

Automatic Control III

Lecture 7 – Lyapunov theory

Alexander Medvedev

Division of Systems and Control
Department of Information Technology
Uppsala University.

Email: alexander.medvedev@it.uu.se,

Contents – lecture 7

- 1. Summary of lecture 6
- 2. Phase portraits of nonlinear systems
- 3. Stability of equilibrium points
- 4. Lyapunov functions and stability
- 5. Lyapunov function for linear (and linearized) systems

Summary of lecture 6 (I/II)

We can approximate a nonlinear system

$$\dot{x} = f(x, u), \qquad y = h(x, u),$$

by linearizing the system around an equilibrium (stationary) point (x_0, u_0) . Intuitively this amounts to approximating the system by a flat hyperplane (straight line in the scalar case).

Let
$$\Delta x(t) = x(t) - x_0$$
, $\Delta u(t) = u(t) - u_0$, $\Delta y(t) = y(t) - y_0$.

A Taylor expansion (only keeping the linear terms) results in

$$\frac{d}{dt}\Delta x = \underbrace{\frac{\partial f(x_0, u_0)}{\partial x}}_{Qx} \Delta x + \underbrace{\frac{\partial f(x_0, u_0)}{\partial u}}_{Qu} \Delta u,$$
$$\Delta y = \underbrace{\frac{\partial h(x_0, u_0)}{\partial x}}_{C} \Delta x + \underbrace{\frac{\partial h(x_0, u_0)}{\partial u}}_{D} \Delta u.$$

Summary of lecture 6 (II/II)

Node

(Two real e.v. same sign)

Saddle

(Two real e.v. different sign)

One eigenvector node and star node

(two equal eigenvalues)

Focus and center

(Complex eigenvalues)

Phase portraits for nonlinear systems

Close to an equilibrium point the dynamics are determined by the linearized dynamics.

- If the linearized system has a node, a focus, or a saddle point, the same applies for the nonlinear system.
- If the linearized system has a **center**, the nonlinear system has a center or a focus.
- If the linearized system has a **star node**, additional conditions have to be checked for the nonlinear system.

Second-order nonlinear system

$$\dot{x}_1 = f_1(x_1, x_2),$$

 $\dot{x}_2 = f_2(x_1, x_2).$

Equation for the trajectories ("eliminate time")

$$\frac{dx_2}{dx_1} = \frac{dx_2}{dt}\frac{dt}{dx_1} = \frac{\dot{x}_2}{\dot{x}_1} = \frac{f_2(x_1, x_2)}{f_1(x_1, x_2)}.$$

- The trajectories have slope 0 when $f_2(x_1, x_2) = 0$.
- The trajectories have slope ∞ when $f_1(x_1, x_2) = 0$.

$$\lim_{x_1 \to \pm \infty} \frac{f_2(x_1, x_2)}{f_1(x_1, x_2)}, \qquad \lim_{x_2 \to \pm \infty} \frac{f_2(x_1, x_2)}{f_1(x_1, x_2)}$$

Second-order nonlinear system

$$\dot{x}_1 = f_1(x_1, x_2),$$

 $\dot{x}_2 = f_2(x_1, x_2).$

Equation for the trajectories ("eliminate time")

$$\frac{dx_2}{dx_1} = \frac{dx_2}{dt}\frac{dt}{dx_1} = \frac{\dot{x}_2}{\dot{x}_1} = \frac{f_2(x_1, x_2)}{f_1(x_1, x_2)}.$$

- The trajectories have slope 0 when $f_2(x_1, x_2) = 0$.
- The trajectories have slope ∞ when $f_1(x_1, x_2) = 0$.
- Study the limits

$$\lim_{x_1 \to \pm \infty} \frac{f_2(x_1, x_2)}{f_1(x_1, x_2)}, \qquad \lim_{x_2 \to \pm \infty} \frac{f_2(x_1, x_2)}{f_1(x_1, x_2)},$$

to find out what the phase portrait looks like far from the origin.

Second-order nonlinear system

$$\dot{x}_1 = f_1(x_1, x_2),$$

 $\dot{x}_2 = f_2(x_1, x_2).$

Equation for the trajectories ("eliminate time")

$$\frac{dx_2}{dx_1} = \frac{dx_2}{dt}\frac{dt}{dx_1} = \frac{\dot{x}_2}{\dot{x}_1} = \frac{f_2(x_1, x_2)}{f_1(x_1, x_2)}.$$

- The trajectories have slope 0 when $f_2(x_1, x_2) = 0$.
- The trajectories have slope ∞ when $f_1(x_1, x_2) = 0$.
- Study the limits

$$\lim_{x_1 \to \pm \infty} \frac{f_2(x_1, x_2)}{f_1(x_1, x_2)}, \qquad \lim_{x_2 \to \pm \infty} \frac{f_2(x_1, x_2)}{f_1(x_1, x_2)},$$

to find out what the phase portrait looks like far from the origin.

Second-order nonlinear system

$$\dot{x}_1 = f_1(x_1, x_2),$$

 $\dot{x}_2 = f_2(x_1, x_2).$

Equation for the trajectories ("eliminate time")

$$\frac{dx_2}{dx_1} = \frac{dx_2}{dt}\frac{dt}{dx_1} = \frac{\dot{x}_2}{\dot{x}_1} = \frac{f_2(x_1, x_2)}{f_1(x_1, x_2)}.$$

- The trajectories have slope 0 when $f_2(x_1, x_2) = 0$.
- The trajectories have slope ∞ when $f_1(x_1, x_2) = 0$.
- Study the limits

$$\lim_{x_1 \to \pm \infty} \frac{f_2(x_1, x_2)}{f_1(x_1, x_2)}, \qquad \lim_{x_2 \to \pm \infty} \frac{f_2(x_1, x_2)}{f_1(x_1, x_2)},$$

to find out what the phase portrait looks like far from the origin.

Phase portrait of an inverted pendulum

Open loop (autonomous) dynamics

$$\dot{x}_1 = x_2,$$

$$\dot{x}_2 = \sin x_1 - \gamma x_2.$$

Left: Nonlinear phase portrait. Right: Phase portrait of the linearized dynamics.

Control joke

You might be a control engineer if

You have ever used the term 'going nonlinear' to describe human behavior

Stability of an equilibrium

Given the requirement that the solution must remain within a distance of ϵ from the equilibrium point x_0 for all future t, we must be able to find a ball of radius δ centered in x_0 , such that the requirement is fulfilled for all starting points x(0) in this ball.

Asymptotic stability of an equilibrium

If the system is started sufficiently close to x_0 , it will eventually end up in x_0 as $t \to \infty$.

Globally asymptotically stable if asymptotic stability holds for the equilibrium in the whole state space.

Lyapunov functions and stability

$$V_x(x) = \left[\frac{\partial V}{\partial x_1}, \dots, \frac{\partial V}{\partial x_n}\right]$$

Theorem: If a Lyapunov function V satisfying

$$V_x(x(t))f(t) < 0, x \neq x_0, \qquad V(x) \to \infty \quad \text{as} \quad |x| \to \infty$$

can be found, then the equilibrium point x_0 is globally asymptotically stable.

The tricky part is to find the Lyapunov function

Lyapunov functions and stability

$$V_x(x) = \left[\frac{\partial V}{\partial x_1}, \dots, \frac{\partial V}{\partial x_n}\right]$$

Theorem: If a Lyapunov function V satisfying

$$V_x(x(t))f(t) < 0, x \neq x_0, \qquad V(x) \to \infty \quad \text{as} \quad |x| \to \infty$$

can be found, then the equilibrium point x_0 is globally asymptotically stable.

The tricky part is to find the Lyapunov function!

Lyapunov functions for linear systems

Lemma: 1. If A has all its eigenvalues in the LHP, then for every matrix $Q=Q^T>0$ (or $Q\geq 0$), there is a matrix $P=P^T>0$ (or $P\geq 0$) that satisfies the Lyapunov equation,

$$A^T P + P A = -Q.$$

2. If there are matrices $P=P^T\geq 0$ and $Q=Q^T\geq 0$ satisfying the Lyapunov equation and (A,Q) is detectable, then A has all its eigenvalues strictly in the LHP.

Not very useful in itself, since we already new this... However, it opens up for more interesting results.

Lyapunov functions for linear systems

Lemma: 1. If A has all its eigenvalues in the LHP, then for every matrix $Q=Q^T>0$ (or $Q\geq 0$), there is a matrix $P=P^T>0$ (or $P\geq 0$) that satisfies the Lyapunov equation,

$$A^T P + P A = -Q.$$

2. If there are matrices $P=P^T\geq 0$ and $Q=Q^T\geq 0$ satisfying the Lyapunov equation and (A,Q) is detectable, then A has all its eigenvalues strictly in the LHP.

Not very useful in itself, since we already new this... However, it opens up for more interesting results.

Lyapunov functions for linearized systems

Consider the nonlinear system

$$\dot{x} = Ax + g(x),$$

where g(x) is sufficiently small close to the origin. Let A have eigenvalues in the LHP and let P and Q be positive definite matrices fulfilling

$$A^T P + P A = -Q.$$

Then $V(x) = x^T P x$ is a Lyapunov function also for the nonlinear system in an area around the origin.

A few concepts to summarize lecture 7

Globally asymptotically stable: The equilibrium point x_0 is globally asymptotically stable (GAS) if it is stable and $x(t) \to x_0, t \to \infty$ for every starting point x(0).

Lyapunov function: A Lyapunov function $V: \mathbb{R}^n \to \mathbb{R}$ is a generalized distance from x to an equilibrium point x_0 , satisfying $V(x_0) = 0, V(x) > 0, x \neq x_0$ and $V_x(x)f(x) \neq 0$.

Lyapunov equation: The Lyapunov equation $A^TP + PA = -Q$ can be used to find Lyapunov functions for linear (and almost linear) systems.