Algoritmizace – přehled

1. Algoritmy a jejich efektivita

- Správnost algoritmu
 - Konečnost = pro každá přípustná vstupní data obdržíme v konečném čase nějaký výstup
 - Částečná správnost = když výpočet skončí, vydá správný výsledek
 - Algoritmus je spravny = konečny + částečně správny
- Složitost (efektivita) algoritmu
 - Časová = počet vykonanych operací / rychlost vypočtu programu
 - Provedení podmínky, přiřazení, aritmetické operace
 - Prostorová = paměť potřebná na uložení dat při vypočtu programu
 - Velikost datové struktury (pole n, matice mxn)
- Analyza složitosti
 - Nejhorší případ = maximální délka vypočtu
 - Nejlepší případ = minimální délka vypočtu
 Nad vstupem délky n
 - Průměrny případ = součet délek vypočtu nad všemi vstupy délky n

2. Asymptotická časová složitost

- Asymptotická časová složitost
 - Počítáme jen nejrychleji rostoucí člen (v 3n² + 2n 4: O(n²))
 - o Notace: f,g: N -> R
- Odhady funkce
 - \exists c > 0 \exists n0 > 0 \forall n \ge n0 platí:
 - Horní (big O): f ∈ O(g)
 - f(n) je třídy O(g(n))
 - $0 \le f(n) \le c.g(n)$
 - **Dolní**: f ∈ Ω(g)
 - f(n) je třídy Ω(g(n))
 - $0 \le c \cdot g(n) \le f(n)$
 - **Přesny**: $f \in \Theta(g)$
 - f(n) je třidy Θ(g(n))

- $f \in O(g) \& f \in \Omega(g)$
- Spektrum časové složitosti
 - Polynomiálně omezeny čas
 - O(1), O(log(n)) Binární vyhledávání, O(n), O(n*log(n)) MergeSort, HeapSort, O(n²) – BubbleSort, InsertSort
 - Velká vstupná data
 - Exponenciální čas
 - O(2ⁿ), O(n!)
 - Malá vstupná data

3. Algoritmy z teorie čísel

- Testování prvočíselnosti
 - Vstup: přirozené číslo N > 1
 - o Vystup: True pokud N je prvočíslo, jinak False
 - Časová složitost: exponenciální (vzhledem k délce vstupu: [log2(n)] + 1
 - o **Řešení:** stačí prověřit dělitele $<=\sqrt{N}$
 - Nebo Eratosthenovo síto
 - Určete všechna prvočísla od 2 do N
 - v řadě čísel od 2 do N postupně vyškrtáváme všechny násobky jednotlivých prvočísel - co nakonec nebude vyškrtnuto, je prvočíslo
 - složitost: O(N.log(log N))
- Určení největšího společného dělitele
 - Vstup: přirozená čísla x, y > 0
 - Řešení: prvočíselny rozklad,
 - Nebo Euklidův algoritmus
 - Pro x>y: NSD(x, y) = NSD(x y,y)
 - Zrychlení: NSD(x, y) = NSD(y,x mod y)
 - NSD(27, 21) = NSD(21, 6) = ... = NSD(3,3) = 3
 - Složitost: O(log(x)) //iterace cyklu
- Vyhodnocení polynomu
 - o $a(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} ... + a_1 x + a_0$
 - o polynom stupně n
 - Řešení: přímy vypočet
 - $O(n^2)$ operací: n + (n-1) + (n-2) + ... + 1 = n.(n+1)/2
 - o Hornerovo schéma:
 - $a(x) = (...((a_nx + a_{n-1}).x + a_{n-2}).x + ... + a_1).x + a_0$
 - O(n) operací

- Převody mezi číselnými soustavami
 - \circ $a_n \cdot b^n + a_{n-1} \cdot b^{n-1} + ... + a_1 \cdot b + a_0$
 - o převod z binární soustavy (Hornerovo schéma) nebo naopak

$$10111_2 = (((1 \cdot 2 + 0) \cdot 2 + 1) \cdot 2 + 1) \cdot 2 + 1 = 23$$

$$23 = (((1 \cdot 2 + 0) \cdot 2 + 1) \cdot 2 + 1) \cdot 2 + 1 = 10111_2$$

- Rychlé umocňování
 - Vstup: (velké) přirozené číslo N a hodnota X
 - Vystup: X^N
 - Řešení: přímočaře X^N = X*X*...X
 - (n-1) násobení exponenciální čas
 - Nebo Převod exponentu N do binární soustavy
 - $13 = (1101)_2 = 2^3 + 2^2 + 2^0$
 - $X^{13} = X^8 \cdot X^4 \cdot X$
 - Složitost: O(log(n))

4. Třídění a vyhledávání

Vyhledávání

- Operace se seznamem
 - přístup k prvku v čase O(1)
 - o **append(x)** θ (n) (v nejhorším případě), O(1) (průměrně)
 - o del a[i] θ (n-i)
 - o in, index(), count() $\Theta(n)$
- Sekvenční
 - Vstup: uspořádané pole, prvek x
 - Výstup: pokud se x v poli vyskytuje, index výskytu False jinak
 - Časová složitost: Θ(n)
- Binární
 - o Pokud:
 - a[n // 2] == x , jsme hotovi
 - a[n // 2] > x , prohledáme jen prvky a[i] < a[n//2]
 - a[n // 2] < x , prohledáme jen prvky a[i] > a[n//2]
 - o invariant: a[i] = x => dolni <= x <= horni
 - Časová složitost: O(log2n)
 - vypočet odmocniny n půlením intervalu

Třídění

Vnitřní třídění

- Složitost: O(n²) //nested for
- o Porovnávací algoritmy: porovnávají dvojice, setříděny úsek nepoužívá
- <u>Rozhodovací strom</u>: reprezentuje průběh porovnání porovnávacím algoritmem. Má alespoň n! listů
 - dolní odhad: Maximální počet porovnání nad vstupem délky n je
 konstanta · n · log₂ n. <u>Časová složitost</u>: Ω(n log n)

BubbleSort

- projdi pole a porovnej dvojice sousedních prvků
- v případě potřeby dvojici vyměň
- po dosažení konce seznamu začni znovu od začátku
- po i-té iteraci (i = 1,2,...,n-1) je i posledních prvků na svých místech

SelectionSort / Třídění výběrem

- (pro i = 0,1,...,n-2) mezi a[i],...,a[n-1] najdi minimální prvek, a vyměň s prvkem a[i]
- Data malého rozsahu
- Jen (n-1) vyměn, O(n) zápisů do pole a

InsertionSort / Třídění vkládáním

- pole se dělí na setříděný úsek (vlevo) a nesetříděný úsek (vpravo). na začátku je setříděný úsek tvořen pouze prvním prvkem pole
- první prvek nesetříděného úseku se vždy zařadí do setříděného úseku na místo, kam patří, tím se setříděný úsek prodlouží o jeden prvek
- nejlepší časová složitost: O(n) //pole už je setříděné

HeapSort

- Datová struktura: binární halda
- Halda = bin. strom
- **Operace**: Přidej (prvek), OdeberMin/Max O(log(n))
- hodnoty uložené ve vrcholech splňují podmínku haldového uspořádání:
 - max-halda: hodnota kořene (pod)stromu >= hodnota libovolného dítěte
 - min-halda: hodnota kořene (pod)stromu <= hodnota libovolného dítěte
- vyška: h <= log2n

haldové třídění

- Z prvků pole a vybuduj haldu vkládej prvky od a[0] do a[n-1],
 //n ... počet prvků v poli
- Pokud min-halda: z haldy postupně odebírej minima (minimum – v kořeni)
- Pokud max-halda: z haldy postupně odebírej maxima (maximum – v kořeni)
- Můžeme třídit pomocí pomocného pole/na místě
- Složitost: O(nlog(n))

Třídění v lineárním čase / Přihrádkové metody

• Složitost: Lineární O(n+k)

• CountingSort / Třídění počítáním

- o pro každé x ∈{0,1,..., k} spočítej # výskytů x na vstupu
- zapiš x na správnou pozici v setříděné posloupnosti na výstup
- pomocná datová struktura: c[0...k] #pole s počty vyskytů hodnot, indexované od 0 až do k
- <u>Časová složitost</u>: O(n + k) (lineární)
 - N počet indexů v posloupnosti
 - K počet indexů v pomocném poli
- Nepraktické pro velké k

Step 12 : inputArray countArray 0 1 2 3 4 5 6 7 2 5 3 0 2 3 0 3 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 3 5 8 7

• BucketSort / Přihrádkové třídění

- Modifikace třídění počítáním, která umožňuje třídit strukturovaná data (záznamy s klíčem)
- Vstup: pole a s prvky, jejichž klíče leží v {0,1,..., k}
- <u>Vystup</u>: pole b obsahující prvky pole a uspořádané vzestupně dle klíče
- Pomocná datová struktura: c[0..k] kumulované četnosti
 - c[i] < i v poli a
- O(n + k)

3 9 21 25 29 37 43 49

• RadixSort / Víceprůchodové přihrádkové třídění

- o setřídí pole podle číslic v klíči
- Klíč je d-tice
 - Lexikografické uspořádání: ∃ k ∈ {0,1, ..., d-1} tak, že že xi = yi pro i = 0,1,...,k 1 a xk < yk.</p>
- Invariant: Po i-tém průchodu jsou prvky uspořádány dle posledních i souřadnic klíče.
- Časová složitost: O(d(n +k)) pokud stabilně třídí v čase O(n+k)

355

839

657

839

Třídění – rozděl a panuj

= Z řešení podproblémů sestroj řešení původního problému

MergeSort/Třídění sléváním

- Pole délky n ≤ 1 je již setříděno
- Jinak pole délky n ≥ 2 rozděl na poloviny, setřiď obě části, potom je slej do jednoho setříděného pole
- Slévání průchod stromem rekurze do hloubky
- \circ Časová složitost: T(n) = log2n (vyska stromu) * O(n) = O(n*log(n))
- Prostorová složitost: S(n) = O(n)
 - Pracovní paměť: Pomocné pole pro slévání

QuickSort/Třídění rozdělováním

- o pole délky ≤ 1 je již setříděno
- jinak ve vstupním poli zvolíme prvek = pivot, prvky v poli přeskupíme tak, aby výsledné pole tvořily dva navazující úseky:
 - levý s prvky ≤ pivot
 - pravý s prvky ≥ pivot
- o úseky setřídíme rekurzivně
- o netřídí na místě
- casová složitost: T(n) = O(n) + max1≤ i≤n-1(T(i)+T(n-i)) = O(n²) #v nejhorším případě
 - v nejlepším případě: O(n logn)

5. Datové struktury

Abstraktní datovy typ

- Množina prvků, nad kterou můžeme provádět operace. Určují pořadí prvků
- Příklad: Zásobník, fronta, prioritní fronta, lineárně spojovy seznam atd.

Zásobník

- <u>Dno zásobníku</u> (0. index v poli, je na začátku seznamu, odebírá se poslední index)
- Vždy se odebírá nejmladší prvek (a[-1])
- Operace: <u>push</u> S(n) = O(n) (nejhorší), <u>pop</u> S(n) = O(1) (odeber poslední prvek)
- Použití: Rekurze, prohledávání do hloubky (DFS)

Fronta

- Odebírá se ze začátku (nejstarší prvek), přidává se na konec (nejmladší prvek)
- Operace: enqueue (přidej) S(n) = O(1), dequeue (odeber) S(n)
 = O(n) (posunou se všechny zbyvající prvky doleva)
- <u>Cyklická fronta</u> = neposouváme prvky v poli, po posledním prvku ve frontě následuje první prvek fronty
- Oboustranná fronta (deque) = lze přidávat a odebírat prvky zprava i zleva (v O(1))
- Použití: Prohledávání do šířky (BFS)

Lineární spojovy seznam (LSS)

- Posloupnost prvku, které jsou lineárně provázány odkazy pomocí ukazatelů
- Každy prvek obsahuje svou hodnotu a odkaz na následující prvek v seznamu
- Poslední prvek se odkazuje na None
 - V cyklickém LSS se však odkazuje na první prvek

Prioritní fronta

- Fronta, v níž každy prvek má svou prioritu
 - Odebírá se vždy prvek s maximální prioritou (je-li jich více, odebereme libovolny)

o Implementace <u>LSS</u>:

- Nesetříděny seznam: append O(1), pop O(n) (hledáme prvek s max prioritou)
- <u>Setříděny seznam</u>: append O(n) (prvek vkládáme pomocí InsertSort), pop – O(1) (z hlavy)
- o Implementace <u>binární halda</u>: max-halda (odeber max prvek z haldy)

- V čase O(log(n))
- Binární halda (=strom)
 - V každé hladině (od první do předposlední) je 2ⁱ vrcholu
 - o Poslední hladina se zaplňuje zleva
 - Viz HeapSort (4. Třídění)
- ADT Slovník
 - Reprezentuje dynamickou množinu s operacemi
 - Vyhledej(klič v slovníku)
 - Ulož(hodnotu v slovníku)
 - Vymaž(klíč ze slovníku)
 - o Hashovací tabulky, vyhledávácí stromy
- Binární vyhledávácí strom
 - <u>Uspořádání vrcholů</u>: v levém podstromě s menšími klíči, v pravém s většími klíči, než u klíče kořene (podstromu)
 - Operace Vyhledej:
 - pokud hledany klíč < klíč vrcholu, prohledáme levy podstromu. Pokud > klíč vrcholu, prohledáme pravy podstrom. Jinak pokud hledany klíč = klíč vrcholu, vrátíme vrchol
 - Operace Ulož:
 - Přidej novy list (s klíčem)
 - Operace Vymaž:
 - Pomocí operace Vyhledej <u>najdi vrchol</u> v s klíčem k
 - Pokud (v = list) => změnit v rodiči odkaz na (v -> None)
 - Pokud v má jediné dítě d => změnit v rodiči odkaz na v -> odkaz na d
 - Pokud v má 2 děti => jeho bezprostřední následovník s má nejmenší hodnotu v nejlevějším listu pravém podstromu v. Vymažeme vrchol s a jim nahradíme vrchol v. Alternativa: nejpravější hodnota v levém podstromě
 - časová složitost: O(vyška(BVS))
 - minimální vyška: log2n (bin. halda)
 - maximální výška: n 1 (degenerovany strom = cesta, kde všechny vrcholy kromě posledního mají jednoho dítěte)
 - Vymaž, ulož, přidej –v nejhorším případě theta(n)
 - <u>Dokonale vyváženy BVS</u> = počet vrcholů v levém / pravém podstromě se liší nejvyše o 1
 - <u>Vyška</u>: log2n
 - Ulož, vymaž mohou zničit vyvaženost

- o AVL (Adelson-Velskiy and Landis) strom
 - výškově vyváženy BVS: vyška levého a pravého podstromu se liší o <= 1
 - porušení vyváženosti: řešení pomocí rotací

- Hašovací tabulka
 - o datová struktura, která implementuje ADT Slovník
 - o lze provést operace (Ulož, Vyhledej, Vymaž) v čase O(1)
 - Motivace Tabulka s přímym přístupem:
 - Klíče leží v univerzu U={0,1,...,m-1}, m je malé
 - žádné dva prvky nemají stejný klíč
 - pole s m prvky, která mají klíč z univerza: t[k]
 - Hlavní idea
 - hašovací funkce h: U →{0,1,...,m-1}, m << |U|</p>
 - není prostá: h(klíč(x)) = h(klíč(y)) (problém kolize)
 - hašovací tabulka: pole t[0..m-1]
 - je-li h(klíč(x)) = i, pak t[i] = x
 - složitost:
 - S(n) = Theta(|K|)
 - T(n) = O(1) (vypočet h(k))
 - Vyhledej O(1 + (n/m)), kde m = velikost tabulky, n = počet uloženych prvků
 - Řešení kolizí:
 - <u>separátní řetězení</u> = klíče z U odkazují na stejny index v seznamu => t[i] obsahuje <u>odkaz na jeho hlavu</u>
 - také funguje s operacemi Ulož, Vymaž, Vyhledej

otevřená adresace

- všechny prvky jsou uloženy přímo v tabulce
- o h: U $\times \{0,1, ...,m-1\} \rightarrow \{0,1, ...,m-1\}$
- o pak: h(k,0), h(k,1),..., h(k,m-1)

6. Rekurze, rekurzivní datové struktury

Rekurze

- Způsob řešení úlohy pomocí podúloh
- Implementace:
 - Rekurzivní funkcí: Volá sama sebe, musí mít podmínku ukončení (base case)
 - Bez podmínky: RecursionError (zacyklení vypočtu)
 - Zásobníkem
- Chytrá rekurze memoizace / kešování / dynamické programování
 - Zrychlí rekurzivní funkci
- Rekurzivní generování = generování / zkoušení všech možností
 - Generování variací, kombinací, atd. Rozklad čísla na součet sčítanců
- Příklad: faktoriál, Fibonacciho čísla, Hanojská věž, Rozklad čísla

Rekurzivní datové struktury

- Binární strom = uspořádány, každy vrchol má nejvyše 2 děti
- **Průchod** binárním stromem:
 - Preorder: vyhodnocení kořenu => rekurzivně projdi levy, pak pravy podstrom
 - Inorder: rekurze levy podstrom => vyhodnocení kořenu => rekurze pravy podstrom
 - Postorder: rekurze levy podstrom, pak pravy podstrom => vyhodnocení kořenu
- Časová složitost: O(n)
- Aritmetické vyrazy: listy = čísla (operandy), vnitřní vrcholy = operátory
- Notace aritmetických vyrazů
 - Infixová: (1 + 2) * 3
 - Prefixová: * + 1 2 3

- Postfixová: 1 2 + 3 *
- Obecné stromy (k-ární stromy)
 - Uspořádány strom, kde každy vrchol má nejvýše k děti
 - Reprezentace stromu: místo levy, pravy, má atributy dite1, dite2
 ... diteK
 - <u>Reprezentace Spojovy seznam dětí</u>: každy vrchol má odkaz na nejlevější (nejstarší) dítě, i na *nejmladšího sourozence* (bezprostředně vpravo). Pokud neexistují, tak jsou obě None
- Průchod do hloubky (DFS Depth First Search):
 - o Rekurzivně: preorder, inorder, postorder
 - Nebo pomocí zásobníku
 - Použití: hry piškvorky, šachy, sudoku atd.
- Průchod do šířky (BFS Breadth First Search):
 - Algoritmus vlny
 - o Používáme frontu vrcholy navštěvujeme po hladinách
 - Použití: hledání nejkratší cesty

7. Prohledávání stavového prostoru

- Backtracking (prohledávání s návratem)
 - o postupně generujeme částečná řešení úlohy
 - každé částečné řešení se snažíme (různými způsoby) rozšířit, s cílem získat úplné řešení
 - pokud o některém kandidátovi zjistíme, že nepůjde rozšířit na úplné řešení => vracíme se zpět a zkoušíme rozšířit jiného kandidáta (např. průchod bludištěm)
 - o slepá cesta: postupujeme kupředu tak dlouho, dokud to jde
 - o cyklus: dokud dojdeme na místo, kde jsme už byli
 - o backtrack: vrať se na rozcestí a vyber jinou cestu
 - Průchod do hloubky
 - Počátečny stav = kořen
 - Neúplné řešení, které lze rozšířit = list
 - Úplné řešení / Koncovy stav = list
 - o Složitost:
 - **Časová**: O(n!)
 - Jen pro male vstupy
 - **Prostorová**: O(n) (velikost zásobníku)

- Příklad: Problém n dám.
 - Jak rozmístit figurky tak, aby se neohrožovaly

Ořezávání

- Odstranění slepych větví (řešení, které nelze rozšířit na úplné, odřízneme ze stromu)
- Problém n dám: dámu umístíme jen na ty políčka, kde jiné dámy neohrožuje

Heuristika

- Metoda řešení problému, která v krátkém čase nalezne řešení
- Nezaručuje příznivou časovou složitost
- Heuristická funkce ohodnotí děti zadaného rodiče podle jejich šance na to, že povedou k řešení úlohy
 - Určí pořadí dětí podle počtu dalších pokračování
- o Např. <u>cesta figurkou po šachovnici</u> hledání nejkratší cesty

Spojení heuristik a ořezávání

- Vhodná heuristika (aby se co nejdříve našlo dobré řešení) => zvyší se účinnost ořezávání
- Např. Problém obchodního cestujícího

Minimaxovy algoritmus

- o Strom hry:
 - Každy vrchol obsahuje hodnotu {-1, 0, 1}
 - Hrana = tah
 - Bíly = "max", černy = "min"
 - Listy = 1 (vyhrál Max), -1 (vyhrál Min), 0 (remíza)
 - Vnitřní vrcholy: ohodnocení max, min z hodnot synů a podle toho, kdo je na tahu
- <u>Vítězná strategie</u>: Všechny listy reprezentují pozice, v níž jeden z hráčů zvítězí
- <u>Neprohrávací strategie:</u> listy = pozice, kde dojde ke vítězství (jednoho z hráčů), nebo k remíze
- Průchod do hloubky: rekurzivně
 - o Omezená hloubka
 - Koncová pozice: +∞ (vyhraje Max), -∞ (Min), 0 (remíza)
 - Nekoncová pozice: → +∞ (vyhodnější pro Max), → -∞ (pro Min)

Alpha-beta prořezávání

- A nejlepší volba hodnoty pro Max na této cestě, B pro Min
- Pokud vygenerovany vrchol není v intervalu (a, b) => Odřízneme podstrom

- <u>Nejhorší časová složitost</u>: O(b^h)
 - o **b** počet dětí
 - h počet tahů

8. Grafové algoritmy

- Neorientovany graf = hrany jsou 2-prvkové podmnožiny vrcholů
- Orientovany graf = hrany jsou uspořádané dvojice vrcholů
- Multigraf = mezi 2 vrcholy je více hran (jsou rovnoběžné)
- Hypergraf = (hyper)hrana může spojovat více než 2 vrcholy
- Základní pojmy (viz Diskrétka)
 - Tah = mohou se opakovat vrcholy
 - Sled = mohou se opakovat vrcholy i hrany
 - Cyklus = mohou se opakovat vrcholy
 - Vzdálenost vrcholů u,v = délka nejkratší cesty mezi u,v
 - Graf je souvisly = pokud mezi každou dvojicí vrcholů existuje cesta
- Základní pojmy Stromy
 - Strom = souvisly acyklicky graf, deg(list) = 1
 - Les = acyklický graf, komponenty = stromy
 - Předchůdce následník (relace)
 - u,v vrcholy v kořenovém stromě. Pokud u leží nad v na cestě z kořene do listu, u = předchůdce v, v = následník u
- Reprezentace grafu
 - Matice sousednosti
 - Čtvercová matice řádu n
 - Symetrická, pokud neorientovany graf
 - Prostorová složitost: theta(n²)
 - Dobré pro transformace grafů
 - o Pole seznamů sousedů
 - Pole sousede[0...n-1]
 - Kde index = číslo vrcholu u, na každém indexu je pole sousedních vrcholů (které jsou z množiny V)
 - Prostorová složitost: O(n + m)
- Graf průchodu do hloubky (DFS)
 - Obsahuje všechny vrcholy
 - Ale pouze ty hrany, které vedou do nenavštívenych vrcholů
 - Detekce zpětné hrany

- Neorientovany graf: O(n)
- Orientovany graf:
 - Hrany Stromové, dopředné (předchůdce -> následník), zpětné (naopak), příčné (vrcholy nejsou v relaci předchůdce = následník)
 - Existence zpětné hrany: O(n + m)
- Určení komponent
 - Komponenty[0...n-1]
 - Komponenty[u] = číslo komponenty, do níž patří vrchol u
 - Komponenty očíslujeme od 1…k
 - Časová složitost: O(n + m)
- Graf průchodu do šířky (BFS)
 - Časová složitost: O(n + m) (pro orientované a neorientované grafy)
 - Hledání nejkratší cesty mezi 2 vrcholy

9. Zrychlení převypočtem

- Cíl: zlepšit časovou složitost
 - o Ale zaplatíme přitom vyšší prostorovou složitosti
- Příklady:
 - Nejčastější číslo:
 - Hrubá síla: spočítat vyskyty všech čísel
 - <u>Předvypočet</u>: na jeden průchod najít nejdelší úsek stejnych hodnot

0