

## Université de Poitiers

# Projet de Base de Données

Gestion et Analyse des Données Écologiques

Rapport

# Interactions entre Abeilles et Plantes

Élève:

Soufiane LMEZOUARI

Enseignant:
Dr. Urruty Thierry

,

# TABLE DES MATIÈRES

| In       | trod | uction                                 | 3  |
|----------|------|----------------------------------------|----|
| 1        | Cor  | nception de la Base de Données         | 4  |
|          | 1.1  | Cahier des Charges                     | 4  |
|          | 1.2  | Dictionnaire de Données                | 4  |
|          | 1.3  | Modélisation Conceptuelle et Physique  | 8  |
|          |      | 1.3.1 MCD                              | 8  |
|          |      | 1.3.2 Modèle Physique de Données       | S  |
| <b>2</b> | Réa  | disation et Exploitation des Données   | 10 |
|          | 2.1  | SQL Table Creation Scripts             | 10 |
|          | 2.2  | Requêtes Intelligentes et Explications | 11 |
|          | 2.3  | Triggers et Explications               | 12 |
|          | 2.4  | Trigger spécifique                     | 13 |
| 3        | con  | clusion                                | 14 |
|          | 3.1  | Informations de contact                | 15 |

# INTRODUCTION

Les abeilles, en tant que pollinisateurs essentiels, jouent un rôle fondamental dans le maintien de la biodiversité et la production alimentaire mondiale. Elles interagissent avec un large éventail de plantes, influençant directement la reproduction végétale et la santé des écosystèmes. Comprendre ces interactions est crucial pour anticiper les impacts du changement climatique, de la perte d'habitat et des activités humaines sur ces écosystèmes vitaux.

Dans l'article publié par **Gibbs et al. (2020)**, intitulé "Bees in the Anthropocene : A review of their interactions with the environment" (l'article), l'accent est mis sur les relations complexes entre les abeilles et leur environnement. Ces interactions, fortement influencées par des facteurs tels que la disponibilité des ressources, les saisons et la fragmentation des habitats, nécessitent une étude approfondie et une gestion rigoureuse des données. Cet article met également en lumière la nécessité de collecter des données précises sur les espèces d'abeilles, leurs comportements, et leurs habitats pour soutenir la recherche scientifique et les efforts de conservation.

Inspiré par cette problématique, ce projet a pour objectif de développer une base de données relationnelle robuste, dédiée à l'analyse des interactions abeilles-plantes.

# CHAPITRE 1

# CONCEPTION DE LA BASE DE DONNÉES

## 1.1 Cahier des Charges

Le projet consiste à développer une base de données relationnelle pour gérer et analyser les interactions entre les abeilles et les plantes dans différents écosystèmes. Cette base de données vise à :

- ▷ Documenter les relations entre les espèces d'abeilles, les plantes qu'elles pollinisent, et les sites d'observation.
- ▷ Collecter et structurer les données liées aux méthodes d'échantillonnage, aux saisons et aux chercheurs impliqués.
- $\bowtie$  Faciliter l'analyse ses données des échantillons avec des informations spatio-temporelles (sites, saisons, heures d'échantillonnage) via des requêtes complexes (GROUP BY, sous-requêtes, jointures) .
- × Fiabilité : Garantir l'intégrité des données via des contraintes (CHECK, clés étrangères).
- ▶ Automatisation : Automatiser les calculs critiques (nombre d'espèces, validation des données) via des triggers.
  - × Flexibilité : Permettre l'ajout futur de nouvelles données ou relations.

## 1.2 Dictionnaire de Données

#### ▷ Table : Searcher

Contient les informations sur les chercheurs ayant contribué à la collecte des données.

| Colonne       | Description                         | Type         | Contraintes |
|---------------|-------------------------------------|--------------|-------------|
| id_searcher   | Identifiant unique du chercheur     | INTEGER      | PRIMARY     |
|               |                                     |              | KEY         |
| searcher_name | Nom complet du chercheur            | VARCHAR2(50) | NOT NULL    |
| email         | Adresse e-mail du chercheur         | VARCHAR2(50) | -           |
| adresse       | Adresse postale                     | VARCHAR2(50) | -           |
| institution   | Institution à laquelle le chercheur | VARCHAR2(50) | -           |
|               | est affilié                         |              |             |

Cette table permet de suivre les contributions des chercheurs, facilitant la traçabilité et l'attribution.

## ightharpoonup Table : Bee\_species

Stocke les informations sur les espèces d'abeilles observées.

| Colonne      | Description                          | Type         | Contraintes     |
|--------------|--------------------------------------|--------------|-----------------|
| id_bee       | Identifiant unique de l'espèce       | INTEGER      | PRIMARY         |
|              | d'abeille                            |              | KEY             |
| species_name | Nom scientifique ou commun de        | VARCHAR2(50) | NOT NULL        |
|              | l'espèce                             |              |                 |
| parasitic    | Indique si l'abeille est parasitaire | SMALLINT     | CHECK(parasitic |
|              | (0 ou 1)                             |              | IN $(0, 1)$     |
| nesting      | Type de nidification (ex. sol, bois) | VARCHAR2(50) | -               |
| status       | Statut écologique (ex. vulnérable,   | VARCHAR2(50) | -               |
|              | inconnu)                             |              |                 |

 $<sup>\</sup>star$  Le statut permet de suivre les espèces menacées ou peu étudiées.

## $\rhd \ Table : Bee\_sex$

Précise le sexe des abeilles associées à une espèce.

| Colonne     | Description                      | Type    | Contraintes   |
|-------------|----------------------------------|---------|---------------|
| id_bee      | Identifiant de l'espèce          | INTEGER | FOREIGN KEY   |
|             |                                  |         | REFERENCES    |
|             |                                  |         | Bee_species   |
| sex         | Sexe de l'abeille (M : mâle, F : | CHAR(1) | CHECK(sex IN  |
|             | femelle, U : inconnu)            |         | ('M', 'F'))   |
| Primary Key | Combinaison unique de id_bee et  | -       | PRIMARY KEY   |
|             | sex                              |         | (id_bee, sex) |

Permet d'analyser les interactions distinctes des abeilles mâles et femelles.

\* La clé primaire composée garantit l'unicité pour chaque sexe par espèce.

#### $\triangleright$ Table : Plant

Concerne les plantes associées aux observations.

| Colonne    | Description                        | Type         | Contraintes     |
|------------|------------------------------------|--------------|-----------------|
| id_plant   | Identifiant unique de la plante    | INTEGER      | PRIMARY KEY     |
| plant_name | Nom de la plante                   | VARCHAR2(50) | NOT NULL        |
| is_native  | Indique si la plante est native (0 | SMALLINT     | CHECK(is_native |
|            | ou 1)                              |              | IN $(0, 1)$     |

 $\star$  La colonne is\_native est essentielle pour étudier l'impact des espèces introduites sur les écosystèmes locaux.

#### ▷ Table : Season

Enregistre les saisons d'observation.

| Colonne     | Description                     | Type         | Contraintes |
|-------------|---------------------------------|--------------|-------------|
| id_season   | Identifiant unique de la saison | INTEGER      | PRIMARY KEY |
| season_name |                                 | VARCHAR2(50) | NOT NULL    |
|             | son)                            |              |             |

Utilisée pour regrouper les observations par période de l'année, ce qui peut révéler des tendances saisonnières.

#### ▷ Table : Site

Détaille les lieux d'observation.

| Colonne   | Description                | Type         | Contraintes |
|-----------|----------------------------|--------------|-------------|
| id_site   | Identifiant unique du site | INTEGER      | PRIMARY KEY |
| site_name | Nom ou description du site | VARCHAR2(50) | NOT NULL    |

Indique les emplacements géographiques des observations pour des analyses spatiales. A, B et C

## ▷ Table : Sampling method

Contient les méthodes d'échantillonnage utilisées.

| Colonne     | Description                      | Type         | Contraintes |
|-------------|----------------------------------|--------------|-------------|
| id_method   | Identifiant unique de la méthode | INTEGER      | PRIMARY KEY |
| Method_name | Description de la méthode        | VARCHAR2(50) | NOT NULL    |

Permet de comparer l'efficacité des différentes techniques d'échantillonnage.

## ▷ Table : Sample

Enregistre les informations des échantillons collectés.

| Colonne     | Description                         | Type      | Contraintes     |
|-------------|-------------------------------------|-----------|-----------------|
| sample_id   | Identifiant unique de l'échantillon | INTEGER   | PRIMARY KEY     |
| id_season   | Saison d'échantillonnage            | INTEGER   | FOREIGN KEY     |
|             |                                     |           | REFERENCES      |
|             |                                     |           | Season          |
| id_site     | Site de l'échantillon               | INTEGER   | FOREIGN KEY     |
|             |                                     |           | REFERENCES      |
|             |                                     |           | Site            |
| id_method   | Méthode utilisée                    | INTEGER   | FOREIGN KEY     |
|             |                                     |           | REFERENCES      |
|             |                                     |           | Sampling_method |
| Date_Time   | Date de l'échantillon               | DATE      | NOT NULL        |
| Species_nbr | Nombre d'espèces observées          | INTEGER   | -               |
| start_time  | Heure de début                      | TIMESTAMP | -               |
| end_time    | Heure de fin                        | TIMESTAMP | -               |

Permet d'enregistrer les données collectées pour chaque échantillon, incluant la méthode, le site, et le nombre d'espèces observées.

## ightharpoonup Table : sample details

Détaille les abeilles et plantes observées dans chaque échantillon.

| Colonne           | Description          | Type    | Contraintes |
|-------------------|----------------------|---------|-------------|
| ID_sample_details | Identifiant unique   | INTEGER | PRIMARY KEY |
| id_plant          | Plante associée      | INTEGER | FOREIGN KEY |
|                   |                      |         | REFERENCES  |
|                   |                      |         | Plant       |
| id_bee            | Abeille associée     | INTEGER | FOREIGN KEY |
|                   |                      |         | REFERENCES  |
|                   |                      |         | Bee_species |
| sample_id         | Échantillon concerné | INTEGER | FOREIGN KEY |
|                   |                      |         | REFERENCES  |
|                   |                      |         | Sample      |

- Cette table permet de lier les plantes et les abeilles observées dans un échantillon spécifique.
- Les contraintes garantissent que chaque entrée est associée à une plante, une abeille, et un échantillon existants.

## $\triangleright$ Table : specialized on

Lien entre les abeilles et leurs plantes spécialisées.

| Colonne  | Description                       | Type    | Contraintes |
|----------|-----------------------------------|---------|-------------|
| id_bee   | Abeille spécialisée               | INTEGER | FOREIGN KEY |
|          |                                   |         | REFERENCES  |
|          |                                   |         | Bee_species |
| id_plant | Plante sur laquelle l'abeille est | INTEGER | FOREIGN KEY |
|          | spécialisée                       |         | REFERENCES  |
|          |                                   |         | Plant       |

#### ▷ Table : Native

Indique la nativité des abeilles par site.

| Colonne   | Description                           | Type     | Contraintes     |
|-----------|---------------------------------------|----------|-----------------|
| id_bee    | Identifiant unique de l'abeille       | INTEGER  | FOREIGN KEY     |
|           |                                       |          | REFERENCES      |
|           |                                       |          | Bee_species     |
| id_site   | Identifiant unique du site            | INTEGER  | FOREIGN KEY     |
|           |                                       |          | REFERENCES      |
|           |                                       |          | Site            |
| is_native | Indique si l'abeille est native (0 ou | SMALLINT | CHECK(is_native |
|           | 1)                                    |          | IN $(0, 1)$     |

## 1.3 Modélisation Conceptuelle et Physique

## 1.3.1 MCD



FIGURE 1.1 – Modèle Conceptuel de Données

#### ⋊ Sample et sample details :

Chaque échantillon peut contenir plusieurs abeilles et plantes. Cette relation centralise toutes les observations et permet des analyses détaillées.

## 1.3.2 Modèle Physique de Données

Le modèle physique de données (MPD) présenté ci-dessous se traduit par le modèle conceptuel de données (MCD).



FIGURE 1.2 – Modèle Physique de Données

Dans le Modèle, chaque plante est identifiée par un identifiant unique ('id\_plant'), une plante avec 'id\_plant = 100', si pour les abeilles non associées à une plante spécifique, une valeur par défaut comme "none" est ajoutée. Cette approche permet de représenter les abeilles observées en vol pendant l'échantillonnage.

# CHAPITRE 2

# RÉALISATION ET EXPLOITATION DES DONNÉES

## 2.1 SQL Table Creation Scripts

```
Table: Bee species
```

```
CREATE TABLE Bee_species (
id_bee INTEGER PRIMARY KEY,
specie_name VARCHAR2(50) NOT NULL,
parasitic SMALLINT CHECK
(parasitic IN (0, 1)),
nesting VARCHAR2(50) NOT NULL,
status VARCHAR2(50) DEFAULT 'unknown'
);
```

## Table: Bee sex

```
CREATE TABLE Bee_sex (
id_bee INTEGER,
sex CHAR(1) CHECK (sex IN ('M', 'F', 'U')),
PRIMARY KEY (id_bee, sex)
);
```

## Table: Plant

```
CREATE TABLE Plant (
id_plant INTEGER PRIMARY KEY,
plant_name VARCHAR2(50) NOT NULL,
is_native SMALLINT CHECK
(is_native IN (0, 1))
);
```

## Table: Season

```
CREATE TABLE Season (
id_season INTEGER PRIMARY KEY,
season_name VARCHAR2(50) NOT NULL
);
```

## Table: Site

```
CREATE TABLE Site (
id_site INTEGER PRIMARY KEY,
site_name VARCHAR2(50) NOT NULL
);
```

## Table: Sampling method

```
CREATE TABLE Sampling_method (
id_method INTEGER PRIMARY KEY,
Method_name VARCHAR2(50) NOT NULL
);
```

## Table: Sample

```
CREATE TABLE Sample (
sample_id INTEGER PRIMARY KEY,
id_season INTEGER,
id_site INTEGER,
id_method INTEGER,
Date_Time DATE NOT NULL,
Species_nbr INTEGER DEFAULT 0
CHECK (Species_nbr >= 0),
start_time TIMESTAMP NOT NULL,
end_time TIMESTAMP NOT NULL
);
```

## Table : sample\_details

```
CREATE TABLE sample_details (
ID_sample_details INTEGER PRIMARY KEY,
id_plant INTEGER NOT NULL,
id_bee INTEGER NOT NULL,
sample_id INTEGER NOT NULL
);
```

## Table : specialized\_on

```
CREATE TABLE specialized_on (
id_bee INTEGER,
id_plant INTEGER,
PRIMARY KEY (id_bee, id_plant)
);
```

## Table: Native

```
CREATE TABLE Native (
id_bee INTEGER,
id_site INTEGER,
is_native SMALLINT CHECK (is_native IN (0, 1
PRIMARY KEY (id_bee, id_site)
);
```

## 2.2 Requêtes Intelligentes et Explications

- × Lister les chercheurs et leurs institutions : Permet d'obtenir une vue d'ensemble des chercheurs travaillant sur le projet et des institutions partenaires, facilitant l'analyse des collaborations.
- × Identifier les espèces parasitaires et leur statut : Utile pour analyser les espèces parasitaires et leur impact écologique potentiel sur les autres espèces d'abeilles et les plantes.
- × Identifier les abeilles natives dans un site spécifique : Permet d'évaluer la répartition des abeilles natives dans un site donné et d'étudier leur rôle dans l'écosystème local.

- × Identifier les plantes les plus visitées par une espèce spécifique d'abeille : Analyse les préférences des abeilles pour certaines plantes, offrant des informations sur leurs interactions et préférences alimentaires.
- × Méthodes d'échantillonnage les plus utilisées par saison : Identifie les méthodes d'échantillonnage les plus fréquentes pour optimiser les efforts de collecte de données.
- × Trouver les plantes visitées par des abeilles natives : Étudie les plantes préférées des abeilles natives pour mieux comprendre leur rôle écologique et les ressources qu'elles utilisent.
- × Lister les espèces spécialisées sur une plante spécifique : Permet d'analyser les relations exclusives ou spécialisées entre une espèce d'abeille et une plante donnée.
- × Déterminer les plantes favorables à chaque type d'abeille (native ou nonnative) : Fournit des informations sur les plantes adaptées aux abeilles natives et nonnatives, permettant une gestion ciblée des ressources.
- × Trouver les périodes les plus actives pour chaque site : Aide à identifier les heures optimales pour la collecte d'échantillons en fonction de l'activité sur chaque site.
- × Compter les échantillons collectés par jour : Analyse la charge de collecte journalière et aide à planifier les efforts futurs.
- × Lister les interactions par site : Offre une vue détaillée des interactions abeillesplantes sur chaque site, facilitant les études écologiques locales.
- × Obtenir les interactions spécifiques entre une plante et des abeilles dans un site donné: Analyse fine des interactions pour des plantes et sites spécifiques, utile pour des études ciblées.

## 2.3 Triggers et Explications

- ▶ 1. Trigger pour éviter les doublons dans Plant Explication : Ce trigger empêche l'insertion ou la mise à jour de plantes avec le même nom mais des identifiants différents, garantissant l'unicité des plantes dans la base de données.
- ▷ 2.Trigger pour mettre à jour automatiquement les références ▷ Lorsque l'identifiant (id\_plant) d'une plante est modifié dans la table Plant, ce trigger met automatiquement à jour toutes les références associées dans la table sample\_details.

#### ▷ 3. Trigger pour empêcher des valeurs conflictuelles de is native

Ce trigger empêche une même plante d'avoir des valeurs contradictoires pour le champ is\_native. Par exemple, une plante ne peut pas être à la fois déclarée comme native et non-native. la nativité ne dépend pas de site.

## × 4. Ajout automatique d'un statut pour une abeille :

Trigger qui attribue automatiquement un statut par défaut (unknown) à une abeille lorsque son statut n'est pas renseigné.

## × 5.Suppression automatique des doublons dans la table sample\_details :

Un trigger associée supprime les doublons dans les échantillons pour garantir l'intégrité et éviter les redondances.

## 2.4 Trigger spécifique

#### × 1. Notification pour dépassement du temps d'échantillonnage :

Trigger qui génère une alerte lorsque la durée d'échantillonnage dépasse une certaine limite (par exemple, 8 heures). Cela aide à identifier les anomalies dans les durées des sessions d'échantillonnage.

#### × 2. Génération d'un rapport journalier :

Procédure associée qui compile un rapport quotidien sur le nombre total d'échantillons collectés et d'espèces observées. Cela fournit une vue d'ensemble journalière des activités de collecte et des observations.

#### × 3. Détection des abeilles non natives ajoutées :

Trigger qui génère une alerte lorsqu'une abeille non native est ajoutée dans la table Native. Cela permet de surveiller l'introduction des espèces non natives dans des sites spécifiques, essentiel pour gérer les écosystèmes.

# CHAPITRE 3

# CONCLUSION

Ce projet met en lumière l'importance de la structuration et de l'automatisation des bases de données dans l'étude des interactions complexes entre les abeilles, les plantes, et les écosystèmes. En combinant une conception rigoureuse des tables, des contraintes pour assurer la validité des données, et l'utilisation de triggers intelligents, nous avons pu créer une base de données robuste et cohérente.

Les requêtes élaborées permettent d'extraire des informations clés, telles que les préférences des abeilles pour certaines plantes, l'impact des espèces parasitaires, ou encore l'efficacité des méthodes d'échantillonnage. De plus, les mécanismes d'automatisation, comme la détection des incohérences et la génération de rapports, facilitent une gestion proactive des données.

En conclusion, cette base de données offre un outil puissant pour les chercheurs et les gestionnaires environnementaux. Elle ne se limite pas à la collecte de données, mais sert également de support à l'analyse et à la prise de décision, contribuant ainsi à une meilleure compréhension et préservation de la biodiversité. Ce projet pourrait être élargi pour inclure des données supplémentaires, comme les conditions climatiques ou les interactions avec d'autres pollinisateurs, afin d'améliorer encore plus son impact.

## 3.1 Informations de contact

GitHub: https://github.com/soufianelmezouari

**In LinkedIn:** https://www.linkedin.com/in/soufiane-lmezouari

**Email**: soufianelmezouari@gmail.com

✓ Lien vers le code complet : https://github.com/LmezouariSoufiane/EcoBeeDB

**Note**: Tout le code de ce projet est disponible sur mon profil GitHub via le lien ci-dessus. N'hésitez pas à me contacter pour toute question ou collaboration.