Desenvolvimento da ULA (Unidade Lógica Aritmética)

Professor: Maicon ribeiro

CHRYSTIAN DANTAS LEONE DUARTE DE OLEIVEIRA

ULA (Unidade Logica Aritmética)

A ULA se encontra hoje dentro dos processadores de praticamente todos os equipamentos eletrônicos. Ela é responsável por realizar os cálculos matemáticos e lógicos para o processador.

A ideia inicial foi proposta por Von Neuman, com o objetivo de calcular operações matemáticas básicas. Com o decorrer dos anos ela demonstrou ser uma das mais belas invenções. Atualmente a ULA é um circuito responsável por fazer operações matemáticas e lógicas no computador, como operações aritméticas, operações logicas (AND, NOT, OR, XOR), tudo isso por meio de números binários recebidos dos registradores, que a torna o principal componente do processador.

A ULA realiza todas suas operações durante todo tempo, sendo possível escolher somente a saída por meio do multiplexador e os operadores que podem selecionar a resposta desejada. Combinada com o caminho de dados a ULA se torna o componente do processador capaz de controlar todas as ações de processamento.

Formada pelo conjunto de portas, AND, OR e o circuito somador, a ULA realiza todas as operações usando esses componentes sendo que alguns necessitam do uso do caminho de dados para complementar a resposta, o que torna a ULA um circuito relativamente simples, de utilidades infinitas.

Tabela verdade da ULA de 1 bit

Α	В	Soma	Sub	And	Or
0	0	0	0	0	0
0	1	1	0	0	1
1	0	1	1	0	1
1	1	0	0	1	1

Descrição detalhada de cada entrada e cada saída da ULA de 32 bits

A ULA de 32 bits conta com 32 resultados e com a entrada para realizar as operações de 32 bits. Para isso basta selecionar as entradas necessárias correspondente a entrada de cada ULA de 1 bit. As entradas estão nomeadas como A1, B1, A2, B2... A32, B32, e as saídas

com os seus respectivos números. Abaixo será explicado como realizar cada operação e qual porta deve ser selecionada, para realizar a operação desejada.

Temos os 32 bits resultantes das ULAs contidas no símbolo, e logo abaixo temos a saída Carry Out resultante das operações aritméticas que necessitam dela e o overflow que consiste quando o resultado ultrapassar os 32 bits.

A saída SLT (Set Less Than) não foi implementada, por se tratar de um cálculo que necessita de mais de uma execução. Ela foi ligada diretamente e seu resultado não tem fundamento logico e deverá ser desconsiderado.

Instruções de uso da ULA de 32 bits

Operação AND:

Para se realizar a operação AND, a primeira operação da ULA, selecione os valore OP1: 1 e OP2: 1. Após isso basta inserir os valores que ela irá retornar o cálculo de cada ULA à medida que você for inserindo os valores a serem calculados pela porta AND.

Tabela verdade porta AND

Α	В	Saída
0	0	0
0	1	0
1	0	0
1	1	1

Operação OR:

Para realizar a operação OR, os valores devem ser OP1: e OP2:0, e o B_invertido: 1. Ao selecionar a porta OR a ULA realizara o cálculo da porta OR.

Tabela verdade porta OR

Α	В	Saída
0	0	0
0	1	1
1	0	1
1	1	1

Realizando soma na ULA de 32 bits.

Para realizar operações aritméticas de soma, a entrada B invertida deve ser selecionada para realizar a soma. B invertido deve valer 1, e OP1: 0 e OP2: 1.

Tabela verdade para realizar somas

A B Carry_in Saída Carry

0	0	0	0	0
0	1	0	1	0
1	0	0	1	0
1	1	0	0	1
0	0	1	1	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	1

Para realizar operações aritméticas de subtração, a entrada B invertido deve receber o valor 0, e OP1:1 e OP2:0.

Tabela verdade da subtração.

<u>A</u>	<u>B</u>	<u>Saída</u>
<u>0</u>	<u>0</u>	<u>0</u>
<u>0</u>	<u>1</u>	<u>0</u>
<u>1</u>	<u>0</u>	<u>1</u>
1	1	0

A opção de realizar o SLT não foi implementada, mas para selecionar a saída os operadores dever estar com os valores de OP1:0 e OP2:0.