general notice

Computing pairings fast is quite technical.

Better suited for papers than slides

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P,Q) to get overlap in orders!

general approach

Instead I describe the general approach, and leave all details out

fast pairings

general notice

Computing pairings fast is quite technical.

Better suited for papers than slides

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P,Q) to get overlap in orders!

general approach

Instead I describe the general approach, and leave all details out

fast pairings

if you have already computed $e(P,Q_1)$, it is very efficient to compute $e(P,Q_2)$

