Predicting Protein-Protein

Interactions

Overview

Introduction

Problem Statement → The Interactome → Assumptions → Constraints

Methods

Datasets → Model Design → Encoders → Hyperparameters

Results

Conjoint Triad → Autocovariance → Res2Vec

Discussion

Findings → Applications → Future Directions

Introduction

Problem Statement → The Interactome → Assumptions → Constraints

Given a pair of proteins' amino acid sequences, predict whether those two proteins will interact.

The Interactome

- Researchers collaborating to reconstruct protein interaction network that underlies all cellular function.
- There are many definitions of protein "interactions".
- Computer-simulated PPI prediction supplements wet lab methods; reduces costs and time.

Assumptions

1.) Amino acid sequences alone provide enough information to accurately model PPIs.

- 2.) Proteins either interact or do not interact.
- 3.) Deep Learning is essential to uncovering complex relationships in protein data.

1.) Amino acid sequences alone provide enough information to accurately model PPIs.

Risks: PPIs are affected by temperature, pressure, dissolved ions, and post-translational modifications not accounted for by sequence data.

Rationale: AA sequences are widely available and almost entirely determine structure and function of proteins.

2.) Proteins either interact or do not interact.

Risks: UniProt's PPI data is a binary classification. Light affinities between proteins are likely classified as "Not Interacting". But we do not know the experimental methods that went into these classifications, so we are assuming a lot of error that we do not know anything about.

Rationale: Binding affinities are scarcely available. Also, deep learning is not typically used for regression.

3.) Deep Learning is essential to uncovering complex relationships in protein data.

Risks: Neural networks reduce our ability to make inferences and dramatically increase training time.

Rationale: Research indicates that multilayer neural networks are quite good at finding hidden spatial relationships.

Tier One: Accuracy

Tier Two: Simplicity, Speed

Tier Three: Inference

Constraints

Tier One: Accuracy

Deep Learning ↑

Tier Two: Simplicity, Speed

Deep Learning ↓

Tier Three: Inference

Deep Learning ↓

Constraints

```
Tier One: Accuracy
Deep Learning ↑ AA Sequences ↓
Tier Two: Simplicity, Speed
Deep Learning ↓ AA Sequences ↑
Tier Three: Inference
Deep Learning ↓ AA Sequences ↑
```



```
Tier One: Accuracy
```

Deep Learning ↑

AA Sequences \downarrow

Binary Interaction 1

Tier Two: Simplicity, Speed

Deep Learning

AA Sequences

Binary Interaction ↑

Tier Three: Inference

Deep Learning ↓ AA Sequences ↑

Binary Interaction 1

Constraints

Tier One: Accuracy

Deep Learning ↑

AA Sequences \

Binary Interaction ↓

Tier Two: Simplicity, Speed

Deep Learning ↓

AA Sequences ↑

Binary Interaction ↑

Tier Three: Inference

Deep Learning ↓

AA Sequences ↑

Binary Interaction ↓

Conclusion: Constraints in tension; assumptions mean compromises.

Methods

Datasets → Model Design → Encoders → Hyperparameters

Training dataset

- 52,310 pairs of human proteins.
- 57% of protein pairs in training set interact and 42% of pairs do not interact.

Testing datasets

- 900 pairs of SARS-CoV-2 and human proteins; 1819 pairs of yeast proteins.
- 52% of protein pairs in testing set interact and 42% of pairs do not interact.

Transfer learning

Res2Vec feature embeddings trained on 556,127 protein sequences

Protein 1 Sequence: AGKEDPS...WYIKCCOI Protein 2 Sequence: VTSW1RK...DEYMPHF

Conjoint Triad Encoder

From "Predicting protein-protein interactions based only on sequences information." Shen et. al. 2007.

Step One: cluster amino acids according to dipole and side chain volume.

Step Two: replace amino acid labels with cluster numbers.

Step Three: count triads with sliding scale.

$$\rightarrow$$
 1153 \rightarrow [115, 153] \rightarrow [0,...1, 1,...0]

Amino acid sequence

Sequence replaced with cluster numbers

List of Conjoint Triads

Feature Vector

Autocovariance Encoder

From "Sequence-based prediction of protein protein interaction using a deep-learning algorithm" Sun et. al. 2017.

Step One: collect data on amino acid properties.

Step Two: replace amino acid labels with property values.

Step Three: perform autocovariance analysis sequences of values.

Res2Vec Encoder

From "Integration of deep learning with feature embedding for protein–protein interaction prediction." Yao et.al. 2019.

Step One: train Word2Vec NLP model on corpus of sequences.

Step Two: extract feature embeddings from model.

Step Three: replace AA labels with feature embeddings.

Encoders: Window size, number of clusters, cluster properties, autocovariance lag, "word" size, embeddings vector length

CNN: convolutional layers, hidden layers, epochs, batch size, dropout, nodes per layer, kernel size

Example GridSearch Hyperparameters: window size, number of clusters, cluster properties, convolutional layers, hidden layers, epochs, batch size, dropout, nodes per layer, kernel size

2

$$2^{10} =$$

$$2^{10} = 1024 \text{ models}$$

$$2^{10} = 1024 \text{ models}$$

Example GridSearch Hyperparameters: window size, number of clusters, cluster properties, convolutional layers, hidden layers, epochs, batch size, dropout, nodes per layer, kernel size

$$2^{10} = 1024 \text{ models}$$

1024 * 5 = **5120** runs

Example GridSearch Hyperparameters: window size, number of clusters, cluster properties, convolutional layers, hidden layers, epochs, batch size, dropout, nodes per layer, kernel size

$$2^{10} = 1024 \text{ models}$$

Conclusion: Gridsearch is too performance exhaustive.

Results

Conjoint Triad Method → Autocovariance → Res2Vec

Conjoint Triad Model Evaluation

SARS-CoV-2 Confusion Matrix

Baseline Accuracy: 57%

Model Accuracy: 77.5%*

	Accuracy	Specificity	Sensitivity	Precision
Human	77.5% *	n/a	n/a	n/a
Yeast	54.2%	68.4%	39.1%	53.9%
SARS-Cov-2	63.0%	51.4%	73.4%	62.8%

^{*} Average accuracy across 5-fold cross-validation of training set.

Autocovariance Model Evaluation

SARS-CoV-2 Confusion Matrix

Baseline Accuracy: 57%

Model Accuracy: 66.5%*

	Accuracy	Specificity	Sensitivity	Precision
Human	66.5% *	n/a	n/a	n/a
Yeast	52.4%	68.4%	35.9%	51.5%
SARS-Cov-2	54.6%	47.9%	60.6%	56.6%

^{*} Average accuracy across 5-fold cross-validation of training set.

Res2Vec Model Evaluation

Yeast Confusion Matrix

Baseline Accuracy: 57%

Model Accuracy: 79.0%*

Accuracy	Specificity	Sensitivity	Precision
79.0% *	n/a	n/a	n/a
52.4%	75.2%	28.3%	51.9%
66.3%	52.1%	75.6%	60.3%
	79.0% * 52.4%	79.0% * n/a 52.4% 75.2%	79.0% * n/a n/a 52.4% 75.2% 28.3%

^{*} Average accuracy across 5-fold cross-validation of training set.

Discussion

Findings → Applications → Future Directions

Findings

- Res2Vec performs best among encoders: 22% increase in accuracy over baseline.
- No models generalize to non-human protein datasets
- Error from heterogeneous datasets
- Hyperparameter search is too performance-intensive
- Success of model depends on task

Applications

- Discovering function of orphan proteins.
- Supplementing experimental methods.
 - Example: Weeding out false positives of co-immunoprecipitation assay.
- Building out protein-protein interaction networks.

Future Directions

- More practical hyperparameter tuning methods:
 Random Search, Bayesian Optimization, etc.
- Recurrent Neural Networks (e.g. Long Short Term Memory)
- Train on larger datasets and PPI data from other databases
- Focus model on more specific problem