

精英 V2 硬件参考手册 V1.0

-正点原子精英 STM32F103 开发板教程

修订历史:

版本	日期	修改内容
V1.0	2021/06/20	第一次发布

②正点原子

正点原子公司名称 : 广州市星翼电子科技有限公司

原子哥在线教学平台: www.yuanzige.com

开源电子网 / 论坛 : www.openedv.com

正点原子官方网站: www.alientek.com

正点原子淘宝店铺 : https://openedv.taobao.com

正点原子 B 站视频 : https://space.bilibili.com/394620890

电话: 020-38271790 传真: 020-36773971

请下载原子哥 APP,数千讲视频免费学习,更快更流畅。 请关注正点原子公众号,资料发布更新我们会通知。

扫码关注正点原子公众号

扫码下载"原子哥"APP

内容简介	6
第一章 实验平台简介	7
1.1 精英 V2 开发板资源初探	7
1.1.1 精英 V2 硬件设计特点	7
1.1.2 精英 V2 硬件基本参数	7
1.1.3- 精英 V2 硬件资源分布	8
1.1.4 精英 V2 硬件资源列表	9
1.2 精英 V2 开发板资源说明	
1.2.1 硬件资源说明	
1.2.2 精英 V2 IO 引脚分配	14
1.3 精英 V2 升级说明	
第二章 实验平台硬件资源详解	19
2.1 开发板原理图详解	19
2.1.1 MCU	
2.1.2 引出 IO 口	21
2.1.3 USB 串口/串口 1 选择接口	22
2.1.4 JTAG/SWD	23
2.1.5 LCD 模块接口	23
2.1.6 复位电路	24
2.1.7 启动模式设置接口	25
2.1.8 RS485 接口	25
2.1.9 CAN/USB 接口	26
2.1.10 EEPROM	26
2.1.11 光敏传感器	27
2.1.12 SPI FLASH	27
2.1.13 温湿度传感器接口	27
2.1.14 红外接收头	28
2.1.15 无线模块接口	28
2.1.16 LED	28
2.1.17 按键	29
2.1.18 TPAD 电容触摸按键	29
2.1.19 OLED/摄像头模块接口	29
2.1.20 有源蜂鸣器	30

2.1.21 TF 卡接口	31
2.1.22 ATK 模块接口	31
2.1.23 多功能端口	31
2.1.24 电源	
2.1.25 电源输入输出接口	
2.1.26 USB 串口	
2.2 开发板使用注意事项	
2.2 开及依仗用工心事务	J¬

内容简介

本手册主要介绍精英 V2 的硬件资源,包括:实验平台简介、实验平台硬件资源详解以及使用注意事项等。通过本手册的学习,大家将会对精英 V2 开发板的硬件有一个比较全面的了解,对后续的软件学习及程序设计非常有帮助。

本手册是《STM32F103 开发指南》的重要补充教程,强烈建议大家在学习相关例程前,先学习本手册!

第一章 实验平台简介

本章主要介绍我们的实验平台:正点原子精英 V2 STM32F103 开发板。通过本章的学习,您将对我们后面使用的实验平台有个大概了解,为后面的学习做铺垫。

本章将分为如下两节:

- 1.1,精英 V2 开发板资源初探;
- 1.2, 精英 V2 开发板资源说明:

1.1 精英 V2 开发板资源初探

自从 2015 年上市以来,正点原子精英 STM32F103 开发板广受客户好评,并常年稳居淘宝 STM32 系列开发板销量冠军,总销量超过 5W 套。最新的精英 STM32F103 V2 开发板,则是根据广大客户反馈,在精英 V1 的基础上进行改进而来(具体改变见 1.3 节),下面我们开始介绍精英 V2。

1.1.1 精英 V2 硬件设计特点

精英 V2 STM32F103 开发板硬件设计特点包括:

- 1)接口丰富。板子提供十来种标准接口,可以方便的进行各种外设的实验和开发。
- 2) **设计灵活。**板上很多资源都可以灵活配置,以满足不同条件下的使用。我们引出了除晶振占用的 IO 口外的所有 IO 口,可以极大的方便大家扩展及使用。另外板载一键下载功能,可避免频繁设置 B0、B1 的麻烦,仅通过 1 根 USB 线即可实现 STM32 的开发。
- 3) **资源充足。**主芯片采用自带 512K 字节 FLASH 的 STM32F103ZET6,并外扩 16M 字节 FLASH,满足大数据存储需求。
- 4) **人性化设计。**各个接口都有丝印标注,且用方框框出,使用起来一目了然;部分常用外设大丝印标出,方便查找;接口位置设计合理,方便顺手。资源搭配合理,物尽其用。
- 5) **国产化程度高。**为了支持国产芯片的发展和推广,正点原子优选国产好芯,精英 V2 开发板上凡是能用国产替代的芯片,全部使用国产芯片,国产化率达到 80%(数量)。

1.1.2 精英 V2 硬件基本参数

精英 V2 硬件基本参数如表 1.1.2.1 所示:

项目	说明
产品型号	ATK-DNF103 V2
CPU	STM32F103ZET6, LQFP144
引出 IO	110 个
外形尺寸	117mm*115mm
工作电压	5V (USB), DC6V~15V (DC005)
工作电流	30mA~65mA¹ (@5V)
工作温度	-40°C~+85°C

表 1.1.2.1 精英 V2 硬件基本参数

注 1: 30mA 对应 CPU 在复位情况下,裸板的工作电流;65mA 对应 CPU 正常运行时裸板的工作电流。

1.1.3 精英 V2 硬件资源分布

精英 V2 的硬件资源分布如图 1.1.3.1 所示:

图 1.1.3.1 精英 V2 硬件资源分布图

1.1.4 精英 V2 硬件资源列表

精英 V2 的硬件资源列表如表 1.1.4.1 所示:

资源	数量	说明			
CPU	1个	STM32F103ZET6; FLASH: 512KB; SRAM: 64KB;			
SPI FLASH	1个	16MB			
EEPROM	1个	2Kb (256B)			
电源指示灯	1个	蓝色			
状态指示灯	2个	红色 (DS0); 绿色 (DS1);			
复位按键	1个	用于 MCU&LCD 的复位			
功能按键	3个	KEY0、KEY1、KEY_UP(具备唤醒功能)			
电容触摸按键	1个	TPAD,用于电容触摸按键			
电源开关	1个	控制整个板子供电			
可调电位器	1个	用于设置 RV1 的电源,方便 ADC 实验测试			
蜂鸣器	1个	有源蜂鸣器,用于发出提示音			
红外接收头	1个	用于红外接收,配备红外遥控器			
光敏传感器	1个	用于感应环境光照强度			
无线模块接口	1个	可以接 NRF24L01 等无线模块			
CAN 接口	1个	用于 CAN 通信,带 120R 终端电阻			
RS485 接口	1个	用于 RS485 通信,带 120R 终端电阻			
数字温湿度传感器接口	1个	支持 DS18B20、DHT11 等数字温湿度传感器			
ATK 模块接口	1个	支持正点原子各种模块产品(蓝牙/GPS/MPU6050等)			
LCD 接口	1个	支持正点原子 2.8/3.5/4.3/7 寸等多种 TFTLCD 模块			
摄像头接口	1个	和 OLED 共用一个接口,支持正点原子各种摄像头模块			
OLED 模块接口	1个	和摄像头模块接口共用,支持正点原子各种 OLED 模块			
USB 转串口	1个	用于 USB 转 TTL 串口通信			
USB 从机接口	1个	用于 USB SLAVE(从机)通信			
485 选择接口	1个	用于选择 PA2/PA3 是否用作 RS485 通信			
CAN/USB 选择接口	1个	用于选择 PA11/PA12 做 CAN 还是 USB 通信			
TF 卡接口	1个	用于接 TF 卡			
JTAG/SWD 调试口	1个	用于仿真调试、下载代码等			
多功能接口	1组	用于 DAC/ADC/TPAD/RV1 等互联			
5V 电源输入/输出口	1组	用于 5V 电源接入/对外提供 5V 电压			
3.3V 电源输入/输出口	1组	用于 3.3V 电源接入/对外提供 3.3V 电压			
直流电源输入接口	1个	支持 DC6V~15V 直流电源输入,采用 DC005 接口			
启动模式选择配置接口	1个	用于设置 STM32 启动模式			
后备电池接口	1个	用于 RTC 后备电池			
引出 IO	110	除 RTC 晶振占用的 2 个 IO 口外, 其他 IO 口全引出			
一键下载电路	1个	正点原子专利电路,方便使用串口下载代码			

表 1.1.4.1 精英 V2 的硬件资源列表

1.2 精英 V2 开发板资源说明

精英 V2 资源说明, 我们将分为两个部分: 硬件资源说明和精英 V2 IO 引脚分配。

1.2.1 硬件资源说明

这里我们详细介绍精英 STM32F103 的各个部分(图 1.1.3.1 中的标注部分)的硬件资源, 我们将按逆时针的顺序依次介绍。

1. WIRELESS 模块接口

这是开发板板载的无线模块接口(U2),可以外接 NRF24L01/RFID等无线模块。从而实现无线通信等功能。注意:接 NRF24L01模块进行无线通信的时候,必须同时有 2 个模块和 2 个板子,才可以测试,单个模块/板子例程是不能测试的。

2. 16MB SPI FLASH

这是开发板外扩的 SPI FLASH 芯片(U8),容量为 128Mbit,也就是 16M 字节,可用于存储字库和其他用户数据,满足大容量数据存储要求。当然如果觉得 16M 字节还不够用,你可以把数据存放在外部 TF 卡。

3. TF 卡接口

这是开发板板载的一个 TF 卡接口(也叫 Micro SD 卡), SDIO 方式驱动, TF 卡容量选择范围非常宽(最大可达 TB 级),有了这个 TF 卡接口,就可以满足海量数据存储的需求。

4. CAN/USB 选择口

这是一个 CAN/USB 的选择接口 (P9), 因为 STM32 的 USB 和 CAN 是共用一组 IO (PA11 和 PA12), 所以我们通过跳线帽来选择不同的功能,以实现 USB/CAN 实验。

5. USB 串口/串口 1

这是 USB 串口同 STM32F103ZET6 的串口 1 进行连接的接口 (P3),标号 RXD 和 TXD 是 USB 转串口的 2 个数据口 (对 CH340 来说),而 PA9(TXD)和 PA10(RXD)则是 STM32 的串口 1 的两个数据口 (复用功能下)。他们通过跳线帽对接,就可以和连接在一起了,从而实现 STM32 的程序下载以及串口通信。

设计成 USB 串口,是出于现在电脑上串口正在消失,尤其是笔记本,几乎清一色的没有串口。所以板载了 USB 串口可以方便大家下载代码和调试。而在板子上并没有直接连接在一起,则是出于使用方便的考虑。这样设计,你可以把精英开发板当成一个 USB 转 TTL 串口,来和其他板子通信,而其他板子的串口,也可以方便地接到精英开发板上。

6. JTAG/SWD 接口

这是精英开发板板载的 20 针标准 JTAG 调试口(JTAG),该 JTAG 口直接可以和 DAP、 JLINK 或者 STLINK 等调试器(仿真器)连接,同时由于 STM32 支持 SWD 调试,这个 JTAG 口也可以用 SWD 模式来连接。

用标准的 JTAG 调试,需要占用 5 个 IO 口,有些时候,可能造成 IO 口不够用,而用 SWD 则只需要 2 个 IO 口,大大节约了 IO 数量,但他们达到的效果是一样的,所以我们强烈建议仿真器使用 SWD 模式!

7. 24C02 EEPROM

这是开发板板载的 EEPROM 芯片 (U9),容量为 2Kb,也就是 256 字节。用于存储一些掉电不能丢失的重要数据,比如系统设置的一些参数/触摸屏校准数据等。有了这个就可以方便的实现掉电数据保存。

8. USB SLAVE

这是开发板板载的一个 Type C USB 头 (USB SLAVE),用于 USB 从机 (SLAVE) 通信,

一般用于 STM32 与电脑的 USB 通信。通过此接口,开发板就可以和电脑进行 USB 通信了。

开发板总共板载了 2 个 Type C USB 头,一个 (USB_UART)用于 USB 转串口,连接 CH340 芯片,另外一个 (USB_SLAVE)用于 STM32 内带的 USB。同时开发板可以通过此接头供电,板载两个 Type C USB 头(不共用),主要是考虑了使用的方便性,以及可以给板子提供更大的电流(两个 USB 都接上)这两个因素。

9. USB 转串口

这是开发板板载的另外一个 Type C USB 头 (USB_UART),用于 USB 连接 CH340 芯片,从而实现 USB 转 TTL 串口。同时,此接头也是开发板电源的主要提供口。

10. 后备电池接口

这是 STM32 后备区域的供电接口(BAT),可安装 CR1220 电池(默认安装了),可以用来给 STM32 的后备区域提供能量,在外部电源断电的时候,维持后备区域数据的存储,以及 RTC 的 运行。

11. OLED/摄像头模块接口

这是开发板板载的一个 OLED/摄像头模块接口 (P4), 如果是 OLED 模块, 靠左插即可 (右边两个孔位悬空)。如果是摄像头模块 (正点原子提供),则刚好插满。通过这个接口,可以分别连接 2 种外部模块,从而实现相关实验。

12. 有源蜂鸣器

这是开发板的板载蜂鸣器(BEEP),可以实现简单的报警/闹铃等功能。

13. 红外接收头

这是开发板的红外接收头(U6),可以实现红外遥控功能,通过这个接收头,可以接受市面常见的各种遥控器的红外信号,大家甚至可以自己实现万能红外解码。当然,如果应用得当,该接收头也可以用来传输数据。

精英开发板给大家配备了一个小巧的红外遥控器,该遥控器外观如图 1.2.1.1 所示:

图 1.2.1.1 红外遥控器

14. DS18B20/DHT11 接口

这是开发板的一个复用接口(U4),该接口由 4 个镀金排孔组成,可以用来接 DS18B20/DS1820 等数字温度传感器。也可以用来接 DHT11 这样的数字温湿度传感器。实现一个接口,2个功能。不用的时候,大家可以拆下上面的传感器,放到其他地方去用,使用上是十分方便灵活的。

15. 2 个 LED

这是开发板板载的两个 LED 灯(DS0 和 DS1), DS0 是红色的, DS1 是绿色的, 主要是方便大家识别。

我们一般的应用 2 个 LED 足够了,在调试代码的时候,使用 LED 来指示程序状态,是非常不错的一个辅助调试方法。精英开发板几乎每个实例都使用了 LED 来指示程序的运行状态。

16. 启动选择端口

这是开发板板载的启动模式选择端口(BOOT), STM32 有 BOOT0(B0)和 BOOT1(B1)两个启动选择引脚,用于选择复位后 STM32 的启动模式,作为开发板,这两个是必须的。在开发板上,我们通过跳线帽选择 STM32 的启动模式。关于启动模式的说明,请看 2.1.7 小节。

17. 触摸按钮

这是开发板板载的一个电容触摸输入按键(TPAD),利用电容充放电原理,实现触摸按键检测。

18. 电源指示灯

这是开发板板载的一颗蓝色的 LED 灯 (PWR),用于指示电源状态。在电源开启的时候(通过板上的电源开关控制),该灯会亮,否则不亮。通过这个 LED,可以判断开发板的上电情况。

19. 复位按钮

这是开发板板载的复位按键(RESET),用于复位 STM32,还具有复位液晶的功能,因为液晶模块的复位引脚和 STM32 的复位引脚是连接在一起的,当按下该键的时候,STM32 和液晶一并被复位。

20.3 个按键

这是开发板板载的 3 个机械式输入按键(KEY0、KEY1 和 KEY_UP),其中 KEY_UP 具有唤醒功能,该按键连接到 STM32 的 WAKE_UP(PA0)引脚,可用于待机模式下的唤醒,在不使用唤醒功能的时候,也可以做为普通按键输入使用。

其他 2 个是普通按键,可以用于人机交互的输入,这 2 个按键是直接连接在 STM32 的 IO 口上的。这里注意 KEY_UP 是高电平有效,而 KEY0 和 KEY1 是低电平有效,大家在使用的时候留意一下。

21. 可调电位器

这是一个 3362 型可调电位器(RV1),通过它可以调节 RV1 端口电压(范围: 0~3.3V),当 我们用杜邦线连接 P7 的 RV1 和 ADC 后,在 ADC 实验的时候,就可以通过它调整 ADC 的输入电压,方便大家测试。

22. 多功能端口

这是1个由4个排针组成的一个接口(P7)。不过大家可别小看这4个排针,这组端口通过组合可以实现的功能有:ADC采集、DAC输出、电容触摸按键、DACADC自测等,所有这些,你只需要1个跳线帽的设置,就可以逐一实现。

23. STM32F103ZET6

这是开发板的核心芯片 (U1), 型号为: STM32F103ZET6。该芯片具有 64KB SRAM、512KB FLASH、2 个基本定时器、4 个通用定时器、2 个高级定时器、2 个 DMA 控制器(共 12 个通道)、3 个 SPI、2 个 IIC、5 个串口、1 个 USB、1 个 CAN、3 个 12 位 ADC、1 个 12 位 DAC、1 个 SDIO 接口、1 个 FSMC 接口以及 112 个通用 IO 口。

24. ATK 模块接口

这是开发板板载的一个正点原子通用模块接口(U3),目前可以支持正点原子开发的 GPS、蓝牙、LORA、手势识别、激光测距和 MPU6050 等模块,直接插上对应的模块,就可以进行开发。后续我们将开发更多兼容该接口的其他模块,实现更强大的扩展性能。

25. 3.3V 电源输入/输出

这是开发板板载的一组 3.3V 电源输入输出排针 (2*3) (VOUT1), 用于给外部提供 3.3V 的电源, 也可以用于从外部接 3.3V 的电源给板子供电。

大家在实验的时候可能经常会为没有 3.3V 电源而苦恼不已,有了精英开发板,你就可以很方便的拥有一个简单的 3.3V 电源(USB 供电的时候,最大电流不能超过 500mA,外部供电的时候,最大可达 1000mA)。

26. 5V 电源输入/输出

这是开发板板载的一组 5V 电源输入输出排针(2*3)(VOUT2),该排针用于给外部提供 5V 的电源,也可以用于从外部接 5V 的电源给板子供电。

同样大家在实验的时候可能经常会为没有 5V 电源而苦恼不已,正点原子充分考虑到了大家需求,有了这组 5V 排针,你就可以很方便的拥有一个简单的 5V 电源(USB 供电的时候,最大电流不能超过 500mA,外部供电的时候,最大可达 1000mA)。

27. 电源开关

这是开发板板载的电源开关(K2)。该开关用于控制整个开发板的供电,如果切断,则整个开发板都将断电,电源指示灯(PWR)会随着此开关的状态而亮灭。

28. DC6~15V 电源输入

这是开发板板载的一个外部电源输入口(DC_IN),采用标准的直流电源插座。开发板板载了 DC-DC 芯片,用于给开发板提供高效、稳定的 5V 电源。由于采用了 DC-DC 芯片,所以开发板的供电范围比较宽,大家可以很方便的找到合适的电源(只要输出范围在 DC6~15V 的基本都可以)来给开发板供电。在耗电比较大的情况下,比如用到 4.3 屏/7 寸屏/网口的时候,建议使用外部电源供电,可以提供足够的电流给开发板使用。

29. 485 选择接口

这是开发板板载的 RS485 选择接口(P5), TP3485 通过这个接口来决定是否连接到 STM32 的串口 2(USART2), 当这里断开的时候: 串口 2 可以用作普通串口使用, 而 RS485 则可以用来实现 RS485 转 TTL 的功能; 当这里接上时: 串口 2 连接 TP8485, 就可以实现 RS485 通信。

30. 引出 IO 口(总共有 2 处)

这是开发板 IO 引出端口,总共两组主 IO 引出口: P1 和 P2,采用 2*27 排针引出,总共引出 106 个 IO 口。而 STM32F103ZET6 总共只有 112 个 IO,除去 RTC 晶振占用的 2 个 IO,还剩下 110 个,这两组排针,总共引出 106 个 IO,剩下的 4 个 IO 口分别通过: P3 和 P5 引出。

31. LCD 接口

这是开发板板载的 LCD 模块接口,该接口兼容正点原子全系列 TFTLCD 模块(MCU 屏),包括: 2.8 寸、3.5 寸、4.3 寸和 7 寸等 TFTLCD 模块,并且支持电阻/电容触模功能。

32. 光敏传感器

这是开发板板载的一个光敏传感器(LS1),通过该传感器,开发板可以感知周围环境光线的变化,从而可以实现类似自动背光控制的应用。

33. RS485 总线接口

这是开发板板载的 RS485 总线接口 (RS485),通过 2 个端口和外部 485 设备连接。这里提醒大家,RS485 通信的时候,必须 A 接 A,B 接 B。否则可能通信不正常! 另外,开发板自带了终端电阻(120 Ω)。

34. CAN 接口

这是开发板板载的 CAN 总线接口 (CAN),通过 2 个端口和外部 CAN 总线连接,即 CANH和 CANL。这里提醒大家:CAN 通信的时候,必须 CANH接 CANH,CANL接 CANL,否则可能通信不正常!这里,开发板也是自带了终端电阻(120 Ω)。

1.2.2 精英 V2 IO 引脚分配

为了让大家更快更好的使用我们的精英 V2 开发板,这里特地将精英 V2 开发板主芯片: STM32F103ZET6 的 IO 资源分配做了一个总表,以便大家查阅。精英 V2 的 IO 引脚分配总表 如表: 1.2.2.1 所示:

M-10.	1.2.2.1 ////\\$\;						
引脚 编号	GPI0	连接资源		完全 独立	连接关系说明		
9.4	DAG	WIZ LID		V	1,按键 KEY_UP		
34	PA0	WK_UP		Y	2,可以做待机唤醒脚(WKUP)		
35	PA1	STM_ADC	TPAD	Y	ADC 输入引脚,同时做 TPAD 检测脚		
36	PA2	USART2_TX	485_RX	Y	RS485 RX 脚(P5 设置)		
37	PA3	USART2_RX	485_TX	Y	RS485 TX 脚(P5 设置)		
40	DAA	CTM DAC	GBC KEY	Y	1, DAC_OUT1 输出脚		
40	PA4	STM_DAC	GDC_KE1	1	2, ATK-MODULE 接口的 KEY 引脚		
41	PA5			Y	未接任何外设		
42	PA6			Y	未接任何外设		
43	PA7			Y	未接任何外设		
100	PA8	OV_VSYNC		Y	OLED/CAMERA 接口的 VSYNC 脚		
101	PA9	USART1_TX		Y	串口 1 TX 脚, 默认连接 CH340 的 RX (P3 设置)		
102	PA10	USART1_RX		Y	串口 1 RX 脚, 默认连接 CH340 的 TX (P3 设置)		
100	DA 1.1	HCD D	CDV	V	1, USB D-引脚(P6 设置)		
103	PA11	USB_D-	CRX	Y	2, CRX 引脚(P6 设置)		
104	DA 10	HCD D	CTV	Y	1, USB D+引脚(P6 设置)		
104	PA12	USB_D+	CTX	1	2, CTX 引脚(P6 设置)		
105	PA13	JTMS	SWDIO	N	JTAG/SWD 仿真接口,没接任何外设		
103	FAIS	J I MS	3#DIO	IN	注意:如要做普通 IO,需先禁止 JTAG&SWD		
109	PA14	JTCK	SWDCLK	N	JTAG/SWD 仿真接口,没接任何外设		
103	INIT	JICK	SWDCLK	IN	注意: 如要做普通 IO,需先禁止 JTAG&SWD		
					1, JTAG 仿真口(JTDI)		
110	PA15	JTDI	GBC_LED	N	2, ATK-MODULE 接口的 LED 引脚(使用时,需先禁止		
					JTAG,才可以当普通 IO 使用)		
46	PB0	LCD_BL		Y	TFTLCD 接口背光控制脚		
47	PB1	T_SCK		Y	TFTLCD 接口触摸屏 SCK 信号		
					1,B00T1,启动选择配置引脚(仅上电时用)		
48	PB2	B00T1	T_MISO	N	2, TFTLCD 接口触摸屏 MISO 信号		
					1, JTAG 仿真口(JTDO)		
133	PB3	JTD0	OV_WEN	N	2,OLED/CAMERA 接口 WEN 脚(使用时,需先禁止		
					JTAG,才可以当普通 IO 使用)		
					1, JTAG 仿真口(JTRST)		
134	PB4	JTRST OV_RCLK	OV_RCLK	N	2, OLED/CAMERA 接口 RCLK 脚(<mark>使用时,需先禁止</mark>		
					JTAG,才可以当普通 IO 使用)		
135	PB5	LED0		N	接 DSO LED 灯 (红色)		

136 PB6 IIC_SCL N 接 24C02 的 SCL 137 PB7 IIC_SDA N 接 24C02 的 SDA 139 PB8 BEEP N 接蜂鸣器 (BEEP) 140 PB9 REMOTE_IN N 接 LF0038 红外接收头	
139 PB8 BEEP N 接蜂鸣器(BEEP)	
140 PRO PRMOTE IN N	
140 1103 IN 按 LF 00030 红 为 Y 放 x x x x x x x x x x x x x x x x x x	
69 PB10 GBC_RX Y 接 ATK-MODULE 接口的 RXD 脚	
70 PB11 GBC_TX Y 接ATK-MODULE接口的TXD脚	
73 PB12 F_CS N 25Q128 的片选信号	
74 PB13 SPI2_SCK N 25Q128 和 WIRELESS 接口的 SCK 信号	
75 PB14 SPI2_MISO N 25Q128 和 WIRELESS 接口的 MISO 信号	
76 PB15 SPI2_MOSI N 25Q128 和 WIRELESS 接口的 MOSI 信号	
26 PCO OV_DO Y OLED/CAMERA 接口的 DO 脚	
27 PC1 OV_D1 Y OLED/CAMERA 接口的 D1 脚	
28 PC2 OV_D2 Y OLED/CAMERA 接口的 D2 脚	
29 PC3 OV_D3 Y OLED/CAMERA 接口的 D3 脚	
44 PC4 OV_D4 Y OLED/CAMERA 接口的 D4 脚	
45 PC5 OV_D5 Y OLED/CAMERA 接口的 D5 脚	
96 PC6 OV_D6 Y OLED/CAMERA 接口的 D6 脚	
97 PC7 OV_D7 Y OLED/CAMERA 接口的 D7 脚	
98 PC8 SDIO_DO N SD 卡接口的 DO	
99 PC9 SDIO_D1 N SD 卡接口的 D1	
111 PC10 SDIO_D2 N SD 卡接口的 D2	
112 PC11 SDIO_D3 N SD 卡接口的 D3	
113 PC12 SDIO_SCK Y SD卡接口的 SCK	
7 PC13 Y 未接任何外设	
8 PC14 RTC 晶振 N 接 32. 768K 晶振, 不可用做 IO	
9 PC15 RTC 晶振 N 接 32. 768K 晶振, 不可用做 IO	
114PDOFSMC_D2YFSMC 总线数据线 D2 (TFTLCD 接口用)	
115 PD1 FSMC_D3 Y FSMC 总线数据线 D3 (TFTLCD 接口用)	
116 PD2 SDIO_CMD N SD卡接口的 CMD	
117 PD3 OV_SCL N OLED/CAMERA 接口的 SCL 信号	
118 PD4 FSMC_NOE Y FSMC 总线 NOE (RD) (TFTLCD 接口用)	
119 PD5 FSMC_NWE Y FSMC 总线 NWE (WR) (TFTLCD 接口用)	
122 PD6 OV_WRST Y OLED/CAMERA 接口的 WRST 信号	
123 PD7 RS485_RE N 接 TP3485 芯片的 RE 引脚	
77 PD8 FSMC_D13 Y FSMC 总线数据线 D13 (TFTLCD 接口用)	
78 PD9 FSMC_D14 Y FSMC 总线数据线 D14(TFTLCD 接口用)	
79 PD10 FSMC_D15 Y FSMC 总线数据线 D15 (TFTLCD 接口用)	
80 PD11 Y 未接任何外设	
81 PD12 Y 未接任何外设	
82 PD13 Y 未接任何外设	
OF DD14 DCMC DO V DCMC V AD WALLEY AD A ADDRESS OF THE HIT	
85 PD14 FSMC_D0 Y FSMC 总线数据线 D0 (TFTLCD 接口用)	

	正点原子精英 STM32F103 开发板教程					
141	PE0			Y	未接任何外设	
142	PE1			Y	未接任何外设	
1	PE2			Y	未接任何外设	
2	PE3	KEY1		Y	接按键 KEY1	
3	PE4	KEYO		Y	接按键 KEYO	
4	PE5	LED1		N	接 DS1 LED 灯 (绿色)	
5	PE6			Y	未接任何外设	
58	PE7	FSMC_D4		Y	FSMC 总线数据线 D4(TFTLCD 接口用)	
59	PE8	FSMC_D5		Y	FSMC 总线数据线 D5(TFTLCD 接口用)	
60	PE9	FSMC_D6		Y	FSMC 总线数据线 D6(TFTLCD 接口用)	
63	PE10	FSMC_D7		Y	FSMC 总线数据线 D7 (TFTLCD 接口用)	
64	PE11	FSMC_D8		Y	FSMC 总线数据线 D8 (TFTLCD 接口用)	
65	PE12	FSMC_D9		Y	FSMC 总线数据线 D9 (TFTLCD 接口用)	
66	PE13	FSMC_D10		Y	FSMC 总线数据线 D10(TFTLCD 接口用)	
67	PE14	FSMC_D11		Y	FSMC 总线数据线 D11(TFTLCD 接口用)	
68	PE15	FSMC_D12		Y	FSMC 总线数据线 D12(TFTLCD 接口用)	
10	PF0			Y	未接任何外设	
11	PF1			Y	未接任何外设	
12	PF2			Y	未接任何外设	
13	PF3			Y	未接任何外设	
14	PF4			Y	未接任何外设	
15	PF5			Y	未接任何外设	
18	PF6			Y	未接任何外设	
19	PF7			Y	未接任何外设	
20	PF8	LIGHT_SE	NSOR	N	接光敏传感器(LS1)	
21	PF9	T_MOSI		Y	TFTLCD 接口触摸屏 MOSI 信号	
22	PF10	T_PEN		Y	TFTLCD 接口触摸屏 PEN 信号	
49	PF11	T_CS		Y	TFTLCD 接口触摸屏 CS 信号	
50	PF12			Y	未接任何外设	
53	PF13			Y	未接任何外设	
54	PF14			Y	未接任何外设	
55	PF15			Y	未接任何外设	
56	PG0	FSMC_A10		Y	FSMC 总线地址线 A10(TFTLCD 接口用)	
57	PG1			Y	未接任何外设	
87	PG2			Y	未接任何外设	
88	PG3			Y	未接任何外设	
89	PG4			Y	未接任何外设	
90	PG5			Y	未接任何外设	
91	PG6	NRF_IRQ		Y	WIRELESS 接口 IRQ 信号	
92	PG7	NRF_CS		Y	WIRELESS 接口的 CS 信号	
93	PG8	NRF_CE		Y	WIRELESS 接口的 CE 信号	
124	PG9			Y	未接任何外设	

125	PG10		Y	未接任何外设
126	PG11	1WIRE_DQ	N	单总线接口(U4)数据线,接DHT11/DS18B20
127	PG12	FSMC_NE4	Y	FSMC 总线的片选信号 4,为 LCD 片选信号
128	PG13	OV_SDA	N	OLED/CAMERA 接口的 SDA 脚
129	PG14	OV_RRST	Y	OLED/CAMERA 接口的 RRST 脚
132	PG15	OV_OE	Y	OLED/CAMERA 接口的 OE 脚

表 1.2.2.1 精英 V2 IO 资源分配总表

表 1.2.2.1 中,引脚栏即 STM32F103ZET6 的引脚编号; GPIO 栏则表示 GPIO; 连接资源栏表示了对应 GPIO 所连接到的网络;独立栏,表示该 IO 是否可以完全独立(不接其他任何外设和上下拉电阻)使用,通过一定的方法,可以达到完全独立使用该 IO,Y表示可做独立 IO,N表示不可做独立 IO;连接关系栏,则对每个 IO 的连接做了简单的介绍。

该表在: A 盘 \rightarrow 3,原理图 文件夹下有提供 Excel 格式,并注有详细说明和使用建议,大家可以打开该表格的 Excel 版本,详细查看。

1.3 精英 V2 升级说明

正点原子精英 V2 开发板相对于 V1 版本,主要变化如表 1.3.1 所示:

编	자나나) 표	正点原子精英	E STM32 开发板	说明
号	对比项	V1 版本	V2 版本	PU 1/1
1	SPI FLASH 芯片	W25Q128	NM25Q128/BY25Q128	换国产芯片
2	DCDC 电源芯片	MP2359	JW5060T	换国产芯片
3	USB 转串口	CH340G	CH340C	改进设计
4	RS485 接口芯片	SP3485	TPT8485	换国产芯片
5	CAN 接口芯片	TJA1050	SIT1050	换国产芯片
6	内存卡接口	SD 卡	TF卡	更小更通用
7	USB 接口	Mini USB	Type C USB	更主流
8	OV_SCL/OV_SDA 上拉	无	有	更合理
9	可调电位器	无	有	更方便
10	红外接收头	HS0038	LF0038	更小巧
11	RESET/KEYO/KEY1/ KEY_UP 按键	直插 6*6*5	贴片 3. 2*4. 2*2. 5	更小巧

表 1.3.1 V2 版本 VS V1 版本硬件变更表

从表 1.3.1 可以看出,精英 V2 开发板在 V1 版本的基础上进行了不少改进,主要包括国产器件的大量使用、内存卡和 USB 接口更改、增加可调电位器等修改。

以上修改基本不涉及到 IO 口变动,因此大家以前编写的代码,很多都是可以直接在精英 V2 上面运行的,或者只需要经过很少的改动(如部分芯片驱动的小修改),就可以完成适配。

第二章 实验平台硬件资源详解

本章,我们将节将向大家详细介绍正点原子精英 STM32F103 各部分的硬件原理图,让大家对该开发板的各部分硬件原理有个深入理解,并向大家介绍开发板的使用注意事项,为后面的学习做好准备。

本章将分为如下两节:

- 2.1, 开发板原理图详解;
- 2.2, 开发板使用注意事项;

2.1 开发板原理图详解

2.1.1 MCU

正点原子精英 STM32 开发板选择的是 STM32F103ZET6 作为 MCU,该芯片是 STM32F103 里面配置非常强大的了,它拥有的资源包括: 64KB SRAM、512KB FLASH、2 个基本定时器、4 个通用定时器、2 个高级定时器、2 个 DMA 控制器(共 12 个通道)、3 个 SPI、2 个 IIC、5 个 串口、1 个 USB、1 个 CAN、3 个 12 位 ADC、1 个 12 位 DAC、1 个 SDIO 接口、1 个 FSMC 接口以及 112 个通用 IO 口。该芯片的配置十分强悍,并且还带外部总线(FSMC)可以用来外扩 SRAM 和连接 LCD等,通过 FSMC 驱动 LCD,可以显著提高 LCD 的刷屏速度,是 STM32F1 家族常用型号里面,最高配置的芯片了,所以我们选择了它作为我们精英板的主芯片。MCU 部分的原理图如图 2.1.1.1-1 和图 2.1.1.1-2(由于 MCU 引脚比较多,因此我们把原理图分成 2 部分,方便查看)所示:

图 2.1.1.1-1 MCU 部分原理图 (A)

图 2.1.1.1-2 MCU 部分原理图 (B)

图中 U1 为我们的主芯片: STM32F103ZET6 (原理图将其分成 A/B 两部分)。 这里主要讲解以下 2 个地方:

- 1,后备区域供电脚 VBAT 脚的供电采用 CR1220 纽扣电池和 VCC3.3 混合供电的方式, 在有外部电源(VCC3.3)的时候,CR1220 不给 VBAT 供电,当外部电源断开时则由 CR1220 给其供电。这样,VBAT 总是有电的,以保证 RTC 的走时以及后备寄存器的内容不丢失。
- 2,图中的 R7 和 R8 用隔离 MCU 部分和外部的电源,这样的设计主要是考虑了后期维护,如果 3.3V 电源短路,可以断开这两个电阻,来确定是 MCU 部分短路,还是外部短路,有助于生产和维修。当然大家在自己的设计上,这两个电阻是完全可以去掉的。

2.1.2 引出 IO 口

正点原子精英 STM32F103 引出了 STM32F103ZET6 的所有 IO 口,如图 2.1.2.1 所示:

				31 3 113 3 4 4 1	WI321 103 713
IO	P1]	P2	
PE0	1 0	PB9	PB8	1 0	PB7
PE2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PE1	PB6	1 2	PB5
PE4		PE3	PB4	3 4	PB3
PE6	5 6 7 8	PE5	PG15	5 6	PG14
PF0		PC13	DC12	7 8	PG12
PF2	9 10	PF1	PG11	9 10	PG10
PF4	11 12	PF3	PG9	11 12	PD7
PF6	13 14	PF5	PD6	13 14	PD5
	15 16			15 16	
PF8	17 18	PF7	PD4	17 18	PD3
PF10	19 20	PF9	PD2	19 20	PD1
PC1	21 22	PC0	PD0	21 22	PC12
PC3	23 24	PC2	PC11	23 24	PC10
PA1	25 26	PA0	PA15	25 26	PA14
PA5	27 28	PA4	PA13	27 28	PA12
PA7	29 30	PA6	PAII	29 30	PA8
PC5	31 32	PC4	PC9	31 32	PC8
PB1	31 32	PB0	PC7	31 32	PC6
PF11		PB2	PG8		PG7
PF13	35 36	PF12	PG6	35 36	PG5
PF15	37 38	PF14	PG4	37 38	PG3
PG1	39 40	PG0	PG2	39 40	PD15
PE8	41 42	PE7	DD14	41 42	PD13
PE10	43 44	PE9	PD12	43 44	PD11
PE12	45 46	PE11	PD10	45 46	PD9
PE14	47 48	PE13	DD8	47 48	PB15
PB10	49 50	PE15	PB14	49 50	PB13
GND	51 52	PB11	PB12	51 52	GND
שואט	53 54			53 54	
	HEAD2*2	7	Н	EAD2*27	7

图 2.1.2.1 引出 IO 口

图中 P1 和 P2 为 MCU 主 IO 引出口,这两组排针共引出了 106 个 IO 口,STM32F103ZET6 总共有 112 个 IO,除去 RTC 晶振占用的 2 个,还剩 110 个,这两组主引出排针,总共引出了 106 个 IO,剩下的 4 个 IO 口分别通过:P3 (PA9&PA10)和 P5 (PA2&PA3)两组排针引出。

2.1.3 USB 串口/串口 1 选择接口

正点原子精英 STM32F103 板载的 USB 串口和 STM32F103ZET6 的串口是通过 P3 连接起来的,如图 2.1.3.1 所示:

图 2.3.1.1 USB 串口/串口 1 选择接口

图中 TXD/RXD 是相对 CH340 来说的, 也就是 USB 串口的发送和接收脚。而 USART1 RX

和 USART1_TX 则是相对于 STM32F103ZET6 来说的。这样,通过对接,就可以实现 USB 串口和 STM32F103ZET6 的串口通信了。同时, P3 是 PA9 和 PA10 的引出口。

这样设计的好处就是使用上非常灵活。比如需要用到外部TTL串口和STM32通信的时候,只需要拔了跳线帽,通过杜邦线连接外部TTL串口,就可以实现和外部设备的串口通信了;又比如我有个板子需要和电脑通信,但是电脑没有串口,那么你就可以使用开发板的RXD和TXD来连接你的设备,把我们的开发板当成USB转TTL串口用了。

2.1.4 JTAG/SWD

正点原子精英 STM32F103 板载的标准 20 针 JTAG/SWD 接口电路如图 2.1.4.1 所示:

图 2.1.4.1 JTAG/SWD 接口

这里,我们采用的是标准的 JTAG 接法,但是 STM32 还有 SWD 接口,SWD 只需要最少 2 跟线(SWCLK 和 SWDIO)就可以下载并调试代码了,这同我们使用串口下载代码差不多,而且速度非常快,能调试。所以建议大家在设计产品的时候,可以留出 SWD 来下载调试代码,而摒弃 JTAG。STM32 的 SWD 接口与 JTAG 是共用的,只要接上 JTAG,你就可以使用 SWD 模式了(其实并不需要 JTAG 这么多线),当然,你的调试器必须支持 SWD 模式,DAP、ST LINK、JLINK 和 ULINK 等都支持 SWD 调试。

特别提醒,JTAG 有几个信号线用来接其他外设了,但是 SWD 是完全没有接任何其他外设的,所以在使用的时候,推荐大家一律使用 SWD 模式!!!

2.1.5 LCD 模块接口

正点原子精英 STM32F103 板载的 LCD 模块接口电路如图 2.1.5.1 所示:

LCD	TET LCD					
FSMC NE4 1	TFT_LCD	2	FSMC A10			
FSMC NWE 3	· LCD_CS RS	4	FSMC NOE			
RESET 5	WR/CLK RD	6 PD14	FSMC D0			
FSMC D1 PD15 7	RST DB1	8 PD0	FSMC D2			
FSMC D3 PD1 9	DB2 DB3	10 PE7	FSMC_D4			
FSMC D5 PE8 11	DB4 DB5	12 PE9	FSMC_D6			
FSMC_D7 PE10 13	DB6 DB7	14 PE11	FSMC_D8			
FSMC_D9 PE12 15	DB8 DB10 DB11 DB12	16 PE13	FSMC_D10			
FSMC D11 PE14 17		18 PE15	FSMC D12			
FSMC D13 PD8 19	DB13 DB14 DB15 DB16	20 PD9	FSMC_D14			
FSMC D15 PD10 21		22				
LCD_BL 23	DB17 GND BL VDD3.3	24 VCC3.3	C1 104			
VCC3.3 25		26				
RND I TO AGO 20	VDD3.3 GND	28 VCC5	I			
PB2 GND T MISO 29	GND BL_VDD	30	C2 104			
PF10 T_PEN 31	MISO MOSI	32 PF9	T_MOSI =			
PF11 T_CS 33	T_PEN MO	34 PB1	T_SCK GND			
2.4½.8LCD						

图 2.1.5.1 LCD 模块接口

图中 TFT_LCD 是一个通用的液晶模块接口,支持正点原子全系列 TFTLCD 模块,包括: 2.4 寸、2.8 寸、3.5 寸、4.3 寸和 7 寸等尺寸的 TFTLCD 模块。LCD 接口连接在 STM32F103ZET6 的 FSMC 总线上面,可以显著提高 LCD 的刷屏速度。

图中的 T_MISO/T_MOSI/T_PEN/T_SCK/T_CS 连接在 MCU 的 PB2/PF9/PF10/PB1/PF11 上,这些信号用来实现对液晶触摸屏的控制(支持电阻屏和电容屏)。LCD_BL 连接在 MCU 的 PB0 上,用于控制 LCD 的背光。液晶复位信号 RESET 则是直接连接在开发板的复位按钮上,和 MCU 共用一个复位电路。

2.1.6 复位电路

正点原子精英 STM32F103 的复位电路如图 2.1.6.1 所示:

图 2.1.6.1 复位电路

因为 STM32 是低电平复位的,所以我们设计的电路也是低电平复位的,这里的 R2 和 C10 构成了上电复位电路。同时,开发板把 TFT_LCD 的复位引脚也接在 RESET 上,这样这个复位按钮不仅可以用来复位 MCU,还可以复位 LCD。

2.1.7 启动模式设置接口

正点原子精英 STM32F103 的启动模式设置端口电路如图 2.1.7.1 所示:

图 2.1.7.1 启动模式设置接口

上图的 BOOT0 和 BOOT1 用于设置 STM32 的启动方式,其对应启动模式如表 2.1.7.1 所示:

BOOT0	BOOT1	启动模式	说明
0	X	用户闪存存储器	用户闪存存储器,也就是 FLASH 启动
1	0	系统存储器	系统存储器启动,用于串口下载代码
1	1	SRAM 启动	SRAM 启动,用于在 SRAM 中调试代码

表 2.1.7.1 BOOT0、BOOT1 启动模式表

按照表 2.1.7.1,一般情况下如果我们想用用串口下载代码,则必须配置 BOOT0 为 1,BOOT1 为 0,而如果想让 STM32 一按复位键就开始跑代码,则需要配置 BOOT0 为 0,BOOT1 随便设置都可以。这里正点原子精英 STM32F103 专门设计了一键下载电路,通过串口的 DTR 和 RTS 信号,来自动配置 BOOT0 和 RST 信号,因此不需要用户来手动切换他们的状态,直接串口下载软件自动控制,可以非常方便的下载代码。

2.1.8 RS485 接口

正点原子精英 STM32F103 板载的 RS485 接口电路如图 2.1.8.1 所示:

图 2.1.8.1 RS485 接口

RS485 电平也不能直接连接到 STM32,同样需要电平转换芯片。这里我们使用 TP8485 来做 485 电平转换,其中 R25 为终端匹配电阻,而 R22 和 R19,则是两个偏置电阻,以保证静默 状态时,485 总线维持逻辑 1。

RS485_RX/RS485_TX 连接在 P5 上面,通过 P5 跳线来选择是否连接在 MCU 上面,RS485_RE 则是直接连接在 MCU 的 IO 口 (PD7) 上的,该信号用来控制 TP8485 的工作模式 (高电平为发送模式,低电平为接收模式)。

2.1.9 CAN/USB 接口

正点原子精英 STM32F103 板载的 CAN 接口电路以及 STM32 USB 接口(Type C 接口)电路如图 2.1.9.1 所示:

图 2.1.9.1 CAN/USB 接口

CAN 总线电平也不能直接连接到 STM32,同样需要电平转换芯片。这里我们使用 SIT1050T 来做 CAN 电平转换,其中 R25 为终端匹配电阻。

USB_D+/USB_D-连接在 MCU 的 USB 口(PA12/PA11)上,同时,因为 STM32 的 USB 和 CAN 共用这组信号,所以我们通过 P6 来选择使用 USB 还是 CAN。

USB_SLAVE 可以用来连接电脑,实现 USB 读卡器或 USB 虚拟串口等 USB 从机实验。另外,该接口还具有供电功能,VUSB 为开发板的 USB 供电电压,通过这个 USB 口,就可以给整个开发板供电了。

2.1.10 EEPROM

正点原子精英 STM32F103 板载的 EEPROM 电路如图 2.1.10.1 所示:

图 2.1.10.1 EEPROM

EEPROM 芯片我们使用的是 24C02,该芯片的容量为 2Kb,也就是 256 个字节,对于我们普通应用来说是足够了的。当然,你也可以选择换大容量的芯片,因为我们的电路在原理上是兼容 24C02~24C512 全系列 EEPROM 芯片的。

这里我们把 A0~A2 均接地,对 24C02 来说也就是把地址位设置成了 0 了,写程序的时候要注意这点。IIC_SCL 接在 MCU 的 PB6 上,IIC_SDA 接在 MCU 的 PB7 上,这里我们虽然接到了 STM32 的硬件 IIC 上,但是我们并不提倡使用硬件 IIC,因为 STM32 的 IIC 是鸡肋!请谨慎使用。

2.1.11 光敏传感器

正点原子精英 STM32F103 板载了一个光敏传感器,可以用来感应周围光线的变化,该部分电路如图 2.1.11.1 所示:

图 2.1.11.1 光敏传感器电路

图中的 LS1 就是光敏传感器,其实就是一个光敏二极管(PTSMD021),周围环境越亮,电流越大,反之电流越小,即可等效为一个电阻,环境越亮阻值越小,反之越大,从而通过读取 LIGHT_SENSOR 的电压,即可知道周围环境光线强弱。LIGHT_SENSOR 连接在 MCU 的 ADC3_IN6(ADC3 通道 6)上面,即 PF8 引脚。

2.1.12 SPI FLASH

正点原子精英 STM32F103 板载的 SPI FLASH 电路如图 2.1.12.1 所示:

图 2.1.12.1 SPI FLASH 芯片

SPI FLASH 芯片型号为 25Q128 (可选品牌为: 诺存、华邦、博雅等都可以),该芯片的容量为 128Mb,也就是 16M 字节。该芯片和 NRF24L01 共用一个 SPI (SPI2),通过片选来选择使用某个器件,在使用其中一个器件的时候,请务必禁止另外一个器件的片选信号。

图中 F_CS 连接在 MCU 的 PB12 上, SPI2_SCK/SPI2_MOSI/SPI2_MISO 则分别连接在 MCU 的 PB13/PB15/PB14 上。

2.1.13 温湿度传感器接口

正点原子精英 STM32F103 板载的温湿度传感器接口电路如图 2.1.13.1 所示:

图 2.1.13.1 温湿度传感器接口

该接口(U4)支持 DS18B20/DS1820/DHT11 等单总线数字温湿度传感器。1WIRE_DQ 是传感器的数据线,该信号连接在 MCU 的 PG11 上。

2.1.14 红外接收头

正点原子精英 STM32F103 板载的红外接收头电路如图 2.1.14.1 所示:

图 2.1.14.1 红外接收头

LF0038 是一个通用的红外接收头,几乎可以接收市面上所有红外遥控器的信号,有了它,就可以用红外遥控器来控制开发板了。REMOTE_IN 为红外接收头的输出信号,该信号连接在MCU的 PB9 上。

2.1.15 无线模块接口

正点原子精英 STM32F103 板载的无线模块接口电路如图 2.1.15.1 所示:

图 2.1.15.1 无线模块接口

该接口用来连接 NRF24L01 或者 RFID 等无线模块,从而实现开发板与其他设备的无线数据传输(注意: NRF24L01 不能和蓝牙/WIFI 连接)。NRF24L01 无线模块的最大传输速度可以达到 2Mbps,传输距离最大可以到 30 米左右(空旷地,无干扰)。

NRF_CE/NRF_CS/NRF_IRQ 连接在 MCU 的 PG8/PG7/PG6 上,而另外 3 个 SPI 信号则和 SPI FLASH 共用,接 MCU 的 SPI2。

2.1.16 LED

正点原子精英 STM32F103 板载总共有 3 个 LED, 其原理图如图 2.1.16.1 所示:

LED0 PB5 DS0 R15

LED1 PE5 DS4 R19

GND | PWR R21

bule 510R

图 2.1.16.1 LED

其中 PWR 是系统电源指示灯,为蓝色。LED0(DS0)和 LED1(DS1)分别接在 PB5 和 PE5 上。为了方便大家判断,我们选择了 DS0 为红色的 LED, DS1 为绿色的 LED。

2.1.17 按键

正点原子精英 STM32F103 板载总共有 3 个输入按键, 其原理图如图 2.1.17.1 所示:

图 2.1.17.1 输入按键

KEY0 和 KEY1 用作普通按键输入,分别连接在 PE4 和 PE3 上,这里并没有使用外部上拉电阻,但是 STM32 的 IO 作为输入的时候,可以设置上下拉电阻,所以我们使用 STM32 的内部上拉电阻来为按键提供上拉。

KEY_UP 按键连接到 PA0(STM32 的 WKUP 引脚),它除了可以用作普通输入按键外,还可以用作 STM32 的唤醒输入。注意:这个按键是高电平触发的。

2.1.18 TPAD 电容触摸按键

正点原子精英 STM32F103 板载了一个电容触摸按键,其原理图如图 2.1.18.1 所示:

图 2.1.20.1 电容触摸按键

图中 1M 电阻是电容充电电阻, TPAD 并没有直接连接在 MCU 上, 而是连接在多功能端口 (P7) 上面, 通过跳线帽来选择是否连接到 STM32。多功能端口, 我们将在 2.1.23 节介绍。电容触摸按键的原理我们将在后续的实战篇里面介绍。

2.1.19 OLED/摄像头模块接口

正点原子精英 STM32F103 板载了一个 OLED/摄像头模块接口, 其原理图如图 2.1.19.1 所示:

图 2.1.19.1 OLED/摄像头模块接口

图中 P4 是接口可以用来连接正点原子 OLED 模块或者正点原子 摄像头模块。如果是 OLED 模块,则 OV_WEN 和 OV_VSYNC 不需要接(在板上靠左插即可),如果是摄像头模块,则需要用到全部引脚。

其中,OV_SCL/OV_SDA/FIFO_WRST/OV_RRST/OV_OE 这 5 个信号是分别连接在 MCU 的 PD3/PG13/PD6/PG14/PG15 上面,OV_D0~OV_D7 则连接在 PC0~7 上面(放在连续的 IO 上,可以提高读写效率),OV_RCLK/OV_WEN/OV_VSYNC 这 3 个信号是分别连接在 MCU 的 PB4/PB3/PA8 上面。其中 PB3 和 PB4 又是 JTAG 的 JTRST/JTDO 信号,所以在使用 OV7725/OV7670 的时候,不要用 JTAG 仿真,要选择 SWD 模式(所以我们建议大家直接用 SWD 模式来连接我们的开发板,这样所有的实验都可以仿真!)。

特别注意: OV_SCL 和 JOY_CLK 共用 PD3, OV_VSYNC 和 PWM_DAC 共用 PA8, 他们必须分时复用。另外, OV_SCL 和 OV_SDA 我们加了 4.7K 上拉电阻, 在使用的时候, 需要注意这个问题。

2.1.20 有源蜂鸣器

正点原子精英 STM32F103 板载了一个有源蜂鸣器, 其原理图如图 2.1.20.1 所示:

图 2.1.20.1 有源蜂鸣器

有源蜂鸣器是指自带了震荡电路的蜂鸣器,这种蜂鸣器一接上电就会自己震荡发声。而如果是无源蜂鸣器,则需要外加一定频率(2~5Khz)的驱动信号,才会发声。这里我们选择使用有源蜂鸣器,方便大家使用。

图中 Q1 是用来扩流,R33 则是一个下拉电阻,避免 MCU 复位的时候,蜂鸣器可能发声的现象。BEEP 信号直接连接在 MCU 的 PB8 上面,PB8 可以做 PWM 输出,所以大家如果想玩高级点(如:控制蜂鸣器"唱歌"),就可以使用 PWM 来控制蜂鸣器。

2.1.21 TF 卡接口

正点原子精英 STM32F103 板载了一个 TF 卡 (小卡/Micro SD 卡) 接口, 其原理图如图 2.1.21.1 所示:

图 2.1.21.1 TF 卡接口

图中TF_CARD为TF卡接口,采用4位SDIO方式驱动,理论上最大速度可以达到12MB/S,非常适合需要高速存储的情况。图中:SDIO_D0/SDIO_D1/SDIO_D2/SDIO_D3/SDIO_SCK/SDIO CMD分别连接在MCU的PC8/PC9/PC10/PC11/PC12/PD2上面。

2.1.22 ATK 模块接口

正点原子精英 STM32F103 板载了 ATK 模块接口, 其原理图如图 2.1.22.1 所示:

图 2.1.22.1 ATK 模块接口

如图所示, U3 是一个 1*6 的排座,可以用来连接正点原子推出的一些模块,比如:蓝牙串口模块、GPS 模块、MPU6050 模块等。有了这个接口,我们连接模块就非常简单,插上即可工作。

图中: GBC_TX/GBC_RX 连接 PB11/PB10 (即串口 3), 而 GBC_KEY 和 GBC_LED 则分别连接在 MCU 的 PA4 和 PA15 上面。特别注意: GBC_LED 和 JTDI 共用 PA15, 在使用的时候,要注意这个问题。

2.1.23 多功能端口

正点原子精英 STM32F103 板载的多功能端口,是由 P7 构成的一个 4PIN 端口,其原理图 如图 2.1.23.1 所示:

图 2.1.23.1 多功能端口

从上图,大家可能还看不出这个多功能端口的全部功能,别担心,下面我们会详细介绍。 其中 TPAD 为电容触摸按键信号,连接在电容触摸按键上; STM_ADC 和 STM_DAC 则分 别连接在 PA1 和 PA4 上,用于 ADC 采集或 DAC 输出; RV1 是滑动电阻 RV1 的滑动端,其电 压可以通过 RV1 调节(范围是: 0~3.3V)。

当需要电容触摸按键的时候,我们通过跳线帽短接 TPAD 和 STM_ADC,就可以实现电容触摸按键(利用定时器的输入捕获)。STM_DAC 信号则既可以用作 DAC 输出,也可以用作 ADC 输入,因为 STM32 的该管脚同时具有这两个复用功能。特别注意: STM_DAC 与摄像头的 GBC KEY 共用 PA4,所以他们不可以同时使用,但是可以分时复用。

P7 多功能端口,实物图如图 2.1.23.2 所示:

图 2.1.23.2 组合后的多功能端口

下面我们来看看,这个多功能接口可以实现哪些功能。

当不用跳线帽的时候: 1, DAC 和 GND 组成一个 DAC 输出/ADC 输入(因为 DAC 脚也刚好也可以做 ADC 输入); 2, ADC 和 GND 组成一组 ADC 输入; 3, TPAD 和 GND 组成一个触摸按键接口,可以连接其他板子实现触摸按键。

当使用 1 个跳线帽的时候: 1, DAC 和 ADC 组成一个自输出测试,用 MCU 的 ADC 来测试 MCU 的 DAC 输出。2, ADC 和 TPAD,组成一个触摸按键输入通道,实现 MCU 的触摸按键功能。3, DAC 和 RV1,组成一个 ADC 测试,通过 RV1 可调电阻可以调整电压值。

从上面的分析,可以看出,这个多功能端口可以实现 6 个功能,所以,只要设计合理,1+1 是大于 2 的。

2.1.24 电源

正点原子精英 STM32 开发板板载的电源供电部分,其原理图如图 2.1.24.1 所示:

图 2.1.24.1 电源

图中,总共有2个稳压芯片:U10和U11,DC_IN用于外部直流电源输入,范围是DC6~15V,输入电压经过U11DC-DC芯片转换为5V电源输出,其中VD1是防反接二极管,避免外部直流电源极性搞错的时候,烧坏开发板。K1为开发板的总电源开关,F1为1000ma自恢复保险丝,用于保护USB。U10为3.3V稳压芯片,给开发板提供3.3V电源。

这里还有 USB 供电部分没有列出来,其中 VUSB 就是来自 USB 供电部分,我们将在 2.1.26 节进行介绍。

2.1.25 电源输入输出接口

正点原子精英 STM32 开发板板载了两组简单电源输入输出接口, 其原理图如图 2.1.25.1 所示:

图 2.1.25.1 电源

图中,VOUT1 和 VOUT2 分别是 3.3V 和 5V 的电源输入输出接口,有了这 2 组接口,我们可以通过开发板给外部提供 3.3V 和 5V 电源了,虽然功率不大(最大 1000ma),但是一般情况都够用了,大家在调试自己的小电路板的时候,有这两组电源还是比较方便的。同时这两组端口,也可以用来由外部给开发板供电。

图中 D5 和 D6 为 TVS 管,可以有效避免 VOUT 外接电源/负载不稳的时候(尤其是开发板外接电机/继电器/电磁阀等感性负载的时候),对开发板造成的损坏。同时还能一定程度防止外接电源接反,对开发板造成的损坏。

2.1.26 USB 串口

正点原子精英 STM32 开发板板载了一个 USB 串口, 其原理图如图 2.1.26.1 所示:

图 2.1.26.1 USB 串口

USB 转串口芯片,我们选择的是 CH340C,无需外部晶振,是 CH340G 的升级版本,非常好用。

图中 Q2 和 Q3 的组合构成了我们开发板的一键下载电路, 只需要在 flymcu 软件设置: DTR 的低电平复位, RTS 高电平进 BootLoader。就可以一键下载代码了, 而不需要手动设置 B0 和 按复位了。其中, RESET 是开发板的复位信号, BOOT0 则是启动模式的 B0 信号。

一键下载电路的具体实现过程: 首先,mcuisp 控制 DTR 输出低电平,则 DTR_N 输出高,然后 RTS 置高,则 RTS_N 输出低,这样 Q3 导通了,BOOT0 被拉高,即实现设置 BOOT0 为1,同时 Q2 也会导通,STM32F1 的复位脚被拉低,实现复位。然后,延时 100ms 后,mcuisp 控制 DTR 为高电平,则 DTR_N 输出低电平,RTS 维持高电平,则 RTS_N 继续为低电平,此时 STM32F1 的复位引脚,由于 Q2 不再导通,变为高电平,STM32F1 结束复位,但是 BOOT0 还是维持为 1,从而进入 ISP 模式,接着 mcuisp 就可以开始连接 STM32F1,下载代码了,从而实现一键下载。

USB_UART 是一个 USB TypeC 座,提供 CH340C 和电脑通信的接口,同时可以给开发板供电,VUSB 就是来自电脑 USB 的电源,USB UART 是本开发板的主要供电口。

2.2 开发板使用注意事项

为了让大家更好的使用正点原子精英 STM32 开发板,我们在这里总结该开发板使用的时候尤其要注意的一些问题,希望大家在使用的时候多多注意,以减少不必要的问题。

- 1, 开发板一般情况是由 USB_UART 口供电,在第一次上电的时候由于 CH340C 在和电脑 建立连接的过程中,导致 DTR/RTS 信号不稳定,会引起 STM32 复位 2~3 次左右,这 个现象是正常的,后续按复位键就不会出现这种问题了。
- 2, 1个 USB 供电最多 500mA,且由于导线电阻存在,供到开发板的电压,一般都不会有5V,如果使用了很多大负载外设,比如 4.3 寸屏、7寸屏、网络、摄像头模块等,那么可能引起 USB 供电不够,所以如果是使用 4.3 屏/7 寸屏的朋友,或者同时用到多个模

块的时候,**建议大家使用一个独立电源供电**。如果没有独立电源,建议可以同时插2个USB口,并插上JTAG,这样供电可以更足一些。

- 3, JTAG 接口有几个信号(JTDI/JTDO/JTRST)被 GBC_LED(ATK MODULE)/OV_WEN (摄像头模块)/OV_RCLK(摄像头模块)占用了,所以在调试这些模块的时候,请大家选择 SWD 模式,其实最好就是一直用 SWD 模式。
- 4, 当你想使用某个 IO 口用作其他用处的时候,请先看看开发板的原理图,该 IO 口是否有连接在开发板的某个外设上,如果有,该外设的这个信号是否会对你的使用造成干扰,先确定无干扰,再使用这个 IO。比如 PB8 就不怎么适合再用做其他输出,因为他接了蜂鸣器,如果你输出高电平就会听到蜂鸣器的叫声了。
- 5, 开发板上的跳线帽比较多,大家在使用某个功能的时候,要先查查这个是否需要设置 跳线帽,以免浪费时间。
- 6, 当液晶显示白屏的时候,请先检查液晶模块是否插好(拔下来重新插试试),如果还不 行,可以通过串口看看 LCD ID 是否正常,再做进一步的分析。

至此,本手册的实验平台(正点原子精英 STM32 开发板)的硬件部分就介绍完了,了解了整个硬件对我们后面的学习会有很大帮助,有助于理解后面的代码,在编写软件的时候,可以事半功倍,希望大家细读!另外正点原子开发板的其他资料及教程更新,都可以在技术论坛www.openedv.com/forum.php 下载到,大家可以经常去这个论坛获取更新的信息。