Can the Fisher-Lande Process Account for Birds-of-Paradise and Other Sexual Radiations?

Stevan J. Arnold & Lynne D. Houck

Department of Integrative Biology
Oregon State University

Argument

- Models of the FLP have been successful, but
- Their predictions are seldom (never?) tested.
- The Phenotypic Tango, a more general version of the model, offers some improvements.
- Its predictions can be evaluated with simulations, but
- Can the Phenotypic Tango account for actual sexual radiations (e.g., the bird-of-paradise radiation)?
- What about popular generic models (BM & OU)? Can they account for the b-o-p radiation?
- Conclusions
- Some directions for the future

Fisher's Insight

Ronald A. Fisher (1890-1962)

"The two characteristics affected by such a process, namely plumage development in the male, and sexual preference for such development in the female, must thus advance together ... with everincreasing speed."

Fisher 1915, 1930

Lande's model: coevolving within-population distributions of ornaments and preferences

Russell Lande

Ingredients of the Fisher-Lande Process

- A male ornament affects male survival and –
 via female preference mating success,
- Female mating preference is based on the ornament but does not affect the survival or fecundity of the female.
- Both traits are heritable and because of assortative mating and sexual selection on males – genetically correlated.

Walk-towards and Runaway Outcomes

Stabilizing natural selection towards an intermediate ornament optimum halanced by

balanced by opposing sexual selection

Problem: failure to connect the models with real sexual radiations

Solution: Birds-of-Paradise, an Iconic Sexual Radiation

- Time-calibrated phylogeny
- Male display and female choice
- Morphological components of male display
- Data on male morphology

Diversification over 23 million years

Special features of plumage presented during male displays

https://www.facebook.com/Birds.Lovers.1/videos/1003571246388699/

Phenotypic tango: a more general model of the FLP

- Two male display traits (ornaments)
- Two female preference traits
- Selection on female preference
- Finite population size

Phenotypic tango: a more general model of the FLP

 GOOD NEWS! - Model more general than past versions

BAD NEWS! – No analytical solution for model

 MORE GOOD NEWS! – Can determine the model's behavior with simulations

Phenotypic tango: evaluating the model's behavior with simulations

Phenotypic tango: evaluating the model's behavior with simulations

For animations, see

http://phenotypicevolution.com/?p=221

These animations will not run in Chrome

\bigcirc

Accounting for the Bird-of-Paradise radiation with the Phenotypic Tango

Phenotypic differentiation in the genus Paradisaea over 9 million years

rudolphi

guilielmi

rubra

decora

minor

apoda

raggiana

How much evolution? ± 12 phenotypic standard deviations in 188,000 generations

Mary LeCroy

The Phenotypic Tango can account for bivariate patterns in the data

The Phenotypic Tango can account for the observed amount of diversification

The Phenotypic Tango can account for the observed amount of diversification

Conclusions using the Phenotypic Tango model

- Evolving preferences control the evolution of ornaments
- Can account for diversification patterns in single and multiple ornaments
- To account for the extent of ornament diversification on right timescale, we need to invoke:
 - Very weak stabilizing selection on preferences and relatively small effective population sizes
 - Or natural selection optima must move at a modest rate

Accounting for the Bird of Paradise radiation with generic models: Brownian motion & Ornstein-Uhlenbeck

- GOOD NEWS! Analytical solutions available.
- BAD NEWS! The parameters we estimate confound inheritance, selection, and pop. size.
- GOOD NEWS! We can account for phylogeny.
- GOOD NEWS! We can use likelihood to compare alternative models

Accounting for the Bird-of-Paradise radiation with generic models

- The contrast between Brownian Motion (BM) and Ornstein-Uhlenbeck (OU) models
- Testing model predictions on the Bird-of-Paradise tree
- Do we need more than one selection regime (poor man's version of moving optimum) to account for the data?
- Can we use this framework to estimate FLP parameters?

Contrasting model predictions

Two versions: genetic drift or Brownian motion of peak

Tree for the genus Paradisaea: two hypothetical selection regimes

Tests of alternative generic models: using generic BM & OU parameters in OUwie

Table 3. Comparison of Brownian Motion and Ornstein-Uhlenbeck model fits				
model	ΔAICc	Regime 1	Regime 2	
BMS	0.00	$\sigma^2=3.18$	$\sigma^2 = 110.81$	
OUM	1.11	$\sigma^2 = 443.51$, $\theta = 52.60$, $\alpha = 12.49$	$\sigma_{\bigcirc}^2 = 443.51$, $\theta = 59.29$, $\alpha = 12.49$	
OU1	3.80	$\sigma^2 = 165.39$, $\theta = 55.13$, $\alpha = 3.14$		
BM1	6.08	$\sigma^2=72.42$		

 σ^2 = stochastic diversification rate = increase in among-lineage variance in trait means per 200,000 generations

 θ = phenotypic optimum

 α = restoring force, the rubber band in the OU process

Tests of alternative generic models: using quantitative genetic parameters

Table 4. Comparison of Brownian Motion and Ornstein-Uhlenbeck model fits				
model	AICc	Regime 1	Regime 2	
BMS	0.00	N_e = 25,157; var_{θ} = 0.000016	N_e = 722; var_{θ} = 0.00055	
OUM	1.11	ω = 6,404		
OU1	3.80	ω = 25,477		
BM1	6.08	N_e = 1,105; $var_{ heta}$ = 0.00036		

Under the genetic drift interpretation of BM, $\sigma^2 = tG/N_e$, solve for N_e ; or under moving optimum interpretation of BM, $\sigma^2 = t \ var_\theta$, solve for var_{θ} . Using the OU models, solve $\alpha = tG/(\omega + P)$ for ω = width of fitness function, analogous to a variance.

Visualizing very weak stabilizing selection

Conclusion using generic models (OUwie): need moving peaks

- Brownian motion of a natural selection optimum for preferences is the best-fitting and most plausible model for the data.
- This conclusion is consistent with results using the Phenotypic Tango model.
- BM of an intermediate optimum may be a reasonable model for adaptive radiations in general.

The Future

- Need solution for Phenotypic Tango model
- Need a version of the model that includes peak movement
- Need better data and more of it
- Need testing framework for model that incorporates prior information and estimates multivariate quantitative genetic parameters

Uyeda & Harmon 2014

Acknowledgements

NESCent/NIMBioS Course in Evolutionary Quantitative Genetics:

Joe Felsenstein = co-organizer; with Patrick Carter, Patrick Phillips, Adam Jones, Trudy Mackay, Marguerite Butler, Emilia Martins, Paul Hohenlohe, Liam Revell, Brian O'Meara, Luke Harmon, Michael Whitlock, Josef Uyeda, Tyler Heather, Matt Pennell = guest instructors.

Illustrations: Ivan Phillipsen

References

- Arnold, S. J. & L. D. Houck. 2016. Can the Fisher-Lande process account for birds of paradise and other sexual radiations. American Naturalist 187:000-000.
- Fisher, R. A. 1930. The genetical theory of natural selection.
 Clarendon, London.
- Lande, R. 1981. Models of speciation by sexual selection on polygenic traits. Proc. Nat. Acad. Sci. USA 78:3721–3725.
- LeCroy, M. 1981. The genus *Paradisaea* display and evolution. American Museum Novitates 2714: 1-52.
- Irestedt, M., K. A. Jønsson, J. Fjeldså, L. Christidis and P. G. P. Ericson. 2009. An unexpectedly long history of sexual selection in birds-of-paradise. BMC Evolutionary Biology 9, No. 235.
- Beaulieu, J. M., D.-C. Jhwueng, C. Boettiger, and B. C. O'Meara. 2012. Modeling stabilizing selection: Expanding the Ornstein-Uhlenbeck model of adaptive evolution. Evolution 66: 2369-2383.