ASSIGNMENT11.15_13Q

EE22BTECH11219 - Sai Sujan Rada

QUESTION

Given below are some functions of x and t to represent the displacement (transverse or longitudinal) of an elastic wave. State which of these represents (a) travelling wave, (ii) a stationary wave or (iii) none at all:

2)
$$y = 2\sqrt{x - vt}$$

3)
$$y = 3 \sin(5x - 0.5t) + 4 \cos(5x - 0.5t)$$

4)
$$y = \cos x \sin t + \cos 2x \sin 2t$$

Solution:

TRAVELLING WAVE	STATIONARY WAVE
$y(x,t) = A\sin(kx \pm \omega t)$	$y(x,t) = A\sin kx \cos \omega t$
PARAMETERS	DEFINITION
A	Amplitude
ω	Angular Velocity
x	Position
k	Wavenumber
TABLE I	

TRAVELLING WAVE VS STATIONARY WAVE

Fig. 1. DIPLACEMENT vs TIME-graph1

Let us assume an equation:

$$y = A(x)\cos(\omega t + \phi(x)) \tag{1}$$

STATIONARY WAVE CONDITION	TRAVELLING WAVE CONDITION
$A(x) = A_0 \sin(\omega t + \alpha)$	A(x) = k
$\phi(x) = k$	$\phi(x) = kx + c$
TABLE II	

Travelling wave vs Stationary wave

The figures Fig. 1 and Fig. 3 are self explanatory for stationary and travelling waves. The figures Fig. 2 and Fig. 4 are neither stationary nor travelling waves.

Fig. 2. DIPLACEMENT vs TIME-graph2

Fig. 3. DIPLACEMENT vs TIME-graph3

Fig. 4. DIPLACEMENT vs TIME-graph4