

MainPage/Discrete Mathematics/Домашнее Задание 4

Вариант №122

V/V	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	e_{10}	e_{11}	e_{12}
e_1	0		3	1	4		4			3	3	
e_2		0	4	1	1			3				
e_3	3	4	0	1	5		1		1	1		
e_4	1	1	1	0		1	2		4		2	2
e_5	4	1	5		0			3				
e_6				1		0		3		1	4	
e_7	4		1	2			0		1	4		
e_8		3			3	3		0			4	
e_9			1	4			1		0	1	4	
e_{10}	3		1			1	4		1	0	5	
e_{11}	3			2		4		4	4	5	0	4
e_{12}				2							4	0

V/V	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	e_{10}	e_{11}	e_{12}
e_1	0		1	1	1		1			1	1	
e_2		0	1	1	1			1				
e_3	1	1	0	1	1		1		1	1		
e_4	1	1	1	0		1	1		1		1	1
e_5	1	1	1		0			1				

V/V	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	e_{10}	e_{11}	e_{12}
e_6				1		0		1		1	1	
e_7	1		1	1			0		1	1		
e_8		1			1	1		0			1	
e_9			1	1			1		0	1	1	
e_{10}	1		1			1	1		1	0	1	
e_{11}	1			1		1		1	1	1	0	1
e_{12}				1							1	0

Нахождение гамильтонова цикла

Включаем в S вершину x1. S={x1}

Возможная вершина: x3. S={x1,x3}

Возможная вершина: x2. S={x1,x3,x2}

Возможная вершина: x4. S={x1,x3,x2,x4}

Возможная вершина: x6. S={x1,x3,x2,x4,x6}

Возможная вершина: x8. S={x1,x3,x2,x4,x6,x8}

Возможная вершина: x5. S={x1,x3,x2,x4,x6,x8,x5}

У x5 больше нет возможных вершин, удалим ее. Перейдем к x8. S={x1,x3,x2,x4,x6,x8}

Возможная вершина: x11. S={x1,x3,x2,x4,x6,x8,x11}

Возможная вершина: x9. S={x1,x3,x2,x4,x6,x8,x11,x9}

Возможная вершина: x7. $S=\{x1,x3,x2,x4,x6,x8,x11,x9,x7\}$

Возможная вершина: x10. S={x1,x3,x2,x4,x6,x8,x11,x9,x7,x10}

У х10 больше нет возможных вершин, удалим ее. Перейдем к х7.

 $S=\{x1,x3,x2,x4,x6,x8,x11,x9,x7\}$

У х7 больше нет возможных вершин, удалим ее. Перейдем к х9.

 $S=\{x1,x3,x2,x4,x6,x8,x11,x9\}$

Возможная вершина: x10. S={x1,x3,x2,x4,x6,x8,x11,x9,x10}

Возможная вершина: x7. S={x1,x3,x2,x4,x6,x8,x11,x9,x10,x7}

У х7 больше нет возможных вершин, удалим ее. Перейдем к х10.

 $S=\{x1,x3,x2,x4,x6,x8,x11,x9,x10\}$

У х10 больше нет возможных вершин, удалим ее. Перейдем к х9.

 $S=\{x1,x3,x2,x4,x6,x8,x11,x9\}$

У х9 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x6,x8,x11\}$

Возможная вершина: x10. S={x1,x3,x2,x4,x6,x8,x11,x10}

Возможная вершина: x7. S={x1,x3,x2,x4,x6,x8,x11,x10,x7}

Возможная вершина: x9. S={x1,x3,x2,x4,x6,x8,x11,x10,x7,x9}

У х9 больше нет возможных вершин, удалим ее. Перейдем к х7.

 $S=\{x1,x3,x2,x4,x6,x8,x11,x10,x7\}$

У х7 больше нет возможных вершин, удалим ее. Перейдем к х10.

 $S=\{x1,x3,x2,x4,x6,x8,x11,x10\}$

Возможная вершина: x9. S={x1,x3,x2,x4,x6,x8,x11,x10,x9}

Возможная вершина: x7. S={x1,x3,x2,x4,x6,x8,x11,x10,x9,x7}

У х7 больше нет возможных вершин, удалим ее. Перейдем к х9.

 $S=\{x1,x3,x2,x4,x6,x8,x11,x10,x9\}$

У х9 больше нет возможных вершин, удалим ее. Перейдем к х10.

 $S=\{x1,x3,x2,x4,x6,x8,x11,x10\}$

У х10 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x6,x8,x11\}$

Возможная вершина: x12. S={x1,x3,x2,x4,x6,x8,x11,x12}

У х12 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x6,x8,x11\}$

У x11 больше нет возможных вершин, удалим ее. Перейдем к x8. S={x1,x3,x2,x4,x6,x8}

У x8 больше нет возможных вершин, удалим ее. Перейдем к x6. S={x1,x3,x2,x4,x6}

Возможная вершина: x10. S={x1,x3,x2,x4,x6,x10}

Возможная вершина: x7. S={x1,x3,x2,x4,x6,x10,x7}

Возможная вершина: x9. S={x1,x3,x2,x4,x6,x10,x7,x9}

Возможная вершина: x11. S={x1,x3,x2,x4,x6,x10,x7,x9,x11}

Возможная вершина: x8. S={x1,x3,x2,x4,x6,x10,x7,x9,x11,x8}

Возможная вершина: $x5. S=\{x1,x3,x2,x4,x6,x10,x7,x9,x11,x8,x5\}$

У х5 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x6,x10,x7,x9,x11,x8\}$

У х8 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x6,x10,x7,x9,x11\}$

Возможная вершина: x12. S={x1,x3,x2,x4,x6,x10,x7,x9,x11,x12}

У х12 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x6,x10,x7,x9,x11\}$

У х11 больше нет возможных вершин, удалим ее. Перейдем к х9.

 $S=\{x1,x3,x2,x4,x6,x10,x7,x9\}$

У х9 больше нет возможных вершин, удалим ее. Перейдем к х7.

 $S=\{x1,x3,x2,x4,x6,x10,x7\}$

У x7 больше нет возможных вершин, удалим ее. Перейдем к x10. S={x1,x3,x2,x4,x6,x10}

Возможная вершина: x9. S={x1,x3,x2,x4,x6,x10,x9}

Возможная вершина: x7. S={x1,x3,x2,x4,x6,x10,x9,x7}

У х7 больше нет возможных вершин, удалим ее. Перейдем к х9.

 $S=\{x1,x3,x2,x4,x6,x10,x9\}$

Возможная вершина: x11. S={x1,x3,x2,x4,x6,x10,x9,x11}

Возможная вершина: x8. S={x1,x3,x2,x4,x6,x10,x9,x11,x8}

Возможная вершина: x5. S={x1,x3,x2,x4,x6,x10,x9,x11,x8,x5}

У х5 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x6,x10,x9,x11,x8\}$

У х8 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x6,x10,x9,x11\}$

Возможная вершина: x12. S={x1,x3,x2,x4,x6,x10,x9,x11,x12}

У х12 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x6,x10,x9,x11\}$

У х11 больше нет возможных вершин, удалим ее. Перейдем к х9.

 $S=\{x1,x3,x2,x4,x6,x10,x9\}$

У x9 больше нет возможных вершин, удалим ее. Перейдем к x10. S={x1,x3,x2,x4,x6,x10}

Возможная вершина: x11. S={x1,x3,x2,x4,x6,x10,x11}

Возможная вершина: x8. S={x1,x3,x2,x4,x6,x10,x11,x8}

Возможная вершина: x5. S={x1,x3,x2,x4,x6,x10,x11,x8,x5}

У х5 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x6,x10,x11,x8\}$

У х8 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x6,x10,x11\}$

Возможная вершина: x9. S={x1,x3,x2,x4,x6,x10,x11,x9}

Возможная вершина: x7. S={x1,x3,x2,x4,x6,x10,x11,x9,x7}

У х7 больше нет возможных вершин, удалим ее. Перейдем к х9.

 $S=\{x1,x3,x2,x4,x6,x10,x11,x9\}$

У х9 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x6,x10,x11\}$

Возможная вершина: x12. S={x1,x3,x2,x4,x6,x10,x11,x12}

У х12 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x6,x10,x11\}$

У x11 больше нет возможных вершин, удалим ее. Перейдем к x10. S={x1,x3,x2,x4,x6,x10}

У x10 больше нет возможных вершин, удалим ее. Перейдем к x6. S={x1,x3,x2,x4,x6}

Возможная вершина: x11. S={x1,x3,x2,x4,x6,x11}

Возможная вершина: x8. S={x1,x3,x2,x4,x6,x11,x8}

Возможная вершина: x5. S={x1,x3,x2,x4,x6,x11,x8,x5}

У х5 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x6,x11,x8\}$

У x8 больше нет возможных вершин, удалим ее. Перейдем к x11. S={x1,x3,x2,x4,x6,x11}

Возможная вершина: x9. S={x1,x3,x2,x4,x6,x11,x9}

Возможная вершина: x7. S={x1,x3,x2,x4,x6,x11,x9,x7}

Возможная вершина: x10. S={x1,x3,x2,x4,x6,x11,x9,x7,x10}

У х10 больше нет возможных вершин, удалим ее. Перейдем к х7.

 $S=\{x1,x3,x2,x4,x6,x11,x9,x7\}$

У х7 больше нет возможных вершин, удалим ее. Перейдем к х9.

 $S=\{x1,x3,x2,x4,x6,x11,x9\}$

Возможная вершина: x10. S={x1,x3,x2,x4,x6,x11,x9,x10}

Возможная вершина: x7. S={x1,x3,x2,x4,x6,x11,x9,x10,x7}

У х7 больше нет возможных вершин, удалим ее. Перейдем к х10.

 $S=\{x1,x3,x2,x4,x6,x11,x9,x10\}$

У х10 больше нет возможных вершин, удалим ее. Перейдем к х9.

 $S=\{x1,x3,x2,x4,x6,x11,x9\}$

У x9 больше нет возможных вершин, удалим ее. Перейдем к x11. S={x1,x3,x2,x4,x6,x11}

Возможная вершина: x10. S={x1,x3,x2,x4,x6,x11,x10}

Возможная вершина: x7. S={x1,x3,x2,x4,x6,x11,x10,x7}

Возможная вершина: x9. S={x1,x3,x2,x4,x6,x11,x10,x7,x9}

У х9 больше нет возможных вершин, удалим ее. Перейдем к х7.

 $S=\{x1,x3,x2,x4,x6,x11,x10,x7\}$

У х7 больше нет возможных вершин, удалим ее. Перейдем к х10.

 $S=\{x1,x3,x2,x4,x6,x11,x10\}$

Возможная вершина: x9. S={x1,x3,x2,x4,x6,x11,x10,x9}

Возможная вершина: x7. S={x1,x3,x2,x4,x6,x11,x10,x9,x7}

У х7 больше нет возможных вершин, удалим ее. Перейдем к х9.

 $S=\{x1,x3,x2,x4,x6,x11,x10,x9\}$

У х9 больше нет возможных вершин, удалим ее. Перейдем к х10.

 $S=\{x1,x3,x2,x4,x6,x11,x10\}$

У x10 больше нет возможных вершин, удалим ее. Перейдем к x11. S={x1,x3,x2,x4,x6,x11}

Возможная вершина: x12. S={x1,x3,x2,x4,x6,x11,x12}

У x12 больше нет возможных вершин, удалим ее. Перейдем к x11. S={x1,x3,x2,x4,x6,x11}

У x11 больше нет возможных вершин, удалим ее. Перейдем к x6. S={x1,x3,x2,x4,x6}

У x6 больше нет возможных вершин, удалим ее. Перейдем к x4. S={x1,x3,x2,x4}

Возможная вершина: x7. S={x1,x3,x2,x4,x7}

Возможная вершина: x9. S={x1,x3,x2,x4,x7,x9}

Возможная вершина: x10. S={x1,x3,x2,x4,x7,x9,x10}

Возможная вершина: x6. S={x1,x3,x2,x4,x7,x9,x10,x6}

Возможная вершина: x8. S={x1,x3,x2,x4,x7,x9,x10,x6,x8}

Возможная вершина: x5. S={x1,x3,x2,x4,x7,x9,x10,x6,x8,x5}

У х5 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x7,x9,x10,x6,x8\}$

Возможная вершина: x11. S={x1,x3,x2,x4,x7,x9,x10,x6,x8,x11}

Возможная вершина: x12. S={x1,x3,x2,x4,x7,x9,x10,x6,x8,x11,x12}

У х12 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x7,x9,x10,x6,x8,x11\}$

У х11 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x7,x9,x10,x6,x8\}$

У х8 больше нет возможных вершин, удалим ее. Перейдем к х6.

 $S=\{x1,x3,x2,x4,x7,x9,x10,x6\}$

Возможная вершина: x11. S={x1,x3,x2,x4,x7,x9,x10,x6,x11}

Возможная вершина: x8. S={x1,x3,x2,x4,x7,x9,x10,x6,x11,x8}

Возможная вершина: $x5. S=\{x1,x3,x2,x4,x7,x9,x10,x6,x11,x8,x5\}$

У х5 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x7,x9,x10,x6,x11,x8\}$

У х8 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x7,x9,x10,x6,x11\}$

Возможная вершина: x12. S={x1,x3,x2,x4,x7,x9,x10,x6,x11,x12}

У х12 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x7,x9,x10,x6,x11\}$

У х11 больше нет возможных вершин, удалим ее. Перейдем к х6.

 $S=\{x1,x3,x2,x4,x7,x9,x10,x6\}$

У х6 больше нет возможных вершин, удалим ее. Перейдем к х10.

 $S=\{x1,x3,x2,x4,x7,x9,x10\}$

Возможная вершина: x11. S={x1,x3,x2,x4,x7,x9,x10,x11}

Возможная вершина: x6. S={x1,x3,x2,x4,x7,x9,x10,x11,x6}

Возможная вершина: x8. S={x1,x3,x2,x4,x7,x9,x10,x11,x6,x8}

Возможная вершина: $x5. S=\{x1,x3,x2,x4,x7,x9,x10,x11,x6,x8,x5\}$

У х5 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x7,x9,x10,x11,x6,x8\}$

У х8 больше нет возможных вершин, удалим ее. Перейдем к х6.

 $S=\{x1,x3,x2,x4,x7,x9,x10,x11,x6\}$

У х6 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x7,x9,x10,x11\}$

Возможная вершина: x8. S={x1,x3,x2,x4,x7,x9,x10,x11,x8}

Возможная вершина: x5. S={x1,x3,x2,x4,x7,x9,x10,x11,x8,x5}

У х5 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x7,x9,x10,x11,x8\}$

Возможная вершина: x6. S={x1,x3,x2,x4,x7,x9,x10,x11,x8,x6}

У х6 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x7,x9,x10,x11,x8\}$

У х8 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x7,x9,x10,x11\}$

Возможная вершина: x12. S={x1,x3,x2,x4,x7,x9,x10,x11,x12}

У х12 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x7,x9,x10,x11\}$

У х11 больше нет возможных вершин, удалим ее. Перейдем к х10.

 $S=\{x1,x3,x2,x4,x7,x9,x10\}$

У x10 больше нет возможных вершин, удалим ее. Перейдем $x9. S=\{x1,x3,x2,x4,x7,x9\}$

Возможная вершина: x11. S={x1,x3,x2,x4,x7,x9,x11}

Возможная вершина: x6. S={x1,x3,x2,x4,x7,x9,x11,x6}

Возможная вершина: x8. S={x1,x3,x2,x4,x7,x9,x11,x6,x8}

Возможная вершина: x5. S={x1,x3,x2,x4,x7,x9,x11,x6,x8,x5}

У х5 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x7,x9,x11,x6,x8\}$

У х8 больше нет возможных вершин, удалим ее. Перейдем к х6.

 $S=\{x1,x3,x2,x4,x7,x9,x11,x6\}$

Возможная вершина: x10. S={x1,x3,x2,x4,x7,x9,x11,x6,x10}

У х10 больше нет возможных вершин, удалим ее. Перейдем к х6.

 $S=\{x1,x3,x2,x4,x7,x9,x11,x6\}$

У х6 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x7,x9,x11\}$

Возможная вершина: x8. S={x1,x3,x2,x4,x7,x9,x11,x8}

Возможная вершина: x5. S={x1,x3,x2,x4,x7,x9,x11,x8,x5}

У х5 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x7,x9,x11,x8\}$

Возможная вершина: x6. S={x1,x3,x2,x4,x7,x9,x11,x8,x6}

Возможная вершина: x10. S={x1,x3,x2,x4,x7,x9,x11,x8,x6,x10}

У х10 больше нет возможных вершин, удалим ее. Перейдем к х6.

 $S=\{x1,x3,x2,x4,x7,x9,x11,x8,x6\}$

У х6 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x7,x9,x11,x8\}$

У х8 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x7,x9,x11\}$

Возможная вершина: x10. S={x1,x3,x2,x4,x7,x9,x11,x10}

Возможная вершина: x6. S={x1,x3,x2,x4,x7,x9,x11,x10,x6}

Возможная вершина: x8. S={x1,x3,x2,x4,x7,x9,x11,x10,x6,x8}

Возможная вершина: $x5. S=\{x1,x3,x2,x4,x7,x9,x11,x10,x6,x8,x5\}$

У х5 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x7,x9,x11,x10,x6,x8\}$

У х8 больше нет возможных вершин, удалим ее. Перейдем к х6.

 $S=\{x1,x3,x2,x4,x7,x9,x11,x10,x6\}$

У х6 больше нет возможных вершин, удалим ее. Перейдем к х10.

 $S=\{x1,x3,x2,x4,x7,x9,x11,x10\}$

У х10 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x7,x9,x11\}$

Возможная вершина: x12. S={x1,x3,x2,x4,x7,x9,x11,x12}

У х12 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x7,x9,x11\}$

У x11 больше нет возможных вершин, удалим ее. Перейдем к x9. S={x1,x3,x2,x4,x7,x9}

У х9 больше нет возможных вершин, удалим ее. Перейдем к x7. S={x1,x3,x2,x4,x7}

Возможная вершина: x10. S={x1,x3,x2,x4,x7,x10}

Возможная вершина: x6. S={x1,x3,x2,x4,x7,x10,x6}

Возможная вершина: x8. S={x1,x3,x2,x4,x7,x10,x6,x8}

Возможная вершина: x5. S={x1,x3,x2,x4,x7,x10,x6,x8,x5}

У х5 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x7,x10,x6,x8\}$

Возможная вершина: x11. S={x1,x3,x2,x4,x7,x10,x6,x8,x11}

Возможная вершина: x9. S={x1,x3,x2,x4,x7,x10,x6,x8,x11,x9}

У х9 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x7,x10,x6,x8,x11\}$

Возможная вершина: x12. S={x1,x3,x2,x4,x7,x10,x6,x8,x11,x12}

У х12 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x7,x10,x6,x8,x11\}$

У х11 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x7,x10,x6,x8\}$

У х8 больше нет возможных вершин, удалим ее. Перейдем к х6.

 $S=\{x1,x3,x2,x4,x7,x10,x6\}$

Возможная вершина: x11. S={x1,x3,x2,x4,x7,x10,x6,x11}

Возможная вершина: x8. S={x1,x3,x2,x4,x7,x10,x6,x11,x8}

Возможная вершина: x5. S={x1,x3,x2,x4,x7,x10,x6,x11,x8,x5}

У х5 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x7,x10,x6,x11,x8\}$

У х8 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x7,x10,x6,x11\}$

Возможная вершина: x9. S={x1,x3,x2,x4,x7,x10,x6,x11,x9}

У х9 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x7,x10,x6,x11\}$

Возможная вершина: x12. S={x1,x3,x2,x4,x7,x10,x6,x11,x12}

У х12 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x7,x10,x6,x11\}$

У х11 больше нет возможных вершин, удалим ее. Перейдем к х6.

 $S=\{x1,x3,x2,x4,x7,x10,x6\}$

У x6 больше нет возможных вершин, удалим ее. Перейдем к x10. S={x1,x3,x2,x4,x7,x10}

Возможная вершина: x9. S={x1,x3,x2,x4,x7,x10,x9}

Возможная вершина: x11. S={x1,x3,x2,x4,x7,x10,x9,x11}

Возможная вершина: x6. S={x1,x3,x2,x4,x7,x10,x9,x11,x6}

Возможная вершина: x8. S={x1,x3,x2,x4,x7,x10,x9,x11,x6,x8}

Возможная вершина: $x5. S=\{x1,x3,x2,x4,x7,x10,x9,x11,x6,x8,x5\}$

У х5 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x7,x10,x9,x11,x6,x8\}$

У х8 больше нет возможных вершин, удалим ее. Перейдем к х6.

 $S=\{x1,x3,x2,x4,x7,x10,x9,x11,x6\}$

У х6 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x7,x10,x9,x11\}$

Возможная вершина: x8. S={x1,x3,x2,x4,x7,x10,x9,x11,x8}

Возможная вершина: x5. S={x1,x3,x2,x4,x7,x10,x9,x11,x8,x5}

У х5 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x7,x10,x9,x11,x8\}$

Возможная вершина: x6. S={x1,x3,x2,x4,x7,x10,x9,x11,x8,x6}

У х6 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x7,x10,x9,x11,x8\}$

У х8 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x7,x10,x9,x11\}$

Возможная вершина: x12. $S=\{x1,x3,x2,x4,x7,x10,x9,x11,x12\}$

У х12 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x7,x10,x9,x11\}$

У х11 больше нет возможных вершин, удалим ее. Перейдем к х9.

 $S=\{x1,x3,x2,x4,x7,x10,x9\}$

У x9 больше нет возможных вершин, удалим ее. Перейдем к x10. S={x1,x3,x2,x4,x7,x10}

Возможная вершина: x11. S={x1,x3,x2,x4,x7,x10,x11}

Возможная вершина: x6. S={x1,x3,x2,x4,x7,x10,x11,x6}

Возможная вершина: x8. S={x1,x3,x2,x4,x7,x10,x11,x6,x8}

Возможная вершина: x5. S={x1,x3,x2,x4,x7,x10,x11,x6,x8,x5}

У х5 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x7,x10,x11,x6,x8\}$

У х8 больше нет возможных вершин, удалим ее. Перейдем к х6.

 $S=\{x1,x3,x2,x4,x7,x10,x11,x6\}$

У х6 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x7,x10,x11\}$

Возможная вершина: x8. S={x1,x3,x2,x4,x7,x10,x11,x8}

Возможная вершина: x5. S={x1,x3,x2,x4,x7,x10,x11,x8,x5}

У х5 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x7,x10,x11,x8\}$

Возможная вершина: x6. S={x1,x3,x2,x4,x7,x10,x11,x8,x6}

У х6 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x7,x10,x11,x8\}$

У х8 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x7,x10,x11\}$

Возможная вершина: x9. S={x1,x3,x2,x4,x7,x10,x11,x9}

У х9 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x7,x10,x11\}$

Возможная вершина: x12. S={x1,x3,x2,x4,x7,x10,x11,x12}

У х12 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x7,x10,x11\}$

У x11 больше нет возможных вершин, удалим ее. Перейдем к x10. S={x1,x3,x2,x4,x7,x10}

У x10 больше нет возможных вершин, удалим ее. Перейдем к x7. S={x1,x3,x2,x4,x7}

У x7 больше нет возможных вершин, удалим ее. Перейдем к x4. S={x1,x3,x2,x4}

Возможная вершина: x9. S={x1,x3,x2,x4,x9}

Возможная вершина: x7. S={x1,x3,x2,x4,x9,x7}

Возможная вершина: x10. S={x1,x3,x2,x4,x9,x7,x10}

Возможная вершина: x6. S={x1,x3,x2,x4,x9,x7,x10,x6}

Возможная вершина: x8. S={x1,x3,x2,x4,x9,x7,x10,x6,x8}

Возможная вершина: x5. S={x1,x3,x2,x4,x9,x7,x10,x6,x8,x5}

У х5 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x9,x7,x10,x6,x8\}$

Возможная вершина: x11. S={x1,x3,x2,x4,x9,x7,x10,x6,x8,x11}

Возможная вершина: x12. S={x1,x3,x2,x4,x9,x7,x10,x6,x8,x11,x12}

У х12 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x9,x7,x10,x6,x8,x11\}$

У х11 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x9,x7,x10,x6,x8\}$

У х8 больше нет возможных вершин, удалим ее. Перейдем к х6.

 $S=\{x1,x3,x2,x4,x9,x7,x10,x6\}$

Возможная вершина: x11. S={x1,x3,x2,x4,x9,x7,x10,x6,x11}

Возможная вершина: x8. S={x1,x3,x2,x4,x9,x7,x10,x6,x11,x8}

Возможная вершина: x5. S={x1,x3,x2,x4,x9,x7,x10,x6,x11,x8,x5}

У х5 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x9,x7,x10,x6,x11,x8\}$

У х8 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x9,x7,x10,x6,x11\}$

Возможная вершина: x12. S={x1,x3,x2,x4,x9,x7,x10,x6,x11,x12}

У х12 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x9,x7,x10,x6,x11\}$

У х11 больше нет возможных вершин, удалим ее. Перейдем к х6.

 $S=\{x1,x3,x2,x4,x9,x7,x10,x6\}$

У х6 больше нет возможных вершин, удалим ее. Перейдем к х10.

 $S=\{x1,x3,x2,x4,x9,x7,x10\}$

Возможная вершина: x11. S={x1,x3,x2,x4,x9,x7,x10,x11}

Возможная вершина: x6. S={x1,x3,x2,x4,x9,x7,x10,x11,x6}

Возможная вершина: x8. S={x1,x3,x2,x4,x9,x7,x10,x11,x6,x8}

Возможная вершина: $x5. S=\{x1,x3,x2,x4,x9,x7,x10,x11,x6,x8,x5\}$

У х5 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x9,x7,x10,x11,x6,x8\}$

У х8 больше нет возможных вершин, удалим ее. Перейдем к х6.

 $S=\{x1,x3,x2,x4,x9,x7,x10,x11,x6\}$

У х6 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x9,x7,x10,x11\}$

Возможная вершина: x8. S={x1,x3,x2,x4,x9,x7,x10,x11,x8}

Возможная вершина: x5. S={x1,x3,x2,x4,x9,x7,x10,x11,x8,x5}

У х5 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x9,x7,x10,x11,x8\}$

Возможная вершина: x6. S={x1,x3,x2,x4,x9,x7,x10,x11,x8,x6}

У х6 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x9,x7,x10,x11,x8\}$

У х8 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x9,x7,x10,x11\}$

Возможная вершина: x12. S={x1,x3,x2,x4,x9,x7,x10,x11,x12}

У х12 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x9,x7,x10,x11\}$

У х11 больше нет возможных вершин, удалим ее. Перейдем к х10.

 $S=\{x1,x3,x2,x4,x9,x7,x10\}$

У x10 больше нет возможных вершин, удалим ее. Перейдем к x7. S={x1,x3,x2,x4,x9,x7}

У x7 больше нет возможных вершин, удалим ее. Перейдем к x9. S={x1,x3,x2,x4,x9}

Возможная вершина: x10. S={x1,x3,x2,x4,x9,x10}

Возможная вершина: x6. S={x1,x3,x2,x4,x9,x10,x6}

Возможная вершина: x8. S={x1,x3,x2,x4,x9,x10,x6,x8}

Возможная вершина: x5. S={x1,x3,x2,x4,x9,x10,x6,x8,x5}

У х5 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x9,x10,x6,x8\}$

Возможная вершина: x11. S={x1,x3,x2,x4,x9,x10,x6,x8,x11}

Возможная вершина: x12. S={x1,x3,x2,x4,x9,x10,x6,x8,x11,x12}

У х12 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x9,x10,x6,x8,x11\}$

У х11 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x9,x10,x6,x8\}$

У х8 больше нет возможных вершин, удалим ее. Перейдем к х6.

 $S=\{x1,x3,x2,x4,x9,x10,x6\}$

Возможная вершина: x11. S={x1,x3,x2,x4,x9,x10,x6,x11}

Возможная вершина: x8. S={x1,x3,x2,x4,x9,x10,x6,x11,x8}

Возможная вершина: x5. S={x1,x3,x2,x4,x9,x10,x6,x11,x8,x5}

У х5 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x9,x10,x6,x11,x8\}$

У х8 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x9,x10,x6,x11\}$

Возможная вершина: x12. S={x1,x3,x2,x4,x9,x10,x6,x11,x12}

У х12 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x9,x10,x6,x11\}$

У х11 больше нет возможных вершин, удалим ее. Перейдем к х6.

 $S=\{x1,x3,x2,x4,x9,x10,x6\}$

У x6 больше нет возможных вершин, удалим ее. Перейдем к x10. S={x1,x3,x2,x4,x9,x10}

Возможная вершина: x7. S={x1,x3,x2,x4,x9,x10,x7}

У x7 больше нет возможных вершин, удалим ее. Перейдем к x10. S={x1,x3,x2,x4,x9,x10}

Возможная вершина: x11. S={x1,x3,x2,x4,x9,x10,x11}

Возможная вершина: x6. S={x1,x3,x2,x4,x9,x10,x11,x6}

Возможная вершина: x8. S={x1,x3,x2,x4,x9,x10,x11,x6,x8}

Возможная вершина: x5. S={x1,x3,x2,x4,x9,x10,x11,x6,x8,x5}

У х5 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x9,x10,x11,x6,x8\}$

У х8 больше нет возможных вершин, удалим ее. Перейдем к х6.

 $S=\{x1,x3,x2,x4,x9,x10,x11,x6\}$

У х6 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x9,x10,x11\}$

Возможная вершина: x8. S={x1,x3,x2,x4,x9,x10,x11,x8}

Возможная вершина: x5. S={x1,x3,x2,x4,x9,x10,x11,x8,x5}

У х5 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x9,x10,x11,x8\}$

Возможная вершина: x6. S={x1,x3,x2,x4,x9,x10,x11,x8,x6}

У х6 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x9,x10,x11,x8\}$

У х8 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x9,x10,x11\}$

Возможная вершина: x12. S={x1,x3,x2,x4,x9,x10,x11,x12}

У х12 больше нет возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x2,x4,x9,x10,x11\}$

У x11 больше нет возможных вершин, удалим ее. Перейдем к x10. S={x1,x3,x2,x4,x9,x10}

У x10 больше нет возможных вершин, удалим ее. Перейдем к x9. S={x1,x3,x2,x4,x9}

Возможная вершина: x11. S={x1,x3,x2,x4,x9,x11}

Возможная вершина: x6. S={x1,x3,x2,x4,x9,x11,x6}

Возможная вершина: x8. S={x1,x3,x2,x4,x9,x11,x6,x8}

Возможная вершина: x5. S={x1,x3,x2,x4,x9,x11,x6,x8,x5}

У х5 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x9,x11,x6,x8\}$

У х8 больше нет возможных вершин, удалим ее. Перейдем к х6.

 $S=\{x1,x3,x2,x4,x9,x11,x6\}$

Возможная вершина: x10. S={x1,x3,x2,x4,x9,x11,x6,x10}

Возможная вершина: x7. $S=\{x1,x3,x2,x4,x9,x11,x6,x10,x7\}$

У х7 больше нет возможных вершин, удалим ее. Перейдем к х10.

 $S=\{x1,x3,x2,x4,x9,x11,x6,x10\}$

У х10 больше нет возможных вершин, удалим ее. Перейдем к х6.

 $S=\{x1,x3,x2,x4,x9,x11,x6\}$

У x6 больше нет возможных вершин, удалим ее. Перейдем к x11. S={x1,x3,x2,x4,x9,x11}

Возможная вершина: x8. S={x1,x3,x2,x4,x9,x11,x8}

Возможная вершина: x5. S={x1,x3,x2,x4,x9,x11,x8,x5}

У х5 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x9,x11,x8\}$

Возможная вершина: x6. S={x1,x3,x2,x4,x9,x11,x8,x6}

Возможная вершина: x10. S={x1,x3,x2,x4,x9,x11,x8,x6,x10}

Возможная вершина: x7. S={x1,x3,x2,x4,x9,x11,x8,x6,x10,x7}

У х7 больше нет возможных вершин, удалим ее. Перейдем к х10.

 $S=\{x1,x3,x2,x4,x9,x11,x8,x6,x10\}$

У х10 больше нет возможных вершин, удалим ее. Перейдем к х6.

 $S=\{x1,x3,x2,x4,x9,x11,x8,x6\}$

У х6 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x9,x11,x8\}$

У x8 больше нет возможных вершин, удалим ее. Перейдем к x11. S={x1,x3,x2,x4,x9,x11}

Возможная вершина: x10. S={x1,x3,x2,x4,x9,x11,x10}

Возможная вершина: x6. S={x1,x3,x2,x4,x9,x11,x10,x6}

Возможная вершина: x8. S={x1,x3,x2,x4,x9,x11,x10,x6,x8}

Возможная вершина: x5. S={x1,x3,x2,x4,x9,x11,x10,x6,x8,x5}

У х5 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x9,x11,x10,x6,x8\}$

У х8 больше нет возможных вершин, удалим ее. Перейдем к х6.

 $S=\{x1,x3,x2,x4,x9,x11,x10,x6\}$

У х6 больше нет возможных вершин, удалим ее. Перейдем к х10.

 $S=\{x1,x3,x2,x4,x9,x11,x10\}$

Возможная вершина: x7. S={x1,x3,x2,x4,x9,x11,x10,x7}

У х7 больше нет возможных вершин, удалим ее. Перейдем к х10.

 $S=\{x1,x3,x2,x4,x9,x11,x10\}$

У x10 больше нет возможных вершин, удалим ее. Перейдем к x11. S={x1,x3,x2,x4,x9,x11}

Возможная вершина: x12. S={x1,x3,x2,x4,x9,x11,x12}

У x12 больше нет возможных вершин, удалим ее. Перейдем к x11. S={x1,x3,x2,x4,x9,x11}

У x11 больше нет возможных вершин, удалим ее. Перейдем к x9. S={x1,x3,x2,x4,x9}

У х9 больше нет возможных вершин, удалим ее. Перейдем к х4. S={x1,x3,x2,x4}

Возможная вершина: x11. S={x1,x3,x2,x4,x11}

Возможная вершина: x6. S={x1,x3,x2,x4,x11,x6}

Возможная вершина: x8. S={x1,x3,x2,x4,x11,x6,x8}

Возможная вершина: x5. S={x1,x3,x2,x4,x11,x6,x8,x5}

У х5 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x11,x6,x8\}$

У x8 больше нет возможных вершин, удалим ее. Перейдем к x6. S={x1,x3,x2,x4,x11,x6}

Возможная вершина: x10. S={x1,x3,x2,x4,x11,x6,x10}

Возможная вершина: x7. S={x1,x3,x2,x4,x11,x6,x10,x7}

Возможная вершина: x9. S={x1,x3,x2,x4,x11,x6,x10,x7,x9}

У х9 больше нет возможных вершин, удалим ее. Перейдем к х7.

 $S=\{x1,x3,x2,x4,x11,x6,x10,x7\}$

У х7 больше нет возможных вершин, удалим ее. Перейдем к х10.

 $S=\{x1,x3,x2,x4,x11,x6,x10\}$

Возможная вершина: x9. S={x1,x3,x2,x4,x11,x6,x10,x9}

Возможная вершина: $x7. S=\{x1,x3,x2,x4,x11,x6,x10,x9,x7\}$

У х7 больше нет возможных вершин, удалим ее. Перейдем к х9.

 $S=\{x1,x3,x2,x4,x11,x6,x10,x9\}$

У х9 больше нет возможных вершин, удалим ее. Перейдем к х10.

 $S=\{x1,x3,x2,x4,x11,x6,x10\}$

У x10 больше нет возможных вершин, удалим ее. Перейдем к x6. S={x1,x3,x2,x4,x11,x6}

У x6 больше нет возможных вершин, удалим ее. Перейдем к x11. S={x1,x3,x2,x4,x11}

Возможная вершина: x8. S={x1,x3,x2,x4,x11,x8}

Возможная вершина: x5. S={x1,x3,x2,x4,x11,x8,x5}

У x5 больше нет возможных вершин, удалим ее. Перейдем к x8. S={x1,x3,x2,x4,x11,x8}

Возможная вершина: x6. S={x1,x3,x2,x4,x11,x8,x6}

Возможная вершина: x10. S={x1,x3,x2,x4,x11,x8,x6,x10}

Возможная вершина: x7. S={x1,x3,x2,x4,x11,x8,x6,x10,x7}

Возможная вершина: x9. S={x1,x3,x2,x4,x11,x8,x6,x10,x7,x9}

У х9 больше нет возможных вершин, удалим ее. Перейдем к х7.

 $S=\{x1,x3,x2,x4,x11,x8,x6,x10,x7\}$

У х7 больше нет возможных вершин, удалим ее. Перейдем к х10.

 $S=\{x1,x3,x2,x4,x11,x8,x6,x10\}$

Возможная вершина: x9. S={x1,x3,x2,x4,x11,x8,x6,x10,x9}

Возможная вершина: x7. S={x1,x3,x2,x4,x11,x8,x6,x10,x9,x7}

У х7 больше нет возможных вершин, удалим ее. Перейдем к х9.

 $S=\{x1,x3,x2,x4,x11,x8,x6,x10,x9\}$

У х9 больше нет возможных вершин, удалим ее. Перейдем к х10.

 $S=\{x1,x3,x2,x4,x11,x8,x6,x10\}$

У х10 больше нет возможных вершин, удалим ее. Перейдем к х6.

 $S=\{x1,x3,x2,x4,x11,x8,x6\}$

У x6 больше нет возможных вершин, удалим ее. Перейдем к x8. S={x1,x3,x2,x4,x11,x8}

У x8 больше нет возможных вершин, удалим ее. Перейдем к x11. S={x1,x3,x2,x4,x11}

Возможная вершина: x9. S={x1,x3,x2,x4,x11,x9}

Возможная вершина: x7. S={x1,x3,x2,x4,x11,x9,x7}

Возможная вершина: x10. S={x1,x3,x2,x4,x11,x9,x7,x10}

Возможная вершина: x6. S={x1,x3,x2,x4,x11,x9,x7,x10,x6}

Возможная вершина: x8. S={x1,x3,x2,x4,x11,x9,x7,x10,x6,x8}

Возможная вершина: x5. S={x1,x3,x2,x4,x11,x9,x7,x10,x6,x8,x5}

У х5 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x11,x9,x7,x10,x6,x8\}$

У х8 больше нет возможных вершин, удалим ее. Перейдем к х6.

 $S=\{x1,x3,x2,x4,x11,x9,x7,x10,x6\}$

У х6 больше нет возможных вершин, удалим ее. Перейдем к х10.

 $S=\{x1,x3,x2,x4,x11,x9,x7,x10\}$

У х10 больше нет возможных вершин, удалим ее. Перейдем к х7.

 $S=\{x1,x3,x2,x4,x11,x9,x7\}$

У x7 больше нет возможных вершин, удалим ее. Перейдем к x9. S={x1,x3,x2,x4,x11,x9}

Возможная вершина: x10. S={x1,x3,x2,x4,x11,x9,x10}

Возможная вершина: x6. S={x1,x3,x2,x4,x11,x9,x10,x6}

Возможная вершина: x8. S={x1,x3,x2,x4,x11,x9,x10,x6,x8}

Возможная вершина: x5. S={x1,x3,x2,x4,x11,x9,x10,x6,x8,x5}

У х5 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x11,x9,x10,x6,x8\}$

У х8 больше нет возможных вершин, удалим ее. Перейдем к х6.

 $S=\{x1,x3,x2,x4,x11,x9,x10,x6\}$

У х6 больше нет возможных вершин, удалим ее. Перейдем к х10.

 $S=\{x1,x3,x2,x4,x11,x9,x10\}$

Возможная вершина: x7. S={x1,x3,x2,x4,x11,x9,x10,x7}

У х7 больше нет возможных вершин, удалим ее. Перейдем к х10.

 $S=\{x1,x3,x2,x4,x11,x9,x10\}$

У x10 больше нет возможных вершин, удалим ее. Перейдем к x9. S={x1,x3,x2,x4,x11,x9}

У х9 больше нет возможных вершин, удалим ее. Перейдем к х11. S={x1,x3,x2,x4,x11}

Возможная вершина: x10. S={x1,x3,x2,x4,x11,x10}

Возможная вершина: x6. S={x1,x3,x2,x4,x11,x10,x6}

Возможная вершина: x8. S={x1,x3,x2,x4,x11,x10,x6,x8}

Возможная вершина: x5. S={x1,x3,x2,x4,x11,x10,x6,x8,x5}

У х5 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x11,x10,x6,x8\}$

У х8 больше нет возможных вершин, удалим ее. Перейдем к х6.

 $S=\{x1,x3,x2,x4,x11,x10,x6\}$

У x6 больше нет возможных вершин, удалим ее. Перейдем к x10. S={x1,x3,x2,x4,x11,x10}

Возможная вершина: x7. S={x1,x3,x2,x4,x11,x10,x7}

Возможная вершина: x9. S={x1,x3,x2,x4,x11,x10,x7,x9}

У х9 больше нет возможных вершин, удалим ее. Перейдем к х7.

 $S=\{x1,x3,x2,x4,x11,x10,x7\}$

У x7 больше нет возможных вершин, удалим ее. Перейдем к x10. S={x1,x3,x2,x4,x11,x10}

Возможная вершина: x9. S={x1,x3,x2,x4,x11,x10,x9}

Возможная вершина: x7. S={x1,x3,x2,x4,x11,x10,x9,x7}

У х7 больше нет возможных вершин, удалим ее. Перейдем к х9.

 $S=\{x1,x3,x2,x4,x11,x10,x9\}$

У x9 больше нет возможных вершин, удалим ее. Перейдем к x10. S={x1,x3,x2,x4,x11,x10}

У x10 больше нет возможных вершин, удалим ее. Перейдем к x11. S={x1,x3,x2,x4,x11}

Возможная вершина: x12. S={x1,x3,x2,x4,x11,x12}

У x12 больше нет возможных вершин, удалим ее. Перейдем к x11. S={x1,x3,x2,x4,x11}

У x11 больше нет возможных вершин, удалим ее. Перейдем к x4. S={x1,x3,x2,x4}

Возможная вершина: x12. S={x1,x3,x2,x4,x12}

Возможная вершина: x11. S={x1,x3,x2,x4,x12,x11}

Возможная вершина: x6. S={x1,x3,x2,x4,x12,x11,x6}

Возможная вершина: x8. S={x1,x3,x2,x4,x12,x11,x6,x8}

Возможная вершина: x5. S={x1,x3,x2,x4,x12,x11,x6,x8,x5}

У х5 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x12,x11,x6,x8\}$

У х8 больше нет возможных вершин, удалим ее. Перейдем к х6.

 $S=\{x1,x3,x2,x4,x12,x11,x6\}$

Возможная вершина: x10. S={x1,x3,x2,x4,x12,x11,x6,x10}

Возможная вершина: x7. S={x1,x3,x2,x4,x12,x11,x6,x10,x7}

Возможная вершина: x9. S={x1,x3,x2,x4,x12,x11,x6,x10,x7,x9}

У х9 больше нет возможных вершин, удалим ее. Перейдем к х7.

 $S=\{x1,x3,x2,x4,x12,x11,x6,x10,x7\}$

У х7 больше нет возможных вершин, удалим ее. Перейдем к х10.

 $S=\{x1,x3,x2,x4,x12,x11,x6,x10\}$

Возможная вершина: x9. S={x1,x3,x2,x4,x12,x11,x6,x10,x9}

Возможная вершина: $x7. S=\{x1,x3,x2,x4,x12,x11,x6,x10,x9,x7\}$

У х7 больше нет возможных вершин, удалим ее. Перейдем к х9.

 $S=\{x1,x3,x2,x4,x12,x11,x6,x10,x9\}$

У х9 больше нет возможных вершин, удалим ее. Перейдем к х10.

 $S=\{x1,x3,x2,x4,x12,x11,x6,x10\}$

У х10 больше нет возможных вершин, удалим ее. Перейдем к х6.

 $S=\{x1,x3,x2,x4,x12,x11,x6\}$

У x6 больше нет возможных вершин, удалим ее. Перейдем к x11. S={x1,x3,x2,x4,x12,x11}

Возможная вершина: x8. S={x1,x3,x2,x4,x12,x11,x8}

Возможная вершина: x5. S={x1,x3,x2,x4,x12,x11,x8,x5}

У х5 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x12,x11,x8\}$

Возможная вершина: x6. S={x1,x3,x2,x4,x12,x11,x8,x6}

Возможная вершина: x10. S={x1,x3,x2,x4,x12,x11,x8,x6,x10}

Возможная вершина: x7. S={x1,x3,x2,x4,x12,x11,x8,x6,x10,x7}

Возможная вершина: $x9. S=\{x1,x3,x2,x4,x12,x11,x8,x6,x10,x7,x9\}$

У х9 больше нет возможных вершин, удалим ее. Перейдем к х7.

 $S=\{x1,x3,x2,x4,x12,x11,x8,x6,x10,x7\}$

У х7 больше нет возможных вершин, удалим ее. Перейдем к х10.

 $S=\{x1,x3,x2,x4,x12,x11,x8,x6,x10\}$

Возможная вершина: $x9. S=\{x1,x3,x2,x4,x12,x11,x8,x6,x10,x9\}$

Возможная вершина: x7. S={x1,x3,x2,x4,x12,x11,x8,x6,x10,x9,x7}

У х7 больше нет возможных вершин, удалим ее. Перейдем к х9.

 $S=\{x1,x3,x2,x4,x12,x11,x8,x6,x10,x9\}$

У х9 больше нет возможных вершин, удалим ее. Перейдем к х10.

 $S=\{x1,x3,x2,x4,x12,x11,x8,x6,x10\}$

У х10 больше нет возможных вершин, удалим ее. Перейдем к х6.

 $S=\{x1,x3,x2,x4,x12,x11,x8,x6\}$

У х6 больше нет возможных вершин, удалим ее. Перейдем к х8.

 $S=\{x1,x3,x2,x4,x12,x11,x8\}$

У x8 больше нет возможных вершин, удалим ее. Перейдем к x11. S={x1,x3,x2,x4,x12,x11}

Возможная вершина: x9. S={x1,x3,x2,x4,x12,x11,x9}

Возможная вершина: x7. S={x1,x3,x2,x4,x12,x11,x9,x7}

Возможная вершина: x10. S={x1,x3,x2,x4,x12,x11,x9,x7,x10}

Возможная вершина: $x6. S=\{x1,x3,x2,x4,x12,x11,x9,x7,x10,x6\}$

Возможная вершина: x8. S={x1,x3,x2,x4,x12,x11,x9,x7,x10,x6,x8}

Возможная вершина: $x5. S=\{x1,x3,x2,x4,x12,x11,x9,x7,x10,x6,x8,x5\}$

**Гамильтонов цикл найден. S={x1,x3,x2,x4,x12,x11,x9,x7,x10,x6,x8,x5} **

Матрица смежности с перенумерованными вершинами

010101011001

101100111001

010100000011

111011110100

000101000000

100110101110

010101011000

110100101000

110001110100

 $0\,0\,0\,1\,0\,1\,0\,0\,1\,0\,1\,0$

 $0\,0\,1\,0\,0\,1\,0\,0\,0\,1\,0\,1$

111000000010

Построение графа пересечений G'

операция	результат
до перенумерации	x1 x3 x2 x4 x12 x11 x9 x7 x10 x6 x8 x5
после перенумерации	x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

Построение графа пересечений G'

Определим p212, для чего в матрице R выделим подматрицу R212.

Ребро (x2x12) пересекается с (x1x4),(x1x6),(x1x8),(x1x9)

Определим p29, для чего в матрице R выделим подматрицу R29.

Ребро (x2x9) пересекается с (x1x4),(x1x6),(x1x8)

Определим p28, для чего в матрице R выделим подматрицу R28.

Ребро (x2x8) пересекается c (x1x4),(x1x6)

Определим p27, для чего в матрице R выделим подматрицу R27.

Ребро (x2x7) пересекается c (x1x4),(x1x6)

Определим p312, для чего в матрице R выделим подматрицу R312.

Ребро (x3x12) пересекается с (x1x4),(x1x6),(x1x8),(x1x9),(x2x4),(x2x7),(x2x8),(x2x9)

Определим p311, для чего в матрице R выделим подматрицу R311.

Ребро (x3x11) пересекается с (x1x4),(x1x6),(x1x8),(x1x9),(x2x4),(x2x7),(x2x8),(x2x9)

Определим p410, для чего в матрице R выделим подматрицу R410.

Ребро (x4x10) пересекается с (x1x6),(x1x8),(x1x9),(x2x7),(x2x8),(x2x9)

Определим p48, для чего в матрице R выделим подматрицу R48.

Ребро (x4x8) пересекается c (x1x6),(x2x7)

Определим p47, для чего в матрице R выделим подматрицу R47.

Ребро (х4х7) пересекается с (х1х6)

Определим p611, для чего в матрице R выделим подматрицу R611.

Ребро (x6x11) пересекается с (x1x8),(x1x9),(x2x7),(x2x8),(x2x9),(x4x7),(x4x8),(x4x10)

15 пересечений графа найдено, закончим поиск.

	$p_{1,4}$	$p_{2,12}$	$p_{1,6}$	$p_{1,8}$	$p_{1,9}$	$p_{2,9}$	$p_{2,8}$	$p_{2,7}$	$p_{3,12}$	$p_{2,4}$	$p_{3,11}$	$p_{4,10}$
$p_{1,4}$	1	1	0	0	0	1	1	1	1	0	1	0
$p_{2,12}$	1	1	1	1	1	0	0	0	0	0	0	0
$p_{1,6}$	0	1	1	0	0	1	1	1	1	0	1	1
$p_{1,8}$	0	1	0	1	0	1	0	0	1	0	1	1
$p_{1,9}$	0	1	0	0	1	0	0	0	1	0	1	1
$p_{2,9}$	1	0	1	1	0	1	0	0	1	0	1	1
$p_{2,8}$	1	0	1	0	0	0	1	0	1	0	1	1
$p_{2,7}$	1	0	1	0	0	0	0	1	1	0	1	1

	$p_{1,4}$	$p_{2,12}$	$p_{1,6}$	$p_{1,8}$	$p_{1,9}$	$p_{2,9}$	$p_{2,8}$	$p_{2,7}$	$p_{3,12}$	$p_{2,4}$	$p_{3,11}$	$p_{4,10}$
$p_{3,12}$	1	0	1	1	1	1	1	1	1	1	0	0
$p_{2,4}$	0	0	0	0	0	0	0	0	1	1	1	0
$p_{3,11}$	1	0	1	1	1	1	1	1	0	1	1	0
$p_{4,10}$	0	0	1	1	1	1	1	1	0	0	0	1
$p_{4,8}$	0	0	1	0	0	0	0	1	0	0	0	0
$p_{4,7}$	0	0	1	0	0	0	0	0	0	0	0	0
$p_{6,11}$	0	0	0	1	1	1	1	1	0	0	0	1

Построение семейства фС

В 1 строке ищем первый нулевой элемент - r1 3.

Записываем дизъюнкцию М1

3=r1vr3=110001111010000v011001111011110=111001111011110

В строке M1 3 находим номера нулевых элементов, составляем список $J'=\{4,5,10,15\}$.

Записываем дизъюнкцию М1 3 4=М1

В строке M1 3 4 находим номера нулевых элементов, составляем список $J'=\{5,10\}$.

Записываем дизъюнкцию М1 3 4 5=М1 3

В строке M1 3 4 5 находим номера нулевых элементов, составляем список $J'=\{10\}$.

Записываем дизъюнкцию М1 3 4 5 10=М1 3 4

В строке M1 3 4 5 10 все 1. Построено ψ 1={u1 4,u1 6,u1 8,u1 9,u2 4}

Записываем дизъюнкцию М1 3 4 10=М1 3

В строке М1 3 4 10 остались незакрытые 0.

Записываем дизъюнкцию М1 3 5=М1

3vr5=111001111011110v010010001011001=111011111011111

В строке M1 3 5 находим номера нулевых элементов, составляем список $J'=\{10\}$.

Строка 10 не закроет ноль на 4 позиции.

Записываем дизъюнкцию М1 3 10=М1

В строке M1 3 10 находим номера нулевых элементов, составляем список $J'=\{15\}$.

Записываем дизъюнкцию М1 3 10 15=М1 3

В строке М1 3 10 15 все 1. Построено ψ2={u1 4,u1 6,u2 4,u6 11}

Записываем дизъюнкцию М1 3 15=М1

В строке М1 3 15 остались незакрытые 0.

Записываем дизъюнкцию М1

4=r1vr4=110001111010000v010101001011001=110101111011001

В строке M1 4 находим номера нулевых элементов, составляем список $J'=\{5,10,13,14\}$.

Записываем дизъюнкцию М1 4 5=М1

4vr5=110101111011001v010010001011001=110111111011001

В строке М1 4 5 находим номера нулевых элементов, составляем список Ј'={10,13,14}.

Записываем дизъюнкцию М1 4 5 10=М1 4

В строке M1 4 5 10 находим номера нулевых элементов, составляем список $J'=\{13,14\}$.

Записываем дизъюнкцию М1 4 5 10 13=М1 4 5

В строке M1 4 5 10 13 находим номера нулевых элементов, составляем список $J'=\{14\}$.

Записываем дизъюнкцию М1 4 5 10 13 14=М1 4 5 10

В строке М1 4 5 10 13 14 все 1. Построено ψ3={u1 4,u1 8,u1 9,u2 4,u4 8,u4 7}

Записываем дизъюнкцию М1 4 5 10 14=М1 4 5

В строке М1 4 5 10 14 остались незакрытые 0.

Записываем дизъюнкцию М1 4 5 13=М1 4

В строке M1 4 5 13 находим номера нулевых элементов, составляем список $J'=\{14\}$.

Строка 14 не закроет ноль на 10 позиции.

Записываем дизъюнкцию М1 4 5 14=М1 4

В строке М1 4 5 14 остались незакрытые 0.

Записываем дизъюнкцию М1 4 10=М1

В строке M1 4 10 находим номера нулевых элементов, составляем список $J'=\{13,14\}$.

Строки 13, 14 не закроют ноль на 5 позиции.

Записываем дизъюнкцию М1 4 13=М1

В строке M1 4 13 находим номера нулевых элементов, составляем список $J'=\{14\}$.

Строка 14 не закроет нули на позициях 5, 10

Записываем дизъюнкцию М1 4 14=М1

4vr14=110101111011001v00100000000011=111101111011011

В строке М1 4 14 остались незакрытые 0.

Записываем дизъюнкцию М1

5=r1vr5=110001111010000v01001001011001=110011111011001

В строке М1 5 находим номера нулевых элементов, составляем список Ј'={10,13,14}.

Строки 10, 13, 14 не закроют ноль на 4 позиции.

Записываем дизъюнкцию М1

10=r1vr10=110001111010000v00000001110000=1100011111110000

В строке М1 10 находим номера нулевых элементов, составляем список

 $J'=\{12,13,14,15\}.$

Записываем дизъюнкцию М1 10 12=М1

В строке M1 10 12 находим номера нулевых элементов, составляем список $J'=\{13,14\}$.

Записываем дизъюнкцию М1 10 12 13=М1 10

В строке M1 10 12 13 находим номера нулевых элементов, составляем список $J'=\{14\}$.

Записываем дизъюнкцию М1 10 12 13 14=М1 10 12

В строке М1 10 12 13 14 все 1. Построено ψ4={u1 4,u2 4,u4 10,u4 8,u4 7}

Записываем дизъюнкцию М1 10 12 14=М1 10

В строке М1 10 12 14 остались незакрытые 0.

Записываем дизъюнкцию М1 10 13=М1

10vr13=1100011111110000v001000010000101=1110011111110101

В строке M1 10 13 находим номера нулевых элементов, составляем список $J'=\{14\}$.

Строка 14 не закроет нули на позициях 4, 5, 12

Записываем дизъюнкцию М1 10 14=М1

10vr14=1100011111110000v0010000000011=111001111110011

В строке М1 10 14 остались незакрытые 0.

Записываем дизъюнкцию М1 10 15=М1

В строке М1 10 15 остались незакрытые 0.

Записываем дизъюнкцию М1

В строке M1 12 находим номера нулевых элементов, составляем список $J'=\{13,14\}$.

Строки 13, 14 не закроют ноль на 10 позиции.

Записываем дизъюнкцию М1

13=r1vr13=110001111010000v001000010000101=111001111010101

В строке M1 13 находим номера нулевых элементов, составляем список $J'=\{14\}$.

Строка 14 не закроет нули на позициях 4, 5, 10, 12

Записываем дизъюнкцию М1

14=r1vr14=110001111010000v0010000000011=111001111010011

В строке М1 14 остались незакрытые 0.

Записываем дизъюнкцию М1

В строке М1 15 остались незакрытые 0.

В 2 строке ищем первый нулевой элемент - r2 6.

Записываем дизъюнкцию М2

6=r2vr6=11111000000000v101101001011001=1111111001011001

В строке M2 6 находим номера нулевых элементов, составляем список $J'=\{7,8,10,13,14\}$.

Записываем дизъюнкцию М2 6 7=М2

В строке M2 6 7 находим номера нулевых элементов, составляем список $J'=\{8,10,13,14\}$.

Записываем дизъюнкцию М2 6 7 8=М2 6

В строке M2 6 7 8 находим номера нулевых элементов, составляем список $J'=\{10,14\}$.

Записываем дизъюнкцию М2 6 7 8 10=М2 6 7

В строке M2 6 7 8 10 находим номера нулевых элементов, составляем список $J'=\{14\}$.

Записываем дизъюнкцию М2 6 7 8 10 14=М2 6 7 8

В строке M2 6 7 8 10 14 все 1. Построено ψ 5={u2 12,u2 9,u2 8,u2 7,u2 4,u4 7}

Записываем дизъюнкцию М2 6 7 8 14=М2 6 7

В строке М2 6 7 8 14 остались незакрытые 0.

Записываем дизъюнкцию М2 6 7 10=М2 6

В строке M2 6 7 10 находим номера нулевых элементов, составляем список $J'=\{13,14\}$.

Записываем дизъюнкцию М2 6 7 10 13=М2 6 7

В строке M2 6 7 10 13 находим номера нулевых элементов, составляем список $J'=\{14\}$.

Записываем дизъюнкцию М2 6 7 10 13 14=М2 6 7 10

В строке М2 6 7 10 13 14 все 1. Построено ψ6={u2 12,u2 9,u2 8,u2 4,u4 8,u4 7}

Записываем дизъюнкцию М2 6 7 10 14=М2 6 7

10vr14=111111101111001v0010000000011=1111111101111011

В строке М2 6 7 10 14 остались незакрытые 0.

Записываем дизъюнкцию М2 6 7 13=М2 6

В строке M2 6 7 13 находим номера нулевых элементов, составляем список $J'=\{14\}$.

Строка 14 не закроет ноль на 10 позиции.

Записываем дизъюнкцию М2 6 7 14=М2 6

 $7 \lor r14 = 1111111101011001 \lor 001000000000011 = 1111111101011011$

В строке М2 6 7 14 остались незакрытые 0.

Записываем дизъюнкцию М2 6 8=М2

В строке M2 6 8 находим номера нулевых элементов, составляем список $J'=\{10,14\}$.

Строки 10, 14 не закроют ноль на 7 позиции.

Записываем дизъюнкцию М2 6 10=М2

6vr10=111111001011001v000000001110000=1111111001111001

В строке M2 6 10 находим номера нулевых элементов, составляем список $J'=\{13,14\}$.

Строки 13, 14 не закроют ноль на 7 позиции.

Записываем дизъюнкцию М2 6 13=М2

В строке M2 6 13 находим номера нулевых элементов, составляем список $J'=\{14\}$.

Строка 14 не закроет нули на позициях 7, 10

Записываем дизъюнкцию М2 6 14=М2

6vr14=111111001011001v00100000000011=1111111001011011

В строке М2 6 14 остались незакрытые 0.

Записываем дизъюнкцию М2

7=r2vr7=1111110000000000v1010001011001=1111110101011001

В строке M2 7 находим номера нулевых элементов, составляем список $J'=\{8,10,13,14\}$.

Строки 8, 10, 13, 14 не закроют ноль на 6 позиции.

Записываем дизъюнкцию М2

В строке M2 8 находим номера нулевых элементов, составляем список $J'=\{10,14\}$.

Строки 10, 14 не закроют нули на позициях 6, 7

Записываем дизъюнкцию М2

В строке M2 9 находим номера нулевых элементов, составляем список $J'=\{11,12,13,14,15\}.$

Записываем дизъюнкцию М2 9 11=М2

В строке M2 9 11 находим номера нулевых элементов, составляем список $J'=\{12,13,14,15\}.$

Записываем дизъюнкцию М2 9 11 12=М2 9

В строке M2 9 11 12 находим номера нулевых элементов, составляем список $J'=\{13,14\}$.

Записываем дизъюнкцию М2 9 11 12 13=М2 9 11

В строке M2 9 11 12 13 находим номера нулевых элементов, составляем список $J'=\{14\}$.

Записываем дизъюнкцию М2 9 11 12 13 14=М2 9 11 12

В строке М2 9 11 12 13 14 все 1. Построено ψ 7={u2 12,u3 12,u3 11,u4 10,u4 8,u4 7}

Записываем дизъюнкцию М2 9 11 12 14=М2 9 11

В строке М2 9 11 12 14 остались незакрытые 0.

Записываем дизъюнкцию М2 9 11 13=М2 9

В строке M2 9 11 13 находим номера нулевых элементов, составляем список $J'=\{14\}$.

Строка 14 не закроет ноль на 12 позиции.

Записываем дизъюнкцию М2 9 11 14=М2 9

В строке М2 9 11 14 остались незакрытые 0.

Записываем дизъюнкцию М2 9 11 15=М2 9

В строке М2 9 11 15 все 1. Построено ψ8={u2 12,u3 12,u3 11,u6 11}

Записываем дизъюнкцию М2 9 12=М2

В строке M2 9 12 находим номера нулевых элементов, составляем список $J'=\{13,14\}$.

Строки 13, 14 не закроют ноль на 11 позиции.

Записываем дизъюнкцию М2 9 13=М2

В строке M2 9 13 находим номера нулевых элементов, составляем список $J'=\{14\}$.

Строка 14 не закроет нули на позициях 11, 12

Записываем дизъюнкцию М2 9 14=М2

В строке М2 9 14 остались незакрытые 0.

Записываем дизъюнкцию М2 9 15=М2

В строке М2 9 15 остались незакрытые 0.

Записываем дизъюнкцию М2

10=r2vr10=1111110000000000v00000001110000=1111110001110000

В строке М2 10 находим номера нулевых элементов, составляем список

 $J'=\{12,13,14,15\}.$

Записываем дизъюнкцию М2 10 12=М2

В строке M2 10 12 находим номера нулевых элементов, составляем список $J'=\{13,14\}$.

Записываем дизъюнкцию М2 10 12 13=М2 10

В строке M2 10 12 13 находим номера нулевых элементов, составляем список $J'=\{14\}$.

Записываем дизъюнкцию М2 10 12 13 14=М2 10 12

В строке М2 10 12 13 14 все 1. Построено ψ9={u2 12,u2 4,u4 10,u4 8,u4 7}

Записываем дизъюнкцию M2 10 12 14=M2 10

В строке М2 10 12 14 остались незакрытые 0.

Записываем дизъюнкцию М2 10 13=М2

10vr13=111110001110000v001000010000101=111110011110101

В строке M2 10 13 находим номера нулевых элементов, составляем список $J'=\{14\}$.

Строка 14 не закроет нули на позициях 6, 7, 12

Записываем дизъюнкцию М2 10 14=М2

10vr14=111110001110000v0010000000011=111110001110011

В строке М2 10 14 остались незакрытые 0.

Записываем дизъюнкцию М2 10 15=М2

В строке M2 10 15 все 1. Построено ψ10={u2 12,u2 4,u6 11}

Записываем дизъюнкцию М2

В строке M2 11 находим номера нулевых элементов, составляем список $J'=\{12,13,14,15\}.$

Строки 12, 13, 14, 15 не закроют ноль на 9 позиции.

Записываем дизъюнкцию М2

В строке М2 12 находим номера нулевых элементов, составляем список Ј'={13,14}.

Строки 13, 14 не закроют нули на позициях 9, 10, 11

Записываем дизъюнкцию М2

13=r2vr13=111110000000000v001000010000101=111110010000101

В строке M2 13 находим номера нулевых элементов, составляем список $J'=\{14\}$.

Строка 14 не закроет нули на позициях 6, 7, 9, 10, 11, 12

Записываем дизъюнкцию М2

В строке М2 14 остались незакрытые 0.

Записываем дизъюнкцию М2

В строке М2 15 остались незакрытые 0.

В 3 строке ищем первый нулевой элемент - r3 4.

Записываем дизъюнкцию МЗ

В строке M3 4 находим номера нулевых элементов, составляем список $J'=\{5,10\}$.

Строки 5, 10 не закроют ноль на 1 позиции.

Записываем дизъюнкцию МЗ

5=r3vr5=011001111011110v010010001011001=011011111011111

В строке M3 5 находим номера нулевых элементов, составляем список $J'=\{10\}$.

Строка 10 не закроет нули на позициях 1, 4

Записываем дизъюнкцию МЗ

В строке M3 10 находим номера нулевых элементов, составляем список $J'=\{15\}$.

Строка 15 не закроет ноль на 1 позиции.

Записываем дизъюнкцию МЗ

В строке МЗ 15 остались незакрытые 0.

В 4 строке ищем первый нулевой элемент - r4 5.

Записываем дизъюнкцию М4

5=r4vr5=010101001011001v010010001011001=010111001011001

В строке M4 5 находим номера нулевых элементов, составляем список $J'=\{7,8,10,13,14\}$.

Записываем дизъюнкцию М4 5 7=М4

В строке M4 5 7 находим номера нулевых элементов, составляем список $J'=\{8,10,13,14\}.$

Записываем дизъюнкцию М4 5 7 8=М4 5

В строке M4 5 7 8 находим номера нулевых элементов, составляем список $J'=\{10,14\}$.

Записываем дизъюнкцию М4 5 7 8 10=М4 5 7

В строке M4 5 7 8 10 находим номера нулевых элементов, составляем список $J'=\{14\}$.

Записываем дизъюнкцию М4 5 7 8 10 14=М4 5 7 8

В строке М4 5 7 8 10 14 все 1. Построено ψ11={u1 8,u1 9,u2 8,u2 7,u2 4,u4 7}

Записываем дизъюнкцию М4 5 7 8 14=М4 5 7

В строке М4 5 7 8 14 остались незакрытые 0.

Записываем дизъюнкцию М4 5 7 10=М4 5

В строке M4 5 7 10 находим номера нулевых элементов, составляем список $J'=\{13,14\}$.

Записываем дизъюнкцию М4 5 7 10 13=М4 5 7

В строке M4 5 7 10 13 находим номера нулевых элементов, составляем список $J'=\{14\}$.

Записываем дизъюнкцию М4 5 7 10 13 14=М4 5 7 10

В строке М4 5 7 10 13 14 все 1. Построено ψ12={u1 8,u1 9,u2 8,u2 4,u4 8,u4 7}

Записываем дизъюнкцию М4 5 7 10 14=М4 5 7

10vr14=111111101111001v0010000000011=111111101111011

В строке М4 5 7 10 14 остались незакрытые 0.

Записываем дизъюнкцию М4 5 7 13=М4 5

В строке M4 5 7 13 находим номера нулевых элементов, составляем список $J'=\{14\}$.

Строка 14 не закроет ноль на 10 позиции.

Записываем дизъюнкцию М4 5 7 14=М4 5

В строке М4 5 7 14 остались незакрытые 0.

Записываем дизъюнкцию М4 5 8=М4

В строке M4 5 8 находим номера нулевых элементов, составляем список $J'=\{10,14\}$.

Строки 10, 14 не закроют ноль на 7 позиции.

Записываем дизъюнкцию М4 5 10=М4

5vr10=010111001011001v000000001110000=010111001111001

В строке М4 5 10 находим номера нулевых элементов, составляем список Ј'={13,14}.

Строки 13, 14 не закроют нули на позициях 1, 7

Записываем дизъюнкцию М4 5 13=М4

В строке M4 5 13 находим номера нулевых элементов, составляем список $J'=\{14\}$.

Строка 14 не закроет нули на позициях 1, 7, 10

Записываем дизъюнкцию М4 5 14=М4

5vr14=010111001011001v00100000000011=011111001011011

В строке М4 5 14 остались незакрытые 0.

Записываем дизъюнкцию М4

 $7=r4 \lor r7=010101001011001 \lor 101000101011001=11111011011011001$

В строке M4 7 находим номера нулевых элементов, составляем список $J'=\{8,10,13,14\}$.

Строки 8, 10, 13, 14 не закроют ноль на 5 позиции.

Записываем дизъюнкцию М4

 $8=r4 \lor r8=010101001011001 \lor 101000011011101=111101011011101$

В строке M4 8 находим номера нулевых элементов, составляем список $J'=\{10,14\}$.

Строки 10, 14 не закроют нули на позициях 5, 7

Записываем дизъюнкцию М4

10=r4vr10=010101001011001v000000001110000=010101001111001

В строке M4 10 находим номера нулевых элементов, составляем список $J'=\{13,14\}$.

Строки 13, 14 не закроют нули на позициях 1, 5, 7

Записываем дизъюнкцию М4

В строке M4 13 находим номера нулевых элементов, составляем список $J'=\{14\}$.

Строка 14 не закроет нули на позициях 1, 5, 7, 10

Записываем дизъюнкцию М4

14=r4vr14=010101001011001v00100000000011=011101001011011

В строке М4 14 остались незакрытые 0.

В 5 строке ищем первый нулевой элемент - r5 6.

Записываем дизъюнкцию М5

 $6=r5 \lor r6=010010001011001 \lor 101101001011001=1111111001011001$

В строке М5 6 находим номера нулевых элементов, составляем список $J'=\{7,8,10,13,14\}.$

Записываем дизъюнкцию М5 6 7=М5

В строке М5 6 7 находим номера нулевых элементов, составляем список $J'=\{8,10,13,14\}.$

Записываем дизъюнкцию М5 6 7 8=М5 6

В строке M5 6 7 8 находим номера нулевых элементов, составляем список $J'=\{10,14\}$.

Записываем дизъюнкцию M5 6 7 8 10=M5 6 7

В строке M5 6 7 8 10 находим номера нулевых элементов, составляем список $J'=\{14\}$.

Записываем дизъюнкцию М5 6 7 8 10 14=М5 6 7 8

В строке М5 6 7 8 10 14 все 1. Построено ψ13={u1 9,u2 9,u2 8,u2 7,u2 4,u4 7}

Записываем дизъюнкцию М5 6 7 8 14=М5 6 7

В строке М5 6 7 8 14 остались незакрытые 0.

Записываем дизъюнкцию М5 6 7 10=М5 6

7vr10=111111101011001v000000001110000=111111101111001

В строке M5 6 7 10 находим номера нулевых элементов, составляем список $J'=\{13,14\}$.

Записываем дизъюнкцию М5 6 7 10 13=М5 6 7

В строке M5 6 7 10 13 находим номера нулевых элементов, составляем список $J'=\{14\}$.

Записываем дизъюнкцию М5 6 7 10 13 14=М5 6 7 10

В строке М5 6 7 10 13 14 все 1. Построено ψ14={u1 9,u2 9,u2 8,u2 4,u4 8,u4 7}

Записываем дизъюнкцию М5 6 7 10 14=М5 6 7

10vr14=111111101111001v0010000000011=1111111101111011

В строке М5 6 7 10 14 остались незакрытые 0.

Записываем дизъюнкцию М5 6 7 13=М5 6

В строке M5 6 7 13 находим номера нулевых элементов, составляем список $J'=\{14\}$.

Строка 14 не закроет ноль на 10 позиции.

Записываем дизъюнкцию М5 6 7 14=М5 6

7vr14=111111101011001v00100000000011=111111101011011

В строке М5 6 7 14 остались незакрытые 0.

Записываем дизъюнкцию М5 6 8=М5

В строке M5 6 8 находим номера нулевых элементов, составляем список $J'=\{10,14\}$.

Строки 10, 14 не закроют ноль на 7 позиции.

Записываем дизъюнкцию М5 6 10=М5

6vr10=111111001011001v000000001110000=1111111001111001

В строке M5 6 10 находим номера нулевых элементов, составляем список $J'=\{13,14\}$.

Строки 13, 14 не закроют ноль на 7 позиции.

Записываем дизъюнкцию М5 6 13=М5

В строке M5 6 13 находим номера нулевых элементов, составляем список $J'=\{14\}$.

Строка 14 не закроет нули на позициях 7, 10

Записываем дизъюнкцию М5 6 14=М5

6 vr14 = 1111111001011001 v00100000000011 = 1111111001011011

В строке М5 6 14 остались незакрытые 0.

Записываем дизъюнкцию М5

В строке М5 7 находим номера нулевых элементов, составляем список Ј'={8,10,13,14}.

Строки 8, 10, 13, 14 не закроют нули на позициях 4, 6

Записываем дизъюнкцию М5

 $8 = r5 \lor r8 = 010010001011001 \lor 101000011011101 = 111010011011101$

В строке M5 8 находим номера нулевых элементов, составляем список $J'=\{10,14\}$.

Строки 10, 14 не закроют нули на позициях 4, 6, 7

Записываем дизъюнкцию М5

10=r5vr10=010010001011001v000000001110000=010010001111001

В строке M5 10 находим номера нулевых элементов, составляем список $J'=\{13,14\}$.

Строки 13, 14 не закроют нули на позициях 1, 4, 6, 7

Записываем дизъюнкцию М5

13=r5\r13=010010001011001\r001000010000101=011010011011101

Строка 14 не закроет нули на позициях 1, 4, 6, 7, 10

Записываем дизъюнкцию М5

 $14 = r5 \lor r14 = 010010001011001 \lor 00100000000011 = 011010001011011$

В строке М5 14 остались незакрытые 0.

Из матрицы R(G') видно, что строки с номерами j > 5 не смогут закрыть ноль в позиции 2.

Семейство максимальных внутренне устойчивых множеств фG построено. Это:

```
\psi1={u1 4,u1 6,u1 8,u1 9,u2 4}
```

 ψ 2={u1 4,u1 6,u2 4,u6 11}

 ψ 3={u1 4,u1 8,u1 9,u2 4,u4 8,u4 7}

 $\psi 4 = \{u1 \ 4, u2 \ 4, u4 \ 10, u4 \ 8, u4 \ 7\}$

 $\psi 5 {=} \{u2\ 12, u2\ 9, u2\ 8, u2\ 7, u2\ 4, u4\ 7\}$

 $\psi 6 = \{u2\ 12, u2\ 9, u2\ 8, u2\ 4, u4\ 8, u4\ 7\}$

ψ7={u2 12,u3 12,u3 11,u4 10,u4 8,u4 7}

ψ8={u2 12,u3 12,u3 11,u6 11}

 $\psi 9 = \{u2\ 12, u2\ 4, u4\ 10, u4\ 8, u4\ 7\}$

 ψ 10={u2 12,u2 4,u6 11}

 ψ 11={u1 8,u1 9,u2 8,u2 7,u2 4,u4 7}

ψ12={u1 8,u1 9,u2 8,u2 4,u4 8,u4 7}

```
ψ13={u1 9,u2 9,u2 8,u2 7,u2 4,u4 7}
ψ14={u1 9,u2 9,u2 8,u2 4,u4 8,u4 7}
```

Выделение из G' максимального двудольного подграфа H'

Для каждой пары множеств вычислим значение критерия αγβ=|ψγ|+|ψβ|-|ψγ∩ψβ|:

- $\alpha 1 2 = |\psi 1| + |\psi 2| |\psi 1 \cap \psi 2| = 5 + 4 3 = 6$
- $\alpha 1 3 = |\psi 1| + |\psi 3| |\psi 1 \cap \psi 3| = 5 + 6 4 = 7$
- $\alpha 1 \ 4 = |\psi 1| + |\psi 4| |\psi 1 \cap \psi 4| = 5 + 5 2 = 8$
- $\alpha 1 5 = |\psi 1| + |\psi 5| |\psi 1 \cap \psi 5| = 5 + 6 1 = 10$
- $\alpha 1 6 = |\psi 1| + |\psi 6| |\psi 1 \cap \psi 6| = 5 + 6 1 = 10$
- $\alpha 1 7 = |\psi 1| + |\psi 7| |\psi 1 \cap \psi 7| = 5 + 6 0 = 11$
- $\alpha 1 8 = |\psi 1| + |\psi 8| |\psi 1 \cap \psi 8| = 5 + 4 0 = 9$
- $\alpha 1 9 = |\psi 1| + |\psi 9| |\psi 1 \cap \psi 9| = 5 + 5 1 = 9$
- $\alpha 1 \ 10 = |\psi 1| + |\psi 10| |\psi 1 \cap \psi 10| = 5 + 3 1 = 7$
- $\alpha 1 \ 11 = |\psi 1| + |\psi 11| |\psi 1 \cap \psi 11| = 5 + 6 3 = 8$
- $\alpha 1 12 = |\psi 1| + |\psi 12| |\psi 1 \cap \psi 12| = 5 + 6 3 = 8$
- $\alpha 1 \ 13 = |\psi 1| + |\psi 13| |\psi 1 \cap \psi 13| = 5 + 6 2 = 9$
- $\alpha 1 \ 14 = |\psi 1| + |\psi 14| |\psi 1 \cap \psi 14| = 5 + 6 2 = 9$
- $\alpha 2 3 = |\psi 2| + |\psi 3| |\psi 2 \cap \psi 3| = 4 + 6 2 = 8$
- $\alpha 2 \ 4 = |\psi 2| + |\psi 4| |\psi 2 \cap \psi 4| = 4 + 5 2 = 7$
- $\alpha 2 5 = |\psi 2| + |\psi 5| |\psi 2 \cap \psi 5| = 4 + 6 1 = 9$
- $\alpha 2 6 = |\psi 2| + |\psi 6| |\psi 2 \cap \psi 6| = 4 + 6 1 = 9$
- $\alpha 2 7 = |\psi 2| + |\psi 7| |\psi 2 \cap \psi 7| = 4 + 6 0 = 10$
- $\alpha 2 8 = |\psi 2| + |\psi 8| |\psi 2 \cap \psi 8| = 4 + 4 1 = 7$
- $\alpha 2 9 = |\psi 2| + |\psi 9| |\psi 2 \cap \psi 9| = 4 + 5 1 = 8$
- $\alpha 2 10 = |\psi 2| + |\psi 10| |\psi 2 \cap \psi 10| = 4 + 3 2 = 5$
- $\alpha 2 11 = |\psi 2| + |\psi 11| |\psi 2 \cap \psi 11| = 4 + 6 1 = 9$
- $\alpha 2 12 = |\psi 2| + |\psi 12| |\psi 2 \cap \psi 12| = 4 + 6 1 = 9$
- $\alpha 2 \ 13 = |\psi 2| + |\psi 13| |\psi 2 \cap \psi 13| = 4 + 6 1 = 9$
- $\alpha 2 14 = |\psi 2| + |\psi 14| |\psi 2 \cap \psi 14| = 4 + 6 1 = 9$
- $a3 \ 4 = |\psi 3| + |\psi 4| |\psi 3 \cap \psi 4| = 6 + 5 4 = 7$
- $\alpha 3 5 = |\psi 3| + |\psi 5| |\psi 3 \cap \psi 5| = 6 + 6 2 = 10$

- $\alpha 3 6 = |\psi 3| + |\psi 6| |\psi 3 \cap \psi 6| = 6 + 6 3 = 9$
- $\alpha 3 7 = |\psi 3| + |\psi 7| |\psi 3 \cap \psi 7| = 6 + 6 2 = 10$
- $\alpha 3 8 = |\psi 3| + |\psi 8| |\psi 3 \cap \psi 8| = 6 + 4 0 = 10$
- $\alpha 3 9 = |\psi 3| + |\psi 9| |\psi 3 \cap \psi 9| = 6 + 5 3 = 8$
- $\alpha 3 10 = |\psi 3| + |\psi 10| |\psi 3 \cap \psi 10| = 6 + 3 1 = 8$
- $\alpha 3 11 = |\psi 3| + |\psi 11| |\psi 3 \cap \psi 11| = 6 + 6 4 = 8$
- $\alpha 3 12 = |\psi 3| + |\psi 12| |\psi 3 \cap \psi 12| = 6 + 6 5 = 7$
- $\alpha 3 \ 13 = |\psi 3| + |\psi 13| |\psi 3 \cap \psi 13| = 6 + 6 3 = 9$
- $\alpha 3 \ 14 = |\psi 3| + |\psi 14| |\psi 3 \cap \psi 14| = 6 + 6 4 = 8$
- $\alpha 4 \ 5 = |\psi 4| + |\psi 5| |\psi 4 \cap \psi 5| = 5 + 6 2 = 9$
- $\alpha 4 6 = |\psi 4| + |\psi 6| |\psi 4 \cap \psi 6| = 5 + 6 3 = 8$
- $\alpha 4 7 = |\psi 4| + |\psi 7| |\psi 4 \cap \psi 7| = 5 + 6 3 = 8$
- $\alpha 4 8 = |\psi 4| + |\psi 8| |\psi 4 \cap \psi 8| = 5 + 4 0 = 9$
- $\alpha 4 9 = |\psi 4| + |\psi 9| |\psi 4 \cap \psi 9| = 5 + 5 4 = 6$
- $\alpha 4 10 = |\psi 4| + |\psi 10| |\psi 4 \cap \psi 10| = 5 + 3 1 = 7$
- $\alpha 4 11 = |\psi 4| + |\psi 11| = |\psi 4 \cap \psi 11| = 5 + 6 2 = 9$
- $\alpha 4 12 = |\psi 4| + |\psi 12| |\psi 4 \cap \psi 12| = 5 + 6 3 = 8$
- $\alpha 4 13 = |\psi 4| + |\psi 13| |\psi 4 \cap \psi 13| = 5 + 6 2 = 9$
- $\alpha 4 14 = |\psi 4| + |\psi 14| |\psi 4 \cap \psi 14| = 5 + 6 3 = 8$
- $a5 6 = |\psi 5| + |\psi 6| |\psi 5 \cap \psi 6| = 6 + 6 5 = 7$
- $\alpha 5 7 = |\psi 5| + |\psi 7| |\psi 5 \cap \psi 7| = 6 + 6 2 = 10$
- $\alpha 5 8 = |\psi 5| + |\psi 8| |\psi 5 \cap \psi 8| = 6 + 4 1 = 9$
- $a5 9 = |\psi 5| + |\psi 9| |\psi 5 \cap \psi 9| = 6 + 5 3 = 8$
- $\alpha 5 10 = |\psi 5| + |\psi 10| |\psi 5 \cap \psi 10| = 6 + 3 2 = 7$
- $a5 11 = |\psi 5| + |\psi 11| |\psi 5 \cap \psi 11| = 6 + 6 4 = 8$
- $a5 12 = |\psi 5| + |\psi 12| |\psi 5 \cap \psi 12| = 6 + 6 3 = 9$
- $\alpha 5 \ 13 = |\psi 5| + |\psi 13| |\psi 5 \cap \psi 13| = 6 + 6 5 = 7$
- $\alpha 5 \ 14 = |\psi 5| + |\psi 14| |\psi 5 \cap \psi 14| = 6 + 6 4 = 8$
- $\alpha 6 \ 7 = |\psi 6| + |\psi 7| |\psi 6 \cap \psi 7| = 6 + 6 3 = 9$
- $\alpha 6 8 = |\psi 6| + |\psi 8| |\psi 6 \cap \psi 8| = 6 + 4 1 = 9$
- $\alpha 6 9 = |\psi 6| + |\psi 9| |\psi 6 \cap \psi 9| = 6 + 5 4 = 7$
- $\alpha 6 \ 10 = |\psi 6| + |\psi 10| |\psi 6 \cap \psi 10| = 6 + 3 2 =$
- $\alpha 6 11 = |\psi 6| + |\psi 11| |\psi 6 \cap \psi 11| = 6 + 6 3 = 9$
- $\alpha 6 12 = |\psi 6| + |\psi 12| |\psi 6 \cap \psi 12| = 6 + 6 4 = 8$
- $\alpha 6 \ 13 = |\psi 6| + |\psi 13| |\psi 6 \cap \psi 13| = 6 + 6 4 = 8$

- $\alpha 6 \ 14 = |\psi 6| + |\psi 14| |\psi 6 \cap \psi 14| = 6 + 6 5 = 7$
- $\alpha 7 8 = |\psi 7| + |\psi 8| |\psi 7 \cap \psi 8| = 6 + 4 3 = 7$
- $\alpha 7 9 = |\psi 7| + |\psi 9| |\psi 7 \cap \psi 9| = 6 + 5 4 = 7$
- $\alpha 7 \ 10 = |\psi 7| + |\psi 10| |\psi 7 \cap \psi 10| = 6 + 3 1 = 8$
- $\alpha 7 11 = |\psi 7| + |\psi 11| |\psi 7 \cap \psi 11| = 6 + 6 1 = 11$
- $\alpha 7 12 = |\psi 7| + |\psi 12| |\psi 7 \cap \psi 12| = 6 + 6 2 = 10$
- $\alpha 7 \ 13 = |\psi 7| + |\psi 13| |\psi 7 \cap \psi 13| = 6 + 6 1 = 11$
- $\alpha 7 \ 14 = |\psi 7| + |\psi 14| |\psi 7 \cap \psi 14| = 6 + 6 2 = 10$
- $\alpha 8 9 = |\psi 8| + |\psi 9| |\psi 8 \cap \psi 9| = 4 + 5 1 = 8$
- $\alpha 8 \ 10 = |\psi 8| + |\psi 10| |\psi 8 \cap \psi 10| = 4 + 3 2 = 5$
- $\alpha 8 \ 11 = |\psi 8| + |\psi 11| |\psi 8 \cap \psi 11| = 4 + 6 0 = 10$
- $\alpha 8 12 = |\psi 8| + |\psi 12| |\psi 8 \cap \psi 12| = 4 + 6 0 = 10$
- $\alpha 8 \ 13 = |\psi 8| + |\psi 13| |\psi 8 \cap \psi 13| = 4 + 6 0 = 10$
- $a8 14 = |\psi 8| + |\psi 14| |\psi 8 \cap \psi 14| = 4 + 6 0 = 10$
- $\alpha 9 \ 10 = |\psi 9| + |\psi 10| |\psi 9 \cap \psi 10| = 5 + 3 2 = 6$
- $\alpha 9 \ 11 = |\psi 9| + |\psi 11| |\psi 9 \cap \psi 11| = 5 + 6 2 = 9$
- $\alpha 9 12 = |\psi 9| + |\psi 12| |\psi 9 \cap \psi 12| = 5 + 6 3 = 8$
- $\alpha 9 \ 13 = |\psi 9| + |\psi 13| |\psi 9 \cap \psi 13| = 5 + 6 2 = 9$
- $\alpha 9 \ 14 = |\psi 9| + |\psi 14| |\psi 9 \cap \psi 14| = 5 + 6 3 = 8$
- $\alpha 10 \ 11 = |\psi 10| + |\psi 11| |\psi 10 \cap \psi 11| = 3 + 6 1 = 8$
- $\alpha 10 \ 12 = |\psi 10| + |\psi 12| |\psi 10 \cap \psi 12| = 3 + 6 1 = 8$
- $\alpha 10 \ 13 = |\psi 10| + |\psi 13| |\psi 10 \cap \psi 13| = 3 + 6 1 = 8$
- $\alpha 10 \ 14 = |\psi 10| + |\psi 14| |\psi 10 \cap \psi 14| = 3 + 6 1 = 8$
- $\alpha 11 \ 12 = |\psi 11| + |\psi 12| |\psi 11 \cap \psi 12| = 6 + 6 5 = 7$
- $\alpha 11 \ 13 = |\psi 11| + |\psi 13| |\psi 11 \cap \psi 13| = 6 + 6 5 = 7$
- $\alpha 11 \ 14 = |\psi 11| + |\psi 14| |\psi 11 \cap \psi 14| = 6 + 6 4 = 8$
- $\alpha 12 \ 13 = |\psi 12| + |\psi 13| |\psi 12 \cap \psi 13| = 6 + 6 4 = 8$
- $\alpha 12 \ 14 = |\psi 12| + |\psi 14| |\psi 12 \cap \psi 14| = 6 + 6 5 = 7$
- $\alpha 13 \ 14 = |\psi 13| + |\psi 14| |\psi 13 \cap \psi 14| = 6 + 6 5 = 7$

-	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	_	6	7	8	10	10	11	9	9	7	8	8	9	9
2	_	-	8	7	9	9	10	7	8	5	9	9	9	9

-	1	2	3	4	5	6	7	8	9	10	11	12	13	14
3	_	-	-	7	10	9	10	10	8	8	8	7	9	8
4	_	-	-	_	9	8	8	9	6	7	9	8	9	8
5	_	-	-	_	_	7	10	9	8	7	8	9	7	8
6	_	-	-	_	_	-	9	9	7	7	9	8	8	7
7	_	-	-	_	_	-	_	7	7	8	11	10	11	10
8	_	-	-	_	-	_	_	-	8	5	10	10	10	10
9	_	-	-	_	-	_	_	-	-	6	9	8	9	8
10	_	-	-	_	_	_	_	_	_	_	8	8	8	8
11	_	-	-	_	_	-	-	_	_	_	_	7	7	8
12	-	-	-	-	-	-	-	-	-	-	_	-	8	7
13	-	-	-	-	-	-	-	-	-	-	_	-	-	7
14	_	-	-	-	-	_	_	-	-	_	_	-	-	-

 \max αγβ=α1 7=11, дают пары множеств ψ1, ψ7

Возьмем множества ψ1 и ψ7 ψ1={u1 4,u1 6,u1 8,u1 9,u2 4} ψ7={u2 12,u3 12,u3 11,u4 10,u4 8,u4 7}

В суграфе H, содержащем максимальное число непересекающихся ребер, ребра, вошедшие в ψ 2, проводим внутри гамильтонова цикла, а в ψ 7 – вне его

Удалим из ψG' ребра, вошедшие в ψ1 и ψ7:

Смотрим на ребра внутри множества ψ1 и ψ7 и ищем в оставшихся такие же:

```
 \psi1 = \{u1\ 4,u1\ 6,u1\ 8,u1\ 9,u2\ 4\} 
 \psi7 = \{u2\ 12,u3\ 12,u3\ 11,u4\ 10,u4\ 8,u4\ 7\} 
 \psi2 = \{u1\ 4,u1\ 6,u2\ 4,u6\ 11\} 
 \psi3 = \{u1\ 4,u1\ 8,u1\ 9,u2\ 4,u4\ 8,u4\ 7\} 
 \psi4 = \{u1\ 4,u2\ 4,u4\ 10,u4\ 8,u4\ 7\} 
 \psi5 = \{u2\ 12,u2\ 9,u2\ 8,u2\ 7,u2\ 4,u4\ 7\} 
 \psi6 = \{u2\ 12,u2\ 9,u2\ 8,u2\ 4,u4\ 8,u4\ 7\} 
 \psi8 = \{u2\ 12,u3\ 12,u3\ 11,u6\ 11\} 
 \psi9 = \{u2\ 12,u2\ 4,u4\ 10,u4\ 8,u4\ 7\} 
 \psi10 = \{u2\ 12,u2\ 4,u6\ 11\}
```

```
ψ11={u1 8,u1 9,u2 8,u2 7,u2 4,u4 7}
ψ12={u1 8,u1 9,u2 8,u2 4,u4 8,u4 7}
ψ13={u1 9,u2 9,u2 8,u2 7,u2 4,u4 7}
ψ14={u1 9,u2 9,u2 8,u2 4,u4 8,u4 7}
```

Объединим одинаковые множества:

$$\psi 3 = \psi 4 = \psi 9 = \emptyset$$
 $\psi 2 = \psi 8 = \psi 10 = \{u6\ 11\}$
 $\psi 5 = \psi 13 = \{u2\ 9, u2\ 8, u2\ 7\}$
 $\psi 6, \psi 10, \psi 12, \psi 14$ является подмножеством $\psi 5$

Выпишем в множествах те ребра которые не нашли в ф1 и ф4:

```
\psi2=\{u6\ 11\}
\psi3=\emptyset
\psi4=\emptyset
\psi5=\{u2\ 9,u2\ 8,u2\ 7\}
\psi6=\{u2\ 9,u2\ 8\}
\psi8=\{u6\ 11\}
\psi9=\emptyset
\psi10=\{u6\ 11\}
\psi11=\{u2\ 8,u2\ 7\}
\psi12=\{u2\ 8\}
\psi13=\{u2\ 9,u2\ 8,u2\ 7\}
\psi14=\{u2\ 9,u2\ 8\}
```

Нереализованными оказались ребра u2 7, u2 8, u2 9, u6 11. Проведем их:

Заметим, что новый граф тоже нуждается в планаризации.

Планаризация нового графа

Удалим из семейства �i(i∈[1;15]) рёбра, которые были реализованы в прошлом пункте. Получится такое семейство:

ψ2={u6 11} ψ5={u2 9,u2 8,u2 7}

Выделение из G' максимального двудольного подграфа

 $\alpha\gamma\beta{=}|\psi\gamma|{+}|\psi\beta|{-}|\psi\gamma{\cap}\psi\beta|{:}$

 $\alpha 2 \ 5 = |\psi 2| + |\psi 5| - |\psi 2 \cap \psi 5| = 4 + 6 - 1 = 9$

Возьмем множества ψ3 и ψ5

В суграфе H, содержащем максимальное число непересекающихся ребер, ребра, вошедшие в ψ 2, проводим внутри гамильтонова цикла, а в ψ 5 – вне его.

Нереализованных ребер не осталось.