MATH221 Mathematics for Computer Science

Tutorial Sheet Week 13 Solutions

Autumn 2017

1. Kruskal's Algorithm gives:

		Will adding edge	Action	Cumulative Weight
Edge	Weight	make a circuit?	taken	of subgraph
(v_2, v_4)	74	no	added	74
(v_5, v_7)	83	no	added	157
(v_7, v_8)	151	no	added	308
(v_3, v_5)	230	no	added	538
(v_6, v_7)	242	no	added	780
(v_4, v_6)	262	no	added	1042
(v_4, v_7)	269	yes	not added	1042
(v_3, v_7)	306	yes	not added	1042
(v_2, v_7)	348	yes	not added	1042
(v_1, v_4)	355	no	added	1397

So a minimum spanning tree is

Prim's Algorithm gives:

Vertex added	Edge added	Weight	Cumulative weight
v_1			
v_4	(v_1, v_4)	355	355
v_2	(v_2, v_4)	74	429
v_6	(v_4, v_6)	262	691
v_7	(v_6, v_7)	242	933
v_5	(v_5, v_7)	83	1016
v_8	(v_7, v_8)	151	1167
v_3	(v_3, v_5)	230	1397

So a minimum spanning tree is

