

REGRAS DE DERIVAÇÃO

16) Se $f(x) = (g \circ L)(x) = g(L(x))$,

where f'(x) = g'(L(x)) L'(x).

Ex: Se $f(x) = Sen(x^{+}) = Sen(x^{+})$ entre $f'(x) = Cos(x^{+}) . + x^{e}$ Sel. Tome $L(x) = x^{+} e g(x) = Sen(x^{+}) = f(x)$.

Tomas $(g \circ L)(x) = g(L(x)) = g(x^{+}) = Sen(x^{+}) = f(x)$.

Low, $g'(x) = Cos(x^{+}) . + x^{e}$.

Day, $g'(x) = Cos(x^{+}) . + x^{e}$.

Ex: Sx $f(x) = \frac{1}{2}q(\underline{Sunx})$, entors $f'(x) = Sxc^{2}(\underline{Sunx}) \cdot \underline{Cosx}.$ Ex: Sx $f(x) = (\underline{Cos}(\frac{1}{2}q(\underline{x^{6}+x+1})))$, and to $f'(x) = -Sun(\frac{1}{2}q(\underline{x^{6}+x+1})) \cdot \underline{Suc^{2}(x^{6}+x+1)}. (6x^{5}+1)$ A+1 Super $f: [-1,1] \rightarrow [-\frac{\pi}{2},\frac{\pi}{2}]$ $x \longmapsto \gamma = f(x)$ Onch $f(x) = \underline{Conc Sunx} = \underline{Sun^{-1}x}.$ There $\underline{Sunx} = \underline{Sun^{-1}x} \cdot \underline{Sun^{-1}x}.$ Onch $f(x) = \underline{Conc Sunx} = \underline{U} \Leftrightarrow \underline{U} \Leftrightarrow$

Chs: $anc Sam x = w \Leftrightarrow Sam w = x$ 18) $Se_{x} f : [-1, 1] \rightarrow [0, 1]$ $x \mapsto y = f(x)$ $and x f(x) = anc Cos x = Cos^{-1}x$ There $s = u f(x) = \frac{1}{1 + x^{2}}$ There $s = u f(x) = \frac{1}{1 + x^{2}}$ $anc x \mapsto y = f(x)$ There $s = u f(x) = \frac{1}{1 + x^{2}}$ $anc x \mapsto y = f(x)$ $anc x \mapsto y = f(x)$ $anc x \mapsto y = f(x)$ There $s = u f(x) = \frac{1}{1 + x^{2}}$ $anc x \mapsto y = f(x)$ $anc x \mapsto y$

The second of t