Кольца, поля, многочлены

Александра Игоревна Кононова

ниу миэт

6 декабря 2018 г.

Алгебра, группоид

Алгебра — множество G (носитель) с заданным на нём набором операций, удовлетворяющим некоторой системе аксиом.

Группоид — алгебра $\mathcal{G} = (G,\cdot)$, сигнатура которой состоит из одной бинарной операции \cdot : $G \times G \to G$.

Алгебра с двумя операциями (обобщение сложения и умножения) — частный случай — кольца и поля.

Алгебры, кольца, поля Многочлены над полем Расширение поля $\mathrm{Koheuhue}$ поля $\mathrm{GF}(2^n)$

Алгебра, группоид Аксиомы кольца Тождества кольца Аксиомы поля

Примеры

Аксиомы кольца

Кольцо — алгебра $\mathcal{K}=(\mathbb{K},+,\cdot,\mathbf{0},\mathbf{1})$, причём для любых $a,b,c\in\mathbb{K}$:

- a + b = b + a;
- **3** a + 0 = a;
- $m{0}$ для каждого $a \in \mathbb{K}$ существует элемент (-a), такой, что $a + (-a) = \mathbf{0}$;
- $a \cdot (b \cdot c) = (a \cdot b) \cdot c;$

Алгебры, кольца, поля Многочлены над полем Расширение поля Конечные поля $\mathrm{GF}(2^n)$

Алгебра, группоид Аксиомы кольца Тождества кольца Аксиомы поля Примеры Конечные поля (поля Галуа) Примитивные элементы

Тождества кольца

- $0 \cdot a = a \cdot \mathbf{0} = \mathbf{0}:$ $b + \mathbf{0} = b \quad \rightarrow \quad (b + \mathbf{0})a = ba \quad \rightarrow \quad ba + \mathbf{0} \cdot a = ba \rightarrow$ $ba + (-ba) + \mathbf{0} \cdot a = ba + (-ba) \rightarrow \mathbf{0} + \mathbf{0} \cdot a = \mathbf{0} \rightarrow$ $0 \cdot a = \mathbf{0}$
- $(-a) \cdot b = -(a \cdot b) = a \cdot (-b);$
- $(a-b) \cdot c = a \cdot c b \cdot c, \ c \cdot (a-b) = c \cdot a c \cdot b.$
- left если $\mathbf{1}=\mathbf{0},$ то $orall a:a=\mathbf{1}=\mathbf{0},$ то есть $|\mathbb{K}|=1.$

Аксиомы поля

Поле есть алгебра $\mathcal{F} = (\mathbb{F},+,\cdot,\mathbf{0},\mathbf{1}),\mathbf{0} \neq \mathbf{1},$ причём:

- a + b = b + a;
- a + 0 = a;
- $oldsymbol{4}$ для каждого $a\in\mathbb{F}$ существует элемент (-a), такой, что $a+(-a)=\mathbf{0}$;

- f 3 для каждого $a \in \mathbb{F}$, отличного от ${\bf 0}$, существует элемент a^{-1} , такой, что $a \cdot a^{-1} = {\bf 1}$;

Некоммутативное [по умножению] поле — тело.

◆ロト ◆卸 ▶ ◆重 > ◆重 > ・ 重 ・ の Q @

Алгебры, кольца, поля Многочлены над полем Расширение поля Конечные поля $\mathrm{GF}(2^n)$

Аксиомы кольца Тождества кольца Аксиомы поля Примеры Конечные поля (поля Галуа) Примитивные элементы

 \mathbb{Z}_p $(p-\mathsf{простое})-$

$$\mathbb{Z}-$$

 $\mathbb{Z}_k = \big(\{0,1,\dots,k-1\}, \oplus_k, \odot_k, 0,1\big)$ с операциями сложения и умножения по модулю k-

$$\mathbb{Q} - \left(\{a+b \cdot \sqrt{2}\}, +, \cdot, 0, 1 \right), \ a, b \in \mathbb{Q} - \mathbb{R} - \mathbb{C} -$$

 $\mathbb H$ с операциями сложения и умножения кватернионов —

4□ > 4□ > 4□ > 4 = > 4 = > 9 < 0</p>

 \mathbb{Z} — коммутативное кольцо.

 $\mathbb{Z}_k = ig(\{0,1,\dots,k-1\},\oplus_k,\odot_k,0,1ig)$ с операциями сложения и умножения по модулю k-

$$\mathbb{Q}-\\ \left(\{a+b\cdot\sqrt{2}\},+,\cdot,0,1\right),\ a,b\in\mathbb{Q}-\\ \mathbb{R}-\\ \mathbb{C}-\\ \mathbb{Z}_p\ (p-\text{простое})-$$

 $\mathbb H$ с операциями сложения и умножения кватернионов —

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

 \mathbb{Z} — коммутативное кольцо.

 $\mathbb{Z}_k = \big(\{0,1,\dots,k-1\}, \oplus_k, \odot_k, 0,1\big)$ с операциями сложения и умножения по модулю k — коммутативное кольцо (кольцо классов вычетов по модулю k).

$$\mathbb{Q}$$
 —

$$\left(\{a+b\cdot\sqrt{2}\},+,\cdot,0,1\right)\text{, }a,b\in\mathbb{Q}-$$

$$\mathbb{R}$$
 —

$$\mathbb{C}$$
 —

$$\mathbb{Z}_p$$
 $(p-простое)-$

 $\mathbb H$ с операциями сложения и умножения кватернионов —

◆ロト ◆個ト ◆注ト ◆注ト 注 のQで

 \mathbb{Z} — коммутативное кольцо.

 $\mathbb{Z}_k = \big(\{0,1,\dots,k-1\}, \oplus_k, \odot_k, 0,1\big)$ с операциями сложения и умножения по модулю k — коммутативное кольцо (кольцо классов вычетов по модулю k).

 \mathbb{Q} — поле.

$$\left(\{a+b\cdot\sqrt{2}\},+,\cdot,0,1\right),\ a,b\in\mathbb{Q}-$$

 \mathbb{R} —

 \mathbb{C} —

$$\mathbb{Z}_p$$
 (p — простое) —

 $\mathbb H$ с операциями сложения и умножения кватернионов —

◆ロト ◆個ト ◆意ト ◆意ト 意 めなべ

 \mathbb{Z} — коммутативное кольцо.

$$\mathbb{Z}_k = \big(\{0,1,\dots,k-1\}, \oplus_k, \odot_k, 0,1\big)$$
 с операциями сложения и умножения по модулю k — коммутативное кольцо (кольцо классов вычетов по модулю k).

$$\left(\{a+b\cdot\sqrt{2}\},+,\cdot,0,1\right)$$
, $a,b\in\mathbb{Q}$ — поле.

 \mathbb{R} —

 \mathbb{C} —

$$\mathbb{Z}_p$$
 $(p-простое)-$

 $\mathbb H$ с операциями сложения и умножения кватернионов —

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● り<0</p>

 \mathbb{Z} — коммутативное кольцо.

$$\mathbb{Z}_k = \big(\{0,1,\dots,k-1\}, \oplus_k, \odot_k, 0,1\big)$$
 с операциями сложения и умножения по модулю k — коммутативное кольцо (кольцо классов вычетов по модулю k).

 \mathbb{Q} — поле.

$$\left(\{a+b\cdot\sqrt{2}\},+,\cdot,0,1\right)$$
, $a,b\in\mathbb{Q}$ — поле.

 \mathbb{R} — поле.

 \mathbb{C} —

$$\mathbb{Z}_p$$
 $(p-простое)-$

 $\mathbb H$ с операциями сложения и умножения кватернионов —

◆ロト ◆個ト ◆意ト ◆意ト 意 めなべ

 \mathbb{Z} — коммутативное кольцо.

$$\mathbb{Z}_k = \big(\{0,1,\dots,k-1\}, \oplus_k, \odot_k, 0,1\big)$$
 с операциями сложения и умножения по модулю k — коммутативное кольцо (кольцо классов вычетов по модулю k).

 \mathbb{Q} — поле.

$$\left(\{a+b\cdot\sqrt{2}\},+,\cdot,0,1\right)$$
, $a,b\in\mathbb{Q}$ — поле.

 \mathbb{R} — поле.

 \mathbb{C} — поле.

$$\mathbb{Z}_p$$
 (p — простое) —

 $\mathbb H$ с операциями сложения и умножения кватернионов —

4□ > 4□ > 4 = > 4 = > = 90

 \mathbb{Z} — коммутативное кольцо.

 $\mathbb{Z}_k = \big(\{0,1,\dots,k-1\}, \oplus_k, \odot_k, 0,1\big)$ с операциями сложения и умножения по модулю k — коммутативное кольцо (кольцо классов вычетов по модулю k).

 \mathbb{Q} — поле.

$$\left(\{a+b\cdot\sqrt{2}\},+,\cdot,0,1\right)$$
, $a,b\in\mathbb{Q}$ — поле.

 \mathbb{R} — поле.

 \mathbb{C} — поле.

 $\mathbb{Z}_p \ (p$ — простое) — поле.

 $\mathbb H$ с операциями сложения и умножения кватернионов —

◆ロト ◆個ト ◆注ト ◆注ト 注 のQで

 \mathbb{Z} — коммутативное кольцо.

$$\mathbb{Z}_k = \big(\{0,1,\dots,k-1\}, \oplus_k, \odot_k, 0,1\big)$$
 с операциями сложения и умножения по модулю k — коммутативное кольцо (кольцо классов вычетов по модулю k).

 \mathbb{Q} — поле.

$$\left(\{a+b\cdot\sqrt{2}\},+,\cdot,0,1\right)$$
, $a,b\in\mathbb{Q}$ — поле.

 \mathbb{R} — поле.

 \mathbb{C} — поле.

$$\mathbb{Z}_p$$
 $(p-$ простое $)-$ поле.

Алгебры, кольца, поля Многочлены над полем Расширение поля Kohe^{-1}

Алгебра, группоид Аксиомы кольца Тождества кольца Аксиомы поля Примеры Конечные поля (поля Галуа) Примитивные элементы

Конечные поля (поля Галуа)

Конечное поле или поле Галуа

Поле, состоящее из конечного числа элементов. \mathbb{F}_q или $\mathrm{GF}(q)$, где q — число элементов (мощность).

 $q=p^n$, где p — простое число (характеристика поля, сумма p единиц равна нулю), $n\in\mathbb{N}$. С точностью до изоморфизма:

для
$$q=p$$
 $\operatorname{GF}(q)=\mathbb{Z}_p$ для $q=p^n$ $\operatorname{GF}(q)$ — расширение поля \mathbb{Z}_p

Примитивные элементы

Обобщённая малая теорема Ферма: для любого элемента a поля $\mathrm{GF}(q)$ $a^q=a$

Для ненулевых элементов $a^{q-1}=1$

Если все степени от $a^0=1$ до a^{q-2} разные, a — примитивный элемент.

Найдите все примитивные элементы полей ${\rm GF}(2), {\rm GF}(3), GF(11)$

Алгебры, кольца, поля Многочлены над полем Расширение поля $GF(2^n)$

Алгебра, группоид Аксиомы кольца Тождества кольца Аксиомы поля Примеры Конечные поля (поля Галуа)

Примитивные элементы

Многочлены над полем

Многочлен степени $n \in \mathbb{N} \cup \{0\}$ над полем \mathcal{F}

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
$$a_n, a_{n-1}, \dots, a_1, a_0 \in \mathbb{F}$$

p(x)=q(x), если равны их коэффициенты при одинаковых степенях x.

$$x^k \cdot x^m = x^{k+m} (k, m \in \mathbb{N} \cup \{0\}), \quad x^0 \equiv 1.$$

Множество всех многочленов $\mathcal{F}[x]$ — коммутативное кольцо.

Делимость многочленов

$$\forall p(x), q(x) \in \mathcal{F}[x] \ \exists s(x), r(x) \in \mathcal{F}[x] :$$

 $p(x) = s(x) \cdot q(x) + r(x)$

причём $\deg r(x) < \deg q(x)$ или r(x) = 0.

Многочлен s(x) называется **частным** (неполным частным), а многочлен r(x) — **остатком** от деления p(x) на s(x).

Частное и остаток определяются однозначно.

Справедлива теорема Безу (и её следствия): остаток от деления f(x) на (x-a) равен f(a).

Неприводимые многочлены

Если для любого разложения

$$p(x) = s(x) \cdot q(x), \quad p(x), s(x), q(x) \in \mathcal{F}[x]$$

либо
$$\deg s(x) = 0$$
, либо $\deg q(x) = 0$,

многочлен p(x) называется **неприводимым** (простым) в кольце $\mathcal{F}[x]$ (или над полем \mathcal{F}).

	$x^2 + 1$	$x^2 + x + 1$
Hад \mathbb{Z}_2	(x+1)(x+1)	неприводим
Hад \mathbb{Z}_3	неприводим	(x+2)(x+2)
Над ℝ	неприводим	неприводим
Над С	(x+i)(x-i)	$(x + \frac{1+i\sqrt{3}}{2})(x + \frac{1-i\sqrt{3}}{2})$

Классы вычетов многочленов

Класс вычетов по модулю многочлена g(x) содержит все многочлены $\mathcal{F}[x]$, которые имеют один и тот же остаток при делении на g(x).

Если g(x) неприводим в $\mathcal{F}[x]$, множество классов вычетов (фактор-кольцо $\mathcal{F}[x]/g(x)$) — поле.

Поле $\mathcal{F}[x]/g(x)$ — расширение \mathcal{F} , полученное добавлением корня g(x) (примитивное расширение) — фиктивного $c \notin \mathcal{F}$, что g(c) = 0.

Примитивные расширения $\mathbb R$

Многочлен $g(x) = x^2 + 1$ неприводим над \mathbb{R} .

Поле $\mathbb{C}-$ примитивное расширение \mathbb{R} , полученное добавлением фиктивного корня x^2+1 — «мнимой единицы» $i\notin\mathbb{R}$.

 $x, x + 1, x + 2, x^2 + 4, x^2 + x + 1$ и $x^4 + 1$ также неприводимы над \mathbb{R} .

Как будут выглядеть примитивные расширения?

Многочлен $g(x) = x^2 + x + 1$ неприводим над \mathbb{Z}_2 .

Пусть $i \notin \mathbb{Z}_2$ — фиктивный корень $x^2 + x + 1$.

$$i^2 + i + 1 = 0$$

Элементы примитивного расширения 0,1,i,i+1. $i^2 = -(i+1) = i+1$

Поле GF(4)

Числовое представление многочлена — битовая строка коэффициентов

Полиномиальное	Числовое	Степени					
представление	представление	0	1	2			
1	1	1	1	1			
i	2	1	i (2)	i + 1(3)			
i+1	3	1	i + 1(3)	i (2)			

Из обобщённой малой теоремы Ферма $a^3=1$ для всех ненулевых a.

Сложение и умножение в GF(4)

Сложение — сложение многочленов с учётом 1 + 1 = 0(побитовое по модулю 2)

+	0 1	2 i + 1
0	0 1	i i+1
1	1 0	i+1 i
	i i+1	
i+1	i+1 i	1 0

+	0	1	2	3
0	0	1	2	3
1	1	0	3	2
$\frac{1}{2}$	2	3	0	1
3	3	2	1	0

Умножение — умножение степеней примитивного элемента с учётом $i^3 = 1$

	0	1	2	3
0	0	0	0	0
1	0	1	2	3
0 1 2 3	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	1 2 3	3	1
3	0	3	1_	2

Алгебры, кольца, поля Расширение поля Сложение и умножение в GF(4)

Разрежённые полиномы, неприводимые по модулю 2 (порождающие табличные)

Наименьший примитивный элемент расширения: $i\ (2)$ (для большинства).

Для используемого в AES $x^{8}+x^{4}+x^{3}+x+1$ примитивный элемент i+1 (3).

			Степени							
			0	1	2	3	4	5	6	7
o e	1	1	1	1	1	1	1	1	1	1
BH HI	X	2	1	2	4	3	6	7	5	1
иал Вле	x+1	3	1	3	5	4	7	2	6	1
олиномиально представление	x^2	4	1	4	6	5	2	3	7	1
E H	x ² +1	5	1	5	7	6	3	4	2	1
	$x^{2+}x$	6	1	6	2	7	4	5	3	1
Π e	$x^{2}+x+1$	7	1	7	3	2	5	6	4	1

Таблица степеней $\mathsf{GF}(16)$

		Степени														
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	2	4	8	3	6	12	11	5	10	7	14	15	13	9	1
3	1	3	5	15	2	6	10	13	4	12	7	9	8	11	14	1
4	1	4	3	12	5	7	15	9	2	8	6	11	10	14	13	1
5	1	5	2	10	4	7	8	14	3	15	6	13	12	9	11	1
6	1	6	7	1	6	7	1	6	7	1	6	7	1	6	7	1
7	1	7	6	1	7	6	1	7	6	1	7	6	1	7	6	1
8	1	8	12	10	15	1	8	12	10	15	1	8	12	10	15	1
9	1	9	13	15	14	7	10	5	11	12	6	3	8	4	2	1
10	1	10	8	15	12	1	10	8	15	12	1	10	8	15	12	1
11	1	11	9	12	13	6	15	3	14	8	7	4	10	2	5	1
12	1	12	15	8	10	1	12	15	8	10	1	12	15	8	10	1
13	1	13	14	10	11	6	8	2	9	15	7	5	12	3	4	1
14	1	14	11	8	9	7	12	4	13	10	6	2	15	5	3	1
15	1	15	10	12	8	1	15	10	12	8	1	15	10	12	8	1

Спасибо за внимание!

HИУ МИЭТ http://miet.ru/

Александра Игоревна Кононова illinc@mail.ru

