Quantitative Laser Diagnostics for Combustion Chemistry and Propulsion

Lecture 3: Electronic Spectra, Bond Diss. Energy

- 1. Potential energy wells
- Types of spectra
- 3. Rotational analysis
- 4. Vibrational analysis
- 5. Analysis summary
- 6. Dissociation Energies

An example of what we need to calculate

Electronic transitions

Recall: Lecture 1 – Line, Band, System

System:

 Transitions between different potential energy well

Depends on electronic configuration

Note: Both homonuclear and heteronuclear can have electronic spectra, in contrast w/ rotational and rovibrational spectra

Example: N₂

- First positive SYSTEM: $B^3\Pi_g \rightarrow A^3\Sigma_u^+$
- The ground (lowest energy) state is X¹Σ⁺g

Electronic force and potential energy

Electronic force and potential energy

Example:

- Potential energy wells for N₂
 - A First excited state
 - X Ground electronic state
 - T_e Energy of A-state w/ respect to ground state
- v_{min} , v_{max} Extremes of photon energies for discrete absorption from v"=0
 - E_{ex} Difference in electronic energy of atomic fragments
 - D_e Dissociation energy
 - <u>Note</u>: not to be confused with the rotational distortion const.

Characteristic event times

 $\tau_{elec} \approx 10^{-16} s$ time to move/excite electrons

 $\tau_{vib} \approx 10^{-13} s$ characteristic time for vibration

 $\tau_{coll} \approx 10^{-12} s$ duration of collision

 $\tau_{rot} \approx 10^{-10} s$ characteristic time for rotation

 $\tau_{emiss} \approx 10^{-6} - 10^{-8} s$ "radiative lifetime" – average time a molecule (or atom) spends in an excited state before radiative

emission

Frank-Condon Principle

As $\tau_{\it elec} << \tau_{\it others}$, the molecule's vibration and rotation appear "frozen" during electronic transition

Vertical lines between potential wells to represent an electronic transition at constant r

When $\tau_{coll} \approx \tau_{vib}$ Increased probability of V-T energy transfer

2. Types of spectra

- Discrete
 - $r_e' \approx r_e''$
 - Franck-Condon Principle:
 r ≈ const. in absorption and emission
 - Vibrationally excited molecules (v≠0) spend more time near the edges of the potential well, so that transitions to and from these locations will be favored
 - Lowest v" levels are most populated

2. Types of spectra

Case (a)

Continuum

2. Types of spectra

- High-temperature air emission spectra (560-610nm) (part of the $N_2(1+)$ system $B^3\Pi_g \rightarrow A^3\Sigma_u^+$)
 - Review multiband structure and apparent bandhead structure
 - Can we make use of <u>rotational analysis</u> to understand the band structure?

Fortrat Parabola

Upper:
$$T' = T_{rot} + T_{vib} + T_{elec}$$

 $= F(J') + G(v') + T'_{elec}$
 $= BJ'(J'+1) + \omega_e(v'+1/2) - \omega_e x'_e (v'+1/2)^2 + T'_{elec}$

Lower:
$$T'' = T_{rot} + T_{vib} + T_{elec}$$

$$= F(J'') + G(v'') + T''_{elec}$$

$$C''$$

C' (const. for rot. analysis in a single band)

$$T'-T''=BJ'(J'+1)-BJ''(J''+1)+C$$
 $T=T'-T''=am^2+bm+C$

$$T = T' - T'' = am^2 + bm + C$$

Bandhead
$$\frac{dT}{dm} = 2am + b = 0$$

where
$$m = \begin{cases} -J & \text{for P branch } a = B' - B'' \\ J + 1 & \text{for R branch } b = B' + B'' \end{cases}$$

$$m_{bandhead} = -\frac{b}{2a} = \frac{B' + B''}{2(B'' - B')}$$
 1. $r_e' > r_e''$, $B' < B''$, a<0, bandhead in R branch 2. $r_e' < r_e''$, $B' > B''$, a>0, bandhead in P branch

Note:

Example: O₂

- $X^3\Sigma^-_g$ ground state: B"=1.44cm⁻¹ $A^3\Pi^-_u$ upper state: B'=1.05cm⁻¹ $m_{bandhead} = \frac{2.49}{2 \times 0.39} \approx 3$

$$m_{bandhead} = \frac{2.49}{2 \times 0.39} \approx 3$$

Fortrat Parabola

$$T = T' - T'' = am^2 + bm + C$$
 $m = \begin{cases} -J & \text{for P branch} \\ J+1 & \text{for R branch} \end{cases}$ $a = B' - B''$

Fortrat Parabola

Steps for rotational analysis

- Separate spectra into bands (v', v")
- 2. Tabulate line positions
- 3. Identify null gap and label lines (not trivial)
- 4. Infer B' and B" from the Fortrat equation or common states

Strategy for labeling the lines:

- If there is a bandhead → lines overlap, more complicated
- If no bandhead → a null gap is obvious, easier
- If bandhead → start from the wings of the parabola and work backwards using a constant second difference

• 1st difference: $T_1 = T(m+1) - T(m)$

• 2^{nd} difference: $T_2 = T_1(m+1) - T_1(m) = 2(B'-B'') = 2a$

Fortrat Parabola

Example:

Rotational analysis of electronic spectra

Line positions observed:

Rotational spectrum in the 0-0 band of an electronic transition (A $^3\Pi_{0+u}-X^1\Sigma^+_{\ g})$ in $^{35}CI_2$

Find Be', Be", re', re", and the null gap frequency v_0

ν, cm⁻¹ 18147.85 18147.81 18147.71 18147.60 18147.22 18146.91 18146.66 18146.25 18145.93 18145.42 18145.02 18144.41 18143.94 18143.23 18142.69 18141.87 18140.34 18138.64 18136.76

Fortrat Parabola

Example:

Rotational analysis of electronic spectra

Find B_e', B_e", r_e', r_e", and the null gap frequency v_0

- 1. $v_0 = 18147.40 \text{ cm}^{-1}$
- 2. $2a = T_2 = -0.173 \text{ cm}^{-1}$

Note: All T₂ are negative!

Fortrat Parabola

Example:

Rotational analysis of electronic spectra

Find B_e', B_e", r_e', r_e", and the null gap frequency v_0

- 1. $v_0 = 18147.40 \text{ cm}^{-1}$
- 2. $2a = T_2 = -0.173 \text{ cm}^{-1} = 2(B'-B'')$
- 3. Use common states to get B"
- 4. Solve for r', r" from B' and B"

Could also have used common lower states to get B'

$$R(0) = 18147.71, P(2) = 18146.25$$

 $R(0) - P(2) = 1.46$
 $B'' = 1.46 / 6 = 0.243 cm^{-1}$
 $B' = B'' + a = 0.157 cm^{-1}$

$$B_e"=0.2438, \alpha_e=0.0017$$

$$\Rightarrow B_0"=0.2438-0.0008=0.243$$

$$B_e'=0.158, \alpha_e=0.003$$

$$\Rightarrow B_0'=0.158-0.0015\approx 0.157$$

$$T_e=18310.5, r_e"=1.988 \text{ Å}, r_e'=2.47 \text{ Å}$$

4. Vibrational analysis

Band origin data

Vibrational analysis can be used to determine information regarding ω_e , x_e

Absorption → information on upper states Emission → information on lower states

Tables of band origin values

Deslandres Table

Recall:
$$G(v) = \omega_e(v + 1/2) - \omega_e x_e(v + 1/2)^2$$

 $G(1) - G(0) = \omega_e - 2\omega_e x_e$
 $G(2) - G(1) = \omega_e - 4\omega_e x_e$

	Row analysis for ω_e ", $\omega_e x_e$ "								
	V' V"	0	1	2	3				
	0	ν _{0,0}	V _{0,1}	V _{0,2}	v _{0,3}				
>	1	ν _{1,0} ω _e "	20 r " 0 "-	$4\omega_e x_e$ "					
\	2	$v_{2,0}$	$2\omega_e x_e$ " ω_e "-	$+\omega_e^{\lambda_e}$					
	3	v _{3,0}	$2\omega_e x_e$ "						

4. Vibrational analysis

Deslandres Table

Transition $v' \leftarrow v''$	Energy required to observe transition	1st difference	2 nd difference
0 ← 0	$T_e + 1/2\omega_e$ '-1/4 $\omega_e x_e$ '-1/2 ω_e "+1/4 $\omega_e x_e$ "	ω_e '-2 $\omega_e x_e$ '	
1 ← 0	$T_e + 3/2\omega_e$ '-9/4 $\omega_e x_e$ '-1/2 ω_e "+1/4 $\omega_e x_e$ "	$\omega_e^{-2}\omega_e^{-2}x_e^{-2}$ $\omega_e^{-1}-4\omega_e^{-2}x_e^{-1}$	$2\omega_e x_e'$
2 ← 0	$T_e + 5/2\omega_e$ '-25/4 $\omega_e x_e$ '-1/2 ω_e "+1/4 $\omega_e x_e$ "	ω_e '-6 $\omega_e x_e$ '	$2\omega_e x_e'$
3 ← 0	$T_e + 7/2\omega_e$ '-49/4 $\omega_e x_e$ '-1/2 ω_e "+1/4 $\omega_e x_e$ "	$\omega_e = 6\omega_e x_e$ $\omega_e' - 8\omega_e x_e'$	$2\omega_e x_e$ '
4 ← 0	$T_e + 9/2\omega_e$ '-81/4 $\omega_e x_e$ '-1/2 ω_e "+1/4 $\omega_e x_e$ "	$\omega_e = \omega_e \lambda_e$	

ν'	v"		0	1400	1	14	20 2	4.4	40 3	4
	0		29647.5	l480	28167.5	17	26707.5		40 25267.5	
	1 40	760	30407.5		28927.5		27467.5	5	26027.5	24607.5
	2 40		31127.5		29647.5		28187.5	5	26747.5	25327.5
	3 40	I	31807.5		30327.5		28867.5	5	27427.5	26007.5
	4	640	32447.5		30967.5		29507.5	5		
	5				31567.5		30107.5	5	28667.5	
	6						30667.5	5	29227.5	27807.5
	7								29747.5	28327.5

5. Analysis summary

Analysis techniques and related fundamental quantities

Analysis	Parameters				
Rotational analysis	$B_e, \alpha_e, D_e, \beta_e$				
Vibrational analysis	$\omega_{\rm e},\omega_{\rm e}x_{\rm e}$				
Emission analysis	D _e ", G(v")				
Absorption analysis	D_e' , T_e , $G(v')$				

Typical analyses

- 1. Band origin \rightarrow G(v')
- 2. $v_0 = T_e + G(v') G(v'') \rightarrow T_e$
- 3. $\Delta + G(v'') = T_e + D'_e \rightarrow D'_e$

Emission

- 1. Band origin \rightarrow G(v")
- 2. $D''_e + \Delta = T_e + G(v') \rightarrow D''_e$

to band structure)

6. Bond Dissociation Energies

- 1. Absorption and emission analysis
- 2. Birge-Sponer method
- 3. Thermochemical approach
- 4. Working example

6. Bond dissociation energies

Absorption

Absorption \rightarrow D_e', T_e, G(v')

1. Band origin \rightarrow G(v')

Enter in Deslandres Table

2.
$$\overline{v}_0 = T_e + G(v') - G(v'') \rightarrow T_e$$

3.
$$\Delta + G(v'') = T_e + D'_e \rightarrow D'_e$$

6.1. Absorption and emission

Emission

Emission $\rightarrow D_e$ ", G(v')

- 1. Band origin from fixed $v' \rightarrow G(v'') \leftarrow$ Enter
 - Enter in Deslandres Table

2. $D''_e + \Delta = T_e + G(v') \rightarrow D''_e$

6.1. Absorption and emission

Emission

Example: High-temperature air emission spectra (560-610nm)

6.1. Absorption and emission

Emission

Example: Band spectrum of an air-filled Geissler tube. (a) Long-wavelength part. (b) Short wavelength part

6.2. Birge-Sponer method

Determine dissociation energies

Dissociation energies

- [Thermodynamics] Heats of formation and reaction[Kinetics] Rates of reaction

Birge-Sponer method

Spectroscopic parameters Dissociation energies

Constant anharmonicity

Vibrational level spacing → 0 in the limit of dissociation

$$G(\mathbf{v}) = \omega_e (\mathbf{v} + 1/2) - \omega_e x_e (\mathbf{v} + 1/2)^2$$

$$G(\mathbf{v} + 1) = \omega_e (\mathbf{v} + 3/2) - \omega_e x_e (\mathbf{v} + 3/2)^2$$

$$\Delta G(\mathbf{v}) = G(\mathbf{v} + 1) - G(\mathbf{v}) = -2\omega_e x_e \mathbf{v} + (\omega_e - 2\omega_e x_e)$$

 $\Delta G(\mathbf{v}) = a\mathbf{v} + b$ Linear dependence on v!

6.2. Birge-Sponer method

Determine dissociation energies

Vibrational level spacing → 0 in the limit of dissociation

$$\mathbf{v}_D = -\frac{b}{a} = \frac{\omega_e}{2\omega_e x_e} - 1$$

$$D_e = \omega_e (v_D + 1/2) - \omega_e x_e (v_D + 1/2)^2$$

$$D_e = \frac{\omega_e^2}{4\omega_e x_e} - \frac{\omega_e x_e}{4} \approx \frac{\omega_e^2}{4\omega_e x_e} = \frac{\omega_e}{4x_e}$$

Real case: anharmonicity increases near dissociation limit

Birge-Sponer overpredicts D_e

6.2. Birge-Sponer method

Determine dissociation energies

Vibrational level spacing \rightarrow 0 in the limit of dissociation

$$\Delta G(\mathbf{v}) = a\mathbf{v} + b = 0$$
 @ dissociation

$$\mathbf{v}_D = -\frac{b}{a} = \frac{\omega_e}{2\omega_e x_e} - 1$$

$$D_e = \omega_e (v_D + 1/2) - \omega_e x_e (v_D + 1/2)^2$$

$$D_e = \frac{\omega_e^2}{4\omega_e x_e} - \frac{\omega_e x_e}{4} \approx \frac{\omega_e^2}{4\omega_e x_e} = \frac{\omega_e}{4x_e}$$

Example: HCl

$$\omega_e = 2990 cm^{-1}, x_e = 0.0174$$

$$\Rightarrow v_D = 27.7 \rightarrow 27$$

$$\Rightarrow D_{e} = 513kJ / mole$$

$$D_e = 427kJ / mole$$

6.3. Thermochemical approach

Determine dissociation energies

E.g.,
$$I_2 \rightarrow 2I$$

$$K_p = \frac{P_I^2}{P_{I_2}}$$

$$\frac{d(\ln K_p)}{dT} = \frac{\Delta H}{RT^2} \quad \text{where } \Delta H = \sum v_i H_i = H_{prod} - H_{react} = D_e + 2\int_I \hat{c}_p dT - \int_{I_2} \hat{c}_p dT$$

Measurements of partial pressures $K_p(T) \longrightarrow \Delta H, D_e$ "

Measured spectroscopically (e.g., by laser absorption)

6.4. Working example

A shock tube study of the enthalpy of formation of OH

Experimentally measured and modeled OH mole fraction time histories.

- T_5 =2590K, P_5 =1.075atm, mixture: 4002ppm H_2 /3999ppm O_2 /balance Ar.
- The OH concentration is modeled using GRI-MECH 3.0 and the GRI-MECH 3.0 thermodynamics database, with 0.5ppm additional H atoms to match the induction time.
- The fit required a change in $\Delta_f H^0_{298}(OH)$ from 9.403 to 8.887kcal/mol

6.4. Working example

A shock tube study of the enthalpy of formation of OH

Experimentally derived values for $\Delta_f H^0_{298}(OH)$.

Next: Polyatomic Molecular Spectra

- Rotational Spectra
- Vibrational Bands, Rovibrational Spectra