RF 1 对 6 PC Joystic_VR

作者: 韦宇 部门: PE

时间: 2009年10月26日

1. 概要 (General description)

随着技术的不断发展,很多经典的电视游戏被移植到了电脑上,或者是通过模拟器的方式在走进电脑游戏玩家的生活中。不过在经过一段时间之后,很多用户都发现,这些原本是通过游戏手柄在操作的游戏,在很多时候使用鼠标和键盘并不能完美的进行控制,而这时候使用无线游戏手柄就是进行游戏的最好解决方案。

2. 特征 (Feature)

采用 2.4GHz 射频无线连接方式,摆脱了连线的困扰。手柄表面质感好,配置简单,按键手感舒适,且反应较为灵敏。工作方式里,由于 2.4G 频段使用带宽越来越紧张,造成器件间波段干扰也越来越严重,由此需要经过新技术来解决此问题,其中最有效的办法就是使用"跳频"通信方式。本工程,使用一个主机六个分机进行跳频通信,完成了一体化设计的工程。下述协议与一对多兼容。主机端开发有 USB 通信口,如果客户需要主机的显示终端,可以再主机端做修改,而手柄在此协议下无须修改。

控制核心,手柄使用: EM78P520+EM198850; 主机使用: EM78M611+EM198850

3. 功能描述 (Function descriptions)

游戏手柄采用了传统的布局方式,最左边是一个八方向的方向键,最右侧是四个按键,呈菱形分布,上面分别印着三角、方块、圆圈和叉子的标记,这和 PS/PS2 手柄的按键完全一样。在中间的则 4 个功能按键和两个迷你型的摇杆,其中 4 个按键分别对应选择(SELECT)、开始(START)以及模式选择键(MODE)和数字/模拟工作方式切换键(MACRO)。另外在手柄的顶部各有两个按钮,分别对应 L1、L2 和 R1、R2。原理图(见附图 1, 附图 2).

RF 游戏手柄

demo 样机

4. 电气特性 (Electrical Characteristics)

- 工作环境温度: -10℃~80℃。
- 工作环境湿度: 30%~95%RH。
- 工作频点: 2402MHz 2482MHz
- 供电电压 采用 3V 电压供电系统
- 耗电电流

搜索状态: 25.0-30.0mA

正常工作时: Imax≤10mA (VDD=3.0V)

待机状态: Imax≤3mA (VDD=3.0V, 摇杆耗电大约2mA)

● 功耗

正常工作时: Wmax≤150MW (VDD=3.0V)

● 通讯距离:

正常通讯时: Lmin≥10M (VDD=3.0V, 办公室环境下)

● 对码过程中,采取先到先分配原则。即对码时需要先关闭所有手柄,此时主机开启强制通讯模式, 依次打开手柄的对码模式,此顺序即为手柄通道的顺序,要更改必须重新对码。

5. Communication Protocol format (通信协议格式)

以主机接收端【sink】为基准,其时序如下,20ms为一个周期(cycle),

第一时段(ComucycleNum = 0)用于时钟同步;

第二时段(ComucycleNum = 1)分配给 发送端【transmitter】1 (GamePadl) 第三时段(ComucycleNum = 2)分配给 发送端【transmitter】2 (GamePad2) 第四时段(ComucycleNum = 3)分配给 发送端【transmitter】3 (GamePad3) 第五时段(ComucycleNum = 4)分配给 发送端【transmitter】4 (GamePad4) 第六时段(ComucycleNum = 5)分配给 发送端【transmitter】5 (GamePad5) 第七时段(ComucycleNum = 6)分配给 发送端【transmitter】6 (GamePad6)

周期号	0		1		2		3		4		5		6
ComuClock	0-7		0-7		8-15		16-23		24-31	4	32-39		40-47
时间	8ms		8ms		8ms		8ms		8ms		8ms		8ms
接收端	CMD_TX	RX		RX		RX		RX		RX		RX	
(RX)	TXD6 USF	3 IN	TXD1 USB	IN	TXD2 USB	IN	TXD3 USB	IN	TXD4 USB	IN	TXD5 USB	IN	TXD6 USB IN
发送端 1 (TX1)	CMD_RX		keyscan										
		TX CM	CMOS										
			GS										
457条第 0					Keyscan								
发送端 2	CMD_RX			TX	CMOS								
(TX2)					GS								
477.735.74F O							Keyscan						
发送端 3 (TX3)	CMD_RX					TX	CMOS						
(1/0)							GS						
发送端 4 (TX4)	CMD_RX	RX		!					Keyscam				
						TX CMOS	CMOS						
									GS				
发送端 5 (TX5)	CMD_RX										Keyscan		
									TX CMOS				
											GS		
发送端 6													Keyscan
及运编 6 (TX6)	CMD_RX											TX	CMOS
(140)													GS

周期号: 根据变量 ComucycleNum 判断 通信时钟: 根据变量 ComuClock 判断

NUM1: 主机发给手柄,用于同步的信息命令包,给手柄调整时间,确保手柄和主机同步

Num2-Num7: 手柄回复给主机的数据封包,传输所需的资料

NUM8: 预留时间给主机和手柄做数据处理。主机 USB 上传资料,手柄处理按键信息等

6. Synchronization information packet format (同步帧数据格式)

Offset	Size	Field	Note			
0	1 BYTE	Length	0X10			
1	1 BYTE	RX_IDH	Rand data, RX ID			
2	1 BYTE	RX_IDL				
3	1 BYTE	CHN_FLAG	Gamepad status, each bit will stand for a Gamepad status			
	Bit [05]	Gamepad X status	6 Gamepad status			
	Bit [67]	reserve	reserve			
4	1 BYTE	CommuStatusFlag	Communication function flag			
	Bit [7]	DescriptorFinishFlag				
	Bit [6]	FccTestModeFlag	FCC test flag			
	Bit [5]	ForceLinkModeFlag				
	Bit [4]	LinkModeFlag				
	Bit [3]	EEpromWRStatusFlag				
	Bit [2]	LoseFrameStatusFlag				
	Bit【1】	NormalStatusFlag				
	Bit [0]	SearchStatusFlag				
5	1 BYTE	DirectionCtrl	0:sink to transmitter 1:transmitter to sink			
			Total Gamepads and Frequency index			
6	1 BYTE	N_CHN	N_CHN= ((TotalGamepads<<4) & $0xF0$) (CH_NO & $0x0F$)			
			TotalGamepads defined by Sink			
7	1 BYTE	TX1_ID	Gamepad1 ID			
8	1 BYTE	TX2_ID	Gamepad2 ID			
9	1 BYTE	TX3_ID	Gamepad3 ID			
10	1 BYTE	TX4_ID	Gamepad4 ID			
11	1 BYTE	TX5_ID	Gamepad5 ID			
12	1 BYTE	TX6_ID	Gamepad6 ID			
	••					
24	1 BYTE	Ver. num	Defined by sink			

NOTE:

- 1) RX_IDH、RX_IDL 两个 BYTE 是由主机在对码时随机生成的数据;
- 2) TX1_ID, TX2_ID, TX3_ID, TX4_ID, TX5_ID, TX6_ID

 $TX1_{ID} = (RX_{IDL \& 0xF0}) \mid 0x01 ; \cdots;$

 $TX6_{ID} = (RX_{IDL} \& 0xF0) \mid 0x06$

- 3) 帧同步头使用 7 BYTE: RX_IDH、RX_IDL、CHN_FLAG、CommunicateStatusFlag、DirectionCtrl、N_CHN
- 4) 初始化与同步过程描述:
 - 主机:读取 EEPROM 中 RX_IDH、RX_IDL、TX1_ID、TX2_ID、TX3_ID、TX4_ID、TX5_ID、TX6_ID 数据,保存到 MCU 中; 当同步对码按键(MACRO)按下时,进入强制通信模式,随机生成 RX_IDH、RX_IDL,运算后可得 TXx_ID, SYNC 使用默认值 0xFF、0xFF,依次开启手柄完成对码;

退出强制通信模式后,把 RX_IDH、RX_IDL、TX1_ID、TX2_ID、TX3_ID、TX4_ID、TX5_ID、TX6_ID 写入 EEPROM; RF 中使用主机 ID【RX_IDH、RX_IDL】重写 DataAddressInRF(reg51-reg57)。

手柄: 读取 EEPROM 中 RX_IDH、RX_IDL、TXx_ID (本机 ID) 数据, 保存到 MCU 中;

当同步对码按键(MACRO)按下时,进入强制通信模式,首次通信上时接收到的 RX_IDH、RX_IDL、TXx_ID 保存在 MCU 中,自动结束强制通信模式,把 RX_IDH、RX_IDL、TXx_ID 写入 EEPROM;

RF 中使用主机 ID【RX_IDH、RX_IDL】重写 DataAddressInRF (reg51-reg57);

7. Communication information packet format (通讯帧数据格式)

Offset	Size	Field	Note			
0	1 BYTE	Length	0x17			
1	1 BYTE	RX_IDH	Danid Jasta DV TD			
2	1 BYTE	RX_IDL	Rand data, RX ID			
3	1 BYTE	CHN_FLAG	Gamepad status, each bit will stand for a gamepad status			
4	1 BYTE	CommuStatusFlag	Communication function flag			
5	1 BYTE	DirectionCtrl	0:sink to transmitter 1:transmitter to sink			
6	1 BYTE	TX_ID	Transmitter ID. Share the position of N_CHN			
7	1 BYTE	Data1	rocker left-x(left-right) RF transmitter data			
8	1 BYTE	Data2	rocker left-y(up-down) RF transmitter data			
9	1 BYTE	Data3	rocker right-x(left-right) RF transmitter data			
10	1 BYTE	Data4	rocker right-y(up-down) RF transmitter data			
11	1 BYTE	Data5	Bit0 bit1 bit2 bit3 bit4 bit5 bit6 bit7 A_1 B_2 C_3 D_4 L1_5 R1_6 L2_7 R2_8			
12	1 BYTE	Data6	bit7 bit6 Bit5 Bit4 Bit3 bit2 bit1 bit0 SELECT_9 START_10 LSW_11 RSW_12 MODE_13 MACRO_14 TEST1 TEST2 MODE: 1:DealWithDigital 0:DealWithAnalog (default:1)			
13	1 BYTE	Data7				
	Bit [74]	Hat Switch	000:00' 001:45' 010:90' 011:135' 100:180' 101:225' 110:270' 111:315'			
Bit [30]		reserve	Constan = 0			
14	1 BYTE	X_Axis_H	reserve			
15	1 BYTE	X_Axis_L	reserve			
16	1 BYTE	Y_Axis_H	reserve			
17	1 BYTE	Y_Axis_L	reserve			
18	1 BYTE	Z_Axis_H	reserve			
19	1 BYTE	Z_Axis_L	reserve			
20	1 BYTE	VersionNum	Software version number			
24	1 BYTE	Ver. Num	Defined by sink			

NOTE:

- 1) 红色字体为同步信息关键字,搜索模式和正常模式必须包含
- 2) 蓝色字体是正常传送的手柄数据,在正常模式下传送,
- 3) 绿色字体暂时未作使用,预留用做用新增功能的数据通道,主机可以不做任何处理
- 4) 数据流传输模式:

主机开机初始化后,在同步头信息中包含 12 byte 的数据,依次是:

RX_IDH、RX_IDL、CHN_FLAG、CommuStatusFlag、DirectionCtrl、N_CHN、TX1_ID、TX2_ID、TX3_ID、TX4_ID、TX5_ID、TX6_ID 手柄接收到同步信息后会回复: RX_IDH、RX_IDL、CHN_FLAG、CommuStatusFlag、DirectionCtrl、TXx_ID(本机 ID)每个通讯周期后 2ms,主机都会根据本次通信周期内的相关信息修改同步头数据,为下一次联机做准备;手柄再次接收到同步信息,检测数据信息如果一切正常,就发送包含同步信息与所需数据每帧共 24 byte 数据:RX_IDH、RX_IDL、CHN_FLAG、CommuStatusFlag、DirectionCtrl、TXx_ID、

Data1、Data2、Data3、Data4、Data5、Data6、【8 byte data】、Ver. Num 主机收到这一帧 24 byte 数据,也会做同步信息检测,如果正常,就把这些数据都收下,不正常做相应处理

8. 伪随机频点列表

EM198810 跳频频点从 2402 MHz - 2482 MHz, 为配合认证测试, 频点范围边沿两端各自内收 2.5 MHz, 即实际工作频点范围取: 2405 MHz - 2479 MHz

RF_CHNO_LISTO:

ADD	PC, A		
RETL	@29	;freq:2431	;@0X1D
RETL	@4	;freq:2406	;@0X04
RETL	@67	;freq:2469	;@0X43
RETL	@32	;freq:2434	;@0X20
RETL	@7	;freq:2409	;@0X07
RETL	@65	;freq:2467	;@0X41
RETL	@36	;freq:2438	;@0X24
RETL	@10	;freq:2412	;@0X0A
RETL	@62	;freq:2464	;@0X3E
RETL	@38	;freq:2440	;@0X26
RETL	@8	;freq:2410	;@0X08
RETL	@59	;freq:2461	;@0X3B
RETL	@45	;freq:2447	;@0X2D
RETL	@12	;freq:2414	;@0X0C
RETL	@76	;freq:2478	;@0X4C
RETL	@40	;freq:2442	;@0X28

选用了16个频点进行伪随机,设备频点列表必须依此来跳变

9. 心得:

已经熟练掌握义隆 EM78 系列单片机的使用方法,在此基础上已经对 EM198810 与 EM198850 模块在一对多应用上深有体会。这段时间编制的一套一对多通信协议,可以方便的移植到满足最低资源要求的其它 MCU型号里。1 对多技术已经日趋成熟,依次为基础的通信产品可以由业务提单做推广。

10. 原理图及流程图

手柄原理图

主机原理图

手柄流程图

主机主流程图

主机 RX1_Function

主机 Manage_Function

11 部分代码

: EM78P520_32PIN44PIN_TX.ASM * Filename * Author : yu.wei * Company : ELAN * VERSION : 1.0 * CRYSTAL : 4MHZ * Creat date : 2009/9/11 * tool ver. : WicePlus 2.7 * Description : modify for code conformity ******************************** $include "D: \\ \ include \\ \ EM78xx \\ EM78P510.H"$ $include "D: \\ \ include \\ \ EM78xx\\ EM78Math.H"$ include "config.h" include "P520txP32P44V10.H" include "EM198850_For_EM78P520.ASM" $include \ "P520SkipFreqFun.ASM"$ include "XX93C46_For_EM78P520.ASM" ;include "FccTest.asm" -----MAIN PROGRAM-----ORG 0X00 JMP INITIAL ORG 0X03 JMP TCC_INT ORG 0X06 JMP EXTERNAL_INT ORG 0X09 WDT_INT JMP ORG 0X0C JMP TIMER1_INT ORG 0X0F JMP TIMER2_INT ORG 0X12 JMP AD_INT ORG 0X15 JMP UART_INT ORG 0X18 SPI_INT IMP 0X1B ORG JMP LVD_INT ORG 0X100 ----- TCC Interrupt Service -----TCC_INT: $PUSH\ A_Temp,STATUS_Temp,RSR_Temp,@4,A1_Temp,STATUS1_Temp,RSR1_TEMP\\$ BANK 0 BC ISR,TCIF ;clear TCC interrupt flag $Search Status Flag/16, Search Status Flag\%\,16$ JBC JMP $Search_Status_Mode$ Lose Frame Status Flag/16, Lose Frame Status Flag%16JBC JMP $LoseFrame_Status_Mode$ $Normal Status Flag/16, Normal Status Flag\%\,16$ JBC JMP Normal_Status_Mode TCC_INT_END JMP

 $Normal_Status_Mode:$

```
TWTCR.A
                                MOV
                                MOV
                                                                              A,@(255-124)
                                                                                                                                        : load initial value
                                MOV
                                                                             TCC,A
                                JMP
                                                                           TCC_INT_END
                Search_Status_Mode:
                                                                              A,@0x07
                                                                                                                                          : N=124.P=256.f=8MHz ==> T=8ms
                                MOV
                                MOV
                                                                             TWTCR,A
                                                                              A,@(255-124)
                                MOV
                                                                                                                                        : load initial value
                                MOV
                                                                             TCC,A
                                                                             2
                                BANK
                                INC
                                                                           KeySystemTimeCNT
                                                                             A,KeySystemTimeCNT
                                MOV
                                SUB
                                                                            A,@1
                                                                                                                                        ; Control key scan clock
                                                                           STATUS,C
                                JBC
                                JMP
                                                                           TCC_INT_END
                                BS
                                                                           System16msFlag/16,System16msFlag%16
                                CLR
                                                                            KeySystemTimeCNT
                                ;BANK
                                ;MOV
                                                                              A,@0X40
                                                                                                                                            ; (test)P86 exchange when intrrupt
                                ;XOR
                                                                             PORT8,A
                                JMP
                                                                           TCC_INT_END
                LoseFrame_Status_Mode:
                                MOV
                                                                              A,@0x04
                                                                                                                                          ; N=125,P=32,f=4MHz ==> T=1ms
                                MOV
                                                                             TWTCR,A
                                MOV
                                                                             A,@(255-124)
                                                                                                                                        : load initial value
                                MOV
                                                                             TCC,A
                                                                           TCC_INT_END
                                JMP
TCC_INT_END:
                BANK
                MOV
                                                                       A,@0X80
                                                                                                                                     ; (test)P87 exchange when intrrupt
                XOR
                                                                      PORT8,A
                INC
                                                                     ComuClock
                POP A_Temp,STATUS_Temp,RSR_Temp,@4,A1_Temp,STATUS1_Temp,RSR1_TEMP
EXTERNAL INT:
                PUSH A_Temp,STATUS_Temp,RSR_Temp,@4,A3_Temp,STATUS3_Temp,RSR3_Temp
                BANK
                                                                       1
                                                                                                                      ;clear the external interrupt flag
                POPA\_Temp, STATUS\_Temp, RSR\_Temp, @4, A3\_Temp, STATUS3\_Temp, RSR3\_Temp
                RETI
WDT_INT:
                RETI
AD_INT:
                RETI
TIMER1_INT:
                PUSH\ A\_Temp, STATUS\_Temp, RSR\_Temp, @4, A2\_Temp, STATUS2\_Temp, RSR2\_Temp, CSR2\_Temp, 
                BANK
                                                                       0
                BC
                                                                     ISR,T1IF
                                                                                                                              ;clear Timer1 interrupt flag
                                                                        A,@0X40
                ;MOV
                                                                                                                                       ; (test)P86 exchange when intrrupt
                ;XOR
                                                                        PORT8,A
                BANK
                                                                       2
                MOV
                                                                       A,@255
                                                                                                                    ; N=256, Auto reload
                MOV
                                                                       T1PD,A
                INC
                                                                     SleepCNT
                                                                                                                                ; 2s at a time
                MOV
                                                                       A,SleepCNT
                SUB
                                                                     A,@SetSleepTime
                JBC
                                                                     STATUS,C
                JMP
                                                                     TIMER1_INT_END
```

A.@0x04

: N=125.P=32.f=4MHz ==> T=1ms

MOV

```
IntoSleepFlag/16,IntoSleepFlag%16
                   BANK
                                                                                0
                   MOV
                                                                                A,@0X40
                                                                                                                                                      ; (test)P86 exchange when intrrupt
                   XOR
                                                                               PORT8,A
                   CLR
                                                                              SleepCNT
       TIMER1_INT_END:
                   NOP
                   POP\ A\_Temp, STATUS\_Temp, RSR\_Temp, @4, A2\_Temp, STATUS2\_Temp, RSR2\_Temp, POPA\_Temp, STATUS2\_Temp, POPA\_Temp, POPA\_Temp, STATUS2\_Temp, POPA\_Temp, POPA\_T
TIMER2_INT:
                   RETI
UART_INT:
                   RETI
SPI_INT:
                   RETI
LVD_INT:
                   RETI
 ;====== Begin Program =======
INITIAL:
                   DISI
                   NOP
                   WDTC
                   ClrCommRamBank
                   NOP
                   ClrRamBank
                   NOP
                                                                               IO_INITIAL
                   CALL
                   NOP
                   BANK
                                                                                0
                   BC
                                                                              AT93C46_CS/16,AT93C46_CS%16
                                                                                                                                                                                  ; Disable 93C46
                   BS
                                                                             SPI_SS/16,SPI_SS%16
                                                                                                                                                                            ; Disable EM198810
                                                                                EM198850_RESET
                   LCALL
                   NOP
                   NOP
 ;====== Read/Write EEPROM(TEST) ===========
                   mEWEN
                                                                                                                                            ; erasure all ROM
                   mERAL
                                                                                                                                          ; Clear all
                   mEWDS
                   LCALL
                                                                                IO_93C46_INITIAL
                                                                                                                                          ; Set I/O
                   BANK
                                                                                0
                   MOV
                                                                                 A,@0XD2
                   MOV
                                                                                 RX_IDH_Buffer,A
                   MOV
                                                                                 A,@0X13
                   MOV
                                                                                 RX_IDL_Buffer,A
                   MOV
                                                                                 A,@0X11
                   MOV
                                                                                 TX_ID_Buffer,A
                   ; write data to DataAddressInEEPROM
                   NOP
                   NOP
                   mEWEN
                                                                                  ;Write enable
                   NOP
                                                                                 A,@0X00
                   MOV
                                                                                 DataAddressInEEPROM,A
                   MOV
                                                                                 A,@0X60
                   MOV
                   MOV
                                                                                 DataAddressInMCU,A
                   mWRITE
                                                                                  DataAddressInEEPROM,@0,DataAddressInMCU,@14
                   NOP
```

BS

mEWDS ; disable
LCALL IO_93C46_QUIT ; Set I/O
NOP

._____

LCALL IO_93C46_INITIAL ; Set I/O

BANK 0

BC AT93C46_CS/16,AT93C46_CS%16 ; Disable 93C46
BS SPI_SS/16,SPI_SS%16 ; Disable EM198810

MOV A,@0X00

MOV DataAddressInEEPROM,A

MOV A,@0X60

MOV DataAddressInMCU,A

mREAD DataAddressInEEPROM,@0,DataAddressInMCU,@16

mEWDS

LCALL IO_93C46_QUIT ; Set I/O

BC AT93C46_CS/16,AT93C46_CS%16 ; Disable 93C46
BS SPI_SS/16,SPI_SS%16 ; Disable EM198810

BANK 0

MOV A,RX_IDH_Buffer ; Read ID

BANK 1

MOV RX_IDH,A

BANK 0

MOV A,RX_IDL_Buffer

BANK 1

MOV RX_IDL,A

BANK 0

MOV A,TX_ID_Buffer

BANK 1

MOV TX_ID,A

BANK 0

BC AT93C46_CS/16,AT93C46_CS%16 ; Disable 93C46
BS SPI_SS/16,SPI_SS%16 ; Disable EM198810

BANK 1

MOV A,@0XFF ; judge RX_ID,TX_ID

XOR A,RX_IDH

JBC STATUS,Z

JMP Used_Default_Sync

MOV A,@0XFF

XOR A,RX_IDL

JBC STATUS,Z

JMP Used_Default_Sync

MD Stort Use

JMP Start_Up

Used_Default_Sync:

MOV A,@0X80 ; SYNC ,used default 0X0DB3

 MOV
 RX_IDH,A

 MOV
 A,@0X16

 MOV
 RX_IDL,A

Start_Up:

LCALL CHANGE_TO_INQ_VALUE

CLR CH_NO LCALL RF_FREQ_SET

ENI

BANK 0
CLR ComuClock
CLR ComuCycleNum
CLR ComuEndNum

BS LED1_STATUS/16,LED1_STATUS%16 ; PORT81,LED

```
AT93C46_CS/16,AT93C46_CS%16
                                                            : Disable 93C46
     ВС
                                                          ; Disable EM198810
     BS
                       SPI_SS/16,SPI_SS%16
     CLR
                       SleepCNT
     CLR
                       CommuStatusFlag
     CLR
                       GeneralStatusFlag1
     CLR
                       GeneralStatusFlag2
     CLR
                       CHN_FLAG
     BANK
                        2
                        A,@0XFF
     MOV
     MOV
                        KeystokeFlag\_Befor, A
     MOV
                        KeystokeTimeCNT,A
                        SearchLinkMode_Set
     CALL
     NOP
MAIN:
     LCALL
                        Search_Equipment
     NOP
     BANK
                        0
     BC
                       LED1_STATUS/16,LED1_STATUS%16
     NOP
     LCALL
                        Normal_Communicate
     NOP
     ;LCALL
                        Key_Scan
     ;LCALL
                        ConnectKey_Scan
                        Enter_StandbyII_Mode
     LCALL
     NOP
                        ENTER_TX_BUFFER_NACK
     LCALL
     NOP
     LCALL
                        RESET_RF_FIFO
     NOP
     LCALL
                        WRITE_FIFO_RAM
     NOP
     NOP
     JMP
                       MAIN
IO INITIAL SET
;Function:
          None
;Input:
;Output:
          None
*********************
IO_INITIAL:
                        ==== TCC config ==
     BANK
                        0
                        A,@0x07
     MOV
                                      ; N=124,P=256,f=4MHz ==> T=8ms
     MOV
                        TWTCR,A
     MOV
                        A,@(255-124)
                                     ; load initial value
     MOV
                        TCC,A
                                     ;set TCIE=1 tcc enable interrupt
     BS
                       IMR,TCIE
     CLR
                       ISR
                                     ;clear interrupt flag
     MOV
                        A,@0x01
     BANK
                        1
     CLR
                       EISR
                                       ;Clear External Interrupt Status Register
     CLR
                       EIMR
                                       ;Clear External Interrupt Mask Register
```

```
BANK
                       0
     BS
                      IMR.T1IE
                                     · Enable Timier1
     BC
                       ISR.T1IF
                                     ; Clear timer1 intrrupt flag
     BANK
                       2
                        A,@0B00000111
     MOV
                                       · N=256 P=256 T=2s
     MOV
                        T1CR,A
     MOV
                        A,@255
                                       : N=256. Auto reload
                        T1PD,A
     MOV
                        A,@0B00011100
     MOV
                                       : 8 bit counter .f=32768
                        TSR,A
     MOV
                        =====PORT A/B====
     BANK
                        4
                                       ; POWER ON DISABLE PA PB PULL HIGH
     MOV
                        A,@00010000B
                                      ; Set PA4 (MISO) as input pin
     MOV
                        PAIOCR,A
                                     ; SO,SCK output pin
     MOV
                        A,@00010000B
                                      ; PA4 PULL HIGH
     MOV
                        PAPHCR,A
     MOV
                                      ; PB0 PB1 PB2 PB4 PB5 PB1AS INPUT
                        A,@00110111B
     MOV
                        PBIOCR,A
                                      ; PKT FIFO OUTPUT PIN
     BANK
                        5
     MOV
                        A,@00110111B
     MOV
                        PBPHCR,A
                                      ;PB0 PB2 ENABLE PULL HIGH
     BANK
                        0
     CLR
                       PORTA
                                      ; PortA output logic "0"
     ;CLR
                       PORTB
                                      ; PortB output logic "0"
     BANK
                        2
     MOV
                        A,@00000000B
                                     ; Shift left, SDO delay time: 16clk,
     MOV
                        SPIS, A
                                     ; disable open-drain
     MOV
                        A,@11001000B
                                     ; Data shift out rising edge, is on hold during low
     MOV
                        SPIC,A
                                    ; Enable SPI mode, after data output sdo remain low
BANK
     MOV
                        A,@11111111B
     MOV
                                      ;Set Input
                        IOC9,A
     MOV
                        A,@00000000B
     MOV
                        IOC7,A
                                      ;Set Output
     MOV
                        A,@00000000B
     MOV
                        IOC8,A
                                      ;Set Output
     BANK
                        5
     MOV
                        A,@11110000B
     MOV
                        P9PHCR,A
                                       ;SET PULL UP
     BANK
                        6
     CLR
                       P7ODCR
                       P8ODCR
     CLR
     CLR
                       P9ODCR
     BANK
                        1
     MOV
                        A,@00000000B
                                      ;Disable LCD common dirver pin
     AND
                       LCDSCR0, A
                       LCDSCR1, A
     AND
                       LCDSCR2, A
     AND
     BANK
                        0
                                      ; Port7 output logic "0"
     CLR
                       PORT7
     CLR
                       PORT8
                                      ; Port8 output logic "0"
     ;CLR
                       PORT9
                                      ; Port9 output logic "0"
     BC
                       AT93C46_CS/16,AT93C46_CS%16 ; Disable 93C46
     BS
                       SPI_SS/16,SPI_SS%16
                                                ; disable EM198810
     RET
****************
;Function:
          MCU SLEEP SET
```

;Input: None

;Output: None

************** MCU_EnterSleep_Set: BANK 0 CLR IMR :Disable Timier1/TCC CLR ISR BANK 3 CLR EIESH ;SET Falling Edge BANK 1 A,@0B01100000 MOV ;Enable EX6(PB2)/EX5(PB1) Interrupt MOV EIMR,A EISR CLR BANK A,@0B01100000 MOV WKCR,A MOV ;enable EX6(PB2)/EX5(PB1) wake up ;Set IDLE=0(SLEEP MODE) BC SCCR,IDLE BANK 0 AT93C46_CS/16,AT93C46_CS%16 ; Disable 93C46 BC SPI_SS/16,SPI_SS%16 ; disable EM198810 BS NOP RET ************** :Function: MCU wakeup SET ;Input: None ;Output: None MCU_WakeUp_Set: BANK 3 CLR EIESH ; SET Falling Edge BANK 1 A,@0B00000000 MOV ; Disable EX6(PB2)/EX5(PB1) Interrupt MOV EIMR,A CLR EISR BANK A,@0B00000000 MOV MOV WKCR,A ; Disable EX6(PB2)/EX5(PB1) wake up NOP BANK 0 A,@0B10000001 MOV MOV IMR,A ; Enable Timier1/TCC CLR ISR AT93C46_CS/16,AT93C46_CS%16 ; Disable 93C46 BCBS SPI_SS/16,SPI_SS%16 ; disable EM198810 RET **************** mode select :Function: ;Input: :Output: None ;desciption: set timing and select mode ************** SearchLinkMode_Set: BS SearchStatusFlag/16,SearchStatusFlag%16 ;set search mode

BC NormalStatusFlag/16,NormalStatusFlag%16 ;Clear normal mode BCLoseFrameStatusFlag/16,LoseFrameStatusFlag%16 ;Clear LoseFreq mode

BCEEpromWRStatusFlag/16,EEpromWRStatusFlag%16

BSLinkModeFlag/16,LinkModeFlag%16

BCForceLinkModeFlag/16,ForceLinkModeFlag%16 BC $FccTestModeFlag/16, FccTestModeFlag\%\,16$

RET

SearchForceLinkMode_Set: ;0X25

> BSSearchStatusFlag/16,SearchStatusFlag%16 ;set search mode BC $Normal Status Flag/16, Normal Status Flag\%\,16$;Clear normal mode BS $Lose Frame Status Flag/16, Lose Frame Status Flag\%\,16$;Clear LoseFreq mode

ВС EEpromWRStatusFlag/16,EEpromWRStatusFlag%16 ВС LinkModeFlag/16,LinkModeFlag%16 BS ForceLinkModeFlag/16,ForceLinkModeFlag%16 FccTestModeFlag/16,FccTestModeFlag%16 ВС RET NormalLinkMode_Set: ·0X12 BCSearchStatusFlag/16,SearchStatusFlag%16 :Clear search status BS $Normal Status Flag/16, Normal Status Flag\%\,16$:set normal mode BC $Lose Frame Status Flag/16, Lose Frame Status Flag\%\,16$;Clear LoseFreq mode BC EE promWRS tatus Flag/16, EE promWRS tatus Flag%16BS LinkModeFlag/16,LinkModeFlag%16 BC $Force Link Mode Flag/16, Force Link Mode Flag\%\,16$ BC $FccTestModeFlag/16, FccTestModeFlag\%\,16$ RET LoseFrameLinkMode_Set: :0X16 BC $Search Status Flag/16, Search Status Flag\%\,16$;Clear search status BS $Normal Status Flag/16, Normal Status Flag\%\,16$;set normal mode BS $Lose Frame Status Flag/16, Lose Frame Status Flag\%\,16$;Clear LoseFreq mode EE promWR Status Flag/16, EE promWR Status Flag%16BCBS LinkModeFlag/16,LinkModeFlag%16 BCForceLinkModeFlag/16,ForceLinkModeFlag%16 BCFccTestModeFlag/16,FccTestModeFlag%16 RET LoseFrameForceLinkMode_Set: ;0X25 BS SearchStatusFlag/16,SearchStatusFlag%16 :Clear search status BC $Normal Status Flag/16, Normal Status Flag\%\,16$:set normal mode BS ;Clear LoseFreq mode LoseFrameStatusFlag/16,LoseFrameStatusFlag%16 BC EE promWRS tatus Flag/16, EE promWRS tatus Flag%16BC LinkModeFlag/16,LinkModeFlag%16 BS ForceLinkModeFlag/16,ForceLinkModeFlag%16 BC $FccTestModeFlag/16, FccTestModeFlag\%\,16$ RET FccSearchLinkMode_Set: ;0X41 BS SearchStatusFlag/16,SearchStatusFlag%16 ;set search mode ВС NormalStatusFlag/16,NormalStatusFlag%16 ;Clear normal mode ВС LoseFrameStatusFlag/16,LoseFrameStatusFlag%16 ;Clear LoseFreq mode BC EEpromWRStatusFlag/16,EEpromWRStatusFlag%16

LinkModeFlag/16,LinkModeFlag%16

ForceLinkModeFlag/16,ForceLinkModeFlag%16

FccTestModeFlag/16,FccTestModeFlag%16

BC

ВС

BS

RET