Intermediate Econometrics Linear Algebra

Jean-Marc Robin

Sciences-Po

January 17, 2013

Vectors and vector spaces

- A vector is a set of numbers. Like $\mathbf{x} = (x_1, x_2, ..., x_N)$.
- A vector space is a set of vectors such that the sum of two vectors and the multiplication of a vector by a number make sense:

$$\mathbf{x} + \mathbf{y} = (x_1 + y_1, x_2 + y_2, ...)$$

 $\lambda \mathbf{x} = (\lambda x_1, \lambda x_2, ...)$

ullet A scalar product is an operation on two vectors onto $\mathbb R$:

$$\mathbf{x} \bullet \mathbf{y} = x_1 y_1 + x_2 y_2 + \dots$$

ightharpoonup $x \bullet y > 0$ if the vectors point in the same direction, = 0 if they are orthogonal.

Matrices as operators on vectors

- A matrix is a table of numbers, e.g. $A = \begin{pmatrix} 1.1 & 4 & -.7 \\ .5 & -3 & .9 \end{pmatrix} \in \mathbb{R}^{2\times 3}.$
- A matrix $A \in \mathbb{R}^{n \times m}$ operates on a vector $\mathbf{x} \in \mathbb{R}^m$ to produce another vector $\mathbf{y} \in \mathbb{R}^n$, the elements of which are linear combinations of the elements of \mathbf{x} .
- Let m = 2, n = 3,

$$\textbf{y} = \underset{(2\times 3)}{\mathcal{A}}\textbf{x}$$

means that

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
$$= \begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix} x_1 + \begin{pmatrix} a_{12} \\ a_{22} \end{pmatrix} x_2 + \begin{pmatrix} a_{13} \\ a_{23} \end{pmatrix} x_3$$
$$= \begin{pmatrix} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 \end{pmatrix}$$

Matrix transpose

• For any $A = [a_{ij}] \in \mathbb{R}^{n \times m}$ there exists a matrix $A^{\mathsf{T}} = [a_{ji}] \in \mathbb{R}^{m \times n}$ such that, for all $\mathbf{x} \in \mathbb{R}^m$ and $\mathbf{y} \in \mathbb{R}^n$,

$$(A\mathbf{x}) \bullet \mathbf{y} = \mathbf{x} \bullet (A^{\mathsf{T}}\mathbf{y})$$

• This matrix takes a very simple form: if $A = [a_{ij}]$ has generic element a_{ij} (i is the row index and j is the column index) then $A^{\mathsf{T}} = [a_{ji}]$, i.e. writes the columns of A as the rows of A^{T} .

Vectors as matrices

- A single-column matrix $A \in \mathbb{R}^{n \times 1}$ operates on scalars to produces vectors of dimension n. In particular $A = \begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix}$ applied to 1 produces a vector with coordinates a_{11} and a_{12} .
- A vector can be represented as a matrix in two ways: for example, $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^{2 \times 1}$ is a column-vector and $\mathbf{x} = (x_1, x_2) \in \mathbb{R}^{1 \times 2}$ is a row-vector.

Matrix addition

- What Ax + Bx?
- Let $A = [a_{ij}]$ and $B = [b_{ij}]$. Then,

$$A\mathbf{x} + B\mathbf{x} = C\mathbf{x}$$

with for

$$C = [a_{ij} + b_{ij}].$$

Matrix multiplication

- Let $\mathbf{y} = A \mathbf{x}$ $_{(n \times 1)} = (n \times m)(m \times 1)$.
- What is $\underset{(p \times n)}{B} \mathbf{y}$?

$$B\mathbf{y} = B(A\mathbf{x}) = C\mathbf{x}$$

with

$$\underset{p\times m}{C} = [c_{ij}] = \underset{(p\times n)(n\times m)}{B} A$$

where

$$c_{ij} = \sum_{k=1}^{n} b_{ik} a_{kj}$$

= $b_{i1} a_{1j} + ... + b_{in} a_{nj}$
= i th row of $B \times j$ th column of A

for i = 1, ..., p, j = 1, ..., m.

► Matrices must be **conformable:** The number of columns of *B* must be equal to the number of rows of *A*.

Matrix transpose (again)

• The scalar product of two vectors becomes the following matrix multiplication. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n \times 1}$ be two column vectors of dimension n,

$$\underbrace{\mathbf{x} \bullet \mathbf{y}}_{\text{scalar product}} = \underbrace{\mathbf{x}^{\mathsf{T}} \mathbf{y}}_{\text{matrix multiplication}}$$

• Transpose of a product of matrices:

$$(AB)^{\mathsf{T}} = B^{\mathsf{T}}A^{\mathsf{T}}$$

Attention to the ordering change.

► So:

$$\mathbf{y} = A\mathbf{x} \Leftrightarrow \mathbf{y}^\mathsf{T} = \mathbf{x}^\mathsf{T} A^\mathsf{T}$$

and

$$(Ax) \bullet y = (Ax)^{\mathsf{T}} y = x^{\mathsf{T}} A^{\mathsf{T}} y = x \bullet (A^{\mathsf{T}} y)$$

Matrix rank and determinant

- Let $A \in \mathbb{R}^{m \times n}$. The rows (resp. columns) of A are linearly independent if they cannot be written as a linear combination of the other rows (resp. columns).
- If the rows (resp. columns) of A are linearly independent then A has **full row** (resp. column) rank (by opposition to rank defficient).
- If m > n then A is necessarily row rank defficient. If m < m it is necessarily column rank defficient.
- The rank of a matrix is the maximal number of linearly independent rows or columns of A.
- It holds that

$$\mathsf{rk}(A) = \mathsf{rk}(A^\mathsf{T}) = \mathsf{rk}(A^\mathsf{T}A) = \mathsf{rk}(AA^\mathsf{T})$$

• If A is square, i.e m = n, then A has full rank if and only if its determinant is non nil:

$$\mathsf{rk}(A) = n \Leftrightarrow \mathsf{det}(A) \neq 0$$

Otherwise, it is said singular.

Matrix inverse

• Consider a system of m linear equations with n unknowns $\mathbf{x} = (x_1, ..., x_n)^\mathsf{T} \in \mathbb{R}^{n \times 1}$:

$$\mathbf{y} = A \mathbf{x}$$
 $(m \times 1) = (m \times n)(n \times 1)$

- If m < n (less equations than unknown) the system has an infinite number of solutions;
- ▶ If m > n (strictly more equations), the system has no solution unless m n equations are redundant (i.e. = linear combinations of n other ones);
- ▶ If m=n and A has full rank, then there exists a unique solution that is a vector of linear combinations of \mathbf{y} , i.e. there exists a matrix $A^{-1} \in \mathbb{R}^{n \times m}$ such that

$$x = A^{-1}y$$
.

This matrix is called the inverse of A.

• For example, if $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, then $\det(A) = ad - bc$ and $A^{-1} = \frac{1}{ad-bc} \begin{pmatrix} a & -b \\ -c & d \end{pmatrix}$. Formulas exists for higher dimensions.

Trace

- \bullet trA is the sum of the diagonal elements of A
- It is equal to the sum of the characteristic roots.
- $\operatorname{tr}(AB) = \operatorname{tr}(BA)$

Cholesky decomposition

• If A has real entries and is symmetric and positive definite, then A can be decomposed as $A = LL^{\mathsf{T}}$, where L is a lower triangular matrix with strictly positive diagonal entries.

Characteristic roots

• Roots of the determinental equation:

$$|A - \lambda I| = 0$$

- Polynomial in the dimension of A.
- The characteristic roots are the eigenvalues of A.
- They are in general complex. They are real for a symmetric matrix.
- Let $\lambda_1 > \lambda_2 > ... > \lambda_n$ be the char. roots of a symmetric matrix A. Then

$$\lambda_{1} = \max_{x} \frac{x^{\mathsf{T}} A x}{x^{\mathsf{T}} x} = \frac{x_{1}^{\mathsf{T}} A x_{1}}{x_{1}^{\mathsf{T}} x_{1}}$$

$$\lambda_{2} = \max_{x^{\mathsf{T}} x_{1} = 0} \frac{x^{\mathsf{T}} A x}{x^{\mathsf{T}} x} = \frac{x_{2}^{\mathsf{T}} A x_{2}}{x_{2}^{\mathsf{T}} x_{2}}$$

$$\lambda_{3} = \max_{x^{\mathsf{T}} x_{1} = 0} \frac{x^{\mathsf{T}} A x}{x^{\mathsf{T}} x} = \frac{x_{3}^{\mathsf{T}} A x_{3}}{x_{3}^{\mathsf{T}} x_{3}}$$

$$x^{\mathsf{T}} x_{2} = 0$$

...

Diagonalization of general matrices

- For any square matrix A, with distinct characteristic roots, there exists a nonsingular matrix P such that $PAP^{-1} = \Lambda$, where Λ is the diagonal matrix with the characteristic roots in the diagonal and the columns of which are eigenvectors of A.
- If the char. roots are not distincts, A takes the Jordan canonical form, ie $A = P^{-1}JA$, where J is nearly diagonal. For example, with $\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = \lambda_4 = \lambda_5 = 4$,

$$J = \left(\begin{array}{ccccc} 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 4 & 1 & 0 \\ 0 & 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 0 & 4 \end{array}\right)$$

Diagonalization of symmetric matrices

• Every real symmetric matrix A can be diagonalized, moreover the eigen decomposition takes a simpler form:

$$A = Q \Lambda Q^{\mathsf{T}}$$

where Q is an orthogonal matrix (the columns of which are eigenvectors of A), and Λ is real and diagonal (having the eigenvalues of A on the diagonal).

Positivity

- For a symmetric matrix A, A is positive definite (write $A \succ 0$) if
 - $x^T Ax > 0$ for all $x \neq 0$
 - or equivalently if its characteristic roots are all positive
- Semi positive definite $(A \succeq 0)$ if $x^T A x \ge 0$ for all $x \ne 0$
- Let A, B be symmetrix, nonsingular matrices of same size. Then $A \succeq B \succeq 0$ implies $B^{-1} \ge A^{-1}$.

Projection

- Let $A \in \mathbb{R}^{n \times r}$ be a matrix of rank r. A matrix of the form $P = A(A^TA)^{-1}A^T$ is called a projection matrix.
- P is symmetrix and idempotent: $P = P^T = P^2$
- rk(P) = n r and the eigenvalues of P are 1 with multiplicity n r and 0 with multiplicity r.
- If x = Ac for some c then Px = x (hence projection)
- M = I P is also a projection matrix and Mx = 0 for all x = Ac

Block-matrices

- For example, C = (A, B) or $E = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$.
- The same rules defining the addition and the multiplication for matrices apply to block-matrices, if blocks are conformable. For example,

$$(A,B)\begin{pmatrix} C \\ D \end{pmatrix} = AC + BD$$
$$(A,B)^{\mathsf{T}} = \begin{pmatrix} A^{\mathsf{T}} \\ B^{\mathsf{T}} \end{pmatrix}$$
$$\begin{pmatrix} C \\ D \end{pmatrix}^{\mathsf{T}} = (C^{\mathsf{T}}, D^{\mathsf{T}})$$

•
$$\begin{vmatrix} A & B \\ C & D \end{vmatrix} = |D| |A - BD^{-1}C| \text{ if } |D| \neq 0$$

$$\bullet \begin{pmatrix} A & B \\ C & D \end{pmatrix}^{-1} = \begin{pmatrix} E^{-1} & -E^{-1}BD^{-1} \\ -D^{-1}CE^{-1} & F^{-1} \end{pmatrix} \text{ with }$$

$$E = A - BD^{-1}C, F = D - CA^{-1}B$$

Kronecker product

• Let $A = (a_{ij})$ and B be matrices. Then

$$A \otimes B = (a_{ij}B) = \begin{pmatrix} a_{11}B & a_{12}B & \cdots & a_{1L}B \\ a_{21}B & a_{22}B & \cdots & a_{2L}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{M1}B & a_{M2}B & \cdots & a_{ML}B \end{pmatrix}.$$

Properties:

$$(A \otimes B)^{\mathsf{T}} = (A^{\mathsf{T}}) \otimes (B^{\mathsf{T}})$$
$$(A \otimes B)^{-1} = (A^{-1}) \otimes (B^{-1})$$
$$(A \otimes B) (C \otimes D) = (AC) \otimes (BD)$$

(if A and B are non singular and if A and C and B and D are conformable).

• $\operatorname{vec}(ABC) = (C^{\mathsf{T}} \otimes A)\operatorname{vec}(B)$