737

Quick Reference Handbook

Quick Action Index

Aborted Engine Start	7.1
Airspeed Unreliable	. 10.1
APU FIRE	8.1
CABIN ALTITUDE WARNING	. 2.1
Emergency Descent	0.1
ENGINE FIRE	8.2
Engine Limit or Surge or Stall	7.2
ENGINE OVERHEAT	8.5
Engine Severe Damage or Separation	8.2
Engine Tailpipe Fire	8.6
Evacuation Back Cov	er.2
LANDING CONFIGURATION	. 15.1
Loss Of Thrust On Both Engines	7.6
Overspeed	. 15.1
Rapid Depressurization	. 2.1
Runaway Stabilizer	9.1
Smoke, Fire or Fumes	8.8
TAKEOFF CONFIGURATION	. 15.1
Uncommanded Rudder/Yaw Or Roll	9.3
WARNING HORN (INTERMITTENT)	. 15.2
WARNING LIGHT - CABIN ALTITUDE OR	
TAKEOFF CONFIGURATION	15 2

Intentionally Blank

Lights	Chapter Lights
Index	Section Index
A	
A/P	4.1
A/T	4.1
\ensuremath{AFT} - Cargo Fire and FIRE WARN	8.14
AFT CARGO	1.4
AFT ENTRY	1.8
AFT SERVICE	1.12
AIR STAIR	1.1
ALIGN and FAULT - IRS	11.4
ALT ALERT	15.3
ANTISKID INOP	14.1
APU - Fire and FIRE WARN	8.1
APU DET INOP	8.12
AUTO BRAKE DISARM	14.3
AUTO FAIL	2.2
AUTO SLAT FAIL	9.10
AUTO UNLK	1.3
В	
BLEED TRIP OFF	2.6
BUS OFF (both)	
BUS OFF (single)	
BUS OFF, TRANSFER BUS OFF and GEN	
sides)	
C	
CABIN ALTITUDE	2.1
CAPT P/S 1 AUX STATIC	3.3

Lights.Index.2

DO NOT USE FOR FLIGHT

CAPT STATIC 1 AUX P/S COWL ANTI-ICE COWL VALVE OPEN - Engine Anti Ice	3.1
D DC FAIL DETECTOR FAULT DUAL BLEED DUCT OVERHEAT	8.15 2.7
E ENG 1 OVERHEAT ENG 2 OVERHEAT Engine 1 - Fire and FIRE WARN Engine 2 - Fire and FIRE WARN EQUIP	8.5 8.2 8.2
F F/O P/S 2 AUX STATIC F/O STATIC 2 AUX P/S FAULT - APU FAULT - Engine Fire/Overheat Detector	3.3 7.11
FAULT - IRS FAULT and ALIGN - IRS FEEL DIFF PRESS FILTER BYPASS FIRE WARN and AFT - Cargo Fire FIRE WARN and APU - Fire	11.4 9.11 12.6 8.14
FIRE WARN and Engine 1 - Fire FIRE WARN and Engine 2 - Fire	

Lights. Index. 3

DO NOT USE FOR FLIGHT

FIRE WARN and FWD - Cargo Fire	8.14
FIRE WARN and WHEEL WELL - Fire	
FMC - CDU Alerting	11.1
FMC - FMC FAIL (Single FMC Option)	
FMC and MSG - CDU Alerting	
FWD - Cargo Fire and FIRE WARN	
FWD CARGO	
FWD ENTRY	
FWD SERVICE	1.12
G	
GEN OFF BUS, BUS OFF and TRANSFER BUS (sides)	
н	
HIGH OIL TEMP - APU	7.11
HIGH OIL TEMP - Generator Drive	6.3
I	
INOP - Ground Proximity	15.3
INOP - PMC	
L	
L ALPHA VANE	2.2
L ELEV PITOT	
L VALVE OPEN - Wing Anti Ice	
LE FLAPS TRANSIT	
LEFT GEAR	
LOCK FAIL	
LOW IDLE	
LOW IDLL	

Lights. Index. 4

DO NOT USE FOR FLIGHT

LOW OIL PRESSURE - APU	7.12
LOW OIL PRESSURE - Engine	7.22
LOW OIL PRESSURE - Generator Drive	6.4
LOW PRESSURE - Flight Control	9.11
LOW PRESSURE - Fuel Pump AUX FUEL	12.10
LOW PRESSURE - Fuel Pump	12.8
LOW PRESSURE - Hydraulic Pump - Standby	13.15
LOW PRESSURE - Hydraulic Pump - System A (both)	13.2
LOW PRESSURE - Hydraulic Pump - System A and B	12 10
LOW PRESSURE - Hydraulic Pump -	
System B (both)	
LOW PRESSURE - Hydraulic Pump (single)	
LOW QUANTITY	13.16
М	
MACH TRIM FAIL	9.19
MSG and FMC - CDU Alerting	11.1
N	
NOSE GEAR	1/1 6
NOT ARMED	
NOT ARTIED	1./
0	
OFF - Equipment Cooling	
OFF - Flight Recorder	
OFF SCHED DESCENT	
OIL FILTER BYPASS	
ON DC	11.7

Lights.Index.5

DO NOT USE FOR FLIGHT

OVER SPEED - APU	7.12
OVERHEAT - Hydraulic Pump	13.1
OVERHEAT - Window	
P	
PACK TRIP OFF	2.10
PASS OXY ON	1.12
R	
R ALPHA VANE	3.3
R ELEV PITOT	3.3
R VALVE OPEN - Wing Anti Ice	3.6
REVERSER UNLOCKED	7.29
REVERSER	7.28
RIGHT GEAR	14.6
S	
SPEED BRAKE DO NOT ARM	9.20
SPEED TRIM FAIL	9.21
STAB OUT OF TRIM	9.22
STANDBY PWR OFF	6.12
START VALVE OPEN	7.30
STBY RUD ON	9.27
т	
TAKEOFF CONFIG	15.1
TEMP PROBE	3.3
TRANSFER BUS OFF	6.12
TRANSFER BUS OFF, BUS OFF and GEN OFF (
sides)	6.6

Lights. Index. 6

DO NOT USE FOR FLIGHT

V	
VALVE OPEN - Crossfeed	12.1
W	
WHEEL WELL - Fire and FIRE WARN	8.22
WING-BODY OVERHEAT	2.14
Y	
YAW DAMPER	9.41

Unannunciated	Chapter Unann
Index	Section Index
Aborted Engine Start	7.1
Airspeed Unreliable	10.1
All Flaps Up Landing	9.8
Brake Pressure Indicator Zero PSI	14.5
Ditching	0.4
Elevator Tab Vibration	9.10
Emergency Descent	0.1
Engine Failure or Shutdown	7.14
Engine Fuel Leak	12.2
Engine High Oil Temperature	7.16
Engine In-Flight Start	7.18
Engine Limit or Surge or Stall	7.2
Engine Severe Damage or Separa	ation8.2
Engine Tailpipe Fire	8.6
Evacuation E	Back Cover.2
Fuel Quantity Indication Inoperative	12.12
Fuel Temperature Low	12.13
High Engine Vibration	7.24
Inadvertent Transfer of Fuel into Cer	nter Tank 12.14
Jammed or Restricted Flight Controls	s9.12
LANDING CONFIGURATION	15.1
Landing Gear Lever Jammed in the U	Jp Position 14.10
Landing Gear Lever Will Not Move Up After Takeoff	
Loss Of Thrust On Both Engines.	
Manual Gear Extension	

Unann.Index.2

DO NOT USE FOR FLIGHT

Minimum Fuel Operation	12.16
One Engine Inoperative Landing	
Overspeed	
Partial or All Gear Up Landing	14.28
Radio Transmit Continuous (Stuck Microphone Switch)	5.1
Rapid Depressurization	
Runaway Stabilizer	9.1
Smoke or Fumes Removal	
Smoke, Fire or Fumes	8.8
Stabilizer Trim Inoperative	
Tail Strike	15.4
Trailing Edge Flap Asymmetry	9.28
Trailing Edge Flap Disagree	9.32
Trailing Edge Flaps Up Landing	9.38
Uncommanded Rudder/Yaw Or Roll	
Unscheduled Pressurization Change	2.2
Volcanic Ash	7.32
Window Damage	1.14
Window Damage Window 3 Not Heated	1.18
Window Open	1 22

Alphabetical	Chapter Alpha
Index	Section Index
A	
A/P	4.1
A/T	4.1
Aborted Engine Start	7.1
AFT - Cargo Fire and FIRE WARN	8.14
AFT CARGO	1.4
AFT ENTRY	1.8
AFT SERVICE	1.12
Airspeed Unreliable	10.1
AIRSTAIR	1.1
ALIGN and FAULT - IRS	11.4
All Flaps Up Landing	9.8
ALT ALERT	15.3
ALTITUDE ALERT	15.3
ANTISKID INOP	14.1
ANTISKID INOPERATIVE	14.1
APU - Fire and FIRE WARN	8.1
APU DET INOP	8.12
APU DETECTION INOPERATIVE	8.12
APU FAULT	7.11
APU FIRE	8.1
APU HIGH OIL TEMPERATURE	7.11
APU LOW OIL PRESSURE	7.12
APU OVERSPEED	7.12
AUTO BRAKE DISARM	14.3
AUTO FAIL	2.2

Alpha. Index. 2

DO NOT USE FOR FLIGHT

AUTO SLAT FAIL	1.3 1.3 4.1
B BLEED TRIP OFF	4.5 6.1 6.6 oth
C	
CABIN ALTITUDE WARNING 2	.1
CABIN ALTITUDE WARNING 2 CABIN ALTITUDE	
	2.1
CABIN ALTITUDE	2.1 3.3
CABIN ALTITUDE	2.1 3.3 3.3
CABIN ALTITUDE	2.1 3.3 3.3 1.4
CABIN ALTITUDE	2.1 3.3 3.3 1.4 .14
CABIN ALTITUDE	2.1 3.3 3.3 1.4 .14 .15
CABIN ALTITUDE	2.1 3.3 3.3 1.4 .14 .15 3.1
CABIN ALTITUDE	2.1 3.3 3.3 1.4 .14 .15 3.1
CABIN ALTITUDE	2.1 3.3 3.3 1.4 .14 .15 3.1 3.2 2.1
CABIN ALTITUDE	2.1 3.3 3.3 1.4 .14 .15 3.1 3.2 2.1
CABIN ALTITUDE	2.1 3.3 3.3 1.4 .14 .15 3.1 3.2 2.1

Alpha. Index. 3

DO NOT USE FOR FLIGHT

DUAL BLEED	
DUCT OVERHEAT	2.8
E	
Elevator Tab Vibration	9.10
Emergency Descent	0.1
EMERGENCY EXIT LIGHTS NOT ARMED	1.7
ENG 1 OVERHEAT	8.5
ENG 2 OVERHEAT	8.5
Engine 1 - Fire and FIRE WARN	8.2
Engine 2 - Fire and FIRE WARN	8.2
ENGINE COWL ANTI-ICE	3.1
ENGINE COWL VALVE OPEN	3.2
Engine Failure or Shutdown	7.14
ENGINE FIRE	8.2
ENGINE FIRE/OVERHEAT DETECTOR FAULT	8.16
Engine Fuel Leak	12.2
Engine High Oil Temperature	7.16
Engine In-Flight Start	
Engine Limit or Surge or Stall	7.2
ENGINE LOW OIL PRESSURE	
ENGINE OIL FILTER BYPASS	
ENGINE OVERHEAT	
Engine Severe Damage or Separation	8.2
Engine Tailpipe Fire	
ENTRY DOOR	
EQUIP	
EQUIPMENT COOLING OFF	2.9

Alpha.Index.4

DO NOT USE FOR FLIGHT

EQUIPMENT DOOR	1.9
Evacuation Back Co	over.2
F	
F/O P/S 2 AUX STATIC	3.3
F/O STATIC 2 AUX P/S	3.3
FAULT - APU	7.11
FAULT - Engine Fire/Overheat Detector	8.16
FAULT - IRS	11.4
FAULT and ALIGN - IRS	11.4
FEEL DIFF PRESS	9.11
FEEL DIFFERENTIAL PRESSURE	9.11
FILTER BYPASS	12.6
FIRE WARN and AFT - Cargo Fire	8.14
FIRE WARN and APU - Fire	8.1
FIRE WARN and Engine 1 - Fire	8.2
FIRE WARN and Engine 2 - Fire	8.2
FIRE WARN and FWD - Cargo Fire	8.14
FIRE WARN and WHEEL WELL - Fire	8.22
FLIGHT CONTROL LOW PRESSURE	9.11
FLIGHT RECORDER OFF	10.1
FMC - CDU Alerting	11.1
FMC - FMC FAIL (Single FMC Option)	11.1
FMC and MSG - CDU Alerting	11.1
FMC FAIL	
FMC/CDU ALERTING MESSAGE	11.1
FUEL FILTER BYPASS	12.6
FUEL PUMP LOW PRESSURE	12.8

FUEL PUMP LOW PRESSURE AUX FUEL 12.10
Fuel Quantity Indication Inoperative 12.12
Fuel Temperature Low
FWD - Cargo Fire and FIRE WARN8.14
FWD CARGO1.4
FWD ENTRY
FWD SERVICE1.12
G
GEAR DISAGREE14.6
GEN OFF BUS, BUS OFF and TRANSFER BUS OFF (both sides)6.6
GENERATOR DRIVE HIGH OIL TEMPERATURE6.3
GENERATOR DRIVE LOW OIL PRESSURE6.4
GROUND PROXIMITY INOPERATIVE15.3
н
High Engine Vibration7.24
HIGH OIL TEMP - APU7.11
HIGH OIL TEMP - Generator Drive6.3
HYDRAULIC PUMP LOW PRESSURE13.3
HYDRAULIC PUMP OVERHEAT13.3
I
Inadvertent Transfer of Fuel into Center Tank 12.14
INOP - Ground Proximity15.3
INOP - PMC
IRS DC FAIL11.2
IRS FAULT11.4
IRS ON DC11.7

Alpha.Index.6

DO NOT USE FOR FLIGHT

J	
Jammed or Restricted Flight Controls	9.12
L	
L ALPHA VANE	3.3
L ELEV PITOT	3.3
L VALVE OPEN - Wing Anti Ice	3.6
LANDING CONFIGURATION1	.5.1
Landing Gear Lever Jammed in the Up Position 14	1.10
Landing Gear Lever Will Not Move Up	
After Takeoff14	
LE FLAPS TRANSIT	€.16
LEADING EDGE FLAPS TRANSIT	
LEFT GEAR	L4.6
LOCK FAIL	1.11
LOSS OF BOTH ENGINE DRIVEN GENERATORS	6.6
LOSS OF SYSTEM A	13.2
LOSS OF SYSTEM A AND SYSTEM B13	3.10
LOSS OF SYSTEM B	13.5
Loss Of Thrust On Both Engines	7.6
LOW IDLE	7.25
LOW OIL PRESSURE - APU	7.12
LOW OIL PRESSURE - Engine	7.22
LOW OIL PRESSURE - Generator Drive	
LOW PRESSURE - Flight Control	
LOW PRESSURE - Fuel Pump AUX FUEL 12	
LOW PRESSURE - Fuel Pump	
LOW PRESSURE - Hydraulic Pump - Standby 13	3.15

LOW PRESSURE - Hydraulic Pump - System A (both)
LOW PRESSURE - Hydraulic Pump -
System A and B
LOW PRESSURE - Hydraulic Pump - System B (both)13.5
LOW PRESSURE - Hydraulic Pump (single)13.1
LOW QUANTITY
M
MACH TRIM FAIL9.19
Manual Gear Extension
MANUAL REVERSION
Minimum Fuel Operation
MSG and FMC - CDU Alerting11.1
N
NOSE GEAR
NOT ARMED1.7
0
OFF - Equipment Cooling2.9
OFF - Flight Recorder10.1
OFF SCHED DESCENT2.9
OFF SCHEDULE DESCENT2.9
OIL FILTER BYPASS
ON DC
OVER SPEED - APU7.12
OVERHEAT - Hydraulic Pump13.1
, 1

Alpha.Index.8

DO NOT USE FOR FLIGHT

OVERHEAT - Window	3.4
Overspeed	15.1
P	
PACK TRIP OFF	2.10
Partial or All Gear Up Landing	14.28
PASS OXY ON	1.12
PASSENGER OXYGEN ON	1.12
PITOT STATIC HEAT	3.3
PMC INOPERATIVE	7.28
R	
R ALPHA VANE	3.3
R ELEV PITOT	3.3
R VALVE OPEN - Wing Anti Ice	3.6
Radio Transmit Continuous (Stuck	F 4
Microphone Switch)	5.1
Rapid Depressurization	
REVERSER	
REVERSER UNLOCKED (IN FLIGHT)	
RIGHT GEAR	
Runaway Stabilizer	9.1
S	
SERVICE DOOR	1.12
Smoke or Fumes Removal	8.18
Smoke, Fire or Fumes	8.8
SPEED BRAKE DO NOT ARM	
SPEED TRIM FAIL	9.21

STAB OUT OF TRIM9.22
STABILIZER OUT OF TRIM9.22
Stabilizer Trim Inoperative9.24
STANDBY HYDRAULIC LOW PRESSURE 13.15
STANDBY HYDRAULIC LOW QUANTITY13.16
STANDBY POWER OFF6.12
STANDBY PWR OFF6.12
STANDBY RUDDER ON9.27
START VALVE OPEN7.30
STBY RUD ON9.27
Т
Tail Strike
TAKEOFF CONFIG15.1
TAKEOFF CONFIGURATION 15.1
TEMP PROBE
Trailing Edge Flap Asymmetry9.28
Trailing Edge Flap Disagree9.32
Trailing Edge Flaps Up Landing9.38
TRANSFER BUS OFF6.12
TRANSFER BUS OFF, BUS OFF and GEN OFF (both
sides)6.6
U
Uncommanded Rudder/Yaw Or Roll9.3
Unscheduled Pressurization Change2.2
V
VALVE OPEN - Crossfeed12.1
Volcanic Ash

Alpha.Index.10

DO NOT USE FOR FLIGHT

W	
WARNING HORN (INTERMITTENT)	15.2
WARNING LIGHT - CABIN ALTITUDE OF CONFIGURATION	
WHEEL WELL - Fire and FIRE WARN	8.22
WHEEL WELL FIRE	8.22
Window Damage	1.14
Window Damage Window 3 Not Heated	1.18
Window Open	1.22
WINDOW OVERHEAT	3.4
WING ANTI-ICE VALVE OPEN	3.6
WING-BODY OVERHEAT	2.14
Y	
VAW DAMDED	0.41

737 Flight Crew Operations Manual

Normal Checklists

Chapter NC

PREFLIGHT
OxygenTested, 100%
Instrument transfer switches NORMAL
Window heat
Pressurization mode selector AUTO
Flight instruments Heading, Altimeter
Parking brakeSet
Engine start levers
BEFORE START
Flight deck door Closed and locked
Fuel LBS/KGS, Pumps ON and AUX set
Passenger signs
Windows Locked
MCP
Takeoff speeds
CDU preflightCompleted
Rudder and aileron trim Free and 0
Taxi and takeoff briefing Completed
Anti collision lightON

737 Flight Crew Operations Manual

BEFORE TAXI Generators On Anti-ice Isolation valve..... AUTO Engine start switches..... CONT Engine start levers IDLE detent Flight controls......Checked Ground equipment Clear **BEFORE TAKEOFF** Flaps, Green light Stabilizer trim Units **AFTER TAKEOFF** Packs AUTO Landing gear..... UP and OFF

Flaps UP, No lights

D	DESCENT
Pressurization	CAB ALT, LAND ALT
Recall	Checked
Autobrake	<u> </u>
Landing data	VREF, Minimums
Approach briefing	Completed
AF	PPROACH
Altimeters	<u> </u>
L	ANDING
Engine start switches	CONT
Speedbrake	ARMED
Landing gear	Down
Flaps	
SI	HUTDOWN
	OFF
	OFF
	Set
Weather radar	CUTOFF
vvealuer fauaf	

737 Flight Crew Operations Manual

SECURE

IRSs	OFF
Emergency exit lights	OFF
Window heat	OFF
Packs	OFF

Non-Normal Checklists	Chapter NNC
Miscellaneous	Section 0
Table of Conten	0.1
Ditching Emergency Descent	

737 Flight Crew Operations Manual

Table of Contents

Intentionally Blank 737 Flight Crew Operations Manual

Emergency Descent

Condition: One or more of these occur:

- Cabin pressure cannot be controlled when the airplane is above 14,000 feet
- A rapid descent is needed.
- 1 Announce the emergency descent. The pilot flying will advise the cabin crew, on the PA system, of impending rapid descent. The pilot monitoring will advise ATC and obtain the area altimeter setting.
- 2 Passenger signs ON
- 3 **Without delay**, descend to the lowest safe altitude or 10,000 feet, whichever is higher.
- 4 ENGINE START switches (both) CONT
- 5 Thrust levers (both) Reduce thrust to minimum or as needed for anti-ice

If structural integrity is in doubt, limit speed as much as possible and avoid high maneuvering loads.

- 7 Set target speed to Mmo/Vmo.
- 8 When approaching the level off altitude:

Smoothly lower the SPEED BRAKE lever to the DOWN detent and level off. Add thrust and stabilize on altitude and airspeed.

▼ Continued on next page **▼**

737 Flight Crew Operations Manual

▼ Emergency Descent continued ▼ 9 Crew oxygen regulators. Normal Flight crew must use oxygen when cabin altitude is above 10,000 feet. To conserve oxygen, move the regulator to Normal. 10 ENGINE START switches (both) As needed 11 The new course of action is based on weather, oxygen, fuel remaining and available airports. Use of long range cruise may be needed.

Intentionally Blank

737 Flight Crew Operations Manual

			-	
D	ito	:h	ın	a
				3

Condition: Airplane ditching and evacuation are needed.

- Send distress signals. Determine position, course, 1 speed, altitude, situation, intention, time and position of intended touchdown and transmit mayday. Report type of aircraft and request intercept.
- 2 Alert the cabin crew to prepare for ditching and seat passengers as far forward as possible.
- Burn off fuel to reduce touchdown speed and increase buoyancy.
- Plan to touch down on the windward side and parallel to waves and swells.
- Plan a flaps 40 landing unless another configuration 5 is needed.
- Set VREF 40.
- 7 Do **not** arm the autobrake.
- Do **not** accomplish the normal landing checklist. 8
- **Checklist Complete Except Deferred Items** 9

Deferred Items				
Descent Checklist				
Pressurization CAB ALT, LAND ALT				
Recall				
Autobrake				
Landing data VREF 40				
▼ Continued on next page ▼				

▼ Ditching continued ▼				
Approach briefing Completed				
Approach Checklist				
Altimeters				
Below 5000 feet				
LANDING GEAR AURAL WARN circuit breaker (P6)Pull				
This prevents the warning horn with gear retracted and landing flaps selected.				
Passenger signs				
Engine BLEED air switches (both) OFF				
This allows the airplane to be depressurized with the outflow valve closed.				
Pressurization mode selector MAN DC				
Outflow VALVE switch Hold in CLOSE until outflow valve indicates fully closed				
This prevents water from entering the airplane.				
APU switchOFF				
GROUND PROXIMITY FLAP/GEAR INHIBIT switch FLAP/GEAR INHIBIT				
Life vests, shoulder harnesses and seat belts On				
▼ Continued on next page ▼				

737 Flight Crew Operations Manual

▼ Ditching continued **▼**

Confirm that passenger cabin preparations are complete.

Transmit all pertinent information regarding final ditching position.

After Impact Procedure Review

Set both engine start levers to CUTOFF. This closes fuel shutoff valves to prevent discharge of fuel from ruptured fuel lines.

Start the evacuation.

Proceed to assigned ditching stations, launch rafts and evacuate the airplane as soon as practicable.

The airplane may stay afloat indefinitely if fuel load is minimal and no serious damage was sustained during landing.

Ditching Final

LANDING GEAR lever UP and C)FF
Flaps	ght
At 500 feet , advise the cabin crew that ditching imminent.	is

At **50 feet**, advise the cabin crew to brace for impact.

Maintain airspeed at VREF. Flare the airplane to achieve the minimum rate of descent at touchdown. Maintain 200-300 fpm rate of descent until the start of the flare.

Continued	on	next	page	

737 Flight Crew Operations Manual

▼ Ditching continued **▼**

At flare, rotate smoothly to a touchdown attitude of 10-12°. Maintain airspeed and rate of descent with thrust.

At touchdown, reduce thrust to idle.

Intentionally Blank

Non-Normal Checklists	Chapter NNC	
Airplane Gen., Emer. Equip., Doors, Window	vs Section 1	
Table of Contents		
AIRSTAIR	1.1	
AUTOMATIC UNLOCK	1.3	
CARGO DOOR	1.4	
EMERGENCY EXIT LIGHTS NOT ARMED	1.7	
ENTRY DOOR		
EQUIPMENT DOOR	1.9	
LOCK FAIL	1.11	
PASSENGER OXYGEN ON	1.12	
SERVICE DOOR		
Tail Strike	▶▶15.4	
Window Damage	1.14	
Window Damage Window 3 Not Heated	J1.18	
Window Open	1.22	

Table of Contents

Intentionally Blank

737 Flight Crew Operations Manual

AIR **AIRSTAIR** Condition: The airstair is not secure. 1 Choose one: Pressurization is **normal**: Continue normal operation. Pressurization is **not** normal: ▶ Go to step 2 Don oxygen masks. 2 3 Establish crew communications. 4 5 Choose one: Airplane has **not** reached the planned cruise altitude: Do **not** continue the climb. Reset the FLT ALT indicator to the actual airplane altitude. ▶ Go to step 6 Airplane **has** reached the planned cruise altitude: ▶ Go to step 6 CAB ALT indicator...........9,000 feet Pressurization mode selector STBY

CABIN RATE selector. As needed

8

737 Flight Crew Operations Manual

▼ AIRSTAIR continued **▼**

- 9 Choose one:
 - ♦ Minimum safe altitude is at or below 9000 feet:
 - ▶▶Go to step 10
 - Minimum safe altitude is between 9000 feet and 13,000 feet:
 - ▶▶Go to step 12
 - ♦ Minimum safe altitude is at or above 13,000 feet:

▶▶Go to step 14

- 10 Descend to 9000 feet.
- 11 Maintain a cabin differential pressure of 0 psi by limiting flight altitude to 9000 feet.

▶ Go to step 17

- 12 Descend to the minimum safe altitude.
- 13 CAB ALT indicator Select a higher altitude (maximum 13,000 feet) to maintain a cabin differential pressure of 0 psi

Note: The intermittent cabin altitude/configuration warning horn will sound and the CABIN ALTITUDE light (as installed) will illuminate at a cabin altitude of approximately 10,000 feet.

▶ Go to step 17

14 Descend to the minimum safe altitude.

▼ Continued on next page ▼ Copyright © The Boeing Company. See title page for details.

737 Flight Crew Operations Manual

▼ AIRSTAIR continued **▼**

15 Pressurization mode selector MAN DC

16 Outflow VALVE switch Adjust to maintain a cabin differential pressure of 0 psi

Note: The intermittent cabin altitude/configuration warning horn will sound and the CABIN ALTITUDE light (as installed) will illuminate at a cabin altitude of approximately 10,000 feet.

17 Plan to land at the nearest suitable airport.

18 **When** the cabin altitude is at or below 10,000 feet:

Oxygen masks may be removed.

AUTO UNLK

AUTOMATIC UNLOCK

Condition: The correct emergency access code is

entered.

Objective: To deny unauthorized access to the flight

deck before the door automatically unlocks.

1 FLT DK DOOR lock selector Rotate to DENY and hold for 1 second

CARGO DOOR

FWD	AFT
CARGO	CARGO
CARGO	CAILGO

Condition: One or more cargo doors are not closed and secure.

- 1 Choose one:
 - Pressurization is **normal**:

Continue normal operation.

Pressurization is **not** normal:

▶ Go to step 2

- 2 Don oxygen masks.
- Establish crew communications. 3
- 4
- 5 Choose one:
 - Airplane has **not** reached the planned cruise altitude:

Do **not** continue the climb.

Reset the FLT ALT indicator to the actual airplane altitude.

▶ Go to step 6

- Airplane **has** reached the planned cruise altitude:
 - ▶ Go to step 6
- 6 CAB ALT indicator

Copyright © The Boeing Company. See title page for details.

Continued on next page ▼

- ▶ Go to step 14
- 10 Descend to 9000 feet.
- 11 Maintain a cabin differential pressure of 0 psi by limiting flight altitude to 9000 feet.

▶ Go to step 17

- 12 Descend to the minimum safe altitude.
- 13 CAB ALT indicator Select a higher altitude (maximum 13,000 feet) to maintain a cabin differential pressure of 0 psi

Note: The intermittent cabin altitude/configuration warning horn will sound and the CABIN ALTITUDE light (as installed) will illuminate at a cabin altitude of approximately 10,000 feet.

▼ Continued on next page ▼

737 Flight Crew Operations Manual

▼ CARGO DOOR continued **▼**

▶▶Go to step 17

- 14 Descend to the minimum safe altitude.
- 15 Pressurization mode selector MAN DC
- 16 Outflow VALVE switch Adjust to maintain a cabin differential pressure of 0 psi

Note: The intermittent cabin altitude/configuration warning horn will sound and the CABIN ALTITUDE light (as installed) will illuminate at a cabin altitude of approximately 10,000 feet.

- 17 Plan to land at the nearest suitable airport.
- 18 When the cabin altitude is at or below 10,000 feet:
 Oxygen masks may be removed.

EMERGENCY EXIT LIGHTS NOT ARMED

Condition: The emergency exit lights switch is not ARMED.

1 Choose one:

♦EMER EXIT LIGHTS switch is **ON**:

Individual emergency exit light batteries supply a minimum of 10 minutes of lighting.

EMER EXIT LIGHTS switch is **OFF**:

Emergency lighting is not available.

737 Flight Crew Operations Manual

ENTRY DOOR

FWD ENTRY AFT ENTRY

Condition: One or more entry doors are not closed and secure.

- 1 Instruct the cabin crew to verify that the door handle is in the closed position or to move the handle to the closed position if possible.
- 2 Choose one:
 - ♦Handle is in the **closed** position:
 - ▶ Go to step 3
 - ◆Handle is **not** in the closed position:

Plan to land at the nearest suitable airport.

- 3 Choose one:
 - Pressurization is normal:

Continue normal operation.

◆Pressurization is **not** normal:

Plan to land at the nearest suitable airport.

737 Flight Crew Operations Manual

EQUIP

EQUIPMENT DOOR

Condition: The equipment door is not closed and secure.

- 1 Choose one:
 - ◆Pressurization is **normal**:

Continue normal operation.

◆Pressurization is **not** normal:

▶ Go to step 2

- 2 Don oxygen masks.
- 3 Establish crew communications.
- 5 Choose one:
 - Airplane has **not** reached the planned cruise altitude:

Do **not** continue the climb.

Reset the FLT ALT indicator to the actual airplane altitude.

- ▶ Go to step 6
- Airplane has reached the planned cruise altitude:

▶ Go to step 6

- 7 Pressurization mode selector STBY

▼ Continued on next page ▼

737 Flight Crew Operations Manual

▼ EQUIPMENT DOOR continued ▼

- 9 Choose one:
 - ♦ Minimum safe altitude is at or below 9000 feet:
 - ▶▶Go to step 10
 - Minimum safe altitude is between 9000 feet and 13,000 feet:
 - ▶▶Go to step 12
 - ♦ Minimum safe altitude is at or above 13,000 feet:

▶▶Go to step 14

- 10 Descend to 9000 feet.
- 11 Maintain a cabin differential pressure of 0 psi by limiting flight altitude to 9000 feet.

▶ Go to step 17

- 12 Descend to the minimum safe altitude.
- 13 CAB ALT indicator Select a higher altitude (maximum 13,000 feet) to maintain a cabin differential pressure of 0 psi

Note: The intermittent cabin altitude/configuration warning horn will sound and the CABIN ALTITUDE light (as installed) will illuminate at a cabin altitude of approximately 10,000 feet.

▶▶Go to step 17

Continued on next page

▼ EQUIPMENT DOOR continued ▼

14 Descend to the minimum safe altitude.

15 Pressurization mode selector MAN DC

16 Outflow VALVE switch Adjust to maintain a cabin differential pressure of 0 psi

Note: The intermittent cabin altitude/configuration warning horn will sound and the CABIN ALTITUDE light (as installed) will illuminate at a cabin altitude of approximately 10,000 feet.

- 17 Plan to land at the nearest suitable airport.
- 18 **When** the cabin altitude is at or below 10,000 feet: Oxygen masks may be removed.

LOCK FAIL

LOCK FAIL

Condition: One or more of these occur:

- The FLIGHT DECK ACCESS SYSTEM switch is OFF
- •The lock is failed.

Objective: To remove power from the lock to prevent a possible overheat.

1 If conditions allow:

FLIGHT DECK ACCESS SYSTEM switch . . . OFF

Note: The door can be locked with the dead bolt.

737 Flight Crew Operations Manual

PASS OXY ON

PASSENGER OXYGEN ON

Condition: The passenger oxygen system is on.

SERVICE DOOR

FWD SERVICE AFT ERVICE

Condition: One or more service doors are not closed and secure.

- 1 Instruct the cabin crew to verify that the door handle is in the closed position or to move the handle to the closed position if possible.
- 2 Choose one:
 - ♦ Handle is in the closed position:
 - ▶ Go to step 3
 - ◆Handle is **not** in the closed position:

Plan to land at the nearest suitable airport.

▼ Continued on next page ▼

▼ SERVICE DOOR continued **▼**

- 3 Choose one:
 - ◆Pressurization is normal:

Continue normal operation.

♦Pressurization is **not** normal:

Plan to land at the nearest suitable airport.

737 Flight Crew Operations Manual

Window Damage

Condition: A flight deck window has one or more of these:

- An electrical arc
- A delamination
- A crack
- Is shattered.

Objective: To remove electrical power, if needed, to prevent arcing. To reduce differential pressure and descend if a structural pane is shattered or cracked.

- 1 If the damage is on Window 3 not heated:
 - ► Go to the Window Damage Window 3
 Not Heated checklist on page 1.18
- 2 Choose one:
 - ♦Window is delaminated only:

Continue normal operation.

- ♦Window is arcing, cracked or shattered:
 - ▶▶Go to step 3

▼ Continued on next page **▼**

737 Flight Crew Operations Manual

	▼ Window Damage continued ▼
3	Don seat belts and shoulder harnesses.
4	WINDOW HEAT switch (affected window) OFF
	Limit airspeed to 250 knots maximum below 10,000 feet.
5	Pull both WINDSHIELD AIR controls. This vents conditioned air to the inside of the windshield for defogging.
6	If the cracked or shattered condition exists on:
	Window 1 or 2 outer pane
	Window 4 inner pane
	Window 5 outer pane
	▶▶Go to step 8
7	If the cracked or shattered condition exists on:
	Window 1 or 2 inner pane
	Window 4 middle or outer pane
	Window 5 inner pane
	▶▶Go to step 10
8	Continue normal operation.
9	Shoulder harnesses may be removed. ■ ■ ■ ■
1 () Don ovygon masks

, 5

Continued on next page ▼

▼ Window Damage continued ▼
11 Establish crew communications.
12 Passenger signs
13 Choose one:
Airplane has not reached the planned cruise altitude:
Do not continue the climb.
Reset the FLT ALT indicator to the actual airplane altitude.
▶▶Go to step 14
◆Airplane has reached the planned cruise altitude:
▶▶Go to step 14
14 CAB ALT indicator
15 Pressurization mode selector STBY
16 CABIN RATE selector
17 Start a normal descent to below 14,000 feet or to the minimum safe altitude, whichever is higher.
18 Plan to land at the nearest suitable airport.
19 When cabin differential pressure is 2 psi or less:
Oxygen masks and shoulder harnesses may be removed.
20 Sustained flight below 10,000 feet is not recommended due to the greater risk of a bird strike. ■ ■ ■ ■

Intentionally Blank

737 Flight Crew Operations Manual

Window Damage Window 3 Not Heated

Condition: The window 3 not heated has one or more of these:

- A delamination
- A crack
- Is shattered.

Objective: To reduce differential pressure to 0 psi if both panes are shattered or cracked.

- 1 Choose one:
 - ♦Window is delaminated only:

Continue normal operation.

- ♦Window is **cracked** or **shattered**:
 - ▶▶Go to step 2
- 2 Don seat belts and shoulder harnesses.
- 3 Choose one:
 - Cracked or shattered condition exists on the inner or outer pane:
 - ▶ Go to step 4
 - ◆Cracked or shattered condition exists on the inner and outer panes:
 - ▶ Go to step 6
- 4 Continue normal operation.

▼ Continued on next page ▼ Copyright © The Boeing Company. See title page for details.

	▼ Window Damage Window 3 Not Heated continued ▼
5	Shoulder harnesses may be removed. ■ ■ ■ ■
6	Passenger signs
7	Choose one:
	◆Airplane has not reached the planned cruise altitude:
	Do not continue the climb.
	Reset the FLT ALT indicator to the actual airplane altitude.
	▶▶Go to step 8
	◆Airplane has reached the planned cruise altitude:
	▶▶Go to step 8
8	CAB ALT indicator
9	Pressurization mode selector STBY

10 CABIN RATE selector. As needed

▼ Continued on next page ▼

Copyright © The Boeing Company. See title page for details.

737 Flight Crew Operations Manual

▼ Window Damage Window 3 Not Heated continued **▼**

11 Choose one:

- ♦ Minimum safe altitude is at or below 9,000 feet:
 - ▶▶Go to step 12
- Minimum safe altitude is between 9,000 feet and 13,000 feet:
 - ▶▶Go to step 14
- ♦ Minimum safe altitude is at or above 13,000 feet:

▶ ▶ Go to step 17

- 12 Descend to 9000 feet.
- 13 Maintain a cabin differential pressure of 0 psi by limiting flight altitude to 9000 feet.

▶ Go to step 22

- 14 Descend to the minimum safe altitude.
- 15 CAB ALT indicator Select a higher altitude (maximum 13,000 feet) to maintain a cabin differential pressure of 0 psi
- Note: The intermittent cabin altitude/configuration warning horn will sound and the CABIN ALTITUDE light (as installed) will illuminate at a cabin altitude of approximately 10,000 feet.
- 16 **If** the cabin altitude is at or above 10,000 feet: Don oxygen masks.

▼ Continued on next page ▼

▼ Window Damage Window 3 Not Heated continued **▼**

Establish crew communications.

▶▶Go to step 21

- 17 Descend to the minimum safe altitude.
- 18 Pressurization mode selector MAN DC
- 19 Outflow VALVE switch Adjust to maintain a cabin differential pressure of 0 psi

Note: The intermittent cabin altitude/configuration warning horn will sound and the CABIN ALTITUDE light (as installed) will illuminate at a cabin altitude of approximately 10,000 feet.

20 **When** the cabin altitude is at or above 10,000 feet:

Don oxygen masks.

Establish crew communications.

- 21 **When** the cabin altitude is below 10,000 feet: Oxygen masks may be removed.
- 22 Shoulder harnesses may be removed.

737 Flight Crew Operations Manual

Window Open

Condition: A side window opens during takeoff or in flight.

- 1 Maintain the maneuvering speed for the existing flap setting until the window is closed.
- 2 The force needed to close the window increases with airspeed. It may not be possible to close the window at speeds above 250 knots.
- 3 Close and lock the window.
- 4 Choose one:
 - Window locks and the pressurization is normal:
 Continue normal operation.

Window does **not** lock **or** the pressurization is **not** normal:

Level off at the lowest safe altitude.

The airplane can fly unpressurized and land safely with the window open.

Air Systems	Section 2
Table of Content CABIN ALTITUDE WARN Depressurization	ING or Rapid
Emergency Descent	>>0.1
Smoke, Fire or Fumes	
AUTO FAIL or Unscheduled Pressur BLEED TRIP OFF	urization Change 2.2 2.6 ING or Rapid
DUAL BLEED	
DUCT OVERHEAT	
Emergency Descent	▶▶0.1
EQUIPMENT COOLING OFF	2.9
OFF SCHEDULE DESCENT	2.9
PACK TRIP OFF	2.10
Smoke, Fire or Fumes	⊁⊁8.8
WING-BODY OVERHEAT	2.14

737 Flight Crew Operations Manual

Table of Contents

Intentionally Blank

CABIN ALTITUDE WARNING Rapid Depressurization

ALTITUDE	As installed)
	ne or more of these occur: A cabin altitude exceedance In flight, the intermittent cabin altitude/configuration warning horn sounds and the CABIN ALTITUDE light (as installed) illuminates.
1 Don oxy	gen masks and set regulators to 100%.
2 Establish	crew communications.
3 Pressuriz	zation mode selector MAN AC
4 Outflow	VALVE switch Hold in CLOSE until outflow VALVE indicates fully closed
5 If cabin	altitude is not controllable:
Passe	nger signs
	e cabin altitude exceeds or is expected to ed 14,000 feet:
	PASS OXYGEN switch ON
►►G	o to the Emergency Descent checklist

Continued on next page ▼

on page 0.1

737 Flight Crew Operations Manual

▼ CABIN ALTITUDE WARNING or Rapid Depressurization continued ▼

6 If cabin altitude is controllable:

Continue manual operation to maintain correct cabin altitude.

When the cabin altitude is at or below 10,000 feet:

Oxygen masks may be removed.

AUTO FAIL or Unscheduled Pressurization Change

AUTO FAIL

May or may not be illuminated

Condition: One or more of these occur:

- Automatic pressurization mode has failed
- •The cabin altitude is not controllable.

Objective: To maintain control of cabin altitude.

1 Increasing thrust may ensure sufficient air supply to control cabin altitude.

One at a time.

2 Engine BLEED air switches (both). . . . Verify ON

One at a time. Allow cabin rate to stabilize before placing second switch to AUTO.

3 PACK switches (both) Verify AUTO

lacktriangle Continued on next page lacktriangle

	▼ AUTO FAIL or Unscheduled Pressurization Change continued ▼
4	Choose one:
	◆AUTO FAIL light is extinguished and cabin altitude is controllable :
	◆AUTO FAIL light is illuminated or cabin altitude is not controllable:
	Pressurization mode selector STB\
	CAB ALT indicatorSet using the cabin/flight altitude placard
	▶▶Go to step 5
5	Choose one:
	◆AUTO FAIL light is extinguished and cabin altitude is controllable :
	Continue normal operation.
	Before descent:
	CAB ALT indicator Set destination field elevation minus 200 feet
	◆AUTO FAIL light is illuminated or cabin altitude is not controllable:
	▶▶Go to step 6
6	Pressurization mode selector MAN AC
	▼ Continued on next page ▼

	▼ AUTO FAIL or Unscheduled Pressurization Change continued ▼
7	Outflow VALVE switch Adjust as needed to maintain correct cabin
	altitude and cabin rate of change
8	Choose one:
	◆Cabin altitude is controllable :
	▶▶Go to step 13
	◆Cabin altitude is not controllable:
	►►Go to step 9
9	Don oxygen masks and set regulators to 100%.
10	Establish crew communications.
11	Passenger signs
12	If the cabin altitude exceeds or is expected to exceed 14,000 feet:
	PASS OXYGEN switchON
	▶ Go to the Emergency Descent checklist on page 0.1■ ■ ■ ■
13	Checklist Complete Except Deferred Items
	Deferred Items
De	scent Checklist
P	ressurization Adjust outflow VALVE switch as needed to maintain correct cabin altitude and cabin rate of change
	▼ Continued on next page ▼

▼ AUTO FAIL or Unscheduled Pressurization Change continued ▼
Recall
Autobrake
Landing data VREF, Minimums
Approach briefing Completed
Approach Checklist
Altimeters
At Pattern Altitude
Outflow VALVE switch Hold in OPEN until outflow VALVE position indicates fully open
Landing Checklist
ENGINE START switches CONT
Speedbrake
Landing gear
Flaps

	BLEED TRIP OFF	BLEED TRIP OFF
Co	•,	e or more of these occur: An engine bleed air overheat An engine bleed air overpressure.
1	WING AN	TI-ICE switch OFF
2	TRIP RES	ET switch Push
		EED TRIP OFF light extinguishes if the air temperature has cooled below limits.
3	Choose o	ne:
	◆BLEED	TRIP OFF light stays illuminated :
	P	ACK switch (affected side) OFF
		This causes the operating pack to regulate to high flow in flight with flaps up.
	A	void icing conditions. ■ ■ ■ ■
	♦BLEED	TRIP OFF light extinguishes :
	•	▶Go to step 4
4	WING AN	TI-ICE switch As needed
Ca	a tı	se of wing anti-ice above pproximately FL350 may cause bleed rip off and possible loss of cabin ressure.

	DUAL BLEED	DUAL BLEED
Co	ondition:	The APU bleed valve is open and one of these occurs: •BLEED 1 air switch is on •BLEED 2 air switch is on and the ISOLATION VALVE is open.
Oł	ojective:	To prevent possible back pressure of the APU.
1	Limit (engine thrust to idle while the light is nated.
2	After	engine start:

0	DUCT OVERHEAT VERHEAT
Co	ondition: A duct overheat occurs.
1	Temperature selector (affected side) Select cooler temperature
	This prevents the air mix valves from returning to an overheat condition.
2	TRIP RESET switch Push The DUCT OVERHEAT light extinguishes if the duct temperature has cooled below limits.
3	Monitor duct temperature.
4	If the duct temperature increases rapidly or the air mix valve indicator moves toward full hot:
	Temperature selector MANUAL
	Adjust the air mix valve position as needed.

737 Flight Crew Operations Manual

OFF

EQUIPMENT COOLING OFF

Condition: The equipment cooling supply or exhaust fan is failed.

1 EQUIP COOLING switch......ALTERNATE

Note: Illumination of the EQUIP COOLING OFF light may be an indication of a pressurization problem. Ensure the pressurization system is operating normally.

2 No further action is necessary in flight if the equipment cooling OFF light does not extinguish.

OFF SCHED DESCENT

OFF SCHEDULE DESCENT

Condition: A descent is started before reaching the planned cruise altitude set in the FLT ALT indicator.

- 1 Choose one:
 - **♦Landing** at airport of departure:

Continue normal operation.

◆Not landing at airport of departure:

FLT ALT indicator Reset to actual airplane altitude

	PACK	_	PACK TRIP OFF			
	TRIP OFF			1		
C	onaition: <i>F</i>	А раск	overheat occurs.			
1	Temperature selector (affected side) Select warme temperature					
		reduce litioning	es the workload on the affected g pack.	l air		
2	TRIP RESET switch Pus					
			RIP OFF light extinguishes if the e has cooled below limits.	e pack		
3	Choose	one:				
	♦Both PACK TRIP OFF lights are extinguished :					
		Contin	ue normal operation. \blacksquare \blacksquare \blacksquare \blacksquare			
		gle PAG inated	CK TRIP OFF light stays :			
		Contin	ue normal operation. \blacksquare \blacksquare \blacksquare \blacksquare			
	♦Both	PACK 7	TRIP OFF lights stay illuminat	ed:		
		Note:	Both pack valves may have cl resulting in a gradual loss of c pressure and an eventual CAE ALTITUDE warning.	cabin		
		►►Go	to step 4			
		•	Continued on next page			

▼ PACK TRIP OFF continued ▼

- 4 Descend to the lowest safe altitude, or 10,000 feet, whichever is higher. Monitor cabin altitude and rate.
- 5 When at level off:

Maintain 290 knots minimum. Flight deck and cabin temperatures may increase rapidly at speeds below 290 knots.

- 6 Choose one:
 - ♦Airplane altitude is at or below 10,000 feet:
 - ▶▶Go to step 7
 - ◆Airplane altitude is above 10,000 feet:

Don oxygen masks.

Establish crew communications.

▶ ▶ Go to step 7

- 7 Pressurization mode selector MAN DC
- 8 Outflow VALVE switch Hold in OPEN until outflow VALVE position indicates fully open

This increases airplane ventilation.

9 **If** flight deck and cabin temperatures are excessively warm:

Open the flight deck door. This improves flight deck ventilation.

Use flight deck window shades, as needed.

▼ Continued on next page ▼

▼ PACK TRIP OFF continue	d ▼	7
---------------------------------	-----	---

Instruct the cabin crew to:
Dim cabin lighting.
Turn off in-flight entertainment systems.
Close cabin window shades.
GALLEY switch OFF

737 Flight Crew Operations Manual

WING-BODY OVERHEAT WING-BODY OVERHEAT
Condition: An overheat from a bleed duct leak occurs.
Objective: To isolate the bleed duct leak.
1 ISOLATION VALVE switch CLOSE
2 Choose one:
♦Right WING-BODY OVERHEAT light illuminated:
▶▶Go to step 3
◆ Left WING-BODY OVERHEAT light illuminated:
▶▶Go to step 7
3 R PACK switch OFF
This causes the operating pack to regulate to high flow in flight with the flaps up.
4 BLEED 2 air switch OFF
5 WING ANTI-ICE switch OFF
This prevents possible asymmetrical ice buildup on the wings.
6 Avoid icing conditions where wing anti-ice is
needed. ■■■■
7 L PACK switch OFF
This causes the operating pack to regulate to
high flow in flight with the flaps up.
▼ Continued on next page ▼

737 Flight Crew Operations Manual

	▼ WING-BODY OVERHEAT continued ▼
8	BLEED 1 air switch OFF
9	WING ANTI-ICE switch OFF
	This prevents possible asymmetrical ice buildup on the wings.
10	Avoid icing conditions where wing anti-ice is needed.
11	Choose one:
	♦WING-BODY OVERHEAT light extinguishes :
	♦WING-BODY OVERHEAT light stays illuminated:
	▶▶Go to step 12
12	Choose one:
	♦APU is running :
	APU BLEED air switch (if needed) OFF
	This stops the flow of bleed air from the APU to the left side of the pneumatic ducting.
	▶▶Go to step 13
	◆APU is not running:
	▼ Continued on next page ▼

737 Flight Crew Operations Manual

▼ WING-BODY OVERHEAT continued ▼

13 Choose one:

♦WING-BODY OVERHEAT light extinguishes:

▶ Go to step 15

♦WING-BODY OVERHEAT light stays illuminated:

APU switch OFF

Do **not** start the APU for the rest of the flight.

▶▶Go to step 14

14 Choose one:

♦WING-BODY OVERHEAT light **extinguishes**:

▶▶Go to step 15

WING-BODY OVERHEAT light stays illuminated:

▼ Continued on next page ▼

▼ WING-BODY OVERHEAT continued ▼

19 Choose one:

♦WING-BODY OVERHEAT light stays extinguished:

WING-BODY OVERHEAT light illuminates again:

▶▶Go to step 20

20 ISOLATION VALVE switch CLOSE
21 BLEED 1 air switch OFF
22 L PACK switch OFF
23 WING ANTI-ICE switch OFF
24 Avoid icing conditions where wing anti-ice is needed.
25 The APU can be used during the rest of the flight, if needed.

737 Flight Crew Operations Manual

Non-Normal Checklists	Chapter NNC	
Anti-Ice, Rain	Section 3	
Table of Contents		
ENGINE COWL ANTI-ICE	3.1	
ENGINE COWL VALVE OPEN	3.2	
PITOT STATIC HEAT	3.3	
WINDOW OVERHEAT	3.4	
WING ANTI-ICE VALVE OPEN	3.6	

DO NOT USE FOR FLIGHT737 Flight Crew Operations Manual

Table of Contents

737 Flight Crew Operations Manual

COWL ANTI-ICE

ENGINE COWL ANTI-ICE

Condition: An engine cowl anti-ice duct overpressure or

overtemperature occurs.

Objective: To reduce cowl duct pressure or cowl duct

temperature by reducing thrust.

1 If flight conditions allow:

Autothrottle (if engaged). Disengage

Thrust lever

(affected engine) Retard until the COWL ANTI-ICE

light extinguishes

737 Flight Crew Operations Manual

COWL VALVE OPEN

ENGINE COWL VALVE OPEN

Condition: An engine COWL VALVE OPEN light stays

illuminated bright blue if the cowl anti-ice valve is not in the commanded position.

1 Choose one:

♦ENG ANTI-ICE switch is **ON**:

The cowl anti-ice valve is failed closed.

Avoid icing conditions.

♦ENG ANTI-ICE switch is **OFF**:

The cowl anti-ice valve is failed open.

▶▶Go to step 2

2 If TAT is above 10°C:

Limit thrust on the affected engine to 80% N1 if possible.

PITOT STATIC HEAT

CAPT P/S	F/O STATIC	L ELEV	L ALPHA	TEMP
1 AUX STATIC	2 AUX P/S	PITOT	VANE	PROBE
F/O P/S	CAPT STATIC	R ELEV	R ALPHA	
2 AUX STATIC	1 AUX P/S	PITOT	VANE	

Condition: One or more pitot static probe heats are failed.

1 Avoid icing conditions.

Note: Flight in icing conditions may result in erroneous flight instrument indications.

737 Flight Crew Operations Manual

0	WINDOW OVERHEAT
Сс	ondition: A window overheat occurs.
1	WINDOW HEAT switch (affected window) OFF
2	Wait 2 - 5 minutes.
3	WINDOW HEAT switch (affected window)ON
4	Choose one:
	♦Window OVERHEAT light stays extinguished :
	Continue normal operation.
	♦Window OVERHEAT light illuminates again :
	▶ ▶ Go to step 5
5	WINDOW HEAT switch (affected window) OFF
	Limit airspeed to 250 knots maximum below
	10,000 feet.

- Pull both WINDSHIELD AIR controls. This vents conditioned air to the inside of the windshield for defogging.

Copyright © The Boeing Company. See title page for details.

737 Flight Crew Operations Manual

WING ANTI-ICE VALVE OPEN

		WING ANTI-ICE VALVE OPEN	
	L VALVE OPEN	R VALVE OPEN	
Co	ondition:	A wing anti-ice L VALVE OPEN or R VALVE OPEN light stays illuminated bright blue if the wing anti-ice valve is not in the commanded position.	
1	♦WIN	Se one: IG ANTI-ICE switch is ON : The wing anti-ice valve is failed closed. WING ANTI-ICE switch OFI Avoid icing conditions where wing anti-ice is needed.	
	♦WIN	G ANTI-ICE switch is OFF : The wing anti-ice valve is failed open. ►►Go to step 2	
2	moist	is above 10°C or there is no visible ure: OLATION VALVE switch CLOSE CK switch (affected side) OFI This causes the operating pack to regulate to high flow in flight with the flaps up.	F

Engine BLEED air switch (affected side) . . OFF

▼ Continued on next page ▼

▼ WING ANTI-ICE VALVE OPEN continued ▼

Wing anti-ice is not available on the affected side with the ISOLATION VALVE switch closed.

737 Flight Crew Operations Manual

Non-Normal Checklists	Chapter NNC
Automatic Flight	Section 4
Table of Contents	
AUTOPILOT DISENGAGE	4.1
AUTOTHROTTLE DISENGAGE	4.1

737 Flight Crew Operations Manual

Table of Contents

AUTOPILOT DISENGAGE

Condition: All autopilots are disengaged. The red light flashes and the aural tone sounds.

1 Fly the airplane manually or re-engage an autopilot.

AUTOTHROTTLE DISENGAGE

Condition: The autothrottle is disengaged. The red light flashes.

1 Control thrust manually or re-engage the autothrottle.

737 Flight Crew Operations Manual

Non-Normal Checklists	Chapter NNC
Communications	Section 5
Table of Contents	
Radio Transmit Continuous (Stuck	
Microphone Switch)	5.1

DO NOT USE FOR FLIGHT737 Flight Crew Operations Manual

Table of Contents

Radio Transmit Continuous (Stuck Microphone Switch)

Condition: A radio transmits continuously without crew input.

1 MIC SELECTOR switches (all audio selector panels) Flight interphone This deselects radios and stops radio transmissions.

Note: The microphone/interphone with the stuck switch continuously transmits on flight interphone.

2 The associated audio selector panel should stay on flight interphone. All other audio selector panels may be used normally.

737 Flight Crew Operations Manual

Non-Normal Checklists	Chapter NNC
Electrical	Section 6
Table of Conte	
BUS OFF	6.1
GENERATOR DRIVE HIGH OIL T	EMPERATURE6.3
GENERATOR DRIVE LOW OIL PR	ESSURE6.4
LOSS OF BOTH ENGINE DRIVEN	GENERATORS6.6
Smoke, Fire or Fumes.	▶▶8.8
STANDBY POWER OFF	6.12
TRANSFER BUS OFF	6.12

Table of Contents

737 Flight Crew Operations Manual

BUS OFF Condition: The generator bus is not powered. Choose one: **▶Both** BUS OFF lights are illuminated: ▶ Go to the LOSS OF BOTH ENGINE **DRIVEN GENERATORS checklist on** page 6.6 Only one BUS OFF light is illuminated: ▶ Go to step 2 Engine GEN switch (affected side) ON 3 Choose one: BUS OFF light extinguishes: BUS OFF light stays illuminated: ▶ Go to step 4

Continued on next page ▼

737 Flight Crew Operations Manual

▼ BUS OFF continued **▼**

4	Choose one:
	◆APU is available for start:
	APU START
	When APU is running:
	APU GEN switch (affected side)ON
	bbCo to stop E

◆APU is **not** available:

Plan to land at the nearest suitable airport. Only one main AC power source remains.

5 Choose one:

◆BUS OFF light extinguishes:

♦BUS OFF light **stays illuminated**:

Plan to land at the nearest suitable airport. Only one main AC power source remains.

737 Flight Crew Operations Manual

HIGH OIL TEMP

GENERATOR DRIVE HIGH OIL TEMPERATURE

Condition: The generator drive oil temperature is high.

	Action is not reversible.
1	Generator drive DISCONNECT switch
	(affected side) Confirm Hold in the DISCONNECT position momentarily
	This prevents generator drive damage.
2	Choose one:
	◆APU is available for start:
	APU START
	When APU is running:
	APU GEN switch (affected side)ON
	ADIL is not available:

APU is **not** available:

Plan to land at the nearest suitable airport. Only one main AC power source remains.

737 Flight Crew Operations Manual

LOW OIL PRESSURE

GENERATOR DRIVE LOW OIL PRESSURE

Condition: The generator drive oil pressure is low.

Action is not reversible.
Generator drive DISCONNECT switch
(affected side) Confirm Hold in the DISCONNECT
position momentarily
This prevents generator drive damage.
2 Choose one:
◆APU is available for start:
APU START
When APU is running:
APU GEN switch
(affected side)ON
♦APU is not available:

Plan to land at the nearest suitable airport. Only one main AC power source remains.

LOSS OF BOTH ENGINE DRIVEN GENERATORS

GEN 1 & 2	GEN 1 & 2	GEN 1 & 2
TDANGEED	RHC	GEN OFF

OFF **BUS** Condition: Both engine driven generators are off. **Note:** At high altitude, thrust deterioration or engine flameout may occur. BUS TRANSFER switch OFF 1 ELEC HYD PUMPS switches (both).... OFF 2 3 GFN 1 switch 4 5 Choose one: **♦A single** BUS OFF light **stays illuminated**: ▶ Go to step 6 **Both** BUS OFF lights stay illuminated: ▶ Go to step 10 Both BUS OFF lights extinguish: BUS TRANSFER switch AUTO **ELEC HYD PUMP** switches (both) ON, one at a time YAW DAMPER switchON

lacktriangle Continued on next page lacktriangle

▶ Go to step 20

▼ LOSS OF BOTH ENGINE DRIVEN GENERATORS continued ▼

single BUS OFF light stays illuminated
Choose one:
♦APU is available for start:
Note: APU start attempts are not recommended above 25,000 feet.
APU START
When APU is running:
APU GEN switch (affected side) ON
▶▶Go to step 7
◆APU is not available:
BUS TRANSFER switch AUTO
This restores power to the remaining transfer bus.
ELEC HYD PUMP switches (both) ON (one at a time)
Plan to land at the nearest suitable airport. Only one main AC power source remains.
▶▶Go to step 20
BUS TRANSFER switch AUTO
This restores power to the remaining transfer bus if one BUS OFF light stays illuminated.

Continued on next page ▼

737 Flight Crew Operations Manual

▼ LOSS OF BOTH ENGINE DRIVEN GENERATORS continued ▼
8 ELEC HYD PUMP switches
(both) ON, one at a time
9 YAW DAMPER switchON
▶▶Go to step 20
Both BUS OFF lights stay illuminated
10 Choose one:
♦APU is available for start:
Note: APU start attempts are not recommended above 25,000 feet. With both buses off, only one start attempt is recommended. Multiple start attempts reduce standby power capacity.
APU START
▶▶Go to step 11
◆APU is not available:
▶▶Go to step 16
11 When APU is running: APU GEN switch ON bus 2 This powers TR2 and TR3.
If the APU can not be connected to bus 2: APU GEN switch
▼ Continued on next page ▼

▼ LOSS OF BOTH ENGINE DRIVEN GENERATORS continued ▼

12 Choose one:

♦A single BUS OFF light **extinguishes**:

▶ Go to step 13

♦Both BUS OFF lights stay illuminated:

▶ Go to step 16

13 BUS TRANSFER switch AUTO

This restores power to the remaining transfer bus.

14 ELEC HYD PUMP switches

(both).... ON, one at a time

▶▶Go to step 20

Both BUS OFF lights stay illuminated

- 16 Turn all exterior lights OFF to conserve battery power.
- 17 Avoid icing conditions.

Note: Flight in icing conditions may result in erroneous flight instrument indications.

18 Plan to land at the nearest suitable airport.

Note: A fully charged battery supplies a minimum of 30 minutes of standby power.

19 The right IRS will operate on DC power for 5 minutes.

▼ Continued on next page ▼

737 Flight Crew Operations Manual

▼ LOSS OF BOTH ENGINE DRIVEN GENERATORS continued ▼

20 Choose one:

◆Both the captain's and first officer's primary attitude displays are operative and ATT flags are not shown:

♦Both the captain's and first officer's primary attitude displays are **failed**:

▶▶Go to step 21

♦Only the first officer's primary attitude display is failed:

IRS TRANSFER switch. BOTH ON L

Do **not** use either autopilot.

If both BUS OFF lights **stay illuminated**:

The left IRS will operate as long as battery power remains.

Plan to land at the nearest suitable airport.

▼ Continued on next page **▼**

▼ LOSS OF BOTH ENGINE DRIVEN GENERATORS continued ▼

Action is not reversible. Do this step only if **both the captain's and first officer's** primary attitude displays are **failed**.

21 IRS MODE selectors (both)ATT

Maintain straight and level, constant airspeed flight until attitude displays recover (approximately 30 seconds).

Note: The primary attitude displays will stay failed and the SET IRS HDG prompt will not appear on the POS INIT page until the attitude mode alignment is complete.

- 22 Enter magnetic heading on the POS INIT page or on the overhead IRS display unit by selecting HDG/STS.
- 23 Enter updated heading periodically on the POS INIT page or on the overhead IRS display unit by selecting HDG/STS.
- 24 Do **not** use either autopilot.

737 Flight Crew Operations Manual

STANDBY POWER OFF STANDBY POWER OFF
Condition: The AC standby bus is not energized.
1 STANDBY POWER switch BAT A fully charged battery supplies a minimum of 30 minutes of standby power.
2 If either generator bus is re-established: STANDBY POWER switch AUTO
TRANSFER BUS OFF TRANSFER BUS OFF
Condition: The transfer bus is not energized.
1 BUS TRANSFER switch OFF, then AUTO ■ ■ ■ ■

737 Flight Crew Operations Manual

Non-Normal Checklists	Chapter NNC
Engines, APU	Section 7
Table of Contents	
Aborted Engine Start	
APU FIRE	
ENGINE FIRE or Engine Severe Dar Separation	
Engine Limit or Surge or Stall	
ENGINE OVERHEAT	
Engine Tailpipe Fire	
Loss Of Thrust On Both Engines	
Aborted Engine Start	7.1
APU DETECTION INOPERATIVE	▶▶8.12
APU FIRE	▶▶8.1
APU HIGH OIL TEMPERATURE or APU F	AULT 7.11
APU LOW OIL PRESSURE	7.12
APU OVERSPEED	7.12
Engine Failure or Shutdown	7.14
ENGINE FIRE or Engine Severe Dar	
Separation	
ENGINE FIRE/OVERHEAT DETECTOR FA	
Engine Fuel Leak	
Engine High Oil Temperature	
Engine In-Flight Start	
Engine Limit or Surge or Stall	
ENGINE LOW OIL PRESSURE	
ENGINE OIL FILTER BYPASS	
ENGINE OVERHEAT	▶▶8.5

737 Flight Crew Operations Manual

Table of Contents

Engine Tailpipe Fire	▶▶8.6
High Engine Vibration	
Loss Of Thrust On Both Engines	7.6
LOW IDLE	7.25
One Engine Inoperative Landing	7.26
PMC INOPERATIVE	7.28
REVERSER	7.28
REVERSER UNLOCKED (IN FLIGHT)	7.29
START VALVE OPEN	7.30
Volcanic Ash	7 32

Aborted Engine Start

Condition: During a ground start, an abort engine start

condition occurs.

Objective: To shut down the engine and motor it.

1 Engine start lever (affected engine) CUTOFF

2 Choose one:

♦ENGINE START switch is in **GRD**:

Motor the engine for 60 seconds.

ENGINE START switch (affected engine).....

. Off

◆ENGINE START switch is in **OFF**:

▶ Go to step 3

3 After N2 decreases below 20%:

ENGINE START switch

(affected engine) GRD

Motor the engine for 60 seconds.

ENGINE START switch

(affected engine) OFF

737 Flight Crew Operations Manual

Engine Limit or Surge or Stall

Condition: One or more of these occur:

- Engine indications are abnormal
- Engine indications are rapidly approaching or exceeding limits
- Abnormal engine noises are heard, possibly with airframe vibration
- There is no response to thrust lever movement or the response is abnormal
- •Flames in the engine inlet or exhaust are reported.

Objective: To attempt to recover normal engine operation or shut down the engine if recovery is not possible.

- 1 Autothrottle (if engaged)............Disengage
- 2 Thrust lever
 (affected engine) Confirm Retard until
 indications stay
 within limits or
 the thrust lever is closed

3 Choose one:

- ◆Engine indications are **stabilized** and EGT **decreases**:
 - ▶▶Go to step 4
- ◆Engine indications are **not** normal or EGT continues to **increase**:
 - ▶ Go to step 5

Continued	on	next	page	•
-----------	----	------	------	---

	····g-··
	▼ Engine Limit or Surge or Stall continued ▼
4	Thrust lever (affected engine) Advance slowly while checking RPM and EGT follow thrust lever movement
	Run the engine normally or at a reduced thrust setting which is surge and stall free. \blacksquare \blacksquare \blacksquare
5	Engine start lever (affected engine) Confirm CUTOFF
6	PACK switch (affected side) OFF
	This causes the operating pack to regulate to high flow in flight with flaps up.
7	Choose one:
	◆APU is available for start:
	APU START
	When APU is running:
	APU GEN switch (affected side) ON
	▶▶Go to step 8
	◆APU is not available:
	▶▶Go to step 8

8 Balance fuel as needed.

▼ Continued on next page **¬**

737 Flight Crew Operations Manual

▼ Engine Limit or Surge or Stall continued ▼
9 Transponder mode selector (TCAS equipped airplanes)
This prevents climb commands which can exceed single engine performance capability.
10 If wing anti-ice is needed:
ISOLATION VALVE switch AUTO
11 Plan to land at the nearest suitable airport.
12 A restart may be attempted if there is N1 rotation and no abnormal airframe vibration.
▶ Go to the One Engine Inoperative Landing checklist on page 7.26■ ■ ■ ■

Intentionally Blank

737 Flight Crew Operations Manual

Loss Of Thrust On Both Engines

Condition: Both of these occur:

- Both engines have a loss of thrust
- •Loss of thrust lever response from both engines.

Objective: To restart at least one engine.

- 1 ENGINE START switches (both) FLT
- 2 Engine start levers (both) CUTOFF
- 3 When EGT decreases:

Engine start levers (both) IDLE detent

4 **If** EGT reaches 930°C or there is no increase in EGT within 30 seconds:

Engine start lever (affected engine) Confirm CUTOFF, then IDLE detent

If EGT again reaches 930°C or there is no increase in EGT within 30 seconds, repeat as needed.

Note: Engines may accelerate to idle very slowly, especially at high altitudes or in heavy precipitation. If N2 is steadily increasing and EGT stays within limits, do not interrupt the start.

5 At or above FL270, set airspeed to 275 knots. Below FL270, set airspeed to 300 knots.

lacktriangle Continued on next page lacktriangle

▼ Loss Of Thrust On Both Engines continued **▼**

- 6 Choose one:
 - ♦APU is **available** for start:
 - ▶ ▶ Go to step 7
 - ♦APU is **not** available:
 - ▶ Go to step 9

Do not wait for successful engine start(s) before starting the APU.
7 APU START
8 When APU is running:
APU GEN switch ON bus 2
This powers TR2 and TR3.
If the APU cannot be connected to bus 2:
APU GEN switch ON bus 1
9 Choose one:
◆One or both engines start:
▶▶Go to step 13
◆Neither engine starts:

▼ Continued on next page ▼

▶ Go to step 10

737 Flight Crew Operations Manual

▼ Loss Of Thrust On Both Engines continued **▼**

• Loss of finast on Both Engines Continued •
10 Choose one:
♦N2 is above 15% :
Attempt a windmill start.
▶▶Go to step 11
♦N2 is at or below 15% :
Attempt a starter assisted start.
▶▶Go to step 14
11 Thrust levers (both) Close
12 Engine start
lever (either) Confirm CUTOFF, then IDLE detent
Note: The engine may accelerate to idle very slowly. If N2 is steadily increasing and EGT stays within limits, do not interrupt the start.
13 When engine parameters have stabilized:
ENGINE START switch (operating engine)
Thrust lever (operating engine) Advance slowly
Engine GEN switch (operating engine side)ON
Note: The Engine In-Flight Start checklist will be used to start the other engine, if needed.
▶▶Go to step 23
14 Thrust levers (both) Close
▼ Continued on next page ▼
Copyright © The Boeing Company. See title page for details.

737 Flight Crew Operations Manual

▼ Loss Of Thrust On Both Engines continued ▼
15 WING ANTI-ICE switch OFF
16 PACK switches (both) OFF
17 APU BLEED air switch
18 Ignition select switch BOTH
19 Engine start lever (either) Confirm CUTOFF
20 ENGINE START switch
21 When N2 is at or above 15%:
Engine start lever
Note: The engine may accelerate to idle very slowly. If N2 is steadily increasing and EGT stays within limits, do not interrupt the start.
22 When engine parameters have stabilized:
APU BLEED air switch OFF
ENGINE START switch (operating engine) As needed
Thrust lever (operating engine) Advance slowly
Engine GEN switch (operating engine side)ON
PACK switch (operating engine side)AUTO
Note: The Engine In-Flight Start checklist will be

used to start the other engine, if needed.

▼ Continued on next page ▼

737 Flight Crew Operations Manual

▼ Loss Of Thrust On Both Engines continued **▼**

23 Choose one:

- ◆Both the captain's and first officer's primary attitude displays are operative and ATT flags are not shown:
 - ▶▶Go to step 28
- ◆Both the captain's and first officer's primary attitude displays are failed:
 - ▶▶Go to step 24
- ♦Only the first officer's primary attitude display is failed:

IRS TRANSFER switch. BOTH ON L

Do **not** use either autopilot.

▶▶Go to step 28

Action is not reversible. Do this step only if **both** the captain's and first officer's primary attitude displays are **failed**.

24 IRS MODE selectors (both)..... ATT

Maintain straight and level, constant airspeed flight until attitude displays recover (approximately 30 seconds).

Note: The primary attitude displays will stay failed and the SET IRS HDG prompt will not appear on the POS INIT page until the attitude mode alignment is complete.

Continued on next page

▼ Loss Of Thrust On Both Engines continued **▼**

- 25 Enter magnetic heading on the POS INIT page or on the overhead IRS display unit by selecting HDG/STS.
- 26 Enter updated heading periodically on the POS INIT page or on the overhead IRS display unit by selecting HDG/STS.
- 27 Do **not** use either autopilot.
- 28 Choose one:
 - **♦Both** engines are running:

Run the APU as needed.

- One engine stays failed:
 - ► Go to the Engine In-Flight Start checklist on page 7.18

APU HIGH OIL TEMPERATURE or APU FAULT

HIGH OIL TEMP

or

FAULT

Condition: An APU malfunction occurs.

Note: The APU shuts down automatically.

1 APU switch OFF

737 Flight Crew Operations Manual

LOW OIL PRESSURE	APU LOW OIL PRESSURE
	The APU oil pressure is low.
Note: T	he APU shuts down automatically.
1 APU s	witch
OVER SPEED	APU OVERSPEED
Condition:	 One of these occurs: An APU RPM limit exceedance causes automatic shutdown During a normal APU shutdown the overspeed shutdown protection logic fails a self-test An APU start has been manually aborted before the APU reached normal operating speed.
1 APU s	witch OFF
R R b	the OVERSPEED light illuminated due to an RPM limit exceedance, the APU OVERSPEED RESET switch in the E/E compartment must be reset before another APU start can be ttempted.

Intentionally Blank

737 Flight Crew Operations Manual

Engine Failure or Shutdown

Condition: One of these occurs:

- An engine failure
- •An engine flameout
- Another checklist directs an engine shutdown.
- Do an engine shutdown only when flight conditions allow.
- 2 Autothrottle (if engaged)...........Disengage
- 3 Thrust lever (affected engine) Confirm Close
- 4 **If** conditions allow:

Run the engine for three minutes at idle thrust.

- 5 Engine start lever (affected engine) Confirm CUTOFF
- 6 PACK switch (affected side) OFF

This causes the operating pack to regulate to high flow in flight with flaps up.

Continued on next page

	▼ Engine Failure or Shutdown continued ▼
7	Choose one:
	♦APU is available for start:
	APU START
	When APU is running:
	APU GEN switch (affected side) ON
	▶▶Go to step 8
	◆APU is not available:
	► ► Go to step 8
8	Balance fuel as needed.
9	Transponder mode selector (TCAS equipped airplanes)
	This prevents climb commands which can exceed single engine performance capability.
10	If wing anti-ice is needed:
	ISOLATION VALVE switch AUTO
11	Plan to land at the nearest suitable airport.
>)	Go to the One Engine Inoperative Landing checklist on page 7.26

737 Flight Crew Operations Manual

Engine High Oil Temperature

Condition: The engine oil temperature is high.

- 1 Choose one:
 - **♦**Temperature is **at or above** the **red radial**:
 - ► Go to the Engine Failure or Shutdown checklist on page 7.14
 - ◆Temperature is in the **yellow band**:
 - ▶▶Go to step 2
- 3 Thrust lever
 (affected engine) Confirm. . . Retard slowly
 until engine oil temperature is
 within normal operating range
 or thrust lever is closed

Run the engine at a power setting to keep the oil temperature in the normal operating range.

- 4 **If** temperature is in the **yellow band** for more than **15 minutes**:
 - ▶ Go to the Engine Failure or Shutdown checklist on page 7.14

Intentionally Blank

737 Flight Crew Operations Manual

Engine In-Flight Start

Condition: An engine start is needed after a shutdown and there is:

- N1 rotation
- No fire
- No abnormal airframe vibration
- Do this checklist **only** after completion of the 1 Engine Failure or Shutdown checklist or as directed by the Engine Limit or Surge or Stall checklist or by the Loss of Thrust on Both Engines checklist.
- Check the In-Flight Start Envelope. Starts are not assured outside of the in-flight start envelope.

Note: Starter assist should be used if N2 is below 15%.

Continued on next page

▼ Engine In-Flight Start continued ▼

4 Engine start lever (affected engine) Confirm. CUTOFF

Note: Engines may accelerate to idle very slowly, especially at high altitudes. Slow acceleration may be incorrectly interpreted as a hung start or an engine malfunction. If N2 is steadily increasing, and EGT stays within limits, the start is progressing normally.

Continued on next page

737 Flight Crew Operations Manual

•	Engine	In-Flight	Start	continued	▾
---	---------------	-----------	--------------	-----------	---

	▼ Engine In-Flight Start continued ▼
5	Choose one: ◆Windmill start:
	ENGINE START switch (affected engine)FLT
	▶▶Go to step 6
	◆Starter assist start:
	PACK switch (affected side) OFF DUCT PRESSURE Minimum 30 PSI Advance the thrust lever to increase duct pressure if needed.
	Ignition select switch BOTH ENGINE START switch (affected engine)
	▶▶Go to step 6
6	When N2 is at or above 15%:
	Engine start lever (affected engine) IDLE detent
7	If EGT does not increase in 30 seconds or another abort start condition as listed in the Normal Procedures occurs:
	Engine start lever (affected engine) Confirm CUTOFF ENGINE START switch (affected engine) OFF

▼ Engine In-Flight Start continued **▼**

- 8 Choose one:
 - ◆Engine **starts** and runs normally:
 - ▶ Go to step 9
 - ♦Engine **fails** to start:
 - ► Go to the One Engine Inoperative Landing checklist on page 7.26

9 Engine GEN switch (affected side)ON
10 PACK switch (affected side) AUTO
11 ENGINE START switch As needed
12 APU \ldots . As needed
13 Transponder mode selector (TCAS equipped airplanes)

737 Flight Crew Operations Manual

ENGINE LOW OIL PRESSURE

LOW OIL PRESSURE

May or may not be illuminated

Condition: The engine oil pressure is low.

1 Choose one:

◆Engine oil pressure is in the **yellow band** with **takeoff thrust** set:

Do not takeoff.

- ◆Engine oil pressure is **at or below** the **red** radial:
 - ► Go to the Engine Failure or Shutdown checklist on page 7.14

OIL FILTER BYPASS

ENGINE OIL FILTER BYPASS

Condition: Oil filter contamination can cause oil to bypass the oil filter.

- 1 Autothrottle (if engaged)...........Disengage
- 2 Thrust lever
 (affected engine) . . . Confirm . . . Retard until the
 OIL FILTER BYPASS
 light extinguishes or
 the thrust lever is closed
- 3 Choose one:
 - ♦OIL FILTER BYPASS light extinguishes:

Run the engine at reduced thrust to keep the light extinguished.

- ♦OIL FILTER BYPASS light stays illuminated:
 - ► Go to the Engine Failure or Shutdown checklist on page 7.14

737 Flight Crew Operations Manual

High Engine Vibration

Condition: Both of these occur:

- •The vibration level is more than 4.0 units
- Airframe vibrations.
- 1 Choose one:
 - ◆In icing conditions:
 - ▶ Go to step 2
 - **♦Not** in icing conditions:
 - ▶ Go to step 4
- 2 If in moderate to severe icing conditions during descent or holding, do the following on one engine at a time at approximately 15 minute intervals:

ENGINE START switch (affected engine) FLT

Thrust (affected engine) . . . Adjust to 45% N1 for five seconds, then advance slowly to a minimum of 80% N1 for 1 second

- 3 Choose one:
 - ♦Vibration decreases:

Continue normal operation.

- Vibration does **not** decrease:
 - ▶ Go to step 4

Continued on next page

737 Flight Crew Operations Manual

	▼ High Engine Vibration continued ▼
4	Autothrottle (if engaged)Disengage
5	Thrust lever (affected engine) Confirm Retard to maintain vibration levels below 4 units
	levels below 4 units

Note: If the VIB indication does not decrease when the thrust lever is retarded, check other engine indications. If other engine indications are normal, no further action is needed.

LOW IDLE

LOW IDLE

Condition: Either engine is below minimum required RPM.

- 1 Autothrottle (if engaged)...........Disengage
- 2 Thrust levers (both) Advance until the LOW IDLE light extinguishes

737 Flight Crew Operations Manual

One Engine Inoperative Landing

Condition: Landing must be made with one engine inoperative.

- 1 Plan a flaps 15 landing.
- 2 Set VREF 15.
- 3 Maintain VREF 15 + 5 knots minimum on final approach. Apply normal wind correction but do not go below VREF 15 + 5 knots to assure adequate speed for go-around.
- 4 Use engine anti-ice on the operating engine only.
- **5 Checklist Complete Except Deferred Items**

Deferred Items				
Descent Checklist				
PressurizationCAB ALT, LAND ALT				
Recall				
Autobrake				
Landing data VREF 15, Minimums				
Approach briefing Completed				
If additional go-around thrust is needed:				
Configure the pressurization system for a no engine bleed landing when below 10,000 feet.				
WING ANTI-ICE switch OFF				
ISOLATION VALVE switch CLOSE				
BLEED 1 air switch OFF				
▼ Continued on next page ▼				

One Engine Inoperative Landing continued Do not open the APU bleed air valve if the engine fire switch is illuminated. \APU BLEED air switch ON Left PACK switch AUTO BLEED 2 air switch OFF Go-around Procedure Review Do the normal go-around procedure except: Use flaps 1. Maintain VREF 15 + 5 knots until reaching flap retraction altitude. Limit bank angle to 15° when airspeed is less than VREF 15 + 15 knots or the minimum maneuver speed, whichever is lower. Accelerate to flaps 1 maneuvering speed before flap retraction. **Approach Checklist** Altimeters .

Additional Deferred Item

GROUND PROXIMITY FLAP/GEAR INHIBIT switch . . . FLAP/GEAR INHIBIT

▼ Continued on next page ▼

737 Flight Crew Operations Manual

▼ One Engine Inoperative Landing continued **▼**

Landing Checklist

switch (operating engine) CONT

Speedbrake ARMED

Landing gear Down

Flaps......15, Green light

INOP

PMC INOPERATIVE

Condition: The PMC is inoperative or OFF.

1 Thrust levers (if needed) Adjust
The autothrottle may be used, if desired. If the

autothrottle is disengaged, adjust the thrust levers as needed.

2 Observe engine limits.

REVERSER

REVERSER

Condition: A fault occurs in the thrust reverser system.

Note: Additional system failures may cause

in-flight deployment.

1 Expect normal reverser operation after landing.

737 Flight Crew Operations Manual

REVERSER UNLOCKED

REVERSER UNLOCKED (IN FLIGHT)

Condition: One of these occur:

- One of the two reverser sleeves has mechanically unlocked
- •The light is giving a false indication.

Note: Only multiple failures could allow the engine to go into reverse thrust.

Unstowed reverser sleeves produce buffet, yaw, roll and increased airplane drag.

1 Check movement of the forward thrust lever on the affected engine.

Warning! Do not actuate the reverse thrust lever.

2 Choose one:

◆Engine **responds** to forward thrust lever movement **and no** buffet or yaw exists:

Continue normal operation.

- Engine does **not** respond to forward thrust lever movement **or** buffet or yaw **exists**:
 - ► Go to the Engine Failure or Shutdown checklist on page 7.14

737 Flight Crew Operations Manual

Sī	TART VALVE OPEN	START VALVE OPEN	
С	ondition: The	e start valve fails to close.	
1	ENGINE S	START switch	OFF
2	Choose or	ne:	
	♦START \	VALVE OPEN light extinguishes : ■ ■ ■ ■	
	♦START \	VALVE OPEN light stays illuminated	:
	•	▶Go to step 3	
3	ISOLATIO	N VALVE switch	OSE
4	PACK swit	tch (affected side)	OFF
		auses the operating pack to regulate to ow in flight with flaps up.	:0
5	_	_EED air switch side)	OFF
6	Choose or	ne:	
	◆START \ engine	VALVE OPEN light stays illuminated fo 1 :	r
	AF	PU BLEED air switch	OFF
	•	▶Go to step 7	
	◆START \ engine	VALVE OPEN light stays illuminated fo 2 :	r
	•	▶Go to step 7	

Continued on next page

▼ START VALVE OPEN continued ▼

Choose one:

♦In flight:

On the ground:

Ground air source (if in use) Disconnect

Engine start lever (affected engine)..... CUTOFF

737 Flight Crew Operations Manual

Volcanic Ash

Condition: Volcanic ash is suspected when one or more of these occur:

- A static discharge around the windshield
- •A bright glow in the engine inlets
- Smoke or dust on the flight deck
- An acrid odor.

Objective: To exit the ash cloud and restart engines if

needed.

Caution! Exit volcanic ash as quickly as possible. Consider a 180° turn.

1	Don oxygen masks and smoke goggles, as needed.
2	Establish crew communications, as needed.
3	Autothrottle (if engaged)Disengage
4	If conditions allow, run the engines at idle thrust Thrust levers (both)
	This reduces possible engine damage or flameout, or both, by decreasing EGT.
5	ENGINE START switches (both) FLT
6	PACK switches HIGH
7	WING ANTI-ICE switch
8	ENG ANTI-ICE switches (both)ON

Continued on next page >

▼ Volcanic Ash continued ▼
available for starts

9 If the APU is available for start:

APU START

This supplies backup electrical and pneumatic sources, if needed.

Note: Volcanic ash can cause non-normal system indications such as:

- Engine malfunctions, increasing EGT, engine stall or flameout.
- Decrease or loss of airspeed indications.
- Equipment cooling OFF light.
- 10 Engines may accelerate to idle very slowly, especially at high altitudes.
- 11 Slow acceleration may be incorrectly interpreted as a hung start or an engine malfunction. If N2 is steadily increasing, and EGT stays within limits, the start is progressing normally.
- 12 Plan to land at the nearest suitable airport.
- 13 Choose one:
 - ◆Engines run normally:
 - ♦Engines do **not** run normally:
 - ► Go to the Loss Of Thrust On Both Engines checklist on page 7.6

Intentionally Blank

Non-Normal Checklists	Chapter NNC
Fire Protection	Section 8
Table of Contents	0.1
APU FIRE	
ENGINE FIRE or Engine Severe Dan Separation	_
ENGINE OVERHEAT	
Engine Tailpipe Fire	8.6
Smoke, Fire or Fumes	8.8
APU DETECTION INOPERATIVE	8.12
APU FIRE	8.1
CARGO FIRE	8.14
CARGO FIRE DETECTOR FAULT	8.15
ENGINE FIRE or Engine Severe Dar	mage or
Separation	8.2
ENGINE FIRE/OVERHEAT DETECTOR F.	AULT8.16
ENGINE OVERHEAT	8.5
Engine Tailpipe Fire	8.6
Smoke or Fumes Removal	8.18
Smoke, Fire or Fumes	8.8
WHEEL WELL FIRE	

737 Flight Crew Operations Manual

Table of Contents

Intentionally Blank

APU FIRE

Condition: Fire is detected in the APU. 1 APU fire switch... Confirm Pull, rotate to the stop, and hold for 1 second 2 APU switch

- 3 Choose one:
 - APU fire switch **extinguishes**:
 - ▶ Go to step 5
 - APU fire switch **stays illuminated**:
 - ▶ Go to step 4
- Plan to land at the nearest suitable airport.
- 5 When on the ground:

If AC power is not available:

STANDBY POWER switch..... BAT

737 Flight Crew Operations Manual

ENGINE FIRE or Engine Severe Damage or Separation

Co	 One or more of these occur: Engine fire warning Airframe vibrations with abnormal engine indications Engine separation.
1	Autothrottle (if engaged)Disengage
2	Thrust lever (affected engine) Confirm Close
3	Engine start lever (affected engine) Confirm CUTOFF
4	Engine fire switch (affected engine) Confirm Pul
	To manually unlock the engine fire switch, press the override and pull.
5	If the engine fire switch or ENG OVERHEAT light stays illuminated:
	Engine fire switch Rotate to the stop and hold for 1 second
	If after 30 seconds the engine fire switch or ENG OVERHEAT light stays illuminated:
	Engine fire switchRotate to the other stop and hold for 1 second

•	▼ ENGINE FIRE or Engine Severe Damage or Separation continued ▼			
6	If high airframe vibration occurs and continues after engine is shut down:			
	Without delay, reduce airspeed and descend to a safe altitude which results in an acceptable vibration level.			
	If high vibration returns and further airspeed reduction and descent are not practicable, increasing airspeed may reduce vibration.			
7	ISOLATION VALVE switch CLOSE			
8	PACK switch (affected side) OFF			
	This causes the operating pack to regulate to high flow in flight with the flaps up.			
9 APU BLEED air switch				
10 Choose one:				
	♦APU is available for start:			
	APU START			
	When APU is running:			
	APU GEN switch (affected side) ON			
	▶▶Go to step 11			
◆APU is not available:				
	▶▶Go to step 11			

11 Balance fuel as needed.

▼ Continued on next page **▼**

▼ ENGINE FIRE or Engine Severe Damage or Separation continued ▼				
12 Transponder mode selector (TCAS equipped airplanes)				
This prevents climb commands which can exceed single engine performance capability.				
13 If wing anti-ice is needed:				
ISOLATION VALVE switch (after fire has been extinguished) AUTO				
14 Plan to land at the nearest suitable airport.				
 ▶ Go to the One Engine Inoperative Landing checklist on page 7.26 ■ ■ ■ 				

ENGINE OVERHEAT

Condition: An overheat is detected in the engine.

- 1 Autothrottle (if engaged)...........Disengage
- 2 Thrust lever (affected engine) Confirm Close
- 3 If the ENG OVERHEAT light stays illuminated:
 - ▶ Go to the ENGINE FIRE or Engine Severe Damage or Separation checklist on page 8.2

4 If the ENG OVERHEAT light extinguishes:

Run the engine at reduced thrust to keep the light extinguished.

737 Flight Crew Operations Manual

Engine Tailpipe Fire

Condition: An engine tailpipe fire occurs on the ground with no engine fire warning.

- 1 Engine start lever (affected engine) CUTOFF
- 2 Advise the cabin.
- 3 Choose one:
 - ♦Bleed air is **not** available:

Advise the tower.

◆Bleed air is available:

▶▶Go to step 4

- 4 PACK switches (both) OFF
- 5 ISOLATION VALVE switch.....AUTO
- 6 Engine BLEED air switches (both)......ON
- 7 Choose one:
 - **♦**APU is **running**:

▶ Go to step 8

◆APU is **not** running:

▶ Go to step 8

Continued on next page

▼ Engine Tailpipe Fire continued **▼**

- 8 Choose one:
 - ♦ Affected ENGINE START switch is in **GRD**:
 - ▶ Go to step 9
 - ◆Affected ENGINE START switch is **not** in GRD:

Allow the affected N2 to decrease below 20%.

ENGINE START switch (affected engine)......GRD

- ▶ Go to step 9
- 9 Advise the tower.
- 10 Continue to motor the engine until the tailpipe fire is extinguished.
- 11 ENGINE START switch (affected engine) OFF

737 Flight Crew Operations Manual

Smoke, Fire or Fumes

Condition: Smoke, fire or fumes occurs.

- 1 Diversion may be needed.
- 2 Don oxygen masks and set regulators to 100%, as needed.
- 3 Don smoke goggles, as needed.
- 4 If smoke or fumes affect vision:

Use the EMERGENCY position on the oxygen regulator to clear the goggles.

- 5 Establish crew and cabin communications.
- 6 BUS TRANSFER switch OFF
- 7 GALLEY switch OFF
- 8 RECIRC FAN switch.....OFF
- 9 Instruct the cabin crew to turn off the IFE and PC power switches (as installed).
- 10 APU BLEED air switch OFF
- 11 **Anytime** the smoke or fumes becomes the greatest threat:
 - ▶ Go to the Smoke or Fumes Removal checklist on page 8.18

Continued on next page

▼ Smoke, Fire or Fumes continued **▼**

12 Choose one:

◆Source of the smoke, fire or fumes is **obvious** and can be **extinguished quickly**:

Isolate and extinguish the source.

If possible, remove power from the affected equipment by switch or circuit breaker in the flight deck or cabin.

- ▶▶Go to step 13
- ◆Source of the smoke, fire or fumes is **not** obvious **or cannot** be extinguished quickly:
 - ▶ Go to step 14

13 Choose one:

Source is visually confirmed to be extinguished and the smoke or fumes are decreasing:

Continue the flight at the captain's discretion.

Restore unpowered items at the captain's discretion.

▶ Go to the Smoke or Fumes Removal checklist on page 8.18, if needed

Source is **not** visually confirmed to be extinguished **or** smoke or fumes are **not** decreasing:

▶▶Go to step 14

▼ Continued on next page **▼**

737 Flight Crew Operations Manual

▼ Smoke, Fire or Fumes continued ▼			
14 EQUIP COOLING switch ALTERNATE			
15 Instruct the cabin crew to:			
Turn on cabin reading lights.			
Turn on galley attendants work lights.			
Turn off cabin fluorescent light switches.			
16 Divert to the nearest suitable airport while continuing the checklist.			
17 Consider an immediate landing if the smoke, fire or fumes situation becomes uncontrollable.			
18 Do not delay landing in an attempt to complete all of the following steps.			
19 ISOLATION VALVE switch CLOSE			
20 R PACK switch OFF			
21 Wait 2 minutes unless the smoke or fumes are increasing. This allows time for the smoke or fumes to clear.			

Continued on next page ▼

▼ Smoke, Fire or Fumes continued **▼**

22 Choose one:

- ♦Smoke or fumes are **decreasing**:
 - ► Go to the Smoke or Fumes Removal checklist on page 8.18, if needed
- Smoke or fumes continue or are increasing:

R PACK switch AUTO

L PACK switch OFF

▶ Go to step 23

- 23 **Wait** 2 minutes unless the smoke or fumes are increasing. This allows time for the smoke or fumes to clear.
- 24 Choose one:
 - Smoke or fumes are decreasing:
 - ▶ Go to the Smoke or Fumes Removal checklist on page 8.18, if needed

♦Smoke or fumes **continue or are increasing**:

L PACK switch AUTO

Consider an immediate landing.

▶ Go to the Smoke or Fumes Removal checklist on page 8.18, if needed

737 Flight Crew Operations Manual

APU DET INOP
Canadiki ana.

APU DETECTION INOPERATIVE

Condition: APU fire detection is inoperative.

1 APU switch.....OFF

Caution! Do not run the APU. An APU fire would not be detected and the APU would continue to run.

Intentionally Blank

737 Flight Crew Operations Manual

CARGO FIRE

	FWD AFT			
Condition: Fire is detected in the related cargo compartment.				
1	CARGO FIRE ARM switch (affected compartment) Confirm Push, Verify ARMED			
2	CARGO FIRE DISCH switch Push and hold for 1 second			
l	Note: DISCH light may require up to 30 seconds to illuminate.			
3	RECIRC FAN switch OFF			
4 One PACK switch				
	This reduces airflow in the cargo compartment and helps maintain the concentration of fire retardant.			
5	Plan to land at the nearest suitable airport.			
6	Checklist Complete Except Deferred Items			
	Deferred Items			
Descent Checklist				
F	PressurizationCAB ALT, LAND ALT			
Recall				
Autobrake				
Landing data VREF, Minimums				
	▼ Continued on next page ▼			

▼ CARGO FIRE continued ▼		
Approach briefing Completed		
Approach Checklist		
Altimeters		
Warning! Inform ground personnel not to open the cargo door after landing until all passengers and crew have exited the airplane and fire fighting equipment is nearby.		
Landing Checklist		
ENGINE START switches CONT		
Speedbrake		
Landing gear		
Flaps		
DETECTOR		

DETECTOR FAULT

CARGO FIRE DETECTOR FAULT

Condition: Fire detection is inoperative in one or both cargo compartments.

1 The fire detection system in one or both cargo compartments is inoperative.

737 Flight Crew Operations Manual

FAULT

ENGINE FIRE/OVERHEAT DETECTOR FAULT

Condition: Engine fire and overheat detection is inoperative.

1 The fire detection system in one or both engines is inoperative.

Intentionally Blank

737 Flight Crew Operations Manual

Smoke or Fumes Removal

Condition: Smoke or fumes removal is needed.

- 1 Do this checklist **only** when directed by the Smoke, Fire or Fumes checklist.
- 2 Do **not** delay landing in an attempt to complete the following steps.
- 3 Close the flight deck door.
- 4 Choose one:
 - **♦Both PACKS are OFF:**
 - ▶ ▶ Go to step 5
 - **♦A single or both** PACKS are in **AUTO**:
 - ▶▶Go to step 6
 - Continued on next page

▼ Smoke or Fumes Removal continued **▼**

5 Choose one:

◆Smoke or fumes source is confirmed to be **outside** the flight deck:

◆Smoke or fumes source is confirmed to be **on** the flight deck:

Caution! Window should not be opened unless the source is confirmed to be on the flight deck.

Establish normal holding speed. High airspeed may prevent opening the window.

Open the First Officer's sliding window.

▶ Go to the Smoke, Fire or Fumes checklist on page 8.8 and do the remaining steps

Do not turn on any PACK switch that was turn off by the Smoke, Fire or Fumes checklist. 6 Operating PACK switch(es)	ed
6 Operating PACK switch(es) HI	GH
7 Pressurization mode selector ST	ΒΥ
8 CAB ALT indicator Select a higher altitum (maximum 10,000 fe	ıde et)

Continued on next page

737 Flight Crew Operations Manual

▼ Smoke or Fumes Removal continued **▼**

Note: The intermittent cabin altitude/configuration warning horn will sound and the CABIN ALTITUDE light (as installed) will illuminate at a cabin altitude of approximately 10,000 feet.

- 9 CABIN RATE selector..... Maximum INCR
- 10 Engine BLEED air switches (both).... Verify ON
- 11 Set thrust to maximum practical N1 (minimum 45%).
- 12 Open flight deck air conditioning and gasper outlets.

Caution! Do not open any flight deck window. Keep the flight deck door closed.

13 Choose one:

- Smoke or fumes are controllable:
 - ► Go to the Smoke, Fire or Fumes checklist on page 8.8 and do the remaining steps

- ◆Smoke or fumes are **not** controllable:
 - ▶ Go to step 14
- 14 Descend to the lowest safe altitude or 10,000 feet, whichever is higher.
- 15 When at 14,000 feet or below:

Pressurization mode selector MAN AC

lacktriangle Continued on next page lacktriangle

▼ Smoke or Fumes Removal continued **▼**

Outflow VALVE switch Hold in OPEN until the outflow VALVE position indicates fully OPEN

This causes the cabin airflow to carry smoke or fumes aft.

▶ Go to the Smoke, Fire or Fumes checklist on page 8.8 and do the remaining steps

	WHEEL	WH	IEEL WEL	L FIRE	
Co	ondition: Fi	re is detecte	ed in the m	nain wheel w	vell.
	(270k LANDI	ot exceed the (/.82M) ING GEAR le	ever		DN
N		not use FMo ar extended.		ictions with	landing
2	Choose	one:			
		nust be ret mance:	racted for	airplane	
		► ►Go to st	ер 3		
		loes not ne mance:	ed to be re	etracted for	airplane
	i	Plan to land	at the nea	rest suitable I	e airport.
3	When t	he WHEEL V	VELL light (extinguishes	S:
	Wait	20 minutes	5.		
4 5	LANDI When t	maximum ING GEAR le he landing g ING GEAR l	jear indicat		UP tinguish: OFF
6	Plan to I	and at the r	nearest sui	table airport	

Non-Normal Checklists	Chapter NNC
Flight Controls	Section 9
Table of Contents Runaway Stabilizer Uncommanded Rudder/Yaw Or Ro	II9.3
All Flaps Up Landing	9.8
AUTO SLAT FAIL	9.10
Elevator Tab Vibration	9.10
FEEL DIFFERENTIAL PRESSURE	9.11
FLIGHT CONTROL LOW PRESSURE	9.11
Jammed or Restricted Flight Controls	9.12
LEADING EDGE FLAPS TRANSIT	
MACH TRIM FAIL	
Runaway Stabilizer	
SPEED BRAKE DO NOT ARM	
SPEED TRIM FAIL	
STABILIZER OUT OF TRIM	
Stabilizer Trim Inoperative	
STANDBY RUDDER ON	
Trailing Edge Flap Asymmetry	
Trailing Edge Flap Disagree	
Trailing Edge Flaps Up Landing	
Uncommanded Rudder/Yaw Or Ro	
YAW DAMPER	9.41

737 Flight Crew Operations Manual

Table of Contents

Intentionally Blank

Runaway	Stabilizer
---------	------------

	Ranaway Stabilizer
(Condition: Uncommanded stabilizer trim movement occurs continuously.
1	Control column Hold firmly
2	Autopilot (if engaged) Disengage
	Do not re-engage the autopilot.
	Control airplane pitch attitude manually with control column and main electric trim as needed.
3	If the runaway stops:
4	If the runaway continues:
	STAB TRIM CUTOUT switches (both)
	If the runaway continues:
	Stabilizer trim wheel Grasp and hold
5	Stabilizer Trim manually
6	Anticipate trim requirements.
7	Checklist Complete Except Deferred Items
	Deferred Items
D	escent Checklist
	Pressurization CAB ALT, LAND ALT
	▼ Continued on next page ▼

▼ Runaway Stabilizer continued ▼
Recall
Autobrake
Landing dataVREF, Minimums
Approach briefing Completed
Approach Checklist
Altimeters
Aivenced and Trim
Airspeed and Trim
Establish correct airspeed and in-trim condition early on final approach.
Establish correct airspeed and in-trim condition early
Establish correct airspeed and in-trim condition early on final approach.
Establish correct airspeed and in-trim condition early on final approach. Landing Checklist
Establish correct airspeed and in-trim condition early on final approach. Landing Checklist ENGINE START switches

Uncommanded Rudder/Yaw Or Roll

Condition: Uncommanded rudder pedal displacement or pedal kicks, or uncommanded yaw or roll occurs.

- 2 Maintain control of the airplane with all available flight controls. If roll is uncontrollable, immediately reduce pitch/angle of attack and increase airspeed. Do not attempt to maintain altitude until control is recovered.
- 3 Autothrottle (if engaged)........Disengage
- 4 Verify thrust is symmetrical.
- 5 Choose one:
 - ◆Trailing edge flaps are extended, with no flap asymmetry and rudder pedals normal. (May be accompanied by a loud bang):
 - ▶ Go to step 6
 - ◆Trailing edge flaps are not extended:
 - ▶ Go to step 10
- 6 Flaps..... Retract to flaps 1 on schedule

Roll may be the result of trailing edge flap displacement due to a flap spindle fracture.

Consider doing a go-around.

7 Plan a flaps 1 landing.

▼ Continued on next page ▼

737 Flight Crew Operations Manual

▼ Uncommanded Rudder/Yaw Or Roll continued **▼**

- 8 Set VREF 40 + 30 knots.
- 9 Check the appropriate Non-Normal Configuration Landing Distance table in the Advisory Information section of the Performance Inflight chapter. Use the Advisory Information for Trailing Edge Flap Disagree, VREF 40 + 30 knots.

▶▶Go to step 20

10 Choose one:

- ◆ STBY RUD ON light **is installed** on the overhead panel **and** is **operable**:
 - ▶ Go to the Jammed or Restricted Flight Controls checklist on page 9.12

◆STBY RUD ON light is **not** installed on the overhead panel **or** is placarded **INOP**:

▶ Go to step 11

11 YAW DAMPER switch OFF

lacktriangle Continued on next page lacktriangle

▼ Uncommanded Rudder/Yaw Or Roll continued ▼
12 Choose one:
♦Yaw or roll stops :
Autopilot (if needed)Engage
Autothrottle (if needed) Engage ■ ■ ■ ■
◆Yaw or roll does not stop:
►►Go to step 13
13 Rudder trim Center
14 Rudder pedals Free and center
Use maximum force including a combined effort of both pilots, if needed, to free and center the rudder pedals.
15 Choose one:
◆Rudder pedal position and movement are normal :
YAW DAMPER switch ON ■ ■ ■ ■
◆Rudder pedal position or movement is not normal:
►►Go to step 16
16 SYSTEM B FLIGHT CONTROL switch Confirm STBY RUD
▼ Continued on next page ▼

737 Flight Crew Operations Manual

•	Uncommanded	Rudder	/Yaw Or	Roll	continued	╮
	Uliculiillialaca	· vuuuci	,		continuca	

- 17 Land at the nearest suitable airport.
- 18 Consider checking rudder freedom of movement at a safe altitude using slow rudder inputs while in the landing configuration and at approach speed.

Note: A slight rudder deflection may remain, but continued rudder pedal pressure may help maintain an in-trim condition. Sufficient directional control is available on landing using differential braking and nose wheel steering.

Crosswind capability may be reduced.

19 Do **not** use the autobrake. Use manual brakes on landing.

20 Checklist Complete Except Deferred Items

Deferred Items
Descent Checklist
Pressurization CAB ALT, LAND ALT
Recall
Autobrake , or OFF as directed by checklist
Landing data
Approach briefing Completed
T Continued on work was a

▼ Uncommanded Rudder/Yaw Or Roll continued ▼
Approach Checklist
Altimeters
Additional Deferred Item
Choose one:
◆Landing with flaps 1:
GROUND PROXIMITY FLAP/GEAR INHIBIT switch FLAP/GEAR INHIBIT
▶► Go to Landing Checklist below
◆Landing with flaps 30 or 40 :
► ► Go to Landing Checklist below
Landing Checklist
ENGINE START switches
Speedbrake
Landing gear Down
Flaps

737 Flight Crew Operations Manual

ΑII	Fla	ns	Up	Lan	ding
		23	VΡ		u g

Condition: The leading edge devices fail to extend and

trailing edge flaps are less than 1.

Objective: To configure for a landing with leading edge

devices retracted and trailing edge flaps

less than 1.

- 1 Do this checklist **only** when directed by the Trailing Edge Flaps Up Landing checklist.
- 2 Burn off fuel to reduce touchdown speed.
- 3 Set VREF 40 + 55 knots.
- 4 Check the Non-Normal Configuration Landing Distance table in the Advisory Information section of the Performance Inflight chapter.
- 5 Maintain flaps up maneuvering speed until established on final approach.
- 6 Limit bank angle to 15° when airspeed is less than the flaps up maneuvering speed.
- 7 Checklist Complete Except Deferred Items

Deferred Items
Descent Checklist
PressurizationCAB ALT, LAND ALT
Recall
Autobrake
Landing data VREF 40 + 55 knots, Minimums
▼ Continued on next page ▼

▼ All Flaps Up Landing continued ▼
Approach briefing Completed
Go-around Procedure Review
Do the normal go-around procedure except:
Limit bank angle to 15° when the airspeed is less than the flaps up maneuvering speed.
Accelerate to flaps up maneuvering speed.
Approach Checklist
Altimeters
Additional Deferred Items
FASTEN BELTS switch ON
GROUND PROXIMITY
FLAP/GEAR INHIBIT switch FLAP/GEAR INHIBIT
Landing Checklist
ENGINE START switches CONT
Speedbrake
Landing gear
Flaps, No lights ■ ■ ■ ■

NOT USE FOR FLIGH

737 Flight Crew Operations Manual

AUTO SLAT FAIL

Condition: The auto slat system is failed.

1 Continue normal operation.

Elevator Tab Vibration

Condition: An elevator tab vibration occurs in flight. One or more of the following may be an indication of an elevator tab vibration:

- Vibration that originates, and is strongest, in the aft part of the airplane but can be felt throughout the airplane
- Vibration that is felt in the control wheel and rudder pedals
- Vibration that causes items attached to the airplane, such as sun visors, to move.
- 1 Passenger signs

Do **not** use speedbrakes or change aircraft configuration to reduce airspeed. Do **not** reduce airspeed below the minimum speed for the existing flap setting and gross weight.

- Smoothly reduce airspeed until the vibration 2 stops.
- Consider landing at the nearest suitable airport.
- Stay at or below the reduced airspeed at which the 4 vibration stopped for the rest of the flight. Limit bank angle to 15° until below 20,000 feet.
- 5 Do **not** deploy speedbrakes in flight.

Continued on next page >

▼ Elevator Tab Vibration continued ▼

Note: Flaps and landing gear can be extended normally for the approach.

The speedbrakes can be armed for landing.

FEEL DIFF PRESS

FEEL DIFFERENTIAL PRESSURE

Condition: High differential pressure is measured by the elevator feel computer.

1 Continue normal operation.

LOW PRESSURE

FLIGHT CONTROL LOW PRESSURE

Condition: One of these occurs:

- Hydraulic system pressure to the ailerons, elevators and rudder is low
- •The rudder pressure reducer has failed in the low pressure mode.

Objective: To activate the standby hydraulic system and standby rudder PCU.

1 FLT CONTROL switch (affected side) Confirm. STBY RUD

737 Flight Crew Operations Manual

Jammed or Restricted Flight Controls

Condition: A flight control is jammed or restricted in roll, pitch, or yaw.

- 1 Autopilot (if engaged) Disengage
- 2 Autothrottle (if engaged)............Disengage
- 3 Verify that the thrust is symmetrical.
- 4 Choose one:
 - ◆Rudder is jammed or restricted:
 - ▶ ▶ Go to step 5
 - ♦ Rudder is **not** jammed or restricted:
 - ▶ Go to step 6
- 5 Choose one:
 - ◆STBY RUD ON light is **not** installed on the overhead panel **or** is placarded **INOP**:
 - ► Go to the Uncommanded Rudder/Yaw Or Roll checklist on page 9.3
 - ♦STBY RUD ON light **is** installed on the overhead panel **and** is **operable**:
 - ▶ Go to step 6

▼ Continued on next page ▼

▼ Jammed or Restricted Flight Controls continued **▼**

- 6 Overpower the jammed or restricted system. Use maximum force, including a combined effort of both pilots, if needed. A maximum two-pilot effort on the controls will not cause a cable or system failure.
- 7 Do **not** turn off any flight control switches.
- 8 If the failure could be due to freezing water and conditions allow:

Consider descent to a warmer temperature and attempt to overpower the jammed or restricted system again.

- 9 Choose one:
 - **♦**Controls are **normal**:

Controls are **not** normal:

▶ Go to step 10

- 10 Use stabilizer or rudder trim to offload control forces.
- 11 If electric stabilizer trim is needed:

Move the Stabilizer Trim Override switch to OVERRIDE.

- 12 Do not make abrupt thrust changes. Extend or retract speedbrake slowly and smoothly.
- 13 Limit bank angle to 15°.

▼ Continued on next page **▼**

737 Flight Crew Operations Manual

▼ Jammed or Restricted Flight Controls continued ▼
14 Plan to land at the nearest suitable airport.
15 Plan a flaps 15 landing.
16 Set VREF 15.
17 Check the Non–Normal Configuration Landing Distance table in the Advisory Information section of the Performance Inflight chapter.
18 Checklist Complete Except Deferred Items
Deferred Items
Descent Checklist
Pressurization CAB ALT, LAND ALT
Recall
Autobrake
Landing data VREF 15, Minimums
Approach briefing Completed
Go-around Procedure Review
Do the normal go-around procedure.
Advance thrust to go-around smoothly and slowly to avoid excessive pitch-up.
Approach Checklist
Altimeters
▼ Continued on next page ▼
Consider The Project Communication for the second state of

TIAC

737 Flight Crew Operations Manual

▼ Jammed or Restricted Flight Controls continued **▼**

A -1 -1 : 1: 1	Defermed Thems
Additional	Deferred Item

GROUND PROXIMITY FLAP/GEAR INHIBIT switch . . . FLAP/GEAR INHIBIT

Landing Checklist

Flaps 15, Greer	ı light
Landing gear	Down
Speedbrake	ARMED
ENGINE START SWITCHES	CONT

737 Flight Crew Operations Manual

LE FLAPS TRANSIT

LEADING EDGE FLAPS TRANSIT

Condition: One or more of these occur:

- The leading edge devices are not in the commanded position
- •A leading edge device asymmetry is detected.

Note: Do not use FMC fuel predictions with any flaps or slats extended.

- 1 Choose one:
 - ◆ Trailing edge flaps are extended and the trailing edge flap position indication disagrees with the flap handle position:
 - ► Go to the Trailing Edge Flap
 Disagree checklist on page 9.32

- Trailing edge flaps are extended and the trailing edge flap position indication agrees with the flap handle position:
 - ▶ ▶ Go to step 7
- **♦Trailing** edge flaps are **up**:

Limit airspeed to 230 knots maximum.

▶ Go to step 2

Continued on next page

▼ LEADING EDGE FLAPS TRANSIT continued ▼

- 2 Choose one:
 - ♦Roll is **encountered**:
 - ▶▶Go to step 7
 - ◆Roll is **not** encountered:

Note: Roll may be difficult to identify with the autopilot engaged.

▶ Go to step 3

Maximum flap extension altitude 20,000 feet.

Flaps Extend to flaps 1, then retract to flaps up

- 4 Choose one:
 - ◆LE FLAPS TRANSIT light extinguishes after the flaps are up:

Continue normal operation.

- ◆LE FLAPS TRANSIT light stays illuminated after the flaps are up:
 - ▶ Go to step 5
- 5 Check LE DEVICES annunciator panel.

▼ Continued on next page **▼**

737 Flight Crew Operations Manual

▼ LEADING EDGE FLAPS TRANSIT continued ▼

- 6 Choose one:
 - ◆Light(s) for **only one** leading edge device is illuminated:

Limit airspeed to 300 knots (280 knots for turbulent air penetration) or .65 Mach, whichever is lower.

- ▶ ▶ Go to step 7
- ◆Light(s) for more than one leading edge device is illuminated:

Limit airspeed to 230 knots maximum.

▶▶Go to step 7

- 7 Plan a flaps 15 landing.
- 8 Set VREF 15 + 5 knots.
- 9 Limit bank angle to 15° when airspeed is less than the flaps up maneuvering speed.
- 10 Check the Non-Normal Configuration Landing Distance table in the Advisory Information section of the Performance Inflight chapter.

11 Checklist Complete Except Deferred Items

Deferred Items
Descent Checklist
Pressurization CAB ALT, LAND ALT
Recall
Autobrake
▼ Continued on next page ▼

	▼ LEADING EDGE FLAPS TRANSIT continued ▼
Landing	data VREF 15 + 5 knots, Minimums
Approac	th briefing Completed
Approac	h Checklist
Altimete	ers
Addition	al Deferred Item
	O PROXIMITY EAR INHIBIT switch FLAP/GEAR INHIBIT
Note:	The amber LE FLAPS TRANSIT light will be illuminated.
Note:	V/S and VNAV PTH modes may revert to LVL CHG mode.
 Landing	Checklist
ENGINE	START switches CONT
Speedbr	ake
	gear Down
	15, Amber light ■ ■ ■ ■
MACH TRIM FAIL	MACH TRIM FAIL

Condition: The mach trim system is failed.

1 Limit airspeed to .74 Mach.

737 Flight Crew Operations Manual

SPE	ED	BR	AKI	
DO	NO	T A	ARM	1

SPEED BRAKE DO NOT ARM

Condition: An automatic speedbrake fault occurs.

Note: Speedbrakes may be used in flight.

- 1 Do **not** arm the speedbrake for landing. Manually deploy the speedbrakes immediately upon landing.
- 2 Checklist Complete Except Deferred Items

Deferred Items
Descent Checklist
Pressurization CAB ALT, LAND ALT
Recall
Autobrake
Landing data VREF, Minimums
Approach briefing Completed
Approach Checklist
Altimeters
Landing Checklist
ENGINE START switches CONT
Speedbrake DOWN detent
Landing gear Down
Flaps

737 Flight Crew Operations Manual

SPEED TRIM FAIL

SPEED TRIM FAIL

Condition: The speed trim system is failed.

1 Continue normal operation.

737 Flight Crew Operations Manual

STABILIZER OUT OF TRIM

Condition: The autopilot does not set the

stabilizer trim correctly.

Note: Momentary illumination of the STAB OUT OF TRIM light during large changes in trim requirements is normal.

- 1 Choose one:
 - ◆Stabilizer is **trimming**:

Continue normal operation.

◆Stabilizer is **not** trimming:

▶▶Go to step 2

- 2 Control column.......... Hold firmly

- 5 Choose one:
 - ♦ Stabilizer **responds** to electric trim inputs:

- ◆ Stabilizer does **not** respond to electric trim inputs:
 - ► Go to the Stabilizer Trim
 Inoperative checklist on page 9.24

Intentionally Blank

737 Flight Crew Operations Manual

Stabilizer Trim Inoperative

Condition: One or more of these occur:

- •The main electric stabilizer trim is inoperative
- The autopilot stabilizer trim is inoperative.
- 1 STAB TRIM CUTOUT switches (both) CUTOUT The autopilot is not available.
- 2 Apply steady pressure on the manual trim handles until the needed trim is attained.
- 3 **If** needed:

Use force to cause the disconnect clutch to disengage. Approximately 1/2 turn of the stabilizer trim wheel may be needed.

Note: A maximum two-pilot effort on the trim wheels will not cause a cable or system failure.

The handle(s) should be folded inside the stabilizer trim wheel when manual trim is no longer needed.

If the failure could be due to ice accumulation, descend to a warmer temperature and attempt again.

lacksquare Continued on next page lacksquare

▼ Stabilizer Trim Inoperative continued **▼**

- 4 Choose one:
 - ♦ Stabilizer **can** be trimmed manually:
 - ▶ Go to step 5
 - ♦ Stabilizer can **not** be trimmed manually:

▶ Go to step 9

- 5 Maintain in-trim airspeed until the start of the approach.
- 6 Use an airspeed which results in an in-trim condition. This will reduce the force that is needed to move the stabilizer.
- 7 Continue to trim manually for the rest of the flight.
- 8 Establish the landing configuration early.

▶▶Go to step 11

- 9 Anticipate higher than normal elevator forces during approach and landing.
- 10 The thrust reduction at flare will cause a nose down pitch.

Note: Elevator control is sufficient to safely land the airplane regardless of stabilizer position.

- 11 Plan a flaps 15 landing.
- 12 Set VREF 15.
- 13 Check the Non-Normal Configuration Landing Distance table in the Advisory Information section of the Performance Inflight chapter.
- 14 Checklist Complete Except Deferred Items

▼ Continued on next page **▼**

737 Flight Crew Operations Manual

▼ Stabilizer Trim Inoperative continued ▼
Deferred Items
Descent Checklist
Pressurization CAB ALT, LAND ALT
Recall
Autobrake
Landing data VREF 15, Minimums
Approach briefing Completed
Go-around Procedure Review
Do the normal go-around procedure.
Advance thrust to go-around smoothly and slowly to avoid excessive pitch-up.
Approach Checklist
Altimeters
Additional Deferred Item
GROUND PROXIMITY FLAP/GEAR INHIBIT switch FLAP/GEAR INHIBIT
Landing Checklist
ENGINE START switches CONT
Speedbrake
Landing gear Down
▼ Continued on next page ▼

▼ Stabilizer Trim Inoperative continued **▼**

STBY RUD ON

STANDBY RUDDER ON

Condition: The standby rudder hydraulic system is commanded on.

- 1 Choose one:
 - ◆STBY RUD ON light is illuminated with **no other flight deck indications**:

Avoid large or abrupt rudder pedal inputs.

◆ STBY RUD ON light is illuminated due to the **pilot moving** the FLT CONTROL A or B switch to STBY RUD:

♦ STBY RUD ON light is illuminated in response to a hydraulic system **non-normal** situation:

737 Flight Crew Operations Manual

Trailing Edge Flap Asymmetry

Condition: One or more of these occur:

- An uncommanded roll occurs when the flaps change position
- The left and right flap indications disagree.

Objective: To configure the airplane for landing.

1 Set the flap lever to the nearest detent that is equal to or less than the smallest indicated flap position.

Caution! Do not attempt to move the trailing edge flaps with the ALTERNATE FLAPS switch because there is no asymmetry protection.

Note: Do not use FMC fuel predictions with any flaps or slats extended.

Continued on next page

▼ Trailing Edge Flap Asymmetry continued **▼**

2 Choose one:

♦ Flap **lever** is set to **30**:

Set VREF 30.

Note: VREF + wind additive must not exceed the flap placard speed for the next larger flap setting.

▶ Go to step 3

◆Flap lever is set to 15 or 25:

Set VREF 15.

Note: VREF + wind additive must not exceed the flap placard speed for the next larger flap setting.

▶ Go to step 3

Flap lever is set to 1 or greater and less than 15:

Set VREF 40 + 30 knots.

▶ Go to step 3

◆Flap lever is set to UP:

► Go to the Trailing Edge Flaps Up Landing checklist on page 9.38

- 3 Check the Non-Normal Configuration Landing Distance table in the Advisory Information section of the Performance Inflight chapter.
- 4 Checklist Complete Except Deferred Items

▼ Continued on next page ▼

737 Flight Crew Operations Manual

▼ Trailing Edge Flap Asymmetry continued ▼ **Deferred Items** Descent Checklist Pressurization CAB ALT , LAND ALT Landing dataVREF ____ as directed by checklist, Minimums ____ Approach briefing Completed **Approach Checklist** Altimeters _ Additional Deferred Item GROUND PROXIMITY FLAP/GEAR INHIBIT switch. . . . FLAP/GEAR INHIBIT **Landing Checklist** ENGINE START switches. CONT Landing gear Down Flaps....., Green light

Intentionally Blank

737 Flight Crew Operations Manual

Trailing Edge Flap Disagree

Condition: Both of these occur:

- The trailing edge flaps are not in the commanded position
- •There is no trailing edge flap asymmetry.

Objective: To configure the airplane for landing.

1 Choose one:

- Trailing edge flap asymmetry exists:
 - ▶ Go to the Trailing Edge Flap Asymmetry checklist on page 9.28

- ◆ Trailing edge flap asymmetry does **not** exist:
 - ▶▶Go to step 2

2 Choose one:

◆Indicated flap position is 30 or greater and less than 40:

Land using existing flaps.

- ▶ Go to step 3
- ◆ Indicated flap position is 15 or greater and less than 30:

Land using existing flaps.

- ▶ Go to step 5
- ◆Indicated flap position is less than 15:
 - ▶ Go to step 4

Continued on next page

▼ Trailing	Edge	Flap	Disagree	continued`	•
- II GIIIII		··up	Disagice	Continuca	

3 Set VREF 30 for landing.

Note: VREF 30 + wind additive must not exceed the flap placard speed for flaps 40.

▶ Go to step 6

4 Plan to extend flaps to 15 using alternate flap extension.

Note: Alternate flap extension time to flaps 15 is approximately 2 minutes.

The drag penalty with the leading edge devices extended may make it impossible to reach an alternate field.

5 Set VREF 15 for landing.

Note: VREF 15 + wind additive must not exceed the flap placard speed for the next larger flap setting.

- 6 Check the Non-Normal Configuration Landing Distance table in the Advisory Information section of the Performance Inflight chapter.
- 7 Checklist Complete Except Deferred Items

Deferred Items
Descent Checklist
Pressurization CAB ALT, LAND ALT
Recall
Autobrake
Landing data VREF as directed by checklist, Minimums
▼ Continued on next page ▼

737 Flight Crew Operations Manual

▼ Trailing Edge Flap Disagree continued ▼
Approach briefing Completed
Approach Checklist
Altimeters
Additional Deferred Item
Choose one:
Indicated flap position is 30 or greater:
► ► Go to Landing Checklist below
◆Indicated flap position is 15 or greater and less than 30 :
GROUND PROXIMITY FLAP/GEAR INHIBIT switch FLAP/GEAR INHIBIT
► ► Go to Landing Checklist below
♦ Indicated flap position is less than 15 :
GROUND PROXIMITY FLAP/GEAR INHIBIT switch FLAP/GEAR INHIBIT
▶ Go to Alternate Flap Extension below
▼ Continued on next page ▼

▼ Trailing Edge Flap Disagree continued **▼**

Alternate Flap Extension

During flap extension, set the flap lever to the desired flap position.

230K maximum during alternate flap extension.

ALTERNATE FLAPS master switch ARM

Note: The landing gear configuration warning may sound if the flaps are between 10 and 15 and the landing gear are retracted.

Note: The amber LE FLAPS TRANSIT light will stay illuminated until the flaps approach the flaps 10 position.

If flap asymmetry occurs, release the switch immediately. There is no asymmetry protection.

ALTERNATE FLAPS

position switch Hold DOWN

to extend flaps

to 15 on schedule

As flaps are extending, slow to respective maneuvering speed.

▼ Continued on next page ▼

737 Flight Crew Operations Manual

▼ Trailing Edge Flap Disagree continued **▼**

Choose one:

- ◆Trailing edge flaps asymmetry occurs:
 - ► Go to the Trailing Edge Flap Asymmetry checklist on page 9.28

- ◆Trailing edge flaps extend to 15:
 - **▶ F** Go to Landing Checklist below
- ◆Indicated flap position is **less than 1** after attempting alternate flap extension:
 - ► Go to the Trailing Edge Flaps Up Landing checklist on page 9.38
- ◆Indicated flap position is 1 or greater and less than 15 after attempting alternate flap extension:

Land using existing flaps.

Set VREF 40 + 30 knots for landing.

Check the Non-Normal Configuration Landing Distance table in the Advisory Information section of the Performance Inflight chapter.

▶ Go to Landing Checklist below

▼ Continued on next page ▼

737 Flight Crew Operations Manual

Trailing Edge Flaps Up Landing

Condition: The trailing edge flaps are less than 1.

Objective: To configure for a landing with trailing edge

flaps less than 1.

1 Choose one:

◆Trailing edge flap asymmetry does **not exist**:

Do this checklist **only** when directed by the Trailing Edge Flap Disagree checklist.

- ▶ Go to step 4
- ◆Trailing edge flap asymmetry exists:
 - ▶▶Go to step 2

230K maximum.

2 ALTERNATE FLAPS master switch ARM

Note: This procedure extends the leading edge devices only.

3 ALTERNATE FLAPS

position switch Momentary DOWN

Verify that the LE DEVICES annunciator indicates FULL EXT for all leading edge slats and flaps.

Note: The LE FLAPS TRANSIT light will stay illuminated.

Continued on next page

•	Trailing	Edge	Flans	Un	Landing	continued	
	a		··ups	U P	Lananng	Continuca	

- 4 Choose one:
 - ◆LE DEVICES annunciator does **not** show FULL EXT:
 - ► Go to the All Flaps Up Landing checklist on page 9.8
 - ♦ I F DFVICES annunciator shows FULL EXT:

▶ Go to step 5

- 5 Burn off fuel to reduce touchdown speed.
- 6 Set VREF 40 + 40 knots.
- 7 Check the Non–Normal Configuration Landing Distance table in the Advisory Information section of the Performance Inflight chapter.
- 8 Maintain flaps up maneuvering speed until on final.
- 9 Limit bank angle to 15° when airspeed is less than the flaps up maneuvering speed.

10 Checklist Complete Except Deferred Items

Deferred Items					
Descent Checklist					
Pressurization CAB ALT, LAND ALT					
Recall					
Autobrake					
Landing data VREF 40 + 40 knots, Minimums					

Copyright © The Boeing Company. See title page for details.

Continued on next page

737 Flight Crew Operations Manual

▼ Trailing Edge Flaps Up Landing continued ▼							
,	Approach briefing Completed						
Go-around Procedure Review							
	Do the normal go-around procedure except:						
	Limit bank angle to 15° when the airspeed is less than the flaps up maneuvering speed.						
	Accelerate to flaps up maneuvering speed.						
	Do not exceed 230 knots with leading edge devices extended.						
Α	pproac	h Checklist					
Altimeters							
A	ddition	al Deferred Items					
	FASTEN	BELTS switchON					
GROUND PROXIMITY FLAP/GEAR INHIBIT switch FLAP/GEAR INHIBIT							
	Note:	A nuisance stick shaker may occur when slowing to VREF 40 + 40 knots at high gross weights and/or bank angles greater than 15°.					
	Note:	V/S and VNAV PTH modes may revert to LVL CHG mode.					
Landing Checklist							
	ENGINE	START switches CONT					
▼ Continued on next page ▼							

▼ Trailing Edge Flaps Up Landing continued ▼					
Sp	peedbrake				
La	nding gear				
Fla	aps, Amber light				
D	YAW DAMPER				
Cor	dition: The yaw damper is disengaged.				
1 `	YAW DAMPER switchOFF then ON				
2	Choose one:				
	◆YAW DAMPER light extinguishes : ■ ■ ■ ■				
	◆YAW DAMPER light stays illuminated :				
	YAW DAMPER switch OFF				
	▶▶Go to step 3				
	Do not exceed flaps 30 if the crosswind exceeds 30 knots.				

737 Flight Crew Operations Manual

Intentionally Blank

737 Flight Crew Operations Manual

Non-Normal Checklists	Chapter NNC
Flight Instruments, Displays	Section 10
Table of Contents Airspeed Unreliable	
Airspeed Unreliable	10.1
FLIGHT RECORDER OFF	10.1

Table of Contents

Intentionally Blank

Airspeed Unreliable

Condition: The pitch attitude is not consistent with the

phase of flight, altitude, thrust and weight,

or noise or low frequency buffeting is

experienced.

Objective: To establish the normal pitch attitude and

thrust setting for the phase of flight.

1 Adjust the airplane attitude and thrust. Maintain airplane control.

- 2 PITOT STATIC HEAT switches Check ON
- 3 Cross check the MACH/AIRSPEED indicators.
- 4 Cross check the IRS and FMC ground speed and winds to determine airspeed accuracy if indicated airspeed is questionable.

Note: Erroneous or unreliable airspeed indications may be caused by blocked or frozen pitot-static system(s), or a severely damaged or missing radome.

5 Attitude and thrust information is located in the Performance Inflight section.

OFF

FLIGHT RECORDER OFF

Condition: The flight recorder is off.

Continue normal operation.

737 Flight Crew Operations Manual

Non-Normal Checklists	1			
Flight Management, Navigation	Section 11			
Table of Contents				
FMC FAIL	11.1			
FMC/CDU ALERTING MESSAGE	11.1			
IRS DC FAIL	11.2			
IRS FAULT	11.4			
IRS ON DC	11.7			

Table of Contents

- 1 Resume conventional navigation. Without an operating FMC, LNAV and VNAV are not available.
- 2 When preparing for approach:

Use the manual N1 set knobs to set the N1 bugs.

FMC/CDU ALERTING MESSAGE

FMC P/RST Condition: An alert message is in the FMC scratchpad.

1 Take action as needed by the message.

737 Flight Crew Operations Manual

DC FAIL

IRS DC FAIL

Condition: IRS backup DC power is failed.

1 Choose one:

◆One IRS DC FAIL light is illuminated and all other IRS lights are extinguished:

Continue normal operation.

♦Both IRS DC FAIL lights are illuminated:

▶ Go to step 2

2 The battery is almost discharged, or the Switched Hot Battery Bus and the Hot Battery Bus are not powered. The following systems may be inoperative:

Thrust Reverser

Engine and APU fire extinguishing

APU start

Ground power connector.

737 Flight Crew Operations Manual

IRS FAULT

Condition: One or more of these occur:

An IRS fault occurs

- •On the ground, if the ALIGN light is also illuminated, the present position entry is possibly incorrect.
- 1 Choose one:
 - ♦On the **ground**:
 - ▶▶Go to step 2
 - ♦In flight:
 - ▶▶Go to step 6

On the ground

- 2 Choose one:
 - ◆ALIGN light is extinguished:

Notify maintenance.

ALIGN light is also illuminated:

IRS mode selector OFF

The FAULT light extinguishes immediately and the ALIGN light extinguishes after approximately 30 seconds.

▶ Go to step 3

▼ Continued on next page ▼

	▼ IRS FAULT continued ▼
3	After the ALIGN light extinguishes:
	IRS mode selector NAV
	Enter present position.
4	Choose one:
	♦ALIGN light is flashing:
	Re-enter present position.
	▶▶Go to step 5
	◆ALIGN light is not flashing:
	▶▶Go to step 5
5	Choose one:
	◆FAULT light illuminates again:
	Notify maintenance. ■ ■ ■ ■
	◆FAULT light does not illuminate again:

In flight

6 The IRS ATT and/or NAV mode(s) may be inoperative.

▼ Continued on next page **▼**

737 Flight Crew Operations Manual

▼ IRS FAULT continued ▼

- 7 Partial capability may be restored by selecting attitude mode on the failed IRS. Straight and level, constant airspeed flight must be maintained for at least 30 seconds.
- 8 Choose one:
 - ◆Selecting attitude mode on the failed IRS **is** desired:
 - ▶ Go to step 9
 - ♦ Selecting attitude mode on the failed IRS is **not** desired:
 - ▶ Go to step 12
- 9 Do the next step **only** if the captain's **or** the first officer's primary attitude display is failed.
- Action is not reversible.

 IRS mode
 selector (**failed side**) Confirm ATT

 Maintain straight and level, constant airspeed
 flight until the attitude display recovers
 (approximately 30 seconds).
 - **Note:** The primary attitude display will stay failed and the SET IRS HDG prompt will not appear on the POS INIT page until the attitude mode alignment is complete.
 - **▼** Continued on next page **▼**

▼ IRS FAULT continued ▼

11 Choose one:

◆FAULT light extinguishes:

Enter magnetic heading on the POS INIT page or on the overhead IRS display unit by selecting HDG/STS.

Enter updated heading periodically on the POS INIT page or on the overhead IRS display unit by selecting HDG/STS.

Do **not** use either autopilot.

♦FAULT light **stays illuminated**:

▶ Go to step 12

12 ATTITUDE transfer switch BOTH ON 1 or BOTH ON 2 13 COMPASS transfer

switch BOTH ON 1 or BOTH ON 2

Note: Do **not** engage either autopilot.

ON DC

IRS ON DC

Condition: IRS AC power is failed.

1 Power to the right IRS is removed after 5 minutes.

737 Flight Crew Operations Manual

8 1	
Non-Normal Checklists	Chapter NNC
Fuel	Section 12
Table of Contents	
CROSSFEED SELECTOR INOPERATIVE.	12.1
Engine Fuel Leak	12.2
FUEL FILTER BYPASS	12.6
FUEL PUMP LOW PRESSURE	12.8
FUEL PUMP LOW PRESSURE AUX FUEL	12.10
Fuel Quantity Indication Inoperative	12.12
Fuel Temperature Low	12.13
Inadvertent Transfer of Fuel into Cente	er Tank 12.14
Minimum Fuel Operation	12.16

DO NOT USE FOR FLIGHT737 Flight Crew Operations Manual

Table of Contents

VALVE OPEN

CROSSFEED SELECTOR INOPERATIVE

Condition: The crossfeed VALVE OPEN light stays illuminated bright blue if the fuel crossfeed valve is not in the commanded position.

- 1 Choose one:
 - ◆CROSSFEED selector is **closed**:

Crossfeed valve is failed open.

Maintain fuel balance with selective use of fuel pumps.

◆CROSSFEED selector is **open**:

Crossfeed valve is failed closed.

- ▶▶Go to step 2
- 2 If flight conditions allow:

Vary thrust to maintain fuel balance.

If unable to maintain acceptable balance:

Land at the nearest suitable airport.

737 Flight Crew Operations Manual

Engine Fuel Leak

Condition: An inflight engine fuel leak is suspected or confirmed. (Items which may indicate an engine fuel leak are listed in the Additional Information section at the end of the

checklist.)

Objective: To verify that there is an engine fuel leak

and to take corrective action, if needed.

- 1 CTR FUEL PUMP switches (both)..... OFF
- 2 AUX FUEL pump switches (as installed)..........OFF
- 4 Identify an engine fuel leak by observing one main fuel tank quantity decreasing faster than the other.
- 5 An increase in fuel imbalance of approximately 230 kgs / 500 lbs or more in 30 minutes should be considered an engine fuel leak.
- 6 **If** conditions allow:

Visually check for an engine fuel leak.

Continued on next page

▼ Engine Fuel Leak continued **▼**

- 7 Choose one:
 - ◆Both main tank quantities decrease at the **same** rate:
 - ▶ Go to step 8
 - ◆Both main tank quantities decrease at different rates as described above or an engine fuel leak is confirmed:
 - ▶ Go to step 17
- 8 Resume normal fuel management procedures.
- 9 If the FMC message USING RSV FUEL, INSUFFICIENT FUEL, or CHECK FMC FUEL QUANTITY is shown on the CDU scratch pad:
 - Select PROGRESS page 1.

Check destination fuel estimate. Compare FMC fuel quantity with fuel gauges and flight plan fuel.

10 Choose one:

- **♦**Fuel quantity indicator is **inoperative**:
 - ► Go to the Fuel Quantity Indication Inoperative checklist on page 12.12

- Fuel quantity indicator is operative:
 - ▶▶Go to step 11

▼ Continued on next page ▼

737 Flight Crew Operations Manual

▼ Engine Fuel Leak continued ▼

11 Choose one:

Minimum fuel condition exists:

▶ Go to step 12

Minimum fuel condition does **not** exist:

12 CROSSFEED selector.....Open

This ensures that fuel is available to both engines if the low tank empties.

13 FUEL PUMP switches (all)......ON

This ensures that all fuel is available for use.

14 Plan to land at the nearest suitable airport.

15 Apply thrust changes slowly and smoothly.

16 If a climb is needed:

Maintain the minimum pitch attitude needed for safe flight. This minimizes the possibility of uncovering the fuel pumps.

Engine fuel leak is confirmed

18 Thrust lever

(affected engine) Confirm Close

Continued on next page

▼ Engine Fuel Leak continued ▼		
19 Engine start lever (affected engine) Confirm CUTOFF		
20 PACK switch (affected side) OFF		
This causes the operating pack to regulate to high flow in flight with the flaps up.		
21 Choose one:		
◆APU is available for start:		
APU START		
When APU is running:		
APU GEN switch (affected side) ON		
▶▶Go to step 22		
◆APU is not available:		
▶▶Go to step 22		
22 Transponder mode selector (TCAS equipped airplanes)		
This prevents climb commands which can exceed single engine performance capability.		
23 After engine shutdown, all remaining fuel can be used for the operating engine. Balance fuel as needed.		
24 Plan to land at the nearest suitable airport.		
▼ Continued on next page ▼		

737 Flight Crew Operations Manual

▼ Engine Fuel Leak continued **▼**

► Go to the One Engine Inoperative Landing checklist on page 7.26

Additional Information

One or more of the following may be an indication of a fuel leak:

Visual observation of fuel spray from strut or engine.

Excessive fuel flow.

Total fuel quantity decreasing at an abnormal rate.

Fuel imbalance.

USING RSV FUEL message.

INSUFFICIENT FUEL message.

CHECK FMC FUEL QUANTITY message.

FILTER BYPASS

FUEL FILTER BYPASS

Condition: Fuel contamination can cause fuel to bypass the fuel filter.

Note: Erratic engine operation and flameout may occur due to fuel contamination.

737 Flight Crew Operations Manual

LOW PRESSURE

FUEL PUMP LOW PRESSURE

Condition: The fuel pump pressure is low.

Note: Fuel pump LOW PRESSURE lights may flicker when tank quantity is low and the airplane is in turbulent air or during climb or descent.

1 Choose one:

◆One main tank fuel pump LOW PRESSURE light is illuminated:

Main tank FUEL PUMP switch (affected pump).........OFF

Sufficient fuel pressure is available for normal operation.

◆**Both main** tank fuel pump LOW PRESSURE lights are illuminated:

Note: At high altitude, thrust deterioration or engine flameout may occur.

◆One CTR tank fuel pump LOW PRESSURE light is illuminated:

▶ Go to step 2

♦Both CTR tank fuel pump LOW PRESSURE lights are illuminated:

▶ Go to step 5

Continued on next page

	▼ FUEL PUMP LOW PRESSURE continued ▼				
2	CROSSFEED selector Open				
	This prevents fuel imbalance.				
3	CTR FUEL PUMP switch (affected side) OFF				
4	When the other CTR tank fuel pump LOW PRESSURE light illuminates:				
	CROSSFEED selector Close				
	Remaining CTR FUEL PUMP switch OFF				
_					
Both CTR tank fuel pump LOW PRESSURE lights are illuminated					
5	CTR FUEL PUMP switches (both) OFF				
6	Center tank fuel is unusable. Main tank fuel may not be sufficient for the planned flight.				

737 Flight Crew Operations Manual

LOW PRESSURE

FUEL PUMP LOW PRESSURE AUX FUEL

Condition: The auxiliary fuel pump pressure is low (as installed).

- 1 Choose one:
 - ◆One AUX FUEL pump LOW PRESSURE light is illuminated:

AUX FUEL pump switch (affected side).....OFF

♦Both AUX FUEL pump LOW PRESSURE lights are illuminated:

▶▶Go to step 2

- 2 AUX FUEL pump switches (both). OFF
- 3 **If** the auxiliary fuel tank contains usable fuel:

CTR FUEL PUMP switches (both).... OFF

Use only main tank fuel for the remainder of the flight to avoid exceeding aft C.G. limits. Check fuel needed to reach the destination or a suitable alternate. Remaining main tank fuel may not be sufficient for the planned flight.

737 Flight Crew Operations Manual

Fuel Quantity Indication Inoperative

Condition: One of the following occurs on a fuel quantity indicator:

- Indicator is blank
- Shows ERRxx
- Shows zeros
- Shows dashes.
- 1 Do **not** use VNAV. FMC gross weight calculations are supplied with an inoperative fuel quantity indicator.
- 2 Choose one:
 - ◆Fuel quantity in the FMC is **not** correct:
 - ▶▶Go to step 3
 - ◆Fuel quantity in the FMC is **correct**:
 - ▶ Go to step 6
- 3 Do **not** use FMC speed and altitude information.
- 4 Use manually calculated gross weight and performance information from the QRH.
- 5 Use the Flap Maneuver Speed table in the Performance Inflight chapter.
- 6 Stick shaker, VMO/MMO and minimum flap retraction speed displays are not affected.

lacktriangle Continued on next page lacktriangle

▼ Fuel Quantity Indication Inoperative continued **▼**

Caution! If the FMC is used for manual entry of gross weight to calculate reference speeds or fuel remaining at destination, the information will not stay correct.

Fuel Temperature Low

Condition: Fuel temperature is near the minimum.

1 **When** fuel temperature is approaching the fuel temperature limit (3° C /5° F above the fuel freeze point or - 45° C /- 49° F whichever is higher):

Increase speed, change altitude and/or deviate to a warmer air mass to achieve a TAT equal to or higher than the fuel temperature limit.

TAT will increase approximately 0.5 to 0.7° C for each .01 Mach increase in speed. In extreme conditions, it may be necessary to descend as low as FL250.

737 Flight Crew Operations Manual

Inadvertent Transfer of Fuel into Center Tank

Co	ndition	An inadvertent increase in fuel quantity in the center tank and a decrease in fuel quantity in either main tank occurs.
1	-	tank FUEL PUMP switches reasing main tank)OFF
N	ote:	At high altitude, thrust deterioration or engine flameout may occur.
2		n the main tank fuel pump LOW PRESSURE illuminate:
	C	TR FUEL PUMP switch (affected side)ON
3		n the CTR tank fuel pump LOW PRESSURE extinguishes:
		ain tank FUEL PUMP vitches (both)
4		n the CTR tank fuel pump LOW PRESSURE illuminates:
	С	TR FUEL PUMP switch (affected side) OFF
5	Repe	at the above steps as needed. \blacksquare \blacksquare \blacksquare

737 Flight Crew Operations Manual

Minimum Fuel Operation

Condition: The fuel quantity in a main tank is 453

kgs/1000 lbs or less.

Objective: To check for indications of an engine fuel

leak and ensure all remaining fuel is

available to both engines.

1 The minimum fuel condition may be caused by an engine fuel leak. For indications of an engine fuel leak, check:

Total fuel remaining compared to planned fuel remaining.

Fuel flow indications for an engine with excessive fuel flow.

Individual tank quantities.

- 2 Choose one:
 - ◆There is an indication of an engine fuel leak:
 - ▶ Go to the Engine Fuel Leak checklist on page 12.2

- ◆There is no indication of an engine fuel leak:
 - ▶ Go to step 3
- 3 CROSSFEED selector.....Open

This ensures that fuel is available to both engines if the low tank empties.

Continued on next page

▼ Minimum Fuel Operation continued ▼ 4 FUEL PUMP switches (all) ON This ensures that all fuel is available for use. 5 Plan to land at the nearest suitable airport. 6 Apply thrust changes slowly and smoothly. 7 If a climb is needed: Maintain the minimum pitch attitude needed for safe flight. This minimizes the possibility of uncovering the fuel pumps.

737 Flight Crew Operations Manual

737 Flight Crew Operations Manual

Non-Normal Checklists	Chapter NNC	
Hydraulics	Section 13	
Table of Contents		
HYDRAULIC PUMP LOW PRESSURE	13.1	
HYDRAULIC PUMP OVERHEAT	13.1	
LOSS OF SYSTEM A	13.2	
LOSS OF SYSTEM B	13.5	
MANUAL REVERSION or LOSS OF SYST	ΓEM A AND	
SYSTEM B	13.10	
STANDBY HYDRAULIC LOW PRESSURE	13.15	
STANDBY HYDRAULIC LOW QUANTITY	13.16	

737 Flight Crew Operations Manual

Table of Contents

737 Flight Crew Operations Manual

LOW PRESSURE

HYDRAULIC PUMP LOW PRESSURE

Condition: The hydraulic pump pressure is low.

1 HYD PUMP switch (affected side) OFF

Note: Loss of an engine-driven hydraulic pump and a high demand on the system may result in an intermittent illumination of the LOW PRESSURE light for the remaining electric motor-driven hydraulic pump.

OVERHEAT

HYDRAULIC PUMP OVERHEAT

Condition: The hydraulic pump temperature is high.

1 ELEC HYD PUMP switch (affected side) OFF

Note: One pump supplies sufficient pressure for normal system operation.

737 Flight Crew Operations Manual

LOSS OF SYSTEM A

FLT CONTROL

A HYD PUMPS

Α

ENG 1

ELEC 2

LOW PRESSURE LOW RESSURE

Condition: Hydraulic system A pressure is low.

- 1 System A FLT CONTROL switch.... Confirm....STBY RUD
- 2 System A HYD PUMP switches (both). OFF

Inoperative Items

Autopilot A inop

Autopilot B is available.

Inboard flight spoilers inop

Roll rate and speedbrake effectiveness may be reduced in flight.

Normal landing gear extension and retraction inop

Manual gear extension is needed.

Ground spoilers inop

Landing distance will be increased.

Alternate brakes inop

Normal brakes are available.

Engine 1 thrust reverser normal hydraulic pressure inop

Thrust reverser will deploy and retract at a slower rate and some thrust asymmetry can be anticipated during thrust reverser deployment.

Normal nose wheel steering inop

Alternate nose wheel steering (as installed) is available.

▼ Continued on next page ▼

•	LOSS	OF	SYSTEM	A	continued >	

- 3 Check the Non-Normal Configuration Landing Distance table in the Advisory Information section of the Performance Inflight chapter.
- 4 NOSE WHEEL STEERING switch (as installed) ALT
- 5 Plan for manual gear extension.

Note: When the gear has been lowered manually, it cannot be retracted. The drag penalty with gear extended may make it impossible to reach an alternate field.

Deferred Items

6 Checklist Complete Except Deferred Items

Descent Checklist
Pressurization CAB ALT, LAND ALT
Recall
Autobrake
Landing data VREF, Minimums
Approach briefing Completed
Approach Checklist
Altimeters
Manual Gear Extension
LANDING GEAR lever OFF

▼ LOSS OF SYSTEM A continued ▼
Manual gear extension handles Pull
The uplock is released when the handle is pulled to its limit.
The related red landing gear indicator light illuminates, indicating uplock release.
Wait 15 seconds after the last manual gear extension handle is pulled:
LANDING GEAR lever
Landing Checklist
ENGINE START switches CONT
Speedbrake
Landing gear
Flaps

LOSS OF SYSTEM B

FLT CONTROL

B HYD PUMPS

В

ELEC 1

ENG 2

LOW PRESSURE

LOW PRESSURE

Condition: Hydraulic system B pressure is low.

- 1 System B FLT CONTROL switch.... Confirm....STBY RUD
- 2 System B HYD PUMP switches (both) OFF
 - **▼** Continued on next page **▼**

737 Flight Crew Operations Manual

▼ LOSS OF SYSTEM B continued ▼

Inoperative Items

Autopilot B inop

Autopilot A is available.

Outboard flight spoilers inop

Roll rate and speedbrake effectiveness may be reduced in flight.

Yaw damper inop

Trailing edge flaps normal hydraulic system inop

The trailing edge flaps can be operated with the alternate electrical system. Alternate flap extension time to flaps 15 is approximately 2 minutes.

Leading edge flaps and slats normal hydraulic system inop

The leading edge flaps and slats can be extended with standby pressure. Once extended, they can not be retracted.

Autobrake inop

Use manual braking.

Normal brakes inop

Alternate brakes are available.

Engine 2 thrust reverser normal hydraulic pressure inop

Thrust reverser will deploy and retract at a slower rate and some thrust asymmetry can be anticipated during thrust reverser deployment.

Alternate nose wheel steering (as installed) inop

Normal nose wheel steering is available.

3 Plan a flaps 15 landing.

_	1000	^ F	CVC	TE 14	ь.		
	LUSS	OF	SYS	IEM	В	continu	lea 🔻

- 4 Set VREF 15.
- 5 Plan to extend flaps to 15 using alternate flap extension.

Note: The drag penalty with the leading edge devices extended may make it impossible to reach an alternate field.

- 6 Check the Non–Normal Configuration Landing Distance table in the Advisory Information section of the Performance Inflight chapter.
- 7 Do **not** arm the autobrake for landing. Use manual braking.
- 8 Checklist Complete Except Deferred Items

Defer	rea Items
Descent Checklist	
Pressurization	CAB ALT, LAND ALT
Recall	Checked
Autobrake	OFF
Landing data	. VREF 15, Minimums
Approach briefing	Completed
Approach Checklist	
Altimeters	

737 Flight Crew Operations Manual

▼ LOSS OF SYSTEM B continued ▼

Alternate Flap Extension

During flap extension, set the flap lever to the desired flap position.

230K maximum during alternate flap extension.

ALTERNATE FLAPS master switch ARM

Note: The landing gear configuration warning may sound if the flaps are between 10 and 15 and the landing gear are retracted.

Note: The amber LE FLAPS TRANSIT light will stay illuminated until the flaps approach the flaps 10 position.

If flap asymmetry occurs, release the switch immediately. There is no asymmetry protection.

ALTERNATE FLAPS

position switch Hold DOWN

to extend flaps to 15 on schedule

As flaps are extending, slow to respective maneuvering speed.

Additional Deferred Item

GROUND PROXIMITY FLAP/GEAR INHIBIT switch. . . . FLAP/GEAR INHIBIT

Landing Checklist

ENGINE START switches. CONT

▼ LOSS OF SYSTEM B continued ▼
Speedbrake
Landing gear Down
Flaps15, Green light

737 Flight Crew Operations Manual

MANUAL REVERSION or LOSS OF SYSTEM A AND SYSTEM B

FLT CONTROL

A
B
ENG1 ELEC2 ELEC1 ENG2
LOW
PRESSURE

Condition: Hydraulic system A and B pressures are low.

System A and B FLT CONTROL
switches (both) Confirm STBY RUD

System A and B
HYD PUMPS switches (all) OFF

▼ MANUAL REVERSION or LOSS OF SYSTEM A AND SYSTEM B continued ▼

Inoperative Items

Autopilots A and B inop

All flight spoilers inop

Roll rate will be reduced and speedbrakes will not be available in flight.

Yaw damper inop

Trailing edge flaps normal hydraulic system inop

The trailing edge flaps can be operated with the alternate electrical system. Alternate flap extension time to flaps 15 is approximately 2 minutes.

Leading edge flaps and slats normal hydraulic system inop

The leading edge flaps and slats can be extended with standby hydraulic pressure. Once extended, they can not be retracted.

Normal landing gear extension and retraction inop

Manual gear extension is needed.

Autobrake inop

Ground spoilers inop

Landing distance will be increased.

Normal and alternate brakes inop

Inboard and outboard brakes have accumulator pressure only. On landing, apply steady brake pressure without modulating the brakes.

737 Flight Crew Operations Manual

▼ MANUAL REVERSION or LOSS OF SYSTEM A AND SYSTEM B continued **▼**

Inoperative Items

Both thrust reversers normal pressure inop

Thrust reversers will deploy and retract at a slower rate.

Nose wheel steering inop

Do not attempt to taxi the airplane after stopping.

- 3 Plan to land at the nearest suitable airport.
- 4 Plan a flaps 15 landing.
- 5 Set VREF 15.
- 6 Plan to extend flaps to 15 using alternate flap extension.
 - **Note:** The drag penalty with the leading edge devices extended may make it impossible to reach an alternate field.
- 7 Plan for manual gear extension.
 - **Note:** When the gear has been lowered manually, it cannot be retracted. The drag penalty with gear extended may make it impossible to reach an alternate field.
- 8 Check the Non-Normal Configuration Landing Distance table in the Advisory Information section of the Performance Inflight chapter.
 - **Note:** The crosswind capability of the airplane is greatly reduced.
- 9 Do **not** arm the autobrake for landing.
- 10 Do **not** arm the speedbrakes for landing.

▼ MANUAL REVERSION or LOSS OF SYSTEM A AND SYSTEM B continued ▼

- 11 On touchdown, apply steady brake pressure without modulating the brakes.

12 Do not attempt to taxi the airplane after stopping.
13 Checklist Complete Except Deferred Items
Deferred Items
Descent Checklist
Pressurization CAB ALT, LAND ALT
Recall
Autobrake OFF
Landing data VREF 15, Minimums
Approach briefing Completed
Go-Around Procedure Review
Do the normal go-around procedure except:
Advance thrust to go-around smoothly and slowly to avoid excessive pitch-up.
Be prepared to trim.
Limit bank angle to 15° when airspeed is less than 150 knots.
Approach Checklist Altimeters
Continued on next negs

737 Flight Crew Operations Manual

▼ MANUAL REVERSION or LOSS OF SYSTEM A AND SYSTEM B continued ▼

Alternate Flap Extension

During flap extension, set the flap lever to the desired flap position.

230K maximum during alternate flap extension.

ALTERNATE FLAPS master switch ARM

Note: The landing gear configuration warning may sound if the flaps are between 10 and 15 and the landing gear are retracted.

Note: The amber LE FLAPS TRANSIT light will stay illuminated until the flaps approach the flaps 10 position.

If flap asymmetry occurs, release the switch immediately. There is no asymmetry protection.

ALTERNATE FLAPS

position switch Hold DOWN to extend flaps to 15 on schedule

As flaps are extending, slow to respective maneuvering speed.

Manual Gear Extension

LANDING GEAR lever.....OFF

Manual gear extension handles..... Pull

The uplock is released when the handle is pulled to its limit.

▼ MANUAL REVERSION or LOSS OF SYSTEM A AND SYSTEM B continued ▼

The related red landing gear indicator light illuminates, indicating uplock release.

Wait 15 seconds after the last manual gear extension handle is pulled:

LANDING GEAR lever DN

Additional Deferred Item

GROUND PROXIMITY FLAP/GEAR INHIBIT switch . . . FLAP/GEAR INHIBIT

Landing Checklist

LOW PRESSURE

STANDBY HYDRAULIC LOW PRESSURE

Condition: The standby hydraulic pump pressure is low.

Note: With a loss of hydraulic system A and B, the rudder is inoperative.

737 Flight Crew Operations Manual

LOW QUANTITY

STANDBY HYDRAULIC LOW QUANTITY

Condition: The standby hydraulic quantity is low.

1 Continue normal operation.

Non-Normal Checklists	Chapter NNC
Landing Gear	Section 14
Table of Contents	
ANTISKID INOPERATIVE	14.1
AUTO BRAKE DISARM	14.3
Brake Pressure Indicator Zero PSI	14.5
GEAR DISAGREE	14.6
Landing Gear Lever Jammed in the Up	Position 14.10
Landing Gear Lever Will Not Move Up	
After Takeoff	14.16
Manual Gear Extension	14.20
Partial or All Gear Up Landing	14.28
WHEEL WELL FIRE	▶▶8.22

737 Flight Crew Operations Manual

Table of Contents

Intentionally Blank

	or cognition of comments
A	ANTISKID INOPERATIVE
Co	ondition: An antiskid system fault occurs.
N	lote: Locked wheel protection is not available.
1	AUTO BRAKE select switch OFF
2	Do not arm the speedbrakes for landing. Manually deploy the speedbrakes immediately upon landing.
	Automatic speedbrake extension may be inoperative.
3	Do not apply brakes until after main gear touchdown. Use minimum braking consistent with runway conditions to reduce the possibility of a tire blowout.
4	Check the Non-Normal Configuration Landing Distance table in the Advisory Information section of the Performance Inflight chapter.
5	Checklist Complete Except Deferred Items
	Deferred Items
D	escent Checklist
P	Pressurization CAB ALT, LAND ALT
F	Recall
A	Autobrake
L	anding data VREF, Minimums

▼ Continued on next page ▼

Approach briefing Completed

▼ ANTISKID INOPERATIVE continued ▼
Approach Checklist
Altimeters
Landing Checklist
ENGINE START switches CONT
Speedbrake
Landing gear Down
Flaps

737 Flight Crew Operations Manual

AUTO BRAKE DISARM

AUTO BRAKE DISARM

Condition: The autobrake system disarms after being set.

- 1 Choose one:
 - ♦On the **ground**:

AUTO BRAKE select switch OFF

▶▶Go to step 2

- ♦In flight:
 - ▶ Go to step 3
- 2 Choose one:
 - ♦AUTO BRAKE DISARM light extinguishes:

◆AUTO BRAKE DISARM light **stays illuminated**:

Do not takeoff.

3 AUTO BRAKE select switch... OFF, then reselect

737 Flight Crew Operations Manual

▼ AUTO BRAKE DISARM continued ▼
4 Choose one:
◆AUTO BRAKE DISARM light stays extinguished : ■ ■ ■ ■
◆AUTO BRAKE DISARM light illuminates again :
AUTO BRAKE select switch OFF
Use manual brakes for landing.
►►Go to step 5
5 Checklist Complete Except Deferred Items
Deferred Items
Descent Checklist
Pressurization CAB ALT, LAND ALT
Recall
Autobrake OFF
Landing data VREF, Minimums
Approach briefing Completed
Approach Checklist
Altimeters

Landing Checklist

737 Flight Crew Operations Manual

▼ AUTO BRAKE DISARM continued ▼
Landing gear
Flaps

Brake Pressure Indicator Zero PSI

Condition: The brake accumulator has no nitrogen precharge.

1 Accumulator braking is not available.

Note: If hydraulic systems indications are normal, brake operation is unaffected.

737 Flight Crew Operations Manual

GEAR DISAGREE

LEFT GEAR NOSE GEAR RIGHT GEAR

Condition: The landing gear position disagrees with the LANDING GEAR lever position.

- 1 If the LANDING GEAR lever will not move to the UP position:
 - ► Go to the Landing Gear Lever Will Not Move Up After Takeoff checklist on page 14.16

Note: Do not exceed the gear EXTEND limit speed (270K/.82M).

Do not use FMC fuel predictions with gear extended.

- 2 Choose one:
 - ◆Landing gear lever is UP:
 - ► Go to step 5
 - Landing gear lever is OFF:
 - ▶▶Go to step 3
 - ◆Landing gear lever is DN:
 - ▶ Go to step 6

235K maximum

▼ GEAR DISAGREE continued **▼**

- 4 Choose one:
 - ♦All red and green landing gear indicator lights are extinguished:

The landing gear lever should be kept in the UP position to keep the landing gear retracted.

◆Any red landing gear indicator light is illuminated:

▶ Go to step 5

5 Flight with gear down increases fuel consumption and decreases climb performance. Refer to the Gear Down performance tables in the Performance Inflight section.

6 Check landing gear indicator lights.

Note: If a green landing gear indicator light is illuminated on the center main panel, the related landing gear is down and locked.

737 Flight Crew Operations Manual

▼ GEAR DISAGREE continued **▼**

- 7 Choose one:
 - **♦Any** landing gear is **not** down and locked:
 - ► Go to the Manual Gear Extension checklist on page 14.20

♠All landing gear indicate down and locked and all red landing gear indicator lights are also illuminated:

- ▶ Go to step 8
- 8 Verify landing gear lever is pushed in and fully in the DN detent.
- 9 Choose one:
 - **♦All red** landing gear indicator lights **extinguish**:

♦All red landing gear indicator lights stay illuminated:

GROUND PROXIMITY
FLAP/GEAR
INHIBIT switch FLAP/GEAR INHIBIT
Land normally.

Intentionally Blank

737 Flight Crew Operations Manual

Landing Gear Lever Jammed in the Up Position

Condition: The LANDING GEAR lever will not move from

the UP position.

Note: Start this checklist **only** when ready to extend the gear for landing.

It may take up to 10 minutes to extend the

gear.

Once the gear is extended, do **not** retract.

270K/.82M maximum.

- 1 LANDING GEAR override trigger Pull
- 2 LANDING GEAR leverDN
- 3 Choose one:
 - ◆LANDING GEAR lever moves to the DN position:
 - ▶ Go to step 4
 - ◆LANDING GEAR lever does not move to the DN position:

▶ Go to step 6

4 Check landing gear indicator lights.

Note: If a green landing gear indicator light is illuminated on the center main panel, the related landing gear is down and locked.

lacktriangle Continued on next page lacktriangle

▼ Landing Gear Lever Jammed in the Up Position continued ▼

- 5 Choose one:
 - **♦All** landing gear indicate down and locked:

Plan to land at the nearest suitable airport.

- ♦Only one or two landing gear indicate down and locked:
 - ► Go to the Manual Gear Extension checklist on page 14.20
- 6 Check total fuel quantity. Manual gear extension may require up to 10 minutes to complete.

Do **not** accomplish this checklist unless there is sufficient fuel to extend the gear and then complete an approach, with appropriate reserves.

- 7 Choose one:
 - ♦Sufficient fuel is available:
 - ▶ Go to step 8
 - Sufficient fuel is **not** available:
 - ▶ Go to the Partial or All Gear Up Landing checklist on page 14.28

737 Flight Crew Operations Manual

▼ Landing Gear Lever Jammed in the Up Position continued ▼

8 System A must be depressurized in order to extend the landing gear. The following items will be inoperative.

Inoperative Items

Autopilot A inop

Autopilot B is available.

Inboard flight spoilers inop

Roll rate and speedbrake effectiveness may be reduced in flight.

Normal landing gear extension and retraction inop

Manual gear extension is needed.

Ground spoilers inop

Landing distance will be increased.

Alternate brakes inop

Normal brakes are available.

Engine 1 thrust reverser normal hydraulic pressure inop

Thrust reverser will deploy and retract at a slower rate and some thrust asymmetry can be anticipated during thrust reverser deployment.

Nose wheel steering inop

9 System A
 FLIGHT CONTROL switch . . . Confirm . . STBY RUD
10 System A
 HYD PUMP switches (both). OFF

Warning! Do not repressurize hydraulic system A in flight or on the ground because the landing gear may retract.

▼ Landing Gear Lever Jammed in the Up Position continued ▼ 11 NOSE WHEEL STEERING switch (as installed) Verify NORM Nose wheel steering is not available.

Warning! Do not use alternate nose wheel steering (as installed) because the landing gear may retract on the ground.

12 Cycle the SPEED BRAKE lever until system A pressure is below 500 psi.

Note: It may take a number of cycles to reduce the system A pressure to below 500 psi.

Do not wait for an indication that a landing gear is down and locked before pulling the next handle.

Note: The uplock is released when the handle is pulled to its limit. The related red landing gear indicator light illuminates, indicating uplock released.

737 Flight Crew Operations Manual

▼	Landing	Gear I	Lever	Jammed	in	the	Up	Position	continued	

14 Cycle the SPEED BRAKE lever until all three green landing gear indicator lights are illuminated.

Note: It may take a number of cycles and up to 4 minutes until all three landing gear indicator lights are illuminated.

With the LANDING GEAR lever in the UP or OFF position, the red landing gear indicator lights will stay illuminated.

15 Choose one:

- ♦All landing gear indicate down and locked:
 - ▶▶Go to step 16
- ◆Only one or two landing gear indicate down and locked:
 - ► Go to the Partial or All Gear Up Landing checklist on page 14.28
- 16 Plan a flaps 15 landing.
- 17 Set VREF 15 + 10 knots. This provides tail clearance during landing. The flight spoilers that are powered by hydraulic system A will be unlocked and may float.
- 18 Checklist Complete Except Deferred Items

Deterred Items				
Descent Checklist				
PressurizationCAB ALT, LAND ALT				
Recall				

▼ Landing Gear Lever Jammed in the Up Position continued ▼
Autobrake
Landing data VREF 15 + 10 knots, Minimums
Approach briefing Completed
Approach Checklist
Altimeters
Additional Deferred Items
GROUND PROXIMITY
FLAP/GEAR INHIBIT switch FLAP/GEAR INHIBIT
Landing Checklist
ENGINE START switches CONT
Speedbrake
Landing gear Down, Three Green
Note: The red landing gear indicator lights will also be illuminated.
Flaps15, Green light
Note: Nose wheel steering is not available.
Warning! Do not use alternate nose wheel steering (as installed) because the landing gear may retract on the ground.

737 Flight Crew Operations Manual

Landing Gear Lever Will Not Move Up After Takeoff

Condition: The LANDING GEAR lever cannot be moved to the UP position due to one of the following:

- Failure of the landing gear lever lock solenoid
- Failure of the air/ground system.

Note: Do not use FMC fuel predictions.

- 2 Retract the flaps on schedule.
- 3 Choose one:
 - ◆Intermittent cabin altitude/configuration warning horn **stays silent** and the TAKEOFF CONFIG light (as installed) does **not illuminate** after the flaps are fully retracted and the thrust levers advanced beyond the vertical position:

Note: This indicates a failure of the landing gear lever lock solenoid.

- ▶ Go to step 4
- ◆Intermittent cabin altitude/configuration warning horn sounds or the TAKEOFF CONFIG light (as installed) illuminates when the flaps are fully retracted:

Note: This indicates a failure of the air/ground system.

Do **not** retract the gear.

▶ Go to step 8

▼ Landing Gear Lever Will Not Move Up After Takeoff continued ▼			
4	235K maximum. LANDING GEAR override trigger Pull		
5	LANDING GEAR lever UP		
6	When the landing gear indicator lights extinguish:		
	LANDING GEAR lever OFF		
7	Continue normal operation. ■ ■ ■ ■		
8	LANDING GEAR AIR/GND RELAY AND LIGHTS circuit breaker (P6) Pull		
Caution! Do not use the speedbrakes in flight.			
9	Plan to land at the nearest suitable airport.		
10	Do not arm the autobrake for landing. Use manual braking.		
11	Do not arm the speedbrakes for landing. Manually deploy the speedbrakes immediately upon landing.		
12	Checklist Complete Except Deferred Items		
	Deferred Items		
D	escent Checklist		
F	Pressurization CAB ALT, LAND ALT		
F	Recall		
7	Autobrake OFF		
L	anding data VREF, Minimums		
	▼ Continued on next page ▼		

▼ Landing Gear Lever Will Not Move Up After Takeoff continued ▼			
Approach briefing Completed			
Approach Checklist			
Altimeters			
Gear Down Verification			
LANDING GEAR lever Verify DN			
LANDING GEAR AIR/GND RELAY AND LIGHTS circuit breaker (P6)Reset			
This allows the gear down indications to be confirmed.			
Note: The intermittent cabin altitude/ configuration warning horn may sound and the TAKEOFF CONFIG light (as installed) may illuminate depending on thrust lever and flap position.			
Landing gear			
LANDING GEAR AIR/GND RELAY AND LIGHTS circuit breaker (P6) Pull			
Note: After landing, some unusual system behavior may occur such as nuisance stick shaker, positive pressurization and pack overheat after flap retraction.			
Landing Checklist			
ENGINE START switches CONT			
Speedbrake			
▼ Continued on next page ▼			
Consider & The Device Comment Contidence for devile			

▼ Landin	g Gear Lever Will Not Move Up After Takeoff continued ▼
Landing	gear Down (previously verified)
Flaps	
Note:	Manually deploy the speedbrakes immediately upon touchdown. Use manual braking.

737 Flight Crew Operations Manual

Manual Gear Extension

Condition: One of these occurs:

- Any landing gear is not down and locked when the LANDING GEAR lever is down
- The LANDING GEAR lever is jammed in the OFF position.

Note: If a green landing gear indicator light is illuminated on the center main panel, the related landing gear is down and locked.

1 LANDING GEAR lever OFF (if possible)

270K/.82M maximum.

2 Manual gear extension handles (affected gear) Pull

The uplock is released when the handle is pulled to its limit. The related red landing gear indicator light illuminates, indicating uplock released.

3 **Wait** 15 seconds after the last manual gear extension handle is pulled:

LANDING GEAR lever DN (if possible)

4 Check landing gear indicator lights.

Note: If the LANDING GEAR lever is in the OFF position, the red landing gear indicator lights will also be illuminated.

lacktriangle Continued on next page lacktriangle

▼ Manual Gear Extension continued ▼

- 5 Choose one:
 - **♦All** landing gear indicate down and locked:
 - ▶ Go to step 7
 - ◆No landing gear indicates down and locked:
 - ▶ Go to step 8
 - **♦Only one or two** landing gear indicate down and locked:

WHEEL WELL light switch ON

Check gear down lock visual indicator(s) to verify main landing gear mechanical down lock indicators are aligned and nose landing gear arrow heads are in contact.

- ▶ Go to step 6
- 6 Choose one:
 - **♦All** landing gear indicate down and locked:
 - ▶ Go to step 7
 - ◆Only one or two landing gear indicate down and locked:
 - ▶ Go to the Partial or All Gear Up Landing checklist on page 14.28

Continued on next page

737 Flight Crew Operations Manual

▼ Manual Gear Extension continued ▼

7 Choose one:

◆LANDING GEAR **lever** is in the **DN** position: Land normally.

♦LANDING GEAR **lever** is in the **OFF** position:

GROUND PROXIMITY FLAP/GEAR INHIBIT switch FLAP/GEAR INHIBIT Land normally.

Note: Nose wheel steering is not available.

8 Check total fuel quantity. Manual gear extension may require up to 10 minutes to complete.

Do **not** accomplish this checklist unless there is sufficient fuel to extend the gear and then complete an approach, with appropriate reserves.

▼ Continued on next page **▼**

▼ Manual Gear Extension continued **▼**

- 9 Choose one:
 - ◆Sufficient fuel is available:
 - ▶ Go to step 10
 - ♦Sufficient fuel is **not** available:
 - ► Go to the Partial or All Gear Up Landing checklist on page 14.28

10 System A must be depressurized in order to extend the landing gear. The following items will be inoperative.

▼ Continued on next page ▼

737 Flight Crew Operations Manual

	_		
Manual	Gear	Extension	continued

Inoperative Items

Autopilot A inop

Autopilot B is available.

Inboard flight spoilers inop

Roll rate and speedbrake effectiveness may be reduced in flight.

Normal landing gear extension and retraction inop

Manual gear extension after system A is depressurized is needed.

Ground spoilers inop

Landing distance will be increased.

Alternate brakes inop

Normal brakes are available.

Engine 1 thrust reverser normal hydraulic pressure inop

Thrust reverser will deploy and retract at a slower rate and some thrust asymmetry can be anticipated during thrust reverser deployment.

Nose wheel steering inop

11 System A FLIGHT CONTROL switch . . . Confirm . . STBY RUD 12 System A HYD PUMP switches (both)......

Warning! Do not repressurize hydraulic system A in flight or on the ground because the landing gear may retract.

Continued on next page ▼

▼ Manual Gear Extension continued **▼**

13 NOSE WHEEL

STEERING switch (as installed) Verify NORM Nose wheel steering is not available.

Warning! Do not use alternate nose wheel steering (as installed) because the landing gear may retract on the ground.

14 Cycle the SPEED BRAKE lever until system A pressure is below 500 psi.

Note: It may take a number of cycles to reduce the system A pressure to below 500 psi.

15 Manual gear extension handles (all) Pull

Do not wait for an indication that a landing gear is down and locked before pulling the next handle.

Note: The uplock is released when the handle is pulled to its limit. The related red landing gear indicator light illuminates, indicating uplock released.

▼ Continued on next page ▼

737 Flight Crew Operations Manual

$\overline{}$	Manual	Carr	Evtoncion	continued
	Manuai	Geal	EXTENSION	continued *

16 Cycle the SPEED BRAKE lever until all three green landing gear indicator lights are illuminated.

Note: It may take a number of cycles and up to 4 minutes until all three landing gear indicator lights are illuminated.

> With the LANDING GEAR lever in the OFF position, the red landing gear indicator lights will stay illuminated.

17 Choose one:

- ♦All landing gear indicate down and locked:
 - ▶ Go to step 18
- Only one or two landing gear are not down and locked:
 - ▶ Go to the Partial or All Gear Up Landing checklist on page 14.28
- 18 Plan a flaps 15 landing.
- 19 Set VREF 15 + 10 knots. This provides tail clearance during landing since the flight spoilers powered by hydraulic system A will be unlocked and may float
- 20 Checklist Complete Except Deferred Items

	Deferred Items	
Descent Checkli	ist	
Pressurization	CAB ALT	, LAND ALT
Recall		Checked

lafarrad Itama

▼ Manual Gear Extension continued ▼
Autobrake
Landing data VREF 15 + 10 knots Minimums
Approach briefing Completed
Approach Checklist
Altimeters
Additional Deferred Items
GROUND PROXIMITY FLAP/GEAR INHIBIT switch FLAP/GEAR INHIBIT
Landing Checklist
ENGINE START switches CONT
Speedbrake
Landing gear Down, Three Green
Note: The red landing gear indicator lights will also be illuminated.
Flaps15, Green light
Note: Nose wheel steering is not available.
Warning! Do not use alternate nose wheel steering (as installed) because the landing gear may retract on the ground.

737 Flight Crew Operations Manual

Partial or All Gear Up Landing

Condition: All landing gear are not down and locked after attempting manual gear extension.

- Choose one: 1
 - Manual gear extension has been attempted or sufficient fuel is **not** available to complete manual gear extension:
 - ▶ Go to step 2
 - Manual gear extension has **not** been attempted:
 - ▶ ▶ Go to the Manual Gear Extension checklist on page 14.20

- Brief the crew and passengers on emergency landing and evacuation procedures.
- Burn off fuel to reduce touchdown speed. 3
- Plan a flaps 40 landing. 4
- 5 Set VREF 40.
- LANDING GEAR AURAL WARN circuit breaker (P6)..... Pull

This prevents the landing gear warning horn with gear retracted and landing flaps selected.

Continued on next page

737 Flight Crew Operations Manual

▼ Partial or All Gear Up Landing continued **▼**

Landing Procedure Review

Do not extend the speedbrakes unless stopping distance is critical. When stopping distance is critical, extend the speedbrakes after all landing gear, the nose or the engine nacelle have contacted the runway.

Do not use the thrust reversers unless stopping distance is critical.

Turn all fuel pump switches OFF just before the flare.

After stopping, do the Evacuation checklist, if needed.

Additional Deferred Items
STANDBY POWER switch BAT
APU switch OFF
GROUND PROXIMITY FLAP/GEAR INHIBIT switch FLAP/GEAR INHIBIT
When on approach:
Engine BLEED air switches OFF
This ensures the airplane is depressurized at touchdown.
Landing Checklist
ENGINE START switches CONT
Speedbrake

Continued on next page ▼

737 Flight Crew Operations Manual

▼ Partial or All Gear Up Landing continued ▼	
Landing gear	wn
Flaps 40, Green li	ght

DO NOT USE FOR FLIGHT737 Flight Crew Operations Manual

Intentionally Blank

737 Flight Crew Operations Manual

Non-Normal Checklists	Chapter NNC
Warning Systems	Section 15
Table of Contents	
LANDING CONFIGURATION	
Overspeed	15.1
TAKEOFF CONFIGURATION	15.1
WARNING HORN (INTERMITTENT)	
LIGHT - CABIN ALTITUDE OR TA	
ALTITUDE ALERT	15.3
GROUND PROXIMITY INOPERATIVE	
LANDING CONFIGURATION	
Overspeed	15.1
Tail Strike	15.4
TAKEOFF CONFIGURATION	15.1
WARNING HORN (INTERMITTENT) LIGHT - CABIN ALTITUDE OR TA	KEOFF
CONIETCHIDATION	157

737 Flight Crew Operations Manual

Table of Contents

Intentionally Blank

LANDING CONFIGURATION

Condition: In flight, the steady warning horn sounds.

1 Assure correct airplane landing configuration.

Overspeed

Condition: Airspeed is more than Vmo/Mmo.

1 Reduce thrust and, if needed, adjust attitude to reduce airspeed to less than Vmo/Mmo.

TAKEOFF CONFIGURATION

TAKEOFF

(As installed)

Condition: On the ground, the intermittent cabin altitude/configuration warning horn sounds and the TAKEOFF CONFIG light (as installed) illuminates when advancing the thrust levers

to takeoff thrust.

1 Assure correct airplane takeoff configuration.

737 Flight Crew Operations Manual

WARNING HORN (INTERMITTENT) or WARNING LIGHT - CABIN ALTITUDE OR TAKEOFF CONFIGURATION

TAKEOFF CONFIG CABIN ALTITUDE

(As installed)

Condition: One of these occurs:

- •In flight, at an airplane flight altitude above 10,000 feet MSL, the intermittent warning horn sounds or the CABIN ALTITUDE light (as installed) illuminates, when the cabin altitude is at or above 10,000 feet
- On the ground, the intermittent warning horn sounds or the TAKEOFF CONFIG light (as installed) illuminates, when the takeoff configuration is not correct during takeoff.
- 1 If the intermittent warning horn sounds or the CABIN ALTITUDE light (as installed) illuminates in flight at an airplane flight altitude above 10,000 feet MSL:

Don the oxygen masks and set the regulators to 100%.

Establish crew communications.

▶► Go to the CABIN ALTITUDE WARNING or Rapid Depressurization checklist on page 2.1

Continued on next page

▼ WARNING HORN (INTERMITTENT) or WARNING LIGHT - CABIN ALTITUDE OR TAKEOFF CONFIGURATION continued ▼

2 If the intermittent warning horn sounds or the TAKEOFF CONFIG light (as installed) illuminates on the ground:

Assure correct airplane takeoff configuration.

ALTITUDE ALERT

Condition: The ALT ALERT annunciation shows that one of these occurs:

- The airplane is about to reach the MCP altitude
- A deviation from the MCP altitude.
- 1 Reset the selected altitude (if needed).
- 2 Maintain the correct altitude.

INOP

GROUND PROXIMITY INOPERATIVE

Condition: A ground proximity warning system fault occurs.

Note: Some or all GPWS alerts are not available. GPWS alerts which occur are valid.

737 Flight Crew Operations Manual

Tail Strike

Condition: The tail hits the runway.

Caution! Do not pressurize the airplane. Pressurizing the airplane may cause further structural damage.

- 1 Pressurization mode selector MAN DC
- 2 Outflow VALVE switch Hold in OPEN until the outflow VALVE position indicates fully open
- 3 Plan to land at the nearest suitable airport.

737 Flight Crew Operations Manual

Operational Information	Chapter OI
Table of Contents	Section 0
Ops Info	OI.1
Introduction	OI.1.1

Intentionally Blank

737 Flight Crew Operations Manual

Operational Information Ops Info

Chapter OI Section 1

Introduction

Note: This Section Reserved For Operator-Developed Information.

737 Flight Crew Operations Manual

Intentionally Blank

737 Flight Crew Operations Manual

Performance Inflight - QRH Chapter PI-QRH Table of Contents

737-300 CFM56-3_22K KG FAA ----- PI-QRH.10.1

Intentionally Blank

737 Flight Crew Operations Manual

Performance Inflight - QRH Chapter PI-QRH Table of Contents Section 10

737-300 CFM56-3_22K KG FAA

General	PI-QRH.10.1
Flight With Unreliable Airspeed /	
Turbulent Air Penetration	PI-QRH.10.1
Max Climb %N1	PI-QRH.10.3
Go-around %N1	PI-QRH.10.4
VREF	PI-QRH.10.5
Advisory Information	PI-QRH.11.1
Normal Configuration Landing Distance	PI-QRH.11.1
Non-Normal Configuration Landing Distance	PI-QRH.11.4
Recommended Brake Cooling Schedule	PI-QRH.11.12
Engine Inoperative	PI-QRH.12.1
Initial Max Continuous %N1	PI-QRH.12.1
Max Continuous %N1	PI-QRH.12.2
Driftdown Speed/Level Off Altitude	PI-QRH.12.5
Driftdown/LRC Cruise Range Capability	PI-QRH.12.6
Long Range Cruise Altitude Capability	PI-QRH.12.7
Long Range Cruise Control	PI-QRH.12.7
Long Range Cruise Diversion Fuel and Time	PI-QRH.12.8
Holding	PI-QRH.12.9
Gear Down	PI-QRH.13.1
220 KIAS Cruise Altitude Capability	PI-QRH.13.1
220 KIAS Cruise Control	PI-QRH.13.2
220 KIAS Enroute Fuel and Time	PI-QRH.13.3
Descent at 220 KIAS	PI-QRH.13.3
Holding	PI-QRH.13.4
Text	PI-QRH.14.1
Introduction.	

Performance Inflight - QRH DO NOT USE FOR FLIGHT Table of Contents

737 Flight Crew Operations Manual

General	PI-QRH.14.1
Advisory Information	PI-QRH.14.2
Engine Inoperative	PI-QRH.14.3
Gear Down	PI-QRH.14.4

737 Flight Crew Operations Manual

Performance Inflight - QRH General

Chapter PI-QRH Section 10

Flight With Unreliable Airspeed / Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable. Climb

Flaps Up, Set Max Climb Thrust

PRESSURE A	LTITUDE (FT)	WEIGHT (1000 KG)				
(SPEED)		32	34	44	54	64
35000	PITCH ATT	6.5	6.5	6.0	5.5	5.5
(.73M)	V/S (FT/MIN)	3100	2800	1800	1000	300
30000	PITCH ATT	7.0	6.5	6.0	5.5	5.5
(.73M)	V/S (FT/MIN)	3900	3600	2500	1700	1100
25000	PITCH ATT	7.0	6.5	6.0	6.0	6.0
(280 KIAS)	V/S (FT/MIN)	3700	3500	2500	1800	1300
20000	PITCH ATT	8.5	8.5	7.5	7.0	7.0
(280 KIAS)	V/S (FT/MIN)	4600	4300	3100	2300	1800
15000	PITCH ATT	10.5	10.0	9.0	8.0	8.0
(280 KIAS)	V/S (FT/MIN)	5400	5100	3800	2900	2200
10000	PITCH ATT	13.0	12.0	10.5	9.5	9.0
(280 KIAS)	V/S (FT/MIN)	6300	5900	4400	3400	2700
5000	PITCH ATT	15.0	14.5	12.0	11.0	10.0
(280 KIAS)	V/S (FT/MIN)	7100	6700	5000	3900	3100
SEA LEVEL	PITCH ATT	17.5	17.0	14.0	12.5	11.5
(280 KIAS)	V/S (FT/MIN)	7900	7400	5600	4400	3500

Cruise

Flaps Up, Adjust %N1 for Level Flight

PRESSURE A	LTITUDE (FT)			WEIGHT	(1000 KG)		
(SPEED)		34	38	42	46	50	54
30000	PITCH ATT	2.0	2.0	2.5	3.0	3.0	3.5
(.73M)	%N1	79	79	80	81	82	83
10000	PITCH ATT	2.0	2.0	2.5	3.0	3.0	3.5
(280 KIAS)	%N1	65	65	66	66	67	68

Descent

Flaps Up, Set Idle Thrust

PRESSURE A	LTITUDE (FT)		WEIGHT (1000 KG)									
(SPI	EED)	34	38	42	46	50	54					
30000	PITCH ATT	-3.5	-3.0	-2.5	-2.0	-1.5	-1.0					
(.73M)	V/S (FT/MIN)	-4200	-3800	-3600	-3400	-3300	-3200					
20000	PITCH ATT	-2.5	-2.0	-1.0	-0.5	0.0	0.0					
(280 KIAS)	V/S (FT/MIN)	-2900	-2600	-2500	-2300	-2200	-2100					
10000	PITCH ATT	-2.5	-2.0	-1.5	-1.0	-0.5	0.0					
(280 KIAS)	V/S (FT/MIN)	-2500	-2300	-2200	-2100	-2000	-1900					

Holding

Flaps Up, Adjust %N1 for Level Flight

DDESCLIDE	LTITUDE (FT)		WEIGHT (1000 KG)								
FRESSURE A	LITTODE (FT)	34	38	42	46	50	54				
	PITCH ATT	4.0	4.5	5.5	5.5	5.5	5.5				
10000	%N1	56	57	59	61	63	65				
	KIAS	210	210	210	215	225	230				

NOT USE FOR FLIGHT General

737 Flight Crew Operations Manual

Flight With Unreliable Airspeed / Turbulent Air Penetration Altitude and/or vertical speed indications may also be unreliable. **Terminal Area**

Adjust %N1 for Level Flight

FLAP POSITION (S	DEED)		WE	EIGHT (1000 F	(G)	
FLAF FOSITION (S	SFEED)	32	40	48	56	64
	PITCH ATT	3.5	5.0	6.0	6.5	7.0
FLAPS UP (GEAR UP)	%N1	52	55	58	62	65
	KIAS	210	210	210	220	230
	PITCH ATT	4.0	5.5	6.5	7.0	7.5
FLAPS 1 (GEAR UP)	%N1	55	57	60	64	67
	KIAS	190	190	190	200	210
	PITCH ATT	3.5	4.5	6.0	6.5	6.5
FLAPS 5 (GEAR UP)	%N1	55	58	61	65	68
	KIAS	180	180	180	190	200
	PITCH ATT	3.5	5.5	7.5	8.0	8.0
FLAPS 15 (GEAR DOWN)	%N1	61	64	68	72	75
	KIAS	150	150	150	160	170

Final Approach Gear Down, Adjust %N1 for 3° Glideslope

FLAP PO	CITION		W	EIGHT (1000 K	(G)	
FLAP PC	051110IN	32	40	48	56	64
FLAPS 15	PITCH ATT	4.5	4.5	4.5	4.5	4.5
(VREF 15+10)	%N1	43	48	52	56	60
	KIAS	123	138	151	163	173
FLAPS 30	PITCH ATT	2.0	2.0	2.0	2.5	2.5
(VREF 30+10)	%N1	48	53	58	62	65
	KIAS	116	129	141	152	162
FLAPS 40	PITCH ATT	0.5	0.5	0.5	0.5	0.0
(VREF 40+10)	%N1	54	60	65	69	73
	KIAS	113	125	137	150	161

DO NOT USE FOR FLIGHT Performance Inflight - QRH General

737 Flight Crew Operations Manual

Max Climb %N1

Based on engine bleed to packs on (Auto) and anti-ice off

TAT		PR	ESSURE A	LTITUDE ((1000 FT)/S	PEED (KIA	S OR MAC	CH)	
TAT (°C)	0	5	10	15	20	25	30	35	37
()	250	250	250	280	280	280	.74	.74	.74
50	90.9	91.1	92.5						
40	92.0	92.2	93.6	93.3	93.6				
30	92.2	93.2	93.5	94.2	94.6	94.7			
20	90.6	92.8	94.3	95.0	95.4	95.6	95.7		
10	89.1	91.2	93.1	95.1	96.1	96.4	96.6	96.6	96.6
0	87.5	89.6	91.5	93.4	95.5	97.2	97.5	97.5	97.5
-10	85.9	87.9	89.8	91.7	93.7	95.9	97.9	98.4	98.4
-20	84.2	86.3	88.1	90.0	91.9	94.0	96.0	99.0	99.3
-30	82.5	84.5	86.3	88.2	90.1	92.1	94.1	97.0	97.6
-40	80.8	82.8	84.5	86.3	88.2	90.2	92.2	95.0	95.6
-50	79.1	81.0	82.7	84.5	86.3	88.3	90.2	92.9	93.5

%N1 Adjustments for Engine Bleeds

BLEED		PRESSURE ALTITUDE (1000 FT)								
CONFIGURATION	0	5	10	15	20	25	30	35	37	
ENGINE BLEED TO PACKS OFF	0.5	0.5	0.6	0.7	0.8	0.8	0.9	0.9	0.9	
PACKS HIGH	-0.3	-0.3	-0.4	-0.4	-0.4	-0.4	-0.5	-0.6	-0.6	
ENGINE ANTI-ICE ON	-0.7	-0.8	-0.9	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
ENGINE & WING ANTI-ICE ON	-1.9	-2.0	-2.2	-2.4	-2.6	-2.7	-2.8	-3.0	-3.0	

737 Flight Crew Operations Manual

Go-around %N1

Based on engine bleed to packs on (Auto), engine anti-ice on or off, and wing anti-ice off

	RTED AT	TAT				PRES	SURE A	LTITUDE	E (FT)			
°C	°F	°C	-1000	0	1000	2000	3000	4000	5000	6000	7000	8000
55	131	58	93.1	93.9	93.9	93.9						
50	122	53	93.7	94.2	94.2	94.2	94.2	94.2				
45	113	48	94.1	94.7	94.6	94.6	94.6	94.6	94.7	94.8	94.6	
40	104	43	94.5	95.1	95.1	95.1	95.0	95.1	95.1	95.2	95.1	95.0
35	95	38	95.1	95.5	95.6	95.5	95.5	95.7	95.7	95.7	95.6	95.6
30	86	33	95.1	96.1	96.1	96.0	96.0	96.3	96.2	96.2	96.1	96.0
25	77	28	94.3	95.3	95.8	96.2	96.5	96.7	96.7	96.6	96.5	96.5
20	68	23	93.5	94.5	95.0	95.4	95.9	96.6	97.1	97.2	97.0	96.9
15	59	18	92.7	93.7	94.1	94.6	95.1	95.8	96.3	96.8	97.3	97.5
10	50	13	91.9	92.8	93.3	93.7	94.2	95.0	95.4	96.0	96.4	96.9
5	41	8	91.1	92.0	92.5	92.9	93.4	94.1	94.6	95.1	95.6	96.1
0	32	3	90.3	91.2	91.7	92.1	92.6	93.3	93.7	94.3	94.7	95.2
-10	14	-8	88.5	89.5	90.0	90.4	90.8	91.5	92.0	92.5	93.0	93.4
-20	-4	-18	86.8	87.8	88.2	88.6	89.1	89.8	90.3	90.8	91.2	91.6
-30	-22	-28	85.1	86.0	86.5	86.9	87.3	88.0	88.5	89.0	89.4	89.8
-40	-40	-38	83.3	84.2	84.7	85.1	85.5	86.2	86.6	87.1	87.5	87.9
-50	-58	-48	81.5	82.4	82.8	83.2	83.7	84.3	84.7	85.2	85.6	86.0

%N1 Adjustments for Engine Bleeds

BLEED	TAT	(°C)
CONFIGURATION	- 60	60
ENGINE BLEED TO PACKS OFF	0.8	1.0
PACKS HIGH	- 0.3	- 0.3
WING A/I ALL ENGINES	- 1.3	- 1.6
WING A/I 1 ENGINE INOP	- 2.2	- 2.7

DO NOT USE FOR FLIGHT Performance Inflight - QRH General

737 Flight Crew Operations Manual

VREF

WEIGHT		FLAPS							
(1000 KG)	40	30	15						
65	153	154	165						
60	146	147	158						
55	138	141	151						
50	131	134	144						
45	123	127	136						
40	115	119	128						
35	107	111	119						

For approach speed add wind factor of 1/2 headwind component + gust (max 20 knots).

737-300/CFM56-3 22K

737 Flight Crew Operations Manual

Intentionally Blank

737 Flight Crew Operations Manual

Performance Inflight - QRH Advisory Information

Chapter PI-QRH Section 11

ADVISORY INFORMATION

Normal Configuration Landing Distance Flaps 15 Dry Runway

		L	ANDING	DISTA	NCE A	AND AD	JUST	MEN	Γ(FT)			
	REF DIST	WT ADJ	ALT ADJ		O ADJ 0 KTS	SLOPE PER			P ADJ 10°C	VREF ADJ	REVI THR A	UST
BRAKING CONFIGURATION	48000 KG LANDING WEIGHT	PER 5000 KG ABOVE/ BELOW 48000 KG	PER 1000 FT ABOVE SEA LEVEL	HEAD WIND	TAIL WIND	DOWN HILL	UP HILL			PER 10 KTS ABOVE VREF15	REV	
MAX MANUAL	2740	390/-180	50	-100	340	30	-30	50	-50	210	40	150
MAX AUTO	3650	300/-270	80	-130	440	0	0	80	-80	350	0	10
AUTOBRAKES 3	5180	420/-440	130	-220	740	20	-30	140	-140	540	50	60
AUTOBRAKES 2	6160	580/-600	180	-290	970	100	-140	170	-170	470	320	320
AUTOBRAKES 1	6620	680/-670	210	-330	1130	210	-210	180	-180	470	820	1220

Good Reported Braking Action

MAX MANUAL	3790	290/-290	90	-160	580	80	-70	90	-90	270	200	690
MAX AUTO	4060	320/-320	100	-170	600	70	-60	90	-90	330	220	760
AUTOBRAKE 3	5190	430/-450	130	-220	750	30	-30	140	-140	540	50	200
AUTOBRAKE 2	6160	580/-600	180	-290	970	100	-140	170	-170	470	320	320
AUTOBRAKE 1	6620	680/-670	210	-330	1130	210	-210	180	-180	470	820	1220

Medium Reported Braking Action

Ī	MAX MANUAL	5060	460/-440	140	-260	940	200	-160	130	-130	350	540	2240
I	MAX AUTO	5110	470/-460	140	-260	940	170	-140	130	-130	410	540	2240
Ī	AUTOBRAKE 3	5570	490/-490	150	-280	990	140	-100	140	-140	540	370	2060
Ī	AUTOBRAKE 2	6300	590/-610	190	-310	1100	170	-180	170	-170	470	400	1460
Ī	AUTOBRAKE 1	6640	690/-670	210	-330	1170	250	-220	180	-190	470	840	1850

Poor Reported Braking Action

		0											
1	MAX MANUAL	6410	640/-610	200	-380	1440	450	-310	160	-160	420	1090	6360
	MAX AUTO	6410	640/-610	200	-370	1430	440	-300	160	-160	430	1080	6380
	AUTOBRAKE 3	6470	650/-620	200	-380	1450	410	-270	170	-170	520	1090	6380
	AUTOBRAKE 2	6870	680/-670	210	-390	1500	400	-300	180	-180	470	900	5980
	AUTOBRAKE 1	7080	730/-720	230	-410	1530	460	-340	190	-190	470	1130	5930

Reference distance is for sea level, standard day, no wind or slope, VREF15 approach speed and two engine detent reverse thrust.

Max manual braking data valid for auto speedbrakes. Autobrake data valid for both auto and manual speedbrakes.

For max manual braking and manual speedbrakes, increase reference landing distance by 310 ft. Actual (unfactored) distances are shown.

Includes distance from 50 ft above threshold (1000 ft of air distance).

737 Flight Crew Operations Manual

ADVISORY INFORMATION

Normal Configuration Landing Distance Flaps 30 Dry Runway

	•												
			LA	ANDING	DISTA	NCE A	ND AD	JUSTN	MENT	S (FT))		
		REF DIST	WT ADJ	ALT ADJ		O ADJ 0 KTS	SLOPE PER			P ADJ 10°C	VREF ADJ	REVE THR AI	UST
	BRAKING CONFIGURATION	WEIGHT	PER 5000 KG ABOVE/ BELOW 48000 KG	SEA		TAIL WIND	DOWN HILL	UP HILL		ISA	PER 10 KTS ABOVE VREF30	REV	
1	MAX MANUAL	2570	300/-160	50	-90	320	30	-30	50	-50	190	40	120
	MAX AUTO	3320	240/-230	70	-120	420	0	0	70	-70	330	0	10
	AUTOBRAKES 3	4640	360/-380	120	-210	700	20	-30	120	-120	490	40	50
	AUTOBRAKES 2	5540	490/-520	160	-270	920	80	-120	150	-150	450	200	200
1	AUTOBRAKES 1	5960	590/-580	190	-310	1070	180	-180	160	-160	440	640	950

Good Reported Braking Action

MAX MANUAL	3540	260/-260	80	-160	560	80	-70	80	-80	280	170	610
MAX AUTO	3760	280/-290	90	-170	580	60	-60	80	-80	320	190	660
AUTOBRAKE 3	4650	360/-390	120	-210	710	30	-30	120	-120	490	50	190
AUTOBRAKE 2	5540	490/-520	160	-270	920	80	-120	150	-150	450	200	200
AUTOBRAKE 1	5960	590/-580	190	-310	1070	180	-180	160	-160	440	640	950

Medium Reported Braking Action

MAX MANUAL	4670	400/-400	130	-250	910	190	-150	110	-110	350	460	1940
MAX AUTO	4690	410/-410	130	-250	910	160	-130	110	-110	400	450	1930
AUTOBRAKE 3	5030	430/-430	130	-260	950	130	-100	130	-130	490	340	1870
AUTOBRAKE 2	5670	510/-530	160	-290	1040	150	-170	150	-150	450	280	1270
AUTOBRAKE 1	5990	590/-580	190	-310	1110	230	-200	160	-160	440	670	1540

Poor Reported Braking Action

		-											
ĺ	MAX MANUAL	5870	560/-540	180	-360	1390	420	-290	150	-150	400	910	5470
	MAX AUTO	5870	560/-540	180	-360	1380	420	-280	150	-150	420	910	5500
	AUTOBRAKE 3	5910	580/-550	180	-360	1390	400	-260	150	-150	470	940	5500
	AUTOBRAKE 2	6240	590/-590	180	-370	1440	380	-280	160	-160	440	720	5180
	AUTOBRAKE 1	6420	640/-630	200	-390	1470	430	-310	170	-170	440	930	5110

Reference distance is for sea level, standard day, no wind or slope, VREF30 approach speed and two engine detent reverse thrust.

Max manual braking data valid for auto speedbrakes. Autobrake data valid for both auto and manual speedbrakes.

For max manual braking and manual speedbrakes, increase reference landing distance by 280 ft. Actual (unfactored) distances are shown.

Includes distance from 50 ft above threshold (1000 ft of air distance).

O NOT USE FOR FLIGHT Performance Inflight - QRH Advisory Information

737 Flight Crew Operations Manual

ADVISORY INFORMATION

Normal Configuration Landing Distance Flaps 40

Dry Runway

		LA	ANDING	DISTA	NCE A	ND AD	JUSTN	MENT	S (FT))		
	REF DIST	WT ADJ	ALT ADJ		O ADJ 0 KTS	SLOPE PER			P ADJ 10°C	VREF ADJ	REVI THR AI	UST
BRAKING CONFIGURATION	WEIGHT	PER 5000 KG ABOVE/ BELOW 48000 KG	SEA	HEAD	TAIL WIND	DOWN HILL	UP HILL			PER 10 KTS ABOVE VREF40	REV	
MAX MANUAL	2520	290/-160	50	-90	320	30	-30	50	-50	200	30	120
MAX AUTO	3200	260/-220	70	-120	410	0	0	70	-70	320	0	10
AUTOBRAKE 3	4430	400/-370	110	-200	680	20	-40	110	-110	450	40	60
AUTOBRAKE 2	5250	520/-480	150	-260	890	90	-110	140	-140	420	200	200
AUTOBRAKE 1	5650	600/-540	170	-300	1040	170	-170	150	-150	420	560	890

Good Reported Braking Action

MAX MANUAL	3440	290/-250	80	-160	550	80	-70	80	-80	280	150	560
MAX AUTO	3650	310/-280	90	-160	570	60	-50	80	-80	320	170	620
AUTOBRAKE 3	4440	400/-370	110	-200	690	30	-40	110	-110	450	40	200
AUTOBRAKE 2	5250	520/-480	150	-260	890	90	-110	140	-140	420	200	200
AUTOBRAKE 1	5650	600/-540	170	-300	1040	170	-170	150	-150	420	560	890

Medium Reported Braking Action

MAX MANUAL	4500	430/-380	120	-240	890	180	-150	110	-110	340	410	1770
MAX AUTO	4520	440/-390	120	-240	890	160	-120	110	-110	400	410	1750
AUTOBRAKE 3	4820	460/-410	130	-250	930	130	-110	120	-120	450	320	1730
AUTOBRAKE 2	5380	530/-500	150	-280	1010	160	-160	140	-140	420	270	1180
AUTOBRAKE 1	5680	600/-550	170	-300	1080	210	-180	150	-150	420	580	1440

Poor Reported Braking Action

MAX MANUAL	5620	580/-510	170	-350	1360	400	-270	140	-140	390	810	4890
MAX AUTO	5620	580/-510	170	-350	1360	400	-260	140	-140	410	800	4910
AUTOBRAKE 3	5660	590/-520	170	-350	1370	390	-260	140	-140	420	840	4950
AUTOBRAKE 2	5930	610/-560	170	-360	1400	380	-270	150	-150	420	670	4630
AUTOBRAKE 1	6100	650/-590	190	-370	1430	410	-300	160	-160	420	820	4610

Reference distance is for sea level, standard day, no wind or slope, VREF40 approach speed and two engine detent reverse thrust.

Max manual braking data valid for auto speedbrakes. Autobrake data valid for both auto and manual speedbrakes.

For max manual braking and manual speedbrakes, increase reference landing distance by 250 ft. Actual (unfactored) distances are shown.

Includes distance from 50 ft above threshold (1000 ft of air distance).

on to a Republic Property of the Control of the Con

737 Flight Crew Operations Manual

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Dry Runway

		LANDING DISTANCE AND ADJUSTMENT (FT)								
		I	LANDING I	DISTANCE	AND A	DJUS	TMENT	(FT)		
		REF DIST FOR	WT ADJ PER	ALT ADJ PER	WINE PER 1		SLOPE PER		APPROACH SPEED	
LANDING CONFIGURATION	VREF	48000 KG LANDING WEIGHT	2000 KG ABV/BLW 48000 KG	1000 FT ABV S.L.	HEAD WIND		DOWN HILL		PER 10 KTS ABOVE VREF	
ALL FLAPS UP	VREF40+55	4040	360/-140	230	-160	590	50	-50	380	
ANTI-SKID INOPERATIVE	VREF40	3940	120/-110	80	-175	610	80	-70	300	
HYDRAULICS- LOSS OF SYSTEM A (FLAPS 40)	VREF40	3180	100/-90	130	-120	400	70	-50	440	
HYDRAULICS- LOSS OF SYSTEM A (FLAPS 30)	VREF30	3280	90 /-100	130	-120	410	70	-50	440	
HYDRAULICS- LOSS OF SYSTEM A (FLAPS 15)	VREF15	3310	110/-90	150	-120	390	50	-50	340	
HYDRAULICS- LOSS OF SYSTEM B (FLAPS 15)	VREF15	3150	170/-90	150	-120	420	50	-50	250	
HYDRAULICS- MANUAL REVERSION (LOSS OF BOTH SYSTEM A & B)	VREF15	4900	170/-160	230	-210	700	150	-130	520	
STABILIZER TRIM INOPERATIVE	VREF15	2790	150/-70	130	-100	350	30	-30	210	
JAMMED OR RESTRICTED FLIGHT CONTROLS	VREF15	2790	150/-70	130	-100	350	30	-30	210	
LEADING EDGE FLAPS TRANSIT	VREF15+5	2920	170/-70	150	-110	360	30	-30	230	
ONE ENGINE INOPERATIVE	VREF15	2820	160/-80	140	-110	360	30	-30	230	

Reference distance assumes sea level, standard day, with no wind or slope.

Actual (unfactored) distances are shown.

PI-QRH.11.4

Includes distance from 50 ft above runway threshold (1000 ft of air distance).

Assumes maximum manual braking and maximum reverse thrust when available on operating engine(s).

DO NOT USE FOR FLIGHT Performance Inflight - QRH Advisory Information

737 Flight Crew Operations Manual

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Dry Runway

]	LANDING DISTANCE AND ADJUSTMENT (FT)									
		REF DIST FOR	WT ADJ PER	ALT ADJ PER	WINI PER 1		SLOPE PER		APPROACH SPEED			
LANDING CONFIGURATION	VREF	48000 KG LANDING WEIGHT	2000 KG ABV/BLW 48000 KG	1000 FT			DOWN HILL		PER 10 KTS ABOVE VREF			
TRAILING EDGE FLAP ASYMMETRY (30≤ FLAPS <40)	VREF30	2590	130/-60	50	-90	330	30	-30	200			
TRAILING EDGE FLAP ASYMMETRY (15≤ FLAPS <30)	VREF15	2790	160/-70	130	-90	340	30	-30	210			
TRAILING EDGE FLAP ASYMMETRY (1≤ FLAPS <15)	VREF40+30	3250	210/-100	180	-120	430	30	-30	260			
TRAILING EDGE FLAP DISAGREE (30≤ FLAPS <40)	VREF30	2590	130/-60	50	-90	330	30	-30	200			
TRAILING EDGE FLAP DISAGREE (15≤ FLAPS <30)	VREF15	2790	160/-70	130	-90	340	30	-30	210			
TRAILING EDGE FLAP DISAGREE (1≤ FLAPS <15)	VREF40+30	3250	210/-100	180	-120	430	30	-30	260			
TRAILING EDGE FLAPS UP (FLAPS < 1)	VREF40+40	3510	250/-110	190	-130	510	50	-50	330			

Reference distance assumes sea level, standard day, with no wind or slope.

Actual (unfactored) distances are shown.

Includes distance from 50 ft above runway threshold (1000 ft of air distance).

737 Flight Crew Operations Manual

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Good Reported Braking Action

•	0	'									
		LANDING DISTANCE AND ADJUSTMENT (FT)									
_		REF DIST FOR	WT ADJ PER	ALT ADJ PER	WINE PER 1		SLOPE PER		APPROACH SPEED		
LANDING CONFIGURATION	VREF	48000 KG LANDING WEIGHT	2000 KG ABV/BLW 48000 KG	1000 FT ABV S.L.			DOWN HILL		PER 10 KTS ABOVE VREF		
ALL FLAPS UP	VREF40+55	5100	160/-140	240	-200	670	100	-100	300		
ANTI-SKID INOPERATIVE	VREF40	4810	170/-150	110	-245	900	160	-130	340		
HYDRAULICS- LOSS OF SYSTEM A (FLAPS 40)	VREF40	4260	160/-150	180	-190	660	130	-110	490		
HYDRAULICS- LOSS OF SYSTEM A (FLAPS 30)	VREF30	4460	150/-150	180	-200	670	150	-130	520		
HYDRAULICS- LOSS OF SYSTEM A (FLAPS 15)	VREF15	4650	160/-140	210	-200	670	130	-110	460		
HYDRAULICS- LOSS OF SYSTEM B (FLAPS 15)	VREF15	3940	120/-120	170	-170	590	80	-80	300		
HYDRAULICS- MANUAL REVERSION (LOSS OF SYSTEM A & B)	VREF15	4990	170/-160	230	-210	710	150	-150	540		
STABILIZER TRIM INOPERATIVE	VREF15	3750	120/-110	150	-170	570	80	-80	280		
JAMMED OR RESTRICTED FLIGHT CONTROLS	VREF15	3750	120/-110	150	-170	570	80	-80	280		
LEADING EDGE FLAPS TRANSIT	VREF15+5	4070	130/-120	190	-180	610	100	-80	310		
ONE ENGINE INOPERATIVE	VREF15	3950	130/-120	170	-180	610	100	-80	310		

Reference distance assumes sea level, standard day, with no wind or slope.

Actual (unfactored) distances are shown.

Includes distance from 50 ft above runway threshold (1000 ft of air distance).

DO NOT USE FOR FLIGHT Performance Inflight - QRH Advisory Information

737 Flight Crew Operations Manual

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Good Reported Braking Action

		LANDING DISTANCE AND ADJUSTMENT (FT)									
		REF DIST	WT ADJ	ALT ADJ	WINI PER 1	ADJ	SLOPI PER		APPROACH SPEED		
LANDING CONFIGURATION	VREF	FOR 48000 KG LANDING WEIGHT	PER 2000 KG ABV/BLW 48000 KG	PER 1000 FT ABV S.L.	HEAD WIND	TAIL	DOWN		PER 10 KTS ABOVE VREF		
TRAILING EDGE FLAP ASYMMETRY (30≤ FLAPS <40)	VREF30	3510	100/-100	90	-150	570	80	-70	280		
TRAILING EDGE FLAP ASYMMETRY (15≤ FLAPS <30)	VREF15	3740	130/-110	150	-160	570	80	-80	280		
TRAILING EDGE FLAP ASYMMETRY (1≤ FLAPS <15)	VREF40+30	4230	140/-120	190	-180	600	80	-80	260		
TRAILING EDGE FLAP DISAGREE (30≤ FLAPS <40)	VREF30	3510	100/-100	90	-150	570	80	-70	280		
TRAILING EDGE FLAP DISAGREE (15≤ FLAPS <30)	VREF15	3740	130/-110	150	-160	570	80	-80	280		
TRAILING EDGE FLAP DISAGREE (1≤ FLAPS <15)	VREF40+30	4230	140/-120	190	-180	600	80	-80	260		
TRAILING EDGE FLAPS UP (FLAPS < 1)	VREF40+40	4530	140/-130	210	-180	630	100	-80	280		

Reference distance assumes sea level, standard day, with no wind or slope.

Actual (unfactored) distances are shown.

Includes distance from 50 ft above runway threshold (1000 ft of air distance).

737 Flight Crew Operations Manual

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Medium Reported Braking Action

•	i											
		LANDING DISTANCE AND ADJUSTMENT (FT)										
		REF DIST FOR	WT ADJ PER	ALT ADJ PER	WINI PER 1		SLOPE PER		APPROACH SPEED			
LANDING CONFIGURATION	VREF	48000 KG LANDING WEIGHT	2000 KG ABV/BLW 48000 KG	1000 FT			DOWN HILL		PER 10 KTS ABOVE VREF			
ALL FLAPS UP	VREF40+55	6850	250/-230	330	-310	1060	250	-210	390			
ANTI-SKID INOPERATIVE	VREF40	5890	220/-200	145	-350	1350	390	-250	390			
HYDRAULICS- LOSS OF SYSTEM A (FLAPS 40)	VREF40	5370	220/-200	230	-290	1000	260	-210	520			
HYDRAULICS- LOSS OF SYSTEM A (FLAPS 30)	VREF30	5690	210/-220	240	-300	1030	280	-230	560			
HYDRAULICS- LOSS OF SYSTEM A (FLAPS 15)	VREF15	6070	230/-220	280	-300	1040	280	-250	540			
HYDRAULICS- LOSS OF SYSTEM B (FLAPS 15)	VREF15	5250	190/-180	230	-270	960	200	-180	380			
HYDRAULICS- MANUAL REVERSION (LOSS OF BOTH SYSTEM A & B)	VREF15	6500	250/-230	310	-320	1100	310	-260	610			
STABILIZER TRIM INOPERATIVE	VREF15	4990	180/-170	210	-260	920	200	-160	340			
JAMMED OR RESTRICTED FLIGHT CONTROLS	VREF15	4990	180/-170	210	-260	920	200	-160	340			
LEADING EDGE FLAPS TRANSIT	VREF15+5	5420	200/-190	260	-270	970	210	-180	390			
ONE ENGINE INOPERATIVE	VREF15	5510	200/-190	250	-290	1030	260	-210	410			

Reference distance assumes sea level, standard day, with no wind or slope.

Actual (unfactored) distances are shown.

Includes distance from 50 ft above runway threshold (1000 ft of air distance).

DO NOT USE FOR FLIGHT Performance Inflight - QRH Advisory Information

737 Flight Crew Operations Manual

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance **Medium Reported Braking Action**

		LANDING DISTANCE AND ADJUSTMENT (FT)									
		REF DIST FOR	WT ADJ PER	ALT ADJ PER	WINI PER 1		SLOPE PER		APPROACH SPEED		
LANDING CONFIGURATION	VREF	48000 KG LANDING WEIGHT	2000 KG ABV/BLW 48000 KG	1000 FT ABV S.L.			DOWN HILL		PER 10 KTS ABOVE VREF		
TRAILING EDGE FLAP ASYMMETRY (30≤ FLAPS <40)	VREF30	4610	170/-160	130	-240	890	180	-150	340		
TRAILING EDGE FLAP ASYMMETRY (15≤ FLAPS <30)	VREF15	4990	180/-160	210	-250	920	200	-160	340		
TRAILING EDGE FLAP ASYMMETRY (1≤ FLAPS <15)	VREF40+30	5660	210/-190	260	-280	980	200	-180	360		
TRAILING EDGE FLAP DISAGREE (30≤ FLAPS <40)	VREF30	4610	170/-160	130	-240	890	180	-150	340		
TRAILING EDGE FLAP DISAGREE (15≤ FLAPS <30)	VREF15	4990	180/-160	210	-250	920	200	-160	340		
TRAILING EDGE FLAP DISAGREE (1≤ FLAPS <15)	VREF40+30	5660	210/-190	260	-280	980	200	-180	360		
TRAILING EDGE FLAPS UP (FLAPS < 1)	VREF40+40	6070	220/-200	280	-290	1000	210	-180	360		

Reference distance assumes sea level, standard day, with no wind or slope.

Actual (unfactored) distances are shown.

Includes distance from 50 ft above runway threshold (1000 ft of air distance).

737 Flight Crew Operations Manual

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Poor Reported Braking Action

•		LANDING DISTANCE AND ADJUSTMENT (FT)									
		REF DIST FOR	WT ADJ PER	ALT ADJ PER	PER 1		SLOPE PER		SPEED		
LANDING CONFIGURATION	VREF	48000 KG LANDING WEIGHT	2000 KG ABV/BLW 48000 KG	1000 FT ABV S.L.			DOWN HILL	UP HILL	PER 10 KTS ABOVE VREF		
ALL FLAPS UP	VREF40+55	8610	340/-310	420	-440	1580	490	-380	460		
ANTI-SKID INOPERATIVE	VREF40	7430	310/-280	200	-550	2345	2300	-520	430		
HYDRAULICS- LOSS OF SYSTEM A (FLAPS 40)	VREF40	6490	280/-260	280	-400	1470	480	-360	520		
HYDRAULICS- LOSS OF SYSTEM A (FLAPS 30)	VREF30	6900	270/-280	290	-420	1520	510	-390	570		
HYDRAULICS- LOSS OF SYSTEM A (FLAPS 15)	VREF15	7500	310/-280	360	-430	1550	520	-410	590		
HYDRAULICS- LOSS OF SYSTEM B (FLAPS 15)	VREF15	6630	270/-240	300	-390	1450	430	-330	440		
HYDRAULICS- MANUAL REVERSION (LOSS OF BOTH SYSTEM A & B)	VREF15	7970	330/-300	380	-450	1610	570	-440	640		
STABILIZER TRIM INOPERATIVE	VREF15	6240	250/-230	270	-380	1400	390	-310	410		
JAMMED OR RESTRICTED FLIGHT CONTROLS	VREF15	6240	250/-230	270	-380	1400	390	-310	410		
LEADING EDGE FLAPS TRANSIT	VREF15+5	6820	280/-260	330	-400	1460	440	-340	460		
ONE ENGINE INOPERATIVE	VREF15	7330	300/-280	330	-450	1640	610	-440	510		

Reference distance assumes sea level, standard day, with no wind or slope.

Actual (unfactored) distances are shown.

Includes distance from 50 ft above runway threshold (1000 ft of air distance).

DO NOT USE FOR FLIGHT Performance Inflight - QRH Advisory Information

737 Flight Crew Operations Manual

ADVISORY INFORMATION

Non-Normal Configuration Landing Distance Poor Reported Braking Action

		I	LANDING DISTANCE AND ADJUSTMENT (FT)									
		REF DIST FOR	WT ADJ PER	ALT ADJ PER	WINI PER 1		SLOPE PER		APPROACH SPEED			
LANDING CONFIGURATION	VREF	48000 KG LANDING WEIGHT	2000 KG ABV/BLW 48000 KG	1000 FT ABV S.L.			DOWN HILL	UP	PER 10 KTS ABOVE VREF			
TRAILING EDGE FLAP ASYMMETRY (30≤ FLAPS <40)	VREF30	5760	210/-220	200	-350	1360	380	-280	390			
TRAILING EDGE FLAP ASYMMETRY (15≤ FLAPS <30)	VREF15	6250	270/-240	260	-370	1390	390	-310	410			
TRAILING EDGE FLAP ASYMMETRY (1≤ FLAPS <15)	VREF40+30	7120	290/-260	340	-400	1460	430	-330	430			
TRAILING EDGE FLAP DISAGREE (30≤ FLAPS <40)	VREF30	5760	210/-220	200	-350	1360	380	-280	390			
TRAILING EDGE FLAP DISAGREE (15≤ FLAPS <30)	VREF15	6250	270/-240	260	-370	1390	390	-310	410			
TRAILING EDGE FLAP DISAGREE (1≤ FLAPS <15)	VREF40+30	7120	290/-260	340	-400	1460	430	-330	430			
TRAILING EDGE FLAPS UP (FLAPS < 1)	VREF40+40	7640	310/-270	360	-410	1500	440	-340	430			

Reference distance assumes sea level, standard day, with no wind or slope.

Actual (unfactored) distances are shown.

Includes distance from 50 ft above runway threshold (1000 ft of air distance).

737 Flight Crew Operations Manual

ADVISORY INFORMATION

Recommended Brake Cooling Schedule Reference Brake Energy Per Brake (Millions of Foot Pounds)

		WIND CORRECTED BRAKES ON SPEED (KIAS)*														
			60		I	80			100			120	,		140	
WEIGHT	OAT	PR	ESS A	LT	PR	ESS A	LT	PR	ESS A	LT	PR	ESS A	LT	PR	ESS A	LT
(1000 KG)	(°C)	0	4	8	0	4	8	0	4	8	0	4	8	0	4	8
	-20	6.6	7.4	8.3	11.1	12.5	14.1	16.5	18.7	21.4	22.9	26.0	29.7	30.0	34.1	38.9
	0	7.1	7.9	8.8	11.9	13.4	15.1	17.7	20.1	22.9	24.5	27.9	31.9	32.2	36.6	41.7
70	15	7.4	8.3	9.3	12.5	14.1	15.9	18.7	21.2	24.2	25.9	29.4	33.6	33.9	38.5	43.9
	20	7.5	8.4	9.4	12.7	14.3	16.2	19.0	21.5	24.6	26.3	29.9	34.1	34.5	39.2	44.6
	40	7.9	8.8	9.8	13.3	15.0	17.0	20.0	22.7	25.9	27.8	31.6	36.1	36.4	41.4	47.1
	-20	6.2	6.9	7.8	10.4	11.7	13.2	15.5	17.5	20.0	21.4	24.3	27.8	28.0	31.8	36.3
	0	6.7	7.4	8.3	11.1	12.5	14.1	16.6	18.8	21.4	22.9	26.0	29.7	30.0	34.1	39.0
65	15	7.0	7.8	8.7	11.7	13.2	14.9	17.5	19.8	22.6	24.2	27.4	31.4	31.7	36.0	41.0
	20	7.1	7.9	8.8	11.9	13.4	15.2	17.8	20.1	23.0	24.6	27.9	31.9	32.2	36.6	41.7
	40	7.4	8.2	9.2	12.5	14.0	15.9	18.7	21.2	24.2	25.9	29.5	33.7	34.0	38.6	44.1
	-20	5.8	6.5	7.2	9.7	10.9	12.3	14.4	16.3	18.6	19.9	22.6	25.8	26.0	29.6	33.8
	0	6.3	7.0	7.8	10.4	11.7	13.2	15.4	17.5	19.9	21.3	24.2	27.6	27.9	31.7	36.2
60	15	6.6	7.3	8.1	10.9	12.3	13.9	16.3	18.4	21.0	22.5	25.5	29.1	29.4	33.4	38.1
	20	6.7	7.4	8.3	11.1	12.5	14.1	16.5	18.7	21.3	22.8	25.9	29.6	29.9	34.0	38.8
	40	6.9	7.7	8.6	11.6	13.1	14.8	17.4	19.7	22.5	24.1	27.4	31.3	31.6	35.9	41.0
	-20	5.5	6.1	6.8	9.0	10.1	11.4	13.4	15.1	17.2	18.4	20.8	23.8	24.0	27.2	31.1
	0	5.9	6.5	7.2	9.7	10.8	12.2	14.3	16.2	18.4	19.7	22.3	25.5	25.7	29.2	33.4
55	15	6.1	6.8	7.6	10.2	11.4	12.8	15.1	17.0	19.4	20.7	23.5	26.9	27.1	30.8	35.2
	20	6.2	6.9	7.7	10.3	11.6	13.0	15.3	17.3	19.7	21.1	23.9	27.3	27.6	31.3	35.8
	40	6.5	7.2	8.0	10.8	12.1	13.7	16.1	18.2	20.8	22.2	25.2	28.8	29.1	33.1	37.8
	-20	5.1	5.6	6.3	8.3	9.3	10.5	12.3	13.9	15.7	16.8	19.1	21.8	21.9	24.9	28.5
	0	5.4	6.0	6.7	8.9	10.0	11.2	13.2	14.8	16.9	18.0	20.4	23.3	23.5	26.7	30.5
50	15	5.7	6.3	7.0	9.4	10.5	11.8	13.8	15.6	17.8	19.0	21.5	24.6	24.8	28.1	32.2
	20	5.8	6.4	7.1	9.5	10.7	12.0	14.1	15.9	18.1	19.3	21.9	25.0	25.2	28.6	32.7
	40	6.0	6.7	7.4	10.0	11.2	12.6	14.8	16.7	19.0	20.3	23.1	26.4	26.6	30.2	34.5
	-20	4.7	5.2	5.8	7.7	8.6	9.6	11.2	12.6	14.3	15.3	17.3	19.7	19.9	22.5	25.7
4.5	0	5.0	5.6	6.2	8.2	9.2	10.3	12.0	13.5	15.3	16.4	18.5	21.1	21.3	24.1	27.6
45	15	5.3	5.8	6.5	8.6	9.6	10.8	12.6	14.2	16.1	17.3	19.5	22.3	22.4	25.4	29.1
	20	5.3	5.9	6.6	8.7	9.8	11.0	12.8	14.5	16.4	17.5	19.9	22.7	22.8	25.9	29.6
	40	5.5	6.2	6.8	9.1	10.2	11.5	13.5	15.2	17.3	18.5	20.9	23.9	24.0	27.3	31.2
	-20	4.3	4.8	5.3	7.0	7.8	8.7	10.1	11.4	12.9	13.7	15.5	17.7	17.7	20.1	23.0
40	0	4.6	5.1	5.7	7.5	8.3	9.3	10.9	12.2	13.8	14.7	16.6	18.9	19.0	21.5	24.6
40	15	4.9	5.4	5.9	7.8	8.8	9.8	11.4	12.8	14.5	15.5	17.5	20.0	20.0	22.7	26.0
	20	4.9	5.4	6.0	8.0	8.9	10.0	11.6	13.0	14.8	15.8	17.8	20.3	20.4	23.1	26.4
	40	5.1	5.6	6.3	8.3	9.3	10.4	12.1	13.7	15.5	16.6	18.8	21.4	21.5	24.4	27.9

^{*}To correct for wind, enter table with the brakes on speed minus one half the headwind or plus 1.5 times the tailwind.

If ground speed is used for brakes on speed, ignore wind and enter table with sea level, 15°C.

O NOT USE FOR FLIGHT Performance Inflight - QRH Advisory Information

737 Flight Crew Operations Manual

ADVISORY INFORMATION

Recommended Brake Cooling Schedule Adjusted Brake Energy Per Brake (Millions of Foot Pounds) No Reverse Thrust

		REFERENCE BRAKE ENERGY PER BRAKE (MILLIONS OF FOOT POUNDS)										
	EVENT	10	15	20	25	30	35	40				
	RTO MAX MAN	10	15	20	25	30	35	40				
r h	MAX MAN	8.6	13.3	18.1	22.8	27.5	32.3	37.0				
ž	MAX AUTO	8.1	12.3	16.6	21.0	25.4	29.9	34.4				
ANDING	AUTOBRAKE 3	8.0	11.6	15.3	19.2	23.1	27.1	31.2				
~	AUTOBRAKE 2	7.8	11.0	14.3	17.6	21.1	24.6	28.3				
Ι	AUTOBRAKE 1	7.5	10.4	13.4	16.3	19.4	22.5	25.6				

Two Engine Detent Reverse Thrust

		REFEREN	CE BRAKE	ENERGY P	ER BRAKE	(MILLION	S OF FOOT	POUNDS)
	EVENT	10	15	20	25	30	35	40
	RTO MAX MAN	10	15	20	25	30	35	40
7.5	MAX MAN	8.2	12.5	16.7	20.9	25.0	29.0	33.0
ž	MAX AUTO	6.0	9.4	12.8	16.4	20.1	23.8	27.7
NDING	AUTOBRAKE 3	3.2	5.2	7.4	9.7	12.2	14.8	17.5
Į Ų	AUTOBRAKE 2	1.4	2.5	3.8	5.2	6.8	8.5	10.3
	AUTOBRAKE 1	0.6	1.3	2.1	3.0	3.9	5.0	6.2

Cooling Time (Minutes) - Category A Brakes

	ADJUSTED	ADJUSTED BRAKE ENERGY PER BRAKE (MILLIONS OF FOOT POUNDS)										
	8 & BELOW	10	12	14	16	18	18.5 TO 23.7	23.8 & ABOVE				
		BRA	KE TEM	PERAT	URE INI	DICATO	R READING					
	UP TO 2.1	2.8	3.2	3.6	4.2	4.8	4.9 TO 6.3	6.3 & ABOVE				
INFLIGHT GEAR DOWN	NO SPECIAL PROCEDURE	2	3	4	5	6	CAUTION	FUSE PLUG MELT ZONE				
GROUND	REQUIRED	19	32	43	53	61		WIELI ZONE				

Observe maximum quick turnaround limit.

Table shows energy per brake added by a single stop with all brakes operating. Energy is assumed to be equally distributed among the operating brakes. Total energy is the sum of residual energy plus energy added.

Add 1.0 million foot pounds for each taxi mile.

When in caution zone, wheel fuse plugs may melt. Delay takeoff and inspect after One hour. If overheat occurs after takeoff, extend gear soon for at least 7 minutes.

When in fuse plug melt zone, clear runway immediately. Unless required, do not set parking brake. Do not approach gear or attempt to taxi for one hour. Tire, wheel and brake replacement may be required. If overheat occurs after takeoff, extend gear soon for at least 12 minutes.

Brake Temperature Indicator (if installed) on First Officer's Instrument Panel may be used 10 to 15 minutes after brake application, to determine recommended cooling time.

737 Flight Crew Operations Manual

Intentionally Blank

737 Flight Crew Operations Manual

Performance Inflight - QRH Engine Inoperative Chapter PI-QRH Section 12

ENGINE INOP

Initial Max Continuous %N1 Based on .74M, engine bleed for packs auto and anti-ice off

TAT			PRESSURE ALT	ITUDE (1000 FT))	
(°C)	27	29	31	33	35	37
20	95.2	95.2	95.2	95.2	95.1	95.1
15	95.8	95.8	95.8	958	95.7	95.7
10	96.1	96.1	96.1	96.1	96.0	96.0
5	96.6	96.6	96.6	96.6	96.5	96.5
0	97.1	97.1	97.1	97.1	97.0	97.0
-5	96.6	97.7	97.7	97.7	97.6	97.6
-10	95.7	96.9	98.1	98.7	98.0	98.0
-15	94.8	96.0	97.1	98.4	98.3	98.3
-20	93.9	95.1	96.2	97.4	98.4	98.7
-25	92.9	94.1	95.3	96.5	97.5	98.0
-30	92.0	93.2	94.3	95.5	96.5	97.0
-40	90.1	91.3	92.1	93.5	94.5	95.0
-50	88.1	89.3	90.3	91.5	92.4	93.0

%N1 Adjustment for Engine Bleeds

BLEED	PRESSURE ALTITUDE (1000 FT)									
CONFIGURATION	25	27	29	31	33	35	37			
ENGINE A/I ON	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	-1.0			
ENGINE AND WING A/I ON	-2.9	-2.9	-2.9	-2.8	-2.8	-2.8	-2.9			

737 Flight Crew Operations Manual

ENGINE INOP

Max Continuous %N1 33000 FT to 23000 FT Pressure Altitudes Based on engine bleed for packs auto and anti-ice off

33000	FT PRE	SS ALT.					TAT	(°C)				
KIAS	M	-50	-40	-30	-20	-10	0	5	10	15	20	25
200	.58	92.3	94.4	96.4	97.1	96.5	96.0	95.7				
220	.63	92.2	94.3	96.3	97.8	97.1	96.4	96.1	95.7	95.3		
240	.68	92.1	94.2	96.2	98.1	97.8	96.9	96.4	96.0			
260	.74	91.4	93.5	95.5	97.4	98.0	97.0	96.6	96.1	95.6		
31000	FT PRE	SS ALT.					TAT	(°C)				
KIAS	M	-50	-40	-30	-20	-10	0	5	10	15	20	25
200	.55	91.5	93.5	95.5	97.0	96.4	95.8	95.5				
220	.61	91.3	93.3	95.3	97.2	96.8	96.2	95.9	95.6	95.3		
240	.66	91.1	93.1	95.1	97.1	97.4	96.7	96.3	95.9	95.5		
260	.71	90.9	92.9	94.9	96.8	98.0	97.0	96.5	96.1	95.6		
29000	FT PRE	SS ALT.					TAT	(°C)				
KIAS	M	-50	-40	-30	-20	-10	0	5	10	15	20	25
200	.53	90.6	92.6	94.6	96.5	96.2	95.6	95.4	95.1			
220	.58	90.4	92.4	94.4	96.3	96.6	96.1	95.8	95.5	95.1		
240	.63	90.2	92.2	94.1	96.1	97.1	96.5	96.1	95.8	95.4		
260	.68	90.0	92.0	93.9	95.9	97.7	96.9	96.4	96.0	95.6	95.1	
	FT PRE							(°C)				
KIAS	M	-50	-40	-30	-20	-10	0	5	10	15	20	25
200	.51	89.8	91.8	93.8	95.7	96.0	95.5	95.2	94.9			
220	.56	89.6	91.6	93.5	95.4	96.4	95.9	95.6	95.3	95.0	94.6	
240	.60	89.3	91.3	93.2	95.1	96.9	96.3	96.0	97.7	95.3	95.0	
260	.65	89.1	91.0	93.0	94.9	96.7	96.7	96.3	95.9	95.5	95.1	
	FT PRE							(°C)				
KIAS	M	-50	-40	-30	-20	-10	0	5	10	15	20	25
200	.49	89.0	91.0	92.9	94.8	95.9	95.4	95.1	94.8	94.5		
220	.53	88.8	90.7	92.7	94.6	96.3	95.7	95.4	95.1	94.8	94.5	
240	.58	88.5	90.5	92.4	94.3	96.1	96.1	95.8	95.5	95.2	94.8	
260	.63	88.2	90.2	92.1	94.0	95.8	96.5	96.1	95.8	95.4	95.0	94.6
	FT PRE							(°C)				
KIAS	M	-50	-40	-30	-20	-10	0	5	10	15	20	25
200	.47	88.2	90.1	92.0	93.9	95.7	95.3	95.0	94.4	94.0		
220	.51	88.0	89.9	91.8	93.7	95.5	95.6	95.3	95.0	94.7	94.4	04.2
240	.56	87.7	89.7	91.6	93.4	95.3	95.9	95.7	95.4	95.0	94.7	94.3
260	.60	87.5	89.4	91.3	93.2	95.0	96.3	96.0	95.7	95.4	95.0	94.6

Anti-Ice Adjustments

BLEED	PRESS ALT (1000 FT)									
CONFIGURATION	23	25	27	29	31	33				
ENGINE ANTI-ICE ON	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9				
ENGINE AND WING ANTI-ICE ON	-2.9	-2.9	-2.9	-2.9	-2.8	-2.8				

DO NOT USE FOR FLIGHT Performance Inflight - QRH Engine Inoperative

737 Flight Crew Operations Manual

ENGINE INOP

Max Continuous %N1 21000 FT to 14000 FT Pressure Altitudes Based on engine bleed for packs auto and anti-ice off

21000	FT PRE	SS ALT.					TAT	(°C)				
KIAS	M	-50	-40	-30	-20	-10	0	5	10	15	20	25
200	.45	87.3	89.3	91.2	93.0	94.8	95.1	94.9	94.6	94.3	93.9	
220	.49	87.2	89.1	91.0	92.9	94.7	95.4	95.1	94.9	94.6	94.2	93.9
240	.54	86.9	88.9	90.8	92.6	94.4	95.8	95.5	95.2	94.9	94.5	94.2
260	.60	86.7	88.6	90.5	92.3	94.1	95.9	95.8	95.5	95.2	94.8	94.5
20000	FT PRE	SS ALT.					TAT	(°C)				
KIAS	M	-50	-40	-30	-20	-10	0	5	10	15	20	25
200	.44	86.9	88.9	90.7	92.6	94.4	95.1	94.8	94.5	94.2	93.9	93.5
220	.48	86.8	88.7	90.6	92.4	94.2	95.4	95.1	94.8	94.5	94.2	93.8
240	.53	86.6	88.5	90.4	92.2	94.0	95.7	95.4	95.1	94.8	94.5	94.1
260	.57	86.3	88.2	90.1	91.9	93.7	95.5	95.8	95.5	95.1	94.8	94.4
18000	FT PRE	SS ALT.		TAT (°C)								
KIAS	M	-50	-40	-30	-20	-10	0	5	10	15	20	25
200	.42	86.1	88.0	89.9	91.7	93.5	95.0	94.7	94.4	94.1	93.8	93.4
220	.46	86.0	87.9	89.7	91.6	93.4	95.1	95.0	94.7	94.4	94.1	93.7
240	.51	85.8	87.7	89.6	91.4	93.2	94.9	95.3	95.0	94.7	94.3	94.0
260	.55	85.6	87.4	89.3	91.1	92.9	94.7	95.5	95.3	95.0	94.6	94.3
	FT PRE							(°C)				
KIAS	M	-50	-40	-30	-20	-10	0	5	10	15	20	25
200	.42	85.7	87.6	89.5	91.3	93.1	94.9	94.7	94.4	94.1	93.7	93.3
220	.46	85.6	87.5	89.3	91.1	92.9	94.7	94.9	94.6	94.3	94.0	93.6
240	.50	85.4	87.3	89.2	91.0	92.8	94.5	95.2	94.9	94.6	94.3	93.9
260	.54	85.2	87.1	88.9	90.7	92.5	94.2	95.1	95.2	94.9	94.6	94.2
	FT PRE							(°C)				
KIAS	M	-50	-40	-30	-20	-10	0	5	10	15	20	25
200	.41	85.4	87.2	89.1	90.9	92.7	94.4	94.6	94.3	94.0	93.6	93.3
220	.45	85.2	87.1	88.9	90.7	92.5	94.3	94.9	94.6	94.3	93.9	93.6
240	.49	85.0	86.9	88.8	90.6	92.3	94.1	94.9	94.8	94.5	94.2	93.8
260	.53	84.8	86.7	88.5	90.3	92.1	93.8	94.7	95.1	94.8	94.5	94.1
	FT PRE							(°C)				
KIAS	M	-50	-40	-30	-20	-10	0	5	10	15	20	25
200	.39	84.6	86.5	88.3	90.1	91.9	93.6	94.4	94.3	93.9	93.6	93.2
220	.43	84.4	86.3	88.1	89.9	91.7	93.4	94.2	94.5	94.2	93.8	93.4
240	.47	84.3	86.1	87.9	89.7	91.5	93.2	94.1	94.7	94.4	94.1	93.7
260	.51	84.1	85.9	87.8	89.6	91.3	93.0	93.9	94.7	94.7	94.4	94.0

Anti-Ice Adjustments

BLEED	PRESS ALT (1000 FT)									
CONFIGURATION	14	16	17	18	20	21				
ENGINE ANTI-ICE ON	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9				
ENGINE AND WING ANTI-ICE ON	-3.1	-3.1	-3.1	-3.0	-3.0	-3.0				

¹DO NOT USE FOR FLIGHT

737 Flight Crew Operations Manual

ENGINE INOP

Max Continuous %N1 12000 FT to 1000 FT Pressure Altitudes Based on engine bleed for packs auto and anti-ice off

12000 I	FT PRES	SS ALT.						TAT (°C)				
KIAS	M	-50	-40	-30	-20	-10	0	5	10	15	20	25	30
200	.38	83.8	85.7	87.5	89.3	91.0	92.7	93.6	94.2	93.9	93.5	93.1	92.7
220	.41	83.6	85.5	87.3	89.1	90.8	92.5	93.4	94.2	94.1	93.7	93.3	92.9
240	.45	83.5	85.3	87.1	88.9	90.7	92.4	93.2	94.0	94.3	94.0	93.6	93.2
260	.49	83.3	85.2	87.0	88.8	90.5	92.2	93.0	93.9	94.6	94.2	93.9	93.5
10000 I	FT PRES	S ALT.						TAT (°C)				
KIAS	M	-50	-40	-30	-20	-10	0	5	10	15	20	25	30
200	200 .36 83.1 84.9 86.7 88.5 90.2 91.9 92.7 93.6 93.8 93.5 93.1									93.1	92.6		
220	.40	82.9	84.7	86.5	88.3	90.0	91.7	92.5	93.3	94.0	93.6	93.2	92.8
240	.43	82.7	84.6	86.4	88.1	89.8	91.5	92.4	93.2	94.0	93.9	93.5	93.1
260	.47	82.6	84.4	86.2	88.0	89.7	91.4	92.2	93.0	93.8	94.1	93.8	93.4
	T PRES							TAT (°C	,				
KIAS	M	-50	-40	-30	-20	-10	0	5	10	15	20	25	30
200	.34	81.9	83.7	85.5	87.2	88.9	90.6	91.4	92.3	93.1	93.4	93.0	92.6
220	.38	81.7	83.5	85.3	87.1	88.8	90.4	91.3	92.1	92.9	93.5	93.2	92.7
240	.41	81.6	83.4	85.2	86.9	88.6	90.3	91.1	91.9	92.7	93.5	93.3	92.9
260	.45	81.4	83.3	85.0	86.7	88.4	90.1	90.9	91.7	92.6	93.4	93.6	93.2
	T PRES							TAT (°C	,				
KIAS	M	-50	-40	-30	-20	-10	0	5	10	15	20	25	30
200	.33	81.1	82.9	84.7	86.4	88.1	89.8	90.6	91.4	92.2	93.0	93.0	92.5
220	.36	81.0	82.8	84.5	86.2	87.9	89.6	90.4	91.2	92.0	92.8	93.1	92.7
240	.40	80.8	82.6	84.4	86.1	87.8	89.4	90.2	91.0	91.8	92.6	93.3	92.8
260	.43	80.7	82.5	84.2	85.9	87.6	89.3	90.1	90.9	91.7	92.5	93.3	93.1
	T PRES					I		TAT (°C		I	I		
KIAS	M	-50	-40	-30	-20	-10	0	5	10	15	20	25	30
200	.32	80.4	82.2	83.9	85.6	87.3	88.9	89.7	90.5	91.3	92.1	92.9	92.5
220	.35	80.2	82.0	83.7	85.4	87.1	88.8	89.6	90.4	91.2	91.9	92.7	92.6
240	.40	80.1	81.8	83.6	85.3	86.9	88.6	89.4	90.2	91.0	91.8	92.5	92.8
260	.43	79.9	81.7	83.4	85.1	86.8	88.4	89.2	90.0	90.8	91.6	92.4	93.0
	T PRES					- 10		TAT (°C					
KIAS	M	-50	-40	-30	-20	-10	0	5	10	15	20	25	30
200	.31	79.6	81.4	83.1	84.8	86.4	88.1	88.9	89.7	90.5	91.2	92.0	92.5
220	.34	79.5	81.2	82.9	84.6	86.3	87.9	88.7	89.5	90.3	91.1	91.8	92.6
240	.37	79.3	81.1	82.8	84.5	86.1	87.7	88.5	89.3	90.1	90.9	91.7	92.4
260	.40	79.2	80.9	82.6	84.3	86.0	87.6	88.4	89.2	90.0	90.7	91.5	92.3

Anti-Ice Adjustments

BLEED	PRESS ALT (1000 FT)									
CONFIGURATION	1	3	5	7	10	12				
ENGINE ANTI-ICE ON	-0.6	-0.7	-0.8	-0.8	-0.8	-0.8				
ENGINE AND WING ANTI-ICE ON	-2.4	-2.6	-2.8	-2.8	-2.9	-2.9				

DO NOT USE FOR FLIGHT Performance Inflight - QRH

737 Flight Crew Operations Manual

ENGINE INOP

MAX CONTINUOUS THRUST

Driftdown Speed/Level Off Altitude 100 ft/min residual rate of climb

WEIGHT	(1000 KG)	OPTIMUM	LEVI	EL OFF ALTITUDI	E (FT)
START DRIFTDOWN	LEVEL OFF	DRIFTDOWN SPEED (KIAS)	ISA + 10°C & BELOW	ISA + 15°C	ISA + 20 °C
64	61	235	16200	15000	13600
60	57	228	18200	17200	15900
56	53	220	20400	19300	18200
52	49	212	22700	21700	20600
48	46	204	25100	24100	23100
44	42	196	27400	26600	25700
40	38	187	29900	29200	28400

Includes APU fuel burn.

737 Flight Crew Operations Manual

ENGINE INOP

MAX CONTINUOUS THRUST

Driftdown/LRC Cruise Range Capability Ground to Air Miles Conversion

	AIR D	ISTANCE	E (NM)		GROUND		AIR D	ISTANCE	E (NM)	
HE.	ADWIND	COMPO	NENT (K	TS)	DISTANCE	TA	ILWIND	COMPON	NENT (KT	TS)
100	80	60	40	20	(NM)	20	40	60	80	100
140	130	121	113	106	100	95	90	85	81	78
288	265	245	228	213	200	188	178	169	161	153
433	398	368	342	320	300	283	267	253	241	229
576	530	490	456	426	400	377	356	338	321	306
718	660	611	569	532	500	471	446	423	402	384
858	790	732	682	638	600	566	536	508	484	461
997	919	852	795	744	700	661	626	594	565	539
1134	1047	972	907	850	800	755	716	680	647	618
1272	1175	1091	1019	956	900	850	806	766	729	696
1408	1302	1211	1131	1062	1000	945	896	852	812	775
1545	1429	1330	1243	1167	1100	1040	986	938	894	854
1682	1557	1449	1355	1273	1200	1135	1077	1024	976	933
1819	1684	1568	1467	1379	1300	1230	1167	1110	1059	1012
1956	1812	1688	1580	1484	1400	1325	1257	1196	1141	1090
2095	1941	1808	1692	1590	1500	1419	1347	1282	1222	1168
2234	2070	1929	1805	1696	1600	1514	1437	1367	1304	1246

Driftdown/Cruise Fuel and Time

AIR			FUE	EL REQUIF	RED (1000	KG)			
DIST		WE	IGHT AT S	START OF	DRIFTDO	WN (1000 l	KG)		TIME (HRS:MIN)
(NM)	35	40	45	50	55	60	65	70	(TIKS.WIIV)
100	0.4	0.4	0.4	0.5	0.5	0.5	0.6	0.6	0:17
200	0.8	0.9	1.0	1.1	1.1	1.2	1.3	1.4	0:37
300	1.3	1.4	1.6	1.7	1.9	2.0	2.2	2.3	0:55
400	1.7	1.9	2.1	2.4	2.6	2.8	3.1	3.2	1:13
500	2.1	2.4	2.6	3.0	3.2	3.5	3.8	4.1	1:31
600	2.5	2.8	3.2	3.5	3.9	4.2	4.6	4.9	1:48
700	2.9	3.3	3.7	4.1	4.5	4.9	5.4	5.8	2:05
800	3.3	3.8	4.2	4.7	5.2	5.6	6.1	6.6	2:22
900	3.7	4.2	4.7	5.3	5.8	6.3	6.9	7.4	2:38
1000	4.1	4.7	5.2	5.8	6.4	7.0	7.6	8.2	2:54
1100	4.5	5.1	5.7	6.4	7.0	7.7	8.3	9.0	3:10
1200	4.9	5.5	6.2	6.9	7.6	8.3	9.1	9.8	3:26
1300	5.3	6.0	6.7	7.5	8.2	9.0	9.8	10.6	3:42
1400	5.7	6.4	7.2	8.0	8.8	9.6	10.5	11.4	3:59
1500	6.1	6.9	7.7	8.6	9.4	10.3	11.2	12.2	4:16
1600	6.5	7.3	8.2	9.1	10.0	11.0	11.9	12.9	4:33

Includes APU fuel burn.

Driftdown at optimum driftdown speed and cruise at Long Range Cruise speed.

DO NOT USE FOR FLIGHT Performance Inflight - QRH Engine Inoperative

737 Flight Crew Operations Manual

ENGINE INOP

MAX CONTINUOUS THRUST

Long Range Cruise Altitude Capability 100 ft/min residual rate of climb

WEIGHT		PRESSURE ALTITUDE (FT)	
(1000 KG)	ISA + 10°C & BELOW	ISA + 15°C	ISA + 20°C
64	9500	7200	4900
60	12300	10200	7900
56	15200	13200	11000
52	18000	16200	14100
48	20900	19200	17400
44	24000	22300	20600
40	27000	25600	24000
36	30000	28800	27500
32	33200	32200	31000

With engine anti-ice on, decrease altitude capability by 1400 ft.

With engine and wing anti-ice on, decrease altitude capability by 5300 ft.

Long Range Cruise Control

WE	EIGHT				PRESSU	JRE ALT	ITUDE (1	000 FT)			
(100	00 KG)	10	12	14	16	18	20	22	24	26	28
	%N1	90.9	92.4								
64	MACH	.561	.577								
64	KIAS	311	309								
	FF/ENG	2974	2952								
	%N1	89.2	90.7	92.2							
60	MACH	.547	.564	.580							
60	KIAS	303	302	299							
	FF/ENG	2796	2780	2755							
	%N1	87.5	88.9	90.4	91.9						
5.0	MACH	.531	.549	.566	.582						
56	KIAS	294	293	292	289						
	FF/ENG	2613	2603	2584	2553						
	%N1	85.7	87.0	88.5	90.0	91.6	93.2				
52	MACH	.513	.532	.550	.567	.584	.600				
52	KIAS	284	284	283	281	278	275				
	FF/ENG	2428	2419	2409	2383	2353	2333				
	%N1	83.6	85.1	86.5	88.0	89.5	91.1	92.8			
48	MACH	.495	.513	.532	.550	.568	.584	.600			
46	KIAS	274	274	273	272	271	268	265			
	FF/ENG	2243	2233	2225	2210	2185	2161	2153			
	%N1	81.5	82.9	84.4	85.8	87.3	88.8	90.4	92.1		
44	MACH	.475	.493	.511	.530	.549	.567	.584	.600		
44	KIAS	263	263	263	262	261	260	257	254		
	FF/ENG	2059	2049	2040	2030	2014	1994	1981	1970		
	%N1	79.0	80.5	82.0	83.5	84.9	86.4	88.0	89.6	91.3	93.3
40	MACH	.454	.471	.489	.508	.527	.546	.565	.582	.599	.616
40	KIAS	251	251	251	251	250	250	248	246	243	239
	FF/ENG	1878	1866	1857	1849	1838	1825	1816	1799	1781	1777
	%N1	76.4	77.8	79.4	80.9	82.4	83.8	85.3	86.9	88.5	90.2
36	MACH	.434	.449	.465	.484	.502	.522	.541	.561	.578	.595
30	KIAS	240	239	239	239	238	238	238	236	234	231
	FF/ENG	1707	1689	1677	1668	1660	1650	1646	1635	1613	1594

Copyright © The Boeing Company. See title page for details.

¹ DO NOT USE FOR FLIGHT

737 Flight Crew Operations Manual

ENGINE INOP

MAX CONTINUOUS THRUST

Long Range Cruise Diversion Fuel and Time Ground to Air Miles Conversion

	AIR D	ISTANCE	(NM)		GROUND		AIR D	ISTANCE	E (NM)	
HE.	ADWIND	COMPO	NENT (K	TS)	DISTANCE	TAILWIND COMPONENT (NENT (K7	TS)
100	80	60	40	20	(NM)	20	40	60	80	100
299	272	249	230	214	200	190	181	173	166	159
608	552	504	464	430	400	380	362	345	330	316
920	834	759	697	646	600	570	542	517	494	473
1235	1118	1015	932	862	800	760	722	688	658	630
1553	1403	1273	1167	1078	1000	949	903	860	821	787
1873	1691	1532	1403	1295	1200	1139	1082	1031	984	943
2196	1980	1792	1640	1512	1400	1328	1262	1202	1147	1099
2524	2273	2055	1877	1730	1600	1517	1441	1372	1310	1255

Reference Fuel and Time Required at Check Point

A ID				PRESS	URE ALT	ITUDE (10	00 FT)				
AIR DIST	1	.0	1	4	1	18		2	26		
(NM)	FUEL	TIME	FUEL	TIME	FUEL	TIME	FUEL	TIME	FUEL	TIME	
` ′	(1000 KG)	(HR:MIN)	(1000 KG)	(HR:MIN)	(1000 KG)	(HR:MIN)	(1000 KG)	(HR:MIN)	(1000 KG)	(HR:MIN)	
200	1.4	0:42	1.2	0:40	1.1	0:39	1.0	0:38	0.9	0:37	
400	2.8	1:22	2.6	1:18	2.3	1:14	2.1	1:11	2.0	1:09	
600	4.2	2:03	3.9	1:56	3.5	1:50	3.3	1:46	3.1	1:42	
800	5.6	2:44	5.2	2:35	4.7	2:26	4.4	2:20	4.1	2:15	
1000	7.0	3:26	6.4	3:14	5.9	3:03	5.5	2:55	5.2	2:48	
1200	8.3	4:08	7.7	3:54	7.1	3:40	6.6	3:30	6.2	3:22	
1400	9.6	4:51	8.9	4:34	8.2	4:18	7.7	4:05	7.2	3:56	
1600	11.0	5:35	10.1	5:15	9.4	4:57	8.7	4:41	8.2	4:30	

Fuel Required Adjustment (1000 KG)

REFERENCE FUEL REQUIRED	WEIGHT AT CHECK POINT (1000 KG)								
(1000 KG)	35	40	45	50	55	60			
2	-0.2	-0.1	0.0	0.1	0.3	0.5			
4	-0.3	-0.2	0.0	0.3	0.7	1.0			
6	-0.5	-0.3	0.0	0.5	1.0	1.5			
8	-0.7	-0.4	0.0	0.6	1.3	2.0			
10	-0.9	-0.4	0.0	0.7	1.6	2.5			
12	-1.0	-0.5	0.0	0.9	1.8	2.9			
14	-1.2	-0.6	0.0	1.0	2.1	3.3			

DO NOT USE FOR FLIGHT Performance Inflight - QRH Engine Inaparativa

737 Flight Crew Operations Manual

ENGINE INOP

MAX CONTINUOUS THRUST

Holding Flaps Up

W	EIGHT			PRESSURE A	LTITUDE (FT)		
(10	000 KG)	1500	5000	10000	15000	20000	25000
	%N1	78.9	81.8	85.5	89.8		
62	KIAS	242	243	243	245		
	FF/ENG	2530	2510	2500	2520		
	%N1	77.0	79.9	83.8	87.8		
58	KIAS	234	235	236	236		
	FF/ENG	2360	2340	2330	2330		
	%N1	75.1	77.8	81.8	85.8	90.5	
54	KIAS	225	227	228	228	230	
	FF/ENG	2200	2180	2160	2160	2190	
	%N1	72.9	75.7	79.8	83.7	88.0	
50	KIAS	216	218	219	219	221	
	FF/ENG	2050	2020	2000	1990	2000	
	%N1	70.8	73.5	77.5	81.5	85.6	90.8
46	KIAS	210	210	210	211	211	213
	FF/ENG	1900	1870	1840	1830	1830	1860
	%N1	68.9	71.6	75.6	79.6	83.5	88.0
42	KIAS	210	210	210	210	210	210
	FF/ENG	1790	1760	1720	1700	1690	1700
	%N1	67.1	69.8	73.8	77.8	81.7	85.8
38	KIAS	210	210	210	210	210	210
	FF/ENG	1690	1660	1620	1590	1580	1570
	%N1	65.4	68.1	72.1	76.0	79.9	83.9
34	KIAS	210	210	210	210	210	210
	FF/ENG	1600	1570	1520	1500	1480	1470

This table includes 5% additional fuel for holding in a racetrack pattern.

737 Flight Crew Operations Manual

Intentionally Blank

737 Flight Crew Operations Manual

Performance Inflight - QRH Gear Down

Chapter PI-QRH Section 13

GEAR DOWN

220 KIAS Cruise Altitude Capability Max Cruise Thrust, 100 ft/min residual rate of climb

WEIGHT		PRESSURE ALTITUDE (FT	7)
(1000 KG)	ISA + 10°C & BELOW	ISA + 15°C	ISA + 20°C
64	22700	21400	20100
62	24100	23000	21800
60	25000	23800	22600
58	25700	24600	23500
56	26400	25400	24200
54	27100	26100	25000
52	27700	26800	25700
50	28300	27400	26300
48	28900	28000	26900
46	29500	28600	27500
44	30000	29100	28100
42	30500	29600	28700
40	31000	30100	29200
38	31400	30600	29700
36	31800	31000	30100
34	32200	31400	30500
32	32600	31800	30900

Based on 230 KIAS for weights above 62823 kg.

737 Flight Crew Operations Manual

GEAR DOWN

220 KIAS Cruise Control

WE	EIGHT				PRESSU	JRE ALT	ITUDE (1	000 FT)			
(100	00 KG)	13	15	17	19	21	23	25	27	29	31
	%N1	82.0	83.7	85.3	87.2	89.1	91.5				
64	MACH	.441	.458	.476	.495	.515	.536				
64	KIAS	230	230	230	230	230	230				
	FF/ENG	1887	1888	1892	1900	1915	1947				
	%N1	79.9	81.6	83.2	84.9	86.8	88.9	91.4			
60	MACH	.422	.438	.456	.474	.493	.513	.534			
60	KIAS	220	220	220	220	220	220	220			
	FF/ENG	1739	1739	1741	1746	1753	1771	1807			
	%N1	78.9	80.5	82.1	83.8	85.5	87.4	89.7	92.3		
5.0	MACH	.422	.438	.456	.474	.493	.513	.534	.557		
56	KIAS	220	220	220	220	220	220	220	220		
	FF/ENG	1672	1670	1670	1671	1675	1685	1707	1742		
	%N1	77.9	79.5	81.1	82.7	84.4	86.2	88.3			
52	MACH	.422	.438	.456	.474	.493	.513	.534	.557		
32	KIAS	220	220	220	220	220	220	220	220		
	FF/ENG	1613	1609	1607	1606	1608	1614	1629	1651		
	%N1	76.9	78.6	80.2	81.8	83.5	85.2	87.1	89.4	92.0	
48	MACH	.422	.438	.456	.474	.493	.513	.534	.557	.580	
40	KIAS	220	220	220	220	220	220	220	220	220	
	FF/ENG	1561	1556	1553	1551	1551	1555	1565	1578	1612	
	%N1	76.0	77.7	79.3	80.9	82.6	84.3	86.1	88.2	90.6	
44	MACH	.422	.438	.456	.474	.493	.513	.534	.557	.580	
44	KIAS	220	220	220	220	220	220	220	220	220	
	FF/ENG	1513	1507	1503	1501	1500	1502	1509	1517	1542	
	%N1	75.3	76.9	78.6	80.1	81.8	83.4	85.2	87.2	89.5	92.4
40	MACH	.422	.438	.456	.474	.493	.513	.534	.557	.580	.605
40	KIAS	220	220	220	220	220	220	220	220	220	220
	FF/ENG	1472	1466	1461	1458	1456	1456	1461	1466	1483	1522
	%N1	74.6	76.2	77.9	79.5	81.1	82.7	84.4	86.4	88.6	91.2
36	MACH	.422	.438	.456	.474	.493	.513	.534	.557	.580	.605
30	KIAS	220	220	220	220	220	220	220	220	220	220
	FF/ENG	1437	1430	1425	1421	1419	1418	1422	1424	1436	1468

Based on 230 KIAS for weights above 62823 kg.

DO NOT USE FOR FLIGHT Performance Inflight - QRH

737 Flight Crew Operations Manual

GEAR DOWN

220 KIAS Enroute Fuel and Time **Ground to Air Miles Conversion**

	AIR D	ISTANCE	E (NM)		GROUND		AIR D	ISTANCE	E (NM)			
HE	ADWIND	COMPO	NENT (K	TS)	DISTANCE	NCE TAILWIND C			COMPONENT (KTS)			
100	80	60	40	20	(NM)	20	40	60	80	100		
321	288	259	236	217	200	189	180	171	163	156		
650	580	520	473	434	400	378	358	340	324	310		
980	874	783	711	652	600	568	538	511	487	465		
1309	1167	1045	949	869	800	756	717	680	648	619		
1639	1461	1308	1186	1087	1000	945	895	850	810	774		
1968	1754	1571	1424	1305	1200	1134	1074	1020	971	928		
2298	2048	1833	1662	1522	1400	1323	1253	1189	1132	1082		
2627	2341	2096	1900	1740	1600	1512	1432	1360	1295	1237		
2956	2635	2358	2138	1958	1800	1701	1611	1529	1456	1391		

Reference Fuel and Time Required at Check Point

AID				PRESS	URE ALT	ITUDE (10	00 FT)				
AIR DIST	1	0	1	4	2	0	2	4	28		
(NM)	FUEL (1000 KG)	TIME (HR:MIN)									
200	2.3	0:49	2.1	0:46	1.8	0:43	1.7	0:41	1.5	0:39	
400	4.6	1:36	4.3	1:31	3.8	1:24	3.6	1:19	3.3	1:15	
600	7.0	2:23	6.4	2:15	5.8	2:04	5.4	1:57	5.1	1:50	
800	9.3	3:10	8.6	3:00	7.7	2:44	7.2	2:35	6.8	2:26	
1000	11.5	3:57	10.7	3:44	9.7	3:25	9.1	3:13	8.6	3:01	
1200	13.8	4:45	12.8	4:28	11.6	4:05	10.9	3:51	10.3	3:37	
1400	16.0	5:32	14.9	5:13	13.5	4:46	12.6	4:29	11.9	4:12	
1600	18.2	6:19	16.9	5:57	15.3	5:26	14.4	5:06	13.6	4:48	
1800	20.4	7:06	19.0	6:41	17.2	6:06	16.1	5:44	15.2	5:23	

Fuel Required Adjustments (1000 KG)

REFERENCE FUEL REQUIRED	WEIGHT AT CHECK POINT (1000 KG)							
(1000 KG)	30	35	40	45	50	55	60	
5	-0.3	-0.3	-0.1	0.0	0.2	0.5	0.9	
10	-0.7	-0.5	-0.3	0.0	0.4	1.0	1.6	
15	-0.9	-0.7	-0.4	0.0	0.6	1.3	2.2	
20	-1.0	-0.8	-0.4	0.0	0.7	1.5	2.5	
25	-1.1	-0.9	-0.5	0.0	0.7	1.6	2.6	

Based on 220 KIAS cruise and descent.

Descent at 220 KIAS

PRESSURE ALT (1000 FT)	5	10	15	17	19	21	23	25	27	29	31	33
DISTANCE (NM)	17	26	35	39	43	46	50	54	57	61	65	69
TIME (MINUTES)	6	8	10	11	12	13	13	14	15	16	16	17

737 Flight Crew Operations Manual

GEAR DOWN

Holding Flaps Up

W	EIGHT			PRESSU	JRE ALTITU	DE (FT)		
(10	000 KG)	1500	5000	10000	15000	20000	25000	30000
	%N1	71.2	74.0	78.1	82.2	86.6	92.4	
62	KIAS	220	220	220	220	220	220	
	FF/ENG	1930	1890	1870	1870	1880	1960	
	%N1	70.2	72.9	77.0	81.0	85.2	90.5	
58	KIAS	220	220	220	220	220	220	
	FF/ENG	1860	1830	1800	1790	1800	1840	
	%N1	69.2	71.9	75.9	80.0	84.1	88.9	
54	KIAS	220	220	220	220	220	220	
	FF/ENG	1800	1770	1730	1720	1720	1750	
	%N1	67.0	69.6	73.6	77.7	81.8	86.2	92.5
50	KIAS	210	210	210	210	210	210	210
	FF/ENG	1670	1630	1590	1570	1570	1580	1650
	%N1	65.9	68.5	72.6	76.6	80.7	85.0	90.6
46	KIAS	210	210	210	210	210	210	210
	FF/ENG	1620	1580	1540	1510	1510	1510	1550
	%N1	65.0	67.6	71.6	75.6	79.7	83.9	89.2
42	KIAS	210	210	210	210	210	210	210
	FF/ENG	1570	1530	1490	1460	1450	1450	1480
	%N1	64.2	66.7	70.7	74.7	78.8	82.9	87.9
38	KIAS	210	210	210	210	210	210	210
	FF/ENG	1530	1490	1440	1420	1400	1400	1420
	%N1	63.5	65.9	69.9	73.9	78.0	82.1	86.9
34	KIAS	210	210	210	210	210	210	210
	FF/ENG	1490	1450	1410	1380	1360	1360	1370

This table includes 5% additional fuel for holding in a racetrack pattern.

737 Flight Crew Operations Manual

Performance Inflight - QRH Text Chapter PI-QRH Section 14

Introduction

This chapter contains information to supplement performance data from the Flight Management Computer (FMC). In addition, sufficient inflight data is provided to complete a flight with the FMC inoperative. In the event of conflict between data presented in this chapter and that contained in the Approved Flight Manual, the Flight Manual shall always take precedence.

General

Flight with Unreliable Airspeed / Turbulent Air Penetration

Pitch attitude and average %N1 information is provided for use in all phases of flight in the event of unreliable airspeed/Mach indications resulting from blocking or freezing of the pitot system. Loss of radome or turbulent air may also cause unreliable airspeed/Mach indications. The cruise table in this section may also be used for turbulent air penetration.

Pitch attitude is shown in bold type for emphasis since altitude and/or vertical speed indications may also be unreliable.

Max Climb %N1

This table shows Max Climb %N1 for a 250 KIAS/280 KIAS/.74M climb speed schedule, normal engine bleed for packs on (Auto) and anti-ice off. Enter the table with airport pressure altitude and TAT and read %N1. Apply the appropriate bleed setting %N1 adjustment shown below the table. %N1 adjustments are shown for engine bleed to packs off operation, packs high operation, and wing anti-ice on.

Go-around %N1

To find Max Go-around %N1 based on normal engine bleed for packs on (Auto) and anti-ice off, enter the Go-around %N1 table with airport pressure altitude and reported OAT or TAT and read %N1. Apply the appropriate bleed setting %N1 adjustment shown below the table. %N1 adjustments are shown for engine bleed to packs off operation, packs high operation, and wing anti-ice on.

VREF

The Reference Speed table contains flaps 40, 30, and 15 landing speeds for a given weight. Apply wind correction shown as required.

737 Flight Crew Operations Manual

Advisory Information

Normal Configuration Landing Distance

Tables are provided as advisory information for normal configuration landing distance on dry runways and slippery runways with good, medium, and poor reported braking action. These values are actual landing distances and do not include the 1.67 regulatory factor. Therefore, they cannot be used to determine the dispatch required landing field length.

To use these tables, enter the appropriate table for selected landing flaps and determine the reference landing distance for the selected braking configuration. Then read across the table to adjust the reference distance for landing weight, altitude, wind, slope, temperature, approach speed, and the number of operative thrust reversers, using the values provided, to obtain the actual landing distance.

When landing on slippery runways or runways contaminated with ice, snow, slush, or standing water, the reported braking action must be considered. If the surface is affected by water, snow, or ice and the braking action is reported as "good", conditions should not be expected to be as good as on clean, dry runways. The value "good" is comparative and is intended to mean that airplanes should not experience braking or directional control difficulties when landing. The performance level used to calculate the "good" data is consistent with wet runway testing done on early Boeing jets. The performance level used to calculate "poor" data reflects runways covered with wet ice.

Use of the autobrake system commands the airplane to a constant deceleration rate. In some conditions, such as a runway with "poor" braking action, the airplane may not be able to achieve these deceleration rates. In these cases, runway slope and inoperative reversers influence the stopping distance. Since it cannot be easily determined when this becomes a factor, it is conservative to add the effects of slope and inoperative reversers when using the autobrake system.

Non-Normal Configuration Landing Distance

Advisory information is provided to support non-normal configurations that affect landing performance of the airplane. Landing distances are shown for dry runway and good, medium, and poor reported braking action. Each non-normal configuration is listed with its recommended approach speed. Landing distance can be determined for the reference landing weight and then adjusted for actual weight and pressure altitude.

Performance Inflight - QRH DO NOT USE FOR FLIGHT

737 Flight Crew Operations Manual

Recommended Brake Cooling Schedule

Advisory information is provided to assist in avoiding problems associated with hot brakes. For normal operation, most landings are at weights below the quick turnaround limit weight. Application of the recommended cooling procedures shown will avoid brake overheat and fuse plug problems that could result from repeated landings at short time intervals or a rejected takeoff.

Engine Inoperative

Initial Max Continuous %N1

The Initial Max Continuous %N1 setting for use following an engine failure is shown. The table is based on the typical all engine cruise speed of .74M to provide a target %N1 setting at the start of driftdown. Once driftdown is established, the Max Continuous %N1 Table should be used to determine %N1 for the given conditions.

Max Continuous %N1

Power setting is based on one engine operating with one A/C pack operating and all anti-ice bleeds off. Enter the table with pressure altitude and IAS or Mach to read %N1

It is desirable to maintain engine thrust within the limits of the Max Cruise thrust rating. However, where thrust in excess of Max Cruise rating is required, such as for meeting terrain clearance, ATC altitude assignments, or to attain maximum range capability, it is permissible to use the thrust needed up to the Max Continuous thrust rating. The Max Continuous thrust rating is intended primarily for emergency use at the discretion of the pilot and is the maximum thrust that may be used continuously.

Driftdown Speed/Level Off Altitude

The table shows optimum driftdown speed as a function of cruise weight at start of driftdown. Also shown are the approximate weight and pressure altitude at which the airplane will level off considering 100 ft/min residual rate of climb.

The level off altitude is dependent on air temperature (ISA deviation).

Driftdown/LRC Cruise Range Capability

This table shows the range capability from the start of driftdown. Driftdown is continued to level off altitude. As weight decreases due to fuel burn, the airplane is accelerated to Long Range Cruise speed. Cruise is continued at level off altitude and Long Range Cruise speed.

737 Flight Crew Operations Manual

To determine fuel required, enter the Ground to Air Miles Conversion table with the desired ground distance and correct for anticipated winds to obtain air distance to destination. Then enter the Driftdown/Cruise Fuel and Time table with air distance and weight at start of driftdown to determine fuel and time required. If altitudes other than the level off altitude is used, fuel and time required may be obtained by using the Engine Inoperative Long Range Cruise Enroute Fuel and Time Table.

Long Range Cruise Altitude Capability

The table shows the maximum altitude that can be maintained at a given weight and air temperature (ISA deviation), based on Long Range Cruise speed, Max Continuous thrust, and 100 ft/min residual rate of climb.

Long Range Cruise Control

The table provides target %N1, engine inoperative Long Range Cruise Mach number, IAS and fuel flow for the airplane weight and pressure altitude. The fuel flow values in this table reflect single engine fuel burn. To conservatively account for APU fuel burn, add 90 kg/hr to fuel flow values

Long Range Cruise Diversion Fuel and Time

Tables are provided for crews to determine the fuel and time required to proceed to an alternate airfield with one engine inoperative. The data is based on single engine Long Range Cruise speed and .74M/250 KIAS descent. Enter with Air Distance as determined from the Ground to Air Miles Conversion Table and read Fuel and Time required at the cruise pressure altitude. Adjust the fuel obtained for deviation from the reference weight at checkpoint as required by entering the off reference fuel corrections table with the fuel required for the reference weight and the actual weight at checkpoint. Read fuel required and time for the actual weight.

Holding

Single engine holding data is provided in the same format as the all engine holding data and is based on the same assumptions.

Gear Down

This section contains performance for airplane operation with the landing gear extended for all phases of flight. The data is based on engine bleeds for normal air conditioning.

DO NOT USE FOR FLIGHT Performance Inflight - QRH Text

737 Flight Crew Operations Manual

Note: The Flight Management Computer System (FMCS) does not contain special provisions for operation with landing gear extended. As a result, the FMCS will generate inappropriate enroute speed schedules, display non-conservative predictions of fuel burn, estimated time of arrival (ETA), maximum altitude, and compute overly shallow descent path. An accurate estimated time of arrival (ETA) is available if current speed or Mach is entered into the VNAV cruise page.

Tables for gear down performance in this section are identical in format and used in the same manner as tables for the gear up configuration previously described.

737-300/CFM56-3 22K

737 Flight Crew Operations Manual

Intentionally Blank

737 Flight Crew Operations Manual

Manager Manage	
Maneuvers	Chapter MAN
Table of Contents	Section 0
Introduction	MAN.05
General	MAN.05.1
Non-Normal Maneuvers	MAN.05.1
Flight Patterns	MAN.05.1
Non-Normal Maneuvers	MAN.1
Approach to Stall Recovery	MAN.1.1
Rejected Takeoff	MAN.1.1
Terrain Avoidance	MAN.1.4
Ground Proximity Caution	MAN.1.4
Ground Proximity Warning	MAN.1.4
Traffic Avoidance	MAN.1.5
Upset Recovery	MAN.1.7
Nose High Recovery	MAN.1.8
Nose Low Recovery	MAN.1.9
Windshear	MAN.1.9
Windshear Escape Maneuver	MAN.1.10
Flight Patterns	MAN.2
Takeoff	MAN.2.1
ILS Approach - Fail Passive	MAN.2.2
Instrument Approach using V/S	MAN.2.3
Circling Approach	MAN.2.4
Visual Traffic Pattern	MAN.2.5
Go-Around and Missed Approach	MAN.2.6

Intentionally Blank

737 Flight Crew Operations Manual

ManeuversChapter MANIntroductionSection 05

General

Non-Normal Maneuvers and Flight Patterns are included for training and review purposes.

Non-Normal Maneuvers

Flight crews are expected to do non-normal maneuvers from memory.

Flight Patterns

Flight patterns show procedures for some all-engine and engine-inoperative situations.

Flight patterns do not include all procedural items but show required/recommended:

- configuration changes
- · thrust changes
- Mode Control Panel (MCP) changes
- pitch mode and roll mode changes
- · checklist calls.

Intentionally Blank

737 Flight Crew Operations Manual

Maneuvers Non-Normal Maneuvers

Chapter MAN
Section 1

Approach to Stall Recovery

The following is immediately accomplished at the first indication of stall buffet or stick shaker

Pilot Flying	Pilot Monitoring
 Advance thrust levers to maximum thrust*. Smoothly adjust pitch attitude** to avoid ground contact or obstacles. Level the wings (do not change flaps or landing gear configuration). Retract the speedbrakes. 	Verify maximum thrust. Monitor altitude and airspeed. Call out any trend toward terrain contact. Verify all required actions have been completed and call out any omissions.
 When ground contact is no longer a factor: Adjust pitch attitude to accelerate while minimizing altitude loss. Return to speed appropriate for the configuration. 	

Note: *If an approach to stall is encountered with the autopilot engaged, apply maximum thrust and allow the airplane to return to the normal airspeed.

Note: **At high altitude, it may be necessary to descend to accelerate.

Note: If autopilot response is not acceptable, it should be disengaged.

Rejected Takeoff

The captain has the sole responsibility for the decision to reject the takeoff. The decision must be made in time to start the rejected takeoff maneuver by V1. If the decision is to reject the takeoff, the captain must clearly announce "REJECT," immediately start the rejected takeoff maneuver, and assume control of the airplane. If the first officer is making the takeoff, the first officer must maintain control of the airplane until the captain makes a positive input to the controls.

737 Flight Crew Operations Manual

Prior to 80 knots, the takeoff should be rejected for any of the following:

- activation of the master caution system
- system failure(s)
- unusual noise or vibration
- tire failure
- abnormally slow acceleration
- takeoff configuration warning
- fire or fire warning
- engine failure
- predictive windshear (as installed)
- if a side window opens
- if the airplane is unsafe or unable to fly.

Above 80 knots and prior to V1, the takeoff should be rejected for any of the following:

- fire or fire warning
- · engine failure
- predictive windshear (as installed)
- if the airplane is unsafe or unable to fly.

During the takeoff, the crewmember observing the non-normal situation will immediately call it out as clearly as possible.

737 Flight Crew Operations Manual

Captain	First Officer
Without delay:	Verify actions as follows:
Simultaneously close the thrust levers, disengage the autothrottles and apply maximum manual wheel brakes or verify operation of RTO autobrake. If RTO autobrake is selected, monitor system performance and apply manual wheel brakes if the AUTO BRAKE DISARM light illuminates or deceleration is not adequate.	Thrust levers closed. Autothrottles disengaged. Maximum brakes applied. Verify SPEED BRAKE lever UP and call "SPEEDBRAKES UP." If SPEEDBRAKE lever is not UP, call "SPEEDBRAKES NOT UP." Reverse thrust applied.
Raise SPEED BRAKE lever. Apply the maximum amount of reverse thrust consistent with conditions. Continue maximum braking until certain the airplane will stop on the runway.	Call out omitted action items.
Field length permitting: Initiate movement of the reverse thrust levers to reach the reverse idle detent by taxi speed.	Call out 60 knots. Communicate the reject decision to the control tower and cabin as soon as practical.

When the airplane is stopped, perform procedures as required.

Review Brake Cooling Schedule for brake cooling time and precautions (refer to Performance Inflight Chapter).

Consider the following:

- The possibility of wheel fuse plugs melting
- The need to clear the runway
- The requirement for remote parking
- Wind direction in case of fire
- Alerting fire equipment
- Not setting the parking brake unless passenger evacuation is necessary
- Advising the ground crew of the hot brake hazard
- Advising passengers of the need to remain seated or evacuate
- Completion of Non-Normal checklist (if appropriate) for conditions which caused the RTO.

737 Flight Crew Operations Manual

Terrain Avoidance

Ground Proximity Caution

Accomplish the following maneuver for any of these aural alerts:

- SINK RATE
- TERRAIN
- DON'T SINK
- TOO LOW FLAPS
- TOO LOW GEAR
- TOO LOW TERRAIN
- GLIDESLOPE
- BANK ANGLE
- CAUTION TERRAIN
- TERRAIN AHEAD (non-FAA)
- CAUTION OBSTACLE

Pilot Flying	Pilot Monitoring	
Correct the flight path or the airplane configuration.		

The below glideslope deviation alert may be cancelled or inhibited for:

- localizer or backcourse approach
- circling approach from an ILS
- when conditions require a deliberate approach below glideslope
- unreliable glideslope signal.

Note: If a terrain caution occurs when flying under daylight VMC, and positive visual verification is made that no obstacle or terrain hazard exists, the alert may be regarded as cautionary and the approach may be continued.

Ground Proximity Warning

Accomplish the following maneuver for any of these conditions:

- Activation of the "PULL UP" or "TERRAIN TERRAIN PULL UP" warning.
- Activation of the "PULL UP" or "TERRAIN AHEAD PULL UP" (non-FAA) warning.
- Activation of the "PULL UP" or "OBSTACLE OBSTACLE PULL UP" warning.
- Other situations resulting in unacceptable flight toward terrain.

737 Flight Crew Operations Manual

Pilot Flying	Pilot Monitoring
Disconnect autopilot.	Assure maximum* thrust.
Disconnect autothrottle.	Verify all required actions have been
Aggressively apply maximum* thrust.	completed and call out any omissions.
Simultaneously roll wings level and rotate to an initial pitch attitude of 20.°	
Retract speedbrakes	
If terrain remains a threat, continue rotation up to the pitch limit indicator (if available) or stick shaker or initial buffet.	
Do not change gear or flap configuration until terrain separation is assured.	Monitor vertical speed and altitude (radio altitude for terrain clearance and barometric altitude for a minimum safe
Monitor radio altimeter for sustained	altitude.)
or increasing terrain separation.	Call out any trend toward terrain
When clear of terrain, slowly decrease pitch attitude and accelerate.	contact.

Note: Aft control column force increases as the airspeed decreases. In all cases, the pitch attitude that results in intermittent stick shaker or initial buffet is the upper pitch attitude limit. Flight at intermittent stick shaker may be required to obtain a positive terrain separation. Smooth, steady control will avoid a pitch attitude overshoot and stall

Note: Do not use flight director commands.

Note: *Maximum thrust can be obtained by advancing the thrust levers to the takeoff or go-around limit. If terrain contact is imminent, advance thrust levers full forward.

Note: If positive visual verification is made that no obstacle or terrain hazard exists when flying under daylight VMC conditions prior to a terrain or obstacle warning, the alert may be regarded as cautionary and the approach may be continued.

Traffic Avoidance

Immediately accomplish the following by recall whenever a TCAS traffic advisory (TA) or resolution advisory (RA) occurs.

737 Flight Crew Operations Manual

WARNING: Comply with the RA if there is a conflict between the RA and air traffic control.

WARNING: Once an RA has been issued, safe separation could be compromised if current vertical speed is changed, except as necessary to comply with the RA. This is because TCAS II-to-TCAS II coordination may be in progress with the intruder aircraft, and any change in vertical speed that does not comply with the RA may negate the effectiveness of the other aircraft's compliance with the RA.

Note: If stick shaker or initial buffet occurs during the maneuver, immediately accomplish the APPROACH TO STALL RECOVERY procedure.

Note: If high speed buffet occurs during the maneuver, relax pitch force as necessary to reduce buffet, but continue the maneuver.

For TA:

Pilot Flying	Pilot Monitoring	
Look for traffic using traffic display as a guide. Call out any conflicting traffic		
If traffic is sighted, maneuver if needed.		

Note: Maneuvers based solely on a TA may result in reduced separation and are not recommended

For RA, except a climb in landing configuration:

WARNING: A DESCEND (fly down) RA issued below 1000 feet AGL should not be followed.

737 Flight Crew Operations Manual

Pilot Flying	Pilot Monitoring	
If maneuvering is required, disengage the autopilot and autothrottle. Smoothly adjust pitch and thrust to satisfy the RA command. Follow the planned lateral flight path unless visual contact with the conflicting traffic requires other action.		
Attempt to establish visual contact. Call out any conflicting traffic.		

For a climb RA in landing configuration:

Pilot Flying	Pilot Monitoring	
Disengage the autopilot and autothrottle. Advance thrust levers forward to ensure maximum thrust is attained and call for FLAPS 15. Smoothly adjust pitch to satisfy the RA command. Follow the planned lateral flight path unless visual contact with the conflicting traffic requires other action.	Verify maximum thrust set. Position flap lever to 15 detent.	
Verify a positive rate of climb on the altimeter and call "GEAR UP".	Verify a positive rate of climb on the altimeter and call "POSITIVE RATE." Set the landing gear lever to UP.	
Attempt to establish visual contact. Call out any conflicting traffic.		

Upset Recovery

An upset can generally be defined as unintentionally exceeding the following conditions:

- Pitch attitude greater than 25 degrees nose up, or
- Pitch attitude greater than 10 degrees nose down, or
- Bank angle greater than 45 degrees, or
- Within above parameters but flying at airspeeds inappropriate for the conditions

737 Flight Crew Operations Manual

The following techniques represent a logical progression for recovering the airplane. The sequence of actions is for guidance only and represents a series of options to be considered and used depending on the situation. Not all actions may be necessary once recovery is under way. If needed, use pitch trim sparingly. Careful use of rudder to aid roll control should be considered only if roll control is ineffective and the airplane is not stalled.

These techniques assume that the airplane is not stalled. A stall condition can exist at any attitude and may be recognized by continuous stick shaker activation accompanied by one or more of the following:

- Buffeting which could be heavy at times
- Lack of pitch authority and/or roll control
- Inability to arrest descent rate.

If the airplane is stalled, recovery from the stall must be accomplished first by applying and maintaining nose down elevator until stall recovery is complete and stick shaker activation ceases.

Nose High Recovery

Pilot Flying	Pilot Monitoring
Recognize and confirm the situation	
 Disconnect autopilot and autothrottle Apply as much as full nose-down elevator * Apply appropriate nose down stabilizer trim Reduce thrust * Roll (adjust bank angle) to obtain a nose down pitch rate Complete the recovery: When approaching the horizon roll to wings level Check airspeed and adjust thrust Establish pitch attitude. 	 Call out attitude, airspeed and altitude throughout the recovery Verify all required actions have been completed and call out any omissions.

737 Flight Crew Operations Manual

Nose Low Recovery

Pilot Flying	Pilot Monitoring
Recognize and confirm the situation	
 Disconnect autopilot and autothrottle Recover from stall, if required * Roll in shortest direction to wings level (unload and roll if bank angle is more than 90 degrees) Recover to level flight: Apply nose up elevator *Apply nose up trim, if required Adjust thrust and drag as required. 	 Call out attitude, airspeed and altitude throughout the recovery Verify all required actions have been completed and call out any omissions.

WARNING: * Excessive use of pitch trim or rudder may aggravate an upset situation or may result in loss of control and/or high structural loads.

Windshear

Windshear encountered during takeoff roll:

- If windshear is encountered prior to V1, there may not be sufficient runway remaining to stop if an RTO is initiated at V1. At VR, rotate at a normal rate toward a 15 degree pitch attitude. Once airborne, perform the Windshear Escape Maneuver.
- If windshear is encountered near the normal rotation speed and airspeed suddenly decreases, there may not be sufficient runway left to accelerate back to normal takeoff speed. If there is insufficient runway left to stop, initiate a normal rotation at least 2,000 feet before the end of the runway, even if airspeed is low. Higher than normal attitudes may be required to lift off in the remaining runway. Ensure maximum thrust is set.

Windshear encountered in flight:

• perform the Windshear Escape Maneuver.

Note: The following are indications the airplane is in windshear:

- "WINDSHEAR" warning or
- unacceptable flight path deviations.

Note: Unacceptable flight path deviations are recognized as uncontrolled changes from normal steady state flight conditions below 1000 feet AGL, in excess of any of the following:

737 Flight Crew Operations Manual

- 15 knots indicated airspeed
- 500 fpm vertical speed
- 5° pitch attitude
- 1 dot displacement from the glideslope
- unusual thrust lever position for a significant period of time.

Windshear Escape Maneuver

Pilot Flying Pilot Monitoring	
MANUAL FLIGHT • Disconnect autopilot • Press either TO/GA switch • Aggressively apply maximum* thrust • Disconnect autothrottle • Simultaneously roll wings level and rotate toward an initial pitch attitude of 15 ° • Retract speedbrakes • Follow flight director TO/GA guidance (if available). AUTOMATIC FLIGHT • Press either TO/GA switch** • Verify TO/GA mode annunciation • Verify thrust advances to GA power • Retract speedbrakes • Monitor system performance***.	Assure maximum* thrust Verify all required actions have been completed and call out any omissions.
 Do not change flap or gear configuration until windshear is no longer a factor Monitor vertical speed and altitude Do not attempt to regain lost airspeed until windshear is no longer a factor. 	Monitor vertical speed and altitude Call out any trend toward terrain contact, descending flight path, or significant airspeed changes.

Maneuvers -Non-Normal Maneuvers

737 Flight Crew Operations Manual

Note: Aft control column force increases as the airspeed decreases. In all cases, the pitch attitude that results in intermittent stick shaker or initial buffet is the upper pitch attitude limit. Flight at intermittent stick shaker may be required to obtain a positive terrain separation. Smooth, steady control will avoid a pitch attitude overshoot and stall.

Note: *Maximum thrust can be obtained by advancing the thrust levers to the takeoff or go-around limit. If terrain contact is imminent, advance thrust levers full forward

Note: ** If TO/GA is not available, disconnect autopilot and autothrottle and fly manually.

WARNING: *** Severe windshear may exceed the performance of the AFDS. The pilot flying must be prepared to disconnect the autopilot and autothrottle and fly manually.

Intentionally Blank

737 Flight Crew Operations Manual

Maneuvers Flight Patterns

Chapter MAN
Section 2

Takeoff

737 Flight Crew Operations Manual

ILS Approach - Fail Passive

Instrument Approach using V/S

737 Flight Crew Operations Manual

Circling Approach

Visual Traffic Pattern

737 Flight Crew Operations Manual

Go-Around and Missed Approach

Checklist Instructions	Chapter CI
Table of Contents	Section 0
Model Identification	
Revision Record	CI.RR
QRH List of Effective Pages	CI.LEP
Normal Checklists	CI.1
Introduction	
Normal Checklist Operation	
Checklist Content	
Checklist Construction	
Non-Normal Checklists	
Introduction	
Non-Normal Checklist Operation	
Non-Normal Checklist Use	
Non-Normal Checklist Legend	
Redirection Symbol	
Separator Symbol	
Task Divider Symbol	
Decision Symbol	
Precaution Symbol	

Intentionally Blank

737 Flight Crew Operations Manual

Checklist Instructions Model Identification

Chapter CI Section ModID

General

The airplanes listed in the table below are covered in the Flight Crew Operations Manual (FCOM). The table information is used to distinguish data peculiar to one or more, but not all of the airplanes. Where data applies to all airplanes listed, no reference is made to individual airplanes.

Airplane number is supplied by the operator. Registry number is supplied by the national regulatory agency. Serial and tabulation number are supplied by Boeing.

Airplane		Serial	Tab	Model
Number		Number	Number	Miscellaneous Data
1	BN300	BN300	BN300	737-300

DO NOT USE FOR FLIGHT737 Flight Crew Operations Manual

Intentionally Blank

737 Flight Crew Operations Manual

Checklist Instructions Revision Record

Chapter CI Section RR

Revision Transmittal Letter

To: All holders of The Boeing Company 737 Flight Crew Operations Manual (FCOM), Boeing Document Number D6-27370-300N-TBCN.

Subject: Flight Crew Operations Manual Revision.

This revision reflects the most current information available to The Boeing Company 45 days before the subject revision date. The following revision highlights explain changes in this revision. General information below explains the use of revision bars to identify new or revised information.

Revision Record

No.	Revision Date	Date Filed
0	February 13, 1998	
2	December 4, 1998	
4	December 3, 1999	
6	December 1, 2000	
8	December 7, 2001	
10	December 6, 2002	
12	December 5, 2003	
14	December 3, 2004	
16	December 2, 2005	
18	December 8, 2006	
20	December 7, 2007	
22	December 5, 2008	
24	December 4, 2009	

No.	Revision Date	Date Filed
1	October 30, 1998	
3	June 11, 1999	
5	June 9, 2000	
7	June 8, 2001	
9	June 7, 2002	
11	June 6, 2003	
13	June 4, 2004	
15	June 3, 2005	
17	June 9, 2006	
19	June 8, 2007	
21	August 18, 2008	
23	June 12, 2009	
25	June 18, 2010	

General

The Boeing Company issues FCOM revisions to provide new or revised procedures and information. Formal revisions also incorporate appropriate information from previously issued FCOM bulletins.

Checklist Instructions -Revision Record

DO NOT USE FOR FLIGHT

737 Flight Crew Operations Manual

The revision date is the approximate date the manual is approved for printing. The revision is mailed a few weeks after this date.

Formal revisions include a Transmittal Letter, a new Revision Record, Revision Highlights, and a current List of Effective Pages. Use the information on the new Revision Record and List of Effective Pages to verify the FCOM content.

Pages containing revised technical material have revision bars associated with the changed text or illustration. Editorial revisions (for example, spelling corrections) may have revision bars with no associated highlight.

The Revision Record should be completed by the person incorporating the revision into the manual.

Filing Instructions

Consult the List of Effective Pages (CI.LEP). Pages identified with an asterisk (*) are either replacement pages or new (original) issue pages. Remove corresponding old pages and replace or add new pages. Remove pages that are marked DELETED; there are no replacement pages for deleted pages.

Revision Highlights

This section (CI.RR) replaces the existing section CI.RR in your manual.

Be careful when inserting changes not to throw away pages from the manual that are not replaced. Using the List of Effective Pages (CI.LEP) can help determine the correct content of the manual.

Throughout the manual, airplane effectivity may be updated to reflect coverage as listed on the Preface - Model Identification page, or to show service bulletin airplane effectivity. Highlights are not supplied.

This manual is published from a database; the text and illustrations are marked with configuration information. Occasionally, because the editors rearrange the database markers, or mark items with configuration information due to the addition of new database content, some customers may receive revision bars on content that appears to be unchanged. Pages may also be republished without revision bars due to slight changes in the flow of the document.

Chapter NNC - Non-Normal Checklists

Section 6 - Electrical

BUS OFF

6.1 - Replaced the "If" statement with a "Choose one" decision step for clarification.

Section 7 - Engines, APU

Engine Limit or Surge or Stall

- 7.2 Added other possible indications of an engine surge or stall in the condition statement.
- 7.2 Revised the condition statement to make it clear that this checklist also applies to partial loss of engine thrust control malfunctions.

Section 8 - Fire Protection

Smoke, Fire or Fumes

8.8 - Revised the condition statement to clarify that the checklist should be done whenever smoke, fire or fumes occurs.

Section 9 - Flight Controls

Trailing Edge Flap Disagree

9.32 - Replaced the "If" statement with a "Choose one" decision step for clarification

Chapter PI-QRH - Performance Inflight - QRH

Section 10 - Table of Contents

PI-QRH.TOC.10.1 - 737-300 CFM56-3_22K KG FAA was added as Section 10

Section 10 - General

General

PI-QRH.10.1 - 737-300 CFM56-3_22K KG FAA was added as Section 10.

Chapter CI - Checklist Instructions

Section 2 - Non-Normal Checklists

Non–Normal Checklist Operation

CI.2.2 - Added a paragraph regarding the risks of in-flight troubleshooting.

Intentionally Blank

737 Flight Crew Operations Manual

Checklist Instructions QRH List of Effective Pages

Chapter CI Section LEP

Page	Date		
Quick Reference Handbook			
Quick Action Index			
QA.Index.1-2	December 4, 2009		
Light	s (tab)		
Lights.Index.1-6	December 4, 2009		
Unannunc	ciated (tab)		
Unann.Index.1-2	December 4, 2009		
Alphabe	tical (tab)		
Alpha.Index.1-10	December 4, 2009		
Normal Che	ecklists (tab)		
* NC.1-4	June 18, 2010		
0 Miscella	neous (tab)		
0.TOC.1-2	August 18, 2008		
0.1	June 12, 2009		
0.2-3	August 18, 2008		
0.4	December 5, 2008		
0.5-6	August 18, 2008		
0.7	December 5, 2008		
0.8	August 18, 2008		
1 Airplane General, Emergency Equipment, Doors, Windows (tab)			
1.TOC.1-2	December 4, 2009		
1.1	December 5, 2008		
1.2-3	June 12, 2009		
1.4	August 18, 2008		
1.5-6	June 12, 2009		
1.7-9	August 18, 2008		
1.10-22	June 12, 2009		

Page	Date		
2 Air Systems (tab)			
2.TOC.1-2	June 12, 2009		
2.1-2	December 4, 2009		
2.3	June 12, 2009		
2.4	December 5, 2008		
2.5-6	August 18, 2008		
2.7-8	December 5, 2008		
2.9	August 18, 2008		
2.10	December 5, 2008		
2.11-18	June 12, 2009		
3 Anti-Ice	, Rain (tab)		
3.TOC.1-2	August 18, 2008		
3.1	June 12, 2009		
3.2-4	August 18, 2008		
3.5-6	December 4, 2009		
3.7-8	August 18, 2008		
4 Automatic	c Flight (tab)		
4.TOC.1-2	August 18, 2008		
4.1-2	August 18, 2008		
5 Communications (tab)			
5.TOC.1-2	August 18, 2008		
5.1-2	August 18, 2008		

^{* =} Revised, Added, or Deleted

Checklist Instructions -

Checklist Instructions - QRH List of Effective Pages DO NOT USE FOR FLIGHT

Page	Date	
6 Electrical (tab)		
6.TOC.1-2	December 5, 2008	
* 6.1	June 18, 2010	
6.2	December 5, 2008	
6.3-4	August 18, 2008	
6.5-6	December 4, 2009	
6.7-10	June 12, 2009	
6.11	June 30, 2009	
6.12	August 18, 2008	
7 Engines	, APU (tab)	
7.TOC.1-2	December 5, 2008	
7.1	August 18, 2008	
* 7.2	June 18, 2010	
7.3	August 18, 2008	
7.4	December 5, 2008	
7.5-6	August 18, 2008	
7.7	June 12, 2009	
7.8-10	August 18, 2008	
7.11	December 5, 2008	
7.12-14	August 18, 2008	
7.15	December 5, 2008	
7.16	August 18, 2008	
7.17	December 5, 2008	
7.18	December 4, 2009	
7.19	December 5, 2008	
7.20	June 12, 2009	
7.21-28	December 5, 2008	
7.29	December 4, 2009	
7.30	June 12, 2009	
7.31-34	December 5, 2008	

perations Manual		
Page	Date	
8 Fire Protection (tab)		
8.TOC.1-2	December 5, 2008	
8.1	June 12, 2009	
8.2	December 4, 2009	
8.3	August 18, 2008	
8.4	December 5, 2008	
8.5-6	August 18, 2008	
8.7	June 12, 2009	
* 8.8	June 18, 2010	
8.9	December 5, 2008	
8.10	August 18, 2008	
8.11-12	December 5, 2008	
8.13-14	December 4, 2009	
8.15-22	December 5, 2008	
9 Flight Co	ontrols (tab)	
9.TOC.1-2	December 4, 2009	
9.1-5	December 5, 2008	
9.6	June 12, 2009	
9.7-9	December 5, 2008	
9.10-11	December 4, 2009	
9.12-15	December 5, 2008	
9.16-18	December 4, 2009	
9.19-21	December 5, 2008	
9.22-31	December 4, 2009	
* 9.32-35	June 18, 2010	
9.36-42	December 4, 2009	
10 Flight Instrume	ents, Displays (tab)	
10.TOC.1-2	August 18, 2008	
10.1-2	August 18, 2008	

^{* =} Revised, Added, or Deleted

DO NOT USE FOR FLIGHT Checklist Instructions - QRH List of Effective Pages

Page	Date	Page	Date	
11 Flight Managem	ent, Navigation (tab)	14 Landing Gear (tab)		
11.TOC.1-2	June 12, 2009	14.TOC.1-2	December 4, 2009	
11.1-2	August 18, 2008	14.1	December 5, 2008	
11.3-4	December 4, 2009	14.2-5	August 18, 2008	
11.5	June 12, 2009	14.6-32	December 4, 2009	
11.6	December 4, 2009	15 Warning Systems (tab)		
11.7-8	June 12, 2009	15.TOC.1-2	December 4, 2009	
12 Fu	el (tab)	15.1-4	December 4, 2009	
12.TOC.1-2	December 5, 2008	Ops Inf	o (tab)	
12.1-2	August 18, 2008	OI.TOC.1-2	August 18, 2008	
12.3-6	December 4, 2009	OI.1.1-2	August 18, 2008	
12.7	August 18, 2008	Performance - Inflight (tab)		
12.8-11	December 5, 2008	* PI-QRH.TOC.1-2	June 18, 2010	
12.12	August 18, 2008	* PI-QRH.TOC.10.1-2	June 18, 2010	
12.13	December 5, 2008	* PI-QRH.10.1-6	June 18, 2010	
12.14-15	August 18, 2008	* PI-QRH.11.1-14	June 18, 2010	
12.16-17	December 4, 2009	* PI-QRH.12.1-10	June 18, 2010	
12.18	August 18, 2008	* PI-QRH.13.1-4	June 18, 2010	
13 Hyda	ulics (tab)	* PI-QRH.14.1-6 June 18, 2010		
13.TOC.1-2	December 5, 2008	Maneuve	ers (tab)	
13.1	August 18, 2008	MAN.TOC.0.1-2	December 5, 2008	
13.2	June 12, 2009	MAN.05.1-2	August 18, 2008	
13.3-5	August 18, 2008	MAN.1.1	August 18, 2008	
13.6	June 12, 2009	MAN.1.2	December 5, 2008	
13.7	August 18, 2008	MAN.1.3	June 12, 2009	
13.8-9	December 5, 2008	MAN.1.4	December 4, 2009	
13.10	August 18, 2008	MAN.1.5-11	December 5, 2008	
13.11-12	June 12, 2009	MAN.1.12	August 18, 2008	
13.13	August 18, 2008	MAN.2.1-6	August 18, 2008	
13.14-16	December 5, 2008			

^{* =} Revised, Added, or Deleted

Checklist Instructions - QRH List of Effective Pages DO NOT USE FOR FLIGHT

Page	Date	
Checklist Instructions (tab)		
* CI.TOC.0.1-2	June 18, 2010	
* CI.ModID.1-2 June 18, 20		
* CI.RR.1-4 June 18, 201		
* CI.RR.5-6	Deleted	
* CI.LEP.1-4	June 18, 2010	
CI.1.1	August 18, 2008	
CI.1.2	June 12, 2009	
CI.2.1	August 18, 2008	
* CI.2.2-7	June 18, 2010	
CI.2.8	August 18, 2008	
Evacuation		
Back Cover.1	August 18, 2008	
Back Cover.2	December 4, 2009	

^{* =} Revised, Added, or Deleted

737 Flight Crew Operations Manual

Checklist Instructions Normal Checklists

Chapter CI Section 1

Introduction

This introduction gives guidelines for use of the Normal Checklist (NC).

The NC is organized by phase of flight.

The NC is used to verify that critical items have been done.

Normal Checklist Operation

Normal checklists are used after doing all respective procedural items.

The following table shows which pilot calls for the checklist and which pilot reads the checklist. Both pilots visually verify that each item is in the needed configuration or that the step is done. The far right column shows which pilot gives the response. This is different than the normal procedures where the far right column can show which pilot does the step.

Checklist	Call	Read	Verify	Respond
PREFLIGHT	Captain	First officer	Both	Area of responsibility
BEFORE START	Captain	First officer	Both	Area of responsibility
BEFORE TAXI	Captain	First officer	Both	Area of responsibility
BEFORE TAKEOFF	Pilot flying	Pilot monitoring	Both	Pilot flying
AFTER TAKEOFF	Pilot flying	Pilot monitoring	Both	Pilot monitoring
DESCENT	Pilot flying	Pilot monitoring	Both	Area of responsibility
APPROACH	Pilot flying	Pilot monitoring	Both	Area of responsibility
LANDING	Pilot flying	Pilot monitoring	Both	Pilot flying
SHUTDOWN	Captain	First officer	Both	Area of responsibility
SECURE	Captain	First officer	Both	Area of responsibility

If the airplane configuration does not agree with the needed configuration:

- · stop the checklist
- complete the respective procedure steps
- · continue the checklist

If it becomes apparent that an entire procedure was not done:

- · stop the checklist
- complete the entire procedure
- do the checklist from the start

Checklist Instructions -Normal Checklists

DO NOT USE FOR FLIGHT

737 Flight Crew Operations Manual

Try to do checklists before or after high work load times. The crew may need to stop a checklist for a short time to do other tasks. If the interruption is short, continue the checklist with the next step. If a pilot is not sure where the checklist was stopped, do the checklist from the start. If the checklist is stopped for a long time, also do the checklist from the start.

After completion of each checklist, the pilot reading the checklist calls, "____CHECKLIST COMPLETE."

Checklist Content

The checklist has the minimum items needed to operate the airplane safely.

Normal checklists have items that meet any of the following criteria:

- items essential to safety of flight that are not monitored by an alerting system, or
- items essential to safety of flight that are monitored by an alerting system but if not done, would likely result in a catastrophic event if the alerting system fails, or
- · items needed to meet regulatory requirements, or
- items needed to maintain fleet commonality between the 737, 747-400, 757, 767, 777, and 787, or
- items that enhance safety of flight and are not monitored by an alerting system (for example the autobrake), or
- during shutdown and secure, items that could result in injury to personnel or damage to equipment if not done.

Checklist Construction

When a checklist challenge does not end with "switch or lever", then the challenge refers to system status. For example, "Landing Gear...Down", refers to the status of the landing gear, not just the position of the lever.

When a checklist challenge ends with "switch or lever", then the challenge refers to the position of the switch or lever. For example, "Engine start levers...CUTOFF" refers to the position of the levers.

737 Flight Crew Operations Manual

Checklist Instructions Non-Normal Checklists

Chapter CI Section 2

Introduction

The non-normal checklists chapter contains checklists used by the flight crew to manage non–normal situations. The checklists are grouped in sections which match the system description chapters in Volume 2.

Most checklists correspond to a light, alert or other indication. In most cases, the MASTER CAUTION and system annunciator lights also illuminate to indicate the non-normal condition. These lights, alerts and other indications are the cues to select and do the associated checklist.

Checklists without a light, alert or other indication (such as Ditching) are called unannunciated checklists. Most unannunciated checklists are in the associated system section. For example, Engine Fuel Leak is in section 12, Fuel. Unannunciated checklists with no associated system are in section 0, Miscellaneous.

All checklists have condition statements. The condition statement briefly describes the situation that caused the light, alert or other indication. Unannunciated checklists also have condition statements to help in understanding the reason for the checklist.

Some checklists have objective statements. The objective statement briefly describes the expected result of doing the checklist or briefly describes the reason for steps in the checklist.

Checklists can have both memory and reference items. Memory items are critical steps that must be done before reading the checklist. The last memory item is followed by a dashed horizontal line. Reference items are actions to be done while reading the checklist.

Some checklists have additional information at the end of the checklist. The additional information provides data the crew may wish to consider. The additional information does not need to be read.

Checklists that need a quick response are listed in the Quick Action Index. In each system section, Quick Action Index checklists are listed first, followed by checklists that are not in the Quick Action Index. The titles of Quick Action Index checklists are printed in **bold** type. Checklist titles in upper case (such as AUTO BRAKE DISARM) are annunciated by a light, alert, or other indication. Checklist titles in upper and lower case (such as Window Damage) are not annunciated.

737 Flight Crew Operations Manual

Non-Normal Checklist Operation

Non-normal checklists start with steps to correct the situation. If needed, information for planning the rest of the flight is included. When special items are needed to configure the airplane for landing, the items are included in the Deferred Items section of the checklist. Flight patterns for some non-normal situations are located in the Maneuvers chapter and show the sequence of configuration changes.

While every attempt is made to supply needed non–normal checklists, it is not possible to develop checklists for all conceivable situations. In some smoke, fire or fumes situations, the flight crew may need to move between the Smoke, Fire or Fumes checklist and the Smoke or Fumes Removal checklist. In some multiple failure situations, the flight crew may need to combine the elements of more than one checklist. In all situations, the captain must assess the situation and use good judgment to determine the safest course of action.

It should be noted that, in determining the safest course of action, troubleshooting, i.e., taking steps beyond published non-normal checklist steps, may cause further loss of system function or system failure. Troubleshooting should only be considered when completion of the published non-normal checklist results in an unacceptable situation.

There are some situations where the flight crew must land at the nearest suitable airport. These situations include, but are not limited to, conditions where:

- the non–normal checklist includes the item "Plan to land at the nearest suitable airport."
- · fire or smoke continues
- only one AC power source remains (engine or APU generator)
- only one hydraulic system remains (the standby system is considered a hydraulic system)
- any other situation determined by the flight crew to have a significant adverse effect on safety if the flight is continued.

It must be stressed that for smoke that continues or a fire that cannot be positively confirmed to be completely extinguished, the earliest possible descent, landing, and evacuation must be done.

If a smoke, fire or fumes situation becomes uncontrollable, the flight crew should consider an immediate landing. Immediate landing implies immediate diversion to a runway. However, in a severe situation, the flight crew should consider an overweight landing, a tailwind landing, an off-airport landing, or a ditching.

Checklists directing an engine shutdown must be evaluated by the captain to determine whether an actual shutdown or operation at reduced thrust is the safest course of action. Consideration must be given to the probable effects of running the engine at reduced thrust.

737 Flight Crew Operations Manual

There are no non–normal checklists for the loss of an engine indication or automatic display of the secondary engine indications. Continue normal engine operation unless a limit is exceeded.

Non-normal checklists also assume:

- During engine start and before takeoff, the associated non-normal checklist is done if a non-normal situation is identified. After completion of the checklist, the Dispatch Deviations Guide or operator equivalent is consulted to determine if Minimum Equipment List dispatch relief is available
- System controls are in the normal configuration for the phase of flight before the start of the non-normal checklist.
- If the MASTER CAUTION and system annunciator lights illuminate, all related amber lights are reviewed to assist in recognizing the cause(s) of the alert.
- Aural alerts are silenced and the master caution system is reset by the flight crew as soon as the cause of the alert is recognized.
- The EMERGENCY position of the oxygen regulator is used when needed to supply positive pressure in the masks and goggles to remove contaminants. The 100% position of the oxygen regulator is used when positive pressure is not needed but contamination of the flight deck air exists. The Normal position of the oxygen regulator is used if prolonged use is needed and the situation allows. Normal boom microphone operation is restored when oxygen is no longer in use.
- Indicator lights are tested to verify suspected faults.
- Flight crew reset of tripped fuel pump or fuel pump control circuit breakers is prohibited. In flight, reset of a tripped circuit breaker is not recommended. However, a tripped circuit breaker may be reset once, after a short cooling period (approximately 2 minutes), if in the judgment of the captain, the situation resulting from the circuit breaker trip has a significant adverse effect on safety. On the ground, flight crew reset of a tripped circuit breaker should only be done after maintenance has determined that it is safe to reset the circuit breaker.
- Flight crew cycling (pulling and resetting) of a circuit breaker to clear a non-normal condition is not recommended, unless directed by a non-normal checklist

737 Flight Crew Operations Manual

After engine start and before takeoff, illumination of a red warning light, an amber caution light, an alert or other indication requires completion of the associated checklist. In certain cases, amber system monitor lights illuminate during MASTER CAUTION recall to inform the flight crew of the failure of one element in a system with redundant elements. If system operation is maintained by a second element, the amber system monitor light will extinguish when MASTER CAUTION is reset. In these situations, the amber light alerts the flight crew that normal system operation will be affected if another element fails. If an amber light illuminates during MASTER CAUTION recall, but extinguishes after MASTER CAUTION reset, completion of the associated checklist is not required.

Non-Normal Checklist Use

If a checklist or a step in a checklist is not applicable to all airplanes, airplane effectivity information is included in the checklist. Airplane effectivity can be listed by airplane number, registry number, serial number or tabulation number. If a checklist is applicable to some but not all airplanes, airplane effectivity is centered below the checklist title. If a step in a checklist is applicable to some but not all airplanes, airplane effectivity is included above the step. If a checklist or a step in a checklist is applicable to all airplanes, airplane effectivity information is not included.

Non-normal checklist use starts when the airplane flight path and configuration are correctly established. Only a few situations need an immediate response (such as CABIN ALTITUDE WARNING or Rapid Depressurization). Usually, time is available to assess the situation before corrective action is started. All actions must then be coordinated under the captain's supervision and done in a deliberate, systematic manner. Flight path control must never be compromised.

When a non-normal situation occurs, at the direction of the pilot flying, both crewmembers do all memory items in their areas of responsibility without delay.

The pilot flying calls for the checklist when:

- the flight path is under control
- the airplane is not in a critical phase of flight (such as takeoff or landing)
- all memory items are complete.

The pilot monitoring reads aloud:

- the checklist title
- as much of the condition statement as needed to verify that the correct checklist has been selected
- as much of the objective statement (if applicable) as needed to understand the expected result of doing the checklist.

The pilot flying does not need to repeat this information but must acknowledge that the information was heard and understood.

737 Flight Crew Operations Manual

For checklists with memory items, the pilot monitoring first verifies that each memory item has been done. The checklist is normally read aloud during this verification. The pilot flying does not need to respond except for items that are not in agreement with the checklist. The item numbers do not need to be read.

Non-memory items are called reference items. The pilot monitoring reads aloud the reference items, including:

- the precaution (if any)
- the response or action
- any amplifying information.

The pilot flying does not need to repeat this information but must acknowledge that the information was heard and understood. The item numbers do not need to be read

The word "Confirm" is added to checklist items when both crewmembers must verbally agree before action is taken. During an inflight non-normal situation, verbal confirmation is required for:

- an engine thrust lever
- an engine start lever
- an engine, APU or cargo fire switch (as installed)
- · a generator drive disconnect switch
- · an IRS mode selector when only one IRS is failed
- · a flight control switch

This does not apply to the Loss of Thrust on Both Engines checklist.

With the airplane stationary on the ground:

- the captain and first officer take action based on preflight and postflight areas of responsibility;
- during an evacuation, the first officer sets the flap lever to 40.

With the airplane in flight or in motion on the ground:

• the pilot flying and the pilot monitoring take action based on each crewmember's Areas of Responsibility.

After moving the control, the crewmember taking the action also states the checklist response.

The pilot flying may also direct reference checklists to be done by memory if no hazard is created by such action, or if the situation does not allow reference to the checklist.

Checklists include an Inoperative Items table only when the condition of the items is needed for planning the rest of the flight. The inoperative items, including the consequences (if any), are read aloud by the pilot monitoring. The pilot flying does not need to repeat this information but must acknowledge that the information was heard and understood.

Checklist Instructions -Non-Normal Checklists

DO NOT USE FOR FLIGHT

737 Flight Crew Operations Manual

After completion of the non–normal checklist, normal procedures are used to configure the airplane for each phase of flight.

When there are no deferred items, the DESCENT, APPROACH and LANDING normal checklists are used to verify that the configuration is correct for each phase of flight.

When there are deferred items, the non-normal checklist will include the item "Checklist Complete Except Deferred Items." The pilot flying is to be made aware when there are deferred items. These items are included in the Deferred Items section of the checklist and may be delayed until the usual point during descent, approach or landing.

The deferred items are read aloud by the pilot monitoring. The pilot flying or the pilot monitoring takes action based on each crewmember's area of responsibility. After moving the control, the crewmember taking the action also states the response.

When there are deferred items, the Deferred Items section of the non-normal checklist will include the Descent, Approach and Landing normal checklists. These checklists should be used instead of the usual DESCENT, APPROACH and LANDING normal checklists. If a normal checklist item is changed as a result of the non-normal situation, the changed response is printed in **bold** type. The pilot flying or the pilot monitoring responds to the deferred normal checklist items based on each crewmember's area of responsibility. However, during the deferred Landing normal checklist, the pilot flying responds to all deferred normal checklist items

Each checklist has a checklist complete symbol at the end. The following symbol indicates that the checklist is complete:

The checklist complete symbol can also be in the body of the checklist. This only occurs when a checklist divides into two or more paths. Each path can have a checklist complete symbol at the end. The flight crew does not need to continue reading the checklist after the checklist complete symbol.

After completion of each non-normal checklist, the pilot monitoring states "____CHECKLIST COMPLETE."

Additional information at the end of the checklist is not required to be read.

The flight crew must be aware that checklists cannot be created for all conceivable situations and are not intended to replace good judgment. In some situations, at the captain's discretion, deviation from a checklist may be needed.

737 Flight Crew Operations Manual

Non-Normal Checklist Legend

Redirection Symbol

The redirection symbol is used in two ways:

- In the Table of Contents of a system section, to direct the flight crew to a different system section.
- In a non-normal checklist, with the word "Go to", to direct the flight crew to a different checklist or to a different step in the current checklist.

Separator Symbol

The separator symbol is used in two ways:

- In the Table of Contents of a system section, to separate the Quick Action Index checklists from the checklists that are not in the Quick Action Index
- In a non-normal checklist, to separate the memory items from the reference items

Task Divider Symbol

The task divider symbol is used to indicate the end of one task and the beginning of another task.

Decision Symbol

Choose one:

The decision symbol is used to identify possible choices.

Precaution Symbol

The precaution symbol is used to identify information the flight crew must consider before taking the action.

Intentionally Blank

DO NOT USE FOR FLIGHTBack Cover.1

737 Flight Crew Operations Manual

Evacuation Checklist is on the reverse side of this page.

Back Cover.200 NOT USE FOR FLIGHT

	Evacuation	
Co	ondition: Evacuation is needed.	_
1	PARKING BRAKE Set	С
2	Speedbrake lever DOWN	С
3	FLAP lever	F/O
4	STANDBY POWER switch BAT	F/O
5	Pressurization mode selector MAN DC	F/O
6	Outflow VALVE switch Hold in OPEN until the outflow VALVE position indicates fully open	F/O
7	If time allows:	
	Verify that the flaps are 40 before the engine start levers are moved to CUTOFF.	С
8	Engine start levers (both) CUTOFF	С
9	Advise the cabin to evacuate.	С
10	Advise the tower.	F/O
11	Engine and APU fire switches (all) Override and pull	F/O
12	2 If an engine or APU fire warning occurs:	
	Illuminated fire switch Rotate to the stop and hold for 1 second ■ ■ ■ ■	F/O