(b)
$$-\frac{\sqrt{3}}{2}$$

(a)
$$3.14$$
(b) $-\frac{\sqrt{3}}{2}$
(c) $-e^{-x} + \frac{1}{2\sqrt{x}}$

(d)
$$x = 5$$

(e)
$$-3\cos x + C$$

(f)
$$x < -2 \text{ or } x > 4$$

(g)
$$\log_a 21a = \log_a 3 + \log_a 7 + \log_a a$$

 $\log_a 21a = 1.6 + 2.4 + 1$
= 5

Question 2

(a)
$$y = \ln(x + 2)$$

$$\frac{dy}{dx} = \frac{1}{x+2}$$

when
$$x = 0$$
, $\frac{dy}{dx} = \frac{1}{2}$

$$\therefore m_{normal} = -2$$

let the equation of the normal be $y - y_1 = m(x - x_1)$

where
$$x_1 = 0$$
, $y_1 = \ln 2$, $m = -2$

$$\therefore 2x + y - \ln 2 = 0$$

(b) (i)
$$5x^2 \sec^2 5x + 2x \tan 5x$$

$$(ii) \frac{1}{(1-3x)^2}$$

(iii)
$$3\sin^2 x \cos x$$

(c)
$$l = rq$$

$$=10(\frac{42p}{180})$$

$$=7.3cm$$

(d)
$$\{x : x \ge 1\}$$

$$\{y:y\geq 3\}$$

(a) (i)
$$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

 $= \sqrt{6^2 + 8^2}$
 $= 10units$
(ii) $d = \left| \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right|$
 $= \frac{6 + 8 + 7}{5}$
 $= \frac{21}{5}units$
(iii) $m_2 = -\frac{a}{b} = \frac{3}{4}$
 $m_{x-axis} = 0$
 $\tan q = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$
 $= \frac{3}{4}$
 $\therefore q \approx 37^0$
(iv) $m_{BC} = \frac{7 - -2}{5 - 2} = 3$
 $m_{AD} = m_{BC}$
 $\therefore m_{AD} = 3$
let the equation of AD be $y - y_1 = m(x - x_1)$
where $x_1 = -3$, $y_1 = 1$ and $m = 3$
 $\therefore y - 1 = 3(x + 3)$
 $\therefore y = 3x + 10$
(v) now D lies on $y = 3x + 10$ and $y = -2$
 $\therefore D(-4, -2)$
(vi)

(b)
$$SB^2 = PS^2 + PB^2 - 2(PS)(PB)\cos \angle SPB$$

 $SB^2 = 56^2 + 48^2 - 2(56)(48)\cos 50^\circ$
 $\therefore SB = 44.54$ nautical miles

(a) (i)
$$\int \frac{3x^3 - 1}{x} dx = \int (3x^2 - \frac{1}{x}) dx$$
$$= x^3 - \ln x + C$$

$$= x^{3} - \ln x + C$$

$$(ii) \int_{0}^{\frac{1}{2}} \cos(px) dx = \left[\frac{1}{p} \sin(px)\right]_{0}^{\frac{1}{2}}$$

$$= \frac{1}{p}$$

(b)
$$\cos 2x = \frac{1}{\sqrt{2}}$$

$$\therefore 2x = \frac{p}{4} \text{ or } \frac{7p}{4}$$

$$\therefore x = \frac{p}{8} \text{ or } \frac{7p}{8}$$

(d)
(i)
$$R = 65 + 4t^{\frac{1}{3}}$$

when $t = 0$, $R = 65 + 4(0)^{\frac{1}{3}} = 65$
(ii) now $R = \frac{dv}{dt} = 65 + 4t^{\frac{1}{3}}$

$$\therefore V = 65t + 3t^{\frac{4}{3}} + C$$
when $t = 0$, $V = 15$, $\therefore C = 15$

$$\therefore V = 65t + 3t^{\frac{4}{3}} + 15$$
when $t = 0$, $V = 583$ litres

Ouestion 5

(a) (i)
$$a + \frac{1}{a} = 5$$

(ii)
$$a + b = -\frac{b}{a} = 5$$

(iii)
$$a^2 + b^2 = (a + b)^2 - 2ab$$

= $(5)^2 - 2(1)$
= 23

$$= 23$$
(b) (i) $\Delta = b^2 - 4ac = 4 - 4(3)(k)$

$$= 4 - 12k$$

(ii) for real roots
$$\Delta \ge 0$$

$$\therefore 4 - 12k \ge 0$$

$$\therefore k \le \frac{1}{3}$$

(c)
$$\angle ABQ = \angle ACS = q^{\circ}$$
 (corresponding angles on PQ | $|RS|$ are equal)

now $\angle CNM = \angle NMC$ (equal angles opposite equal sides in isosceles triangle PRM)

$$\therefore q^{\circ} + \angle CNM + \angle NMC = 180^{\circ}$$
 (angle sum triangle CNM is 180°)

$$\therefore 2 \times \angle NMC = 180^{\circ} - q^{\circ} (\angle NMC = \angle CNM)$$

$$\therefore \angle NMC = \frac{180^{\circ} - q^{\circ}}{2}$$

 $\angle NMS + \angle NMC = 180^{\circ}$ (adjacent angles on a straight line are supplementary)

$$\therefore \angle NMS = 180^{\circ} - \frac{180^{\circ} - q^{\circ}}{2}$$

$$\therefore \angle NMS = \frac{180^{\circ} + q^{\circ}}{2}$$

$$(3,-2)$$

(ii) directrix:
$$y = -a + k$$

$$\therefore y = -3$$

Ouestion 6

(a) (i)
$$x^2 - 3x - 18 = 0$$

 $(x - 6)(x + 3) = 0$
 $\therefore x = -3 \text{ or } x = 6$
(ii) $(x^2 + 1)^2 - 3(x^2 + 1) - 18 = 0$
let $U = x^2 + 1$
 $\therefore U^2 - 3U - 18 = 0$

$$U^{2} - 3U - 18 = 0$$
$$(U - 6)(U + 3) = 0$$

$$\therefore U = -3 \text{ or } U = 6$$

$$\therefore x^2 + 1 = -3$$
$$x^2 = -4$$

$$\therefore x^2 + 1 = 6$$
$$x^2 = 5$$

$$x = \pm \sqrt{5}$$

$$\therefore x = \pm \sqrt{5}$$

(b) (i)
$$y = (x-1)^2 _(1)$$

 $x + y = 3 _(2)$
 $x = -10r2$
 $y = 10r4$

the curves intersect at (2,1) and (-1,4)

(ii) Area =
$$\int_{2}^{3} [(x-1)^{2} - (3-x)]dx$$
$$= \int_{2}^{3} (x^{2} - x - 2)dx$$
$$= \frac{11}{6} \text{ units}^{2}$$

(c)
$$\frac{dy}{dx} = e^{1-x}$$

$$y = \int e^{1-x} dx$$

$$\therefore y = -e^{1-x} + C$$
when x=1, y=3
$$\therefore 3 = -1 + C$$

$$\therefore C = 4$$

$$\therefore y = -e^{1-x} + 4$$

(d) (i)
$$V = 85e^{-0.07t}$$

$$\frac{dV}{dt} = 85 \times -0.07 \times e^{-0.07t}$$

$$= -0.07 \times 85e^{-0.07t}$$

(ii) when t = 5,
$$\frac{dV}{dt} = -0.07 \times 85e^{-0.07 \times 5}$$

= -4.19 cm/s²

(a)
$$V = p \int_{a}^{b} x^{2} dy$$

$$V = p \int_{0}^{16} (16 - y)^{\frac{1}{2}} dy$$

$$V = -p \int_{0}^{16} -(16 - y)^{\frac{1}{2}} dy$$

$$V = -p \left[\frac{2(16 - y)^{\frac{3}{2}}}{3} \right]_{0}^{16}$$

$$V = \frac{128p}{3} \text{ units}^{3}$$

(c) (i)
$$(n-2)\times180^{\circ}$$

- (a) (i) SAS
 - (ii) $\angle DCQ + \angle QCP + \angle PCB = 90^{\circ}$ (interior angle of a square is a right angle) $\therefore \angle DCQ + \angle PCB = 45^{\circ}$

now $\angle DCQ = \angle BCE$ (corresponding angles in $\triangle CBE \equiv \triangle CDQ$)

$$\therefore \angle BCE + \angle PCB = 45^{\circ}$$

$$\therefore \angle QCP = \angle PCE = 45^{\circ}$$

∴ PC bisects $\angle QCE$

- (iii)-
- (b) (i) when t = 0, $v = 2(2-0)e^0$ = 4m/s
 - (ii) particle is at rest when v = 0

$$\therefore 2(2-t)e^{-\frac{t}{2}} = 0$$
$$\therefore t = 0$$

when
$$t = 2$$
, $x = 4(2)e^{-1}$

$$=\frac{8}{e}m$$

the particle will be at rest when t = 2, and at $x = \frac{8}{e}m$

- (iii)-
- (iv)particle accelerates when $\frac{d^2x}{dt^2} > 0$

ie when t > 4

Ouestion 9

(a)
$$\frac{d}{dq} \left(\frac{1}{\cos q} \right) = \frac{(\cos q)(0) - (1)(-\sin q)}{\cos^2 q}$$
$$= \sec q \tan q$$

(b) (i)
$$BP^2 = AB^2 + AP^2$$
 (by Pythagoras)
 $BP^2 = 5^2 + x^2$
 $\therefore BP = \sqrt{25 + x^2}$ (BP > 0)

(ii)
$$AE = AP + PE$$

 $PE = AE - AP$
 $PE = 3 - x$

now
$$PQ^{2} = PE^{2} + EQ^{2}$$
 (by Pythagoras)
= $(3-x)^{2} + 4^{2}$
= $25 - 6x + x^{2}$
 $\therefore PQ = \sqrt{25 - 6x + x^{2}}$ (PQ > 0)

$$(iii)$$
total cabling = BP + PQ

$$L = (\sqrt{25 + x^2} + \sqrt{25 - 6x + x^2})$$

(iv)
$$\frac{dL}{dx} = \frac{1}{2}(25 + x^2)^{-\frac{1}{2}} \times (2x) + \frac{1}{2}(25 - 6x + x^2)^{-\frac{1}{2}} \times (2x - 6)$$

$$= \frac{x}{\sqrt{25 + x^2}} + \frac{x - 3}{\sqrt{25 - 6x + x^2}} = 0 \text{ (for stationary points)}$$

$$\therefore x = \frac{5}{3}or15$$

$$\text{now } 0 \le x \le 3$$

$$\therefore x = \frac{5}{3}$$

<u>Test</u>			
X	1	5	2
		$\frac{\overline{3}}{3}$	
dL	-0.25	0	0.129
\overline{dx}			
	\	<u>MIN</u>	/

$$\therefore AP = \frac{5}{3}$$
 metres

Since the function is continuous in the domain $0 \le x \le 3$, $x = \frac{5}{3}$ is a local minimum and there is only one turning point in the domain, $x = \frac{5}{3}$ is also the absolute minimum

(a)
$$\int_{1}^{p} x^{2} dx \approx \frac{p-1}{2} (1+p^{2})$$
$$= \frac{p-1}{2} + \frac{p^{2}(p-1)}{2}$$
$$= \frac{p-1}{2} (p^{2}+1)$$

(b)
(i)
$$S_2 = S_1 + A_2$$

 $= S_1 + \frac{p^2 - p}{2} (p^2 + p^4)$
 $= S_1 + \frac{p^4 + p^6 - p^3 - p^5}{2}$
 $= S_1 + \frac{p^3}{2} (p^3 - p^2 + p - 1)$
 $= S_1 + \frac{1}{2} p^3 (p - 1)(1 + p^2)$

(ii)
$$S_3 = S_2 + A_3$$

$$= \frac{(p^2 + 1)(p - 1)}{2} + \frac{p^3(p - 1)(1 + p^2)}{2} + \frac{p^3 - p^2}{2}(p^4 + p^6)$$

$$= \frac{(p^2 + 1)(p - 1)}{2} [1 + p^3 + p^6]$$

(c)
$$S_n = \frac{1}{2}(p-1)(1+p^2)[1+p^3+p^6+...+p^{3(n-1)}]$$

 $= \frac{1}{2}(p-1)(1+p^2) \times \frac{[1 \times (p^3)^n - 1]}{p^3 - 1}$
 $= \frac{1}{2}(1+p^2)[\frac{p^{3n} - 1}{p^2 + p + 1}]$

- (d) –
- (e) -