Transformations and Scene Graphs

FUNDAMENTALS OF COMPUTER GRAPHICS PHILIP DUTRÉ DEPARTMENT OF COMPUTER SCIENCE

Lecture Overview

Relevant sections in book: Chapter 19, 20, 21 (Illustrations from *Ray Tracing From The Ground Up, Physically-Based Rendering, Fundamentals of Computer Graphics*) (Page numbering might skip some slides due to 'hidden' slides in my presentation.)

Modeling the world

Geometric objects = collection of triangles = polygon mesh

"Utah teapot"

"Stanford Bunny"

Modeling the world

https://youtu.be/wq5Xf4s_0ZU

Modeling the world

Ray tracing is not restricted to triangles

Any object ... as long as we can compute an intersection with a ray (... and a normal vector)

Ray Tracing Deterministic 3-D Fractals

John C. Hart*, Daniel J. Sandin*, Louis H. Kauffman†

Practical Ray Tracing of Trimmed NURBS Surfaces

William Martin

Elaine Cohen

Russell Fish

Peter Shirley

Computer Science Department 50 S. Central Campus Drive University of Utah

Ray Tracing JELL-O[®] Brand Gelatin

Paul S. Heckbert

Dessert Foods Division
Pixar
San Rafael, CA

Datastructures for modeling

Define objects only once

- ... then transform to compose bigger objects
- Use translations, rotations, scaling, ...

Datastructures for modeling

Define objects only once

- ... then transform to compose bigger scenes
- Use translations, rotations, scaling, ...

Why are transformations (also) useful?

Move the camera in the 3D scene

 ... equivalent to keeping camera fixed, and apply inverse transformation to the 3D scene

Why are transformations (also) useful?

Computer animation

- Translate / rotate / warp object over time
- Transformations can be time-dependent

Homogeneous coordinates

Points and vectors are different things ...

Homogeneous coordinates

Each point can be expressed in a coordinate system: $\mathbf{p} = \mathbf{p_x} \mathbf{i} + \mathbf{p_y} \mathbf{j} + \mathbf{origin}$

Homogeneous coordinates

```
points: (x y z 1)

vectors: (x y z 0), "points at infinity"

subtraction: (* * * 1) - (* * * 1) = (* * * 0)

addition: (* * * 1) + (* * * 0) = (* * * 1)

(x y z w) is the same point as (x/w y/w z/w 1)
```

2D Scaling

$$\begin{pmatrix} Q_x \\ Q_y \\ 1 \end{pmatrix} = \begin{pmatrix} aP_x \\ bP_y \\ 1 \end{pmatrix} = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_x \\ P_y \\ 1 \end{pmatrix} = SP$$

2D Scaling

$$\begin{pmatrix} Q_x \\ Q_y \\ 1 \end{pmatrix} = \begin{pmatrix} aP_x \\ bP_y \\ 1 \end{pmatrix} = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_x \\ P_y \\ 1 \end{pmatrix} = SP$$

2D Reflection

Special case of scaling

2D Rotation

$$P_{x} = d\cos\varphi$$
$$P_{y} = d\sin\varphi$$

$$Q_x = d\cos(\varphi + \theta)$$

$$Q_y = d\sin(\varphi + \theta)$$

$$\cos(\varphi + \theta) = \cos\varphi\cos\theta - \sin\varphi\sin\theta$$
$$\sin(\varphi + \theta) = \sin\varphi\cos\theta + \cos\varphi\sin\theta$$

$$\begin{pmatrix} Q_x \\ Q_y \\ 1 \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_x \\ P_y \\ 1 \end{pmatrix} = RP$$

x

2D Rotation

2D Shear

$$Q_x = P_x + hP_y$$
$$Q_y = P_y$$

$$\begin{pmatrix} Q_x \\ Q_y \\ 1 \end{pmatrix} = \begin{pmatrix} P_x + hP_y \\ P_y \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & h & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_x \\ P_y \\ 1 \end{pmatrix} = S_h P$$

2D Shear

2D translation

$$\begin{pmatrix} Q_{x} \\ Q_{y} \\ 1 \end{pmatrix} = \begin{pmatrix} P_{x} + d_{x} \\ P_{y} + d_{y} \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & d_{x} \\ 0 & 1 & d_{y} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_{x} \\ P_{y} \\ 1 \end{pmatrix} = TP$$

Order of transformations

Order of transformations

Composite transformations

E.g. rotating about a non-origin point:

- Translate rotation centre to origin
- 2. Rotate around origin
- 3. Translate origin back to rotation centre

Composite transformations

$$Q = \begin{pmatrix} 1 & 0 & T_x \\ 0 & 1 & T_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -T_x \\ 0 & 1 & -T_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_x \\ P_y \\ 1 \end{pmatrix} = T^{-1}RTP$$

$$T^{-1}RT = \begin{pmatrix} \cos\theta & -\sin\theta & -\cos\theta \, T_x + \sin\theta \, T_y + T_x \\ \sin\theta & \cos\theta & -\sin\theta \, T_x - \cos\theta \, T_y + T_y \\ 0 & 0 & 1 \end{pmatrix}$$

$$x' = x^*sx$$

 $y' = y^*sy$

$$x' = (x*sx)*cos\Theta - (y*sy)*sin\Theta$$
$$y' = (x*sx)*sin\Theta + (y*sy)*cos\Theta$$

$$x' = ((x*sx)*cos\Theta - (y*sy)*sin\Theta) + tx$$

$$y' = ((x*sx)*sin\Theta + (y*sy)*cos\Theta) + ty$$

Translate 3, 5

Additional properties: Inverse 2D transformations

$$S^{-1} = \begin{pmatrix} 1/S_{\chi} & 0 & 0\\ 0 & 1/S_{y} & 0\\ 0 & 0 & 1 \end{pmatrix}$$

$$R^{-1} = \begin{pmatrix} \cos(-\theta) & -\sin(-\theta) & 0\\ \sin(-\theta) & \cos(-\theta) & 0\\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta & 0\\ -\sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$

$$S_h^{-1} = \begin{pmatrix} 1 & -h & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad T^{-1} = \begin{pmatrix} 1 & 0 & -d_x \\ 0 & 1 & -d_y \\ 0 & 0 & 1 \end{pmatrix}$$

Additional properties: Affine Transformations

Coordinates of Q are a linear combination of coordinates of P

$$\begin{pmatrix} Q_x \\ Q_y \\ 1 \end{pmatrix} = \begin{pmatrix} m_{11}P_x + m_{12}P_y + m_{13} \\ m_{21}P_x + m_{22}P_y + m_{23} \\ 1 \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_x \\ P_y \\ 1 \end{pmatrix} = MP$$

Lines remain lines:

Mp = Ma + t(Mb - Ma) is the transformed line \rightarrow transforming

vertices is sufficient for transforming a triangle
$$Mp = \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_x + t(b_x - a_x) \\ a_y + t(b_y - a_y) \\ 1 \end{pmatrix} = \begin{pmatrix} m_{11}a_x + m_{12}a_y + t(m_{11}(b_x - a_x) + m_{12}(b_y - a_y)) + m_{13} \\ m_{21}a_x + m_{22}a_y + t(m_{21}(b_x - a_x) + m_{22}(b_y - a_y)) + m_{23} \\ 1 \end{pmatrix}$$

3D Translation

3D Scaling

3D Rotation around X-axis

$$\begin{pmatrix} Q_{\chi} \\ Q_{y} \\ Q_{z} \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta_{\chi} & -\sin \theta_{\chi} & 0 \\ 0 & \sin \theta_{\chi} & \cos \theta_{\chi} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_{\chi} \\ P_{y} \\ P_{z} \\ 1 \end{pmatrix}$$

3D Rotation around Y-axis

3D Rotation around Z-axis

$$\begin{pmatrix} Q_{x} \\ Q_{y} \\ Q_{z} \\ 1 \end{pmatrix} = \begin{pmatrix} \cos \theta_{x} & -\sin \theta_{x} & 0 & 0 \\ \sin \theta_{x} & \cos \theta_{x} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_{x} \\ P_{y} \\ P_{z} \\ 1 \end{pmatrix}$$

3D Rotation around arbitrary axis

Composite transformation:

- Place axis aligned with coordinate axis
 - (translation + 2 rotations)
- Rotate around coordinate axis
- Inverse transformation
 - (2 inverse rotations + inverse translation)

Intersecting transformed objects

Applying transformations to normal vectors

Applying transformations to normal vectors

Transformation of normal vectors

$$n^{T} m = 0$$

$$n^{T} \operatorname{Im} = 0$$

$$n^{T} T^{-1} T m = 0$$

$$(n^{T} T^{-1}) (T m) = 0$$

We know:
$$n'^T(Tm) = 0$$

So:
$$n'^T = (n^T T^{-1})$$

 $n' = (n^T T^{-1})^T$
 $n' = (T^{-1})^T n$

Multiple objects as a data structure?

- Keep a copy of all (transformed) objects -- or --
- Keep the original object once and store transformations for each "instance"

Store 64 bunnies?
Or store 1 bunny and 64 transformations?

3D Objects are hierarchically modeled

Option 1:

- Store copy of each component object + associated transformation
- Editing the shape is difficult ...

Option 2:

Group objects together

HIERARCHY OF OBJECTS

https://www.youtube.com/watch?v=rXoGR5pobG4

Scene graph and ray tracing

Scene graph is used for modeling, storing, manipulating ... the scene.

How to raytrace a scene graph? (option 1)

- Before ray tracing is started:
 - traverse scene graph, apply (composite) transformations to each geometric object, place all transformed objects in 3D world, ...
- During ray tracing:
 - trace rays in fully instantiated 3D world and intersect rays with transformed objects

Scene graph and ray tracing

Scene graph is used for modeling, storing, manipulating ... the scene.

How to raytrace a scene graph? (option 2)

- During ray tracing:
 - traverse the scene graph for each ray, apply inverse transformations to ray
 - intersect transformed rays with original, non-transformed objects

Scene graph and ray tracing

GENERATE ENTIRE WORLD

- Entire world in memory
- Difficult to intersect or represent some types of object (e.g. transformed torus)
- easier to build acceleration structures (see next lectures)

INVERSE-TRANSFORM THE RAY

- No need to keep all instances of objects in memory
- Easy to intersect most objects (e.g. transformed torus)
- more difficult to build acceleration structures (see next lectures)

→ Often a hybrid approach is used

Appendix: Scene graph examples

Scene graph: moving tractor

Model a vehicle with rotating wheels ...

Scene graph: moving tractor

Scene graph: moving tractor

Scene (identity matrix) Translate($\mathbf{start} + t(\mathbf{end-start})/100$) Translate(w1) Translate(w2) Rotate(g(t)) Rotate(f(t))

(Computer Graphics: Principles and practice, Hughes et al.)

Camel model

3 (rotation) joints: neck, hip, knee

(Computer Graphics: Principles and practice, Hughes et al.)

Model of a single leg

Figure 6.41: Scene graph of the camel-leg model. Here, and below, we use a beige background to highlight a portion of the graph that is being used as a component or submodel.

(Computer Graphics: Principles and practice, Hughes et al.)

Model of a single leg

Figure 6.42: Rendering of the foot model, at its canonical position at the origin.

Figure 6.43: Rendering of the shin model, at its canonical position at the origin.

Figure 6.44: Rendering of a first

draft of a lower-leg model, con-

structed by composing the two

subcomponents without moving

them from their canonical posi-

tions at the origin of the coordi-

nate system.

Figure 6.45: Rendering of the lower-leg model, now corrected via application of a modeling transformation on the shin subcomponent.

Figure 6.46: Rendering of the lower-leg model from a second point of view.

Figure 6.47: Rendering of the complete leg model.

Figure 6.48: Result of specifying a 37° rotation at the knee joint, annotated with a red line through the joint, parallel to the x-axis, showing the axis of rotation.

Figure 6.41: Scene graph of the camel-leg model. Here, and below, we use a beige background to highlight a portion of the graph that is being used as a component or submodel.

Figure 6.49: Scene graph of a camel constructed without reusable components, allowing individual control of each joint.

Figure 6.50: Reducing the storage cost by reusing a lower-leg submodel, with no loss of flexibility in joint control.

Figure 6.51: Reducing the storage cost by reusing a model for the left-side legs and a separate model for the right-side legs, with great loss of flexibility in joint control.

Figure 6.52: Modeling a caravan by reusing a single camel model, a highly scalable approach at the cost of excessive synchronized leg movement.

Scene graph: 2D House

Modeling a scene: many different transformations on different objects Editing is difficult

Scene graph: 2D House

Group objects together

Edit groups

Scene graph: 2D House

Group objects, traverse graph to process scene

■ Rotating planets ...

Scale: S(moon_size)

Rotate: R(moon_rotation)

Scale: S(earth_size)

Rotate: R(earth_rotation)

Translate T(moon-earth)

Scale S(sun_size)

Translation T(earth-sun)

