DEVI AHILYA VISHWAVIDYALAYA

SCHOOL OF STATISTICS

NAME: VANSHIKA DHAKAD

ROLL NO: ST4A2108

SUBJECT: R-PROGRAMMING

ASSIGNMENT

CLASS: B.Sc.(Hons)-ASA

SEMESTER: 4th

SUBMITTED TO: CHANDRESH SIR

Case Study – Effectiveness of a drug treatment

To test the effectiveness of a drug for a certain medical condition, we will consider a hypothetical case.

Suppose we have 105 patients under study and 50 of them were treated with the drug. Moreover, the remaining 55 patients were kept under control samples. Thus, the health condition of all patients was checked after a week.

With the following table, we can assess if their condition has improved or not. By observing this table, one can you tell if the drug had a positive effect on the patient?

Here in this example, we can see that 35 out of the 50 patients showed improvement. Suppose if the drug had no effect, the 50 will split the same proportion of the patients who were not given the treatment. Here, in this case, improvement of the control case is high as about 70% of patients showed improvement, since both categorical variables which we have already defined must have only 2 levels. Also, it was sort of perceptive today that the drug treatment and health condition are dependent.

id	treatment	Improvement	
1	treated	Improved	
2	treated	Improved	
3	not-treated	Improved	
4	treated	Improved	
5	treated	not-improved	
6	treated	not-improved	
7	not-treated	not-improved	
8	treated	not-improved	
9	not-treated	Improved	
10	treated	Improved	
11	not-treated	Improved	
12	not-treated	not-improved	
13	not-treated	not-improved	
14	not-treated	not-improved	
15	not-treated	Improved	
16	not-treated	Improved	
17	treated	Improved	
18	treated	Improved	
19	not-treated	not-improved	
20	not-treated	not-improved	
21	treated	not-improved	
22	not-treated	not-improved	
23	treated	not-improved	
24	not-treated	Improved	
25	treated	Improved	
26	treated	Improved	
27	not-treated	not-improved	
28	not-treated	Improved	
29	treated	not-improved	
30	treated	Improved	
31	not-treated	not-improved	
32	not-treated	not-improved	
33	treated	Improved	
34	not-treated	Improved	
35	treated	not-improved	
36	not-treated	Improved	
37	treated	Improved	
38	not-treated	not-improved	
39	not-treated	Improved	
40	treated	Improved	

41	not-treated	Improved	
42	not-treated	Improved	
43	not-treated	not-improved	
44	not-treated	Improved	
45	not-treated	Improved	
46	treated	Improved	
47	treated	not-improved	
48	not-treated	not-improved	
49	treated	Improved	
50	treated	Improved	
51	not-treated	not-improved	
52	treated	Improved	
53	not-treated	Improved	
54	treated	Improved	
55	treated	Improved	
56	not-treated	Improved	
57	treated	Improved	
58	not-treated	not-improved	
59	treated	Improved	
60	treated	Improved	
61	treated	Improved	
62	not-treated	Improved	
63	treated	not-improved	
64	treated	not-improved	
65	not-treated	Improved	
66	not-treated	Improved	
67	not-treated	Improved	
68	not-treated	not-improved	
69	not-treated	not-improved	
70	treated	Improved	
71	treated	not-improved	
72	not-treated	not-improved	
73	treated	not-improved	
74	not-treated	Improved	
75	not-treated	not-improved	
76	not-treated	not-improved	
77	treated	not-improved	
78	not-treated	Improved	
79	treated	Improved	
80	treated	Improved	
81	treated	Improved	

82	not-treated	not-improved
83	treated	Improved
84	not-treated	not-improved
85	treated	Improved
86	not-treated	Improved
87	not-treated	not-improved
88	treated	Improved
89	not-treated	not-improved
90	treated	Improved
91	not-treated	not-improved
92	not-treated	Improved
93	treated	not-improved
94	treated	not-improved
95	not-treated	not-improved
96	treated	Improved
97	not-treated	Improved
98	treated	Improved
99	not-treated	not-improved
100	not-treated	Improved
101	treated	Improved
102	treated	Improved
103	not-treated	not-improved
104	treated	Improved
105	not-treated	not-improved

Chi-Square Test

Particularly in this test, we have to check the p-values. Moreover, like all statistical tests, we assume this test as a null hypothesis and an alternate hypothesis.

The main thing is, we reject the null hypothesis if the p-value that comes out in the result is less than a predetermined significance level, which is 0.05 usually, then we reject the null hypothesis.

H0: The two variables are independent.

H1: The two variables relate to each other.

In the case of a null hypothesis, a chi-square test is to test the two variables that are independent.

Syntax of a chi-square test: chisq.test(data)

Following is the description of the chi-square test parameters:

- The input data is in the form of a table that contains the count value of the variables in the observation.
- We use chisq.test function to perform the chi-square test of independence in the native stats package in R. For this test, the function requires the contingency table to be in the form of a matrix. Depending on the form of the data, to begin with, this can need an extra step, either combining vectors into a matrix or cross-tabulating the counts among factors in a data frame.
- We use read.table and as.matrix to read a table as a matrix. While using this, be careful of extra spaces at the end of lines. Also, for extraneous characters on the table, as these can cause errors.

R Code

We will work on R by doing a chi-squared test on the treatment (X) and improvement (Y) columns in treatment.csv

First, read in the treatment.csv data.

```
#Author DataFlair
data <- read.csv("C:/Users/Master Mind Computer/Desktop/R
project/Effectiveness of drugs.csv", TRUE) #Reading CSV
table(data$treatment, data$improvement)
view(data)
#chisquare test
chisq.test(data$treatment, data$improvement, correct=FALSE)
data_table <- table(data$treatment, data$improvement)</pre>
data table
mosaicplot(data_table, color = c("darkred", "gold"), xlab
="treatment", ylab = "improvement")
library(ggplot2)
# Bar plot for improvement
ggplot(data = as.data.frame(impr)) +
 geom\_col(aes(x = Var1, y = Freq), fill = "red") +
 labs(title = "Improvement Bar Plot", x = "Improvement", y =
"Count")
# Pie chart for treatment
ggplot(data = as.data.frame(trt)) +
 geom_bar(aes(x = "", y = Freq, fill = Var1), stat = "identity") +
 scale_fill_manual(values = c("red", "blue")) +
 labs(title = "Treatment Pie Chart") +
 coord_polar(theta = "y") +
 theme void()
```

output

```
> #Author DataFlair
> data <- read.csv("C:/Users/Master Mind Compute</pre>
r/Desktop/R project/Effectiveness of drugs.csv",
TRUE) #Reading CSV
> table(data$treatment, data$improvement)
               improved not-improved
  not-treated
                      26
                      35
                                     15
  treated
> view(data)
> chisq.test(data$treatment, data$improvement, c
orrect=FALSE)
     Pearson's Chi-squared test
data: data$treatment and data$improvement
x-squared = 5.5569, df = 1, p-value = 0.01841
> data_table <- table(data$treatment, data$impro</pre>
vement)
> data table
               improved not-improved
  not-treated
                      26
  treated
                       35
                                     15
> mosaicplot(data_table, color = c("darkred", "g
old"), xlab ="treatment", ylab = "improvement")
```


We have a chi-squa significance level o two variables are in	of 0.05, we reject th		

