Fiche Machine Learning

Pierre Colson

Contents

General Stuff
Nearest Neighbour
Decision Trees
Challenge in machine learning
Regression
Learning as Inference
Other

Markdown version on github

Compiled using pandoc and qpdf script

General Stuff

- Supervised learning, learning from humain supervision
- Unsupervised Learning, learn without humain supervision
- Step for Classification:
 - Trainig phase: to give the concept of classes to a machine using labeled data
 - Testing phase: to determine the calss of new unseen (unlabeled) data

Nearest Neighbour

- Binary classification
- Find the nearest neighbour, and classify x to the same class
- *k*-nearest neighbour:
 - Algo:
 - * Compute distances to all samples from new data x
 - * Pick k-neighbours that are nearest to x
 - * Majoruty vote to classify x
 - Other
 - * The boundary becomes smoother as k increases
 - * Lower computational cost for lower k
 - * k-NN better generalizes given may samples
 - Pros
 - * Simple, only with a single parameter k
 - * Applicable to multi-class problems
 - * Good performance, effective in low dimension data
 - Cons
 - * Costly to compute distances to search for the nearest
 - * Memory requirement: must store all the training set

Decision Trees

- Test the attributes (features) sequentially
- Each leaf node bears a category label, and the test pattern is assigned the category of the leaf node reached.
- Tree Construction:
 - Choose the best question (according to the information gain), and split the input data into subsets
 - Terminate: Call branches with a unique class labels leaves
 - Grow: Recursively extedn other branches
- Entropy measure of uncertainty number of bit of information

$$ENTROPY = \sum_{i} -p_i \log_2 p_i$$

• Information gain:

As about attribute A for a data set S that has Entropy ENT(S) and get subsets S_v according to the value of A

$$GAIN = ENT(S) - \sum_{v \in Valuers(A)} \frac{|S_v|}{|S|} ENT(S_v)$$

• Gini impurity: Another definition of predicatabiliby (impurity)

$$\sum_{i} p_{i}(1 - p_{i}) = 1 - \sum_{i} p_{i}^{2}$$

- Overfitting, when the learned models are overly specialized for the training smaples (Good result on training data, but generalizes poorly)
- The simplest explanation compatible with data tends to be the right one
- To avoid overfitting we can use validation set and pruning. Pruning means simplifying/compressing and
 optimizing a decision tree by removing sections of the tree that are uncritical and redundant to calsify
 instances.

Challenge in machine learning

• The missclasification of a model f rate on a training data D:

$$err(f, D) = \frac{1}{N} \sum_{i=1}^{N} Ind(f(x_i) \neq y_i)$$

- Overfitting occurs due to:
 - Non-representative sample
 - Noisy examples
- K-fold cross validation (training set and validation set)
- Inuitions in low-dimensions do not apply in hight-dimensions. Techniques for dimensionality reduction / feature selection exist.

- Error due to Bias: the difference between the average (expected) prediction of our model and the correct value
 - It is the discrepancy between its averaged estimated and true funcion
 - Low model complexity \implies High-bias
 - High model complexity \implies Low-bias
- Error due to **Variance**: The variability of a model prediction for a given data point between different realizations of the model
 - It is the expected divergence of the estimated predicton from its average value.
 - Low model complexity \implies Low-variance
 - High model complexity ⇒ High-variance
- $MSE = Variance + Bias^2$

Regression

- Regression = Real valued output
- Lienar Regression tries to estimate the function f(x) and predict the output by

$$\hat{f}(x) = \sum_{i=0}^{d} w_i x_i = w^T x$$

 $-\,$ To measure the error for N samples we use the mean square eror

$$E_{in}(\hat{f}) = \frac{1}{N} \sum_{n=1}^{N} (\hat{f}(x_n) - y_n)^2$$

The wieght vector that sets the gradient to zero minimizes the errors. RSS is the sum of squared errors

$$w = (X^T X)^{-1} X^T Y$$

- RANSAC: RANdom SAmpling Consensus
 - Randomly select a (minimum number of) sample of s data points from S and instantiate the model from this subset
 - Determine the set of data points S_i which are within a distance threshold t of the model. The set S_i is the consensus set of samples and defines the inliers of S
 - If the subset is S_i is greter than some threshold T, re-estimate the model using all the points S_i and terminate
 - If the size of S_i is less than T select a new subset and repeat the above
 - After N trials the largest consensus set S_i is selected and the model is re-estimated using all the points in the subset S_i

Cost:

- RANSAC can be vlnarable of the correct choice if the threshod
- k-NN Regression (non parametric)
 - Similar to the k-NN classifier
 - To regress Y for a given value of X, consider k closest point to X in training data and take the average of the responses

$$f(x) = \frac{1}{k} \sum_{x_i \in N_i} y_i$$

- Larger values of k provide a smoother and less variable fit (lower variance)
- Parametric vs non parametric
 - If the parametric forlm is close to the true form of f, the parametric approach will outperform the non parametric
 - As a general ruen parametric methods will tends of outperform nonparametric when there is a small number of observation per per predictor
 - Interpretability stand point: Linezar regression preferred to KNN if the test MSEs are similar or slightly lower
- Ridge regression
 - Similar la least squares but minimizes different quantity instead os sum of squared

$$RSS + \lambda \sum_{i=1}^{d} w_i^2$$

- The Lasso
 - Similar to ridge regression but with slightly different term

$$RSS + \lambda \sum_{i=1}^{d} |w_i|$$

Learning as Inference

- Classification: Y is discrete
- Regression: Y is continuous
- $Pr(Y = y) \equiv Pr(y) \leftarrow Prior$
- $Pr(x \mid Y = y) \equiv Pr(x \mid y) \leftarrow \text{Likehood}$
- $Pr(X = x) \equiv Pr(x) \leftarrow \text{Evidence}$
- $Pr(y \mid X = x) = \frac{Pr(X|Y=y)Pr(Y=y)}{Pr(X=x)} \leftarrow Posterior$
- Parametric Inference:
 - Estimate θ unsing D
 - Compute $Pr(y \mid x, \hat{\theta})$ to make inference
 - Learning correspond to estimate θ

Approaches:

- Maximum Likehood (ML) Estimation
- Maximum A Posteriori (MAP) Extimation
- Non-parametric Inference
 - Estimate $Pr(\theta \mid D)$
 - Compute $Pr(y \mid x, D)$ from $Pr(y \mid x, \theta, D)Pr(\theta \mid D)$ by marginalizing out θ

Approaches:

- Bayesian methods
- Assumption: Observation are independent and identically distributed
- Maximum Likehood Estimate

Other

- Classification is discrete
- Regression is continuous
- Probabilistic learning involves estimating P(x,y) from a Dataset
- Probabilistic learning cannot be used to create generative model
- Naive Bayes classifier is a generative model (generative model learns joint probability distribution)
- Logistic regression is a discriminative model (discriminative model learns conditional probability distribution)
- \bullet For MLE we assume all observations are independently and identically ditributed given y
- An artificial neuron generates an output signal based on the integrated wieghted input
- Structural Risk Minimization is selecting a seperating hyperplane such that future data is most likely classified correctly
- Boosting is: Each training example has a weight which is re-weight through iterations
- Covariance matrix of given vectors is a useful tool to apply the maximum variance in PCA
- Expectation Maximisation : Algarithm to learn with latent variable
- Posterior probability: Conditional probability taking into account the evidence
- RANSAC : Robust method to fit a model to data with outliers
- Dropout : A method for preventing artificial neural networks from overfitting
- The Lasso: An approach to regression that results in feature selection
- Bagging: Booststrpa aggregating
- Error back propagation: Algorithm to train artificial neural networks
- k-fold cross validation : A technique for assessing a model while exploiting available data for training and testing
- In DEcision Forests, randomness is used in feature selection at each node and in generating bootstrap reoplicas
- In PCA and subspace method, x should belong to the class where the projection lengh to the corresponding subspaces is maximised
- Maximum likehood maximizes the probability of the observation conditioned on the class
- ullet Naive Bayes assumes all D dimensions of an obervation are conditionally independent given Y
- perceptron learning stop modifying weights when all training data is correctly classified
- The kernel function correspond to the scalar product between two data points transformed into a higher dimensional space
- Adaboost algorithm: A weight is given to each training sample, and it is iteratively updated
- The main purpose of PCA is to reduce the effective number of variable