

Charles W. Davidson College of Engineering

Department of Computer Engineering

Real-Time Embedded System
Co-Design
CMPE 146 Section 1
Fall 2024

Memory

Memory Map

MSP432 Cortex-M4 MCU Memory Map

- 4-GB space (32-bit addressing)
- 8 zones: 512 MB each
- Two memory zones
 - Code
 - SRAM

0xFFFF_FFFF 0xE000_0000	Debug/Trace Peripherals
0xDFFF_FFFF 0xC000 0000	Unused
_	
0xBFFF_FFFF 0xA000_0000	Unused
0x9FFF_FFFF	Unused
0x8000_0000	
0x7FFF_FFFF 0x6000 0000	Unused
0x5FFF_FFFF 0x4000_0000	Peripherals
0x3FFF_FFFF 0x2000_0000	SRAM
0x1FFF_FFFF	Code
0x0000 00000	

Code Zone

- Total 512 MB
- Flash memory
 - 4-MB space
- SRAM
 - 1-MB space
- ROM
 - 1-MB space

SRAM Zone

- SRAM region
 - 1-MB space
- SRAM Bit-Band Alias Region
 - 32 MB

Memory Connections

Three buses for memory accesses

- ICODE
 - For instruction access
 - Code zone (flash, SRAM, ROM)
- DCODE
 - For data access
 - Code zone
- SBUS
 - SRAM zone
 - On-chip peripherals

Serial Wire JTAG

Debug Port

MCU Flash Memory

- Low power consumption
 - Can be powered down or placed in a low-power mode
- Minimum of 20,000 write or erase cycles.
- 128-bits wide access
 - Each instruction fetch returns up to four 32-bit instructions
 (or up to eight 16-bit instructions)

 0x003F_FFFF
- Physically divided into two subregions
 - Main Memory and Information Memory
 - Located in independent banks
 - Allows simultaneous operations
- Main Memory
 - 256 KB
 - 64 sectors of 4 KB each
 - Minimum erase granularity of 4KB (1 sector)
 - Two independent banks of 128 KB each
 - Allows simultaneous operations

Reserved

Information Memory

Reserved

Main Memory

0x0000_0000

0x0004 0000

0x0020 4000

0x0020 0000

MCU Flash Memory (cont'd)

- Information Memory
 - 16 KB
 - Two banks of 8 KB each
 - 4 sectors of 4 KB each
 - Two sectors contain the bootloader (BSL)
 - One sector is for configuring the boot process
 - One sector contains the device descriptor (TLV)
 - Factory configured for protection against write and erase

MCU SRAM

- 1-MB space each in Code zone and SRAM zone
- MSP432P401x MCUs support
 - 64 KB in each zone
 - Memory aliased in both zones
- Low power consumption
 - Can be powered down or placed in a low-power mode
- Allows single-cycle execution of code
- Memory is divided into 8-K banks
 - For optimization of power consumption
 - Bank can be individually powered down
 - Normal operating current: 100-300 nA
 - Under-retention current: 30-35 nA
 - Entire bank can be enabled/disabled
 - Exception: Bank 0 cannot be disabled
 - Typically 4 μs to enable or disable

MCU ROM

- MSP432P401x MCUs support 32 KB of ROM
 - Total ROM region space is 1 MB
- Upper 30 KB contains driver libraries
- Lower 2KB reserved for TI internal purposes
 - Accesses to this space returns an error response
- Returns an error response for any write accesses

Flash Memory Basics

- Non-volatile
- Operations
 - Read
 - Write or program
 - Erase
- Read
 - Allows random access
 - Likes ordinary memory, in byte (8 bits), half-word (16 bits) or word (32 bits)
 - Latency: tens of ns
- Write or program
 - Allows random access
 - Like ordinary memory, in byte (8 bits), half-word (16 bits) or word (32 bits)
 - Memory cell (holds one bit of information) must be 1 in order to be changed (to 0)
 - Once it is written a 0, it cannot be changed to a 1 without the erase process
 - Number of write cycles in a specific block is limited, ~100K
 - Need elevated voltage (~5 V) to write
 - Slower than read, in μs

Flash Memory Basics (cont'd)

- Erase
 - Must be done on an entire block, typically tens of KB
 - Changes the entire block to 1's
 - A very slow process, in milliseconds
 - Number of erase operations is limited, ~100K
 - Need high voltage (~12 V) to erase

MCU Flash Controller

Main features of the on-chip controller

- Internal programming voltage (higher than supply voltage) generation
- Byte, word (4 bytes), full-word (16 bytes), and burst (up to 4x16 bytes)
 programmable
- Low-power operation
- Optimized read operations
 - For program instruction fetches or data reads
- Configurable write and erase protection per sector (4 KB)

- Recommended to use TI DriverLib for flash operations (program, erase)
 - Programs portable across various TI MCUs
 - Detailed operation parameters may vary from device to device
 - ROM stores DriverLib
- Common basic operations
 - Read, Program, Erase, Program-and-Erase Protection

MCU Flash Read

- Configurable in terms of the number of memory bus cycles for read command
 - For high-frequency system clock, can insert wait states accordingly
- Read Buffering
 - Flash is organized with a line size of 128 bits
 - When buffering is enabled, always reads an entire 128-bit line
 - Suitable for accessing contiguous program instructions and data items
 - No wait state if data is already in the read buffer
 - Wait states only asserted when crossing line boundary
 - Disabled by default for lower power consumption
 - Each bank (Main or Information) has independent settings
 - Flexibility for instruction and data accesses

MCU Flash Program (Write)

- Set the targeted bits to the value 0
- DriverLib programming functions are required to be executed from either SRAM or ROM
 - Due to the verification requirements
- Master interrupts are disabled throughout the execution of this function
 - Due to the complexity of the verification requirements

MCU Flash Erase

- Set the flash memory values to 1's
- Smallest block size to erase is one sector (4 KB)
- Master interrupts are disabled throughout the operation
- Two modes
 - Sector Erase
 - Erase one sector, can be in the Main or Information bank
 - Mass Erase
 - Erase all unprotected sectors in both banks

SJSU SAN JOSÉ STATIMOU Flash Program-and-Erase Protection

- Protect sectors from inadvertent program or erase operations
- One PROT (program and erase protection) bit per sector (4 KB)
 - Set to 1: sector becomes read-only
 - Any program or erase commands on the sector are ignored
- Example of one good usage: Erase half (128 KB) of Main memory (256 KB)
 - Steps to take:
 - Set the PROT bits of the targeted 128 KB to 0
 - Set all other PROT bits for Main and Information memory to 1
 - Initiate a mass erase operation
 - Erase the targeted 128 KB is one erase cycle
 - Save time and energy overhead