

Figure 23.1 A minimum spanning tree for a connected graph. The weights on edges are shown, and the edges in a minimum spanning tree are shaded. The total weight of the tree shown is 37. This minimum spanning tree is not unique: removing the edge (b, c) and replacing it with the edge (a, h) yields another spanning tree with weight 37.

to problems. For the minimum-spanning-tree problem, however, we can prove that certain greedy strategies do yield a spanning tree with minimum weight. Although you can read this chapter independently of Chapter 16, the greedy methods presented here are a classic application of the theoretical notions introduced there.

Section 23.1 introduces a "generic" minimum-spanning-tree method that grows a spanning tree by adding one edge at a time. Section 23.2 gives two algorithms that implement the generic method. The first algorithm, due to Kruskal, is similar to the connected-components algorithm from Section 21.1. The second, due to Prim, resembles Dijkstra's shortest-paths algorithm (Section 24.3).

Because a tree is a type of graph, in order to be precise we must define a tree in terms of not just its edges, but its vertices as well. Although this chapter focuses on trees in terms of their edges, we shall operate with the understanding that the vertices of a tree T are those that some edge of T is incident on.

23.1 Growing a minimum spanning tree

Assume that we have a connected, undirected graph G=(V,E) with a weight function $w:E\to\mathbb{R}$, and we wish to find a minimum spanning tree for G. The two algorithms we consider in this chapter use a greedy approach to the problem, although they differ in how they apply this approach.

This greedy strategy is captured by the following generic method, which grows the minimum spanning tree one edge at a time. The generic method manages a set of edges A, maintaining the following loop invariant:

Prior to each iteration, A is a subset of some minimum spanning tree.

At each step, we determine an edge (u, v) that we can add to A without violating this invariant, in the sense that $A \cup \{(u, v)\}$ is also a subset of a minimum spanning

tree. We call such an edge a *safe edge* for A, since we can add it safely to A while maintaining the invariant.

```
GENERIC-MST(G, w)

1 A = \emptyset

2 while A does not form a spanning tree

3 find an edge (u, v) that is safe for A

4 A = A \cup \{(u, v)\}

5 return A
```

We use the loop invariant as follows:

Initialization: After line 1, the set A trivially satisfies the loop invariant.

Maintenance: The loop in lines 2–4 maintains the invariant by adding only safe edges.

Termination: All edges added to A are in a minimum spanning tree, and so the set A returned in line 5 must be a minimum spanning tree.

The tricky part is, of course, finding a safe edge in line 3. One must exist, since when line 3 is executed, the invariant dictates that there is a spanning tree T such that $A \subseteq T$. Within the **while** loop body, A must be a proper subset of T, and therefore there must be an edge $(u, v) \in T$ such that $(u, v) \not\in A$ and (u, v) is safe for A.

In the remainder of this section, we provide a rule (Theorem 23.1) for recognizing safe edges. The next section describes two algorithms that use this rule to find safe edges efficiently.

We first need some definitions. A cut(S, V - S) of an undirected graph G = (V, E) is a partition of V. Figure 23.2 illustrates this notion. We say that an edge $(u, v) \in E$ crosses the cut (S, V - S) if one of its endpoints is in S and the other is in V - S. We say that a cut respects a set A of edges if no edge in A crosses the cut. An edge is a *light edge* crossing a cut if its weight is the minimum of any edge crossing the cut. Note that there can be more than one light edge crossing a cut in the case of ties. More generally, we say that an edge is a *light edge* satisfying a given property if its weight is the minimum of any edge satisfying the property.

Our rule for recognizing safe edges is given by the following theorem.

Theorem 23.1

Let G = (V, E) be a connected, undirected graph with a real-valued weight function w defined on E. Let A be a subset of E that is included in some minimum spanning tree for G, let (S, V - S) be any cut of G that respects A, and let (u, v) be a light edge crossing (S, V - S). Then, edge (u, v) is safe for A.

Figure 23.2 Two ways of viewing a cut (S, V - S) of the graph from Figure 23.1. (a) Black vertices are in the set S, and white vertices are in V - S. The edges crossing the cut are those connecting white vertices with black vertices. The edge (d, c) is the unique light edge crossing the cut. A subset A of the edges is shaded; note that the cut (S, V - S) respects A, since no edge of A crosses the cut. (b) The same graph with the vertices in the set S on the left and the vertices in the set S on the right. An edge crosses the cut if it connects a vertex on the left with a vertex on the right.

Proof Let T be a minimum spanning tree that includes A, and assume that T does not contain the light edge (u, v), since if it does, we are done. We shall construct another minimum spanning tree T' that includes $A \cup \{(u, v)\}$ by using a cut-and-paste technique, thereby showing that (u, v) is a safe edge for A.

The edge (u, v) forms a cycle with the edges on the simple path p from u to v in T, as Figure 23.3 illustrates. Since u and v are on opposite sides of the cut (S, V - S), at least one edge in T lies on the simple path p and also crosses the cut. Let (x, y) be any such edge. The edge (x, y) is not in A, because the cut respects A. Since (x, y) is on the unique simple path from u to v in T, removing (x, y) breaks T into two components. Adding (u, v) reconnects them to form a new spanning tree $T' = T - \{(x, y)\} \cup \{(u, v)\}$.

We next show that T' is a minimum spanning tree. Since (u, v) is a light edge crossing (S, V - S) and (x, y) also crosses this cut, $w(u, v) \le w(x, y)$. Therefore,

$$w(T') = w(T) - w(x, y) + w(u, v)$$

$$\leq w(T).$$

Figure 23.3 The proof of Theorem 23.1. Black vertices are in S, and white vertices are in V-S. The edges in the minimum spanning tree T are shown, but the edges in the graph G are not. The edges in A are shaded, and (u, v) is a light edge crossing the cut (S, V-S). The edge (x, y) is an edge on the unique simple path p from u to v in T. To form a minimum spanning tree T' that contains (u, v), remove the edge (x, y) from T and add the edge (u, v).

But T is a minimum spanning tree, so that $w(T) \leq w(T')$; thus, T' must be a minimum spanning tree also.

It remains to show that (u, v) is actually a safe edge for A. We have $A \subseteq T'$, since $A \subseteq T$ and $(x, y) \notin A$; thus, $A \cup \{(u, v)\} \subseteq T'$. Consequently, since T' is a minimum spanning tree, (u, v) is safe for A.

Theorem 23.1 gives us a better understanding of the workings of the GENERIC-MST method on a connected graph G = (V, E). As the method proceeds, the set A is always acyclic; otherwise, a minimum spanning tree including A would contain a cycle, which is a contradiction. At any point in the execution, the graph $G_A = (V, A)$ is a forest, and each of the connected components of G_A is a tree. (Some of the trees may contain just one vertex, as is the case, for example, when the method begins: A is empty and the forest contains |V| trees, one for each vertex.) Moreover, any safe edge (u, v) for A connects distinct components of G_A , since $A \cup \{(u, v)\}$ must be acyclic.

The **while** loop in lines 2–4 of GENERIC-MST executes |V|-1 times because it finds one of the |V|-1 edges of a minimum spanning tree in each iteration. Initially, when $A=\emptyset$, there are |V| trees in G_A , and each iteration reduces that number by 1. When the forest contains only a single tree, the method terminates.

The two algorithms in Section 23.2 use the following corollary to Theorem 23.1.

Corollary 23.2

Let G = (V, E) be a connected, undirected graph with a real-valued weight function w defined on E. Let A be a subset of E that is included in some minimum spanning tree for G, and let $C = (V_C, E_C)$ be a connected component (tree) in the forest $G_A = (V, A)$. If (u, v) is a light edge connecting C to some other component in G_A , then (u, v) is safe for A.

Proof The cut $(V_C, V - V_C)$ respects A, and (u, v) is a light edge for this cut. Therefore, (u, v) is safe for A.

Exercises

23.1-1

Let (u, v) be a minimum-weight edge in a connected graph G. Show that (u, v) belongs to some minimum spanning tree of G.

23.1-2

Professor Sabatier conjectures the following converse of Theorem 23.1. Let G = (V, E) be a connected, undirected graph with a real-valued weight function w defined on E. Let A be a subset of E that is included in some minimum spanning tree for G, let (S, V - S) be any cut of G that respects A, and let (u, v) be a safe edge for A crossing (S, V - S). Then, (u, v) is a light edge for the cut. Show that the professor's conjecture is incorrect by giving a counterexample.

23.1-3

Show that if an edge (u, v) is contained in some minimum spanning tree, then it is a light edge crossing some cut of the graph.

23.1-4

Give a simple example of a connected graph such that the set of edges $\{(u, v) :$ there exists a cut (S, V - S) such that (u, v) is a light edge crossing (S, V - S) does not form a minimum spanning tree.

23.1-5

Let e be a maximum-weight edge on some cycle of connected graph G = (V, E). Prove that there is a minimum spanning tree of $G' = (V, E - \{e\})$ that is also a minimum spanning tree of G. That is, there is a minimum spanning tree of G that does not include e.