

DW_bc_3

Boundary Scan Cell Type BC_3

Version, STAR and Download Information: IP Directory

Features and Benefits

Revision History

- IEEE Standard 1149.1 compliant
- Synchronous or asynchronous scan cells with respect to tck
- Supports the standard instructions: EXTEST, SAMPLE/PRELOAD, and BYPASS
- Supports the optional instructions INTEST, RUNBIST, CLAMP, and HIGHZ

Description

DW_bc_3 is a boundary scan cell that can be used as a system input cell. The Boundary Scan Description Language (BSDL) description of this cell is of type BC_3 described in the BSDL package STD_1149_1_1990.

The DW_bc_3 cell may be synchronous or asynchronous with respect to tck (Test Clock system pin), depending on the port connections.

Table 1-1 Pin Description

Pin Name	Width	Direction	Function
capture_clk	1 bit	Input	Clocks data into the capture stage
capture_en	1 bit	Input	Enable for data clocked into capture stage, active low
shift_dr	1 bit	Input	Enables the boundary scan chain to shift data one stage toward its serial output (tdo)
mode	1 bit	Input	Determines whether data_out is controlled by the boundary scan cell or by the data_in signal
si	1 bit	Input	Serial path from the previous boundary scan cell
data_in	1 bit	Input	Input data from system input pin
data_out	1 bit	Output	Output data to IC logic
so	1 bit	Output	Serial path to the next boundary scan cell

Table 1-2 Synthesis Implementations

Implementation Name	Function	License Feature Required
str	Synthesis model	DesignWare or Test-IEEE-STD-1149-1

Table 1-3 Simulation Models

Model	Function
DW04.DW_BC_3_CFG_SIM	Design unit name for VHDL simulation
dw/dw04/src/DW_bc_3_sim.vhd	VHDL simulation model source code
dw/sim_ver/DW_bc_3.v	Verilog simulation model source code

The mode signal gives the Test Access Port (TAP) instructions control of the boundary scan cell. Table 1-4 lists the required values of the mode signal for each of the TAP instructions that DW_bc_3 supports.

Table 1-4 Mode Signal Generation for DW_bc_3

Instruction	Mode for Input Cell
EXTEST	0
SAMPLE/PRELOAD	0
INTEST	1
CLAMP	X
RUNBIST	X
BYPASS	0

Table 1-5 lists the connections for asynchronous boundary scan chains.

Table 1-5 Port Connections for Asynchronous Boundary Scan Chains

DW_bc_3 Port Name	Connection
capture_clk	clock_dr from TAP controller
capture_en	Logic zero
shift_dr	shift_dr from TAP controller
mode	Mode generation logic
si	so from previous boundary scan cell
data_in	System input pin
data_out	IC input logic
so	si of next boundary scan cell

Table 1-6 lists the connections for synchronous boundary scan chains.

Table 1-6 Port Connections for Synchronous Boundary Scan Chains

DW_bc_3 Port Name	Connection
capture_clk	tck from system pin
capture_en	sync_capture_en from TAP controller
shift_dr	shift_dr from TAP controller
mode	Mode generation logic
si	so from previous boundary scan cell
data_in	System input pin
data_out	IC input logic
so	si of next boundary scan cell

Related Topics

- Application Specific JTAG Overview
- DesignWare Building Block IP User Guide

HDL Usage Through Component Instantiation - VHDL

```
library IEEE, DWARE;
use IEEE.std logic 1164.all;
use DWARE.DWpackages.all;
use DWARE.DW foundation comp.all;
entity DW bc 3 inst is
 port (inst capture clk : in std logic; inst capture en : in std logic;
        inst shift dr : in std logic; inst mode : in std logic;
       inst si
                        : in std logic; inst data in : in std logic;
       data out inst
                       : out std logic; so inst
                                                        : out std logic );
end DW bc 3 inst;
architecture inst of DW bc 3 inst is
begin
  -- Instance of DW bc 3
 U1 : DW bc 3
   port map (capture clk => inst capture clk,
             capture en => inst capture en,
                                              shift dr => inst shift dr,
             mode => inst mode, si => inst si, data in => inst data in,
             data out => data out inst, so => so inst );
end inst;
-- pragma translate off
configuration DW bc 3 inst cfg inst of DW bc 3 inst is
 for inst
end for; -- inst
end DW bc 3 inst cfg inst;
-- pragma translate on
```

HDL Usage Through Component Instantiation - Verilog

```
module DW bc 3 inst (inst capture clk, inst capture en, inst shift dr,
                    inst mode, inst si, inst data in, data out inst,
                    so inst );
  input inst_capture clk;
 input inst capture en;
 input inst shift dr;
 input inst mode;
 input inst_si;
 input inst data in;
 output data out inst;
 output so_inst;
 DW bc 3
   U1 (.capture_clk(inst_capture_clk), .capture_en(inst_capture_en),
        .shift dr(inst shift dr), .mode(inst mode), .si(inst si),
        .data_in(inst_data_in), .data_out(data_out_inst), .so(so_inst));
endmodule
```

Revision History

For notes about this release, see the *DesignWare Building Block IP Release Notes*.

For lists of both known and fixed issues for this component, refer to the STAR report.

For a version of this datasheet with visible change bars, click here.

Date	Release	Updates
January 2019	DWBB_201806.5	■ Updated example in "HDL Usage Through Component Instantiation - VHDL" on page 4
		■ Added this Revision History table and the document links on this page

Copyright Notice and Proprietary Information

© 2022 Synopsys, Inc. All rights reserved. This Synopsys software and all associated documentation are proprietary to Synopsys, Inc. and may only be used pursuant to the terms and conditions of a written license agreement with Synopsys, Inc. All other use, reproduction, modification, or distribution of the Synopsys software or the associated documentation is strictly prohibited.

Destination Control Statement

All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader's responsibility to determine the applicable regulations and to comply with them.

Disclaimer

SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks

Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at https://www.synopsys.com/company/legal/trademarks-brands.html.

All other product or company names may be trademarks of their respective owners.

Free and Open-Source Software Licensing Notices

If applicable, Free and Open-Source Software (FOSS) licensing notices are available in the product installation.

Third-Party Links

Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse and is not responsible for such websites and their practices, including privacy practices, availability, and content.

Synopsys, Inc. www.synopsys.com