Intro to deep learning

Dr. Janoś Gabler, University of Bonn

Lecture 9: Training neural networks in Pytorch

Topics

- Git and GitHub
- Recap: Feed-forward neural networks from scratch
- Defining Models in Pytorch
- Writing Training Loops in Pytorch
- Optimization algorithms

Git and GitHub

What is Git

- Distributed version control system
 - Go back in time
 - Have multiple versions of code
- Used by almost every programmer in the world
- Code is in a git-repository (the parent folder of your project)
- Used from the terminal
- Takes a while to learn, but we only need the absolute basics

What is GitHub

- Webpage where you can upload git repositories
- Collaboration tools
 - Pull requests
 - Review features
 - Automated tests
- You need to sign up for an account

What is GitHub Classroom

- Helps me to collect your assignments
- Helps you by creating a repository for you

Create a GitHub Account and accept invitation

- Go to https://github.com/
- Create an account if you don't have one
- Choose a name that is easy to type, memorize and pronounce
- Accept the invitation

dl-intro

Accept the assignment final-project

Once you accept this assignment, you will be granted access to the final-project-janosg repository in the iame-uni-bonn organization on GitHub.

Accept this assignment

You accepted the assignment, final-project . We're configuring your repository now. This may take a few minutes to complete. Refresh this page to see updates.

☆ Your assignment is due by Sep 10, 2023, 23:00 CEST

Note: You may receive an email invitation to join iame-uni-bonn on your behalf. No further action is necessary.

Join the GitHub Student **Developer Pack**

Verified students receive free GitHub Pro plus thousands of dollars worth of the best realworld tools and training from GitHub Education partners for free. Learn more

You're ready to go!

You accepted the assignment, final-project.

Your assignment repository has been created:

We've configured the repository associated with this assignment (update).

Join the GitHub Student Developer Pack

Verified students receive free GitHub Pro plus thousands of dollars worth of the best realworld tools and training from GitHub Education partners for free, Learn more

Clone the repository to your computer

- Cloning means downloading the repository to your computer
- You do it from a terminal
 - Open the terminal
 - Navigate to a folder to which you want to download the repo
 - Use git-clone

Get the clone link online

Open a terminal and navigate to folder

Type clone command

Hit Enter to download repo

cd into the repo

`git status`

- Executing `git status` inside a git repository gives you information
 - Which files were added?
 - Which files were modified
 - Are there un-pushed changes?
- It should be every other git command you type!

Status before changes

Make some changes

- You can now make your changes
 - Add files
 - Modify existing files
- The changes will not be synchronized to github automatically
- To share them, you need to commit and push

Status after changing and creating files

Use git add .

Status after `git add .`

Type commit command with message

Execute commit

Commit does not publish changes

Git push

Recap: Feedforward neural networks

Line length recognition

- Images of 10 x 1 Pixels with lines of length 1 to 5
- Task: Estimate the length of the line
- Can see correct result from flattened image

The Multi Layer Perceptron

Written out matrix multiplications

$$h_1 = relu(W_0x + b_0)$$

$$h_2 = relu(W_1h_1 + b_1)$$

$$\hat{y} = softmax(W_2h_2 + b_2)$$

Why do we need nonlinearities

Without nonlinearities, our model would be:

$$W_2(W_1(W_0x+b_0)+b_1)+b_2$$

■ This could be simplified to:

$$Wx + b$$

Thus we would end up with one linear model!

Trainable parameters

- Weights have shapes:
 - $lacksquare n^{hidden} imes n^{in}, n^{hidden} imes n^{hidden}, n^{out} imes n^{hidden}$
- Biases have shapes:
 - \blacksquare n^{hidden} , n^{hidden} , n^{out}
- 205 for line lengths example
- 13 002 for digit recognition
- ~60 Million in the model we fine-tuned
- 175 Billion in GPT-3

Why are neural networks so porwerful?

- Networks get their power from training!
- Done with some form of gradient descent
- Last week, we did it from scratch
- This week, we will look at simpler ways

How does it relate to feature extraction

Source: Natural Language Processing with transformers, Fig 2-4

- Parameters are not initialized randomly but pre-trained
- lacksquare Only W_2 and b_2 are specialized to classification task

How does it relate to fine-tuning

Source: Natural Language Processing with transformers, Fig 2-6

- Parameters are not initialized randomly but pre-trained
- All parameters are specialized to classification task

Tensorflow Playground

Use pytorch properly

What did we do last week?

- Implement entire training process from scratch
 - The model
 - The optimizer
 - The loss function
 - The training loop
- Why did we do this?
 - Need to know the mechanics of a neural network
 - It will be easier to understand the built-in pytorch functions after you did the same steps from scratch

What was annoying last week?

- Had to initialize weights and biases with correct shape
- Several operations on each parameter tensor
 - Set requires_grad to True
 - (Put on GPU)
 - Update with gradients and zero_ gradients
- Had to know the mechanics of a lot of functions
 - relu, softmax, nll_loss, gradient descent
- Had to think about numerical stability
- Our code was slow

Goal for this lecture: Simpler training

```
# training hyperparameters
n_{epochs} = 3
batch_size = 64
learning_rate = 0.01
# initialization
model = NeuralNetwork(n_in, n_hidden, n_out).to(device)
loss_func = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
train_dataloader = DataLoader(
    training_data, batch_size=batch_size, shuffle=True, drop_last=True,
test_dataloader = DataLoader(
    test_data, batch_size=batch_size, drop_last=True,
# training loop
for t in range(n_epochs):
    print(f"Epoch {t+1}\n----")
    train_loop(train_dataloader, model, loss_func, optimizer)
    test_loop(test_dataloader, model)
print("Done!")
```

Approach

- Good news
 - After today you can put pytorch on your CV
 - Some of the snippets you write can be re-used in other projects
- Bad news
 - You will have to learn quite a few new concepts
- Approach
 - I show you the final training loop at the beginning
 - You practice all the building blocks in exercises
 - (You don't have to write the final loop yourself today)

Steps

- 1. Defining a model
- 2. Define DataLoaders (should be called batch loaders)
- 3. Loss functions
- 4. Optimizers
- 5. Inner training loop
- 6. Inner test loop

Defining models

Purpose of the model

The pytorch model replaces two steps we did manually

- Initializing the parameters (and defining their shapes)
- Defining the calculations done in the model

Models are classes

- Defining a model = defining a class
- Class specifies:
 - Number, type and shape of layers (similar to defining the parameter matrices)
 - Forward method (similar to our model function)
- Class inherits other methods
 - Initialize all parameters
 - Put all parameters on a device
 - **-** ..

Classes in Python

```
class Circle:
    def __init__(self, x, y, radius):
        self.x = x
        self.y = y
        self.radius = radius
    def area(self):
        return np.pi * self.radius ** 2
    def diameter(self):
        return 2 * self.radius
    def __repr__(self):
        return f"Circle at x={self.x}, y={self.y} with rad
circle = Circle(0, 0, 1)
circle
Circle at x=0, y=0 with radius 1
circle.area()
3.141592653589793
```

- Defined with `class` keyword
- Class = bundle of methods and data
- Methods are like functions but often have no arguments beyond the class attributes
- ___dunder____` methods are special
- Class != instance
 - Class: Blueprint
 - Instance: Has concrete values for attributes

The `__init__` method

```
class Circle:
    def __init__(self, x, y, radius):
        print("I was called")
        self.x = x
        self.y = y
        self.radius = radius

circle = Circle(0, 0, 1)

print("I was called")
```

- init___ sets up the model instance
- arguments of `__init___` become arguments of class
- Can execute arbitrary code here
- First argument is always `self`
- See `self` as a flexible data container where you can store and retrieve stuff and to which you have access in all methods

Methods

```
class Circle:
    def __init__(self, x, y, radius):
        self.x = x
        self.y = y
        self.radius = radius

def area(self):
        return np.pi * self.radius ** 2

circle = Circle(0, 0, 1)
    circle.area()

3.141592653589793
```

- Methods are defined like functions
- First argument is always `self`
- Can have additional arguments
- When calling the method, `self` is passed automatically
- Inside methods you can do everything you can do inside functions

Anatomy of a Pytorch Model

```
class NeuralNetwork(nn.Module):
    def __init__(self, n_in, n_hidden, n_out):
        super().__init__()
        ...
    def forward(self, x):
        ...
    return logits
```

- Pytorch models are subclasses of `nn.Module`
- Have two mandatory methods:
 - `__init___` which calls the init method of it's superclass and defines shapes
 - __forward___` Which does whatour model function did

Writing the `__init__` method

```
def __init__(self, n_in, n_hidden, n_out):
    super().__init__()
    self.flatten = nn.Flatten()
    self.all_layers = nn.Sequential(
        nn.Linear(n_in, n_hidden),
        nn.ReLU(),
        nn.Linear(n_hidden, n_out),
def forward(self, x):
    x = self.flatten(x)
    logits = self.all_layers(x)
```

Similar model as last week
 but only one hidden layer

- Always call `super().__init__()`
- Assign functions we need later to `self`
 - `flatten`: Go from (28x28) to (784)
 - `all_layers`: Model calculations
- Use built-in pytorch functions
 - `nn.Sequential` chains functions
 - Linear and ReLU
- Each layer knows how many parameters it needs and registers them with the class

Writing the forward function

```
def __init__(self, n_in, n_hidden, n_out):
    self.flatten = nn.Flatten()
        nn.Linear(n_hidden, n_out),
def forward(self, x):
    x = self.flatten(x)
    logits = self.all_layers(x)
    return logits
```

- Forward does the actual calculation
- Mainly calls functions that were assigned to self before
- Should return logits, i.e. not take softmax yet

Using the model

```
n in = 28 * 28
n \text{ hidden} = 16
n_out = 10
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = NeuralNetwork(n_in, n_hidden, n_out).to(device)
model
NeuralNetwork(
  (flatten): Flatten(start_dim=1, end_dim=-1)
  (all_layers): Sequential(
    (0): Linear(in_features=784, out_features=16, bias=True)
    (1): ReLU()
    (2): Linear(in_features=16, out_features=10, bias=True)
```

- The model class worked for general shapes, the instance has specific ones
- Model has a printable and human readable text summary
- Can put all tensorsbelonging to the model onthe GPU with one method

Looking at model parameters

- Each layer knew which parameters it needs
- Registered them automatically with the model
- They get initialized randomly behind the scenes
- Optimizers will work on this parameter list
- You don't ever have to look at them.

What else is in `torch.nn`?

- Many different nonlinearities
- Many different layers
 - Convolutional layers
 - Recurrent layers
 - Transformers
- Loss functions
- See the documentation for details

Task 1

DataLoaders

Purpose of the DataLoaders

The DataLoader serves two purposes

- Make it easy to loop over batches of the data
- (Make it possible to load data in parallel)

How we did it last time

```
batch_indices = torch.randperm(len(data)).reshape(-1, batch_size)
for idxs in batch_indices:
   batch = data[idxs]
```

- Did not work if dataset size was not a multiple of batch size
- Hard to read if you don't know the trick

DataLoaders

```
batch size = 64
train_dataloader = DataLoader(
   training_data,
   batch_size=batch_size,
   shuffle=True,
   drop_last=True,
for i, (X, y) in enumerate(train_dataloader):
    logits = model(X)
len(train_dataloader)
937
len(train_dataloader.dataset)
60000
```

- the dataloader is something you can iterate over
- mechanics of shuffling and batching are abstracted away
- Enable or disable shuffling
- `drop_last` is how we handle datasetlength that are not multiples of batch size

Task 2

Loss functions

What we did last week

```
def nll_loss(probs, labels):
    likelihoods = probs[torch.arange(len(probs)), labels] + 1e-50
    loglikes = torch.log(likelihoods)
    return -loglikes.mean()
```

- Needed to bother with the mechanics of indexing
- Very crude way of ensuring numerical stability

Pre-implemented loss function

Docs > torch.nn	>
Loss Functions	
nn.L1Loss	Creates a criterion that measures the mean absolute error (MAE) between each element in the input x and target y .
nn.MSELoss	Creates a criterion that measures the mean squared error (squared L2 norm) between each element in the input x and target y .
nn.CrossEntropyLoss	This criterion computes the cross entropy loss between input logits and target.
nn.CTCLoss	The Connectionist Temporal Classification loss.
nn .NLLLoss	The negative log likelihood loss.
nn.PoissonNLLLoss	Negative log likelihood loss with Poisson distribution of target.
nn.GaussianNLLLoss	Gaussian negative log likelihood loss.
nn.KLDivLoss	The Kullback-Leibler divergence loss.
nn.BCELoss	Creates a criterion that measures the Binary Cross Entropy between the target and the input probabilities:
nn.BCEWithLogitsLoss	This loss combines a Sigmoid layer and the BCELoss in one single class.
nn.MarginRankingLoss	Creates a criterion that measures the loss given inputs $x1$, $x2$, two 1D mini-batch or 0D Tensors, and a label 1D mini-batch or 0D Tensor y (containing 1 or -1).
nn.HingeEmbeddingLoss	Measures the loss given an input tensor \boldsymbol{x} and a labels tensor \boldsymbol{y} (containing 1 or -1).

- Many loss functions are preimplemented
- Numerically stable implementations
- We will use `CrossEntropyLoss`
- See the documentation for details

```
loss_func = nn.CrossEntropyLoss()
loss_func(logits, y)

tensor(2.3018, grad_fn=<NllLossBackward0>)
```

Task 3

Optimizers

What we did last week

```
for i in range(3):
    # SGD updates for each parameter
    weights[i].data = weights[i].data - learning_rate * weights[i].grad.data
    biases[i].data = biases[i].data - learning_rate * biases[i].grad.data
    # Zero the gradients for the next iteration
    weights[i].grad.data.zero_()
    biases[i].grad.data.zero_()
```

- Had to know the gradient descent update equation
- Had to do things per-parameter
- Had to know when to use `tensor` and `tensor.data`

Optimizers in pytorch

```
learning_rate = 0.1
optimizer = torch.optim.SGD(model.parameters(), lr=learnin
```

In the training loop:

```
loss.backward()
optimizer.step()
optimizer.zero_grad()
```

- Optimizer instance knows which parameter tensors are there
- Automatically applies relevant steps to all of them
- Many optimizers available

The optimization problem

- ullet $heta \in \mathcal{R}^d$ is a vector of parameters
- $ullet Z \in \mathcal{R}^{n imes m}$ is a matrix containing a batch of data (x and y)
- $\ell(\theta,Z)$ is a scalar loss function
- $j(\theta,Z)$ is the gradient of ℓ w.r.t. θ
- Goal: $min_{ heta}\ell(heta)$
- In words: find parameters of the neural net that minimize the loss function

SGD

- Tuning parameters:
 - η : learning rate, typically 1e-3
- Update equation
 - $\bullet \ \theta_{k+1} = \theta_k \eta \cdot j(\theta_k, Z)$
- Problems
 - Get's stuck in local optima (gradient = 0)
 - Learning rate is the same for all parameters
 - Learning rate is hart to pick

SGD + Momentum

- Tuning parameters:
 - η : learning rate, typically 1e-3
 - γ : momentum parameter, typically 0.9
- Update equations:
 - $lacksquare
 u_k = \gamma
 u_{k-1} + \eta \cdot j(heta_k, Z)$
 - $\bullet \ \theta_{k+1} = \theta_k \nu_k$
- Advantage
 - Can pass over a local flat spot
 - Less oscillation around the main direction of progress

Adam (Adaptive Moment Estimation)

- Tuning parameters
 - η : learning rate, typically 1e-3
 - β_1 : momentum in gradients, typically 0.9
 - β_2 : momentum in squared gradients, typically 0.99
 - ϵ : clipping value, typically 1e-8
- Update equations
 - $lacksquare m_k = rac{1}{1-eta_1}\cdot [eta_1 m_{k-1}) + (1-eta_1) j(heta_k, Z)]$
 - $ullet v_k = rac{1}{1-eta_2} \cdot [eta_2 v_{k-1} + (1-eta_2) j(heta_k, Z)^2]$
 - $ullet heta_{k+1} = heta_k rac{\eta}{\sqrt{v_k} + \epsilon} m_k$

Adam

- Adam behaves like a heavy ball with friction, which thus prefers flat minima in the error surface
- Widely used in practice (e.g. for GPT)
- Often together with a learning rate schedule, where η decays over time

Task 4

Inner training loop

Remember the goal

```
# training hyperparameters
n_{epochs} = 3
batch_size = 64
learning_rate = 0.01
# initialization
model = NeuralNetwork(n_in, n_hidden, n_out).to(device)
loss_func = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
train_dataloader = DataLoader(
    training_data, batch_size=batch_size, shuffle=True, drop_last=True,
test_dataloader = DataLoader(
    test_data, batch_size=batch_size, drop_last=True,
# training loop
for t in range(n_epochs):
   print(f"Epoch {t+1}\n----")
    train_loop(train_dataloader, model, loss_func, optimizer)
    test_loop(test_dataloader, model)
print("Done!")
```

The inner `train_loop

- `model.train()` Puts the model in training mode
- Best practice: Do it for any model,
 even if it does not make a difference
- Some models have layers that behave differently during training and inference

Task 5

Remember the goal

```
# training hyperparameters
n_{epochs} = 3
batch_size = 64
learning_rate = 0.01
# initialization
model = NeuralNetwork(n_in, n_hidden, n_out).to(device)
loss_func = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
train_dataloader = DataLoader(
    training_data, batch_size=batch_size, shuffle=True, drop_last=True,
test_dataloader = DataLoader(
    test_data, batch_size=batch_size, drop_last=True,
# training loop
for t in range(n_epochs):
   print(f"Epoch {t+1}\n----")
    train_loop(train_dataloader, model, loss_func, optimizer)
    test_loop(test_dataloader, model)
print("Done!")
```

Inner test loop

- Want to have similar monitory as last time
- Print accuracy on the test data after each epoch

Task 6

Task 7

Summary

- We solved the same problem as last week but this time used pytask properly
- Not less code, but it scales to larger model
- Using the ingredients you learned today, you can build large neural networks and train them on CPU or GPU
- There are many different optimizers
- If in doubt, use Adam