LL(1) Parsing, pt. 2

CS 440: Programming Languages and Translators, Spring 2020

A. Review: LL(1) Parsing for Grammars without ε rules

• So far we've looked at LL(1) grammars that don't have ε rules; they're generally easier to parse than languages with such rules.

Example 1:

- $S' \rightarrow S \$ \$, $S \rightarrow A B C S$, $A \rightarrow a$, $B \rightarrow b$, $C \rightarrow c$, $S \rightarrow s$.
 - The language of this grammar is (abc)*s, and the *First* sets are $First(A) = \{a\}$, $First(B) = \{b\}$, $First(C) = \{c\}$, and $First(S) = First(S') = \{a, s\}$. The *Predict* table shows that LL(1) parsing for this grammar is straightforward

NonT	a	b	С	s
S'	$S' \to S $ \$			$S' \to S $ \$
S	$S \rightarrow A B C S$			$S \rightarrow s$
A	$A \rightarrow a$			
В		$B \rightarrow b$		
C			$C o \mathtt{c}$	

Example 2:

- (To make life more interesting, let's) take the grammar from Example 1 and add the ε rules $B \to \varepsilon$ and $C \to \varepsilon$. Now LL(1) parsing is quite a bit more involved. The choices using ε for B and C are independent, so in effect, the rules for S are now $S \to A B C S \mid A C S \mid A B S \mid A S$. When trying to expand A, the next symbol can be b, c, or s.
- For the prediction table, Predict(X, y) should include rule $X \to \alpha$ if $y \in First(\alpha)$ (and $\alpha \neq \varepsilon$ and $y \neq \varepsilon$). This is the same as prediction tables for grammars without ε rules. Predict(X, y) should include rule $X \to \varepsilon$ if $x \in Follow(X)$: informally, such x are what can appear after using X in a rule. We'll look at the details later, but
- $First(S') = First(S) = \{a\}, First(A) = \{a\}, First(B) = \{b, \epsilon\}, First(C) = \{c, \epsilon\}.$ (The ϵ indicate that B and $C \rightarrow * \epsilon$.)
- $Follow(S') = \emptyset$, $Follow(S) = \{\$\}$, $Follow(A) = \{a, b, c, s\}$, $Follow(B) = \{a, c, s\}$, $Follow(C) = \{a, s\}$.
- The *Predict* table:

NonT	a	b	С	s
S'	$S' \to S $ \$			
S	$S \rightarrow A B C S$			$S o \mathtt{s}$
A	$A \rightarrow a$			
В	$B o \varepsilon$	B o b	$B o \varepsilon$	$B o \varepsilon$
С	$C \rightarrow \varepsilon$		$C \rightarrow c$	$C \rightarrow \varepsilon$

B. When do we use rule $X \to \alpha$ during LL(1) Parsing? (where $\alpha \neq \varepsilon$)

- As with grammars without ε rules, we use *First* sets to decide when to use a rule $X \to \alpha$.
 - I.e., rule $X \to \alpha \in Predict(X, \mathbf{x})$ if $\mathbf{x} \in First(\alpha)$. (And here, $\mathbf{x} \neq \varepsilon$.)
- However, calculating the *First* sets is more complicated when ε rules are allowed.
- **Definition (original)**: $First(\alpha) = \{ \mathbf{x} \in T \mid \alpha \to^* \mathbf{x} \ \beta \text{ for some } \beta \in (V \mid T)^*) \}$. There are two cases depending on whether α begins with a terminal or nonterminal symbol.
- **Terminal symbol**: If $\alpha = \mathbf{x}$ β , then $First(\alpha) = \{\mathbf{x}\}$. I.e., if something begins with a terminal symbol \mathbf{x} , then that symbol makes up the First set.
- Nonterminal symbol: If $\alpha = Y \beta$, then for all rules $Y \to \gamma$, $First(\alpha \beta) \supseteq First(\gamma \beta)$. I.e., to find the *First* set for Y, we need the *First* set for all the rhs's of rules for Y.
- But there's a complicating factor, depending on whether $Y \to *\epsilon$ or not. If $Y \to *z...$, then for all β , $Y \to *z...$, β , so β is irrelevant here. However, if $Y \to *\epsilon$, then $Y \to *\epsilon$ β , so $First(Y \to *\beta) \supseteq First(\beta)$.
 - If $Y \rightarrow * \varepsilon$ then for all β , $First(Y \beta) \supseteq First(Y)$.
 - If $Y \to * \varepsilon$ then for all β , $First(Y \beta) \supseteq First(\beta)$.
 - (Note these two cases aren't mutually exclusive. E.g., when $Y \to \mathbf{z} \mid \varepsilon$)
- **Definition (extension)**: If $\alpha \to^* \epsilon$, then $\epsilon \in First(\alpha)$.
 - This is done just as a way to store the answer to the question "Does $\alpha \to^* \varepsilon$?" One way is to have a separate table for it; here we'll add $\varepsilon \in First(\alpha)$. (Note now $First(X) \subseteq T \cup \{\varepsilon\}$, not just T.)

C. When do we use a rule $X \to \varepsilon$ during LL(1) parsing?

- Recall $Predict(Y, \mathbf{x})$ holds the rule to apply if the current nonterminal is Y and the current input symbol is \mathbf{x} . In particular, rule $Y \to \alpha \in Predict(Y, \mathbf{x})$ if $\mathbf{x} \in First(Y \beta)$ where we can go from $S \to * \dots Y \beta$.
 - E.g., if $Y \to x Z$, then $x \in First(Y)$. If $Y \to W$ and $W \to x Z$, then $x \in First(W)$ and First(Y)
- But what if $Y \to \varepsilon$ is a rule? When should $Predict(Y, \mathbf{x})$ contain $Y \to \varepsilon$?
 - For a concrete example, say we have $S \to Y y$ and $Y \to x \mid \varepsilon$.
 - If our input is x y, we can use the derivation $S \to Y y \to x y$ to parse it.
 - If our input is just y, then can use $S \to A$ y $\to \varepsilon$ y to parse it.
- More generally, if from the start symbol we can get to a form involving $Y \beta$, then if the next input symbol is in $First(\beta)$, then using $Y \to \varepsilon$ makes sense.
 - So in addition to the earlier rule $X \to \alpha \in Predict(X, \mathbf{x})$ if $\mathbf{x} \in First(X)$, we have
 - (New) $X \to \varepsilon \in Predict(X, \mathbf{x})$ if $X \to^* \varepsilon$ and $\mathbf{x} \in First(\beta)$ for some β where $S \to^* \dots X \beta$.
 - (Side comment: $X \to *$ ε doesn't require $X \to \varepsilon$, e.g., when $X \to Z$ and $Z \to \varepsilon$. The rule $Z \to \varepsilon$ will go into Predict(Z, ...) when we worry about Z.)

D. Using Follow sets to simplify the decision involving putting $X \to \varepsilon$ in the prediction table

• Currently we have $X \to \varepsilon \in Predict(X, \mathbf{x})$ if $X \to^* \varepsilon$ and $\mathbf{x} \in First(\beta)$ for some β where $S \to^* \dots X \beta$.

- The problem here is it requires that we know all possible β than can follow X in a derivation from S and there can be an infinite number of them.
- However, we can use a simpler algorithm for seeing if $X \to \varepsilon$ is appropriate: Instead of calculating $First(\beta)$ for all β , we can ask what terminal symbols can follow a use of X. There are only a finite number of nonterminals, so there are only a finite number of Follows(...) calculations to make.
- For a small example, say we have $S \to A B$, $A \to \varepsilon$, $B \to b B \mid c B \mid \varepsilon$.
 - If we ask "What are all the β where $S \to A$ β ?" the answer is $(b \mid c)^* \varepsilon$, which is of infinite size.
 - (We don't include ε in any *Follow* set so $A \beta \to^* A \varepsilon$ is not a worry, though $\beta \to^* \varepsilon$ does have to be taken into account elsewhere.)
 - On the other hand, if we ask "What terminal symbols can follow A in a derivation?", the answer $\{b, c\}$ can be calculated more easily.
- **Definition**: $Follow(X) = \{ y \in T \mid \text{ for some } \beta', S \to^* ... X y \beta' \}$. I.e., the follow set of A is the set of terminal symbols that can follow an appearance of A in some derivation. (This might not be a leftmost derivation, but that's okay as long as the grammar isn't ambiguous.)
- The advantage of looking at follow sets vs first sets is that we only need Follow(...) for each nonterminal whereas for First(...), we need an entry for each A β (which are possibly infinite in number).
- So for adding $X \to \varepsilon$ to the *Predict* table, instead of
 - If from *S* we can derive a form $X \beta$ and $x \in First(\beta)$, then rule $X \to \varepsilon \in Predict(X, x)$ we'll use
 - Rule $X \to \varepsilon \in Predict(X, a)$ for all $a \in Follow(A)$.

E. Calculating Follow sets

- So how do we calculate $Follow(X) = \{ y \in T \mid \text{ for some } \beta', S \to^* w X y \beta' \} ?$
- For any rule $Z \to \dots X$... that has an X on its rhs, there are roughly three cases to Follow(X)
 - Case 1: If $Z \to ... X y \beta'$ then $y \in Follow(X)$
 - Case 2: If $Z \to ... X C \beta'$ then $First(C) \varepsilon \subseteq Follow(X)$
 - But if $C \to^* \varepsilon$, then (in effect) we have to consider $Z \to \dots X \beta'$, which leads to the two cases so far unless β' begins with a nonterminal that $\to^* \varepsilon$, etc. It's possible we need to iterate case 2, which leads to case 3:
 - Case 3: If $Z \to ... X C_1 C_2 ... C_n$ where every $C_i \to^* \varepsilon$, then $Follow(Z) \subseteq Follow(X)$.
 - (Note this can include the case where n = 0, so we can generalize this to if $Z \to ... X \gamma$ where $\gamma \to^* \varepsilon$, then $Follow(Z) \subseteq Follow(X)$.)
 - To understand this case, here's a derivation showing how anything that follows Z can also follow X:

$$S' \rightarrow^* \dots Z \delta \rightarrow \dots \dots X \beta \delta \rightarrow^* \dots X \delta$$

Parsing prediction table when ε -rules exist

- There are now two kinds of entries in the parsing table
 - $Predict(X, \mathbf{x})$ includes rule $X \to \alpha$ (where $\alpha \neq \varepsilon$) if $\mathbf{x} \in First(\alpha)$.

- $Predict(X, \mathbf{x})$ includes rule $X \to \varepsilon$ if $\mathbf{x} \in Follow(X)$.
- Again, if any table entry contains >1 rule, the grammar is not LL(1).
- And if a table entry is empty, then that nonterminal / terminal character causes a parse error

Example 3:

- (Revisiting Example 2) $S' \to S \$, $S \to A B C S$, $A \to a$, $B \to b \mid \varepsilon$, $C \to c \mid \varepsilon$, $S \to s$.
- For the *First* sets, we can calculate $First(S') = First(S) = \{a, s\}$, $First(A) = \{a\}$, $First(B) = \{b, \epsilon\}$, and $First(C) = \{c, \epsilon\}$.
 - For First(S), $S \to s$ implies $s \in First(S)$, and $S \to ABCS$ implies $First(A) \subseteq First(S)$.
 - For First(A), $A \to a$, implies $a \in First(S)$ Since $A \to * \varepsilon$, we don't have to consider $First(B \ C \ S)$.
 - There's no other $A \to \dots$ rule, so $First(A) = \{a\}$ which implies $First(S) = \{a, s\}$.
 - For First(B), $B \to b \mid \varepsilon$ implies $\{b, \varepsilon\} \subseteq First(B)$. There are no other $B \to \dots$ rules, so $\{b, \varepsilon\} = First(B)$.
 - For First(C), $C \to \mathbf{c} \mid \varepsilon$ implies $\{\mathbf{c}, \varepsilon\} \subseteq First(C)$. There are no other $C \to \dots$ rules, so $\{\mathbf{c}, \varepsilon\} = First(C)$.
 - For First(S'), $S' \to S$ \$ implies $First(S) \subseteq First(S')$. There are no other S' rules, so $First(S') = \{a, s\}$.
- For the *Follow* sets,
 - $Follow(S') = \emptyset$ because S' doesn't appear on the rhs of any rule.
 - $Follow(S) = \{\$\}$ because $S' \to S$ \$ is the only rhs that S appears in.
 - For Follow(C), since C appears in $S \to A B C S$, we have $Follow(C) \subseteq First(S) \varepsilon \subseteq \{a, s\}$.
 - Since $S \rightarrow * \varepsilon$, we don't have to worry about Follow(C) including Follow(S) (the lhs of the rule). Since C only appears in this one rule, we can change the \subseteq to = in $Follow(C) \subseteq \{a, s\}$.
 - For Follow(B), since B appears in $S \to A B C S$, we have $Follow(B) \subseteq First(C S) \varepsilon \subseteq (First(C) \varepsilon) \cup First(S) \varepsilon = \{a, c, s\}$. (Since $C \to *\varepsilon$, Follow(B) has to include First(S).)
 - Since $CS \rightarrow *\varepsilon$, we don't have to worry about Follow(B) including Follow(CS) (the lhs of the rule). Since B only appears in the one rule, we can change the \subseteq to = in $Follow(B) \subseteq \{a, c, s\}$
 - For Follow(A), since A appears in $S \to A \ B \ C \ S$, we have $Follow(A) \subseteq First(B \ C \ S) \varepsilon$. Since $B \to * \varepsilon$ and $C \to * \varepsilon$, $First(B \ C \ S) \subseteq (First(B) \varepsilon) \cup (First(C) \varepsilon) \cup (First(S) \varepsilon) = \{b\} \cup \{c\} \cup \{a, s\} = \{a, b, c, s\}$.
- So $Follow(S') = \emptyset$, $Follow(S) = \{\$\}$, $Follow(A) = \{a, b, c, s\}$, $Follow(B) = \{c, s\}$, and $Follow(C) = \{s\}$.
- The *Predict* table is below. Since only B and C have $\rightarrow \varepsilon$ rules, it's only their follow sets that we need.

NonT	a	b	С	s
S'	$S' \to S $ \$			
S	$S \rightarrow A B C S$			$S o \mathtt{s}$
A	$A \rightarrow a$			
В	$B o \varepsilon$	B o b	$B o \varepsilon$	$B o \varepsilon$
C	$C \rightarrow \varepsilon$		C o c	$C \rightarrow \varepsilon$

Example 4: Sample Calculation of First and Follow (from the textbook)

- Grammar: $S \rightarrow a A B b$, $A \rightarrow c \mid \epsilon, B \rightarrow d \mid \epsilon$
- First sets
 - $First(S) \supseteq First(a \land B b) = \{a\}$
 - $First(A) \supseteq First(c) \cup First(\epsilon) = \{c, \epsilon\}$
 - $First(B) \supseteq First(d) \cup First(\varepsilon) = \{d, \varepsilon\}$
 - These are the only calculations to do, so the \supseteq above can be turned into equality.
- Follow sets
 - Follow(B): From $S \rightarrow a A B$ b, the B b part tells us
 - $Follow(B) \supseteq \{b\}$
 - Follow(A): From $S \rightarrow a A B b$, the A B b tells us
 - $Follow(A) \supseteq First(B b) \{\epsilon\} = \{d, \epsilon\} \{\epsilon\} = \{d\}$
 - Since $B \to * \varepsilon$, we also have $Follow(A) \supseteq First(b) = \{b\}$
 - Altogether, $Follow(A) \supseteq \{b, d\}$
 - These are the only calculations to do, so the ⊇ above can be turned into equality
- **Prediction Table** (empty entries indicate errors)

NonT	a	b	С	d
S	$S \rightarrow a A B b$			
A		$A \rightarrow \varepsilon$	$A o \mathbf{c}$	$A \rightarrow \varepsilon$
В		$B o \varepsilon$		B o d

General observation

- If First(X) and Follow(X) have a symbol x in common, that's not a problem if there's no $X \to \varepsilon$ rule.
- But if there is an $X \to \varepsilon$ rule, then the grammar is ambiguous because we'd want $\operatorname{Predict}(X, x)$ to include both $X \to \operatorname{non-}\varepsilon$ and $X \to \varepsilon$ rules.

Activity Questions for Lecture 14

1. Give the *First* and *Follow* sets and *Predict* table for the grammar below. Is the grammar LL(1)?

$$S \rightarrow A \$$
\$

$$A \to \mathtt{a}\, B$$

$$B \to CDe$$

$$C \rightarrow c \mid D$$

$$D \rightarrow d \mid \varepsilon$$

2. Give the *First* and *Follow* sets and *Predict* for the grammar below. Is the grammar LL(1)?

$$P \rightarrow Q R S$$
\$

$$Q \to q \mid \varepsilon$$

$$R \to r \mid \epsilon$$

$$S \to s \mid \varepsilon$$

Solutions to Activity Questions for Lecture 14

1. (Calculate *First & Follow* and LL prediction table.)

Here's the reasoning behind the First and Follow set contents with each rule and its implications.

$$S \rightarrow A \ \$ \qquad \qquad First(S) \supseteq First(A); \ \$ \in Follow(A)$$

$$A \rightarrow \mathsf{a} \ B \qquad \qquad \mathsf{a} \in First(A); \ Follow(A) \subseteq Follow(B)$$

$$B \rightarrow C \ D \ \mathsf{e} \qquad \qquad First(B) \supseteq First(C) - \varepsilon; \ First(B) \supseteq Follow(C) \ [\mathsf{because} \ C \rightarrow^* \varepsilon);$$

$$Follow(C) \supseteq First(D) - \varepsilon; \ \mathsf{e} \in Follow(C) \ (\mathsf{because} \ D \rightarrow^* \varepsilon);$$

$$\mathsf{e} \in Follow(D)$$

$$C \rightarrow \mathsf{c} \ | \ D \qquad \qquad \mathsf{c} \in First(C); \ First(C) \supseteq First(D), Follow(C) \subseteq Follow(D)$$

$$D \rightarrow \mathsf{d} \ | \ \varepsilon \qquad \qquad \mathsf{d} \in First(C); \ \varepsilon \in First(D)$$

So we get

$$First(S) = \{a\}, Follow(S) = \emptyset$$

$$First(A) = \{a\}, Follow(A) = \{\$\}$$

$$First(B) = \{c, d, e\}, Follow(B) = \{\$\}$$

$$First(C) = \{c, d, \epsilon\}, Follow(C) = \{d, e\}$$

$$First(D) = \{d, \epsilon\}, Follow(D) = \{d, e\}$$

$$(d \in Follow(D) \text{ because of } C \to D \text{ with } \dots \to CD \dots \text{ and } D \to d\}$$

The prediction table is

Nonterminal	a	С	d	е
S	$S \to A \ $ \$			
A	$A \rightarrow a B$			
В		$B \rightarrow CDe$	$B \rightarrow CDe$	$B \rightarrow CDe$
C		$C o \mathbf{c}$	$C \rightarrow D$	$C \rightarrow D$
D			D o d	$D o \varepsilon$
			$D o \varepsilon$	

The grammar is not LL(1) because of the conflict between $D \to d$ and $D \to \varepsilon$ on input d.

2. (Grammar $P \to Q R S \$, Q \to q \mid \varepsilon, R \to r \mid \varepsilon, S \to s \mid \varepsilon$)

The First and follow sets and predict table are below. The grammar is LL(1).

Nonterminal	First sets	Follow sets
P	qrs\$	Ø
Q	qε	rs\$
R	rε	s\$
S	sε	\$

Nonterminal	q	r	s	\$
P	$P \rightarrow Q R S $ \$	$P \rightarrow Q R S $ \$	$P \rightarrow Q R S $ \$	
Q	Q o q	$Q \rightarrow \varepsilon$	$Q \to \varepsilon$	$Q \rightarrow \varepsilon$
R		$R \rightarrow r$	$R \to \varepsilon$	$R \to \varepsilon$
S			$S \rightarrow s$	$S \to \varepsilon$