Introduction

Course structure:

- (i) Preliminary toolbox: inequalities
- (ii) Normed vector spaces (NVS)
- (iii) (Recalls on) finite-dimensional case
- (iv) Hahn-Banach Theorems (how big is the dual?)
- (v) Completeness: Baire's Theorem & consequences for NVS
- (vi) Detailed study of the topology of C(K)
- (vii) The Hilbert space
- (viii) Projection & duality
- (ix) Introduction to operators and spectral theory

1 Preliminary toolbox: Young's, Hölder's & Minkowski's inequalities for vectors & sequences

Proposition (Young's inequality for products). Let $p, q \in (1, \infty)$ be such that $\frac{1}{p} + \frac{1}{q} = 1$, then

$$\forall a, b \ge 0, \ ab \le \frac{a^p}{p} + \frac{b^q}{q}$$

Proof. The result is clear for a=0 or b=0. Assume a,b>0 and note $L:(0,\infty)\to\mathbb{R},\,t\mapsto \ln t$ is strictly concave: $L''(t)=-\frac{1}{t^2}<0$.

Therefore for all $A, B > 0, \lambda \in (0, 1)$

$$\ln(\lambda A + (1 - \lambda)B) \ge \lambda \ln A + (1 - \lambda) \ln B$$

with equality iff A = B. Apply this to $A = a^p$, $B = b^q > 0$ and $\lambda = \frac{1}{p}$. This gives

$$\ln\left(\frac{a^p}{p} + \frac{b^q}{q}\right) \ge \frac{1}{p}\ln(a^p) + \frac{1}{q}\ln(b^q) = \ln(ab)$$

so applying exp to both sides gives the result and furthermore we have equality iff $a^p = b^q$.

Proposition (Hölder's inequality for vectors & sequences). Let $p,q\in(1,\infty)$ be such that $\frac{1}{p}+\frac{1}{q}=1$. Then

(i) for any $n \in \mathbb{N} \setminus \{0\} = \mathbb{N}^*, \, \forall x, y \in \mathbb{R}^n$

$$\sum_{k=1}^{n} |x_k y_k| \le ||x||_p ||y||_q \tag{*}$$

with $||x||_p = \left(\sum_{k=1}^n |x_k|^p\right)^{\frac{1}{p}}$ and similarly for $||y||_q$.

(ii) define

$$\ell^p = \{ x \in \mathbb{R}^{\mathbb{N}^*} : \sum_{k=1}^{\infty} |x_k|^p < \infty \}$$

then $\forall x \in \ell^p, y \in \ell^q$

$$\sum_{k=1}^{\infty} |x_k y_k| \le ||x||_{\ell^p} ||y||_{\ell^q}$$

where $||x||_{\ell^p} = \left(\sum_{k=1}^{\infty} |x_k|^p\right)^{\frac{1}{p}}$ and similar for $||y||_{\ell^q}$.

Proof. To show (i) implies (ii): take $n \to \infty$ in (i) so

$$\sum_{k=1}^{n} |x_k|^p \to ||x||_{\ell^p}^p$$

and similarly

$$\sum_{k=1}^{n} |y_k|^q \to ||y||_{\ell^q}^q$$

By (i)

$$\sum_{k=1}^{n} |x_k y_k| \le \left(\sum_{k=1}^{n} |x_k|^p\right)^{1/p} \left(\sum_{k=1}^{n} |y_k|^q\right)^{1/q}$$

so

$$\sum_{k=1}^{\infty} |x_k y_k| = \lim_{n \to \infty} \left(\sum_{k=1}^n |x_k y_k| \right) \le \lim_{n \to \infty} \left(\sum_{k=1}^n |x_k|^p \right)^{1/p} \left(\sum_{k=1}^n |y_k|^q \right)^{1/q}$$

$$= ||x||_{\ell^p} ||y||_{\ell^q}$$

Proof of (i): if $||x||_{\ell^p}$ or $||y||_{\ell^q}=0$, result is clear. Otherwise define \tilde{x} , \tilde{y} sequences in ℓ^p and ℓ^q by

$$\tilde{x}_k = \frac{x_k}{||x||_{\ell^p}}, \ \tilde{y}_k = \frac{y_k}{||y||_{\ell^q}}$$

Then $||\tilde{x}||_{\ell^p} = 1$, $||\tilde{y}||_{\ell^q} = 1$. Then (*) is equivalent to showing

$$\sum_{k=1}^{n} |\tilde{x}_k \tilde{y}_k| \le 1 \tag{**}$$

Apply Young's inequality on each k = 1, ..., n so

$$|\tilde{x}_k \tilde{y}_k| \le \frac{1}{p} |\tilde{x}_k|^p + \frac{1}{q} |\tilde{y}_k|^q$$

Summing over k:

$$\sum_{k=1}^{n} |\tilde{x}_k \tilde{y}_k| \le \frac{1}{p} \left(\sum_{k=1}^{n} |\tilde{x}_k|^p \right) + \frac{1}{q} \left(\sum_{k=1}^{n} |\tilde{y}_k|^q \right) \le \frac{1}{p} + \frac{1}{q} = 1$$

Remark: Equality in (*) is equivalent to equality in (**) which is equivalent to equality in Young's for each k so $|\tilde{x}_k|^p = |\tilde{y}_k|^q$ for $k = 1, \ldots, n$. Also, the p = 1, $q = \infty$ case is easy.

Proposition (Minkowski's inquality for vectors & sequences). Let $p \in [1, \infty)$, then

(i) for all $x, y \in \mathbb{R}^n$

$$||x+y||_p \le ||x||_p + ||y||_p$$

(ii) for all $x, y \in \ell^p$

$$||x+y||_{\ell^p} \le ||x||_{\ell^p} + ||y||_{\ell^p}$$

Proof. To show (i) implies (ii): by taking $n \to \infty$ as before

$$\sum_{k=1}^{\infty} |x_k|^p \to ||x||_{\ell^p}^p$$

$$\sum_{k=1}^{\infty} |y_k|^p \to ||y||_{\ell^p}^p$$

$$\sum_{k=1}^{n} |x_k + y_k|^p \to ||x + y||_{\ell^p}^p$$

Proof of (i): if p = 1 this is just the usual triangle inequality on each coordinate. So let $p \in (1, \infty)$ and

$$\begin{split} \sum_{k=1}^{n}|x_k+y_k|^p &= \sum_{k=1}^{n}|x_k+y_k|\cdot|x_k+y_k|^{p-1} \\ &\leq \sum_{k=1}^{n}|x_k||x_k+y_k|^{p-1} + \sum_{k=1}^{n}|y_k||x_k+y_k|^{p-1} \\ &\underset{\text{H\"older: }q = \frac{p}{p-1}}{\leq} ||x||_p \left(\sum|x_k+y_k|^{(p-1)\frac{p}{p-1}}\right)^{\frac{p-1}{p}} + ||y||_p \left(\sum|x_k+y_k|^{(p-1)\frac{p}{p-1}}\right)^{\frac{p-1}{p}} \end{split}$$

$$\leq (||x||_p + ||y||_p) ||x + y||_p^{p-1}$$

so we have proved

$$||x+y||_p^p \le (||x||_p + ||y||_p) ||x+y||_p^{p-1}$$

If $||x+y||_p = 0$, result is clear. Otherwise divide by $||x+y||_p^{p-1}$ to get

$$||x+y||_p \le ||x||_p + ||y||_p$$

Remark: equality occurs iff there is equality in the triangle inequality and Hölder's.

Remarks:

1. Equality case: p = 1: $|x_k + y_k| \le |x_k| + |y_k|$, i.e the usual triangle inequality

2. For p=2 there's another proof: define $\mathcal{P}:\mathbb{R}\to\mathbb{R},\,\lambda\mapsto||x+\lambda y||^2$. Then $\mathcal{P}(\lambda)=a\lambda^2+2b\lambda+c$ and $\mathcal{P}\geq0$. So

$$\langle x,y\rangle=b^2\leq ac=||x||^2||y||^2$$
, Hölder's inequality

2 Normed Vector Spaces (NVS)

Remark: this is not the most general structure for linear analysis - topological vector spaces (TVS).

Recall:

Definition. A vector space V over a field \mathbb{F} is a set (of elements called vectors) with two operations:

$$A: V \times V \to V, (v, w) \mapsto v + w$$
 addition

$$M: \mathbb{F} \times V \to V, \ (\lambda, v) \mapsto \lambda v \text{ scalar multiplication}$$

such that

- (V, +) is an abelian group with identity 0.
- M is compatible with $(\mathbb{F},0)$ in the sense that $\lambda_1(\lambda_2 v) = \lambda_1 \lambda_2 v$
- M distributes over (V, +) and $(\mathbb{F}, +)$.

In this course \mathbb{F} will be \mathbb{R} or \mathbb{C} unless stated otherwise.

Definition. Given a vector space V over \mathbb{F} :

- a subspace $W \subseteq V$ is a vector space over \mathbb{F} included in V
- for a set $S \subseteq V$, a linear combination of elements of S is a finite sum of elements of S with coefficients in \mathbb{F}
- for a set $S \subseteq V$, the span of S, span(S) is the smallest subspace of V containing S, and is also the set of linear combinations of S.

Definition. Given V a vector space over \mathbb{F} and a set $S \subseteq V$:

- S is linearly independent if for all $m \in \mathbb{N}^*$ and for all $\alpha_1, \ldots, \alpha_m \in \mathbb{F}$, for all $s_1, \ldots, s_m \in S$, $\sum_{i=1}^m \alpha_i s_i = 0$ if and only if $\alpha_1 = \alpha_2 = \ldots = \alpha_m$.
- S is a basis of V if it is linearly independent and span(S) = V.
- If there exists a finite basis S of V, then V has finite dimension, otherwise it is infinite-dimensional.

Remark: later we'll prove with Zorn's lemma that any vector space has a basis.

Definition. A normed vector space (NVS) V over \mathbb{F} is a vector space over \mathbb{F} together with a function $N: V \to \mathbb{R}_+, v \mapsto ||v||$ (the norm), with

- 1. $||v|| \ge 0$ for all $v \in V$, with equality only at v = 0 (positive definiteness)
- 2. For all $\lambda \in \mathbb{F}$, $v \in V$ $||\lambda v|| = |\lambda|||v||$ (compatibility between N and M)

3. For all $v, w \in V$, $||v + w|| \le ||v|| + ||w||$ (compatibility between N and A)

Example.
$$V = \mathbb{R}^n$$
, $v = (v_1, \dots, v_n)$, $||v|| = (v_1^2 + \dots + v_n^2)^{1/2}$ or

$$\begin{cases} ||v||_p = (|v_1|^p + \dots + |v_n|^p)^{1/p} & \text{for } p \in [1, \infty) \\ ||v||_{\infty} = \sup_{i=1}^n |v_i| & \text{for } p = \infty \end{cases}$$

Definition. Given a set X, a topology τ on X is a collection of subsets of X ("open sets") such that

- $\emptyset \in \tau, X \in \tau$
- τ is stable under any union
- τ is stable under finite intersections

Definition.

- For (X, d) a metric space, the *induced topology* is the smallest topology that contains open balls in d
- For a NVS $(V, ||\cdot||)$, the induced topology is that associated with d(v, w) = ||v w||

Natural question: \mathbb{F} field, V vector space over \mathbb{F} . Norm on V, $\tau_{||\cdot||}$. Continuity of operations M and A?

Proposition. Let $(V, ||\cdot||)$ be a NVS over \mathbb{F} (\mathbb{F} either \mathbb{R} or \mathbb{C}), then

- (i) A, M are continuous for the following topologies: $\tau_{||\cdot||}$ on V, then product topology of it on $V \times V$, $\tau_{|\cdot|}$ over \mathbb{F} , then product topology of $\tau_{|\cdot|}$ and $\tau||\cdot||$ on $\mathbb{F} \times V$
- (ii) Translations $T_{v_0}: V \to V, v \mapsto v + v_0, v_0 \in V$ and dilations $D_{\lambda_0}: V \to V, v \mapsto \lambda_0 v, \lambda_0 \in \mathbb{F}^*$ are homeomorphisms

Proof.

(i) Let us prove that $A: V \times V \to V$ is continuous: consider an open set $\emptyset \neq U \subseteq V$ and $(v_1, v_2) \in A^{-1}(U)$, i.e $v_1 + v_2 \in U$. Since U is open, there is $\varepsilon > 0$ such that $B_V(v_1 + v_2, \varepsilon) \subseteq U$.

open ball

We have that $A(B(v_1, \varepsilon/2), B_V(v_2, \varepsilon/2)) \subseteq B_V(v_1+v_2, \varepsilon)$ (triangle inequality). Note also that $B(v_1, \varepsilon/2) \times B(v_2, \varepsilon/2)$ is open (product topology), so $A^{-1}(U)$ is open and A is continuous.

Now we show $M: \mathbb{F} \times V \to V$ is continuous. Consider an open set $U \neq \emptyset$ in V, $(\lambda, v) \in M^{-1}(U)$. Since U is open, there exists $\varepsilon > 0$ such that $B_V(\lambda v, \varepsilon) \subseteq U$ (WLOG $\varepsilon < 1$). Then (check)

$$M\left(B_{\mathbb{F}}\left(\lambda, \frac{\varepsilon}{3\max(1, ||v||)}\right), B_V\left(v, \frac{\varepsilon}{3\max(1, |\lambda|)}\right)\right) \subseteq B_V(\lambda v, \varepsilon)$$

(ii) T_{v_0} and D_{λ_0} are linear, continuous with inverses T_{-v_0} and $D_{\lambda_0^{-1}}$ respectively, so are homeomorphisms.

3 Characterisation of NVS

Idea: in order to better understand the topology of NVS's, we ask how special is a "normable" topology among topologies compatible with vector space operations?

Definition (TVS). A topological vector space (TVS) over \mathbb{F} is a vector space over \mathbb{F} together with a topology τ such that

- (i) A and M are continuous
- (ii) every singleton $\{x_0\}$ is closed

Remark:

- 1. (i) says that T_{v_0} and D_{λ_0} , $\lambda_0 \neq 0$ are homeomorphisms
- 2. (ii) is called T_1 in the classification of seperation properties, and implies Hausdorff for TVS

Definition. Given V a TVS

- $C \subseteq V$ is convex if $C = \{\lambda c_1 + (1 \lambda)c_2 : c_1, c_2 \in C, \lambda \in [0, 1]\}$
- \bullet V is $locally\ convex$ if every neighborhood of 0 contains a convex neighborhood of 0
- $B \subseteq V$ is bounded if for any U open around 0, there exists $t_0 > 0$ such that $\forall t > t_0, B \subseteq tU$
- V is locally bounded if there is $U \in \tau$ containing 0 and bounded

Example. Let $(V, ||\cdot||)$ be a NVS, then for all r > 0, U = B(0, r) (open ball) is open, bounded and convex. Indeed

- Convexity follows from the triangle inequality
- Boundedness: any other \tilde{U} open around 0 contains some open $\tilde{U}_0 = B(0, r_0) \in \tilde{U}$. Then for any $t > \frac{r}{r_0}$, $U \subseteq t\tilde{U}_0 \subseteq t\tilde{U}$.

Question: can we reverse-engineer the norm if we have these two properties?

Theorem (Kolmogorov 1934). Let (V, τ) be a TVS such that there is a bounded convex neighborhood of 0, say C. Then V is "normable" - there is a norm $||\cdot||$ on V that induces the topology τ .

Proof. Step 1: there is $\tilde{C} \subseteq C$ which is a balanced convex bounded neighborhood of 0. "Balanced" means that for all $\lambda \in \mathbb{F}$ such that $|\lambda| \leq 1$, $\lambda \tilde{C} \subseteq \tilde{C}$.

 $M: \mathbb{F} \times V \to V$ is continuous so $M^{-1}(C)$ is a neighburhood of (0,0). So there exists $B_{\mathbb{F}}(0,\varepsilon) \times U$ with $\varepsilon > 0$ and U open around 0 such that $M(B_{\mathbb{F}}(0,\varepsilon),U) \subseteq C$.

Define \tilde{C} to be the convex hull (i.e smallest convex set superset) of $M(B_{\mathbb{F}}(0,\varepsilon),U)$.

Then \tilde{C} is clearly convex, is a subset of C since C is convex and $M(B_{\mathbb{F}}(0,\varepsilon),U)\subseteq C$. \tilde{C} is also bounded since $\tilde{C}\subseteq C$ and C is bounded (obvious that boundedness is inherited by inclusion). Finally \tilde{C} is balanced since $\lambda B_{\mathbb{F}}(0,\varepsilon)\subseteq B_{\mathbb{F}}(0,\varepsilon)$ for $\lambda\in\mathbb{F}$ with $|\lambda|\leq 1$ and

$$\underbrace{\lambda M(B_{\mathbb{F}}(0,\varepsilon),U)}_{=M(\lambda B_{\mathbb{F}}(0,\varepsilon),U)} \subseteq M(B_{\mathbb{F}}(0,\varepsilon),U)$$

Notice $\lambda[\text{Convex Hull}(S)] = \text{Convex Hull}(\lambda S)$ (exercise). So deduce $\lambda \tilde{C} \subseteq \tilde{C}$.

Step 2: define the *Minkowski guage* (functional) of \tilde{C}

$$\mu_{\tilde{C}}: V \to \mathbb{R}_+, \ v \mapsto \inf\{t \ge 0 : v \in t\tilde{C}\}$$

 $\mu_{\tilde{C}}$ is well-defined in $[0,\infty)$ since: any v satisfies $\frac{v}{t} \to 0$ as $t \to \infty$ by continuity of M. So $\frac{v}{t}$ must "enter" the neighborhood \tilde{C} of 0 for t large enough.

Step 3: let us prove $v \mapsto \mu_{\tilde{C}}(v)$ is a norm:

- $\mu_{\tilde{C}}(v) \geq 0$ by construction
- if $\mu_{\tilde{C}} = 0$, then (assume $v \neq 0$ for contradiction) there exists U open around 0 with $v \notin U$ (since $V \setminus \{v\}$ is open). Since \tilde{C} is bounded, there exists $t_1 > 0$ such that $\tilde{C} \subseteq t_1 U$. Since $\mu_{\tilde{C}}(v) = 0$, there exists $t_2 \in (0, t_1^{-1})$ such that $v \in t_2 \tilde{C}$, then $v \in t_2 \tilde{C} \subseteq t_1^{-1} \tilde{C} \subseteq U$, a contradiction.
- Want to show $\mu_{\tilde{C}}(\lambda v) = |\lambda|\mu_{\tilde{C}}(v)$ for $\lambda \in \mathbb{F}^{\times}$, $v \in V$. Use \tilde{C} balanced: for all t > 0 such that $\lambda v \in t\tilde{C}$, we have

$$\frac{\lambda}{|\lambda|}v \in \frac{t}{|\lambda|}\tilde{C} \implies v \in \frac{t}{|\lambda|}\tilde{C} \implies \mu_{\tilde{C}}(v) \leq \frac{1}{|\lambda|}\mu_{\tilde{C}}(\lambda v)$$

The inequality in the other direction follows by reasoning with λ^{-1} . So $|\lambda|\mu_{\tilde{C}}(v)=\mu_{\tilde{C}}(\lambda v)$.

• Want to show $\mu_{\tilde{C}}(v_1 + v_2) \leq \mu_{\tilde{C}}(v_1) + \mu_{\tilde{C}}(v_2)$ for all $v_1, v_2 \in V$. Indeed, given $t_1, t_2 > 0$ such that $v_1 \in t_1\tilde{C}, v_2 \in t_2\tilde{C}$, we have

$$v_1+v_2 \in t_1\tilde{C}+t_2\tilde{C} = (t_1+t_2)\left[\frac{t_1}{t_1+t_2}\tilde{C} + \frac{t_2}{t_1+t_2}\tilde{C}\right] \subseteq (t_1+t_2)\tilde{C} \text{ (convexity)}$$

so $\mu_{\tilde{C}}(v_1+v_2) \leq t_1+t_2$. By taking infima over t_1, t_2 :

$$\mu_{\tilde{C}}(v_1 + v_2) \le \mu_{\tilde{C}}(v_1) + \mu_{\tilde{C}}(v_2)$$

Step 4: prove $\mu_{\tilde{C}}$ induces the topology τ .

• Want to prove

$$\underbrace{B(v_0,\varepsilon)}_{\text{open ball for }\mu_{\tilde{C}}} = \{v \in V : \mu_{\tilde{C}}(v-v_0) < \varepsilon\} \in \tau$$

Take $v \in B(v_0, \varepsilon)$ then by the triangle inequality

$$B(v, \varepsilon - |v|) \subseteq B(v_0, \varepsilon)$$

and $B(v, \varepsilon') \supseteq v + \frac{\varepsilon'}{2} \tilde{C}$ by definition of the ball for $\mu_{\tilde{C}}$. And (since translations, dilations continuous) $v + \frac{\varepsilon'}{2} \tilde{C}$ is a neighborhood of v.

 $B(v_0, \varepsilon)$ open (in τ) around its points, so is in τ .

• Take $U \in \tau$, and (wlog) $0 \in U$. Let us prove $0 \in B(0, \varepsilon_0) \subseteq U$ for some $\varepsilon_0 > 0$. Indeed \tilde{C} is bounded so there exists $\varepsilon_0 > 0$ such that $\tilde{C} \subseteq \varepsilon_0^{-1}U$ hence $U \supseteq \varepsilon_0 \tilde{C}$ and so $U \supseteq \varepsilon \tilde{C} \ \forall \varepsilon < \varepsilon_0$ and thus $U \supseteq B(0, \varepsilon_0)$.

Remarks:

- 1. $B(0,\varepsilon_0) \subseteq \bigcup_{0 \le \varepsilon \le \varepsilon_0} \varepsilon \tilde{C}$
- 2. T_1 implies Hausdorff (T_2) . Consider $v_0 \neq v_1$ in V: so $0 \neq v_1 v_0$, T_1 implies there is U open around 0 with $v_1 v_0 \notin U$. Then (since A, M continuous) $(v, w) \mapsto v w$ is continuous and there exists \tilde{U} open around 0 such that $\tilde{U} \tilde{U} \subseteq U$. Then $v_0 + \tilde{U}$ and $v_1 + \tilde{U}$ are open disjoint neighborhoods of v_0 and v_1 respectively (disjoint since otherwise $v_1 v_0 \in \tilde{U} \tilde{U} \subseteq U$).

4 Some examples of NVS'

Definition. Let $(V, ||\cdot||)$ be an NVS (over $\mathbb{F} = \mathbb{R}$ or \mathbb{C}). If (V, d), d distance induced by $||\cdot||$ is a complete metric space, then $(V, ||\cdot||)$ is called a *Banach space*.

Example. \mathbb{R}^n , \mathbb{C}^n , $n \geq 1$ are Banach spaces, for $||\cdot||_p$, $p \in [1, \infty)$.

Example. Given (X, τ) a general topological space, define

$$B_{\mathbb{F}}(X) = \{ \text{functions } : X \to \mathbb{F} \text{ bounded} \}$$

$$C_{\mathbb{F}}(X) = \{\text{functions } : X \to \mathbb{F} \text{ continuous}\}\$$

$$C_{\mathbb{F},b} = C_{\mathbb{F}}(X) \cap B_{\mathbb{F}}(X)$$

If X = K is compact, $C_{\mathbb{F}}(X) = C_{\mathbb{F},b}(X)$. These are vector spaces over \mathbb{F} with addition (f+g)(x) = f(x) + g(x) and multiplication (fg)(x) = f(x)g(x).

Norm on $C_{\mathbb{F},b}(X)$: the supremum norm, $||f||_{\infty} = \sup_{x \in X} |f(x)|$

Proposition. $(C_{\mathbb{F},b},||\cdot||_{\infty})$ is a Banach space over \mathbb{F} .

Proof.

- $||f||_{\infty}$ is well defined in \mathbb{R}^+ since f is bounded.
- $||f||_{\infty} = 0$ means f(x) = 0 for all $x \in X$ and so f = 0.
- Homogeneity and triangle inequality: inherited from $|\cdot|$ in \mathbb{F} (exercise).
- Completeness: let $(f_k)_{k\geq 1}$ be a Cauchy sequence under $||\cdot||_{\infty}$. For each $x\in X$ we have $|f_m(x)-f_n(x)|\leq ||f_m-f_n||_{\infty}\to 0$ as $n,m\to\infty$. So $(f_k(x))_{k\geq 1}$ is Cauchy in \mathbb{F} , so (since \mathbb{F} is complete) there exists a limit $f(x)=\lim_{k\to\infty} f_k(x)$. This defines a function $f:X\to\mathbb{F}$.
- For all $\varepsilon > 0$, there exists $n_0 \ge 1$ such that $\forall m, n \ge n_0, \forall x \in X$,

$$|f_m(x) - \underbrace{f_n(x)}_{f(x)}| \le \varepsilon$$

so for all $\varepsilon > 0$, there exists $n_0 \ge 1$ such that $\forall m \ge n_0, \, \forall x \in X$ we have

$$|f_m(x) - f(x)| \le \varepsilon$$

so $||f_m - f||_{\infty} \le \varepsilon$ and $f_m \to f$ uniformly, so $f \in C_{\mathbb{F},b}$ by properties of the uniform limit.

Example. Given $U \subseteq \mathbb{R}^n$ open, bounded and non-empty; $m \in \mathbb{N}^*$, consider

$$C^m(\overline{U}) = \{ f: U \to \mathbb{R} : f \text{ is } m \text{ times differentiable on } U, \forall \alpha \in \mathbb{N}^n \\ \text{s.t } |\alpha| = \alpha_1 + \ldots + \alpha_m \leq m \\ , \partial^{\alpha} f \text{ is continuous and bounded on } U \}$$

Then $(C^m(\overline{U}), ||\cdot||_{C^m})$ is a Banach space where

$$||f||_{C^m} = \sup_{\alpha \in \mathbb{N}^n, |\alpha| \le m} \underbrace{\sup_{x \in U} |\partial^{\alpha} f(x)|}_{||\partial^{\alpha} f||_{\infty}}$$

Exercise: check that this is complete and $\partial^{\alpha} f$, $\alpha \leq m-1$, extends continuously to \tilde{U} .

Example. $C_{\mathbb{R}}([0,1])$, the set of continuous functions from [0,1] to \mathbb{R} . This is a vector space over \mathbb{R} .

- $(C_{\mathbb{R}}([0,1]), ||\cdot||_{\infty})$ is a Banach space (Example sheet)
- Could take another norm such that

$$||f||_p = \left(\int_0^1 |f(x)|^p dx\right)^{1/p}, \ p \in [1, \infty)$$

Study of $(C_{\mathbb{R}}([0,1]), ||\cdot||_p)$:

- $||\cdot||_p$ is well defined: Riemann and Lebesgue integrable.
- If $||f||_p = 0$ and $f \neq 0$ then there exists $\varepsilon > 0$ and $x_0 \in [0,1]$ such that $|f(x_0)| \geq \varepsilon$, so by continuity there exist $a < b \in [0,1]$ such that $\inf_{x \in [a,b]} |f(x)| \geq \frac{\varepsilon}{2}$. Then $\int_0^1 |f(x)|^p dx \geq \left(\frac{\varepsilon}{2}\right)^p (b-a) > 0$ which is impossible.
- Homogeneity is clear.
- Triangle inequality:

$$||f+g||_p^p = \int_0^1 |f+g|^p dx = \int_0^1 |f+g||f+g|^{p-1} dx$$

$$\leq \int_0^1 |f||f+g|^{p-1} \mathrm{d}x + \int_0^1 |g||f+g|^{p-1} \mathrm{d}x$$

$$\leq \inf_{\text{H\"older:}} ||f||_p ||f+g||_p^{p-1} + ||g||_p ||f+g||_p^{p-1}$$

If $||f+g||_p = 0$ then its clear. Otherwise this implies $||f+g||_p \le ||f||_p + ||g||_p$.

• Completeness? Define

$$f_k(x) = \begin{cases} 0 & 0 \le x \le \frac{1}{2} - \frac{1}{4k} \\ \left[x - \left(\frac{1}{2} - \frac{1}{4k} \right) \right] 4k & \frac{1}{2} - \frac{1}{4k} \le x \le \frac{1}{2} \\ 1 & \frac{1}{2} \le x \le 1 \end{cases}$$

then $(f_k)_{k\geq 1}$ is Cauchy for $||\cdot||_p$, and the limit is $1_{[1/2,1]}$ which is not continuous. So not complete.

Remark: what about the completion? In general, abstract completions are often not very useful; however in this case, it is: Lebesgue space $L^p([0,1])$, defined as equivalence classes for the "almost everywhere" equality.

Example. Take functions from $X = \mathbb{N} \to \mathbb{R}$ or \mathbb{C} , get $\ell_{\mathbb{F}}^p$ for $p \in [1, \infty]$, with norm $||(x_k)||_p = \left(\sum_{k\geq 1} |x_k|^p\right)^{1/p}$ for $p < \infty$ and $||(x_k)||_\infty = \sup_{k\geq 1} |x_k|$. Exercise: show this is indeed a norm and this is complete, hence Banach.

Remark: for $p \in (0,1)$, ℓ^p is similarly defined.

Non-examinable example of TVS:

- Define for $U \subseteq \mathbb{R}^n$ open & non-empty, $\mathbb{F} = \mathbb{R}$ or \mathbb{C} , $C_{\mathbb{F}}(U)$ the set of continuous functions $U \to \mathbb{F}$.
- TVS for the topology τ defined by the translations of the following basis of neighborhoods around 0: take $(K_n)_{n\geq 1}$ a sequence of increasing compact sets, $\bigcup_{n\geq 1} K_n = U$. Define

$$U_n = \left\{ f \in C_{\mathbb{F}}(U) : \sup_{K_n} |f| \le \frac{1}{n} \right\}$$

- Exercise: show this indeed a TVS and τ does not depend on the choice of the (K_n) .
- Proposition: $(C(U), \tau)$ is a locally convex, not locally bounded TVS (therefore not normable). Furthermore, it is metrizable with $d(f, g) = \sum_{k\geq 1} \frac{1}{2^n} \left(\frac{\sup_{K_n} |f-g|}{1+\sup_{K_n} |f-g|} \right)$. Also (C(U), d) is complete (Frechet space).

Remarks:

- 1. Not locally bounded: suppose there exists B bounded neighborhood of 0, then there exists $n_0 \geq 1$ such that $U_{n_0} \subseteq B$. B is bounded so there exists t>0 such that $B \subseteq tU_{n_0+1}$ so $U_{n_0} \subseteq tU_{n_0+1}$. But this is impossible since we can always construct $f \in U_{n_0}$ such that $\sup_{K_{n_0+1}} |tf| > 1/n$
- 2. Let $C_c(U)$ be the set of continuous functions with compact support. Then V is a neighborhood of 0 if and only if $V \cap C(K_n)$ is a neighborhood of 0 in $C(K_n)$. This is a non-countable topology.

5 Bounded linear maps & duality

Definition. Given (V, τ_V) and (W, τ_W) TVS', $T: V \to W$ linear is bounded if it maps bounded sets to bounded sets: for any $B_V \subseteq V$ bounded, then $T(B_V)$ is bounded in W.

Proposition. Given (V, τ_V) , (W, τ_W) TVS' which are locally bounded (note this includes NVS'), and $T: V \to W$ is linear, then T is bounded if and only if T is continuous.

Proof.

Step 1: T bounded $\Longrightarrow T$ continuous at 0. Let U_W be an open neighborhood of 0 in W, and U_V an open bounded neighborhood of 0 in V. Then $T(U_V)$ is bounded, so there exists t > 0 such that $T(U_V) \subseteq tU_W$. So $T^{-1}(U_W) \supseteq t^{-1}U_V$ and $t^{-1}U_V$ is open around 0 in V (using the fact dilations are continuous).

Step 2: T continuous at $0 \implies T$ is continuous everywhere. Let $w \in W$, U_W open around $w, v \in V$ such that T(v) = w. Then $U_W - w$ is open around 0 in W (translation continuous), so by Step 1, $T^{-1}(U_W - w)$ is a neighborhood of 0 in V. So

$$T^{-1}(U_W) = T^{-1}(\{w\}) + T^{-1}(U_W - w)$$

$$= \bigcup_{v' \in T^{-1}(\{w\})} (v' + T^{-1}(U_W - w))$$

$$\supseteq \underbrace{v + T^{-1}(U_W - w)}_{\text{ngbd around } v}$$

Step 3: T continuous \Longrightarrow T bounded. Let $B_V \subseteq V$ be bounded, and U_W an open neighborhood of 0 in W. Then $T^{-1}(U_W)$ is open around 0 in V. So (since B_V bounded) there exists t > 0 such that $B_V \subseteq tT^{-1}(U_W)$ and so $T(B_V) \subseteq tU_W$.

We have proved that $T(B_V)$ is covered by a dilation of any neighborhood of 0, so is bounded.

Definition. Given $(V, ||\cdot||_V)$, $(W, ||\cdot||_W)$ NVS' on \mathbb{F} , and $T: V \to W$ linear, T is bounded iff T is continuous iff there exists t > 0 such that $T(B_V(0, 1)) \subseteq B_W(0, t)$. The infimum of such t's is denoted |||T|||.

Remark: can check that |||T||| is equivalently defined as

$$|||T||| = \sup_{||v||_{V} \le 1} ||Tv||_{W} = \sup_{||v||_{V} < 1} ||Tv||_{W} = \sup_{||v||_{V} = 1} ||Tv||_{W}$$
(*)

Definition. Given $(V, ||\cdot||_V), (W, ||\cdot||_W)$ NVS', denote

$$\mathcal{L}(V, W) = \{T : V \to W \text{ linear map}\}\$$

$$\mathcal{B}(V, W) = \{T : V \to W \text{ linear bounded map}\}\$$

Proposition. $(\mathcal{B}(V, W), ||| \cdot |||)$ is an NVS.

Proof.

- $\mathcal{L}(V, W)$ is a vector space via $(\lambda_1 T_1 + \lambda_2 T_2)(v) = \lambda_1 T_1(v) + \lambda_2 T_2(v)$.
- $\mathcal{B}(V, W)$: dilation/(finite) sums of bounded sets are bounded. So T bounded implies λT is bounded and T_1, T_2 bounded implies $T_1 + T_2$ bounded.

- |||T||| is well-defined in \mathbb{R}_+ for T bounded, |||0||| = 0 and if |||T||| = 0 then $T(B_V(0,1)) \subseteq B_W(0,t)$ for all t > 0 and so by continuity of dilation, $T(B_V(0,1)) = \{0\}$. By linearity, this implies T = 0.
- $|||\lambda T||| = |\lambda| |||T|||$ and $|||T_1 + T_2||| \le |||T_1||| + |||T_2|||$ follows from (*)

Proposition. Let $(V, ||\cdot||_V)$ be a NVS and $(W, ||\cdot||_W)$ a Banach space. Then $(\mathcal{B}(V, W), |||\cdot|||)$ is a Banach space.

Proof. We have proved that $(\mathcal{B}(V,W),|||\cdot|||)$ is an NVS above. So we prove completeness. Let $(T_k)_{k\geq 1}$ be a Cauchy sequence in $(\mathcal{B}(V,W),|||\cdot|||)$. Then

$$\sup_{k_1, k_2 \ge k_0} |||T_{k_1} - T_{k_2}||| \to 0 \text{ as } k_0 \to \infty$$
 (**)

$$\forall v \in V, \sup_{k_1, k_2 \ge k_0} ||T_{k_1}(v) - T_{k_2}(v)||_W \le ||v||_V |||T_{k_1} - T_{k_2}||| \xrightarrow{k_0 \to \infty} 0 \quad (***)$$

so $(T_k(v))_{k\geq 1}$ is a Cauchy sequence in W. Since W is complete, can let the associated limit be T(v).

Then T is linear by pointwise limits:

$$T(\lambda_1 v_1 + \lambda_2 v_2) = \lim_{k \to \infty} T_k(\lambda_1 v_1 + \lambda_2 v_2) = \lim_{k \to \infty} [\lambda_1 T_k(v_1) + \lambda_2 T_k(v_2)]$$

= $\lambda_1 T(v_1) + \lambda_2 T(v_2)$

Use (***), take $k_2 \to \infty$ so

$$\forall v \in V, \ \sup_{k_1 \geq k_0} ||T_{k_1}(v) - T(v)||_W \leq ||v||_V \left(\sup_{k_1, k_2 \geq k_0} |||T_{k_1} - T_{k_2}||| \right) \to 0 \text{ as } k_0 \to \infty$$

Hence for $v \in V$ such that $||v|| \le 1$ we have

$$\sup_{k_1 > k_0} ||T_{k_1}(v) - T(v)||_W \le \sup_{k_1, k_2 > k_0} |||T_{k_1} - T_{k_2}||| \tag{\dagger}$$

Then (for $v \in V$ with $||v|| \le 1$) by the triangle inequality

$$||T(v)||_{W} \leq ||\underbrace{T_{k_{0}}(v)}_{\text{bounded}}|| + \sup_{k_{1},k_{2} \geq k_{0}} |||T_{k_{1}} - T_{k_{2}}|||$$

$$\sup_{||v|| \leq 1} ||T(v)||_W \leq |||T_{k_0}||| + \sup_{k_1, k_2 \geq k_0} |||T_{k_1} - T_{k_2}|||$$

So T is bounded. Now (\dagger) implies

$$\sup_{k_1 \geq k_0} |||T_{k_1} - T||| \leq \sup_{k_1, k_2 \geq k_0} |||T_{k_1} - T_{k_2}||| \xrightarrow{k_0 \to \infty} 0$$

So
$$T_{k_1} \xrightarrow{|||\cdot|||} T$$
.

Remark: can deduce from (†) that for all $v \in V$ with $||v|| \le 1$,

$$||T_k(v)||_W - ||T_k - T||| \le ||T(v)||_W \le ||T_k(v)||_W + ||T_k - T|||$$

Then taking supremum over $||v|| \le 1$

$$\left| \sup_{||v|| \le 1} ||Tv||_W - \sup_{||v|| \le 1} ||T_k(v)||_W \right| \le |||T_k - T||| \xrightarrow{k \to \infty} 0$$

So $|||T_k||| \xrightarrow{k \to \infty} |||T|||$.

Definition. Let $(V, ||\cdot||_V)$ be a NVS over \mathbb{F} . Let

$$\mathcal{L}(V, \mathbb{F}) = \{ \text{linear maps } V \to \mathbb{F} \}, \text{ the algebraic dual }$$

$$\mathcal{B}(V,\mathbb{F}) = \{ \text{bounded linear maps } V \to \mathbb{F} \} \text{ denoted } (V^*, ||\cdot||_{V^*}) \}$$

Note that by the previous proposition $\mathcal{B}(V,\mathbb{F})$ is Banach (since $\mathbb{F} = \mathbb{R}$ or \mathbb{C} is complete).

Definition. Let $(V, ||\cdot||_V)$, $(W, ||\cdot||_W)$ be NVS', $T \in \mathcal{B}(V, W)$. Then T^* (the adjoint of T) defined as $T^*: W^* \to V^*$, $\psi \mapsto \varphi = \psi \circ T$. i.e $T^*(\psi)(v) = \psi(T(v))$.

Proposition. T^* is well-defined $W^* \to V^*$, linear and bounded (for $||\cdot||_{W^*}$ and $||\cdot||_{V^*}$) with $|||T^*||| \le |||T|||$.

Remark: soon, with the help of the Hahn-Banach Theorem, we'll prove that the duals are "big enough" so that $|||T^*||| = |||T|||$.

Proof.

- Well-defined: follows since linearity and boundedness are stable under composition, i.e if $T:V\to W$ is linear and bounded, $\psi:W\to \mathbb{F}$ is linear and bounded, so is $\psi\circ T:V\to \mathbb{F}$. So $\psi\circ T\in V^*$
- Linearity:

$$T^* (\lambda_1 \psi_1 + \lambda_2 \psi_2) (v) = (\lambda_1 \psi_1 + \lambda_2 \psi_2) (Tv)$$

= $\lambda_1 [\psi_1 (Tv)] + \lambda_2 [\psi_2 (Tv)]$
= $\lambda_1 T^* (\psi_1) (v) + \lambda_2 T^* (\psi_2) (v)$

• Boundedness:

$$|||T^*||| = \sup_{||\psi||_{W^*}} ||T^*(\psi)||_{V^*} = \sup_{||\psi||_{W^*} \le 1} \sup_{||v||_{V} \le 1} |T^*(\psi)(v)|$$

$$\leq \sup_{||\psi||_{W^*} \leq 1} \sup_{||v||_{V} \leq 1} |\psi(Tv)| \leq \sup_{||\psi||_{W^*} \leq 1} \sup_{||v||_{V} \leq 1} ||\psi||_{W^*} |||T||| \cdot ||v||_{V} \leq |||T|||$$

Definition. Let $(V, ||\cdot||_V)$ be an NVS. Since $(V^*, ||\cdot||_{V^*})$ is a NVS (Banach), we can define its dual, denoted $(V^{**}, ||\cdot||_{V^{**}})$ the *bidual* of V (again Banach).

Proposition. Define $\Phi: V \to V^{**}, v \mapsto \Phi(v)$ by

$$\forall \varphi \in V^*, \ \Phi(v)(\varphi) = \varphi(v)$$

Then Φ is well-defined, linear and bounded with $|||\Phi||| \leq 1$. Φ is called the canonical bi-dual embedding.

Remark: with the Hahn-Banach Theorem, we'll prove Φ is an isometry. In particular, $|||\Phi||| = 1$ and Φ is injective. However, Φ is not always surjective. In fact, V and V^{**} are not always isomorphic.

Proof.

then

• Well-defined: given $v \in V$, $\phi \in V^*$ is linear, and bounded since

$$\sup_{||\varphi||_{V^*} \le 1} |\varphi(v)| \le ||v||_V$$

• Linearity:

$$\begin{split} \Phi(\lambda_1 v_1 + \lambda_2 v_2)(\varphi) &= \varphi(\lambda_1 v_1 + \lambda_2 v_2) \\ &= \lambda_1 \varphi(v_1) + \lambda_2 \varphi(v_2) \\ &= \lambda_1 \Phi(v_1)(\varphi) + \lambda_2 \Phi(v_2)(\varphi) \end{split}$$

• Boundedness:

$$\begin{split} |||\Phi||| &= \sup_{||v||_{V} \le 1} ||\Phi(v)||_{V^{**}} = \sup_{||v||_{V} \le 1} \sup_{||\varphi||_{V^{*}} \le 1} |\underline{\Phi(v)(\varphi)}| \\ &= \sup_{||v||_{V} \le 1} \sup_{||\varphi_{V^{*}}|| \le 1} \underline{|\varphi(v)|} \\ &\le 1 \\ &\le ||\varphi||_{V^{*}} ||v||_{V} \end{split}$$

Example. Let V, W be finite-dimensional NVS' with bases $(v_i)_{i=1}^m$ and $(w_j)_{j=1}^n$ respectively. Let $T: V \to W$ be linear (and thus bounded as finite dimensional). Take $(v_i^*)_{i=1}^m$ defined by $v_i^*(v_{i'}) = \delta_{ii'}$ and $(w_j^*)_{j=1}^n$ defined by $w_j^*(w_{j'}) = \delta_{jj'}$. Then V^*, W^* are finite-dimensional NVS' with bases (v_i^*) and (w_j^*) respectively. If T has a matrix $A = (a_{ij})_{i=1,j=1}^{i=m,j=n}$ in with respect to the bases (v_i) and (w_j) ,

$$Tv_i = \sum_{j=1}^n a_{ij} w_j$$

and T^* has matrix $A^T = (a_{ji})_{j=1,i=1}^{j=n,i=m}$ with respect to the bases (w_j^*) and (v_i^*) .

Example. Space of square summable spaces $\ell^2(\mathbb{F})$ (as usual $\mathbb{F} = \mathbb{R}$ or \mathbb{C}) is infinite dimensional. There are linear maps on this space that are

- Bounded, injective but not surjective: $T(x_1, x_2,...) \mapsto (0, x_1, x_2,...)$ a "right shift" of the sequence
- Bounded, surjective but not injective: $T(x_1, x_2, ...) \mapsto (x_2, x_3, ...)$ a "left shift" of the sequence
- Linear but not bounded: find a basis $(e_i)_{i \in I}$, extract $(e_n)_{n \geq 1}$ a countable subset. Then define $T: e_n \mapsto ne_n$, $e_i \mapsto 0$ for $i \notin \mathbb{N}$.

Duality: $(\ell^2)^* = \ell^2$ (Hilbert representation theorem)

Example. For ℓ^p , $p \in (1, \infty)$, $p \neq 2$, we have duals

$$\ell^p \to (\ell^p)^* = \ell^q \to (\ell^q)^* = \ell^p \text{ where } \frac{1}{p} + \frac{1}{q}$$

$$\ell^1 \to (\ell^1)^* = \ell^\infty \to (\ell^\infty)^* \neq \ell^1$$

Example. (Question 8 Example sheet 1) $(C^1([0,1]), ||\cdot||_{C^0}) \to (C^1([0,1]), ||\cdot||_{C^1}), f \mapsto f$ is unbounded.

Zorn's Lemma

In a finite-dimensional NVS V, we have a "simple" dual V^* . In infinite-dimension, we have not even proved that if V is non-trivial (i.e not $\{0\}$) then V^* is non-trivial.

The Hahn-Banach Theorem will answer several questions:

- $V \neq \{0\} \implies V^* \neq \{0\}$
- V^* separates points of V
- Φ (the bidual embedding) is isometric, $|||\Phi||| = 1$
- $|||T^*||| = |||T|||$

<u>Idea of Hahn-Banach</u>: extend linear bounded maps already defined on a subspace.

Strategy:

- 1. "Co-dimension 1" extension: any linear bounded map $V \to \mathbb{F}$ has an extension to $W \to \mathbb{F}$ where $V \subseteq W$ with codimension 1.
- 2. Transfinite induction: Zorn's Lemma (or equivalently the Axiom of Choice)

Remark: if $V = \bigcup_{n \geq 1} V_n$, V_n subspace, $V_n \subseteq V_{n+1}$, $\dim(V_n) = n$, could use step 1 above and standard (countable) induction. However, no Banach spaces are like this.

Definition. A set S is partially ordered (poset) if there is a binary relation " \leq " such that

- $\forall x, y \in S, x \leq y \text{ or not (partial order)}$
- $\forall x \in S, x < x \text{ (reflexive)}$
- $\forall x, y, z \in S$, if $x \leq y$ and $y \leq z$, then $x \leq z$ (transitive)
- $\forall x, y \in S$, if $x \leq y$ and $y \leq x$ then x = y (non-ambiguous)

Definition. A poset S is totally ordered if $\forall x, y \in S$, if $x \not\leq y$ then $x \geq y$.

Definition. Given $S' \subseteq S$ (where (S, \leq) is a poset), we say $l \in S$ is a upper bound of S' if $\forall x \in S'$, $x \leq l$. l is a least upper bound of S' if it is an upper bound and any other upper bound $l' \in S$ satisfies $l' \geq l$.

Definition. A subset S' of S ((S, \leq) a poset) that is totally ordered is called a *chain*.

Definition. A poset (S, \leq) has the *least upper bound property* if any non-empty chain has a least upper bound.

Definition. Given a poset (S, \leq) , $m \in S$ is said to be maximal if $\forall x \in S$, $x \geq m$ implies x = m.

Theorem (Zorn's Lemma). Any non-empty poset (S, \leq) with the least upper bound property has (at least one) maximal element.

Remarks:

- 1. In fact Zorn's Lemma is true just with "upper bound" property on chains.
- 2. Zorn's Lemma is equivalent to the Axiom of Choice

5.1 Finite dimension

Definition. Let V be a NVS with two norms $||\cdot||_1$ and $||\cdot||_2$. Then these norms are said to be *equivalent*, denoted $||\cdot||_1 \sim ||\cdot||_2$ if there are two constants, c, c' > 0 such that

$$\forall v \in V, \ C||v||_1 \le ||v||_2 \le C'||v||_1$$

Remarks:

- 1. This defines equivalence classes on norms.
- 2. $||\cdot||_1 \sim ||\cdot||_2$ implies that their induced topologies are the same. The converse is also true: indeed $B_{||\cdot||_1}(0,1)$ is open around 0 for τ_2 , so there exists $\varepsilon > 0$ such that $B_{||\cdot||_2}(0,\varepsilon) \subseteq B_{||\cdot||_1}(0,1)$, which implies that for all $v \in V \setminus \{0\}$

$$\frac{\varepsilon v}{2||v||_2} \in B_{||\cdot||_2}(0,\varepsilon) \subseteq B_{||\cdot||_1}(0,1) \implies ||v||_1 \leq \frac{2}{\varepsilon}||v||_2$$

and similarly for the opposite bound.

3. When 2 norms are equivalent, they generate te same notion of bounded linear maps, converging spaces & Cauchy sequences.

Proposition.

- (i) All norms are equivalent in finite-dimension
- (ii) Given $(V, ||\cdot||_V)$ a finite-dimensional NVS, $(W, ||\cdot||_W)$ a NVS, any linear map $T: V \to W$ is bounded
- (iii) Given $(V, ||\cdot||_V)$ an NVS, if $\overline{B}_V(0, 1)$ is compact, then V is finite dimensional.

Proof.

(i) Let us prove all norms are equivalent to $||\cdot||_{\infty}$, defined for a basis $(e_i)_{i=1}^n$ as $||v||_{\infty} = \sup_{1 \le i \le n} |v_i|$ for $v = \sum v_i e_i$.

Let $||\cdot||$ be a norm on V

$$||v|| = \left|\left|\sum_{i=1}^{n} v_i e_i\right|\right| \le \sum_{i=1}^{n} |v_i| ||e_i|| \le \underbrace{\left(\sum_{i=1}^{n} ||e_i||\right)}_{=C'} ||v||_{\infty}$$

Consider $\varphi:(V,||\cdot||_{\infty})\to\mathbb{R}_+$ defined by $v\mapsto ||v||$. Then φ is continuous:

$$|\varphi(v) - \varphi(w)| = |||v|| - ||w||| \le ||v - w|| \le C' ||v - w||_{\infty}$$

Define $S_{||\cdot||_{\infty}}(0,1)=\{v\in V:||v||_{\infty}=1\}$. Then $\varphi:S_{||\cdot||_{\infty}}(0,1)\to\mathbb{R}_+$ continuous, so attains its minimum: there exists $v_0\in S_{||\cdot||_{\infty}}(0,1)$ such that $\forall v\in S_{||\cdot||_{\infty}}(0,1),\, \varphi(v)\geq \varphi(v_0)$.

Then $v_0 \neq 0$ since $||v_0||_{\infty} = 1$ and so $\varphi(v_0) = ||v_0|| = C > 0$. This implies

$$\left| \left| \frac{v}{||v||_{\infty}} \right| \right| \ge C, \ \forall v \in V \setminus \{0\} \implies \forall v \in V, \ ||v|| \ge C||v||_{\infty}$$

(ii) Completeness and the fact closed bounded sets are compact follows from (i) since true with $(\mathbb{F}^n, ||\cdot||_{\infty})$.

$$||T(v)||_W = \left\| \sum_{i=1}^n v_i T(e_i) \right\|_W \le \sum_{i=1}^n |v_i|||T(e_i)||_W$$

$$\leq ||v||_{\infty} \left(\sum_{i=1}^{n} ||T(e_i)||_W \right) \leq \frac{1}{C} ||v||_V \left(\sum_{i=1}^{n} ||T(e_i)||_W \right)$$

so T is bounded

Theorem (Riesz). If $(V, \|\cdot\|)$ is an NVS, $\overline{B}(0,1)$ compact then V finite dimensional.

Proof. $\overline{B}(0,1) \subseteq \bigcup_{v \in \overline{B}(0,1)} B(v,1/2)$ open covering. Then compactness implies there exist v_1, \ldots, v_n in $\overline{B}(0,1)$ such that $\overline{B}(0,1) \subseteq \bigcup_{i=1}^n B(v_i,1/2)$. Denote $W = \operatorname{span}(v_1,\ldots,v_n)$ a subspace of V. Then $\overline{B}(0,1) \subseteq \bigcup_{i=1}^n (v_i + B(0,1/2))$.

$$\overline{B}(0,1) \subseteq W + B^{\cdot}(0,1/2) \subseteq W + \overline{B}(0,1/2)$$

Iterate on $\overline{B}(0,1/2) = \frac{1}{2}\overline{B}(0,1)$: $\overline{B}(0,1/2) \subseteq W + \overline{B}(0,1/4)$.

$$\overline{B}(0,1) \subseteq \bigcap_{k=1}^{K} (W + \overline{B}(0,2^{-k})), \ \forall K \ge 1$$

Then

$$\overline{B}(0,1) \subseteq \bigcap_{k \ge 1} \left(W + \overline{B}(0,2^{-k}) \right) \subseteq \overline{W} = W$$

 $\overline{B}(0,1) \subseteq W$ implies V = W.

Back to (Zorn's Lemma) and the Hahn-Banach Theorem

Construction of basis:

Proposition. Let $V \neq \{0\}$ be a vector space over \mathbb{F} and $S \subseteq V$ subset which is linearly independent. Then there exists a subset $B \subseteq V$ linearly independent such that $S \subseteq B$ and $\operatorname{span}(B) = V$ (i.e a basis).

Proof. Let $\mathcal{F} = \{\text{linearly independent subsets } S' \subseteq V \text{ such that } S \subseteq S' \}$. Then $S \neq \emptyset$ since $S \in \mathcal{F}$.

 (\mathcal{F},\subseteq) is a poset (easy check).

If $\Theta \subseteq \mathcal{F}$ is a chain (totally ordered for \subseteq) then it has a least upper bound: $\overline{S} = \bigcup_{S' \in \Theta} S'$.

Properties of \overline{S} :

- $\overline{S} \supseteq S'$, for all $S' \in \Theta$ so S' is an upper bound for Θ
- An upper bound for Θ will include each $S' \in \Theta$ so \overline{S} is a least upper bound.
- $\overline{S} \supseteq S$ since $\overline{S} = \bigcup_{S' \in \Theta} S'$ and each $S' \supseteq S$.
- \overline{S} is linearly independent: let $(v_1, \ldots, v_n) \in \overline{S}$ be distinct elements. Then for all $i = 1, \ldots, n$ there exists $S_i' \in \Theta$ such that $v_i \in S_i'$. Chain structure (total order) means there exists $i_0 \in \{1, \ldots, n\}$ such that $S_j' \subseteq S_{i_0}'$ for all $j = 1, \ldots, n$. So $\{v_1, \ldots, v_n\} \subseteq S_{i_0}'$ is linearly independent, and so \overline{S} is.

Now Zorn's Lemma says that there exists a maximal element in \mathcal{F} : $B \supseteq S$, B linearly independent and maximal. Assume $\operatorname{span}(B) \subsetneq V$, then we have $v_0 \in V \setminus \operatorname{span}(B)$ and $B' = B \cup \{v_0\}$ is a strictly larger element of \mathcal{F} , a contradiction. Hence $V = \operatorname{span}(B)$.

Note that the statement of the geometric form of Hahn-Banach below is *non-examinable*

Theorem (Hahn-Banach "algebraic" form).

(i) Let V be a vector space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} , and $p: V \to \mathbb{R}_+$ such that for all $v_1, v_2 \in V$, $p(v_1 + v_2) \leq p(v_1) + p(v_2)$ and for all $\lambda \in \mathbb{F}$, $v \in V$ we have $p(\lambda v) = |\lambda| p(v)$.

Let $W \subseteq V$ be a subspace of V and $f: W \to \mathbb{F}$ linear with $|f(w)| \leq p(w)$ for all $w \in W$. Then there exists $\tilde{f}: V \to \mathbb{F}$ linear, with $\tilde{f}|_W = f$ and $|f(v)| \leq p(v)$ on all of V.

(ii) Let V be a vector space over $\mathbb{F} = \mathbb{R}$ and $p: V \to \mathbb{R}_+$ such that for all $v_1, v_2 \in V$, $p(v_1 + v_2) \leq p(v_1) + p(v_2)$ and for all $\lambda > 0$, $v \in V$ we have $p(\lambda v) = \lambda p(v)$.

Let $W \subseteq V$ be a subspace of V and $f: W \to \mathbb{F}$ be linear with $f \leq p$ on W. Then there exists $\tilde{f}: V \to \mathbb{F}$ linear with $\tilde{f}|_W = f$, and $\tilde{f} \leq p$ on V.

Proof. Step 1: (i) in \mathbb{R} implies (ii) in \mathbb{C} . Start from $f: W \to \mathbb{F} = \mathbb{C}$. Note that a vector space V over \mathbb{C} can be seen as a vector space over \mathbb{R} . Indeed if $(e_i)_{i \in I}$ is a basis over \mathbb{C} , and $V_0 = \operatorname{span}_{\mathbb{R}}((e_i)_{i \in I}), V = V_0 \oplus (iV_0)$ (same with W).

Define $g = \Re(f)$, this satisfies $|g| \leq p$. Then (i) on \mathbb{R} implies there exists $\tilde{g}: V \to \mathbb{R}$ linear extending g such that $|\tilde{g}| \leq p$.

Define $\tilde{f}(v) := \tilde{g}(v) - i\tilde{g}(iv)$. Then $\tilde{f}(\lambda v) = \lambda \tilde{f}$ for all $\lambda \in \mathbb{R}$ (f linear). Also $\tilde{f}(iv) = i\tilde{f}(v)$. Hence f is linear over \mathbb{C} . This extends g to all of V.

Also for all $v \in V$, there exists $\theta \in [0, 2\pi)$ such that $|f(v)| = \Re(\tilde{f}(e^{i\theta}v)) = \tilde{g}(e^{i\theta}v) \leq p(e^{i\theta}v) = p(v)$.

Step 2: (ii) in \mathbb{R} implies (i) in \mathbb{R} . If $W \subseteq V$ is a subspace, $p: V \to \mathbb{R}_+$ such that $p(v_1 + v_2) \leq p(v_1) + p(v_2)$ for all $v_1, v_2 \in V$ and $p(\lambda v) = |\lambda|p(v)|$ for all $\lambda \in \mathbb{R}, v \in V$, and $f: W \to \mathbb{R}$ is linear such that $|f(v)| \leq p(v)$ for all $v \in W$ then (ii) can be applied to obtain $\tilde{f}: V \to \mathbb{R}$ linear extending f such that $\tilde{f}(v) \leq p(v)$ for all $v \in V$ (no modulus a priori in this conclusion).

We also deduce $\tilde{f}(-v) = p(-v) = p(v)$, so $|\tilde{f}(v)| \le p(v)$.

Step 3: proof of (ii) in \mathbb{R} .

(a) Co-dimension 1 case: consider $V = W \oplus (\mathbb{R}v_0)$, $v_0 \neq 0$. We have $f: W \to \mathbb{R}$ linear, $f \leq p$ on W. To extend f it is enough to prescribe \tilde{f} at v_0 , then linearity does the rest: for $w \in W$, $\tilde{f}(w+av_0) = \tilde{f}(w) + a\tilde{f}(v_0) = f(w) + a\tilde{f}(v_0)$.

The value of $\tilde{f}(v_0)$ must satisfy:

$$\tilde{f}(w + av_0) < p(w + av_0), \ a > 0 \text{ and for } a < 0$$

This gives

$$\underbrace{-p\left(-\frac{w}{a}-v_0\right)+f\left(-\frac{w}{a}\right)}_{A(w')} \underbrace{\leq}_{a<0} \tilde{f}(v_0) \underbrace{\leq}_{a>0} \underbrace{p\left(\frac{w}{a}+v_0\right)-f\left(\frac{w}{a}\right)}_{B(w'')}$$

where $w' = -\frac{w}{a}$ and $w'' = \frac{w}{a}$. Then for all $w', w'' \in W$, $\tilde{f}(v_0) \in [A(w'), B(w'')]$. Set $\beta = \tilde{f}(v_0)$. Then a consistent value of β exists if and only if

$$\sup_{w' \in W} A(w') \le \inf_{w'' \in W} B(w'')$$

This is indeed satisfied since

$$f(w') + f(w'') = f(w' + w'') \le p(w' + w'') \le p(w' - v_0) + p(w'' + v_0)$$

(b) Transfinite induction: define

$$S = \{(\tilde{f}, \tilde{W}) : \tilde{f} : \tilde{W} \to \mathbb{R} \text{ linear }, \tilde{f} \leq p \text{ and } \tilde{W} \supseteq W, \ \tilde{f}|_{W} = f\}$$

Now \mathcal{S} is a poset under $(f_1, W_1) \subseteq (f_2, W_2)$ if $W_1 \subseteq W_2$ and $f_2|_{W_1} = f_1$. Also \mathcal{S} has the least upper bound property: indeed consider $\Theta \subseteq \mathcal{S}$ a chain (totally ordered subset). Then for (\bar{f}, \bar{W}) defined by

$$\bar{W} = \bigcup_{W': (f', W') \in \Theta} W'$$

and $\bar{f}(v) = f'(v)$ for all $v \in \bar{W}$, for $(f', W') \in \Theta$ such that $v \in W'$. Also \bar{f} is well defined since Θ is totally ordered: so if $v \in W'_1 \cap W'_2$ then wlog $W'_1 \subseteq W'_2$, $f'_2|_{W'_1} = f'_1$ so $\bar{f}(v) = f'_2(v) = f'_2(v)$.

 \bar{f} is linear as Θ is totally ordered: $\bar{f}(\lambda v) = f'(\lambda v) = \lambda f'(v) = \lambda \bar{f}(v)$ for $(f', W') \in \Theta$ with $v \in W'$. Also

$$\bar{f}(v_1 + v_2) = f'_2(v_1 + v_2) = f'_2(v_1) + f'_2(v_2) = \bar{f}(v_1) + \bar{f}(v_2)$$

Finally $\bar{f} \leq p$ since for all $v \in \bar{W}$, $v \in W'$, $(f', W') \in \Theta$, $\bar{f}(v) = f'(v) \leq p(v)$.

So by Zorn's Lemma, there is a maximal element (\tilde{f}, \tilde{W}) in \mathcal{S} . If $\tilde{W} \subsetneq V$, then there exists $v_0 \in V \setminus \tilde{W}$ and the previous step applied to $\tilde{W} \subseteq \tilde{W} \oplus \mathbb{R} v_0$ and $\tilde{f}: \tilde{W} \to \mathbb{R}$ linear with $\tilde{f} \leq p$, gives the existence of a

$$\tilde{f}': \underbrace{\tilde{W} \oplus \mathbb{R}v_0}_{\tilde{W}'} \to \mathbb{R}$$

linear with $\tilde{f}'|_{\tilde{W}}=\tilde{f}.$ But then (\tilde{f}',\tilde{W}') is strictly larger than $(\tilde{f},\tilde{W}),$ a contradiction.

Theorem (Geometric form of Hahn-Banach).

- (i) Let $(V, ||\cdot||)$ be an NVS over \mathbb{R} , $A \subseteq V$ open, convex and non-empty; $B \subseteq V$ convex and non-empty; $A \cap B = \emptyset$. Then there is a closed hyperplane weakly separating A and B: there exists $f \in V^* \setminus \{0\}$, $\alpha \in \mathbb{R}$ such that $\sup_A f \leq \alpha \leq \inf_B f$ (the hyperplane is $f^{-1}(\{\alpha\})$)
- (ii) Let $(V, ||\cdot||)$ be an NVS over \mathbb{R} , $A \subseteq V$ closed, conevex and non-empty; $B \subseteq V$ compact, convex and non-empty; $A \cap B = \emptyset$. Then there is a closed hyperplane strictly separating A and B: there exists $f \in V^* \setminus \{0\}$, $\alpha_1 < \alpha_2 \in \mathbb{R}$ such that $\sup_A f \leq \alpha_1 < \alpha_2 \leq \inf_B f$.

Proof.

(i) Let $C_0 = A - B = \{a - b : a \in A, b \in B\}$. Then $C_0 \neq \emptyset$ since A and B are non-empty, convex as

$$\lambda(a-b) + (1-\lambda)(a'-b') = (\underbrace{\lambda a + (1-\lambda a')}_{\in A}) - (\underbrace{\lambda b + (1-\lambda)b'}_{\in B})$$

Also C_0 is open since $C_0 = \bigcup_{b \in B} (\underbrace{A - b}_{\text{open}})$.

 $0 \neq C_0$ since $A \cap B = \emptyset$. Let $v_0 \in C_0$, define $C = C_0 - v_0$. Then C is open, convex, non-empty and includes 0. Define $p = \mu_C$ (Minkowski gauge):

$$\forall v \in V, \ p(v) = \inf\{t \ge 0 : v \in tC\}$$

p satisfies (see proof of Kolmogorov)

- \bullet p is well-defined
- $p(\lambda v) = \lambda p(v), \ \forall \lambda > 0$
- $p(v_1 + v_2) \le p(v_1) + p(v_2)$ (using C convex)
- p(-v) is not necessarily equal to p(v) (C is not necessarily balanced)

Let $f: \mathbb{R}v_0 \to \mathbb{R}$ be linear defined by $f(-v_0) = 1$. Since $-v_0 \notin C$ $(0 \notin C_0)$ we have $p(-v_0) \ge 1$, so $f \le p$ $(\tilde{f}(-v_0) \le p(-v_0))$ so $\tilde{f}(-\lambda v_0) \le p(-\lambda v_0)$ for all $\lambda > 0$, and for $\lambda < 0$ $\tilde{f}(-\lambda v_0) \le 0$.

The Hahn-Banach theorem (algebraic version) gives $\tilde{f}: V \to \mathbb{R}$ linear such that $\tilde{f}|_{\mathbb{R}v_0} = f$, $\tilde{f}(-v_0) = 1$. So $\tilde{f} \neq 0$, and since p < 1 in C, $\tilde{f}|_C < 1$, so since C is open around 0: there exists $B(0, \varepsilon) \subseteq C$ such that

$$\sup_{v \in B(0,\varepsilon)} \tilde{f}(v) \leq 1 \implies \sup_{v \in B(0,\varepsilon)} |\tilde{f}| \leq 1 \implies \tilde{f} \in V^*, \ ||\tilde{f}||_{V^*} \leq \varepsilon^{-1}$$

And

$$\tilde{f}|_{C} < 1 \implies \tilde{f}|_{C_{0}} < 0 \implies \sup_{A} \tilde{f} \leq \inf_{B} \tilde{f}$$

So there is $\alpha \in \mathbb{R}$ such that $\sup_A \tilde{f} \leq \alpha \leq \inf_B \tilde{f}$

(ii) $C_0 = B - A$ non-empty, convex, doesn't include 0, is closed: given $(a_n - b_n)_{n \geq 1}$ a sequence in C_0 with $(a_n - b_n) \to e$, we have (since B is compact), there exists a subsequence $(a_{n'} - b_{n'})_{n' \geq 1}$ such that $b_{n'}$ converges to $b \in B$, so $a_{n'}$ converges to $a \in A$ as A is closed. So $b = a - b \in C_0$.

So there exists an open ball $B(0,\varepsilon)$ such that $B(0,\varepsilon)\cap C_0=\emptyset$. Apply (i) to $\tilde{A}=B(0,\varepsilon)$ (open, convex, non-empty) and $\tilde{B}=C_0$ (convex, non-empty). Then there exists $f:V\to\mathbb{R}$ bounded and linear, $f\neq 0$ such that

$$\sup_{B(0,\varepsilon)} f \le \alpha \le \inf_{C_0} f = \inf_B f - \sup_A f$$

Where $\alpha = \varepsilon ||f||_{V^*} = \sup_{v \in B(0,\varepsilon)} |f(v)| > 0.$

Consequences of Hahn-Banach

Proposition.

- (i) Given $(V, ||\cdot||)$ an NVS, W a subspace, $f \in W^*$ (linear and continuous on W), there exists $\tilde{f} \in V^*$ such that $\tilde{f}|_W = f$, and $||\tilde{f}||_{V^*} = ||f||_{W^*}$.
- (ii) If $(V, ||\cdot||)$, is an NVS with $V \neq \{0\}$, then $V^* \neq \{0\}$.
- (iii) Given $(V, ||\cdot||)$ an NVS with $V \neq \{0\}$, and $v, w \in V$ with $v \neq w$ then there exists $f \in V^*$ such that $f(v) \neq f(w)$.

Proof.

- (i) Apply HB (algebraic form) with $p: V \to \mathbb{R}+, v \mapsto ||f||_{W^*}||v||$. This satisfies the assumptions trivially and $|f| \leq p$ on W, so there exists $\tilde{f} \in V^*$ such that $\tilde{f}|_W = f$ and $|\tilde{f}(v)| \leq p(v) \leq ||f||_{W^*}||v||$ for all $v \in V$. This implies $||f||_{V^*} \leq ||f||_{W^*}$ and we clearly have equality.
- (ii) Consider $v_0 \in V \setminus \{0\}$. Then define ("support functional" for v_0) $f: W = \mathbb{F}v_0 \to \mathbb{F}$ the linear map such that $f(v_0) = ||v_0||$. Then (i) implies the existence of $\tilde{f} \in V^*$ such that $\tilde{f}|_W = f$ and $||f||_{W^*} = ||f||_{V^*} = 1$. Hence $\tilde{f} \neq 0$ and $V^* \neq \{0\}$.
- (iii) Given $v \neq w$ in V, apply (ii) to $v_0 = v w$. Then there is $\tilde{f} \in V^*$ such that $\tilde{f}(v_0) = \tilde{f}(v) \tilde{f}(w) = ||v_0|| \neq 0$.

Proposition. Given $(V, ||\cdot||)$ an NVS, $\Phi: V \to V^{**}$ defined by $v \mapsto \Phi(v)$ where $\Phi(v)(f) = f(v)$ for any $f \in V^*$. This is an isometry (in particular $|||\Phi||| = 1$).

Proof. We have already proven that $||\Phi(v)||_{V^{**}} \leq ||v||_V$ for all $v \in V$. Let us prove this is an equality. Consider $v \in V \setminus \{0\}$, let f_v be a support functional for $v, f_v \in V^*, f_v(v) = ||v||_V, ||f_v||_{V^*} = 1$ (constructed in the proof of (ii) in the previous proposition). Now $\Phi(v)(f_v) = f_v(v) = ||v||_V$. Hence

$$\sup_{\substack{f \in V^* \\ ||f||_{V^*} \le 1}} |\Phi(V)(f)| \ge ||v||_V \implies ||\Phi(v)||_{V^{**}} \ge ||v||_V$$

Proposition. Let V, W be NVS', $T: V \to W$ linear and bounded. Then $T^*: W^* \to V^*$ (the adjoint) satisfies $|||T^*||| = |||T|||$.

Proof. We already proved $|||T^*||| \le |||T|||$. So we show the reverse inequality. Consider $v \in V$ such that ||v|| = 1 and $w = Tv \ne 0$. Let $g_w \in W^*$ be a support functional for $w \in W$. Then $T^*(g_w)(v) = g_w(Tv) = g_w(w) = ||w||_W$. So

$$||T^*(g_w)||_{V^*} = \sup_{\substack{v' \in V \\ ||v'||=1}} |T^*(g_w)(v')| \ge ||w||_W$$

so

$$|||T^*||| = \sup_{\substack{g \in W^* \\ ||g||_{W^*} = 1}} ||T^*(g)||_{V^*} \ge ||T^*(g_w)|| \ge ||w||_W$$

SO

$$|||T^*||| \ge ||w||_W = ||Tv|_W$$

So take the supremum over $v \in V, ||v|| = 1$ to get

$$|||T^*||| \sup_{\substack{v \in V \\ ||v|| = 1}} ||Tv||_W = |||T|||$$

6 The Baire Category Theorem

Hahn Banach: uses sublinearity of gauges/norms (convexity of associated unit ball) to study the dual space and build linear forms.

Baire: use completeness to prove that complete NVS' are necessarily "big" - used for existence of objects and local-to-global estimates.

The following theorem was proved by Osgood (1897) in $\mathbb R$ and by Baire (1899) in general.

Definition. Let (X, τ) be a topological space.

- (i) A subset $B \subseteq X$ is rare (or nowhere dense) if \overline{B} has empty interior, i.e for all $U \in \tau$, $B \cap U$ is not dense in U.
- (ii) A subset $B \subseteq X$ is meagre (first category) in X if it can be written as a countable union of rare sets. Otherwise B is non-meagre (second category) in X.
- (iii) (X, τ) is meagre/non-meagre (first/second category) if it is as a subset of itself.

Proposition. Given (X,τ) a topological space, the following are equivalent

- (i) X is non-meagre
- (ii) For all $(C_n)_{n\geq 1}$ a countable collection of closed sets covering X, at least one C_n has non-empty interior
- (iii) For all $(O_n)_{n\geq 1}$ a countable collection of open sets which are all dense in $X,\bigcap_{n\geq 1}O_n\neq\emptyset$

Proof. (ii) implies (i): if $X = \bigcup_n A_n$, with A_n rare, then $C_n := \bar{A}_n$ are closed with empty interior, and $X = \bigcup_n C_n$.

- (i) implies (ii): if $X = \bigcup_n C_n$, C_n closed with empty interior, then $A_n := C_n$ are rare.
- (ii) implies (iii): given $(O_n)_{n\geq 1}$ open dense sets, $C_n=O_n^c$ are closed with empty interior: otherwise there exists $U\in \tau,\ U\subseteq C_n$ such that $U\cap O_n=\emptyset$ (contadicting density). Also $\bigcap_n O_n\neq\emptyset\iff\bigcup_n C_n\supsetneq X$.
- (iii) implies (ii): Given $(C_n)_{n\geq 1}$ closed sets with $U_{n\geq 1}C_n=X$, if all C_n have empty interiors, then $O_n:=C_n^c$ contradicts (iii) so at least one C_n has non empty interior

Theorem (Baire's Theorem). Let (X, d) be a complete metric space. Then X is non-meagre. In fact it is a Baire space, a space in which countable intersections of dense open sets are dense.

Proof. It is enough to prove that (X, d) is a Baire space. Consider $(O_n)_{n\geq 1}$ a sequence of open dense sets, and U an arbitrary open set. We will show $U \cap (\bigcap_n O_n) \neq \emptyset$.

Induction: since O_1 is dense, $O_1 \cap U$ is non-empty and open. Pick $x_1 \in O_1 \cap U$, with $B(x_1, r_1) \subseteq O_1 \cap U$ for some $r_1 > 0$. Then $O_2 \cap B(x_1, r_1/2) \neq \emptyset$ (density of O_2) and open. So there exists $x_2 \in O_2$ and $r_2 > 0$ such that $B(x_2, r_2) \subseteq O_2 \cap B(x_1, r_2/2)$.

General step: there exists $B(x_{k+1}, r_{k+1}) \subseteq O_{k+1} \cap B(x_k, r_k/2)$ for $x_{k+1} \in X$, $r_{k+1} > 0$. This builds a sequence $(x_k)_{k \ge 1}$ in X which is Cauchy: for all $k \ge k_0 \ge 1$, $x_k \in B(x_{k_0}, r_{k_0}/2)$ and inclusion of balls implies $r_{k+1} \le r_k/2$, for $k \ge 1$. So $r_k \le 2^{-k+1}r_1 \to 0$, so it is indeed Cauchy. Hence $x_k \to e$ for some $e \in X$ and $e \in \overline{B}(x_{k_0}, r_{k_0}/2)$ for all $k_0 \ge 1$. So $e \in O_{k+1} \cap B(x_k, r_k/2)$ for all k, and so $e \in (\bigcap_n O_n) \cap U$ (contained in U since $B(x_1, r_1)$ is).

Theorem (Baire). If (X, τ) is a compact and Hausdorff space, then X is:

- (i) Normal: for all C_1, C_2 disjoint non-empty closed sets, there exist $U_1, U_2 \in \tau$ disjoint such that $C_1 \subseteq U_1$ and $C_2 \subseteq U_2$.
- (ii) X is a Baire space.

Proof.

(i) Let C_1, C_2 be as in the statement. For all $x \in C_1, y \in C_2$ there exist $U^1_{x,y}, U^2_{x,y} \in \tau$ such that $x \in U^1_{x,y}, y \in U^2_{x,y}$ and $U^1_{x,y} \cap U^2_{x,y} = \emptyset$. Fix $y \in C_2$, so $C_1 \subseteq \bigcup_{x \in C_1} U^1_{x,y}$ (since $x \in U^1_{x,y}$). Since C_1 is a closed subset of a compact space X, it is compact. So extract a finite covering: take $x_1, \ldots, x_m \in C_1$ such that $C_1 \subseteq \bigcup_{i=1}^m U^1_{x_i,y}$. Denote

 $V_y^1 = \bigcup_{i=1}^m U_{x_i,y}^1$ and $V_y^2 = \bigcap_{i=1}^m U_{x_i,y}^2$. Observe that V_y^1, V_y^2 are open and disjoint. Then C_2 is compact (closed in compact space), $C_2 \subseteq \bigcup_{y \in C_2} V_y^2$ (since $y \in V_y^2$). So can extract a finite covering: take $y_1, \dots, y_n \in C_2$ such that $C_2 \subseteq \bigcup_{j=1}^m V_{y_j}^2$.

Finally denote $U^1=\bigcap_{j=1}^n V_{y_j}^1$ and $U^2=\bigcup_{j=1}^n V_{y_j}^2$. Then U^1,U^2 are open, disjoint and $C_1\subseteq U_1,\ C_2\subseteq U_2$.

(ii) Consider $(O_n)_{n\geq 1}$ open dense sets, and $U\in \tau$. We want to show $(\bigcap_n O_n)\cap U\neq\emptyset$.

Induction:

- Since O_1 is dense, there exists $x_1 \in O_1 \cap U$ $(O_1 \cap U \text{ non-empty and open})$. We want to show there exists U_1 open around x_1 such that $\overline{U}_1 \subseteq O_1 \cap U$.
- $\{x_1\}$ is disjoint from $(O_1 \cap U)^c$, and both sets closed. So there exist $U_1, U_1' \in \tau$ such that $x_1 \in U_1$, $(O_1 \cap U_1)^c \subseteq U_1'$ and $U_1 \cap U_1' = \emptyset$. Then $\overline{U}_1 \subseteq (U_1')^c \subseteq O_1 \cap U$
- Continuing the induction: $x_k \in U_k \subseteq \overline{U}_k \subseteq O_k \cap U_{k-1}$. Then $\bigcap_k \overline{U}_k$ is non empty (X compact) so $\bigcap_k \overline{U}_k \subseteq U \cap (\bigcap_n O_n)$

Applications:

- Existence of irrationals in \mathbb{R} : $(\mathbb{R}, |\cdot|)$ is a complete metrix space, so a Baire space. Then for all $x \in \mathbb{R}$, $\{x\}$ is closed with empty interior. So if $\mathbb{Q} = \{q_n : n \geq 1\}$, then $\mathbb{R} = \bigcup_n \{q_n\}$ would contradict (ii) in the above proposition (before the last two theorems). In fact a similar argument proves a stronger result: if (X, d) is a metric space with no isolated points, then X is uncountable.
- There exists $f \in C([0,1])$ that is nowhere differentiable. To show this, we instead prove

$$\mathcal{D} = \{ f \in C([0,1]) : f \text{ differentiable at some } x \in [0,1] \}$$

is meagre in the Baire space $(C([0,1]), ||\cdot||_{\infty})$. Define

$$A_n = \{ f \in C[0,1] : \underbrace{\exists x \in [0,1] \forall y \in [0,1] \cap [x - \frac{1}{n}, x + \frac{1}{n}], |f(x) - f(y)| \le n|x - y|}_{*} \}$$

Properties of A_n :

1. A_n is closed: if $(f_k)_{k\geq 1}$ is a sequence in A_n , $f_k \xrightarrow{||\cdot||_{\infty}} f$, there exists $(x_k)_{k\geq 1}$ in [0,1] such that (*) is satisfied for f_k at each x_k . Then [0,1] is compact so there exists a subsequence $(x_{\varphi(k)})_{k\geq 1}$ $(\varphi: \mathbb{N}^* \to \mathbb{N}^*$ strictly increasing) that converges: $x_{\varphi(k)} \to x_{\infty} \in [0,1]$. We prove that f satisfies (*) for x_{∞} . Let $y \in (x_{\infty} - \frac{1}{n}, x_{\infty} + \frac{1}{n}) \cap [0,1]$, then for k large enough,

$$y \in (x_{\varphi(k)} - \frac{1}{k}, x_{\varphi(k)} + \frac{1}{k}) \cap [0, 1]$$
 (**)

So (*) on $(f_{\varphi(k)}, x_{\varphi(k)})$ gives $|f_{\varphi(k)}(x_{\varphi}(k)) - f_{\varphi(k)}(y)| \leq n|x_{\varphi(k)} - y|$. Take the limit $k \to \infty$, so $f_{\varphi(k)}(x_{\varphi(k)}) \to f(x_{\infty})$ by uniform convergence. So $|f(x_{\infty}) - f(y)| \leq n|x_{\infty} - y|$. Then y is in the enpoints of (**) by continuity of f.

- 2. A_n has empty interior in $(C([0,1]), ||\cdot||_{\infty})$: assume for contradiction that $B_{||\cdot||_{\infty}}(f_0,\varepsilon) \subseteq A_n$, for some $f_0 \in C([0,1])$ and $\varepsilon > 0$. Then there exist f_1 piecewise affine in $B_{||\cdot||_{\infty}}(f_0,\varepsilon/2)$ (using uniform continuity of f_0). Then add g_{δ} (sawtooth function with slopes δ^{-1} and height δ). Then for δ small enough, $f_1 + g_{\delta} \in B_{||\cdot||_{\infty}}(f_1,\varepsilon/2) \subseteq B_{||\cdot||_{\infty}}(f_0,\varepsilon)$ and $g_{\delta} \notin A_n$ (as δ^{-1} can be arbitrarily large).
- 3. $\mathcal{D} \subseteq \bigcup_{n \geq 1} A_n$ since differentiability at some $x \in [0,1]$ implies $|f(x) f(y)| \leq n|x y|$ for y close to x and n large enough.

Therefore \mathcal{D} is meagre, so cannot be the whole space $(C([0,1]), ||\cdot||_{\infty})$ since this is non-meagre (complete metric space).

• Illustration that "smallness" in the sense of Baire is not the same as being "small" in Lebesgue measure. These notions can coincide: $\{x\}$ is meagre and measure 0, \mathbb{Q} is meagre and measure 0.

Proposition. There exists $\mathcal{D} \subseteq \mathbb{R}$ that is non-meagre with zero measure, and there exists \mathcal{D} which is meagre with full measure.

Proof. Write $\mathbb{Q} = \{q_k\}_{k\geq 1}$, an enumeration of the rationals. Define $\mathcal{D}_n = \bigcup_k (q_k - \frac{1}{2^{n+k}}, q_k + \frac{1}{2^{n+k}})$. Then \mathcal{D}_n is open and dense since $\mathbb{Q} \subseteq \mathcal{D}_n$. $\mu(\mathcal{D}_n) \leq \sum_{k\geq 1} \frac{1}{2^{n+k-1}} = 2^{-(n-1)}$. Define $\mathcal{D} = \bigcap_{n\geq 1} \mathcal{D}_n$ (decreasing sequence of open dense sets). Then $\mu(\mathcal{D}) \leq \mu(\mathcal{D}_n)$ for all n, so \mathcal{D} has zero measure. Note that $\mathcal{D}^c = \bigcup_{n\geq 1} \mathcal{D}_n^c$ where \mathcal{D}_n^c is closed with empty interior (since $\mathbb{Q} \cap \mathcal{D}_n^c = \emptyset$), so \mathcal{D}^c is meagre, and since \mathbb{R} is non-meagre, \mathcal{D} is non-meagre.

7 Combining Baire theory with linear structure

Theorem (Uniform Boundedness Principle). Let V, W be Banach spaces. Then

(i) Let $(T_i)_{i\in I}$ be a collection (not necessarily countable) of bounded linear maps $V \to W$, that are "locally bounded": for all $v \in V$, $\sup_{i \in I} ||T_i v||_W < \infty$. Then

$$\sup_{i \in I} |||T_i||| = \sup_{i \in I} \sup_{\substack{v \in V \\ ||v||_V = 1}} ||T_i v|| < \infty$$

- (ii) Let $(T_k)_{k\geq 1}$ be a sequence in $\mathcal{B}(V,W)$ (bounded linear maps $V\to W$) such that T_n converge pointwise to some $T\in\mathcal{L}(V,W)$ (linear but not necessarily bounded). Then T is in fact bounded and $|||T||| \leq \liminf_{n\to\infty} |||T_n|||$
- (iii) $B \subseteq V$ is bounded if and only if for all $f \in V^*$, $f(B) \subseteq \mathbb{R}$ is bounded.
- (iv) $B' \subseteq V^*$ is bounded if and only if for all $v \in V$, $\Phi(v)(B) \subseteq \mathbb{R}$ is bounded.

Proof. First we show (i) implies (ii): apply (i) to the collection $(T_n)_{n\geq 1}$ to obtain that $\sup_{n\geq 1}|||T_n|||=C<\infty$ (converges pointwise so locally bounded). Then we prove T is bounded with $|||T|||\leq C$. Have $||Tv||=\lim_{n\to\infty}||T_nv||$ and $||T_nv||\leq C||v||$ so $||Tv||\leq C||v||$. Now we prove that $|||T|||\leq \liminf_n ||T_n|||$.

Given $\varepsilon > 0$, there exist $v_{\varepsilon} \in V$ such that $||v_{\varepsilon}||_{V} = 1$ and $|||T||| \le \varepsilon + ||Tv_{\varepsilon}||_{W}$. Then since $T_{n}v_{\varepsilon} \to Tv_{\varepsilon}$, there exists $N \ge 1$ such that for $n \ge N$, $||Tv_{\varepsilon}|| \le ||T_{n}v_{\varepsilon}|| + \varepsilon \le ||T_{n}|| + \varepsilon$, so $||T||| \le ||T_{n}||| + 2\varepsilon$ for all $n \ge N$, which implies $||T||| \le 2\varepsilon + \liminf_{n \ge 1} |||T_{n}|||$ for all $\varepsilon > 0$ thus $|||T||| \le \liminf_{n \ge 1} |||T_{n}|||$.

Now we show (i) implies (iii): if B is bounded, then for any $f \in V^*$, f(B) is bounded since f is bounded. Assume $B \subseteq V$ is such that f(B) is bounded for all $f \in V^*$. Apply (i) to the Banach spaces V^* and \mathbb{R} and the following collection of bounded linear maps $(\Phi(v))_{v \in B}$. Then since f(B) is bounded for all $f \in V^*$

$$\sup_{v \in B} |\Phi(v)(f)| = \sup_{v \in V} |f(v)| < \infty \ \forall f \in V^*$$

So the conclusion of (i) gives $\sup_{v \in V} ||\Phi(v)||_{V^{**}} < \infty$. Since Φ is an isometry, this means $\sup_{v \in B} ||v||_V < \infty$, so B is bounded.

Now show (i) implies (iv): the forward direction is trivial: B' bounded, $\Phi(v): V^* \to \mathbb{R}$ is linear and bounded so $\Phi(v)(B')$ bounded. For the backward direction apply (i) with V and \mathbb{R} to the collection $\{f: f \in B' \subseteq V^*\}$. Local boundedness of this collection follows since for all $v \in V$, $\sup_{f \in B'} |f(v)| = \sup_{f \in B'} |\Phi(v)(f)| < \infty$. So uniform boundedness gives $\sup_{f \in B'} ||f||_{V^*} < \infty$.

Now we prove (i): let $C_n:=\{v\in V: \forall i\in I, ||T_i(v)||_W\leq n\}.$

- 1. C_n is closed: T_i are continuous so $C_n = \bigcap_{i \in I} T_i^{-1}(\overline{B}_{|\cdot|}(0,n))$.
- 2. Local boundedness implies that $V = \bigcup_{n>1} C_n$.
- 3. Since V is a Baire space (complete metric space), there exists $n_0 \ge 1$ such that C_{n_0} has non-empty interior: so there exists $v_0 \in V$, $\varepsilon > 0$ such that $\forall i \in I, v \in B(v_0, \varepsilon)$ we have $||T_i(v)||_W \le n_0$.
- 4. Now for any $v \in V$, $||T_i(v)|| \le ||T_i(v+v_0)|| + ||T_i(v_0)|| \le \frac{n_0}{\varepsilon}||v|| + ||T_i(v_0)||_W$, and $\sup_{i \in I} ||T_i(v_0)|| < \infty$ by local boundedness, so $\sup_{\substack{v \in V \\ ||v||=1}} ||T_i(v)|| < \infty$.

Remarks:

- 1. The main result is (i)
- 2. (iii) generalises in infinite dimensions the intuition that boundedness is something we need only check in each coordinate
- 3. (iii) implies for instance that if $(v_n)_{\geq 1}$ "weakly converges" to $v: \forall f \in V^*$, $f(v_n) \xrightarrow{n \to \infty} f(v)$, then $(v_n)_{n \geq 1}$ is bounded.

Theorem (Open mapping theorem, Inverse mapping theorem, Closed graph theorem). Let V, W be Banach spaces. Then

- (i) Any $T \in \mathcal{B}(V, W)$ (bounded and linear) that is surjective, is also open: i.e it maps open sets to open sets.
- (ii) Any $T \in \mathcal{B}(V, W)$ that is bijective is such that T^{-1} is bounded.
- (iii) Any $T \in \mathcal{L}(V, W)$ (linear but not necessarily bounded) is bounded if and only if its graph $\{(v, T(v)) \in V \times W : v \in V\}$ is closed.

Proof. First we show (i) implies (ii): if $T \in \mathcal{B}(V,W)$ is bijective, then (i) implies T is open, i.e for all $U \subseteq V$ open, T(U) is open. Hence T^{-1} is continuous as $(T^{-1})^{-1}(U) = T(U)$ is open. Since T^{-1} is linear, this means T^{-1} is bounded.

Now we show (ii) implies (iii): we first show that if T is bounded, then the graph of T is closed. Assume $(v_n, T(v_n)) \xrightarrow{n \to \infty} (v, w)$ in $V \times W$. Then $v_n \to v$, and since T is bounded, T is continuous so $T(v_n) \to T(v)$ so w = T(v) and (v, w) belongs to the graph. Conversely if the graph of T is closed, it is closed in the Banach space $V \times W$, so the graph of T is itself a Banach space. Define $\pi : \operatorname{Graph}(T) \to V$, $(v, Tv) \mapsto v$. This is linear, bijective and bounded since $||\pi(v, Tv)||_V = ||v||_V \le ||v||_V + ||Tv||_W = ||(v, Tv)||_{V \times W}$, so π^{-1} bounded by (ii) and there exists C > 0 such that $|v||_V + ||Tv||_W \le C||v||_V$.

Now we prove (i): let $T \in \mathcal{B}(V, W)$ be surjective. To prove that T is open, it is enough to prove:

$$\exists \varepsilon > 0 \text{ such that } B(0, \varepsilon) \subseteq T(B(0, 1))$$
 (*)

Indeed, if (*) is satisfied, and if $U\subseteq V$ is an open set with $x\in U$, and $y=T(x)\in T(U)$ then $T(U)\supseteq y+\delta T(B(0,1))\supseteq y+\delta B(0,\varepsilon)=B(y,\delta\varepsilon)$ where $\delta>0$ is such that $B(x,\delta)\subseteq U$. So T(U) is open around y, so open.

Let us prove (*): since T is surjective, $W = \bigcup_{n \geq 1} T(B(0,n)) = \bigcup_{n \geq 1} \overline{T(B(0,n))}$. Since W is Banach (so meagre by Baire) and the countable union of these closed sets, there exists $n_0 \geq 1$ such that $\overline{T(B(0,n_0))}$ has non-empty interior. Since dilation is a diffeomorphism, we may assume $\overline{T(B(0,1))}$ has non-empty interior: there exists $w_0 \in W$, $\varepsilon > 0$ such that $w_0 + B(0, 2\varepsilon) \subseteq \overline{T(B(0, 1))}$. Goal: "remove this closure".

$$\overline{T(B(0,1))}\supseteq\frac{1}{2}\left(w_0+B(0,2\varepsilon)\right)+\frac{1}{2}\left(-w_0+B(0,2\varepsilon)\right)$$

since $\overline{T(B(0,1))}$ is convex and balanced. So $\overline{T(B(0,1))} \supseteq B(0,2\varepsilon)$. Let us prove that $B(0,\varepsilon) \subseteq T(B(0,1))$

- 1. Let $w_1 \in B(0,\varepsilon) = \frac{1}{2}B(0,2\varepsilon) \subseteq \frac{1}{2}\overline{T(B(0,1))} = \overline{T(B(0,1/2))}$. So there exists $v_1 \in B(0,1/2)$ such that $||w_1 Tv_1||_W < \varepsilon/2$.
- 2. Then $w_2 := w_1 Tv_1 \in B(0, \varepsilon/2) \subseteq \overline{T(B(0, 1/4))}$, and there exists $v_2 \in B(0, 1/4)$ such that $||w_2 Tv_2||_W < \varepsilon/4$.
- 3. Continue this: define $w_k := w_{k-1} Tv_{k-1} \in B(0, \varepsilon/2^k) \subseteq \overline{T(B(0, 2^{-k}))}$. Now there exists $v_k \in B(0, 2^{-k})$ such that $||w_k Tv_k|| < \varepsilon \cdot 2^{-k}$.
- 4. This builds $(w_k)_{k\geq 1}$, $(v_k)_{k\geq 1}$ such that $||w_k||_W \leq \varepsilon \cdot 2^{k-1} \to 0$, $||v_k|| \leq 2^{-k} \to 0$. Then $\sum_{k=1}^n v_k \to \bar{v}$ (V complete) with $||\bar{v}||_V < 1$, and $w_k = w_1 T\left(\sum_{l=1}^{k-1} v_l\right) \to 0$ we deduce that $w_1 = T\bar{v}$, so $w_1 \in T(B(0,1))$.

Remark: Closed graph theorem implies: if $v_n \to v$, $Tv_n \to w$ implies w = Tv, then $v_n \to v$ implies $Tv_n \to Tv$.

8 Topology of C(K)

Define

$$C(K) = \{ f : K \to \mathbb{R} : \text{ continuous} \}$$

Where K is a compact and Hausdorff topological space.

Definition. A topological space (X, τ) is

- (i) T_0 if all distinct $x, y \in X$ have distinct bases of neighborhoods: there exists $U \in \tau$ such that $x \in U$, $y \notin U$ or $x \notin U$, $y \in U$.
- (ii) T_1 if for all distinct $x, y \in X$, there exist $U_1, U_2 \in \tau$ such that $x \in U_1, y \notin U_1, x \notin U_2, y \in U_2$ (points are closed).
- (iii) T_2 (Hausdorff) if for all distinct $x,y\in X$, there exist $U_1,U_2\in \tau$ disjoint such that $x\in U_1,\,y\in U_2$.
- (iv) Normal if for all $C_1, C_2 \subseteq X$ closed, there exist $U_1, U_2 \in \tau$ disjoint such that $C_1 \subseteq U_1, C_2 \subseteq U_2$.

Note that Normal $+T_1$ implies T_2 .

Lemma (Urysohn). A topological space (X, τ) is normal if and only if for all $C_1, C_2 \subseteq X$ closed and non-empty, there exists $f: X \to [0,1]$ continuous such that $f|_{C_1} = 0$, $f|_{C_2} = 1$.

Proof. To show (\Leftarrow), take $U_1 = f^{-1}([0, 1/2))$, $U_2 = f^{-1}((1/2, 1])$. Then U_1, U_2 are open, disjoint and $C_1 \subseteq U_1$, $C_2 \subseteq U_2$.

Now we show (\Rightarrow) .

1. Step 1: we show that given $U_0 \subseteq U_1 \subsetneq X$, non-empty and open, with $\overline{U_0} \subseteq U_1$, there is $U_{1/2}$ open such that $U_0 \subseteq \overline{U_0} \subseteq U_{1/2} \subseteq \overline{U_{1/2}} \subseteq U_1$.

Indeed define $C_1 = \overline{U_0}$, $C_2 = U_1^c$ (non-empty and closed) so by normality there exists $U_{1/2}, U_{1/2}' \in \tau$ such that $C_1 \subseteq U_{1/2}$, $C_2 \subseteq U_{1/2}'$ and $U_{1/2} \cap U_{1/2}' = \emptyset$. Then $\overline{U_0} = C_1 \subseteq U_{1.2}$, $C_2 \subseteq U_{1/2}'$ so $U_{1/2}'^c \subseteq C_2^c = U_1$. And since $U_{1/2}'^c$ is closed, $U_{1/2} \subseteq \overline{U}_{1/2} \subseteq U_{1/2}'^c \subseteq U_1$.

2. Step 2: induction. Let

$$D_n = \left\{ \frac{k}{2^n} : k \in \{0, 1, \dots, 2^n\} \right\} \subseteq [0, 1], \ n \ge 0$$

Then $(D_n)_{n\geq 0}$ is an increasing sequence of sets. Induction hypothesis: given $\emptyset \neq U_0 \subseteq \overline{U_0} \subseteq U_1 \subsetneq X$, there are $(U_r)_{r\in D_n}$ open such that for all $r_1, r_2 \in D_n$, $\overline{U_{r_1}} \subseteq U_{r_2}$ whenever $r_1 < r_2$.

For n=0, $D_0=\{0,1\}$ and there is nothing to prove. For the induction step, the idea is to fill each "gap". Let $r\in D_{n+1}\setminus D_n$, then $r=\frac{k}{2^{n+1}}$ with $k=2k_0+1$ for some $k_0\in\{0,\ldots,2^n-1\}$. Then $U_{\frac{k_0}{2^n}},U_{\frac{k_0+1}{2^n}}$ are already constructed with $\emptyset\neq U_{\frac{k_0}{2^n}}\subseteq \overline{U_{\frac{k_0}{2^n}}}\subseteq \overline{U_{\frac{k_0+1}{2^n}}}\subseteq \overline{U_{\frac{k_0+1}{2^n}}}\subseteq X$.

Now apply Step 1: there exists $U_{\frac{k}{2^{n+1}}}$ such that $\overline{U_{\frac{k_0}{2^n}}} \subseteq U_{\frac{k}{2^{n+1}}} \subseteq \overline{U_{\frac{k}{2^{n+1}}}} \subseteq U_{\frac{k}{2^{n+1}}} \subseteq U_{\frac{k}{2^{n+1}}}$. So induction step is done.

So we have $(U_r)_{r\in D}$ where $D=\bigcup_{n\geq 1}D_n$ such that $U_{r_1}\subseteq \overline{D_{r_1}}\subseteq D_{r_2}$ whenever $r_1< r_2$.

- 3. Step 3: we now define f. Let $f(x) = \inf\{r \in D : x \in U_r\}$ for $x \in U_1$, and f(x) = 1 on $C_2 = U_1^c$.
- 4. Step 4: we show f is continuous. It is enough to check for all $a \in [0,1)$, $f^{-1}((a,1])$ is open and or all $b \in (0,1]$, $f^{-1}([0,b))$ is open.

Indeed, the open intervals are a base for the topology on \mathbb{R} and for all $a < b \in \mathbb{R}$, $f^{-1}(a,b) = f^{-1}((a,1]) \cap f^{-1}([0,b))$.

We show $f^{-1}((a,1])$ is open for all $a \in [0,1)$ (the proof for $f^{-1}([0,b))$ is symmetric). Consider $x \in f^{-1}((a,1])$. By definition f(x) > a, so (by the density of D) there exist $r, r' \in D$ such that f(x) > r' > r > a. Then $f(x) \in U_{r'}$ (as f(x) > r') so $x \in U_{r'}^c$ and since $\overline{U_r} \subseteq U_{r'}$, $x \in (\overline{U_r})^c$ which is open. Finally $U_a \subseteq \overline{U_r}$ so $\overline{U_r} \subseteq U_a^c$ so $\overline{U_r} \subseteq f^{-1}((a,1])$. Hence $x \in (\overline{U_r})^c \subseteq f^{-1}((a,1])$ and $f^{-1}((a,1])$ is open as x was arbitrary.

Corollary. Let (K, τ) be a topological space which is Normal and (T_1) . Then C(K) separates points: for all distinct $x, y \in K$, there exists $f: K \to [0, 1]$ such that f(x) = 0, f(y) = 1.

Proof. $C_1 = \{x\}$ and $C_2 = \{y\}$ are closed by (T_1) . Apply previous lemma. \square

Theorem (Tietze extension theorem). Let (X, τ) be a normal topological space and $C \subseteq X$ closed and non-empty. Also let $f: C \to \mathbb{R}$ be continuous and bounded. Then there exists $\tilde{f}: X \to \mathbb{R}$ continuous such that $\tilde{f}|_C = f$, and $\sup_X |\tilde{f}| = \sup_C |f|$.

Remark: when $f: C \to \mathbb{C}$ continuous, we can extend to $\tilde{f}: X \to \mathbb{C}$ continuous such that $\tilde{f}|_C = f$, $\sup_X |\Re \tilde{f}| = \sup_C |\Re f|$ and $\sup_X |\Im \tilde{f}| = \sup_C |\Im f|$ by applying the theorem to $\Re f, \Im f$.

Proof. If f is constant the result is clear, otherwise replace f by $\frac{f - \inf f}{\sup f - \inf f}$ to deal only with $f: C \to [0, 1]$ (with in fact inf f = 0, sup f = 1).

Idea: define $C_1 = f^{-1}([0,1/3])$, $C_2 = f^{-1}([2/3,1])$. Then Urysohn's lemma gives $g_1: X \to [0,1/3]$ continuous such that $g_1|_{C_1} = 0$, $g_1|_{C_2} = 1/3$. Then if $f_1 := f$, $f_2 := f_1 - g_1|_C: C \to [0:2/3]$.

Continue this to get $f_k: C \to [0, (2/3)^{k-1}]$ continuous, then there exists $g_k: X \to [0, \frac{1}{3}(2/3)^{k-1}]$ with $g_k|_{C_1^k} = 0$, $g_k|_{C_2^k} = \frac{1}{3}(2/3)^{k-1}$ (where $C_1^k = f_k^{-1}([0, \frac{1}{3}(2/3)^{k-1}]), C_2^k = f_k^{-1}([\frac{2}{3}(2/3)^{k-1}, 1]))$ so $f_{k+1}:= f_k - g_k|_C: C \to [0, (2/3)^k]$.

Therefore $\sum_{k\geq 1}||g_k||_{\infty}<\infty$ so define (completeness) $\tilde{f}=\sum_{k\geq 1}g_k$. Where $\tilde{f}:X\to [0,1]$ and \tilde{f} continuous (uniform limit). Also

$$\sup_{C} \left| \sum_{k=1}^{n} g_k - f \right| = \sup_{C} |f_{n+1}| \le \left(\frac{2}{3} \right)^n \xrightarrow{n \to \infty} 0$$

so
$$\tilde{f}|_C = f$$
.

Remarks:

- 1. Metric spaces are T_1 and normal
- 2. If (X, d) is a metric space such that all continuous $f: X \to \mathbb{R}$ are bounded (pseudo-compact) then X is compact

The Arzela-Ascoli Theorem

Definition. For a metric space (X,d), we say $Y \subseteq X$ is totally bounded if for all $\varepsilon > 0$, there exists $N = \{x_1, \ldots, x_n\} \subseteq X$ such that $Y \subseteq \bigcup_{i=1}^n B(x_i, \varepsilon)$. N is then called a ε -net.

Remarks:

- 1. Total boundedness implies boundedness
- 2. If $Z \subseteq Y \subseteq X$ and Y is totally bounded, then Z is totally bounded
- 3. In fact, it is equivalent if we took $N \subseteq Y$ in the definition

Proposition. If (X, d) is complete and $Y \subseteq X$, then Y is relatively compact $(\overline{Y} \text{ is compact})$ if and only if Y is totally bounded.

Proof. If \overline{Y} is compact, then given $\varepsilon > 0$, $\overline{Y} \subseteq \bigcup_{y \in Y} B(y, \varepsilon)$ so there exist $y_1, \ldots, y_n \in Y$ such that $Y \subseteq \overline{Y} \subseteq \bigcup_{i=1}^n B(y_i, \varepsilon)$.

Conversely if Y is totally bounded, to show that \overline{Y} is compact, it is enough to prove that any sequence (y_n) in Y has a Cauchy subsequence. Indeed, given (z_n) a sequence in \overline{Y} there exists (y_n) in Y such that $d(z_n,y_n) \leq \frac{1}{n}$ for all $n \geq 1$. Then if there exists a subsequence $(y_{\varphi(n)})_{n\geq 1}$ which is Cauchy, then $(z_{\varphi(n)})_{n\geq 1}$ is also Cauchy, so $(z_{\varphi(n)})$ converges to some z_0 by completeness and $z_0 \in \overline{Y}$ since \overline{Y} is closed.

So we show that Y is totally bounded iff all sequences of Y have a Cauchy subsequence:

- Suppose Y is not totally bounded, then for some $\varepsilon > 0$ there is no ε -net. Take $y_1 \in Y$, $y_2 \in Y \setminus B(y_1, \varepsilon)$, $y_3 \in Y \setminus (B(y_1, \varepsilon) \cup B(y_2, \varepsilon))$, and generally $y_k \in Y \setminus \bigcup_{i=1}^{k-1} B(y_i, \varepsilon)$. We can do this since each of the sets $Y \setminus \bigcup_{i=1}^{k-1} B(y_i, \varepsilon)$ are non-empty as we have no ε -net. Then the sequence $(y_n)_{n\geq 1}$ has no Cauchy subsequence since $d(y_{n_1} y_{n_2}) \geq \varepsilon$ for any $n_1 \neq n_2$.
- Now suppose Y is totally bounded. Let (y_n) be a sequence in Y, and let $\varepsilon_k = \frac{1}{k}, \ k \geq 1$. Then there exists a ε_1 net: there exist $x_1^2, \ldots, x_{m_1}^1 \in X$ such that $Y \subseteq \bigcup_{i=1}^{m_1} B(x_i^1, \varepsilon_1)$. There must be $i_1 \in \{1, \ldots, m_1\}$ such that $B(x_{i_1}^1, \varepsilon_1)$ contains infinitely many y_n 's (pigeonhole).

Now there exists a ε_2 net for $Y \cap B(x_{i_1}^1, \varepsilon_1)$ (by inclusivity of total boundedness): there are $x_1^2, \ldots, x_{m_2}^2 \in X$ such that $Y \cap B(x_{i_1}^1, \varepsilon_1) \subseteq \bigcup_{i=1}^{m_2} B(x_i^2, \varepsilon_2)$. Now there exists $i_2 \in \{1, \ldots, m_2\}$ such that $B(x_{i_2}, \varepsilon_2)$ contains infinitely many y_n 's.

Now continue this to construct $(x_{i_k}^k)_{k\geq 1}$ in X so for all $k\geq 1$,

$$|\{n \geq 1 : y_n \in Y \cap B(x_i, \varepsilon_k)\}| = \infty$$

We can therefore build a subsequence $(y_{\varphi(n)})_{n\geq 1}$ of (y_n) such that $y_{\varphi(n)}\in Y\cap B(x_{i_k}^k,\varepsilon_k)$ for all $n\geq k$. Hence $(y_{\varphi(n)})_{n\geq 1}$ is Cauchy.

Definition. For (K, \mathcal{T}) a compact, Hausdorff topological space and $\mathcal{F} \subseteq C(K)$, then \mathcal{F} is said to be

- (i) Equi-bounded at $x \in K$ if $\sup_{f \in \mathcal{F}} |f(x)| < \infty$
- (ii) Equi-bounded on K if for all $x \in K$, $\sup_{f \in \mathcal{F}} |f(x)| < \infty$
- (iii) Uniformly equi-bounded on K if $\sup_{x \in K} \sup_{f \in \mathcal{F}} |f(x)| < \infty$
- (iv) Equi-continuous at $x \in K$ if for all $\varepsilon > 0$, there exists $U \in \mathcal{T}$ such that $x \in U$ and such that $\sup_{y \in U} \sup_{f \in \mathcal{F}} |f(x) f(y)| < \varepsilon$
- (v) Equi-continuous on K if for all $x \in K$, \mathcal{F} is equi-continuous at x
- (vi) (If K is also a metric space) uniformly equi-continuous on K if for all $\varepsilon > 0$ there exists δ such that $\sup_{\substack{x,y \in K \\ d(x,y) < \delta}} \sup_{f \in \mathcal{F}} |f(x) f(y)| < \varepsilon$

Example. If \mathcal{F} is finite, then it is uniformly equi-bounded and equi-continuous on K.

 $\overline{}$

Theorem (Ascoli 1883-84, Arzela 1895, Frechet 1906). If (K, \mathcal{T}) is a compact, Hausdorff topological space, and $\mathcal{F} \subseteq C(K)$, then \mathcal{F} is relatively compact if and only if \mathcal{F} is equi-bounded and equi-continuous on K.

Proof. The topology on C(K) is $(C(K), ||\cdot||_{\infty})$: so C(K) is a complete metric space.

Suppose \mathcal{F} is relatively compact. Then \mathcal{F} is totally bounded by the previous proposition, so \mathcal{F} is bounded for $||\cdot||_{\infty}$, so \mathcal{F} is (uniformly) equi-bounded.

Given $x \in K$ and $\varepsilon > 0$, consider an $\varepsilon/3$ -net: $f_1, \ldots, f_m \in C(K)$ such that $\mathcal{F} \subseteq \bigcup_{i=1}^m B_{||\cdot||_{\infty}}(f_i, \varepsilon/3)$. Each f_i is continuous at x so there exists $U_i \in \mathcal{T}$ containing x such that $f_i(U_i) \subseteq B(f_i(x), \varepsilon/3)$. Now $U = \bigcap_{i=1}^m U_i$ is an open set around x.

For all $y \in U$, $f \in \mathcal{F}$, $|f(x) - f(y)| \le |f(x) - f_{i_0}(x)| + |f_{i_0}(x) - f_{i_0}(y)| + |f_{i_0}(y) - f(y)| < \varepsilon$, where i_0 is such that $f \in B_{||\cdot||_{\infty}}(f_{i_0}, \varepsilon/3)$. Hence \mathcal{F} is equi-continuous on K.

Now we show that if \mathcal{F} is equi-continuous and equi-bounded, \mathcal{F} is totally bounded (then previous proposition shows \mathcal{F} is relatively compact). For $\varepsilon > 0$ construct an ε -net for \mathcal{F} . For each $x \in K$, take $U_x \in \mathcal{T}$, $x \in U_x$ such that for all $f \in \mathcal{F}$, $f(U_x) \subseteq B(f(x), \varepsilon/3)$ (equi-continuity).

Now $K = \bigcup_{x \in K} U_x$, so by compactness of K, there exist $x_1, \ldots, x_n \in K$ such that $K = \bigcup_{i=1}^n U_{x_i}$.

Let $A = \{(f(x_1), \ldots, f(x_n)), f \in \mathcal{F}\} \subseteq \mathbb{R}^n \text{ (or } \mathbb{C}^n).$ Now A is bounded (equi-boundedness) so by Bolzano-Weierstrass, A is totally bounded. Now there exists a $\varepsilon/3$ net for A: there exists $N = \{f_1, \ldots, f_m\} \subseteq \mathcal{F}$ such that $A \subseteq \bigcup_{j=1}^m B_{||\cdot||_{\infty}, \mathbb{R}^n}(f_j(x_1), \ldots, f_j(x_n), \varepsilon/3).$

Now we show N is an ε -net for \mathcal{F} . Given $f \in \mathcal{F}, x \in K$, there exists i_0 such that $x \in U_{i_0}, j_0 \in \{1, ..., n\}$ such that $(f(x_1), ..., f(x_n)) \in B((f_{j_0}(x_1), ..., f_{j_0}(x_n)), \varepsilon/3)$. Then $|f(x) - f_{j_0}(x)| \le |f(x) - f(x_{i_0})| + |f(x_{i_0}) - f_{j_0}(x_{i_0})| + |f_{j_0}(x_{i_0}) - f_{j_0}(x)| < \varepsilon$.

The following example is *non-examinable*

Example. (Application to ODEs)

Theorem (Cauchy 1841, Lipschitz 1868, Picard 1893, Lindelof 1894). Let φ : $[-1,1] \times \overline{B}_{\mathbb{R}^n}(0,1) \to \mathbb{R}^n$ be Lipschitz in the second variable. The ODE $f'(t) = \varphi(t,f(t))$, $f(0) = y_0$ has a local solution on some $t \in (-\varepsilon,\varepsilon)$.

Proof. Show that $\Phi: (f(t))_t \mapsto y_0 + \int_0^t \varphi(s, f(s)) ds$ has a unique fixed point (contraction mapping theorem).

Examples:

- $\varphi(t,y) = y$ on $\mathbb{R} \times \mathbb{R}$ gives a global unique solution.
- $\varphi(t,y) = y^2$ on $\mathbb{R} \times \mathbb{R}$ and $y_0 > 0$, gives $f(t) = \frac{1}{\frac{1}{y_0} t}$.
- $\varphi(t,y) = \sqrt{|y|}$ on $\mathbb{R} \times \mathbb{R}$, then φ is not Lipschitz at 0. Do we still have a solution? Yes but it is not unique. For example, if $y_0 = 0$, f = 0 and $f(t) = \begin{cases} t^2/4 & t > 0 \\ -\frac{t^2}{4} & t < 0 \end{cases}$ are both solutions

Theorem (Peano 1886,1890). If φ as in the previous theorem is just continuous, we still have existence of a local C^1 solution, but it is not unique.

- Proof sketch. φ can be approximated by φ_n Lipschitz on $[-1,1] \times \overline{B}(y_0,1)$, $\varphi_n \xrightarrow{||\cdot||_{\infty}} \varphi$.
 - Solve $f_n(t) = \int_0^t \varphi_n(s, f_n(s)) ds$ for each n, on some local interval $t \in (-\varepsilon, \varepsilon)$.
 - Then use Arzela-Ascoli on the sequence of approximate solutions.

End of non-examinable section

9 The Stone-Weierstrass Theorem

Recall:

Theorem (Weierstrass Approximation Theorem). The polynomials are dense in C([0,1]).

The Stone-Weierstrass Theorem is an abstract extension of this, based on identifying the structure used in the theorem.

Definition. V is an algebra over a field \mathbb{F} if it is a vector space over \mathbb{F} with an additional binary operation $P: V \times V \to V$, $(v_1, v_2) \mapsto v_1 \times v_2$ such that

- P is "compatible" with A: $(v_1+v_2)\times w = v_1\times w + v_2\times w$, $w\times (v_1+v_2) = w\times v_1 + w\times v_2$.
- P is "compatible" with M: $(\lambda \cdot v_1) \times (\lambda_2 v_2) = (\lambda_1 \lambda_2) \cdot (v_1 \times v_2)$.

Definition. V is a normed algebra if it is an algebra, V is an NVS and $||v_1 \times v_2|| \leq ||v_1|| ||v_2||$. V is a complete normed algebra if it is a normed algebra and complete as an NVS (also called a Banach algebra).

Definition. V is a commutative algebra if P is commutative.

Definition. V is a unitary algebra if P has an identity element.

Examples:

- 1. Given (X, τ) a topological space, $(C(X), ||\cdot||_{\infty})$ is a unitary commutative Banach algebra for $P(f_1, f_2)$ is the function taking values $f_1(x)f_2(x)$ at each $x \in X$.
- 2. Given V a vector space, $\mathcal{L}(V, V)$ (linear maps $V \to V$) is a unitary algebra for $P(T_1, T_2) = T_1 \circ T_2$ (not commutative).
- 3. If V is an NVS, then $\mathcal{B}(V,V)$ (bounded linear maps $V\to V$) is a unitary normed algebra for the same P as in the previous example.
- 4. Given V a Banach space, $\mathcal{B}(V,V)$ is unitary Banach algebra for the same P again.

Theorem (Weierstrass for polynomials 1895, Stone 1937-1948). Let (K,τ) be a compact Hausdorff topological space, let $A \subseteq C_{\mathbb{R}}(K)$ be a subalgebra (for the product of functions P) that seperates points - i.e $\forall x, y \in K$, $x \neq y$, there exists $f \in A$ such that $f(x) \neq f(y)$. Then either $\overline{A} = C_{\mathbb{R}}(K)$ or there exists $x_0 \in K$ such that $\overline{A} = \{ f \in C_{\mathbb{R}}(K), f(x_0) = 0 \}$.

Proof. Strategy:

- Step 1: if $A \subseteq C_{\mathbb{R}}(K)$ is closed, then $\overline{A} = A$ and A is closed under minimum and maximum, i.e if $f_1, f_2 \in A$, $\min(f_1, f_2), \max(f_1, f_2) \in A$.
- Step 2: if $\mathcal{L} \subseteq C_{\mathbb{R}}(K)$ is closed under minimum and maximum, then $\overline{\mathcal{L}}$ contains all functions well-approximated by \mathcal{L} at two points.
- Step 3: Conclusion discuss which functions can be approximated at two points.

To do step 1, it is enough to show that if $f \in \mathcal{A}$, then $|f| \in \mathcal{A}$, since $\min(f,g) = \frac{f+g}{2} - \frac{|f-g|}{2}$ and $\max(f,g) = \frac{f+g}{2} + \frac{|f+g|}{2}$.

By scaling, wlog $|f| \leq 1$. For $\varepsilon > 0$, let $\varphi_{\varepsilon}(r) = \sqrt{\varepsilon^2 + r}$, $r \in [-1,1]$. We have $|\varphi_{\varepsilon}(r^2) - r| = \frac{\varepsilon^2}{\sqrt{\varepsilon^2 + r^2 + r}} \leq \frac{\varepsilon^2}{\varepsilon} = \varepsilon$. $\varphi_{\varepsilon}(r)$ is real analytic on [0,1], so expand around r = 1/2: for all $N \geq 0$, for all $r \in [0,1]$,

$$\varphi_{\epsilon}(r) = \underbrace{\sum_{k=0}^{N} a_{k}^{\varepsilon} \left(r - \frac{1}{2}\right)^{k}}_{:=G_{N}^{\varepsilon}(r)} + R_{N}^{\varepsilon}(r)$$

where $\sup_{r \in [0,1]} |R_n^{\varepsilon}(r)| \to 0$.

Note that we have not assumed that $1 \in \mathcal{A}$. Note however $G_N^{\varepsilon}(0) \xrightarrow{N \to \infty} \varphi_{\varepsilon}(0) = \varepsilon$. Given $f \in \mathcal{A}$, write

$$|f| = \left[G_N^\varepsilon(f^2) - G_N^\varepsilon(0)\right] + G_N^\varepsilon(0) + R_N^\varepsilon(f^2) + \left(|f| - \varphi_\varepsilon(f^2)\right)$$

Note:

- $G_N^{\varepsilon}(f^2) G_N^{\varepsilon}(0) \in \mathcal{A}$ since this is a polynomial in f without a constant term
- $|G_N^{\varepsilon}(0)| \leq 2\varepsilon$ for N large enough
- $|R^{\varepsilon}(f^2)| \leq \varepsilon$ for N large enough
- $||f| \varphi_{\varepsilon}(f^2)| \le \varepsilon$.

Hence |f| is an element of \mathcal{A} +something $\mathcal{O}(4\varepsilon)$. But since $\varepsilon > 0$ is arbitrary, $|f| \in \overline{\mathcal{A}} = \mathcal{A}$.

Now we do step 2: let $\mathcal{L} \subseteq C_{\mathbb{R}}(K)$ be such that whenever $f, g \in \mathcal{L}$, $\min(f, g)$, $\max(f, g) \in \mathcal{L}$. Then we show that if g satisfies: $\forall x, y \in K, \forall \varepsilon > 0, \exists f \in \mathcal{L}$ such that

$$|f(x) - g(x)| < \varepsilon, |f(y) - g(y)| < \varepsilon \tag{*}$$

, then $g \in \overline{\mathcal{L}}$.

Let g satisfy (*). Then for all $x, y \in K$, $\exists f_{x,y}$ such that $|f_{x,y}(x) - g(x)| < \varepsilon/2$, $|f_{x,y}(y) - g(y)| < \varepsilon/2$.

By continuity, there exists $U_{x,y}, V_{x,y} \in \tau$, $x \in U_{x,y}, y \in V_{x,y}$ such that $\sup_{U_{x,y}} |f_{x,y} - g| < \varepsilon$, $\sup_{V_{x,y}} |f_{x,y} - g| < \varepsilon$.

 $K = \bigcup_{y \in K} V_{x,y}$, so by compactness there exists $y_1, \ldots, y_m \in K$ such that $K = \bigcup_{i=1}^m V_{x,y_i}$. Define $\tilde{U}_x = \bigcap_{i=1}^m U_{x,y_i}$, which is open around x. Define $f_x = \min(f_{x,y_1}, \ldots, f_{x,y_m}) \in \mathcal{L}$. Then $f_x(z) < g(z) + \varepsilon$ for $z \in K$ and $f_x(z) > g(z) - \varepsilon$ for $z \in \tilde{U}_x$.

Now $K = \bigcup_{x \in K} \tilde{U}_x$, so by compactness there exists $x_1, \ldots, x_n \in K$ such that $K = \bigcup_{j=1}^n \tilde{U}_{x_j}$ and define $f = \max(f_{x_1}, \ldots, f_{x_n})$. Then this f satisfies $g - \varepsilon < f < g + \varepsilon$ on K. So taking $\varepsilon \to 0$ shows $g \in \overline{\mathcal{L}}$.

Now we do step 3. Note that if \mathcal{A} is a subalgebra, then so is $\overline{\mathcal{A}}$ (by continuity of the operations).

We distinguish between two cases:

- Case 1: for all $x \in K$, there exists $f \in \overline{A}$ such that $f(x) \neq 0$.
- Case 2: there exists $x_0 \in K$ such that for all $f \in \overline{A}$ we have $f(x_0) = 0$.

Case 1: for all $x, y \in K$ distinct, there exist $f_x, f_y, f_{x,y} \in \overline{\mathcal{A}}$ such that $f_x(x) \neq 0$, $f_y(y) \neq 0$ (since we are in case 1), $f_{x,y}(x) \neq f_{x,y}(y)$ (\mathcal{A} seperates points). This implies there exist $\alpha, \beta \in \mathbb{R}$ such that $\tilde{f} = f_x + \alpha f_y + \beta f_{x,y}$ has $\tilde{f}(x) \neq 0$, $\tilde{f}(y) \neq 0$, $\tilde{f}(x) \neq \tilde{f}(y)$. Then $\tilde{f}, \tilde{f}^2 \in \overline{\mathcal{A}}$ and $\operatorname{span}_{\mathbb{R}}((\tilde{f}(x), \tilde{f}(y)), (\tilde{f}(x)^2, \tilde{f}(y)^2)) = \mathbb{R}^2$, so we have the assumption from step 2. Also step 1 gives closedness of min and max. Hence $\overline{\mathcal{A}} = C_{\mathbb{R}}(K)$.

Case 2: let $\mathbb{1}$ denote the constant function equal to 1. Then $\overline{\mathcal{A} \oplus \mathbb{R} \mathbb{1}}$ is a closed subalgebra that satisfies the assumption in Case 1. Hence

$$\overline{\mathcal{A} \oplus \mathbb{R} \mathbb{1}} = C_{\mathbb{R}}(K) \tag{*}$$

Then consider any $g \in \{f \in C_{\mathbb{R}}(K) : f(x_0) = 0\}$. g is in $\overline{A \oplus \mathbb{R} \mathbb{1}}$ so for all $\varepsilon > 0$, there exists $f \in \mathcal{A}$, $\lambda \in \mathbb{R}$ such that $||g - (f + \lambda)||_{\infty} < \varepsilon/2$.

Then $0 = g(x_0)$ and $(f + \lambda)(x_0) = \lambda$, so $|\lambda| < \varepsilon/2$. Hence $||g - f||_{\infty} < \varepsilon$, and $g \in \overline{\mathcal{A}}$. Hence $\overline{\mathcal{A}} = \{f \in C_{\mathbb{R}}(K), f(x_0) = 0\}$.

Theorem (Stone Weierstrass, Complex Case). Let K be a compact Hausdorff topological space. Let $A \subseteq C_{\mathbb{C}}(K)$ a subalgebra that seperates points and if $f \in A$, then $f^* \in A$ (complex conjugate). Then either $\overline{A} = C_{\mathbb{C}}(K)$ or there exists $x_0 \in K$ such that $\overline{A} = \{ f \in C_{\mathbb{C}}(K), f(x_0) = 0 \}$.

Proof. From the assumptions, $f \in \mathcal{A}$ if and only if $\Im f, \Re f \in \mathcal{A}$. Define $\mathcal{A}_{\mathbb{R}} = \{\Re f, \Im f : f \in \mathcal{A}\}$. Then this is a subalgebra of $C_{\mathbb{R}}(K)$. It separates points because \mathcal{A} does. So either $\mathcal{A}_{\mathbb{R}} = C_{\mathbb{R}}(K)$ or there exists $x_0 \in K$ such that $\overline{\mathcal{A}}_{\mathbb{R}} = \{f \in C_{\mathbb{R}}(K) : f(x_0) = 0\}$. This implies the conclusion on \mathcal{A} .

Examples:

1. Weierstrass approximation theorem: real polynomials are dense in $C_{\mathbb{R}}([0,1])$ and complex polynomials are dense in $C_{\mathbb{C}}([0,1])$.

Proof: let $\mathcal{A} = \{\text{polynomials on } [0,1]\} \subseteq C_{\mathbb{F}}([0,1]) \ (\mathbb{F} = \mathbb{R} \text{ or } \mathbb{C}).$ This seperates points since p(z) = z - x has $p(y) \neq p(x)$ for all $y \neq x$. Also $\mathbb{1} \in \mathcal{A}$ so Case 2 from the proof above is not possible. Since $\mathbb{F} = \mathbb{R}$ or \mathbb{C} , \mathcal{A} is stable under complex conjugation. So $\overline{\mathcal{A}} = C_{\mathbb{F}}([0,1])$

2. Linear combinations of powers of exponential function are dense in $C_{\mathbb{R}}([0,1])$.

Proof: Let $\mathcal{A} = \operatorname{span}\{(x \mapsto e^{kx}) : k \in \mathbb{N}\}$. This separates points since $e^x \neq e^y$ for $x \neq y$. Also $\mathbb{1} \in \mathcal{A}$ (k=0) so $\overline{\mathcal{A}} = C_{\mathbb{R}}([0,1])$

Remark: The first example above implies the Riemann-Lebesgue lemma: if $f \in C_{\mathbb{R}}([0,1])$ then $\int_0^1 f(x)e^{ikx}dx \xrightarrow{k\to\infty} 0$. Indeed, given $\varepsilon > 0$ there exists a polynomial p such that $||p-f||_{\infty} \le \varepsilon/2$. Then $\int_0^1 p(x)e^{ikx}dx = \frac{p(x)e^{ikx}}{ik}\Big|_0^1 - \frac{1}{2}e^{ikx}dx = \frac{p(x)e^$

 $\frac{1}{ik} \int_0^1 p'(x) e^{ikx} \xrightarrow{k \to \infty} 0$. Therefore for k large enough, $\left| \int_0^1 f(x) e^{ikx} dx \right| < \varepsilon$, and since ε was arbitrary we get the result.

Example. Consider $C_{\mathbb{C}}(\mathbb{R}/2\pi\mathbb{Z})$. We want to show that span $\{e^{ikx}, k \in \mathbb{Z}\} := \mathcal{A}$ is dense. Indeed, it seperates points since if $e^{ix} = e^{iy}$ then $x = y \mod 2\pi$, and $\mathbb{1} \in \mathcal{A}$.

Remark: Riemann-Lebesgue lemma: if $f \in C_{\mathbb{C}}(\mathbb{R}/2\pi\mathbb{Z})$, then

 $\frac{1}{2\pi} \int_0^{2\pi} f(x) e^{ikx} dx \xrightarrow{k \to \infty} 0$. Indeed, by the previous example, given $\varepsilon > 0$, there exists $g(x) = \sum_{n=-N}^N a_n e^{inx}$ such that $||f-g||_{\infty} < \varepsilon$. Then $\frac{1}{2\pi} \int_0^{2\pi} g(x) e^{ikx} dx = 0$ for |k| > N (orthogonality) and the result follows.

Example. Density of linear combinations of product continuous functions (i.e $f_1(x)f_2(x)$, $x,y \in [0,1]$) in $C_{\mathbb{F}}([0,1]^2)$ ($\mathbb{F} = \mathbb{R}$ or \mathbb{C}). Indeed, take $\mathcal{A} = \operatorname{span}\{(x,y) \mapsto f_1(x)f_2(y), f_1, f_2 \in C_{\mathbb{F}}([0,1])\}$. Can check this is an algebra, and it clearly separates points, and $\mathbb{1} \in \mathcal{A}$. So result follows by Stone-Weierstrass.

Remark: the above implies Fubini's theorem in Riemann/Lebesgue integration.

10 The inner product

Definition. Let V be a vector space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . An inner product on V is a map $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{F}$, $(v_1, v_2) \to \langle v_1, v_2 \rangle$ such that

- (i) $\forall v_1, v_2 \in V, \langle v_1, v_2 \rangle = \overline{\langle v_2, v_1 \rangle}$
- (ii) $\forall v_1, v_2, w \in V$, $\lambda_1, \lambda_2 \in \mathbb{F}$, $\langle \lambda_1 v_1 + \lambda_2 v_2, w \rangle = \lambda_1 \langle v_1, w \rangle + \lambda_2 \langle v_2, w \rangle$ $(\langle v, \lambda w \rangle = \bar{\lambda} \langle v, w \rangle)$
- (iii) $\forall v \in V, \langle v, v \rangle \ge 0$ and $\langle v, v \rangle = 0 \iff v = 0$

 $(V, \langle \cdot, \cdot \rangle)$ called an inner product space.

Remark: when $\mathbb{F} = \mathbb{R}$, $\langle \cdot, \cdot \rangle$ is a bilinear symmetric positive definite form. When $\mathbb{F} = \mathbb{C}$, $\langle \cdot, \cdot \rangle$ is a sesquilinear positive definite form.

Proposition.

(i) Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space (on $\mathbb{F} = \mathbb{R}$ or \mathbb{C}), then we have the Cauchy-Schwarz inequality: $\forall v_1, v_2 \in V, |\langle v_1, v_2 \rangle| \leq \sqrt{\langle v_1, v_1 \rangle \langle v_2, v_2 \rangle}$. Therefore $||v|| := \langle v, v \rangle$ defines a norm, and $(V, ||\cdot||)$ is called Euclidean space.

- (ii) If $(V, ||\cdot||)$ is a Euclidean space (i.e the norm comes from an inner product) then the polarisation identites hold:
 - If $\mathbb{F} = \mathbb{R}, \forall v, w \in V$,

$$\langle v, w \rangle = \frac{1}{4} \left(||v + w||^2 - ||v - w||^2 \right)$$

• If $\mathbb{F} = \mathbb{C}$, $\forall v, w \in V$,

$$\langle v, w \rangle = \frac{1}{4} \left(||v + w||^2 - ||v - w||^2 + i||v + iw||^2 - i||v - iw||^2 \right)$$

(iii) <u>Jordan-Von Neumann Theorem</u>: given $(V, ||\cdot||)$ an NVS, then it is Euclidean if and only if the norm satisfies the "parallelogram law": $\forall v, w \in V$, $||v+w||^2 + ||v-w||^2 = 2||v||^2 + 2||w||^2$.

Proof.

(i) Consider $v_1, v_2 \in V$, then there exists $\alpha \in \mathbb{F}$ with $|\alpha| = 1$ such that if $\tilde{v}_1 = \alpha v_1, \langle \tilde{v}_1, v_2 \rangle = \alpha \langle v_1, v_2 \rangle \in \mathbb{R}_+$. So it is enough to prove

$$\langle \tilde{v}_1, v_2 \rangle \le \sqrt{\langle \tilde{v}_1, \tilde{v}_1 \rangle \langle v_2, v_2 \rangle}$$

(noting $\langle \tilde{v}_1, \tilde{v}_1 \rangle = \langle v_1, v_1 \rangle$). Define $p(t) := \langle \tilde{v}_1 + tv_2, \tilde{v}_1 + tv_2 \rangle \geq 0$, $t \in \mathbb{R}$. This is a non-negative quadratic on \mathbb{R} and the discriminant is $4\langle \tilde{v}_1, v_2 \rangle^2 - 4\langle \tilde{v}_1, \tilde{v}_1 \rangle \leq 0$. This gives the result, and we have equality iff p(t) has a real double root $t_0 \in \mathbb{R}$, so $\tilde{v}_1 + t_0v_2 = 0$, and v_1, v_2 are colinear. Showing this implies $\langle \cdot, \cdot \rangle$ gives rise to a norm on V is trivial from this.

- (ii) Expand the RHS.
- (iii) If V is Euclidean, then we can expand $||v+w||^2 + ||v-w||^2$ with a corresponding inner product and get the result.

For the converse, define $\langle \cdot, \cdot \rangle$ using the polarisation identity from (ii). Then we show this defines an inner product. It is easy to see that $\langle v, v \rangle = ||v||^2$ which is non-negative and $\langle v, v \rangle = 0 \iff v = 0$. Also its easy to see $\langle v, w \rangle = \overline{\langle w, v \rangle}$.

So we need to prove that

$$\langle v_1 + v_2, w \rangle = \langle v_1, w \rangle + \langle v_2, w \rangle \tag{*}$$

and

$$\langle \lambda v, w \rangle = \lambda \langle v, w \rangle \tag{*}$$

First we reduce to the real case: assume $\mathbb{F} = \mathbb{C}$, since $\langle iv, w \rangle = i \langle v, w \rangle$ (polarisation identity), it is enough to take $\lambda \in \mathbb{R}$ in (*) and to prove (**) on

 $\Re\langle v_1+v_2,w\rangle$ and $\Re\langle iv_1+iv_2,w\rangle$. So the real case implies the complex case.

We have

$$||v_1 + v_2 + w||^2 = \frac{1}{2} \left(2||v_1 + w||^2 + 2||v_2||^2 - ||v_2 - (v_1 + w)||^2 \right)$$

$$+ \frac{1}{2} \left(2||v_2 + w||^2 + 2||v_1||^2 - ||v_1 - (v_2 + w)||^2 \right)$$

$$||v_1 + v_2 - w||^2 = \frac{1}{2} (||v_1 - w||^2 + 2||v_2||^2 - ||v_2 - (v_1 - w)||^2)$$
$$+ \frac{1}{2} (2||v_2 - w||^2 + 2||v_1||^2 - ||v_1 - (v_2 - w)||^2)$$

So

$$||v_1+v_2+w||^2 - ||v_1+v_2-w||^2 = ||v_1+w||^2 - ||v_1-w||^2 + ||v_2+w||^2 - ||v_2-w||^2$$

Which shows $\langle v_1 + v_2, w \rangle = \langle v_1, w \rangle + \langle v_2, w \rangle$ (polarisation identity).

Now we show $\langle \lambda v, w \rangle = \lambda \langle v, w \rangle$. We have $\langle nv, w \rangle = n \langle v, w \rangle$ for $n \in \mathbb{N}$ by additivity. Also have $\langle -nv, w \rangle = -\langle v, w \rangle$ by additivity so $\langle nv, w \rangle = n \langle v, w \rangle$ for $n \in \mathbb{Z}$.

So for $\lambda = \frac{p}{q}$, $p \in \mathbb{Z}$, $q \in \mathbb{Z} \setminus \{0\}$. Then $q\langle \lambda v, w \rangle = \langle q\lambda v, w \rangle = \langle pv, w \rangle = p\langle v, w \rangle$ so $\langle \lambda v, w \rangle = \lambda \langle v, w \rangle$ for all $\lambda \in \mathbb{Q}$. Now $\langle \cdot, w \rangle$ is continuous since the norm is. So by density of \mathbb{Q} in \mathbb{R} we have $\langle \lambda v, w \rangle = \lambda \langle v, w \rangle$ for all $\lambda \in \mathbb{R}$.

Definition. Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Then we say that

- $v \in V$ is orthogonal to $w \in V$ and write $v \perp w$ if $\langle v, w \rangle = 0$.
- $S \subseteq V$ is an orthogonal family if for all $v, w \in S$ distinct we have $v \perp w$.
- $S \subseteq V$ is an orthonormal family if for all $v, w \in S$ distinct we have $\langle v, v \rangle = 1, \langle v, w \rangle = 0.$
- Given $S \subseteq V$, its orthogonal space S^{\perp} is $\{v \in V : \forall w \in S, v \perp w\}$.

Proposition. Given $(V, ||\cdot||)$ a Euclidean space,

- (i) Given $S \subseteq V$, S^{\perp} is a subspace and $S^{\perp} = (\overline{\operatorname{span}(S)})^{\perp}$
- (ii) If $V \neq \{0\}$, then there is a maximal orthonormal family of vectors in V (i.e cannot be extended into a strictly larger orthonormal family)

Proof.

(i) Let $v_1, v_2 \in S^{\perp}$, $\lambda_1, \lambda_2 \in \mathbb{F}$ ($\mathbb{F} = \mathbb{R}$ or \mathbb{C}), then for all $w \in S$, $\langle \lambda_1 v_1 + \lambda_2 v_2, w \rangle = \lambda_1 \langle v_1, w \rangle + \lambda_2 \langle v_2, w \rangle = 0$. So S^{\perp} is a vector space.

Note that $S \subseteq \overline{\operatorname{span}(S)}$ implies $\overline{\operatorname{span}(S)}^{\perp} \subseteq S^{\perp}$. So we prove the reverse inclusion. Take $v \in S^{\perp}$, then for all $w \in \operatorname{span}(S)$, there exists $(w_n)_{n\geq 1}$ such that $w_n \in \operatorname{span}(S)$, $w_n \to w$. Then $w_n = \sum_{k=1}^{K_n} a_{k,n} w_{k,n}$ for $w_{k,n} \in \mathbb{F}$. So $\langle v, w_n \rangle = \sum_{k=1}^{K_n} \bar{a}_{k,n} \langle v, w_{k,n} \rangle = 0$. By continuity $\langle v, w_n \rangle \to \langle v, w \rangle$ so $\langle v, w \rangle = 0$.

(ii) Same concept as for the existence of a basis: Zorn's lemma. Given S a non-empty orthonormal family, we show there exists \tilde{S} a maximal orthonormal family with $S \subseteq \tilde{S}$.

Define S to be the set of all orthonormal families containing S. Then S is non-empty (contains S), is a poset with inclusion and satisfies the least upper bounded property: given $T \subseteq S$ a non-empty chain, then $\bigcup_{S' \in T} \in S$ is a least upper bound. Now Zorn's lemma gives the conclusion.

In the "countable" case, there is a more concrete version to (ii) in the above:

Theorem (Gram-Schmidt). Given $(V, ||\cdot||)$ a Euclidean space and $(v_n)_{n\geq 1}$ a countable linearly independent family, there exists (an explicitly computable) orthonormal family $(e_n)_{n\geq 1}$ such that for all $N \in \mathbb{N}$, $span(\{e_1, \ldots, e_N\}) = span(\{v_1, \ldots, v_N\})$.

Proof. Construct $(e_n)_{n\geq 1}$ by induction. Take $e_1=\frac{v_1}{||v_1||}$. Then define $e_{n+1}=\frac{v_{n+1}-\sum_{k=1}^n\langle v_{n+1},e_k\rangle e_k}{||v_{n+1}-\sum_{k=1}^n\langle v_{n+1},e_k\rangle e_k||}$. This is well defined since $v_{n+1}-\sum_{k=1}^n\langle v_{n+1},e_k\rangle e_k\neq 0$ by linear independence since $v_{n+1}\notin \mathrm{span}(\{v_1,\ldots,v_n\})=\mathrm{span}(\{e_1,\ldots,e_n\})$.

Theorem (Pythagoras' Theorem & consequences). Given $(V, ||\cdot||)$ a Euclidean space

- (i) If $v_1, v_2 \in V$ are such that $v_1 \perp v_2$, then $||v_1 + v_2||^2 = ||v_1||^2 + ||v_2||^2$
- (ii) Given $(e_n)_{n=1}^N$, $N \in \mathbb{N}$ an orthonormal family and $v \in V$, then $||v||^2 = \left\|v \sum_{n=1}^N \langle v, e_n \rangle e_n\right\|^2 + \sum_{n=1}^N |\langle v, e_n \rangle|^2$
- (iii) Given $(e_n)_{n\geq 1}$ a countable orthonormal family and $v\in V$, then $\sum_{n\geq 1}|\langle v,e_n\rangle|^2\leq ||v||^2$ with equality if and only if $\sum_{n=1}^N\langle v,e_n\rangle e_n\xrightarrow{N\to\infty}v$

Proof.

- (i) Expand with inner product and use $\langle v_1, v_2 \rangle = 0$
- (ii) Apply (i) to $v \sum_{k=1}^{N} \langle v, e_n \rangle e_n$ and $\sum_{k=1}^{N} \langle v, e_n \rangle e_n$ (show they are orthogonal)
- (iii) Taking $N \to \infty$ in (ii)

Examples:

- 1. ℓ^2 in \mathbb{C} (or \mathbb{R}) is an inner product space for $\langle (x_n), (y_n) \rangle = \sum_{n=1}^{\infty} x_n \bar{y}_n$. $S = (e_k)_{k \geq 1}$ with $e_k = (\delta_{kn})_{n \geq 1}$ is an orthonormal family (and is in fact maximal since $S^{\perp} = \{0\}$) $[\ell^2]$ is complete for the associated Euclidean norm $||\cdot||_2$
- 2. $C_{\mathbb{C}}([0,1])$ is an inner product space for $\langle f,g\rangle=\int_0^1 f(x)\overline{g(x)}\mathrm{d}x$. It is not complete for the associated Euclidean norm.
- 3. $C_{\mathbb{C}}(\mathbb{R}/2\pi\mathbb{Z})$ is an inner product space for $\langle f,g\rangle=\frac{1}{2\pi}\int_0^{2\pi}f(x)\overline{g(x)}\mathrm{d}x$. Define $S_N(f)=\sum_{k=-N}^N\langle f,e_k\rangle e_k$ where $e_k:=e^{iky}$. Then $S_N(f)$ is the orthogonal projection of f onto $\{e_k:k=-N,\ldots,N\}$.

Claim: $S_N(f) \xrightarrow{N \to \infty} f$ for $||\cdot||_2$. Therefore (Bessel) $\sum_{k \in \mathbb{Z}} |\hat{f}(k)|^2 = \frac{1}{2\pi} \int_0^{2\pi} |f(x)|^2 dx$.

Proof: Stone Weierstrass implies that given $\varepsilon > 0$, there exists $g \in \text{span}\{e_k : k \in \mathbb{Z}\}$ such that $||f - g||_{\infty} \le \varepsilon/2$. Then for N large enough, $S_N(g) = g$. So then $||S_N(f) - f||_2 \le ||S_N(f) - S_N(g)||_2 + ||g - f||_2 \le ||S_N(f - g)||_2 + \varepsilon/2 \le ||f - g||_2 + \varepsilon/2 \le \varepsilon$ for N large enough.

Theorem. Let $(V, ||\cdot||)$ be an NVS, then there is a "completion": $(\overline{V}, ||\cdot||)$ a complete NVS and some $\Phi: V \to \overline{V}$ linear isometry with $\overline{V} = \overline{\Phi}(V)$. Such a completion is unique up to isometric isomorphism.

Proof. Let V^{**} be the bidual and $\Phi: V \to V^{**}$ the bidual embedding. Then Φ is an isometry. Then V^{**} is a complete NVS. Define $\overline{V} = \overline{\Phi(V)}$, a closed subspace of V^{**} and thus complete.

Now we show uniqueness: suppose $\overline{V}_1, \overline{V}_2$ are complete NVS's, $\Phi_1: V \to \overline{V}_1$, $\Phi_2: V \to \overline{V}_2$ linear isometries with $\overline{\Phi_1(V)} = \overline{V}_1, \overline{\Phi_2(V)} = \overline{V}_2$. Define $\Phi_0 = \Phi_2 \circ \Phi_1^{-1}: \Phi_1(V) \to \Phi_2(V)$. Then $\Phi_1(V) \subseteq V_1, \Phi_2(V) \subseteq V_2$ are dense. By composition Φ_0 is a linear isometry, so there is a unique continuous linear extension $\tilde{\Phi}_0: V_1 \to V_2$.

We claim $\tilde{\Phi}_0(V_1)$ is closed (then by density $\tilde{\Phi}_0(V_1) = V_2$). Let $(y_n)_{n\geq 1}$ be a sequence in $\tilde{\Phi}_0(V_1)$ converging to y. Then there exists $(x_n)_{n\geq 1}$ such that $\tilde{\Phi}_0(x_n) = y_n$. Since $(y_n)_{n\geq 1}$ converges, it is Cauchy and since $\tilde{\Phi}_0$ is an isometry, $(x_n)_{n\geq 1}$ is Cauchy. Since V_1 is complete, $x_n \xrightarrow{n\to\infty} x$ so $\tilde{\Phi}_0(x_n) = y_n \xrightarrow{n\to\infty} y = \tilde{\Phi}_0(x)$, so $y \in \tilde{\Phi}_0(V_1)$.

Definition. A complete Euclidean space is called a *Hilbert space*.

Remarks:

- 1. Most of the time, we'll consider seperable Hilbert spaces
- 2. $(C_{\mathbb{C}}([0,1]), ||\cdot||_2)$ is Euclidean and not complete, the completion is $L^2([0,1])$.
- 3. Let H be a Hilbert space. When H is infinite-dimensional, the completeness means the space is "too big" to have a countable basis. A weaker notion of countable basis can be salvaged.

Theorem. Let H be a Hilbert space that is separable and infinite-dimensional. Then

- (i) There exists $(e_n)_{n\geq 1}$ orthonormal such that $\overline{span\{e_n:n\geq 1\}}=H$ [called a Hilbert basis]
- (ii) Parseval identity: for all $v, w \in H$, $\langle v, w \rangle = \sum_{n \geq 1} v_n \bar{w}_n$ with $v_n = \langle v, e_n \rangle$, $w_n = \langle w, e_n \rangle$.
- (iii) $\Phi: H \to \ell^2_{\mathbb{C}}, \ H \ni v \mapsto (v_n)_{n \geq 1}$ is a linear bijective isometry

Proof.

- (i) Consider $(y_n)_{n\geq 1}$ dense in H, inductively remove any $\underline{y_n}$ in the span of the previous elements, to get a sequence $(\tilde{y}_n)_{n\geq 1}$ with $\overline{\operatorname{span}\{\tilde{y}_n:n\geq 1\}}=H$.
 - Apply Gram-Schmidt on \tilde{y}_n to get $(e_n)_{n>1}$ orthonormal as in (i)

(ii) Define $s_n = \sum_{k=1}^n v_k e_k$, $s'_n = \sum_{k=1}^n w_k e_k$. Then (Bessel)

$$\sum_{k>1} ||v_k e_k||^2 = \sum_{k>1} |v_k|^2 < \infty$$

So (for $m+1 \leq n$)

$$||s_n - s_m||^2 = \left\| \sum_{k=m+1}^n v_k e_k \right\|^2 = \sum_{k=m+1}^n |v_k|^2 \xrightarrow{m \to \infty} 0$$

So $(s_n)_{n\geq 1}$ is Cauchy so by completeness, $s_n \xrightarrow{n\to\infty} s$. Similarly $s'_n \to s'$. $(v-s_n) \perp \operatorname{span}\{e_1,\ldots,e_n\}$ for all $n\geq 1$ so $(v-s) \perp \operatorname{span}\{e_n:n\geq 1\}$ so $(v-s) \perp (v-s)$, i.e v=s. Similarly w=s'.

Finally $\langle s_n, s'_n \rangle \to \langle s, s' \rangle = \langle v, w \rangle$ so $\sum_{k=1}^n v_k \bar{w}_k$ is summable by Holder's inequality. So there exists a limit $\sum_{k \geq 1} v_k \bar{w}_k = \langle v, w \rangle$

(iii) Φ is linear is linear since $v_k = \langle v, e_k \rangle$ is linear in v. It is isometric by (ii), and surjective since any $\ell^2_{\mathbb{C}}$ defines v as in the above.

11 Projections, decompositions & representations

Idea:

- Exploit uniform strict convexity of unit ball in Euclidean spaces to project onto convex sets.
- \bullet Deduce \perp decomposition
- $H = H^*$

Proposition. Let $(V, ||\cdot||)$ be a Euclidean space, $C \subseteq V$ a non-empty convex complete subset.

- (i) For all $v \in V$, there is a unique $w = P_C(v) \in C$ such that $d(v,C) = \inf_{z \in C} ||v-z|| = ||v-P_C(v)||$.
- (ii) For all $z \in C$, $\Re\langle z P_C(v), v P_C(v) \rangle \le 0$ (**)
- (iii) $P_C: V \to \mathbb{C}$ is 1-Lipschitz

Proof. (i) Existence: if $v \in C$, take $P_C(v) = v$. If $v \notin C$, consider minimising sequence $(w_n)_{n\geq 1}$ in C such that $||w_n - v||^2 \leq d(v,C)^2 + \frac{1}{n}$. Claim: $(w_n)_{n\geq 1}$ is Cauchy. Parallelogram identity:

$$||w_m - w_n||^2 + ||w_m + w_n - 2v||^2 = 2||w_m - v||^2 + 2||w_n - v||^2$$

So

$$\frac{||w_m - w_n||^2}{2} \le ||w_m - v||^2 + ||w_n - v||^2 - 2\left\|\frac{w_m + w_n}{2} - v\right\|^2$$
$$\le 2d(v, C)^2 + \frac{1}{m} + \frac{1}{n} - 2d(v, C)^2$$

Hence $||w_m - w_n|| \le \sqrt{\frac{2}{n} + \frac{2}{m}}$ and so (w_n) is Cauchy. Since C is complete, $w_n \to w \in C$ and $w = P_C(v)$ satisfies (*).

Now we show uniqueness: for all w_1, w_2 which reach the infimum

$$\frac{||w_1 - w_2||^2}{2} = ||w_1 - v||^2 + ||w_2 - v||^2 - 2\left\|\frac{w_1 + w_2}{2} - v\right\|^2$$

$$\leq d(v, C)^2 + d(v, C)^2 - 2d(v, C)^2 = 0$$

So $w_1 = w_2$.

(ii) If w satisfies (**), then for any $z \in C$

$$||z - v||^2 = ||z - w + w - v||^2 = ||z - w||^2 + ||w - v||^2 + 2\underbrace{\Re\langle z - w, w - v\rangle}_{>0}$$

$$\implies ||z - v||^2 \ge ||w - v||^2$$

So w reaches the infimum.

Define
$$\varphi(\lambda) = ||\lambda z + (1 - \lambda)P_C(v) - v||^2 - ||P_C(v) - v||^2$$
 for $\lambda \in [0, 1]$.
Have $\varphi(0) = 0$, $\varphi(\lambda) \ge 0$ since $\lambda z + (1 - \lambda)P_C(v) \in C$ so $\varphi'(0) = 2\Re\langle z - P_C(v) - P_C(v) - v \rangle \ge 0$.

(iii) Given $v_1, v_2 \in V$, $P_C(v_1), P_C(v_2)$ their projections, apply (ii) to v_1 with $z = P_C(v_2), v_2$ with $z = P_C(v_1)$ to get

$$\Re \langle P_C(v_2) - P_C(v_1), v_1 - P_C(v_1) \rangle < 0$$

$$\Re \langle P_C(v_1) - P_C(v_2), v_2, P_C(v_2) \rangle < 0$$

Adding these together gives

$$\Re\langle P_C(v_1) - P_C(v_2), (v_2 - v_1) + (P_C(v_1) - P_C(v_2)) \rangle \le 0$$

$$\implies ||P_C(v_1) - P_C(v_2)||^2 \le \Re \langle P_C(v_1) - P_C(v_2), v_1 - v_2 \rangle$$

Now Cauchy-Schwarz gives $||P_C(v_1) - P_C(v_2)|| \le ||v_1 - v_2||$.

Examples:

- 1. V Euclidean, C finite dimensional subspace.
- 2. H Hilbert, C a closed subspace.
- 3. H Hilbert, $C = \overline{B}(0,1)$, then

$$P_C(v) = \begin{cases} v & \text{if } ||v|| \le 1\\ \frac{v}{||v||} & \text{if } ||v|| > 1 \end{cases}$$

Theorem. Let V be Euclidean, $W \subseteq V$ a complete subspace. Then $V = W \oplus W^{\perp}$ and the corresponding unique decomposition is

$$v = \underbrace{P_W(v)}_{\in W} + \underbrace{(v - P_W(v))}_{\in W^{\perp}}$$

Morover, $P_W|_W=id$, $P_W|_{W^{\perp}}=0$, $P_W^2=P_W$, $|||P_W|||\leq 1$ (equality if $W\neq\{0\}$), $|||P_W^{\perp}|||\leq (equality \ if \ W\subsetneq V)$. Also P_W is linear.

Proof. We only need to prove that $v - P_W(v) \in W^{\perp}$ for all $v \in V$. We prove the case $\mathbb{F} = \mathbb{C}$. Given $z \in W$, for all $z' \in W$, $\Re\langle z' - P_W(v), v - P_W(v) \rangle \leq 0$. Letting $z' = \pm z + P_W(v) \in W$, $z' = \pm iz + P_W(v) \in W$ implies

$$\pm \Re \langle z, v - P_W(v) \rangle \le 0$$

$$\mp \Im \langle z, v - P_W(v) \rangle < 0$$

And so $\langle z, v - P_W(v) \rangle = 0$. So $z \perp v - P_W(v)$ and $v - P_W(v) \in W^{\perp}$.

Examples:

- 1. If $W = \text{span}\{e_1, \dots, e_n\}$ in V Euclidean and $(e_k)_{k=1}^n$ is orthonormal, then $P_C(v) = \sum_{k=1}^n \langle v, e_k \rangle e_k$
- 2. If $W = \overline{\operatorname{span}\{e_n : n \geq 1\}}$ in a Hilbert space with $(e_n)_{n \geq 1}$ orthonormal, then $P_W(v) = \sum_{k=1}^{\infty} \langle v, e_k \rangle e_k$

Remark: can deduce from the theorem that $S \subseteq H$, H Hilbert satisfies $\overline{\operatorname{span}(S)} = h$ iff $S^{\perp} = \{0\}$ (take $W = \overline{\operatorname{span}(S)}$, $S^{\perp} = (\overline{\operatorname{span}(S)})^{\perp}$).

Theorem (Riesz Frechet representation). Given H Hilbert space, the map ϕ : $H \to H^*$, $v \mapsto \phi_v \in H^*$ such that $\phi_v(w) = \langle v, w \rangle$ is a bijective (sesqui)linear isometry. So H is isometrically isomorphic to its dual H^* , and H^* is Hilbert.

Remark: ϕ is well-defined for Euclidean spaces (not necessarily Hilbert), but is not surjective in general.

Proof. Sesquilinearity is obvious. Isometry: $|\phi_v(w)| = |\langle w, v \rangle| \le ||w|| ||v||$ so $||\phi_v||_{H^*} \le ||v||_H$ and we have equality when $w = \frac{v}{||v||}$ $(v \ne 0)$.

Now we show ϕ is surjective. Take $\varphi \in H^* \setminus \{0\}$, $W = \operatorname{Ker}(\varphi)$, which is closed as φ is continuous. The previous theorem implies $H = W \oplus W^{\perp}$, $W^{\perp} = \{0\}$. Take $v_0 \in W^{\perp} \setminus \{0\}$. Then there exists $\alpha \in \mathbb{F}$ such that $\varphi(\alpha v_0) = ||\alpha v_0||^2$. We claim that $\phi_{\alpha v_0} = \varphi$.

For any $w \in W$, $\phi_{\alpha v_0}(w) = \langle w, \alpha v_0 \rangle = 0 = \varphi(w)$ (since $w \perp v_0$ and $W = \text{Ker}(\varphi)$). On $W^{\perp} = \mathbb{F}v_0$ (isomorphic to \mathbb{F}), for all $\lambda \in \mathbb{F}$,

$$\phi_{\alpha v_0}(\lambda v_0) = \langle \lambda v_0, \alpha v_0 \rangle = \bar{\alpha} \lambda \langle v_0, v_0 \rangle = \bar{\alpha} \lambda ||v_0||^2$$

$$=\frac{|\alpha|^2}{\alpha}\lambda||v_0||^2=\frac{\lambda}{\alpha}||\alpha v_0||^2=\frac{\lambda}{\alpha}\varphi(\alpha v_0)=\varphi(\lambda v_0)$$

12 Spectral theory

<u>Idea</u>: what about infinite-dimensional equivalent to matrix diagonalisation? The "Spectral Theorem" relates to orthonormal diagonalisation of symmetric matrices.

"Dictionary": matrix \to bounded linear operator. \mathbb{R}^n or $\mathbb{C}^n \leftrightarrow$ Hilbert space. Eigenvalues \leftrightarrow spectrum. Instead of finite dimension, we only consider compact operators. Symmetric/hermitian \leftrightarrow self-adjoint.

Definition. Given H a Hilbert space, $T \in \mathcal{B}(H)$ (bounded function $H \to H$) then

 \bullet the *resolvent* set of T is

$$g(T) = \{\lambda \in \mathbb{C} : (T - \lambda) \text{ invertible (bijective with bounded inverse)} \}$$

- the spectrum of T is $\sigma(T) = \mathbb{C} \setminus q(T)$
- the resolvent map of T is $R_T: g(T) \to \mathcal{B}(H), \lambda \mapsto R_T(\lambda) = (T \lambda)^{-1}$.

Remarks:

- 1. Inverse mapping theorem: $\lambda \in g(T)$ if and only if $(T \lambda)$ is bijective.
- 2. Injectivity is not equivalent to surjectivity (infinite dimension).

Proposition. Let H be a Hilbert space, $T \in \mathcal{B}(H)$. Then

- 1. g(T) is open in \mathbb{C} : $\forall \lambda_0 \in g(T)$, $B_{\mathbb{C}}(\lambda_0 ||R_T(\lambda_0)||^{-1}) \subseteq g(T)$.
- 2. $R_T:g(T)\to \mathcal{B}(H)$ is complex differentiable, locally expandable in entire series
- 3. $\emptyset \neq \sigma(T) \subseteq \{\lambda \in \mathbb{C} : |\lambda| \leq |||T|||\}$

Remark: (3) is a generalisation of the fundamental theorem of algebra.

Proof.

1. Idea from Carl Neumann 1877: if $U \in \mathcal{B}(H)$, |||U||| < 1, then $(1-U) = (\mathrm{id}-U)$ is invertible with inverse $(1-U)^{-1} = \sum_{n \geq 0} U^n$. Indeed $|||U^n||| \leq |||U|||^n$ so $\sum U^n$ is absolutely convergent, and $\mathcal{B}(\overline{H})$ is complete so $\sum U^n$ converges and $(1-U)\sum_{n\geq 0} U^n = \left(\sum_{n\geq 0} U^n\right)(1-U) = 1$.

So if $\lambda_0 \in g(T)$, $\lambda \in B_{\mathbb{C}}(\lambda_0, |||R_T(\lambda_0)|||^{-1})$,

$$T - \lambda = (T - \lambda_0) - (\lambda - \lambda_0) = (T - \lambda_0) \left[1 - (T - \lambda_0)^{-1} (\lambda - \lambda_0) \right]$$

Observe that

$$|||\underbrace{R_T(\lambda_0)(\lambda-\lambda_0)}_{\in II}||| < 1$$

, so $1 - R_T(\lambda_0)(\lambda - \lambda_0)$ is invertible. By composition $T - \lambda$ is invertible and $\lambda \in g(T)$. Also

$$R_T(\lambda) = (1 - U)^{-1} R_T(\lambda_0) = \sum_{n>0} U^n R_T(\lambda_0) = \sum_{n>0} R_T(\lambda_0)^{n+1} (\lambda - \lambda_0)^n$$

2. So by the above we deduce local expansion of entire series and $R'_T(\lambda_0)$ exists with

$$R'_{T}(\lambda_0) = \lim_{\substack{\lambda \to \lambda_0 \\ \lambda \neq \lambda_0}} \frac{R_{T}(\lambda) - R_{T}(\lambda_0)}{\lambda - \lambda_0} = R_{T}(\lambda_0)^2$$

3. If $|\lambda| > |||T|||$, then $(T - \lambda) = -\lambda[1 - \lambda^{-1}T]$, define $U = \lambda^{-1}T$ so |||U||| < 1 and so U is invertible:

$$(T - \lambda)^{-1} = -\lambda^{-1} \sum_{n \ge 0} U^n \implies |||(T - \lambda)^{-1}||| \le \frac{1}{|\lambda| - |||T|||}$$

To prove $\sigma(T) \neq \emptyset$, use Liouville Theorem (bounded complex differentiable functions on \mathbb{C} are constant).

Claim: for all $v \in H$, for all $\varphi \in H^*$, the map $F_{v,\varphi} : \mathbb{C} \to \mathbb{C}$, $\lambda \mapsto \varphi(R_T(\lambda)v)$ is complex differentiable (linearity of φ) and bounded, so constant.

Indeed,

$$|F_{v,\varphi}(\lambda)| \le ||\varphi||_{H^*} |||R_T(\lambda)|||||v||_H \le ||\varphi||_{H^*} ||v||_H \frac{1}{|\lambda| - |||T|||} \xrightarrow{|\lambda| \to \infty} 0$$

implies that $\mathbb{C} \to \mathcal{B}(H)$, $\lambda \to R_T(\lambda)$ is constant, which is clearly impossible. So if it is not constant, thee exists $\lambda_1, \lambda_2 \in \mathbb{C}$ such that $R_T(\lambda_1) \neq R_T(\lambda_2)$ so there exists $v \in H$ such that $R_T(\lambda_1)v \neq R_T(\lambda_2)v$, so there exists $\varphi \in H^*$ such that $\varphi(R_T(\lambda_1)v) \neq \varphi(R_T(\lambda_2)v)$.

Definition. If H is a Hilbert space, $T \in \mathcal{B}(H)$, we define

• The point spectrum

$$\sigma_p(T) = \{\lambda \in \mathbb{C} : (T - \lambda) \text{ not injective}\}\$$

• The continuous spectrum

$$\sigma_c(T) = \{\lambda \in \mathbb{C} : (T - \lambda) \text{ injective, } (T - \lambda)(H) \text{ dense but not equal to } H\}$$

• The residual spectrum

$$\sigma_r(T) = \{\lambda \in \mathbb{C} : (T - \lambda) \text{ injective, } (T - \lambda) \text{ not dense in } H\}$$

Remark: T "bounded below" means that for all $v \in H$, $||Tv|| \ge C||v||$ (for some C > 0). Note that if T is bounded below, then T(H) is closed. Indeed if $(Tv_n)_{n\ge 1}$ converges to w, $(Tv_n)_{n\ge 1}$ is Cauchy, so $(v_n)_{n\ge 1}$ is Cauchy by the inequality so $v_n \to v$, then Tv = w. We deduce that T is invertible if and only if T is bounded below and T(H) is dense (bounded below implies injectivity). So if $\lambda \in \sigma_c(T)$ then $T - \lambda$ not bounded below, so there exists a sequence $(v_n)_{n\ge 1}$ with $||v_n|| = 1$ such that $(T - \lambda)v_n \xrightarrow{n \to \infty} 0$.

Examples::

- Finite dimensional $H = \mathbb{C}^d$, $\sigma(T) = \sigma_p(T)$ (as T is injective iff T bijective and $|\sigma(T)| \leq d$)
- Let $H = \ell^2$, left shift $T_l((x_1, \ldots, x_n, \ldots)) = (x_{n+1})_{n \geq 1}$, right shift $T_r((x_n)_{n \geq 1}) = (x_{n-1})_{n \geq 2}$. Exercise: $|||T_l||| = |||T_r||| = 1$,

$$\sigma(T_l) = \underbrace{\sigma_p(T_l)}_{B_{\mathbb{C}}(0,1)} \cup \underbrace{\sigma_c(T_l)}_{S_{\mathbb{C}}(0,1)}$$

$$\sigma(T_r) = \underbrace{\sigma_p(T_r)}_{B_{\mathbb{C}}(0,1)} \cup \underbrace{\sigma_c(T_r)}_{S_{\mathbb{C}}(0,1)}$$

• Given $K \subseteq \mathbb{C}$ compact, there exists $T \in \mathcal{B}(H)$, $H = \ell^2$ with $\sigma(T) = K$. Exercise: take $(\lambda_n)_{n\geq 1}$ sequence in K, and $(e_n)_{n\geq 1}$ Hilbert basis of H and define $T(e_n) = \lambda_n e_n$, check that $\sigma(T) = \overline{\{\lambda_n : n \geq 1\}}$

Definition. Given $T \in \mathcal{B}(H)$, H Hilbert, there is a unique $T^* \in \mathcal{B}(H)$ called the *adjoint* such that for all $v, w \in H$, $\langle Tv, w \rangle = \langle v, T^*w \rangle$. T is normal if $TT^* = T^*T$, self-adjoint if $T = T^*$, unitary if $T^{-1} = T^*$.

Proof. Uniqueness is clear since the values $\langle v, Uw \rangle$ for all $v, w \in H$ determine U. Existence: use Riesz-Frechet representation directly, or use self-adjoint $H^* \to H^*$ and "bring it back to H" by the isomorphism $H \sim H^*$ of the Riesz representation theorem.

Proposition. H Hilbert, $T \in \mathcal{B}(H)$. Then

- 1. Unitary \Rightarrow normal, self-adjoint \Rightarrow normal
- 2. $||Tv|| = ||T^*v||$ for all $v \in H$, $Ker(T) = Ker(T^*) = (Im(T))^{\perp} = (Im(T^*))^{\perp}$
- 3. $T \text{ normal } \Rightarrow \sigma_r(T) = \emptyset = \text{Conj}(\sigma_p(T)).$
- T normal ⇒ eigenvectors associated with different eigenvalues are orthogonal.
- 5. T self-adjoint $\Rightarrow \langle Tv, v \rangle \in \mathbb{R}$ for all $v \in H$, so $\sigma(T) \subseteq \mathbb{R}$.

Proof. Exact same as in finite dimension (see IB Linear Algebra).

Key statements:

Proposition. $T \in \mathcal{B}(H)$ is said to be *compact* if $T(\overline{B}_H(0,1))$ is relatively compact.

- (i) T is compact if and only if T is the limit (under $||| \cdot |||||)$ of finite rank operators T_n with $\dim(\operatorname{Im}(T_n)) < \infty$.
- (ii) T is compact iff T^* is compact
- (iii) If $\lambda \in \sigma(T) \setminus \{0\}$, then $\lambda \in \sigma_p(T)$ is an eigenvalue with dim(Ker $(T \lambda)$) < ∞ , codim(Im $(T \lambda)$) < ∞ .

Proposition. If $T \in \mathcal{B}(H)$ compact and self-adjoint, then at least one of $\pm |||T|||$ is an eigenvalue.

Theorem (Spectral theorem). If $T \in \mathcal{B}(H)$ is compact and self-adjoint, then $\sigma(T) \setminus \{0\} = \sigma_p(T) \subseteq \mathbb{R}, \ \sigma_p(T) = \{(\lambda_n)_{n \ge 1}, \ \lambda_n \in \mathbb{R} \setminus \{0\}, \ \lambda_n \xrightarrow{n \to \infty} 0\}$ and $H = (Ker(T)) \oplus^{\perp} \left[\bigoplus_{n \ge 1}^{\perp} E_{\lambda_n} \right]$, where E_{λ_n} is the eigenspace of λ_n .

Proof. Induction to construct the sequence $(\lambda_n)_{n\geq 1}$.