See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/223405295

# Comparison between the dynamics of lipid/gramicidin A systems in the lamellar and hexagonal phases: A solid-state 13C NMR study

| ARTICLE IN BIOCHIMICA ET BIOPHYSICA ACTA : JAI           | NUARY | 1999 |
|----------------------------------------------------------|-------|------|
| Impact Factor: 4.66 · DOI: 10.1016/S0005-2736(98)00193-X |       |      |

| CITATIONS | READS |
|-----------|-------|

CITATIONS

7 17

### 3 AUTHORS, INCLUDING:



144 PUBLICATIONS 4,382 CITATIONS

SEE PROFILE



#### Biochimica et Biophysica Acta 1415 (1998) 181-192



# Comparison between the dynamics of lipid/gramicidin A systems in the lamellar and hexagonal phases: a solid-state <sup>13</sup>C NMR study

Mario Bouchard <sup>1</sup>, Christine Le Guernevé <sup>2</sup>, Michèle Auger \*

Département de Chimie, Centre de Recherche en Sciences et Ingénierie des Macromolécules, Université Laval, Québec G1K 7P4, Canada

Received 30 July 1998; received in revised form 8 October 1998; accepted 8 October 1998

#### **Abstract**

We have investigated the effect of gramicidin A on the dynamics of two model membranes: dimyristoylphosphatidylcholine (DMPC) in the lamellar phase at a lipid-to-peptide molar ratio of 10:1 and dioleoylphosphatidylcholine (DOPC) in the hexagonal  $H_{II}$  phase at a lipid-to-peptide molar ratio of 5:1. Natural abundance  $^{13}$ C nuclear magnetic resonance (NMR) spectroscopy was used in combination with magic angle spinning to increase the spectral resolution, therefore allowing the different regions of the lipid bilayers to be investigated from the same spectra.  $^{31}$ P NMR was also used to detect and confirm the formation of the DOPC  $H_{II}$  phase in the presence of gramicidin A. In order to examine the effect of gramicidin A on both the fast and slow motions of DMPC and DOPC, the  $^{1}$ H spin-lattice relaxation times in the laboratory frame ( $HT_{1p}$ ) were calculated for each resolved protonated lipid resonance in the  $^{13}$ C spectra. For both DMPC and DOPC, we found that the presence of gramicidin A does not significantly affect the fast motions of the lipid acyl chains but increases slightly the fast motions of the polar head group. However, the  $HT_{1p}$  are significantly decreased, this effect being more pronounced for DOPC most likely due to a decrease in the rate of the lipid lateral diffusion. © 1998 Elsevier Science B.V. All rights reserved.

Keywords: 13C nuclear magnetic resonance; 31P nuclear magnetic resonance; Peptide; Relaxation; Lipid bilayer

#### 1. Introduction

Several physical and biological functions of membranes are thought to depend upon the structure, organization and dynamics of the lipid molecules.

\* Corresponding author. Fax: (418) 6567916; E-mail: michele.auger@chm.ulaval.ca In this respect, considerable attention has been given to the ability of lipids to adopt non-bilayer organizations in the presence of peptides or proteins [1–8]. In addition, this ability of lipids to adopt non-bilayer structures has been implied to be of importance for various functional membrane processes such as transbilayer movements of lipids and membrane fusion [1].

Gramicidin A, a 15 amino acid linear hydrophobic peptide which can form transmembrane channels that induce permeability to monovalent cations in biological membranes [9], is one of the obvious candidates to study the effect of a membrane peptide on the polymorphism and dynamics of lipids since it

<sup>&</sup>lt;sup>1</sup> Present address: Oxford Centre for Molecular Sciences, New Chemistry Laboratory, University of Oxford, Oxford, OX1 3QT, UK.

<sup>&</sup>lt;sup>2</sup> Present address: Laboratoire des Polymères, Institut des Produits de la Vigne, INRA, 2 place Viala, 34060 Montpellier, France

induces non-bilayer organizations in different phosphatidylcholine systems [1,10–14]. For example, gramicidin A at high concentration in unsaturated dioleoylphosphatidylcholine (DOPC) (lipid-to-peptide molar ratios of 25:1 and lower) induces H<sub>II</sub> phase formation [11]. In addition, gramicidin is known to induce H<sub>II</sub> phase formation in erythrocyte membranes [5]. On the other hand, Rajan and coworkers [15] have shown by <sup>31</sup>P nuclear magnetic resonance (NMR) that in saturated dimyristoylphosphatidylcholine (DMPC) systems, very high concentrations of gramicidin A (DMPC/gramicidin A molar ratio <4:1) can induce non-bilayer organization, namely isotropic structures. This observation was corroborated by small X-ray diffraction measurements [14]. At lower gramicidin A concentration, DMPC remains in the lamellar phase.

Static solid-state NMR studies of the interaction between gramicidin and DMPC bilayers in the lamellar phase have shown that the presence of the peptide significantly affects the slow motions of the lipid acyl chains [16]. On the other hand, the induction of a DOPC  $H_{\rm II}$  phase by gramicidin A is accompanied with an aggregation of the peptide and this aggregation has been shown to be essential for the  $H_{\rm II}$  phase formation. Moreover, the aggregation of gramicidin A may lead to a barrier for the lipid lateral diffusion in the induced  $H_{\rm II}$  phase [1,4]. It is therefore of interest to investigate in detail the dynamics of lipid membranes in the presence of gramicidin A, both in the lamellar and hexagonal phases.

Several techniques have been used to study the dynamics of lipid membranes. Among these techniques, <sup>13</sup>C NMR spectroscopy [16–20] is well suited for dynamic studies since it allows the simultaneous investigation of different regions of the lipid molecules, i.e. the polar head group, the glycerol backbone and the acyl chains. Furthermore, a cross-polarization (CP) method has been developed in which the combined use of both magic angle spinning ramped-amplitude cross-polarization (MAS) and (RAMP-CP) suppresses Hartmann-Hahn matches and improves the signal-to-noise ratio of some of the carbon resonances [21,22], therefore facilitating the investigation of membrane systems by <sup>13</sup>C natural abundance NMR. Moreover, NMR spin-lattice relaxation measurements are valuable techniques to obtain information on both the rate

and type of motions that occur in bilayers. The spin-lattice relaxation times in the laboratory frame  $(T_1)$  are sensitive to high frequency motions  $(10^8-10^{11} \text{ s}^{-1})$ , such as the internal rotations in the acyl chains and the rapid reorientation of the lipid molecules about their long axis. In contrast, spin-lattice relaxation times in the rotating frame  $(T_{1p})$  are sensitive to lower frequency motions  $(10^4-10^6 \text{ s}^{-1})$ , such as the wobbling of the lipid molecules [23–25].

In the present study, we have investigated the dynamics of DMPC/gramicidin and DOPC/gramicidin systems in the lamellar and hexagonal phase, respectively, by <sup>1</sup>H relaxation time measurements from natural abundance <sup>13</sup>C NMR spectra. The spectra were acquired with the magic angle spinning technique in order to investigate the dynamics in the different regions of the lipid bilayers. Moreover, <sup>31</sup>P NMR has been used to confirm the phase behavior of DOPC in the presence of gramicidin A at a lipid-to-peptide molar ratio of 5:1. This molar ratio was chosen since it has been shown that at a DOPC-to-gramicidin molar ratio of 10:1, a lamellar component is also present in addition to the hexagonal phase [13,26]. Addition of gramicidin to DOPC at a lipid-to-peptide molar ratio of 5:1 allows the formation of a pure DOPC hexagonal phase and, therefore, the relaxation times measured solely reflect DOPC in this phase. The results obtained by <sup>31</sup>P NMR confirm the formation of a pure DOPC H<sub>II</sub> phase in the presence of the peptide. In addition, the combination of HT<sub>1</sub> and HT<sub>1p</sub> measurements indicates that gramicidin A does not significantly affect the fast motions present in DMPC or DOPC acyl chains but reduces the rate and/or amplitude of slow motions present in both lipid systems, the effect being more pronounced for DOPC in the H<sub>II</sub> phase, possibly due to peptide aggregation.

#### 2. Material and methods

## 2.1. Materials

DMPC and DOPC were obtained from Sigma (St. Louis, MO) and used without any purification. Gramicidin A was purchased from Fluka Chemika-Biochemica (Ronkonkoma, NY) and trifluoroethanol (TFE) was purchased from Sigma.

## 2.2. Pure DMPC and DMPC/gramicidin A samples

The pure DMPC sample was prepared by adding H<sub>2</sub>O (50 wt%) to the lipid. The DMPC/gramicidin A sample was prepared at a 10:1 molar ratio by codissolving the appropriate amount of peptide and lipid in TFE. To obtain a homogeneous peptide/lipid system, the sample was incubated a few minutes at 52°C and shaken on a vortex mixer at least a few times during the incubation. After the incubation, TFE was evaporated with a nitrogen stream followed by high vacuum pumping overnight to ensure the complete evaporation of the solvent. The sample was then hydrated (50 wt%) with pure  $H_2O$ . Both the pure DMPC and DMPC/gramicidin A samples were submitted to several cycles of heating (52°C), vortex shaking and cooling (0°C) after hydration.

# 2.3. Pure DOPC and DOPC|gramicidin A samples

The pure DOPC sample was prepared by adding H<sub>2</sub>O (50 wt% of lipid) to the lipid and was submitted to several cycles of heating (52°C), vortex shaking, and cooling (0°C). The preparation of the DOPC/gramicidin A (5:1 molar ratio) sample was based on the method of Killian et al. [2]. More specifically, the appropriate amount of peptide in TFE was added to a lipid dispersion in H<sub>2</sub>O and excess water was added to the sample. The sample was freezedried in liquid nitrogen and lyophilized for 2 days to ensure complete evaporation of TFE and water. The resulting powder was then hydrated (50 wt%) with H<sub>2</sub>O and submitted to several cycles of heating (52°C), vortex shaking and cooling (0°C).

## 2.4. <sup>13</sup>C NMR measurements

The <sup>13</sup>C MAS NMR spectra were acquired on a Bruker ASX 300 solid-state NMR spectrometer (Bruker Canada, Milton, ON) operating at a frequency of 75.4 MHz for <sup>13</sup>C and a frequency of 300.0 MHz for <sup>1</sup>H. A broadband/<sup>1</sup>H dual frequency 4 mm magic angle spinning probe head was used for all experiments (Bruker Canada). The spectra were acquired at a temperature of 30°C and with a spinning speed of 2.000 ± 0.002 kHz.

The <sup>13</sup>C spectra were acquired with the cross-po-

larization sequence [27] while the HT<sub>1</sub> measurements were carried out with the inversion recovery method [28] coupled to the cross-polarization sequence. The pulse sequence used for the HT<sub>1p</sub> experiments has been described elsewhere [22]. For all these experiments, the conventional cross-polarization was replaced by RAMP-CP on the proton channel [21]. More specifically, the matched spin-lock field period began with a 34 kHz proton spin-lock pulse and the amplitude was increased up to 69 kHz. The <sup>13</sup>C spinlock field was set to 47 kHz. The CP contact time was 15 ms for the pure lipids and the lipid/GA samples, unless indicated otherwise [22]. The 90° proton pulse length was typically 5.5 µs and protons were decoupled during data acquisition. The spectra (4 K data points) were acquired with an acquisition time of 0.04 s and a spectral width of 50 kHz. The recycle delay was set to 8 s for the 1D spectra and the HT<sub>1</sub> experiments and to 10 s for the  $HT_{1p}$  experiments. Between 400 and 720 scans were acquired for each 1D spectrum while 1200-1600 scans were recorded for each spectrum in the relaxation experiments. The spectra were zero-filled to 16 K points and a 10 Hz line broadening was applied to all spectra. The chemical shifts were referenced relative to external tetramethylsilane.

Since long relaxation experiments are particularly sensitive to changes in experimental conditions, short and long  $\tau$  values were alternated in the relaxation experiments. Furthermore, a minimum of 12 different delay values were used in each experiment. The uncertainty in the  $T_1$  values arising from this procedure is approx. 5%, estimated from replica experiments.

#### 2.5. <sup>31</sup>P NMR measurements

The <sup>31</sup>P spectra were acquired at 121.5 MHz on a Bruker ASX-300 (Bruker Canada) operating at a <sup>1</sup>H frequency of 300.0 MHz. Experiments were carried out with a broadband/<sup>1</sup>H dual frequency 4 mm probe head (Bruker Canada) under conditions of proton decoupling. The free induction decays (1 K data points) were recorded with a spin echo sequence with a 90° pulse length of 5.0 μs, a delay between pulses of 30 μs and a 5 s recycle delay. The temperature was controlled to within ±0.5°C and the chemical shifts expressed in parts per millions (ppm) were

referenced relative to the signal of phosphoric acid at 0 ppm.

#### 3. Results and discussion

# 3.1. Dynamics of the DMPC/gramicidin A system in the lamellar phase

We have first investigated the effect of gramicidin A at a lipid-to-peptide molar ratio of 10:1 on the dynamics of DMPC in the lamellar phase. Fig. 1 shows the <sup>13</sup>C CPMAS NMR spectra of the pure DMPC multilamellar dispersion (A) and the DMPC/gramicidin A mixture (10:1 molar ratio) (B) at 30°C in the liquid-crystalline lamellar phase. For





Fig. 1. <sup>13</sup>C NMR spectra at 30°C of (A) pure DMPC and (B) DMPC in the presence of gramicidin A at a lipid-to-peptide molar ratio of 10:1. The inset represents the expansion of the spectral region between 50 and 75 ppm. The choline head group carbons are indicated by Greek letters, the glycerol backbone carbons are underlined and the remaining carbons belong to the acyl chains.



Fig. 2. HT<sub>1</sub> at 30°C for the DMPC resonances in pure DMPC (black bars) and DMPC in the presence of gramicidin A at a lipid-to-peptide molar ratio of 10:1 (open bars). The abscissa represents the different protonated carbons as defined in Fig. 1.

each spectrum, well resolved <sup>13</sup>C peaks can be observed and assigned to the three regions of the lipid molecules, i.e. the polar head group, the glycerol backbone and the acyl chains. The complete chemical shift assignments for pure DMPC and DMPC in the presence of gramicidin A are given in Table 1 and are in agreement with the assignments of Forbes et al. [29] and Le Guernevé and Auger [22]. In the spectrum of DMPC in the presence of gramicidin A,

Table 1 Chemical shift assignments (in ppm) for pure DMPC and DMPC in the presence of gramicidin A at 30°C at a lipid-to-peptide molar ratio of 10:1

|                    | DMPC  | DMPC/gramicidin A |
|--------------------|-------|-------------------|
| Polar head group   |       |                   |
| Choline-Cy         | 54.8  | 54.9              |
| Choline-Cβ         | 66.8  | 66.9              |
| Choline-Cα         | 60.3  | 60.3              |
| Interfacial region |       |                   |
| Glycerol-C3        | 64.5  | 64.6              |
| Glycerol-C2        | 71.4  | 71.9              |
| Glycerol-C1        | 63.8  | 63.8              |
| Hydrocarbon chains |       |                   |
| Chain-C1           | 174.2 | 174.3             |
| Chain-C2           | 34.8  | 34.9              |
| Chain-C3           | 25.9  | 25.8              |
| Chain-C4 to C11    | 31.2  | 30.8              |
| Chain-C12          | 33.0  | 32.8              |
| Chain-C13          | 23.5  | 23.4              |
| Chain-C14          | 14.5  | 14.6              |
| Gramicidin A       |       |                   |
| Cα-ethanolamine    |       | 60.9              |
|                    |       |                   |

a new small resonance at 61 ppm can be observed (Fig. 1) and has been assigned to the  $C\alpha$  of the peptide ethanolamine group [26].

The proton spin-lattice relaxation times in the laboratory frame (HT<sub>1</sub>) at 30°C of the DMPC resonances for pure DMPC and DMPC in the presence of gramicidin A are given in Table 2 and illustrated in Fig. 2. For pure DMPC, the HT<sub>1</sub> for the head group and the glycerol backbone are approx. 300 ms with slightly higher values (350 ms) for the Cy carbon of the head group and the C1 carbon of the glycerol backbone. Higher values are also observed for the acyl chain carbons. In addition, the relaxation time values increase along the chain from the interfacial region to the terminal methyl group. These results are in agreement with results of previous groups and suggest that the fast motions responsible for spin-lattice relaxation are more restricted for the polar head group and glycerol backbone nuclei than for the carbons in the acyl chains [22,23,30,31]. Furthermore, the results obtained confirm the idea of a motional gradient extending from the glycerol backbone region in both directions. Moreover, previous <sup>1</sup>H relaxation measurements carried out on DMPC at higher temperature (50°C) showed that longer HT<sub>1</sub> values are obtained with increasing temperature, indicating that the frequencies of the motions contributing to the HT<sub>1</sub> relaxation are higher than the <sup>1</sup>H Larmor frequency (300 MHz) [22].

When gramicidin A is added to the lipid dispersion, no significant change in the  $HT_1$  is observed for the majority of the protonated carbons of DMPC, with the exception of the choline  $C\alpha$  and  $C\beta$  carbons, as well as the glycerol C2 carbon. This indicates that gramicidin A has no significant effect on the fast motions of the DMPC acyl chains but that the fast motions of the polar head group are slightly enhanced, most likely due to the increased head group spacing caused by the incorporation of the peptide between the lipid acyl chains. These results are in agreement with previous studies that showed that proteins and peptides have little or no effect on high frequency motions of lipid acyl chains in membranes [16,32–35].

The proton spin-lattice relaxation times in the rotating frame ( $HT_{1\rho}$ ) of the DMPC resonances in the absence and presence of gramicidin A at 30°C are given in Table 2 and illustrated in Fig. 3A. Fig. 3B also gives the relative variation of the  $HT_{1\rho}$  observed for the DMPC atom sites in the presence of gramicidin A ((( $HT_{1\rho}$  DMPC)/gramicidin A- $HT_{1\rho}$  DMPC)/ $HT_{1\rho}$  DMPC)×100). It can be observed that the incorporation of gramicidin A into the DMPC bilayer causes a decrease of the  $HT_{1\rho}$  for all the carbon nuclei with the exception of the  $C\gamma$  carbon of the polar head group. Moreover, the decrease in the  $HT_{1\rho}$  values is more pronounced for the carbons of the acyl chains and the glycerol backbone

Table 2 HT<sub>1</sub> and HT<sub>10</sub> for pure DMPC and DMPC in the presence of gramicidin A at  $30^{\circ}$ C at a lipid-to-peptide molar ratio of 10:1

|                    | HT <sub>1</sub> (ms) | HT <sub>1</sub> (ms) |      |         |
|--------------------|----------------------|----------------------|------|---------|
|                    | DMPC                 | DMPC/GA              | DMPC | DMPC/GA |
| Polar head group   |                      |                      |      |         |
| Choline-Cy         | 344                  | 348                  | 141  | 157     |
| Choline-Cβ         | 287                  | 395                  | 89   | 62      |
| Choline-Cα         | 295                  | 484                  | 86   | 65      |
| Interfacial region |                      |                      |      |         |
| Glycerol-C3        | 305                  | 339                  | 39   | 16      |
| Glycerol-C2        | 295                  | 405                  | 41   | 21      |
| Glycerol-C1        | 362                  | 426                  | 33   | 17      |
| Hydrocarbon chains |                      |                      |      |         |
| Chain-C2           | 401                  | 455                  | 54   | 27      |
| Chain-C3           | 412                  | 466                  | 58   | 28      |
| Chain-C4 to C11    | 470                  | 479                  | 64   | 34      |
| Chain-C12          | 556                  | 505                  | 78   | 47      |
| Chain-C13          | 578                  | 536                  | 95   | 59      |
| Chain-C14          | 647                  | 579                  | 109  | 62      |

(about 40–50%), compared to the effect observed in the polar head group (about 20–30%).

The observed decrease of the HT<sub>1p</sub> values in the presence of gramicidin A could either reflect a decrease of the frequency of a motion near or above 10<sup>8</sup> Hz or an enhancement and/or the presence of a new low frequency motion. However, previous studies have shown that a reduction in the HT<sub>10</sub>, not matched by a similar reduction in the HT<sub>1</sub>, is indicative of a change in the amplitude of a motion within the membrane at low rate which was present but not to the same extent in the pure lipid membrane as opposed to a decrease in the rate of a high frequency motion [16]. The results obtained in the present study are in agreement with previous static <sup>13</sup>C NMR studies on the effect of gramicidin on DMPC [16,36,37]. In particular, Cornell and coworkers [16] have shown that the incorporation of the peptide in DMPC bilayers decreases significantly the HT<sub>1p</sub> of the broad CH<sub>2</sub> resonance, indicating an increase of the lipid slow motions.

One of the considerable advantages of the magic angle spinning technique used in the present study is the increased spectral resolution, therefore allowing the distinction of the dynamics in different regions of the lipid bilayer. Hence, our results indicate that the slow motions in the polar head group region of DMPC bilayers are less affected by the interaction with gramicidin A while the fast motions are the most affected in this region. On the other hand, the most important decrease in the HT<sub>1p</sub> values in the presence of gramicidin A is observed for the carbons of the glycerol backbone and the first two protonated carbons of the acyl chains. This is most likely due to the formation of hydrogen bonds between the lipid carbonyl groups and the indole NH of the tryptophan residues in the peptide [38,39], which would restrict motions such as the wobble of the lipid molecules in the interfacial region of the bilayer.

# 3.2. Dynamics of the DOPC|gramicidin A system in the hexagonal phase

We have also investigated the dynamics of unsaturated phosphatidylcholine bilayers in the inverse hexagonal phase, induced by the presence of gramicidin A at a lipid-to-peptide molar ratio of 5:1. Solid-state <sup>31</sup>P NMR spectroscopy, a technique well suited to

study the phase behavior of lipid membranes [1,40-43], was first used to detect and confirm the formation of a hexagonal H<sub>II</sub> phase in this system. Fig. 4 presents the <sup>31</sup>P NMR spectra at 30°C of pure DOPC (A) and DOPC in the presence of gramicidin A at a lipid-to-peptide molar ratio of 5:1 (B). The spectrum of pure DOPC, with a chemical shift anisotropy (CSA) of 49 ppm, is typical of lipids in the lamellar phase [40,43]. Addition of gramicidin A at a lipid-to-peptide molar ratio of 5:1 gives rise to a spectrum with a lineshape characteristic of a pure hexagonal lipid phase, with a low-field peak and a high-field shoulder as well as a CSA of 25 ppm. This reduction of the chemical shift anisotropy by a factor of two compared to the lamellar phase is due to the additional motional averaging experienced by the lipids in the hexagonal phase, namely the lateral diffusion around the axes of the tubes [1,40,43]. The <sup>31</sup>P NMR spectra obtained in the present study are in full agreement with previous results obtained by Killian and coworkers on the study of hexagonal phase formation induced by gramicidin A [1,4].



Fig. 3. (A)  $HT_{1p}$  at 30°C for the DMPC resonances in pure DMPC (black bars) and DMPC in the presence of gramicidin A at a lipid-to-peptide molar ratio of 10:1 (open bars). (B) Relative variation (((HT<sub>1p</sub> DMPC/gramicidin A–HT<sub>1p</sub> DMPC)/HT<sub>1p</sub> DMPC)×100) of the HT<sub>1p</sub> for the DMPC resonances. The abscissa represents the different carbons as defined in Fig. 1.



Fig. 4. <sup>31</sup>P NMR spectra at 30°C of (A) pure DOPC and (B) DOPC in the presence of gramicidin A at a lipid-to-peptide molar ratio of 5:1.

Fig. 5 presents the <sup>13</sup>C NMR spectra of pure DOPC (A) and DOPC in the presence of gramicidin A at a lipid-to-peptide molar ratio of 5:1 (B) at 30°C. Those spectra were acquired with contact times of 15 ms and 5 ms for pure DOPC and DOPC:GA, respectively. As for pure DMPC, carbon

Table 3 Chemical shift assignments (in ppm) for pure DOPC and DOPC in the presence of gramicidin A at 30°C at a lipid-topeptide molar ratio of 5:1

|                    | DOPC  | DOPC/gramicidin A |
|--------------------|-------|-------------------|
| Polar head group   |       |                   |
| Choline-Cγ         | 54.8  | 54.9              |
| Choline-Cβ         | 66.8  | 66.8              |
| Choline-Cα         | 60.2  | 60.3              |
| Interfacial region |       |                   |
| Glycerol-C3        | 64.5  |                   |
| Glycerol-C2        | 71.4  | 71.1              |
| Glycerol-C1        | 63.8  |                   |
| Hydrocarbon chains |       |                   |
| Chain-C1           | 174.2 | 174.2             |
| Chain-C2           | 34.8  | 34.7              |
| Chain-C3           | 25.8  | 25.4              |
| Chain-C4 to C7     | 30.3  | 30.1              |
| Chain-C8 and C11   | 28.0  | 27.9              |
| Chain-C9 and C10   | 130.3 | 130.2             |
| Chain-C12 to C15   | 30.3  | 30.1              |
| Chain-C16          | 32.8  | 32.7              |
| Chain-C17          | 23.4  | 23.4              |
| Chain-C18          | 14.7  | 14.7              |
| Gramicidin A       |       |                   |
| Cα-ethanolamine    |       | 60.8              |

resonances from the different regions of the phospholipid molecule can be observed and assigned to specific protonated carbons of the lipid. The spectral attribution has been determined according to the assignments of Batchelor et al. [44] for oleic acid and those of Murari et al. [45] for the DOPC head group and glycerol backbone. Table 3 presents our complete <sup>13</sup>C chemical shift assignments for DOPC.

The peak associated to the  $C\alpha$  carbon of the ethanolamine group of gramicidin A can also be observed in the DOPC/gramicidin spectrum (Fig. 5B). Moreover, we notice in this spectrum a large decrease of the intensity of the three lipid resonances associated to the glycerol carbons (C1, C2 and C3) and the resonances of the C2 and C3 carbons of the





Fig. 5. <sup>13</sup>C NMR spectra at 30°C of (A) pure DOPC and (B) DOPC in the presence of gramicidin A at a lipid-to-peptide molar ratio of 5:1. The inset represents the expansion of the spectral region between 50 and 75 ppm. The choline head group carbons are indicated by Greek letters, the glycerol backbone carbons are underlined and the remaining carbons belong to the acyl chains.



Fig. 6. HT<sub>1</sub> at 30°C for the DOPC resonances in pure DOPC (black bars) and DOPC in the presence of gramicidin A at a lipid-to-peptide molar ratio of 5:1 (open bars). The abscissa represents the different protonated carbons as defined in Fig. 5.

acyl chains compared to the pure DOPC spectrum. This decrease in intensity is most likely associated to a large decrease of the spin-lattice relaxation times in the rotating frame ( $HT_{1p}$ ) for the lipids in the presence of gramicidin A, as discussed below. In fact, the spectrum obtained with a longer contact time of 15 ms did not show any signal for these carbon reso-

Table 4  $HT_1$  and  $HT_{1p}$  for pure DOPC and DOPC in the presence of gramicidin A at 30°C at a lipid-to-peptide molar ratio of 5:1

|                    | HT <sub>1</sub> (ms) |         | HT <sub>1p</sub> (ms) |         |
|--------------------|----------------------|---------|-----------------------|---------|
|                    | DOPC                 | DOPC/GA | DOPC                  | DOPC/GA |
| Polar head group   |                      |         |                       |         |
| Choline-Cγ         | 383                  | 464     | 128                   | 44      |
| Choline-Cβ         | 357                  | 459     | 70                    | 20      |
| Choline-Cα         | 365                  | 479     | 80                    | 22      |
| Interfacial region |                      |         |                       |         |
| Glycerol-C3        | 305                  | _       | 38                    | _       |
| Glycerol-C2        | 371                  | _       | 39                    | _       |
| Glycerol-C1        | 380                  | _       | 33                    | _       |
| Hydrocarbon chains |                      |         |                       |         |
| Chain-C2           | 398                  | _       | 52                    | _       |
| Chain-C3           | 406                  | _       | 60                    | _       |
| Chain-C4 to C7     | 453                  | 487     | 88                    | 27      |
| Chain-C8 and C11   | 433                  | 461     | 83                    | 15      |
| Chain-C9 and C10   | 439                  | 487     | 89                    | 14      |
| Chain-C12 to C15   | 453                  | 487     | 88                    | 27      |
| Chain-C16          | 526                  | 513     | 149                   | 43      |
| Chain-C17          | 546                  | 576     | 193                   | 49      |
| Chain-C18          | 619                  | 590     | 332                   | 66      |



Fig. 7. (A)  $HT_{1p}$  at 30°C for the DOPC resonances in pure DOPC (black bars) and DOPC in the presence of gramicidin A at a lipid-to-peptide molar ratio of 5:1 (open bars). (B) Relative variation (((HT<sub>1p</sub> DOPC/gramicidin A–HT<sub>1p</sub> DOPC)/HT<sub>1p</sub> DOPC)×100) of the  $HT_{1p}$  for the DOPC resonances. The abscissa represents the different carbons as defined in Fig. 5.

nances, indicating the complete decay of the signal during the contact time.

Table 4 presents the <sup>1</sup>H spin-lattice relaxation times in the laboratory frame for pure DOPC and DOPC in the presence of gramicidin A at a lipid-topeptide molar ratio of 5:1 at 30°C. The results are also illustrated in Fig. 6. The small intensities of the resonances attributed to the glycerol carbons (C1, C2 and C3) and to the C2 and C3 carbons of the acyl chains in the DOPC/GA system, even at small contact times, did not permit the measurements of the relaxation times for these atom sites. The HT<sub>1</sub> values of the pure DOPC atom sites show a similar behavior as the HT<sub>1</sub> of pure DMPC and the gradient extending from the glycerol backbone to both directions (polar head group and acyl chains) can also be observed in the unsaturated system, indicating that the fast motions are more restricted in the interfacial region of the bilayer. However, the HT<sub>1</sub> values obtained for the resonances of the polar head group are slightly higher in the unsaturated system.

Addition of gramicidin A to pure DOPC does not

affect significantly the HT<sub>1</sub> values of the lipid acyl chains but the values obtained for the polar head group are slightly increased, as observed in DMPC bilayers. This suggests that even though the incorporation of gramicidin A into DOPC bilayers affects the phase behavior of the lipid membrane (vide supra), it has little effect on the lipid acyl chain high frequency motions, as was also observed for the DMPC/gramicidin A system. This is in agreement with several studies which have suggested that the fast motional order parameter is independent of the lipid organization [46–49].

Fig. 7A shows the  $HT_{1p}$  for the DOPC resonances for pure DOPC and for DOPC in the presence of gramicidin A while Fig. 7B gives the relative variation (((HT<sub>1 $\rho$ </sub> DOPC/gramicidin A-HT<sub>1 $\rho$ </sub> DOPC)/  $HT_{1\rho}$  DOPC)×100) of the  $HT_{1\rho}$  for the DOPC carbon sites in the presence of gramicidin A. The results show the behavior of the  $HT_{1p}$  for the two different DOPC lipid organizations studied: the lamellar phase and the hexagonal H<sub>II</sub> phase. Changing the phase of DOPC by adding gramicidin A greatly reduces the  $HT_{1p}$  values by about 60–70% for both the head group and acyl chain resonances. This suggests that the motion of the whole lipid molecule is affected by the presence of gramicidin A, as opposed to the more pronounced effect observed on the acyl chains in the DMPC/gramicidin A system. As discussed before, a reduction in the  $HT_{1p}$ , not matched by a decrease in the HT<sub>1</sub> values, indicates the introduction and/or enhancement of a low frequency motion. However, since the addition of gramicidin A at a lipid-to-peptide molar ratio of 5:1 induces a change in the phospholipid organization, it cannot be concluded that the observed reduction in the HT<sub>10</sub> is solely due to the interaction between the lipids and gramicidin A.

It is believed and well accepted that the induction of a DOPC H<sub>II</sub> phase by gramicidin A is accompanied by an aggregation of the peptide and that this aggregation is essential for the H<sub>II</sub> phase formation. A model was proposed in which gramicidin in its channel conformation spans the distance between two adjacent tubes in the H<sub>II</sub> phase so that the tryptophan residues are located at the lipid-water interface and the peptide molecules can form linear aggregates in a direction parallel to the tubes [1]. A similar model has also been proposed for a mem-

brane-spanning  $\alpha$ -helical peptide (WALP16) [2,3] and this has been shown to be a consequence of a hydrophobic mismatch between the peptide and the phosphatidylcholine molecules. The tryptophan residues, because of their preference for the lipid-water interface, were shown to be crucial for these effects of hydrophobic mismatch on lipid organization [1–3].

In this model, the aggregation of gramicidin A has been suggested to lead to a barrier for the lipid lateral diffusion in the induced H<sub>II</sub> phase [1,2,4]. In addition, it has been shown that the proportion of <sup>31</sup>P NMR lineshape characteristic of the H<sub>II</sub> phase in the DOPC/gramicidin A system gradually decreases upon decreasing temperature due to the rate of lateral diffusion of the lipids about the axes of the tubes becoming too slow on the NMR time scale to result in motional averaging [1]. This effect is, however, not observed for pure lipid systems in the hexagonal phase, indicating that the loss of the hexagonal phase lineshape observed in the DOPC/gramicidin spectrum at low temperature is solely due to the presence of the peptide.

Even though the lineshape of the DOPC/gramicidin  $^{31}P$  NMR spectrum at 30°C is still characteristic of a  $H_{\rm II}$  phase, a decrease in the rate of lipid lateral diffusion down to about  $10^4$ – $10^5$  s<sup>-1</sup> could increase significantly the contribution of this motion to the spin-lattice relaxation in the rotating frame and therefore explain the large decrease in the  $HT_{1\rho}$  values observed in the present study, compared to those obtained for the pure DOPC multilamellar dispersions. In addition, the presence of the tryptophan residues at the lipid-water interface could account for the very significant decrease in the  $HT_{1\rho}$  values observed in this region of the bilayer.

#### 4. Conclusions

We have shown in the present study that <sup>13</sup>C natural abundance NMR spectroscopy can give detailed information about the dynamics of lipid-peptide systems in both the lamellar and hexagonal phases. Both the fast and slow motions were investigated through the measurements of proton spin-lattice relaxation times in the laboratory and rotating frames, respectively. In addition, the use of the magic angle spinning technique increases the spectral resolution

and allows the different regions of the lipid bilayers to be investigated from the same spectrum. The results indicate that the presence of gramicidin A does not significantly affect the fast motions of the acyl chains in lipid systems, both in the lamellar and hexagonal phases, but increases slightly the fast motions of the polar head group. On the other hand, the rate and/or amplitudes of slow time scale motions are significantly decreased, the effect being more important for the lipid-peptide system in the hexagonal H<sub>II</sub> phase in which the aggregation of the peptide has been shown to act as a barrier for the lipid lateral diffusion. Since the presence of membrane proteins has been shown to affect predominantly the lipid slow motions [24,25,33,35–37], it would be interesting to apply the approach presented in this paper to the study of lipid dynamics in the presence of other intrinsic membrane proteins.

### Acknowledgements

The authors would like to thank Dr. J. Antoinette Killian for helpful discussions. This research was supported by research grants (to M. Auger) from the Natural Sciences and Engineering Research Council of Canada and by the Fonds pour la Formation de Chercheurs et l'Aide à la Recherche (FCAR) from the Province of Quebec. M.B. would also like to thank FCAR for the award of a postgraduate scholarship.

#### References

- [1] J.A. Killian, Gramicidin and gramicidin-lipid interactions, Biochim. Biophys. Acta 1113 (1992) 391–425.
- [2] J.A. Killian, I. Salemink, M.R.R. de Planque, G. Lindblom, R.E. Koeppe, D.V. Greathouse, Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane α-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophan, Biochemistry 35 (1996) 1037–1045.
- [3] S. Morein, E. Strandberg, J.A. Killian, S. Persson, G. Arvidson, R.E. Koeppe II, G. Lindbloom, Influence of membrane-spanning α-helical peptides on the phase behavior of the dioleoylphosphatidylcholine/water system, Biophys. J. 73 (1997) 3078–3088.
- [4] H. Tournois, J.A. Killian, D.W. Urry, O.R. Bokking, J. de Gier, B. de Kruijff, Solvent determined conformation of gra-

- micidin affects the ability of the peptide to induce hexagonal H<sub>II</sub> phase formation in dioleoylphosphatidylcholine model membranes, Biochim. Biophys. Acta 905 (1987) 222–226.
- [5] H. Tournois, J. Leunisson-Bijvelt, C.W.M. Haest, J. de Gier, B. de Kruijff, Gramicidin-induced hexagonal H<sub>II</sub> phase formation in erythrocyte membranes, Biochemistry 26 (1987) 6613–6621.
- [6] P.L. Yeagle, R.M. Epand, C.D. Richardson, T.D. Flanagan, Effects of the 'fusion peptide' from measles virus on the structure of N-methyl dioleoylphosphatidyl-ethanolamine membranes and their fusion with Sendai virus, Biochim. Biophys. Acta 1065 (1991) 49–53.
- [7] P.I. Watnick, S.I. Chan, Hydrophobic mismatch in gramicidin A'/lecithin systems, Biochemistry 29 (1990) 6215–6221.
- [8] W.J. Jensen, J.S. Schutzbach, Activation of mannosyltransferase II by nonbilayer phospholipids, Biochemistry 23 (1984) 1115–1119.
- [9] D.W. Urry, Ionic mechanisms and selectivity of gramicidin transmembrane channel: cation nuclear magnetic resonance, dielectric relaxation, carbon-13 nuclear magnetic resonance, and rate theory calculation of single channel currents, in: C. Sanddorfy, T. Theophanides (Eds.), Spectroscopy of Biological Molecules, D. Reidel, Dordrecht, 1984, pp. 487–510.
- [10] J.A. Killian, B. de Kruijff, Importance of hydration for gramicidin-induced hexagonal H<sub>II</sub> phase formation in dioleoyl-phosphatidylcholine model membranes, Biochemistry 24 (1985) 7881–7890.
- [11] C.J.A. Van Echteld, R. Van Stigt, B. de Kruijff, J. Leunissen-Bijvelt, A.J. Verkleij, J. de Gier, Gramicidin promotes formation of the hexagonal H<sub>II</sub> phase in aqueous dispersions of phosphatidylethanolamine and phosphatidylcholine, Biochim. Biophys. Acta 648 (1981) 287–291.
- [12] V. Chupin, J.A. Killian, B. de Kruijff, H-2 nuclear magnetic resonance investigations on phospholipid acyl chains order and dynamics in the gramicidin-induced hexagonal H<sub>II</sub> phase, Biophys. J. 51 (1987) 395–405.
- [13] M. Gasset, J.A. Killian, H. Tournois, B. de Kruijff, Influence of cholesterol on gramicidin-induced H<sub>II</sub> phase formation in phosphatidylcholine model membranes, Biochim. Biophys. Acta 939 (1988) 79–88.
- [14] B.A. Cornell, L.E. Weir, F. Separovic, The effect of gramicidin A in lipid bilayers, Eur. Biophys. J. 16 (1988) 113–119.
- [15] S. Rajan, S.-Y. Kang, H.S. Gutowsky, E. Oldfield, Phosphorus nuclear magnetic resonance study of membrane structure, J. Biol. Chem. 25 (1981) 1160–1166.
- [16] B.A. Cornell, J.B. Davenport, F. Separovic, Low-frequency motions in membranes, Biochim. Biophys. Acta 689 (1982) 337–345
- [17] B. de Kruijff, <sup>13</sup>C NMR studies on [4-<sup>13</sup>C]cholesterol incorporated in sonicated phosphatidylcholine vesicles, Biochim. Biophys. Acta 506 (1978) 173–182.
- [18] B.A. Cornell, The dynamics of the carbonyl groups in phospholipid bilayers from a study of their <sup>13</sup>C chemical shift anisotropy, Chem. Phys. Lett. 72 (1980) 462–465.
- [19] B.A. Cornell, M. Keniry, The effect of cholesterol and gramicidin A on the carbonyl groups of dimyristoylphosphati-

- dylcholine dispersions, Biochim. Biophys. Acta 732 (1983) 705-710.
- [20] E. Oldfield, F. Adebodum, J. Chung, B. Montez, K.D. Park, H.B. Lee, B. Phillips, C-13 nuclear magnetic resonance spectroscopy of lipids: differential line broadening due to crosscorrelation effects as a probe of membrane structure, Biochemistry 30 (1991) 11025–11028.
- [21] G. Metz, X. Wu, S.O. Smith, Ramped-amplitude cross-polarization in magic-angle-spinning NMR, J. Magn. Res. A 110 (1994) 219–227.
- [22] C. Le Guernevé, M. Auger, New approach to study fast and slow motions in lipid bilayers: application to dimyristoylphosphatidylcholine-cholesterol interactions, Biophys. J. 68 (1995) 1952–1959.
- [23] A.G. Lee, N.J.M. Berdsall, J.C. Metcalfe, G.B. Warren, G.C.K. Roberts, A determination of the mobility gradient in lipid bilayers by <sup>13</sup>C nuclear magnetic resonance, Proc. R. Soc. London B 193 (1976) 253–274.
- [24] M. Bloom, E. Evans, O.G. Mouritsen, Physical-properties of the fluid lipid-bilayer component of cell membranes – a perspective, Q. Rev. Biophys. 24 (1991) 293–397.
- [25] J. Stohrer, G. Grobner, D. Reimer, K. Weisz, C. Mayer, G. Kothe, Collective lipid motions in bilayer membranes studied by transverse deuteron spin relaxation, J. Chem. Phys. 95 (1991) 672–678.
- [26] J.A. Killian, C.W. van den Berg, H. Tournois, S. Keur, A.J. Slotboom, G.J.M. van Scharrenburg, B. de Kruijff, Gramicidin-induced H<sub>II</sub> phase formation in negatively charged phospholipids and the effect of N- and C-terminal modification of gramicidin on its interaction with zwitterionic phospholipids, Biochim. Biophys. Acta 957 (1986) 13–27.
- [27] A. Pines, M.C. Gibby, J.S. Waugh, Proton enhanced nuclear magnetic resonance of dilute spins in solids, J. Chem. Phys. 59 (1973) 569–590.
- [28] G.E. Maciel, M.J. Sullivan, N.M. Szevereny, F.P. Miknis, Carbon-13 NMR on solid samples and its application to coal science, in: B.R. Cooper, L. Petrakis, L. (Eds.), Chemistry and Physics of Coal Utilization, American Institute of Physics, New York, 1980, pp. 66–81.
- [29] J. Forbes, J. Bowers, X. Shan, L. Moran, E. Oldfield, M.A. Moscarello, Some new developments in solid-state nuclear magnetic resonance spectroscopic studies of lipids and biological membranes, including the effects of cholesterol in model and natural systems, J. Chem. Soc. Faraday Trans. 1. 84 (1988) 3821–3849.
- [30] J.R. Brainard, E.H. Cordes, Carbon-13 nuclear magnetic resonance studies of cholesterol-egg yolk phosphatidylcholine vesicles, Biochemistry 20 (1981) 4607–4617.
- [31] P.E. Godici, J.H. Landsberger, <sup>13</sup>C nuclear magnetic resonance study of the dynamic structure of lecithin-cholesterol membranes and the position of stearic acid spin-labels, Biochemistry 14 (1975) 3927–3933.
- [32] A.J. Deese, E.A. Dratz, F.W. Dahlquist, Interaction of rhodopsin with 2 unsaturated phosphatidylcholines: a deuterium nuclear magnetic resonance study, Biochemistry 20 (1981) 6420–6427.

- [33] A. Bienvenue, M. Bloom, J.H. Davis, P.F. Devaux, Evidence for protein-associated lipids from deuterium nuclear magnetic resonance studies of rhodopsin-dimyristoylphosphatidylcholine recombinants, J. Biol. Chem. 257 (1982) 3032– 3038
- [34] P. Meier, E. Ohmes, G. Kothe, Multipulse dynamics nuclear magnetic resonance of phospholipid membranes, J. Chem. Phys. 85 (1986) 3598–3614.
- [35] M.R. Paddy, F.W. Dahlquist, J.H. Davis, M. Bloom, Dynamical and temperature dependent effects of lipid-protein interactions: application of deuterium nuclear magnetic resonance and electron paramagnetic resonance spectroscopy to the same reconstitutions of cytochrome C oxidase, Biochemistry 20 (1981) 3152–3162.
- [36] Z.Y. Peng, V. Simplaceanu, S.R. Dowd, C. Ho, Effects of cholesterol or gramicidin on slow and fast motions of phospholipids in oriented bilayers, Proc. Natl. Acad. Sci. USA 86 (1989) 8755–8762.
- [37] M.R. Morrow, Transverse nuclear spin relaxation in phosphatidylcholine bilayers containing gramicidin, Biochim. Biophys. Acta 1023 (1990) 197–205.
- [38] T. Miura, H. Takeuchi, I. Harada, Characterization of individual tryptophan side chains in proteins using Raman spectroscopy and hydrogen-deuterium exchange kinetics, Biochemistry 27 (1988) 88–94.
- [39] M. Bouchard, M. Auger, Solvent history dependence of gramicidin-lipid interactions: a Raman and infrared spectroscopic study, Biophys. J. 65 (1993) 2484–2492.
- [40] J. Seelig, <sup>31</sup>P nuclear magnetic resonance and the head group structure of phospholipids in membranes, Biochim. Biophys. Acta 515 (1978) 105–140.
- [41] P.R. Cullis, B. de Kruijff, <sup>31</sup>P NMR studies of unsonicated dispersions of neutral and acidic phospholipids. Effect of phase transition, p<sup>2</sup>H and divalent cations on the motion in the phosphate region of the polar head group, Biochim. Biophys. Acta 436 (1976) 523–540.
- [42] P.R. Cullis, B. de Kruijff, Polymorphic phase behaviour of lipid mixtures as detected by <sup>31</sup>P NMR. Evidence that cholesterol may destabilize bilayer structure in membrane systems containing phosphatidylethanolamine, Biochim. Biophys. Acta 507 (1978) 207–218.
- [43] P.R. Cullis, B. de Kruijff, Lipid polymorphism and the functional roles of lipids in biological membranes, Biochim. Biophys. Acta 559 (1979) 399–420.
- [44] J.G. Batchelor, R.J. Cushley, J.H. Prestegard, Carbon-13 Fourier transform nuclear magnetic resonance. VIII. Role of steric and electric field effects in fatty acid spectra, J. Org. Chem. 39 (1974) 1698–1705.
- [45] R. Murari, M.M.A. Abd El-Rahman, Y. Wedmid, S. Parthasarathy, W.J. Baumann, Carbon-13 nuclear magnetic resonance spectroscopy of phospholipids in solution. Spectral and stereochemical assignments based on <sup>13</sup>C-<sup>31</sup>P and <sup>13</sup>C-<sup>14</sup>N couplings, J. Org. Chem. 47 (1982) 2158–2163.
- [46] G.W. Stockton, C.F. Polnaszek, A.P. Tulloch, F. Hasan, I.C.P. Smith, Molecular motion and order in single-bilayer

- vesicles and multilamellar dispersions of egg lecithin and lecithin-cholesterol mixtures. A deuterium nuclear magnetic resonance study of specifically labelled lipids, Biochemistry 15 (1976) 954–966.
- [47] M. Bloom, E.E. Burnell, A.L. MacKay, C.P. Nichol, M.I. Valic, G. Weeks, Fatty acyl chain order in lecithin model membranes determined from proton magnetic resonance, Biochemistry 17 (1978) 5750–5762.
- [48] A. Kintanar, A.C. Kunwar, E. Oldfield, Deuterium nuclear magnetic resonance spectroscopic study of the fluorescent probe diphenylhexatriene in model membrane systems, Biochemistry 25 (1986) 6517–6524.
- [49] L.J. Korstanje, L.J. van Faassen, Y.K. Levine, Reorientational dynamics in lipid vesicles and liposomes studied with ESR: effects of hydration, curvature and unsaturation, Biochim. Biophys. Acta 982 (1989) 196–204.