Лабораторная работа 3.4.2. Закон Кюри-Вейсса.

Иван Сладков

19 февраля 2022 г.

1 Аннотация

В данной работе проводится исследование зависимости магнитной восприимчивости гадолиния, который является ферромагнетиком, от температуры. Исследование приведено для температур от 14 до 40 °C. На основании этой зависимости вычисляется точка Кюри гадолиния.

2 Теоретические сведения

Одной из основных макроскопических характеристик веществ, которая используется для описания их магнитных свойств, является вектор намагниченности ${\bf M}$ — суммарный магнитный момент единичного объёма вещества. В ряде веществ между намагниченностью ${\bf M}$ и напряжённостью магнитного поля ${\bf H}$ имеет место линейная зависимость: где скалярная величина χ — магнитная восприимчивость единичного объёма вещества. Вещества с отрицательной магнитной восприимчивостью (χ < 0) называют диамагнетиками, а вещества с (χ > 0) принадлежат к классу парамагнетиков.

Кроме диа- и парамагнетиков ($\chi \leq 10^{-3}$) существуют также ферромагнетики, для которых $\chi \geq 10^4$. Причём зависимость $\mathbf{M}(\mathbf{H})$) в таких веществах нелинейна.

Магнитные и другие физические свойства ферромагнетиков зависят от температуры. Намагниченность насыщения M_s (равная максимальной намагниченности при данной температуре) имеет максимум при T=0 и монотонно убывает до 0 при $T=\Theta$ – температуре Кюри. Поведение ферромагнетика при больших температурах описывается законом Кюри-Вейсса:

$$\chi = \frac{C}{T - \Theta_p},\tag{1}$$

где Θ_p — парамагнитная температура Кюри.

2.1 Расчётные формулы

Магнитная восприимчивость определяется по формуле:

$$(L - L_0) \sim \chi, \tag{2}$$

где L – самоиндукция катушки с образцом, а L_0 – без образца. Тогда из

$$\tau = 2\pi\sqrt{LC},\tag{3}$$

$$\tau_0 = 2\pi \sqrt{L_0 C} \tag{4}$$

следует:

$$(L - L_0) \sim (\tau^2 - \tau_0^2),$$
 (5)

$$\chi \sim (\tau^2 - \tau_0^2). \tag{6}$$

Из (1) и (6), окончательно:

$$\frac{1}{\chi} \sim \frac{1}{\tau^2 - \tau_0^2} \tag{7}$$

Рис. 1: Экспериментальная установка

Температура термостата, °С	Н апряжение, V	Период, рв	Температура жидкости, °С
14.1	-15	7.92	13.7
16.1	-15	7.855	15.7
18.1	-15	7.744	17.7
20.1	-15	7.56	19.7
22.1	-13	7.343	21.8
24.1	-12	7.194	23.8
26.1	-13	7.123	25.8
28.1	-15	7.085	27.7
30.1	-17	7.058	29.7
32.1	-18	7.04	31.7
34.1	-18	7.026	33.7
36.1	-19	7.016	35.6
38.1	-19	7.008	37.6
40.1	-18	7.002	39.7

Таблица 1: Исходные данные

3 Оборудование и инструментальные погрешности

Оборудование, используемое в работе, представлено на рис. 1. Исследуемый образец находится внутри индуктивности в колбе с трансформаторным маслом, температура которого поддерживается термостатом. Катушка является частью LC-контура, частота которого фиксируется частотомером.

Автогенератор

Цифровой вольтметр: $\Delta = \pm 1*10^{-5} \ {
m V}$

Частотомер: $\Delta = \pm 1 * 10^{-5} \text{ V}$ **Термостат:** $\Delta = \pm 0.1 \text{ °C}$

LC-контур: $\tau_0 = 6.9092 \; \mu s$

4 Результаты измерений и обработка данных

Напряжение на вольтметре при $\Delta T = 0.5~^{\circ}\mathrm{C}$ равно 20 µV.

Исходные результаты измерений в табл. 1.

4.1 Оценка погрешностей

5 Вывод

Список литературы

[1] Сивухин Д. В. Общий курс физики. Том 2 Термодинамика и молекулярная физика, 2003