Decision Tree and Random Forest Project

Minghao Liu

Get the Data

Call the ISLR library and check the head of College (a built-in data frame with ISLR, use data() to check this.) Then reassign College to a dataframe called df

```
library(ISLR)
df <- College
head(df)</pre>
```

##		Private	Apps	Accept	Enroll	Top10	perc To	р25ре	erc
##	Abilene Christian University	Yes	1660	1232	721		23		52
##	Adelphi University	Yes	2186	1924	512		16		29
##	Adrian College	Yes	1428	1097	336		22		50
##	Agnes Scott College	Yes	417	349	137		60		89
##	Alaska Pacific University	Yes	193	146	55		16		44
##	Albertson College	Yes	587	479	158		38		62
##		F.Underg	grad I	P.Under	grad Ou	tstate	Room.H	Board	Books
##	Abilene Christian University	2	2885		537	7440		3300	450
##	Adelphi University	2	2683	:	1227	12280		6450	750
##	Adrian College	1	.036		99	11250		3750	400
##	Agnes Scott College		510		63	12960		5450	450
##	Alaska Pacific University		249		869	7560		4120	800
##	Albertson College		678		41	13500		3335	500
##		Personal	PhD	Termina	al S.F.	Ratio	perc.al	Lumni	Expend
##	Abilene Christian University	2200	70	•	78	18.1		12	7041
##	Adelphi University	1500	29	3	30	12.2		16	10527
##	Adrian College	1165	53	(36	12.9		30	8735
##	Agnes Scott College	875	92	(97	7.7		37	19016
##	Alaska Pacific University	1500	76	•	72	11.9		2	10922
##	Albertson College	675	67	•	73	9.4		11	9727
##		Grad.Rat	e						
##	Abilene Christian University	6	0						
##	Adelphi University	5	6						
	Adrian College	5	54						
	Agnes Scott College	5	59						
##	Alaska Pacific University	1	.5						
##	Albertson College	5	55						

EDA

Create a scatterplot of Grad.Rate versus Room.Board, colored by the Private column.

```
library(ggplot2)
ggplot(data = df, aes(x = Room.Board, y = Grad.Rate)) + geom_point(aes(color = Private))
```


Create a histogram of full time undergrad students, color by Private.

```
ggplot(data = df, aes(x = F.Undergrad)) + geom_histogram(color = 'black', aes(fill = Private))
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

Create a histogram of Grad.Rate colored by Private. You should see something odd here.

```
ggplot(data = df, aes(x = Grad.Rate)) + geom_histogram(color = 'black', aes(fill = Private), bins = 50)
```


What college had a Graduation Rate of above 100%? Change that college's grad rate to 100%

library(dplyr)

Cazenovia College

```
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
filter(df,df[,'Grad.Rate'] > 100)
                     Private Apps Accept Enroll Top10perc Top25perc F.Undergrad
##
                                                                  35
## Cazenovia College
                         Yes 3847
                                    3433
                                             527
##
                     P.Undergrad Outstate Room.Board Books Personal PhD Terminal
                                      9384
                                                        600
                                                                 500
                                                                     22
## Cazenovia College
                              12
                                                 4840
                     S.F.Ratio perc.alumni Expend Grad.Rate
```

7697

118

14.3

```
subset(df, Grad.Rate > 100)
                      Private Apps Accept Enroll Top10perc Top25perc F.Undergrad
##
## Cazenovia College
                          Yes 3847
                                     3433
                                              527
                      P.Undergrad Outstate Room.Board Books Personal PhD Terminal
##
## Cazenovia College
                               12
                                      9384
                                                  4840
                                                         600
                                                                   500 22
##
                      S.F.Ratio perc.alumni Expend Grad.Rate
## Cazenovia College
                           14.3
                                               7697
                                                           118
df[row.names(filter(df,df[,'Grad.Rate'] > 100)),'Grad.Rate'] <- 100</pre>
```

Train Test Split

Split your data into training and testing sets 70/30. Use the caTools library to do this.

```
library(caTools)
set.seed(101)

sample <- sample.split(df, SplitRatio = 0.7)
train <- subset(df, sample == TRUE)
test <- subset(df, sample == FALSE)</pre>
```

Decision Tree

Use the rpart library to build a decision tree to predict whether or not a school is Private. Remember to only build your tree off the training data.

```
library(rpart)

tree <- rpart(Private ~ ., data = train)</pre>
```

Use predict() to predict the Private label on the test data.

Check the Head of the predicted values. You should notice that you actually have two columns with the probabilities.

```
tree.preds <- predict(tree, test)
head(tree.preds)</pre>
```

Turn these two columns into one column to match the original Yes/No Label for a Private column.

```
typeof(tree.preds)
```

```
## [1] "double"
```

```
tree.preds <- as.data.frame(tree.preds)

classifer <- function(x){
   if (x >= 0.5){
      return('Yes')
   }
   else{
      return('No')
   }
}

tree.preds$Private <- sapply(tree.preds$Yes, classifer)

head(tree.preds)</pre>
```

```
Yes Private
##
                                                   No
## Adrian College
                                           0.01212121 0.9878788
                                                                    Yes
## Alfred University
                                           0.01212121 0.9878788
                                                                    Yes
                                           0.01212121 0.9878788
## Allegheny College
                                                                    Yes
## Allentown Coll. of St. Francis de Sales 0.01212121 0.9878788
                                                                    Yes
## Alma College
                                           0.01212121 0.9878788
                                                                    Yes
## Amherst College
                                           0.01212121 0.9878788
                                                                    Yes
```

Now use table() to create a confusion matrix of your tree model.

```
table(test$Private, tree.preds$Private)
```

```
## No Yes
## No 53 14
## Yes 6 186
```

Use the rpart.plot library and the prp() function to plot out your tree model.

```
library(rpart.plot)
prp(tree)
```


Random Forest

Now use randomForest() to build out a model to predict Private class. Add importance=TRUE as a parameter in the model. (Use help(randomForest) to find out what this does.

library(randomForest)

```
## randomForest 4.6-14

## Type rfNews() to see new features/changes/bug fixes.

##
## Attaching package: 'randomForest'

## The following object is masked from 'package:dplyr':
##
## combine

## The following object is masked from 'package:ggplot2':
##
## margin
```

```
rf.model <- randomForest(Private ~ ., data = train, importance = T)</pre>
```

What was your model's confusion matrix on its own training set?

rf.model\$confusion

```
## No Yes class.error
## No 133 12 0.08275862
## Yes 9 364 0.02412869
```

Grab the feature importance.

rf.model\$importance

##		No	Yes	MeanDecreaseAccuracy	MeanDecreaseGini
##	Apps	0.024658475	1.176865e-02	0.0154141308	7.625180
##	Accept	0.021063137	1.397548e-02	0.0160740943	10.153772
##	Enroll	0.054393141	3.498010e-02	0.0403177461	22.235333
##	Top10perc	0.012869987	2.113917e-03	0.0051437699	4.577233
##	Top25perc	0.011985440	1.872881e-03	0.0047138004	4.500875
##	${\tt F.Undergrad}$	0.133073901	6.048939e-02	0.0807754292	39.611262
##	${\tt P.Undergrad}$	0.053330538	1.062057e-02	0.0226870104	14.151087
##	Outstate	0.151652080	5.187388e-02	0.0795236629	46.554936
##	Room.Board	0.036247805	1.523931e-02	0.0210895296	10.982187
##	Books	0.001197314	7.109034e-05	0.0004056415	1.917629
##	Personal	0.004092538	-6.835476e-05	0.0011230531	3.372707
##	PhD	0.008025217	3.900076e-03	0.0050068432	2.934670
##	Terminal	0.004555453	2.650241e-03	0.0032332940	2.955144
##	S.F.Ratio	0.037624794	4.893113e-03	0.0140725202	15.107404
##	perc.alumni	0.030022301	1.671572e-03	0.0095890662	4.668519
##	Expend	0.036537073	1.530970e-02	0.0211803028	12.163700
##	Grad.Rate	0.013102042	3.623410e-03	0.0062475493	5.007583

MeanDecreaseAccuracy: It measures how much inclusion of this predictor in the model reduces classification error.

MeanDecreaseGini: Gini is defined as "inequity" when used in describing a society's distribution of income, or a measure of "node impurity" in tree-based classification. A low Gini (i.e. higher descrease in Gini) means that a particular predictor variable plays a greater role in partitioning the data into the defined classes.

Now use your random forest model to predict on your test set!

```
p <- predict(rf.model, test)

table(p, test$Private)</pre>
```

```
## p No Yes
## No 54 8
## Yes 13 184
```

It should have performed better than just a single tree, how much better depends on whether you are emasuring recall, precision, or accuracy as the most important measure of the model.