

Machine Learning

Problem formulation

Example: Predicting movie ratings

User rates movies using one to five stars

Machine Learning

Content-based recommendations

Content-based recommender systems

 \Rightarrow For each user j, learn a parameter $\underline{\theta^{(j)} \in \mathbb{R}^3}$. Predict user j as rating rhovie $(\theta \text{With} x^{(i)})$ stars. $\subseteq \underline{\theta^{(j)}} \in \mathbb{R}^3$.

$$\chi^{(3)} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} O \\ 1 \end{bmatrix} \longrightarrow \begin{array}{c} O \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} O \\$$

Problem formulation

- $\rightarrow r(i,j) = 1$ if user j has rated movie i (0 otherwise)
- \rightarrow $y^{(i,j)} = \text{rating by user } j \text{ on movie } i \text{ (if defined)}$
- $\rightarrow \theta^{(j)}$ = parameter vector for user j
- \rightarrow $x^{(i)}$ = feature vector for movie i
- ightharpoonup For user j , movie i , predicted rating: $(\theta^{(j)})^T(x^{(i)})$
- $m^{(j)} = \text{no. of movies rated by user } j$

To learn
$$\underline{\theta^{(j)}}$$
:

$$\lim_{N \to \infty} \frac{1}{2^{N}} \sum_{i: \iota(i,i)=1}^{N} \left((Q_{(i)})_{i}(x_{(i)}) - A_{(i,i)} \right)_{5} + \frac{1}{2^{N}} \sum_{i=1}^{N} (Q_{(i)}^{k})_{5}$$

Optimization objective:

To learn $\theta^{(j)}$ (parameter for user j):

$$\implies \min_{\theta^{(j)}} \frac{1}{2} \sum_{i:r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{k=1}^n (\theta_k^{(j)})^2$$

To learn $\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(n_u)}$:

$$\min_{\theta^{(1)}, \dots, \theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i: r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2$$

Optimization algorithm:

$$\min_{\theta^{(1)}, \dots, \theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i: r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n_u} (\theta_k^{(j)})^2$$

Gradient descent update:

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} \text{ (for } k = 0)$$

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \left(\sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} + \lambda \theta_k^{(j)} \right) \text{ (for } k \neq 0)$$

2(0(1) (Na))

Machine Learning

Collaborative filtering

Problem motivation

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x_1 (romance)	x_2 (action)
Love at last	5	5	0	0	0.9	0
Romance forever	5	?	?	0	1.0	0.01
Cute puppies of love	,	4	0	?	0.99	0
Nonstop car chases	0	0	5	4	0.1	1.0
Swords vs. karate	0	0	5	?	0	0.9

Problem motivation

i robiem n	, iotivat				V		X ₀ =
Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x_1 (romance)	x_2 (action)	
Love at last	7 5	7 5	<u> </u>	7 0	1.1.0	A 0-1	<u> </u>
Romance forever	5	;	;	0	?	ý	x0= [10]
Cute puppies of love	?	4	0	?	?	?	(0.0)
Nonstop car chases	0	0	5	4	?	?	~(1)
Swords vs. karate	0	0	5	?	?	?	~1 (1)
$\Rightarrow \boxed{\theta^{(1)} =}$	$\theta^{(2)}$, $\theta^{(2)}$	$\mathbf{C}^{(2)} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix},$	$\theta^{(3)} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	$\theta^{(4)} =$	$= \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix}$	(e) (e)	(8)1,×(1,5) (8,0)1,×(1,5) (8,0)1,×(1,5) (8,0)1,×(1,5) (8,0)1,×(1,5)

Optimization algorithm

Given $\underline{\theta^{(1)}, \dots, \theta^{(n_u)}}$, to learn $\underline{x^{(i)}}$:

Given $\theta^{(1)}, \dots, \theta^{(n_u)}$, to learn $x^{(1)}, \dots, x^{(n_m)}$:

$$\min_{x^{(1)},...,x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$$

Collaborative filtering

Given
$$\underline{x^{(1)},\dots,x^{(n_m)}}$$
 (and movie ratings), can estimate $\underline{\theta^{(1)},\dots,\theta^{(n_u)}}$

Given
$$\theta^{(1)},\ldots,\theta^{(n_u)}$$
, can estimate $x^{(1)},\ldots,x^{(n_m)}$

Machine Learning

Collaborative filtering algorithm

Collaborative filtering optimization objective

$$\rightarrow$$
 Given $x^{(1)}, \dots, x^{(n_m)}$, estimate $\theta^{(1)}, \dots, \theta^{(n_u)}$:

$$> \left[\min_{\theta^{(1)}, \dots, \theta^{(n_u)}} \left\{ \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i: r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2 \right\}$$

$$= \sum_{x^{(1)},...,x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$$

Minimizing $x^{(1)}, \dots, x^{(n_m)}$ and $\theta^{(1)}, \dots, \theta^{(n_u)}$ simultaneously:

$$J(x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)}) = \frac{1}{2} \sum_{\substack{(i,j): x(i,j) = 1 \\ x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, x^{(n_m)}}} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j$$

Collaborative filtering algorithm

- \rightarrow 1. Initialize $x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)}$ to small random values.
- ⇒ 2. Minimize $J(x^{(1)}, \ldots, x^{(n_m)}, \theta^{(1)}, \ldots, \theta^{(n_u)})$ using gradient descent (or an advanced optimization algorithm). E.g. for every $j = 1, \ldots, n_u, i = 1, \ldots, n_m$:

every
$$j = 1, \dots, n_u, i = 1, \dots, n_m$$
:
$$x_k^{(i)} := x_k^{(i)} - \alpha \left(\sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) \theta_k^{(j)} + \lambda x_k^{(i)} \right)$$

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \left(\sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} + \lambda \theta_k^{(j)} \right)$$

3. For a user with parameters $\underline{\theta}$ and a movie with (learned) features x, predict a star rating of $\theta^T x$.

$$\left(\bigcirc^{(i)} \right)^{\mathsf{T}} \left(\times^{(i)} \right)$$

XOCI XER, OER

Machine Learning

Vectorization:
Low rank matrix
factorization

Collaborative filtering

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)
Love at last	5	5	0	0
Romance forever	5 ? ?		?	0
Cute puppies of love	?	4	0	?
Nonstop car chases	0	0	5	4
Swords vs. karate	0	0	5	?
	^	^	1	1

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 \\ 5 & ? & ? & 0 \\ ? & 4 & 0 & ? \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 5 & 0 \end{bmatrix}$$

Collaborative filtering / X (ii) ' <

$$(Q_{\partial J})_{\underline{A}}(x_{(U)})$$

ings:
$$(\theta^{(2)})^T(x^{(1)})$$
 ... $(\theta^{(n_u)})^T(x^{(1)})$ $(\theta^{(2)})^T(x^{(2)})$... $(\theta^{(n_u)})^T(x^{(2)})$

$$\begin{bmatrix} 1 & 4 & 0 & 1 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 5 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} -(x^{(1)})^{T} \\ -(x^{(2)})^{T} \\ -(x^{(2)})^{T} \end{bmatrix}$$

$$\Box = \begin{bmatrix} -(\phi^{(1)})^{T} - (\phi^{(2)})^{T} - (\phi^{($$

Finding related movies

For each product i, we learn a feature vector $x^{(i)} \in \mathbb{R}^n$.

How to find
$$\underline{\text{movies } j}$$
 related to $\underline{\text{movie } i}$?

Small $\| \mathbf{x}^{(i)} - \mathbf{x}^{(j)} \| \rightarrow \mathbf{movie} \ i$ and i are "similar"

5 most similar movies to movie i: Find the 5 movies j with the smallest $||x^{(i)} - x^{(j)}||$.

Machine Learning

Implementational detail: Mean normalization

Users who have not rated any movies

	•		-		V						
Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	Eve (5)	_	Γ⊷	_	0	0	
→ Love at last	_5	5	0	0	30		5	5	0	0	?
Romance forever	5	?	?	0	Ş (V	$\begin{vmatrix} 5 \\ 2 \end{vmatrix}$			0	9
Cute puppies of love	?	4	0	?	3 D	Y =	(4	U	: 1	
Nonstop car chases	0	0	5	4	. □			0	6 5	4 0	; 2
Swords vs. karate	0	0	5	?	? D		Γ_{Ω}	U	9	U	

$$\min_{\substack{x^{(1)}, \dots, x^{(n_m)} \\ \theta^{(1)}, \dots, \theta^{(n_u)}}} \frac{1}{2} \sum_{\substack{(i,j): r(i,j)=1 \\ \text{off}}} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2}$$

Mean Normalization:

$$\mu = \begin{bmatrix} 2.5 \\ 2.5 \\ 2.25 \end{bmatrix} \rightarrow \underline{Y} = \begin{bmatrix} 1.25 \end{bmatrix}$$

For user j, on movie i predict:

$$\Rightarrow (Q_{(i)})_{i}(x_{(i)}) + \mu_{i}$$

User 5 (Eve):