Examenul de bacalaureat național 2020 Proba E. c)

Matematică M_mate-info BAREM DE EVALUARE ȘI DE NOTARE

Test 13

Test 13

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

(30 de puncte) **SUBIECTUL I**

1.	$b_2 = b_1 q = 2q$ și $b_3 = b_1 q^2 = 2q^2$, unde q este rația progresiei geometrice $(b_n)_{n \ge 1}$	2 p
	$q^2 - 4q + 4 = 0$, deci $q = 2$	3p
2.	$A(f(1),1)$ aparține graficului funcției $f \Leftrightarrow f(f(1))=1$	2p
	$f(1) + m = 1 \Leftrightarrow 2m + 1 = 1$, deci $m = 0$	3 p
3.	$x^2 - 1 = \sqrt{x^2 - 1} \Rightarrow x^2 - 1 = 0 \text{ sau } x^2 - 1 = 1$	2p
	$x = -\sqrt{2}$, care nu convine, sau $x = -1$, care nu convine, sau $x = 1$, care nu convine, sau $x = \sqrt{2}$, care convine	3p
4.	$b^2 = c - a$, unde \overline{abc} sunt numerele cu proprietatea dată și, cum $c \le 9$ și $a \ge 1$, obținem $b^2 \le 8$, deci $b \in \{0,1,2\}$	2p
	Pentru $b=0$, obținem $c=a$, deci sunt 9 numere, pentru $b=1$, obținem $c=a+1$, deci sunt 8 numere, iar pentru $b=2$, obținem $c=a+4$, deci sunt 5 numere; în total sunt 22 de numere cu proprietatea cerută	3p
5.	Panta dreptei AH este $m_{AH} = \frac{1}{3}$	2p
	H este ortocentrul $\triangle ABC$, deci $AH \perp BC \Rightarrow m_{AH} \cdot m_{BC} = -1$, de unde obţinem $m_{BC} = -3$	3p
6.	$\sin x - \cos x = \sqrt{2} \Rightarrow (\sin x - \cos x)^2 = 2 \Rightarrow \sin^2 x - 2\sin x \cos x + \cos^2 x = 2$	2p
	$2\sin x \cos x = -1, \text{ deci } \sin 2x = -1 \text{ și, cum } x \in (0,\pi), \text{ obținem } 2x = \frac{3\pi}{2}, \text{ deci } x = \frac{3\pi}{4}$	3p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(0) = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{vmatrix} =$	2p
	=0+0+1-0-1-0=0	3 p
b)	$\det(A(m)) = \begin{vmatrix} 1 & 1 & 1 \\ m & m^2 & 1 \\ m+1 & (m+1)^2 & 1 \end{vmatrix} = m(m-1), \text{ pentru orice număr real } m$	2p
	Matricea $A(m)$ este inversabilă $\Leftrightarrow \det(A(m)) \neq 0$, deci $m \in \mathbb{R} \setminus \{0,1\}$	3 p
c)	$\mathcal{A}_{\Delta ABC} = \frac{1}{2} \Delta $, unde $\Delta = \begin{vmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ m & m^2 & 1 \\ m+1 & (m+1)^2 & 1 \end{vmatrix} = m(m-1)$	2p
	$\mathcal{A}_{\triangle ABC} = 1 \Leftrightarrow m(m-1) = 2$, deci $m^2 - m = -2$, care nu convine, sau $m^2 - m = 2$, de unde obținem $m = -1$ sau $m = 2$, care convin	3 p

Probă scrisă la matematică M mate-info

2.a)	$r * 1 - 2^{\ln x \cdot \ln 1}$	3р
	$x*1 = 2^{\ln x \cdot \ln 1} =$ = $2^{\ln x \cdot 0} = 2^0 = 1$, pentru orice $x \in G$	-
	$=2^{m\times 0}=2^{0}=1$, pentru orice $x\in G$	2p
b)	$x * f = x \Leftrightarrow 2^{\ln x \cdot \ln f} = x \Leftrightarrow \ln x \cdot \ln f \cdot \ln 2 = \ln x$, pentru orice $x \in G$, deci $\ln f \cdot \ln 2 = 1$, de	
	unde obținem $\ln f = \frac{1}{\ln 2}$, deci $f = e^{\frac{1}{\ln 2}} \in G$	3 p
	$e^{\frac{1}{\ln 2}} * x = 2^{\ln e^{\frac{1}{\ln 2} \cdot \ln x}} = 2^{\frac{1}{\ln 2} \cdot \ln x} = x, \text{ pentru orice } x \in G, \text{ deci } f = e^{\frac{1}{\ln 2}} \text{ este elementul neutru al legii de compoziție ,,*"}$	2 p
c)	$x * \frac{1}{x} = 2^{\frac{\ln x \cdot \ln \frac{1}{x}}{x}} = 2^{-\ln^2 x}, \text{ pentru orice } x \in G$	2p
	$2^{-\ln^2 x} = \frac{1}{2} \Leftrightarrow \ln^2 x = 1$, de unde obținem $\ln x = -1$ sau $\ln x = 1 \Rightarrow x = \frac{1}{e}$ sau $x = e$, care convin	3 p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = 1 - \frac{e^x + 1}{e^x + x - 1} =$	3 p
	$= \frac{e^x + x - 1 - e^x - 1}{e^x + x - 1} = \frac{x - 2}{e^x + x - 1}, \ x \in (0, +\infty)$	2 p
b)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\ln e^x - \ln \left(e^x + x - 1 \right) \right) = \lim_{x \to +\infty} \ln \frac{e^x}{e^x + x - 1} =$	2p
	= $\lim_{x \to +\infty} \ln \frac{1}{1 + \frac{x - 1}{e^x}}$ = $\ln 1 = 0$, deci dreapta de ecuație $y = 0$ este asimptotă orizontală spre $+\infty$	3 p
	la graficul funcției f	
(c)	$f'(x) = 0 \Leftrightarrow x = 2$, $f'(x) \le 0$, pentru orice $x \in (0,2] \Rightarrow f$ este descrescătoare pe $(0,2]$ și $f'(x) \ge 0$, pentru orice $x \in [2,+\infty) \Rightarrow f$ este crescătoare pe $[2,+\infty)$	2 p
	$\lim_{x\to 0} f(x) = +\infty, \ f(2) = 2 - \ln(e^2 + 1), \ \lim_{x\to +\infty} f(x) = 0 \ \text{si} \ f \ \text{este continuă pe} \ (0, +\infty), \ \text{deci}$	3р
	imaginea funcției f este $\left[2-\ln\left(e^2+1\right),+\infty\right)$	
2.a)	$\int_{0}^{1} f(x) dx = \int_{0}^{1} \left(1 + \frac{1}{\sqrt{x^{2} + 1}} \right) dx = \left(x + \ln\left(x + \sqrt{x^{2} + 1}\right) \right) \Big _{0}^{1} =$	3 p
	$= 1 + \ln\left(1 + \sqrt{2}\right) - \ln 1 = 1 + \ln\left(1 + \sqrt{2}\right)$	2p
b)	$\int_{-1}^{1} x f(x) dx = \int_{-1}^{0} -x \left(1 + \frac{1}{\sqrt{x^2 + 1}} \right) dx + \int_{0}^{1} x \left(1 + \frac{1}{\sqrt{x^2 + 1}} \right) dx = \left(-\frac{x^2}{2} - \sqrt{x^2 + 1} \right) \Big _{-1}^{0} + \left(\frac{x^2}{2} + \sqrt{x^2 + 1} \right) \Big _{0}^{1} = \left(-\frac{x^2}{2} - \sqrt{x^2 + 1} \right) \Big _{0}^{1} + \left(-\frac{x^2}{2} - \sqrt{x^2 + 1} \right) \Big _{0}^{1} = \left(-\frac{x^2}{2} - \sqrt{x^2 + 1} \right) \Big _{0}^{1} + \left(-\frac{x^2}{2} - \sqrt{x^2 + 1} \right) \Big _{0}^{1} = \left(-\frac{x^2}{2} - \sqrt{x^2 + 1} \right) \Big _{0}^{1} + \left(-\frac{x^2}{2} - \sqrt{x^2 + 1} \right) \Big _{0}^{1} = \left(-\frac{x^2}{2} - \sqrt{x^2 + 1} \right) \Big _{0}^{1} + \left(-\frac{x^2}{2} - \sqrt{x^2 + 1} \right) \Big _{0}^{1} = \left(-\frac{x^2}{2} - \sqrt{x^2 + 1} \right) \Big _{0}^{1} + \left(-\frac{x^2}{2} - \sqrt{x^2 + 1} \right) \Big _{0}^{1} = \left(-\frac{x^2}{2} - \sqrt{x^2 + 1} \right) \Big _{0}^{1} + \left(-\frac{x^2}{2} - \sqrt{x^2 + 1} \right) \Big _{0}^{1} = \left(-\frac{x^2}{2} - \sqrt{x^2 + 1} \right) \Big _{0}^{1} + \left(-\frac{x^2}{2} - \sqrt{x^2 + 1} \right) \Big _{0}^{1} = \left(-\frac{x^2}{2} - \sqrt{x^2 + 1} \right) \Big _{0}^{1} + \left(-\frac{x^2}{2} - \sqrt{x^2 + 1} \right) \Big _{0}^{1} = \left(-\frac{x^2}{2} - \sqrt{x^2 + 1} \right) \Big _{0}^{1} + \left(-\frac{x^2}{2} - \sqrt{x^2 + 1} \right) \Big _{0}^{1} = \left(-\frac{x^2}{2} - \sqrt{x^2 + 1} \right) \Big _{0}^{1} + \left(-\frac{x^2}{2} - \sqrt{x^2 + 1} \right) \Big _{0}^{1} = \left(-\frac{x^2}{2} - \sqrt{x^2 + 1} \right) \Big _{0}^{1} + \left(-\frac{x^2}{2} - \sqrt{x^2 + 1} \right) \Big _{0}^{1} = \left(-\frac{x^2}{2} - \sqrt{x^2 + 1} \right) \Big _{0}^$	3 p
	$= 0 - 1 + \frac{1}{2} + \sqrt{2} + \frac{1}{2} + \sqrt{2} - 1 = 2\sqrt{2} - 1$	2p
c)	Din regula lui l'Hospital, $\lim_{x\to 0} \frac{\int_{0}^{x} f(t)dt}{x} = \lim_{x\to 0} \frac{f(x)}{1} =$	3p
	$= \lim_{x \to 0} \left(1 + \frac{1}{\sqrt{x^2 + 1}} \right) = 2$	2p