

K. J. Somaiya College of Engineering, Mumbai-77

(A Constituent College of Somaiya Vidyavihar University)

Course Name:	Elements of Electrical and Electronics Engineering	Semester:	I
Date of Performance:	28/11/ 2023	Batch No:	C5_3
Faculty Name:	SPJ	Roll No:	16010123325 (53)
Faculty Sign & Date:		Grade/Marks:	/ 25

Experiment No: 7

Title: Measurement of Power using Two Wattmeter Method

Aim and Objective of the Experiment:

• To measure the power of three phase power using Two Wattmeter Method

COs to be achieved:

CO2: Demonstrate and analyze steady state response of single phase and three phase circuits

EEEE Semester: I Academic Year: 2023-24

K. J. Somaiya College of Engineering, Mumbai-77

(A Constituent College of Somaiya Vidyavihar University) **Department of Sciences and Humanities**

Stepwise-Procedure:

- 1. Connect the circuit as shown in circuit diagram
- 2. Increase the load and note down the reading VL,IL,W1 and W2
- 3. Practically you will obtain total power W=W1+W2
- 4. Theoretically power is measured by using formula $P=\sqrt{3}V_LI_L\cos\phi$, using $\cos\phi=1(\text{unity})$ for resistive load.

Observation Table:

Sr.no	V _L (Volts)	I _L (Amp)		W ₁ (KW)		(KW)		W= (W ₁ +W ₂) (KW)		$P = \frac{\sqrt{3}V_LI_LCOS\phi}{(KW)}$	Lamp load given from lamp bank (KW)
		TH	PR	TH	PR	TH	PR	TH	PR		
1	415	-	0.9	-	40	1	45	-	680	646.9	6
2	415	-	1.7	-	70	-	80	_	1200	1221.9	12
3		-		-		-		-			
4		-		-		ı		_			

Theoretical Calculations:

Power= $\sqrt{3}$ x V_L x I_L x cos φ

 $\cos \phi = 1$

Power = Wattage rating of lamp load x No of lamps (One lamp is of 100W rating)

W1= $V_L \times I_L \times \cos(30+\varphi)$

Ф=0

 $W2=V_L \times I_L \times \cos (30-\varphi)$

Total Power=P=W1+W2

K. J. Somaiya College of Engineering, Mumbai-77

(A Constituent College of Somaiya Vidyavihar University) **Department of Sciences and Humanities**

Conclusion:

In summary, the Two Wattmeter Method proves to be a robust and accurate technique for measuring three-phase power, ensuring reliable assessments of power consumption in diverse electrical systems. This method enhances efficiency and precision in power measurement applications.

Signature of faculty in-charge with Date:

EEEE Semester: I Academic Year: 2023-24