安徽大学 2021—2022 学年第 二 学期

《大学物理 A (上)》期中考试试卷 (闭卷 时间 120 分钟)

9 分	and the second second		三(15)	三(16)	三(17)	三(18)	四(19)	总分	M
4 /4	f程 x 随即	间,的变	5规律。		*			-pritament	
1卷人	h a Masar	0.50	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	二个版标。	Section Section	Same I College Street	Laga 30	to 73-45 66	Ш.
单选题	(每小	题 2 分,	共20分	$0m/s^2$				得分	U
一质点在	平面上运	动,已知加	贡点位置 矢	量的表达	式 $\bar{\mathbf{r}} = \mathbf{mt}^2 \bar{\mathbf{i}}$	$+nt^2\bar{j}$ (其	中m和n	为常数),	则质
]		
	東直线运动			(B) 久	速直线运	力.			
(C) 抛物	为线运动.			(D) 久]速率圆周;	运动.			
在系统不	受外力作	用的非弹	性碰撞过程	皇中的子		DnE/s 的速	j从A AJ		
(A) 只有	可机械能守	严恒.		(B) 	能和动量者	『不守恒.			
(C) 动能	《不守恒、	动量守恒	4	(D) 动	能守恒、云	力量不守恒.	TIKLIXI		
甲船以 ν	=10m/s 벍	 的速度向南	前行, 乙	船以 v ₂ =10	m/s 的速度	向东航行,	则甲船」	上的人观察	乙船的
小为多少	〉,向哪个	个方向航行	ř			[]		
(A) 10	$\sqrt{2m/s}$,	东偏北4	15°.	(B) 1	$0\sqrt{2}m/s$,	西偏北45	6.		
(C) 10	$\sqrt{3}m/s$,	东偏北3	0°.	(D) 10	$0\sqrt{3}m/s$,	西偏北30°	٠.		
				(日 2月 3年) 19月	为 m 的人从			☑ M=2m.	不计力
		过程中船将				[]	M	
	动.	(D) F		(C)	后退 <mark>1</mark> L.		(D) 巨祖	1	

6. 一质点做匀速率圆周运动时 (A) 质点的动量不变,对圆心的角动量也不变.

(A) $t_B = t_C$.

(C) $t_B < t_C$.

事

装

2

(B) 质点的动量不变,对圆心的角动量不断改变.

(B) $t_B > t_C$.

(D) 条件不足, 无法判定.

(C) 质点的动量不断改变,对圆心的角动量不变.
(D) 质点的动量不断改变,对圆心的角动量也不断改变.
7. 质点的质量为 m, 置于光滑球面的顶点 A 处 (球面固定不动), 如图所示. 当它由静止开始下滑到
球面上B点时,它的加速度大小为[
(A) $2g(1-\cos\theta)$. (B) $g\sin\theta$.
(C) g . (D) $\sqrt{4g^2(1-\cos\theta)^2+g^2\sin^2\theta}$.
8. 小球 A和 B的质量相同,B球原来静止,A球以速度 u 与 B球作对心碰撞. 这两球碰撞后的速度 v_A
和 $\nu_{\rm B}$ 的各种可能值中有 [
(A) $-u 2u$. (B) $u/4 3u/4$.
(C) $-u/4 5u/4$. (D) $u/2 -\sqrt{3}u/2$.
9. 关于刚体对轴的转动惯量,下列说法中正确的是[]
(A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关.
(B) 取决于刚体的质量和质量的空间分布,与轴的位置无关.
(C) 取决于刚体的质量、质量的空间分布和轴的位置.
(D) 取决于刚体的质量和轴的位置,与质量的空间分布无关.
10. 一个转动惯量为 J 的圆盘绕一固定轴转动,初角速度为 ω_0 . 设它所受到的阻力矩与转动角速度成
正比,即 $\mathbf{M} = -k\omega$ (k 为正常数). 它的角速度从 ω_0 变为 $\frac{\omega_0}{2}$ 所需时间为[
(A) $J/2$. (B) J/k .
(C) $(J/k) \ln 2$. (D) $J/2k$.
二、填空题(每小题 4 分, 共 16 分)
11. 一质点的运动方程是 $\vec{r}=R\cos\omega t \vec{i}+R\sin\omega t \vec{j}$, R 、 ω 为正常数. 从 $t=\pi/\omega$ 到 $t=2\pi/\omega$ 时间
内,该质点的位移是,路程是
12. 一质量为 20g 的子弹以 200m/s 的速率射入一固定墙壁内,设子弹所受
阻力与其进入墙壁的深度 x 的关系如图所示,则该子弹能进入墙壁的深度 x(cm)
为,阻力做的功为
13. 质量为 0.25kg 的质点,受 $\vec{F}=t\vec{i}$ (N)的力作用, $t\!=\!0$ 时该质点以 $\vec{v}=\!2\vec{j}$ m/s 的速度通过坐标原点,
该质点任意时刻的速度表达式为,位置矢量表达式为
14. 一质点在二恒力的作用下,位移为 $\triangle \vec{r} = 3\vec{i} + 8\vec{j}$ (m),在此过程中,动能增量为 24J,已知其中一

三、计算题 (每小题 13 分, 共 52 分)

得分

15. 摩托快艇以速率 v_0 行驶,它受到的摩擦阻力与速率平方成正比,可表示为 $F = -kv^2$ (k 为正常数)。 设摩托快艇的质量为 m, 当摩托快艇发动机关闭后,

- (1)求速率 v 随时间 t 的变化规律。
- (2)路程 x 随时间 t 的变化规律。
- 16. 图中A为定滑轮,B为动滑轮,三个物体 m_1 =200g, m_2 =100g, m_3 =50g,滑轮及绳的 质量以及摩擦均忽略不计。(其中 $g=10m/s^2$)求:
 - (1) 每个物体的加速度;
 - (2) 两根绳子的张力 T_1 与 T_2 .

17. 长l=0.40m、质量M=1.50kg的匀质木棒,可绕水平轴 O 在竖直平面内转动, 开始时棒自然竖直悬垂,现有质量m=8g的子弹以v=200m/s的速率从A点射入棒 中,A 点与 O 点的距离为 $\frac{3}{4}l$,如图所示。求:(1)棒开始运动时的角速度;(2)棒 的最大偏转角.

- 18. 一质量为 m 的小球,由顶端沿质量为 M 的圆弧形木槽自静止下滑,设圆弧形槽的半径为 R (如图 所示)。忽略所有摩擦,求
 - (1)小球刚离开圆弧形槽时,小球和圆弧形槽的速度;
 - (2)小球滑到 B 点时对木槽的压力.

四、证明题(共12分)

得分

19. 一个小球与一质量相等的静止小球发生非对心弹性碰撞,证明碰后两小球的运动方向互相垂直.

江 装 製 R 國

安徽大学 2021—2022 学年第 二 学期

《大学物理 A(上)》期中考试试题参考答案及评分标准

一、单选题 (每小题 2 分, 共 20 分)

二、填空题(每小题 4 分, 共 16 分)

11. $2R\overline{i}$

 πR

12. 3cm

400J

13.
$$2t^2\vec{i} + 2\vec{j} (\text{m/s})$$
 $\frac{2}{3}t^3\vec{i} + 2t\vec{j}$ (m)

14. 20J 4J

三、计算题(共52分)

15. **解:** (1) 由牛顿运动定律 F = ma 得 (2 分)

$$-kv^2 = m \frac{\mathrm{d}v}{\mathrm{d}t}$$
, 分离变量 $-\frac{k}{m} \mathrm{d}t = \frac{\mathrm{d}v}{v^2}$

两边积分
$$\int_0^t -\frac{k}{m} dt = \int_{\nu_0}^{\nu} \frac{d\nu}{\nu^2}$$
 得 (3 分)

速率随时间变化的规律为
$$\boldsymbol{v} = \frac{1}{\frac{1}{\boldsymbol{v}_0} + \frac{\boldsymbol{k}}{\boldsymbol{m}} t}$$
 (3 分)

(2) 由位移和速度的积分关系 $\mathbf{x} = \int_0^t \mathbf{v} d\mathbf{t} + \mathbf{x}_0$, 设 $\mathbf{x}_0 = 0$

积分
$$x = \int_0^t v dt = \int_0^t \frac{1}{\frac{1}{v_0} + \frac{k}{m}t} dt = \frac{m}{k} \ln(\frac{1}{v_0} + \frac{k}{m}t) - \frac{m}{k} \ln\frac{1}{v_0}$$
 (3 分)

路程随时间变化的规律为
$$x = \frac{m}{k} \ln(1 + \frac{k}{m} v_0 t)$$
 (2 分)

16. **解:** 设两根绳子的张力分别为 T_1 、 T_2 ; m_2 、 m_3 相对 B 轮的加速度大小为 a_2' ; m_1 、 m_2 、

 m_3 的加速度大小分别为 a_1 、 a_2 、 a_3 。

根据牛顿运动定律

$$m_1 g - T_1 = m_1 a_1 \tag{2 \%}$$

$$m_2 g - T_2 = m_2 a_2 = m_2 (a_2' - a_1) \tag{2 \%}$$

$$m_3 g - T_2 = m_3 (-a_3) = m_3 (-a_2' - a_1)$$
 (2 $\%$)

$$2T_2 - T_1 = 0 (2 \, \%)$$

由以上六式解得

$$a_1 = \frac{1}{5}g = 2(m/s^2)$$
 方向竖直向下 $a_2' = \frac{2}{5}g = 4(m/s^2)$ $a_2 = \frac{1}{5}g = 2(m/s^2)$ 方向竖直向下 $a_3 = \frac{3}{5}g = 6(m/s^2)$ 方向竖直向上 $T_1 = 0.16g = 1.6(N)$ $T_2 = 0.08g = 0.8(N)$ (5分)

17. 解:(1)应用角动量守恒定律

$$m\upsilon \cdot \frac{3}{4}l = \frac{1}{3}Ml^2\omega + m\left(\frac{3}{4}l\right)^2\omega \tag{4.5}$$

得
$$\omega = \frac{\frac{3}{4}m\upsilon}{\left(\frac{1}{3}M + \frac{9}{16}m\right)l} = \frac{\frac{3}{4} \times 8 \times 10^{-3} \times 200}{\left(\frac{1}{3} \times 1.5 + \frac{9}{16} \times 8 \times 10^{-3}\right) \times 0.4} = 5.95(rad/s)$$
 (3 分)

(2) 应用机械能守恒定律

$$\frac{1}{2} \left[\frac{1}{3} M l^2 + m \left(\frac{3}{4} l \right)^2 \right] \omega^2 - M g \frac{l}{2} - m g \frac{3l}{4} = -M g \frac{l}{2} \cos \theta - m g \frac{3l}{4} \cos \theta \tag{4.5}$$

得
$$\cos \theta = 1 - \frac{\frac{2}{3}M + \frac{9}{8}m}{2M + 3m} \cdot \frac{l}{g}\omega^2 = 0.52$$
 $\theta = 58.6^{\circ}$ (2分)

18 **解**:设小球和圆弧形槽的速度分别为 v_1 和 v_2

(1)由动量守恒定律
$$m\upsilon_1 + M\upsilon_2 = 0$$
 (2 分)

由机械能守恒定律
$$\frac{1}{2}mv_1^2 + \frac{1}{2}Mv_2^2 = mgR$$
 (2分)

由上面两式解得

$$\upsilon_{1} = \sqrt{\frac{2MgR}{m+M}} = M\sqrt{\frac{2gR}{(m+M)M}} \qquad \qquad \upsilon_{2} = -m\sqrt{\frac{2gR}{(m+M)M}}$$
 (2 $\dot{\Im}$)

(2)小球相对槽的速度为 $\bar{\upsilon} = \bar{\upsilon}_1 - \bar{\upsilon}_2$

$$\upsilon = \upsilon_1 - \upsilon_2 = (M + m)\sqrt{\frac{2gR}{(m+M)M}}$$
 (2 $\%$)

竖直方向应用牛顿运动第二定律

$$N - mg = m\frac{v^2}{R} \tag{2 \%}$$

$$N' = N = mg + m\frac{v^2}{R} = mg + (M + m)^2 \frac{2mg}{(m+M)M} = 3mg + \frac{2m^2g}{M}$$
 (3 \(\frac{\psi}{R}\))

四、证明题(共12分)

19. 证:两小球碰撞过程中,机械能守恒,动量守恒

$$\frac{1}{2}m\upsilon_0^2 = \frac{1}{2}m\upsilon_1^2 + \frac{1}{2}m\upsilon_2^2 \qquad \qquad \upsilon_0^2 = \upsilon_1^2 + \upsilon_2^2 \qquad (1)$$

$$m\vec{v}_0 = m\vec{v}_1 + m\vec{v}_2$$
 $\vec{v}_0 = \vec{v}_1 + \vec{v}_2$ (2)

由(2)式可以作出矢量三角形,又由(1)式可知三矢量大小满足勾股定理定理,且 \bar{v}_0 为

斜边,因此 \bar{v}_1 与 \bar{v}_2 是互相垂直的 (4分)

