§ 38

19. $\frac{d^2x}{dt^2} + k^2x = 0$, k real; when t = 0, x = 0, $\frac{dx}{dt} = v_0$. Verify your result completely. ANS. $x = (v_0/k)\sin kt$

20. $(D^3 + D^2 + 4D + 4)y = 0$; when x = 0, y = 0, y' = -1, y'' = 5. ANS. $y = e^{-x} - \cos 2x$

21.
$$\frac{d^2x}{dt^2} + 2b\frac{dx}{dt} + k^2x = 0, k > b > 0$$
; when $t = 0, x = 0, \frac{dx}{dt} = v_0$.

 $x = (v_0/a) e^{-bt} \sin at$; where $a = \sqrt{k^2 - b^2}$

ANS.

Miscellaneous Exercises

Obtain the general solution unless otherwise instructed

15 14. 13 11. $(4D^3 - 7D + 3)y = 0$. **10.** $(4D^3 - 21D - 10)y = 0$. 8. $(D^3 + 3D^2 - 4D - 12)y = 0$. 6. $(D^3 - 2D^2 - 3D)y = 0$. 3. $(D^2 + D - 6)y = 0$. 2. $(9D^4 + 6D^3 + D^2)y = 0$. 1. $(D^2 + 3D)y = 0$. 7. $(4D^3 - 3D + 1)y = 0$. $(D^3 + 6D^2 + 12D + 8)y = 0$; when x = 0, y = 1, y' = -2, y'' = 2. $(D^3 + 3D^2 + 3D + 1)y = 0.$ $(D^3 - 3D^2 + 4)y = 0.$ $(D^3 + 2D^2 + D + 2)y = 0.$ $(D^3 - 14D + 8)y = 0.$ $(D^4 + 6D^3 + 9D^2)y = 0$; when x = 0, y = 0, y' = 0, y'' = 6, and as $x \to \infty$, $y' \to 1$ $(D^2 - D - 6)y = 0$; when x = 0, y = 2, y' = 1. For this particular solution, find the value of y when x = 1. ANS. $y = 1 - e^{-3}$ ANS. $y = c_1 e^{-4x} + c_2 \exp[(2 + \sqrt{2})x] + c_3 \exp[(2 - \sqrt{2})x]$ ANS. $y = c_1 e^{-2x} + c_2 \exp(\frac{5}{2}x) + c_3 \exp(-\frac{1}{2}x)$ ANS. $y = c_1 e^x + c_2 \exp(\frac{1}{2}x) + c_3 \exp(-\frac{3}{2}x)$ ANS. $y = (c_1 + c_2 x) \exp(\frac{1}{2}x) + c_3 \exp(-\frac{1}{2}x)$ ANS. ANS. $y = c_1 \cosh 2x + c_2 \sinh 2x + c_3 e^{-3x}$ $y = c_1 + c_2 x + (c_3 + c_4 x) \exp(-\frac{1}{3}x)$ $y = c_1 e^{-2x} + c_2 \cos x + c_3 \sin x$ ANS. $y = c_1 e^{-x} + e^{2x}(c_2 + c_3 x)$ $y = c_1 e^{-x} + (c_2 + c_3 x) \exp(\frac{1}{2}x).$ ANS. $y = e^{-x}(c_1 + c_2x + c_3x^2)$ ANS. $y = c_1 + c_2 e^{3x} + c_3 e^{-x}$ ANS. $y = c_1 e^{2x} + c_2 e^{-3x}$. ANS. $y = e^{-2x}(1 - x^2)$. ANS. $y = c_1 + c_2 e^{-3x}$ ANS. $y = e^{3x} + e^{-2x}$

16. $(8D^3 - 4D^2 - 2D + 1)y = 0$. 17. $(D^4 + D^3 - 4D^2 - 4D)y = 0$. 18 $(D^4 - 2D^3 + 5D^2 - 8D + 4)y = 0.$

19. $(D^4 + 2D^2 + 1)y = 0$. 20. $(D^4 + 5D^2 + 4)y = 0$. ANS. $y = c_1 \cos x + c_2 \sin x + c_3 \cos 2x + c_4 \sin 2x$ ANS. $y = e^{x}(c_1 + c_2x) + c_3 \cos 2x + c_4 \sin 2x$

21. $(D^4 + 3D^3 - 4D)y = 0$. 22. $(D^5 + D^4 - 9D^3 - 13D)$ $D^4 - 9D^3 - 13D^2 + 8D + 12)y = 0.$ ANS. $y = c_1 e^x + c_2 e^{3x} + c_3 e^{-x} + e^{-2x}(c_4 + c_5 x)$

23. $(D^4 - 11D^3 + 36D^2 - 16D - 64)y = 0$. 24. $(D^2 + 2D + 5)y = 0$.

 $(D^4 + 4D^3 + 2D^2 - 8D - 8)y = 0.$ ANS.

 $y = e^{-x}(c_1 \cos 2x + c_2 \sin 2x)$

25. 26. $(4D^4 - 24D^3 + 35D^2 + 6D - 9)y = 0.$

 $(4D^4 + 20D^3 + 35D^2 + 25D + 6)y = 0.$ ANS. $y = e^{3x}(c_1 + c_2x) + c_3 \cosh \frac{1}{2}x + c_4 \sinh \frac{1}{2}x$

27.

28. $(D^4 - 7D^3 + 11D^2 + 5D - 14)y = 0$. **29.** $(D^3 + 5D^2 + 7D + 3)y = 0$. **30.** $(D^3 - 2D^2 + D - 2)y = 0$. **31.** $(D^3 - D^2 + D - 1)y = 0$.

ANS.

 $y = c_1 e^{2x} + c_2 \cos x + c_3 \sin x$

32. $(D^3 + 4D^2 + 5D)y = 0$.

33. $(D^4 - 13D^2 + 36)y = 0$. $(D^4 - 5D^3 + 5D^2 + 5D - 6)y = 0.$

 $(4D^3 + 8D^2 - 11D + 3)y = 0.$ $y = c_1 \cosh x + c_2 \sinh x + c_3 e^{2x} + c_4 e^{3x}$

37. $(D^4 - D^3 - 3D^2 + D + 2)y = 0$. 35. $(4D^3 + 8D^2 - 11D + 3)y = 0$ 36. $(D^3 + D^2 - 16D - 16)y = 0$

38. $(D^3 - 2D^2 - 3D + 10)y = 0.$ ANS. $y = c_1 e^x + c_2 e^{2x} + e^{-x}(c_3 + c_4 x)$

39. $(D^5 + D^4 - 6D^3)y = 0$.

40. $(4D^3 + 28D^2 + 61D + 37)y = 0.$ **41.** $(4D^3 + 12D^2 + 13D + 10)y = 0.$ ANS. $y = c_1 e^{-x} + e^{-3x} (c_2 \cos \frac{1}{2}x + c_3 \sin \frac{1}{2}x)$

42. $(18D^3 - 33D^2 + 20D - 4)y = 0$. **43.** $(D^5 - 2D^3 - 2D^2 - 3D - 2)y = 0$ $(D^5 - 2D^3 - 2D^2 - 3D - 2)y = 0.$

 $(D^4 - 2D^3 + 2D^2 - 2D + 1)y = 0.$ ANS. $y = e^{-x}(c_1 + c_2x) + c_3e^{2x} + c_4\cos x + c_5\sin x$.

45. $(4D^5 + 4D^4 - 9D^3 - 11D^2 + D + 3)y = 0.$ **46.** $(D^5 - 15D^3 + 10D^2 + 60D - 72)y = 0.$

 $(D^4 + 2D^3 - 6D^2 - 16D - 8)y = 0.$

ANS. $y = e^{-2x}(c_1 + c_2x) + e^x(c_3 \cos \sqrt{3x} + c_4 \sin \sqrt{3x})$