# Advanced Machine Learning

Likhit Nayak

# Steepest Descent

In gradient descent, we fix the learning rate in advance:

$$\theta = \theta - \eta \cdot \nabla_{\theta} J(\theta)$$

In steepest descent, we find the learning rate that minimizes the following function:

$$J(\theta - \eta \cdot \nabla_{\theta} J(\theta))$$

#### Newton's Method

Using second-order derivatives to minimize the objective function:

$$J(\boldsymbol{\theta}) = \mathbb{E}_{\mathbf{x}, \mathbf{y} \sim \hat{p}_{\text{data}}(\boldsymbol{x}, y)}[L(f(\boldsymbol{x}; \boldsymbol{\theta}), y)] = \frac{1}{m} \sum_{i=1}^{m} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), y^{(i)})$$

We use second-order Taylor series expansion:

$$J(\boldsymbol{\theta}) \approx J(\boldsymbol{\theta}_0) + (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_0) + \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \boldsymbol{H} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)$$

# **BFGS Algorithm**

Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm attempts to address the computational burdens of Newton's algorithm. The Newton's update is given by:

$$\boldsymbol{\theta}^* = \boldsymbol{\theta}_0 - \boldsymbol{H}^{-1} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_0)$$

Instead of calculating **H** and inverting it, we just approximate it using a positive-definite matrix **M**:

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \epsilon^* \boldsymbol{M}_t \boldsymbol{g}_t$$

#### **Batch Normalization**

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};
               Parameters to be learned: \gamma, \beta
Output: \{y_i = BN_{\gamma,\beta}(x_i)\}
   \mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i
                                                                             // mini-batch mean
    \sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2
                                                                       // mini-batch variance
    \widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}
                                                                                          // normalize
      y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)
                                                                                  // scale and shift
```

loffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network training by reducing internal covariate shift." *International conference on machine learning*. pmlr, 2015.

#### **Batch Normalization**



loffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network training by reducing internal covariate shift." *International conference on machine learning*. pmlr, 2015.

# Greedy supervised pre-training



### **Transfer Learning**



Yosinski, Jason, et al. "How transferable are features in deep neural networks?." Advances in neural information processing systems 27 (2014).

# **Transfer Learning**



Yosinski, Jason, et al. "How transferable are features in deep neural networks?." Advances in neural information processing systems 27 (2014).