Midterm "Take home"-exam FYS3110

Unable to see candidate no

October 7, 2016

1 Spin-1/2 systems

The following is given:

$$\begin{split} \hat{S}^2 &= \hat{S}_x^2 + \hat{S}_y^2 + \hat{S}_z^2, \quad \hat{S}^\pm = \hat{S}_x \pm i \hat{S}_y \\ |\uparrow\rangle &\equiv \left|s = \frac{1}{2}, m_s = \frac{1}{2}\right\rangle, \quad |\downarrow\rangle \equiv \left|s = \frac{1}{2}, m_s = -\frac{1}{2}\right\rangle \\ \hat{S}^2 |\uparrow\rangle &= \hbar^2 \frac{1}{2} \left(\frac{1}{2} + 1\right) |\uparrow\rangle, \quad \hat{S}^2 |\downarrow\rangle = \hbar^2 \frac{1}{2} \left(\frac{1}{2} + 1\right) |\downarrow\rangle \\ \hat{S}_z |\uparrow\rangle &= \frac{\hbar}{2} |\uparrow\rangle, \quad \hat{S}_z |\downarrow\rangle = -\frac{\hbar}{2} |\downarrow\rangle \\ [\hat{S}_x, \hat{S}_y] &= i\hbar \hat{S}_z, \quad [\hat{S}_y, \hat{S}_z] = i\hbar \hat{S}_x, \quad [\hat{S}_z, \hat{S}_x] = i\hbar \hat{S}_y \end{split}$$

1.1

$$\hat{S}_z \hat{S}^+ |\downarrow\rangle = \hat{S}_z \hat{S}_x |\downarrow\rangle + i \hat{S}_z \hat{S}_y |\downarrow\rangle$$

rewriting commutation relations

$$\begin{aligned} [\hat{S}_{z}, \hat{S}_{x}] &= \hat{S}_{z} \hat{S}_{x} - \hat{S}_{x} \hat{S}_{z} = i\hbar \hat{S}_{y} \to \hat{S}_{z} \hat{S}_{x} = i\hbar \hat{S}_{y} + \hat{S}_{x} \hat{S}_{z} \\ [\hat{S}_{y}, \hat{S}_{z}] &= \hat{S}_{y} \hat{S}_{z} - \hat{S}_{z} \hat{S}_{y} = i\hbar \hat{S}_{x} \to \hat{S}_{z} \hat{S}_{y} = \hat{S}_{y} \hat{S}_{z} - i\hbar \hat{S}_{x}, \end{aligned}$$

gives

$$\begin{split} \hat{S}_z \hat{S}^+ \left| \downarrow \right\rangle &= \left(i \hbar \hat{S}_y + \hat{S}_x \hat{S}_z + i \hat{S}_y \hat{S}_z + \hbar \hat{S}_x \right) \left| \downarrow \right\rangle \\ &= \left(i \hbar \hat{S}_y - \frac{\hbar}{2} \hat{S}_x - i \frac{\hbar}{2} \hat{S}_y + \hbar \hat{S}_x \right) \left| \downarrow \right\rangle \\ &= \left(\frac{\hbar}{2} \hat{S}_x + i \frac{\hbar}{2} \hat{S}_y \right) \left| \downarrow \right\rangle = \frac{\hbar}{2} \hat{S}^+ \left| \downarrow \right\rangle. \end{split}$$

This means that $\hat{S}^+ |\downarrow\rangle$ is an eigenstate of \hat{S}_z with eigenvalue $\hbar/2$.