Analytical Mechanics: Worksheet 5

Non-holonomic constraints

Christophe De Beule (christophe.debeule@gmail.com)

1 Theory

Consider a mechanical system with Lagrangian $L = L(q, \dot{q}, t)$ subject to a constraint

$$c_1(q,t)\delta q_1 + \dots + c_n(q,t)\delta q_n = 0, \tag{\heartsuit}$$

where c_k are functions of the generalized coordinates $q = \{q_1, \ldots, q_n\}$ and time t. If these functions can be written as

 $c_i(q,t) = \frac{\partial f}{\partial q_i},$

then the constraint is *integrable* and can be expressed as f(q,t) = 0 (holonomic). However, if this is not the case then the constraint is called *non-integrable*; it cannot be reduced to a constraint on coordinates alone. Equation (\heartsuit) is a special case of a *Pfaffian* constraint:

$$\sum_{i} c_{i}(q,t)\dot{q}_{i} + c_{0}(q,t) = 0,$$

with $c_0 = 0$. Non-integrable Pfaffian constraints are a subset of general non-holonomic constraints $f(q, \dot{q}, t) = 0$ that are linear in the generalized velocities. An example of a non-Pfaffian constraint is a constant-speed constraint, or inequalities, called unilateral constraints $f(q, t) \geq 0$, e.g. a mass that slides off a sphere with $r \geq R$.

A non-holonomic constraint of the form (\heartsuit) can still be dealt with using the method of Lagrange multipliers. Similar as before, we obtain

$$\frac{\delta L}{\delta q_i} \equiv \frac{\partial L}{\partial q_i} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i} = -\lambda(t) c_i(q, t),$$

which is equivalent to a free variational problem with

$$\delta \overline{L} = \delta L + \lambda \left(c_1 \delta q_1 + \dots + c_n \delta q_n \right).$$

In this worksheet, we consider rolling without slipping. This is a typical example of a non-integrable constraint that involves terms linear in the velocities. Another example is an ice skate, where motion is constrained along the skate blade without sideways slipping.

2 Rolling disk

We consider an upright coin that rolls without slipping down a slope, see Figure 1. The configuration of the coin is determined by the coordinates of the contact point x and y and the constraint of rolling without slipping.

As shown in the figure, θ is the heading angle of the coin, defined here as the angle between the y axis and the velocity \vec{v} of the contact point, and ϕ is the rotation angle of the coin around its axle. Due to the rolling constraint, we cannot express x and y as functions of θ and ϕ . We can understand this because x and y generally do not return to themselves after a closed path in the (θ, ϕ) plane. Instead, they also depend on the *history of the system*. It is therefore impossible to describe the coin with only two coordinates, even though there are only two degrees of freedom in this problem. This is a general feature of non-holonomic systems.

Figure 1: A coin rolls from a slope α without slipping. We also assume that the coin stays perpendicular to the surface of the slope as it rolls. As the coin rolls, it rotates through an angle ϕ about its own axis. In addition, the coin can turn by a heading angle θ about the axis through the contact and perpendicular to the slope.

- (a) Determine the non-holonomic constraints of this system by expressing δx and δy in terms of the angles θ and ϕ and their variations. Determine the functions $c_i(q,t)$.
- (b) Calculate the kinetic energy. It contains both translational (x and y) and rotational contributions $(\theta \text{ and } \phi)$. For the latter, you need to calculate the moment of inertia around an axis \hat{x}_k :

$$I_k = \int d^3r \, \sigma(\vec{r}) \left(r^2 - x_k^2\right).$$

Assume that the coin has no thickness and a uniform mass density σ . Determine a relation between I_{\perp} and I_{\parallel} .

- (c) Calculate the potential energy and determine the Lagrangian. Show that we require three coordinates: θ , ϕ , and y, even though there are only two degrees of freedom.
- (d) Use a Lagrange multiplier λ to include the rolling constraint on y to the variation of the action δS and obtain the equations of motion.
- (e) Find an expression for λ and solve the equations of motion for $\theta(t)$ and $\phi(t)$.
- (f) Substitute $\theta(t)$ and $\phi(t)$ into the expression for \dot{x} and \dot{y} . You can obtain the latter from the rolling constraint, taking a variation that coincides with the change over a time dt.
- (g) Integrate and find x(t) and y(t).