Part IB — Linear Algebra Sheet 3 $\,$

Supervised by Mr Rawlinson (jir25@cam.ac.uk) Examples worked through by Christopher Turnbull

Michaelmas 2017

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 3 & -2 \\ 0 & 1 & 0 \end{pmatrix}, A_2 = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 3 & -2 \\ 0 & 1 & 0 \end{pmatrix}, A_3 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 3 & -2 \\ 0 & 1 & 0 \end{pmatrix}$$

This matrix has characteristic polynomial

$$\chi_{A_1}(\lambda) = (\lambda - 1)^2(\lambda - 2)$$

For $\lambda = 2$ eigenvectors satisfy

$$\begin{pmatrix} -1 & 1 & 0 \\ 0 & 1 & -2 \\ 0 & 1 & -2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \mathbf{0}$$

So $\mathbf{v} = (2, 2, 1)$, and we take this as a basis for the $\lambda = 2$ eigenspace. Similarly for $\lambda = 1$ we have

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 2 & -2 \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \mathbf{0}$$

This implies $v_2 = v_3 = 0$, so eigenvector must be of the form (1,0,0), again a basis with one element.

 A_2 : Next, we note that $\chi_{A_1}(\lambda) = \chi_{A_2}(\lambda)$ as the determinant calculation expanding down the first column will remain unchanged, so same eigenvalues. We can see that for $\lambda = 2$, $\mathbf{v} = (1, 2, 1)$ is a basis. For $\lambda = 1$ we have $v_2 = v_3$, so an eigenvector basis is given by

$$\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\-1 \end{pmatrix} \right\}$$

Next, $\chi_{A_3}(\lambda) = (\lambda - 1)(\lambda - 2)^2$. For $\lambda = 1$ the eigenspace basis is $\{(1, 1, 1)\}$, for $\lambda = 2$ it is $\{(1, -2, 1)\}$.

Consider $\det(A - \kappa \iota)$.

Add all the columns to the first column; it becomes a column where all entries are equal to $\lambda - \mu + (n-1)$. Now subtract first row from all others. We are left with $\det(A - \kappa \iota) = (\lambda - \mu + (n-1)) \det(M)$ where M is an $n-1 \times n-1$ lower triangular matrix with $\lambda - \mu - 1$ in every diagonal entry.

Hence

$$\det(A - \kappa \iota) = (\lambda - \mu + (n-1))(\lambda - \mu - 1)^{n-1}$$

So n eigenvalues are given as

$$\mu = \lambda + n - 1, \underbrace{\lambda - 1, \cdots, \lambda - 1}_{n-1 \text{ times}}$$

Define $\pi_j = q_j(\alpha) : V \to V$ by

$$q_j(\alpha) = \prod_{i \neq j}^k \frac{\alpha - \lambda_i}{\lambda_j - \lambda_i}$$

There's a bit about this in the notes, but I don't understand the proof and am having difficulty recreating it here.

Let $\alpha:V\to V$, complex finite dimensional vector space. λ eigenvalue for α \Rightarrow $\alpha v=\lambda v.$ Then

$$\alpha^{2}(v) = \alpha(\alpha(v))$$

$$= \alpha(\lambda v)$$

$$= \lambda(\alpha v) \text{ by linearity}$$

$$= \lambda^{2} v$$

Thus λ^2 is an eigenvalue of α^2 .

Suppose $\alpha_1, \alpha_2 : V \to V$, and dim V = n.

Let $\tilde{\alpha}_2$ be the restriction of α_2 to $\text{Im}(\alpha_1)$. We have

$$\operatorname{Im}(\tilde{\alpha}_2) = \operatorname{Im}(\alpha_2 \alpha_1)$$

$$\ker(\tilde{\alpha}_2) = \ker(\alpha_2) \cap \operatorname{Im} \alpha_1$$

By rank-nullity (note the domain of $\tilde{\alpha}_2$ is $\text{Im}(\alpha_1)$).

$$r(\alpha_2 \alpha_1) = r(\alpha_1) - \dim(\ker(\alpha_2) \cap \operatorname{Im} \alpha_1)$$

$$\geq r(\alpha_1) - n(\alpha_2)$$

$$= (n - n(\alpha_1)) - n(\alpha_2)$$

Thus

$$n - n(\alpha_2 \alpha_1) \ge (n - n(\alpha_1) - n(\alpha_2))$$

ie.

$$n(\alpha_1 \alpha_2) \le n(\alpha_1) + n(\alpha_2)$$

Not sure about the last bit.

Clearly the identity matrix is only similar to itself, as $P^{-1}IP = P^{-1}P = I$ for all invertible matrices P.

Not sure how to show dissimilarity of the first two. They both have characteristic polynomial $\det(M-\lambda\iota)=(\lambda-1)^3$.

Set of $n = \dim V$ vectors, only need to check for linear independence to see this is a basis. Suppose

$$A_0y + A_1\alpha(y) + A_2\alpha^2(y) + \dots + A_{n-1}\alpha^{n-1}(y) = 0$$

Taking α of both sides repeatedly

$$A_0\alpha(y) + A_1\alpha^2(y) + \dots + A_{n-2}\alpha^{n-1}(y) + \underbrace{A_{n-1}\alpha^n(y)}_{=0} = 0$$

:

$$A_0 \alpha^{n-2}(y) + A_1 \alpha^{n-1}(y) = 0$$

$$A_0 \alpha^{n-1}(y) = 0$$

But $\alpha^{n-1}(y) \neq 0$, so $A_0 = 0$.

Similarly, following backwards we see that $A_1 \neq 0$, and so on until $A_i = 0 \,\forall i \in \{0, 1, 2, \dots, n-1\}$. Thus linear independence is achieved, and $\{y, \alpha(y), \alpha^2(y), \dots, \alpha^{n-1}(y)\}$ is indeed a basis.

(a) Consider $Av = \lambda v, A$ invertible thus

$$A^{-1}(\lambda v) = v$$

So A has eigenvalue $\lambda \Rightarrow A^{-1}$ has eigenvalue $\frac{1}{\lambda}$

Define f as $f(\lambda) = \det(A - \lambda B)$. C = A + iB invertible $\Rightarrow f(i) \neq 0$.

Therefore a polynomial of degree n does not have i as a root. Somehow, but I cannot see how, this must mean that there exists some $\lambda \in \mathbb{R}$ that is also not a root, ie. $f(\lambda) \neq 0$, thus $\det(A - \lambda B) \neq 0$ and $A - \lambda B$ is invertible.

Next, suppose that $P = C^{-1}QC$ for some complex invertible matrix C = A + iB, so

$$P = (A + iB)^{-1}Q(A + iB)$$

Know $(A + \lambda B)$ invertible for some λ , but not sure how this helps.

(i) If λ is an eigenvalue, then $f' = \lambda f$. But we can always find a differentiable function (namely $f(x) = e^{\lambda x}$) st. f'(x) is $\lambda f(x)$. Hence every real number is an eigenvalue of f.

 $\ker(\alpha - \lambda \iota)$ is just the span of the λ eigenspace, ie. $< e^{\lambda x}>$, thus has dimension 1.

(ii) To show surjectivity of $(\alpha - \lambda \iota)$, must show that there exists an f st. $f' - \lambda f$.

$$(\forall g \in V)(\exists f \in V \text{ s.t. } g = f' - \lambda f)$$

Try $f = e^{\lambda x} \int g e^{-\lambda x}$. Then

$$f' - \lambda f = \lambda e^{\lambda x} \int g e^{-\lambda x} + e^{\lambda x} (g e^{-\lambda x}) - \lambda e^{\lambda x} \int g e^{-\lambda x}$$
$$= e^{\lambda x} (g e^{-\lambda x})$$
$$= g$$