

Trường Đại học Khoa học Tự nhiên Đại học Quốc gia Thành phố Hồ Chí Minh

Thực Tập Chuyên Đề 1

Bài 8: Xây Dựng Đường Chuẩn Năng Lượng Của Một Nguồn Phóng Xạ

Người hướng dẫn: Thầy Châu Thành Tài

Sinh viên: Nguyễn Minh Đăng - 20230022

Báo Cáo Kết Quả

1.1 Lập bảng tương ứng với số kênh theo năng lượng trong bảng 1 được đo bằng detector

Ta có các đỉnh năng lượng ứng với các kênh của nguồn Eu-152

Kênh	444	918	1302	1562	1689	2981	3324	3697	4168	4269	5413
Năng lượng (KeV)	121,78	244,70	344,28	411,12	443,97	778,90	867,38	964,08	1085,84	1112,08	1408,01

1.2 Xác định đường chuẩn năng lượng bằng phương pháp bình phương tối thiểu và so sánh với hệ số a và b trong chương trình Genie và chương trình Excel

Phương trình chuẩn năng lượng có dạng

$$E[KeV] = a.ch + b$$

Từ đây ta có

$$v_{i} = a.ch + b - E$$

$$S = \sum_{i=1}^{n} v_{i}^{2} = \sum_{i=1}^{n} \left[a.ch + b - E \right]^{2}$$

$$S = \sum_{i=1}^{n} \left[a^{2}.ch^{2} + b^{2} + E^{2} + 2a.ch.b - 2a.ch.E - 2b.E \right]$$

Để tìm được thông số a_r thì ta đặt cho S là cực tiểu:

$$\to \frac{\partial S}{\partial a_r} = 0$$

Từ đây ta có:

•
$$\frac{\partial S}{\partial a} = 2a.ch^2 + 2ch.b - 2ch.E = 0$$

$$\to a \sum ch^2 + b \sum ch = \sum ch.E \tag{1}$$

•
$$\frac{\partial S}{\partial b} = 2b + 2a.ch - 2E = 0$$

$$\to a \sum ch + b.n = \sum E \tag{2}$$

Từ (1) và (2) ta có hệ phương trình

$$\begin{cases} a \sum ch^2 + b \sum ch = \sum ch.E \\ a \sum ch + n.b = \sum E \end{cases}$$
 (3)

Từ đây ta có các số

$$\sum ch^2 = 106527929;$$
 $\sum ch = 29767$ $\sum ch.E = 27783055,68;$ $\sum E = 7782,13$

Từ đây ta có hệ phương trình

$$\begin{cases} 106527929.a + 29767.b = 27783055,68 \\ 29767.a + 11b = 7782,13 \end{cases} \rightarrow \begin{cases} a = 0,26 \\ b = 6,99 \end{cases}$$

Từ đây ta có phương trình tuyến tính

$$E[KeV] = 0.26.ch + 6.99 (4)$$

Phương trình chuẩn năng lượng từ Genie và Excel

 $\label{eq:Datasource: C:Users\minec\Desktop\Study for Life\TT8\Eu-152.cnf} $$ Energy = 6.987e+000 keV + 2.589e-001^{\circ}Ch $$ FWHM = 1.750e+000 keV $$$

(a) Phương trình chuẩn của Genie 2K

(b) Phương trình chuẩn của Excel

1.3 Xác định năng lượng và tên đồng vị phóng xạ X

Từ phương trình (4), ta suy ra được các dãy năng lượng

Kênh	194	295	1057	1173	1376	1482	4573	5203
Năng lượng (KeV)	57,21	83,36	280,64	310,67	363,23	390,67	1190,93	1354,04

Theo tìm kiếm trên Laraweb thì đây là nguồn ^{143}Ce có $T_{1/2}=33{,}04\ h$

Energy (keV)	Intensity (%)	Type	Origin*
57,356 (7)	11,7 (4)	γ	Pr-143
272,9(2)	0,0043 (43)	γ	Pr-143
338,3(2)	0,0009(5)	γ	Pr-143
350,619(3)	3,23(4)	γ	Pr-143
389,64(2)	0,0364(18)	γ	Pr-143
1 160,58 (6)	0,0024(3)	γ	Pr-143
1 340,1 (1)	0,00308 (14)	γ	Pr-143

1.4 Vẽ giá trị thực nghiệm và giá trị làm khớp trên một đồ thị

