Lecture 4

Introduction to Machine Learning

Ashish Dandekar

Lecture Overview

Formalism Linear Regression Statistical Learning

Introduction

Motivation

• Motivation Definition Types

Something that is easy for a computer!

If
$$x = 2$$
,
 $f(x) = 3x + 5$, $y = 11$
 $f(x) = e^{\sin x}$, $y = 2.48$
 $f(x) = x^2 + 0.2x$, $y = 4.4$

Given the functional form f and data x compute y.

Motivation

➤ Motivation Definition Types

Something that is easy for a computer!

If
$$x = 2$$
,
 $f(x) = 3x + 5$, $y = 11$
 $f(x) = e^{\sin x}$, $y = 2.48$
 $f(x) = x^2 + 0.2x$, $y = 4.4$

Given the functional form f and data x compute y.

Something that is *not* easy for a computer!

Given the data X and labels Y, find the functional form f.

Motivation

➤ Motivation Definition Types

Which function truly represents the data?

Definition

Motivation

> Definition

Notation Optimisation

Types

Machine Learning

Given a dataset, machine learning is the discovery of a function from *the set of possible* functions that accurately represents patterns in the dataset.

Hypothesis Set

Hypothesis set is set of all possible function that would map a dataset to the desired output.

•
$$H_{linear} = \{ax + b \mid a, b \in R\}$$

•
$$H_{quadratic} = \{ax^2 + bx + c \mid a, b, c \in R\}$$

•
$$H_{exponential} = \{e^{ax} \mid a \in R\}$$

Goodness of fit

A measure of evaluation to quantify how good a particular function fits the observed data.

For instance, root mean squared error (RMSE)

$$\sqrt{\frac{\sum_{i}(h(x_{i})-y_{i})^{2}}{n}}$$

Notation

Motivation

Definition *Notation Optimisation*

Types

Dataset

- A training dataset is denoted by **D**.
- Unless specified every dataset comprises of *n* datapoints.
- A labeled datapoint d_i is represented as a pair (X_i, Y_i) where Y_i is the label whereas X_i is a vector of the rest of the features of the datapoint.

Hypothesis Set

ullet Hypothesis set is denoted by $oldsymbol{\mathsf{H}}$.

Goodness of fit

- It is generally known as a loss function.
- It is function of a hypothesis and the dataset. It quantifies the error under the specified hypothesis on the given dataset.
- It is denoted by $\ell_D(h)$.

Notation

Motivation

Definition

Notation

Optimisation

Types

Given a dataset D, a hypothesis set H and the loss function ℓ machine learning can be defined as the following optimisation problem.

$$\hat{h} = \arg\min_{h \in H} \ell_D(h)$$

Motivation

Definition

Notation

> Types (Un)supervised

Supervised Learning

- Inputs. Labeled dataset.
- Ouput. A function that maps datapoints to the labels.

Motivation

Definition

Notation

➤ Types (Un)supervised

Supervised Learning

- Inputs. Labeled dataset.
- Ouput. A function that maps datapoints to the labels.

Unsupervised Learning

- Inputs. Labeled (or) unlabeled dataset.
- Ouput. A function that maps datapoints to clusters that capture *patterns* in the data.

Motivation Definition

Notation

> Types (Un)supervised (Non)-parametric learning

Parametric Learning

- Hypothesis function takes a parametric form.
- Number of parameters are not proportional to the number of datapoints.

Examples: Linear regression, SVM, Logistic Regression, etc.

Motivation Definition

Notation

Types (Un)supervised (Non)-parametric learning

Parametric Learning

- Hypothesis function takes a parametric form.
- Number of parameters are not proportional to the number of datapoints.

Examples: Linear regression, SVM, Logistic Regression, etc.

Non-parametric Learning

- Hypothesis function doesn't necessarily have a parametric form.
- Number of parameters are proportional to the number of datapoints.

Examples: Kernel density estimation, k-NN clustering, etc.

Linear Regression

Equation of Line

> Setup Derivation Caveats

Equation of a line

$$y = a + bx$$

where \boldsymbol{a} is the intercept and \boldsymbol{b} is the slope.

In higher dimensions where $x \in \mathbb{R}^d$,

$$y = b_0 + b_1 x_1 + b_2 x_2 + ... + b_d x_d$$

Linear Hypothesis

▶ Setup Derivation Caveats Given a labeled dataset $D = \{(x_i, y_i)\}$ of n points where $x_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$. Find a linear approximation $b \in \mathbb{R}^{d+1}$ such that

$$\hat{y}_i = b_0 + \sum_j b_i x_{ij}$$

In matrix form,

$$\hat{Y} = \begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ . \\ . \\ . \\ \hat{y}_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & x_{12} & . & . & x_{1m} \\ 1 & x_{21} & x_{22} & . & . & x_{2m} \\ . & & & & & \\ . & & & & & \\ 1 & x_{n1} & x_{n2} & . & . & x_{nm} \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \\ . \\ . \\ b_m \end{bmatrix} = X \boldsymbol{b}$$

Goodness of fit

▶ Setup Derivation Caveats Mean squared error is used as the measure of goodness of fit.

$$\ell_{D}(b) = \frac{1}{2n} \sum_{i} (y_{i} - \hat{y}_{i})^{2}$$

$$= \frac{1}{2n} (Y - \hat{Y})^{T} (Y - \hat{Y})$$

$$= \frac{1}{2n} (Y^{t} - b^{T} X^{T}) (Y - Xb)$$

$$= \frac{1}{2n} (Y^{t} Y - 2Y^{T} Xb + b^{T} X^{T} Xb)$$

Ordinary Least Square

Setup

> Derivation

Caveats

We need to find

$$\hat{b} = \arg\min_{b \in \mathbb{R}^{d+1}} \ell_D(b)$$

• Let's apply a recipe from calculus.

$$\frac{d\ell_{D}(b)}{db} = \frac{1}{2n} \frac{d}{db} (Y^{t}Y - 2Y^{T}Xb + b^{T}X^{T}Xb)$$

$$\propto (X^{T}Xb - X^{T}Y)$$

Equating the gradient to zero gives us:

$$\hat{\mathcal{D}} = (\mathbf{X}^t \mathbf{X})^{-1} (\mathbf{X}^T \mathbf{Y})$$

How to ensure invertibility?

Setup
Derivation
Caveats

How to ensure invertibility?

Setup
Derivation
Caveats

- The number of datapoints must be more than the number features.
- Duplicate datapoints must be removed.
- Features should not have perfect correlations.

Data preprocessing clearly plays a vital role!

Statistical Learning

Uncertainty in Data

> Bayes rule

Bayesian view
Bayesian regression
MAP Estimation

Let R denotes the set of reasons for a set of observations O.

$$Pr[R=r \mid O=o] = \frac{Pr[O=o \mid R=r]Pr[R=r]}{\sum_{r'} Pr[O=o \mid R=r']Pr[R=r']}$$

Likelihood

 $Pr[O = o \mid R = r]$ (easier to compute based on the hypothesis!)

Prior

Pr[R=r] (assumed based on the background knowledge!)

Posterior

 $Pr[R = r \mid O = o]$ (something we are interested in!)

Bayesian view of ML

Bayes rule

▶ Bayesian view

Bayesian regression MAP Estimation

We assume hypothesis as well as the data as a random variable.

$$Pr[H=h\mid D] = \frac{Pr[D\mid h]Pr[h]}{\sum_{h'} Pr[D\mid h']Pr[h']} \propto Pr[D\mid h]Pr[h]$$

Learning

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta} \in \Theta}{\operatorname{arg max}} Pr[\boldsymbol{\Theta} = \boldsymbol{\theta} \mid D]$$

Duality

Minimisation of loss translates to the maximisation of the data generation probability in the Bayesian framework.

Bayesian view of ML

Bayes rule

▶ Bayesian view

Bayesian regression MAP Estimation

Maximum Likelihood Estimation (ML)

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta} \in \Theta}{\operatorname{arg\,max}} Pr[D \mid \Theta = \boldsymbol{\theta}]$$

Maximum Aposteriori Estimation (MAP)

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta} \in \Theta}{\operatorname{arg max}} Pr[D \mid \Theta = \boldsymbol{\theta}]Pr[\Theta = \boldsymbol{\theta}]$$

Prior probability

- Prior belief or probability represents what we believe to be the likelihood of an event occurring based on our knowledge, experience, or subjective judgment before observing any relevant data.
- Prior probability is typically assumed to follow a certain probability distribution based on the beliefs.
- In the absence of the prior belief, we assume it to be a uniform distribution. In such a case MAP estimation reduces to ML estimation.

Bayes rule Bayesian view

> Bayesian regression *Setup*

Derivation Assumptions

MAP Estimation

Data is noisy!

$$Y = Xb + \epsilon$$
$$\epsilon \sim N(0, \sigma^2 I)$$

Assumptions

- Errors *∈i*s are independent conditional on data.
- Each error ϵ_i has a fixed variance σ^2 .

Bayes rule Bayesian view

> Bayesian regression

Setup

Derivation

Assumptions

MAP Estimation

Likelihood function

$$L_{D}(b) = Pr[D \mid b]$$

$$= Pr[y_{1} \mid x_{1}, b] \cdot Pr[y_{2} \mid x_{2}, b] \cdot Pr[y_{3} \mid x_{3}, b] ... Pr[y_{n} \mid x_{n}, b]$$

$$= \prod_{i} Pr[y_{i} \mid x_{i}, b]$$

Due to noisy data assumption,

$$(Y - Xb) \sim N(0, \sigma^2)$$

$$Pr[y_i \mid x_i, b] \propto exp(\frac{-1}{2\sigma^2}(y_i - b^T x_i)^2)$$

Bayes rule Bayesian view

> Bayesian regression

Setup

Derivation

Assumptions

MAP Estimation

Log-likelihood

Issue. The likelihood is a probability, a number that lie between 0 to 1. In order to compute the likelihood over the dataset, the *i.i.d.* assumption demands the product of the likelihoods of individual datapoints. This gives rise to very small numbers.

Solution. For any monotonically increasing function f, maximising g(x) is same as maximising f(g(x)). Logarithm is a monotonically increasing function that converts products to addition (which solves the earlier issue).

$$\log(ab) = \log a + \log b$$

$$\ell_D(b) = \log L_D(b) = \sum_i \log \Pr[y_i \mid x_i, b]$$

$$\ell_D(b) \propto \frac{-1}{2\sigma^2} \sum_i (y_i - b^T x_i)^2 \dots (\log e^x = x)$$

Bayes rule Bayesian view

> Bayesian regression

Setup

Derivation

Assumptions

MAP Estimation

Reduction to OLS

$$\ell_D(b) \propto \frac{-1}{2\sigma^2} \sum_{i} (y_i - b^T x_i)^2$$

$$\propto \sum_{i} (y_i - b^T x_i)^2$$

$$= -(Y - Xb)^T (Y - Xb)$$

Maximum likelihood estimate is,

$$\hat{b} = \arg\max_{b \in \mathbb{R}^{d+1}} \ell_D(b)$$

which is same as OLS, $\hat{b} = \arg\min_{b \in \mathbb{R}^{d+1}} -\ell_D(b)$.

Bayes rule Bayesian view

> Bayesian regression

Setup Derivation

Assumptions

MAP Estimation

Linearity

$$y = b_0 + b_1 x_1 + ... + b_d x_d$$

Statistical Independence

All error terms ϵ_i are conditionally independent of each other given the data.

Normality

All error terms ϵ_i follow normal (gaussian) distribution.

Homoscadasticity

All error terms ϵ_i s follow the distribution with a constant variance σ^2 .

Participation in a campaign

Bayes rule Bayesian view Bayesian regression

▶ MAP Estimation *Motivation*

Beta-Bernouli

Success of a campaign

An offer campaign is run to offer discount to users if they become the member of the platform. Let's assume that

- the offer was sent to *n* users.
- $n_1 \le n$ users accepted the offer.

How can we design a statistical model for such a campaign?

Let's assume each $x_i \sim Bernoulli(\theta)$

$$L_D(\theta) = \theta^{n_1} (1 - \theta)^{n - n_1}$$

$$\theta = \arg \max \ell_D(\theta) = \frac{n_1}{n}$$

Need of a prior

Bayes rule Bayesian view Bayesian regression

MAP Estimation *Motivation Beta-Bernouli*

What if the $n_1 = 0$ in the earlier example?

Black swan paradox

If you have not spotted a black swan, would you conclude that they do not exist?

Maximum likelihood estimation suffers from **sampling bias** if the rare events exists. MAP estimation alleviates this problem by employing a prior distribution.

Need of a prior

Bayes rule Bayesian view Bayesian regression

MAP Estimation *Motivation Beta-Bernouli*

Conjugate Prior

Conjugate prior is that probability distribution which multiplied with likelihood yields the same posterior distribution.

- (Gaussian × Gaussian) ~ Gaussian.
- (Poisson × Exponential) ~ Exponential.
- (Binomial × Beta) ~ Beta.

Beta-Bernoulli Distribution

Bayes rule Bayesian view Bayesian regression

> MAP Estimation

Motivation

Beta-Bernouli

Beta-Bernoulli Distribution

Prior

$$Pr[\theta \mid a, b] \propto \theta^{a-1}(1-\theta)^{b-1}$$

Likelihood

$$Pr[D \mid \theta] \propto \theta^{n_1}(1-\theta)^{n-n_1}$$

Posterior

$$Pr[\theta \mid D, a, b] \propto \theta^{a+n_1-1} (1-\theta)^{b+n-n_1-1}$$

Example(cntd)

Bayes rule Bayesian view Bayesian regression

> MAP Estimation

Motivation

Beta-Bernouli

MAP Estimate

$$\theta_{MAP} = \frac{n_1 + a - 1}{n + a + b - 2}$$

Prior knowledge

Similar campaigns were also run in the past. On average, such campaigns offer 20% conversion rate.

We can put a = 20 and b = 80 to quantify the prior knowledge.

$$\theta_{MAP} = \frac{n_1 + 19}{n + 98}$$

Summary

Recipe of ML

≯ Recipe

Bias-Variance

Dataset

$$D = \{(x_i, y_i) \mid x_i \in \mathbb{R}^d, y_i \in R\}$$

Recipe of ML

> Recipe

Bias-Variance

Dataset

$$D = \{(x_i, y_i) \mid x_i \in \mathbb{R}^d, y_i \in R\}$$

Classical Recipe

Hypothesis

$$y_i = b^T x_i$$

Minimise MSE

$$\ell_D(b) = \frac{1}{2n} \sum_i (y_i - b^t x_i)^2$$

Prediction

$$\hat{\mathbf{y}}_i = \hat{\mathbf{b}}^T \mathbf{x}_i$$

Bayesian Recipe

Hypothesis

$$y_i = b^T x_i + \epsilon_i, \ \epsilon_i \sim N(0, \sigma^2)$$

Maximise Likelihood

$$\ell_D(b) = \sum_i Pr[y_i \mid x_i, b]$$

Prediction

$$\hat{y}_i = \hat{b}^T x_i + \epsilon$$

Bias Variance Tradeoff

Recipe > Bias-Variance

- ullet Our true intention is to find $oldsymbol{ heta}^*$ that truly captures the patterns in the observed data.
- ullet What we learn, in reality, is the parameter $oldsymbol{\hat{ heta}}$ that captures patterns in the **sample**.

Thus, $oldsymbol{ heta}$ acts as a random variable due to sampling form the population.

Bias

- Defined as $\mathbf{E}[\theta \theta^*]$
- Quantifies the goodness of fit.

Variance

- Defined as $Var[\theta]$
- Quantifies the gap between training and testing error.

Thank you!

Feel free to reach out to me at dcsashi (at) nus (dot) edu (dot) sg