Overheads: - Outline Handout: Sub/Elim

Feedback Quiz #2

Recap Wednesday:

Competition Between the 4 Reactions:

- 1) Is a C⁺ likely formed?
 - 1° R-LG ⇒ NO
 - $-3^{\circ} \Rightarrow YES$ (except strong base = E2)
 - 2° / allylic ⇒ strong base/Nu⁻, aprotic = NO weak base/Nu⁻, protic = YES
- 2) Substitution or Elimination? (Elim needs β-H)
 - a) If $C+S_N1$ & E1 compete
 - b) If no C^+ S_N 2 & E2 compete
 - E2 needs strong base (OH or better)

Also consider sterics:

E2 only: bulky bases

<u>Last deciding factor</u>: Temperature! (consider LAST)

 \Rightarrow increasing temperature increases rate of <u>all</u> reactions,

but rate of elimination increases more!

(effect of entropy: $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$)

- elimination gives more molecules $\,\,:\,\,$ more S

:. E1 / E2 favored if HOT (lab 2 vs lab 3!)

Substitution and Elimination Reactions in Synthesis

Synthesis: - always want desired product to be major (even better, only!) product

Must consider: - competing reactions (sub *vs* elim etc)

- regiochemistry
- stereochemistry

B) Substitution: important application: R-O-H \rightarrow R-O-R' (alcohol \rightarrow ether)

Williamson Ether Synthesis:

 \Rightarrow need to consider competition from E2 (RO = strong base)

Reactions of Alcohols R-O-H

<u>Seen:</u> - can turn into strong Nu⁻ (alkoxide)

$$R - O - H \xrightarrow{\text{Na}} R - O = R - O$$

- can turn into good LG by protonation

$$R \longrightarrow H \longrightarrow R \longrightarrow H \longrightarrow R \oplus + H_2O$$
- lab 2: S_N1
- lab 3: E1

Substitution Reactions of Alcohols

If 1° must be S_N2 :

If HX has X- that is <u>not</u> a good Nu⁻, can get <u>ethers</u> as products:

e.g. OH
$$H_3C$$
 CH_3 H_3C H_3 H_3