通信电子线路

目录

Ι	绪论	1
1	非线性电子线路的作用	1
2	非线性器件的基本特点	2
ΙΙ	功率电子线路	3
3	功率电子线路概述	3
	3.1 功率放大器 3.2 电源变换电路	3
	3.3 功率器件	3 4
4	功率放大器的电路组成和工作特性	4
	4.1 甲类功率放大器 4.2 乙类功率放大器	5 5
5	整流电路	6
6	稳压电路	6
	6.1 串联稳压电路	6
	6.2 开关稳压电路	7
II	[谐振功率放大器	8
7	谐振功率放大器工作原理	8
8	实际电路设计	8
	8.1 直流馈电电路	8
	8.2 滤波匹配网络	9

PART

П

Section 1

非线性电子线路的作用

利用器件的非线性完成振荡、频率变换等功能的电路统称为非线性电子线路。非线性电子线路分为3类:功率放大器、振荡器、调制解调器电磁波的传播方式:

- 1. 沿地表 1.5MHZ $\lambda > 200m$
- 2. 电离层反射 $1.5MHZ\ 30MHZ\ 10m < \lambda < 200m$ (传播距离、时间最长)
- 3. 沿直线传播波 30MHZ以上 $\lambda < 10m$

无线通信系统由发射装置、接收装置和传输媒质组成。 发射装置包括:换能器、发射机、发射天线。

图 1. 采用调幅方式的发射机组成框图

接收装置包括:接收天线、接收机、换能器

图 2. 采用调幅方式的接收机组成框图 (超外差式)

调制有调辐、调频、调相三种,调频和调相统称为调角。携带有信息的电信号称为调制信号,未调制的高频振荡信号称为载波信号。经过调制后的高频振荡信号称为已调 波信号。

解调是调制的逆过程,将已调波信号变换为携带信息的电信号。

只有信号波长与天线尺寸可以比拟的时候,天线才能有效辐射和接收电磁波,调制可以显著减小天线尺寸。调制可以电信号载到不同频率的载波信号上,接收机就可以根据频率选出信息,抑制其他信息干扰。

调制型号放大器(又称低频放大器),由多级放大器组成,前面几级为小信号放大器,后面几级为功率放大器

混频器可以提高解调能力, $f_I = |f_L - f_c|$ 为一固定数 $f_L = |f_L - f_c|$ 为一固定数

Section 2

非线性器件的基本特点

直流电导:

$$g_0|_Q = \frac{I_Q}{V_Q}$$

交流电导/增量电导/微变电导:

$$g|_Q = \frac{di}{dv}$$

平均电导:基波电流振幅与外加电压振幅的比值

$$g_{av}|_{Q,V_m} = \frac{I_{1m}}{V_m}$$

图 3. gav定义

非线性器件不满足叠加定理

 Π

Section 3

功率电子线路概述

Subsection 3.1

功率放大器

功率放大器的要求:安全、高效、不失真地输出所需信号功率 功率放大器是能量转化器,直流电源提供直流功率 P_D ,一部分转化为输出信号功率 P_o ,其余部分小号在集电极。集电极效率 η_C ,定义为:

$$\eta_C = \frac{P_o}{P_D} = \frac{P_o}{P_o + P_C}$$

功率管的应用状态:

类型	甲类	乙类	甲乙类	丙类
导通时间	一个周期	半个周期	甲类和乙类之间	小于半个周期

表 1. 各种状态下的导通时间

图 4. (a) 甲类 (b) 乙类 (c) 甲乙类 (d) 丙类

集电极耗散功率 P_C :

$$P_C = \frac{1}{2\pi} \int_0^{2\pi} i_C v_{CE} \, dt \tag{3.1}$$

减小管子在一个周期内的导通时间可增大效率, η_C 丙类>乙类>甲类,该效率的运用状态都是波形严重失真。、

Subsection 3.2

电源变换电路

1. 整流器: 交流变直流

- 2. 直流-直流变换器
- 3. 逆变器: 直流变交流
- 4. 交流-交流变换器

Subsection 3.3

功率器件

功率器件: 散热、 P_{CM} 、二次击穿要看一下

Section 4

功率放大器的电路组成和工作特性

功率管为大信号工作,性能分析时必须用大信号模型。工程上多用图解分析法。

Example 1

以基本放大器为例,分析功率性能。

图 5. 基本放大器

假设忽略 $V_{CE(on)}$ 和 I_{CEO} ,设工作点 $V_{CEQ}=\frac{V_{CC}}{2}$, $I_{CQ}=\frac{V_{CEQ}}{R_L}=\frac{V_{CC}}{2R_L}$ 在最大幅值的情况下($v_{im}=\frac{V_{CC}}{2}$)

$$i_C = I_{CQ} + I_{cm} \sin(\omega t)$$
$$v_{CE} = V_{CEQ} - v_{cm} \sin(\omega t)$$

直流功率 P_D , 负载功率 P_o , 集电极功率 P_C , 分别为

$$P_D = \frac{1}{2\pi} \int_0^{2\pi} V_{CC} i_C dt = V_{CC} I_{CQ}$$
 (4.1)

$$P_{L} = \frac{1}{2\pi} \int_{0}^{2\pi} i_{C}^{2} R_{L} d\omega t = V_{CEQ} I_{CQ} + \frac{1}{2} V_{cm} I_{cm}$$
(4.2)

$$P_C = \frac{1}{2\pi} \int_0^{2\pi} v_{CE} i_C = V_{CEQ} I_C - \frac{1}{2} V_{cm} I_{cm}$$
 (4.3)

 P_D 只于电源电压和工作点有关, P_L 和 P_C 都由交流和直流两部分组成,且表达式相同,只是 P_L 是加交流功率, P_C 是减。 P_L 的交流项为 $P_o = \frac{P_D}{4}$,只有这一部分是希望输出的。如果不加信号,管子的负载功率和集电极功率相同,加上信号后,集电极减少的功率即为负载所得的信号功率。

 P_o 是负载的得到的信号功率, P_L 是负载得到的所有功率,有交流和直流两部分,只有交流部分(信号功率 P_o)是希望得到的

基本放大器的集电极最大功率

$$\eta_{Cmax} = \frac{P_o}{P_D} = \frac{1}{4} = 25\%$$

如果考虑 $V_{CE(sat)}$ 和 I_{CEO} ,该效率会更低,另外,功率管的集电极饱和压降 $V_{CE(sat)}$ 会大于0.3V 上面分析表明:电源的功率一部分消耗在管子中,大部分($\frac{P_D}{2}$)作为直流功率消耗在 R_L ,可以采用以下方法减少消耗:

- 1. 改变功率管的运用状态(甲乙类、乙类)。(减少功率管本身消耗的功率)
- 2. 管外电路采用不消耗直流功率的结构。(减少直流功率消耗)

同时, v_{CE} 最大振幅一定,可以减小 R_L 使负载线变陡,提高工作点电流,在这时提高输入激励 l_b 振幅,使输出 l_C 增大。

图 6. R_L 改变对 i_C 的影响

在不改变功率管运用状态的条件下,管外使用不消耗直流功率的结构,就是甲类功率放大器。

Subsection 4.1

甲类功率放大器

Subsection 4.2

乙类功率放大器

根据甲类功放的分析结论可知,降低工作点可以提高效率。将管子的工作点设置在0,就得到了乙类功放。乙类功放没有直流损耗,只有在有信号时才有损耗。不过,功率管只有在导通时才有电流流过,因为工作点为0,所以只有在输入激励在正半周期时,功率管导通,才有电流流过,所以输出只有半个周期,是失真的。为了得到完整的正弦波,高频时可以利用谐振回路选出其基波,低频时采用两只管子轮流导通的推挽电路,两个半波在负载上合成一个完整的正弦波。下面是两种典型电路。

- 1. 变压器耦合
- 2. 互补推挽
- Example 2
- 1. 变压器耦合: 图(a)输入变压器 Tr_1 利用中心抽头接地,将输入电压分为两个大小相等、对地极性相反的激励信号实现 T_1 管和 T_2 管轮流导通:输入信号正半周期时, $v_{i1}>0$, $v_{i2}<0$, T_1 管导通, T_2 管截止,输入信号为负半周期时,正好相反。因为 i_{C1} 和 i_{C2} 方向相反,所以两个电流的直流部分相互抵消。交流部分通过变压器在负载上合成为一个完整正弦波

图 7. 两种乙类推挽功放

2. 互补推挽: 图 (b)

互补推挽电路使用了连个特性配对的互补功率管,使用等值正负电源 $(+V_{CC},-V_{CC})$ 供电。无信号时两管 $|V_{CE}|$ 相同,所以 $V_{CE1}=+V_{CC},V_{CE2}=-V_{CC}$,且O点电位为0。输入信号正半周期时, T_1 管导通, T_2 管截止, i_{E1} 为向右的正半周期 i_{e1} 和直流部分输入信号负半周期时, T_1 管截止, T_2 管导通, i_{E2} 为向左的正半周期 i_{e2} 和直流部分 i_{E1} 和 i_{E2} 直流部分相互抵消,交流部分在负载上合成为一个完整正弦波。

向左的正半周期相当于向右 的负半周期

因为两管时特性配对(对称)的,所以只需要对其中一个分析即可。考虑直流通路时,输入信号接地,两管基极直流电压都为0, $V_{BE}=0$, $I_C=0$,两管都工作在乙类状态,静态工作点分别在 $+V_{CC}$ 和 $-V_{CC}$ 上。 T_1 管导通时交流负载线是一条斜率为 $\frac{1}{R_L}$ 的直线。

最大集电极效率 $\eta_C \begin{cases} 基本放大器: 25\% \\ 甲类功放: 50\% \\ 乙类功放: 78.5\% \left(\frac{\pi}{4}\right) \end{cases}$

Section 5

整流电路

图 8. 直流稳压电源的组成

Section 6

稳压电路

Subsection 6.1

串联稳压电路

串联稳压电路是由调整管、取样管、基准电压源、比较放大器组成的自动控制电路。

Subsection 6.2 开关稳压电路

谐振功率放大器

III

PART

Section 7

谐振功率放大器工作原理

SECTION 8

实际电路设计

Subsection 8.1

直流馈电电路

原则: 保证直流电流只流过直流电源、保证交流电流不流过直流电源

直流馈电电路有两种不同的链接方式,分别称为串馈和并馈。串馈: V_{CC} 、谐振回路、三极管再同一条回路上。并馈: V_{CC} 、谐振回路、三极管不能组成一条回路。两种馈电方式具有相同的直流通路。串馈电路中,滤波匹配网络处于直流高电位,网络器件不能直接接地,并馈电路中,由于 C_{C1} 隔直流的作用,滤波网络处于直流低电位,网络器件可以直接接地,所以安装比串馈方便,但 L_{C1} 和 C_{C1} 的分布参数将直接影响网络谐振

Example 3

集电极馈电线路:

图 9. 集电极馈电线路

(a) 交流分量从电容处流走,但是仍会有少部分交流分量流经电源,加入高频扼流圈组阻止交流通过。(b)

 V_{CC} 和 V_{BB} 的共同作用是偏置, V_{CC} 多一个作用是提供功率,如果 V_{BB} 是从 V_{CC} 上引入的话就可以少用一个电源。

将 V_{BB} 删去, V_{BB} 由电路本身获得

$$\begin{cases} V_{BB} < 0 \ 丙类 \\ V_{BB} = 0 \\ V_{BB} > 0 \end{cases}$$

Example 4

基极偏置电路

图 10. 集电极馈电线路

- 1. (a):正偏置,偏置 V_{CC} 经过两个电阻分压之后得到,图中 V_{BB} 是 R_{B2} 的分压 V_{BB} 永远大于0。为保证丙类工作,其值应小于功率管的导通电压。
- 2. (b):负偏压,不引入 V_{CC} ,由电路自己产生偏置。 I_B 从三极管基极进入, I_B 可分为直流分量、一次谐波分量、二次谐波分量...,电阻通直流 I_{B0} ,产生的压降作为 V_{BB} , V_{BB} 。
- 3. (C):零偏压,没有电阻,残生不了压降, $V_{BB}=0$
- (a)是固定偏压,(b)和(c)是自给偏压。负偏压的 V_{BB} 很小,因为 I_{B0} Ĺ册 改进:电阻并电容的回路搬到发射极,因为 $i_e=\beta i_b$,电流增大了一百(β)倍,但是不接地了, V_{BB} 依然< 0

Subsection 8.2

滤波匹配网络

滤波匹配网络使功率P。最有效的输出。在电路中学过,如果一个电压源外接一个电阻,当外接电阻与内阻相同时,电压源输出功率最大。滤波匹配网络的目的就是使网络谐振时的电阻等于负载电阻。滤波匹配网络分为并脸型和串联型。

先看并联谐振网络

并联谐振网络 $\left\{ egin{array}{ll} \mathfrak{G} \mathbb{E} \mathbb{E} \\ \mathbb{E} \mathbb{E} \mathbb{E} \end{array} \right.$

1. 变压器: 通过调节抽头