Prova sem consulta. Duração: 2h.

1ª Prova de Avaliação

- * Não são consideradas as folhas sem identificação. Justifique convenientemente todos os cálculos que efetuar;
- *A desistência só é possível após 1 hora do início da prova;
- * Não é permitida a utilização de máquinas de calcular gráficas nem de microcomputadores.
- **1.** [4,1] Seja a função vetorial $r(t) = (e^t \operatorname{sen}(t), e^t \cos(t), t+1)$, $t \in \mathbb{R}$. Determine:
 - a) O versor da tangente à curva no ponto P = (0,1,1).
 - b) A equação cartesiana do plano osculador à curva no ponto *P*.
- **2.** [**4,1**] Calcule a derivada direcional da função de campo escalar $f(x, y, z) = x + e^{z^2 y}$ no ponto R = (0,1,1), na direção do vetor normal à superfície $x^2 + y^2 + z^2 = 2$ neste mesmo ponto.
- **3.** [1,5] Calcule os pontos críticos de $f(x, y) = x xy^2$ e classifique-os.
- **4.** [**4,1**] Seja a superfície de equação $x \operatorname{sen}(x) + ze^z + y^2 1 = 0$. Assumindo que a equação da superfície define z como uma função implícita de x e y, z = f(x, y), calcule $\partial z/\partial x$ e $\partial z/\partial y$ no ponto Q = (0,1,0).
- **5.** [**4,2**] Seja o integral $\int_0^1 \int_{1-y}^{\sqrt{1-y^2}} 2x \, dx dy$.
 - a) Esboce o domínio de integração e calcule o seu valor.
 - b) Reescreva-o: (i) trocando a ordem de integração;
 - (ii) em coordenadas polares.
- **6.** [2,0] Seja uma curva descrita pela função vetorial r(t). Mostre que r''(t) pertence ao plano osculador em r(t), caso este exista. Justifique convenientemente.