ПРОТОКОЛ № 3

Проведения испытаний программного алгоритма по распознаванию движения в видеозаписях

г. Саранск 11 ноября 2024 г.

1 Рабочая группа

Рабочая группа в составе: Макаров О. С. – аспирант 4-го года очной формы обучения Федерального государственного бюджетного образовательного учреждения высшего образования «Национальный исследовательский Мордовский государственный университет им. Н.П. Огарёва»

2 Данные об испытании

2.1 Цель испытаний

Цель испытаний – определить количественные характеристики работы программного обеспечения.

2.2 Объект испытаний

Программное обеспечение, разработанное по усовершенствованному алгоритму Vibe+ (VIsual Background Extractor+) для распознавания движения в видеозаписях. Источник алгоритма:

https://www.researchgate.net/publication/252067585_Background_Subtraction_Experiments_and_Improvements_for_ViBe

2.1 Предмет испытаний

Количественные характеристики работы программного обеспечения, определяющие эффективность программного алгоритма, а именно: показатели точности и потребления вычислительных ресурсов. Количественные показатели точности распознавания:

- 1) Процент корректных распознаваний (РСС)
- 2) Чувствительность (Rcl)
- 3) Точность (Ргс)
- 4) F-балл

Подробнее показатели точности с методиками их расчета представлены в Приложении А.

Количественные показатели потребляемых вычислительных ресурсов:

- 1) Количество потребляемой памяти
- 2) Количество кадров, обрабатываемых в секунду (FPS)

2.3 Ход испытаний

2.3.1 Используемое оборудование и среда испытаний

Все испытания проводились на персональном компьютере со следующими характеристиками:

- 1) Центральный процессор: Intel Core 2 Duo E7500, 2 x 2.93 ГГц
- 2) Оперативная память: 4 GB, DDR3
- 3) Видеопроцессор: NVIDIA GEFORCE 9600 GT
- 4) Жесткий диск: 512GB, HDD
- 5) Операционная система Windows 7 Home Premium

2.3.2 Перечень входных данных

Программное обеспечение запускалось для десяти видеозаписей пяти различных категорий из коллекции Change Detection 2014, указанных в таблице 1. Оригинальный источник

данных: https://www.kaggle.com/datasets/maamri95/cdnet2014. Каждая видеозапись этого набора содержит входные кадры, которые подаются на вход алгоритма (подпапка /input) и вручную сегментированные ожидаемые маски распознавания, приближенные к реальности (подпапка /groundtruth).

Таблица 1 – Видеозаписи для проведения испытаний

№	Видеозапись	Разрешение	Количество кадров	Категория	Путь до видеокадров
1	PETS 2006	720 x 576	1200	PETS 2006	baseline\PETS2006
2	pedestrians	360 x 240	1099	Обычные видеозаписи	baseline\pedestrians
3	office	360 x 240	2050	Обычные видеозаписи	baseline\office
4	highway	320 x 240	1700	Обычные видеозаписи	baseline\highway
5	fall	720 x 480	4000	Динамический фон	dynamicBackground\fall
6	canoe	320 x 240	1189	Динамический фон	dynamicBackground\canoe
7	tramstop	432 x 288	3200	Прерывистое движение объектов	intermittentObjectMotion\tramstop
8	sofa	320 x 240	2750	Прерывистое движение объектов	intermittentObjectMotion\sofa
9	bungalows	360 x 240	1700	Тень	shadow\bungalows
10	cubicle	352 x 240	7400	Тень	shadow\cubicle

2.3.3 Замечания

Для достижения объективных результатов программное обеспечение для каждой видеозаписи запускалось 5 раз. Отказов, сбоев и аварийных ситуаций в ходе проведения испытаний не возникло. Корректировка параметров испытуемого алгоритма в ходе испытаний не вносилась.

3 Результаты испытаний

В таблицах 2 и 3 продемонстрированы показатели эффективности программного обеспечения, установленные в ходе проведения испытаний. Данные в таблице 2 для каждой видеозаписи усреднены по количеству запусков.

Таблица 2 – Результаты испытаний показателей точности

№	TP	TN	FP	FN	Prc	Rcl	PCC	F -балл
1	10293229	481366221	3856512	2148038	0,73	0,83	98,8%	0,77
2	667101	93777804	356920	151775	0,65	0,81	99,5%	0,72
3	2137151	173662242	957747	362860	0,69	0,85	99,3%	0,76
4	1651148	127981484	600038	327330	0,73	0,83	99,3%	0,78
5	19048679	1346689254	9439800	7222267	0,67	0,73	98,8%	0,70
6	1177654	88853837	883704	400005	0,57	0,75	98,6%	0,65
7	3309727	393017939	1239880	563654	0,73	0,85	99,5%	0,79
8	3802645	204719783	1753969	923603	0,68	0,80	98,7%	0,74
9	2800676	141926944	1551782	600598	0,64	0,82	98,5%	0,72
10	10839903	603924571	7355975	3031551	0,60	0,78	98,3%	0,68
Среднее		·			0,67	0,81	98,9%	0,73

Таблица 3 – Результаты испытаний показателей потребления вычислительных ресурсов

№	Память, сред. (МБ)	FPS, мин. (c)	FPS, макс. (c)	FPS, средн. (c)
1	309	30,1	35,0	34,2
2	42	44,6	52,1	50,7

3	48	51,8	57,2	55,7
4	47	55,3	59,9	59,4
5	105	33,2	35,6	35,0
6	30	58,3	64,7	61,1
7	86	50,1	53,9	51,2
8	36	61,1	65,8	62,7
9	39	51,0	57,8	52,4
10	36	48,4	55,1	50,3

Инженер-испытатель:			
Макаров О. С.	ONOU.		
1	(подпись)		
	·		

Приложение А

Показатели точности распознавания

Количество истинно отрицательных пикселей (TN) – количество пикселей в кадре, правильно классифицированных как пиксели фоновой модели.

Количество истинно положительных пикселей (TP) — количество пикселей в кадре, правильно классифицированных как пиксели объектов переднего плана.

Количество ложно положительных пикселей (FP) — количество пикселей в кадре, неправильно классифицированных как пиксели объектов переднего плана, на самом деле являющихся фоновыми пикселями;

Количество ложно отрицательных пикселей (FN) — количество пикселей в кадре, неправильно классифицированных как фоновые пиксели, на самом деле являющихся пикселями объектов переднего плана;

Процент правильных классификаций (PCC) – показатель, определяющий общую долю правильных классификаций:

$$PCC = \frac{TP + TN}{TP + TN + FP + FN} \cdot 100\%$$

Чувствительность (Rcl) показывает долю правильно классифицированных пикселей объектов переднего плана в общем количестве пикселей объектов переднего плана:

$$Rcl = \frac{TP}{TP + FN}$$

Точность (Prc) показывает долю правильно классифицированных пикселей объектов переднего плана в общем количестве пикселей, классифицированных алгоритмом как пиксели объектов переднего плана:

$$Prc = \frac{TP}{TP + FP}$$

F-балл – это среднее гармоническое взвешенное показателей чувствительности и точности:

$$F = \frac{2 \cdot Pr \cdot Rcl}{Pr + Rcl}$$