

Why CNN for Image?

Can the network be simplified by considering the properties of images?

Why CNN for Image

Some patterns are much smaller than the whole image

A neuron does not have to see the whole image to discover the pattern.

Connecting to small region with less parameters

Why CNN for Image

• The same patterns appear in different regions.

Why CNN for Image

Subsampling the pixels will not change the object

We can subsample the pixels to make image smaller

cat dog **Fully Connected** Feedforward network 00000000 Flatten

Can repeat many times

Property 1

Some patterns are much smaller than the whole image

Property 2

➤ The same patterns appear in different regions.

Property 3

Subsampling the pixels will not change the object

Flatten

Can repeat many times

cat dog **Fully Connected** Feedforward network 00000000 Flatten

CNN — Convolution

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Those are the network parameters to be learned.

1	-1	-1	
-1	1	-1	Filter 1
-1	-1	1	Matrix

-1	1	-1	
-1	1	-1	Filter
-1	1	-1	Matr

Each filter detects a small pattern (3 x 3).

Property 1

CNN – Convolution

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	0	0	0	1	0

3

-1

6 x 6 image

CNN – Convolution

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

If stride=2

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	0	0	0	1	0

3 -3

6 x 6 image

We set stride=1 below

CNN — Convolution

1-1-1-11-1-1-11

Filter 1

stride=1

6 x 6 image

CNN — Convolution

 -1
 1
 -1

 -1
 1
 -1

 -1
 1
 -1

 -1
 1
 -1

Filter 2

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Do the same process for every filter

CNN – Zero Padding

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

0	0	0					_
0	1	0	0	0	0	1	
0	0	1	0	0	1	0	
	0	0	1	1	0	0	
	1	0	0	0	1	0	
	0	1	0	0	1	0	0
	0	0	1	0	1	0	0
			· · ·		0	0	0
		Ь	хоі	ma	5C		·

You will get another 6 x 6 images in this way

Zero padding

Convolution v.s. Fully Connected

Fullyconnected

cat dog **Fully Connected** Feedforward network 00000000 Flatten

Can repeat many times

CNN – Max Pooling

CNN – Max Pooling

Smaller than the original image

The number of the channel is the number of filters

Can repeat many times

cat dog

Convolutional Neural Network

Learning: Nothing special, just gradient descent

Dealing with RGB Images

Convolution Layer

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

32x32x3 image

Filters always extend the full depth of the input volume

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

activation map

consider a second, green filter

activation maps

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with activation functions

two more layers to go: POOL/FC RELU RELU RELU RELU RELU RELU CONV CONV CONV CONV CONV CONV FC car truck airplane horse