南方冶金学院考试试题

考试科目			考试日期	
班级	学号	姓名	成绩	

- 一、基本题(10小题,每题6分,共计60分)
 - 1、图示电路中,设Ui=15sinwt(v), D_{z1} 的稳定电压是5.5V, D_{z2} 的稳定电压是7V,试画出 U_0 的波形。

- 2、具有固定偏置的单管放大电路发生削波失真,但在减小 R_B 以后,失真消失了,问这失真是什么失真? 又假定本放大电路在空载时已经发生了削波失真,在接上负载后,失真消失,则该失真又是什么类型的失真?
- 3、已知晶体管的 $\beta=100$, $r_{be}=1k$,求放大器的输入电阻 r_i

4、图示电路中,有哪些交流反馈, 元件。

5、图示电路,能否产生自激振荡,简述原因。

- 6、已知变压器副边电压U2为20V, 经桥式整流电容器滤波,
- 问, (1)输出直流电压U0等于多少?
 - (2) 若输出直流电压U₀为9V,则说明什么?
- 7、试判断图示电路中晶体管工作在何种状态? (UBE=0.7V)

- 8、按下列各运算关系计算各电阻的阻值,并画出运算电路.
- (1) U_0 =-3 U_i (R_F =50 $k\Omega$)
- (2) U_0 =5 U_i R_F =20 $k \Omega$
- 9、由逻辑电路图写出F函数表达式,再用最少的与非门实现该逻辑函数(仅写出表达式即可)。

10、图示触发器初始状态为"0"态,在时钟脉冲C作用下,试画出Q端波形。

二、(10分)图示两级放大电路,设两个晶体管的参数分别为 β_1 =30, β_2 =20, γ_{be1} = γ_{be2} =1k, 电阻元件参数如图所示。

(2) 求: A_{v1}, A_{v2}, 和 A_{v°}

三、(10分)求图示运算放大电路的 U_{01} , U_{02} ,及 U_{00} 。

四、(10分)图示逻辑电路:试画出在时钟脉冲C和信号脉冲M的作用下, Q_0 、 Q_1 和Y的波形。设各触发器初态为"0"。

五、(10分)试设计一逻辑电路供三人(A、B、C)表决使用,并用"非门"来构成逻辑图。每人有一电键,如果赞成,就按电键,表示"1";如果不赞成,不按电键,表示"0"。表决结果用指示灯来表示,如果多数赞成,则指示灯亮,F=1;反之则灯不亮,F=0。

答案

-, (1)

- (2)截止失真,截止饱合失真
- 3' +3'

6'

(3)
$$r_i$$
= R_{B3} + $[R_{B1}$ // R_{B2} // r_{be} + $(1+\beta)R_E]$
= 20 + $[30$ // 51 // $1+(1+100) \times 2]$
= 37 K

- $(4)T_1$ 级,串联电流负反馈,反馈元件 R_3 2' T_2 级,串联电压负反馈,反馈元件 R_5 2' T_1T_2 级,并联电压负反馈,反馈元件 R_4 , R_5 。 2
- (5)(a)不能振荡,集电极无直流供电电压, 3'(b)满足自激振荡条件,正反馈电压敢至L的上段。 3'
- (6)① U_0 =1.2 U_2 =1.2 \times 20=24V
 - $2U_0=0.45\times U_2=0.45\times 20=9V$

该电路为半波整流无电容器滤波的直流电源.

 $(7)aI_B = 50 = 0.108mA$

Ic=βI_B=50×0.108=5.4mA 该电路为放大状态

$$U_{cE} = 12-5.4 \times 1 = 6.6V$$

$$bI_B = \frac{12 - 0.6}{47} = 0.242 \text{mA}$$

 $I_{c} = \beta I_{B} = 0.242 \times 40 = 9.20 \text{mA}$

$$Ic(sat) = \frac{12}{1.5} = 8mA$$

$$lc \ge lc(sat)$$

该电路为饱和状态

(8) 1
$$\frac{RF}{R1} = 3$$

$$\frac{RF}{R} = \frac{50}{R}$$

$$R_1 = \frac{1}{3} = \frac{1}{3} = 17k$$

$$R_2 = R_1 / / R_F = 13k$$

$$2 \quad 1 + \frac{RF}{R1} = 5$$

$$\therefore R_1 = \frac{R_F}{5 - 1} = \frac{2.0}{4} = 5k$$

$$R_2 = R_1 / / R_F = 4k$$

(9)
$$F = \overline{\overline{C} + AB + B + BC + \overline{C}}$$

二、(1)

$$R'_{L'1} = R_{c1}//r_{i2} = 5.1//5.8 = 2.7k$$

$$R'_{L'2}=R_{c2}//R_{L}=3.3//3.3=16.5k$$

$$A_{u1} = \frac{\beta_1 R'_{L'1}}{r_{be1}} = \frac{30 \times 2.7}{1} = 81$$

$$\frac{R_{u2}}{A_{u2}} = \frac{\beta_2 R_{L'2}}{\eta_{e2} + (1 + \beta 2) R_{E2}} = \frac{20 \times 16.5}{32.5} = 10.2$$

$$A_{v} = A_{v1} \cdot A_{v2} = -81 \cdot (-10.2) = 826.2$$

$$\equiv$$
, $U_{01} = -\frac{20}{10} \times 10 = -20$ mv

$$U_{02} = (1 + \frac{8}{4}) \times 10 = 30 \text{mv}$$

$$U_0 = (1 + \frac{5}{10}) \times U_{02} - \frac{5}{10} \times U_{01}$$

$$= \frac{3}{2} \times 30 - \frac{1}{2} \times (-20) = 55 \text{ mv}$$

A	В	С	_	
0	0	0	E	&
0	0	1	r	<u> </u>
0	1	0		
0	1	1		& &
1	0	0	В	
1	1	0		
1	1	1		&
			С —	

 $F = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$

 $= \overline{A} BC + A \overline{B} C + AB \overline{C} + ABC + ABC + ABC$

=BC+AC+AB