Física de Partículas Elementales (G71)

4 Curso - Grado de Física - Doble Grado Física Matemáticas - Ejercicios Tema 4

Cuestión 1. Calcular el branching ratio para el decaimiento $K^+ \to \pi^+ + \pi^0$, teniendo en cuenta que la anchura parcial $\Lambda(K^+ \to \pi^+ + \pi^0) = 1,2 \times 10^{-8} eV$ y la vida media del kaón $\tau(K^+) = 1,2 \times 10^{-8} s$.

Cuestión 2. La sección eficaz de aniquiliación del proceso $e^+e^- \to \gamma \to \mu^+\mu^-$ viene dada por $\sigma = 4\pi\alpha^2/3s$, donde $\alpha = 1/137$. Calcula la sección eficaz a $\sqrt{s} = 50~GeV$, expresando la respuesta en unidades naturales (barns). Comparar el resultado con la sección eficaz total de colisión de protones a $\sqrt{s} = 50~GeV$ que es aproximadamente 40 mb y comenta el resultado.

Cuestión 3. El flujo invariante Lorentz para el proceso $a+b \rightarrow 1+2$ en el sistema de centro de masas es $F=4p_i^*\sqrt{s}$ donde p_i^* es el momento de las partículas del estado inicial. Demostrar que la expresión correspondiente en el sistema en el que la partícula b está en reposo es:

$$F = 4m_b p_a$$

Cuestión 4. Demostrar que el momento en el centro de masas de las partículas del estado inicial en un proceso de scattering con 2 partículas es:

$$P_i^{*2} = \frac{1}{4s} [s - (m_1 + m_2)^2] [s - (m_1 - m_2)^2]$$

Cuestión 5. Dibuja el los dos diagramas de Feynman de más bajo orden para el scattering Compton $e\gamma \to e\gamma$.

Cuestión 5. ¿Cuáles de los siguientes diagramas de Feynamn son válidos?

