M.
Angoustures
& R. Erra &
A. Letois

Introduction

descriptio

Robotic visualization Frames

Input data set

Input

Robotic

Submission

Submission example

Optimization

Optimization

Where to sent your

Python One Day Challenge (PODC) The Optimized Exhibition Opening MSc AIS — EPITA —

M. Angoustures & R. Erra & A. Letois

December 2019 10h00 — 20h00

M.
Angoustures
& R. Erra &
A. Letois

Introduction

descriptio Robotic visualization

Input da

Input examp

Robotic satisfaction

Submission

Submissior example

Optimizatior

Optimization

Where to sent your

Problem description Robotic visualization

Input data

Input

Robotic satisfactio

Submission

Submissior example

Optimizatio

Optimization

Where to sent your work

Your goal:

You are working in an art gallery and tonight, you have an exhibition opening. This one is very special, the attendees are robots and have very specific tastes. You are in charge of ordering the paintings in a very large corridor where the robots will look at them. To satisfy them, you have to follow some basic rules precised in the following slides.

M. Angoustures & R. Erra & A. Letois

Introductior

- Robotic visualization
- Frames

Robotic visualization

set

Input example

Robotic satisfaction

Submission

Submission example

Optimizatio

Ontimizatio

Where to

M. Angoustures & R. Erra & A. Letois

Introduction

Robotic visualization

Input dat

Input example

Robotic satisfaction

Submission

Submission example

Optimizatior

.,..

Where to

Robots?

Robots are integrating each painting with a simple list of tags. Each tag represents an element of the painting. For example, if a robot sees the painting *Mona Lisa* it will integrate it as a list of tags: [woman,smile].

Robots also separate two types of paintings :

- Portrait for a vertical painting
- Landscape for an horizontal painting

Landscape

M. Angoustures & R. Erra & A. Letois

Introductior

- Robotic visualization
- Frames

descriptic

Robotic visualizatio

Frames

set

Input example

Robotic satisfactior

Submission

Submission

Optimizatio

___:_-:_

Where to

descriptio
Robotic
visualization
Frames

Input data set

Input

Robotic satisfaction

Submission

Submissior example

Optimizatior

Where to

To better suit to robots preferences, paintings are placed behind a frameglass. Each frameglass contains **one** Landscape painting or **two** Portrait paintings.

Just like paintings, robots are integrating each frameglass with a list of tags. In a case of a Landscape, the list of tags is the same than the list of the painting tags. In a case of two Portraits, the list of tags of the frameglass is the list of all the tags present in any or both of the two paintings it contains. Each tag in a list is only counted **once**!

Input data

To help you with the ordering, you are given a file with all informations about the set of (different) paintings.

- An input data set is given as a plain text (only ASCII) characters); all lines are terminated by a single '\n' character (UNIX- style line endings).
- The first line of the dataset contains one integer N $(1 < N < 10^5)$: the number of paintings for the exhibition.
- It is followed by N lines: line i contains a description of the painting with an ID i ($0 \le i < N$). The description of a painting i contains the following data, separated by a single space :
 - A single character 'L' if the painting is horizontal (Landscape), or 'P' if it is vertical (Portrait).
 - 2 An integer M_i ($1 \le M_i \le 100$): the number of tags for this painting.
 - \odot M_i text strings: the tags for the painting i.

Each tag consists only of lowercase ASCII letters and digits, between 1 and 10 characters (max). The order of those tags is not important.

description
Robotic
visualization

Input dat

Input example

Robotic

Submission

Submission example

Optimization

Where to

Example

animals, fear, war

smile, woman

woman, pearl

fear, raft, survivors

Input file	Description
4	The exhibition has 4 paintings
L 3 animals fear war	Painting 0 is a Landscape and has tags [animals, fear, war]
P 2 smile woman	Painting 1 is a Portrait and has tags [smile, woman]
P 2 woman pearl	Painting 2 is a Portrait and has tags [woman, pearl]
L 3 fear raft survivors	Painting 3 is a Landscape and has tags [fear, raft, survivors]

description Robotic visualization

Input dat set

example Robotic

satisfaction

_ . . .

Optimization

- · · ·

Where to sent your work The good part with having robots attendees is that their satisfaction is very easy to determine: it is simply a *numerical value*: an integer!

We will call this value the score of the exhibition or more precisely: the **global robotic satisfaction**.

The score of the exhibition is based on how interesting the transitions between each pair of subsequent (neighboring) frameglass are. Robots like when the transitions have something in common to preserve continuity (the two frameglass should not be totally different), but they also want them to be different enough to stay interested. The similarity of two Portrait paintings on a single frameglass is not taken into account for the score. This means that in this case, two paintings can, but don't have to, have tags in common. For example, if a frameglass contains two Portraits with [smile, woman] and [woman, pearl], then the tags of this frameglass will be [smile, woman, pearl].

Submissior

Submissior example

Optimization

Optimizai

Where to sent your work

The local robotic satisfaction

For two subsequent frameglass F_i and F_{i+1} , the **local robotic** satisfaction is the minimum (the smallest number of the three) of the following three (3) integers :

- **1** The number of common tags between F_i and F_{i+1}
- 2 The number of tags in F_i but not in F_{i+1}
- **3** The number of tags in F_{i+1} but not in F_i .

The global robotic satisfaction

For a full set of ordered paintings the final score is the global robotic satisfaction, defined as the sum of all local robotic satisfactions. Your goal is to maximize it! Remark: the code of the computation of the global robotic satisfaction is given: score_checker.py

Problem description Robotic visualization

Input data set

Input example

Robotic satisfaction

Submission

Submissior example

Optimization

Optimizatio

Where to sent you work The output file must start with a single integer F $(1 \le F \le N)$: the number of frameglass in the exhibition. This must be followed by F lines describing each frameglass. Each line should contain either:

- A single integer: ID of the single Landscape painting in the frameglass.
- Two integers separated by a single space : IDs of the two Portrait paintings in the frameglass (in any order).

Each painting can be used only one time or not at all.

M.
Angoustures
& R. Erra &

Introduction

Robotic visualization

Input dat

Input examp

Robotic satisfaction

Submission

Submission example

ори.....

Optimizatio

Where to sent your

Example

frameglass F ₀	frameglass F.	frameglass F,

Submission file	Description
3	The exhibition has 3 frameglass
0	First frameglass contains the painting 0
12	Second frameglass contains the paintings 1 and 2
3	Third frameglass contains the painting 3

Submission example

The number of common tags is $1 \rightarrow [fear]$ The number of tags in 0 but not in 3 is 2 -> [animals, war] The number of tags in 3 but not in 0 is 2 -> [raft, survivors]

M. Angoustures & R. Erra & A. Letois

Introduction

descriptio

Input dat

Input

Robotic satisfaction

Submissior

Submission example

Optimization

Where to

Some hints

- The exhibition is tonight! We need your help!
- We don't have much time to think for the best ordering, so the computation need to be fast.
- Begin with a simple solution, when it works . . .
- ...try to optimize it so it won't take too much time to execute, or it will be too late.
- Use functions in your code!
- Write comments if you want but be concise!

What we expect from you at the end

- 1 unique Python script that takes one input file and gives as output the adequate submission file.
- Try to Optimize the output files to get the biggest score.
- Remark : to get the real "optimal" (maximal) score is probably an untractable problem, so think "approximation".

Problem descriptio

Robotic visualization Frames

Input data set

Input

Robotic satisfaction

Submission

Submission example

Optimization

Optimization

Where to

Your final score for the "ranking"

- We will compute the score for each of the 5 files
- 2 We will compute the sum of these 5 scores
- This will be your final score for the "ranking"
- On't forget : think simple, begin with the "simplest" solution
- On't try to find first a too complex algorithm
- Try to begin with a "very" simple solution
- And only after try to find better strategies/tactics
- Think "step by step", test different strategies/tactics

Problem description

Robotic visualizat Frames

Input dat set

Input example

Robotic satisfaction

Submission

Submission example

Optimization

Where to sent your work

Where to sent your work

Sent to podcmsc@protonmail.com

- Your python code
- Sign with your Family and First name please
- and (better): add your Family and First name in your python code.
- A unique email please

Good job

...and good luck!