2020-2021 BAHAR DÖNEMİ

YMH214
SAYISAL ANALIZ
LAB. DERSİ

6.DERS Arş. Gör. Alev KAYA

> 09.04.2021 SAAT:09:00-10:00

Lineer Denklem Sistemlerinin Çözümü

- Doğrudan Yöntemler
- ► A-Cramer Yöntemi

■ B-Gauss Jordan Yöntemi

► LAB: Cramer yöntemi Matlab örnek programı

Lineer Denklem Sistemi

Belirli sayıda bilinmeyen ve belli sayıda denklemden oluşan bir denklem sistemi lineer terimlerden oluşuyorsa bu sistem lineer denklem sistemi olarak adlandırılır.

$$2x - 3y = 5$$
$$-2x + y = -1$$

denklem sistemi iki bilinmeyen içeren lineer bir denklem sistemidir. Genel olarak n adet bilinmeyen $(x_1, x_2, x_3, \ldots, x_n)$ içeren lineer bir denklem sistemi aşağıda gösterildiği gibi çık halde veya daha basit olarak matris formunda yazılabilir.

Lineer Denklem Sistemi

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}_{m \times n} \times \begin{bmatrix} \vec{x} \\ x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}_{n \times 1} = \begin{bmatrix} \vec{b} \\ b_1 \\ b_2 \\ \dots \\ b_m \end{bmatrix}_{m \times 1} A: \text{ katsayılar matrisi } x: \text{ bilinmeyen vektör } b: \text{ sağ taraf vektörü }$$

$$\begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}_{n \times 1} = \begin{bmatrix} b \\ b_1 \\ b_2 \\ \dots \\ b_m \end{bmatrix}$$

Örnek

$$\begin{bmatrix} 3 & 2 & 4 \\ 1 & -2 & 0 \\ -1 & 3 & 2 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 14 \\ 7 \\ 2 \end{bmatrix}$$

$$3x_1 + 2x_2 + 4x_3 = 14$$
 $x_1 - 2x_2 + 0x_3 = 7$
 $-x_1 + 3x_2 + 4x_3 = 2$

Lineer Denklem Sistemlerinin Çözümü

Lineer bir denklem sisteminin çözülerek bilinmeyen x_i değerlerinin bulunmasında değişik yöntemler kullanılır. Bu yöntemler 2 grup halinde ayrılabilir.

- 1-) Analitik (Direkt) Yöntemler: Denklem sisteminin çözümünü matematik anlamda tam olarak veren yöntemlerdir. Bu yöntemler sayesinde doğrudan aranan çözüm elde edilir.
 - Matris Tersi Yöntemi
 - Cramer Yöntemi
 - Eliminasyon Yöntemi
 - Gauss Eliminasyon Yöntemi
 - Gauss-Jordan Yöntemi
 - LU Ayırma Yöntemi

Lineer Denklem Sistemlerinin Çözümü

- 2-) İteratif (Dolaylı) Yöntemler: Çözümü bulmak için öncelikle tahmini değerlerden başlanır ve adım adım ardışık hesaplamalarla belirli tolerans sınırları içinde aranan çözüme ulaşılır.
 - Basit İterasyon (Jacobi) Yöntemi
 - Gauss-Seidel Yöntemi
 - Rölaksasyon (SOR) Yöntemi

Matrisin Tersi ile Çözümleme

Verilen A. x=b denklem sisteminde, katsayılar matrisinin tersi (A-1) hesaplandığında çözüm vektörü iki matrisin çarpımından elde edilebilir.

$$\vec{A} \cdot \vec{x} = \vec{b} \implies \vec{x} = \vec{A}^{-1} \cdot \vec{b}$$

Matris tersinin hesabı için farklı yöntemler vardır. Fakat bu yöntemlerde, eleman sayısı ne kadar fazla ise matris tersini bulmak için daha fazla bilgisayar hafızasına ve hesaplama zamanına ihtiyaç duyulur.

Matrisin Tersi Nasıl Bulunur

Bir matrisin tersini alabilmek için:

Matrisin determinantını ve matrisin ekini (adjoint) bulmak gerekir.

Bir matrisin ekinin bulunması için:

- 1. Matrisin bütün elemanlarının eş-çarpanları bulunur.
- 2. Bulunan eş-çarpanlardan yeni bir matris oluşturulur.
- 3. Bu matrisin transpozesi alınır.

Örnek

$$A = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 3 & 1 \\ 2 & 0 & 1 \end{bmatrix}$$
 matrisinin tersini bulunuz.

Matrisin eş-çarpanları bulunur.

$$A_{11} = (-1)^{1+1} \cdot \begin{vmatrix} 3 & 1 \\ 0 & 1 \end{vmatrix} = 1 \times 3 = 3$$

$$A_{12} = (-1)^{1+2} \cdot \begin{vmatrix} 3 & 1 \\ 2 & 1 \end{vmatrix} = (-1)(3-2) = -1$$

$$A_{13} = (-1)^{1+3} \cdot \begin{vmatrix} 3 & 3 \\ 2 & 0 \end{vmatrix} = 0 - 6 = -6$$

$$A_{21} = (-1)^{2+1} \cdot \begin{vmatrix} 4 & 2 \\ 0 & 1 \end{vmatrix} = (-1)(4-0) = -4$$

$$A_{22} = (-1)^{2+2} \cdot \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} = 1 - 4 = -3$$

Matrisin determinantı bulunur.

$$|A| = -13$$

$$A_{23} = (-1)^{2+3} \cdot \begin{vmatrix} 1 & 4 \\ 2 & 0 \end{vmatrix} = (-1)(0-8) = 8$$

$$A_{31} = (-1)^{3+1} \cdot \begin{vmatrix} 4 & 2 \\ 3 & 1 \end{vmatrix} = 4 - 6 = -2$$

$$A_{32} = (-1)^{3+2} \cdot \begin{vmatrix} 1 & 2 \\ 3 & 1 \end{vmatrix} = (-1)(1-6) = 5$$

$$A_{33} = (-1)^{3+3} \cdot \begin{vmatrix} 1 & 4 \\ 3 & 3 \end{vmatrix} = 3 - 12 = -9$$

Örnek-Devam

3) Ek-matris bulunur.

$$Ek(A) = \begin{bmatrix} 3 & -1 & -6 \\ -4 & -3 & 8 \\ -2 & 5 & -9 \end{bmatrix}^{T} = \begin{bmatrix} 3 & -4 & -2 \\ -1 & -3 & 5 \\ -6 & 8 & -9 \end{bmatrix}$$

4) Matrisin tersi bulunur.

$$A^{-1} = \frac{1}{|A|} . Ek(A) = \frac{1}{-13} \begin{bmatrix} 3 & -4 & -2 \\ -1 & -3 & 5 \\ -6 & 8 & -9 \end{bmatrix}$$

MATLAB'da Matrisin Tersini Alma

Matrisin tersini verir.

inv (matris)

tersi hesaplanacak matris

Örnek:

$$A = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 3 & 1 \\ 2 & 0 & 1 \end{bmatrix}$$

```
>> A=[1 4 2;3 3 1;2 0 1]
>> inv(A)
ans =
  -0.2308 0.3077 0.1538
   0.0769 0.2308 -0.3846
   0.4615 -0.6154
                      0.6923
```

Lineer Denklem Sistemlerinin Çözümü

Lineer denklem sistemlerinin Matlab Programı ile çözümü 3 ana başlıkta incelenebilir.

- 1. Cramer Metodu
- 2. Matris Tersi Yöntemi
- 3. "\" Operatörü Yöntemi

Denklem Sayısı ve Bilinmeyen Sayısı Eşit Olan Denklemler

- ➤Bu tip lineer denklemlerin oluşturdukları katsayılar matrisi KARE MATRİS olacaktır.
- ➤Bu tip Denklem sayısı ve bilinmeyen sayısı eşit olan denklem takımlarının çözümün de Cramer Metodu, Matris İnversi yöntemi yada "\" operatörü ile çözüm yöntemi kullanılabilir.

➤Cramer yöntemi, denklem sayısı ile bilinmeyen sayısının eşit olması durumunda, katsayılar matrisinin determinantı sıfırdan farklı ise uygulanır.

Cramer Yöntemi ile Çözümleme

Klasik yöntemlerden biri olup, çözüm iki matrisin determinantları oranı olarak elde edilir. Bu yöntemde, n tane bilinmeyen içeren

$$\vec{A.x} = \vec{b}$$

şeklindeki lineer denklem sisteminin çözümü;

$$x_i = \frac{|D_i|}{|A|}$$
 $(i = 1, 2, 3,, n)$

 $|D_i|$: Katsayılar matrisinde (A), i. sütun atılıp yerine b vektörünün konması ile elde edilen matrisin determinantıdır.

Bu yöntemde, her biri (n×n) boyutundaki (n+1) adet matrisin determinantının bulunup, bunların oranlanması gerekir. Bundan dolayı işlem sayısı fazla ve çözüm süresi uzundur.

Matrislerde Determinant (2×2)

Matrisin köşegenindeki elemanların çarpımından ters köşegenindeki elemanlarının çarpımı birbirinden çıkarılarak bulunur.

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}_{2 \times 2}$$

$$|A| = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = (a_{11} \times a_{22}) - (a_{12} \times a_{21})$$

Matrislerde Determinant (3×3)

1. ve 2. satırlar/sütunlar, aynı matrise 4. ve 5. satır/sütun olarak eklenir ve oluşan matriste sol köşegen çarpımlarının toplamından sağ köşegen çarpımlarının toplamı çıkarılarak determinant bulunur.

Seçilen Satır/Sütuna göre Determinant Bulma

Minör ve Kofaktör kullanılarak determinant hesaplanır.

- Bir kare matrisin bulunduğu a_{ij} elemanının i'nci satır ve j'nci sütunu atıldığında geriye kalan M_{ij} matrisinin determinantına a_{ij} elemanının küçüğü (minörü) denir.
- $ightharpoonup A_{ij} = (-1)^{i+j} |\mathbf{M}_{ij}|$ sayısına \mathbf{a}_{ij} elemanının eş-çarpanı (kofaktörü) denir.

Örnek: 3x3 matrisin determinantı,

Bir satır yada sütun seçilir

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Determinant ifadesi yazılır

$$|A| = a_{11} M_{11} + a_{12} M_{12} + a_{13} M_{13}$$

Kofaktörleri hesaplanır

$$M_{11} = (-1)^{1+1} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$$

$$M_{12} = (-1)^{1+2} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$$

$$M_{13} = (-1)^{1+3} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

MATLAB'da Matrisin Determinantı

Matrisin determinantını verir.

det (matris)

determinantı hesaplanacak matris

Örnek:

$$A = \begin{bmatrix} -2 & -1 & 4 \\ 6 & -3 & -2 \\ 4 & 1 & 2 \end{bmatrix}$$

```
>> A=[-2 -1 4;6 -3 -2;4 1 2]

A =

-2 -1 4
6 -3 -2
4 1 2

>> det(A)
```

$$2x + y - 2z = 0$$

$$x - 2y + z = 5$$

$$x + 3y - 2z = -3$$

Lineer denklemi verilmiş olsun. Burada x, y, z değişkenlerini bulmak için önce değişken katsayılarının matrisi ve eşitliğin sağındaki sayılar sütun vektörü biçiminde yazılmalıdır.

Cramer Metodu

%eşitliğin sağındaki sayılar sütun vektörü olarak girildi

>>m1=A;

>>m1(:,1)=B

>>m2=A;

>>m2(:,2)=B

>>m3=A;

>>m3(:,3)=B

%A matrisi m1 değişkenine atandı

%m1 matrisinin birinci sütununa B vektörü yazdırıldı

%A matrisi m2 değişkenine atandı

%m2 matrisinin ikinci sütununa B vektörü yazdırıldı

%A matrisi m3 değişkenine atandı

%m3 matrisinin üçüncü sütununa B vektörü yazdırıldı

>>x_y_z=[det(m1);det(m2);det(m3)] / det(A) %klasik çözüm Cramer Metodu

$$x_y_z=$$

2.2

-0.4

2.0

Matris Tersi Yöntemi

%matris tersini kullanarak çözüm

NOT: Sadece kare matrislerin tersleri bulunmaktadır.

Gauss Eliminasyon Yöntemi(\)

GAUSS-JORDAN ELİMİNASYONU (GAUSS-JORDAN ELIMINATION)

Gauss-Jordan Eliminasyonunda A matrisi Birim matrise dönüştürülecek şekilde işlemler uygulanılır. 3x3 matris için Gauss eliminasyonu uygulanarak aşağıdaki matris elde edilir:

$$\begin{bmatrix} a_{11}^{(0)} & a_{12}^{(0)} & a_{13}^{(0)} & b_1^{(0)} \\ 0 & a_{22}^{(1)} & a_{23}^{(1)} & b_2^{(1)} \\ 0 & 0 & a_{33}^{(2)} & b_3^{(2)} \end{bmatrix}$$

Son satırda $a_{33}^{(2)}$ ye bölersek

$$\begin{bmatrix} a_{11}^{(0)} & a_{12}^{(0)} & a_{13}^{(0)} & b_1^{(0)} \\ 0 & a_{22}^{(1)} & a_{23}^{(1)} & b_2^{(1)} \\ 0 & 0 & a_{33}^{[1]} = 1 & b_3^{[1]} = b_3^{(2)}/a_{33}^{(2)} \end{bmatrix}$$

elde ederiz. Sonrasında 3. satırı

 $a_{m3}^{(m-1)}(m=1,2)$ ile çarparak 1.ve 2. Satırlardan çıkartırsak

$$\begin{bmatrix} a_{11}^{(0)} & a_{12}^{(0)} & a_{13}^{[1]} = 0 & b_1^{[1]} = b_1^{(0)} - a_{13}^{(0)} b_3^{[1]} \\ 0 & a_{22}^{(1)} & a_{23}^{[1]} = 0 & b_2^{[1]} = b_2^{(1)} - a_{23}^{(1)} b_3^{[1]} \\ 0 & 0 & a_{33}^{[1]} = 1 & b_3^{[1]} \end{bmatrix}$$

sonucunu elde ederiz. Tekrar

2.satırı $a_{22}^{(1)}$ ile bölersek

2.satırı $a_{22}^{(1)}$ ile bölersek

$$\begin{bmatrix} a_{11}^{(0)} & a_{12}^{(0)} & 0 & b_1^{[1]} \\ 0 & a_{22}^{[2]} = 1 & 0 & b_2^{[2]} = b_2^{[1]}/a_{22}^{[1]} \\ 0 & 0 & a_{33}^{[1]} = 1 & b_3^{[1]} \end{bmatrix}$$

sonucunu elde ederiz. 2.satırı

 $a_{m2}^{(m-1)}(m=1)$ ile çarpıp ilk satırdan çıkartırsak

$$\begin{bmatrix} a_{11}^{(0)} & 0 & 0 & b_1^{[2]} = b_1^{[1]} - a_{12}^{(0)} b_2^{[2]} \\ 0 & 1 & 0 & b_2^{[2]} \\ 0 & 0 & 1 & b_3^{[1]} \end{bmatrix}$$

sonucunu elde ederiz. Burada tekrar ilk

satırı $a_{11}^{(0)}$ ile bölersek

$$\begin{bmatrix} 1 & 0 & 0 & b_1^{[3]} = b_1^{[2]}/a_{11}^{(0)} \\ 0 & 1 & 0 & b_2^{[2]} \\ 0 & 0 & 1 & b_3^{[1]} \end{bmatrix}$$

ifadesinde A matrisini birim matrise döndürmüş

oluruz. Sağ taraftaki vektörler de çözüm olur.

```
Editor - C:\Matlab Dersler\gauss jordan elimination.m
   gauss_jordan_elimination.m 💥 🕇
         function gauss jordan_elimination
 1
         clc; clear all; warning off;
 2 -
         A=[1 \ 2 \ 5;-1 \ 0 \ 2; \ 2 \ 1 \ 3]; b=[2;0;1]; [n \ m]=size(A);
 3 -
 4 —
         A=[A b]; %genişletilmiş matris
 5
         for j=1:n-1 % sütunlar
 7 —
              for i=j+1:n % satirlar
 8 —
                   if A(i,j) \sim = 0
 9 —
                       lambda=A(i,j)/A(j,j);
10 -
                       A(i,j:n+1) = A(i,j:n+1) - lambda * A(j,j:n+1);
11 -
                   end
12 -
              end
13 -
              A(j,1:n+1) = A(j,1:n+1)/A(j,j);
14 —
         end
15 -
         A(n,n:n+1) = A(n,n:n+1)/A(n,n);
16
17 —
         for j=n:-1:1
18 -
              for i=j-1:-1:1
19 -
                   lambda=A(i, j);
20 -
                  A(i,i:n+1) = A(i,i:n+1) - lambda * A(j,i:n+1);
21 -
              end
22 -
         end
23 -
       x=A(:,n+1);
24 -
       fprintf('%5s %3s\n','Çözüm','-x-');
         fprintf('%12.8f\n',x)
25 -
```

```
Editor - C:\Matlab_Dersler\gauss_jordan_elim_2.m
  gauss_jordan_elimination.m 💥 gauss_jordan_elim_2.m 💥 gaus_gaus_jordan.m 💥
                                                            gauss_jordan_elimination.asv 💥
        function [x,err]=gauss jordan elim(A,b)
 1
 2 -
        A = [1 \ 1 \ 1; 2 \ 3 \ 5; \ 4 \ 0 \ 5] \% input for augmented matrix A
        b = [5 ; 8; 2] % intput for matrix B
 3 —
 4 -
        [n,m]=size(A); % finding the size of matrix A
 5 —
        err =0: % calculation of error
 6 -
        x=zeros(n,1); % calling fuction zero
 7 -
        if n \sim = m
 8 -
             disp('error: n~=m'); % displaying error if found
 9 —
             err = 1;
10 -
         end % end of the scope of if
11 -
         if length(b) ~= n % finding the legth of matrix B
12 -
             disp('error: wrong size of b'); % displaying error, if found
             err = 2;
13 -
        else
14 -
15 -
             if size(b,2) \sim= 1
16 -
                 b=b';
17 -
             end % end of the scope of if-else
18 -
             if size(b,2) \sim= 1
19 -
                  disp('error: b is a matrix'); % displaying erron in matrix B
20 -
                  err = 3:
21 -
             end
22 -
        end
23 -
        if err == 0
24 -
             Aa=[A,b];
25 -
             for i=1:n
```

```
Editor - C:\Matlab_Dersler\gauss_jordan_elim_2.m
  gauss_jordan_elimination.m 💥 gauss_jordan_elim_2.m 💥 gaus_gaus_jordan.m 💥
                                                        gauss_jordan_elimination.asv X
25 —
            for i=1:n
26 -
                 [Aa(i:n,i:n+1),err]=gauss pivot(Aa(i:n,i:n+1));
27 -
                if err == 0
28 -
                    Aa(1:n,i:n+1)=gauss jordan step(Aa(1:n,i:n+1),i);
29 -
                end
30 -
            end
31 -
            x=Aa(:,n+1);
32 -
       end
33 -
      L A=0;
34
     function A1=gauss jordan step(A,i) % calling of fuction function
35
36 -
       [n,m]=size(A); % determination of size of matrix A
      A1=A; % assigning A to A1
    s=A1(i,1);
    A1(i,:) = A(i,:)/s;
40 - k=[[1:i-1],[i+1:n]];
41 - | for j=k
      s=A1(j,1);
            A1(j,:)=A1(j,:)-A1(i,:)*s;
     end % end of for loop
     function [A1,err]=gauss pivot(A) % calling of fucntion
     [n,m]=size(A); % finding the size of matrix A
47 - A1=A; % process of assigning
     err = 0; % error flag
      if A1(1,1) == 0
            check = logical(1); % logical(1) - TRUE
```

```
ENVIRONMENT
                                                     SIMULÍNK
 Editor - C:\Matlab_Dersler\gauss_jordan_elim_2.m
  gauss_jordan_elimination.m 💥 gauss_jordan_elim_2.m 💥
                                           gaus_gaus_jordan.m
                                                             gauss_jordan_elimination.asv
             s=A1(j,1);
42 -
             A1(i,:)=A1(i,:)-A1(i,:)*s;
43
        end % end of for loop
45
        function [A1,err]=gauss pivot(A) % calling of fucntion
         [n,m]=size(A); % finding the size of matrix A
46 -
        A1=A; % process of assigning
        err = 0; % error flag
        if A1(1,1) == 0
             check = logical(1); % logical(1) - TRUE
50 -
             i = 1;
             while check
                  i = i + 1;
                  if i > n
54 -
                      disp('error: matrix is singular');
                      err = 1:
                      check = logical(0);
58 -
                  else
                      if A(i,1) ~= 0 & check
59 -
60 -
                           check = logical(0);
                           b=A1(i,:);
61 -
                                             % process to change row 1 to i
                           A1(i,:)=A1(1,:);
                           A1(1,:)=b;
                      end
                  end
             end
        end
```

```
Editor - C:\Matlab_Dersler\gaus_gaus_jordan.m
  gauss_jordan_elimination.m × gauss_jordan_elim_2.m × gaus_gaus_jordan.m × gauss_jordan_elimination.asv × +
        % Code from "Gauss elimination and Gauss Jordan methods using MATLAB"
 1
        % https://www.youtube.com/watch?v=kMApKEKisKE
 3
        a = [3 \ 4 \ -2 \ 2 \ 2]
 5
            4 9 -3 5 8
            -2 -3 7 6 10
            1 4 6 7 2];
 8
 9
10
        11
        %Gauss elimination method [m,n)=size(a);
12 -
        [m,n]=size(a);
        for j=1:m-1
13 -
            for z=2:m
14 -
15 -
                if a(j,j) == 0
16 -
                     t=a(j,:);a(j,:)=a(z,:);
                     a(z,:)=t;
18 -
                end
            end
20 -
          for i=j+1:m
21 -
                a(i,:)=a(i,:)-a(j,:)*(a(i,j)/a(j,j));
22 -
            end
23 -
        end
24 -
        x=zeros(1,m);
        for s=m:-1:1
```

```
Editor - C:\Matlab_Dersler\gaus_gaus_jordan.m
  gauss_jordan_elimination.m × gauss_jordan_elim_2.m ×
                                         gaus_gaus_jordan.m 💥
                                                         gauss_jordan_elimination.asv 💥
        for s=m:-1:1
25 -
26 -
            c=0;
            for k=2:m
28 -
                 c=c+a(s,k)*x(k);
29 -
            end
            x(s) = (a(s,n)-c)/a(s,s);
30 -
31 -
        end
32 -
        disp('Gauss elimination method:');
33 -
        a
34 -
        x '
35
        36
        % Gauss-Jordan method
37 -
        [m,n]=size(a);
38 -
        for j=1:m-1
            for z=2:m
39 -
40 -
                 if a(j,j) == 0
                     t=a(1,:);a(1,:)=a(z,:);
41 -
42 -
                     a(z,:)=t;
43 -
                 end
            end
            for i=j+1:m
                 a(i,:)=a(i,:)-a(j,:)*(a(i,j)/a(j,j));
            end
        end
```

```
if a(j,j) == 0
40 -
41 -
                    t=a(1,:);a(1,:)=a(z,:);
42 -
                    a(z,:)=t;
43 -
                end
44 —
            end
          for i=j+1:m
                a(i,:)=a(i,:)-a(j,:)*(a(i,j)/a(j,j));
            end
       end
49
     for i=j-1:-1:1
52 -
                a(i,:)=a(i,:)-a(j,:)*(a(i,j)/a(j,j));
53 —
            end
54 —
        end
55
56 -
        for s=1:m
            a(s,:)=a(s,:)/a(s,s);
58 —
            x(s)=a(s,n);
      □ end
60 -
     disp('Gauss-Jordan method:');
```