Temporal Transformer Networks: Joint Learning of Invariant and Discriminative Time Warping

Suhas Lohit, Qiao Wang, Pavan Turaga

Geometric Media Lab, Arizona State University, Tempe, AZ

{slohit, qiao.wang, pturaga}@asu.edu

Rate-invariant action recognition

- Invariance to execution rate is important for time-series classification such as human action recognition
- Conventional neural networks are not designed to guarantee rate-invariance
- We design a specialized module – the temporal transformer – which provides improved discrimination and invariance for timeseries classification

Order-preserving diffeomorphisms

Rate-modifying transforms are easily modeled using order-preserving diffeomorphisms, $\gamma[1]$:

$$\gamma(0) = 0, \gamma(1) = 1$$

 $\gamma(t_1) < \gamma(t_2), \text{ if } t_1 < t_2$

• γ has the properties of a cumulative distribution function

$$\gamma(t) = \int_0^t \dot{\gamma}(t)dt$$
$$\int_0^1 \dot{\gamma}(t)dt = \gamma(1) - \gamma(0) = 1$$

This is a non-parametric set of transforms with order-preserving and end-point constraints, different from what is studied in literature [2]

Differentiable module for warping time

- The temporal transformer network (TTN), inspired by [2], generates an input-dependent γ , which is used to warp the input time series before classification so as to maximize recognition accuracy
- Constraint satisfaction ensures that the output of TTN is an order-preserving diffeomorphism:

$$\dot{\gamma} = \frac{\mathbf{v}}{\|\mathbf{v}\|} \odot \frac{\mathbf{v}}{\|\mathbf{v}\|}, \quad \text{and} \quad \gamma(t) = T \cdot \sum_{i=1}^{\tilde{r}} \dot{\gamma}(i)$$

Warping is performed using linear interpolation which is differentiable

Experiments on synthetic data

Demonstrating rate-invariance properties of TTN

Demonstrating class-discriminative properties of TTN

ICL First-Person Hand Action dataset [3]:

- Mocap dataset with 600 training and 575 testing 3D pose sequences of 26 actions.
- We experiment with both 1-layer TCN and 2-layer LSTM. In both cases, adding the TTN (3 FC layers) improves performance significantly

Method	Accuracy (%)	
2-layer LSTM	76.17	
2-layer LSTM + TTN	78.43	
TCN-16	76.28 ± 0.29	
TCN-16 + TTN 80.14 ± 0		
TCN-64	79.10 ± 0.76	
TCN-64 + TTN	$\textbf{81.32} \pm \textbf{0.36}$	
TCN-32	81.74 ± 0.27	
TCN-32 + TTN	$\textbf{82.75} \pm \textbf{0.31}$	
TCN-32 (affine warp) 70.43		
TCN-32 + TTN (affine warp)	78.26	
Without TTN With TTN		

In the presence of affine warp distortion, addition of TTN leads to huge improvements

Experiments in skeletal action recognition

NTU RGB-D dataset [4]:

- A large Kinect dataset with 56000 human action sequences, 60 actions by 45 subjects
- We use TCN with 10 conv layers as the base classifier
- Adding the TTN (2 conv + 3 FC layers) module improves recognition performance

Method	CS (%)	CV (%)
Lie Groups	50.08	52.76
FTP Dynamic Skeletons	60.23	65.22
HBRNN	59.07	63.97
2-layer part-LSTM	62.93	70.27
STA-LSTM	73.40	81.20
VA-LSTM	79.40	87.60
STA-GCN	81.50	88.30
TCN	76.54	83.98
TCN + TTN	77.55	84.25

CS: Cross Subject CV: Cross View

- [1] Srivastava, Anuj, and Eric P. Klassen. Functional and shape data analysis. New York: Springer, 2016.
- [2] Jaderberg, Max, Karen Simonyan, and Andrew Zisserman. "Spatial transformer networks." Advances in neural information processing systems. 2015.
- [3] Shahroudy, Amir, et al. "NTU RGB+ D: A large scale dataset for 3D human activity analysis." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016
- [4] Garcia-Hernando, Guillermo, et al. "First-person hand action benchmark with RGB-D videos and 3D hand pose annotations." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.