Vector Space

Recall: Vector space

- ◆ A vector space is a nonempty set V of objects, called vectors, which can be added and multiplied by numbers, in such a way that the sum of two elements of V is again an element of V, the product of an element of V by a number is an element of V, and the following properties are satisfied:
- Given the elements u, v, w of V, we have
 - 1. The sum of u and v, denoted by u + v, is in V.
 - 2. u + v = v + u
 - 3. (u + v) + w = u + (v + w)
 - 4. There is a zero vector 0 in V such that, $\mathbf{u} + \mathbf{0} = \mathbf{u}$, $\mathbf{0} + \mathbf{u} = \mathbf{u}$
 - 5. for each u in V, there is a vector -u in V such that u+(-u)=0

Recall: Vector space

- ◆ A vector space is a nonempty set V of objects, called vectors, which can be added and multiplied by numbers, in such a way that the sum of two elements of V is again an element of V, the product of an element of V by a number is an element of V, and the following properties are satisfied:
- Given the elements u, v, w of V, we have
 - 6. The scalar multiple of u by c, denoted by $c\boldsymbol{u}$, is in V
 - 7. If c is a number, c(u + v) = cu + cv
 - 8. $(\mathbf{u} + \mathbf{v})c = c\mathbf{u} + c\mathbf{v}$
 - 9. If c, d are two number, then (cd)v = c(dv)
 - 10. For all elements u of V, we have $1 \cdot u = u$ (1 here is the number one).

Recall: Subspaces

- Let V be a vector space, and let H be a subset of V. Assume that H satisfies the following conditions.:
 - 1. The zero vector of V is in H.
 - 2. If u, v are elements of H, then their sum u + v is also an element of H.
 - 3. If v is an element of H and c a number, the vector cu is in H.
- Properties (1), (2), and (3) guarantee that a subspace H of V is itself a vector space, under the vector space operations already defined in V.
- Every subspace is a vector space.

Linear Combination

• Let V be a vector space, and v_1 , v_2 , ..., v_n be elements of V. Let n real number c_1 , c_2 , ..., c_n , then the vector w obtained by $w = c_1 v_1 + c_2 v_2 + ... + c_n v_n$

is called a linear combination of v_1 , v_2 , ..., v_{n_1} and c_1 , c_2 , ..., c_n are called coefficients of the linear combination.

• The set of all linear combinations of $v_1, v_2, ..., v_n$ is a subspace of V

Picture

• Linear combinations of two vectors u and v.

A Subspace Spanned by a Set

- The set consisting of only the zero vector in a vector space V is a subspace of V, called the zero subspace and written as {0}.
- Span $\{v_1,...,v_p\}$ denotes the set of all vectors that can be written as linear combinations of $v_1,...,v_p$.

A Subspace Spanned by a Set

- ► Example 2: Given v_1 and v_2 in a vector space V, let $H = span\{v_1, v_2\}$. Show that H is a subspace of V.
- Solution: The zero vector is in H, since $0 = 0v_1 + 0v_2$.
 - To show that H is closed under vector addition, take two arbitrary vectors in H, say,

$$u = s_1 v_1 + s_2 v_2$$
 and $w = t_1 v_1 + t_2 v_2$

• By Axioms 2, 3, and 7 for the vector space *V*, (Commutative law, Associative law and Distributive law)

$$u + w = (s_1v_1 + s_2v_2) + (t_1v_1 + t_2v_2)$$

A Subspace Spanned by a Set

- **►** Example 2: Given v_1 and v_2 in a vector space V, let $H = span\{v_1, v_2\}$. Show that H is a subspace of V.
- Solution: The zero vector is in H, since $0 = 0v_1 + 0v_2$.
 - To show that H is closed under vector addition, take two arbitrary vectors in H, say,

$$u = s_1 v_1 + s_2 v_2$$
 and $w = t_1 v_1 + t_2 v_2$

• By Axioms 2, 3, and 7 for the vector space *V*, (Commutative law, Associative law and Distributive law)

$$u + w = (s_1v_1 + s_2v_2) + (t_1v_1 + t_2v_2)$$

- Theorem 1: If $v_1,...,v_p$ are in a vector space V, then Span $\{v_1,...,v_p\}$ is a subspace of V.
- We call Span $\{v_1,...,v_p\}$ the subspace spanned (or generated) by $\{v_1,...,v_p\}$.

Convex Sets

Let S be a subset of a vector space
 V. We shall say that S is convex if given points P, Q in S then the line segment between P and Q is contained in S.

The line segment between P and Q consists of all points

$$(1-t)P+tQ$$
 with, $0 \le t \le 1$

Line Segment: If v, w are elements of V, let u = w - v.
 Then the line segment between v and w is the set of all points v + tu, or

$$v + t(w - v)$$
, $0 \le t \le 1$

Reference

- Introduction to Linear Algebra, Mark Goldman, Emily Mackevicius
- Lecture Notes on Linear Algebra, Arbind K Lal, Sukant Pati
- Lecture notes on linear algebra, David Lerner
- 6502: Mathematics for Engineers 2, James Burnett, Department of Mathematics, University College London
- ENGG2013, Advanced Engineering Math. Kenneth Shum
- Matrices and Determinants 2, Carrer launcher
- http://www.shsu.edu/ldg005/data/mth199/chapter
 5.ppt