A Principled Approach to Measuring the IoT Ecosystem

Deepak Kumar University of Illinois

Cyberattack Knocks Out Access to Websites

Popular sites such as Twitter, Netflix and PayPal were unreachable for part of the day

Measuring the Mirai Botnet

Data Source	Size
Network Telescope	4.7M unused IPs
Active Scanning	136 IPv4 scans
Telnet Honeypots	434 binaries
Malware Repository	594 binaries
Active/Passive DNS	499M Daily RRs
C2 Milkers	64K issued attacks
Krebs DDoS Attack	170K attacker IPs
Dyn DDoS Attack	108K attacker IPs

Understanding the Mirai Botnet – USENIX 2017

What can we learn about the IoT ecosystem by using varied measurement perspectives and techniques?

Outline

- Relevant background/motivation
- Brief discussion of completed work
- Proposed future projects
- Discussion and future directions

Measurement Perspectives

Measurement Perspectives

- Internal
 - Many IoT devices are behind NATs, requiring a local network perspective to study devices

Measurement Perspectives

- Internal
 - Many IoT devices are behind NATs, requiring a local network perspective to study devices
- External
 - Public fingerprint of a device is often the only perspective researchers have for security analysis

Measurement Perspectives – Limitations

- Internal scanning is an effective method to learning what IoT devices inside homes really look like, but threat model is stricter
- External scanning can give us a sense of devices that are *immediately* vulnerable

Measurement Techniques

Measurement Techniques

- Active
 - Probe devices (e.g., send TCP SYN) to learn of their server capabilities

Measurement Techniques

- Active
 - Probe devices (e.g., send TCP SYN) to learn of their server capabilities
- Passive
 - Observe devices (e.g., network tap) to learn of their client behavior

Measurement Techniques – Limitations

- Active probing enumerates all the server capabilities of a device, but can't tell you how the device is used
- Passive observation tells you the network behavior of devices, but doesn't enumerate capabilities

Thesis Plan

Thesis Plan

All Things Considered: An Analysis of IoT Devices on Home Networks

Deepak Kumar University of Illinois

Deepali Garg

Avast Software

Kelly Shen
Stanford University

Galina Alperovich

Avast Software

Benton Case Stanford University

Dmitry Kuznetsov *Avast Software*

Rajarshi Gupta Avast Software Zakir Durumeric Stanford University

USENIX Security 2019

Avast Wi-Fi Inspector

- Performs active internal network scans and checks devices for weak security
 - Device identification
 - Weak default credentials
 - Vulnerability to known recent CVEs

Dataset

Network scans collected from 15.5 million homes, spanning 83 million devices across 11 geographic regions

Media devices are the most popular device type in 7 of 11 regions

Home automation and voice assistants are only prevalent (>1% of homes) in North America, Western Europe, Oceania

Surveillance devices are the most common device type in South/Southeast Asia

Work appliances are the most common device type in East Asia/Sub-Saharan Africa

Case Study: Weak Telnet Credentials

Device Type	% Support Telnet	% Weak Telnet
Surveillance	14.6%	10.7%
Router	14.6%	1.9%
Home Appliance	3.2%	1.6%
Media	1.4%	0.9%

Case Study: Weak Telnet Credentials

Region	% IoT Weak Telnet	% Surveillance
North America	0.5%	3.7%
South America	4.9%	13.3%
Eastern Europe	3.0%	14.0%
Western Europe	1.0%	5.6%
East Asia	0.4%	9.1%
Central Asia	4.9%	30.3%
SE Asia	3.6%	37.0%
South Asia	2.9%	54.5%
Oceania	0.7%	4.3%
N. Africa + Middle East	4.8%	28.5%
Sub-Saharan Africa	1.1%	18%

Mirai Infections

What can other perspectives and techniques tell us?

Proposed Work

Active, External Scans

 Active, external scans form the foundation of much research in the measurement community

Active, External Scans

- Active, external scans form the foundation of much research in the measurement community
 - · ZMap, Censys, Shodan, Massscan have changed our access to data

Project 1: Proposal

 In this project, I propose comparing the external, active measurement perspective (Censys) to the internal, active measurement perspective (Avast)

Project 1: Proposal

- In this project, I propose comparing the external, active measurement perspective (Censys) to the internal, active measurement perspective (Avast)
 - What are the measurement biases introduced by only studying the public Internet?

Research Plan

- Collect raw data from Censys
 - Censys regularly scans IPv4 space on a fixed set of ports and collects application layer data
- Investigate and explain network services, device type distributions differences between two vantage points
- Tie back into published measurement research

Proposed Work

Proposed Work

Internal Scans

 Internal scans are harder to come by in the research community, but a historically desired perspective

Internal Scans

- Internal scans are harder to come by in the research community, but a historically desired perspective
 - Netalyzer, Bismark were deployed at smaller scale to investigate network bandwith, misconfigurations, security problems

Project 2: Proposal

 In this project, I propose comparing an active, internal perspective with a passive, internal perspective

Research Plan

- Partnered with IoT-Inspector team to instrument their tool to perform passive and active scanning inside a home
 - Currently, the tool works by ARP-spoofing and serving as a MiTM, logging aggregate statistics and some flow data
- Deploy the tool to ~10K users currently on the waiting list
- Enumerate the differences between the two perspectives
 - What don't you see by studying client behavior alone?

Proposed Work

Future Directions

- How do users actually configure their IoT devices?
 - Partnered with IFTTT, a trigger-action platform that enables users to configure "network rules" for their homes
 - Starting work with Prof. Bates
- Exploring the passive external perspective for device fingerprinting and device enumerations
 - DNS can be a way to fingerprint devices (Alrawi et. al, IEEE S&P 2019)

