Ownership Structure and Economic Growth

Koki Okumura

UCLA

Ownership Structure ⇒ Economic Growth?

Onwership structure is concentrated

- BlackRock, Vanguard, State Street, and Fidelity control 30% of votes of S&P 500 firms
- Top 10 chaebols account for half of stock market capitalization and exports in Korea
- Firms maximize shareholder values ⇒
 Partially internalize externalities for commonly owned firm
- Ownership structure (common ownership, cross ownership, M&A, FDI, ...) ⇒
 Economic growth?
 - Business stealing effect
 - Technology spillover effect

Quantitative Schumpeterian Growth Model with Ownership Structure

- Existing Schumpeterian growth models:
 - Lack of strategic interaction (e.g., monopolistic competition)
 - Very few firms in Markov perfect equilibrium
- This paper: Many oligopolists + Ownership structure
- Quantify three inter-firm networks for publicly listed patenting firms in the US (\simeq 1000 firms)
 - Ownership structure
 - Product market rivalry
 - Technology spillover
- Common ownership in the US:
 - Internalization of business stealing $\Longrightarrow g \downarrow \downarrow$
 - Internalization of technology spillover $\Longrightarrow g \uparrow$

Literature

- · Competition & Innovation:
 - d'Aspremont and Jacquemin (1988); Aghion et al. (2001, 2005); Acemoglu and Akcigit (2012); Aghion et al. (2013); Bloom et al. (2013); Lopez and Vives (2019); Peters (2020); Akcigit and Ates (2021, 2023); Liu et al. (2022); Cavenaile et al. (2023); Anton et al. (2023, 2024); Kini et al. (2024); Hopenhayn and Okumura (2024)
 - Quantitative Schumpeterian growth model with ownership structure
- Hedonic Demand / Empirical IO:
 - Lancaster (1966); Rosen (1974); Berry et al. (1995); Nevo (2001); Pellegrino (2024); Ederer and Pellegrino (2024) Dynamic general equilibrium / R&D
- Oligopoly / Common Ownership / Market Power:
 Rubinstein and Yaari (1983); Rotemberg (1984); Neary (2003); Atkeson and Burstein (2008); Gutierrez and Philippon (2017); He and Huang (2017); Azar et al. (2018, 2022); Autor et al. (2020); Baqaee and Farhi (2020); De Loecker et al. (2020); Azar and Vives (2021); Edmond et al. (2023)

Simple Static Partial Equilibrium Model

- Firm $i \in \{1, ..., n\}$ chooses quantity q_i and R&D effort x_i
- Linear inverse demand: $p(q) = b \Sigma q$
- CRS production technology with marginal cost: $m(x) = \overline{m} \Omega x$
- Quadratic cost of R&D: $c(x_i) = \frac{1}{2}x_i^2$

Common Ownership Weights

- $\mathbf{K} = [\kappa_{ij}]$: common ownership weights that firm i places on the value of firm j
- More overlapping ownership b/w firm i and $j\Longrightarrow$ Higher κ_{ij}

Proportional Influece

- Diagonal elements κ_{ii} are normalized to 1 for all firm i
- K = I: dispersed ownership (each firm maximizes its own value)
- K = [1]: monopoly (maximizes total producer surplus)

Cournot & R&D Game

• Firm *i*'s profit:

$$\pi_i(\boldsymbol{q}, \boldsymbol{x}) = [p_i - m_i]q_i - c(x_i)$$

$$= \left[b_i - \sum_{i=1}^n \sigma_{ij}q_j - \overline{m}_i + \sum_{i=1}^n \omega_{ij}x_j\right]q_i - \frac{1}{2}x_i^2$$

• Given $\{q_j, x_j\}_{j \neq j}$, firm i chooses q_i and x_i to maximize $\sum_i \kappa_{ij} \pi_j(\boldsymbol{q}, \boldsymbol{x})$

Impact of Common Ownership on R&D

• Comparative statics where $\{q_k, x_k\}_{k \neq i}$ are held constant:

$$\frac{\partial x_i}{\partial \kappa_{ij}} = \frac{q_j}{2 - \omega_{ii}^2} (2\omega_{ij} - \omega_{ii}\sigma_{ij}) \qquad \forall j \neq i$$

- SOC: $2 > \omega_{ii}^2$
- Internalize business stealing effect: $\partial^2 x_i/\partial \kappa_{ij}\partial \sigma_{ij} < 0$
- Internalize technology spillover effect: $\partial^2 x_i/\partial \kappa_{ij}\partial \omega_{ij} > 0$

Overview of Identification Strategy

Networks	Measurement
Common ownership K	Institutional investor holdings in 13f filings (Backus et al., 2021)
Product market rivalry Σ	Product proximity (Hoberg and Phillips, 2016): Text analysis of business description in 10k filings
Technology spillover Ω	Technology proximity (Jaffe, 1986; Bloom et al., 2013): Patent classification

Schumpeterian Growth Model

Linear quadratic aggregator (final good):

$$Y_t = oldsymbol{q}_t^T oldsymbol{b}_t - rac{1}{2} oldsymbol{q}_t^T oldsymbol{\Sigma} oldsymbol{q}_t$$

Linear inverse demand:

$$oldsymbol{p}_t = oldsymbol{b}_t - oldsymbol{\Sigma} oldsymbol{q}_t$$

CRS production technology (intermediate good):

$$q_{i,t} = a_{i,t}I_{i,t}$$

- Each firm has knowledge capital z_{i,t}
- Each firm allocates knowledge capital to improve labor productivity and product quality:

$$\zeta a_{i,t} + b_{i,t} = z_{i,t}$$

Law of Motion of Knowledge Capital

$$d\mathbf{z}_t = \left(\underbrace{\Omega \mathbf{z}_t}_{\text{tech spillover}} + \underbrace{\mu \mathbf{x}_t}_{\text{R&D}}\right) dt + \underbrace{\gamma \mathbf{z}_t \circ d \mathbf{W}_t}_{\text{shocks}}$$

- $\Omega = [\omega_{ij}]$: technology spillover matrix
- $x_{i,t} = \sqrt{d_{i,t}}$
 - d_{i,t}: R&D input in terms of final good
 - Innovation elasticity is 0.5
- μ , γ : positive scalars

Market Clearing and Preference

Inelastic labor supply:

$$L=\sum_{i}I_{i,t}$$

Final good market clearing:

$$C_t + \sum_{i} d_{i,t} = Y_t$$
R&D input

Risk neutral representative household:

$$\max \, \boldsymbol{E}_t \left[\int_t^{\infty} \exp\left(-\rho \boldsymbol{s}\right) C_{\boldsymbol{s}} d\boldsymbol{s} \right]$$

Cournot-Nash Equilibrium

Firm i's gross profit before subtracting dynamic R&D cost:

$$\pi_{i,t} = p_{i,t}q_{i,t} - w_t I_{i,t} = \left(b_{i,t} - \frac{w_t}{a_{i,t}} - \sum_i \sigma_{ij}q_{j,t}\right)q_{i,t}$$
 where $\zeta a_{i,t} + b_{i,t} = z_{i,t}$

- Given w_t , $z_{i,t}$, and $\{q_{j,t}\}_{i\neq i}$, firm i chooses $a_{i,t}$, $b_{i,t}$, and $q_{i,t}$ to maximize $\sum_i \kappa_{ij} \pi_{j,t}$
- Quantity is a linear function of knowledge capital:

$$m{q}_t(m{z}_t) = \left\{ \underbrace{2rac{\zeta}{L}m{J}}_{ ext{labor cost}} + \underbrace{m{\Sigma}}_{ ext{substitutability}} + \underbrace{m{K} \circ m{\Sigma}}_{ ext{ownership} imes ext{substitutability}}
ight\}^{-1} m{z}_t$$

- **J** = [1]
- ullet Ownership-weighted gross profits are expressed in quadratic form: $\sum_i \kappa_{ij} \pi_{j,t} = m{z}_t^T m{Q}^i m{z}_t$ $m{\odot}$

Linear-Quadratic Differential Game

• Given other players' strategy $\{x_{j,t}\}_{i\neq i,t\geq 0}$, firm i chooses R&D effort $\{x_{i,t}\}_{t\geq 0}$ to maximize

$$\max_{\left\{\boldsymbol{x}_{i,t}\right\}_{t\geq0}}\quad V^{i}\left(\boldsymbol{z}_{0}\right)\equiv\boldsymbol{E}_{0}\left[\int_{0}^{\infty}\exp\left(-\rho t\right)\left\{\sum_{j}\kappa_{ij}\left(\pi_{j,t}-x_{j,t}^{2}\right)\right\}dt\right]$$

subject to $d\mathbf{z}_t = (\mathbf{\Omega}\mathbf{z}_t + \mu\mathbf{x}_t) dt + \gamma \mathbf{z}_t \circ d\mathbf{W}_t$

• Firm i's HJB equation:

$$\rho V^{i}(\boldsymbol{z}) = \max_{\boldsymbol{x}_{i}} \left\{ \boldsymbol{z}^{T} \boldsymbol{Q}^{i} \boldsymbol{z} - \sum_{j} \kappa_{ij} \boldsymbol{x}_{j}^{2} + V_{\boldsymbol{z}}^{i}(\boldsymbol{z}) \left[\boldsymbol{\Omega} \boldsymbol{z} + \mu \boldsymbol{x} \right] + \frac{\gamma^{2}}{2} \boldsymbol{z}^{T} V_{\boldsymbol{z}\boldsymbol{z}}^{i}(\boldsymbol{z}) \boldsymbol{z} \right\}$$

HJB Equations ⇒ Riccati Equations

- Guess and verify $V^{i}(z) = z^{T}X^{i}z$ (for any z)
- Xⁱ is the solution of stacked algebraic Riccati equations Riccati
- All public patenting firms in the US in our dataset \simeq 1000 firms \Longrightarrow 1000³ = 1 billion undetermined coefficients (20 seconds on my laptop)

Oligopolistic Schumpeterian	Computation time	# of firms	Productivity space
Cavenaile et al. (2023)	$O(2^{n})$	4	6 grid
Our model	$O(n^4)$	≈1000	Continuous

Balance Growth Path

- R&D strategy: $\pmb{x}_{i,t} = \left(\mu \pmb{X}_i^i\right)^T \pmb{z}_t$ where \pmb{X}_i^i is the i th column of \pmb{X}^i
- The law of motion is rewritten as $dz_t = \Phi z_t dt + \gamma z_t \circ dW_t$ where

$$\Phi \equiv \underbrace{\Omega}_{\text{Tech Spillover}} + \underbrace{\mu^2 \left[\boldsymbol{X}_1^1 \cdots \boldsymbol{X}_n^n \right]^T}_{\text{P*D}}$$

Theorem

Consider the deterministic economy ($\gamma = 0$). If Φ is irreducible, then:

- (i) There exists largest positive eigenvalue of Φ , g, and associated positive eigenvector, z^* .
- (ii) There exists a globally stable BGP such that the knowledge capital growth rate of all firms is g, and the knowledge capital distribution is a scalar multiple of **z***.
 - Proof: Perron–Frobenius Theorem
 - "Ф is irreducible" ← "All firms are directly or indirectly connected technologically"

Intuition of Why the Model Has the BGP

• On the BGP, a_t , b_t , z_t , and q_t grow at the same rate

Technological Choice: $\zeta a_{i,t} + b_{i,t} = z_{i,t}$

Linear Production Technology: $q_{i,t} = a_{i,t}I_{i,t}$

Inelastic Labor Supply: $L = \sum_i I_{i,t}$

• Linear and quadratic term in q_t of output grow at the same rate: Equilibrium Summary

$$Y_t = \boldsymbol{q}_t^{\mathsf{T}} \boldsymbol{b}_t - \frac{1}{2} \boldsymbol{q}_t^{\mathsf{T}} \boldsymbol{\Sigma} \boldsymbol{q}_t$$

Expected Growth Rate and Utility

Apply Ito's lemma:

$$\begin{array}{ll} \log Y_t &= \log \left(\boldsymbol{z}_t^T \boldsymbol{Q} \boldsymbol{z}_t \right) \\ d\boldsymbol{z}_t &= \boldsymbol{\Phi} \boldsymbol{z}_t dt + \gamma \boldsymbol{z}_t \circ d\boldsymbol{W}_t \end{array} \implies \boldsymbol{E}_t \left[g_t | \boldsymbol{z}_t \right]$$

• Expected utility is expressed in quadratic form:

$$m{E}_t \left[\int_{t}^{\infty} \exp\left(-
ho s
ight) C_s ds \bigg| m{z}_t
ight] = m{z}_t^T X m{z}_t$$

ullet Solve the equilibrium once \Longrightarrow Can compute expected growth and utility for any $oldsymbol{z}_t$

Common Ownership K

- Backus et al. (2021) construct a dataset on investors' holdings based on Form 13F.
- Baseline: Rotemberg (1984) proportional influence assumption.

Proportional Influence

Product Market Rivalry Σ

- Hoberg and Phillips (2016) estimates product similarity using business descriptions in 10-K
- Pellegrino (2024) estimates α to align with the cross-price elasticity of demand $\frac{1}{2}$

$$\underbrace{\sigma_{ij}}_{\text{substitutability}} = \alpha \times \text{product similarity b/w } i \text{ and } j \quad (i \neq j)$$

Technological Proximity Ω

- Technological profile of firm i
 - The vector of the share of patents held by firm *i* in each technology class
 - Baseline: group-level patent classifications (≈ 4000)
- Jaffe (1986) technological proximity measure $\tilde{\omega}_{ij}$:
 - Cosine similarity of the technological profiles b/w firm i and j

Distribution of Knowledge Capital **z**_t

Variables	Identification
$\pi_{i,t}$	$\hbox{Gross profit (before R\&D cost)} = \hbox{Revenue} - \hbox{Cost of goods sold}$
$oldsymbol{q}_t$	$\pi_{i,t} = \sum_i \kappa_{ij} \ \sigma_{ij} \ q_{i,t} \ q_{j,t}$
ζ/L	Matches sample firms' cost share (average markup)
\boldsymbol{z}_t	$oldsymbol{q}_t = \left\{ 2rac{\zeta}{L} oldsymbol{J} + oldsymbol{\Sigma} + oldsymbol{K} \circ oldsymbol{\Sigma} ight\}^{-1} oldsymbol{z}_t$

Technology Spillover $\mathbf{\Omega} = eta imes \mathsf{Technological}$ Proximity $\widetilde{\mathbf{\Omega}}$

$$z_{l,t+1} - z_{l,t} = \beta \sum_{j \neq l} \tilde{\omega}_{ij,t} z_{j,t} + \text{Year FE}_t + \epsilon_{i,t}$$

	(1)	(2)	(3)
	$z_{i,t+1} - z_{i,t}$	$z_{i,t+1}-z_{i,t}$	$z_{i,t+1} - z_{i,t}$
Σ ~ -	0.000191***	0.000152***	0.000140***
$\sum_{j\neq i} \tilde{\omega}_{ij,t} z_{j,t}$	(0.000035)	(0.000035)	(0.000039)
DOD Francischitzung	,	0.037**	,
√R&D Expenditure		(0.021)	
Year Fixed Effects	✓	✓	✓
IV			✓
IV 1st Stage F-statistics			4176
No. observations	16,324	15,173	14,181

SEs clustered by years and 4-digit naics industries are reported in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

• IV: Firm-specific tax price of R&D from federal and state-specific rules (Bloom et al., 2013)

Identification: Summary

• Publicly available data + Compustat

Notation	Description	Value	Source
Σ	Product proximity		Form 10-K, Hoberg and Phillips (2016)
$\widetilde{oldsymbol{\Omega}}$	Technological proximity		USPTO, Patent classification
K	Common ownership weights		Form 13F, Backus et al. (2021)
α	Product proximity → Substitutability	0.12	Pellegrino (2024)
β	Technological proximity \rightarrow Spillover	0.00014	Estimate the law of motion
γ	St.d. of idiosyncratic shocks	0.027	Estimate the law of motion
ζ/L	Labor augmentation efficiency	0.0063	Compustat, Cost of goods sold
ho	Discount rate	0.10	> risk free rates, < private R&D returns
μ	R&D efficiency	0.05	1.7% economic growth rate

Fit b/w Model and Data

• Comparison of firm-level model-generated values (x-axis) with observed data (y-axis)

Counterfactual Ownership Structures

Ownership Structure	Description
Baseline	Observed ownership structure in 2017
Dispersed	$K^D = I$
Mean=1999	$\kappa_{ij,2017}^{M1999} = const imes \kappa_{ij,2017}$ and $m{E}\left[\kappa_{ij,2017}^{M1999} ight] = m{E}\left[\kappa_{ij,1999} ight]$ for $j eq i$
Uniform	$\kappa_{ij,2017}^U = oldsymbol{E}\left[\kappa_{ij,2017} ight]$ for $j eq i$
Monopoly	$\mathbf{K}^{M} = [1]$

Total Output

Total Output in 2017	Ownership (Baseline: 2017)				
(Social Optimum: 100)	Dispersed	Mean=1999	Uniform	Baseline	Monopoly
Baseline	91.30	91.02	90.78	89.08	89.17
Only Business Steal					
$\boldsymbol{\Omega} = [0]$	91.30	91.02	90.78	89.08	89.17
Only Tech Spill					
$\mathbf{\Sigma} = \mathbf{I}, \zeta/L = 0$	75.00	75.00	75.00	75.00	75.00

- Inelastic labor supply \Longrightarrow Changes arise from product misallocation
- Common ownership exacerbates product misallocation

Total R&D Expenditure

Total R&D in 2017	Ownership (Baseline: 2017)				
(Social Optimum: 100)	Dispersed	Mean=1999	Uniform	Baseline	Monopoly
Baseline	26.16	25.90	25.56	22.36	19.36
Only Business Steal					
$\boldsymbol{\Omega} = [0]$	28.15	27.79	27.07	23.42	19.80
Only Tech Spill					
$\mathbf{\Sigma} = \mathbf{I}, \ \zeta/L = 0$	18.27	18.34	18.75	18.86	19.84

- Internalization of business stealing > Internalization of technology spillover
- Network heterogeneity is important

Expected Growth Rate

Expected Economic		Ownership (Baseline: 2017)				
Growth Rate in 2017 (%)	Dispersed	Mean=1999	Uniform	Baseline	Monopoly	
Baseline	1.796	1.793	1.791	1.753	1.713	
Only Business Steal						
$\boldsymbol{\Omega} = [0]$	1.097	1.094	1.093	1.062	1.020	
Only Tech Spill						
$\mathbf{\Sigma} = \mathbf{I}, \ \zeta/L = 0$	2.051	2.054	2.068	2.072	2.107	

- In baseline, the expected growth rate is
 - 0.043 pp (2.4%) lower compared to dispersed ownership, and
 - 0.040 pp (2.2%) lower compared to common ownership level in 1999.

Expected Social Welfare

Expected Social Welfare		Ownership	(Baseline	: 2017)	
(Social Optimum: 100)	Dispersed	Mean=1999	Uniform	Baseline	Monopoly
Baseline	87.72	87.42	87.16	85.25	85.18
Only Business Steal					
$\boldsymbol{\Omega} = [0]$	88.83	88.53	88.30	86.44	86.41
Only Tech Spill					
$oldsymbol{\Sigma} = oldsymbol{I},\ \zeta/L = 0$	68.81	68.82	68.88	68.89	69.02

- In the baseline, the consumption-equivalent welfare loss is
 - 2.8% compared to dispersed ownership, and
 - 2.5% compared to the common ownership level in 1999.

Firm Value Share

Firm Value		Ownership (Baseline: 2017)				
Share in 2017 (%)	Dispersed	Mean=1999	Uniform	Baseline	Monopoly	
Baseline	28.74	29.63	33.43	33.34	40.92	
Only Business Steal						
$\boldsymbol{\Omega} = [0]$	27.91	28.80	32.60	33.51	40.14	
Only Tech Spill						
$\mathbf{\Sigma} = \mathbf{I}, \ \zeta/L = 0$	64.82	64.81	64.76	64.74	64.63	

- In baseline, firm value share is
 - 5.6% lower compared to dispersed ownership, and
 - 4.7% lower compared to common ownership level in 1999.

When Common Ownership Affects only R&D Decisions

Common ownership only influence R&D decisions (d'Aspremont and Jacquemin, 1988)

	Ownership Structure			
	Dispersed	Common R&D	Baseline	
Output (Social Optimum: 100)	91.30	91.30	89.08	
R&D Expenditure (Social Optimum: 100)	26.17	19.76	22.36	
Expected Growth Rate (%)	1.796	1.726	1.753	
Expected Social Welfare (Social Optimum: 100)	87.72	87.49	85.25	
Firm Value Share (%)	28.74	29.04	34.34	

- Lowest R&D expenditure and expected growth rate
- Intermediate social welfare and firm value share

Uniform R&D Subsidy Social Optimum

- Optimal rate is s = 33%, which increases g by 0.25 pp (14%)
- CE Welfare loss relative to optimal R&D allocation is reduced to 0.1% (Initially 0.7%)

Conclusion

- Quantitative Schumpeterian growth model with ownership structure
 - Utilize micro data and computational capability
- Common ownership in the US:
 - 1. Internalization of business stealing effect $\Longrightarrow g \downarrow \downarrow$
 - 2. Internalization of technology spillover effect $\Longrightarrow g \uparrow$
- Potential application:
 - Chaebols in Korea
 - Zaibatsu (pre-WWII) and cross-shareholding (late 20th century) in Japan
 - FDI / multinational companies and international technology diffusion

Share of Top 5 Shareholders in Largest Market Cap Firms

Microsoft	
Vanguard	9.20%
Blackrock	7.75%
Steven Ballmer	4.48%
State Street	3.97%
Fidelity	2.66%

8.93%
7.74%
4.12%
3.97%
3.80%

Apple	
Vanguard	9.29%
Blackrock	7.48%
State Street	3.96%
Fidelity	2.27%
Geode Capital	2.26%

Google	
Vanguard	7.36%
Blackrock	6.47%
State Street	3.39%
Fidelity	3.01%
Sergey Brin	2.99%

Amazon	
Jeffrey Bezos	8.58%
Vanguard	7.77%
Blackrock	6.50%
State Street	3.44%
Fidelity	3.10%

Meta	
Vanguard	7.55%
Blackrock	6.50%
Fidelity	5.38%
Accel IX LP	3.88%
State Street	3.40%

Equity Investments by Big tech in Al Startups

Shareholding percentage	Microsoft	Google	Amazon
OpenAl (ChatGPT)	49%	_	_
Anthropic (Claude)	_	14%	23%

Technology & Product Proximity: Example

Tesla vs. Ford	
Technology Proximity	0.11
Product Proximity	0.15

Apple vs. Intel	
Technology Proximity	0.57
Product Proximity	0.00

Ownership Ratio by Holder Types in Japan

Rotemberg (1984) Proportional Influence

- $o \in \{1, 2, ..., n_o\}$: owners
- s_{io} : the proportion of shares in firm i owned by owner o where $\sum_{o} s_{io} = 1$
- $\hat{V}_{i,t}$: value of firm *i*
- $\widetilde{V}_{o,t} \equiv \sum_{i} s_{io} \widehat{V}_{i,t}$: value of owner o
- Firms' objective:

$$\sum_{o} s_{io} \widetilde{V}_{o,t} \propto \sum_{j} \kappa_{ij} \widehat{V}_{j,t}$$

where

$$\kappa_{ij} \equiv oldsymbol{s}_i^T oldsymbol{s}_i^T oldsymbol{s}_i^T oldsymbol{s}_i$$
 where $oldsymbol{s}_i \equiv \left[s_{i1}, ..., s_{io}, ..., s_{in_o}
ight]^T$

Total Surplus

• Total surplus for product i:

$$ts_i(\boldsymbol{q}, \boldsymbol{x}) = \pi_i(\boldsymbol{q}, \boldsymbol{x}) + cs_i(\boldsymbol{q}) = q_i \left[b_i - \frac{1}{2} \sum_{j=1}^n \sigma_{ij} q_j - \overline{m}_i + \sum_{j=1}^n \omega_{ij} x_j \right] - \frac{1}{2} x_i^2$$

R&D Externalities

- 1. Business stealing effect
 - Innovators steel the business (profits) of other firms
- 2. Technology spillover effect
 - Innovation improves the productivity of other firms
- 3. Appropriability effect (market power)
 - Innovators cannot appropriate the entire consumer surplus

R&D Allocation and Externalities

Firms maximize common owner weighted profits:

$$\mathbf{x}^* = (\mathbf{K} \circ \mathbf{\Omega})[\mathbf{\Sigma} + \mathbf{K} \circ \mathbf{\Sigma} - \mathbf{\Omega}(\mathbf{K} \circ \mathbf{\Omega})]^{-1}(\mathbf{b} - \overline{\mathbf{m}})$$

Firms maximize common owner weighted total surplus (*):

$$m{x}^*_{TS} = (m{K} \circ m{\Omega}) \left[rac{1}{2} (m{\Sigma} + m{K} \circ m{\Sigma}) - m{\Omega} (m{K} \circ m{\Omega})
ight]^{-1} (m{b} - m{\overline{m}})$$

- K = [1] in $(\star) \Longrightarrow$ Social Optimum
- Externalities: (i) Appropriability, (ii) Business stealing, (iii) Technology spillover

Generalized Hedonic-Linear Demand (Pellegrino, 2024)

- $i \in \{1, 2, ..., n\}$: firms / products
- 1 unit of product *i* provides
 - 1 unit of idiosyncratic characteristic $k \in \{1, 2, ..., n\}$
 - $\psi_{k,i}$ unit of shared characteristic $k \in \{n+1, n+2, ..., n+n_k\}$ where $\sum_k \psi_{k,i}^2 = 1$
- Aggregate each characteristic:

$$y_{k,t} = \begin{cases} q_{k,t} & k = 1, 2, ..., n \\ \sum_{i} \psi_{k,i} q_{i,t} & k = n+1, n+2, ..., n+n_k \end{cases}$$

Linear quadratic aggregator over characteristics:

$$Y_t = (1 - \alpha) \sum_{k=1}^{n} \left(\frac{\hat{b}_{k,t} y_{k,t} - \frac{1}{2} y_{k,t}^2}{\text{idiosyncratic characteristic}} \right) + \alpha \sum_{k=n+1}^{n+n_k} \left(\frac{\hat{b}_{k,t} y_{k,t} - \frac{1}{2} y_{k,t}^2}{\text{shared characteristic}} \right)$$

Generalized Hedonic-Linear Demand (Pellegrino, 2024)

Quality:

$$b_i = (1 - \alpha)\hat{b}_i + \alpha \sum_{k=1}^{n+n_k} \psi_k \hat{b}_k$$

• Inverse demand:

$$\frac{p}{P} = b - \Sigma q$$

• Inverse cross price elasticity of demand:

$$\frac{\partial \log p_i}{\partial \log q_i} = -\frac{q_j}{p_i} \cdot \sigma_{ij}$$

Cross price elasticity of demand:

$$\frac{\partial \log q_i}{\partial \log p_i} = -\frac{p_j}{q_i} (\mathbf{\Sigma}^{-1})_{ij}$$

Static Profits

- Gross profit: $\frac{\pi_{i,t}}{P_i} = \sum_i \kappa_{ij} \sigma_{ij} q_{i,t} q_{j,t}$
- Firms choose labor productivity and product quality: $\zeta a_{i,t} = \sqrt{\zeta \frac{w_t}{P_t}}$, $b_{i,t} = z_{i,t} \sqrt{\zeta \frac{w_t}{P_t}}$
- Labor market clearing: $L = \sum_i \frac{q_{i,t}}{a_{i,t}} \Longrightarrow \sqrt{\zeta \frac{\mathbf{w}_t}{P_t}} = \frac{\zeta}{L} \sum_i q_{i,t}$
- $m{q}_t = m{N}m{z}_t$ where $m{N} \equiv \left\{2rac{\zeta}{L}m{J} + m{\Sigma} + m{K} \circ m{\Sigma}
 ight\}^{-1}$
- N_i: the i th row of N
- Ownership weighted profit:

$$\sum_{i} \kappa_{ij} \frac{\pi_{j,t}}{P_t} = \sum_{i} \kappa_{ij} \sum_{h} \kappa_{jh} \sigma_{jh} q_{j,t} q_{h,t} = \boldsymbol{z}_t^T \boldsymbol{Q}^i \boldsymbol{z}_t$$

where

$$\mathbf{Q}^{i} = \frac{1}{2} \sum_{i} \kappa_{ij} \sum_{h} \kappa_{jh} \sigma_{jh} \left(\mathbf{N}_{j}^{T} \mathbf{N}_{h} + \mathbf{N}_{h}^{T} \mathbf{N}_{j} \right)$$

Riccati Equations

• $V^{i}(z) = z^{T} X^{i} z$ where X^{i} is the solution of the stacked Riccati equation

$$\mathbf{Q}^{j} = \mathbf{Q}^{j} - \mu^{2} \sum_{i} \kappa_{ij} \mathbf{X}_{j}^{j} \left(\mathbf{X}_{j}^{j} \right)^{T} + \left(\mathbf{\Phi} - \frac{1}{2} \left(
ho - \gamma^{2}
ight) \mathbf{I}
ight)^{T} \mathbf{X}^{i} + \mathbf{X}^{i} \left(\mathbf{\Phi} - \frac{1}{2} \left(
ho - \gamma^{2}
ight) \mathbf{I}
ight)^{T}$$

- $\mathbf{X}^i_i \equiv \text{the } i \text{ th column of } \mathbf{X}^i$
- $\Phi \equiv \Omega + \mu^2 \begin{bmatrix} X_1^1 & \cdots & X_n^n \end{bmatrix}^T$
- Algorithm: Given $\begin{bmatrix} \boldsymbol{X}_{\tau}^1 & \cdots & \boldsymbol{X}_{\tau}^n \end{bmatrix}$, update $\begin{bmatrix} \boldsymbol{X}_{\tau-\Delta}^1 & \cdots & \boldsymbol{X}_{\tau-\Delta}^n \end{bmatrix}$ by

$$-\frac{\boldsymbol{X}_{\tau}^{i}-\boldsymbol{X}_{\tau-\Delta}^{i}}{\Delta}=\boldsymbol{Q}^{i}-\mu^{2}\sum_{i}\kappa_{ij}\boldsymbol{X}_{j,\tau}^{i}\left(\boldsymbol{X}_{j,\tau}^{i}\right)^{T}+\left(\boldsymbol{\Phi}_{\tau}-\frac{1}{2}\left(\rho-\gamma^{2}\right)\boldsymbol{I}\right)^{T}\boldsymbol{X}_{\tau}^{i}+\boldsymbol{X}_{\tau}^{i}\left(\boldsymbol{\Phi}_{\tau}-\frac{1}{2}\left(\rho-\gamma^{2}\right)\boldsymbol{I}\right)$$

Summary of Equilibrium

Description	Expression
Production strategy	$\boldsymbol{q}_t = N\boldsymbol{z}_t$
R&D strategy	$oldsymbol{x}_t = \mu ilde{oldsymbol{\mathcal{X}}} oldsymbol{z}_t$
Law of motion	$doldsymbol{z}_t = (\Omegaoldsymbol{z}_t + \muoldsymbol{x}_t)dt + \gammaoldsymbol{z}_t doldsymbol{W}_t$
Profit of final producers	$\Pi_t^F/P_t = oldsymbol{q}_t^T \left(rac{1}{2}\Sigma ight)oldsymbol{q}_t$
Total operating profit of firms	$\Pi_t/P_t = oldsymbol{q}_t^{ au} \left(rac{1}{2} \hat{oldsymbol{\Sigma}} \circ \left(\mathcal{K} + \mathcal{K}^{ au} ight) ight) oldsymbol{q}_t$
Labor income	$w_t L/P_t = oldsymbol{q}_t^T \left(rac{\zeta}{L} J ight) oldsymbol{q}_t$
Output	$Y_t = oldsymbol{q}_t^{ au} \left(rac{\zeta}{L} J + rac{1}{2} \Sigma + rac{1}{2} \Sigma \circ \left(K + K^T ight) ight) oldsymbol{q}_t$
Consumption	$C_t = Y_t - \mathbf{x}_t^T \mathbf{x}_t$

Output and Expected Utility

• Output: $Y_t = \boldsymbol{q}_t^T Q \boldsymbol{q}_t$ where

$$Q = \frac{\zeta}{L}J + \frac{1}{2}\Sigma + \frac{1}{2}\Sigma \circ \left(K + K^{T}\right)$$

Expected utility:

$$V\left(oldsymbol{z}_{t}
ight)\equivoldsymbol{E}_{t}\left[\left.\int_{t}^{\infty}\exp\left(-
hooldsymbol{s}
ight)C_{s}doldsymbol{s}\left|oldsymbol{z}_{t}
ight]=oldsymbol{z}_{t}^{T}Xoldsymbol{z}_{t}$$

where X is the solution of the Lyapunov equation (obtained from households' HJB equation):

$$0 = Q - \mu^2 \tilde{X}^T \tilde{X} + X \left(\Phi - \frac{1}{2} \left(
ho - \gamma^2
ight) I
ight) + \left(\Phi - \frac{1}{2} \left(
ho - \gamma^2
ight) I
ight)^T X$$

Social Optimum

- Static optimal allocation: $m{q}_t^* = m{N}^*m{z}_t$ where $m{N}^* \equiv \left\{2\frac{\zeta}{L}J + \Sigma
 ight\}^{-1}$
- Optimal output: $Y_t^* = \mathbf{z}_t^T Q^* \mathbf{z}_t$ where $Q^* = \frac{1}{2} N^*$
- Optimal expected utility:

$$oldsymbol{V}^*\left(oldsymbol{z}_t
ight) \equiv oldsymbol{E}_t \left[\int_t^\infty \exp\left(-
ho s
ight) C_s ds igg| oldsymbol{z}_t
ight] = oldsymbol{z}_t^T X^* oldsymbol{z}_t,$$

where X^* is the solution of the Riccati equation (obtained from planner's HJB equation):

$$0=Q^*-\mu^2\left(X^*
ight)^2+X^*\left(\Phi^*-rac{1}{2}\left(
ho-\gamma^2
ight)I
ight)+\left(\Phi^*-rac{1}{2}\left(
ho-\gamma^2
ight)I
ight)X^*$$

- Optimal R&D: $\boldsymbol{x}_t^* = \mu X^* \boldsymbol{z}_t$
- Optimal technology transition matrix: $\Phi^* = \Omega + \mu^2 X^*$

Stochastic Process of Output

Applying It's lemma.

$$d\log Y_t = \left\lceil \frac{\mathbf{z}_t^T \left(Q \Phi + \Phi^T Q \right) \mathbf{z}_t}{Y_t} + \gamma^2 \left\{ \frac{\sum_i z_{i,t}^2 Q_{ii}}{Y_t} - \frac{2 \mathbf{z}_t^T Q \operatorname{diag} \left(\mathbf{z}_t^2 \right) Q \mathbf{z}_t}{Y_t^2} \right\} \right\rceil dt + \frac{2 \gamma \mathbf{z}_t^T Q \operatorname{diag} \left(\mathbf{z}_t \right)}{Y_t} dW_t$$

where $Y_t = \mathbf{z}_t^T Q \mathbf{z}_t$ and $\Phi = \Omega + \mu^2 \widetilde{X}$

Description	Expression
Tech Spillover	$oldsymbol{z}_t^{ au}(Q\Omega+\Omega Q)oldsymbol{z}_t/Y_t$
R&D	$\mu^2 oldsymbol{z}_t^{T} \left(Q \widetilde{X} + \widetilde{X}^{T} Q \right) oldsymbol{z}_t / Y_t$
Ito	$\gamma^2 \left\{ \sum_i z_{i,t}^2 Q_{ii} / Y_t - 2 \boldsymbol{z}_t^T Q \text{diag} \left(\boldsymbol{z}_t^2 \right) Q \boldsymbol{z}_t / Y_t^2 \right\}$
Total	$\boldsymbol{E}[d \log Y_t]$

Number of Sample Firms

Trend of Product Substitutability

Technological Proximity

- Merge USPTO data with Compustat firms using DISCERN 2 dataset (Arora et al., 2024)
- Jaffe measure, Group-level patent classification, Stack for 5 years

Distributions of Estimated Knowledge Capital and Quantity

3.5

2.5 1.5 0.5 0.5 4 5.6 5.8 6 6.2 6.4 6.6 6.8 7

(b) Log of Knowledge Capital

1999

- 2005

Microeconometric Estimates vs. GHL (Pellegrino, 2024) (1/2)

Market	Firm i	Firm j	Micro Estimate	GHL
Auto	Ford	Ford	-4.320	-5.197
Auto	Ford	General Motors	0.034	0.056
Auto	Ford	Toyota	0.007	0.017
Auto	General Motors	Ford	0.065	0.052
Auto	General Motors	General Motors	-6.433	-4.685
Auto	General Motors	Toyota	0.008	0.005
Auto	Toyota	Ford	0.018	0.025
Auto	Toyota	General Motors	0.008	0.008
Auto	Toyota	Toyota	-3.085	-4.851

Microeconometric Estimates vs. GHL (Pellegrino, 2024) (2/2)

Market	Firm i	Firm <i>j</i>	Micro Estimate	GHL
Cereals	Kellogg's	Kellogg's	-3.231	-1.770
Cereals	Kellogg's	Quaker Oats	0.033	0.023
Cereals	Quaker Oats	Kellogg's	0.046	0.031
Cereals	Quaker Oats	Quaker Oats	-3.031	-1.941
Computers	Apple	Apple	-11.979	-8.945
Computers	Apple	Dell	0.018	0.025
Computers	Dell	Apple	0.027	0.047
Computers	Dell	Dell	-5.570	-5.110

	(1)
Dependent Variable:	$z_{i,t}$
User cost of R&D	-39.495***
	(4.7044)
Year Fixed Effects	√
No. observations	12,947

SEs clustered by years and 4-digit naics industries are reported in parentheses.

• IV: User cost of R&D, driven by state-level tax variations (Wilson, 2009; Bloom et al., 2013)

Alternative Corporate Governance Models: Ederer and Pellegrino (2024)

- 1. Super-proportional influence: $\tilde{\kappa}_{ij} = \frac{\sum_{z=1}^{Z} s_{iz} \gamma_{iz} s_{iz}}{\sum_{z=1}^{Z} s_{iz} \gamma_{iz} s_{iz}}$ where $\gamma_{iz} = \sqrt{s_{iz}}$
- 2. Blockholder influence: $\tilde{\kappa}_{ij} = \frac{\sum_{z=1}^{Z} s_{iz} b_{iz} s_{jz}}{\sum_{z=1}^{Z} s_{iz} s_{iz}}$ $(i \neq j)$, where $b_{iz} = 1$ if $s_{iz} > 5\%$
- Rational investor inattention
 - Gilje et al. (2020) (GGL) estimate the probability that an investor votes against Institutional Shareholders Service recommendations
 - Utilize the estimate to capture the investor's level of attention
- 4. Governance frictions and entrenchment
 - Azar and Ribeiro (2021) (AR) estimate an objective function where the manager of firm i discounts other firms' profit by τ_i

Alternative Corporate Governance Models

rship (%) 99.5 Social Welfare Relative to Dispersed Owner Cocial Welfare Relative t Rotemberg Proportional Influence SuperProportional Influence Blockholder Influence GGL Inattention AR Partial Internalization (uniform τ) AR Partial Internalization (firm-specific τ) Dispersed Ownership 96.5 2000 2002 2008 2010 2016 Year

(a) Expected Growth

(b) Expected Social Welfare

- Acemoglu, Daron, and Ufuk Akcigit. 2012. "Intellectual Property Rights Policy, Competition and Innovation." Journal of the European Economic Association 10 (1): 1–42.
- Aghion, P. N Bloom, R Blundell, R Griffith, and P Howitt, 2005, "Competition and Innovation: An Inverted-U Relationship." The Quarterly Journal of Economics 120 (2): 701–728.
- Aghion, Philippe, Christopher Harris, Peter Howitt, and John Vickers. 2001. "Competition, Imitation and Growth with Step-by-Step Innovation." The Review of Economic Studies 68 (3): 467-492
- Aghion, Philippe, John Van Reenen, and Luigi Zingales. 2013. "Innovation and Institutional
- Ownership." American Economic Review 103 (1): 277–304. Akcigit, Ufuk, and Sina T Ates. 2021. "Ten Facts On Declining Business Dynamism and Lessons From Endogenous Growth Theory." American Economic Journal: Macroeconomics 13 (1): 257-298
- Akcigit, Ufuk, and Sina T Ates. 2023. "What Happened to US Business Dynamism?" The Journal of Political Economy 131 (8): 2059-2124.
- Anton, Miguel, Florian Ederer, Mireia Gine, and Martin Schmalz. 2023. "Common Ownership, Competition, and Top Management Incentives." The journal of political economy 131 (5): 1294-1355.

- **Anton, Miguel, Florian Ederer, Mireia Gine, and Martin Schmalz.** 2024. "Innovation: The Bright Side of Common Ownership?" *Management science*.
- Arora, Ashish, Sharon Belenzon, Larisa Cioaca, Lia Sheer, Hyun Moh (john) Shin, and Dror Shvadron. 2024. "DISCERN 2: Duke innovation & SCientific Enterprises Research Network."
- **Atkeson, Andrew, and Ariel Burstein.** 2008. "Pricing-to-Market, Trade Costs, and International Relative Prices." *The American Economic Review* 98 (5): 1998–2031.
- Autor, David, David Dorn, Lawrence F Katz, Christina Patterson, and John Van Reenen. 2020. "The Fall of The Labor Share and The Rise of Superstar Firms." The Quarterly Journal of Economics 135 (2): 645–709.
- Azar, Jose, Martin C Schmalz, and Isabel Tecu. 2018. "Anticompetitive Effects of Common Ownership." *The Journal of Finance* 73 (4): 1513–1565.
- **Azar, Jose, and Xavier Vives.** 2021. "General Equilibrium Oligopoly and Ownership Structure." *Econometrica* 89 (3): 999–1048.
- Azar, José, Sahil Raina, and Martin Schmalz. 2022. "Ultimate ownership and bank competition." Financial management 51 (1): 227–269.
- **Azar, José, and Ricardo Ribeiro.** 2021. "Estimating oligopoly with shareholder voting models." *SSRN Electronic Journal*.

- **Backus, Matthew, Christopher Conlon, and Michael Sinkinson.** 2021. "Common Ownership in America: 1980-2017." *American Economic Journal. Microeconomics* 13 (3): 273–308.
- **Baqaee, David Rezza, and Emmanuel Farhi.** 2020. "Productivity and Misallocation in General Equilibrium." *The Quarterly Journal of Economics* 135 (1): 105–163.
- Berry, Steven, James Levinsohn, and Ariel Pakes. 1995. "Automobile Prices in Market Equilibrium." *Econometrica* 63 (4): 841.
- **Bloom, Nicholas, Mark Schankerman, and John VAN Reenen.** 2013. "Identifying Technology Spillovers and Product Market Rivalry." *Econometrica* 81 (4): 1347–1393.
- Cavenaile, Laurent, Murat Alp Celik, and Xu Tian. 2023. "Are Markups Too High? Competition, Strategic Innovation, and Industry Dynamics."

 d'Aspremont. Claude. and A Jacquemin. 1988. "Cooperative and noncooperative R&D in
- duopoly with spillovers." *The American Economic Review* 78 (5): 1133–1137. **De Loecker, Jan, Jan Eeckhout, and Gabriel Unger.** 2020. "The Rise of Market Power and The Macroeconomic Implications." *The Quarterly Journal of Economics* 135 (2): 561–644.
- Ederer, Florian, and Bruno Pellegrino. 2024. "A Tale of Two Networks: Common Ownership and Product Market Rivalry."

- **Edmond, Chris, Virgiliu Midrigan, and Daniel Yi Xu.** 2023. "How Costly Are Markups?" *The Journal of Political Economy* 000–000.
- **Gilje, Erik P, Todd A Gormley, and Doron Levit.** 2020. "Who's paying attention? Measuring common ownership and its impact on managerial incentives." *Journal of financial economics* 137 (1): 152–178.
- **Gutierrez, German, and Thomas Philippon.** 2017. "An Empirical Investigation." *Brookings Papers on Economic Activity* 89–169.
- **He, Jie (jack), and Jiekun Huang.** 2017. "Product Market Competition in a World of Cross-Ownership: Evidence from Institutional Blockholdings." *The Review of Financial Studies* 30 (8): 2674–2718.
- **Hoberg, Gerard, and Gordon Phillips.** 2016. "Text-Based Network Industries and Endogenous Product Differentiation." *The Journal of Political Economy* 124 (5): 1423–1465.
- **Hopenhayn, Hugo, and Koki Okumura.** 2024. "Dynamic Oligopoly and Innovation: A Quantitative Analysis of Technology Spillovers and Product Market Competition."
- **Jaffe, Adam B.** 1986. "Technological Opportunity and Spillovers of R&D: Evidence from Firms' Patents. Profits, and Market Value." *The American economic review* 76 (5): 984–1001.

- **Kini, Omesh, Sangho Lee, and Mo Shen.** 2024. "Common Institutional Ownership and Product Market Threats." *Management Science* 70 (5): 2705–2731.
- **Lancaster, Kelvin J.** 1966. "A New Approach to Consumer Theory." *The Journal of Political Economy* 74 (2): 132–157.
- Liu, Ernest, Atif Mian, and Amir Sufi. 2022. "Low Interest Rates, Market Power, and Productivity Growth." *Econometrica* 90 (1): 193–221.
- **Lopez, Angel L, and Xavier Vives.** 2019. "Overlapping Ownership, R&D Spillovers, and Antitrust Policy." *The Journal of Political Economy* 127 (5): 2394–2437.
- Neary, J Peter. 2003. "Globalization and market structure." Journal of the European Economic Association 1 (2-3): 245–271.
- Nevo, Aviv. 2001. "Measuring Market Power in the Ready-to-Eat Cereal Industry." *Econometrica* 69 (2): 307–342.Pellegrino, Bruno. 2024. "Product Differentiation and Oligopoly: A Network Approach." *The*
- Peters, Michael. 2020. "Heterogeneous Markups, Growth, and Endogenous Misallocation." *Econometrica* 88 (5): 2037–2073.

American Economic Review.

- **Rosen, Sherwin.** 1974. "Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition." *The Journal of Political Economy* 82 (1): 34–55.
- Rotemberg, Julio. 1984. "Financial transaction costs and industrial performance."
- **Rubinstein, Ariel, and Menahem E Yaari.** 1983. "The Competitive Stock Market as Cartel Maker: Some Examples." *STICERD Theoretical Economics Paper Series*.

Wilson, Daniel J. 2009. "Beggar thy neighbor? The in-state, out-of-state, and aggregate effects of R&D tax credits." *The Review of Economics and Statistics* 91 (2): 431–436.