Q1.(a): True False:

i. A matching M in a graph G=(V,E) is a maximum matching if and only if there is no Maugmenting path in G

True

ii. A disconnected simple acyclic graph does not have a spanning tree.

False

iii. The endpoints of a cut-edge are both cut-vertices.

False. Counterexample: Take any tree of at least two vertices. Every edge is a cut-edge. However, the leaves are not cut-vertices. So any edge with a leaf as an endpoint is a counterexample.

Q1. (b) For each situation, would you find an Euler circuit or a Hamilton Circuit?

i. The department of Public Works must inspect all streets in the city to remove dangerous debris.

Solution: Eulerian circuit (Considering debris as nodes and streets as edges, the problem is traversing every street (edge) once to locate debris; Eulerian circuit)

ii. Relief food supplies must be delivered to eight emergency shelters located at different sites in a large city.

Solution: Hamiltonian circuit (Emergency shelter = nodes, streets = edges; Considering and The problem is to visit every shelter (node) once; Hamiltonian circuit)

iii. The Department of Public Works must inspect traffic lights at intersections in the city to determine which are still working.

Solution: Hamiltonian circuit (Intersection = nodes, streets = edges; Considering and The problem is to visit every intersection (node) once; Hamiltonian circuit)

Q2 (a) For each of the graphs K_n , P_n , C_n and W_n , give: the order, the size, the maximum degree and the minimum degree in terms of n.

Solution:

$$K_n = (V, E): |V| = n, |E| = \binom{n}{2}, \ \delta(K_n) = n - 1, \ \Delta(K_n) = n - 1$$

$$P_n = (V, E): |V| = n, |E| = n - 1, \ \delta(P_n) = 1, \ \Delta(P_n) = 2$$

$$C_n = (V, E): |V| = n, |E| = n, \ \delta(C_n) = 2, \ \Delta(C_n) = 2$$

$$W_n = (V, E): |V| = n, |E| = 2 \cdot n - 2, \ \delta(W_n) = 3, \ \Delta(W_n) = n - 1$$

(b). Draw a bipartite graph of order 6. Give its adjacency list and a drawing.

Solution:

(c). Consider the graphs G1 = (V1; E1) and G2 = (V2; E2). Give the order, the degree of the vertices and the size of $G1 \times G2$ in terms of those of G1 and G2. Solution:

Order
$$|V_1||V_2|$$
, $d_{G_1\times G_2}(u_1, u_2) = d_{G_1}(u_1) + d_{G_2}(u_2)$ and size $|V_1||E_2| + |V_2||E_1|$.

(d). Prove or give a counterexample: any two graphs with the same degree sequence are isomorphic

Solution: hexagon which is connected and two separated triangles, which is obviously not connected, yet their degree sequences are the same.

- Q3. (a) Graph 1: Has a
- (b) Give the line graph of C_5 and $G = (\{1, 2, 3, 4, 5\}; \{12, 23, 24, 25, 34; 35, 45\})$
- (c) Find the diameter (maximum of all vertex eccentricities) of the Peterson's graph.

Solution:

$$G_1$$
: $e(v) = 2$, $1 \le v \le 10$; $r(G) = 2$; all the vertex are central.

(d) Give a connected graph G = (V, E) and a vertex $u \in V$ for the following relation : D(G) = D(G - u). D is the diameter of G (maximum of all vertex eccentricities)

Solution:

$$G = W_6$$
 and u a vertex of degree 3.

Q4. (a): Let us consider the graphs whose adjacency list is given.

\mathbf{a}	b	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{f}	g	h	i	j
d	d	h	\mathbf{a}	\mathbf{a}	\mathbf{a}	b	c	b	b
\mathbf{e}	\mathbf{g}		b	\mathbf{d}	\mathbf{d}	i		\mathbf{g}	g
\mathbf{f}	i		\mathbf{e}			j			
	i		\mathbf{f}						

- i. Draw the graph
- ii. Using the algorithm BFS, find the distance from the vertices a and b to each of the other vertices of the connected component to which they belong

[Note: You are expected to show the BFS traversal as intermediary steps for distance computation]

Solution:

v	\mathbf{a}	b	\mathbf{d}	\mathbf{e}	f	\mathbf{g}	i	j
d(a,v)	0	2	1	1	1	3	3	3
d(b,v)	2	0	1	2	2	1	1	1

Q5b. Obtain the shortest distance and shortest path from vertex 1 in the network shown below :

Solution:

Iteration 3:

Step 1. $P = \{1, 2, 3\}, L(1) = 0, L(2) = 4, \text{ and } L(3) = 5.$ L'(4) = 7, L'(5) = 10, and L'(6) = 9. Adjoin vertex 4 to P. The arc (3, 4) is labeled.

Step 2. $P = \{1, 2, 3, 4\}$, and L(4) = 7. $L'(5) = \min\{10, L(4) + a(4, 5)\}$, $L'(6) = \min\{9, L(4) + a(4, 6)\}$, and $L'(7) = \min\{\infty, L(4) + a(4, 7)\}$.

Iteration 4:

Step 1. $P = \{1, 2, 3, 4\}, L(1) = 0, L(2) = 4, L(3) = 5, \text{ and } L(4) = 7. L'(5) = 10, \text{ and } L'(6) = 9. \text{ Adjoin vertex 6 to } P. \text{ The arc } (3, 6) \text{ is labeled.}$

Step 2. $P = \{1, 2, 3, 4, 6\}$, and L(6) = 9. $L'(5) = \min\{10, L(6) + a(6, 5)\}$, and $L'(7) = \min\{\infty, L(6) + a(6, 7)\}$.

Iteration 5:

Step 1. $P = \{1, 2, 3, 4, 6\}, L(1) = 0, L(2) = 4, L(3) = 5, L(4) = 7, and L(6) = 9. L'(5) = 10, and L'(7) = 17. Adjoin vertex 5 to <math>P$. The arc (3, 5) is labeled.

Step 2. $P = \{1, 2, 3, 4, 6, 5\}, \text{ and } L(5) = 10. L'(7) = \min\{17, L(5) + a(5, 7)\}.$

Iteration 6:

Step 1. $P = \{1, 2, 3, 4, 6, 5\}, L(1) = 0, L(2) = 4, L(3) = 5, L(4) = 7, L(6) = 9, and L(5) = 10. L'(7) = 16.$ Adjoin vertex 7 to P. The arc (5, 7) is labeled.

Step 2. $P = \{1, 2, 3, 4, 6, 5, 7\}$, and L(7) = 16. At this stage, P = V.

The labeled arcs (1, 2), (2, 3), (3, 4), (3, 5), (3, 6), and (5, 7) constitute a shortest path arborescence rooted at vertex 1, as shown in Fig. 5-2.

Q5.c: Every tree with two or more vertices is 2-chromatic.

Solution: Chose any vertices v in the given tree T. Let T be a rooted tree at vertex v. suppose the first color is assigned to the root v. Paint all the vertices adjacent to v with second color. Next paint the vertices adjacent to this using first color. Continue this process till every vertex in T has been painted. Hence all the vertices at odd distance from v have second color. While v and vertices at even distances from v have first color.

Q6.a: Find the chromatic number of the following graph

Solution: d(b) = d(g) = d(c) = 3 and

d(a) = d(d) = d(f) = 4, d(e) = 5.

Using the inequality $\chi(G) \le 1 + \Delta(G)$

 $\chi(G) \leq 5$.

Now since G has a triangle sub graph $3 \le \chi(G) \le 5$.

Suppose $\chi(G) = 5$ then G should have 5 vertices with degree at least 4, but there are only 3 vertices in G . $\chi(G) \neq 5$.

Hence $3 \le \chi(G) \le 4$.

Now G is not 3 colourable since a, e, g, f which are connected each other, must be assigned different colours.

Therefore χ (G) = 4.

Q6.b: For the following bipartite graph, provide the maximum matching, minimum vertex cover, maximum independent set and minimum edge cover.

Solution:

i. Maximum matching: {1,6} {2,8} {5,9}

ii. Minimum vertex cover: 1,5,8

iii. Maximum independent set: {2,3,4,6,7,9}

iv. Minimum edge cover: {5,8}