

Theory of Machines and Languages

Fatemeh Deldar

1403-1404

Derivation Trees

■ A second way of showing derivations, independent of the order in which productions are used, is by a derivation or parse tree

Example

 \triangleright A part of a derivation tree representing the production $A \rightarrow abABc$

Derivation Trees

- Let G = (V, T, S, P) be a context-free grammar. An ordered tree is a derivation tree for G if and only if it has the following properties.
 - 1. The root is labeled S.
 - **2.** Every leaf has a label from $T \cup \{\lambda\}$.
 - **3.** Every interior vertex (a vertex that is not a leaf) has a label from V.
 - **4.** If a vertex has label $A \in V$, and its children are labeled (from left to right) $a_1, a_2, ..., a_n$, then P must contain a production of the form

$$A \to a_1 a_2 \cdots a_n$$
.

5. A leaf labeled λ has no siblings; that is, a vertex with a child labeled λ can have no other children.

Derivation Trees

□ Example: $S \rightarrow aAB$,

 $A \rightarrow bBb$,

 $B \to A|\lambda$.

A partial derivation tree, which yields the sentential form *abBbB*

A derivation tree, which yields the sentence abbbb

- Parsing
 - \triangleright Finding a sequence of productions by which a $w \in L(G)$ is derived
- □ Exhaustive search parsing
 - Construct all possible (leftmost) derivations and see whether any of them match w

Example

Consider the grammar

$$S \rightarrow SS |aSb| bSa |\lambda$$

and the string w = aabb.

3.
$$S \Rightarrow bSa$$
,

4.
$$S \Rightarrow \lambda$$

$$S \Rightarrow SS \Rightarrow SSS,$$

 $S \Rightarrow SS \Rightarrow aSbS,$
 $S \Rightarrow SS \Rightarrow bSaS,$
 $S \Rightarrow SS \Rightarrow SS,$

$$S \Rightarrow aSb \Rightarrow aSSb,$$

$$S \Rightarrow aSb \Rightarrow aaSbb,$$

$$S \Rightarrow aSb \Rightarrow abSab,$$

 $S \Rightarrow aSb \Rightarrow ab$.

 $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$.

Round 1

Round 2

Round 3

- Exhaustive search parsing has serious problems
 - 1. It is not efficient
 - 2. it is possible that it never terminates for strings not in L(G)

To solve the second problem, we restrict the form that the grammar by removing λ -productions and unit-productions

- □ In the exhaustive search parsing
 - \triangleright After removing λ -productions and unit-productions, a derivation cannot involve more than 2|w| rounds
 - \triangleright The total number of sentential forms cannot exceed (|P| is the number of productions)

$$M = |P| + |P|^2 + \dots + |P|^{2|w|}$$

= $O(P^{2|w|+1})$.

A context-free grammar G = (V, T, S, P) is said to be a **simple grammar** or **s-grammar** if all its productions are of the form

$$A \rightarrow ax$$

where $A \in V$, $a \in T$, $x \in V^*$, and any pair (A, a) occurs at most once in P.

Example

The grammar

$$S \rightarrow aS |bSS| c$$

is an s-grammar. The grammar

$$S \rightarrow aS |bSS| aSS|c$$

If G is an s-grammar, then any string w in L(G) can be parsed with an effort proportional to |w|.

is not an s-grammar because the pair (S, a) occurs in the two productions $S \to aS$ and $S \to aSS$.