Topic Classification The New York Times Comments

Maria Annecchione
January 2020

Outline

Motivation Examining the Dataset Text Pre-processing **Feature Engineering** Feature Selection Algorithm Evaluation **Ensemble Methods Neural Networks** Interpretation

Why classify news comments?

Enhanced Reader Experience

Reader comments delve into multiple topics

Links to related news item

Previous work: 20 news-group dataset

Examining the dataset

A kaggle dataset...

The March 2018 csv file
246946 x 33 data frame → 97308 comments
Columns of interest:

	commentBody	newDesk	sectionName
count	97308	97308	97308
unique	97179	20	37
top	Amen!	Washington	Politics
freq	5	49247	52798

Examining the dataset

The target variable...

	commentBody	topic
count	21844	21844
unique	21832	6
top	Thanks!	Leisure
top freq	3	4292

Text pre-processing...

Before pre-processing:

Our beagles tend to howl or wake up barking when things go bump in the night, which can be super annoying at 3am. However, I have found turning on a fan or a bit of white noise helps them sleep through the night without getting woken (and thereby waking us) when they hear the train or a neighborhood cat.

After pre-processing:

beagle tend howl wake bark thing go bump night super annoy However find turn fan bite white noise help sleep night without get wake thereby wake us hear train neighborhood cat

Text pre-processing...

Before pre-processing:

Alabama has a \$2 billion steel mill in Calvert, jointly owned by Japanese and German steel companies, that imports steel from Mexico and Brazil where it is fabricated for use in the many auto plants here in the a South. My question is has any in the White House come to grips that this is a perfect example of globalization?

After pre-processing:

Alabama billion steel mill Calvert jointly Japanese German steel company import steel Mexico Brazil fabricate use many auto plant South question White House come grip perfect example globalization

Text pre-processing...

Removing Empties...

There is at least one empty in pre-processed comments... being excluded.

Original comment: Why not 12?

There is at least one empty in pre-processed comments... being excluded.

Original comment: 25 him. Now.

Removing tokens that occur once...

50 most frequents words:

```
[('much', 8041), ('Trump', 7603), ('would', 4991), ('get', 4233), ('people', 4153), ('one', 3967), ('make', 3924), ('like', 3727), ('good', 3606), ('go', 3568), ('time', 3147), ('think', 3072), ('know', 3006), ('year', 2970), ('say', 2698), ('see', 2543), ('us', 2521), ('need', 2504), ('take', 2493), ('work', 2392), ('many', 2376), ('doe', 2340), ('US', 2309), ('little', 2271), ('want', 2242), ('country', 2158), ('may', 2142), ('way', 2099), ('even', 2071), ('American', 1986), ('use', 1932), ('well', 1888), ('live', 1863), ('world', 1861), ('thing', 1839), ('come', 1773), ('vote', 1643), ('right', 1612), ('give', 1609), ('long', 1592), ('man', 1552), ('day', 1544), ('also', 1506), ('child', 1470), ('Putin', 1438), ('never', 1432), ('find', 1399), ('job', 1368), ('Russia', 1342), ('great', 1312)]
```

Feature Engineering

Four types of features:

- Bag-of-Words including uni- and bi-grams
- TF-IDF
- Word2Vec Model
- GloVe Model

Learning algorithm:

Support Vector Machine

TF-IDF features...

Support Vector Machine

Model Performance metrics:

Accuracy: 0.6868

Precision: 0.6841

Recall: 0.6868

F1 Score: 0.6815

Model Classification report:

Predicted:

Economy International Politics Medias Leisure Culture

448	32	38	37	28	4
52	558	81	57	56	5
77	121	393	132	52	13
46	66	126	489	108	22
12	15	8	30	786	11
9	22	17	42	48	324
	52 77 46 12	525587712146661215	52 558 81 77 121 393 46 66 126 12 15 8	52 558 81 57 77 121 393 132 46 66 126 489 12 15 8 30	52 558 81 57 56 77 121 393 132 52 46 66 126 489 108 12 15 8 30 786

			_		
	precision	recall	f1-score	support	
Economy	0.70	0.76	0.73	587	
International	0.69	0.69	0.69	809	
Politics	0.59	0.50	0.54	788	
Medias	0.62	0.57	0.59	857	
Leisure	0.73	0.91	0.81	862	
Culture	0.85	0.70	0.77	462	
accuracy			0.69	4365	
macro avg	0.70	0.69	0.69	4365	
weighted avg	0.68	0.69	0.68	4365	

Word2Vec features...

Support Vector Machine

Model Performance metrics:

Accuracy: 0.5526

Precision: 0.5492

Recall: 0.5526

F1 Score: 0.5356

Model Classification report:

Prediction	Confusion	M	1atri:	X:
------------	-----------	---	--------	----

Predicted:

Economy International Politics Medias Leisure Culture

–	contoning	mice macion	ar i ontics	TTICATA	Leisare	Cartare
Actual: Economy	414	56	34	34	40	9
International	78	546	63	64	48	10
Politics	113	252	232	134	42	15
Medias	74	173	118	318	137	37
Leisure	39	30	6	59	714	14
Culture	23	39	10	85	117	188

	precision	recall	f1-score	support
Economy	0.56	0.71	0.62	587
International	0.50	0.67	0.57	809
Politics	0.50	0.29	0.37	788
Medias	0.46	0.37	0.41	857
Leisure	0.65	0.83	0.73	862
Culture	0.69	0.41	0.51	462
accuracy			0.55	4365
macro avg	0.56	0.55	0.54	4365
weighted avg	0.55	0.55	0.54	4365

Feature Selection...

Four feature extraction methods on TF-IDF features:

- Univariate feature selection with F-Test for feature scoring
- Singular Value Decomposition
- Extra Trees Classifier
- Recursive Feature Elimination with Support Vector Machine

Classification accuracy without selecting features: **69**%

Number of features: 414 006

Feature Selection...

	Classification accuracy	Number of features
Univariate with F-test	69%	50000
Singular Value Decomposition	31%	500
Extra Trees Classifier	69%	51556
Recursive Feature Elimination (RFE)	69%	10000

Algorithms applied to RFE-selected TD-IDF features:

- Support Vector Machine
- Naive Bayes
- Logistic Regression
- Random Forest Classifier

SVM Performance Metrics and Classification Report

Model Performance metrics:

Accuracy: 0.6855 Precision: 0.6847 Recall: 0.6855

F1 Score: 0.6841

Precision: $\frac{TP}{TP+FP}$ Recall: $\frac{TP}{TP+FN}$

Model Classification report:

	precision	recall	f1-score	support
Economy International	0.73 0.67	0.73 0.64	0.73 0.66	620 824
Politics	0.57	0.56	0.56	790
Medias	0.60	0.61	0.60	846
Leisure	0.79	0.89	0.84	840
Culture	0.82	0.71	0.76	445
accuracy			0.69	4365
macro avg	0.70	0.69	0.69	4365
weighted avg	0.68	0.69	0.68	4365

Random Forest Performance Metrics and Classification Report

Precision:

TP+FN

Recall:

Model Performance metrics:

Accuracy: 0.6105

Precision: 0.6088

Recall: 0.6105 F1 Score: 0.6039

Model Classification report:

	precision	recall	f1-score	support
Economy	0.66	0.67	0.67	620
International	0.60	0.61	0.61	824
Politics	0.48	0.47	0.48	790
Medias	0.57	0.44	0.50	846
Leisure	0.65	0.88	0.75	840
Culture	0.77	0.60	0.68	445
accuracy			0.61	4365
macro avg	0.62	0.61	0.61	4365
weighted avg	0.61	0.61	0.60	4365

Precision-Recall Curves

TP+FP

Recall: TP+FN

iso-f1 curves micro-average (area = 0.71) Topic: Culture (area = 0.78) Topic: Economy (area = 0.69) Topic: International (area = 0.69) Topic: Medias (area = 0.60) Topic: Leisure (area = 0.88) Topic: Politics (area = 0.51)

ROC curves

Support Vector Machine

One-Vs-Rest Receiver Operating Characteristic Curves 1.0 0.8 True Positive Rate micro-average (area = 0.91) macro-average (area = 0.90) Topic: Culture (area = 0.95) Topic: Economy (area = 0.93) Topic: International (area = 0.88) Topic: Medias (area = 0.84) 0.2 Topic: Leisure (area = 0.97) Topic: Politics (area = 0.84) 0.0 0.2 0.4 0.6 0.8 1.0 0.0 False Positive Rate

Random Forest

Precision: $\frac{TP}{TP+FP}$ Recall: $\frac{TP}{TP+FN}$

True Positive Rate: $\frac{TP}{TP+FP}$ False Positive Rate: $\frac{TP}{FP+TN}$

Hyper-parameter tuning

Random Forest Learning Curves

Random Forest Learning Curves

Ensemble Methods - Bagging

Ensemble Methods - Boosting

Ensemble Methods - Stacking

Neural Networks

Multi-Layer Perceptron

Layer (type)	Output Shape	Param #	
dense_7 (Dense)	(None, 512)	2560512	
activation_5 (Activat	ion) (None, 512)	0	
dropout_3 (Dropout) (None, 512)	0	
dense_8 (Dense)	(None, 6)	3078	
activation_6 (Activat	ion) (None, 6)	0	=======================================

Total params: 2,563,590 Trainable params: 2,563,590 Non-trainable params: 0

Train on 15713 samples, validate on 1746 samples

Epoch 1/15

. Epoch 15/15

Neural Networks

MLP Performance Metrics and Classification Report

Model Performance metrics:

Accuracy: 0.6263 Precision: 0.6278 Recall: 0.6263 F1 Score: 0.6263

Model Classification report:

	precision	recall	f1-score	support
International	0.61	0.60	0.61	837
Politics	0.51	0.46	0.48	847
Economy	0.67	0.68	0.67	608
Medias	0.50	0.58	0.54	795
Leisure	0.79	0.80	0.80	857
Culture	0.74	0.69	0.71	421
accuracy			0.63	4365
macro avg	0.64	0.63	0.63	4365
weighted ave	9 0.63	0.63	0.63	4365

Interpretation - LIME

Comment id: 3818 Comment (cleaned): much aggressive move Trump expect Britain expel expel Interesting **Predicted Topic (SVM): International True Topic: Economy** NOT International NOT Economy Economy Prediction probabilities 0.76 Economy Britain 0.19 International 0.20 Politics 0.05 **LIME ordering:** 0.12 Leisure 0.00 2 Economy Trump Other 0.00 1 International much 3 Politics aggressive 0.04

5 Medias

4 Culture

0 Leisure

International

Interpretation - SHAP

Conclusions

F1-score	Multilayer Perceptron	Random Forest	Support Vector Machine
International	60%	61%	66%
Politics	48%	48%	56%
Economy	67%	67%	73%
Medias	54%	50%	60%
Leisure	80%	75%	84%
Culture	71%	68%	76%

- Leisure topic is predicted most accurately
- Politics topic is predicted least accurately
- Support Vector Machine did best
- TF-IDF features did best

Future work...

- Try unsupervised learning methods
- Try features extracted from language models...word context is preserved

Thanks

References

Llewellyn, C., Grover, C. and Oberlander, J. (2016) <u>Improving Topic Model Clustering of Newspaper Comments for Summarisation</u>. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics – Student Research Workshop, Berlin, Germany

Shaikh, Javed (2017) Machine Learning, NLP: Text Classification using scikit-learn, python and NLTK. Towards Data Science