INFO-F-412 · Formal verification of computer systems

Chapter 2: Modeling systems

Mickael Randour Formal Methods and Verification group Computer Science Department, ULB

February 2016

- 1 Transition systems
- 2 Comparing TSs: why, how, graph isomorphism, trace equivalence
- 3 Bisimulation
- 4 Simulation

- 1 Transition systems
- 2 Comparing TSs: why, how, graph isomorphism, trace equivalence
- 3 Bisimulation
- 4 Simulation

Transition system

Transition systems

Transition system for a (rather stupid) beverage vending machine [BK08].

- Model describing the behavior of a system.
- Directed graphs: vertices = *states*, edges = *transitions*.
- **State**: current mode of the system, current values of program variables, current color of a traffic light...
- Transition as atomic actions: mode switching, execution of a program instruction, change of color. . .

Chapter 2: Modeling systems Mickael Randour 3 / 83

Formal definition

Transition systems

Definition: Transition system (TS)

Tuple $\mathcal{T} = (S, Act, \longrightarrow, I, AP, L)$ with

- S the set of states.
- Act the set of actions.
- $\longrightarrow \subset S \times Act \times S$ the transition relation,
- \blacksquare $I \subseteq S$ the set of initial states,
- AP the set of atomic propositions, and
- $L: S \to 2^{AP}$ the labeling function.

We often consider *finite* TSs, i.e., |S|, |Act|, $|AP| < \infty$, but not necessarily true in general.

Notation: sometimes we write $s \xrightarrow{\alpha} s'$ instead of $(s, \alpha, s') \in \longrightarrow$.

Chapter 2: Modeling systems

- \blacksquare $S = \{pay, select, beer, soda\},$
- $Actions = \{insert_coin, get_beer, get_soda, \tau\}$,
- Some transitions: $pay \xrightarrow{insert_coin} select, select \xrightarrow{\tau} beer.$
- $\blacksquare I = \{pay\},\$

What about the labeling?

Depends on what we want to model!

- Simple choice: $\forall s, L(s) = \{s\}.$
- Say the property is "the vending machine only delivers a drink after providing a coin"
 - $\hookrightarrow AP = \{paid, drink\}, L(pay) = \emptyset, L(select) = \{paid\} \text{ and } L(soda) = L(beer) = \{paid, drink\}.$

⇒ useful to model check logic formulae.

- → When the labeling is not important, we often omit it.
- \hookrightarrow We do the same for actions or simply use *internal actions* (τ) .

Actions are often used to model communication mechanism (e.g., parallel processes).

Related models

We talk about **transition systems** (TSs) and adopt the definition of [BK08]. Equivalent models are often used in the literature.

- Kripke structure (KS) ~ TS without labels on actions.
- Labeled transition system (LTS) ~ TS without labels on states.

Semantics of TSs: non-determinism

When two actions are possible (*select*), the choice is made **non-deterministically**!

Also true for the initial state if |I| > 1.

- ⇔ Also for abstraction or to model an uncontrollable environment (here, drink choice by the user).

Chapter 2: Modeling systems Mickael Randour

Basic concepts: predecessors and successors

Let $\mathcal{T} = (S, Act, \longrightarrow, I, AP, L)$ be a TS. For $s \in S$ and $\alpha \in Act$, we define the following sets.

Direct (α -)successors of s:

$$Post(s, \alpha) = \left\{ s' \in S \mid s \xrightarrow{\alpha} s' \right\}, \quad Post(s) = \bigcup_{\alpha \in Act} Post(s, \alpha).$$

Direct $(\alpha$ -)predecessors of s:

$$Pre(s, \alpha) = \left\{ s' \in S \mid s' \xrightarrow{\alpha} s \right\}, \quad Pre(s) = \bigcup_{\alpha \in Act} Pre(s, \alpha).$$

+ natural extensions to subsets of S.

Chapter 2: Modeling systems

Transition systems

Some examples:

- $ightharpoonup Post(select) = \{soda, beer\},$
- $Pre(pay, get_beer) = \{beer\},$
- $Post(beer, \tau) = \emptyset$.

Terminal states

A state $s \in S$ is called terminal iff $Post(s) = \emptyset$.

→ For *reactive systems*, those states should in general be avoided.

 \Rightarrow deadlocks

Basic concepts: executions (1/2)

Let $\mathcal{T} = (S, Act, \longrightarrow, I, AP, L)$ be a TS.

Finite execution fragment:

 $\varrho = s_0 \alpha_1 s_1 \alpha_2 \dots \alpha_n s_n$ such that $s_0 \xrightarrow{\alpha_1} \dots \xrightarrow{\alpha_n} s_n$.

Infinite execution fragment:

 $\rho = s_0 \alpha_1 s_1 \alpha_2 \dots$ such that $s_i \xrightarrow{\alpha_{i+1}} s_{i+1}$ for all i > 0.

Maximal execution fragment:

Fragment that cannot be prolonged.

Initial execution fragment:

Fragment starting in $s_0 \in I$.

Transition systems

Basic concepts: executions (2/2)

Execution:

Initial and maximal execution fragment.

Reachable states:

$$Reach(\mathcal{T}) = \left\{ s \in S \mid \exists s_0 \in I \land s_0 \xrightarrow{\alpha_1} \dots \xrightarrow{\alpha_n} s_n = s \right\}$$
$$= Post^*(I)$$

Transition systems

Some examples.

- $ho_1 = pay \xrightarrow{insert_coin} select \xrightarrow{\tau} beer \xrightarrow{get_beer} pay \xrightarrow{insert_coin} \dots$ $\rightarrow \rho_1$ is an execution.
- $\rho_2 = beer \xrightarrow{get_beer} pay \xrightarrow{insert_coin} select \xrightarrow{\tau} beer \xrightarrow{get_beer} \dots$ $\rightarrow \rho_2$ is not (maximal but not initial).
- $\rho_3 = pay \xrightarrow{insert_coin} select \xrightarrow{\tau} soda \xrightarrow{get_soda} pay$ $\hookrightarrow \varrho_3$ is not (initial but not maximal).
- \blacksquare Reach(\mathcal{T}) = S.

Modeling systems

The reference book [BK08] contains different examples illustrating how to construct formal models from real applications or segments of program code.

- ⇒ We survey some of them in the following.
 - ⇒ Focus on concurrency: prone to errors.

Independent traffic lights on non-intersecting roads

- Concurrency is represented by interleaving.
- Non-deterministic choice between activities of simultaenously acting processes.
- In general, need to be complemented with fairness assumptions.

Interleaving semantics [BK08].

Transition systems

Mutex with semaphores (1/3)

Program graphs for semaphore-based mutex [BK08].

- Program graphs (PGs) retain conditional transitions.
- → Interleaving must be done at this level to deal with shared variables.
 - \Rightarrow Then we consider the TS $\mathcal{T}(PG_1 \parallel PG_2)$.

Transition systems

 $PG_1 \parallel PG_2$ for semaphore-based mutex [BK08].

The TS unfolding will tell us if $\langle crit_1, crit_2 \rangle$ is reachable (which we want to avoid obviously).

Mutex with semaphores (3/3)

 $\mathcal{T}(PG_1 \parallel \mid PG_2)$ for semaphore-based mutex [BK08].

Mutual exclusion is verified:

$$\langle c_1, c_2, y = \dots \rangle \notin Reach(\mathcal{T}(PG_1 \parallel\parallel PG_2)).$$

Mutex with semaphores (3/3)

 $\mathcal{T}(PG_1 \parallel PG_2)$ for semaphore-based mutex [BK08].

The scheduling problem in $\langle \mathbf{w}_1, \mathbf{w}_2, y = 1 \rangle$ is left open. \hookrightarrow implement a discipline later (LIFO, FIFO, etc) or use an algorithm solving the issue explicitely: **Peterson's mutex**.

Peterson's mutex algorithm (1/2)

Program graphs for Peterson's mutex [BK08].

 \Rightarrow The value of x determines who will enter the critical section.

Peterson's mutex algorithm (2/2)

 $\mathcal{T}(PG_1 \parallel\mid PG_2)$ for Peterson's mutex [BK08].

Mutual exclusion is verified:

$$\langle c_1, c_2, x = \dots \rangle \not\in Reach(\mathcal{T}(PG_1 \parallel\mid PG_2)).$$

Peterson's mutex algorithm (2/2)

 $\mathcal{T}(PG_1 \parallel\mid PG_2)$ for Peterson's mutex [BK08].

Peterson's also has **bounded waiting**, hence **fairness** is satisfied.

Not true for semaphore-based (without discipline): processes could starve.

The state(-space) explosion problem

Verification techniques operate on TSs obtained from programs or program graphs. Their size can be **huge**, or they can even be **infinite**. Some sources:

Variables

- PG with 10 locations, three Boolean variables and five integers in $\{0, ..., 9\}$ already contains $10 \cdot 2^3 \cdot 10^5 = 8.000.000$ states.
- Variable in infinite domain ⇒ infinite TS!

Parallelism

⇒ Need for (a lot of) **abstraction** and efficient **symbolic** techniques (Ch. 5) to keep the verification process tractable.

Chapter 2: Modeling systems

- 1 Transition systems
- 2 Comparing TSs: why, how, graph isomorphism, trace equivalence
- 3 Bisimulation
- 4 Simulation

Transition systems

- To see if two TSs are similar.
 - Is one a refinement or an abstraction of the other?
 - Are the two *indistinguishable* w.r.t. observable properties?
- To be able to model check large systems.
 - \triangleright If \mathcal{T}_1 is a small abstraction of \mathcal{T}_2 that preserves the property to be checked, then model checking \mathcal{T}_1 is more efficient!
 - necessary!
- What does it mean to *preserve a property*?
 - ▶ Each type of relation preserves a different logical fragment (intuitively, a different kind of properties).
 - → Depends on what we are interested in.

Linear time vs. branching time semantics (1/2)

Transition systems

TS \mathcal{T} with state labels $AP = \{a, b\}$ (state and action names are omitted).

- **Linear time semantics** deals with *traces* of executions.
 - The language of (in)finite words described by \mathcal{T} .
 - See LTL in Ch. 3.
 - E.g., do all executions eventually reach (1)? No.

- Branching time semantics deals with the execution tree.
 - Infinite unfolding considering all branching possibilities.
 - See CTL in Ch. 4.
 - ▷ E.g., do all executions always have the possibility to eventually reach ({b})? Yes.
 - Cannot be expressed as a LT property (intuitively, requires branching).

Which type of relation between TSs should we use?

- Linear time properties (e.g., LTL)
 - ⇒ Trace equivalence/inclusion is an obvious choice.
 - ⚠ But language inclusion is costly! (PSPACE-complete)
 - Other relations provide a more efficient alternative (P-complete).
- Branching time semantics (e.g., CTL)
 - ⇒ Bisimulation: related states can mutually mimic all individual transitions
 - ⇒ **Simulation**: one state can mimic all stepwise behavior of the other, but the reverse is not necessary.

In the following, we assume state-based labeling and often that there is no deadlock (\rightsquigarrow self-loops otherwise).

Chapter 2: Modeling systems

Transition systems

Graph isomorphism (1/2)

Idea: isomorphism up to renaming of the states and actions.

Definition: TS isomorphism

$$\mathcal{T}_1 = (S_1, Act_1, \longrightarrow_1, I_1, AP_1, L_1)$$
 and $\mathcal{T}_2 = (S_2, Act_2, \longrightarrow_2, I_2, AP_2, L_2)$ are isomorphic if there exists a bijection f such that

- $S_2 = f(S_1),$
- $Act_2 = f(Act_1),$
- $\bullet s \xrightarrow{\alpha}_1 s' \Longleftrightarrow f(s) \xrightarrow{f(\alpha)}_2 f(s'),$
- $s \in I_1 \iff f(s) \in I_2$,
- $\blacksquare AP_1 = AP_2$
- $\forall s \in S_1, L_1(s) = L_2(f(s)).$

Preserves properties but much too restrictive!

Graph isomorphism (2/2)

Transition systems

Those TSs are clearly "equivalent" (i.e., indistinguishable for meaningful properties) but *are not isomorphic*.

⇒ Graph isomorphism is not interesting for model checking.

Trace inclusion and trace equivalence (1/6)

What is a trace?

> An execution seen through its labeling.

Definition: paths and traces

Let $\mathcal{T} = (S, Act, \longrightarrow, I, AP, L)$ be a TS and $\rho = s_0 \alpha_1 s_1 \alpha_2 \dots$ one of its executions:

- its path is $\pi = path(\rho) = s_0 s_1 s_2 \dots$,
- its trace is $trace(\pi) = L(\pi) = L(s_0)L(s_1)L(s_2)...$

We denote $Paths(\mathcal{T})$ (resp. $Traces(\mathcal{T})$) the set of all paths (resp. traces) in \mathcal{T} .

Defined for executions (i.e., maximal and initial fragments), but also for fragments starting in a state s (Paths(s)) and Traces(s)) or a subset of states $S' \subseteq S$ (Paths(S')) and Traces(S')), as well as for finite fragments $(Paths_{fin})$ and $Traces_{fin}$.

Chapter 2: Modeling systems Mickael Randour 29 / 83

Example

Transition systems

- Notice the added self-loop on
- Paths:

$$\pi_1 = \pi_2 = \pi_3 = \pi_3 = \pi_4 = \pi_5 = \pi_5$$

Corresponding traces:

$$trace(\pi_1) = \{a\}\emptyset\{a\}\emptyset\{a\}\emptyset\dots = (\{a\}\emptyset)^{\omega}$$
$$trace(\pi_2) = \{a\}\emptyset\{a,b\}\{a,b\}\{a,b\}\{a,b\}\dots = \{a\}\emptyset\{a,b\}^{\omega}$$
$$trace(\pi_3) = \{a\}\emptyset\{a\}\emptyset\{b\}\{b\}\dots = \{a\}\emptyset\{a\}\emptyset\{b\}^{\omega}$$

Traces are (infinite) words on alphabet 2^{AP} .

 \hookrightarrow alphabet exponential in |AP|.

Trace inclusion and trace equivalence (3/6)

Transition systems

Example (cont'd)

Which languages does this TS describe?

Finite traces:

$$Traces_{fin}(\mathcal{T}) = \{a\} \Big[(\emptyset\{a\}) | (\emptyset\{a,b\}^*\{a\}) \Big]^* \Big[\varepsilon \, \big| \, \emptyset \big(\{b\}^* | \{a,b\}^* \big) \Big]$$

Traces:

$$R = (\emptyset\{a\})|(\emptyset\{a,b\}^*\{a\})$$

$$Traces(\mathcal{T}) = \{a\}R^* \left[R^{\omega} \mid (\emptyset\{a,b\}^{\omega}) \mid \emptyset\{b\}^{\omega} \right]$$

Trace inclusion and trace equivalence (4/6)

Trace inclusion

- Linear-time (LT) properties (e.g., LTL) specify which traces a TS should exhibit.
- Trace inclusion \sim implementation relation.

 $Traces(\mathcal{T}) \subseteq Traces(\mathcal{T}')$ means \mathcal{T} "is a correct implementation of" \mathcal{T}' .

 $\hookrightarrow \mathcal{T}$ is seen as a refinement/implementation of the more abstract model \mathcal{T}' .

Theorem: trace inclusion and LT properties

Let \mathcal{T} and \mathcal{T}' be two TSs without terminal states and with the same set of propositions AP. The following statements are equivalent:

- (a) $Traces(\mathcal{T}) \subseteq Traces(\mathcal{T}')$
- (b) For any LT property $P: \mathcal{T}' \models P \Longrightarrow \mathcal{T} \models P$.

Trace inclusion and trace equivalence (5/6)

Trace inclusion (cont'd) and equivalence

Thus, trace inclusion preserves LTL properties.

Useful when refining systems: automatic proof of correctness for the refined system.

We can go further and consider trace equivalence.

Theorem: trace equivalence and LT properties

Let \mathcal{T} and \mathcal{T}' be two TSs without terminal states and with the same set of propositions AP. Then:

$$\mathit{Traces}(\mathcal{T}) = \mathit{Traces}(\mathcal{T}')$$

 \mathcal{T} and \mathcal{T}' satisfy the same LT properties.

But, testing trace inclusion/equivalence is costly!

▷ PSPACE-complete (i.e., in pratice requires exponential time).

Chapter 2: Modeling systems Mickael Randour 33 / 83

Trace inclusion and trace equivalence (6/6) Example

Trace-equivalent systems [BK08].

For $AP = \{pay, soda, beer\}$, those TSs are trace-equivalent.

→ They are indistinguishable by LT properties.

- 1 Transition systems
- 2 Comparing TSs: why, how, graph isomorphism, trace equivalence
- 3 Bisimulation
- 4 Simulation

Idea

Goal

Identify TSs with the same branching structure.

Intuitively: \mathcal{T} is bisimilar to \mathcal{T}' if both TSs can simulate each other in a mutual, stepwise manner.

Definition

Transition systems

Definition: bisimulation equivalence

Let $\mathcal{T}_i = (S_i, Act_i, \longrightarrow_i, I_i, AP, L_i), i = 1, 2$, be TSs over AP.

A **bisimulation** for $(\mathcal{T}_1, \mathcal{T}_2)$ is a binary relation $\mathcal{R} \subseteq S_1 \times S_2$ s.t.

- (A) $\forall s_1 \in I_1, \ \exists s_2 \in I_2, \ (s_1, s_2) \in \mathcal{R} \ \text{and}$ $\forall s_2 \in I_2, \ \exists s_1 \in I_1, (s_1, s_2) \in \mathcal{R}$
- (B) for all $(s_1, s_2) \in \mathcal{R}$ it holds:
 - (1) $L_1(s_1) = L_2(s_2)$
 - $(2) \ s_1' \in Post(s_1) \Longrightarrow (\exists s_2' \in Post(s_2) \land (s_1', s_2') \in \mathcal{R})$
 - (3) $s_2' \in Post(s_2) \Longrightarrow (\exists s_1' \in Post(s_1) \land (s_1', s_2') \in \mathcal{R}).$

 \mathcal{T}_1 and \mathcal{T}_2 are bisimulation-equivalent, or bisimilar, denoted $\mathcal{T}_1 \sim \mathcal{T}_2$, if there exists a bisimulation \mathcal{R} for $(\mathcal{T}_1, \mathcal{T}_2)$.

Illustration

$$s_1 \quad \mathcal{R} \quad s_2$$
 \downarrow can be complemented to
 $\downarrow \quad \downarrow$
 $s_1' \quad \mathcal{R} \quad s_2'$

Conditions (B.2) and (B.3) of bisimulation equivalence [BK08].

Examples

Transition systems

Bisimilar beverage vending machines [BK08].

- Intuitively, the additional option to deliver beer in \mathcal{T}_2 is not observable by users.

Mickael Randour Chapter 2: Modeling systems 39 / 83

Bisimilar beverage vending machines [BK08].

Bisimulation
$$\mathcal{R} = \{(s_0, t_0), (s_1, t_1), (s_2, t_2), (s_2, t_3), (s_3, t_4)\}.$$

⇒ Blackboard proof.

Examples (cont'd)

Transition systems

Non-bisimilar beverage vending machines [BK08].

State s_1 cannot be mimicked! Candidates are u_1 and u_2 but they do not satisfy condition (B.2).

- $\triangleright u_1 \rightarrow soda \text{ and } u_2 \rightarrow beer.$
- $\triangleright \mathcal{T}_1 \nsim \mathcal{T}_3$ for $AP = \{pay, beer, soda\}$.

Chapter 2: Modeling systems Mickael Randour 40 / 83

Examples (cont'd)

Non-bisimilar beverage vending machines [BK08].

What if we take a more abstract labeling $AP = \{pay, drink\}$?

$$L(s_0) = L(t_0) = \{pay\}, L(s_1) = L(u_1) = L(u_2) = \emptyset, \text{ all others labels} = \{drink\}.$$

Chapter 2: Modeling systems

Examples (cont'd)

Transition systems

Non-bisimilar beverage vending machines [BK08].

Then, bisimulation
$$\mathcal{R} = \{(s_0, u_0), (s_1, u_1), (s_1, u_2), (s_2, u_3), (s_2, u_4), (s_3, u_3), (s_3, u_4)\}.$$

 $\triangleright \mathcal{T}_1 \sim \mathcal{T}_3$ for $AP = \{pay, drink\}$.

Blackboard proof.

Equivalence

Properties (1/3)

Bisimulation is an equivalence relation

For a fixed set AP of propositions, the bisimulation relation \sim is an equivalence relation, i.e., it is reflexive, transitive and symmetric.

- Reflexivity: $\mathcal{T} \sim \mathcal{T}$.
- Transitivity: $\mathcal{T} \sim \mathcal{T}' \wedge \mathcal{T}' \sim \mathcal{T}'' \Longrightarrow \mathcal{T} \sim \mathcal{T}''$.
- Symmetry: $\mathcal{T} \sim \mathcal{T}' \Longleftrightarrow \mathcal{T}' \sim \mathcal{T}$.

⇒ Exercise.

Properties (2/3)

Linear-time properties

Transition systems

Bisimulation and trace equivalence

$$\mathcal{T}_1 \sim \mathcal{T}_2 \implies \mathit{Traces}(\mathcal{T}_1) = \mathit{Traces}(\mathcal{T}_2)$$

- $\hookrightarrow \mathcal{T}_1$ and \mathcal{T}_2 satisfy the same LT properties.
- → Will be an interesting alternative to trace equivalence. complexity-wise as bisimulation can be checked in polynomial time.

The converse is false!

→ Recall previous example of non-bisimilar beverage vending machines (same language but not bisimilar).

Chapter 2: Modeling systems

Properties (3/3) Branching-time properties

One can show that bisimulation also preserves branching-time properties (e.g., CTL).

Idea

Transition systems

- 1 See bisimulation as a relation between states of a *single* TS.
- Quotient the TS by this relation.
 - ▷ Obtain a smaller TS that preserves properties.
 - Model check the smaller TS.
 - ▶ More efficient! (quotienting is "cheap" in comparison to model checking)

Quotienting (2/7)

Bisimulation on states

Definition: bisimulation equivalence as a relation on states

Let $\mathcal{T} = (S, Act, \longrightarrow, I, AP, L)$ be a TS. A bisimulation for \mathcal{T} is a binary relation \mathcal{R} on $S \times S$ s.t. for all $(s_1, s_2) \in \mathcal{R}$:

- (1) $L(s_1) = L(s_2)$
- $(2) \ s_1' \in Post(s_1) \Longrightarrow (\exists s_2' \in Post(s_2) \land (s_1', s_2') \in \mathcal{R})$
- $(3) \ s_2' \in Post(s_2) \Longrightarrow (\exists s_1' \in Post(s_1) \land (s_1', s_2') \in \mathcal{R}).$

States s_1 and s_2 are bisimulation-equivalent, or bisimilar, denoted $s_1 \sim_{\mathcal{T}} s_2$, if there exists a bisimulation \mathcal{R} for \mathcal{T} with $(s_1, s_2) \in \mathcal{R}$.

Remark: equivalent to $\mathcal{T}_1 \sim \mathcal{T}_2$ with $\mathcal{T}_1 = \mathcal{T}_2 = \mathcal{T}$.

Remark: $\sim_{\mathcal{T}}$ is the coarsest bisimulation for \mathcal{T} (i.e., yielding the largest \mathcal{R} , i.e., the fewer equivalence classes).

Notations

Quotienting (3/7)

Let S be a set and R an equivalence on S.

- \mathcal{R} -equivalence class of $s \in S$: $[s]_{\mathcal{R}} = \{s' \in S \mid (s, s') \in \mathcal{R}\}.$
- Quotient space of *S* under \mathcal{R} : $S/\mathcal{R} = \{[s]_{\mathcal{R}} \mid s \in S\}$.
 - \triangleright Set of all \mathcal{R} -equivalence classes.

Quotienting (4/7)

Bisimulation quotient

For simplicity, we write \sim for $\sim_{\mathcal{T}}$ in the following.

Quotient

Let $\mathcal{T} = (S, Act, \longrightarrow, I, AP, L)$ be a TS with (coarsest) bisimulation \sim . The **bisimulation quotient** of \mathcal{T} is defined by

$$\mathcal{T}/\sim = (S/\sim, \{\tau\}, \longrightarrow', I', AP, L')$$

where:

- $I' = \{ [s]_{\sim} \mid s \in I \},$
- $s \xrightarrow{\alpha} s' \implies [s]_{\sim} \xrightarrow{\tau}' [s']_{\sim},$
- $L'([s]_{\sim}) = L(s).$

It is easily shown that $\mathcal{T} \sim \mathcal{T}/\sim$.

Illustration

Quotienting (5/7)

 $TS \mathcal{T}$ (all labels = \emptyset)

Bisimulation quotient \mathcal{T}/\sim

Each color = one \mathcal{R} -equivalence class.

 \Longrightarrow Blackboard explanation: $\mathcal R$ is a bisimulation and quotienting.

Quotienting (6/7)

Example: many printers (1/2)

TS \mathcal{T}_3 for three printers [BK08].

System composed of *n* printers with two states: *ready* and *print*.

 \hookrightarrow Entire system $\mathcal{T}_n = Printer \parallel \ldots \parallel Printer$.

Transition systems

Example: many printers (1/2)

TS \mathcal{T}_3 for three printers [BK08].

 \triangleright $AP = \{0, 1, ..., n\}$ (number of ready printers).

$$|\mathcal{T}_n| = 2^n \Longrightarrow \text{exponential!} \Longrightarrow \text{let's quotient it!}$$

Chapter 2: Modeling systems

Quotienting (7/7)

Example: many printers (2/2)

Bisimulation quotient $T_3/\sim [BK08]$.

- \triangleright R-equivalence classes based on number of available printers.
- $|\mathcal{T}_n/\sim|=n+1.$ \Longrightarrow now only linear!

Quotienting can lead to huge gain in the model size while preserving needed properties.

⇒ powerful abstraction mechanism.

It can even help in reducing infinite TSs to finite quotients. See bakery algorithm example in the book.

Chapter 2: Modeling systems Mickael Randour

Quotienting algorithm (1/11)

Goal

Given a TS $\mathcal{T} = (S, Act, \longrightarrow, I, AP, L)$, compute its bisimulation quotient \mathcal{T}/\sim .

Partition-refinement technique.

- \hookrightarrow Partition state space S in *blocks*: pairwise disjoints sets of states.
- 1 Start with a straightforward initial partition.
- 2 Refine iteratively up to the point where each block only contains bisimilar states.

Chapter 2: Modeling systems

Quotienting algorithm (2/11)

Partitions and blocks

Definition: partition

A partition of S is a set $\Pi = \{B_1, \dots, B_k\}$ such that

- $\forall i, B_i \neq \emptyset,$
- $\forall i, j, i \neq j, B_i \cap B_i = \emptyset,$
- $\blacksquare S = \bigcup_{1 \le i \le k} B_i.$

Definition: block and superblock

 $B_i \in \Pi$ is called a **block**. A **superblock** of Π is a set $C \subseteq S$ such that $C = B_{i_1} \cup \ldots \cup B_{i_l}$ for some $B_{i_1}, \ldots, B_{i_l} \in \Pi$.

A partition Π is finer than Π' if $\forall B \in \Pi$, $\exists B' \in \Pi'$, $B \subseteq B'$.

- \hookrightarrow Each block of Π' (coarser) is the disjoint union of blocks in Π .
- \triangleright *Strictly* finer if $\Pi \neq \Pi'$.

Quotienting algorithm (3/11)

Partitions and equivalences

- $\blacksquare \mathcal{R}$ is an equivalence on $S \Longrightarrow S/\mathcal{R}$ is a partition of S.
- $\Pi = \{B_1, \dots, B_k\}$ is a partition of $S \Longrightarrow \mathcal{R}_{\Pi}$ is an equivalence relation

$$\mathcal{R}_{\Pi} = \{ (s, s') \mid \exists B_i \in \Pi, \ s \in B_i \land s' \in B_i \}$$

= \{ (s, s') \cdot [s]_{\Pi} = [s']_{\Pi} \}.

 $S/\mathcal{R}_{\Pi} = \Pi.$

Quotienting algorithm (4/11)

Partition-refinement: key steps

Goal: iteratively compute a partition of S.

1 Initial partition: $\Pi_0 = \Pi_{AP} = S/\mathcal{R}_{AP}$ with

$$\mathcal{R}_{AP} = \{(s, s') \in S \times S \mid L(s) = L(s')\}.$$

- \triangleright Group states with identical labels $\Longrightarrow \mathcal{R}_{AP} \supseteq \sim$.
- **2** Repeat $\Pi_{i+1} = Refine(\Pi_i)$ until stabilization.
 - \triangleright Loop invariant: Π_i is coarser than S/\sim and finer than $\{S\}$.
- **3** Return Π_i .
 - ightharpoonup Termination: $S \times S \supseteq \mathcal{R}_{\Pi_0} \supsetneq \mathcal{R}_{\Pi_1} \supsetneq \mathcal{R}_{\Pi_2} \supsetneq \ldots \supsetneq \mathcal{R}_{\Pi_i} = \sim$.

Quotienting algorithm (5/11)

Coarsest partition

Theorem

 S/\sim is the coarsest partition Π of S such that:

- (i) Π is finer than $\Pi_0 = \Pi_{AP}$,
- (ii) $\forall B, B' \in \Pi$, $B \cap Pre(B') = \emptyset \lor B \subseteq Pre(B')$.

Moreover, if Π satisfies (ii), then it is also the case that $B \cap Pre(C) = \emptyset \lor B \subseteq Pre(C)$ for all blocks $B \in \Pi$ and all superblocks C of Π .

Intuitively, (ii) says that if one state in B may lead to B', then all of them must also allow it (otherwise they would not be bisimilar).

 \Longrightarrow The partition-refinement algorithm will lead to the coarsest partition satisfying (i) and (ii), hence to S/\sim .

Quotienting algorithm (6/11)

Refinement operator

Definition: refinement operator

 $Refine(\Pi, C) = \bigcup_{B \in \Pi} Refine(B, C)$ for C a superblock of Π .

 $Refine(B, C) = \{B \cap Pre(C), B \setminus Pre(C)\} \setminus \{\emptyset\}.$

block B

superblock C

Refinement operator [BK08].

Quotienting algorithm (7/11)

Refinement operator: properties

Correctness

For Π finer than Π_{AP} and coarser than S/\sim , we have that:

- (a) $Refine(\Pi, C)$ is finer than Π ,
- (b) $Refine(\Pi, C)$ is coarser than S/\sim .

Termination criterion

For Π finer than Π_{AP} and coarser than S/\sim , we have that:

$$\Pi$$
 is strictly coarser than S/\sim \updownarrow \exists a splitter for Π .

 \Longrightarrow When no more splitter, we are done: $\Pi_i = S/\sim$.

Quotienting algorithm (8/11) Splitters

Definitions: splitter, stability

Let Π be a partition of S and C a superblock of Π .

■ C is a *splitter* of Π if $\exists B \in \Pi$ such that

$$B \cap Pre(C) \neq \emptyset \land B \setminus Pre(C) \neq \emptyset$$
.

■ $B \in \Pi$ is *stable* w.r.t. C if

$$B \cap Pre(C) = \emptyset \lor B \setminus Pre(C) = \emptyset.$$

■ Π is stable w.r.t. C if all $B \in \Pi$ are stable w.r.t. C.

Chapter 2: Modeling systems

Quotienting algorithm (9/11)

Algorithm (sketch)

```
Input: TS \mathcal{T} = (S, Act, \longrightarrow, I, AP, L)
Output: bisimulation quotient state space S/\sim\Pi:=\Pi_{AP}
while \exists a splitter for \Pi do
choose a splitter C for \Pi
\Pi:=Refine(\Pi,C) {Refine(\Pi,C) is strictly finer than \Pi}
return \Pi
```

⇒ Blackboard illustration on previous example.

Quotienting algorithm (10/11)

Illustration (summary)

Bisimulation quotient \mathcal{T}/\sim

$$\blacksquare \Pi_0 := \Pi_{AP} = \{S\}$$

•
$$C = S$$
, $\Pi := Refine(\Pi, C) = \{\{s_1, s_2, s_3, s_4, s_5\}, \{s_6\}\}$

$$C = \{s_1, s_2, s_3, s_4, s_5\}, \Pi := \{\{s_1, s_2, s_3\}, \{s_4, s_5\}, \{s_6\}\}$$

■ No more splitter $\Longrightarrow \Pi = States / \sim$

Quotienting algorithm (11/11)

How should we choose splitters?

What is a good splitter candidate for Π_{i+1} ?

- **1** Simple strategy: use any block of Π_i as candidate.
 - \hookrightarrow Complexity of whole algorithm: $\mathcal{O}(|S| \cdot (|AP| + M))$, with M the number of edges.
- **2** Advanced strategy: use only "smaller" blocks of Π_i as candidates and apply "simultaneous" refinement.
 - \hookrightarrow Complexity of whole algorithm: $\mathcal{O}(|S| \cdot |AP| + M \cdot \log |S|)$, with M the number of edges.

⇒ See book for more on the advanced strategy.

Equivalence checking through quotienting (1/2)

Idea

Let \mathcal{T}_1 and \mathcal{T}_2 be two TSs. The partition-refinement algorithm can be used to check if $\mathcal{T}_1 \sim \mathcal{T}_2$.

Procedure:

1 Compute the composite TS $\mathcal{T}=\mathcal{T}_1\oplus\mathcal{T}_2$ defined as

$$\mathcal{T} := (S_1 \uplus S_2, Act_1 \cup Act_2, \longrightarrow_1 \cup \longrightarrow_2, I_1 \cup I_2, AP, L)$$

with
$$L(s) = L_i(s)$$
 if $s \in S_i$.

- 2 Compute S/\sim , the bisimulation quotient space of \mathcal{T} .
- 3 Check if, for all bisimulation equivalence class C of T,

$$C \cap I_1 = \emptyset \iff C \cap I_2 = \emptyset.$$

4 The answer is Yes if and only if $\mathcal{T}_1 \sim \mathcal{T}_2$.

Chapter 2: Modeling systems Mickael Randour 62 / 83

Equivalence checking through quotienting (2/2)

Complexity

Total complexity:

$$\mathcal{O}((|S_1| + |S_2|) \cdot |AP| + (M_1 + M_2) \cdot \log(|S_1| + |S_2|)).$$

⇒ Polynomial-time whereas trace equivalence is PSPACE-complete.

⇒ Much more efficient!

But recall that:

⇒ Sound but incomplete way to check trace equivalence.

- 1 Transition systems
- 2 Comparing TSs: why, how, graph isomorphism, trace equivalence
- 3 Bisimulation
- 4 Simulation

Transition systems

Idea

Bisimulation $s_1 \sim s_2$.

- Equivalence relation.
- Identical stepwise behavior.

Simulation $s_1 \leq s_2$.

- Preorder (i.e., reflexive, transitive).
- \blacksquare s_2 simulates s_1 :
 - \triangleright s_2 can mimic all stepwise behavior of s_1 ,
 - \triangleright the reverse $(s_2 \leq s_1)$ is not guaranteed.
 - \hookrightarrow s_2 may perform transitions that s_1 cannot match.

Simulation \Longrightarrow implementation relation, e.g., $\mathcal{T} \preceq \mathcal{T}_f$, with \mathcal{T}_f an abstraction of \mathcal{T} , i.e., \mathcal{T} correctly implements \mathcal{T}_f .

Transition systems

Definition: simulation preorder

Let $\mathcal{T}_i = (S_i, Act_i, \longrightarrow_i, I_i, AP, L_i), i = 1, 2$, be TSs over AP.

A simulation for $(\mathcal{T}_1, \mathcal{T}_2)$ is a binary relation $\mathcal{R} \subseteq S_1 \times S_2$ s.t.

- (A) $\forall s_1 \in I_1, \exists s_2 \in I_2, (s_1, s_2) \in \mathcal{R}$
- (B) for all $(s_1, s_2) \in \mathcal{R}$ it holds:
 - (1) $L_1(s_1) = L_2(s_2)$
 - $(2) s'_1 \in Post(s_1) \Longrightarrow (\exists s'_2 \in Post(s_2) \land (s'_1, s'_2) \in \mathcal{R})$

 \mathcal{T}_1 is simulated by \mathcal{T}_2 , or equivalently \mathcal{T}_2 simulates \mathcal{T}_1 , denoted $\mathcal{T}_1 \leq \mathcal{T}_2$, if there exists a simulation \mathcal{R} for $(\mathcal{T}_1, \mathcal{T}_2)$.

Observe that bisimulations are also simulations but not the opposite.

Chapter 2: Modeling systems

Beverage vending machines [BK08].

Recall that those machines, here called \mathcal{T} and \mathcal{T}' , were shown to be **non-bisimilar** before for $AP = \{pay, beer, soda\}$.

What about simulation?

Beverage vending machines [BK08].

The left one simulates the other: $T' \prec T$.

$$\mathcal{R} = \{(u_0, s_0), (u_1, s_1), (u_2, s_1), (u_3, s_2), (u_4, s_3)\}$$

⇒ Blackboard proof.

67 / 83

Transition systems

Beverage vending machines [BK08].

The right one does not simulate the other: $\mathcal{T} \prec \mathcal{T}'$.

- \hookrightarrow State s_1 cannot be mimicked! Candidates are u_1 and u_2 but they do not satisfy condition (B.2).
 - $\triangleright u_1 \nrightarrow soda \text{ and } u_2 \nrightarrow beer.$
 - $\triangleright \mathcal{T} \not\preceq \mathcal{T}'$ for $AP = \{pay, beer, soda\}$.

{ soda }

Transition systems

Beverage vending machines [BK08].

{beer}

What if we take a more abstract labeling $AP = \{pay, drink\}$?

 $\{ soda \}$

$$L(s_0) = L(t_0) = \{pay\}, L(s_1) = L(u_1) = L(u_2) = \emptyset, \text{ all others labels} = \{drink\}.$$

{ beer }

Transition systems

Beverage vending machines [BK08].

Then,
$$\mathcal{T}' \preceq \mathcal{T}$$
 and $\mathcal{T} \preceq \mathcal{T}'$ using
$$\mathcal{R} = \{(u_0, s_0), (u_1, s_1), (u_2, s_1), (u_3, s_2), (u_4, s_3)\}$$
 and $\mathcal{R}' = \{(s_0, u_0), (s_1, u_1), (s_2, u_3), (s_3, u_3)\}$

Blackboard proof.

Transition systems

Beverage vending machines [BK08].

Then,
$$\mathcal{T}' \preceq \mathcal{T}$$
 and $\mathcal{T} \preceq \mathcal{T}'$ using
$$\mathcal{R} = \{(u_0, s_0), (u_1, s_1), (u_2, s_1), (u_3, s_2), (u_4, s_3)\}$$
 and $\mathcal{R}' = \{(s_0, u_0), (s_1, u_1), (s_2, u_3), (s_3, u_3)\}$

 \triangle Error in book: \mathcal{R}^{-1} does not work for $\mathcal{T} \preceq \mathcal{T}' \Longrightarrow$ exercise.

Properties

Simulation is a preorder

For a fixed set AP of propositions, the simulation relation \leq is reflexive and transitive.

- Reflexivity: $\mathcal{T} \preceq \mathcal{T}$.
- Transitivity: $\mathcal{T} \preceq \mathcal{T}' \land \mathcal{T}' \preceq \mathcal{T}'' \Longrightarrow \mathcal{T} \preceq \mathcal{T}''$.

 \implies Exercise.

Abstraction (1/4)

Concept

Transition systems

Let \mathcal{T} be a TS.

- If \mathcal{T}' is obtained from \mathcal{T} by removing transitions (e.g., resolving non-determinism), then $\mathcal{T}' \leq \mathcal{T}$.
 - $\hookrightarrow \mathcal{T}'$ is a refinement of \mathcal{T} .
- If \mathcal{T}' is obtained from \mathcal{T} by abstraction, then $\mathcal{T} \leq \mathcal{T}'$.

Abstraction: idea

Represent a set of concrete states (with identical labels) using a unique abstract state, through an abstraction function $f: S \to \widehat{S}$.

Abstraction function

 $f: S \to \widehat{S}$ is an abstraction function if

$$f(s) = f(s') \Longrightarrow L(s) = L(s').$$

Chapter 2: Modeling systems

Abstraction (2/4)

- \blacksquare From concrete states S to abstract states \widehat{S} s.t. $|\widehat{S}| <\!\!<\!<|S|.$
 - → Goal: more efficient model checking.
- Useful for data abstraction, predicate abstraction, localization reduction.

⇒ See book for formal discussion.

Here, example of an automatic door opener.

Abstraction (3/4)

Transition systems

Example: automatic door opener (1/2)

Automatic door opener [BK08].

First abstraction: group by number of errors $\{ \le 1, 2 \}$.

By construction, $\mathcal{T} \preceq \mathcal{T}_f$.

Abstraction (4/4)

Transition systems

Example: automatic door opener (2/2)

Automatic door opener [BK08].

Second abstraction: complete abstraction of the number of errors.

 \hookrightarrow Coarser abstraction \Longrightarrow smaller TS.

By construction, $\mathcal{T} \prec \mathcal{T}_f$.

Simulation equivalence

Transition systems

Definition: simulation equivalence

TSs \mathcal{T}_1 and \mathcal{T}_2 are simulation-equivalent, or *similar*, denoted $\mathcal{T}_1 \simeq \mathcal{T}_2$, if $\mathcal{T}_1 \prec \mathcal{T}_2$ and $\mathcal{T}_2 \prec \mathcal{T}_1$.

Simulation is coarser than bisimulation:

$$\mathcal{T}_1 \simeq \mathcal{T}_2$$
 $\not \downarrow \uparrow$
 $\mathcal{T}_1 \sim \mathcal{T}_2$

Similar but not bisimilar TSs [BK08].

$$\mathcal{T}_1 \simeq \mathcal{T}_2$$

$$\triangleright \mathcal{T}_1 \leq \mathcal{T}_2$$
: $\mathcal{R}_1 = \{(s_1, t_1), (s_2, t_2), (s_3, t_2), (s_4, t_3), (s_5, t_4)\}.$

$$\triangleright \mathcal{T}_2 \leq \mathcal{T}_1: \mathcal{R}_2 = \{(t_1, s_1), (t_2, s_3), (t_3, s_4), (t_4, s_5)\}.$$

⇒ Blackboard proof.

Similar but not bisimilar TSs [BK08].

 $\mathcal{T}_1 \simeq \mathcal{T}_2$ but $\mathcal{T}_1 \not\sim \mathcal{T}_2$

 \triangleright Only candidate to mimic s_2 is t_2 but $t_2 \rightarrow t_4$ cannot be mimicked by s_2 .

⇒ Blackboard proof.

Transition systems

Similar but not bisimilar TSs [BK08].

 $\mathcal{T}_1 \simeq \mathcal{T}_2$ but $\mathcal{T}_1 \not\sim \mathcal{T}_2$. The difference is that:

- \triangleright For \simeq , we can use two \neq relations \mathcal{R}_1 and \mathcal{R}_2 .
- \triangleright For \sim , we need to use the same relation in both directions!

Chapter 2: Modeling systems

Quotienting (1/3)

Idea

Idea

- As for bisimulation, see simulation as a relation between states of a *single* TS.
- 2 Quotient the TS by this relation.
 - Dobtain a smaller TS that preserves properties.
- 3 Model check the smaller TS.
 - More efficient! (quotienting is "cheap" in comparison to model checking)

Since simulation is coarser than bisimulation, the simulation quotient will be a better abstraction, i.e., $|S/\simeq| \leq |S/\sim|$.

Still, simulation only preserves a smaller fragment of CTL, while bisimulation preserves the whole logic.

⇒ If sufficient, use the simulation quotient.

Chapter 2: Modeling systems Mickael Randour 75 / 83

Quotienting (2/3)

Simulation on states

Definition: simulation preorder as a relation on states

Let $\mathcal{T} = (S, Act, \longrightarrow, I, AP, L)$ be a TS. A simulation for \mathcal{T} is a binary relation \mathcal{R} on $S \times S$ s.t. for all $(s_1, s_2) \in \mathcal{R}$:

- (1) $L(s_1) = L(s_2)$
- $(2) s'_1 \in Post(s_1) \Longrightarrow (\exists s'_2 \in Post(s_2) \land (s'_1, s'_2) \in \mathcal{R}).$

States s_1 is simulated by s_2 , or s_2 simulates s_1 , denoted $s_1 \preceq_{\mathcal{T}} s_2$, if there exists a simulation \mathcal{R} for \mathcal{T} with $(s_1, s_2) \in \mathcal{R}$. States s_1 and s_2 are similar, denoted $s_1 \simeq_{\mathcal{T}} s_2$ if $s_1 \preceq_{\mathcal{T}} s_2$ and $s_2 \preceq_{\mathcal{T}} s_1$.

Remark: $\preceq_{\mathcal{T}}$ is the *coarsest simulation* for \mathcal{T} .

For simplicity, we write \preceq and \simeq for $\preceq_{\mathcal{T}}$ and $\simeq_{\mathcal{T}}$ in the following.

Quotienting (3/3)

Simulation quotient

Quotient

Let $\mathcal{T}=(S,Act,\longrightarrow,I,AP,L)$ be a TS. The simulation quotient of \mathcal{T} is defined by

$$\mathcal{T}/\simeq = (S/\simeq, \{\tau\}, \longrightarrow', I', AP, L')$$

where:

- $I' = \{ [s]_{\sim} \mid s \in I \},\$
- $s \xrightarrow{\alpha} s' \implies [s]_{\sim} \xrightarrow{\tau}' [s']_{\sim},$
- $L'([s]_{\sim}) = L(s).$

It is easily shown that $\mathcal{T} \simeq \mathcal{T}/\simeq$.

Algorithm for simulation preorder (1/4)

Goal

Given a TS $\mathcal{T} = (S, Act, \longrightarrow, I, AP, L)$, compute the simulation preorder $\preceq_{\mathcal{T}}$ (the coarsest simulation).

- \triangleright Can be used to compute \mathcal{T}/\simeq (by looking at states s_1, s_2 such that $s_1 \leq s_2$ and $s_2 \leq s_1$).
- ho Can be used to check whether $\mathcal{T}_1 \simeq \mathcal{T}_2$ by computing $\mathcal{T}_1 \oplus \mathcal{T}_2/\simeq$ as for bisimulation.

Basic idea

Algorithm for simulation preorder (2/4)

```
Input: TS \mathcal{T} = (S, Act, \longrightarrow, I, AP, L)
Output: simulation preorder \preceq_{\mathcal{T}}
\mathcal{R} := \{(s_1, s_2) \mid L(s_1) = L(s_2)\}
while \mathcal{R} is not a simulation do
\text{let } (s_1, s_2) \in \mathcal{R} \text{ s.t. } s_1 \to s_1' \land \nexists s_2' \text{ s.t. } (s_2 \to s_2' \land (s_1', s_2') \in \mathcal{R})
\mathcal{R} := \mathcal{R} \setminus \{(s_1, s_2)\}
return \mathcal{R}
```

Intuitively, we start with the largest possible approximation (i.e., identical labels) and iteratively remove pairs of states that do not satisfy $s_1 \leq s_2$ up to obtaining a proper simulation relation.

iterations bounded by $|S|^2$:

$$S \times S \supseteq \mathcal{R}_0 \subsetneq \mathcal{R}_1 \supseteq \ldots \supseteq \mathcal{R}_n = \preceq_{\mathcal{T}}$$

Algorithm for simulation preorder (3/4) Complexity

While straightforward implementation leads to $\mathcal{O}(M \cdot |S|^3)$, clever refinements reduce the complexity of the algorithm to $\mathcal{O}(M \cdot |S|)$.

⇒ See the book for more details.

⇒ Blackboard illustration for two TSs.

81 / 83

Algorithm for simulation preorder (4/4)

Illustration (summary)

 $TS T_2$

$\mathcal{T}_1 \preceq \mathcal{T}_2$?

$$\triangleright \ \mathcal{R}_0 = \{(s_0, t_0), (s_1, t_1), (s_1, t_2), (s_2, t_3), (s_3, t_4)\}$$

$$\triangleright \mathcal{R}_1 = \{(s_0, t_0), (s_1, t_2), (s_2, t_3), (s_3, t_4)\}$$

$$\triangleright \mathcal{R}_2 = \{(s_0, t_0), (s_2, t_3), (s_3, t_4)\}, \mathcal{R}_3 = \{(s_2, t_3), (s_3, t_4)\}$$

Illustration (summary)

$$\mathcal{T}_1 \preceq \mathcal{T}_2$$
?

$$\triangleright \mathcal{R}_4 = \{(s_3, t_4)\} = \preceq$$

$$(s_0, t_0) \notin \preceq \implies \mathcal{T}_1 \not\preceq \mathcal{T}_2$$

Algorithm for simulation preorder (4/4)

Illustration (summary)

$$\mathcal{T}_2 \prec \mathcal{T}_1$$
?

$$ho \ \mathcal{R}_0 = \{(t_0, s_0), (t_1, s_1), (t_2, s_1), (t_3, s_2), (t_4, s_3)\} = \preceq$$

$$(t_0, s_0) \in \preceq \implies \mathcal{T}_2 \preceq \mathcal{T}_1$$

Relations between equivalences: summary

Relation between equivalences and preorders on TSs [BK08]: $\mathcal{R} \to \mathcal{R}'$ means that \mathcal{R} is strictly finer than \mathcal{R}' (i.e., it is more distinctive).

Other properties of simulation

If \mathcal{T}_1 and \mathcal{T}_2 do not have terminal states:

- $\triangleright \mathcal{T}_1 \preceq \mathcal{T}_2 \implies Traces(\mathcal{T}_1) \subseteq Traces(\mathcal{T}_2);$
- \triangleright if \mathcal{T}_2 satisfies a linear-time property (LTL), then \mathcal{T}_1 also;
- \triangleright if \mathcal{T}_2 satisfies a branching-time property expressible in \forall CTL or \exists CTL (i.e., strict fragments of CTL), then \mathcal{T}_1 also.

⇒ See book for more.

References I

C. Baier and J.-P. Katoen.

Principles of model checking.

MIT Press, 2008.