$\overline{CSC006P}1M$: Design and Analysis of Algorithms Lecture 11 (Primality Testing)

Sumit Kumar Pandey

September 13, 2022

Given a positive integer n > 1, check whether n is a prime or not?

Divisors of a Prime

A prime has only two divisors - 1 and itself.

Check the divisibility of n from 2 to n-1.

```
IsPrimeV1(n)
Input: n (a positive integer greater than 1)
Output: B (bool: True if prime else False)
begin
    B := True
    for i := 2 to n - 1 do
       if i divides n then
          B := \mathsf{False}:
          break;
end
T(n) = ?.
T_b(n) = 1.
T_w(n) = n - 2.
T(n) = O(n).
```

Can we do better?

Yes

We do not need to check till n-2. It is enough to check till $\lfloor n/2 \rfloor$.

```
IsPrimeV2(n)
Input: n (a positive integer greater than 1)
Output: B (bool: True if prime else False)
begin
    B := \mathsf{True}
    for i := 2 to |n/2| do
       if i divides n then
           B := \mathsf{False}:
           break:
end
T(n) = O(n).
```

Can we do better?

Yes

We do not need to check till $\lfloor n/2 \rfloor$. It is enough to check till $\lfloor \sqrt{n} \rfloor$.

Reason:

- Let n = ab where $1 < a \le b < n$.
- If $a > \sqrt{n}$, $b > \sqrt{n}$, then $n = ab > \sqrt{n}\sqrt{n} = n$, a contradiction.


```
IsPrimeV3(n)
Input: n (a positive integer greater than 1)
Output: B (bool: True if prime else False)
begin
    B := \mathsf{True}
    for i := 2 to |\sqrt{n}| do
        if i divides n then
           B := \mathsf{False}:
           break:
end
T(n) = O(\sqrt{n}).
```

Can we do better?

Yes

AKS Algorithm.

Agrawal, Manindra; **Kayal**, Neeraj; **Saxena**, Nitin (2004). "PRIMES is in P". Annals of Mathematics. 160(2): 781–793. doi:10.4007/annals.2004.160.781. JSTOR 3597229

$$T_{AKS}(n) = \tilde{O}(\lg^{15/2} n)$$
, where $g(n) = \tilde{O}(f(n))$ if $g(n) = O(f(n) \lg^k f(n))$ for some $k \ge 0$.

AKS algorithm is a remarkable achievement. However, in practice, we do not use this one for primality testing. Instead, we choose probabilistic (randomized) algorithms like Solovay-Strassen or Miller-Rabin.

In practice, probabilistic algorithms like Solovay-Strassen or Miller-Rabin perform better than the deterministic AKS algorithm.

But, there is a chance of error with the probabilistic algorithms.

Fermat's Little Theorem

Let p be a prime number. Suppose gcd(a, p) = 1. Then, $a^{p-1} \equiv 1 \mod p$.

```
\begin{array}{l} \underline{\mathsf{IsPrimeV4}(n)} \\ \hline \mathsf{Input:} \ n \ (\mathsf{a} \ \mathsf{positive} \ \mathsf{integer} \ \mathsf{greater} \ \mathsf{than} \ 1) \\ \mathsf{Output:} \ B \ (\mathsf{bool:} \ \mathsf{True} \ \mathsf{if} \ \mathsf{prime} \ \mathsf{else} \ \mathsf{False}) \\ \mathsf{begin} \\ B := \mathsf{False} \\ \mathsf{Choose} \ \mathsf{a} \ \mathsf{random} \ \mathsf{integer} \ a, \ 1 \leq a \leq n-1; \\ b := a^{n-1} \ \mathsf{mod} \ n; \\ \mathsf{if} \ b \equiv 1 \ \mathsf{mod} \ n \ \mathsf{then} \ B := \mathsf{True}; \\ \mathsf{end} \end{array}
```

Carmichael Numbers

Let n be an odd composite number. If $a^{n-1} \equiv 1 \mod n$ for all a such that gcd(a, n) = 1, then n is called Carmichael numbers.

- The smallest Carmichael number is $561 = 3 \cdot 11 \cdot 17$.
- Carmichael numbers are extremely rare, but it is known that there are infinitely many of them.

Carmichael Numbers

Theorem

A Carmichael number n is of the form $n = p_1 \cdots p_r$, where the p_i are distinct primes, $r \ge 3$, and $(p_i - 1) \mid (n - 1)$ for $i = 1, \dots, r$.

Let

$$L_n = \{ \alpha \mid 1 \le \alpha \le n - 1 \text{ and } \alpha^{n-1} = 1 \}.$$

Theorem

If n is prime, then $L_n = \mathbb{Z}_n^*$. If n is composite and $L_n \subsetneq \mathbb{Z}_n^*$, then $|L_n| \leq (n-1)/2$.

$$\mathbb{Z}_n^* = \{ a \mid 1 \le a \le n-1 \text{ and } \gcd(a, n) = 1 \}.$$

Carmichael Numbers

If *n* is a Carmichael number, $L_n = \mathbb{Z}_n^*$.

Theorem

If n is prime, then $L_n = \mathbb{Z}_n^*$. If n is composite and $L_n \subsetneq \mathbb{Z}_n^*$, then $|L_n| \leq (n-1)/2$.

Proof:

- If n is prime, then $L_n = \mathbb{Z}_n^*$ (from Fermat's Little Theorem).
- L_n is a subgroup of \mathbb{Z}_n^* .
- So, $|L_n|$ divides $|\mathbb{Z}_n^*|$ and hence $|\mathbb{Z}_n^*| = m|L_n|$ for some $m \ge 1$.
- If $L_n \subsetneq \mathbb{Z}_n^*$, then $m \geq 2$.
- Thus, $|L_n| \leq (n-1)/2$.

Theorem

If n is prime, then $L_n = \mathbb{Z}_n^*$. If n is composite and $L_n \subsetneq \mathbb{Z}_n^*$, then $|L_n| \leq (n-1)/2$.

Error Probability

If n is not a Carmichael number, then the error probability of the algorithm IsPrimeV4 is $\leq 1/2$.

Can we get rid off Carmichael numbers?


```
MillerRabin(n)
Input: n (a positive integer greater than 1)
Output: B (bool: True if prime else False)
begin
    B := \mathsf{False}
    Write n-1=2^k m, where m is odd and k>0:
    Choose a random integer a, 1 \le a \le n-1;
    b := a^m \mod n:
    if b \equiv 1 \mod n then B := \text{True};
    else
       for i := 0 to k - 1 do
          if b \equiv -1 \mod n then B := \text{True}:
          else b := b^2 \mod n:
end
```

The Miller-Rabin Algorithm

The Miller-Rabin algorithm for **composites** is a **yes**-biased algorithm.

The Error Probability

The error probability can be shown to be at most 1/4.

 $T(n) = O(\lg n)$ (if we consider the cost of multiplication is c (a constant)), otherwise $T(n) = O(\lg^3 n)$.

Thank You