Offline algorithm by Reingold and Westbrook 1996 on list update problem

Keypoints –

- 1. Modification of Manasse 1988 algo which runs in O(m*(n!)^2)) and Space O(n!) n is length of list and m is number of requests
- 2. Time complexity of this algo is O(m*(n-1)!*2^n) and Space O(n!)
- 3. Operations: access, insert and delete Static model: Let's consider only access request sequence

List update problem and Offline algorithm

• **Access cost** — Access is done by starting from start of list and searching till the point you find requested item.

Cost of access = position of element in list #cost is not same as time complexity

- **Exchange cost** two items in the list can be transposed side by side for lower access cost in future. **Exchange cost** = no. of exchanges required to convert the list to other list
- Total cost = ∑ (access cost + exchange cost)
- Offline algorithm is an algo. that will give total cost for any request sequence given.

Common Terminologies

- Initial list is L₀ and sequence of requests
 d = < r₁, r₂, ..., r_m >
- Free exchanges Immediately *after* item is accessed that item can be moved forward in the list by repeated exchanges. This is called as free exchanges. They won't cost us anything.
- **Paid exchanges** List can also be rearranged by paid exchanges. For each exchange 1 unit cost. Paid exchanges may also be done **before** the first request arrives.
- If request sequence is of access requests only then free exchanges are not at all necessary for optimum cost calculation .

• Given request sequence : $\delta = \langle r_1, r_2, ..., r_m \rangle$ service sequence: $\beta = \langle E_1, E_2, ..., E_m \rangle$

where E_i is sequence of exchanges to be performed between serving r_{i-1} and r_{i} .

Before first request is processed E_1 is employed on L_0 to form new list L_1 , before second request is processed E_2 is employed on L_1 to form new list L_2 and so on.

- **Net cost** is defined as = $cost(L_0, \partial, \beta)$ when β is employed service sequence.
- The minimum cost to service δ is denoted opt (δ).
- There are several service sequences that achieve the optimum cost. An optimum offline algorithm takes ϑ as input and computes opt(ϑ) and a service sequence that realizes this cost.

• **Theorem 1** :

For any sequence of accesses ∂ , there exists a service sequence containing no free exchanges that achieves the minimum cost to service ∂ in the standard model.

Proof:

Let's consider service sequence with both paid and free exchanges allowed then we will transform that service sequence in only paid exchanges with the same cost.

Free exchange: initial position at $I \rightarrow$ then free exchanges to move to location m (m < l). Cost is only access cost = I

Paid exchange: Initial paid exchanges to move to location m and then access cost.

Exchanges = I-m and access cost = m

Net cost for this request = I;

Hence, all free exchange requests can be turned to paid exchange requests with same cost.

• Inversion table:

The inversion table of a permutation L is a sequence $(a_1, a_2, a_3,, a_n)$ where a_i is the number of elements less than i and to its right in L.

Example:

Let,
$$L_0 = \langle 1, 2, 3, 4, 5 \rangle$$
 and $L_1 = \langle 2, 3, 1, 5, 4 \rangle$ then inversion table is $\langle 0, 1, 1, 0, 1 \rangle$

• Inversion table can be used to identify every permutation of L uniquely and can be encoded by $n(L) = {}^{n}\sum_{i=2} \alpha_{i}(j-1)!$

This will identify every permutation with unique code.

- Minimum number of exchanges of adjacent elements required to convert L_1 to L_2 is equal to $|inv\{L_1, L_2\}|$ and is addition of COMPONENTS in inversion table.
- Every permutation of L can be derived from L by exchange method of Johnson Trotter algorithm

• Motivation of Algorithm:

Between each pair of accesses there are, n! ways to rearrange the list. We show that in computing opt(δ) it is possible to restrict our attention to at most 2ⁿ of these rearrangements.

• Subset Transfer:

It is sequence of **paid exchanges made just prior** to the access(x) that moves a **subset** of items **preceding x** to to just behind x in such a way that **relative order** in subset is not changed.

Let *access(1)* is called then lists that can form by subset transfer are:

position of 1 is at k = 3

then number of subset transfer lists formed are = 2^{k-1}

• Theorem 2:

Let $\partial = \langle r_1, r_2, \ldots, r_m \rangle$ be request sequence. Then there is an optimal service sequence $\boldsymbol{\mathcal{B}}$ in which any rearrangement is subset transfer rearrangement.

Proof

by induction over number of requests:

For m = 1: trivially true as list L is also subset transfer of itself.

Let it be true till (m-1) requests.

We need to prove for mth request.

Let $\beta = \langle E_1, E_2, ..., E_m \rangle$ be arbitrary service sequence which has only paid exchanges(From Theorem 1)

We will show that \mathfrak{G} can be converted to \mathfrak{G}' which has only subset transfer exchanges and $cost(L_0, \partial, \beta') \leq cost(L_0, \partial, \beta)$

i.e an alternate path to reach same place with less cost and that path has only subset transfers.

Let L_1 ' be list formed by E_1 '. Inductive hypotheses on L_1 ' there exists (m-1) length optimal subset transfer service sequence from L_1 '. First request r_1 is access(x). L_1 be list after after applying E_1 to L_0 .

 $E_1 - E_2$ is normal earlier path from $L_0 - L_1 - L_2$ E_1' has only subset transfers E_a is inversion table for $L_1' - L_1$ $E_b = E_2$

• Let **R** be the items that are in front of x in both L_0 and L_1 ;

- let **S** be the items that are in front of x in L_0 but behind x in L_1
- Let **T** be the items that are behind x in L_0 but in front of x in L_1
- Number of items in front of x in $L_1 = r + t$ Let, p_0 is number of exchanges in E_1 access cost of $x = p_0 + r + t + 1$
- For subset transfer L_0 to L_1' : no elements from back would move forward. Hence, T = null set Let, p_1 is number of exchanges in E_1' access(x) from L_1' = r. Let, p_2 be number of exchanges of E_a Total cost from other path = $p_1 + r + 1 + p_2$

Show, $p_0 \ge p_1 + p_2$

inversion between L_0 and L_1 must involve an element of S and either x or an element of R. i.e of this form $(\{S\},x)$ or $(\{S\},\{R\})$

```
e.g – (1,2,3,4,5) is L_0 and (2,3,1,4,5) is L'_1. L_1 is subset transfer of L_0 over 3. R = \{2\} \text{ and } S = \{1\}Inversions involved are (2,1) followed by (3,1)
```

- No inversion between L_1' and L_1 can be of this form. L_1' is formed by subset transfer and we need to convert it to L_1 .
- Hence, proved that 2 inversions are partition between L_0 and L_1 . Hence, new path from L_1 ' is the shortest path from L_0 to L_1

Hence, proved that $p_0 \ge p_1 + p_2$.

Implementation Of Optimum algorithm

```
Let DYN(L, i) be optimum cost to service first i requests and after serving i requests we end with L starting from L_0.

POS(r, L) be position of r in L

MOV(L_1, L_2) is inversion cost of L_1 to L_2

# no requests are served yet
```

• $DYN(L, i) = min_{L'} \{ DYN(L', i-1) + POS(r_i, L') + MOV(L', L) \}$

• By using Theorem 2 , we can consider only those Lists in the previous column whose subset transfer leads to L_i

Method to know number of such lists:

• Consider a row of k-1 girls followed by one Supervisor and n-k boys further.

$$G_i$$
, G_2 , G_3 , G_4 . G_{k-1} , S , B_i , B_2 , B_3 , B_4 . B_{n-k-1}
 B_1 will go and socialize with all girls this can be done in $\binom{k}{1}$ ways.

 B_2 will now go and socialize with girls but he can't cross B_1 ------- $\binom{k+1}{2}$ ways.

And so on.

$$Sum \ of \ all \ these \ ways = \binom{k}{1} + \binom{k+1}{2} + \binom{k+2}{3} + \cdots + \binom{n-1}{n-k} + 1$$

Euler's identity: will add to $\binom{n}{k}$

- If our access element is at position k then we need to consider $\binom{n}{k}$ elements of previous column
- No. of lists with access element at position k = (n-1)!
- Total lookups for i^{th} column = $\binom{n}{j}(n-1)! + \binom{n}{2}(n-1)! + \binom{n}{3}(n-1)! + \dots$ $\dots \binom{n}{n}(n-1)!$ = $(2^n - 1)(n-1)!$ = $O(2^n * (n-1)!)$

For all columns $O(m * 2^n * (n-1)!)$