List of objects

Fredrik Meyer

September 29, 2016

Contents

1	\mathbf{List}	of objects	1
	1.1	Stanley-Reisner sphere X_{00}	1
	1.2	Stanley-Reisner ball Y_{00}	1
	1.3	Toric variety Y_0	2
	1.4	Singular Calabi-Yau X_0	2
	1.5	Cone over del Pezzo	2
	1.6	Smoother toric Y	2
	1.7	Smooth Calabi-Yau X	2

1 List of objects

1.1 Stanley-Reisner sphere X_{00}

Let E_6 be a hexagon, and let S be the join of two hexagons. This is a simplicial 3-sphere with 12 vertices. The variables are named x_1, \ldots, x_6 and z_1, \ldots, z_6 .

1.2 Stanley-Reisner ball Y_{00}

Let S be the Stanley-Reisner sphere from Section 1.1. Add two variables y_0 and y_1 to get a 5-dimensional variety. This is the join of two (filled) hexagons.

1.3 Toric variety Y_0

The Stanley-Reisner scheme Y_{00} deforms to the toric variety with polytope P, where P is the polytope with vertices

The toric variety is a deformation of Y_{00} in Section 1.2, by a result of Sturmfels, since the simplicial complex associated to it is a triangulation of the corresponding polytope.

The polytope P is reflexive.

1.4 Singular Calabi-Yau X_0

This is a complete intersection of two anticanonical hypersurfaces in Y_0 . By general results, it is a Calabi-Yau. It has 12 singular points, each looking like $C(dP_6)$.

1.5 Cone over del Pezzo

The cone over the del Pezzo surface of degree 6 has two smoothings.

1.6 Smoother toric Y

The toric variety 1.3 deforms to a variety with one-dimensional singularities.

Remark. I suspect that it actually smooths, but I haven't been able to prove it yet. Should be feasible.

1.7 Smooth Calabi-Yau X

Since Y have low-dimensional singularities, two applications of Bertini shows that X_0 smooths. I have computed it to have Euler characteristic -72.

Problem: find which deformation is induced on the singularities of X_0 .