Representation Theory and its Applications in Physics

June 5, 2024

Presented by

Max Varverakis (mvarvera@calpoly.edu)

- 1. Introduction to Representation Theory
- 2. Examples in Physics
- 3. The Braid Group
- 4. Physical Applications of the Braid Group

1 Introduction to Representation Theory

Definition

Introduction to Representation Theory

Let G be a group. A representation of G is a homomorphism from G to a group of operators on a linear vector space *V*. The dimension of *V* is the *dimension* or *degree* of the representation.

Definition of a Representation

Definition

Let G be a group. A representation of G is a homomorphism from G to a group of operators on a linear vector space *V*. The dimension of *V* is the *dimension* or *degree* of the representation.

The Braid Group

If X is a representation of G on a vector space V, then X is a map

$$g \in G \xrightarrow{X} X(g),$$

where X(g) is an operator on the V.

Definition

Introduction to Representation Theory

0000000

Let G be a group. A representation of G is a homomorphism from G to a group of operators on a linear vector space *V*. The dimension of *V* is the *dimension* or *degree* of the representation.

The Braid Group

If X is a representation of G on a vector space V, then X is a map

$$g \in G \xrightarrow{X} X(g),$$

where X(a) is an operator on the V.

Remark

If V is finite-dimensional with basis $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$, then X(g) can be realized as an $n \times n$ matrix.

Properties of Representations

Properties of Representations

Group Multiplication

Representations are group morphisms, so they satisfy the group multiplication rule:

$$X(gh) = X(g)X(h), \quad \forall g, h \in G.$$

Group Multiplication

Representations are group morphisms, so they satisfy the group multiplication rule:

$$X(gh) = X(g)X(h), \quad \forall g, h \in G.$$

The Braid Group

Invertibility

Introduction to Representation Theory

0000000

If X is a representation of G, then $X(g)^{-1} = X(g^{-1}), \forall g \in G$.

Properties of Representations

Group Multiplication

Representations are group morphisms, so they satisfy the group multiplication rule:

$$X(gh) = X(g)X(h), \quad \forall g, h \in G.$$

The Braid Group

Invertibility

If X is a representation of G, then $X(g)^{-1} = X(g^{-1}), \forall g \in G$.

Consequences:

Group Multiplication

Representations are group morphisms, so they satisfy the group multiplication rule:

$$X(gh) = X(g)X(h), \quad \forall g, h \in G.$$

The Braid Group

Invertibility

Introduction to Representation Theory

0000000

If X is a representation of G, then $X(g)^{-1} = X(g^{-1}), \forall g \in G$.

Consequences:

1. X(e) = I, where e is the identity element of the group and I is the identity operator.

Properties of Representations

Group Multiplication

Representations are group morphisms, so they satisfy the group multiplication rule:

$$X(gh) = X(g)X(h), \quad \forall g, h \in G.$$

The Braid Group

Invertibility

If X is a representation of G, then $X(g)^{-1} = X(g^{-1}), \forall g \in G$.

Consequences:

- 1. X(e) = I, where e is the identity element of the group and I is the identity operator.
- **2.** In the matrix presentation of X, X(g) is invertible for all $g \in G$.

Introduction to Representation Theory

0000000

Introduction to Representation Theory

0000000

Let $G = \{R(\phi), 0 \le \phi < 2\pi\}$ be the group of continuous rotations in the xy-plane (V_2) about the origin.

Introduction to Representation Theory

0000000

Let $G = \{R(\phi), 0 \le \phi < 2\pi\}$ be the group of continuous rotations in the xy-plane (V_2) about the origin.

The Braid Group

Group operation: $R(\phi_1)R(\phi_2) = R(\phi_1 + \phi_2) = R(\phi_2)R(\phi_1)$.

Let $G = \{R(\phi), 0 \le \phi < 2\pi\}$ be the group of continuous rotations in the xy-plane (V_2) about the origin.

The Braid Group

Group operation: $R(\phi_1)R(\phi_2) = R(\phi_1 + \phi_2) = R(\phi_2)R(\phi_1)$.

Identity Element: R(0) = I.

Introduction to Representation Theory

0000000

Let $G = \{R(\phi), 0 \le \phi < 2\pi\}$ be the group of continuous rotations in the xy-plane (V_2) about the origin.

The Braid Group

Group operation: $R(\phi_1)R(\phi_2) = R(\phi_1 + \phi_2) = R(\phi_2)R(\phi_1)$.

Identity Element: R(0) = I.

Introduction to Representation Theory

0000000

Inverses: $R(\phi)^{-1} = R(-\phi) = R(2\pi - \phi)$.

Let $G = \{R(\phi), 0 \le \phi < 2\pi\}$ be the group of continuous rotations in the xy-plane (V_2) about the origin.

The Braid Group

Group operation: $R(\phi_1)R(\phi_2) = R(\phi_1 + \phi_2) = R(\phi_2)R(\phi_1)$.

Identity Element: R(0) = I.

Introduction to Representation Theory

0000000

Inverses: $R(\phi)^{-1} = R(-\phi) = R(2\pi - \phi)$.

Periodicity Condition: $R(\phi \pm 2\pi) = R(\phi)$.

Example: Representation of Continuous Rotation Group

Representations also work for continuous groups!

Let $G = \{R(\phi), 0 \le \phi < 2\pi\}$ be the group of continuous rotations in the xy-plane (V_2) about the origin.

The Braid Group

Group operation: $R(\phi_1)R(\phi_2) = R(\phi_1 + \phi_2) = R(\phi_2)R(\phi_1)$.

Identity Element: R(0) = I.

Inverses: $R(\phi)^{-1} = R(-\phi) = R(2\pi - \phi)$.

Periodicity Condition: $R(\phi \pm 2\pi) = R(\phi)$.

Representation: Let X be a representation of G on V_2 with¹

$$X(\phi)\mathbf{e}_1 = \mathbf{e}_1 \cdot \cos \phi + \mathbf{e}_2 \cdot \sin \phi$$

$$X(\phi)\mathbf{e}_2 = -\mathbf{e}_1 \cdot \sin \phi + \mathbf{e}_2 \cdot \cos \phi$$

 $^{{}^{1}\}mathbf{e}_{1}$ and \mathbf{e}_{2} are orthonormal basis vectors of V_{2} .

Example: Representation of Continuous Rotation Group

Representations also work for continuous groups!

Let $G = \{R(\phi), 0 \le \phi < 2\pi\}$ be the group of continuous rotations in the xy-plane (V_2) about the origin.

The Braid Group

Group operation: $R(\phi_1)R(\phi_2) = R(\phi_1 + \phi_2) = R(\phi_2)R(\phi_1)$.

Identity Element: R(0) = I.

Inverses: $R(\phi)^{-1} = R(-\phi) = R(2\pi - \phi)$.

Periodicity Condition: $R(\phi \pm 2\pi) = R(\phi)$.

Representation: Let X be a representation of G on V_2 with¹

$$\begin{array}{l} X(\phi)\mathbf{e}_1 = \mathbf{e}_1 \cdot \cos \phi + \mathbf{e}_2 \cdot \sin \phi \\ X(\phi)\mathbf{e}_2 = -\mathbf{e}_1 \cdot \sin \phi + \mathbf{e}_2 \cdot \cos \phi \end{array} \} \implies \boxed{ X(\phi) = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} }$$

 $^{{}^{1}\}mathbf{e}_{1}$ and \mathbf{e}_{2} are orthonormal basis vectors of V_{2} .

Definition

A representation X(G) on V is *irreducible* if there is no non-trivial X-invariant subspace² in V. Otherwise, X(G) is *reducible*.

Definition

A representation X(G) on V is *irreducible* if there is no non-trivial X-invariant subspace² in V. Otherwise, X(G) is *reducible*.

The Braid Group

Comments:

Definition

A representation X(G) on V is *irreducible* if there is no non-trivial X-invariant subspace² in V. Otherwise, X(G) is *reducible*.

The Braid Group

Comments:

Irreducible representations are the building blocks of all representations.

Definition

A representation X(G) on V is *irreducible* if there is no non-trivial X-invariant subspace² in V. Otherwise, X(G) is *reducible*.

The Braid Group

Comments:

- Irreducible representations are the building blocks of all representations.
- A reducible representation can be decomposed into a direct sum of irreducible representations.

Definition

A representation X(G) on V is <u>irreducible</u> if there is no non-trivial X-invariant subspace² in V. Otherwise, X(G) is *reducible*.

The Braid Group

Comments:

- Irreducible representations are the building blocks of all representations.
- A reducible representation can be decomposed into a direct sum of irreducible representations.
- The decomposition of a representation into irreducibles is unique up to matrix similarity.

Schur's Lemmas

Lemma

Let $X: G \to V$ and $Y: G \to W$ be irreducible representations of a group G. If there exists a fixed linear transformation $T: V \to W$ such that TX(q) = Y(q)T for all $q \in G$, then T is either the zero map or invertible.

Introduction to Representation Theory

0000000

Lemma

Let $X: G \to V$ and $Y: G \to W$ be irreducible representations of a group G. If there exists a fixed linear transformation $T: V \to W$ such that TX(q) = Y(q)T for all $q \in G$, then T is either the zero map or invertible.

The Braid Group

Lemma

Let X be an irreducible representation of a group G and T a linear operator that commutes with all X(g) for $g \in G$. Then T is a scalar multiple of the identity operator.

Schur's Lemmas

Lemma

Let $X: G \to V$ and $Y: G \to W$ be irreducible representations of a group G. If there exists a fixed linear transformation $T: V \to W$ such that TX(q) = Y(q)T for all $q \in G$, then T is either the zero map or invertible.

The Braid Group

Lemma

Let X be an irreducible representation of a group G and T a linear operator that commutes with all X(g) for $g \in G$. Then T is a scalar multiple of the identity operator.

Corollary

If G is a finite abelian group, then the irreducible representations of G are one-dimensional.

Introduction to Representation Theory

0000000

▶ Irreducible representations are the building blocks of all representations.

- Irreducible representations are the building blocks of all representations.
- Irreducible representations can be combined/modified to create new representations, such as:

Introduction to Representation Theory

000000

- Irreducible representations are the building blocks of all representations.
- Irreducible representations can be combined/modified to create new representations, such as:

The Braid Group

Direct sums

Introduction to Representation Theory

000000

- Irreducible representations are the building blocks of all representations.
- Irreducible representations can be combined/modified to create new representations, such as:

- Direct sums
- Tensor products

- Irreducible representations are the building blocks of all representations.
- Irreducible representations can be combined/modified to create new representations, such as:

- Direct sums
- Tensor products
- Complex conjugation³

- Irreducible representations are the building blocks of all representations.
- Irreducible representations can be combined/modified to create new representations, such as:

- Direct sums
- Tensor products
- Complex conjugation³
- Similarity transforms

- Irreducible representations are the building blocks of all representations.
- Irreducible representations can be combined/modified to create new representations, such as:

The Braid Group

- Direct sums
- Tensor products
- Complex conjugation³
- Similarity transforms

How does this help in physics?

The groups corresponding to physical transformations have irreducible representations that lead to fundamental insights in physics.

³If the representation matrices have entries in ℂ.

2 Examples in Physics

The Braid Group

Let *R* denote the familiar rotation matrix representation from before.

Definition

An *orthogonal matrix O* satisfies $O^{\top} = O^{-1}$.

Definition

Introduction to Representation Theory

An orthogonal matrix O satisfies $O^{\top} = O^{-1}$.

Rotation matrices are orthogonal:

$$R(\phi)R^{\top}(\phi) = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

Definition

Introduction to Representation Theory

An orthogonal matrix O satisfies $O^{\top} = O^{-1}$.

Rotation matrices are orthogonal:

$$R(\phi)R^{\top}(\phi) = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

The Braid Group

Rotations preserve vector lengths:

$$R(\phi)\mathbf{x} = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \cos \phi - x_2 \sin \phi \\ x_1 \sin \phi + x_2 \cos \phi \end{bmatrix} \implies |R(\phi)\mathbf{x}|^2 = |\mathbf{x}|^2.$$

Definition

Introduction to Representation Theory

An orthogonal matrix O satisfies $O^{\top} = O^{-1}$.

Rotation matrices are orthogonal:

$$R(\phi)R^{\top}(\phi) = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

The Braid Group

Rotations preserve vector lengths:

$$R(\phi)\mathbf{x} = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \cos \phi - x_2 \sin \phi \\ x_1 \sin \phi + x_2 \cos \phi \end{bmatrix} \implies |R(\phi)\mathbf{x}|^2 = |\mathbf{x}|^2.$$

This special property is summarized by noting det $R(\phi) = 1$ for all $\phi \in [0, 2\pi)$.

Definition

Introduction to Representation Theory

The special orthogonal group in two dimensions, denoted SO(2), is the group of all 2×2 orthogonal matrices with determinant equal to +1.4

⁴For all intents and purposes, SO(2) is *R* from before.

Definition

The special orthogonal group in two dimensions, denoted SO(2), is the group of all 2×2 orthogonal matrices with determinant equal to +1.4

The Braid Group

⁴For all intents and purposes, SO(2) is *R* from before.

Definition

The special orthogonal group in two dimensions, denoted SO(2), is the group of all 2×2 orthogonal matrices with determinant equal to +1.4

The Braid Group

Properties of SO(2):

▶ The *periodicity condition* $R(\phi + 2\pi) = R(\phi)$ is satisfied.

⁴For all intents and purposes, SO(2) is *R* from before.

Definition

The special orthogonal group in two dimensions, denoted SO(2), is the group of all 2×2 orthogonal matrices with determinant equal to +1.4

The Braid Group

- ▶ The *periodicity condition* $R(\phi + 2\pi) = R(\phi)$ is satisfied.
- The *identity element* is R(0) = I.

⁴For all intents and purposes, SO(2) is *R* from before.

Definition

Introduction to Representation Theory

The *special orthogonal group* in two dimensions, denoted SO(2), is the group of all 2×2 orthogonal matrices with determinant equal to +1.4

The Braid Group

- ▶ The *periodicity condition* $R(\phi + 2\pi) = R(\phi)$ is satisfied.
- ▶ The *identity element* is R(0) = I.
- ▶ SO(2) is abelian: $R(\phi_1)R(\phi_2) = R(\phi_1 + \phi_2) = R(\phi_2)R(\phi_1)$.

⁴For all intents and purposes, SO(2) is *R* from before.

Definition

The special orthogonal group in two dimensions, denoted SO(2), is the group of all 2×2 orthogonal matrices with determinant equal to +1.4

The Braid Group

- ▶ The *periodicity condition* $R(\phi + 2\pi) = R(\phi)$ is satisfied.
- The *identity element* is R(0) = I.
- ▶ SO(2) is abelian: $R(\phi_1)R(\phi_2) = R(\phi_1 + \phi_2) = R(\phi_2)R(\phi_1)$.
- ► SO(2) is reducible.

⁴For all intents and purposes, SO(2) is *R* from before.

 \blacktriangleright Consider an *infinitesimal rotation* labelled by some infinitesimal angle $d\phi$.

- \triangleright Consider an *infinitesimal rotation* labelled by some infinitesimal angle $d\phi$.
- This is equivalent to the identity plus some small rotation, which can be written as⁵

$$R(d\phi) = I - i d\phi J$$

- ▶ Consider an *infinitesimal rotation* labelled by some infinitesimal angle $d\phi$.
- ▶ This is equivalent to the identity plus some small rotation, which can be written as⁵

$$R(d\phi) = I - i \, d\phi J$$

The Braid Group

▶ There are two ways to interpret $R(\phi + d\phi)$:

$$R(\phi + d\phi) = R(\phi)R(d\phi) = R(\phi)(I - id\phi J) = R(\phi) - id\phi R(\phi)J,$$

 $R(\phi + d\phi) = R(\phi) + d\phi \frac{dR(\phi)}{d\phi}$

- Consider an *infinitesimal rotation* labelled by some infinitesimal angle $d\phi$.
- This is equivalent to the identity plus some small rotation, which can be written as⁵

$$R(d\phi) = I - i d\phi J$$

The Braid Group

▶ There are two ways to interpret $R(\phi + d\phi)$:

$$R(\phi + d\phi) = R(\phi)R(d\phi) = R(\phi)(I - id\phi J) = R(\phi) - id\phi R(\phi)J,$$

 $R(\phi + d\phi) = R(\phi) + d\phi \frac{dR(\phi)}{d\phi}$

Equating the two expressions gives the differential equation $dR(\phi) = -id\phi R(\phi)J$.

⁵The constant -i is introduced for later convenience, and J is a quantity independent of ϕ .

- Consider an *infinitesimal rotation* labelled by some infinitesimal angle $d\phi$.
- This is equivalent to the identity plus some small rotation, which can be written as⁵

$$R(d\phi) = I - i d\phi J$$

The Braid Group

▶ There are two ways to interpret $R(\phi + d\phi)$:

$$R(\phi + d\phi) = R(\phi)R(d\phi) = R(\phi)(I - id\phi J) = R(\phi) - id\phi R(\phi)J,$$

 $R(\phi + d\phi) = R(\phi) + d\phi \frac{dR(\phi)}{d\phi}$

- Equating the two expressions gives the differential equation $dR(\phi) = -id\phi R(\phi)J$.
- ▶ With R(0) = I boundary condition: $|R(\phi)| = e^{-i\phi J}|$.

⁵The constant -i is introduced for later convenience, and J is a quantity independent of ϕ .

- Consider an *infinitesimal rotation* labelled by some infinitesimal angle $d\phi$.
- This is equivalent to the identity plus some small rotation, which can be written as⁵

$$R(d\phi) = I - i \, d\phi J$$

The Braid Group

▶ There are two ways to interpret $R(\phi + d\phi)$:

$$R(\phi + d\phi) = R(\phi)R(d\phi) = R(\phi)(I - id\phi J) = R(\phi) - id\phi R(\phi)J,$$

 $R(\phi + d\phi) = R(\phi) + d\phi \frac{dR(\phi)}{d\phi}$

- Equating the two expressions gives the differential equation $dR(\phi) = -id\phi R(\phi)J$.
- ▶ With R(0) = I boundary condition: $|R(\phi)| = e^{-i\phi J}|$.
- We call J the *generator* of SO(2) rotations.

⁵The constant -i is introduced for later convenience, and J is a quantity independent of ϕ .

To first order in
$$d\phi$$
: $R(d\phi) = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix}$

The Braid Group

Recovering the Rotation Matrix from J

To first order in
$$d\phi$$
: $R(d\phi) = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix}$

From before:
$$I - id\phi J = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix} \implies J = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \implies J^2 = I$$

The Braid Group

Recovering the Rotation Matrix from J

To first order in
$$d\phi$$
: $R(d\phi) = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix}$

From before:
$$I - id\phi J = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix} \implies J = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \implies J^2 = I$$

Taylor expand:

$$R(\phi) = e^{-iJ\phi} = I - iJ\phi - I\frac{\phi^2}{2!} + iJ\frac{\phi^3}{3!} + \cdots$$

Recovering the Rotation Matrix from J

To first order in
$$d\phi$$
: $R(d\phi) = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix}$

From before:
$$I - id\phi J = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix} \implies J = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \implies J^2 = I$$

Taylor expand:

$$R(\phi) = e^{-iJ\phi} = I - iJ\phi - I\frac{\phi^2}{2!} + iJ\frac{\phi^3}{3!} + \cdots$$
$$= I\left(\sum_{n=0}^{\infty} (-1)^n \frac{\phi^{2n}}{(2n)!}\right) - iJ\left(\sum_{n=0}^{\infty} (-1)^n \frac{\phi^{2n+1}}{(2n+1)!}\right)$$

Recovering the Rotation Matrix from J

To first order in
$$d\phi$$
: $R(d\phi) = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix}$

From before:
$$I - id\phi J = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix} \implies J = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \implies J^2 = I$$

Taylor expand:

$$R(\phi) = e^{-iJ\phi} = I - iJ\phi - I\frac{\phi^2}{2!} + iJ\frac{\phi^3}{3!} + \cdots$$

$$= I\left(\sum_{n=0}^{\infty} (-1)^n \frac{\phi^{2n}}{(2n)!}\right) - iJ\left(\sum_{n=0}^{\infty} (-1)^n \frac{\phi^{2n+1}}{(2n+1)!}\right)$$

$$= I\cos\phi - iJ\sin\phi$$

To first order in
$$d\phi$$
: $R(d\phi) = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix}$

From before:
$$I - id\phi J = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix} \implies J = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \implies J^2 = I$$

Taylor expand:

Introduction to Representation Theory

$$R(\phi) = e^{-iJ\phi} = I - iJ\phi - I\frac{\phi^2}{2!} + iJ\frac{\phi^3}{3!} + \cdots$$

$$= I\left(\sum_{n=0}^{\infty} (-1)^n \frac{\phi^{2n}}{(2n)!}\right) - iJ\left(\sum_{n=0}^{\infty} (-1)^n \frac{\phi^{2n+1}}{(2n+1)!}\right)$$

$$= I\cos\phi - iJ\sin\phi$$

$$= \begin{bmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{bmatrix}$$

Recovering the Rotation Matrix from J

To first order in
$$d\phi$$
: $R(d\phi) = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix}$

From before:
$$I - id\phi J = \begin{bmatrix} 1 & -d\phi \\ d\phi & 1 \end{bmatrix} \implies J = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \implies J^2 = I$$

Taylor expand:

$$R(\phi) = e^{-iJ\phi} = I - iJ\phi - I\frac{\phi^2}{2!} + iJ\frac{\phi^3}{3!} + \cdots$$

$$= I\left(\sum_{n=0}^{\infty} (-1)^n \frac{\phi^{2n}}{(2n)!}\right) - iJ\left(\sum_{n=0}^{\infty} (-1)^n \frac{\phi^{2n+1}}{(2n+1)!}\right)$$

$$= I\cos\phi - iJ\sin\phi$$

$$= \begin{bmatrix} \cos\phi - \sin\phi \\ \sin\phi & \cos\phi \end{bmatrix} \longleftarrow \text{The rotation matrix!}$$

1. Let U be any representation of SO(2).

Introduction to Representation Theory

- **1.** Let U be any representation of SO(2).
- **2.** Same argument as before: $U(\phi) = e^{-iJ\phi}$, where *J* is not necessarily the same as before.

Irreducible Representations of SO(2)

Process to obtaining irreducibles:

- **1.** Let U be any representation of SO(2).
- **2.** Same argument as before: $U(\phi) = e^{-iJ\phi}$, where *J* is not necessarily the same as before.

The Braid Group

3. SO(2) is abelian: Schur's Lemmas \implies all irreducible representations are 1D.

Introduction to Representation Theory

- **1.** Let U be any representation of SO(2).
- **2.** Same argument as before: $U(\phi) = e^{-iJ\phi}$, where *J* is not necessarily the same as before.

- 3. SO(2) is abelian: Schur's Lemmas \implies all irreducible representations are 1D.
- **4.** Each invariant subspace is spanned by an eigenvector of *J*:

$$egin{aligned} J \left| m
ight
angle = m \left| m
ight
angle \,, \ U(\phi) \left| m
ight
angle = \mathrm{e}^{-iJ\phi} \left| m
ight
angle = \mathrm{e}^{-im\phi} \left| m
ight
angle \,. \end{aligned}$$

Irreducible Representations of SO(2)

Process to obtaining irreducibles:

- **1.** Let U be any representation of SO(2).
- 2. Same argument as before: $U(\phi) = e^{-iJ\phi}$, where J is not necessarily the same as before.

The Braid Group

- 3. SO(2) is abelian: Schur's Lemmas \implies all irreducible representations are 1D.
- **4.** Each invariant subspace is spanned by an eigenvector of *J*:

$$J\ket{m}=m\ket{m}, \ U(\phi)\ket{m}=e^{-iJ\phi}\ket{m}=e^{-im\phi}\ket{m}.$$

5. Periodicity of SO(2) $\implies e^{-i2\pi m} = 1 \implies m \in \mathbb{Z}$.

Irreducible Representations of SO(2)

Process to obtaining irreducibles:

- 1. Let *U* be any representation of SO(2).
- **2.** Same argument as before: $U(\phi) = e^{-iJ\phi}$, where *J* is not necessarily the same as before.

The Braid Group

- 3. SO(2) is abelian: Schur's Lemmas \implies all irreducible representations are 1D.
- **4.** Each invariant subspace is spanned by an eigenvector of *J*:

$$egin{aligned} J\left|m
ight
angle &= m\left|m
ight
angle \,, \ U(\phi)\left|m
ight
angle &= e^{-iJ\phi}\left|m
ight
angle &= e^{-im\phi}\left|m
ight
angle \,. \end{aligned}$$

5. Periodicity of SO(2) $\implies e^{-i2\pi m} = 1 \implies m \in \mathbb{Z}$.

Theorem

The single-valued irreducible representations of SO(2) are defined as

$$U^m(\phi) = e^{-im\phi}, \ \forall \ m \in \mathbb{Z}.$$

▶ In 3 spatial dimensions, every rotation can be thought of as a rotation in a plane with some perpendicular axis of rotation \mathbf{n} : $R_{\mathbf{n}}(\theta)$.

▶ In 3 spatial dimensions, every rotation can be thought of as a rotation in a plane with some perpendicular axis of rotation \mathbf{n} : $R_{\mathbf{n}}(\theta)$.

The Braid Group

Rotations in a plane are isomorphic to SO(2): $R_{\mathbf{n}}(\theta) = e^{-i\theta J_{\mathbf{n}}}$ for some generator $J_{\mathbf{n}}$.

▶ In 3 spatial dimensions, every rotation can be thought of as a rotation in a plane with some perpendicular axis of rotation \mathbf{n} : $R_{\mathbf{n}}(\theta)$.

- ▶ Rotations in a plane are isomorphic to SO(2): $R_n(\theta) = e^{-i\theta J_n}$ for some generator J_n .
- ▶ The standard generators along each axis $\{J_x, J_y, J_z\}$ form a basis for all rotation generators: $J_n = n_x J_x + n_y J_y + n_z J_z$.

▶ In 3 spatial dimensions, every rotation can be thought of as a rotation in a plane with some perpendicular axis of rotation \mathbf{n} : $R_{\mathbf{n}}(\theta)$.

The Braid Group

- ▶ Rotations in a plane are isomorphic to SO(2): $R_n(\theta) = e^{-i\theta J_n}$ for some generator J_n .
- The standard generators along each axis $\{J_x, J_y, J_z\}$ form a basis for all rotation generators: $J_{\mathbf{n}} = n_x J_x + n_y J_y + n_z J_z$.

Consequence: Any rotation in Euclidean 3-space can be written in terms of the generators:

$$R_{\mathbf{n}}(\theta) = e^{-i\theta J_{\mathbf{n}}} = e^{-i\theta(n_x J_x + n_y J_y + n_z J_z)} = e^{-i\theta \mathbf{n} \cdot \mathbf{J}}.$$

▶ In 3 spatial dimensions, every rotation can be thought of as a rotation in a plane with some perpendicular axis of rotation \mathbf{n} : $R_{\mathbf{n}}(\theta)$.

The Braid Group

- ▶ Rotations in a plane are isomorphic to SO(2): $R_n(\theta) = e^{-i\theta J_n}$ for some generator J_n .
- The standard generators along each axis $\{J_x, J_y, J_z\}$ form a basis for all rotation generators: $J_{\mathbf{n}} = n_x J_x + n_y J_y + n_z J_z$.

Consequence: Any rotation in Euclidean 3-space can be written in terms of the generators:

$$R_{\mathbf{n}}(\theta) = e^{-i\theta J_{\mathbf{n}}} = e^{-i\theta(n_x J_x + n_y J_y + n_z J_z)} = e^{-i\theta \mathbf{n} \cdot \mathbf{J}}.$$

Definition

Introduction to Representation Theory

The special orthogonal group in three dimensions, denoted SO(3), is the group of all 3×3 orthogonal matrices with determinant equal to +1. SO(3) rotations are generated by the components of the Hermitian generator $\mathbf{J} = [J_x, J_y, J_z]^{\top}$.

Theorem

Introduction to Representation Theory

The irreducible representations of SO(3) are labeled by $j=0,\frac{1}{2},1,\frac{3}{2},2,\ldots$, and the 2j+1 eigenvectors spanning an invariant subspace are labelled by their eigenvalues: $m=-j,-j+1,\ldots,j-1,j$.

Theorem

Introduction to Representation Theory

The irreducible representations of SO(3) are labeled by $j = 0, \frac{1}{2}, 1, \frac{3}{2}, 2, \ldots$, and the 2j + 1eigenvectors spanning an invariant subspace are labelled by their eigenvalues: $m = -i, -i + 1, \ldots, i - 1, j.$

The Braid Group

Consequences:

Connection to Quantum Mechanics

Theorem

Introduction to Representation Theory

The irreducible representations of SO(3) are labeled by $j=0,\frac{1}{2},1,\frac{3}{2},2,\ldots$, and the 2j+1eigenvectors spanning an invariant subspace are labelled by their eigenvalues: $m = -i, -i + 1, \ldots, i - 1, i$.

The Braid Group

Consequences:

ightharpoonup Explicit form of **J** (hence J_x, J_y, J_z) = quantum angular momentum operators.

Connection to Quantum Mechanics

Theorem

Introduction to Representation Theory

The irreducible representations of SO(3) are labeled by $j = 0, \frac{1}{2}, 1, \frac{3}{2}, 2, \dots$, and the 2j + 1eigenvectors spanning an invariant subspace are labelled by their eigenvalues: $m = -i, -i + 1, \ldots, i - 1, i$.

The Braid Group

Consequences:

- ightharpoonup Explicit form of **J** (hence J_x, J_y, J_z) = quantum angular momentum operators.
- Eigenvalues of J_x , J_y , J_z = measurable angular momenta of the quantum system.

Theorem

Introduction to Representation Theory

The irreducible representations of SO(3) are labeled by $j = 0, \frac{1}{2}, 1, \frac{3}{2}, 2, \dots$, and the 2j + 1eigenvectors spanning an invariant subspace are labelled by their eigenvalues: $m = -i, -i + 1, \ldots, i - 1, i$.

The Braid Group

Consequences:

- ightharpoonup Explicit form of **J** (hence J_x, J_y, J_z) = quantum angular momentum operators.
- Eigenvalues of J_x , J_y , J_z = measurable angular momenta of the quantum system.
- Quantum spin is labeled by j and has possible spin states $|m\rangle$.

The label *j* describes how particles with spin behave under rotations:

The label *j* describes how particles with spin behave under rotations:

ightharpoonup i = 0: Scalar bosons (Higgs boson)

The label *i* describes how particles with spin behave under rotations:

 \rightarrow i = 0: Scalar bosons (Higgs boson)

Introduction to Representation Theory

 $i = \frac{1}{2}$: Quarks and leptons (electrons, neutrinos, protons...)

Connection to Quantum Mechanics: Punchline

The label *i* describes how particles with spin behave under rotations:

- \rightarrow i = 0: Scalar bosons (Higgs boson)
- $i = \frac{1}{2}$: Quarks and leptons (electrons, neutrinos, protons...)
- ightharpoonup j = 1: Gauge bosons (photons, W/Z bosons, gluons)

Connection to Quantum Mechanics: Punchline

The label *i* describes how particles with spin behave under rotations:

- \rightarrow i = 0: Scalar bosons (Higgs boson)
- $i = \frac{1}{2}$: Quarks and leptons (electrons, neutrinos, protons...)
- \triangleright j = 1: Gauge bosons (photons, W/Z bosons, gluons)
- \triangleright i = 2: Gravitons (not vet observed)

Connection to Quantum Mechanics: Punchline

The label *i* describes how particles with spin behave under rotations:

- \rightarrow i = 0: Scalar bosons (Higgs boson)
- $i = \frac{1}{2}$: Quarks and leptons (electrons, neutrinos, protons...)
- \blacktriangleright i = 1: Gauge bosons (photons, W/Z bosons, gluons)
- \triangleright i = 2: Gravitons (not vet observed)

Discretization of Angular Momentum for Free

Discretization (quantization) of angular momentum follows directly from the irreducible representations of SO(3)!

We can take tensor products of the irreducibles of SO(3) to obtain multi-particle states, arriving at results such as:

We can take tensor products of the irreducibles of SO(3) to obtain multi-particle states, arriving at results such as:

The Braid Group

Clebsch-Gordan coefficients

Additional Applications of SO(3)

We can take tensor products of the irreducibles of SO(3) to obtain multi-particle states, arriving at results such as:

- Clebsch-Gordan coefficients
- singlet versus triplet states

We can take tensor products of the irreducibles of SO(3) to obtain multi-particle states, arriving at results such as:

- Clebsch-Gordan coefficients
- singlet versus triplet states
- the Pauli exclusion principle

Additional Applications of SO(3)

We can take tensor products of the irreducibles of SO(3) to obtain multi-particle states, arriving at results such as:

The Braid Group

- Clebsch-Gordan coefficients
- singlet versus triplet states
- the Pauli exclusion principle

But that's not all folks!

Introduction to Representation Theory

1. The *commutator* of two operators A and B is defined as [A, B] = AB - BA.

Conservation of Angular Momentum

Introduction to Representation Theory

- 1. The *commutator* of two operators A and B is defined as [A, B] = AB BA.
- 2. The *Hamiltonian* operator \hat{H} is the quantum mechanical operator corresponding to the total energy of a system.

- 1. The *commutator* of two operators A and B is defined as [A, B] = AB BA.
- 2. The Hamiltonian operator \hat{H} is the quantum mechanical operator corresponding to the total energy of a system.

Theorem (Ehrenfest)

Introduction to Representation Theory

If a time-independent Hermitian operator commutes with the Hamiltonian, then the physical observable corresponding to the operator is conserved.

- 1. The *commutator* of two operators A and B is defined as [A, B] = AB BA.
- 2. The *Hamiltonian* operator \hat{H} is the quantum mechanical operator corresponding to the total energy of a system.

Theorem (Ehrenfest)

If a time-independent Hermitian operator commutes with the Hamiltonian, then the physical observable corresponding to the operator is conserved.

Consequences

Introduction to Representation Theory

1. Radial symmetry \Longrightarrow SO(3)-invariance $\Longrightarrow [\hat{H}, \mathbf{J}] = 0 \Longrightarrow$ angular momentum conserved!

Conservation of Angular Momentum

- 1. The *commutator* of two operators A and B is defined as [A, B] = AB BA.
- 2. The *Hamiltonian* operator \hat{H} is the quantum mechanical operator corresponding to the total energy of a system.

The Braid Group

Theorem (Ehrenfest)

If a time-independent Hermitian operator commutes with the Hamiltonian, then the physical observable corresponding to the operator is conserved.

Consequences

Introduction to Representation Theory

- **1.** Radial symmetry \Longrightarrow SO(3)-invariance $\Longrightarrow [\hat{H}, \mathbf{J}] = 0 \Longrightarrow$ angular momentum conserved!
- 2. Invariant under continuous translations \implies conservation of linear momentum!

Conservation of Angular Momentum

- 1. The *commutator* of two operators A and B is defined as [A, B] = AB BA.
- 2. The *Hamiltonian* operator \hat{H} is the quantum mechanical operator corresponding to the total energy of a system.

The Braid Group

Theorem (Ehrenfest)

If a time-independent Hermitian operator commutes with the Hamiltonian, then the physical observable corresponding to the operator is conserved.

Consequences

Introduction to Representation Theory

- **1.** Radial symmetry \Longrightarrow SO(3)-invariance $\Longrightarrow [\hat{H}, \mathbf{J}] = 0 \Longrightarrow$ angular momentum conserved!
- 2. Invariant under continuous translations \implies conservation of linear momentum!
- **3.** Lorentz invariance \implies conservation of energy and momentum!

The Braid Group

○●○○○○○○

Definition

Introduction to Representation Theory

The ${\it configuration space}$ of ${\it n}$ ordered distinct points in the complex plane ${\mathbb C}$ is defined as

The Braid Group

00000000

$$M_n = \{(z_1, \ldots, z_n) \in \mathbb{C}^n; z_i \neq z_j, \forall i \neq j\}.$$

Definition

The *configuration space* of *n* ordered distinct points in the complex plane \mathbb{C} is defined as $M_n = \{(z_1, \dots, z_n) \in \mathbb{C}^n; z_i \neq z_i, \forall i \neq j\}.$

The Braid Group

▶ Note that $(z_1, z_2, z_3, ..., z_n)$ and $(z_2, z_1, z_3, ..., z_n)$ are distinct configurations in M_n .

Definition

The configuration space of n ordered distinct points in the complex plane $\mathbb C$ is defined as $M_n = \{(z_1, \ldots, z_n) \in \mathbb{C}^n; z_i \neq z_i, \forall i \neq i\}.$

- ▶ Note that $(z_1, z_2, z_3, \dots, z_n)$ and $(z_2, z_1, z_3, \dots, z_n)$ are distinct configurations in M_n .
- ▶ A braid β is a loop⁶ in M_n and can be thought of as a configuration that evolves over time:

$$eta: [0,1] o M_n$$

$$t \mapsto eta(t) = ig(eta_1(t), eta_2(t), \dots, eta_n(t)ig),$$

⁶The topological formalisms that define the braid group are omitted for times sake.

Definition

The configuration space of n ordered distinct points in the complex plane $\mathbb C$ is defined as $M_n = \{(z_1, \ldots, z_n) \in \mathbb{C}^n; z_i \neq z_i, \forall i \neq i\}.$

- ▶ Note that $(z_1, z_2, z_3, \dots, z_n)$ and $(z_2, z_1, z_3, \dots, z_n)$ are distinct configurations in M_n .
- ▶ A braid β is a loop⁶ in M_n and can be thought of as a configuration that evolves over time:

$$eta: [0,1] o M_n$$

$$t \mapsto eta(t) = ig(eta_1(t), eta_2(t), \dots, eta_n(t)ig),$$

The Braid Group

Definition

The braid group B_n is the fundamental group of M_n/S_n , where S_n is the symmetric group on n elements.

⁶The topological formalisms that define the braid group are omitted for times sake.

Visualization of Braids

Visualization of Braids

► Each path traced out by a point in the configuration space is a strand.

The Braid Group

00000000

- ► Each path traced out by a point in the configuration space is a *strand*.
- ▶ We can think of a braid on *n* strands as the motion of *n* distinct points in the complex plane over a normalized time interval.

- ► Each path traced out by a point in the configuration space is a *strand*.
- ▶ We can think of a braid on *n* strands as the motion of *n* distinct points in the complex plane over a normalized time interval.
- ▶ Visualized in $\mathbb{C} \times [0, 1]$.

- ► Each path traced out by a point in the configuration space is a strand.
- ▶ We can think of a braid on *n* strands as the motion of *n* distinct points in the complex plane over a normalized time interval.
- ▶ Visualized in $\mathbb{C} \times [0, 1]$.
- ► A braid is defined up to *homotopy*.

- ► Each path traced out by a point in the configuration space is a *strand*.
- ▶ We can think of a braid on *n* strands as the motion of *n* distinct points in the complex plane over a normalized time interval.
- ▶ Visualized in $\mathbb{C} \times [0, 1]$.
- ► A braid is defined up to *homotopy*.

▶ Every braid can be decomposed into a finite product of *standard generators* that permute adjacent points.

The Braid Group

00000000

Standard Generators

▶ Every braid can be decomposed into a finite product of *standard generators* that permute adjacent points.

The Braid Group

▶ The standard generators of B_n are defined as $\{\sigma_1, \sigma_2, \dots, \sigma_{n-1}\}$, in which:

Standard Generators

▶ Every braid can be decomposed into a finite product of *standard generators* that permute adjacent points.

The Braid Group

▶ The standard generators of B_n are defined as $\{\sigma_1, \sigma_2, \dots, \sigma_{n-1}\}$, in which:

Standard Generators

Every braid can be decomposed into a finite product of standard generators that permute adjacent points.

The Braid Group

▶ The standard generators of B_n are defined as $\{\sigma_1, \sigma_2, \dots, \sigma_{n-1}\}$, in which:

▶ The <u>degree</u> of a braid $\beta \in B_n$ is the sum of the powers of the standard generators in the decomposition of β .

Alternative Description of B_n

Definition

The braid group on n strands, denoted B_n , is generated by the standard generators that follow the *braid relations*, summarized below:

$$B_n = \left\langle \sigma_1, \ldots, \sigma_{n-1} \middle| \begin{array}{l} \sigma_i \sigma_j = \sigma_j \sigma_i, \ |i-j| > 1 \\ \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \end{array} \right\rangle.$$

Alternative Description of B_n

Definition

The braid group on n strands, denoted B_n , is generated by the standard generators that follow the *braid relations*, summarized below:

The Braid Group

$$B_n = \left\langle \sigma_1, \ldots, \sigma_{n-1} \middle| \begin{array}{l} \sigma_i \sigma_j = \sigma_j \sigma_i, \ |i-j| > 1 \\ \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \end{array} \right\rangle.$$

Comment: $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$ is known as the *Yang-Baxter equation*, visualized below:

The Braid Group

00000000

Introduction to Representation Theory

One-Dimensional Representations of the Braid Group

For $\theta \in \mathbb{R}$ and $j = 1, 2, \dots, n-1$, we define some *one-dimensional representations* of B_n :

The Braid Group

00000000

$$p_{ heta}: B_n
ightarrow \mathbb{C}_{|z|=1} \ \sigma_j \mapsto e^{i heta}.$$

$$p_{ heta}: B_n
ightarrow \mathbb{C}_{|z|=1} \ \sigma_j \mapsto e^{i heta}.$$

The Braid Group

These representations are abelian

The Braid Group

$$p_{ heta}: B_n o \mathbb{C}_{|z|=1}$$
 $\sigma_i \mapsto e^{i heta}.$

These representations are *abelian*:

$$p_{\theta}(\sigma_1 \sigma_2 \sigma_1^{-1} \sigma_2) = p_{\theta}(\sigma_1) p_{\theta}(\sigma_2) p_{\theta}(\sigma_1^{-1}) p_{\theta}(\sigma_2)$$

The Braid Group

$$p_{ heta}: B_n
ightarrow \mathbb{C}_{|z|=1} \ \sigma_i \mapsto e^{i heta}.$$

These representations are *abelian*:

$$\begin{aligned} p_{\theta}(\sigma_{1}\sigma_{2}\sigma_{1}^{-1}\sigma_{2}) &= p_{\theta}(\sigma_{1})p_{\theta}(\sigma_{2})p_{\theta}(\sigma_{1}^{-1})p_{\theta}(\sigma_{2}) \\ &= e^{i\theta_{1}}e^{i\theta_{2}}e^{-i\theta_{1}}e^{i\theta_{2}} \end{aligned}$$

One-Dimensional Representations of the Braid Group

For $\theta \in \mathbb{R}$ and $j = 1, 2, \dots, n-1$, we define some *one-dimensional representations* of B_n :

$$p_{ heta}:B_n o \mathbb{C}_{|z|=1}$$
 $\sigma_j\mapsto e^{i heta}.$

The Braid Group

These representations are *abelian*:

$$\begin{aligned} p_{\theta}(\sigma_{1}\sigma_{2}\sigma_{1}^{-1}\sigma_{2}) &= p_{\theta}(\sigma_{1})p_{\theta}(\sigma_{2})p_{\theta}(\sigma_{1}^{-1})p_{\theta}(\sigma_{2}) \\ &= e^{i\theta_{1}}e^{i\theta_{2}}e^{-i\theta_{1}}e^{i\theta_{2}} \\ &= e^{i(\theta_{1}-\theta_{1}+\theta_{2}+\theta_{2})} \end{aligned}$$

$$p_{ heta}: B_n o \mathbb{C}_{|z|=1}$$
 $\sigma_j \mapsto e^{i heta}.$

The Braid Group

These representations are *abelian*:

$$\begin{aligned} p_{\theta}(\sigma_{1}\sigma_{2}\sigma_{1}^{-1}\sigma_{2}) &= p_{\theta}(\sigma_{1})p_{\theta}(\sigma_{2})p_{\theta}(\sigma_{1}^{-1})p_{\theta}(\sigma_{2}) \\ &= e^{i\theta_{1}}e^{i\theta_{2}}e^{-i\theta_{1}}e^{i\theta_{2}} \\ &= e^{i(\theta_{1}-\theta_{1}+\theta_{2}+\theta_{2})} \\ &= e^{i\cdot 2\theta_{2}} &= p_{\theta}(\sigma_{2}^{2}) \end{aligned}$$

One-Dimensional Representations of the Braid Group

For $\theta \in \mathbb{R}$ and $j = 1, 2, \dots, n-1$, we define some *one-dimensional representations* of B_n :

$$p_{ heta}: B_n o \mathbb{C}_{|z|=1}$$
 $\sigma_j \mapsto e^{i heta}.$

The Braid Group

These representations are *abelian*:

$$\begin{aligned} p_{\theta}(\sigma_{1}\sigma_{2}\sigma_{1}^{-1}\sigma_{2}) &= p_{\theta}(\sigma_{1})p_{\theta}(\sigma_{2})p_{\theta}(\sigma_{1}^{-1})p_{\theta}(\sigma_{2}) \\ &= e^{i\theta_{1}}e^{i\theta_{2}}e^{-i\theta_{1}}e^{i\theta_{2}} \\ &= e^{i(\theta_{1}-\theta_{1}+\theta_{2}+\theta_{2})} \\ &= e^{i\cdot 2\theta_{2}} &= p_{\theta}(\sigma_{2}^{2}) \end{aligned}$$

Hence, for any $\beta \in B_n$ with degree k:

One-Dimensional Representations of the Braid Group

For $\theta \in \mathbb{R}$ and $j = 1, 2, \dots, n-1$, we define some *one-dimensional representations* of B_n :

$$p_{ heta}:B_{n}
ightarrow\mathbb{C}_{|z|=1}$$
 $\sigma_{i}\mapsto e^{i heta}.$

The Braid Group

These representations are *abelian*:

$$egin{aligned} p_{ heta}(\sigma_1\sigma_2\sigma_1^{-1}\sigma_2) &= p_{ heta}(\sigma_1)p_{ heta}(\sigma_2)p_{ heta}(\sigma_1^{-1})p_{ heta}(\sigma_2) \ &= e^{i heta_1}e^{i heta_2}e^{-i heta_1}e^{i heta_2} \ &= e^{i(heta_1- heta_1+ heta_2+ heta_2)} \ &= e^{i\cdot2 heta_2} = p_{ heta}(\sigma_2^2) \end{aligned}$$

Hence, for any $\beta \in B_n$ with degree k:

$$p_{\theta}(\beta) = p_{\theta}(\sigma_1^{m_1}\sigma_2^{m_2}\cdots\sigma_{n-1}^{m_{n-1}}) = e^{i\theta(m_1+m_2+\cdots+m_{n-1})} = e^{ik\theta}.$$

The Braid Group

00000000

The Braid Group

00000000

Unitary Representation of the Braid Group

Definition

A matrix $M \in GL_n(\mathbb{C})$ is *unitary* if $M^{\dagger} = M^{-1}$.

Definition

Introduction to Representation Theory

A matrix $M \in GL_n(\mathbb{C})$ is unitary if $M^{\dagger} = M^{-1}$.

▶ The reduced Burau representation on B_n is an (n-1)-dimensional representation of the braid group.

The Braid Group

00000000

Definition

Introduction to Representation Theory

A matrix $M \in GL_n(\mathbb{C})$ is *unitary* if $M^{\dagger} = M^{-1}$.

▶ The reduced Burau representation on B_n is an (n-1)-dimensional representation of the braid group.

The Braid Group

Unitary representations of B_n can be constructed from the reduced Burau representation.

Unitary Representation of the Braid Group

Definition

A matrix $M \in GL_n(\mathbb{C})$ is *unitary* if $M^{\dagger} = M^{-1}$.

▶ The reduced Burau representation on B_n is an (n-1)-dimensional representation of the braid group.

The Braid Group

 \triangleright Unitary representations of B_n can be constructed from the reduced Burau representation.

Definition

Define the unitary representation $\mathcal{U}: B_3 \to U(2)$ by

$$\mathcal{U}(\sigma_1) = rac{1}{2}e^{-irac{\pi}{6}}egin{bmatrix} \sqrt{3}\,e^{i\, ext{arctan}\left(rac{1}{\sqrt{2}}
ight)} & 1 \ 1 & -\sqrt{3}\,e^{-i\, ext{arctan}\left(rac{1}{\sqrt{2}}
ight)} \end{bmatrix} \ \mathcal{U}(\sigma_2) = rac{1}{2}e^{-irac{\pi}{6}}egin{bmatrix} -\sqrt{3}\,e^{-i\, ext{arctan}\left(rac{1}{\sqrt{2}}
ight)} & 1 \ 1 & \sqrt{3}\,e^{i\, ext{arctan}\left(rac{1}{\sqrt{2}}
ight)} \end{bmatrix}$$

The Braid Group 0000000

Observations:

The Braid Group

0000000

Observations:

Introduction to Representation Theory

1. $[\mathcal{U}(\sigma_1), \mathcal{U}(\sigma_2)] \neq 0 \implies \mathcal{U}$ nonabelian.

The Braid Group

0000000

Observations:

- **1.** $[\mathcal{U}(\sigma_1), \mathcal{U}(\sigma_2)] \neq 0 \implies \mathcal{U}$ nonabelian.
- **2.** $\mathcal{U}(\sigma_i)^{-1} = \mathcal{U}(\sigma_i)^{\dagger} \neq \mathcal{U}(\sigma_i)$ for i = 1, 2.

Observations:

Introduction to Representation Theory

- **1.** $[\mathcal{U}(\sigma_1), \mathcal{U}(\sigma_2)] \neq 0 \implies \mathcal{U}$ nonabelian.
- **2.** $\mathcal{U}(\sigma_i)^{-1} = \mathcal{U}(\sigma_i)^{\dagger} \neq \mathcal{U}(\sigma_i)$ for i = 1, 2.

Consequence: σ_1^2 and σ_2^2 are not the identity braid, which is in contrast to the permutation group where transpositions are involutory.

Observations:

Introduction to Representation Theory

- **1.** $[\mathcal{U}(\sigma_1), \mathcal{U}(\sigma_2)] \neq 0 \implies \mathcal{U}$ nonabelian.
- **2.** $\mathcal{U}(\sigma_i)^{-1} = \mathcal{U}(\sigma_i)^{\dagger} \neq \mathcal{U}(\sigma_i)$ for i = 1, 2.

Consequence: σ_1^2 and σ_2^2 are not the identity braid, which is in contrast to the permutation group where transpositions are involutory.

The Braid Group

Question

What are the physical implications of this nonabelian unitary representation?

Observations:

- **1.** $[\mathcal{U}(\sigma_1), \mathcal{U}(\sigma_2)] \neq 0 \implies \mathcal{U}$ nonabelian.
- **2.** $\mathcal{U}(\sigma_i)^{-1} = \mathcal{U}(\sigma_i)^{\dagger} \neq \mathcal{U}(\sigma_i)$ for i = 1, 2.

Consequence: σ_1^2 and σ_2^2 are not the identity braid, which is in contrast to the permutation group where transpositions are involutory.

The Braid Group

Question

What are the physical implications of this nonabelian unitary representation?

Answer: Unitary matrices preserve inner products, so the unitary representations of the braid group can act on a quantum system by braiding particles!

4 Physical Applications of the Braid Group

(Abelian) Braiding Action on a Quantum System

Introduction to Representation Theory

1D Representation: Let $p_{\theta}: B_n \to \mathbb{C}$ be defined by $\sigma_i \mapsto e^{i\theta}$ for some θ , for all j.

1D Representation: Let $p_{\theta}: B_n \to \mathbb{C}$ be defined by $\sigma_i \mapsto e^{i\theta}$ for some θ , for all j.

Quantum system: Some wavefunction $\psi(r_1,\ldots,r_n)$ describing the identical particles fixed at nondegenerate positions r_1, r_2, \ldots, r_n .

1D Representation: Let $p_{\theta}: B_n \to \mathbb{C}$ be defined by $\sigma_i \mapsto e^{i\theta}$ for some θ , for all j.

Quantum system: Some wavefunction $\psi(r_1, \ldots, r_n)$ describing the identical particles fixed at nondegenerate positions r_1, r_2, \ldots, r_n .

The Braid Group

Braiding action: For any degree-k braid $\beta \in B_n$, we have

$$\psi(r_{1'}, r_{2'}, \ldots, r_{n'}) = p_{\theta}(\beta) \, \psi(r_1, r_2, \ldots, r_n) = \underbrace{e^{ik\theta}}_{\substack{\text{phase} \\ \text{shift}}} \psi(r_1, r_2, \ldots, r_n),$$

(Nonabelian) Braiding Action on a Quantum System

2D Representation: Consider the 2 \times 2 unitary representation \mathcal{U} from before.

(Nonabelian) Braiding Action on a Quantum System

2D Representation: Consider the 2 \times 2 unitary representation \mathcal{U} from before.

Quantum system: A degenerate set of two quantum states with orthonormal basis $\psi_1(r_1, r_2, r_3)$ and $\psi_2(r_1, r_2, r_3)$. Shorthand: $|1\rangle$ and $|2\rangle$.

(Nonabelian) Braiding Action on a Quantum System

Examples in Physics

2D Representation: Consider the 2 \times 2 unitary representation \mathcal{U} from before.

Quantum system: A degenerate set of two quantum states with orthonormal basis $\psi_1(r_1, r_2, r_3)$ and $\psi_2(r_1, r_2, r_3)$. Shorthand: $|1\rangle$ and $|2\rangle$.

Braiding action: The transformed basis states due to the action of σ_1 are

$$egin{aligned} |1'
angle &= \mathcal{U}(\sigma_1)_{1,1} \, |1
angle + \mathcal{U}(\sigma_1)_{1,2} \, |2
angle &= rac{1}{2} e^{-irac{\pi}{6}} \left(\sqrt{3} \, e^{i \, \mathsf{arctan}\left(rac{1}{\sqrt{2}}
ight)} \, |1
angle + |2
angle
ight), \ |2'
angle &= \mathcal{U}(\sigma_1)_{2,1} \, |1
angle + \mathcal{U}(\sigma_1)_{2,2} \, |2
angle &= rac{1}{2} e^{-irac{\pi}{6}} \left(|1
angle - \sqrt{3} \, e^{-i \, \mathsf{arctan}\left(rac{1}{\sqrt{2}}
ight)} \, |2
angle
ight). \end{aligned}$$

(Nonabelian) Braiding Action on a Quantum System

2D Representation: Consider the 2 \times 2 unitary representation \mathcal{U} from before.

Quantum system: A degenerate set of two quantum states with orthonormal basis $\psi_1(r_1, r_2, r_3)$ and $\psi_2(r_1, r_2, r_3)$. Shorthand: $|1\rangle$ and $|2\rangle$.

Braiding action: The transformed basis states due to the action of σ_1 are

$$\begin{split} |1'\rangle &= \mathcal{U}(\sigma_1)_{1,1} \, |1\rangle + \mathcal{U}(\sigma_1)_{1,2} \, |2\rangle = \frac{1}{2} e^{-i\frac{\pi}{6}} \left(\sqrt{3} \, e^{i \operatorname{arctan}\left(\frac{1}{\sqrt{2}}\right)} \, |1\rangle + |2\rangle \right), \\ |2'\rangle &= \mathcal{U}(\sigma_1)_{2,1} \, |1\rangle + \mathcal{U}(\sigma_1)_{2,2} \, |2\rangle = \frac{1}{2} e^{-i\frac{\pi}{6}} \left(|1\rangle - \sqrt{3} \, e^{-i \operatorname{arctan}\left(\frac{1}{\sqrt{2}}\right)} \, |2\rangle \right). \end{split}$$

Remark

The action of a nonabelian braid group representation on a quantum system leads to *nontrivial rotations* in the many-particle Hilbert space that describes the quantum system⁷.

⁷Nayak et al., 2008, Non-abelian anyons and topological quantum computation, *Reviews of Modern Physics*

Anyons: A Consequence of Braiding

Definition

Particles that obey the braid group permutation rules are known as *anyons*.

Definition

Introduction to Representation Theory

Particles that obey the braid group permutation rules are known as *anyons*.

Anyons are (2+1)-dimensional quasi-particles (2D space + 1D time).

Anyons: A Consequence of Braiding

Definition

Introduction to Representation Theory

Particles that obey the braid group permutation rules are known as *anyons*.

- \blacktriangleright Anyons are (2+1)-dimensional quasi-particles (2D space + 1D time).
- Anyon statistics are governed by the specific braid group representation acting on the system.

Anyons: A Consequence of Braiding

Definition

Particles that obey the braid group permutation rules are known as *anyons*.

- \blacktriangleright Anyons are (2+1)-dimensional quasi-particles (2D space + 1D time).
- Anyon statistics are governed by the specific braid group representation acting on the system.

The Braid Group

► Two types of anyons:

Definition

Introduction to Representation Theory

Particles that obey the braid group permutation rules are known as *anyons*.

- \blacktriangleright Anyons are (2+1)-dimensional quasi-particles (2D space + 1D time).
- Anyon statistics are governed by the specific braid group representation acting on the system.

- ► Two types of anyons:
 - 1. Abelian anyons: The braid group representation is abelian.

Definition

Introduction to Representation Theory

Particles that obey the braid group permutation rules are known as *anyons*.

- \blacktriangleright Anyons are (2+1)-dimensional quasi-particles (2D space + 1D time).
- Anyon statistics are governed by the specific braid group representation acting on the system.

- ► Two types of anyons:
 - 1. Abelian anyons: The braid group representation is abelian.
 - 2. Nonabelian anyons: The braid group representation is nonabelian.

Definition

Introduction to Representation Theory

Particles that obey the braid group permutation rules are known as *anyons*.

- \blacktriangleright Anyons are (2+1)-dimensional quasi-particles (2D space + 1D time).
- Anyon statistics are governed by the specific braid group representation acting on the system.

- ► Two types of anyons:
 - 1. Abelian anyons: The braid group representation is abelian.
 - 2. Nonabelian anyons: The braid group representation is nonabelian.
- Edge cases: bosons and fermions.

Recall: A braid is only well-defined if all particle trajectories are known.

Recall: A braid is only well-defined if all particle trajectories are known.

Consequences:

Introduction to Representation Theory

1. A permutation of two anyons requires the knowledge of the positions of all other anyons in the system.

Recall: A braid is only well-defined if all particle trajectories are known.

Consequences:

Introduction to Representation Theory

- 1. A permutation of two anyons requires the knowledge of the positions of all other anyons in the system.
- 2. This is a consequence of the so-called nontrivial braiding effects of the braid group.

Recall: A braid is only well-defined if all particle trajectories are known.

Consequences:

- 1. A permutation of two anyons requires the knowledge of the positions of all other anyons in the system.
- 2. This is a consequence of the so-called nontrivial braiding effects of the braid group.

Trajectory A

Recall: A braid is only well-defined if all particle trajectories are known.

Consequences:

- 1. A permutation of two anyons requires the knowledge of the positions of all other anyons in the system.
- 2. This is a consequence of the so-called nontrivial braiding effects of the braid group.

Trajectory A

The Braid Group

Recall: A braid is only well-defined if all particle trajectories are known.

Consequences:

Introduction to Representation Theory

- 1. A permutation of two anyons requires the knowledge of the positions of all other anyons in the system.
- 2. This is a consequence of the so-called nontrivial braiding effects of the braid group.

Trajectory A

The Braid Group

Recall: A braid is only well-defined if all particle trajectories are known.

Consequences:

- 1. A permutation of two anyons requires the knowledge of the positions of all other anyons in the system.
- 2. This is a consequence of the so-called nontrivial braiding effects of the braid group.

1D representation:

$$\sigma_1 \mapsto e^{i heta} \ \sigma_2 \sigma_1 \sigma_2 \mapsto e^{3i}$$

Trajectory A

The Braid Group

Recall: A braid is only well-defined if all particle trajectories are known.

Consequences:

- 1. A permutation of two anyons requires the knowledge of the positions of all other anyons in the system.
- 2. This is a consequence of the so-called nontrivial braiding effects of the braid group.

1D representation:

$$egin{aligned} \sigma_1 \mapsto & \mathbf{e}^{i heta} \ \sigma_2 \sigma_1 \sigma_2 \mapsto & \mathbf{e}^{3i heta} \end{aligned}
otag \
otag \ if \ heta
otag \pi \mathbb{Z}$$

Trajectory A

The Braid Group

Physical Implications of Nontrivial Braiding Effects

▶ The fractional quantum Hall effect is a physical manifestation of anyonic braiding in 2D electron systems (fractional charge, fractional statistics).

▶ The fractional quantum Hall effect is a physical manifestation of anyonic braiding in 2D electron systems (fractional charge, fractional statistics).

The Braid Group

Anyons can have different topological flavors, leading to special fusion rules that can be used to describe the behavior of anyonic systems.

▶ The fractional quantum Hall effect is a physical manifestation of anyonic braiding in 2D electron systems (fractional charge, fractional statistics).

- Anyons can have different topological flavors, leading to special fusion rules that can be used to describe the behavior of anyonic systems.
- Specific fusion rules + nonabelian anyons = fault-tolerant topological quantum computer. This is an ongoing area of research.

Summary

Main Takeaways:

Main Takeaways:

1. Representation theory is a powerful tool that can be used to obtain fundamental results in quantum mechanics and beyond.

Main Takeaways:

1. Representation theory is a powerful tool that can be used to obtain fundamental results in quantum mechanics and beyond.

The Braid Group

2. Unitary representations of the braid group can act on (2 + 1)-dimensional quantum systems, resulting in anyons.

Main Takeaways:

1. Representation theory is a powerful tool that can be used to obtain fundamental results in quantum mechanics and beyond.

- 2. Unitary representations of the braid group can act on (2 + 1)-dimensional quantum systems, resulting in anyons.
- 3. Anyons exhibit fractional statistics in contrast to the boson/fermion dichotomy.

Main Takeaways:

 Representation theory is a powerful tool that can be used to obtain fundamental results in quantum mechanics and beyond.

- 2. Unitary representations of the braid group can act on (2+1)-dimensional quantum systems, resulting in anyons.
- 3. Anyons exhibit fractional statistics in contrast to the boson/fermion dichotomy.
- 4. The nontrivial braiding effects of anyons results in useful physical properties that can be exploited for various physical applications.

Main Takeaways:

 Representation theory is a powerful tool that can be used to obtain fundamental results in quantum mechanics and beyond.

The Braid Group

- 2. Unitary representations of the braid group can act on (2 + 1)-dimensional quantum systems, resulting in anyons.
- 3. Anyons exhibit fractional statistics in contrast to the boson/fermion dichotomy.
- 4. The nontrivial braiding effects of anyons results in useful physical properties that can be exploited for various physical applications.

Thank you for your attention!

A Physicists Approach to Anyons (Lagrangian)

Consider two identical non-interacting anyons with positions $\mathbf{r}_1=(x_1,y_1)$ and $\mathbf{r}_2=(x_2,y_2)$ in a harmonic potential. Let $\phi=\arctan\left(\frac{y_2-y_1}{x_2-x_1}\right)$ be the relative angle between the two anyons and $\dot{\phi}=\frac{d\phi}{dt}$.

A Physicists Approach to Anyons (Lagrangian)

Consider two identical non-interacting anyons with positions $\mathbf{r}_1=(x_1,y_1)$ and $\mathbf{r}_2=(x_2,y_2)$ in a harmonic potential. Let $\phi=\arctan\left(\frac{y_2-y_1}{x_2-x_1}\right)$ be the relative angle between the two anyons and $\dot{\phi}=\frac{d\phi}{dt}$.

Potential:
$$V(\mathbf{r}_{1}, \mathbf{r}_{2}) = \frac{1}{2} m \omega^{2} (\mathbf{r}_{1}^{2} + \mathbf{r}_{2}^{2})$$

A Physicists Approach to Anyons (Lagrangian)

Consider two identical non-interacting anyons with positions $\mathbf{r}_1=(x_1,y_1)$ and $\mathbf{r}_2=(x_2,y_2)$ in a harmonic potential. Let $\phi=\arctan\left(\frac{y_2-y_1}{x_2-x_1}\right)$ be the relative angle between the two anyons and $\dot{\phi}=\frac{d\phi}{dt}$.

Potential:
$$V(\mathbf{r}_1, \mathbf{r}_2) = \frac{1}{2} m \omega^2 \left(\mathbf{r}_1^2 + \mathbf{r}_2^2 \right)$$

Statistical interaction due to braiding: $\mathcal{L}_{int} = \hbar \alpha \dot{\phi}, \quad \alpha \in [0, 1]$

A Physicists Approach to Anyons (Lagrangian)

Consider two identical non-interacting anyons with positions $\mathbf{r}_1 = (x_1, y_1)$ and $\mathbf{r}_2 = (x_2, y_2)$ in a harmonic potential. Let $\phi = \arctan\left(\frac{y_2-y_1}{x_2-x_1}\right)$ be the relative angle between the two anyons and $\dot{\phi} = \frac{d\phi}{dt}$.

Potential:
$$V(\mathbf{r}_{1}, \mathbf{r}_{2}) = \frac{1}{2} m \omega^{2} (\mathbf{r}_{1}^{2} + \mathbf{r}_{2}^{2})$$

Statistical interaction due to braiding: $\mathcal{L}_{int} = \hbar \alpha \dot{\phi}, \quad \alpha \in [0, 1]$

Classical Kinetic Energy: $T = \frac{1}{2}m(\dot{\mathbf{r}}_1^2 + \dot{\mathbf{r}}_2^2)$

A Physicists Approach to Anyons (Lagrangian)

Consider two identical non-interacting anyons with positions $\mathbf{r}_1=(x_1,y_1)$ and $\mathbf{r}_2=(x_2,y_2)$ in a harmonic potential. Let $\phi=\arctan\left(\frac{y_2-y_1}{x_2-x_1}\right)$ be the relative angle between the two anyons and $\dot{\phi}=\frac{d\phi}{dt}$.

Potential:
$$V(\mathbf{r}_{1}, \mathbf{r}_{2}) = \frac{1}{2} m \omega^{2} (\mathbf{r}_{1}^{2} + \mathbf{r}_{2}^{2})$$

Statistical interaction due to braiding: $\mathcal{L}_{int} = \hbar \alpha \dot{\phi}, \quad \alpha \in [0, 1]$

Classical Kinetic Energy: $T = \frac{1}{2}m(\dot{\mathbf{r}}_1^2 + \dot{\mathbf{r}}_2^2)$

Lagrangian:

$$\mathcal{L}\left(\textit{r}_{1},\textit{r}_{2},\dot{\textbf{r}}_{1},\dot{\textbf{r}}_{2},\dot{\phi}\right) = \textit{T} + \mathcal{L}_{int} - \textit{V}(\textbf{r}_{1},\textbf{r}_{2}) = \frac{1}{2}\textit{m}\left(\dot{\textbf{r}}_{1}^{2} + \dot{\textbf{r}}_{2}^{2}\right) + \hbar\alpha\dot{\phi} - \frac{1}{2}\textit{m}\omega^{2}\left(\textbf{r}_{1}^{2} + \textbf{r}_{2}^{2}\right)$$

A Physicists Approach to Anyons (Lagrangian)

Consider two identical non-interacting anyons with positions $\mathbf{r}_1 = (x_1, y_1)$ and $\mathbf{r}_2 = (x_2, y_2)$ in a harmonic potential. Let $\phi = \arctan\left(\frac{y_2 - y_1}{x_2 - x_1}\right)$ be the relative angle between the two anyons and $\dot{\phi} = \frac{d\phi}{dt}$.

Potential:
$$V(\mathbf{r}_1, \mathbf{r}_2) = \frac{1}{2} m \omega^2 (\mathbf{r}_1^2 + \mathbf{r}_2^2)$$

Statistical interaction due to braiding: $\mathcal{L}_{int} = \hbar \alpha \dot{\phi}, \quad \alpha \in [0, 1]$

Classical Kinetic Energy: $T = \frac{1}{2}m(\dot{\mathbf{r}}_1^2 + \dot{\mathbf{r}}_2^2)$

Lagrangian:

$$\mathcal{L}\left(r_{1}, r_{2}, \dot{\mathbf{r}}_{1}, \dot{\mathbf{r}}_{2}, \dot{\phi}\right) = T + \mathcal{L}_{int} - V(\mathbf{r}_{1}, \mathbf{r}_{2}) = \frac{1}{2}m\left(\dot{\mathbf{r}}_{1}^{2} + \dot{\mathbf{r}}_{2}^{2}\right) + \hbar\alpha\dot{\phi} - \frac{1}{2}m\omega^{2}\left(\mathbf{r}_{1}^{2} + \mathbf{r}_{2}^{2}\right)$$

Generalize to *N* anyons: Let $\phi_{ij} = \arctan\left(\frac{y_i - y_i}{x_i - x_i}\right)$,

$$\mathcal{L} = \sum_{i=1}^{N} \frac{m}{2} \dot{\mathbf{r}}_{i}^{2} + \hbar \alpha \sum_{i=1}^{N} \dot{\phi}_{ij} - \frac{m\omega^{2}}{2} \sum_{i=1}^{N} \mathbf{r}_{i}^{2}$$

Rewrite N-anyon \mathcal{L} :

$$\mathcal{L} = \frac{m}{2} \sum_{i=1}^{N} \left[\dot{\mathbf{r}}^2 - \omega^2 \mathbf{r}_i^2 \right] + \alpha \sum_{i < i}^{N} \dot{\mathbf{r}}_{ij} \cdot \frac{\left(-y_{ij}\hat{\mathbf{x}} + x_{ij}\hat{\mathbf{y}} \right)}{r_{ij}^2}$$

Rewrite
$$N$$
-anyon \mathcal{L} :

$$\mathcal{L} = \frac{m}{2} \sum_{i=1}^{N} \left[\dot{\mathbf{r}}^2 - \omega^2 \mathbf{r}_i^2 \right] + \alpha \sum_{i < j}^{N} \dot{\mathbf{r}}_{ij} \cdot \frac{\left(-y_{ij} \hat{\mathbf{x}} + x_{ij} \hat{\mathbf{y}} \right)}{r_{ij}^2}$$

$$\mathbf{A}_{i}(\mathbf{r}_{i}) = \alpha \sum_{j \neq i} \frac{\hat{\mathbf{z}} \times \mathbf{r}_{ij}}{r_{ij}^{2}} = \alpha \sum_{j \neq i} \frac{-y_{ij}\hat{\mathbf{x}} + x_{ij}\hat{\mathbf{y}}}{r_{ij}^{2}}$$

Rewrite *N*-anyon
$$\mathcal{L}$$
:
$$\mathcal{L} = \frac{m}{2} \sum_{i=1}^{N} \left[\dot{\mathbf{r}}^2 - \omega^2 \mathbf{r}_i^2 \right] + \alpha \sum_{i < j}^{N} \dot{\mathbf{r}}_{ij} \cdot \frac{\left(- y_{ij} \hat{\mathbf{x}} + x_{ij} \hat{\mathbf{y}} \right)}{r_{ij}^2}$$

Gauge potential:
$$\mathbf{A}_{i}(\mathbf{r}_{i}) = \alpha \sum_{j \neq i} \frac{\hat{\mathbf{z}} \times \mathbf{r}_{ij}}{r_{ij}^{2}} = \alpha \sum_{j \neq i} \frac{-y_{ij}\hat{\mathbf{x}} + x_{ij}\hat{\mathbf{y}}}{r_{ij}^{2}}$$

i-th anyon Hamiltonian:
$$\mathcal{H}_i = \frac{1}{2m} \left(\mathbf{p}_i - \mathbf{A}_i(\mathbf{r}_i) \right)^2 + \frac{m\omega^2}{2} r_i^2$$

Rewrite *N*-anyon
$$\mathcal{L}$$
:
$$\mathcal{L} = \frac{m}{2} \sum_{i=1}^{N} \left[\dot{\mathbf{r}}^2 - \omega^2 \mathbf{r}_i^2 \right] + \alpha \sum_{i < j}^{N} \dot{\mathbf{r}}_{ij} \cdot \frac{(-y_{ij} \hat{\mathbf{x}} + x_{ij} \hat{\mathbf{y}})}{r_{ij}^2}$$

Gauge potential:
$$\mathbf{A}_i(\mathbf{r}_i) = \alpha \sum_{j \neq i} \frac{\hat{\mathbf{z}} \times \mathbf{r}_{ij}}{r_{ij}^2} = \alpha \sum_{j \neq i} \frac{-y_{ij}\hat{\mathbf{x}} + x_{ij}\hat{\mathbf{y}}}{r_{ij}^2}$$

i-th anyon Hamiltonian:
$$\mathcal{H}_i = \frac{1}{2m} \left(\underbrace{\mathbf{p}_i - \mathbf{A}_i(\mathbf{r}_i)}_{\text{canonical properties}} \right)^2 + \frac{m\omega^2}{2} r_i^2$$

N-anyon Hamiltonian:
$$\mathcal{H} = \frac{1}{2m} \sum_{i=1}^{N} (\mathbf{p}_i - \mathbf{A}_i(\mathbf{r}_i))^2 + \frac{m\omega^2}{2} \sum_{i=1}^{N} r_i^2$$

Rewrite
$$N$$
-anyon \mathcal{L} :

$$\mathcal{L} = \frac{m}{2} \sum_{i=1}^{N} \left[\dot{\mathbf{r}}^2 - \omega^2 \mathbf{r}_i^2 \right] + \alpha \sum_{i < j}^{N} \dot{\mathbf{r}}_{ij} \cdot \frac{\left(-y_{ij}\hat{\mathbf{x}} + x_{ij}\hat{\mathbf{y}} \right)}{r_{ij}^2}$$

$$\mathbf{A}_{i}(\mathbf{r}_{i}) = \alpha \sum_{j \neq i} \frac{\hat{\mathbf{z}} \times \mathbf{r}_{ij}}{r_{ij}^{2}} = \alpha \sum_{j \neq i} \frac{-y_{ij}\hat{\mathbf{x}} + x_{ij}\hat{\mathbf{y}}}{r_{ij}^{2}}$$

$$\mathcal{H}_i = \frac{1}{2m} \left(\mathbf{p}_i - \mathbf{A}_i(\mathbf{r}_i) \right)^2 + \frac{m\omega^2}{2} r_i^2$$

$$\mathcal{H} = rac{1}{2m}\sum_{i=1}^{N}\left(\mathbf{p}_{i}-\mathbf{A}_{i}(\mathbf{r}_{i})
ight)^{2} + rac{m\omega^{2}}{2}\sum_{i=1}^{N}r_{i}^{2}$$

$$\mathcal{H} = \left| \frac{1}{2m} \sum_{i=1}^{N} p_i^2 + \frac{m\omega^2}{2} \sum_{i=1}^{N} r_i^2 - \frac{\alpha}{2m} \sum_{\substack{i=1\\j \neq i}}^{N} \frac{\ell_{ij}}{r_{ij}^2} + \frac{\alpha^2}{2m} \sum_{\substack{i=1\\j,k \neq i}}^{N} \frac{\mathbf{r}_{ij} \cdot \mathbf{r}_{ik}}{r_{ij}^2 r_{ik}^2} \right|$$

$$\mathcal{H} = \frac{1}{2m} \sum_{i=1}^{N} p_i^2 + \frac{m\omega^2}{2} \sum_{i=1}^{N} r_i^2 - \frac{\alpha}{2m} \sum_{\substack{i=1\\i\neq i}}^{N} \frac{\ell_{ij}}{r_{ij}^2} + \frac{\alpha^2}{2m} \sum_{\substack{i=1\\i,k\neq i}}^{N} \frac{\mathbf{r}_{ij} \cdot \mathbf{r}_{ik}}{r_{ij}^2 r_{ik}^2}$$

$$\mathcal{H} = \underbrace{\frac{1}{2m} \sum_{i=1}^{N} p_i^2}_{\text{Mechanical momentum}} + \frac{m\omega^2}{2} \sum_{i=1}^{N} r_i^2 - \frac{\alpha}{2m} \sum_{\substack{i=1 \ j \neq i}}^{N} \frac{\ell_{ij}}{r_{ij}^2} + \frac{\alpha^2}{2m} \sum_{\substack{i=1 \ j,k \neq i}}^{N} \frac{\mathbf{r}_{ij} \cdot \mathbf{r}_{ik}}{r_{ij}^2 r_{ik}^2}$$

$$\mathcal{H} = \underbrace{\frac{1}{2m} \sum_{i=1}^{N} p_i^2}_{\text{Mechanical momentum}} + \underbrace{\frac{m\omega^2}{2} \sum_{i=1}^{N} r_i^2}_{\text{Harmonic potential}} - \underbrace{\frac{\alpha}{2m} \sum_{\substack{i=1 \ j \neq i}}^{N} \frac{\ell_{ij}}{r_{ij}^2}}_{\text{Harmonic potential}} + \underbrace{\frac{\alpha^2}{2m} \sum_{\substack{i=1 \ j,k \neq i}}^{N} \frac{\mathbf{r}_{ij} \cdot \mathbf{r}_{ik}}{r_{ij}^2 r_{ik}^2}}_{\text{Harmonic potential}}$$

$$\mathcal{H} = \underbrace{\frac{1}{2m} \sum_{i=1}^{N} p_i^2}_{\text{Mechanical momentum}} + \underbrace{\frac{m\omega^2}{2} \sum_{i=1}^{N} r_i^2}_{\text{Harmonic potential}} - \underbrace{\frac{\alpha}{2m} \sum_{\substack{i=1 \ j \neq i}}^{N} \frac{\ell_{ij}}{r_{ij}^2}}_{\text{Relative angular momentum}} + \underbrace{\frac{\alpha^2}{2m} \sum_{\substack{i=1 \ j,k \neq i}}^{N} \frac{\mathbf{r}_{ij} \cdot \mathbf{r}_{ik}}{r_{ij}^2 r_{ik}^2}}_{\text{Relative angular momentum}}$$

$$\mathcal{H} = \underbrace{\frac{1}{2m} \sum_{i=1}^{N} p_{i}^{2}}_{\text{Mechanical momentum}} + \underbrace{\frac{m\omega^{2}}{2} \sum_{i=1}^{N} r_{i}^{2}}_{\text{Potential}} - \underbrace{\frac{\alpha}{2m} \sum_{\substack{i=1 \ j \neq i}}^{N} \frac{\ell_{ij}}{r_{ij}^{2}}}_{\text{Relative angular momentum}} + \underbrace{\frac{\alpha^{2}}{2m} \sum_{\substack{i=1 \ j,k \neq i}}^{N} \frac{\mathbf{r}_{ij} \cdot \mathbf{r}_{ik}}{r_{ij}^{2} r_{ik}^{2}}}_{\text{Long-range interaction}}$$

$$\mathbf{N} = \mathbf{2}: \quad \frac{\alpha^2}{2m} \sum_{\substack{j=1\\j,k\neq i}}^2 \frac{\mathbf{r}_{ij} \cdot \mathbf{r}_{jk}}{r_{ij}^2 r_{ik}^2} = \frac{\alpha^2}{2m} \left(\frac{\mathbf{r}_{12} \cdot \mathbf{r}_{12}}{r_{12}^2 r_{12}^2} + \frac{\mathbf{r}_{21} \cdot \mathbf{r}_{21}}{r_{21}^2 r_{21}^2} \right) = \frac{\alpha^2}{m r_{12}^2}$$

$$\mathbf{N} = \mathbf{2}: \quad \frac{\alpha^2}{2m} \sum_{\substack{i=1\\ k \neq i}}^2 \frac{\mathbf{r}_{ij} \cdot \mathbf{r}_{ik}}{r_{ij}^2 r_{ik}^2} = \frac{\alpha^2}{2m} \left(\frac{\mathbf{r}_{12} \cdot \mathbf{r}_{12}}{r_{12}^2 r_{12}^2} + \frac{\mathbf{r}_{21} \cdot \mathbf{r}_{21}}{r_{21}^2 r_{21}^2} \right) = \frac{\alpha^2}{m r_{12}^2} \longleftarrow Coulomb-like interaction$$

$$\mathbf{N} = \mathbf{2:} \quad \frac{\alpha^2}{2m} \sum_{\substack{i=1\\i,k \neq i}}^2 \frac{\mathbf{r}_{ij} \cdot \mathbf{r}_{ik}}{r_{ij}^2 r_{ik}^2} = \frac{\alpha^2}{2m} \left(\frac{\mathbf{r}_{12} \cdot \mathbf{r}_{12}}{r_{12}^2 r_{12}^2} + \frac{\mathbf{r}_{21} \cdot \mathbf{r}_{21}}{r_{21}^2 r_{21}^2} \right) = \frac{\alpha^2}{m r_{12}^2} \longleftarrow Coulomb-like interaction$$

$$\mathbf{N} = \mathbf{3:} \quad \frac{\alpha^2}{2m} \sum_{\substack{i=1\\k \neq i}}^{3} \frac{\mathbf{r}_{ij} \cdot \mathbf{r}_{ik}}{r_{ik}^2 r_{ik}^2} = \frac{\alpha^2}{m} \left(\frac{1}{r_{12}^2} + \frac{1}{r_{13}^2} + \frac{1}{r_{23}^2} + \frac{\mathbf{r}_{12} \cdot \mathbf{r}_{13}}{r_{12}^2 r_{13}^2} + \frac{\mathbf{r}_{21} \cdot \mathbf{r}_{23}}{r_{21}^2 r_{23}^2} + \frac{\mathbf{r}_{31} \cdot \mathbf{r}_{32}}{r_{31}^2 r_{32}^2} \right)$$

$$\mathbf{N} = \mathbf{2:} \quad \frac{\alpha^2}{2m} \sum_{\substack{i=1\\i,k \neq i}}^2 \frac{\mathbf{r}_{ij} \cdot \mathbf{r}_{ik}}{r_{ij}^2 r_{ik}^2} = \frac{\alpha^2}{2m} \left(\frac{\mathbf{r}_{12} \cdot \mathbf{r}_{12}}{r_{12}^2 r_{12}^2} + \frac{\mathbf{r}_{21} \cdot \mathbf{r}_{21}}{r_{21}^2 r_{21}^2} \right) = \frac{\alpha^2}{m r_{12}^2} \longleftarrow Coulomb-like interaction$$

$$\mathbf{N} = \mathbf{3:} \quad \frac{\alpha^2}{2m} \sum_{\substack{i=1\\j,k \neq i}}^3 \frac{\mathbf{r}_{ij} \cdot \mathbf{r}_{ik}}{r_{ij}^2 r_{ik}^2} = \frac{\alpha^2}{m} \left(\underbrace{\frac{1}{r_{12}^2} + \frac{1}{r_{13}^2} + \frac{1}{r_{23}^2}}_{\text{Coulomb-like interaction}} + \frac{\mathbf{r}_{12} \cdot \mathbf{r}_{13}}{r_{12}^2 r_{13}^2} + \frac{\mathbf{r}_{21} \cdot \mathbf{r}_{23}}{r_{21}^2 r_{23}^2} + \frac{\mathbf{r}_{31} \cdot \mathbf{r}_{32}}{r_{31}^2 r_{32}^2} \right)$$

$$\mathbf{N} = \mathbf{2:} \quad \frac{\alpha^2}{2m} \sum_{\substack{i=1\\i,k \neq i}}^2 \frac{\mathbf{r}_{ij} \cdot \mathbf{r}_{ik}}{r_{ij}^2 r_{ik}^2} = \frac{\alpha^2}{2m} \left(\frac{\mathbf{r}_{12} \cdot \mathbf{r}_{12}}{r_{12}^2 r_{12}^2} + \frac{\mathbf{r}_{21} \cdot \mathbf{r}_{21}}{r_{21}^2 r_{21}^2} \right) = \frac{\alpha^2}{m r_{12}^2} \longleftarrow Coulomb-like interaction$$

$$\mathbf{N} = \mathbf{3:} \quad \frac{\alpha^2}{2m} \sum_{\substack{i=1\\j,k \neq i}}^3 \frac{\mathbf{r}_{ij} \cdot \mathbf{r}_{ik}}{r_{ij}^2 r_{ik}^2} = \frac{\alpha^2}{m} \left(\underbrace{\frac{1}{r_{12}^2} + \frac{1}{r_{13}^2} + \frac{1}{r_{23}^2}}_{\text{Coulomb-like interaction}} + \underbrace{\frac{\mathbf{r}_{12} \cdot \mathbf{r}_{13}}{r_{12}^2 r_{13}^2} + \frac{\mathbf{r}_{21} \cdot \mathbf{r}_{23}}{r_{21}^2 r_{23}^2} + \frac{\mathbf{r}_{31} \cdot \mathbf{r}_{32}}{r_{31}^2 r_{32}^2} \right)$$

Nontrivial braiding effects emerge from the *long-range interaction* term when $N \ge 3$.

$$\mathbf{N} = \mathbf{2}: \quad \frac{\alpha^2}{2m} \sum_{\substack{i=1\\ k \neq i}}^2 \frac{\mathbf{r}_{ij} \cdot \mathbf{r}_{ik}}{r_{ij}^2 r_{ik}^2} = \frac{\alpha^2}{2m} \left(\frac{\mathbf{r}_{12} \cdot \mathbf{r}_{12}}{r_{12}^2 r_{12}^2} + \frac{\mathbf{r}_{21} \cdot \mathbf{r}_{21}}{r_{21}^2 r_{21}^2} \right) = \frac{\alpha^2}{m r_{12}^2} \longleftarrow Coulomb-like interaction$$

$$\mathbf{N} = \mathbf{3:} \quad \frac{\alpha^2}{2m} \sum_{\substack{i=1\\j,k \neq i}}^3 \frac{\mathbf{r}_{ij} \cdot \mathbf{r}_{ik}}{r_{ij}^2 r_{ik}^2} = \frac{\alpha^2}{m} \left(\underbrace{\frac{1}{r_{12}^2} + \frac{1}{r_{13}^2} + \frac{1}{r_{23}^2}}_{\text{Coulomb-like interaction}} + \underbrace{\frac{\mathbf{r}_{12} \cdot \mathbf{r}_{13}}{r_{12}^2 r_{13}^2} + \frac{\mathbf{r}_{21} \cdot \mathbf{r}_{23}}{r_{21}^2 r_{23}^2} + \frac{\mathbf{r}_{31} \cdot \mathbf{r}_{32}}{r_{31}^2 r_{32}^2} \right)$$

Question

Why is this useful?

Trivial Representation of a Group

For any group G, the trivial representation takes $g \mapsto 1$ for all $g \in G$.

Trivial Representation of a Group

For any group G, the trivial representation takes $g \mapsto 1$ for all $g \in G$.

Comments:

► The trivial representation is always one-dimensional.

Trivial Representation of a Group

For any group G, the trivial representation takes $g \mapsto 1$ for all $g \in G$.

Comments:

- The trivial representation is always one-dimensional.
- ► For groups with more than one element, the trivial representation is not injective, so we call it a *degenerate representation*.

Trivial Representation of a Group

For any group G, the trivial representation takes $g \mapsto 1$ for all $g \in G$.

Comments:

- The trivial representation is always one-dimensional.
- ► For groups with more than one element, the trivial representation is not injective, so we call it a *degenerate representation*.
- ► If a representation is injective, then it is a faithful representation.

Defining representation of S_n

The defining representation D of S_n encodes the action of the symmetric group on the standard basis of \mathbb{R}^n . If a permutation sends i to j, then place a 1 the i-th column and j-th row of the representation matrix.

Defining representation of S_n

The defining representation D of S_n encodes the action of the symmetric group on the standard basis of \mathbb{R}^n . If a permutation sends i to j, then place a 1 the i-th column and j-th row of the representation matrix.

$$D((23)) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad D((123)) = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Defining representation of S_n

The defining representation D of S_n encodes the action of the symmetric group on the standard basis of \mathbb{R}^n . If a permutation sends i to j, then place a 1 the i-th column and j-th row of the representation matrix.

$$D((23)) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad D((123)) = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Defining representation of S_n

The defining representation D of S_n encodes the action of the symmetric group on the standard basis of \mathbb{R}^n . If a permutation sends i to j, then place a 1 the i-th column and j-th row of the representation matrix.

$$D((23)) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad D((123)) = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Defining representation of S_n

The defining representation D of S_n encodes the action of the symmetric group on the standard basis of \mathbb{R}^n . If a permutation sends i to j, then place a 1 the i-th column and j-th row of the representation matrix.

E.g., in S_3 :

$$D((23)) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad D((123)) = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

▶ The defining representation of S_n is n-dimensional.

Defining representation of S_n

The defining representation D of S_n encodes the action of the symmetric group on the standard basis of \mathbb{R}^n . If a permutation sends i to j, then place a 1 the i-th column and j-th row of the representation matrix.

$$D((23)) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad D((123)) = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

- ▶ The defining representation of S_n is n-dimensional.
- ► This representation is faithful.

Example: Irreducible Representation of 2D Rotations

Note: The subspace spanned by \mathbf{e}_1 (or \mathbf{e}_2) is *not* invariant under rotations!

Example: Irreducible Representation of 2D Rotations

Note: The subspace spanned by \mathbf{e}_1 (or \mathbf{e}_2) is *not* invariant under rotations!

Invariance of e₊

Let
$$\mathbf{e}_{\pm}=rac{1}{\sqrt{2}}(\mp\mathbf{e}_1+i\mathbf{e}_2)$$
. Then, $X(\phi)\mathbf{e}_{\pm}=e^{\pm i\phi}\mathbf{e}_{\pm}$.

Example: Irreducible Representation of 2D Rotations

Note: The subspace spanned by \mathbf{e}_1 (or \mathbf{e}_2) is *not* invariant under rotations!

Invariance of e+

Let
$$\mathbf{e}_{\pm}=rac{1}{\sqrt{2}}(\mp\mathbf{e}_1+i\mathbf{e}_2)$$
. Then, $X(\phi)\mathbf{e}_{\pm}=e^{\pm i\phi}\mathbf{e}_{\pm}$.

Decomposition of X

The span of each \mathbf{e}_{\pm} is an X-invariant subspace of V_2 . In this basis, we rewrite X as a direct sum of the 1D irreducible representations⁸:

$$X(\phi) = \begin{bmatrix} e^{i\phi} & 0 \\ 0 & e^{-i\phi} \end{bmatrix}.$$

⁸1-dimensional representations are always irreducible!

Schur's Lemmas (pt. 1)

Lemma

Let $X: G \to V$ and $Y: G \to W$ be irreducible representations of a group G. If there exists a fixed linear transformation $T: V \to W$ such that TX(g) = Y(g)T for all $g \in G$, then T is either the zero map or invertible.

Schur's Lemmas (pt. 1)

Lemma

Let $X: G \to V$ and $Y: G \to W$ be irreducible representations of a group G. If there exists a fixed linear transformation $T: V \to W$ such that TX(g) = Y(g)T for all $g \in G$, then T is either the zero map or invertible.

Proof (sketch)

Lemma

Let $X: G \to V$ and $Y: G \to W$ be irreducible representations of a group G. If there exists a fixed linear transformation $T: V \to W$ such that TX(g) = Y(g)T for all $g \in G$, then T is either the zero map or invertible.

Proof (sketch)

1. The kernel of T is invariant under X(G).

Lemma

Let $X: G \to V$ and $Y: G \to W$ be irreducible representations of a group G. If there exists a fixed linear transformation $T: V \to W$ such that TX(g) = Y(g)T for all $g \in G$, then T is either the zero map or invertible.

- **1.** The kernel of T is invariant under X(G).
- **2.** The image of T is invariant under Y(G).

Lemma

Let $X: G \to V$ and $Y: G \to W$ be irreducible representations of a group G. If there exists a fixed linear transformation $T: V \to W$ such that TX(g) = Y(g)T for all $g \in G$, then T is either the zero map or invertible.

- **1.** The kernel of T is invariant under X(G).
- **2.** The image of T is invariant under Y(G).
- 3. Since X and Y are irreducible, $ker(T) = \{0\}$ and im(T) = V or ker(T) = V and $im(T) = \{0\}$.

Lemma

Let $X: G \to V$ and $Y: G \to W$ be irreducible representations of a group G. If there exists a fixed linear transformation $T: V \to W$ such that TX(g) = Y(g)T for all $g \in G$, then T is either the zero map or invertible.

- **1.** The kernel of T is invariant under X(G).
- **2.** The image of T is invariant under Y(G).
- 3. Since X and Y are irreducible, $ker(T) = \{0\}$ and im(T) = V or ker(T) = V and $im(T) = \{0\}$.
- **4.** By the rank-nullity theorem, conclude that T is either the zero map or invertible.

Lemma

Let X be an irreducible representation of a group G and T a linear operator that commutes with all X(g) for $g \in G$. Then T is a scalar multiple of the identity operator.

Lemma

Let X be an irreducible representation of a group G and T a linear operator that commutes with all X(g) for $g \in G$. Then T is a scalar multiple of the identity operator.

Lemma

Let X be an irreducible representation of a group G and T a linear operator that commutes with all X(g) for $g \in G$. Then T is a scalar multiple of the identity operator.

Proof (sketch)

1. Consider λ to be an eigenvalue of T.

Lemma

Let X be an irreducible representation of a group G and T a linear operator that commutes with all X(g) for $g \in G$. Then T is a scalar multiple of the identity operator.

- **1.** Consider λ to be an eigenvalue of T.
- **2.** Then $T \lambda I$ is not invertible.

Lemma

Let X be an irreducible representation of a group G and T a linear operator that commutes with all X(g) for $g \in G$. Then T is a scalar multiple of the identity operator.

- **1.** Consider λ to be an eigenvalue of T.
- **2.** Then $T \lambda I$ is not invertible.
- **3.** By assumption, $(T \lambda I)X(g) = X(g)(T \lambda I)$ for all $g \in G$.

Lemma

Let X be an irreducible representation of a group G and T a linear operator that commutes with all X(g) for $g \in G$. Then T is a scalar multiple of the identity operator.

- **1.** Consider λ to be an eigenvalue of T.
- **2.** Then $T \lambda I$ is not invertible.
- **3.** By assumption, $(T \lambda I)X(g) = X(g)(T \lambda I)$ for all $g \in G$.
- **4.** By previous lemma, $T \lambda I = 0 \implies T = \lambda I$.

Corollary

If G is a finite abelian group, then the irreducible representations of G are one-dimensional.

Corollary

If G is a finite abelian group, then the irreducible representations of G are one-dimensional.

Corollary

If G is a finite abelian group, then the irreducible representations of G are one-dimensional.

Proof (sketch)

1. Fix $h \in G$.

Corollary

If G is a finite abelian group, then the irreducible representations of G are one-dimensional.

- **1.** Fix $h \in G$.
- **2.** Since *G* is abelian, X(h)X(g) = X(g)X(h) for all $g \in G$.

Corollary

If G is a finite abelian group, then the irreducible representations of G are one-dimensional.

- **1.** Fix $h \in G$.
- **2.** Since *G* is abelian, X(h)X(g) = X(g)X(h) for all $g \in G$.
- **3.** Schur's second lemma implies $X(h) = \lambda_h I$ for some scalar λ_h .

Corollary

If G is a finite abelian group, then the irreducible representations of G are one-dimensional.

- 1. Fix $h \in G$.
- **2.** Since *G* is abelian, X(h)X(g) = X(g)X(h) for all $g \in G$.
- **3.** Schur's second lemma implies $X(h) = \lambda_h I$ for some scalar λ_h .
- **4.** The element h was arbitrary, so $X(g) = \lambda_g I$ for all $g \in G$.

Corollary

If G is a finite abelian group, then the irreducible representations of G are one-dimensional.

- **1.** Fix $h \in G$.
- **2.** Since *G* is abelian, X(h)X(g) = X(g)X(h) for all $g \in G$.
- **3.** Schur's second lemma implies $X(h) = \lambda_h I$ for some scalar λ_h .
- **4.** The element *h* was arbitrary, so $X(g) = \lambda_g I$ for all $g \in G$.
- **5.** X(G) is equivalent to the representation $g \mapsto \lambda_g$ for all $g \in G$.

Corollary

If G is a finite abelian group, then the irreducible representations of G are one-dimensional.

- **1.** Fix $h \in G$.
- **2.** Since *G* is abelian, X(h)X(g) = X(g)X(h) for all $g \in G$.
- **3.** Schur's second lemma implies $X(h) = \lambda_h I$ for some scalar λ_h .
- **4.** The element *h* was arbitrary, so $X(g) = \lambda_g I$ for all $g \in G$.
- **5.** X(G) is equivalent to the representation $g \mapsto \lambda_g$ for all $g \in G$.
- 6. One-dimensional representations are irreducible.

Define the matrix
$$U = \begin{bmatrix} 1 - t & t \\ 1 & 0 \end{bmatrix}$$
, where t is a free parameter.

Define the matrix $U = \begin{bmatrix} 1 - t & t \\ 1 & 0 \end{bmatrix}$, where t is a free parameter.

Definition

The Burau representation of the braid group B_n is defined on the standard generators:

$$\psi_n: \mathcal{B}_n \to \mathrm{GL}_n(\mathbb{Z}[t, t^{-1}])$$

$$\sigma_i \mapsto \begin{bmatrix} I_{i-1} & 0 & 0 \\ 0 & U & 0 \\ 0 & 0 & I_{n-i-1} \end{bmatrix}.$$

Define the matrix $U = \begin{bmatrix} 1 - t & t \\ 1 & 0 \end{bmatrix}$, where t is a free parameter.

Definition

The *Burau representation* of the braid group B_n is defined on the standard generators:

$$\psi_n: \mathcal{B}_n \to \mathrm{GL}_n(\mathbb{Z}[t, t^{-1}])$$

$$\sigma_i \mapsto \begin{bmatrix} I_{i-1} & 0 & 0 \\ 0 & U & 0 \\ 0 & 0 & I_{n-i-1} \end{bmatrix}.$$

The Burau representation satisfies the braid relations:

$$\psi_n(\sigma_i)\psi_n(\sigma_j) = \psi_n(\sigma_j)\psi_n(\sigma_i) \text{ for } |i-j| > 1,$$

$$\psi_n(\sigma_i)\psi_n(\sigma_{i+1})\psi_n(\sigma_i) = \psi_n(\sigma_{i+1})\psi_n(\sigma_i)\psi_n(\sigma_{i+1}) \text{ for } i \in \{1, \dots, n-2\}.$$

Notice:
$$U\begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}1-t & t\\1 & 0\end{bmatrix}\begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}1-t+t\\1\end{bmatrix} = \begin{bmatrix}1\\1\end{bmatrix}$$

Notice:
$$U\begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}1-t & t\\1 & 0\end{bmatrix}\begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}1-t+t\\1\end{bmatrix} = \begin{bmatrix}1\\1\end{bmatrix}$$

Block structure of
$$\psi_n(\sigma_i) \implies \mathbf{1} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$
 is invariant under $\psi_n(\sigma_i) \ \forall \ i = 1, 2, \dots, n-1$

Notice:
$$U\begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}1-t & t\\1 & 0\end{bmatrix}\begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}1-t+t\\1\end{bmatrix} = \begin{bmatrix}1\\1\end{bmatrix}$$

Block structure of
$$\psi_n(\sigma_i) \implies \mathbf{1} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$
 is invariant under $\psi_n(\sigma_i) \ \forall \ i = 1, 2, \dots, n-1$
$$\implies \psi_n(\beta)\mathbf{1} = \mathbf{1} \ \forall \ \beta \in B_n \quad (\text{span}\{\mathbf{1}\} \text{ is } \psi_n\text{-invariant})$$

Notice:
$$U\begin{bmatrix}1\\1\end{bmatrix}=\begin{bmatrix}1-t&t\\1&0\end{bmatrix}\begin{bmatrix}1\\1\end{bmatrix}=\begin{bmatrix}1-t+t\\1\end{bmatrix}=\begin{bmatrix}1\\1\end{bmatrix}$$

Block structure of
$$\psi_n(\sigma_i) \implies \mathbf{1} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$
 is invariant under $\psi_n(\sigma_i) \ \forall \ i = 1, 2, \dots, n-1$
$$\implies \psi_n(\beta)\mathbf{1} = \mathbf{1} \ \forall \ \beta \in B_n \quad (\text{span}\{\mathbf{1}\} \text{ is } \psi_n\text{-invariant})$$

⇒ Burau representation is reducible!

1. The quantum state of a system is described by a vector in a complex Hilbert space.

- 1. The quantum state of a system is described by a vector in a complex Hilbert space.
- **2.** The corresponding vectors are often called *state vectors*.

- 1. The quantum state of a system is described by a vector in a complex Hilbert space.
- 2. The corresponding vectors are often called *state vectors*.
- 3. The inner product defined on the Hilbert space is linear in the second argument:

(1)
$$\langle \phi, \lambda \psi \rangle = \lambda \langle \phi, \psi \rangle$$
 (2) $\langle \alpha \phi, \psi \rangle = \overline{\alpha} \langle \phi, \psi \rangle$

- 1. The quantum state of a system is described by a vector in a complex Hilbert space.
- 2. The corresponding vectors are often called *state vectors*.
- 3. The inner product defined on the Hilbert space is linear in the second argument:

(1)
$$\langle \phi, \lambda \psi \rangle = \lambda \langle \phi, \psi \rangle$$
 (2) $\langle \alpha \phi, \psi \rangle = \overline{\alpha} \langle \phi, \psi \rangle$

- 1. The quantum state of a system is described by a vector in a complex Hilbert space.
- 2. The corresponding vectors are often called *state vectors*.
- 3. The inner product defined on the Hilbert space is linear in the second argument:

(1)
$$\langle \phi, \lambda \psi \rangle = \lambda \langle \phi, \psi \rangle$$
 (2) $\langle \alpha \phi, \psi \rangle = \overline{\alpha} \langle \phi, \psi \rangle$

- 1. The quantum state of a system is described by a vector in a complex Hilbert space.
- 2. The corresponding vectors are often called *state vectors*.
- 3. The inner product defined on the Hilbert space is linear in the second argument:

(1)
$$\langle \phi, \lambda \psi \rangle = \lambda \langle \phi, \psi \rangle$$
 (2) $\langle \alpha \phi, \psi \rangle = \overline{\alpha} \langle \phi, \psi \rangle$

4. The *Hermitian conjugate* or *adjoint* of an operator A is denoted A^{\dagger} , and is thought of as complex conjugation and transposition in matrix form.

- 1. The quantum state of a system is described by a vector in a complex Hilbert space.
- 2. The corresponding vectors are often called *state vectors*.
- 3. The inner product defined on the Hilbert space is linear in the second argument:

(1)
$$\langle \phi, \lambda \psi \rangle = \lambda \langle \phi, \psi \rangle$$
 (2) $\langle \alpha \phi, \psi \rangle = \overline{\alpha} \langle \phi, \psi \rangle$

- **4.** The *Hermitian conjugate* or *adjoint* of an operator A is denoted A^{\dagger} , and is thought of as complex conjugation and transposition in matrix form.
- **5.** Operators that are self-adjoint are called *Hermitian*.

Preliminaries: Dirac notation

▶ *Dirac* or *bra-ket* notation is a convenient way to represent vectors and operators in quantum mechanics.

- ▶ *Dirac* or *bra-ket* notation is a convenient way to represent vectors and operators in quantum mechanics.
- ▶ A *ket* is a column (state) vector, denoted $|\psi\rangle$.

- ▶ *Dirac* or *bra-ket* notation is a convenient way to represent vectors and operators in quantum mechanics.
- ▶ A *ket* is a column (state) vector, denoted $|\psi\rangle$.
- ▶ A *bra* is a row vector, $\langle \psi |$. This can be thought of as a linear functional on the relevant Hilbert space:

$$\langle \phi | (\psi) = \langle \phi, \psi \rangle.$$

- ▶ *Dirac* or *bra-ket* notation is a convenient way to represent vectors and operators in quantum mechanics.
- ▶ A *ket* is a column (state) vector, denoted $|\psi\rangle$.
- ▶ A *bra* is a row vector, $\langle \psi |$. This can be thought of as a linear functional on the relevant Hilbert space:

$$\langle \phi | (\psi) = \langle \phi, \psi \rangle.$$

▶ Inner product: $\langle \phi | \psi \rangle$

- ▶ *Dirac* or *bra-ket* notation is a convenient way to represent vectors and operators in quantum mechanics.
- ▶ A *ket* is a column (state) vector, denoted $|\psi\rangle$.
- ▶ A *bra* is a row vector, $\langle \psi |$. This can be thought of as a linear functional on the relevant Hilbert space:

$$\langle \phi | (\psi) = \langle \phi, \psi \rangle.$$

- ▶ Inner product: $\langle \phi | \psi \rangle$
- ▶ Outer product: $|\phi\rangle\,\langle\psi|$

- ▶ *Dirac* or *bra-ket* notation is a convenient way to represent vectors and operators in quantum mechanics.
- ▶ A *ket* is a column (state) vector, denoted $|\psi\rangle$.
- ▶ A *bra* is a row vector, $\langle \psi |$. This can be thought of as a linear functional on the relevant Hilbert space:

$$\langle \phi | (\psi) = \langle \phi, \psi \rangle.$$

- ▶ Inner product: $\langle \phi | \psi \rangle$
- ▶ Outer product: $|\phi\rangle\langle\psi|$
- ▶ The action of an operator *A* on a vector $|\psi\rangle$ is written as $|A\psi\rangle = A|\psi\rangle$.

- ▶ *Dirac* or *bra-ket* notation is a convenient way to represent vectors and operators in quantum mechanics.
- ▶ A *ket* is a column (state) vector, denoted $|\psi\rangle$.
- ▶ A *bra* is a row vector, $\langle \psi |$. This can be thought of as a linear functional on the relevant Hilbert space:

$$\langle \phi | (\psi) = \langle \phi, \psi \rangle.$$

- ▶ Inner product: $\langle \phi | \psi \rangle$
- lacktriangle Outer product: $\ket{\phi}ra{\psi}$
- ▶ The action of an operator *A* on a vector $|\psi\rangle$ is written as $|A\psi\rangle = A|\psi\rangle$.
- Equivalent ways to write the same thing:

$$\langle \mathbf{A}^{\dagger} \phi | \psi \rangle = \langle \phi | \mathbf{A} | \psi \rangle = \langle \phi | \mathbf{A} \psi \rangle.$$

Orthonormality, Completeness, and Wavefunctions

Definition

Let $\{\ket{1},\ket{2},\ket{3},\dots\}$ be an orthonormal basis for some quantum Hilbert space. In the context of physics, the orthonormality and completeness relations of the basis vectors allow any state vector $\ket{\psi}$ to be written as a linear combination of the basis vectors:

$$|\psi\rangle = \left(\sum_{n} |n\rangle \langle n|\right) |\psi\rangle = \sum_{n} |n\rangle \langle n|\psi\rangle,$$

where $\sum_{n} |n\rangle \langle n|$ is the identity operator.

Orthonormality, Completeness, and Wavefunctions

Definition

Let $\{\ket{1},\ket{2},\ket{3},\dots\}$ be an orthonormal basis for some quantum Hilbert space. In the context of physics, the orthonormality and completeness relations of the basis vectors allow any state vector $\ket{\psi}$ to be written as a linear combination of the basis vectors:

$$|\psi\rangle = \left(\sum_{n} |n\rangle \langle n|\right) |\psi\rangle = \sum_{n} |n\rangle \langle n|\psi\rangle,$$

where $\sum_{n} |n\rangle \langle n|$ is the identity operator.

This is just a fancy change of basis!

Orthonormality, Completeness, and Wavefunctions

Definition

Let $\{\ket{1},\ket{2},\ket{3},\dots\}$ be an orthonormal basis for some quantum Hilbert space. In the context of physics, the orthonormality and completeness relations of the basis vectors allow any state vector $\ket{\psi}$ to be written as a linear combination of the basis vectors:

$$|\psi\rangle = \left(\sum_{n} |n\rangle \langle n|\right) |\psi\rangle = \sum_{n} |n\rangle \langle n|\psi\rangle,$$

where $\sum_{n} |n\rangle \langle n|$ is the identity operator.

This is just a fancy change of basis!

Definition

For a continuous basis labelled by $|x\rangle$ where x is a continuous parameter, the *wavefunction* $\psi(x)$ is the projection: $\langle x|\psi\rangle=\psi(x)$.

SO(2) Explicit form of J

The state $|\phi\rangle$ can be decomposed into a linear combination of the eigenvectors of J:

$$|\phi\rangle = \left(\sum_{m} |m\rangle \langle m|\right) |\phi\rangle = \sum_{m} \langle m|\phi\rangle |m\rangle,$$

where

$$\langle m|\phi\rangle = \langle m|U(\phi)|\mathcal{O}\rangle = \langle U^{\dagger}(\phi)m|\mathcal{O}\rangle = \langle e^{im\phi}m|\mathcal{O}\rangle = e^{-im\phi}\langle m|\mathcal{O}\rangle$$

is the projection of $|\phi\rangle$ onto the eigenvector $|m\rangle$ of J.

Thus,

$$\begin{split} J|\phi\rangle &= \sum_{m} e^{-im\phi} J|m\rangle = \sum_{m} m e^{-im\phi} |m\rangle = \sum_{m} i \frac{\partial}{\partial \phi} \left(e^{-im\phi} |m\rangle \right) = i \frac{\partial}{\partial \phi} |\phi\rangle \\ &\Longrightarrow \langle \phi|J|\psi\rangle = \langle J^{\dagger}\phi|\psi\rangle = -i \frac{\partial}{\partial \phi} \langle \phi|\psi\rangle = -i \frac{\partial}{\partial \phi} \psi(\phi). \end{split}$$

SO(3) Invariance \implies Commute with Hamiltonian

$$\phi = \arctan\left(\frac{y}{x}\right)$$

$$\implies \frac{\partial}{\partial \phi} = (\mathbf{r} \times \nabla) \cdot \mathbf{e}_z \implies J = -i\frac{\partial}{\partial \phi} = -i(\mathbf{r} \times \nabla) \cdot \mathbf{e}_z = \frac{1}{\hbar}\hat{\mathcal{L}}_z \implies \hat{\mathbf{L}} = \hat{\mathbf{r}} \times \hat{\mathbf{p}}$$

$$\hat{\mathbf{p}} = -i\nabla \implies \hat{\mathcal{L}}_z = x\hat{p}_y - y\hat{p}_x$$

$$\hat{\mathcal{H}} = \frac{\hat{\mathbf{p}}^2}{2m} + \hat{V}(\mathbf{r}), \quad [V(\mathbf{r}), \hat{\mathcal{L}}_z] = 0, \quad [\hat{\mathbf{p}}^2, \hat{\mathcal{L}}_z] = 0 \implies [\hat{\mathcal{H}}, \hat{\mathcal{L}}_z] = 0,$$

where the last line easily generalizes to $\hat{\mathbf{L}}$.

From Invariant Subspace to the Lie Algebra

$$J^2 \ket{j} = (J_-J_+ + J_z + J_z^2)\ket{j} = (0 + j + j^2)\ket{j} = j(j+1)\ket{j},$$
 $J^2 \ket{j}, m\rangle = j(j+1)\ket{j}, m\rangle,$ $J_z \ket{j}, m\rangle = m\ket{j}, m\rangle,$ $J_{\pm} \ket{j}, m\rangle = \sqrt{j(j+1) - m(m\pm 1)}\ket{j}, m\pm 1\rangle,$ $[J_i, J_j] = i\epsilon_{ijk}J_k, \quad [J^2, J_j] = 0.$