

planetmath.org

Math for the people, by the people.

coalgebra

Canonical name Coalgebra

Date of creation 2013-03-22 13:06:02 Last modified on 2013-03-22 13:06:02

Owner mhale (572) Last modified by mhale (572)

Numerical id 12

Author mhale (572)
Entry type Definition
Classification msc 16W30
Defines comultiplication

Defines counit

Defines coassociative Defines cocommutative

A **coalgebra** is a vector space A over a field \mathbb{K} with a \mathbb{K} -linear map $\Delta \colon A \to A \otimes A$, called the **comultiplication**, and a (non-zero) \mathbb{K} -linear map $\varepsilon \colon A \to \mathbb{K}$, called the **counit**, such that

$$\begin{array}{lll} (\Delta \otimes \mathrm{id}) \circ \Delta & = & (\mathrm{id} \otimes \Delta) \circ \Delta & (\mathrm{coassociativity}), \\ (\varepsilon \otimes \mathrm{id}) \circ \Delta & = \mathrm{id} = & (\mathrm{id} \otimes \varepsilon) \circ \Delta. \end{array}$$

In of commutative diagrams:

Let $\sigma: A \otimes A \to A \otimes A$ be the flip map $\sigma(a \otimes b) = b \otimes a$. A coalgebra is said to be **cocommutative** if $\sigma \circ \Delta = \Delta$.

Let A and B be two coalgebras over a field \mathbb{K} . A coalgebra homomorphism is a \mathbb{K} -linear map $f: A \to B$ such that $\Delta_B \circ f = (f \otimes f) \circ \Delta_A$ and $\varepsilon_B \circ f = \varepsilon_A$.

Example 1 (Coalgebra of a set)

Let S be a set. The free vector space $\mathbb{K}S$, with basis given by the elements of S, is a coalgebra with comultiplication $\Delta(s) = s \otimes s$ and counit $\varepsilon(s) = 1$.