Homework 1: Extended Transition Functions

Traehan Arnold

1. Description of the Language Accepted by $\mathcal{A}^{(2)}$

The automaton $\mathcal{A}^{(2)}$ accepts the language:

$$L(\mathcal{A}^{(2)}) = \{ w \in \{a, b\}^* \mid |w| \text{ is odd and every letter at an odd position is } a \}$$

That is, all words over the alphabet $\{a,b\}$ that have an odd length, and every letter in an odd-numbered position (1st, 3rd, 5th, etc.) is the letter a.

2. Computation of Extended Transition Functions

a) For $\mathcal{A}^{(1)}$, compute $\widehat{\delta^{(1)}}(1, abaa)$

Given that $\mathcal{A}^{(1)}$ accepts non-empty words where no two consecutive letters are the same, and assuming the states are numbered, we proceed step by step:

- Start at state 1
- Read a: move to state 2
- Read b: move to state 1
- Read a: move to state 2
- Read a: since the previous letter was also a, and two consecutive letters are the same, this transition is invalid.

Therefore, the computation halts, and the word *abaa* is rejected by $\mathcal{A}^{(1)}$.

b) For $A^{(2)}$, compute $\widehat{\delta^{(2)}}(1, abba)$

Assuming the transition function $\delta^{(2)}$ is defined as per the automaton's description:

- Start at state 1
- Read a: move to state 2
- Read b: move to state 3

• Read b: move to state 2

• Read a: move to state 3

After processing the entire input abba, the automaton ends in state 3. If state 3 is an accepting state, then the word is accepted; otherwise, it is rejected. Based on the language description, since abba has even length and the language requires odd length, abba is rejected by $\mathcal{A}^{(2)}$.

Problem Statement

Let n be a natural number, and let P(m) be a property pertaining to the natural numbers such that whenever P(m) is true, P(m++) is also true. Show that if P(n) is true, then P(m) is true for all $m \ge n$. This principle is sometimes referred to as the principle of induction starting from the base case n.

Solution

We aim to prove that if P(n) is true and $P(m) \Rightarrow P(m++)$ holds for all $m \in \mathbb{N}$, then P(m) is true for all m > n.

Approach

Define a new property Q(k) := P(n+k) for $k \in \mathbb{N}$. Our goal is to show that Q(k) is true for all $k \in \mathbb{N}$, which would imply that P(m) is true for all $m \ge n$.

Base Case

For k=0, we have Q(0)=P(n+0)=P(n), which is given to be true.

Inductive Step

Assume Q(k) is true for some $k \in \mathbb{N}$, i.e., P(n+k) is true. Since $P(m) \Rightarrow P(m++)$ for all m, it follows that $P(n+k) \Rightarrow P((n+k)++) = P(n+k+1)$. Therefore, Q(k+1) = P(n+k+1) is true.

Conclusion

By the principle of mathematical induction, Q(k) is true for all $k \in \mathbb{N}$. Consequently, P(m) is true for all $m \geq n$.