Alignement multiple heuristique par la méthode CLUSTAL

Karine DUONG - M2 BI

Trouver des régions conservées

Trouver des régions conservées

Relier la séquence à la structure et à la fonction

Relier la séquence à la structure et à la fonction

Construire un arbre phylogénétique

Relier la séquence à la structure et à la fonction

Construire un arbre phylogénétique

Etudier les variations génétiques

Implémentation de mon projet

	S ₁	S2	S_3	S_4
S ₁		4	9	4
S_2			4	7
S_3				4
S_4				

Matrice de similarité

	S_1	S_2	S_3	S_4
S_1		4	9	4
S_2			4	7
S_3				4
S_4				

Matrice de similarité

	S ₁	S_2	S_3	S_4
S_1		4	9	4
S_2			4	7
S_3				4
S_4				

Matrice de similarité

Alignement de:

- S4 et S3
- (S4, S3) et S2
- (S4, S3, S2) et S2

Résultats

Figure 2: **Comparaison des résultats** produits par notre programme sur le fichier *data/insuline_sequence.fasta.* (A) L'ordre des clusters produit par UPGMA, qui se lit de gauche à droite pour avoir les embranchements successifs c'est-à-dire ((QMS, XP),NP). (B) L'alignement de ses trois séquences selon l'ordre donné par les clusters.

Figure 3: **Comparaison des résultats** produits par CLUSTAL Omega sur le fichier *data/insuline_sequence.fasta.* (A) Le dendrogramme produit par l'étape de clustering. (B) L'alignement de ses trois séquences selon l'ordre donné par les clusters.

Résultats

Nombre de séquences	Temps d'exécution	
3	0.02 sec	
9	0.3 sec	
25	4min	

Tableau 1: **Récapitulatif du temps d'exécution** pour un nombre de séquences variables et pour des séquences d'environ 150-200 acides aminés.

Conclusion

Notre version simplifié de l'implémentation de Clustal fonctionne

Cependant, quelques points aurait pu être amélioré, tels que :

Conclusion

Notre version simplifié de l'implémentation de Clustal fonctionne

Cependant, quelques points aurait pu être amélioré, tels que :

- Paralléliser l'alignement par paire
- Utilisation d'un score de gap affine
- Améliorer l'affichage des résultats