

Coordinate Geometry Exercises

G V V Sharma*

CONTENTS

Abstract—This book provides some exercises related to coordinate geometry. The content and exercises are based on NCERT textbooks from Class 6-12.

- 1. Find the area of the region enclosed between the two circles: $\mathbf{x}^T \mathbf{x} = 4$ and $\left\| \mathbf{x} - \begin{pmatrix} 2 \\ 0 \end{pmatrix} \right\| = 2$.
- 2. Find the equation of the circle with radius 5 whose centre lies on x-axis and passes through the point $\binom{2}{3}$
- 3. Find the equation of the circle passing through $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ and making intercepts a and b on the coordinate axes.
- 4. Find the equation of a circle with centre $\binom{2}{2}$ and passes through the point $\binom{4}{5}$.
- 5. Find the locus of all the unit vectors in the xy-plane.
- 6. Find the points on the curve $\mathbf{x}^T \mathbf{x} 2 \begin{pmatrix} 1 & 0 \end{pmatrix} \mathbf{x} -$ 3 = 0 at which the tangents are parallel to the x-axis.

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

- 7. Find the area of the region in the first quadrant enclosed by x-axis, line $(1 - \sqrt{3})x = 0$ and the circle $\mathbf{x}^T \mathbf{x} = 4$.
- 8. Find the area lying in the first quadrant and bounded by the circle $\mathbf{x}^T \mathbf{x} = 4$ and the lines x = 0 and x = 2.
- 9. Find the area of the circle $4\mathbf{x}^T\mathbf{x} = 9$.
- 10. Find the area bounded by curves $\|\mathbf{x} \begin{pmatrix} 1 \\ 0 \end{pmatrix}\| = 1$ and ||x|| = 1
- 11. Find the smaller area enclosed by the circle $\mathbf{x}^T \mathbf{x} = 4$ and the line $(1 \quad 1)\mathbf{x} = 2$.
- 12. Find the slope of the tangent to the curve y = $\frac{x-1}{x-2}$, $x \ne 2$ at x = 10. 13. Find a point on the curve $y = (x-2)^2$ at which
- the tangent is parallel to the chord joining the points $\binom{2}{0}$ and $\binom{4}{4}$.
- 14. Find the equation of all lines having slope 1 that are tangents to the curve $\frac{1}{x-1}$, $x \ne 1$
- 15. Find the equation of all lines having slope 2
- which are tangents to the curve $\frac{1}{x-3}$, $x \neq 3$. 16. Find points on the curve $\mathbf{x}^T \begin{pmatrix} \frac{1}{9} & 0 \\ 0 & \frac{1}{16} \end{pmatrix} \mathbf{x} = 1$ at which tangents are
 - a) parallel to x-axis
 - b) parallel to y-axis.
- 17. Find the equations of the tangent and normal to the given curves at the indicated points: $y = x^2$

- 18. Find the equation of the tangent line to the curve $y = x^2 2x + 7$
 - a) parallel to the line $\begin{pmatrix} 2 & -1 \end{pmatrix} \mathbf{x} = -9$
 - b) perpendicular to the line $(-15 \ 5)x = 13$.
- 19. Find the equation of the tangent to the curve $y = \sqrt{3x-2}$ which is parallel to the line $\begin{pmatrix} 4 & 2 \end{pmatrix} \mathbf{x} + 5 = 0$.
- 20. Find the point at which the line $(-1 1)\mathbf{x} = 1$ is a tangent to the curve $y^2 = 4x$.
- 21. The line $(-m \ 1)\mathbf{x} = 1$ is a tangent to the curve $y^2 = 4x$. Find the value of m.
- 22. Find the normal at the point $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ on the curve $2y + x^2 = 3$
- 23. Find the normal to the curve $x^2 = 4y$ passing through $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$.
- 24. Find the area of the region bounded by the curve $y^2 = x$ and the lines x = 1, x = 4 and the x-axis in the first quadrant.
- 25. Find the area of the region bounded by $y^2 = 9x$, x = 2, x = 4 and the x-axis in the first quadrant.
- 26. Find the area of the region bounded by $x^2 = 4y$, y = 2, y = 4 and the y-axis in the first quadrant.
- 27. Find the area of the region bounded by the ellipse $\mathbf{x}^T \begin{pmatrix} \frac{1}{16} & 0 \\ 0 & \frac{1}{9} \end{pmatrix} \mathbf{x} = 1$
- 28. Find the area of the region bounded by the ellipse $\mathbf{x}^T \begin{pmatrix} \frac{1}{4} & 0 \\ 0 & \frac{1}{9} \end{pmatrix} \mathbf{x} = 1$
- 29. The area between $x = y^2$ and x = 4 is divided into two equal parts by the line x = a, find the value of a.
- 30. Find the area of the region bounded by the parabola $y = x^2$ and y = |x|.
- 31. Find the area bounded by the curve $x^2 = 4y$ and the line $\begin{pmatrix} 1 & -1 \end{pmatrix} \mathbf{x} = -2$.
- 32. Find the area of the region bounded by the curve $y^2 = 4x$ and the line x = 3.
- 33. Find the area of the region bounded by the curve $y^2 = x$, y-axis and the line y = 3.
- 34. Find the area of the region bounded by the two parabolas $y = x^2$, $y^2 = x$.
- 35. Find the area lying above x-axis and included between the circle $\mathbf{x}^T \mathbf{x} 8 \begin{pmatrix} 1 & 0 \end{pmatrix} = 0$ and inside of the parabola $y^2 = 4x$.

- 36. AOBA is the part of the ellipse $\mathbf{x}^T \begin{pmatrix} 9 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{x} =$ 36 in the first quadrant such that OA = 2 and OB = 6. Find the area between the arc AB and the chord AB.
- 37. Find the area lying between the curves $y^2 = 4x$ and y = 2x.
- 38. Find the area of the region bounded by the curves $y = x^2 + 2$, y = x, x = 0 and x = 3.
- 39. Find the area under $y = x^2, x = 1, x = 2$ and x-axis.
- 40. Find the area between $y = x^2$ and y = x.
- 41. Find the area of the region lying in the first quadrant and bounded by $y = 4x^2$, x = 0, y = 1 and y = 4.
- 42. Find the area enclosed by the parabola $4y = 3x^2$ and the line $\begin{pmatrix} -3 & 2 \end{pmatrix} \mathbf{x} = 12$.
- 43. Find the area of the smaller region bounded by the ellipse $\mathbf{x}^T \begin{pmatrix} \frac{1}{9} & 0 \\ 0 & \frac{1}{4} \end{pmatrix} \mathbf{x} = 1$ and the line $\begin{pmatrix} \frac{1}{a} & \frac{1}{b} \end{pmatrix} \mathbf{x} = 1$ 44. Find the area of the region enclosed by the
- 44. Find the area of the region enclosed by the parabola $x^2 = y$, the line $\begin{pmatrix} -1 & 1 \end{pmatrix} \mathbf{x} = 2$ and the x-axis.
- 45. Find the area bounded by the curves

$$\{(x,y): y > x^2, y = |x|\}$$
 (45.1)

46. Find the area of the region

$$\{(x, y) : y^2 \le 4x, 4\mathbf{x}^T\mathbf{x} = 9\}$$
 (46.1)

47. Find the area of the circle $\mathbf{x}^T \mathbf{x} = 16$ exterior to the parabola $y^2 = 6$.