Typované funkcionální genetické programování

Diplomová práce

Tomáš Křen

Cíl

- Navrhnout a implementovat prototyp systému řešící úlohu genetického programování nad typovaným funkcionálním jazykem.
- Simply typed lambda calculus
- Zobecnění standardního GP (Koza, 1992)
- Hlavní důraz na generování jedinců
- Sekundární důraz na křížení

Co je to Genetické Programování

- Prohledávací metaheuristika inspirovaná přirozeným výběrem v přírodě
- Jedinec/řešení je syntaktický strom programu

Co přináší typy

- Standardní GP omezuje symboly stavební množiny tím, že požaduje aby to byly operace, konstanty a proměnné nad jediným typem A
 - tzn. konstanty a proměnné typu A
 - funkce typu $A \rightarrow ... \rightarrow A \rightarrow A$ (neboli $(A \times ... \times A) \rightarrow A$)
- Typované GP toto omezení odstraňuje

Podařilo se

- navrhnout metodu pro generování jedinců parametrizovanou jednoduchou prohledávací strategií.
 - Strategie pro standardní Ramped half-and-half generování
 - Systematická strategie generující jedince systematicky podle velikosti
 - Nová Geometrická strategie vykazující pěkné vlastnosti jako redukce bloatu
- navrhnout několik vylepšení založených na teoretickém pozadí, které se ukázaly mít kladný vliv na výkon systému
 - η-normalizace
 - Reprezentace jedinců jako @-stromy
- navrhnout zobecnění standardního podstromy prohazujícího křížení založené na algoritmu eliminace abstrakcí

Generování jedinců

- Použito rozšíření A* algoritmu.
- Ve stavovém prostoru "nekompletních" lambda termů se hledají kompletní lambda termy.
- A* rozšířen o "prohledávací strategii", která má možnost zahodit některé následníky stavu a zmenší tak prohledávaný prostor.
- Použitá metoda generuje jedince v dlouhé normální formě, čímž brání generování ekvivalentních jedinců ve smyslu β a η redukcí.

Standardní křížení

Křížení typovaných lambda termů

- Prohazují se jen podstromy stejného typu
- Hlavní problém: volné proměnné v prohazovaných podstromech
- Řešení: proměnných se zbavíme pomocí eliminace abstrakcí
 - Převede term na ekvivalentní term neobsahující žádné proměnné ani lambda abstrakce (pomocí kombinátorů S,K,I)

Výsledky

- Tři měřené experimenty (+ jeden konceptuální)
- Použité metriky
 - Pravděpodobnost nalezení korektního řešení
 - Průměrná velikost jedince
 - Počet jedinců, které je potřeba vyhodnotit aby bylo nalezeno korektní řešení s pravděpodobností 99%
 - Doba běhu

Artificial Ant problém

```
\begin{split} \sigma &= AntAction \\ \Gamma &= \{ & l : AntAction, \\ & r : AntAction, \\ & m : AntAction, \\ & ifa : AntAction \rightarrow AntAction \rightarrow AntAction, \\ & p2 : AntAction \rightarrow AntAction \rightarrow AntAction, \\ & p3 : AntAction \rightarrow AntAction \rightarrow AntAction \rightarrow AntAction \} \end{split}
```

Artificial Ant problém

pravděpodobnost nalezení korektního řešení

P(M,i)

Artificial Ant problém

Průměrná velikost jedince

Závěrem

- Experimenty mimo jiné ukázaly
 - žádoucí vlastnosti Geometrické strategie
 - Ve všech sledovaných metrikách.
 - Výhodnost η-normalizace a "@-stromové" reprezentace
 - Srovnatelné (o něco horší) výsledky v třetím experimentu oproti specializovanější metodě typovaného programování (Yu,2001)

Děkuji za pozornost.