On considère une corde suspendue entre deux points fixes de même hauteur y = 0, situés à x = -D/2 et x = +D/2. La corde a une longueur totale L et une masse M.

Cas statique

La corde est supposée dans un premier temps statique.

- * En appliquant le principe fondamental de la statique sur un élément de corde, déterminer une équation différentielle en y(x), correspondant à la hauteur y de la corde à l'abscisse x. On fera apparaître une longueur caractéristique l_c , dont on précisera l'expression.
- * Résoudre cette équation différentielle (on pourra résoudre l'équation en utilisant le changement de variable p(x) = dy/dx). Trouver la solution à l'aide des conditions aux limites.
- \star Déterminer la tension T(x) le long de la corde. A quelle endroit est-elle maximale ? Minimale ? Commenter.
- * Exprimer la longueur L et la flèche h (la hauteur entre le point le plus haut et le plus bas) de la chaîne en fonction du paramètre l_c . Comment connaître alors la tension dans une chaîne suspendue simplement à partir d'une photographie de celle-ci et de sa masse linéique ?

Cas dynamique

On considère maintenant que la corde est fortement tendue mais qu'elle n'est plus statique. On cherche à comprendre sa dynamique. On négligera les frottements.

- ♦ Que se passe t-il lorsque la corde devient extrêmement tendue? Que peut-on négliger par rapport au cas statique?
- \diamond Déterminer l'équation régissant y(x,t) le long de la corde. Comment s'appelle cette équation ? Quelles sont ses solutions ? Commenter.
- \diamond Sachant que la corde est ancrée en x=-D/2 et x=+D/2, donner l'expression générale de y(x,t) dans le cas stationnaire.
- \diamond On excite la corde avec une excitation dessinée ci-dessous. Donner l'expression de y(x,t) dans ce cas-là.
- ♦ Si la corde décrite dans l'exercice est celle d'un instrument de musique (violon, guitare, piano...), comment expliquer la différence de timbre entre ces instruments pour une note donnée ?

Corde pendue verticalement

On considère une corde attachée au plafond à un point fixe en z=0 et laissée verticalement à elle-même dans le vide. Elle n'est soumise qu'à la gravité. On notera $\Psi(z,t)$ l'écart de la corde à la verticale à la hauteur z à l'instant t.

* En appliquant le principe fondamental de la dynamique, trouver une équation différentielle en $\Psi(z,t)$.

On cherche des solutions sous la forme $\Psi(z,t) = \alpha(z)\cos(\omega t) + \beta(z)\sin(\omega t)$.

- * Comment s'appellent ce type de solutions ? Déterminer l'équation différentielle vérifiée par α et β .
- * En posant $Z = \frac{z\omega^2}{g}$, trouver un nouveau système d'équation différentielle en $A(Z) = \alpha(z)/\alpha(0)$.
- * On cherche la solution sous la forme d'une série entière $A(Z) = \sum_k A_k Z^K$. Déterminer les coefficients K.
- * Comment pourrait-on trouver une relation de dispersion $\omega(k)$?