WORD EMBEDDINGS

David Talbot

Spring 2017

Yandex School of Data Analysis

TODAY'S TOPICS

- · Distributional hypothesis
- · Linguistic regularities in embeddings
- · Learning relations

DISTRIBUTIONAL HYPOTHESIS (HARRIS 1957)

- · Harris: Words which are similar occur in similar contexts.
- \cdot Kolmogorov: Defined $\ensuremath{\textit{grammatical case}}$ as set of $\ensuremath{\textit{contexts}}.$

METRIC SPACE FOR NLP DATA?

- · Some data comes with a natural associated metric
- E.g. Real numbers: d(x,y) = |y x|
- · How about image data?

METRIC SPACE FOR NLP DATA?

- · Some data comes with a natural associated metric
- E.g. Real numbers: d(x,y) = |y x|
- · How about image data?
- · How about speech?

METRIC SPACE FOR NLP DATA?

- · Some data comes with a natural associated metric
- E.g. Real numbers: d(x,y) = |y x|
- · How about image data?
- · How about speech?
- How about natural language text?

DEFINING A METRIC SPACE FOR LANGUAGE

Given vocab V, induce a 'distance' $d: V \times V \rightarrow \mathbb{R}$

· Approach: Use distribution over auxiliary variable y

$$d(w, w') = KL(\Pr(y|w)||\Pr(y|w')) = \sum_{v'} \Pr(y'|w) \log \frac{\Pr(y'|w)}{\Pr(y'|w')}$$

- · Partition vocab V into G word classes $C: V \rightarrow [0, G)$
- · Model data as

$$Pr(w_t|w_{t-1}) \approx Pr(w_t|c_{w_t})Pr(c_{w_t}|c_{w_{t-1}})$$

· Maximize the loglikehood of data under this model w.r.t. C

Maximize the loglikehood of data under this model w.r.t. C

$$\ell(C) = \sum_{t-1}^{T} \log \Pr(w_{t}|w_{t-1}, w_{t-2}, ...)$$

Maximize the loglikehood of data under this model w.r.t. C

$$\begin{split} \ell(C) &= \sum_{t=1}^{T} log \, \text{Pr}(w_{t}|w_{t-1},w_{t-2},\dots) \\ &\approx \sum_{(w,w') \in V^{2}} N(w,w') \, log \, \text{Pr}(w|c_{w'}) \text{Pr}(c_{w}|c_{w'}) \end{split}$$

Maximize the loglikehood of data under this model w.r.t. C

$$\begin{split} \ell(C) &= \sum_{t=1}^{T} \log \Pr(w_{t}|w_{t-1}, w_{t-2}, \dots) \\ &\approx \sum_{(w,w') \in V^{2}} N(w,w') \log \Pr(w|c_{w'}) \Pr(c_{w}|c_{w'}) \\ &= \sum_{c_{w},c_{w'}} N(c_{w},c_{w'}) \log \frac{N(c_{w},c_{w'})}{N(c_{w})N(c_{w'})} + \sum_{w} N(w) \log \frac{N(w)}{N(c_{w})} \end{split}$$

Maximize the loglikehood of data under this model w.r.t. C

$$\begin{split} \ell(C) &= \sum_{t=1}^{T} \log \Pr(w_{t}|w_{t-1}, w_{t-2}, \dots) \\ &\approx \sum_{(w, w') \in V^{2}} N(w, w') \log \Pr(w|c_{w'}) \Pr(c_{w}|c_{w'}) \\ &= \sum_{c_{w}, c_{w'}} N(c_{w}, c_{w'}) \log \frac{N(c_{w}, c_{w'})}{N(c_{w})N(c_{w'})} + \sum_{w} N(w) \log \frac{N(w)}{N(c_{w})} \\ &= I(c_{w}, c'_{w}) + H(c_{w}) - H(w) \end{split}$$

where N(w) and N(w, w') are counts of w and (w, w') respectively.

DISTRIBUTED CONTINUOUS REPRESENTATIONS

- · Explicit representation e.g. Pr(y|x) is sparse
- · Embedding into lower-dimensional vector, e.g. word2vec

WORD2VEC MODELS (MIKOLOV 2013)

WORD2VEC MODELS (MIKOLOV 2013)

SKIP-GRAM MODEL DETAILS (GOLDBERG & LEVY 2014)

Maximize the loglikehood of data under the skip-gram mode w.r.t. embedding θ

$$\operatorname{arg} \max_{\theta} = \prod_{(w,c) \in D} \Pr(c|w;\theta)$$

which is parameterized as

$$Pr(c|w;\theta) = \frac{exp(v_c \cdot v_w)}{\sum_{c' \in C} exp(v_{c'} \cdot v_w)}$$

where $v_c, v_w \in \mathbb{R}^d$.

SKIP-GRAM MODEL DETAILS

Which is equivalent to

$$\arg\max_{\theta} \sum_{(w,c) \in D} \log \Pr(c|w;\theta) = \sum_{(w,c) \in D} (e^{(v_c \cdot v_w)} - \log \sum_{c'} e^{(v_{c'} \cdot v_w)})$$

Which is equivalent to

$$\arg\max_{\theta} \sum_{(w,c) \in D} \log \Pr(c|w;\theta) = \sum_{(w,c) \in D} (e^{(v_c \cdot v_w)} - \log \sum_{c'} e^{(v_{c'} \cdot v_w)})$$

- · Use negative sampling to approximate sum over c'
- · Forces model to discriminate observed data from noise

OTHER SPARSE EMBEDDINGS

 \cdot LSA (Latent Semantic Analysis): Apply SVD to count matrix \emph{M}

$$M \approx \hat{M}_d = W_d \Sigma_d C_d$$
.

OTHER SPARSE EMBEDDINGS

· LSA (Latent Semantic Analysis): Apply SVD to count matrix M

$$M \approx \hat{M}_d = W_d \Sigma_d C_d$$
.

· GloVe: factorize shifted log-count matrix

$$v_w \cdot v_c + b_w + b_c = \log(\#(w,c)) \quad \forall (w,c) \in D.$$

OTHER SPARSE EMBEDDINGS

· LSA (Latent Semantic Analysis): Apply SVD to count matrix M

$$M \approx \hat{M}_d = W_d \Sigma_d C_d$$
.

· GloVe: factorize shifted log-count matrix

$$v_w \cdot v_c + b_w + b_c = \log(\#(w,c)) \quad \forall (w,c) \in D.$$

What will vector differences look like for GloVe?

GLOVE: CONDITIONAL RATIOS (PENNINGTON ET AL. 2014)

Probability and Ratio	k = solid	k = gas	k = water	k = fashion
P(k ice)		6.6×10^{-5}		1.7×10^{-5}
P(k steam)	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
P(k ice)/P(k steam)	8.9	8.5×10^{-2}	1.36	0.96

GloVe vector differences approximate logarithm of their ratios

$$v_x \cdot v_c \approx \log(\#(x,c)) \implies |v_x - v_y| \cdot v_c \approx \log \frac{\Pr(x|c)}{\Pr(y|c)}.$$

VECTOR OFFSETS BETWEEN WORD EMBEDDINGS (MIKOLOV 2013)

COSINE SIMILARITY

$$sim(A, B) = cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|}$$

ANALOGICAL REASONING IN VECTOR SPACE (MIKOLOV 2013)

Syntactic relations (e.g. morphology)

 $apples - apple \approx cars - car$

Semantic relations

queen - woman \approx king - man

ALTERNATIVE SEARCH OBJECTIVES (GOLDBERG & LEVY 2014)

Given (x, x', y) find $y' \in V$ that maximizes:

$$Cos3Add = arg \max_{y' \in V} (cos(y', y - x + x'))$$

ALTERNATIVE SEARCH OBJECTIVES (GOLDBERG & LEVY 2014)

Given (x, x', y) find $y' \in V$ that maximizes:

$$Cos3Add = arg \max_{y' \in V} (cos(y', y - x + x'))$$

Alternative that preserves direction of transformation

PairDirections =
$$\arg \max_{y' \in V} (cos(y' - y, x' - x))$$

ALTERNATIVE SEARCH OBJECTIVES (GOLDBERG & LEVY 2014)

Given (x, x', y) find $y' \in V$ that maximizes:

$$Cos3Add = arg \max_{y' \in V} (cos(y', y - x + x'))$$

Alternative that preserves direction of transformation

$$PairDirections = arg \max_{y' \in V} (cos(y' - y, x' - x))$$

If vectors are normalized, then the first can be written:

$$\arg\max_{y'\in V}(\cos(y',y)+\cos(y',x')-\cos(y',x))$$

HOW WELL DO EMBEDDINGS PERFORM?

Representation	MSR	GOOGLE	SEMEVAL
Embedding	53.98%	62.70%	38.49%
Explicit	29.04%	45.05%	38.54%

Table 1: Performance of **3COSADD** on different tasks with the explicit and neural embedding representations.

Representation	MSR	GOOGLE	SEMEVAL
Embedding	9.26%	14.51%	44.77%
Explicit	0.66%	0.75%	45.19%

Table 2: Performance of **PAIRDIRECTION** on different tasks with the explicit and neural embedding representations.

PROBLEMS WITH COS3ADD (GOLDBERG & LEVY 2014)

Soft-OR behaviour: one sufficiently large term can dominate

$$\arg\max_{y'\in V}(\cos(y',y)+\cos(y',x')-\cos(y',x))$$

For example

$$\arg\max_{y'\in V}(\cos(y',Baghdad)+\cos(y',England)-\cos(y',London))$$

Returns Mosul rather than Iraq

Proposed alternative (equivalent to taking logs):

$$3CosMul = arg \max_{y' \in V} \frac{cos(y', y)cos(y', x')}{cos(y', x) + \epsilon}$$

HOW WELL DO EMBEDDINGS PERFORM?

Objective	Representation	MSR	GOOGLE
3CosAdd	Embedding	53.98%	62.70%
	Explicit	29.04%	45.05%
3CosMuL	Embedding	59.09%	66.72%
	Explicit	56.83%	68.24%

Table 3: Comparison of **3CosAdd** and **3CosMul**.

HOW WELL DO EMBEDDINGS PERFORM?

	Relation	Embedding	Explicit
	capital-common-countries	90.51%	99.41%
	capital-world	77.61%	92.73%
	city-in-state	56.95%	64.69%
	currency	14.55%	10.53%
	family (gender inflections)	76.48%	60.08%
ш	gram1-adjective-to-adverb	24.29%	14.01%
GOOGLE	gram2-opposite	37.07%	28.94%
8	gram3-comparative	86.11%	77.85%
Ö	gram4-superlative	56.72%	63.45%
	gram5-present-participle	63.35%	65.06%
	gram6-nationality-adjective	89.37%	90.56%
	gram7-past-tense	65.83%	48.85%
	gram8-plural (nouns)	72.15%	76.05%
	gram9-plural-verbs	71.15%	55.75%
MSR	adjectives	45.88%	56.46%
	nouns	56.96%	63.07%
2	verbs	69.90%	52.97%

Table 5: Breakdown of relational similarities in each representation by relation type, using 3CoSMUL.

Given sets of word pairs that differ in a common edit

```
 (suf = \emptyset, suf = -s) = \\ (suf = -ing, suf = -ed) = \\ (playing, played), (walking, walked), \dots \}   (pref = r-, pref = str-) = \\ \{(ring, string), (rayed, strayed), \dots \}
```

Use vector space of embeddings to find valid transformations

Evaluate transformation r e.g. (suf = -ing, suf = -ed)

$$r: w \in V \rightarrow w' \in V$$

Evaluate transformation r e.g. (suf = -ing, suf = -ed)

$$r: w \in V \rightarrow w' \in V$$

Define S_r as

$$S_r = (w, w') \in V^2$$
 s.t. $r(w) = w'$

Evaluate transformation r e.g. (suf = -ing, suf = -ed)

$$r: w \in V \rightarrow w' \in V$$

Define S_r as

$$S_r = (w, w') \in V^2$$
 s.t. $r(w) = w'$

Evaluate each pair $(w_1, w_2) \in S_r$ against all others $(w, w') \in S_r$

Evaluate transformation r e.g. (suf = -ing, suf = -ed)

$$r: w \in V \rightarrow w' \in V$$

Define S_r as

$$S_r = (w, w') \in V^2$$
 s.t. $r(w) = w'$

Evaluate each pair $(w_1, w_2) \in S_r$ against all others $(w, w') \in S_r$

$$Eval\{(w_1, w_2)\} = \frac{1}{|S_r|} \sum_{(w, w') \in S_r} rank_{cos}(w_2, w_1 - w + w').$$

Evaluate transformation r e.g. (suf = -ing, suf = -ed)

$$r: w \in V \rightarrow w' \in V$$

Define S_r as

$$S_r = (w, w') \in V^2$$
 s.t. $r(w) = w'$

Evaluate each pair $(w_1, w_2) \in S_r$ against all others $(w, w') \in S_r$

$$\label{eq:eval} \textit{Eval}\{(w_1, w_2)\} = \frac{1}{|S_r|} \sum_{(w, w') \in S_r} \textit{rank}_{cos}(w_2, w_1 - w + w').$$

How about ambiguous rules such as (suf = \emptyset , suf = -s)?