Versuch 2

Verwendete Geräte: Oszilloskope, Ampere-Meter, Volt-Meter, Funktionsgenerator

Aufgabe 2:

Ohm	V	A	mA
150	0	0	0
150	1	0,006666667	6,66666667
150	2	0,013333333	13,33333333
150	3	0,02	20
150	4	0,026666667	26,66666667
150	5	0,033333333	33,33333333
150	6	0,04	40
150	7	0,046666667	46,66666667
150	8	0,053333333	53,33333333
150	9	0,06	60
150	10	0,066666667	66,6666667
150	11	0,073333333	73,33333333
150	12	0,08	80

Aufgabe 3:

Wie hoch ist die Spannung im Ausschaltmoment?

150 V

Wir haben als weiteres Bauelement noch einen Widerstand eingebaut, um das kleben der Kontakte zu verhindern.

Aufgabe 4:

Da der Transistor Geschlossen ist und kein Basis Strom anliegt, wird der Transistor gesperrt und es kann keine Spannung übertragen werden.

Aufgabe 5:

Der Transistor stellt dann einen Schalter da. Der Binäres an und aus wiedergibt.

Aufgabe 6:

- 1: Die Freilaufdiode sorgt dafür, das die Spannung im Kreis fließen kann. Dadurch kann Sie langsam abgebaut werden und steigt nicht mehr an.
- 2: Ab der Abschaltung des Relais, bleibt der Stromfluss Konstant.
- 3: Er müsste langsam abfallen.
- 4: Das Relais benötigt wie auch der Transistor eine Freilaufdiode.

Versuche:

Aufgabe 1:

Aufgabe 2:

100μΑ			200μΑ		
Ucc/V	Uce/V	Ic/mA	Ucc/V	Uce/V	Ic/mA
0	0	0	(0	0
0,5	0,046	3,026666667	0,5	0,03	3,133333333
1	0,075	6,166666667	1	0,045	6,36666667
1,5	0,1	9,333333333	1,5	0,06	9,6
2	0,17	12,2	2	0,07	12,86666667
2,5	0,51	13,26666667	2,5	0,09	16,06666667
3	1	13,33333333		0,11	19,26666667
3,5	1,5	13,33333333	3,5	0,14	22,4
4	2	13,33333333		0,19	25,4
4,5	2,4	14	4,5	0,41	27,26666667
5	3	13,33333333		0,88	27,46666667
5,5	3,45	13,66666667	5,5	1,35	27,66666667
6	4	13,33333333		1,78	28,13333333
6,5	4,4	14	6,5	2,27	28,2
7	4,9	14	7	2,71	28,6
7,5	5,35	14,33333333	7,5	3,18	28,8
8	5,8	14,66666667	8	3,66	28,93333333
8,5	6,3	14,66666667	8,5	4,08	29,46666667
9	6,75	15	ç	4,55	29,66666667
9,5	7,2	15,33333333	9,5	5	30
10	7,7	15,33333333	10	5,43	30,46666667
10,5	8,2	15,33333333	10,5	5,88	30,8
11	8,8	14,66666667	11	6,34	31,06666667
11,5	9,2	15,33333333	11,5	6,8	31,33333333
12	9,6	16	12	7,25	31,66666667

Aufgabe 3:

Versuchsaufbau:

Graphen ohne Widerstand und Freilaufdiode:

Graphen mit Freilaufdiode:

Graphen mit Widerstand und Freilaufdiode:

