Lecture #20 String Matching (3)

Algorithm
JBNU
Jinhong Jung

In This Lecture

- ☐ More efficient algorithm for string matching
 - KMP algorithm

Outline

☐ Intuition of KMP algorithm

☐ Search phase

☐ Failure array construction phase

Remind String Mating Automata

☐ Where does the efficiency of automata come from?

■ When a match fails, the automata knows where we go back and resume matching ⇒ don't need to match from scratch

T	а	b	C	*
0	1	0	0	0
1	1	2	0	0
2	1	0	0	0
3	1	4	0	0
4	5	0	0	0
5	1	4	6	0
6	7	0	0	0
7	1	2	0	0

- But, it takes $O(|\mathbf{\Sigma}|m)$ space & $O(|\mathbf{\Sigma}|m^3)$ time for construction
 - Can we do better? How to remove Σ?

Intuition of KMP Algorithm (1)

- \Box Let's introduce a failure symbol (×) instead of Σ to indicate that a match fails
 - For example, a match fails at j = 6; then, the automata handle this event with "b"
 - Instead of this, let's handle this with a single symbol ×

Intuition of KMP Algorithm (2)

- To handle ×, we can use the LPS of "ababa" for the next match (here, the LPS is "aba")
- Equal to moving j to 4 (next to LPS); then, resume matching!

Failure Array π

- ☐ Contains the information on how many we go back to when a match fail (×)
 - For example, P = "ababaca" results in the following
 - \circ $\pi[j]$ indicates a resuming location in **P** when a match fails (×)
 - $\pi[j] = 1 + \text{length of LPS of } P[1 \cdots j 1]$

Failure Automata

$\square \pi$ represents the following failure automata

- Every backward edge indicates failure matching (x)
- A note indicates a state; after we visit the state, we should compare a character in the small box
- It uses O(m) extra space! (we'll see how to construct π later)

Overview of KMP Algorithm

☐ Proposed by Knuth, Morris, and Pratt in 1977

- Has a similar intuition to that of string matching automata
 - Restart from a resuming location when a match fails, not from scratch

☐ Phases of KMP Algorithm

- Failure array construction phase: Construct π from P
- Search phase: Match P over A with π
 - \circ Let's first check the search phase assuming a valid π is given.
 - Correctness is out-of-scope. Instead, focus on the intuition!
 - Note that there are various implementations of KMP according to interpretation and index base.
 - This lecture shows the simplest version using 1-base index, included in the textbook.

Outline

☐ Intuition of KMP algorithm

☐ Search phase

☐ Failure array construction phase

Search Phase of KMP

☐ Overview of the search phase

- Input: A, P, and π
 - \circ *i* is a variable pointing to *A* and *j* is a variable point to *P*
- While sequentially iterating A from left to right, handle the following cases:
 - Initial or match case
 - If j = 0 or A[i] = P[j], then move i and j to the next $(i \leftarrow i + 1 \text{ and } j \leftarrow j + 1)$
 - Failure case
 - If $A[i] \neq P[j]$, then go back to $j \leftarrow \pi[j]$
 - Final case
 - If j = m + 1, then output that **P** is matched at A[i m] and go back to $j \leftarrow \pi[j]$

- \square Start at A[1] & State 1, and compare A[i] & P[j]
 - ⇒ Failure! Move j back $(j \leftarrow \pi[j])$

\Box This is the initial case (j = 0)

■ Then, move i and j to the next

\square Compare A[i] and P[j]

 $\blacksquare \Rightarrow$ Match! Move *i* and *j* to the next

- \square Compare A[i] and P[j]
 - ⇒ Failure! Move j back $(j \leftarrow \pi[j])$

- \square Compare A[i] and P[j]
 - ⇒ Failure! Move j back $(j \leftarrow \pi[j])$

\Box This is the initial case (j = 0)

■ Then, move i and j to the next

Search Phase with π (7)

\square Compare A[i] and P[j]

■ \Rightarrow Match! Move *i* and *j* to the next

- \square Compare A[i] and P[j]
 - $\blacksquare \Rightarrow$ Match! Move *i* and *j* to the next

Search Phase with π (9)

\square Compare A[i] and P[j]

 $\blacksquare \Rightarrow$ Match! Move *i* and *j* to the next

- \square Compare A[i] and P[j]
 - $\blacksquare \Rightarrow$ Match! Move *i* and *j* to the next

- \square Compare A[i] and P[j]
 - $\blacksquare \Rightarrow$ Match! Move *i* and *j* to the next

- \square Compare A[i] and P[j]
 - ⇒ Failure! Move j back $(j \leftarrow \pi[j])$

- \square Compare A[i] and P[j]
 - $\blacksquare \Rightarrow$ Match! Move *i* and *j* to the next

- \square Compare A[i] and P[j]
 - $\blacksquare \Rightarrow$ Match! Move *i* and *j* to the next

- \square Compare A[i] and P[j]
 - $\blacksquare \Rightarrow$ Match! Move *i* and *j* to the next

- \square Compare A[i] and P[j]
 - $\blacksquare \Rightarrow$ Match! Move *i* and *j* to the next

- \Box This is the final case (j = m + 1)
 - ⇒ Output "**P** is matched at A[i-m]", and go back $j \leftarrow \pi[j]$

- \square Compare A[i] and P[j]
 - ⇒ Failure! Move j back $(j \leftarrow \pi[j])$

- \square Compare A[i] and P[j]
 - ⇒ Failure! Move j back $(j \leftarrow \pi[j])$
 - \circ Repeat these until all characters in A are checked

KMP Search Phase

☐ Pseudocode of the search phase

```
def KMP-search(A, P, \pi):
     # n: length of A (document string)
     # m: length of P (pattern string)
     i \leftarrow 1 # pointing to A
     j \leftarrow 1 # pointing to P
     while i <= n:
          if j == 0 or A[i] == P[j]:
i \leftarrow i + 1
Initial case (j=0)
Match case
                                                Match case
               j \leftarrow j + 1
          else:
                                                Failure case
               j \leftarrow \pi[j]
                                                Final case
          if j == m+1:
               output "there is a matching at A[i-m]"
               j \leftarrow \pi[j]
```

Time Complexity of Searching (1)

- ☐ It depends on # of iterations of the while loop
 - Match: both *i* and *j* increase by 1
 - Failure & Final: i does not change & j decreases to $\pi[j]$

```
\begin{array}{lll} \operatorname{def} \ \mathsf{KMP\text{-}search}(\mathsf{A}, \ \mathsf{P}, \ \pi) \colon \\ & \mathrm{i} \leftarrow 1 \quad \& \quad \mathrm{j} \leftarrow 1 \\ & \operatorname{while} \ \mathrm{i} <= n \colon \\ & \mathrm{if} \ \mathrm{j} == 0 \ \operatorname{or} \ \mathsf{A[i]} == \mathsf{P[j]} \colon \\ & \mathrm{i} \leftarrow \mathrm{i} + 1 \\ & \mathrm{j} \leftarrow \mathrm{j} + 1 \\ & \mathrm{else} \colon \\ & \mathrm{j} \leftarrow \pi[\mathrm{j}] \end{array} \qquad \begin{array}{l} \operatorname{Initial \, case} \ (\mathrm{j} = 0) \\ \operatorname{Match \, case} \end{array} \text{Match \, case} \text{Failure \, case} \text{if } \mathrm{j} == \mathrm{m} + 1 \colon \qquad \qquad \text{Final \, case} \text{output "there is a matching at } \mathsf{A[i-m]"} \mathrm{j} \leftarrow \pi[\mathrm{j}]
```

Time Complexity of Searching (2)

\square Let's introduce a new variable i + (i - j) as a trick

- For each iteration, i + (i j) increases by at least 1
 - Match: both i and j increase by 1
 - \Rightarrow After then, i + (i j) increases by 1
 - Failure: i does not change & j decreases to $\pi[j]$
 - \Rightarrow After then, i + (i j) increases by at least 1
- Note that $i + (i j) \le 2i$ because j cannot be negative, and
- $i + (i j) \le 2i \le 2n$ because $i \le n$ of the while-loop cond.
 - This implies that at the first, i + (i j) starts with 1 and increases by at least 1, but cannot exceed 2n
- Therefore, the time complexity of searching is O(n).

Outline

☐ Intuition of KMP algorithm

☐ Search phase

☐ Failure array construction phase

How To Construct π (1)

\square Remind the meaning of $\pi[j]$

- $\pi[j]$ indicates a resuming location in P when a match fails
 - The location is the next to the LPS of $P[1 \cdots j 1]$
 - Thus, $\pi[j] = 1 + \text{length of LPS of } P[1 \cdots j 1]$
- e.g., $\pi[6] = 1 + 3$ where the LPS is "aba" whose length is 3

How To Construct π (2)

■ Naïve approach

■ For each $P[1 \cdots j-1]$, check if each of its proper prefixes is matched with its suffix, and pick the longest prefix

```
• \pi[j] = 1 + \text{length of LPS of } P[1 \cdots j - 1]
```

■ Repeat the above for $2 \le j \le m+1$

How To Construct π (3)

- ☐ Time complexity of the naïve approach
 - It takes $O(m^3)$ time
 - \circ For each iteration, it takes $O(m^2)$ time at most to find the LPS
 - It repeats O(m) times; thus, it is $O(m^3)$ in total

☐ Can we do this better?

- \blacksquare As KMP's search phase, we can construct π in linear time
 - Main idea is to use previous information on LPS to build the current LPS
 - \circ Surprisingly, it's similar to the search phase with $A \leftarrow P$
 - Because matching is equivalent to extending the prefix of P over A
 - Derivation and correctness are out-of-scope. Refer to CLRS for proof

Fast Construction of π (1)

☐ Step 0 – Initialization

```
\begin{aligned} & \text{def KMP-failure-array(P):} \\ & j \leftarrow 1 \text{ and } k \leftarrow 0 \\ & \pi[1] \leftarrow 0 \end{aligned} & \text{while } j <= m: \\ & \text{if } k == 0 \text{ or } P[j] == P[k]: \\ & j \leftarrow j + 1 \\ & k \leftarrow k + 1 \\ & \pi[j] \leftarrow k \end{aligned} & \text{else:} \\ & k \leftarrow \pi[k] \end{aligned} & \text{return } \pi
```

```
2
           3 4
                   5
                          7
                              8
\pi:
   j = 1
        b
               b
                      C
P:
           a
                   a
                          a
        b
               b
           a
                      C
P:
    a
                   a
                          a
k = 0
```

Fast Construction of π (2)

☐ Step 1 – Initial case

```
\begin{aligned} & \text{def KMP-failure-array(P):} \\ & \text{$j \leftarrow 1$ and $k \leftarrow 0$} \\ & \pi[1] \leftarrow 0 \end{aligned} \\ & \text{while $j \leftarrow m$:} \\ & \text{if $k == 0$ or $P[j] == $P[k]$:} \\ & \text{$j \leftarrow j + 1$} \\ & \text{$k \leftarrow k + 1$} \\ & \pi[j] \leftarrow k \end{aligned} \\ & \text{else:} \\ & \text{$k \leftarrow \pi[k]$} \\ & \text{return $\pi$} \end{aligned}
```

```
1 2 3 4 5 6 7 8 π: O 1
```


- k keeps tracking the position next to LPS of $P[1 \cdots j 1]$
- In this case, there is no LPS (or ""); thus, the position should be 1

Fast Construction of π (3)

☐ Step 2 – Failure case

```
\begin{aligned} & \text{def KMP-failure-array(P):} \\ & j \leftarrow 1 \text{ and } k \leftarrow 0 \\ & \pi[1] \leftarrow 0 \end{aligned} \\ & \text{while } j <= m: \\ & \text{if } k == 0 \text{ or } P[j] == P[k]: \\ & j \leftarrow j + 1 \\ & k \leftarrow k + 1 \\ & \pi[j] \leftarrow k \end{aligned} \\ & \text{else:} \\ & k \leftarrow \pi[k] \end{aligned}
```

```
π: 0 1 2 3 4 5 6 7 8 π:
```


- Try to compare P[j] and P[k] to find next LPS of $P[1 \cdots j]$
- $P[j] \neq P[k]$; thus, go back to check other LPS (in this case, no more other LPS => initial)

Fast Construction of π (4)

☐ Step 3 – Initial case

```
\begin{aligned} & \text{def KMP-failure-array(P):} \\ & j \leftarrow 1 \text{ and } k \leftarrow 0 \\ & \pi[1] \leftarrow 0 \end{aligned} \\ & \text{while } j <= m: \\ & \text{if } k == 0 \text{ or } P[j] == P[k]: \\ & j \leftarrow j + 1 \\ & k \leftarrow k + 1 \\ & \pi[j] \leftarrow k \end{aligned} \\ & \text{else:} \\ & k \leftarrow \pi[k] \\ & \text{return } \pi \end{aligned}
```


- k keeps tracking the position next to LPS of $P[1 \cdots j 1]$
- In this case, there is no LPS (or ""); thus, the position should be 1

Fast Construction of π (5)

☐ Step 4 – Match case

```
\begin{aligned} & \text{def KMP-failure-array(P):} \\ & j \leftarrow 1 \text{ and } k \leftarrow 0 \\ & \pi[1] \leftarrow 0 \end{aligned} \\ & \text{while } j <= m: \\ & \text{if } k == 0 \text{ or } P[j] == P[k]: \\ & j \leftarrow j + 1 \\ & k \leftarrow k + 1 \\ & \pi[j] \leftarrow k \end{aligned} \\ & \text{else:} \\ & k \leftarrow \pi[k] \\ & \text{return } \pi \end{aligned}
```

```
π: 0 1 2 3 4 5 6 7 8
```


- k keeps tracking the position next to LPS of $P[1 \cdots j 1]$
- Here, LPS is "a", thus $\pi[4] = 1 + 1 = 2$

Fast Construction of π (6)

☐ Step 5 – Match case

```
\begin{aligned} & \text{def KMP-failure-array(P):} \\ & j \leftarrow 1 \text{ and } k \leftarrow 0 \\ & \pi[1] \leftarrow 0 \end{aligned} \\ & \text{while } j <= m: \\ & \text{if } k == 0 \text{ or } P[j] == P[k]: \\ & j \leftarrow j+1 \\ & k \leftarrow k+1 \\ & \pi[j] \leftarrow k \end{aligned} \\ & \text{else:} \\ & k \leftarrow \pi[k] \\ & \text{return } \pi \end{aligned}
```


- k keeps tracking the position next to LPS of $P[1 \cdots j 1]$
- Here, LPS is "ab", thus $\pi[5] = 2 + 1 = 3$
- Note that it used the previous LPS "a" to build the current LPS "ab" (speed up!)

Fast Construction of π (7)

☐ Step 6 – Match case

```
\begin{aligned} & \text{def KMP-failure-array(P):} \\ & j \leftarrow 1 \text{ and } k \leftarrow 0 \\ & \pi[1] \leftarrow 0 \end{aligned} \\ & \text{while } j <= m: \\ & \text{if } k == 0 \text{ or } P[j] == P[k]: \\ & j \leftarrow j+1 \\ & k \leftarrow k+1 \\ & \pi[j] \leftarrow k \end{aligned} \\ & \text{else:} \\ & k \leftarrow \pi[k] \\ & \text{return } \pi \end{aligned}
```


- k keeps tracking the position next to LPS of $P[1 \cdots j 1]$
- Here, LPS is "aba", thus $\pi[6] = 3 + 1 = 4$
- Note that it used the previous LPS "ab" to build the current LPS "aba" (speed up!)

Fast Construction of π (8)

☐ Step 7-1 – Failure case

```
\begin{aligned} & \text{def KMP-failure-array(P):} \\ & j \leftarrow 1 \text{ and } k \leftarrow 0 \\ & \pi[1] \leftarrow 0 \end{aligned} \\ & \text{while } j <= \text{m:} \\ & \text{if } k == 0 \text{ or } P[j] == P[k]: \\ & j \leftarrow j + 1 \\ & k \leftarrow k + 1 \\ & \pi[j] \leftarrow k \end{aligned} \\ & \text{else:} \\ & k \leftarrow \pi[k] \end{aligned}
```


- Try to compare P[j] and P[k] to find next LPS of $P[1 \cdots j]$
- But, $P[j] \neq P[k]$, meaning we cannot use the previous LPS "aba"
- This is equal to that a match fails at $k \Rightarrow$ move k back to $\pi[k]$

Fast Construction of π (9)

☐ Step 7-2 – Failure case

```
\begin{aligned} & \text{def KMP-failure-array(P):} \\ & \text{$j \leftarrow 1$ and $k \leftarrow 0$} \\ & \pi[1] \leftarrow 0 \end{aligned} \\ & \text{while $j \leftarrow m$:} \\ & \text{if $k == 0$ or $P[j] == $P[k]$:} \\ & \text{$j \leftarrow j + 1$} \\ & \text{$k \leftarrow k + 1$} \\ & \pi[j] \leftarrow k \end{aligned} \\ & \text{else:} \\ & \text{$k \leftarrow \pi[k]$} \end{aligned}
```

```
π: 0 1 2 3 4 5 6 7 8
```


- After *k* is moved, we have one more change to find a shorter LPS based on "a"
- To do that, compare P[j] and P[k]

Fast Construction of π (10)

☐ Step 8-1 – Failure case

```
\begin{aligned} & \text{def KMP-failure-array(P):} \\ & j \leftarrow 1 \text{ and } k \leftarrow 0 \\ & \pi[1] \leftarrow 0 \end{aligned} \\ & \text{while } j <= m: \\ & \text{if } k == 0 \text{ or } P[j] == P[k]: \\ & j \leftarrow j + 1 \\ & k \leftarrow k + 1 \\ & \pi[j] \leftarrow k \end{aligned} \\ & \text{else:} \\ & k \leftarrow \pi[k] \\ & \text{return } \pi \end{aligned}
```

```
π: 0 1 2 3 4 5 6 7 8
```


• This is equal to that a match fails at $k \Rightarrow$ move k back to $\pi[k]$

Fast Construction of π (11)

☐ Step 8-2 – Failure case

```
\begin{aligned} & \text{def KMP-failure-array(P):} \\ & j \leftarrow 1 \text{ and } k \leftarrow 0 \\ & \pi[1] \leftarrow 0 \end{aligned} \\ & \text{while } j \Leftarrow m: \\ & \text{if } k == 0 \text{ or } P[j] == P[k]: \\ & j \leftarrow j+1 \\ & k \leftarrow k+1 \\ & \pi[j] \leftarrow k \\ & \text{else:} \\ & k \leftarrow \pi[k] \end{aligned}
```


• After k is moved, no more LPS here

Fast Construction of π (12)

☐ Step 9-1 – Failure case

```
\begin{aligned} & \text{def KMP-failure-array(P):} \\ & j \leftarrow 1 \text{ and } k \leftarrow 0 \\ & \pi[1] \leftarrow 0 \end{aligned} & \text{while } j <= m: \\ & \text{if } k == 0 \text{ or } P[j] == P[k]: \\ & j \leftarrow j + 1 \\ & k \leftarrow k + 1 \\ & \pi[j] \leftarrow k \end{aligned} & \text{else:} \\ & k \leftarrow \pi[k] \end{aligned} & \text{return } \pi
```


Fast Construction of π (13)

☐ Step 9-2 – Failure case

```
\begin{aligned} & \text{def KMP-failure-array(P):} \\ & j \leftarrow 1 \text{ and } k \leftarrow 0 \\ & \pi[1] \leftarrow 0 \end{aligned} \\ & \text{while } j <= m: \\ & \text{if } k == 0 \text{ or } P[j] == P[k]: \\ & j \leftarrow j + 1 \\ & k \leftarrow k + 1 \\ & \pi[j] \leftarrow k \end{aligned} \\ & \text{else:} \\ & k \leftarrow \pi[k] \end{aligned}
```


Fast Construction of π (14)

☐ Step 10 – Initial case

```
\begin{aligned} & \text{def KMP-failure-array(P):} \\ & \text{$j$} \leftarrow \text{1 and } \text{$k$} \leftarrow \text{0} \\ & \pi[1] \leftarrow \text{0} \end{aligned} \\ & \text{while $j$} <= \text{m:} \\ & \text{if $k$} == \text{0 or P[j]} == \text{P[k]:} \\ & \text{$j$} \leftarrow \text{$j$} + \text{1} \\ & \text{$k$} \leftarrow \text{$k$} + \text{1} \\ & \pi[j] \leftarrow k \end{aligned} \\ & \text{else:} \\ & \text{$k$} \leftarrow \pi[k] \\ & \text{return } \pi \end{aligned}
```


5

8

Fast Construction of π (15)

☐ Step 11 – Match case

```
\begin{aligned} & \text{def KMP-failure-array(P):} \\ & \text{$j \leftarrow 1$ and $k \leftarrow 0$} \\ & \pi[1] \leftarrow 0 \end{aligned} \\ & \text{while $j \leftarrow m$:} \\ & \text{if $k == 0$ or $P[j] == P[k]$:} \\ & \text{$j \leftarrow j + 1$} \\ & \text{$k \leftarrow k + 1$} \\ & \pi[j] \leftarrow k \end{aligned} \\ & \text{else:} \\ & \text{$k \leftarrow \pi[k]$} \\ & \text{return $\pi$} \end{aligned}
```


Complexity Analysis of KMP

- ☐ Time complexity of the construction phase
 - Similar to the search phase, it takes O(m) time
 - By introducing a new variable j + (j k) as a trick

☐ Total complexity of KMP algorithm

- First, construct the failure array π from the pattern P
 - ∘ π ←KMP-failure-array(P) takes O(m) time
- Second, match pattern **P** over document **A** with π
 - KMP-search(A, P, π) takes O(n) time
- In total, KMP algorithm takes O(m + n) time
 - Faster than the automata algorithm taking $O(|\Sigma|m^3 + n)$ time
- It uses O(m) extra space for π

What You Need To Know

☐ KMP algorithm

- Restart from a resuming location when a match fails, not from scratch
- The failure array generated from the pattern knows where we go back to for the failure

Algorithm	Time			Space	
	Preprocessing	Searching	Total	Input	Extra
Naïve	0(1)	O(mn)	0(<i>mn</i>)	O(m+n)	0(1)
Rabin-Karp	0(m)	O(n+Fm)	O(n+Fm)		0(1)
Automata	$O(\mathbf{\Sigma} m^3)$	0(n)	$O(\mathbf{\Sigma} m^3+n)$		$O(\mathbf{\Sigma} m)$
KMP	0(m)	0(n)	0(m+n)		0(m)

^{*} Rabin-karp's search phase shows O(n) average-case time and O(mn) worst-case time

^{*} Automata can be constructed in $O(|\Sigma|m)$ time using the optimized version

In Next Lecture

□ NP complexity theory

Thank You