Global Economy Equilibrium Scenario Builder

OGResearch, November 2020

jaromir.benes@ogresearch.com

Table of Contents

What Are We Developing?

Current Stage

Key Modules

Demography

Total Population

Labor Market Population

Households

Choices Made by Households

Lifetime Utility Function

Budget Constraint

Household Adjustment Costs

Capital Accumulation

Finance Contraint

Real Wage Rigidities

Production

Productivity

Technology Choice Production Function

Leontief-Cobb-Douglas Case

Production Stages

Sticky Prices

Production Sector Total Profits

Final Goods Assembly

Monetary Policy

Fiscal

Fiscal Budget Constraing

Public Capital Government Consumption and Taxes

What Are We Developing?

- A modular framework rather than a single model
- Scenario builder based on a DSGE core
- Cover a wide spectrum of real and financial economy aspects, less emphasis on deep disaggregation
- Pragmatic features
- Balanced growth path
- Ease of operation and judgmental adjustments

Current Stage

- Work in progress, under continuous development
- Robust core engine
- A number of prototypes
- Would like to hear feedback about the GPMN member preferences

Key Modules

- Demography
- Households
- Production
- Non-Commodity Exports
- Commodities
- Monetary Policy
- Fiscal Policy

Demography

- Total population
- Working age population
- Labor force (labor participation)

Outside the demography module:

• Per-worker labor supply (e.g. per-worker hours worked)

Total Population

Global Population Trend Component

$$egin{align} \Delta \log n n_t^{gg} &=
ho_{nn^{gg}} \Delta \log n n_{t-1}^{gg} + (1-
ho_{nn^{gg}}) \Delta \log \kappa_{nn} \ & \kappa_{nn} &= rac{n n_{ ext{ss}}^{gg}}{n n_{ ext{ss}-1}^{gg}} \end{aligned}$$

Area/Country Total Population

$$nn_t = nr_t \cdot nn_t^{gg} \ \log(nr_t) =
ho_{nr} \log nr_{t-1} + (1-
ho_{nr}) \log nr_{ ext{ss}}$$

Labor Market Population

Working age population

$$egin{split} rac{nw_t}{nn_t} &=
ho_{nw} \, rac{nw_{t-1}}{nn_{t-1}} + \left(1 -
ho_{nw}
ight) \kappa_{nw} + \epsilon_{nw,t} \ \kappa_{nw} &= rac{nw_{ ext{ss}}}{nn_{ ext{ss}}} \end{split}$$

Labor force (participation rate)

$$egin{align} rac{nf_t}{nw_t} &=
ho_{nf} rac{nf_{t-1}}{nw_{t-1}} + \left(1 -
ho_{nf}
ight) \kappa_{nf} + \epsilon_{nf,t} \ \kappa_{nf} &= rac{nf_{ ext{ss}}}{nw_{ ext{ss}}} \end{aligned}$$

Households

- Representative household with a growing number of members
- Current income effect
- Net worth effect

Choices Made by Households

- Demand consumption goods
- Demand for investment goods and capital accumulation
- Utilization of capital
- Labor supply
- Demand for (bank) deposits
- Demand for (bank) loans

Lifetime Utility Function

Representative household with a growing number of members

$$ext{E}_0 \sum_{t=0}^{\infty} \left(\log rac{ch_t - ch_t^{ ext{ref}}}{nn_t} - rac{1}{1+\eta} \cdot n{h_t}^{\eta} +
u_1 \cdot \log rac{netw_t}{pch_t \cdot nn_t}
ight) nn_t$$

Nominal net worth

$$netw_t = pkh_t \cdot kh_t + bd_t - bl_t$$

Point of reference in household consumption

$$ch_t^{ ext{ref}} = \chi \cdot rac{curr_t}{pch_t} \ \ curr_t = w_t \cdot nh_t \cdot nf_t - txl1_t$$

Variable	Description
ch_t	Household consumption
$ch_t^{ m ref}$	Point of reference in household consumption
nf_t	Labor force
nh_t	Per-worker labor supply (e.g. per-worker hours worked)
$netw_t$	Nominal net worth of households
$curr_t$	Nominal current income of households
$txl1_t$	Net lump-sum taxes (transfers) of type 1

Budget Constraint

$$egin{aligned} bd_t - bl_t &= rbd_{t-1} \cdot bd_{t-1} - rbl_{t-1} \cdot bl_{t-1} \ &+ w_t \cdot nh_t \cdot nf_t + puk_t \cdot u_t \cdot k_t + zy_t + zb_t \ &- pch_t \cdot ch_t - pih_t \cdot ih_t \ &- txl1_t - txl2_t - adj_t \end{aligned}$$

Lagrange multiplier associated with the budget constraint is denoted by vh_t (shadow value of nominal household wealth)

Variable	Description
bd_t	Bank deposits
bl_t	Bank loans
w_t	Nominal wage rate
zy_t	Profits from producers
zb_t	Profits from financial sector
jh_t	Adjustment costs faced by households
$txl1_t$	Type 1 net lump-sum taxes (transfers)
$txl2_t$	Type 2 net lump-sum taxes (transfers)

Household Adjustment Costs

- Investment adjustment costs
- Reference point in capital accumulation
- Cost of utilization of capital

$$egin{aligned} jh_t &= rac{1}{2} \; \xi_{ih} \cdot pih_t \cdot ih_t \; (\Delta \log ih_t - \log \kappa_{ih})^2 \ &+ rac{1}{2} \; \xi_k \cdot pkh_t \cdot kh_t \; igl(\log kh_t - \log kh_t^{ ext{ref}} igr)^2 \ &+ py_t \cdot kh_t \cdot igl(v_0 \cdot u_t igr)^{v_1} \end{aligned}$$

Point of reference in capital accumulation

$$kh_t^{ ext{ref}} = \mathrm{E}_t \Big[kh_{t+1} \cdot \kappa_{kh}^{-1} \Big]$$

Steady-state adjustment constants

$$\kappa_{ih} = rac{i h_{
m ss}}{i h_{
m ss-1}} \hspace{1cm} \kappa_{kh} = rac{k h_{
m ss}}{k h_{
m ss-1}}$$

Capital Accumulation

$$kh_t = (1-\delta)\ kh_{t-1} + ih_t$$

Lagrange multiplier associated with the capital accumulation constraint is denoted by pkh_t (shadow price of capital)

Variable	Description
kh_t	Stock of production capital
ih_t	Investment in production capital

Finance Contraint

Sufficient amount of means of payment needs to be held proportional to gross expenditures (consumption, investment, trade in capital)

$$bd_t = \phi \Big(pch_t \cdot ch_t + pih_t \cdot ih_t + \phi_k \cdot pkh_t \cdot kh_t \Big)$$

Real Wage Rigidities

Real wages are sluggish in their response to changes in optimal flexible wage rate; no expliciti microfoundations

$$\log rac{w_t}{pch_t} =
ho_w \, \log \Bigl(\kappa_w \cdot rac{w_{t-1}}{pch_{t-1}} \Bigr) + (1-
ho_w) \, \log rac{w0_t}{pch_t} + \epsilon_{w,t}$$

Steady-state adjustment constant

$$\kappa_w = rac{w_{ ext{ss}} \cdot pch_{ ext{ss}-1}}{w_{ ext{ss}-1} \cdot pch_{ ext{ss}}}$$

Variable	Description
$w0_t$	Optimal flexible nominal wage rate as if optimized by households
w_t	Actual nominal wage rate

Production

- Technology choice production function
- Several pairwise stages of production
- Input factors
 - Labor
 - Intermediate imports
 - Commodity inputs
 - Capital
- Real flexibilities to flatten the marginal cost schedule
 - Variable utilization of capital
 - Roundabout production
- Sticky prices

Productivity

Global productivity component

$$\Delta \log a_t^{gg} =
ho_a \ \Delta \log a_{t-1}^{gg} + (1-
ho_a) \log \kappa_a$$
 $\kappa_a = rac{a_{ ext{ss}}^{gg}}{a_{ ext{ss}-1}^{gg}}$

Area/Country relative productivity component

$$\log ar_t =
ho_{ar} \, \log ar_{t-1} + (1-
ho_a r) \, \log ar_{
m ss}$$

Area/Country productivity

$$a_t = aa_t^{gg} \cdot ar_t$$

Technology Choice Production Function

Short-run CES technology

$$y_t = F(ak_t \cdot k_t, an_t \cdot n_t)$$

subject to a long-run technology frontier

$$G(ak_t, an_t) = a_t$$

with adjustment costs

$$\frac{1}{2} \xi \cdot p y_t \cdot y_t \left(\log \frac{a k_t}{a n_t} - \log \frac{a k_{t-1}}{a n_{t-1}} \right)^2$$

Leontief-Cobb-Douglas Case

Short-run Leontief

$$y_t = ak_t \cdot k_t$$
$$y_t = an_t \cdot n_t$$

Long-run Cobb-Douglas

$$ak_t^{\gamma} \cdot an_t^{1-\gamma} = a_t$$

Without adjustment costs, this is perfectly equivalent (up to a scale constant) to

$$y_t = a_t \cdot k_t{}^{\gamma} \cdot n_t{}^{1-\gamma}$$

Production Stages

Combine imports from other areas

$$m_t = F_4\left(m_t^1, \ldots, m_t^A
ight) \ m_t = mm_t + mch_t + mih_t + mcg_t + mih_t + mxx_t$$

Combine non-commodity variable factors

$$y3_t = F_3 \Big[mm_t, \; \left(nh_t - \gamma_{n0} \cdot nh_{ ext{ss}}
ight) \cdot nf_t \Big]$$

Combine variable factors with capital

$$y2_t = F_2 \Big(ukh_t, \; kg_t, \; y3_t \Big) \ ukh_t = u_t \cdot kh_t$$

Add dependence on commodity inputs

$$y1_t = F_1\Big(y2_t,\ mq_t\Big)$$

Add a roundabout production layer and sticky prices

$$y_t - z_t = F_0(y1_t,\ z_t)$$
 $y_t = ych_t + yih_t + ycg_t + yig_t + yxx_t$

Sticky Prices

Maximize profits

$$py_t \cdot y_t \ (1+jp_t) - py0_t \cdot y0_t$$

with the price adjustment costs given by

$$jp_t = rac{1}{2} \; \xi_{py} \; \Bigl(\Delta \log p y_t - \Delta \log p y_t^{ ext{ref}} \Bigr)^2$$

Point of reference in price setting

$$egin{align} \Delta \log p y_t^{ ext{ref}} &= \zeta_{py} \Delta \log p y_{t-1} + (1-\zeta_{py}) \log \kappa_{py} \ & \kappa_{py} &= rac{p y_{ ext{ss}}}{p y_{ ext{ss}-1}} \end{aligned}$$

Production Sector Total Profits

$$zy_t = py_t \cdot y0_t \ (1-jy_t) - pm_t \cdot mm_t - w_t \cdot nh_t \cdot nf_t - puk_t \cdot uk_t - puk_t \cdot nf_t$$

Final Goods Assembly

$$ch = F\Big(ych_t,\ mch_t\Big)$$

Monetary Policy

- Inflation targeting reaction function
- Exchange rate peg
- Inflation targeting with exchange rate management

Fiscal

- Government consumpiton and investment
- Government debt placed locally
- Lump-sum taxes
- Crowding-in in the short run
- Crowding-out in the long run

Fiscal Budget Constraing

$$dg_t = rg_{t-1} \cdot dg_{t-1} + pcg_t \cdot cg_t + pig_t \cdot ig_t - txl1_t - txl2_t$$

Public Capital

$$kg_t = (1 - \delta) kg_{t-1} + ig_t$$

Target level for public capital

$$kg_t^{\mathrm{tar}} = \psi \cdot kh_t$$

Investment rule

$$\Delta \log i g_t = \log \kappa_{ig} + au_{ig} \left(\log k g_t - k g_t^{ ext{tar}}
ight)
onumber \ \kappa_{ig} = rac{i g_{ ext{ss}}}{i g_{ ext{ss}-1}}$$

Government Consumption and Taxes

 Stabilizing mechanism to keep debt at a target level as a ratio to nominal GDP

$$\frac{dg_t}{ngdp_t}$$

• A wide range of mechanisms to stabilize debt

<<[banking.md]