RL Assignment 3

陈麒麟 517030910155

RL Assignment 3

```
代码实现
测试 {
m Condition\ of\ }\epsilon=0.1 {
m Condition\ of\ }\epsilon=0
```

作业要求:

● 利用 Q-Learning/SARSA 分别模拟计算 12 × 4 Cliff Walking 的最优路径

代码实现

详细信息参见 MFC.py:

- 全局参数在代码头给出,可以根据情况自定义,参数表为:
 - o alpha\epsilon\gamma\格子世界长度\格子世界宽度\episodes\batch_size
- 代码模块话实现,observe\greedy\ $\epsilon-greedy$ 分别实现

测试

Condition of $\epsilon=0.1$

• 最优路径对比:

```
optimal travel path by Sara:
    0
        0
            0
                0
                     0
                         0
                             0
                                 0
                                      0
                                          0
            0
                0
        0
                     0
                             0
                                 0
                                          0
    0
        0
            0
                 0
                     0
                             0
                                  0
                                          0
                                              G
                         0
optimal travel path by Q-Learning:
                0
                     0
                                          0
                                              0
0
    0
        0
            0
                0
                     0
                         0
                             0
                                 0
                                      0
                                          0
                                              0
    0
        0
                0
                     0
                             0
                                 0
            0
                                      0
                                          0
                                              G
```

这里我们得到了与Assignment一致的结果,两种算法选择不同路径本质上是因为Q-Learning的 Target选择是绝对的greedy策略,保证了Agent在Q值进入收敛后不会记录可能掉入悬崖的状态动作的 Q值,而Sarsa的 $\epsilon-greedy$ 的target选择策略在收敛后仍受cliif影响,因此需要远离。

• reward收敛对比:

这里我们看到Sarsa的探索性使得其收敛速度慢于Q-learning,但是Q-Learning也由于选择接近Cliff的路而收敛于较小的reward累计,这是由于算法决定的

• 平均Q值heatmap (left: Sarsa, right: Q-learning)

平均Q值的heatmap并看不出算法的差别,智能判断出隆重算法的Qtable都认定了Cliff周围是危险的

Condition of $\epsilon = 0$

• 最优路径对比:

0	ptimal	tr	avel	path	by	Sara	a:				
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
→	→ →	→	→	→	→	→	→	→	→	→	1
1	0	0	0	0	0	0	0	0	0	0	G
_	optimal		-			Q-Learning:					
О	ptimal	tr	avel	path	by	Q-Le	earni	ing:			
0		tr 0	avel 0	path 0	by 0	Q-Le	earni 0	ing: 0	0	0	0
	0							_	0 0	0 0	0 0
0	0	0	0	0	0	0	0	0	Ť		·

这里我们看到 $\epsilon=0$ 时两种算法最优路径一致,这时Sarsa收敛时不再受 $\epsilon-greedy$ 影响, 本质上两种算法都退化为TD(0)

• reward收敛对比:

这里我们看到 $\epsilon=0$ 时两种算法收敛情况一致,这说明两种算法都退化为 ${f TD}({f 0})$ 的结论是正确的

• 平均Q值heatmap (left: Sarsa, right: Q-learning)

平均Q值的heatmap并看不出算法的差别,智能判断出隆重算法的Qtable都认定了Cliff周围是危险的