Networks

René Serral-Gracià Xavier Martorell-Bofill¹

¹Universitat Politècnica de Catalunya (UPC)

May 26, 2014

Lectures

- System administration introduction
- Operating System installation
- User management
- Application management
- System monitoring
- Filesystem Maintenance
- Local services
- Network services
- Security and Protection
- Virtualization

Outline

- Introduction
 - Goals
 - Previous Considerations
 - Network Address Translation
 - Firewall

Goals

Knowledge

- Main services and networking protocols
 - Superserver, portmapper, DNS, FTP, WWW, e-mail

Abilities

- Service configurations
 - Superserver
 - DNS
 - FTP
 - WWW
 - E-Mail

Network admin considerations (I)

Security measures

- Never execute services with superuser privileges
- Expose only necessary services firewalls
- Configure carefully all the offered services
 - Never leave default configurations
 - Disable/Remove unused services.
- Monitor the service's logs
- Check for security issues be up to date

Network admin considerations (and II)

Port classification

- Privileged ports: 0 1023
 - Controlled and assigned by IANA
 - Only privileged users (root) mai install services to those ports
- Registered ports: 1024 49151
 - Not controlled but registered by IANA
 - Registry about services using those ports /etc/services
- Dynamic ports: 49152 65535
 - Used for temporary connections

Services

- Relates services with corresponding port number
 - various applications use it (netstat,...)

```
servicename
             port/protocol
                             alias list
```

```
echo
                7/tcp
echo
                7/udp
                11/tcp
systat
                                 users
systat
                11/udp
                                 users
ftp-data
                20/tcp
ftp-data
                20/udp
# 21 is registered to ftp, but also used by fsp
ftp
                21/tcp
ftp
                21/udp
                                 fsp fspd
                22/tcp
ssh
ssh
                22/udp
telnet
                23/tcp
telnet.
                23/udp
# 24 - private mail system
smtp
                25/tcp
                                 mail
                                 mail
smtp
                25/udp
domain
                 53/tcp
domain
                 53/udp
http
                80/tcp
                                 www www-http
                                 www www-http
http
                 80/udp
```


Network Address Translation – NAT

- Router translates internal addresses by one (or various) of its own
 - Allows using a reserved IP (pool) and keep connectivity to the outside
- The router remembers the output connections to identify its answers
 - Output connection:
 - 192.168.1.25 (port 1085) → 212.106.192.142 (11086)
 - Reply connection:
 - ullet 212.106.192.142 (11086) \to 192.168.1.25 (1085)

Tools: iptables (SNAT), dnsmasq

NAT collateral effects

- Private addresses are not visible from the outside
 - Attacks may only fall to the router except over ongoing connections
- Network security depednds on router security
- Internal machines cannot offer services to the outside
 - Ecxept when using Port Address Translation (PAT)
- Important performance penalty for the network
 - All external connections go through a single router
 - Each packet requires some CPU time for processing
- Some services do not behave properly when using NAT
 - Those establishing connections to the inside
 - FTP, IRC, Netmeeting, . . .

Port Address Translation (PAT)

- Indicate to the NAT router it must forward some input connections to a particular machine
- Map router ports to some internal machine

Eines: iptables (DNAT)

Firewall

Server that determines which connections may be established between two networks

- It typically works at network and transport layers
 - In general application details are not known
- It can keep connection status (Connection Tracking)
 - It allows related connections: "replies"

Firewall == Security?

- A firewall is another piece of the overall security of a system
- Its use can potentially offer a false security feeling
- Other aspects cannot be neglected
 - Correct application configuration
 - Perform regular security updates on installed software
 - Limit concurrent connections.
- Other security tools in the private network and servers are still necessary

Outline

- Servers
 - Server types

Server types

- Connection oriented
 - The server keeps status about the different sessions
 - Better performance
 - Less error resilience
- Connectionless
 - There is no status about the client connections
 - There are no sessions
 - Requests must be self contained
 - Client request must contain all the required information
 - Better failure resilience and recovery

Servers

Primary

- They keep a copy of all the information
- If there is mismatch in the stored information the primary takes precedence
- There is one per service

Secondary

- Keep copies of the information
- Performing periodic updates with the primary
- There can be more than one per service
- Load balancing
- Are an implicit backup of the primary
- Cache (and/or proxies)
 - Keep –partial– copies of the most used information
 - More than one per service
 - Better performance
 - They can add security checks, filtering, log, ...

Outline

- Services
 - Remote Procedure Calls (RPC)
 - Domain Name System (DNS)
 - Dynamic Host Configuration Protocol (DHCP)
 - Hypertext Transfer Protocol (HTTP)
 - File Transfer Protocol (FTP)
 - Simple Mail Transfer Protocol (SMTP)
 - E-mail reception
 - Secure Shell
 - Network File System (NFS)
 - Samba (SMB)

Superserver

- A service even when idle uses resources
 - Many services are requested only from time to time: telnet, ftp, ssh, ...
- Superserver listens to all the ports and activates the service only when needed
 - It detects the request
 - Initiates the service
 - Passes the message
- Limitations
 - Between connections it is not possible to keep information in memory
 - Overhead caused by process creation

/etc/xinetd.conf,/etc/xinetd.d

Indicates the services offered by the superserver

Service, Protocol, User/group, Server, Parameters

```
$ cat /etc/xined.conf
includedir /etc/xinetd.d
```

```
$ cat /etc/xined.d/ftp
service ftp
        socket type
                                 = stream
        wait
                                 = no
        user
                                 = root
                                 = /usr/sbin/vsftpd
        server
        log on success
                                += HOST DURATION
        log_on_failure
                                += HOST
        disable
                                 = no
```


- Remote subroutine invokation
 - Identified by a service number ID
- RPC Servers
 - They implement a set of remote connections
 - Listen in a dynamic port
- Portmapper
- Registers the RPC servers
 - Maps the port with the subroutines
- Needed by other services
 - NFS, . . .

Portmapper

Introduction

- All the status is kept on memory
 - If the process fails, is not enough restarting it
 - All RPC servers must be restarted
- All services must be registered upon portmapper start

Domain Name System (DNS)

- Name resolution service
 - Hostname → IP address.
 - IP Address → hostname
- Issues

Introduction

- Large amount of machines
- Large number of changes
- Solution
 - Hierarchical distribution of the information (domains)
 - Authority delegation

DNS Internals

Authority delegation

- Each domain administers its own server
- Everybody knows the higher servers in the hierarchy (root)
- Everybody knows the server for their domain
- Name resolution is iterative

Using "caches" is convenient

- High temporal locality
 - Avoids repeating the same guery
- High spacial locality
 - Avoids going up to the root servers too often
 - Avoids some steps of the iterative search

DNS can be used for load balancing

- We can have several IPs for the same name
 - Each guery returns different values: Round Robin or "geographical" criteria

```
$ nslookup www.google.com
Name:
        www.google.com
Address: 212 106 221 23
Name: www.google.com
Address: 212.106.221.27
Name: www.google.com
Address: 212.106.221.25
```


DNS client configuration

Introduction

- /etc/host.conf
 - Where a name is searched and its order
- /etc/hosts
 - Locally translated machines
- /etc/resolv.conf
 - Automatic domains to be searched
 - IP addresses of the DNS servers

DNS Server configuration

- /etc/bind/named.conf
 - What are we administering?
 - DNS Domains
 - IP addresses ranges
 - Indicates primary, secondary, or cache
- Direct translation files
 - Name.domain → IP address
 - 1 file for each administered domain
- Inverse translation file
 - IP Address → name.domain
 - 1 file for each administered IP range

DNS type of registers

Introduction

- SOA (Start of Authority)
 - Serial number
 - Refresh time and retries
 - Expiration times
 - Minimum TTL
- A Direct translation
 - Name → IP address

```
romeu IN A 147.83.32.4
```

- CNAME synonyms
 - $\bullet \ \, \text{Name} \rightarrow \text{name}$

```
romeu IN CNAME lp_romeu
```


- PTR inverse translation
 - IP Address → DNS name

```
4 IN PTR romeu.ac.upc.edu.
```

- NS Domain delegation
 - DNS Domain→ server

```
ac IN NS 147.83.32.3
```

- MX mail exchanger
 - DNS Domain → server

```
ac TN MX 147.83.33.10
```

- I altres...
 - HINFO, WKS, . . .

Networks

DNS configuration example

Zone "cluster.craax.upc.edu", as primary.

```
$ cat /etc/bind/named.conf
options
        directory "/var/cache/bind";
        forwarders
                147.83.159.217;
        auth-nxdomain no;
                             # conform to RFC1035
        listen-on-v6 { any; };
};
zone "cluster.craax.upc.edu" {
 type master;
  file "/etc/bind/cluster.zone";
};
zone "1.1.10.in-addr.arpa"
 type master;
  file "/etc/bind/cluster.rev";
```


DNS configuration example

Introduction

```
$ cat /etc/bind/cluster.zone
$TTL
        604800
       TN
               SOA
                       cluster. cluster.craax.upc.edu. (
                      20101220
                                       ; Serial
                        604800
                                       : Refresh
                         86400
                                       ; Retry
                       2419200
                                       ; Expire
                        604800 )
                                       ; Negative Cache TTL
       ΤN
               NS
                       gandalf
SORTGIN
                       cluster.craax.upc.edu.
gandalf
               IN
                       A 10.1.1.1
horomir-1
               TN
                              10 1 1 2
```

```
$ cat /etc/bind/cluster.rev
STTI.
        604800
        TN
                SOA
                        cluster. cluster.craax.upc.edu. (
                       20101220
                                         : Serial
                         604800
                                         : Refresh
                          86400
                                         ; Retry
                        2419200
                                         ; Expire
                         604800)
                                         ; Negative Cache TTL
        TN
                NS
                        gandalf
SORTGIN
                        cluster.craax.upc.edu.
                        gandalf.cluster.craax.upc.edu.
        TN
                PTR
        IN
                PTR
                        boromir-1.cluster.craax.upc.edu.
```


with these registers

Introduction

We have 3 services at (server1, server2 i server3)

```
server1 TN A 123.123.123.1
server2 IN A 123.123.123.2
server3 IN A 123.123.123.3
```

- We want to add the following services
 - www at server1 (server2 is the backup server)
 - ftp at server1 and server2
 - incoming/outgoing mail at server3

Which registries would you add?

DNS Related tools

- whois domain
 - Provides contact information for a domain.
- dig [@server] query
 - Performs a DNS query
 - It allows controlling different resources
 - Server, type of register, iterative/recursive resolution, . . .
 - Returns the registers corresponding to the query
 - It supports debugging

Dynamic Host Configuration Protocol (DHCP)

- It delivers automatically the network configuration to a host
 - IP assignation, Gateway and DNS
- Machine trustfulness is not verified
 - By default it is assumed that if the host can reach connectivity then it is legitimate
 - It can provide MAC address verification
- IP addresses are assigned from a predefined range

Dynamic Host Configuration Protocol (DHCP)

Remote boot support through BOOTP and PXE

- Preboot Execution Environment (PXE)
- Network card uses BIOS to get network information
- It allows to decide the kernel image to boot
 - Downloaded through TFTP
 - A remote root system can be mounted

Dynamic Host Configuration Protocol (DHCP)

```
ddns-update-style none;
For /etc/resolv.conf -> option domain-name-servers 192.168.1.1;
                          allow booting;
For PXE -
                          allow bootp;
                           default-lease-time 600;
                           max-lease-time 7200;
                           authoritative:
                            subnet 192.168.1.0 netmask 255.255.255.0 {
                            range dynamic-bootp 192.168.1.172 192.168.1.254;
For ifconfig >
                            range 192.168.1.2 192.168.1.171;
                            filename "pxelinux.0";
For route \
                            option subnet-mask 255.255.255.0;
                            option broadcast-address 192.168.1.255;
                            option routers 192.168.1.1;
```


Dynamic Host Configuration (DHCP)

DHCP and DNS can work together

/etc/dhcpd/dhcpd.conf

Introduction

```
ddns-update-style interim;
key DHCP UPDATER {
   algorithm HMAC-MD5.SIG-ALG.REG.INT;
   secret pRP5FapFoJ95JEL06sv4P0==;
};
zone ac.upc.edu. {
   primary 192.168.1.1;
   key DHCP UPDATER;
```

/etc/bind/named.conf

```
key DHCP UPDATER
   algorithm HMAC-MD5.SIG-ALG.REG.INT;
   secret pRP5FapFoJ95JEL06sv4PQ==;
zone ac.upc.edu. {
   type master;
   file "ac.zone";
   allow-update { key DHCP_UPDATER; };
};
```


In group

- Which potential problem can be caused by a DHCP server crash?
- Propose an implementation to solve it

Hypertext Transfer Protocol (HTTP)

- Data transfer service
- Connectionless

Introduction

- There is no state between connections
- Each petition is self-contained
- Nevertheless it uses TCP

- Implements support for HTTP
- /etc/apache/httpd.conf

Main features

- Unprivileged user execution
- Queries are served using memory separated processes/threads
 - Memory sharing configurable by the administrator
 - Maximum concurrent processes limit
- Configuration options in a per directory basis
- Virtual Host configuration
 - By IP address
 - By DNS name

File Transfer Protocol (FTP)

- Data transfer service
- Connection oriented
- Control connection
 - There is state between connections: cwd
- Data connection
 - active: does not support NAT
 - passive: NAT is supported
 - There is a new data connection per transfer

FTP Configuration

- There are many server implementations
 - wu-ftpd, proftpd, vsftpd, ...
- User level based authorization: /etc/ftpusers
 - List of the users that CAN'T access FTP
- Use chroot for security in Aonymous FTP
 - Changes the root of the process
 - Extra configuration
 - Requires install basic commands and configuration files
 - /etc/passwd, /etc/shadow
 - /bin/ls, /lib/libc.so, ...
 - Use it even for regular users

Simple Mail Transfer Protocol (SMTP)

Parts composing the mail system

MUA - Mail User Agent

Introduction

- User application to read/write e-mails
- MSA Mail Submission Agent
 - Application to transmit the mail from the client to the MTA
 - It make all previous error checking
- MTA Mail Transport Agent
 - It sends the e-mail between servers
- Delivery Agent
 - Application to store mails into the user's mailbox
 - Sometimes the mails are stored into a database
- Access Agent
 - Application allowing the user to access its e-mail

Internals of an e-mail

- Envelope
 - Message destination
 - Source
 - Not received by the clients only for servers
- Headers
 - Set of message properties
 - Sending date
 - Source and destination (shown by the e-mail clients)
 - List of servers the message has crossed
- Message body
 - Uses 7 bits ASCII
 - Attachments use Base-64

Mail reception

- Access to local mailbox
 - Mailbox/maildir format interpreter
- Remote mailbox access
 - POP3
 - IMAP

Mail sending

Using an SMTP server

E-Mail server configuration

Mail sending – sendmail/postfix

- Sending direct to the destination
 - Search for MX record in DNS local destination
- Sending through a Relay
 - No direct access to the destination.

Mail reception

- Store the mails locally
 - POP3. DIMAP
- Store the mails in the remote server
 - IMAP

E-Mail server configuration

Mail aliases

- Redirect mail to other users
 - In a remote machine
- Users with multiple names
 - root, postmaster, webmaster → usuari@host
- Send a mail to a file instead of a user
 - spam: /dev/null
- Send the e-mail to a program
 - autoftp: " | /usr/bin/ftpserver"
- Mailing list definition
 - Is better to use: Majordomo, Mailman, ListProc, SmartList,

. .

Aliases defined in /etc/aliases or /etc/mail/aliases

User authentication

- By default the server does not ask for credentials
 - SASL can be used
- Envelope can be forged SPAM . . .
- Trust mail relays
 - The server always tries to send the message
 - Even if the headers do not belong to the domain (Open Relays)

Security considerations

Introduction

Mail privacy

- Mail is sent in plain text
 - Use of TLS (SSL) only between MUA and MTA
- PGP Pretty Good Privacy
 - Message cyphering and signing
 - Based in public key cryptography
- S/MIME

Filter installation

- Anti-spam
 - Spamassasin, gray lists, black lists, ...
- Anti-virus
 - Clam AV, Amavis, f-prot,...

We just set up a filter to control spam

- Which action would you take as a server when you detect a spam message?
- And if the filter is an anti-virus?

Post Office Protocol (POP)

- It allows users to access their mailbox
- It downloads the messages to the local machine
- Authentication without encryption
 - pop3s secure alternative using SSL

Internet Message Access (IMAP)

- It allows users to manage their mailbox
- Management is performed remotely
- User authentication
 - Allowing encryption
- imaps even more secure alternative using SSL

- It substitutes rsh/rlogin and telnet
- Adding security
 - It performs authentication based on RSA, DSA, ECDSA
 - Session key is signed by the client's private key
 - The server uses the public key as stored in (.ssh/authorized_keys) to check if the signature is correct
 - password based authentication is also supported
 - Connection is fully encrypted
 - Confidentiality: 3DES, Blowfish, ...
 - Integrity: hmac-md5, ...
- The server runs the specified command or offer a shell
- Transparent session
 - Whenever a pseudo-terminal is not requested
 - It can be used to transfer binary files
- login Session
 - X11 Protocol forwarding can be configured

Secure Shell actions

 How would you implement secure copy and secure FTP directly with ssh?

Networks

Network File System (NFS)

- File access in a remote server
 - Keeping the semantics (privilege wise) of the local filesystem
- It is transparent to the user
 - Implemented using RPC's

Remote mounting for NFS

Introduction

The mounted directory is presented as local

- UIDs in the remote machines must be the same as used in local
 - Filesystems store UID rather than usernames
 - This can be adapted by using idmapd
- UID automatic translation (idmapd)
 - root, nobody
- Options
 - no_root_squash, root can su to any user!
 - all squash, all users become nobody
 - We can decide who nobody is

anonuid=UID, anongid=GID

NFS Configuration

Introduction

- Determine which resources to export
- Hosts to export to
- Configuration flags

/etc/exports

```
master(rw) trusty(rw,no_root_squash)
/projects
              proj*.local.domain(rw)
/usr
              *.local.domain(ro) @trustedgroup(rw)
/home/joe
              pc001(rw,all squash,anonuid=150,anongid=100)
              (ro, insecure, all_squash)
/pub
```


SMB — Samba

- It allows sharing files and printers
- User level access control
 - Authentication using login and password
 - Based on username not UID.
 - Encripted and plaintext password transmission
 - Machine based access restriction
 - It does not allow to change permissions depending on the source
 - One must use different share names.

Lightweight Directory Access Protocol (LDAP)

- It provides access to users database
 - Directory format (X.500)
- It offers user authentication methods.
 - /etc/passwd, /etc/shadow, /etc/group, ...
 - ... they can be dumped to the LDAP database
- Besides regular files, login can also be controlled through the database

Virtual Private Networks (VPN)

- Server and client negotiate a secure connection
- An internal IP is offered through a secure tunnel
 - It grants access to all the internal services

