

随机过程

作者: Huang

时间: May 6, 2025

目录

第1章	离散时间马尔可夫链	1
1.1	马氏链及其转移概率	1
	1.1.1 马氏链及其转移概率	1
	1.1.2 随机矩阵	6

第1章 离散时间马尔可夫链

1.1 马氏链及其转移概率

1.1.1 马氏链及其转移概率

有一类随机过程,它具备所谓的"无后效性"(Markov 性),即要确定过程将来的状态,知道它此刻的情况就足够了,并不需要对它以往状况的认识,这类过程称为 Markov 过程. 我们将介绍离散时间的 Markov 链(简称马氏链).

本章假定: $T=\{0,1,\cdots\},\ S=\{0,1,2,\cdots,N\}$ (或者 $S:=\mathbb{N}$),所有 r.v. 均定义在同一个概率空间上。用 i,j 表示 S 中元素。

定义 1.1.1 (离散时间马尔可夫链)

随机过程 $\{X_n, n=0,1,2,\cdots\}$ 称为 Markov 链,若它只取有限或可列个值(若不另外说明,以非负整数集 $\{0,1,2,\cdots\}$ 来表示),并且对任意的 $n\geq 0$,及任意状态 $i,j,i_0,i_1,\cdots,i_{n-1}$,有

$$P\{X_{n+1} = j | X_0 = i_0, X_1 = i_1, \cdots, X_{n-1} = i_{n-1}, X_n = i\} = P\{X_{n+1} = j | X_n = i\}$$

$$(1.1)$$

其中 $X_n=i$ 表示过程在时刻 n 处于状态 i,称为 S。式 (1.1) 刻画了 Markov 链的特性,称为 Markov 性,或马氏性,或无记忆性。

定义 1.1.2 (转移概率)

设 $\{X_n, n = 0, 1, ...\}$ 为马氏链, 称

$$P\{X_{n+1} = j | X_n = i\} =: p_{ij}(n)$$

为n 时刻的一步转移概率。若它与n 无关,则记作 p_{ij} ,并称相应的马氏链为齐次的或时齐的。令 $P=(p_{ij})$,称P 为齐次马氏链的转移概率矩阵,简称为转移矩阵, p_{ij} 为一步转移概率。我们只考虑齐次马氏链。

设 $\{X_n, n=0,1,\ldots\}$ 是齐次马氏链, 具有转移矩阵 $P=(p_{ij})$, 则有

$$p_{ij} \ge 0 \quad \forall i, j \in S \coprod$$

$$(X_1 = i | X_2 = i) = P(X_1 \in S | X_2 = i) =$$

$$\sum_{j \in S} p_{ij} = \sum_{j \in S} P(X_1 = j | X_0 = i) = P(X_1 \in S | X_0 = i) = 1 \quad \forall i \in S.$$

定义 1.1.3 (随机矩阵)

称矩阵 $A = (a_{ij})_{S \times S}$ 为随机矩阵,若 $a_{ij} \geq 0 (\forall i, j \in S)$,且 $\sum_{i \in S} a_{ij} = 1 (\forall i \in S)$ 。

由该定义知转移矩阵是随机矩阵。

例题 1.1 赌徒破产问题 系统的状态是 $0 \sim n$,反映赌博者在赌博期间拥有的钱数,当他输光或拥有钱数为 n 时,赌博停止,否则他将持续赌博。每次以概率 p 赢得 1,以概率 q = 1 - p 输掉 1。则每个时刻,该赌徒拥有的钱数服从马尔可夫性吗?能否写出对应的转移概率矩阵?

证明 这个系统的转移矩阵为

例题 1.2 简单随机游动 质点在直线的整数点上作简单随机游动: 质点到达某个状态后,下次向右移动一步的概率是 p,向左移动一步的概率是 q,在原地不动的概率为 r,且 p+q+r=1。 X_0 表示初始状态, X_n 表示质点在时间 n 的状态。假设初始状态与每次移动相互独立。则 $\{X_n\}$ 是马氏链,证明

$$\begin{cases} p_{i,i-1} = P(X_{n+1} = i - 1 | X_n = i) = q \\ p_{i,i+1} = P(X_{n+1} = i + 1 | X_n = i) = p \\ p_{i,i} = P(X_{n+1} = i | X_n = i) = r \end{cases}$$

例题 1.3 设有一蚂蚁在下图爬行,当两个结点相临时,蚂蚁将爬向它临近的一点,并且爬向任何一个邻居的概率 是相同的。

证明 此 Markov 链的转移矩阵为

$$\mathbf{P} = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 \\ \frac{1}{4} & \frac{1}{4} & 0 & \frac{1}{4} & \frac{1}{4} & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

定理 1.1.1

设 A, B, C 为三个随机事件,则 P(BC|A) = P(B|A)P(C|AB).

证明

$$P(BC|A) = \frac{P(ABC)}{P(A)} = \frac{P(AB)P(ABC)}{P(A)P(AB)} = P(B|A)P(C|AB).$$

注令 $P(\cdot|A) := P_A$, 则应用乘法公式 $P(BC|A) = P_A(BC) = P_A(C|B) \cdot P_A(B) = P(C|BA)P(B|A)$.

定理 1.1.2

对于事件 A, B, C, 当 P(AB) > 0, 条件

$$P(C|BA) = P(C|B),$$

和条件

$$P(AC|B) = P(A|B)P(C|B)$$

等价。

(

证明

$$\frac{P(ACB)}{P(B)} = \frac{P(AB)}{P(B)} \frac{P(BC)}{P(AB)} \ \ \text{Fix} \ \frac{P(ACB)}{P(AB)} = \frac{P(BC)}{P(B)}. \ \ \mathbb{E} P(C|BA) = P(C|B).$$

定理 1.1.3

对于事件 A, B, C, 当 P(AB) > 0, 条件

$$P(C|BA) = P(C|B),$$

和条件

$$P(AC|B) = P(A|B)P(C|B)$$

等价。

 \Diamond

马氏性的解释:

过去: $A = (X_0 = i_0, \dots, X_{n-1} = i_{n-1}),$

现在: $B = (X_n = i_n)$,

将来: $C = (X_{n+1} = i_{n+1})$ 。

马氏性代表在已知现在的情况下,将来与过去无关。

定理 1.1.4

设S 是马氏链 $\{X_n\}$ 的状态空间,则有

1. 对任意的 $n, m \ge 1$ 有

$$P(X_{n+1} = i_{n+1}, \dots, X_{n+m} = i_{n+m} | X_0 = i_0, \dots, X_n = i)$$

= $P(X_{n+1} = i_{n+1}, X_{n+2} = i_{n+2}, \dots, X_{n+m} = i_{n+m} | X_n = i)$

2. 对任意的 $n, m \ge 1$, 以及 $C \subset S^m, A \subset S^n$ 有

$$P((X_{n+1}, X_{n+2}, \dots, X_{n+m}) \in C | (X_0 \dots, X_{n-1}) \in A, X_n = i)$$

$$= P((X_{n+1}, X_{n+2}, \dots, X_{n+m}) \in C | X_n = i)$$

3. 对任意的 $k,m \geq 1$,以及 $t_0 < t_1 < \ldots < t_k < t_{k+1} < \ldots < t_{k+m}, i \in S, C \subset S^m, A \subset S^k$ 有

$$P((X_{t_{k+1}}, X_{t_{k+2}}, \dots, X_{t_{k+m}}) \in C | (X_{t_0}, \dots, X_{t_{k-1}}) \in A, X_{t_k} = i)$$

$$= P((X_{t_{k+1}}, X_{t_{k+2}}, \dots, X_{t_{k+m}}) \in C | X_{t_k} = i)$$

证明 (1) 对 m 进行归纳证明。当 m=1 时有马氏性即得。现在设对 m=k 成立,即已知

$$P(X_{n+1} = i_{n+1}, \dots, X_{n+k} = i_{n+k} | X_0 = i_0, \dots, X_n = i)$$

= $P(X_{n+1} = i_{n+1}, X_{n+2} = i_{n+2}, \dots, X_{n+k} = i_{n+k} | X_n = i)$

$$= P(X_{n+2} = i_{n+2}, \dots, X_{n+k+1} = i_{n+k+1} | X_{n+1} = i_{n+1})$$

$$P(X_{n+1} = i_{n+1} | X_n = i)$$

$$= P(X_{n+1} = i_{n+1}, X_{n+2} = i_{n+2}, \dots, X_{n+k+1} = i_{n+k+1} | X_n = i)$$

$$P(X_{n+2} = i_{n+2}, \dots, X_{n+k+1} = i_{n+k+1} | X_n = i, X_{n+1} = i_{n+1})$$

$$= \sum_{i_{n-1} \in S, \dots, i_0 \in S} P(X_{n+k+1} = i_{n+k+1}, \dots, X_{n+2} = i_{n+2}, X_{n+1} = i_{n+1},$$

$$X_n = i, X_{n-1} = i_{n-1}, \dots, X_0 = i_0) / P(X_{n+1} = i_{n+1}, X_n = i)$$

$$= \sum_{i_{n-1} \in S, \dots, i_0 \in S} P(X_{n+2} = i_{n+2}, \dots, X_{n+k+1} = i_{n+k+1} | X_{n+1} = i_{n+1},$$

$$X_n = i, X_{n-1} = i_{n-1}, \dots, X_0 = i_0) / P(X_{n+1} = i_{n+1}, X_n = i)$$

$$= \sum_{i_{n-1} \in S, \dots, i_0 \in S} P(X_{n+2} = i_{n+2}, \dots, X_{n+k+1} = i_{n+k+1} | X_{n+1} = i_{n+1},$$

$$X_n = i, X_{n-1} = i_{n-1}, \dots, X_0 = i_0) / P(X_{n+1} = i_{n+1}, X_n = i)$$

$$= P(X_{n+1} = i_{n+1}, X_n = i, X_{n-1} = i_{n-1}, \dots, X_0 = i_0)$$

$$/ P(X_{n+1} = i_{n+1}, X_n = i, X_{n-1} = i_{n-1}, \dots, X_0 = i_0)$$

$$/ P(X_{n+1} = i_{n+1}, X_n = i, X_{n-1} = i_{n+1}, X_n = i, X_{n-1} = i_{n+1}, X_{n+1} = i_{n+1})$$

$$(2)$$

$$P((X_{n+1}, \dots, X_{n+m}) \in C([X_0, \dots, X_{n-1}] \in A, X_n = i, X_{n-1} = i_{n+1}, X_{n+1} = i_{n+1}$$

 $P(X_{n+1} = i_{n+1}, \dots, X_{n+k+1} = i_{n+k+1} | X_0 = i_0, \dots, X_n = i)$

 $P(X_{n+1} = i_{n+1} | X_0 = i_0, \dots, X_n = i)$

 $= P(X_{n+2} = i_{n+2}, \dots, X_{n+k+1} = i_{n+k+1} | X_0 = i_0, \dots, X_{n+1} = i_{n+1})$

 $\hat{C} := \{(i_7, i_6, i_5, i_4) | (i_7, i_5) \in C, i_6 \in S, i_4 \in S\}, \ \tilde{A} := \{(i_2, i_1, i_0) | i_2 \in S, i_1 \in A, i_0 \in S\}$

 $C|X_3=i$

$$\begin{split} P((X_7,X_5) \in C | X_3 = i, X_1 \in A) \\ &= P((X_7,X_6,X_5,X_4) \in \tilde{C} | X_3 = i, (X_2,X_1,X_0) \in \tilde{A}) \\ &= P((X_7,X_6,X_5,X_4) \in \tilde{C} | X_3 = i) \\ &= P((X_7,X_5) \in C | X_3 = i) \end{split}$$

注 设 S 是马氏链 $\{X_n\}$ 的状态空间,对任意的 $k, m \ge 1$,以及 $t_0 < t_1 < \ldots < t_k < t_{k+1} < \ldots < t_{k+m}$, $B \subset S$, $A \subset S^k$, $C \subset S^m$,有

$$P((X_{t_{k+1}}, X_{t_{k+2}}, \dots, X_{t_{k+m}}) \in C | X_{t_k} \in B, (X_{t_{k-1}}, \dots, X_{t_0}) \in A) \neq P((X_{t_{k+1}}, X_{t_{k+2}}, \dots, X_{t_{k+m}}) \in C | X_{t_k} \in B)$$

注 看不懂也没关系,不影响后面的学习

例题 1.4 质点在直线的整数点上作简单随机游动: 质点到达某个状态后,下次向右移动一步的概率是 p,向左移动一步的概率是 q = 1 - p。 X_0 表示初始状态, X_n 表示质点在时间 n 的状态。假设初始状态与每次移动相互独立。则 $\{X_n\}$ 是马氏链,

$$\begin{cases} p_{i,i-1} = P(X_{n+1} = i - 1 | X_n = i) = q \\ p_{i,i+1} = P(X_{n+1} = i + 1 | X_n = i) = p \end{cases}$$

设初始分布 $P(X_0 = 0) = P(X_0 = 2) = \frac{1}{2}$, $D := \{1,3\}$ 。证明: 当 $p \neq q$ 时, $P(X_2 = 2|X_0 = 0, X_1 \in D) \neq P(X_2 = 2|X_1 \in D)$.

证明

$$P(X_1 = 1) = P(X_0 = 0)P(X_1 = 1 | X_0 = 0) + P(X_0 = 2)P(X_1 = 1 | X_0 = 2) = \frac{1}{2}p + \frac{1}{2}q = \frac{1}{2},$$

$$P(X_1 = 3) = P(X_1 = 3, X_0 = 2) + P(X_1 = 3, X_0 = 0) = P(X_0 = 2)P(X_1 = 3 | X_0 = 2) = \frac{1}{2}p.$$

故

$$\begin{split} P(X_2 = 2|X_1 \in D) \\ &= \frac{P(X_2 = 2, X_1 \in D)}{P(X_1 \in D)} \\ &= \frac{P(X_2 = 2, X_1 = 1) + P(X_2 = 2, X_1 = 3)}{P(X_1 \in D)} \\ &= \frac{P(X_1 = 1)P(X_2 = 2|X_1 = 1) + P(X_1 = 3)P(X_2 = 2|X_1 = 3)}{P(X_1 = 1) + P(X_1 = 3)} \\ &= \frac{\frac{1}{2}p + \frac{1}{2}pq}{\frac{1}{2} + \frac{1}{2}p} = p\frac{1+q}{1+p} \\ &= \frac{P(X_2 = 2|X_1 \in D, X_0 = 0)}{P(X_1 \in D, X_0 = 0)} \\ &= \frac{P(X_2 = 2, X_1 \in D, X_0 = 0)}{P(X_1 \in D, X_0 = 0)} \\ &= \frac{P(X_2 = 2|X_1 = 1, X_0 = 0)}{P(X_1 \in D, X_0 = 0)} = p \end{split}$$

 $P(X_2=2|X_0=0,X_1\in D)=P(X_2=2|X_0=0,X_1=1)=p\circ\ \ \ \, \exists\ p\neq q\ \ \, \exists,\ \ P(X_2=2|X_0=0,X_1\in D)\neq P(X_2=2|X_1\in D).$

定理 1.1.5

设随机过程 $\{X_n, n \geq 0\}$ 满足:

1.
$$X_n = f(X_{n-1}, \xi_n) (n \ge 1)$$
, 其中 $f: S \times S \to S$, 且 ξ_n 取值在 S 上,

2. $\{\xi_n, n \geq 1\}$ 为独立同分布随机变量,且 X_0 与 $\{\xi_n, n \geq 1\}$ 也相互独立,则 $\{X_n, n \geq 0\}$ 是马尔可夫链,而且其一步转移概率为

$$p_{ij} = P(f(i, \xi_1) = j).$$

注 这个定理讲的是如何生成一个马尔可夫链。

例题 1.5 质点在直线的整数点上作简单随机游动: 质点到达某个状态后,下次向右移动一步的概率是p,向左移动一步的概率是q=1-p。 X_0 表示初始状态, X_n 表示质点在时间n的状态。假设初始状态与每次移动相互独立。证明 $\{X_n\}$ 是马氏链,且

$$\begin{cases} p_{i,i-1} = P(X_{n+1} = i - 1 | X_n = i) = q \\ p_{i,i+1} = P(X_{n+1} = i + 1 | X_n = i) = p \end{cases}$$

证明 令 X_n 为质点在时刻 $n \ge 0$ 的位置,

$$\xi_n := \begin{cases} 1 & \text{$\hat{\pi}$} n \text{ χ} \text{$\hat{\rho}$} \text{$\hat{\tau}$} \text{$\hat{\sigma}$} \\ -1 & \text{$\hat{\pi}$} n \text{ χ} \text{$\hat{\rho}$} \text{$\hat{\tau}$} \text{$\hat{\sigma}$} \end{cases}$$

 $X_n = X_{n-1} + \xi_n$ 。 转移概率:

$$p_{ij} = P(i + \xi_1 = j) = P(\xi_1 = j - i) = \begin{cases} q & j = i - 1 \\ p & j = i + 1 \end{cases}$$

注 这道例题就是讲述如何生成一个马尔可夫链。

设 $\{X_n, n=0,1,\ldots\}$ 是齐次马氏链, 具有转移矩阵 $P=(p_{ij})$, 则有

$$p_{ij} \ge 0 \quad \forall i, j \in S \coprod \sum_{j \in S} p_{ij} = 1 \quad \forall i \in S.$$

1.1.2 随机矩阵

定义 1.1.4 (随机矩阵)

称矩阵 $A = (a_{ij})_{S \times S}$ 为随机矩阵,若 $a_{ij} \ge 0 (\forall i, j \in S)$,且 $\sum_{i \in S} a_{ij} = 1 (\forall i \in S)$ 。

注随机矩阵就是转移矩阵。

特别地,记 $P^0 = I(S \perp h)$ 单位矩阵),

$$p_{ij}^{(0)} = \delta_{ij} = \begin{cases} 1 & j = i \\ 0 & j \neq i \end{cases}$$

且.

$$p_{i,j}^{(n)} := P(X_n = j | X_0 = i) = P(X_{n+m} = j | X_m = i) \quad \exists m \; \exists m$$

表示从 i 出发经 n 步到达 j 的概率。称 $P^{(n)}:=(p_{ij}^{(n)})_{i,j\in S}$ 为 $\{X_n\}$ 的 n 步转移概率矩阵。显然 $P^{(n)}$ 为随机矩阵。

定理 1.1.6 (Chapman-Kolmogorov 方程)

设 $\{X_n\}$ 是齐次马氏链,具有转移矩阵 P,则对任意的 $m,n\geq 0$,有

$$p_{ij}^{(n+m)} = \sum_{k \in S} p_{ik}^{(n)} p_{kj}^{(m)} \quad \forall i,j \in S, m,n \geq 0. \label{eq:pij}$$

$$P^{(n+m)} = P^{(m)}P^{(n)} = P^{n+m}$$
, 其中 P^{n+m} 表示矩阵 P 的 $n + m$ 次乘积

证明

$$\begin{split} p_{ij}^{(n+m)} &= P(X_{n+m} = j | X_0 = i) = P(X_{n+m} = j, X_n \in S | X_0 = i) \\ &= \sum_{k \in S} P(X_n = k, X_{n+m} = j | X_0 = i) \\ &= \sum_{k \in S} P(X_n = k | X_0 = i) P(X_{n+m} = j | X_0 = i, X_n = k) \\ &= \sum_{k \in S} p_{ik}^{(n)} p_{kj}^{(m)}. \end{split}$$

从状态i出发经n+m步到达j的概率可以由转移矩阵P及归纳法证明。

定理 1.1.7

$$p_{ij}^{(n+m)} = \sum_{k \in S} p_{ik}^{(n)} p_{kj}^{(m)} \quad \forall i,j \in S, m,n \geq 0. \label{eq:pij}$$

$$P^{(n+m)} = P^{(m)}P^{(n)} = P^{n+m}$$
, 其中 P^{n+m} 表示矩阵 P 的 $n+m$ 次乘积

对任意的正整数 $n, m, k, n_1, n_2, \cdots, n_k$ 和状态 i, j, l, 有

1.
$$p_{ij}^{(n+m)} \ge p_{il}^{(n)} p_{li}^{(m)}$$
;

2.
$$p_{ii}^{(n+m+k)} \geq p_{ii}^{(n)} p_{ii}^{(k)} p_{li}^{(m)}$$
;

1.
$$p_{ii}^{(n+m)} \geq p_{il}^{(n)} p_{lj}^{(m)};$$

2. $p_{ii}^{(n+m+k)} \geq p_{il}^{(n)} p_{jl}^{(m)} p_{li}^{(m)};$
3. $p_{ii}^{(n_1+n_2+\cdots+n_k)} \geq p_{ii}^{(n_1)} p_{ii}^{(n_2)} \cdots p_{ii}^{(n_k)};$
4. $p_{ii}^{(nk)} \geq (p_{ii}^{(n)})^k.$

4.
$$p_{ii}^{(nk)} \geq (p_{ii}^{(n)})^k$$
.

证明

$$P^{(n)} = P^{(n-1)}P = P^{(n-2)}P \cdot P = \dots = P^n.$$

例题 1.6 已知马氏链的一步转移概率矩阵为

$$\mathbf{P} = \begin{pmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{pmatrix}$$

求 $P^{(2)}$, $P^{(4)}$ 。

证明

$$\mathbf{P}^{(2)} = \mathbf{P} \cdot \mathbf{P} = \begin{pmatrix} 0.61 & 0.39 \\ 0.52 & 0.48 \end{pmatrix}$$

$$\mathbf{P}^{(4)} = \mathbf{P}^{(2)} \cdot \mathbf{P}^{(2)} = \begin{pmatrix} 0.5749 & 0.4251 \\ 0.5668 & 0.4332 \end{pmatrix}$$

例题 1.7 系统的状态是 $0 \sim n$,反映赌博者在赌博期间拥有的钱数,当他输光或拥有钱数为 n 时,赌博停止,否 则他将持续赌博。每次以概率 p 贏得 1,以概率 q = 1 - p 输掉 1。这个系统的转移矩阵为

$$\mathbf{P} = \begin{pmatrix} 1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ q & 0 & p & 0 & \cdots & 0 & 0 & 0 \\ 0 & q & 0 & p & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & q & 0 & p \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 \end{pmatrix}_{(n+1)\times(n+1)}$$

 $n=3, p=q=\frac{1}{2}$ 。赌博者从 2 元赌金开始赌博,求解他经过 4 次赌博之后输光的概率。

证明 这个概率为 $p_{20}^{(4)} = P\{X_4 = 0 | X_0 = 2\}$, 一步转移矩阵为

$$\mathbf{P} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

利用矩阵乘法得

$$\mathbf{P}^{(4)} = \mathbf{P}^4 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ \frac{5}{16} & \frac{1}{16} & 0 & \frac{5}{16} \\ \frac{5}{16} & 0 & \frac{1}{16} & \frac{5}{8} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

例题 1.8 甲乙两人进行某种比赛,设每局甲胜的概率是 p,乙胜的概率是 q,和局的概率是 r,p+q+r=1。设 每局比赛后,胜者记"+1"分,负者记"-1"分,和局不记分,且当两人中有一人获得 2 分时结束比赛。以 X_n 表示比赛至第 n 局时甲获得的分数,则 $\{X_n, n=0,1,2,\cdots\}$ 为时齐 Markov 链,求在甲获得 1 分的情况下,不超过 两局可结束比赛的概率。

证明 $\{X_n, n = 0, 1, 2, \dots\}$ 的一步转移概率矩阵为

$$\mathbf{P} = \begin{pmatrix} -2 & 1 & 0 & 0 & 0 & 0 & 0 \\ -1 & q & r & p & 0 & 0 & 0 \\ 0 & 0 & q & r & p & 0 & 0 \\ 1 & 0 & 0 & 0 & q & r & p \\ 2 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

两步转移概率矩阵为

$$\mathbf{P}^{(2)} = \mathbf{P} \cdot \mathbf{P} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ q + rq & r^2 + pq & 2pr & p^2 & 0 & 0 \\ q^2 & 2rq & r^2 + 2pq & 2pr & p^2 & 0 \\ 0 & q^2 & 2qr & r^2 + pq & p + pr & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

故在甲获得1分的情况下,不超过两局可结束比赛的概率为

$$p_{1,2}^{(2)} + p_{1,-2}^{(2)} = p + pr$$

例题 1.9 质点在直线的整数点上作简单随机游动: 质点到达某个状态后,下次向右移动一步的概率是 p,向左移动一步的概率是 q=1-p。 X_0 表示初始状态, X_n 表示质点在时间 n 的状态。假设初始状态与每次移动相互独立。则 $\{X_n\}$ 是马氏链,求 $P^{(n)}$ 。

$$\begin{cases} p_{i,i-1} = P(X_{n+1} = i - 1 | X_n = i) = q \\ p_{i,i+1} = P(X_{n+1} = i + 1 | X_n = i) = p \end{cases}$$

证明 从i经过n步到j, 其中向左走了x步, 向右走了y步。则有

$$\begin{cases} x + y = n \\ i - x + y = j \end{cases}$$

故 $x = \frac{n - (j - i)}{2}$ 且 $y = \frac{n + j - i}{2}$, 其中 n + j - i 必须是偶数 (n + j - i) + [n - (j - i)] = 2n。

回顾 $p_{ij}^{(n)} = P(X_n = j | X_0 = i)$ 与 $P(X_n = j)$

$$\pi_i(n) = P(X_n = i), i \in \mathcal{S},$$

$$\pi(n) = (\pi_i(n), i \in \mathcal{S}).$$

即 $\pi(n)$ 表示 n 时刻 X_n 的概率分布,称 $\pi(0):=(\pi_i(0),i\in\mathcal{S})$ 为马氏链 $\{X_n,n=0,1,\ldots\}$ 的初始分布。 对任意的 $n\geq 0$,

$$\sum_{i \in \mathcal{S}} \pi_i(n) = P(X_n \in \mathcal{S}) = 1.$$