

Operating System Fundamentals

Chapter Two

COMPUTER SYSTEM STRUCTURE

Table of Content

- Computer System Operation
- I/O Structure
- Storage Structure
- Hardware Protection

COMPUTER SYSTEM OPERATION

Computer System Operation

- CPU and device controllers are connected through common busses (data, address, and control).
- CPU and device controllers execute concurrently.
- Memory controller synchronizes access to memory.

Computer System Operation Cont'd

Computer System Operation Cont'd

- Each device controller is in charge of a particular device type.
- Each device controller has a local buffer
- CPU moves data from/to main memory to/from local buffers
- Device controller informs CPU that it has finished its operation by causing an *interrupt*.

Computer System Startup

- 1. Power up
- 2. Initial program: bootstrap
 - Stored in ROM
 - Initialize:
 - 1. CPU registers
 - 2. Device controllers
 - 3. Memory contents
 - 4. Load the operating system (kernel)
- 3. Kernel starts the first process, init
- 4. Init waits for an event (interrupt) to occur

Interrupts

- A signal sent to the CPU
- Interrupt transfers control to the interrupt service routine generally, through the interrupt vector, which contains the addresses of all the service routines.
- Interrupts:
 - Hardware Interrupts
 - Software Interrupts: system calls

Interrupts Cont'd

- A trap is a software generated interrupt caused by:
 - Error: division by zero or invalid memory access
 - Request: from a user program to O/S
- An operating system is interrupt driven.

Interrupt Handling

- 1. CPU is interrupted
- 2. CPU stops current process
- 3. CPU transfers execution to a fixed location
- 4. CPU executes interrupt service routine
- 5. CPU resumes process
- Notes:
 - Interrupts must be handled quickly
 - Interrupted process information must be stored

I/O STRUCTURE

I/O Structure

Controllers:

- Is in charge of a specific type of device
- Moves data between device and local buffer
- A controller may have more than one device
- Buffer size varies

Two I/O Methods

Synchronous I/O:

- Process request I/O operation
- I/O operation is started
- I/O Operation is complete
- Control is returned to the user process

Asynchronous I/O:

- Process Request I/O operation
- I/O operation is started
- Control is returned immediately to the user process
- I/O continues while system operations occur

Two I/O Methods cont'd

Synchronous

Asynchronous

Direct Memory Access Structure

- Used for high-speed I/O devices able to transmit information at close to memory speeds.
- Device controller transfers blocks of data from buffer storage directly to main memory without CPU intervention.
- Only one interrupt is generated per block, rather than the one interrupt per byte.

Direct Memory Access Structure Cont'd

DMA transfer from disk to memory bypasses the CPU.

STORAGE STRUCTURE

Storage Structure

Main memory

• Only large storage media that the CPU can access directly.

Secondary storage

• Extension of main memory that provides large nonvolatile storage capacity.

Storage-Device Hierarchy

Difference of Storage Devices

- Speed
- Cost
- Capacity
- Volatility
- Reliability
- Portability

RAM

- Array of memory words
- Each byte has an address
- Memory Address:
 - Physical
 - Logical

• CPU Instructions:

- Load: moves a word from main memory to CPU register
- Store: move a word from CPU register to main memory

Magnetic Disk

- Rigid metal or glass platters covered with magnetic recording material
 - Disk surface is logically divided into tracks, which are subdivided into sectors.
 - The disk controller determines the logical interaction between the device and the computer.

Magnetic Disk cont'd

Magnetic Tapes

Early secondary storage

Slow access time

- Usage
 - Backup
 - Storage of infrequently used information

HARDWARE PROTECTION

Hardware Protection

- Early OS:
 - Single user
 - Programmer had full control of hardware
 - Programmer was responsible of I/O
- Error in a program
 - Single task
 - Only one program affected
 - Multi task
 - Could cause problems to other programs
- Desktop OS allow a program to access any part of memory or affect other programs instructions or data

Error Handling

Errors

- Illegal instruction
- Infinite loop
- Access of other memory addresses

Handling Errors

- 1. Errors are detected by hardware
- 2. Hardware trap the error to the O/S
- 3. Errors are handled by the O/S
- 4. O/S terminates process
- 5. O/S dumps the process to disk (if needed)

Ensuring OS Proper Operation

- 1. I/O Protection: illegal instructions
 - Dual Mode (System Mode & User Mode)
- 2. Memory protection: illegal memory access
 - Base & limit registers

- 3. CPU Protection: infinite loops
 - Timers

