



## Portovi

- Najveći broj nožica (pinova) na kućištu mikrokontrolera predstavlja ulazno-izlazne priključke namenjene povezivanju mikrokontrolera sa periferijskim uređajima.
- Svaki od ovih pinova može da služi kao digitalni ulaz/izlaz opšte namene (engl. GPIO = General Purpose Input/Output ). Pored toga, pinovima mogu biti dodeljene i alternativne funkcionalnosti kao što su linije za slanje/prijem serijskog porta, ulazi A/D konvertora, PWM izlazi i sl. Na slici su obeleženi raspored i alternativne funkcije pinova mikrokontrolera ATmega328p.
- Grupe ulazno-izlaznih pinova nazivaju se portovi. U okviru jednog porta obično se nalazi do 8 ulazno-izlaznih priključaka.





## Interna struktura GPIO pinova



Uobičajena struktura GPIO pina mikrokontrolera

- U primeru prikazanom na slici je prikazana interna struktura kontrolne logike pina P<sub>i,i</sub> (pin sa oznakom 'j' u okviru porta sa oznakom 'i')
- Flipflop koji pripada registru za kontrolu smera (*Port Direction* na slici) određuje da li će pin biti korišćen kao ulaz, ili kao izlaz.
- Ukoliko se pin koristi kao izlaz, njegovo stanje određeno je stanjem flipflopa koji pripada izlaznom registru (*Output* na slici)



# GPIO pinovi sa open-collector (open-drain) logikom



- Pinovi mikrokontrolera sa open-collector logikom odlikuju se "jakom" nulom i "slabom" jedinicom: ukoliko je u odgovarajući bit izlaznog registra upisana nula, uključuje se izlazni tranzistor. U suprotnom, izlazni tranzistor je isključen, pa je izlazno stanje određeno pull-up otpornikom.
- Ukoliko se pin koristi kao ulaz, u izlazni flip flop je neophodno upisati logičku jedenicu, da bi izlazni tranzistor bio isključen. Na ovaj način, eksterna logika upravlja stanjem pina i može ga po potrebi oboriti na 0.



## Ulazne karakteristike GPIO pinova



Simbol i prenosna karakteristika konvencionalnog bafera



Simbol i prenosna karakteristika bafera sa histerezisom (Šmit-triger)



# Vremenski odziv običnog i Šmit-triger bafera



- a) Odziv običnog i Šmit-triger bafera na sporo promenljiv ulazni signal
- b) Odziv običnog i Šmit-triger bafera na ulazni signal sa smetnjama



# Portovi AVR mikrokontrolera - električne karakteristike

- Svi pinovi AVR mikrokontrolera imaju identične strujne karakteristike. Kada se pin koristi kao izlaz, struja teče od kontrolera ka periferijskom uređaju, kada je pin u stanju logičke jedinice, odnosno od periferijskog uređaja ka kontroleru, kada je pin u stanju logičke nule.
- Pin može da podnese struju jačine do 40mA, bez obzira na njen smer. To znači da su strujne mogućnosti pinova dovoljne za direktno upravljanje LED diodama.
- Diode koje su postavljene između pina i napona napajanja (V<sub>cc</sub>), odnosno između pina i mase predstavljaju zaštitu od napona koji izlazi iz opsega (0-V<sub>d</sub>,V<sub>cc</sub>+V<sub>d</sub>) i koji bi mogao da izazove oštećenje pina.
- $\bullet$  Svaki pin ima interni pull-up otpornik  $R_{pu}$ , koji je moguće uključiti ili isključiti pomoću kontrolne logike kontrolisane od strane konfiguracionih registara.





## Konfigurisanje pinova AVR mikrokontrolera (1)

- Kod AVR mikrokontrolera, svakom portu\* su pridružena po 3 kontrolna registra:
  - DDRx Određuje smerove pinova porta x
  - o PORTx Određuje stanja onih pinova porta x koji se koriste kao digitalni izlazi
  - o PINx Služi za očitavanje stanja onih pinova potra x koji se koriste kao digitalni ulazi
- \* U nastavku, sve oznake registara i njihovih bita će biti navedene u generalnoj formi, gde "x" označava slovnu oznaku porta (koja može biti B, C, ili D), a "n" označava poziciju bita (od 7 do 0). Npr, PB3 označava pin na poziciji 3 u okviru porta B.
- DDR<sub>xn</sub> bit u okviru DDRx registra vrši selekciju smera pina Pxn, na sledeći način:

$$DDR_{xn} = \begin{cases} 1, pin P_{xn} je konfigurisan kao izlaz \\ 0, pinP_{xn} je konfigurisan kao ulaz \end{cases}$$

Kada je DDR<sub>xn</sub> = 0, tj. pin je konfigurisan kao ulaz, bit PORT<sub>xn</sub> upravlja pull-up otpornikom na sledeći način:

$$DDR_{xn} = 0$$
,  $PORT_{xn} = \begin{cases} 1, pull - up \text{ otpornik je aktiviran} \\ 0, pull - up \text{ otpornik je isključen} \end{cases}$ 

- Kada je  $DDR_{xn} = 1$ , tj. pin je konfigurisan kao izlaz, bit  $PORT_{xn}$  određuje stanje pina  $P_{xn}$ .
- Upisom logičke jedinice u  $PIN_{xn}$ , vrednost bita  $PORT_{xn}$  se invertuje, bez obzira na to da li je pin konfigurisan kao ulaz, ili kao izlaz (tj. bez obzira na stanje  $DDR_{xn}$  bita).



# Konfigurisanje pinova AVR mikrokontrolera (2)

| DDRxn | PORTxn | PUD* | Ulaz/Izlaz | Pull-up   | Komentar                                                                     |
|-------|--------|------|------------|-----------|------------------------------------------------------------------------------|
| 0     | 0      | X    | Ulaz       | Isključen | Visoka impedansa (HiZ)                                                       |
| 0     | 1      | 0    | Ulaz       | Uključen  | Struja teče kroz pull-up otpornik, ako<br>se stanje pina eksterno obori na 0 |
| 0     | 1      | 1    | Ulaz       | Isključen | Visoka impedansa (HiZ)                                                       |
| 1     | 0      | X    | Izlaz      | Isključen | Izlaz je na logičkoj 0<br>("guta" struju)                                    |
| 1     | 1      | X    | Izlaz      | Isključen | Izlaz je na logičkoj 1<br>("daje" struju)                                    |

<sup>\*</sup> PUD (Pull-Up Disable) je bit 4 registra MCUCR, čijim postavljanjem na logičku jedinicu se istovremeno isključuju pull-up otpornici na svim pinovima.

#### MCUCR – MCU Control Register

| Bit           | 7 | 6    | 5     | 4   | 3 | 2 | 1     | 0    | _     |
|---------------|---|------|-------|-----|---|---|-------|------|-------|
| 0x35 (0x55)   | - | BODS | BODSE | PUD | - | _ | IVSEL | IVCE | MCUCR |
| Read/Write    | R | R/W  | R/W   | R/W | R | R | R/W   | R/W  | •     |
| Initial Value | 0 | 0    | 0     | 0   | 0 | 0 | 0     | 0    |       |



## Kontrolna logika pinova AVR mikrokontrolera

Na slici je prikazana uprošćena šema kontrolne logike pina P<sub>xn</sub>:





## Kontrolni registri porta B

#### PORTB - The Port B Data Register

| Bit           | 7      | 6      | 5      | 4      | 3      | 2      | 1      | 0      | _     |
|---------------|--------|--------|--------|--------|--------|--------|--------|--------|-------|
| 0x05 (0x25)   | PORTB7 | PORTB6 | PORTB5 | PORTB4 | PORTB3 | PORTB2 | PORTB1 | PORTB0 | PORTB |
| Read/Write    | R/W    | •     |
| Initial Value | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |       |

#### DDRB - The Port B Data Direction Register

| Bit           | 7    | 6    | 5    | 4    | 3    | 2    | 1    | 0    | _    |
|---------------|------|------|------|------|------|------|------|------|------|
| 0x04 (0x24)   | DDB7 | DDB6 | DDB5 | DDB4 | DDB3 | DDB2 | DDB1 | DDB0 | DDRB |
| Read/Write    | R/W  |      |
| Initial Value | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |      |

## PINB – The Port B Input Pins Address<sup>(1)</sup>

| Bit           | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     | _    |
|---------------|-------|-------|-------|-------|-------|-------|-------|-------|------|
| 0x03 (0x23)   | PINB7 | PINB6 | PINB5 | PINB4 | PINB3 | PINB2 | PINB1 | PINB0 | PINB |
| Read/Write    | R/W   | •    |
| Initial Value | N/A   |      |

Note: 1. Writing to the pin register provides toggle functionality for IO



# Kontrolni registri porta C

#### PORTC - The Port C Data Register

| Bit           | 7 | 6      | 5      | 4      | 3      | 2      | 1      | 0      | _     |
|---------------|---|--------|--------|--------|--------|--------|--------|--------|-------|
| 0x08 (0x28)   | - | PORTC6 | PORTC5 | PORTC4 | PORTC3 | PORTC2 | PORTC1 | PORTC0 | PORTC |
| Read/Write    | R | R/W    |       |
| Initial Value | 0 | 0      | 0      | 0      | 0      | 0      | 0      | 0      |       |

#### DDRC - The Port C Data Direction Register

| Bit           | 7 | 6    | 5    | 4    | 3    | 2    | 1    | 0    | _    |
|---------------|---|------|------|------|------|------|------|------|------|
| 0x07 (0x27)   | - | DDC6 | DDC5 | DDC4 | DDC3 | DDC2 | DDC1 | DDC0 | DDRC |
| Read/Write    | R | R/W  |      |
| Initial Value | 0 | 0    | 0    | 0    | 0    | 0    | 0    | 0    |      |

### PINC – The Port C Input Pins Address<sup>(1)</sup>

| Bit           | 7   | 6     | 5     | 4     | 3     | 2     | 1     | 0     | _    |
|---------------|-----|-------|-------|-------|-------|-------|-------|-------|------|
| 0x06 (0x26)   | -   | PINC6 | PINC5 | PINC4 | PINC3 | PINC2 | PINC1 | PINC0 | PINC |
| Read/Write    | R   | R/W   |      |
| Initial Value | N%A | N/A   |      |

Note: 1. Writing to the pin register provides toggle functionality for IO



## Kontrolni registri porta D

#### PORTD - The Port D Data Register

| Bit           | 7      | 6      | 5      | 4      | 3      | 2      | 1      | 0      | _     |
|---------------|--------|--------|--------|--------|--------|--------|--------|--------|-------|
| 0x0B (0x2B)   | PORTD7 | PORTD6 | PORTD5 | PORTD4 | PORTD3 | PORTD2 | PORTD1 | PORTD0 | PORTD |
| Read/Write    | R/W    | •     |
| Initial Value | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |       |

#### DDRD - The Port D Data Direction Register

| Bit           | 7    | 6    | 5    | 4    | 3    | 2    | 1    | 0    | _    |
|---------------|------|------|------|------|------|------|------|------|------|
| 0x0A (0x2A)   | DDD7 | DDD6 | DDD5 | DDD4 | DDD3 | DDD2 | DDD1 | DDD0 | DDRD |
| Read/Write    | R/W  | •    |
| Initial Value | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |      |

### PIND – The Port D Input Pins Address<sup>(1)</sup>

| Bit           | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     | _    |
|---------------|-------|-------|-------|-------|-------|-------|-------|-------|------|
| 0x09 (0x29)   | PIND7 | PIND6 | PIND5 | PIND4 | PIND3 | PIND2 | PIND1 | PIND0 | PIND |
| Read/Write    | R/W   | •    |
| Initial Value | N/A   |      |

Note: 1. Writing to the pin register provides toggle functionality for IO