Class Test No. 06	Thursday 05 th Sep 2019	Duration: 10 Minutes	Closed notes
Name:		Roll No	
Choose o	only one option which is the m	ost appropriate for question	s 1 - 5.
	pproximation of a time delay te	erm contributes to the transfe	r function
` '	additional zero in RH s-plane		
	LH s-plane and a zero in RH s	<u>-plane</u>	
•	ole and a zero in RH s-plane	•	
(d) a zero in	LH s-plane and pole in RH s-p	lane	
	he trace of the tip of the phaso	or (i.e. vector in complex plan	e) whose length
is given by			
(a) Re{G(jo			
(b) $Im{G(jo)}$	ω) }l		
<u>(c) G(jω) </u>			
(d) Re{G(jo	$\{\omega\}\}$ + $ Im\{G(j\omega)\} $		
3. Nyquist plot of 1	$/(1+j\omega T)$ is		
(a) semi-circ	cle in 1 st quadrant		
(b) positive	imaginary axis		
(c) negative	real axis		
(d) semi-cir	cle in 4 th quadrant		
4. Forced response	based stability requires that		
(a) input is l	bounded and output is bounded		
(b) input is	unbounded and output is bound	ed	
	bounded and output is unbounded		
(d) input is	unbounded and output is unbou	nded	
5. Nyquist plot of a	type 3 system, for $\omega \rightarrow 0$, wou	ld become tangent to	
(a) positive		_	
(b) positive	<u>imaginary axis</u>		
(c) negative	imaginary axis		
(d) negative	real axis		
Give short (1 - 2 li	nes) answer to the questions 6	i-10	
6. How can we ge plot?	et the undamped natural frequ	nency of a 2 nd order system f	rom the Nyquist
Undamped axis.	natural frequency in Nyquist plo	ot is the point at which it cross	es the imaginary

..... 2 (PTO)

7. Define a minimum phase system.			
Minimum phase system is that whose all poles and zeros are in LH s-plane.			
8. Define the asymptotic stability.			
A system is asymptotically stable when every natural response decays to zero as $t \to \infty$.			
9. List the main performance attributes that we normally look for in the response of a system?			
Stability, Tracking and Disturbance Rejection			
10. What are the main impacts of the time delay term on the time response of a system?			
The main impacts of the time delay term on the time response of a system are; (1) delay in settling and (2) large initial out-of-phase response.			