

Типы распределений, примеры.

Рев. Слугайная величина в имеет дискретию распределение если она пришимает лишь стотию тисло значений.

(Они называются стомани)

o Hanpunep, pacnpegeneure Depugnnu. Atomu: P(X=1)=p P(X=0)=1-p

Def ϕ -9 pachpageneurs β ston chyrae uncer by $F_g(t) = P(g = 0)$ $i: q_i < t$

Def. Cryratiuas benuruua g uncer abconstruo venpepuluse pacripegeneuue ecnu $ff_g(t)$ - innotimocto, takas, to ff

$$F_{3}(t) = \int_{-\infty}^{t} f_{3}(\eta) d\eta$$

Chaiciba nnotusciu: 1) $\forall t \quad f_{\xi}(t) > 0$ 2) $\int_{0}^{\infty} f_{\xi}(t) dt = 1$

• $P(a < \xi < b) = P(a < \xi < b) = P(a < \xi \leq b) = P(a < \xi \leq b) = \int_{a}^{b} f_{g}(t)dt$ T.k & Chyrice acconorus uempepulsus pacupageneuus $P(\xi = C) = 0$ $\forall c = const$

Def Pacnpegeneuve ξ var. Curyngpur, ecru ξ venpepubua, vo ve cywearbyer $f_{\xi}(t) > 0$ taxai, 770 Ht $F_{\xi}(t) = \int_{-\infty}^{\infty} f_{\xi}(\eta) d\eta$ lamp. pacnpeg. va recturye kautopa miro

Def. g where chemanice pacinpegeneum eans $f_g(t) = \alpha F_D(t) + \beta F_C(t)$ $\beta = 1 - d$, $\alpha \in [0,1]$ $\beta = 1 - d$, $\alpha \in [0,1]$ $\beta = 1 - d$, $\alpha \in [0,1]$ $\beta = 1 - d$, $\alpha \in [0,1]$