W4. Perception & Situation Awareness & Decision making

- Robot Perception for Dynamic environments: Outline & DP-Grids concept
- Dynamic Probabilistic Grids Bayesian Occupancy Filter concept
- Dynamic Probabilistic Grids Implementation approaches
- Object level Perception functions (SLAM + DATMO)
- Detection and Tracking of Mobile Objects Problem & Approaches
- Detection and Tracking of Mobile Objects Model & Grid based approaches
- Embedded Bayesian Perception & Short-term collision risk (DP-Grid level)
- Situation Awareness Problem statement & Motion / Prediction Models
- Situation Awareness Collision Risk Assessment & Decision (Object level)

Embedded Bayesian Perception – Main features

Perception process (reminder session 1)

Main difficulties

Noisy data, Incompleteness, Dynamicity, Discrete measurements + Real time!

Approach: Bayesian Perception

- Reasoning about Uncertainty & Time window (Past events & Near future)
- Improving robustness using Bayesian Sensor Fusion (Multiple sensors + Sensors & Dynamic models + Bayesian Inference)
- Scene Interpretation using Semantic & Contextual information

Embedded Bayesian Perception on a real vehicle DP-Grid based Architecture

Architecture combining:

- DP-Grid construction
- Grid-based SLAM & DATMO

- Construct & Update on-line (real-time) a DP-Grid model of the Dynamic Environment → Sensor Fusion & BOF / HSBOF
- Extract Object level data using FCTA & Specialized perception functions (e.g. lane tracking & localization)

Embedded Bayesian Perception on a real vehicle DP-Grid based Architecture

Laser perception

Embedded Bayesian Perception on a real vehicle DP-Grid based Architecture

Stereo Vision

Embedded Bayesian Perception on a real vehicle Stereo-vision perception (experimental results)

- Scene view provided by vehicle front camera
 Superimposition of Road Free space (blue) & Obstacles (red)
- Display Cartesian Occupancy Grid & U-Disparity

Embedded Bayesian Perception on a real vehicle DP-Grid based Architecture

Computer Vision
Specialized perception functions

Multi-Lane tracker & Localization (vision + Open Street Map)

Intensity Features

Detection & Classification (using Intensity & Depth Features)

Codebook Matching

Detections

Depth Features

Embedded Bayesian Perception platform Vehicle Architecture

Embedded Bayesian Perception platform System outputs

An Embedded Bayesian Perception platform

Experimental results (Bayesian sensor fusion, 25 Hz)

left & right laser OG

Resulting DP-Grid (occupancy + velocity)

Stereo vision OG

ateres-vision

raw data

Estimating short-term collision risk DP-Grid level (using HSBOF)

Objective

- Collision risk estimation at time t (horizon $t+\delta$)
- Localization of risks in Space & Time
- Still before object analysis (DP-Grid level)

 δ = 0.5 s => Precrash δ = 1 s => Collision mitigation δ = 1.5 s => Warning / Braking

Update frequency: 25 Hz

Estimating short-term collision risk DP-Grid level (using HSBOF)

Approach

- Projecting over time the estimated scene (Particles & Occupancy) & Car model
 (Shape & Velocity) → Apply a conservative motion model (using current car motion data)
- Collision assessment for every next time step
- Integration of Risk over a time range [$t t+\delta$]


```
\delta= 0.5 s => Precrash

\delta= 1 s => Collision mitigation

\delta = 1.5 s => Warning / Braking
```

Estimating short-term collision risk

Experimental results

Results

- Detection a few seconds ahead of risky situations
 - Urban → No false alarm (cars, pedestrians...)
 - Crash scenarios → All collisions predicted before the crash (1s or 1.5s)

Estimating short-term collision risk Experimental results: Crash scenario

Estimating short-term collision risk Experimental results: Crash scenario (video)

