A/B Testing Comparing *k* proportions

Two approaches

- Statistics approach
- Computer Science approach

Compare two headlines A and B

	Α	В
Click	405	380
No click	495	570
	900	950

Does headline A have a higher rate over headline B

Comparing three populations

Compare headlines A,B and C

	Α	В	С
Click	405	380	490
No click	495	570	510
Visits	900	950	1000

Which headline results in the largest click-rate?

Comparing three populations

Compare headlines A,B and C

	Α	В	С
Click	405	380	490
No click	495	570	510
Visits	900	950	1000

This is a table of *observed* frequencies

Comparing three populations

Compare headlines A,B and C

	Α	В	С
Click	405	380	490
No click	495	570	510
Visits	900	950	1000

Compare to a table of *expected* frequencies

Chi-square variables Theorem

If $(Z_1, Z_2, ..., Z_n)$ are independent standard normal variables, then

$$\chi_1^2 = Z_1^2$$

$$\chi_k^2 = Z_1^2 + Z_2^2 \cdots + Z_k^2$$

Chi-square test of hypothesis

To test Ho: $p_1 = p_2 = ... p_k$

use the tables of observed frequencies and expected frequencies

$$\chi_{k-1}^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}$$

 X_1 the number of successes in n_1 trials from population 1

 $X_1 \sim BINO(n_1, p_1)$

 X_2 the number of successes in n_2 trials from population 2

 $X_2 \sim BINO(n_2, p_2)$

 X_1 the number of successes in n_1 trials from population 1

$$X_1 \sim BINO(n_1, p_1)$$

 X_2 the number of successes in n_2 trials from population 2

$$X_2 \sim BINO(n_2, p_2)$$

$$\hat{p}_1 = \frac{X_1}{n_1}$$
 $\hat{p}_1 \sim N \left[p_1, \frac{p_1(1-p_1)}{n_1} \right]$

$$\hat{p}_2 = \frac{X_2}{n_2} \qquad \hat{p}_2 \sim N \left[p_2, \frac{p_2(1-p_2)}{n_2} \right] \qquad \hat{p}_1 - \hat{p}_2 \sim N \left[p_1 - p_2, \frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2} \right]$$

$$Z = \frac{\hat{p}_1 - \hat{p}_2 - (p_1 - p_2)}{\sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}}$$

To test

$$H_0: p_1 = p_2$$

$$H_a: p_1 > p_2$$

or

$$H_0: p_1 - p_2 = 0$$

$$H_a: p_1 - p_2 > 0$$

use

$$Z = \frac{\hat{p}_1 - \hat{p}_2 - (p_1 - p_2)}{\sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}}$$

$$Z_{\alpha}$$

$$z_0 = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}}$$

$$P[Z>z_0]$$

To test

$$H_0: p_1 = p_2$$

$$H_a: p_1 > p_2$$

or

$$H_0: p_1 - p_2 = 0$$

$$H_a: p_1 - p_2 > 0$$

use

$$Z = \frac{\hat{p}_1 - \hat{p}_2 - (p_1 - p_2)}{\sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}}$$

$$Z_{\alpha}$$

$$z_0 = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{p_1(1 - p_1) + p_2(1 - p_2)}}$$

$$P[Z>z_0]$$

To test

$$H_0: p_1 = p_2$$

$$H_a: p_1 > p_2$$

or

$$H_0: p_1 - p_2 = 0$$

$$H_a: p_1 - p_2 > 0$$

use

$$Z = \frac{\hat{p}_1 - \hat{p}_2 - (p_1 - p_2)}{\sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}}$$

$$Z_{\alpha}$$

$$z_0 = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\hat{p}_p(1 - \hat{p}_p)}{n_1} + \frac{\hat{p}_p(1 - \hat{p}_p)}{n_2}}}$$

$$P[Z>z_0]$$

use the *pooled* fraction of successes

$$\hat{p}_p = \frac{x_1 + x_2}{n_1 + n_2}$$

$$= \frac{x_1}{n_1 + n_2} + \frac{x_2}{n_1 + n_2}$$

$$= \frac{n_1}{n_1 + n_2} \left(\frac{x_1}{n_1}\right) + \frac{n_2}{n_1 + n_2} \left(\frac{x_2}{n_2}\right)$$

$$= \frac{n_1}{n_1 + n_2} \hat{p}_1 + \frac{n_2}{n_1 + n_2} \hat{p}_2$$

Testing $p_1 - p_2$ Example

Compare two headlines A and B

	Α	В
Click	405	380
No click	495	570
	900	950

Does headline A have a higher rate over headline B

Testing $p_1 - p_2$ Example

$$H_0: p_A = p_B \quad n_A = 900 \quad \hat{p}_A = 0.45$$

$$H_a: p_A > p_B \quad n_B = 950 \quad \hat{p}_B = 0.40 \quad Z_\alpha = 1.645$$

pooled fraction of successes

	Α	В	\hat{p}_{p}	=	$\frac{405 + 380}{900 + 950}$
Click	405	380			900 + 990
No click	495	570		=	0.42432
	900	950			

Testing $p_1 - p_2$ Example

the observed test statistic

$$z_{0} = \frac{\hat{p}_{A} - \hat{p}_{B}}{\sqrt{\frac{\hat{p}_{p}(1 - \hat{p}_{p})}{n_{1}} + \frac{\hat{p}_{p}(1 - \hat{p}_{p})}{n_{2}}}}$$

$$= \frac{0.45 - 0.40}{\sqrt{0.24427(\frac{1}{900} + \frac{1}{950})}}$$

$$= 2.17486$$
p-value = $P[Z > 2.17486]$

$$= 1 - pnorm(2.17486)$$

$$= 0.01482$$

Which one is preferable?

```
X_1 the number of successes in n_1 trials from population 1 X_1 \sim BINO(n_1, p_1)

X_2 the number of successes in n_2 trials from population 2 X_2 \sim BINO(n_2, p_2)

\vdots \vdots X_k the number of successes in n_k trials from population k X_k \sim BINO(n_k, p_k)
```

If n. trials is large, these variables are close to a normal variable

$$\hat{p}_1 = \frac{X_1}{n_1}$$
 $\hat{p}_1 \sim N \left[p_1, \frac{p_1(1-p_1)}{n_1} \right]$

$$Z_1 = \frac{\hat{p}_1 - p_1}{\sqrt{\frac{p_1(1 - p_1)}{n_1}}}$$

$$\hat{p}_2 = \frac{X_2}{n_2}$$

$$\hat{p}_2 = \frac{X_2}{n_2}$$
 $\hat{p}_2 \sim N \left[p_2, \frac{p_2(1-p_2)}{n_2} \right]$

$$Z_2 = \frac{\hat{p}_2 - p_2}{\sqrt{\frac{p_2(1 - p_2)}{n_2}}}$$

$$\hat{p}_k = \frac{X_k}{n_k}$$

$$\hat{p}_k = \frac{X_k}{n_k} \qquad \qquad \hat{p}_k \sim N \left[p_k, \frac{p_k(1 - p_k)}{n_k} \right]$$

$$Z_k = \frac{\hat{p}_k - p_k}{\sqrt{\frac{p_k(1 - p_k)}{n_k}}}$$

$$\hat{p}_1 = \frac{X_1}{n_1}$$

$$\hat{p}_1 = \frac{X_1}{n_1}$$
 $\hat{p}_1 \sim N \left[p_1, \frac{p_1(1-p_1)}{n_1} \right]$

$$Z_1 = \frac{\hat{p}_1 - p_1}{\sqrt{\frac{p_1(1 - p_1)}{n_1}}}$$

$$\hat{p}_2 = \frac{X_2}{n_2}$$

$$\hat{p}_2 = \frac{X_2}{n_2}$$
 $\hat{p}_2 \sim N \left[p_2, \frac{p_2(1-p_2)}{n_2} \right]$

$$Z_2 = \frac{\hat{p}_2 - p_2}{\sqrt{\frac{p_2(1 - p_2)}{n_2}}}$$

$$\hat{p}_k = \frac{X_k}{n_k}$$

$$\hat{p}_k = \frac{X_k}{n_k}$$
 $\hat{p}_k \sim N \left[p_k, \frac{p_k(1-p_k)}{n_k} \right]$

$$Z_k = \frac{\hat{p}_k - p_k}{\sqrt{\frac{p_k(1 - p_k)}{n_k}}}$$

$$H_0: p_1 = p_2 = \cdots = p_k$$

$$\chi_k^2 = Z_1^2 + Z_2^2 \cdots + Z_k^2$$

$$\hat{p}_1 = \frac{X_1}{n_1}$$

$$\hat{p}_1 = \frac{X_1}{n_1}$$
 $\hat{p}_1 \sim N \left[p_1, \frac{p_1(1-p_1)}{n_1} \right]$

$$Z_1 = \frac{\hat{p}_1 - p_1}{\sqrt{\frac{p_1(1 - p_1)}{n_1}}}$$

$$\hat{p}_2 = \frac{X_2}{n_2}$$

$$\hat{p}_2 = \frac{X_2}{n_2}$$
 $\hat{p}_2 \sim N \left[p_2, \frac{p_2(1-p_2)}{n_2} \right]$

$$Z_2 = \frac{\hat{p}_2 - p_2}{\sqrt{\frac{p_2(1 - p_2)}{n_2}}}$$

$$\hat{p}_k = \frac{X_k}{n_k}$$

$$\hat{p}_k = \frac{X_k}{n_k} \qquad \qquad \hat{p}_k \sim N \left[p_k, \frac{p_k(1-p_k)}{n_k} \right]$$

$$Z_k = \frac{\hat{p}_k - p_k}{\sqrt{\frac{p_k(1 - p_k)}{n_k}}}$$

$$H_0: p_1 = p_2 = \dots = p_k = p_0$$

$$\chi_k^2 = Z_1^2 + Z_2^2 \cdots + Z_k^2$$

$$\hat{p}_1 = \frac{X_1}{n_1}$$

$$\hat{p}_1 = \frac{X_1}{n_1}$$
 $\hat{p}_1 \sim N \left[p_1, \frac{p_1(1-p_1)}{n_1} \right]$

$$Z_1 = \frac{\hat{p}_1 - p_1}{\sqrt{\frac{p_1(1 - p_1)}{n_1}}}$$

$$\hat{p}_2 = \frac{X_2}{n_2}$$

$$\hat{p}_2 = \frac{X_2}{n_2}$$
 $\hat{p}_2 \sim N \left[p_2, \frac{p_2(1-p_2)}{n_2} \right]$

$$Z_2 = \frac{\hat{p}_2 - p_2}{\sqrt{\frac{p_2(1 - p_2)}{n_2}}}$$

$$\hat{p}_k = \frac{X_k}{n_k}$$

$$\hat{p}_k = \frac{X_k}{n_k} \qquad \qquad \hat{p}_k \sim N \left[p_k, \frac{p_k(1-p_k)}{n_k} \right]$$

$$Z_k = \frac{\hat{p}_k - p_k}{\sqrt{\frac{p_k(1 - p_k)}{n_k}}}$$

$$H_0: p_1 = p_2 = \cdots = p_k = p_0$$

$$\chi_k^2 = Z_1^2 + Z_2^2 \cdots + Z_k^2$$

$$\hat{p}_1 = \frac{X_1}{n_1}$$

$$\hat{p}_1 = \frac{X_1}{n_1}$$
 $\hat{p}_1 \sim N \left[p_1, \frac{p_1(1-p_1)}{n_1} \right]$

$$Z_1 = \frac{\hat{p}_1 - (p_1)}{\sqrt{\frac{p_1}{n_1} 1 - (p_1)}}$$

$$\hat{p}_2 = \frac{X_2}{n_2}$$

$$\hat{p}_2 = \frac{X_2}{n_2}$$
 $\hat{p}_2 \sim N \left[p_2, \frac{p_2(1-p_2)}{n_2} \right]$

$$Z_2 = \frac{\hat{p}_2 - p_2}{\sqrt{\frac{p_2 + p_2}{n_2}}}$$

$$\hat{p}_k = \frac{X_k}{n_k}$$

$$\hat{p}_k = \frac{X_k}{n_k} \qquad \qquad \hat{p}_k \sim N \left[p_k, \frac{p_k(1 - p_k)}{n_k} \right]$$

$$Z_k = \frac{\hat{p}_k - p_k}{\sqrt{p_k 1 - p_k}}$$

$$H_0: p_1 = p_2 = \cdots = p_k = p_0$$

$$\chi_k^2 = Z_1^2 + Z_2^2 \cdots + Z_k^2$$

$$\chi_k^2 = \sum_{i=1}^k \left(\frac{\hat{p}_i - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n_i}}} \right)^2$$

$$= \sum_{i=1}^k \frac{n_i (\hat{p}_i - p_0)^2}{p_0(1 - p_0)}$$

$$= \sum_{i=1}^k \frac{n_i (\hat{p}_i - p_0)^2}{p_0(1 - p_0)} \frac{n_i}{n_i}$$

$$= \sum_{i=1}^k \frac{(n_i \hat{p}_i - n_i p_0)^2}{n_i p_0(1 - p_0)}$$

$$= \sum_{i=1}^k \frac{(x_i - n_i p_0)^2}{n_i p_0(1 - p_0)}$$

$$\chi_k^2 = \sum_{i=1}^k \left(\frac{\hat{p}_i - p_0}{\sqrt{\frac{p_0(1-p_0)}{n_i}}} \right)^2$$

$$= \sum_{i=1}^{k} \frac{n_i (\hat{p}_i - p_0)^2}{p_0 (1 - p_0)}$$

$$= \sum_{i=1}^{k} \frac{n_i (\hat{p}_i - p_0)^2}{p_0 (1 - p_0)} \frac{n_i}{n_i}$$

$$= \sum_{i=1}^{k} \frac{(n_i \hat{p}_i - n_i p_0)^2}{n_i p_0 (1 - p_0)}$$

$$= \sum_{i=1}^{k} \frac{(x_i - n_i p_0)^2}{n_i p_0 (1 - p_0)}$$

if p_0 is unknown,

use the pooled fraction of successes \hat{p}_p

$$\hat{p}_p = \frac{x_1 + x_2 + \dots + x_k}{n_1 + n_2 + \dots + n_k}$$

$$\chi_{k}^{2} = \sum_{i=1}^{k} \left(\frac{\hat{p}_{i} - p_{0}}{\sqrt{\frac{p_{0}(1 - p_{0})}{n_{i}}}} \right)^{2}$$

$$= \sum_{i=1}^{k} \frac{n_{i} (\hat{p}_{i} - p_{0})^{2}}{p_{0}(1 - p_{0})}$$

$$= \sum_{i=1}^{k} \frac{n_{i} (\hat{p}_{i} - p_{0})^{2}}{p_{0}(1 - p_{0})} \frac{n_{i}}{n_{i}}$$
if p_{0} is unknown,
$$= \sum_{i=1}^{k} \frac{(n_{i}\hat{p}_{i} - n_{i} p_{0})^{2}}{n_{i} p_{0}(1 - p_{0})}$$
use the pooled fraction of successes \hat{p}_{p}

$$= \sum_{i=1}^{k} \frac{(x_{i} - n_{i} p_{0})^{2}}{n_{i} p_{0}(1 - p_{0})} = \sum_{i=1}^{k} \frac{(x_{i} - n_{i} \hat{p}_{p})^{2}}{n_{i} \hat{p}_{0}(1 - \hat{p}_{n})}$$

$$\chi_k^2 = \sum_{i=1}^k \frac{(x_i - n_i \, \hat{p}_p)^2}{n_i \, \hat{p}_p (1 - \hat{p}_p)}$$

$$\chi_0^2 = \sum_{i=1}^k \sum_{j=1}^2 \frac{(f_{ij} - e_{ij})^2}{e_{ij}}$$

 f_{ij} observed frequency in row i and column j e_{ij} expected frequency in row i and column j

$$H_0: p_1 = p_2 = \cdots = p_k = p_0$$

OTS
$$\chi_0^2 = \sum_{i=1}^k \sum_{j=1}^2 \frac{(f_{ij} - e_{ij})^2}{e_{ij}}$$

if
$$\chi_0^2 > \chi_{k-1,1-\alpha}^2$$
 reject H_0

$$H_0: p_1 = p_2 = \cdots = p_k = p_0$$

 H_1 : at least one is different

If Ho is rejected,

which one is preferable?

Compare headlines A,B and C

	Α	В	С
Click	405	380	490
No click	495	570	510
Visits	900	950	1000

Which headline results in the largest click-rate?

```
test = binom.test(405,900)
test = binom.test(380,950)
test = binom.test(490,1000)
```

```
test = binom.test(405,900)
test = binom.test(380,950)
test = binom.test(490,1000)
```

```
headlines means lls uls

A 0.45 0.4171515 0.4831768

B 0.40 0.3686726 0.4319493

C 0.49 0.4585849 0.5214742
```

Use CIs to choose the one with the best proportion

```
test = binom.test(405,900)
test = binom.test(380,950)
test = binom.test(490,1000)
```

```
headlines means lls uls

A 0.45 0.4171515 0.4831768

B 0.40 0.3686726 0.4319493

C 0.49 0.4585849 0.5214742
```

Use CIs to choose the one with the best proportion

Use CIs to choose the one with the best proportion

Headline C better than headline B, not sure if than headline A

Comparing k populations

Keep headline C or collect more data to better compare with headline A

Comparing three populations

Compare headlines A,B and C

	Α	В	С
Click	4050	3800	4900
Visits	9000	9500	10000

more data

Comparing three populations

Compare headlines A,B and C

	A	В	C
Click	4050	3800	4900
Visits	9000	9500	10000

Same sample proportions, but from a

larger number of visits

Comparing k populations

With larger samples, CIs are smaller, and differences are more clear

Comparing k populations

Now it is clear that headline C is to be preferred

Comparing 2 populations

What to do if Ho is not rejected?

- Increase *n*
- Sequential approach

Comparing 2 populations

The

Computer Science

Approach

Bandit = slot machine

-used for gambling-

Bandit = slot machine

-used for gambling-

(designed to take the

money from gamblers)

Bandit = slot machine

-used for gambling-

(designed to take the

money from gamblers)

Also called

one-armed bandits

Imagine you want to gamble with 2 slot machines, each with different pay rates

Imagine you want to gamble with 2 slot machines, each with different pay rates

 Try each several times to estimate the pay rate (exploration phase)

Imagine you want to gamble with 2 slot machines, each with different pay rates

- Try each several times to estimate the pay rate (exploration phase)
- Select the best one to max
 profit (exploitation phase)

Armed-Bandit problem

- The problem involves an exploration / exploitation tradeoff
- How much money to spend exploring and how much is left for profiting

Imagine you want to try two designs, each with different (but unknown) user rates

- Try each several times to estimate the user rate (exploration phase)
- Select the best one to max
 profit (exploitation phase)

Imagine you want to gamble with k slot machines, each with different pay rates A room with k slot machines is equivalent to a single slot machine with k arms, each paying different rates

Imagine you want to gamble with k slot machines, each with different pay rates

A room with k slot machines is equivalent to a single slot machine with k arms, each paying different rates

When to select and settle with the one that you think is the *best*?

Objective

Find out the machine
that pays the best rate
and stay at that machine

Multi-armed bandit problem for Website selection

Objective

Find out the design that pays the best rate

The

epsilon – Greedy

algorithm

greedy algorithm

Always chooses the best option found after *m* attempts

(keeps exploiting the best available option)

greedy algorithm

Always chooses the best option found after *m* attempts (keeps exploiting the best available option)

almost greedy

Almost always chooses the best option found after *m* attempts (sometimes it chooses to explore other options) allowing to update the *best* option

epsilon - greedy algorithm

An almost greedy algorithm that every once in a while does not choose the best available option and prefers to explore other options

- ullet epsilon (ullet): probability that the algorithm explores new options and not the best available
- (ϵ = 0, for a greedy algorithm)

The epsilon-Greedy Algorithm

Epsilon-greedy algorithm (for A/B testing)

- Epsilon is fixed number $0 < \epsilon < 1$
- Generate a random value x between 0 and 1
- If $x < \epsilon$ show the next visitor one of the web designs randomly

Otherwise, show web design with highest rate of purchases

Example

- Five designs (options)
 - 4 give reward 10% of the time, and
 - 1 give reward 90% of the time (this is best option)
- reward is \$1
- Try policies with epsilon = 0.1,0.2,...,0.5
- Simulate N = 500 times each policy, and 250 visits, to find
 - a) fraction of times the algorithm chooses best option
 - b) average reward after each visit (game)
 - c) cumulative reward after each visit (game)

How often does the algorithm select the best?

How much reward does the it earn on average?

How much cumulative reward does the it earn on average?

Other bandit algorithms

Softmax

Upper Confidence Bound

Reference

Bandit Algorithms for Website Optimization, J. White