

## Outline





#### **Problem Statement**

#### How to predict the stock price?

How to apply deep learning to stock research to get more accurate prediction results?



#### Can stock prices be predicted?

Stock prices change according to time series. Does this mean that stock prices change regularly over time?

#### What can we learn from this project?

From the predicted results and the exploration of the market, can we get some guiding opinions on investment?



## Start with Apple Inc.



#### Pre-processing

#### Loading the data

- Stock of Apple Inc. from Feb. 2013 to Feb. 2018
- Source: Super DataScience
- Daily close price
- Predicted Apple's stock price 7 days in advance

## Cutting time series into sequences

#### Splitting training and testing sets

- 80% training data
  - o 1000 records
  - o Feb. 2013 Feb. 2017
- 20% testing data
  - o 251 records
  - o Feb. 2017 Feb. 2018

## Pre-processing —— Cutting time series in sequences



where sp is the numerical value of the time series at time period p and where P is the total length of the series.





| Input                                                         | Output                |
|---------------------------------------------------------------|-----------------------|
| $\langle s_1, s_2, s_3, s_4, s_5 \rangle$                     | <i>s</i> <sub>6</sub> |
| $\langle s_2, s_3, s_4, s_5, s_6 \rangle$                     | <i>S</i> 7            |
|                                                               |                       |
| $\langle s_{P-5}, s_{P-4}, s_{P-3}, s_{P-2}, s_{P-1} \rangle$ | SP                    |

## Start with Apple Inc.



#### **Basic Structure of RNN**



- Problem that RNN solve: sequence problem
- Elements are not independent of each other. They have dependencies.

#### **Basic Structure of LSTM**



# Input Gate: Co. previous cell state (i) forget gate output (ii) input gate output (ic) candidate



#### **Basic Structure of LSTM**



Two hidden layer RNN of the following specifications:

- layer 1 uses 3 LSTM module with 64 hidden units, input size is 7.
- layer 2 uses a fully connected module with one unit
- Loss function: MSE

## Start with Apple Inc.



#### **Prediction Result**





#### Apply Same Modle to Four Main Sectors

|   | Loading the data |                       |  |  |
|---|------------------|-----------------------|--|--|
|   | Sou              | roo: Vahoo Einanoo    |  |  |
|   |                  | Source: Yahoo Finance |  |  |
| • | 4 Se             | ectors:               |  |  |
|   | 0                | XLK: Technology       |  |  |
|   | 0                | XLV: Hearlth Care     |  |  |
|   | 0                | XLF: Finicial         |  |  |
|   | 0                | XTN:                  |  |  |

Transportation

Dec. 2010 - Dec. 2020

Daily close price

Cutting time series into sequences

Spliting training and testing sets

Building RNN model Check model performance

- Window size = 7
- Predicted 7 days in advance
- 80% training data
  - o 2008 records
  - Dec. 2010 -Dec. 2018
- 20% testing data
  - 502 records
  - o Dec. 2018 Dec. 2020

- RNN + LSTM
- 2 layers:
  - o LSTM
  - FullyConnection

#### Model Performance for 4 Sectors



#### Refine the LSTM Model for XLK



Performance well in training set but not well in testing set

Overfitting

- L1 and L2 Regression
- Dropout +
- Early Stopping
- Simplier model structure +
- Increase data
- ...

#### Refine the LSTM Model for XLK



#### Method:

- Decrease the layers number (layer\_number = 2)
- Increase the dropout rate (dropout = 0.2)
- Adjust the learning rate (learning\_rate = 0.001)



RMSE for testing set = 3.33





## Sepecial Time Period: Covid-19 Period



## Relative Change in Covid-19 Period



- All sectors experienced precipitous declines in April, then gradually recovering.
- XLK:
  - One of the fastest to recover.
  - Returned to normal levels in July
  - Continuing to rise rapidly.
- XLV:
  - Fastest to return to the level before covid-19
  - Stay horizontal
- XLF:
  - o Recovery, but not much
- XTN:
  - Increase rapidly after July
  - Another quickly growth after November

## Relationship Among Four Sectors



#### Pearson Correlation:

- XLK and XTN: 0.897
- XLV and XLF: 0.798

The relative change of XLK and XTN have strong correlation, so as XLV and XLF.

## Daily Percentage Change in Covid-19 Period



#### Daily Percentage Change in Covid-19 Period

- Most close price are unchanged
- The change percentage of XLV is the most concentrated
- XLF and XLK are really close to normal distribution
- XTN has more days with price decreasing
- XLV more days with price increasing.



#### Sharpe Ratio in Covid-19 Period



 $R_p$  = Return of portfolio

R<sub>f</sub> = Risk-Free rate

 $\sigma_p$  = Standard deviation of portfolio's excess return

|     | Sharpe Ratio<br>before Covid-19 | Sharpe Ratio in<br>Covid-19 Period |
|-----|---------------------------------|------------------------------------|
| XLK | 2.685                           | 1.108                              |
| XLV | 2.001                           | 0.515                              |
| XLF | 1.388                           | 0.103                              |
| XTN | 1.296                           | 0.444                              |

For every extra unit of risk, the premium that investor can get in covid-19 period is lower than previous years. However, the technology sector still managed to make a decent return this year.



#### Conclusion

- The mothod to predict stocks: LSTM
  - Basic structure of RNN
  - Basic structure of LSTM
  - Combine together and apply in data
    - Apple Inc
    - 4 sectors in S&P500: XLK, XLV, XLF, XTN
- Special time period: Covid-19
  - Relative change:
    - XLK increased fast after April. The stock price even higher than before.
    - XTN had an extremly rapid increase
    - The relative change of XLK and XTN have strong correlation, so as XLV and XLF
  - Correlation:
    - The relative change of XLK and XTN have strong correlation
    - The relative change of XLV and XLF have strong correlation
  - Daily percentage change:
    - Most investment are unchanged
    - XTN has more days with price decreasing
    - XLV more days with price increasing
  - Sharpe ratio:
    - The sharpe ratio in covid-19 is lower than normal
    - XLK is still the best choice

#### Conclusion

# Suggestions for investors based on the project



- Technology sector is always the best choice.
- Health Care is the best choice for investors who want to invest in the lowest risk.
- Transcription has a rapid increase recently.
- Financial is slowly recovering.
- Stock prices can be predicted by LSTM algorithm.

#### Directions for the future work



- For each sector, detect which company is the best choice to invest.
- Studying stock market changes in recent years as all pandemics occur. It may contains some regularities.

