Topología Compleja de los Precios Accionarios Colombianos: Un Reporte de Progreso

Por Jairo F. Gudiño R.

Candidato – BsC. Economía (Universidad del Valle)

Objetivos

- (1) Identificar mediante correlaciones acciones de mayor potencial de contagio en el mercado accionario colombiano. Deeley (2016), Lautier & Raynaud (2012).
- (2) Identificar el tipo de estructura de correlaciones principales entre precios, así como su estabilidad a lo largo del tiempo. Nie et. al. (2016), Lautier & Raynaud (2012).
- (3) Proponer una estrategia de optimización de portafolios para minimizar exposición al contagio. Acciones centrales y periféricas. Onnela et. al. (2003) y Pozzi et. al. (2013).

Estructura General de la Metodología (Onnela et. al., 2003)

Transformación de las series en retornos

Construcción de la red a partir de una matriz de distancias

Obtención del Minimum Spanning Tree (MST)

Cálculo de m. de centralidad y aplicación de algoritmo de comunidades

Estrategia de optimización de portafolios

Orden de la Presentación

- I. Definición de Self-Organized Criticality
- II. Datos
- III. Metodología y resultados
- IV. Extensiones (1, para Eventos Extremos)
- V. Limitaciones
- VI. Conclusiones

I. Self-Organized Criticality (Scheinkman & Woodford, AER 1994; Bak et. al., PRL 1987)

"Los sistemas compuestos evolucionan naturalmente hacia un estado crítico en el cual un evento menor puede disparar una reacción en cadena y que puede afectar un número de elementos en un sistema, siendo el mecanismo que produce eventos diminutos el mismo que produce eventos de alta magnitud".

Bak, Tang & Wiesenfeld (1987), PRL.

I. Self-Organized Criticality (Scheinkman & Woodford, AER 1994; Bak et. al., PRL 1987)

"Inestabilidad macroscópica donde múltiples shocks pequeños e independientes que afectan a distintos sectores económicos no se cancelan al agregarse, debido a la existencia de interacciones fuertes entre cada una de las partes".

Scheinkman & Woodford (1994), AER.

I. Self-Organized Criticality (Scheinkman & Woodford, AER 1994; Bak et. al., PRL 1987)

- Aglomeración Sectorial
- Contagio (Riesgo Sistémico)
- Estructura Topológica
- Estabilidad Topológica

II. Datos (18 Series)

Sector	
Económico	Acción
Petróleo	ECOPETROL, PREC
Energía	AC12, AC13, AC8, AC4
Finanzas	AC1, AC2, AC6, AC15, AC3
	AC11, AC14, AC5, AC10, AC18,
Otros	AC9, AC17

o Series diarias entre Enero de 2010 y Marzo de 2015 (1271 obs.).

III. Metodología A. Transformaciones de los **Datos**

Retornos:

$$x_i = Ln(P_t) - Ln(P_{t-1})$$

$$\rho_{ij} = \frac{\sigma_{(x_{NORMALIZADA}, y_{NORMALIZADA})}}{\sigma_{x_{NORMALIZADA}}\sigma_{y_{NORMALIZADA}}}$$

M. de Correlaciones de Pearson:
$$P = \begin{bmatrix} 1 & \cdots & \rho_{(1,N)} \\ \vdots & \ddots & \vdots \\ \rho_{(N,1)} & \cdots & 1 \end{bmatrix}$$

III. Metodología A. Transformaciones de los Datos

Función Kernel (Correlaciones - Retornos)

Obtención de Matriz de Distancias:

$$\delta_{ij} = 1 - \rho_{ij}^2$$

III. Metodología

A. Transformaciones de los Datos

-> Es posible representar gráficamente una red.

- -> Identificar las correlaciones principales entre los precios accionarios (**Minimum Spanning Tree**; Planar M. Graph).
- -> Las acciones con más alto riesgo de contagio corresponden a las de mayor grado.

*Kruskal *Prim *Boruvka

III. Metodología A. Transformaciones de los Datos

¿Cómo funciona el Algoritmo de Kruskal?

III. Metodología
A. Transformaciones de los
Datos

-> Se pueden construir múltiples medidas a partir de la identificación de correlaciones principales. Distintos trabajos (Deuda/PIB; CDS5Y; Crecimiento del PIB; Monedas; **Acciones**; Bonos).

III. Metodología

B. Aglomeraciones Sectoriales

Algoritmo de Rosvall, Axelsson & Bergstrom (2009).

III. Metodología B. Aglomeraciones Sectoriales

Aglomeración	Sectores Económicos					
	Asociados					
1 (Verde)	Energía, Finanzas &					
1 (verde)	Alimentos					
	Energía, Construcción,					
2 (Azul Oscuro)	Finanzas, Alimentos,					
2 (MZui Osculo)	Textiles, Tecnología &					
	Cemento					
2 (1 (1 (1	Finanzas, Alimentos,					
3 (Azul Claro)	Construcción & Energía					
4 (Café)	Petróleo					
5 (Amarillo)	Energía & Construcción					

III. MetodologíaB. AglomeracionesSectoriales

Tomado de Onnela et. al. (2003)

Medidas de Centralidad para cuantificar riesgo de contagio para cada acción:

*Grado: Número de correlaciones principales a las cuales una acción determinada está conectada. + Grado, + Riesgo de Contagio;

*Betweenness: Mide qué tan importante es una acción en transmitir movimientos de los precios hacia otros. + Betweenness, + Riesgo de Contagio.

Riesgo de Contagio: Conglomerados

Acciones con mayor riesgo de contagio asociados a firmas altamente diversificadas. ¿Cómo se puede explicar?

o **Acharya (2009):** Mayor diversificación -> Menor exposición a riesgos individuales, pero mayor exposición a riesgos globales.

Los conglomerados exhiben ciertas particularidades.

- La liquidez de conglomerados colombianos es administrada de manera centralizada por unas pocas sub-empresas del mismo grupo.
- Alianzas donde accionistas tienen participaciones cruzadas (cross-ownership).

Evolución del Índices CISS – Unión Europea (I. de Inestabilidad Financiera, calculado por ECB)

*Grado de Betweenness: medida proxy del grado. *Acciones pertenecientes a conglomerados marcadas en gris y rojo

Acción	jun-11	jul-11	ago-11	sep-11	oct-11	nov-11	dic-11	ene-12	feb-12
ECOPETROL	0	0	16	16	0	0	0	0	0
AC12	16	84	55	55	64	97	90	95	76
AC13	57	45	31	31	45	69	70	55	67
AC9	0	0	0	0	0	0	0	0	0
AC8	0	0	0	0	0	0	0	0	0
PREC	16	0	30	30	16	16	75	31	31
AC11	16	16	0	16	16	16	0	16	0
AC4	0	0	0	0	0	0	0	0	0
AC14	0	0	0	0	16	16	45	31	16
AC5	108	86	71	80	84	30	31	30	16
AC10	0	0	0	0	0	0	0	0	0
AC17	67	78	108	101	93	75	69	81	101
AC1	0	0	0	0	0	0	0	0	0
AC2	0	0	0	0	0	0	0	0	0
AC15	31	31	31	31	44	44	16	55	44
AC6	0	0	0	0	0	0	0	0	0
AC3	0	0	0	0	0	0	0	0	0
AC18	16	16	16	16	0	0	0	0	0

Acción	mar-12	abr-12	may-12	jun-12	ago-12	sep-12	oct-12	nov-12	dic-12
ECOPETROL	0	0	52	0	0	0	42	42	0
AC12	71	99	31	71	71	31	0	16	16
AC13	57	44	44	57	57	0	31	31	66
AC9	0	0	0	0	0	0	0	0	0
AC8	0	0	0	0	0	0	0	0	0
PREC	16	16	16	16	16	31	16	0	0
AC11	31	16	16	16	16	16	0	0	16
AC4	0	0	0	0	0	0	0	0	0
AC14	16	16	31	0	16	45	31	31	31
AC5	0	30	0	0	0	0	0	0	0
AC10	0	0	0	0	0	0	0	0	0
AC17	106	85	112	107	104	87	102	114	116
AC1	0	0	0	16	16	16	16	0	0
AC2	0	0	0	0	0	0	0	0	0
AC15	44	44	55	44	56	98	86	67	31
AC6	0	0	0	0	0	0	0	0	0
AC3	0	0	0	0	0	0	0	0	16
AC18	0	0	0	16	0	0	0	0	0

Evolución del Precio del Petróleo WTI (S: Energy Information Administration).

Grado de cada acción a partir de v. de 5 meses

Acción/Mes	jun-14	jul-14	ago-14	sep-14	oct-14	nov-14	dic-14	ene-15	feb-15	mar-15
ECOPETROL	2	2	2	1	2	2	2	2	2	2
AC12	1	1	1	1	1	1	1	3	3	3
AC13	1	1	1	1	1	1	1	1	1	1
AC9	1	1	1	1	1	1	1	1	1	1
AC8	1	1	1	1	1	1	1	1	1	1
AC16	1	2	2	2	1	1	1	1	1	1
AC11	3	4	4	4	3	4	2	3	3	3
AC4	1	1	1	1	1	1	1	2	2	1
AC14	6	5	5	6	6	6	6	5	5	5
AC5	1	1	1	1	1	1	1	1	1	1
AC10	1	1	1	1	1	1	1	1	1	1
AC17	6	5	6	5	7	5	6	6	6	6
AC1	1	2	2	2	2	2	2	2	1	1
AC2	2	1	1	1	1	1	1	1	1	1
AC15	2	2	2	2	2	2	2	2	2	2
AC6	1	1	1	1	1	1	1	1	1	1
AC3	1	1	1	1	1	1	1	1	1	1
AC18	1	1	1	1	1	1	1	1	1	1

Observaciones Adicionales:

- Correspondencia de grado y betweenness con medidas de riesgo sistémico usuales (CoVaR). (Huang et. al., 2016), utilizando datos panel.
- o Resultados similares encontrados mediante cópulas.
- O Dos ejercicios de robustez: (a) Correlaciones DCCA;
 (b) Tabla de conectividad para medir *spillovers* de volatilidad (Diebold y Yilmaz, 2014).

III. MetodologíaC. Tipo de EstructuraTopológica(Nie et. Al, 2016)

Tipo	Descripción
Dragón	Nodos tienen valores de grado homogéneos (riesgo de contagio similar)
Estrella	Unos pocos nodos tienen valores de grado altos (riesgo de contagio concentrado)
Super-Estrella	Muy pocos nodos tienen valores de grado muy altos (riesgo de contagio muy concentrado).

III. Metodología C. Tipo de Estructura Topológica (Pozzi et. Al, 2012)

Acción (es) Central (es): La(s) que tiene(n) el mayor grado para un mes t. Ventana: 5m Riesgo de Contagio: Acciones Centrales (Azul)

III. MetodologíaC. Tipo de EstructuraTopológica(Nie et. Al, 2016)

III. Metodología D. Estabilidad de Estructura Topológica (Onnela et. al., 2003)

E(t): Número de vínculos principales asociados a un MST para un mes t.

 $|E(t) \cap E(t+1)|$: Número de vínculos principales asociados a un MST para los meses t & (t+1).

MSR: Proporción de vínculos principales que se preservan entre dos meses consecutivos:

$$MSR(t) = \frac{1}{M} |E(t) \cap E(t+1)|$$

III. Metodología C. Estabilidad de Estructura Topológica (Onnela et. al., 2003)

Estructura topológica estable ante choques internacionales, aunque caída fuerte ante **mayor fragilidad financiera** a inicios del 2011 (Guarín & Lozano, 2016).

III. MetodologíaE. Optimización de Portafolios(Onnela et. al., 2003)

Mayor porcentaje a acciones periféricas -> se minimiza la exposición al riesgo de contagio.

- (A) Calcular correlaciones a partir de una ventana móvil de 5 meses. Obtener el MST;
- (B) Calcular el grado para cada uno de los MST obtenidos (se obtuvo para cada acción 59 valores a lo largo del tiempo), y establecer las acciones que tienen el valor de grado más alto (acciones centrales).

III. MetodologíaE. Optimización de Portafolios(Onnela et. al., 2003)

(C) Identificar para cada mes si hay una o más acciones centrales. La distancia entre ellas mismas es nula.

Si hay sólo una acción central: calcular distancias mínimas (*shortest paths*) entre el resto de acciones y la acción central. Algoritmo de Djikstra.

Si hay dos o más acciones centrales: alcular distancias mínimas (*shortest paths*) entre el resto de acciones y la acción central más cercana. Algoritmo de Djikstra.

III. MetodologíaE. Optimización de Portafolios(Onnela et. al., 2003)

(D) Reunir en una nueva matriz el conjunto de series mensuales que corresponden a la distancia mínima de cada acción respecto de una o las acciones centrales.

+ Distancia -> Menor riesgo de contagio.

(E) Utilizar una técnica de maximización de portafolios.

* Markowitz * Black & Litterman

III. MetodologíaE. Optimización de Portafolios(Onnela et. al., 2003)

Mayor peso a acciones periféricas

IV. Extensiones: Eventos Extremos

Contagio: Altas correlaciones entre precios accionarios durante Ev. Extr

V. Limitaciones de la Aproximación

- Obtención de pesos para construir redes dirigidas (Revisar Diebold & Yilmaz, 2014).
- O Otras medidas de correlaciones y medidas para robustez: VAR-DCC-GARCH; mejoras de DCCA; Coef. de Dependencia Asintótica; etc...
- O Inclusión de series adicionales; más alta frecuencia en medidas.
- o Identificación de acciones por estructuras centro/periferia.
- Se debe realizar un análisis de transacciones entre agentes, no sólo de precios accionarios (Información no-pública).
- O Complementar los resultados con análisis de estados financieros y de otros riesgos a nivel general (Machine Learning, en progreso).
- Alternativas al MST: Planar Maximally Graph

V. Limitaciones de la Aproximación

Tomado de Pozzi et. al. (2013)

VI. Conclusiones

- 1. Dada la diversificación de las acciones centrales, no existen aglomeraciones sectoriales en la estructura topológica del mercado accionario colombiano -> Efectos de shocks difusos, no sectorizados.
- 2. Riesgo de contagio concentrado en acciones de un solo conglomerado. Cross-Ownership (Cópulas, D&Y).
- **3.** Tipo de estructura topológica predominante: Estrella Estable (Alta estabilidad del conglomerado y baja integración internacional).
- 4. Identificación de acciones centrales y periféricas puede ser útil en el diseño de portafolios para mitigar riesgo de contagio.

Referencias Bibliográficas

- O Acharya, V. (2009). A Theory of Systemic Risk and Design of Prudential Banking Regulation, *Journal of Financial Stability*, 5 (3), 224-255.
- O Brownlees, C. & Engle, R. (2016). SRISK: A Conditional Capital Shortfall Measure of Systemic Risk. New York University, Mimeo.
- O Deeley, K. (2016). Exploring Risk Contagion Using Graph Theory and Markov Chains. Mathworks, Newsletters.
- O Huang et. al. (2016). A Financial Network Perspective of Financial Institutions' Systemic Risk Contributions. *Physica A*, Forthcoming.
- O Lautier, D. & Raynaud, F. (2012). Systemic Risk in Energy Derivatives Markets: A Graph-Theory Analysis, *Energy Journal*, 33 (3), 217-242.
- O Mantegna, R. (1999). Hierarchical Structure in Financial Markets, *The European Physical Journal B: Condensed Matter*, 11 (1), 193-197.
- O Nie et. al. (2016). Rényi Indices of Financial Minimum Spanning Trees, *Physica A*, 444, 883-889.
- Onnela et. al. (2003). Dynamics of Market Correlations: Taxonomy and Portfolio Analysis, *Physical Review E*, 68 (5), 056110.
- O Pozzi et. al. (2013). Spread of Risk across Financial Markets: Better to Invest in the Peripheries, *Nature (Scientific Reports)*, 3, No. 1665.