PCA

Melissa Ortega

2022-04-12

Análisis de Componentes Principales

Introducción

El Análisis de componentes principales es un método que sirve para la reducción de la dimensionalidad de las variable originales. Este método permite representar los datos originales (individuos y variables) en un espacio de dimensión inferior del espacio original, mientras limite al máximo la pérdida de información.

Matriz de trabajo

1. Se trabajo con la matriz fiel, extraida del paquete datos que se encuentra precargada en R

```
install.packages("datos")
```

library(datos)

2. Se selecciona la matriz fiel

m<-datos::fiel

- 3. Exploracion de la matriz
- 4. Dimension de la matriz La matriz cuenta con 272 observaciones y 2 variables

dim(m)

- ## [1] 272 2
 - 2. Tipo de variables

str(m)

```
## 'data.frame': 272 obs. of 2 variables:
## $ erupciones: num 3.6 1.8 3.33 2.28 4.53 ...
## $ espera : num 79 54 74 62 85 55 88 85 51 85 ...
```

3. Nombre de las variables

colnames(m)

- ## [1] "erupciones" "espera"
 - 4. Busca de datos perdidos

anyNA(m)

[1] FALSE

Tratamiento de la matriz

Se genera una nueva matriz X1 filtrada

```
x1 < -m[1:2]
```

" ACP Paso a Paso

1. Transformar la matriz en un data frame

```
x1<-as.data.frame(x1)
```

2. Definir n (individuos) y p (variables)

```
n<-dim(m)[1]
p<-dim(m)[2]
```

3.Generación del Gráfico scaterplot

Variables originales

4. Obtención de la media por columna y la matriz de covarianza muestral

```
mu<-colMeans(x1)
mu

## erupciones espera
## 3.487783 70.897059

s<-cov(x1)
s

## erupciones espera
## erupciones 1.302728 13.97781
## espera 13.977808 184.82331</pre>
```

5. Obtención de los valores y vectores propios desde la matriz de la covarianza muestral.

```
es<-eigen(s)
## eigen() decomposition
## $values
## [1] 185.8818239
                      0.2442167
##
## $vectors
##
              [,1]
                          [,2]
## [1,] 0.0755118 -0.9971449
## [2,] 0.9971449 0.0755118
5.1. Separación de la matriz de valores propios
eigen.val<-es$values
eigen.val
## [1] 185.8818239
                      0.2442167
5.2. Separación de la matriz de vectores propios
eigen.vec<-es$vectors
eigen.vec
                          [,2]
              [,1]
## [1,] 0.0755118 -0.9971449
## [2,] 0.9971449 0.0755118
  6. Calcular la proporción de variabilidad
6.1 Para la matriz de valores propios.
pro.var<-eigen.val/sum(eigen.val)</pre>
pro.var
## [1] 0.998687896 0.001312104
6.2 Acumulada
pro.var.acum<-cumsum(eigen.val)/sum(eigen.val)</pre>
pro.var.acum
## [1] 0.9986879 1.0000000
  7. Obtención de la matriz de correlaciones
R<-cor(x1)
R
##
               erupciones
                              espera
## erupciones 1.0000000 0.9008112
                0.9008112 1.0000000
## espera
```

8. Obtención de los valores y vectores propios a partir de la matriz de correlaciones

```
eR<-eigen(R)
еR
## eigen() decomposition
## $values
## [1] 1.90081117 0.09918883
## $vectors
##
              [,1]
                          [,2]
## [1,] 0.7071068 -0.7071068
## [2,] 0.7071068 0.7071068
  9. Separación de la matriz de valores propios
9.1 Separación de la matriz de valores propios
eigen.val.R<-eR$values
eigen.val.R
## [1] 1.90081117 0.09918883
9.2 Separación de la matriz de los vectores propios
eigen.vec.R<-eR$vectors
eigen.vec.R
##
              [,1]
                          [,2]
## [1,] 0.7071068 -0.7071068
## [2,] 0.7071068 0.7071068
 10. Calculo de la proporcion de variabilidad
10.1 Para la matriz de valores propios.
pro.var.R<-eigen.val.R/sum(eigen.val.R)</pre>
pro.var.R
## [1] 0.95040558 0.04959442
10.2 Acumulada
pro.var.acum.R<-cumsum(eigen.val.R)/sum(eigen.val.R)</pre>
pro.var.acum.R
## [1] 0.9504056 1.0000000
Obtención de coeficientes
 12. Centrar los datos respecto a la media 12.1 Construccion de la matriz 1
ones<-matrix(rep(1,n),nrow=n, ncol=1)</pre>
12.2 Construcción de la matriz centrada
```

X.cen<-as.matrix(x1-ones%*%mu)</pre>

13. Construcción de la matriz diagonal de las varianzas

```
Dx<-diag(diag(s))
Dx

## [,1] [,2]
## [1,] 1.302728  0.0000
## [2,] 0.000000 184.8233

14. Construcción de la matriz centrada multiplicada por Dx^1/2
Y<-X.cen%*%solve(Dx)^(1/2)</pre>
```

15. Construcción de los coeficientes o scores eigen.vec.R matriz de autovectores

```
scores<-Y%*%eigen.vec.R
scores[1:10,]

##     [,1]     [,2]
## 1     0.49097422     0.35193210
## 2     -1.92447802     0.16676594
## 3     0.06549949     0.25728314
## 4     -1.20914903     0.28363483
## 5     1.38106424     0.08599050</pre>
```

6 -1.20152126 -0.45216609

7 1.64056183 0.13856711

8 0.80304843 0.66400631 ## 9 -1.98758654 -0.08219975

10 1.26769136 0.19936337

colnames(scores)<-c("PC1","PC2")</pre>

16. Nombramos las columnas PC1...PC2

17. Visualizamos

scores[1:10,]

```
##
             PC1
                         PC2
      0.49097422 0.35193210
## 1
## 2 -1.92447802 0.16676594
## 3
      0.06549949 0.25728314
## 4
     -1.20914903 0.28363483
## 5
      1.38106424 0.08599050
## 6 -1.20152126 -0.45216609
## 7
      1.64056183 0.13856711
## 8
      0.80304843 0.66400631
## 9 -1.98758654 -0.08219975
## 10 1.26769136 0.19936337
```

```
pairs(scores, main="scores", col="lightpink3", pch=19)
```

scores

ACP VIA SINTETIZADA

1. Aplicar el calculo de la varianza de las columnas (1=filas, 2=columnas()

```
apply(x1,2,var)
```

```
## erupciones espera
## 1.302728 184.823312
```

2. Aplicar la Función **prcomp** para reducir la dimensionalidad y centrado por la media y escalado por la Desviación estandar

```
acp<-prcomp(x1,center=TRUE,scale=TRUE)
acp</pre>
```

```
## Standard deviations (1, .., p=2):
## [1] 1.3786991 0.3149426
##
## Rotation (n x k) = (2 x 2):
## PC1 PC2
## erupciones -0.7071068 0.7071068
## espera -0.7071068 -0.7071068
```

3. Resumen de la matriz **acp**

summary(acp)

```
## Importance of components:
## PC1 PC2
## Standard deviation 1.3787 0.31494
## Proportion of Variance 0.9504 0.04959
## Cumulative Proportion 0.9504 1.00000
```

Construcción de los CP con las variables originales

Combinación lineal de las variables originales

$$z1 = -0.707(var1) - 0.707(var2)$$

El primer componente distingue las erupciones

$$z2=-0.7071(var1)-0.7071(var2)$$

El segundo componente distingue la espera de la Erupción