# Prédiction des émissions de CO2 et de la consommation énergétique des bâtiments non résidentiels à Seattle

### Prédiction des émissions de CO2 et de la consommation énergétique des bâtiments non résidentiels à Seattle

### **Contexte du projet :**

- Objectif de rendre Seattle neutre en carbone d'ici 2050.
- Focalisation sur la consommation énergétique et les émissions des bâtiments non résidentiels.

### **Problématique:**

- Les relevés de consommation annuels sont coûteux et limités.
- Prédire les émissions de CO2 et la consommation énergétique pour les bâtiments non mesurés à partir de données structurelles (taille, usage, année de construction, localisation...).

### Objectifs:

- Développer un modèle prédictif basé sur les caractéristiques des bâtiments.
- Intégrer l'ENERGY STAR Score pour améliorer les prédictions.

### Plan

- Analyse Exploratoire des Données
  - Structure des données
  - Sélection des bâtiments conformes
  - Gestion des valeurs aberrantes et manquantes
- Préparation des données
  - Sélection des variables
  - Création de variables
- Analyse des relations et corrélations
- Transformations des variables
- Modélisation des prédictions
  - Performance des modèles pour la prédiction des émissions de CO<sub>2</sub>
  - Validation du modèle (émissions de CO<sub>2</sub>)
  - Importance des variables dans le modèle (émissions de CO<sub>2</sub>)
  - Analyse de l'impact du score d'énergie (émissions de CO<sub>2</sub>)
- Modélisation pour la consommation d'énergie
  - Performance des modèles pour la prédiction de la consommation d'énergie
  - Validation du modèle (consommation d'énergie)
  - Importance des variables dans le modèle (consommation d'énergie)
  - Analyse de l'impact du score d'énergie (consommation d'énergie)

### Structure des Données

46 colonnes, dont 30 numériques et 15 textuelles, couvrant divers aspects des bâtiments. 3376 propriétés.

| Catégorie                            | Détails                                                                        | Exemples de Variables                                                                                                                                                                                                                                              |
|--------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Identification et<br>Localisation    | Informations permettant d'identifier et localiser le bâtiment.                 | OSEBuildingID, TaxParcelldentificationNumber,<br>Adresse, Ville, État, ZipCode, Latitude, Longitude,<br>CouncilDistrictCode, Neighborhood                                                                                                                          |
| Caractéristiques<br>Structurelles    | Données relatives aux caractéristiques physiques et structurelles du bâtiment. | BuildingType, PrimaryPropertyType, PropertyName, YearBuilt, NumberofBuildings, NumberofFloors, PropertyGFATotal, PropertyGFAParking, PropertyGFABuilding(s)                                                                                                        |
| Usage et Surface                     | Informations sur l'usage des<br>bâtiments et les surfaces<br>associées.        | ListOfAllPropertyUseTypes, LargestPropertyUseType, LargestPropertyUseTypeGFA, etc                                                                                                                                                                                  |
| Performance<br>Énergétique           | Données sur la performance<br>énergétique du bâtiment.                         | ENERGYSTARScore, YearsENERGYSTARCertified, SiteEUI(kBtu/sf), SiteEUIWN(kBtu/sf), SourceEUIWN(kBtu/sf), SourceEUIWN(kBtu/sf), SiteEnergyUse(kBtu), SiteEnergyUseWN(kBtu), SteamUse(kBtu), Electricity(kWh), Electricity(kBtu), NaturalGas(therms), NaturalGas(kBtu) |
| Émissions de Gaz<br>à Effet de Serre | Données sur les émissions de gaz à effet de serre et leur intensité.           | TotalGHGEmissions, GHGEmissionsIntensity                                                                                                                                                                                                                           |
| Autres<br>Informations               | Autres données relatives à la conformité, aux anomalies et aux commentaires.   | DefaultData, Comments, ComplianceStatus, Outlier                                                                                                                                                                                                                   |

### Sélection des Bâtiments Conformes

Nombre initial de propriétés : 3 376.

Filtrage des bâtiments non résidentiels : 1 578 bâtiments non résidentiels.

**Analyse de la colonne ComplianceStatus** : Suppression des propriétés avec un ComplianceStatus autre que "Compliant" : 1 459 propriété restantes.

#### Analyse de la colonne DefaultData :

 Résultat : Toutes les propriétés ont DefaultData = False, signifiant qu'aucune donnée par défaut n'a été utilisée dans les propriétés restantes.

#### Analyse de la colonne Outlier :

Résultat : La colonne est vide, il n'y a donc aucune valeur aberrante les propriétés renstantes.

#### Suppression des colonnes avec plus de 50% de valeurs manquantes :

- Avant nettoyage : 46 colonnes.
- Après nettoyage : 41 colonnes, après suppression de celles avec plus de 50% de valeurs manquantes.

# Gestion des valeurs aberrantes et manquantes

#### Recherche des valeurs aberrantes

Émissions de CO<sub>2</sub> (tonnes métriques):

Vérifications des émissions ≤ 0 ou > 2200 → suppression de 3 bâtiments

• Consommation d'énergie :

Vérification des consommations > 77 000 000 kBtu → aucune anomalie détectée

NumberOfBuildings = 0 :

21 remplacements après validation manuelle

NumberOfFloors = 0 ou > 26 :

8 remplacements après recherche sur Internet

PropertyGFABuilding(s) (pieds carrés) :

Vérification des tailles> 1 500 000 → aucune anomalie détectée

#### Valeurs manquantes

LargestPropertyUseType :

Imputation de 2 valeurs manquantes en se basant sur PrimaryPropertyType

ENERGYSTARScore :

Suppression des lignes avec 35 % de valeurs manquantes pour garantir la fiabilité des analyses

### Sélection des variables

#### Critères de sélection

- Pertinence métier : Garder uniquement les variables qui ont du sens dans le contexte du projet.
- Éviter la redondance : Ne garder qu'une seule version des variables qui sont trop similaires ou qui apportent la même information, pour éviter des doublons inutiles.
- Eviter le Data Leakage : Exclure les variables qui ne seraient pas accessibles au moment de la prédiction (comme les relevés de consommation d'énergie) ou celles qui sont directement corrélées à la cible, pour éviter d'introduire une fuite d'information.

#### Variables sélectionnées

- Usage principal de la propriété
- District de la propriété
- Nombre d'étages
- Nombre de bâtiments

- Taille de la propriété
- Taille de l'usage principal de la propriété

### Création de variables

- Âge de la propriété : Différence entre l'année actuelle et l'année de construction/rénovation
- → Impact du vieillissement sur les performances énergétiques.
- Proportion d'électricité et de gaz : Répartition des sources d'énergie
- → Compréhension de l'impact des sources d'énergie sur la consommation et les émissions de CO<sub>2</sub>.
- Combinaison Taille/Usage : Interaction entre taille du bâtiment et type d'usage
- → Permet de capturer l'impact combiné sur la consommation d'énergie et les émissions de CO₂.

# Analyse des relations entre les variables

### Corrélation entre les variables explicatives



### Corrélations des variables avec nos cibles



# Émissions de GES par Type de Bâtiment et District





# Consommation d'énergie par Type de Bâtiment et District





### Tranformations des variables

| Variables                   | Transformations                                                                                                                                                                                                                                                           |      |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Usage de la propriété       | One-hot encoding (avec regroupement pour catégories peu représenté                                                                                                                                                                                                        | ées) |
| District                    | One-hot encoding                                                                                                                                                                                                                                                          |      |
| Combinaison Usage/ taille   | One-hot encoding                                                                                                                                                                                                                                                          |      |
| Nombre d'étage              | <ul> <li>→ Division en 3 groupes (1-2 / 3-4 / 5+ étages)</li> <li>→ MinMaxScaler (pour la normalisation des variables numériques)</li> <li>→ RobustScaler (pour traiter les outliers)</li> <li>→ Log (pour rendre les relations plus linéaires)</li> </ul>                |      |
| Nombre de bâtiments         | <ul> <li>→ Binarisation (1 bâtiment / plusieurs bâtiments)</li> <li>→ MinMaxScaler (pour la normalisation des variables numériques)</li> <li>→ RobustScaler (pour traiter les outliers)</li> <li>→ Log (pour rendre les relations plus linéaires)</li> </ul>              |      |
| Taille de la propriété      | <ul> <li>→ Discrétisation en 5 groupes via KBinsDiscretizer (quantiles)</li> <li>→ MinMaxScaler (pour la normalisation des variables numériques)</li> <li>→ RobustScaler (pour traiter les outliers)</li> <li>→ Log (pour rendre les relations plus linéaires)</li> </ul> |      |
| Taille de l'usage principal | <ul> <li>→ Discrétisation en 5 groupes via KBinsDiscretizer (quantiles)</li> <li>→ MinMaxScaler (pour la normalisation des variables numériques)</li> <li>→ RobustScaler (pour traiter les outliers)</li> </ul>                                                           |      |
| Age de la propriété         | <ul> <li>→ MinMaxScaler (pour la normalisation des variables numériques)</li> <li>→ Sqrt</li> </ul>                                                                                                                                                                       |      |
| Proportion de gaz           | → Log +1                                                                                                                                                                                                                                                                  | 14   |

#### Boxplot des émissions de CO2



#### Boxplot de la consommation d'énergie



# Comparaison des performances des modèles testés

- Objectif: Comparer les performances des modèles pour prédire les émissions de CO<sub>2</sub> et la consommation d'énergie.
- Séparation des données : Les données ont été stratifiées pour garantir une répartition correcte, en particulier pour les valeurs extrêmes.

 Validation croisée stratifiée : Utilisation de la validation croisée pour évaluer les modèles de manière fiable, en garantissant que les sousensembles reflètent bien la répartition des données.

### Performances des Modèles Testés pour les émissions de co2

| Modèle                           | R2   | MAE   | RMSE   | MAPE | Temps d'entrainement |
|----------------------------------|------|-------|--------|------|----------------------|
| Régression linéaire              | 0,53 | 94,7  | 321,31 | 0,84 | 0,03s                |
| Random Forest                    | 0,65 | 80,52 | 329,21 | 0,68 | 0,75s                |
| <b>Extreme Gradient Boosting</b> | 0,73 | 75,65 | 264,65 | 0,74 | 0,18s                |
| Support Vector Regression        | 0,55 | 93    | 383,89 | 0,74 | 0,08s                |

Transformations appliquées au meilleur modèle (XGBoost):

- Regroupement des catégories pour la variable Usage
- Encodage One-Hot pour Council District et Usage
- Transformation logarithmique sur la variable cible (Émissions de CO2)
- Suppression des variables proportion\_Gaz et taille de l'usage principal

### Optimisation des paramètres

#### Les scores avant optimisation :

| Jeu de donnée              | R2   | MAE    | RMSE   | MAPE |
|----------------------------|------|--------|--------|------|
| Entrainement (train)       | 1    | 3,95   | 11,92  | 0,04 |
| Test (données jamais vues) | 0,57 | 109,64 | 602,09 | 0,61 |

#### Les scores après optimisation

| Jeu de donnée              | R2   | MAE   | RMSE   | MAPE |
|----------------------------|------|-------|--------|------|
| Entrainement (train)       | 0,96 | 43,65 | 233,14 | 0,33 |
| Test (données jamais vues) | 0,84 | 77,93 | 338,82 | 0,62 |

#### Principaux réglages :

- max\_depth = 3 : Limite la profondeur des arbres pour éviter le surapprentissage.
- n\_estimators = 100 : Nombre modéré d'arbres, bon compromis entre précision et temps de calcul.
- learning\_rate = 0.3 : Apprentissage rapide, bien équilibré avec les autres paramètres.
- min\_child\_weight = 3 : Évite les divisions inutiles des nœuds, limite la complexité.
- reg\_alpha = 0.5, reg\_lambda = 0.1 : Régularisation pour contrôler le surajustement.  $_{18}$
- subsample = 0.7, colsample\_bytree = 0.8 : Randomisation pour améliorer la robustesse du modèle.

# Analyse des résidus – Validation du modèle



# Importance des Variables dans le Modèle



# Analyse SHAP – Comprendre l'impact des variables sur les prédictions



### Test de l'impact de la variable 'ENERGYSTARScore' sur les prédictions

|                      | Jeu de donnée              | R2   | MAE    | RMSE   | MAPE |
|----------------------|----------------------------|------|--------|--------|------|
| Sans EnergyStarScore | Entrainement (train)       | 0,96 | 43,65  | 233,14 | 0,33 |
|                      | Test (données jamais vues) | 0,84 | 77,93  | 338,82 | 0,62 |
| Avec EnergyStarScore | Entrainement (train)       | 0,97 | 29,46  | 104,85 | 0,24 |
|                      | Test (données jamais vues) | 0,60 | 107,91 | 580,67 | 0,49 |



# Importance des Variables dans le Modèle après l'ajout "d'ENERGYSTARScore"



# Analyse SHAP – Comprendre l'impact des variables sur les prédictions



## Conclusion sur l'ajout de la variable EnergyStarScore

#### Précision améliorée pour 99% des observations

Meilleures prédictions pour les bâtiments avec émissions moyennes à élevées

#### Impact de la nouvelle variable sur l'importance des features

EnergyStarScore devient une variable significative du modèle

### Limites et risques identifiés

- Dégradation sur les valeurs extrêmes
- Impact négatif sur 1% des observations

# Performances des Modèles Testés pour la consommation d'energie

| Modèle                    | R2   | MAE       | RMSE       | MAPE |
|---------------------------|------|-----------|------------|------|
| Régression linéaire       | 0,60 | 3 752 061 | 11 916 381 | 0,62 |
| Random Forest             | 0,65 | 3 590 607 | 12 062 271 | 0,64 |
| Extreme Gradient Boosting | 0,63 | 4 065 932 | 12 587 009 | 0,66 |
| Support Vector Regression | 0,43 | 4 210 315 | 15 996 570 | 0,79 |

### <u>Transformations appliquées au meilleur modèle (XGBoost):</u>

- Regroupement des catégories pour la variable Usage
- •Discrétisation du nombre d'étages
- Encodage One-Hot pour Council District et Usage
- Transformation logarithmique sur la variable cible (Conso d'energie)
- Sans taille de l'usage et proportion d'électricité

### <u>Transformations appliquées au meilleur modèle (RF):</u>

- Regroupement des catégories pour la variable Usage
- MinMax sur certaines variables
- Combinaison taille/usage
- Transformation logarithmique sur la variable cible (Conso d'energie)
- Sans le district et le nombre de bâtiments



# Résulats du modèle XGBoost pondéré

| Jeu de donnée              | R2   | MAE       | RMSE      | MAPE |
|----------------------------|------|-----------|-----------|------|
| Entrainement (train)       | 0,83 | 2 424 071 | 8 927 634 | 0,29 |
| Test (données jamais vues) | 0,88 | 3 378 029 | 8 388 802 | 0,74 |

| Tranche de consommation (%) | Poids |
|-----------------------------|-------|
| 0-20                        | 4,2   |
| 21-40                       | 4     |
| 41-60                       | 2     |
| 61-90                       | 1,5   |
| 91-95                       | 1,2   |

#### Principaux réglages :

- max\_depth = 3 : Limite la profondeur des arbres pour éviter le surapprentissage.
- n\_estimators = 300
- learning\_rate = 0.08
- min\_child\_weight = 3 : Évite les divisions inutiles des nœuds, limite la complexité.
- reg\_alpha = 0.2, reg\_lambda = 0.2 : Régularisation pour contrôler le surajustement.
- subsample = 0.7, colsample\_bytree = 0.7 : Randomisation pour améliorer la robustesse du modèle.

### Analyse des résidus



# Importance des Variables dans le Modèle



# Analyse SHAP – Comprendre l'impact des variables sur les prédictions



### Test de l'impact de la variable 'ENERGYSTARScore' sur les prédictions

|                 | Jeu de donnée              | R2   | MAE       | RMSE      | MAPE |
|-----------------|----------------------------|------|-----------|-----------|------|
| Sans            | Entrainement (train)       | 0,83 | 2 424 071 | 8 927 634 | 0,29 |
| EnergyStarScore | Test (données jamais vues) | 0,88 | 3 378 029 | 8 388 802 | 0,74 |
| Avec            | Entrainement (train)       | 0,82 | 1 984 574 | 9 154 627 | 0,21 |
| EnergyStarScore | Test (données jamais vues) | 0,87 | 3 127 149 | 8 775 521 | 0,59 |

- Légère baisse du R² (de 0.88 à 0.87 sur le test) → le modèle explique légèrement moins bien la variabilité des consommations.
- Réduction des erreurs absolues (baisse du MAE et du MAPE) → meilleure précision sur la majorité des prédictions.
- Légère hausse du RMSE → erreurs plus importantes sur certaines valeurs extrêmes.

### Analyse des résidus avant/après



# Importance des Variables dans le Modèle après l'ajout "d'ENERGYSTARScore"



# Analyse SHAP – Comprendre l'impact des variables sur les prédictions



# Conclusion générale sur l'ajout de la variable EnergyStarScore

### Impact sur la précision du modèle :

- MAE & MAPE : Amélioration (prédictions plus précises)
- RMSE : Augmentation (erreurs extrêmes plus marquées)

#### Amélioration par tranche de consommation :

- Prédictions améliorées pour consommations faibles et modérées
- Prédictions dégradées pour consommations élevées

### Changements dans l'importance des variables :

ENERGYSTARScore : Devient un facteur clé

#### Impact global:

- Amélioration des prédictions pour cas courants
- Nouvelle dimension sans perturbation majeure du modèle

### Conclusion du projet

**Objectif :** Étudier les facteurs influençant les émissions de CO<sub>2</sub> et la consommation d'énergie des bâtiments pour mieux les prédire.

**Analyse exploratoire :** Sélection des variables pertinentes, identification des facteurs clés (taille, source d'énergie des bâtiments) et absence de fuite de données.

**Modélisation :** Test et optimisation de plusieurs algorithmes. XGBoost est le plus performant.

**Défis**: Gestion des valeurs extrêmes et sous-représentation des données affectant les erreurs de prédiction.