Основні теореми теорії ймовірностей

В попередніх лекціях були означені операції над подіями (сума, добуток, різниця, заперечення). Результатом дій над подіями ϵ також події. Розглянемо питання про те, як ймовірності результуючої випадкової події пов'язані з ймовірностями вихідних подій.

2.1. Теорема додавання ймовірностей несумісних подій

Теорема1. Якщо події A і B несумісні ($A \cdot B = \emptyset$), причому відомі їх ймовірності P(A) і P(B), то ймовірність суми A + B подій дорівнює сумі ймовірностей цих подій:

$$P(A+B) = P(A) + P(B)$$
. (2.1)

Отже, для того, щоб знайти ймовірність настання або однієї, або іншої з двох несумісних подій, потрібно додати ймовірності цих подій.

Приклад 2.1. Студент забув, скільки у нього за розкладом завтра пар, пам'ятаючи, що двічі на тиждень у нього є три пари і по одому дню - дві , чотири або п'ять пар. Яка ймовірність того, що завтра у нього буде менше чотирьох пар?

Pозв'язання. Складна подія A — завтра за розкладом менше чотирьох пар, є сумою двох елементарних подій: $A_{\rm l}$ — завтра за розкладом дві пари та $A_{\rm l}$ — завтра за розкладом три пари, тобто $A=A_{\rm l}+A_{\rm l}$. Легко знайти ймовірності $P(A_{\rm l})=\frac{1}{5}$ і $P(A_{\rm l})=\frac{2}{5}$. Події $A_{\rm l}$ та $A_{\rm l}$ є несумісними, тому згідно з (2.1) $P(A)=\frac{1}{5}+\frac{2}{5}=0,6$.

Наслідок 1. Ймовірність суми скінченої кількості попарно несумісних подій $A_1, A_2, ..., A_n$ дорівнює сумі ймовірностей цих подій:

$$P(A_1 + A_2 + ... + A_n) = P(A_1) + P(A_2) + ... + P(A_n)$$
. (2.2)

Наслідок 2. Якщо події $A_1, A_2, ... A_n$ утворюють повну групу попарно несумісних подій, то сума їх ймовірностей дорівнює одиниці:

$$\sum_{i=1}^{n} P(A_i) = 1. {(2.3)}$$

Найпростішим прикладом повної групи попарно несумісних подій ϵ довільна подія A і протилежна до неї подія \overline{A} . З цього виплива ϵ

Наслідок 3. Сума ймовірностей довільної події A і протилежної до неї події \overline{A} дорівнює одиниці:

$$P(A) + P(\overline{A}) = 1$$
. (2.4)

Отже, якщо відома ймовірність події A, то ймовірність події \overline{A} , протилежної до неї, обчислюють згідно з формулою

$$P(\overline{A}) = 1 - P(A)$$
.

2.2. Умовна ймовірність. Теорема множення ймовірностей залежних подій

Якщо ніякі умови не впливають на величину ймовірності деякої події A, то така ймовірність називається *безумовною*. Якщо ж величина ймовірності появи події A залежить від того, чи відбулась інша подія B (причому подія B не є неможливою), то таку ймовірність появи події A називають *умовною*. Вона позначається P(A/B) або $P_B(A)$ (читається "ймовірність події A за умови появи події B".

Приклад 2.2. Підкидають гральний кубик. Нехай подія A —випала парна кількість очок, подія B — випало більше трьох очок . Знайти умовну ймовірність P(A/B) .

Розв'язання. І СПОСІБ. Подія $A = \{w_2, w_4, w_6\}$, тобто для неї сприятливими є три елементарні події: випало 2, 4 або 6 очок; подія $B = \{w_4, w_5, w_6\}$ складається з елементарних подій — випало 4, 5 або 6 очок.

Очевидно, що $P(A) = \frac{3}{6} = 0.5$, тоді як $P(A/B) = \frac{2}{3}$ (подія B настала, тому сприятливими для події A ϵ лише дві елементарні події $\{w_4, w_6\}$ із можливих трьох $\{w_4, w_5, w_6\}$.

Означення умовної ймовірності формулюють так:

Умовною ймовірністю події A за умови, що B відбулася, називають відношення ймовірності спільного настання подій A та B до ймовірності події B

$$P(A/B) = \frac{P(A \cdot B)}{P(B)}. \tag{2.5}$$

Приклад 2.2. *II СПОСІБ*. Подія A складається з трьох елементарних подій — випало 2, 4, 6 очок, подія B - 3 елементарних подій: випало 4, 5, 6 очок, тобто $A = \{\omega_2, \omega_4, \omega_6\}$, $B = \{\omega_4, \omega_5, \omega_6\}$. Очевидно, що $A \cdot B = \{w_4, w_6\}$.

Тоді $P(A \cdot B) = \frac{2}{6}$; $P(B) = \frac{3}{6}$ і умовна ймовірність події A, згідно з (2.5),

дорівнює
$$P(A/B) = \frac{\frac{2}{6}}{\frac{3}{6}} = \frac{2}{3}$$
.

Величина умовної ймовірності служить характеристикою залежності однієї події від іншої.

Виходячи із сформульованого означення умовної ймовірності можна дати більш чітке означення залежних та незалежних подій.

Дві події A і B називаються **залежними**, якщо на ймовірність появи однієї з них впливає, чи відбулась при цьому інша подія, тобто

$$P(A/B) \neq P(A/B). \tag{2.6}$$

Дві події A і B називаються **незалежними**, якщо ймовірність появи однієї з них не залежить від того, відбулась чи ні інша подія, тобто

$$P(A/B) = P(A/\overline{B}) = P(A) \tag{2.7}$$

Розглянемо дві залежні події A і B , причому нехай відомі ймовірності P(A) і P(B/A) . Тоді справедлива

Теорема 2. Ймовірність добутку (сумісної появи) двох подій A і B дорівнює добуткові ймовірності однієї з них на умовну ймовірність іншої, обчисленої за умови, що перша подія відбулася:

$$P(A \cdot B) = P(A) \cdot P(B/A)$$

або

$$P(A \cdot B) = P(B) \cdot P(A/B) . \tag{2.8}$$

Якщо умовну ймовірність означати формулою (3.5), то формулювання теореми 2 стає очевидним. Дійсно, якщо $P(A/B) = \frac{P(A \cdot B)}{P(B)}$, то і

$$P(B \, / \, A) = rac{P(A \cdot B)}{P(A)}$$
, звідки $P(A \cdot B) = P(A) \cdot P(B \, / \, A) = P(B) \cdot P(A \, / \, B)$.

Наслідок 1. Ймовірність добутку (сумісної появи) декількох подій $A_1, A_2, ... A_n$ дорівнює добуткові ймовірності однієї з них на умовні ймовірності всіх решти, причому ймовірність кожної наступної події обчислюється в припущенні, що всі попередні події відбулися:

$$P(A_{1} \cdot A_{2} \cdot A_{3} \cdot \dots \cdot A_{n}) = P(A_{1}) \cdot P(A_{2} / A_{1}) \cdot P(A_{3} / A_{1} \cdot A_{2}) \cdot \dots \cdot P(A_{n} / A_{1} \cdot A_{2} \cdot \dots \cdot A_{n-1}).$$
(2.9)

Зокрема, для трьох подій A, B, C ця формула набуває вигляду

$$P(A \cdot B \cdot C) = P(A) \cdot P(B/A) \cdot P(C/A \cdot B)$$
.

Приклад 2.3. З колоди 36 карт послідовно виймають три карти. Яка ймовірність того, що цими картами виявляться трійка, сімка, туз?

Pозв'язання. Позначимо події: A — перша вийнята карта — трійка; B — друга вийнята карта — сімка; C — третя вийнята карта — туз. Ймовірність події A ϵ безумовною, вона не залежить від жодних додаткових умов і дорівню ϵ

 $P(A) = \frac{4}{36} = \frac{1}{9}$. Ймовірності подій B і C є умовними, причому ймовірність першої з них залежить від настання події A, а ймовірність другої залежить від настання подій A та B. Тобто, $P(B/A) = \frac{4}{35}$ (є чотири сімки серед 35 карт, які залишились) та $P(C/B \cdot A) = \frac{4}{34}$ (є чотири тузи серед решти 34 карт). Остаточно $P(A \cdot B \cdot C) = \frac{1}{9} \cdot \frac{4}{35} \cdot \frac{4}{34} = \frac{16}{11060}$.

2.3. Теорема множення ймовірностей незалежних подій

Ця теорема ϵ наслідком попередньої теореми 2.

Теорема 3. Якщо події A і B ϵ незалежні, то ймовірність їх добутку (сумісної появи) дорівнює добутку ймовірностей цих подій, тобто

$$P(A \cdot B) = P(A) \cdot P(B) . \tag{2.10}$$

Декілька подій $A_1, A_2, ... A_n$ називаються **попарно незалежними**, якщо кожні дві з них незалежні. Наприклад, три події A, B, C є попарно незалежні, якщо незалежні події A і B, A і C, B і C.

Декілька подій $A_1, A_2, ... A_n$ називаються **незалежними** в сукупності, якщо незалежні кожні дві з них і незалежні кожна з них і всі можливі добутки решти подій. Наприклад, три події A, B, C є незалежні в сукупності, якщо незалежні події A і B, A і C, B і C, A і $B \cdot C$, B і $A \cdot C$, C і $A \cdot B$.

Зауваженя. Якщо декілька подій попарно незалежні, то це ще не означає, що вони незалежні в сукупності.

Наслідок 1. Якщо події $A_1, A_2, ... A_n$ є незалежними в сукупності, то ймовірність їх добутку (сумісної появи) дорівнює добутку ймовірностей цих подій, тобто

$$P(A_1 \cdot A_2 \cdot \dots \cdot A_n) = P(A_1) \cdot P(A_2) \cdot \dots \cdot P(A_n). \tag{2.11}$$

Ймовірність появи принаймні однієї з декількох подій

Нехай в результаті експерименту можуть з'явитися події A_1 , A_2 , A_3 , незалежні в сукупності, причому відомі ймовірності їх появи $P(A_i)=p_i$ і ймовірності того, що ці події не з'являться $P(\overline{A_i})=1-p_i=q_i$, ($p_i+q_i=1$), i=1,2,3. Нехай A — подія, яка полягає в появі принаймні однієї з подій A_1 , A_2 , A_3 , тобто $A=A_1+A_2+A_3$.

Подія $\overline{A_1} \cdot \overline{A_2} \cdot \overline{A_3}$ (не появилася жодна з подій A_1 , A_2 , A_3) є протилежною до події $A: \overline{A} = \overline{A_1} \cdot \overline{A_2} \cdot \overline{A_3}$. Отже, $P(A) = 1 - P(\overline{A}) = -1 - P(\overline{A_1} \cdot \overline{A_2} \cdot \overline{A_3})$.

Оскільки події A_1 , A_2 , A_3 незалежні в сукупності, то матимемо $P(A)=1-P(\overline{A}_1)\cdot P(\overline{A}_2)\cdot P(\overline{A}_3)$, або враховуючи вище введені позначення $P(A)=1-q_1$ q_2 q_3 .

За аналогією, для n незалежних у сукупності подій A_1 , A_2 ,..., A_n ймовірність того, що з'явиться хоча б одна з них обчислюють за формулою $P(A) = 1 - q_1 q_2 \cdots q_n$.

Зокрема, якщо всі події A_i $(i=\overline{1,n})$ мають однакову ймовірність p : $P(A_i)=p_i=p$, то $P(\overline{A_i})=q_i=q$ і $P(A)=1-q^n$.

2.4. Теорема додавання ймовірностей сумісних подій.

Нехай дві події A і B сумісні, причому відомі ймовірності цих подій P(A), P(B) та ймовірність їх сумісної появи $P(A \cdot B)$.

Теорема 4. Ймовірність суми (появи принаймні однієї з) двох сумісних подій A і B дорівнює сумі ймовірностей цих подій без ймовірності їх добутку (спільної появи)

$$P(A+B) = P(A) + P(B) - P(A \cdot B)$$
. (2.12)

Цю теорему можна застосувати і у випадку двох несумісних подій. Дійсно, якщо події A і B є несумісними, то $P(A \cdot B) = 0$ і формула (2.12) набуде вигляду P(A+B) = P(A) + P(B), тобто співпадатиме з (2.1). Отже, формула (2.12) є універсальна і підходить як для несумісних, так і для сумісних подій.

Формула для обчислення ймовірності суми трьох сумісних подій
$$P(A+B+C) = P(A) + P(B) + P(C) - P(A \cdot B) - P(A \cdot C) - P(B \cdot C) + \\ + P(A \cdot B \cdot C) \,. \tag{2.13}$$

Приклад 2.4. Клієнт шукає необхідний товар у трьох Інтернетмагазинах. Ймовірність того, що товар є у першому магазині дорівнює 0,6, у другому--0,8, у третьому--0,9. Яка ймовірність того, що товар буде знайдено:

- а) в усіх трьох магазинах;
- б) лише у одному магазині;
- в) хоча б в одному магазині.

Pозв'язання. Введемо допоміжні події A_1 -товар є у першому магазині, A_2 -товар є у другому магазині, A_3 -товар є у третьому магазині, причому $P(A_1)=0,6$, $P(A_2)=0,8$, $P(A_3)=0,9$. Розглянемо відповідні протилежні події $\overline{A_1},\overline{A_2},\overline{A_3}$, -товару немає у кожному з цих магазинів, $P(\overline{A_1})=0,4$,

 $P(\overline{A_2})=0,2\,, \qquad P(\overline{A_3})=0,1\,.$ Зауважимо, що події $A_1,\,A_2,A_3\,,$ $\overline{A_1},\,\overline{A_2},\overline{A_3}$ незалежні в сукупності. Тоді:

а) Нехай A - товар ϵ в усіх трьох магазинах, тоді $A=A_1A_2A_3$ і згідно з (3.11), матимемо

$$P(A) = P(A_1A_2A_3) = P(A_1)P(A_2)P(A_3) = 0.6 \cdot 0.8 \cdot 0.9 = 0.432$$
.

б) Нехай B - товар ϵ лише в одному магазині (тільки в першому, тільки в другому або лише в третьому), тоді $B = A_1 \overline{A_2} \overline{A_3} + \overline{A_1} A_2 \overline{A_3} + \overline{A_1} \overline{A_2} A_3$. Оскільки події $A_1 \overline{A_2} \overline{A_3}$, $\overline{A_1} \overline{A_2} \overline{A_3}$, $\overline{A_1} \overline{A_2} \overline{A_3}$ попарно несумісні, то згідно з (2.2), матимемо

$$P(B) = P(A_1 \overline{A_2} \overline{A_3}) + P(\overline{A_1} A_2 \overline{A_3}) + P(\overline{A_1} \overline{A_2} A_3) = 0.6 \cdot 0.2 \cdot 0.1 + 0.4 \cdot 0.8 \cdot 0.1 + 0.4 \cdot 0.2 \cdot 0.9 = 0.116.$$

в) Нехай C - товар ϵ хоча б в одному магазині. Тоді

I спосіб. Подія C означає, що товар є лише в одному магазині, або лише в двох магазинах, або у трьох магазинах: $C = A_1\overline{A_2}\overline{A_3} + \overline{A_1}A_2\overline{A_3} + \overline{A_1}\overline{A_2}A_3 + \overline{A_1}A_2A_3 + \overline{A_1}A_2A_3 + \overline{A_1}A_2\overline{A_3} + \overline{A_1}A_2\overline{A_3} + \overline{A_1}A_2\overline{A_3}$. Тоді згідно з (2.2), (2.11), отримаємо P(C) = 0.992.

II спосіб. Подія C означає, що товар є або в першому магазині, або в другому магазині, або у третьому магазині: $C=A_1+A_2+A_3$, причому події $A_1,\,A_2,A_3$ сумісні. Отже, у цьому випадку використаємо формулу (2.13): $P(A_1+A_2+A_3)=P(A_1)+P(A_2)+P(A_3)-P(A_1\cdot A_2)-P(A_1\cdot A_3)-P(A_2\cdot A_3)+P(A\cdot B\cdot C)=0.6+0.8+0.9-0.6\cdot 0.8-0.6\cdot 0.9-0.8\cdot 0.9+0.9$

III спосіб. Розглянемо протилежну подію \overline{C} - товару немає в жодному магазині: $\overline{C} = \overline{A_1} \overline{A_2} \overline{A_3}$, тоді $P(C) = 1 - P(\overline{C}) = 1 - 0.4 \cdot 0.2 \cdot 0.1 = 0.992$.

2.5. Формула повної ймовірності

 $+0.6 \cdot 0.8 \cdot 0.9 = 0.992$.

Нехай подія A може наступити лише разом з однією з подій $H_1, H_2, ..., H_n$, які утворюють повну групу попарно несумісних подій (так звані гіпотези), причому:

- відомі ймовірності гіпотез $P(H_i)$ $(i=\overline{1,n})$, для яких, згідно з (2.3) виконується умова $P(H_1)+P(H_2)+...+P(H_n)=1$;
- відомі умовні ймовірності події A за умови настання цих гіпотез $P(A/H_i)$ $(i=\overline{1,n})$. Тоді має місце

Теорема 5 (формула повної ймовірності). Ймовірність появи події A, яка може відбутися лише разом з однією з гіпотез $H_1, H_2, ..., H_n$, які утворюють повну групу попарно несумісних подій, дорівнює сумі добутків ймовірностей кожної з гіпотез H_i $(i=\overline{1,n})$ на відповідні умовні ймовірності появи події A

$$P(A) = \sum_{i=1}^{n} P(H_i) \cdot P(A/H_i).$$
 (2.14)

▶ Подія A наступає лише разом з однією з подій H_i , тобто $A = (H_1 \cdot A) + (H_2 \cdot A) + + (H_n \cdot A)$. За теоремою додавання ймовірностей несумісних подій маємо $P(A) = P(H_1 \cdot A) + P(H_2 \cdot A) + + P(H_n \cdot A)$. До кожного з доданків застосуємо теорему множення ймовірностей залежних подій $P(H_i \cdot A) = P(H_i) \cdot P(A/H_i)$ і отримаємо формулу (2.14) ◀

2.6. Формули Бейсса

У формулі повної ймовірності вважалось, що ймовірності $P(H_i)$ відомі до проведення досліду (апріорні ймовірності). Дослідимо, чи зміняться ймовірності гіпотез після проведення досліду? Тобто дамо нову оцінку гіпотезам $P(H_i/A)$ з врахуванням факту настання події A.

Теорема 6. Нехай події $H_1, H_2, ..., H_n$ утворюють повну групу попарно несумісних подій, причому $P(H_i) > 0$ $(i = \overline{1,n})$. Тоді ймовірністьі події (гіпотези) H_i після проведення досліду, результатом якого стала подія A, обчислюються за формулою

$$P(H_i/A) = \frac{P(H_i) \cdot P(A/H_i)}{P(A)}, \quad (i = \overline{1,n}).$$
 (2.15)

Ця формула називається формулами Бейєса l .

Формули Бейєса дозволяють переоцінити ймовірності гіпотез після того, як стало відомо, що у результаті випробування подія A настала. Ймовірності $P(H_i \, / \, A)$ називаються апостеріорними, тобто такими, які обчислюються після проведення досліду.

¹ Історія виникнення цієї формули така. У 18 столітті преподобний Томас Бейєє, англійський пресвітеріанський міністр, обдумував питання: чи існує бог. Цікавлячись математикою, він намагався вивести формулу, яка б дозволила обчислити ймовірність існування бога на підставі фактів земного життя. Згодом, ознайомившись з цим філософським трактатом, Лаплас оформив думки Т.Бейєса у строгу математичну формулу, за якою зберіг назву "формула Бейєса". Формула була опублікована у 1764 році.

Приклад.5. При наборі 100 сторінок тексту з однаковою ймовірністю може бути 0, 1,2 чи 3 сторінки з помилками. Для перевірки вибрано 5 сторінок, які виявились набраними без помилок. Яка ймовірність того, що і у всьому тексті немає жодної помилки?

Розв'язання. Висунемо гіпотези щодо можливої кількості помилок у тексті: H_1 – текст набрано без помилок, H_2 , H_3 , H_4 – серед 100 сторінок ϵ відповідно одна, дві чи три сторінки з помилками. Нехай подія А полягає в тому, що на відібраних 5 сторінках не виявиться жодної помилки. Тоді ймовірність того, що і весь текст набрано правильно запишеться $P(H_1/A)$ і може бути обчислена згідно з формулою Бейєса. Спочатку знайдемо ймовірності гіпотез $H_{\scriptscriptstyle 1}, H_{\scriptscriptstyle 2}, \ H_{\scriptscriptstyle 3}, \ H_{\scriptscriptstyle 4}$ та умовні ймовірності появи події A . Оскільки гіпотези рівноможливі і утворюють повну групу попарно несумісних подій, то, згідно з (2.3) $P(H_1) = P(H_2) = P(H_3) = P(H_4) = \frac{1}{4} = 0.25$ (це апріорні ймовірності). Обчислимо умовні ймовірності події A за умов настання кожної з гіпотез. Якщо відбулась подія H_1 , то у тексті не зроблено жодної помилки і подія A стане достовірною, тому $P(A/H_1) = 1$ (або $P(A/H_1) = \frac{C_{100}^5}{C^5} = 1$). Якщо мала місце гіпотеза H_2 , то у тексті є одна сторінка з помилками і 99 сторінок без помилок; вибрати 5 сторінок, набраних правильно, зможемо з ймовірністю $P(A/H_2) = \frac{C_{99}^5}{C_{99}^5} = 0.95$. За аналогією $P(A/H_3) = \frac{C_{98}^5}{C_{93}^5} \approx 0.92$, $P(A/H_4) = \frac{C_{97}^5}{C_{98}^5} \approx 0.86$. Отже, згідно (2.17) отримаємо $P(H_1/A) = \frac{P(H_1) \cdot P(A/H_1)}{P(H_1) \cdot P(A/H_1) + P(H_2) \cdot P(A/H_2) \cdot P(H_3) \cdot P(A/H_3)} =$ $= \frac{0.25 \cdot 1}{0.25 \cdot 1 + 0.25 \cdot 0.95 + 0.25 \cdot 0.92 + 0.25 \cdot 0.86} \approx 0.27$ (це апостеріорна ймовірність).