

$$\frac{\forall x (\beta_x \to Q_x)}{\exists x (\beta_x \to Q_x)}, \exists x \beta_x \neq \exists_z Q_z$$

$$\frac{\exists x (\beta_x \to Q_x)}{\exists x (\beta_x \to Q_x)} \qquad (given)$$

$$\frac{\exists x (\beta_x \to Q_x)}{\exists x (\beta_x \to Q_x)} \qquad (given)$$

$$\frac{\exists x (\beta_x \to Q_x)}{\exists x (\beta_x \to Q_x)} \qquad (given)$$

$$\frac{\exists x (\beta_x \to Q_x)}{\exists x (\beta_x \to Q_x)} \qquad (given)$$

$$\frac{\exists x (\beta_x \to Q_x)}{\exists x (\beta_x \to Q_x)} \qquad (given)$$

$$\frac{\exists x (\beta_x \to Q_x)}{\exists x (\beta_x \to Q_x)} \qquad (given)$$

$$\frac{\exists x (\beta_x \to Q_x)}{\exists x (\beta_x \to Q_x)} \qquad (given)$$

$$\frac{\exists x (\beta_x \to Q_x)}{\exists x (\beta_x \to Q_x)} \qquad (given)$$

$$\frac{\exists x (\beta_x \to Q_x)}{\exists x (\beta_x \to Q_x)} \qquad (given)$$

$$\frac{\exists x (\beta_x \to Q_x)}{\exists x (\beta_x \to Q_x)} \qquad (given)$$

$$\frac{\exists x (\beta_x \to Q_x)}{\exists x (\beta_x \to Q_x)} \qquad (given)$$

$$\frac{\exists x (\beta_x \to Q_x)}{\exists x (\beta_x \to Q_x)} \qquad (given)$$

$$\frac{\exists x (\beta_x \to Q_x)}{\exists x (\beta_x \to Q_x)} \qquad (given)$$

$$\frac{\exists x (\beta_x \to Q_x)}{\exists x (\beta_x \to Q_x)} \qquad (given)$$

$$\frac{\exists x (\beta_x \to Q_x)}{\exists x (\beta_x \to Q_x)} \qquad (given)$$

$$\frac{\exists x (\beta_x \to Q_x)}{\exists x (\beta_x \to Q_x)} \qquad (given)$$

$$\frac{\exists x (\beta_x \to Q_x)}{\exists x (\beta_x \to Q_x)} \qquad (given)$$

$$\frac{\exists x (\beta_x \to Q_x)}{\exists x (\beta_x \to Q_x)} \qquad (given)$$

$$\frac{\exists x (\beta_x \to Q_x)}{\exists x (\beta_x \to Q_x)} \qquad (given)$$

$$\frac{\exists x (\beta_x \to Q_x)}{\exists x (\beta_x \to Q_x)} \qquad (given)$$

$$\frac{\exists x (\beta_x \to Q_x)}{\exists x (\beta_x \to Q_x)} \qquad (given)$$

$$\frac{\exists x (\beta_x \to Q_x)}{\exists x (\beta_x \to Q_x)} \qquad (given)$$

$$\frac{\exists x (\beta_x \to Q_x)}{\exists x (\beta_x \to Q_x)} \qquad (given)$$

$$\frac{\exists x (\beta_x \to Q_x)}{\exists x (\beta_x \to Q_x)} \qquad (given)$$

$$\frac{\exists x (\beta_x \to Q_x)}{\exists x (\beta_x \to Q_x)} \qquad (given)$$

$$\frac{\exists x (\beta_x \to Q_x)}{\exists x (\beta_x \to Q_x)} \qquad (given)$$

$$\frac{\exists x (\beta_x \to Q_x)}{\exists x (\beta_x \to Q_x)} \qquad (given)$$

$$\frac{\exists x (\beta_x \to Q_x)}{\exists x (\beta_x \to Q_x)} \qquad (given)$$

$$\frac{\exists x (\beta_x \to Q_x)}{\exists x (\beta_x \to Q_x)} \qquad (given)$$

$$\frac{\exists x (\beta_x \to Q_x)}{\exists x (\beta_x \to Q_x)} \qquad (given)$$

$$\frac{\exists x (\beta_x \to Q_x)}{\exists x (\beta_x \to Q_x)} \qquad (given)$$

$$\frac{\exists x (\beta_x \to Q_x)}{\exists x (\beta_x \to Q_x)} \qquad (given)$$

$$\frac{\exists x (\beta_x \to Q_x)}{\exists x (\beta_x \to Q_x)} \qquad (given)$$

$$\frac{\exists x (\beta_x \to Q_x)}{\exists x (\beta_x \to Q_x)} \qquad (given)$$

$$\frac{\exists x (\beta_x \to Q_x)}{\exists x (\beta_x \to Q_x)} \qquad (given)$$

$$\frac{\exists x (\beta_x \to Q_x)}{\exists x (\beta_x \to Q_x)} \qquad (given)$$

$$\frac{\exists x (\beta_x \to Q_x)}{\exists x (\beta_x \to Q_x)} \qquad (given)$$

$$\frac{\exists x (\beta_x \to Q_x)}{\exists x (\beta_x \to Q_x)} \qquad (given)$$

$$\frac{\exists x (\beta_x \to Q_x)}{\exists x (\beta_x \to Q_x)} \qquad (given)$$

$$\frac{\exists x (\beta_x \to Q_x)}{\exists x (\beta_x \to Q_x)$$

$\forall x P_x, \forall x Q_x \models \forall x (P_x \land Q_x)$

1. $\forall x P_x$ (9/ve) 2. Yx Qx (giva) 2. YXXXX
3. C, generic constant
4. Pc $E_{Y}(1)$ 5 Qc $E_{Y}(2)$ $V_{X}(P_{X} \wedge Q_{X})$ $I_{Y}(3,6)$

Lecture 7 Page 2

Jy Xx Rxy = Yx Jy Rxy

1. Jy Vx Rxy

2. Vx Rxc, (c exist. constant (1))

3. Rdc (d generic constant.

4. Jy Rdy
$$I_{3}(3; c=y)$$

5. Vx Jy Rxy $I_{4}(2,4)$

6. Vx Jy Rxy $E_{7}(1,2,5)$

Reconverse at 17.03

(1) \forall x Jy Rxy \forall Jy Yx Rxy (other way around)

1 HxtyRxy = Yx Rxx

(3) $\exists x (P_x \land R_x), \forall x (P_x \Rightarrow Q_x) \neq \exists x (Q_x \land R_x)$

MRONG!

WRONG!

Why? live 2

me 4

cues get not of

(Remember what I said

with this example!)

YxyyRxy = Yx Rxx

1. $\forall x \forall y k x y$ (given) 2 c (universal constant)

Yykcy Ey(1, x=c)

4 RCL $E \neq (3, y=c)$

J. XXXX IY (2,4)

ι. Α×(β	× > 6×)	(given)		
2. Jx (1	Px NRx)	(give)		
3,	PCARC	, E _J	$(2, \chi=c),$	c exist. consta	d
4.	Pc >Qc	EV	(1, X=c)		
5	Pc	Ex(3) 21	,	
7	Re Qc 1k		14.5)		
g	,	(c 1, (6,7)		
9	Jx (Qx M		$I_{\mathcal{F}}(8)$	•	
(0]x[$Q_{\times} \wedge R_{\times}$		$E_{7}(2, 3,$	9)	