NBA 4920/6921 Lecture 11

Linear Model Stepwise Selection

Murat Unal

Johnson Graduate School of Management

10/05/2021

Agenda

Quiz 9

Best subset selection

Stepwise selection Forward stepwise selection Backward stepwise selection

Application in R

Best subset selection:

The idea is to estimate a model for every possible subset of variables; then compare their performances

Best subset selection:

- 1. Let M_0 denote the null model, which contains no predictors.
- 2. For *k* in 1 to *p*:
 - Fit every possible model with k variables
 - Let M_k denote the **best** model with k variables
 - lacktriangle Here best is defined as having the smallest RSS, or equivalently largest R^2
- 3. Select the **best** model from M_0, \dots, M_p using cross-validated prediction error
- 4. Train the chosen model on the full dataset

Best subset selection:

Problem?

Best subset selection:

Problem?

- $ightharpoonup p = 10 \leadsto fitting 1,024 models$
- ▶ $p = 25 \rightsquigarrow \text{ fitting} \approx 33.5 \text{ mil models}$

Stepwise selection

Stepwise selection: reduces the computational burden of best subset selection

The main idea is:

- 1. Start by fitting an arbitrary model
- 2. Improve the model by adding/removing variables one-at-a-time
- 3. Select the best fitting model

Two main strategies for stepwise selection are:

- 1. Forward: start with only intercept model M_0 , and add variables one-at-a-time
- 2. **Backward**: start with all variables model M_p , and remove variables one-at-a-time

Forward stepwise selection

Forward stepwise selection:

Start with the null model, and add predictors one-at-a-time, until all p variables are in the model

At each step the variable that give the greatest improvement in model fit is added

Forward stepwise selectionn

Forward stepwise selection:

- 1. Let M_0 denote the null model, which contains no predictors.
- 2. For k in 0 to p-1:

 - lacktriangle Choose the **best** among these p-k models and call it M_{k+1}
 - lacktriangle Here best is defined as having the smallest RSS, or equivalently largest R^2
- 3. Select the **best** model from M_0, \cdots, M_p using cross-validated prediction error
- 4. Train the chosen model on the full dataset

Forward stepwise selection

Forward stepwise selection:

<u>Problem?</u> It is not guaranteed to find the best possible model out of all 2^p models containing subsets of the p predictors

Best subset and forward stepwise selection for Credit dataset

# Variables	Best subset	Forward stepwise
One	rating	rating
Two	rating, income	rating, income
Three	rating, income, student	rating, income, student
Four	cards, income,	rating, income,
	student, limit	student, limit

Source: ISL

Backward stepwise selection

Backward stepwise selection:

Start with the full model containing all p predictors, and then remove the least useful predictor one-at-a-time

Backward stepwise selection

Backward stepwise selection:

- 1. Let M_p denote the full model, which contains all predictors.
- 2. For *k* in *p* to 1:
 - Consider all k models that contain all but one of the predictors in M_k , for a total of k-1 predictors
 - ightharpoonup Choose the **best** among these k models and call it M_{k-1}
 - lacktriangle Here best is defined as having the smallest RSS, or equivalently largest R^2
- 3. Select the **best** model from M_0, \cdots, M_p using cross-validated prediction error
- 4. Train the chosen model on the full dataset

Backward stepwise selection

Backward stepwise selection:

<u>Problem?</u> It is not guaranteed to find the best possible model out of all 2^p models containing subsets of the p predictors

References

Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani (2017)

An Introduction to Statistical Learning

Springer.

https://www.statlearning.com/

Ed Rubin (2020)

Economics 524 (424): Prediction and Machine-Learning in Econometrics *Univ, of Oregon*.