Physical Layer: Bit Errors and Coding

Signal to Noise Ratio (SNR)

- Shannon limit = B log₂(1 + S/N)
 B is Bandwidth, S is Signal strength, N is Noise
 - ► Possible data rate bounded by the signal to noise ratio (SNR)
 - ▶ Just a limit! Don't necessarily know how to achieve it
 - Bandwidth typically fixed
- Stronger signal means you can transmit data faster
 - Shorter symbols
 - ► More bits per symbol (denser constellation)

Signal with Noise

Example: 16-QAM

(constellation used in HSPDA)

Low-Noise Reception

High Noise Reception

SNR/BER Curves

- For a given modulation scheme and signal-to-noise ratio, you can compute the expected bit error rate
 - Making some mathematical assumptions about noise
 - ► Bedrock principle of RF communication theory
- Bit error rate can become arbitrarily low, but never reaches zero!
- In practice, the math works out that sending packets as raw bits is very inefficient
 - Expected data throughput is far, far below Shannon limit

Bits vs. Symbols

Bits vs. Symbols

Packet data (bits)

Coding

- Adding a little redundancy at the physical layer can greatly improve link layer throughput
 - ▶ Both in theory and in practice
- Coding gain: the ratio of bits at link layer to bits at physical layer
 - ► 1/2 code: each link layer bit is 2 physical layer bits
 - ▶ 3/4 code: each 3 link layer bits are 4 physical layer bits

0,0 7,0

Example: 802.15.4 (QPSK)

Zishill

Calculating Data Rate

bitrate = bits/symbol * symbol rate * coding rate

Example: 802. I 5.4

Bitrate: 250kbps

Coding rate: 16 chips of 2 bits = 4 bits

1/8 code

J. Bomps = 7, Mbps Million symbols

Example: 802.11n

Data Rate (Mbps)

MCS Index	Spatial Streams			20MHz_Channel		40 MHz Channel	
		Modulation	Coding	800ns GI	, 400ns GI	800ns GI	₩00ns GI
0	I	BPSK	1/2	6.5	7.2	13.5	15.0
I	1	QPSK	1/2	13.0	14.4	27.0	30.0
2	1	QPSK	3/4	19.5	21.7	40.5	45.0
3	1	I6-QAM	1/2	26	28.9	54.0	60.0
4	1	I6-QAM	3/4	39	43.3	81.0	90.0
5	1	64-QAM	2/3	52	57.8	108.0	120.0
6	1	64-QAM	3/4	58.5	65.0	121.5	135.0
7	I	64-QAM	5/6	65	72.2	135.0	150.0

Overview

- Chips (physical layer) versus bits (link layer)
- Physical layer must deal with noise, which can cause chip errors
 - ► Denser modulation provides higher throughput
 - Sparser modulation has fewer errors
- Translating between link layer bits and physical layer bits
 - ▶ I:I mapping is rarely the most efficient data representation
 - ► Coding gain: L2/L1 ratio, so can be robust to some chip errors
- Example: 802.11n