P1 Chapter 3: Inequalities

Linear Simultaneous Equations

Simultaneous Equations

Recap!

Solve the simultaneous equations:

$$3x + y = 8$$
$$2x - 3y = 9$$

We can either use substitution (i.e. making x or y the subject of one equation, and substituting it into the other) or elimination, but the latter is easier for linear equations.

$$9x + 3y = 24$$
$$2x - 3y = 9$$

Adding the two equations to 'eliminate' y:

$$11x = 33 \rightarrow x = 3$$

Substituting into first equation:

$$27 + 3y = 24 \rightarrow y = -1$$

Solve the simultaneous equations:

$$7x + 2y = 3$$
$$3x + 5y = 12$$

Test Your Understanding

Solve the simultaneous equations:

$$3x + 9 = 21$$
$$y = x + 1$$

$$3x^2 + (x+1)^2 = 21$$

Solutions sets

The solution(s) to an equation may be:

A single value:

$$2x + 1 = 5$$

Multiple values:

$$x^2 + 3x + 2 = 0$$

An infinitely large set of values:

No (real) values!

$$x^2 = -1$$

Every value!

$$x^2 + x = x(x+1)$$

The point is that you shouldn't think of the solution to an equation/inequality as an 'answer', but a <u>set</u> of values, which might just be a set of 1 value (known as a singleton set), a set of no values (i.e. the empty set \emptyset), or an infinite set (in the last example above, this was \mathbb{R})

The solutions to an equation are known as the **solution set**.

Solutions sets

For simultaneous equations, the same is true, except each 'solution' in the solution set is an assignment to **multiple** variables.

All equations have to be satisfied at the same time, i.e. 'simultaneously'.

Scenario	Example	Solution Set
A single solution:	?	?
Two solutions:	?	?
No solutions:	?	?
Infinitely large set of solutions:	?	?

Solutions sets

For simultaneous equations, the same is true, except each 'solution' in the solution set is an assignment to **multiple** variables.

All equations have to be satisfied at the same time, i.e. 'simultaneously'.

Scenario	Example	Solution Set
A single solution:	x + y = 9 $x - y = 1$	Solution 1: $x = 5$, $y = 4$ To be precise here, the solution set is of size 1, but this solution is an assignment to multiple variables, i.e. a pair of values.
Two solutions:	$x^2 + y^2 = 10$ $x + y = 4$	Solution 1: $x = 3$, $y = 1$ Solution 2: $x = 1$, $y = 3$ This time we have two solutions, each an x , y pair.
No solutions:	x + y = 1 $x + y = 3$	The solution set is empty, i.e. Ø, as both equation can't be satisfied at the same time.
Infinitely large set of solutions:	x + y = 1 $2x + 2y = 2$	Solution 1: $x = 0$, $y = 1$ Solution 2: $x = 1$, $y = 0$ Solution 3: $x = 2$, $y = -1$ Solution 4: $x = 0$. 5, $y = 0$. 5 Infinite possibilities!

Exercise 3.1

Pearson Pure Mathematics Year 1/AS Page 16

Extension

[MAT 2012 1G] There are positive real numbers x and y which solve the equations 2x + ky = 4,

x + y = k

for:

- A) All values of k;
- B) No values of k;
- C) k = 2 only;
- D) Only k > -2

2 [STEP 2010 Q1] Given that

$$5x^{2} + 2y^{2} - 6xy + 4x - 4y$$

$$\equiv a(x - y + 2)^{2} + b(cx + y)^{2} + d$$

- a) Find the values of a, b, c, d.
- b) Solve the simultaneous equations:

$$5x^{2} + 2y^{2} - 6xy + 4x - 4y = 9,$$

$$6x^{2} + 3y^{2} - 8xy + 8x - 8y = 14$$

(Hint: Can we use the same method in (a) to rewrite the second equation?)

? a

?

? b

Exercise 3.1

Pearson Pure Mathematics Year 1/AS Page 16

Extension

[MAT 2012 1G] There are positive real numbers x and y which solve the equations 2x + ky = 4,

x + y = k

for:

- A) All values of k;
- B) No values of k;
- C) k = 2 only;
- D) Only k > -2

If k = 2 then 2x + 2y = 4 and x + y = 2 which are equivalent. This would give an infinite solution set, thus the answer is C.

[2] [STEP 2010 Q1] Given that

$$5x^{2} + 2y^{2} - 6xy + 4x - 4y$$

$$\equiv a(x - y + 2)^{2} + b(cx + y)^{2} + d$$

- a) Find the values of a, b, c, d.
- b) Solve the simultaneous equations:

or x = 3, y = 8 or x = 7, y = 12

$$5x^{2} + 2y^{2} - 6xy + 4x - 4y = 9,$$

$$6x^{2} + 3y^{2} - 8xy + 8x - 8y = 14$$

(Hint: Can we use the same method in (a) to rewrite the second equation?)

a) Expanding RHS:

$$(a+bc^2)x^2 + (a+b)y^2 + (-2a+2bc)xy + 4ax - 4ay + (4a+d)$$

Comparing coefficients: a = 1, b = 1, c = -2, d = -4

b)
$$(x-y+2)^2+(-2x+y)^2-4=9$$

Using method in (a): $2(x-y+2)^2+(-2x+y)^2-8=14$
Subtracting yields $y-2x=\pm 2$ and $x-y+2=\pm 3$
We have to consider each of 4 possibilities.
Final solution set: $x=-3$, $y=-4$ or $x=1$, $y=0$

Homework Exercise

1 Solve these simultaneous equations by elimination:

$$\mathbf{a} \quad 2x - y = 6$$
$$4x + 3y = 22$$

b
$$7x + 3y = 16$$

 $2x + 9y = 29$

c
$$5x + 2y = 6$$

 $3x - 10y = 26$

$$\mathbf{d} \quad 2x - y = 12$$
$$6x + 2y = 21$$

$$e \quad 3x - 2y = -6$$
$$6x + 3y = 2$$

$$6x = 3 + 5y = 33$$

$$6x = 3 + 5y$$

2 Solve these simultaneous equations by substitution:

a
$$x + 3y = 11$$
 b $4x - 7y = 6$

a
$$x + 3y = 11$$

 $4x - 7y = 6$
b $4x - 3y = 40$
 $2x + y = 5$

c
$$3x - y = 7$$

 $10x + 3y = -2$

d
$$2y = 2x - 3$$

 $3y = x - 1$

k is a constant, so it has the same value in both equations.

Problem-solving

3 Solve these simultaneous equations:

a
$$3x - 2y + 5 = 0$$
 b $\frac{x - 2y}{3} = 4$ **c** $3y = 5(x - 2)$ $5(x + y) = 6(x + 1)$ $2x + 3y + 4 = 0$ $3(x - 1) + y + 4 = 0$

$$b \frac{x - 2y}{3} = 4$$
$$2x + 3y + 4 = 0$$

c
$$3y = 5(x - 2)$$

0 $3(x - 1) + y + 4$

Hint First rearrange both equations into the same form e.g. ax + by = c.

$$4 3x + ky = 8$$
$$x - 2ky = 5$$

are simultaneous equations where k is a constant.

a Show that
$$x = 3$$
.

(3 marks)

b Given that
$$y = \frac{1}{2}$$
 determine the value of k.

(1 mark)

5
$$2x - py = 5$$

 $4x + 5y + q = 0$
are simultaneous equations where p and q are constants.
The solution to this pair of simultaneous equations is $x = q$, $y = -1$.

Find the value of p and the value of q.

(5 marks)

Homework Answers

1 **a**
$$x = 4, y = 2$$

c
$$x = 2, y = -2$$

$$e \quad x = -\frac{2}{3}, y = 2$$

2 a
$$x = 5, y = 2$$

c
$$x = 1, y = -4$$

3 **a**
$$x = -1, y = 1$$

c
$$x = 0.5, y = -2.5$$

4 a
$$3x + ky = 8$$
 (1); $x - 2ky = 5$ (2)

$$(1) \times 2 : 6x + 2ky = 16 (3)$$

$$(2) + (3) 7x = 21 \text{ so } x = 3$$

5
$$p = 3, q = 1$$

b
$$x = 1, y = 3$$

c
$$x = 2, y = -2$$
 d $x = 4\frac{1}{2}, y = -3$

f
$$x = 3, y = 3$$

2 a
$$x = 5, y = 2$$
 b $x = 5\frac{1}{2}, y = -6$

c
$$x = 1, y = -4$$
 d $x = 1\frac{3}{4}, y = \frac{1}{4}$

b
$$x = 4, y = -4$$