Probabilidad y análisis de datos

Daniel Fraiman

Variables aleatorias continuas

1. Supongamos que la función de densidad de X es

$$f(x) = \begin{cases} 3x^2 & \text{para } 0 \le x \le 1\\ 0 & \text{en otro caso} \end{cases}$$

- (a) Utilizando \mathbf{R} calcular $P(0,1 \le X \le 0,5)$.
- 2. Sea X una variable aleatoria uniforme en [a, b]. Hallar su función de distribución acumulada.
- 3. Supongamos que la duración de un componente electrónico sigue una distribución exponencial con parámetro $\lambda = 1$. Utilizando \mathbb{R} :
 - (a) Hallar la probabilidad de que la duración sea menor a 2.
 - (b) Hallar la probabilidad de que la duración esté entre 2 y 8.
 - (c) Hallar t tal que la probabilidad de que la duración sea mayor a t es 0.25.
- 4. Sea T una variable aleatoria exponencial de parámetro λ . Utilizando \mathbb{R} , determinar en forma aproximada λ para que se cumpla P(T < 1) = 0.05.
- 5. El ingreso anual de los jefes de familia de una cierta ciudad se puede modelar con una distribución exponencial con $\lambda=0{,}00001$. Para clasificar a los hogares de esa ciudad se ha decidido dividir a la población en 5 grupos igualmente numerosos: clase baja, clase media-baja, clase media, clase media-alta y clase alta de modo que el $20\,\%$ de la población pertenezca a cada uno de ellos, es decir, el $20\,\%$ de los hogares con menores ingresos entran dentro de la clase baja, el segundo $20\,\%$ será clasificado dentro de la clase media-baja, etc. Hallar los salarios que indican el salto de categoría.

Observación: Los valores hallados representan los cuantiles 0.20, 0.40, 0.60 y 0.80 respectivamente.

- 6. Sea X una variable aleatoria normal con $\mu = 5$ y $\sigma = 10$. Hallar con \mathbb{R} :
 - (a) P(X < 0), P(X > 10), $P(X \ge 15)$.
 - (b) P(-20 < X < 15), $P(-5 \le X \le 30)$.
 - (c) el valor de x tal que P(X > x) = 0.05.
 - (d) el valor de x tal que P(X < x) = 0.23.
- 7. Sea T una variable aleatoria exponencial con parámetro $\lambda=2.$

Probabilidad y análisis de datos

Daniel Fraiman

(a) Sea X una variable aleatoria discreta definida del siguiente modo:

$$\begin{aligned} X &= 0 & \text{si } 0 \leq T < 1 \\ X &= 1 & \text{si } 1 \leq T < 2 \\ X &= 2 & \text{si } T \geq 2 \end{aligned}$$

Utilizando \mathbf{Q} hallar la función de frecuencia de X.

(b) Sea Y una variable aleatoria discreta definida del siguiente modo:

$$Y = k$$
 si $k \le T < k + 1$, $k = 0, 1, 2 \dots$

Utilizando \mathbf{R} hallar la función de probabilidad de Y. ¿Le suena conocida la variable Y?, ¿qué ley tiene Y?

8. La función de distribución acumulada de Cauchy es

$$F(x) = \frac{1}{2} + \frac{1}{\pi} \arctan(x), \quad x \in \mathbb{R}$$

- (a) Graficar en 😱 para probar que efectivamente es una función de distribución acumulada.
- (b) Hallar x tal que P(X > x) = 0.1.