Преобразование Фурье, пространство Шварца

Упражнение 1. Доказать, что для любого многочлена $P_m(x), x \in \mathbb{R}^n$, функция $P_m(x)e^{-\|x\|^2}$ лежит в пространстве Шварца $\mathcal{S}(\mathbb{R}^n)$.

Упражнение 2 (Коммутационные соотношения). Показать, что для любой функции $u \in \mathcal{S}(\mathbb{R}^n)$ и мультииндекса $\alpha \in \mathbb{Z}_+^n$ выполняются равенства

$$\mathcal{F}_{x \to \xi} \partial_x^{\alpha} u(x) = (i\xi)^{\alpha} \mathcal{F}_{x \to \xi} u(x) ,$$
$$\mathcal{F}_{x \to \xi} \left[x^{\alpha} u(x) \right] = \left[i \frac{\partial}{\partial \xi} \right]^{\alpha} \mathcal{F}_{x \to \xi} u(x) .$$

Упражнение 3. Рассмотреть последовательность функций $\{h_p(x)\}, x \in \mathbb{R}^1,$ где

$$h_{p(x)} = \begin{cases} p, & |x| < \frac{1}{2p}, \\ 0, & |x| > \frac{1}{2p}. \end{cases}$$

Доказать, что последовательность $\{h_p(x)\}$ фундаментальна по норме пространства $H_{-1}(\mathbb{R}^1)$ и что для всякой функции $\varphi(x) \in S(\mathbb{R}^1)$ справедливо равенство

$$\lim_{p \to \infty} \int_{\mathbb{R}^1} h_p(x) \varphi(x) \, dx = \varphi(0) \, .$$

Упражнение 4. Вычислить преобразование Фурье для следующих функций:

1.
$$f(x) = \frac{1}{\pi} \cdot \frac{\varepsilon}{r^2 + \varepsilon^2}$$
 $(\varepsilon > 0);$

2.
$$f(x) = \sqrt{\frac{n}{4\pi}}e^{-nx^2/4}$$
;

$$3. \ f(x) = \frac{1}{\pi} \frac{\sin nx}{x}.$$