- **6.5.41** Suppose $1 and <math>p^{-1} + q^{-1} = 1$. For the case $p = \infty$, assume that the measure is semifinite. If T is a bounded operator on L^p such that $\int (Tf)g = \int f(Tg)$ for all $f, g \in L^p \cap L^q$, then T extends uniquely to a bounded operator on L^r for all r in [p,q] (if p < q) or [q,p] (if q < p).
- Solution First notice that $L^p \cap L^q$ is dense in L^q . Indeed, L^q -integrable simple functions are dense in L^q , and L^q -integrable simple functions are also L^p -integrable, since they are supported on a set with finite measure. We will use Theorem 6.13 from Folland: Let $f, g \in L^p \cap L^q$, where f, g are simple with $||g||_p = 1$. Then by Hölder's inequality,

$$\left| \int (Tf)g \right| \le \int |f(Tg)| \le ||f||_q ||Tg||_p \le ||f||_q ||T|| ||g||_p = ||T|| ||f||_q$$

where ||T|| is the operator norm of T. Because T is bounded, $||T|| < \infty$, so $(Tf)g \in L^1$. By density of $L^p \cap L^q$ in L^q , the inequality holds for all $g \in L^q$, so by the theorem,

$$||Tf||_q \leq ||T|| ||f||_q$$

and again by density of $L^p \cap L^q$ in L^q , this inequality extends to all $f \in L^q$.

Next, we will show that T is linear: let $f_1, f_2, g \in L^p \cap L^q$. Then

$$\int [T(f_1+f_2)]g = \int (f_1+f_2)Tg = \int f_1(Tg) + \int f_2(Tg) = \int (Tf_1)g + \int (Tf_2)g = \int (Tf_1+Tf_2)g.$$

Hence,

$$\int [T(f_1 + f_2) - Tf_1 - Tf_2]g = 0$$

for all $g \in L^q$, by the same density argument as before. Hence, by Theorem 6.13 again,

$$||T(f_1+f_2)-Tf_1-Tf_2||_q=0 \implies T(f_1+f_2)=Tf_1+Tf_2.$$

We may now apply Riesz-Thorin to T. We have that T is a bounded operator on L^p and on L^q , and if p < r < q, there exists $t \in (0,1)$ so that

$$\frac{1}{r} = \frac{1-t}{p} + \frac{t}{q},$$

so T extends uniquely to a bounded operator on L^r .

6.5.45 If $0 < \alpha < n$, define an operator T_{α} on functions on \mathbb{R}^n by

$$T_{\alpha}f(x) = \int |x - y|^{-\alpha} f(y) \, \mathrm{d}y.$$

Then T_{α} is weak type $(1, n\alpha^{-1})$ and strong type (p, r) with respect to Lebesgue measure on \mathbb{R}^n , where $1 and <math>r^{-1} = p^{-1} - (n-\alpha)n^{-1}$.

Solution Notice that by Corollary 2.51,

$$\beta^p m \left(\left\{ |x|^{-\alpha} > \beta \right\} \right) = \beta^p m \left(\left\{ |x| < \beta^{-1/\alpha} \right\} \right) = \beta^p m \left(B(0, \beta^{-1/\alpha}) \right) = C \beta^p \beta^{-n/\alpha}.$$

So, if we choose $p = n\alpha^{-1}$, we see that $|x|^{-\alpha} \in \text{weak } L^{n/\alpha}$, and so by translation invariance of the Lebesgue measure,

$$[K(x,\cdot)]_{n/\alpha} = [K(\cdot,y)]_{n/\alpha} = [|x|^{-\alpha}]_{n/\alpha} \le C < \infty.$$

Thus, by Theorem 6.36, T_{α} is weak type $(1, n\alpha^{-1})$. By the same theorem, T_{α} is strong type (p, r), where 1 and satisfy

$$\frac{1}{p} + \frac{1}{n/\alpha} = \frac{1}{r} + 1.$$

If we pick r so that $r^{-1} = p^{-1} - (n - \alpha)n^{-1}$, we have

$$\frac{1}{p} - \frac{n - \alpha}{n} + 1 = \frac{1}{p} + \frac{\alpha}{n} - 1 + 1 = \frac{1}{p} + \frac{\alpha}{n},$$

so that value of r satisfies the equation. Lastly, from the choice of r,

$$\frac{1}{r} = \frac{1}{p} - \frac{n - \alpha}{n} < \frac{1}{p} \implies 1 < p < r,$$

and because $p < n(n - \alpha)^{-1}$,

$$\frac{1}{r} = \frac{1}{p} - \frac{n - \alpha}{n} > 0 \implies r < \infty$$

so the inequality $1 is satisfied. Hence, <math>T_{\alpha}$ is strong type (p, r) for the given conditions on p and r, as required.

8.1.4 If $f \in L^{\infty}$ and $\|\tau_y f - f\|_{\infty} \to 0$ as $y \to 0$, then f agrees a.e. with a uniformly continuous function.

Solution We follow the hint and consider

$$A_r f(x) = \frac{1}{m(B(r,x))} \int_{B(r,x)} f(y) \, \mathrm{d}y.$$

We claim that the function defined by $\lim_{r\to 0} A_r f(x)$ is well-defined and uniformly continuous.

By Lemma 3.16, we know that $A_r f(x)$ is continuous in both r and x. Indeed, since $f \in L^{\infty}$, for any bounded set $K \subseteq \mathbb{R}^n$, we have

$$\int_K |f(x)| \, \mathrm{d}x \le \int_K \|f\|_\infty \, \mathrm{d}x = \|f\|_\infty m(K) < \infty \implies f \in L^1_{\mathrm{loc}},$$

so we may apply the results of the lemma. Then we have

$$|\tau_{y}A_{r}f(x) - A_{r}f(x)| = \left| \frac{1}{m(B(r, x - y))} \int_{B(r, x - y)} f(z) dz - \frac{1}{m(B(r, x))} \int_{B(r, x)} f(z) dz \right|$$

$$= \left| \frac{1}{m(B(r, x))} \int_{B(r, x)} f(z - y) dz - \frac{1}{m(B(r, x))} \int_{B(r, x)} f(z) dz \right| \qquad (z \mapsto z - y)$$

$$\leq \frac{1}{m(B(r, x))} \int_{B(r, x)} |f(z - y) - f(z)| dz$$

$$\leq \frac{1}{m(B(r, x))} \int_{B(r, x)} ||\tau_{z}f - f||_{\infty} dz$$

$$\leq ||\tau_{y}f - f||_{\infty} \xrightarrow{y \to 0} 0.$$

Hence, $\|\tau_y A_r f - A_r f\|_u \xrightarrow{y \to 0} 0$, so $A_r f$ is uniformly continuous.

We will now show that $A_r f$ is uniformly Cauchy in r: Let r, s > 0. Then

$$|A_{r}f(x) - A_{s}f(x)| = \left| A_{r}f(x) - \frac{1}{m(B(r,x))} \int_{B(r,x)} A_{s}f(y) \, dy + \frac{1}{m(B(r,x))} \int_{B(r,x)} A_{s}f(y) \, dy - A_{s}f(x) \right|$$

$$\leq \left| \frac{1}{m(B(r,x))} \int_{B(r,x)} f(y) - A_{s}f(y) \, dy \right| + \frac{1}{m(B(r,x))} \int_{B(r,x)} |A_{s}f(y) - A_{s}f(x)| \, dy$$

$$\leq \frac{1}{m(B(r,x))m(B(s,x))} \int_{B(r,x)} \int_{B(s,x)} |f(y) - f(z)| \, dz \, dy + \|\tau_{y-x}A_{r}f - A_{r}f\|_{u}$$

$$\leq \|\tau_{y-z}f - f\|_{\infty} + \|\tau_{y-x}A_{r}f - A_{r}f\|_{u},$$

where $z \in B(s,x)$ and $y \in B(r,x)$. Thus, $|y-z| \le r+s$ and $|y-x| \le r$, so as $r,s \to 0$, the above expression must go to 0. Indeed, the first term tends to 0 by assumption, and the second term vanishes because of uniform continuity of $A_r f(x)$ in x. This shows that $A_r f$ is uniformly Cauchy in r.

Hence, $Af(x) := \lim_{r\to 0} A_r f(x)$ exists for all x, and $\{A_r f\}_r$ is a sequence of uniformly continuous functions which converges uniformly to Af, so Af must be uniformly continuous.

By Theorem 3.18 in Folland, Af(x) = f(x) for a.e. $x \in \mathbb{R}^n$, which concludes the proof.