New in ML Edge Contraction Pooling for Graph Neural Networks Frederik Diehl

Many Real-World Problems are non-Euclidian

Road Graphs

Citation Graphs

Social Graphs

Molecules

Graph Neural Networks

- ► Generalize convolutional networks to non-Euclidian data
- Usually based on a message-passing framework

EdgePool

EdgePool – Advantages and Limitations

Advantages

- ► Local, hard pooling
- ► Sparse
- ► Scales in O(e log(e))

Limitations

- ► Slow and hard to parallelize
- ► Restricted to pair-wise pooling

Results

EdgePool Results

Graph Classification

	PROTEINS	RDT-B	RDT-12K	COLLAB
Base Model	71.4 ± 3.2	69.9 ± 3.7	35.1 ± 1.6	65.4 ± 1.5
DiffPool [*]	72.3 ± 5.8	82.9 ± 3.4	34.8 ± 1.9	$\textbf{70.1} \pm \textbf{1.5}$
TopKPool	70.6 ± 4.8	68.9 ± 3.2	28.7 ± 1.8	64.6 ± 2.1
SAGPool	71.8 ± 6.0	84.7 ± 4.4	41.9 ± 3.3	63.9 ± 2.5
EdgePool	$\textbf{72.5} \pm \textbf{3.2}$	$\textbf{87.3} \pm \textbf{4.1}$	$\textbf{45.6} \pm \textbf{1.8}$	67.1 ± 2.7

+2 p.p.

Node Classification

CORA	GCN	GIN	GIN0	GAT	MLP
No Pooling	71.8 ± 3.4	52.1 ± 4.7	55.9 ± 4.4	68.0 ± 4.5	35.6 ± 2.6
EdgePool	$\textbf{72.8} \pm \textbf{1.9}$	$\textbf{63.0} \pm \textbf{5.4}$	$\textbf{61.3} \pm \textbf{3.9}$	$\textbf{70.3} \pm \textbf{3.3}$	$\textbf{58.3} \pm \textbf{3.6}$
CITESEER					
No Pooling	62.9 ± 2.9	40.9 ± 4.6	41.4 ± 3.8	58.9 ± 2.8	35.5 ± 3.2
EdgePool	$\textbf{65.3} \pm \textbf{2.7}$	$\textbf{50.6} \pm \textbf{3.9}$	$\textbf{49.9} \pm \textbf{5.7}$	$\textbf{61.0} \pm \textbf{3.4}$	$\textbf{50.0} \pm \textbf{3.7}$
PUBMED					
No Pooling	$\textbf{74.2} \pm \textbf{1.7}$	60.8 ± 6.8	61.0 ± 4.4	73.0 ± 2.0	62.4 ± 4.1
EdgePool	74.1 ± 2.1	$\textbf{61.0} \pm \textbf{6.4}$	$\textbf{61.9} \pm \textbf{4.9}$	72.0 ± 4.7	$\textbf{64.8} \pm \textbf{3.2}$
РНОТО					
No Pooling	88.4 ± 2.2	69.9 ± 3.2	71.9 ± 4.0	78.5 ± 4.5	59.6 ± 4.9
EdgePool	86.5 ± 0.8	$\textbf{77.1} \pm \textbf{1.8}$	$\textbf{78.1} \pm \textbf{1.5}$	81.0 ± 4.2	81.4 ± 2.3
COMPUTER					
No Pooling	80.0 ± 2.6	53.1 ± 5.5	52.4 ± 3.6	60.6 ± 12.4	43.0 ± 6.7
EdgePool	77.9 ± 2.2	58.1 ± 4.8	$\textbf{60.4} \pm \textbf{4.3}$	$\textbf{62.5} \pm \textbf{13.0}$	69.4 ± 2.3

+3.5 p.p.

EdgePool improves performance on many models and datasets

Memory Consumption

Limits

▶ DiffPool: 18k

►Sparse: 250k

►EdgePool: 300k

EdgePool Visualization

Contact

fortiss GmbH Guerickestraße 25 80805 Munich GERMANY www.fortiss.org info@fortiss.org

©2019

This presentation was created by fortiss. It is for presentation determined only and strictly confidential. The distribution of the presentation to our partners includes no transfer of ownership or usage rights. A transfer to third parties is not permitted.