

Real-time Carbon Neutrality Management And Optimization Using Natural Language Processing

Project ID: 2022-175

This is our team

Ms. Anjali Gamage

Supervisor

Ms. Sanjeevi Chandrasiri

Co-Supervisor

Sathees P. IT19052748

Team Leader

Mathanika M. IT19005218

Team Member

Vishakanan S. IT19001562

Team Member

Vithursan M. IT19033174

Team Member

Consider SLIIT Malabe campus wants to reduce their carbon footprint

Can use an online emission calculator - ox

How to track all emissions?

Can we assign a person/team - X

- Costly 🖔
- Mistakes 😓
- Delay in decision making 🦁

Decentralize responsibility to employees - 🔤

- Still annoying for employees @
- Employees need teaching =

Decentralize responsibility to employees but make it practical & real-time - ✓

Real-Word Scenario

Managing shuttle's carbon footprint

Emission Technology -> Emission Factor

Necessary details:

1. Emission Technology: Lanka Ashok Leyland

Diesel Bus

2. Consumption: 35

3. Consumption's unit: km

4. Date: 12/10/2022

5. Emission Factor: 80 kgCO₂e/mile

A possible input:

"Today, I drove a Lanka Ashok Leyland Diesel bus

for <mark>35 km</mark>."

Real-Word Example

Managing shuttle's carbon footprint

Emission Source -> Emission Factor

What if there are more shuttles

1. Emission Source: Shuttle A

2. Consumption: 35

3. Consumption's unit: km

4. Date: 12/10/2022

5. Emission Factor: 80 kgCO₂e/mile

A possible input:

"Today, I drove a shuttle A for 35 km."

Real-Word Example

Emission Activity: "Today, I drove a Lanka Ashok Leyland Diesel bus for 35 km."

Flow Through Components

Introduction

What is Carbon Accounting?

- Calculating emission values for emission activities carried out.
- Creating various reports for the different periods.
- Balance with available credits.

Our Research Focus

How to do carbon reporting in real-time?

Research Problem

Questions

- How can we collect emission activity data efficiently for real-time accounting?
 - Collect from employees using natural language
- 2. How can we calculate emissions for the emission activities with efficiency?
 - Find and rank emission factors
- 3. How can we make sure the units are matching in the calculation?
 - Verify and convert before calculating
- 4. How can we optimize emissions and make sure they achieve those optimizations?
 - Create optimization and send alerts of violations

Research Objectives

Main Objective

Create a **cross-platform mobile application** platform for organizations to **manage** and **optimize** their carbon emissions.

Specific Objectives

- Gather employee emission activity details from employees using natural language.
- Search emission factors and provide ranked results for the emission details gathered.
- Verify and convert values for units provided by the employees to match the units of the selected emission factor.
- Identify the **optimum solution** for the given emission source constraints and alert about any violations of the optimal solution.

Overall System Architecture (Simplified)

Overall System Architecture (Full)

Research Gap

System Uniqueness

Works	Emission calculation	Data collection from employees	Emission factor ranking and personaliz ation	Automatic Unit Conversion	Optimizatio n for Emission Sources
Research A [1]	√	X	X	X	X
Product A [2]	\checkmark	X	X	X	X
Product B [3]	√	X	X	X	X
Product C [4]	√	X	X	X	X
Carbonis	✓	✓	✓	✓	√

References

- [1] B. Tranberg, O. Corradi, B. Lajoie, T. Gibon, I. Staffell, and G. B. Andresen, "Real-time carbon accounting method for the European electricity markets," Energy Strategy Reviews, vol. 26, p. 100367, Nov. 2019, doi: 10.1016/J.ESR.2019.100367.
- [2] "CarbonView Carbon reporting made easy." https://carbon-view.com/ (accessed Jan. 24, 2022).
- "Simplified Carbon Reporting with Turbo CarbonTM | UL." https://www.ul.com/services/digital-applications/simplified-co2-reporting (accessed Jan. 24, 2022).
- [4] "Carbon Management & Reporting Sphera." https://sphera.com/carbon-management-reporting/ (accessed Jan. 24, 2022).

Component 1

• • •

Emission Activity Parts Extraction using Natural Language Processing

Mathanika M. IT19005218
Data Science

Research Questions

Questions

How to gather emission activity data in real-time from employees?

Natural language input

How to identify the emission activity parts?

Custom named entity recognition

Objectives

Main Objectives

Collect the real – time emission activity data from the employees using **natural language input**

Specific Objectives

- Data collection using natural language
- Data annotation for custom NER
- Extraction of emission activity parts

Functional Requirements

Entity Identification

Historical Data

Adjustment

Component 1 Architecture

Non-Functional Requirements

Avalilablity

Scalablity

Reliablity

Usablity

Current Progress – IT19005218

Completed Tasks

- Data collection
 data collection through the survey
 manual data collection
- Research on model selectionSpaCy, BERT, Hugging face
- Data preprocessing annotation
- Implementation of models spaCy
 bert

Hugging face

Current Progress – IT19005218

Completed Tasks Cont...

- 5. Evaluation of all the four models
- 6. Component Testing
- 7. Mobile App Development
- 8. Backend Development
- 9. Integration (Model + Backend)

90 %

Survey Results

Raw Text

Today I spent 2 litre fuel on travelling by my own car Today we spent 60 kw in electricity for company machines Today we used 20 litres water for our products

{"classes":["EMISSION SOURCE","VALUE","UNIT","EMISSION ACTIVITY","CONSUMPTION"],
"annotations":[["Today we have travelled 5 km using company vehicle\r",
{"entities":[[14,23,"EMISSION ACTIVITY"],[24,25,"VALUE"],[26,28,"UNIT"],
[35,50,"EMISSION SOURCE"]]}],["Today I spent 2 litre fuel on travelling by my own car\r",
{"entities":[[14,15,"VALUE"],[16,21,"UNIT"],[22,26,"CONSUMPTION"],[30,40,"EMISSION ACTIVITY"],

Data Annotation Progress

Project Gap Completion

Objectives and Project Completion

Model Comparison

Model Comparision

Progress Demo (90%)

Proof of concept

1. Key pillars of the component 1

Data Annotation

Natural Language Processing (NLP)

2. Technologies

Language (Python)

Packages (SpaCy, Bert, Tensorflow, Keras)

Jupyter Notebook

3. **Designs**

Component Architecture

4. Standards and best practices

Version controlling (git and GitLab)

Project management (MS Planner and MS Teams)

Python coding standards and Adding proper comments

- Backend
- 6. Front-end

React-native

POS tagging output

Api output (/annotate)

Progress Demo (90%)

Hugging face

42.86 27.27 100.00

46.15 30.00 100.00

0.43

446.30

205.04

Spacy

Epoch 1/10										
115/115 []	- 35s	305ms/step	- loss:	0.6428	- accuracy:	₩.6260	- val_loss:	0.5380	- val_accuracy:	0.736
Epoch 2/10										
115/115 []	- 34s	298ms/step	- loss:	0.4689	- accuracy:	8.7786	- val_loss:	8.3989	- val_accuracy:	0.836
Epoch 3/10										
115/115 []	- 348	390ns/step	- loss:	8.2836	- accuracy:	8.8871	- val_loss:	8.3248	- val_accuracy:	0.872
Epoch 4/10										
115/115 []	- 35s	302ms/step	- loss:	8.1495	- accuracy:	8.9479	- val_loss:	8.4324	- val_accuracy:	8.866
Epoch 5/18										
115/115 []	- 35s	380ns/step	- loss:	8.0855	- accuracy:	8.9744	- val_loss:	8.4665	- val_accuracy:	0.865

Bert

Mobile Application

Mobile Application demo

– Add emission

Risk Mitigation

Remaining Progress – IT19005218

Remaining Tasks

- 1. Remaining frontend (1) development
- 2. Full application integration
- 3. Application testing

References

- [1] C. Parada, M. Dredze, and F. Jelinek, "OOV Sensitive NamedEntity Recognition in Speech." in Proceedings of INTERSPEECH '11, Florence, Italy, 2011, pp. 2085–2088.
- [2] M. Pourakbari-Kasmaei, M. Lehtonen, J. Contreras, and J. R. S. Mantovani, "Carbon footprint management: A pathway toward smart emission abatement," IEEE Trans. Ind. Informat., vol. 16, no. 2, pp. 935–948, Feb. 2020, doi: 10.1109/TII.2019.2922394.
- D. Nadeau and S. Sekine, "A survey of named entity recognition and classification," Linguisticae Investigationes, vol. 30, pp. 3–26, January 2007.
- H. Hashim *et al.*, "An Integrated Carbon Accounting and Mitigation Framework for Greening the Industry," *Energy Procedia*, vol. 75, pp. 2993–2998, Aug. 2015, doi: 10.1016/J.EGYPRO.2015.07.609.

Component 2

• • •

Ranked Emission-Factor Retrieval for Emission Calculation Using NLP

Sathees P. IT19052748
Data Science

Research Problem

For each **Emission Activity**:

Emission = Consumption * Emission Factor [1], [2], [3]

Mass of GHG for a unit work [4]

Emission Calculation?

Research Problem

Field	Value
Scope	Scope 3
Level 1	Business travel- air
Level 2	Flights
Level 3	Short-haul, to/from UK
Level 4	Economy class
Column text	With RF
UOM	passenger.km
GHG	kg CO2e
GHG conversion factor 2021	0.15102

Field	Value
IPCC 1996 Source/Sink Category	1A1 - Energy Industries
IPCC 2006 Source/Sink Category	1.A.1 - Energy Industries
Gas	METHANE
Fuel 1996	Diesel Oil
Fuel 2006	Diesel Oil
Description	CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)
Value	3
Unit	kg/TJ

2021

2006

Emission Factor & Emssion Standards?

- Selecting emission-factor is tedious, complicated and inefficient with traditional interfaces
 (Dropdown, Groups, Clustering, etc.) Make it
 practical Search & Rank Emission Factors
- Emission activities occurs with employee's routine

Problems & Solutions

Research Problem

 "I have traveled 100 km using my **Toyota Prius** today."

> **Emission Activity** Description

• "Toyota Prius" **Emission Technology**

Expected Inputs & Outputs

Why Word Embedding?

Research Gap

Works	Emission Factor Searching	Personalization
The state of carbon footprint calculators: An evaluation of calculator design and user interaction features – 31 tools [5]	\otimes	\otimes
Mobile-Based Carbon Footprint Calculation: Insights from a Usability Study [6]	\otimes	\otimes
Development of a Web Application for Individual Carbon Footprint Calculation [7]	\otimes	\otimes
A novel approach to calculate individuals' carbon footprints using financial transaction data — App development and design [8]	\otimes	\otimes
My Component (Carbonis)	\bigcirc	\bigcirc

Emission Calculators/Tools

Research Gap

Works	VSM	Word Embedding	Parameter Tuning	Personalization Re-Ranking
Combining Word Embedding with Information Retrieval to Recommend Similar Bug Reports [9]	\bigcirc	\bigcirc	\otimes	\otimes
Recommending Similar Bug Reports: A Novel Approach Using Document Embedding Model [10]	\bigcirc	\bigcirc	\otimes	\otimes
A comparison of word embeddings for the biomedical natural language processing [11]	\otimes	\bigcirc	\otimes	\otimes
My Component (Carbonis)	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Ranking Technology

Search emission factors and provide ranked results for the emission activity details gathered.

Main Objective

- Rank emission factors based on term similarity
- Re-rank emission factors based on personalization
- Calculate emissions

Specific Objectives

Functional Requirements

Non-Functional Requirements

5% Commercialization 5% Integration Testing 5% Unit Testing 15% App Development 5% **Emission Calculation Emission Factor** 40% Retrieval R&D 9% System Design 6% Component Design 10% Data Collection -

Data Collection

Emission Standards

Australian Government

Department of Climate Change, Energy, the Environment and Water

Formats

Years

2014 - 2021

16/11/2022

Component Design

Scoring Framework

emi_id

emi_technology

emi emission

emi_created_d

emi_modified_d ate

5% Commercialization 5% Integration Testing 5% **Unit Testing** 15% App Development **Emission Calculation** %26 **Emission Factor** 40% Retrieval R&D 9% System Design — Component Design 10%

System Design

Database Design

Data Collection

Progress Progress

System Design

Data Warehouse Design

5% Commercialization 5% Integration Testing 5% Unit Testing 15% App Development **Emission Calculation Emission Factor** 40% Retrieval R&D 9% System Design -6% Component Design

System Design

API Endpoint Design

Data Collection

10%

16/11/2022

5% Commercialization 5% Integration Testing 5% Unit Testing 15% App Development **Emission Calculation** %16 **Emission Factor** 40% Retrieval R&D 9% System Design — Component Design 10% **Data Collection**

System Design

UI Design

5% Commercialization 5% Integration Testing 5% Unit Testing 15% App Development 5% **Emission Calculation Emission Factor** 40% Retrieval R&D 9% System Design 6% Component Design 10% **Data Collection**

97%

Emission Factor Retrieval R&D

Pre-Computation 1

16/11/2022

Emission Factor Retrieval R&D

Pre-Computation 2

mongoDB

5% Commercialization
5% Integration Testing
Unit Testing

App Development

5% Emission Calculation

40% Emission Factor Retrieval R&D

9% System Design6% Component Design

10% Data Collection

Emission Factor Retrieval R&D

Word Embedding (Pre-Trained & Training)

Number	Vector Name
1	conceptnet-numberbatch-17-06-300
2	fasttext-wiki-news-subwords-300
3	glove-twitter-25
4	glove-twitter-50
5	glove-twitter-100
6	glove-twitter-200
7	glove-wiki-gigaword-50
8	glove-wiki-gigaword-100
9	glove-wiki-gigaword-200
10	glove-wiki-gigaword-300
11	word2vec-google-news-300
12	word2vec-wiki-custom-defra-150

5% Commercialization 5% Integration Testing 5% Unit Testing 15% App Development 5% **Emission Calculation Emission Factor** 40% Retrieval R&D

9%	System Design
6%	Component Design

10% Data Collection

Emission Factor Retrieval R&D

Query Processing with Term Similarity

	simple_cos_score	sim_cos_score	final_score
17058	0.268196	0.788389	0.481475
17057	0.268196	0.788389	0.481475
17065	0.240428	0.809125	0.473594
17066	0.240428	0.809125	0.473594
17068	0.268196	0.767432	0.472883

 $IR \ Score = (1 - \delta) \times VSM \ Score$ $+ \delta \times Embedding \ Score$

5% Commercialization 5% Integration Testing 5% Unit Testing 15% App Development 5% **Emission Calculation Emission Factor** 40% Retrieval R&D 9% System Design 6% Component Design 10% **Data Collection**

Emission Factor Retrieval R&D

Query Processing with Personalization

jupyter

	ir_score	personalization_score	final_score
17057	0.481475	0.276622	0.758098
17060	0.462004	0.241148	0.703152
17016	0.452908	0.247269	0.700177
15743	0.444587	0.234961	0.679548
17058	0.481475	0.000000	0.481475

Current Data: Synthetic Data

Model Type: Hierarchical RRN [12]

User History: Ethical Issue

5% Commercialization 5% Integration Testing 5% Unit Testing 15% App Development 5% **Emission Calculation Emission Factor** 40%

9% System Design 6% Component Design

Retrieval R&D

10% **Data Collection**

Emission Factor Retrieval R&D

Ranking Evaluation & Optimization – User Satisfaction

Metric: Mean Average Precision [13]

Evaluation Dataset: Custom 50 query Samples

Optimization Model: Surrogate Model

Optimization Method: Gaussian Process

Best MAP: 0.81

Best δ: 0.41

Best word vector: glove-wiki-gigaword-300

MAP values with Delta values

5% Commercialization 5% Integration Testing 5% Unit Testing 15% App Development 5% **Emission Calculation Emission Factor** 40% Retrieval R&D 9% System Design 6% Component Design

Emission Factor Retrieval R&D

Ranking Evaluation & Optimization – Speed

Metric: Query CPU time

Evaluation Dataset: Custom 50 query

Samples

Standard: IPCC

Multiplier: 5

Average time (DEFRA): 167 milliseconds

Average time (IPCC): 540 milliseconds

Data Collection

10%

5% Commercialization 5% Integration Testing 5% Unit Testing 15% App Development 5% **Emission Calculation Emission Factor** 40% Retrieval R&D

Emission Factor Retrieval R&D

Criteria: Emission Standard Scalability

Human-hours taken for new Metric:

Ranking Evaluation & Optimization – Scalability

adoption

Method: Adopting IPCC 1996 & 2006

Measurement results: 12 human-hours

Criteria: System Resource Utilization

Metric: Memory & storage usage

Method: Pandas info & file system info

Best word vector for the user

satisfaction: glove-wiki-gigaword-300

(380 MB)

Overall storage & memory usage by

TF-IDF matrices: 350 MB

5% Commercialization
5% Integration Testing
Unit Testing

40% Emission Calculation

Emission Factor Retrieval R&D

9% System Design6% Component Design

10% Data Collection

Emission Calculation

With Emission Factor

With Emission Source

Emission Storage

Storing in Database

Storing in Data Warehouse

Viewing Emissions

Emission Calculation

```
"annotation": {
             "emission_activity_input": "Riding motorbike gasoline",
            "emission technology": "motorbike",
            "consumption_unit": "kg",
            "consumption": 1000000000,
            "date": "2022-06-23",
            "year": 2022,
            "emission_source_id": null
11 >
        "emission_factor": {-
                           JSON V
        "id": 22,
3 >
        "user": {-
        "division": {-
10 >
        "emission_source": null,
        "technology": "motorbike",
        "consumption_unit": "kg",
        "consumption": "10000000000.00",
        "emission_factor": "0.00",
        "emission_factor_doc_id": 21541,
        "emission": "3130000.00",
        "date": "2022-06-23",
        "division_level": 1,
        "created_date": "2022-09-25T11:38:02.802350Z",
        "modified_date": "2022-09-25T11:38:02.802394Z"
```


5% Commercialization
5% Integration Testing
5% Unit Testing

15% App Development —
5% Emission Calculation

40% Emission Factor Retrieval R&D

9% System Design6% Component Design

10% Data Collection

App Development

Database & Data Warehouse Deployment

Deployed PostgreSQL DB in AWS EC2 instance

Inst	ances (2) Info					
Q	Find Instance by attrib	ute or tag (case-sensitive)				
	Name ▽	Instance ID	Instance state	∇	Instance type	∇
	carbonis_v1_db	i-06186405b5cdef11c	⊘ Running	Q Q	t2.micro	

Commercialization

Integration Testing

Unit Testing

App Development —

Emission Calculation

5%

5%

5%

15%

5%

Backend Development

Over 50 Backend API endpoints

2

App Development

POST 26 - Add Division

PUT 27 - Update Division

40% Emission Factor Retrieval R&D

9% System Design

6%

- Component Design
- 10% Data Collection

5% Commercialization
5% Integration Testing
5% Unit Testing

15% App Development —
5% Emission Calculation

Emission Factor Retrieval R&D

9% System Design

6% Component Design

10% Data Collection

App Development

Frontend Development

Authentication

Navigation

Emission Calculation Flow

Emission Factor Retrieval

40%

5% Commercialization
5% Integration Testing
5% Unit Testing

15% App Development
5% Emission Calculation

40% Emission Factor Retrieval R&D

9% System Design

6% Component Design

10% Data Collection

App Development

Best Practices

Regular VCS commits & pushes

Separating credentials with .env

Code quality checks

Hashed password storage

Hashed token authentication

Role-based (RBAC) and discretionary (DAC) access controls

Git flow

Proper project management & risk mitigation

5% Commercialization 5% Integration Testing 5% Unit Testing 15% App Development

Emission Calculation

Retrieval R&D

Emission Factor 40%

5%

9% System Design

6% Component Design

10% **Data Collection**

Integration Testing

Integration Testing

Manual testing:

With Backend

With Frontend

5% Commercialization
5% Integration Testing
Unit Testing

40% Emission Calculation

Emission Factor Retrieval R&D

9% System Design

6% Component Design

10% Data Collection

Commercialization

Market Analysis

"Worldwide growing concerns regarding carbon emission and its impact on the atmosphere and ozone layer has led the governments around the world to adopt latest technologies to prevent the future risks and meet the allocated cap regulated from the respected authorities, fuelling the sales carbon footprint management software."

"The need for carbon footprint management in developing countries also rises as the environmental crisis rises gradually."

- Global Forecast 2022-2032

Commercialization

Business Model Canvas

Commercialization

82%

Pricing Plan

Basic Plan Real-time Natural Language Input **Emission Factor** Recommendation Real-time Mobile Reports Up to 7 accounts Free /month

Pro Plan

- Features of Basic Plan
- **Emission Optimization &** Alerts
- Up to 100 accounts
- 24/7 Support

\$20 /month

Enterprise Plan

- Features of Pro Plan
- **Custom Data Storage**
- Self-service BI
- 24/7 Priority Support
- **Unlimited Accounts**

Custom /month

Registered Domain: www.carbonis.online

Commercialization

5% Commercialization — 5% Integration Testing 5% Unit Testing 15% App Development 5% **Emission Calculation Emission Factor** 40% Retrieval R&D 9% System Design 6% Component Design

Data Collection

10%

Emission Factor

Retrieval R&D

System Design

Component Design

Data Collection

82%

40%

9%

6%

10%

Marketing Pamphlet

Commercialization

References

- [1] T. Gao, Q. Liu, and J. Wang, "A comparative study of carbon footprint and assessment standards," International Journal of Low-Carbon Technologies, vol. 9, no. 3, pp. 237–243, Sep. 2014.
- J. Downie and W. Stubbs, "Corporate Carbon Strategies and Greenhouse Gas Emission Assessments: The Implications of Scope 3 Emission Factor Selection," Bus Strategy Environ, vol. 21, no. 6, pp. 412–422, Sep. 2012.
- [3] C. C. Spork, A. Chavez, X. G. Durany, M. K. Patel, and G. V. Méndez, "Increasing Precision in Greenhouse Gas Accounting Using Real-Time Emission Factors," J Ind Ecol, vol. 19, no. 3, pp. 380–390, Jun. 2015.
- [4] E. P. Olaguer, "Emission Inventories," Atmospheric Impacts of the Oil and Gas Industry, pp. 67–77, Jan. 2017.
- [5] J. Mulrow, K. Machaj, J. Deanes, and S. Derrible, "The state of carbon footprint calculators: An evaluation of calculator design and user interaction features," Sustain Prod Consum, vol. 18, pp. 33–40, Apr. 2019.
- [6] G. Bekaroo, D. Roopowa, and C. Bokhoree, "Mobile-Based Carbon Footprint Calculation: Insights from a Usability Study," 2nd International Conference on Next Generation Computing Applications 2019, NextComp 2019 Proceedings, Sep. 2019.
- [7] A. C. Peres Vieira, E. M. F. da Silva, and V. V. V. Aguiar Odakura, "Development of a Web Application for Individual Carbon Footprint Calculation," Proceedings 2021 47th Latin American Computing Conference, CLEI 2021, 2021.
- [8] D. Andersson, "A novel approach to calculate individuals' carbon footprints using financial transaction data App development and design," J Clean Prod, vol. 256, p. 120396, May 2020.
- [9] X. Yang, D. Lo, X. Xia, L. Bao, and J. Sun, "Combining Word Embedding with Information Retrieval to Recommend Similar Bug Reports," Proceedings International Symposium on Software Reliability Engineering, ISSRE, pp. 127–137, Dec. 2016.

References cont...

- [10] D. Hu et al., "Recommending Similar Bug Reports: A Novel Approach Using Document Embedding Model," Proceedings Asia-Pacific Software Engineering Conference, APSEC, vol. 2018-December, pp. 725–726, Jul. 2018.
- [11] Y. Wang et al., "A comparison of word embeddings for the biomedical natural language processing," J Biomed Inform, vol. 87, pp. 12–20, Nov. 2018.
- [12] M. Quadrana, A. Karatzoglou, B. Hidasi, and P. Cremonesi, "Personalizing session-based recommendations with hierarchical recurrent neural networks," RecSys 2017 Proceedings of the 11th ACM Conference on Recommender Systems, pp. 130–137, Aug. 2017.
- [13] M. Sanderson and J. Zobel, "Information retrieval system evaluation: Effort, sensitivity, and reliability," SIGIR 2005 Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 162–169, 200

Component 3

Unit Verification using Text Classification And Unit Conversion

Vishakanan S. IT19001562 Data Science

Research Questions

Questions

1. How can we make sure the units are matching in the calculation?

Solution

Verify and convert before calculating

Objectives

Main Objectives

 Verify and convert consumption values, units provided to match the emission factor units.

Specific Objectives

- Unit verification using text classification.
- Unit conversion for non-matching units.

Component 3 Architecture

Completed Tasks

Current Progress – IT19001562

- Data collection
- 2. Research on model selection
- 3. Data preprocessing
- 4. Text classification models implementation
- 5. Model comparing
- 6. Evaluate those models
- Test Verification
- 8. Build Unit Conversion Algorithm
- 9. Test Conversion and whole component testing
- 10. Backend Development
- 11. Component deployment
- 12. Frontend Development

Objectives and Project Completion

79

Progress Demo (90%)

- 1. Proof of concept
- 2. Key pillars of the component 3

Unit Verification

Unit Conversion

3. Technologies

Language (Python)

Hugging face models

Transformers

Django

Regax & Python algorithm

4. Standards and best practices

Version controlling (git and GitLab)

Project management (MS Planner and MS Teams

5. Backend Development

Django

6. Frontend Development

React-Native

7. Backend Deployment

Heroku

Progress Demo (90%)

Shown below are the extracted Units and measurements

```
[
0: "Quantity(7, "Unit(name="metre", entity=Entity("length"), uri=Metre)")"
]
```

```
POST
                 https://measurement-converter-proj.herokuapp.com/test
                                                  Pre-request Script
         Authorization
                         Headers (8)
                                                                               Settings
           form-data x-www-form-urlencoded
         ·· "unit": "m",
           "to_unit": "km",
         ··"value": 856
                                                                               Ch Status: 20
     Cookies Headers (12) Test Results
Pretty
                   Preview
                               Visualize
            "Converted": 0.856
```

```
migrations

| Comparison | Comp
```

4:28 3

Mobile-App Frontend Development

Home Screen

Sign In

E-Mail

Password

Sign In Page

Usability

This focuses on the appearance of the user interface and how people interact with it.

Supportability

support provided inhouse or is remote accessibility for external resources.

Performance

It works fast as the system can respond to a particular user's action under a certain workload.

Recoverability

It's ability to recover from a crash or a failure in the system and returning to full operations.

Non-functional requirements

IDENTIFY RISK

In my component earlier, I used SymPy for conversion, but then I identified it was not suitable for float conversion.

ASSESS RISK

For that issue, I lost my nearly one-month period. Then I changed my way.

REVIEW CONTROLS

Finally I overcame that issue and converted every unit successfully.

CONTROL RISK

After that, I used regax and built a python algorithm for conversion.

Risk Mitigation

Expected Progress – IT19001562

Remaining Tasks

- Integration
- **Testing**

References

- [1] Guidance on how to measure and report your greenhouse gas emissions. Department for Environment, Food and Rural Affairs., 2009, pp. 20-22.
- [2] Carbon Footprint of an Organization: a Tool for Monitoring Impacts on Global Warming, Department of Agricultural Engineering, Faculty of Agriculture, University of Ruhuna, Mapalana, Kamburupitiya, 81100, Sri Lanka. 2017
- [3] Estimation of renal function in the intensive care unit: the covert concepts brought to light Sham Sunder, Rajesh Jayaraman*, Himanshu Sekhar Mahapatra, Satyanand Sathi, Venkata Ramanan, Prabhu Kanchi, Anurag Gupta, Sunil Kumar Daksh and Pranit Ram, 2014
- [4] Android based Conversion and Estimation Application, March 2016
- [5] Measurement Context Extraction from Text: Discovering Opportunities and Gaps in Earth Science, Kyle Hundman1, Chris A. Ma mann1,2
- [6] Measurement Context Extraction from Text: Discovering Opportunities and Gaps in Earth Science, Kyle Hundman1, Chris A. Ma mann1,2
- [7] Automated Detection of Measurements and Their Descriptors in Radiology Reports Using a Hybrid Natural Language Processing Algorithm
- [8] How to Extract Unit of Measure in Scientific Documents?, KDIR 2013
- [9] Natural Language Processing Techniques for Extracting and Categorizing Finding Measurements in Narrative Radiology Reports, 2015

Component 4

• • •

Emission Optimization using Linear Programming

Vithursan M.
IT19033174
Software Engineering

Research Questions

Questions

- How to reduce the emission?
- How to find the threshold values for each emission sources?
- How to maintain the carbon emission level without exceeding the limit?

Objectives

Main Objectives

Identify the optimum solution for the given emission source constraints using **Optimization Algorithms** and sent alert about any violations of the optimal solution.

Specific Objectives

- 1. Implementing a custom emission optimization module.
- 2. Creating an alert framework to provide alerts about the breaches of the thresholds.
- 3. Implement a mobile application using React Native.

Functional Requirements

Non-Functional Requirements

- Scalability
- Ease of use
- Reliability

Component Diagram

Current Progress – IT19033174

Completed Tasks

- 1. Mobile application UI wireframe
- 2. High fidelity prototype
- 3. Data collection
- 4. Optimization model to find threshold
- 5. Mobile UI implementation
- 6. Alert framework for any violation of threshold

Objectives and Project Completion

UI Flow

Progress Demo (90%)

Proof of concept

1. Key pillars of the component

Optimization – Linear Programming

2. Technologies

Language (Python)

Packages (Pyomo, Pandas, scipy)

Pycharm

3. Designs

Component Architecture

High Fidelity Design

Low Fidelity Design

4. Standards and best practices

Version controlling (git and GitLab)

Project management (MS Planner and MS Teams)

Expected Progress – IT19033174

Remaining Tasks

- 1. Integration with other components
- 2. Testing
- 3. Deployment

References

- [1] William F Lamb, Thomas Wiedmann, Julia Pongratz, Robbie Andrew, Monica Crippa, Jos G J Olivier, Dominik Wiedenhofer "A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018" *Environmental Research Letters*, *Volume 16, Number 7*, Published on 29 June 2021, Published by: IOP Publishing Ltd available at: https://iopscience.iop.org/article/10.1088/1748-9326/abee4e
- [2] M. Roelfsema et al., "Taking stock of national climate policies to evaluate implementation of the Paris Agreement", *Nature Communications*, vol. 11, no. 1, 2020. Available at: https://www.nature.com/articles/s41467-020-15414-67 6?fbclid=lwAR1drArL9ReoJl2zgqjmdxJNoBsM4zRJna-JHIGWkzTka7d4NB4fdz0nCrE.
- [3] B. Tranberg, O. Corradi, B. Lajoie, T. Gibon, I. Staffell and G. Andresen, "Real-time carbon accounting method for the European electricity markets", *Energy Strategy Reviews*, vol. 26, p. 100367, 2019. Available: https://www.sciencedirect.com/science/article/pii/S2211467X19300549.
- [4] Kazi Mostafa, Innchyn Her, "Stabilization wedges as a tool of engineering optimization, with an example of CO2 emission control", vol. 1, 2010. available at: https/ieeexplore.ieee.org/document/5533732
- [5] E. T. Lau, Q. Yang, G. A. Taylor, A. B. Forbes, P. Wright, V. N. Livina, "Optimization of carbon emissions in smart grids", 2014, ISBN:978-1-4799-6557-1, available at: https/ieeexplore.ieee.org/document/6934796
- [6] Kailong Zhou, Xin Chen, Weihua Cao, "Optimization Method for Carbon Efficiency in the Green Manufacturing of Sinter Ore and its Application", 2018, ISBN: 1934-1768, available at: https/ieeexplore.ieee.org/document/8483152

