What is data science?

DATA SCIENCE FOR EVERYONE

Lis SulmontCurriculum Manager, DataCamp

Let's ask Google!

Making data work for you

Use data to better describe the present or better predict the future

What can data do?

- Describe the current state of an organization or process
- Detect anomalous events
- Diagnose the causes of events and behaviors
- Predict future events

Why now?

Why now?

Why now?

The data science workflow

Let's practice!

DATA SCIENCE FOR EVERYONE

Applications of data science

DATA SCIENCE FOR EVERYONE

Lis SulmontCurriculum Manager, DataCamp

More case studies

- Traditional machine learning
- Internet of Things (IoT)
- Deep Learning

Case study: fraud detection

Case study: fraud detection

Amount	Date	Type	•••
•	•	•	•
•	•	•	•
	•	•	•
•	•	•	•
•	•	•	•
•	•	•	•
•	•	•	•

What do we need for machine learning?

- A well-defined question
 - "What is the probability that this transaction is fraudulent?"
- A set of example data
 - Old transactions labeled as "fraudulent" or "valid"
- A new set of data to use our algorithm on
 - New credit card transactions

Case study: smart watch

Internet of Things

Refers to gadgets that aren't standard computers

- Smart watches
- Internet-connected home security systems
- Electronic toll collection systems
- Building energy management systems
- Much, much more!

Case study: image recognition

Case study: image recognition

1	1	1	1	1	1	1	1	2	2	3	3	3	1	-3	1	1	2
1	1	1	1	1	1	1	1	2	2	3	3	3	1	3	1	1	2
1	1	7 1	1	1	1	1	1	2	1	2	3	1	3	3	1	1	2
8	8	8	8	8	8	8	8 -	8	8	8	8	48	20	20	20	8	8
6	6	7	6	6	6	6	6	6	6	6	6	6	20	20	20	8	5
4	4	4	4	4	4	4	4	4	4	4	4	4	20	20	20	5	5
4	4	4	4	4	4	4	5	5	5	5	5	5	5	4	4	4	4
4	4	4	4	5	5	5	5	5	5	4	4	4	4	4	4	4	4
5	5	5	5	5	5	4	4	4	4	4	4	4	4	4	4	4	4
4	1	-	E	E		1	1	1	1	1	1	1	4	1	1	1	1

Deep learning

- Many neurons work together
- Requires much more training data
- Used in complex problems
 - Image classification
 - Language learning/understanding

Let's practice!

DATA SCIENCE FOR EVERYONE

Data science roles and tools

DATA SCIENCE FOR EVERYONE

Lis SulmontCurriculum Manager, DataCamp

Data engineer

- Information architects
- Build data pipelines and storage solutions
- Maintain data access

Data engineering tools

- SQL
 - To store and organize data
- Java, Scala, or Python
 - Programming languages to process data
- Shell
 - Command line to automate and run tasks
- Cloud computing
 - AWS, Azure, Google Cloud Platform

Data analyst

- Perform simpler analyses that describe data
- Reports and dashboards to summarize data
- Clean data for analysis

Data analyst tools

- SQL
 - Retrieve and aggregate data
- Spreadsheets (Excel or Google Sheets)
 - Simple analysis
- BI Tools (Tableau, Power BI, Looker)
 - Dashboards and visualizations
- May have: R and Python
 - Clean and analyze data

Data scientist

- Versed in statistical methods
- Run experiments and analyses for insights
- Traditional machine learning

Data scientist tools

- SQL
 - Retrieve and aggregate data
- Python and/or R
 - With associated data science libraries, e.g.,

pandas (Python) and tidyverse (R)

Machine learning scientist

- Predictions and extrapolations
- Classification
- Deep Learning
 - Image processing
 - Natural language processing

Machine learning tools

- Python and/or R
 - With associated machine learning libraries,

```
e.g., TensorFlow or Spark
```


Data Engineer	Data Analyst	Data Scientist	Machine Learning Scientist
Store and maintain data	Visualize and describe data	Gain insights from data	Predict with data
SQL + Java/Scala/Python	SQL + BI Tools + Spreadsheets	Python/R	Python/R

Let's practice!

DATA SCIENCE FOR EVERYONE

