# All NeurIPS (NIPS) Papers MVP

## • Files info :

```
papers_data.info
<bound method DataFrame.info of</pre>
                                                                                    title \
                                source_id year
           27 1987
                                       Bit-Serial Neural Networks
1
           63 1987
                                      Connectivity Versus Entropy
2
           60 1987
                        The Hopfield Model with Multi-Level Neurons
3
           59 1987
                                            How Neural Nets Work
           69 1987 Spatial Organization of Neural Networks: A Pro...
9675
         5452 2019 Discrete Object Generation with Reversible Ind...
9676
         4799
              2019
                   Adaptively Aligned Image Captioning via Adapti...
9677
         1827 2019
                         Fully Dynamic Consistent Facility Location
9678
         8693 2019
                       Efficient Rematerialization for Deep Networks
9679
         2302 2019 Flow-based Image-to-Image Translation with Fea...
                                        abstract \
Θ
                                            NaN
1
                                            NaN
2
                                            NaN
3
                                            NaN
4
    The success of generative modeling in continuo...
    Recent neural models for image captioning usua...
       We consider classic clustering problems in ful...
       When training complex neural networks, memory ...
9678
9679
       Learning non-deterministic dynamics and intrin...
                                                      full text
       573 \n\nBIT - SERIAL NEURAL NETWORKS \n\nAlan...
1
       1 \n\nCONNECTIVITY VERSUS ENTROPY \n\nYaser S...
2
       278 \n\nTHE HOPFIELD MODEL WITH MUL TI-LEVEL N...
3
       442 \n\nAlan Lapedes \nRobert Farber \n\nThe...
4
       740 \n\nSPATIAL ORGANIZATION OF NEURAL NEn...
       Discrete Object Generation\n\nwith Reversible ...
9675
9676
       Adaptively Aligned Image Captioning via\n\nAda...
       Fully Dynamic Consistent Facility Location\n\n...
9677
9678
       Efficient Rematerialization for Deep Networks\n...
       Flow-based Image-to-Image Translation\n\nwith ...
9679
[9680 rows x 5 columns]>
```

### authors\_data.info

| <bound< th=""><th>method</th><th>Data</th><th>Frame.info</th><th>of s</th><th>ource_id first_name</th><th>last_name</th></bound<> | method | Data | Frame.info | of s        | ource_id first_name | last_name    |
|-----------------------------------------------------------------------------------------------------------------------------------|--------|------|------------|-------------|---------------------|--------------|
| 0                                                                                                                                 |        | 27   | Alan       | Murray      |                     | NaN          |
| 1                                                                                                                                 |        | 27   | Anthony    | Smith       |                     | NaN          |
| 2                                                                                                                                 |        | 27   | Zoe        | Butler      |                     | NaN          |
| 3                                                                                                                                 |        | 63   | Yaser      | Abu-Mostafa |                     | NaN          |
| 4                                                                                                                                 |        | 60   | Michael    | Fleisher    |                     | NaN          |
|                                                                                                                                   |        |      |            |             |                     |              |
| 30232                                                                                                                             | 86     | 593  | Joshua     | Wang        |                     | Google       |
| 30233                                                                                                                             | 2      | 302  | Ruho       | Kondo       | Toyota Central R&D  | Labs., Inc.  |
| 30234                                                                                                                             | 2      | 302  | Keisuke    | Kawano      | Toyota Central R&   | D Labs., Inc |
| 30235                                                                                                                             | 2      | 302  | Satoshi    | Koide       | Toyota Centr        | al R&D Labs. |
| 30236                                                                                                                             | 2      | 302  | Takuro     | Kutsuna     | Toyota Central R&   | D Labs. Inc. |

[30237 rows x 4 columns]>

# • Print data:

authors\_data

| 0 27 Alan Murray Na<br>1 27 Anthony Smith Na           |       |
|--------------------------------------------------------|-------|
|                                                        | 0     |
|                                                        | 1     |
| 2 27 Zoe Butler Na                                     | 2     |
| 3 63 Yaser Abu-Mostafa Na                              | 3     |
| 4 60 Michael Fleisher Na                               | 4     |
| <b></b>                                                |       |
| <b>30232</b> 8693 Joshua Wang Goog                     | 30232 |
| 30233 2302 Ruho Kondo Toyota Central R&D Labs., In     | 30233 |
| 30234 2302 Keisuke Kawano Toyota Central R&D Labs., Ir | 30234 |
| 30235 2302 Satoshi Koide Toyota Central R&D Lab        | 30235 |
| 30236 2302 Takuro Kutsuna Toyota Central R&D Labs. In  | 30236 |

#### papers\_data

|      | source_id | year | title                                          | abstract                                       | full_text                                        |
|------|-----------|------|------------------------------------------------|------------------------------------------------|--------------------------------------------------|
| 0    | 27        | 1987 | Bit-Serial Neural Networks                     | NaN                                            | 573 \n\nBIT - SERIAL NEURAL NETWORKS<br>\n\nAlan |
| 1    | 63        | 1987 | Connectivity Versus Entropy                    | NaN                                            | 1 \n\nCONNECTIVITY VERSUS ENTROPY \n\nYaser S    |
| 2    | 60        | 1987 | The Hopfield Model with Multi-Level Neurons    | NaN                                            | 278 \n\nTHE HOPFIELD MODEL WITH MUL TI-LEVEL N   |
| 3    | 59        | 1987 | How Neural Nets Work                           | NaN                                            | 442 \n\nAlan Lapedes \nRobert Farber \n\nThe     |
| 4    | 69        | 1987 | Spatial Organization of Neural Networks: A Pro | NaN                                            | 740 \n\nSPATIAL ORGANIZATION OF NEURAL NEn       |
|      |           |      |                                                |                                                |                                                  |
| 9675 | 5452      | 2019 | Discrete Object Generation with Reversible Ind | The success of generative modeling in continuo | Discrete Object Generation\n\nwith Reversible    |
| 9676 | 4799      | 2019 | Adaptively Aligned Image Captioning via Adapti | Recent neural models for image captioning usua | Adaptively Aligned Image Captioning via\n\nAda   |
| 9677 | 1827      | 2019 | Fully Dynamic Consistent Facility Location     | We consider classic clustering problems in ful | Fully Dynamic Consistent Facility Location\n\n   |
| 9678 | 8693      | 2019 | Efficient Rematerialization for Deep Networks  | When training complex neural networks, memory  | Efficient Rematerialization for Deep Networks\n  |
| 9679 | 2302      | 2019 | Flow-based Image-to-Image Translation with Fea | Learning non-deterministic dynamics and intrin | Flow-based Image-to-Image Translation\n\nwith    |

9680 rows x 5 columns

#### authors\_data.dtypes

source\_id int64
first\_name object
last\_name object
institution object
dtype: object

#### papers\_data.dtypes

source\_id int64
year int64
title object
abstract object
full\_text object
dtype: object

#### authors\_data.isna().sum()

source\_id 0
first\_name 1
last\_name 3
institution 12934
dtype: int64

#### papers\_data.isna().sum()

source\_id 0
year 0
title 0
abstract 3319
full\_text 3
dtype: int64

#### authors\_data.describe()

# source\_id count 30237.000000 mean 2135.749942 std 1952.749005 min 1.000000 25% 759.000000 50% 1526.000000 75% 2798.000000 max 9406.000000

#### papers\_data.describe()

|       | source_id   | year        |
|-------|-------------|-------------|
| count | 9680.000000 | 9680.000000 |
| mean  | 1963.827479 | 2009.498760 |
| std   | 1825.720545 | 9.233312    |
| min   | 1.000000    | 1987.000000 |
| 25%   | 717.000000  | 2003.000000 |
| 50%   | 1403.000000 | 2013.000000 |
| 75%   | 2579.000000 | 2018.000000 |
| max   | 9406.000000 | 2019.000000 |

# • Clean data:

```
# replacing na values
authors_data["institution"].fillna("No institution", inplace = True)
authors_data["first_name"].fillna("some one", inplace = True)
authors_data["last_name"].fillna("some one", inplace = True)
authors_data.isna().sum()
source_id
               0
first_name
              0
last_name
institution
dtype: int64
# replacing na values
papers_data['full_text'].fillna("no full_text ", inplace = True)
papers_data['abstract'].fillna("no abstract ", inplace = True)
papers_data.isna().sum()
source_id
             0
year
             0
title
abstract
full text
dtype: int64
```

# Visualization

```
#01 \ find all paper write in 2019 ?
paper_title_2019= papers_data.loc[papers_data['year'] == 2019]
paper_title_2019
```

|      | source_id | year | title                                          | abstract                                              | full_text                                          |
|------|-----------|------|------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|
| 8252 | 8547      | 2019 | Compositional Plan Vectors                     | Autonomous agents situated in real-world envir        | Plan Arithmetic: Compositional Plan Vectors fo     |
| 8253 | 610       | 2019 | Learning to Propagate for Graph Meta-Learning  | Meta-learning extracts the common knowledge fr        | Learning to Propagate for Graph Meta-<br>Learning\ |
| 8254 | 1164      | 2019 | XNAS: Neural Architecture Search with Expert A | This paper introduces a novel optimization met        | XNAS: Neural Architecture Search\n\nwith Exper     |
| 8255 | 7845      | 2019 | Multi-resolution Multi-task Gaussian Processes | We consider evidence integration from potentia        | Multi-resolution Multi-task Gaussian Processes     |
| 8256 | 348       | 2019 | Deep Equilibrium Models                        | We present a new approach to modeling sequenti        | Deep Equilibrium Models\n\nShaojie Bai\n\nJ. Z     |
|      |           |      |                                                |                                                       |                                                    |
| 9675 | 5452      | 2019 | Discrete Object Generation with Reversible Ind | The success of generative modeling in continuo        | Discrete Object Generation\n\nwith Reversible      |
| 9676 | 4799      | 2019 | Adaptively Aligned Image Captioning via Adapti | Recent neural models for image captioning usua        | Adaptively Aligned Image Captioning via\n\nAda     |
| 9677 | 1827      | 2019 | Fully Dynamic Consistent Facility Location     | We consider classic clustering problems in ful        | Fully Dynamic Consistent Facility Location\n\n     |
| 9678 | 8693      | 2019 | Efficient Rematerialization for Deep Networks  | When training complex neural networks, memory $\dots$ | Efficient Rematerialization for Deep Networks\n    |
| 9679 | 2302      | 2019 | Flow-based Image-to-Image Translation with Fea | Learning non-deterministic dynamics and intrin        | Flow-based Image-to-Image Translation\n\nwith      |

1428 rows x 5 columns

```
# Q2 \ find the most famous authors

n = 1
most_famous_authors= authors_data['first_name'].value_counts()[:n].index.tolist()
print('The most famous author Write about NIPS is :',most_famous_authors)
```

The most famous author Write about NIPS is : ['David']

```
#Generating WordClouds in Python
n = 8
most_famous_authors= authors_data['first_name'].value_counts()[:n].index.tolist()
str1 = ' '.join(str(e) for e in most_famous_authors)

# Start with one review:
text = str1

# Create and generate a word cloud image:
wordcloud = WordCloud().generate(text)

# Display the generated image:
wordcloud = WordCloud(max_font_size=50, max_words=100, background_color="white").generate(text)
plt.figure()
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis("off")
plt.show()
```

Daniel Andrew
Peter David
Richard
John Michael
Thomas

```
# Q3 \ find how many paper write in every year
num_paper_inyear= papers_data['year'].value_counts()
newdata= pd.DataFrame(num_paper_inyear)
newdata.columns.values[0] ='total'
newdata
```

|      | total |
|------|-------|
| 2019 | 1428  |
| 2018 | 1009  |
| 2017 | 679   |
| 2016 | 569   |
| 2014 | 411   |
| 2015 | 403   |
| 2012 | 370   |
|      |       |
| 2013 | 360   |
| 2011 | 306   |
| 2010 | 292   |
| 2009 | 262   |
| 2008 | 250   |
| 2007 | 217   |
| 2005 | 207   |
| 2004 | 207   |
| 2001 | 201   |
|      |       |
|      |       |

```
# Q3 \ find how many paper write in every year
num_paper_inyear= papers_data['year'].value_counts()
sns.barplot(x =num_paper_inyear,y=num_paper_inyear,data=num_paper_inyear);
```



```
#Q4/ filtering the rows where paper abstract is about computer vision
df = papers_data[papers_data['abstract'].str.contains('computer vision')]
print(df)
papers_data['abstract'].str.contains(" computer vision").sum()
```

```
source id year
                                                                    title
 3186
             874 2007
                        The discriminant center-surround hypothesis fo...
 3326
             102 2007
                                      Spatial Latent Dirichlet Allocation
                                    Grouping Contours Via a Related Image
 3345
             833
                  2008
 3351
              60 2008
                        Cascaded Classification Models: Combining Mode...
 3437
             431 2008
                        Offline Handwriting Recognition with Multidime...
 . . .
                   . . .
                  2019
                        Unsupervised Learning of Object Keypoints for ...
 9474
            5717
            4676 2019
                              Graph Structured Prediction Energy Networks
 9562
 9605
            8988 2019 Neural Taskonomy: Inferring the Similarity of ...
 9622
                        Certifying Geometric Robustness of Neural Netw...
            8790 2019
 9651
            7255 2019
                        Online Convex Matrix Factorization with Repres...
                                                abstract \
       The classical hypothesis, that bottom-up salie...
 3186
 3326
      In recent years, the language model Latent Dir...
      Contours have been established in the biologic...
       One of the original goals of computer vision w...
      Offline handwriting recognition---the transcri...
 3437
 9474 The study of object representations in compute...
 9562
       For joint inference over multiple variables, a...
       Convolutional neural networks (CNNs) trained f...
 9605
      The use of neural networks in safety-critical ...
9622 The use of neural networks in safety-critical ...
9651 Matrix factorization (MF) is a versatile learn...
                                              full text
     The discriminant center-surround hypothesis fo...
3326
     Spatial Latent Dirichlet Allocation\n\nXiaogan...
3345 Grouping Contours Via a Related Image\n\nPrave...
3351 Cascaded Classification Models:\n\nCombining Mo...
3437 Offline Handwriting Recognition with\n\nMultidi...
9474 Unsupervised Learning of Object Keypoints\n\nf...
9562 Graph Structured Prediction Energy Networks\n\...
9605 Neural Taskonomy: Inferring the Similarity of \...
9622 Certifying Geometric Robustness of Neural Netw...
9651 Online Convex Matrix Factorization with\n\nRep...
[136 rows x 5 columns]
```

```
df = papers_data[papers_data['abstract'].str.contains('computer vision')]
#print(df.title)
tolist=df.title.tolist()
#type(df)
str1 = ' '.join(str(e) for e in tolist)

# Start with one review:
text = str1

# Create and generate a word cloud image:
wordcloud = WordCloud().generate(text)

# Display the generated image:
wordcloud = WordCloud(max_font_size=1000, max_words=600, background_color="white").generate(text)
plt.figure()
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis("off")
plt.show()
```



By: Arwa Alolyani