1 Vererbung

Gregor Mendel (1822 - 1884) war zuständig für den Klostergarten (Mönch). Er hat zufällig Erbsen in verschiedenen Farben gepflanzt. Er hat nun verschiedene Farben miteinander gekreuzt, um zu sehen was passiert.

Unformitätsregel:

Spaltungsregel:

Die Kinder von reinrassingen Eltern sind Mischlinge. Genotypus sind alle gespeicherten Merkmalen in der Zelle. Phenotypus sind alle ausgebildeten Merkmale. Merkmale können rezessiv oder dominat sein. Dominante Merkmale setzten sich bei Kreuzungen mit rezessiven Merkmale durch und werden ausgebildet. Die Körperzelle hat alle Merkmale doppelt gespeichert (nennt man Diploid). Die Geschlechtszellen haben die Merkmale nur einmal gespeichert (nennt man Happloid).

Die Bluterdkrankheit kann sich bei Inzucht besonders gut weiterbilden. Der Mann erkrankt jedoch leichter als die Frau, da Männer (XY Chromosom) schon erkrankt sind wenn das X die Krankheit hat. Bei der Frau (XX Chromosom) müssen beide X-Chromosome erkrankt sein, damit die Frau die Krankheit hat.

2 Zellteilung

Die Zellteilung wird auch Mitose genannt (normale Körperzellteilung). Zellen enstehen nur durch die Teilung von Körperzellen.

2.1 DNS - Desoxyribonukleinsäure

Die DNS kann sich vervielfältigen, denn bevor die Zellteilung beginnt muss sich die DNS mit den Erbinformationen kopieren.

Die DNS besteht aus vielen Chromosomen (bei Menschen sind es 48). Das Wort Chromosomen stammt aus dem Lateinischen und man versteht darunter "Farbkörper".

Aufbau der DNS:

Die DNS ist besteht aus einen Doppelstrang und jeder Strang besteht aus Tripplets. Ein Tripplet sind drei Basen. Viele Tripplets bilden eine Aminosäure (=Eiweiß). Viele Eiweiße sind ein Gen und viele Gene ist ein Chromosom und viele Chromosome bilden die DNA.

Es gibt vier verschiedene Basen:

- Adenin
- Thymin
- Guanin
- Cytosin

Bei der Zellteilung muss die DNS vollständig kopiert werden, dabei öffnet sich der Doppelstrang und durch Anlieferung und Ablagerung entsprechender Basen werden aus einem Doppelstrang zwei Doppelstränge \rightarrow entspricht der identen Kopie der Chromosomen. Eine plötzlich spontane Änderung der Erbinformation durch Kopierfehler oder anderen Ursachen (Energiereiche Strahlung, Chemikalien) nennt man Mutation (99,99% alle Mutationen sind negativ behaftet, die positiven Mutationen sind mit Triebfehler für die Evolution behaftet).

3 Makromoleküle

Makromoleküle (Riesenmoleküle) sind sehr große Moleküle, die aus sich wiederholenden, gleichen oder unterschiedlichen Struktureinheiten (formale Grundbausteine) bestehen.

3.1 Kohlenhydrate

Kohlenhydrate sind Großmoleküle, die entstehen bei aneinanderreihen von Zucker, z.B. Monosaccharide (Einfachzucker).

Glukose (ein Einfachzucker) C6H12O6 Ribose ist ein Zucker mit fünf C-Atomen (5-Ring) Fructose C6H12O6

Rohr- und Rübenzucker ist ein Zweifachzucker (Saccharose), der je aus einem Fructose Molekül und einem Glucose Molekül bestehen.

Polysaccheride sind Mehrfachzucker und bestehen aus vielen Zuckermolekülen. Amylose sind unverzweigte Ketten mit 60 bis 300 Zuckermolekülen. Amyloptektin sind verzweigte Ketten mit 300 bis 1000 Zuckermolekülen. Zellulose sind unverzweigte Ketten bis zu 5000 Zuckermoleküle (ist in allen Pflanzen enthalten). Pflanzen bilden Zellulose (kann gewonnen werden).

3.1.1 Fotossyntese

Unter Fotossyntese versteht man die Zuckerproduktion der Pflanzen durch Sonnenlich.

 $n*CO2 + n*H2O \rightarrow (Katalysator: Chlorophyl) C6H12O6 (Glukose) + n*O (Sauerstoff wird frei)$

Was passiert mit dem Sauerstoff und Zucker? - Wie viel Sauerstoff die Pflanze abgibt entscheidet sie selbst. Sie verwendet den Sauerstoff und Zucker als Baustoff für sich selbst (z.B. Zellulose, Holz). Wenn die Pflanze wächst hat sie gut gewirtschaftet. Die Pflanzen verbrauchen in der Nacht ihren Sauerstoffvorrat.

3.2 Eiweiße (=Proteine)

Eiweiße sind in der Biologie sehr wichtig. Ihre Aufgabe ist es irgendwas zu "regeln". Proteine oder Eiweiße sind aus Aminosäuren aufgebaute biologische Makromoleküle.

Grundstruktur ist nicht kompliziert:

R ... Rest (z.B. Aminubutonsäure)

3.2.1 Aufgaben der Proteine

- Enzymatische Katalysator (Enzyme → Biokatalysator), viele Vorgänge im menschlichen Körper werden über Proteine / Eiweiß geregelt; Vitamine sind Enzyme, die nicht vom Körper selber produziert werden können
- \bullet Transport: Hemoglobin \to Transportstoffe für Sauerstoff (Eisen)
- Bewegung: Proteine sind Hauptbestandteil des Muskelgewebes
- Mechanische Stückfunktion: Kolagene; geben der Haut und Sehnen ihre Reißfestigkeit
- Immunsystem: Antikörper sind hochspezialisierte Proteine, die Fremdsubstanzen wie Viren, Bakterien oder Fremdzellen erkennen und binden können (Weißen Blutkörper); Bakterien vergiften; Viren zerstören Zellen; Fremdkörper können Krankheiten übertragen

3.3 Fette

Fette und fette Öle sind Ester des dreiwertigen Alkohols Glycerin mit drei, meist verschiedenen, Monocarbonsäuren, den Fettsäuren (Ester bedeutet eine Verbindung zwischen organischen Säuren und Alkhol (z.B. Propantriol bzw. Glyzerin und Methansäure).

Propantriol + Methansäure (Ameisensäure) = Fett

4 Gesundheit

Richtige Ernährung

Ernährung heißt Energie zuführen. Energie kann auf verschiedene Form - in chemischer Form zugeführt werden die Stoffe haben einen bestimmten Joule Wert 1k Kalorie =4,2k Joule

Jetzt ist es so das man als ausgeachsenen mensc einen bestimmten joule verbraucht. weil es den betriebswert gi bt endoterm es muss energie zugeührt werden zusätlich kommt ein teil dazu wenn man aktiv ist (bewegung)

Der Grundbedarf ist der Bedarf an Energie, die ein Mensch beim Sitzen oder Liegen verbraucht. Der Grundumsatz (=Grundbedarf) bei einem 70 Kilo Menschen ist in etwa 7000k Joule. Tätigkeitsumsatz kann bis zu 20000k Joule zusätzlich brauchen.

Der Mensch ist ein Heterotropher, der Mensch ist ein Allesfresser. Der Fettanteil sollte 25% der Eingenommen Essen (hängt vom Verbrauch aus). Vitamine sind Stoffe, die der Körper nicht alleine herstellen kann.

Wichtige Vitamine:

- Vitamin A (Retinol)
- Vitamin B1 (Thiamin)
- Vitamin B2-Gruppe
- Vitamin B6 (Pyridxoin)
- Vitamin B12 (Cobalamin)
- Vitamin C
- Vitamin D
- Vitamin E (Fruchtbarkeisvitamin)
- Vitamin K

5 Krankheiten durch falsche Ernährung

Der Zuckergehalt wird über Insoline Bauchspeicheldrse Insoline, Nebennieren Hypophyse

6 Gicht

Harnssäurespiegel im Blut is zu groß und diese Harnsäure lagert sich in den gelenken an den schleimbeuteln und sehnen ab, Ursache ist das Burin, die kommt in tierischen Nahrungsmittel (Innerein, Hüllsenfrüchte). Sehr schmerzhaft. Hizegefühl.

7 Fettsucht

Überschreitung des Normal Gewichts $[\frac{kg}{Gr\ddot{o}Be}kg/(Gr\ddot{o}Be)hoch2]$.

• Zuckerkrankheit

8 Hormone

Sind Stoffe, die der Körper selber herstellen kann.

9 Krankheitserregern

Es gibt drei verschiedene Arten von KRanheitserregener.

- Virus: ist ein Stück der DNA und ist gebunden an eine Wirdszelle. Sie benötigen, um leben und vervielverltigen zu können lebende Zellen (Zellgebunden, aktive lebende Zellen). Das sie den Wirdzellen dazu bringen den Virus zu vermehren (Wirdszelle geht dabei zugrunde), zerstörung der Zelle Kettenreaktion; im Blut können Antikörper gebildet werden, die den Virus binden können; aber gegen manche Viren ist das Immunsytem zu schwach (z.B. weil es durch den Virus angegriffen wird z.B. Aids) kein Lebewesen (nur DNS)
- Bakterien:

10 Prüfungen

Polysacheride Amylose/Amyloptektin (=Stärke), kommt auch in Plfanzen vor z.B. Kartoffel, Getreidesorten

Cellulose

Eiweiße — Grundbestandteil= Aminsäure, wie viele unterschiedlieche Aminosäure gibt es: 20; Zusammensetzung von Aminosäußren = Eiweiße — Aufgaben der Eiweiße: Nerven, Enzümatische Katalysator