Programming Assignment #2

Medical Equipment II

Ahmed Khaled Mohamed Salah	S.1 B.N.4
Eslam Khaled Korany	S.1 B.N.13
Bassam Moustafa Mahmoud	S.1 B.N.22
Tarek Allam Ibrahim	S.2 B.N.2

Under the kind guidance of

Dr. Inas Ahmed Yassine

1 Non-Uniformity Effect on the Trajectory

Note: Please make sure of installing pyqt (command in dependencies.txt) to be able to run the program.

The non-uniformity of B causes changes in the Larmor frequency ω of the molecules as

$$\omega = \gamma * B$$

where γ is the gyromagnetic ratio of the nuclei. Adding the non-uniformity effect would make our equation

$$\omega' = \omega + \delta\omega = \gamma * (B + \delta B)$$

For our example we have B=1.5T and $\delta B=\pm 1$. So, $B_+=2.5T$ and $B_-=0.5T$ A change to the Larmor frequency $\delta \omega$ occurs

$$\delta\omega = \omega' - \omega = \gamma * (B + \delta B) - \gamma * B = \gamma * \delta B$$

$$\delta\omega = \pm 1 * \gamma$$

For protons, $\gamma = 42MHz.T^{-1}$

```
B = 1.5
BPositive = 2.5
BNegative = 0.5
gyroRatio = 42
w = gyroRatio * B
wPositive = gyroRatio * BPositive
wNegative = gyroRatio * BNegative
T1 = 490/1000
T2 = 43/1000
t = np.arange(start=0, stop=10, step=0.001)

omega = 2*np.pi*w*t
omegaPositive = 2*np.pi*wPositive*t + np.pi/8
omegaNegative = 2*np.pi*wNegative*t - np.pi/8
```

For precising of the protons in the X-Y plane

$$M_x(t)/M_o = e^{-\frac{t}{T_2}}\sin(\omega t)$$

$$M_y(t)/M_o = e^{-\frac{t}{T_2}}\cos(\omega t)$$

When there is a non-uniformity in B, hence, in ω ,

$$M_{x}'(t)/M_{o} = e^{-\frac{t}{T_{2}}}\sin(\omega' t)$$

$$M'_{y}(t)/M_{o} = e^{-\frac{t}{T_{2}}}\cos(\omega' t)$$

Mx = np.exp(-1*t/T2)*np.sin(omega)

MxPositive = np.exp(-1*t/T2)*np.sin(omegaPositive)

MxNegative = np.exp(-1*t/T2)*np.sin(omegaNegative)

My = np.exp(-1*t/T2)*np.cos(omega)

MyPositive = np.exp(-1*t/T2)*np.cos(omegaPositive)

MyNegative = np.exp(-1*t/T2)*np.cos(omegaNegative)

Plotting the results of M_x , M_y and M_{xy} with the non-uniformity effects for each, we get these results,

2 K-space

K-space is an array of numbers representing spatial frequencies in the MR image. Each number's value represents the relative contribution of its unique spatial frequency to the final image. The k-space and MR image may be converted to one another using the **Fourier Transform**. The cells of k-space are commonly displayed on rectangular grid with principal axes k_x and k_y . The k_x and k_y axes of k-space correspond to the horizontal (x-) and vertical (y-) axes of the image.

Note: The individual points (k_x, k_y) in k-space do not correspond one-to-one with individual pixels (x,y) in the image. Each k-space point contains spatial frequency and phase information about **every** pixel in the final image.