Labo Signaalverwerking

Dries Kennes (R0486630)

May 7, 2018

Opdracht 2A: Analyse v.e. actieve filtertrap

Specificatie

Figure 1: Het schema.

- Low Pass KHN Non Inverting (schema nr 5)
- Filter is een LDL
 - -|H(0)| = 6dB
 - -|H(10kHz)| = -34dB
 - $-Q_p=4$

Analyse

Berekening f_n uit asymptotisch Bodediagram

De lijn van -40dB/dec, het beginpunt bij 10kHz, -34dB, en het filtertype (LDF) laat toe f_n te berekenen. $f_n = 1kHz$.

1. Bepaal de DC- en HF-weergave

DC

Bij DC zijn condensatoren open kring, dus wordt de versterking bepaald door de feedback weerstanden R_4 , R_5 , en R_6 . Dit is dus een vaste versterking. |H(DC)| = A.

Figure 2: Schema met alle condensatoren open kring.

\mathbf{HF}

Bij HF $(f = \infty)$ zijn de condensatoren kortsluitingen, dus wordt het signaal volledig onderdrukt door de feedback lussen C_1 en C_2 . $|H(HF)| = -\infty dB$

Figure 3: Schema met alle condensatoren kortgesloten.

2. Bepaal de transferfunctie

Ik heb de transfer functie uitgerekend door het schema op te splitsen in twee integrators en de eerste opamp.

De integrators

Figure 4: Deel van het schema met de integrators.

De algemene formule voor een integrator is $v_o=\frac{-v_1}{sRC}$. Voor deze twee specifieke gevallen: $v_5=\frac{-v_4}{sR_1C_1}$ en $v_{out}=\frac{-v_5}{sR_2C_2}$. Gecombineerd: $v_{out}=\frac{v_4}{s^2R_1C_1R_2C_2}$ of $v_4=s^2R_1R_2C_1C_2v_{out}$

Superpositie

Geval 1: v_{in} , $v_{out} = v_5 = 0$

Figure 5: Superpositie schema geval 1

De opamp is nu een niet inverterende versterker. $v_4 = v_1 \cdot (1 + \frac{R_6}{R_5})$ $v_1 = v_{in} \cdot \frac{R_4}{R_3 + R_4} \Rightarrow v_4 = v_{in} \cdot \frac{R_4}{R_3 + R_4} \cdot (1 + \frac{R_6}{R_5}) = v_{in} \cdot \frac{R_4}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_5}$

Geval 2: v_5 , $v_{out} = v_{in} = 0$

Figure 6: Superpositie schema geval 2

De opamp is nu een niet inverterende versterker.

$$v_4 = v_1 \cdot \left(1 + \frac{R_6}{R_5}\right) \, v_1 = v_5 \cdot \frac{R_3}{R_3 + R_4} \Rightarrow v_4 = v_5 \cdot \frac{R_3}{R_3 + R_4} \cdot \left(1 + \frac{R_6}{R_5}\right) = v_5 \cdot \frac{R_3}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_5}$$

Geval 3: v_{out} , $v_5 = v_{in} = 0$

Figure 7: Superpositie schema geval 3

De opamp is nu een inverterende versterker.

$$v_4 = \frac{-R_6}{R_5} \cdot v_{out}$$

Totaal

$$v_4 = \sum v_4 = v_{in} \cdot \frac{R_4}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_5} + v_5 \cdot \frac{R_3}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_5} + \frac{-R_6}{R_5} \cdot v_{out}$$

$$v_{in} \cdot \tfrac{R_4}{R_3 + R_4} \cdot \tfrac{R_6 + R_5}{R_5} = -v_5 \cdot \tfrac{R_3}{R_3 + R_4} \cdot \tfrac{R_6 + R_5}{R_5} + \tfrac{R_6}{R_5} \cdot v_{out} + v_4$$

Vervang in deze formule v_5 en v_4 door de formules van de twee integrators:

$$v_{in} \cdot \frac{R_4}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_5} = v_{out} \cdot \left(sR_2C_2 \cdot \frac{R_3}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_5} + \frac{R_6}{R_5} + s^2R_1R_2C_1C_2v \right)$$

$$\frac{v_{in}}{v_{out}} \cdot \frac{R_4}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_5} = s^2 R_1 R_2 C_1 C_2 + s R_2 C_2 \cdot \frac{R_3}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_5} + \frac{R_6}{R_5}$$

$$\frac{v_{out}}{v_{in}} = \frac{R_4}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_5} \cdot \frac{1}{s^2 R_1 R_2 C_1 C_2 + s R_2 C_2 \cdot \frac{R_3}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_5} + \frac{R_6}{R_5}}{r_5} + \frac{R_6}{R_5} + \frac{R_6}{R$$

$$\frac{v_{out}}{v_{in}} = \frac{R_4}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_5} \cdot \frac{1}{\frac{R_6}{R_5} \cdot (s^2 \cdot \frac{R_1 R_2 C_1 C_2 R_5}{R_5} + s R_2 C_2 \cdot \frac{R_3}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_6} + 1)}{\frac{R_6}{R_5} \cdot (s^2 \cdot \frac{R_1 R_2 C_1 C_2 R_5}{R_5} + s R_2 C_2 \cdot \frac{R_3}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_6} + 1)}$$

Het resultaat:
$$H(s) = \frac{v_{out}}{v_{in}} = \frac{R_4}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_6} \cdot \frac{1}{s^2 \cdot \frac{R_1 R_2 C_1 C_2 R_5}{R_6} + s R_2 C_2 \cdot \frac{R_3}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_6} + 1}$$

3. Vergelijk transfer functie met de algemene

Algemene vorm LDL filter: $H(s) = K \frac{1}{(\frac{s}{\omega_n})^2 + \frac{1}{O} \cdot (\frac{s}{\omega_n}) + 1}$

3. Pole-zero plot

- Geen zeros
- Wel polen, namelijk $s^2 \cdot \frac{R_1 R_2 C_1 C_2 R_5}{R_6} + s R_2 C_2 \cdot \frac{R_3}{R_3 + R_4} \cdot \frac{R_6 + R_5}{R_6} + 1 = 0$

- $C_2 = c^{te} = 1$ Kies C_2 omdat van C_1 makkelijker een ontwerpvergelijking te vinden is.
- $R=R_1=R_2=R_3=R_4=R_6$ R_5 variabel omdat die enkel in tellers zit. Dit maakt ontwerpvergelijkingen makkelijker.

Dit maakt dan

- $K = \frac{R+R_5}{2R}$ $\frac{1}{\omega_n^2} = C_1C_2RR_5$ $\frac{1}{Q\omega_n} = \frac{C_2(R+R_5)}{2}$

Transfer functie met componenten: $H(s) = \frac{R+R_5}{2R} \cdot \frac{1}{s^2C_1C_2RR_2+s} \cdot \frac{1}{c^2(R+R_5)+1}$

Synthese

1. Ontwerpvergelijkingen

- $K = \frac{R + R_5}{2R} \Rightarrow R + R_5 = 2RK$ and $\frac{1}{Q\omega_n} = \frac{C_2(R + R_5)}{2} = C_2RK \Rightarrow R = \frac{1}{C_2KQ\omega_n}$ $R + R_5 = 2KR \Rightarrow R_5 = (2K 1)R \Rightarrow R_5 = \frac{2K 1}{C_2KQ\omega_n}$
- $\omega_n^2 = \frac{1}{C_1 C_2 R R_5} \Rightarrow C_1 = \frac{1}{C_2 R R_5 \omega_n^2}$

2. Impedantieschaling

Schalingsfactor: 10⁶