

PROJET 22-9912-ED-0018 Caméra_Thermique

Document de tests unitaires et d'intégration rempli

Référence : 22-9912-ED

VERSION: 01

22-9912-ED-0018_Resultat_Tests_HW_CARTE1

Référence : 22-9912-ED

Version: 01

Page: **2/28**

HISTORIQUE DES REVISIONS

Version	Date	Description	Auteurs
V1	10/08/2022	Reports des résultats de test	Antoine Da Costa
			Alexandra Hulot

CONTROLES

Auteurs	Titre
Antoine Da Costa	Stagiaire carte
Alexandra Hulot	Stagiaire logiciel

Revu par	Titre

Approuvé par	Titre

TABLE DES MATIERES

Histo	orique des Révisions	2
Cont	rôles	2
Tabl	e des Matières2	<u>1</u> 3
Tabl	e des illustrations	3
Liste	des tableaux	3
1	Présentation du projet	4
2	Domaine d'application	4
3	Documents de référence	4

22-9912-ED-0018_Resultat_Tests_HW_CARTE1

Référence : 22-9912-ED

Version: **01**

Page: 3/28

4	Formalisme des Tests	5
5	Environnement de Tests	5
6	Notations:	5
7	Tests unitaires	6
8	Tests intégration <u>1</u>	<u>7</u> 18
9	Traçabilité	6 27

TABLE DES ILLUSTRATIONS

Aucune entrée de table d'illustration n'a été trouvée.

LISTE DES TABLEAUX

Aucune entrée de table d'illustration n'a été trouvée.

22-9912-ED-0018_Resultat_Tests_HW_CARTE1

Référence : 22-9912-ED

Version: 01

Page: **4/28**

1 Presentation du projet

L'objectif de ce projet est la conception d'une caméra permettant l'acquisition et l'affichage d'images thermiques. Cette caméra thermique disposera d'un capteur infrarouge, d'un capteur visible, d'un écran tactile, d'un espace de stockage et d'une interface USB pour le transfert de donnée et le rechargement de batterie.

Le projet a pour vocation de rejoindre le panel d'outils diagnostiques d'Elsys Design.

2 DOMAINE D'APPLICATION

La caméra thermique est un outil de diagnostic non intrusif permettant l'évaluation qualitative et quantitative des températures d'un circuit électronique ou d'une pièce mécanique en fonctionnement. Cet outil permet la détection de points chauds critiques avant une potentielle défaillance.

3 DOCUMENTS DE REFERENCE

Date	Titre	Version
23/02/2022	22-9912-ED-0010_Stage2022-ED_CdC_CameraThermique	V0
15/03/2022	22-9912-ED-0011_CameraThermique_STB_carte	V3
11/07/2022	22-9912-ED-0012_CameraThermique_Synoptique	V7
05/07/2022	22-9912-ED-0013_CameraThermique_Schema	V7
11/07/2022	22-9912-ED-0016_CameraThermique_Conception	V3
07/07/2022	C14631.pcb	/
25/07/2022	Dossier des codes « SRC » : \\s-riesling\Elsys\Pole_Forfait\3-PROJETS\ELSYS\PROJETS\22-9912- ED_CAMERA_THERMIQUE\6-CARTE\[CARTE]\13-VALIDATION	/

22-9912-ED-0018_Resultat_Tests_HW_CARTE1

Référence : 22-9912-ED

Version: 01

Page: **5/28**

FORMALISME DES TESTS

Test [XX]: [Titre]					
Description :					
Résultat attendu :					
Nom de la mesure : [Titre de la mesure (unité)] :					
Min	Тур	Max	Mesure	Statut	

Les résultats de tests seront notés :

OK : Succès du test

FAIL: Echec du test

NA: Non Applicable

TBD: To be defined

5 **ENVIRONNEMENT DE TESTS**

Les tests sur carte seront réalisés dans un environnement permettant de réduire le risque de décharges électrostatiques.

6 **NOTATIONS:**

Dans le document certains points de référence sont notés [Référence].[Numéro de broche].

EX: JF3.1 indiquant le connecteur JF3 broche 1.

22-9912-ED-0018_Resultat_Tests_HW_CARTE1

Référence : 22-9912-ED

Version: 01

Page: **6/28**

TESTS UNITAIRES

Test 01	Test 01 : Inspection Fabrication				
Descript	ion :				
-				érifier le	
Résultat	attendu :	PCB NON-ALIMENTÉ, à l'aide d'une loupe binoculaire, pour vérifier le imposants et détecter la présence de mauvaise soudure. FABO1 : Inspection de la fabrication de la carte : nce de Type de la défaillance Statut osant			
	FAB01 :	Inspection de la fabrication de l	la carte :		
	Reference de composant	Type de la défaillance	Statut		
	JF3	<u>La soudure est légère</u>	<u>OK</u>	-	
				-	
				=	
				-	
				<u>-</u>	
				-	
				<u>-</u>	
			_	=	
				_	
				-	
				-	
				- -	
				=	
				-	
				=	
				_	

22-9912-ED-0018_Resultat_Tests_HW_CARTE1

Référence : 22-9912-ED

Version: 01

Page: **7/28**

Test 02 : Vérifications Mécaniques

Description:

Vérification des dimensions de la carte **NON-ALIMENTÉE**, du positionnement des trous de fixations et des supports de batterie.

Résultat attendu:

DIM01: Mesure de la largeur du PCB (Mesure en mm):

Attendu (mm)	Mesure (mm)	Statut
86	<u>86</u>	<u>OK</u>

DIMO2: Mesure de la longueur du PCB (Mesure en mm):

Attendu (mm)	Mesure (mm)	Statut	
150	<u>150</u>	<u>OK</u>	

DIM03: Dimensions des trous de fixations

Trous	Attendu	Observation	Statut
XX8, XX9, XX10, XX11	Diamètre de 3.4mm	L	<u>OK</u>
XX23, XX24, XX25, XX26, XX27, XX28	Diamètre de 2.5mm.	L	<u>OK</u>

DIM04: Positionnement de l'écran et vérification de l'alignement du ruban

Attendu	Observation	Statut
L'écran peut être fixé dans les	/	7
trous de fixations	L	<u>OK</u>
Le ruban peut être connecté sur le		
connecteur ZIF de l'écran et sur le	L	<u>OK</u>
PCB.		

22-9912-ED-0018_Resultat_Tests_HW_CARTE1

Référence : 22-9912-ED

Version: 01

Page: **8/28**

Test 03: Vérification de la mise à la masse des trous de fixations

Description:

Vérification à l'aide d'un Ohmmètre de la connexion à GND des points de fixation du PCB. Ces points étant utilisés comme références à GND dans les vérifications à venir.

Résultat attendu:

TROU01: Test, par continuité, des points de fixations (Mesure en Ω):

Référence 1	Référence 2	Attendu	Mesuré	Statut
XX23	JF4	<u>≈</u> 0 Ω		
XX24	JF4	<u>≈</u> 0 Ω		
XX25	JF4	<u>≈</u> 0 Ω		
XX26	JF4	<u>≈</u> 0 Ω		
XX27	JF4	<u>≈</u> 0 Ω	0.4.0	OK
XX28	JF4	<u>≈</u> 0 Ω	0.4 Ω	<u>OK</u>
XX8	JF4	<u>≈</u> 0 Ω		
XX9	JF4	<u>≈</u> 0 Ω		
XX10	JF4	<u>≈</u> 0 Ω		
XX11	JF4	<u>≈</u> 0 Ω		

22-9912-ED-0018_Resultat_Tests_HW_CARTE1

Référence : 22-9912-ED

Version: 01

Page: **9/28**

Test 04: Test des boutons

Description:

Vérification sur carte NON-ALIMENTÉE, du fonctionnement des boutons à l'aide d'un Ohmmètre.

Résultat attendu :

BT01: Test du bouton poussoir SW1 (Mesure en Ω):

Point Référence 1	Point Référence 2	Bouton n	on-pressé	Bouton	pressé	Statut
JF4	IN41 12	Attendu	Mesuré	Attendu	Mesuré	OK
(GND)	JM1.12	<u>≈</u> 1MΩ	46.6 kΩ	<u>≈</u> 0 Ω	0.4 Ω	<u>ОК</u>

<u>PS</u>: La valeur attendu lorsque le bouton n'est pas pressé est bien aux alentours de $45k\Omega$ à cause de la résistance de pull-up interne sur la broche nRST du microcontrôleur.

BT02: Test du bouton poussoir SW2 (Mesure en Ω):

Point Référence 1	Point Référence 2	Bouton n	on-pressé	Bouton	pressé	Statut
JF4	CI4.5	Attendu	Mesuré	Attendu	Mesuré	OK
(GND)	C14.5	<u>≈</u> 1MΩ	<u>0.67MΩ</u>	<u>≈</u> 0 Ω	0.7 Ω	<u>OK</u>

22-9912-ED-0018_Resultat_Tests_HW_CARTE1

Référence : 22-9912-ED

Version: 01

Page: 10/28

Test 05: Vérification de la connexion USB

Description:

Vérification sur carte de la tension d'alimentation fournit par l'USB, à l'aide d'un Voltmètre. Un câble USB type B - type A, sera branché sur la carte et sur un PC du labo.

Les connecteurs JF3 et JF4 seront connectés à aucune alimentation.

Résultat attendu :

VUSB01: Test de tension (Mesure en V)

VBUS (CI3.5)	5. <u>11</u> V	<u>5.11 V</u>	<u>OK</u>
Tension testé	Attendu (Tension mesuré au préalable sur le câble USB)	Mesuré	Statut

22-9912-ED-0018_Resultat_Tests_HW_CARTE1

Référence : 22-9912-ED

Version: 01

Page: 11/28

Test 06: Vérification de la séparation des alimentations

Description:

Sur carte **NON-ALIMENTEE**, vérification à l'aide d'un Ohmmètre de l'indépendance des alimentations du système.

Résultat attendu:

ZALIM01: Impédances entre les alimentations et la masse (Mesure en Ω)

Points de référence A	Points de référence B	Attendu	Obtenu	Statut
PVBAT (JF3)	GND	<u>≈</u> 100kΩ	<u>37.8kΩ</u>	<u>OK</u>
P1V2 (<u>LI1.2</u>)	GND	<u>≈</u> 100kΩ	<u>245kΩ</u>	<u>OK</u>
P2V8 (CI8.1)	GND	<u>≈</u> 100kΩ	<u>23.2kΩ</u>	<u>OK</u>
P3V3 (CI5.1)	GND	<u>≈</u> 100kΩ	<u>37.8kΩ</u>	<u>OK</u>
P5V (CI3.5)	GND	<u>≈</u> 100kΩ	<u>193.4kΩ</u>	<u>OK</u>

22-9912-ED-0018_Resultat_Tests_HW_CARTE1

Référence : **22-9912-ED**

Version: 01

Page: 12/28

Test 07: Vérification de l'orientation du connecteur capteur (JF6)

Description:

L'objectif de ce test est de vérifier la bonne orientation du connecteur ainsi que le positionnement des broches.

Sur carte **NON-ALIMENTEE**, face à la couche **BOTTOM**, le testeur doit voir le connecteur carré JF6 avec le détrompeur en bas à gauche.

Résultat attendu :

ORICONNO1: Vérification de l'orientation de JF6:

Orientation attendue	Observation	Statut
Pastille en bas à gauche du connecteur	L	ОК

Test 08: Contrôle de la valeur de résistance de mesure de courant

Description:

L'objectif de ce test est de vérifier, à l'aide d'un ohmmètre que la résistance RE65 soit de $100 \text{m}\Omega$.

Résultat attendu :

RR01: Mesure de la valeur de la résistance RE65 (Mesure en Ω):

Min	Тур	Max	Mesure	Statut
99.5 <u>m</u>	100m	100.5 <u>m</u>	<u>400m</u>	<u>FAIL</u>

PS: La mesure ne peut pas donner ce que l'on veut avoir, la précision de l'ohmmètre ne peut mesurer au m Ω près.

22-9912-ED-0018_Resultat_Tests_HW_CARTE1

Référence : 22-9912-ED

Version: 01

Page: 13/28

Test 09: Mise sous tension

Description:

Mise sous tension de la carte à l'aide d'une alimentation de laboratoire.

L'objectif de ce test est la vérification de la conformité des tensions d'alimentations avec les caractéristiques des composants.

La tension fournie sera **3V7**. Le terminal **positif** de l'alimentation sera branché sur **JF3** et le terminal **négatif** sur **JF4**.

A l'aide d'un multimètre, **JF4** sera le point de référence à **GND**.

L'écran et les capteurs ne sont pas branchés.

Résultat attendu:

MST01 : Mesure de la tension entre PVBATT (JF3) et la masse (Mesure en Volts) avec une limite de courant placée à 0.5A

Attendu	Mesuré	Statuts
3V7 <u>1</u>	<u>3.71</u>	<u>ОК</u>

MST02: Avec la limite de courant sur l'alimentation de laboratoire placée à **0.5A** et un appui sur **SW2**. Mesure de la tension, à l'aide d'un oscilloscope, entre le point de référence spécifié et **JF4** (Mesure en Volts)

Point de référence	Attendu	Mesuré	Statuts
PVBAT (JF3)	3.7 <u>1</u>	<u>3.71 V</u>	<u>OK</u>
P1V2 (JF5.10)	1.14 < 1.2 <u>3</u> < 1.26	<u>1.228 V</u>	<u>OK</u>
P2V8 (CI8.1)	2.72 < 2.8 < 2.88	2.814 V	<u>OK</u>
P3V3 (CI5.1)	NA < 3.3 < 3.4	<u>3.37 V</u>	<u>OK</u>
P5V (CI3.5)	0.0	<u>0.0 V</u>	<u>OK</u>

22-9912-ED-0018_Resultat_Tests_HW_CARTE1

Référence : 22-9912-ED

Version: 01

Page: **14/28**

Test 10: Vérification du Séquençage des tensions

Description:

L'objectif est de vérifier que l'ordre de séquençage des tensions requis par les composants est respecté.

La tension fournie sera **3V7**. Le terminal **positif** de l'alimentation sera branché sur **JF3** et le terminal **négatif** sur **JF4**.

La séguence de tensions attendue est $P3V3 \rightarrow P1V2 \rightarrow P2V8$.

La vérification est effectuée à l'aide d'un oscilloscope à 4 entrées.

Le point de masse sera JF4.

L'écran et les capteurs ne sont pas branchés.

En utilisant le mode de déclenchement sur la CH4 (PGOODALL), analyse des courbes.

Résultat attendu:

SEQ01: Vérification du timing où la tension est stable pour vérifier le séquencement 3V3 puis 1V2 puis 2V8 à partir du début de la montée de la tension de P3V3 (Mesure en ms) :

pais 2 vo a pai	pais 2 vo a partir da debat de la montee de la tension de l'ovo (mesare en mo).				
Entrées Oscilloscope	Points de référence	Mesuré	Statut		
1	P3V3 (CI5.1)	<u>0.5ms</u>	<u>ОК</u>		
2	P1V2 (JF5.10)	<u>3.3ms</u>	<u>ОК</u>		
3	P2V8 (CI8.1)	<u>3.8ms</u>	<u>ОК</u>		

SEQ02 : Vérification du passage à 2V8 de PGOODALL après que la dernière tension (CI8.1) ait atteint 2V8 (Mesure en ms)

Entrée Oscilloscope	Point de référence	Mesuré	Statut
4	PGOODALL (CI8.7)	<u>100μs</u>	<u>OK</u>

22-9912-ED-0018_Resultat_Tests_HW_CARTE1

Référence : 22-9912-ED

Version: 01

Page: 15/28

Test 11: Test du fonctionnement sur pile

Description:

L'objectif de ce test est de vérifier le fonctionnement du système sur pile.

Avec **SW2** en position OFF, la pile chargée afin d'avoir une tension de **3V7** sera insérée entre les supports de pile **JF3** et **JF4**.

Attention à la polarité de pile.

Les périphériques ne seront pas branchés.

Noter la tension de la pile avant insertion.

Résultat attendu:

FP01 : Vérifications de la tension entre PVBAT et XX8 :

Attendu	Avant insertion	Après insertion	Statut
Une tension équivalente à celle mesurée avant l'insertion	3.663	3.663	ОК

FP02 : Appui sur SW2, vérifications de la tension entre PVBAT et XX8 :

Attendu	Avant l'appui	Après l'appui	Statut
Une tension équivalente à celle mesurée avant l'appui	3.663	3.661	ОК

FP03 : Vérifications des bonnes tensions en sortie des régulateurs :

Attendu	Mesuré	Statut
P3V3	3.371 V	ОК
P2V8	2.813 V	ОК
P1V2	1.229 V	ОК

22-9912-ED-0018_Resultat_Tests_HW_CARTE1

Référence : 22-9912-ED

Version: 01

Page: **16/28**

Test 12: Test du chargeur de pile

Description:

L'objectif de ce test est la vérification du fonctionnement attendu du chargeur de batterie.

L'alimentation 5V sera fournie par un câble USB-B relié à un PC.

La pile est présente dans le système, sa tension doit être supérieure à 3V3 et être inférieure à **3V8** afin de permettre le lancement d'un cycle de charge.

Résultat attendu :

TC01: Branchement du câble USB, aucun appui sur le bouton SW2:

Attendu	Observation	Statut
La LED LE2 s'allume	L	<u>OK</u>

TC02 : Après appui sur le bouton SW2 :

Attendu	Observation	Statut
La LED LE2 reste allumée	L	<u>OK</u>

TCO3: Après avoir éteint la carte, à l'aide d'un ampèremètre, mesure du courant de rechargement.

Attendu	Observation	Statut
Un courant de l'ordre de 455mA est	On lit un courant de	<u>OK</u>
attendu	rechargement constant de	
	0.459mA	

22-9912-ED-0018_Resultat_Tests_HW_CARTE1

Référence : 22-9912-ED

Version: 01

Page: 17/28

TESTS INTEGRATION

Test 13: Fonctionnement de l'interface SWD et du bouton nRST

Description:

L'objectif de ce test est la vérification du comportement attendu de l'interface SWD et du système suite à un appui sur la broche nRST.

Un code software pour programmer le microcontrôleur et tester le comportement du système a été préparé.

Il sert à : « Allumer la LED LE1 pendant secondes et envoi sur le SWO du message "LED ON" pour vérifier le fonctionnement de l'interface SWD puis l'éteindre avec l'envoi sur le SWO du message "LED OFF", un appui sur le bouton SW1 connecté au nRST du MCU devra relancera la séquence ».

<STM32H743VIT6 SWD.elf>

La tension fournie sera **3V7**. Le terminal **positif** de l'alimentation sera branché sur **JF3** et le terminal **négatif** sur **JF4**.

Résultat attendu:

CV01 : Flasher le code sur la carte alimentée.

Attendu	Obtenu	Statut
Voir la LED LE1 s'allumer pendant 1sec puis s'éteindre	L	OK
Voir le message "LED ON" pendant 1 sec puis "LED OFF"	Pas pu tester car compte admin suspendu	TBD

CV02 : Après appui sur le bouton nRST.

Attendu	Obtenu	Statut
Voir la LED LE1 s'allumer de nouveau pendant 1sec puis s'éteindre	/	OK

22-9912-ED-0018_Resultat_Tests_HW_CARTE1

Référence : 22-9912-ED

Version: 01

Page: 18/28

Test 14: Fonctionnement Ecran

Description:

L'objectif est de tester l'interface SPI 2 dédié à l'écran.

Un binaire du nom de <STM32H743VIT6-SCREEN.elf> a été compilé pour cela.

« Lorsque l'on alimente la carte, le fond de l'écran devient blanc.

Après programmation, le fond :

- Affiche le logo d'Elsys en cas de succès,
- Sinon, il affiche un fond blanc/bruité en cas d'échec.

Pour tester le toucher tactile, un premier appui écran permet de changer le fond d'Elsys en fond bleu uni. Apres un second appui, le logo d'Elsys apparaît à nouveau.»

La tension fournie sera **3V7**. Le terminal **positif** de l'alimentation sera branché sur **JF3** et le terminal **négatif** sur **JF4**.

Résultat attendu :

EC01: Flashez le code sur la carte

Attendu	Obtenu	Statut
L'écran affiche le logo d'Elsys	L	<u>OK</u>

EC02 : Après un premier appui

Attendu	Obtenu	Statut
L'écran devient bleu	L	<u>OK</u>

EC03: Après un second appui

Attendu	Obtenu	Statut
L'écran affiche le logo d'Elsys	L	<u>OK</u>

22-9912-ED-0018_Resultat_Tests_HW_CARTE1

Référence : 22-9912-ED

Version: 01

Page: 19/28

Test 15: Fonctionnement interface UART

Description:

L'objectif de ce test est la vérification du fonctionnement attendu de l'interface UART.

Un code software pour programmer le microcontrôleur et tester l'interface a été préparé.

Il sert à : « Récupérer sur Putty par la connexion UART un message contenu dans le code à l'aide d'un câble FTDI 3V3. »

<STM32H743VIT6_UART.elf>

La tension fournie sera **3V7**. Le terminal **positif** de l'alimentation sera branché sur **JF3** et le terminal **négatif** sur **JF4**.

Configuration de l'UART: - 115200 Bd

- 8 bits de données- pas de bit de parité- 1 bit de stop

Résultat attendu:

UA01: Brancher l'interface UART à l'ordinateur, flasher le code sur le MCU.

Attendu	Obtenu	Statut
Lire sur Putty les données qui ont	L	<u>OK</u>
été envoyées par le MCU		

22-9912-ED-0018_Resultat_Tests_HW_CARTE1

Référence : 22-9912-ED

Version: 01

Page: 20/28

Test 16: Fonctionnement Capteur Thermique

Description:

L'objectif de ce test est la vérification du fonctionnement attendu du capteur thermique.

Deux codes software ont été préparé pour programmer le microcontrôleur et tester chacune des interfaces SPI4 et I2C4.

 $Code\ 1: \text{``a-Tester'l' interface I2C4 en faisant une lecture de registre\ où on connait la valeur par}$

défaut tel que le registre Statuts à l'adresse du composant "0x2A" et à l'adresse du registre "0x0002", la valeur qui nous intéresse est Statuts[2].

On doit lire "TEST OK" si la caméra a bien démarré ou un "TEST FAIL + explication" sinon.»

<STM32H743VIT6-IR-I2C.elf>

Code 2 : « - Tester l'interface SPI4 : Si la caméra a envoyé une image (60 lignes de données) alors l'entête de la dernière ligne est 0x3B, l'UART renvoie un "TEST OK" ou "TEST FAIL". »

<STM32H743VIT6-IR-SPI.elf>

La tension fournie sera **3V7**. Le terminal **positif** de l'alimentation sera branché sur **JF3** et le terminal **négatif** sur **JF4**.

Résultat attendu:

TH01: En fonctionnement, programmation du Code 1.

Attendu	Obtenu	Statut
Vérifier sur Putty la valeur lue	L	<u>OK</u>

TH02: En fonctionnement, programmation du Code 2.

Attendu	Obtenu	Statut
Vérifier sur Putty la valeur lue	L	<u>OK</u>

22-9912-ED-0018_Resultat_Tests_HW_CARTE1

Référence : **22-9912-ED**

Version: 01

Page: 21/28

Test 17: Fonctionnement I2C des circuits intégrés CI2/CI9

Description:

L'objectif de ce test est la vérification du fonctionnement du RTC (CI2) et du Coulombmètre (CI9) dépendant des interfaces I2C2 et I2C1 respectivement.

Un code software a été préparé pour programmer le microcontrôleur et tester chacun des deux composants.

Code 1: « Tester l'interface I2C2 en faisant une lecture de registre à l'adresse du composant "0xDF", si le composant reconnaît son adresse en envoyant l'Acknowledge alors un message de succès sera renvoyé sur Putty via l'UART. »

<STM32H743VIT6_RTC.elf>

Code 2 : « Tester l'interface I2C1 à l'adresse du composant "0xC9", en faisant une lecture de registre où on connait la valeur par défaut tel que le registre de contrôle B à l'adresse "0x01", l'UART doit renvoyer sur Putty : un message de succès si la valeur lue est "0x3C" ou un message d'erreur sinon. »

<STM32H743VIT6_COULOMB.elf>

La tension fournie sera **3V7**. Le terminal **positif** de l'alimentation sera branché sur **JF3** et le terminal **négatif** sur **JF4**.

Résultat attendu :

RTC01: Lecture d'une valeur de registre du RTC

Attendu	Obtenu	Statut
Vérifier sur Putty, la réception du	Reçu « SUCCESS. Address has	<u>OK</u>
message de succès	been recognized »	

CM01 : Lecture d'une valeur de registre du Coulombmètre

Attendu	Obtenu	Statut
Vérifier sur Putty, la réception du	Reçu « SUCCESS. Address has	<u>OK</u>
message de succès	been recognized »	

22-9912-ED-0018_Resultat_Tests_HW_CARTE1

Référence : 22-9912-ED

Version: 01

Page: 22/28

Test 18: Fonctionnement interface USB

Description:

L'objectif de ce test est la vérification du fonctionnement attendu de l'interface USB.

Un code software pour programmer le microcontrôleur et tester l'interface a été préparé.

Il sert à : « Envoyer la requête "connect" au PC. Si la connexion a été établi, l'appareil est affiché dans la liste des périphériques COM ».

<CODE A DEFINIR USB>

La tension fournie sera **3V7**. Le terminal **positif** de l'alimentation sera branché sur **JF3** et le terminal **négatif** sur **JF4**.

Résultat attendu:

USB01: Brancher au PC la caméra thermique alimenté

Attendu	Obtenu	Statut
Le PC reconnaît le MCU	« USB non reconnu »	КО

22-9912-ED-0018_Resultat_Tests_HW_CARTE1

Référence : 22-9912-ED

Version: 01

Page: 23/28

Test 19: Fonctionnement Caméra visible

Description:

L'objectif de ce test est la vérification du fonctionnement attendu de la caméra visible.

Un code software a été préparé pour programmer le microcontrôleur et tester l'interface DCMI et l'12C3.

Il Sert à : « - Tester l'interface I2C3 en faisant une lecture de registre où on connait la valeur par

défaut tel que le registre MIDH à l'adresse "0x1C", l'adresse du composant en lecture "0x3D",

la valeur qui doit être lue est "0x7F".

- Tester l'interface DCMI : Lecture à l'oscilloscope sur les broches DCMI_D, si des trames sont envoyées. »

< CODE A DEFINIR CV>

La tension fournie sera **3V7**. Le terminal **positif** de l'alimentation sera branché sur **JF3** et le terminal **négatif** sur **JF4**.

Résultat attendu:

CV01 : Lecture de registre de la Caméra visible

Attendu	Obtenu	Statut
La valeur "0x7F" est lue sur Putty		

CV02 : Analyse de trames

Attendu	Obtenu	Statut
Des trames sont envoyées sur les		
broches DCMI D[7:0]		

22-9912-ED-0018_Resultat_Tests_HW_CARTE1

Référence : **22-9912-ED**

Version: 01

Page: **24/28**

Test 20: Fonctionnement Carte SD

Description:

L'objectif de ce test est la vérification du fonctionnement attendu de l'interface SPI1.

Deux codes software ont été préparé pour programmer le microcontrôleur et tester l'interface SPI1.

Code 1: « Test de la lecture du GPIO SD_Card_Detect, si on a bien un état bas, la LED LE1 s'allume. »

< CODE_A_DEFINIR_SD_detect>

Code2 : « Si la carte est insérée, la GPIO SD_Card_Detect a un état bas, qui commande au MCU un état bas sur la GPIO

*SD_Alim_EN qui alimente la carte SD, le MCU envoie alors 3 commandes successives à la carte SD :

- "GO_IDLE_STATE (CMD0) " qui renvoie "0x01"
- "SEND_IF_COND (CMD8)" qui renvoie "0x00"
- "SEND_OP_COND (CMD1)" qui renvoie "0x00"

Le MCU reçoit ces trois réponses et les renvoie vers l'UART. »

< CODE_A_DEFINIR_SD_cmd>

La tension fournie sera **3V7**. Le terminal **positif** de l'alimentation sera branché sur **JF3** et le terminal **négatif** sur **JF4**.

Résultat attendu :

SD01: Programmation du code 1 avec la carte SD insérer dans le port SD.

Attendu	Obtenu	Statut
Voir si la LED LE1 s'allume		

SD02: Programmation du code 2 avec la carte SD insérer dans le port SD.

Attendu	Obtenu	Statut
Lire sur Putty les valeurs que		
retourne la carte SD		

22-9912-ED-0018_Resultat_Tests_HW_CARTE1

Référence : 22-9912-ED

Version: 01

Page: **25/28**

Test 21: Fonctionnement de l'extinction via la GPIO KILL

Description:

L'objectif de ce test est de vérifier que le MCU puisse éteindre la carte via la GPIO KILL.

Un code software a été préparé pour programmer le microcontrôleur et tester la GPIO KILL.

Il sert à : « Le code affiche sur l'UART "LED ON" et allume la LED LE1. Au bout de 5_secondes, il commande un niveau bas sur la broche KILL, en open-drain. »

<STM32H743VIT6_GPIO.elf>

La tension fournie sera **3V7**. Le terminal **positif** de l'alimentation sera branché sur **JF3** et le terminal **négatif** sur **JF4**.

Résultat attendu:

KL01: Programmation du code.

Attendu	Obtenu	Statut
La LED LE1 s'allume et l'UART affiche "LED ON" puis la LED s'éteint au bout de 5secondes	L	<u>OK</u>
Lecture de la tension sur la broche CI4.7, on attend une tension de "0V"	Passe brusquement de 3.7 V à 0V	<u>OK</u>

22-9912-ED-0018_Resultat_Tests_HW_CARTE1

Référence : 22-9912-ED

Version: 01

Page: 26/28

9 TRAÇABILITE

Les spécifications techniques testable sur la carte et qui n'ont pas été validé plus tôt dans le projet sont présents dans le tableau joint.

Les codes exigences ont le préfixe : « CameraThermique_CARTE_ »

Domaine de Spécifications	Code Exigence	Titre exigence	Test lié
	DimMaxCP_010_00	Dimensions maximales du capteur photo	/
	DimMaxBatt_020_00	Dimensions maximales de la batterie	/
	ClassePCB_030_00	Classe de gravure du PCB	L
	PtsFixation_040_00	Points de fixation	3
	DispCaptTh_050_00	Disposition du capteur thermique	/
MECANIQUE	DispCaptPh_060_00	Disposition du capteur photographique	/
	DispIntCapt_070_00	Disposition inter-capteur	/
	OrientCapt_080_00	Orientation capteurs	/
	DispEcran_090_00	Disposition de l'écran	/
	DispCoulomb_100_00	Disposition du Coulombmètre	
	DispSD_110_00	Disposition de la connectique SD	/
	CaptTherm_120_00	Capteur Thermique	/
	CT-ImagSec_130_00	Images par seconde capteur thermique	/
	CaptPhotogr_140_00	Capteur photographique	/
AQUISITION	SauvImage_150_00	Sauvegarde de l'image	/
	StockImageMin_160_00	Stockage minimal d'image	/
	ConnUART_170_00	Connecteur UART	1 <u>5</u>
	CdVCaptPh_180_00	Champ de vision capteur photographique	/

22-9912-ED-0018_Resultat_Tests_HW_CARTE1

Référence : 22-9912-ED

Version: 01

Page: **27/28**

	CP-ImagSec_190_00	Images par sec capteur photographique	/
	RechCommun_200_00	Communication du niveau de charge	1 <u>7</u>
	TechEcr_210_00	Technologie de l'écran	/
	Batt_220_00	Batterie	1 <u>1</u>
	Charge_230_00	Charge de la batterie	1 <u>2</u>
	Auto_240_00	Autonomie de la batterie	/
	Auto5A_250_00	Autonomie de la batterie après 5 ans	/
	AutoHT_260_00	Autonomie hors-tension	/
	RechDur_270_00	Durée de la recharge	/
ALIMENTATION	RechSource_280_00	Moyen rechargement de la batterie	5
	RechAmpOff_290_00	Ampérage de recharge OFF	/
	RechAmpOn_300_00	Ampérage de recharge ON	/
	RechDetect_310_00	Détection de niveau de charge	/
	VoltAlimPh_320_00	Tension d'alimentation capteur photo	/
	ModeVeille_330_00	Mode veille de la caméra	L
	TempératFct_340_00	Température de fonctionnement	/
ENVIRONNEMENT	TempératStock_350_00	Température de stockage	/
	PlombBatterie_360_00	Présence de plomb dans la batterie	/
	BtnOnOff_370_00	Bouton ON/OFF	4
LITUICATELID	LedBatt_380_00	LED de batterie	/
UTILISATEUR	LedRech_390_00	LED de recharge	13
	ConnData_400_00	Connecteur de données	5
	MicroCtrl_410_00	Utilisation d'un microcontrôleur	/
COMMANDE	CtrlSD_420_00	Commande SD par le microcontrôleur	2 <u>0</u>

22-9912-ED-0018_Resultat_Tests_HW_CARTE1

Référence : 22-9912-ED

Version: **01**

Page: 28/28

	CtrlEcran_430_00	Commande Ecran par le microcontrôleur	1 <u>4</u>
	CtrlCapteurTh_440_00	Commande capt therm microcontrôleur	1 <u>6</u>
	CtrlCapteurTh_450_00	Commande capt photo microcontrôleur	<u>19</u>