Step-1

Let us consider the following network with the capacity of each edge is 1

Step-2

It is observed that the number of path from 1 to 4 is 3.

Step-3

Let us find the maximum flow along the various paths of the node 1 and 4 as shown below.

Path	Maximum flow
Node 1-4	1
Node 1-2-4	1
Node 1-3-4	1
Total	3

Thus, it is observed the maximum flow is $\boxed{3}$

Step-4

Let us consider the network with the minimum number of edges whose removal disconnects node 1 from node 4

Removal of 2-4, 1-4, and 3-4 disconnects 1 from 4.

Also it is observed that the minimum cut for the above network is 3

Therefore, we can conclude that the maximum number of paths from s to t with no common edges equals the minimum number of edges whose removal disconnects s from t.

And then maximum flow = minimum cut