

☐ Chapter: FFT in NumPy — The Two Facts That Rule Them All

♦ The Two Big Rules

Rule #1 — Number of bins = N

If you do an **N-point FFT**, you get **N bins**:

$$k = 0, 1, ..., N-1$$

- · Each bin is like a labeled drawer for one frequency.
- More samples \rightarrow more bins.

Rule #2 — Bin spacing = $\Delta f = fs / N$

This is the distance in Hz between bin centers.

- Smaller $\Delta f \rightarrow$ better ability to separate close frequencies.
- Also:

$$T_{
m block} = rac{N}{f_s}$$

and

$$\Delta f = rac{1}{T_{
m block}}$$

Meaning: longer observation \rightarrow finer detail.

M Quick Table

Parameter	What happens if you increase it?	What stays the same?
N	More bins, smaller Δf , longer observation time	Nyquist limit stays same (fs/2)
fs	Larger Nyquist range, bigger Δf (coarser bins)	Number of bins (if N fixed)

Q Case Study — Same fs, Different N

We fix:

• Sampling rate: **fs = 8 Hz**

• Tone: **f0 = 2.5 Hz**

• Compare **N** = **8** vs **N** = **32**

Case A: N = 8

• $\Delta f = 8 / 8 = 1 Hz$

• Bin centers: [0, 1, 2, 3, 4, -3, -2, -1] Hz

• Observation time: 8 / 8 = **1 s**

Tone 2.5 Hz \rightarrow between 2 Hz and 3 Hz bins \rightarrow spreads energy (spectral leakage).

Case B: N = 32

• $\Delta f = 8 / 32 = 0.25 \text{ Hz}$

• Bin centers include: ..., 2.25, **2.5**, 2.75, ... Hz

• Observation time: 32 / 8 = **4 s**

Tone 2.5 Hz \rightarrow lands exactly on bin #10 \rightarrow sharp single-bin peak.

¶ Intuition:

Longer recording → more cycles observed → can tell 2.50 Hz from 2.49 Hz.


```
import numpy as np

fs = 8.0
f0 = 2.5

for N in (8, 32):
    t = np.arange(N) / fs
    x = np.sin(2*np.pi*f0*t)
    X = np.fft.fft(x)
    freqs pos = np.fft.rfftfreq(N, 1/fs)
    mag pos = np.abs(X[:len(freqs_pos)]) / N
    if len(mag pos) > 2:
        mag pos[1:-1] *= 2
        print(f"N={N}, \Delta f={fs/N} Hz")
        print("Freq bins:", freqs pos)
        print("Magnitudes:", np.round(mag pos, 4))
        print("Peak:", freqs_pos[np.argmax(mag_pos)], "Hz\n")
```

Prediction before running:

- N=8 → smeared peak near 2 or 3 Hz
- N=32 → sharp peak exactly at 2.5 Hz

€ Takeaways

- 1. **N** controls resolution bigger $N \rightarrow$ finer Δf .
- fs controls coverage bigger fs → can see higher frequencies but bins get coarser (if N fixed).
- 3. Time vs Frequency trade-off better Δf means slower reaction to changes.

Y Practice Challenges

- 1. If fs = 1000 Hz and N = 500, what's Δf ?
- 2. If you double N, what happens to Δf and T?
- 3. With fs fixed, can you change Nyquist limit by changing N? Why or why not?
- 4. Write a script to detect the exact bin index for f0 = 60 Hz when fs = 512 Hz and