Integrales de superfice

M. en C. Jonathan Urrutia Análisis de sistemas eléctricos en sistemas ingenieriles **DEFINITION:** Parametrized Surfaces A parametrization of a surface is a function $\Phi: D \subset \mathbb{R}^2 \to \mathbb{R}^3$, where D is some domain in \mathbb{R}^2 . The surface S corresponding to the function Φ is its image: $S = \Phi(D)$. We can write

$$\Phi(u,v) = (x(u,v), y(u,v), z(u,v)).$$

If Φ is differentiable or is of class C^1 [which is the same as saying that x(u, v), y(u, v), and z(u, v) are differentiable or C^1 functions of (u, v)], we call S a differentiable or C^1 surface.

Figure 7.3.5 Φ "twists" and "bends" D onto the surface $S = \Phi(D)$.

Tangent Vectors to Parametrized Surfaces

$$\mathbf{T}_{v} = \frac{\partial \mathbf{\Phi}}{\partial v} = \frac{\partial x}{\partial v}(u_{0}, v_{0})\mathbf{i} + \frac{\partial y}{\partial v}(u_{0}, v_{0})\mathbf{j} + \frac{\partial z}{\partial v}(u_{0}, v_{0})\mathbf{k}.$$

Regular Surfaces

$$\mathbf{T}_{u} = \frac{\partial \mathbf{\Phi}}{\partial u} = \frac{\partial x}{\partial u}(u_{0}, v_{0})\mathbf{i} + \frac{\partial y}{\partial u}(u_{0}, v_{0})\mathbf{j} + \frac{\partial z}{\partial u}(u_{0}, v_{0})\mathbf{k}.$$

 $\Phi(u_0,v_0)$

Because the vectors \mathbf{T}_u and \mathbf{T}_v are tangent to two curves on the surface at a given point, the vector $\mathbf{T}_u \times \mathbf{T}_v$ ought to be normal to the surface at the same point.

Figure 7.3.7 The tangent vectors \mathbf{T}_u and \mathbf{T}_v that are tangent to the curve on a surface S, and hence tangent to S.

DEFINITION: Area of a Parametrized Surface We define the *surface* $area^{10}$ A(S) of a parametrized surface by

$$A(S) = \iint_D \|\mathbf{T}_u \times \mathbf{T}_v\| \, du \, dv \tag{1}$$

where $\|\mathbf{T}_u \times \mathbf{T}_v\|$ is the norm of $\mathbf{T}_u \times \mathbf{T}_v$. If S is a union of surfaces S_i , its area is the sum of the areas of the S_i .

Figure 7.4.1 $\|\mathbf{T}_{u_i} \times \mathbf{T}_{v_j}\| \Delta u \Delta v$ is equal to the area of a parallelogram that approximates the area of a patch on a surface $S = \Phi(D)$.

DEFINITION: Area of a Parametrized Surface We define the surface $area^{10}$ A(S) of a parametrized surface by

$$A(S) = \iint_D \|\mathbf{T}_u \times \mathbf{T}_v\| \, du \, dv \tag{1}$$

where $\|\mathbf{T}_u \times \mathbf{T}_v\|$ is the norm of $\mathbf{T}_u \times \mathbf{T}_v$. If S is a union of surfaces S_i , its area is the sum of the areas of the S_i .

$$\|\mathbf{T}_{u} \times \mathbf{T}_{v}\| = \sqrt{\left[\frac{\partial(x,y)}{\partial(u,v)}\right]^{2} + \left[\frac{\partial(y,z)}{\partial(u,v)}\right]^{2} + \left[\frac{\partial(x,z)}{\partial(u,v)}\right]^{2}}, \qquad \frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$

$$A(S) = \iint_D \sqrt{\left[\frac{\partial(x,y)}{\partial(u,v)}\right]^2 + \left[\frac{\partial(y,z)}{\partial(u,v)}\right]^2 + \left[\frac{\partial(x,z)}{\partial(u,v)}\right]^2} du dv.$$

DEFINITION: The Integral of a Scalar Function Over a Surface If f(x, y, z) is a real-valued continuous function defined on a parametrized surface S, we define the *integral of* f *over* S to be

$$\iint_{S} f(x, y, z) dS = \iint_{S} f dS = \iint_{D} f(\mathbf{\Phi}(u, v)) \|\mathbf{T}_{u} \times \mathbf{T}_{v}\| du dv.$$
 (1)

Figure 7.5.1 Φ takes a portion R_{ij} of D to a portion of S.

DEFINITION: The Surface Integral of Vector Fields Let \mathbf{F} be a vector field defined on S, the image of a parametrized surface $\mathbf{\Phi}$. The surface integral of \mathbf{F} over $\mathbf{\Phi}$, denoted by

$$\iint_{\mathbf{\Phi}} \mathbf{F} \cdot d\mathbf{S},$$

is defined by (see Figure 7.6.1))

$$\iint_{\mathbf{\Phi}} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} \mathbf{F} \cdot (\mathbf{T}_{u} \times \mathbf{T}_{v}) \, du \, dv.$$

Figure 7.6.1 The geometric significance of $\mathbf{F} \cdot (\mathbf{T}_u \times \mathbf{T}_v)$.

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{\Phi} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} \mathbf{F} \cdot (\mathbf{T}_{u} \times \mathbf{T}_{v}) \, du \, dv$$

$$= \iint_{D} \mathbf{F} \cdot \left(\frac{\mathbf{T}_{u} \times \mathbf{T}_{v}}{\|\mathbf{T}_{u} \times \mathbf{T}_{v}\|} \right) \|\mathbf{T}_{u} \times \mathbf{T}_{v}\| \, du \, dv$$

$$= \iint_{D} (\mathbf{F} \cdot \mathbf{n}) \|\mathbf{T}_{u} \times \mathbf{T}_{v}\| \, du \, dv = \iint_{S} (\mathbf{F} \cdot \mathbf{n}) \, dS = \iint_{S} f \, dS,$$

where $f = \mathbf{F} \cdot \mathbf{n}$. We have thus proved the following theorem.

THEOREM 5 $\iint_S \mathbf{F} \cdot d\mathbf{S}$, the surface integral of \mathbf{F} over S, is equal to the integral of the normal component of \mathbf{F} over the surface. In short,

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS.$$

Figure 7.6.1 The geometric significance of $\mathbf{F} \cdot (\mathbf{T}_u \times \mathbf{T}_v)$.

THEOREM 1: Green's Theorem Let D be a simple region and let C be its boundary. Suppose $P: D \to \mathbb{R}$ and $Q: D \to \mathbb{R}$ are of class C^1 . Then

$$\int_{C^{+}} P \, dx + Q \, dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \, dy.$$

THEOREM 2: Area of a Region If C is a simple closed curve that bounds a region to which Green's theorem applies, then the area of the region D bounded by $C = \partial D$ is

$$A = \frac{1}{2} \int_{\partial D} x \, dy - y \, dx.$$