CNN ORG Mode

Jesus Sierralaya

April 11, 2024

1

Contents

1 Load libraries

2	Set parameters	2
3	Pre-process	2
4	Create the model	2
5	Set the parameters, compile and train the model	4
6	Evaluate the performance of the trained model	4
1	Load libraries	
in in fr in in	<pre>mport os; os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' mport matplotlib.pyplot as plt mport numpy as np mport keras rom keras import layers mport tensorflow as tf mport argparse</pre>	
	rom sklearn.preprocessing import LabelBinarizer rom keras.datasets import mnist	

2 Set parameters

```
num_classes = 10
input_shape = (28, 28, 1)
```

3 Pre-process

```
(x_train, y_train), (x_test, y_test) =

→ keras.datasets.mnist.load_data()
2
   x_train = x_train.astype("float32") / 255
3
    x_test = x_test.astype("float32") / 255
   x_train = np.expand_dims(x_train, -1)
6
    x_test = np.expand_dims(x_test, -1)
   print("x_train shape:", x_train.shape)
   print(x_train.shape[0], "train samples")
9
   print(x_test.shape[0], "test samples")
10
11
   label_binarizer = LabelBinarizer()
   y_train = label_binarizer.fit_transform(y_train)
   y_test = label_binarizer.fit_transform(y_test)
   x_train shape: (60000, 28, 28, 1)
   60000 train samples
   10000 test samples
```

4 Create the model

```
layers.Conv2D(64, kernel_size=(3, 3),

→ activation="relu"),
            layers.MaxPooling2D(pool_size=(2, 2)),
7
            layers.Flatten(),
8
            layers.Dropout(0.5),
9
            layers.Dense(num_classes, activation="softmax"),
10
        ]
11
12
13
   model.summary()
```

Model: "sequential_28"

Output Shape	Param #
(None, 26, 26, 32)	320
(None, 13, 13, 32)	0
(None, 11, 11, 64)	18496
(None, 5, 5, 64)	0
(None, 1600)	0
(None, 1600)	0
(None, 10)	16010
	(None, 26, 26, 32) (None, 13, 13, 32) (None, 11, 11, 64) (None, 5, 5, 64) (None, 1600) (None, 1600)

Total params: 34826 (136.04 KB) Trainable params: 34826 (136.04 KB) Non-trainable params: 0 (0.00 Byte)

5 Set the parameters, compile and train the model

6 Evaluate the performance of the trained model

```
test_loss, test_accuracy = model.evaluate(x_test, y_test,
    verbose=2)
print(f"Test accuracy: {test_accuracy * 100:.2f}%")
f"{test_accuracy * 100:.2f}%"
```

The test accuracy is 97.09%.