hw4.md 5/25/2022

Unequality constraints to propositional logic

Matouš Mařík

Suppose we are given a CSP over some unified domain $D:[d1\ldots d2]$ where all constraints are of the form $vi\leq vj$, $vi-vj\leq c$ or vi=vj+c for some constant c. For example

 $((v2 \le v3) \lor (v4 \le v1)) \land (v2 = v1 + 4) \land v4 = v3 + 3$ for v1, v2, v3, $v4 \in [0 \dots 7]$ is a formula belonging to this fragment. This formula is satisfied by one of two solutions: $(v1 \mapsto 0, v2 \mapsto 4, v3 \mapsto 4, v4 \mapsto 7)$, or $(v3 \mapsto 0, v1 \mapsto 3, v4 \mapsto 3, v2 \mapsto 7)$. Show a reduction of such formulas to propositional logic.

Hint: an encoding which requires $|V|\cdot |D|$ propositional variables, where |V| is the number of variables and |D| is the size of the domain, is given by introducing a propositional variable bij for each variable $vi \in V$ and $j \in D$, which indicates that $vi \leq j$ is true.

Pozn.: Výsledná formule bude konjunkce jednotlivých omezení.

Nechť $b_{i,j}$ jsou proměnné zakódované podle nápovědy (s indexováním V a D od 1). Je třeba zajistit konzistenci výsledného ohodnocení přidáním podmínky:

$$orall i \in 1..|V|: igwedge_{d_1,d_2 \in D} igwedge_{d_1 \leq d_2} \left(
eg b_{i,d_1} ee b_{i,d_2}
ight)$$

• díky této podmínce se v kódování nemůže stát, že by hodnota proměnné nebyla menší, nebo rovna nějakému j a zároveň by hodnota proměnné byla menší, nebo rovna nějakému k, kde $j \leq k$, tedy zajišťuje tranzitivitu \leq .

Kódování podmínek

Nechť je doména D uspořádaná podle " \leq ", tedy

$$orall i,j \in 1..|D|, i \leq j: d_i \leq d_j$$

jinak pracujeme s D', která obsahuje všechny prvky D a navíc zachovává uspořádání.

Podmínka $v_i \leq v_i$

Pro každou možnou hodnotu proměnné v_i je vytvořena podmínka na hodnotu proměnné v_j , tak aby splňovala " \leq ":

$$igwedge_{d \in D} (\lnot b_{j,d} \lor b_{i,d})$$

• to odpovídá $\forall d \in D : v_j \leq d \implies v_i \leq d$

hw4.md 5/25/2022

Podmínka $v_i - v_j \leq c$

• podmínka je nejdříve převedena do tvaru $v_i \leq v_j + c$ (plus definováno, díky výskytu další podmínky)

$$orall d_1 \in D: igwedge_{d_2 \in D} igwedge_{d_1 \leq d_2 + c} (\lnot b_{j,d_2} \lor b_{i,d_1})$$

Podmínka $v_i = v_j + c$

$$orall d_1 \in D: igwedge_{d_2 \in D} igwedge_{d_1 \leq d_2 + c} igl(
eg b_{j,d_2} ee b_{i,d_1} igr)$$

Pozn.: pokud neexistuje žádné d_2 splňující podmínku, pak je přidána prázdná klauzule, která značí spor.

Pozn2.: výsledná formule by šla zkrátit pouze na omezování "sousedních" hodnot d_1, d_2 , kde d_2 by byly nejmenší prvky z množiny $d|d_1 < d$.

Bonus

In the previous example, try to describe an encoding with only a $O(\log 2 |D|)$ propositional variable for each variable vi.

Celá myšlenka je založena na indexování domény pomocí binární reprezentace indexu.

Každé hodnotě z D je přiřazen unikátní index (počínající od 0). Výsledná formule je potom vytvořena stejně jako v předchozím případě, akorát každá proměnná $b_{i,j}$ je nahrazena klauzulí s $\lceil \log_2 |D| \rceil$ proměnnými tak, že pro hodnotu j je vybrán odpovídající binární zápis B, který lze reprezentovat jako $b_{\lceil \log_2 |D| \rceil}, b_{\lceil \log_2 |D| \rceil-1}, \ldots, b_1, b_0$, kde $b_i \in 0, 1$, a výsledná kombinace pro $b_{i,j}$ z předchozího řešení vypadá takto:

$$\bigwedge_{k \in 0.. \lceil \log_2 |D|) \rceil} \mathrm{bin_repr}(i,j,k)$$

kde $\operatorname{bin_repr}(i,j,k)$ je buď " $\neg b_{i,k}$ " pokud b_k v binárním zápisu j je 0, nebo " $b_{i,k}$ ", pokud je totéž rovno 1.

• Například pro 3. hodnotu z domény D - d_3 (počítáno od 1). Je odpovídající index 2, jehož zápis je 0..010, tedy výsledná klauzule odpovídající proměnné b_{i,d_3} z předchozího řešení bude $(\ldots \wedge \neg b_{i,2} \wedge b_{i,1} \wedge \neg b_{i,0})$.

Zároveň je třeba zakázat všechny kombinace které neodpovídají validním indexům.