Assignment 16, Linear Algebra 1

Oleg Sivokon

<2015-02-04 Wed>

Contents

1	Pro	blems	2
	1.1	Problem 1	2
		1.1.1 Answers 1	2
	1.2	Problem 2	2
		1.2.1 Answer 4	2
	1.3	Problem 3	2
		1.3.1 Answer 5	3
	1.4	Problem 4	3
	1.5	Problem 5	2

1 Problems

1.1 Problem 1

Given the matrix:

$$A = \begin{pmatrix} 0 & a & 1 \\ a & 0 & -1 \\ 0 & 0 & a \end{pmatrix}$$

a being a real number.

- 1. What are the values of a that make this matrix diagonalisable?
- 2. Put a = 1, find diagonal matrix D and invertible matrix P such that $D = A^{-1}PA$.

1.1.1 Answers 1

1.2 Problem 2

- 1. Prove that there doesn't exist a 3×3 matrix with a characteristic polynomial $p(x) = x^7 x^5 + x^3$.
- 2. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation with characteristic polynomial $p(x) = x^2 + 2x 3$.
 - (a) Porve that linear mapping 2T + I is an isomorphism.
 - (b) What is the characteristic polynomial of T^3 .
- 3. Let A be a 5×5 matrix such that tr(A) = 0 and $\rho(A) = 1$. Find all eigenvalues of A.

1.2.1 Answer 4

1.3 Problem 3

Prove or disprove (by providing an example) each one of the following:

- 1. If two matrices A and B share characteristic polynomial, then their rank is the same.
- 2. Put m > 1, m being a real number. If $A^m = 0$, then 0 is the **only** eigenvalue of A.
- 3. Matrices: $A = \begin{pmatrix} 2 & -\sqrt{3} \\ -\sqrt{3} & 2 \end{pmatrix}$ and $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ are similar.
- 4. Matrices: $C = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ and $D = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ are similar.

1.3.1 Answer 5

1.4 Problem 4

Let \vec{u}, \vec{v} be vectors distinct from $\vec{0}$ in \mathbb{R}^n . Given that \vec{u} is orthogonal to \vec{v} and ||u|| = ||v||. Find all values of the real number a such that $\vec{u}a + \vec{v}$ is orthogonal to $\vec{v}a + \vec{u}$.

1.5 Problem 5

Let U_1 and U_2 be subspaces of \mathbb{R}^n .

- 1. Let $\mathbb{R}^n=U_1\oplus U_2$, prove that $U_1^\perp\cap U_2^\perp=\{\vec{0}\}$ and $\mathbb{R}^n=U_1^\perp\oplus U_2^\perp$.
- 2. Let $U_1+U_2=\mathbb{R}^n,$ does it follow that $\mathbb{R}^n=U_1^\perp+U_2^\perp?$