Homework 3: Linear Regression and Logistic Regression

Student ID:

Student Name:

Lectured by: Shangsong Liang

Course: Information Retrieval Course, Sun Yat-sen University

Exercise One: Linear Regression

线性回归模型为:

$$h(x) = \theta_0 + \theta_1 x_1 + \theta_3 x_2$$

梯度下降迭代,单次迭代(a为学习率):

$$heta_0 = \!\! heta_0 - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)} - y^{(i)}) \cdot x_0^{(i)})$$

$$heta_1 = \!\! heta_1 - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)} - y^{(i)}) \cdot x_1^{(i)})$$

$$heta_2 = \!\! heta_2 - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)} - y^{(i)}) \cdot x_2^{(i)})$$

计算误差:

$$E_{ heta} = rac{1}{m} \sum (h_{ heta}(x^{(i)}) - y^{(i)})^2$$

(a)

结果如图:

可以发现, 训练到2万次之后出现了过拟合的问题,

(b)

可以发现,训练一段时间后误差变得极大,难以收敛,因此需要适当降低学习率,从而加快模型收敛。

可以发现,对于每次迭代,用随机选择 k 个数据取代原本的使用全部数据,降低了训练时间。但是由于训练数据的随机性,会出现在测试集的误差波动大的情况,但最终区域收敛。

Exercise Two: Logistic Regression

(a)

Sigmoid 函数作为逻辑函数:

$$g(z) = \frac{1}{1 + e^{-z}}$$

逻辑回归模型:

$$P(y=1|x; heta) = g(heta^T x) = rac{1}{1+e^{- heta^T x}}, \qquad heta = [w_0 \quad w_1 \quad w_2 \quad w_3 \quad w_4 \quad w_5 \quad w_6]$$

因为y符合二项分布,对应条件的对数似然函数为:

$$LCL = \sum \log p^{(i)} + \sum \log \left(1 - p^{(i)}
ight)$$

(b)

对上述函数求偏导:

对
$$w_0$$
求偏导 $\dfrac{\partial}{\partial w_0}LCL=\sum (y^{(i)}-p^{(i)})$ 对 w_j 求偏导 $\dfrac{\partial}{\partial w_j}LCL=\sum (y^{(i)}-p^{(i)})x_j^{(i)}, \qquad j\in[1,6], \ j$ 是整数

梯度下降:

$$egin{aligned} w_0 &:= w_0 + lpha rac{\partial}{\partial w_0} LCL = w_0 + lpha \sum (y^{(i)} - p^{(i)}) \ w_j &:= w_j + lpha rac{\partial}{\partial w_j} LCL = w_j + lpha \sum (y^{(i)} - p^{(i)}) x_j^{(i)}, \qquad j \in [1,6], \ j$$
是整数

(c)

在exercise one代码的基础上进行修改,按照模型公式进行设计,并采用训练集进行正常梯度下降训练。

训练结果如下:

最终收敛时各个参数值: [0.5662 -2.6123 3.5120 -2.6362 3.4185 -2.1779 0.0474] 在测试集上预测的准确率达到100%

(d)

最终收敛时,没有missclassified examples。

(e)

部分训练结果:

iteration_ti	mes theta_0	theta_1	theta_2	theta_3	theta_4	theta_5	theta_6	train_error_rate	test_error_rate
100	0.0059	-0.0123	0.0215	-0.0124	0.0238	-0.0126	0.0008	0.0150000000000000013	0.03000000000000000027
	0.0114	-0.0278	0.0416	-0.0290	0.0458	-0.0239	0.0034	0.007499999999999951	0.01000000000000000
	0.0110	-0.0446	0.0600	-0.0463	0.0651	-0.0424	0.0015		0.0
	0.0055	-0.0643	0.0775	-0.0671	0.0791	-0.0610	-0.0038	0.012499999999999956	0.0200000000000000018
	0.0118	-0.0785	0.0975	-0.0826	0.1022	-0.0746	-0.0040	0.007499999999999951	
	0.0032	-0.0975	0.1118		0.1145	-0.0934	-0.0077	0.0250000000000000022	0.0300000000000000027
	0.0127	-0.1091	0.1341	-0.1120	0.1382	-0.0983	-0.0041	0.007499999999999951	0.0
	0.0328	-0.1150	0.1612	-0.1201	0.1666	-0.0998	0.0000		0.0
	0.0323	-0.1330	0.1796	-0.1361	0.1826	-0.1156	-0.0016		0.0
1000	0.0357	-0.1471	0.1999		0.1999	-0.1295	-0.0032		0.0
1100	0.0408		0.2191	-0.1627	0.2191	-0.1419	-0.0017		0.0
1200	0.0455	-0.1702	0.2377	-0.1733	0.2388	-0.1529	-0.0026		0.0
1300	0.0508	-0.1834	0.2542		0.2568		0.0019		
	0.0489	-0.1997	0.2683	-0.2018	0.2703	-0.1754	-0.0003		0.0
	0.0438	-0.2167	0.2818	-0.2180	0.2824	-0.1914	-0.0026	0.0024999999999999467	0.0
1600	0.0442	-0.2330	0.2968	-0.2340	0.2975	-0.2076	-0.0032	0.0024999999999999467	0.0
1700	0.0430	-0.2464	0.3118	-0.2483	0.3135	-0.2244	-0.0037	0.0024999999999999467	
	0.0454	-0.2591	0.3284	-0.2621	0.3314	-0.2352	-0.0061	0.0024999999999999467	0.0
	0.0419	-0.2734	0.3429	-0.2786	0.3444		-0.0117	0.00500000000000000044	0.0
		-0.2906		-0.2953	0.3553	-0.2662	-0.0177	0.010000000000000000	0.01000000000000000
2100	0.0333		0.3711	-0.3107	0.3676	-0.2817	-0.0193	0.012499999999999956	0.010000000000000000
2200	0.0410	-0.3152	0.3899	-0.3210	0.3877	-0.2909	-0.0217	0.010000000000000000	0.01000000000000000
	0.0481	-0.3244		-0.3316	0.4063	-0.2984	-0.0194	0.007499999999999951	
		-0.3388	0.4233	-0.3434	0.4233	-0.3097	-0.0203	0.007499999999999951	
	0.0513	-0.3517	0.4383	-0.3560	0.4386	-0.3199	-0.0220	0.007499999999999951	
	0.0513	-0.3633	0.4531	-0.3712		-0.3305	-0.0240	0.007499999999999951	
2700	0.0538	-0.3744	0.4674	-0.3851	0.4703	-0.3398	-0.0228	0.007499999999999951	
			0.4839	-0.3975			-0.0211	0.00500000000000000044	
	0.0629		0.4997	-0.4067		-0.3581	-0.0171	0.0024999999999999467	
	0.0656		0.5133	-0.4170	0.5181	-0.3676	-0.0182	0.0024999999999999467	0.0

随机多次进行训练,平均迭代1300次后收敛。

(f)

可以发现,随着训练样本数量的增加,误差逐渐降低,并逐渐趋于收敛。但是由于采样随机采样,具有随机性,因此训练结果的误差会出现一些波动。