2022-01 Problem 2b - BM algorithm

Shortest LFSR that generates the sequence $s = (1, 0, 1, 2\alpha, 3\alpha, \alpha + 1)$

First create a table of \mathbb{F}_{5^2} , use that $p(x) = x^2 + 4x + 2, p(\alpha) = 0$

Binary	decimal	α
00	0	0
01	1	1
10	α	α
13	$\alpha + 3$	α^2
43	$4\alpha + 4$	α^3
22	$2\alpha + 2$	α^4
41	$4\alpha + 1$	α^5
02	2	α^6
20	2α	α^7
21	$2\alpha + 1$	α^8
31	$3\alpha + 1$	α^9
44	$4\alpha + 4$	α^{10}
32	$3\alpha + 2$	α^{11}
04	4	α^{12}
40	4α	α^{13}
42	$4\alpha + 2$	α^{14}
12	$1+2\alpha$	α^{15}
33	$3\alpha + 3$	α^{16}
14	$1\alpha + 4$	α^{17}
03	3	α^{18}
30	3α	α^{19}
34	$3\alpha + 4$	α^{20}
24	$2\alpha + 4$	α^{21}
11	$1\alpha + 1$	α^{22}
23	$2\alpha + 3$	α^{23}

Use this table to convert s into powers of α s = (1,0,1,2\alpha,3\alpha,\alpha+1) \leftrightarrow s = (1,0,1,\alpha^7,\alpha^{19},\alpha^{22})

Initialize the B-M algorithm, with $C(D)=1, L=0, C_0(D)=1, d_0=1, e=1, N=0$

s_N	d	$C_1(D)$	C(D)	L	$C_0(D)$	d_0	e	N
_	_	_	1	0	1	1	1	0

The first element we have in s is 1.

$$\begin{split} s_N &= 1,\\ N &= 0 \\ d &= s_N + \sum_{n=1}^L c_i \cdot s_{N-i} = 1 + 0 = 1 \\ C(D) &= C(D) - d \cdot d_0^{-1} \cdot C_0(D) \cdot D^e = 1 - 1 \cdot 1 \cdot 1 \cdot D = 1 - D = 1 + 4D \ (\mathbb{F}_5) \end{split}$$

To explain, c_i are the coefficients in C(D). Since C(D) = 1, $c = (c_0, c_1, c_2, ..., c_x) = (1, 0, 0, ..., 0)$. N > 2L so we update $C_1(D)$, L, $C_0(D)$, d_0 , e and propagate these values into the table, we get:

s_N	d	$C_1(D)$	C(D)	L	$C_0(D)$	d_0	e	N
_	_	_	1	0	1	1	1	0
1	1	1	1+4D	1	1	1	1	1

$$s_N = 0$$

 $N = 1$
 $d = 0 + c_1 s_0 = 0 + 4 = 4$
 $C(D) = 1 + 4D - (4 \cdot 1 \cdot 1 \cdot D) = 1 + 4D - 4D = 1$

Now that N < 2L we only update C(D), e, N:

s_N	d	$C_1(D)$	C(D)	L	$C_0(D)$	d_0	e	N
_	_		1	0	1	1	1	0
1	1	1	1+4D	1	1	1	1	1
0	4	1	1	1	1	1	2	2

$$s_N = 1$$

$$N = 2$$

$$d = 1 - c_1 s_1 = 1 - 0 = 1$$

$$C(D) = 1 - (1 \cdot 1 \cdot 1 \cdot D^2) = 1 - D^2 = 1 + 4D^2$$

Check if N < 2L, 2 < 2 is not true, as such we update accordingly (same as before, update all values in the table).

s_N	d	$C_1(D)$	C(D)	L	$C_0(D)$	d_0	e	N
_	_		1	0	1	1	1	0
1	1	1	1+4D	1	1	1	1	1
0	4	1	1	1	1	1	2	2
1	1	1	$1 + 4D^2$	2	1	1	1	3

Mattias Petersson EDIN01 – Cryptography

$$s_N = \alpha^7$$

$$N = 3$$

$$d = \alpha^7 + c_1 s_2 + c_2 s_1 = \alpha^7 + 0 + 0 = \alpha^7$$

$$C(D) = 1 + 4D^2 - \alpha^7 \cdot 1 \cdot 1 \cdot D$$

$$= 1 + 4D^2 - \alpha^7 D$$

$$= 1 - 2\alpha D + 4D^2$$

$$= 1 + 3\alpha D + 4D^2$$

$$= 1 + \alpha^{19} D + 4D^2$$

Now things got a bit weird. Since L is larger than one (2), we need to include one more term in our calculation for d. Since c is the coefficients for D in C(D) and we got $0 \cdot D$ we luckily get zeroes everywhere. When calculating C(D) we have to note that we are in mod-5 space. $-2\alpha \equiv 3\alpha$, then we just convert it by using the table at the beginning of this doc.

s_N	d	$C_1(D)$	C(D)	L	$C_0(D)$	d_0	e	N
_	_	_	1	0	1	1	1	0
1	1	1	1+4D	1	1	1	1	1
0	4	1	1	1	1	1	2	2
1	1	1	$1 + 4D^2$	2	1	1	1	3
α^7	α^7	1	$1 + \alpha^{19}D + 4D^2$	2	1	1	2	4

$$s_N = \alpha^{19}$$

$$N = 4$$

$$d = \alpha^{19} + c_1 s_3 + c_2 s_2$$

$$= \alpha^{19} + \alpha^7 \cdot \alpha^{19} + 1 \cdot 4$$

$$= 3\alpha + \alpha + 3 + 4 = 4\alpha + 2 = \alpha^{14}$$

$$C(D) = 1 + \alpha^{19}D + 4D^2 - \alpha^{14} \cdot 1 \cdot 1 \cdot D^2$$

$$= 1 + \alpha^{19}D + 4D^2 - \alpha^{14}D^2$$

$$= 1 + \alpha^{19}D + (4 - 4\alpha - 2)D^2$$

$$= 1 + \alpha^{19}D + (\alpha + 2)D^2$$

$$= 1 + \alpha^{19}D + \alpha^{15}D^2$$

Only interesting thing that happen here is that we can take the values of α^{19} – α^{14} and compute immediately to get the coefficient for D^2 . L is too small, update the entire table.

Mattias Petersson EDIN01 – Cryptography

s_N	d	$C_1(D)$	C(D)	L	$C_0(D)$	d_0	e	N
_	_	_	1	0	1	1	1	0
1	1	1	1+4D	1	1	1	1	1
0	4	1	1	1	1	1	2	2
1	1	1	$1 + 4D^2$	2	1	1	1	3
α^7	α^7	1	$1 + \alpha^{19}D + 4D^2$	2	1	1	2	4
α^{19}	α^{14}	$1 + \alpha^{19}D + 4D^2$	$1 + \alpha^{19} + \alpha^{15}D^2$	3	$1 + \alpha^{19}D + 4D^2$	α^{14}	1	5

$$s_N = \alpha^{22}$$

$$N = 5, L = 3$$

$$d = \alpha^{22} + c_1 s_4 + c_2 s_3 + c_3 s_2 = \alpha^{22} + \alpha^{19} \cdot \alpha^{19} + \alpha^{15} \cdot \alpha^7 + 0$$

$$= \alpha^{22} + \alpha^{14} + \alpha^{22}$$

$$= 2(\alpha + 1) + 4\alpha + 2 = 6\alpha + 4$$

$$= \alpha + 4 = \alpha^{17}$$

$$C(D) = 1 + \alpha^{19}D + \alpha^{15}D^2 - \alpha^{17} \cdot (\alpha^{14})^{-1} \cdot D(1 + \alpha^{19}D + 4D^2)$$

$$= 1 + \alpha^{19}D + \alpha^{15}D^2 - \alpha^{17} \cdot \alpha^{10} \cdot D(1 + \alpha^{19}D + 4D^2)$$

$$= 1 + \alpha^{19}D + \alpha^{15}D^2 - \alpha^3 \cdot D(1 + \alpha^{19}D + 4D^2)$$

$$= 1 + \alpha^{19}D + \alpha^{15}D^2 - \alpha^3D - \alpha^{22}D^2 - 4\alpha^3D^3$$

$$= 1 + (\alpha^{19} - \alpha^3)D + (\alpha^{15} - \alpha^{22})D^2 - 4\alpha^3D^3$$

$$= 1 + (3\alpha - 4\alpha - 3)D + (\alpha + 2 - \alpha - 1)D^2 - 4(4\alpha + 3)D^3$$

$$= 1 + (4\alpha + 2)D + D^2 + (4\alpha + 3)D^3$$

$$= 1 + \alpha^{14}D + D^2 + \alpha^3D^3$$

Here is the first time in this assignment we actually need to calculate d_0^{-1} . Important to note that it is just the α for which $d_0 \cdot d_0^{-1} = 1$, and in this case $d_0 = \alpha^{14} \Rightarrow d_0^{-1} = \alpha^{10}$, $\alpha^{10+14} = \alpha^{24} = 1$. The other calculations take a bit of time, but after that, we are done with our table, L does not need to be updated and we update the table for the last time. Shortest LFSR is the last C(D) in the table.

s_N	d	$C_1(D)$	C(D)	L	$C_0(D)$	d_0	e	N
_	_	_	1	0	1	1	1	0
1	1	1	1+4D	1	1	1	1	1
0	4	1	1	1	1	1	2	2
1	1	1	$1 + 4D^2$	2	1	1	1	3
α^7	α^7	1	$1 + \alpha^{19}D + 4D^2$	2	1	1	2	$\mid 4 \mid$
α^{19}	α^{14}	$1 + \alpha^{19}D + 4D^2$	$1 + \alpha^{19} + \alpha^{15}D^2$	3	$1 + \alpha^{19}D + 4D^2$	α^{14}	1	5
α^{22}	α^{17}	$1 + \alpha^{19}D + 4D^2$	$1 + \alpha^{14}D + D^2 + \alpha^3D^3$	3	$1 + \alpha^{19} + 4D^2$	α^{14}	2	6