■ 센서의 개요

1. 센서의 유래

- 1) '센서'란?
- 라틴어로 지각, 느낌 등의 의미를 가지며 인간의 오감 기능과 비슷한 역할을 함
- 최근에는 인텔리젼트 센서를 많이 개발되고 컴퓨터를 내장한 센서, 복잡 다양한 센서들이 만들어 지고 있음
- 센서와 트랜스듀서

센서(Sensor)

측정 대상물의 물리량의 변화를 사용 가능한 전기 신호로 변환하는 장치

트랜스듀서(Transducer)

- 입력 에너지, 예를 들면 빛이나 음의 에너지 신호를 전기 신호로 변환해서 끄집어내는 장치
- 에너지 신호가 아닌 에너지 그 자체를 변환하는 것

2. 인간의 감각기관과 센서

- 시각 → 광 센서(광도전소자, CCD, 이미지센서, 포토다이오드 등)
- 청각 → 음향 센서(마이크로폰, 압력소자)
- 촉각 → 촉각 센서(진동 센서, 온도 센서, 압력 센서 등)
- 미각 → 미각 센서(백금, 산화물반도체, 가스 센서, 입자 센서 등)
- 후각 → 후각 센서(바이오케미칼 센서, 실리콘산티탄산염 센서 등)

■ 센서의 개요

3. 산업현장에서 센서의 필요성

- 메카트로닉스(Mechatronics) 분야
 - 제어기술, 재료기술, 액츄에이터(Achuatior)기술, 정보전달기술, 고속화 시스템 등 센싱 프로세서 기술에 활용
- 자동화 시스템
 - 로보트 핸들, 다축 역학 센서, X,Y,Z 축 회전 검출, 위치정보검출, 과부하 검출 등 자동화 시스템의 핵심 요소로 활용
- 안전 / 환경 / 교통 / 의료 / 발전 / 토목 / 일상 생활 / 가전 제품

※ 용어사전

- ➤ 메카트로닉스(Mechatronics)
 - 기계(mechanics)와 전자(electronics)의 융합기술로서, 지능형 로봇, 반도체/디스플레이 제조장비, 각종 자동화장비 산업의 기반이 되는 기술
 - 요소기술로는 기계설계(mechanical design), 제어(control), 임베디드시스템(embedded system), SI(system integration) 기술
- ➤ 액추에이터(Achuatior)
 - 작동기, 작동장치, 흔히 액츄에이터로 오기)는 시스템을 움직이거나 제어하는 데 쓰이는 기계 장치
 - 전기나 유압, 압축 공기 등을 이용하는 원동 구동장치를 두루 일컫는 용어

■ 센서의 개요

4. 센서에 요구되는 항목

- 입력 검출: 입력레벨(Level), 입력형태 검출
- 출력 검출: 출력레벨(Level), 출력형태 검출
- 응답성: 감도 또는 분해능, 응답속도 검출
- 정확도: 검출에 따른 정확도와 교정, 선형, 히스테리시스 특성, 온도보상 등

※ 더 알아보기

신뢰성

온도, 충격, 전자기 등

내환경성

사용온도와 습도의 범위 등

안정성

내약품성, 호환성, 방폭성 등

수명

영구적, 반영구적, 분기별 교체 등

■ 센서의 분류

1. 역학량에 따른 분류

감지 대상	센서 분류
변위, 길이	차동트랜스, 스트레인게이지, 콘덴서변위계
속도, 가속도	회전형 속도계, 동전형 가속도계
회전수, 진동	로터리엔코더, 스코프, 압전형검출기
압력	다이어프램, 로드셀, 수정압력계
힘, 토크	저울, 천칭, 비틀림바

2. 물리량에 따른 분류

구분	감지 대상	센서 분 류	적용 효과
물리 센서	온도	열전대, 서미스터, 온도계	열저항,열복사
	빛,색	광전도, 광결합형,포토다이오드	광전도, 패러데이필터
	자기	홀(Hall)소자, 자기저항소자	Hall
	전류	분류기, 변류기	전류의 크기변화
	자외선, 방사선	조도계, 광량계	빛의 변화

3. 센서가 처리할 정보

분야	처리할 정보
기계	길이, 두께, 변위, 가속도, 회전력, 유속, 회전각, 회전수, 질량, 힘, 중량, 진동도, 풍속, 유량, 진동 등
전기	전류, 전압, 전위, 전하, 임피던스, 저항, 인덕턴스, 용량 등
온도	온도, 비열, 열량
광	조도, 광도, 색, 자외선, 적외선, 변위
생체(의료)	심전도, 혈압, 혈액, 맥박, 근전도, 망막전도, 뇌파, 체온 등
기타	주파수, 음향, 방사선, 습도 등

■ 센서의 분류

4. 센서의 분류 방법

분류 방법	센서 구성
구성에 의한 분류	기본 센서, 조립 센서, 응용 센서
기구에 의한 분류	기구형, 물성형, 기구.물성혼합형 센서
검출신호에 의한 분류	아날로그 센서, 디지털 센서, 주파수형 센서
감지기능에 의한 분류	공간량, 역학량, 열역학량, 전기자기학량, 화학량, 시간, 촉각 센서
변환방법에 의한 분류	역학적, 전기적, 자기적, 전자기적, 광학적, 전기화학적, 촉매화학적, 미생물화학적, 효소화학적 센서

※ 용어사전

- ➤ 디지털(Digital)
 - 데이터나 물리적인 양을 0과 1이라는 2진 부호의 숫자로 표현하는 것
 - 이산적인 수치로 표현되므로, 표시된 양은 최대 ±1 자리의 오차를 갖게 되는데 자릿수를 늘릴수록 정밀도가 높아짐
 - 디지털 컴퓨터에서는 1자리가 2가지 값을 갖는 2진 방식 사용
- ▶ 아날로그(Analogue): 수량 또는 데이터를 연속적으로 변화하는 물리량으로 표시하는 방법의 총칭

1. 자동화 시스템의 영역

- 공장 자동화(Factory Automation)
 - 제품의 설계에서 제조, 출하에 이르는 공장 내의 공정을 자동화하는 기술
 - 구성 요소: 컴퓨터 지원 설계/제조(CAD/CAM) 자원 시스템, 해석 시스템, 생산 관리 시스템, 다품종 중 소량 생산 시스템(FMS)
- 사무 자동화(Office Automation)
 - 문서의 작성이나 보관 및 전달, 정보의 교환·저장 따위의 작업을 개인용 컴퓨터 따위의 기기를 활용하여 자동화하는 일
- 가정 자동화(Home Automation)
 - 컴퓨터와 통신 및 반도체 기술을 응용하여 주택을 단순한 주거개념만이 아닌 가정 생활의 편리성, 효율성, 창조성, 사회성을 향상시키기 위하여 일상 생활을 자동화 시킨 가정
 - 하우스키핑, 홈 매니지먼트, 교육과 문화, 통신 등

2. 자동화 시스템에서의 센서의 역할

- 생산공정에 있어서 자동화는 그 과정에서의 물리적, 화학적 양의 계측이 요구에 맞게 행해지고 이를 제어기능 계통과 연결
- 계측에서의 중요한 역할을 담당

3. 센서의 응용분야

- 1) 초음파 감지 센서
- 수동형
 - 물체가 스스로 발산하는 초음파을 감지하는 센서
 - 예) 어뢰 감지
- 능동형
 - 물체에게 초음파을 발사하여 돌아오는 파형을 감지하는 센서
 - 예) 박쥐의 초음파 감지, 수중 어탐기
 - 2) 가속도 센서
- 기계식 가속도 센서: 속도가 빨라지면 알려주는 장치
- 실리콘 가속도 센서: 압력 변화에 따라 저항이 변하는 현상을 이용
 - 3) 자기장 센서
- 자기장의 변화에 의해 발생하는 유도 전류를 감지하는 센서
- 전자기파가 솔레노이드 내부를 지나가면 자기장이 변화되면서 유도전류가 흐름
- 예) 금속 탐지기, 도난 방지 시스템

4. 오감 센서의 미래

- 1) 미각 센서와 나노테크놀로지
- 미각의 4가지 구성요소인 단맛, 신맛, 짠맛, 쓴맛을 느끼게 하는 유기물 및 이온들을 감지하는 이온센서가 개발
- 맛의 주성분을 측정하여 맛의 강도를 측정하는 루코오스 센서를 활용하면 더 넓은 맛을 예측 가능

4. 오감 센서의 미래

- 2) 촉각 센서와 나노테크놀로지
- 느낄 수 있는 감각수용기
 - 촉각의 적합자극은 물체를 접촉하는 일
 - 온각의 적합자극은 온도상승
 - 냉각의 적합자극은 온도하강
- 촉각센서의 발달은 어떤 자극이 신체에 수용되면 신체 내의 복잡한 작용에 의하여 중추신경에 전해졌을 때 일어나는 대응 감각
- 뇌에서 어떤 자극인지를 알게 되는 지각과 통합되어 검출되는 센서
- 촉각 센서:
 - 접촉각 센서
 - 압각 센서
 - 미끄럼각 센서
 - 역각 센서 (중량각센서)
 - 근접각 센서
 - 경도 센서

4. 오감 센서의 미래

- 3) 후각 센서와 나노테크놀로지
- 냄새를 검출하는 센서
 - 음식의 냄새 테스트
 - 공장의 배출가스 감지
 - 유해성분 감시, 마약, 폭발물검사
 - 식품, 의료, 환경분야에 적용
- 화학물질의 분자에 의하여 비강내의 후세포가 자극되어 일어나는 냄새의 감각을 검출하는 센서이며 다른 감각보다 예민한 센서

1. 반도체 재료

- 1) 반도체
- 산업사회에 활용되는 센서 재료의 물질 중 가장 관심이 집중되고 있는 재료
- 1900년대 말부터 본격적으로 센서로 응용되기 시작함
- 광 도전재료, 전자 감광재료로써 증착 기술을 중심으로 개발이 진행됨
- 센서에 응용되는 반도체 재료는 주로 포토 센서에 집중하고 있음

※ 용어사전

- ➤ 반도체(Semiconductor)
 - 불순물이 극미량 섞인 게르마늄이나 실리콘과 같이 전기 전도도가 부도체보다는 높고
 금속과 같은 전도체보다는 낮은 고체 물질
 - 온도나 압력 등의 주위 환경 변화에 그 전도도가 조절되는 물질
 - 트랜지스터, 집적 회로 등에 사용되고 근래에는 여러 용도의 감지기에도 이용됨
 - 2) 반도체 재료의 특성
- 응답 속도가 빠르다.
- 소형 · 경량화가 용이하다.
- 고감도 실현이 가능하다.
- 경제적이다.
- 집적화가 가능하다.
- 지능화가 가능하다.

2. 세라믹 재료

- 1) 세라믹
- 재료 기술의 발전으로 센서의 재료를 세라믹으로 사용하는 시도가 급속도로 진행됨
 - 내열성, 내식성, 내마모성이 우수
 - 검출되는 정보도 전기, 자기, 열, 위치, 속도, 가속도, 빛 이온, 가스 등 다양함

※ 용어사전

➤ 세라믹(ceramics):

- 고온에서 구워 만든 비금속 무기질 고체 재료
- 유리, 도자기, 시멘트, 내화물 따위를 통틀어 이름
- 2) 세라믹 재료의 성질
- 결정 자체의 성질을 이용한 것
 - NTC 서미스터, 고온 서미스터, 산소 가스 센서
- 입계(粒界) 및 입자 간 석출상의 성질을 이용한 것
 - PTC 서미스터, 반도체 콘덴서, ZnO계 바리스터
- 표면의 성질을 이용한 것
 - 반도체 콘덴서, 티탄산바륨(BaTIO3), 바리스터, 각종 가스 센서, 습도 센서, 세라믹 촉매

3. 금속 재료

- 1) 금속 재료의 용도별 형태
- 용도에 따라 판재,선재, 다공질재, 편금속, 세션, 분체, 도금재 등 여러가지 형태로 사용되고 재료 기능과 사용 형태는 밀접한 관계가 있음
- 은의 활용
 - 도체, 촉매, 이온전극, 후막용 은 페이스트, 도전 페이스트, 접점 재료, 전극 재료 등
 - 각각의 용도에 요구되는 재료 특성을 부여하기 위해 고순도로 정제하거나
 첨가물을 가하여 가공 열처리, 표면 처리 등을 함
 - 아물포스 합금, 은 등에 촉매성분을 이용한 금속형상 기억합금, 금속 화학물 등 새로운 기능과 응용이 확대되어 가고 있음

※ 용어사전

➤ 금속(Metal):

- 펴지고 늘어나는 성질이 풍부하며, 특수한 광택을 가진 물질을 통틀어 이르는 말
- 수은을 제외하고는 모두 상온에서 고체임
- 2) 센서에 이용되는 금속 재료
- 기능성 재료: 센서의 트랜스듀서 기능을 담당하고 경우에 따라서 액추에이터 기능을 병유하는 재료
- 구성 보조 재료: 기능성 재료의 기능을 발휘시키기 위한 기구 및 센서 구조에 필요한 보조 재료
- 기구 · 보조 양용 재료: 기구의 흡수단면적 및 내식성 등이 강한 보조 양용 재료

4. 복합 재료

- 1) '복합 재료'란?
- 만들어진 재료의 안에서 원래 재료의 특성이 각각 충분히 살아있고 복합화하는 것에 의해서 단일 재료에서는 전망할 수 없는 새로운 기능을 갖게 된 재료

※ 고분자 복합 재료

- 하나의 고분자 물질에 다른 고분자 물질이나 고분자 물질이 아닌 물질을 섞어서 만든 재료
- 재료의 강도나 경도, 열전도율, 전기 전도율 따위를 개선하거나, 물이나 열, 화학 약품 따위에 견디는 성질 따위를 개선하는 데 씀
- 비행기, 배, 로켓, 자동차, 기계 부품 따위 등