```
Part 2.1-A
Part 2.1-B
Part 2.1-C
Part 2.1-D-i
Part 2.1-D-ii
Part 2.1-D-iii (extra credit)
Part 2.1-E-i
Part 2.1-E-ii
Part 2.1-F
Part 2.1-F-i
Part 2.1-F-ii
Part 2.1-F-iii
Part 2.1-G
Part 2.1-H
Part 2.1-H-iii:
Part 2.1-H-i:
Part 2.1-H-ii
```

CS 422 HW1

Jane Downer

Part 2.1-A

Hide

Code ▼

```
setwd("~/Desktop")
```

The working directory was changed to /Users/user/Desktop inside a notebook chunk. The working directory will be reset when the chunk is finished r unning. Use the knitr root.dir option in the setup chunk to change the working directory for notebook chunks.

Hide

```
library(dplyr)
collegeData <- read.csv(file = 'College.csv', row.names = 1)
collegeData[c(1:5),c(1,5,8,10)]</pre>
```

	Private <fctr></fctr>	Top10perc <int></int>	P.Undergrad <int></int>	Room.Bo <int></int>
Abilene Christian University	Yes	23	537	3300
Adelphi University	Yes	16	1227	6450
Adrian College	Yes	22	99	3750
Agnes Scott College	Yes	60	63	5450
Alaska Pacific University	Yes	16	869	4120
5 rows				

Part 2.1-B

Hide

```
private <- nrow(collegeData %>% filter(Private == "Yes"))
public <- nrow(collegeData %>% filter(Private == "No"))
noquote(sprintf("There are %d private colleges, and %d public colleges in the dataset.", private, public))
```

[1] There are 565 private colleges, and 212 public colleges in the datase t.

Part 2.1-C

Hide

	Private <fctr></fctr>	A <int></int>	Acc <int></int>	Enroll <int></int>		perc.alumni <int></int>
Abilene Christian University	Yes	1660	1232	721	70	12
Adelphi University	Yes	2186	1924	512	29	16
Adrian College	Yes	1428	1097	336	53	30
Agnes Scott College	Yes	417	349	137	92	37
Alaska Pacific University	Yes	193	146	55	76	2

Part 2.1-A
Part 2.1-B
Part 2.1-C
Part 2.1-D-i
Part 2.1-D-ii
Part 2.1-D-iii (extra credit)
Part 2.1-E-i
Part 2.1-E-ii
Part 2.1-F
Part 2.1-F-i
Part 2.1-F-ii
Part 2.1-F-iii
Part 2.1-G
Part 2.1-H
Part 2.1-H-iii:
Part 2.1-H-i:
Part 2.1-H-ii

	Private <fctr></fctr>		Acc <int></int>			perc.alumni <int></int>
Albertson College	Yes	587	479	158	67	11
6 rows 1-8 of 8 columns						

Hide

Hide

Part 2.1-D-i

```
library(ggplot2)
p <- newDF %>% filter(Private == "Yes") %>%
   ggplot(aes(PhD, fill = cut(PhD, 3000))) +
   geom_histogram(binwidth = 5, show.legend = F) +
   ggtitle("Percent of Faculty with PhDs: Private Colleges") +
   xlab("Percent of Faculty") +
   ylab("Count") +
   scale_fill_discrete(h = c(350,250)) +
   theme_bw() +
   theme(plot.title = element_text(size = 15, hjust = 0.5))
p
```

Percent of Faculty with PhDs: Private Colleges 40 20 Percent of Faculty Percent of Faculty

Part 2.1-D-ii

```
p <- newDF %>% filter(Private == "No") %>%
    ggplot(aes(PhD, fill = cut(PhD, 3000))) +
    geom_histogram(binwidth = 5, show.legend = F) +
    ggtitle("Percent of Faculty with PhDs: Public Colleges") +
    xlab("Percent of Faculty") +
    ylab("Count") +
    scale_fill_discrete(h = c(200,100)) +
    theme_bw() +
    theme(plot.title = element_text(size = 15, hjust = 0.5))
p
```


Percent of Faculty with PhDs: Public Colleges

Part 2.1-D-iii (extra credit)

Hide

```
print("See parts i and ii.", quote = F)
```

[1] See parts i and ii.

Part 2.1-E-i

Hide

Top 5 colleges with minimum graduation rates
select(head(newDF[order(newDF\$Grad.Rate),],5),Grad.Rate)

	Grad.Rate <int></int>
Texas Southern University	10
Alaska Pacific University	15
Montreat-Anderson College	15
Brewton-Parker College	18
Claflin College	21
5 rows	

Part 2.1-E-ii

Hide

Top 5 colleges with maximum graduation rates
select(tail(newDF[order(newDF\$Grad.Rate),],5),Grad.Rate)

	Grad.Rate <int></int>
Missouri Southern State College	100
Santa Clara University	100
Siena College	100
University of Richmond	100
Cazenovia College	118
5 rows	

Part 2.1-A Part 2.1-B Part 2.1-C Part 2.1-D-i Part 2.1-D-ii Part 2.1-D-iii (extra credit) Part 2.1-E-i Part 2.1-E-ii Part 2.1-F Part 2.1-F-i Part 2.1-F-ii Part 2.1-F-iii Part 2.1-G Part 2.1-H Part 2.1-H-iii: Part 2.1-H-i: Part 2.1-H-ii

Part 2.1-F

Hide

#install.packages("psych")

Part 2.1-F-i

Hide

library(psych)
pairs.panels(newDF[,c("PhD","S.F.Ratio","Grad.Rate")])

Part 2.1-F-ii

Hide

print("'PhD'(percentage of faculty with PhDs) and 'Grad.Rate' (Graduation Rate) are positively correlated. This makes sense, because academically d riven students and faculty are likely drawn to the same institutions.", q uote = F)

[1] 'PhD'(percentage of faculty with PhDs) and 'Grad.Rate' (Graduation Rate) are positively correlated. This makes sense, because academically driven students and faculty are likely drawn to the same institutions.

Part 2.1-F-iii

Hide

print("'S.F.Ratio' (student-to-faculty ratio) and 'Grad.Rate' (Graduation
Rate) are negatively correlated. This makes sense. This makes sense. A hi
gher S.F.Ratio implies that there are fewer resources available to studen
ts, which could explain lower graduation rates.", quote = F)

[1] 'S.F.Ratio' (student-to-faculty ratio) and 'Grad.Rate' (Graduation Rate) are negatively correlated. This makes sense. This makes sense. A high er S.F.Ratio implies that there are fewer resources available to student s, which could explain lower graduation rates.

Part 2.1-G

Hide

```
Part 2.1-A
Part 2.1-B
Part 2.1-C
Part 2.1-D-i
Part 2.1-D-ii
Part 2.1-D-iii (extra credit)
Part 2.1-E-i
Part 2.1-E-ii
Part 2.1-F
Part 2.1-F-i
Part 2.1-F-ii
Part 2.1-F-iii
Part 2.1-G
Part 2.1-H
Part 2.1-H-iii:
Part 2.1-H-i:
Part 2.1-H-ii
```


Percentage of Alumni Who Donate: Public versus Private Colleges

Hide

print("Based on the boxplots above, the highest donors tend to be alumni
 of private colleges.", quote = F)

[1] Based on the boxplots above, the highest donors tend to be alumni of private colleges.

Part 2.1-H

Hide

cdfCollege <- ecdf(collegeData\$Expend)</pre>

Part 2.1-H-iii:

Hide

Hide

```
grid(14,10)
axis(xaxs = "i", side=1,tck=-0.02,at=c(seq(from=0,to=35000,by=2500)), lab
els = F)
```

Hide

```
text(seq(1, 35001, by=2500), par("usr")[3] - 0.2,
    labels = c(seq(from=0,to=35000,by=2500)), srt = 45, pos = 3, offset
= 1,
    xpd = TRUE, cex =0.7)
```


Part 2.1-H-i:

Part 2.1-A

Part 2.1-B

Part 2.1-C

Part 2.1-D-i

Part 2.1-D-ii

Part 2.1-E-ii Part 2.1-E-ii

Part 2.1-F Part 2.1-F-i

Part 2.1-F-ii Part 2.1-F-iii Part 2.1-G

Part 2.1-H
Part 2.1-H-iii:

Part 2.1-H-i: Part 2.1-H-ii

Part 2.1-D-iii (extra credit)

Hide

fifty = quantile(collegeData\$Expend, probs = 0.5)
noquote(sprintf("The gridlines in the above CDF plot place the median exp
enditure between \$7500 and \$10,000 per student -- roughly \$8500. Upon per
forming the actual calculation, we find that the true value is \$%0.f, whi
ch is not far off from the estimate.", fifty))

[1] The gridlines in the above CDF plot place the median expenditure betw een \$7500 and \$10,000 per student -- roughly \$8500. Upon performing the a ctual calculation, we find that the true value is \$8377, which is not far off from the estimate.

Part 2.1-H-ii

Hide

eighty = quantile(collegeData\$Expend, probs = 0.8)
noquote(sprintf("The gridlines in the above CDF plot suggest that 80%% of
students pay below a value that is betwen \$10,000 and \$12,500 -- about \$1
1,500. Upon performing the actual calculation, we find that the true valu
e is \$%0.f, which is not far off from the estimate.", eighty))

[1] The gridlines in the above CDF plot suggest that 80% of students pay below a value that is betwen \$10,000 and \$12,500 — about \$11,500. Upon p erforming the actual calculation, we find that the true value is \$11656, which is not far off from the estimate.