BBM469 - Assignment 3

Clustering and Classification with Pyspark

Group Number: 8

Student name: Ali Argun Sayılgan
Student no: 21827775
Student name: Cihad Özcan
Student no: 21827723

Task 1

Purpose

The main aim of this assignment is getting familiar with the basics of Apache Spark and machine learning methods using Spark Environment. For this task, we are expected to implement a simple word count application.

In order to accomplish that, we downloaded and used "The Complete Works in Philosophy, Politics and Morals of the late Dr. Benjamin" from the Project Gutenberg

Data Understanding & Preparation

There were 473.227 words in the dataset. After preprocessing, total number of words in the dataset decreased to 189.293.

Steps we followed for data preprocessing are provided below:

- Removing punctuation and converting all numbers to spaces
- Splitting all lines into words
- Removing words that are shorter than 3 characters
- Converting the words to lowercase and removing stop words utilising the sklearn library

Counting Words

We created a tuple for all words with the word and value 1. Then, counted the number of occurrences for each word by summing up those values considering words evaluated as keys. The 10 most common words were: "air" (1073), "great" (895), "water" (879), "time" (802), "franklin" (655), "america" (624), "people" (608), "little" (567), "new" (546) and "make" (546)

Results

A word cloud consists of the 120 most common words are shown at right

Task 2

Purpose

We are given a set of features extracted from the shape of the beans in images and it's expected to predict the type of each bean. There are 7 bean types in the dataset.

Data Understanding

There are 13.611 observations in the dataset, but 68 of them were duplicates and we removed them.

Dataset involves 16 features and they are all numeric. Observations are labelled with one of seven classes which correspond to bean types. There is no missing data in the dataset.

Data is imbalanced and "Dermason" type is considerably concentrated while "Bombay" type is really deficient.

```
original_df_no_dup.printSchema()
root
  -- Area: integer (nullable = true)
  -- Perimeter: double (nullable = true)
  -- MajorAxisLength: double (nullable = true)
  -- MinorAxisLength: double (nullable = true)
  -- AspectRation: double (nullable = true)
  -- Eccentricity: double (nullable = true)
  -- ConvexArea: integer (nullable = true)
  -- EquivDiameter: double (nullable = true)
 |-- Extent: double (nullable = true)
  -- Solidity: double (nullable = true)
  -- roundness: double (nullable = true)
  -- Compactness: double (nullable = true)
  -- ShapeFactor1: double (nullable = true)
  -- ShapeFactor2: double (nullable = true)
  -- ShapeFactor3: double (nullable = true)
  -- ShapeFactor4: double (nullable = true)
 |-- Class: string (nullable = true)
```


Statistics about features are given below:

Details f	or "Area" column:
summary	Area
count mean stddev min max	13543 53048.46038543897 29392.438324136998 20420 254616
+	

Details for "MajorAxisLength" column:

count 13543 mean 319.89560224022154 stddev 85.8092600339079 min 183.601165 max 738.8601535	summary	 MajorAxisLength
+	mean stddev min	319.89560224022154 85.8092600339079 183.601165

Details for "Perimeter" column:

+	+
summary	Perimeter
	854.9934058923425 214.7226835430482 524.736

Details for "MinorAxisLength" column:

summary MinorAxisLength 	+	
mean 202.36532072404856 stddev 45.05163174744838 min 122.5126535	summary	MinorAxisLength
	mean stddev min	202.36532072404856 45.05163174744838 122.5126535

Details for "AspectRation" column:

+	
summary	AspectRation
count mean stddev min max	1.5810750385186585 0.24524526993682857 1.024867596

Details for "Eccentricity" column:

summary	Eccentricity
count mean stddev min max	0.7503150398336422 0.09185780580884984 0.218951263

Details for "ConvexArea" column:

+	+
summary	ConvexArea
	53767.98670900096 29844.24852511157 20684

Details for "EquivDiameter" column:

++	+
summary	EquivDiameter
++	
count	13543
mean	253.03409437632712
stddev	59.30770906344923
min	161.2437642
max	569.3743583
++	+

Details for "Extent" column:

+	tt
summary	Extent
count mean stddev min max	0.7498294482518666 0.04893927702539592 0.555314717

Details for "Solidity" column:

Details for "roundness" column:

summary roundness rount 13543 mean 0.8736714768990623 stddev 0.059393109235054566	
mean 0.8736714768990623	summary
min 0.489618256 max 0.9906854	mean stddev min

Details for "Compactness" column:

+	++
summary	Compactness
count mear stddev mir max	0.8003520468194636 0.06146423846431473 0.640576759

Details for "ShapeFactor1" column:

+	+
summary	ShapeFactor1
l count	13543
	0.006561215793472
stddev	0.001129636104801
min	0.002778013
j max	0.010451169
+	+

Details for "ShapeFactor3" column:

+	
summary	ShapeFactor3
count mean stddev min max	0.6443409725127377 0.09865302617868243 0.410338584

Details for "ShapeFactor2" column:

+	L
summary	ShapeFactor2
count mean stddev min max	0.001719229327180 5.9547367210568E-4 5.64169E-4

Details for "ShapeFactor4" column:

count 13543 mean 0.9950784824186639 stddev 0.004346768072418 min 0.947687403	+	++
mean 0.9950784824186639 stddev 0.004346768072418 min 0.947687403	summary	ShapeFactor4
1 11101 0:33373233	mean stddev	0.9950784824186639 0.004346768072418 0.947687403

Area	1	0.97	0.93	0.95	0.24	0.27	1	0.98	0.055	-0.2	-0.36	-0.27	-0.85	-0.64	-0.27	-0.36
Perimeter	0.97		0.98	0.91	0.39	0.39	0.97	0.99		-0.3	-0.55	-0.41	-0.87	-0.77	-0.41	-0.43
MajorAxisLength	0.93	0.98		0.83	0.55	0.54	0.93	0.96	-0.077	-0.28	-0.6	-0.57	-0.78	-0.86	-0.57	-0.48
MinorAxisLength	0.95	0.91	0.83		-0.0054		0.95	0.95		-0.16	-0.21	-0.019	-0.95	-0.48	-0.023	-0.27
AspectRation	0.24	0.39	0.55	-0.0054	1	0.92	0.25	0.31	-0.37	-0.27	-0.76	-0.99	0.021	-0.84	-0.98	-0.45
Eccentricity	0.27	0.39	0.54	0.022	0.92		0.27	0.32	-0.32	-0.3	-0.72	-0.97		-0.86	-0.98	-0.45
ConvexArea	1	0.97	0.93	0.95	0.25	0.27	1	0.99		-0.21	-0.36	-0.27	-0.85	-0.64	-0.28	-0.36
EquivDiameter	0.98	0.99	0.96	0.95	0.31	0.32	0.99			-0.23	-0.44	-0.33	-0.89	-0.71	-0.33	-0.39
Extent			-0.077	0.15	-0.37	-0.32	0.053			0.19	0.34	0.35	-0.14	0.24	0.35	
Solidity	-0.2	-0.3	-0.28	-0.16	-0.27	-0.3	-0.21	-0.23	0.19	1	0.61	0.3	0.15	0.34	0.31	0.7
roundness	-0.36	-0.55	-0.6	-0.21	-0.76	-0.72	-0.36	-0.44	0.34	0.61		0.77	0.23	0.78	0.76	0.47
Compactness	-0.27	-0.41	-0.57	-0.019	-0.99	-0.97	-0.27	-0.33	0.35	0.3	0.77	1		0.87		0.49
ShapeFactor1	-0.85	-0.87	-0.78	-0.95	0.021	0.017	-0.85	-0.89	-0.14	0.15	0.23	-0.006	1	0.47	-0.005	0.25
ShapeFactor2	-0.64	-0.77	-0.86	-0.48	-0.84	-0.86	-0.64	-0.71	0.24	0.34	0.78	0.87	0.47	1	0.87	0.53
ShapeFactor3	-0.27	-0.41	-0.57	-0.023	-0.98	-0.98	-0.28	-0.33	0.35	0.31	0.76	1	-0.005	0.87		0.49
ShapeFactor4	-0.36	-0.43	-0.48	-0.27	-0.45	-0.45	-0.36	-0.39	0.15	0.7	0.47	0.49	0.25	0.53	0.49	1
	Area	Perimeter	WajorAxisLength	VinorAxisLength	AspectRation	Eccentricity	ConvexArea	EquivDiameter	Extent	Solidity	roundness	Compactness	ShapeFactor1	ShapeFactor2	ShapeFactor3	ShapeFactor4

-0.25

Since there are a lot of highly correlated features, PCA could be used to achieve better prediction accuracy results. Also with higher dimensioned data you generally need more data for not to underfit the data.

(Principal Component Analysis is a statistical procedure that uses an orthogonal transformation that converts a set of correlated variables to a set of uncorrelated variables. PCA assumes that the principal component with high variance must be paid attention and the PCs with lower variance are disregarded as noise. Pearson correlation coefficient framework led to the origin of PCA, and there it was assumed first that the axes with high variance would only be turned into principal components.)

Data Preparation

In order to run clustering and classification methods successfully, we must convert non-numeric values to numeric values and use one-hot encoding. Luckily the dataset consists of 16 numeric features and 1 categorical label class of string type.

We also needed to normalize the dataset using min-max standardization to create the normalized dataset (ND). Note that it is required to vectorize numeric values before scaling them, since pyspark library can operate such operations on vectors only. So that we scaled columns after vectorizing them, and utilized a pipeline to combine those tasks.

Lastly we converted vectors to double values back, and removed vectorized columns, in order to make this operation reusable.

```
from pyspark.ml import Pipeline
from pyspark.ml.feature import MinMaxScaler
from pyspark.sql import functions as f
from pyspark.ml.feature import VectorAssembler
from pyspark.sql.functions import udf
from pyspark.sql.types import DoubleType
OD = original_df_no_dup.cache()
# Scales numeric columns
columns_to_scale = OD.columns
columns to scale.remove("Class")
assemblers = [VectorAssembler(inputCols=[col], outputCol=col + "_vec") for col in columns_to_scale]
scalers = [MinMaxScaler(inputCol=col + "_vec", outputCol=col + "_scaled") for col in columns_to_scale]
pipeline = Pipeline(stages=assemblers + scalers)
scalerModel = pipeline.fit(OD)
scaledData = scalerModel.transform(OD)
# Converts column type from vector to double type
convert_to_double = udf(lambda x: float(list(x)[0]), DoubleType())
for column in columns_to_scale:
    scaled_column = column + "_scaled"
    scaledData = scaledData.withColumn(column, convert_to_double(scaled_column))
# Drops intermediary columns
all_original_columns = columns_to_scale + ["Class"]
ND = scaledData.select(all_original_columns).cache()
```

Modeling for Clustering

We have tested Bi-secting KMeans and KMeans clustering methods with different numbers of components from Principal Component Analysis(PCA) in order to achieve better clustering scores.

The reason behind experimenting with these methods was because KMeans is relatively simple to implement, scales well to large data sets, works well with low dimensioned datasets, and guarantees convergence and we have the required cluster size beforehand, as it is set to the class size of the dataset(bean types) which is 7.

Bisecting K-Means Algorithm is a modification of the K-Means algorithm. It beats K-Means in entropy measurement and it can recognize clusters of any shape and size. Thus we wanted to give it a try.

```
for i in range(10,17):
    pca = PCA(
       k = i,
       inputCol = 'scaled_feat',
       outputCol = 'pcaFeatures'
    ).fit(scaled df)
    output = pca.transform(scaled df)
    bkm_fit = bkm_algo.fit(output)
    km_fit = kmeans_algo.fit(output)
    outputBKM = bkm fit.transform(output)
    outputKM = km_fit.transform(output)
    scoreBKM = evalBKM.evaluate(outputBKM)
    scoreKM = evalKM.evaluate(outputKM)
    print("PCA("+str(i)+")")
    print("BisectingKMeans silhouette score:\t",scoreBKM)
    print("KMeans silhouette score:\t\t",scoreKM)
    print("----")
```

Area	ConvexArea	0.999940
Compactness	ShapeFactor3	0.998684
Perimeter	EquivDiameter	0.991453
AspectRation	Compactness	0.987644
ConvexArea	EquivDiameter	0.985255
Area	EquivDiameter	0.984998
Eccentricity	ShapeFactor3	0.981058
AspectRation	ShapeFactor3	0.978528
Perimeter	MajorAxisLength	0.977561
Eccentricity	Compactness	0.970308
Perimeter	ConvexArea	0.967871
Area	Perimeter	0.966908
MajorAxisLength	EquivDiameter	0.962271
Area	MinorAxisLength	0.952041
MinorAxisLength	ConvexArea	0.951780
	EquivDiameter	0.949214
	ShapeFactor1	0.947194
MajorAxisLength	ConvexArea	0.933392
Area	MajorAxisLength	0.932623
AspectRation	Eccentricity	0.924185
Perimeter	MinorAxisLength	0.914336
EquivDiameter	ShapeFactor1	0.893403
ShapeFactor2	ShapeFactor3	0.872318
Compactness	ShapeFactor2	0.868347
Perimeter	ShapeFactor1	0.865756
MajorAxisLength	ShapeFactor2	0.859401
Eccentricity	ShapeFactor2	0.859246
Area	ShapeFactor1	0.848390
ConvexArea	ShapeFactor1	0.848382
AspectRation	ShapeFactor2	0.837338
MajorAxisLength	MinorAxisLength	0.828360
roundness	ShapeFactor2	0.781468
MajorAxisLength	ShapeFactor1	0.775840
Perimeter	ShapeFactor2	0.768590
roundness	Compactness	0.765995
AspectRation	roundness	0.764975
roundness	ShapeFactor3	0.761012

Clustering Results

PCA(13)	ND L OD	0.4040204464047250	
BisectingKMeans silhouette score:	ND OD	0.4242384161917358	0.692467990313307
KMeans silhouette score:	ND OD	0.4888912773227822	0.6931805393382635
PCA(14)			
BisectingKMeans silhouette score:	ND OD	0.4242384161917358	0.692467990313307
KMeans silhouette score:	ND İ OD	0.4888912773227822	0.6931805393382635
	•		•
PCA(15)			
BisectingKMeans silhouette score:	ND OD	0.4242384161917358	0.692467990313307
9	:		
KMeans silhouette score:	ND OD	0.4888912773227822	0.6931805393382635
PCA(16)			
BisectingKMeans silhouette score:	ND OD	0.4242384161917358	0.692467990313307
KMeans silhouette score:	ND OD	0.4888912773227822	0.6931805393382635
	•		•

As can be seen, PCA didn't affect the silhouette score much.

Surprisingly, OD(non-normalized dataset) got significantly higher silhouette scores but this doesn't mean much. When we consider the cluster distribution visually and compare OD-ND, real clustering performance can be viewed better.

The silhouette value is a measure of how similar an object is to its own cluster (cohesion) compared to other clusters (separation). The silhouette ranges from -1 to +1, where a high value indicates that the object is well matched to its own cluster and poorly matched to neighbouring clusters.

Commenting on the scatterplots:

X and Y axes are set to highly correlated features to show clustering better.

It should not be forgotten that while interpreting clustering results evaluation scores of the clusters do not always give meaningful answers.

In OD clustering results some anomalies have arisen. The reason behind this result can be KMeans Algorithm's tendency to create uniform-sized clusters.

In non-normalized dataset variance of the features differs a lot and some features influence the clustering result more. Thus clustering score of OD, gives poor results compared to ND.

Modeling for Classification

We used the Random Forests as our model.

We haven't chosen Naive Bayes Classifier (NBC) treats features as if they are independent but our features most likely involve certain interactions between each other. Computational complexity of SVC is much higher than for Random Forests (RF), hence, RF works well with big datasets. Moreover, Random Forests are good at handling missing values and can use both categorical and numerical features together, even if they are not well-scaled. Additionally, Random Forests generally require a large number of instances because of the randomization concept to generalize well. So, we have preferred RF to SVC considering our dataset.

To determine hyperparameters, we used a grid search algorithm. The best model parameters were:

maxDepth: 7maxBins): 20numTrees: 30

We split 20% of the dataset as test data, while leftovers were used for training. We didn't use K-Fold cross-validation to determine train/test split size this time since there were enough observations in the dataset. We tried 30% and 15% splits and didn't see a meaningful change in the results, though. Data distribution in test split is proportional to whole dataset distribution.

Classification Results

Metrics for Original Dataset:	Cor	nfus	sion	Mati	rix:			
Accuracy: 90.3%	[[6	63 63	43 446	9	0 4	0 3	0 0	0] 0]
•	[13		390	0	0	2	0]
Precision: 89.2%]	4	17	0	339	7 306	3 16	0] 3]
Recall: 92.6%	[0	9	2	0		225	4]
F1-score: 90.3%	[0	0	0	0	0	0	86]

Metrics for Normalized Dataset:

Metrics for Normalized Dataset:								
	Cor	nfus	sion	Mati	rix:			
Accuracy: 91.1%	[[6	654	40	11	0	0	0	0]
•	[53	460	5	6	0	1	0]
Precision: 91.3%	[7	19	379	0	0	3	0]
	[2	13	0	350	16	1	0]
Recall: 92.8%	[0	2	0	0	312	20	4]
	[0	11	1	0	26	208	1]
F1-score: 91.1%]	0	0	0	0	0	0	105]]

Both results can be regarded as rather successful since all results are higher than 90%. But we can say that normalization has a slight (about 1%) boost in performance.