

Arabic Named Entity Recognition (ANER)

1. Project Overview

- Objective: Automatically identify named entities (e.g., people, locations) in Arabic text.
- **Significance**: Tackles core challenges in Arabic NLP such as diacritics, tokenization, and morphological complexity.
- **Key Innovation**: Fine-tuning a BERT-based Arabic model with domainspecific enhancements for NER.

2. Dataset & Preprocessing

- Dataset: <u>WikiFANE_Gold_2014_500K.txt</u>
 - Size: ~15,763 sentences (~500,000 tokens)
 - Unique Tags: 102 (e.g., Nation, Population-Center, Politician, etc.)

Preprocessing:

- Diacritic removal, character normalization
- Token masking for data augmentation

Train/Test split: 90% / 10%

3. Model Architecture

- Base Model: asafaya/bert-base-arabic
 - 111M parameters
 - Pretrained on large Arabic corpora
- Fine-tuning:
 - Token classification head added
 - Approximately finetuned with ½ million token from dataset (https://fsalotaibi.kau.edu.sa/Pages-Arabic-NE-Corpora.aspx)
 - Fine-tuninig with 111M parameters
 - Label alignment for subword tokens
- Training Setup:
 - Learning Rate: 2e-5
 - Batch Size: 8
 - Epochs: 3
 - Early Stopping: Patience = 2
 - Hardware: Google Colab (T4 GPU)

4. Results & Evaluation

- Test Set Performance:
 - Accuracy: ~95%
 - F1-score (micro): ~0.68
- Entity-wise F1 Scores:
 - Nation: 0.81
 - Population-Center: 0.66
 - Politician: 0.64
- Challenges:
 - Lower recall for rare entities

Entity boundary ambiguity in long/complex sentences

5. Demo & Inference

• Example Input:

".وُلِدَ محمد بن سلمان في الرياض عاصمة المملكة العربية السعودية"

• Output:

- Politician (96%)→ Politician (96%)
- o "الرياض" → Population-Center (98%)
- "المملكة العربية السعودية" → Nation (94%)

Interface:

- Gradio web UI for user interaction
- Tkinter GUI for local desktop use

6. Limitations

- 1. Sequence Length: Truncated context due to BERT's 128-token limit
- 2. Arabic-only Model: Because we fine-tune on arabic dataset
- 3. **Overfitting**: Slight generalization drop after Epoch 1 (So we take model from epoch 1)
- 4. Context Window: Long sentences may lose coherence
- 5. **Vocabulary Mismatch**: OOV or dialectal words hurt performance
- 6. Latency & Model Size:
 - Large models can be slow or memory-intensive
 - Can be addressed using Knowledge Distillation or Model Quantization

7. Conclusion

- Successfully fine-tuned a BERT model for Arabic NER
- Achieved competitive accuracy and recall across common entity types
- Built interactive demos (Gradio & Tkinter)
- Open-sourced the model and codebase for reproducibility