Propensity Score Weighting using machine learning

Young Geun Kim ygeunkim.github.io

2019711358, Department of Statistics

24 Nov, 2020

Propensity Score Weighting

Introduction

Propensity Score Estimation

Evaluation

Related Contents

Introduction

Introduction

Reviewed Paper

Reviewd and apply Lee et al. (2010): estimate propensity score using

- ► Logistic regression
- Random forests
- CART
- SVM

Custom Package

```
# remotes::install_github("ygeunkim/propensityml")
library(propensityml)
```


Simulation study

Simulation setting by Setoguchi et al. (2008):

- ▶ 10 covariates: confounders, exposure predictors, outcome predictors
- Treatment
- Outcome probability

A: exposure
Y: outcome
W₁-W₄: confounders
W₃-W₇: exposure predictors
W₈-W₁₀: outcome predictors

Binary variables: A, W_1 , W_3 , W_6 , W_8 , W_9 Continuous variables: Y, W_2 , W_4 , W_7 , W_{10}

Scenarios

- 1. Additivity and linearity
- 2. Mild non-linearity: 1 quadratic term
- **3.** Moderate non-linearity: *3 quadratic term*
- **4.** Mild non-additivity: *3 two-way interaction terms*
- **5.** Mild non-additivity and non-linearity: *3 two-way interaction terms and 1 quadratic term*
- **6.** Moderate non-linearity: 10 two-way interaction terms
- **7.** Moderate non-additivity and non-linearity: *10 two-way interaction terms and 3 quadratic terms*

Function to reproduce Setoguchi et al. (2008)

```
sim_outcome(n = 1000, covmat = build_covariate()) %>% str()
#> Classes 'data.table' and 'data.frame': 1000 obs. of 12 variables:
#> $ w1
                 : Factor w/ 2 levels "0", "1": 1 2 2 2 1 2 2 2 1 1 ...
#> $ w2
                 : num -0.28 0.306 0.633 -0.307 -0.59 ...
#> $ w3
                 : Factor w/ 2 levels "0", "1": 1 1 1 2 2 2 2 2 2 2 ...
#> $ w4
                 : num 1.657 -1.44 -1.94 0.539 0.412 ...
                 : Factor w/ 2 levels "0", "1": 2 2 2 1 1 2 1 1 2 2 ...
#> $ w5
#> $ w6
          : Factor w/ 2 levels "0","1": 1 2 2 1 1 2 2 1 2 2 ...
#> $ w7
                 : num 0.4874 -0.0162 -0.1558 -0.3943 0.3646 ...
                 : Factor w/ 2 levels "0", "1": 2 2 1 1 2 1 2 2 1 1 ...
#> $ w8
                 : Factor w/ 2 levels "0", "1": 2 1 1 2 2 1 2 1 1 1 ...
#> $ w9
                 : num -0.305 0.594 0.418 0.763 0.881 ...
#> $ w10
                 : Factor w/ 2 levels "0", "1": 2 2 2 2 2 1 2 2 2 2 ...
#> $ exposure
#> $ outcome prob: num 5.95e-53 7.20e-01 2.73e-23 1.85e-33 7.78e-03 .
#> - attr(*, ".internal.selfref")=<externalptr>
```

Propensity Score Estimation

Propensity Score Estimation

Sample Size

For simulation, 1000 replicates

Small: 500

with 7 scenarios

Medium: 1000 with 7 scenarios

Large: 2000

with 7 scenarios

Covariate Balance

For example,

```
compute balance(
 small_list[mcname == 1 & scenario == "A", -c("mcname", "scenario")],
 treatment = "exposure", trt_indicator = 1, outcome = "outcome_prob"
     variable balance
#> 1:
     w1 −0.05540
#> 2:
     w2 -0.03770
     w3 −0.09556
#> 3:
#> 4:
       w4 0.09143
#> 5:
     w5 −0.11176
#> 6:
      w6 0.03223
#> 7:
      w7 −0.06150
#> 8:
      w8 −0.09707
#> 9:
        w9 0.01704
#> 10:
          w10 0.00309
```

Average(balance) = **Average standardized absolute mean distance** (ASAM).

Average standardized absolute mean distance (ASAM)

- Evaluation
- After applying weighting

Propensity Score Estimation

Logistic Regression

__ Evaluation

Evaluation

Related Contents

Related Contents

About this project

Project repository

https://github.com/ygeunkim/psweighting-ml

Project package

https://github.com/ygeunkim/propensityml

References I

- Lee, B. K., Lessler, J., and Stuart, E. A. (2010). Improving propensity score weighting using machine learning. *Statistics in Medicine*, 29(3):337–346.
- Setoguchi, S., Schneeweiss, S., Brookhart, M. A., Glynn, R. J., and Cook, E. F. (2008). Evaluating uses of data mining techniques in propensity score estimation: a simulation study. *Pharmacoepidemiology and Drug Safety*, 17(6):546–555.