Розпізнавання виду активності людини

Бурова Анастасія Кучерова Анна

- Розпізнавання людської діяльності це проблема класифікації послідовностей даних акселерометра, записаних спеціалізованими фітнес трекерами або смартфонами, на відомі чіт
- Це складна проблема, враховуючи велику кількість спостережень, що проводяться щосекунди, часовий характер спостережень та відсутність чіткого способу пов'язати дані акселерометра з відомими рухами.ко визначені рухи.

- Ми використовуємо дані акселерометра, зібрані від кількох користувачів, для побудови двонаправленої моделі LSTM та спробуємо класифікувати активність користувачів.
- Мережа з короткочасною пам'яттю, або LSTM, є, мабуть, найуспішнішою мережею RNN, оскільки вона долає проблеми навчання повторюваної мережі і, в свою чергу, використовується в широкому спектрі додатків.
- Нещодавно було показано, що такі методи забезпечують найсучасніші результати у складних завданнях розпізнавання активності при відсутністі інженерних характеристик даних.

Мета

- Завантажити дані розпізнавання виду активності людини
- Скласти модель класифікації LSTM
- Оцінити модель

DATASET

Дані активності людей ми беремо з <u>WISDM: Wireless Sensor</u> <u>Data Mining</u>

Мережі LSTM

LSTM (довга короткострокова пам'ять) - тип рекурентної нейронної мережі, здатний навчатися довгостроковим залежностям.

Повторюваний модуль LSTM складається з чотирьох взаємодіючих шарів.

Опис процесу

Спочатку ми завантажили дані

```
!gdown --id 152sWECukjvLerrVG2NUO8gtMFg83RKCF --output
WISDM_ar_latest.tar.gz
!tar -xvf WISDM_ar_latest.tar.gz
```

Дані мають наступні атрибути:

- user_id унікальний ідентифікатор користувача, який здійснює цю активність;
- activity категорія поточної активності;
- x_axis, y_axis, z_axis дані акселерометра для кожної вісі.

	user_id	activity	timestamp	x_axis	y_axis	z_axis
0	33	Jogging	49105962326000	-0.694638	12.680544	0.503953
1	33	Jogging	49106062271000	5.012288	11.264028	0.953424
2	33	Jogging	49106112167000	4.903325	10.882658	-0.081722
3	33	Jogging	49106222305000	-0.612916	18.496431	3.023717
4	33	Jogging	49106332290000	-1.184970	12.108489	7.205164

Активність людини ми розділяємо на 6 видів:

- ходьба
- біг
- піднімання сходами
- спуска зі сходів
- сидіння
- нерухомий в положенні стоячи

Маємо достатньо велику кількість користувачів з достатньою кількістю записів

Розглянемо графік активності людини в положенні сидячи

Розглянемо графік активності людини під час бігу

- Далі перетворюємо дані (користувача та з кожної осі акселерометра) у послідовності разом із категорією для кожної з них.
- Потім ми класифікуємо види активностей, реалізуючи модель LSTM.
- Після цього ми робимо оцінку навчального процесу для прогнозування видів активності.

Ось як пройшов тренувальний процес:

Тренування відбулось на 20208 зразках, перевірка на 2246 зразках.

На кожній з 20 епох час навчання становив приблизно 225 секунд

Точність передбачення даних

model.evaluate(X_test, y_test)

[0.3619675412960649, 0.8790064]

Це приблизно 88%

• Розглянемо матрицю:

Отже, в результаті нашої програми можна помітити, що наша модель не дуже точно аналізує активності піднімання/спускання сходами. Але інші види активності оцінені досить точно.

Для реалізації даного програмного забезпечення ми використовували наступні технології та бібліотеки:

- numpy
- gdown
- tensorflow-gpu
- pandas
- seaborn
- matplotlib
- pylab

Дякуємо за увагу!

