Universität Konstanz Mathematik: Diskrete Strukturen Fachbereich Informatik & Informationswissenschaft SS 2015

Prof. Dr. Sven Kosub / Michael Aichem, Julian Müller, Dagmar Sorg, Michael Strecke, Nadja Willenborg

8. Übungsblatt

Ausgabe: 05.06.2015 Abgabe: 12.06.2015, bis spätestens 12:00 per Mail an den Tutor

Für einen Teil der Aufgaben benötigen Sie weitere Begriffe für einen Graphen G=(V,E):

- Eine Folge (d_1, \ldots, d_n) natürlicher Zahlen $d_i \geq 0$ mit $d_1 \geq \cdots \geq d_n$ heißt *Gradfolge* des Graphen G, falls $V = \{v_1, \ldots, v_n\}$ und $\deg_G(v_i) = d_i$ für alle $i \in \{1, \ldots, n\}$ gilt.
- Der Abstand $d_G(u, v)$ zwischen Knoten $u, v \in V$ in G ist die Länge eines kürzesten Weges von u nach v in G, falls ein Weg existiert; anderenfalls gilt $d_G(u, v) = \infty$.

Vertiefung: 10 Punkte

- (a) Welche Gradfolge besitzt $M_{3,4}$?
- (b) Gibt es einen Graphen mit Gradfolge (5, 4, 3, 2, 2, 2, 2)? Und wenn ja, welchen?
- (c) Gibt es einen Graphen mit Gradfolge (5,4,3,2,2,2,2,1)? Und wenn ja, welchen?
- (d) Gibt es einen Graphen mit Gradfolge (5, 2, 1, 1, 1, 1, 1, 1, 1)? Und wenn ja, welchen?
- (e) Wie groß ist der maximale Abstand zweier Knoten im Hyperwürfel Q_d ?
- (f) Wie groß ist der maximale Abstand zweier Knoten im Gittergraphen $M_{n,n}$?
- (g) Welche Knoten haben im $M_{n,n}$ den kleinsten maximalen Abstand zu einem anderen Knoten?
- (h) Welche Knoten haben im $M_{n,n}$ den größten maximalen Abstand zu einem anderen Knoten?
- (i) Wie viele Wege der Länge k enthält ein r-regulärer Graph mit n Knoten?
- (j) Wie viele Kreise der Länge k enthält der vollständige Graph K_n ?

Kreativität: 10 Punkte

Ein ungerichteter Graph G = (V, E) heißt Splitgraph, falls es eine Knotenmenge $U \subseteq V$ gibt, sodass G[U] ein vollständiger Graph und $G[V \setminus U]$ ein leerer Graph ist.

Zeigen Sie folgende Aussage:

Es sei G = (V, E) ein Splitgraph mit $||V|| \ge 4$. Kein induzierter Teilgraph von G mit vier Knoten ist ein Kreis der Länge 4 oder ein Paar nicht inzidenter Kanten.

Selbststudium: 10 Punkte

Erarbeiten Sie sich den Inhalt des Abschnitts "Bäume und Wälder" (Abschnitt 3.2) aus dem Skriptum *Mathematik: Diskrete Strukturen* (Version v4.10 oder höher) und beantworten Sie folgende Fragen:

- (a) Ist jeder zusammenhängende Graph mit n Knoten und n-1 Kanten eine Baum? Begründen Sie Ihre Antwort.
- (b) Wie viele Spannbäume enthält der Hyperwürfel Q_3 ?
- (c) Welchen Prüfer-Code besitzt der folgende, markierte Baum?

- (d) Welcher markierte Baum hat den Prüfer-Code 212323212?
- (e) Welcher Spannbaum des folgenden, markierten Graphen

besitzt den lexikographisch kleinsten Prüfer-Code?

Hinweis: Für zwei Wörter $t = t_1 \dots t_n$ und $t' = t'_1 \dots t'_n$ mit $t_i, t'_i \in [n+2]$ sagen wir, dass t lexikographisch kleiner als t' ist (symbolisch: $t <_{\text{lex}} t'$), falls es ein $i \in [n]$ gibt mit $t_i < t'_i$ und $t_j = t'_j$ für alle j < i. Zum Beispiel gilt 112 $<_{\text{lex}}$ 121 und 121 $<_{\text{lex}}$ 211.