Joint Probability

Let X and Y be two discrete random variables. Let p(x,y) be a function such that p(x,y) = P(X = x, Y = y), then p(x,y) is called joint probability function of X and Y, if the following conditions are satisfied

(i)
$$p(x, y) \ge 0$$

(ii)
$$\sum_{i=1}^{n} \sum_{j=1}^{m} P(x_i, y_j) = 1$$

Marginal distribution of X

In the bivariate probability distribution, if the probability mass function of only X is taken then it is called Marginal distribution of X, denoted by P_i or $P(x_i)$ or P(x).

$$P(x_i) = P_i = \sum_{j=1}^{m} P(x_i, y_j)$$

Marginal distribution of Y

In the bivariate probability distribution, if the probability mass function of only Y is taken then it is called Marginal distribution of Y, denoted by P_i or $P(y_i)$ or P(y).

$$P(y_j) = P_j = \sum_{i=1}^n P(x_i, y_j)$$

Joint probability distribution of X and Y

The set of values of the $P(x_i, y_j) = P_{ij}$ for i = 1, 2, ... n, j = 1, 2, ... m is called the joint probability distribution of X and Y

Y	y_1	y_1		y_j		Ут	$\sum_{i} y_{i}$
x_1	$p(x_1, y_1)$	$p(x_1, y_2)$	•••	$p(x_1, y_j)$	•••	$p(x_1, y_m)$	P_1
x_2	$p(x_2, y_1)$	$p(x_2, y_2)$		$p(x_2, y_j)$		$p(x_2, y_m)$	P_2
:	:		:	•••	:	:	:
x_i	$p(x_i, y_1)$	$p(x_i, y_2)$		$p(x_i, y_j)$		$p(x_i, y_m)$	P_i
:	:	•••	:	•••	:	:	:
x_n	$p(x_n, y_1)$	$p(x_n, y_2)$		$p(x_n, y_j)$		$p(x_n, y_m)$	P_n
$\sum_{i} x_{i}$	Q_1	Q_2		Q_j		Q_m	1

Independent Random variables

Two random variables X and Y are said to be independent, if their joint probability mass function equal to the product of their marginal distribution

$$P(x_i, y_j) = P(x_i)P(y_j)$$

$$OR$$

$$P(X = x_i, Y = y_j) = P(X = x_i)P(Y = y_j)$$

$$OR$$

$$E(XY) = E(X)E(Y)$$

Expectation (mean), Variance and Covariance

If X and Y are two discrete random variables having the joint probability P(x, y) then the expectations of X and Y are defined as follows

$$\mu_X = E(X) = \sum_{i=1}^m x_i P(x_i) = \sum x p(x)$$

$$\mu_Y = E(Y) = \sum_{i=1}^n y_i P(y_i) = \sum y p(y)$$

$$E(XY) = \sum xyp(x, y)$$

Variance

$$V(X) = \sigma_X^2 = E(X^2) - [E(X)]^2$$

$$V(Y) = \sigma_Y^2 = E(Y^2) - [E(Y)]^2$$

Standard deviation

$$SD(X) = \sigma_X = \sqrt{E(X^2) - [E(X)]^2}$$

$$SD(Y) = \sigma_Y = \sqrt{E(Y^2) - [E(Y)]^2}$$

Coefficient of correlation r(X,Y) or ho

$$r(X,Y) = \frac{covariance(X,Y)}{\sigma_X \sigma_Y}$$

$$covariance(X,Y) = E(XY) - E(X)E(Y)$$

Note:

$$E(X + Y) = E(X) + E(Y)$$

If X and Y are independent random variables then E(XY) = E(X)E(Y) or covariance(X,Y) = 0

Problems:

1. In the Joint probability distribution, find the correlation coefficient.

X	1	2	3
2	0.2	0.1	0
4	0.1	0.1	0.1
6	0.2	0.2	0

Solution: Given

X	1	2	3	P(X)
2	0.2	0.1	0	0.3
4	0.1	0.1	0.1	0.3
6	0.2	0.2	0	0.4
P(Y)	0.5	0.4	0.1	1

Marginal distribution of X is

Χ	2	4	6
P(X)	0.3	0.3	0.4

Marginal distribution of Y is

Υ	1	2	3
P(Y)	0.5	0.4	0.1

$$E(X) = \sum xp(x) = (2 \times 0.3) + (4 \times 0.3) + (6 \times 0.4) = 4.2$$

$$E(Y) = \sum yp(y) = (1 \times 0.5) + (2 \times 0.4) + (3 \times 0.1) = 1.6$$

$$E(X^2) = \sum x^2 p(x) = (2^2 \times 0.3) + (4^2 \times 0.3) + (6^2 \times 0.4) = 20.4$$

$$E(Y^2) = \sum y^2 p(y) = (1^2 \times 0.5) + (2^2 \times 0.4) + (3^2 \times 0.1) = 3$$

$$V(X) = E(X^2) - [E(X)]^2$$

$$V(X) = 20.4 - 4.2^2 = 2.76$$

$$\sigma_X = \sqrt{V(X)} = 1.6613$$

$$V(Y) = E(Y^2) - [E(Y)]^2$$

$$V(Y) = 3 - 1.6^2 = 0.44$$

$$\sigma_Y = \sqrt{V(Y)} = 0.6633$$

$$E(XY) = \sum xyp(x,y)$$

X	1	2	3
2	0.2	0.1	0
4	0.1	0.1	0.1
6	0.2	0.2	0

$$E(XY) = (2 \times 1 \times 0.2) + (2 \times 2 \times 0.1) + (2 \times 3 \times 0)$$
$$+(4 \times 1 \times 0.1) + (4 \times 2 \times 0.1) + (4 \times 3 \times 0.1)$$
$$+(6 \times 1 \times 0.2) + (6 \times 2 \times 0.2) + (6 \times 3 \times 0)$$
$$E(XY) = 6.8$$

$$cov(X,Y) = E(XY) - E(X)E(Y) = 6.8 - (4.2 \times 1.6) = 0.08$$

$$r = \frac{cov(X, Y)}{\sigma_X \sigma_y} = \frac{0.08}{1.6613 \times 0.6633} = 0.0725$$

2. A joint probability distribution is given by the following table

X	-3	2	4
1	0.1	0.2	0.2
3	0.3	0.1	0.1

Find the (i) Marginal distribution of X and Y

(ii)
$$\mu_x$$
, μ_y , σ_x , σ_y

(iii) Correlation coefficient

Solution:

X	-3	2	4	P(X)
1	0.1	0.2	0.2	0.5
3	0.3	0.1	0.1	0.5
P(Y)	0.4	0.3	0.3	1

Marginal distribution of X

Χ	1	3
P(X)	0.5	0.5

Marginal distribution of Y

Υ	-3	2	4
P(Y)	0.4	0.3	0.3

$$\mu_X = E(X) = \sum xp(x) = (1 \times 0.5) + (3 \times 0.5) = 2$$

$$\mu_Y = E(Y) = \sum yp(y) = (-3 \times 0.4) + (2 \times 0.3) + (4 \times 0.3) = 0.6$$

$$E(X^2) = \sum x^2 p(x) = (1^2 \times 0.5) + (3^2 \times 0.5) = 5$$

$$E(Y^2) = \sum y^2 p(y) = ((-3)^2 \times 0.4) + (2^2 \times 0.3) + (4^2 \times 0.3) = 9.6$$

$$V(X) = E(X^2) - [E(X)]^2$$

$$V(X) = 5 - 2^2 = 1$$

$$V(Y) = E(Y^2) - [E(Y)]^2$$

$$V(Y) = 9.6 - 0.6^2 = 9.24$$

$$\sigma_X = \sqrt{V(X)} = 1$$

$$\sigma_Y = \sqrt{V(Y)} = 3.0397$$

$$E(XY) = \sum xyp(x,y) = -0.3 + 0.4 + 0.8 - 2.7 + 0.6 + 1.2 = 0$$

$$COV(X,Y) = E(XY) - E(X)E(Y) = 0 - (2 \times 0.6) = -1.2$$

$$r = \frac{COV(X,Y)}{\sigma_X \sigma_V} = \frac{-1.2}{3.0397} = -0.3947$$

3. A coin is tossed three times. Let X be equal to 0 or 1 according as a head or a tail occurs on the first toss. Let Y be equal to the total number of heads which occurs. Determine (i) the marginal distributions of X and Y, and (ii) the joint distribution of X and Y, (iii) expected values of X, Y, X + Y and XY, (iv) σ_X and σ_Y , (v) Cov(X,Y) and $\rho(X,Y)$.

Solution: Here the sample space is given by

$$S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$$

(i) The distribution of the random variable X is given by the following table

X	0	1
(First toss Head or Tail)	(First toss Head)	(First toss Tail)
P(X)	4	4
(Probability of random variable X)	8	8

which is the marginal distribution of the random variable X.

The distribution of the random variable Y is given by the following table

Y	0	1	2	3
(Total number of Heads)	(zero Heads)	(one Head)	(two Head)	(three Head)
P(Y)	1	3	3	1
(Probability of random variable Y)	8	8	8	8

which is the marginal distribution of the random variable Y.

(ii) The joint distribution of the random variables X and Y is given by the following

() · · · · · · · · · · · · · · · · · ·				0
Y	0	1	2	3
X	(zero Heads)	(one Head)	(two Head)	(three Head)
0 (First toss Head)	0	$\frac{1}{8}$	$\frac{2}{8}$	$\frac{1}{8}$
1 (First toss Tail)	$\frac{1}{8}$	$\frac{2}{8}$	$\frac{1}{8}$	0

$$E[X] = \mu_X = \sum x_i P(x_i) = \left(0 \times \frac{4}{8}\right) + \left(1 \times \frac{4}{8}\right) = \frac{4}{8} = 0.5$$

$$E[Y] = \mu_Y = \sum y_j P(y_j) = \left(0 \times \frac{1}{8}\right) + \left(1 \times \frac{3}{8}\right) + \left(2 \times \frac{3}{8}\right) + \left(3 \times \frac{1}{8}\right) = \frac{12}{8} = 1.5$$

$$E(X + Y) = E(X) + E(Y) = 0.5 + 1.5 = 2$$

OR

$$\begin{split} E[X+Y] &= \sum \sum_{i=1}^{n} P_{ij} \big(x_i + y_j \big) \\ &= P_{11} \big(x_1 + y_1 \big) + P_{12} \big(x_1 + y_2 \big) + P_{13} \big(x_1 + y_3 \big) + P_{14} \big(x_1 + y_4 \big) + P_{21} \big(x_2 + y_1 \big) \\ &\quad + P_{22} \big(x_2 + y_2 \big) + P_{23} \big(x_2 + y_3 \big) + P_{24} \big(x_2 + y_4 \big) \\ &= 0 \big(0 + 0 \big) + \frac{1}{8} \big(0 + 1 \big) + \frac{2}{8} \big(0 + 2 \big) + \frac{2}{8} \big(1 + 1 \big) + \frac{1}{8} \big(1 + 2 \big) + 0 \big(1 + 3 \big) = \frac{16}{8} = 2. \end{split}$$

$$\begin{split} E(XY) &= \sum \sum_{i=1}^{n} P_{ij} \big(x_i y_j \big) \\ &= P_{11}(x_1 y_1) + P_{12}(x_1 y_2) + P_{13}(x_1 y_3) + P_{14}(x_1 y_4) + P_{21}(x_2 y_1) + P_{22}(x_2 y_2) + P_{23}(x_2 y_3) \\ &\quad + P_{24}(x_2 y_4) \\ &= 0(0 \times 0) + \frac{1}{8}(0 \times 1) + \frac{2}{8}(0 \times 2) + \frac{2}{8}(1 \times 1) + \frac{1}{8}(1 \times 2) + 0(1 \times 3) = \frac{1}{2} = 0.5 \end{split}$$

$$\sigma_{X}^{2} = E[X^{2}] - [E(X)]^{2} = \left(0^{2} \times \frac{4}{8}\right) + \left(1^{2} \times \frac{4}{8}\right) - \left(\frac{4}{8}\right)^{2} = \frac{1}{4}$$

$$\sigma_{Y}^{2} = E[Y^{2}] - [E(Y)]^{2} = \left(0^{2} \times \frac{1}{8}\right) + \left(1^{2} \times \frac{3}{8}\right) + \left(2^{2} \times \frac{3}{8}\right) + \left(3^{2} \times \frac{1}{8}\right) - \left(\frac{2}{8}\right)^{2} = \frac{3}{4}$$

$$Cov(X, Y) = E(XY) - E(X)E(Y) = \frac{1}{2} - \frac{1}{2} \times \frac{3}{2} = -\frac{1}{4}$$

$$r = \rho(X, Y) = \frac{\text{Cov}(X, Y)}{\sigma_X \sigma_Y} = \frac{-1/4}{(1/2)(\sqrt{3}/2)} = -\frac{1}{\sqrt{3}}$$

4. A joint probability distribution is given by the following table

X	2	3	4
1	0.06	0.15	0.09
2	0.14	0.35	0.21

Determine the marginal distributions of X and Y. Also verify that X and Y are independent.

Solution:

X	2	3	4	P(X)
1	0.06	0.15	0.09	0.3
2	0.14	0.35	0.21	0.7
P(Y)	0.2	0.5	0.3	1

Here

$$P_1 = 0.3, P_2 = 0.7$$

$$Q_1 = 0.2, Q_2 = 0.5, Q_3 = 0.3$$

$$P_{11} = P_1 Q_1 = 0.06 = P(x_1, y_1)$$

$$P_{12} = P_1 Q_2 = 0.15 = P(x_1, y_2)$$

$$P_{13} = P_1 Q_3 = 0.09 = P(x_1, y_3)$$

$$P_{21} = P_2 Q_1 = 0.14 = P(x_2, y_1)$$

$$P_{22} = P_2 Q_2 = 0.35 = P(x_2, y_2)$$

$$P_{23} = P_2 Q_3 = 0.2 = P(x_2, y_3)$$

Thus, $P_iQ_j=P_{ij}$ for all values of i and j. Accordingly, X and Y are stochastically independent.

OR

Alternate method:

Marginal distribution of X

Χ	1	2
P(X)	0.3	0.7

$$E(X) = 1.7$$

Υ	2	3	4
P(Y)	0.2	0.5	0.3

$$E(Y) = 3.1$$

$$E(XY) = 0.12 + 0.45 + 0.36 + 0.56 + 2.1 + 1.68 = 5.27$$

$$E(XY) = E(X)E(Y) = (1.7 \times 3.1) = 5.27$$

Thus, X and Y are stochastically independent.

5. A probability distributions of two stochastically independent random variables X and Y are given by the following table.

X	0	1
P(X)	0.2	0.8

Y	1	2	3
P(Y)	0.1	0.4	0.5

Find the joint probability distribution. Also compute E(X) and E(Y).

Solution:

$$P_{11} = P(X = 0) \times P(Y = 1) = 0.2 \times 0.1 = 0.02$$

$$P_{12} = P(X = 0) \times P(Y = 2) = 0.2 \times 0.4 = 0.08$$

$$P_{13} = P(X = 0) \times P(Y = 3) = 0.2 \times 0.5 = 0.1$$

$$P_{21} = P(X = 1) \times P(Y = 1) = 0.8 \times 0.1 = 0.08$$

$$P_{22} = P(X = 1) \times P(Y = 2) = 0.8 \times 0.4 = 0.32$$

$$P_{23} = P(X = 1) \times P(Y = 3) = 0.8 \times 0.5 = 0.4$$

Hence the joint probability distribution is

X \Y	1	2	3	P(X)
0	0.02	0.08	0.1	0.2
1	0.08	0.32	0.4	0.8
P(Y)	0.1	0.4	0.5	1

$$E(X) = 0.8$$

$$E(Y) = 2.4$$

$$E(XY) = \sum xyp(x, y) = 0 + 0 + 0 + 0.08 + 0.64 + 1.2 = 1.92$$

$$E(XY) = E(X)E(Y) = (0.8)(2.4) = 1.92$$

6. The joint probability distribution of two random variables X and Y is given by the following table.

X	1	3	9
2	1/8	1/24	1/12
4	1/4	1/4	0
6	1/8	1/24	1/12

Find the marginal distribution of X and Y, and evaluate cov(X, Y).

Solution: From the table, we note that

$$P_{1} = \frac{1}{8} + \frac{1}{24} + \frac{1}{12} = \frac{1}{4}$$

$$P_{2} = \frac{1}{4} + \frac{1}{4} + 0 = \frac{1}{2}$$

$$P_{3} = \frac{1}{8} + \frac{1}{24} + \frac{1}{12} = \frac{1}{4}$$

$$Q_{1} = \frac{1}{8} + \frac{1}{4} + \frac{1}{8} = \frac{1}{2}$$

$$Q_{2} = \frac{1}{24} + \frac{1}{4} + \frac{1}{24} = \frac{1}{3}$$

$$Q_{3} = \frac{1}{12} + 0 + \frac{1}{12} = \frac{1}{6}$$

The marginal distribution of X is given by the table:

x_i	2	4	6
P_i	1/4	1/2	1/4

And the marginal distribution of Y is given by the table:

y_j	1	3	9
Q_{j}	1/2	1/3	1/6

Therefore, the means of these distributions are respectively,

$$\mu_X = \sum x_i P(x_i) = \left(2 \times \frac{1}{4}\right) + \left(4 \times \frac{1}{2}\right) + \left(6 \times \frac{1}{4}\right) = 4$$

$$\mu_Y = \sum y_j P(y_j) = \left(1 \times \frac{1}{2}\right) + \left(3 \times \frac{1}{2}\right) + \left(9 \times \frac{1}{6}\right) = 3$$

$$\begin{split} \mathrm{E}[XY] &= \sum_{i} \sum_{j} P_{ij} \ x_{i} y_{j} \\ &= \left(2 \times \frac{1}{8}\right) + \left(6 \times \frac{1}{24}\right) + \left(18 \times \frac{1}{12}\right) + \left(4 \times \frac{1}{4}\right) + \left(12 \times \frac{1}{4}\right) + 36 \times 0 + \left(6 \times \frac{1}{8}\right) + \\ &\left(18 \times \frac{1}{24}\right) + \left(54 \times \frac{1}{12}\right) \\ &= 2 + 4 + 6 = 12 \\ Cov \ (X,Y) &= E[XY] - \mu_{X} \mu_{Y} = 12 - 12 = 0 \end{split}$$

$$Cov(X,Y) = E[XY] - \mu_X \mu_Y = 12 - 12 = 0$$

 $\rho(X,Y) = 0.$

7. For the following bivariate probability distribution of X and Y find

(i)
$$P(X \le 1, Y = 2)$$
 (ii) $P(X \le 1)$ (iii) $P(Y = 3)$ (iv) $P(Y \le 3)$ (v) $P(X < 3, Y \le 4)$

X	1	2	3	4	5	6
0	0	0	1/32	2/32	2/32	3/32
1	1/16	1/16	1/8	1/8	1/8	1/8
2	1/32	1/32	1/64	1/64	0	2/64

Solution:

X	1	2	3	4	5	6	P(X)
0	0	0	1/32	2/32	2/32	3/32	8/32
1	1/16	1/16	1/8	1/8	1/8	1/8	10/16
2	1/32	1/32	1/64	1/64	0	2/64	8/64
P(Y)	3/32	3/32	11/64	13/64	6/32	16/64	1

$$P(X \le 1, Y = 2) = P(X = 0, Y = 2) + P(X = 1, Y = 2) = 0 + \frac{1}{16} = \frac{1}{16}$$

$$P(X \le 1) = P(X = 0) + P(X = 1) = \frac{8}{32} + \frac{10}{16} = \frac{7}{8}$$

$$P(Y = 3) = \frac{11}{64}$$

$$P(Y \le 3) = \frac{3}{32} + \frac{3}{32} + \frac{11}{64} = \frac{23}{64}$$

$$P(X < 3, Y \le 4) = P(X = 0, Y \le 4) + P(X = 1, Y \le 4) + P(X = 2, Y \le 4)$$

$$= P(X = 0, Y = 1) + P(X = 0, Y = 2) + P(X = 0, Y = 3) + P(X = 0, Y = 4)$$

$$+P(X = 1, Y = 1) + P(X = 1, Y = 2) + P(X = 1, Y = 3) + P(X = 1, Y = 4)$$

$$+P(X = 2, Y = 1) + P(X = 2, Y = 2) + P(X = 2, Y = 3) + P(X = 2, Y = 4)$$

$$P(X < 3, Y \le 4) = \left(0 + 0 + \frac{1}{32} + \frac{2}{32}\right) + \left(\frac{1}{16} + \frac{1}{16} + \frac{1}{8} + \frac{1}{8}\right) + \left(\frac{1}{32} + \frac{1}{32} + \frac{1}{64} + \frac{1}{64}\right) = \frac{9}{16}$$

8. For the following bivariate probability distribution, find the value of k.

X	1	2	3
-5	0	0.1	0.1
0	0.1	k	0.2
5	0.2	0.1	0

Solution:

X	1	2	3	P(X)
-5	0	0.1	0.1	0.2
0	0.1	k	0.2	0.3+k
5	0.2	0.1	0	0.3
P(Y)	0.3	0.2+k	0.3	1

$$0.8 + k = 1$$

$$k = 0.2$$