# HOME CREDIT RISK SCORING

# LINK GOOGLE COLAB

https://colab.research.google.com/drive/15Fm5BzQc28pidLTuVeZXsT23U86HWr58?usp=sharing

# LINK GOOGLE DATA STUDIO

https://datastudio.google.com/reporting/1ce13dff-7c8a-43b0-8d49-6940df6b13da

# **Bussiness Understanding**

#### Determine Business Objectives

- 1. Sulit mendapatkan pinjaman karena riwayat kredit yang tidak mencukupi atau tidak ada?
- 2. Pengalaman meminjam yang positif dan aman jarang?
- 3. Banyak yang kurang terlayani karena tidak memiliki pengalaman pinjaman yang positif?



#### Situation Assessment

Biaya Kesalahan Klasifikasi Tinggi: yang tidak mampu mengembalikan pinjaman diklasifikasikan sebagai mampu dan dia diberikan pinjaman dan yang mampu diklasifikasikan sebagai tidak mampu, permohonannya ditolak Capable = 0

Non-capable = 1

# **Bussiness Understanding**

#### Determine Data Mining Goal

- 1. Melihat apakah clients capable atau non-capable dalam peminjaman home credit.
- 2. Melihat jenis pinjaman yang dilakukan oleh clients.
- 3. Melihat pekerjaan teratas menurut penghasilan clients.



#### Produce Project Plan

- 1. Business Understanding
- 2. Data Understanding
- 3. Data Preparation
- 4. Modeling
- 5. Evaluation
- 6. Deployment (Dashboard)

# DATA UNDERSTANDING

**Dataset:** 

https://www.kaggle.com/competitions/home-credit-default-risk/data



## Describe data



# 

Data shape : (307511, 122)

Data type:

float64:65

int64:41

object: 16

# TEST

Data shape: (48744, 121)

Data type:

float64:65

int64:40

object: 16

### Client Loan Status





# Type of Loan



#### Client's gender Loan Status 175000 Capable of Repayment Not Capable of Repayment 150000 125000 100000 75000 50000 25000 0 XNA CODE\_GENDER

#### Client's Gender

| Gender | TARGET (Not Capable of Repayment) | TARGET<br>(Capable of<br>Repayment) | Total   |
|--------|-----------------------------------|-------------------------------------|---------|
| Female | 14.170                            | 188.278                             | 202.448 |
| Male   | 10.655                            | 94.404                              | 105.059 |
| XNA    | 0                                 | 4                                   | 4       |

#### **Client Income**





Mean: 169.077,722 Mean: 165.611,761

# Age









# Verify data quality

#### 5 variabel dengan missing values terbanyak:

|                          | Total | % of missing values |
|--------------------------|-------|---------------------|
| COMMONAREA_MEDI          | 92646 | 69.872              |
| COMMONAREA_AVG           | 92646 | 69.872              |
| COMMONAREA_MODE          | 92646 | 69.872              |
| NONLIVINGAPARTMENTS_MODE | 93997 | 69.433              |
| NONLIVINGAPARTMENTS_AVG  | 93997 | 69.433              |

#### Jumlah variabel yang terdapat missing values

```
missing_val = temp_df[temp_df['% of missing values'] > 0.000]

missing_val.count()

Total 67
% of missing values 67
dtype: int64
```

# **Correlation Before Data Cleaning**

| TARGET                      | 1      | -0.044        | -0.045        | -0.16        | -0.16        | -0.18        | 0.078      | 0.061                       | 0.059                | 0.055                  |
|-----------------------------|--------|---------------|---------------|--------------|--------------|--------------|------------|-----------------------------|----------------------|------------------------|
| FLOORSMAX_AVG               | -0.044 | 1             | -0.016        | 0.093        | 0.14         | 0.0035       | 0.0016     | -0.25                       | -0.23                | -0.0071                |
| DAYS_EMPLOYED               | -0.045 | -0.016        | 1             | 0.29         | -0.021       | 0.11         | -0.62      | 0.035                       | 0.033                | 0.023                  |
| EXT_SOURCE_1                | -0.16  | 0.093         | 0.29          | 1            | 0.21         | 0.19         | -0.6       | -0.12                       | -0.12                | -0.13                  |
| EXT_SOURCE_2                | -0.16  | 0.14          | -0.021        | 0.21         | 1            | 0.11         | -0.092     | -0.29                       | -0.29                | -0.2                   |
| EXT_SOURCE_3                | -0.18  | 0.0035        | 0.11          | 0.19         | 0.11         | 1            | -0.21      | -0.012                      | -0.013               | -0.075                 |
| DAYS_BIRTH                  | 0.078  | 0.0016        | -0.62         | -0.6         | -0.092       | -0.21        | 1          | 0.0081                      | 0.0094               | 0.083                  |
| REGION_RATING_CLIENT_W_CITY | 0.061  | -0.25         | 0.035         | -0.12        | -0.29        | -0.012       | 0.0081     | 1                           | 0.95                 | 0.026                  |
| REGION_RATING_CLIENT        | 0.059  | -0.23         | 0.033         | -0.12        | -0.29        | -0.013       | 0.0094     | 0.95                        | 1                    | 0.026                  |
| DAYS_LAST_PHONE_CHANGE      | 0.055  | -0.0071       | 0.023         | -0.13        | -0.2         | -0.075       | 0.083      | 0.026                       | 0.026                | 1                      |
|                             | TARGET | FLOORSMAX_AVG | DAYS_EMPLOYED | EXT_SOURCE_1 | EXT_SOURCE_2 | EXT_SOURCE_3 | DAYS_BIRTH | REGION_RATING_CLIENT_W_CITY | REGION_RATING_CLIENT | DAYS_LAST_PHONE_CHANGE |

# **Correlation After Data Cleaning**





# DATA PREPARATION

#### **STEP**

- Joining Dataset
- Label Encoding and One-Hot Encoding
- Feature Engineering
- Missing Values and Feature Scaling

#### **JOINING DATASET**

Dalam step joining dataset digunakan fungsi align untuk memastikan bahwa fitur yang hanya ada di kedua kerangka data digabungkan menjadi kerangka data Pandas baru **application\_full.** 

application\_full data shape (356255, 121)

#### LABEL ENCODING DAN ONE-HOT ENCODING

Machine Learning Algorithms biasanya hanya dapat memiliki nilai numerik sebagai variabel prediktornya. Oleh karena itu dilakukan Label Encoding dan One Hot Encoding untuk mengkodekan label kategorikal dengan nilai antara 0 dan 1. Setelah dilakukan pengodean fitur, jumlah fitur dalam dataset meningkat.

Size of Full Encoded Dataset (356255, 243)

#### FEATURE ENGINEERING

Pada step ini dilakukan feature engineering terhadap variabel FLAG\_DOCUMENTS untuk melihat apakah variabel ini dapat dihapus dari dataset train dengan melihat korelasi antara variabel FLAG\_DOCUMENT dan variabel TARGET.

Setelah dilakukan pengecekan korelasi, 4 Korelasi terbesar terdapat pada variabel FLAG\_DOCUMENT\_3, FLAG\_DOCUMENT\_6, FLAG\_DOCUMENT\_16, dan FLAG\_DOCUMENT\_13. Oleh karena itu, kami hanya akan menyimpan keempat variabel tersebut dalam training dataset dan membuang 16 fitur FLAG\_DOCUMENT lainnya.



#### MISSING VALUE AND FEATURE SCALLING

Pada dataset application\_full terdapat 40,99% fitur memiliki lebih dari 50% missing value. Oleh karena itu, digunakan median untuk mengisi missing value tersebut.

|                          | % of Total Values |
|--------------------------|-------------------|
| COMMONAREA_AVG           | 69.714            |
| COMMONAREA_MEDI          | 69.714            |
| COMMONAREA_MODE          | 69.714            |
| NONLIVINGAPARTMENTS_MEDI | 69.293            |
| NONLIVINGAPARTMENTS_MODE | 69.293            |
| NONLIVINGAPARTMENTS_AVG  | 69.293            |
| LIVINGAPARTMENTS_MODE    | 68.204            |
| LIVINGAPARTMENTS_AVG     | 68.204            |
| LIVINGAPARTMENTS_MEDI    | 68.204            |
| FLOORSMIN_AVG            | 67.678            |
| FLOORSMIN_MEDI           | 67.678            |
| FLOORSMIN_MODE           | 67.678            |

|                                | % of Total Values |
|--------------------------------|-------------------|
| FLAG_OWN_CAR                   | 0.000             |
| ORGANIZATION_TYPE_Agriculture  | 0.000             |
| OCCUPATION_TYPE_Sales staff    | 0.000             |
| OCCUPATION_TYPE_Secretaries    | 0.000             |
| OCCUPATION_TYPE_Security staff | 0.000             |
|                                |                   |

# MODELING

- Logistic Regression
- Decision Tree Classifier
- Random Forest Classifier
- Decison Tree Classifier HyperParameters
- Random Forest Classifier HyperParameters

# LOGISTIC REGRESSION

**Goals:** Memprediksi probabilitas client yang kesulitan membayar (non capable) dan client yang dapat membayar pinjaman (capable) berdasarkan nilai-nilai variabel yang ada. Target merupakan variabel respons yang menjadi analisisnya.

**Capable: 92069** 



# DECISION TREE

**Capable: 83700** 

Non Capable: 8554

# RANDOM FOREST

Capable: 92236





# DECISION TREE HYPERPARAMETERS

**Goals:** Untuk menghindari overfitting, perlu membatasi parameter decision tree dalam training data.

**Capable: 92254** 



## RANDOM FOREST HYPERPARAMETERS

**Goals:** Untuk menghindari Overfitting, running dengan peningkatan jumlah estimator.

**Capable: 92253** 



# MODEL EVALUATION

#### measure the performance of all the model

#### **ROC AUC score**

| Model                 | ROC AUC |  |  |
|-----------------------|---------|--|--|
| Logistic Regression   | 0.505   |  |  |
| Default Decision Tree | 0.539   |  |  |
| Default Random Forest | 0.500   |  |  |
| Tuned Decision Tree   | 0.500   |  |  |
| Tuned Random Forest   | 0.500   |  |  |

# Accuracy, F1 Score, Precision, Recall

| Model               | Accuracy | F1 Score | Precision | Recall |  |
|---------------------|----------|----------|-----------|--------|--|
| Logistic Regression | 0.921    | 0.885    | 0.464     | 0.013  |  |
| Decision Tree       | 0.856    | 0.861    | 0.141     | 0.163  |  |
| Random Forest       | 0.921    | 0.884    | 0.929     | 0.002  |  |
| Tuned Decision Tree | 0.921    | 0.884    | 0.000     | 0.000  |  |
| Tuned Random Forest | 0.921    | 0.884    | 0.000     | 0.000  |  |

₩.



# FINAL PROJECT DASHBOARD HOME CREDIT RISK SCORING



#### How many clients are labeled Capabled?



#### What's the top loans type?



43.93 | INCOME AVERAGE | \$356,255.00

TARGET

**EDUCATION TYPE** 

FAMILY STATUS

#### **Top 8 Occupation by Income Client**

|    | OCCUPATION TYPE +     | INCOME      |
|----|-----------------------|-------------|
| 1. | Waiters/barmen staff  | \$1,526     |
| 2. | Security staff        | \$7,636     |
| 3. | Secretaries           | \$1,518     |
| 4. | Sales staff           | \$37,174    |
| 5. | Realty agents         | \$889       |
| 6. | Private service staff | \$3,107     |
| 7. | Medicine staff        | \$9,853     |
| 8. | Managers              | \$24,945    |
|    |                       | 1-10/18 < > |

#### Type of Loan by Gender



# CONCLUSION

Berdasarkan hasil yang didapatkan di dalam dashboard dapat disimpulakan jumlah client yang capable jauh lebih banyak daripada client yang non capable, dan dari gender dapat dilihat bahwa client home credit lebih banyak wanita dibandingkan pria. Dengan tipe pekerjaan yang paling pendapatan paling banyak terdapat pada pelayan (waiters). Dari Model yang sudah dilakukan dapat disimpulkan bahwa model Logistic Regression menunjukkan performa model terbaik ditinjau dari model evaluasi ROC dan AUC score yaitu 0.505, Accuracy 0.921, dan F1 score 0.88