Integer arithmetic

Arquitectura de Computadores Departamento de Engenharia Informática Instituto Superior de Engenharia do Porto

Luís Nogueira (lmn@isep.ipp.pt)

Today: Integer arithmetic

- Encoding integers
- Addition
- Negation
- Multiplication
- Shifting

Integer arithmetic

- Many beginning programmers are surprised to find that...
 - adding two positive numbers can yield a negative result
 - the comparison x < y can yield a different result than the comparison x - y < 0</p>
- These properties are artifacts of the finite nature of computer arithmetic
 - As we will see, the integer arithmetic performed by computers is really a form of modular arithmetic
- Understanding the nuances of computer arithmetic can help programmers write more reliable code

Today: Integer arithmetic

- Addition
- Negation
- Multiplication
- Shifting

Visualizing (mathematical) integer addition

Example:

- 4-bit integers u, v
- Compute true sum with $Add_4(u, v)$
- Values increase linearly with u and v
 - Forms planar surface

$$Add_4(u, v) = u + v$$

Unsigned addition in C

Operands: w bits

+ *v*

• • •

True sum: *w*+1 bits

u + v

Discard carry: w bits

 $UAdd_w(u, v)$

- Unsigned addition ignores carry output
- Implements modular arithmetic

$$s = UAdd_w(u, v) = (u + v) \mod 2^w$$

$$UAdd_{w}(u,v) = \begin{cases} u+v, & u+v < 2^{w} \\ u+v-2^{w}, & u+v \ge 2^{w} \end{cases}$$

Visualizing unsigned addition

Wraps around

- If true sum $\ge 2^w$
- At most once

True Sum

 $UAdd_4(u, v) = (u + v) \mod 16$

Two's complement addition in C

- As before, we avoid ever-expanding data sizes by truncating the representation to w bits
- However, we must decide what to do when the result is either too large (positive) or too small (negative) to represent

Two's complement addition overflow

- Drop off most significant bit
- Treat remaining bits as two's complement integer

$$TAdd_{w} = \begin{cases} u + v + 2^{w-1}, & u + v < TMin_{w} & \text{(Negative Overflow)} \\ u + v, & TMin_{w} \le u + v \le TMax_{w} \\ u + v - 2^{w-1}, & TMax_{w} < u + v & \text{(Positive Overflow)} \end{cases}$$

Visualizing two's complement addition

Negative Overflow

Example:

- 4-bit two's complement
- Range from -8 to +7

Wraps Around

- If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
- If sum $< -2^{w-1}$
 - Becomes positive
 - At most once

 $TAdd_4(u, v) = U2T_4[(x + y) \mod 16]$

Practice problem

Write a function with the following prototype:

```
int add_ok(int x, int y);
```

■ This function should return 1 if arguments x and y can be added without causing overflow

Practice problem

```
int add_ok(int x, int y) {
  int sum = x+y;
  int neg_over = x < 0 && y < 0 && sum >= 0;
  int pos_over = x >= 0 && y >= 0 && sum < 0;
  return !neg_over && !pos_over;
}</pre>
```

- In C, overflows are not signaled as errors
- We can check if an overflow has occurred on x + y by seeing, if and only if,:
 - sum < x (or equivalently, sum < y) for unsigned addition</p>
 - The above conditions for signed addition

Summary: Signed vs Unsigned addition

- TAdd and UAdd have identical bit-level behavior
 - Most CPUs use the same machine instruction to perform either unsigned or signed addition
- Signed vs. Unsigned addition in C

```
int s, t, u, v;

s = (int) ((unsigned) u + (unsigned) v);
t = u + v
Will give s == t
```

Today: Integer arithmetic

- Addition
- Negation
- Multiplication
- Shifting

Two's complement negation

- Find the corresponding negative/positive number with the same absolute value
- Every number x in the range $-2^{w-1} \le x < 2^{w-1}$ has an additive inverse
 - For $x != 2^{w-1}$, we can see that its additive inverse is simply -x
- For $x = -2^{w-1} = TMin_w$, $-x = 2^w$ which cannot be represented as a w-bit number

$$x = \begin{cases} -2^{w-1}, & x = -2^{w-1} \\ -x, & x > -2^{w-1} \end{cases}$$

Two's complement negation

Solution: complement and increment

$$~x + 1 == -x$$

Observation:

Examples: Complement & Increment

x = 15213

	Decimal	Hex	Binary
X	15 213	3B 6D	00111011 01101101
~X	-15 214	C4 92	11000100 10010010
~x+1	-15 213	C4 93	11000100 10010011

x = 0

	Decimal	Hex	Binary
0	0	00 00	00000000 00000000
~0	-1	FF FF	11111111 11111111
~0+1	0	00 00	0000000 00000000

Today: Integer arithmetic

- Addition
- Negation
- Multiplication
- Shifting

Multiplication

- Computing product of w-bit numbers x and y
 - Either signed or unsigned
- Exact results can require as many as 2*w bits to represent
 - Most cases would fit into 2*w 1 bits, but the special case of 2^{2w-2} requires the full 2*w bits (to include a sign bit of 0)
- So, maintaining exact results...
 - Would need to keep expanding word size with each product computed
 - Is done in software, if needed (e.g., by "arbitrary precision" arithmetic packages)

Unsigned multiplication in C

- Standard multiplication algorithm
 - Truncate result to w-bit number
- Implements modular arithmetic

$$UMult_{w}(u, v) = (u \cdot v) \mod 2^{w}$$

Two's complement multiplication in C

- Compute exact product and ignores high order bits
 - Some of which are different for signed vs. unsigned multiplication
- Lower bits are the same of unsigned multiplication
 - Treat them as a two's complement integer

Signed vs Unsigned multiplication

- TMul and UMul have identical bit-level behavior for the low-order w bits, even though the full 2w-bit differ
 - Separate instructions are provided in IA32 for signed and unsigned multiplication
- Multiplication in C is performed by truncating the 2w-bit product to w bits

```
int x, y;
unsigned ux = (unsigned) x;
unsigned uy = (unsigned) y;
unsigned up = ux * uy;
int p = x * y;
unsigned up = ux * uy;
```

Today: Integer arithmetic

- Addition
- Negation
- Multiplication
- Shifting

Multiplying by constants

Most machines shift and add faster than multiply

- The integer multiply instruction is fairly slow, requiring 10 or more clock cycles
- Other integer operations—such as addition, subtraction, bit-level operations, and shifting—require only 1 clock cycle

Compiler optimization

 Replace multiplications by constant factors with combinations of shift and addition/subtraction operations

Examples

- u << 3 == u * 8</pre>
- u << 5 u << 3 == u * 24

Power-of-2 multiply with shift

- Operation
 - $\mathbf{u} << \mathbf{k}$ gives $\mathbf{u} * \mathbf{2}^k$
- Yield the same result
 - Both signed and unsigned
 - Even in overflow

Compiled multiplication code

C function

```
long int mul_12(long int x) {
  return x*12;
}
```

Compiled arithmetic operations

```
shll $3, %eax
shll $2, %ebx
addl %ebx, %eax
```

Explanation

```
t1 <- x * 8;
t2 <- x * 4;
return t1 + t2;
```

- C compiler automatically generates shift/add code when multiplying by constant
 - Always uses logical shift

Power-of-2 divide with shift

- Integer division on most machines is even slower than integer multiplication
 - Requiring 30 or more clock cycles
- Dividing by a power of 2 can also be performed using shift operations
 - Uses a right shift rather than a left shift
- Unsigned vs Two's complement
 - Unsigned: logical shift
 - Two's complement: arithmetic shift

Unsigned power-of-2 divide with shift

- Quotient of unsigned by power-of-2
 - $\mathbf{u} \gg \mathbf{k}$ gives $\lfloor \mathbf{u} / 2^k \rfloor$
- Uses logical shift

Unsigned power-of-2 divide with shift

	Division	Computed	Hex	Binary
X	15 213	15 213	3B 6D	00111011 01101101
x >> 1	7 606.5	7 606	1D B6	00011101 10110110
x >> 4	950.8125	950	03 B6	00000011 10110110
x >> 8	59.4257813	59	00 3B	0000000 00111011

■ The result of shifting consistently rounds toward zero

As is the convention for integer division

Compiled unsigned division code

C function

```
unsigned long int udiv_8(unsigned long int x) {
  return x/8;
}
```

Compiled arithmetic operations

```
shrl $3, %eax
```

Explanation

```
# Logical shift
return x >> 3;
```

Signed power-of-2 divide with shift

- Quotient of signed by power-of-2
 - $x \gg k$ gives $\lfloor x / 2^k \rfloor$
- Uses arithmetic shift

Signed power-of-2 divide with shift

	Division	Computed	Hex	Binary
У	-15 213	-15 213	C4 93	11000100 10010011
y >> 1	-7 606.5	-7 607	E2 49	1 1100010 01001001
y >> 4	-950.8125	-951	FC 49	11111100 01001001
y >> 8	-59.4257813	-60	FF C4	11111111 11000100

- For a negative number, arithmetic right shift rounds down rather than toward zero
 - For a positive number, we have 0 as the most significant bit, and so the effect is the same as for a logical right shift

Correct power-of-2 divide with shift

- We can correct for this improper rounding by "biasing" the value before shifting
- Quotient of negative number by power-of-2
 - Want $\lceil \mathbf{x} \mid \mathbf{2}^k \rceil$ (Round toward 0 convention for integer division)
 - Compute as $\lfloor (x+2^k-1)/2^k \rfloor$
 - In C: (x + (1 << k) -1) >> k
- This technique exploits the property that $\lceil x/y \rceil = \lfloor (x + y 1)/y \rfloor$ for integers x and y such that y > 0

Correct power-of-2 divide with shift

Case 1: No rounding is required (x >= 0)

Biasing has no effect

Correct power-of-2 divide with shift

Case 2: Rounding is required (x < 0)

Biasing adds 1 to final result

Compiled signed division code

C function

```
long int idiv8(long int x) {
  return x/8;
}
```

Compiled arithmetic operations

```
testl %eax, %eax
js L4
L3:
  sarl $3, %eax
  ret
L4:
  addl $7, %eax
  jmp L3
```

Explanation

```
if x < 0
  x += 7;
# Arithmetic shift
return x >> 3;
```

Arithmetic: Basic rules

Addition

- Unsigned/signed: Normal addition followed by truncate, same operation on bit level
- Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2^w
- Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2^w
- CPUs can use the same machine instruction to perform either unsigned or signed addition

Arithmetic: Basic rules

Multiplication

- Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
- Unsigned: multiplication mod 2^w
- Signed: modified multiplication mod 2^w (result in proper range)
- On most machines, integer multiplication and division are fairly slow
 - Replace them by constant factors with combinations of shift and addition/subtraction operations

Arithmetic: Basic rules

Left shift

- Unsigned/signed: multiplication by 2^k
- Always logical shift

Right shift

- Unsigned: logical shift, div (division + round to zero) by 2^k
- Signed: arithmetic shift
 - Positive numbers: div (division + round to zero) by 2^k
 - Negative numbers: div (division + round away from zero) by 2^k
 - Use biasing to fix