Learning to Render Novel Views from Wide-Baseline Stereo Pairs

Yilun Du, Cameron Smith, Ayush Tewari, Vincent Sitzmann

CVPR 2023

Group4: 劉冠宏 311551058、周睦鈞 311553060、黃柏叡 311553015

Outline

- Introduction
- Method
- Experiment
- Conclusion
- Reproduce
- Q & A

Introduction

Novel View Synthesis - NeRF

Novel View Synthesis

Novel View Synthesis - This Paper

Contributions

- Achieve state-of-the-art on challenging setting of novel view synthesis using only a wide-baseline stereo pair of images
- Propose the image-centric epipolar line sampling strategy with lightweight cross-attention based renderer instead of volume rendering
 - Image-centric smapling enable the model to fully utilize image features
 - Rendering is faster than most of the prior art, which enable them to train on large-scale real-world complex datasets

Preliminary - Epipolar Geometry

Camera 1 Camera 2

Method

Model Architecture

Figure 2. **Method Overview.** (a) Given context images from different viewpoints, a multi-view encoder extracts pixel-aligned features, leveraging attention across the images and their corresponding camera pose embeddings. (b) Given a target ray, in each context view, we sample *primary* features along the epipolar line equidistant in pixel space. We then project the corresponding 3D points onto the other views and sample corresponding *secondary* epipolar line features, where out-of-bounds features are set to zero. (c) We render the target ray by performing cross-attention over the set of all primary and secondary epipolar line features from all views.

Problem:

- 1. Artifacts in rendering results.
- 2. Encoding each image separately lead to inconsistent geometry reconstruction across context images.

Solution:

- 1. Processing the images simultaneously.
- 2. But how?

ViT (Vision Transformer)

- Transformer
 - A better CNN
 - Mechanism: self-attention

- Feature Extraction
- Embedding
- Transformer
- Simultaneous processing
- Upsampling
- Bypass the high resolution imformation

- Feature Extraction
- Embedding
- Transformer
- Simultaneous processing
- Upsampling
- Bypass the high resolution imformation

- Feature Extraction
- Embedding
- Transformer
- Simultaneous processing
- Upsampling
- Bypass the high resolution imformation

- Feature Extraction
- Embedding
- Transformer
- Simultaneous processing
- Upsampling
- Bypass the high resolution imformation

- Feature Extraction
- Embedding
- Transformer
- Simultaneous processing
- Sequence to spatial data
- Bypass the high resolution imformation

- Feature Extraction
- Embedding
- Transformer
- Simultaneous processing
- Sequence to spatial data
- Bypass the high resolution imformation

Epipolar Line Sampling and Feature Matching

Problem:

- 1. Volume rendering is not suitable.
- The number of pixels along the epipolar line should maximum effect the results.

Solution:

1. Epipolar line

Epipolar Line Sampling

- Uniformly sample N pixel coordinates along the line segment
- The depth value is computed via trangulation

Epipolar Line Sampling

- Uniformly sample N pixel coordinates along the line segment
- The depth value is computed via trangulation

$$\{(d,\mathbf{f})_k\}_{k=1}^N$$

D. Triangulation

Here, we provide details on computing 3D points using triangulation. For a pixel coordinate in the context image (u', v'), we may solve for its corresponding 3D point via:

$$l^* = \arg\min_{l} \|\pi_t(\mathbf{o}_i + l \cdot \mathbf{R}_i^{-1} \mathbf{K}_i^{-1} [u', v', 1]) - \mathbf{u}_t\|_2^2,$$
(5)

where \mathbf{o}_i is the camera origin of the respective context image, $\pi_t(\cdot)$ denotes projection onto the target camera, and \mathbf{u}_t is the pixel coordinate of the target ray we aim to render. The 3D point \mathbf{p}^* can then be obtained as $\mathbf{p}^* = \mathbf{o}_i + l^* \cdot \mathbf{R}_i^{-1} \mathbf{K}_i^{-1} [u', v', 1]$, and its depth in the context cam-

era can be obtained as the z-coordinate of the point in the

context camera's coordinates. Let \mathbf{r}_i denotes the normalized ray direction $\mathbf{R}_i^{-1}\mathbf{K}_i^{-1}[u',v',1]$. The closed form solution can be represented as:

$$l^* = \frac{u \cdot \mathbf{o}_i[z] - c_x \mathbf{o}_i[z] - f_x \mathbf{o}_i[x]}{f_x \mathbf{r}_i[x] + c_x \mathbf{r}_i[x] - u \mathbf{r}_i[z]}$$

$$= \frac{v \cdot \mathbf{o}_i[z] - c_y \mathbf{o}_i[z] - f_y \mathbf{o}_i[y]}{f_y \mathbf{r}_i[y] + c_y \mathbf{r}_i[y] - u \mathbf{r}_i[z]},$$

where $\mathbf{K} = \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix}$.

- Refine the geometry information
- Primary features -> 3D points -> secondary features

 $\{(d, \mathbf{f}, \hat{\mathbf{f}})_k\}_{k=1}^{2N}$

- Refine the geometry information
- Primary features -> 3D points -> secondary features

 $\{(d, \mathbf{f}, \hat{\mathbf{f}})_k\}_{k=1}^{2N}$

- Refine the geometry information
- Primary features -> 3D points -> secondary features

 $\{(d, \mathbf{f}, \hat{\mathbf{f}})_k\}_{k=1}^{2N}$

- Refine the geometry information
- Primary features -> 3D points -> secondary features

 $\{(d,\mathbf{f},\underline{\hat{\mathbf{f}}})_k\}_{k=1}^{2N}$

- Refine the geometry information
- Primary features -> 3D points -> secondary features

 $\{(d,\mathbf{f},\hat{\mathbf{f}})_k\}_{k=1}^{2N}$

Differentiable Rendering via Cross-Attention

Differentiable Rendering via Cross-Attention

- Input: $\{(d,\mathbf{f},\hat{\mathbf{f}})_k\}_{k=1}^{2N}$
- Output: color

- Target ray origin, target ray direction, depth, context camera ray direction.
- Final feature embedding
- Decoded into color

Training and Losses

- LPIPS perceptual loss
- Regularization loss

- Data augmentation
 - o crop
 - o scale
 - o filp

$$\mathcal{L} = \mathcal{L}_{img} + \lambda_{reg} \mathcal{L}_{reg}$$

$$\mathcal{L}_{img} = ||R - G||_1 + \lambda_{LPIPS} \mathcal{L}_{LPIPS}(R, G)$$

$$\mathcal{L}_{\text{reg}} = \sum_{(u,v)} \sum_{(u'v') \in \mathcal{N}(u,v)} ((e(u,v) - e(u',v'))^2$$
Neighbor

Experiment

Dataset

RealEstate10k

A large dataset of indoor and outdoor scenes

ACID

A large dataset outdoor scenes

Qualitative Results (Indoor)

Qualitative Results (Outdoor)

Figure 5. Comparative Results on ACID. Our approach is able to render novels views with higher quality than all baselines.

Quantitative Results

Method	LPIPS ↓	SSIM ↑	PSNR ↑	MSE ↓
pixelNeRF [59]	0.591	0.460	13.91	0.0440
IBRNet [54]	0.532	0.484	15.99	0.0280
GPNR [48]	0.459	0.748	18.55	0.0165
Ours	0.262	0.839	21.38	0.0110

Table 1. Novel view rendering performance on RealEstate10K. Our method outperforms all baselines on all metrics.

Method	$LPIPS \downarrow$	$SSIM \uparrow$	$PSNR \uparrow$	$MSE\downarrow$
pixelNeRF [59]	0.628	0.464	16.48	0.0275
IBRNet [54]	0.385	0.513	19.24	0.0167
GPNR [48]	0.558	0.719	17.57	0.0218
Ours	0.364	0.781	23.63	0.0074

Table 2. **Novel view rendering performance on ACID.** Our method outperforms all baselines on all metrics.

Ablation study

Models	LPIPS↓	SSIM↑	PSNR↑	MSE↓
Base Model	0.452	0.735	18.11	0.0201
+ 2D Sampling	0.428	0.762	19.02	0.0159
+ Cross Correspondence	0.415	0.766	19.52	0.0142
+ Multiview Encoder	0.361	0.794	20.43	0.0132
+ Regularization Loss	0.358	0.808	19.84	0.0139
+ Data Aug	0.262	0.839	21.38	0.0110

Conclusion

Conclusion

 Introduce a method for implicit 3D reconstruction and novel view synthesis from a single, wide-baseline stereo pair

Our method surpasses the quality of prior art on datasets of challenging scenes

Reproduce

Reproduce results

Method	LPIPS	SSIM	PSNR	MSE
GPNR	0.459	0.748	18.55	0.0165
Paper	0.262	0.839	21.38	0.0110
Pretrained	0.317	0.809	21.11	0.0112
Reproduce	0.355	0.773	19.50	0.0161

First Experiment

Second Experiment

Discussion

- Two input images should not be too far from each other to get better qualitative results
- Relies on learned priors(e.g. pose embedding), it does not generalize well to new scene with very different appearances compared to training scenes

Q & A