Calculo diferencial e integral tomo 1 $_{\mbox{\tiny Nikolai Piskunov}}$

Resolución de problemas por FODE

Índice general

1.	Nún	mero, variable y función	3
	1.1.	Números reales. Representación de número reales por medio de puntos en el eje numérico	3
	1.2.	Valor absoluto del número real	4

1

Número, variable y función

1.1. Números reales. Representación de número reales por medio de puntos en el eje numérico

Definición 1.1 El número racional puede expresarse como la razón $\frac{p}{q}$ de dos números enteros p y q. El número entero p se puede considerar como la razón de dos números enteros $\frac{p}{1}$.

Definición 1.2 Los números en forma de fracciones decimales indefinidas no periódicas, se denominan números irracionales.

Definición 1.3 Para cualquier par de números reales x e y existen una correlación, y sólo una, de las siguientes:

$$x < y,$$
 $x = y,$ $x > y$

Teorema 1.1 Todo número irracional α se puede expresar con cualquier grado de precisión por medio de números racionales.

Demostración.- En efecto, siendo el número irracional $\alpha>0$, calculamos α con un error no mayor de $\frac{1}{n}$ (por ejemplo,, de $\frac{1}{10}$, $\frac{1}{100}$, etc.)
Cualquiera que sea el número α , está comprendido entre dos números enteros consecutivos N y N+1. Di-

Čualquiera que sea el número α , está comprendido entre dos números enteros consecutivos N y N+1. Dividamos el segmento comprendido entre N y N+1 en n partes, entonces el número α resulta comprendido entre los número racionales $N+\frac{m}{n}$ y $N+\frac{m+1}{n}$. Dado que la diferencia entre estos números es $\frac{1}{n}$, cada uno de ellos expresa α con un grado de precisión predeterminado: El primero por defecto y el segundo por exceso.

1.2. Valor absoluto del número real

Definición 1.4 Un número real no negativo, que satisface las condiciones:

$$|x| = x$$
, $si \ x \ge 0$;

$$|x| = -x$$
, $si \ x < 0$

se llama valor absoluto (o módulo) de un número real x.

Propiedad 1.1 El valor absoluto de la suma albegraica de varios números reales no es mayor que la suma de los valores absolutos de los sumandos:

$$|x+y| \le |x| + |y|$$

Demostración.- Sea $x + y \ge 0$, entonces:

$$|x + y| = x + y \le |x| + |y|$$

 $(ya \ que \ x \leq |x| \ e \ y \leq |y|).$

Supongamos ahora que x + y < 0, entonces:

$$|x + y| = -/x + y$$
 = $(-x) + (-y) \le |x| + |y|$,

como se trataba de demostrar.

Propiedad 1.2 El valor absoluto de la diferencia de dos números no es mejor que la diferencia de los valores absolutos del minuendo y sustraendo:

$$|x - y| \ge |x| - |y|$$

Demostración Supongamos que x-y=x. Entonces x=y+z, y según lo demostrado anteriormente, se tiene:

$$|x| = |y + z| \le |y| + |z| = |z| + |x - y|,$$

de donde

$$|x| - |y| \le |x - y|,$$

como se trataba de demostrar.

Propiedad 1.3 El valor absoluto del producto es igual al producto de los valores absolutos de los factores:

$$|xyz| = |x||y||z|.$$

Propiedad 1.4 El valor absoluto del cociente es igual al cociente de dividir el valor absoluto del dividendo por el del divisor:

$$\left|\frac{x}{y}\right| = \frac{|x|}{|y|}.$$

1.3. Magnitudes variables y constantes