

Neural Networks •

Nisal Mihiranga

Facilitator

Nisal Mihiranga

Al, Technology, Science, Teaching, Consulting, Mentoring

Head of AI and Data Science, Architect at Zone24x7 pvt Ltd Corporate Trainer

12 Years of Industry exposure to Data Engineering, Data Science and Business Intelligence

Credentials:

M.Sc in Data Science

B.Sc in Information Technology

Microsoft Certified Trainer

Curriculum

Week	Module
Week 1	Python for Machine Learning
Week 2	Introduction to Machine Learning
Week 3	Data Transformation and Analysis
Week 4	Classification
Week 5	Regression
Week 6	Clustering Algorithms
Week 7	Neural Networks
Week 8	MLOPS, Machine Learning in Cloud

Agenda

Week	7 th Week
Day	26 th Oct
Duration	4hrs

TIME	TOPIC & ACTIVITY	COMPLETED-
30 Mins	Recap last week and Introduction to Deep Learning	Yes
20 Mins	Neural Networks	Yes
40 Mins	Applications of Neural Networks	Yes
20 Mins	Break	
30 Mins	Building a Neural Network	Yes
20 Mins	Types of Neural Networks	Yes
5 Mins	Q&A Session on lesson learn	Yes

Learning Objectives

- Understanding Fundamental concepts of Neural Networks
- Ability to explain Key Neural Network Architectures
- Gain skills in building and training a neural network

Intro to Deep Learning

Deep learning, a subset of machine learning, uses Artificial Neural Networks to process and analyze information. These networks consist of multiple layers, including input, output, and hidden layers. When there are three or more layers, it is termed "deep" learning. Inspired by the human brain

Artificial Intelligence

Al includes everything from rule-based systems (like a simple chess-playing program) to advanced systems that use machine learning or deep learning to make decisions.

A

Machine Learning

Machine Learning refers to algorithms that allow computers to learn from data without being explicitly programmed. It relies on statistical techniques to infer patterns from data and make decisions or predictions.

AI ML

Deep Learning

DL is a specialized subset of ML that uses neural networks with many layers (hence "deep") to analyze various factors of data. These neural networks attempt to simulate the behavior of the human brain, enabling it to "learn" from large amounts of data.

AI ML

Intro to Deep Learning

Artificial Intelligence

Any technique that enables computers to mimic human behavior

Machine Learning

Ability to learn without explicitly being programmed

Deep Learning

Extract patterns from data using neural networks

Machine Learning

- Often performs well with smaller datasets.
- Relies heavily on feature extraction and selection by human experts

- Requires large amounts of data to perform effectively.
- Automatically extracts features from raw data, reducing the need for manual feature engineering.

Machine Learning

- Uses simpler models such as decision trees, support vector machines (SVM), and linear regression.
- Models are generally easier to interpret and explain.

- Utilizes complex architectures like deep neural networks with many layers.
- Models can capture intricate patterns in data but are often seen as "black boxes" due to their complexity.

Machine Learning

- Typically requires less computational power.
- Can be run on standard CPUs.

- Demands significant computational resources.
- Often requires GPUs or TPUs to handle the intense computations during training

Machine Learning

- Heavily dependent on domain expertise for feature engineering.
- Success of the model often relies on the quality of the selected features.

Feature Engineering

- Automatically learns relevant features from the data.
- Reduces the need for extensive domain-specific feature engineering.

Machine Learning

Machine Learning

 Effective for a wide range of tasks but may struggle with complex problems.

- Excels in tasks involving unstructured data such as images, audio, and text.
- Achieves state-of-the-art results in various domains like computer vision and natural language processing.

Basic Structure of Neural Network

 Deep learning primarily uses neural networks, which are computational models inspired by the human brain. These networks consist of layers of nodes (neurons), each layer transforming the input data to extract features and make predictions.

Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4):193–202, April 1980.

Structure of a Neural Network

Forward Propagation

- Input data is fed through the network.
- Each neuron calculates a weighted sum of its inputs, adds a bias, and applies an activation function.
- The transformed data is passed to the next layer.

Input values: x_1, x_2

Weights: w_1, w_2

Bias: b

Example

Neuron output: $y = Activation(w_1 \cdot x_1 + w_2 \cdot x_2 + b)$

Backward Propagation

Adjust weights and biases to minimize the error between the predicted output and the actual output.

Activation Functions

Introduce non-linearity into the model, allowing it to learn complex patterns.

Sigmoid

Outputs values between 0 and 1, useful for binary classification. ReLU (Rectified Linear Unit)

Outputs the input directly if positive, otherwise zero.
Commonly used in hidden layers.

Tanh

Outputs values between -1 and 1, useful for zero-centered data

20 mins Break

Types of Neural Networks

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a class of deep learning models specifically designed for processing structured grid data, like images.

Applications:

- Image Classification
- Object Detection

Recurrent Neural Network

Recurrent Neural Networks (RNNs) are a class of neural networks designed for sequential data, where the order of data points is important.

Applications:

- Natural Language Processing
- Time Series Forecasting
- Speech Recognition

Applications of RNN

Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a class of neural networks used for generating new, synthetic data that resembles a given training dataset.

Applications:

- Image Generation
- Data Augmentation

Building a Neural Network

Reading

https://cloud.google.com/discover/deep-learning-vs-machine-learning

Q&A

Thank You

Nisal Mihiranga Architect - Data Science & Al Consultant, Trainer M: +94 71 726 3044

