Introduction to machine learning

DeepMind

Healthcare Medical images analysis

Luc Lesoil

Presentation

I. Supervised learning

Break – A video to introduce DiverSE

- II. Unsupervised learning
- III. Reinforcement learning

Introduction

High-level presentation

Non-exhaustive list

Concrete cases

I- Supervised learning

X : images of numbers

y : numbers

357 40 1

X : Explaining variables

y: Variable to predict, labels known

Train the model

Learn X → y

Predict ŷ, estimations of y Compare with real y values

Test

the model

У

Supervised learning = Use X to predict y

Loss function

Compare quality of predictions?

Loss function

Minimize the loss function

=

better predictions

Tux

https://towardsdatascience.com/common-loss-functions-in-mac hine-learning-46af0ffc4d23

https://algorithmia.com/blog/introduction-to-loss-functions

Examples

MAE MAPE

Hinge

Minkowski

MSE

Cross-entropy

Type of Supervised learning

Classification

→ Group or category

Regression

→ Value

Linear regression

Simple

Complex dataset

Linear relationship

Fit the scatterplot with the red line

 \star is the prediction of x = \bullet

Decision Tree (CART)

Extract rules

Simple to parameter

Learning unit for many algorithms

Classification Regression

Random Forest

• Bagging → robustness

Metrics

Good compromise

Boosting tree

Complex dataset

Many hyperparameters

 XGBoost: the algorithm that wins every competition

Update the trees based on previous results

AdaBoost

XGBoost

Classification Regression

Neural networks

Simple dataset

Many hyperparameters

Black box

Feedforward neural network

Classification Regression

Others

 Quantile/Polynomial/Piecewise regression, Ridge, ElasticNet, LASSO to select explaining variables

Support Vector Machine: SVC or SVR

Time series predictions: (S)AR(I)MA, RNN

Break – Video

We need
YOU!

Introduce the team

• You Tube channel

• 30 seconds

You have a good microphone and-or a beautiful voice?

Can we use your photo?

You want to share a demo?

You want to write the description of the team?

You want to add a software in the list?

II- Unsupervised learning

Clustering

Association

Anomaly detection

Kmeans

Simple clustering

Fast

Few parameters

Gaussian Mixture Model

Gaussian distribution

Estimation of K

Scale well - fast

K-Nearest neighbors

 Used in recommendation systems

Supervised

 "You are the average of the five people you spend the most time with"

1 is the nearest neighbor of 3 0 is the second nearest

Hierarchical clustering

Quadratic O(n²)

Not designed for big dataset

Full description of relationships

Hierarchical clustering (2)

Quadratic O(n²)

Not designed for big dataset

Full description of relationships

III- Reinforcement Learning

Based on behavioral psychology

Realistic learning

Google - energy consumption -15%

Traffic control

Notions

Agent, State Policy

- Goal
- (State, Action) → Reward
- Q-Table

Reinforcement Learning

Step: 1

World: You are in state 9. Choose action A or C.

Learner: Action A.

World: Your reward is 100.

Step: 2

World: You are in state 32. Choose action B or E.

Learner: Action B.

World: Your reward is 50.

Step: 3

Example

References

- Mnist dataset, scikit-learn documentation
- https://internetofbusiness.com/google-using-deepmind-ai-to-reduce-energy-cons umption-by-30/
- https://www.slideshare.net/cprakash2011/reinforcement-learning-40052403/5
- https://brilliant.org/wiki/gaussian-mixture-model/
- https://perfectial.com/blog/q-learning-applications/
- MARIQ : https://www.youtube.com/watch?v=CacRZmjDIr4
- The egg, Andy Weir