Derivatives

Nguyen Thu Huong

School of Applied Mathematics and Informatics Hanoi University of Science and Technology

November 10, 2020

- Derivative
- 2 Differentials
- Higher order derivatives
 - Higher order derivatives
 - Computing higher order derivatives
- 4 Higher order differentials
- 5 Mean value theorems and applications

- Derivative
- 2 Differentials
- 3 Higher order derivatives
 - Higher order derivatives
 - Computing higher order derivatives
- 4 Higher order differentials
- Mean value theorems and applications

- Derivative
- 2 Differentials
- 3 Higher order derivatives
 - Higher order derivatives
 - Computing higher order derivatives
- 4 Higher order differentials
- Mean value theorems and applications

Invariance property of the first order differential

Given a differentiable function y = f(x), we have

$$dy = f'(x)dx$$
.

Assume that x is a dependent variable, namely x = g(t) $\Rightarrow y = f(g(t))$.

We write in terms of t

$$dy = (f \circ g)'(t)dt = f'(g(t))g'(t)dt = f'(x)dx.$$

The differential dy = f'(x)dx is invariant, whether x is an independent or a dependent variable.

Derivative

It is impossible to describe this curve by an equation y = y(x). Assume that f(t), g(t) are functions of a third variable, the parameter t. For each t, we determine a point M(f(t), g(t)). When t varies, M also varies and traces out a parametric curve C.

Tangents to parametric curves

Assume that $f'(t) \neq 0 \ \forall \ t \in (a, b)$, then x has an inverse:

$$t = f^{-1}(x)$$
, we can rewrite $y = g(f^{-1}(x))$.

Higher order derivatives

It is obvious that y = y(x) is differentiable and if x'(t)

$$y'(x) = \frac{dy}{dx} = \frac{g'(t)dt}{f'(t)dt} = \frac{g'(t)}{f'(t)}.$$

If
$$\frac{dx}{dt} = 0$$
, $\left(\frac{dy}{dt} \neq 0\right)$, the tangent is vertical

If
$$\frac{dx}{dt} = 0$$
, $\left(\frac{dy}{dt} \neq 0\right)$, the tangent is vertical.

If $\frac{dy}{dt} = 0$, $\left(\frac{dx}{dt} \neq 0\right)$, the tangent is horizontal.

Example

Compute the derivative y'(x) of a function given by

a)
$$\begin{cases} x = e^{t^2}, \\ y = te^{t^2}. \end{cases}$$
 b)
$$\begin{cases} x = t - e^t, \\ y = 2t + e^{-t^2}. \end{cases}$$

Rules

Theorem

- $d(u \pm v) = du \pm dv$.
- d(u.v) = vdu + udv.
- $d\left(\frac{u}{v}\right) = \frac{vdu udv}{v^2}, \ v \neq 0.$

- Derivative
- 2 Differentials
- 3 Higher order derivatives
 - Higher order derivatives
 - Computing higher order derivatives
- 4 Higher order differentials
- 5 Mean value theorems and applications

Definition

Derivative

$$f^{(n)}(x) = (f^{(n-1)}(x))'.$$

Example

- $(e^{ax})^{(n)} = a^n e^{ax}$.
- $(\sin x)^{(n)} = \sin(x + n\frac{\pi}{2}).$
- $(\cos x)^{(n)} = \cos(x + n\frac{\pi}{2}).$
- $\bullet ((ax+b)^{\alpha})^{(n)} = a^n \cdot \alpha(\alpha-1) \cdot \ldots (\alpha-n+1)(ax+b)^{\alpha-n}.$

•0

Derivative

Theorem (Linearity)

$$(Af(x) + Bg(x))^{(n)} = Af^{(n)}(x) + Bg^{(n)}(x),$$

A, B are constants.

Theorem (Leibniz rule)

$$(f(x).g(x))^{(n)} = \sum_{k=0}^{n} C_n^k f^{(k)}(x) g^{(n-k)}(x).$$

Note: Leibniz rule should be applied when a factor is a polynomial.

ŏ

Example

Derivative

Compute the *n*-th derivatives of the functions

- $f(x) = \frac{1}{x^2 3x + 2}.$
- $f(x) = x^2 \sin(3x)$.
- $f(x) = e^x \sin x.$

- Derivative
- 2 Differentials
- 3 Higher order derivatives
 - Higher order derivatives
 - Computing higher order derivatives
- 4 Higher order differentials
- Mean value theorems and applications

Definition

$$d^n f(x) = f^{(n)}(x)(dx)^n.$$

Note: Higher order differentials depend on whether x is a dependent or an independent variable.

Derivative

Example

- **1** $y = (2x + 3)\cos(2x)$. Calculate $d^{10}y(0)$.
- $y = \frac{x^3}{1-x}. \text{ Calculate } d^n y, \ n \ge 4.$

- Derivative
- 2 Differentials
- 3 Higher order derivatives
 - Higher order derivatives
 - Computing higher order derivatives
- 4 Higher order differentials
- 5 Mean value theorems and applications