Useful theorems for Manifolds and Topology Preliminary Exams

University of Minnesota

June 16, 2020

1 Fundamental Group

Theorem (Siefert-van Kampen). Let U, V be open, path connected topological spaces such that $U \cap V$ is nonempty and path connected. The inclusion maps of $U \hookrightarrow U \cup V$ and $V \hookrightarrow U \cup V$ induce group homomorphisms $j_U : \pi_1(U) \to \pi_1(U \cup V)$ and $j_V : \pi_1(V) \to \pi_1(U \cup V)$. Then $U \cup V$ is path connected, and j_U, j_V form a commutative pushout diagram:

Since this is a pushout diagram, then k is an isomorphism.

2 Covering Spaces

Theorem. Let X be path connected, locally path connected, and semilocally simply connected. Then there is a bijection between the set of basepoint-preserving isomorphism classes of path-connected covering spaces $p: (\tilde{X}, \tilde{x}_0) \to (X, x_0)$ and the set of subgroups of $\pi_1(X, x_0)$ obtained by associating the subgroup $p_*(\pi_1(\tilde{X}, \tilde{x}_0))$ to the covering space (\tilde{X}, \tilde{x}_0) . If basepoints are ignored, this gives a bijection between isomorphism classes of path-connected covering spaces $p: \tilde{X} \to X$ and conjugacy classes of subgroups of $\pi_1(X, x_0)$.

Lemma. If G is an abelian group, then the conjugacy classes of G are all singletons, so if G is finite, then |G| is the number of conjugacy classes.

3 Manifolds

Theorem (Sard's theorem). Let M, N be smooth manifolds with or without boundary, and $F: M \to N$ be a smooth map. Then the set of critical values of F has measure 0 in N.

Theorem (Whitney embedding theorem). Every smooth n-manifold with or without boundary admits a proper smooth embedding into \mathbb{R}^{2n+1} .

Theorem (Coordinate formula for the Lie Bracket [?] prop. 8.26 verbaitm). Let X, Y be smooth vector fields on a smooth manifold M with or without boundary, and let $X = X^i \frac{\partial}{\partial x^i}$ and $Y = Y^j \frac{\partial}{\partial x^j}$ be the coordinate expressions for X and Y in terms of some smooth local coordinates (x^i) for M. Then [X, Y] has the following coordinate expression:

$$[X,Y] = \left(X^i \frac{\partial Y^j}{\partial x^i} - Y^i \frac{\partial X^j}{\partial x^i}\right) \frac{\partial}{\partial x^j}$$

or

$$[X,Y] = (XY^j - YX^j)\frac{\partial}{\partial x^j}$$

To add: Global Rank Theorem p. 83 of Lee