Algoritmos e Estruturas de Dados II

Prof. Ricardo J. G. B. Campello

Árvores B – Parte II

Construção Bottom-Up

Adaptado dos Originais de:

Leandro C. Cintra Maria Cristina F. de Oliveira

Árvores B

- Características
 - paginadas
 - balanceadas
 - bottom-up para a criação
 - nós folhas → nó raiz
- Inovação
 - não é necessário construir a árvore a partir da raiz, como é feito para ABBs e AVLs

Construção Bottom-Up

- Conseqüências
 - não mais se aloca chaves inadequadas na raiz
 - chaves na raiz da árvore "emergem" naturalmente
 - não é mais necessário tratar o problema de desbalanceamento após este ocorrer
 - como rebalancear uma árvore paginada não é mais uma questão a resolver a posteriori
 - balanceamento ocorre naturalmente

3

Características

- Nó = Página em Disco:
 - Contém uma seqüência de itens ordenados por chave
 - item = registro convencional = (chave, demais informações); OU
 - item = registro de índice = (chave, endereço)
 - endereço = RRN ou byte offset do registro no arquivo principal
 - $lue{}$ itens de tamanho fixo ightarrow páginas com no. fixo de itens
 - Contém um conjunto de ponteiros
 - número de ponteiros = número de chaves + 1
 - Não é internamente encadeado como uma árvore
 - página contém uma lista ordenada seqüencial

Características

Ordem:

- No. máx. de ponteiros que podem ser armazenados em um nó
- Exemplo: árvore B de ordem 8
 - máximo de 7 chaves e 8 ponteiros

Observações

- No. máx. de ponteiros = no. máx. de descendentes de um nó
- nós folhas não possuem filhos, e seus ponteiros são nulos

Por simplicidade, ao longo das discussões subseqüentes destacaremos apenas as chaves dos itens, assim como no exemplo acima

- Ponteiros:
 - Nós folha (*): -1 ou fim de lista (NIL)
 - Nós internos: RRN do nó descendente ou -1 se este não existe

Inserção de Itens

- Característica:
 - sempre realizada nos nós folha
- Situações a Serem Analisadas:
 - árvore vazia (situação inicial)
 - overflow no nó raiz
 - inserção nos nós folhas
 - sem overflow
 - com overflow

11

Inserção: Situação Inicial

- Criação e Preenchimento do 1º Nó:
 - 1ª chave (árvore vazia): criação do nó raiz
 - demais chaves: inserção até capacidade do nó
 - raiz como nó folha
- Exemplo:
 - nó com capacidade para 7 chaves
 - chaves: letras do alfabeto

Inserção: Situação Inicial

- Exemplo (cont.):
- * A * B * C * D * E * F * G *
- Chaves B C G E F D A
 - inseridas desordenadamente
 - mantidas ordenadas internamente ao nó
 - a cada chave, página é lida, reordenada em RAM e rescrita
- Ponteiros (*)
 - -1 ou fim de lista (NIL)
 - nó raiz = nó folha

13

Inserção: Overflow Na Raiz

- Passo 1 Particionamento do Nó (Split)
 - nó original → nó original + novo nó
 - split "1-to-2" ou "two-way"
 - chaves são distribuídas uniformemente nos nós
 - chaves do nó original + nova chave
- Exemplo: Inserção de J

Inserção: Overflow Na Raiz

- Passo 2 Criação de uma Nova Raiz
 - existência de um nível mais alto na árvore permite a escolha da chave separadora

1

Inserção: Overflow Na Raiz

- Passo 3 Promoção de Chave
 - primeira chave do novo nó resultante do split é promovida para o nó raiz
- Exemplo:

Inserção: Nós Folhas

- Passo 1 Pesquisa
 - árvore é percorrida até encontrar o nó folha no qual a nova chave será inserida
 - página correspondente é lida em RAM
- Passo 2 Inserção em Nó com Espaço
 - chave é inserida
 - página é reordenada e rescrita

17

Inserção: Nós Folhas

- Inserção em Nó com Espaço (Exemplo):
 - Inserção da chave H

Inserção: Nós Folhas

- Passo 2 Inserção em Nó Cheio (Overflow)
 - Particionamento (split):
 - criação de um novo nó folha
 - nó original → nó original + novo nó
 - distribuição uniforme das chaves nos dois nós
 - Promoção:
 - 1a chave do novo nó promovida a chave separadora no nó pai
 - reordenação e ajuste do nó pai para apontar para o novo nó
 - eventual propagação de overflow...

10

Exemplo

- Insira as seguintes chaves em um árvore B:
 - CSDTAMPIBWNGURKEHOLJYQZFXV
- Ordem da árvore B: 4
 - em cada nó (página de disco)
 - número de chaves: 3
 - número de ponteiros: 4

CSDTAM...

- 1 Inserção de C, S, D
 - criação do nó raiz
 - C
 - C S
 - C D S

2

... EHOLJYQZFXV

- Exercício:
 - Finalizar a construção da árvore...

29

Exercícios

- Na árvore B do exemplo anterior, insira a chave \$, sendo que \$ < A
- Insira as seguintes chaves em uma árvore B vazia:
 - CSDTAMPIBWNGURKEHOLJYQZFXV
 - diferentemente do exemplo anterior, escolha o último elemento do 1º nó para promoção após split por overflow
- Estude os pseudo-códigos para inserção de itens em árvores B na seção 9.9 de (Folk & Zoellick, 1987)
- Outros Exercícios: Capítulo 9 (Folk & Zoellick, 1987)

Bibliografia

M. J. Folk and B. Zoellick, *File Structures: A Conceptual Toolkit*, Addison Wesley, 1987.

