Taller Big-Data

Docente: Jesus Ariel

Estudiante: Paula Andrea Terrios

Corporacion Universitaria del Huila (CORHUILA)

Ciencia de Datos

Neiva – Huila

2025

Cuadro comparativo

	Α	В	С	D
1	ASPECTOS	HADOOP	SPARK	Arquitecturas en la Nube (ej. AWS, GCP, Azure)
2	Procesamiento	Batch con MapReduce (procesamiento por lotes).	Procesamiento en memoria; soporta batch y streaming en tiempo real.	Batch y streaming gestionado con servicios integrados (ej. AWS Kinesis, BigQuery).
3	Escalabilidad	Escalabilidad horizontal, pero requiere configuración manual de nodos.	Escalabilidad horizontal con cluster manager (YARN, Mesos, Kubernetes).	Escalabilidad automática según demanda (auto-scaling).
4	Facilidad de uso	Alta complejidad en programación y administración (MapReduce requiere más código).	APIs más amigables (Python, Scala, R, Java); integración con librerías como MLlib y SparkSQL.	Interfaces gráficas simplificadas y servicios administrados listos para usar.
5	Costos	Inversión alta en infraestructura propia y mantenimiento de clúster.	Costo de mantener clúster dedicado; más eficiente que Hadoop por menor tiempo de ejecución.	Pago por uso (modelo pay-as-you-go); sin inversión en hardware.
6	Casos de uso	Procesamiento batch de grandes volúmenes de datos históricos.	Analítica interactiva, aprendizaje automático, análisis en tiempo real.	Analítica empresarial en tiempo real, integración con IoT, BI en la nube.
7	Requerimientos de hardware	Clúster distribuido con múltiples nodos, almacenamiento local/ HDFS.	Clúster con nodos de memoria alta; depende de YARN/Mesos.	No requiere hardware propio; depende del proveedor cloud.
8	Complejidad de gestión	Alta, se necesitan administradores especializados en Hadoop.	Media, con mayor abstracción pero requiere conocimientos de clúster.	Baja, gestión automática por el proveedor.
9	Métricas de rendimiento	Ejecución más lenta en batch (comparado con Spark).	Procesa hasta 100x más rápido que Hadoop en memoria y 10x más en disco.	Variable, depende del servicio; tiempos optimizados con escalado automático.

Caso de Uso

Diagrama

Arquitectura (E-commerce) Redes Sociales SensorloT Transacciones Datos de Inventario Capa de Ingesta ETL Batch Kafka / Kinesis Capa de Procesamiento Apache Spark / AWS EMR BigQuery / Synapse Capa de Almacenamiento Capa de Consumo Data Lake (S3 / GCS / Azure) NoSQL DB (MongoDB / DynamoDB) Dashboards (Power BI, Tableau, Looker) Reportes Analíticos

Conclucion

La arquitectura propuesta presenta un flujo organizado de datos, que va desde la ingesta en tiempo real y por lotes, hasta el almacenamiento, procesamiento y consumo de información mediante dashboards y reportes. Esto permite responder a las necesidades de un e-commerce moderno, donde la velocidad y la precisión en el análisis de datos son claves para mejorar la experiencia del cliente, con unas pautas:

Escalabilidad: El uso de un Data Lake junto con bases NoSQL facilita la integración de grandes volúmenes de datos heterogéneos (transacciones, IoT, redes sociales).

Flexibilidad: Se combinan procesamientos batch y streaming, lo que permite tanto análisis históricos como respuestas en tiempo real.

Orientación al negocio: La capa de consumo traduce la complejidad técnica en información útil para la toma de decisiones estratégicas (ej. gestión de inventarios, personalización de ofertas).

Complejidad técnica: Requiere un equipo especializado en Big Data, lo que implica altos costos iniciales de implementación y mantenimiento.

Seguridad y cumplimiento: El manejo de datos sensibles de clientes obliga a cumplir normativas (ej. GDPR, PCI-DSS), lo que añade carga administrativa y tecnológica.

Dependencia tecnológica: La arquitectura depende de múltiples servicios (Kafka, Spark, BigQuery, etc.), lo que puede generar riesgos de integración y dependencia de proveedores cloud.

Si se optimiza la gobernanza de datos y se implementan políticas de seguridad desde el diseño, esta arquitectura puede evolucionar hacia un ecosistema de inteligencia artificial, incorporando modelos predictivos y sistemas de recomendación en tiempo real para anticipar la demanda y personalizar aún más la experiencia de compra.

En conclusión, la arquitectura propuesta no solo satisface las necesidades actuales del e-commerce, sino que también abre la puerta a una evolución futura hacia analítica avanzada e inteligencia de negocio en tiempo real, aunque exige una estrategia sólida en talento, seguridad y gestión de costos.

Bibliografia

https://www.oracle.com/latam/big-data/what-is-big-data/

 $\underline{https://www.obsbusiness.school/blog/big-data-y-sus-principales-aplicaciones-beneficios-y-\underline{ejemplos}$

 $\frac{https://www.teamcore.net/es/blog/5-empresas-que-usan-big-data-y-han-conseguido-los-mejores-resultados/$

https://www.planttext.com/?utm_source=chatgpt.com