Lecture 4

Polynomial multiplication

Administrative corner

I hope everyone had a nice Labor Day!

Homeworks:

- 1. Hwk 1 due tonight. Good luck!
- 2. Hwk 2 due next Monday.

New discussion sections:

- Tuesday 3-4pm
- Thursday 10-11am
- Thursday 11am-12pm

Office hours:

- From now on using OH queue (oh.cs170.org)
 - special system for Hwk Parties

(see weekly post)

Lectures 1&2: How do you multiply **numbers** quickly?

Lecture 3: How do you multiply **matrices** quickly?

Today: How do you multiply **univariate polynomials** quickly?

Addition: $p(x) + q(x) = 0.5 + 0.5x + x^2$

Multiplication: $p(x) \cdot q(x) = 0.5x^2 + 0.5x^3$

Lectures 1&2: How do you multiply **numbers** quickly?

Warning!

This is a **challenging** lecture.

It contains a lot of different ideas.

Please ask questions!

.3

Representing polynomials

Let
$$p(x) = p_0 + p_1 x + p_2 x^2 + \dots + p_{n-1} x^{n-1}$$
 degree n-1

Its **coefficient representation** is the array of real numbers

$$(p_0, p_1, p_2, ..., p_{n-1})$$
 (the input)

Modeling assumptions

- 1. Think of n as large. (Say, $n = 10^{10}$.)
- 2. Think of $p_0, ..., p_{n-1}$ as **small**. (32-bit float) So all arithmetic operations take O(1) time.

Goal: Measure runtime as function of n. E.g. $T(n) = O(n^2)$

Task 1: adding polynomials

Input: 1.
$$p(x) = p_0 + p_1 x + p_2 x^2 + \dots + p_{n-1} x^{n-1}$$

2. $q(x) = q_0 + q_1 x + q_2 x^2 + \dots + q_{n-1} x^{n-1}$

Output: the polynomial p(x) + q(x) (i.e. its coefficients)

Q: How fast can you do this?

$$p(x) = p_0 + p_1 x + p_2 x^2 + \dots + p_{n-1} x^{n-1}$$

$$+ q(x) = q_0 + q_1 x + q_2 x^2 + \dots + q_{n-1} x^{n-1}$$

$$p(x) + q(x) = (p_0 + q_0) + (p_1 + q_1)x + (p_2 + q_2)x^2 + \dots + (p_{n-1} + q_{n-1})x^{n-1}$$

A: In O(n) time.

Note: Like adding integers, but simpler. Why? No carries!

Task 2: evaluating polynomials

Input: 1.
$$p(x) = p_0 + p_1 x + p_2 x^2 + \dots + p_{n-1} x^{n-1}$$

2. a real number $\alpha \in \mathbb{R}$

Output:
$$p(\alpha) = p_0 + p_1 \alpha + p_2 \alpha^2 + \dots + p_{n-1} \alpha^{n-1} \in \mathbb{R}$$

Q: How fast can you do this?

Task 2: evaluating polynomials

Input: polynomial p(x) and $\alpha \in \mathbb{R}$

Output: $p(\alpha)$

Algorithm #1: time $O(n^2)$

$$\begin{array}{c} p_0 & \text{redundant work!} & 0 \text{ mults} \\ + p_1 \cdot \alpha & & 1 \text{ mults} \\ + p_2 \cdot \alpha \cdot \alpha & 2 \text{ mults} \\ + p_3 \cdot \alpha \cdot \alpha \cdot \alpha & 3 \text{ mults} \\ & & & \\ + p_{n-1} \cdot \alpha \cdot \alpha \cdots \alpha & (n-1) \text{ mults} \\ \end{array}$$

Task 2: evaluating polynomials

Input: polynomial p(x) and $\alpha \in \mathbb{R}$

Output: $p(\alpha)$

Algorithm #2: time O(n)

Initialize $A=[1, \ \alpha, \ \alpha^2, \ \alpha^3, \ ..., \ \alpha^{n-1}]$ O(n) mults Set $A[i]=\alpha\cdot A[i-1]$ for each i=1,2,... 1 mult each

 $\begin{array}{c} O(n) \\ \text{adds} \end{array} \begin{array}{c} p_0 \cdot A[0] \\ + p_1 \cdot A[1] \\ + p_2 \cdot A[2] \\ + p_3 \cdot A[3] \\ & \cdots \\ + p_{n-1} \cdot A[n-1] \end{array} \begin{array}{c} 1 \text{ mult} \\ 1$

O(n) mult

Task 3: multiplying polynomials

Input: two polynomial p(x) and q(x)

Output: $p(x) \cdot q(x)$

Example:
$$(7 + 5x) \cdot (1 + 3x + 2x^2)$$

$$7 + 21x + 14x^2$$
$$5x + 15x^2 + 10x^3$$

$$7 + 26x + 29x^2 + 10x^3$$

Q: How fast can you do this?

Task 3: multiplying polynomials

Input: two polynomial p(x) and q(x)

Output: $p(x) \cdot q(x)$ — possibly degree-(2n-2)

Algorithm

$$(p_0 + p_1x + \dots + p_{n-1}x^{n-1}) \cdot (q_0 + q_1x + \dots + q_{n-1}x^{n-1})$$

$$p_{n-1} \cdot (q_0 x^{n-1} + q_1 x^n + \dots + q_{n-1} x^{2n-2})$$

Total: $O(n^2)$ time

Goal of this lecture: improve this to $O(n \log(n))$ time

Fact: n points determine a degree-(n-1) polynomial

Examples:

1. p(x) is degree-1 and we know 2 points

$$\Rightarrow p(x) =$$

2. p(x) is degree-2 and we know 3 points

Fact: n points determine a degree-(n-1) polynomial

Fix points $\alpha_1, \alpha_2, ..., \alpha_m \in \mathbb{R}$

Let
$$p(x) = p_0 + p_1 x + p_2 x^2 + \dots + p_{n-1} x^{n-1}$$
, where $n \le m$

Its **value representation** is the array of real numbers $(p(\alpha_1), p(\alpha_2), ..., p(\alpha_m))$

Note: a "typical" choice of m is m = O(n)

Adding and multiplying w/ value rep

Input: 1.
$$(p(\alpha_1), p(\alpha_2), ..., p(\alpha_m))$$
 degree $(n-1)$, 2. $(q(\alpha_1), q(\alpha_2), ..., q(\alpha_m))$ so $m \ge n$

Addition: Output
$$(p(\alpha_1) + q(\alpha_1), ..., p(\alpha_m) + q(\alpha_m))$$

(value representation of $p + q$)
 $O(m)$ time = $O(n)$ time for "typical" m

Multiplication: Output
$$(p(\alpha_1) \cdot q(\alpha_1), ..., p(\alpha_m) \cdot q(\alpha_m))$$
 (value representation of $p \cdot q$)
$$O(m) \text{ time} = O(n) \text{ time for "typical" } m$$

Note: $p \cdot q$ is degree-(2n-2), so need $m \geq 2n-1$

Multiplication much faster in value representation!

Fast polynomial multiplication algorithm

Evaluation takes time $O(m \cdot n) = O(n^2)$

Hope: pick $\alpha_1, ..., \alpha_m$ cleverly = using complex numbers!!! so that evaluation takes $O(n \log(n))$ time (same for interpolation)

Outline

- 1. Complex numbers
- 2. Polynomial multiplication I: fast evaluation
- 3. Polynomial multiplication II: fast interpolation
- 4. The matrix viewpoint
- 5. Applications

Complex numbers

3-minute break

and close the doors

Complex numbers

$$a+b\cdot i$$
, $i=\sqrt{-1}$

The real imaginary

$$(1+2 \cdot i) + (3+4 \cdot i) = (1+3) + (2+4) \cdot i$$

$$= 4+6 \cdot i$$

$$(1+2 \cdot i) \cdot (3+4 \cdot i) = 1 \cdot 3 + 1 \cdot 4i + 2i \cdot 3 + 2i \cdot 4i$$

$$= 3+4i+6i+8i^{2}$$

$$= 3+10i-8$$

$$= -5+10i$$

Complex plane

The number $a + b \cdot i$ is (a, b) in the **complex plane**

Polar coordinates

Radius r and angle θ such that

- $a = r \cdot \cos(\theta) = \cos(\theta)$
- $b = r \cdot \sin(\theta) = \sin(\theta)$

We will only consider points with r = 1 today.

Complex plane

Multiplication

Consider two complex numbers on the unit circle.

To multiply, just add the angles.

Roots of unity

- **Def:** unity = fancy word for the number 1
 - n^{th} roots of unity (1) = {solutions to $x^n = 1$ }

Examples

$$2^{nd} \text{ roots of unity } = \sqrt{1} = \{\pm 1\}$$

$$4^{th} \text{ roots of unity } = \sqrt[4]{1} = \{+1, -1, +i, -i\}$$

$$i^{4} = (i^{2})^{2} = (-1)^{2} = 1$$

$$(-i)^{4} = i^{4} = 1$$

$$8^{th} \text{ roots of unity } = \sqrt[8]{1} = \{\pm 1, \pm i, \pm (\frac{1+i}{\sqrt{2}}), \pm (\frac{1-i}{\sqrt{2}})\}$$

Note: Today, will care about n = 2, 4, 8, 16, ... roots of unity

Roots of unity

nth roots of unity
 = n equally spaced points
 on unit circle

Generator fact:

For all $0 \le i \le m-1$, $\omega_i = \omega_1^i.$ In addition, $\omega_1^0 = 1 = \omega_0 = \omega_1^m.$

8th roots of unity

Formula: n^{th} roots of unity

= angles
$$0 \cdot \theta$$
, $1 \cdot \theta$, $2 \cdot \theta$, $3 \cdot \theta$,..., where $\theta = (2\pi/n)$,

$$= \{\cos(\theta \cdot \ell) + \sin(\theta \cdot \ell) \cdot i \mid \ell = 0, 1, \dots, n-1\}$$

Square roots

Square roots always come in pairs $\pm \sqrt{a}$

Magical Fact: Squares of n^{th} roots = $(n/2)^{th}$ roots (So squaring **halves** the number of roots)

Complex number takeaways

Generator fact: For all
$$0 \le i \le m-1$$
, $\omega_i = \omega_1^i$. In addition, $\omega_1^0 = 1 = \omega_0 = \omega_1^m$.

Magical Fact: Squares of n^{th} roots = $(n/2)^{th}$ roots (So squaring **halves** the number of roots)

Not true of most sets of numbers!

Example: the set of numbers $\{1,3,5,7\}$ squaring them gives $\{1^2,3^2,5^2,7^2\} = \{1,9,25,49\}$ both sets have 4 elements!

Outline

- 1. Complex numbers
- 2. Polynomial multiplication I: fast evaluation
- 3. Polynomial multiplication II: fast interpolation
- 4. The matrix viewpoint
- 5. Applications

Returning to polynomial multiplication: Fast evaluation

Fast polynomial multiplication algorithm

Fast polynomial multiplication algorithm

Recall: $p \cdot q$ is degree-(2n-2), so need $m \ge 2n-1$

Let m be first power of 2 such that $m \ge 2n - 1$

Will evaluate p and q on m^{th} roots of unity $\{\omega_0, \omega_1, \dots, \omega_{m-1}\}$

in time $O(m \log(m)) = O(n \log(n))$.

This is the **Fast Fourier transform**.