Analise Matemática B

FICHA 2B MIECOM

Séries de Taylor e MacLaurin

- 1. Para cada uma das funções seguintes, determine o desenvolvimento em série de Taylor numa vizinhança de $c \in \mathbb{R}$ e o respectivo intervalo de convergência:
- (a) $f(x) = \ln x$ para c = 2;
- (b) $g(x) = e^{\frac{x}{2}}$ para c = -1;
- (c) $i(x) = \frac{1}{x^2} \text{ para } c = -2;$
- (c) $b(x) = \sin x \cos x$ para $c = \frac{\pi}{4}$;
- 2. Determine o desenvolvimento em série de MacLaurin e o respectivo intervalo de convergência das seguintes funções, utilizando desenvolvimentos conhecidos:
- (a) $h(x) = \frac{\sin x}{x}$;
- (b) $j(x) = \sqrt{1 + \sin x} = \cos \frac{x}{2} + \sin \frac{x}{2}$;
- (c) $l(x) = \sin^2 x$;
- **3.** Considere a função $f(x) = e^x \cdot \sin x$.
- (a) Determine o desenvolvimento em série de MacLaurin da função f;
- (b) Derivando, determine o desenvolvimento em série de MacLaurin da função $g(x) = e^x .\cos x$.
- 4. Use desenvolvimentos em série de Taylor para determinar:
- (a) $\int_0^x \frac{e^t 1}{t} dt;$
- (b) $\int_0^x \frac{\sin t}{t} dt.$
- 5. Use desenvolvimentos em série de MacLaurin para determinar os seguintes limites:
- (a) $\lim_{x \to 0} \frac{1 \cos x^2}{(1 \cos x)^2}$;
- (b) $\lim_{x\to 0} \frac{e^x e^{-x}}{\sin x}$;
- (c) $\lim_{x\to 0} \frac{(e^x 1 x)^2}{x^2 \ln(1 + x^2)};$
- **6.** Obtenha um valor aproximado da solução da equação $\cos x 2x^2 = 0$.