Recursive Definitions And Applications to Counting

C(n,k)

- $\mathfrak{G}(n,k) = C(n-1,k-1) + C(n-1,k)$ (where $n,k \ge 1$)
 - © Easy derivation: Let |S|=n and a ∈ S.
 C(n,k) = # k-sized subsets of S containing a
 + # k-sized subsets of S not containing a
- In fact, gives a recursive definition of C(n,k)
 - Base case (to define for $k \le n$): C(n,0) = C(n,n) = 1 for all $n \in \mathbb{N}$
 - Or, to define it for all $(n,k) \in \mathbb{N} \times \mathbb{N}$ Base case: C(n,0)=1, for all $n \in \mathbb{N}$,

 and C(0,k)=0 for all $k \in \mathbb{Z}^+$

- Move entire stack of disks to another peg
 - Move one from the top of one stack to the top of another
 - A disk cannot be placed on top of a smaller disk
- How many moves needed?
- Optimal number not known when 4 pegs and over ≈30 disks!
- Optimal solution known for 3 pegs (and any number of disks)

- Recursive algorithm (optimal for 3 pegs)
 - Transfer(n,A,C):

If n=1, move the single disk from peg A to peg C Else

Transfer(n-1,A,B) (leaving the largest disk out of play)
Move largest disk to peg C
Transfer(n-1,B,C) (leaving the largest disk out of play)

- Recursive algorithm (optimal for 3 pegs)
 - Transfer(n,A,C):

If n=1, move the single disk from peg A to peg C Else

Transfer(n-1,A,B) (leaving the largest disk out of play) Move largest disk to peg C Transfer(n-1,B,C) (leaving the largest disk out of play)

- How many moves are made by this algorithm?
- M(n) be the number of moves made by the above algorithm
- M(n) = 2M(n-1) + 1 with M(1) = 1
- **3** 1, 3, 7, 15, 31, ...

Recursive Definitions

```
Initial Condition

f(n) = n \cdot f(n-1)
\forall n \in \mathbb{Z} \text{ s.t. } n > 0
Recurrence relation
```

```
  f(n) = n \cdot (n-1) \cdot ... \cdot 1 \cdot 1 = n!
```

- This is the formal definition of n!
- Translates to a program to compute factorial:

```
factorial(n ∈ N) {
   if (n==0) return 1;
   else return n*factorial(n-1);
}

factorial(n ∈ N) {
    F[0] = 1;
    for i in 1..n
    F[i] = i*F[i-1];
    return F[n];
}
```

Catalan Numbers

- How many paths are there in the grid from (0,0) to (n,n) without ever crossing over to the y>x region?
- Any path can be constructed as follows
 - Pick minimum k>0 s.t. (k,k) reached
 - ⋄ (0,0) → (1,0) ⇒ (k,k-1) → (k,k) ⇒ (n,n) where ⇒ denotes a Catalan path
- Cat(n) = $\Sigma_{k=1 \text{ to } n}$ Cat(k-1)·Cat(n-k)
- \circ Cat(0) = 1

e.g., 42 = 1.14 + 1.5 + 2.2 + 5.1 + 14.1

Closed form expression? Later

Fibonacci Sequence

F(n) is the nth Fibonacci number (starting with Oth)

Closed form expression? Coming up

Counting Strings

- How many ternary strings of length n which don't have "00" as a substring?
- Set up a recurrence
 - A(n) = # such strings starting with 0
 - B(n) = # such strings not starting with 0
 - A(n) = B(n-1). B(n) = 2(A(n-1) + B(n-1)). [Why?]
- Initial condition: A(0) = 0; B(0) = 1 (empty string)
- Required count: A(n) + B(n)
- Can rewrite in terms of just B
 - **3** B(0) = 1. B(1) = 2. B(n) = 2B(n-1) + 2B(n-2) \forall n ≥ 2
 - Required count: B(n-1) + B(n).

Recursion & Induction

- Olaim: F(3n) is even, where F(n) is the nth Fibonacci number, ∀n≥0
- Proof by induction:
- Base case:

n=0:
$$F(3n) = F(0) = 0$$
 \checkmark n=1: $F(3n) = F(3) = 2$ \checkmark

Stronger claim (but easier to prove by induction): F(n) is even iff n is a multiple of 3

- Induction step: for all k≥2
 Induction hypothesis: suppose for 0≤n≤k-1, F(3n) is even
 - To prove: F(3k) is even

$$F(3k) = F(3k-1) + F(3k-2) = ?$$

Unroll further: F(3k-1) = F(3k-2) + F(3k-3) $F(3k) = 2 \cdot F(3k-2) + F(3(k-1)) = even, by induction hypothesis$

Closed Form

- Sometimes possible to get a "closed form" expression for a quantity defined recursively (in terms of simpler operations)
 - e.g., f(0)=0 & f(n) = f(n-1) + n, ∀n>0
 - \circ f(n) = n(n+1)/2
- Sometimes, we just give it a name
 - e.g., n!, Fibonacci(n), Cat(n)
 - In fact, <u>formal</u> definitions of integers, addition, multiplication etc. are recursive
 - e.g., $0 \cdot a = 0$ & $n \cdot a = (n-1) \cdot a + a$, $\forall n > 0$
 - \circ e.q., $2^0 = 1 & 2^n = 2 \cdot 2^{n-1}$
- Sometimes both
 - e.g., Fibonacci(n), Cat(n) have closed forms

Closed Form via Induction

 $f(0) = c. f(1) = d. f(n) = a \cdot f(n-1) + b \cdot f(n-2) ∀n≥2.$

- Exercise: Fibonacci numbers
- Suppose $X^2 aX b = 0$ has two distinct (possibly complex) solutions, x and y

 Characteristic equation:
 replace f(n) by X^n in the recurrence

- Inductive step: for all k≥2
 Induction hypothesis: ∀n s.t. 1 ≤ n ≤ k-1, f(n) = pxⁿ + qyⁿ
 To prove: f(k) = px^k + qy^k
 - $f(k) = a \cdot f(k-1) + b \cdot f(k-2)$ $= a \cdot (px^{k-1} + qy^{k-1}) + b \cdot (px^{k-2} + qy^{k-2}) px^k qy^k + px^k + qy^k$ $= -px^{k-2}(x^2 ax b) qy^{k-2}(y^2 ay b) + px^k + qy^k = px^k + qy^k \checkmark$

Closed Form via Induction

- $f(0) = c. f(1) = d. f(n) = a \cdot f(n-1) + b \cdot f(n-2) ∀n≥2.$
- Suppose $X^2 aX b = 0$ has only one solution $x \ne 0$ i.e., $X^2 aX b = (X-x)^2$, or equivalently, a = 2x, $b = -x^2$
- Let p = c, q = d/x-c so that base cases n=0,1 work
- Inductive step: for all $k \ge 2$ Induction hypothesis: $\forall n \le t \le 1$, $f(n) = (p + qn)y^n$ To prove: $f(k) = (p+qk)x^k$
 - $f(k) = a \cdot f(k-1) + b \cdot f(k-2)$ = $a \cdot (p+qk-q)x^{k-1} + b \cdot (p+qk-2q)x^{k-2} (p+qk)x^k + (p+qk)x^k$ = $-(p+qk)x^{k-2}(x^2-ax-b) qx^{k-2}(ax+2b) + (p+qk)x^k = (p+qk)x^k$ ✓

Solving a Recurrence

- Often, once a correct guess is made, easy to prove by induction
- How does one guess?
- Will see a couple of approaches
 - By unrolling the recurrence into a chain or a "rooted tree"
 - Using the "method of generating functions"

Recursive Definitions Unrolling Recurrences

Unrolling a recursion

- Often helpful to try "unrolling" a recursion to see what is happening
- e.g., expand into a chain:

$$T(0) = 0 & T(n) = T(n-1) + n^2 ∀n≥1$$

$$T(n-1) = T(n-2) + (n-1)^2$$
, $T(n-2) = T(n-3) + (n-2)^2$, ...

$$T(n) = n^2 + (n-1)^2 + (n-2)^2 + T(n-3)$$
 $\forall n ≥ 3$

$$T(n) = Σ_{k=1 \text{ to } n} k^2 + T(0)$$
 $∀n≥0$

Another example

$$T(1) = 0$$

$$T(N) = T(\lfloor N/2 \rfloor) + 1 ∀N≥2$$

```
T(N) = 1 + T(N/2)

= 1 + 1 + T(N/4)

= ...

= 1 + 1 + ... + T(1)

How many 1's are there?
```

A slowly growing function

- $T(2^n) = n$
- $T(N) = \log_2 N$ (or simply log N) for N a power of 2
- General N? T monotonically increasing (by strong induction). So, $T(2^{\lfloor \log N \rfloor}) \leq T(N) \leq T(2^{\lceil \log N \rceil}) : i.e., \quad \lfloor \log N \rfloor \leq T(N) \leq \lceil \log N \rceil$
 - \bullet In fact, T(N) = $\lfloor \log N \rfloor$ (Exercise)

- Recursive algorithm (optimal for 3 pegs)
 - Transfer(n,A,C):

If n=1, move the single disk from peg A to peg C Else

Transfer(n-1,A,B) (leaving the largest disk out of play) Move largest disk to peg C Transfer(n-1,B,C) (leaving the largest disk out of play)

- M(n) be the number of moves made by the above algorithm
- M(n) = 2M(n-1) + 1 with M(1) = 1
- Unroll the recursion into a "rooted tree"

Rooted Tree

A tree, with a special node, designated as the root

Typically drawn "upside down"

Parent and child relation: u is v's parent if the unique path from v to root contains edge {v,u} (parent unique; root has no parent)

If u is v's parent v, then v is a child of u

o u is an ancestor of v, and v a descendent of u if the v-root path passes through u

Leaf is redefined for a rooted tree, as a node with no child

Root is a leaf iff it has degree 0 (if deg(root)=1, conventionally not called a leaf)

the parent of v

u child of u

root

Rooted Tree

- Leaf: no children. Internal node: has a child
- Ancestor, descendant: partial orders
- Subtree rooted at u: with all descendants of u
- Depth of a node: distance from root. Height of a tree: maximum depth
- Level i: Set of nodes at depth i.
- Note: tree edges are between adjacent levels
- Arity of a tree: Max (over all nodes) number of children. m-ary if arity ≤ m.
- Full m-ary tree: Every internal node has exactly m children.

Complete & Full: All leaves at same level

the parent of v a u child of u

root

Rooted Tree

- Complete & Full m-ary tree
 - One root node with m children at level 1
 - Each level 1 node has m children at level 2
 - o m² nodes at level 2
 - At level i, mi nodes
 - o mh leaves, where h is the height
- Total number of nodes:
 - $om_0 + m^1 + m^2 + ... + m^h = (m^{h+1}-1)/(m-1)$
 - Prove by induction: $(m^{h}-1)/(m-1) + m^{h} = (m^{h+1}-1)/(m-1)$
- Binary tree (m=2)
 - 2h leaves, 2h-1 internal nodes

$$M(1) = 1$$

 $M(n) = 2M(n-1) + 1$

Doing it bottom-up.
Could also think
top-down

$$M(1) = 1$$

 $M(n) = 2M(n-1) + 1$

- Exponential growth
- M(2) = 3, M(3) = 7, ...

- M(n) = #nodes in a complete and full binary tree of height n-1
- $M(n) = 2^n 1$

Recursive Definitions Generating Functions

Generating Functions

- A generating function is an alternate representation of an infinite sequence, which allows making useful deductions about the sequence (including, possibly, a closed form)
- Sequence f(0), f(1), ... is represented as the formal expression $G_f(X) \triangleq f(0) + f(1) \cdot X + f(2) \cdot X^2 + ...$ (ad infinitum)
 - olimits i.e., for $f: \mathbb{N} \rightarrow \mathbb{R}$, we define $G_f(X) \triangleq \Sigma_{k≥0} f(k) \cdot X^k$
- e.g., If f(k) = a^k for some a∈ℝ, $G_f(X) = \sum_{k ≥ 0} a^k \cdot X^k$

"Ordinary Generating Functions"

Generating Functions

- Generating functions sometimes have a succinct representation
- ø e.g., For $f(k) = a^k$ for some $a \in \mathbb{R}$, $G_f(X) = \sum_{k \ge 0} a^k \cdot X^k$
 - If we substituted for X a real number x sufficiently close to 0, we have |ax| < 1 and this would converge to 1/(1-ax)
 </p>
 - This will later let us manipulate $G_f(X) = 1/(1-aX)$ (for sufficiently small |X|).

Extended Binomial Theorem

A useful tool for manipulating/analysing generating functions

For
$$a \in \mathbb{R}$$
, $\binom{a}{k} \triangleq \frac{a(a-1)...(a-k+1)}{k!}$ $(k \in \mathbb{Z}^+)$, and $\binom{a}{0} \triangleq 1$

Extended binomial theorem:

For
$$|x|<1$$
, $a\in\mathbb{R}$, $(1+x)^a = \sum_{k\geq 0} {a \choose k} \cdot x^k$

- Useful in finding a closed form for f given G_f of certain forms
- e.g., $G_f(X) = 1/(1-X)$. Then, $\sum_{k\geq 0} f(k) \cdot X^k = (1-X)^{-1}$

$$\binom{-1}{k} = (-1)(-2)...(-k)/k! = (-1)^k \Rightarrow (1-X)^{-1} = \sum_{k \geq 0} X^k \Rightarrow f(k)=1$$

Similarly,
$$\binom{-2}{k} = (-2)(-3)...(-k-1)/k! = (-1)^k(k+1)$$

 $\Rightarrow 1/(1-X)^2 = \Sigma_{k \ge 0} (k+1) \cdot X^k$

Extended Binomial Theorem

- $G_{f+g}(X) = G_f(X) + G_g(X)$
- If a generating function G_f is known and has a nice form, then often using the extended binomial theorem, one can compute a closed-form expression for f
- But how do we get G_f?

Generating Functions From Recurrence Relations

- e.g., f(0)=0, f(1)=1. f(n)=f(n-1)+f(n-2), $\forall n \ge 2$. [Fibonacci]
- $f(n) \cdot X^n = X \cdot f(n-1) \cdot X^{n-1} + X^2 \cdot f(n-2) \cdot X^{n-2}$ (for n≥2)
 - $\Rightarrow \sum_{n\geq 2} f(n) \cdot X^n = X \cdot \sum_{n\geq 2} f(n-1) \cdot X^{n-1} + X^2 \cdot \sum_{n\geq 2} f(n-2) \cdot X^{n-2}$
 - \Rightarrow G_f(X) f(0) f(1)·X = X·(G_f(X)-f(0)) + X²·G_f(X)
 - \Rightarrow G_f(X) (1-X-X²) = f(0) + (f(1)-f(0))·X
 - $G_f(X) = X/(1-X-X^2)$
- More generally:

$$f(0) = c$$
. $f(1) = d$. $f(n) = a \cdot f(n-1) + b \cdot f(n-2)$, $\forall n \ge 2$

•
$$G_f(X) = (c + (d-ac)X)/(1-aX-bX^2)$$

Generating Functions For Series Summation

- Suppose $g(k) = \sum_{j=0 \text{ to } k} f(j)$
- What is $G_g(X)$, in terms of $G_f(X)$?
 - Recursive definition: g(0) = f(0). g(n) = g(n-1) + f(n), $\forall n ≥ 1$.
 - So, $\forall k \ge 1$, $g(k) \cdot X^k = g(k-1) \cdot X^{k-1} \cdot X + f(k) \cdot X^k$
 - $G_g(X) = g(0) + X \cdot G_g(X) + (G_f(X) f(0))$
 - \circ $G_g(X) = G_f(X)/(1-X)$

Recursive Definitions Generating Functions More Examples

2ecall

Generating Functions

- For $f: \mathbb{N} \to \mathbb{R}$, we defined $G_f(X) \triangleq \Sigma_{k \geq 0} f(k) \cdot X^k$
- The extended binomial theorem

e.g.,
$$G_f(X) = 1/(1-aX)^b$$
 for $f(k) = (-a)^k \cdot {b \choose k}$
$$= {b+k-1 \choose k} \cdot a^k, \text{ for } b \in \mathbb{Z}^+$$

- **Combinations**: e.g., $G_h(X) = G_f(X) + G_g(X)$, where h(k)=f(k)+g(k) $G_g(X) = \alpha X G_f(X)$, where g(0) = 0, $g(k) = \alpha f(k-1) ∀ k > 0$ $G_h(X) = (1+\alpha X) G_f(X)$, where h(0)=f(0), $h(k) = f(k) + \alpha f(k-1) ∀ k > 0$
- From recurrence relations
 - e.g., If f(0) = c. f(1) = d. $f(n) = a \cdot f(n-1) + b \cdot f(n-2)$, $\forall n ≥ 2$ Ø $G_f(X) = (c + (d-ac)X)/(1-aX-bX^2)$
 - e.g., If $g(k) = \sum_{j=0 \text{ to } k} f(j)$ • $G_q(X) = G_f(X)/(1-X)$

Generating Functions For Series Summation

- e.g., $g(k) = \sum_{j=0 \text{ to } k} (j+1)^2$
- $G_g(X) = G_f(X)/(1-X)$ where $f(j) = (j+1)^2$
- Consider $G(X) = 1 + X + X^2 + ... = 1/(1-X)$
 - $G'(X) = 1 + 2 \cdot X + 3 \cdot X^2 + ... = 1/(1-X)^2$

• Let $H(X) = X G(X) = X + 2 \cdot X^2 + 3 \cdot X^3 + ... = X/(1-X)^2$

So H'(X) = 1 +
$$2^2 \cdot X + 3^2 \cdot X^2 + ... = 1/(1-X)^2 + 2X/(1-X)^3$$

= $(1+X)/(1-X)^3$

is the generating function of $f(j) = (j+1)^2$.

- $G_g(X) = (1+X)/(1-X)^4$.
- Exercise: use ext. binomial theorem to compute coeff. of X^k

Calculus!

Alternately, from extended binomial theorem

Generating Functions For Counting Combinations

- e.g., Let f(n) = number of ways to throw n unlabelled balls into d labelled bins (for some fixed number d)
 - Solution 1: Use stars and bars
 - Solution 2: Reason about G_f(X)
 - © Coefficient of X^n in $G_f(X)$ must count the number of (non-negative integer) solutions of $n_1 + ... + n_d = n$
 - Can write $G_f(X) = (1+X+X^2+...)^d$
 - \circ So, $G_f(X) = [1/(1-X)]^d = (1-X)^{-d}$
 - Coefficient of $X^n = {-d \choose n} (-1)^n$ = d(d+1) ... (d+n-1) / n! = C(d+n-1,n)

A Closed Form

- $f(0) = c. f(1) = d. f(n) = a \cdot f(n-1) + b \cdot f(n-2) ∀n≥2.$
- Suppose $X^2 aX b = 0$ has two distinct (possibly complex) solutions, x and y
- Ø Claim: ∃p,q ∀n f(n) = p⋅xⁿ + q⋅yⁿ
- Inductive step: for all $k \ge 2$ Induction hypothesis: $\forall n \le t \le 1$, $f(n) = px^n + qy^n$ To prove: $f(k) = px^k + qy^k$
 - $f(k) = a \cdot f(k-1) + b \cdot f(k-2)$ $= a \cdot (px^{k-1} + qy^{k-1}) + b \cdot (px^{k-2} + qy^{k-2}) px^k qy^k + px^k + qy^k$ $= -px^{k-2}(x^2 ax b) qy^{k-2}(y^2 ay b) + px^k + qy^k = px^k + qy^k \checkmark$

A Closed Form

- $f(0) = c. f(1) = d. f(n) = a \cdot f(n-1) + b \cdot f(n-2) ∀n≥2.$
- Suppose $X^2 aX b = 0$ has only one solution $x \neq 0$ i.e., $X^2 aX b = (X-x)^2$, or equivalently, a = 2x, $b = -x^2$
- Let p = c, q = d/x-c so that base cases n=0,1 work
- Inductive step: for all $k \ge 2$ Induction hypothesis: $\forall n \le t \le 1$, $f(n) = (p + qn)y^n$ To prove: $f(k) = (p+qk)x^k$
 - $f(k) = a \cdot f(k-1) + b \cdot f(k-2)$ $= a (p+qk-q)x^{k-1} + b \cdot (p+qk-2q)x^{k-2} (p+qk)x^k + (p+qk)x^k$ $= -(p+qk)x^{k-2}(x^2-ax-b) qx^{k-2}(ax+2b) + (p+qk)x^k = (p+qk)x^k$ ✓

A Closed Form

- $f(0) = c. f(1) = d. f(n) = a \cdot f(n-1) + b \cdot f(n-2) ∀n≥2.$
- Recall: $G_f(X) = (c + (d-ac)X)/(1-aX-bX^2)$
- The Let $G_f(X) = (\alpha + \beta X)/(1-\alpha X-b X^2)$. i.e., $\alpha = c$, $\beta = d-\alpha c$.
- Writing $Z = X^{-1}$, we have $G_f(X) = (\alpha Z^2 + \beta Z)/(Z^2 \alpha Z b)$
- Let $(Z^2-aZ-b) = (Z-x)(Z-y)$
 - \emptyset a = x+y, -b = xy
 - \circ $(1-aX-bX^2) = (1-xX)(1-yX)$
- Two cases: x≠y and x=y

A Closed Form

- $f(0) = c. f(1) = d. f(n) = a \cdot f(n-1) + b \cdot f(n-2) ∀n≥2.$
- $G_f(X) = (\alpha + \beta X)/[(1-xX)(1-yX),]$ where $\alpha = c$, $\beta = d-ac$, $\alpha = x+y$, -b = xy.
- Case 1: x≠y.

 - Recall, $1/(1-xX) = \sum_{k\geq 0} (xX)^k$
 - So, $G_f(X) = (\alpha/X + \beta)/(x-y) \cdot \Sigma_{k \ge 0} (xX)^k (yX)^k$ = $\Sigma_{k \ge 1} \alpha(x \cdot (xX)^{k-1} - y \cdot (yX)^{k-1})/(x-y) + \Sigma_{k \ge 0} \beta((xX)^k - (yX)^k)/(x-y)$ = $\Sigma_{k \ge 0} (px^k + qy^k) \cdot X^k$, where $p = (\alpha x + \beta)/(x-y)$, $q = (\alpha y + \beta)/(y-x)$
 - \circ f(n) = coefficient of $X^n = px^n + qy^n$
- α = c, β = d-ac = d-(x+y)c \Rightarrow p = (d-yc)/(x-y), q = (d-xc)/(y-x),

A Closed Form

- $f(0) = c. f(1) = d. f(n) = a \cdot f(n-1) + b \cdot f(n-2) ∀n≥2.$
- $G_f(X) = (\alpha + \beta X)/[(1-xX)(1-yX)]$ where $\alpha = c$, $\beta = d-ac$, a = x+y, -b = xy.
- Case 2: x=y≠0.
 - $G_f(X) = (\alpha + \beta X)/(1-xX)^2$
 - Recall, $1/(1-xX)^2 = \sum_{k\geq 0} (k+1).x^k \cdot X^k$
 - $\begin{aligned} (\alpha + \beta X)/(1-xX)^2 &= \Sigma_{k \geq 0} (\alpha + \beta X) \cdot (k+1) \cdot x^k \cdot X^k \\ &= \Sigma_{k \geq 0} (\alpha \cdot (k+1) \cdot x^k + \beta \cdot k \cdot x^{k-1}) \cdot X^k \\ &= \Sigma_{k \geq 0} (p+qk) x^k \cdot X^k, \text{ where } p = \alpha, \ q = (\alpha + \beta/x) \end{aligned}$

Catalan Numbers

- How many paths are there in the grid from (0,0) to (n,n) without ever crossing over to the y>x region?
- Any path can be constructed as follows
 - Pick minimum k>0 s.t. (k,k) reached
 - \circ (0,0) → (1,0) \Rightarrow (k,k-1) → (k,k) \Rightarrow (n,n) where \Rightarrow denotes a Catalan path
- Cat(n) = $\Sigma_{k=1 \text{ to } n}$ Cat(k-1)·Cat(n-k)
- \circ Cat(0) = 1

Catalan Numbers

- \circ Cat(n) $X^n = \sum_{k=1 \text{ to } n} Cat(k-1) \cdot Cat(n-k) \cdot X^n$ = term of Xⁿ in $X \cdot (\sum_{k \geq 1} Cat(k-1) X^{k-1}) \cdot (\sum_{k \leq n} Cat(n-k) X^{n-k}), \forall n \geq 1$ For n=0, we have $Cat(0) X^0 = 1$ $G_{Cat}(X) = 1 + X G_{Cat}(X) G_{Cat}(X)$ • Solving for G in $X \cdot G^2 - G + 1 = 0$, we have $G = [1 \pm \sqrt{(1-4X)}]/(2X)$ • We need $\lim_{X\to 0} G_{cat}(X) = Cat(0) = 1$ L'Hôpital's Rule
 - Then, what is the coefficient of X^n in $G_{cat}(X)$?

• So we take $G_{cat}(X) = [1 - \sqrt{(1-4X)}]/(2X)$

Catalan Numbers

- $G_{cat}(X) = [1-\sqrt{(1-4X)}]/(2X)$
- Then, what is the coefficient of Xk in Gcat(X)?
- Use extended binomial theorem:

$$(1-4X)^{1/2} = \sum_{k\geq 0} {1/2 \choose k} (-4X)^{k} = 1 + \sum_{k\geq 1} -2 {2(k-1) \choose k-1} / k \cdot X^{k}$$

for k>0,
$$\binom{1/2}{k} = (1/2)(-1/2)(-3/2)(-5/2)...(-(2k-3)/2)/k!$$

 $= (-1)^{k-1}(1 \cdot 1 \cdot 3 \cdot ... \cdot (2k-3))/[k! \ 2^k] = (-1)^{k-1}\binom{2k-2}{k-1}/[k \ 2^{2k-1}]$
 $= (k-1)! \cdot 2^{k-1}$

$$G_{cat}(X) = \sum_{k \ge 1} {2(k-1) \choose k-1} / k \cdot X^{k-1}$$

• Cat(k) = Coefficient of
$$X^k$$
 in $G_{cat}(X) = {2k \choose k}/(k+1)$

Asymptotics The Big O

How it scales

- In analysing running time (or memory/power consumption) of an algorithm, we are interested in how it <u>scales</u> as the problem instance grows in "size"
 - Running time on small instances of a problem are often not a serious concern (anyway small)
- Also, exact time/number of steps is less interesting
 - Can differ in different platforms. Not a property of the algorithm alone.
 - Thus "unit of time" (constant factors) typically ignored when analysing the algorithm.

How it scales

- e.g., suppose number of "steps" taken by an algorithm to sort a list of n elements varies between 3n and 3n²+9 (depending on what the list looks like)
 - If n is doubled, time taken in the worst case could become (roughly) 4 times. If n is tripled, it could become (roughly, in the worst case) 9 times
 - An upper bound that grows "like" n²
- Typically, interested in easy to interpret guarantees
 - Resource required expressed as a function of input size
 - Upper bounds robust to constant factor speed ups

Upper-bounds: Big O

- T(n) has an upper-bound that grows "like" f(n)
 - T(n) = O(f(n)) $\exists c, k > 0, \forall n \ge k, 0 \le T(n) \le c \cdot f(n)$
 - Note: we are defining it only for T & f which are eventually non-negative
 - Note: order of quantifiers! c can't depend on n (that is why c is called a <u>constant</u> factor)
- Important: If T(n)=O(f(n)), f(n) could be much larger than T(n) (but only a constant factor smaller than T(n))

Unfortunate notation!
An alternative used
sometimes:
T(n) ∈ O(f(n))

T(n) = O(f(n)) $\exists c, k > 0, \forall n \ge k, 0 \le T(n) \le c \cdot f(n)$

Upper-bounds: Big O

$$\circ$$
 e.g. $T(x) = 21x^2 + 20$

$$\circ$$
 T(x) = O(x³)

Upper-bounds: Big O

$$\circ$$
 e.g. $T(x) = 21x^2 + 20$

$$\circ$$
 T(x) = O(x³)

- $T(x) = O(x^2)$ too, since we allow scaling by constants
- \circ But T(x) \neq O(x).

```
T(n) = O(f(n))
\exists c, k > 0, \forall n \ge k, O \le T(n) \le c \cdot f(n)
```

Upper-bounds: Big O

- Used in the analysis of running time of algorithms:
 Worst-case Time(input size) = O(f(input size))
 - e.g. $T(n) = O(n^2)$, $T(n) = O(n \log n)$
- Also used to bound approximation errors
 - $oldsymbol{o}$ e.g., $| log(n!) log(n^n) | = O(n)$

 - Even better: $| \log(n!) \log((n/e)^n) \frac{1}{2} \cdot \log(n) | = O(1)$
- We may also have T(n) = O(f(n)), where f is a decreasing function (especially when bounding errors)
 - \circ e.g. T(n) = O(1/n)

```
T(n) = O(f(n))
\exists c, k > 0, \forall n \ge k, 0 \le T(n) \le c \cdot f(n)
```

Big O: Some Properties

- Suppose T(n) = O(f(n)) and R(n) = O(f(n))i.e., $\forall n \ge k_T$, $0 \le T(n) \le c_T \cdot f(n)$ and $\forall n \ge k_R$, $0 \le R(n) \le c_R \cdot f(n)$ T(n) + R(n) = O(f(n))Then, $\forall n \ge \max(k_T, k_R)$, $0 \le T(n) + R(n) \le (c_R + c_T) \cdot f(n)$ If eventually $(\forall n \ge k)$, $R(n) \le T(n)$, then T(n) R(n) = O(T(n)) $\forall n \ge \max(k, k_R)$, $0 \le T(n) R(n) \le 1 \cdot T(n)$ If T(n) = O(g(n)) and g(n) = O(f(n)), then T(n) = O(f(n))
- If T(n) = O(g(n)) and g(n) = O(f(n)), then T(n) = O(f(n)) $\forall n \ge \max(k_T, k_g)$, $0 \le T(n) \le c_T \cdot g(n) \le c_T c_g \cdot f(n)$
- e.g., $7n^2 + 14n + 2 = O(n^2)$ because $7n^2$, 14n, 2 are all $O(n^2)$
- More generally, if T(n) is upper-bounded by a degree d polynomial with a positive coefficient for n^d , then T(n) = O(n^d)

```
T(n) = O(f(n))
\exists c, k > 0, \forall n \ge k, 0 \le T(n) \le c \cdot f(n)
```

Some important functions

- ∅ T(n) = O(1): ∃c s.t. T(n) ≤ c for all sufficiently large n
- T(n) = O(log n). T(n) grows quite slowly, because log n grows quite slowly (when n doubles, log n grows by 1)
- T(n) = O(n): T(n) is (at most) linear in n
- $T(n) = O(n^2): T(n) is (at most) <u>quadratic</u> in n$
- T(n) = O(nd) for some fixed d: T(n) is (at most)

 polynomial in n
- T(n) = $O(2^{d \cdot n})$ for some fixed d: T(n) is (at most) exponential in n. T(n) could grow very quickly.

A General Solution (a.k.a. "Master Theorem")

- σ T(n) = a T(n/b) + c·n^d (and T(1)=1. a≥1,b>1 integer, c>0, d≥0 real.)
- Say n=b^k (so only integers encountered)
- #levels = logb n = k
- total at this level $(n/b)^d$ = $a \cdot (n/b)^d$

(n/b)d

(n/b)d

(n/b)d

- T(n) = O(n^d (1+ (a/b^d) + ... + $(a/b^d)^k$) total at ith level = $a^{i} \cdot (n/b^i)^d$
- If $a = b^d$, contribution at each level = n^d . $T(n) = O(n^d \cdot \log n)$

Tight Bounds: Theta Notation

If we can give a "tight" upper and lower-bound we use the Theta notation

$$T(n) = \Theta(f(n))$$
 if $T(n)=O(f(n))$ and $f(n)=O(T(n))$

- \odot e.g., $3n^2-n = \Theta(n^2)$
- If T(n) = Θ(f(n)) and R(n) = Θ(f(n)), T(n) + R(n) = Θ(f(n))

≈ and «

- Asymptotically equal: f(n) = g(n) if $\lim_{n\to\infty} f(n)/g(n) = 1$
 - i.e., eventually, f(n) and g(n) are equal (up to lower order terms)
 - If ∃c>0 s.t. $f(n) = c \cdot g(n)$ then f(n) = Θ(g(n)) (for f(n) and g(n) which are eventually positive)
- **⊘** Asymptotically much smaller: $f(n) \ll g(n)$ if $\lim_{n\to\infty} f(n)/g(n) = 0$
- Note: Not necessary conditions: Θ and O do not require the limit to exist (e.g., f(n) = n for odd n and 2n for even n: then $f(n) = \Theta(n)$)