HOMEWORK EXERCISES ALGEBRAIC TROPOLOGY munimum

Marctima Freuttidano B2287129

Matteo Direante 102303760

Glacia Prosepe 1022 90162

Let (X,A) be a relative CW-complex and let $XD \in A = X - 1 CX$ be a basepoint.

Show that the inclusion of the m-skeleton induces a map $\pi_{m}(x_{m},x_{0}) \longrightarrow \pi_{m}(x,x_{0})$

which is subjective if my, and bijective if my m+1.

The any me H, the inclusions im: Xm - X induce maps (im)*: IIm(Xm, Xo) → IIm(X, Xo).

det 's now comprider my, and show that (im) is surjective. Let $d \in \Pi_m(X, X_0)$ and let $f: S^m \longrightarrow X$ be a representative of the class α , ∞ [f]= $\alpha \in Tim(X, Xo)$. Demote by yo a basepoint of SM such that flyo)=x0 (this point must exist by definition

Mow motice that (SM, yo) in a CW-complex:

Y-1 = 250 = Yo = 140} = -. E Ym = 140} = Ym = Dm Uzom 140} = 5m

Hence we have that I is a map between CW-complexes, Name $f(Y-1) = f(y_0) = X_0 \in X-1$.

By the cellular approximation theoream; f is homotopic relative to typ; to a cellular map $g:(S^m, y_0) \to (X, A)$. Thus we have that $g(y) = f(y) = \chi_0$ and $[g] = [f] = \alpha$.

Since g is cellular, g(Ym) = g(Sm) C Xm C Xm, hence g: Sm g xm cim x where g is the correstruction of g to xm. Since \(\tilde{g}(y_0) = g(y_0) = \tilde{x_0}, \(L\tilde{g} \)] \(\tilde{T}_m \) (\tilde{x}_m, \tilde{x_0}) and \(g = im \circ \tilde{g} \). As a comsequence, $(im)_*([\tilde{g}]) = [im \circ \tilde{g}] = [g] = \alpha$, therefore $(im)_*$ is a rejective. We now suppose mintle and prove that (im) is also injective: let $\alpha, \beta \in Tim(Xm, Xo)$. Let $\tilde{F}: S^m \longrightarrow Xm$ be a representative of d and $\tilde{g}: S^m \longrightarrow X_m$ be a representative of β , so that $[\tilde{f}] = d$ and $[\tilde{g}] = \beta$. Demote by yo the basepoint of S^m such that $\tilde{f}(y_0) = \tilde{g}(y_0) = x_0 \in A$ (as before this point exists by definition of Im (Xm, xo). By the cellular approximation theorem, I in homotopic Relative to yo to a cellular map $f_1(S^m, y_0) \longrightarrow (X, A)$ and g is homotopic relative to yo to a cellular map $g:(S^m, y_0) \longrightarrow (X,A)$, so that we have $f(y_0) = \widetilde{f}(y_0) = \chi_0 =$ = $\widetilde{g}(y_0) = g(y_0)$ and $[f] = [\widetilde{f}] = \alpha$, $[g] = [\widetilde{g}] = \beta$. In particular we can motive that im(f) = f(5m) = f(ym) = xm and 1 im(g) = g(sm) = g(4m) < xm. Suppose mow that $(im)_*(a) = (im)_*(\beta)$, im other worlds there is a continuous map $H: S^m \times [0,1] \longrightarrow X$ with HISmx103 = f':= im of, HISmx113 = g:= im og and $H(y_0,t) = x_0 \forall t \in [0,1].$ Mow we can motice that [0,1] is a fimite CW-complex; Ø = W-1 C Wo = do,13 = DI C W1 = D1 U201 do,13 = [0,1]

and DI is a subcomplex of [0,1]=I.

By coreollowy 12.9, SM XI amadeleacollows impercitor a CW-nothwatere and Sm x 2I is subcomplex of Sm xI, where

 $(S^m \times \partial I)_k = U Y_P \times W_Q$ by proposition 12.7.

Moreovere $(Sm_{\times}I)_{-1} = Y_{-1} \times W_{-1} = \emptyset$, so H is a map between CW-complexes.

Mow we can motive that H is cellular when thenthicted to the subcomplex SM x DI:

H((gm x DI)0) = H(Y0 x W0) = H(1/y0) x (0,13) = 20 € X0

H((Sm × DI) o k) = H(YR × 1X6) = H(YB) × do, 17) = X0 ∈ Xk + k<m $H((S^m \times \partial I)_m) = H(Y_m \times W_0) = H(S^m \times d_0, 1) = im(f') u im(g') =$ = im(f) v im(g) c xm by on the previous commidenations.

By the cellular approximation theorem we can find a cellular map $H^1: S^m \times [0,1] \longrightarrow X$ such that H^1 is homotopic to H amd HISMXDI = HISMXDI.

Since HI is a cellular map;

H'((SmxI)m+1) = H'((Ym xW1) = H'(SmxI) C Xm+1 C Xm Therefore im (H1) c Xm and H1 factores in the following HI: Sm x I H Xm cim X

where H in the concentraction of H1 to Xm.

Hence we have that $\widetilde{H}: S^m \times [0,1] \longrightarrow Xm$ in a conti= muours map such that $H_{15m \times 203} = f$ and $H_{15m \times 213} = g$ comsequence It is as homotopy between f and

 $\alpha = [f] = [g] = \beta$ in $Tim(x_m, x_0)$.

1