pca_from_scratch

August 21, 2025

1 PCA (Principal Component Analysis) — From Scratch

This notebook derives PCA, implements it from scratch (centering, covariance, eigendecomposition), and demonstrates dimensionality reduction, reconstruction, and explained variance on synthetic data.

1.1 1. Theory

PCA finds orthogonal directions (principal components) that maximize data variance. For centered data matrix X (shape $n \times d$), the covariance matrix is $C = \frac{1}{n-1}X^TX$. Eigen-decomposition of C yields eigenvalues and eigenvectors. Project onto top-k eigenvectors to reduce dimensionality.

```
[1]: import numpy as np
     import matplotlib.pyplot as plt
     from sklearn.datasets import make_classification
     np.random.seed(0)
     def pca_from_scratch(X, k=None, return_details=False):
         # X: (n_samples, n_features)
         Xc = X - X.mean(axis=0)
         n = Xc.shape[0]
         # covariance matrix
         C = (Xc.T @ Xc) / (n - 1)
         # eigen-decomposition (symmetric -> use eigh)
         eigvals, eigvecs = np.linalg.eigh(C) # ascending order
         # sort descending
         idx = np.argsort(eigvals)[::-1]
         eigvals = eigvals[idx]
         eigvecs = eigvecs[:, idx]
         if k is None:
             k = X.shape[1]
         components = eigvecs[:, :k]
         projected = Xc @ components
         reconstructed = projected @ components.T + X.mean(axis=0)
         if return_details:
             explained_variance_ratio = eigvals / eigvals.sum()
             return projected, reconstructed, eigvals, components,
      ⇔explained_variance_ratio
```

```
return projected, reconstructed
# Example: synthetic data with 3 informative features, visualize 2D projection
X, y = make_classification(n_samples=300, n_features=5, n_informative=3,__
 →random_state=0)
proj, rec, eigvals, comps, evr = pca_from_scratch(X, k=2, return_details=True)
print('Top eigenvalues:', eigvals[:5])
print('Explained variance ratio (top 5):', evr[:5])
plt.figure(figsize=(6,5))
plt.scatter(proj[:,0], proj[:,1], c=y, cmap='viridis', s=25)
plt.xlabel('PC1'); plt.ylabel('PC2'); plt.title('Projection onto first 2_
 ⇔principal components')
plt.grid(True)
plt.show()
Top eigenvalues: [ 6.30086639e+00 5.97971070e+00 7.89767074e-01
8.97138891e-16
 -4.53049681e-16]
```

Explained variance ratio (top 5): [4.82073487e-01 4.57502161e-01

6.04243518e-02 6.86392707e-17

-3.46624140e-17]

Projection onto first 2 principal components

1.1.1 Reconstruction error vs number of components

```
[2]: # Reconstruction MSE as a function of k
     Xc = X - X.mean(axis=0)
     _, _, eigvals_all, eigvecs_all, _ = pca_from_scratch(X, k=None,_
     ⇔return_details=True)
     mses = []
     ks = list(range(1, X.shape[1]+1))
     for k in ks:
         proj_k, rec_k = pca_from_scratch(X, k=k)[:2]
         mse = np.mean((X - rec_k)**2)
         mses.append(mse)
     plt.plot(ks, mses, marker='o')
     plt.xlabel('k (number of components)'); plt.ylabel('Reconstruction MSE'); plt.
      ⇔title('MSE vs k')
     plt.xticks(ks)
     plt.grid(True)
     plt.show()
```


1.2 2. Notes

- We used covariance-eigendecomposition (good when d is not huge).
- For large d or numerical stability, using SVD on the centered data is recommended.