Systematische Studie der Peakextraktion neutraler Pionen in pp-Kollisionen bei $\sqrt{s}=13~{ m TeV}$ mit Hilfe von Templates

Bachelorarbeit

vorgelegt von

Marvin Hemmer

am Institut für Kernphysik

dem Fachbereich Physik

der Goethe-Universität Frankfurt am Main
Februar 2019

Erstgutachter: Prof. Dr. H. Büsching

Zweitgutachter: F. Pliquett

Inhaltsverzeichnis

1	T 116	eoretische Grundlagen 5		
	1.1	Standardmodell der Elementarteilchenphysik	5	
	1.2	Starke Wechselwirkung und das Quark-Gluon-Plasmas	6	
	1.3	Proton-Proton-Kollisionen	8	
	1.4	Messung neutraler Pionen zur Untersuchung des Quark-Gluon-Plasmas	9	
2	Exp	perimenteller Aufbau	12	
	2.1	ALICE	13	
	2.2	Elektromagnetische Kaloriemeter EMCal	14	
3	Mes	ssung neutraler Pionen mit Hilfe des EMCal	17	
	3.1	Datenauswahl	17	
		3.1.1 Datensatz	17	
		3.1.2 Clusterauswahlkriterien	18	
	3.2	Clusterkombination	19	
	3.3	Abschätzung des unkorrelierten Untergrunds	21	
	3.4	Abschätzung des korrelierten Untergrunds mit der Standardmethode	24	
	3.5	Peakextraktion mit Hilfe von Parametrisierungen von Templates	25	
		3.5.1 Template des Signals	26	
		3.5.2 Template des korrelierten Untergrunds	27	
		3.5.3 Parametriesierungsmethode	31	
		3.5.4 Abzug des korrelierten Untergrunds und Integration des Signals	34	
4	Kor	rrigierter Yield	36	

	4.1	Akzeptanz und Effizienz	36
	4.2	Systematische Unsicherheit	38
	4.3	Vergleich mit Standardmethode	43
5	5 Zusammenfassung und Ausblick		46
\mathbf{A}			48
\mathbf{B}	Dan	ıksagung	51

Einleitung

Nach heutigem Wissensstand begann das Universum mit dem Urknall. Kurz nach dem Urknall lag die Materie des Universums in einem heißen und dichten Zustand vor, der als Quark-Gluonen-Plasma (QGP) bezeichnet wird. Quarks und Gluonen sind elementare Bausteine, die den Grundstein für jegliche uns heute umgebende Materie bilden. Heute liegen die Quarks und Gluonen in der Natur in Form von gebundenen Zuständen vor, wie etwa dem Proton und dem Neutron.

Für die Bindung der Quarks und Gluonen ist die starke Wechselwirkung, eine der vier fundamentalen Kräfte der Physik, verantwortlich. Um die starke Wechselwirkung untersuchen zu können werden quasi freie Quarks und Gluonen benötigt. Innerhalb des QGP, das bei hohen Energiedichten auftritt, können Quarks und Gluonen sich quasi frei bewegen.

Um ein Quark-Gluonen-Plasma zu erzeugen, werden Blei-Ionen auf fast Lichtgeschwindigkeit beschleunigt und anschließend zum Kollidieren gebracht. Solche Kollisionen geschehen in Beschleunigeranalagen wie dem Large Hadron Collider (LHC) am Kernforschungsinstitut CERN. Eines der vier großen Experimente am LHC ist das ALICE Experiment, das speziell zur Untersuchung des QGP gebaut wurde.

Neben Blei-Ionen werden auch Protonen dort zur Kollision gebracht, bei denen davon ausgegangen wird, dass kein QGP entsteht. In beiden Kollisionen entstehen viele verschiedene Teilchen, wie das π^0 . Die Produktionsrate eines Teilchen aus Proton-Proton-Kollisionen kann dann mit der Produktionsrate des selben Teilchens in Blei-Blei-Kollisionen verglichen werden, um so Eigenschaften des QGP bestimmen zu können.

Entstandene Teilchen am ALICE Experiment werden mit verschiedenen Detektoren wie dem elektromagnetischen Kalorimeter (EMCal) detektiert. Das π^0 kann dabei jedoch nicht selbst direkt gemessen werden, da es sehr schnell zerfällt. Mit einer Wahrscheinlichkeit von circa 99% zerfällt das π^0 in zwei Photonen, deren Energie und Position mit dem EMCal gemessen werden können.

Um die Produktionsrate von π^0 in einem Kollisionsexperiment bestimmen zu können, muss das Signal aus Photonenpaaren von π^0 -Zerfällen extrahiert werden.

In dieser Arbeit wird eine Analysemethode vorgestellt in der die Anzahl produzierter π^0 in Proton-Proton-Kollisionen mit Hilfe von Templates aus Monte Carlo Simulationen bestimmt wird. Die dafür verwendeten Daten stammen aus Proton-Proton-Kollisionen, die im Jahr 2016 bei einer Schwerpunktsenergie von $\sqrt{s}=13$ TeV stattfanden.

Die Arbeit lässt sich dabei in vier Abschnitte einteilen. Im ersten Abschnitt werden die physikalischen Grundlagen näher dargelegt, die für diese Arbeit notwendig sind. Der Aufbau des ALICE Experiments sowie eine kurze Beschreibung der für diese Analyse verwendeten Detektoren mit Fokus auf dem EMCal werden in Abschnitt zwei erläutert. Die Analyse mit Hilfe von Monte Carlo Templates wird im anschließenden ausführlich vorgestellt und im abschließenden mit der bisher gängigsten Analysemethode verglichen.

Kapitel 1

Theoretische Grundlagen

1.1 Standardmodell der Elementarteilchenphysik

Im Standardmodell der Elementarteilchenphysik werden die Elementarteilchen in zwei Gruppen, die Quarks und die Leptonen, unterteilt. Als Elementarteilchen werden alle Teilchen bezeichnet, die nach heutigem Kenntnisstand nicht weiter teilbar sind. Beide Gruppen beinhalten nach aktuellem Wissensstand jeweils sechs Teilchen, die sechs Quarks up(u), down(d), charm(c), strange(s), top(t) und bottom(b) und die sechs Leptonen Elektron(e), Elektron-Neutrino (ν_e), Myon(μ), Myon-Neutrino (ν_μ), Tau (τ) und Tau-Neutrino (ν_τ). Tabelle 1.1 listet die Elementarteilchen, geordnet nach ihrer Generation und ihrer elektrischen Ladung, auf.

Neben der elektrische Ladung gibt es im Rahmen des Standardmodells noch zwei weitere Ladungen, die schwache Ladung und die starke Ladung, auch Farbladung genannt. Trägt ein Teilchen eine Ladung, so koppelt es an eine Wechselwirkung, die beschreibt, wie Teilchen sich gegenseitig beeinflussen können. Jede Ladung lässt sich dabei einer Wechselwirkung zuordnen, die elektrische

Generation	I	II	III III	
Quarks	up(u)	$\operatorname{charm}\ (c)$	top(t)	+2/3
Quarks	down(d)	strange (s)	bottom (b)	-1/3
Lontonon	Elektron (e)	Myon (μ)	$Tau(\tau)$	-1
Leptonen	Elektron-Neutrino (ν_e)	Myon-Neutrino (ν_{μ})	Tau-Neutrino (ν_{τ})	0

Tabelle 1.1: Elementarteilchen geordnet nach ihrer Generation und ihrer elektrische Ladung. [T⁺18]

Wechselwirkung	elektromagnetisch	stark	schwach
Austauschteilchen	Photon (γ)	Gluon (g)	W^{\pm}, Z^0 - Bosonen

Tabelle 1.2: Austauschteilchen geordnet nach ihrer entsprechenden Wechselwirkung.

Ladung der elektromagnetischen Wechselwirkung, die schwache Ladung der schwachen Wechselwirkung und die Farbladung der starken Wechselwirkung.

Wechselwirkungen zwischen zwei Teilchen werden durch den Austausch von Austauschteilchen vermittelt. Zu den heute bekannten Austauschteilchen gehören das Photon (γ) , das Gluon (g), das Z-Boson (Z^0) und die W-Bosonen (W^{\pm}) . Tabelle 1.2 zeigt die Zuordnung der Austauschteilchen zu ihrer entsprechende Wechselwirkung.

Für die vorliegenden Arbeit spielen die starke Wechselwirkung, Quarks, Gluonen und die Farbladung eine wichtige Rolle. Deshalb wird im folgenden Abschnitt genauer auf diese Themen eingegangen.

1.2 Starke Wechselwirkung und das Quark-Gluon-Plasmas

Wie eben diskutiert, koppelt die starke Wechselwirkung an Teilchen, die Farbladung tragen. Die Farbladung hat hierbei drei mögliche Zustände: rot, blau und grün. Dabei spielt der Zustand der Farbladung für die Stärke der starken Wechselwirkung keine Rolle. Zusätzlich zu den drei Zuständen der Farbladung gibt es auch drei Zustände der Antifarbladung: antirot, antiblau und antigrün.

Die Kombination der drei (Anti-)Farbladungen, oder die Kombination von Farbladung mit entsprechender Antifarbladung, ergibt, angelehnt an die Farblehre, weiß. Teilchen mit einer solchen
Kombination der Farbladung ergeben entsprechend nach außen hin farbneutrale Teilchen, auch
wenn sie aus farbgeladenen Teilchen aufgebaut sind.

Quarks, Antiquarks und Gluonen tragen Farbladung, wodurch sie an der starken Wechselwirkung teilnehmen. Unter anderem bindet die starke Wechselwirkung Quarks und Antiquarks zu Hadronen. Diese werden wiederum in Baryonen, aufgebaut aus drei Quarks, und Mesonen, aufgebaut aus einem Quark-Antiquark-Paar, und entsprechende Antiteilchen, unterteilt.

Die Wechselwirkung zur Bindung eines Quark-Antiquark-Paars folgt dabei einem Potential V(r) [Büs18]:

$$V(r) = -\frac{4}{3}\frac{\alpha_{\rm s}}{r} + kr \tag{1.1}$$

Der erste Teil $-\frac{4}{3}\frac{\alpha_{\rm s}}{r}$ verhält sich proportional zur Kopplungskonstanten der starken Wechselwirkung $\alpha_{\rm s}$ und antiproportional zum Abstand r zwischen Quark und Antiquark.

Der zweite Teil des Potentials +kr weist eine lineare Abhängigkeit von r auf. Der Vorfaktor k wird

als Stringspannung bezeichnet und liegt in der Größenordnung von etwa 1 GeV/fm. Für große Abstände dominiert der lineare Teil. Das Feld der starken Wechselwirkung zwischen den beiden Teilchen wird immer stärker und wird deshalb als String bezeichnet. Für kleine r nähert sich V(r) einem Coulombpotential.

Um den Abstand zwischen sich zu vergrößern, müssen die zwei Teilchen immer mehr Energie besitzen, die insgesamt der Energie des *String* entspricht. Ab einem bestimmten Abstand reicht die Energie in dem *String* aus, um ein weiteres Quark-Antiquark-Paar zu erzeugen. In dem String bildet sich ein neues Quark-Antiquark-Paar, das sich mit dem ursprüngliche Quark-Antiquark-Paar zu zwei Quark-Antiquark-Paaren kombiniert. Es liegen dann zwei Quark-Antiquark-Paare vor, die jeweils aus einem ursprünglichen Teilchen und einem neu entstandenen Teilchen bestehen. Deshalb können Quarks nur in gebundenen Zuständen gemessen werden. Dieses Phänomen wird als *Confinement* bezeichnet. Aus dem *Confinement* folgt, dass in der Natur nur farbneutrale Teilchen frei vorkommen, sprich (Anti-)Quarks bilden immer andere Teilchen.

Anders als die Bezeichnung vermuten lässt, ist α_s nicht konstant, sondern abhängig von der Auflösung, mit der die Wechselwirkung betrachtet wird. Je genauer die Auflösung wird, umso kleiner wird α_s . Aufgrund dieses Verhaltens von α_s bezüglich der Auflösung nennt man α_s auch laufende Kopplungskonstante. Farbgeladene Teilchen spüren für eine genaue Auflösung beziehungsweise kleines α_s nur eine kleine Wechselwirkung. Halten sich viele (Anti-)Quarks und Gluonen auf kleinem Raum auf, so befindet sich ein Teilchen immer nah an einem anderen Teilchen. Dadurch können sich die Teilchen innerhalb eines solchen Zustands quasi frei bewegen. Den Zustand, wenn sich farbgeladene Teilchen frei bewegen können, nennt man asymptotische Freiheit.

Eine theoretische Beschreibung eines solchen Zustands ist das Quark-Gluon-Plasma (QGP). Das QGP entspricht einem Medium mit hoher Dichte von (Anti-)Quarks und Gluonen und beziehungsweise oder hoher Temperatur.

Ein solcher heißer und dichter Zustand kann kurz nach der Kollision von zwei hochenergetischen Atomkernen entstehen [Kar06]. In der Überlappregion der beiden Atomkerne bildet sich ein QGP aus, das expandiert und abkühlt. Durch das Expandieren und Abkühlen ändert sich der Zustand des Mediums und die farbgeladenen Teilchen schließen sich in der Hadronisierung wieder zu Hadronen zusammen. Bei dem beschriebene Übergang des QGP in hadronische Materie handelt es sich um einen Phasenübergang stark wechselwirkender Materie.

Für die Erforschung des QGP spielt das Phasendiagramm stark wechselwirkender Materie eine

Abbildung 1.1: Phasendiagramm stark wechselwirkender Materie in Abhängigkeit der Baryonendichte ρ und der Temperatur T. [Rog17]

wichtige Rolle. Abbildung 1.1 skizziert diese in Abhängigkeit von der Baryonendichte $\mu_{\rm B}$ und der Temperatur T. Bei geringem $\mu_{\rm B}$ und niedrigem T, wie etwa Raumtemperatur, sind alle Quarks und Gluonen in Hadronen gebunden. Erhöht man T oder beide Größen stark, wird ein Übergang in das QGP erwartet, in dem sich die Quarks und Gluonen quasi frei bewegen können. Außerdem muss die Energiedichte groß genug sein, um ein QGP erzeugen zu können, weshalb davon ausgegangen wird, dass im frühen Universum kurz nach dem Urknall die gesamte Materie als QGP vorlag [Kap00]. Es wird außerdem angenommen, dass sich dieses bei Kern-Kern-Kollisionen im Labor ausbilden kann, wie sie beim ALICE Experiment untersucht werden.

Zum besseren Verständnis von Kern-Kern-Kollisionen werden auch Proton-Proton-Kollisionen (pp-Kollisionen) studiert. Letztere werden in dieser Arbeit analysiert und im folgenden Abschnitt näher erläutert.

1.3 Proton-Proton-Kollisionen

Neben der direkten Referenz können in der Untersuchung von pp-Kollisionen aber auch Informationen über die stark wechselwirkende Materie beziehungsweise über die starke Wechselwirkung selbst gewonnen werden. pp-Kollisionen haben hierbei den Vorteil, dass sie besser theoretisch verstanden sind als Kern-Kern-Kollisionen. Dabei führt man unter anderem die Partonendichtefunktion der Protonen ein, die angibt, wie wahrscheinlich es ist, ein (Anti-)Quark oder Gluon mit einem

bestimmten Impulsanteil des Protons vorzufinden. Dies wiederum ermöglicht genauere theoretische Beschreibungen von pp-Kollisionen, bei denen im engeren Sinne die Partonen, also die (Anti-)Quarks und beziehungsweise oder Gluonen, miteinander stoßen.

Bei einem solchen Stoß entstehen viele neue Teilchen. Die Produktionsrate der neuen Teilchen wird dabei in einem Spektrum in Abhängigkeit vom Transversalimpuls angegeben. Der Transversalimpuls gibt dabei den Impulsanteil an, der senkrecht zur Strahlachse eines Kollisionsexperiments liegt. Der Transversalimpuls wird deshalb betrachtet, da die kollidierenden Teilchen bei einem solchen Experiment keinen Transversalimpuls besitzen und der gesamte Transversalimpuls der entstandenen Teilchen deshalb aus den physikalischen Prozessen während und nach der Kollision kommt. Ein mögliches Teilchen, das in Kollisionen produziert werden kann, ist das neutrale Pion. Dieses wird in dieser Arbeit analysiert und das Spektrum des transversalen Impulses des neutralen Pions in pp-Kollisionen extrahiert.

1.4 Messung neutraler Pionen zur Untersuchung des Quark-Gluon-Plasmas

Das neutrale Pion π^0 besteht aus einem Quark-Antiquark-Paar und gehört damit zu den Mesonen. Genauer lässt sich das π^0 als eine Überlagerung zweier quantenmechanischer Zustände, bestehend aus u und d Quarks und den entsprechenden Antiquarks, beschreiben:

$$|\pi^0\rangle = \frac{1}{\sqrt{2}} \left(|u\bar{u}\rangle - |d\bar{d}\rangle \right)$$
 (1.2)

Mit einer Masse von $m_{\pi^0}=(134,9770\pm0,0005)\,\mathrm{MeV/c^2}$ [T⁺18] stellt das π^0 das leichteste Meson dar. Ein π^0 zerfällt zu $(98,823\pm0,034)\,\%$ nach einer mittleren Weglänge von $c\tau=(25,5\pm0,5)\,\mathrm{nm}$ [T⁺18] in zwei Photonen.

Beim ALICE Experiment in Kern-Kern-Kollisionen werden unter anderem direkte Photonen untersucht. Als direkte Photonen werden solche Photonen bezeichnet, die in der Kollision entstehen und nicht aus Zerfällen stammen. Direkte Photonen können allerdings nicht direkt bestimmt werden. Stattdessen werden alle Photonen, die produziert wurden, gemessen und die Anzahl Photonen aus Zerfällen wird von der Anzahl aller Photonen subtrahiert. Dazu muss zuerst die Anzahl der Photonen, die aus Zerfällen kommen, bestimmt werden, wozu wiederum die Yields von Teilchen

extrahiert werden müssen, die in Photonen zerfallen. Aufgrund der hohen Produktionsrate von π^0 in Kern-Kern-Kollisionen und der hohen Zerfallswahrscheinlichkeit in zwei Photonen stellen Photonen aus π^0 -Zerfällen den größten Anteil von Zerfallsphotonen.

Direkte Photonen können auch in pp-Kollisionen betrachtet werden. In pp-Kollisionen gibt es dabei ebenfalls eine hohe Produktionsrate von π^0 , weshalb die Analyse von π^0 für die Bestimmung von direkten Photonen essentiell ist. Die Analyse von π^0 in pp-Kollisionen liefert somit eine direkte Referenzgröße in Form des Yields von π^0 , als auch eine Referenz für direkte Photonen. Das Verhältnis der Produktionsrate von π^0 in Kern-Kern-Kollisionen gegenüber der Produktionsrate von π^0 in pp-Kollisionen kann so beispielsweise Aufschluss geben auf den Energieverlust von Teilchen innerhalb des QGP. Deshalb werden in dieser Arbeit die Produktion von π^0 in pp-Kollisionen analysiert. Gemessen werden bei ALICE allerdings nicht π^0 direkt, sondern nur die Photonen aus dessen Zerfall, aufgrund der kurzen Lebensdauer des π^0 . Deshalb müssen π^0 über Messungen der Photonen rekonstruiert werden. Durch geeignete Messungen können Energie und Position der beiden Photonen bestimmt werden. Durch die Information über die Position der Photonen kann auch der Zerfallswinkel zwischen den beiden Photonen $\theta_{\gamma\gamma}$ bestimmt werden. Die Energien $E_{\gamma 1}$ und $E_{\gamma 2}$ der beiden Photonen sowie der Zerfallswinkel $\theta_{\gamma\gamma}$ werden benötigt, um die invariante Masse $m_{\rm inv}$ eines π^0 zu berechnen. Für diese gilt:

$$m_{\rm inv} = \sqrt{2E_{\gamma 1}E_{\gamma 2}(1 - \cos(\theta_{\gamma \gamma}))}$$
 (1.3)

Neben der Bestimmung der invarianten Masse kann der Impuls der Photonen aufgeteilt werden in den Transversalimpuls und den Longitudinalimpuls. Dabei wird in dieser Arbeit nur der Transversalimpuls $p_{\rm T}$ des π^0 betrachtet, für den gilt:

$$p_{T\pi^0} = \sqrt{(p_{x1} + p_{x2})^2 + (p_{y1} + p_{y2})^2}$$
(1.4)

Die Indizes x und y beziehen sich auf die Raumrichtungen.

In einer Kollision entstehen allerdings mehrere π^0 auf einmal. Die Information, welche Photonen dabei aus welchem Zerfall stammen, geht bei der Messung verloren. Deshalb werden alle gemessenen Photonen miteinander kombiniert, wodurch einerseits π^0 rekonstruiert werden, andererseits werden

1.4. MESSUNG NEUTRALER PIONEN ZUR UNTERSUCHUNG DES QUARK-GLUON-PLASMAS

den aber auch Photonenpaare miteinander kombiniert, die nicht aus einer Zerfallskette stammen, oder nicht aus einem π^0 -Zerfall. Um die Anzahl an Photonenpaaren, die nicht aus einem π^0 -Zerfall kommen, abzuschätzen, werden in dieser Arbeit Templates aus einer Monte Carlo Simulation verwendet. Für eine detailliertere Beschreibung von Monte Carlo Simulationen sei an dieser Stelle auf [Sch19] verwiesen. Templates beschreiben in dieser Analyse Verteilungen der invarianten Masse, die aus Monte Carlo Simulationen stammen. Durch das Verwenden von Templates in dieser Arbeit kann das theoretische Verständnis von pp-Kollisionen überprüft und vertieft werden. Eine genauere Erläuterung der Templates, die für diese Arbeit verwendet werden, folgt in den Abschnitten 3.5.1 und 3.5.2.

Nachdem die theoretischen Grundlagen für die Analyse von π^0 dargelegt wurden, wird in Abschnitt 2 der experimentelle Aufbau näher erläutert.

Kapitel 2

Experimenteller Aufbau

In dieser Arbeit werden Messdaten des ALICE Experiments verwendet. Das ALICE Experiment befindet sich am LHC, dem weltweit größten Beschleunigerring, am Kernforschungszentrum CERN. Im LHC werden Teilchen, hauptsächlich Blei-Ionen und Protonen, auf fast Lichtgeschwindigkeit beschleunigt und zum Kollidieren gebracht. Die Beschleunigung geschieht durch elektrische Felder, während Dipolmagnete die beschleunigten Teilchen auf einer Kreisbahn halten. Kollisionen finden im LHC Ring an vier unterschiedlichen Stellen statt, wo sich die Strahlrohre, in denen Teilchen gegenläufig beschleunigt werden, kreuzen. An einem dieser Punkte befindet sich das ALICE Experiment.

Die Beschleunigung auf nahezu Lichtgeschwindigkeit ermöglicht es, hohe Schwerpunktsenergien \sqrt{s} zu erreichen. Dabei spiegelt \sqrt{s} die Energie wider, die das System in einer Kollision zur Verfügung hat. Dementsprechend können mehr und auch schwerere Teilchen bei höherem \sqrt{s} in einer Kollision entstehen. Ein hohes \sqrt{s} hat auch eine höhere Temperatur des Mediums, was bei einer solchen Kollision entstehen kann, zur Folge. So befinden sich Messungen des ALICE Experiments am LHC im Phasendiagramm stark wechselwirkender Materie, wie es in Abbildung 1.1 skizziert ist, bei hohen Temperaturen und einer geringen Baryonendichte. \sqrt{s} hängt dabei von der Energie der kollidierenden Teilchen ab. Für Kollisionsexperimente zweier identischer Teilchen mit gleicher Energie E gilt:

$$\sqrt{s} = 2E \tag{2.1}$$

Abbildung 2.1: Schematische Darstellung des Querschnitts des ALICE Experiments. [Wik18]

Die in dieser Arbeit verwendeten Daten stammen von pp-Kollisionen bei $\sqrt{s} = 13$ TeV.

2.1 ALICE

Das ALICE Experiment wurde speziell zur Untersuchung des Quark-Gluonen-Plasmas konzipiert und gebaut. Abbildung 2.1 zeigt schematisch einen Querschnitt des ALICE Experiments. Der zylinderförmige Aufbau um das Kollisionszentrum ist typisch für Kollisionsexperimente.

Um die zentralen Detektoren herum befindet sich ein Solenoid-Magnet, der ein Magnetfeld von 0,5T erzeugt, wodurch geladene Teilchen auf gekrümmte Flugbahnen gelenkt werden. Mit Hilfe der Radien der gekrümmten Flugbahnen können geladene Teilchen identifiziert werden. Im Folgenden werden die für diese Analyse wichtigsten Detektoren kurz eingeführt.

Das Inner Tracking System, kurz ITS, befindet sich am nächsten zum Strahlrohr des ALICE Experiments und besteht aus sechs Schichten. In dieser Analyse wird das ITS zur Abschätzung des Kollisionspunktes, den primären Vertex, benutzt.

Die Time Projection Chamber, kurz TPC, umschließt das ITS und dient als Detektor der

Spurrekonstruktion. Geladene Teilchen hinterlassen in der TPC Spuren, anhand dieser können sie identifiziert werden.

Das V0-Detektorsystem besteht aus zwei einzelnen Detektoren, welche sich jeweils an einem Ende des ITS um das Strahlrohr befinden. Messen beide V0 Detektoren eine bestimmte Mindestanzahl an Teilchen, so wird eine Aufzeichnung des Ereignisses (engl. Event) gestartet. Die Anforderungen für die Messung eines Events werden allgemein als trigger bezeichnet. Dass die V0-Detektoren eine Mindestanzahl an Teilchen detektieren, entspricht einer Mindestanforderung an das Event. Entsprechend wird diese Mindestanforderung minimum-bias trigger und das Event minimum-bias Event genannt.

Genau wie das V0-Detektorsystem bestehen das **T0-Detektorsystem** aus zwei einzelnen Detektoren, die sich an den Enden des ITS befinden. Die T0-Detektoren sind auf präzise Zeitmessungen spezialisiert und legen den Zeitpunkt der Kollision fest.

Das Elektromagnetische Kalorimeter, kurz EMCal, befindet sich am äußersten Rand des zentralen Detektors. Da in dieser Analyse Messungen des EMCals verwendet werden, wird der Aufbau und die Funktionsweise des EMCals im folgenden Abschnitt genauer erläutert.

2.2 Elektromagnetische Kaloriemeter EMCal

In einem Abstand von circa 4,5 m vom Kollisionspunkt deckt das EMCal einen Azimuthalwinkelbereich von $\phi=107^\circ$ und einen Pseudorapiditätsbreich von $|\eta|\leq 0,7$ ab. Das EMCal besteht aus zwölf Supermodulen, zehn normal großen und zwei kleineren. Ein normal großes Supermodul besteht aus 24×48 Zellen, ein kleineres Supermodul aus 8×48 Zellen. Insgesamt hat das EMCal also 12288 Zellen, die hauptsächlich Photonen, Elektronen und Positronen detektieren und dabei die Energie dieser Teilchen messen. Eine einzelne Zelle besteht aus abwechselnd 77 Szintillator- und 76 Bleischichten. In den Bleischichten entstehen elektromagnetische Schauer, indem eintreffende Photonen durch Paarerzeugung in ein Elektron und ein Positron konvertieren, die wiederum durch Bremsstrahlung weitere Photonen abstrahlen. Die Szintillatoren werden durch die Photonen angeregt und geben ein messbares Lichtsignal ab. Alle Szintillatorschichten einer Zelle sind über einen Lichtleiter mit einem Photomultiplier verbunden. Der Photomultiplier wandelt das Lichtsignal in ein elektrisches Signal um, das proportional zur detektierten Energie der Zelle ist.

Jeder elektromagnetische Schauer besitzt eine gewisse Ausdehnung, die über den Molière-Radius

Abbildung 2.2: Schematische Darstellung eines Clusters. Die Ellipsenhalbachsen M_{20} und M_{02} definieren eine Ellipse, die alle orange markierten Zellen, die zu einem Cluster in einem Kalorimeter mit quadratischen Zellen gehören, umfasst. [[Mec18]]

 $R_{\rm M}$ definiert ist. Der Molière-Radius gibt den Radius passend zu einem Zylinder an, in dem 90% der gesamten Energie eines Schauers vom Detektor gemessen wird. Für das EMCal beträgt der Molière-Radius $R_{\rm M}=3.7$ cm, während die quadratischen Zellen eine Seitenlänge von 6 cm besitzen. Der Schauer eines einzelnen Teilchens erstreckt sich also über mehrere Zellen.

Benachbarte Zellen werden durch einen Algorithmus zu Clustern zusammengefasst. Algorithmen zur Rekonstruktion von Clustern werden als Clusterizer bezeichnet. In der hier vorliegenden Analyse wird der v2-Clusterizer verwendet. Dieser sucht zunächst nach der Zelle mit der größten deponierten Energie, die noch keinem Cluster angehört und eine Schwellenenergie von typischerweise 600 MeV besitzt. Von dieser Startzelle ausgehend werden die Nachbarzellen abgesucht und zum Cluster hinzugefügt, wenn sie die Mindestenergie von typischerweise 100 MeV überschreiten, aber eine geringere Energie als die Startzelle haben und ebefalls keinem weiteren Cluster zugeordnet sind. Diese Suche nach Nachbarzellen geschieht dabei iterativ so lange, bis keine Nachbarzellen die nötigen Kriterien erfüllen, um dem Cluster hinzugefügt zu werden. Anschließend wird eine neue Startzelle für ein neues Cluster gesucht und der Prozess beginnt von vorne. Abbildung 2.2 zeigt eine schematische Darstellung eines Clusters. Alle orange eingefärbten Zellen gehören dabei zu dem Cluster. Die eingezeichnete Ellipse, beziehungsweise ihre Halbachsen M_{02} und M_{20} , helfen dabei, das Cluster zu parametrisieren. Die Form eines Clusters und damit die Größe von M_{02} und M_{20} unterscheidet sich abhängig davon, ob das Cluster durch ein Photon entstanden ist oder nicht. Dadurch kann M_{02} benutzt werden, um Cluster, die durch Photonen entstanden sind, zu identifizieren. Für M_{02} gilt:

$$M_{02} = \frac{1}{2} \sum_{i} E_i(x_i^2 + y_i^2) + \sqrt{\frac{1}{4} \sum_{i} (x_i^2 + y_i^2)^2 + \left(\sum_{i} E_i x_i y_i\right)}$$
(2.2)

Wobei E_i für die Energie einer Zelle und x_i und y_i für die relative Position einer Zelle zur Startzelle steht.

Nachdem die Grundlagen zur Theorie und dem Experiment erklärt wurden, wird im nächsten Abschnitt die Analyse erläutert. Dazu wird zunächst die Auswahl der Daten, die in dieser Arbeit benutzt werden, aufgeführt.

Kapitel 3

Messung neutraler Pionen mit Hilfe des EMCal

3.1 Datenauswahl

3.1.1 Datensatz

In der in dieser Arbeit vorgestellten Analyse werden Daten von pp-Kollisionen bei $\sqrt{s}=13~{\rm TeV}$ verwendet, die mit dem ALICE Experiment gemessen wurden. Datensätze des ALICE Experiments werden in Perioden unterteilt, die ungefähr einem Monat Aufnahmezeit entsprechen. Für die Perioden gibt es eine Namenskonvention: LHC[Jahr][Perioden-Index]. Das Jahr wird dabei nicht vollständig angegeben, sondern nur die beiden letzten Ziffern. Bei dem Perioden-Index handelt es sich um einen Kleinbuchstaben. Er sortiert die Perioden aufsteigend, beginnend bei a. Die Perioden die in dieser Analyse verwendet werden sind LHC16h,i,j,k,l. Diese umfassen zusammen circa 250 Millionen minimum-bias Events.

Für die Monte Carlo Simulation wurde der Ereignisgenerator PYTHIA 8 mit dem tune Monash 2013 benutzt [Sch19]. Außerdem wurde GEANT3 verwendet um die möglichen Interaktionen der in der Kollision entstandenen Teilchen mit dem ALICE Experiment zu simulieren [BHHL78]. Die Monte Carlo Simulation wurde dabei an die Perioden LHC16h,i,j,k,l angepasst. Insgesamt umfasst die Monte Carlo Simulation etwa 280 Millionen minimum-bias Events.

3.1.2 Clusterauswahlkriterien

An die mit dem EMCal aufgenommenen Cluster aus dem gewählten Datensatz werden unterschiedliche Anforderungen gestellt. Tabelle 3.1 listet die in dieser Analyse gestellten Anforderungen auf. Der zeitliche Rahmen um den Kollisionszeitpunkt, in dem die Cluster entstanden sind, wird eingeschränkt, um Cluster von Teilchen auszuschließen, die nicht von einem Event stammen. Die Bad Cell Map wird verwendet, um schlechte Zellen von der Analyse auszuschließen [Kön17].

Die Energie, die ein Cluster mindestens braucht, sowie die Anforderung an die Form und die Anzahl an Zellen, aus denen ein Cluster mindestens bestehen muss, helfen Cluster von Photonen zu selektieren: Die Mindestenergie von 700 MeV wir benötigt um detektorbedingtes Rauschen zu unterdrücken. Der Schwellenwert für die Energie steht dabei im direkten Zusammenhang mit der Mindestanzahl an Zellen. Wie in Abschnitt 2.2 erwähnt, benötigt die Startzelle eine deponierte Energie von mindestens 600 MeV und jede weitere Zelle von mindestens 100 MeV, um zu einem Cluster hinzugefügt zu werden. Um die angegebene Mindestenergie zu erreichen benötigt ein Cluster entsprechend mindestens zwei Zellen. Die Form, charakterisiert durch den Parameter M_{02} , wurde in Abschnitt 2.2 bereits erläutert. Mit Hilfe des Track matching können Cluster, die von geladenen Teilchen kommen, ausgeschlossen werden, um die Reinheit des Signals zu erhöhen. Dafür werden die Spuren der geladenen Teilchen, die in der TPC hinterlassen wurden, rekonstruiert und bis zum EM-Cal extrapoliert. Einige Photonen konvertieren erst nach dem sie die TPC passiert haben. Cluster durch Elektronen beziehungsweise Positronen aus diesen Konversionen können entsprechend nicht durch das track matching ausgeschlossen werden.

Durch die Anforderung an den Öffnungswinkel wird sicher gestellt, dass der Abstand zwischen zwei Clustern mindestens der Größe einer Zellendiagonale entspricht. Diese Anforderung wird für die Bestimmung des Untergrunds benötigt.

Clusterauswahlkriterien			
Zeit	$-30 \text{ ns} < t_{\text{clust}} < 35 \text{ ns}$		
Bad Cell Map	angewandt		
Energie	$E_{clust} \ge 700 \text{ MeV}$		
Anzahl Zellen	$N_{\rm Zellen} \ge 2$		
Form	$0.1 < M_{02} < 0.7$		
Track matching	$p_{\rm T}$ abhängig: $\Delta \eta \ \Delta \phi$		
Öffnungswinkel	$\theta > 0.017 \text{ rad}$		

Tabelle 3.1: Auswahlkriterien für die Cluster des EMCals.

Abbildung 3.1: $p_{\rm T}$ und $m_{\rm inv}$ als Funktion der Anzahl von kombinierten Cluster-Paaren aus der gleichen Kollision. Die rote Linie bei $m_{\rm inv} \approx 0.135~{\rm GeV}/c^2$, indiziert die π^0 Masse, wo sich eine deutliche Häufung der Einträge abzeichnet. Die schwarzen Linien stellen die Grenzen der $p_{\rm T}$ -Intervalle dar.

3.2 Clusterkombination

Die gewählten Cluster nach den Kriterien aus Abschnitt 3.1.2 bestehen fast ausschließlich aus Photonen.

Um die Anzahl der π^0 zu messen, werden von Clusterpaaren $m_{\rm inv}$ und $p_{\rm T}$ nach Gleichungen 1.3 und 1.4 bestimmt. Da die Information fehlt, ob und welche Cluster von einem Teilchen, die aus dem Zerfall eines einzelnen π^0 stammen, werden alle Cluster eines Events paarweise miteinander kombiniert. Diese Methode wird als same Event Methode bezeichnet. Abbildung 3.1 zeigt die Anzahl der Clusterpaare in Abhängigkeit von $m_{\rm inv}$ und $p_{\rm T}$. Durch die paarweise Kombination aller Cluster eines Events gibt es sowohl Kombinationen von Clustern von Teilchen die über den Zerfall eines einzelnen π^0 zusammenhängen, als auch von Clustern von Teilchen, die nicht über den Zerfall eines einzelnen π^0 zusammenhängen.

Es zeichnet sich eine Häufung der Datenpunkte um die π^0 Masse ab. Dieser Häufung liegt das Signal

zugrunde. Als Signal wird die Summe aller Clusterpaare bezeichnet, die aus einem Zerfall eines π^0 kommen. Da Photonen durch Paarbildung in ein Elektron und ein Positron konvertieren können, bestehen einige Cluster aus nur einem der beiden Konversionsprodukte. Diese Cluster besitzen eine geringere Energie als das eigentliche Photon besaß. Dadurch liegt die Kombination von Clustern aus Konversionsteilchen bei kleinerem $m_{\rm inv}$ als Clusterpaare aus zwei Photonen. Deshalb wird bei $m_{\rm inv} < 0.135~{\rm GeV/}c^2$ ebenfalls Signal erwartet. Der Anteil des Signals bei dem mindestens ein Cluster eines Clusterpaares aus einem Konverionselektron oder Koversionspositron besteht, wird in dieser Arbeit als Konversionsanteil bezeichnet.

Alle Clusterpaare, die nicht zum Signal zählen, werden als Untergrund bezeichnet. Dieser wird in zwei Teile unterteilt: den kombinatorischen oder auch unkorrelierten Untergrund und den korrelierten Untergrund. Der korrelierten Untergrund entsteht durch paarweise Kombinationen von Clustern, zwischen denen eine Korrelation besteht. Das heißt, dass die Teilchen, durch die die eben genannten Cluster entstanden sind, nicht aus dem Zerfall desselben π^0 stammen, aber über andere Zerfälle zusammenhängen. Durch die paarweise Kombination von Clustern von unkorrelierten Teilchen entsteht der unkorrelierte Untergrund.

Um die Wahrscheinlichkeit zu senken, dass zwei Teilchen zu einem Cluster zusammengefasst werden, benötigen die Cluster dieser Teilchen eine Zellendiagonale als Mindestabstand. Dieser Mindestabstand entspricht einem minimalen Öffnungswinkel. Aufgrund des minimalen Öffnungswinkel gibt es für $m_{\rm inv}$ eine untere Grenze die von $p_{\rm T}$ abhängt, ab dem Einträge vorhanden sein können.

Die Anzahl der π^0 weist eine p_T -Abhängigkeit auf. Deshalb wird die Verteilung aus Abbildung 3.1 in einzelnen p_T -Intervallen analysiert. Die Intervalle werden so gewählt, dass sie möglichst klein sind, während die statistischen Unsicherheiten der Datenpunkte nicht zu groß werden. In Abbildung 3.1 werden die p_T -Intervalle durch die schwarzen Linien gekennzeichnet.

Abbildung 3.2 zeigt die Anzahl der Clusterpaare in Abhängigkeit der invarianten Masse im $p_{\rm T}$ Intervall von $(3,2-3,4)({\rm GeV}/c)$. Die in Abbildung 3.1 beschriebene Anhäufung der Datenpunkten
zeigt sich auch hier deutlich und wird im Folgenden als Peak bezeichnet. Der Peak besteht wie
zuvor erwähnt aus Signal.

Im folgenden Abschnitt wird eine Methode zur Abschätzung des unkorrelierten Untergrunds vorgestellt.

Abbildung 3.2: Projektion von Abbildung 3.1 im $p_{\rm T}$ -Intervall $(3, 2-3, 4)({\rm GeV}/c)$. Es ist ein deutlicher Peak um $m_{\pi^0} \approx 0.135~{\rm GeV}/c^2$ zu erkennen, aber auch Untergrund, da das Signal zu höheren Massen gaußförmig abklingen sollte. Bei $m_{\rm inv} < m_{\pi^0}$ kann Signal vorliegen, das aus konvertierten Photonen besteht, weshalb eine Aussage über die Form, beziehungsweise den Untergrund dort schwer möglich ist.

3.3 Abschätzung des unkorrelierten Untergrunds

Durch die paarweise Kombinationen aller Cluster eines Events, wie es in Abschnitt 3.2 vorgestellt wurde, ensteht unkorrelierter Untergrund. Um den unkorrelierten Untergrund abzuschätzen werden Cluster aus unterschiedlichen Events paarweise miteinander kombiniert. Dadurch wird sichergestellt, dass zwischen den Teilchen, die den Clustern zugrunde liegen, keine Korrelation besteht, sie also unkorreliert sind. Diese Methode wird als mixed Event Methode bezeichnet. Abbildung 3.3 zeigt die Anzahl Clusterpaare als Funktion von $p_{\rm T}$ und $m_{\rm inv}$, bei der Cluster aus unterschiedlichen Events miteinander kombiniert wurden. Da keine Korrelationen zwischen den Clustern vorliegen, gibt es keine Häufung der Datenpunkte um eine bestimmte invariante Masse.

Im selben Event würden Cluster, die näher als eine Zelldiagonale aneinander liegen mit großer Wahrscheinlichkeit zu einem Cluster zusammengefasst werden. Beim Kombinieren von Clustern aus unterschiedlichen Events wird der Abstand von zwei Clustern durch die Anforderung an den Öffnungswinkel auf mindestens eine Zelldiagonale gesetzt. Durch diese Anforderung gibt es, wie zuvor in Abschnitt 3.2 Abbildung 3.1, eine p_T abhängige untere Grenze für m_{inv} .

In der mixed Event Methode gibt es eine größere Anzahl an Kombinationsmöglichkeiten, als in der

Abbildung 3.3: $p_{\rm T}$ und $m_{\rm inv}$ als Funktion von der Anzahl von kombinierten Clusterpaaren aus unterschiedlichen Events.

same Event Methode. Daraus resultiert eine größere Anzahl an Einträgen in der Verteilung der invarianten Masse und des Transversalimpulses aus der mixed Event Methode, als in der Verteilung aus der same Event Methode. Deshalb muss die Verteilung, die aus der mixed Event Methode kommt, skaliert werden. Die Skalierung erfolgt bei $m_{\rm inv} \in [0,19,3,0] \, (\text{GeV}/c^2)$, da dort kein Signal erwartet wird. Es ergibt sich für den Skalierungsfaktor:

$$\alpha = \frac{\sum_{i \neq j} \sum_{n} m_{\text{inv}} \left(\gamma_i^{(n)}, \gamma_j^{(n)} \right)}{\sum_{i,j} \sum_{n \neq m} m_{\text{inv}} \left(\gamma_i^{(n)}, \gamma_j^{(m)} \right)}$$
(3.1)

Die oberen Indizes m und n stehen hierbei für ein Event, aus dem ein Photon kommt, und die unteren Indizes i und j nummerieren die Photonen (γ) .

Abbildung 3.4 zeigt die skalierten mixed Event Kombinationen und die same Event Kombinationen. Der unkorrelierten Untergrund wird mit steigendem m_{inv} größer und macht den Großteil der Anzahl an Einträge für $m_{\text{inv}} > 0, 2 \text{ GeV}/c^2$ in der Verteilung der invarianten Masse aus. Nachdem der unkorrelierte Untergrund abgeschätzt worden ist, wird dieser von der Verteilung der invarianten

Abbildung 3.4: Nach Gleichung 3.1 skalierte *mixed Event* Kombinationen als Abschätzung des unkorrelierten Untergrunds zusammen aufgetragen mit Signal zuzüglich beider Untergrundkomponenten wie in Abbildung 3.2.

Masse aus der same Event Methode abgezogen.

Abbildung 3.5 zeigt die Verteilung der invarianten Masse aus der same Event Methode in dem p_T Intervall von (3, 2-3, 4)(GeV/c), nachdem die skalierte Verteilung aus der mixed Event Methode abgezogen wurden.

Der nächste Schritt in der Analyse neutraler Pionen ist die Bestimmung des korrelierten Untergrunds. Das Abschätzen mit einer linearen Funktion hat sich als gängigste Methode zur Abschätzung des korrelierten Untergrunds entwickelt und wird im Folgenden als Standardmethode bezeichnet. In dieser Arbeit wird der korrelierte Untergrund sowie das π^0 -Signal mit Hilfe von Monte Carlo Templates bestimmt. Die Ergebnisse der Analyse mit Hilfe von Monte Carlo Templates sowie mit der Standardmethode werden miteinander vergleichen, um eine Aussage über den möglichen Nutzen der Verwendung von Monte Carlo Templates in der Analyse von π^0 treffen zu können. Im folgenden Abschnitt wird zunächst die Standardmethode kurz erläutert.

Abbildung 3.5: Verteilung der invarianten Masse aus der *same Event* Methode nach Abzug des unkorrelierten Untergrunds.

3.4 Abschätzung des korrelierten Untergrunds mit der Standardmethode

Da es sich bei dem Signal ohne Konversionsanteil um eine statistische Verteilung handelt, wird eine gaußförmig Funktion benutzt, um dieses zu beschreiben.

Der Konversionsanteil des Signals wird als *Tail* Komponente bezeichent. Diese Komponente wird durch eine exponentielle Funktion und eine gaußförmige Funktion beschrieben. Sie dient der Abschätzung des Anteils des Signals, dem Konversionselektronen oder Konversionspositronen zu Grunde liegen. Für die Abschätzung des korrelierten Untergrunds wird eine lineare Funktion angenommen. Die drei Funktionen werden kombiniert an die Verteilung der invarianten Masse angepasst.

Abbildung 3.6 zeigt die Verteilung der invarianten Masse, bestehend aus Signal und korreliertem Untergrund, sowie das Ergebnis der an die Daten angepassten Funktion. Die grüne Funktion entspricht der Summe der drei einzelnen Komponenten, wobei die Gauß-Funktion in blau, die Tail-Funktion in pink und die lineare Funktion in orange dargestellt sind. Dabei wird deutlich, dass durch die Abschätzung des korrelierten Untergrunds über die lineare Funktion bei $m_{\rm inv} < 0.06~{\rm GeV}/c^2$ kein Signal erwartet wird. Für $m_{\rm inv} < 0.02~{\rm GeV}/c^2$ gibt es keine Einträge in der Verteilung aufgrund des minimalen Öffnungswinkels. Dieses Verhalten wird nicht von der Abschätzung des korrelierten

Abbildung 3.6: Signal mit korreliertem Untergrund sowie den Funktionen zur Beschreibung des Signals mit korreliertem Untergrund.

Untergrunds berücksichtigt.

Um die Anzahl der produzierten π^0 mit der Standardmethode zu bestimmen, wird die Anzahl der Einträge, die unter der lineare Parametrisierung liegen, von der Summe der Einträge der Daten abgezogen. Anschließend werden die übrigen Daten, also das Signal, über einen festen Bereich um den Erwartungswert der Gauß-Funktion integriert. Für eine detaillierte Beschreibung der Standardmethode sei an dieser Stelle auf [Mec18] verwiesen.

Im folgenden Abschnitt wird die Abschätzung des korrelierten Untergrunds mit Hilfe von Templates beschrieben.

3.5 Peakextraktion mit Hilfe von Parametrisierungen von Templates

Um das Signal mit Hilfe von Templates zu extrahieren wird, wie auch bei der Standardmethode, zunächst eine Abschätzung des korrelierten Untergrunds gemacht. Hierfür werden je $p_{\rm T}$ -Intervall zwei Templates an die Daten angepasst. Eine Template wird verwendet um das Signal, ein zweites, um den korrelierten Untergrund zu beschreiben.

Im folgenden Abschnitt wird das Template des Signals diskutiert.

Abbildung 3.7: Template des Signals (grün) mit seinen drei Teilkomponenten. Diese bestehen aus Kombinationen mit zwei Photonen (blau), einem Photon und einem Konversionselektron oder Konversionspositron (gelb) und zwei unterschiedlichen Konversionselektronen oder Konversionspositronen (grau).

3.5.1 Template des Signals

Das Template des Signals wird mit Hilfe der Information der Monte Carlo Simulation erstellt. Dabei wird ausgenutzt, dass in der Simulation bekannt ist, welchen Ursprung welches Teilchen hat und welches Teilchen auf das EMCal trifft. Dadurch wird ermöglicht, genau bestimmen zu können, ob ein Teilchen aus dem Zerfall eines π^0 oder einem anderen Prozess stammt und ob es sich dabei um ein Photon, ein konvertiertes Elektron oder Positron, oder ein anderes Teilchen handelt.

Abbildung 3.7 zeigt die Anzahl Clusterpaare von Teilchen, die aus dem Zerfall eines einzelnen π^0 kommen in, was aus der Simulation bekannt ist, in grün. Zusätzlich wurden die Komponenten eingezeichnet, in die sich das Signal teilen lässt. Die Komponenten setzen sich aus drei möglichen Kombinationen von Clustern zusammen. Zum einen aus Clustern aus Photonen, in der Abbildung als γ bezeichnet, und zum anderen aus Clustern aus einem Elektron oder Positron, die durch die Konversion eines Photonen entstanden sind. Letztere werden in der Abbildung durch γ_{conv} symbolisiert.

In blau sind die Kombinationen aus zwei Photonen ($\gamma\gamma$) dargestellt, in gelb die Kombination aus Photon und Elektron oder Positron ($\gamma\gamma_{\rm conv}$) und in grau die Kombination aus Konversionselektron oder Konversionspositron miteinander ($\gamma_{\rm conv}\gamma_{\rm conv}$). Diese beiden Anteile wurden vorher zusammen-

Abbildung 3.8: Template des korrelierten Untergrunds in pink entstanden durch den Abzug des Templates des Signals (grün) von der Verteilung der invarianten Masse aus einer Monte Carlo Simulation (schwarz).

gefasst als Konversionsanteil.

Die Abbildung zeigt außerdem, wie zuvor angesprochen, dass bis $m_{\rm inv} > 0.05~{\rm GeV}/c^2~{\rm Signal}$ vorliegt. Der Anteil des Signals um diese invariante Masse besteht hauptsächlich aus zwei Teilchen aus einer Photonkonversion. Genau dieser Teil des Signals wird nicht durch die Standardmethode berücksichtigt. Durch das Berücksichtigen in der Analyse mit Hilfe der Templates kann ein größerer Anteil des Signals gezählt werden. Deshalb wird eine geringere statistische Unsicherheit erwartet.

3.5.2 Template des korrelierten Untergrunds

Für die Bestimmung des Templates des korrelierten Untergrunds wird das Template des Signals von der Verteilung der invarianten Masse aus der Monte Carlo Simulation abgezogen, die im gleichen $p_{\rm T}$ -Intervall liegt wie das Template des Signals.

Abbildung 3.8 zeigt die Anzahl Clusterpaare, die aus dem Zerfall eines einzelnen π^0 stammen, als Funktion von $m_{\rm inv}$ in schwarz. In pink wird das Template des korrelierten Untergrunds dargestellt und in grün das Template des Signals. Alle drei Verteilungen stammen aus dem $p_{\rm T}$ -Intervall $(3,2-3,4)({\rm GeV}/c)$. Hierbei wird deutlich, dass in der Monte Carlo Simulation der korrelierte Untergrund im Bereich von $m_{\rm inv}=0.05~{\rm GeV}/c^2$ in der Größenordnung des Signals liegt. In der Standardmethode wurde zuvor gezeigt, dass in diesem $m_{\rm inv}$ -Bereich der korrelierte Untergrund do-

Abbildung 3.9: **Oben:** Template des korrelierten Untergrunds aus einem einzelnen $p_{\rm T}$ -Intervall in pink und aus mehreren $p_{\rm T}$ -Intervallen kombiniert in orange. **Unten:** Verhältnis der beiden Verteilungen in schwarz, sowie Parametrisierung einer Konstante an das Verhältnis in rot.

miniert.

Für die Anpassung der Templates an die Daten werden, relativ zu den Werten der Einträge in den Templates, geringe statistische Unsicherheiten der beiden Templates benötigt. Um die Unsicherheit zu verkleinern wird in dieser Arbeit der korrelierte Untergrund aus einem größeren $p_{\rm T}$ -Intervallen verwendet, als die in dieser Analyse gewählten $p_{\rm T}$ -Intervalle. Dieses Template wird im folgenden als kombiniertes Template des korrelierten Untergrunds bezeichnet, da das vergrößerte $p_{\rm T}$ -Intervall mehrere zuvor gewählten $p_{\rm T}$ -Intervalle kombiniert. Dabei wird angenommen, dass sich nicht die Form, sondern nur die Anzahl der Einträge in den $p_{\rm T}$ -Intervallen unterscheidet. Für das kombinierte Template des korrelierten Untergrunds wird $p_{\rm T} \geq 1.8~{\rm GeV}/c$ bis $p_{\rm T} < 3.2~{\rm GeV}/c$ benutzt, da in diesem Bereich die statistische Unsicherheit am geringsten ist. Um diese Methode zur Bestimmung des Template des korrelierten Untergrunds anwenden zu können, wird die Annahme getroffen, dass sich die Form des Template des korrelierten Untergrunds nicht ändert. Lediglich die Anzahl der Einträge in den Templates des korrelierten Untergrunds variiert.

Abbildung 3.9 (oben) zeigt in orange das kombiniertes Template des korrelierten Untergrunds und in pink das Template des korrelierten Untergrunds für das $p_{\rm T}$ -Intervall $(3,2-3,4)({\rm GeV}/c)$. Um zu zeigen, dass die Annahme ihre Richtigkeit hat wird in Abbildung 3.9 (unten) das Verhältnis aus einzelnen Templates des korrelierten Untergrunds zu dem Kombinierten dargestellt. Die rote Linie im unteren Teil der Abbildung basiert auf einer konstanten Parametrisierung des Verhältnisses. Die getroffene Annahme wird bestätigt, da die konstante Parametrisierung und das Verhältnis gut miteinander übereinstimmen. Die große Unsicherheit im Verhältnis um $m_{\rm inv}=0,225~{\rm GeV}/c^2$ entsteht, da beide Templates an dieser Stelle eine Anzahl an Einträgen im Bereich nahe um die Null besitzen. Teilt man zwei kleine Zahlen durch einander, so ändert sich der Quotientenwert stark, wenn man nur eine der beiden kleinen Zahlen leicht ändert. Die Unsicherheit der Einträge der Templates repräsentieren eine mögliche Variation der Einträge. Diese Unsicherheit im Falle des einzelnen Templates des korrelierten Untergrunds besitzt einen großen absoluten Wert verglichen mit den Werten der Einträge um $m_{\rm inv}=0,225~{\rm GeV}/c^2$. Dadurch wird auch die Unsicherheit auf den Quotientenwert deutlich größer, als in den anderen $m_{\rm inv}$ Bereichen.

In Abschnitt 3.2 wurde bereits angesprochen, dass die Anforderung an den Offnungswinkel von $p_{\rm T}$ abhängt. Um das kombinierte Template des korrelieren Untergrunds daran anzupassen wird eine für diesen Zweck angepasste Monte Carlo Simulation betrachtet. In der Simulation werden π^0 mit zufälliger Energie simuliert, die in zwei Photonen zerfallen. Die Photonen müssen dann auf einen Raumwinkel auftreten der der Abdeckung des EMCals entspricht, um als detektiert zu gelten. Die Photonen werden hierbei nicht durch Cluster repräsentiert. Dadurch wird verhindert, dass mehrere Teilchen zu einem Cluster zusammengefasst werden können. Die Photonen werden paarweise kombiniert, wie bei der Clusterkombination. Dabei wird einmal die Anforderung an den Offnungswinkel gestellt wie sie in der Analyse vorliegt und einmal wird keine Anforderung an den Öffnungswinkel gestellt. In beiden Fällen werden so viele π^0 erzeugt, dass am Ende die gleiche Anzahl an Photonenpaaren kombiniert wurde. Daraus entstehen zwei Verteilungen, die die Anzahl kombinierter Photonenpaare als Funktion von m_{inv} und p_{T} darstellen, einmal für den Fall, dass es keine Anforderung an den Öffnungswinkel gibt und einmal mit der Anforderung an den Öffnungswinkel. Da beide Teilsimulationen die gleiche Anzahl an kombinierten Photonenpaaren haben, kann aus dem Verhältnis der Verteilung mit Anforderung an den Öffnungswinkel zur Verteilung ohne Anforderung an den Öffnungswinkel, bestimmt werden, wie wahrscheinlich es ist einen Photonenkombination bei einem bestimmen $m_{\rm inv}$ und $p_{\rm T}$ zu messen. Mit Hilfe dieser Wahrscheinlichkeitsverteilung werden die Templates des korrelierten Untergrunds, die das kombinierte Template des korrelierten Untergrunds bilden, an die unterschiedlichen $p_{\rm T}$ -Intervalle skaliert. Dadurch konnten größere Abweichungen für kleinere invariante Massen vermieden werden.

In Abschnitt 4.2 wird für die Bestimmung der systematischen Unsicherheit die Wahl des Templates des korrelierten Untergrunds variiert.

Zum einen werden die Templates des korrelierten Untergrunds aus dem jeweiligen $p_{\rm T}$ -Intervall verwendet, aus dem auch die Verteilung der invarianten Masse und das Template des Signals kommen. Wie bereits erwähnt wird die statistische Unsicherheit, relativ gesehen zu den Werten der Templates, groß. Tabelle A.1 im Anhang A zeigt die Integrale sowie die Unsicherheit der verschiedenen $p_{\rm T}$ -Intervalle. Die statistischen Unsicherheiten sind für $6,0 \le p_{\rm T}/$ GeV/c < 8,0 groß genug, sodass die Werte des Template des korrelierten Untergrunds mit Null kompatibel sind. Das hat zur Folge, dass je stärker das Template des korrelierten Untergrunds skaliert wird, desto größer werden die statistischen Unsicherheiten. Effektiv wird nur die statistische Unsicherheit erhöht, was χ^2 verkleinert. Dadurch wird die Anpassung über χ^2 -Minimierung verfälscht. Die Berechnung von χ^2 wird im nächsten Abschnitt genauer erläutert.

Für $p_T > 8,0$ GeV/c liegen die Integrale im negativen Bereich, auch innerhalb der Unsicherheit. Da ein negativer korrelierter Untergrund physikalisch nicht sinnvoll ist, werden die Templates des korrelierten Untergrunds in diesem p_T -Bereich mit Null skaliert.

Zum anderen wird die Kombination variiert, sodass das Template des korrelierten Untergrunds nicht aus einem festen vergrößerten p_T -Intervall stammt. Stattdessen wird das p_T -Intervall eines einzelnen Templates des korrelierten Untergrunds ausgeweitet, bis das Intervall mindestens 4 GeV/c umfasst. Da also die nächsten Nachbarintervalle zusammengefasst werden, wird diese Methode zur Bestimmung der Template des korrelierten Untergrunds als nächste Nachbar Methode bezeichnet. Im Gegensatz zur Methode mit dem kombinierten Template wird in deiser Methode eine etwaige Änderung der Form des korrelierten Untergrunds berücksichtigt. Die Änderung des korrelierten Untergrunds darf dabei allerdings nur kontinuierlich in p_T stattfinden. Durch das verbreitern aller p_T -Intervalle überlappen sich die p-Bereiche aus denen die unterschiedlichen Templates des korrelierten Untergrunds stammen. Die dadurch entstehende Korrelation in den statistischen Unsicherheiten der verschiedenen kombinierten Templates des korrelierten Untergrunds kann dabei nur grob abgeschätzt werden.

Aus den genannten negativ Gründen, sowie der Bestätigung der Annahme, dass die Form des

korrelierten Untergrund nicht von $p_{\rm T}$ abhängt, werden beide Methoden für die Bestimmung der systematischen Unsicherheiten benutzt und nicht als Standard.

Im Folgenden Abschnitt werden die Templates des Signals und des korrelierten Untergrunds so parametrisiert, dass sie die Daten nach Abschätzung des unkorrelierten Untergrunds bestmöglich beschreiben.

3.5.3 Parametriesierungsmethode

Die Parametrisierung der Templates des Signals und des korrelierten Untergrunds erfolgt durch die χ^2 -Minimierung. χ^2 gibt dabei ein Maß an, wie gut eine Verteilung an gegebene Daten passt. Je kleiner χ^2 ist, umso besser beschreibt die Verteilung die Daten. Als freie Parameter für die Parametrisierung werden zwei Skalierungsfaktoren benutzt, einmal ein Skalierungsfaktor für das Template des Signals (SF_{Signal}) und einmal ein Skalierungsfaktor für das Template des korrelierten Untergrunds (SF_{korr. Untergrund}). Für χ^2 gilt dann:

$$\chi^{2} = \sum_{i} \left(\frac{\text{SF}_{\text{Signal}} \cdot x_{i} + \text{SF}_{\text{korr. Untergrund}} \cdot y_{i} - z_{i}}{\sqrt{\left(\text{SF}_{\text{Signal}} \cdot \Delta x_{i}\right)^{2} + \left(\text{SF}_{\text{korr. Untergrund}} \cdot \Delta y_{i}\right)^{2} + \left(\Delta z\right)^{2}}} \right)^{2}$$
(3.2)

Hierbei steht x für das Template des Signals, y für das Template des korrelierten Untergrunds und z für die Verteilung der invarianten Masse nach Abzug der unkorrelierten Untergrunds. Letzteres stammt dabei wieder aus den gemessenen Daten und nicht wie im Abschnitt davor aus einer Simulation. Der Index i, über den summiert wird, läuft über die Intervalle in der invarianten Masse innerhalb des Parametrisierungsbereiches. Die untere Grenze des Parametrisierungsbereiches wird so gewählt, dass sie außerhalb des Bereiches liegt, wo die Anforderung an den Öffnungswinkel Kombinationsmöglichkeiten ausschließt. Um diese Werte zu bestimmen wird das Ergebnis der vereinfachten Monte Carlo Simulation benutzt. Dieses gibt an, ab welchem $m_{\rm inv}$ die Wahrscheinlichkeit Clusterpaare mit und ohne Anforderung an den Öffnungswinkel zu messen, gleich ist in Abhängigkeit von $p_{\rm T}$.

Abbildung 3.10 zeigt die Verteilung von χ^2 für unterschiedliche Kombinationen der beiden Skalierungsfaktoren im p_T -Intervall (3,2-3,4)(GeV/c). χ^2_{\min} liegt bei dem schwarzen Kreuz in der Mitte des Bildes. Die weiße Kurve, die das Minimum umgibt, gibt die Unsicherheit bezüglich der beiden Skalierungsfaktoren an. Die Werte auf der weißen Kurve liegen werden berechnet durch $(\chi^2_{\min} + 1)$

Abbildung 3.10: χ^2 in Abhängigkeit der Skalierungsfaktoren für das Template des Signals und das Template des korrelierten Untergrunds in einem $p_{\rm T}$ -Intervall von $(3,2-3,4)({\rm GeV}/c)$. Das schwarze Kreuz in der Mitte liegt auf $\chi^2_{\rm min}$, während die weiße Kurve um das Minimum die Unsicherheit auf $\chi^2_{\rm min}$ darstellt.

$[P^{+}92].$

Um die Stabilität der Methode zu prüfen wird $\frac{\chi^2_{\min}}{ndf}$ in Abhängigkeit von p_T betrachtet. Der Nenner ndf steht für die Anzahl der Freiheitsgrade (englisch numbers of degrees of freedom). Die Anzahl an Freiheitsgraden setzt sich dabei aus zwei Teilen zusammen. Zum einen gilt jeder Datenpunkt in der Verteilung der invarianten Masse, der weder in Daten, noch in einem der Templates den Wert 0 besitzt und sich innerhalb des Parametrisierungsbereiches befindet, als ein Freiheitsgrad. Zum anderen wird für jeden freien Parameter die Anzahl an Freiheitsgraden um eins reduziert. Die Anforderungen an den Öffnungswinkel reduzieren zu höherem p_T hin die Anzahl an Freiheitsgraden zunehmend, weshalb die Normierung von χ^2_{\min} auf die Anzahl an Freiheitsgraden für einen p_T -differenzierten Vergleich notwendig ist. Außerdem gibt der Wert von $\frac{\chi^2_{\min}}{ndf}$ einen allgemeinen Hinweis auf die Güte der Parametrisierung. Für $\frac{\chi^2_{\min}}{ndf} = 1$ gilt, dass die Parametrisierung der Templates und die Verteilung der Daten perfekt innerhalb der Unsicherheiten übereinstimmen. Je größer der Wert von $\frac{\chi^2_{\min}}{ndf}$, desto weniger gut beschreibt das Template die Verteilung der Daten. Hingegen bei

Abbildung 3.11: Ergebnis der χ^2 -Minimierung: $\frac{\chi^2_{\min}}{ndf}$ in Abhängigkeit von $p_{\rm T}$. Für $2,2 \leq p_{\rm T}/~({\rm GeV}/c) < 10,0$ liegt der Wert zwischen 0,6 und 1,6. Außerhalb dieses $p_{\rm T}$ -Bereichs weicht $\frac{\chi^2_{\min}}{ndf}$ nach oben ab, bis zu 4,5.

Werten $\frac{\chi^2_{\min}}{ndf}$ kleiner 1 gilt, dass die Unsicherheiten in der Verteilung der Daten oder den Templates zu groß sind, für eine sinnvolle Parametrisierung.

Abbildung 3.11 zeigt $\frac{\chi^2_{\min}}{ndf}$ in Abhängigkeit von $p_{\rm T}$. Anfänglich liegt der Wert von $\frac{\chi^2_{\min}}{ndf}$ recht hoch bei fast 4,5, bis er bei $p_{\rm T} > 2,2~{\rm GeV}/c$ schnell sinkt. Nach dem Absinken liegt $\frac{\chi^2_{\min}}{ndf}$ um 1,25 herum bis $p_{\rm T} = 7,5~{\rm GeV}/c$. Ab dort liegt der Wert für $\frac{\chi^2_{\min}}{ndf}$ um 1 herum, nur für das letzte gezeigte $p_{\rm T}$ -Intervall steigt $\frac{\chi^2_{\min}}{ndf}$ auf einen Wert von 2,5. Insgesamt beschreiben die Templates die Daten also gut.

Die Skalierungsfaktoren aus die aus der χ^2 -Minimierung folgen werden in Abbildung 3.12 in Abhängigkeit von $p_{\rm T}$ gezeigt. Für SF_{korr. Untergrund} zeigt sich ein Anstieg bis es sein Maximum bei $1.8 \le p_{\rm T}/({\rm ~GeV}/c) < 2.0$ erreicht. Vom Maximum aus fällt SF_{korr. Untergrund} ab, bis runter zur Null. Da für alle $p_{\rm T}$ -Intervall das gleiche Template des korrelierten Untergrunds verwendet wird, kann aus dem Verlauf von SF_{korr. Untergrund} direkt auf die Menge an korrelierten Untergrund geschlossen werden. So wird für große $p_{\rm T}$ kaum bis gar kein korrelierter Untergrund erwartet.

Die Templates des Signals sind jedoch für jeden p_T -Intervall unterschiedlich. Das annähernd konstante Verhalten von SF_{Signal} zeigt entsprechend, dass die Produktionsrate von π^0 in der Simulation gleichmäßig gut die Produktionsrate von π^0 im Experiment beschreibt.

Abbildung 3.12: Skalierungsfaktoren der Templates des korrelierten Untergrunds und des Signals in Abhängigkeit von $p_{\rm T}$.

Abbildung 3.13: Signal mit unkorreliertem Untergrund zusammen mit Parametrisierung der Templates des korrelierten Untergrund und des Signals.

3.5.4 Abzug des korrelierten Untergrunds und Integration des Signals

Das Ergebnis der Parametrisierung der Templates für das p_T -Intervall (3,2-3,4)(GeV/c) wird in Abbildung 3.13 dargestellt. Die Parametrisierung der beiden Templates stimmt innerhalb der Unsicherheiten gut mit den Daten überein, wie nach Abbildung 3.11 zu erwarten war.

Um die Anzahl produzierter π^0 nun zu bestimmen, wird das skalierte Template des korrelierten Untergrunds von dem Signal ohne kombinatorischen Untergrund abgezogen. Anschließend wird in einem bestimmten Zählbereich über die Werte des Signals summiert. Dies wird für jedes p_T -Intervall

Abbildung 3.14: Anzahl rekonstruierter π^0 in Abhängigkeit von p_T .

durchgeführt.

Der Zählbereich hängt dabei von $p_{\rm T}$ ab, da er so gewählt wurde, dass die untere Grenze immer groß genug ist, um nicht von den Anforderungen an den Öffnungswinkel betroffen zu sein. Die obere Grenze liegt fest bei $p_{\rm T}=0.25~{\rm GeV}/c$. In Abbildung 3.13 wird er Zählbereich durch eine blaue Linie markiert.

Das so erhaltene rohe Spektrum wird zusätzlich noch auf die Anzahl an events $N_{\rm evt}$, den Pseudorapiditätsbereich η , den Transversalimpuls $p_{\rm T}$, die Wahrscheinlichkeit, dass ein π^0 in zwei Photonen zerfällt und 2π normiert. Letzteres ist reine Konvention, während die anderen Normierungen einen Vergleich zwischen unterschiedlichen Analysen ermöglichen. Abbildung 3.14 zeigt das normierte rohe Spektrum. Das Spektrum steigt zunächst leicht an, bis es bei $1.8 \le p_{\rm T}/({\rm ~GeV}/c) < 2.0$ sein Maximum erreicht. Danach sinkt das Spektrum kontinuierlich.

Für eine Aussage über die Produktionsrate von π^0 sowie einen allgemeinen Vergleich wird allerdings noch die Korrektur auf die Detektorakzeptanz sowie die Rekonstruktionseffizienz benötigt.

Kapitel 4

Korrigierter Yield

4.1 Akzeptanz und Effizienz

Die Korrekturen die auf das rohe Spektrum angewandt werden basieren auf der Monte Carlo Simulation, aus der auch die Templates für diese Analyse stammen.

Die Detektorakzeptanz spiegelt dabei die räumliche Abdeckung des EMCals wider. Sie berechnet sich aus dem Verhältnis der *Clusterpaare*, die auf das EMCal treffen, zu den produzierten *Clusterpaare*.

Die Effizienz berechnet sich aus der Division der *Clusterpaare* aus dem Template des Signals durch die Anzahl der akzeptierten *Clusterpaaren*. Für die Effizienz wird der $m_{\rm inv}$ Bereich zum Zählen benutzt, der auch für die Bestimmung des rohen Spektrums benutzt wurde.

Durch das Korrigieren des rohen Spektrums mit der Detektorakzeptanz und der Effizienz, wird die Anzahl der detektierten und extrahierten π^0 auf die Anzahl der produzierten π^0 korrigiert. Abbildung 4.1 zeigt die beiden Korrekturgrößen Detektorakzeptanz und Effizienz.

Die Detektorakzeptanz wird mit steigendem p_T größer. Zerfällt ein π^0 in zwei Photonen, so fliegen die Photonen im System des π^0 entgegengesetzt zu einander weg, $\theta_{\gamma\gamma}$ beträgt in diesem System 180°. Abhängig vom p_T den ein π^0 im Laborsystem hat verringert sich $\theta_{\gamma\gamma}$. Je größer p_T umso kleiner $\theta_{\gamma\gamma}$ im Mittel. Deshalb treffen beide Photonen aus einem π^0 -Zerfall bei niedrigem p_T seltener auf das EMCal. Aus diesem Grund steigt die Detektorakzeptanz leicht an.

Durch die Anforderungen an die Cluster werden unter anderem auch Cluster ausgeschlossen, deren zugrunde liegende Teilchen aus dem Zerfall eines π^0 stammen, aber beispielsweise zu wenig Energie besitzen. Gerade asymmetrische Zerfälle, bei denen der Anteil der zur Verfügung stehenden Energie

Abbildung 4.1: Detektorakzeptanz und Effizienz in Abhängigkeit von $p_{\rm T}$.

Abbildung 4.2: Korrigiertes p_T -Spektrum mit statistischer Unsicherheit.

ungleichmäßig auf die Zerfallsprodukte aufgeteilt wird, werden durch die Energieanforderung an die Cluster ausgeschlossen. Deshalb steigt die Effizienz bis $p_{\rm T}=8~{\rm GeV}/c$ an und saturiert dann. Im Saturationsbereich werden immer mehr Cluster zusammengefasst, da sie zu nah aneinander liegen. Dadurch alleine würde die Effizienz wieder sinken, jedoch liegt der vorher genannte Effekt in diesem Bereich auch vor, wodurch die Saturation entsteht.

Abbildung 4.2 zeigt das korrigierte p_T -Spektrum mit statistischer Unsicherheit. Ausgehend von dem korrigierten p_T -Spektrum wird im folgenden Abschnitt die systematische Unsicherheit für dieses bestimmt.

Abbildung 4.3: Relative systematische Unsicherheit durch die Variation des Zählbereiches in Abhängigkeit von $p_{\rm T}$.

4.2 Systematische Unsicherheit

Für das korrigierte p_T -Spektrum wird zuletzt noch die systematische Unsicherheit bestimmt. Dabei wird sich in dieser Arbeit rein auf die systematische Unsicherheit, die durch Variation in der Peakextraktion kommt, fokussiert. Das korrigierte p_T -Spektrum, das mit der Variation extrahiert wurde, wird mit dem korrigierten p_T -Spektrum ohne Variationen verglichen. Die Variationen die in dieser Arbeit verwendet wurden lassen sich in vier Abschnitte unterteilen.

Bei der Variation des Zählbereiches und der Variation des Parametrisierungsbereiches, wird der Zähl- beziehungsweise Parametrisierungsbereich einmal ausgeweitet und ein anderes mal verkleinert. Bei der Variation wird die untere Grenze jeweils um $0,01~{\rm GeV}/c^2$ verschoben, während die obere Grenze um $0,025~{\rm GeV}/c^2$ verändert wird, wie Tabelle 4.1 zeigt. Die Änderung der unteren Grenze wurde so gewählt, dass das kombinierte Template des korrelierten Untergrunds die einzelnen Templates trotz der Anforderung an den Öffnungswinkel gut beschreibt. Gleichzeitig wird sicher gestellt, dass der Teil des Signals, der aus Konversionselektronen oder Konversionspositronen besteht, möglichst vollständig im Zähl- beziehungsweise Parametrisierungsbereich liegt.

	Standard	Vergrößert	Verkleinert
$m_{\mathrm{inv}} \; (\mathrm{GeV}/c)$	0,06	0,05	0,07
	0, 25	0,275	0,225

Tabelle 4.1: Obere und untere Grenze des Parametrisierungs- und Zählbereichs

Abbildung 4.4: Relative systematische Unsicherheit durch die Variation des Paramtrisierungsbereiches in Abhängigkeit von $p_{\rm T}$.

Abbildung 4.3 zeigt die relative systematische Abweichung für die Variation des Zählbereiches. Beide Variationen weisen eine lineare Abweichung auf. Die Abweichungen für breite Grenzen liegt ab $p_{\rm T} > 5,8~{\rm GeV}/c$ im positiven Bereich, während die Abweichungen für schmale Grenzen dort im negativen liegen.

Abbildung 4.4 zeigt die relative systematische Unsicherheit für die Variation des Parametrisierungsbereiches. Die Abweichungen befinden sich nahe der Null für schmale und breite Grenzen. Eine Ausnahme bildet der $p_{\rm T}$ -Bereiches von 5,8 GeV/c bis 7,5 GeV/c. Dort liegen die Werte für breite Grenzen deutlich im positiven, die Werte für kleine Grenzen liegen hingegen im negativen Bereich.

Die Variation der Templates des korrelierten Untergrunds basiert auf den in Abschnitt 3.5.2 vorgestellten Methoden zur Bestimmung der Templates des korrelierten Untergrunds. Für kleine $p_{\rm T}$ von 1,4 GeV/c bis 4,4 GeV/c zeigen beide Methoden eine geringe Abweichung. Der $p_{\rm T}$ -Bereich von 4,4 GeV/c bis 7,5 GeV/c hingegen weist starke Abweichungen für beide Methoden auf. Die Methode mit einzelnen Templates des korrelierten Untergrunds unterschätzt in diesem Bereich die Anzahl produzierter π^0 im Vergleich zur Methode mit kombiniertem Template des korrelierten Untergrunds stark. Die Ursache hierfür liegt vor allem in der großen statischen Unsicherheit der einzelnen Templates des korrelierten Untergrunds. Durch diese Unsicherheit wird der korrelierte Untergrund überschätzt. Bei der Methode mit den nächsten Nachbarn wird der korrelierten Untergrund hingegen unterschätzt, weshalb dort die Abweichung im positiven Bereich liegt.

Abbildung 4.5: Relative systematische Abweichung durch die Variation der Templates des korrelierten Untergrunds in Abhängigkeit von $p_{\rm T}$.

Abbildung 4.6: Relative systematische Abweichung durch die Variation von $\Delta m_{\rm inv}$ in Abhängigkeit von $p_{\rm T}$.

Die Breite der $m_{\rm inv}$ -Intervalle $\Delta m_{\rm inv}$ wird in der **Variation von \Delta m_{\rm inv}** verändert. Tabelle 4.2 zeigt $\Delta m_{\rm inv}$ wie es für diese Analyse gewählt wurde, sowie für die Variationen. Dabei hängt $\Delta m_{\rm inv}$ zusätzlich von $p_{\rm T}$ ab.

Beide Variationen zeigen kaum Abweichungen, lediglich im p_T -Bereich von 6,0 GeV/c bis 7,5 GeV/c bildet sich eine deutliche Abweichung für vergrößerte $\Delta m_{\rm inv}$ ab.

Bei der Variation des Parametrisierungsbereiches des unkorrelierten Untergrunds wird der Bereich verändert, indem die *mixed Event* Verteilung skaliert wird. Abbildung 4.7 zeigt die zu-

Abbildung 4.7: Relative systematische Abweichung durch die Variation des Parametrisierungsbereiches des unkorrelierten Untergrunds in Abhängigkeit von $p_{\rm T}$.

gehörigen Abweichungen. Bis $p_T = 7,5 \text{ GeV}/c$ weisen beide Abweichungen einen linearen Verlauf um Null rum auf. Ab $p_T = 7,5 \text{ GeV}/c$ weicht die Variation, bei der die obere Grenze nach unten verschoben wurde, ins negative ab. Die Variation, bei der die untere Grenze verändert wurde, zeigt eine positive Abweichung, wobei diese erst ab $p_T = 8,5 \text{ GeV}/c$ auftritt.

Zur Bestimmung der systematischen Unsicherheit $\sigma_{i,j}$ einer Variationsart j in einem p_T -Intervall i wird das quadratische Mittel der relativen Abweichungen der n unterschiedlichen Variationen k verwendet. Es gilt:

$$\sigma_{i,j} = \sqrt{\frac{1}{n} \sum_{k=1}^{n} (\Delta y_{i,j,k})^2}$$
 (4.1)

	$\Delta m_{\rm inv} \left({\rm GeV}/c^2 \right)$	p_{T} -Intervall (GeV/c)		
Standard	0,004	1,4-7,5		
	0,008	7.5 - 10		
	0,010	10 - 12		
Vergrößert	0,005	1,4-7,5		
	0,010	7.5 - 10		
	0,020	10 - 12		
Verkleinert	0,002	1,4-7,5		
	0,005	7,5 - 10		
	0,008	10 - 12		

Tabelle 4.2: Die verschiedenen Breiten der m_{inv} -Intervalle Δm_{inv} in Abhängigkeit von p_{T} .

Abbildung 4.8: Gesamte relative systematische Unsicherheit des korrigierten π^0 -Spektrums.

Die gesamte Systematische Unsicherheit σ_i in einem p_T -Intervall i ergibt sich durch quadratische Addition der systematischen Unsicherheiten der fünf Variationsarten $\sigma_{i,j}$.

$$\sigma_i = \sqrt{\sum_{j=1}^n (\sigma_{i,j})^2} \tag{4.2}$$

Abbildung 4.8 zeigt die gesamte relative systematische Unsicherheit in Abhängigkeit von $p_{\rm T}$. Für kleine $p_{\rm T}$ im Bereich von 1,4 GeV/c bis 4,5 GeV/c liegt die systematischen Unsicherheit zwischen dem Minimalwert von etwa 0,8% und 1,6%. Danach steigt die systematische Unsicherheit mit größerem $p_{\rm T}$ an. Besonders der $p_{\rm T}$ -Bereich von 4,4 GeV/c bis 7,5 GeV/c zeigt hierbei starke Schwankungen auf, die hauptsächlich durch die Variation der Templates des korrelierten Untergrunds, sowie der Änderung des Parametrisierungsbereiches kommen. In diesem Bereich liegt auch das Maximum mit einer systematischen Unsicherheit von etwa 6%. Die systematische Unsicherheit ab $p_{\rm T}=7,5$ GeV/c wird von der Variation des Parametrisierungsbereiches des unkorrelierten Untergrunds dominiert.

Abbildung 4.9 zeigt das korrigierte $p_{\rm T}$ -Spektrum mit statistischer und systematischer Unsicherheit. Die statistische Unsicherheit wird durch die vertikalen Linien, die systematische Unsicherheit durch die farbigen Boxen dargestellt.

Das korrigierte p_T -Spektrum wird im folgenden Abschnitt mit dem Ergebnis der Standardmethode verglichen.

Abbildung 4.9: Korrigiertes p_{T} -Spektrum mit systematischer und statistischer Unsicherheit.

4.3 Vergleich mit Standardmethode

Abbildung 4.10 zeigt das korrigierten p_T -Spektrum aus der Template Methode zusammen mit dem korrigierte p_T -Spektrum aus der Standardmethode. Außerdem zeigt die Abbildung das Verhältnis von ersterem zu letzterem. Das Verhältnis zeigt eine Diskrepanz zwischen den beiden Spektren von durchschnittlich etwa 3% auf. Im Bereich von $3,8 \le p_T/$ (GeV/c) < 5,8 liegt das Verhältnis innerhalb der statistischen Unsicherheiten auf 1. Der größte Unterschied zwischen den Spektren beträgt etwa 10%, wo die statistischen Unsicherheiten der beiden Spektren den Unterschied nicht abdecken. Mit Hilfe der systematischen Unsicherheit neben den statistischen Unsicherheit sollte sich eine gute Übereinstimmung der beiden Spektren ergeben.

Abbildung 4.11 zeigt die statistischen Unsicherheiten der Spektren der beiden Methoden. Der Verlauf der statistischen Unsicherheiten weist eine große Ähnlichkeit auf. Über fast den gesamten $p_{\rm T}$ -Bereich weist die Template Methode eine geringe statistische Unsicherheit auf, als die Standardmethode. Die geringere statistische Unsicherheit bei der Template Methode kommt von dem großen Zählbereich, der mit dieser Methode möglich ist, sowie dem Anteil des Signals, das aus Konversionselektronen und Koversionspositronen besteht. Zuvor wurde bereits gezeigt, dass die Standardmethode diesen Anteil des Signals unterschätzt.

Aufgrund der geringeren statistischen Unsicherheit der Template Methode, sowie der guten Übereinstimmung mit der Standardmethode stellt die Tempalte Methode eine mögliche Alternative zur Standardmethode dar. Dabei kann sie entweder als neuer Standard für die Analyse von π^0

Abbildung 4.10: Korrigierte p_T -Spektren aus der Template Methode sowie aus der Standardmethode. Außerdem das Verhältnis der beiden Spektren.

in pp-Kollisionen benutzt werden, oder als eine Variation für die Bestimmung der systematischen Unsicherheiten.

Abbildung 4.11: Statistische Unsicherheit der korrigierten p_T -Spektren aus der Analysemethode mit Templates, sowie aus der Standardmethode in Abhängigkeit von p_T .

Kapitel 5

Zusammenfassung und Ausblick

In der vorliegenden Arbeit werden Daten von pp-Kollisionen bei $\sqrt{s}=13$ TeV analysiert. Die Daten sind im Jahr 2016 mit dem ALICE-Experiment aufgezeichnet worden. Bei dieser Arbeit handelt es sich um eine Analyse neutraler π^0 aus Messungen des EMCals mit Templates.

Um *Cluster*, denen Photonen zugrunde liegen, von anderen *Clustern* zu unterscheiden, werden verschiedene Anforderungen an die *Cluster* gestellt. Die so selektierten *Clustern* werden anschließend in der *same Event* Methode paarweise miteinander kombiniert und der Transveralimpuls sowie die invariante Masse der *Clusterpaare* berechnet.

Die daraus entstandene Verteilung der invarianten Masse und des Transversalimpulses besteht aus rekonstruierten π^0 und Untergrund. Der Untergrund teilt sich in zwei Komponenten auf, den korrelierten und den unkorrelierten Untergrund. Um den unkorrelierten Untergrund abzuschätzen, werden *Cluster* aus unterschiedlichen Events in der *mixed Event* Methode miteinander kombiniert und skaliert.

Im Rahmen dieser Analyse werden die Verteilungen in 35 p_T -Intervalle aufgeteilt und einzeln betrachtet. Die skalierte Verteilung der invarianten Masse aus der mixed Event Methode wird von der Verteilung der invarianten Masse aus der same Event abgezogen.

Die verbleibende Verteilung wird in dieser Arbeit durch Templates beschrieben. Die Templates werden aus der Information der Monte Carlo Simulation gewonnen. Für jedes p_T -Intervall wird dabei ein eigenes Template des Signals verwendet, während es ein global benutztes Template des korrelierten Untergrunds gibt. Das Template des korrelierten Untergrunds wird mit Hilfe einer speziell für diesen Zweck angepassten Monte Carlo Simulation an die einzelnen p_T -Intervalle angepasst. Diese Anpassung wird benötigt, da die Anforderung an den Öffnungswinkel zwischen zwei Photonen in

einer $p_{\rm T}$ abhängige untere Grenze für $m_{\rm inv}$ resultiert.

Um die Templates an die Daten anzupassen werden diese mittels χ^2 -Minimierung parametrisiert. Das skalierte Template des korrelierten Untergrunds, das aus der Parametrisierung kommt, wird von der Verteilung der invarianten Masse der Daten ohne unkorrelierten Untergrund subtrahiert. Die übrige Verteilung der Daten, das Signal, wird anschließend über einen festen m_{inv} -Bereich integriert und damit die Anzahl rekonstruierter π^0 in Abhängigkeit von p_{T} bestimmt.

Das so extrahierte p_T -Spektrum wird anschließend auf die Detektorakzeptanz und die Rekonstruktionseffizienz korrigiert. Durch Variationen in der Signalextraktion wird anschließend die systematische Unsicherheit im korrigierten p_T -Spektrum bestimmt.

Abschließend wird das korrigierte $p_{\rm T}$ -Spektrum aus der Analyse mit Hilfe von Monte Carlo Templates mit dem korrigierten $p_{\rm T}$ -Spektrum der Analyse mittels von Funktionsparametrisierung verglichen. Die Abweichung der beiden Spektren liegt im Bereich von 3% und das Verhältnis der beiden Spektren ist innerhalb der statistischen Unsicherheit mit eins vereinbar. Zuletzt wird die statistische Unsicherheit der beiden Analysemethoden verglichen. Dabei zeigt sich, dass die Analyse mit Hilfe von Monte Carlo Templates fast in allen $p_{\rm T}$ -Intervallen geringere statistische Unsicherheiten hat als die andere Analysemethode.

Für einen vollständigen Vergleich der beiden Methoden wird noch die systematische Unsicherheit der Analyse mit Funktionsparametrisierung benötigt. Außerdem kann die Analyse mit Tempaltes noch erweitert werden, indem der unkorrelierte Untergrund ebenfalls durch die Verwendung eines Templates zusammen mit dem Template des Signals und dem Templates des korrelierten Untergrunds parametrisiert wird.

Anhang A

$p_{\rm T}~({\rm GeV}/c)$	Integral	Unsicherheit	$p_{\rm T}~({\rm GeV}/c)$	Integral	Unsicherheit
1,4 - 1,6	8183,77	248,36	5,0 - 5,2	375,78	76,18
1,6 - 1,8	12696,80	319,21	5,2 - 5,4	183,20	70,98
1,8 - 2,0	14928,40	$335,\!82$	5,4 - 5,6	273,14	64,85
2,0 - 2,2	13686,40	323,90	5,6 - 5,8	105,55	61,23
2,2 - 2,4	10766,10	300,70	5,8 - 6,0	106,59	56,42
2,4 - 2,6	9047,53	273,67	6,0 - 6,2	34,35	52,23
2,6 - 2,8	6901,65	$246,\!32$	6,2 - 6,4	3,41	49,94
2,8 - 3,0	5429,20	221,03	6,4 - 6,6	8,73	46,40
3,0 - 3,2	4220,52	198,67	6,6 - 6,8	-23,16	43,73
3,2 - 3,4	3253,74	178,66	6,8 - 7,0	-13,32	40,78
3,4 - 3,6	2660,09	160,66	7,0 - 7,5	-47,53	56,97
3,6 - 3,8	1994,75	$144,\!91$	7,5 - 8,0	-35,33	49,50
3,8 - 4,0	1537,27	130,91	8,0 - 8,5	-79,79	42,67
4,0 - 4,2	1411,16	118,39	8,5 - 9,0	-85,09	39,43
4,2 - 4,4	852,25	108,17	9,0 - 9,5	-39,02	35,48
4,4 - 4,6	817,07	99,02	9,5 - 10,0	-32,65	31,98
4,6 - 4,8	590,26	89,73	10,0 - 12,0	-288,32	50,04
4,8 - 5,0	460,15	82,49			

Tabelle A.1: Integral und Unsicherheit der Templates des korrelierten Untergrunds für die verschiedenen p_{T} -Intervalle.

Literaturverzeichnis

- [BHHL78] R Brun, R Hagelberg, M Hansroul, and J C Lassalle. Simulation program for particle physics experiments, GEANT: user guide and reference manual. CERN, Geneva, 1978.
- [Büs18] Henner Büsching. Kerne und teilchen 1 die quarkstruktur der materie. https://elearning.physik.uni-frankfurt.de/goto_FB13-PhysikOnline_file_ 16390_download.html, 2018. Letzer Zugriff am 14.01.2019.
- [Kap00] Joseph I Kapusta. Quark gluon plasma in the early universe. In Phase transitions in the early universe: Theory and observations. Proceedings, NATO ASI, International School of Astrophysics 'Daniel Chalonge', 8th Course dedicated to Andrei D. Sakharov, Erice, Italy, December 6-17, 2000, pages 103-121, 2000.
- [Kar06] Frithjof Karsch. Lattice simulations of the thermodynamics of strongly interacting elementary particles and the exploration of new phases of matter in relativistic heavy ion collisions. J. Phys. Conf. Ser., 46:122–131, 2006.
- [Kön17] Joshua König. Studie zur datenqualität und signalextraktion in der messung von π^0 mesonen mit dem alice-emcal detektor in pb-pb kollisionen bei $\sqrt{s_{NN}}=5,02$ tev, 02
 2017.
- [Mec18] Adrian Mechler. Messung neutraler pionen in pp-kollisionen bei $\sqrt{s_{\rm NN}}=5$ tev mit dem alice-dcal, 10 2018.
- [P⁺92] William Press et al. Numerical Recipes in C: The Art of Scientific Computing. Press Syndicate of the University of Cambridge,, 2 edition, 1992.
- [Rog17] Tim Rogoschinski. Signalextraktion neutraler pionen in p-pb-kollisionen bei $\sqrt{s_{\rm NN}}=5,02$ tev mit dem alice-phos-detektor, 12 2017.

- [Sch19] Kristina Schmitt. Multiplizitätzabhängigkeit der produktion geladener teilchen in proton-proton-kollision bei alice, 01 2019.
- $[T^{+}18]$ M. Tanabashi et al. *Physical Review D*, volume 98 of 3. American Physical Society, 3 edition, 08 2018.
- [Wik18] Wikipedia. Alice experiment. https://en.wikipedia.org/wiki/ALICE_experiment, 12 2018. Letzter Zugriff am 02.01.2019.

Anhang B

Danksagung

Zuallererst möchte ich mich bei Prof. Dr. Henner Büsching bedanken, der mich in seiner Gruppe aufgenommen hat und mir dadurch ermöglicht hat, diese Arbeit schreiben zu können. Er stand jederzeit für Fragen zur Verfügung, sowohl bezüglich physikalischer Natur, als auch bei Fragen bezüglich des Schreibens.

Mein weiterer Dank gilt Fabian Pliquett, der zusammen mit Prof. Dr. Büsching viel Zeit aufgewandt hat, um mir unter anderem die Bedeutung von Präzision und Konsistenz näher zu bringen, dir mir nicht nur für diese Arbeit, sondern auch für mein weiteres Arbeitsleben nützlich sein wird.

Neben Fabian möchte ich mich auch bei meiner Bürokollegin Kristina Schmitt und meinen Bürokollegen Sebastian Scheid, Patrick Reichelt und Janik Ditzel bedanken, die für ein angenehmes Arbeitsklima gesorgt haben, in zweifacher Hinsicht.

Weiterhin möchte ich mich bei meinem Betreuer Joshua König bedanken, der von Anfang an ein offenes Ohr für alle meine Fragen hatte und mir stets Anregungen gegeben hat, wenn ich mal nicht weiter wusste.

Außerdem hat Joshua zusammen mit Adrian Mechler mir den Einstieg in die Arbeitsgruppe sowie in das Arbeiten mit C++ und root erleichtert, weshalb auch ihm Dank gebührt.

Mein Dank gilt auch Andrea Hornung, die mir, wie Joshua, sowohl bei Fragen bezüglicher der Analyse, als auch bei Fragen rund ums Schreiben geholfen hat.

Weiterhin möchte ich mich bei der gesamten Hochenergiephysik-Gruppe am IKF bedanken, die mich freundlich aufgenommen und mir hilfreiches Feedback für meine Arbeit gegeben hat sowie für einige schöne Momente gesorgt hat.

Ein großer Dank gilt auch meiner Familie, die mir unter der Präsumtion, dass ich mein Studium

erfolgreich abschließen kann, sowohl moralisch als auch finanziell zur Seite steht und durch deren Unterstützung mein Studium überhaupt erst möglich wurde.

Zuletzt möchte ich mich noch bei meinen Freunden Florian Zindel, Katharina Zoch, Jan Röder und Julia Lienert bedanken, die mich während des Studiums und vor allem während des Schreibens dieser Arbeit unterstützt haben.