Frage 1: Die Ebene $E = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : 6x - 2y - 7z = 5$ und die Gerade $g = \begin{pmatrix} -3 \\ 1 \\ 2 \end{pmatrix} + t \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} : t \in \mathbb{R} \text{ schneiden sich in genau einem Punkt } P = \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$ Wo genau?

$$P = \begin{pmatrix} -42\\1\\-37 \end{pmatrix}$$

Frage 2: Gegeben seien die Ebenen $E_1 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + r \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix} + s \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} : r, s \in \mathbb{R} \text{ und } E_2 = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : 6x - 2y - 7z = 5$. In welcher Lagebeziehung stehen die beiden Ebenen zueinander?

 E_1 und E_2 sind parallel ohne gemeinsame Punkte

Frage 3: Gegeben seien die Geraden $g_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + s \begin{pmatrix} -3 \\ 2 \end{pmatrix} : s \in \mathbb{R}$ und $g_2 = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 : 2x + 3y = 8$. In welcher Lagebeziehung stehen die beiden Geraden zueinander?

 g_1 und g_2 sind identisch

Frage 4: Wie darf $\alpha \in \mathbb{R}$ nicht gewählt werden, damit die Menge

$$\begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} + r \begin{pmatrix} -2 \\ 3 \\ 1 \end{pmatrix} + s \begin{pmatrix} 4 \\ \alpha \\ -2 \end{pmatrix} : r, s \in \mathbb{R} \text{ eine Ebene beschreibt?}$$

$$\alpha = -6$$

Frage 5: Der Vektor $\begin{pmatrix} 0 \\ 3 \\ -3 \end{pmatrix}$ ist eine Linearkombination der Vektoren $\begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$ und $\begin{pmatrix} -1 \\ 2 \\ -3 \end{pmatrix}$.

Wahr

Frage 6: Der Vektor $\begin{pmatrix} 1\\1\\2 \end{pmatrix}$ ist eine Linearkombination der Vektoren $\begin{pmatrix} 1\\0\\1 \end{pmatrix}$ und $\begin{pmatrix} 1\\1\\0 \end{pmatrix}$.

Falsch

Frage 7: Ist die Vektormenge $\begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ im \mathbb{R}^3 linear unabhänig?

nein

Frage 8: Ist die Vektormenge $\begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $\begin{pmatrix} 9 \\ -6 \\ -1 \end{pmatrix}$ im \mathbb{R}^3 linear unabhänig?

nein