Quiz 1 (for Section 1)

Started: Feb 4 at 11:49am

Quiz Instructions

Question 1 1 pts

Consider the dual points of the lines given below: how many vertices will be on the convex hull of these dual points?

- 3
- o 5
- O 6
- 4

Question 2 1 pts

Consider running the Graham-Scan algorithm on the instance given below. How many pop operations will be executed?

•

•

.

•

- O 5
- 0 4
- o 2
- 3

Question 3 1 pts

Which of the following is the asymptotic solution of recurrence T(n) = n + T(n/3) + T(n/4)?

- 0 n
- $\circ n \cdot \log n$
- n^3
- n^4

Question 4 1 pts

Which one of the following shows the correct dual points and dual lines for the lines and points in the primal plane?

o dual 4

o dual 3

o dual 1

o dual 2

Question 5 1 pts

Let $A[1\cdots n]$ be an array with n distinct integers. Let A' be the sorted array of A in ascending order. We pick a number x from A uniformly at random. What is the probability for event $\{x \leq A'[n/3] \text{ or } x > A'[n/2]\}$?

5/6

0 1/2

0 3/5

0 2/3

Question 6	1 pts
Question o	1 213

Suppose you are given the following two algorithms: Algorithm A solves problems of size n by dividing them into 9 subproblems of size n/3 recursively solving each subproblem, and then combining the solutions in constant time; Algorithm B solves problems by dividing them into 2 subproblems of half the size, recursively solving each subproblem, and then combining the solutions in linear time. Which of these algorithms has a faster running time?

- A
- They have the same asymptotic running time
- B

Question 7 1 pts

Which of the following is the asymptotic solution of recurrence $T(n) = \log^2 n + T(\sqrt{n})$?

- $\Theta(\log^2 n \cdot \sqrt{n})$
- $\Theta(\sqrt{n})$
- $\Theta(\log^2 n)$
- $\Theta(\log n)$

Question 8 1 pts

Suppose we have two sorted arrays $A = [a_1, a_2, a_3]$ and $B = [b_1, b_2, b_3]$, both in ascending order. Which of the following can't be a possible outcome of running merge-two-sorted-arrays(A, B)?

- None of the others
- $[b_1,a_1,a_2,b_2,b_3,a_3]$
- $[b_1, b_2, b_3, a_1, a_2, a_3]$
- $\circ \ [a_1,b_1,a_2,b_2,a_3,b_3]$

Question 9	1 pts
$n^{\log n} = O(2^{\log^2 n})$	
○ False.	
True.	

Question 10 1 pts

Suppose S is an array with n distinct integers. Similar to the selection algorithm, we partition S into n/13 subarrays, each of which contains 13 numbers. Let x be the median of medians of the n/13 subarrays. How many numbers in S are guaranteed to be less than x?

- \circ 5n/26
- 0 3n/13
- \circ 7*n*/26
- 0 4n/13

Quiz saved at 11:51am

Submit Quiz

- 1. (1 pts.) There are two lines $\{l_1, l_6\}$ in the upper envelop and therefore $\{l_1^*, l_6^*\}$ form the lower hull of the dual points; there are four lines $\{l_6, l_5, l_3, l_1\}$ in the lower envelop and therefore $\{l_6^*, l_5^*, l_3^*, l_1^*\}$ form the upper hull of the dual points. Notice that l_1^* and l_6* appear in both, so the convex hull of dual points consists of 4 vertices: $\{l_6^*, l_5^*, l_3^*, l_1^*\}$.
- 2. (1 pts.) Since there are 3 points inside the convex hull, it means there will be 3 pop operations.
- 3. (1 pts.) $c_1 = 1/3$ and $c_2 = 1/4$, we have $T(n) = \Theta(n)$ if $c_1 + c_2 < 1$.
- 4. (1 pts.) A couple of things we may use to pick the right solution: (1), the slopes of p, r, and q are increasing, so in the dual plane, from left to right we should have p*, r*, and q*, which removes dual-4. (2), in primal plane, A and B are above line r, so in the dual plane r* should be above A* and B*, which removes dual-1 and dual-3. (3), B is above q and r in the primal plane, so q* and r* should be above B* which removes dual 1 and dual 3. (4), A is located to the right of B, which means that the x-coordinate of A is bigger than the one of B. Thus, the slope of A* is also bigger than the one of B*, which removes dual-3 and dual-4.
- **5.** (1 pts.) Since x is drawn uniformly at random, we have $P(\{x \le A'[n/3] \text{ or } x > A'[n/2]\})$ is equal to (n/3 + n/2)/n = 5/6.
- 6. (1 pts.)
 - Algorithm A time complexity: $T(n) = 9T(n/3) + \Theta(1) = \Theta(n^2)$
 - Algorithm B time complexity: $T(n) = 2T(n/2) + \Theta(n) = \Theta(n \log n)$

Thus, algorithm B has a faster running time.

7. (1 pts.)

$$T(n) = \log^2 n + T(n^{1/2}) = \log^2 n + \log^2(n^{1/2}) + T(n^{1/4})$$
(1)

$$= \log^2 n + \frac{1}{4} \log^2 n + \log^2 (n^{1/4}) + T(n^{1/8}) = \dots$$
 (2)

$$= \log^2 n + \frac{1}{4} \log^2 n + \frac{1}{16} \log^2 n + \dots = \Theta(\log^2 n)$$
 (3)

- 8. (1 pts.) The only relationships we know regarding the elements in A and B are $a_1 \le a_2 \le a_3$ and $b_1 \le b_2 \le b_3$. As we know merge-two-sorted-arrays (A, B) outputs an sorted array of elements in A and B in ascending order, so the only type of impossible sequence is a larger element comes in front of a smaller element. However, with the known relationships, we can't be certain any element is larger than other elements. So, any sequence of these 6 elements can be a possible outcome.
- **9.** (1 pts.) Let $f(n) = n^{\log n}$ and $g(n) = 2^{\log^2 n}$. Suppose we take a logarithm on f(n) and g(n), we have $\log(f(n)) = \log n \times \log n$, $\log(g(n)) = \log 2 \times \log^2 n$. So we have $\log(f(n)) = O(\log(g(n)))$. Then we can use the formal definition of Big-O to prove that we have f(n) = O((g(n))) if $\log(f(n)) = O(\log(g(n)))$.

10.	(1 pts.) We have at least $n/26$ medians is less than x if x is the median of medians of the $n/13$ subarrays. For the corresponding $n/26$ subarrays, we have at least 7 numbers (including median itself) in each subarray that are less than x . So we have $7/26$ numbers in S are guaranteed to be less than x .
	CMDSC 465 Spring 2022 (Drig 1 (Section 1)