- Motivation
- What is Network Coding?
- Combinatorial Results
- Computational Results
- Conclusions

1. Motivation

- 2. What is Network Coding?
- 3. Combinatorial Results
- 4. Computational Results
- 5. Conclusions

Motivation

Network coding gives a **potential gain in throughput** by communicating more information with fewer packet transmissions compared to the routing method.

Motivation (cont.)

Vector network coding solutions can significantly reduce the required alphabet size compared to the optimal scalar linear solution for the same network. [Ebrahimi and Fragouli (2011)]

- 1. Motivation
- 2. What is Network Coding?
 - Coding at a Node
 - Our Choice of Network Model
 - Network as a Matrix Channel
 - Gap size between scalar and vector solutions
- 3. Combinatorial Results
- 4. Computational Results
- 5. Conclusions

Coding at a node

Instead of store-and-forward in simple routing [Yeung et al. (2006)], each node can transmit an arbitrary combination of its received packets in network coding [Ahswede et al. (2000)].

- a) Intermediate Node b) Destination Node
- c) Source Node

Figure 3. Incoming links and outgoing links of a node in network coding

- 1. Motivation
- 2. What is Network Coding?
 - Coding at a Node
 - Our Choice of Network Model
 - Network as a Matrix Channel
 - Gap size between scalar and vector solutions
- 3. Combinatorial Results
- 4. Computational Results
- 5. Conclusions

Our Choice of Network Model

Figure 4. Generalized Combination Network (GCN)

3 Layers from Top to Bottom

 $x_1, \dots, x_h \in \mathbb{F}_{q_s}$ (Scalar NC) or $\underline{x}_1, \dots, \underline{x}_h \in \mathbb{F}_q^t$ (Vector NC)

Figure 4. Generalized Combination Network (GCN)

Figure 4. Generalized Combination Network (GCN)

Figure 4. Generalized Combination Network (GCN)

Figure 5. The butterfly network is represented as a combination network [Maheshwar et al. (2012)]

- 1. Motivation
- 2. What is Network Coding?
 - Coding at a Node
 - Our Choice of Network Model
 - Network as a Matrix Channel
 - Gap size between scalar and vector solutions
- 3. Combinatorial Results
- 4. Computational Results
- 5. Conclusions

Network as a Matrix Channel

Network as a Matrix Channel (cont.)

Network as a Matrix Channel (cont.)

By using the vector coding, the upper bound number of solutions increases from q^{tsh} to q^{t^2sh} .

- 1. Motivation
- 2. What is Network Coding?
 - Coding at a Node
 - Our Choice of Network Model
 - Network as a Matrix Channel
 - Gap size between scalar and vector solutions
- 3. Combinatorial Results
- 4. Computational Results
- 5. Conclusions

Gap size between scalar and vector solutions

$$r_{
m max,scalar} = f_2\left(q_{
m s}
ight) = f_1(q,t,lpha,h) = r_{
m max,vector}$$

 $f_{1, ext{lower bound}}\left(q,t,lpha,h
ight) \; ------$

Gap size between scalar and vector solutions (cont.)

 $Gap \mathbf{g}$ [Wachter-Zeh (2018)]

 $r_{ ext{max,scalar}} = f_2\left(q_{ ext{s}}\right) = f_1(q, t, \alpha, h) = r_{ ext{max,vector}}$

 $f_{1,\text{lower bound}}(q,t,\alpha,h)$ -----

 $\overbrace{f_{1, ext{lower bound}}\left(q,t,lpha,h
ight) \ ------ f_{2, ext{upper bound}}\left(q_{ ext{s}}
ight)}$

 $q_{ ext{s,min,from bound}} = \min \left\{ q_{ ext{s}} : f_{2, ext{upper bound}} \left(q_{ ext{s}}
ight) \geq f_{1, ext{lower bound}} \left(q, t, lpha, h
ight)
ight\}$

 $\Rightarrow \texttt{g} \geq g_{\texttt{lower bound}} = q_{\texttt{s,min,from bound}}(q,t,\alpha,h) - q^t$

Gap g in this thesis

Gap size between scalar and vector solutions (cont.)

Network	Gaps for a specific vector solution [Etzion and Wachter-Zeh (2018)]	Lower bounds on gaps for a general vector solution [Corollary 5.4 and Corollary 5.3]
$(\epsilon=0,\ell=1)-\mathcal{N}_{h,r,s}$	$\mathrm{N/A}$	N/A
$(\epsilon \geq 1, \ell = 1) - \mathcal{N}_{h,r,s}$	$\mathrm{N/A}$	$q^{rac{\epsilon(lpha-h+\epsilon)}{(lpha-1)(lpha-h+\epsilon+1)(h-\epsilon-1)}t^2+\mathcal{O}(t)}$
$(\epsilon=1,\ell>1)-\mathcal{N}_{h=2\ell,r,s=2\ell+1}$	$q^{t^2/2+\mathcal{O}(t)}$	$q^{t^2/l+\mathcal{O}(t)}$
$(\epsilon = \ell - 1, \ell) - \mathcal{N}_{h=2\ell,r,s=3\ell-1}$	$q^{t^2/2 + \mathcal{O}(t)}$	N/A

Table 1. Lower bounds on gaps were found in this study.

- 1. Motivation
- 2. What is Network Coding?
- 3. Combinatorial Results
 - Proof of a gap for a network with 3 messages
- 4. Computational Results
- 5. Conclusions

Proof of a gap for a network with 3 messages

We show the proof of the most simple case. Other cases considered in this study are similar to this proof.

Proof of a gap for a network with 3 messages (cont.)

Each receiver R_j has to solve a linear equation system of 3t variables with 4t equations to recover 3 source messages as below:

$$\begin{bmatrix} \underline{y}_{j}^{(1)} \\ \underline{y}_{j}^{(2)} \\ \underline{y}_{j}^{(3)} \\ \underline{y}_{j}^{(4)} \end{bmatrix} = \underbrace{A_{j}} \cdot \underline{x} = \begin{bmatrix} A^{(r_{1})} \\ A^{(r_{2})} \\ A^{(r_{3})} \\ A^{(r_{3})} \\ B^{(j)} \\ B \end{bmatrix} \cdot \begin{bmatrix} \underline{x}_{1} \\ \underline{x}_{2} \\ \underline{x}_{3} \end{bmatrix},$$

with
$$\underline{x}_1, \dots, \underline{x}_3 \in \mathbb{F}_q^t$$

$$\underline{y}_j^{(1)}, \dots, \underline{y}_j^{(4)} \in \mathbb{F}_q^t$$

$$\underline{A}_j^{(r_1)}, \dots, \underline{A}_j^{(r_3)} \in \mathbb{F}_q^{t \times 3t} \text{ for } 1 \le r_1 < r_2 < r_3 \le r$$

$$\underline{B}_j^{(j)} \in \mathbb{F}_q^{t \times 3t} \text{ for } j \in \left\{1, \dots, \binom{r}{3}\right\}$$

The network is solvable if \underline{A} has full rank,

$$\operatorname{rk} \left[\begin{array}{c} A^{(r_1)} \\ =j \\ A^{(r_2)} \\ =j \\ A^{(r_3)} \\ =j \\ B^{(j)} \\ = \end{array} \right] \geq 3t$$

Proof of a gap for a network with 3 messages (cont.)

Proof of a gap for a network with 3 messages (cont.)

We then apply the Local lemma to calculate a gap for the network.

Lemma: Symmetric Lovász Local Lemma (LLL) [Schwarz et al. (2013)]

A set of events \mathcal{E}_i , such that each event occurs with probability at most p. If each event is independent of all others except for at most of them d and $4pd \leq 1$, then: $\begin{bmatrix} p \\ -1 \end{bmatrix}$

$$\Pr\left[igcap_{i=1}^n \overline{\mathcal{E}}_i
ight] > 0$$
.