Tabla 2.1 Transformada z de funciones prácticas

Nº	f(t)	f(kT)	F(S)	F(z)
	F. Continua	F. Discreta	T. de Laplace	Transformada z
1	$\delta(t)$	$\delta(kT)$	1	1
2	u(t)	u(kT)	$\frac{1}{S}$	$\frac{z}{z-1}$
3	t	kT	$\frac{1}{S^2}$	$\frac{Tz}{(z-1)^2}$
4	t^2	$(kT)^2$	$\frac{2}{S^3}$	$\frac{T^2 z (z+1)}{(z-1)^3}$
5	t^3	$(kT)^3$	$\frac{6}{S^4}$	$\frac{T^3z(z^2+4z+1)}{(z-1)^4}$
6	e^{-at}	e ^{−akT}	$\frac{1}{S+a}$	$\frac{z}{z - e^{-aT}}$
7	te ^{-at}	kTe ^{−akT}	$\frac{1}{(S+a)^2}$	$\frac{Te^{-aT}z}{(z-e^{-aT})^2}$
8	t^2e^{-at}	$(kT)^2 e^{-akT}$	$\frac{2}{(S+a)^3}$	$\frac{T^{2}e^{-aT}z(z+e^{-aT})}{(z-e^{-aT})^{3}}$
9	sin(bt)	sin(bkT)	$\frac{b}{S^2 + b^2}$	$\frac{zsin(bT)}{z^2 - 2zcos(bT) + 1}$
10	cos(bt)	cos(bkT)	$\frac{S}{S^2 + b^2}$	$\frac{z^2 - zcos(bT)}{z^2 - 2zcos(bT) + 1}$
11	$e^{-at}sin(bt)$	$e^{-akT}sin(bkT)$	$\frac{b}{(S+\alpha)^2+b^2}$	$\frac{ze^{-aT}sinbT}{z^2 - 2ze^{-aT}cosbT + e^{-2aT}}$
12	e ^{-at} cos(bt)	e ^{-akT} cos(bkT)	$\frac{S+a}{(S+a)^2+b^2}$	$\frac{z^2 - ze^{-aT}cosbT}{z^2 - 2ze^{-aT}cosbT + e^{-2aT}}$
13	$1 - e^{-at}$	$1 - e^{-akT}$	$\frac{a}{S(S+a)}$	$\frac{(1 - e^{-aT})z}{(z - 1)(z - e^{-aT})}$
14	$1-(1+at)e^{-at}$	$1 - (1 + akT)e^{-akT}$	$\frac{a^2}{S(S+a)^2}$	$\frac{1}{z-1} - \frac{z}{z - e^{-aT}} - \frac{aTe^{-aT}}{(z - e^{-aT})}$
15	$e^{-at} - e^{-bt}$	$e^{-akT} - e^{-bkT}$	$\frac{b-a}{(S+a)(S+b)}$	$\frac{(e^{-aT} - e^{-bT})z}{(z - e^{-aT})(z - e^{-bT})}$
16	$be^{-bt} - ae^{-at}$	be ^{-bkT} — ae ^{-akT}	$\frac{(b-a)S}{(S+a)(S+b)}$	$\frac{[(b-a)z - (be^{-aT} - ae^{-bT})]z}{(z - e^{-aT})(z - e^{-bT})}$

Tabla 2.1 Transformada z de Funciones Prácticas (Continuación)

	f(t)	f(kT)	F(S)	F(z)	
N º	F. Continua	F. Discreta	T. de Laplace	Transformada z	
17	$(1-at)e^{-aT}$	$(1 - akT)e^{-akT}$	$\frac{S}{(S+a)^2}$	$\frac{[z - (1 + aT)e^{-aT}]z}{(z - e^{-aT})^2}$	
18	$at - 1 + e^{-at}$	$akT - 1 + e^{-akT}$	$\frac{a^2}{S^2(S+a))}$	$\frac{[(aT-1+e^{-aT})z+(1-e^{-aT}-aTe^{-aT})]z}{(z-1)^2(z-e^{-aT})}$	
19		a^k		$\frac{z}{z-a}$	
20		a^{k-1} $k \ge 1$		$\frac{1}{z-a}$	
21		ka^{k-1}		$\frac{z}{(z-a)^2}$	
22		k^2a^{k-1}		$\frac{z(z+a)}{(z-a)^3}$	
23		k^3a^{k-1}		$\frac{z(z^2 + 4az + a^2)}{(z - a)^4}$	
24		$(-a)^k$		$\frac{z}{z+a}$	
25		$a^k cos(k\pi)$		$\frac{z}{z+a}$	
26		$k(k-1)a^{k-2}$		$\frac{2z}{(z-a)^3}$	
27		$k(k-1)\cdots(k-m+2)$		$\frac{z(m-1)!}{(z-1)^m}$	
28	$A = \frac{1}{S(S+a)(S+b)}$ $A = \frac{b(1-e^{-aT}) - a(1-b^T)}{ab(b-a)}$		$\frac{(Az + B)z}{(z - 1)(z - e^{-aT})(z - e^{-bT})}$ $B = \frac{ae^{-aT}(1 - e^{-bT}) - be^{bT}(1 - e^{-aT})}{ab(b - a)}$		
		a.			
29	$1 - e^{-at}(cosb)$	$\frac{1}{S} + \frac{1}{b}sinbt$	$\frac{a^2 + b^2}{[(S+a)^2 + b^2]}$	$\frac{(Az+B)z}{(z-1)(z^2-2ze^{-aT}cosbT+e^{-2aT})}$	
	$A = 1 - e^{-aT}cosbT - \frac{a}{b}e^{-aT}sinbT \qquad B = e^{-2aT} + \frac{a}{b}e^{-aT}sinbT - e^{-aT}cosbT$				

•