

Cortical Correlates of the Ability to Switch Between

Egocentric and Allocentric Frames of Reference: an fNIRS Study

Orti, R.^, Vincent, M.*, Ruotolo, F.^, Bartolo, A.*, Iachini, T.^, Coello, Y.* & Ruggiero, G.^

Université de Lille

^Laboratory of Cognitive Science and Immersive Virtual Reality, CS-IVR, Department of Psychology, University of Campania "L. Vanvitelli", Caserta, Italy *Université de Lille, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, F-59000 Lille, France renato.orti@unicampania.it

1. BACKGROUND

Human beings represent spatial information according to two classes of reference frames: **egocentric** (body-centered) and **allocentric** (object-centered)^[1-3]. Egocentric representations rely more on a Fronto-Parietal network, instead allocentric ones are mainly supported by Medio-Temporal regions^[4-9]. A visuo-spatial translational **process** between reference frames is required to deal with the natural complexity of the environment in which human beings move and act (i.e. switching ability)^[10-12]. Such visuo-spatial switching ability seems to be supported by Postero-Medial structures (Retrosplenial and Posterior Cingulate cortexes), as well as mediated by the Locus Coeruleus-Prefrontal Cortex Noradrenaline system (LCNA-PFC)^[13-14].

3. METHOD

- Participants: N = 23 (13 females), age range 18-35 (M_{age} = 23.78, SD_{age} = 4.61)
- **Stimuli:** triads of 3D geometrical objects
- Procedure and Task: the Ego-Allo Switching Task^[12] was administered requiring participants to memorize triads of objects, then to provide two consecutive switching (from Ego-to-Allo, from Allo-to-Ego), and non-switching (Ego-Ego, Allo-Allo), spatial judgments about relative distances between memorized stimuli.

• Experimental Flow:

2. RESEARCH QUESTION

Despite such visuo-spatial ability is pivotal in our daily life activities, to date it is unclear which cortical regions are mainly involved in switching processes between spatial representations (?).

4. fNIRS DATA ACQUISITION

ΔHbO was recorded by Shimadzu FOIRE-3000 apparatus (sample freq. 4) Hz), by two source-detectors configurations covering (a) Fronto-Parietal and (b) Occipito-Temporal brain regions (designed with fOLD^[15]).

5. DATA ANALYSIS

The following one-tailed paired samples T-Tests were carried out on ΔHbO :

- Ego Allo Vs Ego Ego
- Ego Ego Vs Ego Allo

- Allo Ego Vs Allo Allo
- Allo Allo Vs Allo Ego

6. RESULTS

LEGEND

SFG= Superior Frontal Gyrus; MFG= Middle Frontal Gyrus; PreG= Precentral Gyrus; STG= Superior Temporal Gyrus; MTG= Middle Temporal Gyrus; SupG= Supramarginal Gyrus; **SPL**= Superior Parietal Lobule; **IPL**= Inferior Parietal Lobule; **SOG**= Superior Occipital Gyrus; **MOG**= Middle Occipital Gyrus.

Significant increase in <u>AHbO was found in frontal regions</u> (i.e., Superior and Middle Frontal gyri) and in the Temporo-Parietal Junction (i.e., including Inferior Parietal Lobule, Supramarginal and Middle Temporal gyri), for Switching (Ego-Allo and Allo-Ego), Vs Non-Switching (Ego-Ego, and Allo-Allo), conditions. Furthermore, significant increase in ΔHbO were found in frontal regions only for allocentric Non-Switching (Allo-Allo), Vs Switching (Allo-Ego), conditions.

7. CONCLUSIONS

The visuo-spatial ability to switch between egocentric and allocentric frames of reference seems to be supported by a ventro-dorsal pathway, suggesting an involvement of a "vision for action" process^[16].

REFERENCES

- 1. Paillard, J. (1991). Motor and representational framing of space. *Brain and space*, 163-182.
- 2. McNamara, T. P. (2002, May). How are the locations of objects in the environment represented in memory? In *International conference on spatial cognition* (pp. 174-191). Springer, Berlin, Heidelberg. 3. Postma, A., Koenderink, J. J., Postma, A., & van der Ham, I. (2016). A sense of space. *Neuropsychology of Space*, 1-34.
- 4. Committeri, G., Galati, G., Paradis, A. L., Pizzamiglio, L., Berthoz, A., & LeBihan, D. (2004). Reference frames for spatial cognition: different brain areas are involved in viewer-, object-, and landmark-centered
- judgments about object location. Journal of cognitive neuroscience, 16(9), 1517-1535. 5. Galati, G., Pelle, G., Berthoz, A., & Committeri, G. (2010). Multiple reference frames used by the human brain for spatial perception and memory. Experimental brain research, 206(2), 109-120.

7. Chen, Y., Monaco, S., Byrne, P., Yan, X., Henriques, D. Y., & Crawford, J. D. (2014). Allocentric versus egocentric representation of remembered reach targets in human cortex. *Journal of Neuroscience*, 34(37),

6. Zaehle, T., Jordan, K., Wüstenberg, T., Baudewig, J., Dechent, P., & Mast, F. W. (2007). The neural basis of the egocentric and allocentric spatial frame of reference. Brain research, 1137, 92-103.

Brain Topography, 34(2), 207-220.

non-metric spatial relations. *Neuroscience*, 409, 235-252.

10. Burgess, N. (2006). Spatial memory: how egocentric and allocentric combine. Trends in cognitive sciences, 10(12), 551-557. 11. Harris, M. A., Wiener, J. M., & Wolbers, T. (2012). Aging specifically impairs switching to an allocentric navigational strategy. Frontiers in aging neuroscience, 4, 29. 12. Ruggiero, G., Iavarone, A., & Iachini, T. (2018). Allocentric to egocentric spatial switching: Impairment in aMCI and Alzheimer's Disease patients?. Current Alzheimer Research, 15(3), 229-236.

9. Derbie, A. Y., Chau, B., Lam, B., Fang, Y. H., Ting, K. H., Wong, C. Y., Tao, J., Chen, L. & Chan, C. C. (2021). Cortical hemodynamic response associated with spatial coding: a near-infrared spectroscopy study.

13. Vann, S. D., Aggleton, J. P., & Maguire, E. A. (2009). What does the retrosplenial cortex do?. Nature reviews neuroscience, 10(11), 792-802. 14. Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. *Annu. Rev. Neurosci.*, 28, 403-450.

15. Zimeo Morais, G. A., Balardin, J. B., & Sato, J. R. (2018). fNIRS Optodes' Location Decider (fOLD): a toolbox for probe arrangement guided by brain regions-of-interest. Scientific reports, 8(1), 1-11. 8. Ruotolo, F., Ruggiero, G., Raemaekers, M., Iachini, T., Van der Ham, I. J. M., Fracasso, A., & Postma, A. (2019). Neural correlates of egocentric and allocentric frames of reference combined with metric and 16. Rizzolatti, G., & Matelli, M. (2003). Two different streams form the dorsal visual system: anatomy and functions. Experimental brain research, 153(2), 146-157.