Компьютерное моделирование идеального газа, распределение Максвелла, флуктуации.

Н. В. Павличенко, А. С. Подкидышев

Московский физико-технический институт pavlichenko.nv@phystech.edu podkidishev.as@phystech.edu

23 января 2020 г.

Аннотация

В данной статье расматривается компьютерная модель идеального газа, проверяются некоторые основные законы термодинамики: уравнение Менделеева-Клайперона, распределение Максвелла, закон Бойля-Мариотта, нормальность флуктуаций. Особенности данной работы в том, что используется трехмерная модель газа, что уже редкость среди существуствующих проектов, а так же в том, что используются реальные параметры газов: масса молекулы и скорость.

I. Введение

деальным газом называют такой газ, у которого взаимодействием молекул между собой можно пренебречь. Иначе говоря, это газ, средняя кинетическая энергия которого много больше энергии их взаимодействия. Например, разряженный газ нейтральных частиц можно считать идеальным. В курсе общей физики основные законы были рассмотрены со статистической стороны, то есть не затрагивали конкретные микросостояния системы, а использовали различные усреднения и интуитивные предположения. С другой стороны интересно посмотреть действительно ли это верно, честно просимулировав все состояния системы с помощью классической механики.

II. Цель работы

1. Связь макро- и микропараметров.

- 2. Проверка выполнения уравнения состояния идеального газа.
- 3. Проверить зависимость распределения скоростей от времени(сравнить с Максвеллом).
- 4. Проверить уравнение адиабаты.
- 5. Оценить флуктуацию P, V, T. Сравнить с аналитическими формулами.

III. Описание построенной модели

Будем считать молекулы твердыми шариками, которые упруго сталкиваются друг с другом и с теплонепроводящими стенками кубического сосуда $1 \times 1 \times 1$ м. В начале эксперемента будем запускать частицы с одинаковой скоростью и равномерно распределенными направлениями. После этого молекулы будут соударяться друг с другом и со стенками сосуда. Будем параллельно строить распределение модулей их скоростей, давление и температуру. Рассчеты проводим на движке,

Рис. 1: Результат симуляции

написанном на C++, виизуализируем с помощью анимации на Python.

і. Соударение молекул друг с другом

Критически важной выглядит задача обработки соударений частиц, так как именно от точности этого алгоритма будет зависеть установление распределений скоростей, энергий, и других параметров системы. Для этого воспользуемся задачей об угле рассеивания при налете одного шара на другой.

Сначала перейдем в систему отсчета второй молекулы (до удара). Тогда в ней вторая частица будет неподвижна и мы сможем свести задачу к обозначенной выше. Теперь перейдем к системе отсчета центра масс. Итоговый вектор перехода равен

$$\vec{W} = \vec{v_2} + \frac{1}{2}\vec{v_1}.\tag{1}$$

Скорость первой молекулы в новой системе координат тогда \vec{v} . Теперь построим ортонормированный базис в плоскости соударения. Пусть $\vec{x} = \frac{\vec{v}}{|\vec{v}|}, \vec{z} = \frac{[\vec{v}_1, \vec{v}_2]}{[\vec{v}_1, \vec{v}_2]}$,

 $\vec{y} = \frac{ [\vec{x}, \vec{z}]}{ [\vec{x}, \vec{z}]}$. Затем возьмем случайный угол в плоскости XY, получится единичный вектор $\overrightarrow{u} = x \cdot \cos \alpha + y \cdot \sin \alpha$. Вспомним, что в СЦМ при налете одной частицы на другую, модуль скорости налетающей частицы остается неизменным. Тогда $w = |v| \cdot \overrightarrow{u}$ — это вектор в СЦМ после столкновения. Тогда в лабораторной системе отсчета вектор $\overrightarrow{v_1} = \overrightarrow{w} + \overrightarrow{W}$. Отсюда из закона сохранения импульса $\overrightarrow{v_2} = \overrightarrow{v_1} + \overrightarrow{v_2} - \overrightarrow{v_1}$.

Здесь стоит сказать, что скорости молекул слишком велики и мы не можем знать о промежуточных столкновения частиц за время шага симуляции dt. Мы сталкиваем частицы только пост-фактум, зная их конечные положения.

Соударение молекул о стенки сосуда

Рассмотрим задачу о вычислении давления идеального газа на стенку сосуда. Среднее суммарная сила будет даваться формулой

$$\vec{f} = \frac{1}{\tau} \int_0^{\tau} dt \sum_{i=1}^n f_i(t) = \sum_{i=1}^n \frac{1}{\tau} \int_0^{\tau} dt f_i(t)$$
(2)

После соударения молекулы со стенкой её импульс(p) меняется:

$$p(T) - p(0) = \int_0^{\tau} f_i(t)dt$$

Поскольку $M_{\text{стенки}} \gg m_{\text{молекулы}}$:

$$\Delta p = 2mv$$

где v - проекция на скорости перпендикулярная соответствующей стенки

Итого:

$$\overline{f} = \frac{1}{\tau} \sum_{i=1}^{n} 2m_i v_i \tag{3}$$

Число столкноений j-й частицы за интервал времени T равно:

$$K_j = \frac{Tv_j}{2\tau}$$

$$\overline{f} = \sum_{j=1}^{N} \frac{m_j v_j^2}{L_z}$$

Т.к объем сосуда $V = L_x \cdot L_y \cdot L_z$

$$P = \frac{\overline{f}}{L_x L_y} = \frac{1}{V} \sum_{j=1}^{N} m_j v_j^2$$

 ${\bf C}$ помощью полученной формулы найдем ${\bf \it P}$ и сравним его ${\bf c}$ уравнением Клапейрона-Менделеева:

$$PV = \nu RT$$

T, K	V, m/s	N	P, 10 ⁻¹⁷	P, 10 ⁻¹
104,69	1	7000	1,01	1,01
186,95	1	10000	2,58	2,58
291,25	1	10000	4,02	4,02
418,00	1	10000	5,79	5,77
570,43	1	10000	7,88	7,88
104,62	1	10000	1,44	1,44
104,63	0,729	10000	1,98	1,98
104,63	0,512	10000	2,82	2,82
104,63	0,343	10000	4,2	4,21
104,63	0,216	10000	6,7	6,69
104,63	0,125	10000	11,5	11,56
104,95	1	20000	2,9	2,90

Таблица 1: Сравнение давления полученного из уравнения Менделеева-Клапейрона и с помощью нашей модели

ііі. Распределение Максвелла

Одной из самых важных частей работы было проверить установление распределения Максвелла модуля скоростей молекул. Для этого начальными параметрами симуляции были выбраны 30000 молекул одноатомного газа с массой молекулы $4.82 \cdot 10^{-26}$ кг, в сосуде, имеющим форму куба со стороной 1v, которым были даны изначально одинаковые по модулю скорости, равные 800 м/с. Через, приблизительно, минуту установилось максвелловское распределение по модулям скоростей молекул, которое изображено на графике.

iv. Графики полученные на основе вычислений.

Рис. 2: Конечные положения частиц. Более красные частицы обладают большей скоростью, более синие — меньшей.

Теоретически распределение должно иметь такую зависимость:

$$F(v) = \int_0^\infty 4\pi v^2 \left(\frac{m}{2\pi kT}\right)^{3/2} \cdot e^{-\frac{mv^2}{2kT}}$$
 (4)

Рис. 3: Распределение доли молекул $\left(\frac{dn}{n}(v)\right)$ по скоростям. Пунктиром обозначено теоретическое распредление.

iv.1 Провекра гипотез. Q-Q plot

Проверим, действительно ли полученная выборка из абсолютных скоростей молекул является выборкой из распределения Максвелла. Для начала воспользуемся критерием согласия, а именно критерием Колмогорова, критическое множество которого:

$$\sqrt{n} \cdot \sup_{x \in R} |\hat{F}_n(x) - F_0(x)| > K_{1-\alpha}.$$

Будем проверять гипотезу, что полученное распределение является распределением Максвелла с параметрами, полученными методом максимального правдоподобия. *p — value* получившегося критерия практически равен нулю, то есть модель все таки имеет погрешность и нельзя сказать, что полученное распределение в точности совпадает с распределением Максвелла. Получили статистически значимый результат, но что можно сказать о его практической значимости?

То, что критерий Колмагорова отверг нашу гипотезу справедливо, мы видим различие наших распределений на графиках, а с учетом размера выборки, мощность критерия практически равна единице. Однако кажется, что распределение

все равно очень близко к максвелловскому, то есть различие практически не значимо. Чтобы в этом убедиться построим часто использующийся в статистике график Q-Q plot. Чем больше он похож на прямую, тем больше похожи друг на друга выборочное и теоретическое распределения.

Рис. 4: Q-Q plot

Вывод 1. По графику наблюдаем, что он очень похож на прямую. Есть небольшое смещение в районе нуля, то есть по сути распределение имеет определенно максвелловский вид, незначительно завышенный в нуле. Таким образом, с помощью Q-Q plot мы убедились, что распредление очень близко к Максвеллу.

Также были построены графики скоростей молекул и распределение проекций скоростей на ось *OX*. Заметим небольшое смещение гистограммы относительно аналитически полученного распределения влево. Это может быть связано с тем, что распределение направлений при столкновении молекул на самом деле не является равномерным. Такая неточность дает небольшую ошибку, но это можно будет учесть в последующих версиях программы.

v. Распределение давления

Построим график распредления....

Рис. 5: Распределение давления на стенки сосуда

vi. Распределение по энергиям в поле силы тяжести

Дополнительно рассмотрим распределение энергий в поле потенциальных сил. Для примера рассмотрим систему, в которой установилось максвелловское распределение по скоростям, состоящую из 1000 частиц в кубе $0.15 \times 0.15 \times 0.15$ м при температуре 104K, в поле силы тяжести.

На рисунке изображена гистограмма, распределения по энергиям после 30 секунд симуляционного времени. Как можно заметить, зависимость доли частиц от энергии является экспоненциальной, и можно предположить, что она представляет из себя распределение Больцмана.

vii. Уравнение адиабаты

"Сожмем" наш газ под поршнем и измерим зависимость P(V): Уравнение адиабаты для идеального газа:

$$PV^{\gamma} = const$$

Тогда зная начальную точку P_0 , V_0 не трудно построить график P(V):

$$P = \frac{P_0 V_0^{\gamma}}{V^{\gamma}}$$

T.
к мы моделируем одноатомный газ, то $\gamma = \frac{5}{3}$

Рис. 6: Распределение доли молекул $\left(\frac{dn}{n}(v)\right)$ по энергиям, полученное через большой промежуток времени

adiabata.png

Вывод 2. Адиабатический процесс над газом чувствителен к числу молекул в сосуде и шагу времени симуляции, поэтому заметна некоторая ошибка между аналитической формулой и полученной зависимостью. Однако, ясно видно, что степенная зависимость похожа на действитель-

ную (то есть $\gamma \approx \frac{5}{3}$).

IV. Заключение

Получили состоятельную модель идеального газа с помощью которой проверили основые законы термодинамики. Построили гипотезу о том, что скорости молекул распредлены по Максвеллу.

- і. Ожидается в будующем:
 - Неидеаьный газ. Используя потенциал потенциал Леннард-Джонса $U(z) = 4\varepsilon \left\{ \left(\frac{\sigma}{z}\right)^{12} - \left(\frac{\sigma}{z}\right)^6 \right\}$, попробовали расчитывать силу $F = \frac{dU}{dz}$ • Увеличение числа молекул.

Список литературы

- [Shawe-Taylor, J., Cristianini, N., 2004] Shawe-Taylor, J., Cristianini, (2004). Kernel Methods for Pattern Analysis. Cambridge University Press
- [S. Boyd, L. Vandenberghe, 2009] S. Boyd, L. Vandenberghe (2009). Convex Optimization. Cambridge University Press