ELEKTRONİK DEVRELER DERS NOTLARI 9.HAFTA

Transistörün Anahtar ve Yükselteç Olarak Çalışması, Transistörün DC ve AC Analizi, Transistör Polarma Yöntemleri Transistörün Çalışma Kararlılığının Etkileyen Faktörler

Transistör Devrelerini bir örnek ile hatırlayalım: Örnek:

Şekildeki devrede transistörün maksimum sınır değerleri verilmiştir. Transistörün zarar görmeden çalıştırılabileceği maksimum V_{CC} gerilimi değeri ne olmalıdır? Hesaplayınız?

$$P_{D(MAX)} = 1W$$

$$V_{CE(MAX)} = 20V$$

$$I_{C(MAX)} = 100 \text{mA}$$

$$\beta_{DC} = 150$$

Transistörün Vce gerilimi değerini belirleyen faktörler; Vcc, Ic ve IB değerleridir. Ilk etapta devredeki IB değerini belirleyelim.

$$V_{BB} = I_B \cdot R_B + V_{BE} \Rightarrow I_B = \frac{V_{BB} - V_{BE}}{R_B} \Rightarrow I_B = \frac{5V - 0.7V}{33K\Omega} = 130\mu A$$

$$I_C = \beta \cdot I_B$$

$$I_C = 150 \cdot 130 \,\mu A \Rightarrow 19.5 \,mA$$

Örnek:

 V_{CE} geriliminin 20V olmasını sağlayan I_C akımının değeri, $I_{C(max)}$ değerinden küçüktür. I_C akımını belirleyen bir diğer faktör ise V_{CC} gerilimidir. Bu gerilimin olması gereken değerini bulalım.

$$V_{CC} = I_C \cdot R_C + V_{CE}$$

$$V_{CC} = 19.5mA \cdot 1K\Omega + 20V$$

$$V_{CC} = 39.5V$$

Buradan transistörün maksimum güç şartlarında çalışabilmesi için V_{CC} geriliminin alabileceği değeri belirledik. Şimdi transistörde harcanabilecek maksimum gücü bulalım.

$$P_D = V_{CE(MAX)} \cdot I_C \Rightarrow P_D = 20V \cdot 19.5mA$$

 $P_D = 390mW$

Transistörde harcanabilecek toplam güç, 390mW bulunmuştur. Bu değer transistörün sınır güç değerinden (1W) küçüktür. 39.5V'luk V_{CC} besleme geriliminde güvenli bir çalışma ortamı sağlanmıştır.

- Transistörlerin en popüler uygulama alanlarına örnek olarak yükselteç ve anahtarlama devrelerini verebiliriz.
- Transistörün elektronik anahtar olarak kullanılmasında kesim ve doyum bölgelerinde çalışmasından yararlanılır
- İdeal bir anahtar, açık olduğunda direnci sonsuzdur.
- Üzerinden akım akmasına izin vermez.
- Kapalı konuma alındığında ise direnci sıfırdır ve üzerinde gerilim düşümü olmaz.
- Ayrıca anahtar bir durumdan, diğer duruma zaman kaybı olmadan geçebilmelidir.
- Transistörle gerçekleştirilen elektronik anahtar, ideal bir anahtar değildir.
- Fakat transistör küçük bir güç kaybı ile anahtar olarak çalışabilir.

- Transistörün bir anahtar olarak nasıl kullanıldığı aşağıdaki şekilde verilmiştir.
- Şekil-a'da Görüldüğü gibi transistörün beyz-emiter jonksiyonu ters yönde polarmalanmıştır.
- Dolayısıyla transistörün kesimdedir.
- Kollektör-emiter arası ideal olarak açık devredir.
- Transistör bu durumda açık bir anahtar olarak davranır.

a) Transistör kesimde -Anahtar AÇIK

b) Transistör doyumda -Anahtar KAPALI

a ve b Transistörün anahtar olarak çalışması

- Şekil-b'de ise transistörün beyz-emiter jonksiyonu doğru yönde polarmalanmıştır.
- Bu devrede beyz akımı yeterli derecede büyük seçilirse transistör doyum bölgesinde çalışacaktır.
- Kollektör akımı maksimum olacak ve transistörün kollektör-emiter arası ideal olarak kısa devre olacaktır.
- Transistör bu durumda kapalı bir anahtar gibi davranır.

Transistör kesimdeyken;

• Beyz-emiter jonksiyonu iletim yönünde polarmalanmamıştır. Dolayısıyla transistörün kollektör-emiter gerilimi;

$$V_{CE} = V_{CC} - I_C \cdot R_C$$

formülünden hesaplanırsa:

a) Transistör kesimde -Anahtar AÇIK

b) Transistör doyumda -Anahtar KAPALI

a ve b Transistörün anahtar olarak çalışması

- Bu değer aynı zamanda transistörün çıkış gerilimidir.
- Transistör kesimdeyken IC = 0 olduğunu biliyoruz.
- Çünkü transistörün kollektör-emiter arası açık devredir.
- Bu durumda;

$V_{CE(KESIM)} = V_{CC}$

- olur. Bu gerilim, transistörün kollektör-emiter arasında görülebilecek maksimum değerdir ve yaklaşık olarak transistörün besleme gerilimi VCC değerine eşittir.
- Transistör doyumdayken;
- Kollektör akımı maksimum değerine ulaşmaktadır.
- Kollektör-emiter gerilimi ise ideal olarak düsünülürse VCE = 0 V olmaktadır. Bu durumda transistörün kollektör akımı; $V_{CC} = V_{CE(DOYUM)} + I_C \cdot R_C$ değerine eşit olur.

$$I_{C(DOYUM)} = \frac{V_{CC}}{R_C}$$

• Bu değerden hareketle transistörü doyumda tutacak beyz akımının minimum değeri belirlenebilir.

Örnek: Şekilde ki devrede transistör anahtarlama amacı ile kullanılmaktadır.

- a) $V_B = 0$ V olduğunda V_O değerini bulunuz?
- b) Transistörü doyumda tutacak minimum beyz akımını bulunuz?
- c) V_B = 6 V olduğunda transistörü doyumda tutacak R_B değerini bulunuz?

Çözüm:

a) $V_B = 0$ V olduğunda transistör kesimdedir. Kollektör akımı $I_C = 0$ A olur. Dolayısıyla transistörün V_O gerilimi;

$$V_O = V_{CE} = V_{CC} = +12 V$$

b) Transistör doyumda olduğunda; $V_{CE(DOYUM)} = 0$ V olacaktır. Buradan I_C akımını bulalım.

$$V_{CC} = I_C \cdot R_C + V_{CE}$$

$$I_{C(DOYUM)} = \frac{V_{CC}}{R_C} = \frac{12V}{1K} = 12mA$$

olacaktır. Buradan transistörü doyumda tutacak beyz akımının minimum değerini buluruz.

$$I_{B(MIN)} = \frac{I_{C(DOYUM)}}{\beta} = \frac{12mA}{150} = 80\mu A$$

Bulunan bu değer; transistörü doyumda tutmak için gereken beyz akımının minimum değerdir. Beyz akımının bu değerden daha fazla olması kollektör akımını artırmayacaktır.

c) Transistörü doyuma ulaştıracak beyz akımını belirleyen devre elamanı R_B direncidir. Bu direncin olası değerini bulalım. Transistör iletime girdiğinde, beyz-emiter gerilimi V_{BE}=0.7V olacaktır. Dolayısıyla devreden R_B değerini bulabiliriz.

$$V_{B} = I_{B} \cdot R_{B} + V_{BE}$$

$$R_{B} = \frac{V_{B} - V_{BE}}{I_{B}} = \frac{6V - 0.7V}{80\mu A} = 66.2K\Omega$$

Transistörlü anahtar uygulaması

- Pek çok endüstriyel uygulamada veya sayısal tasarımda tümdevrelerin çıkışından alınan işaretler ile anahtarlama yapılarak başka devrelerin çalıştırılıp durdurulması istenebilir.
- Örneğin aşağıdaki şekil-a'da tümdevre çıkışından alınan bir kare dalga işaretin bir led'i yakıp söndürmesi için gerekli devre düzeneği verilmiştir.
- Giriş işareti; 0V olduğunda transistör kesimdedir, LED yanmayacaktır.
- Giriş işareti +V değerine ulaştığında ise transistör iletime geçe<mark>rek LED yanacaktır.</mark>
- Şekil-b'de ise bir tümdevre çıkışından alınan işaretin kuvvetlendirilerek bir röleyi, dolayısıyla role kontaklarına bağlı bir yükü kontrol etmesi gösterilmiştir.

a) Transistörün anahtar olarak çalışması

b) Transistörle role kontrol

a ve b Transistörün anahtar olarak kullanılması

Transistörlü anahtar uygulaması

- Örnek: Yukarıdaki şekil-b'de verilen devrede tüm devre çıkışı +5V olduğunda rolenin kontaklarını çekmesi istenmektedir. Tüm devre çıkışının izin verdiği akım miktarı 100 mA'dir. Rb direncinin değeri ne olmalıdır? Hesaplayınız?
- Çözüm: Rolenin kontaklarını çekebilmesi için gerekli minimum akım değeri 100mA'dir. Dolayısıyla transistörün kolektöründen akacak IC akımı değeri 100mA'dir. Buradan IB akımının olması gereken değerini bulabiliriz.

$$I_B = \frac{I_C}{\beta} = \frac{100mA}{150} = 0.6mA$$

• Bulunan bu değer; transistörü doyumda tutmak için gereken beyz akımının minimum değerdir.

Transistörlü anahtar uygulaması

• Şimdi bu akımı akıtacak Rb değerini bulalım. Devreden;

$$+5V = I_B \cdot R_B + V_{BE}$$

$$R_B = \frac{V_B - V_{BE}}{I_B} = \frac{5V - 0.6V}{0.6mA} = 7.3K\Omega$$

TRANSİSTÖRÜN YÜKSELTEÇ OLARAK ÇALIŞMASI

- Transistörlerin çok popüler bir diğer uygulama alanı ise yükselteç (amplifier) devresi tasarımıdır.
- Yükseltme (amplifikasyon) işlemi, transistöre uygulanan her hangi bir işaretin genliğinin veya gücünün doğrusal olarak kuvvetlendirilmesi (yükseltilmesi) işlemidir.
- Yükselteç olarak tasarlanacak bir transistör, genellikle aktif bölgede çalıştırılır.
- Transistörün en temel uygulama alanlarından biri de yükselteç (amplifier) devresi tasarımıdır.
- Temel bir yükselteç devresinin işlevi, girişine uygulanan işareti yükselterek (kuvvetlendirerek) çıkışına aktarmasıdır.

TRANSİSTÖRÜN <mark>YÜKSELTEÇ OLA</mark>RAK ÇALIŞMASI

- Transistörlü temel bir yükselteç devresi yandaki şekilde verilmiştir.
- Devrede kullanılan DC kaynaklar transistörün aktif bölgede çalışmasını sağlamak içindir.
- Devre girişine uygulanan AC işaret (V_{in}) ise yükseltme işlemine tabi tutulacaktır.
- Transistörlü yükselteç devresinde; devrenin yükselteç olarak çalışabilmesi için DC besleme (polarma) gerilimlerine gereksinim vardır.
- Dolayısıyla transistörlü yükselteç devreleri genel olarak iki aşamada incelenebilirler.
- Bu aşamalar;
- Transistörlü yükselteç devrelerinin de analizi
- Transistörlü yükselteç devrelerinin ac analizi

Transistörlü yükselteç devresi

DC ANALİZ

- İyi bir yükselteç tasarımı için transistörün özelliklerine uygun DC polarma akım ve gerilimleri seçilmelidir.
- Dolayısıyla yükselteç tasarımında yapılması gereken ilk adım transistörlü yükselteç devresinin DC analizdir.
- Analiz işleminde transistörün çalışma bölgesi belirlenir.
- Bu bölge için uygun akım ve gerilimler hesaplanır.
- Sonuçta; transistörlü yükselteç devresi AC çalışmaya hazır hale getirilir.
- Transistörlü yükselteç devrelerinin DC analizinde eşdeğer devrelerden yararlanılır.

- Transistörlü yükselteç; girişinden uygulanan işaretleri yükselterek çıkışına aktarmak üzere tasarlanmış bir devredir.
- Transistöre uygulanan polarma gerilimleri çıkış karakteristiği üzerinde transistörün çalışma noktasını belirler.
- Transistörün sahip olduğu polarma akım ve gerilim değerini gösteren bu nokta "çalışma noktası" ya da "Q noktası" olarak adlandırılır.

- Şekilde bir transistörün çıkış karakteristiği üzerinde çeşitli çalışma noktası örnekleri verilmiştir.
- Örneğin *DC* polarma gerilimleri uygulanmasa idi transistörün çalışma noktası *Q1* olurdu.
- Bu durumda transistör tümüyle kapalı olur ve girişinden uygulanan işaretleri yükseltmez idi.

Transistör için çeşitli çalışma noktası örnekleri

- Transistöre polarma gerilimleri uygulandığında ise çalışma noktaları şekil üzerinde belirtilen *Q2*, *Q3* ve *Q4* noktalardan birinde olabilirdi.
- Bu çalışma noktalarında transistör doğal olarak yükselteç olarak çalışacaktır.
- Dolayısıyla girişinden uygulanan işareti yükselterek çıkışına aktaracaktır.
- Transistör çıkışından alınan işaret de nispeten bozulma olmayacaktır

- Örneğin şekil-a'da transistörün çalışma noktası uygun seçilmiş ve lineer bir yükseltme sağlanmıştır.
- Ancak çalışma noktasının uygun seçilmemesi durumunda ise çıkış işaretinde kırpılmalar oluşmaktadır.
- Bu durum şekil–b ve c üzerinde gösterilmiştir.

- Transistörlü yükselteç devrelerinde çalışma noktasının ve DC yük hattının önemini göstermek amacı ile aşağıdaki şekil–a da görülen devreden yararlanılacaktır.
- Bu devrede transistörün polarma akım ve gerilimleri, *VBB* ve *VCC* kaynakları ile ayarlanabilmektedir.
- Devredeki transistör için kolektör karakteristik eğrileri ise şekil–b de verilmiştir.

Ayarlanabilen kaynaklarla dc polarma ve transistörün karakteristik eğrisi

- *DC* polarmanın etkisini ve önemini anlamak amacı ile şekildeki devrede *IB* akımın farklı değerlere ayarlayalım. Ayarladığımız her bir *IB* akımı değerine karşılık transistörün *IC* ve *VCE* değerlerinin nasıl değiştiğini inceleyelim.
- İlk olarak VBB kaynağını ayarlayarak IB değerini $100\mu A$ yapalım. Bu durumda transistörün kolektör akımı IC;

$$I_C = \beta \cdot I_B = 200 \cdot 100 \mu A = 20 mA$$
 olacaktır.

• Bu kolektör akımına karşılık transistörde oluşan kolektör-emiter gerilim düşümü *VCE*;

$$V_{CE} = V_{CC} - (I_C \cdot R_C) = 10V - (20mA \cdot 200\Omega) = 6V$$
 olacaktır.

 \bullet Bulunan bu değerlere karşılık gelen transistörün çalışma noktası aşağıdaki şekilde transistör karakteristiğinde gösterildiği gibi QI olacaktır.

- Transistörün beyz akımının $IB = 150\mu A$ yapılması durumunda ise kolektör akımı; $I_C = \beta \cdot I_B = 200 \cdot 150\mu A = 30mA$ olacaktır.
- Bu kolektör akımına karşılık transistörde oluşan kolektör-emiter gerilim düşümü *VCE*:

$$V_{CE} = V_{CC} - (I_C \cdot R_C) = 10V - (30mA \cdot 200\Omega) = 4V$$

• olacaktır. Bulunan bu değerlere karşılık gelen transistörün çalışma noktası aşağıdaki şekilde transistör karakteristiğinde gösterildiği gibi *Q2* olacaktır.

b) l_B=150μA değeri için transistörün Q çalışma noktası

• Son olarak IB akımını $200\mu A$ yapalım bu durumda transistörün çalışma noktasını bulalım:

$$I_C = \beta \cdot I_B = 200 \cdot 200 \mu A = 40 mA$$

$$V_{CE} = V_{CC} - (I_C \cdot R_C) = 10V - (40mA \cdot 200\Omega) = 2V$$

• olacaktır. Bulunan bu değerlere karşılık gelen transistörün çalışma noktası aşağıdaki şekilde transistör karakteristiğinde gösterildiği gibi *Q3* olacaktır.

Çeşitli I_B akımı değerlerinde transistörün çalışma noktasının değişimi

- Her *IB* akım değerine bağlı olarak transistörün çalışma bölgesindeki değişimler aşağıdaki şekil üzerinde toplu olarak verilmiştir.
- Şekiller dikkatlice incelenirse transistörün beyz akımındaki değişim, kolektör akımını değiştirmekte dolayısıyla transistörün kolektör-emiter (*VCE*) gerilimi de değişmektedir.
- Örneğin *IB* akımındaki artma, *IC* akımını artırmaktadır.
- Buna bağlı olarak *VCE* gerilimi azaltmaktadır.
- Bu durumda *VBB* geriliminin ayarlanması ile *IB* değeri ayarlanmaktadır.
- *IB* nin ayarlanması ise transistörün *DC* çalışma noktasını düzgün bir hat üzerinde hareket ettirmektedir.
- Şekillerdeki transistör karakteristiği üzerinde gösterilen ve Q1, Q2 ve Q3 ile belirtilen çalışma noktalarının birleştirilmesi ile bir doğru elde edilir.
- Bu doğru "DC yük hattı" olarak adlandırılır.
- Aşağıdaki şekilde DC yük hattı karakteristik üzerinde gösterilmiştir.

Transistör karakteristiği üzerinde dc yük hattının gösterilişi

Lineer Çalışma

- Transistörün başlıca 3 çalışma bölgesi olduğu belirtilmişti.
- Bunlar; *kesim*, *doyum* ve *aktif* bölgelerdir.
- Transistör aktif bölgede çalışıyorken bütün çalışma noktaları kesim ve doyum bölgeleri arasındadır.
- Transistör eğer aktif bölgede çalışıyorsa girişine uygulanan işareti (sinyali) lineer olarak yükseltir.
- Lineer yükseltme işlemini incelemek amacıyla aşağıdaki şekil—a' da verilen devreden yararlanılacaktır.
- Başlangıçta devre girişine VS işaretinin uygulanmadığını düşünelim.
- Devrede beyz akımının $IB=150\mu A$ ve kolektör akımının ise IC=30mA olduğunu kabul edelim.
- Bu durumda transistörün çalışma noktası *VCE=4V* olacaktır.
- Bu nokta şekil—b'de transistör karakteristiği üzerinde gösterilen Q çalışma noktasıdır.

a) Ayarlı kaynaklarla transistörlü polarma devresi

b) Yük hattı üzerinde sinyal davranışı

Transistörlü yükselteç devresi ve yük hattı üzerinde sinyal davranışları

- Devre girişine \overline{VS} kaynağından tepe değeri $50\mu A$ olan bir sinüs işareti uygulandığını varsayalım. Önce \overline{VS} işaretinin pozitif saykılı geldiğini kabul edelim.
- Bu işaret; *VBB* kaynağı ile aynı yönde etki edecek ve beyz akımının yükselmesine neden olacaktır. Giriş işareti *VS*, pozitif tepe değerine ulaştığında beyz akımıda maksimum oranda yükselecektir.
- Bu anda $IB=150+50=200\mu A$ olacaktır.
- Bu değer şekil-b'de karakteristikte "A" noktası olarak işaretlenmiştir.
- Buna karşılık kolektör akımı 40mA değerine yükselecek, kollektör-emiter gerilimi ise 2V değerine düşecektir.
- Bu aşamadaki çalışmaya dikkat edilirse transistörün çalışma noktası A noktasına kaymıştır. Burada giriş işaretinde toplam $50\mu A$ 'lik bir değişim vardır.
- Çıkış kolektör akımında ise 10mA'lik bir değişim söz konusudur. Dolayısıyla giriş işaretinin pozitif saykılı 200 kat yükseltilmiştir.

a) Ayarlı kaynaklarla transistörlü polarma devresi

b) Yük hattı üzerinde sinyal davranışı

Transistörlü yükselteç devresi ve yük hattı üzerinde sinyal davranışları

- Giriş işaretinin negatif saykılında ise; bu işaret beyz akımını dolayısıyla kolektör akımını azaltacaktır.
- Transistör şekil-b'de karakteristik üzerinde gösterilen ve "**B**" olarak adlandırılan çalışma noktasına kayacaktır.
- Bu çalışma noktasında; $IB=100\mu A$, IC=20mA ve VCE=6V değerine ulaşacaktır.
- Aynı şekilde dikkat edilirse giriş işaretinin 200 kat yükseltildiği görülecektir.
- Buraya kadar anlatılanlardan da anlaşılacağı gibi, devre girişinde AC giriş işareti yokken, transistör Q çalışma noktasında kalmaktadır.
- Girişe bir sinyal gelmesi durumunda ise çalışma noktası bu sinyalin yönüne bağlı olarak aşağıya veya yukarıya kaymaktadır.

a) Ayarlı kaynaklarla transistörlü polarma devresi

b) Yük hattı üzerinde sinyal davranışı

Transistörlü yükselteç devresi ve yük hattı üzerinde sinyal davranışları

- Giriş işareti yükseltme işleminde *Q* noktasının etrafında salınmaktadır. Transistörün kesim veya doyum noktalarına ulaşmamaktadır.
- Çıkışta elde edilen işaret, giriş işaretinin yükseltilmiş bir formudur.
- Çıkış işaretinin dalga biçiminde herhangi bir bozulma yoktur.
- Bundan dolayı bu işleyişe "Lineer Çalışma" denir.

- Transistörlü yükselteç tasarımında ikinci evre, tasarlanan veya tasarlanacak yükselteç devresinin AC analizidir.
- Yükselteç devresinin AC analizini yapılırken eşdeğer devrelerden yararlanılır.
- Transistörlü temel bir yükselteç devresinin AC eşdeğeri devresi aşağıdaki şekilde görülmektedir.

Transistörlü yükselteç devresinin ac eşdeğeri

- Transistörlü bir yükselteç devresinin AC eşdeğer devresi çizilirken, DC kaynaklar kısa devre yapılır.
- Yükselteç devresi doğal olarak girişinden uygulanan AC işareti yükselterek çıkışına aktaracaktır.
- Dolayısıyla bir kazanç söz konusudur.
- Yükseltecin temel amacı da bu kazancı sağlamaktır.
- Bir yükselteç devresi; girişinden uygulanan işaretin genliğini, akımını veya gücünü yükseltebilir.
- · Dolayısıyla bir akım, gerilim veya güç kazancı söz konusudur.

- Yükselteçlerde kazanç ifadesi A ile sembolize edilir.
- Gerilim kazancı için **AV**, Akım kazancı için **AI** ve güç kazancı için **AP** sembolleri kullanılır.
- Örneğin yukarıdaki şekilde görülen yükselteç devresinin gerilim kazancı AV;

$$A_V = \frac{V_0}{V_g}$$

ÖDEV

- Yanda gösterilen devrede transistörde β=100 ve VBE=0.7 V'dir. Transistör üzerindeki akım ve gerilimleri bulunuz.
- 2. Birinci soruda hesaplamalarınıza göre Transiztör hangi bölgede çalışıyordur?
- 3. Aktifteyse Doyuma nasıl geçirirsiniz hesaplayarak gösteriniz?
- 4. Doyumdaysa aktife nasıl geçirirsiniz hesaplayarak gösteriniz
- 5. Okul numaranızın son iki hanesini
 Vcc=10Volt değeri ile değiştirerek tüm çözümleri
 yeniden gerçekleştiriniz.

