Analisi Matematica 2 – 17 febbraio 2023 – Ing. Informatica Proff. Garrione - Gazzola - Noris - Piovano

Cognome:	Nome:	Matricola:

Parte A	Es.1	Es.2	Es.3	Totale

Per superare l'esame devono essere raggiunte le seguenti soglie: parte $A \ge 4$, parte $B \ge 12$, totale ≥ 18 . Tempo di svolgimento complessivo delle parti A+B = 100 minuti.

PARTE A. Domanda aperta (4 punti). Enunciare e dimostrare uno (a scelta) dei criteri del rapporto o della radice per la determinazione del raggio di convergenza delle serie di potenze.

Domande a risposta multipla $(4 \times 1 = 4 \text{ punti})$: una sola è corretta.

- (1) Sia f(x,y) = 4x + 8y. Quale dei seguenti vettori è ortogonale alle curve di livello di f?
- (a) (8,4) (b) (-4,8) (c) (4,-8) (d) (4,8)
- (2) La soluzione del problema di Cauchy $y'(t)=ty(t),\ y(0)=1,$ è (a) $y(t)=e^{t^2/2}$ (b) $y(t)=e^{-t^2/2}$ (c) $y(t)=e^{t^2}$ (d) $y(t)=e^{-t^2}$
- (3) Sia $A \subset \mathbb{R}^2$ un insieme aperto, $f: A \to \mathbb{R}$ una funzione di classe $C^1(A)$ e $(x_0, y_0) \in A$. Si ha che:
- (a) non è detto che f sia differenziabile in $(x_0, y_0) \in A$
- (b) se (x_0, y_0) è un punto critico di f, allora (x_0, y_0) è un punto di estremo di f
- (c) f ammette massimo e minimo assoluto in A
- (d) se $(x_0, y_0) \in A$ è punto di sella di f, allora f ammette piano tangente orizzontale in $(x_0, y_0) \in A$
- (4) La curva piana $\underline{r}(t) = (\sqrt{t(1-t)}, \sin(\pi t)), \cos t \in [0,1], \dot{e}$
- (a) chiusa ma non regolare a tratti (b) regolare ma non chiusa (c) chiusa ma non semplice (d) semplice e regolare

PARTE B. Esercizi ($3 \times 8 = 24$ punti)

Esercizio 1 Sia f la funzione di due variabili definita da $f(x,y) = \frac{x}{x^4 + y^2}$.

(a) (2 punti) Determinare il dominio di f e dire se si tratta di un insieme aperto/chiuso - limitato/illimitato.

- (b) (6 punti) Stabilire se esistono il massimo assoluto e il minimo assoluto di f sul quadrato chiuso Q di vertici (1,0), (1,1), (2,1), (2,0) e, in caso affermativo, determinarli.

Esercizio 2 Si consideri la matrice $M=\begin{pmatrix} -3 & 10 \\ -2 & 6 \end{pmatrix}$. (a) (2 punti) Calcolare e^{tM} $(t\in\mathbb{R})$.

(b) (3+3 punti) Risolvere i problemi di Cauchy 1)
$$\begin{cases} \underline{y}'(t) = M \, \underline{y}(t) \\ \underline{y}(0) = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{cases} \qquad \text{e} \qquad 2) \begin{cases} \underline{y}'(t) = M \, \underline{y}(t) + \begin{pmatrix} 2e^t \\ e^t \end{pmatrix} \\ \underline{y}(0) = \begin{pmatrix} 1 \\ 1 \end{pmatrix} . \end{cases}$$

Esercizio 3 Sia $Q_3 = \{(x,y) \in \mathbb{R}^2 : x \leq 0, y \leq 0\}$ e sia $\overline{B}_1(0,0)$ il disco chiuso centrato nell'origine avente raggio 1. Poniamo $D = \overline{B}_1(0,0) \cap Q_3$.

- (a) (4 punti) Calcolare $\iint_D xy^2 dxdy$.
- (b) (4 punti) Calcolare l'integrale curviline
o $\int_{\partial D} xy\,ds,$ dove ∂D indica il bordo di
 D.