1002)»

From De Bruijn to co-De Bruijn using Category Theory Everybody's Got To Be Somewhere^[2]

Marius Weidner

Chair of Programming Languages, University of Freiburg

January 30, 2024

Outline

- Getting Started: Scopes and Binders Categorically
 - The Category of Scopes
 - Intrinsically Scoped De Bruijn Syntax
- Going Further: From De Bruijn to co-De Bruijn
 - The Slice Category of Subscopes
 - A Monad Over Sets Indexed by Scopes
 - Intrinsically Scoped co-De Bruijn Syntax
- Wrapping Up: What I've (Not) Told You
 - This Is Actually an Agda Paper
 - References

The Category of Scopes: Δ_+^X

Definition

Let Δ_+^X be the category of scopes.

- Objects: $\bar{x}, \bar{y}, \bar{s} \in |\Delta_+^X| = X^*$
- Morphisms: $f,g \in \Delta^X_+(\bar{x},\bar{y})$ for $\bar{x},\bar{y} \in X^*$ are inductively defined:

$$\frac{\bar{x} \sqsubseteq \bar{y}}{\bar{x}x \sqsubseteq \bar{y}x} \quad 1 \qquad \frac{\bar{x} \sqsubseteq \bar{y}}{\bar{x} \sqsubseteq \bar{y}y} \quad 0$$

Corollary

The initial object of the Δ_+^X category is the empty scope ε with the $\bar 0$ as the unique morphism.

Remark

Morphisms in Δ_+^X can be represented by bit vectors $\bar{b} \in \{0,1\}^*$ with one bit per variable of the target scope telling whether it has been mapped to or skipped by the source scope.

Objects & Morphisms in Δ_+^\top

Example

Let $X = \top$ (where \top is the set with exactly one element $\langle \rangle$).

Thus, Objects $n \in X^*$ represents numbers.

Identity and Composition in Δ_+^\top

Δ_+^X is in Fact a Category

Lemma

In Δ_+^X every object $\bar{x} \in X^*$ has an identity morphism, i.e. we can construct an identity morphism for \bar{x} using the inference rules.

Proof.

$$\begin{array}{ll} id & : \; (\bar{x}:X^*) \to \bar{x} \sqsubseteq \bar{x} \\ id \; \varepsilon & = \; \cdot \\ id \; \bar{x}x \; = \; (\mathrm{id} \; \bar{x})1 \end{array}$$

Corollary

$$id - l$$
 : $id; f = f$
 $id - r$: $f; id = f$

Lemma

In Δ_+^X two morphisms $f: \bar x \sqsubseteq \bar y$ and $g: \bar y \sqsubseteq \bar z$ compose to a morphism $f; g: \bar x \sqsubseteq \bar z$, i.e. we can construct a morphism f; g from f and g using the inference rules.

Proof.

$$\begin{array}{lll} \underline{};\underline{} & : \; \bar{x} \sqsubseteq \bar{y} \to \bar{y} \sqsubseteq \bar{z} \to \bar{x} \sqsubseteq \bar{z} \\ \hline \cdot \; ; \; \cdot & = \; \cdot \\ f1 \; ; \; g1 \; = \; (f;g)1 \\ f0 \; ; \; g1 \; = \; (f;g)0 \\ f \; ; \; g0 \; = \; (f;g)0 \end{array}$$

Corollary

$$\begin{array}{ll} \textit{assoc} & : & f; (g; h) = (f; g); h \\ \textit{antisym} & : & (f: \bar{x} \sqsubseteq \bar{y}) \to (g: \bar{y} \sqsubseteq \bar{z}) \to \bar{x} = \bar{y} \land f = g = \textit{id} \; \bar{x} \\ \end{array}$$

Intrinsically Scoped De Bruijn Syntax via $\Delta_+^ op$

Definition

Let $Tm: |\Delta_+^\top| \to Set$ be inductively defined:

$$\frac{1 \sqsubseteq n}{Tm \ n} \ \#$$

$$\frac{Tm\ n}{Tm\ n}$$
 \$

$$\frac{Tm\ (n+1)}{Tm\ n}\ \lambda$$

The Slice Category of Subscopes: $\Delta^X_+ \setminus \bar{s}$

Definition

Let $\Delta_+^X \setminus \bar{s}$ be the category of subscopes for a given $\bar{s} \in X^*$.

- $\bullet \ \ \text{Objects:} \ \bar{b}, (\bar{x},f) \in |\Delta^X_+ \setminus \bar{s}| = \left(\bar{x}: X^* \times \Delta^X_+(\bar{x},\bar{s})\right)$
- \bullet Morphisms: $h \in [\Delta_+^X \smallsetminus \bar{s}]((\bar{x},f),(\bar{y},g))$ such that f=h;g

Corollary

The initial object of the $\Delta^X_+ \setminus \bar{s}$ category is the empty subscope $(\varepsilon, \bar{0})$.

Remark

Objects in $\Delta_+^X \setminus \bar{s}$ can be represented by *bit vectors* $\bar{b} \in \{0,1\}^*$ with one bit per variable of scope \bar{s} , telling whether it has been selected.

Objects & Morphisms in $\Delta_{\perp}^T \setminus 5$

$$3 \xrightarrow{\quad 0111} \quad 4 \qquad \qquad 4 \xrightarrow{\quad 11110} \quad 5 \qquad \qquad 3 \xrightarrow{\quad 01110} \quad 5$$

$$3 \xrightarrow{01110} 5$$

Alternatively:

- $(3,01110) \xrightarrow{0111} (4,11110)$
- $01110 \xrightarrow{0111} 11110$

Coproducts in $\Delta^X_+ \setminus \bar{s}$

Theorem

Objects in the slice category $\bar{b}_1, \bar{b}_2 \in |\Delta_+^X \setminus \bar{s}|$ have a coproduct object $\bar{b}_1 + \bar{b}_2$ if there exist morphisms $l \in [\Delta_+^X \setminus \bar{s}](\bar{b}_1, \bar{b}_1 + \bar{b}_2)$ and $r \in [\Delta_+^X \setminus \bar{s}](\bar{b}_2, \bar{b}_1 + \bar{b}_2)$. Then for every $f \in [\Delta_+^X \setminus \bar{s}](\bar{b}_1, \bar{b}_3)$ and $g \in [\Delta_+^X \setminus \bar{s}](\bar{b}_2, \bar{b}_3)$, there exists a unquie $h \in [\Delta_+^X \setminus \bar{s}](\bar{b}_1 + \bar{b}_2, \bar{b}_3)$ such that f = l; h and g = r; h.

Remark

The coproduct $\bar{b}_1 + \bar{b}_2$ of two subscopes \bar{b}_1, \bar{b}_2 corresponds to the minimal subscope covering both \bar{b}_1 and \bar{b}_2 . The coproduct $\bar{b}_1 + \bar{b}_2$ can be computed by pointswise disjunction of \bar{b}_1 and \bar{b}_2 .

Category of Sets Indexed by Scopes

Definition

Let Set_X be the category of sets indexed by scopes $\bar{x} \in X^*$.

- ullet Objects: $T,S\in |Set_X|=X^* \to Set=\bar{X}$
- $\bullet \ \ \text{Morphisms:} \ f \in Set_X(T,S) = (\bar{x} \in X^*) \to T(\bar{x}) \to S(\bar{x}) = T \stackrel{\cdot}{\to} S$

Definition

Let $\underline{\ }\uparrow\underline{\ }:\bar{X}\to \bar{X}=(T,\bar{x})\mapsto (T(\bar{s})\times \bar{s}\sqsubseteq \bar{x}).$

We define $Ref: Set_X \xrightarrow{\cdot} Set_X$ to be the endofunctor induced by the mapping

- $Ref(T) = \bar{x} \mapsto T \uparrow \bar{x} \in \bar{X}$
- $Ref(f) = (t,h) \mapsto (f(t),h) \in T \xrightarrow{\cdot} S$

Remark

The set $T \uparrow \bar{x}$ packs an set $T \in \bar{X}$ indexed by $\bar{x} \in X^*$ applied to a subscope \bar{s} of \bar{x} , together with a selection $h \in |\Delta^X_+ \setminus \bar{x}|$ of the variables of T.

11 / 17

Δ^X_+ makes Ref a Monad!

Theorem

The functor $Ref: Set_X \to Set_X$ gives rise to a monad with the two natural transformations

- $\bullet \ unit: Id(T) \stackrel{\cdot}{\rightarrow} Ref(T) = t \mapsto (t,id)$
- $\bullet \ mult: Ref(Ref(T)) \stackrel{\cdot}{\rightarrow} Ref(T) = ((t,h_1)h_2) \mapsto (t,h_1;h_2)$

$$Tm \xrightarrow{unit} \bar{x} \mapsto (Tm \ \bar{x}, \bar{x} \sqsubseteq \bar{x})$$

$$\bar{y} \mapsto ([\bar{x} \mapsto (Tm \ \bar{x}, \bar{x} \sqsubseteq \bar{x})]\bar{s}, \bar{s} \sqsubseteq \bar{y}) \xrightarrow{unit} \bar{y} \mapsto (Tm \ \bar{s}, \bar{s} \sqsubseteq \bar{y})$$

The Notion of Relevant Pairs

Definition

bla

Definition

Let the set of relevant pairs be defined as

$$\bullet \ _ \times_R _ : \bar{X} \to \bar{X} \to \bar{X} = (T, S, \bar{x}) \mapsto ((_, \bar{b}_1 : T \ \Uparrow \ \bar{x}) \times (_, \bar{b}_2 : S \ \Uparrow \ \bar{x}) \times Cov \ \bar{b}_1 \ \bar{b}_2).$$

$$\bullet \ _,_R _: T \Uparrow \bar{x} \to S \Uparrow \bar{x} \to (T \times_R S) \ \bar{x} = ((t_1, \bar{b}_1), (t_2, \bar{b}_2)) \mapsto ((t_1, \bar{b}_1), (t_2, \bar{b}_2), \bar{b}_1 \oplus \bar{b}_2)$$

Intrinsically Scoped co-De Bruijn Syntax

Definition

Let $Tm: |\Delta_+^\top| \to Set$ be inductively defined:

$$\overline{Tm\ 1}$$
 #

$$\frac{(Tm \times_R Tm) \ n}{Tm \ n} \ \$$$

$$\frac{Tm\ (n+1)}{Tm\ n}\ \lambda$$

This is actually an Agda Paper

- All categorical concepts formalized in Agda
- Suitable representations of objects and morphisms
- Comes with a universe of metasyntaxes-with-binding
- Categorical concepts applied to formally reason over programming languages

C.T. McBride 61

```
\begin{split} & \cos \left(\theta | \phi \right) \left(\phi | \phi \right) = \det 11111d_{c}c, tr = \cos \theta | \phi | \inf 1111d_{c}^{1,r} | c_{c}, rr | t^{2} \\ & \cos \left(\theta | \phi \right) \left(\phi | \phi | \phi | \right) = \det 11111d_{c}, tr = \cos \theta | \phi | \inf 1111d_{c}^{1,r} | c_{c}, r | \operatorname{tss} \\ & \cos \left(\theta | \phi | \phi | \phi | \right) = \det 11111d_{c}, tr = \cos \theta | \phi | \inf 1111d_{c}^{1,r} | c_{c}, r | t^{2} \\ & \cos \left(\theta | \phi | \phi | \phi | \phi | \right) = \det 11111d_{c}, tr = \cos \theta | \phi | \inf 1111d_{c}^{1,r} | c_{c}, c_{c}, r | \operatorname{trs} \\ & \cos \phi | \cos \phi | \cos \phi | \cot \phi | c_{c}, r | \cot \phi
```

The copU proof goes by induction on the triangles which share ψ' and inversion of the coproduct.

The implementation is a straightforward induction on the diagram.

 $outl_{\mathbb{R}}(pair s _ _ \uparrow w) = thin \uparrow w s$

The payoff from coproducts is the type of relevant pairs — the co-de-Bruijn touchstone:

```
record \neg s_R = (ST \cdot \overline{K}) (i.e. 18 wid K): Set where constructor pair field out : S \circ \emptyset : K = K: S \circ K = K: S \circ
```

7 Monoidal Structure of Order-Preserving Embeddings

Variable bindings extend scopes. The λ construct does just one 'snoc', but binding can be simultaneous, so the monoidal structure on Δ . induced by concatenation is what we need.

Concatenation further extends to Coverings, allowing us to build them in chunks.

```
 \begin{array}{ll} ++c_-: \operatorname{Cover} ov \ \theta \ \phi \to \operatorname{Cover} ov \ \theta' \ \phi' \to \operatorname{Cover} ov \ (\theta ++c_-\theta') \ (\phi ++c_-\phi') \\ c ++c \ (d \ c') &= (c ++c \ d) \ c' \\ c ++c \ (Lass \ both = b) \ d) &= cs \ \{both = b\} \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c ++c \ d) \\ c ++c \ cus \ (c
```

One way to build such a chunk is to observe that two scopes cover their concatenation.

 $outr_{\nu} (pair \underline{t} \underline{t} \underline{t} \psi) = thin \wedge \psi t$

Using co-De Bruijn is not hard, category theory is!

```
data Cover : (k \mid m : \mathbb{N}) \rightarrow \mathsf{Set} where
   done : Cover
   left : Cover k \mid m \rightarrow \text{Cover} (suc k) l (suc m)
   right : Cover k \mid m \to \text{Cover } k \text{ (suc } l) \text{ (suc } m)
   both : Cover k \mid m \to \text{Cover} (suc k) (suc l) (suc m)
data Term : N \rightarrow Set where
   var: Term 1
   lam : Term (suc n) \rightarrow Term n
   app : Cover k \mid m \rightarrow \text{Term } k \rightarrow \text{Term } I \rightarrow \text{Term } m
= lam \{-f-\} (lam \{-x-\} (app (right (left done)) (var \{-f-\}) (var \{-x-\})))
```

References

- [1] Conor McBride. Cats and types: Best friends? Aug. 2021. URL: https://www.youtube.com/watch?v=05IJ3YL8p0s.
- [2] Conor McBride. "Everybody's Got To Be Somewhere". In: Electronic Proceedings in Theoretical Computer Science 275 (July 2018), pp. 53–69. ISSN: 2075-2180. DOI: 10.4204/eptcs.275.6. URL: http://dx.doi.org/10.4204/EPTCS.275.6.