Lab 7: Networks

Alejandro Santillana

Computational Topics

- · Build and visualize food webs
- · Write functions to implement mathematical equations

Conservation topics

- · Paleofood webs
- Species extinction

In this lab we will practice our network visualization and manipulation skills using the paleo food web data from Yeakel et al. 2014 (https://doi.org/10.1073/pnas.1408471111).

Paleoweb

See the beautiful, animated version of the graphic above here (https://infograficos.estadao.com.br/public/cidades/extincoes-egito/)

With some interaction networks we can observe the interactions, for example plant-pollinator networks, seed-disperal networks, human social networks. In food webs sometimes feeding interactions are observed directly, through camera traps, people doing timed observations, and now molecular analysis of gut contents/scat. However, often with food webs people build probabilistic models of who interacts with who based on body size (as in the Yeakel et al. 2014), especially with paleowebs. Thus the data from Yeakel et al. is 1) an occurrence matrix

(Figure 2 from the publication) and a matrix of body sizes (two columns, females then males). We will use these data to build the foodwebs for each time period. This lab is pretty challenging because it will use many of our core programming skills (for loops, writing functions, subsetting data) and our network skills.

First we will read in the data. The matrix we are reading in has no row or column names, we will have to set them.

```
sp_occ <- read.table(file="data/egypt_data.txt", header = FALSE)
str(sp_occ)</pre>
```

```
39 obs. of 23 variables:
  'data.frame':
##
##
   $ V1: int 1111111101...
   $ V2: int 1111111101...
  $ V3: int 1111011101...
##
  $ V4: int 1111011101...
   $ V5: int 1111011101...
##
  $ V6: int 1111011101...
##
  $ V7: int 1111011101...
##
   $ V8: int 1111001101...
  $ V9: int 1111001100...
##
  $ V10: int 1 1 1 1 0 0 1 1 0 0 ...
   $ V11: int 1 1 1 1 0 0 1 1 0 0 ...
##
##
  $ V12: int 1 1 1 1 0 0 1 1 1 0 ...
  $ V13: int 1 1 1 1 0 0 1 1 1 0 ...
##
   $ V14: int 1 1 0 1 0 0 1 1 1 0 ...
##
## $ V15: int 1 1 0 1 0 0 1 1 1 0 ...
  $ V16: int 1 1 0 1 0 0 1 1 1 0 ...
##
## $ V17: int 1 1 0 1 0 0 1 1 1 0 ...
  $ V18: int 1 1 0 1 0 0 0 1 1 0 ...
##
  $ V19: int 1 1 0 1 0 0 0 1 1 0 ...
## $ V20: int 1 1 0 1 0 0 0 1 1 0 ...
  $ V21: int 1 1 0 1 0 0 0 1 0 0 ...
##
##
   $ V22: int 1 1 0 1 0 0 0 1 0 0 ...
## $ V23: int 1 1 0 1 0 0 0 0 0 0 ...
```

```
sp_mass <- read.table(file="data/egypt_mass.txt", header=FALSE)
str(sp_mass)</pre>
```

```
## 'data.frame': 39 obs. of 2 variables:
## $ V1: int 6 4 18 25 40 122 122 50 35 2200 ...
## $ V2: int 15 8 36 55 90 260 260 60 65 6300 ...
```

```
colnames(sp_mass) <- c("f","m")</pre>
```


Figure 2

The rows are arranged in the order of Figure 2 of the manuscript. To set the rownames we can make a vector of the names then use the function 'rownames'. We also have to note which species are predators (all those in the species in the Carnivora clade in figure 2). Otherwise we will create a web where giraffes are voracious predators consuming all of the other species (I made this mistake when constructing the networks originally). I have transcribed the data from figure 2 for you:

sp_mass\$Species <- rownames(sp_mass)</pre>

row_labs_sp <- c("Canis aureus", "Vulpes vulpes", "Lycaon pictus", "Hyaena hyaena", "Crocuta cro cuta", "Panthera leo (long maned)", "Panthera leo (short maned)", "Panthera pardus", "Acinonyx j ubatus", "Loxodonta africana", "Equus asinus", "Equus grevyi", "Equus quagga", "Diceros/Ceratoth erium", "Sus scrofa", "Phacochoerus aethiopicus", "Hippopotamus amphibius", "Giraffa camelopard alis", "Dama mesopotamica", "Camelus dromedarius", "Taurotragus oryx", "Tragelaphus spekei", "Ad dax nasomaculatus", "Oryx dammah", "Oryx beisa", "Hippotragus equinus", "Kobus kob", "Kobus mega ceros", "Alcelaphus bucelaphus", "Connochaetes taurinus", "Litocranius walleri", "Ammodorcas cla rkei", "Gazella dorcas", "Gazella leptoceros", "Gazella soemmerringii", "Capra ibex", "Ammotragu s lervia", "Bos primigenius", "Syncerus caffer") rownames(sp_occ) <- row_labs_sp</pre> rownames(sp_mass) <- row_labs_sp</pre> ## Set 1 for predators, 0 for prey carnivores <- c(rep(1, 9), rep(0, length(row_labs_sp)- 9))</pre> names(carnivores) <- row_labs_sp</pre> sp occ <- cbind(sp occ, carnivores)</pre> sp_mass <- cbind(sp_mass, carnivores)</pre> #sp_occ\$Species <- rownames(sp_occ)</pre>

Lab part 1: Creating our foodwebs based on body sizes.

a. Use the above vector of species names to label the row names of the species occurrence and the body size matrices. The columns of the species occurrence matrix are time points, so we can leave those as V1 etc., but we should set the column names of the mass matrix as "f", "m" (female and male). Use 'head' to check each matrix to see if the names are displayed properly.

```
head(sp_mass)
```

```
f
                                   m carnivores
                                                                  Species
                                              1
## Canis aureus
                               6 15
                                                             Canis aureus
## Vulpes vulpes
                                              1
                                                            Vulpes vulpes
## Lycaon pictus
                                                            Lycaon pictus
                              18 36
## Hyaena hyaena
                              25
                                  55
                                                            Hyaena hyaena
## Crocuta crocuta
                                                          Crocuta crocuta
                              40 90
## Panthera leo (long maned) 122 260
                                              1 Panthera leo (long maned)
```

```
head(sp_occ)
```

##	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	V13	V14	V15	
## Canis aureus	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
## Vulpes vulpes	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
## Lycaon pictus	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	
## Hyaena hyaena	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
## Crocuta crocuta	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	
## Panthera leo (long maned)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	
##	V16	5 V:	۱7 ۱	V18	V19) V2	۷ (20	V21	V22	2 V23	3 ca	rniv	ores			
## Canis aureus	1	L	1	1	1	L	1	1	1	1 :	1		1			
## Vulpes vulpes	1	L	1	1	1	L	1	1	1	1 :	1		1			
## Lycaon pictus	6	9	0	0	6	9	0	0	6	9 (9		1			
## Hyaena hyaena	1	L	1	1	1	L	1	1	1	1 :	1		1			
## Crocuta crocuta	6	9	0	0	6	9	0	0	6	9 (9		1			
<pre>## Panthera leo (long maned)</pre>	Q	9	0	0	e)	0	0	6	9 6	9		1			

Yeakel recommended an updated equation to estimate the probability a predator consumed a prey based on their relative body masses from Rohr et al. 2010. (https://doi.org/10.1086/653667). The probability of existence of a trophic link between a predator of body-size m_i and a prey of body-size m_j is given by:

$$\operatorname{logit}\left(P\left(A_{ij}=1\right)\right) = \alpha + \beta log\left(\frac{m_j}{m_i}\right) + \gamma log^2\left(\frac{m_j}{m_i}\right).$$
 (P($A_{1j}=1$)

is the probability predator i eats prey j).

a. Write a function and call it 'probEat' to implement the equation above. Round the probability to two decimal places.

Below are the values of alpha, beta, and gamma for the Serengeti. In addition, you will need a function to compute the inverse logit function because this equation is for the logit of the probability, so to calculate the 0-1 probability you will need to take the inverse logit of the other side of the equation. Also note, log^2 is equivalent to $(log(m_i/m_j))^2$

```
# Define probEat function
probEat <- function(alpha, beta, gamma, m_j, m_i) {</pre>
  log_mass_ratio <- log(m_j / m_i)</pre>
  square_log_mass_ratio <- log_mass_ratio^2</pre>
  logit_prob <- alpha + beta * log_mass_ratio + gamma * square_log_mass_ratio</pre>
  probability <- exp(logit_prob) / (1 + exp(logit_prob))</pre>
  return(probability)
}
# Constants
alpha <- 2.51
beta <- 0.79
gamma <- -0.37
# Filter predators and prey
predators <- sp mass[sp mass$carnivore == 1, ]</pre>
prey <- sp_mass[sp_mass$carnivore == 0, ]</pre>
# Initialize results as a data frame
probability_results <- data.frame(predator = character(),</pre>
                       prey = character(),
                        probability = numeric(),
                        stringsAsFactors = FALSE)
# Nested loop for probabilities
for (i in 1:nrow(predators)) {
  for (j in 1:nrow(prey)) {
    m_j <- predators$f[i]</pre>
    m_i <- prey$f[j]</pre>
    probability <- probEat(alpha, beta, gamma, m_j, m_i)</pre>
    # Append to results
    probability_results <- rbind(probability_results, data.frame(</pre>
      predator = predators$Species[i],
      prey = prey$Species[j],
      probability = probability
    ))
}
# Print results
print(probability_results)
```

##	preda	tor prey	, probability
##	•	• •	•
##	2 Canis aur	eus Equus asinus	2.846500e-03
##	3 Canis aur	eus Equus grevyi	1.090779e-03
##	4 Canis aur	eus Equus quagga	1.256377e-02
##	5 Canis aur	eus Diceros/Ceratotherium	n 6.567126e-05
##	6 Canis aur	eus Sus scrofa	5.695797e-01
##	7 Canis aur	eus Phacochoerus aethiopicus	3.580329e-01
##	8 Canis aur	eus Hippopotamus amphibius	2.478497e-04
##	9 Canis aur	eus Giraffa camelopardalis	4.104377e-04
##	10 Canis aur	eus Dama mesopotamica	8.764233e-02
##	11 Canis aur	eus Camelus dromedarius	6.527585e-04
##	12 Canis aur	eus Taurotragus oryx	(1.940340e-03
##	13 Canis aur	eus Tragelaphus spekei	4.205835e-01
##	14 Canis aur	eus Addax nasomaculatus	2.191298e-01
##	15 Canis aur	eus Oryx dammah	2.829276e-02
##	16 Canis aur	eus Oryx beisa	4.412294e-02
##	17 Canis aur	eus Hippotragus equinus	5.582491e-03
##	18 Canis aur	eus Kobus kob	2.191298e-01
##	19 Canis aur	eus Kobus megaceros	2.191298e-01
##	20 Canis aur	eus Alcelaphus bucelaphus	4.412294e-02
##	21 Canis aur	eus Connochaetes taurinus	2.534605e-02
##	22 Canis aur	eus Litocranius walleri	5.695797e-01
##	23 Canis aur	eus Ammodorcas clarkei	7.024425e-01
##	24 Canis aur	eus Gazella dorcas	8.138893e-01
##	25 Canis aur	eus Gazella leptoceros	8.284962e-01
##	26 Canis aur	eus Gazella soemmerringii	4.479836e-01
##	27 Canis aur	eus Capra ibex	3.039941e-01
##	28 Canis aur	eus Ammotragus lervia	4.205835e-01
##	29 Canis aur	1 0	
##		,	
##	·		
##	· ·	•	6.218884e-04
##	•		2.201570e-04
##	· ·		3.149058e-03
##	•		
##	•		3.580329e-01
##	•	pes Phacochoerus aethiopicus	
##	· ·		
##	·		
##	•	•	
##	· ·		
##	•		
##	•		
##	·		
##	· ·	•	7.753809e-03
##	·	·	1.279939e-02
##	•		
##	•		8.764233e-02
##	'	·	
##	· ·	•	
##	51 Vulpes vul	pes Connochaetes taurinus	6.856283e-03

12	1/24, 8	9.25 PIVI			Lab 7. Nei	WOIKS
	##	52	Vulpes	vulpes	Litocranius walleri	3.580329e-01
	##	53	Vulpes	vulpes	Ammodorcas clarkei	5.219777e-01
	##	54	Vulpes	vulpes	Gazella dorcas	6.941108e-01
	##	55	Vulpes	vulpes	Gazella leptoceros	7.190257e-01
	##	56	Vulpes	vulpes	Gazella soemmerringii	2.416239e-01
	##	57	Vulpes	vulpes	Capra ibex	1.363823e-01
	##	58	Vulpes	vulpes	Ammotragus lervia	2.191298e-01
	##	59	Vulpes	vulpes	Bos primigenius	1.980874e-06
	##	60	Vulpes	vulpes	Syncerus caffer	8.380164e-04
	##	61	Lycaon	pictus	Loxodonta africana	5.369303e-05
	##	62	Lycaon	pictus	Equus asinus	8.764233e-02
	##	63	Lycaon	pictus	Equus grevyi	4.340734e-02
	##	64	Lycaon	pictus	Equus quagga	2.313361e-01
	##	65	Lycaon	pictus	Diceros/Ceratotherium	4.771788e-03
	##	66	Lycaon	pictus	Sus scrofa	8.818325e-01
	##	67	Lycaon	pictus	Phacochoerus aethiopicus	8.138893e-01
	##	68	Lycaon	pictus	Hippopotamus amphibius	1.379781e-02
	##	69	Lycaon	pictus	Giraffa camelopardalis	2.050152e-02
	##	70	Lycaon	pictus	Dama mesopotamica	5.695797e-01
	##	71	Lycaon	pictus	Camelus dromedarius	2.936718e-02
	##	72	Lycaon	pictus	Taurotragus oryx	6.653049e-02
	##	73	Lycaon	pictus	Tragelaphus spekei	8.379782e-01
	##	74	-	pictus	Addax nasomaculatus	
	##	75	Lycaon		Oryx dammah	3.580329e-01
	##	76	Lycaon	•		4.387028e-01
	##	77	-	pictus	Hippotragus equinus	
	##	78	Lycaon			7.354647e-01
	##	79	-	pictus	Kobus megaceros	
	##	80	-	pictus	Alcelaphus bucelaphus	
	##	81	-	pictus	Connochaetes taurinus	
	##	82	Lycaon	pictus	Litocranius walleri	8.818325e-01
	##	83	Lycaon	•	Ammodorcas clarkei	9.118609e-01
	##	84	-	pictus	Gazella dorcas	9.334997e-01
	##	85		pictus		
	##	86	-	pictus	Gazella soemmerringii	
	##	87	_	pictus	-	7.886322e-01
	##	88	•	pictus	Ammotragus lervia	
	##	89	-	pictus	Bos primigenius	
	##		-	pictus	Syncerus caffer	
	##	91	-	hyaena	Loxodonta africana	
	##	92	_	hyaena		1.877236e-01
	##	93	•	hyaena	·	1.041663e-01
	##	94	Hyaena	-		3.945327e-01
	##	95	-	hyaena	Diceros/Ceratotherium	
	##	96	Hyaena	-		9.132252e-01
	##	_	-	-	Phacochoerus aethiopicus	
	##			hyaena	Hippopotamus amphibius	
	##		-	hyaena		
		100	-	hyaena	Dama mesopotamica	
		101	-	hyaena	Camelus dromedarius	
		102	-	hyaena	Taurotragus oryx	
		103	-	hyaena	Tragelaphus spekei	
			, aciia	, aciia	aBctabilas speker	J. 555-55C 0I

_	1/24, \$	9.25 PIV	I	Lab 7. Nei	WOIKS
	##	104	Hyaena hyaena	Addax nasomaculatus	8.227068e-01
	##	105	Hyaena hyaena	Oryx dammah	5.313305e-01
	##	106	Hyaena hyaena	Oryx beisa	6.049412e-01
	##	107	Hyaena hyaena	Hippotragus equinus	2.708034e-01
	##	108	Hyaena hyaena	Kobus kob	8.227068e-01
	##	109	Hyaena hyaena	Kobus megaceros	8.227068e-01
	##	110	Hyaena hyaena	Alcelaphus bucelaphus	6.049412e-01
	##	111	Hyaena hyaena	Connochaetes taurinus	5.127178e-01
	##	112	Hyaena hyaena	Litocranius walleri	9.132252e-01
	##	113	Hyaena hyaena	Ammodorcas clarkei	9.311790e-01
	##	114	Hyaena hyaena	Gazella dorcas	9.435878e-01
	##	115	Hyaena hyaena	Gazella leptoceros	9.449904e-01
	##	116	Hyaena hyaena	Gazella soemmerringii	8.922902e-01
	##	117	Hyaena hyaena	Capra ibex	8.562696e-01
	##	118	Hyaena hyaena	Ammotragus lervia	8.866493e-01
	##	119	Hyaena hyaena	Bos primigenius	4.324553e-03
	##	120	Hyaena hyaena	Syncerus caffer	2.191298e-01
	##	121	Crocuta crocuta	Loxodonta africana	1.361890e-03
	##	122	Crocuta crocuta	Equus asinus	4.139429e-01
	##	123	Crocuta crocuta	Equus grevyi	2.800273e-01
	##	124	Crocuta crocuta	Equus quagga	6.313617e-01
	##	125	Crocuta crocuta	Diceros/Ceratotherium	5.829090e-02
	##	126	Crocuta crocuta	Sus scrofa	9.374177e-01
	##	127	Crocuta crocuta	Phacochoerus aethiopicus	9.177241e-01
	##	128	Crocuta crocuta	Hippopotamus amphibius	1.302818e-01
	##	129	Crocuta crocuta	Giraffa camelopardalis	1.722708e-01
	##	130	Crocuta crocuta	Dama mesopotamica	8.356278e-01
	##	131	Crocuta crocuta	Camelus dromedarius	2.191298e-01
	##	132	Crocuta crocuta	Taurotragus oryx	3.580329e-01
	##	133	Crocuta crocuta	Tragelaphus spekei	9.248399e-01
	##	134	Crocuta crocuta	Addax nasomaculatus	8.936762e-01
	##	135	Crocuta crocuta	Oryx dammah	7.313709e-01
	##	136	Crocuta crocuta	Oryx beisa	7.772035e-01
	##	137	Crocuta crocuta	Hippotragus equinus	5.150239e-01
	##	138	Crocuta crocuta	Kobus kob	8.936762e-01
	##	139	Crocuta crocuta	Kobus megaceros	8.936762e-01
	##	140	Crocuta crocuta	Alcelaphus bucelaphus	7.772035e-01
	##	141	Crocuta crocuta	Connochaetes taurinus	7.190257e-01
	##	142	Crocuta crocuta	Litocranius walleri	9.374177e-01
	##	143	Crocuta crocuta	Ammodorcas clarkei	9.453213e-01
	##	144	Crocuta crocuta	Gazella dorcas	9.492570e-01
	##	145	Crocuta crocuta	Gazella leptoceros	9.493853e-01
	##	146	Crocuta crocuta	Gazella soemmerringii	9.275432e-01
	##	147	Crocuta crocuta	Capra ibex	9.101357e-01
	##	148	Crocuta crocuta	Ammotragus lervia	9.248399e-01
	##	149	Crocuta crocuta	Bos primigenius	2.050152e-02
	##	150	Crocuta crocuta	Syncerus caffer	4.550391e-01
	##	151	Panthera leo (long maned)	Loxodonta africana	5.366696e-02
	##	152	Panthera leo (long maned)	Equus asinus	8.387459e-01
	##	153	Panthera leo (long maned)	Equus grevyi	7.801326e-01
	##	154	Panthera leo (long maned)	Equus quagga	8.981503e-01
	##	155	Panthera leo (long maned)	Diceros/Ceratotherium	5.001258e-01

_		J.20 I	IVI				Eas 7.140	WOINS
	##	156	Panthera	leo	(long	maned)	Sus scrofa	9.473550e-01
	##	157	Panthera	leo	(long	maned)	Phacochoerus aethiopicus	9.493032e-01
	##	158	Panthera	leo	(long	maned)	Hippopotamus amphibius	6.508930e-01
	##	159	Panthera	leo	(long	maned)	Giraffa camelopardalis	7.002593e-01
	##	160	Panthera	leo	(long	maned)	Dama mesopotamica	9.379692e-01
	##	161	Panthera	leo	(long	maned)	Camelus dromedarius	7.408155e-01
	##	162	Panthera	leo	(long	maned)	Taurotragus oryx	8.175219e-01
	##	163	Panthera	leo	(long	maned)	Tragelaphus spekei	9.493506e-01
	##	164	Panthera	leo	(long	maned)	Addax nasomaculatus	9.470647e-01
	##	165	Panthera	leo	(long	maned)	Oryx dammah	9.188047e-01
	##	166	Panthera	leo	(long	maned)	Oryx beisa	9.274995e-01
	##	167	Panthera	leo	(long	maned)	Hippotragus equinus	8.697679e-01
	##	168	Panthera	leo	(long	maned)	Kobus kob	9.470647e-01
	##	169	Panthera	leo	(long	maned)	Kobus megaceros	9.470647e-01
	##	170	Panthera	leo	(long	maned)	Alcelaphus bucelaphus	9.274995e-01
	##	171	Panthera	leo	(long	maned)	Connochaetes taurinus	9.163894e-01
	##	172	Panthera	leo	(long	maned)	Litocranius walleri	9.473550e-01
	##	173	Panthera	leo	(long	maned)	Ammodorcas clarkei	9.414513e-01
	##	174	Panthera	leo	(long	maned)	Gazella dorcas	9.269240e-01
	##	175	Panthera	leo	(long	maned)	Gazella leptoceros	9.231621e-01
	##	176	Panthera	leo	(long	maned)	Gazella soemmerringii	9.492168e-01
	##	177	Panthera	leo	(long	maned)	Capra ibex	9.488401e-01
	##	178	Panthera	leo	(long	maned)	Ammotragus lervia	9.493506e-01
	##	179	Panthera	leo	(long	maned)	Bos primigenius	3.122850e-01
	##	180	Panthera	leo	(long	maned)	Syncerus caffer	8.523026e-01
	##	181	Panthera	leo	(short	maned)	Loxodonta africana	5.366696e-02
	##	182	Panthera	leo	(short	maned)	Equus asinus	8.387459e-01
	##	183	Panthera	leo	(short	maned)	Equus grevyi	7.801326e-01
	##	184	Panthera	leo	(short	maned)	Equus quagga	8.981503e-01
	##	185	Panthera	leo	(short	maned)	Diceros/Ceratotherium	5.001258e-01
	##	186	Panthera	leo	(short	maned)	Sus scrofa	9.473550e-01
	##	187	Panthera	leo	(short	maned)	Phacochoerus aethiopicus	9.493032e-01
	##	188	Panthera	leo	(short	maned)	Hippopotamus amphibius	6.508930e-01
	##	189	Panthera	leo	(short	maned)	Giraffa camelopardalis	7.002593e-01
	##	190	Panthera	leo	(short	maned)	Dama mesopotamica	9.379692e-01
			Panthera		-	•	Camelus dromedarius	7.408155e-01
	##	192	Panthera	leo	(short	maned)	Taurotragus oryx	8.175219e-01
	##	193	Panthera	leo	(short	maned)	Tragelaphus spekei	9.493506e-01
			Panthera		•	•	Addax nasomaculatus	
			Panthera		•	•	Oryx dammah	9.188047e-01
			Panthera		•	•	-	9.274995e-01
			Panthera				Hippotragus equinus	
			Panthera		•	•		9.470647e-01
			Panthera				Kobus megaceros	
			Panthera		•	•	Alcelaphus bucelaphus	
			Panthera				Connochaetes taurinus	
			Panthera		•	•	Litocranius walleri	
			Panthera				Ammodorcas clarkei	
			Panthera		•	•	Gazella dorcas	9.269240e-01
	##	205	Panthera	leo	(short	maned)	Gazella leptoceros	9.231621e-01
			Panthera				Gazella soemmerringii	9.492168e-01
	##	207	Panthera	leo	(short	maned)	Capra ibex	9.488401e-01

21/24,	9.25 PIVI					Lab 7. Net	WOIKS
##	208 P	anthera	leo	(short	maned)	Ammotragus lervia	9.493506e-01
##	209 P	anthera	leo	(short	maned)	Bos primigenius	3.122850e-01
##	210 P	anthera	leo	(short	maned)	Syncerus caffer	8.523026e-01
##	211		Pa	anthera	pardus	Loxodonta africana	3.085524e-03
##	212		Pa	anthera	pardus	Equus asinus	5.313305e-01
##	213		Pa	anthera	pardus	Equus grevyi	3.945327e-01
##	214		Pa	anthera	pardus	Equus quagga	7.190257e-01
##	215		Pa	anthera	pardus	Diceros/Ceratotherium	1.041663e-01
##	216		Pa	anthera	pardus	Sus scrofa	9.435878e-01
##	217		Pa	nthera	pardus	Phacochoerus aethiopicus	9.301586e-01
##	218		Pa	nthera	pardus	Hippopotamus amphibius	2.107724e-01
##	219			anthera	•	Giraffa camelopardalis	
	220			nthera	•	Dama mesopotamica	
##	221			anthera	•	Camelus dromedarius	
	222			anthera	•	Taurotragus oryx	
	223			anthera	•	Tragelaphus spekei	
	224			anthera	•	Addax nasomaculatus	
	225			anthera	•	•	7.958097e-01
##	226			anthera	•	· · · · · · · · · · · · · · · · · · ·	8.296452e-01
	227			anthera	•	Hippotragus equinus	
	228			anthera	•		9.132252e-01
	229			anthera	-	Kobus megaceros	
	230			anthera	•	Alcelaphus bucelaphus	
	231			anthera	•	Connochaetes taurinus	
	232			nthera	-	Litocranius walleri	
	233			anthera	•	Ammodorcas clarkei	
	234			nthera	•	Gazella dorcas	
	235			anthera	•	Gazella leptoceros	
	236			nthera	•	Gazella soemmerringii	
	237			nthera	•		9.248399e-01
	238			nthera	•	Ammotragus lervia	
	239			nthera		Bos primigenius	
	240			anthera	•	Syncerus caffer	
	241			Inonyx 7		Loxodonta africana	
	242			Inonyx 5			3.433357e-01
	243			inonyx 5			2.191298e-01
	244			Inonyx 5		Diceros/Ceratotherium	5.695797e-01
	245 246			inonyx		·	9.323264e-01
	247			inonyx :		Phacochoerus aethiopicus	
	247			inonyx		Hippopotamus amphibius	
	249			inonyx j		Giraffa camelopardalis	
	250			inonyx		Dama mesopotamica	
	251			inonyx		Camelus dromedarius	
	252			inonyx		Taurotragus oryx	
	253			inonyx		Tragelaphus spekei	
	254			inonyx		Addax nasomaculatus	
	255			inonyx :			6.833708e-01
	256			inonyx :			7.373322e-01
	257			inonyx		Hippotragus equinus	
	258			inonyx :			8.783291e-01
	259			inonyx		Kobus megaceros	
""					,	Moods megaceros	

```
## 260
                                      Alcelaphus bucelaphus 7.373322e-01
                 Acinonyx jubatus
                                      Connochaetes taurinus 6.690202e-01
## 261
                 Acinonyx jubatus
                 Acinonyx jubatus
## 262
                                        Litocranius walleri 9.323264e-01
                                         Ammodorcas clarkei 9.425155e-01
## 263
                 Acinonyx jubatus
## 264
                 Acinonyx jubatus
                                             Gazella dorcas 9.485214e-01
                 Acinonyx jubatus
                                         Gazella leptoceros 9.489825e-01
## 265
## 266
                 Acinonyx jubatus
                                      Gazella soemmerringii 9.200134e-01
## 267
                 Acinonyx jubatus
                                                 Capra ibex 8.985445e-01
## 268
                 Acinonyx jubatus
                                          Ammotragus lervia 9.166680e-01
## 269
                 Acinonyx jubatus
                                            Bos primigenius 1.343062e-02
## 270
                 Acinonyx jubatus
                                            Syncerus caffer 3.837879e-01
```

c. Now create networks of who eats whom. We will start with adjacency matrices. We will assume all of our species are the size of females. For this step, don't worry about predators vs. prey yet, just calculate all of the feeding probabilities based on body sizes.

Hint: if you start with a square matrix of all zeros (one row and one column for each species), you can use a for loop to fill in that matrix with probabilities calculated from your function above.

```
#Empty matrix
species_list <- sp_mass$Species</pre>
num_species <- length(species_list)</pre>
feeding_matrix <- matrix(0, nrow = num_species, ncol = num_species, dimnames = list(species_lis</pre>
t, species_list))
# Fill in the matrix with feeding probabilities based on body sizes
for (i in 1:num_species) {
  for (j in 1:num_species) {
    if (i != j) { # Ensure we're not calculating a species eating itself
      m j <- sp mass$f[i]</pre>
      m_i <- sp_mass$f[j]</pre>
      probability <- probEat(alpha, beta, gamma, m_j, m_i)</pre>
      feeding_matrix[i, j] <- probability
    }
  }
}
```

d. Now that you have your matrix of potential feeding interactions based on body size, use the 'carnivores' vector created above to set all of the feeding interactions of herbivores (0s in that vector) to zero. In food webs the columns are the higher trophic level and the rows are the lower. HINT: the function 'sweep' may be useful, though there are many approaches to do the needed matrix multiplication. Print the row and column sums.

```
# Now use the carnivores vector to zero out interactions involving herbivores
feeding_matrix <- sweep(feeding_matrix, 2, carnivores, "*") # Zero out columns of herbivores

# Print the row and column sums
row_sums <- rowSums(feeding_matrix)
col_sums <- colSums(feeding_matrix)

# Print the sums to see feeding interactions
print("Row sums (predator feeding counts):") #number of species each predator feeds on</pre>
```

```
## [1] "Row sums (predator feeding counts):"
```

How likely a predator (species i) is to feed on any of the prey species (species j), summed ac ross all prey species.
print(row_sums)

```
##
                 Canis aureus
                                             Vulpes vulpes
##
                      3.653397
                                                   2.624839
##
                 Lycaon pictus
                                             Hyaena hyaena
##
                      6.107261
                                                   6.629648
##
              Crocuta crocuta
                                Panthera leo (long maned)
                      7.108173
                                                   7.182140
##
   Panthera leo (short maned)
##
                                           Panthera pardus
                      7.182140
                                                   7.230153
##
             Acinonyx jubatus
                                        Loxodonta africana
##
                      7.004501
                                                   3.340770
##
##
                  Equus asinus
                                              Equus grevyi
##
                      7.350024
                                                   6.991301
##
                 Equus quagga
                                     Diceros/Ceratotherium
##
                      7.845624
                                                   5.931349
##
                    Sus scrofa
                                  Phacochoerus aethiopicus
##
                      7.778380
                                                   8.104993
       Hippopotamus amphibius
                                    Giraffa camelopardalis
##
                      6.436817
                                                   6.624679
##
##
            Dama mesopotamica
                                       Camelus dromedarius
##
                      8.215087
                                                   6.798155
##
             Taurotragus oryx
                                        Tragelaphus spekei
                                                   8.033013
##
                      7.207914
##
          Addax nasomaculatus
                                               Oryx dammah
                      8.211863
                                                   8.048611
##
                    Oryx beisa
##
                                       Hippotragus equinus
                      8.131776
                                                   7.589451
##
##
                     Kobus kob
                                           Kobus megaceros
##
                      8.211863
                                                   8.211863
                                     Connochaetes taurinus
##
        Alcelaphus bucelaphus
                      8.131776
##
                                                   8.024807
##
          Litocranius walleri
                                        Ammodorcas clarkei
                      7.778380
                                                   7.368397
##
                Gazella dorcas
                                        Gazella leptoceros
##
##
                      6.687505
                                                   6.549228
##
        Gazella soemmerringii
                                                Capra ibex
                      7.996055
                                                   8.154993
##
            Ammotragus lervia
                                           Bos primigenius
##
##
                      8.033013
                                                   5.260322
##
              Syncerus caffer
##
                      7.449649
```

print("Column sums (prey being fed upon counts):") #number of predators feeding on each prey spe
cies

```
## [1] "Column sums (prey being fed upon counts):"
```

The total feeding probability for that species as prey (across all predators).
print(col_sums)

124, 9.23	- · · · · ·	Lab 7. I	
##	Canis aureus	Vulpes vulpes	
##	27.83918	24.97777	
##	Lycaon pictus	Hyaena hyaena	
##	32.65088	33.08111	
##	Crocuta crocuta	Panthera leo (long maned)	
##	32.96384	29.00279	
## Pa	anthera leo (short maned)	Panthera pardus	
##	29.00279	32.62155	
##	Acinonyx jubatus	Loxodonta africana	
##	33.08000	0.00000	
##	Equus asinus	Equus grevyi	
##	0.00000	0.00000	
##	Equus quagga	Diceros/Ceratotherium	
##	0.00000	0.00000	
##	Sus scrofa	Phacochoerus aethiopicus	
##	0.00000	0.00000	
##	Hippopotamus amphibius	Giraffa camelopardalis	
##	0.00000	0.00000	
##	Dama mesopotamica	Camelus dromedarius	
##	0.00000	0.00000	
##	Taurotragus oryx	Tragelaphus spekei	
##	0.00000	0.00000	
##	Addax nasomaculatus	Oryx dammah	
##	0.00000	0.00000	
##	Oryx beisa	Hippotragus equinus	
##	0.00000	0.00000	
##	Kobus kob	Kobus megaceros	
##	0.00000	0.00000	
##	Alcelaphus bucelaphus	Connochaetes taurinus	
##	0.00000	0.00000	
##	Litocranius walleri	Ammodorcas clarkei	
##	0.00000	0.00000	
##	Gazella dorcas	Gazella leptoceros	
##	0.00000	0.00000	
##	Gazella soemmerringii	Capra ibex	
##	0.00000	0.00000	
##	Ammotragus lervia	Bos primigenius	
##	0.00000	0.00000	
##	Syncerus caffer		
##	0.00000		

Lab part 2: Breaking the networks into time periods

a. With our matrix of feeding interaction we can create a web for each time period, including only the species that were not extinct in the period. Try first just using the second time period (the second column of 'sp occ').

Use the function 'empty' from the bipartite package to empty the matrix of rows and columns with no interactions. The number of species in the second time period is 36 'sum(sp_occ[,2])'. Check to see that the number of rows in your network with probabilities > 0 is 36.

HINT: You will need to zero out the rows where a species in not present in that time period and the columns. The function 'sweep' may be useful again.

```
# Extract the presence vector for the second time period
presence <- sp_occ[, 2] # Second column of species occurrence matrix

# Zero out rows and columns of extinct species in the feeding matrix
filtered_matrix <- sweep(feeding_matrix, 1, presence, "*") # Zero out rows
filtered_matrix <- sweep(filtered_matrix, 2, presence, "*") # Zero out columns

active_species <- rowSums(filtered_matrix) > 0 # Rows with interaction probabilities > 0
print(paste("Number of species in the second time period:", sum(active_species))) # Should be 3
6
```

```
## [1] "Number of species in the second time period: 36"
```

```
#cleaned_matrix <- empty(filtered_matrix)
print(nrow(filtered_matrix))</pre>
```

```
## [1] 39
```

```
print(sum(sp_occ[,2]))
```

```
## [1] 36
```

b. Now create a network for all of the time points by creating a list where each element is a network. You will need to use a for loop, or an 'lapply' if you feel like experimenting with apply functions. Print the first 5 columns and rows of the 5th time period.

HINT: If choosing the for loop route, remember to create an empty list of a specific length use the function 'vector'. To access a specific element of a list, use [[]], for example cool_list[[1]] accesses the first element of the list.

```
num_time_periods <- ncol(sp_occ)</pre>
time_period_networks <- vector("list", length = num_time_periods)</pre>
# Loop through each time period and create a filtered network
for (i in 1:num_time_periods) {
  # Extract the presence vector for the current time period
  presence <- sp_occ[, i]</pre>
  # Zero out rows and columns for extinct species
  filtered matrix <- sweep(feeding_matrix, 1, presence, "*") # Zero out rows
  filtered_matrix <- sweep(filtered_matrix, 2, presence, "*") # Zero out columns
  # Clean the matrix to remove empty rows and columns
  time_period_networks[[i]] <- filtered_matrix</pre>
}
# Extract the matrix for the 5th time period
matrix_time_5 <- time_period_networks[[5]]</pre>
# Print the first 5 rows and columns
print(matrix time 5[1:5, 1:5])
```

```
##
                   Canis aureus Vulpes vulpes Lycaon pictus Hyaena hyaena
## Canis aureus
                      0.0000000
                                    0.9410046
                                                   0.7677278
                                                                 0.6522657
## Vulpes vulpes
                      0.8936762
                                    0.0000000
                                                   0.6188681
                                                                 0.4550391
## Lycaon pictus
                      0.9493738
                                    0.9458942
                                                   0.0000000
                                                                 0.9011932
## Hyaena hyaena
                      0.9470427
                                    0.9379146
                                                   0.9387502
                                                                 0.0000000
## Crocuta crocuta
                      0.0000000
                                    0.0000000
                                                   0.0000000
                                                                 0.0000000
##
                   Crocuta crocuta
## Canis aureus
## Vulpes vulpes
## Lycaon pictus
## Hyaena hyaena
## Crocuta crocuta
```

Lab part 3: Visualize the networks

a. Convert the adjacency matrices to igraph class objects using the function 'graph_from_adjacency_matrix'. You can use a for loop or an lapply. Because these are food webs, set the argument mode to "directed" and the argument diag to FALSE (this means a species cannot consumer members of its own species, i.e., no canabalism/self-loops). Also remember that these interactions are weighted.

```
# Convert adjacency matrices to igraph objects
igraph_networks <- lapply(time_period_networks, function(matrix) {
   graph_from_adjacency_matrix(
    matrix,
   mode = "directed",
   weighted = TRUE,
   diag = FALSE
  )
})</pre>
```

b. Plot three networks of your choice, using different colors for the predators and prey.

```
# Define colors based on carnivore status
node_colors <- ifelse(carnivores == 1, "red", "green") # Red for predators, green for prey</pre>
groups <- ifelse(carnivores == 1, "Predator", "Prey")</pre>
# Choose three networks to plot
graph_time_5 <- igraph_networks[[5]]</pre>
graph_time_10 <- igraph_networks[[10]]</pre>
graph_time_20 <- igraph_networks[[20]]</pre>
# Convert igraph objects to networkD3 objects with group information
network_time_5 <- igraph_to_networkD3(graph_time_5, group = groups)</pre>
network_time_10 <- igraph_to_networkD3(graph_time_10, group= groups)</pre>
network_time_20 <- igraph_to_networkD3(graph_time_20, group = groups)</pre>
plot(
  graph_time_5,
  vertex.label = V(graph_time_5)$name, # Add species names as Labels
  edge.width = E(graph_time_5)$weight * 5, # Scale edge width by feeding probability
  vertex.size = 10, # Uniform vertex size
  edge.arrow.size = 0.5, # Smaller arrow size
  layout = layout_in_circle # Choose a circular layout
)
```

```
Equipolitica Panifera pardus
Diceros (Capatotheriumanthera leo Chort maned)
             Sus scrofa
                                Panthera lectiong maned)
   Phacochoer aethiopicus
                                        Crocutacrocuta
 Hippopotanus amphibius
                                          Hyaenahyaena
Giraffa camelopardalis
                                            Lycaonpictus
Dama mesopotamica
                                             Vulpes vulpes
Camelus domedarius
                                              Canisaureus
  Taurotragus oryx
                                            Syncerus caffer
 Tragelaphus spekei
                                          Bos primigenius
 Addax na maculatus
                                        Ammotr@us lervia
      Oryx Jammah
                                          Capraibex
          Oryx beisa
                                  Gazella sommerringii
        Hippotragus equinus
                                  Gazella Ceptoceros
```

```
# Plot with forceNetwork
forceNetwork(
  Links = network_time_5$links,
  Nodes = network_time_5$nodes,
  Source = "source",
  Target = "target",
  Value = "value",
  NodeID = "name",
  Group = "group",
  opacity = 0.8,
  zoom=TRUE,
  opacityNoHover = 0.9
)
```


Crocuta crocuta

```
Ammodoreas elarkei
Dama mesopotamica
Kobus kob
Diceres/Ceratotherium
officiologianei
Gazella soemmerringii
Bos primigenius
Oryx beiss
Oryx beiss
```

```
plot(
   graph_time_10,
   vertex.label = V(graph_time_10)$name, # Add species names as labels
   edge.width = E(graph_time_10)$weight * 5, # Scale edge width by feeding probability
   vertex.size = 10, # Uniform vertex size
   edge.arrow.size = 0.5, # Smaller arrow size
   layout = layout_in_circle # Choose a circular layout
)
```

```
therupanthera leo (hort maned)
                             Panthera leo long maned)
  Phacochoer aethiopicus
                                    Crocuta
Hippopotanus amphibius
                                      Hyaena hyaena
Giraffa camelopardalis
                                       Lycaonpictus
Dama mesopotamica
                                        Vulpes
Camelus domedarius
                                        Canisaureus
 Taurotragus oryx
                                       Syncerus caffer
 Tragelaphus spekei
                                      Bos primigenius
 Addax na maculatus
                                    Ammotr@us lervia
      Oryx Jammah
                                      Captaibex
         Oryx beisa
                               Gazella soenmerringii
       Hippotragus equinus
                              Gazella eptoceros
```

```
# Plot with forceNetwork
forceNetwork(
  Links = network_time_10$links,
  Nodes = network_time_10$nodes,
  Source = "source",
  Target = "target",
  Value = "value",
  NodeID = "name",
  Group = "group",
  opacity = 0.8,
  zoom=TRUE,
  opacityNoHover = 0.9
)
```

)


```
herrumanthera leo (hort maned)
                              Panthera leo long maned)
  Phacochoer aethiopicus
                                     Crocutacrocuta
 Hippopotanus amphibius
                                       Hyaena hyaena
Giraffa camlopardalis
                                         Lycaon pictus
Dama mesopotamica
                                          Vulpesvulpes
Camelus domedarius
                                          Canisaureus
 Taurotragus oryx
                                         Syncerus caffer
 Tragelaphus spekei
                                        Bos primigenius
 Addax na maculatus
                                      Ammotrous lervia
      Oryx Jammah
                                        Capta ibex
         Oryx eisa
                                Gazella sommerringii
       Hippotragus equinus
                               Gazella Cptoceros
```

```
# Plot with forceNetwork
forceNetwork(
  Links = network_time_20$links,
  Nodes = network_time_20$nodes,
  Source = "source",
  Target = "target",
  Value = "value",
  NodeID = "name",
  Group = "group",
  opacity = 0.8,
  zoom=TRUE,
  opacityNoHover = 0.9
)
```


Lab 7: Networks