





# Text classification. Basic Neural Networks at NLP

MIPT 18.02.2021 Anton Emelianov, Alena Fenogenova.

# Topic

#### Input:

$$x \in X-documents \ y \in Y-classes/labels$$



#### Output:

spam not spam

Assign an unknown document to one of the classes - binary classification.

Select 
$$f(x) = y, y \in Y, Y = \{0, 1\}$$

#### Input:

$$x \in X-documents \ y \in Y-classes/labels$$



#### Output:

Assign an unknown document to one of the classes - multiclass classification.

$$Select\ f(x) = y, y \in Y, Y = \{0, 1, \dots, K-1\}$$

#### Input:

$$x \in X-documents \ y \in Y-classes/labels$$



#### Output:

Assign an unknown document to multiple classes - multi-label classification.

$$Select\ f(x) = \{y_0, \dots y_i, \dots\}, i < K, y \in Y, Y = \{0, 1, \dots, K-1\}$$

 We assume that we have a collection of documents with ground-truth labels. The input of a classifier is a document x

$$x=(x_0,x_1,\ldots,x_n)$$

the output is a label:

$$y \in Y, Y = \{0, 1, \dots, K-1\}$$

• We should select f(x)=y. f - our ML algorithm.

- Text classifiers have the following structure:
  - A **feature extractor** can be either manually defined (as in classical approaches) or learned (e.g., with neural networks).
  - A **classifier** has to assign class probabilities given feature representation of a text. The most common way to do this is using logistic regression, but other variants are also possible (e.g., Naive Bayes classifier or SVM).



get probability distribution

### **Generative and Discriminative models**



Learn: data distribution 
$$p(x, y) = p(x|y) \cdot p(y)$$

How predict: 
$$y = \arg \max_{k} P(x, y = k) =$$

$$= \arg \max_{k} P(x|y = k) \cdot P(y = k)$$

<u>Learn</u>: boundary between classes p(y|x)

How predict: 
$$y = \arg \max_{k} P(y = k|x)$$

### **Generative and Discriminative models**

• **Generative** models learn joint probability distribution of data  $p(x,y)=p(x|y) \cdot p(y)$ . To make a prediction given an input x, these models pick a class with the highest joint probability:

$$y = rg \max_k p(x|y=k) \cdot p(y=k)$$

• **Discriminative** models are interested only in the conditional probability p(y|x), i.e. they learn only the border between classes. To make a prediction given an input x, these models pick a class with the highest conditional probability:

$$y = rg \max_k p(y = k|x)$$

#### Some methods for text classification

- Naive Bayes Classifier
- SVM
- Maximum Entropy Classifier (aka Logistic Regression)
- Neural Networks

Feature representation of the input text:

$$h=(1,f_1,f_2,\ldots,f_n)$$

Vectors with feature weights for each of the classes

$$w^{(k)} = (w_0^{(k)}, \dots, w_n^{(k)}), k = 0, \dots, K-1$$

For each class, weigh features, i.e. take the dot product of feature representation h
with feature weights:

$$w^{(k)}h = w_0^{(k)} + w_1^{(k)} \cdot f_1 + \dots + w_n^{(k)} \cdot f_n, k = 0, \dots, K-1.$$

Get class probabilities using softmax:

$$P(y=k|h)=rac{\exp(w^{(k)}h)}{\sum\limits_{i=1}^{K}\exp(w^{(i)}h)}.$$

Define h as function of x, where x is the document from collection X:

$$y = rg \max_k P(y = k | h) = rg \max_k P(y = k | logits_k), \ logits_k = w^{(k)} h(x)$$

Or at matrix form:

$$logits = Wh(x)$$
  
 $y = argmax(logits, dim = -1)$ 

- Here h(x) is your **favorite** algorithm of ML (include neural nets)!
- Function h(x) is **feature extractor**.
- Also h(x) generates representation of text x.

#### General Classification Pipeline



get probability distribution over classes

process text (document)

#### Classification with Neural Networks



### **Training**

- Neural classifiers are trained to predict probability distributions over classes.
   Intuitively, at each step we maximize the probability a model assigns to the correct class. The standard loss function is the cross-entropy loss.
- Cross-entropy loss for the target probability distribution:

$$p^* = (0, \dots, 0, 1, 0, \dots)$$

(1 for the target label, 0 for the rest) and the predicted by the model distribution:

$$p=(p_1,\ldots,p_K), p_i=p(i|x)$$

And loss:

$$Loss(p^*,p) = -p^*\log(p) = -\sum\limits_{i=1}^K p_i^*\log(p_i).$$

# Basic Neural networks for classification

### Networks with one hidden layer

 Theorem (universal approximator) Any continuous function on a compact can be uniformly approximated by a neural network with one hidden layer.



### Multilayer feedforward networks

$$NN_{MLP2}(x) = y$$

$$h_1 = g^1(xW^1 + b^1)$$
  
 $h_2 = g^2(h^1W^2 + b^2)$   
 $y = h^2W^3$ 

$$x \in \mathbb{R}^{d_{in}}, y \in \mathbb{R}^{d_{out}}$$
 $W^1 \in \mathbb{R}^{d_{in} \times d_1}, b^1 \in \mathbb{R}^{d_1}$ 
 $W^2 \in \mathbb{R}^{d_1 \times d_2}, b^2 \in \mathbb{R}^{d_2}$ 
 $W^3 \in \mathbb{R}^{d_2 \times d_{out}}$ 



# Multilayer perceptron



#### • Problems:

Vanishing/Exploding gradients



#### • Problems:

- Vanishing/Exploding gradients
- Requires a huge number of neurons



#### • Problems:

- Vanishing/Exploding gradients
- Requires a huge number of neurons
- Overfitting



#### Problems:

- Vanishing/Exploding gradients
- Requires a huge number of neurons
- Overfitting
- Lack of translational invariance (weights are specific to the absolute coordinate of a word).



#### Problems:

- Vanishing/Exploding gradients
- Requires a huge number of neurons
- Overfitting







#### Problems:

- Vanishing/Exploding gradients
- Requires a huge number of neurons
- Overfitting
- Lack of translational invariance (weights are specific to the absolute coordinate of a word).
- Possible solution data preprocessing
- Possible **solution** introduction of new types of layers:
  - CNN
  - Dropout
  - Pooling
  - Normalization



### **Dropout regularization**

- Training Phase: for each hidden layer, for each training sample, for each
  iteration, ignore (zero out) a random fraction, p, of nodes (and corresponding
  activations).
- **Testing Phase**: use all activations, but reduce them by a factor p (to account for the missing activations during training).



### **Dropout regularization**

#### Some Observations:

- Dropout forces a neural network to learn more robust features that are useful in conjunction with many different random subsets of the other neurons.
- Dropout roughly doubles the number of iterations required to converge. However, training time for each epoch is less.
- With H hidden units, each of which can be dropped, we have
   2^H possible models. In testing phase, the entire network is
   considered and each activation is reduced by a factor p.

# **Convolution Neural Networks (CNN)**

#### **Convolutional neural networks**

#### Convolutional neural networks:

- Borrowed from the field of computer vision.
- The peak of popularity was in 2014 (up to + 10% accuracy in classification problems), over time they were supplanted by recurrent neural networks.

#### Help solve problems:

- Often, inputs are of variable length (texts, paragraphs, offers)
- Translational invariance

#### Convolution

• **Definition**: The result of the operation of **convolution** of an array m with a kernel a is a signal n. Notation: n=m\*a

$$n[k] = \sum_{i=-w/2}^{i=w/2} m[k+i] \cdot a[-i][k+i]$$



# **Padding**

Zero padding



Copy of boundary



Mirror padding



C | B | **A** | **B** | **C** | B | A

Cycle padding



### A Typical Model: Convolution + Pooling Blocks





- Voting: the most active neurons wins.
- Developed invariance to small shifts (within window).
- Reduced computational costs.
- There is avg pooling, but max pooling over time works better in text classification tasks.

#### Yoon Kim. Convolutional Neural Networks for Sentence Classification. 2014



Figure 1: Model architecture with two channels for an example sentence.

# Recurrent Neural Networks (RNNs)

#### Vanilla RNN

- RNN reads a text token by token, at each step using a new token embedding and the previous state.
- Note that the RNN cell is the same at each step!
- Vanilla RNN, transforms h(t-1) and x(t) linearly, then applies a non-linearity (most often, the tanh function)

$$h_t = \tanh(h_{t-1}W_h + x_tW_t).$$



### **How to learn RNN?**

#### Backpropogation Through Time:

$$\frac{\partial E}{\partial \mathbf{W}} = \sum_{t} \frac{\partial E_{t}}{\partial \mathbf{W}}$$

$$\frac{\partial E_3}{\partial \mathbf{W}} = \frac{\partial E_3}{\partial \hat{y_3}} \frac{\partial \hat{y_3}}{\partial s_3} \frac{\partial s_3}{\partial \mathbf{W}}$$

But 
$$s_3 = \tanh(Ux_t + Ws_2)$$

S\_3 depends on s\_2, which depends on W and s\_1, and so on.

$$\frac{\partial E_3}{\partial \mathbf{W}} = \sum_{k=0}^{3} \frac{\partial E_3}{\partial \hat{y}_3} \frac{\partial \hat{y}_3}{\partial s_3} \frac{\partial s_3}{\partial s_k} \frac{\partial s_k}{\partial \mathbf{W}}$$



More details here

### **RNN for classification**



### **RNN for classification**



## **Task description**



#### **RNN** overview

- RNN is difficult to train:
  - vanishing gradient problem
  - the problem of fast forgetting
- Solution: guided neurons of a special type: LSTM and GRU.
- Other modifications: <u>peephole lstm</u> (2014), <u>QRNN</u> (2016), <u>AWD</u>
   <u>LSTM</u> (2017), <u>Mogrifier LSTM</u> (2019-2020).

## **Long Short Term Memory (LSTM)**

- A special kind of RNN's, capable of Learning Long-term dependencies.
- **LSTM's** have a Nature of Remembering information for a long periods of time is their Default behaviour.



• LSTM had a **three step** Process: **Every LSTM** module will have 3 gates named as **Forget gate**, **Input gate**, **Output gate**.



43

#### Forget Gate

- Decides how much of the past you should remember.
- This gate Decides which information to be omitted in from the cell in that particular time stamp. It is decided by the **sigmoid function.** it looks at the previous state(**ht-1**) and the content input(**Xt**) and outputs a number between **O**(*omit this*) and **1**(*keep this*) for each number in the cell state **Ct−1**.



$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

- Update Gate/input gate:
  - Decides How much of this unit is added to the current state
  - Sigmoid function decides which values to let through **0,1**. and **tanh** function gives weightage to the values which are passed deciding their level of importance ranging from-1 to 1.



$$i_t = \sigma \left( W_i \cdot [h_{t-1}, x_t] + b_i \right)$$
  
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

• We multiply the old state by f(t), forgetting the things we decided to **forget** earlier. Then we add  $i(t)*\tilde{C}(t)$ . This is the new candidate values, scaled by how much we decided to **update** each state value.



$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

#### Output Gate:

- Decides which part of the current cell makes it to the output.
- Sigmoid function decides which values to let through 0,1. and tanh function gives weightage to the values which are passed deciding their level of importance ranging from-1 to 1 and multiplied with output of Sigmoid.



$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

### **Gated Recurrent Unit (GRU)**

• GRU **combines** the **forget** and **input** gates into a single "**update gate**." It also merges the cell state and hidden state, and makes some other changes. The resulting model is simpler than standard LSTM models, and has been growing increasingly popular.



$$z_{t} = \sigma (W_{z} \cdot [h_{t-1}, x_{t}])$$

$$r_{t} = \sigma (W_{r} \cdot [h_{t-1}, x_{t}])$$

$$\tilde{h}_{t} = \tanh (W \cdot [r_{t} * h_{t-1}, x_{t}])$$

$$h_{t} = (1 - z_{t}) * h_{t-1} + z_{t} * \tilde{h}_{t}$$

#### **CNNs vs RNNs**

- With a lot of reservations RNNs demonstrates slightly better results on the benchmark classification tasks.
- CNNs work well on the tasks that can be reduced to keyword search. Keyword mean NEs and so on.
- Also, RNNs have slower inference than CNNs. CNNs are easier to train.
- For RNN you need more data.

### **CNNs vs RNNs**

- With a lot of reservations RNNs demonstrates slightly better results on the benchmark classification tasks.
- CNNs work well on the tasks that can be reduced to keyword search. Keyword mean NEs and so on.
- Also, RNNs have slower inference than CNNs. CNNs are easier to train.
- For RNN you need more data.

It's seems to be very task-dependent thing. So you should try both options.

### **Learning pytorch**

- Very good examples (for google colab!):
  - https://github.com/param087/Pytorch-tutorial-on-Google-c olab
- And official <a href="https://pytorch.org/tutorials/">https://pytorch.org/tutorials/</a>

# Questions

#### Reference

- https://lena-voita.github.io/nlp\_course
- https://medium.com/better-programming/generative-vs-discriminative-models-d26d ef8fd64a
- Vanishing & Exploding Gradient
- <u>Dropout</u>
- CNNs papers
  - A Sensitivity Analysis of (and Practitioners' Guide to) Convolutional Neural
     Networks for Sentence Classification
  - Convolutional Neural Network Architectures for Matching Natural Language
     Sentences
  - A Convolutional Neural Network for Modelling Sentences
  - Convolutional Neural Networks for Sentence Classification
  - Convolutional Neural Network for Paraphrase Identification
  - Relation Classification via Convolutional Deep Neural Network
  - Character-level Convolutional Networks for Text Classification

#### Reference

- Different RNNs and explanations
  - peephole lstm
  - QRNN
  - AWD LSTM
  - Mogrifier LSTM
  - https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-ne
     tworks
  - https://colah.github.io/posts/2015-08-Understanding-LSTMs/
  - RNNs explained
- Comparative Study of CNN and RNN for Natural Language Processing