

32-bit microcontroller

HC32L110 / HC32F003 / HC32F005

series of Flash serial programming

Huada MCU exchange group: 164973950

Suitable

series	Product number	
HC32L110	HC32L110C6UA	
	HC32L110C6PA	
	HC32L110C4UA	
	HC32L110C4PA	
	HC32L110B6PA	
	HC32L110B4PA	
HC32F003	HC32F003C4UA	
	HC32F003C4PA	
HC32F005	HC32F005C6UA	
	HC32F005C6PA	
	HC32F005D6UA	

content

1Summary	3
2 Introduction to Bootloader	3
3 Serial programming mode	4
3.1 Communication Standards	4
3.2 Hardware connection	4
4 Flash programming process	5
4.1 Download and run RAMCODE	6
4.1.1 Connection Commands	7
4.1.2 Download RAMCODE	7
4.1.3 Executing commands	8
4.1.4 FULL ERASE COMMAND	8
4.2 Changing the baud rate setting	9
4.3 Flash operation	10
4.3.1 Flash blank detection	11
4.3.2 Flash Write a MCLL exchange group: 1649	7395012
4.3.3 Read Flash Checksum	13
4.3.4 Flash encryption settings	14
4.4 Error handling	15
Appendix 1: RAMCODE API interface	16
Command Frame	16
ACK frame	17
1) Serial port baud rate setting	18
2) Flash Chip Erase	19
3) Flash write	19 4) Read Flash
checksum	
5) Flash Blank Check	twenty one
6) Flash encryption settings	twenty one
5Summary	venty two
6Version Information & Contact	twenty three

1 Summary

This article mainly introduces the use of serial programming mode to program the internal Flash of HC32L110 / HC32F003 / HC32F005 series steps and precautions.

2 Introduction to Bootloader

In order to facilitate customers to serially program the internal Flash of HC32L110 / HC32F003 / HC32F005 series products,

The Bootloader is designed to implement various interfaces for customers to develop.

Huada MCU exchange group: 164973950

Tel: 13840373805

3 Serial programming mode

3.1 Communication Standards

Serial programming mode adopts standard UART (Universal Asynchronous Receiver/Transmitter) communication, 1 start

bits, 8 data bits, 1 stop bit.

3.2 Hardware connection

The hardware conditions for serial programming of the internal Flash of HC32L110 / HC32F003 / HC32F005 series MCU are:

- 1) Within the minimum operating system environment.
- 2) The signal line on the programmer side needs to be connected to the four signal lines of VCC, GND, TX and RX as shown in Figure 1 (using HC32L110 series as an example).

Figure 1 Serial programming connection

4 Flash programming process

The overall flow of serial programming to Flash is shown in Figure 2. The programmer uses the baud rate of 9600 to program the target chip

RAMCODE download and baud rate reset, then use the reset baud rate for flash operation.

Figure 2 The overall flow of serial programming

4.1 Download and run RAMCODE

The process of downloading and running RAMCODE is shown in Figure 3.

Figure 3 Download and run the RAMCODE process

Download and run RAMCODE using 4 serial commands: connect command, download command, execute command, full erase command

make.

4.1.1 Connection Command

The connection command 0x18 establishes a communication connection with the target chip to prepare for the subsequent data download. The connection establishment process requires a

Send multiple times within a certain time until the correct ACK 0x11 is received, indicating that the target chip is ready.

The connection command data frame and the corresponding ACK structure are as follows:

	ProgrammerÿTarget Chip	Target chipÿProgrammer	
1 byte	connect command (0x18)		
1 byte		ACKÿ	
,		success	ÿ0x11

4.1.2 Download RAMCODE

The download command 0x00 downloads the RAMCODE data and the external crystal oscillator frequency data to the corresponding position in the internal RAM of the MCU. Down

The command data frame and the corresponding ACK structure are as follows:

	ProgrammerÿTarget Chip	Target chipÿProgrammer	
1 byte	Download command (0x00)		
4 byte	RAM start address (0x20000000)	1640	72050
4 byte	RAMCODE file length GXCHAIIGE GIV	oup. 1048	7 3930
1 byte Command	Checksum (SUM1)		
		АСКÿ	
1 byte		success	ÿ0x01
		Checksum error	ÿ0x02
N byte download	data		
1 byte data chec	ksum (SUM2)		
		АСКÿ	
1 byte		success	ÿ0x01
		Checksum error	ÿ0x02

Note:

- The RAM start address and RAMCODE length data in the table are sent in little-endian mode. The starting address is

0x20000000 sends 0x00, 0x00, 0x00, 0x20 in sequence

- RAMCODE length: provide the data length of RAMCODE file for Huada Semiconductor (in byte)

- SUM1: refers to the 9-byte data of download command, RAM start address, and RAMCODE length, which are accumulated byte by byte result

- SUM2: refers to the result of accumulating the download data of N bytes in bytes

4.1.3 Execute command

RAMCODE starts to run after command 0xC0 is sent, if the command is sent and RAMCODE runs correctly, ACK will

Returns 11 bytes of random data, the data frame and the corresponding ACK structure are shown below.

	ProgrammerÿTarget Chip	Target chipÿProgrammer		
1 byte	Execute command (0xC0)			
8 byte dummy d	ata (all 0x00)			
1 byte command	checksum (0xC0)			
		ACKÿ		
1 byte or 11byte		execution succeed Checksum error	: 11 bytes of random data ÿ0xC2	

4.1.4 Ful	l Erase	Command	
-----------	---------	---------	--

Command

Huada MCU exchange group: 164973950
ase command is used to erase the Flash in the internal user area of the MCU during serial programming. The data frame and corresponding ACK structure are as follows

shown.

	ProgrammerÿTarget Chip	Target chipÿProgramme	er
1 byte Command	d code 1 (0xB5)		
1 byte Comman	d code 2 (0x34)		
1 byte Comman	d code 3 (0x84)		
1 byte Command	d code 4 (0x52)		
1 byte	Check code (0xBF)		
		АСКÿ	
1 byte		execution succeed	ÿ0x01
		mistake	ÿ0x02

4.2 Change the baud rate setting

After RAMCODE is downloaded and run successfully, the API (application interface) implemented by RAMCODE takes effect, and its API interface

Please refer to Appendix 1: RAMCODE API for the format and supported commands.

The programmer can reconfigure the baud rate of the target system through API commands to improve programming efficiency. It is recommended to configure the baud rate.

115200bps. (Currently, the baud rates supported by this series of RAMCODE are 9600, 19200, 38400, 115200bps)

Command example

For example, if the baud rate is set to 115200, the command frame and the ACK data of the successful baud rate setting are as follows:

ProgrammerÿTarget Chip		Target chipÿProgrammer	
Start code	0x49		
Start code	0x53		
F 1 11	0x00		
Frame length	0x09		
CMD	0x01		
	0x00		
Address	0x00		
	J _{0x00} xchan	ge group: 1649	973950
Data length	0x00		
Data length	0x01		
Baudrate	0x06		
Checksum	0x11		
		Start code	0x49
			0x53
		Frame length	0x00
		Tranic length	0x07
		CMD	0x01
		Status	0x00
			0x00
		Address	0x00
			0x00
			0x00
		Checksum	0x08

4.3 Flash operation

After changing the baud rate setting successfully, the serial communication performed by the Flash operation process is performed with the latest configured baud rate.

The Flash operation flow is shown in Figure 4.

Figure 4 Flash operation flow

4.3.1 Flash Blank Detection

Flash blank detection is an optional step. After the detection, ACK will return whether the detected area is blank (full FF).

Command example

After the chip erase is successful, the blank detection and ACK data of the entire flash data are as follows:

ProgrammerÿTarget Chip		Target chipÿProgrammer	
Start code	0x49		
Start code	0x53		
Course law with	0x00		
Frame length	0x0C		
CMD	0x07		
	0x00		
Check address	0x00		
C.105.N. dudi1555	0x00		
	0x00		
Data langth	0x00		
Data length	0x04		
	0x00		
Check Length adda MCU	J ^{0x02} xchan _{0x00}	ge group: 1649	973950
	0x00		
Checksum	0x19		
		Start code	0x49
		Start sous	0x53
		Frame length	0x00
		Traine lengur	0x08
		CMD	0x07
		Status	0x00
			0x00
		Check address	0x00
			0x00
			0x00
		Result	0x01
		Checksum	0x10

4.3.2 Flash Write

Flash write Write the data to be programmed to the corresponding position of the Flash, and can be subpackaged and written multiple times with the Flash write command.

Command example

Write a packet of data with a data length of 64Byte to the Flash address 0x0200 and the ACK data as follows:

ProgrammerÿTarget Chip		Target chipÿProgrammer	
Start code	0x49		
	0x53		
Frame length	0x00		
	0x48		
CMD	0x04		
Write address	0x00		
	0x00		
	0x02		
	0x00		
Write length	0x00		
	0x40		
Write data	Omitted (64byte)		
Checksumuada	/C Oxe3exchang	e group: 164	1973950
		Start code	0x49
			0x53
		Frame length	0x00
			0x07
		CMD	0x04
		Status	0x00
		Write address	0x00
			0x00
			0x02
			0x00
		Checksum	0x0d

Note:

⁻ In the command frame, Write data is the 64-byte data that needs to be written into the Flash.

ÿ In the command frame, Checksum is the value in this example. Please calculate according to the frame structure in the appendix in the application.

4.3.3 Read Flash Checksum

Read Flash checksum command start address and detection length can be set. After reading, ACK will return to the detected area

checksum (accumulated in bytes).

Command example

Flash starts from address 0 and has a length of 3610 bytes. Checksum and ACK data are as follows:

ProgrammerÿTarget Chip		Target chipÿProgrammer	
Start code	0x49		
otan code	0x53		
	0x00		
Frame length	0x0C		
CMD	0x06		
	0x00		
Check address	0x00		
Check address	0x00		
	0x00		
5.1.1	0x00		
Data length	0x04		
Huada MC	U0x00 Xchan	ge group: 1649	973950
	0x00		
Check Lengh	0x0E		
	0x1A		
Checksum	0x3E		
	•	Start code	0x49
		Start code	0x53
			0x00
		Frame length	0x09
		CMD	0x06
		CMD Status	0x06 0x00
		Status	0x00
			0x00 0x00
		Status	0x00 0x00 0x00
		Status Check address	0x00 0x00 0x00 0x00
		Status	0x00 0x00 0x00 0x00 0x00

4.3.4 Flash encryption settings

Flash encryption setting command, encrypt the flash of the target chip, after the success, the RAMCODE and SWD interface cannot be read Flash internal data.

Command example

ProgrammerÿTarget Chip		Target chipÿProgrammer	
Ctart and	0x49		
Start code	0x53		
	0x00		
Frame length	0x08		
CMD	0x09		
	0x00		
Address	0x00		
Address	0x00		
	0x00		
	0x00		
Data length	0x00		
Checksum	0x11		
		Start code	0x49
		Start code	0x53
			0x00
		Frame length	0x07
		CMD	0x09
		Status	0x00
			0x00
		Address	0x00
			0x00
			0x00
		Checksum	0x10

4.4 Error Handling

As shown in Figure 2, RAMCODE download and other processes may fail.

Flash programming of the target chip requires power-off or hardware reset of the chip and re-handshake and RAMCODE download

process

The suggested error handling process is shown in Figure 5. Either mode 1 or mode 2 can be selected to restore the state of the target chip.

Figure 5 Error handling

Note:

- The length of the delay time is related to the hardware environment of the board, and it needs to meet the complete VCC of the system where the MCU is located within the delay time.

 until power down.
- Hardware RESET refers to the reset through the hardware reset pin of the MCU. Please refer to the specifications of the specific chip for the reset timing requirements.

 Book.

Appendix 1: RAMCODE API Interface

command frame

The command frame refers to the data frame sent by the upper computer (PC or programmer) to the lower computer (MCU).

D0D1	D2D3	D4	D5D6D7D8 D9D10			Dn
Start code	Frame Length	CMD Addre	ess	Data Length	Data (optional)	Check Sum
0x4953 XXXX X	x xxxxxxxx xx	xxxxx x	х			

 $Start\ code:\ Data\ frame\ start\ code\ 0x4953,\ D0-0x49,\ D1-0x53\ (mentioned\ in\ the\ RAMCODE\ API\ interface$

word, long data are sent according to this big endian structure)

Frame Length: The length of the data frame, the number of bytes from CMD to Checksum

CMD: Command code, defined as follows:

CMD command		CMD	Order
0x01	Serial port baud rate setting	0x06	Read Flash checksum
0x02 Huai	Flash chip erase EXCOAN	gxor group	Flash whitespace check
0x04	Flash write	0x09	Flash encryption settings

Addressÿ

Flash address, this field is invalid for some commands, it is 0

Data Length: data length, this field is invalid for some commands, it is 0

Data: data, some commands may default to this item

Check Sum: Data frame checksum (Frame Length, CMD, Address, Data Length, Data by byte

add).

ACK frame

The ACK frame refers to the data frame returned by the lower computer (MCU) to the upper computer (PC).

D0D1	D2D3	D4	D5	D6D7D8D9		Dn
Start code	Frame Length	CMD Status		Address	Data (optional)	Check Sum
0x4953 XXXX	xx		XX	xxxxxxx xxxx	XX	·

Start code: same as command frame

Ctart code. came as comm	nane name
Frame Length: same as co	ommand frame
CMDÿ	same as command frame
Statusÿ	ACK status
0 – success;	
1 – Command frame chec	k error;
2 – unsupported command	code;
3 – Flash address is not in	the supported range
4 - Frame length not within	supported range
5 – Data length not within	supported range
6 – Baud rate not supporte	od;
7 – In encrypted state, read	d, write or page erase operations are prohibited;
Address: same as commar	nd frame
Data: same as command f	rame
Check Sum : same as	s command frame

1) Serial port baud rate setting

command frame

D0D1	D2D3	D4	D5D6D7D8 D9D10		D11	D12
Start code	Frame Length	CMD Address	5	Data Length	Data (optional)	Check Sum
0x4953	0x0009	0x01	0x00000000 0x000)1	Baud rate XX	

Baud rate: The baud rate set by the host computer, the detailed definition is as follows:

Baud rate	baud rate
0x01	9600
0x02	14400
0x03	19200
0x04	38400
0x05	57600
0x06	115200
0x07	128000
0x08	76800
0x09	256000

Huada MCU exchange group: 164973950

ACK frame

D0D1	D2D3	D4	D5	D6D7D8D9		D10
Start code	Frame Length	CMD Status		Address	Data (optional)	Check Sum
0x4953	0x0007	0x01	Std	0x00000000	N/A	XX

Std: 0 - Indicates that the command frame was received correctly

non-0 - failure (see ACK frame description for details)

2) Flash chip erase

command frame

D0D1	D2D3	D4	D5D6D7D8 D9D10)	2	D11
Start code	Frame Length	CMD Addres	8	Data Length	Data (optional)	Check Sum
0x4953	0x0008	0x02	0x00000000 0x000	-	N/A	XX

ACK frame

D0D1	D2D3	D4	D5	D6D7D8D9		D10
Start code	Frame Length	CMD Status		Address	Data (optional)	Check Sum
0x4953	0x0007	0x02	Std	0x00000000	N/A	XX

Std: 0 - Chip Erase Successful

non-0 - failure (see ACK frame description for details)

3) Flash write

command frame

DOD1 HUB	D2D3	_{D4} exc	D5D6D7D8 D9D10	group:	D11 ~ Dn-1 Dn	950
Start code	Frame Length	CMD Addres	S	Data Length	Data (optional)	Check Sum
0x4953 XXXX 0	x04		Write Adr	Write Length	Write Data XX	

Write Adrÿ

Flash write start address

Write Length: The length of data written by Flash

Write Dataÿ

Data written by Flash

ACK frame

D0D1	D2D3	D4	D5	D6D7D8D9		D10
Start code	Frame Length	CMD Status		Address	Data (optional)	Check Sum
0x4953	0x0007	0x04	Std	Write Adr	N/A	XX

Std: 0 - Flash write successfully

non-0 - failure (see ACK frame description for details)

Write Adr: Flash write start address

4) Read Flash checksum

command frame

D0D1	D2D3	D4	D5D6D7D8 D9D10		D11D12D13D 14	D15
Start code	Frame Length	CMD Addres	S	Data Length	Data (optional)	Check Sum
0x4953	0x000C	0x06	Check Adr	0x0004 Che	ck Length XX	

Check Adr: The starting address of the flash for calculating the checksum

Check Length: Calculate the length of the checksum (in byte)

ACK frame

D0D1	D2D3	D4	D5	D6D7D8D9	D10 ~ D11 D12	
Start code	Frame Length	CMD Status		Address	Data (optional)	Check Sum
0x4953	0x0009	0x06	Std	Check Adr	Checksum XX	

Std: 0 - Computation of checksum succeeded

non-0 - failure (see ACK frame description for details)

Read Adr: The starting address of the flash for calculating the checksum

Huada MCU exchange group: 164973950

5) Flash blank check

command frame

D0D1	D2D3	D4	D5D6D7D8 D9D10 I	D11D12D13D1	4 D15	
Start code	Frame	CMD Addre	ess	Data	Data	Check Sum
	Length			Length	(optional)	Sulli
0x4953	0x000C	0x07	Check Adr	0x0004 Che	ck Length XX	

Check Blank Adr: Flash start address for blank check

Check Blank Length: length of blank check (in byte)

ACK frame

D0D1	D2D3	D4	D5	D6D7D8D9	D10	D11
Start code	Frame Length	CMD Status		Address	Data (optional)	Check Sum
0x4953	0x0008	0x07	Std	Check Adr	Result	XX

Std: 0 - Blank check succeeded

non-0 - failure (see ACK frame description for details)

Check Adr: Flash start address for blank check

Result: Blank check result MCU exchange group: 164973950

TRUE(1) – check range blank

FALSE(0) - check range is not blank

6) Flash encryption settings

command frame

D0D1	D2D3	D4	D5D6D7D8 D9D10)		D11
Start code	Frame Length	CMD Addres	8	Data Length	Data (optional)	Check Sum
0x4953	0x0008	0x09	0x00000000 0x000	00	N/A	XX

ACK frame

D0D1	D2D3	D4	D5	D6D7D8D9		D10
Start code	Frame Length	CMD Status		Address	Data (optional)	Check Sum
0x4953	0x0007	0x09	Std	0x00000000	N/A	XX

Std: 0 - encryption set successfully

non-0 - failure (see ACK frame description for details)

5 Summary

 $The above chapters \ briefly \ introduced \ Bootloader \ serial \ programming \ and \ explained \ HC32L110\ / \ HC32F003\ / \ HC32F005\ in \ detail$

Series of Bootloader programming interface, users can use the Bootloader according to their actual needs during development.

Huada MCU exchange group: 164973950

Tel: 13840373805

6 Version Information & Contact Information

date	Version rev	sion record
2018/6/4	Rev1.0 initia	al release

If you have any comments or suggestions in the process of purchasing and using, please feel free to contact us.

Emailÿmcu@hdsc.com.cnCU exchange group: 164973950

Website: www.hdsc.com.cn

Mailing address: No. 39, Lane 572, Bibo Road, Zhangjiang Hi-Tech Park, Shanghai

Postcode: 201203

