#### 2.1 Dénombrement

DEF : Si X est un ensemble fini,  $|X| := \neq X$  car |X| est le nombre d'élément de X, sa cardinalité

### THM 2.1:

- (1) Si  $X \cap Y = \emptyset$ ,  $|X \cup Y| = |X| + |Y|$
- (2)  $|X \times Y| = |X| * |Y|$
- (3) Si  $Y \subset X$ ,  $|X \setminus Y| = |X| |Y|$

DEF : Une application  ${m f}: X o Y$  est une fonction telle que tout élément de X a exactement une image dans Y, càd Df = X, ( $\longleftrightarrow$  An1 :  ${m f}: \frac{A o B}{\mathrm{fonction}}$ ,  ${m f}: \frac{Df o B}{\mathrm{application}}$ )

 $extbf{\emph{f}}$  est injective, si chaque  $y \in Y$  reçoit au plus (au max) une flèche depuis un  $x \in X$   $extbf{\emph{f}}$  est surjective, si chaque  $y \in Y$  reçoit au moins une flèche depuis un  $x \in X$   $extbf{\emph{f}}$  est bijective, si chaque  $y \in Y$  reçoit exactement une flèche depuis un  $x \in X$  càd injective et surjective en même temps

DEF :  $\mathbf{f}^{-1}(y) = \{x \in X \mid \mathbf{f}(x) = y\}$  est la préimage de y Rappel :

 $extbf{ extit{f}}$  injective  $\iff | extbf{ extit{f}}^{-1}(y)| = 0 ext{ ou } 1 \quad orall y \in Y$ 

**f** bijective  $\iff$   $|\mathbf{f}^{-1}(y)| = 1 \quad \forall y \in Y$ 

**f** surjective  $\iff$   $|\mathbf{f}^{-1}(y)| \geq 1 \quad \forall y \in Y \ (\mathbf{f}^{-1}(y) \neq \emptyset)$ 

Rappel : An1:  $\boldsymbol{f}$  injective  $\implies \boldsymbol{f}^{-1}$  fonction (car 0 ou 1 image inverse)

### THM 2.2:

- (1)  $extbf{\emph{f}} \colon X o Y$  application +0  $| extbf{\emph{f}}^{-1}(y)| = k \quad \forall y \in Y, \, |X| o k * |Y|$
- (2) Si  $\boldsymbol{f}$  application bijective, alors |X| = |Y|

Remarque : réciproque de (2) est fausse ! Pourquoi ?

### THM 2.3:

Si |X|=m et |Y|=n, alors il y a exactement  $n^m$  applications  $f:X\to Y$  possibles.  $\forall x\in X$ , on peut choisir f(x) parmi les n éléments de Y

### Corollaires 2.4:

(1) Le nombre de sous-ensemble de A (càd |P(A)|) est  $2^n$ 

 $extit{\it f}: A o \{0,\ 1\} ext{ avec } extit{\it f}(a) = egin{cases} 0 & ext{prend pas a} \ 1 & ext{prend a} \end{cases} ext{donne toutes les possibilités de prendre ou pas des ensembles. Le THM dit qu'il y a <math>|\{0,\ 1\}|^{|X|} = 2^n$ 

(2) Il y a  $2^n$  possibles jets de n pièces à pile ou face

 $X \ = \ \{ \text{pièce 1, pièce 2, ..., pièce n} \} \rightarrow \{ \text{pile, face} \}$ 

(3) Il y a  $2^n$  séquences binaires de longueur n.

**THM 2.5** : Si |X| = m et |Y| = n, il y a  $\frac{n!}{(n-m)!}$  applications injectives

Il y a n possibilités de choisir une mage pour le  $1^{ier}$  élément de X, ..., n-m+1 pour le

Rappel : Si m > n, alors possibilité d'application injective !!!

### Corollaire 2.6:

le nombre d'applications de  $X \in estde n! (= m!)$ .

bijection  $\implies |X| = |Y| \implies m = n$  et on construit des injections qui seront forcément bijectives.

## THM 2.7:

Le nombre de choix ordonnés m balles parmi n est  $\frac{n!}{(n-m)!}$ 

 $\{ position \ 1, ..., position \ m \} \rightarrow \{ balle \ 1, ..., balle \ n \} \ \text{et on voit une application injective}$ 

### THM 2.8:

Le nombre de choix déso. de m balles parmi n est  $\frac{n!}{(n-m)!m!} = \binom{n}{m} \leftarrow \text{coeff binomial}$ 

 $X = \{ \text{choix ordonn\'es} \}, Y = \{ \text{choix d\'esordonn\'es} \}$ 

 $extbf{\emph{f}}: X o Y$  l'application d'oubli (Obliviate) qui prend un choix ordonné et l'envoie sur sa version désordonnée. Chaque choix désordonné provient de m! choix ordonnés (on réarrange les éléments o bijection)  $\implies | extbf{\emph{f}}^{-1}(y)| = m! \quad \forall y \in Y$ 

$$\implies |X| = |Y| * m!$$
 et donc  $|Y| = \frac{|X|}{m!} = \frac{\frac{n!}{(n-m)!}}{m!}$ 

## Corollaire 2.9:

 $\binom{n}{m}$  est le nombre de sous-ensembles de m éléments d'un ensemble de n éléments

### 2.2 Coefficient binomial reloaded

### THM 2.10:

$$\binom{n}{k} = \binom{n}{n-k}$$

On peut le calculer (impossible à lire) par calcul direct, mais voyons un argument de décompte : Soit  $X>0 \quad |X| = n$ .

$$m{f} : \set{A \subset X \mid |A| \ = \ k} 
ightarrow \set{B \subset X \mid |B| \ = \ n-k} A \longmapsto X ackslash A$$

est une bijection

THM 2.11 : 
$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$$

Avec binôme de Newton (Au 1), ou alors : si |X|=n, Corollaire 2.4 (1) :  $|P(X)|=2^n$  et Corollaire 2.9 :  $|\{A\in P(X)\mid |A|=k|=\binom{n}{k}$ 

Exemple : Il y a 
$$\binom{k+l}{k}$$
 chemins monotones (seulement  $o$  ou  $\uparrow$ ) de  $(0,0)$  à  $(k,l)$   $\forall k,l \in {m N}^+$ 



Car il faut faire k+l déplacement (k à droite et l en haut)  $\rightarrow$  on doit répartir k " $\rightarrow$ " et l " $\uparrow$ "

On peut dire : parmi les k+l flèches, on en choisit k " $\rightarrow$ " et l " $\uparrow$ "

$$\Longrightarrow$$
 THM 2.8 dit qu'il y a  $\binom{k+l}{k}$  manière de le faire

Avec ces instruments, on peut revisiter le triangle de Pascal et le binôme de Newton.

THM 2.12 : 
$$0 \le k \le n \implies \binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Il y a  $\binom{n}{k}$  mots binaires avec k "0" (CF Ex précédent)

Prend un tel mot:

$$\nearrow 1 \dots \text{ mot avec } \frac{k \ "0"}{n-k-1 \ "1"} 
ightarrow \binom{n-1}{k}$$

$$\searrow 0 \dots ext{ mot avec} rac{k-1 \ ''0''}{n-k+1 \ ''1''} 
ightarrow inom{n-1}{k-1}$$

→ permet de construire le triangle de Pascal.

THM 2.13 : (Binôme de Newton)

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

$$a^k b^{n-k} \longleftrightarrow \mathsf{produit} \; \mathsf{de} \; k \; '' a'' \; \mathsf{et} \; n-k \; '' b'' o inom{n}{k} \; \mathsf{choix}$$

$$(a+b)^n = rac{(a+b)*\cdots*(a+b)}{n ext{ facteurs}} \Longrightarrow ext{ on doit choisir le nombre k de } "a"$$

**THM 2.14**: 
$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0$$

$$(1+(-1))^n = \sum_{k=0}^n \binom{n}{k} 1^k (-1)^{n-k} = \sum_{k=0}^n \binom{n}{k} (-1)^k 1^{n-k} = 0$$

**DEF**: Une partition de  $n \in \mathbb{N}$  est une écriture de n comme somme d'entier positif. L'ordre compte  $(1+2 \ '' \neq '' \ 2+1)$ .

**THM 2.15** : # {partitions de 
$$n$$
 en  $k$  entiers} =  $\binom{n-1}{k-1}$ 

 $1 ext{ 1 } \dots ext{ 1 } 1$  veut décomposer en k, donc on doit placer k-1 séparations

Combien de positions possible pour les séparations ?  $\rightarrow n-1$ 

**Corollaire 2.16** : L'équation  $n=x_1+\cdots+x_k$  ,  $n\in N*, k\leq n$ , a exactement  $\binom{n-1}{k-1}$ solutions sur  $(N*)^k$ .

**DEF**: Un multiensemble est un ensemble non ordonné d'éléments, avec répétition possible.  $(n - \text{multiensemble} = \text{multiensemble} \emptyset \cup \text{éléments})$ 

**THM 2.17** : le nombre de 
$$n-$$
 multiensembles sur  $\{1,\ldots,k\}$  est  $\binom{n+k+1}{k-1}$ 

Il y a  $\binom{n+k-1}{k-1}$  partitions faibles de n en k nombres non négatifs (donc 0 possible)

$$ightarrow$$
 **THM 2.15**  $\Longrightarrow$  il y a  $inom{n+k-1}{k-1}$  partitions de  $n+k$  en  $k$  (fortes)

Prend une telle partition et fait -1 aux k nombres  $\rightarrow$  on obtient une partition faible de n en knombres > 0

Similaire : prend une partition faible de n en k nombres > 0 et fait +1 à tous  $\rightarrow$  partition forte de n+k en k nombres  $\geq 0 \implies$  bijection entre les 2 ensembles Cela construit une bijection entre {partitions faibles de n en  $k \ge 0$ } et {n — multiensemble sur k éléments

$$n = x_1 + \cdots + x_k, x_i \ge 0 \longrightarrow \{x_1 \text{ fois éléments } 1, \ldots, x_k \text{ fois éléments } k\}$$

**DEF** : Prend une m- partition faible de n, càd  $n=k_1+\cdots+k_m,\;k_i\geq 0.$  Le coefficient multinomial  $\binom{n}{k_1,\ldots,k_m}$  est donné par  $\binom{n}{k_1,\ldots,k_m}:=rac{n!}{k_1!\ldots k_m!}$ Rappel coeff binomial est multinomial avec m =

**THM 2.18** : Il y a  $\binom{n}{k_1,\ldots,k_m}$  manières différentes d'arranger n balles de m couleurs différentes ( $k_i$  de la couleur i)

Il y a n! arrangements distincts (si numérote les balles de couleur i de 1 à  $k_i$ ).

 $X := \{ \text{arrangements numérotés} \} \rightarrow \{ \text{arrangements sans numéros} \} =: Y$ une application d'oubli

 $|f^{-1}(y)| = k_1! * \cdots * k_m!$  car chaque ensemble de balles de la couleur i peut être permuté de  $k_i$ ! manières

$$ightarrow$$
 THM 2.2 (1)  $\implies |Y| = rac{n!}{k_1! \dots k_m!}$ 

**THM 2.19**: (Théorème multinomial)

$$(a_1+\cdots+a_m)^n \ = \sum_{\substack{k_1+\cdots+k_m \ k_1,\ldots,k_m\geq 0}} {n\choose k_1,\ldots,k_m} a_1^{k_1}*\cdots*a_m^{k_m}$$

$$a_1^{k_1} * \cdots * a_m^{k_m} \longleftrightarrow$$
 choix de  $k_1$  fois  $a_1, \ldots, k_m$  fois  $a_m$ 

$$o$$
 **THM 2.18**  $\implies$  il y a  $inom{n}{k_1,\ldots,k_m}$  manière de le faire

 ${f Rappel}$  : on peut généraliser l'exemple des chemins monotones de  ${m N^2}$  à des chemins

monotones de  $N^m$ 

Prend le parallélotope de sommets  $(0,\dots,0)$  et  $(k_1,\dots,k_m)$  opposés Monotone  $\Longrightarrow$  ne peut qu'augmenter les coordonnées, pas les diminuer II y en a  $\binom{k_1+\dots+k_m}{k_1,\dots,k_m}$  car il faut choisir les  $k_1$  fois "+1 en position 1",  $\dots$ ,  $k_m$  "+1 en position m".

# THM 2.20 (Inclusion - Exclusion)

$$|A_1 \cup \dots \cup A_n| \ = \ \sum_{i=1}^n |A_i| - \sum_{1 \leq i < j < k \leq n} |A_i \cap A_j \cap A_k| - \dots + (-1)^{n-1} |A_1 \cap \dots \cap A_n|$$

Exemple : n=2 :



La zone en tré tillée est compté deux fois

 $|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|$  (on retire le milieu car comté deux fois) Exemple : n=3 :



$$|A_1 \cup A_2 \cup A_3| \ = \ |A_1| + |A_2| + |A_3| - |A_1 \cap A_2| - |A_1 \cap A_3| - |A_2 \cap A_3| + |A_1 \cap A_2 + A_3|$$
 #TODO entre  $A_2$  et  $A_3 \cap$  ou + ?

Exemple : Problème de De Montmort (chapeaux)

Des invités quittent une soirée et vont prendre leur chapeaux dans le garde-robe. Dans la pénombre, ils n'arrivent pas à distinguer leur chapeau, donc tout le monde prend un chapeau au hasard.

Quelle est la probabilité que personne n'ait son chapeau?

 $f: \{1, \ldots, n\} \longrightarrow \{1, \ldots, n\} \implies$  application bijective

(permutation) (la personne i prend le chapeau j)

Si  $\mathbf{f}(k) = k$  , x est un point fixe de la permutation,

on veut donc calculer  $\frac{\# \{\text{permutations sous point fixe}\}}{\# \{\text{permutations}\}}$ 

 $\# \ \{ \text{permutations} \} \ = \ n \implies \text{il reste à calculer} \ \# \ \{ \text{permutations sous point fixe} \}$ 

THM 2.21 : le nombre de permutations sous point fixe de n éléments est

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} (n-k)! = \sum_{k=0}^{n} (-1)^k \frac{n!}{k!}$$

 $A_i := \{ \text{permutations qui fixent } i, \text{ càd } \textbf{\textit{f}}(i) = i \} \text{ alors } A_1 \cup \cdots \cup A_n = \{ \text{toutes les permutations avec points fixes} \}$ 

On veut utiliser l'inclusion exclusion; donc on doit calculer  $|A_{i1} \cap \cdots \cap A_{ik}| \quad \forall k$ 

$$A_{i1}\cap\cdots\cap A_{ik} = \{ ext{permutations avec } extbf{ extit{f}}(i_1) = i_1,\ldots, extbf{ extit{f}}(i_k) = i_k \}$$

 $\implies$  il y a k éléments fixés à coup sûr !!!, et les n-k autres sont permutés (avec ou sans point fixe !)

$$\implies A_{i1} \cap \cdots \cap A_{ik} = (n-k)!$$

On peut choisir k indices parmi  $\{1,\ldots,\ n\}$  de  $\binom{n}{k}$  façons différentes

$$\implies A_1 \cup \cdots \cup A_n \ = \ inom{n}{1}(n-1)! - inom{n}{2}(n-2)! + \cdots + (-1)^n inom{n}{n}0!$$

 $\implies$  sous point fixe  $= n! - |A_1 \cup \cdots \cup A_n|$ 

$$= n! - \sum_{k=1}^{n} (-1)^{k+1} \binom{n}{k} (n-k)! \quad | \quad n! = (-1)^0 \binom{n}{0} (n-0)!$$

$$=\sum_{k=0}^n (-1)^k inom{n}{k} (n-k)! \quad ig| \quad inom{n}{k} = rac{n!}{k!(n-k)!}$$

$$=\sum_{k=0}^{n}(-1)^{k}rac{n!}{k!(n-k)!}*(n-k)!$$

$$= \sum_{k=0}^{n} (-1)^k \frac{n!}{k!}$$

$$\implies P(\text{personne n'a son chapeau}) = \frac{\displaystyle\sum_{k=0}^n (-1)^k \frac{n!}{k!}}{n!} = \sum_{k=0}^n (-1)^k \frac{1}{k!}$$

An2 verra que 
$$\sum_{k=0}^{\infty} rac{x^k}{k!} = e^x \implies \sum_{k=0}^n (-1)^k rac{1}{k!} pprox rac{1}{e} pprox 0.37$$
 (si n grand)

 $\mathbf{DEF}: m,\; n \in \mathbf{N^*}$  sont premiers entre eux si leur pgdc est 1

 $arphi(u):=
eq\{m\in\{1,\ldots,\ n\}|m,\ n\ ext{premiers entre eux}\}$  est la fonction indicative d'Euler

Rappel : Si n est premier, arphi(u) = n-1 (et vice-versa)

**THM 2.22** :  $n\in {\pmb N}^*$  ;  $n=p_1^{\alpha_1}*\cdots*p_m^{\alpha_m}$  la décomposition de m en facteurs premiers, càd  $p_1,\ldots,p_m$  premiers  $(p_i\neq p_j)$  et  $\alpha_1,\ldots,\alpha_m\in {\pmb N}^*$ .

Alors 
$$\varphi(n) = n*(1-\frac{1}{p_1})*\cdots*(1-\frac{1}{p_m}) = p_1^{\alpha_1-1}(p_1-1)*\cdots*p_m^{\alpha_m-1}(p_m-1)$$

$$A_i \ = \ \{x \in \{1,\ldots,\ n\} \big| p_i ext{ divise } x\}$$

$$\implies A_1 \cup \cdots \cup A_m = \{k \in \{1, \ldots, n\} | \operatorname{pgdc}(k, n) \neq 1\}$$

et donc 
$$arphi(n) \ = \ n - |A_1 \cup \cdots \cup A_m| \quad \ \ \ \ \ \ \, | \quad n \ = \ |\{1,\ldots,\ n\}|$$

On utilise l'inclusion exclusion pour calculer  $|A_1 \cup \cdots \cup A_m|$ 

$$A_i \ = \ \{p_i,\ 2p_i,\ldots,\ rac{n}{p_i}p_i\} \quad (rac{n}{p_i} \in oldsymbol{N} \ ext{car} \ p_i \ ext{diviseur} \ ext{de} \ n)$$

$$\implies |A_i| = \frac{n}{p_i}$$

Similaire : 
$$|A_{i_1} \cap \cdots \cap A_{i_k}| = \frac{n}{p_{i_1} * \cdots * p_{i_k}}$$

$$= \{p_{i_1} * \cdots * p_{i_k}, \ 2p_{i_1} * \cdots * p_{i_k}, \dots, \frac{n}{p_{i_1} * \cdots * p_{i_k}} * p_{i_1} * \cdots * p_{i_k}\}$$

$$\Longrightarrow |A_1 \cup \dots \cup A_m| = \sum_{i=1}^m \frac{n}{p_i} - \sum_{i < j} \frac{n}{p_i p_j} + \dots + (-1)^{m-1} \frac{n}{p_1 * \cdots * p_m}$$

$$\Longrightarrow \varphi(n) = n - |A_1 \cup \dots \cup A_m|$$

$$= n(1 - \sum_{i=1}^m \frac{1}{p_i} + \dots + (-1)^m \frac{n}{p_1 * \cdots * p_m})$$