Deep Learning

Vazgen Mikayelyan

YSU, Krisp

September 16, 2020

Welcome

WELCOME TO

Deep Learning

Outline

- Course Details
- 2 References
- What is Supervised Learning?
- What is a neural network?

• Lectures: Wednesday 20:00-21:20, Saturday 12:00-14:00

- Lectures: Wednesday 20:00-21:20, Saturday 12:00-14:00
- Instructor: Vazgen Mikayelyan

Lectures: Wednesday 20:00-21:20, Saturday 12:00-14:00

• Instructor: Vazgen Mikayelyan

• TA: Saten Harutyunyan

- Lectures: Wednesday 20:00-21:20, Saturday 12:00-14:00
- Instructor: Vazgen Mikayelyan
- TA: Saten Harutyunyan
- Grading: Homeworks, Final Exam

Outline

- Course Details
- 2 References
- What is Supervised Learning?
- What is a neural network?

References

- 1. Ian Goodfellow, Yoshua Bengio and Aaron Courville Deep Learning
- 2. Original Papers
- 3. Blog Posts

Outline

- Course Details
- 2 References
- What is Supervised Learning?
- What is a neural network?

Definition 1

In machine learning, **supervised learning** refers to a class of systems and algorithms that determine a predictive model using data points with known outcome.

Definition 1

In machine learning, **supervised learning** refers to a class of systems and algorithms that determine a predictive model using data points with known outcome.

Supervised learning is often used to create machine learning models for two types of problems:

Definition 1

In machine learning, **supervised learning** refers to a class of systems and algorithms that determine a predictive model using data points with known outcome.

Supervised learning is often used to create machine learning models for two types of problems:

Regression

Definition 1

In machine learning, **supervised learning** refers to a class of systems and algorithms that determine a predictive model using data points with known outcome.

Supervised learning is often used to create machine learning models for two types of problems:

- Regression
- Classification

Example of regression problem

Example of regression problem

Size of House	Price of House
950	\$123,325
1,535	\$156,570
1,605	\$158,895
1,905	\$200,025
2,057	\$230,384
2,227	\$233,835
3,150	\$261,420
3,620	\$433,500

Example of classification problem

Example of classification problem

General case

Our data consist of pairs

$$(x_i, y_i)_{i=1}^n$$
, where $x_i \in \mathbb{R}^k, y_i \in \mathbb{R}^m, i = 0, 1, \dots, n$.

General case

Our data consist of pairs

$$(x_i, y_i)_{i=1}^n$$
, where $x_i \in \mathbb{R}^k$, $y_i \in \mathbb{R}^m$, $i = 0, 1, ..., n$.

We have to find a function f for which

$$f(x_i) \approx y_i$$

General case

Our data consist of pairs

$$(x_i, y_i)_{i=1}^n$$
, where $x_i \in \mathbb{R}^k$, $y_i \in \mathbb{R}^m$, $i = 0, 1, ..., n$.

We have to find a function f for which

$$f(x_i) \approx y_i$$

and not only for pairs in our data.

Train, Validation, Test

Overfitting, Underfitting

Overfitting, Underfitting

Outline

- Course Details
- 2 References
- What is Supervised Learning?
- What is a neural network?

Human Brain

Artificial neuron

Artificial neuron

So artificial neuron is a function from \mathbb{R}^m to \mathbb{R} , where m is the dimension of input:

$$f_{w,b}(x_1, x_2, ..., x_m) = \varphi(w_1x_1 + w_2x_2 + ... + w_mx_m + b) = \varphi(w^Tx + b)$$

Hidden Layer

Deep neural network

1. Sigmoid:
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

1. Sigmoid: $\sigma(x) = \frac{1}{1 + e^{-x}}$

2. Tanh:
$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

2. Tanh: $tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$

3. Rectified linear unit: ReLU(x) = max(0, x)

3. Rectified linear unit: ReLU(x) = max(0, x)

4. Leaky ReLU:
$$LR(x) = \begin{cases} 0.01x, & \text{for } x < 0 \\ x, & \text{for } x \ge 0 \end{cases}$$

4. Leaky ReLU:
$$LR(x) = \begin{cases} 0.01x, & \text{for } x < 0 \\ x, & \text{for } x \ge 0 \end{cases}$$

5. Parametric ReLU:
$$PR(x) = \begin{cases} ax, & \text{for } x < 0 \\ x, & \text{for } x \ge 0 \end{cases}$$

Parametric ReLU: y=ax

6. Exponential linear unit:
$$ELU(x) = \begin{cases} a(e^x - 1), & \text{for } x < 0 \\ x, & \text{for } x \ge 0 \end{cases}$$

6. Exponential linear unit: $ELU(x) = \begin{cases} a(e^x - 1), & \text{for } x < 0 \\ x, & \text{for } x \ge 0 \end{cases}$

7. SoftPlus: $SP(x) = \log(1 + e^x)$

7. SoftPlus: $SP(x) = \log(1 + e^x)$

8. Softmax:
$$S(x_1, x_2, ..., x_n) = \left(\frac{e^{x_1}}{\sum\limits_{i=1}^n e^{x_i}}, \frac{e^{x_2}}{\sum\limits_{i=1}^n e^{x_i}}, ..., \frac{e^{x_n}}{\sum\limits_{i=1}^n e^{x_i}}\right)$$

Questions

Why do we need activation functions?

Questions

- Why do we need activation functions?
- 4 How should we define activation functions, for a layer or for a neuron?