Árvores em vetores e heaps

Fonte: http://xkcd.com/835/

PF 10 http://www.ime.usp.br/~pf/algoritmos/aulas/hpsrt.html

4 D > 4 D P + 4 E > 4 E > E + 9 Q

Pais e filhos

v[1:m] é um vetor representando uma árvore. Diremos que para qualquer **índice** ou **nó i**,

- i//2 é o pai de i;
- ► 2 i é o filho esquerdo de i;
- ▶ 2i+1 é o filho direito

Um nó i só tem filho esquerdo se 2 i < m.

Um nó ${\tt i}$ só tem filho direito se $2\,{\tt i} + 1 < {\tt m}.$

10/10/12/12/2

Níveis

Cada nível p, exceto talvez o último, tem exatamente $2^{\rm p}$ nós e esses são

$$2^{p}, 2^{p} + 1, 2^{p} + 2, \dots, 2^{p+1} - 1.$$

Representação de árvores em vetores

Raiz e folhas

O nó 1 não tem pai e é chamado de raiz.

Um nó i é um **folha** se não tem **filhos**, ou seja 2 i > m.

Todo nó i é raiz da subárvore formada por

$$v[i, 2i, 2i+1, 4i, 4i+1, 4i+2, 4i+3, 8i, \dots, 8i+7, \dots]$$

Níveis

Cada nível p, exceto talvez o último, tem exatamente 2^p nós e esses são

$$2^{\mathbf{p}}, 2^{\mathbf{p}} + 1, 2^{\mathbf{p}} + 2, \dots, 2^{\mathbf{p}+1} - 1.$$

O nó i pertence ao nível ???.

Níveis

Cada nível p, exceto talvez o último, tem exatamente 2^p nós e esses são

$$2^{p}, 2^{p} + 1, 2^{p} + 2, \dots, 2^{p+1} - 1.$$

O nó i pertence ao nível | lg i |.

←□ → ←□ → ←□ → □ → ○○

Níveis

Cada nível p, exceto talvez o último, tem exatamente $2^{\rm p}$ nós e esses são

$$2^{p}, 2^{p} + 1, 2^{p} + 2, \dots, 2^{p+1} - 1.$$

O nó i pertence ao nível [lg i].

Prova: Se p é o nível do nó i, então

Logo, $p = |\lg i|$.

Portanto, o número total de níveis é ????

Altura

A altura de um nó i é o maior comprimento de um caminho de i a uma folha.

Em outras palavras, a altura de um nó i é o maior comprimento de uma seqüência da forma

$$\langle filho(i), filho(filho(i)), filho(filho(filho(i))), .$$

onde filho(\mathbf{i}) vale $2\mathbf{i}$ ou $2\mathbf{i} + 1$.

Os nós que têm altura zero são as folhas.

Níveis

Cada nível p, exceto talvez o último, tem exatamente 2^p nós e esses são

$$2^{\mathbf{p}}, 2^{\mathbf{p}} + 1, 2^{\mathbf{p}} + 2, \dots, 2^{\mathbf{p}+1} - 1.$$

O nó i pertence ao nível | lg i |.

Prova: Se p é o nível do nó i, então

Logo, $p = \lfloor \lg i \rfloor$.

Níveis

Cada nível p, exceto talvez o último, tem exatamente 2^p nós e esses são

$$2^{p}, 2^{p} + 1, 2^{p} + 2, \dots, 2^{p+1} - 1.$$

O nó i pertence ao nível | lg i |.

Prova: Se p é o nível do nó i, então

Logo, $p = |\lg i|$.

Portanto, o número total de níveis é $1 + \lfloor \lg m \rfloor$

Altura

A altura de um nó i é o maior comprimento de um caminho de i a uma folha.

Em outras palavras, a altura de um nó i é o maior comprimento de uma seqüência da forma

 $\langle filho(i), filho(filho(i)), filho(filho(filho(i))), .$

onde filho(\mathbf{i}) vale $2\mathbf{i}$ ou $2\mathbf{i} + 1$.

Os nós que têm altura zero são as folhas.

A altura de um nó i é $|\lg(m/i)|$ (...).

Resumão

filho esquerdo de i: 2i filho direito de i: 2i+1 pai de i: i//2

nível da raiz: 0 nível de \mathbf{i} : $|\lg \mathbf{i}|$

altura de i: $\lfloor \lg(m/i) \rfloor \ldots \rfloor$

altura de uma folha: 0

total de nós de altura h $\leq \lceil m/2^{h+1} \rceil (\dots)$

←□ → ←□ → ←□ → □ → ○
←□ → ←□ → ←□ → □ → ○

max-heap

Função básica de manipulação de max-heap

Heaps

Um vetor v[1:m] é um max-heap se

$$v[i//2] \ge v[i]$$

para todo $\mathbf{i} = 2, 3, \dots, \mathbf{m} - 1$.

De uma forma mais geral, v[j:m] é um max-heap se

$$v[i/2] \ge v[i]$$

Função básica de manipulação de max-heap

Função básica de manipulação de max-heap

Função básica de manipulação de max-heap

Função peneira

O coração de qualquer algoritmo que manipule um \max -heap é uma função que recebe uma lista arbitrário v[1:m] e um índice i e faz v[i] "descer" para sua posição correta.

Função peneira

Supõe que os "subvetores" cujas raízes são filhos de i já são max-heap.

```
def peneira(i, m, v):
1    f = 2*i
2    while f < m:
3         if f < m-1 and v[f] < v[f+1]:f+=1
4         if v[i] >= v[f]: break
5         v[i], v[f] = v[f], v[i]
6         i = f
6    f = 2*i
```

4 D > 4 D > 4 E > 4 E > E 9 Q C

Função básica de manipulação de max-heap

Função peneira

Rearranja o vetor v[1:m] de modo que o "subvetor" cuja raiz é i seja um max-heap.

```
def peneira(i, m, v):
1    f = 2*i
2    while f < m:
3         if f < m-1 and v[f] < v[f+1]:f+=1
4         if v[i] >= v[f]: break
5         v[i], v[f] = v[f], v[i]
6         i = f
6         f = 2*i
```

Função peneira

A seguinte implementação é um pouco melhor pois em vez de trocas faz apenas deslocamentos (linha 5).

```
def peneira(i, m, v):
    x = v[i]
    f = 2*i
1
    while f < m:
3
       if f < m-1 and v[f] < v[f+1]:f+=1
4
       if x \ge v[f]: break
5
       v[i] = v[f]
6
       i = f
       f = 2*i
6
7
    v[i] = x
```

Consumo de tempo

lınha	todas as execuções da linha
1	= 1
2	$\leq 1 + \lg m$
3	$\leq \lg m$
4	$\leq \lg m$
5	$\leq \lg m$

 $\leq \lg m$

total $\leq 3 + 5 \lg m = O(\lg m)$

Construção de um max-heap

Construção de um max-heap

Conclusão

O consumo de tempo da função peneira é proporcional a $\lg m$.

O consumo de tempo da função peneira é $O(\lg m)$.

Verdade seja dita ...(...)

O consumo de tempo da função peneira é proporcional a $O(\lg m/i)$.

Construção de um max-heap

> (E> (E> E 900)

Construção de um max-heap

4□ > 4∰ > 4 ≥ > 4 ≥ > ≥ 90

Construção de um max-heap

Recebe um vetor v[1:n] e rearranja v para que seja max-heap.

Relação invariante:

(i0) em #A# vale que, i+1,...,n-1 são raízes de max-heaps.

4 D > 4 D > 4 E > 4 E > E > 9 Q (*)

Conclusão

O consumo de tempo para construir um \max -heap é $O(n \lg n)$.

Verdade seja dita ...(...)

O consumo de tempo para construir um \max -heap é O(n).

4□ > 4∰ > 4 E > 4 E > E 90

Ordenação

v[1:n] é crescente se $v[1] \le \cdots \le v[n-1]$.

Problema: Rearranjar um vetor v[1:n-1] de modo que ele fique crescente.

Entra:

Sai:

Consumo de tempo

Análise grosseira: consumo de tempo é

$$\frac{n}{2} \times \lg n = O(n \lg n).$$

Verdade seja dita ...(...)

Análise mais cuidadosa: consumo de tempo é O(n).

Ordenação: algoritmo Heapsort

PF 10 http://www.ime.usp.br/~pf/algoritmos/aulas/hpsrt.html

Heapsort

O Heapsort ilustra o uso de estruturas de dados no projeto de algoritmos eficientes.

Rearranjar um vetor v[1:n] de modo que ele fique crescente.

Entra:

Sai:

4□ > 4∰ > 4 ≥ > 4 ≥ > □ ≥ 90

Ordenação por seleção

Ordenação por seleção i = 5max n 38 | 50 | 20 | 44 50 | 55 | 60 | 75 | 85 | 99

Ordenação por seleção

i = 51 38 | 50 | 20 | 44 10 50 | 55 | 60 | 75 | 85 | 99 1 max 10 50 55 60 50 44 75 99

Ordenação por seleção

i = 51 n 38 | 50 | 20 | 44 | 10 50 | 55 | 60 | 75 | 85 | 99 1 max 10 50 55 38 50 20 44 60 | 75 | 85 | 99 maxn 50 20 44 **10** | 50 | 55 | 60 | 75 | 85 | 99

Ordenação por seleção

Ordenação por seleção												
i	=5				,				,			
	1			j	max							n
	38	50	20	44	10	50	55	60	75	85	99	
	1		j	max								n
	38	50	20	44	10	50	55	60	75	85	99	
	1	j		max								n
	38	50	20	44	10	50	55	60	75	85	99	
	j	max	Σ									n
	38	50	20) 44	10	50	55	60	75	85	99	
	1	max	ζ									n
	38	50	20) 44	10	50	55	60	275	$\lfloor 85 \rfloor$	99_	

Ordenação por seleção

1			i								n
38	10	20	44	50	50	55	60	75	85	99	

Ordenação por seleção

4D> 4B> 4B> B 990

Ordenação por seleção

Função selecao

Algoritmo rearranja $\mathbf{v}[0:\mathbf{n}]$ em ordem crescente

```
def selecao(n, v):
1   for i in range(n-1, 0, -1): #B#
2     max = i
3     for j in range(i-1, -1, -1):
4         if v[j] > v[max]: max = j
5     v[i], v[max] = v[max], v[i]
```

Ordenação por seleção

```
1
                                             n
38 | 10 | 20 | 44 | 50 | 50 | 55 |
                                         99
1
                                             n
   10 \mid 38
20
            44 | 50 | 50 | 55 |
                            60
                                 75 | 85
                                         99
1
                                             n
10
   20 | 38
                50 50 55
                                         99
1
                                             n
10 20
                50 50 55
        38
                            60
                                 75
                                     85
                                         99
```

Função selecao

Algoritmo rearranja v[1:n] em ordem crescente

```
def selecao(n, v):
1   for i in range(n-1, 1, -1): #B#
2     max = i
3     for j in range(i-1, 0, -1):
4         if v[j] > v[max]: max = j
5     v[i], v[max] = v[max], v[i]
```

Função selecao

Relações invariantes: Em /*B*/ vale que:

- (i0) v[i+1:n] é crescente;
- $(\mathsf{i1})\ \mathtt{v}[1:\mathtt{i}] \leq \mathtt{v}[\mathtt{i}{+}1];$

17

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12

 10
 41
 34
 23
 30
 21
 14
 17
 12
 15
 13
 46

15

4 D > 4 B > 4 E > 4 E > E 9 Q C

←□ → ←□ → ← □ → ← □ → ○ へ ○ ○

Heapsort

<□ > <□ > < □ > < ē > < ē > \ € > \ € \ ♥ ♀

4 D > 4 B > 4 E > 4 E > E 990

oansort

←□ → ←□ → ← □ → ← □ → ○ へ ○ ○

14 12 15 13 **10**

Heapsort nível 13 10 12 15 17

Algoritmo rearranja v[1:n] em ordem crescente def heap_sort(n, v): # pre-processamento 1 for i in range((n-1)//2, 0, -1): 2 peneira(i, n, v) 3 for i in range(n-1, 1, -1): #C# 4 v[i], v[1] = v[1], v[i] 5 peneira(1,i,v)

Função heap_sort

Função heap_sort

Relações invariantes: Em #C# vale que:

- (i0) v[i+1:n] é crescente;
- (i1) $v[1:i+1] \le v[i+1];$
- (i2) v[1:i+1] é um max-heap.

1				i							n
50	44	10	38	20	50	55	60	75	85	99	

←□ → ←□ → ← □ → ← □ → ← ○

Conclusão

O consumo de tempo da função $heap_sort$ é proporcional a $n\lg n$.

O consumo de tempo da função heap_sort é $O(n \lg n)$.

Função insereHeap

Relações invariantes: Em /*D*/ vale que:

- (i0) v[1:*n] é uma permutação do vetor original
- (i1) $v[i/2] \ge v[i]$ para todo i = 2, ..., *n diferente de f.

Consumo de tempo

linha	cor	nsumo de tempo das ex	ecuções da linha
1-2	\approx	n lg n	$= O(n \lg n)$
3	\approx	n	= O(n)
4	\approx	n	= O(n)
5	\approx	$n \lg n$	$= O(n \lg n)$
total	=	$2n \lg n + 2n$	$= O(n \lg n)$

Função insereHeap

Inseção de um elemento x em um max-heap v[1:n]

```
void insereHeap (int x, int *n, int v[]) {
    int f /* filho */, p/* pai */, t;

1    *n += 1; f = *n; p = f / 2; v[f] = x;

2    while/*D*/ (f > 1 && v[p] < v[f]) {

3        t = v[p];

4        v[p] = v[f];

5        v[f] = t;

        /* pai no papel de filho */

6        f = p; p = f / 2;
    }

}</pre>
```

Conclusão

O consumo de tempo da função insereHeap é proporcional a lg n, onde n é o número de elementos no max-heap.

O consumo de tempo da função heap_sort é O(n), onde n é o número de elementos no max-heap.

Mais análise experimental

Algoritmos implementados:

mergeR merge_sort recursivo.

mergeI merge_sort iterativo.

quick quick_sort recursivo.

heap heap_sort.

Aleatório: média de 10

4D> 4B> 4E> 4E> E 990

n	mergeR	mergeI	quick	heap
8192	0.00	0.00	0.00	0.00
16384	0.00	0.00	0.00	0.00
32768	0.01	0.01	0.01	0.00
65536	0.01	0.01	0.01	0.01
131072	0.02	0.02	0.02	0.03
262144	0.05	0.04	0.04	0.06
524288	0.10	0.08	0.08	0.12
1048576	0.21	0.20	0.17	0.28
2097152	0.44	0.43	0.35	0.70
4194304	0.92	0.90	0.73	1.73
8388608	1.90	1.87	1.51	4.13

Tempos em segundos.

Crescente

n	mergeR	mergeI	quick	heap
1024	0.00	0.00	0.00	0.00
2048	0.00	0.00	0.00	0.00
4096	0.00	0.00	0.00	0.00
8192	0.00	0.00	0.03	0.00
16384	0.00	0.00	0.14	0.01
32768	0.01	0.00	0.57	0.01
65536	0.00	0.01	2.26	0.01
131072	0.02	0.02	9.05	0.02
262144	0.03	0.02	36.21	0.04

Tempos em segundos.

Para n=524288 quick_sort dá Segmentation <□ > < ∰ > < \(\overline{\overline

fault (core dumped)

Mais análise experimental

A plataforma utilizada nos experimentos foi um computador rodando Ubuntu GNU/Linux 3.5.0-17

Compilador:

gcc -Wall -ansi -02 -pedantic -Wno-unused-result.

Computador:

model name: Intel(R) Core(TM)2 Quad CPU Q6600 @

2.40GHz

cpu MHz : 1596.000 cache size: 4096 KB MemTotal: 3354708 kB

Decrescente

n	mergeR	mergeI	quick	heap
1024	0.00	0.00	0.00	0.00
2048	0.00	0.00	0.00	0.00
4096	0.01	0.00	0.01	0.00
8192	0.00	0.00	0.03	0.00
16384	0.00	0.00	0.14	0.00
32768	0.00	0.01	0.57	0.00
65536	0.01	0.01	2.27	0.01
131072	0.02	0.01	9.06	0.02
262144	0.03	0.03	36.31	0.04

Tempos em segundos.

Para n=524288 quick_sort dá Segmentation fault (core dumped)

Resumo

função	consumo de	observação
	tempo	
bubble	$O(n^2)$	todos os casos
insercao	$O(n^2)$	pior caso
	O(n)	melhor caso
insercao_binaria	$O(n^2)$	pior caso
	$O(n \lg n)$	melhor caso
selecao	$O(n^2)$	todos os casos
merge_sort	$O(n \lg n)$	todos os casos
quick_sort	$O(n^2)$	pior caso
	$O(n \lg n)$	melhor caso
heap_sort	$O(n \lg n)$	todos os casos

Animação de algoritmos de ordenação

Criados por Nicholas André Pinho de Oliveira: http://nicholasandre.com.br/sorting/

Criados na Sapientia University (Romania):

https://www.youtube.com/channel/UCIqiLefbVHsOAXDAxQJH7>

←□ → ←□ → ← ≥ → ← ≥ → ○