Les suites

Une suite est « comme une fonction », la différence est que la variable (le $\ x$) est nécessairement un nombre entier naturel noté $\ n$.

Calculer les premiers termes d'une suite

On considère les suites suivantes :

1) Pour tout
$$n \in \mathbb{N}$$
,
$$u_n = 3n^2 - 1$$

2) Pour tout
$$n \in \mathbb{N}$$
,
$$v_{n+1} = 2v_n - 1$$
$$v_0 = 2$$

La suite u_n est définie comme une fonction : on peut calculer la valeur de u directement à partir de la valeur de n (par exemple : $u_8 = 3 \times 8^2 - 1 = 191$).

La suite v_n est différente car il n'est pas possible de calculer un terme à partir de la valeur de n. Il est nécessaire de connaître la valeur du terme précédent (par exemple : v_8 =2× v_7 -1). On dit que la suite v_n est définie par récurrence.

On calcule les premiers termes :

1)
$$u_0 = 3 \times 0^2 - 1 = -1$$

 $u_1 = 3 \times 1^2 - 1 = 2$
 $u_2 = 3 \times 2^2 - 1 = 11$
 $u_3 = 3 \times 3^2 - 1 = 26$
etc...

2)
$$v_0=2$$

 $v_1=2\times v_0-1=3$
 $v_2=2\times v_1-1=5$
 $v_3=2\times v_2-1=9$
etc...

Reconnaître une suite arithmétique et une suite géométrique

$$(u_n)$$
 suite arithmétique de raison r : (u_n) suite géométrique de raison q : $u_{n+1} = u_n + r$ $u_{n+1} = q \times u_n$

Exemples:

- $u_0=4$ et $u_{n+1}=u_n+3$: arithmétique de raison r=3 et premier terme $u_0=4$.
- $u_0=7$ et $u_{n+1}=3u_n$: géométrique de raison q=3 et premier terme $u_0=7$.
- $u_1 = -2$ et $u_{n+1} = u_n 5$: arithmétique de raison r = -5 et premier terme $u_1 = -2$.
- $u_0 = -3$ et $u_{n+1} = \frac{u_n}{3}$: géométrique de raison $q = \frac{1}{3}$ et premier terme $u_0 = -3$.

Démontrer qu'une suite est arithmétique

La suite (u_n) définie par $u_n = 7 - 9n$ est-elle arithmétique ?

 (u_n) est suite arithmétique de raison r si $u_{n+1}=u_n+r$.

On peut réécrire cette relation sous la forme : $u_{n+1}-u_n=r$.

Donc, prouver que la suite (u_n) est arithmétique signifie vérifier que la différence $u_{n+1}-u_n$ est une constante.

On calcule alors:

$$u_{n+1}-u_n=7-9(n+1)-(7-9n)=7-9n-9-7+9n=-9$$
.

On peut conclure que (u_n) est une suite arithmétique de raison r=-9 .

Démontrer qu'une suite est géométrique

La suite (u_n) définie par $u_n=3\times 5^{n+1}$ est-elle géométrique ?

 (u_n) suite géométrique de raison q si $u_{n+1}=q\times u_n$.

On peut réécrire cette relation sous la forme : $\frac{u_{n+1}}{u_n} = q$.

Donc, prouver que la suite (u_n) est géométrique signifie vérifier que le quotient $\frac{u_{n+1}}{u_n}$ est une constante.

On calcule alors:

$$\frac{u_{n+1}}{u_n} = \frac{3 \times 5^{n+1+1}}{3 \times 5^{n+1}} = \frac{5^{n+2}}{5^{n+1}} = 5^{n+2-(n+1)} = 5^{n+2-n-1} = 5.$$

On peut conclure que (u_n) est une suite géométrique de raison q=5 .

Déterminer l'expression générale d'une suite arithmétique

Si (u_n) est suite arithmétique de raison r et premier terme u_0 , alors l'<u>expression générale</u> de la suite est :

$$u_n = u_0 + nr$$

Si (u_n) est suite arithmétique de raison r et premier terme u_p , alors l'<u>expression générale</u> de la suite est :

$$u_n = u_p + (n-p)r$$

Exemple : l'expression générale de la suite arithmétique définie par $u_1=5$ et $u_{n+1}=u_n+3$ est :

$$u_n = u_1 + (n-1)r = 5 + (n-1) \times 3 = 5 + 3n - 3 = 2 + 3n$$
, donc $u_n = 2 + 3n$.

Déterminer l'expression générale d'une suite géométrique

Si (u_n) est suite géométrique de raison q et premier terme u_0 , alors l'expression générale de la suite est :

$$u_n = u_0 \times q^n$$

Si (u_n) est suite géométrique de raison q et premier terme u_p , alors l'expression générale de la suite est :

$$u_n = u_p \times q^{n-p}$$

Exemple : l'expression générale de la suite géométrique définie par $u_1=5$ et $u_{n+1}=2u_n$ est :

$$u_n = u_1 \times q^{n-1} = 5 \times 2^{n-1} = 5 \times 2^n \times 2^{-1} = 2,5 \times 2^n$$
, donc $u_n = 2,5 \times 2^n$.

Déterminer l'expression générale d'une suite arithmético-géométrique

On considère la suite arithmético-géométrique (u_n) définie par :

$$u_{n+1}=1,03u_n+300$$
 et $u_0=5000$.

On donne la suite (v_n) définie par : $v_n = u_n + 10000$.

1. Démontrer que (v_n) est une suite géométrique dont on précisera la raison et le premier terme.

Le premier terme de la suite est : $v_0 = u_0 + 10000 = 5000 + 10000 = 15000$.

La suite (v_n) est une suite géométrique de raison q si $v_{n+1}=q\times v_n$. On cherche alors le terme v_{n+1} :

$$v_{n+1} = u_{n+1} + 10000 = 1,03 u_n + 300 + 10000 = 1,03 u_n + 10300$$
.

Attention! Voici la partie un peu délicate de la démonstration!

Il va falloir factoriser cette expression:

$$v_{n+1} = 1,03 u_n + 10300 = 1,03 \left(u_n + \frac{10300}{1,03} \right) = 1,03 \left(u_n + 10000 \right) = 1,03 v_n$$
.

Donc (v_n) est une suite géométrique de raison q=1,03 et premier terme $v_0=15000$.

2. Déterminer l'expression générale de (v_n) et (u_n) .

Si (v_n) est suite géométrique de raison q et premier terme v_0 , alors l'expression générale de la suite est : $v_n = v_0 \times q^n$.

Donc: $v_n = 15000 \times 1,03^n$.

En utilisant la définition de (v_n) , on peut écrire : $u_n = v_n - 10000$.

On peut conclure : $u_n = 15000 \times 1,03^n - 10000$.

Limite et sens de variation d'une suite arithmétique

On considère la suite arithmétique (u_n) de raison r et premier terme u_0 : $u_n = u_0 + nr$.

La limite de cette suite est : $\lim_{n\to +\infty} u_n = u_0 + \lim_{n\to +\infty} nr$.

On a deux cas:

$$r>0$$
 : $\lim_{n\to +\infty} u_n = u_0 + \lim_{n\to +\infty} nr = +\infty$ $r<0$: $\lim_{n\to +\infty} u_n = u_0 + \lim_{n\to +\infty} nr = -\infty$

On peut conclure que <u>une suite arithmétique est toujours divergeant</u>.

Une suite arithmétique est :

croissante si $u_{n+1}-u_n>0$	décroissante si $u_{n+1}-u_n < 0$
-------------------------------	-----------------------------------

Exemple : On considère une suite arithmétique (u_n) de raison 0,01 et premier terme $u_2=4$.

1. Définir (u_n) .

$$u_{n+1} = u_n + 0.01$$
 et $u_2 = 4$.

2. Déterminer l'expression générale de (u_n) .

$$u_n = u_2 + (n-2) \times 0.01 = 4 + 0.01 n - 0.02 = 3.98 + 0.01 n$$
.

3. Déterminer le sens de variation.

$$u_{n+1}-u_n=0.01 \Rightarrow u_{n+1}-u_n>0$$
, donc (u_n) est croissante.

4. Déterminer la limite.

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} (3.98 + 0.01 n) = 3.98 + \lim_{n \to +\infty} 0.01 n = +\infty .$$

Limite et sens de variation d'une suite géométrique

On considère la suite arithmétique (u_n) de raison q et premier terme u_0 : $u_n = u_0 \times q^n$.

La limite de cette suite est : $\lim_{n\to +\infty} u_n = u_0 \times \lim_{n\to +\infty} q^n$.

On a quatre cas:

q	$q \le -1$	-1 <q<1< th=""><th>q=1</th><th>q>1</th></q<1<>	q=1	q>1
$\lim_{n\to +\infty}q^n$	Pas de limite	0	1	+∞

Exemple: 1)
$$\lim_{n \to +\infty} 4^n = +\infty$$
 2) $\lim_{n \to +\infty} \left(\frac{1}{3}\right)^n = 0$ 3) $\lim_{n \to +\infty} \left(3^n + 2\right) = +\infty$.

2)
$$\lim_{n \to +\infty} \left(\frac{1}{3} \right)^n = 0$$

3)
$$\lim_{n \to +\infty} (3^n + 2) = +\infty$$

Sens de variation:

	0 <q<1< th=""><th>q=1</th><th>q>1</th></q<1<>	q=1	q>1
$u_0 > 0$	décroissante	constante	croissante
<i>u</i> ₀ <0	croissante	constante	décroissante

Exemple:

1)
$$u_n = -4 \times 2^n$$
 . (u_n) est décroissante car $u_0 = -4 < 0$ et $q = 2 > 1$.

2)
$$v_{n+1} = \frac{1}{2}v_n$$
 et $v_0 = -2$. (v_n) est croissante car $v_0 = -2 < 0$ et $0 < q = \frac{1}{2} < 1$.