| Assignment A1 |                                                                                                                             |  |  |  |  |
|---------------|-----------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|               | Title - Analysis on Itis flower Dataset.                                                                                    |  |  |  |  |
|               | Problem Statement:                                                                                                          |  |  |  |  |
|               | Download the iris flower dataset or any other dataset into                                                                  |  |  |  |  |
|               | 1. How many features are there and what are their types?                                                                    |  |  |  |  |
| 18.           | Compare I display summary statistics for each features                                                                      |  |  |  |  |
|               | Ovailable in dataset (e.g. min, max, mean, std_dev, variance, percentile)                                                   |  |  |  |  |
|               | 3 · Data visualization - create a histogram for each feature in the                                                         |  |  |  |  |
|               | dataset to illustrate feature distribution.                                                                                 |  |  |  |  |
|               | 4. Create a box plot for each feature in the dataset. All of<br>the box plots should be combined into a single plot compare |  |  |  |  |
|               | distributions and find outliers.                                                                                            |  |  |  |  |
|               | Objectives -                                                                                                                |  |  |  |  |
| C             | - To learn the concept of terminologies in data analytics.                                                                  |  |  |  |  |
|               | - to learn how to display summary set statistics of charts<br>for each feature.                                             |  |  |  |  |
|               | Tor each Heature.                                                                                                           |  |  |  |  |
|               | outcomes - We will be able to -                                                                                             |  |  |  |  |
|               | - learn the concepts in data analytics.                                                                                     |  |  |  |  |
|               | - learn how to summarize 4 plot charts.                                                                                     |  |  |  |  |
| , li          | Theory -                                                                                                                    |  |  |  |  |
| A)            |                                                                                                                             |  |  |  |  |
| -7)           | This flower dataset-                                                                                                        |  |  |  |  |
|               | - The dataset is a multivariate dataset introduced by the British statician & bis chemist Ronald-fisher in 1936             |  |  |  |  |
|               | The Chertal Tonaca Tister I'l Dise                                                                                          |  |  |  |  |

|                                                                                                                                                             | - Dataset Consist of 50 samples from each of 3 species Of Iris, which are Sentosa, virginica of versicolor four features measured from each sample are length and width of sepals of petals in mm.     |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| B                                                                                                                                                           | 7 Summary statistice:                                                                                                                                                                                  |  |  |  |  |  |
|                                                                                                                                                             | I mean 8- It identifies the average value of set of values $R = E \times Ri$ where $Ri = Value \times Ri$ of items $R = E \times Ri$ where $Ri = Value \times Ri$ of items                             |  |  |  |  |  |
| 2. Range - It shows the mothematical model between the lowest & highest values in the dataset, it measures  the raniability of dataset.  Range = Max - Min. |                                                                                                                                                                                                        |  |  |  |  |  |
|                                                                                                                                                             | B. Standard deviation 6- It measures the variability of datase like range. The smaller standard deviation indicates less variability.  6- \( \tilde{\infty} \) (\tilde{\infty} \) \( \tilde{\infty} \) |  |  |  |  |  |
|                                                                                                                                                             | 4. Varniance - It measures the how far the data is spread ou $6^2 = \frac{9}{5} (nli - \pi)^2$                                                                                                         |  |  |  |  |  |
| c)                                                                                                                                                          | Applications -                                                                                                                                                                                         |  |  |  |  |  |
|                                                                                                                                                             | 1. Histogram.  - It is suitable. For visualizing distribution of numeric data over a continuous interval or a certain time pent                                                                        |  |  |  |  |  |
|                                                                                                                                                             |                                                                                                                                                                                                        |  |  |  |  |  |

|           | - The histogram organises large amount of data of provides                                                  |  |  |  |  |
|-----------|-------------------------------------------------------------------------------------------------------------|--|--|--|--|
|           | a Visualization quickly, using a single dimension                                                           |  |  |  |  |
|           |                                                                                                             |  |  |  |  |
|           | P. Box plot -                                                                                               |  |  |  |  |
|           | - It allows quick graphical examination of one or more                                                      |  |  |  |  |
|           | dataset. It may seem primitive than a histogram but they                                                    |  |  |  |  |
|           | do have some advantages.                                                                                    |  |  |  |  |
|           | They take up space of are particularly useful for companing distributions between several groups of data.   |  |  |  |  |
|           | Brown several groups of data.                                                                               |  |  |  |  |
|           | 3. Data visualization                                                                                       |  |  |  |  |
|           |                                                                                                             |  |  |  |  |
|           | - It quicky creates insightful data visuals.  - They allow anyone to organise of precent information quicky |  |  |  |  |
|           | Grant to organise a present información query                                                               |  |  |  |  |
|           | Conclysion -                                                                                                |  |  |  |  |
|           | Thur, we studied about concepts in data analytics of the                                                    |  |  |  |  |
|           | dataset, we also presented the data in charts of box plat                                                   |  |  |  |  |
|           | Chargest, the office business of pox block                                                                  |  |  |  |  |
| W.        | Text case -                                                                                                 |  |  |  |  |
| 111       |                                                                                                             |  |  |  |  |
|           |                                                                                                             |  |  |  |  |
|           | Column of Sepal length Mean = 5.843 mm.                                                                     |  |  |  |  |
|           | Luii n                                                                                                      |  |  |  |  |
|           | Histogram of sepal length.                                                                                  |  |  |  |  |
|           |                                                                                                             |  |  |  |  |
|           |                                                                                                             |  |  |  |  |
|           | 30                                                                                                          |  |  |  |  |
| -         | 15                                                                                                          |  |  |  |  |
| 21        |                                                                                                             |  |  |  |  |
| ap ap     | 20-                                                                                                         |  |  |  |  |
| reguence. | 20-                                                                                                         |  |  |  |  |
| frequency |                                                                                                             |  |  |  |  |
| frequence |                                                                                                             |  |  |  |  |
| frequence |                                                                                                             |  |  |  |  |
| frequence |                                                                                                             |  |  |  |  |

```
import numpy as np
In [3]:
          import pandas as pd
          import matplotlib.pyplot as plt
          df=pd.read_csv(r"C:\Users\Viraj Shinde\Desktop\LP1\iris.data")
In [4]:
          df.head()
In [5]:
Out[5]:
              Sepal length Sepal width Petal length Petal width
                                                                 Species
           0
                      5.1
                                  3.5
                                               1.4
                                                               Iris-setosa
                                                          0.2
           1
                      4.9
                                  3.0
                                               1.4
                                                          0.2
                                                               Iris-setosa
                      4.7
                                  3.2
                                               1.3
                                                          0.2
                                                               Iris-setosa
           3
                      4.6
                                  3.1
                                               1.5
                                                          0.2
                                                              Iris-setosa
                                                          0.2 Iris-setosa
                      5.0
                                  3.6
                                               1.4
In [6]:
          df.tail()
Out[6]:
                Sepal length Sepal width
                                         Petal length Petal width
                                                                    Species
           145
                        6.7
                                    3.0
                                                 5.2
                                                             2.3
                                                                 Iris-virginica
           146
                        6.3
                                    2.5
                                                 5.0
                                                                 Iris-virginica
                                                             1.9
           147
                        6.5
                                    3.0
                                                 5.2
                                                             2.0
                                                                 Iris-virginica
                                                                 Iris-virginica
           148
                        6.2
                                    3.4
                                                 5.4
           149
                        5.9
                                    3.0
                                                                 Iris-virginica
                                                 5.1
In [7]:
          X= df.drop('Species', axis = 1)
In [8]:
          df.shape
          list(df.columns)
Out[8]: ['Sepal length', 'Sepal width', 'Petal length', 'Petal width', 'Species']
In [9]:
         df.dtypes
Out[9]: Sepal length
                             float64
          Sepal width
                             float64
                            float64
          Petal length
          Petal width
                             float64
          Species
                              object
          dtype: object
```

```
In [10]: | df['Sepal length'].describe()
Out[10]: count
                   150.000000
         mean
                     5.843333
          std
                     0.828066
         min
                     4.300000
          25%
                     5.100000
          50%
                     5.800000
          75%
                     6.400000
                     7.900000
         max
         Name: Sepal length, dtype: float64
         df['Sepal width'].describe()
In [11]:
Out[11]: count
                   150.000000
          mean
                     3.054000
          std
                     0.433594
         min
                     2.000000
          25%
                     2.800000
          50%
                     3.000000
          75%
                     3.300000
                     4.400000
         max
         Name: Sepal width, dtype: float64
In [12]: | df['Petal length'].describe()
Out[12]: count
                   150.000000
         mean
                     3.758667
          std
                     1.764420
          min
                     1.000000
          25%
                     1.600000
          50%
                     4.350000
          75%
                     5.100000
                     6.900000
         max
         Name: Petal length, dtype: float64
In [13]: | df['Petal width'].describe()
Out[13]: count
                   150.000000
         mean
                     1.198667
          std
                     0.763161
         min
                     0.100000
          25%
                     0.300000
          50%
                     1.300000
          75%
                     1.800000
                     2.500000
         max
         Name: Petal width, dtype: float64
In [14]: | df['Species'].describe()
Out[14]: count
                                 150
         unique
                                   3
          top
                    Iris-versicolor
          freq
         Name: Species, dtype: object
```

```
In [15]: x = df["Sepal length"]
    plt.hist(x, bins = 20)
    plt.title("Sepal Length in cm")
    plt.xlabel("Sepal_Length_cm")
    plt.ylabel("Count")
```

Out[15]: Text(0, 0.5, 'Count')



```
In [16]: x = df["Sepal width"]
plt.hist(x, bins = 20)
plt.title("Sepal Width in cm")
plt.xlabel("Sepal_Width_cm")
plt.ylabel("Count")
```

## Out[16]: Text(0, 0.5, 'Count')



```
In [17]: x = df["Petal length"]
    plt.hist(x, bins = 20)
    plt.title("Petal Length in cm")
    plt.xlabel("Petal_Length_cm")
    plt.ylabel("Count")
```

Out[17]: Text(0, 0.5, 'Count')



```
In [18]: x = df["Petal width"]
    plt.hist(x, bins = 20)
    plt.title("Petal Width in cm")
    plt.xlabel("Petal_Width_cm")
    plt.ylabel("Count")
```

Out[18]: Text(0, 0.5, 'Count')



```
In [19]: X.boxplot()
```

## Out[19]: <AxesSubplot:>



## In [20]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
```

| #    | Column         | Non-Null Count | Dtype   |
|------|----------------|----------------|---------|
|      |                |                |         |
| 0    | Sepal length   | 150 non-null   | float64 |
| 1    | Sepal width    | 150 non-null   | float64 |
| 2    | Petal length   | 150 non-null   | float64 |
| 3    | Petal width    | 150 non-null   | float64 |
| 4    | Species        | 150 non-null   | object  |
| dtvn | os: float64(4) | object(1)      |         |

dtypes: float64(4), object(1)

memory usage: 6.0+ KB

```
In [ ]:
```