Causal Compatibility Inequalities Admitting of Quantum Violations in the Triangle Scenario

T.C. $Fraser^{1,2}$

 1 Perimeter Institute for Theoretical Physics Ontario, Canada 2 University of Waterloo Ontario, Canada

Quantum Networks Workshop, IIP, Nov. 2016

Triangle Inequalities

Causal Compatibility Inequalities Admitting of Quantum Violations in the Triangle Scenario

T.C. Fratel^{1,2}

*Professes behave for Thomson Physics
**Support Course
**Oriest, Course
**Oriest, Course

Quantum Nationals Workshop, IIP, Nov. 2016

- 1. Thank International Institute for Physics (IIP) for support
- 2. Thank Perimeter Institute for Theoretical Physics (PI) for support

The Triangle Scenario (TS)

Triangle Inequalities

The Triangle Scenario (TS)

- Research project's goal was to derive new causal compatibility inequalities that distinguish quantum correlations from classical correlations
- 2. Triangle Scenario has be studied extensively before
- In Branciard et al. 2012 it was noted that characterizing locality in TS remained an open problem and that identifying compatibility constraints in this configuration seemed challenging
- In Fritz 2012, Fritz demonstrated that TS is the smallest correlation scenario in which their exists quantum incompatible distributions (proof without inequalities)
- In Henson, Lal, and Pusey 2014, TS was classified as an interesting causal structure: conditional independence relations are not a sufficient characterization of compatibility (there are none)
- Several other authors (see Steudel and Ay 2010, Chaves, Luft, and Gross 2014, Wolfe, Spekkens, and Fritz 2016, ...) have investigated TS without achieving research objective

This Talk

- Inflation technique provides polynomial inequalities
- Inequalities witnessing non-local quantum correlations in the Triangle Scenario
- 3 Discuss search for new non-local quantum correlations

Triangle Inequalities

└─This Talk

- Inflation technique provides polynomial inequalities
 Inequalities witnessing non-local quantum correlations in the
- Discuss search for new non-local quantum correlations

Triangle Scenario

- 1. This talk is going to have three components
- 2. Demonstrating how something called the inflation technique allows one derive polynomial compatibility constraints for and causal structure
- 3. Using the inflation technique to find inequalities that demonstrate non-local quantum distributions on the Triangle scenario

Causal Compatibility

Triangle Scenario

$$P_{ABC} = \int_{XYZ} P_{A|X,Y} P_{B|Y,Z} P_{C|Z,X} P_X P_Y P_Z$$

General Setting

$$P_V = \sum_{\mathcal{N} \backslash V} P_{\mathcal{N}} \qquad P_{\mathcal{N}} = \prod_{n \in \mathcal{N}} P_{n \mid \mathsf{Pa}_{\mathcal{G}}(n)}$$

Demonstrating Inflation Technique

$$\forall n' \in \mathcal{N}', n' \sim n \in \mathcal{N} : \mathsf{AnSub}_{\mathcal{G}'}(n') \sim \mathsf{AnSub}_{\mathcal{G}}(n)$$

Demonstrating Inflation Technique

 $\mathsf{AnSub}_{\mathcal{G}}(A) \sim \mathsf{AnSub}_{\mathcal{G}'}(A_1)$

Demonstrating Inflation Technique

 $\mathsf{AnSub}_{\mathcal{G}}(C) \sim \mathsf{AnSub}_{\mathcal{G}'}(C_2)$

Some Inflations of the Triangle Scenario

Injectable Sets

 $\mathsf{AnSub}_{\mathcal{G}}(A,C) \sim \mathsf{AnSub}_{\mathcal{G}'}(A_2,C_1)$

Injectable Sets

 $?? \not\sim \mathsf{AnSub}_{\mathcal{G}'}(B_1, B_2)$

Injectable Sets

?? $\not\sim \mathsf{AnSub}_{\mathcal{G}'}(B_2, C_2)$

Injectable Sets Defined

The injectable sets in \mathcal{G}' :

$$\mathsf{Inj}_{\mathcal{G}}(\mathcal{G}') \equiv \{N' \subseteq \mathcal{N}' \mid \exists N \subseteq \mathcal{N} : \mathsf{AnSub}_{\mathcal{G}}(N) \sim \mathsf{AnSub}_{\mathcal{G}'}(N')\}$$

The images of the injectable sets in G:

$$\mathsf{ImInj}_{\mathcal{G}}(\mathcal{G}') \equiv \{N \subseteq \mathcal{N} \mid \exists N' \subseteq \mathcal{N}' : \mathsf{AnSub}_{\mathcal{G}}(N) \sim \mathsf{AnSub}_{\mathcal{G}'}(N')\}$$

Perfect Correlation Is Incompatible

Example Inequality

Quick example/preview:

$$\begin{split} P(110)P(223) + P(110)P(233) + P(110)P(323) + P(110)P(333) &\leq \\ 2P(020)P(213) + 2P(023)P(210) + 2P(023)P(310) + 2P(030)P(213) + \\ 2P(033)P(210) + 2P(033)P(310) + 2P(120)P(213) + 2P(123)P(210) + \\ 2P(123)P(310) + 2P(130)P(213) + 2P(132)P(311) + 2P(133)P(210) + \\ &\qquad \qquad + \cdots \quad 324 \text{ more terms } \cdots + \\ P(320)P(323) + P(320)P(333) + P(323)P(330) + P(330)P(333) \end{split}$$

- P(abc) shorthand for $P_{ABC}(abc)$
- Four outcomes for each A, B, C
- Polynomial in P_{ABC} , marginals P_{AB} , P_{BC} , P_{AC} , P_{A} , P_{B} , P_{C}

Triangle	Inequalitie

Example Inequality

Quick example/preview:

$$\begin{split} P(110)P(223) + P(110)P(233) + P(110)P(323) + P(110)P(333) \leq \\ 2P(020)P(213) + 2P(023)P(210) + 2P(023)P(310) + 2P(030)P(213) + \\ 2P(033)P(210) + 2P(033)P(210) + 2P(130)P(213) + 2P(132)P(210) + 2P(132)P(2$$

 $+\cdots 324$ more terms $\cdots + P(320)P(323) + P(320)P(333) + P(323)P(330) + P(330)P(333)$

- P(abc) shorthand for P_{ABC}(abc)
- Four outcomes for each A.B.C
- \blacksquare Polynomial in $P_{ABC},$ marginals $P_{AB},$ $P_{BC},$ $P_{AC},$ $P_{A},$ $P_{B},$ P_{C}
- 1. As a quick example or preview of what is to come, here is a an example inequality admits quantum violations in the triangle scenario
- 2. Some features of note: inequality is polynomial in P_{ABC} and its marginals

Pre-injectable Sets of Large Inflation

■ Has 12 maximal pre-injectable sets (to follow)

Large Inflation Pre-injectable Sets

Maximal Pre-injectable Sets

$$\{A_1, B_1, C_1, A_4, B_4, C_4\}$$

$$\{A_1, B_2, C_3, A_4, B_3, C_2\}$$

$$\{A_2, B_3, C_1, A_3, B_2, C_4\}$$

$$\{A_2, B_4, C_3, A_3, B_1, C_2\}$$

$$\{A_1, B_3, C_4\}$$

$$\{A_1, B_4, C_2\}$$

$$\{A_2, B_1, C_4\}$$

$$\{A_2, B_2, C_2\}$$

$$\{A_3, B_3, C_3\}$$

$$\{A_3, B_4, C_1\}$$

$$\{A_4, B_1, C_3\}$$

$$\{A_4, B_2, C_1\}$$

Ancestral Independences

$$\{A_1, B_1, C_1\} \perp \{A_4, B_4, C_4\}$$

$$\{A_1, B_2, C_3\} \perp \{A_4, B_3, C_2\}$$

$$\{A_2, B_3, C_1\} \perp \{A_3, B_2, C_4\}$$

$$\{A_2, B_4, C_3\} \perp \{A_3, B_1, C_2\}$$

$$\{A_1\} \perp \{B_3\} \perp \{C_4\}$$

$$\{A_1\} \perp \{B_4\} \perp \{C_2\}$$

$$\{A_2\} \perp \{B_1\} \perp \{C_4\}$$

$$\{A_2\} \perp \{B_2\} \perp \{C_2\}$$

$$\{A_3\} \perp \{B_3\} \perp \{C_3\}$$

$$\{A_3\} \perp \{B_4\} \perp \{C_1\}$$

$$\{A_4\} \perp \{B_1\} \perp \{C_3\}$$

$$\{A_4\} \perp \{B_2\} \perp \{C_1\}$$

Deriving Inequalities

- Inflation facilitates turning linear, inflated inequalities into polynomial deflated ones
- **Question:** How to derive compatibility inequalities for \mathcal{G}' ?
- Answer: Use your favorite technique for deriving compatibility inequalities:
 - Entropic inequalities
 - Finite outcome inequalities
- lacksquare Here we solve the marginal problem for $\mathcal{M}=\mathsf{PreInj}_{\mathcal{G}}(\mathcal{G}')$
- First some notation and formalism

Outcomes and Events

Definition

Each variable v has finite set of outcomes O_v .

Each set of variables V has finite set of events $\mathcal{E}(V)$:

$$\mathcal{E}(V) \equiv \{s : V \to O_V \mid \forall v \in V, s(v) \in O_v\}$$

Definition

The set of events over the joint variables $\mathcal{E}(\mathcal{J})$ are termed the joint events.

Definition

The set of events over the marginal contexts are the marginal events

$$\mathcal{E}(\mathcal{M}) \equiv \coprod_{V \in \mathcal{M}} \mathcal{E}(V)$$

Distribution Vectors

Definition

The joint distribution vector $\mathcal{P}^{\mathcal{J}}$

$$\mathcal{P}_{j}^{\mathcal{J}} = P_{\mathcal{J}}(j) \quad \forall j \in \mathcal{E}(\mathcal{J})$$

Definition

The marginal distribution vector $\mathcal{P}^{\mathcal{M}}$

$$\mathcal{P}_m^{\mathcal{M}} = P_{\mathcal{D}(m)}(m) \quad \forall m \in \mathcal{E}(\mathcal{M}), \mathcal{D}(m) \in \mathcal{M}$$

Can now write complete marginal problem as matrix multiplication:

$$\forall V \in \mathcal{M} : P_V = \sum_{\mathcal{J} \setminus V} P_{\mathcal{J}} \iff \mathcal{P}^{\mathcal{M}} = M \cdot \mathcal{P}^{\mathcal{J}}$$

Incidence Matrix

- Incidence matrix M is a bit-wise matrix
- Row-indexed by marginal events $m \in \mathcal{E}(\mathcal{M})$
- Column-indexed by joint events $j \in \mathcal{E}(\mathcal{J})$

$$M_{m,j} = \begin{cases} 1 & m = j|_{\mathcal{D}(m)} \\ 0 & \text{otherwise} \end{cases}$$

$$\begin{aligned} \#\mathsf{Columns} &= |\mathcal{E}(\mathcal{J})| = \prod_{v \in \mathcal{J}} |O_v| \\ \#\mathsf{Rows} &= |\mathcal{E}(\mathcal{M})| = \sum_{V \in \mathcal{M}} \prod_{v \in V} |O_v| \end{aligned}$$

Example

Let $\mathcal J$ be 3 binary variables $\mathcal J=\{A,B,C\}$ and $\mathcal M$ be the marginal scenario $\mathcal M=\{\{A,B\},\{B,C\},\{A,C\}\}$. The incidence matrix becomes:

	(A,B,C) =	(0,0,0)	(0,0,1)	(0,1,0)	(0,1,1)	(1,0,0)	(1,0,1)	(1,1,0)	(1,1,1)
	(A=0,B=0)	/ 1	1	0	0	0	0	0	0 \
	(A=0,B=1)	0	0	1	1	0	0	0	0
	(A=1,B=0)	0	0	0	0	1	1	0	0
	(A=1,B=1)	0	0	0	0	0	0	1	1
	(B=0,C=0)	1	0	0	0	1	0	0	0
1.1	(B=0,C=1)	0	1	0	0	0	1	0	0
M =	(B=1,C=0)	0	0	1	0	0	0	1	0
	(B=1,C=1)	0	0	0	1	0	0	0	1
	(A=0,C=0)	1	0	1	0	0	0	0	0
	(A=0,C=1)	0	1	0	1	0	0	0	0
	(A=1,C=0)	0	0	0	0	1	0	1	0
	(A=1,C=1)	0	0	0	0	0	1	0	1 /

Marginal Linear Program

 \blacksquare Obtain inequalities from incidence matrix M and known incompatible distribution $\mathcal{P}^{\mathcal{M}}$

Marginal LP:

Dual Marginal LP:

minimize: $\emptyset \cdot x$ minimize: $y \cdot \mathcal{P}^{\mathcal{M}}$ subject to: $x \succeq 0$ subject to: $y \cdot M \succeq 0$ $M \cdot x = \mathcal{P}^{\mathcal{M}}$

y is an infeasibility certificate:

$$y \cdot M \cdot x = y \cdot \mathcal{P}^{\mathcal{M}} \ge 0$$

- Infeasibility inequality: $y \cdot \mathcal{P}^{\mathcal{M}} \geq 0$
- Most linear programing toolkits return certificates (Mosek, Gurobi, CPLEX, cvxr/cvxopt.)

Triangle Inequalities

-Marginal Linear Program

- ${\bf I\!\!I} \ y$ is an infeasibility certificate: $y\cdot M\cdot x = y\cdot {\cal P}^M \geq 0$
- Infeasibility inequality: y · P^M ≥ 0
 Most linear programing toolkits return certificates (Mosek, Gurobi, CPLEX, cvxr/cvxopt.)
- 1. It is possible to derive non-contextuality inequalities from M and a known incompatible distribution $\mathcal{P}^\mathcal{M}$
- 2. Note the null objective; the minimization objective is trivially always zero
- 3. The primal value of the linear program is of no interest, all that matters is its *feasibility*.
- 4. If feasible, then there exists a vector x that is a valid joint distribution vector $\mathcal{P}^{\mathcal{I}}$.
- 5. Feasibility implies that $\mathcal{P}^{\mathcal{J}} = x$.
- 6. Infeasibility implies contextuality

Known Incompatible Distribution in The Triangle Scenario

Fritz 2012 provides quantum-accessible distribution incompatible with TS

$$P_{ABC}(abc) = \text{Tr}[\Pi^{\mathsf{T}} \rho_{AB} \otimes \rho_{BC} \otimes \rho_{CA} \Pi M_{A,a} \otimes M_{B,b} \otimes M_{C,c}]$$

Fritz Distribution

Fritz Distribution

$$= \frac{1}{32} (2 - \sqrt{2})$$
 $= \frac{1}{32} (2 + \sqrt{2})$

Fritz Distribution Violating CHSH

- \blacksquare C 's outcome acts as measurement "setting" for A, B; independent of ρ_{AB}
- Correlation between right bits

$$\langle A_r B_r \rangle = P_{A_r B_r}(00) + P_{A_r B_r}(11) - P_{A_r B_r}(01) - P_{A_r B_r}(10)$$

 $\langle A_r B_r | C = 0, 1, 2 \rangle = \frac{1}{\sqrt{2}} \quad \langle A_r B_r | C = 3 \rangle = -\frac{1}{\sqrt{2}}$

Gives CHSH violation

$$\langle A_r B_r | C = 0 \rangle + \langle A_r B_r | C = 1 \rangle + \langle A_r B_r | C = 2 \rangle - \langle A_r B_r | C = 3 \rangle$$

$$= 3 \left(\frac{1}{\sqrt{2}} \right) - \left(-\frac{1}{\sqrt{2}} \right)$$

$$= 2\sqrt{2} \nleq 2$$

Notes of Fritz Distribution

- lacksquare Proof contingent on perfect correlation between C and pseudo-settings
- Proof not robust to noise

Problem (2.17 in Fritz 2012)

Find an example of non-classical quantum correlations in TS together with a proof of its non-classicality which does not hinge on Bell's Theorem.

- "...would be helpful to have inequalities..."
- $lue{}$ Possible to find inequalities violated by P_F using the Large inflation of the TS

Large Inflation Incidence

 \blacksquare Joint variables are all of the observable nodes $\mathcal{N}_O'=\mathcal{J}$

$$\mathcal{J} = \{A_1, A_2, A_3, A_4, B_1, B_2, B_3, B_4, C_1, C_2, C_3, C_4\}$$

- $\begin{tabular}{ll} \bf Marginal scenario is composed of pre-injectable sets \\ {\cal M} = {\sf PreInj}_{{\cal G}}({\cal G}') \\ \end{tabular}$
- Inequalities violated by Fritz distribution are inherently 4-outcome
- Incidence matrix M is very large $\sim 2.25 {\rm Gb}$
 - $\# Columns = 4^{12} = 16,777,216$
 - #Rows = $4 \times 4^6 + 8 \times 4^3 = 16,896$
 - $\blacksquare \ \# \mathsf{Non-zero} \ \mathsf{Entries} = 201, 326, 592$

Triangle Scenario Inequality

Causal Symmetry

Desirable to find compatibility inequality I such that

$$\forall \varphi \in \mathsf{Perm}(A,B,C) : \varphi[I] = I$$

- Compatibility is independent of variable labels $I, \mathcal{G} \to \varphi[I], \varphi[\mathcal{G}]$
- $\blacksquare \ \operatorname{Need} \ \varphi[\mathcal{G}] = \mathcal{G} \ \operatorname{to} \ \operatorname{find} \ \operatorname{new} \ \varphi[I]$

Definition

The causal symmetry group of causal structure G:

$$\mathsf{Aut}(\mathcal{G}) = \{ \varphi \in \mathsf{Perm}(\mathcal{N}) \mid \varphi[\mathcal{G}] = \mathcal{G} \}$$

Strictly speaking, one needs to preserve observable nodes:

$$\operatorname{Aut}_{\mathcal{N}_O}(\mathcal{G}) = \{ \varphi \in \operatorname{Aut}(\mathcal{G}) \mid \varphi[\mathcal{N}_O] = \mathcal{N}_O \}$$

Triangle Inequalities

Causal Symmetry

■ Desirable to find compatibility inequality I such that $\forall \omega \in \text{Perm}(A, B, C): \omega[I] = I$

Compatibility is independent of variable labels

 $I, \mathcal{G} \rightarrow \varphi[I], \varphi[\mathcal{G}]$ Need $\varphi[\mathcal{G}] = \mathcal{G}$ to find new $\varphi[I]$

The causal symmetry group of causal structure \mathcal{G} :

 $\operatorname{Aut}(\mathcal{G}) = \{\varphi \in \operatorname{Perm}(\mathcal{N}) \mid \varphi[\mathcal{G}] = \mathcal{G}\}$

Strictly speaking, one needs to preserve observable nodes $\operatorname{Aut}_{\mathcal{N}_{\Omega}}(\mathcal{G}) = \{\varphi \in \operatorname{Aut}(\mathcal{G}) \mid \varphi[\mathcal{N}_{\Omega}] = \mathcal{N}_{\Omega}\}$

- 1. Fritz distribution is incompatible with Triangle scenario because party C plays the role of measurement settings for both A and B
- 2. In order to find quantum distributions different from P_F in the Triangle Scenario, it is therefore desirable to find a proof of its incompatibility (i.e. inequality) that is symmetric under exchange of parties
- 3. Surprisingly, it is possible to do so!
- 4. Here is how.
- 5. First, we will formally define the symmetry group in question
- 6. Causal symmetry group is the group of automorphisms on causal structure

Causal Symmetry and Inflation

- Causal symmetry group for G' is no good!
- Not possible to deflate inequality if it's not in terms of injectable sets

<u>Definition</u>

The restricted causal symmetry group Φ of \mathcal{G}' :

$$\Phi = \mathsf{Aut}_{\mathsf{PreInj}_{\mathcal{G}}(\mathcal{G}')}(\mathcal{G}')$$

Restricted Causal Symmetry of Large Inflation

 $\,\blacksquare\,\,\Phi$ for the large inflation is an order 48 group with 4 generators

$arphi_1$	$arphi_2$	$arphi_3$	$arphi_4$
$A_1 \to A_4$	$A_1 \to A_1$	$A_1 \to C_1$	$A_1 \to A_1$
$A_2 \to A_3$	$A_2 \to A_3$	$A_2 \to C_2$	$A_2 o A_2$
$A_3 \to A_2$	$A_3 \to A_2$	$A_3 \to C_3$	$A_3 \to A_3$
$A_4 \rightarrow A_1$	$A_4 \rightarrow A_4$	$A_4 \to C_4$	$A_4 \to A_4$
$B_1 \to B_4$	$B_1 \to C_1$	$B_1 \to A_1$	$B_1 \to B_2$
$B_2 \to B_3$	$B_2 \to C_3$	$B_2 \to A_2$	$B_2 \to B_1$
$B_3 \to B_2$	$B_3 \to C_2$	$B_3 \to A_3$	$B_3 \to B_4$
$B_4 \to B_1$	$B_4 \to C_4$	$B_4 \to A_4$	$B_4 \to B_3$
$C_1 \to C_4$	$C_1 \to B_1$	$C_1 \to B_1$	$C_1 \to C_3$
$C_2 \to C_3$	$C_2 \to B_3$	$C_2 \to B_2$	$C_2 \to C_4$
$C_3 \to C_2$	$C_3 \to B_2$	$C_3 \to B_3$	$C_3 \to C_1$
$C_4 \to C_1$	$C_4 \to B_4$	$C_4 \rightarrow B_4$	$C_4 \rightarrow C_2$
		4 □ ▶	amination :

Symmetric Incidence

■ Group orbits through repeated action of $\varphi \in \Phi$ on $m \in \mathcal{E}(\mathcal{M})$ and $j \in \mathcal{E}(\mathcal{J})$

$$\begin{split} \Phi[m] &\equiv \{\varphi[m] \mid \varphi \in \Phi\} \\ \Phi[j] &\equiv \{\varphi[j] \mid \varphi \in \Phi\} \end{split}$$

• Construct symmetric incidence matrix $\Phi[M]$

$$\begin{split} \Phi[M]_{\Phi[m],\Phi[j]} &= \sum_{m' \in \Phi[m]} \sum_{j' \in \Phi[j]} M_{m',j'} \\ \Phi[M] &= \Lambda_{\Phi[\mathcal{E}(\mathcal{M})]} \cdot M \cdot \Lambda_{\Phi[\mathcal{E}(\mathcal{J})]} \end{split}$$

- ullet $\Phi[M]$ not a bit-wise matrix like M
- For large inflation M is $16,896 \times 16,777,216$
- \blacksquare For large inflation $\Phi[M]$ is $450\times358, 120$

Party Symmetric Inequality

 $2[P(001)P(333)]_3 + 2[P(010)P(323)]_3 + 6[P(000)P(323)]_3 + 6[P(000)P(333)]_1 \\$

5

 $12[P(031)P(302)]_6 + 12[P(033)P(303)]_6 + 12[P(103)P(130)]_6 + 12[P(203)P(230)]_6 + 12[P(203)P(330)]_6 + 2[P(001)P(320)]_6 + 2[P(002)P(221)]_3 + 2[P(003)P(211)]_6 + 2[P(003)P(30)]_6 + 2[P(003)P(30)]_6$ $2[P(003)P(331)]_3 + 2[P(011)P(211)]_3 + 2[P(012)P(322)]_6 + 2[P(013)P(313)]_6 + 2[P(013)P(332)]_6 + 2[P(020)P(111)]_3 + 2[P(020)P(211)]_6 + 2[P(021)P(212)]_6 + 2[P(020)P(212)]_6 + 2[P($ $2[P(022)P(211)]_3 + 2[P(022)P(212)]_6 + 2[P(022)P(322)]_3 + 2[P(023)P(232)]_6 + 2[P(030)P(212)]_3 + 2[P(031)P(231)]_6 + 2[P(032)P(331)]_6 + 2[P(033)P(333)]_3 + 2[P(032)P(32)]_6 + 2[P$ $2[P(101)P(131)]_3 + 2[P(101)P(132)]_6 + 2[P(102)P(131)]_6 + 2[P(102)P(132)]_6 + 2[P(102)P(133)]_6 + 2[P(110)P(133)]_6 + 2[P(110)P(132)]_6 + 2[P(110)P(122)]_6 + 2[P($ $2[P(110)P(223)]_3 + 2[P(112)P(331)]_3 + 2[P(120)P(122)]_6 + 2[P(121)P(201)]_6 + 2[P(122)P(200)]_3 + 2[P(122)P(202)]_6 + 2[P(122)P(210)]_6 + 2[P($ $2[P(130)P(232)]_6 + 2[P(130)P(233)]_6 + 2[P(131)P(201)]_6 + 2[P(131)P(202)]_3 + 2[P(131)P(313)]_3 + 2[P(133)P(200)]_3 + 2[P(133)P(201)]_6 + 2[P(133)P(201)]_6 + 2[P(133)P(201)]_6 + 2[P(133)P(201)]_6 + 2[P(131)P(202)]_7 + 2[P($ $2[P(133)P(212)]_6 + 2[P(133)P(300)]_3 + 2[P(202)P(231)]_6 + 2[P(210)P(222)]_6 + 2[P(220)P(222)]_3 + 2[P(220)P(313)]_6 + 2[P(221)P(313)]_6 + 2[P(222)P(313)]_6 + 2[P($ $2[P(223)P(331)]_3 + 2[P(230)P(312)]_6 + 2[P(231)P(313)]_6 + 2[P(232)P(320)]_6 + 2[P(302)P(322)]_6 + 2[P(320)P(323)]_6 + 2[P(330)P(332)]_3 + 3[P(000)P(003)]_3 + 2[P(320)P(320)]_6 + 2[P(320)P(320)P(320)]_6 + 2[P(320)P(320)P(320)]_6 + 2[P(320)P(320)P(320)P(320)_6 + 2[P(320)P(320)P(320)_6 + 2[P(320)P(320)P(320)_6 + 2[P(320)P(3$ $3[P(010)P(301)]_6 + 4[P(001)P(131)]_6 + 4[P(002)P(020)]_6 + 4[P(002)P(133)]_6 + 4[P(002)P(323)]_6 + 4[P(010)P(123)]_6 + 4[P(013)P(212)]_6 + 4[P(013)P(312)]_6 + 4[P($ $4[P(023)P(221)]_6 + 4[P(023)P(222)]_6 + 4[P(023)P(322)]_6 + 4[P(031)P(211)]_6 + 4[P(032)P(321)]_6 + 4[P(100)P(123)]_6 + 4[P(100)P(232)]_6 + 4[P(100)P(313)]_6 + 4[P($ $4[P(112)P(310)]_6 + 4[P(122)P(203)]_6 + 4[P(122)P(302)]_6 + 4[P(130)P(222)]_6 + 4[P(130)P(223)]_6 + 4[P(222)P(310)]_6 + 4[P(223)P(320)]_6 + 4[P(231)P(310)]_6 + 4[P(32)P(310)]_6 + 4[P$ $4[P(312)P(330)]_6 + 6[P(001)P(031)]_6 + 6[P(001)P(033)]_6 + 6[P(002)P(300)]_6 + 6[P(002)P(330)]_3 + 6[P(003)P(032)]_6 + 6[P(003)P(131)]_6 + 6[P(003)P(132)]_6 + 6[P(003)P(032)]_6 + 6[P($ $6[P(011)P(300)]_3 + 6[P(011)P(320)]_6 + 6[P(012)P(200)]_6 + 6[P(012)P(301)]_6 + 6[P(013)P(030)]_6 + 6[P(013)P(10)]_6 + 6[P(013)P(120)]_6 + 6[P(012)P(120)]_6 + 6[P(012)P(120)]_6 + 6[P(012)P(120)]_6 + 6[P(0$ $6[P(020)P(102)]_6 + 6[P(020)P(103)]_6 + 6[P(020)P(123)]_6 + 6[P(020)P(202)]_3 + 6[P(020)P(203)]_6 + 6[P(020)P(311)]_6 + 6[P(020)P(322)]_6 + 6[P($ $6[P(022)P(303)]_6 + 6[P(030)P(033)]_6 + 6[P(030)P(101)]_3 + 6[P(030)P(133)]_6 + 6[P(030)P(202)]_3 + 6[P(030)P(303)]_3 + 6[P(030)P(303)]_6 + 6[P($ $6[P(032)P(310)]_6 + 6[P(033)P(101)]_6 + 6[P(033)P(130)]_6 + 6[P(033)P(200)]_3 + 6[P(033)P(212)]_6 + 6[P(033)P(220)]_6 + 6[P(033)P(222)]_3 + 6[P(033)P(230)]_6 + 6[P(030)P(230)]_6 + 6[P($ $6[P(033)P(322)]_3 + 6[P(100)P(203)]_6 + 6[P(101)P(130)]_6 + 6[P(103)P(310)]_6 + 6[P(113)P(130)]_6 + 6[P(113)P(230)]_6 + 6[P(113)P(330)]_3 + 6[P(122)P(330)]_6 + 6[P(113)P(320)]_6 + 6[P(112)P(320)]_6 + 6[P(112)P(320)]_6 + 6[P(112)P(320)]_6 + 6[P(112)P(320)]_6 + 6[P($ $6[P(130)P(313)]_6 + 6[P(132)P(303)]_6 + 6[P(133)P(303)]_6 + 6[P(133)P(302)]_6 + 6[P(200)P(203)]_6 + 6[P(201)P(230)]_6 + 6[P(203)P(231)]_6 + 6[P(203)P(302)]_6 + 6[P(202)P(302)]_6 + 6[P(202)P(302)]_6 + 6[P(202)P(302)]_6 + 6[P($ $8[P(003)P(320)]_6 + 8[P(032)P(300)]_6$

Parameterizing Quantum Distributions

For our purposes, we need to parameterize the space of quantum-accessible distributions that are *realized* on the Triangle Scenario

$$P_{ABC}(abc) = \text{Tr}[\Pi^{\mathsf{T}} \rho_{AB} \otimes \rho_{BC} \otimes \rho_{CA} \Pi M_{A,a} \otimes M_{B,b} \otimes M_{C,c}]$$

Numerical Optimization

- Attempt to find new non-classical distributions
- Objective function $f(\lambda) \in \mathbb{R}$
 - **1** Real-valued parameters $\lambda = (\lambda_0, \dots, \lambda_n)$
 - 2 Quantum states/measurements $\rho_{AB}, \rho_{BC}, \rho_{CA}, M_A, M_B, M_C$
 - 3 Distribution P_{ABC}
 - 4 Plug into inequality I in homogeneous form $I(P_{ABC}) \geq 0$
 - 5 Output is objective value $I(P_{ABC})$
- Numerical minimization of $f(\lambda)$

$$f(\lambda_{(k+1)}) = \lambda_{(k)} - \gamma_{(k)} \nabla f(\lambda_{(k)})$$

- Non-convex, non-linear, smooth/continuous
- Gradient Descent, BFGS Method, Nelder-Mead simplex method
- Stochastic methods: simulated annealing, basin-hopping

Parameterizing Unitary Group

■ Spengler, Huber and Heismayr Spengler, Huber, and Hiesmayr 2010 demonstrate a parameterization of $\mathcal{U}(d)$ where the parameters are organized in a $d \times d$ -matrix of real values $\lambda_{n,m}$

$$U = \left[\prod_{m=1}^{d-1} \left(\prod_{n=m+1}^{d} R_{m,n} R P_{n,m} \right) \right] \cdot \left[\prod_{l=1}^{d} G P_{l} \right]$$

- Global Phase Terms: $GP_l = \exp(iP_l\lambda_{l,l})$
- Relative Phase Terms: $RP_{n,m} = \exp(iP_n\lambda_{n,m})$
- Rotation Terms: $R_{m,n} = \exp(i\sigma_{m,n}\lambda_{m,n})$
- Projection Operators: $P_l = |l\rangle\langle l|$
- Anti-symmetric σ -matrices: $\sigma_{m,n} = -i|m\rangle\langle n| + i|n\rangle\langle m|$
- Parameters $\lambda_{n,m} \in [0,2\pi]$

Parameterizing Unitary Group Cont'd

- lacktriangle Each parameter $\lambda_{n,m}$ has physical interpretation
- Degeneracies are easily eliminated such as global phase

$$\forall l = 1, \dots, d : \lambda_{l,l} = 0 \implies GP_l = 1$$

- Parameterize $U \in \mathcal{U}(d)$ up to global phase denoted $\tilde{U} \in \mathcal{U}(d)$
- Computationally efficient

$$GP_{l} = \mathbb{1} + P_{l} \left(e^{i\lambda_{l,l}} - 1 \right)$$

$$RP_{n,m} = \mathbb{1} + P_{n} \left(e^{i\lambda_{n,m}} - 1 \right)$$

$$R_{m,n} = \mathbb{1} + (|m\rangle\langle m| + |n\rangle\langle n|)(\cos\lambda_{n,m} - 1)$$

$$+ (|m\rangle\langle n| - |n\rangle\langle m|)\sin\lambda_{n,m}$$

Parameterizing States

- Each latent resource $\rho \in (\rho_{AB}, \rho_{BC}, \rho_{CA})$ modeled as bipartite qubit state acting on $\mathcal{H}^{d/2} \otimes \mathcal{H}^{d/2}$
- $\blacksquare \ d \times d$ positive semi-definite (PSD) hermitian matrices with unitary trace
- \blacksquare Cholesky Parametrization allows one to write any hermitian PSD as $\rho=T^\dagger T$
- For d = 4:

$$T = \begin{bmatrix} \lambda_1 & 0 & 0 & 0 \\ \lambda_2 + i\lambda_3 & \lambda_4 & 0 & 0 \\ \lambda_5 + i\lambda_6 & \lambda_7 + i\lambda_8 & \lambda_9 & 0 \\ \lambda_{10} + i\lambda_{11} & \lambda_{12} + i\lambda_{13} & \lambda_{14} + i\lambda_{15} & \lambda_{16} \end{bmatrix}$$

- lacksquare d^2 real-valued parameters
- Normalized $ho = T^\dagger T/{
 m Tr} \left(T^\dagger T\right)$ adds degeneracy

Parameterizing States Cont'd

SHH parameterization Spengler, Huber, and Hiesmayr 2010 exploits spectral decomposition; for rank $k \le d$ density matrix

$$\rho = \sum_{i=1}^{k} p_i |\psi_i\rangle\langle\psi_i| \qquad p_i \ge 0, \sum_i p_i = 1$$

- Orthonormal k-element sub-basis $\{|\psi_i\rangle\}$ of \mathcal{H}^d can be transformed into computational basis $\{|i\rangle\}$ by unitary $U \in \mathcal{U}(d)$ such that $|\psi_i\rangle = U|i\rangle$
- Freedom to choice k
- lacksquare Parameterize ho through $\{p_i\}$ and \tilde{U}_k

$$\tilde{U}_k = \prod_{m=1}^k \left(\prod_{n=m+1}^d R_{m,n} R P_{n,m} \right)$$

■ real-value parameters $d^2-(d-k)^2-k$ for \tilde{U}_k , k-1 for $\{p_i\}$ (no degeneracy)

Parameterizing POVMs

■ Each party (A, B, C) is assigned a projective-operator valued measure (POVM) (M_A, M_B, M_C)

$$\forall |\psi\rangle \in \mathcal{H}^d : \langle \psi | M_\chi | \psi \rangle \ge 0 \quad M_\chi = M_\chi^\dagger$$

n-outcome measurement

$$M_{\chi} = \{M_{\chi,1}, \dots, M_{\chi,n}\} \quad \sum_{i=1}^{n} M_{\chi,i} = 1$$

- For n=2 outcomes, a parameterization exists by constraining the eigenvalues of $M_{\chi,i}$; for n>2 not aware of anything
- Warrants consideration of projective-valued measures (PVMs) (for n = d this is without loss of generality)

Triangle Inequalities

Parameterizing POVMs

- $\label{eq:bounds} \begin{array}{l} \mathbf{E} \mbox{ Each party } (A,B,C) \mbox{ is assigned a projective-operator valued} \\ \\ \text{measure } \left(\mbox{POVM}\right) \left(M_A,M_B,M_C\right) \\ \\ \forall |\psi\rangle \in H^d: \langle \psi|M_\lambda|\psi\rangle \geq 0 \quad M_\lambda = M_\lambda^\dagger \end{array}$
- n-outcome measurement
 - $M_\chi=\{M_{\chi,1},\ldots,M_{\chi,n}\} \quad \sum_{i=1}^n M_{\chi,i}=1$
- For n = 2 outcomes, a parameterization exists by constraining the eigenvalues of M_{X,i}; for n > 2 not aware of anything
 ■ Warrants consideration of projective-valued measures (PVMs)
- Warrants consideration of projective-valued measures (P (for n = d this is without loss of generality)

1. Naimark's Dilation Theorem

Parameterizing PVMs

■ Each party (A,B,C) is assigned n-outcome (M_A,M_B,M_C) such that,

$$M_{\chi,i}M_{\chi,j} = \delta_{ij}M_{\chi,i} \quad M_{\chi,i} = |m_{\chi,i}\rangle\langle m_{\chi,i}|$$

- Inspired by Pál and Vértesi 2010, parameterizing PVMs means parameterizing a n-element sub-basis $\{|m_{\chi,i}\rangle\}$
- Use unitary transformation again

$$\{|m_{\chi,1}\rangle,\ldots,|m_{\chi,n}\rangle\}=\{U|1\rangle,\ldots,U|n\rangle\}$$

- \blacksquare Global phase and remaining basis irrelevant: \tilde{U}_n requires n(2d-n-1) real-valued parameters
- PVMs are computationally more efficient

$$P_{ABC}(abc) = \langle m_{A,a} m_{B,b} m_{C,c} | \Pi^{\mathsf{T}} \rho_{AB} \otimes \rho_{BC} \otimes \rho_{CA} \Pi | m_{A,a} m_{B,b} m_{C,c} \rangle$$

Network Permutation Matrix

- States and measurements in the Triangle Scenario are not aligned
- Without Π , P_{ABC} would be separable
- Required to align B's measurement over $\operatorname{Tr}_{A,C}(\rho_{AB}\otimes\rho_{BC})$
- \blacksquare Π is a $2^6 \times 2^6$ matrix
- Shifts one qubit to the left

$$\Pi \equiv \sum_{|q_i\rangle \in \{|0\rangle, |1\rangle\}} |q_2 q_3 q_4 q_5 q_6 q_1\rangle \langle q_1 q_2 q_3 q_4 q_5 q_6|$$

Results

lacktriangle Full rank ho, M gives 81 free parameters

$$|\lambda| = 3 \cdot (12+3) + 3 \cdot 12 = 81$$

- Parameterization of quantum distributions still degenerate
- Noisy seed (Gaussian noise):

$$\lambda_{(0)} = \lambda_{(F)} + \delta \lambda$$
 $\delta \lambda_i \sim \mathcal{N} \left(\mu = 0, \sigma^2 = (2\pi 10^{\chi})^2 \right)$

Uniform seed:

$$\lambda_{(0),i} \sim \mathcal{U}([0,2\pi])$$

Uniform Noise

$$\mathcal{U}_{\varepsilon}(P) = (1+\varepsilon)P + \varepsilon \mathcal{U}$$

Uniform Distribution

Fritz Local Minima

Fritz Local Minima Zoomed

Max Entangled vs. Max Violating (???) [Optional]

Max Entangled vs. Max Violating (???) [Optional]

Max Entangled vs. Max Violating

Maximally Violating Distributions

- Able to out-perform violation provided by Fritz distribution
- Maximally-violating states are not maximally-entangled; similar to detection loop-hole example of Methot and Scarani 2006
- lacksquare Violation very sensitive to the initial parameters $\lambda_{(0)}$
- Both symmetric and asymmetric inequalities exhibit same qualitative features

Conclusions

- New causal compatibility inequalities have been found for the TS
- Inflation technique capable of producing inequalities with quantum/classical witnesses
- Proof of non-classicality is robust to noise
- Fritz witness-able by party symmetric inequalities
- Maximally violating distributions are different than Fritz but also similar
- Further research is necessary

Post-doc Opportunities At Perimeter

References I

- Branciard, Cyril et al. (2012). "Bilocal versus nonbilocal correlations in entanglement-swapping experiments". In: *Phys. Rev. A* 85.3.
- Chaves, Rafael, Lukas Luft, and David Gross (2014). "Causal structures from entropic information: geometry and novel scenarios". In: *New Journal of Physics* 16.4, p. 043001.
- Fritz, Tobias (2012). "Beyond Bell's Theorem: Correlation Scenarios". In: eprint: arXiv:1206.5115.
- Henson, Joe, Raymond Lal, and Matthew F Pusey (2014).
 "Theory-independent limits on correlations from generalized Bayesian networks". In: New Journal of Physics 16.11, p. 113043. eprint:
 arXiv:1405.2572.
- Methot, A. A. and V. Scarani (2006). "An anomaly of non-locality". In: eprint: arXiv:quant-ph/0601210.
- Pál, Károly F. and Tamás Vértesi (2010). "Maximal violation of a bipartite three-setting, two-outcome Bell inequality using infinite-dimensional quantum systems". In: *Phys. Rev. A* 82.2.

References II

- Spengler, Christoph, Marcus Huber, and Beatrix C. Hiesmayr (2010). "A composite parameterization of unitary groups, density matrices and subspaces". In: eprint: arXiv:1004.5252.
- Steudel, Bastian and Nihat Ay (2010). Information-theoretic inference of common ancestors. eprint: arXiv:1010.5720.
- Wolfe, Elie, Robert W. Spekkens, and Tobias Fritz (2016). *The Inflation Technique for Causal Inference with Latent Variables*. eprint: arXiv:1609.00672.

Notation [Optional]

Question: Which marginal models $P^{\mathcal{M}}$ are compatible with a causal structure \mathcal{G} ?

lacktriangle Marginal model $P^{\mathcal{M}}$ is collection of probability distributions

$$P^{\mathcal{M}} = \{P_{V_1}, \dots, P_{V_k}\}$$

■ Marginal scenario $\mathcal{M} = \{V_1, \dots, V_k\}$

$$V \in \mathcal{M}, V' \subseteq V \implies V' \in \mathcal{M}$$

- Joint random variables $\mathcal{J} = \bigcup_i V_i = \{v_1, \dots, v_n\}$
- \blacksquare Causal Structure $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ is a directed acyclic graph (DAG)
- lacktriangle Nodes classified into latent nodes \mathcal{N}_L and observed nodes \mathcal{N}_O

Triangle Inequalities

└Notation [Optional]

Question: Which marginal models P^M are compatible with a

■ Marginal model P^M is collection of probability distributions $P^M = \{P_{V_1}, \dots, P_{V_k}\}$

m Marginal scenario $\mathcal{M} = \{V_1, \dots, V_k\}$ $V \in \mathcal{M}, V' \subseteq V \implies V' \in \mathcal{M}$

■ Joint random variables $\mathcal{J} = \bigcup_i V_i = \{v_1, \dots, v_n\}$

■ Causal Structure G = (N, E) is a directed acyclic graph (DAG)

 $_{\rm I\hspace{-.1em}I\hspace{-.1em}I}$ Nodes classified into latent nodes \mathcal{N}_L and observed nodes \mathcal{N}_O

- 1. Before continuing, I will define exactly what I mean by causal compatibility
- Causal compatibility refers to the compatibility between causal structures and marginal models
- Marginal model is collection of probability distributions over sets of random variables
- 4. Marginal scenario refers to the those sets of random variables
- 5. The complete set of random variables are the joint random variables

Graph Theory [Optional]

Let $n, m \in \mathcal{N}$ be nodes of the graph \mathcal{G} .

- parents of n: $Pa_{\mathcal{G}}(n) \equiv \{m \mid m \to n\}$
- children of n: $\mathsf{Ch}_{\mathcal{G}}(n) \equiv \{m \mid n \to m\}$
- lacksquare ancestry of n: $\operatorname{An}_{\mathcal{G}}(n) \equiv \bigcup_{i \in \mathbb{W}} \operatorname{Pa}_{\mathcal{G}}^i(n)$

$$\mathsf{Pa}^0_{\mathcal{G}}(n) = n \qquad \mathsf{Pa}^i_{\mathcal{G}}(n) \equiv \mathsf{Pa}_{\mathcal{G}}\Big(\mathsf{Pa}^{i-1}_{\mathcal{G}}(n)\Big)$$

Notation extends to sets of nodes $N \subseteq \mathcal{N}$,

- \blacksquare parents of $N \colon \operatorname{Pa}_{\mathcal{G}}(N) \equiv \bigcup_{n \in N} \operatorname{Pa}_{\mathcal{G}}(n)$
- children of N: $\mathsf{Ch}_{\mathcal{G}}(N) \equiv \bigcup_{n \in N} \mathsf{Ch}_{\mathcal{G}}(n)$
- \blacksquare ancestry of N: $\mathsf{An}_{\mathcal{G}}(N) \equiv \bigcup_{n \in N} \mathsf{An}_{\mathcal{G}}(n)$

An induced subgraph of $\mathcal{G}=(\mathcal{N},\mathcal{E})$ due to $N\subseteq\mathcal{N}$

$$\mathsf{Sub}_{\mathcal{G}}(N) = (N, \{e \in \mathcal{E} \mid e \subseteq N\})$$

Causal Compatibility [Optional]

Question: Which marginal models $P^{\mathcal{M}}$ are compatible with a causal structure \mathcal{G} ?

Answer: $P^{\mathcal{M}}$ is compatible with \mathcal{G} if there exists a set of casual parameters

$$\left\{P_{n\mid \mathsf{Pa}_{\mathcal{G}}(n)}\mid n\in\mathcal{N}\right\}$$

Such that for each $V \in \mathcal{M}$, P_V can be recovered:

$$P_V = \sum_{\mathcal{N} \setminus V} P_{\mathcal{N}}$$

Inequality: A casual compatibility inequality I is an inequality over $P^{\mathcal{M}}$ that is satisfied by all compatible $P^{\mathcal{M}}$

Deriving Inequalities [Optional]

Two necessary components to compatibility:

- **1** Marginal problem: $\forall V \in \mathcal{M} : P_V = \sum_{\mathcal{N} \setminus V} P_{\mathcal{N}}$
 - Is the marginal model contextual or non-contextual?
 - 3 distinct ways to tackle this problem
 - 1 Convex hull, Polytope projection, Fourier-Motzkin
 - 2 Possibilistic Hardy Inequalities (Hypergraph transversals)
 - 3 Linear Program Feasibility/Infeasibility
- 2 Markov Separation: $P_{\mathcal{N}} = \prod_{n \in \mathcal{N}} P_{n|\mathsf{Pa}_{\mathcal{G}}(n)}$
 - Much harder to determine since latent nodes \mathcal{N}_O have unspecified behaviour
 - It is possible to turn Markov Separation problem into a Marginal problem (at least partially)

Inflation Technique [Optional]

Developed by Wolfe, Spekkens, and Fritz Wolfe, Spekkens, and Fritz 2016

Definition

An inflation of a causal structure \mathcal{G} is another causal structure \mathcal{G}' such that:

$$\forall n' \in \mathcal{N}', n' \sim n \in \mathcal{N} : \mathsf{AnSub}_{\mathcal{G}'}(n') \sim \mathsf{AnSub}_{\mathcal{G}}(n)$$

Where $\mathsf{AnSub}_{\mathcal{G}}(n)$ denotes the ancestral sub-graph of n in \mathcal{G}

$$\mathsf{AnSub}_{\mathcal{G}}(n) = \mathsf{Sub}_{\mathcal{G}}\big(\mathsf{An}_{\mathcal{G}}(n)\big)$$

And '∼' is a copy-index equivalence relation

$$A_1 \sim A_2 \sim A \not\sim B_1 \sim B_2 \sim B$$

Inflation Lemma [Optional]

If one has obtained \mathcal{G} , inflation \mathcal{G}' and *compatible* marginal distribution P_N where $N\subseteq\mathcal{N}$, then:

 \blacksquare There exists causal parameters $\left\{P_{n|\mathsf{Pa}_{\mathcal{G}}(n)}\mid n\in\mathcal{N}\right\}$ such that

$$P_N = \prod_{n \in N} P_{n|\mathsf{Pa}_{\mathcal{G}}(n)}$$

- $\ \ \, \mathsf{AnSub}_{\mathcal{G}'}(n') \sim \mathsf{AnSub}_{\mathcal{G}}(n) \implies \mathsf{Pa}_{\mathcal{G}'}(n') \sim \mathsf{Pa}_{\mathcal{G}}(n)$
- 3 Construct inflated causal parameters

$$\forall n' \in \mathcal{N}' : P_{n'|\mathsf{Pa}_{\mathcal{G}'}(n')} \equiv P_{n|\mathsf{Pa}_{\mathcal{G}}(n)}$$

4 Obtain *compatible* marginal distributions over any $N' \subseteq \mathcal{N}'$

$$P_{N'} = \prod_{n' \in N'} P_{n'|\mathsf{Pa}_{\mathcal{G}'}(n')}$$

Inflation Lemma Cont'd [Optional]

- Inflation procedure holds for any $N \in \mathcal{N}, N' \in \mathcal{N}'$ where $\mathsf{AnSub}_{\mathcal{G}'}(N) \sim \mathsf{AnSub}_{\mathcal{G}'}(N')$
- lacksquare Define injectable sets of \mathcal{G}' and images of the injectable of \mathcal{G}

$$\begin{split} \operatorname{Inj}_{\mathcal{G}}(\mathcal{G}') &\equiv \left\{ N' \subseteq \mathcal{N}' \mid \exists N \subseteq \mathcal{N} : \operatorname{AnSub}_{\mathcal{G}}(N) \sim \operatorname{AnSub}_{\mathcal{G}'}(N') \right\} \\ \operatorname{ImInj}_{\mathcal{G}}(\mathcal{G}') &\equiv \left\{ N \subseteq \mathcal{N} \mid \exists N' \subseteq \mathcal{N}' : \operatorname{AnSub}_{\mathcal{G}}(N) \sim \operatorname{AnSub}_{\mathcal{G}'}(N') \right\} \end{split}$$

- For $N' \in \operatorname{Inj}_{\mathcal{G}}(\mathcal{G}')$ there is a unique $N \subseteq \mathcal{N}$ such that $\operatorname{AnSub}_{\mathcal{G}}(N) \sim \operatorname{AnSub}_{\mathcal{G}'}(N')$
- For $N \in \mathsf{Inj}_{\mathcal{G}}(\mathcal{G})$ there can *exist many* $N' \subseteq \mathcal{N}'$ such that $\mathsf{AnSub}_{\mathcal{G}}(N) \sim \mathsf{AnSub}_{\mathcal{G}'}(N')$

Inflation Lemma Cont'd [Optional]

Lemma

The Inflation Lemma: Wolfe, Spekkens, and Fritz 2016, lemma 3 Given a particular inflation \mathcal{G}' of \mathcal{G} , if a marginal model $\{P_N \mid N \in \mathrm{Imlnj}_{\mathcal{G}}(\mathcal{G}')\}$ is compatible with \mathcal{G} then all marginal models $\{P_{N'} \mid N' \in \mathrm{Inj}_{\mathcal{G}}(\mathcal{G}')\}$ are compatible with \mathcal{G}' provided that $P_N = P_{N'}$ for all instances where $N \sim N'$.

Corollary

Any causal compatibility inequality I' constraining the injectable sets $\operatorname{Inj}_{\mathcal{G}}(\mathcal{G}')$ can be deflated into a causal compatibility inequality I constraining the images of the injectable sets $\operatorname{ImInj}_{\mathcal{G}}(\mathcal{G}')$.

d-Separation Polynomial [Optional]

- Deflation only holds when inequality constrains probabilities $P_{N'}, N' \in \mathsf{Inj}_{\mathcal{G}}(\mathcal{G}')$
- **Linear inequality** for \mathcal{G}'

■ Polynomial inequality for *G*!

Pre-injectable Sets [Optional]

- lacktriangledown d-separation relations + inflation = polynomial inequalities over $\mathcal G$
- $\hbox{\bf Restrict focus to sets N' that are partitioned into N_1',N_2' d-separated by empty set \emptyset }$
- A pre-injectable set N':

$$\begin{split} N' &= \coprod_i N_i' \quad \forall i: N_i' \in \mathsf{Inj}_{\mathcal{G}}(\mathcal{G}') \\ \forall i, j: N_i' \perp N_j' \iff \mathsf{An}_{\mathcal{G}'}(N_i') \cap \mathsf{An}_{\mathcal{G}'}\Big(N_j'\Big) = \emptyset \end{split}$$

lacksquare Only need to consider maximal pre-injectable sets $\mathsf{PreInj}_{\mathcal{G}}(\mathcal{G}')$

States:

$$\rho_{AB} = \left| \Psi^+ \right\rangle \! \left\langle \Psi^+ \right| \quad \rho_{BC} = \rho_{CA} = \left| \Phi^+ \right\rangle \! \left\langle \Phi^+ \right|$$

Maximally entangled Bell states:

$$\left|\Psi^{+}\right\rangle = \frac{1}{\sqrt{2}}(\left|01\right\rangle + \left|10\right\rangle) \quad \left|\Phi^{+}\right\rangle = \frac{1}{\sqrt{2}}(\left|00\right\rangle + \left|11\right\rangle)$$

Measurements:

$$\begin{split} M_{A} &= \left\{ \left| 1\psi_{\pi/2} \right\rangle \left\langle 1\psi_{\pi/2} \right|, \left| 1\psi_{-\pi/2} \right\rangle \left\langle 1\psi_{-\pi/2} \right|, \left| 0\psi_{0} \right\rangle \left\langle 0\psi_{0} \right|, \left| 0\psi_{\pi} \right\rangle \left\langle 0\psi_{\pi} \right| \right\} \\ M_{B} &= \left\{ \left| \psi_{\pi/4} 0 \right\rangle \left\langle \psi_{\pi/4} 0 \right|, \left| \psi_{5\pi/4} 0 \right\rangle \left\langle \psi_{5\pi/4} 0 \right|, \left| \psi_{3\pi/4} 1 \right\rangle \left\langle \psi_{3\pi/4} 1 \right|, \left| \psi_{-\pi/4} 1 \right\rangle \left\langle \psi_{-\pi/4} 1 \right| \right\} \\ M_{C} &= \left\{ \left| 01 \right\rangle \left\langle 01 \right|, \left| 11 \right\rangle \left\langle 11 \right|, \left| 00 \right\rangle \left\langle 00 \right|, \left| 10 \right\rangle \left\langle 10 \right| \right\} \end{split}$$

■ Shorthand:
$$|\psi_x\rangle=\frac{1}{\sqrt{2}}\big(|0\rangle+e^{ix}|1\rangle\big)$$