EOPC2206 CONTROL SYSTEM LABORATORY (0-0-3)

Course Learning/Program Objectives: This course will enable students to:

- PO1 Analyse DC motor position control system.
- PO2 Investigate speed-torque characteristics of 2-phase AC servomotor and derive its transfer function.
- PO3 Obtain frequency response of lag and lead compensators.
- PO4 Study time response of second-order process with P, PI, and PID control, and implement PID control for servomotor.
- PO5 Determine system transfer function using transfer function analyser.

Sl.	Name of the Experiment	Hrs.
No		
1.	Study of a dc motor driven position control system.	3
2.	Study of speed torque characteristics of two-phase AC servomotor and	3
	determination of its transfer function.	
3.	Obtain the frequency response of a lag and lead compensator.	3
4.	To observe the time response of a second order process with P, PI and PID	3
	control and apply PID control to servomotor	
5.	To determine the transfer function of a system (network) using transfer	3
	function analyser.	
6.	To study and validate the controllers for a temperature control system	3
7.	To study the position control system using Synchroscope.	3
8.	To Analyse the Time Domain specifications of Under damped second order	3
	systemusing MATLAB.	
9.	To analyse the stability of the system by using Root locususing MATLAB.	3
10.	To analyse the stability of the given linear system using Bode plotusing	3
	MATLAB.	

Course Outcomes: On completion of this course, students are able to:

- CO1 Analyse and assess the position control system of DC motors to evaluate system performance.
- CO2 Investigate the speed-torque characteristics of a two-phase AC servomotor and derive its transfer function.
- CO3 Design and evaluate the frequency response of lag and lead compensators for performance enhancement.
- CO4 Observe and analyse the time response of second-order processes using P, PI, and PID controllers and implement PID control for a servomotor.
- CO5 Determine and validate the transfer function of a system using a transfer function analyser.

Course Outcomes (COs)	PO1	PO2	PO3	PO4	PO5
CO1	3	-	-	-	-
(Analyse DC motor position					
control systems)					
CO2	_	3	-	_	-
(Investigate speed-torque					
characteristics and derive					
transfer functions of AC					
servomotors)					

CO3	-	-	3	_	-
(Obtain frequency response of					
lag and lead compensators.)					
CO4	-	-	-	3	-
(Study time response and					
implement PID control for					
servomotors.)					
CO5	-	-	-	-	3
(Determine transfer function					
using transfer function					
analyzer.)					