Handwritten Recognition in Banking : MNIST Implementation

Prepared By: Vaishali Patelia

Content

- > Introduction
- > Problem
- > MINST Dataset
- > Solutions Machine Learning Approaches
- > Implementation
- > Conclusion

Handwritten Filled Deposit Slip

NAME Jane Doe	CASH	100	00	
DATE 01/01/2025	CHECK	150	50	
ADDRESS 123 Main St., USA		75	00	
ACCOUNT NUMBER 123456789				
Jane Ooe	SUBTOTAL	325	50	
Signature	LESS CASH	4 0	00	
Signature	NET DEPOSIT	285	50	

Source: supermoney

Problem

Handwritten Deposit Slip

Manual check and deposit slip processing is slow and error-prone.

Document verification is inefficient.

MNIST Dataset Overview

- Number of Instances & Attributes: 70,000 images & 784 (28x28 pixels)
- Target: Column represents the digit (0-9) corresponding to the handwritten image

The dataset is divided into two main subsets:

- Training Set: Consists of 60,000 images along with their labels.
- Test Set: Contains 10,000 images with their corresponding labels.

```
5041921314
3536172869
409/124327
3869056076
1819398593
3074980941
4460456100
1716302117
9026783904
6746807831
```


Visualization of Mean Pixel Intensity Across MNIST Dataset: This image represents the average pixel intensity for each digit (0-9)

Histogram of Pixel Intensities for Digit 3

Checking Target Imbalance

Solutions

Machine Learning Approaches

Gaussian Naïve Bayes (GNB)

Non-Naïve Bayes (Multivariate Gaussian)

K-Nearest Neighbors (KNN)

q

Gaussian Naïve Bayes (GNB)

Used Scaling to Improve Accuracy

Accuracy	Before Scaling	After Scaling - X/255				
Train Dataset	0.593	0.768				
Test Dataset	0.587	0.774				

Non-Naïve Bayes (Multivariate Gaussian)

Adjust epsilon to Improve Accuracy

Accuracy	Before Adjust Parameter	After Adjust Parameter				
Train Dataset	0.783	0.9549				
Test Dataset	0.751	0.9542				

K-Nearest Neighbors (KNN)

Finds closest k points using distance. K = 20 / 200

Extracts a subset of the training dataset

Accuracy of train dataset - 0.902 test dataset - 0.91

Using Full Dataset (70,000 samples): -97% (Referenced)

	0 -	5268	8	55	10	13	29	143	2	351	44		- 6000
	- -	0	6411	23	39	5	27	56	4	133	44	П	
	2	80	134	4134	231	64	32	547	20	682	34	П	-5000
	3	64	259	263	4428	40	94	131	77	452	323	П	-4000
label	4 -	25	45	97	9	3360	78	204	25	229	1770	П	
True	5	192	111	74	579	132	2806	188	19	1009	311		-3000
		39	96	57	1	11	83	5504	1	122	4		- 2000
	7	23	58	20	60	161	9	7	4715	91	1121	П	2000
	8 -	54	664	86	140	84	145	60	14	4143	461		- 1200
	6	21	51	27	25	197	10	3	183	107	5325		
		0	1	2	3 Pı	4 redicte	5 ed lab	6 el	7	8	9		-0

	0 -	887	0	6	3	4	8	23	1	44	4	- 1000
	- -	0	1087	3	5	0	1	7	0	31	1	1303
	2	19	21	690	45	10	4	92	8	135	8	- 800
	3	10	32	23	766	3	17	23	16	63	57	
label	4 -	6	3	9	3	559	10	32	6	34	320	- 600
True label	5	26	20	9	89	24	467	23	8	174	52	
	9	9	12	13	2	3	18	879	0	21	1	-400
	7	0	17	9	8	21	1	3	779	28	162	
	8 -	8	68	10	26	15	26	8	6	721	86	-200
	6	4	8	5	9	28	1	0	21	22	911	
		0	1	2	3	1 4	1 5	6	7	1 8	9	-0
	Predicted label											

Model Training & Results

Algorithm	Accuracy	Pros	Cons
Gaussian Naïve Bayes	77.4% (after scaling)	Fast, low memory usage, improved accuracy with scaling	Assumes feature independence
Non-Naïve Bayes	95.42% (after adjust parameter)	Captures pixel dependencies	Complex computation
KNN	97% (Referenced)	High accuracy	Slow inference time

Implementation

Mobile Check Deposit using Handwriting Recognition

Banking Apps (Chase, Wells Fargo, PayPal, Google Pay, Apple Pay)

Source: callawaybank

Mobile Check Deposit App

How it Works:

User takes a picture of a check.

Machine learning model detects & extracts handwritten account numbers and amounts.

Verifies authenticity and detects fraud.

Deposits funds into the account automatically.

Benefits:

Reduces fraud & manual verification.

Faster processing & improved user experience.

Source: androidauthority

Conclusion

Handwritten recognition significantly enhances the speed and accuracy of processing checks and receipts.

GNB improved from 59% to 77% accuracy with feature scaling.

Non-Naïve Bayes reached 95% accuracy after parameter adjustments.

KNN achieved the highest accuracy of 97%, making it the best but slowest model.

