2018 年全国青少年信息学奥林匹克 江西省队选拔赛第一试

竞赛时间: 8:30 - 12:00

题目名称	排序问题	游戏	守卫
目录	sort	game	guard
可执行文件名	sort	game	guard
输入文件名	sort.in	game.in	guard.in
输出文件名	sort.out	game.out	guard.out
每个测试点时限	1s	1s	1s
内存限制	512MB	512MB	512MB
测试点数目	10	10	10
每个测试点分值	10	10	10
是否有部分分	否	否	否
题目类型	传统型	传统型	传统型
是否有附加文件	是	是	是

提交源程序必须加后缀

对于 C++ 语言	sort.cpp	game.cpp	guard.cpp
对于 C 语言	sort.c	game.c	guard.c
对于 Pascal 语言	sort.pas	game.pas	guard.pas

编译开关

对于 C++ 语言	-O2 -lm	-O2 -lm	-O2 -lm
对于 C 语言	-O2 -lm	-O2 -lm	-O2 -lm
对于 Pascal 语言	-O2	-O2	-O2

1 排序问题

1.1 题目描述

九条可怜是一个热爱思考的女孩子。

九条可怜最近正在研究各种排序的性质,她发现了一种很有趣的排序方法: gobo sort!

Gobo sort 的算法描述大致如下:

- 1. 假设我们要对一个大小为 n 的数列 a 排序。
- 2. 等概率随机生成一个大小为 n 的排列 p 。
- 3. 构造一个大小为 n 的数列 b 满足 $b_i=a_{p_i}$,检查 b 是否有序,如果 b 已经有序了就结束算法,并返回 b ,不然返回步骤 2 。

显然这个算法的期望时间复杂度是 $O(n \times n!)$ 的,但是九条可怜惊奇的发现,利用量子的神奇性质,在量子系统中,可以把这个算法的时间复杂度优化到线性。

九条可怜对这个排序算法进行了进一步研究,她发现如果一个序列满足一些性质,那么 Gobo sort 会很快计算出正确的结果。为了量化这个速度,她定义 Gobo sort 的执行轮数是步骤 2 的执行次数。

于是她就想到了这么一个问题:

现在有一个长度为 n 的序列 x ,九条可怜会在这个序列后面加入 m 个元素,每个元素是 [l,r] 内的正整数。她希望新的长度为 n+m 的序列执行 Gobo sort 的期望执行轮数尽量的多。她希望得到这个最多的期望轮数。

九条可怜很聪明,她很快就算出了答案,她希望和你核对一下,由于这个期望轮数实在是太大了,于是她只要求你输出对 998244353 取模的结果。

1.2 输入格式

第一行输入一个整数 T,表示数据组数。

接下来 2T 行描述了 T 组数据。

每组数据分成两行,第 1 行有四个正整数 n, m, l, r ,表示数列的长度和加入数字的个数和加入数字的范围。

第 2 行有 n 个正整数, 第 i 个表示 x_i 。

1.3 输出格式

输出 T 个整数,表示答案。

1.4 样例输入

2

3 3 1 2

1 3 4

3 3 5 7

1 3 4

1.5 样例输出

180

720

1.6 样例解释

对于第一组数据,我们可以添加 $\{1,2,2\}$ 到序列的最末尾,使得这个序列变成 1 3 4 1 2 2 ,那么进行一轮的成功概率是 $\frac{1}{180}$,因此期望需要 180 轮。

对于第二组数据,我们可以添加 $\{5,6,7\}$ 到序列的最末尾,使得这个序列变成 1 3 4 5 6 7,那么进行一轮的成功概率是 $\frac{1}{720}$,因此期望需要 720 轮。

1.7 数据范围与约定

对于 30% 的数据, $T \le 10, n, m, l, r \le 8$ 。

对于 50% 的数据, $T \leq 300, n, m, l, r, a_i \leq 300$.

对于 60% 的数据, $\sum r - l + 1 \le 10^7$.

对于 70% 的数据, $\sum n \leq 2 \times 10^5$ 。

对于 90% 的数据, $m \le 2 \times 10^5$ 。

对于 100% 的数据, $T \le 10^5$, $n \le 2 \times 10^5$, $m \le 10^7$, $1 \le l \le r \le 10^9$.

对于 100% 的数据, $1 \le a_i \le 10^9$, $\sum n \le 2 \times 10^6$ 。

2 游戏

2.1 题目描述

九条可怜是一个热爱游戏的女孩子,她经常在网上和一些网友们玩一款叫做《僵尸危机》 游戏。

在这款游戏中,玩家们会需要在成为僵尸之前与黑恶势力斗智斗勇,逃离被病毒感染的小岛。但是黑恶势力不会让玩家轻易得逞,他会把一些玩家抓走改造成僵尸。变成僵尸的玩家会攻击其他的玩家,被攻击的玩家会被"感染",成为病毒的潜在宿主。

具体来说,游戏开始时,所有的玩家会获得一个 $l \sim r$ 的编号 (如果一共有 r - l + 1 个玩家),不同的玩家的编号不同。

游戏分轮次进行,在每一轮中一次会发生这样的事情。

- 如果所有当前所有的正常人都已经被感染,那么游戏结束。
- 不然, 黑恶势力会在当前的正常人 (包括被感染的人) 中等概率随机一个改造成僵尸。
- 被改造成僵尸的玩家会攻击所有编号是他的倍数的玩家, 使得他们被感染。

九条可怜现在想知道,这个游戏期望会进行多少轮?这个答案可能是一个实数,她想让你给出期望轮数乘上 (r-l+1)!以后的结果,这个结果可能很大,请对 10^9+7 取模后输出。

2.2 输入格式

第一行输入两个整数 l,r 表示编号范围。

2.3 输出格式

一个整数,表示期望进行的轮数。

2.4 样例输入

2 4

2.5 样例输出

16

2.6 样例解释

考虑所有玩家变成僵尸的相对顺序:

- 234, 轮数是 2。
- 3 2 4, 轮数是 2。
- 423, 轮数是3。
- 432, 轮数是3。
- 243, 轮数是3。
- 342, 轮数是3。

每种情况的概率都是 $\frac{1}{6}$,于是期望轮数就是 $\frac{1}{6}(2+2+3+3+3+3)=\frac{8}{3}$ 。 乘上 3!=6 以后就是 16 。

2.7 数据范围与约定

对于 20% 的数据, $r - l + 1 \le 8$.

对于另 10% 的数据, l=1。

对于另 10% 的数据, l=2。

对于另 30% 的数据, $l \le 200$ 。

对于 100% 的数据, $1 \le l \le r \le 10^7$.

3 守卫

3.1 题目描述

九条可怜是一个热爱运动的女孩子。

这一天她去爬山,她的父亲为了她的安全,雇了一些保镖,让他们固定地呆在在山的某些 位置,来实时监视九条可怜,从而保护她。

具体来说,一座山可以描述为一条折线,折线的下方是岩石。这条折线有 n 个折点,每个折点上有一个亭子,第 i 个折点的坐标是 (i,h_i) 。 **九条可怜只可能会在亭子处玩耍,那些保镖也只会在亭子处监视可怜**。

由于技术方面的原因,一个保镖只能监视所有他能看得到的,**横坐标不超过他所在位置**的 亭子。我们称一个保镖能看到一个亭子 p ,当且仅当他所在的亭子 q 和 p 的连线不经过任何一块岩石。特别地,如果这条连线恰好经过了除了 p,q 以外的亭子,那么我们认为保镖看不到可怜。

雇佣保镖是一件很费钱的事情,可怜的父亲希望保镖越少越好。

可怜的父亲还希望得到详尽的雇佣保镖的方案,他知道有些亭子可能正在维修,他想对所有的 $1 \le l \le r \le n$ 计算:如果事先已知了**只有**区间 [l,r] 的亭子可以用来玩耍 (和监视),那么最少需要多少个保镖,才能让 [l,r] 中的每一个亭子都被监视到。

可怜的父亲已经得到了一个结果,他希望和你核实他的结果是否正确。

3.2 输入格式

第一行输入一个整数 n 表示亭子的数目。

接下来一行 n 个整数, 第 i 个整数 h_i 表示第 i 个亭子的坐标是 (i, h_i) 。

3.3 输出格式

对所有的 $1 \le l \le r \le n$ 计算: 如果事先已知了可怜只会在 [l,r] 这个区间的亭子里面玩耍,那么最少需要多少个保镖,才能让 [l,r] 中的每一个亭子都被监视到。由于输出量太大,可怜的父亲只要你输出所有 [l,r] 的答案的异或即可。

3.4 样例输入

3

2 3 1

3.5 样例输出

3

3.6 样例解释

如果 $r-l+1 \le 2$, 那么答案显然是 1。

如果 l=1, r=n,那么答案是 2,需要安排两个保镖在 (2,3),(3,1) 两个位置监视可怜。

3.7 数据范围与约定

对于 30% 的数据, $n \le 20$ 。

对于 70% 的数据, $n \le 500$ 。

对于 100% 的数据, $n \le 5000$ 。

对于 100% 的数据, $1 \le h_i \le 10^9$ 。