Семинар 9

Алексеев Василий

10 ноября + 16 ноября 2020

Содержание

1	Пов	верхности второго порядка	1
	1.1	Эллипсоид	1
	1.2	Гиперболоид	2
	1.3	1.2.1 Однополостный	
		1.3.1 Эллиптический	2
2	Зада	ачи	3
	2.1	# 10.3(7)	3
	2.2	# 10.38	4
	2.3	# 10.26	5
	2.4	# 10.41	5
	25	# 10.65(2)	6

1. Поверхности второго порядка

Любую поверхность второго порядка, как и кривую второго порядка на плоскости, можно задать в некоторой общей декартовой системе координат уравнением второй степени от координат точки. Правда, в случае поверхностей, помимо x и y, добавляется ещё одна переменная — пусть это будет переменная z.

Так же, как и для кривой второго порядка на плоскости, общее уравнение поверхности второго порядка с помощью ряда замен переменных можно привести к одному из нескольких канонических видов. Более того, некоторые поверхности второго порядка можно получить вращением вокруг оси симметрии соответствующей кривой второго порядка. Далее рассмотрим некоторые из кривых второго порядка.

1.1. Эллипсоид

Пусть на плоскости с выбранной прямоугольной декартовой системой координат OXZ эллипс задан уравнением:

$$\frac{x^2}{a^2} + \frac{z^2}{c^2} = 1$$

Перейдём в пространство. Выберем в пространстве прямоугольную декартову систему координат OXYZ (пусть ось OY проведена так, чтобы система координат в пространстве была правой). И будем вращать указанный ранее эллипс вокруг оси OX: Все точки эллипса будут вращаться по окружностям, "нанизанным" на ось OX. Рассмотрим точку M_0 эллипса. У точки M_0 координаты $(x_0,0,z_0)$. При вращении она в какой-то момент перейдёт в точку M' с координатами (x,y,z_0) . Расстояние до оси вращения как от точки M_0 , так и от точки M, одинаково:

$$\sqrt{x_0^2 + 0^2} = \sqrt{x^2 + y^2}$$

При этом точка M_0 лежит на эллипсе:

$$\frac{x_0^2}{a^2} + \frac{z_0^2}{c^2} = 1$$

Поэтому для получения уравнения эллипсоида (от координат x, y, z) надо заменить x_0^2 в равенстве выше на $x^2 + y^2$ и z_0^2 на z^2 :

$$\frac{x^2 + y^2}{a^2} + \frac{z^2}{c^2} = 1$$

Итак, каждая точка эллипса при вращении будет двигаться по окружности. Уравнению выше удовлетворяет любая точка любой такой окружности — траектории вращения точки эллипса. По построению, только из таких точек и состоит описанный эллипсоид. Поэтому полученной уравнение — уравнение эллипсоида.

Если дополнительно провести сжатие вдоль оси OY, то можно прийти к общему уравнению эллипсоида:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1\tag{1}$$

Если исходный эллипс вращать вокруг оси OZ, а не OX, то эллипсоид получится другой, но его уравнение всё равно будет вида (1).

1.2. Гиперболоид

1.2.1. Однополостный

Аналогично получению уравнения эллипсоида, рассмотрим гиперболу в её канонической системе координат и будем вращать её вокруг оси симметрии (рассматривая уже пространство с прямоугольной системой координат, которая получена из канонической системы координат гиперболы).

Уравнение гиперболы:

$$\frac{x^2}{a^2} - \frac{z^2}{c^2} = 1$$

Если вращать вокруг оси OX, то, по аналогии с эллипсом и эллипсоидом, получаем:

$$\frac{x^2 + y^2}{a^2} - \frac{z^2}{c^2} = 1$$

И после сжатия вдоль оси OY:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 \tag{2}$$

Полученная поверхность, которую в некоторой декартовой системе координат можно описать уравнением вида (2), называется *однополостным гиперболоидом* ("однополостным" — потому что одна полость посередине, "гиперболоидом" — потому что получен вращением гиперболы).

Но у гиперболы, как и у эллипса, две оси симметрии. И можно бы было вращать гиперболу вокруг оси $OZ\dots$

1.2.2. Двуполостный

...В таком случае уравнение поверхности вращения получилось бы таким:

$$\frac{x^2}{a^2} - \frac{y^2 + z^2}{c^2} = 1$$

И после сжатия, опять вдоль оси OY:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 \tag{3}$$

Полученная поверхность вращения называется *двуполостным гиперболоидом* (потому что уже две полости). В некоторой декартовой системе координат двуполостный гиперболоид описывается уравнением (3).

1.3. Параболоид

1.3.1. Эллиптический

Перейдём в вращению параболы вокруг оси симметрии. Пусть парабола задана в канонической системе координат уравнением

$$x^2 = 2pz$$

При вращении вокруг оси ОХ получим поверхность

$$x^2 + y^2 = 2pz$$

Или, после сжатия-растяжения вдоль осей OX и OY, можно прийти к уравнению вида:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2z\tag{4}$$

Поверхность называется эллиптическим параболоидом ("эллиптическим" — потому что в сечении плоскостями вида z=C получаются эллипсы).

В полученном уравнении (4) можно поменять знак "плюс" на "минус", и тогда получится...

1.3.2. Гиперболический

...следующее уравнение:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2z\tag{5}$$

Поверхность, описываемая в некоторой декартовой системе координат уравнением (5) называется *гиперболическим параболоидом* ("гиперболическим" — потому что в сечении плоскостями вида z = C получаются гиперболы).

Гиперболический параболоид — не поверхность вращения. Опустим анализ уравнения (5) и скажем просто, что о гиперболическом параболоиде можно думать как о поверхности, полученной при движении вершины одной параболы по другой параболе, так что оси парабол параллельны, ветви их направлены в противоположные стороны, а сами параболы лежат во взаимно перпендикулярных плоскостях...

2. Задачи

2.1. # 10.3(7)

Определить тип поверхности при разных λ :

$$x^2 + \lambda(y^2 + z^2) = \lambda$$

Решение. Рассмотрим случай $\lambda = 0$:

$$x^2 = 0 \leftrightarrow x = 0$$

Получается плоскость.

Пусть теперь $\lambda > 0$. Поделим обе части исходного уравнения на λ :

$$\frac{x^2}{\lambda} + y^2 + z^2 = 1$$

Это эллипсоид.

Пусть теперь $\lambda < 0$. Снова можно поделить обе части уравнения на λ , только теперь "смотреть" на левую часть стоит по-другому:

$$y^2 + z^2 - \frac{x^2}{-\lambda} = 1$$

Это — гиперболоид (однополостный).

2.2. # 10.38

Составить уравнение прямого кругового цилиндра, проходящего через точку M(1,1,2), и ось которого задана системой уравнений x=1+t, y=2+t, z=3+t, $t\in\mathbb{R}$.

Решение. Очевидно, данных в задаче в самом деле достаточно для задания цилиндра. Первым шагом хотелось бы найти радиус цилиндра...

Направляющий вектор прямой-оси цилиндра ${\it a}$ и точка ${\it P}_0$ на оси цилиндра: ${\it a}=(1,1,1)$, ${\it P}_0(1,2,3)$.

Из определения цилиндра следует, что в сечении кругового цилиндра плоскостями, параллельными основанию, будут получаться окружности. Каждой точке на поверхности цилиндра соответствует плоскость α , перпендикулярная оси и при сечении цилиндра дающая окружность, на которой лежит эта точка. А каждой такой окружности соответствует точка на оси цилиндра. Найдём точку P на оси цилиндра, соответствующую точке M, данной в условии. Зная координаты точки P, можно будет найти радиус основания цилиндра как расстояние d между точками P и M: R = d(P, M).

Направляющий вектор оси a является и вектором нормали плоскостей, перпендикулярных оси цилиндра. Поэтому семейство плоскостей, перпендикулярных оси, задаётся уравнением

$$x + y + z + D = 0, \quad D \in \mathbb{R}$$
 (6)

Найдём, какой точке t_0 на оси соответствует плоскость с заданным свободным членом D:

$$(1+t_0) + (2+t_0) + (3+t_0) + D = 0 \Leftrightarrow D = -6 - 3t_0 \Leftrightarrow t_0 = \frac{-6 - D}{3}$$

Плоскость α для точки M(1, 1, 2):

$$1+1+2+D=0 \Leftrightarrow D=-4$$

Поэтому точка P на оси (и на той же плоскости, что и точка M):

$$t_P = \frac{-6 - (-4)}{3} = -\frac{2}{3}$$

$$\begin{cases} x_P = 1 + t_P = 1 - \frac{2}{3} = \frac{1}{3} \\ y_P = 2 + t_P = 2 - \frac{2}{3} = 1\frac{1}{3} \\ z_P = 3 + t_P = 3 - \frac{2}{3} = 2\frac{1}{3} \end{cases}$$

Теперь можно найти радиус цилиндра:

$$R = d(P, M) = \sqrt{(x_M - x_P)^2 + (y_M - y_P)^2 + (z_M - z_P)^2} = \dots = \frac{\sqrt{6}}{3}$$

Теперь рассмотрим произвольную точку M'(x,y,z) на цилиндре. Ей, как и точке M, соответствует некоторая плоскость α' из семейства (6) и точка P' на оси цилиндра:

$$\alpha': x + y + z + D' = 0 \Leftrightarrow D' = -(x + y + z)$$

$$P' \in \alpha' \Leftrightarrow x_{P'} + y_{P'} + z_{P'} + D' = 0$$

$$\Leftrightarrow (1 + t_{P'}) + (2 + t_{P'}) + (3 + t_{P'}) + D' = 0 \Leftrightarrow t_{P'} = \frac{-6 - D'}{3}$$
(7)

Поэтому

$$t_{P'} = \frac{-6 + x + y + z}{3} \tag{8}$$

U снова выписываем выражение для расстояния от точки M' (в этот раз произвольной на цилиндре) до соответствующей ей точки P':

$$d(M', P') = \sqrt{(x - x_{P'})^2 + (y - y_{P'})^2 + (z - z_{P'})^2} = R$$

Подставляя вместо $x_{P'}$, $y_{P'}$, $z_{P'}$ их выражения через $t_{P'}$, а затем заменяя $t_{P'}$ его представлением через координаты x, y, z точки M' (8), и вспоминая найденный ранее R, получаем уравнение цилиндра:

$$x^{2} + y^{2} + z^{2} - xy - xz - yz + 3x - 3z + 2 = 0$$

2.3. # 10.26

Найти уравнение прямого кругового цилиндра радиуса R с осью $r=r_0+at, t\in \mathbb{R}$.

Решение. Для произвольной точки r цилиндра верно то, что вектор $r-r_0$ равен произвольному сдвигу вдоль вектора a и сдвигу вдоль произвольного направления, перпендикулярного a, на расстояние, равное R. Таким образом, для точек цилиндра постоянен модуль проекции вектора $r-r_0$ на направление, перпендикулярное a:

$$|\boldsymbol{r} - \boldsymbol{r}_0| \sin \angle (\boldsymbol{r} - \boldsymbol{r}_0, \boldsymbol{a}) = R$$

Полученное выражение и можно считать уравнением цилиндра. Его можно привести к более "рабочему" виду, если умножить обе части на |*a*|:

$$|[\mathbf{r} - \mathbf{r}_0, \mathbf{a}]| = R|\mathbf{a}|$$

2.4. # 10.41

Найти уравнение и определить тип поверхности, образованной вращением прямой l, заданной уравнениями $x=0,\,y-z+1=0,$ вокруг оси OZ.

Решение. Что может получаться при вращении одной прямой вокруг другой? Если прямые параллельны, то будет цилиндр. Если пересекаются — конус. Если скрещиваются... см. задачу 10.40.

Проверим, как расположены друг относительно друга две данные в условии прямые. Но сначала найдём направляющий вектор a и начальную точку r_0 вращаемой прямой l:

$$\boldsymbol{a} = \begin{pmatrix} \begin{vmatrix} 0 & 0 \\ 1 & -1 \end{vmatrix}, \begin{vmatrix} 0 & 1 \\ -1 & 0 \end{vmatrix}, \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} \end{pmatrix} = (0, 1, 1)$$
$$\boldsymbol{r}_0 = (0, 0, 1)$$

Поэтому прямую можно задать в виде системы скалярных параметрических уравнений так:

$$\begin{cases} x = 0 \\ y = t \\ z = 1 + t \end{cases}$$

Направляющий вектор и начальная точка для оси OZ:

$$a_1 = (0, 0, 1), r_1 = (0, 0, 1)$$

Очевидно, что вращаемая прямая l и ось вращения OZ пересекаются в одной точке, (0,0,1). Поэтому искомая поверхность вращения — конус.

Рассмотрим произвольную точку M(x,y,z) на конусе. Этой точке соответствует точка $M_0(x_0,y_0,z_0)$, находящаяся на том же уровне относительно оси OZ, что и точка M, и лежащая на вращаемой прямой l. Расстояния от обеих точек до оси вращения одинаковы. Запишем же в виде формул перечисленные свойства:

$$\begin{cases} \sqrt{(x-0)^2 + (y-0)^2 + (z-z)^2} = \sqrt{(x_0-0)^2 + (y_0-0)^2 + (z-z)^2} \\ z = z_0 \\ x_0 = 0, \ y_0 = t_0, \ z_0 = 1 + t_0 \end{cases}$$

Откуда, исключая из первого уравнения "нулевые" координаты и оставляя только x, y и z некоторой точки M цилиндра, получаем

$$x^2 + y^2 - (z - 1)^2 = 0$$

2.5. # 10.65(2)

Найти центр сечения эллипсоида $x^2 + 2y^2 + 4z^2 = 40$ плоскостью x + y + z = 7.

Решение. Выразим x из уравнения плоскости через y и z (то есть "перейдём" в секущую плоскость):

$$x = 7 - y - z$$

и подставим в уравнение эллипсоида, чтобы получить уравнение сечения:

$$(7 - y - z)^2 + 2y^2 + 4z^2 = 40$$

После приведения подобных членов получаем:

$$3y^2 + 2yz + 5z^2 - 14y - 14z + 9 = 0$$

Это уравнение кривой второго порядка. Координаты центра (если он существует) можно найти из системы уравнений

$$\begin{cases} 3y + z - 7 = 0 \\ y + 5z - 7 = 0 \end{cases}$$

Определитель системы:

$$\Delta = \begin{vmatrix} 3 & 1 \\ 1 & 5 \end{vmatrix} = 15 - 1 = 14 \neq 0$$

Таким образом, центр существует. И его можно найти, например, с помощью метода Крамера:

$$\begin{cases} y = \frac{35 - 7}{14} = 2\\ z = \frac{21 - 7}{14} = 1 \end{cases}$$

И первая компонента:

$$x = 7 - 2 - 1 = 4$$

Поэтому центр — точка (4, 2, 1).