DESCRIPTION AND ANALYSIS OF GATE NETWORKS

- Gate networks
- Sets of gates: (AND OR NOT), NAND NOR XOR
- Analysis and description of gate networks

Figure 4.1: Hierarchical implementation of a module

Figure 4.2: A gate network

- gates
- external inputs and outputs
- connections

Gate networks (cont.)

Figure 4.3: a) Illegal network connection. b) Acceptable output load. c) Loop-free network. d) Loop network

- logic diagram (graphical representation)
- net list (tabular representation)
- HDL description (program)

Figure 4.4: a) Graphical representation (logic diagram)

Gate	e Type Inputs		Output	
Α	AND-2	A_1	A_3	
		A_2		
В	AND-3	B_1	B_4	
		B_2		
		B_3		
C	OR - 2	C_1	C_3	
		C_2		

From	То
x_3	A_1
x_2	A_2
x_2	B_1
x_1	B_2
x_0	B_3
A_3	C_1
B_4	C_2
C_3	z

Gates

Connections

(c)

(b)

Figure 4.4: Network representation: a) graphical; b) tabular; c) HDL-based.

- functional specification
- input load factors of the network inputs;
- fan-out factor of the network outputs (only for some technologies); and
- propagation delays through the network.

Set {AND,OR,NOT}

$$z = (((x_0 + x_1)x_2)' + x_2x_3 + x_4)'$$

Figure 4.5: Correspondence among switching expression and AND-OR-NOT network

Sets {AND,NOT} and {OR,NOT}

$$x_{n-1} + x_{n-2} + \dots + x_i + \dots + x_0 = (x'_{n-1} x'_{n-2} \dots x'_i \dots x'_0)'$$

Figure 4.6: AND-NOT implementation of an OR gate

Sets {NAND} and {NOR}

$$x' = (xx)'$$

$$NOT(x) = NAND(x, x)$$

$$x_1x_0 = ((x_1x_0)')' = ((x_1x_0)'(x_1x_0)')'$$

$$AND(x_1, x_0) = NAND(NAND(x_1, x_0), NAND(x_1, x_0))$$

Figure 4.7: Implementations with NAND gates: a) NOT; b) AND

Figure 4.8: Mixed-logic notation: a) NAND gate b) NOR gate

 ${
m Figure~4.9:~Additional~gates~in~CMOS~a)}$ XOR and XNOR, b) Complex gate structures: AND-OR and OR-AND

- Functional analysis:
 - 1. Obtain I/O switching expressions
 - 2. Obtain a tabular representation of the (binary) function
 - 3. Define high-level input and output variables; use codes to relate these variables with the bit-vectors
 - 4. Obtain a high-level specification of the system
- Network characteristics:
 input load factors, fan-out factors, and delays

- i) Assign names to each connection in the network
- ii) Write switching expressions for each gate output
- iii) Substitute all internal names to obtain external outputs in terms of external inputs.

 $Figure\ 4.10:\ {\sf Gate\ network\ for\ analysis}$

Output expressions:

$$z_{0} = T_{2} + T_{3}$$

$$= x'_{0}x'_{1}x_{2} + x_{0}T_{1}$$

$$= x'_{0}x'_{1}x_{2} + x_{0}(x'_{2} + x_{3})$$

$$= x'_{0}x'_{1}x_{2} + x_{0}x'_{2} + x_{0}x_{3}$$

$$z_{1} = T_{5} + T_{6}$$

$$= x_{1}x_{2}x_{3} + T'_{4}$$

$$= x_{1}x_{2}x_{3} + (T_{1}x'_{0}x_{1})'$$

$$= x_{1}x_{2}x_{3} + T'_{1} + x_{0} + x'_{1}$$

$$= x_{1}x_{2}x_{3} + x_{2}x'_{3} + x_{0} + x'_{1}$$

Reduced expressions

$$z_0 = x'_0 x'_1 x_2 + x_0 x'_2 + x_0 x_3$$
 (no reduction possible)
 $z_1 = x_0 + x'_1 + x_2$

- decompose the network into subnetworks (modules)
- analyze each subnetwork separately
- use substitution to obtain the network function

 $Figure\ 4.11:\ {\it Network}\ for\ hierarchical\ analysis$

Verify that the network satisfies specification:

Inputs: $x, y, w \in \{0, 1, ..., 7\}$

Output: $z \in \{0, 1, ..., 7\}$

Function: $z = \begin{cases} (y+1) \mod 8 & \text{if } x \neq 0 \\ (w+1) \mod 8 & \text{if } x = 0 \end{cases}$

Subnetworks

 M_1 :

$$t = x_2 + x_1 + x_0$$

$$t = \begin{cases} 1 & \text{if } x \neq 0 \\ 0 & \text{otherwise} \end{cases}$$

 M_2 :

$$v_i = y_i t + w_i t'$$
 $(i = 0, 1, 2)$

$$\underline{v} = \begin{cases} \underline{y} & \text{if} \quad t = 1 \\ \underline{w} & \text{if} \quad t = 0 \end{cases}$$

$$v = \begin{cases} y & \text{if} \quad t = 1 \\ w & \text{if} \quad t = 0 \end{cases}$$

 M_3 :

$$z_{2} = v'_{2}v_{1}v_{0} + v_{2}v'_{1} + v_{2}v'_{0}$$

$$z_{1} = v_{1}v'_{0} + v'_{1}v_{0}$$

$$z_{0} = v'_{0}$$

Example (cont.)

High-level specification:

v_2	v_1	v_0	z_2	z_1	z_0		\overline{v}	z
0	0	0	0	0	1	•	0	1
0	0	1	0	1	0		1	2
0	1	0	0	1	1		2	3
0	1	1	1	0	0	\longrightarrow	3	4
1	0	0	1	0	1		4	5
1	0	1	1	1	0		5	6
1	1	0	1	1	1		6	7
1	1	1	0	0	0		7	0

From table, we get

$$z = (v+1) \bmod 8$$

Second level of analysis:

$$z = \begin{cases} (y+1) \bmod 8 & \mathbf{if} \quad x \neq 0 \\ (w+1) \bmod 8 & \mathbf{if} \quad x = 0 \end{cases}$$

Figure 4.12: a) NAND network; b) Network redrawn in mixed-logic notation

• Use mixed-logic transformations

$$z = x'_5 + (x_4 + x'_3)(x'_2 + x_1x'_0)$$

= $x'_5 + x_4x'_2 + x_3x'_2 + x_4x_1x'_0 + x'_3x_1x'_0$

Analysis (cont.)

$$z = ((x_2 + x_1')(x_2' + x_1) + x_0)(x_2' + x_1' + x_0')$$

$$= (x_2 + x_1' + x_0)(x_2' + x_1 + x_0)(x_2' + x_1' + x_0')$$

$$= (x_2x_1 + x_2'x_1' + x_0)(x_2' + x_1' + x_0)$$

$$= x_2'x_1' + x_0$$

- Load factor of a network input
- Fan-out factor of a network output
- Size of the network
- Network (propagation) delay
- Number of levels of a network
- Dynamic characteristics

Table 4.3: Characteristics of a family of CMOS gates

Gate	Fan-	Propagation delays		Load factor	Size
type	in	t_{pLH}	t_{pHL}		
		[ns]	[ns]	$[{ m standard}$	[equiv.
				loads]	gates]
AND	2	0.15 + 0.037L	0.16 + 0.017L	1.0	2
AND	3	0.20 + 0.038L	0.18 + 0.018L	1.0	2
AND	4	0.28 + 0.039L	0.21 + 0.019L	1.0	3
OR	2	0.12 + 0.037L	0.20 + 0.019L	1.0	2
OR	3	0.12 + 0.038L	0.34 + 0.022L	1.0	2
OR	4	0.13 + 0.038L	0.45 + 0.025L	1.0	3
NOT	1	0.02 + 0.038L	0.05 + 0.017L	1.0	1
NAND	2	0.05 + 0.038L	0.08 + 0.027L	1.0	1
NAND	3	0.07 + 0.038L	0.09 + 0.039L	1.0	2
NAND	4	0.10 + 0.037L	0.12 + 0.051L	1.0	2
NAND	5	0.21 + 0.038L	0.34 + 0.019L	1.0	4
NAND	6	0.24 + 0.037L	0.36 + 0.019L	1.0	5
NAND	8	0.24 + 0.038L	0.42 + 0.019L	1.0	6
NOR	2	0.06 + 0.075L	0.07 + 0.016L	1.0	1
NOR	3	0.16 + 0.111L	0.08 + 0.017L	1.0	2
NOR	4	0.23 + 0.149	0.08 + 0.017L	1.0	4
NOR	5	0.38 + 0.038L	0.23 + 0.018L	1.0	4
NOR	6	0.46 + 0.037L	0.24 + 0.018L	1.0	5
NOR	8	0.54 + 0.038L	0.23 + 0.018L	1.0	6
XOR	2*	0.30 + 0.036L	0.30 + 0.021L	1.1	3
		0.16 + 0.036L	0.15 + 0.020L	2.0	

 $Figure\ 4.14:\ {\it Network}\ for\ hierarchical\ analysis$

Example (cont.)

Types of gates used: 2-input AND, 3-input AND, etc.

Load factors. network inputs: 1; gate inputs: 1

Fanout factors. F = 12 (assumed)

$$F(z_2) = F(z_1) = 12, \quad F(z_0) = 12 - 2 = 10$$

Network size: 38 [equiv. gates] 21 [actual]

Number of levels: 7

Network delay The longest path:

$$O_1 o N_1 o A_2 o O_2 o N_2 o A_9 o O_5$$
 $T_{pLH}(x_1, z_2) = t_{pLH}(O_1) + t_{pHL}(N_1) + t_{pHL}(A_2) + t_{pHL}(O_2) + t_{pLH}(N_2) + t_{pLH}(A_9) + t_{pLH}(O_5)$
 $T_{pHL}(x_1, z_2) = t_{pHL}(O_1) + t_{pLH}(N_1) + t_{pLH}(A_2) + t_{pLH}(O_2) + t_{pHL}(N_2) + t_{pHL}(A_9) + t_{pHL}(O_5)$

Gate	Identifier	Output load	t_{pLH}	t_{pHL}
			[ns]	[ns]
OR3	O_1	4	0.27	0.43
NOT	N_1	3	0.13	0.10
AND2	A_2	1	0.19	0.18
OR2	O_2	3	0.23	0.26
NOT	N_2	1	0.06	0.07
AND3	A_9	1	0.24	0.20
OR3	O_5	L	0.12 + 0.038L	0.34 + 0.022L

$$T_{pLH}(x_1, z_2) = 0.27 + 0.10 + 0.18 + 0.26 + 0.06$$

 $+0.24 + 0.12 + 0.038L = 1.23 + 0.038L \text{ [ns]}$
 $T_{pHL}(x_1, z_2) = 0.43 + 0.13 + 0.19 + 0.23 + 0.07$
 $+0.20 + 0.34 + 0.022L = 1.59 + 0.022L \text{ [ns]}$

Figure 4.15: Timing diagram from network analysis