(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2000-188358 (P2000-188358A)

(43)公開日 平成12年7月4日(2000.7.4)

(51) Int.Cl.7 H01L 23/12 33/00 識別記号

FΙ H01L 23/12 33/00

テーマコード(参考) 5F041

M

審査請求 未請求 請求項の数7 OL (全 13 頁)

(21)出願番号

特願平10-364397

(22)出顧日

平成10年12月22日(1998, 12, 22)

(71)出願人 000116024

ローム株式会社

京都府京都市右京区西院灣崎町21番地

(72)発明者 山口 委巳

京都市右京区西院灣崎町21番地 ローム株

式会社内

(74)代理人 100086380

弁理士 吉田 稔 (外2名)

Fターム(参考) 5F041 AA25 AA47 DA02 DA07 DA12

DA13 DA20 DA44 DB04 FF11

(54)【発明の名称】 半導体装置

(57)【要約】

【課題】 基板と樹脂パッケージとの間の接着性を向上 させ、半導体装置の小型化に対応できるようにする。

【解決手段】 絶縁基材1aの表面に陰極2Aおよび陽 極2 Bがそれぞれ形成された基板1の上面側に、陰極2 Aおよび陽極2Bの双方に電気的に導通するようにして 半導体チップ3が実装され、この半導体チップ3を封止 するようにして樹脂パッケージ5が形成された半導体装 置において、絶縁基材1aに、その厚み方向に貫通する スルーホール13を形成し、樹脂パッケージ5に、スル ーホール13内に充填されたアンカー部51を一体形成 する。

【特許請求の範囲】

【請求項1】 絶縁基材の表面に入力端子および出力端 子がそれぞれ形成された基板の上面側に、上記入力端子 および出力端子の双方に電気的に導通するようにして半 導体チップが実装され、この半導体チップを封止するよ うにして樹脂パッケージが形成された半導体装置であっ て、

上記絶縁基材には、その厚み方向に貫通するスルーホー ルが形成されており、上記樹脂パッケージには、上記ス ルーホール内に充填されたアンカー部が一体形成されて 10 いることを特徴とする、半導体装置。

【請求項2】 上記入力端子および出力端子は、上記絶 縁基材の上面から側面を介して下面につながっていると ともに、これらの端子の少なくとも一方における上面側 の部分には、貫通孔が形成されており、かつ、

この貫通孔が上記スルーホールと連通しているととも に、上記貫通孔の径が、上記スルーホールの上部開口部 の径よりも小さくなされている、請求項1 に記載の半導 体装置。

【請求項3】 上記スルーホールは、上部開口部から下 20 部開口部に向かうほど拡開している、請求項1または2 のいずれかに記載の半導体装置。

【請求項4】 上記樹脂パッケージは、上記基板の上面 側および下面側の双方に形成されているとともに、上面 側に形成された部分と下面側に形成された部分とが上記 アンカー部によってつなげられている、請求項1ないし 3のいずれかに記載の半導体装置。

【請求項5】 上記スルーホールは、下部開口部から上 部開口部に向かうほど拡開している、請求項1または2 に記載の半導体装置。

【請求項6】 上記スルーホールは、上記入力端子およ び出力端子のいずれもが形成されていない部分に形成さ れている、請求項1に記載の半導体装置。

【請求項7】 上記スルーホールは、平面視において点 対称あるいは線対称となるような位置関係に複数個形成 されている、請求項1ないし6のいずれかに記載の半導 体装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本願発明は、面実装型の半導 40 体装置に関し、とくに携帯電話などの小型の電子機器に おいて、プッシュボタンのバックライトなどとして使用 される発光ダイオードに好適に採用できる技術に関す る。

[0002]

【従来の技術】発光ダイオードとして構成された半導体 装置の一例を図18に示す。この種の発光ダイオードY は、長矩形状の絶縁基材 1 a の表面に、出力端子として の陰極2Aと入力端子としての陽極2Bとがそれぞれ形 は、それぞれ絶縁基材1aの上面10から側面11を介 して下面12につながり、互いに電気的に分離するよう に形成されている。これらの電極2A, 2Bは、たとえ ば絶縁基材laの表面に金属の導体層を形成した後に、 これにエッチング処理を施し、さらに金メッキなどの金 属メッキを施すなどして形成されている。陰極2Aにお ける上面側の部分(陰極上面部)2aにはLEDチップ 3がグランド接続されており、このLEDチップ3の上 面30と陽極2日における上面側の部分(陽極上面部) 2 b との間が金線などのワイヤ4を介して電気的に接続 されている。そして、基板1の上面側の部分において は、LEDチップ3およびワイヤ4を封止するようにし てエポキシ樹脂などによって樹脂パッケージ5が形成さ れている。

[0003]

【発明が解決しようとする課題】しかしながら、陰極2 Aおよび陽極2Bが金属によって形成されていることか ら、これらの電極2A,2Bとエポキシ樹脂などによっ て形成された樹脂パッケージ5との接着力が小さい。と のため、基板1に対する樹脂バッケージ5の接着力は、 実質的には絶縁基材1 a が露出した部分(陰極上面部2 a および陽極上面部 2 b が形成されていない部分) の面 積に依存することとなる。

【0004】近年においては、発光ダイオードYに限ら ず、半導体装置の小型化が益々進行しており、発光ダイ オードYにおいては、その平面視サイズが1.6×0. 8 mmあるいは1. 0×0.5 mmといった極めて小さ いサイズのものが製品化されている。このサイズの発光 ダイオードYでは、基板1における上記した露出部分の 30 面積を大きく確保するのが困難であるため、樹脂パッケ ージ5と基板1との間の接着性を良好に確保することが できない。このため、発光ダイオードYを使用している 段階において、基板1から樹脂パッケージ5が剥がれて LEDチップ3が露出してしまい、また樹脂パッケージ 5が剥がれる際にワイヤ4が断線してしまうといった問 題が生じる。このような樹脂パッケージ5の剥離やワイ ヤ4の断線は、発光ダイオードY以外の半導体装置につ いても同様に生じ得る。

【0005】本願発明は、上記した事情のもとで考え出 されたものであって、基板と樹脂パッケージとの間の接 着性を向上させ、半導体装置の小型化に対応できるよう にすることをその課題としている。

[0006]

【発明の開示】上記の課題を解決するため、本願発明で は、次の技術的手段を講じている。

【0007】すなわち、本願発明により提供される半導 体装置は、絶縁基材の表面に入力端子および出力端子が それぞれ形成された基板の上面側に、上記入力端子およ び出力端子の双方に電気的に導通するようにして半導体 成された基板1を有している。陰極2Aおよび陽極2B 50 チップが実装され、この半導体チップを封止するように

して樹脂パッケージが形成された半導体装置であって、 上記絶縁基材には、その厚み方向に貫通するスルーホールが形成されており、上記樹脂パッケージには、上記スルーホール内に充填されたアンカー部が一体形成されていることを特徴としている。なお、半導体装置としては、発光ダイオード、レザーダイオードあるいはトランジスタなどが挙げられるが、その他の半導体装置についても本願発明を適用できる。

【0008】上記構成では、絶縁基材に形成されたスルーホール内に、樹脂パッケージの一部であるアンカー部 10 が充填形成されている。このようなアンカー部を樹脂パッケージに形成すれば、そのアンカー効果によって、基板に対して強固に樹脂パッケージが接着されることとなる。したがって、たとえ半導体装置が小型化して、樹脂パッケージと基板との間において有効に接着面積を確保することができず、また絶縁基材が露出した部分の面積を有効に確保することができなかったとしても、樹脂パッケージにアンカー部を設けた本願発明では、基板から樹脂パッケージが剥がれてしまうといった不具合を適切に回避することができるようになる。 20

【0009】また、樹脂パッケージのアンカー部は、樹脂パッケージを金型成形する際に、スルーホール内に樹脂を充填することによって、従来より形成されていた樹脂パッケージ部分(アンカー部を除いた部分)と同時に形成することができる。このため、アンカー部を有する樹脂パッケージを形成するにあたって、新たな金型を別途準備する必要はなく、従来より用いられている金型を使用することができるといった利点が得られる。

【0010】好ましい実施の形態においては、上記入力端子および出力端子は、上記絶縁基材の上面から側面を介して下面につながっているとともに、これらの端子の少なくとも一方における上面側の部分には、貫通孔が形成されており、かつ、この貫通孔が上記スルーホールと連通しているとともに、上記貫通孔の径が、上記スルーホールの上部開口部の径よりも小さくなされている。

【0011】上記構成では、少なくとも一方の端子の上面側の部分に、スルーホールに連通するようにして貫通孔が形成されており、この貫通孔の径がスルーホールの上部開口部の径よりも小さくなされている。そして、スルーホール内には樹脂が充填され、樹脂パッケージのア 40ンカー部が形成されるのは上述の通りである。したがって、樹脂パッケージにおける基板の上面側に形成された部分とアンカー部との境界部の径(貫通孔の径)は、アンカー部の径よりも小さくなされており、アンカー部が基板から抜けにくくなされている。これによっても、基板から樹脂パッケージが剥がれてしまうことが適切に回避されている。

【0012】好ましい実施の形態においてはさらに、上記スルーホールは、上部開口部から下部開口部に向かうほど拡開している。

【0013】上記構成においては、スルーホールが上部 開口部から下部開口部に向かうほど拡開しており、スルーホール内に形成されるアンカー部は上部(基端部)に 向かうほど径が小さくなるようになされている。 すなわち、先に説明した構成と同様に、アンカー部がスルーホールから抜けにくくなされ、基板からの樹脂パッケージの剥離が適切に回避される。

【0014】また、上記樹脂バッケージを、上記基板の上面側および下面側の双方に形成し、上面側に形成された部分と下面側に形成された部分とが上記アンカー部によってつなげられた構成としてもよい。このような構成においても、基板の下面側に形成された樹脂部分の存在によってアンカー部が抜けにくくなされており、これによって樹脂パッケージの剥離が適切に回避される。

【0015】好ましい実施の形態においてはまた、上記 スルーホールは、下部開口部から上部開口部に向かうほ ど拡開している。

【0016】上記半導体装置では、基板の上面側に半導体チップが実装され、同じく基板の上面側に樹脂バッケージが形成される。このため、金型成形において樹脂バッケージを形成する際には、スルーホール内へは通常上部開口部側から樹脂が注入されることになる。したがって、上部開口部側の径が大きくなされている場合には、スルーホールへの樹脂の注入が容易かつ確実に行われるといった利点が得られる。

【0017】好ましい実施の形態においてはまた、上記 スルーホールは、上記入力端子および出力端子のいずれ もが形成されていない部分に形成されている。

【0018】 このような構成においては、スルーホールを形成することにともなって入力端子や出力端子に貫通孔を形成する必要はなく、貫通孔を形成することによって各端子の面積が狭小化してしまうこともない。半導体装置が小型化すれば、入力端子や出力端子の面積を大きく確保するのが困難となってくるため、各端子に貫通孔を形成する必要性を回避して、端子面積の狭小化を阻止することは有用である。

【0019】好ましい実施の形態においてはさらに、上記スルーホールは、平面視において点対称あるいは線対称となるような位置関係に複数個形成されている。

【0020】との構成では、平面視において点対象あるいは線対称となるような位置関係にスルーホールが複数個形成されていることから、アンカー部もまた平面視において点対称あるいは線対称となるような位置関係に複数形成されることになる。樹脂バッケージにおけるアンカー部が形成された部分の周りは、他の部分に比べて基板に対して比較的強固に接着されることから、アンカー部を対称的な配置とすれば、樹脂パッケージが基板に対して部分的に強固に接着されることなく、全体的にバランス良く接着されることとなる。

50 【0021】本願発明のその他の特徴および利点は、添

付図面を参照して以下に行う詳細な説明によって、より 明らかとなろう。

[0022]

【発明の実施の形態】以下、本願発明の好ましい実施の形態を、図面を参照して具体的に説明する。図1は、本願発明の第1の実施形態に係る発光ダイオードの一例を表す全体斜視図、図2は、図1のII-II線に沿う断面図である。なお、これらの図においては、従来の発光ダイオードYを説明するために参照した図面に表されていた部材および要素などと同等なものには同一の符号を付し 10 てある。

【0023】図1および図2に示した発光ダイオードX1は、たとえば携帯電話などの小型の電子機器において、プッシュボタン用のバックライトなどとして使用されるものである。この種の発光ダイオードX1は、基板1、LEDチップ3、および樹脂パッケージ5を備えて構成されている。

【0024】基板1は、絶縁性および耐熱性に優れる、たとえばBTレジンなどのボリイミド樹脂やガラス布などによって全体として長矩形状に形成された絶縁基材1aの表面に、出力端子としての陰極2Aおよび入力端子としての陽極2Bが形成された構成とされている。

【0025】絶縁基材1aには、平面視における対称な位置関係に、2つのスルーホール13,13が形成されている。これらのスルーホール13,13は、たとえばレーザ、ドリルあるいはウオータージェットなどを利用して形成されている。

【0026】陰極2Aおよび陽極2Bは、絶縁基材1aの端部を包み込むようにして、絶縁基材1aの上面10から側面11を介して下面12まで一連にそれぞれ形成30されている。陰極2Aにおける基板1の上面側の部分(陰極上面部)2aには、陽極2B側に向かって延びるダイボンディング領域21aが形成されており、このダイボンディング領域21aに、銀ペーストなどを介してLEDチップ3がグランド接続されている。一方、陽極2Bにおける基板1の上面側の部分(陽極上面部)2bには、陰極2A側に向かって延びるワイヤボンディング領域21bが形成されており、このワイヤボンディング領域21bとLEDチップ3の上面30との間が金線などのワイヤ4を介して電気的に接続されている。40

【0027】また、図2に良く表れているように、ダイボンディング領域21 a およびワイヤボンディング領域21 a およびワイヤボンディング領域21 a の基端部ないしその近傍には、絶縁基材1 a に形成された各スルーホール1 3 に対応して、当該スルーホール1 3 よりも小径の貫通孔20a、20 b がそれぞれ形成されている。すなわち、各貫通孔20a(20 b)とこれに対応するスルーホール1 3 とは互いに連通し、各スルーホールの上部開口面の一部が陰極上面部2 a(陽極上面部2 b)によって覆われた恰好とされている。

ж, 2000 гоозак

【0028】なお、上記したような各電極2A,2B は、絶縁基材1aの表面に銅やニッケルなどの金属導体 層を形成した後に、これをエッチング処理することによ って互いに分離して形成されている。そして、エッチン グ処理の際に、各貫通孔20a, 20bも同時に形成さ れる。通常、各電極2A,2Bの表面には、電解メッキ などの手法によってニッケルメッキや金メッキなどの金 属メッキが施され、これによって酸化しにくくワイヤ4 との接続力の大きなボンディング仕様の電極とされる。 【0029】樹脂パッケージ5は、基板1の上面側に形 成された樹脂パッケージ本体部51と、絶縁基材1aの スルーホール13内に充填形成されたアンカー部50 と、を有している。樹脂パッケージ本体部51は、その 内部にLEDチップ3 およびワイヤ4を封入するように して基板 1 の長手方向の中央部に集中して設けられてお り、各電極2A,2Bにおける基板1を包み込んでいる 部分が露出するようになされている。このような樹脂バ ッケージ5は、エポキシ樹脂など熱硬化性樹脂を材料と し、これを溶融状態で金型内に注入する、いわゆるトラ ンスファーモールド法などによって形成されている。こ 20 のとき、絶縁基材1aのスルーホール13, 13内にも 樹脂が充填されて、樹脂パッケージ本体部51とともに アンカー部50.50も同時に形成される。

【0030】上記発光ダイオードX1では、絶縁基材1 aに形成されたスルーホール13内に、樹脂パッケージ の一部であるアンカー部50が充填形成されている。と のようなアンカー部50を樹脂パッケージ5に形成すれ は、そのアンカー効果によって、基板1に対して強固に 樹脂パッケージ5が接着されることとなる。したがっ て、たとえ発光ダイオードX1が小型化して、樹脂パッ ケージ5と基板1との間において有効に接着面積を確保 することができず、また絶縁基材1aが露出した部分の 面積を有効に確保することができなかったとしても、樹 脂パッケージ5 にアンカー部5 1 を設けた本実施形態で は、基板1から樹脂パッケージ5が剥がれてしまうとい った不具合を適切に回避することができるようになる。 【0031】次に、上記した発光ダイオードX1の製造 方法を、図3ないし図7を参照して説明する。なお、図 3は、発光ダイオードを製造するために使用するマザー 40 基板の要部を表す斜視図、図4は、図3のIV-IV線に沿 う断面図、図5は、図4のマザー基板にLEDチップを 実装し、さらにワイヤボンディングを行った状態を表す 要部斜視図、図6は、図5の状態のマザー基板の上面側 に、樹脂パッケージングを施した状態を表す要部斜視 図、図7は、図6のVII - VII 線に沿う断面図である。 【0032】上記マザー基板1Aは、たとえばBTレジ ンなどのポリイミド樹脂やガラス布によって全体として 平板状とされた基材1 bに、金属導体部2 が形成された 構成とされている。基材 1 b には、図 3 に示したように 50 同方向に平行に延びる複数のスリット14が、一定間隔

毎に形成されているとともに、図4に示したように複数のスルーホール13が適所に形成されている。また、金属導体部2は、図3および図4に示したようにスリット14の周りにおいて、基材1bの上面からスリット14の内面を介して下面側に連続しており、図4に良く表れているように銅層25、ニッケル層26、および金メッキ層27の3層とされている。この金属導体部2は、上記した発光ダイオードX1において陰極2Aおよび陽極2Bとなるべきものが、スリット14の延びる方向に連続して形成された恰好とされており、ダイボンディング領域21aやワイヤボンディング領域21b、あるいは貫通孔20a、20bも形成されている。

【0033】とのようなマザー基板1Aは、次のように して得られる。すなわち、まず、複数のスリット14が 形成された基材lbの表面に、スパッタリングや蒸着な どの手段によって銅層25を形成した後に、不用な部分 をエッチングなどにより処理する。このとき、貫通孔2 0a, 20bを同時に形成する。次に、エッチング処理 よって除去されずに残された導体の表面(銅表面)に、 電解メッキによりニッケルメッキおよび金メッキをそれ 20 ぞれ施してボンディング仕様とする。なお、銅層25、 ニッケル層26および金メッキ層27の厚みは、たとえ ぱ18~33µm、5µm程度、および0.3µm程度 とされる。さらに、基材1bにおける各貫通孔20a. 20 bに対応する部位 (直下領域) を、基材 1 b の下面 側からレーザ加工によって除去して、各貫通孔20a (20b)に連通するスルーホール13を形成する。と のとき、レーザの照射エネルギを適宜選択すれば、金属 導体部2を除去せずに、基材1bの所望部位のみを選択 的に除去してスルーホール13を形成することができ

【0034】上記した構成のマザー基板1Aでは、図5に示したように金属導体部2に設けられた各ダイボンディング領域21aに、たとえば銀ペーストを介してLEDチップ3がそれぞれ実装され、各LEDチップ3の上面と、これに対応するワイヤボンディング領域21bとの間が金線などのワイヤ4を介して電気的に接続される

【0035】次いで、LEDチップ3およびワイヤ4を封止するようにしてマザー基板1Aの上面側に、トラン 40スファーモールド法などの金型成形によって、上記した発光ダイオードX1において樹脂パッケージ5となるべき樹脂部5Aを形成して図6および図7に示したような状態とする。本実施形態においては、マザー基板1Aにおいて隣合うスリット14、14によって挟まれる部分に、スリット14の延びる方向に連続して複数のLEDチップ3が実装されていることから、これらのLEDチップ3に一括して樹脂パッケージ5が形成された恰好とされている。そして、基材1bに形成された各スルーホール13が、金属導体部2に形成された適宜の貫通孔2 50

0a(20b)と連通していることから、図7に良く表れているように上記した樹脂部5Aを形成する際に、各スルーホール13内に樹脂が充填されてアンカー部50を形成するにあたって、別途金型を設計する必要はなく、従来より用いられている金型をそのまま使用することができる。

【0036】次に、図6に2点鎖線で示したカットラインCに沿って切断することによって、発光ダイオードX1となるべきものが複数個連なった中間体が得られ、この中間体を、隣合うLEDチップ3、3の間で切断することによって図1および図2に示したような個々の発光ダイオードX1が得られる。

【0037】なお、本実施形態の発光ダイオードX1では、絶縁基材1aに形成されたスルーホール13の径よりも、陰極2Aおよび陽極2Bに形成された貫通孔20a,20bの径のほうが小さくなされていたが、図8に示した発光ダイオードX2のように、各スルーホール13の径とこれに対応する貫通孔20a,20bの径を同等程度に構成してもよい。

【0038】次に、本願発明の第2の実施形態に係る発 光ダイオードを図9を参照しつつ簡単に説明する。

【0039】本実施形態の発光ダイオードX3の基本的 な構成は、上述した第1の実施形態の発光ダイオードX 1と略同様であるが、基板1の下面側も樹脂によってバ ッケージングされて樹脂パッケージ5 Bが形成されてい る点で異なっている。基板1の下面側の樹脂部分(第2 樹脂部) 51 bは、各電極2A, 2Bの基板1の下面側 の部分と略面一とされているとともに、絶縁基材laの スルーホール13に充填された樹脂(アンカー部)50 を介して、上面側の樹脂部分(第1樹脂部)51aと一 体化している。この構成では、第1樹脂部51aおよび 第2樹脂部51bの双方ともに基板1から剥離しにくい といった利点があり、単にアンカー部50を設ける場合 と比較しても、第1樹脂部51aや第2樹脂部51bが 剥離しにくくなされている。なお、第2樹脂部51b は、トランスファーモールド法などの金型成形によっ て、第1樹脂部51aやアンカー部50と同時に形成す ることができる。

0 【0040】もちろん、図10に示した発光ダイオード X4のように、基板1の下面側から大きく突出するよう にして第2樹脂部51cを形成してもよい。この場合に も、第1樹脂部51aおよび第2樹脂部51cともに基 板1から剥がれにくいといった利点を享受することがで きる。

に、スリット14の延びる方向に連続して複数のLED 【0041】次に、本願発明の第3の実施形態に係る発 チップ3が実装されていることから、これらのLEDチ ップ3に一括して樹脂パッケージ5が形成された恰好と 【0042】本実施形態の発光ダイオードX5の基本的 されている。そして、基材1bに形成された各スルーホ な構成も、上述した第1の実施形態の発光ダイオードX ール13が、金属導体部2に形成された適宜の貫通孔2 50 1と略同様であるが、絶縁基材1aに形成されたスルー

ホール13 aが異径状とされている点において異なっている。本実施形態では、スルーホール13 aの形状が、上部開口部側から下部開口部側に向かうほど径が大きくなるような形状、すなわち下方に向かうほど拡開するような形状とされている。これにともにない、スルーホール13 aに充填された樹脂によって構成されるアンカー部50 aの形状も、下方に向かうほど径が大きくなるような形状とされている。この構成では、アンカー部50 aの基端部側のほうが径が小さくなっていることから、アンカー部50 aがスルーホール13 aから抜けにくくなっており、結局、樹脂パッケージ5が剥がれにくくなされている。なお、陰極2 A および陽極2 B に形成された貫通孔20a、20bの径は、図11に示したようにスルーホール13 aの上部開口の径と同等としてもよいし、当該上部開口部の径よりも小さくしてもよい。

【0043】もちろん、図12に示した発光ダイオード X6のように、スルーホール13bの形状を、下部開口 部側から上部開口部側に向かうほど径が大きくなるよう な形状、すなわち上方に向かうほど拡開するような形状 としてもよい。これに応じて、樹脂パッケージ5のアン カー部50bの形状は、先細状とされる。

【0044】樹脂パッケージ5を形成する際には、基板 1を上下の金型内に収容した状態で型締めし、金型内に 溶融樹脂などを注入することによって行われる。そして、基板1の上面側に樹脂パッケージ5を形成する場合には、通常、基板1の上面側から金型内に樹脂を注入することによって行われる。このため、スルーホール13 bの上部開口側の径が大きく確保されていれば、スルーホール13 b内に樹脂を充填しやすいといった利点がある。

【0045】また、図9や図10に示した発光ダイオー ドX3、X4のように、基板の下面側にも樹脂をパッケ ージングする構成において、スルーホールの形状を上方 に向かうほど拡開するような形状とすることもできる。 【0046】基板の上面および下面のそれぞれに一括し て樹脂をパッケージングする場合には、基板の上面側お よび下面側の双方に空間が形成されるようにして金型内 に基板を収容し、この状態で金型内に樹脂を注入するこ とによって行われる。基板には、上下に貫通するスルー ホールおよび貫通孔が形成されていることから、基板を 40 金型内に収容した状態では、基板の上方側の空間と下方 側の空間とがスルーホールおよび貫通孔を介して連通し ている。したがって、樹脂が充填されやすくなされたス ルーホールを有する基板では、基板の上方側の空間から 下方側の空間に、樹脂が流れ込みやすいといった利点が ある。

【0047】次に、本願発明の第4の実施形態に係る発 光ダイオードを図13を参照しつつ簡単に説明する。

【0048】本実施形態の発光ダイオードX7は、今ま 【図8】 でに説明した発光ダイオードX1~X6のように、基板 50 である。

1の長手方向の両端部がはみ出すようにして樹脂バッケージ5が形成された構成でなく、樹脂バッケージ5の平面視面積と基板1の平面視面積が同等とされている。このような構成においても、本願発明の技術思想を適用することができる。

【0049】また、図14および図15に示したように、図13の発光ダイオードX7において、基板1にハンダ付け用の凹部14を設けた構成の発光ダイオードX8も本願発明の適用範囲である。

(0050) もちろん、基板1の平面視面積が、樹脂パッケージ5のそれよりも大きくなされ、基板1の長手方向の両端部がはみ出した構成の発光ダイオードX1~X6において、基板1のはみ出した部分にハンダ付け用の凹部を設けた構成を採用することもできる。

【0051】また、スルーホールやアンカー部は、絶縁基材における陰極や陽極が形成されていない部分に形成してもよい。たとえば、図16に示した発光ダイオード X9のように、絶縁基材1aの側端から臨むようにして半円柱状のスルーホール13c内に半円柱状アンカー部50cを形成した構成としてもよい。もちろん、スルーホールは、必ずしも絶縁基材の側端から臨むようにして形成する必要はなく、絶縁基材1aの中央部よりの部位に設けても良い。【0052】さらに、上述した各実施形態においては、1つのLEDチップ3を有する発光ダイオードX1~9について説明したが、図17に示した発光ダイオードX10のように、2つのLEDチップ3、3を有するものについても、また3つ以上のLEDチップを有する発光ダイオードについても本願発明を適用できる。

30 【0053】その他、上述した各実施形態においては、 発光ダイオードX1~X10として構成された半導体装置について説明したが、本願発明の技術思想は、発光ダ イオード以外の半導体装置、たとえばレザーダイオード やトランジスタにも適用可能である。

【図面の簡単な説明】

【図1】本願発明の第1の実施形態に係る発光ダイオードを表す全体斜視図である。

【図2】図1のII-II線に沿う断面図である。

【図3】図1および図2に示した発光ダイオードを製造 0 するために使用するマザー基板の要部を表す斜視図であ る。

【図4】図3のIV-IV線に沿う断面図である。

【図5】図4のマザー基板にLEDチップを実装し、さらにワイヤボンディングを行った状態を表す要部斜視図である。

【図6】図5の状態のマザー基板の上面側に、樹脂パッケージングを施した状態を表す要部斜視図である。

【図7】図6のVII - VII 線に沿う断面図である。

【図8】図1の発光ダイオードの変形例を表す縦断面図である。

11

【図9】本願発明の第2の実施形態に係る発光ダイオードを表す縦断面図である。

【図10】図9の発光ダイオードの変形例を表す縦断面 図である。

【図11】本願発明の第3の実施形態に係る発光ダイオードを表す縦断面図である。

【図12】図11の発光ダイオードの変形例を表す縦断面図である。

【図13】本願発明の第4の実施形態に係る発光ダイオードを表す縦断面図である。

【図14】図13の発光ダイオードの変形例を表す縦断面図である。

【図15】図14のXV-XV線に沿う断面図である。

【図16】本願発明に係る発光ダイオードの変形例を表す縦断面図である。

【図17】本願発明に係る発光ダイオードの他の変形例を表す縦断面図である。

【図18】従来の発光ダイオードの一例を表す全体斜視 図である。 *【符号の説明】

X1~X10 発光ダイオード(半導体装置としての)

1 基板

la 絶縁基材

10 上面(絶縁基材の)

11 側面(絶縁基材の)

12 下面(絶縁基材の)

13, 13 a~13 c スルーホール (絶縁基材の)

2A 陰極(出力端子として基板に形成された)

10 2a 陰極上面部 (陰極の)

20a, 20A 貫通孔 (陰極上面部の)

2 B 陽極 (入力端子として基板に形成された)

2b 陽極上面部 (陽極の)

20b, 20B 貫通孔 (陽極上面部の)

3 LEDチップ (半導体チップとしての)

4 ワイヤ

5,5B 樹脂パッケージ

50,50a,50b アンカー部 (樹脂パッケージの)

【図1】

【図7】

【図3】

【図5】

【図4】

【図6】

【図11】

【図12】

[図14]

【図15】

【図16】

【図18】

【図17】

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.