Market Basket Analysis

Market Basket Analysis is one of the key techniques used by large retailers to uncover associations between items.

Bread and Jam

Bread and Butter

Association Rule Mining

Transaction at a Local Market

T1	Α	В	С
T2	Α	С	D
Т3	В	С	D
T4	Α	D	E
T5	В	С	Е

Apriori algorithm uses frequent item sets to generate association rules. It is based on the concept that a subset of a frequent itemset must also be a frequent itemset.

But what is a frequent item set?

Frequent Itemset is an itemset whose support value is greater than a threshold value.

Example

TID	Items
T1	134
T2	235
T3	1235
T4	25
T5	135

Min. Support count = 2

Apriori Algorithm - 1st Iteration

C1

TID	Items
T1	134
T2	235
T3	1235
T4	2 5
T5	135

itemset	Support
{1}	3
{2}	3
{3}	4
{4}	1
{5}	4

F1

Apriori Algorithm – 2nd Iteration

Only Items present in F1

C2

Itemset	Support	
{1,2}	1	
{1,3}	3	
{1,5}	2	
{2,3}	2	
{2,5}	3	
{3,5}	3	

Items

135

TID

T5

Itemset	Support
{1,3}	3
{1,5}	2
{2,3}	2
{2,5}	3
{3,5}	3

Itemset	Support
{1,2,3}	
{1,2,5}	
{1,3,5}	
{2,3,5}	

Apriori Algorithm – Pruning

F2

Itemset	Support
{1,3}	3
{1,5}	2
{2,3}	2
{2,5}	3
{3,5}	3

Itemset	In F2?
{1,2,3}, <mark>{1,2}</mark> , {1,3}, {2,3}	NO
{1,2,5}, <mark>{1,2}</mark> , {1,5}, {2,5}	NO
{1,3,5},{1,5}, {1,3}, {3,5}	YES
{2,3,5}, {2,3}, {2,5}, {3,5}	YES

C3

Apriori Algorithm – 4th Iteration

TID	Items
T1	134
T2	235
T3	1235
T4	2 5
T5	135

Itemset	Support
{1,2,3,5}	1

C3

Itemset	Support
{1,3,5}	2
{2,3,5}	2

For I = $\{1,3,5\}$, subsets are $\{1,3\}$, $\{1,5\}$, $\{3,5\}$, $\{1\}$, $\{3\}$, $\{5\}$ For I = $\{2,3,5\}$, subsets are $\{2,3\}$, $\{2,5\}$, $\{3,5\}$, $\{2\}$, $\{3\}$, $\{5\}$

For every subsets S of I, output the rule:

S → (I-S) (S recommends I-S)

if support(I)/support(S) >= min_conf value

Assume minimum confidence is 60%

Applying Rules to Item set F3

1. {1,3,5}

- ✓ Rule 1: {1,3} → ({1,3,5} {1,3}) means 1 & 3 → 5
 Confidence = support(1,3,5)/support(1,3) = 2/3 = 66.66% > 60%
 Rule 1 is selected
- ✓ Rule 2: $\{1,5\}$ → $\{\{1,3,5\}$ $\{1,5\}\}$) means 1 & 5 → 3 Confidence = support $\{1,3,5\}$ /support $\{1,5\}$ = 2/2 = 100% > 60% Rule 2 is selected
- ✓ Rule 3: {3,5} → ({1,3,5} {3,5}) means 3 & 5 → 1
 Confidence = support(1,3,5)/support(3,5) = 2/3 = 66.66% > 60%
 Rule 3 is selected

Applying Rules to Item set F3

1. {1,3,5}

- ✓ Rule 4: {1} → ({1,3,5} {1}) means 1 → 3 & 5 Confidence = support(1,3,5)/support(1) = 2/3 = 66.66% > 60%Rule 4 is selected
- ✓ Rule 5: {3} → ({1,3,5} {3}) means 3 → 1 & 5
 Confidence = support(1,3,5)/support(3) = 2/4 = 50% <60%</p>
 Rule 5 is rejected
- ✓ Rule 6: {5} → ({1,3,5} {5}) means 5 → 1 & 3
 Confidence = support(1,3,5)/support(3) = 2/4 = 50% < 60%</p>
 Rule 6 is rejected

MEASURES OF PREDICTIVE ABILITY OF THE RULES

$$X \Longrightarrow Y \xrightarrow{Support} \frac{frq(X,Y)}{N}$$

$$Confidence = \frac{frq(X,Y)}{frq(X)}$$

$$Lift = \frac{Support}{Supp(X) \times Supp(Y)}$$

- Support refers to the percentage of baskets where the rule was true (both left and right side products were present).
 - Frequency of items bought over all transactions
- Confidence measures what percentage of baskets that contained the left-hand product also contained the right.
 - How often items X and Y occured together based on number of X occur(left item)
 - Support (X and Y) / Support (X)
- Lift/Correlation measures how much more frequently the left-hand item is found with the right than without the right.
 - Confidence of X and Y over number of Y occur(right item)
 - √ Confidence(X and Y) / Support(Y)

Association Rule Mining

 $Confidence = \frac{freq(A, B)}{freq(A)}$

$$A \implies B$$

 $Support = \underline{freq(A, B)}$

$$Lift = \frac{Support}{Supp(A) \times Supp(B)}$$

EXAMPLE OF ASSOCIATION RULES

Assume there are 5 customers

3 of them bought milk, 2 bought potato chip and 2 bought both of them

Transaction 1: Frozen pizza, cola, milk

Transaction 2: Milk, potato chips Transaction 3: Cola, frozen pizza Transaction 4: Milk, potato chips

Transaction 5: Cola, pretzels

milk -> potato chip

```
support milk = P(milk) = 3/5 = 0.6

support potato chip = P(potato chip) = 2/5 =
```

support = P(milk & potato chip) = 2/5 = 0.4

confidence

= support (milk & potato chip)/support(milk)

= 0.4/0.6

CONFIDENCE = P(Milk &

= 0.67

potato chip) /P(Milk)

lift = confidence/support(potato chip) = 0.67/0.40 = 1.67

LIFT =

[P(Milk & Potato chip)/P(milk)] /P(Potato chip)

Any rule with a lift < 1 does not indicate a cross-selling opportunity

How about

Potato chip

Flowchart - Apriori Algorithm

Disadvantages

1. It requires high computation if the itemsets are very large and the minimum support is kept very low.

2. The entire database needs to be scanned.

Methods To Improve Apriori Efficiency

- 1. **Partitioning:** This method requires only two database scans to mine the frequent itemsets. It says that for any itemset to be potentially frequent in the database, it should be frequent in at least one of the partitions of the database.
- 2. **Sampling:** This method picks a random sample S from Database D and then searches for frequent itemset in S. It may be possible to lose a global frequent itemset. This can be reduced by lowering the min_sup.
- 3. **Hash-Based Technique:** This method uses a hash-based structure called a hash table for generating the k-itemsets and its corresponding count. It uses a hash function for generating the table.

Frequent Pattern Growth Algorithm

FP Growth Algorithm

		Item	Frequency
		А	1
		С	2
Transaction ID	Items	D	1
T1	{E,K,M,N,O,Y}	E	4
T2	{ <u>D,E,K,N,O,Y</u> }		1
T3	{A,E,K,M}		1
T4	{C,K,M,U,Y}	K	5
T5	{C,E,I,K,O,O}	M	3
		N	2
Items	Frequent Pattern Generated	0	3
Υ	{ <k,y:3>}</k,y:3>	U	1
0	{< <u>K,O</u> : 3>, <e,o: 3="">, <e,k,o: 3="">}</e,k,o:></e,o:>	V	2
M	{ <k,m 3="" :="">}</k,m>	Υ	3
E	{ <e,k:3>}</e,k:3>		

K

Consider minimum threshold =3

Frequent Pattern set L = {K:5, E:4, M:3, O:3, Y:3}

Transaction ID	Items	Ordered-Item Set
T1	$\{E,K,M,N,O,Y\}$	{K,E,M,O,Y}
T2	{D,E,K,N,O,Y}	{K,E,O,Y}
Т3	{A,E,K,M}	{K,E,M}
T4	{C,K,M,U,Y}	{K,M,Y}
T5	{C,E,I,K,O,O}	{K,E,O}

Transaction ID	Items	Ordered-Item Set
T1	{E,K,M,N,O,Y}	{K,E,M,O,Y}
T2	{D,E,K,N,O,Y}	{K,E,O,Y}
Т3	{A,E,K,M}	{K,E,M}
T4	{C,K,M,U,Y}	{K,M,Y}
T5	{C,E,I,K,O,O}	{K,E,O}

a) Inserting the set {K, E, M, O, Y}:

Transaction ID	Items	Ordered-Item Set
T1	{E,K,M,N,O,Y}	{K,E,M,O,Y}
T2	{D,E,K,N,O,Y}	{K,E,O,Y}
T3	{A,E,K,M}	{K,E,M}
T4	{C,K,M,U,Y}	{K,M,Y}
T5	{C,E,I,K,O,O}	{K,E,O}

c) Inserting the set {K, E, M}:

Transaction ID	Items	Ordered-Item Set
T1	{E,K,M,N,O,Y}	{K,E,M,O,Y}
T2	{D,E,K,N,O,Y}	{K,E,O,Y}
T3	{A,E,K,M}	{K,E,M}
T4	{C,K,M,U,Y}	{K,M,Y}
T5	{C,E,I,K,O,O}	{K,E,O}

d) Inserting the set {K, M, Y}:

Transaction ID	Items	Ordered-Item Set
T1	{E,K,M,N,O,Y}	{K,E,M,O,Y}
T2	{D,E,K,N,O,Y}	{K,E,O,Y}
T3	{A,E,K,M}	{K,E,M}
T4	{C,K,M,U,Y}	{K,M,Y}
T5	{C,E,I,K,O,O}	{K,E,O}

e) Inserting the set {K, E, O}:

Now, for each item, the **Conditional Pattern Base** is computed which is path labels of all the paths which lead to any node of the given item in the frequent-pattern tree.

Items	Conditional Pattern Base
Y	{{K,E,M,O:1}, {K,E,O:1}, {K,M:1}}
0	{{K,E,M:1}, {K,E:2}}
M	{{K,E:2}, {K:1}}
E	{K:4}
K	

Now for each item the **Conditional Frequent Pattern Tree is built.** It is done by taking the set of elements which is common in all the paths in the Conditional Pattern Base of that item and calculating it's support count by summing the support counts of all the paths in the Conditional Pattern Base.

Items	Conditional Pattern Base	Conditional Frequent Pattern Tree
Υ	{{K,E,M,O:1}, {K,E,O:1}, {K,M:1}}	{K:3}
О	{{K,E,M:1}, {K,E:2}}	{K,E:3}
М	{{K,E:2}, {K:1}}	{K:3}
E	{K: 4}	{K:4}
К		

From the Conditional Frequent Pattern tree, the **Frequent Pattern rules** are generated by pairing the items of the Conditional Frequent Pattern Tree set to the corresponding to the item as given in the below table.

Items	Frequent Pattern Generated
Υ	{ <k,y:3>}</k,y:3>
0	{ <k,o:3>, <e,o:3>, <e,k,o:3>}</e,k,o:3></e,o:3></k,o:3>
М	{ <k,m:3>}</k,m:3>
E	{ <e,k:4>}</e,k:4>
K	