GRAFICKÉ ROZHRANÍ POČÍTAČŮ

Břetislav Bakala 2017

Funkce grafického výstupu

- zajišťuje tvorbu obrazu z určité aplikace, který vidíme na zobrazovací jednotce
- Spolu se zobrazovací jednotkou tvoří zobrazovací soustavu počítače

Režimy grafického výstupu

Pracuje ve dvou základních režimech:

- textový režim: zobrazuje pouze předem definované znaky znakové sady (např. ASCI kód) uložené v paměti grafiky.
- grafický režim: informace zobrazovány po jednotlivých obrazových bodech tzv. pixelech (Picture Element). Z jednotlivých pixelů vykresluje libovolný obraz v daném rozlišení a hloubce barev.

Pixel

- Nejmenší jednotka digitální bitmapové grafiky
- Představuje jeden svítící bod na monitoru charakterizovaný jasem a barvou
- Subpixel část pixelu pro jednu základní barvu.
 Splynutím tří subpixelů základních barev RGB do jedné barvy vznikne pixel
- Texel je základní jednotkou textury (tapety) používané v počítačové grafice
- Voxel částice objemu představující hodnotu v pravidelné mřížce třídimenzionálního prostoru (3D), analogie pixelu – reprezentuje hodnotu v 2D mřížce

Základní parametry I. – rozlišení

- Rozlišení je dáno počtem pixelů v jedné řádce a počtem řádek.
- Udává se jako dvojce čísel, např. 1920x1080
- Grafický ovladač může nastavit rozlišení po určitých krocích do své maximální velikosti
- Při vyšším rozlišením jsou jednotlivé pixely menší a obrazovka vykreslí větší plochu

Rozlišení

Rozlišení monitoru je závislé na poměru stran monitoru –
 4:3, 5:4 (DVD PAL 720x576), 16:9, 16:10

Základní parametry II. – barevná hloubka

- Počet bitů pro vyjádření barvy pixelu
- 1bitová barva (2¹ = 2 barvy) také označováno jako Mono
 Color (nejpoužívanější je, že bit 0 = černá a bit 1 = bílá)
- 4bitová barva (2⁴ = 16 barev)
- 24bitová barva (3x8bit RGB) True Color
- 32bitová barva (3x8bit RGB, 8bit alfa kanál průhlednost)
- s větším počtem barev vzrůstají také nároky na výpočetní výkon grafické karty

Základní parametry III. – velikost videopaměti

- primárně je v ní uložen vytvořený obraz, velikost je dána počtem bodů (rozlišením obrazu) a barevnou hloubkou
- pro výpočty v grafickém akcelerátoru uchovává mezivýsledky, doplňující informace a textury
- Záleží na složitosti objektů způsobu vykreslování, stínování a dalších parametrech použité v 2D, 3D akcelerátoru

Základní parametry IV. – obnovovací frekvence

- určuje, kolikrát za vteřinu je grafická karta (spolu s monitorem) schopna aktualizovat obraz
- Obrazová frekvence se udává jednak pro zobrazení úplných snímků (progresive – značeno "p") nebo pro zobrazení lichých a sudých půlsnímků (interlace – značeno "i") z důvodu kompatibility se zobrazovací jednotkou (např. CRT monitor 50i Hz)
- Při vyšším rozlišení je vyšší počet vykreslovaných bodů a tím je vyšší i datový tok. Levnější karty při vyšším rozlišení nepodporují vyšší obnovovací frekvence

Propojení GPU s výstupním rozhraním I.

Propojení GPU s výstupním rozhraním III.

Výstupy grafického rozhraní

- Výstup grafického rozhraní na zobrazovací jednotku:
 - Analogový (např. CRT monitor, LCD s analogovým vstupem)
 - Digitální (např. LCD s digitálním vstupem, plazmový monitor)

Grafické výstupní rozhraní VGA

- Video Graphics Array (VGA)
- Standard pro analogové grafické zobrazování určený především pro CRT monitory
- Využívá analogový signál 3 základních barev RGB
- horizontální (řádkovou) a vertikální (snímkovou) synchronizaci
- Vykreslování obrazu je bod po bodu pomocí půlsnímku v lichých a sudých řádcích
- konektor: 3 řady po 5 pinech (15 PIN HIGHDENSITY D-SUB)

Zapojení signálů na konektoru VGA

- Každá barva má svůj vlastní zemnící spoj
- Monitor se identifikuje pomocí signálů ID0-3

Pin	Name	Směr	Popis
1	RED	→	Red video (75 ohm, 0.7V)
2	GREEN	→	Green video (75 ohm, 0.7)
3	BLUE	→	Blue video (75 ohm, 0.7V
4	ID2	←	Monitor ID Bit 2
5	GND		Groun
6	RGND		Red Ground
7	GGND		Green Ground
8	BGND		Blue Ground
9	KEY		Key (No pin)
10	SGND		Sync Ground
11	ID0	←	Monitor ID Bit 0
12	ID1 or SDA	←	Monitor ID Bit 1
13	HSYNC or CSYNC	→	Horizontal Sync (or Comp
14	VSYNC	→	Vertical Sync
15	ID3 or SCL	←	Monitor ID Bit 3

Grafické výstupní rozhraní DVI

- Digital Visual Interface (DVI) přenos digitálním signálem
- single DVI link se skládá ze čtyř párů kroucené dvoulinky (červený, zelený, modrý a synchronizačních impulzů (Clock rate), přenos je 24 bitů na pixel bez komprese
- Při požadavku na vyšší rozlišení a tím na vyšší přenosové rychlosti se využívá navíc druhá trojice párů RGB – dual DVI link

Grafické výstupní rozhraní DVI

- DVI-D (digital only) pouze digitální signál
- DVI-A (analog only) pro kompatibilitu s analogovými monitory
- DVI-I (digital & analog) digitální i analogový signál

Zapojení signálů na konektoru DVI

Pin	Signal	Pin	Signal
1	T.M.D.S DATA 2-	16	HOT PLUG DETECT
2	T.M.D.S DATA 2+	17	T.M.D.S DATA 0-
3	T.M.D.S DATA 2/4 SHIELD	18	T.M.D.S DATA 0+
4	T.M.D.S DATA 4-	19	T.M.D.S DATA 0/5 SHIELD
5	T.M.D.S DATA 4+	20	T.M.D.S DATA 5-
6	DDC CLOCK	21	T.M.D.S DATA 5+
7	DDC DATA	22	T.M.D.S CLOCK SHIELD
8	ANALOG VERT.SYNC	23	T.M.D.S CLOCK+
9	T.M.D.S DATA 1-	24	T.M.D.S CLOCK-
10	T.M.D.S DATA 1+		
11	T.M.D.S DATA 1/3 SHIELD	C1	ANALOG RED
12	T.M.D.S DATA 3-	C2	ANALOG GREEN
13	T.M.D.S DATA 3+	C3	ANALOG BLUE
14	+5V POWER	C4	ANALOG HORZ SYNC
15	GND	C5	ANALOG GROUND

HDMI

High-Definition Multimedia Interface

- Nekomprimovaný obrazový digitální signál ve standardní rozšířené nebo highdefinition kvalitě
- 8-kanálů digitálního zvuku

Transition Minimized Different Signaling – TMDS Consumer Electronics Control Display Data Channel - DDC

HDMI typ A, B, C, D

- Typ A 19 pin, HDTV režim, kompatibilní s rozhraním Single – link DVI
- Typ B 29 pinů dvojnásobná šířka pásma – nepoužívá se
- Typ C mini,19 pinů
- Typ D micro, 19 pinů

Micro, mini, typ A HDMI HDMI 2.0a – full 4K UHD

Display port

- DisplayPort digitální rozhraní navržené VESA (Video Electronics Standards Association)
- primárně přenos obrazu pro displeje
- může být použito i pro přenos zvuku, USB a jiných forem dat, používá paketový přenos dat
- Kompatibilní s HDMI (obraz, zvuk), DVI (obraz)
 směrem k zobrazovači (PC-DisplayPort Diplay-HDMI, DVI), opačně s pasivním adaptérem nefunguje!

Display port - parametry

Verze 1.4, rok 2016:

- hloubka barev: 30bit
- rozlišení 8K
- barevné schéma 4:4:4
- rozměr obrazu 7680x4320
- snímková frekvence 60Hz
- Více monitorů Multi-Stream
- High-definition audio formát, 32 kanálů se vzorkovací frekvencí 1536kHz
- Display Stream Compression 1.2 DSC

Display port - rychlosti

					Pixel formats					
Image Format	Frame rate	Lane bit rate	Link data rate	Link Budget (Bits/pixel)	8 bpc 4:2:0	8 bpc 4:2:2	8 bpc 4:4:4	10 bpc 4:2:0	10 bpc 4:2:2	10 bpc 4:4:4
	Hz	Gbit/s	Gbit/s	bpp	12 bits	16 bits	24 bits	15 bits	20 bits	30 bits
UHD	60	5.4	17.3	32.0	✓	✓	✓	✓	✓	✓
UHD	120	8.1	25.9	24.0	✓	✓	✓	✓	✓	0
QUHD	60	8.1	25.9	12.0	✓	0	0	0	0	0

[√] no compression

- UHD = 3840 x 2160 pixels
- QUHD = 7680 x 4320 pixels
- Link Budget (bpp) = {Link data rate (bits/pixel)} / {video payload (pixels/sec)} which defines the compressed bit
 rate carried by DP to support a specific Image and Pixel Format
- Each DP1.4 Link uses all four lanes, therefore, Link data rate = Lane Bit rate x 4 x 8/10

DSC verze 1.2 - komprese video-streamu až 3:1

O compression at bpp link budget

DisplayPort - Multi-Stream

Display port – volitelná rozhraní

SuperSpeed USB Trident Logo + DisplayPort Logo

SuperSpeed USB Power Delivery Trident Logo + DisplayPort Logo

SuperSpeed USB 10 Gbps Power Delivery Trident Logo + DisplayPort Logo

USB-C použité jako DisplayPort

- DisplayPort Alt Mode for USB Type-C VESA Standard
- konektor a kabel USB typu C k podpoře rozhraní DisplayPort pro přenos audio / video (AV).

DisplayPort - DockPort Standard

Embedded DispalyPort - eDP

eDP v porovnání s LVDS

VESA Mobility DisplayPort - MyDP

MyDP bridge - USB funkce

MyDP bridge – MyDP funkce

Technologie Thunderbolt

- Velká propustnost, nízká spotřeba, přepínaná architektura.
 Paketový formát s nízkou režií
- Flexibilní podpora QoS multiplexování dávkované PCI Express transakce s isochronní DisplayPort komunikací na stejné lince
- Protokol synchronizace času – synchronizuje Thunderbolt zařízení připojené v doméně v rámci 8ns odděleně

Application-specific **Protocol Stacks** DisplayPort PCle Common Transport Layer Electrical/Optical Layer Connector and Cable Thunderbolt™ technology

Technologie Thunderbolt - propojení

Příklad řadiče Thunderbolt

- Výkonný protokol pro křížové přepínání
- Více Thunderbolt portů
- Jeden nebo více Display Port protokol portů
- Jeden nebo více Thunderbolt portů
- PCI Express přepínač s jedním nebo více PCI Express porty

Vývoj technologií VESA

