Exercise 4. Let $f: A \to B$ and $g: B \to C$.

- (a) If $C_0 \subset C$, show that $(g \circ f)^{-1}(C_0) = f^{-1} \circ g^{-1}(C_0)$
- (b) If f and g are injective, show that $g \circ f$ is injective
- (c) If $g \circ f$ is injective, what can you say about the injectivity of f and g?
- (d) If f and g are surjective, show that $g \circ f$ is surjective
- (e) If $g \circ f$ is surjective, what can you say about the surjectivity of f and g?

Proof.

- (a) Let $x \in (g \circ f)^{-1}(C_0)$. Then $g \circ f(x) \in C_0$, from which we deduce that $f(x) \in g^{-1}(C_0)$, and then that $x \in f^{-1} \circ g^{-1}(C_0)$. Thus we have $(g \circ f)^{-1}(C_0) \subset f^{-1} \circ g^{-1}(C_0)$.

 Conversely, let $x \in f^{-1} \circ g^{-1}(C_0) = \{x \in A \mid f(x) \in g^{-1}(C_0)\} = f^{-1}(g^{-1}(C_0))$. Then we have $f(x) \in g^{-1}(C_0) = \{y \in B \mid g(y) \in C_0\}$,
 - conversely, let $x \in f$ $\circ g$ $(C_0) = \{x \in A \mid f(x) \in g \mid C_0\}\} = f^{-1}(g^{-1}(C_0))$. Then we have $f(x) \in g^{-1}(C_0) = \{y \in B \mid g(y) \in C_0\}$, so that $g \circ f(x) \in C_0$, from which we deduce that $f^{-1} \circ g^{-1}(C_0) = (g \circ f)^{-1}(C_0)$.
- (b) Let x and y in A such that $g \circ f(x) = g \circ f(y)$. By injectivity of g, we deduce that f(x) = f(y), and by injectivity of f, that x = y. Thus $g \circ f$ is injective.
- (c) Let x and y in A such that f(x) = f(y). g being a function, we deduce $g \circ f(x) = g \circ f(y)$. By injectivity of $g \circ f$, we deduce that x = y, hence that f is injective. Note that g is not necessarily injective: take $A = \{1, 2\}, B = \{3, 4, 5\}, C = \{6, 7\}, f(1) = 3, f(2) = 4, g(3) = 6, g(4) = 7, g(5) = 7$. Then $g \circ f$ is injective but g itself is not.
- (d) Let $z \in C$. By surjectivity of g, there exists $y \in B$ such that z = g(y). By surjectivity of f, there exists $x \in A$ such that y = f(x). Composing both, we get $z = g \circ f(x)$, so $g \circ f$ is surjective.
- (e) Let $z \in C$. By surjectivity of $g \circ f$, there exists $x \in A$ such that $z = g \circ f(x) = g(f(x))$. So f(x) is an antecedent of z by g, from which we conclude that g is surjective. f does not need to be surjective, however: take $A = \{1, 2\}$, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, f(1) = 3, f(2) = 4, g(3) = 6, g(4) = 7, g(5) = 7. Then $g \circ f$ is injective, but f is not