

Aprendizaje Automático Profundo (Deep Learning)

Capa GlobalAveragePooling

Global Average Pooling

- GlobalAveragePooling
 - Motivación
 - Los feature maps se achican espacialmente
 - Pero crecen en cantidad (#canales)
 - Cada canal detecta una característica
 - La dimensión espacial del feature map deja de importar
 - Método: promediar dimensiones espaciales

Global Average Pooling

- GlobalAveragePooling
 - Permite calcular puntajes para cada clase
 - Reemplaza las Dense/Flatten
- Promedia las dimensiones espaciales
 - Deja solo la dimensión de canales de un feature map
- Primero se suele utilizar una conv 1x1
 - Tantos feature maps como clases
- Ejemplo si tengo 10 clases:
 - Convolución (1x1) con 10 feature maps de HxW
 - HxWx10 = 8x8x64, entonces la salida de GAP es de 10 elementos

```
model.add(Conv2D(classes,(1,1),activation="relu"))
model.add(GlobalAveragePooling2D())
model.add(Activation('softmax'))
```

```
def GlobalAveragePooling2D(x):
   h,w,c=x.shape
   y=np.zeros(c)
   for i in range(c):
      y[i]=x[:,:,i].mean
   return y
```

Global Average Pooling

- GlobalAveragePooling
 - Motivación
 - El entrenar de la red, fija la resolución HxW de la imagen de entrada
 - Sucesivas capas con stride>1 achican HxW a H'xW'
 - La capa GlobalAveragePooling borra las dims H'xW'
 - No importa la resolución original HxW
 - => Redes independientes de la resolución de entrenamiento

