Energy Efficient Cloud

by VM Migration?

ywu@cs.hku.hk

Let's first look back...

What makes cloud so different?

Virtualization

Add a layer between the applications and the hardware.

Application

Application

Application OS

Virtual Machine Monitor (VMM)

Physical Host Hardware CPU, Memory, Disk, Network

Lots of benefits...

Lots of benefits...

Consolidation

Consolidate workloads onto a single machine.

Switch off those idle machines

Jian made a simple metaphor yesterday...

(There should be applauses right here...)

How does consolidation work?

Migrations

Migrations

Migrate the whole OS with running applications

Memory migrations

Migrations

Migrate the whole OS with running applications

Memory migrations

Memory migrations

Stop & Copy

Push

Pull

Memory migrations

Let's then look back...

How virtualization is implemented on Xen?

Let's then look back...

How virtualization is implemented on Xen?

Xen

How migrations are enabled on Xen?

Cold Relocation v.s. Warm v.s. Live

How migrations are enabled on Xen?

Cold Relocation v.s. Warm v.s. Live

Warm v.s. Live

Similarities & Differences

Some measurement work

Laurent Lefèvre, Anne-Cécile Orgerie

Designing and evaluating an energy efficient Cloud

The Journal of Supercomputing (2010) Volume: 51, Issue: 3, Pages: 352-373

Experiment Settings...

2 HP Proliant 85 G2 Servers (2 dual core CPUs per node)

XenServer 5.0

CPU 100% job (last 300 seconds)

Laurent Lefèvre, Anne-Cécile Orgerie

Designing and evaluating an energy efficient Cloud
The Journal of Supercomputing (2010) Volume: 51. Issue: 3. Pages: 352-373

Boot, Run & Halt t=[10, 30] VM is launched t=[40, 100], CPU 100%

t=[110,120],VM is destroyed

Laurent Lefèvre, Anne-Cécile Orgerie

Designing and evaluating an energy efficient Cloud

The Journal of Supercomputing (2010) Volume: 51, Issue: 3, Pages: 352-373

Boot, Run & Halt

Idle VM does not consume energy

Laurent Lefèvre, Anne-Cécile Orgerie

Designing and evaluating an energy efficient Cloud

The Journal of Supercomputing (2010) Volume: 51, Issue: 3, Pages: 352-373

6 VM's Migrations

Staring from t=10, a VM is launched every 10 seconds Migrations happen at t=110 seconds

Laurent Lefèvre, Anne-Cécile Orgerie

Designing and evaluating an energy efficient Cloud

The Journal of Supercomputing (2010) Volume: 51, Issue: 3, Pages: 352-373

6 VM's Migrations

Migrations happen one by one

Laurent Lefèvre, Anne-Cécile Orgerie

Designing and evaluating an energy efficient Cloud

The Journal of Supercomputing (2010) Volume: 51, Issue: 3, Pages: 352-373

When to switch off idle machines?

 T_s

$T_s \rightarrow$

$$T_s \times P_{idle} = E_{on \to off} + E_{off \to on} + P_{off} \times (T_s - \delta_{on \to off} - \delta_{off \to on})$$

$$T_s \rightarrow$$

$$T_s \times P_{idle} = E_{on \to off} + E_{off \to on} + P_{off} \times (T_s - \delta_{on \to off} - \delta_{off \to on})$$

$$\frac{E_{on \rightarrow off} + E_{off \rightarrow on} - P_{off} \times (\delta_{on \rightarrow off} + \delta_{off \rightarrow on})}{P_{idle} - P_{off}}$$

Estimations

$$T_t = \frac{\sum_{i=1}^n T_{t-i}}{n} + \overline{error}$$

Q & A?