(Justifique las respuestas)

Cuestión 1 (2 puntos)

Dados los lenguajes:

$$L_1 = \{x \in \{a, b\}^* : aa \in Seg(x)\}$$

 $L_2 = \{x \in \{a, b\}^* : bb \notin Seg(x)\}$

(a) ($\frac{1}{2}$ punto) Describa el lenguaje $L_2 - L_1$.

Solución:

Como se ha visto, $L_2 - L_1$ puede describirse como $L_2 \cap \overline{L_1}$, esto es, las palabras sobre el alfabeto $\{a,b\}$ que no contienen el segmento aa ni el segmento bb, por lo tanto, ambos símbolos deben alternarse en las palabras. Formalmente, esto puede expresarse como:

$$L_2 - L_1 = \{ab\}^* \{\lambda, a\} \cup \{ba\}^* \{\lambda, b\}$$

(b) (½ punto) Describa el lenguaje L_1^* .

Solución:

$$L_1^* = L_1 \cup \{\lambda\}$$

(c) ($\frac{1}{2}$ punto) Describa el lenguaje $(aab)^{-1}L_2$.

Solución:

$$(aab)^{-1}L_2 = \{ax : bb \not\in Seg(x)\} \cup \{\lambda\}$$

(d) ($\frac{1}{2}$ punto) Enumere las diez primeras palabras en orden canónico de $\overline{L_1}$.

Solución:

 λ , a, b, ab, ba, ba, aba, abb, bab, bba

Cuestión 2 (1 punto)

Describa los lenguajes aceptados por los autómatas:

(a) (½ punto)

Solución:

El autómata de la figura acepta todas las palabras sobre el alfabeto $\{a,b\}$ tales que el segmento aa aparece una única vez.

(b) (½ punto)

Solución:

$$L(A) = \{x \in \{a, b\}^* : aa \in Seg(x)\}$$

Cuestión 3 (3 puntos)

Proporcione autómatas finitos deterministas que acepten los siguientes lenguajes:

(a)
$$(1\frac{1}{2} \text{ puntos})$$
 $L = \{x \in \{a, b\}^* : |x|_a \ge 1 \land ba \in Suf(x)\}.$

Solución:

Un AFD que acepta el lenguaje es el siguiente:

donde el nombre de los estados indica el número de símbolos a analizados, así como la presencia de parte (o todo) el sufijo que es necesario procesar para aceptar la palabra.

(b)
$$(1\frac{1}{2} \text{ puntos})$$
 $L = \{x \in \{a, b\}^* : aa \notin Seg(x) \land ab \notin Suf(x)\}.$

Solución:

Un AFD que identifica el lenguaje es el siguiente:

Cuestión 4 (2 puntos)

Proporcione un AFD equivalente al siguiente autómata.

Solución:

La siguiente tabla muestra la λ -clausura de cada estado:

Q	$\lambda - clausura$
q_1	$\{q_1\}$
q_2	$\{q_2\}$
q_3	$\{q_2,q_3\}$
q_4	$\{q_1,q_4\}$

El AFD obtenido según el algoritmo expueso en clase es el que se muestra a continuación:

		a	b
\rightarrow	{1}	{1}	{2}
	$\{2\}$	$\{2, 3\}$	$\{1, 4\}$
\leftarrow	$\{2, 3\}$	$\{2, 3\}$	$\{1, 2, 4\}$
	$\{1, 4\}$	{1}	$\{2, 3\}$
	$\{1, 2, 4\}$	$\{1, 2, 3\}$	$\{1, 2, 3, 4\}$
\leftarrow	$\{1, 2, 3\}$	$\{1, 2, 3\}$	$\{1, 2, 4\}$
\leftarrow	$\{1, 2, 3, 4\}$	$\{1, 2, 3\}$	$\{1, 2, 3, 4\}$

Cuestión 5 (2 puntos)

Pronúnciese acerca de la veracidad o falsedad de la siguiente afirmación¹

Si L_1 y L_2 son dos lenguajes sobre un alfabeto Σ y $h: \Sigma \to \Delta^*$ es un homomorfismo cualquiera, siempre se cumple que $h(L_1 \cap L_2) = h(L_1) \cap h(L_2)$.

Solución:

La afirmación es falsa.

Como prueba consideremos el alfabeto $\Sigma = \{a, b\}$, los lenguajes $L_1 = \{a\}$ y $L_2 = \{b\}$ sobre Σ y el homomorfismo $h: \Sigma \to \{0, 1\}^*$ definido como:

$$\begin{cases} h(a) = 0 \\ h(b) = 0 \end{cases}$$

Puede verse que $L_1 \cap L_2 = \emptyset$, por lo que $h(L_1 \cap L_2) = \emptyset$. Sin embargo, $h(L_1) = h(L_2) = \{0\}$ y obviamente $h(L_1 \cap L_2) \neq h(L_1) \cap h(L_2)$.

¹Para probar que una afirmación es cierta hay que demostrar que se cumple independientemente de la instancia considerada (lenguajes y homomorfismo en este caso). Para demostrar que es falsa basta proporcionar un contraejemplo.