Numerical Integration Part 2 Mid-trimester Revision

Dr. Ronald Koh ronald.koh@digipen.edu (Teams preferred over email)

AY 23/24 Trimester 1

Table of contents

- Numerical Integration Part 2
 - Recap of last week's material
 - Simpson's Rule
 - Error bound for Simpson's Rule

Quiz 1 'Difficult' Questions

Ronald Koh Joon Wei

Irreducible factors, Midpoint and Trapezoidal Rule

- Factorization of denominator Q(x):
 - Non-repeated irreducible factors: one partial fraction for each irreducible factor, numerator is a linear polynomial Ax + B.
- Some definite integrals cannot be evaluated exactly, establishes a need for **approximation**; suppose we have a function f(x) on [a, b].

Let *n* be a positive integer with $\Delta x = \frac{b-a}{n}$ and $x_i = a + i\Delta x$, then

• Midpoint Rule with midpoints $\overline{x}_i = \frac{x_i + x_{i-1}}{2}$:

$$\int_a^b f(x) dx \approx M_n = \Delta x \left[f(\overline{x}_1) + \dots + f(\overline{x}_n) \right]$$

Trapezoidal Rule:

$$\int_{a}^{b} f(x) dx \approx T_{n} = \frac{\Delta x}{2} \left[f(x_{0}) + 2f(x_{1}) + \cdots + 2f(x_{n-1}) + f(x_{n}) \right].$$

Ronald Koh Joon Wei Week 6 Lecture 3/21

Error bounds

Let $|f''(x)| \le K$ for some constant K.

• Error bound for Midpoint Rule:

$$|E_M| \leq \frac{K(b-a)^3}{24n^2}.$$

Error bound for Trapezoidal Rule:

$$|E_T| \leq \frac{K(b-a)^3}{12n^2}.$$

These represent "worst-case" scenarios. Methods for finding K:

- Find the point $x \in [a, b]$ which gives the maximum of |f''(x)|. In most cases, this is infeasible because it takes too much time to calculate.
- Use the **triangle equality** and knowledge of bounds for certain functions, e.g. $|\sin x| \le 1$, $|\cos x| \le 1$.

Ronald Koh Joon Wei Week 6 Lecture 4/21

Two rectangles at a time, instead of one

Previously in the Midpoint and Trapezoidal rules, we approximated the net area under the graph using one rectangle at a time, for n rectangles.

In these rules, the height of the rectangle/trapezium is dependent on two points, the endpoints of a subinterval $[x_{i-1}, x_i]$.

If we approximate the net area under the graph using two rectangles at a time, instead of one, i.e. two subintervals $[x_{i-1}, x_i]$ and $[x_i, x_{i+1}]$, we would have three points to work with instead of two.

This considerably increases the accuracy of the approximation as we will see in the next few slides.

5/21

Ronald Koh Joon Wei Week 6 Lecture

Visualization: Parabolas vs lines

Ronald Koh Joon Wei 6/21

Simpson's Rule

Let f be a function on [a, b]. We use n rectangles, with n even. Then

$$\Delta x = \frac{b-a}{n}$$
, and $x_i = a + i\Delta x$ (*i* from 0 to *n*).

The **Simpson's Rule** S_n approximation to $\int_a^b f(x) dx$ is

$$S_n = \frac{\Delta x}{3} [f(x_0) + 4f(x_1) + 2f(x_2) + \ldots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)].$$

Ronald Koh Joon Wei Week 6 Lecture 7/21

Artwork by a former student

Error bound for S_n

The following bound represents the "worst-case" scenario for the error of S_n , the Simpson's Rule approximation of $\int_a^b f(x) dx$.

Theorem

Suppose K is a constant where $|f^{(4)}(x)| \leq K$ on [a,b]. The **magnitude** of error of the Simpson's Rule (E_S) has the following upper bound:

$$|E_S| \leq \frac{K(b-a)^5}{180n^4}.$$

Example 1

- Use Simpson's Rule with n = 10 to approximate $\int_1^2 \frac{1}{x} dx$.
- ② How large should we take n in order to guarantee that the Simpson's Rule approximation for $\int_{1}^{2} \frac{1}{x} dx$ are accurate to within 0.0001?

Ronald Koh Joon Wei Week 6 Lecture 10 / 21

Example 1

Exercise 1

- Use Simpson's Rule with n = 6 to approximate $\int_{0}^{1} \cos(x^2) dx$.
- How large should we take n in order to guarantee that the Simpson's Rule approximation for $\int_0^1 \cos(x^2) dx$ are accurate to within 0.0001?

Ronald Koh Joon Wei

Exercise 1

Integration by parts (26% on Tues, 33% on Fri)

Evaluate
$$\int_0^{\frac{\pi}{4}} x \sec^2 x \tan x \, dx$$
.

Sine/Cosine integral (26% on Tues, 33% on Fri)

Evaluate
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^6 x \cos^5 x \, dx.$$

15 / 21

Sine/Cosine integral (26% on Tues, 33% on Fri)

Antiderivative of f (33% in Tues, 13% in Thurs)

Find an antiderivative of $f(x) = \ln(2x)$.

(d)
$$x \ln x - x$$
 (b) $(d) x \ln(2x) - \frac{x}{2}$

b)
$$x \ln(2x)$$

(a)
$$x \ln x - x$$
 (b) $x \ln(2x)$ (c) $x \ln(2x) - (x - 29)$

(e) None of the above

Completing the square (13% on Thurs, 25% on Fri)

Evaluate
$$\int_{1}^{\sqrt[3]{2}} \frac{x^2}{x^6 - 2x^3 + 2} dx$$
.

18 / 21

Ronald Koh Joon Wei Week 6 Lecture

Completing the square (13% on Thurs, 25% on Fri)

Augmented Lecture Exercise (27% on Thurs)

Evaluate
$$\int_0^1 \frac{3x^5 + 2x^2}{1 + x^6} dx$$
.

Augmented Lecture Exercise (27% on Thurs)