Taylor, Classical Mechanics

Danny Nygård Hansen 30th October 2022

4 • Energy

4.9. Energy of Interaction of Two Particles

Consider two particles numbered 1 and 2, and let particle i act on particle $j \neq i$ via a force F_{ij} . We assume that the force depends only on the position of the two particles, and perhaps time. Focusing on F_{12} we thus have e.g. $F_{12} = F_{12}(r_1, r_2, t)$. Assuming that the two particles are isolated, we have

$$F_{12}(r_1 + h, r_2 + h, t) = F_{12}(r_1, r_2, t)$$

for all vectors h, i.e., the force is translation invariant.

Now assume that $r_2 = 0$ at some time² t, which we can always accomplish by changing coordinates. Further assume that the force $(r_1, t) \mapsto F_{12}(r_1, 0, t)$ is derived from a potential $U_t = U_t(r_1)$, parametrised by t. That is, we require that the line integral of the above force between any two points is independent of path, when we keep t fixed. Next, no longer fix particle 2 at the origin. Since the force is translation invariant, it follows that³

$$F_{12}(\mathbf{r}_1, \mathbf{r}_2, t) = F_{12}(\mathbf{r}_1 - \mathbf{r}_2, t) = -\nabla U_t(\mathbf{r}_1 - \mathbf{r}_2).$$

Next define a new potential $U_{12} = U_{12}(\mathbf{r}_1, \mathbf{r}_2, t) = U_t(\mathbf{r}_1 - \mathbf{r}_2)$. Denoting by ∇_1 the gradient operator with respect to the first three arguments, i.e. the three coordinates of \mathbf{r}_1 , we thus find that

$$F_{12}(\mathbf{r}_1, \mathbf{r}_2, t) = -\nabla_1 U_{12}(\mathbf{r}_1, \mathbf{r}_2, t).$$

¹ We use the physicist's notation to describe the domain of functions; the codomain is either \mathbb{R} or \mathbb{R}^3 , and we distinguish these by denoting vector-valued functions with boldface letters, similar to other vector-valued quantities. Thus the notation $F_{12} = F_{12}(r_1, r_2, t)$ means that F_{12} is a function Ω → \mathbb{R}^3 , where Ω ⊆ $\mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}$ is the set of permitted values of (r_1, r_2, t) .

² As far as I can tell, the following arguments do not require that we measure the positions of the particles in an inertial frame, so we may set $r_2 = 0$ at all t.

³ By $\nabla U_t(\mathbf{r}_1 - \mathbf{r}_2)$ below we mean, seemingly contrary to Taylor, the value of the function ∇U_t at the point $\mathbf{r}_1 - \mathbf{r}_2$.

2

We similarly find that

$$F_{21}(\mathbf{r}_1, \mathbf{r}_2, t) = -F_{12}(\mathbf{r}_1, \mathbf{r}_2, t) = \nabla_1 U_{12}(\mathbf{r}_1, \mathbf{r}_2, t) = -\nabla_2 U_{12}(\mathbf{r}_1, \mathbf{r}_2, t),$$

where the operator ∇_2 is defined analogously to ∇_1 .