Assignment

Sarvesh K— EE22BTECH11046

Question 9.3.18

From a lot of 30 bulbs which include 6 defectives, a sample of 4 bulbs is drawn at random with replacement. Find the probability distribution of the number of defective bulbs.

Solution:

Parameter	Value	Description	
X	{0,1,2,3,4}	Number of defective bulbs taken	
n	4	Number of bulbs taken	
p	0.2	Taking a defective bulb	
q	0.8	Taking a non defective bulb	
$\mu = np$	0.8	Mean of Binomial distribution	
$\sigma^2 = npq$	0.64	Varience of Binomial distribution	

TABLE 1: Parameter description

let Y be a gaussian Random variable

$$Y \sim N(np, npq) \tag{1}$$

$$\sim N(0.8, 0.64)$$
 (2)

Due to continuity correction Pr(X = x) can be approximated using gaussian distribution as

$$p_Y(x) \approx \Pr(x - 0.5 < Y < x + 0.5)$$
 (3)

$$\approx \Pr(Y < x + 0.5) - \Pr(Y < x - 0.5) \tag{4}$$

$$\approx F_Y(x+0.5) - F_Y(x-0.5)$$
 (5)

CDF of Y is defined as:

$$F_Y(x) = \Pr(Y < x) \tag{6}$$

$$=\Pr\left(\frac{Y-\mu}{\sigma}<\frac{x-\mu}{\sigma}\right) \tag{7}$$

$$\implies \frac{Y - \mu}{\sigma} \sim N(0, 1) \tag{8}$$

$$=1-\Pr\left(\frac{Y-\mu}{\sigma}>\frac{x-\mu}{\sigma}\right) \tag{9}$$

$$= 1 - \Pr\left(\frac{Y - \mu}{\sigma} > \frac{x - \mu}{\sigma}\right)$$

$$= \begin{cases} 1 - Q\left(\frac{x - \mu}{\sigma}\right) & x \ge \mu \\ Q\left(\frac{\mu - x}{\sigma}\right) & x < \mu \end{cases}$$

$$(9)$$

Number of defective bulbs	Binomial distribution	Gaussian approximation	Error
0	0.4096	0.3017	26.342773437
1	0.4096	0.4555	11.206054688
2	0.1536	0.1739	13.216145833
3	0.0256	0.0164	35.9375
4	0.0016	0.00036	77.5

TABLE 2: Comparing the gaussian approximation with binomial

Fig. 1: Binomial and gaussian distribution