

كزآموزش اكترويي

پردازش تکاملی

پردازش تکاملی Evolutionary Computing (قسمت اول)

دانشگاه صنعتی مالک اشتر

مجتمع دانشگاهی فن آوری اطلاعات و امنیت

زمستان ۱۳۹۲

جایگاه پردازش تکاملی

- پردازش تکاملی شاخه ای از علوم کامپیوتر است
- پردازش تکاملی شاخه ای از علوم طبیعی و یا زیست شناسی نمی باشد
- پردازش تکاملی از زیست شناسی الهام گرفته و از واژگانی استفاده می کند که در این علم به کار می رود
 - پردازش تکاملی می تواند در پژوهش های زیست شناسی و بسیاری از زمینه های تحقیقاتی دیگر به کار رود

Taxonomy

Taboo Search Stochastic optimization methods Monte Carlo methods Simulated Annealing **Evolutionary Algorithms** Genetic Algorithms **Evolution Strategies** Genetic Programming **Evolutionary Programming**

مرز آموزش اکترو

تئوری تکامل

داروین: مبدأ گونه ها

- جستجوی فرمهای بهینه (محیط)
 - با استفاده از:
 - ترکیب ژن ها
 - ایجاد تغییرات تصادفی
 - انتخاب شایسته ترها

- منابع موجود در هر محیطی محدود است و تنها تعداد محدودی از موجودات را می تواند در خود نگاه دارد.
 - موجودات زنده دارای غرایز اولیه ای هستند. چرخه زندگی توسط غریزه ای به نام تولید مثل ادامه پیدا می کند.
 - بنابراین وجود انواعی از انتخاب در این چرخه اجتناب ناپذیر است
 - موجوداتی که توان رقابت بالاتری دارند از شانس بیشتری برای تولید مثل برخوردار خواهند بود
- شایستگی در تکامل طبیعی، یک معیار مشتق شده ثانویه است. یعنی از نظر ما انسانها، موجوداتی که فرزندان بیشتری دارند از شایستگی بالاتری برخوردار هستند.

- و فنوتایپ ویژگیها:
- ویژگیها باعث به وجود آمدن تفاوتهای فیزیکی و یا رفتاری موجودات می شوند که برروی نحوه واکنش آنها به محیط تأثیر گذارند
 - برخی از ویژگیها توسط وراثت تعیین می شوند و برخی دیگر توسط عواملی در طی زمان به وجود آمدن
- ویژگی های هر موجود، منحصر به فرد است. یکی از دلایل این امر وجود عوامل اتفاقی در زمان ایجاد آنها است.
 - ویژگی های بهتر می توانند:
 - منجر به شانس بالاتری در تولید مثل شوند
 - و بدین ترتیب به ارث برده شوند
 - در نسلهای بعدی افزایش یابد
 - منجر به ترکیب جدیدی از ویژگی ها شوند

- در یک جمعیت موجودات گوناگونی وجود دارد
 - هر موجود یک ترکیب از ویژگیها است
- آن ترکیبها از ویژگیها (آن موجوداتی) که سازگاری بالاتری دارند شانس بیشتری برای بقا خواهند داشت
 - موجودات، معیار انتخاب هستند.
 - گوناگونی موجودات از طریق تغییرات اتفاقی و انتخاب به وجود می آید
 - جمعیت، معیار تکامل است.
- توجه شود که در این فرایند هیچ نیروی خارجی هدایت کننده وجود ندارد.

- نیروی کاهنده گوناگونی در جمعیت که از طریق انتخاب
 - والدين
 - بازماندگان

برمبنای کیفیت آنها اعمال می شود

- نیروی ا<mark>فزاینده گوناگونی</mark> در جمعیت که از طریق عملگرهای ژنتیکی
 - جهش
 - ترکیب
 - باعث ایجاد نمونه های جدید می شود

Adaptive landscape metaphor (Wright, 1932)

- یک جمعیت را می توان توسط نقطه های n-بعدی در فضای n+1 بُعدی نمایش داد.
- هر نقطه بیانگر یک موجود می باشد که از n ویژگی تشکیل شده
 - بُعد ارتفاع را به عنوان میزان شایستگی هر یک از موجودات در این فضای n+1 بُعدی در نظر می گیریم.
 - بنابراین جمعیت، عبارتست از ابری از نقاط که در طول زمان در این فضا به واسطه ایجاد نسل های متوالی و تکامل حرکت می کند

مثالی از یک جمعیت که از موجوداتی تشکیل شده که تنها دارای دو ویژگی هستند

مرز آموزش اکترو

Adaptive landscape metaphor (cont'd)

- •انتخاب باعث هل دادن جمعیت به سمت بالا می شود
- تغییرات اتفاقی در ویژگیها (که می تواند مثبت یا منفی باشد) باعث جلوگیری از به دام افتادن جمعیت در ماکسیمم های محلی می شود

كزتاموزش اكترويو

مسأله نوع ۱: بهینه سازی

در این نوع از مسائل، مدلی از سیستم وجود دارد و ما می خواهیم یک مقدار ورودی برای این مدل پیدا کنیم که در خروجی هدف مشخصی را بدست آورد

- · مثالهایی از این نوع مسائل:
- time tables for university, call center, or hospital
- design specifications

مرنة موزش اكترو

مسأله نوع ۲: مدل سازي

و مجموعه ای متناظر از ورودیها و خروجی ها وجود دارد و ما به دنبال مدلی هستیم که با دریافت آن ورودیها، خروجی متناظر آنها را به دست آورد

•یادگیری ماشین تکاملی

مرز آموزش اکتروی

مسأله نوع ۳: شبیه سازی

• در این نوع از مسائل، مدلی به ما داده شده و ما می خواهیم خروجی های مربوط به ورودی های مختلف را بدست آوریم

از شبیه سازی به منظور پاسخ به سوالات what-if در محیط های پویا استفاده می شود. مانند:

• زندگی مصنوعی، اقتصاد تکاملی

كزآموزش اكترويج

انگیزه های پردازش تکاملی

- طبیعت همواره یک منشأ الهام برای دانشمندان و مهندسان بوده است
 - بهترین حلالهای مسأله که در طبیعت شناخته شده اند عبارتند از:
- مغز (انسان) که چرخ ها، شهرها، جنگها و ... را به وجود آورده است
 - مکانیزم تکامل که باعث به وجود آمدن مغز انسان شد
 - اولی منشأ به وجود آمدن علم neurocomputing شد
 - دومی منشأ به وجود آمدن علم evolutionary computing شد

انگیزه های پردازش تکاملی

- توسعه، تحلیل و به کارگیری روشهای حل مسأله (الگوریتم ها) مضمون اصلی ریاضیات و علوم کامپیوتر است
 - زمان برای تحلیل کامل مسائل رو به کاهش است در حالیکه پیچیدگی مسائل در حال افزایش است
 - نتیجه گیری:
 - به فناوری های مطمئنی برای حل مسائل نیاز داریم

مرز آموزش اکترویی

مزایای پردازش تکاملی

- هیچ پیشفرضی برای فضای مسأله در نظر گرفته نمی شود
 - برای حل مسائل زیادی قابل استفاده است
 - هزینه توسعه و به کارگیری آن پایین است
 - ترکیب آن با روشهای دیگر آسان است
- جوابهای به دست آمده قابل تفسیر است (برخلاف شبکه های عصبی که اینگونه نیستند)
- می تواند به صورت تعاملی اجرا شده و کاربر راه حلها را پیشنهاد دهد
 - راه حلهای متعددی را ارائه می دهد
 - به طور ذاتی موازی بوده و به راحتی می تواند به صورت موازی پیاده سازی شود Evolutionary Computing

مرزة موزش اكترويي

معایب پردازش تکاملی

- تضمینی برای یافتن جواب بهینه در زمان محدود وجود ندارد
 - پایه تئوری آن ضعیف است
 - ممکن است نیاز به تنظیم پارامترهایی داشته باشد
- معمولاً به حجم زیادی از محاسبات نیاز دارد و لذا می تواند کند اجرا شود

مرز آموزش اکتروین

کارایی پردازش تکاملی

- در حل بسیاری از مسائل دارای کارایی و هزینه قابل قبولی است
- پردازش تکاملی برای حل مسائل پیچیده ای که دارای یک یا چند مورد از ویژگیهای زیر هستند نسبت به روش های دیگر ترجیح داده می شود:
 - زیاد بودن تعداد پارامترهای آزاد
 - پیچیده بودن روابط بین پارامترها
- وجود ترکیبهای مختلفی از انواع پارامترها (اعداد حقیقی، اعداد صحیح و ...)
 - وجود اکسترمم های محلی زیاد
 - وجود اهداف متعدد
 - وجود داده های نویزی
 - وجود شرايط متغير

Recap of EC metaphor

- جمعیتی از افراد در محیطی با منابع محدود وجود دارد
- رقابت بر سر آن منابع باعث می شود آن افرادی که با محیط
 سازگارترند از شایستگی بالاتری برای انتخاب برخوردار شوند
- این افراد شایسته، به عنوان بذرهایی برای تولید نسل آینده استفاده می شوند. نسل آینده به وسیله اعمالی مانند ترکیب و جهش برروی این بذرها به وجود می آید.
 - افراد جدید میزان شایستگی خود را خواهند داشت و برای تولید نسل بعدی با یکدیگر رقابت خواهند کرد
- با گذر زمان، انتخاب طبیعی باعث بهبود شایستگی در کل جمعیت خواهد شد

Recap 2:

- الگوریتمهای تکاملی زیرمجموعه ای از الگوریتمهای generate and test
- آنها الگوریتمهایی تصادفی و مبتنی بر جمعیت هستند
- عملگرهای ترکیب و جهش، گوناگونی لازم را ایجاد کرده و
 باعث به وجود آمدن نمونه های جدید می شوند
- عملگر انتخاب، گوناگونی را کاهش داده و بعنوان عاملی برای حفظ نمونه های با کیفیت تر می شود

The Main Evolutionary Computing Metaphor

EVOLUTION

PROBLEM SOLVING

كزآموزش اكتروية

Environment Problem

Individual Candidate Solution

Fitness Quality

Fitness → chances for survival and reproduction

Quality → chance for seeding new solutions

Pseudo-code for typical EA


```
INITIALISE population with random candidate solutions;

EVALUATE each candidate;

REPEAT UNTIL ( TERMINATION CONDITION is satisfied ) DO

1 SELECT parents;

2 RECOMBINE pairs of parents;

3 MUTATE the resulting offspring;

4 EVALUATE new candidates;

5 SELECT individuals for the next generation;

OD

END
```


انواع الگوریتم های تکاملی

- هر یک از انواع الگوریتم های تکاملی، از روش متمایزی برای بازنمایی جمعیت استفاده می کند:
- Binary strings : Genetic Algorithms
- Real-valued vectors : Evolution Strategies
- Finite state Machines: Evolutionary Programming
- LISP trees: Genetic Programming
 - برای انتخاب الگوریتم مناسب از این استراتژی استفاده نمایید:
 - انتخاب مناسب ترین روش بازنمایی برای مسأله مورد نظر
- انتخاب مناسب ترین عملگرهای دگرگون سازی برای روش بازنمایی مورد نظر
- عملگرهای انتخاب، تنها از معیار شایستگی استفاده می کنند و لذا مستقل از روش بازنمایی هستند

مرز آموزش اکترویو

اجزاء اصلى الگوريتم هاى تكاملي

انگلیسی	فارسی
Representation	بازنمایی
Evaluation	ارزیابی
Population	جمعیت
Parent Selection	انتخاب والد
Recombination	تركيب
Mutation	جهش
Survivor Selection	انتخاب بازماندگان
Termination	پایان دهی