Application Note

PRU Fast GPIO (RTOS)- AM243x LP EVM / AM64x GP EVM

Rev. <ref> <date>

Revision History

Version	Date	Author	Description
0.2	Oct 18 – 2022		Added FAST GPIO example

Table of Contents

1 Fast GPIO

1 Fast_GPIO

Learning goal:

- Example explains requirement to setup pin-mux either from PRU, ARM or SYSCONFIG
- Example explains lock and unlock of pinmux
- Example explains padconfig settings and how they show up in R30 and R31, especially outputs which can be read back.
- Example show min latency of GPI copy to GPO and visualizes signal on scope

There are two types of GPIO on the Sitara device. System GPIOs can be programmed by any bus master on the SOC. The system GPIOs reside on peripheral interconnect which does arbitration for multiple masters to same end-point. Due to different frequency and bus width access to GPIO has certain latency. The second type of GPIOs reside in PRU register R30 and R31. There are 20 GPIs and GPOs pre PRU which share the same external pin. The pad configuration for certain functions can be configured during boot or run-time. The pad configuration registers are locked by default and a certain key need to be programmed to un-lock register access.

```
******* padconfig **************
; unlock PADMMR config register
; partition 0
   ldi32 r2, 0 \times 0000 f1008; LOCKO KICKO register
   ldi32 r3, 0x000f100c ; LOCKO KICK1 register
   ldi32 r4, 0x68EF3490 ; Kick 0 ldi32 r5, 0xD172BC5A ; kick 1
    sbbo
           &r4, r2, 0, 4
    sbbo
            &r5, r3, 0, 4
; partition 1
   ldi32 r2, 0 \times 0000 = 5008; LOCK1 KICK0 register
            r3, 0x000f500c ; LOCK1 KICK1 register
    ldi32
   sbbo &r4, r2, 0, 4
            &r5, r3, 0, 4
    sbbo
; pin-mux configuration - PRG0 PRU0 GPI1 - BP.32
; alternative system GPIO1 1
   ldi32
          r2, 0x000F4164
 .if (PRU GPI)
   ldi32 r3, 0x00040001
 .else
           r3, 0x00040007
   ldi32
 .endif
            &r3, r2, 0, 4
    sbbo
```

Figure 1 pad config from PRU code

The pad configuration code in figure 1 first unlocks RADMMR configuration registers. The same pin can be used as system GPIO1_1 or ICSS_GO_PRUO_GPI1. The pin as available on booster pack header BP.32. Last digit in r3 defines the mode of the pin. Mode 1 is used for PRU GPI and mode 7 for system GPIO.

```
;********* GPIO latency loop ***************
; follow GPI pin in PRU mode and ststem mode
; r31 bit 1 maps to PRU0 GPI1
; r30 bit 0 maps to PRU0 GPO0
; system GPIO offsets to base address 0x00601000
; 0x18 - set data
; 0x1C - clr data
; 0x20 - in data
idle loop:
; poll for rising edge
.if(PRU GPI)
  wbs r31, 1
.else
wait high:
         &r3,r2, 0x20 , 1
  lbbo
        wait_high, r3.b0, 1
  qbbc
.endif
; set GPO
 .if (PRU GPO)
  set r30, r30, 0
 .else
         &r4.b0, r2, 0x18, 1
  sbbo
 .endif
 ; poll for falling edge
 .if(PRU_GPI)
  wbc r31, 1
.else
wait low:
  lbbo
         &r3,r2, 0x20 , 1
        wait_low, r3.b0, 1
  qbbs
 .endif
; clear GPO
 .if(PRU GPO)
  clr
         r30, r30, 0
 .else
          &r4.b0, r2, 0x1c, 1
  sbbo
 .endif
  qba
          idle loop
```

Figure 2 GPIO latency loop

The GPIO latency code in figure 2 has two options based on definition of PRU_GPI and PRU_GP0. The GPIO loop follows the signal on GPIO1_1 or PRU_GPI1. PRU can directly read status of that pin from register 31 bit 1. When defined as system GPIO then PRU needs to read from global memory address of GPIO peripheral. The difference in latency can be seen when comparing figure 3 with figure 4. PRU GPIOs are more than 10x faster than system GPIOs.

Figure 3 PRU GPIO latency

Figure 4 System GPIO latency

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Ti's products are provided subject to Ti's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. Ti's provision of these resources does not expand or otherwise alter Ti's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated