Algèbre linéaire et bilinéaire I

 TD_{11} : Révision chap. 1 et 2

Exercice 1

Soit E un \mathbb{K} -espace vectoriel, $(f,g) \in (\mathcal{L}(E))^2$ et H un supplémentaire de $\mathrm{Ker}(f)$ dans E. On considère $h: H \to E$ la restriction de $g \circ f$ à H.

1. Montrer, par double inclusion, que

$$Ker(g \circ f) = Ker(h) + Ker(f)$$

2. Montrer que

$$rang(h) \ge rang(f) - \dim Ker(g)$$

3. En déduire que

$$\dim \operatorname{Ker}(g \circ f) \leq \dim \operatorname{Ker}(g) + \dim \operatorname{Ker}(f)$$

Exercice 2

Soit $(a,b) \in \mathbb{R}^2$ avec $a \neq b$, on pose \mathcal{S} l'ensemble des solutions sur \mathbb{R}_+^* de :

$$x^{2} \times y'' + (1 - a - b) \times x \times y' + a \times b \times y = 0.$$
 (1)

On admet que les solutions de l'équation différentielle (1) sont de classe \mathcal{C}^{∞} sur \mathbb{R}_{+}^{*} et on pose $E = \mathcal{C}^{\infty}(\mathbb{R}_{+}^{*}, \mathbb{R})$.

1. Montrer que S est un sous-espace vectoriel de E.

Pour $f \in E$, on définit :

$$\Phi(f) : \left\{ \begin{array}{ccc} \mathbb{R}_+ & \to & \mathbb{R} \\ x & \mapsto & x \times f'(x) \end{array} \right.$$

2. Montrer que $\Phi: f \mapsto \Phi(f)$ est un endomorphisme de E.

On pose également :

$$\Phi_a = \Phi - a \operatorname{id}_E \quad \text{et} \quad \Phi_b = \Phi - b \operatorname{id}_E.$$

3. Montrer que $\Phi_a \in \mathcal{L}(E)$, que $\Phi_b \in \mathcal{L}(E)$ et que :

$$\Phi_a \circ \Phi_b = \Phi_b \circ \Phi_a$$
.

On pose donc $\Psi = \Phi_a \circ \Phi_b = \Phi_b \circ \Phi_a$.

- 4. Montrer que $S = \text{Ker } \Psi$ et retrouver le résultat de la question 1.
- 5. Montrer que $\mathcal{S} = \operatorname{Ker}(\Phi_a) \oplus \operatorname{Ker}(\Phi_b)$.
- 6. En déduire la forme générale des solutions de (1).

Exercice 3

Soit E un \mathbb{R} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$.

1. Soit F et G deux sous-espaces vectoriels de E tels que $E = F \oplus G$, on note $r = \dim F$ et :

$$\mathcal{A} = \{ u \in \mathcal{L}(E), \ u(F) \subset F \text{ et } u|_G = 0 \}.$$

- (a) Montrer que \mathcal{A} est un sous-espace vectoriel de $\mathcal{L}(E)$.
- (b) Soit \mathcal{B} une base de E adaptée à la somme directe $E=F\oplus G$. Montrer que :

$$u \in \mathcal{A} \iff \exists M_1 \in \mathcal{M}_r(\mathbb{R}), \, \operatorname{Mat}_{\mathcal{B}}(u) = \begin{bmatrix} M_1 & 0_{r,n-r} \\ 0_{n-r,r} & 0_{n-r,n-r} \end{bmatrix}$$
 (matrice par blocs).

- (c) En déduire dim \mathcal{A} .
- 2. Soit \mathcal{L}_1 et \mathcal{L}_2 deux sous-espaces vectoriels de $\mathcal{L}(E)$ tels que :

$$\mathscr{L}(E) = \mathscr{L}_1 \oplus \mathscr{L}_2$$
 et, pour tout $(u_1, u_2) \in \mathscr{L}_1 \times \mathscr{L}_2$, $u_1 \circ u_2 + u_2 \circ u_1 = 0_{\mathscr{L}(E)}$.

- (a) Montrer l'existence de $p_1 \in \mathcal{L}_1$ et $p_2 \in \mathcal{L}_2$ deux projecteurs de E tels que $\mathrm{id}_E = p_1 + p_2$. On note $F = \mathrm{Im}\, p_1, \, G = \mathrm{Ker}\, p_1$ et $r = \dim F$.
- (b) Démontrer que dim $\mathcal{L}_1 \leq r^2$ et dim $\mathcal{L}_2 \leq (n-r)^2$.
- (c) Conclure que $\mathcal{L}_1 = \{0\}$ ou $\mathcal{L}_2 = \{0\}$.

Exercice 4

Soit E un \mathbb{R} -espace vectoriel de dimension 3 et $\mathscr{B}=(b_1,b_2,b_3)$ une base de E. Soit f l'endomorphisme de E dont la matrice dans \mathscr{B} est

$$A = \operatorname{Mat}_{\mathscr{B}}(f) = \begin{bmatrix} 3 & -2 & 2 \\ 1 & 2 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

1. Montrer qu'il existe une base $\mathscr{E} = (e_1, e_2, e_3)$ de E dans laquelle la matrice représentative de f est une matrice diagonale D, où

$$D = \text{Mat}_{\mathscr{E}}(f) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

- 2. Déterminer la matrice de passage $P_{\mathscr{B}}^{\mathscr{E}}$ de \mathscr{B} à \mathscr{E} . Calculer $\left(P_{\mathscr{B}}^{\mathscr{E}}\right)^{-1}$.
- 3. Quelle relation a-t-on entre les matrices $A, D, P_{\mathscr{B}}^{\mathscr{E}}$ et $\left(P_{\mathscr{B}}^{\mathscr{E}}\right)^{-1}$?
- 4. Calculer A^n pour tout $n \in \mathbb{N}^*$.