Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет»

Кафедра прикладной математики

Лабораторная работа

Устойчивые методы оценивания параметров статистических моделей (логистическое распредение)

Факультет: ПМИ

Группа: ПММ-03

Студент: Москалев Дмитрий

Новосибирск

2020

1. Генерация выборки размером 1000 и 10000 элементов, где ε = 0.25, x - случайные значения в диапазоне (0;1), $y=\mu+s*\ln(\frac{x}{1-x})$, $y_{2,...}=\mu_{2,...}+s_{2,...}*\ln(\frac{x}{1-x})$, $y_{2,z,...}=(1-\varepsilon)*f(x)+\varepsilon*h(x)$, где $f(x)=\frac{e^{-x}}{[1+e^{-x}]^2}$, μ - параметр сдвига, s - параметр масштаба, где $0<\varepsilon<0.5, f(x), h(x)$ - плотности чистого и засоряющего распределений. Параметры $\mu,s=0$, 1 соответственно генерируют стандартные величины, при этом засоренные случайные величины генерируется с $\mu,s=2$, 1; $\mu,s=0$, 2 соответственно.

Выборка 1000 значений:

$$\mu$$
, $s = 2, 1$

Nº	х	У	y 2	y 2_z
1	0.25	-1.12	0.88	0.31
2	0.08	-2.43	-0.43	-0.02
3	0.6	0.41	2.41	0.72

• • •

998	0.8	1.41	3.41	0.99
999	0.06	-2.67	-0.67	-0.09
1000	0.25	-1.08	0.92	0.32

$$\mu$$
, $s = 0, 2$

Nº	х	У	y 3	y 3_z
1	0.25	-1.12	-2.25	-0.47
2	0.08	-2.43	-4.86	-1.12
3	0.6	0.41	0.83	0.3

• • •

998	0.8	1.41	2.83	0.8
999	0.06	-2.67	-5.35	-1.24
1000	0.25	-1.08	-2.16	-0.45

Выборка 10000 значений:

 μ , s = 2, 1

Nº	x	У	y 2	y 2_z
1	0.87	1.94	3.94	1.12
2	0.98	4.11	6.11	1.67
3	0.94	2.83	4.83	1.35

•••

9998	0.6	0.4	2.4	0.72
9999	0.89	2.04	4.04	1.15
10000	0.06	-2.73	-0.73	-0.1

 μ , s = 0, 2

Nº	х	У	y 3	y 3_z
1	0.87	1.94	3.88	1.06
2	0.98	4.11	8.22	2.14
3	0.94	2.83	5.66	1.5

...

9998	0.6	0.4	0.8	0.29
9999	0.89	2.04	4.08	1.11
10000	0.06	-2.73	-5.46	-1.27

2. Основные характеристики логистического распределения:

Характеристика	Значение
медиана	μ
дисперсия	$\frac{(\pi^2 * s^2)}{3}$
коэффициенты асимметрии	0
коэффициенты эксцесса	4.2

По условию задания случайные величины в выборке (x) распределены равномерно на (0,1).

Вычисление значений из таблицы производились с помощью MS Excel, с помощью функций:

=CP3HAY();

=МЕДИАНА();

=ДИСП.В();

=CKOC();

=ЭКСЦЕСС();

=СТАНДОТКЛОН.В();

Выборка 1000 значений:

μ , s = 2, 1

Характеристика	Значение
медиана	μ=2
дисперсия	$\frac{(\pi^2 * s^2)}{3} = [s = 1] = \frac{\pi^2}{3} \sim 3.289868133696453$
коэффициенты асимметрии	0
коэффициенты эксцесса	4.2

Характеристика	х	У	y ₂	У2_z
среднее арифметическое	0,48	-0,09	1,91	0,59
медиана	0,47	-0,12	1,89	0,58

дисперсия	3,22	3,22	0,22
коэффициенты асимметрии	-0,10	-0,10	-0,08
коэффициенты эксцесса	4,68	4,68	4,44
стандартное отклонение	1,79	1,79	0,47

 μ , s = 0, 2

Характеристика	Значение
медиана	μ = 0
дисперсия	$\frac{(\pi^2 * s^2)}{3} = [s = 2] = \frac{4 * \pi^2}{3} \sim 13.159472534785811$
коэффициенты асимметрии	0
коэффициенты эксцесса	4.2

Характеристика	х	У	У 3	У3_z
среднее арифметическое	0,48	-0,09	-0,18	0,05
медиана	0,47	-0,12	-0,23	0,04
дисперсия		3,22	12,88	0,80
коэффициенты асимметрии		-0,10	-0,10	-0,10
коэффициенты эксцесса		4,68	4,68	4,69
стандартное отклонение		1,79	3,59	0,90

Выборка 10000 значений:

 μ , s = 2, 1

Характеристика	х	У	y 2	У2_z
среднее арифметическое	0,50	-0,02	1,98	0,61
медиана	0,50	0,01	2,01	0,61
дисперсия		3,34	3,34	0,23
коэффициенты асимметрии		-0,01	-0,01	-0,01
коэффициенты эксцесса		4,32	4,32	4,12
стандартное отклонение		1,83	1,83	0,48

 μ , s = 0, 2

Характеристика	х	У	у з	У3_z
среднее арифметическое	0,50	-0,02	-0,04	0,08
медиана	0,50	0,01	0,02	0,10
дисперсия		3,34	13,37	0,83
коэффициенты асимметрии		-0,01	-0,01	-0,01
коэффициенты эксцесса		4,32	4,32	4,33
стандартное отклонение		1,83	3,66	0,91

3.

Выборка 1000 значений:

 μ , s = 2, 1

Характеристика	Значение
медиана	μ=2
дисперсия	$\frac{(\pi^2 * s^2)}{3} = [s = 1] = \frac{\pi^2}{3} \sim 3.289868133696453$
коэффициенты асимметрии	0
коэффициенты эксцесса	4.2

Характеристика	х	у	y 2	y 2_z	$ \Delta(y_2-y) $	$\left \Delta(y_{2_{-}z}-y_2)\right $	$ \Delta(y_{2_z} - y_2) * (1 + \varepsilon)$
среднее арифметическое	0,50	-0,01	1,99	0,61	2,00	1,38	1,73
медиана	0,51	0,04	2,04	0,62	2,00	1,42	1,78

μ , s = 0, 2

Характеристика	Значение
медиана	μ = 0
дисперсия	$\frac{(\pi^2 * s^2)}{3} = [s = 2] = \frac{4 * \pi^2}{3} \sim 13.159472534785811$
коэффициенты асимметрии	0
коэффициенты эксцесса	4.2

Характеристика	х	У	y 3	y 3_z	$ \Delta(y_3-y) $	$\left \Delta(y_{3_{-}z}-y_3)\right $	$\left \Delta (y_{3_{-}z} - y_3) \right $ $* (1 + \varepsilon)$
среднее арифметическое	0,50	-0,01	-0,03	0,08	-0,01	0,11	0,14
медиана	0,51	0,04	0,08	0,11	0,04	0,04	0,05

Выборка 10000 значений:

 μ , s = 2, 1

Характеристика	х	У	y ₂	y 2_z	$ \Delta(y_2-y) $	$\left \Delta(y_{2_{-}z}-y_{2})\right $	$\left \Delta (y_{2_z} - y_2) \right $ $* (1 + \varepsilon)$
среднее арифметическое	0,51	0,05	2,05	0,63	2,00	1,43	1,79
медиана	0,51	0,04	2,04	0,62	2,00	1,42	1,78

 μ , s = 0, 2

Характеристика	х	У	у з	y 3_z	$ \Delta(y_3-y) $	$\left \Delta (y_{3_{-}z} - y_3) \right $	$ \Delta(y_{3_{-z}} - y_3) $ $* (1 + \varepsilon)$
среднее арифметическое	0,51	0,05	0,11	0,12	0,05	0,01	0,01
медиана	0,51	0,04	0,09	0,11	0,04	0,03	0,04

Исходя из полученных значений видно, что значения почти совпадают с характеристическими. Небольшие расхождения значений могут быть также изза округления при вычислении значений. При симметрическом засорении графики влияния оценок менее схожи, в отличии от асимметрического засорения.

4. Значения по оси ОУ нормированы относится отрезка [0,1].

Графики плотностей распределений (μ , s = 0, 2).

Чистое распределение,

Засоренное распределение (1000 значений),

Засоренное распределение (10000 значений).

Графики плотностей распределений (μ , s = 2, 1).

Чистое распределение,

Засоренное распределение (1000 значений),

Засоренное распределение (10000 значений).

Вывод:

Исходя из графиков выборок видно, что сдвиг и масштаб, в основном, влияют только на медиану и дисперсию значений логистического распределения параболы соответственно. Сдвиг влияет вершину на плотности логистистического распределения, масштаб на растяжение плотности логистического распределения по осям ОХ, ОҮ.

Текст программы:

```
from random import random as rnd
import math
import pylab as plb
import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import logistic
loc, scale = 0, 1 # Стандартное распределение.
loc2, scale2 = 2, 1 # Засоренное распределение с асимметричным засорением
\mu = 2, s = 1.
loc3, scale3 = 0, 2 # Засоренное распределение с симметричным засорением
\mu = 0, s = 2.
eps = 0.25
randvars = []
file = open('file1.txt','w')
file2 = open('file2.txt','w')
for i in range(1000):
    x = rnd()
    # math.log(x / (1-x)) - моделирование случайной величины log=ln,
https://docs.python.org/2/library/math.html
    y = loc + scale * math.log(x / (1-x)) # Чистое распределение
    y2 = loc2 + scale2 * math.log(x / (1-x))
    y3 = loc3 + scale3 * math.log(x / (1-x))
    y2 z=((1-eps)*(logistic.pdf(x, loc=2, scale=1)))+eps*y2 # Засоряющая
функция у2
    y3 z=((1-eps)*(logistic.pdf(x, loc=0, scale=2)))+eps*y3 # Засоряющая
функция у3
    print (i+1, round(x,2), round(y,2), round(y2,2), round(y2,z,2),
round((y2-y), 2), round((y2 z-y),2), sep='\t', file=file)
    print (i+1, round(x,2), round(y,2), round(y3,2), round(y3_z,2),
round((y3-y), 2), round((y3 z-y),2), sep='\t', file=file2)
    randvars.append(y)
file.close()
file2.close()
plb.hist(randvars)
plb.show()
plt.plot(randvars)
plt.show()
sigma = (pow(math.pi, 2)/3) #Дисперсия
print (sigma)
loc, scale = 0, 1 # Стандартное распределение.
loc2, scale2 = 2, 1 # Засоренное распределение с асимметричным засорением
\mu = 2, s = 1.
loc3, scale3 = 0, 2 # Засоренное распределение с симметричным засорением
\mu = 0, s = 2.
randvars = []
file = open(file3.txt','w')
file2 = open(file4.txt','w')
for i in range(10000):
    x = rnd()
```

```
# math.log(x / (1-x)) - моделирование случайной величины log=ln,
https://docs.python.org/2/library/math.html
    y = loc + scale * math.log(x / (1-x)) # Чистое распределение
    y2 = loc2 + scale2 * math.log(x / (1-x))
    y3 = loc3 + scale3 * math.log(x / (1-x))
    y2_z=((1-eps)*(logistic.pdf(x, loc=2, scale=1)))+eps*y2 # y2
    y3 z=((1-eps)*(logistic.pdf(x, loc=0, scale=2)))+eps*y3 # y3
    print (i+1, round(x,2), round(y,2), round(y2,2), round(y2 z,2),
round((y2-y), 2), round((y2 z-y),2), sep='\t', file=file)
    print (i+1, round(x,2), round(y,2), round(y3,2), round(y3,2),
round((y3-y), 2), round((y3-y), 2), sep='\t', file=file2)
    randvars.append(v)
file.close()
file2.close()
plb.hist(randvars)
plb.show()
plt.plot(randvars)
plt.show()
sigma = (4*pow(math.pi, 2)/3) #Дисперсия
print (sigma)
\#\mu=2, s=1.
loc, scale = 0, 1 # Стандартное распределение.
randvars1 = []
randvars2 = []
for i in range(1000):
    x = rnd()
    y = loc + scale * math.log(x / (1-x))
    y z=((1-eps)*(logistic.pdf(x))+eps*y) # y
    \#y2 z=((1-eps)*(logistic.pdf(x))+eps*logistic.pdf(y2, loc=2, scale=1)) <math>\#
v^2
    randvars1.append(y)
    randvars2.append(y z)
randvars1.sort()
randvars2.sort()
randvars3 = []
randvars4 = []
for i in range(1000):
    x = rnd()
    y2 = loc2 + scale2 * math.log(x / (1-x))
    y2 z=((1-eps)*(logistic.pdf(x))+eps*y2) # y2
    \#y2 z=((1-eps)*(logistic.pdf(x))+eps*logistic.pdf(y2, loc=2, scale=1)) <math>\#
v2
    randvars3.append(y2)
    randvars4.append(y2 z)
randvars3.sort()
randvars4.sort()
randvars5 = []
randvars6 = []
for i in range(10000):
    x = rnd()
    y2 = loc2 + scale2 * math.log(x / (1-x))
    y2 z=((1-eps)*(logistic.pdf(x, loc=2, scale=1)))+eps*y2 # y2
    randvars5.append(y2)
    randvars6.append(y2 z)
randvars5.sort()
randvars6.sort()
\#\mu=0, s=2.
```

```
loc, scale = 0, 1 # Стандартное распределение.
randvars7 = []
randvars8 = []
for i in range (1000):
    x = rnd()
    y = loc + scale * math.log(x / (1-x))
    y z=((1-eps)*(logistic.pdf(x))+eps*y) # y
    \#y2 z=((1-eps)*(logistic.pdf(x))+eps*logistic.pdf(y2, loc=2, scale=1)) <math>\#
v2
    randvars7.append(v)
    randvars8.append(y z)
randvars7.sort()
randvars8.sort()
randvars9 = []
randvars10 = []
for i in range(1000):
   x = rnd()
    y3 = loc3 + scale3 * math.log(x / (1-x))
    y3 z=((1-eps)*(logistic.pdf(x, loc=0, scale=2)))+eps*y3 # y3
    randvars9.append(y3)
    randvars10.append(y3 z)
randvars9.sort()
randvars10.sort()
randvars11 = []
randvars12 = []
for i in range(10000):
    x = rnd()
    y3 = loc3 + scale3 * math.log(x / (1-x))
    v3 = ((1-eps)*(logistic.pdf(x, loc=0, scale=2)))+eps*v3 # v3
    randvars11.append(y3)
    randvars12.append(y3 z)
randvars11.sort()
randvars12.sort()
figure, location = plt.subplots(figsize=(10, 10))
plt.plot(randvars7, logistic.pdf(randvars8, loc=0, scale=1), 'b', randvars9,
logistic.pdf(randvars10, loc=2, scale=1), 'r', randvars11,
logistic.pdf(randvars12, loc=0, scale=2), 'y')
plt.savefig('line plot1.png')
figure, location = plt.subplots(figsize=(10, 10))
plt.plot(randvars1, logistic.pdf(randvars2, loc=0, scale=1), 'b', randvars3,
logistic.pdf(randvars4, loc=2, scale=1), 'r', randvars5,
logistic.pdf(randvars6, loc=0, scale=2),'y')
plt.savefig('line plot2.png')
print (np.mean (randvars1), np.mean (randvars2), np.mean (randvars3), np.mean (randvars3)
ars4), np.mean(randvars5), np.mean(randvars6), np.mean(randvars7), np.mean(randv
ars8), np.mean(randvars9), np.mean(randvars10), np.mean(randvars11), np.mean(ran
dvars12), sep='\t')
print (np.median (randvars1), np.median (randvars2), np.median (randvars3), np.medi
an(randvars4), np.median(randvars5), np.median(randvars6), np.median(randvars7)
, np.median(randvars8), np.median(randvars9), np.median(randvars10), np.median(r
andvars11), np.median(randvars12), sep='\t')
```