

(12) NACH DEM VERtrag UBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VEROFFENTLICHTE INTERNATIONALE ANMELDUNG

Rec'd PCT/PTO

22 MAR 2005

(19) Weltorganisation für geistiges Eigentum
Internationales Büro(43) Internationales Veröffentlichungsdatum
8. April 2004 (08.04.2004)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2004/028525 A1(51) Internationale Patentklassifikation⁷: **A61K 31/16**,
31/14, 31/375, A61P 1/16, 9/00, 25/28, A61K 9/00, A23L
1/30, A23K 1/16, A61K 47/00(DE). HASSELWANDER, Oliver [DE/DE]; Hamburger
Strasse 52, 76829 Landau (DE).

(21) Internationales Aktenzeichen: PCT/EP2003/010535

(74) Anwalt: KINZEBACH, Werner; Reitstötter, Kinzebach
& Partner (GbR), Sternwartstr. 4, 81679 München (DE).(22) Internationales Anmeldedatum:
22. September 2003 (22.09.2003)(81) Bestimmungsstaaten (*national*): AE, AG, AL, AM, AT,
AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR,
CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD,
GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR,
KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN,
MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU,
SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA,
UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
102 44 397.1 24. September 2002 (24.09.2002) DE(84) Bestimmungsstaaten (*regional*): ARIPO-Patent (GH,
GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL,
PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG,
CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).(71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): BASF AKTIENGESELLSCHAFT [DE/DE];

67056 Ludwigshafen (DE).

67056 Ludwigshafen (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (*nur für US*): HABICH, Andreas [DE/DE]; Martinskirchweg 26, 67346 Speyer (DE). HANSEN, Morten, M [DK/DK]; Callunavej 24, DK-3450 Alleroed (DK). HANSEN, Carsten L. [DK/DK]; Patronvej 15, DK-2730 Herlev (DK). YDE, Brigitte [DK/DK]; Tornehoeg 148, DK-3520 Farum (DK). OFTRING, Alfred [DE/DE]; Im Röhrich 49, 67098 Bad Dürkheim (DE). SCHÖNHERR, Michael [DE/DE]; Conrad-Linck-Strasse 18, 67227 Frankenthal (DE). GUTH, Felicitas [DE/DE]; Burgstrasse 44, 68165 Mannheim

—

Veröffentlicht:
mit internationalem Recherchenbericht
— vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

WO 2004/028525 A1

(54) Title: CHOLINE ASCORBATE FORMULATIONS

(54) Bezeichnung: CHOLINASCORBAT-FORMULIERUNGEN

(57) Abstract: The invention relates to novel formulations comprising choline ascorbate, methods for production and use thereof in foodstuffs or fodder, or as adjuncts for foodstuffs or fodder or pharmaceuticals.

(57) Zusammenfassung: Die Erfindung betrifft neuartige Cholinascorbat enthaltende Formulierungen; Verfahren zu deren Herstellung und deren Verwendung in Nahrungs- oder Futtermitteln bzw. Nahrungs- oder Futterergänzungsmittel oder Arzneimitteln.

Cholinascorbat-Formulierungen

Die Erfindung betrifft neuartige Cholinascorbat enthaltende Formulierungen; Verfahren zu deren Herstellung und deren Verwendung in Nahrungs- oder Futtermitteln bzw. Nahrungs-
5 oder Futterergänzungsmittel oder Arzneimitteln.

Cholin $\{[(\text{H}_3\text{C})_3\text{N}^+ - \text{CH}_2 - \text{CH}_2 - \text{OH}] \text{OH}^-\}$ ist der basische Bestandteil der Phospholipide vom Phosphoglyceridtyp und im Pflanzen- und Tierreich weit verbreitet. Cholin fungiert als wichtiger Faktor bei biochemischen Prozessen, z.B. bei Methylierungen. Sein Mangel führt bei
10 Tieren zur Bildung der Fettleber.

Cholin wird hauptsächlich in Form von Cholinchlorid oder Cholinbitartrat in Arzneipräparaten gegen Arterienverkalkung und Leberparenchymenschäden eingesetzt. In der Tierernährung stellt Cholinchlorid einen bedeutenden Futtermittelzusatzstoff dar.

15 Cholinsalze organischer Säuren, wie z.B. das oben genannte Cholinbitartrat, oder Cholinsalicylat, Cholinhydrogencitrat sowie Cholinascorbat werden u.a. beschrieben in EP-A-0 812 821.

20 Geruchsarmes Cholinchlorid, -bitartrat und -dihydrogencitrat mit einem Trimethylaminanteil von weniger als 0,2 ppb werden in der WO-A-00/48986 beschrieben.

Aus der WO-A-91/15198 sind feste Cholinchlorid-Formulierungen bekannt, in welchen festes Cholinchlorid mit einem Wachsüberzug versehen ist. Insbesondere wird die β -polymorphe
25 Form von Glyceryltristearat als Hüllmaterial vorgeschlagen.

Cholinascorbat (CAS) zeichnet sich dadurch aus, dass es zwei für die Human- und Tierernährung wichtige Wirkstoffe - Cholin und L-Ascorbinsäure (Vitamin C) - in einem Molekül vereinigt.

30 Die Synthese des Cholinascorbats ist in der US-A-2, 823, 166, der CH 490322 sowie der FR 1, 242,805 beschrieben. Die Synthese eines besonders reinen, kristallinen Cholinascorbats wird in der DE-A-101 090 73 beschrieben.

35 Ein besonderes Problem des Cholinascorbats ist seine eingeschränkte thermische und oxidative Stabilität, die sich insbesondere nach gewisser Zeit, unter anderem durch Auftreten

von Verfärbungen äußert. So zeigt festes Cholinascorbat beispielsweise bei 40°C und Anwesenheit von Luftfeuchte bereits nach wenigen Tagen an der Oberfläche eine bräunliche Farbe. Ähnliche unerwünschte Verfärbungen beobachtet man nach einiger Zeit in Cholinascorbatlösungen.

5

Dagegen sind andere Cholinsalze, wie z.B. das Cholinbitartrat, aber auch L-Ascorbinsäure sowie andere Salze, wie z.B. Natriumascorbat, deutlich farbstabiler.

Über diese Zersetzungreaktionen des Cholinascorbats ist wenig bekannt. Es kann vermutet 10 werden, dass durch die Anwesenheit des quartären Ammonium(Cholin-) Gegenions oxidative Folgereaktionen im Ascorbinsäure-Molekülteil beschleunigt werden bzw. durch thermische Eliminierungen freigesetzte Aminkomponenten ebenfalls intensiv gefärbte Folgeprodukte von Ascorbinsäure verursachen.

15 Diese farbliche Instabilität des Cholinascorbats ist beispielsweise für seine Verwendung in Vitaminformulierungen prohibitiv.

Cholinascorbat, insbesondere dessen kristalline Form, ist nicht nur licht- und luftempfindlich 20 sondern auch stark hygroskopisch. Außerdem besitzt festes, kristallines Cholinascorbat schlechte Fließeigenschaften, so dass eine Klassierung sehr aufwendig ist.

Kurze Beschreibung der Erfindung:

Es war daher Aufgabe der vorliegenden Erfindung, Cholinascorbat-Formulierungen bereitzustellen, welche die oben beschriebenen Nachteile des Standes der Technik wenigstens zum 25 Teil nicht mehr aufweisen.

Überraschenderweise ist es erfindungsgemäß gelungen, feste Cholinascorbat-Formulierungen bereitzustellen, welche im Vergleich zu rohem, nicht-formuliertem Cholinascorbat, eine geringere Sensitivität des Cholinascorbats gegenüber einem oder mehreren der 30 externen Stressfaktoren Luft, Licht, Feuchtigkeit, Temperatur, pH-Wert, Metall, insbesondere Schwermetallen, etc. aufweisen.

Eine „Cholinascorbat-Formulierung“ im Sinne vorliegender Erfindung umfasst alle Formulierungen, die Cholinascorbat und/oder eine ascorbathaltige Cholinsalzmischung aus einem 35 von Cholinascorbat verschiedenen Cholinsalz mit Ascorbinsäure und/oder einem Salz der

Ascorbinsäure enthalten. Diese ascorbathaltigen Cholinsalzmischungen können grundsätzlich Cholinsalz und Ascorbinsäure bzw. Ascorbinsäuresalz in beliebigem molaren Verhältnis enthalten, wie z.B. 1:3 bis 3:1 oder 1:2 bis 2:1; bevorzugt sind aber im wesentlichen äquimolare Mischungsverhältnisse.

5

In einer ersten bevorzugten Ausführungsform betrifft die Erfindung eine feste, beispielsweise partikelförmige, Cholinascorbat enthaltende Formulierung, umfassend Cholinascorbat und wenigstens ein Formulierungshilfsmittel, die dadurch gekennzeichnet ist, dass sie eine solche Farbstabilität besitzt, dass eine Lösung dieser Formulierung unter Standardbedingungen (d.h. eine Lösung dieser Formulierung in Wasser-Methanol (1:1) mit einem Anteil von etwa 10 Gew.-%, bezogen auf das Gesamtgewicht der Lösung; hergestellt durch 15-minütiges Rühren der Formulierung in dem Lösungsmittel bei Raumtemperatur und gegebenenfalls Entfernen ungelöster Bestandteile der Formulierung)

10

- i) eine Farbzahl nach Gardner (bestimmt nach DIN-ISO 4630 bzw. ASTM D 1544-80) von < 4,5, vorzugsweise < 4, insbesondere 0,05 bis 3 oder 0,1 bis 2, und/oder
- ii) eine Farbzahl nach Hazen (bestimmt nach DIN-ISO 6271 bzw. ASTM D 1045-68, ASTM D 263-49 oder ASTM D 1209-69) von < 800, vorzugsweise < 700, insbesondere 10 bis 400 oder 20 bis 350 oder 25 bis 300, aufweist.

15

Eine weitere Ausführungsform der Erfindung betrifft eine feste, beispielsweise partikelförmige, Cholinascorbat enthaltende Formulierung, umfassend Cholinascorbat und wenigstens ein Formulierungshilfsmittel, die dadurch gekennzeichnet ist, sie bei Lagerung unter Standardbedingungen in feuchter Umgebungsluft nicht zerfließt. Insbesondere ist dabei kein anlösen oder vollständiges Lösen der Formulierung visuell erkennbar. Auch ist keine abfiltrierbare (abtrennbare) Flüssigphase nach Lagerung zu beobachten. Standardbedingungen der Lagerung bedeuten dabei eine Lagerung der Formulierung über einen Zeitraum von 72 Stunden, bei Raumtemperatur (20-25 °C) in einer Feuchtgasatmosphäre, wie z.B. Luft, mit einer relativen Gasfeuchte φ von etwa 76%, die sich über einer gesättigten wässrigen Kochsalzlösung einstellt.

20

Gegenstand der Erfindung sind insbesondere feste Formulierungen, die dadurch gekennzeichnet sind, dass

25

- a) Cholinascorbat mit einem inerten Beschichtungsmittel Oberflächen-beschichtet ist;
- b) Cholinascorbat in eine inerte Matrix eingebettet ist; oder
- c) ein poröser Träger mit Cholinascorbat beladen ist, und der beladene Träger gegebenenfalls mit einem inerten Beschichtungsmittel Oberflächen-beschichtet ist.

„Inert“ bedeutet in diesem Zusammenhang insbesondere, dass im Wesentlichen keine die Cholinascorbat-Stabilität gegen Verfärbung bzw. Zersetzung verschlechternde Wechselwirkungen zu beobachten sind.

5

Nach einer bevorzugten Ausführungsform der Erfindung umfasst die Formulierung zusätzlich eine wirksame Menge wenigstens eines die Verfärbungsneigung von Cholinascorbat weiter verringernden Zusatzes. Dieser die Verfärbungsneigung von Cholinascorbat verringernde Zusatz kann z.B. im Gemisch oder als Mischkristall mit dem Cholinascorbat vorliegen
10 und/oder in der Oberflächenbeschichtung, in der inerten Matrix oder im porösen Träger enthalten sein. Der Stabilisator ist dabei vorzugsweise in einem Anteil von etwa 0,05 bis 30 Mol-%, bezogen auf den molaren Gehalt an Cholinascorbat, enthalten.

15 Geeignete Stabilisatoren sind vorzugsweise ausgewählt unter schwefelhaltigen, phosphorhaltigen oder borhaltigen Verbindungen; Carbonsäuren und Carbonsäurederivaten; Vitamine und Vitamin-Vorläufern und -Derivaten; Naturstoffgemischen; hydroxy- oder alkoxyaromatischen Verbindungen; Reduktone; oder Gemischen davon.

20 Der schwefelhaltige Stabilisator ist insbesondere ausgewählt unter Cystein, Cystin, N-Acetylcystein, Thioglycolat, Glutathion, Dihydroliponsäure, Liponsäure, Natriumdithionit, Methionin und Thioharnstoff; sowie gegebenenfalls Salze dieser Verbindungen.

25 Der phosphorhaltige Stabilisator ist insbesondere ausgewählt unter Phosphoriger und Hydropophosphoriger Säure, sowie Salze davon. Der borhaltige Stabilisator ist insbesondere Phenylboronsäure und deren Salze. Die stabilisierende Carbonsäure oder dessen Drivat ist insbesondere ausgewählt unter Harn-, Milch-, Äpfel-, Citronen- und überschüssige Ascorbinsäure, sowie Ascorbylpalmitat; als Beispiele für geeignete Derivate von Carbonsäuren sind Salze oder Ester, wie z.B. C₁-C₁₈-Alkyl- oder -Alkenylester, zu nennen. Die stabilisierenden Vitamine, Vitamin-Vorläufer und -Derivate sind vorzugsweise ausgewählt unter alpha-, beta-
30 und gamma-Tocopherol, Tocotrienol und wasserlöslicheren Vitamin E-Derivaten, wie z.B. Vitamin-E-succinat oder -phosphat; Carotinoiden; Isoflavonen; Flavonoiden und anderen natürlich vorkommenden Polyphenolen, wie z.B. Quercetin, Epigallocatechin, Gallate, Ellagsäure und Ferulasäure. Ein geeignetes stabilisierendes Naturstoffgemisch ist z.B. ein Rosmarinextrakt oder Grünteeextrakt, wie z.B. beschrieben in Martinez-Tome, M. et al., J. Food Prot. 2001, 64 (9):1412-9. Stabilisierende hydroxy- oder alkoxy-aromatischen Verbindungen sind ausgewählt unter 6-Ethoxy-1,2-dihydro-2,2,4-trimethylchinolin (Ethoxyquin), t- Butyl-

hydroxytoluol und t-Butylhydroxyanisol. Als Beispiel für ein geeignetes Redukton kann Hydroxyaceton genannt werden.

Der Stabilisator kann auch ein funktionales, stabilisierend wirkendes Derivat einer der obigen
5 Verbindungen sein.

Erfnungsgemäß brauchbar sind auch Kombinationen aus zwei oder mehreren der oben
genannten stabilisierenden Additive.

10 Weiterhin sind erfungsgemäß, im Falle von möglichen optischen Isomeren, sämtliche
stereoisomeren Formen, wie z.B. das L- oder das D-Isomere, aber auch Stereoisomerenge-
mische, wie racemische Gemische, brauchbar.

15 Als Beispiele geeigneter funktionaler Derivate obiger Verbindungen können Salze genannt
werden. Salze obiger Stabilisatoren sind insbesondere Alkali- und Erdalkalimetallsalze, wie
z.B. Natrium- und Kaliumsalze.

20 Bevorzugte Additive aus obiger Auflistung sind S-haltige Spezies, wie insbesondere Cystein,
N-Acetylcystein, Dihydroliponsäure, Glutathion oder Thioglykolat; und P-haltige Spezies, wie
Hypophosphorige oder Phosphorige Säure; sowie Carbonsäuren, wie Ascorbinsäure oder
deren Salze oder Ester.

25 Erfungsgemäße Formulierungen sind vorzugsweise auch dadurch gekennzeichnet, dass
deren Cholinascorbat - Gehalt in einem Bereich von etwa 5 bis 95 Gew.-% bezogen auf das
Gesamtgewicht der Formulierung liegt.

30 Gemäß einer weiteren bevorzugten Ausführungsform sind erfungsgemäße beschichtete
Formulierungen einem Beschichtungsmittel versehen, welches wenigstens eine Verbindung,
ausgewählt unter:

- 30 a) Polyalkylenglycolen, insbesondere Polyethylenglycolen, beispielsweise mit einem zah-
lenmittleren Molekulargewicht von etwas 400 bis 15 000, wie z.B. 400 bis 10 000;
- b) Polyalkylenoxid-Polymeren oder –Copolymeren, beispielsweise mit einem zahlenmittel-
ren Molekulargewicht von etwa 4000 bis 20 000, insbesondere Blockcopolymeren von
Polyoxyethylen und Polyoxypropylen;
- c) substituierten Polystyrolen, Maleinsäurederivaten und Styrol-Maleinsäurecopolymeren;

- d) Vinylpolymeren, insbesondere Polyvinylpyrrolidonen, beispielsweise mit einem zahlenmittleren Molekulargewicht von etwas 7 000 bis 1 000 000; entweder alleine oder in Kombination mit anderen Verbindungen, wie Celluloseethern oder Stärken;
- 5 e) Vinylpyrrolidon/Vinylacetat-Copolymeren, beispielsweise mit einem zahlenmittleren Molekulargewicht von etwa 30 000 bis 100 000;
- f) Polyvinylalkoholen, beispielsweise mit einem zahlenmittleren Molekulargewicht von etwa 10 000 bis 200000, und Polypthalsäurevinylestern;
- 10 g) Hydroxypropylmethylcellulosen, beispielsweise mit einem zahlenmittleren Molekulargewicht von etwa 6000 bis 80 000;
- h) Alkyl(meth)acrylat-Polymeren und -Copolymeren, beispielsweise mit einem zahlenmittleren Molekulargewicht von etwa 100 000 bis 1 000 000, insbesondere Ethylacrylat/Methylmethacrylat-Copolymeren und Methacrylat/Ethylacrylat-Copolymeren;
- 15 i) Polyvinylacetaten, beispielsweise mit einem zahlenmittleren Molekulargewicht von etwas 250 000 bis 700 000 gegebenenfalls stabilisiert mit Polyvinylpyrrolidon;
- j) Polyalkylenen, insbesonderen Polyethylenen;
- k) Aromatischen Polymeren, beispielsweise Ligninen;
- l) Polyacrylsäuren;
- m) Polyacrylamiden;
- n) Polycyanoacrylaten;
- 20 o) Phenoxyessigsäure-Formaldehyd-Harzen;
- p) Cellulosederivaten, wie Ethylcellulose, Ethylmethylcellulose, Methylcellulose, Hydroxypropylcellulose, Hydroxypropylmethylcellulose, Carboxymethylcellulose, Celluloseacetatphthalat;
- q) tierischen, pflanzlichen oder synthetischen Fetten und modifizierten Fetten, wie beispielweise Polyglycolen, Fettalkoholen, ethoxylierten Fettalkoholen, höheren Fettsäuren; Mono-, Di- und Triglyceriden von höheren Fettsäuren, z.B. Glycerinmonostearat, Alkylarylethoxylate und Kokosmonoethanolamide;
- 25 r) tierischen und pflanzlichen Wachsen oder chemisch modifizierten tierischen und pflanzlichen Wachsen, wie Bienenwachs, Candelillawachs, Carnaubawachs, Montanesterwachs und Reiskeimölwachs, Walrat, Lanolin, Jojobawachs, Sasolwachs;
- s) tierischen und pflanzlichen Proteinen, wie z.B. Gelatine, Gelatinederivate, Gelatineersatzstoffe, Casein, Molke, Keratin, Sojaprotein; Zein und Weizenprotein;
- 30 t) Mono- und Disacchariden, Oligosacchariden, Polysacchariden, wie z.B. Hyaluronsäure, Pullulan, Elsinan, Stärken, modifizierten Stärken, sowie Pektinen, Alginaten, Chitosan, Carrageen;

- u) pflanzlichen Ölen, wie z.B. Sonnenblumen-, Distel-, Baumwollsaat-, Soja-, Maiskeim-, Oliven-, Raps-, Lein-, Ölbaum-, Kokos-, Ölpalmkernöl; synthetischen oder halbsynthetischen Ölen, wie z.B. mittelkettenigen Triglyceriden oder Mineralölen; tierischen Ölen, wie z.B. Hering-, Sardine- und Walöl;
- 5 v) gehärteten (hydrierten oder teilhydrierten) Ölen/Fetten, wie z.B. von den oben genannten, insbesondere hydriertes Palmöl, hydriertes Baumwollsaatöl, hydriertes Sojaöl;
- w) Lackcoatings, wie z.B. Terpenen, insbesondere Schellack, Tolubalsam, Perubalsam, Sandarak, und Silikonharzen;
- x) Fettsäuren, sowohl gesättigte als auch einfach und mehrfach ungesättigte C₆ bis C₂₄-Carbonsäuren;
- 10 y) Kieselsäuren;

und Mischungen davon umfasst.

- 15 Die Zugabe von Weichmachern oder Emulgatoren zu Fetten oder Wachsen vor der Beschichtung kann gegebenenfalls zur Verbesserung der Flexibilität des Films vorteilhaft sein.

Nach einer weiteren bevorzugten Ausführungsform werden Formulierungen bereitgestellt, bei denen das Cholinascorbat in eine Matrix eingebettet ist, welche wenigstens eine Verbindung gemäß obiger allgemeiner Definition umfasst, die zur Ausbildung einer, beispielsweise im Bereich von etwa 20 bis 100 °C oder 30 bis 100 °C festen Matrix geeignet ist.

Eine weitere bevorzugte Ausführungsform betrifft Cholinascorbat-haltige Formulierungen, wobei das Cholinascorbat von einem vorzugsweise porösen Träger getragen wird.

- 25 Weitere bevorzugte Ausführungsformen betreffen feste Cholinascorbat-Formulierungen welche Kombinationen der oben beschriebenen Merkmale umfassen. So können beispielsweise auf porösen Trägern basierende Formulierungen oder Formulierungen, welche Cholinascorbat eingebettet in eine Matrix umfassen, zusätzlich mit einem Beschichtungsmittel versehen
30 sein, um Cholinascorbat z.B. weiter zu stabilisieren oder um dem Produkt modifizierte Verarbeitungseigenschaften zu verleihen.

Die erfindungsgemäßen festen Cholinascorbat-Formulierungen können in vielfältiger Weise hergestellt werden. Nichtlimitierende Beispiele geeigneter Herstellungsweisen umfassen:

- 35 ein Verfahren, wobei man feste Cholinascorbat-Partikel beschichtet, indem man diese

- a) in einem Wirbelbett mit einer Schmelze, einer Lösung oder einer Dispersion eines Beschichtungsmittels gemäß obiger Definition besprührt oder in einem Wirbelbett eine Pulverbeschichtung mit dem Beschichtungsmittel durchführt; oder
- b) in einem Mischer mit einer Schmelze, einer Lösung oder einer Dispersion des Beschichtungsmittels beschichtet oder eine Pulverbeschichtung mit dem Beschichtungsmittel durchführt,
- und das jeweils erhaltene beschichtete Material gegebenenfalls nachtrocknet, abkühlt, tempern/oder von Grobanteilen befreit;
- 10 ein Verfahren, wobei man feste Cholinascorbat-Partikel in einer Schmelze, umfassend ein (schmelzbares) Beschichtungsmittel gemäß obiger Definition suspendiert, die so erhaltene Suspension zerteilt und anschließend erstarrt;
- 15 ein Verfahren, wobei man feste Cholinascorbat-Partikel in einer lipophilen Umgebung dispergiert, die so erhaltenen Feststoff/Öltröpfchen in einer wässrigen Phase emulgiert und die Emulsion sprühformuliert;
- ein Verfahren, wobei man Cholinascorbat-Partikel durch Koazervation beschichtet;
- 20 ein Verfahren, wobei man eine wässrige Schutzkolloidlösung herstellt, Cholinascorbat darin löst oder dispergiert und die erhaltene Mischung anschließend sprühtrocknet;
- 25 ein Verfahren, wobei man eine Cholinascorbat enthaltende wässrige, wässrig-organische oder organische Lösung in einer Wirbelschicht sprühtrocknet und gegebenenfalls durch Zugeabe geeigneter Zuschlagsstoffe granuliert oder agglomieriert;
- ein Verfahren, wobei man eine Cholinascorbat umfassende Lösung, Emulsion oder Suspension mit einem porösen Träger vermischt und gegebenenfalls trocknet; oder eine Cholinascorbat umfassende Schmelze auf den porösen Träger aufträgt;
- 30 ein Verfahren, wobei man ein Feuchtgranulat, umfassend eine Cholinascorbat enthaltende Lösung oder eine Cholinascorbat enthaltende Schmelze und einen Träger; oder ein Feuchtgranulat, umfassend kristallines Cholinascorbat, herstellt, das Feuchtgranulat extrudiert, gegebenenfalls nachbehandelt, trocknet und anschließend gegebenenfalls beschichtet;

ein Verfahren, wobei man eine wässrige Lösung von Cholinascorbat herstellt, diese in einer hydrophoben Schmelze emulgiert und die Emulsion verfestigt; sowie

ein Verfahren, wobei man eine Cholinascorbat umfassende Schmelze, gegebenenfalls

5 dispergiert in einem Beschichtungsmittel und/oder gegebenenfalls in Gegenwart eines Be-puderungsmittels in einem Kaltgasstrom zerstäubt.

ein Verfahren, wobei man eine wässrige, wässrig-organische oder organische Lösung von Cholinascorbat im Vakuum gegebenenfalls in Gegenwart eines Trägers und/oder von Zu-

10 schlagsstoffen zu einem Feststoff eindampft. Der Feststoff kann dann, gegebenenfalls unter Zugabe eines Bindemittels, agglomiert, granuliert, kompaktiert und soweit erforderlich wie-der zerkleinert, klassiert und gegebenenfalls mit einer Schutzschicht überzogen werden.

Obige Herstellungsverfahren können insbesondere auch zu Herstellung solcher Formulie-

15 rungen eingesetzt werden, die wenigstens eine der oben genannten Stabilisatoren enthalten.

So kann beispielsweise eine stabilisierten, Cholinascorbat enthaltende Formulierung, herge-stellt werden, indem man

- i) festes Cholinascorbat bzw. eine Mischung eines festen Cholinsalzes mit fester Ascorbinsäure und/oder festem Ascorbinsäuresalz mit einer wirksamen Menge eines stabilisierenden Zusatzes gemäß der obiger Definition in fester oder flüssi-ger Form vermischt; und die Mischung gegebenenfalls trocknet; oder
- ii) in einer wässrigen, wässrig-alkoholischen oder alkoholischen Lösung von Choli-nascorbat oder von einer Mischung eines Cholinsalzes mit Ascorbinsäure
- 25 und/oder einem Salz davon eine wirksame Menge eines stabilisierenden Zusat-zes gemäß obiger Definition löst oder dispergiert; und die Lösung bzw. Dispersion gegebenenfalls zur Trockne (vorzugsweise zu einem amorphen Feststoff) einengt oder aus der Lösung die stabilisierte Formulierung auskristallisiert; oder
- iii) eine Schmelze oder unterkühlten Schmelze von Cholinascorbat oder von einer
- 30 Mischung eines Cholinsalzes mit Ascorbinsäure und/oder einem Ascorbinsäure-salz mit einer wirksamen Menge wenigstens eines stabilisierenden Zusatzes ge-mäß obiger Definition vermischt und die Mischung gegebenenfalls verfestigt.

Diese stabilisierten Feststoffe können dann unter Anwendung eines der oben bechriebenen

35 Verfahren weiterverarbeitet werden.

Gegenstand der Erfindung sind außerdem Nahrungs- oder Futtermittel, die neben üblichen Nahrungs- bzw. Futtermittelbestandteilen eine Cholinascorbat enthaltende Formulierung gemäß obiger Definition in einem Anteil von etwa 0,001 bis 50 Gew.-% wie z. B. 0,5 bis 40 Gew.-% oder 1 bis 20 Gew.-%, enthalten. Erfindungsgemäße Nahrungsmittel umfassen insbesondere auch Säuglingsnahrung.

Ein weiterer Gegenstand der Erfindung betrifft Nahrungs- oder Futterergänzungsmittel, die neben üblichen Nahrungs- bzw. Futterergänzungsmittelbestandteilen eine Cholinascorbat enthaltende Formulierung gemäß obiger Definition in einem Anteil von etwa 0,01 bis 99,9 Gew.-% wie z. B. 0,5 bis 80 Gew.-% oder 5 bis 50 Gew.-%, enthalten.

Ein weiterer Gegenstand der Erfindung betrifft Arzneimittel in fester, flüssiger oder pastöser Form, die in einem pharmazeutisch verträglichen Träger eine wirksame Menge, wie z.B. 0,1 bis 99,9 Gew.-%, wie z. B. 1 bis 80 Gew.-% oder 5 bis 60 Gew.-%, einer Cholinascorbat enthaltenden Formulierung gemäß obiger Definition enthalten.

Schließlich ist die Verwendung einer Cholinascorbat enthaltende Formulierung nach obiger Definition zur Herstellung von Nahrungs- und Futtermitteln sowie Nahrungs- und Futterergänzungsmitteln, oder Arzneimitteln ein weiterer Gegenstand der Erfindung.

20

Detaillierte Beschreibung der Erfindung

A) Cholinascorbat

25 In den erfindungsgemäßen Verfahren gelangt Cholinascorbat in fester, gelöster oder geschmolzener Form zur Anwendung. Festes Cholinascorbat kann dabei amorph oder kristallin vorliegen. Ein bevorzugtes kristallines Cholinascorbat ist beispielsweise beschrieben in der älteren DE-A-101 090 73.

30 Das darin beschriebene Kristallisat zeigt als intensivste Linie im 2 θ-Röntgen-Pulverdiffraktogramm im Bereich zwischen 3,40 und 4,70 Å eine Linie bei $d = 3,80 \text{ \AA}$. Das kristalline Cholinascorbat weist außerdem ein Intensitätsverhältnis der Beugungslinien bei $d = 3,80 \text{ \AA}$ und $d = 4,55 \text{ \AA}$ von mindestens 0,5, bevorzugt mindestens 0,6, besonders bevorzugt von mindestens 0,7 sowie bei $d = 3,80 \text{ \AA}$ und $d = 4,67 \text{ \AA}$ von mindestens 0,4, bevorzugt mindestens 0,5, besonders bevorzugt von mindestens 0,6 auf. Neben den Beugungslinien bei $d = 3,80, 4,55$ und $4,67 \text{ \AA}$ weist das Kristallisat weitere Linien bei $d = 3,46, 3,78, 6,91$,

8,49 und 10,29 Å auf.

Die Cholinascorbat-Kristalle weisen eine Reinheit von > 98%, bevorzugt > 99%, besonders bevorzugt > 99,5% auf.

5

Die Herstellung dieses kristallinen Cholinascorbats erfolgt durch Umsetzung von Ascorbinsäure mit Trimethylamin und Ethylenoxid, wobei die Reaktion im Temperaturbereich von – 20°C bis 80°C, bevorzugt –10°C bis 40°C, besonders bevorzugt im Temperaturbereich von 0°C bis 30°C durchgeführt wird.

10

Das Verfahren ist ferner dadurch gekennzeichnet, dass die Reaktion in Wasser, in einem mit Wasser mischbaren organischen Lösungsmittel oder in einer Mischung aus Wasser und einem mit Wasser mischbaren organischen Lösungsmittels durchgeführt wird. Der Wasseranteil im Lösungsmittel kann zwischen 0 und 50 Gew.–%, bevorzugt zwischen 0 und 10

15 Gew.–% liegen.

Als wassermischbare Lösungsmittel sind vor allem wassermischbare, thermisch stabile, flüchtige, nur Kohlenstoff, Wasserstoff und Sauerstoff enthaltene Lösungsmittel, wie Alkohole, Ether, Ester, Ketone und Acetale, geeignet. Bevorzugt verwendet man solche Lösungsmittel, die mindestens zu 10% wassermischbar sind, einen Siedepunkt unter 200°C aufweisen und/oder weniger als 10 Kohlenstoffe haben. Besonders bevorzugt werden Methanol, Ethanol, n-Propanol, Isopropanol, 1,2-Butandiol-1-methylether, 1,2-Propandiol-1-n-propylether, Tetrahydrofuran oder Aceton verwendet. Ganz besonders bevorzugt seien Methanol und Ethanol genannt.

25

Das Molverhältnis der Reaktionspartner Trimethylamin : Ascorbinsäure : Ethylenoxid liegt im Bereich von 0,9 – 1,1 : 0,9 – 1,1 : 0,9 – 2,0, bevorzugt im Bereich von 1 : 1 : 1,2, besonders bevorzugt im Bereich von 1 : 1 : 1,05.

30

Vorzugsweise erfolgt die Kristallisation von Cholinascorbat in einem der oben genannten, für die Reaktion verwendeten Lösungsmittel.

35

Es ist auch möglich, zunächst Trimethylamin und Ethylenoxid in einem mit Wasser mischbaren organischen Lösungsmittel oder in einer Mischung aus Wasser und einem mit Wasser mischbaren organischen Lösungsmittels bei Temperaturen im Bereich von –20°C bis 80°C,

bevorzugt –10°C bis 40°C, besonders bevorzugt im Temperaturbereich von 0°C bis 30°C umzusetzen und diese Lösung anschließend durch Zugabe einer stöchiometrischen Menge an Ascorbinsäure in Cholinascorbat zu überführen und dann auszukristallisieren.

- 5 Als weitere mögliche Herstellvariante lässt sich auch Cholinchlorid mit Natriumascorbat in Wasser, in einem mit Wasser mischbaren organischen Lösungsmittel oder in einer Mischung aus Wasser und einem mit Wasser mischbaren organischen Lösungsmittels bei Temperaturen im Bereich von –20°C bis 80°C, bevorzugt –10°C bis 40°C, besonders bevorzugt im Temperaturbereich von 0°C bis 30°C zu kristallinem Cholinascorbat umsetzen. Das dabei gebildete Natriumchlorid wird vor dem Auskristallisieren des Wertproduktes z.B. abfiltriert.
- 10

Wie oben bereits ausgeführt, erstreckt sich die Erfindung auch auf die Verwendung von Mischungen von Cholinsalzen (verschieden von Cholinascorbat) mit Ascorbinsäure und/oder Ascorbinsäuresalzen. Beispiele erfindungsgemäß geeigneter Cholinsalze umfassen: Cholinchlorid, Cholinbitartrat, Tricholincitrat, Bis-cholintartrat, Bis-cholinhydrogenphosphat, Cholinhydrogenphosphat, Bis-cholinhydrogencitrat, Cholindihydrogencitrat, Cholinguconat, Cholinsalicylat, Cholinnicotinat, Cholinfolat und Cholincarboxymethylcellulose.

- 15 Beispiele geeigneter Ascorbinsäuresalze sind Alkali- und Erdalkalimetallsalze, wie Natriumascorbat.
- 20

B) Stabilisierende Zusätze

- Die Eignung einer Verbindung als Cholinascorbat-stabilisierender, d.h. die Verfärbungsneigung von Cholinascorbat unterbindender, Zusatz in erfindungsgemäßen Formulierungen ist in einfacher Weise bestimmbar, indem man eine Cholinascorbat-Lösung unter standardisierten Bedingungen in Gegenwart des Zusatzes auf ihre Verfärbungsneigung testet.
- 25

Vorzugsweise umfasst der Zusatz wenigstens einen Stabilisator, der bewirkt, dass eine 50 Gew.-%ige wässrig-methanolische Lösung von Cholinascorbat oder einer ascorbathaltigen Cholinsalzmischung gemäß obiger Definition in Gegenwart einer bestimmten Menge des Stabilisators, wie z.B. 1 Gew.-%, bezogen auf das Gesamtgewicht der Lösung, unter Standardbedingungen (Erwärmen auf eine Temperatur von 65°C, über einen Zeitraum von 7 Stunden)

- 5 iii) eine Farbzahl nach Gardner (bestimmt nach DIN-ISO 4630 bzw. ASTM D 1544-80) von < 6,3, vorzugsweise < 5, insbesondere 0,05 bis 3 oder 0,1 bis 2 und/oder
iv) eine Farbzahl nach Hazen (bestimmt nach DIN-ISO 6271 bzw. ASTM D 1045-68, ASTM D 263-49 oder ASTM D 1209-69) von < 1000, vorzugsweise < 980, insbesondere 10 bis 400 oder 20 bis 350 oder 25 bis 300, aufweist.

Gemäß einer weiteren bevorzugten Ausführungsform umfasst der Zusatz wenigstens einen Stabilisator, der bewirkt, dass eine 10 Gew.-%ige wässrig-methanolische (vorzugsweise 1:1 v/v) Lösung von Cholinascorbat bzw. eine Mischung wenigstens eines von Cholinascorbat 10 verschiedenen Cholinsalzes mit Ascorbinsäure und/oder einem Ascorbinsäuresalz in Gegenwart einer bestimmten Menge des Stabilisators, wie z. B. 1 Gew.-%, bezogen auf das Gesamtgewicht der Lösung, unter Standardbedingungen (Erwärmen auf eine Temperatur von 65°C, über einen Zeitraum von 7 Stunden).

- 15 i) eine Farbzahl nach Gardner (bestimmt nach DIN-ISO 4630 bzw. ASTM D 1544-80) von < 2,0, vorzugsweise < 1,5, insbesondere 0,05 bis 1,5 oder 0,1 bis 1,0 und/oder
ii) eine Farbzahl nach Hazen (bestimmt nach DIN-ISO 6271 bzw. ASTM D 1045-68, ASTM D 263-49 oder ASTM D 1209-69) von < 300, vorzugsweise < 250, insbesondere 10 bis 150 oder 20 bis 100 oder 25 bis 50, aufweist.

20 Erfindungsgemäß sind auch solche Stabilisatoren geeignet, welche ein negativeres Redoxpotential als Ascorbinsäure aufweisen.

25 Erfindungsgemäß brauchbare Stabilisatoren sind in den Formulierungen in einem Anteil von etwa 0,05 bis 30 Mol.-%, vorzugsweise etwa 0,1 bis 15 Mol.-% oder 0,5 bis 10 Mol.-%, jeweils bezogen auf den molaren Gehalt an Cholinascorbat, bzw. an einem davon verschiedenen Cholinsalz (bei Verwendung einer ascorbathaltigen Cholinsalzmischung), enthalten.

30 C) Beschichtungsmaterialen

Als Beispiele für geeignete Polyalkylenglycole a) sind zu nennen: Polypropylenglycole und insbesondere Polyethylenglycole unterschiedlicher Molmasse, wie z. B. PEG 4000 oder PEG 6000, erhältlich von der BASF AG unter den Handelsnamen Lutrol E 4000 und Lutrol E 6000.

Als Beispiele für obige Polymere b) sind zu nennen: Polyethylenoxide und Polypropylenoxide, Ethylenoxid/Propylenoxid-Mischpolymere sowie Blockcopolymere, aufgebaut aus Polyethylenoxid- und Polypropylenoxidblöcken, wie z. B. Polymere, die von der BASF AG unter der Handelsbezeichnung Lutrol F68 und Lutrol F127 erhältlich sind.

5

Von den Polymeren a) und b) können vorzugsweise hochkonzentrierte Lösungen von bis zu etwa 50 Gew.-%, wie z. B. etwa 30 bis 50 Gew.-%, bezogen auf das Gesamtgewicht der Lösung, vorteilhaft eingesetzt werden.

10 Als Beispiele für obige Polymere d) sind zu nennen: Polyvinylpyrrolidone, wie sie beispielsweise von der BASF AG unter dem Handelsnamen Kollidon oder Luviskol vertrieben werden. Von diesen Polymeren können hochkonzentrierte Lösungen mit einem Feststoffanteil von etwa 30 bis 40 Gew.-%, bezogen auf das Gesamtgewicht der Lösung, vorteilhaft eingesetzt werden.

15

Als Beispiel für oben genannte Polymere e) ist zu nennen: ein Vinylpyrrolidon/Vinylacetat-Copolymeres, welches von der BASF AG unter der Handelsbezeichnung Kollidon VA64 oder Kollicoat SR vertrieben wird. Von diesen Copolymeren können hochkonzentrierte Lösungen von etwa 30 bis 40 Gew.-%, bezogen auf das Gesamtgewicht der Lösung, besonders vorteilhaft eingesetzt werden.

20

Als Beispiele für obige Polymere f) sind zu nennen: Produkte, wie sie beispielsweise von der Fa. Hoechst unter der Handelsbezeichnung Mowiol vertrieben werden. Von diesen Polymeren können Lösungen mit einem Feststoffanteil im Bereich von etwa 8 bis 20 Gew.-% vorteilhaft eingesetzt werden.

25

Als Beispiele für geeignete Polymere g) sind zu nennen: Hydroxypropylmethylcellulosen, wie sie z. B. vertrieben werden von Shin Etsu unter dem Handelsnamen Pharmacoat.

30 Als Beispiele für oben genannte Polymere h) sind zu nennen: Alkyl(meth)acrylat-Polymeren und -Copolymere, deren Alkylgruppe 1 bis 4 Kohlenstoffatome aufweist. Als konkrete Beispiele für geeignete Copolymeren sind zu nennen: Ethylacrylat/Methylmethacrylat-Copolymere, welche beispielsweise unter dem Handelsnamen Kollicoat EMM 30D von der BASF AG oder unter dem Handelsnamen Eudragit NE 30 D von der Fa. Röhm vertrieben werden; sowie Methacrylat/Ethylacrylat-Copolymere, wie sie beispielsweise unter dem Handelsnamen Kollicoat MAE 30DP von der BASF AG oder unter dem Handelsnamen Eudragit

30/55 von der Fa. Röhm vertrieben werden. Derartige Copolymeren können beispielsweise als 10 bis 40 gew.-%ige Dispersionen erfindungsgemäß verarbeitet werden.

Als Beispiele für obige Polymere i) sind zu nennen: Polyvinylacetat-Dispersionen, welche mit

- 5 Polyvinylpyrrolidon stabilisiert sind und beispielsweise unter der Handelsbezeichnung Kollicoat SR 30D von der BASF AG vertrieben werden (Feststoffgehalt der Dispersion etwa 20 bis 30 Gew.-%).

Als Beispiele für geeignete Cellulosederivate p) sind insbesondere Celluloseether zu nen-

- 10 nen, wie Methyl- und Ethylcellulose, Hydroxypropyl- und Hydroxypropylmethylcellulose (HPMC), wie z.B. die Handelprodukte der Reihen Methocel, Bebecel und Pharmacoat; aber auch mikrokristalline Cellulose (MCC), wie z.B. Avicel PH101 oder PH 102.

Als Beispiele für geeignete Saccharide t) sind Alginate, Karrageenan, Stärke und Stärkederiva-

- 15 te, wie z.B. Veresterungsprodukte der Stärke; Gummi, wie Akazien-, Xanthan-, und Guar-gummi, sowie Gummi aus Ceratonia siliqua (locust bean gum), Hyaluronsäure, Pullulan, El-sinan zu nennen.

Als Beispiele für geeignete Wachse r) sind zu nennen tierische Wachse, wie Lanolin, Bie-

- 20 nenwachs, und Walrat; pflanzliche Wachse, wie Candelillawachs, Carnaubawachs und Reiskeimölwachs; und chemisch modifizierte Wachse, wie Jojobawachs, Sasolwachs und Mon-tanesterwachs.

Beispiele für geeignete Öle u) sind pflanzliche Öle, wie Sonnenblumen-, Distel-, Baumwoll-

- 25 saat-, Soja-, Maiskeim-, Oliven-, Raps-, Lein-, Ölbaum-, Kokos-, Ölpalmkern und Ölpalmöl; tierische Öle, wie z.B. Hering-, Sardinen- und Walöl; und davon abgeleitete hydrierte Produkte; sowie halbsynthetische Öle, wie mittelkettige Triglyceride und Mineralöle. Beispiele geeig-neter Handelsprodukte sind Coatex 01 und 21, Akofine R und Akocote RT

- 30 Geeignet sind auch fertige Beschichtungszusammensetzungen, wie z.B. Sepifilm LP beste-hend aus HPMC (70-90%), MCC (8-12%), Stearinsäure (5-15%) und Titandioxid (10-20%); oder Lustre Clear LC 104, bestehend aus MCC, Karrageenan, Lactose, Sojabohnenlecithin und Propylenglykolalginat.

- 35 Als eigenständige Gruppe geeigneter Materialien sind Schutzkolloide zu nennen. Zu diesem Zweck geeignet sind synthetische und biologische Polymere. Beispiele für synthetische Po-

lymere sind neutrale Polymere, wie Kollidon, Luviskol, Lutrol und Mowiol, anionische Polymere, wie Kollicoat, Eudragit L und Polyasparaginsäure, und kationische Polymere, wie Terpolymer und Eudragit E. Geeignete proteinartige Biopolymere sind Gelatine, Casein und Molke, Sojabohnenprotein und Weizenprotein; geeignete Polysaccharide sind anionische Verbindungen wie Gummi arabicum, HPMC, Pectine, Alginate, modifizierte Stärke und Schellack; sowie kationische Polysaccharide, wie Chitosan.

5 Weitere geeignete Beschichtungsmittel und Verfahren zur Beschichtung können aus R. Voigt, Lehrbuch der pharmazeutischen Technologie, 1975, Verlag Chemie, insbesondere
10 Kapitel 9.4, 9.5, 9.6 und 10.2 entnommen werden.

D) Träger

15 Die erfindungsgemäßen Formulierungen können auch Trägerstoffe enthalten. Hierfür können z.B. übliche inerte Träger verwendet werden. Ein "inerter" Träger darf keine negativen Wechselwirkungen mit den in der erfindungsgemäßen Formulierung eingesetzten Komponenten zeigen und muss für die Verwendung als Hilfsstoff in den jeweiligen Verwendungen, z.B. in Lebensmitteln, Nahrungsergänzungsmitteln, Futtermitteln, Futterzusatzstoffen, pharmazeutischen und kosmetischen Zubereitungen unbedenklich sein.

20 Als Beispiele für geeignete Trägermaterialien sind zu nennen: niedermolekulare anorganische oder organische Verbindungen sowie höhermolekulare organische Verbindungen natürlichen oder synthetischen Ursprungs.

25 Beispiele für geeignete niedermolekulare anorganische Träger sind Salze, wie Natriumchlorid, Calciumcarbonat, Natriumsulfat und Magnesiumsulfat oder Kieselgur oder Kieselsäuren wie Siliziumdioxide oder Kieselgele bzw. Kieselsäurederivate, wie z.B. Silikate.

30 Beispiele für geeignete organische Träger sind insbesondere Zucker, wie z. B. Glucose, Fructose, Saccharose, Dextrine, Stärkeprodukte, insbesondere Maisstärke und Cellulosepräparate. Als Beispiele für weitere organische Träger sind zu nennen: Maisspindelmehl, gemahlene Reishüllen, Weizengrieskleie oder Getreidemehle, wie z. B. Weizen-, Roggen-, Gersten- und Hafermehl oder -Kleie oder Gemische davon. Weitere geeignete poröse Träger sind z.B. aus der US-B-6,251,478 bekannt, ebenso wie Verfahren zur Beladung solcher Träger. Auf die Offenbarung dieser Druckschrift wird hiermit Bezug genommen.

Das Trägermaterial kann in der erfindungsgemäßen Formulierung, bezogen auf Trockenbasis, in einem Anteil von etwa 5 bis 95 Gew.-%, vorzugsweise etwa 10 bis 85 Gew.-%, enthalten sein.

- 5 Die Partikelgröße des Trägers kann beispielsweise im Bereich von etwa 30 bis 2500 µm, wie z.B. 50 bis 2000 µm liegen.

Erfindungsgemäße Adsorbate basieren bevorzugt auf Kieselsäure-Trägern.

10 E) Weitere Zuschlagsstoffe

Neben der oben beschriebenen Bestandteilen, wie Cholinascorbat, Träger, Stabilisator und Beschichtungsmittel können die erfindungsgemäßen Formulierungen weitere Zusätze enthalten. Als Beispiele können genannt werden Konservierungsstoffe, Antibiotika, antimikrobielle

- 15 Zusätze, Antioxidantien, Chelatbildner, physiologisch unbedenkliche Salze, Geschmacksstoffe, Farbstoffe und der gleichen. Auch ernährungsrelevante Zusätze können enthalten sein, wie z.B. Vitamine, (z.B. die Vitamine A, B₁, B₂, B₆, B₁₂, C, D₃, und/oder E, K₃, Folsäure, Nicotinsäure, Pantothenensäure); Taurin, Carbonsäuren und deren Salze, wie z.B. Tricarbonsäuren, wie Citrat, Isocitrat, trans-/cis-Aconitat, und/oder homo-Citrat, Enzyme, Carotinoide, Minerale, wie z.B. P, Ca, Mg und/oder Fe, und Spurenelemente, wie Se, Cr, Zn, Mn, Proteine, Kohlenhydrate, Fette, Aminosäuren. Weiterhin können Brenztraubensäure, L-Carnitin, Liponsäure, Coenzym Q10, Aminocarbonsäuren, wie z.B. Kreatin, Orotsäure, Myoinositol, Flavonoide, Betain, p-Aminobenzoësäure, enthalten sein.

- 25 Außerdem können "Wirkstoffe" enthalten sein, die die Anwendung der erfindungsgemäßen Formulierung in pharmazeutischen Zubereitungen unterstützen oder deren Wirkung der Behandlung von Krankheiten, insbesondere der Behandlung von Krebs, Diabetes, AIDS, Allergien und kardiovaskuläre Erkrankungen, dient.

- 30 Obige Zusätze einschließlich Träger, Beschichtungsmittel und Stabilisator, werden im Rahmen der Erfindung auch als Formulierungshilfsmittel bezeichnet.

F) Formulierungswege

- 35 Die erfindungsgemäßen Cholinascorbat-Formulierungen sind ausgehend von festem, d.h. kristallinem oder amorphen Cholinascorbat, flüssigen Cholinascorbat-Formen, wie Lösun-

gen, Dispersionen, Suspensionen oder Emulsionen, oder ausgehend von Cholinascorbat-Schmelzen herstellbar. Cholinascorbat muss dafür nicht in Reinform vorliegen, sondern kann im Gemisch mit anderen erfindungsgemäß brauchbaren Substanzen, wie Stabilisatoren oder Verarbeitungshilfsmittel, zur Anwendung kommen. In den folgenden Abschnitten wird der
5 Einfachheit halber nur auf Cholinascorbat Bezug genommen was aber keinesfalls einschränkend interpretiert werden darf.

Es werden nun verschiedene Formulierungswege genauer beschrieben. Abweichungen davon sind natürlich denkbar und vom Fachmann, auf der Grundlage der vorliegenden Erfindung leicht durchführbar. Er kann dabei auch umfangreiche Fachliteratur zurückgreifen, wie z.B. Mollet, Formulierungstechnik, Verlag Wiley-VCH, Weinheim oder Heinze, Handbuch der Agglomerationstechnik, Verlag Wiley-VCH, Weinheim; oder Hager's Handbuch der Pharmazeutischen Praxis, Springer-Verlag, Heidelberg.
10

15 Soweit keine anderen Angaben gemacht werden, sind die im folgenden beschriebenen Formulierungsverfahren nicht nur anwendbar auf Cholinascorbat in reiner Form sondern auch auf Mischungen von Cholinascorbat mit weiteren Wirksubstanzen und/oder auf Additiven welche z.B. zur Stabilisierung der Formulierung, zur Regulierung der Bioverfügbarkeit, oder zu deren farblichen Veränderung, um nur einige Beispiele zu nennen, eingesetzt werden.
20

1. Verkapselungen ausgehend von Cholinascorbat-Kristallen

1.1 Vorlage der Kristalle in einer Wirbelschicht oder einem Mischer mit zeitgleichem / nachgeschaltetem Coating der Kristalle
25

Verkapselungen können unter anderem in Mischern oder Wirbelschichten durchgeführt werden.

i) Beschreibung Mischer:
30

Vorzugsweise werden dazu diskontinuierlich oder kontinuierlich arbeitende Mischer eingesetzt. Der Wirkstoff (d.h. Cholinascorbat) wird gegebenenfalls zusammen mit Zuschlagstoffen, wie z.B. Trägermaterial, vorgelegt. Pflugscharen, Schaufeln, Schnecken oder ähnliches sorgen für eine mehr oder minder intensive Produktdurchmischung. Klassische Beispiele sind Pflugscharmischer, Konusschneckenmischer oder ähnliche Apparate. Auch sehr flache, kasten- oder trogförmige Bauformen mit einer oder mehreren Schnecken sind einsetzbar.
35

Weitere Bauformen sind schnelllaufende Mischer , wie der Turbolizer ® Mixer/Coater von Hosokawa Micron B.V. sowie alle Arten von Trommelcoatern. Alternativ ist die Produkt-durchmischung über eine Bewegung des gesamten Behälters möglich. Beispiele hierfür sind Taumelmischer, Trommelmischer oder ähnliches. Eine weitere Möglichkeit besteht in der

- 5 Verwendung von pneumatischen Mischern (siehe Ullmann's Encyclopedia of Industrial Chemistry, Sixth Edition, Mixing of Solids).

Das Aufbringen von Beschichtungen bzw. Umhüllungen (im weitesten Sinne Coating, Polymere, Wachse, Öle, Fette, Fettsäuren etc.) dient dem Schutz des Wirkstoffs, sowie der Verzögerung oder Beschleunigung der Wirkstofffreisetzung, der Verstärkung des Wirkmechanismus oder der Erzielung additiver Effekte. In Einzelfällen ist es erforderlich, beim Aufbringen der Umhüllungen oder unmittelbar danach Puderungsmittel, wie Talkum, Silikate oder ähnliches, zum Vermeiden von Verklebungen zuzugeben.

15 Die Dosierung/Zugabe des Coatingmaterials erfolgt, gegebenenfalls zusammen mit Additiven, in der Regel über Einrichtungen zum Auftröpfen oder Aufdüsen. Beispiele hierfür sind Lanzen, Brauseköpfe, Einstoff- oder Mehrstoffdüsen, in seltenen Fällen rotierende Tropf- oder Zerstäubungseinrichtungen. Im einfachsten Fall ist die Zugabe auch lokal als konzentrierter Strahl möglich. Alternativ kann im Mischer zunächst das Coatingmaterial vorgelegt
20 werden, um danach den Wirkstoff zuzugeben. Eine weitere Möglichkeit besteht in der Zugabe von zunächst festem Coatingmaterial, welches infolge der Wandheizung oder aufgrund von mechanischem Energieeintrag schmilzt und den Wirkstoff überzieht.

25 Die Zugabe der Beschichtungs- bzw. Hüllmaterialien erfolgt bei Überdruck, Normaldruck oder bei Unterdruck gegen Atmosphäre, vorzugsweise bei Normaldruck und Unterdruck.

In einzelnen Fällen ist es vorteilhaft Wirkstoff und/oder Hüllmaterial vorzuheizen oder zu kühlen (Veränderung von Viskosität, Veränderung der Benetzungseigenschaften, Beeinflussung der Erstarrungseigenschaften) sowie Wärme über die Behälterwand und/oder die Mischwerkzeuge zuzuführen oder zu entziehen. In einzelnen Fällen ist es erforderlich Wasser- oder Lösungsmitteldampfe abzuführen.

30 Zur Verbesserung der Coatingeigenschaften kann es günstig sein, den Mischer zu evakuieren sowie gegebenenfalls mit Schutzgas, wie z.B. Stickstoff oder Edelgas, zu überdecken. In Abhängigkeit vom Trägermaterial ist dies mehrfach zu wiederholen.

Die Zugabe von Wirkstoffen und Hüllstoffen erfolgt vorzugsweise an unterschiedlichen Orten im Mischer.

ii) Beschreibung Wirbelschicht:

5

Die Herstellung kann diskontinuierlich oder kontinuierlich in Wirbelschichten erfolgen. Die Bewegung der Partikeln erfolgt durch das Wirbelgas, welches je nach Bedarf heiß oder gekühlt sein kann. Als Wirbelgas ist z.B. Luft oder auch Inertgas (in der Regel Stickstoff aber auch andere herkömmliche Inertgase) geeignet. In Einzelfällen ist es sinnvoll, über die Behälterwand sowie über in die Wirbelschicht eingetauchte Wärmetauscherflächen Wärme zuzuführen oder zu entziehen. Geeignete Wirbelschichten sowie die erforderliche Peripherie sind aus dem Stand der Technik bekannt.

10 Einbauten, die eine definierte Produktbewegung unterstützen wirken sich häufig günstig aus.

15 Beispiele hierfür sind sich drehende Verdrängungskörper oder sogenannte Wursterohre und ähnliches.

20 Die diskontinuierliche oder kontinuierliche Dosierung und gegebenenfalls die Vorheizung der Wirkstoffe und Zuschlagstoffe kann mit Hilfe der oben beschriebenen Vorrichtungen erfolgen, die dem Fachmann bekannt sind.

25 Die Herstellung von gecoateten Wirkstoffen kann in Einzelfällen vorteilhaft in Kombination von Mischer und Wirbelschicht erfolgen. Die Gründe für solch eine Kombination sind ebenfalls Stand der Technik und dem Fachmann bekannt.

30

Beispielsweise kann ein Cholinascorbat-Kristalle enthaltendes, in herkömmlicher Weise hergestelltes Rohgranulat in einem Wirbelbett vorgelegt werden. Dieses wird verwirbelt und durch Aufsprühen einer wässrigen oder nichtwässrigen, vorzugsweise wässrigen, Lösung oder Dispersion eines organischen Polymers beschichtet. Dazu verwendet man vorzugsweise eine möglichst hochkonzentrierte, noch sprühfähige Flüssigkeit, wie z. B. eine 10 bis 50 gew.-%ige wässrige oder nichtwässrige Lösung oder Dispersion wenigstens eines Polymers, das ausgewählt ist unter Polymeren de oben beschriebenen Gruppen a) bis f), i) und j).

35

Gemäß einer anderen bevorzugten Verfahrensvariante verwendet man zur Beschichtung eine 10 bis 40 gew.-%ige, vorzugsweise etwa 20 bis 35 gew.-%ige, sprühfähige wässrige

oder nichtwässrige Lösung oder Dispersion wenigstens eines Polymers, das ausgewählt ist unter Polymeren der oben beschriebenen Gruppen g) und h).

Im Allgemeinen wird man wässrige Lösungen oder wässrige Dispersionen aus folgenden

- 5 Gründe bevorzugen: Es sind keine besonderen Maßnahmen zur Aufarbeitung bzw. Rückgewinnung der Lösungsmittel notwendig; es sind keine besonderen Maßnahmen zum Explosionschutz erforderlich; einige Beschichtungsmaterialien werden bevorzugt als wässrige Lösungen oder Dispersionen angeboten.
- 10 In Sonderfällen kann jedoch auch der Einsatz einer nichtwässrigen Lösung oder Dispersion von Vorteil sein. Das Coatingmaterial löst sich sehr gut bzw. es kann ein vorteilhaft großer Anteil des Coatingmaterials dispergiert werden. Auf diese Weise kann eine Sprühflüssigkeit mit höherem Feststoffanteil versprüht werden, was zu kürzeren Prozesszeiten führt. Die niedrigere Verdampfungsenthalpie des nichtwässrigen Lösungsmittels führt ebenfalls zu kürzeren
- 15 Prozesszeiten.

Besonders bevorzugt ist das Aufbringen von Coatingmaterialien, die physiologisch verträglich sind und kein Wasser bzw. keine Lösungsmittel enthalten und somit z.B. als Schmelze aufgebracht werden können. Beispiele hierfür sind die oben genannten Fette, Wachse, Fett-

- 20 säuren usw., die, soweit erforderlich, natürlich Zusätze enthalten können. Als Zusätze sind insbesondere oberflächenaktive Stoffe, wie Emulgatoren, geeignet, die die Spreitungseigenschaften des Coatingmaterials auf dem Cholinascorbat günstig beeinflussen. Kombinationen von Coatingmaterialien, die zusammen oder nacheinander aufgesprüht werden können, sind dem Fachmann bekannt. Gleiches gilt für die Beeinflussung der Coatingqualität durch Ver-
- 25 änderung der Verfahrensparameter, wie Sprühdruck, Konzentration oder Viskosität der Flüssigkeit, Sprühdauer, zwischenzeitliche Sprühpausen zur Verfestigung oder Temperprozesse.

Erfnungsgemäß brauchbare Dispersionen erhält man, indem man obige Polymere in einer wässrigen oder nichtwässrigen, vorzugsweise wässrigen Flüssigphase, gegebenenfalls unter

- 30 Mitverwendung eines üblichen Dispergierhilfsmittels, dispergiert oder oben genannte wachse oder Fette als Schmelze bereitstellt. Das Aufsprühen einer Polymerlösung, -schmelze oder -dispersion wird vorzugsweise so durchgeführt, dass man das Cholinascorbat in fester Form (Kristalle, amorpher Feststoff, gegebenenfalls im Gemisch mit Hilfsstoffen oder Träger, vorzugsweise als Rohgranulat), in einer Wirbelschichtapparatur vorlegt und unter gleichzeitigem
- 35 Erwärmen der Vorlage das Sprühgut aufsprüht. Die Energiezufuhr erfolgt in der Wirbelschichtapparatur durch Kontakt mit erwärmtem Trocknungsgas, häufig Luft. Eine Vorwär-

- mung der Lösung oder Dispersion kann dann sinnvoll sein, wenn dadurch Sprühgut mit höherem Trockensubstanzanteil versprüht oder eine Viskositätsverminderung erreicht werden kann. Im Falle der Verwendung von organischen Flüssigphasen ist eine Lösungsmittelrückgewinnung zweckmäßig. Die Produkttemperatur während des Coatings kann im Bereich von
- 5 etwa 35 bis 50 °C liegen. Das Coating kann in der Wirbelschichtapparatur prinzipiell im Bottom-Spray-Verfahren (Düse sitzt im Anströmboden und sprüht nach oben), im Top-Spray-Verfahren (Coating wird von oben in die Wirbelschicht eingesprührt) oder von der Seite durchgeführt werden.
- 10 Gemäß einer zweiten bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens zur Wirbelbettbeschichtung wird das Rohprodukt in einem Wirbelbett vorgelegt und pulverbeschichtet. Die Pulerverbeschichtung wird vorzugsweise mit einem Pulver eines festen Polymers durchgeführt, das ausgewählt ist unter Hydroxypropylmethylcellulosen (HPMC) mit einem zahlenmittleren Molekulargewicht von etwa 6 000 bis 80 000; im Gemisch mit einem
- 15 Weichmacher. Für eine Pulerverbeschichtung eignen sich auch alle anderen Coatingmaterialien, die pulvelförmig vorliegen können und weder als Schmelze noch als hochkonzentrierte Lösung (z. B. der Fall bei HPMC, Hydroxypropylmethylcellulose) aufgetragen werden können.
- 20 Die Pulerverbeschichtung wird vorzugsweise so durchgeführt, dass man das Coatingmaterial kontinuierlich dem im Wirbelbett vorgelegten Rohprodukt zudosiert. Die feinen Partikel des Coatingmaterials (Partikelgröße im Bereich von etwa 10 bis 100 µm) legen sich an die relativ rauhe Oberfläche des Rohgranulats. Durch Einsprühen einer Weichmacherlösung werden die Coatingmaterialteilchen miteinander verklebt. Beispiele für geeignete Weichmacher sind
- 25 Polyethylenglycollösungen, Triethylcitrat, Sorbitlösungen, Paraffinöl und dergleichen. Zur Entfernung des Lösungsmittels erfolgt die Beschichtung unter leichtem Erwärmen. Die Produkttemperatur kann dabei bei weniger als etwa 60 °C, wie z. B. bei etwa 40 bis 50 °C, liegen.
- 30 Prinzipiell kann die Pulerverbeschichtung auch in einem Mischer durchgeführt werden. In diesem Fall wird das Pulvergemisch zudosiert und ebenfalls mit einer Düse der Weichmacher eingedüst. Die Trocknung erfolgt durch Zuführung von Energie über die Wand des Mixers und gegebenenfalls über die Rührwerkzeuge. Auch hier sind wie bei der Beschichtung und Trocknung im Wirbelbett niedrige Produkttemperaturen einzuhalten.

Gemäß einer dritten bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens erfolgt die Beschichtung des in einem Wirbelbett oder Mischer vorgelegten Rohprodukts mittels einer Schmelze. Die Schmelze umfasst dabei vorzugsweise wenigstens ein Polymer, das ausgewählt ist unter

5

- Polyalkylenglykolen, insbesondere Polyethylenglykolen, mit einem zahlenmittleren Molekulargewicht von etwa 1 000 bis 15 000, wie z. B. etwa 1 000 bis 10 000; und
- Polyalkylenoxid-Polymeren oder -Copolymeren, mit einem zahlenmittleren Molekulargewicht von etwa 4 000 bis 20 000, insbesondere Blockcopolymeren von Polyoxethylen und Polyoxypropylen.

10

Das Schmelzcoating in einer Wirbelschicht wird vorzugsweise so durchgeführt, dass man das zu coatende Rohprodukt in der Wirbelschichtapparatur vorlegt. Das Coatingmaterial wird in einem externen Reservoir aufgeschmolzen und beispielsweise über eine beheizbare Leitung zur Sprühdüse gepumpt. Eine Erwärmung des Düsengases ist zweckmäßig. Sprührate und Eintrittstemperatur der Schmelze müssen so eingestellt werden, dass das Coatingmaterial noch gut auf der Oberfläche des Granulats verläuft und dieses gleichmäßig überzieht.

15

Eine Vorwärmung des Granulats vor Einsprühung der Schmelzen ist möglich. Auch das Schmelzcoating kann im Prinzip nach dem Bottom-Spray-Verfahren oder nach dem Top-

20

Spray-Verfahren durchgeführt werden. Das Schmelzcoating in einem Mischer kann auf zwei verschiedene Weisen durchgeführt werden. Entweder legt man das zu coatende Rohprodukt in einem geeigneten Mischer vor und sprüht eine Schmelze des Coatingmaterials in den Mischer ein. Eine andere Möglichkeit besteht darin, das in fester Form vorliegende Coatingmaterial mit dem Produkt zu vermischen. Durch Zuführung von Energie über die Behälterwand

25

oder über die Mischwerkzeuge wird das Coatingmaterial aufgeschmolzen und überzieht so das Rohprodukt. Je nach Bedarf kann von Zeit zu Zeit etwas Trennmittel zugegeben werden. Geeignete Trennmittel sind beispielsweise Kieselsäure, Talkum, Stearate und Tricalciumphosphat.

30

Der zur Beschichtung verwendeten Polymerlösung, -dispersion oder -schmelze können gegebenenfalls weitere Zusätze, wie z. B. mikrokristalline Cellulose, Talkum und Käolin, zugesetzt werden.

35

Der Gewichtsanteil des Coatings am Gesamtgewicht des beschichteten Produkts liegt im Bereich von etwa 1 bis 85 Gew.-%, vorzugsweise 3 bis 50 Gew.-% oder 5 bis 40 Gew.-%, bezogen auf das Gesamtgewicht des fertigen Produkts. Der Restfeuchtegehalt des polymer-

beschichteten Produkts wird in erster Linie von der Hygroskopizität des Polymermaterials bestimmt. Im Allgemeinen liegt der Restfeuchtegehalt im Bereich von etwa 1 bis 10 Gew.-%, wie z. B. 1 bis 5 Gew.-%, bezogen auf das Gesamtgewicht der beschichteten Produkts.

5 1.2 Suspendieren der Cholinascorbat-Kristalle in Schmelzen mit anschließender Zerstäubung/Zerteilung und Erstarrung der Schmelzen

Eine weitere Alternative ist das Suspendieren der Cholinascorbatkristalle (erzeugt durch Kristallisation, Fällung, Trocknung bei Normaldruck oder in Vakuum) oder von amorphem Cholinascorbat in Schmelzen aus Fetten, Ölen, Wachsen, Lipiden, lipidartigen und -lipidlöslichen Stoffen mit einem Schmelzpunkt der kleiner ist als der Schmelzpunkt von Cholinascorbat. Diese Suspensionen werden anschließend in einem Kaltgasstrom - mit und ohne Verwendung von Bepuderungsmitteln - zerstäubt, so dass umhülltes Cholinascorbatpulver entsteht.

15 Bevorzugt werden die Schmelzen in einem ersten Schritt hergestellt, bevor die Cholinascorbatkristalle zugegeben und suspendiert werden. Das Suspendieren kann batchweise im Rührkessel oder auch kontinuierlich, z.B. in dafür geeigneten Pumpen, oder bei ausreichend hoher Turbulenz einfach in Injektoren und Rohrleitungen erfolgen. Weniger bevorzugt, aber nicht ausgeschlossen, ist der Einsatz statischer Mischer. Die Maßnahmen zur gegebenenfalls notwendigen Schutzbeheizung der erforderlichen Anlagenteile - einschließlich der Leitungen und Zerstäubungsorgane - sind dem Fachmann bekannt.

20 Als Kühlgas kommen bevorzugt Luft und Stickstoff in Frage. Die Gasführung kann im Gleich-, Gegen- oder Kreuzstrom erfolgen. Das Verfahren kann in klassischen Sprüh-, Prilltürmen oder sonstigen Behältern durchgeführt werden. Wirbelschichten mit und ohne Hold-up (Vorlagematerial) sind ebenfalls geeignet. Das Verfahren kann diskontinuierlich oder kontinuierlich betrieben werden. Die Abtrennung des Feststoffs ist z.B. in Zylindern oder Filtern möglich. Alternativ ist das Auffangen des Feststoffs mit und ohne Nachkühlung in Wirbelschichten oder Mischern denkbar.

25 Als Zerstäubungsorgane sind Düsen (Ein- und Zweistoffdüsen oder Sonderbauformen) sowie Zerstäuberräder oder Zerstäuberscheiben oder Zerstäuberkörper - oder Sonderbauformen hiervon - geeignet.

30 Eine weitere Alternative ist das Zerteilen und Erstarren dieser hydrophoben Schmelzen in Flüssigkeiten, bevorzugt in Flüssigkeiten in denen Cholinascorbat und das Hüllmaterial

schlecht löslich sind. Beispiele für derartige Flüssigkeiten sind z.B. flüssiger Stickstoff, Ethanol, Isopropanol, Butanol, Aceton und Dichlormethan. Eine klassische Fest-Flüssigtrennung mit anschließender Trocknung führen dann zum gewünschten Trockenpulver.

5 1.3 Dispergieren der Kristalle in lipophiler Umgebung und Emulgierung dieser Kristall-Öltröpfchen in wässriger Schutzkolloid/Zucker-Phase mit anschließender Sprühformulierung

Sehr feinkörniges Cholinascorbat (erzeugt durch Fällung, Kristallisation, Sprühtrocknung
10 oder Mahlung) wird mit und ohne Zusatz von Emulgatoren/Stabilisatoren in lipophiler Umgebung (wie z.B. Schmelzen aus Fetten, Ölen, Wachsen, Lipiden, lipidartigen und -lipidlöslichen Stoffen mit einem Schmelzpunkt der kleiner ist als der Schmelzpunkt von Cholinascorbat - im folgenden alle als Öl bezeichnet) zunächst dispergiert. Diese den kristallinen Feststoff enthaltenden Öltröpfchen werden in einem weiteren Verfahrensschritt in einer
15 wässrigen Schutzkolloid/Zucker-Phase emulgiert und anschließend sprühformuliert.

Bezüglich Herstellung und Zusammensetzung der Schutzkolloid/Zucker-Mischung und Durchführung der Sprühformulierung wird auf folgenden Abschnitt 2.2. verwiesen.

20 1.4 Verkapselung durch Koazervation

Die Verkapselung suspendierter Cholinascorbat-Partikel gelingt mit Hilfe des Verfahrens der Koazervation. Dieses Verfahren wird durchgeführt indem eine Dispersionsflüssigkeit, die das Beschichtungsmaterial in gelöster oder kolloidaler Form und Cholinascorbat-
25 Feststoffpartikel enthält, verwendet. Durch Verringerung der Löslichkeit des Beschichtungsmaterials wird eine Verkapselung des Cholinascorbat-Partikel induziert. Die Technik der Koazervation ist beispielsweise beschrieben in Voigt, Lehrbuch der pharmazeutischen Technologie, Verlag Chemie, Kapitel 12.4, worauf hiermit ausdrücklich Bezug genommen wird.

30 2. Verkapselungen, ausgehend von einer wässrigen Lösung

2.1 Sprühformulierung einer Schutzkolloid/Zucker/Cholinascorbat/Wasser-Mischung die gegebenenfalls Zuschlagstoffe (wie Antioxidanzien, Salze) enthält

35 Das Verfahren wird entsprechend EP-A-0 074 050 oder der DE-A-101 58 046.0 der BASF AG durchgeführt, worauf hiermit ausdrücklich Bezug genommen wird.

Die Herstellung von sprühformulierten Produkten erfolgt dadurch, dass in einem ersten Schritt eine wässrige Lösung eines Schutzkolloids, vorzugsweise Gelatine und/oder Gelatinederivate und/oder Gelatineersatzstoffe, wie pektine und Gummi arabicum, unter Zusatz 5 eines oder mehrerer Stoffe aus der Gruppe der Mono-, Di- oder Polysaccharide, soweit erforderlich auch unter Zugabe von Maisstärke, hergestellt wird. Durch Zugabe von Cholinascorbant, z.B. als kristalliner Feststoff (der sich dann vollständig oder teilweise lösen wird) oder als wässrige Lösung, und gegebenenfalls weiterer Zuschlagsstoffe, wie z.B. hydrophile oder 10 hydrophobe Stabilisatoren oder Antioxidantien, entsteht dann unter Röhren eine Dispersion, wobei die wässrige Lösung des Kolloids die homogene Phase der Dispersion darstellt. Diese Dispersion wird anschließend sprühformuliert.

Als Sprühhilfsmittel können z. B. eine hydrophobe Kieselsäure, Maisstärke oder Metallsalze höherer Fettsäuren eingesetzt werden. Denkbar ist auch der Einsatz von modifizierter Mais- 15 stärke, Talkum, hydrophiler Kieselsäure, Tri-calciumphosphat und Calciumsilikaten oder Gemischen zweier oder mehrerer dieser Stoffe. Ebenso sind Gemische der genannten Fettsäuren und Kieselsäuren für das Verfahren verwendbar. Als Metallsalze der höheren Fettsäuren mit 16 bis 18 C-Atomen kommen beispielsweise Calcium- oder Magnesiumstearat in Betracht.

20 Als Kolloide kommen bevorzugt tierische Proteine, wie Gelatine, beispielsweise von 50 bis 250 Bloom, oder Casein in Betracht. Die Menge des angewandten Kolloids beträgt in der Regel 5 bis 50 Gew.-% bezogen auf das Endprodukt bei Wassergehalten der Dispersion von 30 bis 70 Gew.-%. Alternativ sind andere Schutzkolloide (aus gewählt aus oben aufgeführten 25 Beispielen) einsetzbar.

Das Sprühhilfsmittel kann in der 0,01 bis 0,25-fachen Gewichtsmenge, bezogen auf die Dispersion, oberhalb des Fließbetts unter gleichmäßiger Verteilung in den Sprühraum eingeführt werden. Die Sprühhilfsmittel werden direkt in die Sprühzone eingebracht. Die während des 30 Sprühens erzeugte Schicht des Sprühhilfsmittels stabilisiert die Teilchen so weit, dass ein Zusammenlaufen der Teilchen bei Berührung im nicht erstarren Zustand verhindert wird. Dadurch ist es möglich, eine direkte Trocknung auf einem sich anschließenden Wirbelbett-Trockner durchzuführen.

Die Ausbildung des Zerstäubungsaggregats hat keinen entscheidenden Einfluß auf das Produkt. Beispielsweise können hier Apparaturen eingesetzt werden, wie sie in der EP-A-0 074 050 beschrieben sind.

- 5 Die Herstellung der sprühformulierten Produkte kann in einer Verfahrensvariante durch Ver-
sprühen der Dispersion in einem Sprühturm unter Mitverwendung eines Sprühhilfsmittels und
Auffangen der versprühten Teilchen in einem Fließbett ausgeführt werden. Dabei führt man
als Sprühhilfsmittel eine hydrophobe Kieselsäure oder das Metallsalz einer höheren Fettsä-
re, z.B. mit 16 bis 18 C-Atomen oder Gemische mit hydrophober Kieselsäure, in der 0,02 bis
10 0,15-fachen Gewichtsmenge, bezogen auf die Dispersion (und in Abwesenheit wesentlicher
Mengen anderer üblicher Sprühhilfsmittel wie Stärkepulver) oberhalb des Fließbetts unter
gleichmäßiger Verteilung in den Sprühraum ein, und zwar bei Temperaturen, bei denen eine
Erstarrung des gegebenenfalls gelierenden Kolloids der versprühten Teilchen noch nicht
15 eintritt. Die mit dem Sprühhilfsmittel beladenen Teilchen, deren Kolloidmasse im wesentli-
chen nicht geliert ist, werden in einem Fließbett aufgefangen und die Teilchen in an sich be-
kannter Weise im Fließbett trocknet.

Die Ausbildung des Zersträubungsaggregats hat keinen entscheidenden Einfluß auf das
Produkt. So können beispielsweise Düsen oder schnell rotierende Zersträuberscheiben be-
20 nutzt werden. Die Temperatur der zu zersträubenden Dispersion ist ebenfalls keine kritische
Größe. Sie liegt üblicherweise bei 30 bis 90°C, das ergibt bei den genannten Kolloiden Vis-
kositäten von 50 bis 1200 mPas. Entscheidend ist, dass zum Zeitpunkt des Versprühens die
Partikel mit den hydrophoben Sprühhilfsmittel in Kontakt kommen, das in feinverteilter Form
direkt in die Sprühzone eingeführt wird.

25 Der große Vorteil des Verfahrens besteht darin, daß die Temperatur im Sprühraum nicht
mehr so tief liegen muss, dass eine Gelbildung der Wirkstoffdispersion eintritt, oder dass
nicht mehr durch große Mengen an Hilfspulver soviel Wasser entzogen werden muss, dass
eine Erstarrung der Tröpfchen erfolgt. Das Verfahren ermöglicht beispielsweise das Ver-
30 sprühen bei Temperaturen von 25 bis 30 °C von Wirkstoffdispersionen, die selbst bei Kühl-
schränktemperaturen (+4 °C) nicht mehr erstarren. Die dazu notwendigen Mengen des
Sprühhilfsmittels betragen hierbei nur das 0,02 bis 0,15fache der Dispersion.

35 Die Herstellung des sprühformulierten Produktes kann in einer weiteren Verfahrensvariante
mittels Sprühkühlung erfolgen. Hierbei wird eine ein Schutzkolloid enthaltende Dispersion
bevorzugt mittels einer Zerstäubungsdüse oder eines Zerstäubungsrades mit einer Tempera-

tur, die über dem Gelpunkt der Emulsion liegt, z.B. 30 °C bis 90 °C und bei einer Viskosität von bevorzugt zwischen 50 und 600 mPas, in einer Sprühkammer versprüht, in der die Temperatur zwischen 0 °C und 40 °C liegt, wodurch man Mikrokapseln erhält.

- 5 Ein Sprühhilfsmittel, wie z.B. Maisstärke oder modifizierte Maisstärke gegebenenfalls im Gemisch mit weiteren Sprühhilfsmitteln, kann in die Sprühkammer geblasen werden, um Agglomeration der gelatinierten Mikrokapseln und Anhaftung an den Kammerwänden zu verhindern. Das Sprühhilfsmittel wird bevorzugt in einer Menge von 5 bis 50%, gemessen an dem Gewicht des Endproduktes, zugegeben.
- 10 Die Mikrokapseln können dann in ein Wirbelbett transferiert werden, worin sie bei Bedarf bis auf einen Restwassergehalt von zwischen 0 und 10% (bevorzugt zwischen 2 und 5%) getrocknet werden können und worin überschüssiges Sprühhilfsmittel abgetrennt wird. Die Temperatur der Trocknungsluft liegt bevorzugt zwischen ca. 0 °C und ca. 100 °C.
- 15 Eine besonders bevorzugte Variante ist die Sprühformulierung einer hochkonzentrierten Lösung von Cholinascorbat gemäß oben beschriebenem Verfahren. Hierzu wird zunächst eine Lösung von Cholinascorbat, enthaltend 40 bis 99 Gew.-% Cholinascorbat in Lösungsmittel, wie z.B. Wasser, bevorzugt 60 bis 99 Gew.-%, besonders bevorzugt 80 bis 95 Gew.-% Cholinascorbat in Wasser, hergestellt. Durch Einstellen der Lösungstemperatur gelingt es, die zum Zerstäuben geeigneten Viskositäten zu erreichen. Beispielsweise gelingt es, bei Temperaturen von 60°C, eine wässrige Lösung mit 95 Gew.-% Feststoffgehalt und einer Viskosität kleiner als 1000 mPas zu erhalten. Soweit erforderlich, werden dieser Lösung stabilisierende Zusätze zugegeben. Die so erhaltene Lösung kann nun mit Hilfe einer Einstoffdüse bei erhöhtem Druck (z.B. zwischen 3 und 300 bar) unter gleichzeitigem Einsatz von Puderungsmitteln, wie hydrophober Kieselsäure (z.B. Sipernat D17 von Degussa) oder modifizierter Maisstärke sprühformuliert werden. Die so erhaltenen Partikel werden aufgefangen und z.B. in den oben beschriebenen Wirbelschichten oder auch in Vakuumapparaturen getrocknet und gegebenenfalls anschließend mit einer Schutzschicht, wie z.B. oben beschrieben, gecoatet.
- 20
- 25
- 30 Weiterhin ist denkbar, dass man, in Anlehnung an R.A. Morten: Fat-Soluble Vitamins, Pergamon Press, 1970, Seite 131 bis 145 Dispersionen/Emulsionen von festem Cholinascorbat herstellt und dann daraus, wie beschrieben, erfindungsgemäße Pulver herstellt.
- 35 2.2 Herstellung eines Sprühgranulats oder -agglomerats mit anschließendem Coating

Bei diesem Verfahren wird in eine Wirbelschicht eine wässrige Cholinascorbatlösung zugegeben und diese in einen pulverförmigen Feststoff überführt wird. Die Wirbelschicht kann wieder diskontinuierlich oder kontinuierlich betrieben werden. Die wässrige Cholinascorbatlösung wird bevorzugt in der Wirbelschicht auf eine Vorlage versprüht. Die Vorlage kann

- 5 durch Cholinascorbat selbst oder durch ein Trägermaterial dargestellt werden. Ebenfalls ist ein Anfahren ohne Vorlage möglich. Die Versprühung der Lösung kann wieder im Top-Spray oder Bottom-Spray-Modus erfolgen. Auch seitlich in der Behälterwand eingesetzte Zerstäubungsorgane sind möglich. Es kann von Vorteil sein, den Abstand der Zerstäubungsorgane zum fluidisierten Feststoff entsprechend der Feststoffeigenschaften (z.B. Granulationsneigung) anzupassen. Als Zerstäubungsorgane werden bevorzugt Zerstäubungsdüsen eingesetzt (Druckdüsen, wie Einstoffdüsen, Zweistoffdüsen oder Sonderkonstruktionen). Das Verfahren kann mit und ohne Staubrückführung betrieben werden.

Der Fachmann ist in der Lage, durch die Einstellung der Verfahrensparameter und durch die 15 richtige Wahl von Zuschlagsstoffen die Feststoffeigenschaften günstig zu beeinflussen. So ist es z.B. möglich, kompakte Granulate mit hoher Partikel- und Schüttdichte als auch Agglomerate mit hervorragenden Instant- und/oder Tablettiereigenschaften zu erzeugen.

Die gewünschte Partikelgröße des Endprodukts lässt sich in weiten Grenzen einstellen. Die 20 mittlere Partikelgröße kann zwischen 20 µm und 5000 µm liegen. Bevorzugt liegt sie zwischen 50 µm und 2000 µm und besonders bevorzugt zwischen 150 µm und 600 µm.

Liegt die gewünschte mittlere Partikelgröße beispielsweise bei ca. 400 µm, so kann es günstig sein, mit einer mittleren Partikelgröße des Vorlagematerials von ca. 30 bis 50µm zu starten. Das Vorlagematerial kann z. B. durch eine vorgeschaltete Mahlung von groben Cholinascorbat oder inertem Trägermaterial oder z. B. durch eine Sprühtrocknung im gleichen 25 oder in einem anderen dafür geeigneten Apparat erzeugt werden. Unter Umständen fällt das Vorlagematerial auch als Abreinigungsmaterial aus Filtern oder Zylkonen oder anderen Feststoffabscheidern an oder kann in geeigneter Partikelgröße, anfallend aus anderen Prozessen, 30 zugekauft werden.

Der Einsatz von speziellem Vorlagematerial kann in kontinuierlichen Prozessen aber auch in diskontinuierlichen Prozessen bei geeigneter Wahl der Parameter entfallen.

35 Durch Aufdüsen der wässrigen Cholinascorbatlösung oder auch durch Aufdüsen von Bindeflüssigkeit alleine gelingt es nun, die gewünschten Agglomerate oder Granulate zu erzeugen.

Es ist selbstverständlich möglich, im gleichen oder in einem anderen Apparat die erzeugten Feststoffpulver mit einer Schutzschicht zu coaten.

- 5 Eine besonders interessante Variante besteht im Zusatz von Additiven zur wässrigen Cholinascorbatlösung, die zum einen die Kristallstruktur (kristallin oder amorph) als auch die unerwünschte Neigung des Cholinascorbats sich zur Verfärbung, günstig beeinflussen.

Additive zur Beeinflussung der Kristallstruktur (Größe und/oder Form) sind bekannt. Es handelt sich hierbei um mehrfach geladene Ionen, organische Moleküle oder Tenside. Man unterscheidet zwischen sogenannten maßgeschneiderten und multifunktionalen Additiven. Maßgeschneiderte Additive haben große Ähnlichkeit zu den Bausteinen des Kristalls. Sie werden auf den Wachstumsflächen adsorbiert, verlangsamen dort das Wachstum und vergrößern damit diese Fläche. Zur vollständigen Wachstumshemmung sind Hilfsstoffanteile von bis zu 10% erforderlich. Multifunktionale Additive werden häufiger als maßgeschneiderte, insbesondere für anorganische Kristalle eingesetzt, Meistens werden Polyphosphonate oder Polycarboxylate, wie z.B. Polyacrylate, eingesetzt. Diese Polyelektrolyte benetzen die Wachstumsflächen und blockieren dort das Wachstum. Mengen im ppm-Bereich sind oft schon ausreichend.

20 Grundsätzlich möglich ist auch der teilweise oder vollständige Ersatz von Wasser durch organische Lösungsmittel.

Denkbar ist es auch das beschriebene Verfahren in anderen Apparaten, wie z. B. Mischern, 25 durchzuführen.

In einer weiteren Variante können die oben genannten Schutzkolloide, Zucker, Emulgatoren, Stabilisatoren etc. der Lösung vor dem Eindüsen zugegeben oder separat durch ein alternatives Zerstäubungsorgan zugeführt werden.

30 2.3 Formulierung einer Cholinascorbatlösung mit einem Träger

Eine weitere Variante ist die Zugabe der Cholinascorbatlösung zu einem Trägerstoff. Bevorzugt werden poröse Trägermaterialien eingesetzt. Als Vorrichtungen zur Herstellung dieser 35 Formulierungen sind die oben unter Punkt 1.1 beschriebenen Mischer und Wirbelschichten geeignet.

Als Träger werden üblicherweise inerte Materialien verwendet. Ein "inerter" Träger darf keine negativen Wechselwirkungen mit den in der erfindungsgemäßen Formulierung eingesetzten Komponenten zeigen und muss für die Verwendung als Hilfsstoff in den jeweiligen Verwendungen, z.B. in Lebensmitteln, Nahrungsergänzungsmitteln, Futtermitteln,

- 5 Futterzusatzstoffe, pharmazeutischen und kosmetischen Zubereitungen unbedenklich sein.

Als Beispiele für geeignete Trägermaterialien sind zu nennen: niedermolekulare anorganische oder organische Verbindungen sowie höhermolekulare organische Verbindungen natürlichen oder synthetischen Ursprungs. Beispiele für geeignete niedermolekulare anorganische Träger sind Salze, wie Natriumchlorid, Calciumcarbonat, Natriumsulfat und Magnesiumsulfat oder Kieselgur oder Kieselsäuren wie Siliziumdioxide oder Kieselgele bzw. Kiesel säurederivate, wie z.B. Silikate.

- 10

Beispiele für geeignete organische Träger sind insbesondere Zucker, wie z. B. Glucose, Fructose, Saccharose, Dextrine, Stärkeprodukte, insbesondere Maisstärke und Cellulosepräparate. Als Beispiele für weitere organische Träger sind zu nennen: Maisspindelmehl, 15 gemahlene Reishüllen, Weizengrieskleie oder Getreidemehle, wie z. B. Weizen-, Roggen-, Gersten- und Hafermehl oder -Kleie oder Gemische davon.

- 15

Beispiele für bevorzugte poröse Träger sind Kieselsäuren, wie z.B. die Sipernat-Produkte von Degussa oder die Tixosil-Produkte von Rhodia, Lyon.

Das Trägermaterial kann in der erfindungsgemäßen Formulierung, bezogen auf Trockenba-

- 20 sis, in einem Anteil von etwa 10 bis 85 Gew.-%, vorzugsweise etwa 20 bis 85 Gew.-%, enthalten sein.

2.4 Herstellung von Granulaten oder Extrudaten

- 25 Hierzu wird, z.B. aus einer Cholinascorbatlösung, Trägerstoffen (wie z.B. Maisstärke oder mikrokristalline Cellulose) und Bindesubstanzen (wie z.B. HPMC, HPC oder HMC) in einem Mischer zunächst ein Feuchtgranulat hergestellt. Dieses Feuchtgranulat wird dann in einem weiteren Verfahrensschritt in einem Extruder (Fleischwolf, Korbextruder, Doppelschneckenextruder, etc.) ausgeformt, gegebenenfalls nachbehandelt (verdichten, runden, etc.), getrocknet (z.B. wieder in einer Wirbelschicht oder einem Kontaktrockner) und falls erforderlich wieder gecoatet. Geeignete Apparaturen sind z.B. solche der Baureihe NICA-System ® von Aeromatic-Fielder.
- 30

Die Herstellung von Granulaten kann auch dadurch erreicht werden, dass in einem Mischer Trägerstoffe sowie gegebenenfalls Zuschlagstoffe vorgelegt und nach Zugabe von festem Cholinascorbat und Binder (vorzugsweise Bindeflüssigkeit – im einfachsten Fall Wasser) 5 kompakte Granulate erzeugt werden.

Der Mischer ist vorzugsweise ein Schaufelmischer oder Pflugscharmischer. Die flüssigen Komponenten werden zugegeben (aufgetropft oder aufgesprührt), so dass eine pastöse, klebrige Phase entsteht. Über geeignete Wahl der Drehzahl der Mischwerkzeuge und/oder 10 schnelllaufenden Messern wird die pastöse Phase zerteilt und es entstehen kompakte Granulat. Sehr große Brocken werden durch Mischwerkzeuge und Messer zerteilt. Andererseits werden dadurch feine Pulver agglomeriert.

Die Betriebsweise ist diskontinuierlich oder kontinuierlich. Häufig ist die Zufuhr oder die Abfuhr von Wärme über einen Heizmantel erforderlich. Der entscheidende Schritt ist die Kombination von Bindeflüssigkeit, mechanischem Energieeintrag durch Mischwerkzeuge und Messer und Festlegung der erforderlichen Granulierzeit 15

Das Aufbringen eines Coatings kann nachgeschaltet im Mischer bei geringerer Drehzahl der 20 Mischwerkzeuge und stehenden Messern oder in einem bauartverwandten nachgeschalteten Mischer erfolgen.

Die Formgebung kann auch durch Pressen der pastösen, klebrigen Phase durch die Matrize eines Extruders erfolgen. Das Verfahren ist dadurch gekennzeichnet, dass Stränglinge entstehen, die ggf. nachgetrocknet und anschließend gecoatet werden. 25

2.5 Emulgieren einer Cholinascorbat - Lösung in Wachs mit anschließender Formgebung

Analog zu Punkt 1.2, jedoch ausgehend von der wässrigen, wässrig-organischen oder organischen Cholinascorbatlösung wird in einem ersten Schritt mit und ohne Zusatz von Hilfsstoffen (Emulgatoren, Stabilisatoren) zunächst eine Emulsion des Cholinascorbats in Schmelzen aus Fetten, Ölen, Wachsen, Lipiden, lipidartigen und lipidlöslichen Stoffen hergestellt. Die anschließende Formgebung erfolgt wieder in einem Kaltgasstrom entsprechend Punkt 1.2. 30

35 3. Verkapselungen ausgehend von einer Schmelze

3.1 Herstellung einer Cholinascorbat/Wachs/Fett-Dispersion mit anschließender Zerstäubung/Zerteilung und Erstarrung

Eine wasserfreie Schmelze von Cholinascorbat wird unter Zusatz von Hilfsmitteln z.B. in

5 Schmelzen aus Fetten, Ölen, Wachsen, Lipiden, lipidartigen und lipidlöslichen Stoffen, mit einem Schmelzpunkt der größer oder kleiner ist als der Schmelzpunkt von Cholinascorbat, dispergiert. Diese Dispersionen werden anschließend in einem Kaltgasstrom - mit und ohne Verwendung von Bepuderungsmitteln - zerstäubt, so dass umhülltes Cholinascorbatpulver entsteht. Bezüglich der weiteren Vorgehensweise kann auf die Ausführungen unter Punkt

10 1.2 verwiesen werden.

3.2. Herstellung von Cholinascorbatfeststoffen in einer Vakuumapparatur und gegebenenfalls anschließender Granulation/Agglomeration/Kompaktierung und gegebenenfalls mit anschließendem Coating.

15

Bei diesem Verfahren wird eine wässrige Lösung von Cholinascorbat oder eine Lösung von Cholinascorbat in wässrig-organischen oder organischen Lösungsmitteln in einer Vakuumapparatur, gegebenenfalls unter Verwendung von Trägerstoffen und Zuschlagstoffen, zu einem Feststoff eingedampft. Der Feststoff kann in der gleichen Apparatur oder in einer anderen Apparatur gegebenenfalls unter Zugabe von Bindermitteln agglomeriert, granuliert, kompaktiert und, soweit erforderlich, wieder zerkleinert, klassiert und gegebenenfalls mit einer Schutzschicht überzogen werden.

Geeignete Apparaturen sind z.B. klassische Vakuumtrockner, wie sie dem Fachmann bekannt sind. Das Cholinascorbat kann als Lösung oder aber auch als Feststoff vorgelegt werden. Die Wandtemperatur liegt vorzugsweise nicht über der Schmelztemperatur des Cholinascorbats, da bei höheren Temperaturen mit Zersetzung gerechnet werden muß. Bei dem Verfahren arbeitet man bevorzugt in einem Druckbereich zwischen Normaldruck und technisch möglichem Unterdruck, besonders bevorzugt bei einem Druck zwischen 0 und 500 mbar, absolut. Eine bevorzugte Variante ist der Einsatz von Inertgas, wie z.B. Stickstoff, als Strippgas, um Sauerstoff- und Wasserdampfpartialdruck in der Vakuumapparatur zu minimieren. Soweit erforderlich, wird die gewünschte Partikelgröße in der Vakuumapparatur durch Zugabe von Bindeflüssigkeit eingestellt oder es wird in nachgeschalteten Apparaturen kompaktiert, agglomeriert oder granuliert und, soweit erforderlich, die entstandenen Partikel gecoatet.

3.3 Sprühen und Erstarren einer Schmelze in Anwesenheit eines Bepuderungsmittels, das eingebunden wird und gegebenenfalls die Funktion eines Coatings übernimmt

5 Eine Schmelze aus Cholinascorbat wird gegebenenfalls unter Zusatz von Additiven in einem Kaltgasstrom - mit und ohne Verwendung von Bepuderungsmitteln - zerstäubt, so dass umhülltes Cholinascorbatpulver entsteht. Die Bepuderungsmittel (vgl. obige Angaben) sind geeignet, das Zusammenfließen nur oberflächlich erstarrter Tropfen soweit erforderlich zu verhindern. Als Beispiel für ein geeignetes Bepuderungsmittel sei hier SiO₂ genannt.

10

3.4 Auftröpfen/Aufsprühen einer Schmelze auf einen porösen Träger

Analog zu Punkt 2.3, jedoch mit dem Unterschied, dass von einer Cholinascorbat-Schmelze anstelle einer Lösung, Emulsion oder Suspension ausgegangen wird, wird Cholinascorbat zu

15 einem, vorzugsweise porösen Träger zugegeben und weiterverarbeitet.

3.5 Herstellung von Granulaten/Extrudaten

Analog zur Vorgehensweise gemäß Punkt 2.4, jedoch unter Verwendung einer Cholinascorbat-Schmelze werden entsprechende Granulate/Extrudate hergestellt.

G) Anwendungen erfindungsgemäßer Cholinascorbat-Formulierungen

Erfindungsgemäße Cholinascorbat-Formulierungen finden ebenso wie herkömmliche Cholinpräparate Verwendung als Zusatz in Nahrungs- und Futtermitteln oder Zusatz in Nahrungs- und Futterergänzungsmitteln, wie z.B. Multivitaminpräparaten. Das erfindungsgemäß stabilisierte Formulierung kann dazu in der gewünschten Menge und in an sich bekannter Weise in herkömmliche Nahrungs- und Futtermittel bzw. Nahrungs- und Futterergänzungsmitteln eingearbeitet werden.

30

Außerdem eignen sich die erfindungsgemäß Cholinascorbat-Formulierungen zur Herstellung von Arzneimitteln, wie insbesondere von Präparaten zur Behandlung und/oder Prävention von Leberzirrhose oder anderen Lebererkrankungen. Weiterhin sind als potentielle Anwendungsgebiete zu nennen: die Verbesserung der kognitiven Funktionen; Behandlung und/oder Prävention verschiedener Formen von Demenz oder der Alzheimer-Krankheit; so-

35

wie anderer neurodegenerativer Erkrankungen; und die Senkung von Plasma-Homocystein-Spiegeln und der damit verbundenen Prävention von kardiovaskulären Erkrankungen.

Nahrungsergänzungsmittel sind ebenfalls zu dem erfindungsgemäßen Zweck einsetzbar.

5

Die erfindungsgemäßen pharmazeutischen Mittel zur Behandlung eines Individuums, vorzugsweise eines Säugers, insbesondere eines Menschen, Nutz- oder Haustieres sind in an sich bekannter Weise herstellbar. So wird das stabilisierte Cholinascorbat gewöhnlich in Form von pharmazeutischen Zusammensetzungen verabreicht, die einen pharmazeutisch verträglichen Exzipienten mit wenigstens einer erfindungsgemäßen Cholinascorbat-Formulierung und gegebenenfalls weiteren Wirkstoffen umfassen. Diese Zusammensetzungen können beispielsweise auf oralem, rektalem, transdermalem, sublingualem, buccalem, subkutanem, intravenösem, intramuskulärem oder intranasalem Weg verabreicht werden.

10 15 Beispiele geeigneter pharmazeutischer Formulierungen sind feste Arzneiformen, wie Pulver, Puder, Granulate, Tabletten, Pastillen, Sachets, Cachets, Dragees, Filmtabletten, Kapseln wie Hart- und Weichgelatinekapseln, Suppositorien oder vaginale Arzneiformen, halbfeste Arzneiformen, wie Salben, Cremes, Hydrogele, Pasten oder Pflaster, sowie flüssige Arzneiformen, wie Lösungen, Emulsionen, insbesondere Öl-in-Wasser-Emulsionen, Suspensionen, 20 beispielsweise Lotionen, Injektions- und Infusionszubereitungen, Augen- und Ohrentropfen. Auch implantierte Abgabevorrichtungen können zur Verabreichung erfindungsgemäßer Formulierungen verwendet werden. Ferner können auch Liposomen, Mikrosphären oder Polymermatrices zur Anwendung kommen.

25 Bei der Herstellung der Zusammensetzungen werden erfindungsgemäße Cholinascorbat-Formulierungen gewöhnlich mit einem Exzipienten vermischt oder verdünnt. Exzipienten können feste, halbfeste oder flüssige Materialien sein, die als Vehikel, Träger oder Medium für den Wirkstoff dienen.

30 Zu geeigneten Exzipienten gehören beispielsweise Lactose, Dextrose, Sucrose, Sorbitol, Mannitol, Stärken, Akaziengummi, Calciumphosphat, Alginate, Tragant, Gelatine, hoch-disperses Siliziumdioxid, Calciumsilikat, mikrokristalline Cellulose, Polyvinylpyrrolidon und dessen Derivate, Cellulose und dessen Derivate, Wasser, Alkohol-Wasser-Mischungen, Sirup und Methylcellulose. Ferner können die Formulierungen pharmazeutisch akzeptable Träger oder übliche Hilfsstoffe, wie Gleitmittel, beispielsweise Talk, Magnesiumstearat, Öle pflanzlichen Ursprungs und Mineralöl; Netzmittel; emulgierende und suspendierende Mittel;

konservierende Mittel, wie Methyl- und Propylhydroxybenzoate; Antioxidantien; Antireizstoffe; Chelatbildner; Dragierhilfsmittel; Emulsionsstabilisatoren Filmbildner; Gelbildner; Geruchsmaskierungsmittel; Geschmackskorrigentien; Harze; Hydrokolloide; Lösemittel; Lösungsmittel; Neutralisierungsmittel; Permeationsbeschleuniger; Pigmente; quaternäre Ammoniumverbindungen; Rückfettungs- und Überfettungsmittel; Salben-, Creme- oder Öl-

Grundstoffe; Silikon-Derivate; Spreithilfsmittel; Stabilisatoren; Sterilanzien; Suppositoriengrundlagen; Tabletten-Hilfsstoffe, wie Bindemittel, Füllstoffe, Gleitmittel, Sprengmittel oder Überzüge; Treibmittel; Trocknungsmittel; TrübungsmitTEL; Fließregulierungsmittel, Verdickungsmittel; Wachse; Weichmacher; Weißöle umfassen. Eine diesbezügliche Ausgestaltung beruht auf fachmännischem Wissen, wie beispielsweise in Fiedler, H.P., Lexikon der Hilfsstoffe für Pharmazie, Kosmetik und angrenzende Gebiete, 4. Auflage, Aulendorf: ECV-Editio-Cantor-Verlag, 1996, oder Hager's Handbuch der Pharmazeutischen Praxis, Springer Verlag, Heidelberg dargestellt ist. Die Exzipienten können einzeln oder im Gemisch eingesetzt werden.

Die vorliegende Erfindung wird nun unter Bezugnahme auf folgende Ausführungsbeispiele näher erläutert.

Allgemeine Angaben:

In den folgenden Versuchen wird, sofern keine anderen Angaben gemacht werden, Cholinascorbat (CAS) mit einem Schmelzpunkt von 120 bis 130 °C eingesetzt.

Die in den Formulierungsbeispielen eingesetzten Cholinascorbatkristalle wurden über eine Kühlungskristallisation aus methanolischer Lösung heraus mit anschließender Fest-/Flüssigtrennung und Trocknung gewonnen.

Die in den Beispielen eingesetzte CAS-Lösung war jeweils eine wässrigen Lösung. Die Zusammensetzung der Lösung lag in der Regel bei 40 % Wasser und 60 % Cholinascorbat. Die Lösung wurde jeweils aus den oben genannten Cholinascorbatkristallen durch Zugabe von Wasser hergestellt. Soweit erforderlich wurden der Lösung zur Vermeidung der Verfärbungsneigung Additive zugesetzt.

Sofern in den Beispielen von einer CAS-Schmelze ausgegangen wurde, wurden oben genannte Cholinascorbatkristalle gegebenenfalls im Gemisch mit einem Stabilisator gemäß obiger Definition erwärmt und bis über ihren Schmelzpunkt erhitzt.

Beispiel 1:**Bestimmung der Stabilität von Cholinverbindungen in Lösung**

5

Festes Cholinascorbat wird zunächst in an sich bekannter Weise gemäß DE-A-101 090 73 hergestellt. 0,2 mol Trimethylamin in Methanol (25 Gew.-%ig) wurden unter Kühlung auf 0°C mit 0,2 mol Ascorbinsäure versetzt. In diese Mischung wurden 0,2 mol Ethylenoxid so einge-

10 gast, daß die Reaktionstemperatur 0–5°C nicht überstieg. Nach Reaktionsende wurde der Reaktor mit Stickstoff gespült und bei einer Temperatur zwischen 0 und 5°C weiter gerührt. Das gebildete Cholinascorbat kristallisierte aus der Reaktionsmischung aus, wurde abfiltriert, mit Methanol gewaschen und zur weiteren Aufreinigung erneut in Methanol umkristallisiert. Man erhielt farblose Kristalle in einer Ausbeute von 80% mit einem Schmelzpunkt zwischen 123,5° und 124,4°C. Mittels Elementaranalyse, ¹³C-NMR-Spektroskopie und Einkristallstrukturanalyse wurde das Kristallisat als Cholinascorbat (wasserfrei) charakterisiert.

15 Eine 50%ige Lösung (in Wasser/Methanol 1:1) dieses Cholinascorbats (Schmelzpunkt 123 – 124°C) wird mehrere Stunden bei Rückfluss (65 °C) in Luftatmosphäre gerührt. Bei Versuchsbeginn sowie nach verschiedenen Reaktionszeiten bestimmt man den Verfärbungsgrad anhand der Farbzahl nach Gardner (DIN-ISO 4630) bzw. Hazen (DIN-ISO 6271).

20 In analoger Weise werden 50 %ige wässrig-methanolische Lösungen von L(+)-Ascorbinsäure, Natriumascorbat, und Cholinbitartrat untersucht. Die Ergebnisse sind in folgender Tabelle 1 zusammengefasst.

25

Tabelle 1

Substanz	Reaktionszeit [h]	Farbzahl	
		Gardner	Hazen
Cholinascorbat Ohne Additiv	0	0,1	28
	1	1,9	305
	2	3,5	758
	7	6,3	>1000
L-(+)-Ascorbinsäure ohne Additiv	0	0,1	27
	1	0,1	31
	7	0,1	29
Natriumascorbat ohne Additiv	0	0,1	26
	1	0,1	28
	7	0,1	31

Cholinbitartrat ohne Additiv	0 1 7	0,1 0,1 0,1	27 30 28
---------------------------------	-------------	-------------------	----------------

Die Versuchsergebnisse verdeutlichen die überraschend hohe Instabilität von nichtstabilisiertem Cholinascorbat im Vergleich zu anderen Cholinverbindungen bzw. Ascorbinsäure, deren Instabilität bereits bekannt war.

5

Beispiel 2:

Herstellung einer stabilisierten Cholinascorbat-Lösung

- 10 Eine 50%ige Lösung (in Wasser/Methanol 1:1) von Cholinascorbat (Schmelzpunkt 123 - 124°C), hergestellt wie in Beispiel 1, wird ohne bzw. mit einem Gewichtsprozent verschiedener stabilisierender Additive mehrere Stunden bei Rückfluss (65 °C) in Luftatmosphäre ge- rührt. Der stabilisierende Effekt des jeweiligen Additivs wird über die Bestimmung der Farbzahl, wie in Beispiel 1 beschrieben, beobachtet.

15

- In folgender Tabelle 2 sind neben Additiv und Reaktionszeit die Farbzahlen nach Gardner und Hazen in Abhängigkeit von der Zeit als Beleg für den stabilisierenden Effekt des jeweili- gen Additivs aufgeführt.

Tabelle 2

Cholinascorbat stabilisiert mit Additiv [1Gew.-%]	Reaktionszeit [h]	Farbzahl	
		Gardner	Hazen
ohne Additiv (Vergleich)	0	0,1	28
	1	1,9	305
	2	3,5	758
	7	6,3	>1000
Cystein	0	0,1	33
	1	0,1	29
	4	0,1	35
	7	0,1	27
Natriumdithionit	0	0,5	90
	1	0,1	29
	7	0,1	33
Thioglykolsäure	0	0,1	28
	1	0,1	30
	7	0,1	33
Dihydro-Liponsäure	0	0,1	30
	1	0,2	50
	4	0,2	53
	7	0,2	48
Liponsäure	0	0,2	51
	1	1,0	182
	7	4,4	960
Glutathion	0	0,1	31
	1	0,2	63
	4	0,4	122
	7	0,6	185
N-Acetyl-Cystein	0	0,1	30
	1	0,3	72
	4	0,9	162
	7	1,7	285
Harnsäure	0	0,1	26
	1	0,3	68
	3	0,9	162
	5	1,4	237
	7	1,9	310
Phenylboronsäure	0	0,1	31
	1	0,6	193
	4	2,7	589
	7	4,4	975
Hypophosphorige Säure	0	0,1	30
	1	0,2	58
	4	0,6	128
	7	1,2	274
Phosphorige Säure	0	0,1	30
	1	0,2	122
	4	0,7	163
	7	1,4	299

Die Daten obiger Tabelle 2 belegen den erfindungsgemäßen, völlig überraschenden Befund, dass Cholinascorbat trotz seiner extrem starken Verfärbungsneigung durch Zugabe geringer

- 5 Mengen geeigneter Stabilisatoren in vorteilhafter Weise stabilisiert werden kann.

Beispiel 3:

Herstellung eines festen stabilisierten Cholinascorbats

- 10 Cholinascorbat wird in eine wässrige Lösung überführt, mit einem erfindungsgemäßen Stabi-
lisator versetzt und eingeengt (Vakuum, T= 70-80 °C). Nach dem Abkühlen kristallisiert das
stabilisierte Produkt aus.

Beispiel 4

- 15 **Herstellung einer Cholinascorbat-Formulierung durch Wirbelbettcoating mit einem
Fett**

Bei dem zu coatenden Produkt handelte es sich um eine unterkühlte Schmelze von Choli-
nascorbat und Cystein oder ein Kristallgemisch davon, jeweils enthaltend 98 Gew.-% CAS
20 und 2 Gew.-% Cystein, (mit einer mittleren Partikelgröße von ca. 300 µm). Als Coatingmate-
rial wurde ein Fett mit einem Schmelzpunkt von 60 bis 64 °C (Rucawar FH der Fa. Aarhus
Olie, Dänemark) verwendet.

Für die Versuchsdurchführung stand ein Laborwirbelbett der Fa. Niro- Aeromatic, Typ MP-1,
25 zur Verfügung. Als Vorlagegefäß wurde ein Kunststoffkonus mit einem Anströmboden-
Durchmesser von 110 mm und ein Lochboden mit 8 % freier Fläche eingesetzt.

Das im Wirbelbett vorgelegte Cholinascorbat (500 g) wurde unter Wirbeln mit einer Luftmen-
ge von 30 m³/h auf 40°C Produkttemperatur erwärmt. Das Fett (125 g) wurde im Becherglas
30 in einem Ölbad bei 80 °C aufgeschmolzen und bei 2 bar Sprühdruck mit beheiztem Sprühgas
von 85 -90 °C durch Unterdruckeinsaugung über eine beheizte Leitung im Topsprayverfah-
ren mit einer 1,2 mm Zweistoffdüse auf das Cholinascorbat aufgesprührt. Während des
Sprühprozesses wurde die Luftmenge auf 100 m³/h erhöht, um eine gute Durchmischung
und eine gleichmäßige Coatingschicht zu gewährleisten. Die Sprühdauer betrug 5 min, wo-
35 bei die Produkttemperatur 40 bis 43 °C und die Zulufttemperatur ca. 40-50 °C betrug.

Beispiel 5:**Formulierungsbeispiel - Multivitamintablette**

Eine Multivitamintablette folgender Zusammensetzung:

5	β-Carotin	5	mg
	Vitamin E	10	mg
	Vitamin C	60	mg
	Vitamin D	1,2	mcg
10	Thiamin	1,4	mg
	Riboflavin	1,6	mg
	Pyridoxin HCl	2,2	mg
	Vitamin B ₁₂	1	mcg
	Niacin	18	mg
15	Pantothenensäure	6	mg
	Folsäure	200	mcg
	Biotin	150	mcg
	stabilisiertes Cholinascorbat (hergestellt gemäß Beispiel 4)	150	mg
20	Magnesium	100	mg
	Zink	15	mg
	Mangan	2,5	mg
	Selen	62	mcg
25	wird in an sich bekannter Weise unter Verwendung üblicher, dem Fachmann bekannter Formulierungshilfsmittel hergestellt.		

Beispiel 6:**Formulierungsbeispiel – B-Gruppen-Vitamintablette**

30	Eine Vitamintablette folgender Zusammensetzung:
----	---

	Vitamin C	500	mg
	Thiamin	100	mg
35	Riboflavin	100	mg

- | | | |
|---|-----|-----|
| Vitamin B ₆ | 100 | mg |
| Vitamin B ₁₂ | 500 | mcg |
| Niacin | 100 | mg |
| Pantothensäure | 100 | mg |
| 5 Folsäure | 400 | mcg |
| Biotin | 50 | mcg |
| stabilisiertes Cholinascorbat
(hergestellt gemäß Beispiel 4) | 500 | mg |
| 10 wird in an sich bekannter Weise unter Verwendung üblicher, dem Fachmann bekannter Formulierungshilfsmittel hergestellt. | | |

Beispiele 7a und 7b:**15 Coating von Cholinascorbat in der Wirbelschicht**

Apparatur und Vorgehen wie in Beispiel 4. Die Temperaturen und Sprühzeiten wurden angepasst. Es wurden 400 g Cholinascorbat-haltiger Feststoff im Konus vorgelegt.

Beispiel Nr.	Coating	Zusammensetzung des Endprodukts
7a	36,6 g Gelatine (91% TS) und 69,5 g Lactose (96% TS) wurden in 180 g Trinkwasser bei 60 °C gelöst. 100 g Coatingmaterial (berechnet trocken) wurden aufgesprührt. Gelatine 100 Bloom Avon DFG	80% Cholinascorbat 20 % Coating Trocknungsverlust <0,8%
7b	100 g Polyethylenglykol (PEG) wurden in 100 g Trinkwasser gelöst. 88 g Coatingmaterial (berechnet trocken) wurden aufgesprüht. PEG: Lutrol E 6000 von BASF	82% Cholinascorbat 18 % Coating Trocknungsverlust <0,2 %

20 TS= Trockensubstanz

Beispiele 8a und 8b:**Coating von Cholinascorbat im Rührkolben**

a) Bei dem zu coatenden Produkt handelte es sich wieder um Cholinascorbat gemäß Beispiel 4. 50 g des Feststoffs wurden in einem Vierhals-Reaktionskolben vorgelegt und unter Rühren auf 60 °C im Ölbad erwärmt.

5

Als Coatingmaterial wurde Rindertalg mit einem Schmelzpunkt von 56 - 60 °C (Edenor NHTI-G der Henkel/Cognis) verwendet. Der Rindertalg wurde bei einer Temperatur von 80 °C im Becherglas aufgeschmolzen. 12,5 g der Edenor NHTI-G-Schmelze wurde mit Hilfe einer Pipette in den Vierhalskolben auf das gerührte Cholinascorbat getropft. Die Rührgeschwindigkeit betrug 250 - 300 U/min. Nach Zugabe der Schmelze wurden die mit dem Rindertalg überzogenen Cholinascorbat unter Rühren abgekühlt und die Schmelze erstarrte. Man erhielt Cholinascorbatpartikeln mit ca. 20 % Coating.

10

b) Der Versuch wurde bei einer Zugabe von 33,5 g der Edenor NHTI-G-Schmelze auf 50 g Cholinascorbat unter vergleichbaren Bedingungen wiederholt. Man erhielt Cholinascorbatpartikeln mit ca. 40 % Coating.

Beispiele 9a bis 9c:

20 Coating von Cholinascorbat im Rührkolben

Apparatur und Vorgehen wie in Beispiel 8. Die Temperaturen wurden den Schmelzpunkten angepasst. Vorlage je 50 g Cholinascorbat gemäß Beispiel 4 im Vierhals-Reaktionskolben.

Beispiel Nr.	Coating	Zusammensetzung des Endprodukts
9a	12,5 g Rucawar FH (hydriertes Rapsöl, enthält 30 ppm Zitronensäure) (Rucawar FH der Fa. Aarhus Olie, Dänemark)	80% Cholinascorbat 20 % Coating
9b	12,5 g Bassao E 63 (hydriertes Sheanut-Öl, enthält 30 ppm Zitronensäure) (Bassao E 63 der Fa. Aarhus Olie, Dänemark)	80% Cholinascorbat 20 % Coating
9c	12,5 g Polyethylenglykol (PEG Lutrol E 6000) bzw. (33,3 g Polyethylenglykol (PEG Lutrol E 6000)) (PEG: Lutrol E 6000 von BASF)	80% (bzw. 60%) Cholinascorbat und 20% (bzw. 40%) Coating

Beispiele 10a und 10b:**Sprühgranulation von wässriger Cholinascorbat-Lösung in der Wirbelschicht**

- 5 a) Für die Versuchsdurchführung stand ein Laborwirbelbett der Fa. Niro- Aeromatic, Typ MP-1, zur Verfügung. Als Vorlagegefäß wurde ein Kunststoffkonus mit einem Anströmboden-Durchmesser von 110 mm und ein Lochboden mit 8 % freier Fläche eingesetzt.

10 In den Konus der Wirbelschicht wurden 300 g Cholinascorbat (vgl. Beispiel 4) als Vorlage-
material eingefüllt. 300 g desselben Feststoffs wurden in 129 g Trinkwasser aufgelöst.

Das im Wirbelbett vorgelegte Cholinascorbat (300 g) wurde unter Wirbeln mit einer Luftmenge von 30 - 40 m³/h auf 47 °C Produkttemperatur erwärmt. Die Produkttemperatur wurde in der Wirbelschicht gemessen. Die wässrige Cholinascorbatlösung wurde bei 1,5 bar Sprühdruck mit Hilfe einer Zweistoffdüse (Düsendurchmesser 1,2 mm) durch Unterdruckeinsaugung im Topspray-Verfahren versprüht. Die Sprühdauer betrug ca. 35 min, wobei die Produkttemperatur zwischen 45 und 47 °C und die Zulufttemperatur ca. 58 - 66 °C lag. Man erhielt einen Produktaustrag von 568 g eines feinen weißen Produkts. Der Trockenverlust des Produkts lag bei ca. 0,6 %.

- 20 b) Der oben genannte Versuch wurde ohne Vorlage von Cholinascorbat in der Wirbelschicht wiederholt. Hierzu wurden 500 g Cholinascorbat (vgl. Beispiel 4) in 250 g Trinkwasser gelöst. Bei nahezu unveränderten Betriebsbedingungen gelang es, innerhalb von einer Versuchsdauer von ca. 160 min. ca. 450 g eines weißen, granulierten Produkts zu erzeugen.
25 Der Trockenverlust des Produkts lag bei ca. 0,5 %. In der Anlage blieben dünne, lockere Beläge an Wand und Filter zurück.

30 Da die Sprühgranulation in der Wirbelschicht ohne Vorlage gefahren werden konnte, ist damit auch der Nachweis erbracht, dass unter ähnlichen Bedingungen eine klassische Sprüh-trocknung möglich ist.

Beispiele 11a und 11b:**Sprühgranulation von wässriger Cholinascorbat-Lösung in der Wirbelschicht mit Zusatz von Additiven**

Apparatur und Vorgehen wie in Beispiel 10: Anfahren ohne Vorlage.

Beispiel Nr.	Versuchspараметer
11a	Sprühlösung: 475 g Cholinascorbat und 25 g Dihydro-Liponsäure wurden in 250 g Trinkwasser gelöst Zusammensetzung des Endprodukts entsprechend der Sprühlösung
11b	Sprühlösung: 475 g Cholinascorbat und 25 g L-Cystein (von Fa. Aldrich) wurden in 250 g Trinkwasser gelöst Zusammensetzung des Endprodukts entsprechend der Sprühlösung

5 **Beispiel 12:**

Sprühformulierung von wässriger Cholinascorbat-Lösung in der Wirbelschicht

170 g Trinkwasser wurden in einem Becherglas vorgelegt und 280 g der Cholinascorbatkristalle (vgl. Beispiel 4) unter Röhren langsam zugegeben und gelöst. Es entstand eine
 10 wässrige Lösung mit einem Feststoffgehalt von 62 %. Diese Lösung wurde mit einer Temperatur von 60 °C und einem Sprühdruk von 4 bar mit einer Einstoffdüse in einem Laborsprühturm versprüht. Während des Sprühens wurde in die Sprühzone hydrophobe Kiesel-
 15 säure (Sipernat D 17®, Degussa) eingeblasen. Man erhielt ein feuchtes Pulver, das anschließend in einer Labormutsche vorgetrocknet und mittels Rotationsverdampfer bei einer Wasserbadtemperatur von 50 °C und einem Druck von 40 mbar innerhalb von 5 h zu Ende
 20 getrocknet wurde.

Beispiel 13:

Herstellung einer gelösten Cholinascorbat-Formulierung zur Farbzahlbestimmung

20 Eine feste CAS-Formulierung wird in einem Mörser homogenisiert und in einem Lösungsmittelgemisch aus gleichen Teilen Wasser und Methanol 15 Minuten bei Raumtemperatur gerührt. Die Einwaage an formuliertem Produkt wird so gewählt, dass die resultierende Lösung etwa 10 Gew.-% CAS enthält. Gegebenenfalls ungelöste Bestandteile werden abgetrennt.
 25 Von der resultierenden Lösung werden umgehend die Farbzahlwerte nach Gardner und /oder Hazen bestimmt.

Beispiel 14:

Stabilisierung von Cholinascobat oder Cholinsalz/Ascorbinsäure-Mischungen durch Additive

In den folgenden Untersuchungen wurde die Stabilisator-Wirkung auf Cholinascorbat und verschiedene Cholinsalz/Ascorbinsäure-Mischungen untersucht. Die Versuchsergebnisse sind in Tabelle 3 zusammengefasst. Die Versuche erfolgten unter den folgenden Bedingungen: 10%ige Lösungen in Wasser/Methanol (1:1) – 7 h bei 65 °C.

Tabelle 3

10

Substanz	Farbzahl	
	Gardner	Hazen
ohne Additiv		
Cholinascorbat	6,3	> 1000
L-Ascorbinsäure	0,1	27
Natriumascorbat	0,1	31
Cholinchlorid	0,1	35
Cholinbitartrat	0,1	32
Cholin-Mischungen – ohne Additiv		
Ascorbinsäure/Cholinchlorid	4,4	975
Natriumascorbat/Cholinchlorid	6,1	> 1000
Ascorbinsäure/Cholinbitartrat	2,0	320
Natriumascorbat/Cholinbitartrat	5,1	> 1000
Cholin-Mischungen mit 1 % Cys		
Ascorbinsäure/Cholinchlorid	0,1	33
Natriumascorbat/Cholinchlorid	0,1	45
Ascorbinsäure/Cholinbitartrat	0,1	28
Natriumascorbat/Cholinbitartrat	0,1	36
Cholinascorbat	0,1	27

Wie man den Farbzahlwerten entnehmen kann, werden durch den Stabilisator nicht nur Cholinascorbat sondern auch Mischungen anderer Cholinsalze mit Ascorbinsäure deutlich farbstabiler.

Beispiel 15**Bestimmung der Stabilität einer festen Cholinascorbat-Formulierung gegenüber Feuchtigkeit**

- 5 Wenige Gramm eines erfindungsgemäß formulierten, festen Cholinascorbats werden in eine Glasschale gegeben, so dass der Boden der Schale mit dem pulverförmigen Feststoff gleichmäßig bedeckt ist. Es wird ein Exsikkator bereitgestellt, dessen Atmosphäre durch eine gesättigte, wässrige Kochsalzlösung die sich im Boden des Exsikkators befindet, definiert wird. Die Gasatmosphäre im Exsikkator besitzt eine relative Gasfeuchte von ca. 76%. Die
- 10 Schale mit Cholinascorbat wird für 3 Tage in den Exsikkator gestellt und bei Raumtemperatur gelagert.

Nach 3 Tagen wird die Schale mit Cholinascorbat dem Exsikkator entnommen und beurteilt. Unformuliertes Cholinascorbat liegt vollständig oder teilweise als Flüssigkeit vor. Erfindungsgemäß formuliertes Cholinascorbat liegt auch nach 3 Tagen als pulverförmiger Feststoff vor. Ein teilweises oder vollständiges Zerfließen oder Lösen der Formulierung ist nicht zu beobachten. Der Feststoff kann aber bei der Lagerung Wasser aufgenommen haben und eingeschränkte Fließeigenschaften aufweisen. Bei Filtration (mit oder ohne Anlegen eines Wasserstrahlvakuum) über eine Filternutsche, z.B. D2 (40-100 µm), kann aus erfindungsgemäß Formulierungen nach standardisierter Lagerung keine Flüssigphase abgetrennt werden.

Patentansprüche

1. Feste Cholinascorbat-Formulierung mit verringelter Sensitivität gegenüber externen
5 Stressfaktoren.
2. Formulierung nach Anspruch 1, dadurch gekennzeichnet, dass eine Lösung dieser
Formulierung unter Standardbedingungen
 - i) eine Farbzahl nach Gardner (bestimmt nach DIN-ISO 4630 bzw. ASTM D
10 1544-80) von < 4,5, und/oder
 - ii) eine Farbzahl nach Hazen (bestimmt nach DIN-ISO 6271 bzw. ASTM D
1045-68, ASTM D 263-49 oder ASTM D 1209-69) von < 800 aufweist.
3. Formulierung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass sie bei
15 Lagerung unter Standardbedingungen in feuchter Umgebungsluft nicht zerfließt.
4. Formulierung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass
 - a) Cholinascorbat mit einem inerten Beschichtungsmittel Oberflächen-
beschichtet ist;
 - b) Cholinascorbat in eine inerte Matrix eingebettet ist; oder
 - c) ein poröser Träger mit Cholinascorbat beladen ist, und der beladene Träger
gegebenenfalls mit einem inerten Beschichtungsmittel Oberflächen-
beschichtet ist.
- 25 5. Formulierung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass sie zusätzlich eine wirksame Menge wenigstens eines die Verfärbungsneigung
von Cholinascorbat weiter verringernden Zusatzes enthält.
6. Formulierung nach Anspruch 5, dadurch gekennzeichnet, dass der die
30 Verfärbungsneigung von Cholinascorbat weiter verringende Zusatz im Gemisch mit
dem Cholinascorbat vorliegt und /oder in der Oberflächenbeschichtung, in der inerten
Matrix oder im porösen Träger enthalten ist.
7. Formulierung nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass der Stabilisator
35 in einem Anteil von etwa 0,05 bis 30 Mol-%, bezogen auf den molaren Gehalt an
Cholinascorbat, enthalten ist.

8. Formulierung nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass der Stabilisator ausgewählt ist unter schwefelhaltigen, phosphorhaltigen oder borhaltigen Verbindungen; Carbonsäuren und Carbonsäurederivaten; Vitaminen und Vitamin-Vorläufern und -Derivaten; Naturstoffgemischen; hydroxy- oder alkoxyaromatischen Verbindungen; Reduktonen oder Gemischen davon.
9. Formulierung nach Anspruch 8, dadurch gekennzeichnet, dass
 - a) der schwefelhaltige Stabilisator ausgewählt ist unter Cystein, Cystin, N-Acetylcystein, Thioglycolat, Glutathion, Dihydroliponsäure, Liponsäure, Natriumdithionit, Methionin und Thioharnstoff;
 - b) der phosphorhaltige Stabilisator ausgewählt ist unter Phosphoriger und Hypophosphoriger Säure;
 - c) der borhaltige Stabilisator Phenylboronsäure ist;
 - d) die Carbonsäuren und Carbonsäurederivate ausgewählt sind unter Harn-, Milch-, Äpfel-, Citronen- und überschüssige Ascorbinsäure; sowie Ascorbylpalmitat;
 - e) die Vitamine, Vitamin-Vorläufer und -Derivate ausgewählt sind unter alpha-, beta- und gamma-Tocopherol, Tocotrienol und wasserlöslicheren Vitamin E-Derivaten; Carotinoiden; Isoflavonen; Flavonoiden und anderen natürlich vorkommenden Polyphenolen;
 - f) das Naturstoffgemisch ein Rosmarinextrakt ist;
 - g) das Redukton Hydroxyaceton ist; und
 - h) die hydroxy- oder alkoxy-aromatischen Verbindungen ausgewählt sind unter 6-Ethoxy-1,2-dihydro-2,2,4-trimethylchinolin (Ethoxyquin), t- Butylhydroxytoluol und t-Butylhydroxyanisol;
- 20 oder der Stabilisator ein funktionales, stabilisierend wirkendes Derivat einer der obigen Verbindungen ist.
- 30 10. Formulierung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Cholinascorbat - Gehalt in einem Bereich von etwa 5 bis 95 Gew.-% bezogen auf das Gesamtgewicht der Formulierung beträgt.
- 35 11. Formulierung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie mit einem Beschichtungsmittel, umfassend wenigstens eine Verbindung, ausgewählt unter:

- a) Polyalkylenglycolen;
 - b) Polyalkylenoxid-Polymeren oder –Copolymeren;
 - c) substituierten Polystyrolen, Maleinsäurederivaten und Styrol-Maleinsäurecopolymeren;
 - 5 d) Vinylpolymeren entweder alleine oder in Kombination mit anderen Verbindungen, wie Celluloseethern oder Stärken;
 - e) Vinylpyrrolidon/Vinylacetat-Copolymeren;
 - f) Polyvinylalkoholen, und Polyphthalsäurevinylestern;
 - 10 g) Hydroxypropylmethylcellulosen;
 - h) Alkyl(meth)acrylat-Polymeren und –Copolymeren;
 - i) Polyvinylacetaten, gegebenenfalls stabilisiert mit Polyvinylpyrrolidon;
 - j) Polyalkylenen;
 - k) aromatischen Polymeren;
 - 15 l) Polyacrylsäuren;
 - m) Polyacrylamiden;
 - n) Polycyanoacrylaten;
 - o) Phenoxyessigsäure-Formaldehyd-Harzen;
 - p) Cellulosederivaten;
 - 20 q) tierischen, pflanzlichen oder synthetischen Fetten und modifizierten Fetten;
 - r) tierischen und pflanzlichen Wachsen oder chemisch modifizierten tierischen und pflanzlichen Wachsen;
 - s) tierischen und pflanzlichen Proteinen;
 - t) Mono- und Disacchariden, Oligosacchariden, Polysacchariden;
 - 25 u) pflanzlichen Ölen, synthetischen oder halbsynthetischen Ölen und tierischen Ölen;
 - v) gehärteten (hydrierten oder teilhydrierten) Ölen/Fetten;
 - w) Lackcoatings;
 - x) Fettsäuren;
 - y) Kieselsäuren;
- 30 oder Mischungen davon beschichtet ist.
12. Formulierung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das Cholinascorbat in eine Matrix eingebettet ist, welche wenigstens eine Verbindung gemäß der Definition in Anspruch 11 umfasst, die zur Ausbildung einer bei einer Temperatur im Bereich von etwa 20 bis 100 °C festen Matrix geeignet ist.
- 35

13. Formulierung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass sie einen porösen Träger, ausgewählt unter Silikaten, umfasst.

5 14. Verfahren zur Herstellung einer Cholinascorbat enthaltenden Formulierung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass man feste Cholinascorbat-Partikel beschichtet, indem man diese

a) in einem Wirbelbett mit einer Schmelze, einer Lösung oder einer Dispersion eines Beschichtungsmittels gemäß der Definition in Anspruch 11 besprüht oder in einem Wirbelbett eine Pulverbeschichtung mit dem

10 Beschichtungsmittel durchführt; oder

b) in einem Mischer mit einer Schmelze, einer Lösung oder einer Dispersion des Beschichtungsmittels beschichtet oder eine Pulverbeschichtung mit dem Beschichtungsmittel durchführt; oder

15 c) mit Fett vermischt und das Fett durch mechanischen Energieeintrag und/oder Erwärmen schmilzt, während man weitermischt;

und das jeweils erhaltene beschichtete Material gegebenenfalls nachtrocknet, abkühlt und/oder von Grobanteilen befreit.

20 15. Verfahren zur Herstellung einer Cholinascorbat enthaltenden Formulierung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass man feste Cholinascorbat-Partikel in einer Schmelze, umfassend ein (schmelzbares) Beschichtungsmittel gemäß der Definition in Anspruch 11 suspendiert, die so erhaltene Suspension zerteilt und anschließend erstarrt.

25 16. Verfahren zur Herstellung einer Cholinascorbat enthaltenden Formulierung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass man feste Cholinascorbat-Partikel in einer lipophilen Umgebung dispergiert, die so erhaltenen Feststoff/Öltröpfchen in einer wässrigen Phase emulgiert und die Emulsion sprühformuliert.

30 17. Verfahren zur Herstellung einer Cholinascorbat enthaltenden Formulierung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass man Cholinascorbat-Partikel durch Koazervation beschichtet.

18. Verfahren zur Herstellung einer Cholinascorbat enthaltenden Formulierung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass man eine wässrige Schutzkolloidlösung herstellt, Cholinascorbat darin löst oder dispergiert und die erhaltene Mischung anschließend sprühformuliert oder sprühtrocknet und anschließend gegebenenfalls beschichtet.
- 5
19. Verfahren zur Herstellung einer Cholinascorbat enthaltenden Formulierung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass man eine wässrige Cholinascorbat enthaltende Lösung in einer Wirbelschicht sprühtrocknet und durch Zugabe geeigneter Zuschlagsstoffe granuliert oder agglomertiert.
- 10
20. Verfahren zur Herstellung einer Cholinascorbat enthaltenden Formulierung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass man eine Cholinascorbat umfassende Lösung, Emulsion oder Suspension mit einem porösen Träger vermischt und gegebenenfalls trocknet; oder eine Cholinascorbat umfassende Schmelze auf den porösen Träger aufträgt.
- 15
21. Verfahren zur Herstellung einer Cholinascorbat enthaltenden Formulierung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass man ein Feuchtgranulat, umfassend eine Cholinascorbat enthaltende Lösung oder Dispersion oder eine Cholinascorbat enthaltende Schmelze und einen Träger, oder enthaltend festes, kristallines oder amorphes, Cholinascorbat, herstellt, das Feuchtgranulat extrudiert, gegebenenfalls nachbehandelt, trocknet und anschließend gegebenenfalls beschichtet.
- 25
22. Verfahren zur Herstellung einer Cholinascorbat enthaltenden Formulierung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass man eine wässrige Lösung von Cholinascorbat herstellt, diese in einer hydrophoben Schmelze emulgiert und die Emulsion verfestigt.
- 30
23. Verfahren zur Herstellung einer Cholinascorbat enthaltenden Formulierung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass man eine Cholinascorbat umfassende Schmelze, gegebenenfalls in Gegenwart eines Bepuderungsmittels in einem Kaltgasstrom zerstäubt.

24. Nahrungs- oder Futtermittel, dadurch gekennzeichnet, dass es neben üblichen Nahrungs- bzw. Futtermittelbestandteilen eine Cholinascorbat enthaltende Formulierung gemäß der Definition in einem der Ansprüche 1 bis 13 in einem Anteil von etwa 0,001 bis 50 Gew.-% enthält.

5

25. Nahrungs- oder Futterergänzungsmittel, dadurch gekennzeichnet, dass es neben üblichen Nahrungs- bzw. Futterergänzungsmittelbestandteilen eine Cholinascorbat enthaltende Formulierung gemäß der Definition in einem der Ansprüche 1 bis 13 in einem Anteil von etwa 0,01 bis 99,9 Gew.-% enthält.

10

26. Arzneimittel in fester, flüssiger oder pastöser Form, dadurch gekennzeichnet, dass es in einem pharmazeutisch verträglichen Träger eine wirksame Menge einer Cholinascorbat enthaltenden Formulierung nach einem der Ansprüche 1 bis 13 enthält.

15

27. Verwendung einer Cholinascorbat enthaltende Formulierung nach einem der Ansprüche 1 bis 13 zur Herstellung von Nahrungs- und Futtermitteln sowie Nahrungs- und Futterergänzungsmitteln, oder Arzneimitteln.

20

INTERNATIONAL SEARCH REPORT

International Application No

EP 03/10535

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7	A61K31/16	A61K31/14	A61K31/375	A61P1/16	A61P9/00
	A61P25/28	A61K9/00	A23L1/30	A23K1/16	A61K47/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 A61K A23L A23K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, MEDLINE, EMBASE, BIOSIS, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
L	WO 2004 000292 A (BASF AG ;GUTH FELICITAS (DE); HABICH ANDREAS (DE); OFTRING ALFRED) 31 December 2003 (2003-12-31) the whole document claim 12 page 11 ----	1,3-27
X	EP 1 234 815 A (BASF AG) 28 August 2002 (2002-08-28) cited in the application the whole document ----	1,3,5-10
X	FR 1 242 805 A (RHONE POULENC SA) 7 October 1960 (1960-10-07) example 1 ----	1 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

4 February 2004

Date of mailing of the international search report

13/02/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Collura, A

INTERNATIONAL SEARCH REPORT

International Application No

EP 03/10535

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 2 823 166 A (HOFFMAN WALTER H) 11 February 1958 (1958-02-11) the whole document -----	1,3-27

INTERNATIONAL SEARCH REPORTInternational application No.
PCT/EP 03/10535**Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)**

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: **2**
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

See supplementary sheet PCT ISA/210

3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

See supplementary sheet

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

The International Searching Authority has determined that this international application contains more than one invention or group of inventions, namely:

1. claims 1, 3-11, 14, 15, 17, 18, 21, 23-27

solid choline ascorbate formulations with an inert surface coating agent, methods for their production, and their use in foodstuffs, fodder or medicaments;

2. claims 1, 3-10, 12, 14, 16, 18, 19, 21-27

solid choline ascorbate formulations embedded in an inert matrix, methods for their production, and their use in foodstuffs, fodder or medicaments;

3. claims 1, 3-10, 13, 14, 18, 20, 21, 23-27

solid choline ascorbate formulations, loading a porous carrier, methods for their production, and their use in foodstuffs, fodder or medicaments.

Continuation of Box I, 2

Claim 2

The current claim 2 is directed to a product which (*inter alia*) is defined by the following parameters:

P1: a Gardner colour number of < 4.5; and/or

P2: a Hazen colour number of < 800.

In the present context, the use of these parameters gives rise to a lack of clarity within the meaning of PCT Article 6. It is impossible to compare the parameters selected by the applicant with the prior art disclosure in this respect. This lack of clarity is such that it renders a meaningful search covering the complete range of protection impossible. Therefore the search was restricted to the stabilisers described in claim 9.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/EP 03/10535

The applicant is advised that claims or parts of claims relating to inventions in respect of which no international search report has been established normally need not be the subject of an international preliminary examination (PCT Rule 66.1(e)). In its capacity as International Preliminary Examining Authority the EPO generally will not carry out a preliminary examination for subjects that have not been searched. This also applies to cases where the claims were amended after receipt of the international search report (PCT Article 19) or where the applicant submits new claims in the course of the procedure under PCT Chapter II.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

EP 03/10535

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 2004000292	A 31-12-2003	DE 10227793 A1 WO 2004000292 A1		08-01-2004 31-12-2003
EP 1234815	A 28-08-2002	DE 10109073 A1 CN 1373127 A EP 1234815 A2 JP 2002265459 A US 2002161039 A1		05-09-2002 09-10-2002 28-08-2002 18-09-2002 31-10-2002
FR 1242805	A 07-10-1960	NONE		
US 2823166	A 11-02-1958	NONE		

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

REFEP 03/10535

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES

IPK 7	A61K31/16	A61K31/14	A61K31/375	A61P1/16	A61P9/00
	A61P25/28	A61K9/00	A23L1/30	A23K1/16	A61K47/00

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

IPK 7 A61K A23L A23K

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ, MEDLINE, EMBASE, BIOSIS, CHEM ABS Data

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
L	WO 2004 000292 A (BASF AG ;GUTH FELICITAS (DE); HABICH ANDREAS (DE); OFTRING ALFRED) 31. Dezember 2003 (2003-12-31) das ganze Dokument Anspruch 12 Seite 11 ---	1,3-27
X	EP 1 234 815 A (BASF AG) 28. August 2002 (2002-08-28) in der Anmeldung erwähnt das ganze Dokument ---	1,3,5-10
X	FR 1 242 805 A (RHONE POULENC SA) 7. Oktober 1960 (1960-10-07) Beispiel 1 ---	1 -/-

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :

"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

"E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist

"L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

"O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

"P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

"T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden

"Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

"&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des internationalen Recherchenberichts

4. Februar 2004

13/02/2004

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Collura, A

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

EP 03/10535

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	US 2 823 166 A (HOFFMAN WALTER H) 11. Februar 1958 (1958-02-11) das ganze Dokument -----	1,3-27

Feld I Bemerkungen zu den Ansprüchen, die sich als nicht recherchierbar erwiesen haben (Fortsetzung von Punkt 2 auf Blatt 1)

Gemäß Artikel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:

1. Ansprüche Nr. 1
weil sie sich auf Gegenstände beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, nämlich

2. Ansprüche Nr. 2
weil sie sich auf Teile der internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, daß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich
siehe Zusatzblatt WEITERE ANGABEN PCT/ISA/210

3. Ansprüche Nr.
weil es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.

Feld II Bemerkungen bei mangelnder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 3 auf Blatt 1)

Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält:

siehe Zusatzblatt

1. Da der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht auf alle recherchierbaren Ansprüche.

2. Da für alle recherchierbaren Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine zusätzliche Recherchengebühr gerechtfertigt hätte, hat die Behörde nicht zur Zahlung einer solchen Gebühr aufgefordert.

3. Da der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht nur auf die Ansprüche, für die Gebühren entrichtet worden sind, nämlich auf die Ansprüche Nr.

4. Der Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der internationale Recherchenbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen erfaßt:

Bemerkungen hinsichtlich eines Widerspruchs

- Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt.
 Die Zahlung zusätzlicher Recherchengebühren erfolgte ohne Widerspruch.

WEITERE ANGABEN

PCT/ISA/ 210

Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere (Gruppen von) Erfindungen enthält, nämlich:

1. Ansprüche: 1,3-11,14,15,17,18,21,23-27

Feste Cholinascorbat-Formulierungen mit einem inerten Oberflächenbeschichtungsmittel, Verfahren zu deren Herstellung und deren Verwendung in Nahrungs-, Futter- oder Arzneimitteln.

2. Ansprüche: 1,3-10,12,14,16,18,19,21-27

Feste Cholinascorbat-Formulierungen eingebettet in einer inerten Matrix, Verfahren zu deren Herstellung und deren Verwendung in Nahrungs-, Futter- oder Arzneimitteln.

3. Ansprüche: 1,3-10,13,14,18,20,21,23-27

Feste Cholinascorbat-Formulierungen, einen porösen Träger beladend, Verfahren zu deren Herstellung und deren Verwendung in Nahrungs-, Futter- oder Arzneimitteln

WEITERE ANGABEN

PCT/ISA/ 210

Fortsetzung von Feld I.2

Ansprüche Nr.: 2

Der geltende Patentanspruch 2 ist auf ein Produkt, das (u.a.) mittels folgender Parameter definiert wird, zu beziehen:

P1: eine Farbzahl nach Gardner von < 4,5 und/oder

P2: eine Farbzahl nach Hazen von < 800 aufweist.

Die Verwendung dieser Parameter muss im gegebenen Zusammenhang als Mangel an Klarheit im Sinne von Art. 6 PCT erscheinen. Es ist unmöglich, die vom Anmelder gewählten Parameter mit dem zu vergleichen, was der Stand der Technik hierzu offenbart. Der Mangel an Klarheit ist dergestalt, daß er eine sinnvolle vollständige Recherche unmöglich macht. Daher wurde die Recherche beschränkt auf die in Anspruch 9 beschriebene Satabilisatoren .

Der Anmelder wird darauf hingewiesen, daß Patentansprüche, oder Teile von Patentansprüchen, auf Erfindungen, für die kein internationaler Recherchenbericht erstellt wurde, normalerweise nicht Gegenstand einer internationalen vorläufigen Prüfung sein können (Regel 66.1(e) PCT). In seiner Eigenschaft als mit der internationalen vorläufigen Prüfung beauftragte Behörde wird das EPA also in der Regel keine vorläufige Prüfung für Gegenstände durchführen, zu denen keine Recherche vorliegt. Dies gilt auch für den Fall, daß die Patentansprüche nach Erhalt des internationalen Recherchenberichtes geändert wurden (Art. 19 PCT), oder für den Fall, daß der Anmelder im Zuge des Verfahrens gemäß Kapitel II PCT neue Patentansprüche vorlegt.

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

EP 03/10535

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
WO 2004000292	A	31-12-2003	DE 10227793 A1 WO 2004000292 A1		08-01-2004 31-12-2003
EP 1234815	A	28-08-2002	DE 10109073 A1 CN 1373127 A EP 1234815 A2 JP 2002265459 A US 2002161039 A1		05-09-2002 09-10-2002 28-08-2002 18-09-2002 31-10-2002
FR 1242805	A	07-10-1960	KEINE		
US 2823166	A	11-02-1958	KEINE		