysLeuGluArgAspMetLysIleAsnCysSerGlyLysIleValIleAlaArgTyrGlyLysValPheArgGlyAsnLysValLysAsnAlaGlnLeuAlaGlyAlaLysGlyValIleLeuTyrSerAspProAlaAspTyrPheAlaProGlyValLysSerTyrProAspGlyTrpAsnLeuProGlyGlyValGlnArgGlyAsnIleLeuAsnGlyAlaGlyAspProLeuThrProGlyTyrProAlaAsnGluTyrAlaTyrArgArgGlyIleAlaGluAlaValGlyLeuProSerIleProValHisProGlyTyrTyrAspAlaGlnLysLeuLeuGluLysMetGlyGlySerAlaProProAspSerSerTrpArgGlySerLeuLysValProTyrAsnValGlyProGlyPheThrGlyAsnPheSerThrGlnLysValLysMetHisIleHisSerThrAsnGluValThrArgIleTyrAsnValIleGlyThrLeuArgGlyAlaValGluProAspArgTyrValIleLeuGlyGlyHisArgAspSerTrpValPheGlyGlyIleAspProGlnSerGlyAlaAlaValValHisGluIleValArgSerPheGly

yThrLeuLysLysGluGlyTrpArgProArgArgThrIleLeuPheAlaSerTrpAspAlaGluGluPheGlyLeuLeu
GlySerThrGluTrpAlaGluGluAsnSerArgLeuLeuGlnGluArgGlyValAlaTyrIleAsnAlaAspSerSerIl
eGluGlyAsnTyrThrLeuArgValAspCysThrProLeuMetTyrSerLeuValHisAsnLeuThrLysGluLeuL
ysSerProAspGluGlyPheGluGlyLysSerLeuTyrGluSerTrpThrLysLysSerProSerProGluPheSerGly
MetProArgIleSerLysLeuGlySerGlyAsnAspPheGluValPhePheGlnArgLeuGlyIleAlaSerGlyArgAl
aArgTyrThrLysAsnTrpGluThrAsnLysPheSerGlyTyrProLeuTyrHisSerValTyrGluThrTyrGluLeu
ValGluLysPheTyrAspProMetPheLysTyrHisLeuThrValAlaGlnValArgGlyGlyMetValPheGluLeu
AlaAsnSerIleValLeuProPheAspCysArgAspTyrAlaValValLeuArgLysTyrAlaAspLysIleTyrSerIle
SerMetLysHisProGlnGluMetLysThrTyrSerValSerPheAspSerLeuPheSerAlaValLysAsnPheThrG
luIleAlaSerLysPheSerGluArgLeuGlnAspPheAspLysSerAsnProIleValLeuArgMetMetAsnAspGl
nLeuMetPheLeuGluArgAlaPheIleAspProLeuGlyLeuProAspArgProPheTyrArgHisValIleTyrAla
ProSerSerHisAsnLysTyrAlaGlyGluSerPheProGlyIleTyrAspAlaLeuPheAspIleGluSerLysValAsp
ProSerLysAlaTrpGlyGluValLysArgGlnIleTyrValAlaAlaPheThrValGlnAlaAlaAlaGluThrLeuSer
GluValAla (SEQ ID NO:2); or which is encoded by (a) a naturally occurring human PSMA
nucleic acid sequence (e.g., Israeli *et al.* (1993) *Cancer Res.* 53:227-230 or US 5,538,866); (b) a nucleic acid sequence degenerate to a naturally occurring human PSMA sequence; (c) a nucleic acid sequence homologous to (e.g., at least about 85%, 90%, 95% identical to) the naturally occurring human PSMA nucleic acid sequence; or (d) a nucleic acid sequence that hybridizes to one of the foregoing nucleic acid sequences under stringent conditions, e.g., highly stringent conditions.