	v)
	a	j
	ζ	ζ
	۲	2
	≥	
	C	5
	Ċ	
٠	Ξ	2
	7	ζ
	۲	_
-	C	5
	Ū	ļ
	_	1
	π	3
	È	5
	5	7
	Ç	ز
-	٠	5
	ž	É
	π	3
-	_	Š
	ă	5
	7	ĺ
	π	3
	7	5
	Č	Ξ
	ď	ļ
	ă	í
-	Č	3
	>	>
Ξ	_	ξ
	ï	Š
	Έ	₹
	Ċ	2
_		L
	_	₹
	C	5
	700	7
:	700	27117
:	-r2 7PC	
-	ntrallya0	274121
-	POTENTAGE	27412117
-	2001K2 700	ブノイニ ここししょ
-	Caclestralized	ブノイニスニーノノフ
-	J Jacantrallyan	ブノイニ ここししし ろ
-	DACINITIANIAN DA	2712222222222
-	PACE CECENTRALIZED	プレイ ひししししし ひしつ
-	במזיים ספימט	
-	- Davied decentralized	
-	במזיים ספימט	D
	במזיים ספימט	DUTE DUTE DUTE DUTE TO THE TO
	במזיים ספימט	OF THE MASCA ACCOUNT AND A
	במזיים ספימט	
	במזיים ספימט	ומו / כו ויב ממזרמ מרכנוונומווצרמ
	במזיים ספימט	

Ref.	Technique	Application	Dataset	Features ^a	Action set	Evaluation	
	(selection)	(network)				Settings ^a	Improvement ^b
AdaR [461]	Partially decentralized LSPI (<i>e-greedy)</i>	Unicast routing (WSN)	Simulations -400 sensors -20 data sources -1 sink	State: \mathcal{N}_i Reward: function of node load residual energy hop cost to sink link reliability	Next-hop nodes to destination	· S = #nodes · A = #neighbors	Compared to O-learning: • Faster convergence (by 40 episodes) • Less sensitive to initial parameters
FROMS [151]	O-learning (variant of e-greedy)	Multicast routing (WSN)	Omnet++ Mobility Framework with 50 random topologies ·50 nodes ·5 sources ·45 sinks	State: $(\mathcal{N}'^k, \mathcal{D}_k)$ Reward: function of hop cost	$ \{a_1 \dots a_m\} $ $ a_k = (\mathcal{N}_k', D_k) $ $ \mathcal{N}_k^{f} = \text{next hop along the path to } $ $ \sin k D_k $	· S = #nodes · A = #neighbors	Compared to directed diffusion: • up to 5× higher delivery rate • ≈ 20% lower overhead
Q-PR [24]	Variant of Q-learning (<i>e-greedy</i>)	Localization-aware routing to achieve a trade-off between packet delivery rate, ETX, and network lifetime (WSN)	Simulations -50 different topologies -100 nodes	State: \mathcal{N}_i Reward: function of · distance($\mathcal{N}_i \mathcal{N}_i$) · distance($\mathcal{N}_i \mathcal{N}_i$) · energy at \mathcal{N}_i · ETX · \mathcal{N}_i 's neighbors for any neighbor \mathcal{N}_j and destination	Next-hop nodes to destination	· S = #nodes · A = #neighbors	Delivery rate:
Ref.	Technique	Application	Dataset	Features ^a	Action set	Evaluation	
	(selection)	(network)				Settings ^a	Improvement ^b
Xia et al. [482]	DRO-learning (greedy)	Spectrum-aware routing (<i>CRN</i>)	OMNET++ simulations - stationary multi-hop CRN - 10 nodes - 2 PUs	State: \mathcal{N}_i Reward: # available channels between current node and next-hop node	Next-hop nodes to destination	· S = #nodes · A = #neighbors	Compared to Q-routing: 50% faster at lower activity level Compared to Q-routing and SP-routing: · lower converged end-to-end delay
OELAR [197]	Model-based Q-learning (greedy)	Distributed energy- efficient routing (underwater WSN)	Simulations (ns-2) -250 sensors in 500 ³ m ³ space -100m transmission range -fixed source/sink -1m/s maximum speed for intermediate nodes	State: \mathcal{N}_i Reward: function of the residual energy of the node receiving the packet and the energy distribution among its neighbor nodes.	Next-hop nodes to destination U packet withdrawal	S = #nodes A = 1 + #neighbors	Compared to Q-learning: Faster convergence (40 episodes less) Less sensitive to initial parameters

Table 9 Summa	iry of RL-based decentra	tralized, partially decentra	tralized, and centralized routing mod	ng models (Continued)
Lin et al. [277]	n—step TD (greedy)	Delay-sensitive	Simulations 2 users	State: current chanr

	,	,	•				
Lin et al. [277]	n—step TD (greedy)	Delay-sensitive application routing (multi-hop wireless ad hoc networks)	Simulations 2 users transmitting video sequences to the same destination node ·3 ~ 4-hops wireless network	State: current channel states and queue sizes at the nodes in each hop Reward: goodput at destination	Next-hop nodes to destination	$S = n_q^N \times n_c^H$ $R = n_q^N \times n_c^H$ $N_b = modes$ $N_$	Complexity 2 × 10 ⁸ for the 3—hop network With 95% less information exchanges · ~ 10% higher PSNR · slightly slower convergence (+1 ~ 2sec)
d-AdaptOR [59]	Q-learning with adaptive learning rate (e—greedy)	Opportunistic routing (multi-hop wireless ad hoc networks)	Simulations on Qual- Net with 36 randomly placed wireless nodes in a 150 <i>m</i> × 150 <i>m</i>	State: N_i Reward: • fixed negative transmission cost is receiver is not the destination • fixed positive reward if receiver is the desti- nation • 0 if packet is with- drawn	Next-hop nodes to destination U packet withdrawal	· S = #nodes · A = 1 + #neighbors	After convergence (≈ 300sec) ETX comparable to a topology-aware routing algorithm > 30% improvement over greedy-SR, greedy EXOR and SRCR with a single flow Improvement decreases with # flows
QAR [276]	Centralized SARSA (<i>e-greedy)</i>	QoS-aware adaptive routing (SDN)	Sprint GIP network trace-driven simulations [418]	State: N_i Reward: function of delay, loss, through- put	Next-hop nodes to destination	S = #nodes A = #neighbors	Compared to Q-learning with QoS-awareness. • Faster convergence time (20 episodes less)

 ${}^{a}N_{i}$; node i, D_{k} : sink k; S; number of state variables; A: number of possible actions per state; #: number of baverage values. Results vary according to experimental settings.