Hodge Index Theorem by Linear Algebra

Proposition 1. Let V be a real vector space of dimension n with a non-degenerated symmetric bilinear form $\langle -, - \rangle$. Consider the subset

$$S = \{x \in V \mid \langle x, x \rangle > 0\}.$$

Suppose that $S \neq \emptyset$ and there exists $z \in V$ such that $z^{\perp} \cap S = \emptyset$, then the signature of $\langle -, - \rangle$ is of type (1, n - 1), where $z^{\perp} = \{v \in V \mid \langle z, v \rangle = 0\}$.

Proof. Choose $h \in S$. We claim that the restriction of $\langle -, - \rangle$ on h^{\perp} is negative definite. First, the restriction is non-degenerated. Otherwise, note that h and h^{\perp} generate V. If there exists $0 \neq x \in h^{\perp}$ such that $\langle x, y \rangle = 0$ for all $y \in h^{\perp}$, then in particular $\langle x, h \rangle = 0$, thus $x \in h^{\perp}$ and $x \in V^{\perp} = \{0\}$, which is a contradiction.

Hence if the restriction is not negative definite, then there exists $x \in h^{\perp}$ such that $\langle x, x \rangle > 0$. Then consider the subspace V_0 generated by h and x. We have $h^2, x^2 > 0$ and $h \cdot x = 0$, thus the restriction of $\langle -, - \rangle$ on V_0 is of type (2,0). Hence $z^{\perp} \cap V_0 = \{0\}$. However, consider the dimension count

$$\dim(z^{\perp} + V_0) = \dim(z^{\perp}) + \dim(V_0) - \dim(z^{\perp} \cap V_0) = (n-1) + 2 - 0 = n+1 > n = \dim(V),$$

which is a contradiction.

Remark 2. Geometrically, we have the following equivalent statement:

- (a) $S \neq \emptyset$ and there exists $z \in V$ such that $z^{\perp} \cap S = \emptyset$;
- (b) the signature of $\langle -, \rangle$ is of type (1, n 1);
- (c) the set S has two connected components.

We have shown $(a) \Rightarrow (b)$ in Proposition 1. If the signature of $\langle -, - \rangle$ is of type (1, n - 1), then we can choose a basis such that the matrix of $\langle -, - \rangle$ is

$$\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & -1 & 0 & \cdots & 0 \\ 0 & 0 & -1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & -1 \end{pmatrix}.$$

Then the set S is given by the equation

$$x_1^2 - x_2^2 - \dots - x_n^2 > 0$$

which has two connected components, thus $(b) \Rightarrow (c)$. Finally, if S has two connected components, then for any $z \in S$, we claim that $z^{\perp} \cap S = \emptyset$. Otherwise, there exists $x \in z^{\perp} \cap S$. Considering on the subspace V_0 generated by z and x, we see that z and -z lie in the same connected component of S. For every $y \in S$, assume z.y > 0 (otherwise replace z by -z), then the line segment tz + (1-t)y for $t \in [0,1]$ connects z and y in S. Hence S is path connected, which is a contradiction.

Date: September 12, 2025, Author: Tianle Yang, My Homepage

Lemma 3 (Riemann-Roch theorem for surfaces). Let X be a smooth projective surface over an algebraically closed field \mathbbm{k} and D a divisor on X. Then we have

$$h^{0}(\mathcal{O}_{X}(D)) - h^{1}(\mathcal{O}_{X}(D)) + h^{0}(\mathcal{O}_{X}(K_{X} - D)) = \chi(\mathcal{O}_{X}) + \frac{1}{2}D \cdot (D - K_{X}),$$

where K_X is the canonical divisor of X.

Lemma 4. Let X be a smooth projective surface over an algebraically closed field \mathbb{k} and D a divisor on X. If $D^2 > 0$, then at least one of D and -D is pseudo-effective.

Proof. Suppose for contradiction that both D and -D are not pseudo-effective. In particular, we have $h^0(\mathcal{O}_X(mD)) = 0$ for all m > 0. By Lemma 3, we have

$$h^0(\mathcal{O}_X(K_X-mD)) \geq \chi(\mathcal{O}_X) + \frac{1}{2}mD \cdot (mD+K_X) > 0 \text{ for all } m \gg 0.$$

Hence there exist effective divisors $E_m \sim K_X - mD$ for all $m \gg 0$. We have $-D \sim_{\mathbb{Q}} \frac{1}{m}(E_m - K_X)$ is pseudo-effective, which is a contradiction.

Theorem 5. Let X be a smooth projective surface over an algebraically closed field \mathbb{k} . Then the intersection form on $\mathrm{NS}(X)_{\mathbb{R}} = \mathrm{NS}(X) \otimes_{\mathbb{Z}} \mathbb{R}$ is of type $(1, \rho(X) - 1)$, where $\rho(X) = \dim_{\mathbb{R}} \mathrm{NS}(X)_{\mathbb{R}}$ is the Picard number of X.

Proof. Note that both $\operatorname{Psef}(X) \setminus \{0\}$ and $-\operatorname{Psef}(X) \setminus \{0\}$ are convex cones in $\operatorname{NS}(X)_{\mathbb{R}}$ and they are disjoint. Hence there exists a hyperplane H in $\operatorname{NS}(X)_{\mathbb{R}}$ such that $H \cap \operatorname{Psef}(X) = \{0\}$ by the geometric form of Hahn-Banach theorem. By Lemma 4,

$$H\cap \{D\in \mathrm{NS}(X)_{\mathbb{R}}\mid D^2>0\}=\varnothing.$$

Then the conclusion follows from Proposition 1.