Sparsity in Dependency Grammar Induction

Jennifer Gillenwater¹ Kuzman Ganchev¹ João Graça² Ben Taskar¹ Fernando Pereira³

> ¹Computer & Information Science University of Pennsylvania

²L²F INESC-ID, Lisboa, Portugal

³Google, Inc.

December 11, 2009

(Klein and Manning, ACL 2004)

y x N Regularization

ADJ sparse

N grammars

$$p_{\theta}(\mathbf{x}, \mathbf{y}) = \theta_{root(V)}$$

(Klein and Manning, ACL 2004)

$$p_{\theta}(\mathbf{x}, \mathbf{y}) = \theta_{root(V)}$$

$$\cdot \theta_{continue(V, right, false)} \cdot \theta_{child(V, right, N)}$$

(Klein and Manning, ACL 2004)

$$\begin{aligned} p_{\theta}(\mathbf{x}, \mathbf{y}) &= \theta_{root(V)} \\ \cdot \theta_{continue(V, right, false)} \cdot \theta_{child(V, right, N)} \\ \cdot \theta_{stop(V, right, true)} \cdot \theta_{continue(V, left, false)} \cdot \theta_{child(V, left, N)} \end{aligned}$$

(Klein and Manning, ACL 2004)

$$\begin{aligned} p_{\theta}(\mathbf{x}, \mathbf{y}) &= \theta_{root(V)} \\ \cdot \theta_{continue(V, right, false)} \cdot \theta_{child(V, right, N)} \\ \cdot \theta_{stop(V, right, true)} \cdot \theta_{continue(V, left, false)} \cdot \theta_{child(V, left, N)} \end{aligned}$$

Outline

- A problem this model faces
- A measure of parent-child pair sparsity
- A modification to the objective
- How this modification improves parsing accuracy

Traditional objective optimization

■ Traditional objective: marginal log likelihood

$$\max_{\theta} \mathcal{L}(\theta) = E_X[\log p_{\theta}(\mathbf{x})] = E_X[\log \sum_{\mathbf{y}} p_{\theta}(\mathbf{x}, \mathbf{y})]$$

- Optimization method: expectation maximization (EM)
- **Problem**: grammar is very permissive; EM may learn a grammar that is not concise
- Can we precisely define "concise", so that we can incorporate it into the objective?

A measure of sparsity

Intuition: True # of unique (parent, child) POS tag pairs is small

A measure of sparsity

Intuition: True # of unique (parent, child) POS tag pairs is small

A measure of sparsity

Intuition: True # of unique (parent, child) POS tag pairs is small

Measuring sparsity on distributions over trees

For a distribution $p_{\theta}(\mathbf{y} \mid \mathbf{x})$ instead of gold trees: Restate sparsity measure over edge expectations (posterior probabilities)

Measuring sparsity on distributions over trees

For a distribution $p_{\theta}(\mathbf{y} \mid \mathbf{x})$ instead of gold trees: Restate sparsity measure over edge expectations (posterior probabilities)

Measuring sparsity on distributions over trees

For a distribution $p_{\theta}(\mathbf{y} \mid \mathbf{x})$ instead of gold trees: Restate sparsity measure over edge expectations (posterior probabilities)

Example partial edge types table

Example partial edge types table

- In at least one sentence, foreign word → determiner has high posterior probability
- Wh-determiners never dominate determiners

Edge type tables for supervised initialization

Portuguese

English

Edge type tables for EM

- Red → max posterior < supervised</p>
- Black → max > supervised; much black implies model assigns non-zero probability to too many pair types

Portuguese

English

Previous approaches to improving performance

- Structural annealing to constrain dependency lengths (Smith and Eisner, ACL 2006)
- Model extension (Headden et al., NAACL 2009): $\mathcal{L}(\theta')$
- Parameter regularization: $\mathcal{L}(\theta) + \log p(\theta)$

Priors

- Discounting Dirichlet prior (Headden et al., ACL 2009)
- Logistic normal prior (Cohen et al., NIPS 2008; Cohen and Smith, NAACL 2009)
- Hierarchical Dirichlet processes (Liang et al., EMNLP 2007; Johnson et al., NIPS 2007)
- All of the above cut down on # of children, but we really want to cut down on # of parent-child pairs

```
\theta_{child|parent} \neq \max(posterior_{parent,child})
parameters \neq posteriors
```

(Graca et al., NIPS 2007 & 2009)

Posterior regularization (PR): Minimize number of unique parent-child pairs directly through E-step penalty term on the posteriors $q(\mathbf{y} \mid \mathbf{x})$

(Graca et al., NIPS 2007 & 2009)

Posterior regularization (PR): Minimize number of unique parent-child pairs directly through E-step penalty term on the posteriors $q(\mathbf{y} \mid \mathbf{x})$

M-Step
$$\theta^{t+1} = \arg\max_{\theta} E_X \left[\sum_{\mathbf{y}} q^t(\mathbf{y} \mid \mathbf{x}) \log p_{\theta}(\mathbf{x}, \mathbf{y}) \right]$$

(Graca et al., NIPS 2007 & 2009)

Posterior regularization (PR): Minimize number of unique parent-child pairs directly through E-step penalty term on the posteriors $q(\mathbf{y} \mid \mathbf{x})$

$$\mathsf{M\text{-}Step} \quad \theta^{t+1} = \argmax_{\theta} E_X \left[\sum_{\mathbf{y}} q^t(\mathbf{y} \mid \mathbf{x}) \log p_{\theta}(\mathbf{x}, \mathbf{y}) \right]$$

$$\textbf{E-Step} \qquad q^t(\mathbf{y}\mid \mathbf{x}) = \mathop{\arg\min}_{q(\mathbf{y}\mid \mathbf{x})} \textit{KL}(q(\mathbf{y}\mid \mathbf{x}) \parallel p_{\theta^t}(\mathbf{y}\mid \mathbf{x}))$$

parent

(Graca et al., NIPS 2007 & 2009)

Posterior regularization (PR): Minimize number of unique parent-child pairs directly through E-step penalty term on the posteriors $q(\mathbf{y} \mid \mathbf{x})$

$$\mathsf{M\text{-}Step} \quad \theta^{t+1} = \argmax_{\theta} E_X \left[\sum_{\mathbf{y}} q^t(\mathbf{y} \mid \mathbf{x}) \log p_{\theta}(\mathbf{x}, \mathbf{y}) \right]$$

$$\textbf{E-Step} \qquad q^t(\mathbf{y} \mid \mathbf{x}) = \mathop{\arg\min}_{q(\mathbf{y} \mid \mathbf{x})} \textit{KL}(q(\mathbf{y} \mid \mathbf{x}) \parallel p_{\theta^t}(\mathbf{y} \mid \mathbf{x})) \ + \sigma \textit{L}_{1/\infty}(q(\mathbf{y} \mid \mathbf{x}))$$

$$q(\mathbf{y} \mid \mathbf{x}) = \begin{array}{cccc} D & N & V & N \\ & \bullet & \bullet & \bullet \\ & q(\text{root} \rightarrow x_i) \end{array} \qquad \begin{array}{ccccc} D & \times & \times & \times \\ & \stackrel{\square}{\neq} & N & \cdot & \bullet & \bullet \\ & V & \cdot & \cdot & \bullet & \bullet \\ & N & \cdot & \bullet & \bullet & \bullet \\ & & q(x_i \rightarrow x_i) \end{array}$$

parent

Experimental setup

- 12 languages: 11 from CoNLL-X shared task, English from Penn Treebank
- \blacksquare Processing of train and test sets: strip punctuation, consider only sentences of length ≤ 10
- $lue{}$ For training, also eliminate sentences of length ≤ 3 to increase model stability
- Assume POS tags given (but no parse trees)
- Initialize model as in Klein and Manning, ACL 2004

Baseline

Baseline: best of link-left, link-right

Baseline vs. EM

Baseline wins by a lot on the verb-final languages

Baseline vs. EM vs. Supervised

And all models are well below supervised performance

Sparsity's impact on accuracy

- Improve over EM in 11/12 cases
- Average of 10.3% accuracy increase

Viterbi decoding accuracy

Sparsity measure for supervised vs. EM

Sparsity measure for PR

Regularization strength $\sigma=100$

Edge types tables for PR

Mostly red \rightarrow oversparsification

Portuguese

English

Comparison to discounting Dirichlet prior

- ullet PR outperforms discounting Dirichlet prior in 10/12 cases
- Dirichlet prior has higher number of unique parent-child pairs in expectation than supervised, for all languages
- PR performance comparable to shared logistic normal prior (Cohen and Smith, NAACL 2009) on English; 61.3% for logistic vs. 62% for PR

	Parse		Unique parent-child pairs
Una	papelera	es	
d	nc	V	(v, nc); (nc, d)

	Parse		Unique parent-child pairs
Una d	papelera nc	es v	
u		V	(v, nc); (nc, d)
Una d	papelera nc	es v	(v, d); (d, nc)

	Parse	Unique parent-child pairs
Una d	papelera es nc v	(v, nc); (nc, d)
Una d	papelera es nc v	(v, d); (d, nc)
Lleva v	tiempo entenderlos nc v	(v, nc); (v, v)

	Parse		Unique parent-child pairs
Una	papelera	es	(v, nc); (nc, d)
d	nc	v	
Una	papelera	es	(v, d); (d, nc)
d	nc	V	
Lleva tiempo entenderlos v nc v			(v, nc); (v, v)

- \blacksquare Parses 1 and 3 \rightarrow 3 unique pairs total
- Parses 2 and 3 → 4 unique pairs total

Summary

- **Problem**: Supervised model exhibits fewer unique parent-child pairs than EM model
- Proposed solution: Use posterior regularization to decrease expected number of such pairs through an E-step penalty term
- **Result**: Positive impact on accuracy in 11/12 cases

Future work

- Tendency to oversparsify, but reducing σ too much has negative impact on accuracy
- More sparsity in a different aspect of the grammar?
- Sparsity constraint may provide enough guidance to allow for much more complicated models
- Joint induction of POS and parse trees