Cyclistic Case Study Nov21

Hezar K

2022-11-29

This is an analysis for Cyclistic Case Study for Google Data Analytics Course. This is an analysis for November 2021.

STEP ONE: INSTALL REQUIRED PACKAGES AND IMPORT DATA

Install the required packages. **Tidyverse** package to import and wrangling the data and **ggplot2** package for visualization of the data. **Lubridate** package for date parsing and **anytime** package for the datetime conversion.

- install.packages("tidyverse")
- install.packages("ggplot2")
- install.packages("lubridate")
- install.packages("anytime")

library(tidyverse)

```
## — Attaching packages -
                                                               – tidyverse 1.3.2 <del>–</del>
## / ggplot2 3.4.0
                    ✓ purrr
                                 0.3.5
## ✓ tibble 3.1.8
                       √ dplyr
                                  1.0.10
## ✔ tidyr
                       ✓ stringr 1.4.1
            1.2.1
## ✓ readr 2.1.3
                       ✓ forcats 0.5.2
## — Conflicts -
                                                         – tidyverse conflicts() —
## * dplyr::filter() masks stats::filter()
## * dplyr::lag()
                   masks stats::lag()
```

library(lubridate)

```
## Loading required package: timechange
##
## Attaching package: 'lubridate'
##
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
```

library(data.table)

```
##
## Attaching package: 'data.table'
##
##
  The following objects are masked from 'package:lubridate':
##
##
       hour, isoweek, mday, minute, month, quarter, second, wday, week,
##
       yday, year
##
## The following objects are masked from 'package:dplyr':
##
##
       between, first, last
##
## The following object is masked from 'package:purrr':
##
##
       transpose
```

```
library(ggplot2)
library(anytime)
```

Import data from local drive.

```
Nov21 <- read_csv("C:/Users/theby/Documents/202111-divvy-tripdata.csv")
```

```
## Rows: 359978 Columns: 13
## — Column specification —
## Delimiter: ","
## chr (7): ride_id, rideable_type, start_station_name, start_station_id, end_...
## dbl (4): start_lat, start_lng, end_lat, end_lng
## dttm (2): started_at, ended_at
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

STEP TWO: EXAMINE THE DATA

Examine the dataframe for an overview of the data. Review column names, **colnames()**, dimensions of the dataframe by row and column, **dim()**, the first, **head()**, and the last, **tail()**, six rows in the dataframe, the summary, **summary()**, statistics on the columns of the dataframe, and review the data type structure of columns, **str()**.

View(Nov21)

```
dim(Nov21)
```

```
## [1] 359978 13
```

```
head(Nov21)
```

```
## # A tibble: 6 × 13
##
     ride id
                     ridea…¹ started at
                                                  ended at
                                                                        start...2 start...3
##
                     <chr>
                             <dttm>
                                                   <dttm>
                                                                                <chr>
## 1 7C00A93E10556... electr... 2021-11-27 13:27:38 2021-11-27 13:46:38 <NA>
                                                                                <NA>
## 2 90854840DFD50... electr... 2021-11-27 13:38:25 2021-11-27 13:56:10 <NA>
                                                                                <NA>
## 3 0A7D10CDD1440... electr... 2021-11-26 22:03:34 2021-11-26 22:05:56 <NA>
                                                                                <NA>
## 4 2F3BE33085BCF... electr... 2021-11-27 09:56:49 2021-11-27 10:01:50 <NA>
                                                                                <NA>
## 5 D67B4781A1992... electr... 2021-11-26 19:09:28 2021-11-26 19:30:41 <NA>
                                                                                <NA>
## 6 02F85C2C3C5F7... electr... 2021-11-26 18:34:07 2021-11-26 18:52:49 Michig... 13042
## # ... with 7 more variables: end station name <chr>, end station id <chr>,
       start_lat <dbl>, start_lng <dbl>, end_lat <dbl>, end_lng <dbl>,
## #
       member casual <chr>, and abbreviated variable names ¹rideable type,
## #
       2start_station_name, 3start_station_id
```

```
tail(Nov21)
```

```
## # A tibble: 6 × 13
##
     ride_id
                     ridea…¹ started_at
                                                   ended at
                                                                        start...2 start...3
##
                             <dttm>
                                                   <dttm>
                     <chr>
                                                                         <chr>
## 1 2E383B4D2965B... electr... 2021-11-04 16:59:24 2021-11-04 17:08:41 Cityfr... 13427
## 2 E00E9F3500D69... electr... 2021-11-29 00:39:13 2021-11-29 00:51:41 Logan ... TA1308...
## 3 8EAA66CE314E5... electr... 2021-11-03 13:56:33 2021-11-03 14:01:27 Logan ... TA1308...
## 4 36C2DC8BB1E13... electr... 2021-11-02 19:32:18 2021-11-02 19:36:16 Logan ... TA1308...
## 5 8E42FE5C67DF6... electr... 2021-11-10 20:15:06 2021-11-10 20:22:01 Logan ... TA1308...
## 6 4F15069E2D251... electr... 2021-11-30 20:18:00 2021-11-30 20:37:27 0gden ... TA1305...
   # ... with 7 more variables: end station name <chr>, end station id <chr>,
       start_lat <dbl>, start_lng <dbl>, end_lat <dbl>, end_lng <dbl>,
       member casual <chr>, and abbreviated variable names ¹rideable type,
## #
## #
       2start_station_name, 3start_station_id
```

```
summary(Nov21)
```

```
##
      ride id
                      rideable_type
                                           started at
   Length:359978
                      Length: 359978
                                        Min. :2021-11-01 00:00:14.00
##
                      Class :character
                                        1st Qu.:2021-11-06 17:34:18.25
##
   Class :character
##
   Mode :character Mode :character
                                        Median :2021-11-12 08:32:12.50
##
                                         Mean :2021-11-13 21:27:31.15
##
                                         3rd Qu.:2021-11-20 13:39:34.00
##
                                         Max. :2021-11-30 23:59:56.00
##
##
      ended at
                                    start station name start station id
##
   Min. :2021-11-01 00:04:06.00
                                    Length:359978
                                                      Length:359978
   1st Ou.:2021-11-06 17:53:19.75
                                                      Class :character
##
                                    Class :character
##
   Median :2021-11-12 08:46:55.50
                                    Mode :character
                                                     Mode :character
##
         :2021-11-13 21:42:19.90
   3rd Qu.:2021-11-20 13:57:54.75
##
##
   Max. :2021-12-02 06:41:33.00
##
##
   end station name
                      end station id
                                           start_lat
                                                          start_lng
                                         Min. :41.65
                                                        Min. :-87.84
##
   Length: 359978
                      Length:359978
##
    Class :character
                      Class :character
                                         1st Qu.:41.88
                                                        1st Qu.:-87.66
##
   Mode :character
                      Mode :character
                                         Median :41.89
                                                        Median :-87.64
##
                                         Mean :41.89
                                                        Mean :-87.65
##
                                         3rd Qu.:41.93
                                                        3rd Qu.:-87.63
##
                                         Max. :42.07 Max. :-87.53
##
##
      end lat
                      end_lng
                                    member casual
##
   Min. :41.39
                   Min. :-88.97
                                    Length: 359978
##
   1st Qu.:41.88
                   1st Qu.:-87.66
                                    Class :character
   Median :41.89
                                    Mode :character
                 Median :-87.64
##
   Mean :41.89
                  Mean :-87.65
##
   3rd Qu.:41.93
                  3rd Qu.:-87.63
##
   Max. :42.12 Max. :-87.53
##
   NA's
         :191
                   NA's
                         :191
```

str(Nov21)

```
## spc tbl [359,978 \times 13] (S3: spec tbl df/tbl df/tbl/data.frame)
                       : chr [1:359978] "7C00A93E10556E47" "90854840DFD508BA" "0A7D10CDD144061C" "2F3BE33085BCFF
##
   $ ride_id
02"
##
   $ rideable type
                       : chr [1:359978] "electric bike" "electric bike" "electric bike" ...
                      : POSIXct[1:359978], format: "2021-11-27 13:27:38" "2021-11-27 13:38:25" ...
   $ started at
                       : POSIXct[1:359978], format: "2021-11-27 13:46:38" "2021-11-27 13:56:10" ...
## $ ended_at
   $ start_station_name: chr [1:359978] NA NA NA NA ...
##
##
    \ start_station_id \ : chr [1:359978] NA NA NA NA ...
    ##
                       : chr [1:359978] NA NA NA NA ...
##
   $ end station id
##
                      : num [1:359978] 41.9 42 42 41.9 41.9 ...
   $ start lat
                      : num [1:359978] -87.7 -87.7 -87.8 -87.6 ...
##
   $ start lng
##
   $ end lat
                      : num [1:359978] 42 41.9 42 41.9 41.9 ...
##
                       : num [1:359978] -87.7 -87.7 -87.8 -87.6 ...
    $ end lna
##
    $ member casual
                       : chr [1:359978] "casual" "casual" "casual" ...
##
    - attr(*, "spec")=
##
    .. cols(
##
         ride id = col character(),
     . .
##
         rideable_type = col_character(),
         started_at = col_datetime(format = ""),
##
     . .
##
         ended at = col datetime(format = ""),
     . .
##
     . .
         start_station_name = col_character(),
##
         start_station_id = col_character(),
     . .
##
         end station name = col character(),
     . .
##
         end_station_id = col_character(),
     . .
##
         start_lat = col_double(),
##
     . .
         start_lng = col_double(),
##
         end lat = col double(),
     . .
##
         end lng = col double(),
     . .
##
     . .
         member_casual = col_character()
    ..)
    - attr(*, "problems")=<externalptr>
##
```

Create new columns as for date, month, day, year, day of week, and ride length in seconds.

```
Nov21$date <- as.Date(Nov21$started_at)
Nov21$month <- format(as.Date(Nov21$date), "%m")
Nov21$day <- format(as.Date(Nov21$date), "%d")
Nov21$year <- format(as.Date(Nov21$date), "%Y")
Nov21$day_of_week <- format(as.Date(Nov21$date), "%A")
Nov21$ride_length <- difftime(Nov21$ended_at,Nov21$started_at)
```

Convert *ride_length* column to numeric in order to run calculations on the data. First, check to see if the data type is numeric, and then convert if needed.

```
is.numeric(Nov21$ride_length)
```

[1] FALSE

Recheck ride_length data type.

Nov21\$ride_length <- as.numeric(as.character(Nov21\$ride_length))
is.numeric(Nov21\$ride_length)</pre>

[1] TRUE

STEP THREE: CLEAN DATA

na.omit() will remove all NA from the dataframe.

```
Nov21 <- na.omit(Nov21)
```

Remove rows with the ride_id column character length is not 16. This will remove all the scientific ride ids that we noticed while examining the data.

```
Nov21 <- subset(Nov21, nchar(as.character(ride_id)) == 16)
```

Remove rows with the ride length less than 1 minute.

```
Nov21 <- subset (Nov21, ride length > "1")
```

STEP FOUR: ANALYZE DATA

Analyze the dataframe by find the mean, median, max (maximum), and min (minimum) of ride_length.

mean(Nov21\$ride_length)

[1] 846.3481

median(Nov21\$ride_length)

[1] 532

max(Nov21\$ride length)

[1] 1336784

min(Nov21\$ride_length)

[1] 2

Run a statistical summary of the ride_length.

summary(Nov21\$ride_length)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.0 317.0 532.0 846.3 912.0 1336784.0
```

Compare the members and casual users

```
aggregate(Nov21$ride_length ~ Nov21$member_casual, FUN = mean)
```

```
## Nov21$member_casual Nov21$ride_length
## 1 casual 1349.0800
## 2 member 657.1647
```

```
aggregate(Nov21$ride_length ~ Nov21$member_casual, FUN = median)
```

```
## Nov21$member_casual Nov21$ride_length
## 1 casual 713
## 2 member 478
```

```
aggregate(Nov21$ride_length ~ Nov21$member_casual, FUN = max)
```

```
## Nov21$member_casual Nov21$ride_length
## 1 casual 1336784
## 2 member 87634
```

```
aggregate(Nov21$ride_length ~ Nov21$member_casual, FUN = min)
```

Aggregate the average ride length by each day of the week for members and users.

```
aggregate(Nov21$ride_length ~ Nov21$member_casual + Nov21$day_of_week, FUN = mean)
```

```
##
      Nov21$member casual Nov21$day of week Nov21$ride length
## 1
                    casual
                                       Friday
## 2
                    member
                                      Friday
                                                       635.8240
## 3
                                      Monday
                                                      1469.4128
                    casual
## 4
                                                       645.5429
                    member
                                      Monday
## 5
                    casual
                                     Saturday
                                                      1479.0592
## 6
                                     Saturday
                    member
                                                       727.6621
## 7
                    casual
                                      Sunday
                                                      1601.8647
## 8
                    member
                                      Sunday
                                                       732.0024
## 9
                                     Thursday
                                                      1272.9138
                    casual
## 10
                    member
                                     Thursday
                                                       631.8138
                                     Tuesday
## 11
                                                      1059.8790
                    casual
## 12
                                                       628.9950
                    member
                                     Tuesday
## 13
                                   Wednesday
                                                      1095.5493
                    casual
## 14
                    member
                                   Wednesday
                                                        643.0165
```

Sort the days of the week in order.

```
Nov21$day_of_week <- ordered(Nov21$day_of_week, levels=c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"))
```

Assign the aggregate the average ride length by each day of the week for members and users to x.

```
x <- aggregate(Nov21$ride_length ~ Nov21$member_casual + Nov21$day_of_week, FUN = mean)
head(x)</pre>
```

```
Nov21$member casual Nov21$day of week Nov21$ride length
##
## 1
                                                     1601.8647
                  casual
                                     Sunday
## 2
                  member
                                                      732.0024
                                     Sunday
## 3
                  casual
                                     Monday
                                                     1469.4128
## 4
                  member
                                     Monday
                                                      645.5429
## 5
                                                     1059.8790
                   casual
                                    Tuesday
## 6
                  member
                                    Tuesday
                                                      628.9950
```

Find the average ride length of member riders and casual riders per day and assign it to y.

```
## # A tibble: 6 × 4
##
    member_casual weekday number_of_rides average_duration
##
                     <int>
                                      <int>
## 1 casual
                                      12229
                                                        1602.
                         1
                                                        1469.
## 2 casual
                         2
                                      9386
## 3 casual
                         3
                                      10112
                                                        1060.
## 4 casual
                         4
                                       8719
                                                        1096.
## 5 casual
                         5
                                       6935
                                                        1273.
## 6 casual
                                       8199
                                                        1297.
```

Analyze the dataframe to find the frequency of member riders, casual riders, classic bikes, docked bikes, and electric bikes.

```
table(Nov21$member_casual)
```

```
##
## casual member
## 69952 185889
```

```
table(Nov21$rideable_type)
```

```
##
## classic_bike docked_bike electric_bike
## 153594 7560 94687
```

```
table(Nov21$day_of_week)
```

```
##
## Sunday Monday Tuesday Wednesday Thursday Friday Saturday
## 31372 42997 48532 38107 29555 29772 35506
```

STEP FIVE: VISUALIZATION

Display full digits instead of scientific number.

```
options(scipen=999)
```

Plot the number of rides by user type during the week.

Plot the duration of the ride by user type during the week.

Days of the Week vs Average Duration

Create new dataframe for plots for weekday trends vs weekend trends.

```
mc<- as.data.frame(table(Nov21$day_of_week,Nov21$member_casual))</pre>
```

Rename columns

```
mc<-rename(mc, day_of_week = Var1, member_casual = Var2)
head(mc)</pre>
```

```
##
     day_of_week member_casual Freq
## 1
          Sunday
                       casual 12229
## 2
          Monday
                        casual 9386
## 3
         Tuesday
                        casual 10112
## 4
      Wednesday
                        casual 8719
## 5
       Thursday
                        casual
                                6935
## 6
          Friday
                        casual 8199
```

Weekday trends (Monday through Friday).

Weekdays Trends

Weekend trends (Sunday and Saturday).

Create dataframe for member and casual riders vs ride type

```
rt<- as.data.frame(table(Nov21$rideable_type,Nov21$member_casual))
```

Rename columns.

```
rt<-rename(rt, rideable_type = Var1, member_casual = Var2)
head(rt)</pre>
```

```
##
   rideable_type member_casual
                               Freq
## 1 classic_bike casual 31699
     docked bike
## 2
                       casual
                               7560
                      casual 30693
## 3 electric bike
## 4 classic bike
                     member 121895
## 5 docked_bike
                       member
                                  0
## 6 electric_bike
                       member 63994
```

Plot for bike user vs bike type.

STEP SIX: EXPORT ANALYZED DATA

Save the analyzed data as a new file. fwrite(Nov21, "Nov21.csv")