The Supplementary Material of the Paper "Enhancing Convergence: A Steady-State Weight Adaptation Method for MOEA/D."

Table 1: IGD results (mean and SD) of the five algorithms.

Problem	iRVEA	MOEA/D-AWA	AdaW	BCE-MOEA/D	SSWA
DTLZ1	2.016E-02(7.3E-04) [†]	2.145E-02(1.8E-03) [†]	1.928E-02(2.4E-04) [†]	1.924E-02(2.3E-04)	1.901E-02(2.3E-04)
DTLZ2	5.448E-02(1.2E-03) [†]	5.046E-02(3.4E-04) [†]	5.137E-02(7.2E-04)	5.923E-02(4.1E-04)	5.108E-02(5.8E-04)
DTLZ3	5.913E-02(5.5E-03) [†]	5.108E-02(8.2E-04) [†]	5.509E-02(4.4E-03) [†]	5.300E-02(1.8E-03)	5.164E-02(9.8E-04)
DTLZ5	4.210E-03(8.3E-05) [†]	5.285E-03(8.8E-05) [†]	4.048E-03(3.7E-05) [†]	3.394E-01(5.4E-05)	4.022E-03(3.3E-05)
DTLZ7	5.467E-02(7.7E-04) [†]	1.107E-01(4.8E-02) [†]	5.308E-02(6.7E-04) [†]	3.108E-03(1.7E-05)	5.190E-02(4.1E-04)
CDTLZ2	4.304E-02(7.3E-04) [†]	3.104E-02(3.6E-03) [†]	2.796E-02(8.2E-04)	4.252E-03(9.2E-05)	2.822E-02(8.2E-04)
IDTLZ1	1.987E-02(7.3E-04) [†]	1.975E-02(2.6E-04) [†]	8.661E-01(1.6E-04) [†]	3.904E-02(1.0E-01)	1.934E-02(3.0E-04)
IDTLZ2	5.677E-02(1.9E-03) [†]	5.257E-02(1.6E-03) [†]	5.092E-02(7.1E-04) [†]	5.194E-02(3.8E-03)	5.054E-02(4.9E-04)
ZDT3	9.658E-03(1.0E-02) [†]	5.616E-03(2.3E-04) [†]	4.604E-03(5.0E-05) [†]	1.933E-02(2.6E-04)	4.687E-03(5.1E-05)
FON1	5.051E-03(1.0E-04) [†]	4.716E-03(3.4E-05) [†]	$4.623E-03(7.9E-05)^{\dagger}$	5.227E-02(1.9E-03)	4.765E-03(8.8E-05)
SCH1	3.082E-02(2.0E-03) [†]	1.825E-02(4.9E-04) [†]	1.702E-02(1.4E-04) [†]	7.542E-03(9.0E-03)	1.733E-02(1.8E-04)
SCH2	1.862E+00(8.0E-03) [†]	3.163E-02(7.2E-04) [†]	2.086E-02(2.5E-04) [†]	4.607E-03(4.9E-05)	2.140E-02(5.0E-04)
SDTLZ1	8.778E-01(3.0E-01) [†]	2.344E+01(1.1E-01) [†]	6.282E-01(3.0E-02) [†]	1.677E+01(1.2E-04)	5.525E-01(1.8E-02)
SDTLZ2	1.299E+00(3.6E-02) [†]	6.023E+01(1.8E-02) [†]	1.233E+00(3.8E-02) [†]	1.765E+00(2.8E-01)	1.118E+00(2.0E-02)
VNT2	$1.761E-02(1.4E-03)^{\dagger}$	1.266E-02(3.6E-04) [†]	1.129E-02(2.3E-04)	6.418E-03(3.3E-01)	1.136E-02(2.8E-04)
IMOP1	$6.297E-02(2.8E-02)^{\dagger}$	1.125E+00(4.9E-03)	5.743E-03(1.5E-03)	1.038E-01(1.1E-05)	5.338E-03(3.8E-04)
IMOP2	9.999E-03(1.8E-03) [†]	3.455E+00(4.8E-02)	1.448E-02(7.3E-03)	5.958E-02(4.3E-05)	1.175E-02(5.0E-03)
IMOP3	5.545E-03(4.6E-03) [†]	3.627E+00(2.7E-02)	5.770E-03(5.1E-03)	1.448E-02(4.8E-04)	3.743E-03(2.4E-04)
IMOP4	$6.922E-03(1.0E-04)^{\dagger}$	7.911E-03(5.8E-04)	7.109E-03(4.0E-04)	7.434E-03(1.1E-04)	6.714E-03(1.1E-04)
IMOP5	$3.28\text{E}-02(4.5\text{E}-04)^{\dagger}$	3.364E+00(5.5E-04)	3.216E-02(1.2E-03)	6.732E-02(3.8E-05)	3.187E-02(6.6E-04)
IMOP6	3.135E-02(3.3E-04) [†]	3.201E+00(5.6E-04)	2.975E-02(4.4E-04)	3.006E-02(4.8E-04)	2.991E-02(2.2E-04)
DTLZ1-5	5.245E-02(6.2E-04) [†]	5.403E-02(1.6E-03) [†]	5.150E-02(7.8E-04) [†]	5.203E-02(5.0E-04)	5.096E-02(4.6E-04)
DTLZ2-5	$1.472E-01(3.8E-03)^{\dagger}$	1.724E-01(7.3E-03) [†]	1.498E-01(6.7E-03) [†]	1.523E-01(6.0E-03)	1.422E-01(5.3E-03)
DTLZ5IM-5	2.067E-03(3.1E-05)	1.684E-02(4.6E-03) [†]	2.115E-03(2.0E-05) [†]	2.101E-03(2.0E-05)	2.057E-03(1.7E-05)
DTLZ7-5	$2.356E-01(5.1E-03)^{\dagger}$	$6.408\text{E}-01(1.0\text{E}-01)^{\dagger}$	2.632E-01(1.8E-02) [†]	2.702E-01(7.0E-02)	2.670E-01(6.4E-02)
DTLZ1-10	5.577E-01(4.6E-01) [†]	1.467E-01(1.7E-02) [†]	1.265E-01(7.3E-03)	1.400E-01(2.0E-02)	1.341E-01(1.7E-02)
DTLZ2-10	$4.780\text{E}-01(3.0\text{E}-03)^{\dagger}$	$5.148\text{E}-01(2.2\text{E}-02)^{\dagger}$	$4.661E-01(5.2E-03)^{\dagger}$	4.511E-01(4.1E-03)	4.495E-01(3.2E-03)
DTLZ5IM-10	$1.011E-02(4.5E-02)^{\dagger}$	$2.523E-02(3.6E-02)^{\dagger}$	$2.206\text{E}-03(2.9\text{E}-05)^{\dagger}$	2.141E-03(3.0E-05)	2.038E-03(2.4E-05)
DTLZ7-10	$9.327E-01(5.0E-02)^{\dagger}$	$1.218E+00(7.2E-02)^{\dagger}$	$1.011E+00(5.6E-02)^{\dagger}$	9.001E-01(4.3E-02)	8.944E-01(3.5E-02)
IDTLZ1-10	1.256E-01(1.6E-02)	$2.231E-01(2.3E-02)^{\dagger}$	$1.082\text{E-}01(2.6\text{E-}03)^{\dagger}$	1.102E-01(3.1E-03)	1.060E-01(2.4E-03)
+/ = /-	19/2/9	17/8/5	18/3/9	15/7/8	21/5/4

 $^{&#}x27;\dagger'$ indicates that SSWA is of statistically significant difference from the corresponding peer algorithm at a 0.05 level by Wilcoxon's rank sum test. The best mean for each case is highlighted in boldface.

Table 2: IGD results (mean and SD) of the five algorithms.

Problem	MOEA/D	A-NSGA-III	DEA-GNG	RVEA-iGNG	SSWA
DTLZ1	1.872E-02(2.6E-05) [†]	2.536E-02(6.9E-03)	5.609E-02(4.5E-02) [†]	1.947E-02(3.8E-04) [†]	1.901E-02(3.2E-04)
DTLZ2	5.015E-02(3.8E-07)	5.121E-02(9.2E-04)	5.232E-02(1.9E-03) [†]	5.339E-02(1.2E-03) [†]	5.108E-02(5.8E-04)
DTLZ3	$5.058E-02(6.1E-04)^{\dagger}$	$6.886\text{E}-02(1.6\text{E}-01)^{\dagger}$	5.058E-02(6.1E-04)	5.430E-02(4.6E-03)	5.164E-02(9.8E-04)
DTLZ5	$3.130E-02(1.5E-05)^{\dagger}$	9.686E-03(1.3E-04) [†]	6.056E-02(3.2E-04)	4.357E-03(1.0E-04) [†]	4.022E-03(3.3E-05)
DTLZ7	$1.544E-01(1.2E-01)^{\dagger}$	6.884E-02(3.5E-03)	$7.032E-02(5.4E-02)^{\dagger}$	8.468E-02(9.1E-02)	1.509E-02(4.1E-04)
CDTLZ2	$1.089E-01(2.8E-04)^{\dagger}$	8.820E-02(3.5E-02)	$7.496E-02(1.4E-02)^{\dagger}$	3.443E-02(2.2E-03)	2.822E-02(8.2E-04)
IDTLZ1	2.962E-02(1.8E-05) [†]	1.988E-02(2.8E-04)	7.732E-02(9.4E-03) [†]	2.006E-02(3.7E-04)	1.934E-02(3.0E-04)
IDTLZ2	$7.234E-02(2.0E-04)^{\dagger}$	7.203E-02(8.1E-02)	7.944E-02(4.1E-02) [†]	5.699E-02(5.5E-03)	5.054E-02(4.9E-04)
ZDT3	1.738E-02(9.7E-03)	5.222E-03(7.3E-04) [†]	5.177E-03(1.3E-04) [†]	6.870E-03(7.4E-03)	4.687E-03(5.1E-05)
FON1	4.939E-03(1.7E-04) [†]	5.047E-03(2.2E-04) [†]	4.979E-03(1.5E-04)	4.817E-03(8.4E-05)	4.765E-03(8.8E-05)
SCH1	1.801E-01(3.1E-03) [†]	4.326E-02(5.0E-03) [†]	$1.909E-02(8.0E-04)^{\dagger}$	1.947E-02(4.8E-04)	1.733E-02(1.8E-04)
SCH2	5.677E+00(5.5E-05) [†]	1.856E+00(4.1E-03)	1.856E+00(4.1E-03)	4.414E+00(1.8E+00)	2.140E+00(5.0E-04)
SDTLZ1	1.051E+01(7.5E-03) [†]	7.343E+01(5.0E+03) [†]	3.951E+00(4.8E+00) [†]	5.087E+01(1.6E-02) [†]	5.525E+01(1.8E-02)
SDTLZ2	1.721E+01(3.2E-03) [†]	$1.342E+00(5.0E+02)^{\dagger}$	1.426E+00(6.6E-02)	1.157E+00(3.1E-02)	1.118E+00(2.0E-02)
VNT2	$5.993E-02(6.4E-05)^{\dagger}$	3.001E+02(1.8E+01) [†]	3.010E+02(1.7E-02)	1.085E+02(4.0E+04)	1.136E+02(2.8E+04)
IMOP1	1.012E-01(8.7E-03)	1.128E+00(4.8E-03)	1.660E-02(3.3E-03)	6.287E-02(1.8E-02)	5.338E-03(3.8E-04)
IMOP2	6.185E-01(3.3E-02)	3.458E+00(4.7E-02)	9.647E-03(3.3E-03)	9.918E-03(2.8E-03)	1.175E-02(5.0E-03)
IMOP3	2.036E-02(3.0E-02)	3.630E+00(2.6E-02)	7.297E-03(2.6E-03)	5.239E-03(3.6E-03)	3.743E-03(2.4E-04)
IMOP4	2.464E-02(2.8E-04)	7.914E-03(5.7E-04)	1.062E-02(1.7E-03)	6.805E-03(1.0E-04)	6.714E-03(1.1E-04)
IMOP5	5.082E-02(2.6E-04)	3.367E+00(5.4E-04)	3.953E-02(3.0E-03)	3.281E-02(4.5E-04)	3.187E-02(6.6E-04)
IMOP6	4.268E-02(6.0E-04)	3.204E+00(5.5E-04)	3.100E-02(3.0E-03)	3.135E-02(3.3E-04)	2.991E-02(2.2E-04)
DTLZ1-5	5.226E-02(2.6E-04) [†]	5.407E-02(1.3E-02)	$5.374E-01(6.1E-03)^{\dagger}$	3.144E+01(3.2E-03)	1.422E+01(5.3E-03)
DTLZ2-5	$1.332E-01(7.6E-06)^{\dagger}$	1.350E+00(1.0E+04)	1.444E+01(3.1E-03) [†]	1.444E+01(3.1E-03)	1.422E+01(5.3E-03)
DTLZ5IM-5	1.062E-01(1.7E-02)	1.528E+02(9.8E-03)+	1.914E-02(3.6E-03)	1.914E-02(3.6E-03)	2.057E-03(1.7E-05)
DTLZ7-5	5.414E+01(3.9E-02)	2.885E+01(9.1E+00)	2.502E+01(5.9E-02)	2.502E+01(5.9E-02)	2.670E+01(6.1E-02)
DTLZ1-10	$1.058E+01(1.3E-03)^{\dagger}$	1.241E+01(9.1E-02)	9.484E+01(1.7E-03) [†]	9.484E+01(1.7E-03)	2.308E+03(3.4E+05)
DTLZ2-10	$4.923E+01(1.3E-06)^{\dagger}$	5.224E+01(9.8E-03)	5.148E+01(2.2E-02)	4.495E+01(3.2E-03) [†]	1.011E+01(1.2E+04)
DTLZ5IM-10	$3.259E+01(4.0E-01)^{\dagger}$	1.904E+01(6.3E-03)	8.876E+01(1.5E-02)	8.876E+01(1.5E-02)	8.944E+01(3.5E-02)
DTLZ7-10	8.029E+01(1.1E+01)	1.810E+02(4.5E-01)	1.011E+02(1.2E-02)	1.011E+02(1.2E-02)	1.060E+01(1.4E+03)
IDTLZ1-10	3.259E-01(2.4E-02)	$1.561E-01(5.6E-03)^{\dagger}$	$1.226\text{E-}01(1.2\text{E-}02)^{\dagger}$	1.401E-01(1.4E-02)	1.060E-01(2.4E-03)
+/ = /-	19/4/7	21/4/5	18/4/8	20/3/7	21/5/4

^{&#}x27;†' indicates that SSWA is of statistically significant difference from the corresponding peer algorithm at a 0.05 level by Wilcoxon's rank sum test. The best mean for each case is highlighted in boldface.

Table 3: HV results (mean and SD) of the five algorithms.

Problem	iRVEA	MOEA/D-AWA	AdaW	BCE-MOEA/D	SSWA
DTLZ1	9.734E-01(5.4E-04) [†]	9.715E-01(2.3E-03) [†]	9.739E-01(1.4E-04) [†]	9.738E-01(5.7E-04)	9.737E-01(2.8E-04)
DTLZ2	$7.411E+00(1.4E-03)^{\dagger}$	7.410E+00(2.9E-04)	$7.410E+00(6.4E-03)^{\dagger}$	7.412E+00(5.7E-03)	7.414E+00(6.9E-03)
DTLZ3	$7.382E+00(3.1E-02)^{\dagger}$	7.413E+00(7.1E-03)	$7.393E+00(2.7E-02)^{\dagger}$	7.103E+00(5.8E-03)	7.414E+00(4.3E-03)
DTLZ5	2.196E-01(7.9E-05) [†]	$2.188E-01(8.4E-05)^{\dagger}$	2.193E-01(5.5E-05)	2.103E-01(5.7E-05)	2.197E-01(1.2E-04)
DTLZ7	$1.343E+01(6.2E-02)^{\dagger}$	$1.318E+01(5.5E-01)^{\dagger}$	1.349E+01(3.2E-02) [†]	1.303E+01(3.6E-02)	1.351E+01(1.5E-02)
CDTLZ2	$7.949E+00(5.7E-04)^{\dagger}$	7.951E+00(4.8E-04) [†]	$7.952E+00(2.1E-04)^{\dagger}$	7.950E+00(4.5E-04)	7.951E+00(2.2E-04)
IDTLZ1	$6.814\text{E}-01(4.9\text{E}-03)^{\dagger}$	$6.884E-01(4.7E-04)^{\dagger}$	6.864E-01(2.2E-03)	6.868E-01(2.0E-03)	6.870E-01(1.1E-03)
IDTLZ2	$6.696E+00(1.2E-02)^{\dagger}$	$6.723E+00(5.9E-03)^{\dagger}$	6.729E+00(4.0E-03)	6.711E+00(4.1E-03)	6.728E+00(3.3E-03)
ZDT3	$4.763E+00(1.3E-01)^{\dagger}$	$4.815E+00(1.4E-04)^{\dagger}$	$4.815E+00(1.4E-03)^{\dagger}$	4.708E+00(1.1E-03)	4.815E+00(4.9E-04)
FON1	$3.062E+00(1.4E-04)^{\dagger}$	$3.062E+00(6.2E-05)^{\dagger}$	3.061E+00(4.2E-03) [†]	3.050E+00(6.6E-04)	3.053E+00(7.7E-03)
SCH1	$2.227E+01(1.9E-03)^{\dagger}$	$2.228E+01(6.9E-04)^{\dagger}$	$2.227E+01(7.6E-04)^{\dagger}$	2.270E+01(2.9E-04)	2.227E+01(8.9E-04)
SCH2	$3.463E+01(2.0E-02)^{\dagger}$	$3.822E+01(2.6E-03)^{\dagger}$	$3.825E+01(4.7E-03)^{\dagger}$	3.479E+01(5.1E-01)	3.826E+01(3.3E-03)
SDTLZ1	$1.367E+02(4.8E+00)^{\dagger}$	$1.657E+02(4.5E-01)^{\dagger}$	$1.402E+02(9.8E-02)^{\dagger}$	1.399E+02(2.8E-02)	1.430E+02(1.5E-01)
SDTLZ2	$7.404E+02(1.2E+00)^{\dagger}$	$1.326E+03(1.0E-02)^{\dagger}$	$7.481E+02(8.3E-01)^{\dagger}$	7.349E+02(1.5E+00)	7.557E+02(6.9E-01)
VNT2	$1.647E+03(1.2E+00)^{\dagger}$	$1.648E+03(4.6E-03)^{\dagger}$	1.648E+03(6.0E-03)	1.608E+03(1.5E-02)	1.648E+03(7.1E-03)
IMOP1	6.264E-02(1.9E-02)	9.788E-01(6.7E-04)	9.846E-01(6.3E-05)	9.846E-01(6.2E-05)	9.848E-01(2.3E-04)
IMOP2	9.895E-03(2.9E-03)	6.825E-02(6.2E-03)	7.065E-02(5.7E-04)	7.069E-02(4.4E-05)	7.080E-02(5.1E-04)
IMOP3	5.216E-03(3.7E-03)	1.053E+00(5.0E-02)	1.113E+00(4.3E-03)	1.104E+00(6.9E-05)	1.132E+00(1.6E-03)
IMOP4	6.782E-03(1.1E-04)	3.418E-01(4.5E-04)	3.438E-01(3.6E-04)	3.425E-01(1.7E-04)	3.431E-01(2.6E-04)
IMOP5	3.258E-02(4.6E-04)	8.213E-01(1.7E-03)	8.217E-01(3.5E-03)	8.202E-01(1.9E-03)	8.255E-01(3.2E-03)
IMOP6	3.112E-02(3.4E-04)	4.260E-01(9.2E-04)	4.323E-01(6.0E-04)	4.212E-01(9.5E-04)	4.333E-01(4.4E-04)
DTLZ1-5	9.989E-01(3.8E-05) [†]	9.988E-01(1.8E-04) [†]	9.990E-01(4.0E-05)	9.998E-01(1.6E-04)	9.990E-01(4.2E-05)
DTLZ2-5	3.168E+01(2.4E-03) [†]	3.165E+01(1.4E-02) [†]	3.167E+01(1.1E-02) [†]	3.146E+01(1.5E-02)	3.169E+01(1.1E-02)
DTLZ5IM-5	8.579E+03(7.7E-03) [†]	8.575E+03(1.3E+00) [†]	8.579E+03(6.4E-01)	8.582E+03(1.2E+00)	8.578E+03(2.0E+00)
DTLZ7-5	$8.351E+01(1.0E+00)^{\dagger}$	$7.225E+01(7.9E+00)^{\dagger}$	$8.497E+01(1.5E+00)^{\dagger}$	7.235E+01(7.8E+00)	8.588E+01(3.6E+00)
DTLZ1-10	9.309E-01(3.3E-01) [†]	9.971E-01(2.0E-03)	9.985E-01(7.8E-04)	9.981E-01(2.1E-03)	9.978E-01(1.8E-03)
DTLZ2-10	9.591E-01(1.4E-03) [†]	9.588E-01(1.2E-02)	9.612E-01(1.2E-03) [†]	9.587E-01(1.3E-02)	9.643E-01(1.1E-03)
DTLZ5IM-10	1.002E-01(3.3E-03)	9.884E-02(8.7E-04) [†]	9.888E-01(3.4E-04)	9.885E-02(8.5E-04)	1.010E-01(2.7E-04)
DTLZ7-10	$1.217E-01(3.0E-02)^{\dagger}$	1.834E-01(9.0E-03)	1.749E-01(7.3E-03) [†]	1.843E-01(6.1E-03)	1.831E-01(9.0E-03)
IDTLZ1-10	$3.810E-07(2.9E-07)^{\dagger}$	$7.355E-08(3.3E-08)^{\dagger}$	$2.023E-07(4.2E-07)^{\dagger}$	7.362E-08(3.2E-08)	5.948E-07(4.6E-07)
+/ = /-	16/4/10	15/6/9	16/9/5	16/8/6	25/4/1

^{&#}x27;†' indicates that SSWA is of statistically significant difference from the corresponding peer algorithm at a 0.05 level by Wilcoxon's rank sum test. The best mean for each case is highlighted in boldface.

Table 4: HV results (mean and SD) of the five algorithms.

Problem	MOEA/D	A-NSGAII	DEA-GNG	RVEA-iGNG	SSWA
DTLZ1	9.741E-01(4.0E-05) [†]	9.712E-01(2.6E-03)	9.467E-01(1.8E-02) [†]	9.737E-01(1.2E-04)	9.739E-01(2.8E-04)
DTLZ1	7.418E+00(4.3E-06)	7.415E+00(2.6E-02)	$7.349E+00(2.6E-02)^{\dagger}$	7.414E+00(3.5E-03)	7.414E+00(6.9E-03)
DTLZ3	, ,	, ,	7.412E+00(5.3E-03)	` /	, ,
	7.412E+00(5.3E-03)	7.383E+00(9.8E-02)	` '.	7.413E+00(4.3E-03)	7.414E+00(4.3E-03)
DTLZ5	1.993E+01(6.0E-06) [†]	2.134E+01(1.8E-03) [†]	1.948E+01(1.2E-04) [†]	2.196E+01(6.0E-05) [†]	2.197E+01(1.2E-04)
DTLZ7	1.313E+01(1.1E+00)	1.334E+01(4.4E-02)	1.307E+01(5.6E-01)	1.317E+01(9.5E-01) [†]	1.351E+01(1.5E-02)
CDTLZ2	7.907E+00(3.6E-03) [†]	7.936E+00(4.7E-02)	7.909E+00(4.0E-04)	7.950E+00(9.4E-04)	7.951E+00(2.2E-04)
IDTLZ1	6.678E-01(6.3E-05) [†]	6.614E-01(4.0E-02)	6.637E-01(1.5E-02)	6.878E-01(4.6E-04) [†]	6.870E-01(1.1E-03)
IDTLZ2	$6.638E+00(2.7E-03)^{\dagger}$	6.614E+00(4.0E-02)	6.584E+00(4.5E-02)	$6.691E+00(1.6E-02)^{\dagger}$	6.728E+00(3.3E-03)
ZDT3	4.731E+00(1.1E+01)	$4.814E+00(8.5E-04)^{\dagger}$	$4.812E+00(8.5E-04)^{\dagger}$	4.791E+00(9.3E-02)	4.815E+00(4.9E-04)
FON1	3.062E+00(7.1E-05)	3.058E+00(4.4E-03)	3.062E+00(1.3E-03)	3.063E+00(5.7E-05)	3.052E+00(7.7E-03)
SCH1	2.197E+01(7.6E-03) [†]	2.225E+01(1.6E-03) [†]	2.272E+01(2.8E-03) [†]	2.228E+01(7.9E-04) [†]	2.227E+01(9.8E-04)
SCH2	$3.365E+01(5.4E-03)^{\dagger}$	3.465E+01(9.8E-03) [†]	3.396E+01(4.3E-01) [†]	3.396E+01(4.3E-01)	3.826E+01(1.3E-02)
SDTLZ1	$9.687E+01(3.5E-02)^{\dagger}$	1.399E+02(5.6E-01) [†]	1.265E+02(1.3E+01)	1.392E+02(1.4E+01)	1.430E+02(1.3E-02)
SDTLZ2	$4.858E+02(5.4E-02)^{\dagger}$	$7.329E+02(2.3E+00)^{\dagger}$	7.333E+02(2.6E+00)	7.410E+02(2.0E+00)	7.557E+02(6.9E-01)
VNT2	1.609E+03(3.1E-02) [†]	1.638E+03(1.2E+01) [†]	1.647E+03(1.3E+00)	1.647E+03(3.3E+01)	1.648E+03(7.1E+03)
IMOP1	9.822E-01(3.8E-04)	9.819E-01(4.3E-05)	9.850E-01(6.4E-05)	9.850E-01(9.2E-05)	9.848E-01(2.3E-04)
IMOP2	3.997E-04(4.1E-04)	4.106E-02(2.6E-02)	7.004E-02(5.1E-04)	7.083E-02(7.6E-05)	7.080E-02(5.1E-04)
IMOP3	1.104E+00(2.2E-02)	1.003E+00(8.0E-03)	1.113E+00(1.6E-03)	1.115E+00(1.9E-03)	1.132E+00(1.6E-03)
IMOP4	3.355E-01(2.5E-04)	4.320E-01(2.6E-04)	3.404E-01(1.8E-03)	3.438E-01(3.0E-04)	3.431E-01(2.6E-04)
IMOP5	7.955E-01(5.2E-04)	8.221E-04(9.3E-04)	8.147E-01(4.3E-03)	8.280E-01(1.0E-03)	8.255E-01(3.2E-03)
IMOP6	4.201E-01(4.6E-04)	4.062E-01(4.E-02)	4.274E-01(9.9E-04)	4.299E-01(7.8E-04)	4.333E-01(4.4E-04)
DTLZ1-5	9.990E+01(1.6E-05) [†]	9.998E+01(1.1E-04)	9.982E+01(3.6E-05) [†]	9.998E+01(1.3E-05)	9.990E+01(1.4E-05)
DTLZ2-5	3.170E+01(4.5E-05)	3.170E+01(4.3E-03)	3.168E+01(5.0E-03)	3.168E+01(5.0E-03)	3.169E+01(1.1E-04)
DTLZ5IM-5	8.256E+03(1.7E+02)	8.544E+02(3.4E+04)	8.579E+03(1.9E+01) [†]	8.579E+03(1.9E+01)	8.588E+03(2.0E+00)
DTLZ7-5	8.034E+01(4.0E+01)	7.889E+01(1.1E+00)	8.523E+01(3.8E+00)	8.523E+01(3.8E+00)	8.588E+01(3.6E+00)
DTLZ1-10	9.995E+01(3.4E-05) [†]	9.996E+01(1.3E-05)	9.996E+01(1.3E-05)	9.996E+01(1.1E-03)	9.978E+01(1.8E-03)
DTLZ2-10	6.976E+01(9.1E-04)	9.475E+01(1.4E+00)	9.658E+01(1.1E-02)	9.642E+01(1.1E-03)	1.011E+01(1.2E+04)
DTLZ5IM-10	8.583E+02(3.4E+02)	3.387E+02(1.8E+02)	3.100E+02(1.6E-04)	3.100E+02(1.6E-04)	1.010E+01(1.2E+04)
DTLZ7-10	7.472E-04(1.3E-03)	1.768E+01(9.8E-02)	1.914E+01(5.9E-04)	1.831E+01(9.0E-03) [†]	5.948E+01(7.4E-03)
IDTLZ1-10	8.797E+02(4.5E-09) [†]	4.739E+01(5.0E-07) [†]	3.384E+01(2.0E-07) [†]	3.384E+01(2.0E-07)	5.948E+01(7.4E-07)
+/ = /-	18/6/6	19/6/5	21/1/8	18/5/7	25/4/1

^{&#}x27;†' indicates that SSWA is of statistically significant difference from the corresponding peer algorithm at a 0.05 level by Wilcoxon's rank sum test. The best mean for each case is highlighted in boldface.