Yale

Quantization

CPSC 471 / 571: Trustworthy Deep Learning

Rex Ying

Readings

Readings are updated on the website (syllabus page)

- Quantization readings:
 - I-BERT: Integer-only BERT Quantization (ICML'21 Oral)
 - QLoRA: Efficient Finetuning of Quantized LLMs (NeurIPS'23 Spotlight)

Outline

1. Basics of Quantization

2. Integer-only Transformers

3. Efficient fine-tuning methods

Outline

1. Basics of quantization

2. Integer-only Transformers

3. Efficient fine-tuning methods

What is quantization?

Quantization is a well-studied technique for model optimization

• Significant reduction in model size (often 4× when using 8-bit

quantization) and inference latency

Usual floating point is 32-bit

- Weight quantization
- Activation quantization
- Caveat: quality loss during inference

What are the tradeoffs?

- Quantization has two competing goals:
 - Maximize the precision of the target computation
 - Minimize the number of bits in the discrete representation

How do we choose the discrete set of values?

- The choice of the discrete set of values is dependent on the application. However, **integers** are often a convenient choice.
- In many cases, this set of values consists of low-precision integers, such as signed 8-bit integers with range [-128, 128).

Why do we care about quantization?

Memory wall problem

- Limited capacity of on-device memory / cache
- Limited bandwidth of device communication channels

Environmental impact

- Integer ALUs are smaller and more energy-efficient relative to FPUs.
- This is especially important for mobile devices and embedded systems.

Memory Wall

Reference: Al and Memory Wall (2021)

Quantization-Aware Training

- The training phase of the model is quantization-aware
 - Not necessarily trained with low precision
 - "Fake quantized" forward pass

$$\begin{split} \widehat{\mathbf{X}} &= \operatorname{FakeQuant}(\mathbf{X}) \\ &= \operatorname{Dequantize}(\operatorname{Quantize}(\mathbf{X})) \\ &= s \left(\operatorname{round} \left(\frac{\operatorname{clamp}(\mathbf{X}, x_{min}, x_{max})}{s} \right) + z \right) - z \right) \\ &= s \left(\operatorname{round} \left(\frac{\operatorname{clamp}(\mathbf{X}, x_{min}, x_{max})}{s} \right) \right) \end{split}$$

Reference: [1712.05877] Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference (CVPR 2018)

(a) Quantization-Aware Training

(b) Final fixed-point inference graph

What else can we quantize?

Embeddings

- Reduces storage and serving costs (saves millions of dollars / year at scale)
- This technique is widely used in production at Google, Meta, Pinterest, etc.

Optimizers

- Optimizer state is often quite large, impacting memory usage
- 8-bit optimizers can be a drop-in replacement for many models

KV caches

- Useful for quantization-aware training of large language models
- Challenge: LLM fine-tuning datasets are typically limited in size

References: 8-bit Optimizers via Block-wise Quantization (ICLR 2022 Spotlight)
LLM-QAT: Data-Free Quantization Aware Training for Large Language Models (2023)

How do we measure success?

Basic metrics

- Size of model weights
- Runtime memory usage
- Inference latency
- Inference throughput
- Utilization metrics
 - Hardware FLOPs utilization (HFU)
 - Model FLOPs utilization (MFU)

Model FLOPs Utilization

Model FLOPs utilization

- Ratio of achieved throughput to theoretical peak throughput R
- Example: $R = \frac{P}{6N + 12LHQT}$ for Transformer decoder-only model
- P: Theoretical peak matmul throughput (FLOPs per second)
- *N*: Model parameter count
- L, H, Q, T: layers, attention heads, head dim, sequence length
- Non-attention operations in the model account for 6N FLOPs per token seen:
 - 2N for forward pass and 4N for backward pass.
- Self-attention accounts for 6LH(2QT) FLOPs per token seen.

For more information on how the coefficients are estimated:

https://www.adamcasson.com/posts/transformer-flops

https://medium.com/@dzmitrybahdanau/the-flops-calculus-of-language-model-training-3b19c1f025e4

Outline

1. Basics of quantization

2. Integer-Only Transformers

3. Efficient fine-tuning methods

Simulated Quantization

- Inefficient baseline: store model parameters in low-precision integer format, compute in floating-point format.
- Prior work on Transformer quantization used this approach (Bhandare et al., 2019; Shen et al., 2020; Zafrir et al., 2019).
- Reduces the cost of model transmission and loading, but does not take full advantage of fast, energy-efficient hardware.

CNN Quantization

- Many papers have focused on quantization of CNNs.
- Easy to quantize linear operations and RELU activations.
 - (1) Dequantize value, perform linear operation on real value
 - (2) Quantize value, perform linear operation, dequantize later
- Hard to quantize non-linear operations (e.g., BatchNorm).

Non-linear Operations

- The Transformer model contains three non-linear operations that are challenging to quantize with integer-only arithmetic.
- These non-linear operations are GELU, Softmax, and LayerNorm.
 - Softmax relies on the exponential function
 - LayerNorm relies on the square root function
- I-BERT approximates these building blocks

Polynomial Approximation

- Goal: Find a unique polynomial of degree at most n that passes through all n+1 unique points $\{(x_0,f_0),\dots,(x_n,f_n)\}$.
- Solution: Lagrange interpolation formula

$$L(x) = \sum_{i=0}^{n} f_i l_i(x)$$
 where $l_i(x) = \prod_{\substack{0 \leqslant j \leqslant n \ j \neq i}} \frac{x - x_j}{x_i - x_j}$

Integer-Only GELU

Activation function

$$GELU(x) = x \cdot \frac{1}{2} [1 + erf(\frac{x}{\sqrt{2}})]$$

Error function

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

- Approximation strategy
 - Approximate error function in a tight interval
 - Clip values at the boundaries of the initial approximation
 - Create a symmetric extension of the clipped approximation

Integer-Only GELU

• Search for degree-2 polynomial interpolation of erf that minimizes L^2 distance of i-GELU and GELU in a small range (subject to tuning).

$$L(x) = \text{sgn}(x) \cdot a(\text{clip}(|x|, 0, -b) + b)^2 + 1.$$

$$a = -0.2888$$
 and $b = -1.769$

$$i\text{-GELU}(x) = x \cdot \frac{1}{2} [1 + L(\frac{x}{\sqrt{2}})]$$

By assuming that $L(x) = a(x+b)^2 + c$ and use it to approximate GELU

Distance from GELU	Int-only	L ² dist	L^{∞} dist
$x\sigma(1.702x)$ [1] h-GELU [2]	×	0.012 0.031	0.020 0.068
i-GELU (Ours)	/	0.0082	0.018

The most accurate approximation method

Integer-Only Softmax

Softmax definition

Softmax
$$(x)_i = \frac{e^{x_i}}{\sum_{j=0}^k e^{x_j}}$$
 where $x = [x_1, \dots, x_k]$

Approximation strategy

- Rewrite softmax such that e^x is only evaluated in negative domain.
- Hence only need to approximate e^x in negative domain.
- High-degree polynomials do not work well. Instead find an approximation in a tight interval and extend to full domain.

Integer-Only Softmax

Rewrite the softmax function:

Softmax
$$(x)_i = \frac{e^{x_i - x_{max}}}{\sum_{j=0}^k e^{x_j - x_{max}}}$$
 where $x_{max} = \max\{x_1, \dots, x_k\}$

- Search for degree-2 polynomial interpolation of e^x that minimizes L^2 distance in the range $[-\ln 2, 0]$.
- Rewrite real value $x = (-\ln 2) \cdot z + p$ where the real value $p \in [-\ln 2, 0]$.
- Calculate $e^x = 2^{-z} \cdot e^p$ with bitshift and the polynomial approximation for e^p .

Integer-Only Layer Normalization

Layer Normalization function:

LayerNorm
$$(x; \gamma, \beta) = \gamma \frac{x - \mu_L}{\sigma_L} + \beta$$

- μ_L , σ_L are the mean and standard deviation of the input across the channel dimension. **Calculated at runtime!**
- Challenge is the square root term in the calculation of the standard deviation. Solve with fast iterative algorithm.
- Here we obtain an exact result: (see paper for details)

$$isqrt(n) = \lfloor \sqrt{n} \rfloor$$

I-BERT Results

- No accuracy degradation on GLUE benchmark.
- Improvements could be due to reduced ability to overfit.

	(a) RoBERTa-Base											
	Precision	Int-only	MNLI-m	MNLI-mm	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Avg.
Baseline	FP32	Х	87.8	87.4	90.4	92.8	94.6	61.2	91.1	90.9	78.0	86.0
I-BERT	INT8	1	87.5	87.4	90.2	92.8	95.2	62.5	90.8	91.1	79.4	86.3
Diff			-0.3	0.0	-0.2	0.0	+0.6	+1.3	-0.3	+0.2	+1.4	+0.3
(b) RoBERTa-Large												
	Precision	Int-only	MNLI-m	MNLI-mm	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Avg.
Baseline	FP32	X	90.0	89.9	92.8	94.1	96.3	68.0	92.2	91.8	86.3	89.0
I-BERT	INT8	1	90.4	90.3	93.0	94.5	96.4	69.0	92.2	93.0	87.0	89.5
Diff			+0.4	+0.4	+0.2	+0.4	+0.1	+1.0	0.0	+1.2	+0.7	+0.5

I-BERT Results

- Up to 4.0x speedup with NVIDIA T4 GPUs. [Kim et al. 2021]
- Up to 39.6x speedup with custom hardware. [Kim et al. 2023]

SL		12	28						
BS	1	2	4	8	1	2	4	8	Avg.
Base Large	2.42	3.36	3.39	3.31	3.11	2.96	2.94	3.15	3.08
Large	3.20	4.00	3.98	3.81	3.19	3.51	3.37	3.40	3.56

Outline

1. Basics of quantization

2. Integer-only Transformers

3. Efficient fine-tuning methods

Low-rank adapters

Low-rank adapters

 Low-rank adapters are small, additional neural network modules inserted between the layers of a pre-trained model. They are designed to adapt the model to new tasks with minimal additional parameters.

Key benefits

- They introduce a minimal number of parameters, making the fine-tuning process more efficient.
- Adapters allow for task-specific tuning while keeping the original model weights frozen.

16-bit Transformer

Mode

Pretrained

Weights

 $W \in \mathbb{R}^{d \times d}$

16-bit Transformer

Reference: LoRA: Low-Rank Adaptation of Large Language Models (2021)

QLoRA

Motivating question

How to make fine-tuning LLMs more accessible?

Key techniques

- Low rank adapters
 - Same as LoRA
- 4-bit quantized base model
 - Uses new data type (NF4)
- Paged optimizers
- Double quantization
 - See paper for details

Reference: QLoRA: Efficient Finetuning of Quantized LLMs (NeurIPS 2023)

Model	Fine-tuning memory
T5-11B	132 GB
Mistral-7B	84 GB
LLaMA2-70B	840 GB
	QLoRA
Model	Fine-tuning memory
T5-11B	6 GB
Mistral-7B	5 GB
LLaMA2-70B	46 GB

Paged Optimizers

Problem

Varying sequence lengths can cause GPU memory spikes in fine-tuning

Solution

- NVIDIA GPUs support the unified memory feature, which does automatic
 page-to-page transfers between the CPU and GPU for error-free GPU
 processing in the scenario where the GPU occasionally runs out-of-memory.
- This feature is used to allocate paged memory for the optimizer states which are then automatically evicted to CPU RAM when the GPU runs out-of-memory and paged back into GPU memory when the memory is needed in the update step. This solves the key problem for single GPU fine-tuning.

4-bit NormalFloat (NF4)

• Information-theoretically optimal data type for normal distributions

