

Group-6 Team Members

- 1. Uudhhay Kiirran
- 2.Bhavana Reddy
- 3. Jashwanth
- 4.SaiPrasanna

Capstone Project

Analysis on Engineering Graduate Salary

Introduction

Dataset: Engineering_Graduate Salary

Objective: Our objective is to determine the salary of an engineering graduate.

Technical contents:

- Data importing
- Data exploration
- Data Preprocessing
- Data Modelling

Data Imported:

	Gender	DOB	10percentage	10board	12graduation	12percentage	12board	CollegeID	CollegeTier	Degree	• • • •	MechanicalEngg	ElectricalEngg	TelecomEngg	CivilEngg	conscientiousness	agreeableness	extraversion	nueroticism	openess_to_experience Salary
ID																				
604399	f	22-10- 1990	87.80	cbse	2009	84.00	cbse	6920	1	B.Tech/B.E.		-1	-1	-1	-1	-0.1590	0.3789	1.2396	0.14590	0.2889 445000
988334	m	15-05- 1990	57.00	cbse	2010	64.50	cbse	6624	2	B.Tech/B.E.		-1	-1	-1	-1	1.1336	0.0459	1.2396	0.52620	-0.2859 110000
301647	m	21-08- 1989	77.33	maharashtra state board,pune	2007	85.17 div	amravati isional board	9084	2	B.Tech/B.E.		-1	-1	260	-1	0.5100	-0.1232	1.5428	-0.29020	-0.2875 255000
582313	m	04-05- 1991	84.30	cbse	2009	86.00	cbse	8195	1	B.Tech/B.E.		-1	-1	-1	-1	-0.4463	0.2124	0.3174	0.27270	0.4805 420000
339001	f	30-10- 1990	82.00	cbse	2008	75.00	cbse	4889	2	B.Tech/B.E.		-1	-1	-1	-1	-1.4992	-0.7473	-1.0697	0.06223	0.1864 200000

- This dataset contains 2,998 rows and 33 columns.
- The target variable is salary.
- This dataset contians numerical values.
- The columns of the dataset describe about Engineering graduates.

Checking for Null values

[5] data.isnull().sum() Gender 10percentage 10board 12graduation 12percentage 12board CollegeID CollegeTier Degree Specialization collegeGPA CollegeCityID CollegeCityTier CollegeState GraduationYear English Logical Ouant Domain ComputerProgramming ElectronicsAndSemicon ComputerScience MechanicalEngg ElectricalEngg TelecomEngg CivilEngg conscientiousness agreeableness extraversion nueroticism openess_to_experience Salary dtype: int64

- The first box plot represents the outlers in dataset.
- We have used hample method to remove the outliers.

We used again zscore method to decrease the number of outliers.

Exploratory Data Analysis:

Analysis of Salary with Degree

Average salary is highest for BE/B.tech graduates as compared to any other degree graduates.

Analysis of Salary with Gender

Correlation Analysis

Analysis of 10th and 12th percentage by collage tier

According to correlation and scatterplot we can see 10th and 12th are positively correlated and this is the case of multicollinearity. So we decide to keep only one

Analysation of Salary with Specialisation

ICE Engineer, Computer
Engineer and Electronics
Engineer having highest mean
salary

Analysis of Collage GPA and Salary

We have to remove the outliers present as we can view them in the plot.

Here the on the basis of the above data visualised we observe that gender, degree, collage GPA, Specialisation are useful for analysing meaningful insight for the variable salary.

We have visulaised the Salary relation with AMCAT subjects through scatterplot above .

As AMCAT exams are conducted as an entrance for the jobs and it plays a key role but we found from the above graphs there is no impact on the the salary of the graduate.

Linear regression

Linear regression analysis is used to predict the value of a variable based on the value of another variable.

For 60-40 ratio
we got the least
MAE value i.e:
91973.1911

Linear Regression					
Train-Test Proportion	MAE				
70-30	137905.4249				
80-20	93489.354				
60-40	91973.1911				
75-25	93001.6001				

Neural Networks

In the neural networks
we are working with
respect to two
optimisers: Adam, SGD
So we applied it with
various experiments and
architectures

We find for 70-30 ratioat 20--10--5--1 architecture and Adam as optimiser at 2000epoch we have least MAE value: 91597.9844

Train-Test Proportion	Architecture	Optimizer	epochs	MAE
80-20	2412631	Adam	500	94020.5156
80-20	2412841	Adam	600	94340.7344
80-20	2412842	SGD	600	nan
80-20	241051	Adam	400	93993.6484
`80-20	241052	SGD	400	nan
80-20	24831	Adam	1000	93821.4453
80-20 80-20	24832 181051	SGD	1000 800	nan 93947,5234
80-20 80-20	181052	Adam SGD	800	
80-20				nan
	1571	Adam	400	93815.2109
80-20	1571	SGD	400	nan
70-30	8531	Adam	500	91953.3516
70-30	8521	SGD	400	nan
70-30	201051	Adam	2000	91597.9844
70-30	201051	SGD	1000	nan
70-30	6421	Adam	3000	91706.4141
70-30	6421	Adam	1500	93134.6562
70-30	6421	Adam	600	91989.6328
70-30	12631	Adam	600	91960.9766
70-30	631	Adam	400	92000.8594
60-40	8421	Adam	60	93275.0938
80-20	10631	Adam	60	94089.2656
80-20	8631	SGD	60	nan
70-30	6421	Adam	600	91911.7812
70-30	241281	Adam	500	91876.1797
70-30	851	Adam	800	91968.3516
70-30	521	Adam	400	291649.625
60-40	521	Adam	1000	92912.625
60-40	1031	Adam	800	92916.8906
60-40	20101	Adam	800	92865.4688
60-40	241811521	Adam	800	92603.4453
60-40	24201510531	Adam	1200	92270.1953
	111			

Bagging

Bagging Regressor

For 70-30 ratio we got the least MAE value i.e: 92739.88662

E	Bagg	ing	Regr	essor
-				

Train-Test Proportion	MAE
80-20	948 24-047 62
70-30	92739.88662
60-40	93150.40816
75-25	93758.92517

Decision Tree

For 75-25 ratio we got the least MAE value i.e: 95019.70234

Decision Tree

MAE
95177.45818
95133.15039
96296.33257
95019.70234

Random Forest

For 70-30 ratio we got the least

MAE value i.e: 92889.95465

Boosting

Adaboost

For 70-30 ratio we got the least

MAE value i.e: 92201.85737

Random Forest

Train-Test Proportion	MAE
60-40	93183.97109
80-20	943 83.469 39
70-30	92889.95465
75-25	94236.12245

Adaboosting

Train-Test Proportion	MAE
60-40	92492.67825
75-25	93917.87464
80-20	938 30.787 36
70-30	92201.85737

Gradient Boost

For 80-20 ratio we got the least MAE value i.e: 91502.9275

XGboost

For 70-30 ratio we got the least MAE value i.e: 90676.26513

Gradient Boosting

Train-Test Proportion	MAE
80-20	91502.9275
70-30	91654.51334
60-40	93531.56278
75-25	92380.45955

XGboosting

MAE
91894.45148
90676.26513
92553.95049
92353.62725

Comparision Table

Algorithm	MAE	Ratio
XGboosting	90676.26513	80-20
Gradient Boosting	91502.9275	80-20
Neural Networks	91597.9844	70-30
Linear Regression	91973.1911	60-40
Adaboosting	92201.85737	70-30
Bagging Regressor	92739.88662	70-30
Random Forest	92889.95465	70-30
Decision Tree	95019.70234	75-25

Conclusion

The Engineering Graduate salary dataset is a regression based data. So we have applied all the algorithms of machine learning with respect to regression such as linear regression, Neural Network, Decision tree, Random forest and Boosting.

Among all the algorithms in boosting XGboost techinque with 80-20 performed well an gave least MAE value when comapred to others.

So we can conclude boosting algorithm fits good and can be used for further usage of model.

Team members and their Roles

- N.Bhavana Reddy-Coding, PPT, EDA
- UudhhayKiirran-Coding,PPT
- Sai Prasanna-PPT
- Jashwanth-PPT

Click on the icon of github and colab for more details of the project.

