Planche 2:

1) La fonction f_n est polynomiale, donc dérivable, et $f'_n: x \mapsto a_1 + \sum_{k=2}^n k a_k x^{k-1}$ est strictement positive sur \mathbb{R}_+ d'après les hypothèses sur les signes des coefficients. Elle admet donc au plus une racine dans \mathbb{R}_+ , donc dans \mathbb{R}_+^* .

Par ailleurs, $f_n(0) = -a_0 < 0$ et $\lim_{+\infty} f_n(x) = +\infty$, donc il existe $b \in \mathbb{R}_+^*$ tel que f(b) > 0. En appliquant le théorème des valeurs intermédiaires à la fonction continue f_n sur [0, b], on prouve l'existence d'au moins une racine de f_n dans \mathbb{R}_+^* .

Finalement, une telle fonction f_n s'annule une unique fois sur \mathbb{R}_+^* , en u_n .

2) a) Voici une manière de tracer des graphes sur un même dessin.

```
def g(n, x):
    resultat = -1
    for k in range(1, n + 1):
        resultat = resultat + (k + 1)*x**k
    return(resultat)
x = linspace(0, 1, 100)
couleurs = ["red", "blue", "green", "orange", "brown", "pink", "black"]
for k in range(1,8):
    def h(x) :
        return(g(k, x))
    y = h(x)
    L.append(y)
for k in range(1,8):
    plot(x, L[k - 1], color = couleurs[k - 1])
grid()
title("Graphes des fonctions g_k sur [0, 1]")
xlabel("x")
ylabel("y = g_k(x)")
axhline(color = "black")
axvline(color = "black")
show()
```


Sur le graphe demandé par l'énoncé (à droite), on n'y voit rien. Sur le zoom (à droite), on conjecture que (u_n) décroît, et que sa limite ℓ n'est pas nulle (proche de 0,3?).

b) On pose $\forall x \in \mathbb{R}$, $G_n(x) = -x + \sum_{k=1}^n x^{k+1}$. On constate que $g_n = G'_n$ et que pour tout $x \neq 1$, on a $G_n(x) = -x + \frac{x^2 - x^{n+2}}{1 - x}$. Il en résulte que

$$\forall x \neq 1, \quad g_n(x) = -1 + \frac{(2x - (n+2)x^{n+1})(1-x) + x^2 - x^{n+2}}{(1-x)^2} = \frac{(n+1)x^{n+2} - (n+2)x^{n+1} - 2x^2 + 4x^{n+2}}{(1-x)^2}$$

Le nombre u_n vérifie donc la relation

$$(n+1)u_n^{n+2} - (n+2)u_n^{n+1} - 2u_n^2 + 4u_n - 1 = 0.$$

Comme la suite de fonctions (g_n) est croissante sur [0,1], c'est-à-dire que pour tout $x \in [0,1]$, la suite $(g_n(x))$ est croissante, on a

$$0 = g_n(u_n) \leqslant g_{n+1}(u_n).$$

Comme g_{n+1} est une fonction croissante sur [0,1], on en déduit que la racine u_{n+1} de g_{n+1} est plus petite que u_n , ce qui montre que (u_n) décroît. Décroissante et minorée (par zéro), la suite (u_n) converge, et sa limite vérifie $0 \le \ell \le u_1 = \frac{1}{2}$.

Les résultats de croissances comparées montrent alors que les deux suites de termes généraux $(n+1)u_n^{n+2}$ et $(n+2)u_n^{n+1}$ convergent vers zéro. En passant à la limite dans l'équation satisfaite par u_n on trouve alors

$$2\ell^2 - 4\ell + 1 = 0.$$

La limite cherchée appartenant à [0,1], elle vaut (la valeur numérique est en accord avec le zoom fourni plus haut) :

$$\ell = \frac{2 - \sqrt{2}}{2} \approx 0,29.$$

3) Dans cette question, on a donc $f_n(x) = -1 + \sum_{k=1}^n k! x^k$. Les mêmes arguments que dans le cas de la suite (g_n) montrent que f_n possède une unique racine dans \mathbb{R}_+^* , notée encore u_n , que la suite (u_n) décroît, donc qu'elle converge vers une limite notée encore ℓ , avec $\ell \geq 0$. Si jamais ℓ était strictement positive, on aurait $\forall n, 0 < \ell \leq v_n$ donc, par croissance de la fonction f_n sur \mathbb{R}_+ ,

$$f_n(\ell) \leqslant f_n(v_n) = 0.$$

Or le membre de gauche de cette inégalité tend vers $+\infty$ par croissances comparées (le rayon de convergence de la série entière de terme général $k!z^k$ est nul), donc $+\infty \le 0$: absurde. L'hypothèse $\ell > 0$ est donc fausse, donc

$$\ell = 0$$
.

Planche 3:

1) import numpy.linalg as alg

return A

2) for n in range(2, 11) :
 A = M(n)
 print('n = ', n)

print(A)

print(alg.eigvals(A))

Conjecture : A possède n valeurs propres distinctes, une strictement positive et les autres strictement négatives.

3) On prouve plus précisément que $\lambda \in \operatorname{Sp}(A) \iff \sum_{k=1}^{n} \frac{k}{\lambda + k} = 1$.

Un réel λ est valeur propre de A si et seulement si le système linéaire $(\mathscr{S}_{\lambda}): AX = \lambda X$ possède une solution non nulle. Or

$$(\mathscr{S}_{\lambda}) \iff \forall k \in \{1, \dots, n\}, \quad \sum_{i=1, i \neq k}^{n} ix_i = \lambda x_k \iff \forall k \in \{1, \dots, n\}, \quad \sum_{i=1}^{n} ix_i = (\lambda + k)x_k.$$

Montrons tout d'abord que si $\lambda = -j$ pour un certain j de $\{1, \ldots, n\}$ alors λ n'est pas valeur propre. En effet si X est solution du système (\mathscr{S}_{λ}) , alors l'équation (L_j) donne $\sum_{i=1}^n ix_i = 0$ et, pour $k \neq j$, l'équation (L_k) donne ensuite $0 = (-j+k)x_k$, soit $x_k = 0$, pour tout $k \neq j$ mais $\sum_{i=1}^n ix_i = 0$ donne aussi $x_j = 0$ puis X = 0.

Reprenons alors l'étude de (\mathscr{S}_{λ}) pour un réel $\lambda \notin \{-1, -2, \dots, -n\}$.

— Supposons que λ est valeur propre et que X est une solution non nulle de (\mathscr{S}_{λ}) . Posons $s = \sum_{i=1}^{n} ix_{i}$. Il vient

$$\forall k \in \{1, \dots, n\}, \quad x_k = \frac{s}{\lambda + k},$$

donc $s \neq 0$ (sinon X = 0) puis $s = \sum_{k=1}^{n} kx_k = \sum_{k=1}^{n} \frac{ks}{\lambda + k}$ et en simplifiant par s, on obtient $1 = \sum_{k=1}^{n} \frac{k}{\lambda + k}$.

— Réciproquement soit λ un réel tel que $\sum_{k=1}^n \frac{k}{\lambda+k} = 1$. Le vecteur $X = (\frac{1}{\lambda+1}, \frac{2}{\lambda+2}, \dots, \frac{n}{\lambda+n})^{\top}$ vérifie

$$\sum_{i=1}^{n} ix_i = \sum_{i=1}^{n} \frac{i}{\lambda + i} = 1 = (\lambda + k)x_k$$

pour tout $k \in \{1, ..., n\}$, ce qui équivaut au système (\mathscr{S}_{λ}) et donc $AX = \lambda X$. Comme X est non nul, un tel λ est valeur propre de A.

4) La fonction $f: x \mapsto \sum_{k=1}^n \frac{k}{x+k} - 1$ est définie sur $D = \mathbb{R} \setminus \{-n, -n+1, \dots, -2, -1\}$ et pour $k \in \{2, \dots, n\}$ f décroît strictement sur l'intervalle]-k, -k+1[de $+\infty$ à $-\infty$. Par continuité, elle s'y annule une fois et une seule en λ_k . De même sur $]-1, +\infty[$ f décroît strictement de $+\infty$ à -1. On obtient ainsi n valeurs propres distinctes pour A_n , notées $\lambda_1, \dots, \lambda_n$, vérifiant :

$$-n < \lambda_n < -n+1 < \lambda_{n-1} < -n+2 < \dots < -3 < \lambda_3 < -2 < \lambda_2 < -1 < \lambda_1.$$

La matrice A_n est donc diagonalisable.

Remarque. — Comme f(0) > 0 on a en fait $\lambda_1 > 0$. Il semble aussi que λ_1 devienne de plus en plus grand avec n. Confirmons-le : on a $f(n) = \sum_{k=1}^n \frac{k}{n+k} - 1 \geqslant \frac{1}{2n} (\sum_{k=1}^n k) - 1 = \frac{n+1}{4} - 1 \geqslant 0$ si $n \geqslant 3$. On en déduit que $\lambda_1 \geqslant n$.

Planche 4:

```
1)
  >>> import math as ma
  >>> def u(n) :
           p = 1
           for k in range(1, n + 1):
               p* = 1 - 1/(k**2*(ma.pi)**2)
           return p
  >>> for n in range(1, 11) :
           print(u(n))
   0.8986788163576622
   0.8759150160107488
   0.8660540442116037
   0.8605696929079941
   0.8570819353123076
   0.8546696976410768
   0.8529024293678475
   0.851552162435426
   0.8504869738794859
   0.8496252504108274
   0.8496252504108274
   >>> for n in range(1, 5) :
           print(1/u(10**n))
   1.1769895015672622
   1.187197611936348
   1.1882747624557897
   1.1883830654812606
```

2) On calcule un développement limité:

$$g(t) = \frac{t\cos t - \sin t}{t\sin t} = \frac{t(1 - t^2/2 + (t^2)) - (t - t^3/6 + (t^3))}{t^2 + (t^2)} = \frac{-t^3/3 + (t^3)}{t^2 + (t^2)},$$

donc $g(t) \xrightarrow[t \to 0]{} 0$. Ainsi prolongée, par la valeur 0, la fonction g est continue en 0, et elle l'est clairement sur $]0;\pi[$ par les théorèmes généraux, donc elle est continue sur $[0;\pi[$.

Quant à f, elle est bien définie sur cet intervalle en tant que somme d'une série qui converge simplement (à t fixé, $\frac{2t}{t^2-n^2\pi^2}=\mathrm{O}\left(\frac{1}{n^2}\right)$ donc la série converge). Si l'on note $u_n(t)=\frac{2t}{t^2-n^2\pi^2}=\frac{1}{t-n\pi}+\frac{1}{t+n\pi}$ pour $t\in[0\,;\pi\,[$ alors u_n est clairement décroissante sur cet intervalle, nulle en 0, donc $\forall n\geqslant 2, \|u_n\|_{\infty}=\lim_{t\to\pi^-}|u_n(t)|=\frac{2}{(n^2-1)\pi}$, terme général d'une série convergente. Donc $\sum_{n\geqslant 2}u_n$ converge normalement donc uniformément, donc $\sum_{n\geqslant 1}u_n$ converge uniformément. Les fonctions u_n étant continues, leur somme f l'est donc également.

À noter que u_1 n'est pas bornée, on ne peut espérer la convergence normale de $\sum_{n\geqslant 1}u_n$. En revanche cette série converge normalement sur tout segment de $[0;\pi[$.

Et les deux tracés sont confondus, même avec seulement 10 termes pour calculer f.

4) Soit $x \in]0; \pi[$. La série de fonctions $\sum_{n\geqslant 1} u_n$ converge uniformément sur le segment [0;x], on peut donc intégrer terme à terme, et $\int_0^x g(t) dt = \int_0^x f(t) dt = \sum_{n=1}^{+\infty} \int_0^x u_n$. Or $\int_0^x u_n = \ln(1 - \frac{x^2}{n^2\pi^2})$ et $\int_0^x g = [\ln \frac{\sin t}{t}]_0^x = \ln(\frac{\sin x}{x})$, soit

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \ln \left(1 - \frac{x^2}{k^2 \pi^2} \right) = \ln \left(\frac{\sin x}{x} \right).$$

5) Pour x=1, l'égalité précédente s'écrit $\lim_{n\to+\infty}\ln u_n=\ln\sin(1)$. Par continuité de l'exponentielle,

$$\lim_{n \to +\infty} u_n = \sin(1).$$