Nota: Recomendamos, antes de comenzar a resolver los ejercicios, repasar la teoría: evaluación de expresiones.

Recordar:

- -Orden Aplicativo: se reduce siempre la expresión más adentro y más a la izquierda
- -Orden Normal: se reduce siempre la expresión más afuera y más a la izquierda.

Ejercicio 1

Muestra los pasos de reducción hasta llegar a la forma normal de la expresión:

```
2 * cuadrado (hd [2,4,5,6,7,8])
```

Considerando las siguientes definiciones para cuadrado y head:

```
cuadrado :: Int -> Int
cuadrado x = x * x
hd :: [a] -> a
hd (x:xs) = x
```

Respuesta Name 1

```
Orden Aplicativo

2 * cuadrado (hd [2,4,5,6,7,8])
{definicion hd}

2 * cuadrado 2
{definicion cuadrado}

2 * 2 * 2
{aritmetica}

2 * 4
{aritmetica}

8

Orden Normal

2 * cuadrado (hd [2,4,5,6,7,8])
{definicion cuadrado}

2 * (hd [2,4,5,6,7,8] * hd [2,4,5,6,7,8])
{definicion hd}
```

```
2 * (2 * hd [2,4,5,6,7,8])
{definicion hd}
2 * 2 * 2
{aritmetica}
4 * 2
{aritmetica}
8
```

Ejercicio 2

Dada la definición: linf = 1 : linf . Resuelve los siguientes pasos para la expresión hd linf

Respuesta

```
Orden Aplicativo

hd linf
{definicion linf}
hd (1 : linf)
{definicion linf}
hd (1 : (1 : linf))
{definicion linf}
hd (1 : (1 : (1 : linf)))
...

Orden Normal

hd linf
{definicion linf}
hd (1 : linf)
{definicion hd}
1
```

Ejercicio 3

Dada la siguiente definición:

```
f:: Int -> Int
f x 0 = x
f x (n+1) = cuadrado (f x n)
```

Resuelve los siguientes pasos para la expresión f 2 3:

Respuesta

```
Orden Aplicativo f 2 3
```

```
{definicion f}
cuadrado (f 2 2)
{definicion f}
cuadrado (cuadrado (f 2 1))
{definicion f}
cuadrado (cuadrado (cuadrado (f 2 0)))
{definicion f}
cuadrado (cuadrado (2)))
{definicion cuadrado}
cuadrado (cuadrado (2 * 2))
{aritmetica}
cuadrado (cuadrado (4))
{definicion cuadrado}
cuadrado (4 * 4)
{aritmetica}
cuadrado (16)
{definicion cuadrado}
16 * 16
{aritmetica}
256
Orden Normal
f 2 3
{definicion f}
cuadrado (f 2 2)
{definicion cuadrado}
(f 2 2) * (f 2 2)
{definicion f}
cuadrado (f 2 1) * (f 2 2)
{definicion cuadrado}
((f 2 1) * (f 2 1)) * (f 2 2)
{definicion f}
(cuadrado (f 2 0) * (f 2 1)) * (f 2 2)
{definicion cuadrado}
(((f 2 0) * (f 2 0)) * (f 2 1)) * (f 2 2)
{definicion f}
((2 * (f 2 0)) * (f 2 1)) * (f 2 2)
{definicion f}
((2 * 2) * (f 2 1)) * (f 2 2)
{aritmetica}
(4 * (f 2 1)) * (f 2 2)
{definicion f}
(4 * (cuadrado (f 2 0))) * (f 2 2)
{definicion cuadrado}
(4 * ((f 2 0) * (f 2 0))) * (f 2 2)
{definicion f}
(4 * (2 * (f 2 0))) * (f 2 2)
{aritmetica}
(8 * (f 2 0)) * (f 2 2)
{definicion f}
8 * 2 * (f 2 2)
```

```
{aritmetica}
16 * (f 2 2)
{definicion f}
16 * cuadrado (f 2 1)
{definicion cuadrado}
16 * ((f 2 1) * (f 2 1))
{definicion f}
16 * (cuadrado (f 2 0) * (f 2 1))
{definicion cuadrado}
16 * (((f 2 0) * (f 2 0)) * (f 2 1))
{definicion f}
16 * ((2 * (f 2 0)) * (f 2 1))
{aritmetica}
32 * (f 2 0) * (f 2 1)
{definicion f}
32 * 2 * (f 2 1)
{aritmetica}
64 * (f 2 1)
{definicion f}
64 * cuadrado (f 2 0)
{defincion cuadrado}
64 * (f 2 0) * (f 2 0)
{definicion f}
64 * 2 * (f 2 0)
{aritmetica}
128 * (f 2 0)
{definicion f}
128 * 2
{aritmetica}
256
```

Ejercicio 4

Utilizando orden aplicativo y normal, evalúa la siguiente expresión square inf. Considerando las siguientes definición

Respuesta

Orden Aplicativo

```
square inf
{definicion inf}
square (inf + 1)
{definicion inf}
square ((inf + 1) + 1)
{definicion inf}
square (((inf + 1) + 1) + 1)
```

. . .

Orden Normal

```
square inf
{definicion square}
inf * inf
{definicion inf}
(inf + 1) * inf
{definicion inf}
((inf + 1) + 1) * inf
{definicion inf}
(((inf + 1) + 1) + 1) * inf
...
```

Ejercicio 5

Resuelve el ejercicio 3 utilizando orden de reducción lazy

Respuesta

```
f 23
1) {def f}
cuadrado (f 2 2)
2) {def cuadrado}
  x * x
[x = f 2 2]
3) {def f}
  x * x
[x = cuadrado (f 2 1)]
4) {def cuadrado}
  x * x
[x = y * y]
[y = (f 2 1)]
5) {definicion f}
  x * x
[x = y * y]
[y = cuadrado (f 2 0)]
6) {definicion cuadrado}
  x * x
[x = y * y]
[y = z * z]
[z = (f 2 0)]
7) {definicion f}
   x * x
```

```
[x = y * y]
= {REEMPLAZO}
  x * x
[x = y * y]
[y = 2 * 2]
8) {aritmetica}
  x * x
[x = y * y]
[y=4]
= {REEMPLAZO}
  x * x
[x = 4 * 4]
9) {aritmetica}
  X * X
[x = 16]
= {REEMPLAZO}
  16 * 16
10) {aritmetica}
256
```

Ejercicio 6

Se puede cambiar el orden de evaluación en Haskell? Para que puede servir hacerlo?

Dé un ejemplo en el cuál sea útil hacerlo

Respuesta

Se puede cambiar el orden de evaluación pero de manera forzada utilizando 'seq' o !x

Acá se evalúa de manera forzada lo que sigue de seg

El ! Significa que se centra hasta que termine de evaluar x luego sigue el resto