Recuerda que, dado un vector $u \neq 0$, la derivada direccional, a lo largo de u, de f en el punto p se define como

$$\lim_{h \to 0} \frac{f(p+hu) - f(p)}{h}$$

Se denota $\partial_u f(p)$ o, en las notas en pdf que se subieron como $D_u f(p)$. La fórmula para calcularlo es

$$\partial_u f(p) = \langle \nabla_p f, u \rangle$$

T10

- 1. Para las funciones dadas, calcula: (10) $\nabla_{(x,y)}f$; (20) $\langle \nabla_{(x,y)}f,u\rangle$; (30) $\partial_u f(p)$.
 - (a) $f(x,y) = x^2 y^2$, $u = (\sqrt{3}/2, 1/2)$, p = (1,0).
 - (b) $f(x,y) = e^x \cos(y), u = (0,1), p = (0,\pi/2).$
 - (c) $f(x,y) = y^{10}$, u = (0,-1), p = (1,-1).
 - (d) f(x,y) = distancia de (x,y) a (0,3), u = (1,0), p = (1,1).
- 2. Para las siguientes funciones calcula $\nabla_{(x,y,z)}f$ y además haz un bosquejo del campo vectorial $(x,y,z)\mapsto \nabla_{(x,y,z)}f$.
 - (a) $f(x,y,z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$, (fuente saliendo del origen).
 - (b) $f(x, y, z) = \log(x^2 + y^2)$, (fuente axial sobre el eje z).
 - (c) $f(x,y,z) = \frac{1}{\sqrt{(x-1)^2+y^2+z^2}} \frac{1}{\sqrt{(x+1)^2+y^2+z^2}}$, (dipolo).
- 3. Para $f(x,y) = 3x^2 + 2y^2$, encuentra la dirección (vector unitario) en la cual la gráfica de la función está más empinada y en la cual se mantiene nivelada, si estas parada en el punto (1,2).
- 4. ¿Cual es el gradiente de f, una función de una variable? ¿Cuál son las dos posibles direcciones de u al calcular la derivada direccional de f a lo largo de u?
- 5. Encuentra la dirección u (||u|| = 1) para la cual f crece más rápidamente si estás parado en (1,2).
 - (a) $f(x,y) = e^{x-y}$,
 - (b) $f(x,y) = \sqrt{5 x^2 y^2}$ (cuidado!!!),
 - (c) f(x,y) = ax + by.
- 6. Asume que f(x,y) y g(x,y) son funciones, clase C^1 , tal que $\nabla_{(x,y)}f$ es perpendicular a (3,2) con su longitud igual a 1 y $\nabla_{(x,y)}g$ es paralelo a (3,2) con su longitud igual a 5. Encuentra $\nabla_{(x,y)}f$, $\nabla_{(x,y)}g$, f y g.

- 7. Si f(0,1)=0, f(1,0)=1 y f(2,1)=2, encuentra $\nabla_{(x,y)}f$ suponiendo que f(x,y)=Ax+By+C.
- 8. ¿Qué funciones tienen los siguientes gradientes?
 - (a) (2x + y, x),
 - (b) $(e^{x-y}, -e^{x-y}),$
 - (c) (y, -x).
- 9. Una función $f:\mathbb{R}^n \to \mathbb{R}$ se llama par si f(-p)=f(p), para toda $p\in\mathbb{R}^n$.
 - (a) Sea $f: \mathbb{R} \to \mathbb{R}$ una función par, de una variable y diferenciable en el origen. Demuestra que f'(0) = 0.
 - (b) Sea $f:\mathbb{R}^n\to\mathbb{R}$ una función par, diferenciable en el origen. Demuestra que $\nabla_0 f=0.$

Sugerencia: usa el inciso anterior.

(c) Sea $g:\mathbb{R}^2\to\mathbb{R}$ una función diferenciable en el origen. Supón que existen dos vectores ortonormales (es decir, unitarios y ortogonales) u,v, tales que

$$g(tu) = g(-tu), \quad g(tv) = g(-tv), \quad \forall t \in \mathbb{R}.$$

Demuestra que $\nabla_{(0,0)}g = 0$.

Sugerencia: comienza probando que $\partial_u g(0,0) = 0$ y $\partial_v g(0,0) = 0$.

 \mathbf{v}