Theorem: Are # of inversions in an array of n2.)
n dutinet elemente is n(n-1)/4. n2-n Vo(n) Proot: Proot:
Consider a list L'OT vi trage.
elements
Tours of indices (i, i) All elements
For every poir of indices(i,j) are equally likely.
in Ly
Total # of inversions for both La Lr. is $\binom{n}{2} = \frac{n(n-1)}{2}$
is $\binom{N}{2} = \frac{1}{2}$
Average # 8 inversions. $\frac{n!}{2n!}\binom{n}{2}$
2n
$=\frac{1}{1}$
And along that sorts adjacent elements
Any algorithm that sorts adjacent elements on average.
Silvi Bubble, Exchange. Selection. Selection.
Bubble, adjacent
Selection. J. exements.