Fuzzy Control

Motivation for Fuzzy Control

Question:

- Can you read the text?
- Can you read it now?
- Now?

Fundamentals of fuzzy logic

Fuzzy Set Theory

- 1965 by L. A. Zadeh
- Membership function
- $\mu_A: x \rightarrow [0,1]$

Example: Let $X \in \mathbb{R}$ and A be the fuzzy set of approximately 50-year-old persons.

Figure 2.1: Membership function for: 'approximately 50 years old'

Fuzzyfication

 $15.09.2 \mu_{50 \ years} (40) = 0.5$

Fundamentals of fuzzy logic

Figure 2.2: Examples of membership functions

Fundamentals of fuzzy logic

Fuzzy Set Theory

- 1. $f_{A'}(x) = 1 f_A(x)$
- 2. $f_{A \cup B}(x) = \max(f_A(x), f_B(x))$
- 3. $f_{A \cap B}(\mathbf{x}) = \min(f_A(\mathbf{x}), f_B(\mathbf{x}))$

(Complement)
(Union)
(Intersection)

(a) Original fuzzy sets $\mu_A(x)$ and $\mu_B(x)$

From Fuzzy Logic to Fuzzy Control

- 1975 Ebrahim Mamdani
- fuzzy control system
- rule-based reasoning and defuzzication
- Mamdani model

Example: Temperature

If the temperature is too high, then slightly reduce the heating power.

Mamdani Model Overview

Fuzzy Conclusion

- Evaluate fuzzy inference
- using Zaseh's s-norm or t-norm
- Output membership function is clipped

Example: Statement: If A1 and A2 then B1

$$\mu_{A1} = 1$$
, $\mu_{A2} = 0.8$

Figure 2.5: Example of an output membership function which is clipped at $\mu = 0.8$

Center of Gravity Method

- "Point of balance"
- Area under the clipped Graph is calculated
- · Center if the area is calculated
- Drop the plumb line from the center of gravity
- For triangular shapes:

$$u_0 = \frac{\sum u_i \mu_{premise_i}}{\sum \mu_{premise_i}}$$

Example:

$$u_0 = \frac{1 * 0.75 + 2 * 0.5 + 3 * 0.75}{0.75 + 0.5 + 0.75} = \frac{4}{2} = 2$$

Center of Gravity Method

TCRT5000 (Bild: amazon.de)

- Deviation measured by four TCRT5000L sensors
- According to the number of sensors crossing the line: Small, Big or Neutral Deviation

Source: N. C. Basjaruddin, Kuspriyanto, Suhendar, D. Saefudin, and S. A. Aryani, Lane keeping assist system based on fuzzy logic, in 2015 International Electronics Symposium (IES)

LS: Low Speed

MS: Medium Speed

HS: High Speed

BL/BR: Big Left/Big Right

SL/SR: Small Left /Small Right

N: Neutral

- Speed three membership functions
- Degree of Deviation five membership functions
- Deviation assigned numbers from 1 (Big Left Deviation) to 5 (Big Right Deviation)

Source: N. C. Basjaruddin, Kuspriyanto, Suhendar, D. Saefudin, and S. A. Aryani, Lane keeping assist system based on fuzzy logic, in 2015 International Electronics Symposium (IES)

Source: N. C. Basjaruddin, Kuspriyanto, Suhendar, D. Saefudin, and S. A. Aryani, Lane keeping assist system based on fuzzy logic, in 2015 International Electronics Symposium (IES)

Source: N. C. Basjaruddin, Kuspriyanto, Suhendar, D. Saefudin, and S. A. Aryani, Lane keeping assist system based on fuzzy logic, in 2015 International Electronics Symposium (IES)

Fuzzy State description

Speed: 209 cm/s Deviation: 4.3

In lingustic terms: The car is between low speed an medium speed with a little bit more than small deviation to the right.

Mathematical:

$$\mu_{LS}(209) = 0.43, \ \mu_{MS}(209) = 0.4, \ \mu_{HS}(209) = 0.0$$

 $\mu_{BL}(4.3) = 0.0, \ \mu_{SL}(4.3) = 0.0, \ \mu_{N}(4.3) = 0.0, \ \mu_{SR}(4.3) = 0.6, \ \mu_{BR}(4.3) = 0.067$

Short (Membership vector):

$$\mu_{Speed}(209) = (0.43, 0.4, 0.0)$$

$$\mu_{Deviation}(4.3) = (0.0, 0.0, 0.0, 0.6, 0.067)$$

Source: N. C. Basjaruddin, Kuspriyanto, Suhendar, D. Saefudin, and S. A. Aryani, Lane keeping assist system based on fuzzy logic, in 2015 International Electronics Symposium (IES)

Rule Base is needed:

- if speed is medium speed and deviation is normal then zero steering angle
- 2. if speed is low speed and deviation is small right then medium steering angle
- 3. if speed is low speed and deviation is big left then medium steering angle

Source: N. C. Basjaruddin, Kuspriyanto, Suhendar, D. Saefudin, and S. A. Aryani, Lane keeping assist system based on fuzzy logic, in 2015 International Electronics Symposium (IES)

Array of the Rule Base (Premise)

		Deviation					
		\mathbf{SR}	$_{ m BR}$	Normal	$_{ m BL}$	SL	
Speed	HS	MSA	BSA	ZSA	BSA	MSA	
	MS	MSA	BSA	ZSA	BSA	MSA	
	LS	SSA	MSA	ZSA	MSA	SSA	

SR/L: Small Right/Left BR/L: Big Right/Left

HS: High Speed MS: Medium Speed

LS: Low Speed

peed

BSA: Big Steering Angle

SSA: Small Steering Angle

MSA: Medium Steering Angle

15.09.2025

16

Source: N. C. Basjaruddin, Kuspriyanto, Suhendar, D. Saefudin, and S. A. Aryani, Lane keeping assist system based on fuzzy logic, in 2015 International Electronics Symposium (IES)

Source: N. C. Basjaruddin, Kuspriyanto, Suhendar, D. Saefudin, and S. A. Aryani, Lane keeping assist system based on fuzzy logic, in 2015 International Electronics Symposium (IES)

Source: N. C. Basjaruddin, Kuspriyanto, Suhendar, D. Saefudin, and S. A. Aryani, Lane keeping assist system based on fuzzy logic, in 2015 International Electronics Symposium (IES)

$$\mu_{Speed}(209) = (0.43, 0.4, 0.0)$$

$$\mu_{Deviation}(4.3) = (0.0, 0.0, 0.0, 0.6, 0.067)$$

W.			9	ν	1	41/	
		Deviation					
		\mathbf{SR}	$_{ m BR}$	Normal	BL	\mathbf{SL}	
Speed	HS	MSA	BSA	ZSA	BSA	MSA	
	MS	MSA	BSA	ZSA	BSA	MSA	
	LS	SSA	MSA	ZSA	MSA	SSA	

Using the t-norm:

- 1. $f_{LS \cap SR}(x) = \min(0.43, 0.6) = 0.43 \text{ SSA}$
- 2. $f_{LS \cap BR}(x) = \min(0.43, 0.067) = 0.067 \text{ MSA}$
- 3. $f_{MS \cap SR}(x) = \min(0.4, 0.6) = 0.43 \text{ BSA}$
- 4. $f_{MS \cap BR}(x) = \min(0.4, 0.067) = 0.067 \text{ MSA}$

Source: N. C. Basjaruddin, Kuspriyanto, Suhendar, D. Saefudin, and S. A. Aryani, Lane keeping assist system based on fuzzy logic, in 2015 International Electronics Symposium (IES)

100		Deviation					
		\mathbf{SR}	BR	Normal	BL	\mathbf{SL}	
Speed	HS	MSA	BSA	ZSA	BSA	MSA	
	MS	MSA	BSA	ZSA	BSA	MSA	
	LS	SSA	MSA	ZSA	MSA	SSA	

Using the t-norm:

1.
$$f_{LS \cap SR}(x) = \min(0.43, 0.6) = 0.43 \text{ SSA}$$

2.
$$f_{LS \cap BR}(x) = \min(0.43, 0.067) = 0.067 \text{ MSA}$$

3.
$$f_{MS \cap SR}(x) = \min(0.4, 0.6) = 0.4 \text{ MSA}$$

4.
$$f_{MS \cap BR}(x) = \min(0.4, 0.067) = 0.067$$
 BSA

Using the s-norm:

$$f_{LS \cap BR}(x) \text{ OR } f_{MS \cap SR}(x)$$

 $f_{f_{LS \cap BR} \cup f_{MS \cap SR}}(x) = \max(f_{LS \cap BR}(x), f_{MS \cap SR}(x))$
 $= \max(0.067, 0.4) = 0.4 \text{ MSA}_{20}$

Source: N. C. Basjaruddin, Kuspriyanto, Suhendar, D. Saefudin, and S. A. Aryani, Lane keeping assist system based on fuzzy logic, in 2015 International Electronics Symposium (IES)

1.
$$f_{LS \cap SR}(x) = 0.43 \text{ SSA}$$

2.
$$f_{f_{LS \cap BR} \cup f_{MS \cap SR}}(x) = 0.4 \text{ MSA}$$

3. $f_{MS \cap BR}(x) \ 0.067 \text{ BSA}$

$$u_0 = \frac{\sum u_i \mu_{premise_i}}{\sum \mu_{premise_i}}$$

$$u_0 = \frac{10*0.43+1 *0.4+20*0.067}{0.43+0.4+0.067} \approx 13.16^{\circ}$$

21

Source: N. C. Basjaruddin, Kuspriyanto, Suhendar, D. Saefudin, and S. A. Aryani, Lane keeping assist system based on fuzzy logic, in 2015 International Electronics Symposium (IES)

- Easy set up
- Two small sensor types
- One activator
- Low computational effort
- Simple Line Keeping assistent was achieved