How can RFM analysis be used to identify customer churn patterns?

In [604]: import pandas as pd import datetime as dt import numpy as np

In [605]: df = pd.read_csv('/Users/danielyeo/Desktop/Global_Superstore.csv', encoding='ISOdf.head()

Out [605]:

	Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	City	State	 Produ
	0 32298	CA- 2012- 124891	31- 07- 2012	31- 07- 2012	Same Day	RH-19495	Rick Hansen	Consumer	New York City	New York	 TEC-A 100030
	1 26341	IN- 2013- 77878	05- 02- 2013	07- 02- 2013	Second Class	JR-16210	Justin Ritter	Corporate	Wollongong	New South Wales	 FUR-C 100039
i	2 25330	IN- 2013- 71249	17- 10- 2013	18- 10- 2013	First Class	CR-12730	Craig Reiter	Consumer	Brisbane	Queensland	 TEC-P 100046
į	3 13524	ES- 2013- 1579342	28- 01- 2013	30- 01- 2013	First Class	KM- 16375	Katherine Murray	Home Office	Berlin	Berlin	 TEC-P 100045
,	4 47221	SG- 2013- 4320	05- 11- 2013	06- 11- 2013	Same Day	RH-9495	Rick Hansen	Consumer	Dakar	Dakar	 TE- SH 100005

5 rows × 24 columns

In [606]: df.shape

Out[606]: (51290, 24)

```
In [607]: #check for null values
          df.isnull().sum()
Out[607]: Row ID
                                 0
                                 0
          Order ID
          Order Date
                                 0
          Ship Date
          Ship Mode
                                 0
          Customer ID
          Customer Name
                                 0
                                 0
          Segment
          City
                                 0
          State
                                 0
          Country
                                 0
          Postal Code
                             41296
          Market
                                 0
          Region
                                 0
          Product ID
                                 0
          Category
                                 0
          Sub-Category
                                 0
          Product Name
                                 0
                                 0
          Sales
                                 0
          Quantity
          Discount
                                 0
          Profit
          Shipping Cost
                                 0
          Order Priority
                                 0
          dtype: int64
In [608]: #let's drop Postal Code, missing date, don't need
          df = df.drop(columns = ['Postal Code'], inplace = False)
In [609]: # cust_freq = df.groupby('Customer Name').size().reset_index(name = 'Order Count'
          # cust_freq
```

RFM Analysis

R Recency: How recently a customer made a purchase

F Frequency: How often a customer makes a purchase

M Monetary Value: How much money a customer spends

identify high-value customers, at-risk customers, and churn-prone customers

```
In [610]: df['Order Date'].value_counts()
Out[610]: Order Date
          18-06-2014
                         135
          18-11-2014
                         127
          03-09-2014
                         126
          20-11-2014
                         118
          29-12-2014
                         116
          07-10-2012
          16-01-2011
                           1
          27-02-2011
                           1
          21-10-2012
                           1
          06-02-2011
                           1
          Name: count, Length: 1430, dtype: int64
          Our date format is dd-mm-yyyy, so let's tell Pandas to parse dates as day-month-year.
In [611]: df['Order Date'] = pd.to datetime(df['Order Date'], format='%d-%m-%Y', errors='co
          df['Order Date'].value_counts()
Out[611]: Order Date
          2014-06-18
                         135
          2014-11-18
                         127
          2014-09-03
                         126
          2014-11-20
                         118
          2014-12-29
                         116
          2012-10-07
                           1
          2011-01-16
                           1
          2011-02-27
                           1
          2012-10-21
                           1
          2011-02-06
                           1
          Name: count, Length: 1430, dtype: int64
          Recency
In [612]: #lower recency score means customer purchased more recently
          recency = df.groupby(by='Customer Name', as index=False)['Order Date'].max()
          recency.columns = ['Customer Name', 'Last Purchase']
          recent_date = recency['Last Purchase'].max()
          recency['Recency'] = recency['Last Purchase'].apply(lambda x: (recent_date - x).d
          recency.head()
Out[612]:
```

	Customer Name	Last Purchase	Recency
0	Aaron Bergman	2014-12-15	16
1	Aaron Hawkins	2014-12-19	12
2	Aaron Smayling	2014-12-08	23
3	Adam Bellavance	2014-11-26	35
4	Adam Hart	2014-12-29	2

Frequency

```
In [613]: #higher frequency score means customer buys more often
frequency = df.drop_duplicates().groupby(by=['Customer Name'], as_index=False)['0
frequency.columns = ['Customer Name', 'Frequency']
frequency.head()
```

Out[613]:

	Customer Name	Frequency
0	Aaron Bergman	89
1	Aaron Hawkins	56
2	Aaron Smayling	60
3	Adam Bellavance	68
4	Adam Hart	84

Monetary

```
In [614]: #higher monetary value means more money
monetary = df.groupby(by='Customer Name', as_index=False)['Sales'].sum()
monetary.columns = ['Customer Name', 'Monetary']
monetary.head()
```

Out [614]:

	Customer Name	Monetary
0	Aaron Bergman	24644.62750
1	Aaron Hawkins	20759.51384
2	Aaron Smayling	14212.62840
3	Adam Bellavance	20186.77840
4	Adam Hart	21718.20142

Merge

Out[615]:

	Customer Name	Recency	Frequency	Monetary
0	Aaron Bergman	16	89	24644.62750
1	Aaron Hawkins	12	56	20759.51384
2	Aaron Smayling	23	60	14212.62840
3	Adam Bellavance	35	68	20186.77840
4	Adam Hart	2	84	21718.20142

```
In [616]: # Apply quantiles for segmentation
    rfm['R_Score'] = pd.qcut(rfm['Recency'], 4, labels=[4, 3, 2, 1]) #4 being most re
    rfm['F_Score'] = pd.qcut(rfm['Frequency'], 4, labels=[1, 2, 3, 4])
    rfm['M_Score'] = pd.qcut(rfm['Monetary'], 4, labels=[1, 2, 3, 4])
```

In [617]: rfm.head()

Out [617]:

	Customer Name	Recency	Frequency	Monetary	R_Score	F_Score	M_Score
0	Aaron Bergman	16	89	24644.62750	3	4	4
1	Aaron Hawkins	12	56	20759.51384	3	2	4
2	Aaron Smayling	23	60	14212.62840	2	2	2
3	Adam Bellavance	35	68	20186.77840	1	3	4
4	Adam Hart	2	84	21718.20142	4	4	4

In [618]: rfm.describe()

Out[618]:

	Recency	Frequency	Monetary
count	795.000000	795.000000	795.000000
mean	23.368553	64.515723	15902.518126
std	27.438069	13.432477	5209.813042
min	0.000000	29.000000	3892.227000
25%	6.000000	55.000000	12242.608650
50%	16.000000	64.000000	15257.533900
75%	33.000000	74.000000	18770.796450
max	428.000000	108.000000	40488.070800

In [619]: rfm['RFM_Score'] = rfm['R_Score'].astype(int) + rfm['F_Score'].astype(int) + rfm[
rfm['Churn Status'] = rfm['RFM_Score'].apply(lambda x: 'Non-Churn' if x >= 8 else

In [620]: rfm.head()

Out [620]:

	Customer Name	Recency	Frequency	Monetary	R_Score	F_Score	M_Score	RFM_Score	Churn Status
0	Aaron Bergman	16	89	24644.62750	3	4	4	11	Non-Churn
1	Aaron Hawkins	12	56	20759.51384	3	2	4	9	Non-Churn
2	Aaron Smayling	23	60	14212.62840	2	2	2	6	Churn
3	Adam Bellavance	35	68	20186.77840	1	3	4	8	Non-Churn
4	Adam Hart	2	84	21718.20142	4	4	4	12	Non-Churn

In [621]: rfm['Churn Status'].value_counts(normalize=True)

Out[621]: Churn Status

Churn 0.506918 Non-Churn 0.493082

Name: proportion, dtype: float64

In [622]: rfm.shape

Out[622]: (795, 9)

In [623]: #merge the primary df to our rfm df by Customer Name and Churn Status into cust_al
cust_analysis = df.merge(rfm[['Customer Name', 'RFM_Score', 'Churn Status']], on

cust_analysis.head()

Out [623]:

Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	Segment City		 Cate
0 32298	CA- 2012- 124891	2012- 07-31	31- 07- 2012	Same Day	RH-19495	Rick Hansen	Consumer	New York City	New York	 Accesso
1 26341	IN- 2013- 77878	2013- 02-05	07- 02- 2013	Second Class	JR-16210	Justin Ritter	Corporate	Wollongong	New South Wales	 CI
2 25330	IN- 2013- 71249	2013- 10-17	18- 10- 2013	First Class	CR-12730	Craig Reiter	Consumer	Brisbane	Queensland	 Pho
3 13524	ES- 2013- 1579342	2013- 01-28	30- 01- 2013	First Class	KM- 16375	Katherine Murray	Home Office	Berlin	Berlin	 Pho
4 47221	SG- 2013- 4320	2013- 11-05	06- 11- 2013	Same Day	RH-9495	Rick Hansen	Consumer	Dakar	Dakar	 Coj

5 rows × 25 columns

In [624]: | cust_analysis.shape

Out[624]: (51290, 25)

Calculate Shipping time

```
In [625]: cust_analysis['Order Date'].value_counts()
          cust_analysis['Ship Date'].value_counts()
Out[625]: Ship Date
          22-11-2014
                         130
          07-09-2014
                         115
          07-12-2014
                         101
          17-11-2014
                         101
          29-11-2014
                         100
          25-01-2011
                           3
          07-01-2015
                           3
                           2
          03-01-2011
          06-01-2011
                           2
                           2
          05-01-2011
          Name: count, Length: 1464, dtype: int64
```

Our date format is dd-mm-yyyy, so let's tell Pandas to parse dates as day-month-year.

```
In [626]: cust_analysis['Order Date'] = pd.to_datetime(cust_analysis['Order Date'], format=
    cust_analysis['Ship Date'] = pd.to_datetime(cust_analysis['Ship Date'], format='%
In [627]: #Shipping Time converted to days as integers
    cust_analysis['Shipping Time'] = (cust_analysis['Ship Date'] - cust_analysis['Order
In [628]: cust_analysis.head()
```

Out [628]:

	Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	City	State	 Proc Na
0	32298	CA- 2012- 124891	2012- 07-31	2012- 07-31	Same Day	RH-19495	Rick Hansen	Consumer	New York City	New York	 Plantro CS5 Over- H mona
1	26341	IN- 2013- 77878	2013- 02-05	2013- 02-07	Second Class	JR-16210	Justin Ritter	Corporate	Wollongong	New South Wales	 Novi Execu Lea Armo B
2	25330	IN- 2013- 71249	2013- 10-17	2013- 10-18	First Class	CR-12730	Craig Reiter	Consumer	Brisbane	Queensland	 N S Ph with C
3	13524	ES- 2013- 1579342	2013- 01-28	2013- 01-30	First Class	KM- 16375	Katherine Murray	Home Office	Berlin	Berlin	 Moto Si Ph Corc
4	47221	SG- 2013- 4320	2013- 11-05	2013- 11-06	Same Day	RH-9495	Rick Hansen	Consumer	Dakar	Dakar	 S Wire Fax, F Sr

5 rows × 26 columns

EDA Visualization

In [629]: import plotly.express as px

RFM Analysis

In [630]: rfm.head()

Out [630]:

	Customer Name	Recency	Frequency	Monetary	R_Score	F_Score	M_Score	RFM_Score	Churn Status
0	Aaron Bergman	16	89	24644.62750	3	4	4	11	Non-Churn
1	Aaron Hawkins	12	56	20759.51384	3	2	4	9	Non-Churn
2	Aaron Smayling	23	60	14212.62840	2	2	2	6	Churn
3	Adam Bellavance	35	68	20186.77840	1	3	4	8	Non-Churn
4	Adam Hart	2	84	21718.20142	4	4	4	12	Non-Churn

Let's visualize how balanced our dataset is

In [631]: fig = px.histogram(rfm, x="Churn Status", title="Non-Churn Count vs. Churn Count"
fig.show()

Non-Churn Count vs. Churn Count

In [632]: fig = px.histogram(rfm, x="RFM_Score", color="Churn Status", title = "Visualizati
fig.show()

Visualization of Churn Status by RFM Score

In [633]: fig = px.line(rfm, x="Frequency", y="Monetary", color="Churn Status", title="RFM:
 fig.show()

RFM: Frequency by Monetary

To no surpise, non-churn customers purchase and spend more than churn customers

Shipping

```
In [635]: fig = px.histogram(cust_analysis, x="Category", y="Shipping Time", color="Churn Sfig.show()

fig = px.histogram(cust_analysis, x="Shipping Time", y="Shipping Cost", color="Chfig.show()

fig = px.histogram(cust_analysis, x="Order Priority", color="Churn Status", titlefig.show()

fig = px.histogram(cust_analysis, x="Ship Mode", y="Shipping Cost", color="Churn fig.show()
```

Customer Category by Shipping Time

Customer Shipping Time by Shipping Cost

Churn Status by Order Priority

Customer Shipping Mode by Shipping Cost

Total shipping costs are higher for non-churn customers, but because they make more purchases and spend more than churn customers, nothing here can give us a clear reason for churn.

None of these visualizations show any explanation in terms of how shipping could correlate with churn.

Feature Engineerging

```
In [636]: #lets create average order value using Sales/quantity
    cust_analysis['Average Order Value'] = cust_analysis['Sales'] / cust_analysis['Qu
    import seaborn as sns
    import matplotlib.pyplot as plt
    #average order value
    sns.barplot(data=cust_analysis, x="Category", y="Average Order Value", hue="Churn plt.title("Category by Average Order Value")

#customer total count by category
    fig = px.histogram(cust_analysis, x="Category", color="Churn Status", title="Cust fig.show()
```

Customer Total Count by Category

Despite non-churn customers placing more orders, the average order value looks nearly identical between churn and non-churn which soldifies our findings:

churn customers are placing fewer orders than non-churn customers; churn behavior may not be linked to spending behavior.

RFM Risk Tiers Focus over Churn Status Metrics

In [637]: rfm['Risk Tiers'] = rfm['RFM_Score'].apply(lambda x: 'High Risk' if x <= 6 else (
 rfm.head()</pre>

Out[637]:

	Customer Name	Recency	Frequency	Monetary	R_Score	F_Score	M_Score	RFM_Score	Churn Status	Risk Tiers
0	Aaron Bergman	16	89	24644.62750	3	4	4	11	Non- Churn	Low Risk
1	Aaron Hawkins	12	56	20759.51384	3	2	4	9	Non- Churn	Low Risk
2	Aaron Smayling	23	60	14212.62840	2	2	2	6	Churn	High Risk
3	Adam Bellavance	35	68	20186.77840	1	3	4	8	Non- Churn	Moderate Risk
4	Adam Hart	2	84	21718.20142	4	4	4	12	Non- Churn	Low Risk

In [638]: rfm['Risk Tiers'].value_counts(normalize=True)

Out[638]: Risk Tiers

Low Risk 0.363522 High Risk 0.345912 Moderate Risk 0.290566

Name: proportion, dtype: float64

In [639]: cust_analysis = cust_analysis.merge(rfm[['Customer Name', 'Risk Tiers']], on='Cus
cust_analysis.head()

Out [639]:

	Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	City	State	 Quanti
0	32298	CA- 2012- 124891	2012- 07-31	2012- 07-31	Same Day	RH-19495	Rick Hansen	Consumer	New York City	New York	
1	26341	IN- 2013- 77878	2013- 02-05	2013- 02-07	Second Class	JR-16210	Justin Ritter	Corporate	Wollongong	New South Wales	
2	25330	IN- 2013- 71249	2013- 10-17	2013- 10-18	First Class	CR-12730	Craig Reiter	Consumer	Brisbane	Queensland	
3	13524	ES- 2013- 1579342	2013- 01-28	2013- 01-30	First Class	KM- 16375	Katherine Murray	Home Office	Berlin	Berlin	
4	47221	SG- 2013- 4320	2013- 11-05	2013- 11-06	Same Day	RH-9495	Rick Hansen	Consumer	Dakar	Dakar	

5 rows × 28 columns

```
In [648]: fig = px.histogram(cust_analysis, x="Order Date", y="Sales", color="Risk Tiers",
fig.show()
```

Sales Over Time by Risk Tier

Analyze high risk customers

220.9579654908991 24.036218974076117 4.002413127413128

Analye moderate risk customers

```
In [642]: mod_risk = cust_analysis[cust_analysis['Risk Tiers'] == 'Moderate Risk']
    print(mod_risk['Sales'].mean())
    print(mod_risk['Shipping Cost'].mean())
    print(mod_risk['Shipping Time'].mean())
```

241.5444889887944 25.81428783583097 3.922100715539355

Analyze low risk customers

The average shipping time between high risk and low risk customers are essentially the same and shipping costs don't have a big difference, meaning shipping variables don't seem to correlate with churn.

With spending behavior and shipping variables not telling us much about churn, let's dive into discounts.

Discount by Risk Tiers

```
In [669]: #proportion of risk tiers
    risk_tier_counts = rfm['Risk Tiers'].value_counts(normalize=True).reset_index()
    risk_tier_counts.columns = ['Risk Tiers', 'Proportion']

fig = px.histogram(risk_tier_counts, x="Risk Tiers", y="Proportion", color="Risk fig.show()

#discount by risk tiers
fig = px.histogram(cust_analysis, x="Discount", y="Risk Tiers", title="Discount b fig.show()

#discount by risk tiers
fig = px.histogram(cust_analysis, x="Discount", color="Risk Tiers", title="Discount fig.show()
```

Proportion of Customers by Risk Tiers

Discount by Risk Tier Customers

Discount by Risk Tier Customers

Low risk customers receive a higher count of discounts compared to high and moderate risk customers, but discounts from 0.004 - 0.005 heavily dominate the graph. Discounts also seem to not be highly correlated with churn prevention.

Key Takeaways:

Churn customers place fewer orders: Churn behavior seems more influenced by engagement frequency rather than spending behavior.

Shipping cost and time show no correlation with churn: reducing churn through shipping incentives are unlikely to yield strong results.

Discount strategies are ineffective at reducing churn: Current discount patterns are not well-targeted toward customers.

Final Key Takeaway:

Churn behavior is not significantly influenced by spending behavior, shipping time, shipping costs, or discounts. Instead, churn appears more closely tied to customer engagement frequency and other behavior factors not captured in the dataset.

