REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burgen for this collection of information is estimated to average 1 nour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Deviations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AN	
	May 15, 1996	Final Report	01 Jan 91 - 31 Dec 1992
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
Numerical Modelling of the Layer	e Continental Shelf B	ottom Boundary	
6. AUTHOR(S)			
Hsiao-ming Hus and Robert	C. Beardsley		
7. PERFORMING ORGANIZATION NAME	(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
Woods Hole Oceanographic Department of Physical Oce 360 Woods Hole Road Woods Hole, MA 02543-1541	Institution eanography		
9. SPONSORING/MONITORING AGENCY Department of the Navy Office of Naval Research Resident Representative 496 Summer St., Room 103	NAME(S) AND ADDRESS(ES)		10. SPONSORING / MONITORING AGENCY REPORT NUMBER
Boston, MA 02210-2109			
11. SUPPLEMENTARY NOTES Final Report Attached			
12a. DISTRIBUTION / AVAILABILITY STA	TEMENT		12b. DISTRIBUTION CODE
Approved for public reledition is unlimited			
13. ABSTRACT (Maximum 200 words)			
See attached final report			

19960703 040

14. SUBJECT TERMS bottom boundary layer	15. NUMBER OF PAGES		
interactions with inte	16. PRICE CODE		
17. SECURITY CLASSIFICATION OF REPORT unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE unclassified	19. SECURITY CLASSIFICATION OF ABSTRACT unclassified	20. LIMITATION OF ABSTRACT

Final Report for ONR Grant N00014-91-J-1473, Drs. Hsiao-ming Ĥsu and Robert C. Beardsley, Principal Investigators

The primary objective of this project was to examine the nature of wind-driven upwelling and downwelling along a 2-dim shelf with sloping bottom topography. The approach was to use the Semi-spectral Primitive Equation Model (SPEM) developed by D. Haidvogel and coworkers as the basic circulation model, and conduct a series of idealized model runs to investigate the influence of bottom slope, surface windstress and heat flux, and mixing on the surface and bottom boundary layers which form during the initial stages of up/downwelling. The advanced turbulent closure schemes of Mellor and Yamada were added to our version of SPEM and the model studies were conducted. These studies showed that an asymmetry develops in the bottom boundary layer thickness depending of if the flow is up or downwelling, and that if the coast is shallow enough, that the surface and bottom boundary layers can merge near the coast. Two AGU abstracts were presented and several talks were given on this work. A paper co-authored with A. Herman on the technical aspects of the vertical model resolution was also published.

- Hermann, A.J. and H.-M. Hsu, 1989. A semispectral ocean circulation model with mixed layer physics; Part 2: the value of stretched coordinates. *EOS, Transactions, American Geophysical Union*, fall meeting.
- Hsu, H-m., Robert-C. Beardsley, and J. F. Price, 1992. Including surface and bottom boundary layer physics in a primitive-equation model to study coastal circulations. *EOS*, *Transactions*, *American Geophysical Union*, 72(52), 59 (abstract).
- Hermann, A.J. and H.-M. Hsu, 1993. A vertical coordinate mapping technique for semispectral primitive equation models of oceanic circulation. *J. Atmos. Ocean Tech.*, **10**(3), 381-396.

Final Report for ONR Grant N00014-91-J-1473, Drs. Hsiao-ming Hsu and Robert C. Beardsley, Principal Investigators

The primary objective of this project was to examine the nature of wind-driven upwelling and downwelling along a 2-dim shelf with sloping bottom topography. The approach was to use the Semi-spectral Primitive Equation Model (SPEM) developed by D. Haidvogel and coworkers as the basic circulation model, and conduct a series of idealized model runs to investigate the influence of bottom slope, surface windstress and heat flux, and mixing on the surface and bottom boundary layers which form during the initial stages of up/downwelling. The advanced turbulent closure schemes of Mellor and Yamada were added to our version of SPEM and the model studies were conducted. These studies showed that an asymmetry develops in the bottom boundary layer thickness depending of if the flow is up or downwelling, and that if the coast is shallow enough, that the surface and bottom boundary layers can merge near the coast. Two AGU abstracts were presented and several talks were given on this work. A paper co-authored with A. Herman on the technical aspects of the vertical model resolution was also published.

- Hermann, A.J. and H.-M. Hsu, 1989. A semispectral ocean circulation model with mixed layer physics; Part 2: the value of stretched coordinates. *EOS, Transactions, American Geophysical Union*, fall meeting.
- Hsu, H-m., Robert~C. Beardsley, and J. F. Price, 1992. Including surface and bottom boundary layer physics in a primitive-equation model to study coastal circulations. *EOS*, *Transactions*, *American Geophysical Union*, **72**(52), 59 (abstract).
- Hermann, A.J. and H.-M. Hsu, 1993. A vertical coordinate mapping technique for semispectral primitive equation models of oceanic circulation. *J. Atmos. Ocean Tech.*, **10**(3), 381-396.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF COLOR PAGES WHICH DO NOT REPRODUCE LEGIBLY ON BLACK AND WHITE MICROFICHE.