Nome: João Diogo Videira Oliveira | N.º Mec: 93295

AULA 5 - ANÁLISE DA COMPLEXIDADE DE ALGORITMOS RECURSIVOS

*** Entregue, num ficheiro ZIP, este guião preenchido e o código desenvolvido ***

Implemente os seguintes algoritmos recursivos – sem recorrer a funções de arredondamento (floor e ceil) – e analise o número de chamadas recursivas executadas por cada algoritmo.

$$T_{1}(n) = \begin{cases} 0, \text{se } n = 0 \\ T_{1}\left(\left\lfloor\frac{n}{3}\right\rfloor\right) + n, \text{se } n > 0 \end{cases}$$

$$T_{2}(n) = \begin{cases} n, \text{se } n = 0, 1, 2 \\ T_{2}\left(\left\lfloor\frac{n}{3}\right\rfloor\right) + T_{2}\left(\left\lceil\frac{n}{3}\right\rceil\right) + n, \text{se } n > 2 \end{cases}$$

$$T_{3}(n) = \begin{cases} n, \text{se } n = 0, 1, 2 \\ 2 \times T_{3}\left(\frac{n}{3}\right) + n, \text{se } n \text{ é múltiplo de 3} \end{cases}$$

$$T_{3}\left(\left\lfloor\frac{n}{3}\right\rfloor\right) + T_{3}\left(\left\lceil\frac{n}{3}\right\rceil\right) + n, \text{caso contrário} \end{cases}$$

Deve utilizar **aritmética inteira**: n/3 é igual a $\left[\frac{n}{3}\right]$ e (n+2)/3 é igual a $\left[\frac{n}{3}\right]$.

- Preencha a tabela da página seguinte com o resultado de cada função e o número de chamadas recursivas para os sucessivos valores de n.
- Analisando os dados da tabela, estabeleça uma ordem de complexidade para cada algoritmo?

$$\begin{split} &T_1(n) \to O(\log n) \\ &T_2(n) \to O(n^{\log_y(x)}) \\ &T_3(n \text{ múltiplos de 3}) \to O(\log n) \\ &T_2(n \text{ não multiplos de 3}) \to O(n^{\log_y(x)}) \end{split}$$

Escreva uma expressão recorrente para o número de chamadas recursivas efetuadas pela função
 T₁(n). Obtenha, depois, uma expressão exata e simplificada; determine a sua ordem de
 complexidade. Compare a expressão obtida com a os dados da tabela. Sugestão: use o
 desenvolvimento telescópico.

$$n = 3^k \Longrightarrow \frac{n}{3} = \left\lfloor \frac{n}{3} \right\rfloor$$

Expressão recorrente para o número de chamadas recursivas:
$$B_1(n) = \begin{cases} 0, & \text{se } n = 0 \\ B_1\left(\frac{n}{3}\right) + 1, & \text{se } n > 0 \text{ e } n = 3^k \end{cases}$$

Expressão exata e simplificada:

$$B_1(n) = 1 + B_1\left(\frac{n}{3}\right)^1 = 2 + B_1\left(\frac{n}{9}\right) = 1 + B_1\left(\frac{n}{27}\right) = \dots = k + B\left(\frac{n}{3^k}\right)$$
$$= k + B_1\left(\frac{3^k}{3^k}\right) = k + B_1(1) = k + 1 = \log_3(n) + 1$$

$$B_1(n) \to \log_3(n) + 1$$

n	T ₁ (n)	Nº de Chamadas Recursivas	T ₂ (n)	Nº de Chamadas Recursivas	T ₃ (n)	Nº de Chamadas Recursivas
0	0	0	0	0	0	0
1	1	1	1	0	1	0
2	2	1	2	0	2	0
3	4	2	5	2	5	1
4	5	2	7	2	7	2
5	6	2	8	2	8	2
6	8	2	10	2	10	1
7	9	2	14	4	14	3
8	10	2	15	4	15	3
9	13	3	19	6	19	2
10	14	3	22	6	22	5
11	15	3	23	6	23	5
12	17	3	26	6	26	3
13	18	3	28	6	28	6
14	19	3	29	6	29	6
15	21	3	31	6	31	3
16	22	3	34	6	34	5
17	23	3	35	6	35	5
18	26	3	38	6	38	2
19	27	3	43	8	43	6
20	28	3	44	8	44	6
21	30	3	49	10	48	4
22	31	3	51	10	51	8
23	32	3	52	10	52	8
24	34	3	54	10	54	4
25	35	3	59	12	59	7
26	36	3	60	12	60	7
27	40	4	65	14	65	3
28	41	4	69	14	69	9

Escreva uma expressão recorrente para o número de chamadas recursivas efetuadas pela função $T_2(n)$. Considere o caso particular $n=3^k$ e obtenha uma expressão exata e simplificada; determine a ordem de complexidade para esse caso particular. Compare a expressão obtida com a os dados da tabela. Sugestão: use o desenvolvimento telescópico e confirme o resultado obtido usando o Teorema Mestre.

$$n = 3^k \Longrightarrow \frac{n}{3} = \left\lfloor \frac{n}{3} \right\rfloor = \left\lceil \frac{n}{3} \right\rceil$$

Expressão recorrente para o número de chamadas recursivas:
$$B_2(n) = \begin{cases} n, & \text{se } n = 0,1,2 \\ 2B_2\left(\frac{n}{3}\right) + 2, & \text{se } n > 2 \text{ e } n = 3^k \end{cases}$$

Expressão exata e simplificada:

$$B_2(n) = 2 + 2B_2\left(\frac{n}{3}\right) = 6 + 4B_2\left(\frac{n}{9}\right) = 14 + 8B_2\left(\frac{n}{27}\right) = \cdots$$

$$= 2^{k+1} - 2 + 2^k B_2\left(\frac{n}{3^k}\right) = 2^{k+1} - 2 + 2^k B_2\left(\frac{3^k}{3^k}\right)$$

$$= 2^{k+1} - 2 + 2^k B_2(1) = 2^{k+1} - 2 = 2^{\log_3(n) + 1} - 2$$

$$B_2(n) \to 2^{\log_3(n)+1} - 2$$

Confirmação do resultado utilizando o Teorema Mestre:

$$B(n) = aB\left(\frac{n}{b}\right) + f(n)$$

 $a = 2; b = 3; f(n) = 2; d = 0(f(n) \to O(n^0))$

Como
$$a > b^d \rightarrow 2 > 3^0$$
, então: $B_2(n) \rightarrow n^{\log_3 2}$

Pode generalizar a ordem de complexidade que acabou de obter para todo o n? Justifique.

Sim, visto que, a ordem de complexidade é a mesma para qualquer valor de n.

 Obtenha uma expressão recorrente para o número de chamadas recursivas efetuadas pela função $T_3(n)$.

$$B_3(n) = \begin{cases} n, se \ n = 0,1,2 \\ B_3\left(\frac{n}{3}\right) + 1, se \ n \ \'e \ multiplo \ de \ 3 \\ 2B_3\left(\frac{n}{3}\right) + 2, caso \ contr\'ario \end{cases}$$

Considere o caso particular $n = 3^k$ e obtenha uma expressão exata e simplificada; determine a ordem de complexidade para esse caso particular. Compare a expressão obtida com a os dados da

tabela. Sugestão: use o desenvolvimento telescópico e confirme o resultado obtido usando o Teorema Mestre.

Se n é múltiplo de 3
$$(n = 3^k)$$
:
 $B_3(n) = 1 + B_3\left(\frac{n}{3}\right) = 2 + B_3\left(\frac{n}{9}\right) = 1 + B_3\left(\frac{n}{27}\right) = \dots = k + B_3\left(\frac{n}{3^k}\right)$

$$= k + B_3\left(\frac{3^k}{3^k}\right) = k + B_3(1) = k + 1 = \log_3(n) + 1$$

$$T_1(n) \rightarrow \log_3(n) + 1$$

Confirmação do resultado utilizando o Teorema Mestre:

$$B(n) = aB\left(\frac{n}{b}\right) + f(n)$$

 $a = 1; b = 3; f(n) = 1; d = 0(f(n) \to O(n^0))$

Como $a \ge b^d \to 1 = 3^0$, então: $B_3(n) \to \log_3 n$

• Pode generalizar a ordem de complexidade que acabou de obter para todo o n? Justifique.

Não, visto que, a ordem de complexidade difere se o valor for ou não múltiplo de 3, ou seja, se n for múltiplo de 3 a ordem de complexidade é uma, se n não for múltiplo de 3, a ordem de complexidade é outra.

• Atendendo às semelhanças entre $T_2(n)$ e $T_3(n)$ estabeleça uma ordem de complexidade para $T_3(n)$. Justifique.

Quando n não é múltiplo de 3, $B_3(n)$ é igual a $B_2(n)$.

$$B_3(n) \to 2^{\log_3(n)+1} - 2$$