Cryptography and Network Security

SECURITY GOALS

- Confidentiality
 - Hidden from unauthorized access
 - Applied in storage and transmission
- Integrity
 - protect from unauthorized change
- Availability
 - Make available to authorized entity

SECURITY ATTACKS

Passive vs Active Attacks

Passive vs Active Attacks

SECURITY SERVICES AND TECHNIQUES

- To achieve security goals and prevent attacks
- Two prevalent techniques
 - Cryptography
 - Steganography
 - practice of concealing a file, message, image, or video within another file, message, image, or video

INTRODUCTION

Let us introduce the issues involved in cryptography. First, we need to define some terms; then we give some taxonomies.

Topics discussed in this section:

Definitions Two Categories

Figure: Cryptography components

Figure: Categories of cryptography

Figure: Symmetric-key cryptography

Note

In symmetric-key cryptography, the same key is used by the sender (for encryption) and the receiver (for decryption). The key is shared.

Figure: Asymmetric-key cryptography

Figure: Keys used in cryptography

Symmetric-key cryptography

Asymmetric-key cryptography

Figure: Comparison between two categories of cryptography

a. Symmetric-key cryptography

b. Asymmetric-key cryptography

SYMMETRIC-KEY CRYPTOGRAPHY

Symmetric-key cryptography started thousands of years ago when people needed to exchange secrets (for example, in a war). We still mainly use symmetric-key cryptography in our network security.

Topics discussed in this section:

Traditional Ciphers
Simple Modern Ciphers
Modern Round Ciphers
Mode of Operation

Figure: Traditional ciphers

A substitution cipher replaces one symbol with another.

Example

The following shows a plaintext and its corresponding ciphertext. Is the cipher monoalphabetic?

Plaintext: HELLO

Ciphertext: KHOOR

Solution

The cipher is probably monoalphabetic because both occurrences of L's are encrypted as O's.

Example

The following shows a plaintext and its corresponding ciphertext. Is the cipher monoalphabetic?

Plaintext: HELLO

Ciphertext: ABNZF

Solution

The cipher is not monoalphabetic because each occurrence of L is encrypted by a different character. The first L is encrypted as N; the second as Z.

- The simplest monoalphabetic cipher is the Additive cipher/Shift cipher/Caesar cipher
- Plaintext
 - The original message before transformed
- Ciphertext
 - After the message is transformed
- Cipher
 - encryption and decryption algorithms

Representation of plaintext and ciphertext characters in modulo 26

Plaintext →	a	b	С	d	e	f	g	h	i	j	k	1	m	n	0	p	q	Γ	S	t	u	V	w	X	у	Z
Ciphertext →	A	В	C	D	Е	F	G	Н	Ι	J	K	L	M	N	0	P	Q	R	S	Τ	U	V	W	X	Y	Z
Value →	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
and itely are integers in modale 20																										

Additive Cipher-Encryption

Use the additive cipher with key = 15 to encrypt the message "hello".

Solution

We apply the encryption algorithm to the plaintext, character by character:

Plaintext: $h \rightarrow 07$	Encryption: (07 + 15) mod 26	Ciphertext: $22 \rightarrow W$
Plaintext: $e \rightarrow 04$	Encryption: (04 + 15) mod 26	Ciphertext: $19 \rightarrow T$
Plaintext: $1 \rightarrow 11$	Encryption: (11 + 15) mod 26	Ciphertext: $00 \rightarrow A$
Plaintext: $1 \rightarrow 11$	Encryption: (11 + 15) mod 26	Ciphertext: $00 \rightarrow A$
Plaintext: $o \rightarrow 14$	Encryption: (14 + 15) mod 26	Ciphertext: $03 \rightarrow D$

Additive Cipher-Decryption

Use the additive cipher with key = 15 to decrypt the message "WTAAD".

Solution

We apply the decryption algorithm to the plaintext character by character:

Ciphertext: W \rightarrow 22	Decryption: (22 – 15) mod 26	Plaintext: $07 \rightarrow h$
Ciphertext: T \rightarrow 19	Decryption: (19 – 15) mod 26	Plaintext: $04 \rightarrow e$
Ciphertext: A \rightarrow 00	Decryption: (00 – 15) mod 26	Plaintext: $11 \rightarrow 1$
Ciphertext: A \rightarrow 00	Decryption: (00 – 15) mod 26	Plaintext: $11 \rightarrow 1$
Ciphertext: D \rightarrow 03	Decryption: (03 – 15) mod 26	Plaintext: $14 \rightarrow 0$

• A better solution is to create a mapping between each plaintext character and the corresponding ciphertext character

An example key for a monoalphabetic substitution cipher

• A better solution is to create a mapping between each plaintext character and the corresponding ciphertext character

Plaintext:

this message is easy to encrypt but hard to find the key

Ciphertext:

ICFVQRVVNERFVRNVSIYRGAHSLIOJICNHTIYBFGTICRXRS

Polyalphabetic Ciphers

• Autokey cipher with initial key value k1 = 12

$$P = P_1 P_2 P_3 \dots$$
 $C = C_1 C_2 C_3 \dots$ $k = (k_1, P_1, P_2, \dots)$
Encryption: $C_i = (P_i + k_i) \mod 26$ Decryption: $P_i = (C_i - k_i) \mod 26$

Plaintext:	a	t	t	a	c	k	i	S	t	0	d	a	y
P's Values:	00	19_	19_	00.	02_	10	08	18_	19	14	03	00	24
P's Values: Key stream:	12	00	19	19	00	02	10	80	18	19	714	03	00
C's Values:	12	19	12	19	02	12	18	00	11	7	17	03	24
Ciphertext:	M	T	M	T	\mathbf{C}	M	S	A	L	H	R	D	Y

A transposition cipher reorders (permutes) symbols in a block of symbols.

Example-Transposition cipher

• z is added at the end to make the number of characters multiple of 5

Modern Block Ciphers

- Lucifer / DES (Data Encryption Standard)
- IDEA (International Data Encryption Algorithm)
- RC5
- Rijndael / AES (Advanced Encryption Standard)
- Blowfish

General Structure of DES

AES Structure

AES Structure of each round

ASYMMETRIC-KEY CRYPTOGRAPHY

An asymmetric-key (or public-key) cipher uses two keys: one private and one public. We discuss two algorithms: RSA and Diffie-Hellman.

Asymmetric cryptography Algorithms

RSA (Rivest-Shamir-Adleman)

Diffie-Hellman

ECC (Elliptic-curve cryptography)

ElGamal

DSA (Digital Signature Algorithm)

Figure: RSA

Bob chooses two large numbers, p and q, and calculates $n = p \times q$ and $\phi = (p-1) \times (q-1)$. Bob then selects e and d such that $(e \times d) \mod \phi = 1$. Bob advertises e and n to the community as the public key; Bob keeps d as the private key. Anyone, including Alice, can encrypt a message and send the ciphertext to Bob, using $C = (P^e) \mod n$; only Bob can decrypt the message, using $P = (C^d) \mod n$. An intruder such as Eve cannot decrypt the message if p and q are very large numbers (she does not know d).

For the sake of demonstration, let Bob choose 7 and 11 as p and q and calculate $n = 7 \times 11 = 77$. The value of $\phi(n) = (7-1)(11-1)$, or 60. If he chooses e to be 13, then d is 37. Note that $e \times d$ mod 60 = 1. Now imagine that Alice wants to send the plaintext 5 to Bob. She uses the public exponent 13 to encrypt 5. This system is not safe because p and q are small.

Plaintext: 5

 $C = 5^{13} = 26 \mod 77$

Ciphertext: 26

Ciphertext: 26

 $P = 26^{37} = 5 \mod 77$

Plaintext: 5

Note

In RSA, e and n are announced to the public; d and Φ are kept secret.

Example

Let us give a realistic example. We randomly chose an integer of 512 bits. The integer p is a 159-digit number.

p = 96130345313583504574191581280615427909309845594996215822583150879647940 45505647063849125716018034750312098666606492420191808780667421096063354 219926661209

The integer q is a 160-digit number.

 $\mathbf{q} = 12060191957231446918276794204450896001555925054637033936061798321731482\\ 14848376465921538945320917522527322683010712069560460251388714552496900\\ 0359660045617$

Example (continued)

We calculate n. It has 309 digits:

n = 11593504173967614968892509864615887523771457375454144775485526137614788 54083263508172768788159683251684688493006254857641112501624145523391829 27162507656772727460097082714127730434960500556347274566628060099924037 10299142447229221577279853172703383938133469268413732762200096667667183 1831088373420823444370953

We calculate Φ . It has 309 digits:

-

Example (continued)

We choose e = 35,535. We then find d.

e = 35535

d = 58008302860037763936093661289677917594669062089650962180422866111380593852 82235873170628691003002171085904433840217072986908760061153062025249598844 48047568240966247081485817130463240644077704833134010850947385295645071936 77406119732655742423721761767462077637164207600337085333288532144708859551 36670294831

Alice wants to send the message "THIS IS A TEST" which can be changed to a numeric value by using the 00–26 encoding scheme (26 is the space character).

 $\mathbf{P} = 1907081826081826002619041819$

Example (continued)

The ciphertext calculated by Alice is $C = P^e$, which is.

Bob can recover the plaintext from the ciphertext by using $P = C^d$, which is

 $\mathbf{P} = 1907081826081826002619041819$

The recovered plaintext is THIS IS A TEST after decoding.

Note

The symmetric (shared) key in the Diffie-Hellman protocol is K = g^{xy} mod p.

p = large numberg = base

Diffie-Hellman Method

Example 30.10 (4th Edition)

- Let us give a trivial example to make the procedure clear. Our example uses small numbers, but note that in a real situation, the numbers are very large. Assume g = 7 and p = 23. The steps are as follows:
- 1. Alice chooses x = 3 and calculates $R_1 = 7^3 \mod 23 = 21$.
- 2. Bob chooses y = 6 and calculates $R_2 = 7^6 \mod 23 = 4$.
- 3. Alice sends the number 21 to Bob.
- 4. Bob sends the number 4 to Alice.
- 5. Alice calculates the symmetric key $K = 4^3 \mod 23 = 18$.
- 6. Bob calculates the symmetric key $K = 21^6 \mod 23 = 18$. The value of K is the same for both Alice and Bob; $g^{xy} \mod p = 7^{18} \mod 23 = 18$.

Figure: Man-in-the-middle attack

Message Integrity

- Two pairs (document/fingerprint) and (message/message digest) are similar, with some differences
- The message digest needs to be safe from change. Digest is much shorter than the message

Figure: message and digest

Hash Functions

- MD2, MD4, MD5 where MD stands for Message Digest
- Secure Hash Algorithm (SHA)

Message Integrity

- A digest can be used to check the integrity of a message
- Who is the originator of the message?
- Need to create a Message Authentication Code (MAC)
- HMAC (hashed MAC)

Fig.: Message authentication code

Digital Signature

- Uses the private and public keys of the sender
- Asymmetric-key cryptosystems are very inefficient when dealing with long messages. What is the solution? (See next slide)
- Services: Message authentication, Message Integrity, Nonrepudiation (using **trusted third party**)
- Does not provide confidential communication. If required then need to encrypt message and signature

Fig.: Process of Digital Signature

Signing the digest

Encryption and Decryption

encrypt file.txt to file.enc using 256-bit AES in CBC mode > openssl enc -aes-256-cbc -in file.txt -out file.enc

decrypt binary file.enc

>openssl enc -d -aes-256-cbc -in file.enc

see the list under the 'Cipher commands' heading

>openssl -h

Digital Signature

#Generate Public/Private key pair

- >openssl genrsa -out mykey.pem
- >openssl rsa -in mykey.pem -pubout >mypub.pem

#Create the signature

>openssl dgst -sha1 -sign mykey.pem -out mysign.sha1 file.txt

#Verify the signature

>openssl dgst -sha1 -verify mypub.pem -signature mysign.sha1 file.txt

See Next Slide: https://jumpnowtek.com/security/Code-signing-with-openssl.html

Digital Signature (Using EC Algorithm)

#Generate Private/Public key pair

>openssl genpkey -algorithm EC -pkeyopt ec_paramgen_curve:P-384 -out ec-private.pem

>openssl pkey -in ec-private.pem -pubout -out ec-public.pem

#Create the signature

>openssl dgst -sha3-512 -sign ec-private.pem -out data.sig file.txt

#Verify the signature

>openssl dgst -sha3-512 -verify ec-public.pem -signature data.sig data file.txt

Change file.txt or algorithm whether verification works or not