CGPI – Computação Gráfica e Processamento de Imagens

Aula 15 – Filtros em imagens

Prof. Claudinei Walker prof.walker@gmail.com

Convolução

Def.: Operação matemática onde duas funções geram uma terceira que normalmente é o resultado da transformação de uma função em relação à outra.

$$(f*g)(t) \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f(\tau) g(t-\tau) d\tau = \int_{-\infty}^{\infty} f(t-\tau) g(\tau) d\tau.$$

Convolução

Convolução

Convolução

Convolution Animation (discrete)

$$y_{j} = \sum_{k} S_{k}h_{j-k}$$

$$= 0 2 -2 1 0 0 0 0 *$$
1 3 0.5 -1

Convolução

Convolução

1	2	3
4	5	6
7	8	9

n	-1	0	1
-1	-1	-2	-1
0	0	0	0
1	1	2	1

-13	-20	-17
-18	-24	-18
13	20	17

Input Kernel

Output

Convolução discreta em 2D

1	2	1
0 1	0 2	0 3
-1 4	<mark>-2</mark> 5	-1 6
7	8	9

	1	2	1
1	0 2	0 3	0
4	-1 5	-2 6	-1
7	8	9	

1	2 1	1 2	3
0	0 4	<mark>0</mark> 5	6
-1	-2 7	-1 8	9

1 1	2 2	1 3
0 4	<mark>0</mark> 5	<mark>0</mark> 6
- 1 7	-2 8	-1 9

1	1 2	2 3	1
4	<mark>0</mark> 5	0 6	0
7	-1 8	-2 9	-1

	1	2	3
1	2 4	1 5	6
0	° 7	8	9
-1	-2	-1	

1	2	3
1 4	² 5	1 6
° 7	8	0 9
-1	-2	-1

1	2	3	
4	1 5	2 6	1
7	8	0 9	0
	-1	-2	-1

Técnicas de Filtragem

Operação local → o nível de cinza de um ponto P transformado depende do valor do nível de cinza original do ponto e da vizinhança de P.

Utiliza-se matrizes (máscaras): cada posição da máscara está associada a um valor numérico (peso ou coeficiente), ou apenas indica os pixels a serem filtrados.

Filtros Lineares

Passa-baixas

- suavização ("Smoothing") da imagem.
- Redução do efeito de ruído.
- Simulação da resolução espacial do sensor

Passa-altas

 realça a imagem → transições entre diferentes regiões tornam-se mais nítidas(bordas, linhas curvas ou manchas)

Convolução

Operação usada no processo de filtragem linear

- Projeção da máscara sobre a imagem que está sendo processada
- Soma dos NCs dos pixels ponderados pelos coeficientes da máscara (filtro)

Filtragem espacial

uma máscara é aplicada na imagem de interesse

$$g(x,y) = T[f(x,y)]$$

T opera em uma vizinhança de pixels

w1	w2	w3
w4	w5	w6
w7	w8	w9

$$z5' = R = w1z1 + w2z2 + ... + z9w9$$

Filtragem Linear

Soma os produtos dos pesos do filtro pelos níveis de cinza dos pixels correspondentes na máscara.

Imagem Original

Imagem Filtrada

Filtros Passa-baixas Lineares

- Maior a máscara → maior efeito de borramento
- Pesos positivos, média ponderada.
- Soma dos pesos igual a 1 → não altera a média

1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1 2 1 2 4 2 *1/16 1 2 1

1 1 1 1 2 1 1 1 1 1

Filtros Lineares: passa-baixas

$\frac{1}{49}$ ×	1	1	1	1	1	1	1
	1	1	1	1	1	1	1
	1	1	1	1	1	1	1
	1	1	1	1	1	1	1
	1	1	1	1	1	1	1
	1	1	1	1	1	1	1
	1	1	1	1	1	1	1
				(c)			

 O tamanho da máscara (ou seja, vizinhança) determina o grau de suavização e perda de detalhes

Filtragem passa-baixas

Filtro da média 3x3

Filtros Passa-Baixas Linear - Efeitos

- ⇒ O efeito visual de um filtro passa-baixas é o de borramento (smoothing) da imagem uma vez que as altas freqüências, que correspondem às transições, são atenuadas
- ⇒ A suavização tende também, pelas mesmas razões, a minimizar o efeito do ruído em imagens
- ⇒ A filtragem passa-baixas linear tem o efeito indesejado de diminuir a resolução da imagem.

Filtro Passa-Baixas Não Linear - Mediana

- Um exemplo de filtro passa-baixas não linear que diminui o borramento e ao mesmo tempo retira o ruído é o filtro da mediana;
- ◊Suaviza sem diminuir a resolução.

Filtros passa-baixas não lineares

- Filtros mais usados:
- Filtro da mediana: os pontos da vizinhança de (x,y) dentro de uma janela na imagem são ordenados, e tomado como novo valor para (x,y) o valor mediano desta ordenação;
- Filtro da Moda: toma o valor mais frequente de uma vizinhança

Filtros Lineares: passa-altas

- · Pesos positivos, negativos e nulos;
- · Diferença dos níveis de cinza;
- Enfatiza o ruído:
- •É uma aproximação da derivada por diferenças finitas.

Imagem

laplaciano(desta) = Imagem realçada

Filtros Direcionais

- Realça bordas em uma direção específica
- Passa-altas em uma direçao; passa-baixas em outra direçao.

norte

leste

nordeste

Processamento Digital de Imagens Filtros Digitais

Claudinei Walker

claudinei.walker@amail.com

Utilização: 1) Os valores da "Imagem Original" são gerados aleatoriamente, no intervalo de 0 a 255. Tecle F9 para gerar novos valores;

- 2) O filtro 3x3 pode ser alterado a qualquer momento (passa-baixas, passa-altas, etc.);
- 3) A "Imagem Filtrada" é o resultado da convolução da "Imagem Original" com o filtro;
- 4) Os histogramas abaixo mostram os valores dos NCs antes e depois da filtragem (observe que para um filtro de soma 1 a média não se altera).

Imagem Original									
53	83	133	24	18	41	224	193	54	245
26	185	242	170	25	121	204	219	7	1
105	46	3	10	63	189	171	62	15	148
109	11	176	182	44	249	228	3	25	25
112	99	102	195	139	98	88	154	93	139
183	162	26	25	240	165	151	104	215	45
37	117	173	80	37	188	237	93	108	152
145	90	83	151	80	129	242	164	239	145
103	24	186	250	106	132	131	7	198	224
165	253	32	79	156	163	235	163	195	103

AVG 125,6 STD 74.5

Filtro							
1	1	1					
1	1	1					
1	1	1					

Filtro com pesos aplicados

Filtro	com pes	<u>os apiik</u>
0,11	0,11	0,11
0,11	0,11	0,11
0,11	0,11	0,11

26	97	100	76	73	117	158	128	105	1
105	100	114	102	117	144	171	114	- 66	148
109	85	92	102	130	141	148	103	84	25
112	109	109	125	149	156	148	128	99	139
183	112	109	113	130	149	142	138	123	45
37	113	101	99	122	163	164	173	141	152
145	106	128	127	128	142	147	158	148	145
103	120	128	125	138	153	152	175	160	224
165	253	32	79	156	163	235	163	195	103
AVG	125,3								

53 83 133 24 18 41 224 193 54 245

STD 25.7

Soma dos pesos do filtro

128 105 1 114 66 148

Atividade prática

- 1) Implemente utilizando a ferramenta FREEMAT os filtros:
 - 1) Média
 - 2) Mediana
 - 3) Pelo menos um filtro direcional
- 2) Utilizando o script de geração de ruído em imagens, selecione 3 imagens diferentes à sua escolha e aplique ruído gaussiano nestas imagens;
- 3) Utilizando os três filtros que você desenvolveu, efetue a limpeza das imagens ruidosas
- 4) Efetue um teste que mostre claramente que o filtro que você implementou realmente eliminou parte do ruído gaussiano das imagens;
- 5) Escreva um texto explicando como você desenvolveu seus filtros e apresentando os resultados

Esta atividade valerá como nota da atividade mensal 2 (teoria) e prática bimestral 2. Data da entrega: 22/11