MATEMATIKAI ANALÍZIS I.

SZÓBELI VIZSGA

2014. január 9.

PÁZMÁNY PÉTER KATOLIKUS EGYETEM

INFORMÁCIÓS TECHNOLÓGIAI ÉS BIONIKAI KAR

Fontos tudnivalók

Tisztelt Vizsgázó!

Jelen füzet a 2013/14/1. tanulmányi időszak, vizsgaidőszakának Matematikai analízis I. szóbeli vizsgájához lett kiadva. A füzet tartalmazza az intézmény által nyilvánosságra hozott tételjegyzéket, valamint azok kidolgozott formáját is.

Az analízis vizsga részét képezi egy egyszerű differenciálegyenlet megoldása is. Mintafeladatok a füzet végében találhatók.

A kiadványban bárhol, de különösen a kidolgozott tételek körében előfordulhatnak hiányosságok, bővebb magyarázatra szoruló részek. Az ezek kiegészítése illetve jegyzetelés, feladatmegoldás céljából a kidolgozott tételeket a füzetben jegyzetoldalak követik.

Eredményes felkészülést kívánunk!

Második, javított kiadás

A kiadványt összeállította: Naszlady Márton Bese – 2013

Ez a kiadvány a *Creative Commons Nevezd meg!* – *Ne add el!* 4.0 *Nemzetközi licenc* alá tartozik. A licenc megtekintéséhez látogasson el a http://creativecommons.org/licenses/by-nc/4.0/ oldalra.

A kiadványban szereplő tartalmi elemek harmadik személytől származó véleményt, értesülést tükröznek. Az esetlegesen előforduló tárgyi tévedésekből fakadó visszás helyzetek kialakulásáért, illetve azok következményeiért a kiadó nem vállal felelősséget!

Tartalomjegyzék

Szóbeli vizsga tételjegyzék	4
Kidolgozott tételek, tételvázlatok	6
1. tétel	6
2. tétel	9
3. tétel	12
4. tétel	15
5. tétel	17
6. tétel	19
7. tétel	21
8. tétel	24
9. tétel	26
10. tétel	29
11. tétel	31
12. tétel	33
13. tétel	36
14. tétel	38
15. tétel	40
16. tétel	42
17. tétel	43
18. tétel	46
19. tétel	48
20. tétel	50
21. tétel	53
22. tétel	55
23. tétel	57
24. tétel	59
Feladatok az elsőrendű Differenciálegyenletek témakörből	61
	63

Szóbeli vizsga tételjegyzék

- **1. tétel:** Természetes számok. Teljes indukció. Valós számok, axiómák. Cantor féle közöspont tétel (B). Korlátosság. **Infimum és supremum, ezek létezése** (B).
- **2. tétel:** Topológiai alapfogalmak: belső-, külső-, határpont. Szakasz. Összefüggő ill. konvex halmaz. **Háromszög egyenlőtlenség** (B). Bernoulli egyenlőtlenség. Számtani és mértani közép. Ezek közti összefüggés.(B)
- **3. tétel:** Számsorozat. **Határérték** Konvergencia és korlátosság.(B) Divergencia, típusai. Konvergens sorozatok tulajdonságai. **Cauchy sorozat**. Kapcsolat konvergenciával (B)
- **4. tétel:** Rész-sorozat. Monoton rész-sorozat létezése. (B) **Bolzano-Weierstrass tétel.** (B) Nullsorozat. Tulajdonságok. **Torlódási pont**. Számtani átlag sorozat, ennek határértéke.(B)
- **5. tétel:** Határérték monotonitása. **Rendőrelv sorozatokra.** (B) Nevezetes sorozat határértékek. Végtelen sorok. Konvergencia. **Végtelen mértani sor.** (B)
- **6. tétel:** Cauchy kritérium végtelen sorokra. Majoráns és minoráns kritériumok végtelen sorokra: Hányados-kritérium. (B) Gyengített változat. Gyökkritérium. (B) Gyengített változat.
- **7. tétel:** Leibniz-sor. (B) Abszolút- és feltételes konvergencia. Példák. Riemann tétel. Függvény definíció, alaptulajdonságok. Inverz függvény létezése. Folytonosság adott pontban, geometriai jelentés.
- **8. tétel:** Sorozatfolytonosság. Kapcsolat folytonossággal (B) Folytonos függvények tulajdonságai. **Bolzano tétel** (B). Következmények.
- **9. tétel:** Függvény határértéke véges pontban. Egyoldali határértékek. Határérték és folytonosság. Szakadási helyek osztályozása. Példák. Határérték tulajdonságai. Nevezetes függvény határértékek.
- **10. tétel:** Határérték-fogalom kiterjesztése. Átviteli elv határérték kiszámítására. [a,b]-n értelmezett folytonos függvények. W1-2. tételek (B)
- 11. tétel: Egyenletes és Lipschitz folytonosság, példák. Heine tétel. **Differencia- és differenciálhányados**. Geometriai, fizikai jelentés. **Folytonosság-differenciálhatóság.** (B) Lineáris közelítés.
- 12. tétel: Elemi függvények deriváltja. (B) **Differenciálási szabályok.** (B) **Érintő egyenes egyenlete.** Monoton függvények jellemzése deriválttal. (B)

- **13. tétel:** Inverz függvény deriváltja. (B) Szemléletes jelentés. Láncszabály. (B) Lagrange féle középérték tétel. (B). Következmény: Integrálszámítás I. alaptétele. (B)
- 14. tétel: Cauchy féle középérték tétel. L'Hopital szabály.(B) Általános esetek. Lokális szélsőérték létezésének szükséges feltétele. (B)
- **15. tétel:** Magasabb rendű deriváltak. **Konvex** és konkáv függvények. Inflexió. Kapcsolat a deriválttal. **Taylor polinom, tulajdonságai.** (B) Lagrange-féle maradéktag.
- **16. tétel:** Lokális szélsőérték létezésének elégséges feltétele. (B) Primitív függvény. Határozatlan integrál alaptulajdonságai.
- **17. tétel:** Riemann-integrál, definíció és alaptulajdonságai. Integrálhatóság elégséges feltételei. (B) Integrálközép. Integrál középérték tétel (B)
- 18. tétel: Newton-Leibniz tétel. (B) Integrálfüggvény. Integrálszámítás II. alaptétele. (B)
- **19. tétel:** Helyettesítés integrálban. Határozott alak. Trigonometrikus integrálok Függvény gráf. Ívhossz. (B) Forgástest térfogata.
- **20. tétel:** Parciális integrálás. Alapesetek. Racionális törtfüggvény integrálja. Improprius integrál, tulajdonságai. Hatványfüggvény improprius integrálja (0,1)-ben. (B)
- **21. tétel:** Hatványfüggvény improprius integrálja (1,∞)-ben. (B) Majoráns és minoráns kritériumok. Elégséges feltételek a hatványfüggvényhez kapcsolódóan.
- **22. tétel: Differenciálegyenlet értelmezése, megoldása.** Cauchy-feladat. Fizikai példák. Növekedési folyamat. Robbanás egyenlete. **Szeparábilis DE.** Megoldása.
- **23. tétel:** Homogén LDE megoldása.(B) Inhomogén LDE megoldása (B). Állandó együtthatós inhomogén LDE: Állandók variálása
- **24. tétel:** Hatványsor. Konvergencia halmaz, konvergencia sugár. Deriválás a konvergencia halmazban. Speciális függvények Taylor sora: e^x , sin(x), cos(x). Az e szám értelmezése, kétféle előállítása.

Kidolgozott tételek, tételvázlatok

1. tétel: Természetes számok. Teljes indukció. Valós számok, axiómák. Cantor féle közös-pont tétel (B). Korlátosság.

Infimum és supremum, ezek létezése (B).

Természetes számok

A természetes számok halmazán (N) két művelet van értelmezve, ezek az összeadás (+) valamint a szorzás (·). Értelmezve van még a ≤ rendezési reláció. A természetes számok halmazának tulajdonságai:

Létezik legkisebb elem: 1 (egység)

Minden elem után van közvetlenül rákövetkező: $n \rightarrow n+1$

Teljes indukció

A fenti két tulajdonság alapján kimondható a teljes indukciós bizonyítás elve:

Cél, hogy belássuk valamely $A_1, ..., A_n$, ... tulajdonságok teljesülését, ahol n tetszőleges természetes szám.

Ha A_1 teljesül, és

 $\forall n \in \mathbb{N}$ esetén az A_n tulajdonságból következik A_{n+1} ,

akkor a fenti tulajdonság minden n esetén teljesül.

Valós számok, axiómák

Adott egy \mathbb{R} -rel jelölt halmaz, melynek elemeit valós számoknak nevezzük. \mathbb{R} -et megfeleltethetjük a számegyenes pontjainak, természetes módon. Ennek a halmaznak adott két kitüntetett (egymástól különböző) eleme, melyeket 0 és 1 fog jelölni.

Adott ℝ-en két művelet, az összeadás (+) és a szorzás (·) valamint egy ≤-vel jelölt rendezési reláció, melyek az alábbi tulajdonságokkal rendelkeznek:

1. csoport: a műveletek alaptulajdonságai

```
1. (x + y) + z = x + (y + z) \forall x, y, z \in \mathbb{R} (az összeadás asszociatív)
```

2. $x + 0 = x \quad \forall x \in \mathbb{R}$

3. $\forall x \in \mathbb{R}$ -hez $\exists u \in \mathbb{R}$, melyre x + u = 0 Ez az u a szám ellentettje.

4. $x + y = y + x \quad \forall x, y \in \mathbb{R}$ (az összeadás kommutatív)

5. $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ $\forall x, y, z \in \mathbb{R}$ (a szorzás asszociatív)

6. $x \cdot 1 = x \quad \forall x \in \mathbb{R}$

7. $\forall x \in \mathbb{R} \setminus \{0\}$ -hoz $\exists u \in \mathbb{R}$, melyre $x \cdot u = 0$ Ez az u a szám reciproka.

8. $x \cdot y = y \cdot x \quad \forall x, y \in \mathbb{R}$ (a szorzás kommutatív)

9. $(x + y) \cdot z = x \cdot z + y \cdot z \quad \forall x, y, z \in \mathbb{R}$ (a szorzás disztributív az összeadásra)

2. csoport: a rendezési reláció tulajdonságai

10. $\forall x \in \mathbb{R}$ esetén $x \le x$ (a rendezési reláció reflexív)

11. Tetszőleges $x \neq y$ esetén az $x \leq y$ és $y \leq x$ közül pontosan egy igaz.

12. Ha $x \le y$ és $y \le z$, akkor az $x \le z$ (a rendezési reláció tranzitív)

13. Ha $x \le y$, akkor $x + z \le y + z \quad \forall z \in \mathbb{R}$ esetén

14. Ha $x \le y$ és $0 \le z$, akkor $x \cdot z \le y \cdot z$

- 15. (Archimédeszi axióma) A valós számok halmazában nincs legnagyobb elem.
- 16. (Cantor-féle axióma) Legyen adott korlátos és zárt intervallumok egy sorozata:

$$I_1 = [a_1, b_1], I_2 = [a_2, b_2], \dots, I_n = [a_n, b_n], \dots$$

melyekre

$$I_1 \supseteq I_2 \supseteq \cdots \supseteq I_n \supseteq \cdots$$

Ekkor van közös pont, azaz:

 $\exists c \in \mathbb{R} \text{ melyre } c \in I_k, \forall k \in \mathbb{N}$

Cantor-féle közös-pont tétel (B)

Tétel Tegyük fel, hogy a Cantor-féle axióma feltételei teljesülnek. Ezen kívül tegyük fel, hogy minden $\varepsilon > 0$ -hoz létezik olyan I_k intervallum, mely az adott ε -nál rövidebb, azaz $|I_k| = b_k - a_k < \varepsilon$. Ekkor a közös pont egyértelmű.

Bizonyítás Indirekt bizonyítás: A Cantor-axiómából következik, hogy létezik közös pont. Feltesszük, hogy két közös pont van: $c, d \in I_k \ \forall k$ -ra, és például c < d.

Legyen $\varepsilon = d - c$. Ekkor a feltétel szerint létezik $n \in \mathbb{N}$, amire $b_n - a_n < \varepsilon$. Ekkor, mivel $c \in [a_n, b_n]$ és $d \in [a_n, b_n]$, ezért $\varepsilon = d - c < b_n - a_n < \varepsilon$, ami ellentmondás.

Korlátosság

Legyen $H \subset \mathbb{R}$ a valós számok halmazának egy részhalmaza.

Definíció H halmaz alulról korlátos, ha $\exists k \in \mathbb{R}$, melyre $k \leq x$, $\forall x \in H$.

Definíció H halmaz *felülről korlátos*, ha $\exists K \in \mathbb{R}$, melyre $x \leq K, \forall x \in H$.

Definíció *H* halmaz *korlátos*, ha alulról és felülről is korlátos.

Infimum és supremum, ezek létezése (B)

Definíció Legyen H egy alulról korlátos, nem üres halmaz. Ekkor létezik az alsó korlátok között legnagyobb, vagyis $\exists s \in \mathbb{R}, \ s, s' \leq x, \forall x \in H$ és $s' \leq s$. Ez a halmaz *infimuma*. Jele: $\inf(H)$

Definíció Legyen H egy felülről korlátos, nem üres halmaz. Ekkor létezik a felső korlátok között legkisebb, vagyis $\exists S \in \mathbb{R}, \ x \leq S, S', \forall x \in H$ és $S \leq S'$. Ez a halmaz supremuma. Jele: $\sup(H)$

Tétel Tetszőleges nem üres, alulról korlátos halmaznak létezik infimuma.

Bizonyítás Konstruktív bizonyítás: A halmaz alulról korlátos, tehát létezik az a_1 alsó korlát. Ha $a_1 \in H$, akkor ez minimális elem, egyben infimum is.

Ha $a_1 \notin H$, akkor legyen $b_1 \in H$ tetszőleges elem, $b_1 > a_1$. Legyen továbbá $I_1 = [a_1, b_1]$, és $c_1 = \frac{a_1 + b_1}{2}$

Két eset lehetséges:

- 1.) Ha c_1 alsó korlát, akkor legyen $a_2 := c_1$, és $b_2 := b_1$.
- 2.) Ha c_1 nem alsó korlát, akkor legyen $a_2 \coloneqq a_1$, és $b_2 \coloneqq c_1$. Látható, hogy az $I_2 = [a_2, b_2]$ intervallum hossza épp fele I_1 hosszának, ahol a_2 alsó korlát, és $b_2 \in H$.

Ezt a konstrukciót folytatva egy I_k intervallumsorozatot kapunk az alábbi tulajdonságokkal:

- i) $I_k = [a_k, b_k]$ zárt, és $I_{k+1} \subset I_k$
- ii) I_k hossza $2^{-k}|I_1|$
- iii) a_k alsó korlát, $b_k \in H$ minden k-ra

Az i) és ii) tulajdonságok miatt az intervallum-sorozat teljesíti a Cantor-féle közös-pont tétel feltételeit, tehát létezik egyetlen közös pont, legyen ez s.

Belátjuk, hogy s alsó korlát, mivel ha lenne egy olyan $h \in H$, amelyre h < s teljesülne, akkor a ii) tulajdonság miatt találhatnánk egy olyan I_k intervallumot, melyre $h < a_k \le s$ lenne, ami ellentmond annak, hogy a_k alsó korlát.

Belátjuk, hogy s infimum, azaz nincs nála nagyobb alsó korlát. Ha ugyanis indirekt módon feltesszük, hogy létezik s' > s alsó korlát, akkor találunk kell egy I_k intervallumot, melyre $s \le b_k < s'$. De mivel $b_k \in H$ minden k-ra, így ez nem lehetséges.

2. tétel Topológiai alapfogalmak: belső-, külső-, határpont. Szakasz. Összefüggő, ill. konvex halmaz. **Háromszög egyenlőtlenség** (B). Bernoulli egyenlőtlenség. Számtani és mértani közép. Ezek közti összefüggés.(B)

Belső-, külső-, határpont

Definíció Az $x_0 \in \mathbb{R}$ pont a H halmaz *belső pontja*, ha létezik olyan $\varepsilon > 0$ szám, hogy $(x_0 - \varepsilon, x_0 + \varepsilon) \subseteq H$. A belső pontok halmazát int(H) jelöli.

Definíció Az $x_0 \in \mathbb{R}$ pont a H halmaz $k \ddot{u} l s \ddot{o}$ pontj a, ha létezik olyan $\varepsilon > 0$ szám, hogy $(x_0 - \varepsilon, x_0 + \varepsilon) \cap H = \emptyset$. A külső pontok halmazát ext(H) jelöli.

Definíció Az $x_0 \in \mathbb{R}$ pont a H halmaz $hat \acute{a}rpont ja$, ha se nem külső, se nem belső pontja. A hat \'arpontok halmaz át $\partial(H)$ jelöli.

Szakasz

Definíció Ha *A* és *B* egy egyenes pontjai, akkor az egyenesnek az *A* és *B* pontok közé eső része az *A* és *B* pontokkal együtt *szakaszt* alkot.

Összefüggő, ill. konvex halmaz

Definíció A C halmazt összefüggőnek nevezzük, ha teljesül rá a következő: F_1 és F_2 zárt halmazok, $C \subset F_1 \cup F_2$ esetén, ha $C \cap F_1$ és $C \cap F_2$ sem üres, akkor $F_1 \cap F_2 \cap C$ sem üres.

Definíció Az M halmazt konvex halmaznak nevezzük, ha minden $x_1, x_2 \in M$ pontjának (vektorának) $\lambda x_1 + (1 - \lambda)x_2$ kombinációja, ahol $0 \le \lambda \le 1$, szintúgy M halmazhoz tartozik.

Háromszög egyenlőtlenség (B)

Állítás Tetszőleges a, b valós számokra $|a + b| \le |a| + |b|$.

Bizonyítás Induljunk ki a következő triviális egyenlőtlenségekből: $\pm a \le |a|, \pm b \le |b|$. Ezekből azt kapjuk, hogy: $a+b \le |a|+|b|$, valamint $-(a+b) \le |a|+|b|$. Ismerve az abszolút érték tulajdonságait, a fentiekből az állítás következik.

A fenti állítás következménye az általános eset:

Adottak az a_1,a_2,\ldots,a_n valós számok, akkor $|a_1+\cdots+a_n|\leq |a_1|+\cdots+|a_n|$, azaz

$$\left| \sum_{k=1}^{n} a_k \right| \le \sum_{k=1}^{n} |a_k|$$

Bernoulli egyenlőtlenség

Tétel Tetszőleges $n \in \mathbb{N}$ természetes szám és $h \ge -1$ valós szám esetén teljesül az alábbi összefüggés:

$$(1+h)^n \ge 1+hn$$

A fenti kifejezésben egyenlőség csakis akkor teljesül, ha n = 0 vagy n = 1 vagy h = 0.

Számtani és mértani közép, ezek közti összefüggés (B)

Tekintsünk két, nemnegatív valós számot, $x, y \ge 0$. Ezek számtani közepe (számtani átlaga)

$$A = \frac{x + y}{2}$$

és mértani közepe (mértani átlaga)

$$G = \sqrt{xy}$$

Állítás Tetszőleges $x,y \ge 0$ valós számok esetén $\frac{x+y}{2} \ge \sqrt{xy}$, és egyenlőség pontosan akkor teljesül, ha x = y.

Bizonyítás Ekvivalens átalakításokkal

$$\frac{x+y}{2} \ge \sqrt{xy}$$
$$(x+y)^2 \ge 4xy$$
$$x^2 - 2xy + y^2 \ge 0$$
$$(x-y)^2 \ge 0 \blacksquare$$

Tétel Legyenek $a_1, a_2, ..., a_n \ge 0$ valós számok. Ezek számtani közepe

$$A_n := \frac{a_1 + a_2 + \dots + a_n}{n} = \frac{1}{n} \sum_{k=1}^{n} a_k$$

és mértani közepe

$$G_n := \sqrt[n]{a_1 a_2 \dots a_n} = \sqrt[n]{\prod_{k=1}^n a_k}$$

Ekkor $A_n \ge G_n$ minden n-re, és egyenlőség pontosan akkor teljesül, ha $a_1 = a_2 = \cdots = a_n$.

1. Lemma Legyen $n \ge 2$ adott természetes szám. Legyenek $x_k \ge 0$, k = 1, 2, ..., n olyan számok, amelyek közt van legalább kettő különböző, és $\frac{x_1 + x_2 + \cdots + x_n}{n} = 1$. Ekkor $x_1 x_2 \dots x_n < 1$.

Bizonyítás Teljes indukcióval.

1.) Ha n=2, akkor a lemma állítása igaz, hiszen a két szám $x_1=1+t, \ x_2=1-t, \qquad t>0$

és ezekre a számokra

$$(1-t)(1+t) = 1 - t^2 < 1.$$

2.) Tegyük fel, hogy valamely rögzített n-re igaz az állítás. Tekintsünk n+1 db számot, melyek számtani átlaga 1, és ezeket írjuk az alábbi alakba:

$$x_1 = 1 + t_1$$
 $x_2 = 1 + t_2$
 \vdots
 $x_n = 1 + t_n$
 $x_{n+1} = 1 + t_{n+1}$

Ekkor a t_1,\ldots,t_{n+1} számok között van pozitív és negatív is, mert összegük 0 és nem mind egyforma. Feltehető például, hogy $t_n < 0 < t_{n+1}$.

Nézzük az n + 1 tényezős szorzatot:

 $x_1x_2...x_{n-1}x_nx_{n+1}=x_1x_2...x_{n-1}(1+t_n)(1+t_{n+1})$ Ha a jobb oldali szorzat utolsó tényezőjéből elhagyjuk a negatív t_nt_{n+1} tagot, az alábbi egyenlőtlenséghez jutunk:

$$x_1 x_2 \dots x_{n-1} (1 + t_n) (1 + t_{n+1}) < x_1 x_2 \dots x_{n-1} (1 + t_n + t_{n+1})$$

Jelölje most az utolsó tényezőt $x_n^* = (1 + t_n + t_{n+1})$. Ekkor egy n tényezős szorzatunk van, ahol a tényezők összege:

$$x_1 + x_2 + \dots + x_n^* =$$

$$= (1 + t_1) + (1 + t_2) + \dots + (1 + t_{n-1}) + (1 + t_n + t_{n+1}) =$$

$$= (n - 1) + t_1 + t_2 + \dots + t_{n-1} + (1 + t_n + t_{n+1})$$

Ezt átrendezve:

$$x_1 + x_2 + \dots + x_n^* = n - 1 + 1 + \sum_{k=1}^{n+1} t_k = n$$

mivelhogy $\sum t_k = 0$. Tehát adott n darab szám, $x_1, x_2, \dots, x_{n-1}, x_n^*$, melyek átlaga 1. Ha az így kapott számok egyformák, akkor szorzatuk = 1. Ha nem egyformák, akkor az indukciós feltevés miatt szorzatuk < 1.

Ezek után megfogalmazhatjuk a fenti lemmát kicsit általánosabban is:

2. Lemma Legyenek $x_k \ge 0, k = 1, 2, ..., n$ olyan számok, amelyekre $\frac{x_1 + x_2 + \cdots + x_n}{n} = 1$. Ekkor $x_1 x_2 ... x_n \le 1$.

Bizonyítás (A tétel bizonyítása.) Ha adottak az a_1, a_2, \dots, a_n számok, akkor legyen

$$K = \frac{(a_1 + a_2 + \dots + a_n)}{n}$$

és legyenek

$$x_k = \frac{a_k}{k}, \qquad k = 1, 2, ... n.$$

Ekkor

$$x_1 + x_2 + \dots + x_n = \frac{(a_1 + a_2 + \dots + a_n)}{K} = n$$

ezért

$$\frac{(x_1 + x_2 + \dots + x_n)}{n} = 1$$

így alkalmazhatjuk a 2. lemmát, tehát $x_1x_2...x_n \le 1$, azaz $\frac{a_1a_2...a_n}{K^n} \le 1$, s ezt átrendezve kapjuk a tétel állítását:

$$\prod_{k=1}^{n} a_k \le \left(\frac{\sum_{k=1}^{n} a_k}{n}\right)^n$$

3. tétel Számsorozat. **Határérték**. Konvergencia és korlátosság. (B) Divergencia, típusai. Konvergens sorozatok tulajdonságai. **Cauchy sorozat**. Kapcsolat konvergenciával (B)

Számsorozat

Definíció Számsorozaton egy olyan hozzárendelést értünk, melyben minden $n \in \mathbb{N}$ természetes számhoz hozzárendelünk egy valós számot. Az (a) sorozat n-edik elekmét a_n jelöli, az egész sorozatot (a_n) -nel jelöljük.

Határérték

Definíció Legyen (a_n) egy sorozat. Azt mondjuk, hogy az (a_n) sorozat *konvergens*, és határértéke az A szám, ha ez rendelkezik a következő tulajdonsággal: minden $\varepsilon > 0$ -hoz létezik $N = N(\varepsilon)$ epszilontól függő küszöbindex, melyre minden n > N esetén $|a_n - A| < \varepsilon$. Ezt így jelöljük: $\lim_{n \to \infty} a_n = A$.

Konvergencia és korlátosság (B)

Definíció Az (a_n) sorozat korlátos, ha létezik K szám, hogy $|a_n| < K$ minden $n \in \mathbb{N}$ -re.

Állítás Ha egy sorozat konvergens, akkor korlátos.

Bizonyítás Tekintsünk egy konvergens sorozatot, legyen (a_n) konvergens, $\lim_{n\to\infty}a_n=A$. Ekkor $\varepsilon=1$ -hez is létezik N, hogy ha $n\geq N$, akkor $|a_n-A|<1$, azaz $A-1< a_n< A+1$. Legyen

$$m = \min\{a_n : n < N\} \qquad M = \max\{a_n : n < N\}$$

Más szóval, legyen m a fenti intervallumon kívül eső elemek közül a legkisebb, és legyen M a kívül eső elemek közül a legnagyobb. Legyen továbbá

$$k = \min(m, A - 1) \qquad K = \max(M, A + 1)$$

Ekkor $k \le a_n \le K, n \in \mathbb{N}$.

Az eredeti definícióra hivatkozva, ha $L = \max(|k|, |K|)$, akkor $|a_n| \le L$, $n \in \mathbb{N}$, vagyis a sorozat korlátos.

Divergencia, típusai

Definíció Ha (a_n) nem konvergens, akkor *divergens*.

$$1.) a_n = n^2$$

Definíció Az (a_n) sorozat a $+\infty$ -be divergál $(,,a_n \text{ minden határon túl nő"}), ha minden <math>K \in \mathbb{R}$ korláthoz megadható N = N(K) küszöbindex, hogy ha n > N, akkor $a_n > K$. Ezt így jelöljük:

$$\lim_{n\to\infty} a_n = +\infty$$

Definíció Az (a_n) sorozat a $-\infty$ -be divergál $(,,a_n \text{ minden határon túl csökken''})$, ha minden $K \in \mathbb{R}$ korláthoz megadható N = N(K) küszöbindex, hogy ha $n \ge N$, akkor $a_n < K$. Ezt így jelöljük:

$$\lim_{n\to\infty}a_n=-\infty$$

2.)
$$a_n = (-1)^n$$

Az ilyen típusú sorozatok több pont körül torlódnak, például az $a_n = (-1)^n$ sorozat elemei rendre -1; 1 ... Ez nyilván nem konvergens.

Konvergens sorozatok tulajdonságai

Állítás

- 1.) Ha egy (a_n) sorozat monoton növő és felülről korlátos, akkor konvergens.
- 2.) Ha egy (a_n) sorozat monoton fogyó és alulról korlátos, akkor konvergens.

Állítás

Legyen adott két konvergens sorozat (a_n) és (b_n) ,

$$\lim_{n\to\infty} a_n = A \qquad \qquad \lim_{n\to\infty} b_n = B$$

Ekkor

1.) Tetszőleges $c \in \mathbb{R}$ esetén (ca_n) is konvergens, és

$$\lim_{n\to\infty} ca_n = cA$$

2.) $(a_n + b_n)$ is konvergens, és

$$\lim_{n \to \infty} (a_n + b_n) = A + B$$

3.) $(a_n b_n)$ is konvergens, és

$$\lim_{n\to\infty}(a_nb_n)=AB$$

4.)

$$\lim_{n\to\infty}|a_n|=|A|$$

5.) Tegyük fel, hogy $A \neq 0$ és $a_n \neq 0$. Ekkor

$$\lim_{n\to\infty}\frac{1}{a_n}=\frac{1}{A}$$

5*.) Az előző feltételekkel

$$\lim_{n\to\infty}\frac{b_n}{a_n}=\frac{B}{A}$$

Cauchy sorozat

Definíció

Az (a_n) sorozat teljesíti a *Cauchy feltételt*, ha minden $\varepsilon > 0$ -hoz létezik $N = N(\varepsilon)$ epszilontól függő küszöbindex, melyre teljesül, hogy minden $n, m \ge N$ esetén $|a_n - a_m| < \varepsilon$. Ha egy sorozat teljesíti a Cauchy feltételt, akkor a sorozatot *Cauchy sorozatnak* nevezzük.

Kapcsolat konvergenciával (B)

Tétel $Ha(a_n)$ konvergens, akkor Cauchy sorozat.

Bizonyítás Legyen $\lim_{n\to\infty}a_n=A$ és legyen $\varepsilon>0$ tetszőleges. Ekkor az $\frac{\varepsilon}{2}$ számhoz létezik egy N küszöbindex, melyre $n\geq N$ és $m\geq N$ esetén $|a_n-A|<\frac{\varepsilon}{2}$, valamint $|a_m-A|<\frac{\varepsilon}{2}$. Ekkor a háromszög-egyenlőtlenség miatt

$$|a_n - a_m| = |(a_n - A) + (A - a_m)| \le |a_n - A| + |a_m - A| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Tétel $Ha(a_n)$ Cauchy sorozat, akkor konvergens.

1. Lemma $Ha(a_n)$ eleget tesz a Cauchy kritériumnak, akkor korlátos.

Bizonyítás Az $\varepsilon = 1$ -hez létezik N index, melyre minden $n \ge N$ esetén $a_n \in (a_N - 1, a_N + 1)$. Az intervallumon kívül csak véges sok eleme van a sorozatnak, ezért van legnagyobb és legkisebb elem közöttük. Tehát $K = \max\{|a_1|, \dots, |a_{N-1}|\}$ korlátja a sorozatnak.

2. Lemma Ha egy (a_n) Cauchy sorozatnak van (a_{n_k}) konvergens részsorozata, és $\lim_{k\to\infty} a_{n_k} = A$, akkor a sorozat is konvergens, és $\lim_{n\to\infty} a_n = A$.

Bizonyítás Legyen $\varepsilon > 0$ tetszőleges. Ekkor a részsorozat konvergenciája miatt létezik N_1 index, melyre

$$\left|a_{n_k} - A\right| < \frac{\varepsilon}{2}$$
, ha $n_k > N_1$.

Mivel (a_n) Cauchy sorozat, ezért létezik N_2 index, melyre

$$|a_n - a_m| < \frac{\varepsilon}{2}$$
, ha $n, m > N_2$.

Legyen $N = \max\{N_1, N_2\}$. Ekkor minden $n \ge N$ esetén létezik $n_k \ge n \ge N$, így

$$|a_n - A| = |(a_n - a_{n_k}) + (a_{n_k} - A)| \le |a_n - a_{n_k}| + |a_{n_k} - A|$$

 $|a_n - a_{n_k}| + |a_{n_k} - A| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \blacksquare$

Bizonyítás (A tétel bizonyítása.) Az (a_n) Cauchy sorozat, tehát korlátos (1. lemma). A Bolzano-Weierstrass tétel miatt létezik (a_{n_k}) konvergens részsorozat, és ekkor az eredeti sorozat is konvergens (2. lemma).

4. tétel Rész-sorozat. Monoton rész-sorozat létezése. (B) **Bolzano-Weierstrass tétel.** (B) Nullsorozat. Tulajdonságok. **Torló-dási pont**. Számtani átlag sorozat, ennek határértéke. (B)

Rész-sorozat

Adott (a_n) sorozat. Egy index-sorozatot úgy definiálunk, hogy minden $k \in \mathbb{N}$ természetes számhoz hozzárendelünk egy n_k -val jelölt indexet, hogy $n_1 < n_2 < \dots < n_k < n_{k+1} < \dots$ teljesüljön. A $r\acute{e}szsorozat$ elemei $a_{n_1}, a_{n_2}, a_{n_3}, \dots$ lesznek.

Monoton rész-sorozat létezése (B)

Tétel *Minden sorozatnak van monoton részsorozata.*

Bizonyítás A sorozat egy a_n elemét csúcsnak nevezzük, ha $a_n > a_m \ \forall m > n$, azaz az utána következő elemek között nincsen nála nagyobb. Két esetet különböztetünk meg.

- 1.) Ha végtelen sok csúcs van, akkor legyenek ezek indexei $n_1 < n_2 < \cdots$. Ekkor az (a_{n_k}) részsorozat monoton fogyó.
- 2.) Ha csak véges sok csúcs van, akkor legyen az utolsó csúcs indexe n, ha egyáltalán nincs csúcs, akkor n=0. Definiáljuk n_1 -et mint $n_1\coloneqq n+1$. Ekkor, mivel a_{n_1} nem csúcs, ezért van nála nagyobb elem, $a_{n_2}>a_{n_1}$, ahol $n_2>n_1$. Hasonlóan, mivel a_{n_2} sem csúcs, ezért van a_{n_3} , melyre $n_3>n_2$, és $a_{n_3}>a_{n_2}$. Így tudunk monoton növő részsorozatot konstruálni. \blacksquare

Bolzano-Weierstrass tétel (B)

Tétel Minden korlátos (a_n) sorozatnak van konvergens részsorozata.

Bizonyítás A monoton rész-sorozat létezését kimondó tétel miatt (a_n) sorozatnak van (a_{n_k}) monoton részsorozata. Ez a részsorozat – akárcsak az eredeti – korlátos lesz. Mivel a részsorozat korlátos és monoton, biztosan konvergens.

Nullsorozat, tulajdonságok

Definíció Az (a_n) konvergens sorozatot *nullsorozatnak* nevezzük, ha határértéke 0, azaz $\forall \varepsilon > 0$ -hoz $\exists N = N(\varepsilon)$ küszöbindex, hogy $\forall n \geq N$ -re $|a_n| < \varepsilon$.

Állítás 1.) (a_n) konvergens, és határértéke A azzal ekvivalens, hogy $b_n = a_n - A$ nullsorozat.

2.) Tegyük fel, hogy (a_n) nullsorozat, (b_n) korlátos sorozat. Ekkor az (a_nb_n) is nullsorozat, azaz

$$\lim_{n\to\infty}a_nb_n=0$$

3.) Tegyük fel, hogy (a_n) divergens és $\lim_{n\to\infty} a_n = \infty$. Legyen

$$b_n \coloneqq \begin{cases} \frac{1}{a_n} & ha \ a_n > 0 \\ 0 & ha \ a_n \ge 0 \end{cases}$$

Ekkor $\lim_{n\to\infty} b_n = 0$, azaz (b_n) nullsorozat.

4.) (a_n) pontosan akkor nullsorozat, ha $(|a_n|)$ nullsorozat.

5.) Legyen (a_n) divergens sorozat, $\lim_{n\to\infty} a_n = \infty$. Legyen (b_n) alulról korlátos sorozat, melynek alsó korlátja pozitív. Ekkor

$$\lim_{n\to\infty}a_nb_n=\infty$$

Torlódási pont

Definíció Legyen (a_n) egy sorozat. A $t \in \mathbb{R}$ valós szám torlódási pontja (a_n) -nek, ha t bármely környezetében, azaz a $\forall \varepsilon > 0$ $(t - \varepsilon, t + \varepsilon)$ intervallumban végtelen sok tagja van a sorozatnak.

Számtani átlag sorozat, ennek határértéke (B)

Állítás Adott (a_n) nullsorozat. Legyen

$$A_n = \frac{a_1 + \dots + a_n}{n} = \frac{1}{n} \sum_{k=1}^n a_k$$

Ekkor $\lim_{n\to\infty} A_n = 0$.

Bizonyítás Legyen $\varepsilon > 0$ tetszőleges. Írjuk föl az alábbi igazságot:

$$|A_n| = \frac{1}{n} \left| \sum_{k=1}^n a_k \right| \le \frac{1}{n} \sum_{k=1}^n |a_k|$$

Az $\varepsilon/2$ -höz létezik N küszöbindex, hogy ha $n \ge N$, akkor $|a_n| < \varepsilon/2$. Ezekre az n indexre

$$|A_n| \leq \frac{|a_1| + \dots + |A_N| + |A_{N+1}| + \dots + |a_n|}{n} \leq \frac{N}{n}K + \frac{\varepsilon}{2}\frac{n-N}{n} < \frac{N}{n}K + \frac{\varepsilon}{2}$$

ahol $|a_n| \le K$ felső korlát. Ha

$$n \ge \frac{2NK}{\varepsilon} = N_1$$

akkor

$$\frac{N}{n}K \le \frac{\varepsilon}{2}$$

tehát, ha $n > N_1$, akkor

$$|A_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

ezzel az állítást beláttuk.

5. tétel Határérték monotonitása. **Rendőrelv sorozatokra.** (B) Nevezetes sorozat határértékek. Végtelen sorok. Konvergencia. **Végtelen mértani sor.** (B)

Határérték monotonitása

Állítás Tegyük fel, hogy az (a_n) és (b_n) sorozatok konvergensek. Jelölje

$$\lim_{n\to\infty} a_n = A \qquad \qquad \lim_{n\to\infty} b_n = B$$

 $Ha \ a_n < b_n \ \forall n$ -re, $akkor A \leq B$.

Rendőrelv sorozatokra (B)

Tétel Tegyük fel, hogy az (a_n) és (b_n) sorozatok közrefognak egy harmadik sorozatot

$$a_n < c_n < b_n$$
, $\forall n \in \mathbb{N}$

Tegyük fel, hogy (a_n) és (b_n) konvergens sorozatok ugyanazzal a határértékekkel.

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = A$$

Ekkor (c_n) is konvergens, és

$$\lim_{n\to\infty}c_n=A$$

Bizonyítás Legyen $\varepsilon > 0$ tetszőleges. Ekkor létezik N_1 küszöbindex, melyre $|a_n - A| < \varepsilon$, ha $n \ge N_1$. Speciálisan megfogalmazva $a_n > A - \varepsilon$. Hasonlóan létezik N_2 , melyre $|b_n - A| < \varepsilon$, speciálisan $b_n < A - \varepsilon$. Ekkor $n \ge \max(N_1, N_2)$ esetén

$$A - \varepsilon < a_n \le c_n \le b_n < A + \varepsilon$$

Ebből a konvergencia következik. ■

Nevezetes sorozat határértékek

1.) $a_n := n^{\alpha}, \alpha \in \mathbb{R}$. Ekkor

$$\lim_{n \to \infty} a_n = \begin{cases} \infty, & \alpha > 0 \\ 1, & \alpha = 0 \\ 0, & \alpha < 0 \end{cases}$$

2.) $a_n := a^n$. Ekkor

$$\lim_{n \to \infty} a_n = \begin{cases} \infty, & a > 1 \\ 1, & a = 1 \\ 0, & |a| < 1 \\ \frac{\pi}{2}, & a < -1 \end{cases}$$

- 3.) $a_n = \sqrt[n]{a}$, a > 0. Ekkor $\lim_{n \to \infty} a_n = 1$
- 4.) $a_n = \sqrt[n]{n}$. Ekkor $\lim_{n\to\infty} a_n = 1$

5.)

$$\lim_{n\to\infty} \left(1 + \frac{r}{n}\right)^n = e^r$$

6.) Legyenek $k, m \in \mathbb{N}$, valamint c_0, \dots, c_k és d_0, \dots, d_m tetszőleges nullától különböző valós számok. Legyen

$$a_n \coloneqq \frac{c_k n^k + \dots + c_1 n + c_0}{d_m n^m + \dots + d_1 m + d_0}$$

Ekkor

$$\lim_{n \to \infty} a_n = \begin{cases} 0, & k < m \\ \frac{c_k}{d_k}, & k = m \\ +\infty, & k > m, & c_k d_m > 0 \\ -\infty, & k > m, & c_k d_m < 0 \end{cases}$$

Végtelen sorok

Végtelen sor alatt valós számok összegét értjük, ahol az összeadandók száma végtelen:

$$a_1 + a_2 + a_3 + \dots + a_n + \dots = \sum_{n=1}^{\infty} a_n$$

Konvergencia

Definíció A végtelen sor konvergens, ha a részletösszegek sorozata

$$s_n = \sum_{k=1}^n a_k$$

konvergens. Ekkor azt mondjuk, hogy a sor összege

$$\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} s_n$$

Végtelen mértani sor (B)

Legyen $a_n=q^{n-1}$. Kérdés, mennyi az alábbi összeg: $1+q+q^2+\cdots=?$

Az első n tag összege $s_n=1+q+q^2+\cdots+q^{n-1}=\frac{1-q^n}{1-q},\ q\neq 1$

Így

$$\lim s_n = \begin{cases} \frac{1}{1-q}, & |q| < 1 \\ +\infty, & q \ge 1 \end{cases}$$

$$\nexists, & q \le -1$$

Állítás Ha $(\sum a_n)$ konvergens, akkor (a_n) nullsorozat.

Bizonyítás Legyenek

$$s_n=\sum_{k=1}^n a_k, \qquad S_n=\sum_{k=1}^{n-1} a_k, \qquad n\geq 2$$
 Ekkor, mivel
$$\lim_{n\to\infty} s_n=S, \qquad \lim_{n\to\infty} S_n=S$$
 ezért
$$\lim_{n\to\infty} a_n=\lim_{n\to\infty} (s_n-S_n)=0$$

6. tétel Cauchy kritérium végtelen sorokra. Majoráns és minoráns kritériumok végtelen sorokra: Hányados-kritérium. (B) Gyengített változat. Gyökkritérium. (B) Gyengített változat.

Cauchy kritérium végtelen sorokra

A $(\sum a_n)$ végtelen sor teljesíti a Cauchy feltételt, ha $\forall \varepsilon > 0$ -hoz létezik olyan $N = N(\varepsilon)$ küszöbindex, melyre minden $n > m \ge N$ esetén

$$|a_{m+1} + \dots + a_n| = \left| \sum_{k=m+1}^n a_k \right| < \varepsilon$$

Vagyis ez azt jelenti, hogy az N küszöbindex után akárhány elemet összeadva az összeg kisebb lesz, mint ε .

Majoráns és minoráns kritériumok végtelen sorokra

Tétel (Majoráns kritérium) Tegyük fel, hogy adott két sor, melyek elemeire teljesül, hogy $0 \le b_n \le a_n$ minden n-re. Ha $(\sum a_n)$ sor konvergens, akkor $(\sum b_n)$ is az.

Tétel (Minoráns kritérium) Tegyük fel, hogy adott két sor, melyek elemeire teljesül, hogy $b_n \ge a_n$ minden n-re. Ha $(\sum a_n)$ divergens és $\sum_{k=1}^{\infty} a_k = +\infty$, akkor $(\sum b_n)$ is divergens.

Hányados-kritérium (B)

Tétel 1.) Tegyük fel, hogy $\left|\frac{a_{n+1}}{a_n}\right| \le q < 1$, $\forall n$, ahol $q \in (0,1)$ n-től független szám. Ekkor a $(\sum a_n)$ sor abszolút konvergens.

2.) Tegyük fel, hogy $\left|\frac{a_{n+1}}{a_n}\right| \ge 1$, $\forall n$. Ekkor $a\left(\sum a_n\right)$ sor divergens.

Bizonyítás 1.) A feltétel szerint

$$\left| \frac{a_2}{a_1} \right| \le q$$

$$\left| \frac{a_3}{a_2} \right| \le q$$

$$\vdots$$

$$a_{n+1} = 0$$

$$\left|\frac{a_{n+1}}{a_n}\right| \le q$$

Ezeket összeszorozva azt kapjuk, hogy

$$\left|\frac{a_{n+1}}{a_1}\right| \le q^n$$

azaz $|a_{n+1}| \le |a_1| q^n$. Így a majoráns kritérium szerint az abszolútértékekből álló sor konvergens.

2.) Ha $\left|\frac{a_{n+1}}{a_n}\right| \ge 1$, akkor $|a_{n+1}| \ge |a_n|$, tehát (a_n) nem lehet nullsorozat. \blacksquare

Gyengített változat

Tétel Tegyük fel, hogy létezik a

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = A$$

határérték. Ekkor

- ha A < 1, akkor a sor abszolút konvergens,

- ha A > 1, akkor a sor divergens,

- $ha\ A = 1$, $akkor\ a\ sor\ lehet\ konvergens\ \acute{e}s\ divergens\ is.$

Gyökkritérium (B)

Tétel 1.) Tegyük fel, hogy $\sqrt[n]{|a_n|} \le q < 1 \quad \forall n$, ahol $q \in (0,1)$ n-től független szám. Ekkor $(\sum a_n)$ sor abszolút konvergens.

2.) Tegyük fel, hogy $\sqrt[n]{|a_n|} \ge 1 \quad \forall n.$ Ekkor $a(\sum a_n)$ sor divergens.

Bizonyítás 1.) A feltétel szerint $\sqrt[n]{|a_n|} \le q$, ahol 0 < q < 1, így igaz az is, hogy

$$|a_n| < q^n$$
, $\forall n \in \mathbb{N}$

Mivel

$$\sum_{n=1}^{\infty} q^n < \infty$$

ezért a majoráns kritérium alkalmazásával ebből következik, hogy

$$\sum_{n=1}^{\infty} |a_n| < \infty$$

Az abszolút konvergencia miatt a sor konvergens:

$$\sum_{n=1}^{\infty} a_n < \infty$$

2.) Mivel $\sqrt[n]{|a_n|} \ge 1$, így emiatt $|a_n| \ge 1$, azaz (a_n) nem nullsorozat, tehát

$$\sum_{n=1}^{\infty} a_n$$

sor nem konvergens. ■

Gyengített változat

Tétel Tegyük fel, hogy létezik a

$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = A$$

határérték. Ekkor

- ha A < 1, akkor a sor abszolút konvergens,

- ha A > 1, akkor a sor divergens,

- ha A = 1, akkor a sor lehet konvergens és divergens is.

7. tétel **Leibniz-sor.** (B) Abszolút- és feltételes konvergencia. Példák. Riemann tétel. Függvény definíció, alaptulajdonságok. Inverz függvény létezése. **Folytonosság adott pontban**, geometriai jelentés.

Leibniz-sor (B)

Definíció $(\sum a_n)$ *Leibniz-típusú sor*, ha az (a_n) sorozat rendelkezik az alábbi három tulajdonsággal:

- 1.) váltakozó előjelű, azaz $a_n a_{n+1} \le 0$,
- 2.) $(|a_n|)$ monoton fogyó,
- 3.) (a_n) nullsorozat.

Tétel A Leibniz-típusú sor konvergens.

Bizonyítás Feltehető, hogy $a_1 > 0$, ekkor a páratlan indexű tagokra $a_{(2n+1)} > 0$, a páros indexű tagokra $a_{2n} < 0$ teljesül. Képezzük az alábbi sorozatokat:

$$\begin{array}{l} \alpha_1 \coloneqq a_1 + a_2 \\ \beta_1 \coloneqq a_1 \end{array} \} \Rightarrow \alpha_1 \le \beta_1$$

$$\left. \begin{array}{l} \alpha_2 \coloneqq a_1 + a_2 + a_3 + a_4 \\ \beta_2 \coloneqq a_1 + a_2 + a_3 \end{array} \right\} \Rightarrow \alpha_2 \leq \beta_2$$

:

Másrészt az (a_n) sorozat abszolútérték-monotonitása miatt

$$\alpha_1 < \alpha_2 < \alpha_3 < \cdots$$
 $\beta_1 > \beta_2 > \beta_3 > \cdots$

A Cantor-féle közöspont tételt alkalmazzuk az $I_1=[\alpha_1,\beta_1],\ I_2=[\alpha_2,\beta_2],...$ intervallum-sorozatra. Könnyen látható, hogy

- I_{n+1} ⊂ I_n , egymásba skatulyázott zárt intervallumok,
- az intervallumok hossza $|I_1| = |a_2|$, $|I_2| = |a_4|$, ..., ezért

$$\lim_{n\to\infty}|I_n|=0$$

Mivel a Cantor-tétel feltételei teljesülnek, ezért létezik egyetlen közös pont, s, melyre

$$s = \lim_{n \to \infty} \alpha_n = \lim_{n \to \infty} \beta_n$$

Abszolút- és feltételes konvergencia. Példák.

Definíció A $(\sum a_n)$ végtelensor *abszolút konvergens*, ha az abszolútértékekből álló $(\sum |a_n|)$ sor konvergens.

Állítás $Ha\left(\sum a_n\right)$ abszolút konvergens, akkor konvergens is.

Definíció A $(\sum a_n)$ végtelen sor *feltételesen konvergens*, ha konvergens, de nem abszolút konvergens.

1. példa Tekintsük az alábbi végtelen sort:

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

Látható, hogy ez Leibniz típusú, ezért konvergens, létezik a részletösszegek határértéke:

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k} < \infty$$

DE!

$$\sum_{k=1}^{\infty} \left| (-1)^{k+1} \frac{1}{k} \right| = \infty$$

Tehát ez a sor feltételesen konvergens.

2. példa Tekintsük ismét a fenti példában vett sort. Ez átrendezhető a következőképpen:

$$c = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{3} - \frac{1}{6}\right) + \left(\frac{-1}{4} + \frac{1}{8}\right) + \dots =$$
$$= \frac{1}{2}\left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots\right) = \frac{1}{2}c$$

Tehát a feltételes sor összege függ az összeadás sorrendjétől. Igazolható, hogy a sor összege *bármi* is lehet.

Riemann tétel

Tétel Ha a $(\sum a_n)$ sor feltételesen konvergens, akkor $\forall c \in \mathbb{R}$ -hez létezik egy átrendezés, hogy az összeg $\sum a_n = c$ legyen.

Függvény definíció, alaptulajdonságok

Definíció Adott egy $f: X \to Y$ leképezés. Ez azt jelenti, hogy minden $x \in X$ elemhez hozzárendelünk az Y halmazból egy elemet. Ennek jelölése y = f(x). Ez a hozzárendelés a *függvény*.

Definíció A függvény *injektív*, ha $f(x_1) \neq f(x_2)$ bármely $x_1 \neq x_2$ esetén. A függvény *szürjektív*, ha $\forall y \in Y$ -hoz létezik x, melyre y = f(x). A függvény *bijektív*, ha injektív és szürjektív is, azaz a hozzárendelés kölcsönösen egyértelmű X és Y között.

Definíció Az f függvény értelmezési tartományát D_f , értékkészletét R_f jelöli.

Definíció Adott két függvény, $f: X \to Y$ és $g: Y \to Z$. Az összetett függvény $X \to Z$ típusú hozzárendelés lesz, melyre $x \mapsto g(f(x))$. Jele $g \circ f$, ahol g a külső, f a belső függvény. Értelmezési tartománya

$$D_{g \circ f} = \left\{ x : x \in X, f(x) \in D_g \right\}$$

A továbbiakban valós függvényekkel foglalkozunk, azaz feltesszük, hogy $X \subset \mathbb{R}$ és $Y \subset \mathbb{R}$.

Definíció Az f függvény *alulról korlátos*, ha R_f alulról korlátos.

Az f függvény felülről korlátos, ha R_f felülről korlátos.

Az f függvény korlátos, ha R_f korlátos.

Definíció	Az f függvény $p \acute{a} ros$, ha D_f szimmetrikus, és $f(-x) = f(x)$, $\forall x \in D_f$.
	Az f függvény páratlan, ha D_f szimmetrikus, és $f(-x) = -f(x), \forall x \in D_f$.

Definíció Az f függvény monoton fogyó, ha $\forall x_1, x_2 \in D_f$ -re $x_1 \le x_2 \Rightarrow f(x_1) \ge f(x_2)$, szigorúan monoton fogyó, ha $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$.

Definíció Az f függvény monoton növő, ha $\forall x_1, x_2 \in D_f$ -re $x_1 \le x_2 \Rightarrow f(x_1) \le f(x_2)$, szigorúan monoton növő, ha $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$.

Definíció Az f függvény periodikus p periódussal, ha létezik p > 0, melyre tetszőleges $x, x + p \in D_f$ esetén f(x + p) = f(x).

Inverz függvény létezése

Ha a függvény bijektív, akkor létezik inverz függvénye: $f^{-1}: Y \to X$, melyre $f^{-1}(f(x)) = x$, illetve hasonlóképpen, $f(f^{-1}(y)) = y$

Folytonosság adott pontban

Definíció Adott egy $f: X \to Y$ függvény, és egy $x_0 \in D_f$ pont. Azt mondjuk, hogy az f folytonos az x_0 -ban, ha $\forall \varepsilon > 0$ -hoz létezik olyan $\delta > 0$, melyre teljesül, hogy

$$\forall x \in D_f, \quad |x - x_0| < \delta$$

esetén

$$|f(x) - f(x_0)| < \varepsilon.$$

Geometriai jelentés

Heurisztikusan a folytonosság azt jelenti, hogy ha x_0 -ban egy picit változtatunk, akkor a függvényérték is csak picit változik, vagyis nincs ugrás ebben a pontban.

Szemléletesen így képzelhetjük el a folytonosságot x_0 pontban: Legyen az x_0 -hoz tartozó függvényérték $f(x_0) = y_0$. Az y_0 körül tekintünk egy $(y_0 - \varepsilon, y_0 + \varepsilon)$ közti vízszintes sávot. Ekkor létezik az x_0 körül egy $(x_0 - \delta, x_0 + \delta)$ függőleges sáv, melyre a függvény grafikonja az $(y_0 - \varepsilon, y_0 + \varepsilon)$ és $(x_0 - \delta, x_0 + \delta)$ sávok metszetébe esik.

8. tétel Sorozatfolytonosság. Kapcsolat folytonossággal (B) Folytonos függvények tulajdonságai. **Bolzano tétel** (B). Következmények.

Sorozatfolytonosság

Definíció Az f függvény az értelmezési tartományának egy x_0 pontjában sorozatfolytonos, ha minden $(x_n) \subset D_f$ sorozatra, melyre

$$\lim_{n\to\infty} x_n = x_0$$

teljesül, hogy

$$\lim_{n\to\infty} f(x_n) = f(x_0)$$

Kapcsolat folytonossággal (B)

Tétel Az f függvény az x_0 -ban folytonos $\Leftrightarrow x_0$ -ban sorozatfolytonos.

Bizonyítás 1.) Tegyük fel, hogy az f az x_0 -ban folytonos. Belátjuk, hogy sorozatfolytonos. Legyen $(x_n) \subset D_f$ olyan sorozat, melyre $x_n \to x_0$. Igazolni kell, hogy $f(x_n) \to f(x_0)$. Legyen $\varepsilon > 0$ tetszőleges. A folytonosság miatt ehhez az ε -hoz létezik olyan $\delta > 0$, melyre $|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon$. A sorozat konvergenciája miatt ehhez a δ -hoz létezik N küszöbindex, hogy ha $n \ge N$, akkor $|x_n - x_0| < \delta$. Így ezekre az indexekre $|f(x_n) - f(x_0)| < \varepsilon$.

2.) Tegyük fel, hogy f az x_0 -ban sorozatfolytonos. Indirekt módon tegyük fel, hogy f nem folytonos x_0 -ban, azaz létezik olyan $\varepsilon > 0$, melyre $(\ , \forall \delta \text{ rossz'})$, minden $\delta > 0$ -hoz létezik $x \in D_f$, amire $|x - x_0| < \delta$ és mégis, $|f(x) - f(x_0)| \ge \varepsilon$. Ekkor a $\delta = 1/n$ -hez is van olyan x_n , amelyre $|x_n - x_0| < \delta$ és $|f(x_n) - f(x_0)| \le \varepsilon$. Tekintsük ezt az (x_n) sorozatot. Ez a következő tulajdonságokkal rendelkezik: $(x_n) \subset D_f$, $\lim_{n \to \infty} x_n = x_0$, és mivel $|f(x_n) - f(x_0)| \ge \varepsilon \ \forall n$ -re, ezért $f(x_n)$ nem tart $f(x_0)$ -hoz, ami ellentmondás. Így az indirekt feltevés nem helyes, vagyis f az x_0 -ban folytonos.

Folytonos függvények tulajdonságai

Állítás Tegyük fel, hogy f folytonos az $x_0 \in \text{int}(D_f)$ -ben, és $f(x_0) > 0$. Ekkor létezik U környezete x_0 -nak, melyre f(x) > 0, $\forall x \in U \cap D_f$

Definíció Legyen $f: D_f \to \mathbb{R}$ adott függvény. Azt mondjuk, hogy f folytonos a D_f -ben, ha minden $x_0 \in D_f$ -re folytonos x_0 -ban.

Ha $D_f=(a,b)$: f folytonos (a,b)-n, ha minden $x_0\in D_f$ -re folytonos x_0 -ban. Ha $D_f=[a,b]$: f folytonos, ha folytonos az (a,b) intervallumon, és a végpontokban:

$$\lim_{x \to a+} f(x) = f(a), \lim_{x \to -b} f(x) = f(b)$$

Bolzano tétel (B)

Tétel Legyen $f : [a,b] \to \mathbb{R}$ folytonos függvény. Tegyük fel, hogy f(a) < f(b) és legyen $c \in (f(a), f(b))$. Ekkor létezik olyan $\xi \in (a, b)$, melyre $f(\xi) = c$.

Bizonyítás Meghatározzuk azt a ξ pontot, amiről a Bolzano tétel szól. Induljunk ki az $I_0 = [a_0, b_0]$ intervallumból.

- Legyen $\xi_1 = \frac{a_0 + b_0}{2}$.

Ha $f(\xi_1) = c$, akkor készen vagyunk.

Ha $f(\xi_1) > c$, akkor legyen $a_1 \coloneqq a_0$, $b_1 \coloneqq c$

Ha $f(\xi_1) < c$, akkor legyen $a_1 := c$, $b_1 := b_0$

Ekkor az $[a_1, b_1]$ intervallum a következő tulajdonságú: $f(a_1) < c < f(b_1)$ és $[a_1, b_1] \subset [a, b]$ éppen a fele.

– Megkonstruáljuk az $[a_2, b_2]$ intervallumot úgy, hogy $f(a_2) < c < f(b_2)$ teljesüljön, akárcsak az előbb. Stb...

Ekkor két eset lehetséges:

- i) vagy véges sok lépésben vége van az iterációnak, ekkor megkapjuk ξ pontot
- ii) vagy "nincs vége", ekkor a sorozatokra teljesül, hogy

$$\begin{cases} (a_n) : f(a_n) < c \\ (b_n) : f(b_n) > c \end{cases}$$

Belátjuk, hogy $f(\xi) = c$. Vegyük észre, hogy

$$\lim_{n\to\infty}a_n=\xi,\qquad \lim_{n\to\infty}b_n=\xi$$

Valóban, $[a_0,b_0]\supset [a_1,b_1]\supset \cdots$, és az intervallumok hossza tart a nullához. Ekkor a Cantor-féle közöspont-tétel szerint egyértelműen létezik a ξ közös pont, $\xi\in(a,b)$. Mivel f folytonos ξ -ben, ezért minden (x_n) sorozatra, melyre

$$\lim_{n \to \infty} (x_n) = \xi, \qquad \lim_{n \to \infty} f(x_n) = f(\xi)$$

ezért

$$\lim_{n\to\infty} f(a_n) = f(\xi), \qquad \lim_{n\to\infty} f(b_n) = f(\xi)$$

Emiatt
$$f(\xi) \le c$$
 és $f(\xi) \ge c$, ezért $f(\xi) = c$.

Következmények

Következmény Ha f folytonos és f(a) < 0, f(b) > 0, akkor f-nek van gyöke [a,b]-n, azaz van olyan ξ , hogy $f(\xi) = 0$.

Következmény következménye Ha f(x) páratlan fokú polinom, akkor biztos, hogy van valós gyöke.

9. tétel **Függvény határértéke véges pontban**. Egyoldali határértékek. Határérték és folytonosság. Szakadási helyek osztályozása. Példák. Határérték tulajdonságai. Nevezetes függvény határértékek.

Függvény határértéke véges pontban

Definíció Adott $f: X \to Y$ függvény, és $x_0 \in \mathbb{R}$. Tegyük fel, hogy létezik olyan környezet $U = (x_0 - \varepsilon, x_0 + \varepsilon)$, melyre minden $x \in U, x \neq x_0$ esetén $x \in D_f$. Azt mondjuk, hogy az f függvény határértéke x_0 -ban α , ha minden $\varepsilon > 0$ -hoz létezik

$$\delta>0$$
, melyre ha $0<|x-x_0|<\delta$, akkor $|f(x)-\alpha|<\varepsilon$. Ezt így jelöljük:
$$\lim_{x\to x_0}f(x)=\alpha$$

Egyoldali határértékek

Definíció Az f függvény jobboldali határértéke x_0 -ban $\alpha \in \mathbb{R}$, ha minden $\varepsilon > 0$ -hoz létezik $\delta > 0$, melyre ha $x \in D_f$, $x_0 < x < x_0 + \delta$ teljesül, akkor $|f(x) - \alpha| < \varepsilon$. Ezt így jelöljük:

$$\lim_{x \to x_0 +} f(x) = \alpha$$

Definíció Az f függvény baloldali határértéke x_0 -ban $\alpha \in \mathbb{R}$, ha minden $\varepsilon > 0$ -hoz létezik $\delta > 0$, melyre ha $x \in D_f$, $x_0 - \delta < x < x_0$ teljesül, akkor $|f(x) - \alpha| < \varepsilon$. Ezt így jelöljük:

$$\lim_{x \to x_0 -} f(x) = \alpha$$

Határérték és folytonosság

Állítás Az f függvény pontosan akkor folytonos $x_0 \in D_f$ -ben, ha létezik

$$\lim_{x\to x_0}f(x)$$

és

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Definíció Ha az f függvény nem folytonos az értelmezési tartomány egy x_0 pontjában, akkor itt szakadási helye van.

Szakadási helyek osztályozása

Elsőfajú szakadás

Elsőfajú szakadás van x_0 -ban, ha létezik

$$\lim_{x \to x_0 +} f(x) < \infty, \qquad \lim_{x \to x_0 -} f(x) < \infty$$

Megszüntethető szakadás

Megszüntethető a szakadás, ha léteznek és megegyeznek a jobb- és baloldali határértékek, de

$$\lim_{x \to x_0} f(x) \neq f(x_0)$$

Másodfajú szakadás

A szakadás másodfajú, ha nem elsőfajú.

Példák

elsőfajú, megszüntethető szakadás

elsőfajú, nem megszüntethető szakadás

másodfajú szakadás

Határérték tulajdonságai

Állítás

Tegyük fel, hogy
$$\lim_{x\to x_0} f(x) = \alpha$$
 és $\lim_{x\to x_0} g(x) = \beta$. Ekkor 1.)

$$\lim_{x \to x_0} cf(x) = c\alpha, \qquad c \in \mathbb{R}$$

$$\lim_{x \to x_0} (f(x) + g(x)) = \alpha + \beta$$

$$\lim_{x \to x_0} (f(x)g(x)) = \alpha \beta$$

Állítás

Legyenek f, g olyan függvények, melyekre

$$\lim_{x \to x_0} g(x) = \alpha, \qquad \lim_{x \to \alpha} f(x) = \beta$$

ahol α , β , x_0 végesek. Ekkor

$$\lim_{x \to x_0} f(g(x)) = \beta$$

Állítás

(Monoton függvények határértékéről). Legyen $f: X \to Y$ adott függvény és tegyük fel, hogy x_0 egy környezetében f monoton nő (kivéve esetleg x_0 -t), azaz létezik olyan $U = (x_0 - \varepsilon, x_0 + \varepsilon)$ környezete x_0 -nak, melyre $\forall x_1, x_2 \in U \setminus \{x_0\}$, $x_1, x_2 \in D_f$ és $x_1 < x_2$ esetén $f(x_1) \leq f(x_2)$. Ekkor léteznek a

$$\lim_{x \to x_0+} f(x), \qquad \lim_{x \to x_0-} f(x)$$

jobb- és baloldali határértékek, éspedig

$$\lim_{x \to x_0^-} f(x) = \sup\{f(x) : x_0 - \varepsilon < x < x_0\}$$

$$\lim_{x \to x_0^+} f(x) = \inf\{f(x) : x_0 < x < x_0 + \varepsilon\}$$

Állítás

Legyenek $f: D_f \to \mathbb{R}$ és $g: D_g \to \mathbb{R}$ adott függvények. Tegyük fel, hogy az x_0 pont egy U környezetében igaz, hogy $f(x) \le g(x) \ \forall x \in U \setminus \{x_0\}$. Ekkor

$$\lim_{x \to x_0} f(x) \le \lim_{x \to x_0} g(x)$$

Állítás (Rendőr-elv) Adottak az $f:D_f\to\mathbb{R},\ g:D_g\to\mathbb{R},\ h:D_h\to\mathbb{R}$ függvények. Feltesszük, hogy az x_0 egy U környezetében teljesül, hogy

$$f(x) \le g(x) \le h(x), \qquad x \in U, x \ne x_0$$

és tudjuk, hogy

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = \alpha$$

Ekkor létezik a

$$\lim_{x \to x_0} g(x) = \alpha$$

határérték is.

Nevezetes függvény határértékek

1.) ∞^0 típus

$$\lim_{x \to \infty} x^{\frac{1}{x}} = 1$$

2.) $\frac{\infty}{\infty}$ típus

$$\lim_{x \to \infty} \frac{\ln(x)}{x} = 0$$

3.) trigonometrikus

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

$$\lim_{x \to \infty} x \sin\left(\frac{1}{x}\right) = 1$$

4.) 0^0 típus

$$\lim_{x \to 0+} x^x = 1$$

5.) *e*-re visszavezethető

$$\lim_{x \to \infty} \left(1 + \frac{a}{x} \right)^x = e^a$$

Határérték-fogalom kiterjesztése. Átviteli elv határérték 10. tétel kiszámítására. [a, b]-n értelmezett folytonos függvények. W1-2. tételek (B)

Határérték-fogalom kiterjesztése

Definíció $(,x_0 = \pm \infty)$

$$\lim_{x \to \infty} f(x) = \alpha$$

 $\lim_{x\to\infty} f(x)=\alpha$ ha minden $\varepsilon>0$ -hoz létezik $K\in\mathbb{R}$, hogy minden $x\in D_f$, x>K esetén teljesül, hogy $|f(x) - \alpha| < \varepsilon$. Hasonlóan,

$$\lim_{x \to -\infty} f(x) = a$$

 $\lim_{x\to -\infty} f(x) = \alpha$ ha minden $\varepsilon > 0$ -hozlétezik $K\in \mathbb{R}$, hogy minden $x\in D_f, x< K$ esetén teljesül, hogy $|f(x) - \alpha| < \varepsilon$.

 $(\alpha = \pm \infty)$ Definíció

$$\lim_{x \to x_0} f(x) = +\infty$$

 $\lim_{x\to x_0} f(x) = +\infty$ ha minden $K\in\mathbb{R}$ -hez létezik $\delta>0$, melyre minden $|x-x_0|<\delta$, $x\neq x_0$ esetén teljesül, hogy f(x) > K. Hasonlóan,

$$\lim_{x \to x_0} f(x) = -\infty$$

ha minden $K \in \mathbb{R}$ -hez létezik $\delta > 0$, melyre minden $|x - x_0| < \delta$, $x \neq x_0$ esetén teljesül, hogy f(x) < K.

Definíció $(x_0 = \infty, \alpha = \pm \infty)$

$$\lim_{x \to \infty} f(x) = +\infty$$

 $\lim_{x\to\infty} f(x) = +\infty$ ha minden $K\in\mathbb{R}$ -hez létezik $L\in\mathbb{R}$, hogy minden $x\in D_f, x>L$ esetén teljesül, hogy f(x) > K. Hasonlóan,

$$\lim_{x \to \infty} f(x) = -\infty$$

ha minden $K \in \mathbb{R}$ esetén létezik $L \in \mathbb{R}$, hogy minden $x \in D_f$, x < L esetén teljesül, hogy f(x) < K.

Átviteli elv határérték kiszámítására

Állítás

1.)
$$\lim_{x\to x_0} f(x) = \alpha$$
 akkor és csak akkor, ha minden (x_n) sorozatra, melyre $(x_n) \subset D_f$, $\lim_{n\to\infty} x_n = x_0$, $x_n \neq x_0$

teljesül, hogy

$$\lim_{n\to\infty} f(x_n) = \alpha$$

2.) $\lim_{x\to x_0+} f(x) = \alpha$ akkor és csak akkor, ha minden (x_n) sorozatra, melyre $\lim_{n\to\infty} x_n = x_0, \qquad x_n > x_0$ $(x_n) \subset D_f$

teljesül, hogy

$$\lim_{n\to\infty}f(x_n)=\alpha$$

3.) $\lim_{x\to x_0-} f(x) = \alpha$ akkor és cak akkor, ha minden (x_n) sorozatra, melyre $\lim_{n \to \infty} x_n = x_0, \qquad x_n < x_0$ $(x_n) \subset D_f$

teljesül, hogy

$$\lim_{n\to\infty} f(x_n) = \alpha$$

[a, b]-n értelmezett folytonos függvények

Tulajdonságok

Bolzano tétel miatt

- negatív és pozitív értékeket is felvevő, folytonos függvénynek van zérushelye.
- két különböző helyettesítési értéke között minden érteket felvesz.

Weierstrass tételek miatt

van minimuma és maximuma

Heine tétele

korlátos és zárt intervallumon értelmezett folytonos függvény egyenletesen folytonos.

W1-2. tételek (B)

Tétel (Weierstrass I.) Legyen $f : [a, b] \to \mathbb{R}$ folytonos függvény. Ekkor f korlátos.

Bizonyítás Indirekt módon tegyük fel, hogy f felülről nem korlátos, vagyis minden $n \in \mathbb{N}$ hez létezik olyan $x_n \in [a,b]$, melyre $f(x_n) > n$. Igaz, hogy $a \le x_n \le b$, ezért
az (x_n) sorozat korlátos. Ekkor a Bolzano-Weierstrass tétel miatt létezik (x_{n_k}) konvergens részsorozata.

$$\lim_{n_k \to \infty} x_{n_k} = x_0$$

Az [a,b] intervallum zárt, ezért $x_0 \in [a,b]$. Az f itt folytonos és sorozatfolytonos is, tehát:

$$\lim_{n_k \to \infty} f(x_{n_k}) = f(x_0)$$

Viszont az indirekt feltevés miatt $f(x_{n_k}) > n_k$, amiből az következik, hogy

$$\lim_{n_k \to \infty} f(x_{n_k}) = \infty$$

Ez ellentmondás. ■

Tétel (Weierstrass II.) Legyen $f : [a,b] \to \mathbb{R}$ folytonos függvén. Ekkor f fölveszi minimumát és maximumát, azaz

$$\exists \xi_1, \quad f(\xi_1) = \min\{f(x) : x \in [a, b]\}\$$

 $\exists \xi_2, \quad f(\xi_2) = \max\{f(x) : x \in [a, b]\}\$

Bizonyítás Igazoljuk mondjuk a maximum létezését. Legyen $H = \{f(x) : x \in [a, b]\}$. A W1 tétel miatt ez a halmaz korlátos. Ekkor $\beta = \sup(H) < \infty$. Ez azt jelenti, hogy minden $n \in \mathbb{N}$ -re létezik $x_n \in [a, b]$, melyre

$$\beta - \frac{1}{n} < f(x_n) \le \beta$$

Erre a sorozatra $(x_n) \subset [a,b]$, ezért korlátos, vagyis létezik (x_{n_k}) konvergens részsorozata. Erre a részsorozatra

$$\lim_{n_k \to \infty} x_{n_k} = x_0$$

Az [a, b] intervallum zárt, ezért $x_0 \in [a, b]$. Az f itt folytonos és sorozatfolytonos is, tehát egyrészt:

$$\lim_{n_k \to \infty} f(x_{n_k}) = f(x_0)$$

másrészt

$$\beta - \frac{1}{n} < f(x_{n_k}) \le \beta$$

Ezért $\beta = f(x_0) \in H$, tehát valóban $\beta = \max(H)$.

11. tétel Egyenletes és Lipschitz folytonosság, példák. Heine tétel. **Differencia- és differenciálhányados**. Geometriai, fizikai jelentés. **Folytonosság-differenciálhatóság.** (B) Lineáris közelítés.

Egyenletes és Lipschitz folytonosság, példák

Definíció Az $f: D_f \to \mathbb{R}$ függvény egyenletesen folytonos D_f -en, ha minden $\varepsilon > 0$ -hoz létezik $\delta = \delta(\varepsilon)$, melyre minden $x_1, x_2 \in D_f$ esetén, ha $|x_1 - x_2| < \delta$, akkor $|f(x_1) - f(x_2)| < \varepsilon$.

Definíció Az $f: D_f \to \mathbb{R}$ függvény Lipschitz-folytonos, ha létezik olyan L > 0 szám, melyre minden $x_1, x_2 \in D_f$ esetén $|f(x_1) - f(x_2)| \le L|x_1 - x_2|$.

Példák

1. példa
$$f(x) = \sqrt{x}, D_f = [0, +\infty)$$
 egyenletesen folytonos, hiszen $\delta \coloneqq \varepsilon^2$ esetén ha $x < \delta$, akkor $\sqrt{x} < \varepsilon$

2. példa
$$f(x) = x^2, D_f = [0,1]$$
 Lipschitz-folytonos, hiszen $|x_1^2 - x_2^2| = |x_1 - x_2| \cdot |x_1 - x_2| \le 2|x_1 - x_2|, \quad \forall x_1, x_2 \in [0,1]$

3. példa
$$f(x) = \sin(x), D_f = \mathbb{R}$$
 Lipschitz-folytonos, hiszen $|\sin(x_1) - \sin(x_2)| \le |x_1 - x_2|, \quad \forall x_1, x_2 \in \mathbb{R}$

4. példa $f(x) = x^2$, $D_f = \mathbb{R}$ nem Lipschitz-folytonos és nem is egyenletesen folytonos.

Heine tétel

Tétel $Ha\ az\ f:[a,b]\to\mathbb{R}\ f\ddot{u}ggv\acute{e}ny\ folytonos,\ akkor\ egyenletesen\ is\ folytonos.$

Differencia- és differenciálhányados

Definíció Adott egy $f: H \to \mathbb{R}$ függvény és $x_0 \in D_f$ értelmezési tartományának egy belső pontja (azaz $(x_0 - \varepsilon, x_0 + \varepsilon) \subset D_f$ valamely $\varepsilon > 0$ -ra). Az x ponthoz tartozó differenciahányados:

$$\frac{f(x) - f(x_0)}{x - x_0}, \qquad x \in D_f$$

A függvény differenciálható x_0 -ban, ha a

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

határérték létezik és véges. Ennek a határértéknek a neve derivált, differenciálhányados. Jele: $f'(x_0)$

Geometriai, fizikai jelentés

Geometriai jelentés: A differenciahányados a függvény grafikonjának $P = (x_0; f(x_0))$ pontjához tartozó érintőjének meredekségét (\equiv iránytangensét) adja.

Fizikai jelentés: Tekintsük az s(t) útfüggvény által leírt mozgást. A test által $t_0 < t_1$ időpillanatok között megtett út $s(t_1) - s(t_0)$. A test átlagsebessége ekkor:

$$v(t_0, t_1) = \frac{s(t_1) - s(t_0)}{t_1 - t_0} = \frac{\Delta s}{\Delta t}$$

A test mozgásának pillanatnyi változásának jellemzésére bevezetjük a pillanatnyi sebesség fogalmát, amit az alábbi határértékkel definiálunk:

$$v(t_0) = \lim_{t \to t_0} \frac{s(t) - s(t_0)}{t - t_0}$$

A pillanatnyi sebesség v(t) függvénye az s(t) útfüggvény differenciálhányadosa.

Folytonosság-differenciálhatóság (B)

Állítás Ha f differeniálhtó x_0 -ban, akkor ott folytonos is.

Bizonvítás Mivel

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = m$$

ezért tetszőleges $\varepsilon > 0$ -hoz létezik $\delta > 0$, hogy

$$m - \varepsilon \le \frac{f(x) - f(x_0)}{x - x_0} \le m + \varepsilon$$

ha $|x - x_0| < \delta$. Vegyünk $\varepsilon = 1$ -et. Azt jelenti, hogy

$$m-1 \le \frac{f(x) - f(x_0)}{x - x_0} \le m + 1$$

azaz

$$\left| \frac{f(x) - f(x_0)}{x - x_0} \right| < K$$

valamilyen K mellett, ha x elég közel van x_0 -hoz. Ezért itt

$$|f(x) - f(x_0)| < K|x - x_0|$$

amiből a folytonosság következik. Legyen ugyanis $\varepsilon > 0$ tetszőleges, ekkor válasszunk $\delta = \varepsilon/K$ -t. Ha $|x - x_0| < \delta$, akkor $|f(x) - f(x_0)| < \varepsilon$.

Lineáris közelítés

Az f függvény gráfján adott a $P = (x_0; f(x_0))$ pont. Ebben a pontban a görbe érintőjének meredeksége $f'(x_0)$, az érintő egyenes egyenlete:

$$y = f(x_0) + f'(x_0)(x - x_0)$$

Ha x "közel van" x_0 -hoz, akkor

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0)$$

Ez a függvény lineáris közelítése az adott pontban.

12. tétel Elemi függvények deriváltja. (B) **Differenciálási szabá- lyok.** (B) **Érintő egyenes egyenlete.** Monoton függvények jellemzése deriválttal. (B)

Elemi függvények deriváltja (B)

1. $f(x) \equiv c$

$$f'(x_0) = \lim_{x \to x_0} \frac{c - c}{x - x_0} = 0$$

 $2. \quad f(x) = cx$

$$f'(x_0) = \lim_{x \to x_0} \frac{cx - cx_0}{x - x_0} = c \lim_{x \to x_0} \frac{x - x_0}{x - x_0} = 1c = c$$

 $3. \quad f(x) = x^n, n \neq 0$

$$f'(x_0) = \lim_{x \to x_0} \frac{x^n - x_0^n}{x - x_0} = \lim_{h \to 0} \frac{(x+h)^n - x^n}{h} = \lim_{h \to 0} \frac{\left(\sum_{k=0}^n \binom{n}{k} x^{n-k} h^k\right) - x^n}{h} = \lim_{h \to 0} \left(nx^{(n-1)} + \sum_{\substack{k=2 \ \to 0}}^n \binom{n}{k} x^{n-k} h^k\right) = nx^{n-1}$$

4. $f(x) = \sqrt[n]{x}$

$$f'(x_0) = \lim_{x \to x_0} \frac{\sqrt[n]{x} - \sqrt[n]{x_0}}{x - x_0} = (*)$$

Helyettesítsünk be: $t = \sqrt[n]{x}$ és $t_0 = \sqrt[n]{x_0}$

$$(*) = \lim_{t \to t_0} \frac{t - t_0}{t^n - t_0^n} = \frac{1}{nt_0^{n-1}} = \frac{1}{n} x_0^{\frac{1}{n-1}}, \qquad x_0 \neq 0$$

 $5. \quad f(x) = \sin(x)$

$$f'(x) = \sin'(x) = \lim_{x \to x_0} \frac{\sin(x) - \sin(x_0)}{x - x_0} = \lim_{h \to 0} \frac{\sin(x + h) - \sin(x)}{h} =$$

$$= \lim_{h \to 0} \frac{[\sin(x)\cos(h) + \cos(x)\sin(h)] - \sin(x)}{h} =$$

$$= \lim_{h \to 0} \frac{\cos(x)\sin(h) - \sin(x)(1 - \cos(h))}{h} =$$

$$= \cos(x) \left(\lim_{h \to 0} \frac{\sin(h)}{h}\right) - \sin(x) \left(\lim_{h \to 0} \frac{1 - \cos(h)}{h}\right) =$$

$$= \cos(x) (1) - \sin(x) (0) = \cos(x)$$

 $6. \quad f(x) = \cos(x)$

$$f'(x) = \cos'(x) = \left(\sin\left(x + \frac{\pi}{2}\right)\right)' = \sin'(u) \cdot \left(x + \frac{\pi}{2}\right)' = \cos(u) \cdot 1 =$$
$$= \cos\left(x + \frac{\pi}{2}\right) = -\sin(x)$$

7. $f(x) = c^x$

Először végezzük el az eredeti függvény átalakítását:

$$f(x) = c^x = e^{\ln(c^x)} = e^{x \cdot \ln(c)}$$

Ezután deriváljuk:

$$f'(x) = \left(e^{\ln(c^x)}\right)'(x \cdot \ln(c))' = e^{\ln(c^x)} \cdot \ln(c) = c^x \cdot \ln(c)$$

8. $f(x) = \log_c x$

Először végezzük el az eredeti függvény átalakítását:

$$f(x) = \log_c x = \frac{\ln(x)}{\ln(c)}$$

Ezután deriváljuk:

$$f'(x) = \left(\frac{\ln(x)}{\ln(c)}\right)' = \frac{1}{\ln(c)}(\ln(x))' = \frac{1}{\ln(c)}\frac{1}{x} = \frac{1}{x \cdot \ln(c)}$$

Differenciálási szabályok (B)

Tétel Legyenek f és g differenciálható függvények. Ekkor

1.)
$$(f+g)'(x) = f'(x) + g'(x)$$

$$(cf)'(x) = c \cdot f'(x)$$

3.)
$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

4.) Tegyük fel, hogy $g(x) \neq 0$, ekkor

$$\left(\frac{1}{g(x)}\right)' = \frac{g'(x)}{g^{2(x)}}$$

5.) Tegyük fel, hogy $g(x) \neq 0$, ekkor

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

6.) Láncszabály

$$(f\circ g)'(x)=f'\bigl(g(x)\bigr)\cdot g'(x)$$

Bizonyítás 3.)

$$(fg)'(x) = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} =$$

$$= \lim_{x \to x_0} \frac{f(x)g(x) - f(x)g(x_0) + f(x)g(x_0) - f(x_0)g(x_0)}{x - x_0} =$$

$$= \lim_{x \to x_0} f(x) \frac{g(x) - g(x_0)}{x - x_0} + g(x_0) \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Ahonnan fölhasználva f folytonosságát következik az állítás.

4.)

$$\left(\frac{1}{g(x)}\right)' = \lim_{x \to x_0} \frac{\frac{1}{g(x)} - \frac{1}{g(x_0)}}{x - x_0} = \lim_{x \to x_0} \frac{\frac{g(x_0) - g(x)}{g(x)g(x_0)}}{x - x_0} = \lim_{x \to x_0} \left(\frac{-1}{g(x)g(x_0)} \cdot \frac{g(x) - g(x_0)}{x - x_0}\right)$$

6.)

$$(f \circ g)'(x) = \left(f(g(x))\right)' = \lim_{x \to x_0} \frac{f(g(x)) - f(g(x_0))}{x - x_0} =$$

$$= \lim_{x \to x_0} \frac{f(g(x)) - f(g(x_0))}{g(x) - g(x_0)} \frac{g(x) - g(x_0)}{x - x_0} =$$

$$= \lim_{g(x) \to g(x_0)} \frac{f(g(x)) - f(g(x_0))}{g(x) - g(x_0)} \lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0} \blacksquare$$

Érintő egyenes egyenlete

Az f függvény gráfjának $P = (x_0; f(x_0))$ pontjában vett érintő egyenes egyenlete: $y = f(x_0) + f'(x_0)(x - x_0)$

Monoton függvények jellemzése deriválttal (B)

Tétel Adott $f: I \to \mathbb{R}$ függvény, ahol $I \subset \mathbb{R}$. Ekkor

f monoton növő akkor és csak akkor, ha $f'(x) \ge 0$, minden $x \in I$ -re, f monoton fogyó akkor és csak akkor, ha $f'(x) \le 0$, minden $x \in I$ -re.

Bizonyítás Legyen f monoton növő. Ha $x < x_0$, akkor

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{\leq 0}{\leq 0} \geq 0$$

Ha $x > x_0$, akkor

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{\ge 0}{> 0} \ge 0$$

A határérték $f'(x_0) \ge 0$. ■

13. tétel Inverz függvény deriváltja. (B) Szemléletes jelentés. Láncszabály. (B) Lagrange féle középérték tétel. (B). Következmény: Integrálszámítás I. alaptétele. (B)

Inverz függvény deriváltja (B)

Tétel Tegyük fel, hogy $f:[a,b] \to \mathbb{R}$ szigorúan monoton és differenciálható. Tegyük fel, hogy $f'(x) \neq 0, \forall x \in D_f$. Ekkor f^{-1} is differenciálható, és

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$$

Bizonyítás A differenciálhatságot bizonyítás nélkül elfogadjuk. Induljunk ki az $f^{-1}(f(x)) = x$ azonosságból, és deriváljuk x szerint, az összetett függvény deriválási szabályát alkalmazva. Ekkor

$$(f^{-1})'(f(x)) \cdot f'(x) = (x)'$$

$$(f^{-1})'(f(x)) \cdot f'(f^{-1}(f(x))) = 1$$

$$(f^{-1})'(f(x)) = \frac{1}{f'(f^{-1}(f(x)))}$$

Mivel f(x) = y, a tétel állítása ebből már következik.

Szemléletes jelentés

A differenciahányados a függvény grafikonjának $P = (x_0; f(x_0))$ pontjához tartozó érintőjének meredekségét (\equiv iránytangensét) adja.

Láncszabály (B)

$$(f \circ g)'(x) = \left(f(g(x))\right)' = f'(g(x)) \cdot g'(x)$$

Bizonyítás

$$(f \circ g)'(x) = \left(f(g(x))\right)' = \lim_{x \to x_0} \frac{f(g(x)) - f(g(x_0))}{x - x_0} =$$

$$= \lim_{x \to x_0} \frac{f(g(x)) - f(g(x_0))}{g(x) - g(x_0)} \frac{g(x) - g(x_0)}{x - x_0} =$$

$$= \lim_{g(x) \to g(x_0)} \frac{f(g(x)) - f(g(x_0))}{g(x) - g(x_0)} \lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0} =$$

$$= f'(g(x)) \cdot g'(x)$$

szóbeli vizsga 2409 36 / 68 2014. január 9.

Lagrange féle középérték tétel (B)

Tétel Legyen $f : [a, b] \to \mathbb{R}$ függvény. Tegyük fel, hogy f

- folytonos[a,b]-n,

- differenciálható (a,b)-n.

Ekkor létezik olyan $\xi \in (a, b)$, melyre

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}$$

Bizonyítás Az (a; f(a)) és (b; f(b)) pontokat összekötő egyenes egyenlete

$$h(x) = f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$$

Legyen

$$g(x) \coloneqq f(x) - h(x)$$

Ekkor g differenciálható, és

$$a(a) = f(a) - h(a) = 0,$$
 $a(b) = f(b) - h(b) = 0$

tehát g-re a Rolle-tételt alkalmazva azt kapjuk, hogy $\exists \xi$, melyre $g'(\xi) = 0$, azaz

$$f'(\xi) = h'(\xi) = \frac{f(b) - f(a)}{b - a}$$

Következmény: Integrálszámítás I. alaptétele (B)

Tétel $A \ g, f : [a,b] \to \mathbb{R}$ differenciálható függvények, melyekre f'(x) = g'(x) teljesül minden $x \in (a,b)$ -re. Ekkor $f(x) = g(x) + c, \forall x \in [a,b]$ valamely $c \in \mathbb{R}$ mellett.

Bizonyítás Legyen h(x) = f(x) - g(x). Deriváljuk h-t:

$$h'(x) = f'(x) - g'(x)$$

A tétel föltevése alapján f'(x) = g'(x), amiből következik, hogy $h'(x) \equiv 0$. Ez csak akkor lehetséges, ha h konstans, vagyis létezik c = h(x), $c \in \mathbb{R}$.

2014. január 9.

Cauchy féle középérték tétel. L'Hopital szabály.(B) Általá-14. tétel nos esetek. Lokális szélsőérték létezésének szükséges feltétele. (B)

Cauchy féle középérték tétel

Tétel

Legyen $f:[a,b] \to \mathbb{R}$ függvény. Tegyük fel, hogy f

- folytonos [a, b]-n,
- differenciálható (a,b)-n.
- $-g(b) \neq g(a)$
- $-g'(x) \neq 0$

Ekkor létezik olyan $\xi \in (a,b)$, melyre

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}$$

L'Hopital szabály (B)

Tétel

Legyenek f és g differenciálható függvények, melyekre

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$$

 $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$ Keressük a függvények hányadosának határértékét. Ekkor ha létezik a deriváltak hányadosának határértéke, akkor a keresett határérték is létezik, mégpedig

$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \lim_{x \to x_0} \frac{f(x)}{g(x)}$$

Bizonyítás A tétel állítása miatt $f(x_0) = g(x_0) = 0$, azaz

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(x_0)}{g(x) - g(x_0)}$$

A Cauchy-féle középértéktétel szerint ekkor létezik egy $\xi \in (x, x_0)$, melyre

$$\frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \frac{f'(\xi)}{g'(\xi)}$$

Nyilvánvalóan

$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \lim_{x \to x_0} \frac{f'(\xi)}{g'(\xi)} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \lim_{x \to x_0} \frac{f(x)}{g(x)} \blacksquare$$

Általános esetek

I. Általánosítás

 $\frac{+\infty}{+\infty}$ típusú határérték esetén

Tétel

Legyenek f és g differenciálható függvények, melyekre $\lim_{x\to x_0}f(x)=\lim_{x\to x_0}g(x)=+\infty$

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = +\infty$$

Keressük a függvények hányadosának határértékét. Ekkor ha létezik a deriváltak hányadosának határértéke, akkor a keresett határérték is létezik, éspedig

$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \lim_{x \to x_0} \frac{f(x)}{g(x)} = A$$

Megjegyzés Az A lehet $\pm \infty$ is.

II. Általánosítás

 $x_0 = \pm \infty$ esetén

Tétel

Legyenek f és g differenciálható függvények, melyekre

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = 0 \ vagy \propto$$

 $\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} g(x) = 0 \ vagy \infty$ Keressük a függvények hányadosának határértékét. Ekkor ha létezik a deriváltak hányadosának határértéke, akkor a keresett határérték is létezik, éspedig

$$\lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = \lim_{x \to +\infty} \frac{f(x)}{g(x)}$$

III. Általánosítás

A L'Hopital szabály ismételhető.

Tétel

Legyenek f és g kétszer differenciálható függvények, melyekre

$$\lim_{x \to +\infty} f'(x) = \lim_{x \to +\infty} g'(x) = 0 \ vagy \infty$$

 $\lim_{x\to +\infty}f'(x)=\lim_{x\to +\infty}g'(x)=0\ vagy\infty$ Keressük a függvények hányadosának határértékét. Ekkor ha létezik a második deriváltak hányadosának határértéke, akkor a keresett határérték is létezik, éspedig

$$\lim_{x \to +\infty} \frac{f''(x)}{g''(x)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)} = \lim_{x \to +\infty} \frac{f(x)}{g(x)}$$

Lokális szélsőérték létezésének szükséges feltétele (B)

Tétel Legyen $f: X \to Y$ differenciálható függvény, és legyen f-nek x_0 -ban lokális szélsőértéke. Ekkor $f'(x_0) = 0$.

Tegyük fel, hogy x_0 -ban mondjuk lokális maximum van. A derivált definíciója Bizonyítás szerint:

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

A lokális maximum tulajdonsága miatt létezik $U = (x_0 - \varepsilon, x_0 + \varepsilon)$ környezet, hogy ha $x \in U$, akkor $f(x) \le f(x_0)$. Így ha $x \in (x_0 - \varepsilon, x_0)$, vagyis $x < x_0$, akkor

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{\le 0}{< 0} \Rightarrow f'(x_0) \ge 0$$

Hasonlóan, ha $x \in (x_0, x_0 + \varepsilon)$, vagyis $x > x_0$, akkor

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{\leq 0}{> 0} \Rightarrow f'(x_0) \leq 0$$

A fentiekből következik, hogy $f'(x_0) = 0$.

15. tétel Magasabb rendű deriváltak. **Konvex** és konkáv függvények. Inflexió. Kapcsolat a deriválttal. **Taylor polinom, tulajdonságai.** (B) Lagrange-féle maradéktag.

Magasabb rendű deriváltak

Definíció Ha f' deriválható x_0 -ban, akkor ennek a deriváltja az eredeti f függvény máso-dik deriváltja

$$f''(x_0) = \frac{f'(x) - f'(x_0)}{x - x_0}$$

Hasonlóan, ha f'' is deriválható, akkor a harmadik derivált

$$f'''(x_0) = \frac{f''(x) - f''(x_0)}{x - x_0} = \frac{d^3 f}{dx^3}$$

... és így tovább. Az n-ed rendű derivált jelölése:

$$f^{(n)} = \frac{d^n f}{dx^n}$$

Konvex és konkáv függvények

Definíció Az $f : [a, b] \to \mathbb{R}$ függvény *konvex*, ha minden $x_1, x_2 \in [a, b]$ esetén

$$f\left(\frac{x_1+x_2}{2}\right) \le \frac{f(x_1)+f(x_2)}{2}$$

Definíció Az $f : [a, b] \to \mathbb{R}$ függvény *konkáv*, ha -f konvex.

Inflexió

Definíció Az $x_0 \in D_f$ inflexiós pont, ha itt az $f: D_f \to \mathbb{R}$ függvény konvexitása a pont előtt más mint a pont után, azaz ha f az

- $(x_0 - \delta, x_0)$ -on konvex és $(x_0, x_0 + \delta)$ -on konkáv, vagy

- $(x_0 - \delta, x_0)$ -on konkáv és $(x_0, x_0 + \delta)$ -on konvex.

Kapcsolat a deriválttal

Tétel Legyen f: [a, b] kétszer differenciálható függvény. Ekkor

- f konvex [a,b]- $n \Leftrightarrow f'$ monoton növő

- f konkáv [a,b]- $n \Leftrightarrow f'$ monoton csökkenő.

Tétel Legyen f kétszer differenciálható függvény x_0 -ban. Ekkor

- ha $f''(x_0) > 0$, akkor x_0 lokális minimum,

- ha $f''(x_0) < 0$, akkor x_0 lokális maximum,

- ha $f''(x_0) = 0$, akkor nem dönthető el, hogy van-e szélsőérték.

Tétel Legyen f kétszer differenciálható függvény x_0 -ban. Ekkor

- ha $f''(x_0) > 0$, akkor f konvex x_0 valamely környezetében,

- ha $f''(x_0) < 0$, akkor f konkáv x_0 valamely környezetében.

Állítás Legyen f háromszor differenciálható függvény x_0 -ban. Ekkor

- ha $f''(x_0) = 0$ és f'' előjelet vált x_0 -ban, akkor x_0 inflexiós pont,

- ha $f''(x_0) = 0$ és $f'''(x_0) \neq 0$, akkor x_0 inflexiós pont.

Taylor polinom, tulajdonságai (B)

Egy n-ed rendű polinomot keresünk, mely olyan, mint f az x_0 -ban:

$$P_{n}(x_{0}) = f(x_{0})$$

$$P'_{n}(x_{0}) = f'(x_{0})$$

$$P''_{n}(x_{0}) = f''(x_{0})$$

$$\vdots$$

$$P_{n}^{(n)}(x_{0}) = f^{(n)}(x_{0})$$

Állítás Ilyen polinom egyértelműen létezik, a neve Taylor-polinom, jelölése $T_n(x)$.

Definíció Az f függvény x_0 -hoz tartozó n-ed rendű Taylor polinomja:

$$T_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

$$T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!}(x - x_0)^k$$

Bizonyítás Az egyértelműség triviális. Létezése a következőképp igazolható:

$$T_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

 $T_n(x)$ és deriváltjai x_0 -ban:

$$T_{n}(x_{0}) = f(x_{0}) + f'(x_{0})(x_{0} - x_{0}) + \dots + \frac{f^{(n)}(x_{0})}{n!}(x_{0} - x_{0})^{n} = f(x_{0})$$

$$T'_{n}(x_{0}) = 0 + f'(x_{0}) \cdot 1 + \frac{f''(x_{0})}{2} 2(x_{0} - x_{0}) + \dots + \frac{f^{(n)}(x_{0})}{n!} n(x_{0} - x_{0})^{n-1} = f'(x_{0})$$

$$\vdots$$

$$T_{n}^{(k)}(x_{0}) = 0 + \dots + 0 + \frac{f^{(k)}(x_{0})}{k!} k! + \dots + \frac{f^{(n)}(x_{0})}{k!} (x_{0} - x_{0})^{n-k} = f^{(k)}(x_{0})$$

$$\vdots$$

$$T_{n}^{(n)}(x_{0}) = 0 + \dots + 0 + \frac{f^{(n)}(x_{0})}{n!} n! = f^{(n)}(x_{0}) \blacksquare$$

Lagrange-féle maradéktag

Definíció A Lagrange-féle maradéktag:

$$L_n(x) := f(x) - T_n(x)$$

Tétel Tegyük fel, hogy f(n+1)-szer differenciálható. Ekkor $\exists \xi \in (x, x_0)$ vagy $\xi \in (x_0, x)$, melyre:

$$L_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$

16. tétel **Lokális szélsőérték létezésének elégséges feltétele.** (B) **Primitív függvény.** Határozatlan integrál alaptulajdonságai.

Lokális szélsőérték létezésének elégséges feltétele (B)

Tétel Ha az f függvény x_0 -ban kétszer differenciálható, és $f'(x_0) = 0$, azaz x_0 stacionárius pont, akkor:

- ha $f''(x_0) > 0$, akkor x_0 lokális minimum,
- ha $f''(x_0) < 0$, akkor x_0 lokális maximum,
- ha $f''(x_0) = 0$, akkor ebből nem eldönthető, vajon x_0 -ban szélsőértéke van-e.

Bizonyítás Tegyük fel, hogy $f''(x_0) > 0$. Ekkor f''(x) > 0 az x_0 valamely környezetében is, ezért f'(x) szigorúan monoton nő ebben a környezetben. Mivel $f'(x_0) = 0$, ezért $x < x_0$ esetén f'(x) < 0, tehát a függvény itt szigorúan monoton fogyó. Hasonlóan, $x > x_0$ esetén f'(x) > 0, tehát a függvény itt szigorúan monoton nő.

	$x < x_0$	x_0	$x > x_0$
f''	+	+	+
f'	_	0	+
f	\downarrow	lok. min.	1

Primitív függvény

Definíció Legyen $f: I \to \mathbb{R}$, ahol $I \in \mathbb{R}$. Legyen $F: I \to \mathbb{R}$. Az F függvény az f függvény primitív függvénye, ha

$$F'(x) = f(x), \quad \forall x \in I$$

Határozatlan integrál alaptulajdonságai

Definíció Legyen $f: I \to \mathbb{R}$. f primitív függvényei a határozatlan integrál.

$$\int f(x) dx = \{H : I \to \mathbb{R} \mid H'(x) = f(x)\} = \{F + c : c \in \mathbb{R}\}\$$

$$\int (f+g)(x) dx = \int f(x) dx + \int g(x) dx$$
2.)
$$\int c \cdot f(x) dx = c \cdot \int f(x) dx$$
3.)

$$\int f'(\varphi(x)) \cdot \varphi'(x) \, dx = f(\varphi(x)) + c$$

$$\int f^{\alpha}(x) \cdot f'(x) \, dx = \frac{f^{\alpha+1}(x)}{\alpha+1} + c$$

$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + c$$

$$\int f'(x) \cdot e^{f(x)} dx = e^{f(x)} + c$$

17. tétel Riemann-integrál, definíció és alaptulajdonságai. Integrálhatóság elégséges feltételei. (B) Integrálközép. Integrál középérték tétel (B)

Riemann-integrál, definíció

Legyen az f függvény [a, b]-n értelmezett folytonos függvény. Az [a, b] intervallum egy felosztása $\mathcal{F} = \{x_0 = a < x_1 < \dots < x_n = b\}$.

Definíció A felosztáshoz tartozó *alsó közelítő összeg*

$$s(\mathcal{F}) = \sum_{k=1}^{n} m_k (x_k - x_{k-1}) = \sum_{k=1}^{n} m_k \Delta x_k$$

ahol $m_k = \inf\{f(x) : x \in [x_{k-1}, x_k]\}$ és $\Delta x_k = x_k - x_{k-1}$

Definíció A felosztáshoz tartozó *felső közelítő összeg*

$$S(\mathcal{F}) = \sum_{k=1}^{n} M_k (x_k - x_{k-1}) = \sum_{k=1}^{n} M_k \Delta x_k$$

ahol $M_k = sum\{f(x): x \in [x_{k-1}, x_k]\}$ és $\Delta x_k = x_k - x_{k-1}$

Definíció Az \mathcal{F} felosztáshoz tartozó egyik *Riemann összeg*

$$\sigma(\mathcal{F}) = \sum_{k=1}^{n} f(\xi_k)(x_k - x_{k-1}) = \sum_{k=1}^{n} f(\xi_k) \Delta x_k$$

ahol $\xi_k \in [x_{k-1}, x_k]$ tetszőleges és $\Delta x_k = x_k - x_{k-1}$

Definíció Az \mathcal{F} felosztássorozathoz tartozó *oszcillációs összeg*

$$o(\mathcal{F}) = \sum_{k=1}^{n} (M_k - m_k)(x_k - x_{k-1}) = \sum_{k=1}^{n} (M_k - m_k) \Delta x_k$$

Definíció Az F felosztás *finomsága*

$$\delta(\mathcal{F}) = \max\{x_k - x_{k-1} : k = 1, \dots, n\}$$

Definíció Legyen \mathbb{F} az összes lehetséges felosztás. Legyenek $s=\sup\{s(\mathcal{F}):\mathcal{F}\in\mathbb{F}\}$ és $S=\inf\{S(\mathcal{F}):\mathcal{F}\in\mathbb{F}\}.$

Ha s = S, akkor az $f : [a,b] \to \mathbb{R}$ korlátos függvényt *Riemann integrálhatónak* nevezzük. A függvény Riemann integrálja

$$\int_{a}^{b} f(x) \, dx = s = S$$

Megjegyzés Ahol $\delta(\mathcal{F}) \to 0$

$$\int_{a}^{b} f(x) \ dx = \lim_{n \to \infty} \sigma(\mathcal{F}_n) = \lim_{n \to \infty} \sum_{k=1}^{n} f(\xi_k) \Delta x_k$$

Riemann-integrál alaptulajdonságai

Tétel 1.) Ha $f \in \mathcal{R}[a,c]$ és $f \in \mathcal{R}[c,b]$, akkor $f \in \mathcal{R}[a,b]$ is.

$$\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx$$

2.) (Linearitás) Ha $f,g \in \mathcal{R}[a,b]$ akkor $f+g \in \mathcal{R}[a,b]$ és $cf \in \mathcal{R}[a,b]$, továbbá

$$\int_{a}^{b} (f+g)(x) \ dx = \int_{a}^{b} f(x) \ dx + \int_{a}^{b} g(x) \ dx$$

3.) (Monotonitás) Ha $f, g \in \mathcal{R}[a, b]$ melyekre $f(x) \leq g(x) \ \forall x \in [a, b]$, akkor

$$\int_{a}^{b} f(x) \ dx \le \int_{a}^{b} g(x) \ dx$$

4.) Ha $f \in \mathcal{R}[a, b]$, melyre $m \le f(x) \le M \ \forall x \in [a, b]$, akkor

$$m(b-a) \le \int_a^b f(x) \, dx \le M(b-a)$$

5.) ("Háromszög egyenlőtlenség") Ha $f \in \mathcal{R}[a, b]$, akkor $|f| \in \mathcal{R}[a, b]$, és

$$\left| \int_{a}^{b} f(x) \, dx \right| \le \int_{a}^{b} |f(x)| \, dx$$

Integrálhatóság elégséges feltételei (B)

Lemma Legyen $f:[a,b] \to \mathbb{R}$ korlátos függvény. ekkor az integrálhatóság azzal ekvivalens, hogy $\forall \varepsilon > 0$ -hoz $\exists \mathcal{F}$, melyre $o(\mathcal{F}) < \varepsilon$.

1. Kritérium

Tétel $Haf: [a,b] \to \mathbb{R}$ korlátos és monoton, akkor integrálható.

Bizonyítás Tegyük fel, hogy f monoton növő. Legyen $\varepsilon > 0$ tetszőleges. Az \mathcal{F} felsoztás finomsága δ . Tegyük fel, hogy $\Delta x_k \leq \delta$. Ekkor

$$o(\mathcal{F}) = \sum_{k=1}^{n} (f(x_k) - f(x_{k-1})) \Delta x_k \le \sum_{k=1}^{n} (f(x_k) - f(x_{k-1})) \delta =$$

$$= \delta (f(x_1) - f(x_0) + f(x_2) - f(x_1) + \dots + f(x_n) - f(x_{n-1})) =$$

$$= \delta (-f(x_0) + f(x_n)) = \delta (f(b) - f(a))$$

Ezért ha $\delta < \frac{\varepsilon}{f(b) - f(a)}$, akkor $o(\mathcal{F}) < \varepsilon$.

2. Kritérium

Tétel $Ha f : [a, b] \to \mathbb{R}$ folytonos, akkor integrálható.

Bizonyítás Legyen $\varepsilon > 0$ tetszőleges. Mivel f folytonos [a,b]-n ezért egyenletesen is folytonos. Így létezik $\frac{\varepsilon}{b-a}$ -hoz δ , hogy ha $|x-y| < \delta$, akkor $|f(x)-f(y)| < \frac{\varepsilon}{b-a}$.

Legyen \mathcal{F} olyan felosztás, melyre $\delta(\mathcal{F}) < \delta$. Ekkor az oszcillációs összeg:

$$o(\mathcal{F}) = \sum_{k=1}^{n} (M_k - m_k) \Delta x_k \le \frac{\varepsilon}{b - a} \sum_{k=1}^{n} (x_k - x_{k-1}) = \varepsilon$$

Tehát a függvény integrálható. ■

3. Kritérium

Tétel Legyen $f:[a,b] \to \mathbb{R}$ korlátos, mely véges sok szakadási helytől eltekintve folytonos. Ekkor f integrálható.

Tegyük fel, hogy f folytonos, kivéve valamilyen $x^* \in [a, b]$ pontot. Legyen Bizonyítás $\varepsilon > 0$ tetszőleges. Írjuk föl az intervallumot, mint

$$[a, b] = I_1 \cup I_2 \cup I_3 = [a, x^* - \delta] \cup (x^* - \delta, x^* + \delta) \cup [x^* + \delta, b]$$

Az f az I_1 és I_3 intervallumokon folytonos, így $\exists \mathcal{F}_1:o(\mathcal{F}_1)<\varepsilon/3$ és $\exists \mathcal{F}_2: o(\mathcal{F}_3) < \varepsilon/3$. I_2 -n a felosztás $\mathcal{F}_2: \{(x^*-\delta, x^*+\delta)\}$. Az oszcillációs összeg $o(\mathcal{F}_2) = (M-m)2\delta \le (2K)2\delta$, ahol |f(x)| < K. Ha $\delta < \varepsilon/12K$, akkor $o(\mathcal{F}_2) < \varepsilon/3$. Ekkor $o(\mathcal{F}) = o(\mathcal{F}_1) + o(\mathcal{F}_2) + o(\mathcal{F}_3) < \varepsilon$.

Integrálközép

Definíció Az $f \in \mathcal{R}[a,b]$ függvény integrálközepe

$$\kappa = \frac{\int_{a}^{b} f(x) \, dx}{b - a}$$

Integrál középérték tétel (B)

Tegyük fel, hogy az $f \in \mathcal{R}[a,b]$ függvény folytonos. Ekkor $\exists \xi \in [a,b]$, melyre $f(\xi) = \frac{\int_a^b f(x) \, dx}{b-a}$ **Tétel**

$$f(\xi) = \frac{\int_a^b f(x) \, dx}{b - a}$$

Bizonyítás A Weierstrass II. tétel szerint $\exists \xi_1, \xi_2 \in [a, b]$, melyekre $f(\xi_1) = m$, $f(\xi_2) = M$ ahol m a függvény minimuma, M a függvény maximuma. Mivel $m \le \kappa \le M$, ezért a Bolzano tétel miatt $\exists \xi \in (\xi_1, \xi_2)$, melyre $f(\xi) = \kappa$.

18. tétel **Newton-Leibniz tétel.** (B) Integrálfüggvény. Integrálszámítás II. alaptétele. (B)

Newton-Leibniz tétel (B)

Tétel Legyen $f : [a,b] \to \mathbb{R}$ integrálhatófüggvény. Tegyük fel, hogy létezik F primitív függvénye, $F'(x) = f(x) \forall x \in [a,b]$. Ekkor

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

Bizonyítás Legyen $\mathcal{F}_n = \{a = x_0 < x_1 < \dots < x_n = b\}$ egy felosztás, és F primitív függvény egy rész-intervallumon: $F : [x_{k-1}, x_k] \to \mathbb{R}$.

A Lagrange-féle középérték-tétel miatt létezik $\xi_k \in [x_{k-1}, x_k]$, melyre

$$F'(\xi_k) = \frac{F(x_k) - F(x_{k-1})}{x_k - x_{k-1}} = f(\xi_k)$$

Tekintsük azt a Riemann-összeget, ahol

$$\sigma(\mathcal{F}_n) = \sum_{k=1}^n f(\xi_k)(x_k - x_{k-1}) = \sum_{k=1}^n \frac{F(x_k) - F(x_{k-1})}{x_k - x_{k-1}} (x_k - x_{k-1}) =$$

$$= \sum_{k=1}^n F(x_k) - f(x_{k-1}) = F(b) - F(a)$$

$$\int_a^b f(x) \, dx = \lim_{n \to \infty} \sigma(\mathcal{F}_n) = F(b) - F(a)$$

Integrálfüggvény

Definíció Legyen $f:[a,b] \to \mathbb{R}$ Riemann-integrálható. Az f függvény integrálfüggvénye $F:[a,b] \to \mathbb{R}$, ahol

$$F(x) = \int_{a}^{x} f(t) \ dt$$

Integrálszámítás II. alaptétele (B)

Tétel Az integrálfüggvény tulajdonságai:

1.) Folytonos [a, b]-n,

2.) ha f folytonos, akkor F differenciálható, és F'(x) = f(x).

Bizonyítás 1.) f korlátos: $|f(x)| \le K$. Az $x_0 \in (a, b)$, ekkor $F(x_0)$ folytonos-e?

$$F(x) - F(x_0) = \int_a^x f(t) dt - \int_a^{x_0} f(t) dt = \int_{x_0}^x f(t) dt$$
$$|F(x) - F(x_0)| = \left| \int_{x_0}^x f(t) dt \right| \le \int_{x_0}^x |f(t)| dt \le K|x - x_0|$$

A fentiekből következik, hogy $\lim_{x\to x_0} F(x) - F(x_0) = 0$, tehát F folytonos.

2.) Be kell látni a következőt:

$$\lim_{x \to x_0} \frac{F(x) - F(x_0)}{x - x_0} = f(x_0)$$

$$\left| \frac{F(x) - F(x_0) - f(x_0)(x - x_0)}{x - x_0} \right| = (*)$$

Ezt megbecsüljük. Legyen $\varepsilon > 0$ tetszőleges. $\exists \delta > 0$:

$$|x - x_0| \le \delta \Longrightarrow |f(x) - f(x_0)| \le \varepsilon$$

Ha $|x - x_0| \le \delta$, akkor a fenti kifejezésben:

$$(*) = \frac{\left| \int_{x_0}^x f(t) - f(x_0) dt \right|}{|x - x_0|} \le \frac{\varepsilon |x - x_0|}{|x - x_0|} = \varepsilon$$

19. tétel **Helyettesítés integrálban.** Határozott alak. Trigonometrikus integrálok Függvény gráf. Ívhossz. (B) Forgástest térfogata.

Helyettesítés integrálban

Tétel

A helyettesítési integrál alapformulája:

$$\int_{0}^{\infty} f(\phi(t)) \cdot \phi'(t) dt = \int_{0}^{\infty} f(x) dx \Big|_{x=\phi(t)}$$

ahol φ szigorúan monoton függvény.

Határozott alak

Tétel

Legyen $f:[a,b] \to \mathbb{R}$ integrálható függvény és $\phi:[\alpha,\beta] \to [a,b]$ szigorúan monoton, differenciálható függvény.

$$\phi(\alpha) = a, \qquad \phi(\beta) = b$$

Ekkor

$$\int_{a}^{b} f(x) \, dx = \int_{\alpha}^{\beta} f(\phi(t)) \cdot \phi'(t) \, dt = \int_{\phi^{-1}(a)}^{\phi^{-1}(b)} f(\phi(t)) \cdot \phi'(t) \, dt$$

Trigonometrikus integrálok

Általános eset

$$\int \sin^n(x) \cos^m(x) \ dx = ?, \quad n, m \in \mathbb{N}$$

1. eset: n és m valamelyike páratlan

Püthagorasz tételt használva átírjuk a páros kitevőjűt, pl.: $\cos^2(x) = 1 - \sin^2(x)$

2. eset: *n* és *m* is páros

Trigonometrikus azonosságot használunk, pl.: $\sin^2(x) = \frac{1-\cos(2x)}{2}$

Példafeladatok

1. példa:

$$\int \cos^3(x) \ dx = ?$$

Ismert összefüggést használva: $\cos^2(x) = 1 - \sin^2(x)$. Ezt beírva:

$$\int (1 - \sin^2(x))\cos(x) \ dx = \int \cos(x) \ dx - \int \sin^2(x)\cos(x) \ dx =$$
$$= \sin(x) - \frac{\sin^3(x)}{3} + c$$

2. példa:

$$\int_0^\pi \sin^2(x) \ dx = ?$$

Ismert összefüggést használva: $\sin^2(x) = \frac{1-\cos(2x)}{2}$. Ezt beírva:

$$\int_0^{\pi} \frac{1 - \cos(2x)}{2} \, dx = \frac{1}{2} \int_0^{\pi} 1 - \cos(2x) \, dx = \frac{1}{2} \left[x - \frac{\sin(2x)}{2} \right]_0^{\pi} = \frac{\pi}{2} - 0 = \frac{\pi}{2}$$

Függvény gráf

Definíció Az y = f(x) és y = g(x) görbék és az x = a és x = b egyenesek közti terület nagysága:

$$A = \int_a^b f(x) \, dx - \int_a^b g(x) \, dx$$

Feltéve, hogy $f(x) \ge g(x), \forall x \in [a, b]$

Ívhossz (B)

Tétel Legyen $f:[a,b] \to \mathbb{R}$ differenciálható függvény. A függvény gráfjának hossza ekkor

$$s = \int_a^b \sqrt{1 + \left(f'(t)\right)^2} \, dt$$

Bizonyítás A görbe ívhosszát közelíthetjük az [a, b] egy felosztásához tartozó törtvonallal, melynek hossza

$$s = \sum_{k=1}^{n} s(P_k P_{k-1}) = \sum_{k=1}^{n} \sqrt{(x_k - x_{k-1})^2 + (f(x_k) - f(x_{k-1}))^2} = \sum_{k=1}^{n} (x_k - x_{k-1}) \sqrt{1 + \left(\frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}\right)^2}$$

Vagyis

$$s = \lim_{n \to \infty} \sum_{k=1}^{n} \sqrt{1 + \left(f'(\xi)\right)^2} \cdot \Delta x_k = \int_a^b \sqrt{1 + \left(f'(t)\right)^2} dt$$

Forgástest térfogata

Állítás Tegyük fel, hogy $f:[a,b] \to \mathbb{R}$ differenciálható. Ekkor a forgástest térfogata:

$$V = \pi \int_{a}^{b} f^{2}(x) \, dx$$

20. tétel **Parciális integrálás.** Alapesetek. Racionális törtfüggvény integrálja. Improprius integrál, tulajdonságai. **Hatvány-függvény improprius integrálja (0,1)-ben**. (B)

Parciális integrálás

Tétel

Tegyük fel, hogy f, g: $[a,b] \to \mathbb{R}$ differenciálható függvények. Ekkor 1.) Határozatlan alak

$$\int f'(x)g(x) dx = f(x)g(x) - \int f(x)g'(x) dx$$

2.) Határozott alak

$$\int_{a}^{b} f'(x)g(x) dx = f(x)g(x) \bigg|_{a}^{b} - \int_{a}^{b} f(x)g'(x) dx$$

$$ahol f(x)g(x) \bigg|_{a}^{b} = f(b)g(b) - f(a)g(a)$$

Alapesetek

1. alapeset

$$\int polinom \cdot e^x dx$$

"Szereposztás": $f'(x) = e^x \text{ \'es } g(x) = \text{polinom.}$

2. alapeset

$$\int \operatorname{polinom} \cdot \begin{Bmatrix} \sin(x) \\ \cos(x) \end{Bmatrix} dx$$

"Szereposztás":
$$f'(x) = \begin{cases} \sin(x) \\ \cos(x) \end{cases}$$
 és $g(x) = \text{polinom}$.

3. alapeset

$$\int \text{polinom} \cdot \begin{cases} \ln(x) \\ \arcsin(x) \\ \arctan(x) \end{cases}$$

"Szereposztás": $f'(x) = \text{polinom \'es } g'(x) = \begin{cases} \ln(x) \\ \dots \end{cases}$

4. alapeset

$$\int e^{x} \cdot \begin{cases} \sin(x) \\ \cos(x) \end{cases}$$
"Szereposztás": $f'(x) = e^{x}$ és $g(x) = \begin{cases} \sin(x) \\ \cos(x) \end{cases}$.

Racionális törtfüggvény integrálja

1. lépés

Polinom osztás. Ha ez nem lehetséges, a lépés kimarad.

2. lépés

Parciális törtekre bontás

3. lépés

A parciális törtek integrálása

Példa

$$\int \frac{1}{x^2 - 5x + 6} \, dx = \int \frac{1}{(x - 3)(x - 2)} \, dx = \int \frac{A}{x - 3} \, dx + \int \frac{B}{x - 2} \, dx$$

$$A = 1, \quad B = -1$$

$$\int \frac{1}{x - 3} \, dx - \int \frac{1}{x - 2} \, dx = \ln|x - 3| - \ln|x - 2| = \ln\left|\frac{x - 3}{x - 2}\right|$$

Improprius integrál, tulajdonságai

Definíció Az $f: I \to \mathbb{R}$ függvény lokálisan integrálható, ha minden $[a, b] \subset I$ korlátos és zárt intervallum esetén $f|_{[a,b]} \in \mathcal{R}$. Ezt így jelöljük: $f \in \mathcal{R}^{loc}(I)$.

Definíció Az $f \in \mathcal{R}^{loc}(I)$ függvény improprius értelemben integrálható, ha a

$$\lim_{\substack{a \to \alpha \\ b \to \beta}} \int_{a}^{b} f(x) \ dx = \int_{\alpha}^{\beta} f(x) \ dx$$

határérték létezik és véges.

Az improprius integrál tulajdonságai megmaradnak:

lineáris
 háromszög-egyenlőtlenség

additívNewton-Leibniz formula

monoton
 helyettesítés és parciális integrálás

Hatványfüggvény improprius integrálja (0,1)-ben (B)

Adott I = (0,1) véges intervallum, és $f: I \to \mathbb{R}$ nem korlátos függvény: $f(x) = \frac{1}{x^{\alpha}}$

$$\int_0^1 \frac{1}{x^{\alpha}} \, dx = ?, \qquad \alpha > 0$$

Ha létezik az improprius integrál, akkor az így számolható:

$$\int_0^1 \frac{1}{x^{\alpha}} dx = \lim_{\varepsilon \to 0+} \int_{\varepsilon}^1 \frac{1}{x^{\alpha}} dx$$

A primitív függvény

$$\int \frac{1}{x^{\alpha}} dx = \begin{cases} \ln|x|, & \alpha = 1\\ \frac{x^{1-\alpha}}{1-\alpha}, & \alpha \neq 1 \end{cases}$$

Vizsgáljuk meg az érdekes eseteket, amikor $\alpha = 1$ és $\alpha \neq 1$!

1.) Ha $\alpha = 1$, akkor

$$\int_0^1 \frac{1}{x} dx = \lim_{\varepsilon \to 0+} \left[\ln(x) \right]_0^1 = \lim_{\varepsilon \to 0+} \left(\underbrace{\widehat{\ln(1)}}_{-} - \underbrace{\widehat{\ln(\varepsilon)}}_{-} \right) = +\infty$$

2.) Ha $\alpha \neq 1$, akkor

$$\int_{0}^{1} \frac{1}{x^{\alpha}} dx = \frac{1}{1 - \alpha} \left[x^{1 - \alpha} \right]_{0}^{1} = \frac{1}{1 - \alpha} \cdot \lim_{\varepsilon \to 0} (1 - \varepsilon^{1 - \alpha}) = \begin{cases} \frac{1}{1 - \alpha}, & 1 - \alpha > 0 \\ + \infty, & 1 - \alpha < 0 \end{cases}$$

Összefoglalva:

$$\int_0^1 \frac{1}{x^{\alpha}} dx = \begin{cases} \frac{1}{1-\alpha}, & \alpha < 1 \\ +\infty, & \alpha \ge 1 \end{cases}$$

21. tétel **Hatványfüggvény improprius integrálja (1,∞)-ben.** (B) Majoráns és minoráns kritériumok. Elégséges feltételek a hatványfüggvényhez kapcsolódóan.

Hatványfüggvény improprius integrálja $(1,\infty)$ -ben (B)

Adott $I = (1, \infty)$ intervallum, és $f: I \to \mathbb{R}$ nem korlátos függvény: $f(x) = \frac{1}{x^{\alpha}}$

$$\int_{1}^{\infty} \frac{1}{x^{\alpha}} dx = ?, \qquad \alpha > 0$$

Ha létezik az improprius integrál, akkor az így számolható:

$$\int_{1}^{\infty} \frac{1}{x^{\alpha}} dx = \lim_{b \to \infty} \int_{1}^{b} \frac{1}{x^{\alpha}} dx$$

A primitív függvény

$$\int \frac{1}{x^{\alpha}} dx = \begin{cases} \ln|x|, & \alpha = 1\\ \frac{x^{1-\alpha}}{1-\alpha}, & \alpha \neq 1 \end{cases}$$

Vizsgáljuk meg az érdekes eseteket, amikor $\alpha = 1$ és $\alpha \neq 1$!

1.) Ha $\alpha = 1$, akkor

$$\int_{1}^{\infty} \frac{1}{x} dx = \lim_{b \to \infty} \left[\ln(x) \right]_{1}^{b} = \lim_{b \to \infty} \left(\underbrace{\widehat{\ln(b)}}_{-} - \underbrace{\widehat{\ln(1)}}_{-} \right) = +\infty$$

2.) Ha $\alpha \neq 1$, akkor

$$\int_{1}^{\infty} \frac{1}{x^{\alpha}} dx = \frac{1}{1 - \alpha} \left[x^{1 - \alpha} \right]_{1}^{\infty} = \frac{1}{1 - \alpha} \cdot \lim_{b \to \infty} (1 - b^{1 - \alpha}) = \begin{cases} +\infty, & 1 - \alpha > 0 \\ \frac{1}{1 - \alpha}, & 1 - \alpha < 0 \end{cases}$$

Összefoglalva:

$$\int_{1}^{\infty} \frac{1}{x^{\alpha}} dx = \begin{cases} +\infty, & \alpha \le 1 \\ \frac{1}{1-\alpha}, & \alpha > 1 \end{cases}$$

Majoráns és minoráns kritériumok

Tétel (Majoráns kritérium) Legyen $f, g: I \to \mathbb{R}$, és $I = (\alpha, \beta)$. Tegyük fel, hogy $|f(x)| \le |g(x)| \ \forall x \in I$. Ekkor ha létezik az

$$\int_{\alpha}^{\beta} g(x) \, dx$$

integrál (és véges) akkor

$$\int_{\alpha}^{\beta} f(x) \, dx$$

is véges.

Tétel(Minoráns kritérium) Legyen $f, g: I \to \mathbb{R}$, és $I = (\alpha, \beta)$. Tegyük fel, hogy $|g(x)| \le |f(x)| \ \forall x \in I$. Ekkor, ha $\int_{\alpha}^{\beta} f(x) \, dx = \infty$ akkor $\int_{\alpha}^{\beta} g(x) \, dx = \infty$

Elégséges feltételek a hatványfüggvényhez kapcsolódóan

22. tétel **Differenciálegyenlet értelmezése, megoldása.** Cauchyfeladat. Fizikai példák. Növekedési folyamat. Robbanás egyenlete. **Szeparábilis DE.** Megoldása.

Differenciálegyenlet értelmezése, megoldása

Definíció Differenciáleyenlet olyan egyenlet, melyben az ismeretlen egy függvény, és szerepel benne ennek az ismeretlen függvénynek a deriváltja is.

Definíció A differenciálegyenlet rendje az ismeretlen függvény legmagasabb fokú deriváltjának fokszáma.

Definíció Az elsőrendű differenciálegyenlet általános alakja y' = f(x, y), ahol f(x, y) adott kétváltozós függvény.

Definíció A differenciálegyenlet megoldása $y: I \to \mathbb{R}$, ahol $I \in \mathbb{R}$ egy intervallum, és $y'(x) = f(x, y(x)), \forall x \in I$

Cauchy-feladat

Differenciálegyenlet és kezdeti érték együtt: Cauchy-feladat.

$$y' = f(x, y)$$

$$y(x_0) = y_0$$

Nincs általános megoldása, amely tetszőleges f(x,y) esetén alkalmazható.

Fizikai példák

1. példa

Legyen valamely sugárzás (fény, radioaktivitás) intenzitása I(x) ahol x a megtett út. A kiinduló intenzitás legyen $I(0) = I_0$. Fizikai meggondolásból az intenzitás megváltozása arányos a megtett úttal és az intenzitás nagyságával. Ezért az intenzitás megváltozását így közelíthetjük: $\Delta I \approx -\Delta x \cdot I$. Ebből valamilyen $\mu > 0$ konstanssal:

$$\Delta I = -\mu \Delta x \cdot I \Longrightarrow \frac{\Delta I}{\Delta x} = -\mu I$$

Ebből azt a differenciálegyenletet kapjuk, hogy

$$\frac{I'(x)}{I(x)} = -\mu$$

Ennek megoldása $I(x) = I_0 e^{-\mu x}$

2. példa

Legyen a megfigyelt jelenség egy rugó mozgása. Az m tömegű részecske az x tengely mentén mozog. A mozgást $x=x_0$ -ból indítjuk, t=0 időpontban.

A t időpillanatbeli kitérést jelölje x(t).

A pillanatnyi sebesség ennek deriváltja: $\dot{x}(t)$.

A pillanatnyi gyorsulás a második derivált: $\ddot{x}(t)$.

A rugóra az alábbi erők hatnak:

- 1.) rugóerő: -kx (a kitéréssel arányos, ellentétes irányú)
- 2.) közegellenállási erő: $-r\dot{x}$ (a pillanatnyi sebességgel arányos, ellentétes irányú)
- 3.) külső gerjesztés: f(t) (pl. meglökjük időközönként)

A Newton-törvény szerint az eredő erők összessége: $m\ddot{x} = -kx - r\dot{x} + f$ Az x(t) mozgást leíró differenciálegyenlet tehát: $m\ddot{x} + r\dot{x} + kx = f$

Növekedési folyamat

Legyen y(x) a populáció nagysága. Tegyük föl, hogy a növekedés nagysága arányos a populációval: $y' = \alpha y$. Legyen a példa a radioaktív bomlás. $y(x) = c \cdot e^{\alpha x}$ ahol $x \approx \text{idő}$. Legyen a kiinduló populáció $y(x_0) = x_0$. Ekkor $y(x) = c \cdot e^{\alpha(x-x_0)}$.

 α < 0: kihalás α > 0: növekedés

Robbanás egyenlete

Tegyük föl, hogy a növekedés nagysága arányos a populáció négyzetével: $y' = ay^2$ Ez egy szeparábilis differenciálegyenlet.

$$\frac{y'}{y^2} = a$$

$$\int \frac{1}{y^2} dy = \int a dx$$

$$-\frac{1}{y} = ax + c, \quad c \in \mathbb{R}$$

Az általános megoldás

$$y(x) = -\frac{1}{ax + c}$$

 $\alpha > 0$: növekedés

Szeparábilis DE

Tegyük fel, hogy f(x, y)-ban szétválasztható x és y:

$$f(x,y) = \frac{\alpha(x)}{\beta(y)}, \quad \beta \neq 0$$

Ekkor a differenciálegyenlet:

$$y' = \frac{\alpha(x)}{\beta(y)}$$

alakú. Ez a szeparábilis vagy szétválasztható változójú differenciálegyenlet.

Megoldása

Formális megoldás:

$$y' = y'(x)$$

$$\frac{dy}{dx} = \frac{\alpha(x)}{\beta(y)}$$

$$\beta(y) dy = \alpha(x) dx$$

$$B(y) = \int \beta(y) dy, \qquad A(x) = \int \alpha(x) dx$$

Könnyen látható, hogy ha y = y(x) megoldás, akkor B(y) = A(x) + c. Ebből y meghatározható.

23. tétel **Homogén LDE megoldása.**(B) Inhomogén LDE megoldása (B). Állandó együtthatós inhomogén LDE: Állandók variálása

A lineáris differenciálegyenlet általános alakja y' = a(x)y + b(x)

Homogén LDE megoldása (B)

Ha $b(x) \equiv 0$, akkor a differenciálegyenlet homogén lineáris.

Állítás A homogén lináris differenciálegyenlet általános megoldása

$$v(x) = ce^{A(x)}, c \in \mathbb{R}$$

ahol

$$A(x) = \int a(x) \, dx$$

az a függvény primitív függvénye.

Bizonyítás Az általános alak y' = a(x)y. Ez szeparábilis, tehát

$$\frac{dy}{dx} = a(x)y$$

$$\int \frac{1}{y} dy = \int a(x) dx$$

$$\ln|y| = A(x) + c$$

$$e^{\ln(y)} = e^{A(x) + c}$$

$$y = e^{A(x)}e^{c} = c^*e^{A(x)}$$

Inhomogén LDE megoldása (B)

Ha $b(x) \not\equiv 0$, akkor a differenciálegyenlet inhomogén lineáris.

Tétel Inhomogén LDE minden megoldása fölírható $y = y_p + y_h$ alakban.

Tétel Az inhomogén lineáris differenciálegyenlet általános megoldása

$$y(x) = e^{A(x)} \left(c + \int b(x) e^{-A(x)} dx \right)$$

ahol az első tag a homogén egyenletrész általános megoldása, a második tag az inhomogén egyenlet egy konkrét megoldása.

Bizonyítás Tudjuk, hogy

$$y_p = e^{A(x)} \cdot \left\{ \int e^{-A(x)} \cdot b(x) \, dx \right\}$$

és

$$y_h = ce^{A(x)}$$

Összeadva

$$y = y_p + y_h = e^{A(x)} \cdot \left\{ \int e^{-A(x)} \cdot b(x) \, dx \right\} + c e^{A(x)} =$$
$$= e^{A(x)} \left(c + \int e^{-A(x)} \cdot b(x) \, dx \right) \blacksquare$$

Állandó együtthatós inhomogén LDE: Állandók variálása

A módszer lényege, hogy az inhomogén egyenlet homogén részének *c* konstansát kicserélve az inhomogén egyenlet egy partikuláris megoldásához jutunk. Ezt és a homogén általános megoldást fölhasználva megkapjuk az inhomogén lineáris differenciálegyenlet általános megoldását.

Tegyük fel, hogy adott a homogén LDE egy megoldása: y = y(x). Keressük az inhomogén LDE partikuláris megoldását. Ez fölírható, mint $y_p = u \cdot y$, ahol u = u(x).

$$\begin{cases} y_p' = ay_p + b \\ y_p' = u \cdot ay + u' \cdot y \end{cases} \implies ay_p + b = u \cdot ay + u' \cdot y$$

Az új egyenletben y_n helyére $u \cdot y$ -t írva

$$a(u \cdot y) + b = u \cdot ay + u' \cdot y$$

 $b = u' \cdot y$

Mivel a homogén rész általános megoldását ismerjük,

ahol A'(x) = a(x). Ekkor

$$u = \int e^{-A(x)} \cdot b(x) \, dx$$

Az összes fönti összefüggést fölhasználva

$$y_p = e^{A(x)} \cdot \left\{ \int e^{-A(x)} \cdot b(x) \, dx \right\}$$

24. tétel **Hatványsor.** Konvergencia halmaz, konvergencia sugár. Deriválás a konvergencia halmazban. Speciális függvények Taylor sora: e^x , sin(x), cos(x). **Az e szám értelmezése, kétféle előállítása.**

Hatványsor

Definíció A hatványsor:

$$\sum_{n=0}^{\infty} c_n (x - x_0)^n \,, \qquad c_n \in \mathbb{R}$$

Ahol $x_0 \in \mathbb{R}$ rögzített.

Konvergencia halmaz, konvergencia sugár

Definíció Adott egy hatványsor:

$$\sum_{n=0}^{\infty} c_n x^n$$

Ennek konvergencia halmaza (konvergencia tartománya, "ahol konvergens"):

$$\mathcal{H} = \left\{ x \in \mathbb{R} : \sum_{n=0}^{\infty} c_x x^n < \infty \right\}$$

Definíció Tegyük fel, hogy létezik $\xi \neq 0$, melyre $\xi \in \mathcal{H}$ és ∃η ∉ \mathcal{H} . A hatványsor konvergencia sugara $\rho \coloneqq \sup\{|x| : x \in \mathcal{H}\}$

Ha $\mathcal{H} = \{0\}$, akkor $\rho \coloneqq 0$.

Ha $\mathcal{H} = \mathbb{R}$, akkor $\rho \coloneqq \infty$

Deriválás a konvergencia halmazban

1.) A tagonkénti deriválással kapott függvénysor:

$$F(x) = \sum_{n=1}^{\infty} n c_n x^{n-1}$$

Ennek a konvergencia sugara megegyezik az eredeti hatványsor konvergencia sugarával.

2.) A hatványsor a konvergencia halmazának minden belső pontjában tagonként deriválható és deriváltja

$$f'(x) = \sum_{n=1}^{\infty} nc_n x^{n-1}$$

3.) A hatványsor k-dik deriváltja

$$f^{(k)}(x) = \sum_{n=1}^{\infty} n(n-1) \dots (n-k+1) c_n x^{n-k}$$

Speciális függvények Taylor sora: e^x , sin(x), cos(x)

Állítás $Az f(x) = e^x$ függvény Taylor sora

$$e^x = \sum_{n=1}^{\infty} \frac{x^n}{n!}, \qquad x \in \mathbb{R}$$

Állítás $Az f(x) = \sin(x) f \ddot{u} g g v \acute{e} n y x_0 = 0 k \ddot{o} r \ddot{u} li Taylor sora$

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots, \quad x \in \mathbb{R}$$

Állítás $Az f(x) = \cos(x) f \ddot{u} g g v \acute{e} n y x_0 = 0 k \ddot{o} r \ddot{u} li Taylor sora$

$$cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots, \quad x \in \mathbb{R}$$

Az e szám értelmezése, kétféle előállítása.

Definíció Az *e* szám a következő sorozat határértéke:

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

Definíció Az *e* szám a következő végtelen sor összege:

$$e = \sum_{n=0}^{\infty} \frac{1}{n!}$$

Feladatok az elsőrendű Differenciálegyenletek témakörből

Az alábbi feladatok minták. A vizsga során egy hasonló típusú feladatot kell megoldani. A csillaggal jelölt feladatokat csak a jó és jeles jegyért kell tudni.

Szeparábilis differenciálegyenletek

Általános megoldást keresünk

1.
$$y' = \frac{2xy^2}{1 - x^2}$$

2.
$$y' = \frac{1}{y \cdot (9 + 4x^2)}$$

3.
$$y' + y^4 \cdot e^{2x} = 0$$

4.
$$y' = \frac{1}{y \cdot (9 - 4x^2)}$$

5.
$$y' = \operatorname{ctg}(x) \cdot y$$

6.
$$y' = \frac{y^2 - 1}{2y + xy}$$

$$7. \quad xy' + y = y^2$$

Általános megoldást keresünk, kicsit nehezebb integrálokkal

8.
$$(x^2 - 2x)y' = 2(xy + x - y - 1)$$

9.
$$\sqrt{1 - x^2}y' + xy = 0$$

10.
$$(x + xy^2)y' - 3 = 0$$

$$11.* \quad \sqrt{1+x^2}y' = \sqrt{1-y^2}$$

12.
$$(1-x^2)y' = \sqrt{1-y^2}$$

13.
$$(1+x^2)y' = \sqrt{1-y^2}$$

14.
$$xyy' - (1 - y^2) = 0$$

15.*
$$x(1+y^2) + (1+x^2)y' = 0$$

16.
$$\cos(x) y' = \sin(x) y$$

17.
$$y'y(4+9x^2)=1$$

$$18.* \quad e^x y' = e^y$$

$$19.* \quad (2x+1)y' + y^2 = 0$$

$$20.* \quad (1+x^2)y' + (1+2y)x = 0$$

$$21.* y' \sin(x) \sin(y) + 5 \cos(x) \cos^{3}(y) = 0$$

Szeparábilis DE. Cauchy feladat.

$$22. \quad xy' + yxe^x, \quad y(1) = 0$$

23.*
$$\sin(x)\cos^3(y) + (\cos(x) + 1)\sin(y) y' = 0$$
, $y(2\pi) = \frac{\pi}{4}$

24.
$$\frac{yy'}{1+x} = \frac{x}{1+y}$$
, $y(1) = 1$

26.
$$y'x = y \ln(y)$$
, $y(0) = 1$

26.
$$y'x = y \ln(y)$$
, $y(0) = 1$ 27. $y \ln(y) + xy' = 0$, $y(1) = 1$

28.
$$x\sqrt{1-x^2} + y\sqrt{1-y^2}y' = 0$$
, $y(0) = 1$

Lineáris differenciálegyenletek

Általános megoldást keresünk

$$1. \qquad y' = -2xy$$

3.
$$y' = xy$$

$$5. y'\cos(x) + y\sin(x) = 0$$

$$7. y' = \frac{2}{x}y$$

9.
$$(x^2 - 1)y' = xy$$

11.
$$y' = -y \operatorname{tg}(x) + \sin(2x)$$

13.*
$$y' = -yx + 6e^{-\frac{x^2}{2}}$$

15.
$$y' = -\frac{2}{x}y + x^3$$

$$17. \quad y'x\ln(x) - y = 0$$

19.
$$y' = y \operatorname{ctg}(x) + e^x \sin(x)$$

$$20.* \quad y'x \ln(x) - y = x^2(2\ln(x) - 1)$$

$$2.* y' = -2xy + 2xe^{-x^2}$$

$$4.* y' = xy + x^3 e^{\frac{x^2}{2}}$$

$$6.* \quad y'\cos(x) + y\sin(x) = 1$$

8.*
$$y' = \frac{2}{x}y + x^2 e^x$$

10.
$$y' = 3tg(x)y$$

12.
$$y' = -yx$$

$$14.* \quad y' = 3\operatorname{tg}(x)y + \frac{1}{\cos(x)}$$

$$16. \quad y' = -y + \sin(2x)$$

$$18. \quad xy' + y = x \ln|x|$$

Homogén és inhomogén LDE. Cauchy feladat.

21.
$$y' = 2y$$
, $y(0) = 1$

22. Írjuk fel az y' = -xy + x differenciálegyenletnek a P(0,7) ponton átmenő megoldását!

23.
$$y' = -\frac{2}{x}y + 3$$
, $y(1) = 1$

24.
$$y' = -\frac{x}{1 - x^2}y + 1$$
, $y(0) = 1$

25.*
$$y' = -2xy + 3xe^{-x^2}$$
, $y(\sqrt{\ln(2)}) = \frac{1}{2}(1 + \ln(2))$

26.*
$$y' = -y\cos(x) + \sin(2x)$$
, $y(0) = 1$

27.*
$$y' = -x^2y + x^2$$
, $y(2) = 1$

Jegyzetek

Évközi eredmény

		maximális pontszám	elért pontszám
	1. házi feladat zárthelyi dolgozat	10	
	2. házi feladat zárthelyi dolgozat	10	
Házi feladat	3. házi feladat zárthelyi dolgozat	10	
zárthelyi	4. házi feladat zárthelyi dolgozat	10	
dolgozatok	5. házi feladat zárthelyi dolgozat	10	
	Összesen	50	
	I. Eléri		
	1. nagy zárthelyi dolgozat	50	
Nagy zárthelyi	2. nagy zárthelyi dolgozat	50	
dolgozatok	Összesen	100	
	II. Eléri	-	
	I. + II.	150	
	Az évközi dolgozatok pontszáma	130	

Kis zárthelyi eredmények

dátum	szept. 10.	szept. 17.	szept. 24.	okt. 1.	okt. 8.	okt. 15.	nov. 5.	nov. 12.	nov. 19.	nov. 26.	dec. 10./1	dec. 10./2	Σ
pont													

Gyakorlati jegy

Érdemjegy	ponthatárok
1 (elégtelen)	0 - 60
2 (elégséges)	61 – 83
3 (közepes)	84 – 106
4 (jó)	107 – 128
5 (jeles)	129 - 150

Elért érdemjegy

Jegytáblázat

		1	2	3	4	5	másik jegy
e g	1	1	1	1	1	1	
y	2	1	2	2	3	3	
k	3	1	2	3	3	4	
j e	4	1	3	3	4	4	
g y	5	1	3	4	4	5	

Ha a két jegy alapján kapott jegy szürke hátterű mezőbe esik, akkor amennyiben a kis zárthelyik összpontszáma eléri a húszat, az eggyel jobb osztályzat is lehetséges.