## Linguagens Regulares

Prof. Eduardo Gabriel Reis Miranda



Centro Federal de Educação Tecnológica de Minas Gerais Leopoldina – CEFET

17 de julho de 2023



- Contextualização
- 2 Alfabetos
- Palavras
- 4 Linguagens

- Contextualização
- 2 Alfabetos
- 3 Palavras
- 4 Linguagens

# O que é linguagem?

# O que é linguagem?

#### Dicionário Aurélio

O uso da palavra articulada ou escrita como meio de expressão e comunicação entre pessoas.

# O que é linguagem?

#### Dicionário Aurélio

O uso da palavra articulada ou escrita como meio de expressão e comunicação entre pessoas.

 Claramente, a definição acima não é suficiente para permitir o desenvolvimento matemático de uma teoria baseada em linguagens.

- Contextualização
- 2 Alfabetos
- 3 Palavras
- 4 Linguagens

### **Alfabetos**

#### Definição → Alfabeto

Um conjunto finito de símbolos ou caracteres (Sipser 2012; Menezes 2011). <sup>a</sup>

<sup>a</sup>Os membros de um alfabeto são os **símbolos** do alfabeto.

Iremos utilizar letras gregas maiúsculas  $\Sigma$  e  $\Gamma$  para denotar alfabetos. Exemplos de alfabetos:

$$\begin{split} & \Sigma_1 = \{0,1\} \\ & \Sigma_2 = \{a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z\} \\ & \Gamma = \{0,1,x,y\} \end{split}$$

## Quiz

**Pergunta 1**: O conjunto  $\mathbb{N}$  é um conjunto de alfabeto? Por quê?

**Pergunta 2**: O conjunto vazio (i.e.,  $\emptyset$ ) é um alfabeto?

- Contextualização
- 2 Alfabetos
- Palavras
- 4 Linguagens

#### **Palavras**

#### Definição → Palavra

Uma string, cadeia, sentença ou palavra é uma sequência finita de símbolos do alfabeto justapostos (Menezes 2002).

#### Exemplos:

- Se  $\Sigma_1=0,1$ , então 01001 é uma cadeia de símbolos em  $\Sigma_1.$
- Se  $\Sigma_2=a,b,c,...,x,y,z$ , então abracadabra é uma palavra sobre  $\Sigma_2.$

# Tamanho de uma palavra...

Se w é uma palavra sobre  $\Sigma$ , o tamanho (ou comprimento) de w , denotado |w|, é o número de símbolos que formam a palavra.

Exemplos:

$$|1| = 1$$

$$|10| = 2$$

$$|0000| = 4$$

$$|001101| = 6$$

Palavra vazia: uma palavra de tamanho zero é denominada **palavra vazia**. O símbolo usado para representar tal palavra é  $\epsilon$ .

Portanto:

$$|\epsilon| = 0.$$

# Mais sobre palavras

- Se uma palavra w tem tamanho n, podemos dizer que w =  $w_1$ ,  $w_2$ ,  $w_3$ , . . . ,  $w_n$ , onde cada  $w_i \in \Sigma$ .
- O reverso de uma palavra w , denotado por w R , é a palavra obtida quando inverte-se a ordem dos símbolos de w :  $w_n$ , . . . ,  $w_3$ ,  $w_2$ ,  $w_1$ .

#### Exemplos:

$$banana^R = ananab$$
  $teoria^R = airoet$ 

• Dado um alfabeto  $\Sigma$ , é possível denotar o conjunto de todas as palavras de tamanho k usando a notação  $\Sigma^k$  .

Por exemplo, dado  $\Sigma = 0, 1$ , então::

$$\Sigma^1 = 0.1$$
  $\Sigma^2 = 00.01.10.11$ 



### Fechamento recursivo e transitivo

O fechamento recursivo e transitivo definido como o conjunto de todas as palavras sobre um alfabeto  $\Sigma$  é normalmente denotado por  $\Sigma^*$ .

#### Definição → Fechamento Recursivo e Transitivo

O fechamento recursivo<sup>a</sup> a e transitivo é formalmente definido como a seguir:

$$\Sigma^* = \Sigma_0 \cup \Sigma_1 \cup \Sigma_2 \cup \Sigma_3 \cup \dots = \bigcup_{i=0}^{\infty} \Sigma_i$$

<sup>&</sup>lt;sup>a</sup>Às vezes denominado fechamento flexivo e transitivo.

#### Fechamento recursivo e transitivo

Em alguns casos, é conveniente remover a palavra vazia do conjunto de palavras. O **fechamento transitivo** representa o conjunto de palavras **não vazias** sobre um alfabeto  $\Sigma$  e é denotado por  $\Sigma^+$ .

#### Definição $\rightarrow$ Transitivo

O fechamento recursivo a e transitivo é formalmente definido como a seguir:

$$\Sigma^+ = \Sigma_1 \cup \Sigma_2 \cup \Sigma_3 \cup \cdots = \bigcup_{i=1}^{\infty} \Sigma_i$$

Portanto, como se pode perceber:

$$\Sigma^* = \Sigma + \cup \{\epsilon\}$$



# Concatenação de Palavras

Dado duas palavras  $\alpha$  e  $\beta$  de comprimentos n e m respectivamente. Então, pode-se dizer que  $\alpha\beta$  representa a concatenação de  $\alpha$  e  $\beta$ , ou seja, representa a palavra formada por uma cópia de  $\alpha$  seguida por uma cópia da palavra  $\beta$ .

• Mais precisamente, se  $\alpha$  é uma palavra composta de i símbolos  $\alpha = a_1 a_2 a_3 a_4 \dots a_i$  e se  $\beta$  é uma palavra composta de j símbolos  $\alpha = b_1 b_2 b_3 b_4 \dots b_j$ , então  $\alpha \beta$  tem comprimento i + j:  $\alpha \beta = a_1 a_2 a_3 a_4 \dots a_i b_1 b_2 b_3 b_4 \dots b_j$ .

Exemplo: Dado  $\alpha=$  01101 e  $\beta=$  110, então  $\alpha\beta=$  01101110 e  $\beta\alpha=$  11001101.

# Concatenação de Palavras

A notação de expoente é utilizada para concatenar uma palavra com si própria. Dado uma palavra w,  $w^n$  representa a concatenação de w com si própria n vezes:



Exemplo: Dado w = 0011, então w = 3 = 001100110011

### Propriedades $\rightarrow$ Concatenação

A operação de concatenação satisfaz as seguintes propriedades:

- Associatividade<sup>a</sup>
- Elemento neutro à esquerda e à direita

Elemento neutro à esquerda e à direita

<sup>a</sup>Embora associativa, a concatenação não é comutativa.

# Prefixos, sufixos e subpalavras

- Diz-se que uma palavra  $\alpha$  é prefixo de uma outra palavra  $\beta$  se é possível escrever  $\beta$  como  $\alpha\gamma$ .
- Uma palavra  $\alpha$  é sufixo de outra palavra  $\beta$  se é possível escrever  $\beta$  como  $\gamma\alpha$ .
- Dado quatro palavras,  $\alpha$ ,  $\beta$ ,  $\gamma$  e  $\delta$ , uma palavra  $\alpha$  é denominada subpalavra de uma palavra  $\beta$  quando  $\beta = \gamma \alpha \delta$ . (Se  $\gamma$  e  $\delta$  ou ambos forem vazios, a definição ainda se aplica.)

- Contextualização
- 2 Alfabetos
- Palavras
- 4 Linguagens

# Linguagens (formais)

#### Definição → Linguagem

Uma linguagem formal é um conjunto de cadeias de comprimento finito formadas pela concatenação de símbolos de um alfabeto finito. Mais formalmente, uma linguagem pode ser vista como o conjunto de todas as palavras que podem ser selecionadas de um dado alfabeto  $\Sigma$ , i.e.,  $\Sigma^*$  (Hopcroft et al. 2006).

#### Exemplo:

A linguagem de todas as palavras que consistem de n 0s seguidos de n 1s para todo  $n \geq 0$ :  $\{\epsilon, 01, 0011, 000111, \cdots\}$ 

# Quiz

**Pergunta 3**:  $\emptyset = \{\epsilon\}$ ? Por quê?

Pergunta 4: Qual é o conjunto resultante de  $\Sigma^0$  ?

# Como descrever linguagens formais?

No decorrer da disciplina, usaremos a notação para construção de conjuntos (set-builder notation)<sup>1</sup> para descrever linguagens complexas ou que contém muitas palavras. Considere o seguinte exemplo:

$$L = \{w \mid w \text{ cont\'em o mesmo n\'umero de 0s e 1s}\}$$

ou

$$L = \{w : w \text{ cont\'em o mesmo n\'umero de 0s e 1s}\}$$

#### **Exercicios:**

Usando operadores de conjunto e linguagem defina sobre  $\Sigma = \{0,1\}$ :

- A linguagem dos strings que começam com 0.
- A linguagem dos strings que possuem a substring 00.
- A linguagem dos strings que possuem 00 ou 11.
- A linguagem dos strings que possuem tamanho par.
- A linguagem dos strings que possuem tamanho ímpar.
- A linguagem dos strings que terminam com 0 seguido por um número ímpar de 1's consecutivos.
- A linguagem dos strings de tamanho par que começam ou terminam com 0.

#### Referências I

John E Hopcroft, Jeffrey D Ullman, and Rajeev Motwani. Introdução à teoria de autômatos, linguagens e computação. *Rio de Janeiro: Campus*, 2002.

Newton José Vieira. *Introdução aos fundamentos da computação: linguagens e máquinas.* Pioneira Thomson Learning, 2006.

## Linguagens Regulares

Prof. Eduardo Gabriel Reis Miranda



Centro Federal de Educação Tecnológica de Minas Gerais Leopoldina – CEFET

17 de julho de 2023

