Here,
$$\gamma$$
 is a decay parameter and \mathbf{w}_t^r is computed as in (3). The *least-used* weights, \mathbf{w}_t^{lu} , for a given time-step can then be computed using \mathbf{w}_t^u . First, we introduce the notation $m(\mathbf{v},n)$ to denote the n^{th} smallest element of the vector \mathbf{v} . Elements of \mathbf{w}_t^{lu} are set accordingly:
$$w_t^{lu}(i) = \left\{ \begin{array}{ll} 0 & \text{if } w_t^u(i) > m(\mathbf{w}_t^u,n) \\ 1 & \text{if } w_t^u(i) \leq m(\mathbf{w}_t^u,n) \end{array} \right., \tag{6}$$
 where n is set to equal the number of reads to memory.

 $\mathbf{w}_{t}^{u} \leftarrow \gamma \mathbf{w}_{t-1}^{u} + \mathbf{w}_{t}^{r} + \mathbf{w}_{t}^{w}$.

parameter is used to compute a convex combination of the previous read weights and previous least-used weights: $\mathbf{w}_t^w \leftarrow \sigma(\alpha)\mathbf{w}_{t-1}^r + (1 - \sigma(\alpha))\mathbf{w}_{t-1}^{lu}. \tag{7}$ Here, $\sigma(\cdot)$ is a sigmoid function, $\frac{1}{1+e^{-x}}$, and α is a scalar gate parameter to interpolate between the weights. Prior to writing to memory, the least used memory location is

To obtain the write weights \mathbf{w}_{t}^{w} , a learnable sigmoid gate

Here,
$$\sigma(\cdot)$$
 is a sigmoid function, $\frac{1}{1+e^{-x}}$, and α is a scalar gate parameter to interpolate between the weights. Prior to writing to memory, the least used memory location is computed from \mathbf{w}_{t-1}^u and is set to zero. Writing to memory then occurs in accordance with the computed vector of write weights: $\mathbf{M}_t(i) \leftarrow \mathbf{M}_{t-1}(i) + w_t^w(i)\mathbf{k}_t, \forall i$ (8)