Code structure

• We start in the "refactoring" branch in the current repository. This branch will be moved to a new repo next month.

- See Coding style (coding.md)
 - Use clang-format (only version 8) with the given .clang-format file
- Class names are indicative, feel free to use better options.

CMAKE structure

Communicators

- Changes w.r.t. prototype:
 - Use MPI_Comm_split instead of MPI grid functions for 2d grids:
 - Compute row and col index w.r.t. the ordering (row/col major)
 - Create row comm. using MPI_Comm_split with color = row index and key = col index,
 - Create col comm. in a similar way.
- Requirements:
 - Construction
 - Construction from existing MPI comms
 - tests

Tile

- Requirements:
 - Construction from (m, n, pointer, leading dimension)
 - Move constructor/ move assignment
 - Copy constructor / copy assignment (only if really needed)
 - Get pointer of (i, j) element
 - Get value of (i, j) element (operator())
 - Get size
 - Get leading dimension
 - tests

Tile operations

- Execute blas operations with the correct pointers, sizes and leading dimensions of the involved tiles.
- E.g. gemm(alpha, tileA, tileB, beta, tileC)
- Operations:
 - gemm
 - trsm
 - Others as needed
 - tests

Tile wrapper, distributed matrix of futures, MatrixRead and MatrixRW

- See m.h for a 1D local example with single element tiles.
- Dist. Matrix of futures requirements:
 - Constructor (allocates memory and created ready futures of tiles)
 - Constructor (for existing memory)
 - Move constructor / assignment
 - Operator(tile_i, tile_j) (tile_i and tile_j are global tile indices)
 - Read(tile_i, tile_j)
 - tests

Cholesky

Argument should be MatrixRW&&

• Using read and operator() of MatrixRW the code should be simpler.