1 Econ 260A. Fall 2018. Homework Challenge 4

- 1. Consider the following two-period investment opportunity. The cost of the investment is I = 400 and the revenues generated in year one are $V_1 = 200$. In year two, the investment will generate revenues of $V_2 = 600$ with probability p and $V_2 = 100$ with probability 1 p. The investment is irreversible once made, and the value of V_2 is revealed at the start of year two. Assume, for now, that the discount factor δ is equal to one.
- a. Derive an expression for the Dixit-Pindyck option value in terms of p. Display this graphically and interpret.
- b. Suppose there is a spread in the distribution of year two revenues. Specifically, $V_2 = 600 + 100u$ with probability p and $V_2 = 100 100u$ with probability 1 p where $0 \le u \le 1$. Derive an expression for the Dixit-Pindyck option value in terms of p and u. How does the option value change as u gets larger? Explain. How does the option value vary across p u space?
- c. Now suppose that $\delta \leq 1$ and u = 0. Derive an expression for the option value in terms of p and δ . How does the Dixit-Pindyck option value change as δ gets larger? Explain. How does the option value vary across $p \delta$ space?