Fondamenti di Calcolo Numerico

Progetto 2: scadenza per la consegna 15 Maggio 2023 - Voto massimo : 3/30

Nota 1: salvare le risposte alle domande evidenziate in grassetto all'interno di un file pdf denominato:

Soluzione_Progetto_2_Cognome_Codice_6cifre.pdf

dove Codice_6cifre è il vostro numero identificativo personale composto da 6 cifre.

Nota 2: per risolvere numericamente gli esercizi proposti nel seguito, si suggerisce di creare uno script all'interno di una cartella nel vostro file system personale, e di salvarlo con il nome

Progetto_2.m

1 Analisi circuitale: modello matematico (valutazione massima: 1/30)

Figure 1: Rete di resistori pilotata in tensione.

Si consideri la rete di resistori lineari e tempo invarianti rappresentata nella Figura 1. La convenzione per il segno della corrente i che attraversa un nodo del circuito è: i > 0 se la corrente è uscente dal nodo, i < 0 se la corrente è entrante nel nodo.

1. Scrivere le leggi di Kirchhoff alle correnti per ogni nodo della rete nella sezione intitolata "1. Modello matematico" del file

Soluzione_Progetto_2_Cognome_Codice_6cifre.pdf.

[voto: 0.3/30]

2. Scrivere la legge di Ohm per ogni corrente di lato, indicando con $G=R^{-1}$ la conduttanza di lato, nella sezione intitolata "1. Modello matematico" del file

Soluzione_Progetto_2_Cognome_Codice_6cifre.pdf.

[voto: 0.3/30]

3. Scrivere la legge di Kirchhoff alla tensione per la maglia di ingresso costituita dal generatore di tensione V_{in} e le resistenze R_{in} , R_2 e R_4 nella sezione intitolata "1. Modello matematico" del file

Soluzione_Progetto_2_Cognome_Codice_6cifre.pdf.

[voto: 0.2/30]

4. Scrivere l'elenco delle incognite del problema e verificare che il numero di equazioni è uguale al numero di incognite, nella sezione intitolata "1. Modello matematico" del file

Soluzione_Progetto_2_Cognome_Codice_6cifre.pdf.

[voto: 0.2/30]

2 Analisi circuitale con metodi diretti (valutazione massima: 1/30)

Assegnare i seguenti valori dei parametri del circuito:

- 1. $V_{in} = 1V$;
- 2. $R_{in} = 100\Omega$;
- 3. $R_k = kR_{in}$, per k = 1, ..., 4.
- 1. Dopo avere eliminato le correnti $i_j, j = 1, ..., 10$, in funzione dei potenziali nodali $v_q, q = 1, ..., 6$, introdurre in Matlab la matrice delle ammettenze $\mathbf{Y} \in \mathbb{R}^{6 \times 6}$ e il termine noto $\mathbf{b} \in \mathbb{R}^{6 \times 1}$, visualizzarne i valori sulla finestra di comando e riportarli nella sezione intitolata "2. Analisi con metodi diretti" del file

Soluzione_Progetto_2_Cognome_Codice_6cifre.pdf.

[voto: 0.2/30]

2. Eseguire il comando format short e. Verificare l'esistenza ed unicità della fattorizzazione LU di Y con $L_{ii}=1,\ i=1,\ldots,6$. Riportare i risultati della verifica nella sezione intitolata "2. Analisi con metodi diretti" del file

Soluzione_Progetto_2_Cognome_Codice_6cifre.pdf.

[voto: 0.2/30]

3. Calcolare la fattorizzazione LU utilizzando la function lu_factorization, visualizzare i valori delle matrici L e U sulla finestra di comando e riportarli nella sezione intitolata "2. Analisi con metodi diretti" del file

Soluzione_Progetto_2_Cognome_Codice_6cifre.pdf.

[voto: 0.2/30]

4. Eseguire il comando format long e. Si consideri la soluzione del sistema

$$\mathbf{Y}\mathbf{x} = \mathbf{b}.\tag{1}$$

Utilizzare la fattorizzazione LU di Y calcolata precedentemente per risolvere il sistema (1) con le funzioni forward_substitution e backard_substitution e memorizzare nel vettore xc la soluzione del sistema triangolare superiore. Risolvere il sistema (1) utilizzando il comando \ di Matlab e memorizzare nel vettore xm il risultato ottenuto. Visualizzare sulla finestra di comando uno accanto all'altro i vettori xm e xc e riportarli nella sezione intitolata "2. Analisi con metodi diretti" del file

Soluzione_Progetto_2_Cognome_Codice_6cifre.pdf.

[voto: 0.3/30]

5. Eseguire il comando format short e. Calcolare la norma infinito della differenza tra xm e xc e riportare il risultato ottenuto nella sezione intitolata "2. Analisi con metodi diretti" del file

Soluzione_Progetto_2_Cognome_Codice_6cifre.pdf.

[voto: 0.1/30]

3 Analisi circuitale con metodi iterativi (valutazione massima: 1/30)

1. Verificare che la matrice Y è simmetrica e definita positiva utilizzando gli opportuni comandi Matlab, visualizzare i risultati della verifica sulla finestra di comando e riportarli nella sezione intitolata "3. Analisi con metodi iterativi" del file

Soluzione_Progetto_2_Cognome_Codice_6cifre.pdf.

[voto: 0.2/30]

2. Eseguire il comando format long e. Si ponga x0=zeros(6,1), toll=1e-12, nitmax=10000 e stop_test = 2. Si utilizzi la function richardson_stat per risolvere il sistema (1) con il metodo di Gauss-Seidel e si memorizzi la soluzione calcolata nel vettore xGS. Visualizzare uno accanto all'altro i vettori xm e xGS sulla finestra di comando e riportarli nella sezione intitolata "3. Analisi con metodi iterativi" del file

Soluzione_Progetto_2_Cognome_Codice_6cifre.pdf.

[voto: 0.4/30]

3. Eseguire il comando format short e. Si calcoli l'errore relativo effettivamente commesso

$$\mathtt{true_rel_err} = \frac{\|\mathtt{xm} - \mathtt{xGS}\|_2}{\|\mathtt{xm}\|_2}.$$

Si consideri l'errore relativo stimato est_rel_err, dato dall'ultima componente del vettore errore restituito in uscita dalla function richardson_stat. Visualizzare il numero di iterazioni eseguite, true_rel_err e est_rel_err sulla finestra di comando e riportare le tre quantità nella sezione intitolata "3. Analisi con metodi iterativi" del file

Soluzione_Progetto_2_Cognome_Codice_6cifre.pdf.

[voto: 0.3/30]

4. Calcolare il fattore di condizionamento

$$\kappa = K_2(\mathbf{P}_{GS}^{-1}\mathbf{A})$$

dell'errore relativo, visualizzarne il valore sulla finestra di comando e riportarlo nella sezione intitolata "3. Analisi con metodi iterativi" del file

Soluzione_Progetto_2_Cognome_Codice_6cifre.pdf.

[voto: 0.1/30]