# Algorithms for Sensor-Based Robotics: Sampling-Based Motion Planning

Computer Science 336 http://www.cs.jhu.edu/~hager/Teaching/cs336

Professor Hager <a href="http://www.cs.jhu.edu/~hager">http://www.cs.jhu.edu/~hager</a>

#### Recall Earlier Methods

#### From Workspace to Configuration Space

- simple workspace obstacle transformed into complex configuration-space obstacle
- robot transformed into point in configuration space
- path transformed from swept volume to 1d curve



[fig from Jyh-Ming Lien]

#### Explicit Construction of Configuration Space/Roadmaps

- PSPACE-complete
- Exponential dependency on dimension
- No practical algorithms



#### The Basic Idea

• Capture the connectivity of  $Q_{\text{free}}$  by a graph or network of paths.



#### RoadMap Definition

- A roadmap, RM, is a set of <u>trajectories</u> (i.e. f (t, q<sub>A</sub>, q<sub>B</sub>)) such that for all q<sub>start</sub> ∈ Q<sub>free</sub> and q<sub>goal</sub> ∈ Q<sub>free</sub> can be connected by a path:
- The three ingredients of a roadmap
  - Accessibility: There is a path from  $q_{\text{start}} \in Q_{\text{free}}$  to some  $q' \in RM$
  - Departability: There is a path from some  $\underline{q}$  "∈ RM to  $q_{goal} \in Q_{free}$
  - Connectivity: there exists a path in RM between q' and q"

### RoadMap Path Planning

#### 1. Build the roadmap

- a) nodes are points in  $Q_{\mbox{free}}$  or its boundary
- b) two nodes are connected by an edge if there is a free path between them (i.e.  $f(t, q_A, q_B)$ )
- 2. Connect  $q_{\text{start}}$  and  $q_{\text{goal}}$  points to the road map at point q' and q'', respectively
- 3. Find a path on the roadmap between q and q. The result is a path in  $Q_{\text{free}}$  from start to goal 16-735, Howie Choset, with sig



based his notes on notes by Nancy Amato

# Roadmap



# Roadmap



# A Hard Problem



### The Way Forward

- The hard part of path planning is to somehow represent the free configuration space
  - Recall the basic PSPACE-hard results of Reif and Canny.
  - Recall the limitations of potential fields and even navigation functions.
- Probabilistic RoadMap Planning (PRM) by Kavraki, 1996
  - samples to find free configurations
  - connects the configurations (creates a graph)
  - is designed to be a multi-query planner
- Expansive-Spaces Tree planner (EST) and Rapidly-exploring Random Tree planner (RRT)
  - are appropriate for single query problems

#### Remember the Basic Problem

■ Robotic system: Single point

■ Task: Compute collision-free path from initial to goal position

How would you solve it?



### How about Rolling the Dice?

■ Robotic system: Single point

■ Task: Compute collision-free path from initial to goal position

How would you solve it?





### Sample

- Robotic system: Single point
- Task: Compute collision-free path from initial to goal position



#### **Discard**

■ Robotic system: Single point

■ Task: Compute collision-free path from initial to goal position



#### Connect

■ Robotic system: Single point

■ Task: Compute collision-free path from initial to goal position



amples via straight-line segments

#### Discard #2

■ Robotic system: Single point

■ Task: Compute collision-free path from initial to goal position



mples via straight-line segments

■ Discard straight-line segments that are in collision

### Finally, a Roadmap

■ Robotic system: Single point

■ Task: Compute collision-free path from initial to goal position



### The Complete Algorithm

[Kavraki, Švestka, Latombe, Overmars 1996]

#### 0. Initialization

add  $q_{
m init}$  and  $q_{
m goal}$  to roadmap vertex set V



### Why Are Probabilistic Methods Effective?

- Mainly, they do not try to construct the free configuration space
  - depend on local sampling of configurations (depends on efficient collision detection)
  - make use of relatively "dumb" planners to connect nodes
- They are often probabilistically complete
  - the probability of correct solution can be as high as desired with enough time





#### Some Minor Issues

- Ideally, the resulting graph will be connected
  - if it is not it might mean the space is disconnected
  - it might mean we didn't try hard enough (what is a hard case?)
- We haven't specified what the distance or path planner is
- To use for queries we must
  - connect the start and goal configurations to the roadmap (usually just treat like nodes and perform same algorithm)
  - perform a graph search on the resulting graph
  - if desired, smooth the resulting path a bit
- Interesting to note that the queries can be used to add more nodes to the graph

### Sampling and Neighbors

- Uniform sampling of configurations
  - need to take care that rotations are "fairly" sampled
- Selecting closest neighbors: kd-tree
  - Given: a set S of n points in d-dimensional space
  - Recursively
    - choose a plane P that splits S about evenly (usually in a coordinate dimension)
    - store P at node
    - apply to children S<sub>I</sub> and S<sub>r</sub>
  - Requires O(dn) storage, built in O(dn log n) time
  - Query takes  $O(n^{1-1/d} + m)$  time where m is # of neighbors
    - asymptotically linear in n and m with large d
- Selecting closest neighbors: cell-based method
  - when each point is generated, hash to a cell location

#### Distance Functions

- Distance between two configurations should reflect the likelihood that the planner will fail to find a path
  - close points, likely to succeed
  - far away, less likely
- Ideally, this is probably related to the area swept out by the robot
  - very hard to compute exactly
  - usually heuristic distance is used
- Typical approaches
  - Euclidean distance on some embedding of c-space
  - Alternative is to create a weighted combination of translation and rotational "distances"
  - Efficiency varies greatly depending on embedding

#### **Local Planner**

- The local planner should be reasonably fast and can be simple to implement
- A simple way is to do subdivision on straight line path
  - Decompose motion into a straight lines in configuration space
  - Split the line in half; check for collision
  - If none, recurse on halves until distance is small

# PRM Applied to a Point Robot





#### PRM for a Serial Chain

$$q = (\theta_1, \theta_2, \dots, \theta_n) \leftarrow \text{SAMPLE}()$$
 $\theta_i \leftarrow \text{RAND}(-\pi, \pi), \ \forall i \in [1, n]$ 



#### ATHCOLLISIONFREE(path)

- Incremental approach
- Subdivision approach

[everest] [skeleton] [knot] [manip]



# Sampling Strategies

The narrow corridor problem

probability of finding a path related to joint visibility area under

uniform sampling



- Other approaches:
  - Bridge planner
    - sample randomly
    - check pairs in collision to see if midpoint (or random distance) is not
    - Somehow use generalized Voronoi diagrams
  - Visibility-based sampling
    - only keep configuration that
      - cannot be connected to an existing component, or
      - connect 2 existing components

# Sampling Strategies

- Recall the narrow corridor problem
  - probability of finding a path related to joint visibility area under uniform sampling
  - Few samples will be available in here-
- Other approaches:
  - sampling near obstacles
    - Obstacle-Based PRM (OBPRM)
    - find samples in obstacles (uniform)
    - pick a random direction v
    - search for a free configuration in direction v
  - Gaussian OBPRM
    - generate a random sample
    - generate a Gaussian sample around the sample
    - only keep the sample if the Gaussian sample is in collision
  - Dilated obstacles
    - allow some interpenetration to enhance the likelihood of finding paths, then "fix up" later.

### Obstacle Sampling

Objective: Increase Sampling Inside/Near Narrow Passages Approach: Move samples in collision outside obstacle boundary

```
GENERATECOLLISIONFREECONFIG
                                                       [Amato, Bayazit, Dale, Jones, Vallejo: WAFR 1998]
   1: q_a \leftarrow generate config uniformly at random
   2: if IsConfigCollisionFree(q_a) = true then
        return q<sub>a</sub>
   3:
  4: else
        q_b \leftarrow generate config uniformly at random
        path \leftarrow GeneratePath(q_a, q_b)
        for t = \delta to |path| by \delta do
           if IsConfigCollisionFree(path(t)) then
   8:
              return path(t)
   9:
  10: return null
```



# Bridge Sampling

Objective: Increase Sampling Inside/Near Narrow Passages Approach: Create "bridge" between samples in collision

```
GENERATE COLLISION FREE CONFIG

1: q_a \leftarrow generate config uniformly at random

2: q_b \leftarrow generate config uniformly at random

3: ok_a \leftarrow IsConfigCollision Free(q_a)

4: ok_b \leftarrow IsConfigCollision Free(q_b)

5: if ok_a = false and ok_b = false then

6: path \leftarrow GeneratePath(q_a, q_b)

7: q \leftarrow path(0.5|path|)

8: if IsConfigCollision Free(q) then

9: return q

10: return null
```

[Hsu, Jiang, Reif, Sun: ICRA 2003]



### What about Single Queries?

 PRM-based planners aim to construct a roadmap that captures the whole connectivity of the configuration space



s to solve *multiple* queries

■ Maybe a bit too much when the objective is to solve a *single* query



### Single Query Planners

- Use ESTs (expansive space trees) and RRTs (rapidly exploring random trees.
  - also work for nonholonomic and kinodynamic planning
  - each of these is initial condition dependent (requires integration) and thus it is hard to build a graph offline
- Generally build two trees from start and goal configurations
  - each tree grows toward the other
  - once linkage is made defines a path from start to goal
- Key is to define sampling strategies that focus on
  - unexplored areas of the free space
  - move toward start or goal
- For completeness, necessary to show that the algorithm will eventually cover the entire space

# Tree-Based Motion Planning

Grow a tree in the free configuration space from  $q_{\mathrm{init}}$  toward  $q_{\mathrm{goal}}$ 



uration?

# **Expansive Space Trees (EST)**

#### Push the tree frontier in the free configuration space

[Hsu, Rock, Motwani, Latombe: 1999]

- EST relies on a probability distribution to guide tree growth
- EST associates a weight w(q) with each tree configuration q
- $\mathbf{w}(q)$  is a running estimate on importance of selecting q as the tree configuration from which to add a new tree branch

$$\mathbf{w}(q) = \frac{1}{1 + \deg(q)}$$

- w(q) = 1/(1 + number of neighbors near q)
- combination of different strategies

#### SELECTCONFIGFROMTREE

■ select q in  $\mathcal{T}$  with probability  $w(q)/\sum_{q' \in \mathcal{T}} w(q')$ 

#### ADDTREEBRANCHFROMCONFIG(T, q)

- lacksquare  $q_{\mathrm{near}} \leftarrow$  sample a collision-free configuration near q
- path  $\leftarrow$  generate path from q to  $q_{\text{near}}$
- lacksquare if path is collision-free, then add  $q_{
  m near}$  and  $(q,q_{
  m near})$  to  ${\mathcal T}$



# BiDirectional Motion Planning (EST)

Grow two trees, rooted at  $q_{\rm init}$  and  $q_{\rm goal}$ , towards each other

- Bi-directional trees improve computational efficiency compared to a single tree
- Growth slows down significantly later than when using a single tree
- Fewer configurations in each tree, which imposes less of a computational burden
- Each tree explores a different part of the configuration space

#### $BITREE(q_{init}, q_{goal})$

- 1:  $\mathcal{T}_{\text{init}} \leftarrow \text{create tree rooted at } q_{\text{init}}$
- 2:  $T_{\text{goal}} \leftarrow \text{create tree rooted at } q_{\text{goal}}$
- 3: while solution not found do
- 4: add new branch to  $\mathcal{T}_{\mathrm{init}}$
- 5: add new branch to  $\mathcal{T}_{\mathrm{goal}}$
- 6: attempt to connect neighboring configurations from the two trees
- 7: if successful, return path from  $q_{\rm init}$  to  $q_{\rm goal}$
- Different tree planners can be used to grow each of the trees
- lacktriangle E.g., RRT can be used for one tree and EST can be used for the other



### RRT Algorithm

- RRT sampling distribution converges to uniform
  - implies probabilistic completeness of the algorithm
- 1. Choose a sample q<sub>rand</sub> in free space
- 2. Find  $q_{near}$  (closest configuration to  $q_{rand}$  in T)
- 3. Try a point  $q_{new}$  some distance step-size from  $q_{near}$  toward  $q_{new}$ 
  - If q<sub>new</sub> is collision-free, add edge (q<sub>near</sub>,q<sub>new</sub>) to the graph

A variation is to repeatedly move toward q<sub>rand</sub> as far as possible

The key is how to sample  $q_{new}$  random guarantees completeness but is inefficient  $q_{new} = q_{goal}$  is efficient but has local minima solution is to alternate randomly between these two

# Rapidly-exploring Random Trees

Pull the tree toward random samples in the configuration space

[LaValle, Kuffner: 1999]



#### **Improvements**

#### Aspects for Improvement

- lacksquare BASICRRT does not take advantage of  $q_{
  m goal}$
- Tree is pulled towards random directions based on the uniform sampling of
- lacksquare In particular, tree growth is not directed towards  $q_{
  m goal}$

#### Suggested Improvements in the Literature

- Introduce goal-bias to tree growth (known as GOALBIASRRT)
  - lacksquare  $q_{
    m rand}$  is selected as  $q_{
    m goal}$  with probability p
  - lacksquare  $q_{
    m rand}$  is selected based on uniform sampling of Q with probability 1-p
  - Probability p is commonly set to  $\approx 0.05$

#### Analysis of PRM

- Goal: show probabilistic completeness:
  - Suppose that  $a,b \in Q_{free}$  can be connected by a free path. PRM is probabilistically complete if, for any (a,b)

$$\lim_{n\to\infty} \Pr[(a,b)FAILURE] = 0$$

where n is the number of samples used to construct the roadmap

- Basic idea:
  - reduce the path to a set of open balls in free space
  - figure out how many samples it will take to generate a pair of points in those balls
  - connect those points to create a path
- Assuming that a path between a and b exists, the probability of that PRM will fail depends on
  - 1. The length of the path
  - 2. The distance of the path to the obstacle
  - 3. The number of configuration in the roadmap

### Analysis of PRM

- A path from a to b can be described by a function  $\gamma$ :  $[0,1] \to Q_{\text{free}}$  with  $\gamma(0) = a$  and  $\gamma(1) = b$
- Let  $clr(\gamma)$  be the minimum distance between  $\gamma$  and any obstacle.
- Let  $\mu$  be a volume measure on the space, for set  $S \in \mathbb{R}^d$ ,  $\mu(S)$  is the volume of set S
- $B_{\rho}(x)$  is a ball centered at x of radius  $\rho$
- For uniform sampling of  $A \subset Q_{free}$  the probability that a random point  $x \in Q_{free}$ , then  $Pr(x \in A) = \mu(A)/\mu(Q_{free})$

# A Simple Idea

#### Basic Idea

- lacksquare Reduce path to a set of open balls in  $Q_{
  m free}$
- Calculate probability of generating samples in those balls
- Connect samples in different balls via straight-line paths to compute solution path



# Completeness

#### Components

- Free configuration space  $Q_{\text{free}}$ : arbitrary open subset of  $[0,1]^d$
- Local connector: connects  $a, b \in Q_{\text{free}}$  via a straight-line path and succeeds if path lies entirely in  $Q_{\text{free}}$
- Collection of roadmap samples from  $Q_{\text{free}}$

Let  $a, b \in Q_{\mathrm{free}}$  such that there exists a path  $\gamma$  between a and b lying in  $Q_{\mathrm{free}}$ . Then the probability that PRM correctly answers the query (a, b) after generating n collision-free configurations is given by

$$\Pr[(a,b) ext{SUCCESS}] \geq 1 - \left\lceil \frac{2L}{
ho} \right\rceil e^{\sigma 
ho^d n},$$

#### where

- L is the length of the path  $\gamma$
- $m{\rho} = \operatorname{clr}(\gamma)$  is the clearance of path  $\gamma$  from obstacles
- $\sigma = \frac{\mu(B_1(\cdot))}{2^d \mu(Q_{\text{free}})}$
- $\blacksquare \mu(B_1(\cdot))$  is the volume of the unit ball in  $\mathbb{R}^d$
- lacksquare  $\mu(Q_{\mathrm{free}})$  is the volume of  $Q_{\mathrm{free}}$

#### The Proof Sketch

- Note that clearance  $\rho = \operatorname{clr}(\gamma) > 0$
- Let  $m = \left\lceil \frac{2L}{\rho} \right\rceil$ . Then,  $\gamma$  can be covered with m balls  $B_{\rho/2}(q_i)$  where  $a = q_1, \ldots, q_m = b$
- Let  $y_i \in B_{\rho/2}(q_i)$  and  $y_{i+1} \in B_{\rho/2}(q_{i+1})$ . Then, the straight-line segment  $\overline{y_i y_{i+1}} \in Q_{\text{free}}$ , since  $y_i, y_{i+1} \in B_{\rho}(q_i)$
- $I_i \stackrel{\text{def}}{=}$  indicator variable that there exists  $y \in V$  s.t.  $y \in B_{\rho/2}(q_i)$
- $\Pr[(a, b)\text{FAILURE}] \leq \Pr\left[\bigvee_{i=1}^{m} I_i = 0\right] \leq \sum_{i=1}^{m} \Pr[I_i = 0]$ 
  - Note that  $\Pr[I_i = 0] = \left(1 \frac{\mu(B_{\rho/2}(q_i))}{\mu(Q_{\text{free}})}\right)^n$ i.e., probability that none of the n PRM samples falls in  $B_{\rho/2}(q_i)$
  - $\blacksquare$   $I_i$ 's are independent because of uniform samling in PRM

Therefore,  $\Pr[(a, b) \text{FAILURE}] \leq m \left(1 - \frac{\mu(B_{\rho/2}(\cdot))}{\mu(Q_{\text{free}})}\right)^n$ 

$$\blacksquare \frac{\mu(B_{\rho/2}(\cdot))}{\mu(Q_{\text{free}})} = \frac{\left(\frac{\rho}{2}\right)^d \mu(B_1(\cdot))}{\mu(Q_{\text{free}})} = \sigma \rho^d$$

Therefore, 
$$\Pr[(a,b)\text{FAILURE}] \leq m \left(1 - \sigma \rho^d\right)^n \leq m e^{-\sigma \rho^d} = \left\lceil \frac{2L}{\rho} \right\rceil e^{-\sigma \rho^d \mathsf{n}}$$

### **Understanding Complexity**

- Relationship between "difficulty" of space and number of samples (avoids dependence on length of path which is unknown)
- Relies on so-called  $(\varepsilon, \alpha, \beta)$  expansiveness of space
  - ε measures the fraction of space reachable from any point
    - called  $\epsilon$ -good if all points "see" at least  $\epsilon$  of the space
    - $\forall x \in Q_{free}$   $\mu(reach(x)) \ge \epsilon \mu(Q_{free})$
  - lookout $_{\beta}$  of a set S is the set of points that can see at least  $\beta$  of  $Q_{free}$  S
- A space is  $(\varepsilon \alpha \beta)$  expansive if
  - it is  $\varepsilon$ -good
  - − for any connected  $S \subseteq Q_{free} \mu(lookout_β(S)) \ge α \mu(S)$
  - intuitively, this capture how easy it is to choose points that link up the space

# **Expansive Spaces**



Reachability

# **Expansive Spaces**



Only a small subset of A can see a large fraction of points in B

#### An Example



Given n random samples, what are the odds the resulting graph is connected?

### Summary

- PRS --- a basic sampling-based planner
  - useful for multiple queries
  - can be made efficient using various sampling and evaluation tricks
- EST and RRT
  - single query planners
  - generate trees and merge them
  - again many variations based on applications
- Analysis
  - general idea of completeness
  - particular proof based on sampling
  - other ideas based on structure of environment
- Other Applications