

Machine Learning

- Reinforcement Learning is a machine learning paradigm that uses evaluative feedback
 - Mostly used for learning decision tasks
 - Control
 - Recommendation systems
 - Scheduling
 - Routing
 - ...
 - Evaluative feedback is numeric feedback indicating how well a strategy has worked
 - No instructive feedback regarding the correct action

- Reinforcement Learning is generally active learning
 - Requires testing of the learned strategy to obtain evaluative feedback
 - Usually implies the need for exploration
 - Can be on the real task or on a model of the task
- In many cases evaluative feedback (reward) is delayed
 - Only the overall (or intermediate) outcome can be evaluated but not every individual action
 - Credit assignment problem

Reinforcement Learning History

- SNARC: Stochastic Neural Analog
 Reinforcement Calculator (M. Minsky, 1951)
- A. Samuel (1959) Computer Checkers
- Widrow and Hoff (1960) adapted the D. O. Hebb's neural learning rule (1949) for RL: delta rule
- Cart-pole problem (Michie and Chambers, 1968)
- Relation between RL and MDP (P. Werbos, 1977)
- Associative RL (Barto, Sutton, Brouwer 1981)
- Q-learning (Watkins, 1989)
- TD-Gammon (Tesauro, 1992)

- Reinforcement Learning systems can often be modeled as state/action systems
 - State encodes the available knowledge
 - Actions are potential interactions
 - Rewards represent the feedback obtained
- Many systems and problems can be put in this context
 - Control systems
 - Scheduling
 - Dialogue systems
 - Game playing

Reinforcement Learning

Agent acts in the environment

Receives reward

Receives

information about state

- •Fully observable receives all state information
- Partially observable only receives part

Utility Theory - Recap

• von Neumann and Morgenstern showed in 1944 that if preferences are rational (i.e. they obey the axioms), then there exists a scalar utility function that $c_{u}:0^{+1}=0^{+1}$ preferences

$$u(o_1) \ge u(o_2) \Leftrightarrow o_1 \succeq o_2$$

 $u([P_1:o_1,...,P_n:o_n]) = \sum_{i=1}^n P_i u(o_i)$

© Manfred Hubε.

Utility Functions

- There are an infinite number of utility functions for each set of rational preferences
 - E.g.: Linear offsets and scaling of the utility function preserves preferences
- Utility can only be used to compare alternatives
 - The absolute value of the utility is arbitrary
- The bounds on the values of the utility function are not necessary for rational decision making
 - Utilities can be arbitrary values (as long as they are finite)

Utility Functions

- A Utility function allows to quantify preferences for decision making
 - Rational decisions are simply the ones that lead to the largest value of the utility function
- Utilities can be constructed from rewards
 - Rewards are policy-independent
 - Utilities are policy-dependent
- Reinforcement Learning problems generally use utility as the performance function

Reinforcement Learning Problems

- Reinforcement Learning problems can be differentiated based on a number of properties
 - Episodic The outcome of previous decisions has no effect on the outcome and start state of the next decision
 - Associative Strategies map inputs/states to actions

Reward vs. Utility

- Reward is the deterministic utility of a specific outcome occurrence
 - Rational ("best") decisions have to be made in terms of the decision's utility
 - Probabilistic outcomes in a episodic task require to compute a utility (often denoted V or Q) from the different rewards that can be produced by the actions

$$Q(a) = E(r_{o_i|a}) = \sum P(o_i \mid a) r_{o_i}$$

utility from all the rewards

re to compute

- N-Armed Bandit problems are episodic, nonassociative, single action problems with probabilistic outcomes/rewards
 - Derives from slot machines where the outcome does not depend on the state of the machine
 - Multiple levers have different outcome/reward probabilities
 - Probability distributions are not known to the learning agent

- N-Armed Bandit problems can be formulated mathematically
 - Action set $A = \{a_i\}$
 - Outcome probabilities (or probability P(o, |a)
 - Deterministic outcome reward.
- Can be $\operatorname{simp}_{P(r_{o_i} \mid a)}^{\operatorname{life}}$ ing reward $\operatorname{probabilities}$

- If the reward/outcome probabilities were known, utility theory provides the answer
 - Utility of a specific outcome is its reward R_{oi}

$$Q^*(a) = E(r_{la}) = \sum_{o_i} P(r_{o_i} \mid a) r_{o_i}$$

$$Q^*(a) = E(r_{la}) = \int_{o_i} p(r_{o_i} \mid a) r_{o_i} do_i$$

• Op $a^* = \operatorname{argmax}_a Q^*(a)$ n be taken

- If the probabilities are not known we have a Reinforcement Learning problem
 - Can determine a utility estimate by reneatedly playing

$$Q_t(a) = \frac{r_1 + r_2 + \dots + r_{k_a}}{k_a}$$

In the limit the sample average approaches the true estimate

$$\lim Q_{\iota}(a) = Q^{*}(a)$$

© Manfred Hube 2021

Exploration vs Exploitation

- To learn the best action, different actions have to be taken
 - Greedy action selection $a_t = a_t^* = \operatorname{argmax}_a Q_t(a)$
 - ε- greedy action selection

$$a_{_{I}} = \begin{cases} a_{_{I}}^{*} & with \ probability \ 1 - \varepsilon \\ random \ a & with \ probability \ \varepsilon \end{cases}$$

Exploration vs Exploitation

- Example (Sutton)
 - 10-armed bandit verage
 - Reward distribution is random normal
 - Played for 1000 actions
- Exploration is necessary for learning

Exploration vs Exploitation

- There are other exploration strategies
 - Softmax

$$P(a_t = a) = \frac{e^{Q_t(a)/\tau}}{\sum_b e^{Q_t(a)/\tau}}$$
 according to a

τ regulates the slope of the softmax function

 The sample average process can be performed incrementally

$$Q_{t+1}(a) = Q_t(a) + \frac{1}{k} (r_k - Q_t(a))$$

If tracking a distribution that could be nonstationary

$$Q_{t+1}(a) = Q_t(a) + \alpha (r_k - Q_t(a))$$

$$= (1 - \alpha)^k Q_0(a) + \sum_{i=1}^k \alpha (1 - \alpha)^{k-i} r_i$$

- Learning depends on initial choic $Q_{\scriptscriptstyle 0}(a)$

- N-Armed Bandit problems are the simplest forms of problems
 - A number of real world problems can be modeled as n-armed bandit problems, e.g.:
 - Which ads to display on a given web page if no additional user information is available
 - What funds to invest in given performance profiles
 - What medical treatment yields the best result (if the target group is fixed

- Dealing with sequential actions (and rewards) in n-armed bandits
 - To be a n-armed bandit problem the task has to be episodic
 - In tasks with termination, treat action sequence as a single action
 - Outcome is the sequence of actions and rewards until the task terminates (to be unique and deterministic)
 - Utility of the outcome has to be computed from the sequence of rewards obtained

- Utility of an outcome of a particular action/reward sequence
 - Average reward utility

$$u(\vec{a}, \vec{r}) = \sum_{t=1}^{l} r_t / l$$

Sum of future rewards utility

$$u(\vec{a}, \vec{r}) = \sum_{t=1}^{l} r_t$$

Discounted sum of future rewards utility

$$u(\vec{a}, \vec{r}) = \sum_{t=1}^{l} \gamma^{t-1} r_t$$

 Using the specific outcome utility, the utility of action sequences is

$$Q^*(\vec{a}) = E(\vec{r}_{|\vec{a}}) = \sum_{\vec{r}} P(\vec{r} \mid \vec{a}) u(\vec{a}, \vec{r})$$

- Treating problems this way is inefficient
 - Exponential action space
 - Exponential number of outcomes
 - Need for enormous amounts of learning runs
- © Manfred Huber Only fixed action sequences

Sequential Decision Making

- N-armed bandit problems are not a good way to model a sequential decision problem
 - Only deals with static decision sequences
 - Could be mitigated by adding states (which would further increase number of samples needed
- Need a better model for sequential decision tasks

- Markov Decision Processes (MDP) are a more comprehensive model
 - Introduces the concept of state to describe the "internals" of an executed sequence
 - Allows for conditional action sequences
 - Models the underlying process as a probabilistic sequence of states with associated rewards

© Manfred Huber 2021

Sequential Decision Making

- To address sequential decisions with conditional action choices we need state
 - State represents the required information about the current world/agent configuration
 - Can be different from observable information

Sequential Decision Making

Executions can be represented as state/action/reward sequences

$$\cdots$$
 S_t A_t S_{t+1} S_{t+1} A_{t+1} S_{t+2} A_{t+2} A_{t+3} A_{t+3} A_{t+3} A_{t+3}

- To model systems we need to know how states and actions relate to outcome states and rewards
- Markov Models are a strong and powerful framework to model the dynamics of such P($s_t | s_{t-1}, a_{t-1}, s_{t-1}, ..., s_1$) = $P(s_t | s_{t-1}, a_{t-1})$

Markov Decision Problems

- Fully Observable Markov Decision Problems can be formulated $\langle A, S, T, R \rangle$
 - Action set $A = \{a_i\}$
 - State set $S = \{s_i\}$
 - State transition probabilit $T: P(s, | s_i, a)$
 - State-dependent expected rew $_iR:r(s,a)$
 - Rewards can be probabilis $P(r \mid s, a)$
- Markov assumption with reward:

$${}_{\text{@ Manfred Hubs}}P(r_{t},s_{t}\mid s_{t-1},a_{t-1},s_{t-1},...,s_{1}) = P(r_{t},s_{t}\mid s_{t-1},a_{t-1})$$

- Markov Decision Processes represent decision making on a Markov model
 - Fully observable: current state is known MDP
 - Partially observable: current state can only be indirectly observable – POMDP
- In Markov Decision Processes decisions can be represented as policies
 - Fully observable: $\pi(s,a) = P(a \mid s)$
 - Deterministic policie: $\pi(s) = a$

- Markov Decision Processes are a very general modeling framework
 - Most systems have a representation in which the Markov property holds
 - State only has to contain what makes it Markov
 - Markov-n systems have an equivalent Markov model
 - Many systems can be modeled as fully observable
 - Fully observable does not mean that everything is known (only the state)

- Markov Decision Processes can have terminating states
 - Termination can be equivalently modeled by introducing a "terminal" state (which is itself non-terminating) which loops to itself with reward 0
 - Every state that would terminate links to this state for every action with probability 1
 - Reward of this transition is the reward of the terminating st
 Reward of this transition is the reward of the P=1
 R=0

- For mathematical analysis we can simplify MDPs into equivalent MDPs where:
 - State transition probabilities are conditionally independent of the reward probabilities
 - $\begin{array}{c} \mathbf{T} : P(s_i \mid s_j, a) \\ \text{And is deterministic} \end{array} \right) \text{ depend on the state}$
- For $p^{R(s)} = \sum_{r} P(r \mid s)r$ often modeled based on s and a to reduce state space size

Designing MDPs

- Most important part is to design an appropriate state and action space
 - States do not have to represent every aspect
 - Only Markov Property has to hold
 - Actions can be low level or high level and do not need to take equal amounts of time to execute
 - MDPs can be event-driven
 - Abstract representations result in a smaller MDP
 - Usually faster learnable
 - Better generalization

Designing MDPs

- Tasks for agents can usually be characterized by goals and objectives
 - Goals in Al usually refer to conditions that have to be met in order to achieve the task
 - Goals can be represented by state sets
 - Objectives refer to properties that have to be optimized but might not have definite outcomes
 - Objectives are natively characterized by utilities
- In MDPs all tasks have to be represented in terms of a scalar reward function

- Goals can be mapped into a reward function
 - E.g.: positive reward in each goal state and no reward in other states
- Objectives can be mapped into reward:
 - E.g.: assign to each state the incremental change in outcome utility if terminating in this state.
- Goals and objectives can be mixed
 - In the resulting system the goal might no longer be reached due to the influence of the objective

- Tasks in MDPs are defined by multiple properties:
 - Reward function
 - Utility/return definition
 - Discount factor for discounted future reward utilities
- Changing one of these properties potentially changes the task to be solved and thus the learned policy

- Example System:
 - Mobile robot moving on a 3x3 grid with fixed obstacles
 - Robot uses energy for each move but can turn itself off
 - Moves can only be horizontal and vertical by one cell
- Task:

2021

Reach a goal location while minimizing
 © Manfred Huber

- States:
 - Robot X and Y coordinate
 - No need to include obstacle locations since they are fixed
- Actions:
 - Left, Right, Up, Down, Off
- Reward:
 - Goal reaching: $R_g(s)$: $+r_g$ at goal, 0 otherwise
 - Energy: $R_e(a)$: $-r_e$ for L, R, U, D, 0 for O
- © Manfred Huber Total reward: $R(s, a) = R_g(s) + R_e(a)$

- Transition probabilities:
 - Transition probabilities encode how the actions work
 - For deterministic actions they probabilities are 1 and 0
- Utility choice:
 - Discounted sum of future rewards
- Note: what task will be solved (and whether the agent attempts to reach the goal) depends on r_g , r_e , and the discount factor

O:R=0

- Goal in 3,3
- Obstacles in 1,2 and 1, 3
- Goal state
 - Terminal state
 - $V(s_g)=r_g$
 - Transitions to terminal state
 - Reward on transition: r_g
 - Reward in loop is 0

O:R=0

O:R=0

- Policy does not ensure reaching of the goal
 - Policy optimizes a tradeoff of cost and benefit (reaching goal)
 - Robot might turn itself off if the way to the goal is too long
 - Optimal policy depends on
 - Choice of discount factor
 - Choice of r_e and r_q
- Utility accumulation and discount factor are part of the definition of the task

From Reward to Utility

- To obtain a utility needed for decision making a relation between rewards and utilities has to exist
 - Utility of a policy in a state is driven by all the rewards that will be obtained when starting to execute the policy in this state
 - Sum of future rewards

$$T_{C}V(s_{t}) = E\left[\sum_{\tau=t}^{end\ of\ time} r(s_{\tau}, a_{\tau})\right]$$
y, it has to be finite

- Finite norizon utility

Average reward utility
Discounted sum of futur
$$V(s_{t}) = E\left[\sum_{t=t}^{t+T} r(s_{-}, a_{-})\right]$$

$$V(s_{t}) = E\left[\sum_{\tau=t}^{t+\Delta} 1/\Delta r(s_{-}, a_{-})\right]$$

$$V(s_{t}) = E\left[\sum_{\tau=t}^{\infty} \gamma^{\tau-t} r(s_{\tau}, a_{\tau})\right]$$

Reward and Utility

- All three formulations of utility are used
- The most commonly used formulation is the discounted sum of rewards formulation
 - Simplest to treat mathematically in most situations
 - Exception is tasks that naturally have a finite horizon
 - Discount factor choice influences task definition
 - Discount factor represents how much more "important" immediate reward is relative to future reward
 - Alternatively it can be interpreted as the probability with which the task continues (rather than stop)

Markov Decision Processes

- Reward is sometimes defined in alternative ways:
 - State reward: r(s)
 - State/action/next state reward: r(s, a, s')
- All formulations are valid but might require different state representations to make the expected value of the reward stationary
 - Expected value of the reward can only depend on the arguments

- The main task addressed in Markov Decision Processes is to determine the policy that maximizes the utility
- Value function represents the utility of being in a particular state

$$\begin{split} V^{\Pi}(s) &= E_{s_t = s} \bigg[\sum_{\tau = t}^{\infty} \gamma^{\tau - t} r(s_{\tau}) \bigg] \\ &= r(s) + E \bigg[\sum_{\tau = t + 1}^{\infty} \gamma^{\tau - t} r(s_{\tau}) \bigg] = r(s) + \gamma E \bigg[\sum_{\tau = t + 1}^{\infty} \gamma^{\tau - (t + 1)} r(s_{\tau}) \bigg] \\ &= r(s) + \gamma \sum_{s'} \sum_{a} \pi(s, a) P(s' \mid s, a) E_{s_{t + 1} = s'} \bigg[\sum_{\tau = t'}^{\infty} \gamma^{\tau - t'} r(s_{\tau}) \bigg] \\ &= r(s) + \gamma \sum_{s'} \sum_{a} \pi(s, a) P(s' \mid s, a) V^{\pi}(s') \end{split}$$

© Manfrec

2021 49

- Value function for a given policy can be written as a recursion
 - Alternatively we can interpret the formula as a system of linear equations over the state values
 - $\operatorname{Ti}^{V^{\pi}(s)} = r(s) + \gamma \sum_{s'} \sum_{a} \pi(s, a) P(s' \mid s, a) V^{\pi}(s')$ for a given policy
 - Solve the system of linear equations (Polynomial time)
 - Iterate over the recursive formulation
 - Starting with a random function $V_o^{\pi}(s)$
 - Update the function for each state
 - Repeat step 2 until the function no longer changes significantly

$$V_{t+1}^{\pi}(s) = r(s) + \gamma \sum_{s'} \sum_{a} \pi(s, a) P(s' \mid s, a) V_{t}^{\pi}(s')$$

- To be able to pick the best policy using the value (utility) function, there has to be a value function that is at least as good in every state as any other value function
 - Two value functions have to be comparable
 - Consider the modified value function

$$V'^{\pi}(s) = r(s) + \gamma \max_{\pi'} \sum_{s'} \sum_{a} \pi'(s, a) P(s' \mid s, a) V'^{\pi}(s')$$

step in state s but otherwise behaves like policy π

- In state s this function is at least as large as the original value function for policy π
- Consequently it is at least as large as the value function for policy π in every state

Markov Decision Processes

- There is at least one "best" policy
 - Has a value function that in every state is at least as large as the one of any other policy
 - "Best" policy can be picked by picking the policy that maximizes the utility in each state
- Considering picking a deterministic policy

$$V^{1\pi}(s) = r(s) + \gamma \max_{\Pi'} \sum_{s'} \sum_{a} \pi'(s, a) P(s' \mid s, a) V^{1\pi}(s')$$

$$= r(s) + \gamma \max_{\Pi'} \sum_{a} \pi'(s, a) \sum_{s'} P(s' \mid s, a) V^{1\pi}(s')$$

$$= r(s) + \gamma \max_{a} \sum_{s'} P(s' \mid s, a) V^{1\pi}(s')$$

- A "best" policy can be determined using Value iteration
 - Use dynamic programming using the recursion for best policy to determine the value function
 - Start with a random value function $V_o(s)$
 - Update the function based on the previous estimate

$$V_{t+1}(s) = r(s) + \gamma \max_{a} \sum_{s'} P(s' \mid s, a) V_{t}(s')$$
• | Solution | S

- The resulting value function is the value function of the optimal policy, V*
- Determine the optimal policy

$$\pi^*(s) = \operatorname{argmax}_a r(s) + \gamma \sum_{s'} P(s' \mid s, a) V^*(s')$$

- Value iteration provides a means of computing the optimal value function and, given the model is known, the optimal policy
 - Will converge to the optimal value function
 - Number of iterations needed for convergence is related to the longest possible state sequences that leads to non zero reward
 - Usually requires to stop iteration before complete convergence using a threshold on the change of the function
- Solving as a system of equations is no longer efficient
 - Nonlinear, non-differentiable equations due to the presence of max operation

Value Iteration Example

Grid world task with four actions: up,

down, left, right

Goal and obstacle are absorbing

 Actions succeed with probability 0.8 and otherwise move sideways

- The Q function provides an alternative utility function defined over state/action pairs
 - Represents utility defined over a state space where the state representation includes the action to be taken
 - Alternatively, it represents the value if the first action is chosen according to the parameter and the remainder according to the policy

$$\begin{split} Q^{\pi}(s,a) &= r(s) + \gamma \sum_{s'} P(s' \mid s,a) V^{\pi}(s') \\ V^{\pi}(s) &= \sum_{a} \pi(s,a) Q^{\pi}(s,a) \\ &\bullet \mathsf{T} Q^{\pi}(s,a) = r(s) + \gamma \sum_{s'} P(s' \mid s,a) \sum_{b} \pi(s',b) Q^{\pi}(s',b) \end{split}$$

- As with state utility, state/action utility can be used to determine an optimal policy
 - Pick initial Q function Q₀
 - Update function using the recursive definition

$$P(s) = P(s) + \gamma \sum_{s'} P(s' | s, a) \max_{b} Q_t(s', b)$$

- Converges to optimal state/action utility function Q*
- Determine optimal policy as
- State $\pi^*(s) = \underset{argmax}{\operatorname{argmax}} Q^*(s,a)$ es computation of more values sur accompany transition probabilities to pick optimal policy from Q^*

- Convergence of value iteration in systems where state sequences leading to some reward can be arbitrary long can only be achieved approximately
 - Need threshold on change of value function
 - Some chance that we terminate before the value function produces the optimal policy
 - But: policy will be approximately optimal (i.e. the value of the policy will be very close to optimal
- To guarantee optimal policy we need an algorithm that is guaranteed to converge in finite time

Monte Carlo Methods

- Techniques so far for MDPs are not learning
 - They do not benefit from data
- Dynamic Programming
 - Requires complete knowledge of the MDP
 - Spends equal time on each part of the state space
 - In sparse state spaces many states are irrelevant
 - Complexity increases with the number of states (n) and the length of episodes (k)
 - Policy-specific value function: O(n³)
 - Optimal policy value function: O(n²*k)
- If model parameters are not known we can use • Manfre Monte Carlo methods using samples to learn

64

Monte Carlo Methods

- Monte Carlo methods use random samples
 - Sample trajectories are generated according to the transition probabilities (and a fixed policy)
 - Averaging accumulated value of trajectories

$$V^{\pi}(s) \approx \sum_{(s_0 a_0 r_0, \dots, s_{k_i} a_{k_i} r_{k_i}) \mid s_0 = s} \frac{1}{N_s} \sum_{t=0}^{k_i} \gamma^k r_k$$

$$N_s = \left| \left\{ (s_0 a_0 r_0, ..., s_{k_i} a_{k_i} r_{k_i}) \middle| s_0 = s \right\} \right|$$

Temporal Difference Methods

- Simple Monte Carlo methods use random samples of entire trajectories
 - Value function learned is the one for the policy used to generate the samples
 - Learning of values only after the entire trajectories are generated
- Temporal Difference methods use an estimate of the state value to bootstrap
 - Learning from single transitions
 - More efficient use of the Markov assumption

Temporal Difference Methods

- Temporal Difference methods use random sampling of transitions to update value estimate based on the previous estimate
 - At each step one state value estimate is updated using the TD error

$$V^{\pi}(s_{t}) \leftarrow (1 - \alpha)V^{\pi}(s_{t}) + \alpha \left(r_{t} + \gamma V^{\pi}(s_{t+1})\right)$$

$$= V^{\pi}(s_{t}) + \alpha \left(r_{t} + \gamma V^{\pi}(s_{t+1}) - V^{\pi}(s_{t})\right)$$

Fully incremental

Simple Monte Carlo vs. Temporal Difference Methods

- TD methods are fully incremental
 - Learn before the entire outcome is known
 - Learn from incomplete sequences
- TD and MC converge given certain assumptions on α
 - If samples fully represent the Markov Chain they will converge to the same solution
 - Generally, TD will converge faster
 - If samples are biased they will converge to different solutions
 - MC converges to best estimate over samples independent of state (and thus Markov assumption)
 - TD will converge to value of the best fitting Markov Model

Solving MDPs

- Simple MC and TD can learn the value function for the policy used for sampling
 - To learn optimal policy it is necessary to estimate value of the optimal policy.
 - Need to determine how to get improved policy value

$$V'(s) = \max_{a} \left(R(s) + \gamma \sum_{s'} P(s' \mid s, a) V(s') \right),$$
improvement

 Or need to remove the max from the value improvement improvement by limiting action choices to one

Actor-Critic Approach

- Actor-Critic systems use a separate learner to estimate the optimal policy
 - Actor: executes actions according to a policy estimate and an exploration strategy
 - Learns to estimate the optimal policy using feedback from the critic
 - Critic: learns the value function of the policy executed by the actor
 - Provides feedback to the actor in the form of the TD-error

Actor-Critic Approach

- Critic uses TD-learning to estimate the state value function of the actor's policy
 - Critic feedback is the difference between the expected value of the outcome of the policy and the outcome of the action taken by the actor

$$\varepsilon(s,a) = r + \gamma V^{\pi}(s') - V^{\pi}(s)$$

Actor uses the feedback to update its policy

$$\pi(s,b) = \begin{cases} \xi \max(0,\pi(s,b) + \beta_{\varepsilon}\varepsilon(s,a)) & b = a \\ \xi \pi(s,b) & b \neq a \end{cases}$$

$$\xi = \max(0, \pi(s,b) + \beta_{\varepsilon}\varepsilon(s,a)) + \sum_{b \neq a} \pi(s,b)$$

Actor-Critic Approach

- Actor-Critic systems will only converge under certain conditions
 - Critic has to have a correct estimate of the value of the actor's current policy
 - Actor has to largely execute the policy that it has learned (on-policy)
 - Critic has to have enough time to adapt its estimate to the changes in the (non-stationary) policy of the actor
 - Critic has to learn significantly faster than the actor

Direct Optimal Value **Function Estimation**

- Actor-Critic methods approximate the optimal evaluation function using policy improvement
- Estimating the optimal state value function directly only works if we know the optimal policy
 - If there is only one possible choice in each state then we can directly estimate the optimal value function

© Manfred Huber • We can treat the action as part of the state

State/Action Value Functions

• State/Action Value functions, $Q^{\pi}(s, a)$, represent the value of the outcome of taking action a in state s and then following policy π

$$Q^{\pi}(s,a) = R(s) + \gamma \sum_{s'} P(s' | s,a) V^{\pi}(s')$$

State value depends on policy in the state

$$V^{\pi}(s) = \sum_{a} \pi(s,a) Q^{\pi}(s,a)$$

For deterministic nolicies

$$V^{\pi}(s) = Q^{\pi}(s, \pi(s))$$

Temporal difference sampling leads to

$$Q^{\pi}(s,a) \leftarrow Q^{\pi}(s,a) + \alpha \left(R(s) + \gamma \sum_{b} \pi(s',b) Q^{\pi}(s',b) - Q^{\pi}(s,a) \right)$$

Q-Learning

State/Action value function for the optimal policy

$$Q^{*}(s,a) = R(s) + \gamma \sum_{s'} P(s' | s,a) V^{*}(s')$$

•Since there is a deterministic optimal policy the state value is the value of the best action $\operatorname{C}^{\mathsf{h}}V^{*}(s) = \max_{a} Q^{*}(s,a)$

$$^{\bullet T}Q^*(s,a) = R(s) + \gamma \sum_{s'} P(s' | s,a) \max_b Q^*(s',b)$$

Q-Learning

- max is no longer part of the sampling average but of the sample value estimate
 - $Q(s,a) \leftarrow Q(s,a) + \alpha (R(s) + \gamma \max_b Q(s',b) Q(s,a))$ estimate
 - If O(s|a) converges (no longer changes) it is the $\pi^*(s) = \operatorname{argmax}_a Q^*(s,a)(s,a)$
 - Optimal policy can be directly extracted

Q-Learning

- Q-Learning is one of the most used Reinforcement Learning algorithms
 - Simple to apply
 - Fully on-line
 - Updated after every action
 - Off-policy
 - Can learn the correct policy (and value function) while executing a different task
 - Can learn multiple tasks (policies) at the same time
 - Can be used with different exploration strategies

Reinforcement Learning

- More Reinforcement Learning algorithms exist
 - Value function learning, e.g.
 - Q-Lambda
 - SARSA
 - Policy learning methods, e.g.
 - Policy gradient
 - Policy hill-climbing
 - Model-based learning, e.g.
 - Dyna
 - Optimal control-based

Reinforcement Learning

- Reinforcement Learning learns from potentially intermittent feedback
 - Usually used to learn action strategies
 - Can also be used to learn other output when only feedback (and no target output) is available
- Reinforcement Learning operates by maximizing a utility that is derived from the feedback (reward)
 - Can be used for temporal/sequential decision making and to determine output sequences