# Revision notes - CS2100

# Ma Hongqiang

# September 19, 2017

# Contents

| 1 | Introduction             | 2  |
|---|--------------------------|----|
| 2 | Number Systems           | 4  |
| 3 | Boolean Algebra          | 15 |
| 4 | Logic Gates and Circuits | 19 |
| 5 | Kaunaugh Map             | 23 |
| 6 | Combinatorial Circuits   | 26 |
| 7 | More Building Blocks     | 35 |
| 8 | Sequential Logic         | 42 |

# 1 Introduction

### **Definition 1.1** (Computer).

A computer is a device capable of solving problems according to designed programs. It simply augments our power of storage and speed of calculation.



Figure 1: Computers as information processors.

## **Definition 1.2** (Hardware Stack).

The hardware stack with the most basic on the top goes like:

- Transistor
- Logic Gate
- Circuits
- Memory
- Processor

## **Definition 1.3** (Transistor).

A transistor is

- a solid state switch. The input switches on or off the output.
- It is also an *amplifier*. The output signal is much stronger than the input so that things can be connected up.

# **Definition 1.4** (Boolean logic gates). t

To compute, **Boolean logic gates** is built by transistors to compute Boolean logic functions.

The basic Boolean logic gates include:

- NOT
- OR, AND
- NAND, NOR

Theorem 1.1 (Behaviour of nMOS and pMOS transistor).



Examples of logic gates constructed by nMOS and pMOS include:



Figure 2: CMOS NOT Gate



Figure 3: CMOS NAND Gate

# 2 Number Systems

# 2.1 Information Representation

**Definition 2.1** (Bit).

Bit is the short form of binary digit.

- 0 and 1
- Represent false and true in logic
- $\bullet$  Represent the *low* and *high* states in electronic devices

Other units include

• Byte: 8 bits

• Nibble: 4 bits

• Word: Multiple of byte

Obviously, N bits can represent up to  $2^N$  values. Conversely, to represent M values,  $\log_2 M$  bits are required.

**Definition 2.2** (Weighted-positional Number System). A weighted-positional number system is one whose

- Base or radix is N.
- position is important, as the value of each symbol/digit is dependent on its **type** and **position** in the number.
- In general,

$$(a_n a_{n-1} \cdot a_1 a_0 \cdot b_1 b_2 \cdot)_N = \sum_{k=0}^n a_k N^k + \sum_{k=1}^\infty b_k N^{-k}$$

For example, in the decimal number system,

$$(593.68)_{10} = 5 \times 10^2 + 9 \times 10^1 + 3 \times 10^0 + 6 \times 10^{-1} + 8 \times 10^{-2}$$

The method of conversion between bases can be found in MA2213 Revision Note. In special cases, binary can be converted to octal and hexadecimal by partitioning the number in groups of 3 and 4 respectively.

# 2.2 Signed Binary Number

Any real number can be converted to a signed binary number. A **signed binary number** is defined by its

- sign
- absolute value

In general, a signed binary number can be represented as

$$\pm a_{n-1}a_{n-2}\cdots a_0.b_1b_2\cdots$$

where  $a_i, b_j = 0$  or 1 for  $i = [0..n], j = \mathbb{Z}^+$ .

**Definition 2.3** (String Representation of Signed Binary Number).

A string representation of signed binary numbers is a bijection from signed binary numbers to strings of bits.

Specifically for binary integers with sign s and absolute value v, define the bijective function f:

$$f: (\text{sign, absolute value}) \to \text{binary String}$$
  
 $(s, v) \mapsto \text{str}$ 

where str is the string representation f of that particular signed binary number defined by s and v.

**Definition 2.4** (Negation of String Representation).

Negation is a unitary function —:

$$-:$$
 binary String  $\rightarrow$  binary String  $\mathtt{str} \mapsto -\mathtt{str}$ 

where -str := f(-s, v)

There are three common string representations of signed binary number, namely

- Sign-and-Magnitude  $f_{\rm sm}$
- 1s complement  $f_{1s}$
- 2s complement  $f_{2s}$

In the rest of this subsection, the length of string str is fixed to n, and str =  $a_{n-1}a_{n-2}\cdots a_0$ .

# 2.2.1 Sign-and-Magnitude Representation $f_{\rm sm}$

Definition 2.5  $(f_{sm})$ .

In **sign-and-magnitude** representation, sign s is represented by a **sign bit** in the leftmost position of string str, i,e,  $a_{n-1}$ .

- 0 for +
- 1 for -

The absolute value v will occupy the rest n-1 bits of  $\operatorname{str}: a_{n-2}a_{n-3}\cdots a_0 := v$ . For a n bit sign-and-magnitude representation, the domain of  $f_{\operatorname{sm}}$  is  $[-2^{n-1}+1, 2^{n-1}-1]\cap \mathbb{Z}$ .

Clearly, say, for 8-bit sign-and-magnitude representation,

- Largest value:  $011111111_{sm} = +127_{10}$
- Smallest value:  $111111111_{sm} = -127_{10}$
- **Zeros**:  $00000000_{\text{sm}} = +0_{10}$  and  $10000000_{\text{sm}} = -0_{10}$
- Range:  $-127_{10}$  to  $+127_{10}$

**Theorem 2.1** (Negation of str in sign-and-magnitude representation).

To negate a str in sign-and-magnitude interpretation, invert the sign bit<sup>1</sup>. Suppose  $str = a_{n-1}a_{n-2}\cdots a_0$ , then

$$-\mathtt{str} = \overline{a_{n-1}} a_{n-2} \cdots a_0$$

Theorem 2.2  $(f_{\rm sm}^{-1})$ .

 $f^{-1}(str)$  is defined<sup>2</sup> as follows:

$$f_{\text{sm}}^{-1}(\text{str}) = f^{-1}(a_{n-1}a_{n-2}\cdots a_0)$$
$$:= (-1)^{a_{n-1}} \times \sum_{i=0}^{n-2} (a_i \times 2^i)$$

# 2.2.2 1s Complement

**Definition 2.6** ( $f_{1s}$  for non-negative binary numbers).

Suppose a **nonnegative** number is defined by (+, v). In **1s complement** representation str,

- the positive sign defines  $a_{n-1} := 0$ ;
- the absolute value v will occupy the rest n-1 bits of str:  $a_{n-2}a_{n-3}\cdots a_0:=v$ .

<sup>&</sup>lt;sup>1</sup>Inversion of bit b is denoted by  $\bar{b}$ 

 $<sup>^{2}</sup>f^{-1}$  is well defined as f is a bijection

## Definition 2.7 (Negation).

Negation of 1s complement representation is defined as:

$$-:$$
 binary String  $\rightarrow$  binary String  $\operatorname{str} = a_{n-1}a_{n-2}\cdots a_0 \mapsto \overline{a_{n-1}a_{n-2}\cdots a_0} := -\operatorname{str}$ 

Essentially, to negate a String of 1s complement, invert all the bits.

**Definition 2.8** ( $f_{1s}$  for non-positive binary numbers).

The 1s complement representation of a **non-positive binary number** defined by (-, v) is defined by **negation** of  $f_{1s}((+, v))$ .

Essentially,

$$\mathtt{str} = 1\overline{a_{n-2}a_{n-3}\cdots a_0}$$

Together with the previous definition, for a n bit 1s complement representation, the domain of  $f_{1s}$  is  $[-2^{n-1}+1, 2^{n-1}-1] \cap \mathbb{Z}$ .

Clearly, say, for 8-bit 1s complement representation,

- Largest value:  $011111111_{1s} = +127_{10}$
- Smallest value:  $10000000_{1s} = -127_{10}$
- **Zeros**:  $00000000_{1s} = +0_{10}$  and  $11111111_{1s} = -0_{10}$
- Range:  $-127_{10}$  to  $+127_{10}$ .

Theorem 2.3 (Sign Bit of 1s Complement).

The leftmost position of string str, i,e,  $a_{n-1}$ , still represents the sign:

- 0 for +
- 1 for -

Theorem 2.4  $(f_{1s}^{-1})$ .

 $f^{-1}(str)$  is defined as follows:

$$\begin{split} f_{1\mathrm{s}}^{-1}(\mathtt{str}) &= f^{-1}(a_{n-1}a_{n-2}\cdots a_0) \\ &:= ((-2^{n-1}+1)\times a_{n-1}) + \sum_{i=0}^{n-2} a_i \times 2^i \end{split}$$

# 2.2.3 2s Complement

**Definition 2.9** ( $f_{2s}$  for non-negative binary numbers).

Suppose a **nonnegative** number is defined by (+, v). In **2s complement** representation str,

- the positive sign defines  $a_{n-1} := 0$ ;
- the absolute value v will occupy the rest n-1 bits of str:  $a_{n-2}a_{n-3}\cdots a_0:=v$ .

## **Definition 2.10** (Negation).

Negation of 2s complement representation is defined as:

-: binary String 
$$\rightarrow$$
 binary String str =  $a_{n-1}a_{n-2}\cdots a_0 \mapsto (\text{String})((\text{binary number})\overline{a_{n-1}a_{n-2}\cdots a_0} + 1) := -\text{str}$ 

Essentially, negation of a String of 2s complement equals to the sum of this String with all bits flipped and 1.

# **Definition 2.11** ( $f_{2s}$ for negative binary numbers).

The 2s complement representation of a **negative binary number** defined by (-, v) is defined by **negation** of  $f_{2s}((+, v))$ . Essentially,

$$\mathtt{str} = \overline{a_{n-1}a_{n-2}\cdots a_0} + 1$$

Together with the previous definition, for a n bit 2s complement representation, the domain of  $f_{2s}$  is  $[-2^{n-1}, 2^{n-1} - 1] \cap \mathbb{Z}$ .

Clearly, say, for 8-bit 2s complement representation,

- Largest value:  $011111111_{2s} = +127_{10}$
- Smallest value:  $10000000_{2s} = -128_{10}$
- **Zeros**:  $00000000_{2s} = +0_{10}$
- Range:  $-128_{10}$  to  $+127_{10}$ .

# Theorem 2.5 (Sign Bit of 2s Complement).

The leftmost position of string str, i,e,  $a_{n-1}$ , still represents the sign:

- 0 for +
- 1 for -

# Theorem 2.6 $(f_{2s}^{-1})$ .

 $f_{2s}^{-1}(str)$  is defined as follows:

$$\begin{split} f_{2\mathrm{s}}^{-1}(\mathtt{str}) &= f_{2\mathrm{s}}^{-1}(a_{n-1}a_{n-2}\cdots a_0) \\ &:= (-2^{n-1}\times a_{n-1}) + \sum_{i=0}^{n-2} a_i \times 2^i \end{split}$$

# 2.3 Generalising complement

**Definition 2.12** ((r-1)'s complement).

Let  $a_{n-1}a_{n-2}\cdots a_0$  be string representation of a number in radix r. The (r-1)'s complement is the string  $\overline{a_{n-1}a_{n-2}\cdots a_0}$  where  $\overline{a_i}=r-1-a_i$ .

The r's complement is just the (r-1)'s complement with 1 added to the least significant bit.

Theorem 2.7 (Complement on Fractions).

We can extend the operations of complement on fractions.

Theorem 2.8 (2s Complement Addition/Subtraction).

Algorithm for addition,  $A_{2s} + B_{2s}$ :

- Perform binary addition on the two (binary number) String.
- Ignore the carry out of the most significant bit(MSB).
- Check for overflow. Overflow occurs if
  - 1. the 'carry in' and 'carry out' of the MSB are different, or
  - 2. result is of opposite sign of  $A_{2s}$  and  $B_{2s}$ .

Algorithm for **subtraction**  $A_{2s} - B_{2s}$ :  $A_{2s} - B_{2s} = A_{2s} + (-B)_{2s}$ .

Theorem 2.9 (1s Complement Addition/Subtraction).

Algorithm for addition,  $A_{1s} + B_{1s}$ :

- Perform binary addition on the two (binary number) String.
- If there is a carry out of the MSB, add 1 to the result.
- Check for overflow. Overflow occurs if
  - 1. result is of opposite sign of  $A_{1s}$  and  $B_{1s}$ .

Algorithm for subtraction  $A_{1s} - B_{1s}$ :  $A_{1s} - B_{1s} = A_{1s} + (-B)_{1s}$ .

# 2.4 Excess-k Representation

Definition 2.13  $(f_{\text{excess}-k})$ .

Suppose a number N is defined by (s, v). Clearly, this number N equals  $\operatorname{sgn}(s) \times v$ . Its excess-k representation (k > 0) str is defined as

$$\mathtt{str} = f_{\mathrm{excess}-k}((s,v)) := f_{\mathrm{sm}}(N+k)$$

For a *n* bit excess-*k* complement representation, the domain is  $[-k, 2^n - k - 1] \cap \mathbb{Z}$ . Note:  $\mathbf{k}_{\text{excess}-k} = k_2$  numerically.

Definition 2.14 (Negation).

Negation of excess-k representation of is calculated as:

$$-\mathtt{str} := \mathtt{String}(2 \times k - \mathtt{(binary number)str})$$

Domain of the above negation operation is  $[-\min\{2^n-k-1,k\},\min\{2^n-k-1,k\}]$  if  $k<2^n$  and  $\varnothing$  otherwise.

There is no **sign bit** for excess-k representation.

Definition 2.15  $(f_{\text{excess}-k}^{-1})$ .

 $f_{\text{excess}-k}^{-1}$  is defined as follows:

$$f_{\mathrm{excess}-k}^{-1}(\mathtt{str}) = \mathtt{(binary number)str} - k$$

# 2.5 Floating Point Numbers

**Definition 2.16** (Fixed Point Numbers).

In fixed point representation, the binary point is assumed to be at fixed location. In general, the binary point may be assumed to be at any pre-fixed location.

Fixed point numbers have limited range. Floating point numbers allow us to represent very large or very small numbers.

**Definition 2.17** (Floating Point Numbers).

Floating point numbers consists of 3 parts: sign, mantissa and exponent.

- The base (radix) is assumed to be 2.
- Sign bit: 0 for positive, 1 for negative.
- Mantissa is usually in **normalised form**.

Clearly, the trade-off of floating point numbers is

- More bits in mantissa  $\rightarrow$  better precision
- More bits in exponent  $\rightarrow$  larger range of values

### **Definition 2.18** (IEEE Standard 754).

IEEE Standard 754 has the following properties:

- Two types of formats
  - Normalised numbers
  - **Denormalised** numbers
- Special values
  - Negative zero
  - Infinities
  - Not-a-Number(NaN)
- Distribution of bits in mantissa and exponent: See table below

| Parameter              | Single | Double |
|------------------------|--------|--------|
| No. of fraction bits   | 23     | 52     |
| Maximum exponent       | +127   | +1023  |
| Minimum exponent       | -126   | -1022  |
| Exponent bias          | +127   | +1023  |
| Exponent width in bits | 8      | 11     |
| Format width in bits   | 32     | 64     |

The IEEE Standard 754 admits the following format:



Definition 2.19 (Normalised Number).

A normalised number, v, represented in IEEE 754 is

$$v = (-1)^{\text{sign}} \times 1.\text{fraction} \times 2^{\text{exponent}-bias}$$

Note: for normalised numbers, the integer part of the 8 bit fraction part is 1.

- Sign bit is 1 bit, followed by exponent and lastly mantissa
- Exponent must NOT be 0. It must be in  $[1, 2^e 2]$ , where e is the number of exponent bits.

All zero 0 or all one  $2^e - 1$  exponents are reserved for special values and are not used for normalised numbers

- Suppose the exponent bias is b, then the exponent is in excess-b representation of the true power.
- A normalised fraction part is in the interval [1, 2).

Definition 2.20 (Denormalised numbers).

**Denormalised numbers** are to represent really small (positive or negative) numbers as following:

$$v = (-1)^{\text{sign}} \times 0.\text{fraction} \times 2^{-\text{bias}s+1}$$

To identify a number as **denormalised**, exponent must be 0 and mantissa must be non-zero. The system will interpret the exponent to be 1 - bias instead of  $0_{\text{excess-bias}}$ .

Definition 2.21 (Special values).

• 0: exponent = 0 fraction = 0

•  $+\infty$ : exponent =  $2^e - 1$  fraction = 0

•  $-\infty$ : exponent =  $2^e - 1$  fraction = 0

• NaN: exponent =  $2^e - 1$  fraction  $\neq 0$ 

**Definition 2.22** (Comparison Rules).

| Type                 | Sign | Exponent                                                                       | Fraction                                                             |
|----------------------|------|--------------------------------------------------------------------------------|----------------------------------------------------------------------|
| $+\infty$            | 0    | <u>11···1</u>                                                                  | $0\cdots 0$                                                          |
|                      |      | $\stackrel{\cdot}{e}$                                                          | $\dot{f}$                                                            |
| $-\infty$            | 1    | $\underbrace{11\cdots 1}_{e}$                                                  | $\underbrace{0\cdots 0}_{t}$                                         |
| NaN                  |      | <u>11···1</u>                                                                  | non zero                                                             |
| 0                    |      | $\underbrace{00\cdots0}^e$                                                     | $00\cdots 0$                                                         |
|                      |      | e                                                                              | f                                                                    |
| Denormalised Numbers |      | $\underbrace{0\cdots 0}_{e}$                                                   | non zero                                                             |
| Normalised Numbers   |      | $\underbrace{[\underbrace{00\cdots 0}_{e-1}1,\underbrace{11\cdots 1}_{e-1}0]}$ | $\underbrace{[\underbrace{00\cdots 0}_f,\underbrace{11\cdots 1}_f]}$ |

- Negative and positive zero compare equal
- Every NaN compares unequal to every value, including itself
- All values except NaN are strictly smaller than  $+\infty$  and strictly larger than  $-\infty$ .

**Definition 2.23** (Overflow, Underflow). In floating point representation, greater than the largest representable positive number or smaller than the smallest representable negative number results in **overflow**; greater than the largest representable negative number and smaller than the smallest representable positive number results in **underflow**.

### Definition 2.24 (Rounding).

**Rounding** is defined as selecting a representable number as the result, from the two closest representable numbers.

Rounding destroys associativity of all operations on floating point numbers.

### **Definition 2.25** (Guard Bit, Round Bit, Sticky Bit).

To enable rounding, IEEE 754 specifies that all arithmetic must be performed with 3 extra bits at the end of the last fraction bit, from the order of the most significant bit to the least:

- Guard bit
- Round bit
- Sticky bit, which equals to 1 if any bits to the right of it is 1



### Theorem 2.10 (Rounding Modes).

There are four rounding modes:

• Round to nearest (default)

```
if (GUARD == 1) {
  if ((ROUND == 1) or (STICKY == 1)) {
    return Y as the mantissa answer
  } else { // Must be (ROUND == 0) and (STICKY == 0)
    // Invoke IEEE tie breaker
    if (LSB, i.e., bit 23 is 1) {
      return Y as the mantissa answer
    } else {
      return X as the mantissa answer
    }
}
else {
    return X as the mantissa answer
}
```

• Round towards 0

```
Always report X as the mantissa answer. (if less than 0, then this becomes X)
```

• Round towards  $+\infty$ 

```
if (result > 0) {
    report Y as the mantissa answer.
} else {
    report X as the mantissa answer.
}
```

• Round towards  $-\infty$ 

```
if (result < 0) {
    report Y as the mantissa answer.
} else {
    report X as the mantissa answer.
}</pre>
```

#### Definition 2.26 (Error).

Rounding yields a representable floating point number x' that is an approximation of the real number x.

```
Define absolute error = |x' - x|.
Define relative error = \frac{|x' - x|}{x} (assuming x \neq 0)
```

**Definition 2.27** (Machine Epsilon  $\varepsilon$ ).

Informally, machine epsilon  $\varepsilon$  is defined as 1 added to the LSB.

**Definition 2.28** (Unit in the Last Place(ulp)).

Given an IEEE floating point number x, say with an exponent E. The **unit in the last** place of x is defined as

$$\mathrm{ulp}(x) = \varepsilon \times 2^E$$

Round to nearest results in an absolute error that is less than  $\frac{1}{2}ulp(x)$ .

Theorem 2.11 (Floating Point Addition).

Given two decimal numbers in floating point notation:

- $\bullet \ X = 0.a_1 a_2 \cdots a_n \times 2^p$
- $\bullet \ Y = 0.b_1b_2\cdots b_n \times 2^q$

To perform X + Y,

- 1. align the decimal point by shifts such that two exponents are the same.
- 2. If p > q, then we need to adjust Y such that  $Y' = 0.\underbrace{00\cdots 0}_{p-q} b_1 b_2 \cdots b_n \times 2^p$ .

This is called **denormalisation shift**.

- 3. Addition is performed on fraction part of X and Y.
- 4. Normalise the result
- 5. Round the result

# 3 Boolean Algebra

**Definition 3.1** (Digital Circuit).

Digital circuit is circuit with two voltage levels, known as

- High, true, 1, asserted
- Low, false, 0, deasserted

Advantages of digital circuits over analog circuits include:

- More reliable (simpler circuits, less noise-prone)
- Specified accuracy (determinable)
- Abstraction can be applied using simple mathematical model Boolean Algebra
- Ease design, analysis and simplification of digital circuit Digital Logic Design

**Definition 3.2** (Type of Logic Blocks).

There are two types of logic blocks, known as

- 1. Combinatorial: no memory, output depends solely on the input
  - Gates
  - Decoders, multiplexers
  - Adders, multipliers
- 2. Sequential: with memory, output depends on both input and current states
  - Counters, registers
  - Memories

# 3.1 Boolean Algebra

Boolean algebra involves boolean values and connectives.

**Definition 3.3** (Boolean Values).

There are two **boolean values** in boolean algebra:

- True (1)
- False (0)

**Definition 3.4** (Connectives).

There are three **connectives** in boolean algebra, which maps given input boolean value(s) to a single output boolean value.

**Truth tables** defines a connective by providing a listing of every possible combination of inputs and its corresponding outputs.

Reminder: Inputs must list in ascending binary sequence.

The three connectives are:

• Conjunction (AND):  $A \cdot B$ 

| A | B | $A \cdot B$ |
|---|---|-------------|
| 0 | 0 | 0           |
| 0 | 1 | 0           |
| 1 | 0 | 0           |
| 1 | 1 | 1           |

• Disjunction (OR): A + B

| A | B | $A \cdot B$ |
|---|---|-------------|
| 0 | 0 | 0           |
| 0 | 1 | 1           |
| 1 | 0 | 1           |
| 1 | 1 | 1           |

• Negation (NOT): A'

| A | A' |
|---|----|
| 0 | 1  |
| 1 | 0  |

Theorem 3.1 (Laws of Boolean Algebra).

• Identity laws

$$A + 0 = 0 + A = A$$
$$A \cdot 1 = 1 \cdot A = A$$

ullet Inverse/Complement laws

$$A + A' = 1$$
$$A \cdot A' = 0$$

• Commutative laws

$$A + B = B + A$$
$$A \cdot B = B \cdot A$$

• Associative laws

$$A + (B + C) = (A + B) + C$$
$$A \cdot (B \cdot C) = (A \cdot B) \cdot C$$

• Distributive laws

$$A \cdot (B+C) = A \cdot B + A \cdot C$$
$$A + (B \cdot C) = (A+B) \cdot (A+C)$$

Theorem 3.2 (Precedence of Connectives).

The precedence from highest to lowest is

- NOT
- AND
- OR

Parenthesis can be used to overwrite precedence.

Theorem 3.3 (Duality).

If the AND/OR operators and identity elements 0/1 in a Boolean equation are interchanged, it remains valid.

Theorem 3.4 (Basic Theorems).

1. Idempotency

$$X + X = X$$
$$X \cdot X = X$$

2. Zero and One Elements

$$X + 1 = 1$$
$$X \cdot 0 = 0$$

3. Involution

$$(X')' = X$$

4. Absorption

$$X + X \cdot Y = X$$
$$X \cdot (X + Y) = X$$

5. Absorption (variant)

$$X + X' \cdot Y = X + Y$$
$$X \cdot (X' + Y) = X \cdot Y$$

17

### 6. DeMorgan's

$$(X + Y)' = X' \cdot Y'$$
$$(X \cdot Y)' = X' + Y'$$

Demorgan's Theorem can be generalised to more than two variables.

#### 7. Consensus

$$X \cdot Y + X' \cdot Z + Y \cdot Z = X \cdot Y + X'Z$$
$$(X+Y) \cdot (X'+Z) \cdot (Y+Z) = (X+Y) \cdot (X'+Z)$$

**Definition 3.5** (Boolean Functions).

Boolean functions are functions which takes in boolean variable and outputs an expression of these boolean variable.

**Definition 3.6** (Complement of a Function).

Given a Boolean function F, the **complement** of F, denoted as F', is obtained by interchanging 1 with 0 in the function's output values.

### 3.2 Standard Forms

There are two standard forms:

- Sum-of-Products
- Product-of-Sums

**Definition 3.7** (Literals).

A literal is a Boolean variable on its own or in its complemented form.

**Definition 3.8** (Product Term).

A **product term** is a single literal or a logical product(AND) of several literals.

**Definition 3.9** (Sum Term).

A sum term is a single literal or a logical sum(OR) of several literals.

**Definition 3.10** (Sum-of-product(SOP) expression).

**Sum-of-Products expression** is a product term or a logical sum(OR) of several product terms.

**Definition 3.11** (Product-of-Sums(POS) expression).

**Product of Sum expression** is a sum term or a logical product (AND) of several sum terms.

**Theorem 3.5.** Every Boolean expression can be expressed in SOP or POS.

**Definition 3.12** (Minterm).

A minterm of n variables is a **product term** that contains n literals from all the variables.

### **Definition 3.13** (Maxterm).

A maxterm of n variables is a sum term that contains n literals from all the variables.

In general, with n variables, we have  $2^n$  minterms and  $2^n$  maxterms.

## **Definition 3.14** (Ordering of Minterms).

Suppose there are n ordered variable  $(x_1, x_2, \ldots, x_n)$ . Minterms are numbered by a binary encoding of the **complementation pattern** of the ordered variables. The convention assigns the value 1 to the direct form  $x_i$  and 0 to its complemented form  $x_i'$ . The index of the minterm  $x_1 \cdot x_2 \cdot \cdots \cdot x_n$  is then  $(v_1 v_2 \cdots v_n)_2$  where  $v_i$  is the value of variable  $x_i$ .

### **Definition 3.15** (Indexing of Maxterms).

Suppose there are n ordered variable  $(x_1, x_2, \ldots, x_n)$ . Maxterms are numbered by a binary encoding of the **complementation pattern** of the ordered variables. The convention assigns the value 0 to the direct form  $x_i$  and 1 to its complemented form  $x_i'$ . The index of the maxterm  $x_1 + x_2 + \cdots + x_n$  is then  $(v_1v_2 \cdots v_n)_2$  where  $v_i$  is the value of variable  $x_i$ .

**Theorem 3.6.** Each minterm is the complement of the maxterm of the same index.

$$m_i' = M_i$$

#### **Definition 3.16** (Canonical Forms).

Canonical form refers to a unique form of representation. It can be shown that

- Sum-of-minterms is the canonical sum-of-product
- Product-of-maxterms is the canonical product-of-sum

### **Theorem 3.7** (Defining Function from Sum-of-minterms).

A function F can be defined by the sum of minterms  $m_i$  for which  $F(m_i) = 1$ .

#### **Theorem 3.8** (Defining Function from Product-of-Maxterms).

A function F can be defined by the product of maxterms  $M_i$  for which  $F(M_i) = 0$ .

#### **Theorem 3.9** (Complementation of Function).

Complementation of functions can be easily done by complementation between sum-of-minterms and product-of-maxterms.

$$\left(\sum_{i \in I} m(i)\right)' = \prod_{i \in I} M(i)$$
$$\left(\prod_{i \in I} M(i)\right)' = \sum_{i \in I} m(i)$$

# 4 Logic Gates and Circuits

| Name      | Symbol      | Truth Table                                                                                                                                                 |
|-----------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NOT Gate  | A — A'      | $egin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                        |
| AND Gate  | A A · B     | $\begin{array}{ c c c c c } \hline A & B & A \cdot B \\ \hline 0 & 0 & 0 \\ \hline 0 & 1 & 0 \\ \hline 1 & 0 & 0 \\ \hline 1 & 1 & 1 \\ \hline \end{array}$ |
| OR Gate   | A A+B       | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                      |
| NAND Gate | A (A · B)'  | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                      |
| NOR Gate  | A(A + B)'   | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                      |
| XOR Gate  | A → B A ⊕ B | $\begin{array}{c ccccc} A & B & A \oplus B \\ \hline 0 & 0 & 0 \\ \hline 0 & 1 & 1 \\ \hline 1 & 0 & 1 \\ \hline 1 & 1 & 0 \\ \end{array}$                  |
| XNOR Gate | A           | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                      |

# 4.1 Logic Circuit

**Definition 4.1** (Fan-in).

Fan-in refers to the number of inputs of a gate.

Given a Boolean expression, we may implement it as a logic circuit.

### 4.2 Universal Gates

{AND, OR, NOT} gates are sufficient for building any Boolean function. Thus the set {AND, OR, NOT} is called a *complete* set of logic.

However, other gates are also used for

- Usefulness
- Economical
- Self-sufficient

Furthermore, {NAND} gate is a complete set of logic; {NOR} gate is also a complete set of logic by duality.



Figure 4: Implementation of OR, AND, OR using NAND and NOR respectively

### 4.2.1 SOP and NAND Circuits

An SOP expression can be easily implemented using

- 2-level AND-OR circuit
- 2-level NAND circuit

A 2-level AND-OR circuit can be converted to a 2-level NAND circuit by

- 1. Introduce 2 NOT gate after first level AND and before second level OR gates.
- 2. The first level AND have been converted to NAND gates; the second level negative-OR gate is equivalent to NAND gate.

### 4.2.2 POS and NOR Circuits

A POS expression can be easily implemented using

- 2-level OR-AND circuit
- 2-level NOR circuit

A 2-level OR-AND circuit can be converted to a 2-level NOR circuit by

- 1. Introduce 2 NOT gate after first level OR and before second level AND gates.
- 2. The first level OR have been converted to NOR gates; the second level negative-AND gate is *equivalent* to NOR gate.

# 5 Kaunaugh Map

**Function simplification** leads to simpler expressions which uses fewer logic gates and makes circuits cheaper, less power consuming and faster.

There are three techniques in function simplification: Boolean Algebra, Karnaugh Maps and Quine-McCluskey.

# 5.1 Boolean Algebra

Algebraic simplification aims to minimise

- Number of literals, and
- Number of terms

## 5.2 Half Adder

**Definition 5.1** (Half Adder).

**Half adder** is a circuit that adds 2 single bits (X, Y) to produce a result of 2 bits (C, S).<sup>3</sup> The truth table for half adder is

| X | Y | C | S |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 0 |

In canonical form (sum-of-minterms):

- $\bullet$   $C = X \cdot Y$
- $\bullet \ S = X \cdot Y' + X' \cdot Y^{4}$

The half adder can be implemented as



 $<sup>{}^3</sup>C$  is known as the carry bit, where S is the sum bit.

<sup>&</sup>lt;sup>4</sup>In fact,  $S = X \oplus Y$ .

# 5.3 Karnaugh Maps

**Karnaugh Maps** is a systematic method to obtain simplified (minimal) sum-of-products(SOP) expressions. Its objective is to obtain *fewest* produc terms and literals.

Definition 5.2 (Kaunaugh Map).

Karnaugh Map is an abstract form of Venn diagram, organised as a matrix of squares, where

- Each square represents a minterm
- Two adjacent squares represent minterms that differ by exactly one literal

Layouts of Kaunaugh Maps from 2 variables to 6 variables are as following: Based on the



### unifying theorem

$$A + A' = 1$$

In a K-map, each cell containing 1 corresponds to a minterm of a given function F. Each **valid grouping** of *adjacent cells* containing 1 then corresponds to a **simpler product term** of F.

## **Definition 5.3** (Valid Grouping).

- A valid grouping admits a rectangular shape.
- A valid grouping must have size in **powers of two**: 1, 2, 4, 8, . . . .
- Grouping  $2^n$  adjacent cells eliminates n variables.

#### In simplification,

- 1. Group as many cells as possible, by considering **prime implicants**.
- 2. Select as few groups as possible to cover all the cells(minterms) of the function, by considering **essential prime implicants**.

If a function is not in sum-of-minterms form,

- Convert it into sum-of-products form
- Expand the SOP expression into sum-of-minterms expression.

### **Definition 5.4** (Implicant).

**Implicant** is a product term that could be used to cover minterms of the function.

#### **Definition 5.5** (Prime Implicant).

**Prime implicant** is a product term obtained by combining the *maximum* possible number of minterms from adjacent squares in the map.

#### **Definition 5.6** (Essential Prime Implicant).

Essential Prime Implicant is a prime implicant that includes at least one minterm that is not covered by any other prime implicant.

**Theorem 5.1** (Algorithm for minimal SOP Expression).

- Circle all prime implicants on the K-map.
- Identify and select all essential prime implicants for the cover.
- Select a minimum subset of the remaining prime implicants to complete the cover.

#### **Theorem 5.2** (Algorithm for simplified POS Expression).

- Group maxterms of F, equivalently minterms of F', identified as 9 entry in K-map of F. This gives the SOP of F'.
- The simplified POS expression of F, use DeMorgan's law.

### **Definition 5.7** (Don't care conditions).

Outputs that can be either 1 or 0 are called **don't care conditions**, denoted by X. The set of don't care minterms are denoted as  $\sum d$ .

Don't care conditions can be used to help simplify Boolean expression further in K-maps.

# 6 Combinatorial Circuits

In combinatorial circuit, each output depends entirely on the immediate(present) input.

# 6.1 Gate Level Design

**Theorem 6.1** (Gate Level Design Procedure). 1. State problems

- 2. Determine and label the inputs and outputs of circuit
- 3. Draw the truth table
- 4. Obtain simplified Boolean functions.
- 5. Draw logic diagram.

### 6.1.1 Full Adder

**Full adder** adds three bits X, Y, Z, which includes the carry, and output a sum bit S and carry bit C. Truth table: Simplified formulae:



| X | Y | Z | C | S |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 |

$$C = X \cdot Y + (X \oplus Y) \cdot Z$$
$$S = X \oplus (Y \oplus Z)$$

Full Adder can be made from half adders.



# 6.2 Code Converters

**Definition 6.1** (Code Converters).

Code converter takes an input code and translates to its equivalent output code.



### **Definition 6.2** (Binary Code Decimal).

Binary code decimal is a representation system for coding a number in which each digit of a decimal number is represented individually by its binary equivalent.

| Decimal digit | BCD  |
|---------------|------|
| 0             | 0000 |
| 1             | 0001 |
| 2             | 0010 |
| 3             | 0011 |
| 4             | 0100 |
| 5             | 0101 |
| 6             | 0110 |
| 7             | 0111 |
| 8             | 1000 |
| 9             | 1001 |

# **Definition 6.3** ( $f_{BCD}$ ).

Let  $(a_0a_1 \dots a_{n-1})_10$  be a decimal number. Its Binary Code Decimal is given by

$$f_{\text{BCD}}(a_0 a_1 \dots a_{n-1}) = s_{0,1} s_{0,2} s_{0,3} s_{0,4} \dots s_{n-1,4}$$

where  $s_{i,1}s_{i,2}s_{i,3}s_{i,4}$  is the BCD of decimal  $a_i$  defined from the truth table.

As a result, the length of binary code decimal is always in multiple of 4.

# 6.3 Block Level Design

Block level design method relies on algorithms or formulae of the circuit, which are obtained by decomposing the main problem to sub-problems recursively.

### **6.3.1 4-bit** adder

Consider a circuit to add two 4-bit unsigned numbers together and a carry-in, to produced a 5-bit result. With the idea that  $C_{i+1}S_i = X_i + Y_i + C_i$ , which is the same function of full



adder, 4-bit adder is implemented by cascading 4 full adders via their carries. The above is



called **parallel adder**, as inputs are presented in parallel.

#### 6.3.2 BCD-to-Excess-3 Converter

Excess-3 code can be converted from BCD code using truth table. Therefore, gate-level design can be used since there are only 4 inputs.

However, alternative design is also possible, by identifying

Excess-3 code = BCD Code + 
$$0011_2$$

|    | BCD |   |   | Excess-3 |   |   |   |   |
|----|-----|---|---|----------|---|---|---|---|
|    | Α   | В | С | D        | W | X | Y | Z |
| 0  | 0   | 0 | 0 | 0        | 0 | 0 | 1 | 1 |
| 1  | 0   | 0 | 0 | 1        | 0 | 1 | 0 | 0 |
| 2  | 0   | 0 | 1 | 0        | 0 | 1 | 0 | 1 |
| 3  | 0   | 0 | 1 | 1        | 0 | 1 | 1 | 0 |
| 4  | 0   | 1 | 0 | 0        | 0 | 1 | 1 | 1 |
| 5  | 0   | 1 | 0 | 1        | 1 | 0 | 0 | 0 |
| 6  | 0   | 1 | 1 | 0        | 1 | 0 | 0 | 1 |
| 7  | 0   | 1 | 1 | 1        | 1 | 0 | 1 | 0 |
| 8  | 1   | 0 | 0 | 0        | 1 | 0 | 1 | 1 |
| 9  | 1   | 0 | 0 | 1        | 1 | 1 | 0 | 0 |
| 10 | 1   | 0 | 1 | 0        | X | X | X | Χ |
| 11 | 1   | 0 | 1 | 1        | X | X | X | Χ |
| 12 | 1   | 1 | 0 | 0        | X | X | X | X |
| 13 | 1   | 1 | 0 | 1        | X | X | X | X |
| 14 | 1   | 1 | 1 | 0        | X | X | X | Χ |
| 15 | 1   | 1 | 1 | 1        | X | X | X | X |



Figure 5: BCD-to-Excess-3 Code Converter

## 6.3.3 16-bit Parallel Adder

Larger parallel adders can be built from smaller ones.

A 16-bit parallel adder can be contructed from four 4-bit parallel adders:



### 6.3.4 4-bit Adder cum Subtractor

**4-bit Adder cum Subtractor** is a circuit that can perform both addition and subtraction, using a parallel adder with a control signal. Recall

$$X - Y = X + (-Y)$$
  
=  $X + 2$ s complement of  $Y$   
=  $X + 1$ s complement of  $Y + 1$ 

Therefore, XOR gates are used to flip bits<sup>5</sup> and control signal S is connected to input carry-in.



<sup>&</sup>lt;sup>5</sup>Note x XOR 0 = x, and x XOR 1 = x'

When S=1, it is subtracts by adding X with Y' and S=1, and when S=0, it adds by adding X with Y with S=0.

### 6.3.5 Magnitude Comparator

**Magnitude comparator** compares 2 values A and B, to output either A > B, A = B or A < B.

The key idea is that  $X \cdot Y'$  outputs 1 when X > Y and 0 otherwise. Therefore, X = Y if and only if  $(X \cdot Y')$  NOR  $(X' \cdot Y) = X \cdot Y + X' \cdot Y' = 1$ .

We first build a 4-bit magnitude comparator using the above logic. Let  $A = A_3 A_2 A_1 A_0$ ,  $B = B_3 B_2 B_1 B_0$ . Denote  $x_i = A_i \cdot B_i + A'_i \cdot B'_i$ . This generates the block diagram of 4-bit



magnitude comparator



# 6.4 Circuit Delays

## **Definition 6.4** (Circuit Delay).

Given a logic gate with delay t. If inputs are stable at times  $t_1, \ldots, t_n$ , then the earliest time in which the output will be stable is

$$\max(t_1,\ldots,t_n)+t$$

Suppose a full adder has delay  $t_1, t_2$  for X, Y and  $t_3$  for carry in, S will have delay

$$S_{\text{delay}} = \max\{\max\{t_1 + t_2\} + t, t_3\} + t$$

C will have delay

$$C_{\text{delay}} = \max\{\max\{t_1, t_2\} + t, t_3\} + 2t$$

According to the above, a n-bit ripple-carry parallel adder will experience the following delay<sup>6</sup>

$$S_n = 2nt$$
$$C_{n+1} = (2n+1)t$$

Therefore, propagation delay of ripple-carry parallel adders is proportional to the number of bits it handles.

## 6.4.1 Carry Look-ahead Adder



Consider the full adder, define intermediate signals  $P_i$ ,  $G_i$  as follows

$$P_i = X_i \oplus Y_i$$
 
$$G_i = X_i \cdot Y_i$$

Therefore, the output  $S_i$ ,  $C_{i+1}$  can be given in terms of  $C_i$ ,  $P_i$ ,  $G_i$ :

$$S_i = P_i \oplus C_i$$

$$C_{i+1} = G_i + P_i \cdot C_i \quad (\#)$$

 $<sup>^6</sup>n$  is of index 1.

We can regard,  $G_i$  as the **carry generate** signal, since  $G_i = 1$  suggests both  $X_i$  and  $Y_i$  is 1, which definitely *generates* a carry  $C_{i+1} = 1$ .

Also,  $P_i$  can be regarded as the **carry propagate** signal, as  $P_i = 1$  suggests exactly  $X_i = 1$  or  $Y_i = 1$  but not both. Therefore,  $C_{i+1} = 1$  if  $C_i = 1$  and  $P_i = 1$ , which suggests that the status of carry in  $C_i$  is *propagated* to carry out  $C_{i+1}$ .

For the 4-bit ripple carry adder, the equation for  $C_{i+k}$ , k = 1, ..., 4 is only dependent on  $G_j$ ,  $P_j$ ,  $C_j$ ,  $1 \le j < i + k$ , according to the recursively relation (#). By expanding the recursive relation into an iterative expression we have

$$C_{i+k} = \prod_{j=0}^{k-1} P_j \cdot C_i + \sum_{j=0}^{k-1} G_{i+j} \prod_{l=j+1}^{k-1} P_{i+l}$$

which is a two level sum of product expressions in terms of G, P, C.



Figure 6:  $X_i, Y_i$  are preprocessed outside the block. Block inputs P, G only and outputs C only.

The generation of P, G of each bit takes time t from XOR and AND gate; generation of each carry  $C_{i+k}$  takes time 2t from the sum of product expression; generation of sum signals  $S_{i+k}$  of each bit takes time t from  $P_{i+k}, C_{i+k-1}$ . Therefore, the whole process takes time 4t.

Larger block carry look-ahead adder can be built from 4-bit carry look-ahead adder. Two additional output is needed: block carry generate and block carry propagate.

Let  $P_0, P_1, P_2, P_3$  be the 4 carry propagate bits of the 4-bit carry look-ahead adder. Let  $G_0, G_1, G_2, G_3$  be the 4 carry generate bits of the 4-bit carry look-ahead adder. Then the **block** carry propagate and generate bits,  $P^*$  and  $G^*$ , respectively are defined as

$$P^* = P_0 \cdot P_1 \cdot P_2 \cdot P_3$$
 
$$G^* = G_3 + G_2 \cdot P_3 + G_1 \cdot P_2 \cdot P_3 + G_0 \cdot P_1 \cdot P_2 \cdot P_3$$

It is easy to see that the carry out bit of block 4-bit carry look-ahead adder is

$$C_3 = G^* + P^* \cdot C_{-1}$$

where  $C_{-1}$  is the carry in to the 4-bit block. The sequence of availability of output is that



- Time 0:  $P_0 \sim P_{15}, G_0 \sim G_{15}, C_{-1}$ .
- Time 1:  $C_0 \sim C_2$ , all  $P^*, G^*$  between level 1 and level 2.
- Time 3: Rest  $C_4 \sim C_{14}$ .

 $<sup>{}^{7}</sup>C_{4}$  is dependent on  $C_{3}$ , which is dependent on  $P^{*}andG^{*}$ , which is dependent on P,G.

# 7 More Building Blocks

### 7.1 Decoder

**Definition 7.1** (Decoder).

A **decoder** converts binary information from n input lines to  $2^n$  output lines.

#### 7.1.1 Truth table

The truth table for  $2^n$  output, when input is enumerated in increasing sequence, is diagonal. The column of output is arranged according to the increasing order of minterm of the function.

### Theorem 7.1 (Building functions using decoder).

Any boolean function with n input with m output can be built using a  $n:2^n$  decoder, which generates the minterms, and m OR gates to form the sum.

Decoders often come with an **enable control** signal, so that the device is only activated when the enable E = 1.

In most MSI decoders, enable signal is zero-enable, usually denoted by E'. The decoder is



Figure 7: Implementation of 2:4 Encoder with **one-enable** control E=1 enabled when signal E is low.

### 7.1.2 Larger Decoder

Larger decoders can be constructed, with one inverter from smaller ones by treating E as the most significant bit which selects the smaller decoders.

## 7.1.3 Implementing functions

We may implement the functions using a decoder in several ways. Suppose a function is specified as  $f(A, B, C) = \sum m(0, 1, 4, 6, 7) = \prod M(2, 3, 5)$ , we may implement it

 $\bullet$  using a decoder with active high outputs<sup>8</sup> with a OR gate on minterms:

$$f = m_0 + m_1 + m_4 + m_6 + m_7$$

• using a decoder with active low outputs<sup>9</sup> with a NAND gate on minterms:

$$f = (m_1' \cdot m_2' \cdot m_4' \cdot m_6' \cdot m_7')'$$

• Using a decoder with active high outputs with a NOR gate on maxterms:

$$f = (m_2 + m_3 + m_5)'$$

• Using a decoder with active low outputs with a AND gate on maxterms:

$$f = m_2' \cdot m_3' \cdot m_5'$$

### 7.2 Encoders

### **Definition 7.2** (Encoder).

Given  $2^n$  input lines, of which exactly 1 is high, the **encoder** provides a n bit code that corresponds to that input line.



#### 7.2.1 Truth Table

For the truth table of an encoder, when exactly 1 out of  $2^n$  inputs is high, say  $F_i$ , the output  $D_nD_{n-1}\cdots D_1D_0$  is the binary string  $i_2$ ; if more than 1 input are high, the output becomes don't care.

<sup>&</sup>lt;sup>8</sup>Given any input, only one of the output will be 1 and rest 0

<sup>&</sup>lt;sup>9</sup>Given any input, only one of the output will be 0 and rest 1

| $\mathbf{F_0}$ | $\mathbf{F_1}$ | $\mathbf{F_2}$ | $\mathbf{F_3}$ | $\mathbf{D_1}$ | $\mathbf{D}_0$ |
|----------------|----------------|----------------|----------------|----------------|----------------|
| 1              | 0              | 0              | 0              | 0              | 0              |
| 0              | 1              | 0              | 0              | 0              | 1              |
| 0              | 0              | 1              | 0              | 1              | 0              |
| 0              | 0              | 0              | 1              | 1              | 1              |
| 0              | 0              | 0              | 0              | X              | X              |
| 0              | 0              | 1              | 1              | X              | X              |
| 0              | 1              | 0              | 1              | X              | X              |
| 0              | 1              | 1              | 0              | X              | X              |
| 0              | 1              | 1              | 1              | X              | X              |
| 1              | 0              | 0              | 1              | X              | X              |
| 1              | 0              | 1              | 0              | X              | X              |
| 1              | 0              | 1              | 1              | X              | X              |
| 1              | 1              | 0              | 0              | X              | X              |
| 1              | 1              | 0              | 1              | X              | X              |
| 1              | 1              | 1              | 0              | X              | X              |
| 1              | 1              | 1              | 1              | X              | X              |

Figure 8:  $D_0 = F_1 + F_3$ ,  $D_1 = F_2 + F_3$ 

The implementation of a specified output is the sum of inputs whose specified output are high, given the benefits of don't cares.

Therefore, encoders can be designed using OR gate.

### 7.2.2 Priority Encoder

In priority encoder, each of the inputs is assigned a **priority**.

The **most** significant bit of the input has the **highest** priority while the least significant bit has the lowest priority.

If two input lines goes high, only the *higher* priority one will be considered as high. This generates a truth table with don't cares in inputs.

| $\mathbf{F_3}$ | $\mathbf{F_2}$ | $\mathbf{F_1}$ | $\mathbf{F_0}$ | $\mathbf{D_1}$ | $\mathbf{D}_0$ |
|----------------|----------------|----------------|----------------|----------------|----------------|
| 1              | X              | X              | X              | 1              | 1              |
| 0              | 1              | X              | X              | 1              | 0              |
| 0              | 0              | 1              | X              | 0              | 1              |
| 0              | 0              | 0              | X              | 0              | 0              |

Figure 9: Truth table of priority encoder

# 7.3 Demultiplexers

**Definition 7.3** (Demultiplexers).

Given an input line and a set of n selection lines, a **demultiplexer** directs data from the input to *one* selected output line out of  $2^n$ .

Suppose the selection lines admits a  $N = (S_{n-1} \dots S_0)_2$  binary number, the output line  $Y_N$  will correspondingly be selected such that  $Y_N = D$ , the input.



### 7.3.1 Truth Table

The truth table for outputs from demultiplexers of n selection lines, when the selection lines is enumerated in increasing sequence, is diagonal D, where D is the input.

There is similarity of truth table between demultiplexers and decoders. In fact, a demultiplexer of n selection line can be implemented using a  $n:2^n$  decoder with selection lines connected to the input of decoders and data input connected to the enable bit.

| $S_1$ | $S_{o}$ | $\mathbf{Y}_{0}$ | $\mathbf{Y}_{1}$ | $\mathbf{Y}_{2}$ | $\mathbf{Y}_3$ |
|-------|---------|------------------|------------------|------------------|----------------|
| 0     | 0       | D                | 0                | 0                | 0              |
| 0     | 1       | 0                | D                | 0                | 0              |
| 1     | 0       | 0                | 0                | D                | 0              |
| _1    | 1       | 0                | 0                | 0                | D              |

# 7.4 Multiplexers

Definition 7.4 (Multiplexers).

A multiplexer is a device with has  $2^n$  input lines, n selection lines and 1 output line. It steers one of  $2^n$  inputs to a single output line.



### 7.4.1 Truth Table

The output Y equals to  $I_i$ , the *i*th input, where binary representation of *i* equals to the binary string given by selection lines  $S_{n-1} \dots S_0$ .

Therefore, a  $2^n$ : 1 multiplexer can be made from connecting selection lines to an n:  $2^n$  decoder and adding the  $2^n$  output to the  $2^n$  input lines, each with AND gate, and OR the  $2^n$  processed input. It is also common to see enable bit in multiplexers.



#### 7.4.2 Larger Multiplexers

Larger multiplexers can be constructed from smaller ones, by seperating selection lines into multiple hierarchies of multiplexers.

## 7.4.3 Implementing functions

Just like decoder, Boolean functions can be implemented using multiplexers. Specifically, a  $2^n$ : 1 multiplexer can implement a Boolean function of n input variables, as follows:

- Express in sum-of-minterms form.
- $\bullet$  Connect *n* variables to the *n* selection lines.
- Put a 1 on data input if it is a minterm of the function or 0 otherwise.

A Boolean function of n input variables can be implemented by a smaller  $2^{n-1}:1$  multiplexer.

- Express Boolean function in sum-of-minterms form
- Reserve one variable for input lines and use the rest for selection lines.
- se a truth table and deduce multiplexer input by comparing the reserved variable and the function value for corresponding selection line values. It may take 1, 0, V, V', one of the four possibilities.

# 7.5 Carry-select Adders

Carry-Select Adders reduce waiting time of the carry chain by divide-and-conquer using multiplexers.

To add two *n*-bit numbers A and B to produce the result C, split A, B, C into two equal halves:  $A_H A_L, B_H, B_L, C_H, C_L$ .<sup>10</sup> The idea is that the addition of  $A_L + B_L$  will either has a



carry or not, so it computes the two scenarios for  $A_H + B_H + c$  along with  $A_L + B_L$ , and the carry out c from  $A_L + B_L$  will select the final carry out and  $C_H$ .

### 7.6 Shifters

Shifting is a common operation, as left shift by 1 bit is equivalent to multiplying by 2, and right shift by 1 bit is equivalent to dividing by 2, for positive numbers.

### 7.6.1 Arithmetic Shift

In arithmetic left shift, 0 is used to fil in the LSB.

In arithmetic right shift, the original MSB is duplicated at MSB; for 2's complement, only the part other than the sign bit is shifted.

 $<sup>^{10}</sup>H$  stands for high, L stands for low.

# 7.6.2 Barrel Shifters

Barrel Shifters perform fast shifting in  $O(\log n)$  time by always shifting in the power of 2. The fast shifting is implemented using multiplexers. At each shifting stage, the selection



line  $S_k$ , calculated from the amount of total shifts, we decide whether to shift by  $2^k$  bits or remain unchanged.

<sup>&</sup>lt;sup>11</sup>Shifting by 11 is performed by shifting 8+2+1, a total of 3 times.

# 8 Sequential Logic

There are two types of sequential circuits:

- Synchronous: outputs change only at specific time
- Asynchronous: outputs change at any time

**Definition 8.1** (Finite State Machines).

Finite State Machines are built with combinatorial logic and memory, which stores the state

Next state depends on current state and inputs.

# 8.1 S-R Latch

S-R latch consists of two **inputs** S and R, stands for SET and RESET respectively. It has two **complementary output** Q and Q'.  $Q=1 \Leftrightarrow$  latch is in SET state;  $Q=0 \Leftrightarrow$  latch is in RESET state.

#### 8.1.1 Characteristic Table

| S | R | Q  | Q' |                            |  |
|---|---|----|----|----------------------------|--|
| 0 | 0 | NC | NC | No change to present state |  |
| 1 | 0 | 1  | 0  | Latch SET                  |  |
| 0 | 1 | 0  | 1  | Latch RESET                |  |
| 1 | 1 | 0  | 0  | Invalid Condition          |  |

From this table, we have  $Q(t+1) = S + R' \cdot Q(t)$ .

The implementation of S-R latch is as follows A S-R latch is gated if it has an enable



input (EN). Its output will change only when EN is high. Its implementation becomes  $^{12}$ 

 $<sup>^{12}\</sup>mathrm{Note}$  the position of S and R relative to Q



# 8.2 Gated D Latch

If R := S', a gated S - R latch becomes a gated D latch.

D latch eliminates the invalid state by admitting the following characteristic table Hence,

| EN | D | Q(t+1) |           |
|----|---|--------|-----------|
| 1  | 0 | 0      | RESET     |
| 1  | 1 | 1      | SET       |
| 0  | X | Q(t)   | No change |

when EN = 1, Q follows D input in a sense Q(t+1) = D.

# 8.3 Flip-flops

**Definition 8.2** (Flip-flops).

Flip-flops are synchronous bistable devices. Output changes state at a specified point on a triggering input called the **clock**.

Flip-flops change state eigher at the positive edge or at the negative edge of the clock signal. Flip-flop family has S-R flip-flop, D flip-flop and J-K flip-flop.



# 8.4 S-R flip-flop

S-R flip-flop has the only difference from the S-R latch in that its output changes only on the triggering edge of the clock pulse.

Its characteristic table is

| S | R | CLK      | Q(t+1) |           |
|---|---|----------|--------|-----------|
| 0 | 0 | X        | Q(t)   | No change |
| 0 | 1 | <b>↑</b> | 0      | RESET     |
| 1 | 0 | <b>↑</b> | 1      | SET       |
| 1 | 1 | <b>↑</b> | ?      | Invalid   |

# 8.5 D flip-flop

D flip-flop has single input D and is similar to gated D latch. Its characteristic table is D

| D | CLK      | Q(t+1) |       |
|---|----------|--------|-------|
| 1 | <b>↑</b> | 1      | SET   |
| 0 | <b>†</b> | 0      | RESET |

flip-flop is useful in parallel data transfer.

# 8.6 J - K flip-flop