MpBP: Verifying Robustness of Neural Networks with <u>Multi-path Bound Propagation</u>

Ye ZHENG, Jiaxiang LIU, and Xiaomu SHI

Neural Network Verification

- Verifies whether a region input results in unsafe outputs
- Difficulty: the composition of non-linear activations (e.g. ReLU)

Image source: https://www.businessinsider.com/why-are-stop-signs-red

- Propagates bound functions along the neural network
- Widely-used because of its efficiency

- Propagates bound functions along the neural network
- Widely-used because of its efficiency

- Propagates bound functions along the neural network
- Widely-used because of its efficiency

- Propagates bound functions along the neural network
- Widely-used because of its efficiency

Ye ZHENG

Our: Bound Propagation Path

Our: Two-path Bound Propagation

Ye ZHENG

Our: Two-path Bound Propagation

This Paper

- Extends bound propagation methods to their multi-path counterparts
 - Multi-path backward bound propagation (MpBBP)*
 - Multi-path forward (MpFBP), MpFBBP, etc.
- Uses the PyTorch framework to parallelize BP along multiple paths
 - Reduces the time cost to the level of classical BP on GPUs

This Paper

- Extends bound propagation methods to their multi-path counterparts
 - Multi-path backward bound propagation (MpBBP)*
 - Multi-path forward (MpFBP), MpFBBP, etc.
- Uses the PyTorch framework to parallelize BP along multiple paths
 - Reduces the time cost to the level of classical BP on GPUs

Multi-path Back-propagation for Neural Network Verification (in Chinese). Ye ZHENG, Xiaomu SHI, Jiaxiang LIU.

Experiments – vs. the SOTA

• Comparison w.r.t. effectiveness and efficiency

Table 1: Effectiveness Evaluation: Numbers of verified problems are shown. Larger number means more effective.

Tools		Models and Perturbation Thresholds δ				
		MNIST FFNN				
		0.0014	0.0018	0.0022	0.0026	
FBP	М₽ВР	73	62	51	40	
	LiRPA	69	59	48	33	
FBBP	М₽ВР	86	78	69	58	
	LiRPA	83	77	66	56	
		CIFAR-10 CNN		Tiny ImgNet CNN		
		0.0010	0.0014	0.0010	0.0014	
ВВР	№ М₽ВР	61	38	27	22	
	LiRPA	56	36	25	19	
	GPUPoly	56	36	-	-	

Figure 3: Efficiency: Comparison of Verification Time

Experiments – vs. the SOTA

• Comparison w.r.t. effectiveness and efficiency

Table 1: Effectiveness Evaluation: Numbers of verified problems are shown. Larger number means more effective.

Tools		Models and Perturbation Thresholds δ				
		MNIST FFNN				
		0.0014	0.0018	0.0022	0.0026	
FBP	М₽ВР	73	62	51	40	
	LiRPA	69	59	48	33	
FBBP	М₽ВР	86	78	69	58	
	LiRPA	83	77	66	56	
		CIFAR-10 CNN		Tiny ImgNet CNN		
		0.0010	0.0014	0.0010	0.0014	
ВВР	№ М₽ВР	61	38	27	22	
	LiRPA	56	36	25	19	
	GPUPoly	56	36	-	-	

Figure 3: Efficiency: Comparison of Verification Time

More effective

&z

Same efficient

MpBP: Verifying Robustness of Neural Networks with <u>Multi-path Bound Propagation</u>

Thank you!

