The 17th International Symposium on Combinatorial Search SoCS 2024

Efficient and Exact Public Transport Routing via a Transfer Connection Database

Abdallah Abuaisha, Mark Wallace, Daniel Harabor, Bojie Shen

Department of Data Science and AI, Monash University, Australia

June 2024

Introduction

1. Query Efficiency

- High number of queries to be answered by a central server
- Queries have to be handled efficiently

1. Query Efficiency

- Unique structure of public transport networks
- Existing works are not efficient enough

V/Line public timetable - it operates on 24 hour time

2. Transfer Modelling

• Uniform transfer costs

Intra-station transfer model

2. Transfer Modelling

• Uniform transfer costs

Intra-station transfer model

Inter-station transfer model

2. Transfer Modelling

• Uniform transfer costs → Infeasible or suboptimal journeys

Intra-station transfer model

Inter-station transfer model

2. Transfer Modelling

Comprehensive walking graph

2. Transfer Modelling

• Comprehensive walking graph \rightarrow Costly preprocessing and slow queries

Contributions

- 1. Introducing a novel algorithm that solves public transport routing problem **efficiently** and **accurately.**
- 2. Demonstrating the importance of modelling transfers using **exact** transfer costs.
- 3. Proposing an efficient method for building a **compressed path database** in public transport networks.

Transfer Connection Database (TCD)

Network Modelling

Offline Preprocessing Phase

Online Query Phase

Transfer Connection Database (TCD)

Network Modelling

Offline Preprocessing Phase

Online Query Phase

- 1. Timetable Modelling
 - Timetable-based approach.

- 1. Timetable Modelling
 - Timetable-based approach.
 - Timetable: Stops P,

- 1. Timetable Modelling
 - Timetable-based approach.
 - Timetable: Stops P, Stations S,

1. Timetable Modelling

- Timetable-based approach.
- Timetable: Stops P, Stations S, Connections C,
- $c = (p_{dep}, \tau_{dep}, p_{arr}, \tau_{arr}, t)$
- $c_1 = (p_1, 8:30, p_2, 8:35, t_1)$

1. Timetable Modelling

- Timetable-based approach.
- Timetable: Stops P, Stations S, Connections C, Trips T,
- $t_1 = \langle c_1, c_2, c_3 \rangle$

1. Timetable Modelling

- Timetable-based approach.
- Timetable: Stops P, Stations S, Connections C, Trips T, Footpaths F
- f = $(p_{dep}, p_{arr}, \Delta \tau)$
- $f_1 = (p_1, p_2, 7)$

- 1. Timetable Modelling
 - Timetable-based approach.

Connections Array

2. Transfer Modelling

Consider exact transfer costs.

- Consider exact transfer costs.
- Add footpath between every pair of stops within stations.

- Consider exact transfer costs.
- Add footpath between every pair of stops within stations.
- Add footpath between every pair of stops between nearby stations.

- Consider exact transfer costs.
- Add footpath between every pair of stops within stations.
- Add footpath between every pair of stops between nearby stations.
- Add more footpaths to create a transitively-closed graph.

- Consider exact transfer costs.
- Add footpath between every pair of stops within stations.
- Add footpath between every pair of stops between nearby stations.
- Add more footpaths to create a transitively-closed graph.
- Define neighbours and neighbourhoods.

- 3. Query Modelling
 - Focus on the earliest arrival time problem.

- Focus on the earliest arrival time problem.
- Observation: commencing/concluding stop at the origin/destination station hold minimal significance to users.

- Focus on the earliest arrival time problem.
- Observation: commencing/concluding stop at the origin/destination station hold minimal significance to users.
- Station-based query: $q = (s_o, s_d, \tau_q)$.
- Objective: find journey j_q departing from s_o no earlier than τ_q and arriving at s_d as early as possible.

- Focus on the earliest arrival time problem.
- Observation: commencing/concluding stop at the origin/destination station hold minimal significance to users.
- Station-based query: $q = (s_o, s_d, \tau_q)$.
- Objective: find journey j_q departing from s_o no earlier than τ_q and arriving at s_d as early as possible.
- Journey is a sequence of connections from s_o to s_d.

- Focus on the earliest arrival time problem.
- Observation: commencing/concluding stop at the origin/destination station hold minimal significance to users.
- Station-based query: $q = (s_o, s_d, \tau_q)$.
- Objective: find journey j_q departing from s_o no earlier than τ_q and arriving at s_d as early as possible.
- Journey is a sequence of connections from s_o to s_d .
- $q = (s_2, s_4, \tau_q)$

- Focus on the earliest arrival time problem.
- Observation: commencing/concluding stop at the origin/destination station hold minimal significance to users.
- Station-based query: $q = (s_o, s_d, \tau_q)$.
- Objective: find journey j_q departing from s_o no earlier than τ_q and arriving at s_d as early as possible.
- Journey is a sequence of connections from s_o to s_d.
- $q = (s_2, s_4, \tau_q) \rightarrow j_1 = \langle c_6, c_9 \rangle \quad j_2 = \langle c_7, c_8 \rangle$

Transfer Connection Database (TCD)

Network Modelling

Offline Preprocessing Phase

Online Query Phase

- Identify the first move on the optimal journey for any OD pair at a given departure time.
- Query $q = (A, J, \tau_q)$.
- First optimal move from A to J?

^{*} Assuming one stop in each station for simplicity

- Identify the first move on the optimal journey for any OD pair at a given departure time.
- Query $q = (A, J, \tau_q)$.
- First optimal move from A to J?
- $j_q = < c1, ... >$

^{*} Assuming one stop in each station for simplicity

- Identify the first move on the optimal journey for any OD pair at a given departure time.
- Query $q = (A, J, \tau_q)$.
- First optimal move from B to J?
- $j_q = \langle c1, c2, ... \rangle$

^{*} Assuming one stop in each station for simplicity

- Identify the first move on the optimal journey for any OD pair at a given departure time.
- Query $q = (A, J, \tau_q)$.
- First optimal move from C to J?
- $j_q = \langle c1, c2, c3, ... \rangle$

^{*} Assuming one stop in each station for simplicity

- Identify the first move on the optimal journey for any OD pair at a given departure time.
- Query $q = (A, J, \tau_q)$.
- First optimal move from D to J?
- $j_q = \langle c1, c2, c3, c5, ... \rangle$

^{*} Assuming one stop in each station for simplicity

- Identify the first move on the optimal journey for any OD pair at a given departure time.
- Query $q = (A, J, \tau_q)$.
- First optimal move from F to J?
- $j_q = \langle c1, c2, c3, c5, c7, ... \rangle$

^{*} Assuming one stop in each station for simplicity

- Identify the first move on the optimal journey for any OD pair at a given departure time.
- Query $q = (A, J, \tau_q)$.
- First optimal move from G to J?
- $j_q = \langle c1, c2, c3, c5, c7, c9, ... \rangle$

^{*} Assuming one stop in each station for simplicity

- Identify the first move on the optimal journey for any OD pair at a given departure time.
- Query $q = (A, J, \tau_q)$.
- First optimal move from H to J?
- $j_q = \langle c1, c2, c3, c5, c7, c9, c13, ... \rangle$

^{*} Assuming one stop in each station for simplicity

- Identify the first move on the optimal journey for any OD pair at a given departure time.
- Query $q = (A, J, \tau_q)$.
- First optimal move from K to J?
- $j_q = \langle c1, c2, c3, c5, c7, c9, c13, c14 \rangle$
- 8 lookups!

^{*} Assuming one stop in each station for simplicity

- Observation: information about journey transfers is sufficient to answer queries.
- First move ← next transfer connection instead of next connection.

^{*} Assuming one stop in each station for simplicity

- Observation: information about journey transfers is sufficient to answer queries.
- First move
 — next transfer connection instead of next connection.
- Transfer connection is a sequence of connections sharing the same trip.

$$j_q = \langle c1, c2, c3, c5, c7, c9, c13, c14 \rangle$$

tc1 = \langle c1, c2, c3 \rangle

 Can be represented by the first and last connections

$$tc1 = (c1, c3)$$

^{*} Assuming one stop in each station for simplicity

- Observation: information about journey transfers is sufficient to answer queries.
- First move
 — next transfer connection instead of next connection.
- First optimal move from A to J?
- jq = <tc1, ...>

^{*} Assuming one stop in each station for simplicity

- Observation: information about journey transfers is sufficient to answer queries.
- First move
 — next transfer connection instead of next connection.
- First optimal move from D to J?
- jq = <tc1, tc2, ...>

^{*} Assuming one stop in each station for simplicity

- Observation: information about journey transfers is sufficient to answer queries.
- First move
 — next transfer connection instead of next connection.
- First optimal move from H to J?
- jq = <tc1, tc2, tc3>
- 3 lookups only (instead of 8)!
- Number of transfers is small in practice.

^{*} Assuming one stop in each station for simplicity

- Objective: Build a table that stores all first moves (transfer connections) for all OD pairs considering all potential departure times, called FT table.
- Naïve approach: station-station FT table.

Naïve approach: Station-station

The 17th International Symposium on Combinatorial Search (SoCS 2024)

Station-station FT table

O\D	S ₁	S ₂	S ₃	S ₄	S ₅
s ₁		(c ₄ ,c ₄)	(c ₆ ,c ₆) (c ₄ ,c ₆) (c ₇ ,c ₇)	(c_7, c_8) (c_4, c_4) (c_6, c_6)	(c_7, c_8) (c_4, c_4) (c_6, c_6)
S ₂	(c_{12}, c_{12}) (c_7, c_7) (c_6, c_6)		(c ₆ ,c ₆) (c ₄ ,c ₆) (c ₇ ,c ₇)	(c_7, c_8) (c_4, c_4) (c_6, c_6)	(c_7, c_8) (c_4, c_4) (c_6, c_6)
S ₃	(c_5, c_5) (c_{10}, c_{12})	(c_5, c_5) (c_{10}, c_{10})		(c_8, c_8) (c_9, c_9)	(c_8, c_8) (c_9, c_{11})
S ₄	(c_3, c_5) (c_2, c_2) (c_1, c_2)	(c_3, c_5) (c_2, c_2) (c_1, c_2)	(c_2, c_2) (c_1, c_2) (c_3, c_3)		(c_3, c_3) (c_2, c_2) (c_{11}, c_{11})
S ₅	(c_3, c_5) (c_2, c_2) (c_1, c_2)	(c_3, c_5) (c_2, c_2) (c_1, c_2)	(c_2, c_2) (c_1, c_2) (c_3, c_3)	(c ₁ ,c ₁)	

• Issue: redundant labels!

Cause: journey can start with walking.

The 17th International Symposium on Combinatorial Search (SoCS 2024)

Station-station FT table

O\D	S ₁	S ₂	S ₃	S ₄	S ₅
S ₁		(c ₄ ,c ₄)	(c ₆ ,c ₆) (c ₄ ,c ₆) (c ₇ ,c ₇)	(c ₇ ,c ₈) (c ₄ ,c ₄) (c ₆ ,c ₆)	(c ₇ ,c ₈) (c ₄ ,c ₄) (c ₆ ,c ₆)
S ₂	(c_{12}, c_{12}) (c_7, c_7) (c_6, c_6)		(c ₆ ,c ₆) (c ₄ ,c ₆) (c ₇ ,c ₇)	(c ₇ ,c ₈) (c ₄ ,c ₄) (c ₆ ,c ₆)	(c ₇ ,c ₈) (c ₄ ,c ₄) (c ₆ ,c ₆)
S ₃	(c_5, c_5) (c_{10}, c_{12})	(c_5, c_5) (c_{10}, c_{10})		(c_8, c_8) (c_9, c_9)	(c_8, c_8) (c_9, c_{11})
S ₄	(c_3, c_5) (c_2, c_2) (c_1, c_2)	(c ₃ ,c ₅) (c ₂ ,c ₂) (c ₁ ,c ₂)	(c_2, c_2) (c_1, c_2) (c_3, c_3)		(c_3, c_3) (c_2, c_2) (c_{11}, c_{11})
S ₅	(c_3, c_5) (c_2, c_2) (c_1, c_2)	(c_3, c_5) (c_2, c_2) (c_1, c_2)	(c_2, c_2) (c_1, c_2) (c_3, c_3)	(c ₁ ,c ₁)	 47

Refined approach: Neighbourhood-station

Neighbourhood-station FT table

O\D	S ₁	S ₂	S ₃	S ₄	S ₅
N ₁	(c_{12}, c_{12}) (c_7, c_7) (c_6, c_6)	(c ₄ ,c ₄)	(c_6, c_6) (c_4, c_6) (c_7, c_7)	(c_7, c_8) (c_4, c_4) (c_6, c_6)	(c_7, c_8) (c_4, c_4) (c_6, c_6)
N ₂	(c_5, c_5) (c_{10}, c_{12})	(c_5, c_5) (c_{10}, c_{10})		(c ₈ ,c ₈) (c ₉ ,c ₉)	(c ₈ ,c ₈) (c ₉ ,c ₁₁)
N ₃	(c_3, c_5) (c_2, c_2) (c_1, c_2)	(c_3, c_5) (c_2, c_2) (c_1, c_2)	(c_2, c_2) (c_1, c_2) (c_3, c_3)	(c ₁ ,c ₁)	(c_3, c_3) (c_2, c_2) (c_{11}, c_{11})

Origin neighbourhoods

Refined approach: Neighbourhood-station

Neighbourhood-station FT table

O\D	S ₁	S ₂	S ₃	S ₄	S ₅
N ₁	(c_{12}, c_{12}) (c_7, c_7) (c_6, c_6)	(c ₄ ,c ₄)	(c_6, c_6) (c_4, c_6) (c_7, c_7)	(c_7, c_8) (c_4, c_4) (c_6, c_6)	(c_7, c_8) (c_4, c_4) (c_6, c_6)
N ₂	(c ₅ ,c ₅) (c ₁₀ ,c ₁₂)	(c_5, c_5) (c_{10}, c_{10})		(c ₈ ,c ₈) (c ₉ ,c ₉)	(c ₈ ,c ₈) (c ₉ ,c ₁₁)
N ₃	(c_3, c_5) (c_2, c_2) (c_1, c_2)	(c_3, c_5) (c_2, c_2) (c_1, c_2)	(c_2, c_2) (c_1, c_2) (c_3, c_3)	(c ₁ ,c ₁)	(c_3, c_3) (c_2, c_2) (c_{11}, c_{11})

Origin neighbourhoods

Refined approach: Neighbourhood-station

Neighbourhood-station FT table

Destination stations

O\D	S ₁	S ₂	S ₃	S ₄	S ₅
N ₁	(c_{12}, c_{12}) (c_7, c_7) (c_6, c_6)	(c ₄ ,c ₄)	(c ₆ ,c ₆) (c ₄ ,c ₆) (c ₇ ,c ₇)	(c_7, c_8) (c_4, c_4) (c_6, c_6)	(c_7, c_8) (c_4, c_4) (c_6, c_6)
N ₂	(c ₅ ,c ₅) (c ₁₀ ,c ₁₂)	(c_5, c_5) (c_{10}, c_{10})		(c ₈ ,c ₈) (c ₉ ,c ₉)	(c ₈ ,c ₈) (c ₉ ,c ₁₁)
N ₃	(c_3, c_5) (c_2, c_2) (c_1, c_2)	(c_3, c_5) (c_2, c_2) (c_1, c_2)	(c_2, c_2) (c_1, c_2) (c_3, c_3)	(c ₁ ,c ₁)	(c_3, c_3) (c_2, c_2) (c_{11}, c_{11})

Refined approach: Neighbourhood-station

- All optimal journeys have to be precomputed for all OD pairs, and then the first moves on these journeys are stored in the FT table.
- To compute the row $FT[N_i]$, run one Dijkstra search for every departure event from the origin neighbourhood N_i .

Challenges in building the FT table

1. Computation time

Challenges in building the FT table

- 1. Computation time
 - Solution: use Connection Scan Algorithm (CSA) instead of Dijkstra.
 - CSA is faster, cache-efficient, and does not require priority queue.

Challenges in building the FT table

2. Storage (FT table size)

Challenges in building the FT table

- 2. Storage (FT table size)
 - Solution: propose optimisations.
 - a) Dominance Check (DC): Remove all-time dominated transfer connections in each cell of FT table.

Challenges in building the FT table

- 2. Storage (FT table size)
 - Solution: propose optimisations.
 - a) Dominance Check (DC): Remove all-time dominated transfer connections in each cell of FT table.
 - b) Transfer Connection Compression (TCC): Change the representation of transfer connections to enable label merging in each cell of FT table.

Transfer Connection Database (TCD)

Network Modelling

Offline Preprocessing Phase

Online Query Phase

Example: $q = (s_2, s_5, 8:30)$

Example: $q = (s_2, s_5, 8:30)$

FT table

O\D	s ₁	S ₂	S ₃	S ₄	S ₅
N ₁	(c ₁₂ ,p ₁)	(c ₄ ,p ₂)	(c ₆ ,p ₅) (c ₄ ,p ₅) (c ₇ ,p ₄)	(c ₇ ,p ₈) (c ₄ ,p ₂)	(c ₇ ,p ₈) (c ₄ ,p ₂)
N ₂	(c_5, p_3) (c_{10}, p_1)	(c_5, p_3) (c_{10}, p_2)		(c ₈ ,p ₈) (c ₉ ,p ₇)	(c_8, p_8) (c_9, p_9)
N ₃	(c ₃ ,p ₃)	(c ₃ ,p ₃)	(c_2, p_6) (c_1, p_6) (c_3, p_4)	(c ₁ ,p ₇)	(c ₃ ,p ₄) (c ₁₁ ,p ₉)

Example: $q = (s_2, s_5, 8:30)$

• s_2 belongs to N_1

$FT[N_1][s_5]$

O\D	s ₁			S ₄	S ₅
N ₁	(c ₁₂ ,p ₁)	(c ₄ ,p ₂)	(c_6, p_5) (c_4, p_5) (c_7, p_4)	(c_4, p_2)	(c ₇ ,p ₈) (c ₄ ,p ₂)
		(c_5, p_3) (c_{10}, p_2)			(c_8, p_8) (c_9, p_9)
	(c_3,p_3)	(c_3,p_3)	(c_2, p_6) (c_1, p_6) (c_3, p_4)	(c ₁ ,p ₇)	(c_3, p_4) (c_{11}, p_9)

Example: $q = (s_2, s_5, 8:30)$

• (c_7, p_8) is the first reachable transfer connection in $FT[N_1][s_5]$

O\D	s_1			S ₄	S ₅
N ₁	(c ₁₂ ,p ₁)	(c ₄ ,p ₂)	(c_6, p_5) (c_4, p_5) (c_7, p_4)		(c ₇ ,p ₈) (c ₄ ,p ₂)
	(c_5, p_3) (c_{10}, p_1)	(c_5, p_3) (c_{10}, p_2)		(c_8, p_8) (c_9, p_7)	(c_8, p_8) (c_9, p_9)
	(c_3, p_3)	(c_3, p_3)	(c_2, p_6) (c_1, p_6) (c_3, p_4)	(c_1,p_7)	(c_3, p_4) (c_{11}, p_9)

Example: $q = (s_2, s_5, 8:30)$

• c₇ departs from s₂

O\D	s_{1}			S ₄	S ₅
N ₁	(c ₁₂ ,p ₁)	(c_4, p_2)	(c_6, p_5) (c_4, p_5) (c_7, p_4)		(c ₇ ,p ₈) (c ₄ ,p ₂)
		(c_5, p_3) (c_{10}, p_2)		(c_8, p_8) (c_9, p_7)	(c_8, p_8) (c_9, p_9)
	(c_3, p_3)	(c_3, p_3)	(c_2, p_6) (c_1, p_6) (c_3, p_4)	(c ₁ ,p ₇)	(c_3, p_4) (c_{11}, p_9)

Example: $q = (s_2, s_5, 8:30)$

Get off the train at p₈

O\D	s ₁	S ₂	S ₃	S ₄	S ₅
N ₁	(c ₁₂ ,p ₁)	(c ₄ ,p ₂)	(c ₆ ,p ₅) (c ₄ ,p ₅) (c ₇ ,p ₄)	(c ₇ ,p ₈) (c ₄ ,p ₂)	(c ₇ ,p ₈) (c ₄ ,p ₂)
N ₂	(c_5, p_3) (c_{10}, p_1)	(c_5, p_3) (c_{10}, p_2)		(c ₈ ,p ₈) (c ₉ ,p ₇)	(c ₈ ,p ₈) (c ₉ ,p ₉)
N ₃	(c ₃ ,p ₃)	(c ₃ ,p ₃)	(c_2, p_6) (c_1, p_6) (c_3, p_4)	(c ₁ ,p ₇)	(c_3, p_4) (c_{11}, p_9)

$$j_a = <(c_7, p_8), ...>$$

Example: $q = (s_2, s_5, 8:30)$

p₈ belongs to N3

$FT[N_3][s_5]$

				S ₄	S ₅
	(c ₁₂ ,p ₁)	(c_4, p_2)	(c_6, p_5) (c_4, p_5) (c_7, p_4)		(c_7, p_8) (c_4, p_2)
N ₂		(c_5, p_3) (c_{10}, p_2)			(c_8, p_8) (c_9, p_9)
N ₃	(c ₃ ,p ₃)	(c_3, p_3)	(c_2, p_6) (c_1, p_6) (c_3, p_4)		(c ₃ ,p ₄) (c ₁₁ ,p ₉)

$$j_q = <(c_7, p_8), ...>$$

Example: $q = (s_2, s_5, 8:30)$

• (c_{11}, p_9) is the first reachable transfer connection in $FT[N_3][s_5]$

					S ₅
	(c ₁₂ ,p ₁)	(c_4, p_2)	(c_6, p_5) (c_4, p_5) (c_7, p_4)	(c_7, p_8) (c_4, p_2)	(c_7, p_8) (c_4, p_2)
N ₂	(c_5, p_3) (c_{10}, p_1)	(c_5, p_3) (c_{10}, p_2)		(c_8, p_8) (c_9, p_7)	(c_8, p_8) (c_9, p_9)
N ₃	(c ₃ ,p ₃)	(c_3,p_3)	(c_2, p_6) (c_1, p_6) (c_3, p_4)		(c ₃ ,p ₄) (c ₁₁ ,p ₉)

$$j_q = <(c_7, p_8), ...>$$

Example: $q = (s_2, s_5, 8:30)$

• c_{11} departs from p_7 and can be reached on time from p_8

• $8:55 + 0:03 \le 9:00$

				S ₄	S ₅
	(c ₁₂ ,p ₁)	(c_4, p_2)	(c_6, p_5) (c_4, p_5) (c_7, p_4)	(c_7, p_8) (c_4, p_2)	(c_7, p_8) (c_4, p_2)
N ₂	(c_5, p_3) (c_{10}, p_1)	(c_5, p_3) (c_{10}, p_2)		(c_8, p_8) (c_9, p_7)	(c_8, p_8) (c_9, p_9)
N ₃	(c ₃ ,p ₃)	(c_3, p_3)	(c_2, p_6) (c_1, p_6) (c_3, p_4)	(c ₁ ,p ₇)	(c ₃ ,p ₄) (c ₁₁ ,p ₉)

$$j_q = <(c_7, p_8), ...>$$

Example: $q = (s_2, s_5, 8:30)$

- s₅ is reached at 9:05
- Algorithm terminates

Experiments

Experiment 1: Transfer Model Impact

Experiments

Experiment 2: Preprocessing Cost

	Berlin				Paris			London				
TCC	-	✓	-	√	-	√	-	√	-	√	-	√
Dominance	-	-	\checkmark	\checkmark	-	-	\checkmark	\checkmark	-	-	✓	√
Memory (GB)	25.4	18.5	8.1	5.2	88.0	64.4	24.4	16.0	223.8	159.2	53.5	34.2
Time (min)	8	8	8	8	32	32	33	33	111	111	113	113
# labels/OD	362	332	116	68	575	533	160	99	647	547	155	86

Experiments

Experiment 3: Runtime Comparison

Future Work

- Extending TCD to address additional aspects, such as multicriteria routing problem.
- Enhancing the compression of the database even further.

Thanks for listening! Questions?

Challenges in building the FT table

- 2. Storage (FT table size)
 - Solution: propose optimisations.
 - a) Dominance Check (DC).
 - b) Transfer Connection Compression (TCC).

- a) Dominance Check
- Remove all-time dominated transfer connections in each cell of FT table.

a) Dominance Check

• $tc_1(c_7, c_8) vs. tc_3(c_6, c_6) in FT[N_1][s_4].$

O\D	s ₁	S ₂	S ₃	S ₄	S ₅
N ₁	(c_{12}, c_{12}) (c_7, c_7) (c_6, c_6)	(c ₄ ,c ₄)	(c ₆ ,c ₆) (c ₄ ,c ₆) (c ₇ ,c ₇)	(c_7, c_8) (c_4, c_4) (c_6, c_6)	(c_7, c_8) (c_4, c_4) (c_6, c_6)
N ₂	(c_5, c_5) (c_{10}, c_{12})	(c_5, c_5) (c_{10}, c_{10})		(c_8, c_8) (c_9, c_9)	(c_8, c_8) (c_9, c_{11})
N ₃	(c_3, c_5) (c_2, c_2) (c_1, c_2)	(c_3, c_5) (c_2, c_2) (c_1, c_2)	(c_2, c_2) (c_1, c_2) (c_3, c_3)	(c ₁ ,c ₁)	(c_3, c_3) (c_2, c_2) (c_{11}, c_{11})

a) Dominance Check

- $tc_1(c_7, c_8)$ vs. $tc_3(c_6, c_6)$ in $FT[N_1][s_4]$
- tc_1 departs later than tc_3 (8:35 vs 8:33)
- tc_1 arrives earlier than tc_3 (8:55 vs 9:00)
- Difference in departure time is no longer than walking time (2min vs 2min)
- Keep tc₁ and remove tc₃

- b) Transfer Connection Compression
- Observation: optimal paths for a given OD pair often involves a first transfer at the same stop.

b) Transfer Connection Compression

- Observation: optimal paths for a given OD pair often involves a first transfer at the same stop.
- Transfer connection representation from (c_{dep}, c_{arr}) to (c_{dep}, p_{arr}) .
- $tc_1 = (c_7, c_8)$

b) Transfer Connection Compression

- Observation: optimal paths for a given OD pair often involves a first transfer at the same stop.
- Transfer connection representation from (c_{dep}, c_{arr}) to (c_{dep}, p_{arr}) .
- $tc_1 = (c_7, c_8) \rightarrow tc_1 = (c_7, p_8)$.

- b) Transfer Connection Compression
- 1. p_{arr} can be stored as a 2-byte integer due to limited number of stops.

- b) Transfer Connection Compression
- 1. p_{arr} can be stored as a 2-byte integer due to limited number of stops.
- 2. Consecutive transfer connections sharing same p_{arr} can be merged into a single label.

Online Query Phase

Example: $q = (s_2, s_5, 8:30)$

• s₅ is reachable via footpath from p₈

Online Query Phase

Example: $q = (s_2, s_5, 8:30)$

- Footpath leads to earlier arrival time at s_5
- 8:55 + 0:09 < 9:05

Online Query Phase

Example: $q = (s_2, s_5, 8:30)$

- Footpath leads to earlier arrival time at s_5
- 8:55 + 0:09 < 9:05

 $j_q = \langle (c_7, p_8), f(p_8, p_9) \rangle$

Experiments

Experiments Setup

- 3 metropolitan networks
- 5,000 random station pairs
- 8 fixed departure times across the day
- 40,000 queries in total for each network
- Transfer modelled using exact transfer costs

Dataset	Stations	Stops	Connections	Trips	Footpaths
Berlin	3,365	8,359	1,006,375	42,518	45,553
Paris	6,263	12,047	1,836,496	78,757	148,444
London	9,798	14,516	3,088,661	87,898	162,543

Conclusion

- Proposed an efficient solution for earliest arrival problem, integrating exact transfer costs and utilising well-structured transfer database.
- Demonstrated the significance of employing exact transfer costs compared to uniform costs.