The LNM Institute of Information Technology Jaipur, Rajsthan

Math-II (2015-16), Quiz-2: Section-A

Name: Roll No:

Time: 15 Minutes Maximum Marks: 10

Q1. Find the family of oblique trajectories which intersect the family of curves $y = ce^x$ at an angle of 45°. [5]

Sol. The differential equation (DE) corresponding to the given family of curve is y' = y.

Now use $\tan 45 = \frac{m_1 - m_2}{1 + m_1 m_2}$, where m_1 is the slope of given DE which is y and m_2 is the desired slope of oblique trajectories. Therefore, the DE corresponding to the oblique trajectories is $y' = \frac{y-1}{y+1}$.

By solving this we get the family of oblique trajectories as $y + 2\log(y - 1) = x + c$.

Q2 Solve the differential equation $yy' + xy^2 = x$. [5]

Sol. Note that this is a Bernoulli equation with a = -1. By applying the transformation $u(x) = y^2$, the non-linear equation reduced to linear equation in u: u' + 2xu = 2x.

Integrating factor is $e^{\int 2xdx} = e^{x^2}$ and hence $ue^{x^2} = \int 2xe^{x^2}dx + c$. By solving $u(x) = 1 + Ce^{-x^2}$ and hence $y^2 = 1 + Ce^{-x^2}$.