AAEC 6311

LAB #3

Objectives:

1) Learn to test and correct for heteroskedasticity using SAS

The data used comes from a study of efficiency in production of U.S. airline services (Greene, 2007). Thus, we will fit a cost function for the airline industry:

$$\ln(C_{it}) = \beta_0 + \beta_1 \ln(Q_{it}) + \beta_2 (\ln(Q_{it}))^2 + \beta_3 \ln(PF_{it}) + \beta_4 (LF_{it}) + \varepsilon_{it}, \tag{1}$$

where:

i = Airline,

t = Year,

Q = Output, in revenue passenger miles, index number,

C = Total cost, in \$1000,

PF = Fuel price

LF = Load factor, the average capacity utilization of the fleet.

The data comes from 90 observations on 6 firms for 15 Years, 1970-1984.

Part 1. Basic Operations Using SAS

1.1. Import and manipulate the data

1.2. Calculate basic summary statistics and report results:

2	The	SAS	Sv	stem
۷.	1110	ンヘン	J V .	sicil

The MEANS Procedure								
	Variable	Label	N	Mean	Std Dev	Minimum	Maximum	
	1	ı	90	3.5000000	1.7173929	1.0000000	6.0000000	
	Т	Т	90	8.0000000	4.3446984	1.0000000	15.0000000	
	С	C	90	1122523.83	1192074.70	68978.00	4748320.00	
	Q	Q	90	0.5449946	0.5335865	0.0376820	1.9364600	
	PF	PF	90	471683.01	329502.91	103795.00	1015610.00	
	LF	LF	90	0.5604602	0.0527934	0.4320660	0.6762870	
	InC		90	13.3656093	1.1319710	11.1415429	15.3733014	
	InQ		90	-1.1743092	1.1506057	-3.2785728	0.6608616	
	InQ2		90	2.6881856	3.0723943	0	10.7490393	
	InPF		90	12.7703594	0.8123749	11.5501731	13.8310000	

Part 2. Using proc reg to test for heteroskedasticity and to obtain Heteroskedasticity- Consistent Standard Errors (robust)

2.1. Estimate the parameters of Equation (1) using LS, report regression results:

The SAS System

The REG Procedure
Model: MODEL1
Dependent Variable: InC

Number of Observations Read 90

Number of Observations Used 90

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	4	112.76597	28.19149	1879.55	<.0001
Error	85	1.27492	0.01500		
Corrected Total	89	114.04089			

 Root MSE
 0.12247
 R-Square
 0.9888

 Dependent Mean
 13.36561
 Adj R-Sq
 0.9883

Coeff Var 0.91631

Parameter Estimates

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	Intercept	1	9.42058	0.23035	40.90	<.0001
InQ		1	0.93543	0.02929	31.94	<.0001
InQ2		1	0.02254	0.01122	2.01	0.0477
InPF		1	0.45767	0.02004	22.84	<.0001
LF	LF	1	-1.53744	0.34232	-4.49	<.0001

2.2 Report the results of proc reg White's test for heteroskedasticity. Interpret the test results.

The SAS System

The REG Procedure Model: MODEL1 Dependent Variable: InC

Heteroscedasticity Consistent Covariance of Estimates

Variable	Label	Intercept	InQ	InQ2	InPF	LF
Intercept	Intercept	0.0456617874	0.0014195212	0.000187784	-0.003098434	-0.009436536
InQ		0.0014195212	0.0007525602	0.0002705379	-0.000023014	-0.002189593
InQ2		0.000187784	0.0002705379	0.0001095831	-0.000010734	-0.000228033
InPF		-0.003098434	-0.000023014	-0.000010734	0.0004087039	-0.00373313
LF	LF	-0.009436536	-0.002189593	-0.000228033	-0.00373313	0.0988958501

Heteroscedasticity Consistent Covariance of Estimates

Variable Label Intercept InQ InQ2 InPF LF

HCC Approximation Method: HC3

Test of First and Second Moment Specification

DF Chi-Square Pr > ChiSq

13 30.81 0.0036

In general, why is heteroskedasticity a problem?

Heteroskedasticity means the variance throughout our sample data is not the same. This also means the OLS model is no longer BLUE and that the error variance is biased. We will have incorrect standard errors, invalid t-statistics and F-statistics, and the LM test is no longer valid.

2.4. Compare the standards errors obtained using the 4 versions of White's (Heteroskedasticity-Consistent Covariance Matrix) HCCM and those obtained using the LS Covariance Matrix.

		LS	HCCMETHOD=0	HCCMETHOD=1	HCCMETHOD=2	HCCMETHOD=3
Parameter	rameter Estimate Standard Standard Error		Standard Error	Standard Error	Standard Error	
		Error				
eta_0	9.42058	0.23035	0.20248	0.20835	0.20799	0.21369
eta_1	0.93543	0.02929	0.02608	0.02683	0.02674	0.02743
eta_2	0.02254	0.01122	0.00994	0.01023	0.01020	0.01047
eta_3	0.45767	0.02004	0.01920	0.01976	0.01970	0.02022
eta_4	-1.53744	0.34232	0.29634	0.30493	0.30524	0.31448

- 1) Are the parameter estimates the same obtained using HCCM's different to those obtained using LS? (just check values, you do not need to report them)
 - Yes, the parameter estimates obtained from each of the HCCM are the same as the ones obtained using LS.
- 2) Are the standard errors obtained using HCCM's different to those obtained using LS (from table above)?
 - Yes, the standard errors from each of the HCCMETHODs differ from the standard errors obtained using LS.

3) What is the difference between the different versions of the HCCMETHOD? (search online)

•
$$HC_0 = (X'X)^{-1}(X'\operatorname{diag}(e_i^2)X)(X'X)^{-1}$$

•
$$HC_1 = \frac{n}{n-p}HC_0$$

•
$$HC_2 = (X'X)^{-1}X' \operatorname{diag}(\frac{e_i^2}{1 - h_{ii}})X(X'X)^{-1}$$
 where $h_{ii} = x_i(X'X)^{-1}x_i'$

•
$$HC_3 = (X'X)^{-1}X' \operatorname{diag}(\frac{e_i^2}{(1-h_{ii})^2})X(X'X)^{-1}$$

MacKinnon and White ($\underline{1985}$) introduced three alternative heteroscedasticity-consistent covariance matrix estimators that are all asymptotically equivalent to the estimator HC₀ but that typically have better small sample behavior.

2.5. Using proc reg estimate standard errors using bootstrapping

		LS	Boot.	Boot.	Boot.	Boot.
			Samples=200	Samples=400	Samples=500	Samples=1000
Parameter	Estimate	Standard Error	Standard Error	Standard Error	Standard Error	Standard Error
eta_0	9.42058	0.23035	0.2315789	0.2204868	0.2191908	0.2139064
eta_1	0.93543	0.02929	0.0282638	0.0272728	0.0269626	0.0276947
eta_2	0.02254	0.01122	0.0105374	0.0103506	0.0102192	0.0105177
eta_3	0.45767	0.02004	0.0199487	0.0196119	0.0197665	0.0195477
eta_4	-1.53744	0.34232	0.2963815	0.3000202	0.3003702	0.306504

Interpret the results above: a) Does it seems necessary to use more than 400 bootstrapping samples? How do the results above compare with the standard errors obtained using HCCM's?

Yes, it seems necessary to use more than 400 bootstrapping samples, since the standard errors still seem to jump around up to 1000 samples. For the most part, the standard errors from the bootstrapping method are similar to the standard errors using each of the 4 versions of White's HCCM models.

Part 3. Using proc model to test for heteroskedasticity and to obtain Heteroskedasticity- Consistent Standard Errors (robust)

3.1. Use **proc model** to estimate the parameters of Equation (1) using LS, report regression results:

The SAS System

The MODEL Procedure

Nonlinear OLS Summary of Residual Errors

Equation	DF Model	DF Error	SSE	MSE	Root MSE	R-Square	Adj R-Sq
lnC	5	85	1.2749	0.0150	0.1225	0.9888	0.9883

Nonlinear OLS Parameter Estimates

Parameter	Estimate	Approx Std Err	t Value	$\begin{array}{c} Approx \\ Pr > t \end{array}$
bo	9.42058	0.2025	46.53	<.0001
b1	0.935427	0.0261	35.87	<.0001
b2	0.022543	0.00994	2.27	0.0259
b 3	0.457668	0.0192	23.83	<.0001
b 4	-1.53744	0.2963	-5.19	<.0001

3.2 Report the results of proc model White's test for heteroskedasticity. Interpret the test results.

Heteroscedasticity Test

Equation	Test	Statistic	DF	Pr > ChiSq	Variables
lnC	White's Test	39.45	13	0.0002	Cross of all vars

3.3 Report the results of proc model Breusch-Pagan for heteroskedasticity. Interpret the results. The specific form that we will assume for this test is:

$$\sigma_{it}^2 = \exp\left(\gamma_1 + \gamma_2 L F_{it}\right)$$

The SAS System

The MODEL Procedure

Nonlinear OLS Summary of Residual Errors

Equation	DF Model	DF Error	SSE	MSE	Root MSE	R-Square	Adj R-Sq
lnC	5	85	1.2749	0.0150	0.1225	0.9888	0.9883

Nonlinear OLS Parameter Estimates

Parameter	Estimate	Approx Std Err	t Value	$\begin{array}{c} Approx \\ Pr > t \end{array}$
bo	9.42058	0.2304	40.90	<.0001
b1	0.935427	0.0293	31.94	<.0001
b2	0.022543	0.0112	2.01	0.0477
b 3	0.457668	0.0200	22.84	<.0001
b 4	-1.53744	0.3423	-4.49	<.0001

Number of Observations Statistics for System

Used 90 **Objective** 0.0142

Missing 0 Objective*N 1.2749

Heteroscedasticity Test

Equation	Test	Statistic	DF	Pr > ChiSq	Variables
lnC	White's Test	39.45	13	0.0002	Cross of all vars
	Breusch-Pagan	2.78	1	0.0955	1, LF

3.4. Compare the standards errors obtained using the 4 versions of White's (Heteroskedasticity-Consistent Covariance Matrix) HCCM from **proc model** and those obtained using the LS Covariance Matrix.

		LS	HCCME=0	HCCME=1	HCCME=2	HCCME=3
Parameter	Estimate	Standard	Standard Error	Standard	Standard	Standard
		Error		Error	Error	Error
eta_0	9.42058	0.2304	0.2025	0.2083	0.2080	0.2137
eta_1	0.935427	0.0293	0.0261	0.0268	0.0267	0.0274
eta_2	0.022543	0.0112	0.00994	0.0102	0.0102	0.0105
eta_3	0.457668	0.0200	0.0192	0.0198	0.0197	0.0202
eta_4	-1.53744	0.3423	0.2963	0.3049	0.3052	0.3145

1) Are the parameter estimates the same? (just check values, you do not need to report them)

Yes, the parameter estimates for the 4 versions of White's HCCM models are the same for every variable.

2) Are the standard errors different (from table above)?

Yes, the standard errors in every case differs from the White's test using just OLS.

- 3) How do the standard errors obtained using the HCCME option in proc model compare to those obtained using the HCCMETHOD option in proc reg?
 - The standard errors using the HCCME option in proc model and proc reg remains the same for each of the HCCME.
- 4) What is the difference between the different versions of the HCCME option in proc model? (search online)
 - For HCCME=N0, this is just the simple OLS estimator (x'x)
 - For HCCME=0, this is calculated as $\frac{1}{M}\sum_{i=0}^{M}\hat{e}_{i}^{2}x_{i}x_{i}'$
 - For HCCME=1, this is calculated as $\frac{1}{M}\sum_{i=0}^{M}(\frac{M}{M-K}\hat{e}_{i}^{2}x_{i}x_{i}')$
 - For HCCME=2, this is calculated as $\frac{1}{M}\sum_{i=0}^{M}\frac{\hat{e}_{i}^{2}}{1-\hat{h}_{i}}x_{i}x_{i}'$
 - For HCCME=3, this is calculated as $\frac{1}{n}\sum_{i=0}^{M}\frac{\hat{e}_i^2}{(1-\hat{h}_i)^2}x_ix_i'$

Part 4. Estimate White's and Breusch-Pagan Heteroskedasticity tests following the procedures outlined in class which require the estimation of additional regressions using the residuals of the LS procedure to estimate equation (1).

White's test

4.1. Report the regression results of the auxiliary regression needed to obtain White's test

The SAS System

The REG Procedure Model: MODEL1 Dependent Variable: ehat2

Number of Observations Read 90

Number of Observations Used 90

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	11	0.01588	0.00144	5.02	<.0001
Error	78	0.02241	0.00028729		
Corrected Total	89	0.03829			

 Root MSE
 0.01695
 R-Square
 0.4147

 Dependent Mean
 0.01417
 Adj R-Sq
 0.3322

Coeff Var 119.65256

Parameter Estimates

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	Intercept	1	-1.11387	0.73633	-1.51	0.1344
lnQ		1	0.02351	0.08376	0.28	0.7797
lnQ2		1	0.05919	0.02972	1.99	0.0499
lnPF		1	0.13699	0.12301	1.11	0.2689
LF	LF	1	0.66272	1.05587	0.63	0.5321
lnPF2		1	-0.00741	0.00565	-1.31	0.1938
LF2		1	-1.68789	1.03250	-1.63	0.1061
lnQlnPF		1	-0.00272	0.00714	-0.38	0.7049
lnQLF		1	-0.03375	0.09886	-0.34	0.7337
lnQ2lnPF		1	-0.00348	0.00319	-1.09	0.2778
lnQ2LF		1	-0.05198	0.04186	-1.24	0.2180
lnPFLF		1	0.10487	0.09901	1.06	0.2928

4.2. Calculate the nR² statistic and compare it with that obtained using proc model.

nR²=90*0.4147=37.323, which is less than what we obtained using proc model in 3.1 (which was 39.45), but similar.

Breusch-Pagan

4.3. Report the regression results of the auxiliary regression needed to estimate the Breusch-Pagan test.

The SAS System

The REG Procedure Model: MODEL1 Dependent Variable: ehat3

Number of Observations Read 90

Number of Observations Used 90

Analysis of Variance

Source	DF	Sum of Squares		F Value	Pr > F
Model	1	5.89179	5.89179	2.80	0.0976
Error	88	184.90190	2.10116		
Corrected Total	89	190.79369			

 Root MSE
 1.44954
 R-Square
 0.0309

 Dependent Mean
 1.00000
 Adj R-Sq
 0.0199

Coeff Var 144.95344

Parameter Estimates

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	Intercept	1	-1.73145	1.63831	-1.06	0.2935
LF	LF	1	4.87359	2.91041	1.67	0.0976

4.4. Calculate the LM statistic and compare it with that obtained using proc model.

The LM statistic would be $\frac{1}{2}(5.89179) = 2.945895$, which is close to the statistic we got in 3.1 (which was 2.78).

Extra credit

What is the difference between White's test in **proc reg** (spec) and White's t test in **proc model**?

White's test in the MODEL procedure is different than White's test in the REG procedure requested by the SPEC option. The SPEC option produces the test from Theorem 2 on page 823 of White (1980). The WHITE option, on the other hand, produces the statistic discussed in Greene (1993).