

PROJECT 4

DESCRIPTION: COMMENTS ON AUDIO FILE

Presenters:

Yusif Imamverdiyev Allahverdi Hajiyev

Register your voice reading and creating the audio file

OUTLINE

Plot the data of this audio file and analyze it based on your hearing and visualization

Create a new version of your audio file that allows the one who's listening to comment at the audio file

• CREATING AUDIO FILE

Anomaly Detection for CyberSecurity
Using Inductive Node Embedding with
Convolutional Graph Neural Networks

```
import soundfile as sf
data, samplerate = sf.read('audio.wav')
samplerate
48000
data
array([ 0.00000000e+00, -3.05175781e-05, -3.05175781e-05, ...,
        1.37329102e-03, 1.46484375e-03, 1.58691406e-03])
data.shape
(2538136,)
Audio(data, rate=samplerate)
      0:02 / 0:52
```

· PLOTTING THE AUDIO

```
plt.subplots(2,1,figsize=(8,2),sharex=True)
e(0, data.shape[0]/samplerate, data.shape[0])
a)
a)
"Left chanel")
"Right chanel")
ut()

Left chanel
```

Right chanel

```
: np.linspace(0, data.shape[0]/samplerate, data.sh
:.plot(t, data)
:.show()
```


FUNCTIONALITIES

Load the audio

Play the audio

K

Restart the audio

Stop the audio

• IMPLEMENTATION

Python libraries Data Stores Save data in JSON Read the stored data Buttons and their functions

PROJECT
 DEMONSTRATION

