

# SALES FORECASTING AND INVENTORY MANAGEMENT

THANKS TO STEVE MITCHELL FOR MENTORING

# **MOTIVATION**

# Forecasts:

- help reduce costs and improve Customer Service Level.
- drive to better trade-off between cost of excess and cost of shortage in inventory management.
- help build efficient long planning horizon
- facilitate management with data-driven decisions

# PROJECT SCOPE

The goal is to use Machine Learning and forecasting techniques to manage inventory of a grocery retailer. It has 54 retail stores and 33 different groups of products. The task is to model the behaviors of 1782 time series for forecasting.

The dataset used come from Corporación Favorita, a large Ecuadorian-based grocery retailer. Thanks to Kaggle for making this dataset available for free.

#### TABLE OF CONTENTS

- Overview on the demand
- Monthly sales forecast at different stores
- Monthly sale forecast at different stores for different categories of products
- Daily sales forecast at different stores
- Daily sales forecast at different stores for different categories of products
- Improvement on the model
- Conclusion

## Weekly seasonality factors/days

| Days      | Factors |
|-----------|---------|
| Monday    | 0.97    |
| Tuesday   | 0.90    |
| Wednesday | 0.94    |
| Thursday  | 0.79    |
| Friday    | 0.91    |
| Saturday  | 1.21    |
| Sunday    | 1.28    |

# Global tendency

# Annual seasonality/month

| Months    | Factors |
|-----------|---------|
| January   | 1.08    |
| February  | 0.98    |
| March     | 1.08    |
| April     | 1.11    |
| May       | 1.15    |
| June      | 1.15    |
| July      | 1.21    |
| August    | 0.96    |
| September | 0.76    |
| October   | 0.79    |
| November  | 0.79    |
| December  | 0.94    |

#### Sales by store types

| Type | Sales share | # store/54 |
|------|-------------|------------|
| А    | 32.27       | 9          |
| В    | 14.00       | 8          |
| С    | 15.00       | 15         |
| D    | 32.58       | 18         |
| Е    | 6.15        | 4          |

### Sales by product categories

| Categories           | Sales share |
|----------------------|-------------|
| Grocery I            | 30.32       |
| Beverages            | 21.30       |
| Produce              | 13.70       |
| Rest (30 categories) | 34.68       |

- 65.32% of the sales within 3 categories of product
- 2 types of store lead the sales ranking

#### Beverages growth from 2015-2017



#### Grocery I growth from 2015-2017



#### Produce growth from 2015-2017



Produce category
Poisson distribution - slow moving items



Beverages category
Tends to a normal distribution - medium rate



Grocery I category
Tends to a normal distribution - Medium rate



# Monthly sales

### Random Forest Regressor

Grocery I - prediction global tendency



#### Grocery I - store 4



#### Grocery I - store 9



#### Grocery I - store 25



# Model performance for "GROCERY I" category by store

| Error percentage % | Model accuracy |
|--------------------|----------------|
| 5                  | 28.90          |
| 10                 | 56.87          |
| 15                 | 80.09          |
| 20                 | 91.20          |

#### Beverages - prediction global tendency



#### Beverages - store 14



#### Beverages - store 50



#### Beverages - Store 35



# Model performance for "BEVERAGES" category by store

| Error percentage % | Model accuracy |
|--------------------|----------------|
| 5                  | 20.51          |
| 10                 | 44.99          |
| 15                 | 63.64          |
| 20                 | 78.32          |

#### Produce - prediction global tendency



#### Produce - Store 1



#### Produce - Store 9



#### Produce - Store 25



# Model performance for "PRODUCE" category demand by store

| Error percentage % | Model accuracy |
|--------------------|----------------|
| 5                  | 40.56          |
| 10                 | 59.67          |
| 15                 | 71.56          |
| 20                 | 76.45          |

Model performance on predicting monthly sales at each store for financial planning

| Error percentage % | Model accuracy |
|--------------------|----------------|
| 5                  | 28.67          |
| 10                 | 57.81          |
| 15                 | 69.68          |
| 20                 | 78.79          |
| 30                 | 90.21          |

Monthly sales by store

Model performance on predicting monthly sales for remaining categories at each store for transportation planning

| Error percentage % | Model accuracy |
|--------------------|----------------|
| 5                  | 25.34          |
| 10                 | 45.69          |
| 15                 | 61.32          |
| 20                 | 72.31          |

Each category of product at each store

# Daily sales

SARIMAX model with no period lead time for "BEVERAGES" category



Model performance on predicting daily sales for "BEVERAGES" category at each stores

| Error percentage % | Model accuracy |
|--------------------|----------------|
| 5                  | 28.19          |
| 10                 | 48.90          |
| 15                 | 66.96          |
| 20                 | 75.77          |

SARIMAX model with no lead time period for "PRODUCE" category



Model performance on predicting daily sales for "PRODUCE" category at each stores

| Error percentage % | Model accuracy |
|--------------------|----------------|
| 5                  | 28.63          |
| 10                 | 54.19          |
| 15                 | 70.48          |
| 20                 | 79.30          |

SARIMAX model with no lead time period for "GROCERY I" category



Model performance on predicting daily sales for "PRODUCE" category at each stores

| Error percentage % | Model accuracy |
|--------------------|----------------|
| 5                  | 28.63          |
| 10                 | 51.54          |
| 15                 | 67.84          |
| 20                 | 78.41          |

#### IMPROVEMENT ON THE MODEL

- More information on the dataset to handle missing and low values. Those values decrease the model accuracy.
- Case by case analysis. Some series have incompatible behaviors that requires different types of features engineering.

