Chocolate Game - Chomp

- First-Player Win
- quadratic board

_

optimal strategy

- * take piece top right of the toxic piece
- * creates two independent fields
- * Tweedledum-Tweedledee-Principle
 - first player copies moves of second player
- rectangle board (of arbitrary size)
 - draws are not possible
 - * must be a first or second player win
 - assuming A does not have a winning strategy
 - * A can just take the top right piece
 - * B makes a winning move
 - * A could have just started with the move B just made
 - strategy stealing
 - * contradiction
 - ◆ A must have a winning strategy for every possible game board size
 - ♦ First-Player Win
 - A's winning strategy exists but is unknown
 - for general board sizes

Tic Tak Toe

- [[2 Player Combinatorial Game]]
- no winner if played optimally
- [[Min-Max Decision Tree]]

_

- * only 765 states when stopping after winning

Nine Men's Morris - Mühle

- http://ninemensmorris.ist.tugraz.at:8080/
- 3 phases
 - placing stones
 - moving stones
 - * allowed along the lines

- moving stones
 - * jumping allowed
- 3 stones along a line
 - choose opponent's stone to remove
- draw if played optimally
- operations to combine equivalent game states

_

Connect 4

- http://connect4.ist.tugraz.at:8080/
- First-Player Win
- states (7x6 board)
 - 0 to 42 fields which have a
 - * yellow token
 - * red token
 - * no token

_

- 7 bit per column
 - * 7*7 = 49 bit require 6 byte + 1 bit
 - * first 1 acts as separator
 - marks the first token
 - afterwards only the color is stored
 - * last separator is not needed
 - number of half moves = total number of tokens
 - count tokens in first 6 columns
 - ◆ tokens in last column = total number of tokens tokens in first 6 columns
 - * only store empty fields and colors without separator
 - saves 1 bit \Rightarrow exactly 6 byte required

*

- move generator
 - up to 7 successors
 - add a token to a non-full column
- identify final states
 - draw
 - * 42 tokens placed and no win
 - lose
 - * check if previous player has won

- win
 - $\ast\,$ check 11 4-tuples which include just placed token
 - * fields above just placed token not considered
- hybrid approach
 - store first 23 half moves in DB
 - compute remaining decision tree online
 - maximum remaining search depth 42 23 = 19
 - * with \sim 5 possible moves on average

_