Conjuntos Dominantes Mínimos

Thiago Santiago de Matos

Janeiro 2025 — Presente

Resumo

Este trabalho é composto pelos temas e artigos estudados durante iniciação científica com bolsa CNPq, sob orientação da prof. Márcia Rosana Cerioli. Os temas principais são: relações entre conjuntos dominantes múltiplos mínimos, cotas superiores para o número de dominação em classes de grafos planares, com foco em outerplanares maximais e árvores, e conexões da teoria de dominação com a teoria de emparelhamentos.

Na primeira seção introduziremos os conceitos necessários. A segunda parte é dedicada a expor notas e análises autorais feitas em cima do tópico. Por fim, são sintetizados os artigos estudados ao longo da IC, destacando-se definições e propriedades previamente desconhecidas, e exemplificando com imagens a fim de contribuir para melhor compreensão das ideias apresentadas.

ESTE TEXTO ESTÁ BASTANTE INCOMPLETO E ESTÁ SENDO ATUALIZADO AOS POUCOS

1 Conjuntos dominantes

Seja G = (V, E) um grafo qualquer, $v, w, x \in V$ e $R, S, D \subset V$. Definimos as seguintes notações:

1. Vizinhança

$$\begin{split} N(v) &= \{y \in V : vy \in E\} \qquad N[v] = \{v\} \cup N(v) \\ N(R) &= \bigcup_{v \in R} N(v) \qquad \qquad N[R] = R \cup N(R) \end{split}$$

São ditas vizinhanças abertas e fechadas, que capturam os vértices adjacentes aos vértices dados.

2. Dominação

k domina S se $S \subset N[k]$, $k \in \{v, R\}$. D é dominante em G se D domina V. Sendo D dominante em G, note que

$$V = \bigcup_{v_i \in D} N[v_i]$$

3. Dominação reforçada

Dominação em que existe pelo menos um vértice dominado por dois vértices distintos. No exemplo ao lado ambos v_1 e v_3 são duplamente dominados. $\varsigma(G)$: quantidade de vértices reforçadamente dominados.

4. Dominação estrita

Dominação não reforçada. Se houver mais de um vértice dominante, então todo par de dominantes está a 3 arestas de distância.

5. Dominação mínima

Cardinalidade do menor conjunto dominante: $\gamma(G)$ Conjunto de todas as dominâncias mínimas: $\Delta(G)=\{D\subset V:$

D domina $V, |D| = \gamma(G)\}$ Quantidade de dominâncias mínimas distintas: $\delta(G) = |\Delta(G)|$

2 Resultados

2.1 Grafos caminho

Seja $P_n = (V_n, E_n), n \in \mathbb{N}$, o grafo

com n vértices.

Abaixo podemos observar um exemplo de dominação em P_n , para $1 \le n \le 7$.

$$\gamma(P_2)=1$$

$$\gamma(P_3)=1$$

$$\gamma(P_4)=2$$

$$\gamma(P_5)=2$$

$$\gamma(P_6) = 2$$

$$\gamma(P_7) = 3$$

2.1.1 $\gamma(P_n)$

Fica claro que

$$\gamma(P_n) \le \lceil \frac{n}{3} \rceil, \forall n \in \mathbb{N}$$

Pois a junção de $\lceil \frac{n}{3} \rceil$ grafos T: \bigcirc é dominante em P_n .

Note que para juntar os $\lceil \frac{n}{3} \rceil$ grafos T possivelmente teremos que cortar alguns vértices.

• $n \equiv 0 \pmod{3}$

• $n \equiv 1 \equiv -2 \pmod{3}$

• $n \equiv 2 \equiv -1 \pmod{3}$

3

Agora, seja $v \in \Delta(P_n)$, $v = \{v_1, ..., v_{\gamma(P_n)}\}$, um conjunto dominante mínimo de P_n .

Cada v_i representa um vértice dominante em v.

Dada a natureza de P_n é evidente que $|N[v_i]| \leq 3 \ \forall v_i \in v$.

Note que podemos ter $N[v_i] \cap N[v_i] \neq \emptyset$.

Portanto

$$n = |V_n| = |\bigcup_{v_i \in v} N[v_i]| \le 3|v| = 3\gamma(P_n)$$
 (I)

Onde a igualdade ocorre se e somente se todas as vizinhanças fechadas são disjuntas e têm tamanho 3, i.e. dominação estrita.

Podemos concluir então que

$$\frac{n}{3} \le \gamma(P_n) \le \lceil \frac{n}{3} \rceil$$

E como $\gamma(P_n)$ é inteiro, $\gamma(P_n) = \lceil \frac{n}{3} \rceil$, $\forall n \in \mathbb{N}$.

2.1.2 $\delta(P_n)$

Pelas condições de igualdade da inequação (I), concluímos que $\delta(P_{3k}) = 1, \forall k \in \mathbb{N}$.

Pois sempre que $n=3k, k\in\mathbb{N}$, temos a igualdade, e portanto uma dominação estrita.

Isso determina uma única maneira de dominar P_n , como mostrado na junção dos $\lceil \frac{n}{3} \rceil$ grafos T no caso $n \equiv 0 \pmod{3}$.

Para $n = 3k + 1, k \in \mathbb{N}$. Sendo $V_n = \{r_1, ..., r_n\}$, temos duas análises a se fazer: quando r_1 é dominante e quando r_2 é dominante.

Note que quando r_3 é dominante, necessariamente r_1 ou r_2 também é, pois caso contrário r_1 não estaria na vizinhança de ninguém.

Começamos fixando r_1 como dominante $(v_1 = r_1)$.

Temos que $|V \setminus \{v_1\}| = 3k$, logo r_2 não pode ser dominante. Porque o grafo resultante de $V \setminus \{v_1\}$ é dominado unicamente por uma junção de grafos T, onde os dominantes são $r_3, r_6, ...$

Então podemos considerar o subgrafo a partir de r_2

onde teremos $\delta(P_{n-2})$ formas de atingir o mínimo.

Agora, seja r_2 dominante $(v_1 = r_2)$.

Temos dois casos a considerar: se r_3 for dominante, e se não for.

No segundo caso, podemos olhar para o subgrafo a partir de r_3

teremos $\delta(P_{n-3})$ formas de atingir o mínimo.

No caso de r_3 ser dominante, o subgrafo a partir de r_4 tem n-4=3k-3 elementos, por ser múltiplo de 3, é unicamente determinado.

Então temos

$$\delta(P_{3k+1}) = \delta(P_{3k-1}) + \delta(P_{3k-2}) + 1 \tag{II}$$

Para n=3k+2 fazemos uma análise similar, e chegamos em

$$\delta(P_{3k+2}) = \delta(P_{3k-1}) + 1$$

i.e. $\delta(P_{3k+2}) = k+2$.

Com isso conseguimos resolver (II): $\delta(P_{3k+1}) = \frac{k^2}{2} + \frac{5k}{2} + 3$.

 ${\rm Em}\ {\rm resumo}$

$$\delta(P_n) = \begin{cases} 1 & \text{se } n = 3k \\ \frac{k^2}{2} + \frac{5k}{2} + 3 & \text{se } n = 3k + 1 \\ k + 2 & \text{se } n = 3k + 2 \end{cases}$$

2.2 Maximal Outerplanar Graphs

Como bem visto no artigo 1, a remoção de um vértice de grau 2 de um MOG mantém a estrutura de MOG. Portanto, podemos utilizar esse resultado no sentido inverso para construir qualquer MOG(n) a partir de um MOG(n-1) adequado, adicionando um vértice de grau 2.

Tomando essa abordagem de forma iterativa, conseguimos calcular a quantidade total de MOGs de n vértices, começando do MOG(3). Nessa contagem ignoramos os grafos isomorfos por rotação e reflexão.

Vamos denotar essa quantidade por mog(n). Além disso usamos $\gamma_{mog}(n)$ para representar o maior valor de γ encontrado dentre todos os MOGs de n vértices.

n	γ_{mog}	mog
3	1	1
4	1	1
5	1	1
6	2	3
7	2	4
8	2	12
9	3	27
10	3	82
11	3	228
12	4	733
13	4	2282
14	4	7528
15	5	24834

É interessante notar a característica exponencial da quantidade de MOGs. Também podemos observar que $\gamma_{mog}(n) = \lfloor \frac{n}{3} \rfloor$, e portanto $\gamma(G) \leq \lfloor \frac{n}{3} \rfloor$, para todo $MOG\ G$, que é um caso particular do resultado citado no artigo 1.

3 Artigos

3.1 Dominating sets of maximal outerplanar graphs

Shin-ichi Tokunaga

Definições

• Maximal outerplanar graph (MOG)

Um grafo é outerplanar se ele é plano e todos os seus vértices estão na borda exterior da região desenhada. É maximal quando não é possível adicionar mais arestas sem perder a propriedade de ser outerplanar. Escreveremos MOG(n) para denotar um MOG com n vértices.

• Triangulation / Maximal planar graph

Um grafo em que não é possível adicionar arestas sem violar a planaridade. i.e. um grafo em que todas as faces, incluindo a externa, são delimitadas por triângulos.

• Triangulated disc

Um grafo plano em que todas as faces internas são triângulos.

• k-conexo graph

Um grafo que continua conexo após remover menos de k arestas. Ou seja, k é a menor quantidade de vértices a serem removidos para desconectar o grafo.

Equivalentemente, um grafo em que para qualquer par de vértices, existem k caminhos, independentes de vértices, conectando os dois.

• Hamiltonian cycle

É um ciclo que passa por todos os vértices do grafo, sem repetir nenhum.

Resumo

Sendo G um n-grafo outerplanar maximal, $n \geq 3$, com k vértices de grau 2. Então G tem um conjunto dominante de tamanho máximo $\lfloor \frac{n+k}{4} \rfloor$, por um método de coloração simples.

Introdução

Qualquer disco triangulado G com n vértices satisfaz $\gamma(G) \leq \lfloor \frac{n}{3} \rfloor$. Esse resultado foi posteriormente extendido para triangulação de outras superfícies.

Qualquer triangulação G de n vértices, com grau máximo 6, satisfaz $\gamma(G) \leq \frac{n}{4}$, desde que n seja suficientemente grande.

Note que precisamos de dois vértices para dominar o grafo octaedro, por isso não podemos omitir a condição de n suficientemente grande.

Figura 3: Grafo octaedro.

Resultados

Lema 1. Um $MOG\ G = (V, E)$ pode ser 4-colorido de forma que todo ciclo de tamanho 4 em G contenha todas as cores.

Prova.

Proposição 1. Todo MOG tem pelo menos dois vértices de grau 2.

Proposição 2. Sendo $v \in V$ de grau 2, $G - v := (V - v, E - E_v)$ também é MOG.

Vamos provar por indução em |V|. A conclusão é trivial se G é um triângulo, vamos assumir $|V| \ge 4$. Qualquer vértice $v \in V$ de grau 2 pertence a um único 4-ciclo, digamos C.

Por hipótese, podemos 4-colorir G-v e portanto atribuímos a v a cor que não aparece em C.

Proposição 1. Seja G um MOG(n). Suponha que G é 4-colorido, tal como o lema~1, e seja $R \subset V$ contendo todos os vértices de uma cor dada. Então R domina todos os vértices de V, exceto os com grau 2.

Prova. Seja $v \in V$ com grau maior que 2. Agora, sejam r, s, t três vértices consecutivos em N(v), nesta ordem. Dado que vrst forma um 4-ciclo, um destes vértices está em R, i.e. $\{v\}$ é dominado por R.

Teorema 1. Sendo G um MOG(n), $n \geq 3$, com k vértices de grau 2. Então G tem um conjunto dominante de tamanho máximo $\lfloor \frac{n+k}{4} \rfloor$.

Prova. Sejam $S = \{v_1, v_2, ..., v_k\}$ o conjunto de vértices de G de grau 2 e u_i um dos dois vértices adjacentes a v_i para cada $1 \le i \le k$.

Seja $S' = \{v'_1, ..., v'_k\}$ um conjunto de k novos vértices, construímos um grafo G' = (V', E') tal que $V' = V \cup S$

$$E' = E \cup \{v_1'v_1, ..., v_k'v_k\} \cup \{v_1'u_1, ..., v_k'u_k\}$$

G' também é MOG, pois continua sendo planar; por contrução, v_i, v'_i, u_i estão na borda exterior, e é maximal pois G é maximal, então qualquer aresta a ser adicionada em G' deve ser adicionada partindo de um dos v_i' , o que excluiría algum vértice de G da borda exterior.

Logo, G' pode ser colorido tal como lema 1.

Seja T o conjunto de todos os vértices de uma dada cor na coloração acima. Ao escolher uma cor adequada, podemos assumir $|T| \leq \lfloor \frac{|V'|}{4} \rfloor = \lfloor \frac{n+k}{4} \rfloor$ (observe por contradição). Finalmente, sejam $T \cap S' = \{v'_{i_1}, ..., v'_{i_{k'}}\}$ e $T' = (T - S') \cup \{v_{i_1}, ..., v_{i_{k'}}\}$. Note que cada vértice de S tem grau 3 em G'. Portanto, aplicando a proposição 1 em G', podemos ver

Finalmente, sejam
$$T \cap S' = \{v'_{i_1}, ..., v'_{i_{i'}}\}\ e\ T' = (T - S') \cup \{v_{i_1}, ..., v_{i_{k'}}\}\$$

que T domina V.

A contribuição de cada $v'_{i_j} \in T \cap S'$ na dominação são os vértices u_{i_j} e v_{i_j} , portanto ao considerar T'estamos trocando cada v'_{i_j} por v_{i_j} , que tem no mínimo a mesma contribuição. Por consequência T' também domina V.

i.e. T' é um conjunto dominante de G satisfazendo $|T'| \leq \lfloor \frac{n+k}{4} \rfloor$.

Conjecturas

Conjectura 1. Suponha que G é um grafo plano 2-conexo com n vértices, tal que cada vértice de grau 2 pertence a um triângulo. Então $\gamma(G) \leq \lfloor \frac{n}{3} \rfloor$.

A note on the double domination number in maximal outerplanar and pla-3.2nar graphs

Noor A'lawiah Abd Aziz, Nader Jafari Rad e Hailiza Kamarulhaili

Definições

HPM

Usaremos essa sigla para denotar um grafo Hamiltoniano planar maximal.

Striped

MOG que não tem triângulos internos (faces que não são adjacentes a face externa).

 \bullet k-tuple domination

Um conjunto $S \subseteq V$ é chamado de conjunto k-tupla dominate se $|N[v] \cap S| \ge k, \ \forall v \in V$.

 $\gamma_{\times k}(G)$ é a menor cardinalidade de um conjunto de k-tupla dominação de G, se tal conjunto existir.

Em particular, a dominação dupla corresponde ao caso k=2.

Bad vertex

Sejam v_1, \ldots, v_t todos os vértices de grau 2 que aparecem em sentido horário no ciclo Hamiltoniano C de G. Um vértice v_i é dito ruim se a distância para v_{i+1} é ao menos 3, para i=1,...,t.

• $G_{in}^C \in G_{out}^C$

Sendo G um grafo HPM com ciclo Hamiltoniano C, G_{in}^{C} representa o MOG que consiste de C e as arestas interioes (exteriores para G_{out}^C) a C.

Resumo

Melhora o Teorema de Zhuang mostrando que $\gamma_{\times 2}(G) \leq \frac{n+k}{2}$, onde k é o número de pares de vértices consecutivos de grau 2 com distância pelo menos 3 no ciclo externo. Também prova que $\gamma_{\times 2}(G) \leq \frac{5n}{8}$ para um grafo HPM de ordem $n \geq 7$, melhorando teoremas anteriores.

Introdução

Faremos uso dos teoremas abaixo.

Teorema 1. Para G, um grafo HPM de ordem n, existe um ciclo Hamiltoniano C de G tal que G_{in}^{C} ou G_{out}^{C} tem no máximo $\frac{n}{4}$ vértices ruins.

Teorema 2. Todo grafo 4-conexo planar maximal é Hamiltoniano.

Resultados

Seja G um MOG, existe um embedding de G no plano, tal que todos os seus vértices estão no ciclo externo C, que é o limite da face externa, e cada face interna é um triângulo. Vamos provar o seguinte.

Teorema 3. Se G tem $k \ge 0$ vértices ruins, então $\gamma_{\times 2}(G) \le \frac{n+k}{2}$, onde $n \ge 4$.

Sejam H_i os grafos da figura abaixo, i = 1, ..., 7.

A prova é por indução em n+k. Para $4 \le n \le 5$ o resultado é óbvio.

Assuma que n=6. Se k=0, então $G=H_1$ no qual $\gamma_{\times 2}(G)=3=\frac{6+0}{2}$. Se k=1, então $G=H_2$, $\gamma_{\times 2}(G)=3<\frac{6+1}{2}$. Caso k=2, $G=H_3$, $\gamma_{\times 2}(G)=4=\frac{6+2}{2}$. Para n=7 temos, k=1 então $G\in\{H_4,H_5\}$, nos quais $\gamma_{\times 2}(G)=4=\frac{7+1}{2}$. Caso k=2, $G\in\{H_6,H_7\}$, $\gamma_{\times 2}(G)=4\leq\frac{7+2}{2}$.

Isso é suficiente para a base da indução. Assuma que o resultado vale para todos os MOGs de ordem n' com k' vértices ruins, onde n'+k'< n+k.

Agora, considere G o MOG de ordem $n \geq 8$ com k vértices ruins. Primeiro, assuma k=0. Seja C o ciclo externo de G e v_1,\ldots,v_t seus vértices de grau 2, em sentido horário. Já que G não tem vértices ruins, a distância entre cada v_i e v_{i+1} em C é exatamente 2, para $i=1,\ldots,t$ (não pode ser 1 pois G é MOG). Logo, n=2t, Então $V(G)-\{v_1,\ldots,v_t\}$ é um conjunto de dominação dupla de G, implicando em $\gamma_{\times 2}(G) \leq n - t = \frac{n}{2} = \frac{n+0}{2}$.

Portanto, assuma k>0. Existe $i\in\{1,\ldots,t\}$ tal que a distância entre v_i e v_{i+1} em C é pelo menos 3. Seja $G_1 = G - \{v_1, \dots, v_t\}, G_1$ é MOG. Seja u um vértice de grau 2 em G_1 , então $3 \le deg_G(u) \le 4$.

PERGUNTAS

Sabemos: $\gamma(G) \leq \frac{n+k_2}{4}$, $\gamma_{\times 2}(G) \leq \frac{n+k_2}{2}$ por métodos similares, envolvendo coloração. Existe alguma relação com algo do tipo $\gamma(G) \leq \frac{n+k_m}{2m}$, $\gamma_{\times m}(G) \leq \frac{n+k_m}{m}$

 $\gamma(G) \leq f(n+k_m), \, \gamma_{\times m}(G) \leq g(f(n+k_m))$? g e f sendo funções simples ou até TL.

4 Referências

- $[3.1] \ \mathrm{https://www.sciencedirect.com/science/article/pii/S0166218X1300303X}$
- $[3.2] \ \mathrm{https://www.rairo-ro.org/articles/ro/pdf/2022/05/ro210319.pdf}$