Inferência Estatística II

Prof. Fernando de Souza Bastos fernando.bastos@ufv.br

Departamento de Estatística Programa de Pós-Graduação em Estatística Aplicada e Biometria Universidade Federal de Viçosa Campus UFV - Viçosa

Sumário

- Razão de Verossimilhança Monótona
 - Exemplo 1
- Teorema de Karlin-Rubin
 - Exemplo 1
 - Exemplo 2
 - Exemplo 3

A Razão de Verossimilhança Monótona (RVM) está relacionada à comparação de dois modelos estatísticos por meio da razão de suas funções de verossimilhança.

https://est711.github.io/

A Razão de Verossimilhança Monótona (RVM) está relacionada à comparação de dois modelos estatísticos por meio da razão de suas funções de verossimilhança.

A razão de verossimilhança é definida como o quociente

$$\frac{L(\theta_0|T(X))}{L(\theta_1|T(X))}$$

para dois valores de parâmetro θ_0 e θ_1 . Dizemos que a razão de verossimilhança é **monótona** se, para quaisquer dois valores $\theta_1 > \theta_0$, a razão de verossimilhança for uma função **monótona não-decrescente** em relação a estatística T(X).

A monotonicidade aqui é uma propriedade importante, pois implica que, se um modelo é mais provável do que outro para uma dada estatística $\mathcal{T}(X)$, ele permanecerá mais provável à medida que a estatística $\mathcal{T}(X)$ aumenta. Isso é fundamental em testes de hipóteses e inferência estatística, pois garante uma ordem consistente de preferência entre os modelos em estudo.

Definição 1

Uma família de funções de densidade de probabilidade $\{f_{\boldsymbol{X}}(\cdot;\theta), \theta \in \Theta\}$, $\Theta \in \mathbb{R}$, é dita ter Razão de Verossimilhança Monótona (RVM) se existir uma estatística $T = t(\boldsymbol{X})$ tal que, para todo $\theta_1 > \theta_0$,

$$\frac{L(\theta_0 \mid T(\boldsymbol{X}))}{L(\theta_1 \mid T(\boldsymbol{X}))}$$

é uma função monótona (não decrescente ou não crescente) em t(x), para $x \in \{f(x; \theta_0) > 0ef(x; \theta_1) > 0\}$, em que $f_{\boldsymbol{\chi}}(x; \theta_0) \neq f_{\boldsymbol{\chi}}(x; \theta_1)$.

Seja X_1,\ldots,X_n uma amostra de $X\sim \mathsf{Exp}(\theta)$. Segue que,

$$\frac{L(\theta_0 \mid T(\mathbf{X}))}{L(\theta_1 \mid T(\mathbf{X}))} = \frac{\theta_1^n}{\theta_0^n} \exp\left(-\left(\frac{1}{\theta_1} - \frac{1}{\theta_0}\right) \sum_{i=1}^n x_i\right)$$

Seja X_1,\ldots,X_n uma amostra de $X\sim \mathsf{Exp}(\theta)$. Segue que,

$$\frac{L(\theta_0 \mid T(\mathbf{X}))}{L(\theta_1 \mid T(\mathbf{X}))} = \frac{\theta_1^n}{\theta_0^n} \exp\left(-\left(\frac{1}{\theta_1} - \frac{1}{\theta_0}\right) \sum_{i=1}^n x_i\right)$$

Para $\theta_1 > \theta_0$ fixados, a função acima é monótona não crescente em $t(x) = \sum_{i=1}^n x_i$, logo, $\operatorname{Exp}(\theta)$ tem Razão de Verossimilhança Monótona

(RVM) não crescente em $t(x) = \sum_{i=1}^{n} x_i$. De outro lado, $\mathsf{Exp}(\theta)$ tem

RVM não decrescente em $t^*(x) = -\sum_{i=1}^n x_i$.

Seja X_1,\ldots,X_n uma amostra de $X\sim U(0,\theta)$. Considere $y_n=\max\{X_1,\ldots,X_n\}$,

$$L(x;\theta) = L(y;\theta) = \frac{1}{\theta^n} 1_{(0,\theta)}(y_n)$$

Assim, se $\theta_0 < \theta_1$, temos que:

$$\frac{L(\mathbf{y};\theta_0)}{L(\mathbf{y};\theta_1)} = \left(\frac{\theta_1}{\theta_0}\right)^n \frac{1_{(0,\theta_0)}(y_n)}{1_{(0,\theta_1)}(y_n)}$$

Portanto, note que, $U(0,\theta)$ tem Razão de Verossimilhança Monótona (RVM) não decrescente em y_n e,

$$g(y_n) = \begin{cases} \left(rac{ heta_0}{ heta_1}
ight)^n, & ext{se } 0 < y_n < heta_0 \\ ext{Indeterminado}, & ext{se } heta_0 \leq y_n < heta_1 \end{cases}$$

Observação

Página 350 do Casella e Berger (Tradução)

Muitas famílias de distribuição comuns têm uma RVM. Por exemplo, a distribuição normal (Variância conhecida, média desconhecida), de Poisson, e a Binomial, todas têm. Na verdade, qualquer família exponencial regular com $f(t|\theta) = h(t)c(\theta) \exp w(\theta)t$ tem uma RVM se $w(\theta)$ for uma função não decrescente.

https://est711.github.io/

Teorema de Karlin-Rubin

Considere testar $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$. Seja $L(\theta; x)$ a função de verosimilhança de uma distribuição com espaço de parâmetros Θ e estatística suficiente T=t(x) para θ , tal que, para quaisquer θ_0 e θ_1 em Θ tais que $\theta_0 < \theta_1$, a razão de verosimilhança

$$\Lambda(\mathbf{x};\theta_0,\theta_1) = \frac{L(\theta_0;\mathbf{x})}{L(\theta_1;\mathbf{x})}$$

é uma RVM (Ou seja, é uma função monótona (não decrescente ou não crescente) em t(x)). Sob tais condições, para um apropriado valor t_0 ,

$$C = \{x; T(x) > t_0\}$$

é uma região crítica para um teste uniformemente mais poderoso para $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$ de tamanho $\alpha = P_{\theta_0}(T(x) > t_0)$.

Observação:

Sob as condições do teorema anterior podemos testar $H_0: \theta \geq \theta_0$ versus $H_1: \theta < \theta_0$. Nesse caso,

$$C = \{x; T(x) < t_0\}$$

é uma região crítica para um teste uniformemente mais poderoso para $H_0: \theta \geq \theta_0$ versus $H_1: \theta < \theta_0$ de tamanho $\alpha = P_{\theta_0}(T(\mathbf{x}) < t_0)$.

Considere $X_1, \ldots, X_n \sim \mathsf{Poisson}(\theta)$. Encontre um TUMP de nível α para testar

 $H_0: \theta \leq \theta_0$ contra $H_1: \theta > \theta_0$

Considere $X_1, \ldots, X_n \sim \mathsf{Poisson}(\theta)$. Encontre um TUMP de nível α para testar

$$H_0: \theta \leq \theta_0$$
 contra $H_1: \theta > \theta_0$

Considere $0 < \theta_0 < \theta_1 < \infty$ e

$$\frac{L(t;\theta_0)}{L(t;\theta_1)} = e^{n(\theta_1 - \theta_0)} \left(\frac{\theta_0}{\theta_1}\right)^t, \text{ com } t = T(\boldsymbol{X}) = \sum_{i=1}^n X_i.$$

Sabemos que $T(\boldsymbol{X}) = \sum_{i=1}^n X_i$ é uma estatística suficiente para θ , como a razão anterior é uma RVM de t, para $\theta_0 < \theta_1$, temos que, pelo teorema de Karlin-Rubin, o teste que rejeita H_0 para toda amostra \boldsymbol{X} tal que $\sum_{i=1}^n X_i > t_0$ é um teste uniformemente mais poderoso de tamanho $\alpha = P_{\theta_0} \left(\sum_{i=1}^n X_i > t_0 \right)$.

Suponha

$$H_0: heta \leq 1$$
 contra $H_1: heta > 1$ $n=100$ $lpha = 0.05$

Segue que $\sum_{i=1}^{n} X_i \sim \text{Poisson}(100\theta)$, sob $H_0, \sum_{i=1}^{n} X_i \sim \text{Poisson}(100)$.

No software R, obtemos $t_0=117$ e $P_{\theta_0}(\sum_{i=1}^n X_i>t_0)\approx 0,043\leq \alpha.$

Logo, o teste que rejeita H_0 para toda amostra de tamanho n = 100

quando $\sum X_i > 117$ é um TUMP de nível 0.05. O tamanho do teste

é
$$P_{\theta_0}(\sum_i X_i > 117) \approx 0,043.$$

Seja X_1, \dots, X_n uma amostra aleatória de uma distribuição exponencial (θ) . Encontre um TUMP de

$$H_0: \theta \geq \theta_0$$
 contra $H_1: \theta < \theta_0$

Seja X_1, \dots, X_n uma amostra aleatória de uma distribuição exponencial (θ) . Encontre um TUMP de

$$H_0: \theta \geq \theta_0$$
 contra $H_1: \theta < \theta_0$

Sabemos que $T(\boldsymbol{X}) = \sum_{i=1}^{n} X_i$ é uma estatística suficiente para θ e que a

distribuição de $T(\boldsymbol{X}) = \sum_{i=1}^n X_i$ é Gamma (n, θ) . Para $0 < \theta_0 < \theta_1 < \infty$

$$\frac{L(t;\theta_0)}{L(t;\theta_1)} = \left(\frac{\theta_1}{\theta_2}\right)^n e^{t\left(\frac{1}{\theta_1} - \frac{1}{\theta_0}\right)}, \ \frac{1}{\theta_1} - \frac{1}{\theta_0} < 0,$$

é uma RVM de t. Logo, a família gamma tem a propriedade RVM.

Pelo teorema de Karlin-Rubin, o teste que rejeita \mathcal{H}_0 para toda amostra

X tal que $\sum_{i=1}^{n} X_i < 3$ é um teste uniformemente mais poderoso de

tamanho $\alpha = P_{\theta_0}(\sum_{i=1}^n X_i < t_0).$

Pelo teorema de Karlin-Rubin, o teste que rejeita H_0 para toda amostra

$$X$$
 tal que $\sum_{i=1}^{n} X_i < 3$ é um teste uniformemente mais poderoso de

tamanho $lpha = P_{ heta_0}(\sum_{i=1} X_i < t_0).$

Considere, por exemplo,

$$H_0: \theta \geq 3$$
 contra $H_1: \theta < 3$
 $n = 5$
 $\alpha = 0.05$

Segue que $\sum_{i=1}^{n} X_i \sim \mathsf{Gamma}(5,\theta)$, sob $H_0, \sum_{i=1}^{n} X_i \sim \mathsf{Gamma}(5,3)$.

No software R, obtemos $t_0=3,05$ e $P_{\theta_0}(\sum_{i=1}^n X_i>t_0)\approx 0,05$. Logo, o teste que rejeita H_0 para toda amostra de tamanho n=5 quando $\sum_{i=1}^n X_i<3,05$ é um TUMP de tamanho 0.05.

Referências I

- Casella, George e Roger L Berger (2021). Statistical inference. Cengage Learning.
- Hogg, RV, J McKean e AT Craig (2019). Introduction to Mathematical Statistics.