最小木

離散数学・オートマトン 2021 年後期 佐賀大学理工学部 只木進一

- ① ネットワーク: Networks
- ② 最小木: Minimum trees
- ③ Jarník-Prim 法
- 4 Jarník-Prim 法が正しいこと

ネットワーク: Networks

- グラフの各辺に数値が対応したものをネットワークと呼ぶ
- ◆ 今日は、無向グラフの各辺に正の「重み」があるものを扱う

例 1: 最安の連絡経路

例 1: 解

最小木の応用例

- 連絡網
- 油井のネットワーク
 - 積出港へのパイプの長さを最小に
- 組織内のネットワーク配線

Jarník-Prim 法

- 始点から開始して、連結した頂点の数を増やす
- 構成途中でも木になっている
- 構成途中の木から、未連結の頂点への辺のうちの重み最小の 辺を選んで、枝を伸ばす
 - 長さの増分が最小

Jarník-Prim アルゴリズム

Algorithm 1 Jarník-Prim アルゴリズム

```
任意の頂点 v \in V を選び、U = \{v\}、T = \emptyset とする while U \neq V do U と V \setminus U を結ぶ辺のうち、最初の重みのものを e とする e の V \setminus U 側の端点を w とする U.append(w) T.append(e) end while T が最小木を構成する
```

8/35

例 1

例 2

例2:途中プロセス

from	to	U
		$\{v_0\}$
v_0	v_2	$\{v_0, v_2\}$
v_2	v_1	$\{v_0, v_1, v_2\}$
v_1	v_5	$\{v_0, v_1, v_2, v_5\}$
v_5	v_7	$\{v_0, v_1, v_2, v_5, v_7\}$
v_7	v_8	$\{v_0, v_1, v_2, v_5, v_7, v_8\}$
v_1	v_6	$\{v_0, v_1, v_2, v_5, v_6, v_7, v_8\}$
v_2	v_3	$\{v_0, v_1, v_{2,3}, v_5, v_6, v_7, v_8\}$
v_5	v_4	$\{v_0, v_1, v_{2,3}, v_4, v_5, v_6, v_7, v_8\}$
v_7	v_9	$\{v_0, v_1, v_{2,3}, v_4, v_5, v_6, v_7, v_8, v_9\}$

Jarník-Prim 法が正しいこと

- Jarník-Prim アルゴリズム実行中の木Tは、Uが誘導するGの部分グラフG(U)における最小木になっていることを示す。
- 証明の方針:ある辺 $\exists a \in T$ を、別のある辺 $\exists a' \notin T$ に置き換えることで、より小さい木ができる

ことを仮定して、矛盾を導く。

• o を根とする木 T において、辺 $a \in T$ の代わりに辺 $a' \not\in T$ としたときに、重みが小さくなると仮定する。

- ullet 上の枝で、辺 a を先頭に連続して伸びた道を P_1 とし、その後に下の枝で連続して伸びた道を Q_1 とする。その後、 P_2 、 Q_2 と交互に伸びるとする。他の道は無視する。
- 辺 a' の両端の頂点は道 P_k と Q_ℓ に属しているとする。

- ullet P_i を構成する辺 $\{a_0^i,a_1^i,\cdots,a_n^i\}$
- ullet Q_j を構成する辺 $\left\{b_0^j, b_1^j, \cdots, b_m^j
 ight\}$
- ullet P_i の後で Q_i 伸びることから
 - ullet P_i が伸びている最中は Q_i は伸び始めない
 - ullet Q_j が伸びている最中は、 P_i の次 P_{i+1} は伸び始めない

$$\forall i, \forall j, w(a_j^i) \le w(b_0^i), w(b_j^i) \le w(a_0^{i+1})$$

• 各道 P_i 及び Q_i の先頭の辺に注目

$$\forall i, w(a_0^i) \le w(b_0^i) \le w(a_0^{i+1})$$

• 各道の先頭の辺の重みは以下を満たす

$$\forall i, w(a) \le w(a_0^i), w(a) \le w(b_0^i)$$

$k \leq \ell$

- lacktriangle 上の道が、頂点 u まで伸びたとき、下の道は頂点 r まで伸びていない
- ullet 上の道 P_k が伸びるとき、辺 a' は採用されないことから、

$$w(a) \leq w(b_0^k) \leq w(a')$$

となり、矛盾

$k > \ell$

- lacktriangle 上の道が、頂点 u まで伸びたとき、下の道は頂点 r を過ぎて伸びている
- ullet 下の道 Q_ℓ が伸びるとき、辺 a' は採用されないことから、

$$w(a) \le w(a_0^{\ell+1}) \le w(a')$$

となり、矛盾