QEL, Spices Board

In-house Training – 1: Analysis of Pesticide Residues Lecture - 1
Introduction to instrumentation:
LC-MS/MS
03-Jul-23

Dr. Ramesh BN Spices Board

Chromatography HPLC, GC...

HPLC Analysis Limitations

When conventional detectors are used, identification of unknowns by retention time matching

Possibility of errors

To avoid these errors, we use mass spectrometry along with chromatography

Problems:

- → Two compounds with same Retention Time: FALSE POSITIVE
- ▶ Retention Time shift for one compound: FALSE NEGATIVE

Mass Spectrometry Why?

A mass spectrometer (MS) looks at the masses of the analytes being tested

- Uses information derived from these masses for identification
- → High degree of specificity
- Retention time can be used for additional confirmation

MS as a detector

Hyphenated techniques

An MS can function as a detector to a chromatographic system, replacing conventional detectors

- Gas chromatography (GC-MS), liquid chromatography (LC-MS)
- Can provide very specific and sensitive analysis
- Currently, MS is the default detector in trace analysis work
- 'Tandem' MS is possible, which gives even more specificity and sensitivity (MS/MS)

Mass Spectrometry § General principles

Principles - 1

A mass spectrometer can 'see' only charged entities (ions)

Typically functions under high vacuum

The ions need a stable path through the mass spectrometer, without colliding with air molecules or with one another

The 'mean free path': average distance between collisions for a gaseous ion – must be high

Mass Spectrometry Principles - 2

In MS the vacuum is achieved in two stages:

The rouging pump (outside the instrument): from 760 Torr to 10⁻³ Torr

→ The turbo molecular pump (inside the instrument): from 10⁻³ Torr to 10⁻⁵ Torr

Principles - 3

The connection between LC and MS is called the 'Interface':

- From HPLC the mobile phase flows out
- MS cannot handle this it is a vacuum technique
- The liquid mobile phase has to be evaporated and taken into the MS
- Loss of analytes should be kept to a minimum
- In LC-MS, ionization also happens in the interface

Principles - 4

MS can operate in two ways.

First way:

- → Molecule of interest is ionized
- → Typically called 'parent' ion.
- Number of parent ions can be counted for quantification (LC-MS).

Second way:

- Molecule of interest is ionized, to get the 'parent' ion
- Parent ion is broken down into multiple 'daughter' ions
- Selected 'daughter' ions are counted for quantification (LC-MS/MS)

Why is this useful?

§ Components and operation

Mass Spectrometry Components - overview

In LC MS/MS, ionization happens in atmospheric pressure Ionization is soft: MH+ ion is formed Standard spectrum libraries not possible

Mass Spectrometry Ionization

Quadrupoles (1)

- Four electrodes arranged in a hyperboloid fashion
- Two Voltages:
 - Radio Frequency RF (alternating)
 - Direct Current DC
 - Applied simultaneously, the two voltages will trap ions within the quadrupole area
 - Scanning the voltages will filter the ions out by mass:
 - For one RF:DC value, only one mass can have a stable trajectory through the quadrupole
 - When RF:DC is progressively increased (scanned)
 Ions pass through in the order of masses

Mass Spectrometry Quadrupoles (2)

- Opposite electrodes of the Quadrupole have the same potential
- The potential alternates with the same frequency as the RF Voltage

Mass Spectrometry _{Quadrupoles (3)}

- The ion oscillates in the volume between the quadrupoles
- A negative potential at the exit end of the quadrupole can the be used to pull the ion through the quadrupole

Mass Spectrometry Mass analysis by the quadrupoles (1)

- When RF and DC are applied together, Quadrupoles function as a mass analyzer.
- The RF-DC voltages can be scanned
 - DC voltage increases with time
 - RF amplitude increases with time, but frequency remains constant
- For one RF-DC combination, only an ion of one particular mass will have a stable trajectory through the quadrupoles.
- Technically, it is the mass/charge (m/z) that is affected

Mass Spectrometry Mass analysis by the quadrupoles (2)

RF-DC combinations in the quadrupole can be used to filter ions by mass:

- Low RF-DC combination, ions of low mass transmitted.
- → High RF-DC combination, ions of high mass is transmitted

Mass Spectrometry Mass analysis by the quadrupoles (3)

Quadrupoles can function in two modes

- Fixed RF-DC: Only ions with a fixed mass will be transmitted
- Switching DC off, i.e. RF only:
 - → All ions oscillate within the quadrupole
 - ▶ By keeping a potential at the other end of the quadrupole, all ions can be transmitted together through the quadrupole

Putting everything together

- Multiple Reaction Monitoring
- Based on the theory that, under the same conditions,
 - An ion from an analyte will always fragment in the same way
 - Fragmentation pattern wIll be unique
- Highly selective and sensitive
 - We can choose to look at only molecules of interest
 - Quantification in ppb levels

Mass Spectrometry Putting everything together (2)

- Three Quadrupoles:
 - First Quadrupole will select the parent ion MH+
 - Second Quadrupole functions as the collision cell:
 - N₂ is infused into the collision cell
 - Daughter ions produced by Collision Induced Dissociation (CID)
 - Third Quadrupole scans the daughter ions

- Second quadrupole ejects all ions except the most intense ion
- Can study how this ion behaves with time
- Trapped ion can be fragmented further by CID
- We have AB Sciex Qtrap[®] instrument at QEL Kochi but we are not using it in routine analysis

Mass Spectrometry Putting everything together (3)

§ in practice

Multiple Reaction Monitoring

Quantitative analysis using MS/MS

"Transitions"

LC MS/MS

$$M_1 + H^+ \longrightarrow [M_1H]^+ \xrightarrow{N_2} D_1$$

$$D_2 \longrightarrow Count$$

$$[M_1H]^+ \rightarrow D_3$$

Multiple such reactions, or transitions, can be analysed in a single run – hence the name 'MRM'

Multiple Reaction Monitoring Quantitative analysis using MS/MS (2)

In MRM, we choose 2 transitions per analyte

- → Higher intensity transition is called the quantifier, and is used for quantification
- Lower intensity transition is called the qualifier
- → Quantifier : Qualifier ratio should match between standard and sample

	Compound	Parent Ion	Daughter Ion	Туре	Ratio
LC MS/MS	Ethion	385	199	Quantifier	28.6
		385	171	Qualifier	

More to learn..

Next session 10th June 2023

- (1) Introduction to instrumentation: LC-MS/MS, 03-Jul-23
- (2) Introduction to instrumentation: GC-MS/MS, 10-Jul-23
- (3) Pesticide residue analysis Introduction, 17-Jul-23
- (4) Advanced pesticide residue analysis, 24-Jul-23
- (5) Method validation: requirements and practice, 31-Jul-23
- (6) Introduction to measurement uncertainty calculation, 7-Aug-23

(We will cover basic troubleshooting in a separate class)

Dr Ramesh BN

Scientist C, Spices Board

WhatsApp: +91 8547662471 Mobile: +91 8547662471

Email (O): rameshbabu.n@nic.in

Email (P): rameshbn1@gmail.com

Course website: http://ramesh.-sb.github.io

Thank you!

§ Questions?