Static-4

Title

Circular ring structure

Description

A circular ring is subjected to a pair of equal and opposite concentrated loads in the radial direction of the ring.

Determine the displacements and bending moments.

Only a quarter of the model may be analyzed due to symmetry.

(a) Ring structure

(b) Quarter model

Structural geometry and analysis model

Model

Analysis Type

2-D static analysis (X-Z plane)

Unit System

m, N

Dimension

Radius 2.0 m Thickness 0.0004 m Width 1.0 m

Element

Beam element

Material

Modulus of elasticity $E = 2.0 \times 10^{11} \text{ Pa}$

Section Property

 $\begin{array}{lll} \text{Area} & A &= 4.0 \times 10^4 \text{ m}^2 \\ \text{Effective shear area} & A_{sz} = 2.66667 \times 10^4 \text{ m}^2 \\ \text{Moment of inertia} & I_{yy} &= 1.33333 \times 10^{*8} \text{ m}^4 \end{array}$

Boundary Condition

Node 1 ; Constrain Dz and Ry. (Symmetric about X-axis) Node 13 ; Constrain Dx and Ry. (Symmetric about Z-axis)

Load Case

With a quarter model a load, 8.0/2 N, is applied to the node 13 in the -Z direction.

Results

Deformed shape of the structure

Bending moment diagram of the structure

Comparison of Results

Unit: m, Nm

Results		Theoretical	ADINA	MIDAS/Civil
Displacement	$\delta_x(\text{Node }1)$	1.64×10^{-3}	1.63×10^{-3}	1.63×10^{-3}
	δ_z (Node 13)	-1.79×10^{-3}	-1.78×10^{-3}	-1.78×10^{-3}
Bending moment	M _y (Node 13)	5.09	5.09	5.09

References

Timoshenko, S., "Strength of Materials, Part I, Elementary Theory and Problems", 3rd Edition, D. Van Nostrand, 1955.

"ADINA, Verification Manual - Linear Problems", Version 6.1, ADINA R&D, Inc., 1992, Example A. 10.