Emotional Music Generation

Manas Angalakuduti, Matthew Arnold, Ryan Cooper, Pranav Kandarpa, Bradford Peterson

 $2 \times precision \times recall$

precision + recall

Problem Definition

We seek to implement a recurrent neural net using the LSTM architecture to generate music chords & notes from a user-selected emotional category.

Metrics

- Our SVR classifier has changed since touchpoint 2. Instead of making a regression to classify valence and arousal, we instead use a binary classifier. The new metrics for this classifier are precision, recall, and F1 score.
- The LSTM part of this problem
 will involve running 200 epochs
 to generate new music.

Results										
epoch_lo:	ss									
4.5 —										
4 —	1	_								
3.5 —										
3 —			_							
2.5 —			1							
2 —				4						
1.5 —				1		A .				
1 —						$\bot \land$				
0.5 —						7	~			
0 —										
+	0	10	20 3	30 4	10	50	50	70 8	80 9	90 100
[] [

The graph above shows the reduction in training loss after the neural network was trained on 3 midi files over 100 epochs.

Overview

- Music generation using neural nets has been around since 1989
- Deep neural networks have the ability to "learn" from big data sets
- Long short-term recurrent neural networks are useful for making predictions based on previous data, making them useful for generating new music based from a database of predetermined songs.
- Our goal is to generate new music based on an emotion

Results

	Valence	Arousal
Precision	0.7	0.81
Recall	0.87	0.76
F1-score	0.77	0.78

- The vgmidi data set that our SVM classifier uses has a JSON file with each musical piece broken down into components
- Simple classification of the valence and arousal for these pieces were conducted to see the predicted v. received values

Methods

- Upload MIDI sequence files based on each emotion tag
- Implement LSTM recurrent neural network to train model with labeled MIDI sequence data
- Test accuracy using precision, recall, and the F1 score at which music generated can match emotion tag input

Conclusion

The following are conclusions we seek to arrive at after the implementation of the RNN:

- Teach music chord progressions & patterns that indicate specific emotions
- Create a model capable of generating music catered to a given emotion
- Create a model capable of generating music that is aesthetically pleasing