Universitatea din București Facultatea de Matematică și Informatică

CURS nr. 1 METODE MODERNE DE CALCUL ȘI SIMULARE

Recapitulare: noțiuni de probabilități

Lect. dr. Bianca Mogoș

Conținut

Partea I

- Experiment aleator. Spațiu de selecție. Evenimente
- Funcție de probabilitate. Câmp de probabilitate
- Evenimente independente. Probabilitate condiționată.
 Formula lui Bayes

Partea a II - a

- Variabile aleatoare. Funcție de repartiție
- Variabile aleatoare discrete
- Variabile aleatoare continue

Experiment aleator

Definiție

Un *experiment aleator* este definit ca fiind o acțiune al cărei rezultat nu poate fi prezis cu certitudine și care se poate modifica în urma repetării experimentului.

Remarcă

Variabilitatea rezultatelor ieșite în urma unui experiment aleator poate apărea ca urmare a unor erori de măsurare, a alegerii unor obiecte diferite pentru testare, etc.

Exemplu

- Observarea pe un interval T de timp a funcționării unui calculator.
- ▶ Înregistrarea consumului de energie electrică a unui combinat.

Spațiu de selecție

Definiție

Spațiul de selecție al unui experiment aleator, notat prin Ω , reprezintă mulțimea tuturor rezultatelor posibile.

Exemplu

- ▶ Prin aruncarea banului se pot obține două rezultate. Astfel, spațiul de selecție este {0,1}.
- Prin rostogolirea unui zar cu şase feţe şi numărarea punctelor de pe o faţă se pot obţine şase rezultate posibile. Astfel, spaţiul de selecţie este {1,2,3,4,5,6}.

Eveniment. Eveniment sigur și eveniment imposibil

Definiție

Un *eveniment* este orice submulțime de rezultate conținute în spațiul de selecție. Un eveniment este elementar dacă el constă dintr-un singur rezultat și compus dacă constă din mai multe rezultate.

Definiție

Evenimentul sigur este evenimentul care se realizează întotdeauna ca rezultat al experimentului; va fi notat cu Ω (se asociază mulțimii totale de rezultate).

Evenimentul imposibil nu se poate realiza ca rezultat al unui experiment; va fi notat cu \emptyset (corespunde mulțimii vide).

Reuniunea și intersecția evenimentelor

Definiție

Numim reuniunea evenimentelor A_1, A_2, \ldots, A_k , notată prin $\bigcup_{j=1} A_j$, evenimentul care se realizează când cel puțin unul dintre evenimentele A_1, A_2, \ldots, A_k se realizează.

Numim intersecția evenimentelor A_1, A_2, \ldots, A_k , notată prin $\bigcap_{j=1}^n A_j$, evenimentul care se realizează când se realizează toate evenimentele A_1, A_2, \ldots, A_k .

Definiția empirică a probabilității

Probabilitatea unui eveniment este o măsură

- prin care modelăm incertitudinea producerii fenomenelor și a apariției datelor din lumea reală
- care ne permite să apreciem gradul de încredere și să cuantificăm lipsa de siguranță inerentă în procesul care generează datele analizate.

Definiție

(Definiția clasică a probabilității) Dacă într-un experiment cu "n" rezultate, "k" dintre ele favorizează realizarea evenimentului A, definim probabilitatea P(A) a evenimentului A prin

$$P(A) = \frac{k}{n} \tag{1}$$

Exercițiu: Aruncarea cu zarul

- Calculați probabilitatea ca în urma aruncării unui zar să iasă un număr par.
- 2. Care este probabilitatea ca în urma aruncării unui zar să iasă un număr impar, strict mai mare ca 3?

σ – algebră

Fie Ω mulțimea evenimentelor elementare (rezultatelor posibile) ale unui experiment aleator.

Definiție

 $\mathcal{B} \subset \mathcal{P}(\Omega)$ este o σ – algebră dacă

- 1. $\emptyset, \Omega \in \mathcal{B}$
- 2. Dacă $A \in \mathcal{B}$ atunci $A^{\mathcal{C}} \in \mathcal{B}$
- 3. Dacă $(A_n)_{n\in N^*}$, $A_n\in \mathcal{B}$ atunci $\bigcup_{n=1}^\infty A_n\in \mathcal{B}$

Perechea (Ω, \mathcal{B}) se numește *câmp de evenimente*.

Funcție de probabilitate

Definiție

Se numește probabilitate pe \mathcal{B} o funcție nenegativă $P:\mathcal{B} \to [0,1]$ cu proprietățile:

- 1. $P(\Omega) = 1$
- 2. Dacă $A, B \in \mathcal{B}$ și $A \cap B = \emptyset$ atunci $P(A \cup B) = P(A) + P(B)$.

Definiție

Tripletul (Ω, \mathcal{B}, P) se numește *câmp de probabilitate*.

Proprietăți ale funcției de probabilitate

- 1. $P(A^C) = 1 P(A)$, decarece $A \cup A^C = \Omega$, $A \cap A^C = \emptyset$.
- 2. $P(\emptyset) = P(\Omega^C) = 1 P(\Omega) = 0$.
- 3. $P(A \cup B) = P(A) + P(B) P(A \cap B)$, dacă $A \cap B \neq \emptyset$.

Proprietatea 3. rezultă din relațiile (2) și (3).

$$A = A \cap (B \cup B^{C}) = (A \cap B) \cup (A \cap B^{C}) \text{ cu } A \cap B \cap B^{C} = \emptyset$$

$$B = B \cap (A \cup A^{C}) = (B \cap A) \cup (B \cap A^{C}) \text{ cu } B \cap A \cap A^{C} = \emptyset$$

$$A \cup B = (A \cap B) \cup (A \cap B^{C}) \cup (B \cap A^{C}).$$
(2)

Aplicăm axioma 2. din definiția probabilității și obținem

$$P(A) = P(A \cap B) + P(A \cap B^{C})$$

$$P(B) = P(A \cap B) + P(B \cap A^{C})$$

$$P(A \cup B) = P(A \cap B) + P(A \cap B^{C}) + P(B \cap A^{C}).$$
(3)

Exerciții

► Problema controlului alimentelor

Se știe că într-o cutie sunt 550 de mere. Se verifică aleator 25 dintre ele dacă sunt stricate. Dacă 2% dintre merele din cutie sunt stricate, care este probabilitatea ca printre cele 25 testate să găsim 2 mere stricate?

Problema zilei de naștere

Care este probabilitatea ca cel puțin 2 persoane dintr-un grup de n indivizi să aibă aceeași zi de naștere?

Evenimente independente. Probabilitate condiționată

Definiție

Spunem că evenimentele A și B din B sunt *independente* dacă nu se influențează, adică realizarea evenimentului A nu depinde de realizarea lui B și reciproc.

Definiție

Se numește probabilitate condiționată a evenimentului A de către evenimentul B și se notează P(A|B) sau P_BA probabilitatea de realizare a evenimentului A calculată în condiția că evenimentul B s-a realizat (P(B) > 0) și se definește ca:

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \tag{4}$$

Exemplu 1: (1)

Un tratament s-a aplicat la 700 de pacienți care sufereau de piatră la rinichi. S-a constatat că doar 562 s-au vindecat. De asemenea, se știe că 357 au pietre mici și 315 dintre aceștia s-au vindecat, iar 343 au pietre mari și 247 s-au vindecat. Să se calculeze probabilitatea ca un pacient să se vindece știind că acesta are piatră mică. Dar, dacă are piatră mare?

Soluţie:

► Fie

 $\Omega = \{1, 2, \dots, 700\}$ mulţimea tuturor pacienţilor, $S = \{1, 2, \dots, 562\}$ mulţimea pacienţilor vindecaţi şi $E = \{563, \dots, 700\}$ mulţimea pacienţilor nevindecaţi.

Exemplu 1: (2)

Obţinem următoarele probabilităţi:

$$P(\omega)=rac{1}{700}, orall$$
 evenimentul elementar $\omega\in\Omega$ $P(S)=rac{562}{700}pprox0,8$ $P(E)=rac{138}{700}=pprox0,2$

Notăm cu

$$\Omega_1=$$
 pacienții care au pietre mici $\Omega_2=$ pacienții care au pietre mari

► Rezultă $P(\Omega_1) = \frac{357}{700} = 0,51$ și $P(\Omega_2) = \frac{343}{700} = 0,49$. Astfel

$$P(S|\Omega_1) = \frac{P(S \cap \Omega_1)}{P(\Omega_1)} = \frac{315}{700} \cdot \frac{1}{0,51} = 0,88$$

Analog, se arată că $P(S|\Omega_2) = 0,72$.

Formula lui Bayes (1)

Fie $(A_i)_{i=\overline{1,k}}$ o partiție a mulțimii Ω , ceea ce înseamnă că

$$A_i \cap A_j = \emptyset, \forall i, j \in \overline{1, k}, i \neq j, P(A_j) > 0, \forall j = \overline{1, k} \text{ si } \bigcup_{j=1}^k A_j = \Omega.$$
 (5)

Fie $X \in \mathcal{B}$ un eveniment oarecare. Atunci

$$P(X) = P(X \cap \Omega) = P(\bigcup_{j=1}^{k} X \cap A_j) = \sum_{j=1}^{k} P(X \cap A_j)$$

$$= \sum_{j=1}^{k} P(A_j) \cdot P(X|A_j)$$
(6)

Obținem relația

$$P(X) = \sum_{i=1}^{k} P(A_i) \cdot P(X|A_i)$$
 (7)

Formula lui Bayes (2)

Atunci probabilitatea condiționată a evenimentului A_j de către evenimentul X se poate calcula cu formula

$$P(A_{j}|X) = \frac{P(A_{j}) \cdot P(X|A_{j})}{\sum_{j=1}^{k} P(A_{j}) \cdot P(X|A_{j})}.$$
 (8)

Relația obținută în ecuația (8) se numește formula lui Bayes.

Variabilă aleatoare

Fie (Ω, \mathcal{B}, P) un câmp de probabilitate.

Definiție

Numim variabilă aleatoare (v.a.) o funcție $X:\Omega\to\mathbb{R}$ cu proprietatea că pentru fiecare $x\in\mathbb{R}$ evenimentul

$$X^{-1}(x) = \{\omega \in \Omega | X(\omega) \le x\}$$
 aparține mulțimii \mathcal{B} . (9)

Exemplu

Pentru $A \in \mathcal{B}$, funcția indicator I_A definită prin

$$I_{A}(\omega) = \begin{cases} 1, & \omega \in A \\ 0, & \omega \notin A \end{cases}$$
 (10)

este o variabilă aleatoare.

Funcție de repartiție. Proprietăți ale funcției de repartiție

Fie evenimentul $A = \{\omega \in \Omega | X(\omega) \le x\} \stackrel{not}{=} \{X \le x\} \in \mathcal{B}.$

Definiție

Funcția $F_X: \mathbb{R} \to [0,1]$ definită prin

$$F_X(x) = P(\{X \le x\}) \stackrel{not}{=} P(X \le x) \tag{11}$$

se numește funcția de repartiție a variabilei aleatoare X.

Proprietăți ale funcției de repartiție

1.
$$F_X(x) \in [0,1]$$
, $\lim_{x \to \infty} F_X(x) = 1$, $\lim_{x \to -\infty} F_X(x) = 0$.

2. $F_X(x+h) \ge F_X(x)$, pentru h > 0, deoarece

$$F_X(x+h) = F_X(x) + P(\{\omega \in \Omega | x < X(\omega) \le x+h\}).$$

3. $P(\{\omega \in \Omega | a < X(\omega) \le b\}) = F_X(b) - F_X(a)$, pentru a < b.

Variabilă aleatoare discretă

- ▶ Spunem că X este o variabilă aleatoare discretă dacă valorile luate de variabila aleatoare X sunt în număr finit sau numărabil.
- O v.a. discretă este definită prin tabloul:

$$X: \left(\begin{array}{cccc} x_1 & x_2 & \dots & x_n & \dots \\ p_1 & p_2 & \dots & p_n & \dots \end{array}\right) \tag{12}$$

unde $x_1, x_2, ..., x_n, ...$ reprezintă valorile distincte pe care le poate lua v.a. X, iar $p_n = P(\{\omega \in \Omega | X(\omega) = x_n\}), n = 1, 2, ...$

► Tabloul din ecuația (12) se numește *repartiția variabilei aleatoare* discrete X.

Proprietăți ale variabilelor aleatoare discrete

1.
$$p_1 + p_2 + \ldots + p_n + \ldots = 1$$
, decarece $p_1 + p_2 + \ldots + p_n + \ldots = P(\{\omega \in \Omega | X(\omega) = x_1\}) + P(\{\omega \in \Omega | X(\omega) = x_2\}) + \ldots + P(\{\omega \in \Omega | X(\omega) = x_n\}) + \ldots = P(\Omega) = 1$

deoarece evenimentele

$$A_i = \{\omega \in \Omega | X(\omega) = x_i\}$$
 și $A_j = \{\omega \in \Omega | X(\omega) = x_j\}$ cu $i \neq j$ sunt disjuncte (adică, $A_i \cap A_j = \emptyset$; altfel avem evenimentul $e \in A_i \cap A_j$, de unde rezultă $X(e) = x_i = x_j$, ceea ce este imposibil pentru $i \neq j$) și $\bigcup_i A_i = \Omega$

2. O variabilă aleatoare discretă realizează o partiție a spațiului de selecție.

Operații cu variabile aleatoare discrete (1)

Definiție

Dacă X și Y sunt definite pe același câmp de probabilitate (Ω, \mathcal{B}, P) atunci:

$$\begin{split} &(X+Y)\left(\omega\right)=X(\omega)+Y(\omega)\\ &(aX)\left(\omega\right)=aX(\omega), \text{ pentru } a\in\mathbb{R}\\ &(XY)\left(\omega\right)=X(\omega)Y(\omega)\\ &\frac{X}{Y}(\omega)=\frac{X(\omega)}{Y(\omega)}, \text{ } dac \check{a} \ Y(\omega)\neq0 \text{ pentru orice } \omega\in\Omega \end{split}$$

Operații cu variabile aleatoare discrete (2)

Dacă

$$X: \left(\begin{array}{cccc} x_1 & x_2 & \dots & x_n \\ p_1 & p_2 & \dots & p_n \end{array}\right), Y: \left(\begin{array}{cccc} y_1 & y_2 & \dots & y_m \\ q_1 & q_2 & \dots & q_m \end{array}\right)$$

atunci

$$X + Y : \begin{pmatrix} x_1 + y_1 & x_1 + y_2 & \dots & x_i + y_j & \dots & x_n + y_m \\ p_{11} & p_{12} & \dots & p_{ij} & \dots & p_{nm} \end{pmatrix}$$

unde $p_{ij} = P(\{\omega \in \Omega | X(\omega) = x_i\} \cap \{\omega \in \Omega | Y(\omega) = y_j\}).$

$$aX : \begin{pmatrix} ax_1 & ax_2 & \dots & ax_n \\ p_1 & p_2 & \dots & p_n \end{pmatrix}$$

$$X \cdot Y : \begin{pmatrix} x_1y_1 & x_1y_2 & \dots & x_iy_j & \dots & x_ny_m \\ p_{11} & p_{12} & \dots & p_{ii} & \dots & p_{nm} \end{pmatrix}$$

și

$$X/Y: \begin{pmatrix} x_1/y_1 & x_1/y_2 & \dots & x_i/y_j & \dots & x_n/y_m \\ p_{11} & p_{12} & \dots & p_{ij} & \dots & p_{nm} \end{pmatrix}$$

Caracteristici ale v.a. discrete – definiții (1)

- Fie (Ω, \mathcal{B}, P) spațiul de probabilitate pe care este definită variabila aleatoare discretă X.
- ▶ Dacă X este o variabilă aleatoare, $X : \Omega \to \mathbb{R}$ atunci numim valoare medie a variabilei X,

$$E[X] = \sum_{i=1}^{\infty} x_i p_i \tag{13}$$

pentru cazul în care X ia un număr numărabil de valori și seria este convergentă.

▶ Dacă X ia un număr finit de valori, valoarea medie se definește printr-o sumă finită.

Caracteristici ale v.a. discrete – definiții (2)

- ▶ Momentul de ordinul r al v.a. X este $E_r[X] = E[X^r]$. Se mai folosește notația $\mu_r(X) = E[X^r]$.
- ▶ Momentul centrat de ordin r al v.a. X este numărul

$$\mu_r(X) = E[(X - E[X])^r]$$
 (14)

Pentru r=2

$$\mu_2(X) = E[(X - E[X])^2] \stackrel{not}{=} D(X)$$
 (15)

se numește dispersia variabilei X.

▶ Dispersia D(X) dă o măsură a împrăștierii valorilor variabilei X în jurul valorii ei medii.

Proprietăți ale mediei unei v.a. discrete (1)

1.
$$E[aX + b] = aE[X] + b, a, b \in \mathbb{R}$$

2.
$$E[X + Y] = E[X] + E[Y]$$

Demonstrație

$$E[X + Y] = \sum_{i=1}^{n} \sum_{j=1}^{m} (x_i + y_j) p_{ij} = \sum_{i=1}^{n} x_i \sum_{j=1}^{m} p_{ij} + \sum_{j=1}^{m} y_j \sum_{i=1}^{n} p_{ij}$$
$$= \sum_{i=1}^{n} x_i P(X = x_i) + \sum_{j=1}^{m} y_j P(Y = y_j),$$

deoarece

$$\sum_{j=1}^{m} p_{ij} = P((X = x_i) \cap \Omega) = P(X = x_i)$$

$$\sum_{j=1}^{n} p_{ij} = P(\Omega \cap (Y = y_j)) = P(Y = y_j).$$

Proprietăți ale mediei unei v.a. discrete (2)

3. Dacă X și Y sunt v.a. independente atunci

$$E[X \cdot Y] = E[X] \cdot E[Y]$$

Demonstrație

Avem
$$E[X \cdot Y] = \sum_{i=1}^{n} \sum_{j=1}^{m} x_i y_j p_{ij}$$
. Cum X și Y sunt independente

$$p_{ij} = P(X = x_i) \cdot P(Y = y_j).$$

Astfel,

$$E[X \cdot Y] = \sum_{i=1}^{n} x_i P(X = x_i) \cdot \sum_{j=1}^{m} y_j P(Y = y_j).$$

Variabilă aleatoare continuă

Definiție

Spunem că $X:\Omega \to \mathbb{R}$ este *v.a. continuă* dacă

$$P(\{\omega \in \Omega | X(\omega) = x\}) = 0, \tag{16}$$

pentru orice $x \in \mathbb{R}$.

Observatii:

- Deși probabilitatea evenimentului din definiție este zero nu înseamnă că evenimentul nu se poate realiza.
- ▶ Dacă X este o variabilă aleatoare continuă atunci funcția sa de repartiție este continuă.

Densitate de repartiție. Proprietăți ale funcției de repartiție

Definiție

Dacă există

$$\lim_{h \to 0} \frac{F_X(x+h) - F_X(x)}{h} = F_X'(x) \tag{17}$$

atunci F_X' se numește densitatea de repartiție a variabilei X și

$$F_X'(x) = f_X(x), x \in \mathbb{R}$$
 (18)

Proprietăți ale funcției de repartiție

- 1. Decarece $F_X(x) = \int_{-\infty}^x f_X(t) dt$ rezultă $\int_{-\infty}^{\infty} f_X(t) dt = 1$
- 2. Deoarece F_X este crescătoare rezultă că $f_X(x) \ge 0, x \in \mathbb{R}$.

Caracteristici ale v.a. continue – definiții (1)

▶ Valoarea medie a v.a. continue X este

$$E[X] = \int_{-\infty}^{\infty} x dF_X(x) = \int_{-\infty}^{\infty} x f_X(x) dx$$
 (19)

▶ Momentul de ordinul r al variabilei aleatoare continue X este

$$\mu_r(X) = E[X^r] = \int_{\mathbb{R}} x^r f_X(x) dx. \tag{20}$$

 Momentul centrat de ordinul r al variabilei aleatoare continue X este

$$\mu_r(X) = E[(X - E[X])^r] = \int_{\mathbb{R}} (x - E[X])^r f_X(x) dx.$$
 (21)

▶ Pentru r = 2 obținem *dispersia* variabilei aleatoare X:

$$D(X) = \mu_2(X) = E[(x - E[X])^2] = \int_{\mathbb{R}} (x - E[X])^2 f_X(x) dx.$$
(22)

Caracteristici ale v.a. continue – definiții (2)

- $\blacktriangleright \sqrt{D(X)}$ se numește *abaterea medie pătratică* sau *deviația* standard.
- ▶ Modul v.a. X, notat prin M_0 , este acea valoare a v.a. X pentru care densitatea de probabilitate f_X are valoare maximă.
- ▶ *Mediana* v.a. X, notată prin *Me*, este acea valoare pentru care

$$\int_{-\infty}^{Me} f_X(x) dx = \int_{Me}^{\infty} f_X(x) dx = \frac{1}{2}.$$
 (23)

► Cuantila de ordinul α a variabile aleatoare X este acea valoare q_{α} care verifică relația

$$\int_{-\infty}^{q_{\alpha}} f_X(x) dx = \alpha. \tag{24}$$

Test

Timpul de așteptare la un ghișeu este o variabilă aleatoare T care urmează o repartiție $\operatorname{Exp}(\lambda)$ cu timpul mediu de așteptare de 15 minute. Să se afle probabilitatea ca un cetățean să aștepte mai mult de 20 de minute.

Bibliografie I

- M. Craiu (1998), Statistică matematică: teorie și probleme, Editura Matrix Rom, București
- W. L. Martinez, A. R. Martinez (2002), Computational Statistics Handbook with MATLAB, Chapman & Hall/CRC, Boca Raton London New York Washington, D.C.