### IN THE U.S. PATENT AND TRADEMARK OFFICE

Applicant:

JUN, Jung Sig

Conf.:

Appl. No.:

New

Group:

Filed:

November 25, 2003

Examiner:

For:

DIGITAL TV RECEIVER

### LETTER

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

November 25, 2003

Sir:

Under the provisions of 35 U.S.C. § 119 and 37 C.F.R. § 1.55(a), the applicant(s) hereby claim(s) the right of priority based on the following application(s):

Country

Application No.

Filed

JAPAN

2002-0074221

November 27, 2002

A certified copy of the above-noted application(s) is(are) attached hereto.

If necessary, the Commissioner is hereby authorized in this, concurrent, and future replies, to charge payment or credit any overpayment to Deposit Account No. 02-2448 for any additional fee required under 37 C.F.R. §§ 1.16 or 1.17; particularly, extension of time fees.

Respectfully submitted,

BIRCH, STEWART, KOLASCH & BIRCH, LLP

1 James T. Eller, Jr., #39,538

P.O. Box 747

Falls Church, VA 22040-074

(703) 205-8000

JTE/cqc 0465-1097P

Attachment(s)

(Rev. 09/30/03)

BSUB703-205-200 0465-1097P Jun Nov. 25, 2003



별첨 사본은 아래 출원의 원본과 동일함을 증명함.

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office.

출 원 번 호 :

10-2002-0074221

Application Number

출 원 년 월 일

2002년 11월 27일

Date of Application

인

NOV 27, 2002

출 원 Applicant(s) 엘지전자 주식회사 LG Electronics Inc.



2003

La · 08

<sub>aj</sub> 05

잌

특

허

청

COMMISSIONER



【서지사항】

【서류명】 특허출원서

【권리구분】 특허

【수신처】 특허청장

【참조번호】 0004

【제출일자】 2002.11.27

【국제특허분류】 H04N

【발명의 명칭】 다지털 티브이의 심볼 클럭 복구 장치

【발명의 영문명칭】 Apparatus recovering symbol clock in digital TV

【출원인】

【명칭】 엘지전자 주식회사

【출원인코드】 1-2002-012840-3

【대리인】

【성명】 김용인

 【대리인코드】
 9-1998-000022-1

【포괄위임등록번호】 2002-027000-4

【대리인】

【성명】 심창섭

 【대리인코드】
 9-1998-000279-9

【포괄위임등록번호】 2002-027001-1

【발명자】

【성명의 국문표기】 전정식

【성명의 영문표기】 JUN.Jung Sig

【주민등록번호】 670130-1102111

【우편번호】 463-500

【주소】 경기도 성남시 분당구 구미동 88 까치마을 203-306호

【국적】 KR

【심사청구】 청구

【취지】 특허법 제42조의 규정에 의한 출원, 특허법 제60조의 규정

에 의한 출원심사 를 청구합니다. 대리인

김용인 (인) 대리인

심창섭 (인)

# 【수수료】

| 【기본출원료】  | 20     | 면      | 29,000    | 원 |
|----------|--------|--------|-----------|---|
| 【가산출원료】  | 8      | 면      | 8,000     | 원 |
| 【우선권주장료】 | 0      | 건      | 0         | 원 |
| 【심사청구료】  | 6      | 항      | 301,000   | 원 |
| 【합계】     | 338,   | 000 원  |           |   |
| 【첨부서류】   | ∙ 1. ⊊ | 2약서·명/ | 세서(도면)_1통 |   |

### 【요약서】

【요약】

본 발명은 디지털 TV의 심볼 클릭 복구 장치에 관한 것으로서, 특히 반송파 복구부에서 완전히 제거되지 않은 잔류 반송파 성분이 입력되어도 두 개의 제곱기와 덧셈기를이용하여 이를 제거하고, 또한 상기 덧셈기의 출력에 대해 다시 제곱하여 고스트 등으로인해 타이밍 정보를 가져오는 fs/2 주파수 부분에 정보가 없어진 경우에도 상기 fs/2 부분에 새로운 정보를 만들어 심볼 클릭을 복구함으로써, 반송파 복구가 불완전한 경우나또는, 고스트 등에 의해 심볼 클릭 주파수의 1/2이 되는 주파수(fs/2)에 정보가 없어진경우에도 안정적이고 정확한 심볼 클릭 복구를 수행할 수 있으므로 심볼 클릭 복구 알고리즘의 성능뿐만 아니라 시스템 전체의 성능을 개선시킬 수 있다.

#### 【대표도】

도 8

### 【색인어】

심볼 클럭 복구, 제곱기, 수정 가드너

### 【명세서】

### 【발명의 명칭】

디지털 티브이의 심볼 클럭 복구 장치{Apparatus recovering symbol clock in digital TV}

### 【도면의 간단한 설명】

도 1은 일반적인 디지털 TV 수신기의 구성 블록도

도 2는 도 1의 반송파 복구부의 일반적인 구성 블록도

도 3은 도 1의 심볼 클럭 복구부의 일 예를 보인 구성 블록도

도 4는 도 1의 심볼 클럭 복구부의 타이밍 에러 검출부가 수정 가드너 방식으로 타이밍 에러를 검출하는 경우, 반송파 복구가 완료되어 심볼 클럭 복구부로 입력되는 실수 신호와 전치 필터의 주파수 특성을 보인 도면

도 5는 도 1의 심볼 클럭 복구부에서 실수 신호와 허수 신호 각각을 제곱한 후 더한 신호의 주파수 특성 및 가드너 방식의 위상 오차 검출을 위하여 사용하는 전치 필터의 특성을 보인 도면

도 6은 원 신호와 크기는 같고, 정확하게 1 심볼이 지연된 동위상(inphase) 선형 잡음이 전송 채널 상에 존재하는 경우의 도 1의 심볼 클릭 복구부의 실수 신호의 주파수 특성과 상기 실수 및 허수 신호를 각각 제곱하여 더한 신호의 주파수 특성 그리고, 전치 필터의 주파수 특성을 보인 도면

도 7은 크기는 원 신호와 같고, 정확하게 2 심볼 지연된 직교위상(quadrature)의 선형 잡음이 존재하는 경우의 도 1의 심볼 클럭 복구부의 실수 신호의 주파수 특성과 상

기 실수 및 허수 신호를 각각 제곱하여 더한 신호의 주파수 특성 그리고, 전치 필터의 주파수 특성을 보인 도면

도 8은 본 발명에 따른 심볼 클럭 복구부를 갖는 디지털 TV 수신기의 구성 블록도 도 9는 원 신호와 크기는 같고, 정확하게 1 심볼이 지연된 동위상(inphase) 선형 잡음이 전송 채널 상에 존재하는 경우의 도 8의 심볼 클럭 복구부의 덧셈기의 출력 주파수 특성과 제 3 제곱기의 출력 주파수 특성 그리고, 전치 필터의 출력 주파수 특성을 보인 도면

도면의 주요부분에 대한 부호의 설명

801 : A/D 변환부 802 : 위상 분리기

803 : 반송파 복구부 804 : 재샘플링부

900 : 심볼 클럭 복구부 901,902,904 : 제곱기

903 : 덧셈기 905 : 전치 필터

906 : 수정 가드너 타이밍 에러 검출부

907 : 저역 통과 필터 908 : NCO

### 【발명의 상세한 설명】

### 【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

<17> 본 발명은 디지털 TV 수신기에 관한 것으로서, 특히 수신된 데이터로부터 심볼 클 럭을 복원하는 심볼 클럭 복구 장치에 관한 것이다.

전재 대부분의 디지털 전송 시스템 및 미국향 디지털 TV 전송 방식으로 제안된 ATSC(Advanced Television Systems Committee) 8 VSB(Vestigial Side Band) 전송 시스템에서는 주파수 효율을 높이기 위하여 전송 신호에 데이터만을 실어 보낸다. 즉, 수신측에서 데이터 복원을 위하여 필요한 클릭에 대한 정보는 전송하지 않는다. 따라서, 수신 측에서는 데이터만이 존재하는 수신 신호들 중에서 이들 데이터를 복원하기 위하여 송신시에 사용된 것과 같은 클릭을 생성하여야 한다. 이 역할을 수행하는 부분이 심볼 클릭복구부이다.

도 1은 이러한 심볼 클릭 복구부가 구비된 일반적인 디지털 TV 수신기의 구성 블록도로서, VSB 방식으로 변조된 RF(Radio Frequency) 신호가 안테나(101)를 통해 수신되면 튜너(102)는 사용자가 원하는 특정 채널 주파수만을 선택한 후 상기 선택된 채널 주파수에 실려진 RF 대역의 VSB 신호를 제 1 중간 주파수(IF) 대역으로 변환하여 아날로그처리부(103)로 출력한다. 상기 아날로그 처리부(103)는 상기 튜너(102)에서 출력되는 제 1 IF 신호에 통과대역 필터링 및 이득 등을 제어하여 상기 제 1 IF 신호를 제 2 IF 신호로 변환하여 A/D 변환부(104)로 출력한다. 상기 A/D 변환부(104)는 제 2 IF 신호를 고정주파수(즉, 상기 고정 주파수는 심볼 클릭의 주파수와 다르며 보통 25MHz임)로 샘플링시켜 위상 분리기(105)로 출력한다. 즉, 송신측에서는 심볼 클릭 주파수(fs)의 2배인 21.52MHz로 샘플링된 데이터가 전송되지만, 상기 A/D 변환부(104)에서 출력되는 데이터는 25MHz로 샘플링된 디지털 데이터이다.

<20> 상기 위상 분리기(105)는 상기 디지털 신호를 위상이 서로 -90°가 되는 실수 성분(r(t))과 허수 성분(i(t))의 통과대역 신호로 분리하여 반송파 복구부(106)로 출력

한다. 여기서, 설명의 편의를 위해 상기 위상 분리기(105)에서 출력되는 실수 성분 (r(t))의 신호를 I 신호라 하고, 허수 성분(i(t))의 신호를 Q 신호라 한다.

- 상기 반송파 복구부(106)는 상기 위상 분리기(105)에서 출력되는 I,Q 통과대역 디지털 신호를 I,Q 기저대역 디지털 신호로 천이한 후 심볼 복구된 신호로의 변환을 위해
   재샘플링부(Resampler)(107)로 출력한다.
- 상기 재샘플링부(107)는 기본적으로 샘플링 레이트를 바꿔주는 역할을 한다. 즉,
  21.52MHz로 샘플링되어 수신된 데이터를 상기 A/D 변환부(105)에서 25MHz로 샘플링하여
  출력하므로, 상기 재샘플부(110)에서는 다시 2배의 심볼 클럭 주파수 즉, 21.52MHz로 샘플링하여 출력하게 된다.
- 이를 위해 상기 재샘플링부(107)는 A/D 변환부(104)와 반송파 복구부(106)를 거쳐 출력되는 기저대역의 디지털 신호를 심볼 클럭 복구부(108)의 출력 주파수를 이용하여 2배의 심볼 클럭 주파수에 동기된 디지털 신호로 보간하여 심볼 클럭 복구부(108)로 출력함과 동시에, 채널 등화, 위상 추적, 에러 정정등을 위해 디지털 처리부(109)로 출력한다.
- <24> 상기 심볼 클럭 복구부(108)는 현재 심볼들의 타이밍 에러를 구한 후 상기 타이밍에러에 비례하는 주파수를 생성하여 상기 재샘플링부(107)로 출력한다.
- 도 2는 상기 반송파 복구부(106)의 일반적인 구성 블록도로서, FPLL(Frequency Phase Locked Loop)이라는 것을 사용한다. 즉, FPLL로 구성된 반송파 복구부(106)는 상기 A/D 변환부(105)에서 출력되는 통과 대역의 I,Q 신호를 기저대역의 I,Q 신호로 복조하여 주파수와 위상을 록킹한다.

<26> 도 2에서 보면, A/D 변환부(104), 및 위상 분리기(phase splitter)(105)를 통해 디지털화된 통과대역의 I,Q 신호는 반송파 복구부(106)의 복소 곱셈기(201)로 입력된다.

<27> 이때, 상기 위상 분리기(105)에서 출력되는 실수 성분(real)의 신호 r(t)와 허수성분(imaginary)의 신호 q(t)는 하기의 수학식 1과 같다.

<28> 
$$r(t) = \{I(t) + p\} \cos(w_c t + \psi) - Q(t) \sin(w_c t + \psi)$$

## [수학식 1] $i(t) = \{I(t)+p\}\sin(w_c t + \psi) + Q(t)\cos(w_c t + \psi)$

- <29> 여기서, I(t)는 변조(modulation)되기 전의 데이터 신호이고, p는 반송파 복구를 위하여 송신부에서 삽입하는 파일롯(pilot) 신호이다. 또한, w<sub>c</sub>는 입력되는 신호에 존재 하는 반송파 신호의 주파수이고, ψ는 입력되는 신호에 존재하는 반송파 신호의 위상이 다. Q(t)는 I(t) 신호의 직교 신호 성분이다.
- 한편, 상기 반송파 복구부(106)의 복소 곱셈기(201)는 상기된 수학식 1과 같은 통과대역 I,Q 신호에 NCO(205)에서 출력되는 기준 반송파 신호(NCOI,NCOQ)를 곱하여 상기통과대역 I,Q 신호를 하기의 수학식 2와 같이 기저대역 I,Q 신호(I'(t),Q'(t))로 변환한다.

$$I'(t) = \{I(t) + p\} \cos(\Delta w_c t + \psi) - Q(t) \sin(\Delta w_c t + \psi)$$

# [수학식 2] $Q'(t) = \{I(t) + p\}\sin(\Delta w_c t + \psi) + Q(t)\cos(\Delta w_c t + \psi)$

<32> 여기서, దీ౻ం는 수신단에서 발생하는 기준 반송파 신호(NCOI,NCOQ)와 송신단에서 사용된 반송파 신호(wc)의 주파수 오차(beat frequency) 성분이다.

<33> 상기 기저대역 I,Q 신호는 저역 통과 필터(202)로 출력됨과 동시에, 재샘플부(107)를 거쳐 심볼 클릭 복구부(108)와 디지털 처리부(109)로 출력된다.

- 상기 저역 통과 필터(202)는 상기 기저대역 I,Q 신호를 저역 통과 필터링하여 반송 파 부분만을 추출한 후 오차 검출부(203)로 출력한다. 즉, 반송파를 복구하는 반송파 복 구부(106)에서는 6MHz의 대역폭 중 파일롯 주파수(p)가 존재하는 주파수 주변의 신호만 을 필요로 하므로, 상기 저역 통과 필터(202)는 데이터 성분들이 존재하는 나머지 주파 수 성분을 I,Q 신호로부터 제거하여 데이터에 의하여 반송파 복구부의 성능이 저하되는 것을 방지한다.
- 상기 오차 검출부(203)는 상기 반송파 신호로부터 반송파의 잔류 오차를 검출하여 저역 통과 필터(204)로 출력한다. 즉, 상기 오차 검출부(203)에서 검출된 반송파의 잔류 오차는 순간적인 오검출을 방지하기 위하여 상기 저역 통과 필터(204)를 거쳐 NCO(205) 로 출력된다. 상기 NCO(205)는 상기 저역 통과 필터(204)의 출력으로부터 새로운 기준 반송파 신호(NCOI,NCOQ)를 생성하여 상기 복소 곱셈기(201)로 출력한다.
- 만약, 상기 반송파 복구부(106)에서 반송파 복구가 완전하게 이루어진다면 △<sup>we</sup> 및
   ♥는 모두 '0'이 되어, 상기 수학식 2는 하기의 수학식 3과 같이 된다.

# (37) I'(t) = I(t) + p

## [수학식 3] Q'(t)=Q(t)

<38> 그러면, 상기 심볼 클럭 복구부(108)는 상기 수학식 3의 신호로부터 심볼 클럭 복구를 진행하여 수신단의 모든 디지탈 영역에서 사용하는 심볼 클럭을 생성한다.

### 【발명이 이루고자 하는 기술적 과제】

○ 그러나, 상기 반송파 복구부(106)에서 반송파 복구가 완전하게 이루어지지 않으면, 상기 심볼 클럭 복구부(108)는 상기된 수학식 2와 같은 신호로부터 심볼 클럭 복구를 하 게 되므로, 송신부에서 사용한 반송파 신호와 수신부에서 생성하는 기준 반송파 신호 사 이의 주파수 및 위상 오차인 △™₀와 ♥의 영향을 받아 정상적인 심볼 클럭의 복구가 어렵 게 된다.

즉, 도 1에서와 같이 반송파 복구부와 심볼 클럭 복구부가 순차적으로 연결된 구조에서는 반송파 복구부의 성능이 심볼 타이밍 복구부의 성능에 큰 영향을 끼치므로, 상기심볼 클럭 복구부는 반송파 복구부에서 완전히 제거되지 않고 흘러 들어오는 잔류 주파수 및 위상 오차에 대해 영향을 받으며, 이는 심볼 클럭 복구부 전체의 성능에 악영향을 끼친다.

이는 심볼 클럭 복구부는 통상 반송파 복구부의 후단에 위치하게 되는데, 이미 반송파 복구부의 역할이 완전히 완료된 것을 가정하고 상기 심볼 클럭 복구부를 설계하기 때문이다. 그러므로, 반송파 복구가 완전하게 이루어지지 않으면 심볼 클럭의 복구 또한불가능하게 되는 것이다.

(42) 따라서, 본 발명의 출원인은 이를 해결하기 위하여 상기 반송파 복구부의 잔류 반송파 위상 에러에 상관없이 심볼 클럭을 복구하도록 하는 심볼 클럭 복구 장치를 국내에 특허 출원(출원번호 : P02-041001, 출원일 : 2002.07.13)한 바 있다.

도 3은 상기된 특허에 개시된 심볼 클럭 복구부를 포함하는 디지털 TV 수신기의 구성 블록도로서, 두 제곱기(401,402)와 덧셈기(403)를 이용하여 불완전한 반송파 복구로인한 주파수와 위상 오차를 제거하고 있다.

- 즉, 반송파 복구부(303)에서 반송파를 완전히 복구하지 못한 경우에도, 잔류 위상에러는 제1, 제 2 제곱기(401,402)와 덧셈기(403)를 통해 제거되므로, 전치 필터(404)로 출력되는 신호에는 잔류 위상 에러가 포함되어 있지 않다. 이것은 상기 심볼 클럭 복구부(400)가 반송파 복구부(303)에서 출력되는 잔류 위상 에러에 무관하게 동작할 수 있음을 의미하며, 또한 이것은 보다 안정적인 클럭 복구를 수행할 수 있음을 의미한다.
- 상기 전치 필터(404)는 상기 덧셈기(403)의 출력 중 특정 주파수 대역만을 통과시켜 타이밍 에러 검출부(405)로 출력한다.
- 상기 타이밍 에러 검출부(405)는 일반적인 가드너 방식 또는 수정된 가드너 방식의 타이밍 에러 검출부로서, 상기 프리 필터(404)의 출력으로부터 심볼 클럭의 타이밍 에러 즉, 위상 오차를 검출한다. 상기 타이밍 에러 정보는 저역 통과 필터(406)를 거쳐 NCO(407)로 입력되고, 상기 NCO(407)는 저역 통과 필터링된 타이밍 에러 정보로부터 새로 보정된 두배의 심볼 클럭의 주파수(2fs, fs는 심볼 클럭의 주파수)를 생성하여 재샘 플링부(304)로 출력한다.
- 도 4는 상기 심볼 클럭 복구부(400)의 타이밍 에러 검출부(405)가 수정 가드너 (Gardner) 방식으로 타이밍 에러를 검출하는 경우, 반송파 복구가 완료되어 심볼 클럭 복구부(400)로 입력되는 실수(real) 신호와 전치 필터(pre-filter, band pass filter)의 주파수 특성을 보이고 있다.

동상, 미국 및 한국의 디지털 TV 전송 방식에 대한 규격인 VSB(vestigial sideband) 변조(modulation) 방식을 사용하는 경우, 실수 신호의 주파수 특성에서 심볼 클릭 주파수(fs)의 1/2이 되는 주파수(fs/2)의 정보를 추출하여 심볼 클릭 복구를 수행하는 것이 수정 가드너 방식을 이용한 심볼 클릭 복구부의 기본 동작이다.

- 즉, 수정 가드너 타이밍 에러 검출부(405)는 데이터의 제로 크로싱(zero-crossing) 특성을 이용하는데, 이를 스펙트럼 상에서 보면 연속된 두개의 심볼의 스펙트럼이 중첩되는 지점에 이러한 정보를 가지게 된다. 다시 말해, 상기 두 연속된 심볼의 스펙트럼이 오버랩되는 부분은 주파수가 fs/2인 부근이 되며, 수정 가드너 방식에서 수신된 데이터의 제로 크로싱 특성을 이용하여 타이밍 에러를 얻기 위해 필요한 정보는 이곳에만 위치한다. 따라서, 심볼 클럭 복구부(400)에서는 이 부분에서 보다 정확한 타이밍 에러를 검출하기 위해 즉, 필요한 신호의 제로 크로싱 정보를 얻어내기 위해 밴드 패스 필터인 전치 필터(404)를 사용한다. 그러므로, 심볼 클럭 주파수의 1/2이 되는 주파수(fs/2)의 정보를 추출하는 것이 상기 전치 필터(404)의 역할이다.
- 도 5는 반송파 복구부의 영향을 받지 않는 심볼 클럭 복구부를 위하여 제곱기 (401,402)와 덧셈기(403)를 이용하여 실수(real) 신호와 허수(imaginary) 신호 각각을 제곱한 후 더한 신호의 주파수 특성 및 가드너 방식의 위상 오차 검출을 위하여 사용하는 전치 필터의 특성을 보이고 있다. 도 4와 도 5에서 보듯이 안테나로 입력되는 신호에 선형 잡음이 없는 경우 반송파 복구가 완전하게 이루어진 경우의 실수 신호의 주파수 특성과 실수 신호와 허수 신호를 제곱한 후 더한 신호의 주파수 특성과 실수 신호와 허수 신호를 제곱한 후 더한 신호의 주파수 특성이 거의 일치하여 가드너 방식의 타이밍 에러 검출부를 사용하여도 정상적인 동작을 한다.

스키스 그러나, 심볼 클럭 복구부(400)로 입력되는 신호에 심볼 클럭 주파수의 1/2이 되는 주파수(fs/2)에 정보가 없는 경우에는 심볼 타이밍 복구가 불가능하다. 예를 들어, 전송채널 상에 심한 선형 잡음이 존재하여 심볼 주파수의 1/2이 되는 주파수(fs/2)에 정보가 없는 경우에는 심볼 클럭 복구가 불가능하다.

- <52> 도 6은 원 신호와 크기는 같고, 정확하게 1 심볼이 지연된 동위상(inphase) 선형 잡음이 전송 채널 상에 존재하는 경우의 주파수 특성을 보이고 있다.
- <53> 도 7은 크기는 원 신호와 같고, 정확하게 2 심볼 지연된 직교위상(quadrature)의 선형 잡음이 존재하는 경우의 각 신호의 주파수 특성을 보이고 있다.
- 도 6과 도 7에서 보면, 심볼 클럭 주파수의 1/2이 되는 주파수(fs/2)에 정보가 완전히 없는 것을 볼 수 있다. 이러한 경우는 수정 가드너 방식으로 심볼 클럭 복구를 수행할 수 없게 된다.
- 본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 고스트 등에 의해 타이밍 정보를 가져오는 fs/2 주파수 부분이 손상되었을 경우에도 정확한 심볼 클럭 복구가 가능하도록 하는 디지털 TV 수신기의 심볼 클럭 복구 장치를 제공함에 있다.

### 【발명의 구성 및 작용】

상기와 같은 목적을 달성하기 위한 본 발명에 따른 디지털 TV의 심볼 클럭 복구 장 .
 치는, 아날로그 통과대역 신호를 A/D 클럭 주파수로 샘플링하여 디지털 통과대역 신호로 변환하는 A/D 변환부와, 상기 디지털 통과대역 신호에 반송파 복구 과정을 통해 생성된 기준 반송파 신호를 곱하여 디지털 기저대역 신호로 변환하는 반송파 복구부를 포함하는

디지털 TV 수신기에 있어서, 심볼 클럭 복구부는 상기 반송파 복구부에서 출력되는 디지털 기저대역 실수 성분과 허수 성분의 신호를 각각 제곱하여 더한 후 그 결과를 출력하는 연산부와, 상기 제곱 연산부의 출력에 대해 다시 제곱하는 제곱기와, 상기 제곱기의 출력으로부터 심볼 클럭 주파수의 1/2이 되는 주파수 부근을 필터링하는 전치 필터와, 상기 전치 필터를 통과한 두 개의 심볼 샘플의 차 값에 하나의 중간 샘플을 곱하여 타이밍 에러에 관한 정보를 검출하는 가드너 타이밍 에러 검출부와, 상기 가드너 타이밍 에러 검출부에서 출력되는 타이밍 에러 정보 중 저대역 신호 성분만을 필터링하고, 필터링된 타이밍 에러 정보의 저대역 성분에 따라 새로 보정된 두배의 심볼 클럭의 주파수를 생성하는 필터 및 발진부로 구성되는 것을 특징으로 한다.

- <57> 상기 연산부는 상기 A/D 변환부에서 출력되는 디지털 통과대역 실수 성분과 허수성분의 신호를 각각 제곱하여 더한 후 그 결과를 출력하는 것을 특징으로 한다.
- 상기 연산부는 상기 반송파 복구부에서 출력되는 디지털 기저대역 실수 성분과 허수 성분의 신호에 대해 각각 절대치를 취하여 더한 후 그 결과를 출력하는 것을 특징으로 한다.
- 상기 연산부는 상기 A/D 변환부에서 출력되는 디지털 통과대역 실수 성분과 허수성분의 신호에 대해 각각 절대치를 취하여 더한 후 그 결과를 출력하는 것을 특징으로한다.
- 성기 A/D 변환부의 A/D 클럭 주파수가 고정 주파수인 경우, 상기 반송파 복구부와 심볼 클럭 복구부 사이에 상기 반송파 복구부에서 출력되는 디지털 기저대역 실수 성분과 허수 성분의 신호를 2배의 심볼 클럭의 주파수로 재샘플링하여 각각 보간하는 재샘플

링부가 더 구비되며, 상기 심볼 클럭 복구부에서 생성된 2배의 심볼 클럭의 주파수는 상기 재샘플링부로 출력되는 것을 특징으로 한다.

- 61> 상기 A/D 변환부는 상기 심볼 클럭 복구부에서 생성된 2배의 심볼 클럭의 주파수를
  A/D 클럭 주파수로 이용하는 것을 특징으로 한다.
- <62> 본 발명의 다른 목적, 특징 및 잇점들은 첨부한 도면을 참조한 실시예들의 상세한 설명을 통해 명백해질 것이다.
- 이하, 첨부된 도면을 참조하여 본 발명의 실시예의 구성과 그 작용을 설명하며, 도면에 도시되고 또 이것에 의해서 설명되는 본 발명의 구성과 작용은 적어도 하나의 실시예로서 설명되는 것이며, 이것에 의해서 상기한 본 발명의 기술적 사상과 그 핵심 구성 및 작용이 제한되지는 않는다.
- 도 8은 본 발명에 따른 심볼 클럭 복구 장치가 포함되는 디지털 TV 수신기의 구성 블록도로서, A/D 변환부(801)는 입력되는 아날로그 통과대역 신호를 디지털 통과대역 신호로 변환하여 위상 분리기(802)로 출력한다. 상기 위상 분리기(802)는 상기 디지털 통과대역 신호를 실수 성분(I)과 허수 성분(Q)으로 분리한 후 반송파 복구부(803)로 출력한다. 상기 반송파 복구부(803)는 디지털 통과대역 I,Q 신호에 기준 반송파 신호를 곱하여 상기 통과대역 I,Q 신호를 디지털 기저대역 I,Q 신호로 변환한 후 재샘플링부(804)로 출력한다. 상기 재샘플링부(804)는 심볼 클럭 복구부(900)에서 출력되는 2배의 심볼 클럭의 주파수(2fs)로 상기 기저대역 I,Q 신호를 샘플링하여 보간된 신호를 상기 심볼 클럭 복구부(900)로 출력한다.

상기 심볼 클릭 복구부(900)는 상기 재샘플링부(804)에서 출력되는 디지털 통과대역 실수 성분의 신호(I''(t))를 제곱하는 제 1 제곱기(901), 허수 성분의 신호(Q''(t))를 제곱하는 제 2 제곱기(902), 상기 제 1, 제 2 제곱기(901,902)에서 출력되는 두 제곱 값을 더하는 덧셈기(903), 상기 덧셈기(903)의 출력을 다시 제곱하는 제 3 제곱기(904), 상기 제 3 제곱기(904)의 출력 스펙트럼의 에지 부분만을 통과시키는 전치 필터(905), 상기 전치 필터(905)를 통과한 신호로부터 타이밍 에러에 관한 정보를 검출하는 수정 가드너 타이밍 에러 검출부(906)에서 출력되는 타이밍 에러 정보 중 저대역 신호 성분만을 필터링하는 저역 통과 필터(907), 및 상기 타이밍 에러 정보의 저대역 성분에 따라 2배의 심볼 클릭의 주파수(2fs)를 새로이 생성시켜 상기 재샘플링부(804)의 샘플링 타이밍을 조절하는 NCO(908)로 구성된다.

이와 같이 구성된 본 발명의 심볼 클릭 복구부(900)의 제 1 제곱기(901)는 상기 재샘플링부(804)에서 보간되어 출력되는 상기 기저대역 I 신호(I''(t))를 제곱하고, 제 2 제곱기(902)는 상기 재샘플링부(804)에서 보간되어 출력되는 상기 기저대역 I 신호 (I''(t))를 제곱하여 덧셈기(903)로 출력한다. 상기 덧셈기(903)에서 두 제곱 신호를 더하면, 반송파 성분이 제거된 기저대역 I,Q 신호로 변환된다.

이때, 상기 제 1, 제 2 제곱기(901,902)의 입력{I''(t), Q''(t)}을 식으로 표현하면 반송파 복구가 완전하게 이루어진 경우에는 상기된 수학식 3과 같고, 반송파 복구가불완전한 동작을 하는 경우에는 상기된 수학식 2와 같다.

-68> 그리고, 반송파 복구가 완전하게 이루어진 경우 상기 제 1, 제 2 제곱기(901,902)
의 출력은 하기의 수학식 4와 같다.

$$\langle 69 \rangle$$
  $\{I''(t)\}^2 = \{I(t)+p\}^2 = I^2(t)+p^2+2pI(t)$ 

[수학식 4]  $\{Q''(t)\}^2 = Q^2(t)$ 

<70> 만일, 반송파 복구가 완전하게 이루어지지 않았다면 상기 제 1, 제 2 제곱기 (901,902)의 출력은 하기의 수학식 5와 같다.

$$\{I''(t)\}^2 = [\{I(t) + p\}\cos(\Delta w_c t + \psi) - Q(t)\sin(\Delta w_c t + \psi)]^2$$

$$= \{I(t) + p\}^2\cos^2(\Delta w_c t + \psi) + Q^2(t)\sin^2(\Delta w_c t + \psi)$$

【수학식 5】 -  $2\{I(t)+p\}Q(t)\cos(\Delta w_c t + \psi)\sin(\Delta w_c t + \psi)$ 

- <73> 그러나, 상기 제 1, 제 2 제곱기(901,902)의 출력을 더하는 덧셈기(903)의 출력은 반송파 복구가 완전한 경우와 불완전한 경우에 대해 하기의 수학식 6과 같이 모두 동일 하다.
- <75> 즉, 상기 덧셈기(903)의 출력으로부터 심볼 클럭 복구를 수행하면 반송파의 영향을 전혀 받지 않는 심볼 클럭 복구를 할 수 있다.

력되어 제곱된다. 상기 제곱기(904)의 출력은 스펙트럼의 에지 부분만을 통과시키는 전 치 필터(905)를 거쳐 수정 가드너 타이밍 에러 검출부(906)로 입력된다.

- 도 9는 원 신호와 크기는 같고, 정확하게 1심볼이 지연된 동위상(inphase) 선형 잡음이 전송 채널 상에 존재하는 경우의 덧셈기(903)의 출력 주파수 특성과 제 3 제곱기 (904)의 출력 주파수 특성 그리고, 전치 필터(905)의 출력 주파수 특성을 보이고 있다. 도 9에서 보면 덧셈기(903)의 출력 신호의 주파수 특성은 심볼 클럭 주파수의 1/2이 되는 주파수(fs/2)에 정보가 완전히 없어졌다. 그러나 제 3 제곱기(904)의 출력 신호의 주파수 특성은 심볼 클럭 주파수의 1/2이 되는 주파수(fs/2)에 새로운 정보가 존재한다. 이는 덧셈기(903)의 출력을 제곱하면서 심볼 클럭 주파수의 1/4이 되는 주파수(fs/4)의 성분 등이 옮겨져오기 때문이다. 상기 전치 필터(905)는 제 3 제곱기(904)의 출력으로부터 심볼 클럭 주파수의 1/2이 되는 주파수(fs/2) 부근을 필터링하여 수정 가드너 타이밍에러 검출부(906)로 출력한다.
- 따라서, 상기 수정 가드너 타이밍 에러 검출부(906)는 심볼 클럭의 타이밍 에러 정보를 추출할 수 있으므로 심볼 클럭의 복원이 가능하게 된다.
- 즉, 상기 수정 가드너 타이밍 에러 검출부(906)는 상기 전치 필터(905)를 통과한 두 개의 심볼 샘플의 차 값에 하나의 중간 샘플을 곱하여 타이밍 에러에 관한 정보를 검출한다. 상기 수정 가드너 타이밍 에러 검출부(906)에서 검출된 타이밍 에러 정보는 저역 통과 필터(907)를 거쳐 NCO(908)로 입력되고, 상기 NCO(908)는 저역 통과 필터링된 타이밍 에러 정보로부터 새로 보정된 두배의 심볼 클릭의 주파수(2fs, fs는 심볼 클릭의주파수)를 생성하여 재샘플링부(804)로 출력한다.

이때, 상기된 제 1, 제 2 제곱기(901,902)와 덧셈기(903)를 이용하지 않고 제곱기 (904)만을 이용하여 재샘플링부(804)에서 출력되는 실수 성분의 신호를 제곱하여 전치 필터로 입력하여도 도 9와 비슷한 결과를 얻을 수 있으나, 이때에는 실수 신호에 포함된 반송파 신호 성분의 영향도 같이 움직이므로 불완전한 반송파 복구가 이루어진 경우에는 정상적인 심볼 클럭 복구 동작이 불가능하게 된다.

- \*81> 한편, 본 발명에서 심볼 클럭 복구부(900)가 심볼 클럭 복구를 위하여 두개의 제곱기(901,902)와 덧셈기(903)를 사용하는 경우 반송파 복구부의 영향을 전혀 받지 않으므로, 본 발명의 다른 실시예로서, 상기 심볼 클럭 복구부(900)는 반송파 복구부(803)를 거치지 않은 통과 대역 신호로부터 심볼 클럭 복구가 가능하다.
- 본 발명의 또 다른 실시예로서, 상기된 제 1, 제 2 제곱기(901,902) 대신 기저대역 I,Q 신호에 각각 절대치를 취하는 두 개의 절대값 연산부를 사용함으로써, 신호를 제곱하면서 발생하는 하드웨어의 부담을 줄임과 동시에 반송파 복구부의 영향을 받지 않는 심볼 클럭 복구부를 구현할 수도 있다.
- 그리고, 본 발명의 A/D 변환부(801)는 고정 발진자(도시되지 않음)에서 출력되는 고정 주파수를 이용하거나, 또는 가변 발진자(도시되지 않음)에서 출력되는 2배의 심볼 클릭의 주파수(2fs)를 이용하여 아날로그 통과대역 신호를 디지털 통과대역 신호로 변환할 수 있다. 이때, 고정 발진자에서 발진된 고정 주파수는 2배의 심볼 주파수(2fs)보다 높고 조정이 안되므로 반송파 복구부(803)와 심볼 클릭 복구부(900) 사이에는 상기 디지털 기저대역 신호를 2배의 심볼 클릭의 주파수(2fs)로 보간하는 재샘플링부(804)가 필요하지만, 가변 발진자를 이용할 경우는 상기 재샘플링부(804)가 필요없게 된다.

본 발명은 상기와 같은 다른 실시예들에 대해서도 덧셈기와 전치 필터 사이에 제곱 기를 추가하면 상기된 도 9와 같은 결과를 얻을 수 있으며, 따라서 고스트 등으로 인해 타이밍 정보를 가져오는 심볼 클럭 주파수의 1/2이 되는 주파수(fs/2) 부근이 크게 일그 러지거나 없어진 경우에도 심볼 클럭 복구를 수행할 수 있게 된다.

### 【발명의 효과】

- 이상에서와 같이 본 발명에 따른 디지털 TV의 심볼 클릭 복구 장치에 의하면, 반송 파 복구부에서 완전히 제거되지 않은 잔류 반송파 성분이 입력되어도 두 개의 제곱기와 덧셈기를 이용하여 이를 제거하고, 또한 상기 덧셈기의 출력에 대해 다시 제곱하여 고스트 등으로 인해 타이밍 정보를 가져오는 fs/2 주파수 부분에 정보가 없어진 경우에도 상기 fs/2 부분에 새로운 정보를 만들어 심볼 클릭을 복구함으로써, 반송파 복구가 불완전한 경우나 또는, 고스트 등에 의해 심볼 클릭 주파수의 1/2이 되는 주파수(fs/2)에 정보가 없어진 경우에도 안정적이고 정확한 심볼 클릭 복구를 수행할 수 있으므로 심볼 클릭 복구 알고리즘의 성능뿐만 아니라 시스템 전체의 성능을 개선시킬 수 있다.
- 이상 설명한 내용을 통해 당업자라면 본 발명의 기술 사상을 이탈하지 아니하는 범위에서 다양한 변경 및 수정이 가능함을 알 수 있을 것이다.
- <87> 따라서, 본 발명의 기술적 범위는 실시예에 기재된 내용으로 한정되는 것이 아니라 특허 청구의 범위에 의하여 정해져야 한다.

### 【특허청구범위】

### 【청구항 1】

아날로그 통과대역 신호를 A/D 클릭 주파수로 샘플링하여 디지털 통과대역 신호로 변환하는 A/D 변환부와, 상기 디지털 통과대역 신호에 반송파 복구 과정을 통해 생성된 기준 반송파 신호를 곱하여 디지털 기저대역 신호로 변환하는 반송파 복구부를 포함하는 디지털 TV 수신기의 심볼 클릭 복구 장치에 있어서,

상기 반송파 복구부에서 출력되는 디지털 기저대역 실수 성분과 허수 성분의 신호를 각각 제곱하여 더한 후 그 결과를 출력하는 연산부;

상기 제곱 연산부의 출력에 대해 다시 제곱하는 제곱기;

상기 제곱기의 출력으로부터 심볼 클럭 주파수의 1/2이 되는 주파수 부근을 필터 링하는 전치 필터;

상기 전치 필터를 통과한 두 개의 심볼 샘플의 차 값에 하나의 중간 샘플을 곱하여 타이밍 에러에 관한 정보를 검출하는 가드너 타이밍 에러 검출부; 그리고

상기 가드너 타이밍 에러 검출부에서 출력되는 타이밍 에러 정보 중 저대역 신호 성분만을 필터링하고, 필터링된 타이밍 에러 정보의 저대역 성분에 따라 새로 보정된 두 배의 심볼 클럭의 주파수를 생성하는 필터 및 발진부로 구성되는 것을 특징으로 하는 디 지털 TV 수신기의 심볼 클럭 복구 장치.

#### 【청구항 2】

제 1 항에 있어서, 상기 연산부는

상기 A/D 변환부에서 출력되는 디지털 통과대역 실수 성분과 허수 성분의 신호를 각각 제곱하여 더한 후 그 결과를 출력하는 것을 특징으로 하는 디지털 TV 수신기의 심 볼 클릭 복구 장치.

### 【청구항 3】

제 1 항에 있어서, 상기 연산부는

상기 반송파 복구부에서 출력되는 디지털 기저대역 실수 성분과 허수 성분의 신호에 대해 각각 절대치를 취하여 더한 후 그 결과를 출력하는 것을 특징으로 하는 디지털 TV 수신기의 심볼 클럭 복구 장치.

#### 【청구항 4】

제 1 항에 있어서, 상기 연산부는

상기 A/D 변환부에서 출력되는 디지털 통과대역 실수 성분과 허수 성분의 신호에 대해 각각 절대치를 취하여 더한 후 그 결과를 출력하는 것을 특징으로 하는 디지털 TV 수신기의 심볼 클럭 복구 장치.

### 【청구항 5】

제 1 항에 있어서.

상기 A/D 변환부의 A/D 클럭 주파수가 고정 주파수인 경우, 상기 반송파 복구부와 심볼 클럭 복구부 사이에 상기 반송파 복구부에서 출력되는 디지털 기저대역 실수 성분 과 허수 성분의 신호를 2배의 심볼 클럭의 주파수로 재샘플링하여 각각 보간하는 재샘플 링부가 더 구비되며, 상기 심볼 클럭 복구부에서 생성된 2배의 심볼 클럭의 주파수는 상

기 재샘플링부로 출력되는 것을 특징으로 하는 디지털 TV 수신기의 심볼 클럭 복구 장치.

### 【청구항 6】

제 1 항에 있어서,

상기 A/D 변환부는 상기 심볼 클럭 복구부에서 생성된 2배의 심볼 클럭의 주파수를 A/D 클럭 주파수로 이용하는 것을 특징으로 하는 디지털 TV 수신기의 심볼 클럭 복구 장치.

【도면】

[도 1]









【도 4】



[도 5]



[도 6]



# [도 7]



[도 8]



[도 9]

