ELECTRONIC COMPONENT ASSORTMENT 2200 pcs

RESISTORS, CAPACITORS, ELECTROLYTIC CAPACITORS, TRANSISTORS, INDUCTORS, DIODES, ZENER DIODES, PHOTORESISTORS, HEADERS TERMINALS, POTENTIOMETERS, RM065 TRIM POTENTIOMETERS, CRYSTAL OSCILLATORS, , PROTOTYPE PCBS, LED 3MM 5MM, SWITCHES,

Zebulon

Contenido

1

Introducción a los Componentes Electrónicos

Clasificación y funciones básicas

2

Componentes Pasivos

Resistencias, condensadores e inductores

3

Componentes Activos

Diodos, transistores y circuitos integrados

4

Simbología y Nomenclatura

Códigos de identificación y representación

5

Puertas Lógicas

Operaciones lógicas y tablas de verdad

Introducción a los Componentes Electrónicos

Definición y Clasificación

Elementos físicos que **manipulan electrones** y sus campos asociados para realizar funciones específicas en circuitos electrónicos.

Pasivos

No amplifican ni generan señales eléctricas

Activos

Amplifican, controlan o generan señales

Electromecánicos

Combinan componentes eléctricos y mecánicos

Evolución Histórica

1900-1950

Tubos de vacío

Componentes voluminosos y de alto consumo

1950-1970

Transistores

Miniaturización y eficiencia energética

1970-Actualidad

Circuitos integrados

Millones de componentes en un solo chip

Evolución de componentes electrónicos a lo largo del tiempo

Importancia en Circuitos

Los componentes electrónicos son **fundamentales** para el funcionamiento de cualquier dispositivo electrónico moderno.

Símbolos estándar de componentes electrónicos en circuitos

Componentes Pasivos

♥ ¿Qué son los Componentes Pasivos?

Elementos que **no pueden introducir energía** en un circuito, solo la consumen, almacenan o disipan. No amplifican ni generan señales eléctricas.

E Comparación de Componentes Pasivos

Componente	Función Principal	Comportamiento en DC	Comportamiento en AC	Aplicaciones Típicas
Resistencia	Oposición al flujo de corriente	Conductora	Conductora	Limitación de corriente, división de voltaje
Condensador	Almacenamiento de energía eléctrica	Aislante (circuito abierto)	Conductora (depende de frecuencia)	Filtrado, temporización, acoplamiento
Inductor	Almacenamiento de energía magnética	Conductora (corto circuito)	Resistencia (depende de frecuencia)	Filtrado, almacenamiento de energía

Resistencias

Tipos y Características

Fijas

Valor constante

Variables

Valor ajustable

Especiales

NTC, PTC, LDR

Conexión en Serie

$$R_T = R_1 + R_2 + ...$$

Conexión en Paralelo

$$1/R_T = 1/R_1 + 1/R_2 + ...$$

Nomenclatura y Parámetros

Parámetro	Símbolo	Unidad	Descripción
Resistencia	R	Ω (Ohmio)	Oposición al flujo de corriente
Potencia	Р	W (Vatio)	Energía disipada como calor
Tolerancia	-	%	Precisión del valor nominal
Coef. Temp.	TC	ppm/°C	Variación con temperatura

Aplicaciones Principales

★ Limitación de corriente

÷ División de voltaje

Sensores

◆ Atenuación

Carga

Temporización

Dato Importante

El código de colores permite identificar el valor de una resistencia sin necesidad de instrumentos de medición. Cada banda representa un dígito, multiplicador o tolerancia.

Condensadores

Tipos y Características

Cerámicos

Bajo costo, tamaño reducido

Tantalio

Estabilidad, alta densidad

Electrolíticos

Alta capacitancia, polarizados

Variables

Valor ajustable

Carga

Acumulación de energía en campo eléctrico

Descarga

Liberación de energía almacenada

Nomenclatura y Parámetros

Parámetro	Símbolo	Unidad	Descripción
Capacitancia	С	F (Faradio)	Capacidad de almacenar carga
Voltaje Máx.	V_{max}	V (Voltio)	Tensión máxima de trabajo
Tolerancia	-	%	Precisión del valor nominal
ESR	R _{ESR}	Ω (Ohmio)	Resistencia serie equivalente

Conexión en Serie

$$1/C_T = 1/C_1 + 1/C_2 + ...$$

Conexión en Paralelo

$$C_T = C_1 + C_2 + ...$$

Aplicaciones Principales

▼ Filtrado

Temporización

★ Acoplamiento

Almacenamiento

♣ Osciladores

Desacoplamiento

• Dato Importante

Los condensadores **electrolíticos** son polarizados y deben conectarse correctamente. Una conexión inversa puede provocar su destrucción o incluso explosión.

Inductores

Tipos y Características

Fijos

Valor inductancia constante

Variables

Valor ajustable

Núcleo de aire

Baja inductancia, alta frecuencia

Núcleo magnético

Alta inductancia, baja frecuencia

Corriente constante

Comportamiento como corto circuito

Corriente variable

Oposición al cambio (Ley de Lenz)

Nomenclatura y Parámetros

Parámetro	Símbolo	Unidad	Descripción
Inductancia	L	H (Henrio)	Oposición a cambios de corriente
Corriente Máx.	I _{max}	A (Amperio)	Corriente máxima sin saturación
Factor Q	Q	-	Relación entre energía almacenada y disipada
Frecuencia	f	Hz (Hercio)	Rango de operación óptimo

Conexión en Serie

$$L_T = L_1 + L_2 + ...$$

Conexión en Paralelo

7K

$$1/L_T = 1/L_1 + 1/L_2 + ...$$

Aplicaciones Principales

▼ Filtros

"1" RF

≯ Fuentes

Circuitos resonantes

♥ Supresión de EMI

Almacenamiento energía

9 Dato Importante

Los inductores con **núcleo magnético** pueden saturarse a altas corrientes, perdiendo sus propiedades inductivas. Es importante seleccionar el núcleo adecuado según la aplicación.

Componentes Activos

¿Qué son los Componentes Activos?

Elementos que **pueden introducir energía** en un circuito, amplifican, controlan o generan señales eléctricas. Requieren una fuente de alimentación para funcionar.

- Función: Permitir flujo en un sentido
- ▼ Tipos: Rectificador, Zener, LED
- Parámetro: Caída de tensión

Transistores

- **Función:** Amplificar o conmutar
- **▼ Tipos:** BJT, MOSFET, JFET
- **Parámetro:** Ganancia (hFE)

(

Circuitos Integrados

- Función: Múltiples componentes en uno
- **▼ Tipos:** Analógicos, digitales, mixtos
- Parámetro: Número de pines

E Comparación de Componentes Activos

Componente	Función Principal	Terminales	Aplicaciones Típicas
Diodo	Rectificación y regulación	2 (Ánodo, Cátodo)	Fuentes de alimentación, protección
Transistor	Amplificación y conmutación	3 (Emisor, Base, Colector)	Amplificadores, circuitos digitales
Circuito Integrado	Funciones complejas	Variable (8, 14, 16, 28)	Procesadores, memorias, controladores

Diodos

Tipos y Características

Rectificador

Convierte AC a DC

Zener

Regula voltaje

LED

Emite luz

Schottky

Baja caída

Varactor

Capacitancia variable

Fotodiodo

Sensible a la luz

Polarización Directa

Conduce corriente (0.7V Si)

Polarización Inversa

Bloquea corriente (excepto ruptura)

Nomenclatura y Parámetros

Parámetro	Símbolo	Unidad	Descripción
Corriente Máxima	I _{max}	A (Amperio)	Corriente máxima en directa
Voltaje Inverso	V_{RRM}	V (Voltio)	Voltaje máximo en inversa
Caída de Tensión	V_{F}	V (Voltio)	Tensión en polarización directa
Corriente de Fuga	I _R	μΑ (Microamperio)	Corriente en polarización inversa

Aplicaciones Principales

ııll Demodulación

Circuitos lógicos

9 Dato Importante

Los diodos **Zener** operan en región de ruptura controlada para mantener un voltaje constante, mientras que los diodos **Schottky** tienen una caída de tensión menor (0.2-0.3V) y son más rápidos.

Transistores

Tipos y Características

BJT

Unión bipolar

FET

Efecto de campo

MOSFET

Metal-óxido

JFET

Unión PN

IGBT

Potencia

UJT

Unijuntura

Amplificación

Aumenta la amplitud de una señal

Conmutación

Actúa como interruptor controlado

Nomenclatura y Configuraciones

Parámetro	Símbolo	Unidad	Descripción
Corriente Máxima	I_{C} , I_{D}	A (Amperio)	Corriente máxima de colector/drenador
Voltaje Máximo	V _{CEO} , V _{DSS}	V (Voltio)	Voltaje máximo entre terminales
Ganancia	h _{FE} , g _m	-	Factor de amplificación
Potencia	P_{D}	W (Vatio)	Potencia máxima disipable

BJT

Emisor común, Base común, Colector común

FET

Fuente común, Puerta común, Drenador común

Aplicaciones Principales

- Amplificadores
- Circuitos lógicos
- **≯** Fuentes de alimentación
- RF
- **Memorias**

Sensores

? Dato Importante

Los transistores **MOSFET** tienen una alta impedancia de entrada y son ideales para circuitos digitales, mientras que los **BJT** tienen una ganancia de corriente más alta y son mejores para aplicaciones de amplificación analógica.

Simbología y Nomenclatura de Componentes Electrónicos

Normas de Representación

- **Estándares**Internacionales
- ✓ IEC 60617 Símbolos gráficos
- ✓ IEEE 315 Referencia gráfica
- ANSI Y32.2 Estándar americano

- Nomenclatura de Componentes
- **R** Resistencias
- **C** Condensadores
- **L** Inductores
- **D** Diodos
- **Q** Transistores
- **U** Circuitos integrados

Identificación de Circuitos Integrados

74LS00 Familia TTL, puerta NAND

CD4011 Familia CMOS, puerta NAND

LM358 Amplificador operacional

ATmega328P Microcontrolador AVR

9 Importante

La correcta interpretación de la **simbología** y **nomenclatura** es fundamental para el diseño, análisis y reparación de circuitos electrónicos.

Puertas Lógicas

AND

 $Y = A \cdot B$

Α	В	Υ
0	0	0
0	1	0
1	0	0
1	1	1

Y = A + B

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	1

 $Y = \neg A$

Α	Y
0	1
1	0

 $Y = \neg(A \cdot B)$

А	В	Υ
0	0	1
0	1	1
1	0	1
1	1	0

 $Y = \neg(A + B)$

Α	В	Υ
0	0	1
0	1	0
1	0	0
1	1	0

Y = A ⊕ B

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

Aplicaciones de las Puertas Lógicas

Aritmética

Memorias

Decodificadores

Temporizadores