DATA MINING PROJECT SUGGESTED PROJECT GOAL B

Cazzaro Davide 1138635
Dalla Cia Massimo 1153092
Lovisotto Enrico 1156704
Vianello Enrico 1153101

Introduzione

Obiettivi

- rappresentazione dell'input
- clusterizzabilità degli articoli
- bontà di varie tecniche di clustering
- numero ottimale di cluster
- legame tra cluster e categorie

Dataset in input

Dump di Wikipedia di 100k articoli

Per ogni articolo un JSON con

- titolo
- testo
- id
- categorie

Categorie

Rappresentazione: Word2Vec

Rappresentazione: Bag of Words

$$w_{i,j} = t f_{i,j} \times \log\left(\frac{N}{df_i}\right)$$

 $tf_{i,j}$ = numero di occorrenze di i in j df_i = numero di documenti che contengono i

N = numero totale di documenti

Matrice 3000 x N

Clustering: K-means

Clustering: LDA

Modello statistico generativo

- Documenti considerati mixture di topic
- Topic caratterizzati da insiemi di termini

Iterazioni: 100

k = 80

Topic 1		Topic 2		Topic 3		Topic 4	
word	weight	word	weight	word	weight	word	weight
king	0.0779	attack	0.0446	bank	0.0392	system	0.0259
prince	0.0333	kill	0.0403	company	0.0367	computer	0.0239
queen	0.0325	fight	0.0402	purchase	0.0284	user	0.0224
emperor	0.0295	battle	0.0313	sell	0.0271	software	0.0220

Simplified Silhouette

$$SSC = \frac{b-a}{max(a,b)} = \frac{b-a}{b}$$

$$S = \frac{\min(d) - d}{\max(d, \min(d))} \quad \xrightarrow{K \to n} \quad 1$$

Normalized Mutual Information

Quanto ci "dice" sulle categorie di un articolo la sua appartenenza ad un cluster?

Quanto è stretto il legame tra c e ω?

$$NMI(\Omega, \mathbb{C}) = \frac{I(\Omega, \mathbb{C})}{[H(\Omega) + H(\mathbb{C})]/2}$$

Normalized Mutual Information

Conclusioni

- Word2Vec è rapida e descrive bene il dataset
- bag-of-words è molto più dispendiosa
- la maggioranza delle categorie non sono significative
- Hopkins rivela una buona clusterizzabilità del dataset
- K-means suggerisce K=100, confermata da NMI e Silhouette
- K-means è l'algoritmo più adatto al problema
- GMM, LDA, single-linkage hanno una complessità troppo elevata
- LDA permette tuttavia una veloce caratterizzazione dei cluster