_

高级微观经济学总结

陈普 整理

1 最优化问题的对比

总结这个表,就是方便你记忆的。

表 1: 消费和生产的比较

	消费者问题	函数名称	生产者问题	函数名称	备注
最优规划	$\max_{x} u(x)$	效用最大化	$\max_{x,y}(py-rx)$	利润最大化	生产者问题中, y 是产品, x
	$s.t.$ $px \leq y$		$s.t. f(x) \ge y$		是要素投入, r 是要素价格
最优解	x = x(p, y)	马歇尔需求函数	x = x(p,r)	要素需求函数	
			y = y(p, r)	供给函数	
最优解代入目标函数	$v(p,y) = \max_{x} u(x)$	间接效用函数	$\pi(p,r) = \max_{x,y} (py - rx)$	利润函数	只在规模报酬递减才存在
最优规划	$\min_{x} p \cdot x$	支出最小化	$\min_{r,q}(r\cdot x)$	成本最小化	
	$s.t. u(x) \ge u$		$s.t.$ $f(x) \ge q$		
最优解	$x^h = x(p, u)$	希克斯需求函数	x = x(p, r, q)	条件要素需求函数	条件于产量 q
最优解代入目标函数	$e(p, u) = \min_{x} p \cdot x$	支出函数	$c(r,q) = \min_{r,q} r \cdot x$	成本函数	

2 函数的性质 2

2 函数的性质

罗尔恒等式

$$x_i(p^0, y^0) = -\frac{\frac{\partial v(p^0, y^0)}{\partial p_i}}{\frac{\partial v(p^0, y^0)}{\partial y^0}}$$

即马歇尔需求等于两个边际间接效用函数的比值的负数。 间接效用函数可以讨论税收对消费者效用的影响。

谢泼德引理

$$x_i^h(p^0, u^0) = \frac{\partial e(p^0, u^0)}{\partial p_i}$$

作为一个对应,希克斯需求等于支出函数对价格的导数。

斯拉茨基定理 该定理描述一种商品价格的变化对另一种商品需求的影响。它把替代效应和收入效应具体化了。

- 注意脚标 *i*, *j*。
- 替代效应可以由希克斯需求函数对价格的导数得到,它表达的是效用不变时,价格对需求的影响。
- 收入效应含义明显。由 p_j 引起的收入的变化表示为 $\Delta y = x_j \Delta p_j$,因此收入效应本质上是 $\Delta x_i(p,y)/\Delta p_j$ (注意此处的 $\Delta x_i(p,y)$ 是由 p_j 的变化引起 y 的变化,从而引起 x_i 的变化),那么 $\Delta x_i(p,y)/\Delta p_j = \Delta x_i(p,y)x_j/\Delta y$ 。这正是上述式子的第二项。