Relazione Laboratio TLN – Mazzei

L'esercizio scelto è il numero 1, ovvero la realizzazione di un PoS Tagger per lingue morte (latino e greco). Il codice è stato scritto in Python.

- I. Librerie
- II. Strutture Dati
- III. Struttura Codice e Algoritmi
- IV. Conclusioni

I. Librerie

Le librerie utilizzate sono:

- I. Pathlib
- II. Numpy
- III. Pyconll
- I. Pathlib: libreria utilizzata per gestire i percorsi file all'interno del codice.
- II. Numpy: libreria utilizzata per facilitare l'utilizzo di array multidimensionali e matrici, arricchito con delle funzioni per poter operare in modo efficiente.
- III. Pyconll: libreria utilizzata per lavorare in modo facile con il formato CoNLL-U.

II. Strutture Dati

Le pricipali strutture dati utilizzate sono:

- I. Dizionario
- II. Matrice
- III. Array

I. Dizionario

Il dizionario è stata la struttura dati più usata nel codice per molteplici aspetti: è veloce sia nel memorizzare sia nel recuperare i dati senza dover scannerizzare l'intera collezione di dati, le chiavi del dizionario possiedono un'unica referenza e sono associabili a dei valori che sono mutabili. Un esempio è il dizionario $eprob = \{'SoS -> I': 0.13, 'EoS -> You': 0.04\}$ in cui vengono salvate le probabilità di emissione: la prima chiave unica dell'esempio è composta dal pos_tag "SoS", seguita da una freccia, seguita dalla parola "I"; il valore associato alla chiave è 0.13.

Una delle funzioni più usate per costruire i dizionari è *add_to_hash()* che dato in input un dizionario e una chiave inserisce la chiave nel dizionario e se la chiave esiste già incrementa di uno il suo valore.

```
# aggiunge una una chiave ad una hash oppure se esiste già incrementa il suo valore
idef add_to_hash(hash, key):
    if key not in hash.keys():
        hash.update({key: 1})
    else:
        hash[key] += 1
```

II. Matrice

La matrice è essenziale per il codice perché, a differenza del dizionario, abbiamo bisogno di mantenere i dati ben ordinati ed è la stessa struttura che viene utilizzata da Viterbi che sfrutteremo per trovare la migliore sequenza di pos tag nelle frasi analizzate.

Nel codice la matrice *mat* viene create tramite la libreria numpy (as np), le sue dimensioni sono composte come righe dal numero di pos_tag, come colonne la lunghezza della frase studiata più i due caratteri speciali SoS e EoS.

```
mat = np.zeros(shape=(pos_len, s_length + special_char))
```

III. Array

Quest'ultima struttura dati è molto efficiente, semplice e veloce, inoltre ci permette come la matrice di tenere conto dell'ordine dei dati e di operare su di essi.

Un esempio è l'array *backtrace* che, inizializzato sempre tramite la libreria numpy, contiene una sequenza di pos_tag di una frase ed infatti la sua grandezza è determinata dalla lunghezza della frase più i due caratteri speciali SoS e EoS.

```
backtrace = np.empty(shape=(s_length + special_char), dtype=np.dtype('U5'))
backtrace[0] = sos
```

III. Struttura Codice e Algoritmi

Le classi più importanti nel codice sono:

I. prob.py

II. viterbiAlg.py

III. baselineAlg.py

IV. smooth.py

I. prob.py

Questa classe è utilizzata per la maggiorparte dei calcoli delle probabilità che sono necessari agli algoritmi: sia quello di Viterbi, sia quello di baseline.

Fra le funzioni più importanti ci sono *e prob()*, *t prob fin()* e *most used tag()*.

In *e_prob()* viene calcolata la probabilità di emissione: per ogni token di ogni frase nel corpus si crea una stringa *name* contenente pos_tag e forma del token e si aggiunge al dizionario eprob tramite *add_to_hash()*, successivamente ogni chiave del dizionario si divide per la frequenza del suo tag che è salvata nel dizionario *n_pos* (il quale tiene traccia delle coppie (pos, frequenza pos)).

```
# calcola le emission probability e le ritorna tramite dizionario

def e_prob(corpus):

    # la prima parte della funzione calcola le occorrenze delle varie combinazioni tag -> parola
    for sentence in corpus:
        for token in sentence:
            name = token.upos + arrow + token.form
            add_to_hash(eprob, name)

# divide i value di eprob per il corrispettivo value di countpos, caratterizzato dallo stesso tag
    for name in eprob:
        # salva in una str la prima parte della key di eprob cioè il tag
        key_pos = name.split(space, 1)[0]
        if key_pos in n_pos.keys():
            eprob[name] /= n_pos[key_pos]

return eprob
```

La funzione *t_prob_fin()* come operazioni è simile concettualmente a *e_prob()* ma al posto di calcolare la probabilità di emissione calcola quella di transizione.

Nel primo ciclo viene calcolato il numero di volte che al pos_tag *i-1* segua il pos_tag *i*. Nel secondo ciclo invece si ricava la probabilità di transizione vera e propria dividendo per la frequenza dei pos_tag presenti nel corpus. Alla fine della funzione viene restituito il dizionario *t prob*.

```
def t_prob_fin(corpus):
   num_eos = 0
   for sentence in corpus:
              next_token = sentence.__getitem__(int(token.id))
               nameprob = token.upos + arrow + next_token.upos
               add_to_hash(tprob, nameprob)
               num_eos += 1
               nameprob = token.upos + arrow + eos
               add_to_hash(tprob, nameprob)
   for name in tprob:
       key_eos = name.split(arrow, 1)[1]
       key_sos = name.split(arrow, 1)[0]
       if key_eos == eos:
           tprob[name] /= num_eos
       elif key_sos != sos:
           tprob[name] /= n_pos[key_sos]
   return tprob
```

Infine la funzione *most_used_tag()* serve per contare i tag più usati per ogni parola: il primo ciclo serve per contare le frequenze delle combinazioni (parola / tag), il secondo per dividere le frequenze (parola / tag) per il numero di occorrenze della parola considerata, l'ultimo per associare a ogni parola il suo tag più frequente.

ultimo ciclo della funzione most used tag()

II. viterbiAlg.py

Questa classe possiede tre diverse funzioni: get eprob(), get tprob() e viterbi().

Le prime due funzioni sono simili e servono a ricavare dagli omonimi dizionari la probabilità di emissione per una determinata coppia di (parola, tag) e quella di transizione per una determinata coppia di (tag i-1, tag).

```
# se non trova la probabilità ritorna la save_prob altrimenti ritorna quella corretta

def get_eprob(pos, token):
    name = pos + arrow + token
    if name not in eprob:
        return save_prob
    return eprob[name]

# se non trova la probabilità ritorna la save_prob altrimenti ritorna quella corretta

def get_tprob(tag, oldtag):
    name = oldtag + arrow + tag
    if name not in tprob:
        return save_prob
    return tprob[name]
```

La funzione *viterbi()* riceve in input un corpus che viene analizzato nel primo ciclo frase per frase. Vediamo l'inizializzazione di alcune strutture dati che abbiamo già descritto prima come *mat* e *backtrace*, altre nuove come *toker_arr* che rappresenta un array di token lungo quanto la lunghezza della frase più i due caratteri speciali SoS e EoS. Da notare che *toker_arr* viene inizializzato subito con tutti le parole presenti nella frase. Da notare sia il parametro *max_col* che indica la probabilità massima della colonna precedente, sia il parametro *index_max_col* che rappresenta l'indice in cui si trova la probabilità massima di una colonna.

```
def viterbi(corpus):
    for sentence in corpus:
        s_length = sentence.__len__()
        mat = np.zeros(shape=(pos_len, s_length + special_char))
        token_arr = np.empty(shape=(s_length + special_char), dtype=np.dtype('U20'))
        count = 0
        token_arr[count] = sos
        backtrace = np.empty(shape=(s_length + special_char), dtype=np.dtype('U5'))
        backtrace[0] = sos
        max_col = 1
        # corrisponde a sos nel tagset, quindi è il valora iniziale
        index_max_col = 0

# inizializzo l'array di token
    for token in sentence:
        count += 1
        token_arr[count] = token.form

token_arr[count + 1] = eos
```

inizializzazione viterbi()

All'interno del primo ciclo troviamo il cuore dell'algoritmo di Viterbi: inizialmente si procede ad operare colonna per colonna e in ogni colonna riga per riga.

La prima colonna, trattata con il primo if, ha bisogno solo della probabilità di emissione che viene ricavata tramite la funzione *get_eprob()* dando in input il pos_tag della riga e la parola della colonna, questa probabilità è salvata nella casella della matrice corrispondente.

Per le colonne successive avrò bisogno di considerare, tramite l'else, anche la probabilità di trasmissione quindi memorizzerò in *old_tag* il pos_tag nella casella della colonna precedente con la probabilità più alta.

Il parametro *temp_prob* memorizza la probabilità da inserire nella casella della matrice e corrisponde al massimo della colonna precedente moltiplicato per mille (per evitare che il numero della probabilità fosse troppo basso infatti grazie a questo l'accuracy migliora di circa 1%), moltiplicato per *e prob* e *t prob*.

L'if poco dopo serve nel caso ci sia un numero negativo, nel caso ci sia nella casella della matrice rimane lo zero dell'inizializzazione.

L'ultimo if aggiorna l'*index_max_col*, il *backtrace* e *max_col* tranne per la prima colonna. Infine viene chiamata in causa la classe accuracyViterbi.py, in particolare la funzione *save_num()* che mantiene il conto delle parole classificate in modo corretto.

```
for col in range(token_arr.__len__()):
    for row in range(pos_len):
       if col == 0:
           e_prob = get_eprob(pos_array[row], token_arr[col])
           mat[row, col] = e_prob
           e_prob = get_eprob(pos_array[row], token_arr[col])
           old_tag = pos_array[index_max_col]
           t_prob = get_tprob(pos_array[row], old_tag)
           temp_prob = max_col * 1000 * float(e_prob) * float(t_prob)
           if temp_prob > mat[row, col]:
                mat[row, col] = temp_prob
       index_max_col = mat.argmax(axis=0)[col]
       backtrace[col] = pos_array[index_max_col]
       max_col = mat[index_max_col, col]
for i in range(backtrace.__len__()):
   print(token_arr[i] + space + backtrace[i])
accuracyViterbi.save_num(backtrace, sentence)
```

III. baselineAlg.py

Questa classe utilizza un algoritmo molto semplice per classificare le parole ai pos_tag: nel primo passo usa la funzione *most_used_tag()*, descritta in precedenza e appartenente alla classe prob.py, che ritorna un dizionario con una coppia (parola, pos_tag) in cui il pos_tag è il pos_tag più frequente per quella parola.

Dopo abbiamo due cicli for che analizzano ogni parola di ogni frase del corpus e controllano se la parola è presente nel dizionario o meno. Se non è presente utilizza una tecnica di smoothing per decidere il pos_tag, altrimenti prende il pos_tag dal dizionario. Come ultimo passaggio, prima di stampare l'accuracy, si aggiorna un dizionario che rappresenta in che modo sono state "taggate" le parole.

IV. smooth.py

Quest'ultima classe possiede sei funzioni che rappresentano vari tipi di smoothing che possono essere usati nel pos tagging.

La funzione *simple_smooth()* assume che il pos corretto sia "noun", la *simple_smooth_bis()* invece ritorna il pos "noun" o quello "verb" con il 50% di probabilità per ognuno come se fosse un testa o croce. Queste due funzioni sono applicabili solo per l'algoritmo baseline in questa versione ma ne sono state create di identiche per l'algoritmo di Viterbi.

La funzione *smooth_ntag()* ritorna invece una probabilità calcolata dividendo uno per tutti i pos_tag.

```
# ritorna sempre NOUN
def simple_smooth():
    return "NOUN"

# ritorna al 50% NOUN e 50% VERB
def simple_smooth_bis():
    if random.randint(0, 1) < 1:
        return "NOUN"
    else:
        return "VERB"</pre>
```

```
# ritorna la probabilità 1/n_tag

def smooth_ntag():
    pos_array = get_tags()
    l_tag = len(pos_array)
    prob = 1 / l_tag
    return prob
```

L'ultima funzione è la più complicata delle sei, riceve in input un corpus e un tag da considerare. Il primo ciclo aggiunge al dizionario *one_word_dict* le parole che compaiono nel corpus una sola volta, il secondo salva nello stesso dizionario i tag di queste parole, il terzo conta le frequenze dei tag di *one_word_dict* e le salva in *percentage_one_word*, infine l'ultimo divide le frequenze per il totale.

```
def smooth_dev(dev_corpus, tag):
   one_word_dict = {}
   percentage_one_word = {}
   word_dict = count_name(dev_corpus)
   for word in word_dict:
       if word_dict[word] == 1:
           one_word_dict.update({word: ''})
   for sentence in dev_corpus:
       for token in sentence:
           if token.form in one_word_dict:
               one_word_dict[token.form] = token.upos
   for word in one_word_dict:
       if one_word_dict[word] not in percentage_one_word:
           percentage_one_word.update({one_word_dict[word]: 1})
           percentage_one_word[word] += 1
   for pos in one_word_dict:
       percentage_one_word[pos] /= len(one_word_dict)
   return percentage_one_word[tag]
```

Altre Classi

Le altre classi sono: start.py che avvia il codice, accuracyViterbi.py e accuracyBaseline.py che entrambe stampano l'accuratezza uno per l'algoritmo di Viterbi, l'altro per la baseline.

IV. Conclusioni

Il PoS_Tagger funziona su entrambi le lingue antiche anche se la precisione è decisamente migliore per il latino come si vede nella prima figura rispetto al greco che è nella seconda immagine. Le performance dell'algoritmo di Viterbi migliorano notevolmente rispetto alla baseline che per essere il più semplice possibile si fonda solo sul concetto di pos_tag più frequentemente associato a una parola.

Le varie tecniche di smoothing sono abbastanza semplici e non hanno per questo portato troppo beneficio soprattutto per l'algoritmo di Viterbi in cui la probabilità di emissione per una parola sconosciuta è stata trattata assegnandole una probabilità molto bassa indifferentemente dal pos_tag preso in considerazione. Questa mi è sembrata la scelta da prendere in quanto i risultati sono stati migliori.

sentences number: 850 sentences number: 850

correct word: 19846 correct word: 23243

tot word: 24189 tot word: 24189

accuracy: 0.820455578982182 accuracy: 0.9608913142337426

Latino (baseline e Viterbi)

sentences number: 1137 sentences number: 1137

correct word: 11319 correct word: 16213

tot word: 22135 tot word: 22135

accuracy: 0.5113620962276937 accuracy: 0.7324599051276259

Greco (baseline e Viterbi)