DÃľ veloppements limitÃľ s usuels

Ãľ quiv ents On trouvera ci-dessous des approximations utiles au voisinage de 0. Ces approximations permettent d'obtenir des s dans de nombreuses situations. Les graphiques en regard de certaines fonctions permettent de se rendre compte de la nitÃl' de l'approximation suivant l'ordre auquel on pousse le dÃl'veloppement limitÃl'.

Approximation affine

DÃľ veloppement limitÃľ d'ordre n

$$f(x) = f(0) + f'(0) \cdot x + o(x)$$

$$f(x) = f(0) + f'(0) \cdot x + o(x) = f(0) + f'(0) \cdot x + f''(0) \cdot \frac{x^2}{2!} + f'''(0) \cdot \frac{x^3}{3!} + \dots + f^{(n)}(0) \cdot \frac{x^n}{n!} + o(x^n)$$

$$e^{x} = 1 + x + o(x)$$

$$= 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} - \cdots + \frac{x^n}{n!} + o(x^n)$$

$$\ln\left(1+x\right) = x + o\left(x\right)$$

$$= x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n+1} \cdot \frac{x^n}{n} + o(x^n)$$

$$\frac{1}{1-x} = 1 + x + o(x)$$

$$= 1 + x + x^{2} + x^{3} + \cdots + x^{n} + o(x^{n})$$

$$\frac{1}{1+x} = 1 - x + o(x)$$

$$= 1 - x + x^{2} - x^{3} + \cdots + (-1)^{n} \cdot x^{n} + o(x^{n})$$

$$(1+x)^{\alpha} = 1 + \alpha x + o(x)$$

$$=1+\alpha x+\frac{\alpha(\alpha-1)}{2!}\cdot x^2+\frac{\alpha(\alpha-1)(\alpha-2)}{3!}\cdot x^3+\cdots+\frac{\alpha\cdots(\alpha-n+1)}{n!}\cdot x^n+o\left(x^n\right)$$

$$\sqrt{1+x} = 1 + \frac{1}{2}x + o(x)$$

$$= 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 + \dots + (-1)^{n+1} \cdot \frac{1 \times 3 \times \dots \times (2n-3)}{2 \times 4 \times \dots \times 2n} \cdot x^n + o(x^n)$$

$$\sqrt[3]{1+x} = 1 + \frac{1}{3}x + o(x)$$

$$= 1 + \frac{1}{3}x - \frac{1}{9}x^2 + \frac{5}{81}x^3 + \dots + (-1)^{n+1} \cdot \frac{2 \times 5 \times 8 \times \dots \times (3n-4)}{3^n \cdot n!} \cdot x^n + o(x^n)$$