MATEMATIKA DISKRIT

FUNGSI DEFINISI / PENGERTIAN

- Suatu fungsi (f) dari himpunan A ke himpunan B adalah suatu relasi yang memasangkan setiap anggota Himpunan A secara tunggal dengan anggota pada Himpunan B.
- Fungsi merupakan relasi dua himpunan A dan B yang memasangkan setiap snggota pada himpunan A dengan tepat satu anggota himpunan B.
- Misalkan A dan B himpunan. Relasi f dari A ke B merupakan suatu fungsi jika setiap elemen di dalam A dihubungkan dengan tepat satu elemen di dalam B.

FUNGSI DEFINISI / PENGERTIAN

Jika f adalah fungsi dari A ke B, kita menuliskan
 f: A → B
 yang artinya f memetakan A ke B.

Himpunan A disebut domain (daerah asal)
Himpunan B disebut kodomain (daerah kawan)
Himpunananggota B yang pasangan (himpunan C) disebut range (hasil) fungsi f

- Nama lain untuk fungsi adalah pemetaan atau transformasi.
- f(a)=b jika elemen a di dalam A dihubungkan dengan elemen b di dalam B.
- Himpunan A disebut daerah asal (domain) dari f dan himpunan B disebut daerah hasil (codomain) dari f.
- Jika f(a)=b , maka b dinamakan bayangan (image) dari a dan a dinamakan pra-bayangan (pre-image) dari b

Himpunan yang berisi semua nilai pemetaan f disebut jelajah (range)

• Contoh 1:

Relasi $f = \{(1, u), (2, v), (3, w)\}$ dari $A = \{1, 2, 3\}$ ke $B = \{u, v, w\}$ adalah fungsi dari A ke B.

• Contoh 2:

```
Relasi f = \{(1, u), (2, u), (3, v)\}
dari A = \{1, 2, 3\} ke B = \{u, v, w\}
```

- Contoh 3:
- Relasi f = {(1, u), (2, v), (3, w)}
 dari A = {1, 2, 3, 4} ke B = {u, v, w}
 apakah merupakan fungsi ?
- Contoh 4:
- Relasi $f = \{(1, u), (1, v), (2, v), (3, w)\}$ dari $A = \{1, 2, 3\}$ ke $B = \{u, v, w\}$?

- Contoh 5:
- Perhatikan relasi R yang disajikan dalam bentuk diagram panah berikut. Selidiki apakah relasi R merupakan fungsi

REPRESENTASI FUNGSI

Fungsi dapat dispesifikasikan dalam berbagai bentuk, diantaranya:

- Himpunan pasangan terurut.Seperti pada relasi.
- Formula pengisian nilai (assignment).

Contoh: $f(x) = 2x + 10 \text{ dan } f(x) = x^2$

Kata-kata

Contoh: "f adalah fungsi yang memetakan jumlah bit 1 di dalam suatu string biner".

REPRESENTASI FUNGSI

Fungsi dapat dispesifikasikan dalam berbagai bentuk, diantaranya:

Kode program (source code) Contoh: Fungsi menghitung |x| function abs(x:integer):integer; begin if x < 0 then abs:=-x else abs:=x; end;

- Fungsi berdasarkan sifat-sifatnya dibedakan menjadi 3 yaitu
- Fungsi surjektif/ pada/ onto;
- 2) Fungsi Injektif/satu-satu/into;
- 3) Bijektif/korespondensi satu-satu.

JENIS - JENIS FUNGSI FUNGSI SURJEKTIF/ PADA/ ONTO

Misalkan f fungsi dari himpunan A ke himpunan B $(f: A \rightarrow B)$. Fungsi ini disebut fungsi surjektif jika dan hanya jika setiap $y \in B$ terdapat $x \in A$ sehingga f(x) = y

Untuk melihat apakah fungsi tersebut surjektif atau tidak maka fokus perhatian kita pada Kodomain. Pastikan bahwa setiap anggota domain mempunyai pasangan

JENIS - JENIS FUNGSI FUNGSI SURJEKTIF/ PADA/ ONTO

- Fungsi f dikatakan dipetakan pada (onto) atau surjektif (surjective) jika setiap elemen himpunan B merupakan bayangan dari satu atau lebih elemen himpunan A.
- Dengan kata lain seluruh elemen B merupakan jelajah dari f. Fungsi f disebut fungsi pada himpunan B

FUNGSI SURJEKTIF/ PADA/ ONTO

- Contoh 6
- *a. Relasi $f = \{(1, u), (2, u), (3, v)\}$ dari $A = \{1, 2, 3\}$ ke $B = \{u, v, w\}$, apakah merupakan fungsi pada? Jelaskan
- * b. Relasi $f = \{(1, w), (2, u), (3, v)\}$ dari $A = \{1, 2, 3\}$ ke $B = \{u, v, w\}$ apakah merupakan fungsi pada? Jelaskan

JENIS - JENIS FUNGSI FUNGSI SURJEKTIF/ PADA/ ONTO

Contoh 7

Perhatikan relasi K yang disajikan dalam bentuk diagram panah berikut. Selidiki apakah relasi K merupakan fungsi surjektif?

JENIS - JENIS FUNGSI FUNGSI INJEKTIF/ SATU-SATU

- Fungsi f: A → B disebut fungsi satu-satu (injektif), apabila setiap dua elemen yang berlainan di A akan dipetakan pada dua elemen yang berbeda di B.
- Selanjutnya secara singkat dapat dikatakan bahwa $f: A \to B$ adalah fungsi injektif apabila $a \neq b$ berakibat $f(a) \neq f(b)$ Pernyataan ini ekuivalen, jika f(a) = f(b) maka akibatnya a = b
- Fungsi f dikatakan satu ke satu atau injektif jika tidak ada dua elemen himpunan A yang memiliki bayangan sama pada himpunan B.

FUNGSI INJEKTIF/ SATU-SATU

Fungsi f dikatakan satu-ke-satu (one-to-one) atau injektif (injective) jika tidak ada dua elemen himpunan A yang memiliki bayangan sama.

JENIS — JENIS FUNGSI FUNGSI INJEKTIF/ SATU-SATU

Contoh 8

- a. Relasi *f* = {(1, *w*), (2, *u*), (3, *v*)} dari *A* = {1, 2, 3} ke *B* = {*u*, *v*, *w*, *x*} apakah merupakan fungsi satu-ke-satu?
- b. Apakah relasi $f = \{(1, u), (2, u), (3, v)\}$ dari $A = \{1, 2, 3\}$ ke $B = \{u, v, w\}$ merupakan fungsi satu-ke-satu?

JENIS – JENIS FUNGSI FUNGSI INJEKTIF/ SATU-SATU

- Contoh 9
- Perhatikan relasi K yang disajikan dalam bentuk diagram panah berikut. Selidiki apakah relasi K merupakan fungsi injektif?

JENIS – JENIS FUNGSI FUNGSI BIJEKSI

Fungsi f dikatakan berkoresponden satuke-satu atau bijeksi (bijection) jika ia fungsi satu-ke-satu (one to one) dan juga fungsi pada (onto)

 Fungsi f dikatakan sebagai fungsi bijektif jika fungsi tersebut adalah fungsi surjektif dan juga fungsi injektif

JENIS – JENIS FUNGSI FUNGSI BIJEKSI

- Contoh 10
- Perhatikan relasi K yang disajikan dalam bentuk diagram panah berikut. Selidiki apakah relasi K merupakan fungsi bijektif?

Contoh 11

- Misalkan $f: \mathbb{Z} \to \mathbb{Z}$. Tentukan apakah $f(x) = x^2 + 1$ dan f(x) = x - 1
- a. merupakan fungsi satu-ke-satu?
- b. merupakan fungsi pada?

Contoh 12

Bukan fungsi satu ke satu maupun pada

Bukan fungsi

Fungsi satu ke satu bukan pada

Fungsi pada bukan satu ke satu

- Fungsi f dikatakan pada (onto) atau surjektif jika setiap elemen himpunan B merupakan bayangan dari satu atau lebih elemen himpunan A. Dengan kata lain seluruh unsur B merupakan jelajah dari f . Fungsi f disebut fungsi pada himpunan B.
- Fungsi f dikatakan berkoresponden satu ke satu atau bijeksi jika ia fungsi satu ke satu dan juga fungsi pada .
- Untuk lebih jelasnya dapat dilihat gambar berikut :

Fungsi satu ke satu, bukan pada

Fungsi pada, bukan satu ke satu

Bukan fungsi satu ke satu, maupun pada

Bukan fungsi

Jika f adalah fungsi berkoresponden satu-ke-satu dari A ke B, maka kita dapat menemukan balikan atau inversi (invers) dari fungsi f.

Fungsi inversi dari f dilambangkan dengan f ⁻¹ Untuk lebih jelasnya dapat dilihat gambar berikut

- Jika f adalah fungsi berkoresponden satuke-satu dari A ke B, maka kita dapat menemukan balikan (invers) dari f.
- Balikan fungsi dilambangkan dengan f^{-1} .
 Misalkan a adalah anggota himpunan A dan b adalah anggota himpunan B, maka $f^{-1}(b) = a$ jika f(a) = b.

Fungsi yang berkoresponden satu-kesatu sering dinamakan juga fungsi yang invertible (dapat dibalikkan), karena kita dapat mendefinisikan fungsi balikannya. Sebuah fungsi dikatakan *not invertible* (tidak dapat dibalikkan) jika ia bukan fungsi yang berkoresponden satu-kesatu, karena fungsi balikannya tidak ada.

Contoh 13

Relasi $f = \{(1,u),(2,v),(3,w)\}$ dari $A = \{1,2,3\}$ ke $B = \{u,v,w\}$ adalah fungsi yang berkoresponden satu-ke-satu.

Inversi fungsi f adalah f $^{-1}$ = {(u,1),(v,2),(w,3)}. Jadi f adalah fungsi *invertible* (dapat dibalikkan).

Contoh 14

• Relasi $f = \{(1, u), (2, w), (3, v)\}$ dari $A = \{1, 2, 3\}$ ke $B = \{u, v, w\}$ adalah fungsi yang berkoresponden satu-kesatu. Balikan fungsi f adalah $f^{-1} = \{(u, 1), (w, 2), (v, 3)\}$

Jadi, f adalah fungsi invertible.

- Contoh 15
- Tentukan balikan fungsi f(x) = x 1.

Jawab:

- Fungsi f(x) = x 1 adalah fungsi yang berkoresponden satu-ke-satu, jadi balikan fungsi tersebut ada.
- Misalkan f(x) = y, sehingga y = x 1, maka x = y + 1. Jadi, balikan fungsi balikannya adalah $f^{-1}(x) = y + 1$.

- Contoh 16
- Tentukan balikan fungsi

$$f(x) = x^2 + 1.$$

<u>Jawab</u>

• Dari Contoh sebelumnya kita sudah menyimpulkan bahwa $f(x) = x^2 + 1$ bukan fungsi yang berkoresponden satu-ke-satu, sehingga fungsi balikannya tidak ada. Jadi, $f(x) = x^2 + 1$ adalah fungsi yang not invertible.

- Fungsi komposisi adalah sebuah operasi pada 2 fungsi atau lebih untuk menghasilkan sebuah fungsi yang baru.
- Fungsi komposisi menggunakan notasi 'o'. Contohnya jika fungsi f(x) dan g(x), maka (f o g) (x) dibaca fungsi f bundaran g yang dikerjakan dengan cara memasukkan fungsi g ke dalam fungsi f.
- Definisi : g adalah fungsi dari himpunan A ke himpunan B, dan f adalah fungsi dari himpunan B ke himpunan C. Komposisi f dan g, dinotasikan dengan $f \circ g$ didefinisikan oleh $(f \circ g)(x) = f(g(x))$

- Fungsi komposisi dapat ditulis sbb :
- ♦ (f o g) (x)= f(g(x)) → komposisi g (fungsi f bundaran g atau fungsi komposisi g dikerjakan lebih dahulu daripada f)

- Fungsi komposisi dapat ditulis sbb :
- * $(g \circ f) (x) = g(f(x)) \rightarrow \text{komposisi } f \text{ (fungsi } g \text{ bundaran } f \text{ atau fungsi komposisi } f \text{ dikerjakan lebih dahulu daripada } g)$

SIFAT FUNGSI KOMPOSISI

Sifat Fungsi Komposisi;

- 1. Tidak berlaku sifat komutatif $(f \circ g)(x) \neq (g \circ f)(x)$
- 2. Berlaku sifat asosiatif $\{f \circ (g \circ h)\}(x) = \{(f \circ g) \circ h)\}(x)$
- 3. Terdapat unsur identitas (I)(x), (f o I)(x)=(I o f)(x) = f(x)

Contoh 17

Diketahui
$$f(x) = 2x-1$$
, $g(x) = x^2 + 2$

- 1. Tentukanlah $(g \circ f)(x)$
- 2. Tentukanlah $(f \circ g)(x)$
- 3. Apakah berlaku sifat komutatatif?

BEBERAPA FUNGSI KHUSUS

Beberapa fungsi yang dipakai dalam ilmu komputer:

- 1. Fungsi *Floor* dan *Ceiling*
- 2. Fungsi *modulo*
- 3. Fungsi Faktorial
- 4. Fungsi Eksponensial dan Logaritmik

FUNGSI FLOOR DAN CEILING

- Fungsi floor dari $x : \lfloor x \rfloor$
- x menyatakan nilai bilangan bulat terbesar yang lebih kecil atau sama dengan x
- Fungsi ceiling dari x : [x]
- x menyatakan nilai bilangan bulat terkecil yang lebih besar atau sama dengan x

Contoh 18

$$\lceil 0.5 \rceil = 1$$

$$[4.8] = 5$$

$$[-0.5] = 0$$

FUNGSI MODULO

Fungsi modulo adalah fungsi dengan operator mod, yang dalam hal ini:

a mod m memberikan sisa pembagian bulat bila a dibagi dengan m

a mod m = r sedemikian sehingga a=mq+r, dengan 0≤r<m

Contoh 19

 $25 \mod 7 = 4$

 $15 \mod 4 = 3$

 $0 \mod 5 = 0$

-25 mod 7=3

FUNGSI MODULO

Contoh 20

Diketahui J=(0,1,2) dan definisi fungsi dari J ke J dari f dan g adalah :

$$f(x) = x^2 + x + 1 \mod 3$$

$$g(x) = (x+2)^2 \mod 3$$

Apakah f = g?

FUNGSI FAKTORIAL

Untuk sembarang bilangan bulat tidak-negatif n, faktorial dari n dilambangkan dengan n!, didefinisikan sebagai:

$$n! = \begin{cases} 1, & n = 0 \\ 1 \times 2 \times ... \times (n-1) \times n, & n > 0 \end{cases}$$

Contoh 21

FUNGSI EKSPONENSIAL DAN LOGARITMIK

Fungsi eksponensial berbentuk

$$a^n = \begin{cases} 1, & n = 0 \\ \underbrace{a \times a \times \dots \times a}_{n}, & n > 0 \end{cases}$$

Untuk kasus perpangkatan negatif,

$$a^{-n} = 1/a^{n}$$

Fungsi logaritmik berbentuk

$$y = \log_a x \leftrightarrow x = a^y$$

Contoh 22