IN THE CLAIMS

1. (Original): A compound of the formula

$$\begin{array}{c|c} R_3 & R_2 & H_2 \\ \hline R_5 & PR_4 & D \\ \hline \end{array}$$

wherein the bond of atoms C22 and C23 is a single or double bond;

- m is 0 or 1:
- n is 0, 1 or 2:
- p is 0 or 1;
- R₁ is C₁-C₁₂-alkyl, C₃-C₈-cycloalkyl or C₂-C₁₂-alkenyl;
- $R_2 \quad \text{is H, C}_{1^{*}}C_{12^{*}}alkyl, C_{1^{*}}C_{12^{*}}haloalkyl, C_{1^{*}}C_{12^{*}}hydroxyalkyl, OH, halogen, -N_3, SCN, NO_2, CN, C_3-C_6cycloalkyl unsubstituted or substituted by from one to three methyl groups, C_3-C_6halocycloalkyl, C_1-C_6alkoxy, C_1-C_6alkoxy-C_1-C_6alkoxy-C_1-C_6alkoxy, C_1-C_6alkoxy-C_1-C_6alkoxy-C_1-C_6alkoxy-C_1-C_6alkoxy-C_1-C_6alkoxy-C_1-C_6alkoxy-C_1-C_6alkoxy-C_1-C_6alkyl, C_2-C_{12}alkenyl, C_2-C_{12}haloalkenyl, C_2-C_{12}haloalkenyloxy, C_2-C_{12}haloalkynyloxy, C_2-C_{12}haloalkynyloxy, C_2-C_12haloalkynyloxy, -P(=O)(OC_1-C_6alkyl)_2, -Si(C_1-C_6alkyl)_3, -C(H_2)-Si(C_1-C_6alkyl)_3, -Si(OC_1-C_6alkyl)_3, -N(R_0)_2, -(CH_2)-N(R_0)_2, wherein the two substituents <math>R_0$ are independent of each

 C_z - C_{1z} haloalkenyl, C_z - C_{1z} haloalkenyloxy, C_z - C_{1z} haloalkynyl, C_3 - C_{1z} alkynyloxy, C_3 - C_{1z} haloalkynyloxy and phenoxy;

- or, when p is 1, R2 together with R3 is a bond;
- or R2 together with R4 is =0 or =S:

or R₂ together with R₄ form with the carbon to which they are bound a three- to seven-membered ring, which may be monocyclic or bicyclic, and may be saturated or unsaturated, and that may contain one or two hetero atoms selected from the group consisting of N, O and S, and which is either unsubstituted or independently of one another mono- to pentasubstituted with substituents selected from OH, =O, SH, =S, halogen, CN, -N₃, SCN, NO₂, aryl, C₁-C₁₂alkyl, C₃-C₆cycloalkyl, C₁-C₁₂haloalkyl, C₁-C₁₂alkovy, C₁-C₁₂alkovy, C₁-C₁₂alkylthio, C₁-C₁₂alkoylthio, C₁-C₂alkyl, C₂-C₆alkenyl, C₂-C₆alkynyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkynyl, C₃-C₁₂haloalkynyl, C₃-C₁₂haloalkynyl, C₃-C₆cycloalkylsulfinyl, C₁-C₆alkylsulfinyl, C₃-C₆cycloalkylsulfinyl, C₁-C₆haloslkylsulfinyl, C₃-C₆cycloalkylsulfonyl, C₁-C₆haloslkylsulfonyl, C₃-C₆cycloalkylsulfonyl, C₁-C₆haloslkylsulfonyl and C₃-C₆halocycloalkylsulfonyl; or

 R_2 together with R_4 is =NN(R_{12})₂, wherein the two substituents R_9 are independent of each other.

or, when p is 0, R₂ together with R₄ and R6 is =N;

or when p is 0, R_2 together with R_6 is =NOR₁₂ or =NN(R₁₂)₂, wherein the two substituents R_9 are independent of each other;

 $R_3 \quad \text{is H, C}_1\text{-}C}_{12}\text{-alkyl, halogen, halo-}C}_1\text{-}C}_2\text{-alkyl, CN, -N}_3, SCN, NO}_2, C}_3\text{-}C}_6\text{-cycloalkyl unsubstituted or substituted by from one to three methyl groups, $C}_3\text{-}C}_6\text{-halocycloalkyl, $C}_1\text{-}C}_1\text{-alkoxy, $C}_1\text{-}C}_6\text{-alkoxy-}C}_1\text{-}C}_6\text{-alkoxy-}C}_1\text{-}C}_6\text{-alkoxy-}C}_1\text{-}C}_6\text{-alkoxy-}C}_1\text{-}C}_6\text{-alkoxy-}C}_1\text{-}C}_6\text{-alkoxy-}C}_1\text{-}C}_6\text{-alkoxy-}C}_1\text{-}C}_6\text{-alkoxy-}C}_1\text{-}C}_6\text{-alkoxy-}C}_1\text{-}C}_6\text{-alkoxy-}C}_1\text{-}C}_6\text{-alkoxy-}C}_1\text{-}C}_6\text{-alkoxy-}C}_1\text{-}C}_6\text{-alkoxy-}C}_1\text{-}C}_6\text{-alkoxy-}C}_1\text{-}C}_1\text{-alkylsulfinyl, $C}_3\text{-}C}_6\text{-cycloalkylsulfinyl, $C}_1\text{-}C}_1\text{-alkylsulfinyl, $C}_3\text{-}C}_6\text{-cycloalkylsulfinyl, $C}_1\text{-}C}_1\text{-alkolkylsulfinyl, $C}_3\text{-}C}_6\text{-cycloalkylsulfinyl, $C}_1\text{-}C}_1\text{-alkolkylsulfinyl, $C}_3\text{-}C}_6\text{-cycloalkylsulfinyl, $C}_3\text{-}C}_6\text{-alkoxyloxy, $C}_2\text{-}C}_1\text{-alaloalkylsulfonyl, $C}_3\text{-}C}_6\text{-alkoxyloxy, $C}_3\text{-}C}_1\text{-alaloalkynyloxy, $C}_3\text{-}C}_1\text{-}C}_1\text{-alaloalkynyloxy, $C}_3\text{-}C}_1\text{-}C}_1\text{-alaloalkynyloxy, $C}_3\text{-}C}_1\text{-}C}_1\text{-alaloalkynyloxy, $C}_3\text{-}C}_1\text$

 C_z - C_8 alkenyl, C_z - C_8 alkynyl, C_z - C_{12} haloalkenyl, C_z - C_{12} haloalkenyloxy, C_z - C_{12} haloalkynyl and C_3 - C_1 2haloalkynyloxy;

or when p is 1, R₃ together with R₂ is a bond;

 $R_4 \quad \text{is H, C}_1\text{--}C_{12}\text{-}alkyl, C}_1\text{--}C_{12}\text{-}haloalkyl, C}_1\text{--}C_{12}\text{-}hydroxyalkyl, OH, halogen, NO}_2, CN, \\ C_3\text{--}C_8\text{cycloalkyl unsubstituted or substituted by from one to three methyl groups, $C_3\text{--}C_8\text{halocycloalkyl, C}_1\text{--}C_8\text{alkoxy, C}_1\text{--}C_8\text{alkyl, C}_2\text{--}C_{12}\text{haloalkenyl, C}_2\text{--}C_{12}\text{haloalkenyl, C}_2\text{--}C_{12}\text{haloalkynyl, C}_2\text{--}C_1\text{--}C_8\text{alkyl, C}_1\text{--}C_8\text{alkyl, C}_1\text{-$

other, $-C(=X)-R_7$, $-(CH_2)-C(=X)-R_7$, $-O-C(=X)-R_7$, $-(CH_2)-O-C(=X)-R_7$, $-S-C(=X)-R_7$, $-(CH_2)-S-C(=X)-R_7$, $-NR_9-C(=X)-R_7$, $-NR_9-C(=X)-R_9-C(=X)-R_7$, anyl, heterocyclyl, aryloxy and heterocyclyloxy radicals are unsubstituted or, depending upon the possibilities of substitution at the ring, mono- to penta-substituted by substituents selected from the group consisting of OH, halogen, CN, NO_2 , C_1-C_12 alkyl, C_3-C_8 cycloalkyl, C_1-C_12 haloalkyl, C_1-C_12 alkoxy, C_1-C_{12} haloalkoxy, C_1-C_12 alkylthio, C_1-C_12 haloalkylthio, C_1-C_12 haloalkylthio, C_1-C_12 haloalkylthio, C_1-C_12 haloalkenyloxy, C_2-C_12 haloalkynyl, C_3-C_12 haloalkynyloxy and phenoxy;

or R4 together with R2 forms =O or =S;

or when p is 1, R₄ together with R₅ is a bond;

or, when p is 0, together with R_2 and R_6 is $\equiv N$;

 $R_{\delta} \ and \ R_{\delta} \ independently \ of each \ other \ are \ H, \ C_{1^{\prime}}C_{12^{\prime}}alkyl, \ -N_3, \ CN, \ NO_2, \ OH, \ SH, \ halogen, \\ halo-C_{1^{\prime}}C_{2}alkyl, \ hydroxy-C_{1^{\prime}}C_{2}alkyl, \ C_{3^{\prime}}C_{6} cycloalkyl \ that \ is \ unsubstituted \ or \ substituted \ by \ from \ one to two methyl groups, \ C_{3^{\prime}}C_{6}halocycloalkyl, \ C_{1^{\prime}}C_{6}alkoxy, \ C_{1^{\prime}}C_{6}alkoxy-C_{1^{\prime}}C_{6}alkyl, \ C_{1^{\prime}}C_{6}alkoxy-C_{1^{\prime}}C_{6}alkoxy-C_{1^{\prime}}C_{6}alkoxy-C_{1^{\prime}}C_{6}alkoxy, \ C_{1^{\prime}}C_{1}albandky, \ C_{1^{\prime}}C_{1}ahaloalkoxy, \ C_{1^{\prime}}C_{1}ahaloalkyl, \ C_{2^{\prime}}C_{1}ahaloalkyl, \ C_{2^{\prime}}C_{1}ahaloalkynyl, \ C_{2^{\prime}}C_{2^{\prime}}C_{2^{\prime}}Alabaloalkynyl, \ C_{2^{\prime}}C_{2^{\prime}}C_{2^{\prime}}Alabaloalkynyl, \ C_{2^{\prime}}C_{2^{\prime}}C_{2^{\prime}}Alabaloalkynyl, \ C_{2^{\prime}}C_{2^{\prime}}C_{2^{\prime}}Alabaloalkynyl, \ C_{2^{\prime}}C_{2^{\prime}}C_{2^{\prime}}Alabaloalkynyl, \ C_{2^{\prime}}C_{2^{\prime}}Alabaloalkynyl, \ C_{2^{\prime}}C_{2^{\prime}}Alabaloalkyny$

$$\begin{split} &C_{\theta}alkyl, -O-C(=X)-R_7, -S-C(=X)-R_7, -NR_{\theta}C(=X)R_7, -NR_{\theta}NHC(=X)-R_7, -NR_{\theta}-OR_{10}, -SR_{\theta}, -S(=O)R_{11}, -S(=O)_2R_{11}, -CH_2-S(=O)_2R_{11}, aryl, aryloxy, benzyloxy, -NR_{\theta}-aryl, heterocyclyl, heterocyclyloxy, -NR_{\theta}-heterocyclyloxy, -NR_{\theta}-heterocy$$

cyclyl, -CH₂-aryl, -CH₂-O-aryl, -CH₂-NR₉-aryl, -CH₂-NR₉-C₁-C₂alkyl, -CH₂-heterocyclyl, -CH₂-O-heter

ocyclyl and -CH₂-NR₉-heterocyclyl; wherein the aryl, aryloxy, benzyloxy, -NR₉-aryl, heterocyclyl, heterocyclyloxy and -NR₉-heterocyclyl radicals are unsubstituted or, depending upon the possibilities of substitution at the ring, mono- to penta-substituted by substituents selected from the group consisting of OH, =O, SH, =S, halogen, CN, NO₂, C₁-C₁₂alkyl, C₃-C₆cycloalkyl, C₁-C₁₂haloalkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂haloalkylhio, C₁-C₁₂haloalkylhio, C₁-C₁₂haloalkylyl, C₂-C₁₂haloalkynyl, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkynyl, C₃-C₁₂haloalkynyl, C₃-C₁₂haloalkynyl, C₃-C₁₂haloalkynyloxy, phenoxy, methylenedioxy, NH₂, NH(C₁-C₁₂alkyl), N(C₁-C₁₂alkyl)₂ and C₁-C₆alkyluflinyl; or

 R_s and R_θ are, together with the carbon atom to which they are bound, a five- to seven-membered ring, which may be saturated or unsaturated, and which may contain one or two members selected from the group consisting of O, NR_s and S; and which is optionally substituted with one to three substituents selected from C_1-C_{12} -alkyl, C_N , NO_2 , OH, halogen, halo- C_1-C_2 alkyl, C_3-C_8 -cycloalkyl C_3-C_8 -halocycloalkyl, C_1-C_{12} -alkoxy, C_1-C_8 -alkoxy- C_1-C_8 -alkoxy- C_1-C_8 -alkoxy- C_1-C_8 -alkoxy- C_1-C_8 -alkoxy- C_1-C_8 -alkoxy- C_1-C_8 -alcoalkyl, C_3-C_8 -cycloalkylthio, C_3-C_8 -cycloalkylthio, C_3-C_8 -cycloalkylthio, C_3-C_8 -alcoalkylthio, C_3-C_8 -alcoalkylthio, C_3-C_8 -alcoalkynyl, C_3-C_8 -alcoalkynyl, and C_3-C_1 -haloalkynyloxy;

or when p is 1, R5 together with R4 is a bond;

or, when p is 0, R_6 together with R_2 and R_4 is $\equiv N$;

R₈ is H, C₁-C₆alkyl that is optionally substituted with one to five substituents selected from the group consisting of halogen, C₁-C₆alkoxy, C₁-C₆alkoxy, C₂-C₁₂haloalkoxy, C₂-C₁₂haloalkenyl, C₂-C₁₂haloalkenyloxy, C₂-C₁₂haloalkynyl, C₃-C₁₂haloalkynyloxy, hydroxy and cyano, C₃-C₆-cycloalkyl, aryl, benzyl or heteroaryl; wherein the aryl, benzyl and heteroaryl radicals are unsubstituted or, depending on the possibilities of substitution on the ring, mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, CN, NO₂.

 C_1 - C_1 2alkyl, C_1 - C_1 2haloalkyl, C_1 - C_1 2alkoxy, C_1 - C_1 2haloalkoxy, C_1 - C_1 2alkylthio, C_2 - C_1 2alkenyl, C_2 - C_1 2haloalkenyl, C_2 - C_1 2haloalkenyloxy, C_2 - C_1 2haloalkynyl, C_2 - C_1 2haloalkynyl, C_3 - C_1 2haloalkynyloxy and C_1 - C_1 2haloalkylthio;

 $R_9 \quad \text{is H, C}_1-C_6alkyl, C}_1-C_6cycloalkyl, C}_1-C_6alkoxy-C}_1-C_6alkyl, C}_1-C_6alkoxy-C}_1-C_6alkyl, C}_1-C_6alkyl, C}_1-C_6alkyl,$

 R_{10} H, $C_1\text{-}C_6\text{alkyl}$ that is optionally substituted with one to five substituents selected from the group consisting of halogen, $C_1\text{-}C_6\text{alkoxy}, NO_2$, hydroxy and cyano, $C_1\text{-}C_{12}\text{haloalkyl}, C_2\text{-}C_{12}\text{alkenyl}, C_2\text{-}C_{12}\text{haloalkynyl}, C_2\text{-}C_{12}\text{haloalkynyl}, C_2\text{-}C_{12}\text{alkoyyl}, C_3\text{-}C_6\text{-}cycloalkyl, aryl, benzyl or heteroaryl; wherein the aryl, benzyl and heteroaryl radicals are unsubstituted or, depending on the possibilities of substitution on the ring, mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, CN, NO_2, <math display="inline">C_1\text{-}C_{12}\text{alkyl}, C_1\text{-}C_{12}\text{haloalkyl}, C_1\text{-}C_{12}\text{alkonyl}, C_2\text{-}C_{12}\text{alaloalkyl}, C_1\text{-}C_{12}\text{haloalkenyl}, C_2\text{-}C_{12}\text{haloalkenyl}, C_2\text{-}C_{12}\text{haloalkynyl}, C_2\text{-}C_{12}\text{haloalkynyl}, C_2\text{-}C_{12}\text{haloalkynyl}$

 R_{11} is H, $C_1\text{-}C_6$ alkyl that is optionally substituted with one to five substituents selected from the group consisting of halogen, $C_1\text{-}C_6$ alkoxy, hydroxy and cyano, -N(R_9)_z wherein the two substituents R_9 are independent of each other, $C_3\text{-}C_6$ cycloalkyl, $C_3\text{-}C_6$ halocycloalkyl, $C_2\text{-}C_{12}$ haloalkenyl, $C_2\text{-}C_{12}$ haloalkenyl, $C_3\text{-}C_{12}$ haloalkenyl, $C_3\text{-}C_{12}$ haloalkenyloxy, aryl, benzyl or heteroaryl; wherein the aryl, benzyl and heteroaryl radicals are unsubstituted or, depending on the possibilities of substitution on the ring, mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, CN, NO_2, $C_1\text{-}C_{12}$ alkyl, $C_1\text{-}C_{12}$ haloalkoxy, $C_1\text{-}C_{12}$ haloalkoxy, $C_1\text{-}C_{12}$ haloalkoxy, $C_1\text{-}C_{12}$ haloalkoxy, $C_2\text{-}C_{12}$ haloalkylthio, $C_2\text{-}C_{12}$ haloalkynyl and $C_3\text{-}C_{12}$ haloalkynyloxy;

 $R_{12} \quad \text{is H, C}_1-C_6\text{alkyl, C}_1-C_6\text{cycloalkyl, C}_1-C_6\text{alkoxy-C}_1-C_6\text{alkyl, C}_1-C_6\text{alkoxy-C}_1-C_6\text{alkyl, C}_2-C_{12}\text{alkenyl, C}_2-C_{12}\text{alkynyl, -C(=O)C}_1-C_6\text{alkyl, -C(=O)OC}_1-C_6\text{alkyl, -SO}_2C_1-C_6\text{alkyl, benzyl, arvl, heteroarvl:}$

X is O or S:

or, if appropriate, an E/Z isomer, E/Z isomer mixture and/or tautomer thereof, in each case in free form or in salt form:

with the proviso, that the group $R_{\epsilon_r}[C(R_3)(R_5)]_{\rho}$ - $C(R_2)(R_4)-[CH_2]_{n^r}$, which is attached to the ϵ -position of the compound of the formula (I), is not NC-CH₂- or HOOC-CH₂- when m is 1 and the bond between atoms 22 and 23 is a single bond.

- 2. (Previously Presented): A pesticide composition which contains at least one compound of the formula (I) as described in claim 1 as active compound and at least one auxiliary.
- (Previously Presented): A method for controlling pests comprising applying a composition as described in claim 2 to the pests or their habitat.
- 4. (Previously Presented): A process for preparing a composition as described in claim 2 comprising intimately mixing and/or grinding the active compound with at least one auxiliary.
 - 5. (Cancelled).
 - 6. (Cancelled).
- 7. (Previously Presented): A method for protecting plant propagation material, wherein the propagation material or the location where the propagation material is planted is treated, comprising applying a composition as described in claim 2.
- 8. (Previously Presented): Plant propagation material treated with the composition described in claim 2.