```
1 # Importing the libraries
2 import numpy as np
3 import pandas as pd
4 import matplotlib.pyplot as plt
1 dataset = pd.read csv('Concrete Data Yeh.csv')
2 X = dataset.iloc[:,:-1].values
3 y = dataset.iloc[:,-1].values
1 dataset.columns
    Index(['cement', 'slag', 'flyash', 'water', 'superplasticizer',
           'coarseaggregate', 'fineaggregate', 'age', 'csMPa'],
          dtype='object')
```

1 dataset.describe()

\Box		cement	slag	flyash	water	superplasticizer	coarseaggregate	fineaggr
	count	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000	1030.0
	mean	281.167864	73.895825	54.188350	181.567282	6.204660	972.918932	773.5
	std	104.506364	86.279342	63.997004	21.354219	5.973841	77.753954	80.1
	min	102.000000	0.000000	0.000000	121.800000	0.000000	801.000000	594.00
	25%	192.375000	0.000000	0.000000	164.900000	0.000000	932.000000	730.9
	50%	272.900000	22.000000	0.000000	185.000000	6.400000	968.000000	779.50
Saved successfully!			×	118.300000	192.000000	10.200000	1029.400000	824.00
				200.100000	247.000000	32.200000	1145.000000	992.6
	4							>

```
1 # Check for missing values and replace with mean value
```

```
1 # Train Test Split
```

2 from sklearn.model_selection import train_test_split

```
3 X train, X test, y train, y test = train test split(X,y, test size = 0.2, random state =101)
```

1 X train[:5,:]

```
array([[144.8, 0., 133.6, 180.8, 11.1, 979.5, 811.5, 28.],
                 [144.8, 0., 155.6, 180.8, 11.1, 979.5, 811.5, 28.], [425., 106.3, 0., 151.4, 18.6, 936., 803.7, 56.], [287.3, 120.5, 93.9, 187.6, 9.2, 904.4, 695.9, 28.], [333., 0., 0., 192., 0., 931.2, 842.6, 7.], [290.4, 0., 96.2, 168.1, 9.4, 961.2, 865., 3.]])
```

1 y train[:5]

```
array([13.2, 64.9, 43.8, 23.4, 22.5])
```

```
1 # Fitting the regression model
```

² from sklearn.impute import SimpleImputer

³ imputer = SimpleImputer(missing_values=np.nan, strategy ='mean')

⁴ imputer.fit(X)

⁵ X = imputer.transform(X)

² from sklearn.linear model import LinearRegression

```
3 regressor = LinearRegression()
4 regressor.fit(X_train, y_train)
1 # Predicting the outcomes
2 y_pred = regressor.predict(X_test)
1 # Checking R2 score of the model
2 from sklearn.metrics import r2_score
3 r_sq = r2_score(y_test, y_pred)
4 r_sq = round(r_sq, 2)
5 r_sq
   0.61
1 # Visualisation part
2 plt.title(f'PLOT BETWEEN PREDICTED VALUES AND REAL VALUES[R2 ={r sq}]')
3 plt.scatter(y_test, y_pred , c='red')
4 plt.xlabel('REAL VALUES')
5 plt.ylabel('PREDICTED VALUES')
6 plt.show()
```



```
1 # Regression coefficients
2 print(regressor.coef_)
3 print(regressor.intercept_)
               0.1124933
     0.01265157 0.12003711]
   -3.5396038411043733
1 for i in range(len(regressor.coef )):
  print(f'{dataset.columns[i]} : {regressor.coef_[i]}')
   cement: 0.11249330457885091
   slag: 0.09539302750839922
   flyash : 0.0809725912343583
   water: -0.16339456250224388
   superplasticizer: 0.281430766630893
   coarseaggregate: 0.009189507092264192
   fineaggregate : 0.012651574933176118
   age: 0.1200371088972308
```

✓ 0s completed at 1:10 AM

Saved successfully!