CURRENT VERSION OF THE CLAIMS

The following listing of claims is the current version of the claims:

LISTING OF CLAIMS:

- 1. (Original): A polarizing element comprising a reflective polarizing plate for separating incident natural light into reflected light and transmitted light both of which are composed of polarized light, and a light-diffusion pressure-sensitive adhesive layer provided to the reflective polarizing plate.
- 2. (Previously presented): The polarizing element according to claim 1, wherein the reflective polarizing plate is a combination of a circularly-polarized light separation plate and a retardation plate.
- 3. (Original): The polarizing element according to claim 2, wherein the circularly-polarized light separation plate comprises a cholesteric liquid crystal layer.
- 4. (Previously presented): The polarizing element according to claim 3, wherein the cholesteric liquid crystal layer is a liquid crystal polymer layer that is Grandjean-oriented on a transparent polymer substrate via an orientation film.
- 5. (Previously presented): The polarizing element according to claim 4, wherein the cholesteric liquid crystal layer has a superimposed structure of cholesteric liquid crystal layers different from each other in a helical pitch of the Grandjean orientation.
- 6. (Original): The polarizing element according to claim 2, wherein the retardation plate is a quarter wavelength plate.
- 7. (Original): The polarizing element according to claim 2, wherein the light-diffusion pressure-sensitive adhesive layer is interposed between the circularly-polarized light separation

plate and the retardation plate.

8. (Original): The polarizing element according to claim 1, wherein the light-diffusion pressure-sensitive adhesive layer is made of a polymer containing uncolored transparent particles.

- 9. (Original): The polarizing element according to claim 8, wherein the polymer is an acrylic polymer having a weight average molecular weight of at least 100,000.
- 10. (Original): The polarizing element according to claim 8, wherein the uncolored transparent particles having an average particle diameter ranging from 0.5 μ m to 20 μ m are selected from inorganic particles and organic particles.
- 11. (Original): The polarizing element according to claim 1, wherein the light-diffusion pressure-sensitive adhesive layer is provided adjacent to the reflective polarizing plate.
- 12. (Original): A liquid crystal display having a polarizing element comprising a reflective polarizing plate for separating incident natural light into reflected light and transmitted light both of which are composed of polarized light, and also a light-diffusion pressure-sensitive adhesive layer provided to the reflective polarizing plate.
- 13. (Original): A method of manufacturing a polarizing element, wherein the polarizing element comprises a reflective polarizing plate for separating incident natural light into reflected light and transmitted light both of which are composed of polarized light, and a light-diffusion pressure-sensitive adhesive layer provided to the reflective polarizing plate.
- 14. (Original): The method according to claim 13, wherein the light-diffusion pressure-sensitive adhesive layer is provided adjacent to the reflective polarizing plate.
- 15. (Previously presented): The method according to claim 13, wherein the reflective polarizing plate is a combination of a circularly-polarized light separation plate and a retardation

plate.

16. (Original): The method according to claim 13, wherein the light-diffusion pressure-sensitive adhesive layer is made of a polymer containing uncolored transparent particles.

- 17. (Original): The method according to claim 16, wherein the polymer is an acrylic polymer having a weight average molecular weight of at least 100,000.
- 18. (Original): The method according to claim 16, wherein the uncolored transparent particles having an average particle diameter ranging from 0.5 μ m to 20 μ m are selected from inorganic particles and organic particles.
- 19. (Previously presented): The polarizing element according to claim 1, wherein the reflective polarizing plate is a linearly-polarized light separation plate.
- 20. (Previously presented): The polarizing element according to claim 1, wherein the reflective polarizing plate is a circularly-polarized light separation plate.
- 21. (Previously presented): The polarizing element according to claim 19, wherein the circularly-polarized light separation plate comprises a cholesteric liquid crystal layer.
- 22. (Previously presented): The polarizing element according to claim 20, wherein the cholesteric liquid crystal layer is a liquid crystal polymer layer that is Grandjean-oriented on a transparent polymer substrate via an orientation film.
- 23. (Previously presented): The polarizing element according to claim 21, wherein the cholesteric liquid crystal layer has a superimposed structure of cholesteric liquid crystal layers different from each other in a helical pitch of the Grandjean orientation.
- 24. (Previously presented): The method according to claim 13, wherein the reflective polarizing plate is a linearly-polarized light separation plate.

25. (Previously presented): The method according to claim 13, wherein the reflective polarizing plate is a circularly-polarized light separation plate.