Topic 1. Exploratory data analysis with Pandas

Practice. Analyzing "Titanic" passengers

Fill in the missing code ("You code here").

```
In [2]: import numpy as np
import pandas as pd
from matplotlib import pyplot as plt

# Graphics in SVG format are more sharp and legible
%config InlineBackend.figure_format = 'svg'
pd.set_option("display.precision", 2)
```

Read data into a Pandas DataFrame

```
In [3]: data = pd.read_csv("titanic_train.csv", index_col="PassengerId")
```

First 5 rows

```
In [4]: data.head(5)
```

Out[4]:		Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket
	PassengerId								
	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171
	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599
	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282
	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803
	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450

In	[5]:	data.describe()

	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.00	891.00	714.00	891.00	891.00	891.00
mean	0.38	2.31	29.70	0.52	0.38	32.20
std	0.49	0.84	14.53	1.10	0.81	49.69
min	0.00	1.00	0.42	0.00	0.00	0.00
25%	0.00	2.00	20.12	0.00	0.00	7.91
50%	0.00	3.00	28.00	0.00	0.00	14.45
75 %	1.00	3.00	38.00	1.00	0.00	31.00
max	1.00	3.00	80.00	8.00	6.00	512.33

Let's select those passengers who embarked in Cherbourg (Embarked=C) and paid > 200 pounds for their ticker (fare > 200).

Make sure you understand how actually this construction works.

```
In [6]: data[(data["Embarked"] == "C") & (data.Fare > 200)].head()
```

Out[6]:		Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticke
	PassengerId								
	119	0	1	Baxter, Mr. Quigg Edmond	male	24.0	0	1	P 1755
	259	1	1	Ward, Miss. Anna	female	35.0	0	0	P 1775
	300	1	1	Baxter, Mrs. James (Helene DeLaudeniere Chaput)	female	50.0	0	1	P 1755
	312	1	1	Ryerson, Miss. Emily Borie	female	18.0	2	2	P 1760
	378	0	1	Widener, Mr. Harry Elkins	male	27.0	0	2	11350

We can sort these people by Fare in descending order.

Out[7]:		Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	
	PassengerId									
	259	1	1	Ward, Miss. Anna	female	35.0	0	0	PC 17755	5:
	680	1	1	Cardeza, Mr. Thomas Drake Martinez	male	36.0	0	1	PC 17755	5:
	738	1	1	Lesurer, Mr. Gustave J	male	35.0	0	0	PC 17755	5:
	312	1	1	Ryerson, Miss. Emily Borie	female	18.0	2	2	PC 17608	20
	743	1	1	Ryerson, Miss. Susan Parker "Suzette"	female	21.0	2	2	PC 17608	21

Let's create a new feature.

```
In [8]: def age_category(age):
    """
    < 30 -> 1
    >= 30, <55 -> 2
    >= 55 -> 3
    """
    if age < 30:
        return 1
        elif age < 55:
        return 2
    elif age >= 55:
        return 3
```

In [9]: age_categories = [age_category(age) for age in data.Age]
data["Age_category"] = age_categories

Another way is to do it with apply.

```
In [10]: data["Age_category"] = data["Age"].apply(age_category)
```

1. How many men/women were there onboard?

• 577 men and 314 women

```
In [11]: data["Sex"].value_counts()
Out[11]:
                 count
            Sex
           male
                   577
         female
                   314
        dtype: int64
         2. Print the distribution of the Pclass feature. Then the same, but for
         men and women separately. How many men from second class were
         there onboard?
          • 108
In [12]: data["Pclass"].value_counts()
Out[12]:
                 count
         Pclass
                   491
                   216
              2
                   184
        dtype: int64
In [13]: data[data["Sex"] == "female"]["Pclass"].value counts()
Out[13]:
                 count
         Pclass
              3
                   144
                    94
              2
                    76
        dtype: int64
In [14]: data[data["Sex"] == "male"]["Pclass"].value_counts()
```

4]:	count
Pclass	
3	347
1	122
2	108

dtype: int64

- 3. What are median and standard deviation of Fare ?. Round to two decimals.
 - median is 14.45, standard deviation is 49.69

In [15]:	data["	Fare"].c
Out[15]:		Fare
	count	891.00
	mean	32.20
	std	49.69
	min	0.00
	25%	7.91
	50%	14.45
	75 %	31.00
	max	512.33

dtype: float64

- 4. Is that true that the mean age of survived people is higher than that of passengers who eventually died?
 - Yes
 - No

```
In [16]: data[data["Survived"] == 1]["Age"].mean() > data[data["Survived"] == 0]["Age
Out[16]: False
```

5. Is that true that passengers younger than 30 y.o. survived more frequently than those older than 60 y.o.? What are shares of survived people among young and old people?

```
In [25]: young = data[data["Age"] < 30]
  old = data[data["Age"] > 60]
  print(young[young["Survived"] == 1].count()["Survived"] / young.count()["Survived"]
  print(old[old["Survived"] == 1].count()["Survived"] / old.count()["Survived"]
  0.40625
  0.22727272727272727
```

6. Is that true that women survived more frequently than men? What are shares of survived people among men and women?

• 18.9% among men and 74.2% among women

7. What's the most popular first name among male passengers?

John

dtype: object

```
In [21]: data[data["Sex"] == "male"]["first_name"].value_counts()
```

first_name						
John	16					
William	15					
Henry	15					
James	14					
Jr	9					
"Harry"	1					
Bernard	1					
Adolphe	1					
Mansour	1					

count

Out[21]:

 $375 \text{ rows} \times 1 \text{ columns}$

1

Howell

dtype: int64

- 8. How is average age for men/women dependent on Pclass? Choose all correct statements:
 - On average, men of 1 class are older than 40
 - Men of all classes are on average older than women of the same class
 - On average, passengers of the first class are older than those of the 2nd class who are older than passengers of the 3rd class

In [23]: female.groupby("Pclass")["Age"].mean()

dtype: float64

Out[23]: Age

Pclass

1 34.61

2 28.72

3 21.75

dtype: float64

This notebook was converted with convert.ploomber.io