MATH 239 - Tutorial 4

Feb. 6, 2013

1. Show that $\{01,011,101\}^*$ is an ambiguous expression.

Solution. 01101 = 011/01 = 01/101

- 2. For each of the following sets of binary strings, determine an unambiguous expression which generates every string in that set.
 - (a) Strings where each block of 1s is followed by a block of exactly two 0s.
 - (b) Strings without three consecutive 0s.
 - (c) Strings where each block of 0s has even length.
 - (d) Strings that contain the substring 01.
 - (e) Strings that do not contain the substring 010.

Solution. Note: expressions in (a), (b), (c) are unambiguous, since (by course note pg 36) decomposing a string after each occurrence of a given digit, or after each block of a given digit, is unambiguous.

- (a) $\{0\}^*(\{1\}\{1\}^*\{00\})^*$ (Decompose after each block of 0s.)
- (b) $\{1\}^*(\{0,00\}\{1\}\{1\}^*)^*\{\varepsilon,0,00\}$ (Decompose after each block of 1s) or $\{\varepsilon,0,00\}\{1,10,100\}^*$ (Decompose after each occurrence of 1.)
- (c) $\{00\}^*(\{1\}\{1\}^*\{00\}\{00\}^*)^*\{1\}^*$ (Decompose after each block of 0s)
- (d) $\{0,1\}^*\setminus\{1\}^*\{0\}^*$ (All strings except for those that do not contain 01. Both parts of the expression are obviously unambiguous, and the second part is a subset of the first part.)
- (e) $\{1\}^*(\{0\}\{0\}^*\{11\}\{1\}^*)^*(\{0\}^* \cup \{0\}^*\{01\})$ (The first part A of the expression follows the decomposition after each block of 1s. The second part B is unambiguous too, as it is a union of strings ending in 0 and strings ending in 1. Note that A contains only (1) strings ending in at least two 1s, or (2) only consisting of 1s, so no non-empty suffix of a string in A is a prefix of a string in B, as (1) no strings in B contain two consecutive 1s, and (2) all non-empty strings in B start with 0. Suffix/prefix here means substring at the end/beginning of a string.) Note that the strings in this set are the strings that do not contain a block of a single 1, except for possibly at the beginning or end, which is intuitively what the expression describes.
- 3. Let $S = \{0\}^*(\{1\}\{11\}^*\{00\}\{00\}^* \cup \{11\}\{11\}^*\{0\}\{00\}^*)^*$.
 - (a) Describe in words the strings that belong to S.
 - (b) Find the generating series for S.

Solution

(a) Inside the brackets - the first set contains strings composed of an odd number of 1's followed by an even number of 0's. The second set contains strings with an even number (≥ 2) of 1's followed by an odd number of 0's. So the union of these sets is the set of binary strings beginning with 1 in which each block of 1's is followed by a block of 0's with a different parity. Since S may begin either with a block of 0's of any length or without a block of 0's, S is the set of binary strings in which every block of 1's is followed by a block of 0's of different parity.

(b) Let the weight of a string be equal to its length. Denote $A = \{1\}\{11\}^*\{00\}\{00\}, B = \{11\}\{11\}^*\{0\}\{00\}^*$. Then

$$\begin{split} &\Phi_{\{0\}}(x) = \Phi_{\{1\}}(x) = x \\ &\Phi_{\{11\}}(x) = x^2 \\ &\Phi_{\{00\}}(x) = x^2 \\ &\Phi_{A}(x) = \Phi_{\{1\}}(x) \cdot \Phi_{\{11\}^*}(x) \cdot \sum_{k \geq 1} \left[\Phi_{\{00\}}(x) \right]^k \text{ (Sum Rule and Product Rule, part (a))} \\ &= x (1 - \Phi_{\{11\}}(x))^{-1} \sum_{k \geq 1} x^{2k} \text{ (Product Rule part (b))} \\ &= x (\frac{1}{1 - x^2}) (\frac{x^2}{1 - x^2}) \\ &= \frac{x^3}{(1 - x^2)^2}, \\ &\Phi_B(x) = \frac{x^3}{(1 - x^2)^2}, \text{ (by symmetry; same algebra as previous)} \\ &\Phi_{A \cup B} = \Phi_A(x) + \Phi_B(x) (\text{Sum rule, since } A \cap B = \emptyset), \\ &= \frac{2x^3}{(1 - x^2)^2} \\ &\Phi_S(x) = \Phi_{\{0\}^*}(x) \cdot \Phi_{(A \cup B)^*}(x) (\text{Product Rule)} \\ &= (1 - x)^{-1} (1 - \frac{2x^3}{(1 - x^2)^2})^{-1} \\ &= \frac{1}{1 - x} \left(\frac{(1 - x^2)^2 - 2x^3}{(1 - x^2)^2} \right)^{-1} \\ &= \frac{(1 - x^2)^2}{(1 - x)((1 - x^2)^2 - 2x^3)}. \end{split}$$

This gives the recurrence relation.

4. Let k be a fixed positive integer. Let S be the set of binary strings with no k consecutive 1's, and let b_n be the number of strings in S of length n. Prove that for $n \ge k$,

$$b_n = \sum_{i=1}^k b_{n-i}.$$

Solution. Let $M = \bigcup_{i=0}^{k-1} \{1\}^i$. Then the decomposition is

$$M(\{0\}M)^*$$
.

Generating series is

$$(1+x+\cdots+x^{k-1})\frac{1}{1-x(1+x+\cdots+x^{k-1})} = \frac{1+x+\cdots+x^{k-1}}{1-x-x^2-\cdots-x^k}.$$

Denote $\Phi_M(x)$ by $\sum_{i>0} b_i x^i$. Then

$$(1 - x - \dots - x^k) \sum_{i \ge 0} b_i x^i = 1 + x + \dots + x^{k-1}, \text{ so}$$

$$[x^n](1 - x - \dots - x^k) \sum_{i \ge 0} b_i x^i = [x^n](1 + x + \dots + x^{k-1})$$

$$[x^n](1 - x - \dots - x^k) \sum_{i \ge 0} b_i x^i = 0, \text{ since } n \ge k$$

$$[x^n](\sum_{i \ge 0} b_i x^i - x \sum_{i \ge 0} b_i x^i - \dots - x^k \sum_{i \ge 0} b_i x^i) = 0$$

$$[x^n](\sum_{i \ge 0} b_i x^i - \sum_{i \ge 1} b_{i-1} x^i - \dots - \sum_{i \ge k} b_{i-k} x^i) = 0 \text{ (reindex)}$$

Since $n \geq k$,

$$[x^n] \sum_{i>j} b_{i-j} x^i = b_{i-j} \tag{1}$$

for all j = 1, 2, ..., k. So

$$[x^n](\sum_{i\geq 0}b_ix^i - \sum_{i\geq 1}b_{i-1}x^i - \dots - \sum_{i\geq k}b_{i-k}x^i) = b_n - b_{n-1} - \dots - b_{n-k} = 0$$

Rearranging gives

$$b_n = b_{n-1} - b_{n-1} - \dots - b_{n-k}$$
$$= \sum_{i=1}^{n} b_{n-i},$$

as required.

5. Define $a_k = 1 \underbrace{00...0}_{k}$ to be the string starting at 1 and followed by k 0's (e.g. $a_0 = 1, a_1 = 10, a_2 = 100$).

Denote $S = \{a_0, a_i, ..., a_n\}$. Show that the set $\{a_0, a_1, a_2, ..., a_n\}^*$ is an unambiguous expression for any non-negative integer n.

Solution. Let $x \in \{a_0, a_1, a_2, ..., a_n\}^*$. Lets prove by induction on the length of x, that x has a unique decomposition $x = c_1c_2...c_s$, where $c_i \in \{a_0, a_1, a_2, ..., a_n\}$ for each i = 1, 2, ..., s. If $x = \epsilon$, then x has a unique decomposition (the empty one). Suppose that $x = c_1'c_2'...c_r'$, where $c_j' \in \{a_0, a_1, a_2, ..., a_n\}$ for all j = 1, ..., n. Thus $c_1c_2...c_s = c_1'c_2'...c_r'$, hence $c_1 = c_1'$ (because the first block of 0's should be of the same length in LHS than in RHS). Therefore $y := c_2...c_s = c_2'...c_r'$, and by induction, the decomposition of y is unique, then r = s and $c_2 = c_2'$, ..., $c_r = c_r'$. Therefore the decomposition is unique for x, because $c_1 = c_1'$, $c_2 = c_2'$, ..., $c_r = c_s'$.

Another Solution. Denote $S = \{a_0, a_1, a_2, ..., a_n\}$. Let $x \in S^* = \{a_0, a_1, a_2, ..., a_n\}^*$. We will use induction to prove that the decomposition of x into elements of S is unambiguous. (i.e. we'll prove that x can only be generated one way by concatenating elements of S.)

Base case of inductive proof: If $x = \epsilon$, then x has a unique decomposition (the empty decomposition). Inductive Hypothesis: Suppose $x \neq \epsilon$, and that the decomposition of s is unique for all strings $s \in S$ that are shorter than x.

Inductive Step: Suppose the first block of 0's in x has length i. Then the first element of S in the decomposition of x must be a_i . (No other element of S contains a sequence of exactly i zeros. Each

sequence of consecutive 0's in x must be contained in a single element of S in any decomposition of x.) So we can write $x = a_i y$, where $y \in S$. Then y has a unique decomposition into elements of S, by the inductive hypothesis. Because a_i and y are both uniquely determined, the decomposition of x is also unique. Thus the result holds.