

#### Shenzhen Centre Quality Accreditation Technology Co., Ltd.

Address:1 F., Block B of Complex Building, Baisha Logistics Park, No.3011 Shahe West Road, Nanshan District, Shenzhen, China

Telephone: +86-755-26648640 Fax: +86-755-26648637 Website: www.cga-cert.com Report No.: Report Version: CQASZ160601319E-01

sion: V01

# MEASUREMENT REPORT FCC Report

Applicant: Shenzhen Yuejiang Technology Co., Ltd

Address of Applicant: Bldg C2, 18/F, Nanshan iPark, No. 1001 Xueyuan Avenue, Nanshan District,

Shenzhen, China

Manufacturer: Shenzhen Yuejiang Technology Co., Ltd

Address of Bldg C2, 18/F, Nanshan iPark, No. 1001 Xueyuan Avenue, Nanshan District,

Manufacturer: Shenzhen, China

**Equipment Under Test (EUT):** 

Product: Dobot arm
Model No.: Dobot 2.0
Brand Name: N/A

FCC ID: 2AHI4-DOBOT-200
Standards: 47 CFR Part 15B

**Date of Test:** 2016-06-25 to 2016-07-07

**Date of Issue:** 2016-07-07

Test Result : PASS\*

Reviewed By:

(Aaron Ma)

Approved By: \_

Owen Zhou

<sup>\*</sup> In the configuration tested, the EUT complied with the standards specified above.



# **Revision History Of Report**

| Report No.         | Version | Description    | Issue Date |
|--------------------|---------|----------------|------------|
| CQASZ160601319E-01 | Rev.01  | Initial report | 2016-07-07 |



# 2 Test Summary

| Test Item          | Test Requirement | Test method        | Result |
|--------------------|------------------|--------------------|--------|
| Radiated Emission  | 47 CFR Part 15B  | ANSI C63.4 (2014)  | PASS   |
| Conducted Emission | 47 CFR Part 15B  | ANSI C63.4 (2014)  | PASS   |
| (150KHz to 30MHz)  | 47 OFK Pail 13B  | AINSI 003.4 (2014) | FA33   |



## 3 Contents

|   |      |                                          | Page |
|---|------|------------------------------------------|------|
| 1 | C    | OVER PAGE                                | 1    |
| 2 | TI   | EST SUMMARY                              | 3    |
| 3 | C    | ONTENTS                                  | 4    |
| 4 | G    | ENERAL INFORMATION                       | 5    |
|   | 4.1  | CLIENT INFORMATION                       | 5    |
|   | 4.2  | GENERAL DESCRIPTION OF EUT               | 5    |
|   | 4.3  | TEST ENVIRONMENT                         |      |
|   | 4.4  | DESCRIPTION OF SUPPORT UNITS             |      |
|   | 4.5  | TEST LOCATION                            |      |
|   | 4.6  | STATEMENT OF THE MEASUREMENT UNCERTAINTY |      |
|   | 4.7  | TEST FACILITY                            |      |
|   | 4.8  | DEVIATION FROM STANDARDS                 |      |
|   | 4.9  | ABNORMALITIES FROM STANDARD CONDITIONS   |      |
|   | 4.10 | ·                                        |      |
|   | 4.11 |                                          |      |
| 5 | TI   | EST RESULTS AND MEASUREMENT DATA         | 9    |
|   | 5.1  | CONDUCTED EMISSIONS                      | 9    |
|   | 5.2  | RADIATED EMISSION                        | 13   |
| 6 | PI   | HOTOGRAPHS - EUT TEST SETUP              | 19   |
|   | 6.1  | CONDUCTED EMISSION                       | 19   |
|   | 6.2  | RADIATED EMISSION                        |      |
| 7 | PI   | HOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS | 21   |



# 4 General Information

## 4.1 Client Information

| Applicant:               | Shenzhen Yuejiang Technology Co., Ltd                                                       |
|--------------------------|---------------------------------------------------------------------------------------------|
| Address of Applicant:    | Bldg C2, 18/F, Nanshan iPark, No. 1001 Xueyuan Avenue,<br>Nanshan District, Shenzhen, China |
| Manufacturer:            | Shenzhen Yuejiang Technology Co., Ltd                                                       |
| Address of Manufacturer: | Bldg C2, 18/F, Nanshan iPark, No. 1001 Xueyuan Avenue,<br>Nanshan District, Shenzhen, China |

# 4.2 General Description of EUT

| Product Name:                                          | Dobot arm         |                           |
|--------------------------------------------------------|-------------------|---------------------------|
| Model No.:                                             | Dobot 2.0         |                           |
| Trade Mark:                                            | N/A               |                           |
| Hardware Version:                                      | V2.0.0            |                           |
| Software Version:                                      | V2.0.0            |                           |
| Highest Operating Frequency (without wireless module): | 269MHz            |                           |
| Sample Type:                                           | Mobile production |                           |
| Power Supply:                                          | AC/DC Adapter:    | Input: AC100-240V 50/60Hz |
|                                                        |                   | Output: DC12V 5A          |
|                                                        | EUT Power Supply: | DC12V                     |
| Test Voltage:                                          | AC120V 60Hz       |                           |



#### 4.3 Test Environment

| Operating Environment: |           |
|------------------------|-----------|
| Temperature:           | 24.0 °C   |
| Humidity:              | 52 % RH   |
| Atmospheric Pressure:  | 1008 mbar |

## 4.4 Description of Support Units

The EUT has been tested with associated equipment below.

| Description   | Manufacturer | Model No.                |
|---------------|--------------|--------------------------|
| PC            | Lenovo       | Lenovo ideapad 100-14IBY |
| AC/DC Adapter | DS           | GMY-1260W-5F             |
| AC/DC Adapter | Lenovo       | PA-1450-55LN             |

#### 4.5 Test Location

All tests were performed at:

Shenzhen CTL Testing Technology Co., Ltd., Shenzhen EMC Laboratory,

1/F.-A, Baisha Technology Park, No.3011, Shahexi Road, Nanshan District, Shenzhen, Guangdong, China

## 4.6 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CTL laboratory is reported:

| Test                  | Range          | Uncertainty | Notes |
|-----------------------|----------------|-------------|-------|
| Radiated Emission     | 30~1000MHz     | 4.10dB      | (1)   |
| Radiated Emission     | 1~12.75GHz     | 4.32dB      | (1)   |
| Radiated Emission     | 12.75GHz-25GHz | 4.68dB      | (1)   |
| Conducted Disturbance | 0.15~30MHz     | 3.20dB      | (1)   |

(1)This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.



## 4.7 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 970318

Shenzhen CTL Testing Technology Co., Ltd. has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 970318

## 4.8 Deviation from Standards

None.

#### 4.9 Abnormalities from Standard Conditions

None.

## 4.10 Other Information Requested by the Customer

None.



# 4.11 Equipment List

|      |                      |                |            |            | On librarian |
|------|----------------------|----------------|------------|------------|--------------|
|      |                      |                |            |            | Calibration  |
| Item | Test Equipment       | Manufacturer   | Model No.  | Serial No. | Due Date     |
|      |                      | Sunol Sciences |            |            |              |
| 1    | Bilog Antenna        | Corp.          | JB1        | A061713    | 2017/06/01   |
|      |                      | ROHDE &        |            |            |              |
| 2    | EMI Test Receiver    | SCHWARZ        | ESCI3      | 103710     | 2017/06/01   |
| 3    | Spectrum Analyzer    | Agilent        | E4407B     | MY45108355 | 2017/05/20   |
|      |                      |                | Controller |            |              |
| 4    | Controller           | EM Electronics | EM 1000    | N/A        | 2017/05/20   |
|      |                      | Sunol Sciences |            |            |              |
| 5    | Horn Antenna         | Corp.          | DRH-118    | A062013    | 2017/05/18   |
| 6    | Spectrum Analyzer    | R&S            | FSU        | MY41440676 | 2017/05/18   |
| 7    | LISN                 | R&S            | ENV216     | 101316     | 2017/06/01   |
| 8    | LISN                 | SCHWARZBECK    | NSLK8127   | 8127687    | 2017/06/01   |
|      | Microwave            |                |            |            |              |
| 9    | Preamplifier         | HP             | 8349B      | 3155A00882 | 2017/05/18   |
| 10   | Preamplifier         | HP             | 8447D      | 3113A07663 | 2017/05/18   |
| 11   | Transient Limiter    | Com-Power      | LIT-153    | 532226     | 2017/06/01   |
|      | Temperature/Humidity |                |            |            |              |
| 12   | Meter                | Gangxing       | CTH-608    | 02         | 2017/05/19   |
| 13   | Climate Chamber      | ESPEC          | EL-10KA    | A20120523  | 2017/05/19   |
| 14   | RF Cable(0-1GHz)     | HUBER+SUHNER   | RG174      | N/A        | 2017/05/19   |
| 15   | RF Cable(1-25GHz)    | HUBER+SUHNER   | RG214      | N/A        | 2017/05/19   |



# 5 Test results and Measurement Data

## **5.1 Conducted Emissions**

| Test Requirement:     | 47 CFR Part 15B                                                                                                                                                              |                     |           |  |  |  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------|--|--|--|
| Test Method:          | ANSI C63.4: 2014                                                                                                                                                             |                     |           |  |  |  |
| Test Frequency Range: | 150kHz to 30MHz                                                                                                                                                              |                     |           |  |  |  |
| Limit:                | Ereguency range (MHz)  Limit (dBuV)                                                                                                                                          |                     |           |  |  |  |
|                       | Frequency range (MHZ)                                                                                                                                                        | Quasi-peak          | Average   |  |  |  |
|                       | 0.15-0.5                                                                                                                                                                     | 66 to 56*           | 56 to 46* |  |  |  |
|                       | 0.5-5                                                                                                                                                                        | 0.5-5 56 46         |           |  |  |  |
|                       | 5-30                                                                                                                                                                         | 60                  | 50        |  |  |  |
|                       | * Decreases with the logarithm                                                                                                                                               | n of the frequency. |           |  |  |  |
| Test Procedure:       | Frequency range (MHz)         Limit (dBuV)           Quasi-peak         Average           0.15-0.5         66 to 56*         56 to 46*           0.5-5         56         46 |                     |           |  |  |  |







#### **Measurement Data**

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

#### Live Line:



|                                                    |                                                                                   |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Level<br>dBµV                                      | Transd<br>dB                                                                      | Limit<br>dBµV                                                                                                                                            | Margin<br>dB                                                                                                                                                                                                                                                                                                                                                                    | Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 54.80<br>49.00<br>48.40<br>46.90<br>45.60<br>45.30 | 10.1<br>10.0<br>10.0<br>10.0<br>10.0                                              | 66<br>63<br>62<br>60<br>57<br>56                                                                                                                         | 10.7<br>14.4<br>13.1<br>13.0<br>10.9                                                                                                                                                                                                                                                                                                                                            | QP<br>QP<br>QP<br>QP<br>QP<br>QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L1<br>L1<br>L1<br>L1<br>L1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GND<br>GND<br>GND<br>GND<br>GND<br>GND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Level<br>dBµV                                      | Transd<br>dB                                                                      | Limit<br>dBµV                                                                                                                                            | Margin<br>dB                                                                                                                                                                                                                                                                                                                                                                    | Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 43.10<br>43.70<br>44.00<br>36.40<br>39.40<br>36.90 | 10.1<br>10.0<br>10.0<br>10.0<br>10.0                                              | 53<br>47<br>46<br>46<br>46<br>46                                                                                                                         | 10.2<br>2.8<br>2.0<br>9.6<br>6.6<br>9.1                                                                                                                                                                                                                                                                                                                                         | AV<br>AV<br>AV<br>AV<br>AV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L1<br>L1<br>L1<br>L1<br>L1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GND<br>GND<br>GND<br>GND<br>GND<br>GND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                    | dBμV 54.80 49.00 48.40 46.90 45.60 45.30 Level dBμV 43.10 43.70 44.00 36.40 39.40 | dBμV dB  54.80 10.1 49.00 10.1 48.40 10.0 46.90 10.0 45.60 10.0 45.30 10.0  Level Transd dBμV dB  43.10 10.1 43.70 10.0 44.00 10.0 36.40 10.0 39.40 10.0 | dBμV     dB     dBμV       54.80     10.1     66       49.00     10.1     63       48.40     10.0     62       46.90     10.0     57       45.60     10.0     57       45.30     10.0     56       Level Transd dBμV     Limit dBμV       43.10     10.1     53       43.70     10.0     47       44.00     10.0     46       36.40     10.0     46       39.40     10.0     46 | dBμV         dB         dBμV         dB           54.80         10.1         66         10.7           49.00         10.1         63         14.4           48.40         10.0         62         13.1           46.90         10.0         60         13.0           45.60         10.0         57         10.9           45.30         10.0         56         10.7           Level         Transd         Limit         Margin           dBμV         dB         dBμV         dB           43.10         10.1         53         10.2           43.70         10.0         47         2.8           44.00         10.0         46         2.0           36.40         10.0         46         9.6           39.40         10.0         46         6.6 | dBμV     dB     dBμV     dB       54.80     10.1     66     10.7     QP       49.00     10.1     63     14.4     QP       48.40     10.0     62     13.1     QP       46.90     10.0     60     13.0     QP       45.60     10.0     57     10.9     QP       45.30     10.0     56     10.7     QP       Level Transd Limit Margin dB     Detector dB μV     dB     Detector dB μV       43.10     10.1     53     10.2     AV       43.70     10.0     47     2.8     AV       44.00     10.0     46     2.0     AV       36.40     10.0     46     9.6     AV       39.40     10.0     46     6.6     AV | dBμV     dB     dBμV     dB       54.80     10.1     66     10.7     QP     L1       49.00     10.1     63     14.4     QP     L1       48.40     10.0     62     13.1     QP     L1       46.90     10.0     60     13.0     QP     L1       45.60     10.0     57     10.9     QP     L1       45.30     10.0     56     10.7     QP     L1       Level     Transd     Limit     Margin     Detector     Line       dBμV     dB     dB     dB     Detector     Line       43.10     10.1     53     10.2     AV     L1       43.70     10.0     47     2.8     AV     L1       44.00     10.0     46     2.0     AV     L1       36.40     10.0     46     9.6     AV     L1       39.40     10.0     46     6.6     AV     L1 |



#### Neutral Line:



| Frequency<br>MHz                                                     | Level<br>dBµV                                      | Transd<br>dB                         | Limit<br>dBµV                    | Margin<br>dB                               | Detector                         | Line                  | PE                                     |
|----------------------------------------------------------------------|----------------------------------------------------|--------------------------------------|----------------------------------|--------------------------------------------|----------------------------------|-----------------------|----------------------------------------|
| 0.154500<br>0.204000<br>0.258000<br>0.294000<br>0.343500<br>0.541500 | 57.90<br>54.20<br>49.00<br>45.60<br>41.10<br>42.60 | 10.1<br>10.0<br>10.0<br>10.0<br>10.0 | 66<br>63<br>62<br>60<br>59<br>56 | 7.9<br>9.2<br>12.5<br>14.8<br>18.0<br>13.4 | QP<br>QP<br>QP<br>QP<br>QP<br>QP | N<br>N<br>N<br>N<br>N | GND<br>GND<br>GND<br>GND<br>GND<br>GND |
| Frequency<br>MHz                                                     | Level<br>dBµV                                      | Transd<br>dB                         | Limit<br>dBµV                    | Margin<br>dB                               | Detector                         | Line                  | PE                                     |
|                                                                      |                                                    |                                      |                                  |                                            |                                  |                       |                                        |

#### Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT,
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.





# 5.2 Radiated Emission

| Test Requirement: | 47 CFR Part 15B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |              |     |                                   |           |                    |        |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------|-----|-----------------------------------|-----------|--------------------|--------|--|
| Test Method:      | ANSI C63.4: 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           |              |     |                                   |           |                    |        |  |
| Test Site:        | Measurement Distance: 3m (Semi-Anechoic Chamber)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           |              |     |                                   |           |                    |        |  |
| Receiver Setup:   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Frequency Detector                        |              | RBW | VBW                               | Remark    |                    |        |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30MHz-1GHz                                | Quasi-peal   | (   | 100kHz                            | 300kHz    | Quasi-peak Value   |        |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Above 1GHz                                | Peak         |     | 1MHz                              | 3MHz      | Peak Value         |        |  |
| Limit:            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Frequency Li                              |              | Lir | mit (dBuV/m @3m)                  |           | Remark             | Remark |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30MHz-88MHz                               |              |     | 40.0                              |           | Quasi-peak Value   |        |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 88MHz-2                                   | 16MHz        |     | 43.5                              |           | Quasi-peak Value   |        |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 216MHz-9                                  | 060MHz       |     | 46.0                              |           | Quasi-peak Value   |        |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 960MHz-1GHz                               |              |     | 54.0                              |           | Quasi-peak Value   |        |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Above 1                                   | 1CU-         |     | 54.0<br>74.0                      |           | Average Value      |        |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Above                                     | IGHZ         |     |                                   |           | Peak Value         |        |  |
|                   | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ote:                                      |              |     | 1                                 |           |                    |        |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Highest frequenc                          | cy generated | or  |                                   |           |                    |        |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | used in the devi                          | ce or on whi | ch  | Upper fr                          | equency o | of measurement Ran | ge     |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | the device operates or tunes              |              |     | (MHz)                             |           |                    |        |  |
|                   | (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |              |     | , ,                               |           |                    |        |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |              |     | 30                                | 30        |                    |        |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.705 to 108<br>108 to 500<br>500 to 1000 |              |     | 1000                              |           |                    |        |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |              |     | 2000                              |           |                    |        |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |              |     | 5000                              |           |                    |        |  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |              |     | monic of the highest frequency or |           |                    |        |  |
|                   | 40GHz, whichever is I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |              |     |                                   |           |                    |        |  |
|                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4) Dalam 40. Th                           | - FUT        |     |                                   |           |                    |        |  |
| Test Procedure:   | <ul> <li>a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.</li> <li>2) Above 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. Note: For the radiated emission test above 1GHz:</li> <li>Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The</li> </ul> |                                           |              |     |                                   |           |                    |        |  |



measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- b. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- c. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- d. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- e. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

#### Test Setup:





Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

| Instruments Used: | Refer to section 4.10 for details |  |
|-------------------|-----------------------------------|--|
| Test Mode:        | On mode: Exchange data with PC    |  |
| Test Results:     | Pass                              |  |



## Peak value: 30MHz~1GHz

#### Horizontal



| Frequency<br>MHz | Level<br>dBµV/m | Transd<br>dB | Limit<br>dBµV/m | Margin<br>dB |
|------------------|-----------------|--------------|-----------------|--------------|
| 161.920000       | 38.00           | 13.9         | 43.5            | 5.5          |
| 216.240000       | 38.50           | 14.2         | 46.0            | 7.5          |
| 243.400000       | 41.00           | 14.1         | 46.0            | 5.0          |
| 268,620000       | 41.50           | 15.2         | 46.0            | 4.5          |
| 322.940000       | 41.20           | 16.0         | 46.0            | 4.8          |
| 336.520000       | 42.00           | 16.5         | 46.0            | 4.0          |



#### Vertical



| Frequency<br>MHz | Level<br>dBµV/m | Transd<br>dB | Limit<br>dBµV/m | Margin<br>dB |
|------------------|-----------------|--------------|-----------------|--------------|
| 30.000000        | 33.20           | 21.1         | 40.0            | 6.8          |
| 80.440000        | 35.10           | 8.8          | 40.0            | 4.9          |
| 109.540000       | 32.00           | 13.7         | 43.5            | 11.5         |
| 142.520000       | 31.70           | 14.5         | 43.5            | 11.8         |
| 161.920000       | 37.10           | 13.9         | 43.5            | 6.4          |
| 243.400000       | 35.50           | 14.1         | 46.0            | 10.5         |

#### Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor



#### **Above 1GHz:**

#### Horizontal





#### Vertical



#### Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor



# 6 Photographs - EUT Test Setup

## **6.1 Conducted Emission**



## 6.2 Radiated Emission

30MHz~1GHz:





#### Above 1GHz





# 7 Photographs of EUT Constructional Details



















































**END OF THE REPORT**