EXPLORAÇÃO, ANÁLISE E TRATAMENTO DOS DADOS: PROJETO PREVISÃO DE DOENÇA CARDÍACA

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px

dados_df = pd.read_csv('Churn_Modelling.csv', sep = ',')

dados_df.head()
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	I
0	1	15634602	Hargrave	619	France	Female	42	2	
1	2	15647311	Hill	608	Spain	Female	41	1	8
2	3	15619304	Onio	502	France	Female	42	8	15
3	4	15701354	Boni	699	France	Female	39	1	
4	5	15737888	Mitchell	850	Spain	Female	43	2	12

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 14 columns):

Ducu	COTAMIIS (COCAT I	· coramis).			
#	Column	Non-Null Count	Dtype		
0	RowNumber	10000 non-null	int64		
1	CustomerId	10000 non-null	int64		
2	Surname	10000 non-null	object		
3	CreditScore	10000 non-null	int64		
4	Geography	10000 non-null	object		
5	Gender	10000 non-null	object		
6	Age	10000 non-null	int64		
7	Tenure	10000 non-null	int64		
8	Balance	10000 non-null	float64		
9	NumOfProducts	10000 non-null	int64		
10	HasCrCard	10000 non-null	int64		
11	IsActiveMember	10000 non-null	int64		
12	EstimatedSalary	10000 non-null	float64		
13	Exited	10000 non-null	int64		
<pre>dtypes: float64(2), int64(9), object(3)</pre>					
memor	ry usage: 1.1+ MB				

RowNumber: Identificador único para cada registro, não irá contribuir para a análise.

CustomerId: identificador único para cada cliente.

Surname: Sobrenome de cada cliente.

CreditScore: crédito de um cliente com base em seu histórico de crédito e comportamento financeiro.

Geography: Pais onde cada cliente mora.

Gender: Gênero do cliente(Feminino ou Masculino)

Age: Idade do clientes

Tenure: Quantidade de tempo que o cliente está com o banco.

Balance: O saldo co cliente, ou seja a quantidade de dinheiro na conta bancária .

NumOfProducts: Pode incluir várias ofertas, como contas de poupança, empréstimos, cartões de crédito, entre outros.

HasCrCard: Usada para identificar se o cliente tem ou não cartão de crédito com (1) para caso ele possua, e (0) caso contrario.

IsActiveMember: Indica se o cliente é membro ativo (1) ou não (0) dentro do banco.

EstimatedSalary: Fornece uma aproximação do nível de renda do cliente.

Exited: Indica se um cliente cancelou (1) ou não (0) do banco.

Verificando se o Dataframe contém campos vazios

▼ Limpeza e tratamento dos dados

▼ Análises Estatísticas Descritivas

dados_df.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Ва
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.0
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.8
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.4
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.0
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.0
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.5
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.2
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.0

dados_df.mode()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure
0	1	15565701	Smith	850.0	France	Male	37.0	2.0
1	2	15565706	NaN	NaN	NaN	NaN	NaN	NaN
2	3	15565714	NaN	NaN	NaN	NaN	NaN	NaN
3	4	15565779	NaN	NaN	NaN	NaN	NaN	NaN
4	5	15565796	NaN	NaN	NaN	NaN	NaN	NaN
9995	9996	15815628	NaN	NaN	NaN	NaN	NaN	NaN
9996	9997	15815645	NaN	NaN	NaN	NaN	NaN	NaN
9997	9998	15815656	NaN	NaN	NaN	NaN	NaN	NaN
9998	9999	15815660	NaN	NaN	NaN	NaN	NaN	NaN
9999	10000	15815690	NaN	NaN	NaN	NaN	NaN	NaN

10000 rows × 14 columns

▼ Valores Missing (NAN)

dados_df.isnull().sum()

RowNumber
CustomerId
Surname
CreditScore
Geography
Gender
Age
Tenure
Balance
NumOfProducts
HasCrCard
ISActiveMember
EstimatedSalary
Exited
dtype: int64

Analisando valores duplicados

dados_df.duplicated().sum()

0

▼ Análise dos Outliers

px.box(dados_df, x = 'CreditScore')

px.box(dados_df, x = 'Age')

px.box(dados_df, x = 'Tenure')

px.box(dados_df, x = 'Balance')

px.box(dados_df, x = 'EstimatedSalary')

Existem clientes com sálarios muito baixos em torno de 11,58 Euros, valores esses que podem ter sido preenchidos por engano, por causa de algum erro de digitação, por isso devemos tratar esses valores

▼ Tratando valores nos sálarios estimados

Irei considerar que os salários abaixo de 1300 Euros estão incorretos.

dados_df[dados_df['EstimatedSalary']<1300]</pre>

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure
149	150	15794413	Harris	416	France	Male	32	0
195	196	15594815	Aleshire	807	France	Male	35	3
393	394	15684548	Demidov	556	Spain	Male	38	8
396	397	15584766	Knight	557	France	Male	33	3
559	560	15571816	Ritchie	850	Spain	Female	70	5
9636	9637	15613048	Anderson	648	Germany	Female	40	5
9647	9648	15679693	Walker	625	France	Male	31	5
9649	9650	15788025	Tseng	715	France	Female	38	0
9875	9876	15747130	Tsao	521	France	Male	39	7
9920	9921	15673020	Smith	678	France	Female	49	3

76 rows × 14 columns

dados_filtrados = dados_df[dados_df['EstimatedSalary'] > 1500]

sns.histplot(dados_filtrados, x = 'EstimatedSalary', kde=True)

<Axes: xlabel='EstimatedSalary', ylabel='Count'>

Como os salários seguem uma distribuição uniforme, irei substituir os valores de salários abaixo de 1300 Euros pela Mediana dos salários.

px.box(dados_df, x = 'EstimatedSalary')

▼ EDA

Iremos realizar uma análise exploratória dos dados para entender melhor o que esta acontecendo.

▼ Churn

```
px.pie(dados_df, 'Exited')
```


▼ Gênero

```
px.pie(dados_df, 'Gender')
```


churn_genero = dados_df.groupby(['Gender', 'Exited']).size().unstack()
churn_genero

Exited	0	1
Gender		
Female	3404	1139
Male	4559	898

Crie o gráfico de colunas empilhadas churn_genero.plot(kind='bar', stacked=True);

▼ País

sns.countplot(dados_df, x = 'Geography');

churn_pais = dados_df.groupby(['Geography', 'Exited']).size().unstack()
churn_pais

Exited	0	1
Geography		
France	4204	810
Germany	1695	814
Spain	2064	413

churn_pais.plot(kind = 'bar')
plt.title('Churn por país')
plt.ylabel('Churn')
plt.xlabel('País')
plt.show()

churn_pais.plot(kind='bar', stacked = True);

Podemos notar que a Alemanha é o pais que mais se perde clientes em relação aquantidade total de clientes, deve ser averiguado o motivo da perca de tantos clientes alemães.

Criando um novo Dataframe igual o original, para fazer algumas alterações, sem modificar o principal, onde será analisado o churn por intervalos de idade dos clientes.

```
Age

(15, 20] 84 5

(20, 25] 481 41

(25, 30] 1255 102

idade_churn.plot(kind='bar', stacked = True)
plt.title('Churn por intervalos de idade')
plt.ylabel('Churn')
plt.xlabel('Intervalos de idades')
plt.show()
```


è possivel perceber que os clientes que mais fazem o Churn estão distribuidos entre as idades de 35 e 60 anos.

▼ Tempo que é cliente do banco

dados_df.Tenure.hist();


```
dadostenure = dados_df.copy()

Tcliente = np.unique(dadostenure.Tenure)
Tcliente.sort()
print(Tcliente)

[ 0 1 2 3 4 5 6 7 8 9 10]
```

Tcliente_churn = dados1.groupby(['Tenure','Exited']).size().unstack()
Tcliente_churn

Exited	0	1
Tenure		
0	318	95
1	803	232
2	847	201
3	796	213
4	786	203
5	803	209
6	771	196
7	851	177
8	828	197
9	771	213
10	389	101

```
Tcliente_churn.plot(kind='bar', stacked = True)
plt.title('Churn por Tempo de casa')
plt.ylabel('Churn')
plt.xlabel('Anos')
plt.show()
```


sns.countplot(x = dados_df.Tenure, hue = dados_df.Exited);

```
Exited
```

Como podemos notar nos gráficos, os clientes não apresentam uma tendencia a sair da empresa quando passam mais tempo sendo clientes.

```
700 ]
```

▼ Saldo Bancário

.

dados_df.Balance.hist();

dadosbalance = dados_df.copy()

```
Bcliente = np.unique(dadostenure.Balance)
Bcliente.sort()
print(Bcliente)
```

[0. 3768.69 12459.19 ... 222267.63 238387.56 250898.09]

dadosbalance['Balance'] = pd.cut(dadosbalance['Balance'], bins=range(0,275000,25000))

churn_balance = dadosbalance.groupby(['Balance','Exited']).size().unstack()
churn_balance

Exited	0	1
Balance		
(0, 25000]	2	4
(25000, 50000]	47	22
(50000, 75000]	274	75
(75000, 100000]	935	225
(100000, 125000]	1510	558
(125000, 150000]	1333	429
(150000, 175000]	582	156
(175000, 200000]	148	49
(200000, 225000]	15	17
(225000, 250000]	0	1

```
churn_balance.plot(kind='bar', stacked = True)
plt.title('Churn por Crédito')
plt.ylabel('Churn')
plt.xlabel('Intervalos Crédito')
plt.show()
```


Os clientes com um saldo bancario entre 100000 e 150000, são os que mais realizam Churn no banco.

(7 (7 112 115 115 125 22

▼ Número de produtos

dados_df.NumOfProducts.value_counts()

- 1 5084 2 4590 3 266
- 4 60

Name: NumOfProducts, dtype: int64

sns.countplot(dados_df, x = 'NumOfProducts');

churn_produtos = dados_df.groupby(['NumOfProducts','Exited']).size().unstack()
churn_produtos

Exited	0	1
NumOfProducts		
1	3675.0	1409.0
2	4242.0	348.0
3	46.0	220.0
4	NaN	60.0

Já podemos notar na Tabela que todos os clientes com de 4 servoços prestados pelo banco, já efetuaram o Churn.

```
churn_produtos.plot(kind='bar', stacked = True)
plt.title('Churn por Qtds Produto')
plt.ylabel('Churn')
plt.xlabel('Quantidade de Produtos')
plt.show()
```


A partis das informações coletadas na análise, é possivel perceber que todos os clientes com quatro serviços do banco e quase todos com 3 serviços realizaram o churn, também é importante observar que muitos clientes que só usam um serviço estão deixando de ser clientes, casos esses que devem ser averiguados.

▼ Cartão de Crédito

px.pie(dados_df, 'HasCrCard')

 $sns.countplot(x = dados_df.HasCrCard, \ hue = dados_df.Exited);\\$

Podemos notar que o cliente ter ou não cartão de crédito, irá influenciar na decisão de sair da empresa.

▼ Cliente Ativo

px.pie(dados_df, 'IsActiveMember')

 $sns.countplot(x = dados_df.IsActiveMember, \ hue = dados_df.Exited);\\$

Pelo gráfico podemos perceber que clientes que não são ativos, apresentam mais chances de desativar sua conta no banco.

▼ Salário estimado dos clientes

```
dados_df.EstimatedSalary.hist()
```



```
dadossalario = dados_df.copy()

salarios = np.unique(dadostenure.EstimatedSalary)
salarios.sort()
salarios.min(), salarios.max()

    (1351.41, 199992.48)

dadossalario['EstimatedSalary'] = pd.cut(dadossalario['EstimatedSalary'], bins = range(0,200000, 20000))

salario_churn = dadossalario.groupby(['EstimatedSalary','Exited']).size().unstack()
salario_churn
```

Estimat	edSalary				
(0, 2	0000]	729	181		
(20000	, 40000]	773	196		
(40000	, 60000]	815	191		
(60000	, 80000]	815	212		
(80000,	100000]	806	196		
(100000	, 120000]	875	228		
(120000	, 140000]	811	196		
(140000	, 160000]	776	206		
(160000	, 180000]	784	225		
<pre>salario_churn.plot(kind='bar', stacked = True) plt.title('Churn por Salário')</pre>					

plt.ylabel('Churn')

plt.show()

plt.xlabel('Intervalos Salário')

Exited

0 1

▼ Mapa de Calor

dados_selecionados = dados_df[['Exited', 'NumOfProducts', 'Balance', 'Tenure', 'Age']]
sns.heatmap(dados_selecionados.corr(), annot=True);

Aparentemente nenhuma das variáveis númericas apresentam uma forte correlação com o Churn

▼ Salvando (Exportando) o Dataframe Tratado

dados_df.to_csv('Churn_Modelling_Tratado.csv', sep=';', encoding='utf-8', index = False)

✓ 1s conclusão: 16:36

• ×