

Midterm Presentation -P4 Accuracy of Approximate Circuits

Fabian Garber, Simon Howind, Kagan Özten, Martin Resetarits, Peter Traunmüller

Introduction

- Advantages of approximate computing
- Energy-efficient
- Less area
- Less computing time

Designed architecture

- Presenting our design
- implementing two versions of Full-Adder (one exact and one approximate)
- CIRCUIT DIAGRAMME hinzufügen und Unterschiede erklären mit Hilfe von Tabelle

Circuit Designs

Truth Table

Input			Full Adder		INXA1	
x	y	c_{in}	c_{out}	s	c_{out}	s
0	0	0	0	0	0 🗸	0 🗸
0	0	1	0	1	$_{1}$ X	$1 \checkmark$
0	1	0	0	1	0 🗸	$1 \checkmark$
0	1	1	1	0	$1 \checkmark$	0 🗸
1	0	0	0	1	0 🗸	$1 \checkmark$
1	0	1	1	0	$1 \checkmark$	0 🗸
1	1	0	1	0	$_{0}$ \boldsymbol{x}	0 🗸
1	1	1	1	1	$1 \checkmark$	$1 \checkmark$

Progress – Faced Problems - Solutions

- VHDL Code
- Python Code

Progress – Faced Problems - Solutions

Binary Decision tree BILD

Future Plans

- Time, Area and Power Analysis with VHDL TOOL
- Implementation in Open Source Processor
- Worst Case Error Analysis with BDT
- Implementing on Zedboard (Hardware)

Thank you!

