1. Here are the row reductions of five $m \times n$ matrices into reduced row echelon form.

Let $T_A : \mathbb{R}^n \to \mathbb{R}^m$ be the linear transformation whose matrix is A. That is, $T_A(x) = Ax$. Determine the appropriate values for n and m, and decide whether T_A is one-to-one and/or onto and whether the columns span \mathbb{R}^m and are linearly independent. Do the same for B, C, D, E.

transformation	n	m	one-to-one?	onto?	columns span \mathbb{R}^m	columns are linearly independent
T_A						
T_B						
T_C						
T_D						
T_E						

1. Here are the row reductions of five $m \times n$ matrices into reduced row echelon form.

Let $T_A : \mathbb{R}^n \to \mathbb{R}^m$ be the linear transformation whose matrix is A. That is, $T_A(x) = Ax$. Determine the appropriate values for n and m, and decide whether T_A is one-to-one and/or onto and whether the columns span \mathbb{R}^m and are linearly independent. Do the same for B, C, D, E.

transformation	n	m	one-to-one?	onto?	columns span \mathbb{R}^m	columns are linearly independent
T_A						
T_B						
T_C						
T_D						
T_E						