Non-Fermi Liquid Effective Field Theory

Thomas Schaefer

North Carolina State

w. K. Schwenzer (NCSU) and A. Kryjevski (INT)

Motivation

Matter at high baryon density exists in nature

low energy excitations determine physical properties: specific heat, transport propereties, emissivity, ...

Low energy degrees are composite (at any density)

study effective degrees of freedom in a regime where we can make the connection QCD \rightarrow EFT

Why Effective Field Theories?

- weak coupling expansion ≠ loop expansion
 organize perturbation theory, resum logarithms, etc.
- reduce confusion

gauge invariance, off-shell behavior, etc.

effects of perturbations, external fields
 quark masses, electron chemical potentials, etc.

Effective Field Theories

High Density Effective Theory

quasi-particles (holes)

$$E_{\pm} = -\mu \pm \sqrt{\vec{p}^2 + m^2} \simeq -\mu \pm |\vec{p}|$$

effective field theory on v-patches

$$\psi_{v\pm} = e^{-i\mu v \cdot x} \left(\frac{1 \pm \vec{\alpha} \cdot \vec{v}}{2} \right) \psi$$

effective lagrangian for ψ_{v+}

$$\mathcal{L} = \sum_{v} \psi_v^{\dagger} (iv \cdot D) \psi_v - \frac{1}{4} G_{\mu\nu}^a G_{\mu\nu}^a + O(1/\mu)$$

Four Quark Operators

quark-quark scattering

$$(v_1, v_2) \to (v_3, v_4)$$

BCS

Landau

$$\mathcal{L}_{BCS} = \frac{1}{\mu^2} \sum V_l^{\Gamma\Gamma'} R_l^{\Gamma\Gamma'} (\vec{v} \cdot \vec{v}') \Big(\psi_v \Gamma \psi_{-v} \Big) \Big(\psi_{v'}^{\dagger} \Gamma' \psi_{-v'}^{\dagger} \Big),$$

$$\mathcal{L}_{FL} = \frac{1}{\mu^2} \sum F_l^{\Gamma\Gamma'}(\phi) R_l^{\Gamma\Gamma'}(\vec{v} \cdot \vec{v}') \Big(\psi_v \Gamma \psi_{v'} \Big) \Big(\psi_{\tilde{v}}^{\dagger} \Gamma' \psi_{\tilde{v}'}^{\dagger} \Big)$$

Four Fermion Operators: Matching

• match scattering amplitudes on Fermi surface: forward scattering

color-flavor-spin symmetric terms

$$f_0^s = \frac{C_F}{4N_cN_f} \frac{g^2}{p_F^2}, \quad f_i^s = 0 \ (i > 1)$$

Power Counting

naive power counting

$$\mathcal{L} = \hat{\mathcal{L}}\left(\psi, \psi^{\dagger}, \frac{D_{||}}{\mu}, \frac{D_{\perp}}{\mu}, \frac{D_{||}}{\mu}, \frac{m}{\mu}\right)$$

problem: hard loops

Modified Power Counting: $\mathcal{A} \sim l^{\delta}$

$$\delta = \sum_{i} \left[(k - 4)V_k^S + (k - 2 - f_k)V_k^H \right] + E_Q + 4 - 2N_C$$

 V_k^S soft vertices of $O(l^k)$

 V_k^H hard vertices of $O(l^k)$

 E_Q external quark lines

 N_C connected graphs in hard graph

- ullet quark loops in gluon n-pt fcts blow up at $l\sim g\mu$
- four quark operators are leading order
- six quark operators (etc) are suppressed

Effective Theory for $l \sim g\mu$

$$\mathcal{L} = \psi_v^{\dagger} (iv \cdot D) \psi_v + f_0^s (\psi_v^{\dagger} \psi_v) (\psi_{v'}^{\dagger} \psi_{v'}) - \frac{1}{4} G_{\mu\nu}^a G_{\mu\nu}^a + \mathcal{L}_{HDL}$$

$$\mathcal{L}_{HDL} = -\frac{m^2}{2} \sum_{v} G^a_{\mu\alpha} \frac{v^{\alpha}v^{\beta}}{(v \cdot D)^2} G^b_{\mu\beta}$$

transverse gauge boson propagator

$$D_{ij}(k) = \frac{\delta_{ij} - \hat{k}_i \hat{k}_j}{k_0^2 - \vec{k}^2 + i\eta |k_0|/|\vec{k}|},$$

scaling of gluon momenta

$$|\vec{k}| \sim k_0^{1/3} \eta^{2/3} \gg k_0$$
 gluons are very spacelike

Effective Theory for $l \sim g\mu$

Quasi-Quarks at Large Density:

Non-Fermi Liquid Effects

Loop Corrections

$$\Sigma(\omega) \simeq \frac{g^2 C_F}{12\pi^2} \omega \log\left(\frac{\Lambda}{\omega}\right)$$

$$\Gamma_{\alpha} = \frac{g^3 C_F v_{\alpha}}{12\pi^2} \log\left(\frac{\Lambda}{\omega}\right)$$
 time like

$$\Gamma_{\alpha} = O(g^3)$$
 space like

"Migdal's Theorem" for QCD

- self energy has to be resummed for $\omega \sim \Lambda \exp(-9\pi^2/g^2)$
- coupling has no logs $(k \gg k_4!)$

Renormalization Group

renormalized parameters

$$\psi_{0,v} = Z^{1/2}\psi_v, \quad v_{0,F} = Z_F v_F, \quad g_0 = \frac{Z_g}{ZZ_F}g, \quad \alpha = \frac{g^2 v_F}{4\pi},$$

one loop calculation
$$(\beta = \frac{\partial \alpha}{\partial \log \Lambda}, \ \gamma = \frac{\partial \log Z}{\partial \log \Lambda}, \ \gamma_F = \frac{\partial \log Z_F}{\partial \log \Lambda})$$

$$\gamma(\alpha) = -\gamma_F(\alpha) = \frac{4\alpha}{9\pi}, \qquad \beta(\alpha) = -\gamma_F(\alpha)\alpha \qquad \text{IR free !!}$$

RG equation

$$\left\{\Lambda \frac{\partial}{\partial \Lambda} + \beta(\alpha) \frac{\partial}{\partial \alpha} - \gamma_F(\alpha) l_i \frac{\partial}{\partial l_i} + \frac{n}{2} \gamma(\alpha) \right\} G^{(n)}(\omega_i, l_i, \alpha) = 0,$$

 $\gamma \ll 1$: RG equation can be solved exactly

$$S^{-1}(\omega, l) = \omega \left(1 + \gamma \log \left(\frac{\Lambda}{\omega} \right) \right) - v_F l$$

no terms $\alpha^2 \log^2(\omega)$, etc.

- ullet quasi-particle velocity vanishes as $v \sim \log(\Lambda/\omega)^{-1}$
- ullet anomalous term in the specific heat $c_v \sim \gamma T \log(T)$
- ullet enhanced corrections to the gap $\log(\mu/\Delta) = \log(\mu/\Delta_0)(1-O(\gamma g))$

Neutrino Emission

Quark Direct URCA:
$$d \rightarrow u + e^- + \bar{\nu}, u + e^- \rightarrow d + \bar{\nu}$$

 p_{F}

 p_{F}

 p_{F}

$$\epsilon \sim G_F T^7$$

$$\epsilon \sim G_F \alpha_s^3 T^6 \log^2(T)$$

Quasi-Baryons at Large Density:

CFL Phase

Superconductivity

quark-quark scattering $(\mu \gg \Lambda_{QCD})$

gap equation: double logarithmic behavior

$$\Delta(p_0) = \frac{g^2}{18\pi^2} \int dq_0 \left\{ \log\left(\frac{b_M}{|p_0 - q_0|}\right) + \ldots \right\} \frac{\Delta(q_0)}{\sqrt{q_0^2 + \Delta(q_0)^2}}$$
collinear log
$$\frac{\partial dq_0}{\partial q_0} = \frac{\partial dq_0}{\partial q_0} \left\{ \log\left(\frac{b_M}{|p_0 - q_0|}\right) + \ldots \right\}$$

$$\Rightarrow \qquad \Delta_0 = 512\pi^4 \mu g^{-5} \exp\left(-\frac{\pi^2 + 4}{8}\right) \exp\left(-\frac{3\pi^2}{\sqrt{2}g}\right)$$

CFL Phase

• Consider $N_f = 3 \ (m_i = 0)$

$$\langle q_i^a q_j^b \rangle = \phi \ \epsilon^{abI} \epsilon_{ijI}$$

 $\langle ud \rangle = \langle us \rangle = \langle ds \rangle$
 $\langle rb \rangle = \langle rg \rangle = \langle bg \rangle$

symmetry breaking pattern:

$$SU(3)_L \times SU(3)_R \times [SU(3)]_C$$

 $\times U(1) \rightarrow SU(3)_{C+F}$

all quarks and gluons acquire a gap

$$\langle \psi_L \psi_L \rangle = -\langle \psi_R \psi_R \rangle$$

EFT in the CFL Phase

consider HDET with a CFL gap term

$$\mathcal{L} = \text{Tr}\left(\psi_L^{\dagger}(iv \cdot D)\psi_L\right) + \frac{\Delta}{2} \left\{ \text{Tr}\left(X^{\dagger}\psi_L X^{\dagger}\psi_L\right) - \kappa \left[\text{Tr}\left(X^{\dagger}\psi_L\right)\right]^2 \right\}$$
$$\psi_L \to L\psi_L C^T, \quad X \to LXC^T, \quad \langle X \rangle = \langle Y \rangle = 1$$
$$+ (L \leftrightarrow R, X \leftrightarrow Y)$$

quark loops generate a kinetic term for X, Y

$$\mathcal{L} = -\frac{f_{\pi}^2}{2} \left\{ \text{Tr} \left((X^{\dagger} D_0 X)^2 + (Y^{\dagger} D_0 Y)^2 \right) \right\} + \dots$$

integrate out gluons, identify low energy fields

$$\Sigma = XY^{\dagger}$$
 [8] + [1] GBs, $N_L = \xi(\psi_L X^{\dagger})\xi^{\dagger}$ [8] + [1] Baryons

effective theory: $CFL(B)\chi PTh$

$$\mathcal{L} = \frac{f_{\pi}^{2}}{4} \left\{ \operatorname{Tr} \left(\nabla_{0} \Sigma \nabla_{0} \Sigma^{\dagger} \right) - v_{\pi}^{2} \operatorname{Tr} \left(\nabla_{i} \Sigma \nabla_{i} \Sigma^{\dagger} \right) \right\}$$

$$+ \operatorname{Tr} \left(N^{\dagger} i v^{\mu} D_{\mu} N \right) - D \operatorname{Tr} \left(N^{\dagger} v^{\mu} \gamma_{5} \left\{ \mathcal{A}_{\mu}, N \right\} \right)$$

$$- F \operatorname{Tr} \left(N^{\dagger} v^{\mu} \gamma_{5} \left[\mathcal{A}_{\mu}, N \right] \right) + \frac{\Delta}{2} \left\{ \operatorname{Tr} \left(N N \right) - \left[\operatorname{Tr} \left(N \right) \right]^{2} \right\}$$

with $D_{\mu}N = \partial_{\mu}N + i[\mathcal{V}_{\mu},N]$

$$\mathcal{V}_{\mu} = -\frac{i}{2} \left(\xi \partial_{\mu} \xi^{\dagger} + \xi^{\dagger} \partial_{\mu} \xi \right)$$

$$\mathcal{A}_{\mu} = -\frac{i}{2} \xi \left(\partial_{\mu} \Sigma^{\dagger} \right) \xi$$

$$f_{\pi}^{2} = \frac{21 - 8\log 2}{18} \frac{\mu^{2}}{2\pi^{2}}$$
 $v_{\pi}^{2} = \frac{1}{3}$ $D = F = \frac{1}{2}$

Mass Terms: Match HDET to QCD

$$\mathcal{L} = \psi_{R}^{\dagger} \frac{MM^{\dagger}}{2\mu} \psi_{R} + \psi_{L}^{\dagger} \frac{M^{\dagger}M}{2\mu} \psi_{L}$$

$$+ \frac{C}{\mu^{2}} (\psi_{R}^{\dagger}M\lambda^{a}\psi_{L})(\psi_{R}^{\dagger}M\lambda^{a}\psi_{L})$$

$$= \frac{R}{\lambda} \times \frac{R}{\lambda} \times$$

Mass Terms: Match HDET to CFL χ Th

kinetic term: $\psi_L^\dagger X_L \psi_L + \psi_R^\dagger X_R \psi_R$

$$D_0 N = \partial_0 N + i[\Gamma_0, N], \qquad \Gamma_0 = \mathcal{V}_0 + \frac{1}{2} \left(\xi X_R \xi^\dagger + \xi^\dagger X_L \xi \right)$$

$$\nabla_0 \Sigma = \partial_0 \Sigma + i X_L \Sigma - i \Sigma X_R$$

vector (axial) potentials

contact term: $(\psi_R^{\dagger} M \psi_L)(\psi_R^{\dagger} M \psi_L)$

$$\mathcal{L} = \frac{3\Delta^2}{4\pi^2} \left\{ [\text{Tr}(M\Sigma)]^2 - \text{Tr}(M\Sigma M\Sigma) \right\}$$

meson mass terms

Phase Structure and Spectrum

phase structure determined by effective potential

$$V(\Sigma) = \frac{f_{\pi}^{2}}{2} \operatorname{Tr} \left(X_{L} \Sigma X_{R} \Sigma^{\dagger} \right) - A \operatorname{Tr} (M \Sigma^{\dagger}) - B_{1} \left[\operatorname{Tr} (M \Sigma^{\dagger}) \right]^{2} + \dots$$

$$V(\Sigma_0) \equiv min$$

fermion spectrum determined by

$$\mathcal{L} = \operatorname{Tr}\left(N^{\dagger}iv^{\mu}D_{\mu}N\right) + \operatorname{Tr}\left(N^{\dagger}\gamma_{5}\rho_{A}N\right) + \frac{\Delta}{2}\left\{\operatorname{Tr}\left(NN\right) - \left[\operatorname{Tr}\left(N\right)\right]^{2}\right\},\,$$

$$\rho_{V,A} = \frac{1}{2} \left\{ \xi \frac{M^{\dagger} M}{2p_F} \xi^{\dagger} \pm \xi^{\dagger} \frac{M M^{\dagger}}{2p_F} \xi \right\} \qquad \xi = \sqrt{\Sigma_0}$$

Phase Structure and Spectrum

meson condensation: CFLK

reliable: yes!

gapless modes? (gCFLK)

reliable: not clear yet

Summary

- EFT/RG methods provide powerful tools
 phase structure and spectrum at large density
- normal phase: non-Fermi liquid behavior due to unscreened transverse gauge bosons

perturbation theory reliable (no rainbows, etc.)

• superfluid phase: effective chiral theory with calculable coefficients kaon condensation, possibility of gapless modes