[ES7] COMPOSITION OF FUNCTIONS

20 April 2020 09:38

1. Consider the functions

$$f: (4, \infty) \longrightarrow \mathbf{R}$$
 where $f(x) = \sqrt{x}$

and

$$g: \mathbf{R}^- \longrightarrow \mathbf{R}$$
 where $g(x) = x^2$.

(a) Find the domain of $f \circ g$.

(b) Find the rule for f(g(x)).

$$f(g|n)) = f(n^2)$$

$$= |n|$$

2. Consider the functions f and g as given below:

$$f:[2,\infty)\longrightarrow \mathbf{R}$$
 where $f(x)=\sqrt{x-1}$

and

$$g:[0,4]\longrightarrow \mathbf{R}$$
 where $g(x)=x^2$.

(a) Give the rule for f(g(x)) and find all values of x for which f(g(x)) exists.

$$f(q(n)) = f(n^{2})$$

$$- \sqrt{n^{2} - 1}$$

$$dom(f(q(n))) = \begin{cases} n \in dom(q) \land q(n) \in dom(f)^{2} \\ - \begin{cases} n \in [0, 4] \land n^{2} \in [z, do) \end{cases} \end{cases}$$

$$= 0 \le n \le 4 \text{ and } n^{2} > 2$$

$$n^{2} - 2 > 0$$

$$(n + [x])(n - [x]) \ge 0$$

$$(n + [x])(n - [x])(n - [x]) \ge 0$$

$$(n + [x])(n - [x])(n - [x]) \ge 0$$

$$(n + [x])(n - [x])(n - [x]) \ge 0$$

$$(n + [x])(n - [x])(n - [x])(n - [x]) \ge 0$$

$$(n + [x])(n - [x])(n - [x])(n - [x]) \ge 0$$

$$(n + [x])(n - [x])($$

(b) Give the rule for g(f(x)) and find an values of x for which g(f(x)) exists.

3. Consider the functions

$$f:[1,\infty)\longrightarrow \mathbf{R}$$
 where $f(x)=\frac{1}{x}+1$

and

$$g: \mathbf{R} \setminus \left\{ \frac{1}{2} \right\} \longrightarrow \mathbf{R} \text{ where } g(x) = \frac{1}{2x-1}$$
.

- (a) Find the rule for f(g(x)).
- (b) Find the domain of $f \circ g$.

4. Consider the functions

$$f: [4, \infty) \longrightarrow \mathbf{R}$$
 where $f(x) = \log_{10} x$

and

$$h:(0,2)\longrightarrow \mathbf{R}$$
 where $h(x)=3+x$.

- (a) Find the rule for h(f(x)).
- (b) Find the values of x for which h(f(x)) is defined.

5. Consider the functions

$$f:[1,\infty)\longrightarrow \mathbf{R}$$
 where $f(x)=\sqrt{x}$

and

$$g: \mathbf{R} \longrightarrow \mathbf{R}$$
 where $g(x) = x^2$.

- (a) Find the rule for $f \circ g$.
- (b) Find dom $(f \circ g)$.

- 6. Which of the following functions has an inverse function?
- (a) $f: \mathbf{R} \longrightarrow \mathbf{R}$ where $f(x) = x^2 2$
- (b) $f:[0,\infty)\longrightarrow \mathbf{R}$ where $f(x)=x^2+1$
- (c) $f: \mathbf{R} \longrightarrow \mathbf{R}$ where $f(x) = x^3$

(d)
$$f: [-1, \infty) \longrightarrow \mathbf{R}$$
 where $f(x) = (x+3)^2$

7. For each of the following functions f, find the largest value of b so that f has an inverse **function**.

(a)
$$f: [-1, b] \longrightarrow \mathbf{R}$$
 where $f(x) = 4 + x^2$

(b)
$$f: [-3, b] \longrightarrow \mathbf{R}$$
 where $f(x) = \sqrt{9 - x^2}$

(c)
$$f:(-\infty,b]\longrightarrow \mathbf{R}$$
 where $f(x)=x(x-10)$

8. Consider the function

$$f: (-\infty, b] \longrightarrow \mathbf{R}$$
 where $f(x) = x^2 + 1$.

(a) Find the largest value of b so that f has an inverse function.

Using this value of b,

- (b) state the domain and range of f.
- (c) state the domain and range of f^{-1} .
- (d) find the rule for f^{-1} .
- (e) On the same set of axes, sketch the graphs of y = f(x) and $y = f^{-1}(x)$.

- 9. Find f^{-1} if f is the function defined by $f: [-2,0] \longrightarrow \mathbf{R} \text{ where } f(x) = 4 x^2.$
- 10. Consider the function

$$f: (-\infty, b] \longrightarrow \mathbf{R}$$
 where $f(x) = x^2 + 2x$.

(a) Find the largest value of b so that f has an inverse function.

Using this value of b,

- (b) state the domain and range of f.
- (c) state the domain and range of f^{-1} .
- (d) find f^{-1} .

11. Consider the function

$$f: S \longrightarrow \mathbf{R}$$
 where $f(x) = 2x + 2$.

If f has inverse function given by

$$f^{-1}:[0,\infty)\longrightarrow \mathbf{R}$$
 where $f^{-1}(x)=\frac{1}{2}x-1$,

then find the set S.

- 12. Consider the function given by $f(x) = x^2$.
- (a) Sketch the graph of y = f(x).
- (b) Find the domain and range of f.

- (c) Does J have an inverse function:
- 13. Consider the function given by $f(x) = x^3$.
- (a) Sketch the graph of y = f(x).
- (b) Find the domain and range of f.
- (c) Does f have an inverse function?
- 14. Consider the function given by $f(x) = \sqrt{4 x^2}$.
- (a) Sketch the graph of y = f(x).

- (b) Find the domain and range of f.
- (c) Does f have an inverse function?
- 15. Let $f: \mathbf{R} \setminus \{2\} \longrightarrow \mathbf{R}$ where $f(x) = \frac{3}{x-2}$.
- (a) Find the domain and range of f.
- (b) Find the domain and range of f^{-1} .
- (c) Find the rule for f^{-1} .

16. (a) Let
$$f:(-\infty,-2)\longrightarrow \mathbf{R}$$
 where $f(x)=\frac{1}{(x+2)^2}$.

i. Sketch the graphs of y = f(x) and $y = f^{-1}(x)$.

ii. Completely determine f^{-1} . That is, find the domain, range and rule for f^{-1} .

(b) Let
$$g:(-2,\infty)\longrightarrow \mathbf{R}$$
 where $g(x)=\frac{1}{(x+2)^2}$.

i. Sketch the graphs of y = g(x) and $y = g^{-1}(x)$.

ii. Completely determine g^{-1} . That is, find the domain, range and rule for g^{-1} .

9 of 9 1/2/21, 11:27 AM