

	How can we estimate theta? It is the mean of the r.v's. And recall
	a = x is unbiased. Let's use this estimator.
	$\vec{x} = (70, 72, 73, 68, 69, 70, 67, 72, 71, 73)$ $\hat{\theta} = \vec{x} = 70.5$
	The american mean male adult height is 70".
	Let's lest if the mean of the population where this class is drawn from is different than 70? Ha: 0 + 70, Ho: 0=70
	$\delta H_{\circ} \sim N(70, H^{2}/10) = N(70, 11265)$
	P(\$ H, >70.5)
4	
	70-1.96.1.765 ; 70 ; 70+1.96.1.265 = 67.52) K RET = 72.479
	⇒ ê c RET => Fail to reject
	Pval = P (estimate is more extreme than observed Ho = P(18 Ho.) > 18 - 01) = 2P(8 Ho > 70.5) = 2P(Z > 70.5-70) mean
	= 69.3% X X statistically insignificant

Ho: + & to, Ha: += ta>to, Size & 3 Ho 0. + 21-2 /5 Pow = P(& 1 Ha > 0 , + 2, - x 50 00 + 21-x 6/10 - 00 - D (- In (da - do) + 21-x Pow (ta, to, n, x, More realistic! We don't know sigsq. is a "nuisance parameter". It mea in order to estimate intrinsically care about DGP: X1, -.., Xn wd N(A, o2) and both A, o2 are

	How do we estimate sigsq? Recall for a rux,
	δ := $E[(x-\theta)^3] \theta = E[x], \hat{\theta} = \frac{1}{n} \sum x_i$
	6° = 1/n Σ (x1-θ) Problem: L need to know θ!
	$\delta^2 = \frac{1}{n} \xi (x_i - \bar{x})^2$ seems like a reasonable estimator!
	Is this estimator unbiased? For any iid DGP.
	$= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1$
	$= /n \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n}$
	$= \mathbb{E}\left[X_{i}^{2} - 2X_{i}\bar{X} + \bar{X}^{9}\right]$
	$= E[x_i] - 2E[x_i, \frac{x_1 + \dots + x_n}{n}] + E[x_n]$
	Recall Var[X]: $E[X^1] - E[X]^2$ $= 6^3 + 6^3 - \frac{2}{n} E[X_1^2 + X_1 X_2 + \dots + X_1 X_n] + 6^2_n + 6^3.$
	$= \frac{n+1}{n} \frac{\delta^2 + 2\theta^2 - 2(\delta^2 + \theta^2 + \theta^2 + \dots + \theta^2)}{n}$
	= n-16° + 6° => R1's a little bit brased. However, it is "asymptotically unbrased" meaning.
•	$\lim_{n \to \infty} E[\hat{\theta}] = 0 \text{e.g. lim} E[\hat{\theta}^2] = \lim_{n \to \infty} \frac{n-1}{n} \delta^2$
	2 6°

Consider the following estimator: $S^* := n \quad \delta^2 = n \quad 1 \quad \sum (x_i - \overline{x})^2$ $= 1 \left(X_1 - \overline{X} \right)^{1}$ The beauty of this estimator is that $E[S^2] = E\left[\frac{n-1}{n}\delta^2\right] = n \quad E[\delta^2]$ n n-1 62 i.e. unbiased And it's the default estimator for sigsq (variances in DGP's) and it's really important in normal