Özdevinirler Kuramı ve Biçimsel Diller

1.1. Sonlu Özdevinir (FA) Modeli

- → Sonlu özdevinir (*finite automata*: FA) modeli, kesikli giriş ve çıkışları olan matematiksel bir modeldir.
- **→** Sonlu özdevinirleri öncelikle:

Sonlu durumlu tanıyıcı (finite state recognizer)

Çıkış üreten özdevinir

modelleri olarak sınıflandırmak mümkündür.

→ Sadece "Sonlu özdevinir" denildiğinde "Determinitik Sonlu Durumlu Tanıyıcı" anlaşılır.

1.1.1. Deterministik Sonlu Özdevinir (DFA) Modeli

DFA =
$$< Q, \Sigma, \delta, q_0, F >$$

Temel modelde geçiş işlevi matematiksel olarak:

$$\delta(q_i, a) = q_i$$
 $\forall q_i \in Q, \ a \in \Sigma \Rightarrow q_i \in Q$ biçiminde tanımlanır.

 \triangleright Örnek 1.1. $M_{1,1} = \langle Q, \Sigma, \delta, q_0, F \rangle$

$$Q = \{ q_0, q_1, q_2 \}$$

$$\Sigma = \{ 0, 1 \}$$

$$\mathbf{F} = \{ \mathbf{q}_2 \}$$

$$\delta$$
: $\delta(q_0, 0) = q_0$

$$\delta(\mathbf{q}_0, \mathbf{1}) = \mathbf{q}_1$$

$$\delta(\mathbf{q}_1, \mathbf{0}) = \mathbf{q}_0$$

$$\delta(\mathbf{q}_1, \mathbf{1}) = \mathbf{q}_2$$

$$\delta(\mathbf{q}_2, \mathbf{0}) = \mathbf{q}_2$$

$$\delta(\mathbf{q}_2, \mathbf{1}) = \mathbf{q}_2$$

Geçiş Çizeneği

→ DFA'nın Tanıdığı Dizgiler Kümesi

$$T(M) = \{ w \mid \delta(q_0, w) = q_i \in F \}$$

$$T(M_{1,1}) = \{ 11, 011, 110, 0110, 0110, 01011, \dots \}$$

 $T(M_{1.1})$ sözlü olarak, { 0, 1 } alfabesinde, içinde 11 altdizgisi bulunan dizgiler kümesi olarak tanımlanabilir.

Örnek: w = 01001100 dizgisinin $M_{1,1}$ tarafından tanınması:

$$\mathbf{w} = \mathbf{0} \ \mathbf{1} \ \mathbf{0} \ \mathbf{0} \ \mathbf{1} \ \mathbf{1} \ \mathbf{0}$$

$$\uparrow \ \uparrow \ \uparrow \ \uparrow \ \uparrow \ \uparrow \ \uparrow \ \uparrow$$

 $\delta(q_0,\,0100110) = q_2 \text{ olduğu ve } q_2 \text{ bir uç durum olduğu için } 0100110$ $M_{1.1} \text{ tarafından tanınır.}$

 $\delta(q_0, 100101) = q_1$ olduğu ve q_1 bir uç durum olmadığı için 100101 $M_{1,1}$ tarafından tanınmaz.

Özdevinirler Kuramı ve Biçimsel Diller — Prof.Dr. Ünal Yarımağan

→ DFA'nın Şeritli Makine Modeli

1.1.2. Deterministik Olmayan Sonlu Özdevinir (NFA) Modeli

- ➢ Örnek 1.2. "{ a, b, c } alfabesinde, içinde abc ya da bac altdizgisi bulunan dizgiler kümesi"ni düşünelim ve bu kümeyi tanıyan DFA'yı M₁,₂ olarak adlandıralım.
- ► M_{1.2}'nin Deterministik Geçiş Çizeneği

- > Deterministik modelin kullanım güçlüğü var
- Deterministik olmayan (non deterministic) model kullanımı daha kolay ve daha esnek bir model
- Deterministik olmayan modelde geçiş işlevi: (Q x Σ)'dan Q'nun altkümelerine bir eşleme olarak tanımlanır.
- ightharpoonup Örnek 1.3. $M_{1,3} = < Q, Σ, δ, q_0, F >$

 $\delta(q_0,000) = \{q_0,\,q_1,\,q_3\} \text{ olduğu ve} \\ \text{bu kümede} \\ \text{bir uç durum bulunduğu için} \\ M_{1.3} \ 000 \ \text{dizgisini tanır}$

► M_{1,1} ve M_{1,2}'nin Deterministik Olmayan Geçiş Çizenekleri

b) $M_{1.2}$

1.1.3. *Lambda* (λ) Geçişi

Lambda boş simge olarak düşünülebilir. Lambda-geçişi ise, hiçbir giriş simgesi uygulanmadan (ya da işlenmeden) gerçekleşen durum geçişine karşı gelir.

- q_i ile q_j arasında λ geçişi varsa:
 q_i başlangıç durumu ise q_j de başlangıç durumu niteliği kazanır.
 q_i uç durum ise q_i de uç durm niteliği kazanır.
- **Örnek 1.4.**

$$T(M_{1.4}) = \{ 0^{2n} 1^{2m} 2^{2k} \mid n \ge 0, m \ge 0, k \ge 0 \}$$

a) λ - geçişsiz Geçiş Çizeneği

b) λ - geçişli Geçiş Çizeneği

Özdevinirler Kuramı ve Biçimsel Diller – Prof.Dr. Ünal Yarımağan

- \triangleright λ -geçişli bir geçiş çizeneği verildiğinde, λ -geçişlerini tek tek yok ederek eşdeğer bir geçiş çizeneği elde etmek mümkündür.
- \triangleright Bu kapsamda, q₁ ve q₂ durumları arasında q₁'den q₂'ye λ-geçişi varsa:
 - \rightarrow q₂ durumundan başalayan her durum geçişine ($\sqrt{\delta(q_2, a)} = q_k$) karşılık q₁ durumundan başlayan ve aynı giriş simgesi ile aynı duruma ulaşan bir durum geçişi ($\delta(q_1, a) = q_k$) eklendikten,
 - → eğer q₁ durumu başalangıç durumu ise, q₂ durumu da başlangıç durumu yapıldıktan,
 - eğer q₂ durumu bir uç durum ise, q₁ durumu da uç durum yapıldıktan sonra, λ- geçişi silinebilir.

Örnek 1.5. M_{1.5} makinesi, { a, b, c } alfabesinde, aa ile ya da çift sayıda b
 (0, 2, 4, ... tane b) ile başlayıp cc ile biten dizgiler kümesini tanıyan makine olsun.

Özdevinirler Kuramı ve Biçimsel Diller – Prof.Dr. Ünal Yarımağan

1.1.4. Deterministik ve Deterministik Olmayan Sonlu Özdevinir Modellerinin Denkliği

 \triangleright Örnek 1.6. $M_{1.6} = \langle Q, \Sigma, \delta, q_0, F \rangle$

a) Deterministik Olmayan Geçiş Çizeneği

	0	1
$\rightarrow_{\mathbf{A}}$	A	BC
В	В	AC
C	AB	C

b) Geçiş Çizelgesi

	0	1
→ A	A	ВС
BC	AB	AC
AB	AB	ABC
AC	AB	ВС
ABC	AB	ABC

c) Başlangıç Durumunun Ardılları Çizelgesi

d) Deterministik Geçiş Çizeneği