Caitao Zhan

Personal Website Google Scholar GitHub Profile LinkedIn Profile Email Me

ABOUT ME

I now work in quantum networking/computing/sensing. Previously I work in classical networking/computing/sensing.

EDUCATION

Aug. 2017 \sim Jan. 2024	Stony Brook University GPA: 3.9/4.0	Ph.D. Candidate in Computer Science Advisor: Himanshu Gupta, Thesis: PDF
Sept. $2013 \sim \text{Jun. } 2017$	China University of Geosciences GPA: 92/100	B.S. in Computer Science and Technology Rank: 1/122

EMPLOYMENT

Feb. $2024 \sim \text{Present}$	Postdoc @ Argonne National Lab (Data Science and Learning Division) Quantum networks, SeQUeNCe, Quantum Internet architecture
May $2021 \sim \text{Aug. } 2021$	Software Engineering Intern @ Microsoft (Azure)
Jun. 2018 \sim Jan. 2024	Research assistant @ Stony Brook University Wireless sensor networks, data center networks, quantum networks, and quantum sensor networks
Sep. $2017 \sim \text{May } 2018$	Teaching assistant @ Stony Brook University

RESEARCH EXPERIENCE

Feb. $2024 \sim \text{Present}$	Quantum Network, SeQUeNCe and Quantum Network Simulation [14, 15, 16], QKD
Jan. 2021 \sim Jan. 2024	Efficient Quantum Communication Networks. [8, 13] Design/implement routing algorithms/protocols for quantum networks. Bell states, GHZ, Graph states.
Sep. 2021 \sim Jan. 2024	Discrete Outcome Quantum Sensor Networks. [9, 12] Quantum state/channel discrimination, initial state optimization, semidefinite programming, theory.
Aug. 2022 \sim Sep. 2023	Quantum Sensor Network Algorithms for Transmitter Localization. [10] Quantum sensing, quantum state discrimination, quantum machine learning
Nov. $2019 \sim \text{Mar. } 2022$	Intelligent Radio with Deep Learning. [5, 7, 11] Design/implement CNNs to solve wireless network problems: wireless localization & spectrum allocation. Reframe wireless problems to computer vision problems: image-to-image translation & object detection.
Mar. 2019 \sim Oct. 2019	Efficient Localization of Multiple Intruders in Shared Spectrum System. [3] Design/implement. Bayesian approach. Testbed(Odroid,Raspberry Pi,USRP,HackRF).
Dec 2018 \sim Sep. 2020	Datacenter Networks. [4] Multi-hop circuit switch scheduling. Greedy, approximation proof. Participate in implementation.
July 2018 \sim July 2019 $$	Selection of Sensors for Efficient Transmitter Localization. [2, 6] Implement. Greedy, approximation proof. Bayesian approach. GPU acceleration.
Oct. $2015 \sim \text{Sept. } 2016$	Optimization using Evolutionary Algorithms. [1] Design/implement. Shortest path-finding using ant colony optimization algorithms. Proposed a probability-based evolutionary algorithm solving shape formation problems.

Skills & Tools

Python and C++ are my most frequently used languages. I also have experience in C#, Java, C, and Matlab. Machine learning: PyTorch, scikit-learn, and ML.NET. Quantum: quantum network simulator NetSquid, quantum development SDK Qiskit, and quantum machine learning library TorchQuantum. GPU programming: CUDA and Numba. Software-defined radio: GNU Radio. Database: MySQL and SQLite. Convex optimization: OR-Tools and CVXPY.

SELECTED AWARDS AND HONORS

China National Scholarship

Travel Grant for ACM IMC

Best Poster Award (Participants Choice) in Graduate Research Day Outstanding Poster Presentation Award in Postdoctoral Symposium

2014, Chinese Ministry of Education, Top 1% 2018, ACM Internet Measurement Conference 2022, Department of CS, Stony Brook University 2024, Argonne National Lab

ACADEMIC SERVICES

Program Committee of IEEE QCE 2024, IEEE QCNC 2025

Artifact Evaluation Committee of ACM ${\it MobiCom~2023}$

Reviewer of Elsevier The Journal of Networks and Computer Applications, Elsevier Pervasive and Mobile Computing, IEEE/ACM Transactions on Networking, IEEE Internet of Things Journal, IEEE Open Journal of the Communications Society, IEEE Transactions on Communications.

MENTORSHIP EXPERIENCE

Xiaojie Fan (Stony Brook U.), Sagar Patange (U. of Chicago), Laura Davossa and Francesco Mazza (U. of Naples Federico II)

Unpublished

- [16] Caitao Zhan, Joaquin Chung, Rajkumar Kettimuthu, Allen Zang, Alexander Kolar, "Design and Simulation of the Adaptive Continuous Entanglement Generation Protocol".
- [15] Laura d'Avossa, **Caitao Zhan**, Joaquin Chung, Rajkumar Kettimuthu, Angela Sara Cacciapuoti, Marcello Caleffi, "Simulation of Quantum Transduction Strategies for Quantum Networks". arXiv
- [14] Francesco Mazza, **Caitao Zhan**, Joaquin Chung, Rajkumar Kettimuthu, Marcello Caleffi, Angela Sara Caccia-puoti, "Simulation of Entanglement-Enabled Connectivity in QLANs using SeQUeNCe". arXiv
- [13] X. Fan, C. Zhan, H. Gupta, C.R. Ramakrishnan, "Optimized Distribution of Entanglement Graph States in Quantum Networks". arXiv

Publication

- [12] C. Zhan, H. Gupta, M. Hillery, "Optimizing Initial State of Detector Sensors in Quantum Sensor Networks". ACM Transactions on Quantum Computing (TQC), PDF
- [11] M. Ghaderibaneh, C. Zhan, H. Gupta, "DeepAlloc: CNN-Based Approach to Efficient Spectrum Allocation in Shared Spectrum Systems". IEEE Access 2024, PDF
- [10] C. Zhan, H. Gupta, "Quantum Sensor Network Algorithms for Transmitter Localization". IEEE Quantum Computing and Engineering (QCE) 2023, PDF.
- [9] M. Hillery, H. Gupta, C. Zhan, "Discrete Outcome Quantum Sensor Networks". Physical Review A (PRA), PDF.
- [8] M. Ghaderibaneh, C. Zhan, C.R. Ramakrishnan, H. Gupta, "Efficient Quantum Network Communication using Optimized Entanglement-Swapping Trees", IEEE Transactions on Quantum Engineering (TQE) 2022. PDF.
- [7] C. Zhan, M. Ghaderibaneh, P. Sahu, H. Gupta, "DeepMTL Pro: Deep Learning Based Multiple Transmitter Localization and Power Estimation", Elsevier Pervasive and Mobile Computing (PMC) 2022. PDF.
- [6] A. Bhattacharya, C. Zhan, A. Maji, H. Gupta, S. Das, P. Djuric, "Selection of Sensors for Efficient Transmitter Localization", IEEE/ACM Transactions on Networking (TON) 2021. PDF.
- [5] C. Zhan, M. Ghaderibaneh, P. Sahu, H. Gupta, "DeepMTL: Deep Learning Based Multiple Transmitter Localization", IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM) 2021. PDF.
- [4] H. Gupta, M. Curran, C. Zhan, "Near-Optimal Multihop Scheduling in General Circuit-Switched Networks", ACM International Conference on emerging Networking Experiments and Technologies (CoNEXT) 2020. PDF.
- [3] C. Zhan, H. Gupta, A. Bhattacharya, M. Ghaderibaneh, "Efficient Localization of Multiple Intruders in Shared Spectrum System", ACM/IEEE Information Processing in Sensor Networks (IPSN) 2020. PDF.
- [2] A. Bhattacharya, C. Zhan, H. Gupta, S. Das, P. Djuric, "Selection of Sensors for Efficient Transmitter Localization", IEEE International Conference on Computer Communications (INFOCOM) 2020. PDF.
- [1] C. Zhan and C. Li, "Shape Formation in Games: a Probability-based Evolutionary Approach", 2016 International Conference on Computational Intelligence and Security. PDF.