Analisi Matematica 2 – luglio 2023 – Ing. Informatica Proff. Garrione - Gazzola - Noris - Piovano

Cognome (stampato maiuscolo leggibile):				Nome:	Nome:			Matricola:	
	Parte A	Es.1	Es.2	Es.3	Tot. Es.	Totale	Voto		

Per superare l'esame devono essere raggiunte le seguenti soglie: parte $A \ge 4$, parte $B \ge 12$, totale ≥ 18 . Tempo di svolgimento complessivo delle parti A + B = 100 minuti.

PARTE A. Domanda aperta (4 punti). Definire i coefficienti di Fourier relativi ad una funzione 2π -periodica. Successivamente, enunciare e dimostrare il teorema sul calcolo dei coefficienti di Fourier per funzioni 2π -periodiche.

Domande a risposta multipla $(4 \times 1 = 4 \text{ punti})$: una sola è corretta.

(1) Date le seguenti tre equazioni differenziali nell'incognita y(t):

$$y'(t) + 3\sin\left(e^{\frac{1}{\sqrt{3}}}\right)y(t) + 5\log 3 = 0, \qquad y'(t) = 2y(t) - 0.3y^2(t), \qquad y'(t) = ty^5(t),$$

si ha che:

- (a) le equazioni differenziali sono rispettivamente del primo, del secondo e del quinto ordine
- (b) tutte le equazioni sono equazioni di Bernoulli
- (c) tutte le equazioni ammettono almeno una soluzione costante
- (d) tutte le soluzioni delle tre equazioni sono definite su tutto $\mathbb R$
- (2) Data una funzione $f: \mathbb{R} \to \mathbb{R}$ periodica di periodo 2π e regolare a tratti in $[-\pi, \pi]$, consideriamo il polinomio di Fourier F_m di ordine $m \in \mathbb{N}$ associato a f. Abbiamo che:
- (a) $F_m(x)$ converge puntualmente a f(x) in ogni punto $x \in \mathbb{R}$ per $m \to +\infty$
- (b) può esistere $x_0 \in \mathbb{R}$ tale che il limite di $F_m(x_0)$ per $m \to +\infty$ non esiste
- (c) F_m converge in norma quadratica a f per $m \to +\infty$
- (d) se $\sum_{n=1}^{\infty} (|a_n| + |b_n|) < +\infty$, allora F_m converge totalmente in \mathbb{R} e la sua somma è derivabile termine a termine
- (3) Sia $D = \{(x,y) \in \mathbb{R}^2 : 0 \le x \le y \le 1\}$ e sia f continua in D. Allora $\iint_D f(x,y) dx dy =$
- (a) $\int_0^1 \left(\int_y^1 f(x, y) dx \right) dy$
- (b) $\int_0^1 \left(\int_0^x f(x, y) dy \right) dx$ (c) $\int_0^1 \left(\int_x^1 f(x, y) dy \right) dx$
- (d) $\int_x^1 \left(\int_0^1 f(x,y) dx \right) dy$
- (4) Sia $I \subset \mathbb{R}$ un intervallo e $A \subset \mathbb{R}^2$ un insieme aperto. Data una curva regolare $\mathbf{r}: I \to A$ e una funzione $f:A\to\mathbb{R}$ differenziabile in A, consideriamo la funzione composta $F:=f\circ \mathbf{r}:I\to\mathbb{R}$. Abbiamo che:
- (a) F è derivabile in I e $F'(t) = \langle \nabla f(\mathbf{r}(t)), \mathbf{r}'(t) \rangle$ per ogni $t \in I$,
- (b) F è derivabile in I e $F'(t) = \langle \nabla f(\mathbf{r}'(t)), \mathbf{r}(t) \rangle$ per ogni $t \in I$,
- (c) F è derivabile in I e $F'(t) = \langle \nabla f(\mathbf{r}'(t)), \mathbf{r}'(t) \rangle$ per ogni $t \in I$,
- (d) non è sempre vero che F sia derivabile in I,

dove $\langle \cdot, \cdot \rangle$ denota il prodotto scalare tra vettori in \mathbb{R}^2 .

PARTE B. Esercizi $(3 \times 8 = 24 \text{ punti})$

Esercizio 1 Sia data la funzione di due variabili $g(x,y) = e^{x^2y} - 1$. (a) (4 punti) Determinare il massimo assoluto e il minimo assoluto di g sul vincolo

$$\mathcal{Z} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}.$$

(b) (4 punti) Stabilire se esista il limite

$$\lim_{(x,y)\to(0,0)} \frac{g(x,y)}{x^2 + y^2};$$

in caso affermativo, determinare tale limite.

Esercizio 2 Scrivere lo sviluppo in serie di potenze centrato nell'origine della funzione $f(x) = \log(1 + x^2)$, seguendo lo schema di seguito riportato:

- (a) (2 punti) utilizzando le proprietà viste sulla serie geometrica, scrivere lo sviluppo in serie di potenze di $\frac{1}{1+x^2};$
- (b) (1 punto) dedurre dallo sviluppo trovato al punto precedente lo sviluppo di $\frac{2x}{1+x^2}$;
- (c) (3 punti) utilizzando le proprietà viste per le serie di potenze reali dedurre dallo sviluppo trovato al punto precedente lo sviluppo in serie di potenze di $\log(1+x^2)$;
- (d) (2 punti) specificare l'intervallo di convergenza dello sviluppo trovato al punto precedente.

Esercizio 3 Viene assegnata l'equazione differenziale

$$y'(t) = y^{n}(t)(2y(t) - 1),$$
 (*)

dove n è un intero positivo (n = 1, 2, 3, ...).

- (a) (1 punto) Giustificare l'esistenza e l'unicità locale della soluzione per tutti i possibili problemi di Cauchy associati all'equazione (*).
- (b) (3 punti) Posto n = 1, determinare l'espressione della soluzione di (*) che soddisfa y(0) = 1.
- (c) (3 punti) Posto n=2, disegnare il grafico qualitativo della soluzione dell'equazione (*) che soddisfa y(0)=1/4, tenendo conto della sua monotonia e della sua convessità.
- (d) (1 punto) Rappresentare la linea della fasi associata all'equazione autonoma (*), al variare dell'intero positivo n (è sufficiente distinguere il caso n pari dal caso n dispari).