MATH F111- Mathematics I

Saranya G. Nair Department of Mathematics

BITS Pilani

August 14, 2024

Understanding limit of a function

Definition

Let f(x) be defined on an open interval about x_0 , except possibly at x_0 itself. We say that the limit of f(x) as x approaches x_0 is the number L, and write

$$\lim_{x\to x_0} f(x) = L$$

if,

Understanding limit of a function

Definition

Let f(x) be defined on an open interval about x_0 , except possibly at x_0 itself. We say that the limit of f(x) as x approaches x_0 is the number L, and write

$$\lim_{x\to x_0} f(x) = L$$

if, for every number $\epsilon > 0$, there exists a corresponding number $\delta > 0$ such that for all x,

$$0 < |x - x_0| < \delta \implies |f(x) - L| < \epsilon$$
.

Refer Chapter 2 in Thomas Calculus for a thorough understanding of definition of limit of a function.

Definition: Continuity

Definition

Let $f: D \to \mathbb{R}$ be a function where $D \subseteq \mathbb{R}$. For x_0 , we say that the function is **continuous at** x_0 if the following conditions hold:

- **1** x_0 ∈ D.
- 3 $\lim_{x\to x_0} f(x) = f(x_0).$

A function is **continuous** if it is continuous at all points of it's domain.

Continuous function theorem for Sequences

Remark

• If (a_n) is a sequence and if f is any function from $\mathbb{R} \to \mathbb{R}$, is $f(a_n)$ a sequence?

Continuous function theorem for Sequences

Remark

- If (a_n) is a sequence and if f is any function from $\mathbb{R} \to \mathbb{R}$, is $f(a_n)$ a sequence? Yes
- What can we say about convergence of $f(a_n)$ if we know about convergence of a_n ?

Continuous function theorem for Sequences

Remark

- If (a_n) is a sequence and if f is any function from $\mathbb{R} \to \mathbb{R}$, is $f(a_n)$ a sequence? Yes
- What can we say about convergence of $f(a_n)$ if we know about convergence of a_n ?

Theorem

Theorem 3: Let (a_n) be a sequence of real numbers. If

- $a_n \rightarrow \ell$ and
- if f is a function that is continuous at ℓ and defined at all a_n , then

$$f(a_n) \to f(\ell)$$
.

• Show that $\sqrt{\frac{(n+1)}{n}} \to 1$.

• Show that $\sqrt{\frac{(n+1)}{n}} \to 1$. We know that $\frac{n+1}{n} \to 1$ and $f(x) = \sqrt{x}$ is continuous at $\ell = 1$. So by Theorem 3, $(\sqrt{\frac{(n+1)}{n}}) \to 1$.

- Show that $\sqrt{\frac{(n+1)}{n}} \to 1$. We know that $\frac{n+1}{n} \to 1$ and $f(x) = \sqrt{x}$ is continuous at $\ell = 1$. So by Theorem 3, $(\sqrt{\frac{(n+1)}{n}}) \to 1$.
- Show that $(2^{\frac{1}{n}}) \rightarrow 1$.

- Show that $\sqrt{\frac{(n+1)}{n}} \to 1$. We know that $\frac{n+1}{n} \to 1$ and $f(x) = \sqrt{x}$ is continuous at $\ell = 1$. So by Theorem 3, $(\sqrt{\frac{(n+1)}{n}}) \to 1$.
- Show that $(2^{\frac{1}{n}}) \to 1$. $\frac{1}{n} \to 0$ and $f(x) = 2^x$ is continuous at x = 0. Thus $2^{\frac{1}{n}} \to 1$.

• Given a real number x_0 , can you construct sequences that converge to x_0 ?

- Given a real number x_0 , can you construct sequences that converge to x_0 ?
- Can you construct rational sequences that converge to x_0 ? How about irrational sequences converging to x_0 ?

- Given a real number x_0 , can you construct sequences that converge to x_0 ?
- Can you construct rational sequences that converge to x_0 ? How about irrational sequences converging to x_0 ?

There are infinite sequences that converge to a point x_0 . How these sequences can be used to check continuity at the point x_0 ?

- Given a real number x_0 , can you construct sequences that converge to x_0 ?
- Can you construct rational sequences that converge to x_0 ? How about irrational sequences converging to x_0 ?

There are infinite sequences that converge to a point x_0 . How these sequences can be used to check continuity at the point x_0 ?

Theorem

Sequential criteria for continuity A function $f: D \to \mathbb{R}$ is continuous at $x_0 \in D$ iff for every sequence (x_n) in D such that $x_n \to x_0$, we have $f(x_n) \to f(x_0)$.

- Given a real number x_0 , can you construct sequences that converge to x_0 ?
- Can you construct rational sequences that converge to x_0 ? How about irrational sequences converging to x_0 ?

There are infinite sequences that converge to a point x_0 . How these sequences can be used to check continuity at the point x_0 ?

Theorem

Sequential criteria for continuity A function $f: D \to \mathbb{R}$ is continuous at $x_0 \in D$ iff for every sequence (x_n) in D such that $x_n \to x_0$, we have $f(x_n) \to f(x_0)$.

This theorem is particularly useful if you want to show that a function is not continuous at x_0 . We only need to construct two sequences x_n and y_n both converging to x_0 , but $f(x_n) \neq f(y_n)$.

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Show that f is discontinuous at every real number $x \in \mathbb{R}$.

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Show that f is discontinuous at every real number $x \in \mathbb{R}$.

• Let x_0 be any real number. Let x_n be a rational sequence converging to x_0 and y_n be an irrational sequence converging to x_0 .

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Show that f is discontinuous at every real number $x \in \mathbb{R}$.

- Let x_0 be any real number. Let x_n be a rational sequence converging to x_0 and y_n be an irrational sequence converging to x_0 .
- Thus $f(x_n) = 1$ for every n and $f(y_n) = 0$ for every n.

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Show that f is discontinuous at every real number $x \in \mathbb{R}$.

- Let x_0 be any real number. Let x_n be a rational sequence converging to x_0 and y_n be an irrational sequence converging to x_0 .
- Thus $f(x_n) = 1$ for every n and $f(y_n) = 0$ for every n.
- If $x_0 \in \mathbb{Q}$, then $f(x_0) = 1$. Thus $y_n \to x_0$, but $f(y_n) = 0 \nrightarrow f(x_0) = 1$.
- If $x_0 \in \mathbb{R} \setminus \mathbb{Q}$, then $f(x_0) = 0$. Thus $x_n \to x_0$, but $f(x_n) = 1 \nrightarrow f(x_0) = 0$.

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Show that f is discontinuous at every real number $x \in \mathbb{R}$.

- Let x_0 be any real number. Let x_n be a rational sequence converging to x_0 and y_n be an irrational sequence converging to x_0 .
- Thus $f(x_n) = 1$ for every n and $f(y_n) = 0$ for every n.
- If $x_0 \in \mathbb{Q}$, then $f(x_0) = 1$. Thus $y_n \to x_0$, but $f(y_n) = 0 \nrightarrow f(x_0) = 1$.
- If $x_0 \in \mathbb{R} \setminus \mathbb{Q}$, then $f(x_0) = 0$. Thus $x_n \to x_0$, but $f(x_n) = 1 \nrightarrow f(x_0) = 0$.

Therefore by sequential criteria for continuity f is not continuous at x_0 .

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Show that f is discontinuous at every real number $x \in \mathbb{R}$.

- Let x_0 be any real number. Let x_n be a rational sequence converging to x_0 and y_n be an irrational sequence converging to x_0 .
- Thus $f(x_n) = 1$ for every n and $f(y_n) = 0$ for every n.
- If $x_0 \in \mathbb{Q}$, then $f(x_0) = 1$. Thus $y_n \to x_0$, but $f(y_n) = 0 \nrightarrow f(x_0) = 1$.
- If $x_0 \in \mathbb{R} \setminus \mathbb{Q}$, then $f(x_0) = 0$. Thus $x_n \to x_0$, but $f(x_n) = 1 \nrightarrow f(x_0) = 0$.

Therefore by sequential criteria for continuity f is not continuous at x_0 . Since x_0 is arbitrary, f(x) is discontinuous at every real number.

Subsequences

Definition

A subsequence of a sequence is a sequence that can be derived from the given sequence by deleting some elements without changing the order of the remaining elements.

Subsequences

Definition

A subsequence of a sequence is a sequence that can be derived from the given sequence by deleting some elements without changing the order of the remaining elements.

```
Let (a_n) = \{a_1, a_2, a_3, \ldots\}. Then \{a_1, a_5, a_6, a_{13}, \ldots\} \{a_1, a_3, a_5, a_7, \ldots\} \{a_{1001}, a_{100001}, a_{200001} \ldots\} are subsequences \{a_5, a_4, a_6, a_7, \ldots\} is not a subsequence.
```

Remark

Why are we interested in subsequences?

Theorem

A sequence converges to a limit ℓ if and only if every subsequence also converges to the same limit ℓ .

Theorem

A sequence converges to a limit ℓ if and only if every subsequence also converges to the same limit ℓ .

 $\{1,-1,1,-1,\cdots\}$ doesn't converge as it has a subsequence $\{1,1,1,\cdots\}$ that converges to 1 and another subsequence $\{-1,-1,-1,\cdots\}$ that converges to -1. Since the limits of both subsequences are different we can conclude that original sequence doesn't converge.

A sequence (a_n) of real numbers is said to be **bounded above** if there is a real number α such that $a_n \leq \alpha$ for every (\forall) $n \in \mathbb{N}$.

A sequence (a_n) of real numbers is said to be **bounded above** if there is a real number α such that $a_n \leq \alpha$ for every (\forall) $n \in \mathbb{N}$. The number α is an upper bound for (a_n) . If α is an upper bound for a_n but no number less than α is an upper bound for a_n , then α is **the least upper bound** for a_n .

A sequence (a_n) of real numbers is said to be **bounded below** if there is a real number β such that $\beta \leq a_n$ for every $n \in \mathbb{N}$.

A sequence (a_n) of real numbers is said to be **bounded above** if there is a real number α such that $a_n \leq \alpha$ for every (\forall) $n \in \mathbb{N}$. The number α is an upper bound for (a_n) . If α is an upper bound for a_n but no number less than α is an upper bound for a_n , then α is **the least upper bound** for a_n .

A sequence (a_n) of real numbers is said to be **bounded below** if there is a real number β such that $\beta \leq a_n$ for every $n \in \mathbb{N}$. The number β is a lower bound for a_n . If β is a lower bound for a_n but no number greater than β is a lower bound for a_n , then β is **the greatest lower bound** for a_n .

A sequence (a_n) of real numbers is said to be **bounded** if there are real numbers α, β such that $\beta \leq a_n \leq \alpha$ for every $n \in \mathbb{N}$.

A sequence (a_n) of real numbers is said to be **bounded above** if there is a real number α such that $a_n \leq \alpha$ for every (\forall) $n \in \mathbb{N}$. The number α is an upper bound for (a_n) . If α is an upper bound for a_n but no number less than α is an upper bound for a_n , then α is **the least upper bound** for a_n .

A sequence (a_n) of real numbers is said to be **bounded below** if there is a real number β such that $\beta \leq a_n$ for every $n \in \mathbb{N}$. The number β is a lower bound for a_n . If β is a lower bound for a_n but no number greater than β is a lower bound for a_n , then β is **the greatest lower bound** for a_n .

A sequence (a_n) of real numbers is said to be **bounded** if there are real numbers α, β such that $\beta \leq a_n \leq \alpha$ for every $n \in \mathbb{N}$.

If a sequence is not bounded, it is said to be unbounded.

• A sequence (x_n) is said to be **monotone increasing** or nondecreasing if $x_n \le x_{n+1}$ for all $n \in \mathbb{N}$, that is, $x_1 \le x_2 \le x_3 \le \cdots$.

- A sequence (x_n) is said to be **monotone increasing** or nondecreasing if $x_n \le x_{n+1}$ for all $n \in \mathbb{N}$, that is, $x_1 \le x_2 \le x_3 \le \cdots$.
- $\frac{1}{2}, \frac{2}{3}, \dots, \frac{n}{n+1}, \dots$ is monotone increasing

- A sequence (x_n) is said to be **monotone increasing** or nondecreasing if $x_n \le x_{n+1}$ for all $n \in \mathbb{N}$, that is, $x_1 \le x_2 \le x_3 \le \cdots$.
- $\frac{1}{2}, \frac{2}{3}, \dots, \frac{n}{n+1}, \dots$ is monotone increasing
- A sequence (x_n) is said to be **monotone decreasing** or nonincreasing if $x_n \ge x_{n+1}$ for all $n \in \mathbb{N}$, that is, $x_1 \ge x_2 \ge x_3 \ge \cdots$.

- A sequence (x_n) is said to be **monotone increasing** or nondecreasing if $x_n \le x_{n+1}$ for all $n \in \mathbb{N}$, that is, $x_1 \le x_2 \le x_3 \le \cdots$.
- $\frac{1}{2}, \frac{2}{3}, \dots, \frac{n}{n+1}, \dots$ is monotone increasing
- A sequence (x_n) is said to be **monotone decreasing** or nonincreasing if $x_n \ge x_{n+1}$ for all $n \in \mathbb{N}$, that is, $x_1 \ge x_2 \ge x_3 \ge \cdots$.
- $1, \frac{1}{2}, \frac{1}{4}, \dots, \frac{1}{2^n}, \dots$ is monotone decreasing.

- A sequence (x_n) is said to be **monotone increasing** or nondecreasing if $x_n \le x_{n+1}$ for all $n \in \mathbb{N}$, that is, $x_1 \le x_2 \le x_3 \le \cdots$.
- $\frac{1}{2}, \frac{2}{3}, \dots, \frac{n}{n+1}, \dots$ is monotone increasing
- A sequence (x_n) is said to be **monotone decreasing** or nonincreasing if $x_n \ge x_{n+1}$ for all $n \in \mathbb{N}$, that is, $x_1 \ge x_2 \ge x_3 \ge \cdots$.
- $1, \frac{1}{2}, \frac{1}{4}, \dots, \frac{1}{2^n}, \dots$ is monotone decreasing.
- A sequence is monotone if it is either monotone increasing or monotone decreasing.

- A sequence (x_n) is said to be **monotone increasing** or nondecreasing if $x_n \le x_{n+1}$ for all $n \in \mathbb{N}$, that is, $x_1 \le x_2 \le x_3 \le \cdots$.
- $\frac{1}{2}, \frac{2}{3}, \dots, \frac{n}{n+1}, \dots$ is monotone increasing
- A sequence (x_n) is said to be **monotone decreasing** or nonincreasing if $x_n \ge x_{n+1}$ for all $n \in \mathbb{N}$, that is, $x_1 \ge x_2 \ge x_3 \ge \cdots$.
- $1, \frac{1}{2}, \frac{1}{4}, \dots, \frac{1}{2^n}, \dots$ is monotone decreasing.
- A sequence is monotone if it is either monotone increasing or monotone decreasing.

A nondecreasing sequence that is bounded from above always has a least upper bound. Likewise, a nonincreasing sequence bounded from below always has a greatest lower bound. These results are based on the completeness property of the real numbers.

Monotone convergence theorem

Theorem

 A monotone increasing sequence that is bounded above, is convergent and it converges to the least upper bound.

Monotone convergence theorem

Theorem

- A monotone increasing sequence that is bounded above, is convergent and it converges to the least upper bound.
- A monotone decreasing sequence that is bounded below, is convergent and it converges to the greatest lower bound.

Monotone convergence theorem

Theorem

- A monotone increasing sequence that is bounded above, is convergent and it converges to the least upper bound.
- A monotone decreasing sequence that is bounded below, is convergent and it converges to the greatest lower bound.
- Let a_n be a monotone increasing sequence that is bounded above.
- Let L be its least upperbound. By definition of least upper bound, $L \epsilon$ is not an upperbound. i.e some term a_k from the sequence satisfies $a_k > L \epsilon$.
- Since (a_n) is increasing $a_n \ge a_k, \forall n \ge k$.
- Thus we have $L \epsilon < a_k \le a_n \le L < L + \epsilon, \forall n \ge k$. Thus $a_n \to L$.

Let
$$a_1:=rac{3}{2}$$
 and $a_{n+1}:=rac{1}{2}\left(a_n+rac{2}{a_n}
ight)$ for $n\in\mathbb{N}.$

Let
$$a_1:=rac{3}{2}$$
 and $a_{n+1}:=rac{1}{2}\left(a_n+rac{2}{a_n}
ight)$ for $n\in\mathbb{N}.$

Then $a_n > 0$ for all $n \in \mathbb{N}$. Hence (a_n) is bounded below by 0.

Let
$$a_1:=rac{3}{2}$$
 and $a_{n+1}:=rac{1}{2}\left(a_n+rac{2}{a_n}
ight)$ for $n\in\mathbb{N}.$

Then $a_n > 0$ for all $n \in \mathbb{N}$. Hence (a_n) is bounded below by 0.

Let us check whether the sequence (a_n) is decreasing. Since

Let
$$a_1:=rac{3}{2}$$
 and $a_{n+1}:=rac{1}{2}\left(a_n+rac{2}{a_n}
ight)$ for $n\in\mathbb{N}.$

Then $a_n > 0$ for all $n \in \mathbb{N}$. Hence (a_n) is bounded below by 0.

Let us check whether the sequence (a_n) is decreasing. Since

$$a_n - a_{n+1} = a_n - \frac{a_n^2 + 2}{2a_n} = \frac{a_n^2 - 2}{2a_n}$$
 for all $n \in \mathbb{N}$,

 (a_n) is decreasing if and only if $a_n^2-2\geq 0$ for all $n\in\mathbb{N}$. But

Let
$$a_1:=rac{3}{2}$$
 and $a_{n+1}:=rac{1}{2}\left(a_n+rac{2}{a_n}
ight)$ for $n\in\mathbb{N}.$

Then $a_n > 0$ for all $n \in \mathbb{N}$. Hence (a_n) is bounded below by 0.

Let us check whether the sequence (a_n) is decreasing. Since

$$a_n - a_{n+1} = a_n - \frac{a_n^2 + 2}{2a_n} = \frac{a_n^2 - 2}{2a_n}$$
 for all $n \in \mathbb{N}$,

 (a_n) is decreasing if and only if $a_n^2 - 2 \ge 0$ for all $n \in \mathbb{N}$. But

$$a_1^2 \ge 2$$
 and $a_{n+1}^2 - 2 = \frac{\left(a_n^2 - 2\right)^2}{4a_n^2} \ge 0$ for all $n \in \mathbb{N}$.

イロト 4個ト 4 差ト 4 差ト 差 めるぐ

Let
$$a_1:=rac{3}{2}$$
 and $a_{n+1}:=rac{1}{2}\left(a_n+rac{2}{a_n}
ight)$ for $n\in\mathbb{N}.$

Then $a_n > 0$ for all $n \in \mathbb{N}$. Hence (a_n) is bounded below by 0.

Let us check whether the sequence (a_n) is decreasing. Since

$$a_n - a_{n+1} = a_n - \frac{a_n^2 + 2}{2a_n} = \frac{a_n^2 - 2}{2a_n}$$
 for all $n \in \mathbb{N}$,

 (a_n) is decreasing if and only if $a_n^2 - 2 \ge 0$ for all $n \in \mathbb{N}$. But

$$a_1^2 \geq 2$$
 and $a_{n+1}^2 - 2 = \frac{\left(a_n^2 - 2\right)^2}{4a_n^2} \geq 0$ for all $n \in \mathbb{N}$.

Hence the sequence (a_n) is decreasing.

$$a_{n+1} = rac{1}{2}\left(a_n + rac{2}{a_n}
ight)
ightarrow rac{1}{2}\left(a + rac{2}{a}
ight).$$

$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{2}{a_n} \right) \to \frac{1}{2} \left(a + \frac{2}{a} \right).$$

Since the limit of a sequence is unique, we see that $\frac{1}{2}\left(a+\frac{2}{a}\right)=a$, that is, $a^2=2$.

$$a_{n+1} = rac{1}{2}\left(a_n + rac{2}{a_n}
ight)
ightarrow rac{1}{2}\left(a + rac{2}{a}
ight).$$

Since the limit of a sequence is unique, we see that $\frac{1}{2}\left(a+\frac{2}{a}\right)=a$, that is, $a^2=2$.

Also, $a_n > 0$ for all $n \in \mathbb{N}$ and $a_n \to a$, so that $a \ge 0$. Thus a is the positive square root of 2, that is, $a = \sqrt{2}$.

Exercises

Determine if the sequences is monotonic and bounded.

•
$$a_n = \frac{n}{n+1}$$

•
$$a_n = \frac{3n+1}{n+1}$$

•
$$a_n = \frac{(2n+3)!}{(n+1)!}$$

Functions and sequences

Theorem

Suppose that f(x) is a function defined for all $x \ge n_0$ and that (a_n) is a sequence of real numbers such that $a_n = f(n)$ for $n \ge n_0$. Then $\lim_{n \to \infty} a_n = \ell$ whenever $\lim_{x \to \infty} f(x) = \ell$.

(i) Show that
$$\lim_{n\to\infty} \frac{\log n}{n} = 0$$
.

Functions and sequences

Theorem

Suppose that f(x) is a function defined for all $x \ge n_0$ and that (a_n) is a sequence of real numbers such that $a_n = f(n)$ for $n \ge n_0$. Then $\lim_{n \to \infty} a_n = \ell$ whenever $\lim_{x \to \infty} f(x) = \ell$.

(i) Show that $\lim_{n\to\infty} \frac{\log n}{n} = 0$.

We take $f(x) = \frac{\log x}{x}$ and f(x) is defined for $x \ge 1$. Therefore $\lim \frac{\log n}{x} = \lim \frac{\log x}{x} = 0$.

(ii) Let $a_n = (\frac{n+1}{n-1})^n$. Does a_n converge? Where?

(ii) Let $a_n=(\frac{n+1}{n-1})^n$. Does a_n converge? Where? The limit leads to the indeterminate form 1^∞ . We can apply l'Hopital's rule if we first change the form by taking the natural logarithm of a_n .

(ii) Let $a_n = (\frac{n+1}{n-1})^n$. Does a_n converge? Where? The limit leads to the indeterminate form 1^{∞} . We can apply l'Hopital's rule if we first change the form by taking the natural logarithm of a_n .

$$\lim_{n \to \infty} \ln(a_n) = \lim_{n \to \infty} n \ln\left(\frac{n+1}{n-1}\right)$$

$$= \lim_{n \to \infty} \frac{\ln\left(\frac{n+1}{n-1}\right)}{1/n}$$

$$= \lim_{n \to \infty} \frac{-2/(n^2 - 1)}{-1/n^2}$$

$$= \lim_{n \to \infty} \frac{2n^2}{n^2 - 1} = 2.$$

(ii) Let $a_n = (\frac{n+1}{n-1})^n$. Does a_n converge? Where? The limit leads to the indeterminate form 1^{∞} . We can apply l'Hopital's rule if we first change the form by taking the natural logarithm of a_n .

$$\lim_{n \to \infty} \ln(a_n) = \lim_{n \to \infty} n \ln(\frac{n+1}{n-1})$$

$$= \lim_{n \to \infty} \frac{\ln(\frac{n+1}{n-1})}{1/n}$$

$$= \lim_{n \to \infty} \frac{-2/(n^2 - 1)}{-1/n^2}$$

$$= \lim_{n \to \infty} \frac{2n^2}{n^2 - 1} = 2.$$

Since $ln(a_n) \to 2$ and $f(x) = e^x$ is continuous, $a_n \to e^2$.

4 D > 4 D > 4 B > 4 B > B = 900