

Capacities and Capacity-Achieving Decoders for Various Fingerprinting Games

Thijs Laarhoven

mail@thijs.com
http://www.thijs.com/

IH&MMSec 2014, Salzburg, Austria (June 12, 2014)

Outline

Introduction

Related work

Lower bounds Efficient decoders

Previously on IH&MMSec 2013

Contributions

Lower bounds Efficient decoders

Conclusion

Problem: Illegal redistribution

User	Co	эру	rigl	hte	d c	ont	ent	:									
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Boris	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Caroline	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
David	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Eve	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Fred	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Gábor	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	

Problem: Illegal redistribution

User	C	эру	rigl	nte	d c	ont	ent	:									
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Boris	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Caroline	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
David	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Eve	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Fred	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Gábor	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Сору	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	

User	C	эру	rig	hte	d c	ont	ent	t (f	ng	erp	rint	ed)				
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0	1	1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Caroline	0	1	0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0	1	1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0	1	0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0	1	1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1	0	

User	C	ору	/rig	hte	d c	ont	ent	t (f	ng	erp	rint	ted))				
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0	1	1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Caroline	0	1	0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0	1	1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0	1	0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0	1	1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1	0	
Сору	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	

User	C	эру	/rig	hte	d c	ont	ent	t (f	ng	erp	rint	ted)				
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0	1	1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Caroline	0	1	0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0	1	1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0	1	0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0	1	1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1	0	
Сору	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	

User	C	эру	rigl	hte	d c	ont	ent	t (f	ng	erp	rint	ted)				
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0	1	1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Caroline	0	1	0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0	1	1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0	1	0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0	1	1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1	0	
Сору	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	

User	C	эру	rig	hte	d c	ont	ent	t (f	ng	erp	rint	ed)				
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0	1	1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Caroline	0	1	0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0	1	1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0	1	0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0	1	1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1	0	

User	C	эру	rigl	hte	d c	ont	ent	t (f	ing	erp	rint	ted)				
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0	1	1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Caroline	0	1	0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0	1	1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0	1	0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0	1	1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1	0	

User	C	ору	rigl	nte	d c	ont	ent	t (f	ng	erp	rint	ed)				
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0	1	1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Caroline	0	1	0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0	1	1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0	1	0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0	1	1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1	0	
Сору	0	1	1	1	0	1	0	1	1	0	1	1	0	1	0	0	

User	C	эру	rig	hte	d c	ont	ent	: (f	ing	erp	rint	ted)				
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0	1	1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Caroline	0	1	0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0	1	1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0	1	0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0	1	1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1	0	
Сору	0	1	1	1	0	1	0	1	1	0	1	1	0	1	0	0	

Solution: Collusion-resistant schemes

User	C	ору	rig	hte	d c	ont	en	t (f	ng	erp	rint	ted)				
Antonino	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Boris	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Caroline	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
David	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Eve	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Fred	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Gábor	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Henry	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Сору	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	

Solution: Collusion-resistant schemes

User	Copyrighted	content (fing	erprinted	d)	
Antonino	?	? ?	?	? ? ?	
Boris	?	? ?	?	? ? ?	
Caroline	?	? ?	?	? ? ?	
David	?	? ?	?	? ? ?	
Eve	?	? ?	?	? ? ?	
Fred	?	? ?	?	? ? ?	
Gábor	?	? ?	?	? ? ?	
Henry	?	? ?	?	? ? ?	
Сору	?	? ?	?	? ? ?	

Introduction Some notation

- n: total number of users
- c: number of colluders/pirates ($c \ll n$)
- ℓ : code length, size of fingerprints
- X: code matrix, assigning fingerprints to users
- y: pirate output

Related work

How many symbols ℓ are necessary for static fingerprinting?

- 1998: $\ell = \Omega(c \log n)^{[1]}$
- 2003: $\ell = \Omega(c^2 \log \frac{n}{c})^{[2]}$
- 2003: $\ell = \Omega(c^2 \log n)^{[3]}$
- 2009: $\ell \stackrel{?}{\sim} 2c^2 \ln n^{[4]}$
- 2012: $\ell \sim 2c^2 \ln n^{[5]}$
 - asymptotic optimal attack is the interleaving attack

^[1] D. Boneh and J. Shaw, "Collusion-secure fingerprinting for digital data," IEEE Transactions on Information Theory, vol. 44, no. 5, pp. 1897–1905, 1998.

^[2]C. Peikert et al., "Lower bounds for collusion-secure fingerprinting," in ACM-SIAM Symposium on Discrete Algorithms (SODA), 2003, pp. 472–479.

^[3] G. Tardos, "Optimal probabilistic fingerprint codes," in ACM Symposium on Theory of Computing (STOC), 2003, pp. 116–125.

^[4] E. Amiri and G. Tardos, "High rate fingerprinting codes and the fingerprinting capacity," in ACM-SIAM Symposium on Discrete Algorithms (SODA), 2009, pp. 336–345.

^[5]Y.-W. Huang and P. Moulin, "On the saddle-point solution and the large-coalition asymptotics of fingerprinting games," *IEEE Transactions on Information Forensics and Security*, vol. 7, no. 1, pp. 160–175, 2012.

Related work Efficient decoders

How many symbols ℓ are sufficient for static fingerprinting?

- 1995: $\ell = O(c^4 \log n)^{[1]}$
- 2003: $\ell = 100c^2 \ln n^{[2]}$ ("the Tardos scheme")
- 2006: $\ell \sim 4\pi^2 c^2 \ln n^{[6]}$
- 2008: $\ell \sim \pi^2 c^2 \ln n^{[7]}$
- 2008: $\ell \stackrel{?}{\sim} \frac{1}{2} \pi^2 c^2 \ln n^{[7]}$
- 2009: $\ell \approx 5.35c^2 \ln n^{[8]}$
- 2011: $\ell \sim \frac{1}{2}\pi^2c^2 \ln n^{[9]}$

[6] B. Skoric et al., "Tardos fingerprinting is better than we thought," *IEEE Transactions on Information Theory*, vol. 54, no. 8, pp. 3663–3676, 2008.

^[7]B. Skoric et al., "Symmetric Tardos fingerprinting codes for arbitrary alphabet sizes," *Designs, Codes and Cryptography*, vol. 46, no. 2, pp. 137–166, 2008.

^[8] K. Nuida et al., "An improvement of discrete Tardos fingerprinting codes," Designs, Codes and Cryptography, vol. 52, no. 3, pp. 339–362, 2009.

^[9] T. Laarhoven and B. de Weger, "Optimal symmetric Tardos traitor tracing schemes," Designs, Codes and Cryptography, vol. 71, no. 1, pp. 83–103, 2014.

Limitations of the symmetric Tardos scheme^[10]

- Theorem: Using the symmetric score function, the current code length $\ell \sim \frac{1}{2}\pi^2c^2\ln n$ is asymptotically optimal
- Alternatively: Using the symmetric score function, it is impossible to achieve the fingerprinting capacity

[11] J.-J. Oosterwijk et al., "Optimal suspicion functions for Tardos traitor tracing schemes," in ACM Workshop on Information Hiding and Multimedia Security (IH&MMSec), 2013, pp. 19–28.

^[10] T. Laarhoven and B. de Weger, "Discrete distributions in the Tardos scheme, revisited," in ACM Workshop on Information Hiding and Multimedia Security (IH&MMSec), 2013, pp. 13–18.

Limitations of the symmetric Tardos scheme^[10]

- Theorem: Using the symmetric score function, the current code length $\ell \sim \frac{1}{2}\pi^2c^2\ln n$ is asymptotically optimal
- Alternatively: Using the symmetric score function, it is impossible to achieve the fingerprinting capacity

[11] J.-J. Oosterwijk et al., "Optimal suspicion functions for Tardos traitor tracing schemes," in ACM Workshop on Information Hiding and Multimedia Security (IH&MMSec), 2013, pp. 19–28.

^[10] T. Laarhoven and B. de Weger, "Discrete distributions in the Tardos scheme, revisited," in ACM Workshop on Information Hiding and Multimedia Security (IH&MMSec), 2013, pp. 13–18.

Limitations of the symmetric Tardos scheme^[10]

- Theorem: Using the symmetric score function, the current code length $\ell \sim \frac{1}{2}\pi^2c^2\ln n$ is asymptotically optimal
- Alternatively: Using the symmetric score function, it is impossible to achieve the fingerprinting capacity

Optimize the score functions for fixed attacks^[11]

- If scores are Gaussian, these score functions are optimal
- The 'interleaving defense' works against arbitrary attacks
- Score functions for other attacks work well, too!

[10] T. Laarhoven and B. de Weger, "Discrete distributions in the Tardos scheme, revisited," in ACM Workshop on Information Hiding and Multimedia Security (IH&MMSec), 2013, pp. 13–18.

[11] J.-J. Oosterwijk et al., "Optimal suspicion functions for Tardos traitor tracing schemes," in ACM Workshop on Information Hiding and Multimedia Security (IH&MMSec), 2013, pp. 19–28.

Optimize the score functions for fixed attacks^[15]

- If scores are Gaussian, these score functions are optimal
- The 'interleaving defense' works against arbitrary attacks
- Score functions for other attacks work well, too!

Optimize the score functions for fixed attacks^[15]

- If scores are Gaussian, these score functions are optimal
- The 'interleaving defense' works against arbitrary attacks
- Score functions for other attacks work well, too!

Open questions (not open anymore)

Lower bounds: Are these score functions optimal?

Optimize the score functions for fixed attacks^[15]

- If scores are Gaussian, these score functions are optimal
- The 'interleaving defense' works against arbitrary attacks
- Score functions for other attacks work well, too!

Open questions (not open anymore)

- Lower bounds: Are these score functions optimal?
- Efficient decoders: Can we do even better?

Lower bounds

Optimize the score functions for fixed attacks^[15]

- If scores are Gaussian, these score functions are optimal
- The 'interleaving defense' works against arbitrary attacks
- Score functions for other attacks work well, too!

Open questions (not open anymore)

- Lower bounds: Are these score functions optimal?
- Efficient decoders: Can we do even better?

Lower bounds Randomized construction

Assigning fingerprints to users, generating the code X

- Choose a parameter $p \in (0,1)$
- For every segment i and user j: $\mathbb{P}(X_{i,i} = 1) = p$

Lower bounds Randomized construction

Assigning fingerprints to users, generating the code X

- Choose a parameter $p \in (0,1)$
- For every segment i and user j: $\mathbb{P}(X_{j,i}=1)=p$

Finding the coalition $C \subseteq \{1, ..., n\}$

- Simple decoding: Decide whether $j \in \mathcal{C}$ based on...
 - \blacktriangleright X: The information $X_{j,i}$ for all i
 - Y: The pirate output bits y
 - ▶ P: The parameter p
- Joint decoding: Decide whether $j \in \mathcal{C}$ based on...
 - \triangleright X': The information $X_{k,i}$ for all i and all k
 - Y: The pirate output bits y
 - ▶ P: The parameter p

Lower bounds Simple decoding

Finding the coalition $C \subseteq \{1, ..., n\}$

- Simple decoding: Decide whether $j \in \mathcal{C}$ based on...
 - \triangleright X: The information $X_{i,i}$ for all i
 - Y: The pirate output bits y
 - ▶ P: The parameter p

Lower bounds Simple decoding

Finding the coalition $C \subseteq \{1, \ldots, n\}$

- Simple decoding: Decide whether $j \in \mathcal{C}$ based on...
 - \triangleright X: The information $X_{i,i}$ for all i
 - Y: The pirate output bits y
 - ▶ P: The parameter p

For fixed pirate strategies, the simple capacity is given by [5]

$$C^{\text{simple}} = \max_{p \in (0,1)} I(X; Y|P = p).$$

Lower bounds Simple decoding

Finding the coalition $C \subseteq \{1, \ldots, n\}$

- Simple decoding: Decide whether $j \in \mathcal{C}$ based on...
 - \triangleright X: The information $X_{i,i}$ for all i
 - Y: The pirate output bits y
 - ▶ P: The parameter p

For fixed pirate strategies, the simple capacity is given by^[5]

$$C^{\text{simple}} = \max_{p \in (0,1)} I(X; Y|P = p).$$

I(X; Y|P = p) is an explicit function of the strategy and p.

Lower bounds Joint decoding

Finding the coalition $C \subseteq \{1, ..., n\}$

- Joint decoding: Decide whether $j \in \mathcal{C}$ based on...
 - \triangleright X': The information $X_{k,i}$ for all i and all k
 - Y: The pirate output bits y_S
 - ▶ P: The parameter p

Lower bounds Joint decoding

Finding the coalition $C \subseteq \{1, \ldots, n\}$

- Joint decoding: Decide whether $j \in \mathcal{C}$ based on...
 - \triangleright X': The information $X_{k,i}$ for all i and all k
 - Y: The pirate output bits y_S
 - ▶ P: The parameter p

For fixed pirate strategies, the joint capacity is given by [5]

$$C^{\mathsf{joint}} = \max_{p \in (0,1)} I(X'; Y|P = p).$$

Lower bounds Joint decoding

Finding the coalition $C \subseteq \{1, \ldots, n\}$

- Joint decoding: Decide whether $j \in \mathcal{C}$ based on...
 - \triangleright X': The information $X_{k,i}$ for all i and all k
 - Y: The pirate output bits y_S
 - ▶ P: The parameter p

For fixed pirate strategies, the joint capacity is given by [5]

$$C^{\text{joint}} = \max_{p \in (0,1)} I(X'; Y|P = p).$$

I(X'; Y|P = p) is an explicit function of the strategy and p.

Lower bounds Pirate strategies

Common pirate strategies:

- Interleaving atk: Randomly choose a pirate, output his symbol
- All-1 attack: Always output a 1 if possible
- Majority voting: Always output the most received symbol
- Minority voting: Always output the least received symbol
- Coin-flip attack: Flip a fair coin to choose the output

• ...

Lower bounds Results

Pirate strategy	C^{simple}	C^{joint}
(Unknown attacks)	$1/(2c^2 \ln 2)^{[5]}$	$1/(2c^2 \ln 2)^{[5]}$
Interleaving attack	$\frac{1}{(2c^2 \ln 2)}[5]$	$\frac{1}{(2c^2 \ln 2)}[5]$
All-1 attack	$\ln 2/c$	1/c
Majority voting	$1/(\pi c \ln 2)$	1/c
Minority voting	$\ln 2/c$	1/c
Coin-flip attack	$\ln 2/(4c)$	$\log_2(\frac{5}{4})/c$
•••		

Lower bounds Results

Pirate strategy	C^{simple}	C ^{joint}
(Unknown attacks)	$0.72/c^{2}[5]$	$0.72/c^2$ [5]
Interleaving attack	$0.72/c^{2}[5]$	$0.72/c^{2}[5]$
All-1 attack	0.69/c	1.00/c
Majority voting	0.46/c	1.00/c
Minority voting	0.69/c	1.00/c
Coin-flip attack	0.17/c	0.32/c
• • •		

Lower bounds Results

Pirate strategy	C^{simple}	C^{joint}	Results
(Unknown attacks)	$0.72/c^{2}[5]$	$0.72/c^{2}[5]$	$0.72/c^2$
Interleaving attack	$0.72/c^{2}[5]$	$0.72/c^{2}[5]$	$0.72/c^2$
All-1 attack	0.69/c	1.00/c	0.72/c
Majority voting	0.46/c	1.00/c	0.46/c
Minority voting	0.69/c	1.00/c	0.72/c
Coin-flip attack	0.17/c	0.32/c	0.36/c
•••	• • •	• • •	

Lower bounds Results

Pirate strategy	C^{simple}	C^{joint}	Results
(Unknown attacks)	$0.72/c^{2}[5]$	$0.72/c^{2}[5]$	$0.72/c^2$
Interleaving attack	$0.72/c^{2}[5]$	$0.72/c^{2}[5]$	$0.72/c^2$
All-1 attack	0.69/c	1.00/c	0.72/c
Majority voting	0.46/c	1.00/c	0.46/c
Minority voting	0.69/c	1.00/c	0.72/c
Coin-flip attack	0.17/c	0.32/c	0.36/c
• • •			

Under the Gaussian assumption, the score functions of Oosterwijk et al. perform better than what is theoretically possible!

Lower bounds Results

Pirate strategy	C^{simple}	C^{joint}	Results
(Unknown attacks)	$0.72/c^{2}[5]$	$0.72/c^{2}[5]$	$0.72/c^2$
Interleaving attack	$0.72/c^2[5]$	$0.72/c^2$ [5]	$0.72/c^2$
All-1 attack	0.69/c	1.00/c	0.72/c
Majority voting	0.46/c	1.00/c	0.46/c
Minority voting	0.69/c	1.00/c	0.72/c
Coin-flip attack	0.17/c	0.32/c	0.36/c

Under the Gaussian assumption, the score functions of Oosterwijk et al. perform better than what is theoretically possible!

Optimist: Those are great results!

Lower bounds Results

Pirate strategy	C^{simple}	C^{joint}	Results
(Unknown attacks)	$0.72/c^{2}[5]$	$0.72/c^{2}[5]$	$0.72/c^2$
Interleaving attack	$0.72/c^2[5]$	$0.72/c^2$ [5]	$0.72/c^2$
All-1 attack	0.69/c	1.00/c	0.72/c
Majority voting	$0.46/_{c}$	1.00/c	0.46/c
Minority voting	0.69/c	1.00/c	0.72/c
Coin-flip attack	0.17/c	0.32/c	0.36/c

Under the Gaussian assumption, the score functions of Oosterwijk et al. perform better than what is theoretically possible!

- Optimist: Those are great results!
- Realist: The Gaussian assumption may be wrong...

Lower bounds Conclusion

Optimize the score functions for fixed attacks^[15]

- If scores are Gaussian, these score functions are optimal
- The 'interleaving defense' works against arbitrary attacks
- Score functions for other attacks work well, too!

- Lower bounds: Are these score functions optimal?
- <u>Efficient decoders</u>: Can we do even better?

Lower bounds Conclusion

Optimize the score functions for fixed attacks^[15]

- If scores are Gaussian, these score functions are optimal
- The 'interleaving defense' works against arbitrary attacks
- Score functions for other attacks work well, too!

- Lower bounds: Are these score functions optimal?
- Efficient decoders: Can we do even better?

Lower bounds Conclusion

Optimize the score functions for fixed attacks^[15]

- If scores are Gaussian, these score functions are optimal
- The 'interleaving defense' works against arbitrary attacks
- Score functions for other attacks work well, too!

- Lower bounds: Are these score functions optimal? No.
- Efficient decoders: Can we do even better?

Efficient decoders Introduction

Optimize the score functions for fixed attacks^[15]

- If scores are Gaussian, these score functions are optimal
- The 'interleaving defense' works against arbitrary attacks
- Score functions for other attacks work well, too!

- Lower bounds: Are these score functions optimal? No.
- Efficient decoders: Can we do even better?

Neyman-Pearson lemma^[12]:

Given some data \mathcal{D} , the most powerful test (of size α) to distinguish between two hypotheses H_0 and H_1 is to test if, for some constant η_{α} ,

$$\Lambda(\mathcal{D}) = \frac{\mathbb{P}(\mathcal{D} \mid H_0)}{\mathbb{P}(\mathcal{D} \mid H_1)} \le \eta_{\alpha}. \tag{1}$$

[1

Neyman-Pearson lemma^[12]:

Given some data $\mathcal{D} = \{X, Y\}$, the most powerful test (of size α) to distinguish between two hypotheses H_0 and H_1 is to test if, for some constant η_{α} ,

$$\Lambda(\mathcal{D}) = \frac{\mathbb{P}(\mathcal{D} \mid H_0)}{\mathbb{P}(\mathcal{D} \mid H_1)} \le \eta_{\alpha}. \tag{1}$$

r

Neyman-Pearson lemma^[12]:

Given some data $\mathcal{D} = \{X, Y\}$, the most powerful test (of size α) to distinguish between two hypotheses $H_0 : j \in \mathcal{C}$ and H_1 is to test if, for some constant η_{α} ,

$$\Lambda(\mathcal{D}) = \frac{\mathbb{P}(\mathcal{D} \mid H_0)}{\mathbb{P}(\mathcal{D} \mid H_1)} \le \eta_{\alpha}. \tag{1}$$

r

Neyman-Pearson lemma^[12]:

Given some data $\mathcal{D} = \{X, Y\}$, the most powerful test (of size α) to distinguish between two hypotheses $H_0: j \in \mathcal{C}$ and $H_1: j \notin \mathcal{C}$ is to test if, for some constant η_{α} ,

$$\Lambda(\mathcal{D}) = \frac{\mathbb{P}(\mathcal{D} \mid H_0)}{\mathbb{P}(\mathcal{D} \mid H_1)} \le \eta_{\alpha}. \tag{1}$$

[12] J. Neyman and E. S. Pearson, "On the problem of the most efficient tests of statistical hypotheses," Philosophical Transactions of the Royal Society of London. Series A, vol. 231, no. 694-706, pp. 289-337, 1933.

Neyman-Pearson lemma^[12]:

Given some data $\mathcal{D} = \{X, Y\}$, the most powerful test (of size α) to distinguish between two hypotheses $H_0: j \in \mathcal{C}$ and $H_1: j \notin \mathcal{C}$ is to test if, for some constant η_{α} ,

$$\Lambda(\mathcal{D}) = \frac{\mathbb{P}(X, Y \mid j \in \mathcal{C})}{\mathbb{P}(X, Y \mid j \notin \mathcal{C})} \le \eta_{\alpha}. \tag{1}$$

r

Neyman-Pearson lemma^[12]:

Given some data $\mathcal{D} = \{X, Y\}$, the most powerful test (of size α) to distinguish between two hypotheses $H_0: j \in \mathcal{C}$ and $H_1: j \notin \mathcal{C}$ is to test if, for some constant η_{α} ,

$$\Lambda(\mathcal{D}) = \frac{\mathbb{P}(X, Y \mid j \in \mathcal{C})}{\mathbb{P}(X, Y \mid j \notin \mathcal{C})} \le \eta_{\alpha}. \tag{1}$$

Likelihood ratio $\Lambda(\mathcal{D})$ corresponds to the 'score function' and *provably* achieves capacity for fixed attacks.

_

^[12] J. Neyman and E. S. Pearson, "On the problem of the most efficient tests of statistical hypotheses," Philosophical Transactions of the Royal Society of London. Series A, vol. 231, no. 694-706, pp. 289–337, 1933.

Results of Abbe and Zheng^{[13][14]}:

Given some data \mathcal{D} , the best test to distinguish between two hypotheses H_0 and $\mathcal{H}_a = \{H_1, H_2, \dots\}$ is to test H_0 against the worst-case attack $H_a^* \in \mathcal{H}_a$ using likelihood ratios.

^[13] E. Abbe and L. Zheng, "Linear universal decoding for compound channels," *IEEE Transactions on Information Theory*, vol. 56, no. 12, pp. 5999–6013, 2012.

^[14] P. Meerwald and T. Furon, "Toward practical joint decoding of binary Tardos fingerprinting codes," IEEE Transactions on Information Forensics and Security, vol. 7, no. 4, pp. 1168–1180, 2012.

Results of Abbe and Zheng^{[13][14]}:

Given some data \mathcal{D} , the best test to distinguish between two hypotheses H_0 and $\mathcal{H}_a = \{H_1, H_2, \dots\}$ is to test H_0 against the worst-case attack $H_a^* \in \mathcal{H}_a$ using likelihood ratios.

• H_1, H_2, \ldots correspond to different pirate strategies

^[13] E. Abbe and L. Zheng, "Linear universal decoding for compound channels," *IEEE Transactions on Information Theory*, vol. 56, no. 12, pp. 5999–6013, 2012.

Results of Abbe and Zheng^{[13][14]}:

Given some data \mathcal{D} , the best test to distinguish between two hypotheses H_0 and $\mathcal{H}_a = \{H_1, H_2, \dots\}$ is to test H_0 against the worst-case attack $H_a^* \in \mathcal{H}_a$ using likelihood ratios.

- H_1, H_2, \ldots correspond to different pirate strategies
- Worst-case attack is typically quite complicated

^[13] E. Abbe and L. Zheng, "Linear universal decoding for compound channels," *IEEE Transactions on Information Theory*, vol. 56, no. 12, pp. 5999–6013, 2012.

Results of Abbe and Zheng^{[13][14]}:

Given some data \mathcal{D} , the best test to distinguish between two hypotheses H_0 and $\mathcal{H}_a = \{H_1, H_2, \dots\}$ is to test H_0 against the worst-case attack $H_a^* \in \mathcal{H}_a$ using likelihood ratios.

- H_1, H_2, \ldots correspond to different pirate strategies
- Worst-case attack is typically quite complicated
- Replace 'worst-case attack' with 'asympt. worst-case attack'

^[13] E. Abbe and L. Zheng, "Linear universal decoding for compound channels," *IEEE Transactions on Information Theory*, vol. 56, no. 12, pp. 5999–6013, 2012.

Results of Abbe and Zheng^{[13][14]}:

Given some data \mathcal{D} , the best test to distinguish between two hypotheses H_0 and $\mathcal{H}_a = \{H_1, H_2, \dots\}$ is to test H_0 against the worst-case attack $H_a^* \in \mathcal{H}_a$ using likelihood ratios.

- H_1, H_2, \ldots correspond to different pirate strategies
- Worst-case attack is typically quite complicated
- Replace 'worst-case attack' with 'asympt. worst-case attack'
 - Asymptotic worst-case attack is the interleaving attack

[13] E. Abbe and L. Zheng, "Linear universal decoding for compound channels," *IEEE Transactions on Information Theory*, vol. 56, no. 12, pp. 5999–6013, 2012.

Results of Abbe and Zheng^{[13][14]}:

Given some data \mathcal{D} , the best test to distinguish between two hypotheses H_0 and $\mathcal{H}_a = \{H_1, H_2, \dots\}$ is to test H_0 against the worst-case attack $H_a^* \in \mathcal{H}_a$ using likelihood ratios.

- H_1, H_2, \ldots correspond to different pirate strategies
- Worst-case attack is typically quite complicated
- Replace 'worst-case attack' with 'asympt. worst-case attack'
 - Asymptotic worst-case attack is the interleaving attack
 - Leads to simple expressions and asymptotic optimal decoder

[13] E. Abbe and L. Zheng, "Linear universal decoding for compound channels," *IEEE Transactions on Information Theory*, vol. 56, no. 12, pp. 5999–6013, 2012.

Efficient decoders

Optimized decoders for fixed attacks

- Decoders provably achieve capacity for given attacks
- Motivated by the Neyman-Pearson lemma
- No (incorrect) Gaussian assumption needed

Universal decoder for arbitrary attacks

- Log-likelihood decoder for the interleaving attack is optimal
- Motivated by results of Abbe and Zheng
- No Gaussian assumption needed (but scores are Gaussian)
- No more cut-offs on the distribution function!

Efficient decoders

Optimize the score functions for fixed attacks^[15]

- If scores are Gaussian, these score functions are optimal
- The 'interleaving defense' works against arbitrary attacks
- Score functions for other attacks work well, too!

- Lower bounds: Are these score functions optimal? No.
- Efficient decoders: Can we do even better?

Efficient decoders

Optimize the score functions for fixed attacks^[15]

- If scores are Gaussian, these score functions are optimal
- The 'interleaving defense' works against arbitrary attacks
- Score functions for other attacks work well, too!

- Lower bounds: Are these score functions optimal? No.
- Efficient decoders: Can we do even better? Yes, we can!

Conclusion

Explicit asymptotics of the capacities of various models^[15]

- Information-theoretic approach: Mutual information game
- Both simple (efficient) and joint (optimal) decoding
- Can be applied to arbitrary pirate strategies

Capacity-achieving decoders for arbitrary models^[16]

- Statistical approach: Neyman-Pearson hypothesis testing
- Both simple and joint decoding
- Asymptotically optimal regardless of the pirate attack
- 'Interleaving decoder' is an improved universal decoder

^[15] T. Laarhoven, "Asymptotics of fingerprinting and group testing: tight bounds from channel capacities," submitted to IEEE Transactions on Information Theory, pp. 1–14, 2014.

^[16] T. Laarhoven, "Asymptotics of fingerprinting and group testing: capacity-achieving log-likelihood decoders," submitted to IEEE Transactions on Information Theory, pp. 1–13, 2014.

Questions?