Matroid theory (Cormen et. al., Chapter 17)

A matroid is an ordered pair $M = (S, \ell)$ satisfying the following conditions.

- 1. S is a finite nonempty set.
- 2. ℓ is a nonempty family of subsets of S, called the *independent subsets* of S, such that if $B \in \ell$ and $A \subseteq B$, then $A \in \ell$. We say that ℓ is *hereditary* if it satisfies this property. Note that the empty set \emptyset is necessarily a member of ℓ .
- 3. If $A \in \mathcal{L}$, $B \in \mathcal{L}$, and |A| < |B|, then there is some element $x \in B$ A such that $A \cup \{x\} \in \mathcal{L}$. We say that M satisfies the *exchange* property.

Some terminologies: $A \subseteq \ell \Rightarrow$ called independent; $I \notin \ell \Rightarrow$ dependent. A *circuit* is an inclusionwise minimally dependent set of S. A *basis* is any maximal independent set. I is a spanning set if $I \supseteq B$ for some basis B.

Note: all bases of a matroid M must have the same cardinality (because of the hereditary property).

Example 1: (Uniform matroids) Given by |S| = n, $\ell = \{I \subseteq S : |I| \le k\}$. The circuits are all sets of cardinality k + 1, and the bases are all sets of cardinality k.

A graphic matroid $\mathbf{M}_G = (\mathbf{S}_G, \boldsymbol{\ell}_G)$ is defined in terms of a given (finite) undirected graph $\mathbf{G} = (\mathbf{V}, \mathbf{E})$:

- 1. The set S_G is defined to be E, the set of edges of G.
- 2. If **A** is a subset of **E**, then $\mathbf{A} \in \mathbf{\ell}_G$ if and only if **A** is acyclic. That is, a set of edges **A** is *independent* if and only if the subgraph $\mathbf{G}_{\mathbf{A}} = (\mathbf{V}, \mathbf{A})$ forms a forest.

Theorem 1. If G = (V, E) is an undirected graph, then $M_G = (S_G, \ell_G)$ is a matroid. **Proof:** $S_G = E$ is a finite set. ℓ_G is hereditary, since a subset of a forest is a forest. Suppose that $G_A = (V, A)$ and $G_B = (V, B)$ are forests of G and that |B| > |A|. That is, A and $G_G = (V, E)$ are acyclic sets of edges, and $G_G = (V, E)$ are forest of $G_G = (V, E)$ are forest of $G_G = (V, E)$ and $G_G = (V, E)$ are forests of $G_G = (V, E)$ and $G_G = (V, E)$ and $G_G = (V, E)$ is a matroid. Therefore, $G_G = (V, E)$ is an undirected graph, then $G_G = (V, E)$ is a matroid.

Consider a graphic matroid $\mathbf{M}G$ for a connected, undirected graph \mathbf{G} . Every *basis* (maximal independent set of edges) must be a tree with exactly $|\mathbf{V}|$ - 1 edges that connects all the vertices of \mathbf{G} , which is a *spanning tree* of \mathbf{G} .

Many problems for which a greedy approach provides optimal solutions can be

formulated in terms of finding a maximum-weight independent (i.e. the *optimal*) subset in a weighted matroid. That is, we are given a weighted matroid $M = (S, \ell)$, and we wish to find an independent set $A \in \ell$ such that w(A) is maximized. Because the weight w(x) of any element $x \in S$ is positive, an optimal subset is always a maximal independent subset.

Example: Minimum spanning tree problem.

We are given a connected undirected graph G = (V, E) and a length function w such that w(e) is the (positive) length of edge e. We are asked to find a subset of the edges that connects all of the vertices together and has minimum total length. To view this as a problem of finding an optimal subset of a matroid, consider the weighted matroid MG with weight function w', where $w'(e) = w_0 - w(e)$ and w_0 is larger than the maximum length of any edge. In this weighted matroid, all weights are positive and an optimal subset is a spanning tree of minimum total length in the original graph. More specifically, each maximal independent subset A corresponds to a spanning tree and since $w'(A) = (|V| - 1)w_0 - w(A)$ for any maximal independent subset A, an independent subset that maximizes the quantity w'(A) must minimize w(A).

Below is a greedy algorithm that finds an optimal subset A in an arbitrary matroid. The algorithm takes as input a weighted matroid $M = (S, \ell)$ with an associated positive weight function w, and it returns an optimal subset A. In our pseudocode, we denote the components of M by S[M] and $\ell[M]$, and the weight function by w.

```
GREEDY(M, w)
1 \ A \leftarrow \emptyset
2 \ \text{sort S [M]} \ \text{into monotonically decreasing order by weight w}
3 \ \text{for each } x \in S[M], \text{ taken in monotonically decreasing order by weight w (x)}
4 \qquad \text{if } A \cup \{x\} \in \ell \ [M]
5 \qquad A \leftarrow A \cup \{x\}
6 \ \text{return A}
```

The entire algorithm runs in time $O(n \lg n + nf(n))$, if each check in line 4 takes time O(f(n)).

Since the empty set is independent by the definition of a matroid, and since x is added to A only if $A \cup \{x\}$ is independent, the subset A is always independent, by induction. Therefore, GREEDY always returns an independent subset A. The two lemma below shows that GREEDY gives an optimal independent subset.

Lemma. Suppose that $M = (S, \ell)$ is a weighted matroid with weight function w and that S is sorted into monotonically decreasing order by weight. Let x be the first element of S such that $\{x\}$ is independent, if any such x exists. If x exists, then there exists an optimal subset A of S that contains x.

Proof: If no such x exists, then the only independent subset is the empty set and we're done. Otherwise, let B be any nonempty optimal subset. Assume that $x \notin B$; otherwise, we let A = B and we're done. No element of B has weight greater than w(x). To see this, observe that $y \in B$ implies that $\{y\}$ is independent (because of the hereditary property),

and our choice of x therefore ensures that $w(x) \ge w(y)$. Construct the set A as follows. Begin with $A = \{x\}$. By the choice of x, A is independent. Using the exchange property, repeatedly find a new element of B that can be added to A until |A| = |B| while preserving the independence of A. Then, $A = B - \{y\} \cup \{x\}$ for some $y \in B$. As $w(A) = w(B) - w(y) + w(x) \ge w(B)$, and because B is optimal, A must also be optimal.

Given a matrod $M = (S, \ell)$, $x \in S$ is called an *extension* of an independent subset A, if $A \cup \{x\}$ is also an independent set.

Lemma. Let $M = (S, \ell)$ be any matroid. If x is an element of S that is an extension of some independent subset A of S, then x is also an extension of \emptyset . **Proof**: notice the hereditary property of A.

This implies that if x x is not an extension of \emptyset , then x is not an extension of any independent subset A of S. Therefore, GREEDY cannot make an error by passing over any initial elements in S that are not an extension of \emptyset , since they can never be used.

Let x be the first element of S chosen by GREEDY for the weighted matroid $M = (S, \ell)$. The remaining problem of finding a maximum-weight independent subset containing x reduces to finding a maximum-weight independent subset of the weighted matroid $M' = (S', \ell)$, where $S' = \{y \in S: \{x, y\} \in \ell\}$, $\ell' = \{B \subseteq S-\{x\}: B \cup \{x\} \in \ell\}$, and the weight function for M' is the weight function for M, restricted to S'.

Therefore, GREEDY returns an optimal subset.

Formulating a task-scheduling problem as a matroid

<u>Instance</u>: A set $S = \{a_1, a_2, ..., a_n\}$ of n unit-time tasks (each requiring exactly one unit of time) to be scheduled where task i has deadline d_i , $1 \le d_i \le n$ (task a_i is supposed to finish by time d_i) and penalty w_i (applied if the task finish after d_i).

<u>Problem</u>: Determine a schedule for the tasks such that the sum of the penalties of the tasks not finished by their deadlines (not started by time d_{i} -1) is minimized

A schedule is specified by an array T[0:n-1] where T[t] is the task scheduled at time t.

The task started at time t is complete at time t+1.

A set A of tasks is *independent* if there exists a schedule for these tasks such that no tasks are late. Then the scheduling problem is equivalent to find an independent subset of tasks A to maximize the total weight of tasks in A (or to minimize the total weight of tasks in S-A).

Let $N_t(A)$ be the number of tasks in A whose deadline is t or earlier.

A set of tasks A is independent if and only if for all t, $N_t(A) \le t$.

Theorem: Let S be the set of unit-time tasks with deadlines, and $\boldsymbol{\ell}$ be the set of all independent sets of tasks, then the corresponding system $M = (S, \boldsymbol{\ell})$ is a matroid. **Proof**: Every subset of an independent set of tasks is certainly independent. To prove the exchange property, suppose that B and A are independent sets of tasks and that |B| > |A|. Let k be the largest t such that $N_t(B) \le N_t(A)$. (Such a value of t exists, since $N_0(A) = N_0(B) = 0$.) Since $N_n(B) = |B|$ and $N_n(A) = |A|$, but |B| > |A|, we must have that k < n and that $N_j(B) > N_j(A)$ for all j, $k+1 \le j \le n$. Therefore, there is a task with deadline k+1 in B but not in A. Let a_i be the task in B-A with deadline k+1. Let $A' = A \cup \{a_i\}$. A' is independent, because for all $t \le k$, $N_j(A') = N_j(A) \le t$; for all $t \ge k+1$, $N_j(A') = N_j(A) + 1 \le N_j(B) \le t$.

Therefore, an optimal independent subset can be obtained from

Computational complexity: $O(n^2)$

```
GREEDY SCHEDULE(M, w)
1 A \leftarrow \emptyset
2 sort tasks by non-increasing weight w
3 for each task x, taken in non-increasing order by weight w(x)
4
          A' \leftarrow A \cup \{x\}
5
         if A' satisfies N_t(A') \le t
6
                    A \leftarrow A:
7 return A
GREEDY SCHEDULE(M, w)
1 initialize T by 0 // no task is scheduled
2 sort tasks by non-increasing weight w
3 for each task x, taken in non-increasing order by weight w(x) // x > 0
4
         d \leftarrow d[x] - 1
5
         while (d \ge 0 \text{ and } T[d] \ne 0)
                                                 // d[x]-1 is already scheduled
                                                  // try previous time point
6
                    d ← d-1
7
         if d \ge 0
                    T[d] \leftarrow x
                                                 // schedule x at time d
9 Output T
                                                 // full schedule of the optimal independent set
```