Churn Modeling with Telecom Data

Overview

Modeling **Tuning Data Processing Algorithm Selection Feature** Fitting test (over/under fit) Selection Standardization **EDA Validation Feature** Randomized **Extraction** Search **Ensemble**

Data Processing

Feature selection and scatter matrix are used to figure out how to handle the features

Data Processing: Feature Selection

By looking at feature importance and optimal number of features, area information are not useful.

Data Processing: Scatter Matrix

Two issues. (1) Multi-collinearity between Charge and Min (2) distribution of Vmail

5

Data Processing

Features

#

Data Processing: Feature Extraction

Since variances of principal components (PC) decrease smoothly, reducing dimensionality via PCA would not improve our model.

PCA and Explained Variance Ratio

Modeling: Compare Algorithms

Top algorithms are gradient boosting and random forest.

Standardization doesn't improve the scores on tree-based algorithms.

Increase with
Standardization

Decrease with
Standardization

No change

	Accurac y	Accuracy w/ S.F.	Precision	Precision w/ S.F.	Recall	Recall w/ S.F.	F1	F1 w/ S.F.
Gradient Boosting	0.949	0.949	0.912	0.916	0.719	0.716	0.802	0.804
Random Forest	0.929	0.925	0.935	0.925	0.580	0.555	0.710	0.679
Decision Tree Balanced	0.919	0.920	0.718	0.712	0.727	0.725	0.715	0.711
Random Forest Balanced	0.919	0.919	0.929	0.931	0.478	0.492	0.662	0.631
Decision Tree	0.910	0.918	0.715	0.69	0.721	0.714	0.703	0.703
Ada Boost	0.876	0.876	0.623	0.623	0.356	0.356	0.451	0.451
KNN	0.868	0.879	0.603	0.738	0.240	0.253	0.34	0.375
Logistic Regression	0.860	0.862	0.573	0.567	0.166	0.215	0.252	0.310
SVM	0.855	0.913	0.00	0.872	0.00	0.468	0.00	0.607
Gaussian NB	0.854	0.854	0.497	0.497	0.432	0.432	0.461	0.461

Note: w/ S.F. = with standardized features

Note: cross_val_score(cv=10)

Modeling: Voting Classifier

Voting classifier of gradient boosting and random forest increases cross-validated scores

Gradient Boosting

Accuracy: .949

Precision: .912

Recall: .719

• F1:.802

Random Forest

Accuracy: .929

Precision: .935

Recall: .580

• F1:.710

Voting Classifier (VC)

Weight = 1(RF):2(GB)

Accuracy: .951

Precision: .926

Recall: .716

• F1: .805

ROC (Non-CV)

Tuning: Over/Under Fit

Learning curve shows that there is no major issue on fitting.

Example: Bias vs Variance

Learning Curve on VC

Low variance + Low bias

Tuning: Randomized Search

Optimizing parameters of voting classifier further increases accuracy measures.

Best Indiv. Algorithms

Voting Classifier

Gradient Boosting

Accuracy: .949

Precision: .912

Recall: .719

• F1: .802

Random Forest

Accuracy: .929

Precision: .935

Recall: .580

• F1: .710

Voting Classifier

Accuracy: .951

Precision: .926

Recall: .716

• F1: .805

Randomized Search

Randomized Search VC

Precision: 907

Accuracy: .956

Recall: .743

• F1: **.825**

Optimized Parameters:

RandomForestClassifier(n_jobs=-1, max_depth=3, bootstrap=True, criterion='gini', max_features=4, min_samples_split=3, min_samples_leaf=8, warm_start=False, n_estimators = 6070, class_weight='balanced_subsample')

GradientBoostingClassifier(learning_rate= 0.3175974111166098, n_estimators=4798, max_depth=None, max_features=5, warm_start=True, min_samples_split=6, min_samples_leaf=5, loss='exponential')

Summary

■ Preprocessing

- Feature importance to detect useful features
- Cross-validated accuracy score to find optimal number of features

■ Model selection

- Tree algorithms wins (Gradient boosting classifier and random forest)
- Standardization doesn't increase performance for tree algorithms unlike other algorithms

■ Voting classifier

Voting classifier increases accuracy measures

Randomized search

Randomized search increases accuracy measures