Optimisation Non linèaire

Par

Professeur Abdellatif El Afia

Chapitre 8

Méthodes duals

Professor Abdellatif El Afia

Méthodes duals

Soit le problème primal

$$(P) \begin{cases} Min & f(x) \\ sujet \grave{a} & f_i(x) \le 0 \\ & x \in \mathbb{R}^n \end{cases} \qquad i = 1, ..., m$$

- $L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$
- $X = \{x \in \mathbb{R}^n, f_i(x) \le 0 \ \forall i = 1, ..., m\} \text{ avec } f_1(x), ..., f_m(x) : \mathbb{R}^n \to \mathbb{R}.$
- $0 = \{x \in \mathbb{R}^n, F(x) = (f_1(x), ..., f_m(x)) : \le 0\}$
- $\Lambda = \{\lambda \in \mathbb{R}^m, \lambda = (\lambda_1, \dots, \lambda_m)^T, \lambda_i \geq 0, i = 1, \dots, m\}$

Approche de résolution: méthode itérative

- Itération initiale : Déterminer une solution initiale $\lambda^0 \in \Lambda$.
- Itération générale (k + 1): Etant donné λ^k
 - Déterminer x_k qui minimise $L(x, \lambda_k)$ (en utilisant l'un des algorithmes sans contraintes)
 - Déterminer λ_{k+1}
- Répéter l'itération générale jusqu'à ce qu'un critère d'arrêt soit satisfait.

Méthode de projection

Théorème: Projection sur un convexe fermé

Soit $X \subset \mathbb{R}^n$ un ensemble convexe, fermé, non vide et soit $v \in \mathbb{R}^n$. Alors $\exists ! P_X(v) \in X$ tel que $||v - P_X(v)|| = \inf_{x \in X} ||v - x|| = \min_{x \in X} ||v - x||$.

L'élément $P_X(v) \in X$ s'appelle la projection de v sur X en \mathbb{R}^n .

En plus on a:

- $< v P_X(v), x P_X(v) > \le 0, \quad \forall u \in X$
- Si $w \in X$ est tel que $\langle v w, x w \rangle \leq 0$, $\forall x \in X$ alors $w = P_X(v)$
- On a $||P_X(v_1) P_X(v_2)|| \le ||v_1 v_2|| \quad \forall v_1, v_2 \in \mathbb{R}^n$ P_X est une fonction lipschitzienne, donc continue.
- $v = P_X(v) \iff v \in X$
- Si *U* est le sous-espace affine de \mathbb{R}^n donné par $X = a + X_0$ avec $a \in \mathbb{R}^n$ et X_0 un sous espace vectoriel de \mathbb{R}^n alors $v P_X(v) \perp X_0$, c'est-à-dire

$$< v - P_X(v), a + x - P_X(v) = < v - P_X(v), x > 0$$
 $\forall u \in X_0$

Méthode de projection

Cas particulier: Si $X = \mathbb{R}^n_+$ alors $P_X(v) = (v_1^+, v_2^+, \dots, v_n^+)^T$, avec $v_i^+ = \max(0, v_i)$.

Supposons que $x^* \in X$ est tel que $f(x^*) = \min_{x \in X} f(x)$ Alors $\forall x \in X$

•
$$\langle \nabla f(x^*), x - x^* \rangle \ge 0 \iff \forall \rho > 0, \rho < -\nabla f(x^*), x - x^* \rangle \le 0$$

•
$$\Rightarrow < [x^* - \rho \nabla f(x^*)] - x^*, x - x^* > \le 0$$

En utilisant le Théorème de projection cette dernière inégalité est équivalente à l'égalité $x^* = P_X(x^* - \rho \nabla f(x^*))$

Une idée pour approcher numériquement ce point fixe est d'utiliser une méthode itérative, qui consiste à construire une suite : $x^{(k+1)} = P_X(x^{(k)} - \rho \nabla f(x^{(k)})) \in X$, $\rho > 0$, $k \in \mathbb{N}$

Il est aussi possible de faire yarier ρ à chaque pas. Donc l'algorithme général sera dans ce cas :

$$\begin{cases} x^{(k+1)} = P_X(x^{(k)} - \rho_k \nabla f(x^{(k)}), k \in \mathbb{N} \\ x^{(0)} \in X \end{cases}$$

Avec $\rho_k > 0$ données. C'est la méthode de gradient avec projection à pas variable. On l'appelle méthode de gradient avec projection à pas fixe si ρ_k est indépendant de k.

Le problème primal du début peut donc s'écrire de la façon suivante $\min_{x \in X} f(x)$

On définit l'application $g(\lambda) = \min_{x \in \mathbb{R}^n} L(x, \lambda)$, est concave ou encore -g est convexe

Maintenant on considère le problème d'optimisation dit « dual » suivant :

$$\begin{cases} \lambda^* \in \Lambda \\ g(\lambda^*) \ge g(\lambda) \quad \forall \lambda \in \Lambda \end{cases}$$

La méthode d'Uzawa est basée sur la formulation duale et la recherche des points selle.

Définition:

On dit que les contraintes de O sont qualifiées en $v \in O$ si

- 1) Soit $I(v) = \emptyset$
- 2) Soit $I(v) \neq \emptyset$ et il existe $w \in \mathbb{R}^n$ tel qu'on a $\forall i \in I(v) < \nabla f_i(v), w > \le 0$ Avec en plus : $\langle \nabla f_i(v), w \rangle < 0$ si f_i est non-affine
- $I(v) = \{i = 1, ... m, f_i(v) = 0\}$ est un ensemble des contraintes actives

Nous faisons les hypothèses suivantes :

- 1) f est elliptique, c'est-à-dire qu'elle est de classe C^1 et il existe $\alpha > 0$ tel que : $< f(x) f(y), x y > \ge \alpha ||x y||^2 \quad \forall x, y \in \mathbb{R}^n$
- 2) Pour tout i = 1, ..., m on a que f_i est une fonction convexe et de classe C^1 . En plus F est lipschitzienne, donc il existe M > 0 tel que :

$$||F(x) - F(y)|| \le M||x - y|| \ \forall x, y, \in \mathbb{R}^n$$

3) Les contraintes de O sont qualifiés en tout point $x \in O$.

Corollaire 1:

Supposons que les fonctions f, f_1 , ..., f_m sont convexes. Soit x^* un point de minimum de f sur O tel que les contraintes de O sont qualifiés en x^* . Alors il existe $\lambda^* \in \mathbb{R}_+^m$ tel que (x^*, λ^*) est un point selle du Lagrangien L

Principe:

Le prince de la méthode d'Uzawa est qu'à chaque itération pour λ^k connu, on cherche à minimiser sur \mathbb{R}^n la fonctionnelle $x \to L(x, \lambda^k)$

Ceci permet de construire x^k , avec x^k connu on cherche à maximiser sur \mathbb{R}^p_+ la fonctionnelle $\lambda \to L(x^k, \lambda)$

Pour calculer l'itération λ_{k+1} , on peut utiliser un algorithme de gradient avec projection à pas variable

$$\lambda_{k+1} = P_{\mathbb{R}^p_+}(\lambda i_k + \rho_k \nabla g(\lambda_k))$$

Ce qui a pour expression sur \mathbb{R}^p_+

$$\lambda_{k+1} = \max \left\{ \lambda i_k + \rho_k \frac{\partial g}{\partial \lambda_i}(\lambda_k), 0 \right\} \qquad i = 1, ..., p$$

$$\rho_k > 0$$

$$\frac{\partial g}{\partial \lambda_i}(\lambda_k) = f_i(x_k)$$

Algorithme d'Uzawa:

- **Etape1**: on choisit $\lambda_0 > 0$, et ϵ assez petit
- Etape 2 : On calcule x_k qui minimise $L(x, \lambda_k)$ (en utilisant l'un des algorithmes sans contraintes)
 - Si $(k \ge 1)$ alors
 - $Si \|x_k x_{k-1}\| < \epsilon$ On arrête, sinon en va à l'étape3
- Etape3
 - $\lambda_{k+1} = \max\{\lambda_{i_k} + \rho_k f_i(x_k), 0\}$
 - On pose ; k = k + 1 et en retourne à l'étape2

Théorème:

Soient $a_1, a_2 \in \mathbb{R}$ tels que $0 < a_1 \le a_2 < \frac{2\alpha}{M^2}$

Supposons que les facteurs ρ_k sont tels que $: a_1 \le \rho_k \le a_2 \quad \forall k \in \mathbb{N}$

Alors la suite x_k générée par l'algorithme d'Uzawa converge vers x^* solution du problème

Méthode d'Arrow-Hurwicz

Comme l'algorithme d'Uzawa le but de cet algorithme est de trouver le point selle, comme la condition de KKT nous garantit que la solution du problème d'optimisation (x^*, λ^*) est un point selle

En plus de l'expression de λ_{k+1} on cherche un x_k de la forme :

$$x_k = P_O\left(x_{k-1} - \epsilon_k \left(\nabla_x f(x_k) + \lambda_k \nabla_x \theta(x_k)\right)\right)$$

 P_o est la projection de l'itération sur l'ensemble O des contraintes comme les contraintes sont convexes cet ensemble l'est aussi, on définit dont ce qu'est une projection sur un ensemble convexe fermé :

Définition:

Soit E un espace de Hilbert, muni d'une norme $\|.\|$ induite par un produit scalaire <...> et soit O un convexe fermé non vide de E. Alors, $\forall x \in E$, il existe un unique $x_0 \in O$ tel que

$$||x - x_0|| \le ||x - y|| \ \forall y \in O$$

On note $x_0 = P_O(x)$ la projection orthogonale de x sur O.

Méthode d'Arrow-Hurwicz: Algorithme

• Etape1:

- Poser k = 0,
- on choisit $\lambda^{(0)} \ge 0$ ($\lambda^{(0)} = 0$) et on choisit $k_{max} \in \mathbb{N}$, ($k_{max} = 1000$) et $\epsilon > 0$ ($\epsilon = 10^{-6}$).

• Etape2:

- Calculer $x^k = \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} L(x, \lambda^{(k)}) \to L(x, \lambda^{(k)}) = f(x) + \sum_{j=1}^m \lambda_i^{(k)} f_j(x)$
- Si $(k \ge 1)$ alors:
 - Si $||x^k x^{k-1}|| \le \epsilon$ alors x^k est le point de minimum recherché (l'algorithme a convergé)
 - Sinon on va à l'Etape 3

• **Etape 3**:

- Si $(k = k_{\text{max}})$ alors l'algorithme diverge
- Sinon, faire:
 - $\lambda_i^{(k+1)} = \max \{\lambda_i^{(k)} + \rho_k f_i(x^k), 0\}$ i = 1, ..., m
 - $x_{k+1} = P_O\left(x_k \epsilon_k \left(\nabla_x f(x_k) + \lambda_k \nabla_x \theta(x_k)\right)\right)$
- Ensuite k = k + 1, retour à l'Etape 2 Optimisation non lineaire-Abdellatif El Af

Méthode d'Arrow-Hurwicz

Théorème:

Sous les conditions de KKT, le point x^* est la solution du problème (1) si et seulement s'il existe un réel λ^* tel que le point (x^*, λ^*) est un point selle du lagrangien $L(x, \lambda)$. De plus, si les suites (ϵ_k) et (ρ_k) respectent les propriétés suivantes :

- $\sum_{k=0}^{+\infty} \rho_k = +\infty$;
- $\sum_{k=0}^{+\infty} \epsilon_k = +\infty$;
- $\sum_{k=0}^{+\infty} \rho_k^2 < +\infty$;
- $\sum_{k=0}^{+\infty} \epsilon_k^2 < +\infty$,

Alors la suite x_k de l'algorithme d'Arrow-Hurwicz converge vers le pont x^* .

Remarque:

Ici nous avons considéré que les contraintes d'inégalité puisque d'un ensemble de contraintes d'égalité $f_i=0$ on peut se remmener à un ensemble d'inégalité en considérant : $-f_i \le 0$ et $f_i \ge 0$