Big Data Mining & Inteligência Artificial

Charles Guimarães Cavalcante – RM 334409

Análise OLSR

Com o dataframe Titanic, fazer *data praparation* e propor um modelo preditivo OLSR utilizando Python.

1) Dicionário de dados:

Variável	Definição	Valores	
Survived	Sobreviveu	0 = Não, 1 = Sim	
Pclass Classe da passagem		1 = 1 ^a classe, 2 = 2 ^a classe, 3 = 3 ^a classe	
Name	Nome		
Sex	Sexo	male = masculino, female = feminino	
Age	Idade em anos	valores de 0,42 a 80	
Siblings/Spouses Aboard	Número de irmãos/cônjuge abordo	valores de 0 a 8	
Parents/Children Aboard	Número de pais/filhos abordo	valores de 0 a 6	
Fare	Valor pago pela passagem	valore de 0 a 512,3292	

2) Bibliotecas utilizadas:

```
import pandas as pd
import numpy as np
import matplotlib as plt
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
```

3) Leitura do arquivo:

```
df = pd.read_csv('titanic.csv')
df.head()
```

Output com a amostra dos dados:

	Survived	Pclass	Name	Sex	Age	Siblings/Spouses Aboard	Parents/Children Aboard	Fare
0	0	3	Mr. Owen Harris Braund	male	22.0	1	0	7.2500
1	1	1	${\it Mrs.\ John\ Bradley\ (Florence\ Briggs\ Thayer)\ Cum}$	female	38.0	1	0	71.2833
2	1	3	Miss. Laina Heikkinen	female	26.0	0	0	7.9250
3	1	1	Mrs. Jacques Heath (Lily May Peel) Futrelle	female	35.0	1	0	53.1000
4	0	3	Mr. William Henry Allen	male	35.0	0	0	8.0500

4) Descrição dos dados:

df.describe()

Output com a descrição dos dados:

	Survived	Pclass	Age	Siblings/Spouses Aboard	Parents/Children Aboard	Fare
count	887.000000	887.000000	887.000000	887.000000	887.000000	887.00000
mean	0.385569	2.305524	29.471443	0.525366	0.383315	32.30542
std	0.487004	0.836662	14.121908	1.104669	0.807466	49.78204
min	0.000000	1.000000	0.420000	0.000000	0.000000	0.00000
25%	0.000000	2.000000	20.250000	0.000000	0.000000	7.92500
50%	0.000000	3.000000	28.000000	0.000000	0.000000	14.45420
75%	1.000000	3.000000	38.000000	1.000000	0.000000	31.13750
max	1.000000	3.000000	80.000000	8.000000	6.000000	512.32920

df.info()

Output com informações sobre os dados:

```
RangeIndex: 887 entries, 0 to 886
Data columns (total 8 columns):
Survived
                          887 non-null int64
Pclass
                          887 non-null int64
Name
                          887 non-null object
                          887 non-null object
Sex
                          887 non-null float64
Siblings/Spouses Aboard 887 non-null int64
Parents/Children Aboard 887 non-null int64
                           887 non-null float64
Fare
dtypes: float64(2), int64(4), object(2)
```

memory usage: 55.6+ KB

O data frame não contém nenhum dado nulo, não será necessário tratamento para ajustar dados nulos.

5) Análise dos dados:

Sobreviventes (Survived):

Variável qualitativa nominal, com valores possíveis (0, 1).

df['Survived'].value_counts()

Output:

```
0 545
1 342
Name: Survived, dtype: int64
```

545 mortos e 342 sobreviventes.

Classe da passagem (Pclass):

Variável qualitativa nominal, com valores possíveis (1, 2, 3).

df['Pclass'].value_counts(sort=False)

Output:

```
1   216
2   184
3   487
Name: Pclass, dtype: int64
```

216 na 1ª classe, 184 na 2ª classe e 487 na 3ª classe.

Análise de sobreviventes:

```
pclass_survived = pd.crosstab(df['Pclass'], df['Survived'])
pclass_survived.apply(lambda x: x/x.sum()*100, axis=1)
pclass_survived.plot(kind='bar', stacked=True, color=['red', 'green'])
```

Survived	0	1
Pclass		
1	37.037037	62.962963
2	52.717391	47.282609
3	75.564682	24.435318

Podemos já constatar que houveram mais sobreviventes na primeira class. Com a terceira classe com maior número de mortos proporcionamente.

Idade (Age):

Variável quantitativa contínua, com valores de 0,42 a 80.

df['Age'].hist()

Output:

Distribuição normal com concentração na faixa entre 18 e 40 anos.

df.boxplot('Age')

Alguns outliers acima dos 60 anos.

Número de irmãos/cônjuge abordo (Siblings/Spouses Aboard):

Variável quantitativa discreta, com valores de 0 a 8.

df['Siblings/Spouses Aboard'].value_counts(sort=False)

Output:

```
0 604
1 209
2 28
3 16
4 18
5 5
8 7
Name: Siblings/Spouses Aboard, dtype: int64
```

A maioria dos passageiros (604) não tem irmãos ou cônjuge a bordo.

Análise de sobreviventes:

```
sibsp_survived = pd.crosstab(df['Siblings/Spouses Aboard'], df['Survived'])
sibsp_survived.apply(lambda x: x/x.sum()*100, axis=1)
```

Survive	d 0	1
Siblings/Spouses Aboar	d	
0	65.231788	34.768212
1	46.411483	53.588517
2	53.571429	46.428571
3	75.000000	25.000000
4	83.333333	16.666667
5	100.000000	0.000000
8	100.000000	0.000000

Não é muito esclarecedor, a maioria sem irmãos ou cônjuge não sobreviveram, assim como quem tem 3 ou mais parentes. Com 1 ou 2 está próximo a 50%.

Número de pais/filhos abordo (Parents/Children Aboard):

Variável quantitativa discreta, com valores de 0 a 6.

df['Parents/Children Aboard'].value_counts(sort=False)

```
0 674

1 118

2 80

3 5

4 4

5 5

6 1
```

Name: Parents/Children Aboard, dtype: int64

A maioria dos passageiros (674) não tem pais ou filhos a bordo.

Análise de sobreviventes:

```
parch_survived = pd.crosstab(df['Parents/Children Aboard'], df['Survived'])
parch_survived.apply(lambda x: x/x.sum()*100, axis=1)
```

Survived	0	1
Parents/Children Aboard		
0	65.430267	34.569733
1	44.915254	55.084746
2	50.000000	50.000000
3	40.000000	60.000000
4	100.000000	0.000000
5	80.000000	20.000000
6	100.000000	0.000000

Também não é muito esclarecedor, a maioria sem pais ou filhos não sobreviveram, assim como quem tem 4 ou mais parentes. Com 1, 2 ou 3 está próximo a 50%.

Família (Siblings/Spouses Aboard + Parents/Children Aboard):

Fiz um estudo criando um novo campo somando os valores de irmãos, cônjuges, pais e filhos.

```
df['Family'] = df['Siblings/Spouses Aboard'] + df['Parents/Children Aboard']
df['Family'].value_counts(sort=False)
0
      533
1
      161
2
      102
3
       29
4
       15
5
       22
6
       12
7
        6
        7
10
Name: Family, dtype: int64
```

A maioria dos passageiros (533) não tem parentes a bordo.

```
family_survived = pd.crosstab(df['Family'], df['Survived'])
family_survived.apply(lambda x: x/x.sum()*100, axis=1)
```

Survived	0	1
Family		
0	69.418386	30.581614
1	44.720497	55.279503
2	42.156863	57.843137
3	27.586207	72.413793
4	80.000000	20.000000
5	86.363636	13.636364
6	66.666667	33.333333
7	100.000000	0.000000
10	100.000000	0.000000

Novamente não ajuda muito, a maioria sem parentes não sobreviveram.

Experimento de transformação em uma variável boleana, 1 para qualquer número de membros.

```
df.loc[df['Family'] > 0, 'Family'] = 1
family_survived = pd.crosstab(df['Family'], df['Survived'])
family_survived.apply(lambda x: x/x.sum()*100, axis=1)
```

Survived	0	1
Family		
0	69.418386	30.581614
1	49.435028	50.564972

Desta maneira ficou mais claro, passageiros sozinhos morreram mais.

Valor pago pela passagem (Fare):

Variável quantitativa contínua, com valores de 0 a 512,3992.

df['Fare'].hist()

Output:

A concentração maior está abaixo dos 50.

df.boxplot('Fare')

6) Regressão:

Preparação:

Substituição da variável "Sex" por 1 e 0.

```
df['Sex Category'] = df['Sex']
df['Sex Category'].replace(['female', 'male'], [0,1], inplace=True)
```

Categorização da variável "Age", o desvio padrão é 14.12, separei em categoria de 16 em 16.

```
df['Age Category'] = pd.cut(df['Age'], bins=[0,16,32,48,64,80], labels=[0,1,2,3,4])
```

Categorização da variável "Fare", separeis pelos quartis, 7.92, 14.45 e 31.13.

```
df['Fare Category'] = pd.cut(df['Fare'],bins=[-np.inf,7.92,14.45,31.13,np.inf],
labels=[0,1,2,3])
```

Separação da base com os dados que serão utilizados.

```
data = df[['Pclass', 'Sex Category', 'Age Category', 'Fare Category', 'Family']]
data.columns = ['Pclass', 'Sex', 'Age', 'Fare', 'Family']
data
```

Data frame final:

	Pclass	Sex	Age	Fare	Family
0	3	1	1	0	1
1	1	0	2	3	1
2	3	0	1	1	0
3	1	0	2	3	1
4	3	1	2	1	0
882	2	1	1	1	0
883	1	0	1	2	0
884	3	0	0	2	1
885	1	1	1	2	0
886	3	1	1	0	0

887 rows x 5 columns

Variável target.

```
target = df['Survived']
target
0
        0
1
       1
2
       1
3
       1
       0
882
       0
883
       1
884
       0
885
886
Name: Survived, Length: 887, dtype: int64
```

Separação da base em treino e teste utilizando o train_test_split:

```
train_data, test_data, train_target, test_target = train_test_split(data, target, te
st_size=0.2)
print(len(train_data))
print(len(test_data))

709 # para a base de treino
178 # para a base de teste
```

Predição:

Utilizei a Regressão Logística pois a variável target é boleana.

```
model = LogisticRegression().fit(train_data, train_target)
predicted = model.predict(test_data)

score = accuracy_score(test_target, predicted)
print('Score: ', score)
```

Score: 0.7584269662921348

Como a base de treino é gerada randomicamente o score sofre variação, executando o mesmo algoritmo mil vez o score na média foi **0.78**.