PPI

26.10.2011

R

0

0

X

X

Q

S۱	/ncl	hrón	nv	PO	SR
၂			ıııy	. •	

,	_			-	Q
0	0	1	X	0	0
1	1	1	X	0	1

R

S		_	R
Р	1	X	0

synchrónny PO JK

0	0	1	1	0	0
1	1	1	0	0	1

univerzálny všetky typy správania

synchrónny PO-D

		<u>D</u>	Q
0	0	1	0
1	0	1	1

synchrónny PO-T

Podľa prednášky LOGICKÉ SYSTÉMY, Návrh digitálnych systémov na úrovni logických obvodov, Norbert Frištacký, Katedra informatiky a výpočtovej techniky, FEI-STU, 2003

Asynchrónny sekvenčný obvod

Postup pri návrhu asynchrónneho sekvenčného obvodu.

 Kritérium optimálnosti-minimálny počet preklápacích obvodov, minimálny počet logických členov v kombinačnej časti alebo maximálna operačná rýchlosť.

Postup

- Návrh fundamentálneho automatu 1, rádu, kódovanie stavov, kontrola kritických a nekritických súbehov
- Návrh budiacich funkcií pre stavové premenné
- Návrh výstupných funkcií
- Skupinová minimalizácia budiacich funkcií.

Základným formálnym špecifikačným prostriedkom je tzv. <u>fundamentálny</u> <u>stavový stroj</u> (FSM, automat)

$$M = (A,Q,U,p,v),$$

ktorý má nasledujúcu vlastnosť: pri každom stave $q \in Q$ a pri každom vstupnom symbole $v \in A$ platí:

vstupné slovo: v v v v v v v v v v v v postupnosť stavov: q q1 q2 .. qk q' q' q' q', kde $k \ge 0$ je pevné číslo pre danú dvojicu (q,v)

Formálne: Pri dostatočne veľkom čísle "n" pre každý stav q a vstupný symbol v platí:

$$p(q, vn) = p(q,vn+1), \quad n >= k$$

Stav "q" v danom FA sa nazýva <u>stabilný pre daný vstupný symbol</u> "v" práve vtedy ak platí p(q, v) = q.

Vo fundamentálnom FSM pre každý stav q a vstupný symbol v platí, že jeho dostatočnom opakovaní sa automat dostane do **stabilného stavu** pre vstupný symbol v.

M1	a	b	c	d	
1	1	4	1	1	u
2	Ī	2	(2)	4	w
3	$ 3\rangle$	$\frac{\bar{2}}{\bar{2}}$	1	(3)	r
4	3	(4)	1	(4)	h
S]	p		V

FFSM 1.rádu rozpoznáme podľa toho, že prechodovej funkcií musí platiť: Ak je pri niektorom vstupnom symbole (vektore) t.j. v príslušnom stĺpci v prechodovej tabuľke niektorý stav q_nezakrúžkovaný, potom musí byť pri tomto vtupnom symbole (v tomto stĺpci) aj stav q zakrúžkovaný.

		x1	x2		y1	y2
Α	A	D	A	A	0	0
В	Α	B	B	D	1	0
С	<u>C</u>	В	Α	(C)	0	1
D	С	D	Α	D	1	1

			A00
	Α	В	B01
1			C11
	U	C	D10

z2

z1

SúBEHOVé PRECHODY Menia sa 2 stavové veličiny a nikdy sa nemenia naraz, automat sa môže dostať do neželaného stavu

Prechod A->C----v tabuľke nie je
Prechod C->A ---- 11 -> 00 pri vstupe 11
11->01->00 CBB, CBA je.. kritický súbeh
11->10->00......CDA nekritický súbeh
Prechod D->B----v tabuľke nie je
Prechod B->D-----01->10 pri vstupe 01
01->00->10....BAA kritický súbeh
01->11->10......BCC kritický súbeh

А	В
С	О

A	С	2	В
D	3		1

Univerzálny kód

statický hazard v 1 statický hazard v 0

dynamický hazard pri 0→1

dynamický hazard pri 1→0

Prepojovací podsystém počítača

Zbernice (prepojený každý podsystém počítača s každým)

(v jednom okamihu len 1 vysielač)

Rozdelenie zberníc

1.Podľa spôsobu riadenia

Single master iba 1 nadriadený podsystém-master Multi-master – každé zariadenie môže riadiť zbernicu, ale v danom okamžiku iba jedno

2. Podľa synchronizácie prenosu

Synchrónne zbernice synchronizované synchronizačným impulzom

Asynchrónne zbernice-prenos synchronizovaný odpoveďou podriadeného, pomalšie

Rozdelenie zberníc

3.Podľa časového multiplexu

Multiplexované zbernice-druh informácie sa mení s časom (adresa, inštrukcia, údaj)

Nemultiplexované zbernice – význam a druh informácie sa s časom nemení

4. Podľa tvaru prenášaných údajov

Paralelné zbernice

Sériové zbernice (prenos bit po bite)

Dnešné počítačové zbernice sú paralelné, asynchrónne, nemultiplexované a skladajú sa z nasledujúcich sekcií – adresová (adresa pamäte, v/v zariadenia), údajová (inštrukcie), riadiaca (povely, žiadosti)

Procesor

- Interpretuje inštrukcie programu
 - Výber inštrukcie z pamäte
 - Vykonanie operácie s operandami
 - Realizuje sa prenos informácií medzi časťami počítača

Univerzálne procesory (bohatý, úplný inštrukčný súbor) Problémovo-orientované procesory špecializované funkcie

• Hlavné časti procesora

- Operačná časť
- Riadiaca časť

Operačná časť

- Aritmeticko logická jednotka, ALU
- Registre
- Komunikačné obvody pre medziregistrové prenosy

ALJ

- Paralelná dvojková sčítačka
- Sériové sčítačky
- Funkčné jednotky pre logické operácie
- Posúvacie obvody, logický posun, aritmetický posun, kruhový posun