Wolfgang Arendt, Annette Grabosch, Günther Greiner, Ulrich Groh, Heinrich P. Lotz, Ulrich Moustakas, Rainer Nagel, Frank Neubrander, Ulf Schlotterbeck

One-parameter Semigroups of Positive Operators

Edited by R. Nagel

Lecture Notes in Mathematics

1184

Springer-Verlag Berlin Heidelberg New York Tokyo

Stand: July 28, 2025

Springer Nature

Contents

List of Symbols

1

List of Symbols

$E_{\mathbb{R}},E_{\mathbb{C}}$	real, complex Banach lattice
E_{+}	positive cone of an ordered vector space
E'	dual Banach space
E^*	semigroup dual
$E_{\mathcal{F}}^{\mathcal{T}}$	\mathcal{F} -product of E with respect to the semigroup \mathcal{T}
$E_{\mathcal{F}}^{'}$	\mathcal{F} -product of E
E_f	see C-I, 4
$(\check{E},arphi)$	see C-I, 4
$E \otimes F$	tensor product
$\mathcal{L}(E)$	bounded linear operators on E
$\mathcal{Z}(E)$	center of E
E_n	n-th Sobolev space
$\mathcal{B}(H)$	W*-algebra of all bounded linear operators on <i>H</i>
S(M)	state space of a C*-algebra <i>M</i>
M_{+}	positive cone of the C*-algebra M
M_*	predual of a W*-algebra M
M^{sa}	self-adjoint part of a C*-algebra
M_n	C^* -algebra of all $n \times n$ -matrices
AC	absolutely continuous functions
BV	functions of bounded variation
K	compact topological space
X	locally compact topological space
C(K), C(K, E)	continuous functions (with values in E)
$C_c(X)$	continuous functions with compact support
$C_0(X)$	continuous functions vanishing in infinity
$C^b(X)$	bounded continuous functions
$C_{ru}(X)$	uniformly continuous functions
$C^n, C^{(n)}$	continuous differentiable functions (<i>n</i> -times)
$C_c^{\infty}(\mathbb{R}^n)$	infinitely differentiable functions with compact support
$L^p(\mu)$	p-integrable functions

2 CONTENTS

```
S(\mathbb{R}^n)
                                  Schwartz space
M(X)
                                  regular Borel measures
                                  bounded regular Borel measures
M_b(X)
                                  (one-parameter) semigroup
\mathcal{T} = (T(t))_{t \ge 0}
T_{\parallel}
                                  subspace (reduced) semigroup
T_{/}
                                  quotient semigroup
Fix(\mathcal{T})
                                  fixed space of \mathcal{T}
                                  generator of a C_0-semigroup
\boldsymbol{A}
A'
                                  adjoint operator of A
A^*
                                  adjoint generator
\sigma(A)
                                  spectrum of A
\varrho(A)
                                  resolvent set of A
\sigma_{ess}(A)
                                  essential spectrum of A
\sigma_b(A)
                                  boundary spectrum of A
P_{\sigma}(A)
                                  point spectrum of A
P_{\sigma_b}(A)
                                  boundary point spectrum
A_0(A)
                                  approximate point spectrum of A
R_{\sigma}(A)
                                  residual spectrum ç
\omega; \omega(A); \omega(\mathcal{T}); \omega(T(t))
                                  growth bound
s(A)
                                  spectral bound
\omega_I(A)
                                  growth bound of the solution of the (ACP)
\omega(f)
                                  growth bound of T(\cdot) f
                                  spectral radius of A
r(A)
\omega_{ess}(A)
                                  essential growth bound of A
r_{ess}(T)
                                  essential spectral radius of A
R(\lambda, A)
                                  resolvent operator of A
I^{d}, \{I^{d}\}_{d=1}^{dd}
                                  orthogonal band of I (of I^d)
                                  infimum
Λ
                                  supremum
|T|
                                  modulus of a regular operator
\hat{f}, \check{f}
                                  Fourier (inverse Fourier) transformation
dp(f)
                                  subdifferential of p in f
                                  subdifferential of the norm in f
dN(f)
dN^+(f)
                                  subdifferential of the canonical half-norm in f
im(T)
                                  range of T
ker(T)
                                  null-space of T
\operatorname{Im} z
                                  imaginary part of z
                                  real part of z
\text{Re } z
                                  see C-I, 7
Re(f), Im(f)
Re T, Im T
                                  see C-I, 7
                                  complex conjugate of f
S_f
                                  signum operator with respect to f
sign(f)
                                  signum of f see C-II, 2.2
f^{[n]}
                                  see B-III,2.2; C-III,2.1
|f|
                                  absolute value of f
```

CONTENTS 3

f^+	positive part of f
f^-	negative part of f
Id	identity operator
M_p	multiplication operator
1	function identically 1
$\mathbb{1}_B$	characteristic function of the set XB

 δ_x Dirac measure in x

trace tr

 $\operatorname{span} M$ linear subspace generated by Msector in the complex plane $S(\alpha)$ (ACP)abstract Cauchy problem positive minimum principle (*P*)

(P')see B-II,1.21

Kato's (equality) inequality (K)(RCP)retarded Cauchy problem

(RE)retarded equation (T)translation property