

MICROWAVE REMOTE SENSING

Geospatial Programming

Modern Integrated Surveying Technologies 2023

Thepchai Srinoi

Graduate Student and Teaching Assistant,

Department of Survey Engineering Chulalongkorn University

Atmospheric Windows - Welcome to RADAR

CHULA **ENGINEERING**

Table 2. Advantages of RADAR remote sensing.

Advantages

Primary

- Certain microwave frequencies will penetrate clouds, allowing allweather remote sensing.
- Synoptic views of large areas for mapping at 1:10,000 to 1:400,000.
 Satellite coverage of cloud-shrouded countries is possible.
- · Coverage can be obtained at user-specified times, even at night.
- Permits imaging at shallow look angles, resulting in different perspectives that cannot always be obtained using aerial photography.
- Senses in wavelengths outside the visible and infrared regions of the electromagnetic spectrum, providing information on surface roughness, dielectric properties, and moisture content.

Secondary

- Certain frequencies of microwave energy penetrate vegetation, sand, and surface layers of snow.
- Based on its own illumination, and the angle of illumination can be controlled.
- Enables resolution to be independent of distance to the object, with the size of a resolution cell being as small as 1 × 1 m.
- Images can be produced from different types of polarized energy (HH, HV, VV, VH).
- May operate simultaneously in several wavelengths (frequencies) and thus has multi-frequency potential.
- Can measure ocean wave properties, even from orbital altitudes.
- Can produce overlapping images suitable for stereoscopic viewing and radargrammetry.
- Supports interferometric operation using two antennas for 3-D mapping, and analysis of incident-angle signatures of objects.

a. Shuttle photograph

b. SIR-C C-band HV.

c. SIR-C L-band HV.

d. SIR-C L-band HH.

Passive and Active Remote Sensing

CHULA **ENGINEERING**

Innovation toward Sustainability | ∧CTN⊪W

RADAR - Radio Detection and Ranging

CHULA **ENGINEERING**

Innovation toward Sustainability | ∧CTN⊪W

surface scattering

from the top

of the canopy

scattering

volume scattering from the ground

FROM Real to Synthetic Aperture RADAR

CHULA **ENGINEERING**

Innovation toward Sustainability | ACTN#W

Doppler principles are then used to monitor the returns from all these additional microwave pulses to synthesize the azimuth resolution to become one very narrow beam.

Orbital Direction and Geometric Distortion

CHULA **ENGINEERING**

Innovation toward Sustainability | ACTN#W

SAR Polarization

CHULA **ENGINEERING**

Innovation toward Sustainability | ACTN#W

$$\overrightarrow{S} = \frac{1}{\mu_0} \overrightarrow{E} \times \overrightarrow{B}$$

RELATIVE SCATTERING STRENGTH BY POLARIZATION:

Rough Surface Scattering $|S_w| > |S_{HH}| > |S_{HV}|$ or $|S_{VH}|$ **Double Bounce Scattering** |Su |>|Su |>|Su | or |Su |

Main source of |S_{ev} | and |S_{ve} | **Volume Scattering**

is received by the antenna

horizontal receive

SAR Product

A heavy rain in the lower center of the image appears as a black "cloud" in the X-band image, more faintly in the C-band image, and is invisible in the L-band image.

SAR Product - Polarimetry

CHULA **ENGINEERING**

Innovation toward Sustainability | ∧CTN⊪W

SAR Product – Object Detection

CHULA **ENGINEERING**

Innovation toward Sustainability | ∧CTN⊪W

Container terminals

Ship arrived to oil terminal

Movement of trains, coal transport

Floating roof oil tanks

Exploiting automated change detection on Persistent Monitoring high-resolution Imagery

SAR Product – Crop and Flood Monitoring

CHULA **SNGINEERING**

Innovation toward Sustainability | ∧CTN⊪W

SAR Polarimeteric analysis of agricultural crops. Magnitude (above) and phase (below) of the interferometric coherence for a wheat field throughout the plant growth season.

Flooded image

Optical + SAR Research - LULC Classification

CHULA **ENGINEERING**

Innovation toward Sustainability | ∧CTN⊪W

Input : Optical + SAR image

A Synthesizing Land-cover Classification Method Based on Google Earth Engine:

A Case Study in Nzhelele and Levhuvu Catchments, South Africa

https://doi.org/10.1007/s11769-020-1119-y

30°30'E

31°00'E

Land-cover map of Nzhelele and Levhuvu catchments, South Africa in 2017–2018

Optical + SAR Research - Height Estimation

CHULA **SNGINEERING**

Innovation toward Sustainability | ACTN#W

THE END

Geospatial Programming

Modern Integrated Surveying Technologies 2024

Thepchai Srinoi

Master Degree Student and Teaching Assistant,

Department of Survey Engineering Chulalongkorn University