

C. Týmové programování

Název úlohy	Team Coding
Časový limit	4 sekundy
Paměťový limit	1 gigabajt

Společnost Eindhoven Gigantic Open-Source Institute (EGOI) má velmi hierarchickou strukturu. Kromě CEO Anneke má každý z ostatních N-1 zaměstnanců jediného nadřízeného, kterému reportuje. Hierarchie neobsahuje žádný cyklus a můžete si ji představit jako strom s kořenem v uzlu odpovídajícím Anneke. Protože se jedná o rozmanitou firmu, její zaměstnanci používají K programovacích jazyků, ale každý z nich má právě jeden oblíbený, v němž upřednostňuje programovat.

Anneke má velký projekt pro tým v rámci firmy. Chce na něj využít co nejvíce zdrojů. Při rozhodování, koho do něj zapojí, provádí následující:

- 1. Vybere vedoucího týmu, v jehož oblíbeném programovacím jazyku bude projekt veden. Každý zaměstnanec se stejným oblíbeným programovacím jazykem v podstromu vedoucího bude pracovat na projektu.
- 2. Zapojí do projektu více zaměstnanců se stejným oblíbeným programovacím jazykem provedením jistých personálních výměn.

Aby maximalizovala počet zaměstnanců zapojených do projektu, může provést následující operaci libovolně mnohokrát:

1. Vybere dva zaměstnance:

- Jednoho zaměstnance z podstromu týmového vedoucího, který preferuje jiný programovací jazyk.
- Jednoho zaměstnance mimo podstrom týmového vedoucího, který preferuje stejný programovací jazyk. Tento zaměstnanec navíc musí být na stejné úrovni jako první vybraný; tzn., že mají stejně dlouhou posloupnost přímých nadřízených k Anneke. Představíte-li si hierarchii jako strom, pak takoví zaměstnanci leží na stejné úrovni.
- 2. Tito dva zaměstnanci (*právě* oni, žádní jiní) si vymění místa ve firemní hierarchii. Povšimněme si, že zaměstnanci jim reportující zůstanou na původním místě a pouze budou reportovat

jiné osobě. V příkladu níže, kde je vybrán zaměstnanec 4 jako vedoucí, můžeme vyměnit zaměstnance 3 a 2, ale ne 1 a 8.

Nalezněte maximální počet zaměstnanců, kteří mohou pracovat na novém projektu, a minimální počet popsaných výměn, potřebných k dosažení takové situace.

Vstup

První řádek vstupu obsahuje celá čísla N a K čili počet zaměstnanců EGOI a počet programovacích jazyků, které ve firmě používají.

Zaměstnanci EGOI jsou očíslováni od 0 do N-1, přičemž CEO Anneke má číslo 0. Další řádek sestává z N celých čísel ℓ_i , kde $0 \le \ell_i < K$ značí oblíbený programovací jazyk zaměstnance i.

Dalších N-1 řádků popisuje firemní hierarchii. i-tý řádek obsahuje celé číslo b_i , kde $0 \leq b_i < N$ je přímý nadřízený zaměstnance i. i spadá do intervalu 1 až N-1 (včetně), jelikož CEO Anneke nemá nadřízeného.

Výstup

Vypište jeden řádek s dvěma celými čísly P a S, tj. maximální počet zaměstnanců (včetně vedoucího), kteří se mohou zapojit do nového projektu (užitím libovolného počtu výměn), a minimální počet výměn, které jsou k tomu potřeba.

Omezení a bodování

- $1 \le N \le 10^5$.
- $1 \le K \le N$.

Vaše řešení bude spouštěno na několika testovacích sadách. Každá z nich má hodnotu několika bodů a sestává z několika testů, které je třeba všechny vyřešit pro získání bodů za danou testovací sadu.

Sada	Body	Omezení
1	12	Přímý nadřízený zaměstnance i je $i-1$ pro všechna $1 \leq i < N$
2	19	$K \leq 2$
3	27	Každý programovací jazyk je oblíben nejvýše 10 zaměstnanci
4	23	$N \leq 2000$
5	19	Žádná další omezení

Příklady

V prvních dvou příkladech vypadá firemní struktura následovně, kde vzorování značí programovací jazyk (0 = "pruhované", 1 = "tečkované", 2 = "prázdné"):

V příkladu 1 můžeme vybrat zaměstnance 1 jako vedoucího se zaměstnancem 4 (se stejným oblíbeným programovacím jazykem). Dále situaci nelze nijak vylepšit. V příkladu 2 jsou ve firmě 3 zaměstnanci s oblíbeným programovacím jazykem 0, jejž preferuje rovněž Anneke. Její výběr jako vedoucí vytvoří tým o 3 zaměstnancích bez potřeby jakýchkoli výměn.

Graph for example 3

Graph for example 4

V příkladu 3 vybereme zaměstnance 4 na pozici vedoucího a vyměníme dvojice zaměstnanců 1 & 8 a 2 & 3, abychom obdrželi celkem 4 zaměstnance (včetně 4) s oblíbeným programovacím jazykem 2. V příkladu 4 může být maximálního skóre dosaženo výběrem zaměstnance 6 na pozici vedoucího a výměnou dvojic zaměstnanců 4 & 7 and 1 & 5. Povšimněme si, že nemůžeme vyměnit zaměstnance 6 & 3, než vybereme vedoucího, abychom dosáhli skóre 4, neboť nejdříve musíme pevně zvolit vedoucího.

Input	Output
5 3 0 1 2 2 1 0 1 2 3	2 0
4 2 0 1 0 0 0 0	3 0
9 3 0 0 2 1 2 0 2 1 2 4 8 1 0 4 1 0 7	4 2
8 3 0 2 1 2 2 1 1 1 6 3 0 6 3 0 3	3 2