SHIFT REGISTER

Register

- Register digunakan untuk menyimpan sementara kumpulan <u>bit-bit informasi</u>
- Register terdiri dari beberapa flip-flop dengan pengontrol sinyal yang digunakan untuk mengontrol pergerakan data dari dan menuju register (pergeseran data 1 dan 0)
- Register pada rangkaian digital memiliki dua fungsi : penyimpan data dan pergeseran data

- Fungsi yang lain dari register, disamping menyimpan bitbit adalah melakukan pergeseran data.
- Shift Register juga terdiri dari beberapa Flip-flop
- Setiap stage (flip-flop) pada shift register mengeluarkan dan menerima satu bit dengan menggeser bit tersebut dari satu stage ke stage yang lain baik kekanan maupun kekiri untuk setiap periode clock yang diberikan.

 Multi-bit register dapat digeser tiap bitnya ke kiri/kanan setiap ada clock (1 bit posisi per clock cycle)

Geser ke kiri

Geser ke kanan

 Dasar pergerakan bit pada shift registers (untuk empat bit sebagai ilustrasi)

Tipe register

- i. Serial In / Serial Out Shift Registers (SISO)
- Serial In /Parallel Out Shift Registers (SIPO)
- iii. Parallel In / Serial Out Shift Registers (PISO)
- iv. Parallel In / Parallel Out Shift Registers (PIPO)

Serial In/Serial Out Shift Registers

- Menerima data serial satu bit tiap waktu dan menghasilkan output serial juga
- Setiap pulsa clock akan menggeser input bit ke flip-flop berikutnya.

Contoh: 4-bit shift register:

serin: 1011001110

serout: - - - 1 0 1 1 0 0

clock:

Serial In, Serial Out Shift Register (SISO)

Clk		FF0	FF1	FF2	FF3		
0	Clear	0	0	0	0		
1	1011001110	0	0	0	0		
2	101100111	⁷ 0	0	0	0		
3	10110011	1	0	0	0		
4	1011001	1	1	0	0		
5	101100	1	1	1	0		
6	10110	0	1	1	1	0	
7	1011	0	0	1	1	10	
8	101	1	0	0	1	110	
9	10	1	1	0	0	1110	
10	1	0	1	1	0	01110	
11	Clear	1	0	1	1	001110	

Pararel to serial

SIPO

Contoh: data binary input sequensial 1011 diberikan setiap input pulsa clock

Setelah 4 clock pulsa, data berada pada parallel output.

KONVERSI SERIAL INPUT PARALLEL OUTPUT

Parallel In/Parallel Out Shift Registers

Simultan input dan output pada seluruh data bits.

Shift Register Counters

- Shift register counter: shift register dengan serial output dihubungkan kembali pada serial input.
- Dua Tipe umum Johnson counter dan Ring counter.

Ring Counters

- Output stage (FF) terakhir akan dihubungkan kembali pada input D pada FF stage pertama.
- n-bit ring counter cycles menunjukkan n states.
- Tidak membutuhkan gate tambahan

Ring Counters

Contoh: A 6-bit (MOD-6) ring counter.

Clock	Q_0	Q_1	Q_2	Q_3	Q_4	Q_5
→0	1	0	0	0	0	0
1	0	1	0	0	0	0
2	0	0	1	0	0	0
3	0	0	0	1	0	0
4	0	0	0	0	1	0
<u>5</u>	0	0	0	0	0	

Ring Counters

Johnson Counters

- complement output pada stage terakhir pada input D pada stage pertama.
- Disebut twisted-ring counter.
- n-bit Johnson counter cycles menunjukkan
 2n states.

Johnson Counters

Contoh: 4-bit (MOD-8) Johnson counter.

Clock	Q_0	Q_1	Q_2	Q_3
→ 0	0	0	0	0
1	1	0	0	0
2	1	1	0	0
3	1	1	1	0
4	1	1	1	1
5	0	1	1	1
6	0	0	1	1
<u>7</u>	0	0	0	1

Johnson Counters

Timing Diagram (Data Awal: 0111)

IC Shift Register

74164 (8-bit Serial In, Parallel Out Shift Register)

74194 (Universal Shift Register)

	Input					Output					
Operating Mode	Ср	MR	Sı	S ₀	D_SR	D_{SL}	Dn	Q	Q	Q_2	\mathbf{Q}_3
Reset (Clear)	Χ	L	X	X	X	X	Х	١	L	١	L
Hold	Χ	Ι	_	_	X	X	Χ	q	q1	q2	q3
Shift Left	Î	Ι	h	_	X	_	Χ	q1	q2	q3	L
	1	Ι	h	_	X	h	Χ	q1	q2	q3	Ξ
Shift Right	1	Ι	_	h	_	X	Χ	١	q0	q1	q2
	1	Ι	_	h	h	X	Χ	Ι	q0	q1	q2
Parallel Load	1	Ι	h	h	X	X	dn	d	d1	d2	d3

Tentukan output pada setiap input clock yang masuk pada IC 74LS194 dibawah ini

Tentukan output untuk setiap perubahan clock dari parallel to serial shift register rangkaian dibawah ini

