l'Ingénieur

Le correcteur proportionnel

Définition Le correcteur proportionnel a pour fonction de transfert C(p) = K.

On observe qu'une augmentation du gain proportionnel a pour effet :

- d'améliorer la précision;
- d'augmenter la vivacité;
- d'augmenter le temps de réponse (à partir d'un
- certain seuil);
- de diminuer l'amortissement;
- de diminuer la marge de phase.

Pour un système d'ordre supérieur à 2, l'augmentation du gain provoque une marge de phase négative et donc une instabilité du système.

Méthode

Réglage de la marge de phase :

- En utilisant la BO non corrigée, on cherche ω_{0dB} tel que $\varphi(\omega_{0dB})$ respecte la marge de phase souhaitée.
- En utilisant BO non corrigée, on calcule $G_{dB}(\omega_{0\,\mathrm{dB}})$.
- On cherche K_p tel que $G_{dB}(\omega_{0dB}) = 0$

Réglage de la marge de gain :

- En utilisant la BO non corrigée, on cherche ω_{-180} ° tel que $\varphi(\omega_{-180}^{\circ}) = -180^{\circ}$.
- En utilisant la BO non corrigée, on calcule $G_{\rm dB}(\omega_{-180}^{\circ})$.
- On cherche K_p tel qu'on ait la marge de gain souhaitée.

Les correcteurs à action intégrale

Le correcteur intégral pur

Définition

Un correcteur intégral pur a pour fonction de transfert

$$C(p) = \frac{U(p)}{\varepsilon(p)} = \frac{1}{T_i p}.$$

 $C(p) = \frac{U(p)}{\varepsilon(p)} = \frac{1}{T_i p}.$ Dans le domaine temporel on a l'équation de compor-

tement suivante : $u(t) = \frac{1}{T_i} \int_{0}^{t} \varepsilon(\tau) d\tau$.

Résultat

boucle ouverte.

Avantages

Ce correcteur améliore la précision lors de la sollicitation par un échelon car il ajoute une intégration dans la

1

Le déphasage de -90° sur tout le spectre de pulsation entraîne une réduction de la marge de phase ce qui peut déstabiliser le système.

Inconvénients

Le correcteur proportionnel intégral

Définition

Un correcteur intégral pur a pour fonction de transfert $C(p) = \frac{U(p)}{\varepsilon(p)} = K\left(1 + \frac{1}{T_i p}\right).$ Dans le domaine temporel on a l'équation de compor-

tement suivante : $u(t) = K \left(\varepsilon(t) + \frac{1}{T_i} \int_0^t \varepsilon(\tau) d\tau \right)$.

En développant on obtient $C(p) = K \frac{T_i p + 1}{T_i p}$. Ce correcteur augmente donc la classe de la boucle ouverte et donc la précision. Si K > 1 la pulsation de coupure est augmentée, entraînant ainsi une augmentation de la rapidité du système. Enfin, ce correcteur diminue la phase à basse fréquence. Il faut donc faire en sorte que cette chute de phase n'intervienne pas dans la zone de la pulsation de coupure du système.

Résultat Le correcteur proportionnel intégral :

augmente l'amortissement,

augmente la rapidité,

augmente la précision.

Méthode • En utilisant la BO non corrigée, on cherche $\omega_{0\,\mathrm{dB}}$ tel que $\varphi(\omega_{0\,\mathrm{dB}})$ respecte la marge de phase

- En utilisant la BO non corrigée, on calcule $G_{\rm dB}(\omega_{0\,{\rm dB}})$.
- On cherche *K* tel que $G_{dB}(\omega_{0dB}) = 0$
- La mise en place de l'effet intégral ne doit pas modifier la position de la pulsation de coupure réglée précédemment. Pour cela, il faut donc que $\frac{1}{T}$ << $\omega_{0\mathrm{dB}}$. Usuellement on positionne l'action intégrale une décade avant la pulsation réglée. On a donc $T_i = \frac{1}{2}$

Le correcteur à avance de phase

Définition

Un correcteur à avance de phase a pour fonction de transfert $C(p) = \frac{U(p)}{\varepsilon(p)} = K \frac{1 + a\tau p}{1 + \tau p}$ avec $\alpha > 1$.

Résultat Ce correcteur permet d'ajouter de la phase pour les pulsations comprises entre $\frac{1}{a\tau}$ et $\frac{1}{\tau}$. On montre que $\varphi_{\max} = \arcsin\left(\frac{a-1}{a+1}\right)$ et ce pour une pulsation $\omega_{\text{max}} = \frac{1}{\tau \sqrt{a}}$

On peut prendre $K = \frac{1}{\sqrt{a}}$ pour ne pas modifier la valeur du gain à la pulsation où on désire ajouter de la phase.

Méthode • En utilisant la BO non corrigée on cherche ω_{0dB} tel que le gain est nul.

- On calcule $\varphi\left(\omega_{0\,\mathrm{dB}}\right)$.
 On détermine la phase à ajouter.
- On calcule *a*.
- On calcule τ .
- On calcule K.

Bilan sur l'influence des correcteurs

Marges

Situation sans correction

Si K_p augmente

Correcteur

Proportionnel K_n

Kp
Proportionnel intégral

 $K_p + \frac{K_i}{p}$

À avance de phase
$$K_p \frac{1 + a\tau p}{1 + \tau p} \ a > 1$$

Précision		—	
Rapidité			
Marges	-	Si mal réglé	
Précision		(Cf: classe)	
Rapidité	4		
Marges		—	