Claim The sequence an= (-1) diverges

Proof (Cantindiction)

We suppose that $\lim_{n\to\infty} (-1)^n \text{ exists and equals some } a \in \mathbb{R}$.

It follows that for any $\varepsilon>0$ there must exist a number N such that n>N implies $|(-1)^n-a|<\varepsilon$, so in particular (with $\varepsilon=1$) there must exist N such that n>N implies $|(-1)^n-a|<|$.

Notice that if n>N and even the 11-a/</1 (2) while if n>N and odd, the 1-1-a/</1

(x) Inequality (1) tells us that $\alpha \in (0,2)$ while inequality (2) tell us that $\alpha \in (-2,0)$

This is a cantradiction since (-2,0) & (0,2) are disjoint.

(a cannot live in both (-2,0) and (0,2)).