

2019

Nội dung bổ sung

- 1. Matrix decomposition
- 2. Eigendecomposition
- 3. Singular Value Decomposition (SVD)

1. Matrix decomposition

☐ Giải hệ phương trình A.X = B: dễ dàng hơn với A là ma trận △

Forward subsitution → A là ma trận ∆ dưới, A_{ii} ≠ 0

$$\begin{pmatrix} A_{11} & A_{22} & A_{3} & A_{n} \\ A_{21} & A_{22} & 0 & \cdots & 0 & b_{1} \\ A_{31} & A_{32} & A_{33} & \cdots & 0 & b_{3} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ A_{n1} & A_{n2} & A_{n3} & \cdots & A_{nn} & b_{n} \end{pmatrix} \begin{array}{c} x_{1} & = b_{1}/A_{11} \\ x_{2} & = (b_{2} - A_{21}x_{1})/A_{22} \\ x_{3} & = (b_{3} - A_{31}x_{1} - A_{32}x_{2})/A_{33} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{n} & = (b_{n} - A_{n1}x_{1} - A_{n2}x_{2} - \cdots - A_{n,n-1}x_{n-1})/A_{nn} \end{pmatrix}$$

Backward subsitution → A là ma trận ∆ trên, A_{ii} ≠ 0

$$\begin{pmatrix} A_{11} & A_{12} & A_{13} & \cdots & A_{1n} & b_1 \\ 0 & A_{22} & A_{23} & \cdots & A_{2n} & b_2 \\ 0 & 0 & A_{33} & \cdots & A_{3n} & b_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & A_{nn} & b_n \end{pmatrix} \begin{pmatrix} x_n & = & b_n/A_{nn} \\ x_{n-1} & = & (b_{n-1} - A_{n-1,n}x_n)/A_{n-1,n-1} \\ x_{n-2} & = & (b_{n-2} - A_{n-2,n-1}x_{n-1} - A_{n-2,n}x_n)/A_{n-2,n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ x_1 & = & (b_1 - A_{12}x_2 - A_{13}x_3 - \cdots - A_{1n}x_n)/A_{11} \end{pmatrix}$$

B2. Factorization

Bổ sung thêm cho bài giảng

1.1 LU decomposition

☐ Giải hệ phương trình A.X = B

Áp dụng phân rã A = L.U:

$$A.X = B$$
 (1) \Leftrightarrow $LU.X = B$ \Leftrightarrow
$$\begin{cases} L.Y = B & (2) \\ U.X = Y & (3) \end{cases}$$

Thay vì giải hệ phương trình (1), ta lần lượt:

B1. Giải hệ phương trình (2), **tìm Y**, với L là ma trận Δ dưới

B2. Giải hệ phương trình (3), tìm X, với U là ma trận ∆ trên

☐ VD: Giải hệ phương trình dựa trên phép phân rã LU

$$A = \begin{pmatrix} 1 & 2 & 4 \\ 3 & 8 & 14 \\ 2 & 6 & 13 \end{pmatrix}, X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, B = \begin{pmatrix} 3 \\ 13 \\ 4 \end{pmatrix} \Rightarrow L = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 2 & 1 & 1 \end{pmatrix}, U = \begin{pmatrix} 1 & 2 & 4 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix}$$

B1. Giải L.Y = B
$$\begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 3 \\ 13 \\ 4 \end{pmatrix} \Rightarrow \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \\ -6 \end{pmatrix}$$

B2. Giải U.X = Y
$$\begin{pmatrix} 1 & 2 & 4 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \\ -6 \end{pmatrix} \Rightarrow \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \\ -2 \end{pmatrix}$$

B2 Factorization

Bổ sung thêm cho bài giảng

1.1 LU decomposition (tt.)

- ☐ Lời giải, nếu có, của A = L.U là KHÔNG DUY NHẤT
 - có tổng cộng n² phương trình với (n² + n) biến
 - *Doolittle* factorization: diag(L) = 1
 - *Crout* factorization: diag(U) = 1

☐ Bài tập: Áp dụng phép phân rã LU

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix} \quad \Rightarrow \quad L = ? \quad U = ?$$

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 1 & 3 & 4 \end{pmatrix} \implies L = ? \qquad U = ?$$

B1. Linear Algebra

Bổ sung thêm cho bài giảng

1.1 LU decomposition (tt.)

- \square Có phải mọi $A \in M_n()$ đều có thể áp dụng phép phân rã LU?
 - Leading principal submatrix A_k: k dòng, k cột đầu tiên (k ≤ n)
 - điều kiện áp dụng phân rã LU: A khả nghịch, $|A_k| \neq 0$, $\forall k \leq n$

$$\underline{\text{VD}}: A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 1 & 3 & 4 \end{pmatrix} \text{ không thể áp dụng phân rã LU vì:}$$

$$A_2 = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$$
 có $|A_2| = (1 * 4) - (2 * 2) = 0$

 $A_2 = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \text{ có } |A_2| = (1*4) - (2*2) = 0$ • hoán vị các dòng $\rightarrow \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 4 \\ 2 & 4 & 5 \end{pmatrix}$ thì có thể áp dụng phân rã LU!

- \square Ma trân hoán vi (permutation matrix): $P \in M_n()$
 - mỗi dòng, mỗi cột có một hệ số = 1, tất cả các hệ số khác = 0
 - hoán vị các dòng của I hay các cột chuẩn E; (Gauss Jordan)

$$P = (E_{k1}, E_{k2}, ..., E_{kn}), p_{ij} = \begin{cases} 1, & j = k_i \\ 0, & j \neq k_i \end{cases}$$

■ Nhận xét:

(i)
$$|P| = \pm 1$$

(ii)
$$P.P^{T} = P^{T}.P = I$$

(iii)
$$P^{-1} = P^{T}$$

 \square Mọi ma trận vuông $A \in M_n()$: P.A = L.U

B2. Factorization

Bổ sung thêm cho bài giảng

78

1.1 LU decomposition (tt.)

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 1 & 3 & 4 \end{pmatrix} \qquad \begin{matrix} \varphi_1 \colon \mathsf{d}_2 \leftrightarrow \mathsf{d}_3 \\ P_{\varphi_1}(I) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \begin{matrix} \mathsf{Ma} \text{ trận hoán vị } \mathsf{P} \colon \\ P = P_{\varphi_1} \\ \mathsf{Ma} \text{ trận tam giác dư} \\ L = \begin{bmatrix} P_{\varphi_3} . P_{\varphi_2} \end{bmatrix}^{-1} \\ P_{\varphi_2}(I) = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{matrix}$$

$$P_{\varphi_2}(I) = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$P_{\varphi_3}(I) = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 2 & 4 & 5 \end{pmatrix} \qquad \begin{matrix} \varphi_3 \colon \mathsf{d}_3 \to \mathsf{d}_3 - 2\mathsf{d}_1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$P_{\varphi_3}(I) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix}$$

Ma trận hoán vị P:

$$P = P_{\varphi 1}$$

Ma trận tam giác dưới L:

$$L = \left[P_{\varphi 3}.P_{\varphi 2} \right]^{-1}$$

$$P.A = L.U$$

$$P_{\varphi 3}.P_{\varphi 2}.P_{\varphi 1}\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 1 & 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{pmatrix} \qquad P_{\varphi 3}(I) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix}$$

☐ Bài tập: Áp dụng phép phân rã PA = LU

$$A = \begin{pmatrix} 0 & 1 & 4 \\ 1 & 2 & 2 \\ 3 & 1 & 3 \end{pmatrix}$$

B2. Factorization

Bổ sung thêm cho bài giảng

1.1 LU decomposition (tt.)

- ☐ Hàm scipy.linalg.lu(A) trả về 3 kết quả
 - ma trận hoán vị P^T
 - ma trận tam giác dưới L
 - ma trận tam giác trên U

- ☐ Hàm scipy.linalg.lu factor(A) trả về 2 kết quả
 - ma trận "kết hợp":LU = U + (L diag(L))

$$LU = \begin{pmatrix} 3 & 0 & 5 & 2 \\ 1 & 4 & 2 & 6 \\ 0 & 7 & 2 & 3 \\ 8 & 0 & 9 & 5 \end{pmatrix}$$

$$U = triu(LU) = \begin{pmatrix} 3 & 0 & 5 & 2 \\ 0 & 4 & 2 & 6 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 5 \end{pmatrix} \qquad L = LU - U + I = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 7 & 1 & 0 \\ 8 & 0 & 9 & 1 \end{pmatrix}$$

$$L = LU - U + I = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 7 & 1 & 0 \\ 8 & 0 & 9 & 1 \end{pmatrix}$$

B2 Factorization

Bổ sung thêm cho bài giảng

82

1.1 LU decomposition (tt.)

- ☐ Hàm scipy.linalg.lu factor(A) trả về 2 kết quả
 - mảng pivot[n] chứa chuỗi các phép hoán vi để tao ma trân P

VD: pivot =
$$[3, 2, 3, 3]$$

Khởi tao P = I

<u>i = 0</u>: pivot[0] = 3 \Rightarrow hoán vị dòng 0 và dòng 3

$$P_0 = P. \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} = I. \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

- ☐ Hàm scipy.linalg.lu_factor(A) trả về 2 kết quả
 - mảng pivot[n] chứa chuỗi các phép hoán vị để tạo ma trận P

<u>i = 1</u>: pivot[1] = 2 \Rightarrow hoán vị dòng 1 và dòng 2

$$P_{1} = P_{0} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \hline 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

 $\underline{i=2}$: pivot[2] = 3 \Rightarrow hoán vị dòng 2 và dòng 3

$$P_{2} = P_{1} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

B2. Factorization

Bổ sung thêm cho bài giảng

1.1 LU decomposition (tt.)

- ☐ Hàm scipy.linalg.lu_factor(A) trả về 2 kết quả
 - mảng pivot[n] chứa chuỗi các phép hoán vị để tạo ma trận P

 $\underline{i = 3}$: pivot[3] = 3 \Rightarrow không thay đổi

Tóm lại, pivot = [3, 2, 3, 3] sẽ tạo ra ma trận hoán vị:

$$P = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

lacksquare Mở rộng cho ma trận $A \in M_{m,n}(\}$) với $m \neq n$

$$A_{mxn} = P_{mxm}^T . L_{mxn} . U_{nxn}$$

B2. Factorization

Bổ sung thêm cho bài giảng

86

1.1 LU decomposition

☐ Giải hệ phương trình A.X = B

Áp dụng phân rã P.A = L.U:

$$A.X = B$$
 (1) \Leftrightarrow $P.A.X = L.U.X = P.B = B'$ \Leftrightarrow
$$\begin{cases} L.Y = B' & (2) \\ U.X = Y & (3) \end{cases}$$

Thay vì giải hệ phương trình (1), ta lần lượt:

B1. Giải hệ phương trình (2), **tìm Y**, với L là ma trận ∆ dưới

B2. Giải hệ phương trình (3), **tìm X**, với U là ma trận Δ trên

1.2 QR decomposition

 \square $A \in M_{m,n}()$

$$A = Q.R$$

 thừa số Q∈M_{m,n}(}) (Q-factor): gồm các cột trực chuẩn (orthonormal columns):

$$Q^{T}.Q = I_{n}$$

• thừa số $R \in M_n()$ (*R-factor*): ma trận Δ trên, $R_{ii} \neq 0$, khả nghịch Nếu ràng buộc $R_{ii} > 0$ thì $\exists ! < Q, R >$

B2. Factorization

Bổ sung thêm cho bài giảng

88

1.2 QR decomposition (tt.)

☐ Thuật toán Gram-Schmidt

$$\begin{pmatrix}
A_{11} & A_{12} & \cdots & A_{1n} \\
A_{21} & A_{22} & \cdots & A_{2n} \\
\vdots & \vdots & \cdots & \vdots \\
\vdots & \vdots & \cdots & \vdots \\
A_{m1} & A_{m2} & \cdots & A_{mn}
\end{pmatrix} = \begin{pmatrix}
Q_{11} & Q_{12} & \cdots & Q_{1n} \\
Q_{21} & Q_{22} & \cdots & Q_{2n} \\
\vdots & \vdots & \cdots & \vdots \\
Q_{m1} & Q_{m2} & \cdots & Q_{mn}
\end{pmatrix} \begin{pmatrix}
R_{11} & R_{12} & \cdots & R_{1n} \\
0 & R_{22} & \cdots & R_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & R_{nn}
\end{pmatrix}$$

- các cột q_1^T , ..., q_n^T : trực chuẩn
- các hệ số R₁₁, ..., R_{nn} > 0

☐ Thuật toán Gram-Schmidt

$$R_{11} = \left\| a_1^T \right\|$$

$$\widetilde{q}_1^T = a_1^T$$

$$q_1^T = \frac{1}{R_{11}} \widetilde{q}_1^T$$

$$R_{11} = \|a_1^T\|$$

$$\widetilde{q}_1^T = a_1^T$$

$$q_1^T = \frac{1}{R_{11}}\widetilde{q}_1^T$$

$$\vdots$$

$$R_{k-1,k} = q_{k-1}a_k^T$$

$$\widetilde{q}_k^T = a_k^T - (R_{1k}q_1^T + R_{2k}q_2^T + \dots + R_{k-1,k}q_{k-1}^T)$$

$$R_{kk} = \|\widetilde{q}_k^T\|$$

$$q_k^T = \frac{1}{R_{11}}\widetilde{q}_k^T$$

B2 Factorization

Bổ sung thêm cho bài giảng

1.2 QR decomposition (tt.)

☐ Thuật toán Gram-Schmidt

$$\begin{pmatrix} -1 & -1 & 1 \\ 1 & 3 & 3 \\ -1 & -1 & 5 \\ 1 & 3 & 7 \end{pmatrix} = \begin{pmatrix} a_1^T & a_2^T & a_3^T \end{pmatrix} = \begin{pmatrix} q_1^T & q_2^T & q_3^T \end{pmatrix} \begin{pmatrix} R_{11} & R_{12} & R_{13} \\ 0 & R_{22} & R_{23} \\ 0 & 0 & R_{33} \end{pmatrix}$$

• k = 1:

$$R_{11} = ||a_1^T|| = 2 \qquad \widetilde{q}_1^T = a_1^T = \begin{pmatrix} -1\\1\\-1\\1 \end{pmatrix} \qquad q_1^T = \frac{1}{R_{11}} \widetilde{q}_1^T = \begin{pmatrix} -1/2\\1/2\\-1/2\\1/2 \end{pmatrix}$$

☐ Thuật toán Gram-Schmidt

• $\underline{\mathbf{k}} = \underline{\mathbf{2}}$: $R_{12} = q_1.a_2^T = \begin{pmatrix} -1/2 & 1/2 & -1/2 & 1/2 \end{pmatrix} \begin{pmatrix} -1 \\ 3 \\ -1 \\ 3 \end{pmatrix} = 4$ $\widetilde{q}_2^T = a_2^T - R_{12}.q_1^T = \begin{pmatrix} -1 \\ 3 \\ -1 \\ 3 \end{pmatrix} - 4 \cdot \begin{pmatrix} -1/2 \\ 1/2 \\ -1/2 \\ 1/2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$ $R_{22} = \|\widetilde{q}_2^T\| = 2 \qquad q_2^T = \frac{1}{R_{22}} \widetilde{q}_2^T = \begin{pmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{pmatrix}$

B2. Factorization

Bổ sung thêm cho bài giảng

92

1.2 QR decomposition (tt.)

☐ Thuật toán Gram-Schmidt

•
$$\underline{\mathbf{k}} = \underline{\mathbf{3}}$$
:
$$R_{13} = q_1.a_3^T = (-1/2 \quad 1/2 \quad -1/2 \quad 1/2) \begin{pmatrix} 1 \\ 3 \\ 5 \\ 7 \end{pmatrix} = 2 \qquad R_{23} = q_2.a_3^T = 8$$

$$\widetilde{q}_{3}^{T} = a_{3}^{T} - R_{13}.q_{1}^{T} - R_{23}.q_{2}^{T} = \begin{pmatrix} 1 \\ 3 \\ 5 \\ 7 \end{pmatrix} - 2.\begin{pmatrix} -1/2 \\ 1/2 \\ -1/2 \\ 1/2 \end{pmatrix} - 8.\begin{pmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{pmatrix} = \begin{pmatrix} -2 \\ -2 \\ 2 \\ 1/2 \end{pmatrix}$$

$$R_{33} = \|\widetilde{q}_{3}^{T}\| = 4$$
 $q_{3}^{T} = \frac{1}{R_{33}}\widetilde{q}_{3}^{T} = \begin{pmatrix} -1/2 \\ -1/2 \\ 1/2 \\ 1/2 \end{pmatrix}$

☐ Thuật toán Gram-Schmidt

Kết quả phân rã QR:

$$\begin{bmatrix} -1 & -1 & 1 \\ 1 & 3 & 3 \\ -1 & -1 & 5 \\ 1 & 3 & 7 \end{bmatrix} = \begin{bmatrix} -1/2 & 1/2 & -1/2 \\ 1/2 & 1/2 & -1/2 \\ -1/2 & 1/2 & 1/2 \\ 1/2 & 1/2 & 1/2 \end{bmatrix} \cdot \begin{bmatrix} 2 & 4 & 2 \\ 0 & 2 & 8 \\ 0 & 0 & 4 \end{bmatrix}$$

- ☐ Một số cải biên
 - Givens rotations
 - Householder reflections

B2. Factorization

Bổ sung thêm cho bài giảng

1.2 QR decomposition (tt.)

☐ Bài tâp: Áp dụng phép phân rã QR

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix} \begin{pmatrix} \frac{2}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & \frac{3}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ 0 & 0 & \frac{2}{\sqrt{3}} \end{pmatrix}$$

☐ Giải hệ phương trình A.X = B

Áp dụng phân rã QR:

$$A.X = B$$
 (1) \Leftrightarrow $Q R.X = B \Leftrightarrow$
$$\begin{cases} Q.Y = B & (2) \\ R.X = Y & (3) \end{cases}$$

Thay vì giải hệ phương trình (1), ta lần lượt:

- B1. Giải hệ phương trình (2), tìm $Y = Q^T.B (Q^T.Q = I)$
- B2. Giải hệ phương trình (3), tìm X, với R là ma trận ∆ trên
- \Box Dịnh thức: $|A| = \prod_{i=1}^n R_{ii}$
- ☐ Ma trận nghịch đảo: $A^{-1} = (Q.R)^{-1} = R^{-1}.Q^{-1}$

B2. Factorization

Bổ sung thêm cho bài giảng

1.3 Cholesky decomposition (tt.)

☐ Phân rã Cholesky: ma trận đối xứng, xác định dương

$$A = L.L^T = U^T.U$$

L: ma trận tam giác DƯỚI khả nghịch, $L_{ii} > 0$

U: ma trận tam giác TRÊN khả nghịch, U_{ii} > 0

$$\begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn} \end{pmatrix} = \begin{pmatrix} L_{11} & 0 & \cdots & 0 \\ L_{21} & L_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ L_{n1} & L_{n2} & \cdots & L_{nn} \end{pmatrix} \begin{pmatrix} L_{11} & L_{12} & \cdots & L_{1n} \\ 0 & L_{22} & \cdots & L_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & L_{nn} \end{pmatrix}$$

$$A_{ii} = \sum_{k=1}^{i} L_{ki}^{2}$$

$$A_{ij} = \sum_{k=1}^{i} L_{ik} . L_{kj} \qquad (i \neq j)$$

1.3 Cholesky decomposition (tt.)

☐ Phân rã Cholesky: ma trận đối xứng, xác định dương

$$\underline{i=1}$$
: $L_{11}=\sqrt{A_{11}}$ điều kiện: KHÔNG ÂM

$$\underline{i=2}$$
 : $L_{21}=rac{1}{L_{11}}A_{21}$ $L_{22}=\sqrt{A_{22}-L_{21}^2}$ điều kiện: KHÔNG ÂM

$$\begin{array}{ll} \underline{i \geq 3} \colon & L_{31} = \frac{1}{L_{11}} A_{31} \\ \\ L_{ij} = \frac{1}{L_{jj}} (A_{ij} - \sum_{k=1}^{j-1} L_{ik}.L_{jk}) & (2 \leq j < i) \\ \\ L_{ii} = \sqrt{A_{ii} - \sum_{k=1}^{i-1} L_{ik}^2} & \text{diều kiện: KHÔNG ÂM} \end{array}$$

B2. Factorization

Bổ sung thêm cho bài giảng

98

1.3 Cholesky decomposition (tt.)

☐ Phân rã Cholesky: ma trận đối xứng, xác định dương

$$A = \begin{pmatrix} 6 & 15 & 55 \\ 15 & 55 & 225 \\ 55 & 225 & 979 \end{pmatrix}$$

$$L_{11} = \sqrt{A_{11}} = \sqrt{6}$$

$$L_{21} = \frac{A_{21}}{L_{11}} = \frac{15}{\sqrt{6}}$$
 $L_{22} = \sqrt{A_{22} - L_{21}^2} = \sqrt{55 - \frac{225}{6}}$

$$L_{31} = \frac{A_{31}}{L_{11}} = \frac{55}{\sqrt{6}} \qquad L_{32} = \frac{A_{32} - (L_{31}.L_{21})}{L_{22}} = \frac{55}{\sqrt{6}} \qquad L_{33} = \sqrt{A_{33} - L_{31}^2 - L_{32}^2}$$

1.3 Cholesky decomposition (tt.)

☐ Giải hệ phương trình A.X = B

Áp dụng phân rã Cholesky:

$$A.X = B$$
 (1) \Leftrightarrow $U^{T}.U.X = B$ \Leftrightarrow
$$\begin{cases} U^{T}.Y = B & (2) \\ U.X = Y & (3) \end{cases}$$

Thay vì giải hệ phương trình (1), ta lần lượt:

- B1. Giải hệ phương trình (2), tìm Y, với U^T là ma trận ∆ dưới
- B2. Giải hệ phương trình (3), tìm X, với U là ma trận Δ trên

B2. Factorization

Bổ sung thêm cho bài giảng

Nội dung bổ sung

- 1. Matrix decomposition
- 2. Eigendecomposition
- 3. Singular Value Decomposition (SVD)

2. Eigendecomposition

- ☐ Ma trận vuông cấp n: $A \in M_n()$
 - Đa thức đặc trưng (characteristic polynomial)

$$p_A(\lambda) = |A - \lambda . I_n|$$
 $\lambda \in$

• Phương trình đặc trưng (characteristic equation)

$$\lambda^{n} + b_{n-1}\lambda^{n-1} + \dots + b_{1}\lambda + b_{0} = 0$$
 $\lambda \in \}$

Định lý Cayley – Hamilton

$$A^n + b_{n-1}A^{n-1} + ... + b_1A + b_0 = 0$$

A là nghiệm của phương trình đặc trưng của chính nó

B2. Factorization

Bổ sung thêm cho bài giảng

2. Eigendecomposition (tt.)

- ☐ Định lý Cayley Hamilton
 - Nếu $b_0 \neq 0 \Rightarrow |A| = (-1)^n . b_0 \Rightarrow A$ khả nghịch

$$A^{-1} = \frac{-1}{b_0} (A^{n-1} + b_{n-1}A^{n-2} + \dots + b_1 I)$$

- ☐ Ma trận vuông cấp n: $A \in M_n()$
 - Nghiệm λ₀ của p_A(λ) gọi là [giá] trị riêng (eigenvalue) của A
 - Hệ phương trình thuần nhất (homogeneous system)

$$(A - \lambda . I_n).X = 0$$

có vô số nghiệm x = $(x_1,\,x_2,\,...,\,x_n)\in \}^n$, ứng với trị riêng λ

Nghiệm x ≠ 0 gọi là vecto riêng (eigenvector) của A ứng với λ

Định lý:

Các vecto riêng ứng với các trị riêng khác nhau là độc lập tuyến tính

B2. Factorization

Bổ sung thêm cho bài giảng

104

2. Eigendecomposition (tt.)

lacksquare Giải phương trình đặc trưng để <u>tìm giá trị riêng</u> λ của lacksquare

$$|A - \lambda .I| = 0$$

☐ Giải hệ phương trình thuần nhất để tìm các vectơ riêng ≠ 0

$$(A - \lambda.I).X = 0$$

■ Nhận xét

- x là vectơ riêng ứng với trị riêng λ_0 thì $\alpha.x$ cũng là vectơ riêng
- Chỉ có 1 trị riêng λ_x ứng với một vectơ riêng x cho trước

$$trace(A) = \sum_{i=1}^{n} \lambda_i$$

$$\mid A \mid = \prod_{i=1}^n \lambda_i$$

• Nếu n giá trị riêng đều ≠ 0 thì A khả nghịch

B2. Factorization

Bổ sung thêm cho bài giảng

2. Eigendecomposition (tt.)

■ Nhận xét

- A có n giá trị riêng (số thực và số phức)
- Nếu A là ma trận <u>đối xứng</u> thì các giá trị riêng đều là số thực
- Nếu A là ma trận <u>đường chéo</u> thì các hệ số trên đường chéo là các giá trị riêng
- A xác định dương ⇔ n giá trị riêng đều là số thực dương

☐ Chéo hóa ma trận (diagonalization)

Với **n** vector riêng độc lập tuyến tính, ứng với các λ_i phân biệt

 Λ là ma trận đường chéo chứa các giá trị riêng λ_i

 $P(modal\ matrix)$ tạo thành từ n vector riêng X_i^T : $|P| \neq 0$

$$P = \begin{pmatrix} X_1^T & X_2^T & \dots & X_n^T \end{pmatrix}$$

$$P^{-1}.A.P = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix} = \Lambda$$

$$A = P.\Lambda.P^{-1}$$

Khi đó, A gọi là ma trận chéo hóa được (diagonalizable matrix)

B2. Factorization

Bổ sung thêm cho bài giảng

2. Eigendecomposition (tt.)

☐ Chéo hóa ma trận (diagonalization)

VD: Các ma trận không chéo hóa được:

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \rightarrow \begin{vmatrix} 1 - \lambda & 1 \\ 0 & 1 - \lambda \end{vmatrix} = 0 \implies \lambda_1 = \lambda_2 = 1$$

$$A = \begin{pmatrix} 1 & 1 \\ -2 & 3 \end{pmatrix} \rightarrow \begin{vmatrix} 1 - \lambda & 1 \\ -2 & 3 - \lambda \end{vmatrix} = 0 \implies \lambda^2 - 4\lambda + 5 = 0$$

☐ Ma trận vuông cấp n: $A \in M_n()$). Tính A^k , với k >> N!

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}. \quad \text{Tinh } A^{100}.$$

B2. Factorization

Bổ sung thêm cho bài giảng

2. Eigendecomposition (tt.)

☐ Ma trận "xác định dương" (positive definite matrix)

Ma trận vuông, đối xứng $A \in M_n()$):

$$\forall x \neq 0: \qquad x.A.x^T > 0$$

VD: Ma trận l₂ là xác định dương

$$(x_1 x_2) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = (x_1^2 + x_2^2) > 0 (x_1 x_2) \neq 0$$

Kiểm tra $A \in M_n()$) có phải ma trận xác định dương?

☐ Ma trận của dạng toàn phương (quadratic form)

A là ma trận <u>đối xứng</u> $Q(x) = x.A.x^{T} = \begin{pmatrix} x_{1}, x_{2}, \dots, x_{n} \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix}$

$$Q(x) = xAx^{T} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_{i} x_{j} = \sum_{i=1}^{n} a_{ii} x_{i}^{2} + 2 \sum_{i < j} a_{ij} x_{i} x_{j}$$

<u>VD</u>:

$$Q(x) = (x_1, x_2, x_3) \begin{pmatrix} -1 & 1 & -3 \\ 1 & 4 & 2 \\ 3 & 2 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 3x_1^2 + 4x_2^2 + 2x_1x_2 - 6x_1x_3 + 4x_2x_3$$

B2. Factorization

Bổ sung thêm cho bài giảng

2. Eigendecomposition (tt.)

- ☐ Ma trận của dạng toàn phương (quadratic form)
 - Dạng toàn phương chính tắc:

$$Q(x) = x.A.x^{T} = a_{1}x_{i}^{2} + a_{2}x_{2}^{2} + \dots + a_{n}x_{n}^{2}$$

 \Rightarrow A là ma trận đường chéo

- ☐ Ma trận của dạng toàn phương (quadratic form)
 - Đưa về dạng chính tắc bằng phương pháp biến đổi trực giao

A có n giá trị riêng phân biệt: $\lambda_1,\,\lambda_2,\,...,\,\lambda_n\Rightarrow A=P.\Lambda.P^{-1}$

$$y = x.F$$

$$y = x.P$$
 $x = y.P^T$

Ta có:

$$xAx^{T} = (yP^{T})(P\Lambda P^{T})(Py^{T}) = y\Lambda y^{T}$$

$$Q(y) = y\Lambda y^{T} = \lambda_{1}y_{1}^{2} + \lambda_{2}y_{2}^{2} + \dots + \lambda_{n}y_{n}^{2}$$

B2. Factorization

Bổ sung thêm cho bài giảng

2. Eigendecomposition (tt.)

☐ Ma trận của dạng toàn phương (quadratic form)

- ☐ Ma trận "xác định dương" (positive definite matrix)
 - Định lý:

Q(x) xác định dương khi và chỉ khi có đúng n hệ số dương trong dạng chính tắc.

• Định lý Sylvester:

A là ma trận của dạng toàn phương Q(x)

- (i) Q(x) xác định DƯƠNG \Leftrightarrow $|A_k| > 0$, $\forall k$
- (ii) Q(x) xác định ÂM \Leftrightarrow $|A_1| < 0$ và các $|A_k|$ đan dấu kể từ k > 1

B2. Factorization

Bổ sung thêm cho bài giảng

Nội dung bổ sung

- 1. Matrix decomposition
- 2. Eigendecomposition
- 3. Singular Value Decomposition (SVD)

☐ Ma trận U trực giao (orthogonal matrix)

$$U.U^T = U^T.U = I$$

☐ Singular Value Decomposition

$$A = U.S.V^T$$

- S: ma trận đường chéo, các hệ số không âm ($singular\ values$) $\sqrt{\lambda_i}$ sắp xếp giảm dần
- V: ma trận trực giao (chuẩn), các cột (right-singular vectors)
 chính là các vecto riêng
- U: ma trận trực giao (chuẩn), các cột (left-singular vectors)

B2. Factorization

Bổ sung thêm cho bài giảng

3. Singular Value Decomposition (tt.)

☐ Tìm không gian đặc trưng mới F' tạo phân hoạch trên items tốt hơn không gian đặc trưng ban đầu F

☐ Các bước thực hiện

Bước 1: Tạo ma trận P = AT.A

1

Bước 2: Tạo ma trận đường chéo S và S-1

Tính singular values của P: $s_i = \sqrt{\lambda_i}, s_1 \ge s_2 \ge ... \ge s_r$

Bước 3: Tạo ma trận VT

Tìm eigenvectors của ${f P}$ và chuẩn hóa thành ma trận trực chuẩn để tạo thành <u>các dòng</u> của ma trận ${f V}^{T}$

(ưu tiên eigenvectors có eigenvalues lớn thì được xếp trước)

Bước 4: Tao ma trân U = A.V.S⁻¹ ←------

B2. Factorization

Bổ sung thêm cho bài giảng

3. Singular Value Decomposition (tt.)

☐ Ví dụ:

$$A = \begin{pmatrix} 3 & 1 & 1 \\ -1 & 3 & 1 \end{pmatrix}$$

Bước 1: Tạo ma trận $P = A^T.A$

$$A^{T} = \begin{pmatrix} 3 & -1 \\ 1 & 3 \\ 1 & 1 \end{pmatrix} \qquad P = A^{T}.A = \begin{pmatrix} 10 & 0 & 2 \\ 0 & 10 & 4 \\ 2 & 4 & 2 \end{pmatrix}$$

Bước 2: Tao ma trân đường chéo S và S-1

a. Tìm eigenvalues của P

$$P.\vec{x} = \lambda.\vec{x} \Rightarrow \begin{vmatrix} 10 - \lambda & 0 & 2 \\ 0 & 10 - \lambda & 4 \\ 2 & 4 & 2 - \lambda \end{vmatrix} = \lambda(\lambda - 10)(\lambda - 12) = 0$$

$$\Rightarrow \begin{cases} \lambda_1 = 12 \\ \lambda_2 = 10 \end{cases}$$

b. Sắp xếp giảm dần các eigenvalues

$$S = \begin{pmatrix} \sqrt{12} & 0 \\ 0 & \sqrt{10} \end{pmatrix} \qquad S^{-1} = \begin{pmatrix} \frac{1}{\sqrt{12}} & 0 \\ 0 & \frac{1}{\sqrt{10}} \end{pmatrix} \qquad rank = 2$$

B2. Factorization

Bổ sung thêm cho bài giảng

3. Singular Value Decomposition (tt.)

Bước 3: Tạo V^T

• Với $\lambda_1 = 12$

$$\begin{pmatrix} -2 & 0 & 2 \\ 0 & -2 & 4 \\ 2 & 4 & -10 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow x_1 = x_3 = 1 \qquad x_2 = 2 \Rightarrow \|(x_1, x_2, x_3)\| = \sqrt{6}$$

$$\Rightarrow \vec{v}_1 = (\frac{1}{2}, \frac{2}{2}, \frac{1}{2})$$

• Với $\lambda_2 = 10$

$$\begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & 4 \\ 2 & 4 & -8 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow x_3 = 0 \qquad x_1 = -2 = -2x_2 \Rightarrow \|(x_1, x_2, x_3)\| = \sqrt{5}$$

$$\Rightarrow \vec{v}_2 = (\frac{-2}{\sqrt{5}}, \frac{1}{\sqrt{5}}, 0) \Rightarrow V^T = \begin{pmatrix} \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} & 0 \end{pmatrix}$$

123

Bước 4: Tạo ma trận U = A.V.S-1

$$U = \begin{pmatrix} 3 & 1 & 1 \\ -1 & 3 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{6}} & \frac{-2}{\sqrt{5}} \\ \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{6}} & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{12}} & 0 \\ 0 & \frac{1}{\sqrt{10}} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

Kiểm chứng kết quả:

$$U.S.V^{T} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \sqrt{12} & 0 \\ 0 & \sqrt{10} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} & 0 \end{pmatrix} = \begin{pmatrix} 3 & 1 & 1 \\ -1 & 3 & 1 \end{pmatrix} = A$$

B2 Factorization

Bổ sung thêm cho bài giảng

3. Singular Value Decomposition (tt.)

 \square Giả sử $A \in M_{m,n}()$, với (m < n)

 $P = A^T.A \in M_n() \Rightarrow tính định thức cấp <math>n$ để tìm λ : $|P - \lambda.I_n| = 0$

Xét B = $A^T \in M_{n,m}()$

Ta có: Q = $B^{T}.B = (A^{T})^{T}.A^{T} = A.A^{T} \in \mathbf{M}_{m}()$

Chỉ cần tính định thức cấp \mathbf{m} để tìm λ : $|\mathbf{Q} - \lambda.\mathbf{I}_{\mathbf{m}}| = 0$

 $\mathsf{A} = \mathsf{B}^\mathsf{T} = (\mathsf{U}_\mathsf{B}.\mathsf{S}_\mathsf{B}.\mathsf{V}_\mathsf{B}^\mathsf{T})^\mathsf{T} = \mathsf{V}_\mathsf{B}.\mathsf{S}_\mathsf{B}.\mathsf{U}_\mathsf{B}^\mathsf{T}$

Nhận xét: Vai trò của U_A và V_B hoán đổi cho nhau

☐ Ví dụ:

$$A = \begin{pmatrix} 3 & 1 & 1 \\ -1 & 3 & 1 \end{pmatrix}$$

Bước 1: Tạo ma trận Q = A.A^T

$$A^{T} = \begin{pmatrix} 3 & -1 \\ 1 & 3 \\ 1 & 1 \end{pmatrix} \qquad Q = A.A^{T} = \begin{pmatrix} 11 & 1 \\ 1 & 11 \end{pmatrix}$$

B2. Factorization

Bổ sung thêm cho bài giảng

3. Singular Value Decomposition (tt.)

Bước 2: Tạo ma trận đường chéo S và S⁻¹

a. Tìm eigenvalues của Q

$$Q.\vec{x} = \lambda.\vec{x} \Rightarrow \begin{vmatrix} 11 - \lambda & 1 \\ 1 & 11 - \lambda \end{vmatrix} = (11 - \lambda)^2 - 1 = (\lambda - 12)(\lambda - 10) = 0$$

$$\Rightarrow \begin{cases} \lambda_1 = 12 \\ \lambda_2 = 10 \end{cases}$$

b. Sắp xếp giảm dần các eigenvalues

$$S = \begin{pmatrix} \sqrt{12} & 0 \\ 0 & \sqrt{10} \end{pmatrix} \qquad S^{-1} = \begin{pmatrix} \frac{1}{\sqrt{12}} & 0 \\ 0 & \frac{1}{\sqrt{10}} \end{pmatrix} \qquad rank = 2$$

Bước 3: Tạo U

• Với $\lambda_2 = 12$

$$\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow x_1 = x_2 = 1 \qquad \Rightarrow \|(x_1, x_2)\| = \sqrt{2}$$
$$\Rightarrow \vec{u}_1 = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$$

Với λ₂ = 10

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow x_1 = -1 = -x_2 \qquad \Rightarrow \|(x_1, x_2)\| = \sqrt{2}$$

$$\Rightarrow \boxed{\vec{u}_2 = (\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}})} \qquad \Rightarrow U = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

B2. Factorization

Bổ sung thêm cho bài giảng

128

3. Singular Value Decomposition (tt.)

Bước 4: Tạo ma trận V^T ($V^{T} = S^{-1}.U^{-1}.A = S^{-1}.U^{T}.A$)

$$V^{T} = \begin{pmatrix} \frac{1}{\sqrt{12}} & 0\\ 0 & \frac{1}{\sqrt{10}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 3 & 1 & 1\\ -1 & 3 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}}\\ \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} & 0 \end{pmatrix}$$

Kiểm chứng kết quả:

$$U.S.V^{T} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \sqrt{12} & 0 \\ 0 & \sqrt{10} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} & 0 \end{pmatrix} = \begin{pmatrix} 3 & 1 & 1 \\ -1 & 3 & 1 \end{pmatrix} = A$$

□ Compact SVD

☐ Truncated SVD (Low-rank approximation)

Chọn $r = k \ll MIN(m, n)$

B2. Factorization

Bổ sung thêm cho bài giảng

3. Singular Value Decomposition (tt.)

- \square Giả sử $A \in M_{m,n}()$
 - Ma trận nghịch đảo TRÁI (*left inverse*): X.A = I
 - Ma trận nghịch đảo PHẢI (*right inverse*): A.X = I
 - Với ma trận vuông $A \in M_n()$

131

☐ Ma trận giả nghịch đảo (pseudo-inverse — Moore-Penrose)

Giả sử $A \in M_{m,n}()$

Nếu (m ≥ n) và các CỘT của A độc lập tuyến tính

Khi đó, ma trận (A^T.A) khả nghịch

Ma trận nghịch đảo TRÁI của A: $A^{\dagger} = (A^{T}.A)^{-1}.A^{T}$

$$A^{\dagger}.A = (A^{T}.A)^{-1}.A^{T}.A = I$$

Nếu (m ≤ n) và các DÒNG của A độc lập tuyến tính

Khi đó, ma trận (A.A^T) khả nghịch

Ma trận nghịch đảo PHẢI của A: $A^{\dagger} = A^{T}.(A.A^{T})^{-1}$

$$A.A^{\dagger} = A.A^{T}.(A.A^{T})^{-1} = I$$

B2. Factorization

Bổ sung thêm cho bài giảng

3. Singular Value Decomposition (tt.)

☐ Các ma trận trực giao U, V và ma trận đường chéo S

$$A = U.S.V^T$$
 $A^T = (U.S.V^T)^T = V.S.U^T$

$$(A^{T}.A) = (V.S.U^{T}).U.S.V^{T} = V.S.(U^{T}.U).S.V^{T} = V.S^{2}.V^{T}$$

Ma trận nghịch đảo trái:

$$A^{\dagger} = (A^{T}.A)^{-1}.A^{T} = (V.S^{2}.V^{T})^{-1}.(V.S.U^{T}) = (V^{T})^{-1}.(S^{2})^{-1}.V^{-1}.V.S.U^{T}$$

$$A^{\dagger} = (V^{T})^{-1}.S^{-1}.S^{-1}.S.U^{T} = (V^{T})^{-1}.S^{-1}.U^{T}$$

Vì V là ma trận trực giao nên: $A^{\dagger} = V.S^{-1}.U^{T}$

Tài liệu tham khảo

Boyd S. & Vandenberghe L., *Introduction to Applied Linear Algebra. Vectors, Matrices, and Least Squares*, Cambridge University Press, 2018.

Đậu Thế Cấp, Đại số tuyến tính, NXB Giáo dục, 2008.

Lê Văn Hợp, *Bài giảng môn Toán Đại số B1* (Đại số tuyến tính).

Nguyễn Duy Thuận và các tác giả, Đại số tuyến tính, NXB ĐH Sư phạm, 2003.

134

B2. Factorization

Bổ sung thêm cho bài giảng