Math 591 Lecture 14

Professor Alejandro Uribe-Ahumada

Transcribed by Thomas Cohn

10/2/20

Defn: Let $F: M \to N$ be smooth.

- F is a submersion at $p \in M \Leftrightarrow F_{*,p}$ is onto. We say p is a regular point of F.
- F is a submersion $\Leftrightarrow \forall p \in M$, F is a submersion at p.
- A critical point is a point which is not a regular point.
- $q \in N$ is a regular value $\Leftrightarrow \forall p \in F^{-1}(q), F$ is a submersion at p.

Observe: If $N = \mathbb{R}$, then either $F_{*,p}: T_pM \to T_{F(p)}\mathbb{R} \cong \mathbb{R}$ is onto, or it is zero. So our definition is consistent with that used in single-variable calculus.

Observe: If $q \in N$ satisfies $F^{-1}(q) = \emptyset$, then q is a regular value.

Thm: (Normal Form Theorem) Assume $F: M \to N$ is a submersion at $p \in M$. Let $m = \dim M$ and $n = \dim N$. Then there are coordinate charts (U, ϕ) around p and (V, ψ) around F(p), with $U \subseteq F^{-1}(V)$, such that for $\tilde{F} = \psi \circ F \circ \phi^{-1}$, $\tilde{F}(r^1, \ldots, r^m) = (r^1, \ldots, r^n)$.

$$M \xrightarrow{F} N$$

$$\downarrow^{\phi} \qquad \downarrow^{\psi}$$

$$\mathbb{R}^{m} \supseteq \phi(U) \xrightarrow{\tilde{F}} \psi(V) \subseteq \mathbb{R}^{n}$$

Proof: Start with any coordinates $\phi = (x^1, \dots, x^m)$, $\psi = (y^1, \dots, y^n)$. Wrie $F = (F^1, \dots, F^n)$, with each $F^i = y^i \circ F$. Then the Jacobian of F at p is

$$\begin{bmatrix} \frac{\partial F^1}{\partial x^1}(p) & \cdots & \frac{\partial F^1}{\partial x^m}(p) \\ \vdots & & \vdots \\ \frac{\partial F^n}{\partial x^1}(p) & \cdots & \frac{\partial F^n}{\partial x^m}(p) \end{bmatrix}$$

We know J has full rank. So by permuting the x^j 's, WOLOG J:(M*) where M is $n\times n$ and full rank. Define $\tilde{\phi}=(F^1,\ldots,F^n,x^{n+1},\ldots,x^m)$. We claim that $\tilde{\phi}:U\to\mathbb{R}^m$ is a local diffeomorphism at p, and these are the desired coordinates.

Well, the Jacobian of ϕ in the x coordinates is

$$\begin{bmatrix} M & * \\ 0 & I_{m-n} \end{bmatrix}$$

because $\frac{\partial x^i}{\partial x^j} = \delta_{ij}$. And this matrix is invertible because M is. \square

Defn: Let M be a manifold. Let $S \subseteq M$. Then S is a (regular) submanifold of M iff there is some $k \in \mathbb{N}$ s.t. $\forall p \in S$, there is a chart (U, ϕ) of M with $p \in U$, such that $S \cap U = \{q \in U \mid x^j(q) = 0 \text{ for } j \in \{k+1, \ldots, m\}\}$. Such a coordinate system (U, ϕ) is adapted to the submanifold and defines an induced chart on S by $\phi_S : S \cap U \to \mathbb{R}^k$, where $\phi_S = (x^1, \ldots, x^k)|_{S \cap U}$.

Claim: $\phi_S: S \cap U \to \phi(S \cap U) \subseteq \mathbb{R}^k$ is a homeomorphism with respect to the subspace topology.

Claim: With the subspace topology and an atlas of adapted charts, S inherits a C^{∞} structure. That is, any two charts on S arising from adapted coordinate systems are C^{∞} -compatible.

The idea of the proof is given two charts (U, ϕ) and (V, ψ) , $\psi_S \circ (\phi_S)^{-1}$ is the restriction of $\psi \circ \phi^{-1}$, so the former is C^{∞} .

We also need to check the point-set topology conditions: Hausdorff and second-countable. But they follow directly from the subspace topology.

Can a chart on the submanifold be extended to a chart on the original manifold? Yes!

Observe: If we start with $(x^1, \ldots, x^k) : W \to \mathbb{R}^k$, a chart of S, then there is a chart ϕ on $U \subseteq M$ s.t. $W = U \cap S$ and $(x^1, \ldots, x^k) = \phi_S$.

Proof: Skip for now...

Prop: If $F: \mathbb{R}^N \to \mathbb{R}^{N-k}$ and 0 is a regular value of F, then $F^{-1}(0)$ is a regular submanifold of \mathbb{R}^N .

Proof: WOLOG S is the graph of $G: A \to \mathbb{R}^{N-k}$, with $A \subseteq \mathbb{R}^k$. $S = \{(a, G(a)) \mid a \in A\}$. Define $x^i = x^i$ for $1 \le i \le k$, and $x^j = x^j - G^j(x^1, \dots, x^k)$ for $k+1 \le j \le N$, with $G = (G^1, \dots, G^{N-k})$. These are adapted coordinates! \square

The same proof, using the normal form theorem, gives:

Thm: If $q \in N$ is a regular value of $F: M \to N$, then $S = F^{-1}(q) \subseteq M$ is a regular submanifold.