#### **Entropic Regularization of Optimal Transport**

**Tianyu Xie 2022/5/15** 

#### 1. Entropic Regularization

#### **Entropic Regularization of Optimal Transport Definition**

• The discrete entropy of a coupling matrix is defined as

$$\mathbf{H}(\mathbf{P}) \stackrel{\text{\tiny def.}}{=} -\sum_{i,j} \mathbf{P}_{i,j} (\log(\mathbf{P}_{i,j}) - 1),$$

- This definition is a little different to the common definition. The whole expression is just  $\sum_{i,j}^{P_{i,j}} \ln p dp$ , which gives us an alternative motivation for Shannon entropy.
- Remarks:
  - H(P) is defined to be  $-\infty$  if one of the entries is 0 or negative.
  - The function H is 1-strongly concave, because its Hessain matrix is  $\partial^2 H(P) = -\operatorname{diag}(1/P_{i,i})$ , and  $P_{i,i} \le 1$ .

# **Entropic Regularization of Optimal Transport Regularization term**

• Using -H as a regularizing function, we obtain approximate solutions to the original transport problem:

$$L_{\mathbf{C}}^{\varepsilon}(\mathbf{a}, \mathbf{b}) \stackrel{\text{\tiny def.}}{=} \min_{\mathbf{P} \in \mathbf{U}(\mathbf{a}, \mathbf{b})} \langle \mathbf{P}, \mathbf{C} \rangle - \varepsilon \mathbf{H}(\mathbf{P}).$$

- This objective function is  $\varepsilon$ -strongly convex and thus has a **unique** optimal solution.
- The effect of the entropy to regularize a linear program over the simplex:



**Figure 4.1:** Impact of  $\varepsilon$  on the optimization of a linear function on the simplex, solving  $\mathbf{P}_{\varepsilon} = \operatorname{argmin}_{\mathbf{P} \in \Sigma_3} \langle \mathbf{C}, \mathbf{P} \rangle - \varepsilon \mathbf{H}(\mathbf{P})$  for a varying  $\varepsilon$ .

• The unique solution  $P_{\varepsilon}$  of the entropic regularized objective function converges to the optimal solution with maximal entropy within the set of all optimal solutions of Kantorovich problem, namely

$$\mathbf{P}_{\varepsilon} \xrightarrow{\varepsilon \to 0} \underset{\mathbf{P}}{\operatorname{argmin}} \ \{ -\mathbf{H}(\mathbf{P}) : \mathbf{P} \in \mathbf{U}(\mathbf{a}, \mathbf{b}), \langle \mathbf{P}, \mathbf{C} \rangle = L_{\mathbf{C}}(\mathbf{a}, \mathbf{b}), \}$$

• In particular,

$$L_{\mathbf{C}}^{\varepsilon}(\mathbf{a}, \mathbf{b}) \xrightarrow{\varepsilon \to 0} L_{\mathbf{C}}(\mathbf{a}, \mathbf{b}).$$

One also has

$$\mathbf{P}_{\varepsilon} \stackrel{\varepsilon \to \infty}{\longrightarrow} \mathbf{a} \otimes \mathbf{b} = \mathbf{a} \mathbf{b}^{\mathrm{T}} = (\mathbf{a}_{i} \mathbf{b}_{j})_{i,j}.$$

- (Proof) take  $\varepsilon_l \to 0$ , we can extract e subsequence of the resulting  $P_l$  such that  $P_l \to P^* \in U(a,b)$  (since U(a,b) is compact and closed).
- For any P such that  $\langle C, P \rangle = L_c(a, b)$ , by the optimality one has

$$0 \le \langle \mathbf{C}, \mathbf{P}_{\ell} \rangle - \langle \mathbf{C}, \mathbf{P} \rangle \le \varepsilon_{\ell} (\mathbf{H}(\mathbf{P}_{\ell}) - \mathbf{H}(\mathbf{P})).$$

- By the boundness of H, letting  $l \to \infty$  yields  $\langle C, P \rangle = \langle C, P^* \rangle$ . Thus  $\langle C, P^* \rangle = L_c(a, b)$ . By the continuity of H,  $H(P) \le H(P^*)$  for any P. Moreover, the convexity of H implies the uniqueness of  $P^*$ .
- For the  $\varepsilon_l \to \infty$  case, we only have to note that  $H(a \otimes b) H(P) = KL(P \mid a \otimes b) \geq 0$  for any  $P \in U(a,b)$



**Figure 4.2:** Impact of  $\varepsilon$  on the couplings between two 1-D densities, illustrating Proposition 4.1. Top row: between two 1-D densities. Bottom row: between two 2-D discrete empirical densities with the same number n = m of points (only entries of the optimal  $(\mathbf{P}_{i,j})_{i,j}$  above a small threshold are displayed as segments between  $x_i$  and  $y_j$ ).



**Figure 4.3:** Impact of  $\varepsilon$  on coupling between two 2-D discrete empirical densities with the same number n = m of points (only entries of the optimal  $(\mathbf{P}_{i,j})_{i,j}$  above a small threshold are displayed as segments between  $x_i$  and  $y_j$ ).

## Entropic Regularization of Optimal Transport KL divergence regularization

• Defining the KL divergence between couplings as

$$\mathbf{KL}(\mathbf{P}|\mathbf{K}) \stackrel{\text{\tiny def.}}{=} \sum_{i,j} \mathbf{P}_{i,j} \log \left( \frac{\mathbf{P}_{i,j}}{\mathbf{K}_{i,j}} \right) - \mathbf{P}_{i,j} + \mathbf{K}_{i,j},$$

• Given the cost matrix C, define

$$\mathbf{K}_{i,j} \stackrel{\text{def.}}{=} e^{-\frac{\mathbf{C}_{i,j}}{\varepsilon}}.$$

• The entropic regularization problem can be transformed into

$$\mathbf{P}_{\varepsilon} = \operatorname{Proj}_{\mathbf{U}(\mathbf{a}, \mathbf{b})}^{\mathbf{KL}}(\mathbf{K}) \stackrel{\text{\tiny def.}}{=} \underset{\mathbf{P} \in \mathbf{U}(\mathbf{a}, \mathbf{b})}{\operatorname{argmin}} \mathbf{KL}(\mathbf{P}|\mathbf{K}).$$

• Intuitively, the unique solution  $P_{\varepsilon}$  is a projection of K onto U(a,b).

#### **Entropic Regularization of Optimal Transport General formulation**

• For arbitrary measures, we can defined a regularized counterpart using

$$\mathcal{L}_{c}^{\varepsilon}(\alpha,\beta) \stackrel{\text{\tiny def.}}{=} \min_{\pi \in \mathcal{U}(\alpha,\beta)} \int_{\mathcal{X} \times \mathcal{Y}} c(x,y) \mathrm{d}\pi(x,y) + \varepsilon \, \mathrm{KL}(\pi | \alpha \otimes \beta),$$

where the  $KL(\pi \mid \alpha \otimes \beta)$  can also be considered as relative entropy, defined as

$$KL(\pi|\xi) \stackrel{\text{\tiny def.}}{=} \int_{\mathcal{X} \times \mathcal{Y}} \log \left( \frac{d\pi}{d\xi}(x, y) \right) d\pi(x, y) + \int_{\mathcal{X} \times \mathcal{Y}} (d\xi(x, y) - d\pi(x, y)),$$

• To avoid the case  $KL = \infty$ , we choose the reference measure  $\alpha \otimes \beta$ . Indeed, we can also choose other measure since

$$\mathrm{KL}(\pi|\alpha\otimes\beta)=\mathrm{KL}(\pi|\alpha'\otimes\beta')-\mathrm{KL}(\alpha\otimes\beta|\alpha'\otimes\beta').$$

as long as  $\alpha' \otimes \beta'$  has the same zero measure sets as  $\alpha \otimes \beta$ .

| 2. | Sinkhorn | 's Algorit | hm and I | ts Conver | gence |
|----|----------|------------|----------|-----------|-------|
|    |          |            |          |           |       |

#### Sinkhorn's Algorithm and Its Convergence

#### Parameterization of $P_{\varepsilon}$

**Proposition 4.3.** The solution to (4.2) is unique and has the form

$$\forall (i,j) \in [n] \times [m], \quad \mathbf{P}_{i,j} = \mathbf{u}_i \mathbf{K}_{i,j} \mathbf{v}_j$$

$$(4.12)$$

for two (unknown) scaling variable  $(\mathbf{u}, \mathbf{v}) \in \mathbb{R}^n_+ \times \mathbb{R}^m_+$ .

*Proof.* Introducing two dual variables  $\mathbf{f} \in \mathbb{R}^n$ ,  $\mathbf{g} \in \mathbb{R}^m$  for each marginal constraint, the Lagrangian of (4.2) reads

$$\mathcal{E}(\mathbf{P}, \mathbf{f}, \mathbf{g}) = \langle \mathbf{P}, \mathbf{C} \rangle - \varepsilon \mathbf{H}(\mathbf{P}) - \langle \mathbf{f}, \mathbf{P} \mathbb{1}_m - \mathbf{a} \rangle - \langle \mathbf{g}, \mathbf{P}^{\mathrm{T}} \mathbb{1}_n - | \mathbf{b} \rangle.$$

First order conditions then yield

$$\frac{\partial \mathcal{E}(\mathbf{P}, \mathbf{f}, \mathbf{g})}{\partial \mathbf{P}_{i,j}} = \mathbf{C}_{i,j} + \varepsilon \log(\mathbf{P}_{i,j}) - \mathbf{f}_i - \mathbf{g}_j = 0,$$

which result, for an optimal **P** coupling to the regularized problem, in the expression  $\mathbf{P}_{i,j} = e^{\mathbf{f}_i/\varepsilon}e^{-\mathbf{C}_{i,j}/\varepsilon}e^{\mathbf{g}_j/\varepsilon}$ , which can be rewritten in the form provided above using nonnegative vectors **u** and **v**.

## Sinkhorn's Algorithm and Its Convergence Sinkhorn's algorithm

• Write the optimal coupling P as P = diag(u) K diag(v). The parameter (u, v) must satisfy the following nonlinear equations:

$$\operatorname{diag}(\mathbf{u})\mathbf{K}\operatorname{diag}(\mathbf{v})\mathbb{1}_m = \mathbf{a}, \text{ and } \operatorname{diag}(\mathbf{v})\mathbf{K}^{\top}\operatorname{diag}(\mathbf{u})\mathbb{1}_n = \mathbf{b}.$$

• These two equations can be further simplified as

$$\mathbf{u} \odot (\mathbf{K}\mathbf{v}) = \mathbf{a} \quad \text{and} \quad \mathbf{v} \odot (\mathbf{K}^{\mathrm{T}}\mathbf{u}) = \mathbf{b},$$

• An intuitive way to solve these two nonlinear equations is iteration, that is

$$\mathbf{u}^{(\ell+1)} \stackrel{\text{def.}}{=} \frac{\mathbf{a}}{\mathbf{K}\mathbf{v}^{(\ell)}} \quad \text{and} \quad \mathbf{v}^{(\ell+1)} \stackrel{\text{def.}}{=} \frac{\mathbf{b}}{\mathbf{K}^{\mathrm{T}}\mathbf{u}^{(\ell+1)}},$$

initialized with  $v^{(0)} = 1_m$ . This update scheme is called **Sinkhorn's algorithm**.

### Sinkhorn's Algorithm and Its Convergence Experiments



**Figure 4.5:** Top: evolution of the coupling  $\pi_{\varepsilon}^{(\ell)} = \operatorname{diag}(\mathbf{u}^{(\ell)})\mathbf{K}\operatorname{diag}(\mathbf{v}^{(\ell)})$  computed at iteration  $\ell$  of Sinkhorn's iterations, for 1-D densities on  $\mathcal{X} = [0,1]$ ,  $c(x,y) = |x-y|^2$ , and  $\varepsilon = 0.1$ . Bottom: impact of  $\varepsilon$  the convergence rate of Sinkhorn, as measured in term of marginal constraint violation  $\log(\|\pi_{\varepsilon}^{(\ell)}\mathbb{1}_m - \mathbf{b}\|_1)$ .

### Sinkhorn's Algorithm and Its Convergence Convergence analysis

• Altschuler et al. [2017] showed that by setting  $\varepsilon = \frac{4 \log n}{\tau}$ ,  $O(||C||_{\infty}^{3} \log(n)\tau^{-3})$  Sinkhorn iterations are enough to ensure that

$$\langle \hat{\mathbf{P}}, \mathbf{C} \rangle \leq L_{\mathbf{C}}(\mathbf{a}, \mathbf{b}) + \tau.$$

- Therefore, Sinkhorn computes a  $\tau$ -approximate solution of the unregularized OT problem in  $O(n^2 \log(n)\tau^{-3})$  operations. (One iteration needs  $O(n^2)$  operations.
- A serious problem with Sinkhorn's analysis is that, the convergence of Sinkhorn's algorithm requires  $\varepsilon \to 0$ . However, too small  $\varepsilon$  will make the kennel K too large to be stored in memory.

#### Sinkhorn's Algorithm and Its Convergence An alternative formulation

Denoting

$$\mathcal{C}_{\mathbf{a}}^{1} \stackrel{\text{def.}}{=} \{ \mathbf{P} : \mathbf{P} \mathbb{1}_{m} = \mathbf{a} \} \text{ and } \mathcal{C}_{\mathbf{b}}^{2} \stackrel{\text{def.}}{=} \{ \mathbf{P} : \mathbf{P}^{T} \mathbb{1}_{m} = \mathbf{b} \}$$

• One can use Bregman's iterative projections to approximate the solution

$$\mathbf{P}^{(\ell+1)} \stackrel{\text{\tiny def.}}{=} \operatorname{Proj}_{\mathcal{C}_{\mathbf{a}}^{1}}^{\mathbf{KL}}(\mathbf{P}^{(\ell)}) \quad \text{and} \quad \mathbf{P}^{(\ell+2)} \stackrel{\text{\tiny def.}}{=} \operatorname{Proj}_{\mathcal{C}_{\mathbf{b}}^{2}}^{\mathbf{KL}}(\mathbf{P}^{(\ell+1)}).$$

These iterates are equivalent to Sinkhorn's iterations if we define

$$\mathbf{P}^{(2\ell)} \stackrel{\text{def.}}{=} \operatorname{diag}(\mathbf{u}^{(\ell)}) \mathbf{K} \operatorname{diag}(\mathbf{v}^{(\ell)}),$$

$$\mathbf{P}^{(2\ell+1)} \stackrel{\text{def.}}{=} \operatorname{diag}(\mathbf{u}^{(\ell+1)}) \mathbf{K} \operatorname{diag}(\mathbf{v}^{(\ell)})$$

$$\mathbf{P}^{(2\ell+2)} \stackrel{\text{def.}}{=} \operatorname{diag}(\mathbf{u}^{(\ell+1)}) \mathbf{K} \operatorname{diag}(\mathbf{v}^{(\ell+1)}).$$

### Sinkhorn's Algorithm and Its Convergence Convergence analysis

• Assume for simplicity  $P^{(0)} = 1_n 1_m^T$ , the Sinkhorn iterations has the form

$$P^{(\ell+1)} = \operatorname{diag}(\mathbf{u}^{(\ell)})(e^{-\frac{\mathbf{C}}{\varepsilon}} \odot \mathbf{P}^{(\ell)})\operatorname{diag}(\mathbf{v}^{(\ell)})$$
$$= \operatorname{diag}(\mathbf{u}^{(\ell)} \odot \cdots \odot \mathbf{u}^{(0)})e^{-\frac{(\ell+1)\mathbf{C}}{\varepsilon}} \odot \mathbf{P}^{(\ell)})\operatorname{diag}(\mathbf{v}^{(\ell)} \odot \cdots \odot \mathbf{v}^{(0)}).$$

to calculate the coupling matrix.

- The regularization parameter  $\varepsilon/\ell$  should decay.
- The decaying schedule of  $\varepsilon/\ell$  should be carefully chosen. See, for instance, [Kosowsky and Yuille, 1994], [Schmitzer, 2016b].

• The Hilbert projective metric on the set of positive vectors is defined as

$$\forall (\mathbf{u}, \mathbf{u}') \in (\mathbb{R}^n_{+,*})^2, \quad d_{\mathcal{H}}(\mathbf{u}, \mathbf{u}') \stackrel{\text{\tiny def.}}{=} \log \max_{i,j} \frac{\mathbf{u}_i \mathbf{u}'_j}{\mathbf{u}_j \mathbf{u}'_i}.$$

- This definition is a distnace on the projective cone  $\mathbb{R}^n_{+,*}/\sim$ , where  $u\sim u'$  means that there exists a positive scalar.
- The Hilbert projective metric can be equivalently defined as

$$d_{\mathcal{H}}(\mathbf{u}, \mathbf{u}') = \left\| \log(\mathbf{u}) - \log(\mathbf{u}') \right\|_{\text{var}}$$
where  $\|\mathbf{f}\|_{\text{var}} \stackrel{\text{def.}}{=} (\max_{i} \mathbf{f}_{i}) - (\min_{i} \mathbf{f}_{i}).$ 

• One always has  $||f||_{\text{var}} \le 2||f||_{\infty}$ . If  $f_i = 0$  for some fixed i, then a converse inequality also holds since  $||f||_{\infty} \le ||f||_{\text{var}}$ .

• [Birkhoff, 1957] proved the floowing fundamental theorem.

Theorem 4.1. Let 
$$\mathbf{K} \in \mathbb{R}^{n \times m}_{+,*}$$
; then for  $(\mathbf{v}, \mathbf{v}') \in (\mathbb{R}^m_{+,*})^2$ 

$$d_{\mathcal{H}}(\mathbf{K}\mathbf{v}, \mathbf{K}\mathbf{v}') \leq \lambda(\mathbf{K})d_{\mathcal{H}}(\mathbf{v}, \mathbf{v}'), \text{ where } \begin{cases} \lambda(\mathbf{K}) \stackrel{\text{def.}}{=} \frac{\sqrt{\eta(\mathbf{K})} - 1}{\sqrt{\eta(\mathbf{K})} + 1} < 1, \\ \eta(\mathbf{K}) \stackrel{\text{def.}}{=} \max_{i,j,k,\ell} \frac{\mathbf{K}_{i,k}\mathbf{K}_{j,\ell}}{\mathbf{K}_{j,k}\mathbf{K}_{i,\ell}}. \end{cases}$$

This theorem has following illustration:



**Figure 4.7:** Left: the Hilbert metric  $d_{\mathcal{H}}$  is a distance over rays in cones (here positive vectors). Right: visualization of the contraction induced by the iteration of a positive matrix  $\mathbf{K}$ .

• The following theorem show the linear convergence of Sinkhorn's iterations.

Theorem 4.2. One has  $(\mathbf{u}^{(\ell)}, \mathbf{v}^{(\ell)}) \to (\mathbf{u}^{\star}, \mathbf{v}^{\star})$  and

$$d_{\mathcal{H}}(\mathbf{u}^{(\ell)}, \mathbf{u}^{\star}) = O(\lambda(\mathbf{K})^{2\ell}), \quad d_{\mathcal{H}}(\mathbf{v}^{(\ell)}, \mathbf{v}^{\star}) = O(\lambda(\mathbf{K})^{2\ell}). \tag{4.22}$$

One also has

$$d_{\mathcal{H}}(\mathbf{u}^{(\ell)}, \mathbf{u}^{\star}) \leq \frac{d_{\mathcal{H}}(\mathbf{P}^{(\ell)} \mathbb{1}_{m}, \mathbf{a})}{1 - \lambda(\mathbf{K})^{2}},$$

$$d_{\mathcal{H}}(\mathbf{v}^{(\ell)}, \mathbf{v}^{\star}) \leq \frac{d_{\mathcal{H}}(\mathbf{P}^{(\ell), \top} \mathbb{1}_{n}, \mathbf{b})}{1 - \lambda(\mathbf{K})^{2}},$$

$$(4.23)$$

where we denoted  $\mathbf{P}^{(\ell)} \stackrel{\text{\tiny def.}}{=} \operatorname{diag}(\mathbf{u}^{(\ell)})\mathbf{K} \operatorname{diag}(\mathbf{v}^{(\ell)})$ . Last, one has

$$\|\log(\mathbf{P}^{(\ell)}) - \log(\mathbf{P}^{\star})\|_{\infty} \le d_{\mathcal{H}}(\mathbf{u}^{(\ell)}, \mathbf{u}^{\star}) + d_{\mathcal{H}}(\mathbf{v}^{(\ell)}, \mathbf{v}^{\star}), \tag{4.24}$$

where  $\mathbf{P}^{\star}$  is the unique solution of (4.2).

• To prove the first conclusion, note that for any (v, v'), one has

$$d_{\mathcal{H}}(\mathbf{v}, \mathbf{v}') = d_{\mathcal{H}}(\mathbf{v}/\mathbf{v}', \mathbb{1}_m) = d_{\mathcal{H}}(\mathbb{1}_m/\mathbf{v}, \mathbb{1}_m/\mathbf{v}').$$

This shows that

$$d_{\mathcal{H}}(\mathbf{u}^{(\ell+1)}, \mathbf{u}^{\star}) = d_{\mathcal{H}}\left(\frac{\mathbf{a}}{\mathbf{K}\mathbf{v}^{(\ell)}}, \frac{\mathbf{a}}{\mathbf{K}\mathbf{v}^{\star}}\right)$$
$$= d_{\mathcal{H}}(\mathbf{K}\mathbf{v}^{(\ell)}, \mathbf{K}\mathbf{v}^{\star}) \leq \lambda(\mathbf{K})d_{\mathcal{H}}(\mathbf{v}^{(\ell)}, \mathbf{v}^{\star}),$$

• To prove the second conclusion, use the triangular inequality

$$d_{\mathcal{H}}(\mathbf{u}^{(\ell)}, \mathbf{u}^{\star}) \leq d_{\mathcal{H}}(\mathbf{u}^{(\ell+1)}, \mathbf{u}^{(\ell)}) + d_{\mathcal{H}}(\mathbf{u}^{(\ell+1)}, \mathbf{u}^{\star})$$

$$\leq d_{\mathcal{H}}\left(\frac{\mathbf{a}}{\mathbf{K}\mathbf{v}^{(\ell)}}, \mathbf{u}^{(\ell)}\right) + \lambda(\mathbf{K})^{2}d_{\mathcal{H}}(\mathbf{u}^{(\ell)}, \mathbf{u}^{\star})$$

$$= d_{\mathcal{H}}\left(\mathbf{a}, \mathbf{u}^{(\ell)} \odot (\mathbf{K}\mathbf{v}^{(\ell)})\right) + \lambda(\mathbf{K})^{2}d_{\mathcal{H}}(\mathbf{u}^{(\ell)}, \mathbf{u}^{\star}),$$

• The second conclusion shows that, marginal constraints violation, i.e.  $||P1_m - a||$  or  $||P^T1_m - b||$  are useful stopping criteria.

### Sinkhorn's Algorithm and Its Convergence Other regularization

• It is possible to replace the entropic term -H(P) by any other strictly convex penalty R(P). For instance, a typical example is the squared  $\ell^2$  norm

$$R(\mathbf{P}) = \sum_{i,j} \mathbf{P}_{i,j}^2 + \iota_{\mathbb{R}_+}(\mathbf{P}_{i,j});$$



Figure 4.6: Comparison of entropic regularization  $R = -\mathbf{H}$  (top row) and quadratic regularization  $R = \|\cdot\|^2 + \iota_{\mathbb{R}_+}$  (bottom row). The  $(\alpha, \beta)$  marginals are the same as for Figure 4.4.

## Sinkhorn's Algorithm and Its Convergence Barycentric projection

- Under some conditions, Monge problem is equivalent to Kantorovich problem (see Section 2).
- For finite case, if the Monge map is a permutation matrix and is unique, the barycentric projection map

$$x_i \in \mathcal{X} \longmapsto \frac{1}{\mathbf{a}_i} \sum_j \mathbf{P}_{i,j} y_j \in \mathcal{Y},$$

will converge to the Monge map.

• For arbitrary case, if the solution  $\pi$  to the Kantorovich problem is supported on the graph of the Monge map, then the map

$$x \in \mathcal{X} \longmapsto \int_{\mathcal{Y}} y \frac{\mathrm{d}\pi(x,y)}{\mathrm{d}\alpha(x)\mathrm{d}\beta(y)} \mathrm{d}\beta(y).$$

will converge to the Monge map.

| <b>8</b> • <b>1</b> • • • • • • • • • • • • • • • • • • • | <b>3.</b> | Speeding | Up | Sinkhorn | S | Iteration | lS |
|-----------------------------------------------------------|-----------|----------|----|----------|---|-----------|----|
|-----------------------------------------------------------|-----------|----------|----|----------|---|-----------|----|

### **Speeding Up Sinkhorn's Iterations**Computational complexity

- The main computational bottleneck of Sinkhorn's iterations is the vector-matrix multiplication against kernels K and  $K^T$ .
- The time complexity of vector-matrix multiplication is O(mn) if implemented naively
- In many situations, such as solving more than one coupling matrix, or the high dimension case (curse of dimension), *mn* can be very large.

#### **Speeding Up Sinkhorn's Iterations Parallelization**

- Assume we are to solve the OT problem for pairs  $(a_1, b_1), ..., (a_N, b_N)$  (with a common cost matrix C) simultaneously.
- Let  $A = [a_1, a_2, ..., a_N], B = [b_1, b_2, ..., b_N]$  be  $n \times N$  and  $m \times N$  matrices storing all measures. All Sinkhorn iterations for these N pairs can be carried out in parallell, i.e.

$$\mathbf{U}^{(\ell+1)} \stackrel{\text{\tiny def.}}{=} \frac{\mathbf{A}}{\mathbf{K}\mathbf{V}^{(\ell)}} \quad \text{and} \quad \mathbf{V}^{(\ell+1)} \stackrel{\text{\tiny def.}}{=} \frac{\mathbf{B}}{\mathbf{K}^{\mathrm{T}}\mathbf{U}^{(\ell+1)}},$$

initialized with  $V^{(0)} = 1_{m \times N}$ , where – is elementwise division.

• The author said the vector of regularized distances is

$$\mathbb{1}_n^{\mathrm{T}}(\mathbf{U}\odot\log\mathbf{U}\odot((\mathbf{K}\odot\mathbf{C})\mathbf{V})+\mathbf{U}\odot((\mathbf{K}\odot\mathbf{C})(\mathbf{V}\odot\log\mathbf{V})))\in\mathbb{R}^N.$$

• He didnot define regularized distance. The *i*-th element correspond to

$$\sum_{\text{all elements}} C \odot P_i \odot \log(\frac{P_i}{K})$$

## **Speeding Up Sinkhorn's Iterations Higher dimension**

• In the d-dimensional case, the indices of a histogram becomes d-vector

$$i = (i_k)_{k=1}^d, j = (j_k)_{k=1}^d \in [n_1] \times \cdots \times [n_d].$$

Thus  $n = n_1 n_2 \cdots n_d$ , and this problem becomes untractable as d gets larger.

• To alleviate the curse of dimension, we assume a model of additive cost matrix. That is, there exists d matrices  $C^1, ..., C^d$  of size  $n_1 \times n, ..., n_d \times n$ , such that

$$\mathbf{C}_{ij} = \sum_{k=1}^{d} \mathbf{C}_{i_k, j_k}^k,$$

and thus the kernel matrix has a seperable multiplicative structure

$$\mathbf{K}_{i,j} = \prod_{k=1}^d \mathbf{K}_{i_k,j_k}^k.$$

where *i* and *j* are both d-vector.

#### Speeding Up Sinkhorn's Iterations

#### Higher dimension: an example

• Consider the case  $\mathcal{X} = \mathcal{Y} = [0,1]^d$ , the ground cost ht the q-th power of the q-norm,

$$c(x,y) = ||x - y||_q^q = \sum_{i=1}^d |x_i - y_i|^q, \ q > 0;$$

and the space is discretized using a regular grid containing only points  $x_i = (i_1/n_1, ..., i_d/n_d)$  for  $i = (i_1, ..., i_d) \in [n_1] \times \cdots \times [n_d]$ .

• The kernel matrix *K* can be represented by the multiplication of

$$\mathbf{K}^{k} = \left[ \exp\left(-\left| \frac{r-s}{n_{k}} \right|^{q} / \varepsilon \right) \right]_{1 \le r, s \le n_{k}}$$

• For instance, if d=2, the matrix-vector multiplication Ku where u is a vector of length  $n_1n_2$  and  $K=K^1 \odot K^2$ . If we define a matrix U of size  $n_1 \times n_2$ , then:

$$Ku = K^1 U K^2$$
.

#### Speeding Up Sinkhorn's Iterations

#### Higher dimension: an example

- In this way, we recover the iteration with only  $n_1^2 n_2 + n_1 n_2^2 = n(n_1 + n_2)$  operations instead of  $(n_1 n_2)^2$  operations.
- For general  $d \ge 2$ , the kernel matrix can be decomposed as  $K = K^1 \odot K^2 \odot \cdots \odot K^d$ , and U is tensor of size  $n_1 \times n_2 \times \cdots \times n_d$ . In this way, the matrix-vector multiplication can be rewritten as

$$Ku = Dot(\cdots Dot(Dot(U, K^1, 1), K^2, 2), \cdots, K^d, d)$$

where  $Dot(U, K^i, i)$  refers to multiply U and  $K^i$  along the i-th dimension. (Recall the definition of torch.tensordot)

• For general  $d \ge 2$ , the total computation cost is  $nn_1 + nn_2 + \cdots + nn_d \sim n^{1+1/d}$  intead of  $O(n^2)$ .

### **Speeding Up Sinkhorn's Iterations Higher dimension: another approach**

- In planar domains, a simplest but common case is translation invariant kernels  $K_{i,j} = k_{i-j}$ .
- It is typically the case of distance on  $\mathbb{Z}^d$ .
- In this case, the matrix-vector multiplication is a convolution, Ku = k \* u.
- There are several algorithms to approximate the convolution in nearly linear time. For example, by Fourier transform  $\mathcal{F}$ , we have

$$\mathcal{F}(k * v) = \mathcal{F}(k) \odot \mathcal{F}(v).$$

• At last, Sinkhorn's iterations is a fixes point algorithm, one can use the standard **extrapolation schemes** to enhance the conditioning around the dixed point.

| 4. Stability and | Log-Domain | 1 Computat | ions |
|------------------|------------|------------|------|
|                  |            |            |      |

**Proposition 4.4.** One has

$$L_{\mathbf{C}}^{\varepsilon}(\mathbf{a}, \mathbf{b}) = \max_{\mathbf{f} \in \mathbb{R}^{n}, \mathbf{g} \in \mathbb{R}^{m}} \langle \mathbf{f}, \mathbf{a} \rangle + \langle \mathbf{g}, \mathbf{b} \rangle - \varepsilon \langle e^{\mathbf{f}/\varepsilon}, \mathbf{K} e^{\mathbf{g}/\varepsilon} \rangle. \tag{4.30}$$

The optimal  $(\mathbf{f}, \mathbf{g})$  are linked to scalings  $(\mathbf{u}, \mathbf{v})$  appearing in (4.12) through

$$(\mathbf{u}, \mathbf{v}) = (e^{\mathbf{f}/\varepsilon}, e^{\mathbf{g}/\varepsilon}).$$
 (4.31)

*Proof.* We start from the end of the proof of Proposition 4.3, which links the optimal primal solution  $\mathbf{P}$  and dual multipliers  $\mathbf{f}$  and  $\mathbf{g}$  for the marginal constraints as

$$\mathbf{P}_{i,j} = e^{\mathbf{f}_i/\varepsilon} e^{-\mathbf{C}_{i,j}/\varepsilon} e^{\mathbf{g}_j/\varepsilon}.$$

Substituting in the Lagrangian  $\mathcal{E}(\mathbf{P}, \mathbf{f}, \mathbf{g})$  of Equation (4.2) the optimal  $\mathbf{P}$  as a function of  $\mathbf{f}$  and  $\mathbf{g}$ , we obtain that the Lagrange dual function equals

$$\mathbf{f}, \mathbf{g} \mapsto \langle e^{\mathbf{f}/\varepsilon}, (\mathbf{K} \odot \mathbf{C}) e^{\mathbf{g}/\varepsilon} \rangle - \varepsilon \mathbf{H}(\operatorname{diag}(e^{\mathbf{f}/\varepsilon}) \mathbf{K} \operatorname{diag}(e^{\mathbf{g}/\varepsilon})).$$
 (4.32)

The neg-entropy of **P** scaled by  $\varepsilon$ , namely  $\varepsilon \langle \mathbf{P}, \log \mathbf{P} - \mathbb{1}_{n \times m} \rangle$ , can be stated explicitly as a function of  $\mathbf{f}, \mathbf{g}, \mathbf{C}$ ,

$$\langle \operatorname{diag}(e^{\mathbf{f}/\varepsilon})\mathbf{K}\operatorname{diag}(e^{\mathbf{g}/\varepsilon}), \mathbf{f}\mathbb{1}_{m}^{\mathrm{T}} + \mathbb{1}_{n}\mathbf{g}^{\mathrm{T}} - \mathbf{C} - \varepsilon\mathbb{1}_{n \times m} \rangle$$

$$= -\langle e^{\mathbf{f}/\varepsilon}, (\mathbf{K} \odot \mathbf{C}) e^{\mathbf{g}/\varepsilon} \rangle + \langle \mathbf{f}, \mathbf{a} \rangle + \langle \mathbf{g}, \mathbf{b} \rangle - \varepsilon \langle e^{\mathbf{f}/\varepsilon}, \mathbf{K} e^{\mathbf{g}/\varepsilon} \rangle;$$

therefore, the first term in (4.32) cancels out with the first term in the entropy above. The remaining terms are those appearing in (4.30).

#### • Using this formulation, one can calculate the gradients of the objective function Q(f, g) w.r.t. f and g, and then use gradient based method.

• The gradients of Q(f, g) w.r.t. f and g are

$$\nabla|_{\mathbf{f}} Q(\mathbf{f}, \mathbf{g}) = \mathbf{a} - e^{\mathbf{f}/\varepsilon} \odot \left( \mathbf{K} e^{\mathbf{g}/\varepsilon} \right),$$

$$\nabla|_{\mathbf{g}} Q(\mathbf{f}, \mathbf{g}) = \mathbf{b} - e^{\mathbf{g}/\varepsilon} \odot \left( \mathbf{K}^{\mathrm{T}} e^{\mathbf{f}/\varepsilon} \right).$$

• To approximate the zero points of the gradients, coordinate ascent gives the following updates: (indeed, this is equivalent to Sinkhorn's updates.)

$$\mathbf{f}^{(\ell+1)} = \varepsilon \log \mathbf{a} - \varepsilon \log \left( \mathbf{K} e^{\mathbf{g}^{(\ell)}/\varepsilon} \right),$$
  
$$\mathbf{g}^{(\ell+1)} = \varepsilon \log \mathbf{b} - \varepsilon \log \left( \mathbf{K}^{\mathrm{T}} e^{\mathbf{f}^{(\ell+1)}/\varepsilon} \right).$$

- The iterations in the last slide can be given an alternative interpretation.
- Definition: Given a vector z of real numbers, we write  $\min_{\varepsilon} z$  for the softminimum of its coordinates, namely,

$$\min_{\varepsilon} \mathbf{z} = -\varepsilon \log \sum_{i} e^{-\mathbf{z}_{i}/\varepsilon}.$$

- $\min_{\varepsilon} z \to \min z$  as  $\varepsilon \to 0$ . Indeed,  $\min_{\varepsilon} z$  can be interpreted as a differentiable approximation of the min function.
- Using this notation, these two updates can be rewritten as

$$(\mathbf{f}^{(\ell+1)})_i = \min_{\varepsilon} (\mathbf{C}_{ij} - \mathbf{g}_j^{(\ell)})_j + \varepsilon \log \mathbf{a}_i,$$
$$(\mathbf{g}^{(\ell+1)})_j = \min_{\varepsilon} (\mathbf{C}_{ij} - \mathbf{f}_i^{(\ell)})_i + \varepsilon \log \mathbf{b}_j.$$

• To get a more compact form, we define

$$\operatorname{Min}_{\varepsilon}^{\operatorname{row}}(\mathbf{A}) \stackrel{\text{\tiny def.}}{=} \left( \min_{\varepsilon} \left( \mathbf{A}_{i,j} \right)_{j} \right)_{i} \in \mathbb{R}^{n}, \\
\operatorname{Min}_{\varepsilon}^{\operatorname{col}}(\mathbf{A}) \stackrel{\text{\tiny def.}}{=} \left( \min_{\varepsilon} \left( \mathbf{A}_{i,j} \right)_{i} \right)_{j} \in \mathbb{R}^{m}.$$

for any matrix  $A \in \mathbb{R}^{n,m}$ .

• Using this notation, Sinkhorn's iterates read

$$\mathbf{f}^{(\ell+1)} = \operatorname{Min}_{\varepsilon}^{\operatorname{row}} (\mathbf{C} - \mathbb{1}_{n} \mathbf{g}^{(\ell)^{\mathrm{T}}}) + \varepsilon \log \mathbf{a},$$
$$\mathbf{g}^{(\ell+1)} = \operatorname{Min}_{\varepsilon}^{\operatorname{col}} (\mathbf{C} - \mathbf{f}^{(\ell)} \mathbb{1}_{m}^{\mathrm{T}}) + \varepsilon \log \mathbf{b}.$$

#### Stability and Log-Domain Computations Avoid overflow

• Recall we may encounter with overflow when calculating  $e^{-z/\varepsilon}$ . Define  $z = \min z$ , the log-sum-exp stabilization trick suggests evaluating  $\min_{\varepsilon} z$ 

$$\min_{\varepsilon} \mathbf{z} = \underline{\mathbf{z}} - \varepsilon \log \sum_{i} e^{-(\mathbf{z}_{i} - \underline{\mathbf{z}})/\varepsilon}.$$

This leads to stablized iteration

$$\mathbf{f}^{(\ell+1)} = \operatorname{Min}_{\varepsilon}^{\operatorname{row}} \left( \mathbf{S}(\mathbf{f}^{(\ell)}, \mathbf{g}^{(\ell)}) \right) + \mathbf{f}^{(\ell)} + \varepsilon \log(\mathbf{a}),$$

$$\mathbf{g}^{(\ell+1)} = \operatorname{Min}_{\varepsilon}^{\operatorname{col}} \left( \mathbf{S}(\mathbf{f}^{(\ell+1)}, \mathbf{g}^{(\ell)}) \right) + \mathbf{g}^{(\ell)} + \varepsilon \log(\mathbf{b}),$$

where

$$\mathbf{S}(\mathbf{f}, \mathbf{g}) = \left(\mathbf{C}_{i,j} - \mathbf{f}_i - \mathbf{g}_j\right)_{i,j}.$$

• A proper decaying schedule of  $\varepsilon$  is still important.