Алгоритмы анализа данных

Урок 8. Снижение размерности данных

Практическое задание

Задание 1: Можно ли отобрать наиболее значимые признаки с помощью РСА?

Опишем суть метода РСА в терминах преобразования линейного n-мерного пространства признаков, где n-количество признаков содержащихся в матрице признаков X нашей задачи.

Пусть имеется некоторе n-мерное пространство S, в котором определён n-мерный базис, состоящих из n базисных векторов $e_i, i = 1, \ldots, n$.

Для простоты и наглядности будем считать, что базис является ортонормированным, то есть

$$e_i \cdot e_j = \delta_{ij}$$

Здесь δ_{ij} - дельта символ Кронекера

$$\delta_{ij} = \begin{cases} 1, i=j \\ 0, i \neq j \end{cases}$$

Пусть вектор X_k - n-мерный вектор нашего пространства признаков, проекции которого x_i^k на базис e_i и есть **строка нашей матрицы признаков** X, то есть набор значений признаков соответствующих y_k , конкретному k-му значению вектора значений y. В нашем базисе вектор X_k можно записать как

$$X_k = \sum_{i=1}^n x_i^k e_i$$

Зафиксируем, что нашей матрице параметров X, в нашем n-мерном пространстве, соответствует некоторая n-мерная гиперплоскость G. Точками этой гиперплоскости являются точки заданные векторами X_k .

Вращая наш базис e_i в пространстве S, мы можем перейти в новый ортонормированнй базис e_i' . Каждый базисный вектор новой системы координат, может быть выражен как линейная комбинация базисных векторов старой системы координат

$$e_i' = \sum_{j=1}^n a_{ij} e_j$$

и наоборот, каждый базисный вектор старой системы координат, может быть выражен как линейная комбинация базисных векторов новой системы координат

$$e_i = \sum_{j=1}^n a'_{ij} e'_j$$

Матрицы перехода между базисами A и A' связаны между собой ($A'=A^T$).

Каждый n-мерный вектор нашего пространства X_k , в новом базисе вектор X_k можно записать как

$$X_k = \sum_{i=1}^n x'_i^k e'_i$$

где ${x'}_i^k$ - координаты вектора X_k в новой системе координат.

Можно выбрать такой базис, что часть базисных векторов новой системы координат окажутся "ортогональными" нашей n-мерной гиперплоскости параметров G. Пусть количество таких веторов равно m.

Под "ортогональнальностью" мы будем понимать, то что проекция вектора параметров X_k будет равна 0 или близка к нему, то есть $x'{}^k_s \approx 0$ для некоторых m номеров из набора n.

Соответственно, в этом случае, в новом базисе e' мы можем перейти от n-мерного пространства, к подпространству размерности n-m < n, так как

$$X_{k} = \sum_{i=1}^{n-m} x'_{i}^{k} e'_{i} + \sum_{i=m}^{n} x'_{i}^{k} e'_{i} = \sum_{i=1}^{n-m} x'_{i}^{k} e'_{i}$$

где

$$\sum_{i=m}^{n} x'_{i}^{k} e'_{i} = 0$$

То есть сделать именно то, что нам необходимо, понизить размерность до n-m не теряя качества модели.

В этом как я понимаю и заключается смысл метода главных компонент РСА.

Вывод

Как показали наши рассуждения, метод РСА не выявляет наиболее значимые признаки, а позволяет понизить размерность переходом к новому базису и затем переходу к подпрастранству меньшей размерности, без потери качества модели.

B []: