$O(T \log T)$ Universal Turing Machine

- * Suppose we want to simulate an arbitrary Turing machine M with its input string x.
- * Assume that M has k tapes, its alphabet is Γ and its running time on input x is T.

A universal Turing machine $\mathscr U$ is constructed as follows:

- * \mathcal{U} use only one tape to simulate M's tapes.
- * \mathcal{U} only use constant more tapes to do other things, such as simulate M for one step
- * \mathcal{U} 's alphabet is Γ^k .
 - * So it would be convenient for \mathcal{U} to simulate k tapes.
 - * Transform Γ^k to $\{0,1\}$ only has $\log |\Gamma^k|$ overhead, which could be seen as constant.

The problem now becomes:

How to simulate k tapes using only one tape.

A naive approach

- * Let \mathcal{U} 's tape (the one to simulate M's tapes) be indexed from $-\infty$ to $+\infty$
- * Let \mathcal{U} 's read/write head always stays at point 0.
- * The content on \mathcal{U} 's tape now becomes a tuple as (u_1, u_2, \dots, u_k) such that u_i represents the content on the *i*-th tape of M.

U's 3 parallel tapes (i.e., one tape encoding 3 tapes)

In this approach, when one read/write head of M moves, all the contents on \mathcal{U} 's tape should be modified.

A potential approach

- * The main idea is to add a new symbol which represents "empty" to Γ .
- * We add "empty spaces" between the original symbols, so that in the most cases, when a read/write head of M moves, we do not need to modify all the contents on U's tape.

The "empty spaces" is inserted as follow.

- * The cell on \mathcal{U} 's tape is split into several intervals. $(L_1, R_1, L_2, R_2, \cdots)$
- * $|L_i| = |R_i| = 2^i$
- * In each operation, the following invariants are maintained:
 - * The number of non-empty cells in R_i or L_i could be $\{0, 2^{i-1}, 2^i\}$.
 - * In any time, the number of non-empty cells in L_i and R_i should be exactly 2^i in total.
 - * The cell under read/write head should not contain "empty space".
- * In the beginning, we could insert all the "empty spaces" in $\mathcal{O}(T)$. Ensure the number of non-empty cells in L_i and R_i be exactly 2^{i-1} and 2^{i-1} respectively.
- * Then, when some read/write head of *M* moves one cell to the right, we maintain the invariants as follows:

First, find the first non-empty cell x on right. Suppose $x \in R_i$.

Then, balance the "empty spaces" as follow:

- * $x \in R_i \Rightarrow \#\{\text{non-empty cells in } R_i\} \ge 2^{i-1} = 1/2 |R_i|$
- * move *x* to the cell under the read/write head.
- * move the other $2^{i-1}-1$ non-empty cells in R_i to $R_1, R_2, \cdots R_{i-1}$ so that for any $j \in [1, i-1]$, $\#\{\text{non-empty cells in } R_i\}$ becomes $1/2 |R_i|$.
- * move the original cell under the read/write head to L_1
- * for any $j \in [1, i-1]$, move all the non-empty cells of L_i to L_{i+1} . (R_i is empty $\Rightarrow L_i$ is full)

Note that

- * If $x \in R_i$, then including the current move, there must be at least 2^i moves till now.
- * If $x \in R_i$, then the cost of the simulation of the current $\propto 2 \cdot 2^{i+1}$.
- * If the total move of M is T, then there are at most $T/2^i$ moves that could cost $2 \cdot 2^{i+1}$ steps of simulation.

$$\sum_{i=1}^{\log T} \frac{T}{2^i} \cdot 4 \cdot 2^i = \sum_{i=1}^{\log T} 4T = 4T \log T$$

 $\sum_{i=1}^{\log T} \frac{T}{2^i} \cdot 4 \cdot 2^i = \sum_{i=1}^{\log T} 4T = 4T \log T.$ The log T comes from the fact that T could be split in at most log T intervals. So for any R_i , L_i , we have $i \leq \log T$.