Generating Monoids from Categories

Matt McCarthy

June 2016

Theorem. Let C be a category and let A be an object in C. Then C[A, A] forms a monoid under arrow composition.

1 Background

Definition 1 (Category). A category, C consists of the following.

- 1. A class of *objects*, denoted Obj(C).
- 2. A class of arrows, denoted Arr(C). Each arrow $f \in Arr(C)$ has a source object $A \in Obj(C)$, a target object $B \in Obj(C)$, and is denoted $f : A \to B$. We denote the class of all arrows going from $A \in Obj(C)$ to $B \in Obj(C)$ as C[A, B].
- 3. A partial composition $\circ: Arr(C) \times Arr(C) \to Arr(C)$ such that for any $f: A \to B, g: B \to D,$ $gf: A \to D \in Arr(C).$

Furthermore, the following axioms must hold.

- 1. For all $f: A \to B, g: B \to D, h: D \to E \in Arr(C), h(gf) = (hg)f$.
- 2. For all $A \in Obj(C)$, there exists an $id_A \in C[A,A]$ such that for all arrows $f: X \to A, g: A \to Y$ $id_A f = f$ and $gid_A = g$.

Definition 2 (Monoid). Let M be a set, and let $*: M^2 \to M$ be a binary operation. Then (M, *) forms a monoid if all of the following are satisfied.

- 1. For all $a, b, c \in M$, a * (b * c) = (a * b) * c.
- 2. There exists an $e \in M$ such that for all $a \in M$, e * a = a * e = a.

2 Solution

Theorem 1. Let C be a category and let A be an object in C. Then C[A, A] forms a monoid under arrow composition.

Proof. Let $f, g \in C[A, A]$. Then

$$A \xrightarrow{f} A \xrightarrow{g} A$$

and thus

$$A \xrightarrow{fg} A$$
.

Therefore, arrow composition forms a binary operation on C[A, A].

Next, we claim that id_A is the identity for C[A, A] with respect to arrow composition. Let $f \in C[A, A]$. Then, by definition, we know that $f id_A = id_A f = f$. Thus, id_A is the identity for C[A, A] with respect to arrow composition.

Lastly, we must show that arrow composition is associative for all arrows in C[A, A]. Let $f, g, h \in C[A, A]$. Consider f(gh).

$$A \xrightarrow{f(gh)} A = A \xrightarrow{gh} A \xrightarrow{f} = A \xrightarrow{h} A \xrightarrow{g} A \xrightarrow{f} A$$

Now consider (fg)h.

$$A \xrightarrow{(fg)h} A = A \xrightarrow{h} A \xrightarrow{fg} A = A \xrightarrow{h} A \xrightarrow{g} A \xrightarrow{f} A$$

Therefore, (fg)h = f(gh) and C[A,A] is associative with respect to arrow composition. Thus, C[A,A] forms a monoid under arrow composition.