Statistiques sur R

4. Comparaison de plusieurs moyennes Analyse de variance à un facteur

Xavier Bouteiller

bouteiller.xavier@gmail.com

la moyenne est le point de référence qui minimise la variance dans une distribution statistique

Par rapport à la moyenne (rouge) : 64.13 Par rapport à la valeur 90 (pointillé) : 2077.01 Théoriquement, la dispersion par rapport à μ et par rapport à la moyenne des groupes devraient être égales si $\mu_1=\mu_2$

Théoriquement, la dispersion par rapport à μ et par rapport à la moyenne des groupes devraient être égales si $\mu_1=\mu_2$

Mais, la dispersion par rapport à μ va être très supérieure à la dispersion par rapport à la moyenne des groupes si $\mu_1 \neq \mu_2$

Dispersion Totale SCT

Somme des carrés des écarts à la moyenne générale

$$\sum_{i=1}^{n} (x_i - \bar{X})^2$$

Dispersion Intra-groupe SCE

Somme des carrés des écarts à la moyenne du groupe propre

$$\sum_{j=1}^{k} \sum_{i=1}^{n_j} (x_{ij} - \bar{x}_j)^2$$

Dispersion Inter-groupe SCI

Somme de *n_{ij}* fois le carré de l'écart entre la moyenne du groupe et la générale

$$\sum_{j=1}^k n_j (\bar{x}_j - \bar{X})^2$$

Les variances s'obtiennent en divisant la dispersion par le nombre de degrés de liberté

	Sources de variation	Totale	Inter-groupe	Intra-groupe
Sum of Squares (SS)	Dispersions	SCT	SCI	SCE
	Nombre de ddl	<i>n</i> − 1	<i>k</i> − 1	n-k
Mean Squares (MS)	Variances	$s_x^2 = \frac{SCT}{n-1}$	$V_c = \frac{SCI}{k-1}$	$V_e = \frac{SCE}{n-k}$

Et sous H_0 , les variances Inter et Intra sont toutes les 2 égales et sont des estimations de la variance de σ^2

ightarrow Donc leur rapport est égal à 1

Théoriquement : Si $\mu_1 = \mu_2$ alors $V_c/V_e = 1$

Sous
$$H_0: F_c = \frac{V_c}{V_e}$$

Suit une loi de Fisher à $v_1 = k - 1$ et $v_2 = n - k$ degrés de liberté.

L'analyse de la variance :

- s'applique aussi bien aux grands et aux petits échantillons
- vérifie en 1 seul test si les différences observées au niveau des moyennes de k échantillons (2 et plus) sont imputables aux fluctuations d'échantillonnage
- suppose l'égalité des variances
- suppose la normalité des populations d'origine

 $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_j = \mu_k$

 H_1 : Au moins deux moyennes sont différentes.

Et donc l'écriture du modèle qui suit :

$$y_{ij} = \mu + \alpha_i + \varepsilon_{ij}$$
 $\varepsilon_{ij} \sim N(0,1)$

 μ : moyenne globale

 $lpha_i$: correspond à la moyenne de chacun des i groupes

 $arepsilon_{ij}$: erreur résiduelle pour chacun des j individus

Autrement dit:

$$\mathsf{H0}: y_{ij} = \mu + \varepsilon_{ij}$$

$$\varepsilon_{ij} \sim N(0,1)$$

 $H1: y_{ij} = \mu + \alpha_i + \varepsilon_{ij}$

Autrement dit au moins 1 des α_i est différent de 0

Exemple : Ozone dans l'air en fonction des mois


```
\begin{aligned} & \text{H0}: y_{ij} = \ \mu + \ \varepsilon_{ij} \\ & \text{H1}: y_{ij} = \ \mu + \ \alpha_i + \ \varepsilon_{ij} \end{aligned}
```

```
Sur R:
```

- μ : intercept

- α_i : les coefficients estimés_

```
Call:
lm(formula = Ozone ~ Month, data = airquality)
Residuals:
             10 Median
    Min
                                     Max
-52.115 -16.823 -7.282 13.125 108.038
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
              23.615
               5.829
                         11.356
Month6
              35.500
Month7
                          8.144
              36.346
Month8
                          8.144
Month9
               7.833
                          7.931
                                   0.988
                                            0.325
```

Des tailles de lézard dans 5 populations jurasiennes

Dans un modèle d'analyse de variance, comme pour le modèle de la moyenne et le modèle d'analyse de moyenne de Student, ce sont les résidus qui suivent une loi Normale.

$$y_{ij} = \mu + \alpha_j + \varepsilon_{ij}$$

avec

$$\varepsilon_{ij} \sim N(0,1)$$

Donc pour débarasser les variations totales des sources de variations dûes aux différences de moyenne :

$$\varepsilon_{ij} = y_{ij} - \mu - \alpha_j$$

Sources de variation	Totale	Inter-groupe	Intra-groupe
Dispersions	3147	2761.7	385.3
Nombre de ddl	<i>n</i> – 1	k-1	n-k
Variances	$s_{x}^{2} =$	$V_c =$	$V_{ m e}$ $=$

Théoriquement : Si $\mu_1=\mu_2=\mu_3=\mu_4=\mu_5$ alors $V_c/V_e=1$

Sous $H_0: F_c = \frac{V_c}{V_e}$

Suit une loi de Fisher à $v_1 = k - 1$ et $v_2 = n - k$ degrés de liberté.

Sources de variation	Totale	Inter-groupe	Intra-groupe
Dispersions	418.1	32.8	385.3
Nombre de ddl	<i>n</i> − 1	<i>k</i> − 1	n-k
Variances	$s_{x}^{2} =$	$V_c =$	$V_e =$

Sources de variation	Totale	Inter-groupe	Intra-groupe
Dispersions	3147	2761.7	385.3
Nombre de ddl	n-1	<i>k</i> − 1	n-k
Variances	$s_{\chi}^2 =$	$V_c =$	$V_e =$

Théoriquement : Si $\mu_1=\mu_2=\mu_3=\mu_4=\mu_5$ alors $V_c/V_e=1$

Sous
$$H_0: F_c = \frac{V_c}{V_e}$$

Suit une loi de Fisher à $v_1 = k - 1$ et $v_2 = n - k$ degrés de liberté.

Sources de variation	Totale	Inter-groupe	Intra-groupe
Dispersions	418.1	32.8	385.3
Nombre de ddl	<i>n</i> − 1	<i>k</i> − 1	n-k
Variances	$s_{\chi}^2 =$	$V_c =$	$V_{e} =$

Si H_0 est rejetée, il s'agira ensuite de déterminer quels sont les couples de moyennes d'échantillons qui sont différentes.

ightarrow Test post-hoc vu en TDM.

Let's practice ...

