Кузнец Антон 09/03/2023

Задание 1

Рассмотрим худший случай, когда бит в создался первым и ждет пока создадутся остальные биты в пакете. Тогда время с момента создания бита, до создания пакета составит примерно $\frac{56\cdot8}{128\cdot1024}$.

Линию связи пакет преодолеет за время $\frac{56\cdot8}{1024\cdot1024}$ $\frac{56\cdot8^2}{1024\cdot1024}+\frac{56\cdot8}{1024\cdot1024}+0.005=\frac{56\cdot8\cdot9}{1024\cdot1024}+0.005\approx0.008$

Задание 2

Скорость передачи по условию: 100 пакетов в секунду \Rightarrow задержка передачи составит $\frac{1}{100}$ секунд.

$$N=10+1=11$$
 пакетов, $d=2\cdot 0.01=0.02$ секунд $a=\frac{N}{d}=\frac{11}{0.02}=550$ пакетов в секунду

Задание 3

- а) $t_1=\frac{L}{R_s}+\frac{L}{R_c}$ время через которое будет доставлен первый пакет $t_2=\frac{L}{R_s}+\frac{L}{R_s}+\frac{L}{R_c}$ время через которое будет доставлен второй пакет $\Delta=t_2-t_1=\frac{L}{R_s}$
- b) Второй пакет будет находиться в очереди в том случае, если к моменту, когда он пройдет через первую линию, первый пакет будет всё ещё передаваться по второй линии. Первый пакет полностью пройдет через вторую линию, через $t_1 = \frac{L}{R_s} + \frac{L}{R_c}$ Второй пакет пройдет первую линию в момент $t_2 = \frac{2L}{R_s} + T$ Решая неравенство получаем: $\frac{2L}{R_s} + T \ge \frac{L}{R_s} + \frac{L}{R_c} \Leftrightarrow T \ge \frac{L}{R_c} + \frac{L}{R_s}$

Задание 4

- a) $\frac{850000}{15 \cdot 2^2 0} \approx 0.054$
- b) Средняя задержка доступа: $\frac{\Delta}{1-\Delta B}=\frac{0.054}{1-0.054\cdot16}\approx0.397$ секунд. Тогда среднее время ответа составит: 3.397 секунд.