Simple LaTeX

Fork me at GitHub.

1 Symbols

- Escape character: \esc prints \
- Implies: $\forall imp prints \Rightarrow implies$
- **Degrees:** \degree prints °
- **Proportional:** \proportional prints α with appropriate gap
- Number sets: \complex, \rationals, \integers, \naturals prints \mathbb{C} , \mathbb{R} , \mathbb{Q} , \mathbb{Z} , and \mathbb{N} respectively, with appropriate gap

2 Numbers

- General number: \num $\{num1\}\ \{num2\}\ prints\ num1 \times 10^{num2}$
- Power of ten: \ten $\{power\}$ prints 10^{power}
- Reporting a figure: \report $\{num1\}$ $\{error\}$ $\{num2\}$ prints $(num1\pm error)\times 10^{num2}$

3 Containers

- Absolute value: $\abs \{num\} \text{ prints } |num|$
- Floor: $\lceil num \rceil$ prints $\lceil num \rceil$
- Ceiling: \ceil $\{num\}$ prints $\lceil num \rceil$
- Brace brackets: \braces {num} prints {num}
- Angular brackets: \angles $\{num\}$ prints $\langle num \rangle$
- \bullet Big brackets: \bigbrac $\{num\}$ inside \$\$ \$\$ prints brackets of appropriate size

4 Fractions

- Reciprocal: \reci $\{num\}$ prints $\frac{1}{num}$
- Big fraction: \bigfrac $\{num1\}$ $\{num2\}$ prints a fraction inside brackets of appropriate size

5 Presentation

- Superscript: num1 \super $\{num2\}$ prints num1^{num2}
- Subscript: num1 \sub $\{num2\}$ prints num1_{num2}
- Expression evaluated at a constant value: $\{exp\}$ $\{constant\}$ prints $(exp)_{constant}$ with brackets of appropriate size
- Sequence: $\setminus \text{seq } \{x\} \{n\} \text{ prints } x_1, x_2, x_3, \dots x_n$
- Numbering an equation: \numeq {2} prints ... (2)

6 Iterations

- Summation: \summation $\{x\}$ $\{x = 1\}$ $\{n\}$ prints $\sum_{x=1}^{n} x$
- **Product:** \product $\{x\}$ $\{x = 1\}$ $\{n\}$ prints $\prod_{x=1}^{n} x$
- Union: \union $\{A_x\}$ $\{x=1\}$ $\{n\}$ prints $\bigcup_{x=1}^n A_x$
- Intersection: \intersection $\{A_x\}$ $\{x=1\}$ $\{n\}$ prints $\bigcap_{x=1}^n A_x$