

Exercise 13C

Question 15:

Here, height(h) of cylinder = 2.8 m = 280 cm and diameter = 20 cm

$$\Rightarrow$$
 radius = $\left(\frac{20}{2}\right)$ = 10 cm

height(H) of the cone = 42cm

∴ Volume of the pillar =
$$(\pi r^2 h + \frac{1}{3} \pi r^2 H) \text{ cm}^3$$

= $\pi r^2 (h + \frac{1}{3} H) \text{ cm}^3$
= $\frac{22}{7} \times 10 \times 10 (280 + \frac{1}{3} \times 42) \text{ cm}^3$
= $\frac{2200}{7} \times [280 + 14]$
= 92400 cm^3
∴ Weight of pillar = $\left(\frac{92400 \times 7.5}{1000}\right) \text{kg} = 693 \text{kg}$

Question 16:

Let the smaller cone have radius = r cm and height = h cm And, let the radius of the given original cone be R cm Since the two triangles, \triangle OCD and \triangle OAB are similar to each other, we have

Then,
$$\frac{r}{R} = \frac{h}{30} \qquad \left[\because \Delta OCD \sim \Delta OAB\right]$$

$$\Rightarrow \qquad \qquad r = \frac{Rh}{30} \qquad(1)$$

Given that the volume of the small cone is

 $\frac{1}{27}$ of the volume of the given cone.

From the figure,

$$AC = (OA - OC)$$

= $(30 - 10)$ cm = 20 cm

:. the required height = 20 cm

********* END *******