Detect fake profiles in online social networks using Random Forest

```
In [54]:
         import sys
         import csv
         import datetime
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         from datetime import datetime
         import sexmachine.detector as gender
         from sklearn.preprocessing import Imputer
         from sklearn import cross validation
         from sklearn import metrics
         from sklearn import preprocessing
         from sklearn.metrics import roc curve, auc
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.cross validation import StratifiedKFold, train test split
         from sklearn.grid search import GridSearchCV
         from sklearn.metrics import accuracy score
         from sklearn.learning curve import learning curve
         from sklearn.metrics import classification report
         from sklearn.metrics import confusion matrix
         %matplotlib inline
```

function for reading dataset from csv files

```
In [55]: def read_datasets():
    """ Reads users profile from csv files """
    genuine_users = pd.read_csv("data/users.csv")
    fake_users = pd.read_csv("data/fusers.csv")
    # print genuine_users.columns
    # print genuine_users.describe()
    #print fake_users.describe()
    x=pd.concat([genuine_users,fake_users])
    y=len(fake_users)*[0] + len(genuine_users)*[1]
    return x,y
```

function for predicting sex using name of person

```
In [56]: def predict_sex(name):
    sex_predictor = gender.Detector(unknown_value=u"unknown", case_sensitiv
e=False)
    first_name= name.str.split(' ').str.get(0)
    sex= first_name.apply(sex_predictor.get_gender)
    sex_dict={'female': -2, 'mostly_female': -1, 'unknown':0, 'mostly_male':1, 'male': 2}
    sex_code = sex.map(sex_dict).astype(int)
    return sex_code
```

function for feature engineering

```
In [57]: def extract_features(x):
    lang_list = list(enumerate(np.unique(x['lang'])))
    lang_dict = { name : i for i, name in lang_list }
        x.loc[:,'lang_code'] = x['lang'].map( lambda x: lang_dict[x]).astype(i
        nt)
        x.loc[:,'sex_code']=predict_sex(x['name'])
        feature_columns_to_use = ['statuses_count','followers_count','friend
        s_count','favourites_count','listed_count','sex_code','lang_code']
        x=x.loc[:,feature_columns_to_use]
        return x
```

function for ploting learning curve

```
In [60]: def plot learning curve(estimator, title, X, y, ylim=None, cv=None,
                                  n jobs=1, train sizes=np.linspace(.1, 1.0, 5)):
             plt.figure()
             plt.title(title)
             if ylim is not None:
                 plt.ylim(*ylim)
             plt.xlabel("Training examples")
             plt.vlabel("Score")
             train_sizes, train_scores, test_scores = learning_curve(
                 estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes)
             train scores mean = np.mean(train scores, axis=1)
             train scores std = np.std(train scores, axis=1)
             test scores mean = np.mean(test scores, axis=1)
             test scores std = np.std(test scores, axis=1)
             plt.grid()
             plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
                               train scores mean + train scores std, alpha=0.1,
                               color="r")
             plt.fill between(train sizes, test scores mean - test scores std,
                               test scores mean + test scores std, alpha=0.1, colo
         r="a")
             plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
                      label="Training score")
             plt.plot(train sizes, test scores mean, 'o-', color="g",
                      label="Cross-validation score")
             plt.legend(loc="best")
             return plt
```

function for plotting confusion matrix

```
In [61]: def plot_confusion_matrix(cm, title='Confusion matrix', cmap=plt.cm.Blue
s):
    target_names=['Fake','Genuine']
    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(target_names))
    plt.xticks(tick_marks, target_names, rotation=45)
    plt.yticks(tick_marks, target_names)
    plt.tight_layout()
    plt.ylabel('True label')
    plt.xlabel('Predicted label')
```

```
In [62]: def plot roc curve(y test, y pred):
             false positive rate, true positive rate, thresholds = roc curve(y tes
         t, y pred)
             print "False Positive rate: ",false_positive_rate
             print "True Positive rate: ",true_positive_rate
             roc auc = auc(false positive rate, true positive rate)
             plt.title('Receiver Operating Characteristic')
             plt.plot(false_positive_rate, true_positive_rate, 'b',
             label='AUC = %0.2f'% roc auc)
             plt.legend(loc='lower right')
             plt.plot([0,1],[0,1],'r--')
             plt.xlim([-0.1,1.2])
             plt.ylim([-0.1,1.2])
             plt.ylabel('True Positive Rate')
             plt.xlabel('False Positive Rate')
             plt.show()
```

Function for training data using Random Forest

```
def train(X train,y train,X test):
In [63]:
             """ Trains and predicts dataset with a Random Forest classifier """
             clf=RandomForestClassifier(n_estimators=40,oob_score=True)
             clf.fit(X train,y train)
             print("The best classifier is: ",clf)
             # Estimate score
             scores = cross validation.cross val score(clf, X train,y train, cv=5)
             print scores
             print('Estimated score: %0.5f (+/- %0.5f)' % (scores.mean(), scores.st
         d() / 2)
             title = 'Learning Curves (Random Forest)'
             plot learning curve(clf, title, X train, y train, cv=5)
             plt.show()
             # Predict
             y_pred = clf.predict(X_test)
             return y test, y pred
```

```
In [64]: print "reading datasets....\n"
    x,y=read_datasets()
    x.describe()
```

reading datasets.....

Out[64]:

	id	statuses_count	followers_count	friends_count	favourites_co
count	2.818000e+03	2818.000000	2818.000000	2818.000000	2818.000000
mean	5.374889e+08	1672.198368	371.105039	395.363023	234.541164
std	2.977005e+08	4884.669157	8022.631339	465.694322	1445.847248
min	3.610511e+06	0.000000	0.000000	0.000000	0.000000
25%	3.620867e+08	35.000000	17.000000	168.000000	0.000000
50%	6.162253e+08	77.000000	26.000000	306.000000	0.000000
75%	6.177673e+08	1087.750000	111.000000	519.000000	37.000000
max	1.391998e+09	79876.000000	408372.000000	12773.000000	44349.000000

```
In [65]: print "extracting featues....\n"
```

x=extract_features(x)

print x.columns
print x.describe()

extracting featues.....

	statuses_count	followers_count	friends_count	favourites_count	\
count	$2818.\overline{000000}$	$2818.\overline{0}000000$	2818.000000	$2818.\overline{0}00000$	
mean	1672.198368	371.105039	395.363023	234.541164	
std	4884.669157	8022.631339	465.694322	1445.847248	
min	0.000000	0.000000	0.000000	0.000000	
25%	35.000000	17.000000	168.000000	0.000000	
50%	77.000000	26.000000	306.000000	0.000000	
75%	1087.750000	111.000000	519.000000	37.000000	
max	79876.000000	408372.000000	12773.000000	44349.000000	

	listed_count	sex_code	lang_code
count	$2818.\overline{000000}$	2818.000000	2818.000000
mean	2.818666	-0.180270	2.851313
std	23.480430	1.679125	1.992950
min	0.00000	-2.000000	0.000000
25%	0.00000	-2.000000	1.000000
50%	0.000000	0.000000	1.000000
75%	1.000000	2.000000	5.000000
max	744.000000	2.000000	7.000000

In [66]: print "spliting datasets in train and test dataset...\n"
X_train,X_test,y_train,y_test = train_test_split(x, y, test_size=0.20, random_state=44)

spliting datasets in train and test dataset...

In [67]: print "training datasets.....\n"
y_test,y_pred = train(X_train,y_train,X_test)

training datasets.....

e)) [0.93791574 0.93791574 0.94678492 0.9578714 0.93777778] Estimated score: 0.94365 (+/- 0.00395)

Classification Accuracy on Test dataset: 0.941489361702

```
In [70]: cm=confusion_matrix(y_test, y_pred)
    print('Confusion matrix, without normalization')
    print(cm)
    plot_confusion_matrix(cm)
```

```
Confusion matrix, without normalization [[265 3] [ 30 266]]
```


In [71]: cm_normalized = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
 print('Normalized confusion matrix')
 print(cm_normalized)
 plot_confusion_matrix(cm_normalized, title='Normalized confusion matrix')

Normalized confusion matrix [[0.98880597 0.01119403] [0.10135135 0.89864865]]

In [72]: print(classification_report(y_test, y_pred, target_names=['Fake','Genuin
e']))

support	f1-score	recall	precision	
268	0.94	0.99	0.90	Fake
296	0.94	0.90	0.99	Genuine
564	0.94	0.94	0.95	avg / total

In [73]: plot_roc_curve(y_test, y_pred)

