《微分方程1》第十三讲

教师 杨利军

清华大学数学科学系

2017年12月20日

饱和解特征

Theorem

考虑方程组y' = f(x,y), 其中f(x,y) 在开区域 Ω 上满足标准假设. 设y = $\phi(x)$ 是一个饱和解, 其最大存在区间为 (α,β) , 则对开域 Ω 中的任意紧集 $\Omega_1 \subset \Omega$, 存在 α_1 , $\beta_1 \in (\alpha,\beta)$, 使得 $(x,\phi(x)) \not\in \Omega_1$, $\forall x \in (\alpha,\alpha_1) \cup (\beta_1,\beta)$.

注1: 由于定理中的紧集 Ω_1 可以任意给定, 故饱和解曲线可以任意逼近开域 Ω 的边界.

i2: 如果将独立变量x 理解为时间变量的话, 定理的意思是, 对于开域 Ω 中的任意紧集 $\Omega_1\subset\Omega$, 在过去的某个时刻 α_1 之前, 以及在将来的某个时刻 β_1 之后, 饱和解曲线将逃离紧集 Ω_1 .

自治方程的饱和解特征

定理: 考虑方程 $\frac{dy}{dx} = f(y)$, 这里映射 $f: D \subset \mathbb{R}^n \to \mathbb{R}^n$ 连续可 微,其中D是IRⁿ中的开区域。(右端函数f不显含独立变量x的方程称 为自治方程). 设 $\mathbf{v} = \phi(\mathbf{x})$ 是方程的一个饱和解, 其最大存在区间 $\mathcal{A}(\alpha,\beta)$, 则对于任意紧集 $D_1 \subset D$, 若 β < $+\infty$, 则 $\exists \beta_1 \in (\alpha, \beta)$, 使得 $\phi(x) \notin D_1$, $\forall x \in (\beta_1, \beta)$; 定理的证明留作习题, 为证明前述定理, 即一般方程的饱和解 特征, 需先建立两个引理.

引理1

Lemma (1)

记号与假设同上述定理,则对任意 $(x_0,y_0)\in\Omega$,存在 $\delta,h>0$,使得对任意 $(\xi,\eta)\in R_\delta(x_0,y_0)$,Cauchy 问题 y'=f(x,y), $y(\xi)=\eta$ 的解 $\phi(x,\xi,\eta)$ 至少在区间 $(\xi-h,\xi+h)$ 上存在,这里 $R_\delta(x_0,y_0)$ 记闭矩形 $|x-x_0|<\delta,|y-y_0|<\delta$.

 \underline{i} : 引理中的常数 h > 0 与初值点 (ξ, η) 无关, 而Piacrd 存在 唯一性定理中的h 与初始点有关.

<u>约定</u>: 为了强调解关于初值的依赖关系, 往下将记Cauchy 问题 $y'=f(x,y),\ y(\xi)=\eta$ 的饱和解为 $\phi(x,\xi,\eta)$.

引理1证明

 \underline{ii} : 由于 Ω 为开区域,点 $(x_0,y_0)\in\Omega$ 是内点,故存在 $\delta>0$,使得闭矩形 $R_{2\delta}(x_0,y_0)$: $|x-x_0|\leq 2\delta, |y-y_0|\leq 2\delta$ 包含在开域 Ω 之中.记 $M:=\max\{|f(x,y)|,(x,y)\in R_{2\delta}(x_0,y_0)\}$.定义 $h:=\min\left\{\delta,\frac{\delta}{M}\right\}.$

现断言上述定义的 $\delta>0$ 和h>0 满足Lemma 1 中的要求, 即对任意 $(\xi,\eta)\in R_{\delta}(x_0,y_0)$, 解 $\phi(x,\xi,\eta)$ 至少在 $(\xi-h,\xi+h)$ 上存在.

证明续1

断言之证明:对任意 $(\xi,\eta) \in R_{\delta}(x_0,y_0)$, 显然有

$$\mathsf{R}_{\delta}(\xi,\eta) = \{(\mathsf{x},\mathsf{y}), |\mathsf{x}-\xi| \leq \delta, |\mathsf{y}-\eta| \leq \delta\} \subset \mathsf{R}_{2\delta}(\mathsf{x}_0,\mathsf{y}_0).$$

由Picard 定理知解 $\phi(\mathbf{x}, \xi, \eta)$ 至少在 $\left(\xi - \mathbf{h}(\xi, \eta), \xi + \mathbf{h}(\xi, \eta)\right)$

上存在, 这里

$$h(\xi,\eta) := \min \left\{ \delta, \frac{\delta}{\mathsf{M}(\xi,\eta)} \right\},$$

$$\mathsf{M}(\xi,\eta) := \max\{|\mathsf{f}(\mathsf{x},\mathsf{y})|, (\mathsf{x},\mathsf{y}) \in \mathsf{R}_{\delta}(\xi,\eta)\}.$$

证明续2

显然
$$M(\xi,\eta) \leq M$$
. 由此得到 $h(\xi,\eta) \geq h$. 因此对任意 (ξ,η) $\in R_{\delta}(x_0,y_0)$, 解 $\phi(x,\xi,\eta)$ 至少在区间 $(\xi-h,\xi+h)$ 上存在.

Lemma 1 得证.

引理2

Lemma (2)

记号与假设同上,对任意给定的紧集 $\Omega_1\subset\Omega$,存在h > 0,使得对任意 $(\xi,\eta)\in\Omega_1$,解 $\phi(x,\xi,\eta)$ 至少在开区间 $(\xi-h,\xi+h)$ 上存在,这里h > 0 与初始点 (ξ,η) 无关,仅与紧集 Ω_1 有关.

引理2证明

证: 由Lemma 1 知对任意点 $(x_0,y_0)\in\Omega_1$, 存在 $\delta=\delta(x_0,y_0)$ >0, $h=h(x_0,y_0)>0$, 使得对任意 $(\xi,\eta)\in R_\delta(x_0,y_0)$, 解 $\phi(x,\xi,\eta)$ 至少在 $(\xi-h,\xi+h)$ 上存在. 记 $R^0_\delta(x_0,y_0)$ 为 $R_\delta(x_0,y_0)$ 的内部, 即 $R^0_\delta(x_0,y_0)$: $|x-x_0|<\delta,|y-y_0|<\delta$. 显然开集族

$$\left\{\mathsf{R}^0_\delta(\mathsf{x}_0,\mathsf{y}_0),(\mathsf{x}_0,\mathsf{y}_0)\in\Omega_1\right\}$$

是紧集 Ω_1 的一个开覆盖. 根据有限覆盖定理可知 Ω_1 存在有限的开覆盖

$$\Omega_1 \subset \bigcup_{j=1}^m R^0_{\delta_j}(\textbf{x}_j,\textbf{y}_j),$$

证明续

 h_1, h_2, \dots, h_m , 则h 满足Lemma 2 中的要求, 这 $\mathbb{E} \mathbf{h}_k = \mathbf{h}(\mathbf{x}_k, \mathbf{y}_k) > \mathbf{0}$ 记开矩形 $\mathbf{R}_{\delta_k}^0(\mathbf{x}_k, \mathbf{y}_k)$ 中共同的存在半 $\mathcal{E}_{\mathsf{h}_{\mathsf{k}}} > 0$, 即对任意点 $(\xi, \eta) \in \mathsf{R}^{0}_{\delta_{\mathsf{k}}}(\mathsf{x}_{\mathsf{k}}, \mathsf{y}_{\mathsf{k}})$, 解 $\phi(\mathsf{x}, \xi, \eta)$ 至少 $1 \leq k \leq m$, 使得 $(\xi, \eta) \in R^0_{\delta_k}(x_k, y_k)$, 于是解 $\phi(x, \xi, \eta)$ 至少 $\Delta(\xi - h_k, \xi + h_k)$ 上存在, 从而至少在($\xi - h, \xi + h$) 上存在. Lemma 2 得证.

定理证明

 \overline{u} : 只证 β_1 的存在性. 关于 α_1 的存在性完全类似.

情形一: $\beta = +\infty$. 由于紧集 Ω_1 有界, 故存在A > 0, B > 0,

使得 Ω_1 包含在开矩形|x|<A, |y|<B 之中. 取 $eta_1=A+1$ 即

可使得 $(x,\phi(x))\not\in\Omega_1$, $\forall x\in(\beta_1,+\infty)$. 结论成立.

情形二: $eta<+\infty$. 由Lemma 2 知对紧集 Ω_1 存在h > 0, 使得

对任意 $(\xi, \eta) \in \Omega_1$, 解 $\phi(x, \xi, \eta)$ 至少在 $(\xi - h, \xi + h)$ 上存在.

取 $\beta_1 = \beta - h$, 则可断言 $(x, \phi(x)) \not\in \Omega_1$, $\forall x \in (\beta_1, \beta)$.

证明续

反证. 若不然, 则存在 $x_1 \in (\beta_1, \beta)$, 使得 $(x_1, \phi(x_1)) \in \Omega_1$. 根据Lemma 2 知解 $\phi(x, x_1, y_1)$, 至少在 $(x_1 - h, x_1 + h)$ 上存在,这里 $y_1 = \phi(x_1)$. 定义

$$\phi^*(\mathbf{x}) := \left\{ \begin{array}{cc} \phi(\mathbf{x}), & \mathbf{x} \in (\alpha, \mathbf{x}_1) \\ \\ \phi(\mathbf{x}, \mathbf{x}_1, \mathbf{y}_1), & \mathbf{x} \in [\mathbf{x}_1, \mathbf{x}_1 + \mathbf{h}). \end{array} \right.$$

不难看出 $\phi^*(\mathbf{x})$ 是解,并且是解 $\phi(\mathbf{x})$ 的一个延拓. 因为 $\phi^*(\mathbf{x})$ 的定义区间为 $(\alpha, \mathbf{x}_1 + \mathbf{h}) \supsetneq (\alpha, \beta)$,注意 $\mathbf{x}_1 > \beta - \mathbf{h}$,即 $\beta < \mathbf{x}_1 + \mathbf{h}$. 此与 $\phi(\mathbf{x})$ 为饱和解的假设矛盾. 定理得证.

饱和解的端点性质

定理:考虑y' = f(x,y),这里函数f(x,y) 在平面开域 Ω 上满足标准假设.设y = $\phi(x)$ 是饱和解,它的最大存在区间为 (α,β) .对右端点 β .必然发生以下三种情况之一:

- (i) $\beta = +\infty$;
- (ii) $\beta < +\infty$, $\phi(x)$ 在 $x = \beta$ 左侧无界; 或等价地表示为 $\overline{\lim}_{x \to \beta^-} |\phi(x)| = +\infty$;
- (iii) $\beta < +\infty$, $\lim_{\mathbf{x} \to \beta^-} \mathrm{dist}[(\mathbf{x}, \phi(\mathbf{x})), \partial \Omega] = \mathbf{0}$.

饱和解的端点性质,续

对左端点 α ,相应的结论成立,即以下三种情况必发生之一:

- (iv) $\alpha = -\infty$;
- (v) $\alpha > -\infty$, 解 $\phi(x)$ 在 $x = \alpha$ 的右侧无界, 或等价地表为

$$\overline{\lim}_{\mathsf{x} o lpha^+} |\phi(\mathsf{x})| = +\infty;$$

(vi)
$$\alpha > -\infty$$
, $\lim_{\mathbf{x} \to \alpha^+} \mathrm{dist}[(\mathbf{x}, \phi(\mathbf{x})), \partial \Omega] = \mathbf{0}$,

这里 $\operatorname{dist}[(\mathsf{x},\phi(\mathsf{x})),\partial\Omega]$ 表示点 $(\mathsf{x},\phi(\mathsf{x}))$ 与边界 $\partial\Omega$ 的距离. 平

面上点
$$(x_0,y_0)$$
 到集合A $\subset \mathbb{R}^2$ 的距离定义为

$$dist[(x_0,y_0),A] := \inf \left\{ \sqrt{(x-x_0)^2 + (y-y_0)^2}, (x,y) \in A \right\}.$$

注记

 $\underline{i1}$: 对方程组y' = f(x,y), 即情形 $f: \Omega \subseteq \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$, 有相同的结论.

 $\underline{i2}$: 当边界 $\partial\Omega$ 是空集时, 即 $\Omega=\mathbb{R}^2$ 时, 情形(iii) 和(vi) 都不会出现.

注3: 情形(ii) 和(iii) 可以同时发生. 同理情形(v)和(vi) 也可以同时发生. 见下面的例子.

例子

Example

考虑方程 $y' = -\frac{1}{\sqrt{2}}\sin\frac{1}{y} - \frac{1}{\sqrt{3}}\cos\frac{1}{y}$. 方程的右端函数可看做定义 在右半(或左半)平面上的函数. 注意方程右端是 $\phi(x) = \frac{1}{z} \sin \frac{1}{z}$ 的导数. 因此 $\phi(x)$ 是解, 其最大存在区间为 $(\alpha,\beta)=(0,+\infty)$. 显然饱和解 $\phi(x)$ 在左端点 $\alpha=0$ 的右侧附近无界. 情形(v)出 现. 因右半平面的边界是y 轴, 故dist[$(x, \phi(x)), \partial\Omega$] = x. 因 此 $\lim_{\mathbf{v}\to\mathbf{0}^+} \operatorname{dist}[(\mathbf{x},\phi(\mathbf{x})),\partial\Omega]=\mathbf{0}.$ 这表明情形(v)和(vi)同时 发生.

定理证明

 \underline{u} : 只证右端点 β 情形的结论. 假设情形(i) 和(ii) 都不出现,我们来证明必出现情形(iii). 即要证, 对任给 $\varepsilon>0$, 存在 $\delta>0$, 使得当 $\beta-x<\delta$ 时, dist $[(x,\phi(x)),\partial\Omega]<\varepsilon$. 反证. 若不然,则存在 $\varepsilon_0>0$, 以及一个单调上升的点列 $x_n\nearrow\beta$, 使得

$$\operatorname{dist}[(\mathsf{x}_\mathsf{n},\phi(\mathsf{x}_\mathsf{n})),\partial\Omega]\geq \varepsilon_0.$$
 (*)

由于 $\{\phi(x_n)\}$ 有界(因情形(ii)不出现), 故这个序列有收敛子列. 不失一般性, 这个收敛子列仍记作 $\{\phi(x_n)\}$, 并设 $\phi(x_n) \to \bar{y}$. 于是 $(x_n, \phi(x_n)) \to (\bar{x}, \bar{y})$, 这里记 $\bar{x} = \beta$.

定理证明续

根据不等式(*)可知 $\mathsf{dist}[(ar{\mathsf{x}},ar{\mathsf{y}}),\partial\Omega]>arepsilon_0$. 这表明点 $(ar{\mathsf{x}},ar{\mathsf{y}})$ 是开 域 Ω 的内点. 对内点 $(\bar{\mathbf{x}},\bar{\mathbf{y}})$, 应用Lemma 1 的结论可知存在 $\delta, h > 0$, 使得对任意 $(\xi, \eta) \in R_{\delta}(\bar{x}, \bar{v})$, 解 $\phi(x, \xi, \eta)$ 至少在区 间 $(\bar{x} - h, \bar{x} + h)$ 上存在. 由于 $(x_n, \phi(x_n)) \rightarrow (\bar{x}, \bar{y})$, 故存在充 分大的正整数N, 使得 $\bar{x} - x_N < h$. 于是解 $\phi(x, x_N, y_N)$ $(y_N := \phi(x_N)) = \phi(x_N - h, x_N + h) \perp fa. \ \exists fa.$ $\mathbf{H}\phi(\mathbf{x},\mathbf{x}_{\mathsf{N}},\mathbf{v}_{\mathsf{N}})$ 是同一个解. 这表明饱和解 $\phi(\mathbf{x})$ 的最大定义区 间 (α, β) 还可以向右扩充至更大的区间 $(\alpha, x_N + h)$, 这是因为 $x_N + h > \bar{x} = \beta$, 这就导出了一个矛盾, 定理得证, 证毕,

线性控制定理

Theorem

考虑 $\mathbf{y}'=\mathbf{f}(\mathbf{x},\mathbf{y})$, 其中 $\mathbf{f}:\Omega\subseteq \mathrm{IR}\times \mathrm{IR}^{\mathrm{n}}\to \mathrm{IR}^{\mathrm{n}}$ 上满足标准假设, $\Omega=(\alpha,\beta)\times \mathrm{IR}^{\mathrm{n}}\ \mathrm{JR}^{\mathrm{n}+1}\ \mathrm{中的条域}.\ \mathrm{进一步假设}$ $|\mathbf{f}(\mathbf{x},\mathbf{y})|<\mathbf{A}(\mathbf{x})|\mathbf{y}|+\mathbf{B}(\mathbf{x}),\quad (\mathbf{x},\mathbf{y})\in\Omega, \qquad (*)$

其中 A(x), B(x) 是 (α,β) 上的非负连续函数, 绝对值符号 $|\cdot|$ 表示某个n 维向量的范数, 则方程y'=f(x,y) 每个饱和解的最大存在区间为 (α,β) . 特别当 $(\alpha,\beta)=(-\infty,+\infty)$ 时, 方程的每个饱和解均在整个 $(-\infty,+\infty)$ 上存在.

注:不等式(*) 称为线性控制不等式,

定理证明

 \underline{ii} : 设 $\mathbf{y} = \phi(\mathbf{x})$ 为饱和解, $(\mathbf{a}, \mathbf{b}) \subset (\alpha, \beta)$ 为其最大存在区间. 要证 $(\mathbf{a}, \mathbf{b}) = (\alpha, \beta)$, 即 $\mathbf{a} = \alpha$, $\mathbf{b} = \beta$. 以下只证 $\mathbf{b} = \beta$. 证明 $\mathbf{a} = \alpha \ \text{完全类似.} \ \text{反证.} \ \text{假设}\mathbf{b} < \beta. \ \mathbf{p} - \mathbf{b} = \mathbf{k} = \mathbf{$

两边取向量范数,并利用线性控制不等式(*)以及作业习题四的

结论得

$$\begin{split} |\phi(\mathbf{x})| &\leq |\phi(\mathbf{x}_0)| + \int_{\mathbf{x}_0}^{\mathbf{x}} \Big[\mathbf{A}(\mathbf{s}) |\phi(\mathbf{s})| + \mathbf{B}(\mathbf{s}) \Big] d\mathbf{s} \\ &= \mathbf{C}(\mathbf{x}) + \int_{\mathbf{x}_0}^{\mathbf{x}} \mathbf{A}(\mathbf{s}) |\phi(\mathbf{s})| d\mathbf{s}, \quad (**) \end{split}$$

这里记 $C(x) = |\phi(x_0)| + \int_{x_0}^x B(s) ds$.

证明续1: 回忆一个Gronwall 不等式

Gronwall 不等式: 设u(x), v(x) 和c(x) 在区间[x_0 , $x_0 + h$) 上非负连续, 且u(x) 满足积分不等式

$$u(x) \leq c(x) + \int_{x_0}^x \!\! v(s) u(s) ds, \quad x \in [x_0, x_0 + h),$$

则

$$u(x) \leq c(x) + \int_{x_0}^x \! c(s) v(s) e^{\int_s^x v(\tau) d\tau} ds, \quad x \in [x_0, x_0 + h).$$

证明续2

对积分不等式(**) 应用上述Gronwall 不等式得

$$|\phi(\mathbf{x})| \leq \mathbf{C}(\mathbf{x}) + \int_{\mathbf{x}_0}^{\mathbf{x}} \! \mathbf{C}(\mathbf{s}) \mathbf{A}(\mathbf{s}) \mathrm{e}^{\int_{\mathbf{s}}^{\mathbf{x}} \mathbf{A}(\tau) \mathrm{d}\tau} \mathrm{d}\mathbf{s}.$$

根据假设知函数A(x), C(x) 在 $[x_0,b]\subset(\alpha,\beta)$ 上连续, 从而有界, 即存在正数 $\lambda>0$, $\mu>0$, 使得

$$0 \leq \mathbf{A}(\mathbf{x}) \leq \lambda, \quad 0 \leq \mathbf{C}(\mathbf{x}) \leq \mu, \quad \mathbf{x} \in [\mathbf{x}_0, \mathbf{b}].$$

于是对任意 $x \in [x_0, b)$

$$|\phi(\mathbf{x})| \leq \lambda + \lambda \mu \int_{\mathbf{x}_0}^{\mathbf{x}} \!\! \mathrm{e}^{\lambda(\mathbf{x} - \mathbf{s}) \mathsf{d} \mathbf{s}} \leq \lambda + \lambda \mu \mathrm{e}^{\lambda(\mathbf{b} - \mathbf{x}_0)} (\mathbf{b} - \mathbf{x}_0).$$

4日 > 4間 > 4 差 > 4 差 > 差 のQ()

证明续3

这表明饱和解 $\phi(x)$ 在右端点x=b 的左侧有界. 另一方面,由于 $b<\beta$,解 $\phi(x)$ 的函数曲线不可能接近 Ω 的边界 $\partial\Omega$,即两条直线x=a 和x=b. 这说明定理4中所述的情形(i),(ii),(iii)都没有出现. 矛盾. 因此假设 $b<\beta$ 是错误的. 故 $b=\beta$. 线性控制定理证毕.

一阶线性方程组解的整体存在性定理回忆

Theorem

定理:考虑一阶线性方程组y' = A(x)y + b(x),其中方阵A(x)

和向量值函数b(x)均假设在某个开区间J上连续,则方程组的

每个饱和解的最大存在区间为J, 即每个饱和解整体存在,

定理证明

Proof.

记方程组右端映射为 f(x,y)=A(x)y+b(x),则映射 f 在条域 $\Omega=(\alpha,\beta)\times \mathbb{R}^n$ 上满足标准假设. 进一步 f 还满足

$$|f(\mathbf{x},\mathbf{y})| \leq \|\mathbf{A}(\mathbf{x})\||\mathbf{y}| + |\mathbf{b}(\mathbf{x})|, \quad (\mathbf{x},\mathbf{y}) \in \Omega, \quad (*)$$

这里 $\|\cdot\|$ 表示某个方阵的范数. 由此可见映射f 满足线性控制条件. 因此方程组的每个饱和解的最大存在区间为 (α,β) . 证毕.

解的最大存在区间讨论, 例子

例: 讨论一维方程 $y' = (1 - y^2)e^{x^2 + y^2}$ 对于各种不同的初值条件解的最大存在区间.

解: 记 $\phi(x,x_0,y_0)$ 为方程满足 $y(x_0)=y_0$ 的饱和解. 其最大存 在区间记作(α , β). 显然两个端点 α , β 与初始点(x_0 , y_0) 有关. 首先注意两个事情. (i) 方程有两个常数解 $y = \pm 1$. (ii) 方程的 解曲线族关于原点对称. 也就是说, 若v(x), $x \in (\alpha, \beta)$ 是解, 则-v(-x)也是. 证明如下. 令z(x) = -v(-x), 则 z'(x) = $\mathbf{v}'(-\mathbf{x}) = [1 - \mathbf{v}^2(-\mathbf{x})]e^{\mathbf{x}^2 + \mathbf{y}^2(-\mathbf{x})} = [1 - \mathbf{z}^2(\mathbf{x})]e^{\mathbf{x}^2 + \mathbf{z}^2(\mathbf{x})}$. 这表 明z(x) 也是解.

例子续1

以下根据 y_0 不同的位置, 讨论 α 和 β 是有限或无穷.

情形一: $y_0 = \pm 1$. 此时解 $\phi(x, x_0, y_0) \equiv \pm 1$, 其最大存在区间为 $(\alpha, \beta) = (-\infty, +\infty)$.

情形二: $|y_0| < 1$. 根据解的唯一性可知

$$|\phi(\mathbf{x}, \mathbf{x_0}, \mathbf{y_0})| < 1, \quad \forall \mathbf{x} \in (\alpha, \beta). \quad (*)$$

例子续2

还可以证明(请自行验证)

$$\lim_{\mathbf{x} \to +\infty} \phi(\mathbf{x}, \mathbf{x}_0, \mathbf{y}_0) = 1, \quad \lim_{\mathbf{x} \to -\infty} \phi(\mathbf{x}, \mathbf{x}_0, \mathbf{y}_0) = -1.$$

情形三: $y_0 > 1$. 仍根据解的唯一性可知

$$\phi(\mathbf{x}, \mathbf{x}_0, \mathbf{y}_0) > 1, \quad \forall \mathbf{x} \in (\alpha, \beta). \quad (**)$$

由此可知 $\phi'=(1-\phi^2)\mathrm{e}^{\mathrm{x}^2+\phi^2}<0$, $\mathrm{x}\in(\alpha,\beta)$. 这表明解 $\phi(\mathrm{x},\mathrm{x}_0,\mathrm{y}_0)$ 在其存在区间 (α,β) 里严格单调下降. 因此

$$1 < \phi(x, x_0, y_0) < \phi(x_0, x_0, y_0) = y_0, \quad \forall x \in (x_0, \beta).$$

例子续3

 $aueta<+\infty$, 那么根据饱和解的端点性质可知解 ϕ 在 $\mathbf{x}=eta$ 的左侧无界. 此与不等式(**) 矛盾. 故 $eta=+\infty$.

情形四: $y_0 < -1$. 利用解曲线族关于原点的对称性可知, 此时 $\alpha = -\infty$, $\beta < +\infty$. 也可以类似于情形三讨论, 得到这个结果. 证毕.

 \underline{i} : 以后我们将利用微分不等式证明, 当 $y_0 > 1$ 时, α 有限, 即 $\alpha > -\infty$; 当 $y_0 < -1$ 时, β 有限, 即 $\beta < +\infty$.

一个方程的定性分析

考虑一阶方程y' = sin(xy). 虽然我们不能给出解的显式表达,但是利用相关理论,可对解的性质作探讨. (参考丁同仁李承治编著的《常微分方程教程》第二版,第93-97页例1)方程解的性质集中表述在以下两个定理之中.

Theorem

凡解, 即y = 0 是解; (2) 每个饱和解的最大存在区间均为IR; (3) 每个解y(x) 都是偶函数, 即y(-x) = y(x), $\forall x \in IR$; (4) 全体解曲线族关于x 轴, 关于y 轴, 以及关于原点对称, 即若y(x)

关于方程 $y' = \sin(xy)$ 的解, 以下四个结论成立. (1) 方程有平

是解,则-y(x),y(-x)和-y(-x)也都是解.

证明:结论(1)显然成立.结论(2)根据线性控制定立刻得到. 证(3): 设y(x) 是解, 令z(x) = y(-x), 则z'(x) = [y(-x)]' = $-y'(-x) = -\sin[(-x)y(-x)] = \sin[xy(-x)] = \sin[xz(x)]$. 这 说明 z(x) 也是解. 进一步还有z(0) = y(0). 于是根据解的唯一 性知 $z(x) \equiv y(x)$, 即 $y(-x) \equiv y(x)$, $\forall x \in \mathbb{R}$. 证(4): 由于每个 $\mathbf{F}_{\mathbf{y}}(\mathbf{x})$ 是偶函数, $\mathbf{p}_{\mathbf{y}}(-\mathbf{x}) = \mathbf{y}(\mathbf{x})$, 故 $\mathbf{y}(-\mathbf{x})$ 也是解, 并且是 同一个解. 这说明解曲线族关于v 轴对称. 进一步可直接验证 可知-y(x) 是解. 这说明解曲线族关于y 轴对称. 由于解曲线 同时关于x 轴和y 轴对称, 因此也关于原点对称. 定理证毕. 🗌

$\mathsf{Theorem}$

方程 $y' = \sin(xy)$ 的每个解y(x) 均满足

$$\lim_{x \to +\infty} y(x) = 0 \quad \mathbb{A} \quad \lim_{x \to -\infty} y(x) = 0.$$

证:由于方程的每个解都是偶函数,故只需证明两个极限中的一个即可.以下我们证明(*) $\lim_{x\to +\infty} y(x)=0$. 若y(0)=0,则根据解的唯一性知y(x) $\equiv 0$. 式(*)成立.设y(0) $\neq 0$,则解y(x)恒正或者恒负,因为解曲线不能与x轴相交.由于y(x)是解时,-y(x)也是解.故可设y(0) > 0.

为清晰计, 我们建立如下三个断言.

断言1: 存在 $\bar{x} > 0$, 使得 $y(\bar{x}) = \bar{x}$.

断言2: 0 < y(x) < x, $\forall x > \bar{x}$.

<u>断言3</u>: 存在充分大的正数C > 0, 使得0 < $y(x) < \frac{C}{x}$, $\forall x > \bar{x}$.

根据断言3,我们立刻得到所要证明的结论 $\lim_{\mathsf{x} o +\infty} \mathsf{y}(\mathsf{x}) = \mathbf{0}.$

以下依次证明断言1, 断言2 和断言3.

证断言1: 要证存在 $\bar{x} > 0$, 使得 $y(\bar{x}) = \bar{x}$. 反证. 若不然, 则 y(x) > x, $\forall x > 0$. 对任意 $x > x_1 > 0$,

$$y(x)-y(x_1)=\int_{x_1}^x\!y'(s)ds=\int_{x_1}^x\!\sin[sy(s)]ds.$$

考虑函数xy(x). 由于

$$\begin{aligned} [xy(x)]' &= y(x) + xy'(x) = y(x) + x\sin[xy(x)] \\ \\ &> x[1 + \sin(xy(x))] \geq 0, \quad \forall x > 0, \end{aligned}$$

故函数z(x) := xy(x) 在 $(0,+\infty)$ 上严格单调上升. 于是

$$\begin{split} y(x)-y(x_1) &= \int_{x_1}^x sin[sy(s)]ds \\ &= \int_{x_1}^x \frac{sin[z(s)]z'(s)ds}{z'(s)} &= \int_{x_1}^x \frac{sin[z(s)]z'(s)ds}{y(s)+ssin[z(s)]}. \end{split}$$

现断言

$$\frac{\sin[z(s)]z'(s)}{y(s)+s\sin[z(s)]} \leq \frac{\sin[z(s)]z'(s)}{y(s)}, \quad \forall s>0$$

这只要分情形 $\sin[z(s)] \geq 0$ 和情形 $\sin[z(s)] < 0$ 讨论即可. 根据上述断言得

$$y(x)-y(x_1) \leq \int_{x_1}^x \frac{sin[z(s)]z'(s)ds}{y(s)} = \int_{x_1}^x s\frac{sin[z(s)]z'(s)ds}{z(s)}.$$

回忆积分第二中值定理: 考虑积分 $\int_a^b f(x)g(x)dx$, 这里f(x),

- g(x) 假设在[a,b] 上连续(实际上可积就行),则
- (i) 若函数f(x) 在[a,b] 上非负且上升,则存在 $\xi \in [a,b]$, 使得

$$\textstyle \int_a^b \! f(x) g(x) dx = f(b) \! \int_\xi^b \! g(x) dx.$$

(ii) 若函数f(x) 在[a,b] 上非负且下降, 则存在 $\eta \in [a,b]$, 使得

$$\int_a^b f(x)g(x)dx = f(a)\int_a^\eta g(x)dx.$$

ロト 4回 ト 4 重 ト 4 重 ト 9 9 0 0

对积分

$$\int_{x_1}^x s \frac{\sin[z(s)]z'(s)ds}{z(s)}$$

应用上述第二积分中值定理结论(i)得

$$\int_{x_1}^x s \frac{\sin[z(s)]z'(s)ds}{z(s)} = x \int_{\xi}^x \frac{\sin[z(s)]z'(s)ds}{z(s)} = x \int_{z_1}^{z_2} \frac{\sin z}{z} dz, (*)$$

这里 $\xi \in [x_1,x]$, $z_1 = \xi y(\xi)$, $z_2 = xy(x)$. 回忆广义积分

$$\int_0^{+\infty} \frac{\sin z}{z} dz$$

收敛. 这是著名的Dirichlet 积分, 积分值为 $\frac{\pi}{2}$.

因此对于 $\varepsilon = \frac{1}{2}$,存在 $M_1 > 0$ 充分大,使得

$$\int_{z_1}^{z_2} \frac{\mathsf{sinz}}{\mathsf{z}} \mathsf{dz} < \frac{1}{2}, \quad \forall \mathsf{z}_1, \mathsf{z}_2 \geq \mathsf{M}_1. \quad (**)$$

由于 $z(x) = xy(x) > x^2 \to +\infty$, 故存在充分大的 $M_2 > 0$, 使得 $z(x) \ge M_1$, $\forall x \ge M_2$. 于是对于 $\forall x > x_1 \ge M_2$, 根据式(*)和(**)得

$$y(x)-y(x_1) \leq x \int_{z_1}^{z_2} \frac{sinz}{z} dz < \frac{x}{2}, \quad \forall x \geq M_2.$$

固定 x_1 , $x > x_1$ 充分大, 可使得 $y(x) < y(x_1) + \frac{x}{2} < x$. 此与

假设y(x) > x, ∀x > 0 相矛盾. 断言1得证.

断言2: 要证0 < y(x) < x, $\forall x > \bar{x}$. 对 $\forall x > \bar{x}$,

$$y(x)-y(\bar{x})=\int_{\bar{x}}^{x}y'(s)ds=\int_{\bar{x}}^{x}sin[sy(s)]ds.$$

若 $sin[sy(s)] \equiv 1$, $\forall s \in [\bar{x}, x]$, 则

$$\mathsf{sy}(\mathsf{s}) \equiv 2\mathsf{k}\pi + \frac{\pi}{2} \quad \dot{\mathfrak{K}} \quad \mathsf{y}(\mathsf{s}) \equiv \frac{2\mathsf{k}\pi + \frac{\pi}{2}}{\mathsf{s}}, \quad \forall \mathsf{s} \in [\bar{\mathsf{x}},\mathsf{x}].$$

于是一方面

$$y'(s)=\text{sin}[sy(s)]\equiv 1,$$

但是另一方面

$$y'(s)=\frac{-2k\pi-\frac{\pi}{2}}{s^2}.$$

这是一个矛盾. 因此必存在 $s_0 \in [\bar{x},x]$, 使得 $sin[s_0y(s_0)] < 1$. 由此得

$$y(x) - y(\bar{x}) = \int_{\bar{x}}^{x} \sin[sy(s)]ds < \int_{\bar{x}}^{x} 1ds = x - \bar{x}.$$

注意
$$y(\bar{x}) = \bar{x}$$
. 故 $y(x) < x$, $\forall x > \bar{x}$. 断言2得证.

证断言3: 要证存在充分大的正数C > 0, 使得 $0 < y(x) < \frac{C}{x}$,

 $\forall x > \bar{x}$. 取充分大的正数 $C > \bar{x}^2$, 则

$$y(\bar{x})=\bar{x}<\frac{C}{\bar{x}}.$$

由连续函数的性质可知存在 $\delta > 0$, 使得

$$y(x) < \frac{C}{x}, \quad \forall x \in (\bar{x}, \bar{x} + \delta).$$

以下证明, 可取某个适当的 $C > \bar{x}^2$, 使得

$$y(x) < \frac{C}{x}, \quad \forall x \in (\bar{x}, +\infty). \quad (**)$$

假设上述不等式(**)对任意正数 $C > \bar{x}^2$ 均不成立,则必存

 $4x_1 > \bar{x}$, 使得

$$y(x) < \frac{C}{x}, \quad \forall x \in (\bar{x}, x_1), \quad \underline{y(x_1)} = \frac{C}{\underline{x_1}}.$$

记 $au(x):=rac{C}{x}-y(x)$,则au(x)>0, $\forall x\in(\bar{x},x_1)$, $au(x_1)=0$.于是 $au'(x_1)<0$.此即

$$-\frac{C}{\mathsf{x}_1^2}-\mathsf{y}'(\mathsf{x}_1)\leq 0\quad \text{ pr}\quad \mathsf{sin}[\mathsf{x}_1\mathsf{y}(\mathsf{x}_1)]+\frac{C}{\mathsf{x}_1^2}\geq 0.$$

注意 $C = x_1 y(x_1)$, 我们就得到

$$\text{sinC} + \frac{C}{x_1^2} \geq 0.$$

上式中正常数 $C > \bar{x}^2$ 是任意取的. 现取 $C = 2m\pi - \frac{\pi}{2}$, m 为充分大的正整数,则有

$$-1 + \frac{\mathsf{C}}{\mathsf{x}_1^2} = -1 + \frac{\mathsf{x}_1 \mathsf{y}(\mathsf{x}_1)}{\mathsf{x}_1^2} = -1 + \frac{\mathsf{y}(\mathsf{x}_1)}{\mathsf{x}_1} \ge 0.$$

由上式立刻得到 $y(x_1) \ge x_1, x_1 > \bar{x}$. 此与断言2的结论相矛盾.

断言3得证. 从而定理得证.

解的最大存在区间关于关于初值的依赖关系, 例子

例: 考虑 Cauchy 问题 $y' = y^2$, $y(0) = y_0$. 不难得到显式解

$$\phi(\mathsf{x},\mathsf{y}_0) = \frac{\mathsf{y}_0}{1 - \mathsf{x}\mathsf{y}_0}.$$

记这个解的最大存在区间为 $J_{y_0}=(lpha(y_0),eta(y_0))$. 不难看出

$$J_{y_0} = \left\{ \begin{array}{ll} (\frac{1}{y_0}, +\infty), & y_0 < 0, \\ (-\infty, +\infty), & y_0 = 0, \\ (-\infty, \frac{1}{y_0}), & y_0 > 0. \end{array} \right.$$

例子续

等价地说,

$$\alpha(\mathbf{y_0}) = \left\{ \begin{array}{ll} \frac{1}{\mathbf{y_0}}, & \mathbf{y_0} < \mathbf{0}, \\ -\infty, & \mathbf{y_0} \ge \mathbf{0}. \end{array} \right.,$$

$$\beta(\mathbf{y_0}) = \left\{ \begin{array}{ll} \frac{1}{\mathbf{y_0}}, & \mathbf{y_0} > \mathbf{0}, \\ +\infty, & \mathbf{y_0} \leq \mathbf{0}. \end{array} \right.$$

下半与上半连续性(lower and upper semi-continuity),

定义:设 $g: \mathbb{R}^m \to \mathbb{R} \cup \{\pm \infty\}$. (i) 称函数 g(u) 在点 u_0 处下半连续,如果 $\liminf_{u \to u_0} g(u) \geq g(u_0)$. 等价定义:如果对任意 $L < g(u_0)$,存在 $\delta > 0$,使得

$$L \leq g(u), \quad \forall u : |u - u_0| < \delta.$$

(ii) 称g(u) 在点 u_0 处上半连续, 如果 $\limsup_{u\to u_0} g(u) \leq g(u_0)$.

等价定义:如果对任意 $U>g(u_0)$,存在 $\delta>0$,使得

$$U \geq g(u), \quad \forall u: |u-u_0| < \delta.$$

不难证明, 上例中的 $\alpha(y_0)$ 是上半连续, 而 $\beta(y_0)$ 是下半连续.

解关于初值和参数的连续性

定理: 考虑方程 y' = f(x,y,\lambda), 其中f: $\Omega \subset IR \times IR^n \times IR \to IR^n$, Ω 为 IR^{n+2} 的开区域, f, fy 于 Ω 上连续. 记 $\phi(x,\xi,\eta,\lambda)$ 为 Cauchy 问题 y' = f(x,y,\lambda), y(\xi\xi) = \eta 的饱和解, 其最大存在区间记作 J(\xi,\eta,\lambda) = (\alpha(\xi,\eta,\lambda)), \beta(\xi,\eta,\lambda)). 再记 $D := \Big\{ (x,\xi,\eta,\lambda), x \in J(\xi,\eta,\lambda), (\xi,\eta,\lambda) \in \Omega \Big\} \subset IR^{n+3}.$ 则以下结论成立.

- 1) 解 $\phi(x,\xi,\eta,\lambda)$ 作为四元函数在D 上连续;
- 2) D 是 IRⁿ⁺³ 中的开集;
- 3) 函数 $\alpha(\xi,\eta,\lambda)$ 在 Ω 上半连续, $\beta(\xi,\eta,\lambda)$ 在 Ω 下半连续.

解关于初值和参数的可微性

定理: 考虑方程 $\mathbf{y}'=\mathbf{f}(\mathbf{x},\mathbf{y},\boldsymbol{\lambda})$, 关于映射 \mathbf{f} 的假设同上述定理, 再补充一个假设: $\mathbf{f}_{\boldsymbol{\lambda}}(\mathbf{x},\mathbf{y},\boldsymbol{\lambda})$ 于 Ω 上连续, 解 $\phi(\mathbf{x},\boldsymbol{\xi},\eta,\boldsymbol{\lambda})$ 以及开区域 $\mathbf{D}\subset \mathbf{IR}^{\mathbf{n}+3}$ 的意义同上, 则以下结论成立.

- (i) 饱和解 $\phi(\mathbf{x}, \boldsymbol{\xi}, \boldsymbol{\eta}, \boldsymbol{\lambda})$ 作为四元函数在开区域D 上连续可微;
- (ii) 三对二阶混合偏导数 $\phi_{x\xi}$ 和 $\phi_{\xi x}$, $\phi_{x\eta}$ 和 $\phi_{\eta x}$, 以及 $\phi_{x\lambda}$ 和 $\phi_{\lambda x}$ 连续, 从而对应相等, 即 $\phi_{x\xi} = \phi_{\xi x}$, $\phi_{x\eta} = \phi_{\eta x}$, $\phi_{x\lambda} = \phi_{\lambda x}$;
- (iii) 偏导数 ϕ_{ξ} , ϕ_{η} 和 ϕ_{λ} 分别是以下三个Cauchy 问题的解,

定理续

- $2 z' = A(x, \xi, \eta, \lambda)z, \ z(\xi) = E, \ (z = \phi_{\eta});$

其中 $\mathbf{A}(\mathbf{x},\xi,\eta,\lambda):=\mathbf{f}_{\mathbf{y}}(\mathbf{x},\phi,\lambda),\ \mathbf{b}(\mathbf{x},\xi,\eta,\lambda):=\mathbf{f}_{\lambda}(\mathbf{x},\phi,\lambda),\ \mathbf{E}$ 代表n 阶单位矩阵.

 \underline{i} : 上述三个 Cauchy 问题中的线性方程组均称作原方程 $y'=f(x,y,\lambda)$ 关于解 $y=\phi(x,\xi,\eta,\lambda)$ 的变分方程 (variational equations).

结论(iii)的证明

证: 假设定理中的结论(i)和(ii)成立. 我们来证明结论(iii),即证明三个偏导数 ϕ_{ξ} , ϕ_{η} 和 ϕ_{λ} 分别是上述三个Cauchy 问题的解. 我们只证明 ϕ_{ξ} 由Cauchy 问题(1)唯一确定. 其余两个偏导数的确定方程可类似推导. 因为 $\phi(\mathbf{x},\xi,\eta,\lambda)$ 是解,所以

$$\phi_{\mathsf{x}} = \mathsf{f}(\mathsf{x}, \phi, \lambda), \ \phi(\xi, \xi, \eta, \lambda) = \eta.$$

注意上式中的第一个等式中, $\phi=\phi(\mathbf{x},\xi,\eta,\lambda)$. 对上述两个等式关于 ξ 求偏导数得

$$\phi_{\mathsf{x}\xi} = \mathsf{f}_{\mathsf{y}}(\mathsf{x},\phi,\lambda)\phi_{\xi}, \quad \frac{\partial}{\partial \xi}\phi(\xi,\xi,\eta,\lambda) = \mathbf{0}.$$

◆□▶ ◆□▶ ◆≧▶ ◆≧▶ ○皇 ○夕९◎

证明续

由于

$$\mathbf{0} = \frac{\partial}{\partial \xi} \phi(\xi, \xi, \eta, \lambda) = \phi_{\mathbf{x}}(\mathbf{x}, \xi, \eta, \lambda) \Big|_{\mathbf{x} = \xi} + \phi_{\xi}(\mathbf{x}, \xi, \eta, \lambda) \Big|_{\mathbf{x} = \xi},$$

而

$$\phi_{\mathsf{x}}(\mathsf{x},\xi,\eta,\lambda)\Big|_{\mathsf{x}=\xi} = \mathsf{f}(\mathsf{x},\phi,\lambda)\Big|_{\mathsf{x}=\xi} = \mathsf{f}(\xi,\eta,\lambda).$$

于是
$$\phi_{\xi}(\mathsf{x},\xi,\eta,\lambda)\Big|_{\mathsf{x}=\xi}=-\mathsf{f}(\xi,\eta,\lambda)$$
. 又由于 $\phi_{\mathsf{x}\xi}=\phi_{\xi\mathsf{x}}$, 故

$$[\phi_{\xi}]_{\mathsf{x}} = \mathsf{f}_{\mathsf{y}}(\mathsf{x},\phi,\lambda)\phi_{\xi}, \, \phi_{\xi}(\mathsf{x},\xi,\eta,\lambda)\Big|_{\mathsf{x}=\xi} = -\mathsf{f}(\xi,\eta,\lambda).$$

这表明 $z = \phi_{\xi}$ 是Cauchy 问题(1)的解. 证毕.

例子

$ilde{ t t}$ 打波夫习题 $extstyle{ t 1067}$: 记 $\phi(extstyle{ t t}, \mu)$ 为 $extstyle{ t Cauchy}$ 问题 $extstyle{ t dt}{ t dt} = extstyle{ t t}{ t t} + \mu extstyle{ t t}{ t e^{- extstyle{ t x}}}$,

x(1)=1 的解, 求

$$\left. \frac{\partial}{\partial \mu} \phi(\mathsf{t}, \mu) \right|_{\mu=0}$$

解:由于 $\phi(\mathbf{t},\mu)$ 是上述Cauchy问题的解,故

$$\phi_{\mathsf{t}} = rac{\phi}{\mathsf{t}} + \mu \mathsf{te}^{-\phi}, \, \phi(1,\mu) = 1.$$

对上述两个等式关于μ 求偏导数得到

$$\phi_{\mathsf{t}\mu} = rac{\phi_{\mu}}{\mathsf{t}} + \mathsf{te}^{-\phi} + \mu \mathsf{te}^{-\phi}\phi_{\mu}, \quad \phi_{\mu}(1,\mu) = \mathbf{0}.$$

例子续1

于上式中令
$$\mu=0$$
,注意到 $\phi_{t\mu}=\phi_{\mu t}$,我们就得到确定 z(t) = $\phi_{\mu}(t,\mu)\Big|_{\mu=0}$ 的Cauchy 问题
$$z'=\frac{z}{t}+te^{-\phi(t,0)},\,z(1)=0. \quad (*)$$

为了求解(*), 我们需要先求解 $\phi(t,0)=\varphi(t,\mu)\Big|_{\mu=0}$. 为此需求解原 Cauchy 问题当 $\mu=0$ 时的解, 即求解 $\frac{dx}{dt}=\frac{x}{t}$, x(1)=1. 很容易得到其解为x(t)=t, 即 $\phi(t,0)=t$.

例子续2

于是Cauchy 问题(*)为

$$z'=\frac{z}{t}+te^t,\quad z(1)=0.$$

这是一阶线性方程的Cauchy问题. 根据求解公式得

$$\label{eq:zt} \mathsf{z}(\mathsf{t}) = \mathsf{t} \bigg[\mathsf{z}(1) + \int_1^\mathsf{t} \frac{1}{\tau} \tau \mathsf{e}^{-\tau} \mathsf{d} \tau \bigg] = \mathsf{t} \int_1^\mathsf{t} \mathsf{e}^{-\tau} \mathsf{d} \tau = \mathsf{t}(\mathsf{e}^{-1} - \mathsf{e}^{-\mathsf{t}}).$$

于是所求的导数为

$$\left. \frac{\partial}{\partial \mu} \phi(\mathbf{t}, \mu) \right|_{\mu=0} = \mathbf{t} (\mathbf{e}^{-1} - \mathbf{e}^{-\mathbf{t}}).$$

解答完毕.

作业

习题一. 考虑方程 $\frac{dy}{dx} = f(y)$, 这里映射 $f: D \subset \mathbb{R}^n \to \mathbb{R}^n$ 连续可微, 其中D 是IRⁿ 中的开区域. 这样的方程称为自治方程, 因为右端函数不显含独立的时 间变量x. 设y = $\phi(x)$ 是方程的一个饱和解, 其最大存在区间为(α , β). 对于 开域D 中的任意紧集D1 \subset D. 证明

- (i) 若 $\beta < +\infty$, 则存在 $\beta_1 \in (\alpha, \beta)$, 使得 $\phi(x) \notin D_1$, $\forall x \in (\beta_1, \beta)$;
- (ii) $\dot{\Xi}\alpha > -\infty$, 则存在 $\alpha_1 \in (\alpha, \beta)$, 使得 $\phi(x) \notin D_1$, $\forall x \in (\alpha, \alpha_1)$.

习题二. 丁同仁李承治编著的《常微分方程教程》第二版, page 89, 习 题3.3之题2, 3, 4, 5. (注:题5可补充假设:f(x,v) 在IR² 上是连续可微的).

作业续1

<u>习题三</u>. 证明如下定理(Gronwall不等式的又一个推广). 假设 (1) 函数f(x)

在 $[0,+\infty)$ 上非负连续, 且积分 $\int_0^{+\infty} f(x) dx < +\infty$ 收敛;

- (2) 函数a(x) 在 $[0,+\infty)$ 上恒正, 连续且单调下降;
- (3) 函数 $\mathbf{u}(\mathbf{x})$ $[0,+\infty)$ 上非负, 连续, 有界, 并且满足积分不等式

$$u(x) \leq a(x) + \int_x^{+\infty} f(s) u(s) ds, \quad \forall x > 0,$$

证明

$$u(x) \leq a(x) e^{\int_x^{+\infty}} f(s) ds, \quad \forall x > 0.$$

作业续2

习题四. 设f(x) 为闭区间[a,b] 上的n 维向量值连续函数, 证明

$$\Bigl\|\int_a^b \! f(x) dx\Bigr\| \leq \int_a^b \! \|f(x)\| dx.$$

选作题. (将Gronwall不等式从一维推广到二维情形.) 设函数 $\mathbf{u}(\mathbf{x},\mathbf{y})$ 在闭矩 \mathbf{N} $\mathbf{\Omega}$: $[\mathbf{0},\mathbf{x}_0] \times [\mathbf{0},\mathbf{y}_0]$ 上非负连续,且满足积分不等式

$$u(x,y) \leq a(x,y) + b(x,y) \int_0^x \int_0^y c(s,t) u(s,t) ds dt, \quad \forall (x,y) \in \Omega,$$

其中二元函数a(x,y), b(x,y), c(x,y) 在闭矩形 Ω 上非负连续, 考虑如何利用函数a(x,y), b(x,y), c(x,y) 对函数u(x,y) 作上界估计?