A geometric view on quantum incompatibility

Anna Jenčová Mathematical Institute, Slovak Academy of Sciences, Bratislava, Slovakia

Genoa, June 2018

Outline

- Introduction
- GPT: basic definitions and examples
- Incompatibility:
 - characterization
 - incompatibility witnesses and degree
 - maximal incompatibility
- Incompatibility and Bell non-locality
- Steering

General probabilistic theories: basic notions

states: preparation procedures of a given system

convex structure: probabilistic mixtures of states

Assumption: Any state space is a compact convex subset $K \subset \mathbb{R}^m$.

effects: yes/no experiments

- determined by outcome probabilities in each state
- lacktriangledown respect the convex structure of states: affine maps K o [0,1]

Assumption: All affine maps $K \to [0,1]$ correspond to effects.

For the more general framework, see e.g (G. Chiribella, G. D'Ariano, P. Perinotti, PRA 2010)

General probabilistic theories: basic notions

measurements: (with finite number of outcomes)

- described by outcome statistics in each state
- ▶ affine maps $K \to \Delta_n$ Δ_n : simplex of probabilities over $\{0, \ldots, n\}$
- given by effects:

$$f_i(x) = f(x)_i, i = 0, ..., n,$$
 $\sum_i f_i = 1$

Assumption: All affine maps $K \to \Delta_n$ correspond to measurements.

General probabilistic theories: basic examples

Classical systems:

- ▶ state spaces: Δ_m
- effects: vectors in \mathbb{R}^{m+1} with entries in [0,1]
- ▶ measurements: classical channels $T: \Delta_m \to \Delta_n$

The measurements are identified with $(m+1) \times (n+1)$ stochastic matrices (conditional probabilities) $\{T(j|i)\}_{i,j}$:

$$T(j|i) = f(\delta_i^m)_j, \quad \delta_i^m = \text{ vertices of } \Delta_m$$

General probabilistic theories: basic examples

Quantum systems

- ▶ state spaces: $\mathfrak{S}(\mathcal{H}) =$ density operators on a Hilbert space \mathcal{H} , $\dim(\mathcal{H}) < \infty$
- effects: $E(\mathcal{H}) = \text{quantum effects}$,

$$0 \le E \le I$$
, $E \in B(\mathcal{H})$

▶ measurements: POVMs on H.

$$M_0,\ldots,M_n\in E(\mathcal{H}), \quad \sum_i M_i=I$$

General probabilistic theories: basic examples

Spaces of quantum channels

- ▶ state spaces: $\mathcal{C}_{A,A'} = \text{set of all quantum channels}$ (CPTP maps) $B(\mathcal{H}_A) \to B(\mathcal{H}_{A'})$
- effects: $f \in E(\mathcal{C}_{A,A'})$,

$$f(\Phi) = \operatorname{Tr} M(\Phi \otimes id_R)(\rho_{AR}), \quad \Phi \in \mathcal{C}_{A,A'},$$

for some state $\rho_{AR} \in \mathfrak{S}(\mathcal{H}_{AR})$ and effect $M \in E(\mathcal{H}_{A'R})$

ightharpoonup measurements: f_0, \ldots, f_n ,

$$f_i(\Phi) = \operatorname{Tr} M_i(\Phi \otimes id_R)(\rho_{AR}), \quad \Phi \in \mathcal{C}_{A,A'},$$

for some $\rho_{AR} \in \mathfrak{S}(\mathcal{H}_{AR})$ and a POVM $\{M_0, \dots, M_n\}$ on $\mathcal{H}_{A'R}$.

GPT and ordered vector spaces

Ordered vector space: (V, V^+)

- ightharpoonup a real vector space $V\left(\dim(V)<\infty
 ight)$
- ▶ a closed convex cone $V^+ \subset V$, generating in V, $V^+ \cap -V^+ = \{0\}$

Dual OVP: an ordered vector space $(V^*, (V^+)^*)$

- vector space dual V*
- dual cone

$$(V^+)^* = \{ \varphi \in V^*, \langle \varphi, x \rangle \ge 0, \forall x \in V \}$$

We have $V^{**} = V$, $(V^+)^{**} = V^+$.

GPT and ordered vector spaces

Any state space K determines an OVP:

- ▶ A(K) = all affine functions $K \to \mathbb{R}$
- $A(K)^+$ = positive affine functions
- ▶ $E(K) = \{f \in A(K), 0 \le f \le 1_K\}$, 1_K is the constant unit function

Then $(A(K), A(K)^+)$ is an OVP, E(K) is the set of all effects.

A norm in A(K):

$$||f||_{max} = \max_{x \in K} |f(x)|$$

GPT and ordered vector spaces

Let $(V(K), V(K)^+)$ be the dual OVP.

- $K \simeq \{ \varphi \in V(K)^+, \langle \varphi, 1_K \rangle = 1 \}$ a base of $V(K)^+$
- ▶ $V(K)^+ \simeq \cup_{\lambda \geq 0} \lambda K$ the cone generated by K
- ▶ V(K) \simeq the vector space generated by K

Base norm:

$$\|\psi\|_{K} = \inf\{a+b, \ \psi = ax-by, \ a,b \ge 0, x,y \in K\}, \psi \in V(K)$$

- the dual norm to $\|\cdot\|_{max}$.

GPT and ordered vector spaces: self-duality

We say that the cone V^+ is (weakly) self-dual if $V^+\simeq (V^+)^*$

- ▶ classical: $V(\Delta_n)^+ \simeq A(\Delta_n)^+ (\simeq (\mathbb{R}^{n+1})^+)$
- quantum: $V(\mathfrak{S}(\mathcal{H}))^+ \simeq A(\mathfrak{S}(\mathcal{H}))^+ (\simeq B(\mathcal{H})^+)$
- not true for spaces of quantum channels
- not true for all spaces of classical channels

Composition of state spaces: tensor products

Assumption: For state spaces K_A and K_B , the joint state space $K_A \widetilde{\otimes} K_B$ is a subset in $V(K_A) \otimes V(K_B)$.

We have:

$$K_A \otimes_{min} K_B \subseteq K_A \widetilde{\otimes} K_B \subseteq K_A \otimes_{max} K_B$$

minimal tensor product: separable states

$$K_A \otimes_{min} K_B = co\{x_A \otimes x_B, x_A \in K_A, x_B \in K_B\}$$

maximal tensor product: no-signalling

$$K_A \otimes_{max} K_B := \{ y \in V(K_A) \otimes V(K_B), \langle f_A \otimes f_B, y \rangle \ge 0, \\ \langle 1_A \otimes 1_B, y \rangle = 1 \}$$

Composition of state spaces: tensor products

classical:

- $lackbox{}\Delta_{n_A}\otimes_{ extit{min}}\Delta_{n_B}=\Delta_{n_A}\otimes_{ extit{max}}\Delta_{n_B}=\Delta_{n_{AB}}$
- ▶ the probability simplex on $\{0, \dots, n_A\} \times \{0, \dots, n_B\}$

quantum:

- $\blacktriangleright \ \mathfrak{S}(\mathcal{H}_A)\widetilde{\otimes}\mathfrak{S}(\mathcal{H}_B) = \mathfrak{S}(\mathcal{H}_{AB})$
- $\mathfrak{S}(\mathcal{H}_A) \otimes_{min} \mathfrak{S}(\mathcal{H}_B)$ separable states
- ▶ $\mathfrak{S}(\mathcal{H}_A) \otimes_{max} \mathfrak{S}(\mathcal{H}_B)$ normalized entanglement witnesses

quantum channels:

- $\mathcal{C}_{A,A'}\widetilde{\otimes}\mathcal{C}_{B,B'}=\mathcal{C}^{caus}_{AB,A'B'}$ causal bipartite channels
- $ightharpoonup \mathcal{C}_{A,A'} \otimes_{min} \mathcal{C}_{B,B'} = \mathcal{C}_{AB,A'B'}^{loc}$ local bipartite channels
- $ightharpoonup \mathcal{C}_{A,A'} \otimes_{max} \mathcal{C}_{B,B'}$ causal, not necessarily CP

Channels and positive maps

Channels: transformations of the systems allowed in the theory

- lacktriangle affine maps between state spaces K o K'
- ▶ affine maps $K \to V(K')^+$ extend to positive maps of the ordered vector spaces

$$(V(K), V(K)^+) \to (V(K'), V(K')^+)$$

not all affine maps are allowed in general:

- $ightharpoonup \Delta_n
 ightharpoonup \Delta_m$: all classical channels
- ▶ $\mathfrak{S}(\mathcal{H}) \to \mathfrak{S}(\mathcal{H}')$: must be completely positive

Entanglement breaking maps

A positive map $T_A: K_A \to V(K'_A)^+$ is entanglement breaking (ETB) if

$$(T_A \otimes id_B)(K_A \otimes_{max} K_B) \subseteq V(K'_A \otimes_{min} K_B)^+$$

for all state spaces K_R .

 T_A is ETB iff it factorizes through a simplex:

$$T_A: K \xrightarrow{g} \Delta_n \xrightarrow{T_0} V(K')^+$$

 $T_A: K \xrightarrow{g} \Delta_n \xrightarrow{T_0} V(K')^+$ (measure (g) and "prepare" (T_0))

Duality

The space of all linear maps $V(K) \rightarrow V(K')$, with the cone of positive maps is an ordered vector space.

Its dual is the space of linear maps $V(K') \to V(K)$, with the cone of positive ETB maps, duality:

$$\langle T,T'\rangle=\operatorname{Tr} TT'$$

Polysimplices

A polysimplex is a Cartesian product of simplices

$$S_{I_0,...,I_k} := \Delta_{I_0} \times \cdots \times \Delta_{I_k}$$

with pointwise defined convex structure.

- states of a device specified by inputs and allowed outputs
- theories exhibiting super-quantum correlations

(S. Popescu, D. Rohrlich, Found. Phys. 1994; J. Barrett, PRA 2007; P. Janotta, R. Lal, PRA 2013)

Polysimplices

$$S = S_{I_0,...,I_k}$$
:

convex polytope, with vertices

$$\mathsf{s}_{n_0,\ldots,n_k}=(\delta_{n_0}^{l_0},\ldots,\delta_{n_k}^{l_k})$$

 δ^i_j is the *j*-th vertex of Δ_{l_i}

 \triangleright $A(S)^+$: generated by effects of the projections

$$\mathsf{m}^i:\mathsf{S}_{I_0,\ldots,I_k}\to\Delta_{I_i},\ \mathsf{m}^i_0,\ldots,\mathsf{m}^i_{I_i}\in E(\mathsf{S}),$$

The base of $A(S)^+$ is the dual polytope.

Polysimplices: examples

Square (gbit, square-bit): $\square = \Delta_1 \times \Delta_1$

- $V(\Box)^+ \simeq A(\Box)^+$ weakly self-dual
- the only polysimplex with this property

the cone $A(\Box)^+$

Polysimplices: examples

Hypercube:
$$\square_n = \Delta_1 \times \cdots \times \Delta_1$$

▶ base of $A(\square_n)^+$: a cross-polytope

octahedron

Polysimplices: examples

Prism:

$$\mathsf{S}_{2,1} = \Delta_2 \times \Delta_1$$

a base of $A(S_{2,1})^+$

Polysimplices and classical channels

Let $S = \Delta_n^{k+1}$.

A correspondence between $s \in \Delta_n^{k+1}$ and stochastic matrices T:

$$T(j|i) = m_j^i(s), \qquad s = (T(\cdot|0), \dots, T(\cdot|k))$$

 Δ_n^{k+1} is isomorphic to the set of all classical channels

$$\Delta_k \rightarrow \Delta_n$$
.

Any polysimplex is isomorphic to a face in a set of classical channels.

Polysimplices and quantum channels

There are channels $R: C_{A,A'} \to \Delta_n^m$ and $R': \Delta_n^m \to C_{A,A'}$, such that

$$RR' = id$$
.

The maps are determined by ONBs $\{|i_A\rangle\}$, $\{|j_{A'}\rangle\}$ as

$$\begin{split} R(\Phi)(j|i) &= \langle j, \Phi(|i\rangle\langle i|_{A})|j\rangle_{A'}, \quad \forall i,j; \Phi \in \mathcal{C}_{A,A'} \\ R'(s)(\rho) &= \sum_{i,j} \mathsf{m}_{j}^{i}(s)\langle i, \rho|i\rangle_{A}|j\rangle\langle j|_{A'}, \quad \rho \in \mathfrak{S}(\mathcal{H}_{A}); \ s \in \Delta_{n}^{m}. \end{split}$$

Such maps are called: R - retraction, R' - section. Note that R'R is a projection (onto a set of c-c channels).

Incompatible measurements in GPT

A collection of measurements f^0, \ldots, f^k , $f^i : K \to \Delta_{l_i}$, is the same as a channel $F = (f^0, \ldots, f^k) : K \to S_{l_0, \ldots, l_k}$:

$$F(x) = (f^{0}(x), \dots, f^{k}(x)), \quad f^{i} = m^{i}F, \ i = 0, \dots, k$$

compatible: marginals of a single joint measurement

$$g: K \to \Delta_L = \Delta_{I_0} \otimes \cdots \otimes \Delta_{I_k}$$

▶ that is, $(f^0, \ldots, f^k) : K \xrightarrow{g} \Delta_L \xrightarrow{J} S$

 f^0,\ldots,f^k are compatible if and only if (f^0,\ldots,f^k) is ETB.

Incompatibility witnesses

By duality of the spaces of maps:

 $F=(f^0,\ldots,f^k):K\to S$ is incompatible if and only if there is an incompatibility witness: a map $W:S\to V(K)^+$ such that

$$\operatorname{Tr} FW < 0$$

Incompatibility witnesses

Any $W: S \to V(K)^+$ is determined by images of vertices:

$$w_{n_0,\ldots,n_k}=W(s_{n_0,\ldots,n_k})$$

W is ETB iff there are $\psi^i_j \in V(K)^+$ such that

$$w_{n_0,\ldots,n_k} = \sum_i \psi_{n_i}^i$$

Incompatibility witnesses

A witness must be non-ETB, but this is not enough

Characterization of witnesses: $W: S \to V(K)^+$ is a witness iff no translation of W along K is ETB.

Translation along $K \colon \tilde{W} : S \to V(K)^+$, such that

$$\tilde{W}(s) = W(s) + v,$$

for some $\langle 1_K, \nu \rangle = 0$.

Incompatibility witnesses in Bloch ball

Incompatibility witnesses for two-outcome measurements

We have another characterization if S is a hypercube \square_{k+1} : Let $W: \square_{k+1} \to V(K)^+$

> pick a vertex: $s_{n_0,...,n_k}$ all adjacent edges: $e_0,...,e_k$

$$\sum_{i=0}^k \|W(e_i)\|_{\mathcal{K}} > 2\langle 1_{\mathcal{K}}, W(\bar{s}) \rangle$$

Examples of extremal witnesses for pairs of effects

It is enough to use extremal incompatibility witnesses: extremal as maps $S \to V(K)^+$

Some examples for $S = \square$:

Square-bit: $K = \square$

extremal non-ETB maps = symmetries of the square

dihedral group D_4 :

- group of order 8
- ▶ 2 generators: *r*, *s*

non-ETB, no nontrivial translations: witnesses

Examples of extremal witnesses for pairs of effects

Quantum states: $K = \mathfrak{S}(\mathcal{H})$

extremal non-ETB maps: parallelograms in $\mathcal{B}(\mathcal{H})^+$ with rank one vertices:

$$|x_{00}\rangle\langle x_{00}| + |x_{11}\rangle\langle x_{11}| = \rho = |x_{01}\rangle\langle x_{01}| + |x_{10}\rangle\langle x_{10}|,$$

- lacktriangle incompatibility witness if perimeter (in trace norm) $> 2 {
 m Tr} \,
 ho$
- for compatibility of pairs of effects, it is enough to consider restrictions to 2-dimensional subspaces

Incompatibility degree

Can we quantify incompatibility?

(M.M. Wolf et al., PRL 2009; P. Busch et al., EPL 2013; T. Heinosaari et al., J. Phys. A 2016; D. Cavalcanti, P. Szkrzypczyk, PRA 2016)

- Incompatibility degree: the least amount of noise that has to be added to obtain a compatible collection.
- different definitions by the choice of noise
- we choose coin-toss measurements = constant maps $f_p(x) \equiv p \in \Delta$
- Collection of coin-tosses = constant map

$$F_s: K \to s = (p^0, \dots, p^k) \in S$$

always compatible (ETB)

Incompatibility degree

Let $F, F_s : K \to S$, $s \in S$.

We put

$$ID_s(F) = \min\{\lambda, \ (1 - \lambda)F + \lambda F_s \text{ is ETB}\},$$

$$ID(F) := \inf_{s \in S} ID_s(F)$$

(T. Heinosaari et al. PLA 2014)

Incompatibility degree by incompatibility witnesses

For $s \in int(S)$, let us denote

$$\mathcal{W}_s := \{W : \mathsf{S} \to V(K)^+, \ W(s) \in K\}$$

and

$$q_s(F) := \min_{W \in \mathcal{W}_s} \operatorname{Tr} FW.$$

Then

$$ID_s(F) = \left\{ egin{array}{ll} 0 & ext{if } q_s(F) > 0 \ & & \ rac{-q_s(F)}{1-q_s(F)} & ext{otherwise.} \end{array}
ight.$$

This expression is related to (dual) linear programs for incompatibility degree

e.g. (M. Wolf, D. Perez-Garcia, C. Fernandez, PRL 2009)

ID attainable for pairs of quantum effects

Using extremal witnesses $\square \to \mathcal{B}(\mathcal{H})^+$, we can prove:

For quantum state spaces, we have

$$\max_{F:\mathfrak{S}(\mathcal{H})\to\square}ID(F)=1-\frac{1}{\sqrt{2}}$$

- for $ID_{\overline{s}}$, \overline{s} the barycenter of \square , proved already in (M. Banik et al., PRA 2013)

Maximal incompatibility in GPT

For any $s \in S$, it is known that

$$ID_s(F) \leq \frac{k}{k+1}$$

The joint measurement for $\frac{1}{k+1}F + \frac{k}{k+1}F_s$:

- choose one measurement in F uniformly at random
- replace all others by coin-tosses

We say that F is maximally incompatible if $ID(F) = \frac{k}{k+1}$.

Maximal incompatibility for effects

For two-outcome measurements, we have a nice characterization:

Let $F: K \to \square_k$:

F is maximally incompatible if and only if F is a retraction. The corresponding section is the witness $W: \Box_k \to K$ such that ID(F) is attained.

There exist k maximally incompatible effects on K if and only if there exists a projection $K \to K$ whose range is affinely isomorphic to the hypercube \square_k .

Maximal incompatibility: examples

▶ Polysimplices: Let $M : S \to \square_{k+1}$,

$$M = (m_{n_0}^0, \dots, m_{n_k}^k), \qquad n_i \in \{0, \dots, l_i\}$$

Then M is maximally incompatible.

▶ Quantum channels: There are $m = dim(\mathcal{H}_A)$ maximally incompatible effects on $\mathcal{C}_{A,A'}$

compose the retraction $R: \mathcal{C}_{A,A'} \to \Delta_n^m$ with M as above.

(cf. M. Sedlák et al., PRA 2016; AJ, M. Plávala, PRA 2017)

Bell non-locality in GPT

Bell scenario:

The conditional probabilities satisfy the no-signalling conditions:

$$\sum_{j_A} p(j_A, j_B | i_A, i_B) = p_B(j_B | i_B), \quad \forall i_A$$

$$\sum_{j_B} p(j_A, j_B | i_A, i_B) = p_A(j_A | i_A), \quad \forall i_B$$

Bell non-locality in GPT

In our setting:

$$F_A = (f_A^0, \dots, f_A^{k_A}), \ F_B = (f_B^0, \dots, f_B^{k_B}), \ y \in K_A \widetilde{\otimes} K_B$$

$$(F_A \otimes F_B)(y) \in S_A \otimes_{max} S_B$$

There is a correspondence $S_A \otimes_{max} S_B \equiv$ no-signalling conditional probabilities:

$$s \leftrightarrow p(j_A, j_B | i_A, i_B) := (\mathsf{m}_{j_A}^{i_A} \otimes \mathsf{m}_{j_B}^{i_B})(s)$$

- the no-signalling polytope

Bell non-locality in GPT

Local hidden variable model:

$$p(j_A, j_B|i_A, i_B) = \sum_{\lambda} q(\lambda) q_A(j_A|i_A, \lambda) q_B(j_B|i_B, \lambda)$$

(H. M. Wiseman, S. J. Jones, A. C. Doherty, PRL 2007)

Bell witnesses and Bell inequalities

- ▶ $p(j_A, j_B | i_A, i_B)$ admit LHV iff $s \in S_A \otimes_{min} S_B$:
 the local polytope
- ▶ Bell witnesses: entangled elements in $A(S_A \otimes_{min} S_B)^+$
- **Extremal**: finitely many μ_1, \ldots, μ_N
- Bell inequalities:

$$s \in S_A \otimes_{min} S_B \iff \langle \mu_i, s \rangle \geq 0, \quad i = 1, \dots, N$$

▶ $\mu_i \equiv M_i$ extremal affine maps $S_A \rightarrow A(S_B)^+$

Let $s = (F_A \otimes F_B)(y)$. If F_A or F_B is compatible or y separable, then $s \in S_A \otimes_{min} S_B$.

The CHSH inequality

If
$$S_A = S_B = \square$$
:

▶ the CHSH witnesses: $\mu_{\square} \equiv$ isomorphisms

$$M_{\square}:V(\square)^+\to A(\square)^+$$

the CHSH inequality:

$$egin{aligned} 0 &\leq \langle \mu_\square, (F_A \otimes F_B)(y)
angle \ &= rac{1}{2} \left(1 - rac{1}{2} \langle a_0 \otimes (b_0 + b_1) + a_1 \otimes (b_0 - b_1), y
angle
ight) \ &= 1 - 2 (f_A^i)_0, \qquad b_i = 1 - 2 (f_B^i)_0 \end{aligned}$$

Relation of violation of Bell inequalities to incompatibility degree:

If F_A is incompatible, then for any $y \in K_A \widetilde{\otimes} K_B$, any Bell witness μ and $s \in int(S_A)$, we have

$$\langle \mu, F_A \otimes F_B(y) \rangle \geq \|\mu\|_{max} q_s(F_A).$$

- Maximal violation of CHSH inequality: CHSH bound
- Quantum case: Tsirelson bound

Equality case for the CHSH bound: If $K = \mathfrak{S}(\mathcal{H})$ and $S_A = \square$, then there is some $\mathcal{H}_B \simeq \mathcal{H}_A$, $F_B : \mathfrak{S}(\mathcal{H}_B) \to \square$ and $y \in \mathfrak{S}(\mathcal{H}_{AB})$ such that

$$\langle \mu_{\square}, F_A \otimes F_B(y) \rangle = \frac{1}{2} q_{\overline{s}}(F_A)$$

 \overline{s} is the barycenter of \square

(cf. M. M. Wolf et al., PRL 2009; P. Busch, N. Stevens, PRA 2014)

Sketch of a proof using incompatibility witnesses:

 $ightharpoonup \langle \mu, F_A \otimes F_B(y) \rangle = \operatorname{Tr} F_A W \geq (\operatorname{Tr} F_s W) q_s(F_A)$, with

$$S_A \xrightarrow{M} A(S_B)^+ \xrightarrow{F_B^*} A(K_B)^+ \xrightarrow{T} V(K_A)^+$$

W is an incompatibility witness if Bell inequality is violated. (M is a map related to μ and T to y.)

Bell inequalities are obtained from special incompatibility witnesses.

For the equality:

All incompatibility witnesses are obtained from CHSH inequalities.

In general:

$$S_A \xrightarrow{M} A(S_B)^+ \xrightarrow{F_B^*} A(K_B)^+ \xrightarrow{T} V(K_A)^+$$

if $S_A \neq \square$ of $S_B \neq \square$, $M: V(S_A)^+ \rightarrow A(S_B)^+$ is never an isomorphism: weaker witnesses

$$\Longrightarrow$$

there exists incompatible collections that do not violate Bell inequalities

(M. T. Quintino, T. Vértesi, N. Brunner, PRL 2014)

Steering in GPT

- Quantum steering: (E. Schrödinger, Proc. Camb. Phil. Soc. 1936)
- Rigorous definition (in GPT setting):

▶ assemblage: $\{p(j|i), x_{i|i}\}, x_{i|i} \in K_B, p(j|i)$ probabilities

$$\sum_{i} p(j|i)x(j|i) = y_B \in K_B, \quad \forall i$$

Steering in GPT

Local hidden state (LHS) model:

$$p(j|i)x_{j|i} = \sum_{\lambda} q(\lambda)q(j|i,\lambda)x_{\lambda}.$$

(cf. H. M. Wiseman, S. J. Jones, A. C. Doherty, PRL 2007)

Assemblages and tensor products

Let
$$F_A = (f^0, ..., f^k)$$
.

- $(F_A \otimes id_B)(y) \in \mathsf{S} \otimes_{max} K_B$
- ▶ assemblages \equiv elements $\beta \in S \otimes_{max} K_B$:

$$p(j|i)x_{j|i} = \langle \mathsf{m}_j^i \otimes id_B, \beta \rangle$$

- **ightharpoonup** admits LHS model if and only if eta is separable
- for $\beta = (F_A \otimes id_B)(y)$: no steering if y is separable or F_A are compatible.
- ▶ steering witnesses: all entangled elements in $A(S \otimes_{min} K_B)^+$
- steering degree