Proof Reconstruction in Classical Propositional Logic

(Work in Progress)

Jonathan Prieto-Cubides Joint work with Andrés Sicard-Ramírez

Universidad EAFIT Medellín, Colombia

Agda Implementors' Meeting XXV May 9-15th

A problem

¹It is available at http://www.gilith.com/software/metis

¹It is available at http://www.gilith.com/software/metis

¹It is available at http://www.gilith.com/software/metis

²It is available at http://github.com/jonaprieto/athena

¹It is available at http://www.gilith.com/software/metis

²It is available at http://github.com/jonaprieto/athena

¹It is available at http://www.gilith.com/software/metis

²It is available at http://github.com/jonaprieto/athena

³It is available at http://github.com/agda/agda

¹It is available at http://www.gilith.com/software/metis

²It is available at http://github.com/jonaprieto/athena

³It is available at http://github.com/agda/agda

¹It is available at http://www.gilith.com/software/metis

²It is available at http://github.com/jonaprieto/athena

³It is available at http://github.com/agda/agda

Bonus Slides

- ▶ Is a language⁴ to encode problems (Sutcliffe, 2009)
- Is the input of the ATPs
- Annotated formulas with the form

```
language(name, role, formula).
```

```
language FOF or CNF
```

name to identify the formula within the problem

role axiom, definition, hypothesis, conjecture, among others

formula version in TPTTP format

⁴Is available at http://www.cs.miami.edu/~tptp/TPTP/SyntaxBNF.html

 $\triangleright p \vdash p$

fof(a, axiom, p).
fof(goal, conjecture, p).

 $\blacktriangleright \vdash \neg (p \land \neg p) \lor (q \land \neg q)$

fof(goal, conjecture, ~ ((p & ~ p) | (q & ~ q))).

⁵Is available at http://github.com/jonaprieto/prop-pack

Metis Theorem Prover

http://www.gilith.com/software/metis/

Metis is an automatic theorem prover for First-Order Logic with equality

Why Metis?

- Open source implemented in Standard ML
- Each refutation step is one of 6 simple rules
- Reads problem in TPTP format
- Outputs detailed proofs in TSTP format

TSTP derivations by Metis exhibit these inferences ⁶:

Rule	Purpose	
canonicalize	transforms formulas to CNF, DNF or NNF	
clausify	performs clausification	
conjunct	takes a formula from a conjunction	
negate	applies negation to the formula	
resolve	applies theorems of resolution	
simplify	mplify applies over a list of formula to simplify them	
strip	splits a formula into subgoals	

⁶Inference rules found in proofs of Propositional Logic theorems

.tstp

A TSTP derivation 7

- Is a Directed Acyclic Graph where leaf is a formula from the TPTP input **node** is a formula inferred from parent formula root the final derived formula
- Is a list of annotated formulas with the form:

```
language(name, role, formula, source [,useful info]).
```

where source typically is an inference record:

```
inference(rule, useful info, parents)
```

⁷http://www.cs.miami.edu/~tptp/TPTP/QuickGuide/Derivations.html

▶ Proof found by **Metis** Prover for the problem $p \vdash p$

Metis

```
$ metis --show proof basic-4.tptp
fof(a, axiom, p).
fof(goal, conjecture, p).
fof(subgoal_0, plain, p),
  inference(strip, [], [goal])).
fof(negate_0_0, plain, ~ p,
  inference(negate, [], [subgoal_0])).
fof(normalize_0_0, plain, ~ p,
  inference(canonicalize, [], [negate_0_0])).
fof(normalize_0_1, plain, p,
  inference(canonicalize, [], [a])).
fof(normalize_0_2, plain, $false,
  inference(simplify, [],
    [normalize_0_0, normalize_0_1])).
cnf(refute_0_0, plain, $false,
    inference(canonicalize, [], [normalize_0_2])).
```

DAG for the previous TSTP derivation found by Metis Prover

By refutation, we proved $p \vdash p$:

$$\frac{\frac{p}{p} \text{ assume}}{\frac{-p}{p} \text{ negate } \frac{p}{p} \text{ canonicalize}}$$

$$\frac{\frac{\perp}{p} \text{ canonicalize}}{\frac{\perp}{p} \text{ canonicalize}}$$

Is a Haskell program that translates proofs given by Metis Prover in **TSTP** format to Agda code.

- Parsing of TSTP language
- Creation and analysis of DAG derivations
- Analysis of inference rules used in the TSTP derivation
- Agda code generation

Library	Purpose	
Agda-Prop	axioms and theorems of Classical Propositional Logic	
Agda-Metis	versions of the inference rules used by Metis	

- ▶ Propositional Logic + PEM ($\Gamma \vdash \phi \lor \neg \phi$)
- A data type for formulas

```
data Prop : Set where

Var : Fin n \rightarrow Prop -- Variables.

T : Prop -- Top (truth).

L : Prop -- Bottom (falsum).

-\(-\) : (\varphi \ \psi : Prop) \rightarrow Prop -- Conjunction.

-\(-\) : (\varphi \ \psi : Prop) \rightarrow Prop -- Disjunction.

-\(-\) : (\varphi \ \psi : Prop) \rightarrow Prop -- Implication.

-\(-\) : (\varphi \ \psi : Prop) \rightarrow Prop -- Biimplication.

-\(-\) : (\varphi \ : Prop) \rightarrow Prop -- Negation.
```

A data type for theorems

```
data \_\vdash\_: (\Gamma: Ctxt)(\varphi: Prop) \rightarrow Set
```

▶ Constructors

```
assume, axiom, weaken, T-intro, \bot-elim, \neg-intro, \neg-elim, \land-intro, \land-proj_1, \land-proj_2, \lor-intro_1, \lor-elim, \Rightarrow-intro, \Rightarrow-elim, \Leftrightarrow-intro, \Leftrightarrow-elim_1, \Leftrightarrow-elim_2
```

▶ Natural deduction proofs for more than 71 theorems

Rule	Purpose	Theorem
canonicalize	transforms formulas to CNF, DNF or NNF	atp-canonicalize
clausify	performs clausification	atp-clausify
conjunct	takes a formula from a conjunction	atp-conjunct
negate	applies negation to the formula	atp-negate
resolve	applies theorems of resolution	atp-resolve
simplify	applies over a list of formula to simplify them	atp-simplify
strip	splits a formula into subgoals	strip

https://github.com/jonaprieto/agda-metis

Definition

$$conjunct(\phi_1 \land \phi_2 \land \cdots \land \phi_i \land \cdots \land \phi_n, \phi_i) \longrightarrow \phi_i$$

► Function⁸:

```
conjunct: Prop \rightarrow Prop conjunct (\varphi \land \psi) \omega with [ eq \varphi \omega ] | [ eq \psi \omega ] ... | true | _ = \varphi ... | false | true = \psi ... | false | false = conjunct <math>\varphi \omega conjunct \varphi \omega = \varphi
```

► Theorem⁸

```
atp-conjunct

: \forall \{\Gamma\} \{\varphi\}

\Rightarrow (\omega : Prop)

\Rightarrow \Gamma \vdash \varphi

\Rightarrow \Gamma \vdash conjunct \varphi \omega
```

⁸Excerpt from the **Agda-Metis** library available in **ATP.Metis.Rules.Conjunct** module.

A proof of atp-conjunct theorem

```
atp-conjunct
    \forall \{\Gamma\}\{\varphi\}
   \rightarrow (\omega: Prop)
   \rightarrow \Gamma \vdash \varphi
    \rightarrow \Gamma \vdash conjunct \varphi \omega
atp-conjunct \{\Gamma\} \{\varphi \land \psi\} \omega \Gamma \vdash \varphi with | eq \varphi \omega | | eq \psi \omega |
... | true | \underline{\phantom{a}} = \wedge-proj, \Gamma \vdash \varphi
... | false | true = \land-proj, \Gamma \vdash \varphi
... | false | false =
        atp-conjunct \{\Gamma = \Gamma\} \{\varphi = \varphi\} \omega (\land-proj, \Gamma \vdash \varphi)
atp-conjunct {_} {Var x} _ = id
\begin{array}{lll} \text{atp-conjunct } \{\_\} & \{\top\} & \_ & = \text{ id} \\ \text{atp-conjunct } \{\_\} & \{\bot\} & \_ & = \text{ id} \end{array}
atp-conjunct \{ \} \{ \varphi \lor \varphi_1 \} = id
atp-conjunct \{ \} \{ \varphi \Rightarrow \varphi_1 \} = id
atp-conjunct \{ \} \{ \varphi \Leftrightarrow \varphi_1 \} = id
atp-conjunct \{ \} \{ \neg \varphi \} = id
```

- ▶ The problem is $p \land q \vdash q \land p$
- ▶ In TPTP format

```
fof(a, axiom, p & q).
fof(goal, conjecture, q & p).
```

A natural deduction proof

$$\frac{\frac{\phi \land \psi}{\phi} \land \text{-proj}_1 \quad \frac{\phi \land \psi}{\psi} \land \text{-proj}_2}{\psi \land \phi} \land \text{-intro}$$


```
fof(a, axiom, p & q).
fof(goal, conjecture, q & p).
fof(subgoal_0, plain, q,
    inference(strip, [], [goal])).
fof(subgoal_1, plain, q => p,
    inference(strip, [], [goal])).
fof(negate 0 0, plain, ~ q,
inference(negate, [], [subgoal_0])).
fof(normalize_0_0, plain, (~ q),
    inference(canonicalize, [], [negate_0_0])).
fof(normalize_0_1, plain, p & q,
    inference(canonicalize, [], [a])).
fof(normalize 0 2, plain, q,
    inference(conjunct, [], [normalize_0_1])).
fof(normalize 0 3, plain, $false,
    inference(simplify, [],
        [normalize_0_0, normalize_0_2])).
cnf(refute_0_0, plain, $false,
    inference(canonicalize, [], [normalize_0_3])).
```

```
fof(negate_1_0, plain, ~ (q => p),
    inference(negate, [], [subgoal_1])).
fof(normalize_1_0, plain, ~ p & q,
   inference(canonicalize, [], [negate_1_0])).
fof(normalize_1_1, plain, p & q,
    inference(canonicalize, [], [a])).
fof(normalize 1 2, plain, p,
    inference(conjunct, [], [normalize_1_1])).
fof(normalize 1 3, plain, q,
    inference(conjunct, [], [normalize_1_1])).
fof(normalize_1_4, plain, $false,
    inference(simplify, [],
      [normalize_1_0, normalize_1_2, normalize_1_3])).
cnf(refute_1_0, plain, ($false),
    inference(canonicalize, [], [normalize 1 4])).
```

Definitions

```
p: Prop
p = Var (# 0)
q : Prop
q = Var (# 1)
-- Axiom.
a: Prop
a = (p \wedge q)
-- Premise.
Γ: Ctxt
\Gamma = [a]
-- Conjecture.
goal : Prop
goal = (q \land p)
-- Subgoals.
subgoal<sub>0</sub>: Prop
subgoal_0 = q
subgoal, : Prop
subgoal_1 = (q \Rightarrow p)
```

```
-- Axiom.
a: Prop
a = (p \wedge q)
-- Subgoal.
subgoal<sub>0</sub>: Prop
subgoal_0 = q
proof_0 : \Gamma \vdash subgoal_0
proof_0 =
  (RAA
     (atp-canonicalize
        (atp-simplify
           (atp-canonicalize
             (atp-strip
                (assume \{\Gamma = \Gamma\} (atp-negate subgoal<sub>0</sub>))))
           (atp-conjunct (q)
             (atp-canonicalize
                (weaken (atp-negate subgoal<sub>0</sub>)
                  (assume \{\Gamma = \emptyset\} a)))))))
```

```
subgoal, : Prop
subgoal_1 = (q \Rightarrow p)
proof_1 : \Gamma \vdash subgoal_1
proof, =
  (RAA
     (atp-canonicalize
       (atp-simplify
          (atp-conjunct (q)
            (atp-canonicalize
               (weaken (atp-negate subgoal,)
                 (assume \{\Gamma = \emptyset\} a))))
          (atp-simplify
             (atp-canonicalize
               (atp-strip
                 (assume \{\Gamma = \Gamma\} (atp-negate subgoal,))))
             (atp-conjunct (p)
               (atp-canonicalize
                 (weaken (atp-negate subgoal,)
                    (assume \{\Gamma = \emptyset\} a)))))))))
```

```
proof : Γ⊢ goal
proof =
  ⇒-elim
  atp-splitGoal
  (∧-intro proof₀ proof₁)
```

```
$ metis --version
metis 2.3 (release 20161108)
$ metis --show proof problem.tptp
fof(normalize_2_0, plain,
  (~p \& (~q <=> ~r) \& (~p <=> (~q <=> ~r))),
 inference(canonicalize, [], [negate 2 0])).
fof(normalize 2 1, plain, ~ p <=> (~ q <=> ~ r),
    inference(conjunct, [], [normalize_2_0])).
fof(normalize 2 2, plain, ~ q <=> ~ r,
    inference(conjunct, [], [normalize_2_0])).
fof(normalize 2 3, plain, ~ p,
 inference(conjunct, [], [normalize_2_0])).
fof(normalize_2_4, plain, $false,
    inference(simplify, [],
      [normalize_2_1, normalize_2_2, normalize_2_3])).
```

SledgeHammer

(Paulson and Susanto, 2007)

- ► Isabelle/HOL mature tool
- ▶ Metis ported within Isabelle
- Reconstruct proofs of well-known ATPs: EProver, Vampire, among others using SystemOnTPTP server

Integrating Waldmeister into Agda

(Foster and Struth, 2011)

- Framework for a integration between Agda and ATPs
 - Equational Logic
 - Reflection Layers
- Source code is not available⁹

⁹http://simon-foster.staff.shef.ac.uk/agdaatp

At the moment, the communication between Agda and the ATPs is unidirectional because the ATPs are being used as oracles (Sicard-Ramírez, 2015).


```
module Or where

data _v_ (A B : Set) : Set where
  inj<sub>1</sub> : A → A ∨ B
  inj<sub>2</sub> : B → A ∨ B

postulate
  A B : Set
  v-comm : A ∨ B → B ∨ A
{-# ATP prove v-comm #-}
```

At the moment, the communication between Agda and the ATPs is unidirectional because the ATPs are being used as oracles (Sicard-Ramírez, 2015).

¹⁰Development version of Agda in order to handle a new built-in ATP-pragma. https://github.com/asr/eagda

 $^{^{10} {\}tt Development}\ {\tt version}\ {\tt of}\ {\tt Agda}\ {\tt in}\ {\tt order}\ {\tt to}\ {\tt handle}\ {\tt a}\ {\tt new}\ {\tt built-in}\ {\tt ATP-pragma}.\ {\tt https://github.com/asr/eagda}$

¹¹ Haskell program for proving first-order theorems written in Agda using ATPs. https://github.com/asr/apia

 $^{^{10} \}hbox{Development version of Agda in order to handle a new built-in ATP-pragma. } \textbf{https://github.com/asr/eagda}$

¹¹Haskell program for proving first-order theorems written in Agda using ATPs. https://github.com/asr/apia

Related Work: Apia

Proving first-order theorems written in Agda using automatic theorem provers for first-order logic

 $^{^{10} \}hbox{Development version of Agda in order to handle a new built-in ATP-pragma. } \textbf{https://github.com/asr/eagda}$

¹¹Haskell program for proving first-order theorems written in Agda using ATPs. https://github.com/asr/apia

Related Work: Apia

Proving first-order theorems written in Agda using automatic theorem provers for first-order logic

 $^{^{10} \}hbox{Development version of Agda in order to handle a new built-in ATP-pragma. } \textbf{https://github.com/asr/eagda}$

¹¹Haskell program for proving first-order theorems written in Agda using ATPs. https://github.com/asr/apia

Related Work: Apia

Proving first-order theorems written in Agda using automatic theorem provers for first-order logic

 $^{^{10} {\}tt Development}\ version\ of\ {\tt Agda}\ in\ order\ to\ handle\ a\ new\ built-in\ {\tt ATP-pragma}.\ {\tt https://github.com/asr/eagda}$

¹¹Haskell program for proving first-order theorems written in Agda using ATPs. https://github.com/asr/apia

Pending Work

- There are missing cases with the simplify inference
- ▶ Is not clear, how canonicalize inference choose what normal form use to transform the formulas
- When Metis prove a goal, it first splits that goal in a list of subgoal, then we are working on verification of such splitting.

Future Work

- Add shallow embedding in order to work with Apia
- Support First-Order Logic with Equality
- Support another prover like EProver or Vampire

References

- Foster, Simon and Georg Struth (2011). "Integrating an Automated Theorem Prover into Agda". In: NASA Formal Methods: Third International Symposium, NFM 2011, Pasadena, CA, USA, April 18-20, 2011. Proceedings. Ed. by Mihaela Bobaru et al. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 116–130.
 - Paulson, Lawrence C. and Kong Woei Susanto (2007). "Source-Level Proof Reconstruction for Interactive Theorem Proving". In: Theorem Proving in Higher Order Logics: 20th International Conference, TPHOLs 2007, Kaiserslautern, Germany, September 10-13, 2007. Proceedings. Ed. by Klaus Schneider and Jens Brandt. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 232–245.
- Sicard-Ramírez, Andrés (2015). Reasoning about functional programs by combining interactive and automatic proofs. PEDECIBA Informática, Universidad de la República.
- Sutcliffe, G. (2009). "The TPTP Problem Library and Associated Infrastructure: The FOF and CNF Parts, v3.5.0". In: Journal of Automated Reasoning 43.4, pp. 337–362.