Aufgabe 1

Tabelle 1: Division by Substraction

Schritt	Х	у	q	r	$\mathbf{r} + \mathbf{y} \cdot \mathbf{q}$
0	31	9	0	31	$31 + 9 \cdot 0 = 31$
1	31	9	1	22	$22 + 9 \cdot 1 = 31$
2	31	9	2	13	$13 + 9 \cdot 2 = 31$
3	31	9	3	4	$4 + 9 \cdot 3 = 31$

Aufgabe 2

(2 c)

Es gilt

$$\bar{s}_{2n} = \frac{s_n}{\sqrt{2 + \sqrt{4 - s_n^2}}} \quad und \quad s_{2n} = \sqrt{2 - \sqrt{4 - s_n^2}}.$$
 (1)

Es folgt

$$\frac{s_{2n}^2}{s_{2n}^{-2}} = \frac{(2 - \sqrt{4 - s_n^2})(2 + \sqrt{4 - s_n^2})}{s_n^2} = \frac{4 - (4 - s_n^2)}{s_n^2} = 1,\tag{2}$$

wobei die Binomische Formel, $(a+b)(a-b)=a^2-b^2$, benutzt wurde.

Es gilt

$$\bar{t_{2n}} = \frac{2t_n}{\sqrt{4 + t_n^2 + 2}} \quad und \quad t_{2n} = \frac{2}{t_n} \left(\sqrt{4 + t_n^2} - 2 \right).$$
(3)

Es folgt

$$\frac{t_{2n}}{t_{2n}^{-}} = \frac{2(\sqrt{4+t_n^2}-2)(\sqrt{4+t_n^2}+2)}{2t_n^2} = 1.$$
(4)

Also gilt $s_{2n}^- = s_{2n}$ und $t_{2n}^- = t_{2n}$.

Aufgabe 4

(4 a)

Tabelle 1: Vorbedingungen und Nachbedingungen für Deque Funktionen

Funktion	Vorbedingungen	Nachbedingungen
Konstruktor q.Deque(N)	$egin{array}{l} \operatorname{type}(\mathrm{N}) == \operatorname{int} \ \mathrm{N} \geq 1 \end{array}$	
q.size()	$q \in Deque$	q wird durch die Funktion nicht verändert Rückgabewert entspricht der tatsächlichen Größe
q.capacity()	$q \in Deque$	q wird durch die Funktion nicht verändert Rückgabewert entspricht der tatsächlichen Kapazität
q.push(x)	 q ∈ Deque x ist ein gültiger Typ und Wert (für die Implementation in Python spielt das keine Rolle, da eine Liste Variablen unterschiedlicher beliebiger Typen halten kann) 	Das letzte Arrayelemnt hat den Wert x falls die Größe nicht der Kapazität entspricht, wird sie um eins erhöht
x = q.popLast()	$q \in Deque$ $q \text{ ist nicht leer}$	Länge von q wird um eins vermindert x hat den Wert des entfernten Elements
x = q.popFirst()	$q \in Deque$ $q \text{ ist nicht leer}$	Länge von q wird um eins vermindert x hat den Wert des entfernten Elements