

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.

THIS PAGE BLANK (USTRD)

PCT/EP 00/00120

4
EPOO/120

PA 200029

REC'D 02 MAR 2000

WIPO PCT

THE UNITED STATES OF AMERICA

TO ALL TO WHOM THESE PRESENTS SHALL COME:

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office **09/889455**

January 28, 2000

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A FILING DATE UNDER 35 USC 111.

APPLICATION NUMBER: 09/232,738

FILING DATE: January 15, 1999

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

By Authority of the
COMMISSIONER OF PATENTS AND TRADEMARKS

L. Edele

L. EDELEN
Certifying Officer

Please type a plus sign (+) inside this box →

Approved for use through 09/30/00. OMB 0651-0032
Patent and Trademark Office, U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

UTILITY PATENT APPLICATION TRANSMITTAL

(Only for new nonprovisional applications under 37 CFR 1.53(b))

Attorney Docket No. Bayer 10,159 Total Pages 1

First Named Inventor or Application Identifier

SEE ATTACHED APPENDIX

Express Mail Label No. EL210554490US

6673138
S/6232138
D/6232138

APPLICATION ELEMENTS

See MPEP chapter 600 concerning utility patent application contents.

1. Fee Transmittal Form
(Submit an original, and a duplicate for fee processing)
2. Specification [Total Pages 103]
 - Descriptive title of the Invention
 - Cross References to Related Applications
 - Statement Regarding Fed sponsored R & D
 - Reference to Microfiche Appendix
 - Background of the Invention
 - Brief Summary of the Invention
 - Brief Description of the Drawings (if filed)
 - Detailed Description
 - Claim(s)
 - Abstract of the Disclosure
3. Drawing(s) (35 USC 113) [Total Sheets _____]
4. Oath or Declaration [Total Pages _____]
 - a. Newly executed (original or copy)
 - b. Copy from a prior application (37 CFR 1.63(d))
(for continuation/divisional with Box 17 completed)
(Note Box 5 below)
 - i. DELETION OF INVENTOR(S)
Signed statement attached deleting
inventor(s) named in the prior application.
see 37 CFR 1.63(d)(2) and 1.33(b).
5. Incorporation By Reference (useable if Box 4b is checked)
The entire disclosure of the prior application, from which a
copy of the oath or declaration is supplied under Box 4b,
is considered as being part of the disclosure of the
accompanying application and is hereby incorporated by
reference therein.

ADDRESS TO: Assistant Commissioner for Patents
Box Patent Application
Washington, DC 20231

6. Microfiche Computer Program (Appendix)
7. Nucleotide and/or Amino Acid Sequence Submission
(if applicable, all necessary)
 - a. Computer Readable Copy
 - b. Paper Copy (identical to computer copy)
 - c. Statement verifying identity of above copies

ACCOMPANYING APPLICATION PARTS

8. Assignment Papers (cover sheet & document(s))
9. 37 CFR 3.73(b) Statement [when there is an assignee] Power of Attorney
10. English Translation Document (if applicable)
11. Information Disclosure Statement (IDS)/PTO-1449 Copies of IDS Citations
12. Preliminary Amendment
13. Return Receipt Postcard (MPEP 503)
(Should be specifically itemized)
14. Small Entity Statement filed in prior application,
Statement(s) Status still proper and desired
15. Certified Copy of Priority Document(s)
(if foreign priority is claimed)
16. Other: STATEMENT UNDER 37 CFR
1.41(C)

17. If a CONTINUING APPLICATION, check appropriate box and supply the requisite information:

Continuation Divisional Continuation-In-part (CIP)

of prior application No. _____

18. CORRESPONDENCE ADDRESS

Customer Number or Bar Code Label

or Correspondence address below

Print Customer No. or Attach bar code label here

NAME	Kurt G. Briscoe, Reg. No. 33,141				
	SPRUNG KRAMER SCHAEFER & BRISCOE				
ADDRESS	660 White Plains Road				
CITY	Tarrytown	STATE	NY	ZIP CODE	10591
COUNTRY	USA	TELEPHONE	(914) 332-1700	FAX	(914) 332-1844

Burden Hour Statement: This form is estimated to take 0.2 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO Assistant Commissioner for Patents, Box Patent Application, Washington, DC 20231.

M 17-02-00

Bayer 10,159-KGB:lad
Le A 33 364-WI/Hen

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants : Andreas SCHOOP, et al.
Serial No. : TBA
Filed : Herewith
For : β -PHENYLALANINE DERIVATIVES AS INTEGRIN ANTAGONISTS
Group Art Unit : TBA
Examiner : TBA

January 15, 1999

Hon. Commissioner for Patents
Washington, D.C. 20231

PRELIMINARY AMENDMENT

Prior to examination, kindly amend the above-identified application as follows:

IN THE CLAIMS

Claim 12, line 2, cancel "Claims 1 to 10" and substitute --Claim 1--.

Claim 13, line 1, cancel "Claims 1 to 10" and substitute --Claim 1--.

Claim 14, line 1, cancel "Claims 1 to 10" and substitute --Claim 1--.

M 17-02-00

REMARKS

The foregoing amendment serves to eliminate multiple dependencies and place the claims in better form for U.S. examination.

Early and favorable action is earnestly solicited.

Respectfully submitted,

SPRUNG KRAMER SCHAEFER & BRISCOE

By:

Kurt G. Briscoe
Reg. No. 33141

660 White Plains Road
Tarrytown, NY 10591-5144
(914) 332-1700

17-02-00

β-Phenylalanine derivatives as integrin antagonists

Field of the invention

5 The present invention relates to β-phenylalanine derivatives, their preparation and use as pharmaceutical compositions, as integrin antagonists and in particular for the production of pharmaceutical compositions for the treatment and prophylaxis of cancer, arteriosclerosis, restenosis, osteolytic disorders such as osteoporosis and ophthalmic diseases.

10

Background of the invention

Integrins are heterodimeric transmembrane proteins located on the surface of cells, which play an important part in the adhesion of cells to an extracellular matrix. They recognize extracellular glycoproteins such as fibronectin or vitronectin on the extracellular matrix by means of the RGD sequence occurring in these proteins (RGD is the single-letter code for the amino acid sequence arginine-glycine-aspartate).

20 In general, integrins such as, for example, the vitronectin receptor, which is also referred to as the $\alpha_v\beta_3$ receptor, or alternatively the $\alpha_v\beta_5$ receptor or the GpIIb/IIIa receptor, play an important part in biological processes such as cell migration and cell-matrix adhesion and thus in diseases in which these processes are crucial steps. Examples which may be mentioned are cancer, osteoporosis, arteriosclerosis, 25 restenosis (fresh occurrence of a stenosis after a surgical intervention as a result of damage to the vascular wall) and ophthalmia (a certain type of inflammation of the eye).

30 The $\alpha_v\beta_3$ receptor occurs, for example, in large amounts on growing endothelial cells and makes possible their adhesion to an extracellular matrix. Thus the $\alpha_v\beta_3$ receptor

M 17.02.00

plays an important part in angiogenesis, i.e. the formation of new blood vessels, which is a crucial requirement for tumor growth and metastasis formation in carcinomatous disorders. Furthermore, it is also responsible for the interaction between osteoclasts, i.e. cells resorbing mineralized tissue, and the bone structure.

5 The first step in the degradation of bone tissue consists in adhesion of osteoclasts to the bone. This cell-matrix interaction takes place via the $\alpha_5\beta_3$ receptor, which is why the corresponding integrin plays an important part in this process. Osteolytic diseases such as osteoporosis are caused by an inequilibrium between bone formation and bone degradation, i.e. the resorption of bone material caused by addition of
10 osteoclasts predominates.

15 It was possible to show that the blocking of the abovementioned receptors is an important starting point for the treatment of disorders of this type. If the adhesion of growing endothelial cells to an extracellular matrix is suppressed by blocking their corresponding integrin receptors, for example by a cyclic peptide or a monoclonal antibody, the endothelial cells die. Angiogenesis therefore does not occur, which leads to a stoppage or regression of tumour growth (cf., for example, Brooks et al., Cell, Volume 79, 1157-1164, 1994).

20 Moreover, the invasive properties of tumour cells and thus their ability for metastasis formation are markedly decreased if their $\alpha_5\beta_3$ receptor is blocked by an antibody (Brooks et al., J. Clin. Invest., Volume 96, 1815, 1995).

25 The degradation of bone tissue can obviously be suppressed by blockage of the $\alpha_5\beta_3$ receptors of the osteoclasts, since these are then unable to accumulate on the bone in order to resorb its substance (WO 98/18461, p.1, l. 24 to p.2, l. 13).

30 As a result of the blockage of the $\alpha_5\beta_3$ receptor on cells of the aorta smooth vascular musculature with the aid of integrin receptor antagonists, it is possible to suppress the migration of these cells into the neointima and thus angioplasty leading to arteriosclerosis and restenosis (Brown et al., Cardiovascular Res., Volume 28, 1815,

1994).

In recent years, compounds have therefore been sought which act as antagonists of integrin receptors. For example, WO98/00395 discloses the para-substituted phenylalanine derivative (I), which exhibits an IC₅₀ value of 0.13 nM in an α,β₃ receptor assay and an IC₅₀ value of 0.16 nM in an α,β₅ receptor assay:

10 ω-Phenylcarboxylic acids having a phenyl residue which is linked to the phenyl group via a linker group and having a guanidine unit or a guanidine mimic are disclosed, for example in WO 97/36858, WO 97/36859, WO 97/36860 and WO 97/36862. According to these laid-open patent applications, the linker group can be an amide, sulphonamide, ester, urea, ether, thioether, sulphoxide, sulphone or ketone unit which may be extended by an additional methylene group, or can be a saturated or unsaturated alkylene bridge.

15 In particular, WO 97/36859, in addition to numerous substances comprised by a general formula, actually discloses 3-phenylpropionic acid derivatives such as (II) or (III). While the α-phenylalanine derivative (II) exhibits an IC₅₀ value of 0.18 nM with respect to its activity as an α,β₃ antagonist in in-vitro investigations, the succinic acid derivatives (III) have IC₅₀ values in the range from 38.7 to 141 nM in the same investigations:

M 17.02.00

R = OH, OEt, NHCH₂COOH

WO 97/36862, in addition to numerous substances comprised by a general formula,
 5 actually describes β -substituted propionic acid derivatives such as (IV) or (V). The sulphonamide-bridged derivative (IV) exhibits an IC₅₀ value of 16.7 nM with respect to its activity as an $\alpha_1\beta_3$ antagonist in in-vitro investigations, while the amide-bridged derivatives (V) have IC₅₀ values in the range from 0.87 to 11.6 nM in the same investigations:

M 17-02-00

(IV)

(V)

R = methyl, isopropyl, phenyl, 3,5-difluorophenyl

None of the abovementioned laid-open patent applications, however, discloses β -phenylalanine derivatives or their activity as α,β_3 antagonists.

5

β -Phenylalanine derivatives as α,β_3 antagonists are disclosed, for example, in US-5639765, WO 97/08145 and WO 97/36861, the linkage of the carboxyl residue to the central group consisting of two phenyl units bonded to one another via a linker group being carried out in these compounds, if a central group of this type is present at all, via the amino group. For example, the compound (VI) disclosed in WO 97/36861 exhibits an IC₅₀ value of 1.66 nM with respect to its activity as an α,β_3 antagonist in in-vitro investigations.

10

M 17-02-00

It was the object of the present invention to develop compounds which exhibit a high activity as integrin antagonists and in particular against the $\alpha_v\beta_3$ and/or the $\alpha_v\beta_5$ receptor.

Summary of the invention

The present object is achieved according to the invention by the β -phenylalanine derivatives defined below. In particular, it has emerged that the β -phenylalanine derivatives according to the invention have a very high activity as integrin antagonists, especially against the $\alpha_v\beta_3$ and/or the $\alpha_v\beta_5$ receptor.

The present invention relates to compounds of the general formula (1)

wherein

R^1 is hydrogen, a substituted or unsubstituted alkyl or cycloalkyl residue, a substituted or unsubstituted aryl residue or a saturated or unsaturated, optionally substituted heterocyclic residue;

M 17-02-00

R² is hydrogen, a substituted or unsubstituted alkyl or cycloalkyl residue, a substituted or unsubstituted aryl residue, a saturated or unsaturated, optionally substituted heterocyclic residue, an optionally substituted alkenyl residue, an optionally substituted alkinyl residue, a hydroxyl residue or an alkoxy residue or is bonded to R³ with formation of an optionally substituted carbocyclic or heterocyclic ring system which includes the carbon atom to which R² is bonded and can optionally contain heteroatoms;

5 R³ is hydrogen, a substituted or unsubstituted alkyl or cycloalkyl residue, a substituted or unsubstituted aryl residue, a saturated or unsaturated, optionally substituted heterocyclic residue, an optionally substituted alkenyl residue, an optionally substituted alkinyl residue, a hydroxyl residue or an alkoxy residue or is bonded to R² with formation of an optionally substituted carbocyclic or heterocyclic ring system which includes the carbon atom to which R³ is bonded and can optionally contain heteroatoms;

10 R⁴ is -SO₂R^{4'}, -COOR^{4''}, -COR^{4''}, -CONR^{4''}₂ or -CSNR^{4''}₂;

15 R^{4'} is hydrogen, a substituted or unsubstituted alkyl or cycloalkyl residue, a substituted or unsubstituted aryl residue or a saturated or unsaturated, optionally substituted heterocyclic residue;

20 R^{4''} is a substituted or unsubstituted alkyl or cycloalkyl residue, a substituted or unsubstituted aryl residue or a saturated or unsaturated, optionally substituted heterocyclic residue;

25 R⁵ is hydrogen, a substituted or unsubstituted alkyl or cycloalkyl residue or a substituted or unsubstituted aryl residue;

30 R¹⁰ is hydrogen, a substituted or unsubstituted alkyl or cycloalkyl residue, a substituted or unsubstituted alkoxy residue or a halogen atom;

R¹¹ is hydrogen, a substituted or unsubstituted alkyl or cycloalkyl residue, a substituted or unsubstituted alkoxy residue or a halogen atom;

30 L is -(CH₂)_mNHSO₂(CH₂)_n-, -(CH₂)_mSO₂NH(CH₂)_n-, -(CH₂)_mNHCO(CH₂)_n-, -(CH₂)_mCONH(CH₂)_n-, -(CH₂)_mOCH₂(CH₂)_n-,

M 17.02.00

- 5 -(CH₂)_mCH₂O(CH₂)_n-, -(CH₂)_mCOO(CH₂)_n-, -(CH₂)_mOOC(CH₂)_n-,
 -(CH₂)_mCH₂CO(CH₂)_n-, -(CH₂)_mCOCH₂(CH₂)_n-, -NHCONH-,
 -(CH₂)_mSCH₂(CH₂)_n-, -(CH₂)_mCH₂S(CH₂)_n-, -(CH₂)_mCH₂SO(CH₂)_n-,
 -(CH₂)_mSOCH₂(CH₂)_n-, -(CH₂)_mCH₂SO₂(CH₂)_n- or
 -(CH₂)_mSO₂CH₂(CH₂)_n-, wherein m and n are each an integer of 0 or 1
 and m + n ≤ 1;
- 10 R⁶ is hydrogen, a substituted or unsubstituted alkyl or cycloalkyl residue,
 a substituted or unsubstituted aryl residue, a saturated or unsaturated,
 optionally substituted heterocyclic residue or is bonded to one of R⁷,
 R⁸ or R⁹, if present, with formation of an optionally substituted
 heterocyclic ring system which includes the nitrogen atom to which R⁶
 is bonded and can be saturated or unsaturated and/or can contain
 further heteroatoms;
- 15 X is N, O or S;
- 15 R⁷ is absent, is -H, a substituted or unsubstituted alkyl or cycloalkyl
 residue, -NO₂, -CN, -COR⁷, -COOR⁷, or is bonded to one of R⁶, R⁸ or
 R⁹ with formation of an optionally substituted heterocyclic ring
 system which includes X and can be saturated or unsaturated and/or
 can contain further heteroatoms;
- 20 R⁷ is hydrogen, a substituted or unsubstituted alkyl or cycloalkyl residue,
 a substituted or unsubstituted aryl residue or a saturated or
 unsaturated, optionally substituted heterocyclic residue which can be
 saturated or unsaturated and/or can contain further heteroatoms;
- 25 R⁸ is hydrogen, a substituted or unsubstituted alkyl or cycloalkyl residue,
 a substituted or unsubstituted aryl residue, a saturated or unsaturated,
 optionally substituted heterocyclic residue or is bonded to one of R⁶,
 R⁷ or R⁹, if present, with formation of an optionally substituted
 heterocyclic ring system which includes the nitrogen atom to which R⁸
 is bonded and can be saturated or unsaturated and/or can contain
 further heteroatoms;
- 30

M 17.00.00

R⁹ is hydrogen, a substituted or unsubstituted alkyl or cycloalkyl residue, a substituted or unsubstituted aryl residue, a saturated or unsaturated, optionally substituted heterocyclic residue or is bonded to one of R⁶, R⁷ or R⁸, if present, with formation of an optionally substituted heterocyclic ring system which includes the nitrogen atom to which R⁹ is bonded and can be saturated or unsaturated and/or can contain further heteroatoms;

and their physiologically acceptable salts and stereoisomers.

10 According to the invention, preferred compounds of the formula (1) are those in
which

R¹ is hydrogen, a C₁₋₆-alkyl residue, a C₃₋₇-cycloalkyl residue, an aryl residue or a substituted derivative thereof;

15 R² is hydrogen, a C₁₋₆-alkyl residue, a C₃₋₇-cycloalkyl residue, an aryl residue, an alkenyl residue, an alkinyl residue or a substituted derivative thereof; a hydroxyl residue or a C₁₋₆-alkoxy residue or is bonded to R³ with formation of an optionally substituted carbocyclic or heterocyclic ring system which includes the carbon atom to which R² is bonded and can optionally contain heteroatoms;

20 R³ is hydrogen, a C₁₋₆-alkyl residue, a C₃₋₇-cycloalkyl residue, an aryl residue, an alkenyl residue, an alkinyl residue or a substituted derivative thereof; a hydroxyl residue or a C₁₋₆-alkoxy residue or is bonded to R² with formation of an optionally substituted carbocyclic or heterocyclic ring system which includes the carbon atom to which R³ is bonded and can optionally contain heteroatoms;

25 R⁴ is -SO₂R^{4'}, -COOR^{4''}, -COR^{4'}, -CONR^{4'2} or -CSNR^{4'2};

R^{4'} is hydrogen, a C₁₋₆-alkyl residue, a C₃₋₇-cycloalkyl residue, a substituted or unsubstituted aryl residue or a saturated or unsaturated, optionally substituted heterocyclic residue;

M 17:00:00

- 10 -

- R⁴ is a C₁₋₆-alkyl residue, a C₃₋₇-cycloalkyl residue, a substituted or unsubstituted aryl residue or a saturated or unsaturated, optionally substituted heterocyclic residue;
- 5 R⁵ is hydrogen, a C₁₋₆-alkyl residue, a C₃₋₇-cycloalkyl residue, a C₁₋₆-alkoxy residue or a substituted derivative thereof;
- R¹⁰ is hydrogen, a C₁₋₆-alkyl residue, a C₃₋₇-cycloalkyl residue, a C₁₋₆-alkoxy residue or a substituted derivative thereof or F, Cl, Br or I;
- R¹¹ is hydrogen, a C₁₋₆-alkyl residue, a C₃₋₇-cycloalkyl residue, an aryl residue or a substituted derivative thereof or F, Cl, Br or I;
- 10 L is -NHSO₂-, -CH₂NHSO₂-, -NHSO₂CH₂-, -SO₂NH-, -CH₂SO₂NH-, -SO₂NHCH₂-, -NHCO-, -CH₂NHCO-, -NHCOCH₂-, -CONH-, -CH₂CONH-, -CONHCH₂-, -OCH₂-, -CH₂OCH₂, -OCH₂CH₂-, -CH₂O-
-CH₂CH₂O-, -COO-, -CH₂COO-, -COOCH₂-, -OOC-, -OOCCH₂-, -CH₂OOC-, -CH₂CO-, -COCH₂-, -CH₂CH₂CO-, -COCH₂CH₂-, -CH₂COCH₂-, -NHCONH-, -SCH₂-, -CH₂S-, -CH₂SCH₂, -SCH₂CH₂-, -CH₂CH₂S-, -SOCH₂-, -CH₂SO-, -CH₂SOCH₂-, -SOCH₂CH₂-, -CH₂CH₂SO-, -SO₂CH₂-, -CH₂SO₂-, -CH₂SO₂CH₂-, -CH₂CH₂SO₂- or -SO₂CH₂CH₂-,
- 15 R⁶ is hydrogen, a C₁₋₆-alkyl residue, a C₃₋₇-cycloalkyl residue, an aryl residue or a substituted derivative thereof or is bonded to one of R⁷, R⁸ or R⁹, if present, with formation of an optionally substituted heterocyclic ring system which includes the nitrogen atom to which R⁶ is bonded and can be saturated or unsaturated and/or can contain further heteroatoms;
- 20 X is O, N or S;
- R⁷ is absent, is -H, a C₁₋₆-alkyl residue, a C₃₋₇-cycloalkyl residue, -NO₂, -CN, -COR⁷, -COOR⁷, or is bonded to one of R⁶, R⁸ or R⁹ with formation of an optionally substituted heterocyclic ring system which includes X and can be saturated or unsaturated and/or can contain further heteroatoms;
- 25 30

1700000

- 11 -

- R⁷ is hydrogen, a C₁₋₆-alkyl residue, a C₃₋₇-cycloalkyl residue, an aryl residue or a substituted derivative thereof;
- R⁸ is hydrogen, a C₁₋₆-alkyl residue, a C₃₋₇-cycloalkyl residue, an aryl residue or a substituted derivative thereof or is bonded to one of R⁶, R⁷ or R⁹, if present, with formation of an optionally substituted heterocyclic ring system which includes the nitrogen atom to which R⁸ is bonded and can be saturated or unsaturated and/or can contain further heteroatoms; and
- R⁹ is hydrogen, a C₁₋₆-alkyl residue, a C₃₋₇-cycloalkyl residue, an aryl residue or a substituted derivative thereof or is bonded to one of R⁶, R⁷ or R⁸, if present, with formation of an optionally substituted heterocyclic ring system which includes the nitrogen atom to which R⁹ is bonded and can be saturated or unsaturated and/or can contain further heteroatoms.
- Particularly preferred compounds of the formula (I) according to the present invention are those in which
- R¹ is hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, phenyl, benzyl, tolyl or a substituted derivative thereof;
- R² is hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, phenyl, benzyl, tolyl or a substituted derivative thereof, -OH, methoxy, ethoxy, propoxy, butoxy, pentoxy, hexoxy, benzyloxy or is bonded to R³ with formation of an optionally substituted 3- to 6-membered carbocyclic or heterocyclic ring system which includes the carbon atom to which R² is bonded and can optionally contain heteroatoms;
- R³ is hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl, cyclopropyl, cyclobutyl,

M 17.02.00

- 5 cyclopentyl, cyclohexyl, cycloheptyl, phenyl, benzyl, tolyl or a substituted derivative thereof, -OH, methoxy, ethoxy, propoxy, butoxy, pentoxy, hexoxy, or is bonded to R² with formation of an optionally substituted 3- to 6-membered carbocyclic or heterocyclic ring system which includes the carbon atom to which R³ is bonded and can optionally contain heteroatoms;
- 10 R⁴ is -SO₂R^{4'} or -COR^{4'};
- 15 R^{4'} is hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, phenyl, benzyl, tolyl or a substituted derivative thereof, -C₆H₅(CH₃)₃, -C₆(CH₃)₅, -CH₂C₆H₅(CH₃)₃, 2-chlorophenyl, 3-chlorophenyl, 4-chlorophenyl, 2,3-dichlorophenyl, 2,4-dichlorophenyl, 3,4-dichlorophenyl, 2,5-dichlorophenyl, 3,5-dichlorophenyl, 2,6-dichlorophenyl, 4-chlorophenylmethyl, 2,4-dichlorophenylmethyl, 2,6-dichlorophenylmethyl, 2-methoxycarbonylphenylmethyl, 3-trifluoromethylphenyl, 4-trifluoromethylphenyl, 3,5-bis(trifluoromethyl)phenyl, 4-trifluoromethoxyphenyl, phenylmethyl, 2-acetamido-4-methyl-thiazol-5-yl, phenylethyl, 1phenylpropyl, (S)-(+)-camphor-10-yl, (R)-(-)-camphor-10-yl, 2-phenylethenyl, 2-thiophenyl, 4-methoxyphenyl, 3,5-dimethoxyphenyl, 3-methylphenyl, 4-methylphenyl, 4-t-butylphenyl, 4-propylphenyl, 2,5-dimethylphenyl, 2-methoxy-5-methylphenyl, 2,3,5,6-tetramethylphenyl, 1-naphthyl, 2-naphthyl, 4-fluorophenyl, 2,4-difluorophenyl, 2-chloro-6-methylphenyl, 2-chloro-4-fluorophenyl, 2,5-dimethoxyphenyl, 3,4-dimethoxyphenyl, 3-chloro-6-methoxyphenyl, 2-trifluoromethylphenyl, 2-alkylsulphonylphenyl, 2-arylsulphonylphenyl, 3-(N-acetyl-6-methoxy)aniline, 4-acetamidophenyl, 2,2,2-trifluoroethyl, 5-chloro-3-methyl-benzothiazol-2-yl, N-methoxycarbonylpiperidin-3-yl, thiophen-2-yl, isoxazol-5-yl, ethoxy, 2-chloropyridin-3-yl, pyridin-3-yl, benzyloxy, 5-methylisoxazol-3-yl, 1-adamantyl, 4-chlorophenoxy-methyl, 2,2-dimethylethenyl, 2-chloropyridine-5-methyl, 5,7-dimeth-

yl-1,3,4-triazaindolin-2-yl, (S)-camphan-1-yl, (R)-camphan-1-yl, 8-quinolinyl;

R⁵ is hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl, cyclopropyl, cyclopropylmethyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, 4-methylcyclohexyl, 3,3,5-trimethylcyclohexyl, 5-methyl-2-hexyl, phenyl, benzyl, tolyl or a substituted derivative thereof, C₁₋₄-alkylamino-C₁₋₄-alkyl, C₁₋₄-dialkylamino-C₁₋₄-alkyl, amino-C₁₋₄-alkyl, C₁₋₄-alkyloxy-C₁₋₄-alkyl or

D 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

(a1)

(a2)

(a3)

(a4)

(a5)

(a6)

(a7)

(a8)

(a9)

(a10)

10

(a11)

(a12)

(a13)

(a14)

(a15)

M 17.02.00

(a16)

(a17)

(a18)

(a19)

(a20)

(a21)

(a22)

(a23)

(a24)

(a25)

(a26)

(a27)

(a28)

R¹⁰

is hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, methoxy, ethoxy, propoxy, butoxy, pentoxy or hexoxy, fluorine, chlorine, bromine or iodine;

5

R¹¹

is hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, methoxy, ethoxy, propoxy, butoxy, pentoxy or hexoxy, fluorine, chlorine, bromine or iodine;

10

L

is -NHSO₂- , -CH₂NHSO₂- , -NHSO₂CH₂- , -SO₂NH- , -CH₂SO₂NH- , -SO₂NHCH₂- , -NHCO- , -CH₂NHCO- , -NHCOCH₂- , -CONH- , -CH₂CONH- , -CONHCH₂- , -OCH₂- , -CH₂OCH₂- , -OCH₂CH₂- , -CH₂O- or -CH₂CH₂O- ;

M 17-02-00

- 15 -

- R⁶ is hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl, cyclopropyl, cyclopropylmethyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, 4-methylcyclohexyl, 3,3,5-trimethylcyclohexyl, 5-methyl-2-hexyl, phenyl, benzyl, tolyl or a substituted derivative thereof, C₁₋₄-alkylamino-C₁₋₄-alkyl, C₁₋₄-dialkylamino-C₁₋₄-alkyl, amino-C₁₋₄-alkyl, C₁₋₄-alkyloxy-C₁₋₄-alkyl, one of the residues (a1) to (a28) or is bonded to one of R⁷, R⁸ or R⁹, if present, with formation of an optionally substituted heterocyclic 4- to 6-membered ring system which includes the nitrogen atom to which R⁶ is bonded and can be saturated or unsaturated and/or can contain further heteroatoms;
- X is N, O or S;
- R⁷ is absent, is -H, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, -NO₂, -CN, -COR⁷, -COOR⁷ or is bonded to one of R⁶, R⁸ or R⁹ with formation of an optionally substituted carbocyclic or heterocyclic 4- to 6-membered ring system which includes X and can be saturated or unsaturated and/or can contain further heteroatoms;
- R⁷ is hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, phenyl, benzyl, tolyl or a substituted derivative thereof;
- R⁸ is hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl, cyclopropyl, cyclopropylmethyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, 4-methylcyclohexyl, 3,3,5-trimethylcyclohexyl, 5-methyl-2-hexyl, phenyl, benzyl, tolyl or a substituted derivative thereof, C₁₋₄-alkylamino-C₁₋₄-alkyl, C₁₋₄-dialkylamino-C₁₋₄-alkyl, amino-C₁₋₄-alkyl, C₁₋₄-alkyloxy-C₁₋₄-alkyl, one of the residues (a1) to (a28) or is bonded to one of R⁶, R⁷ or R⁹, if present, with formation of an optionally substituted heterocyclic 4- to

M 17:02:00

6-membered ring system which includes the nitrogen atom to which R⁸ is bonded and can be saturated or unsaturated and/or can contain further heteroatoms; and

R⁹

5

is hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl, cyclopropyl, cyclopropylmethyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, 4-methylcyclohexyl, 3,3,5-trimethylcyclohexyl, 5-methyl-2-hexyl, phenyl, benzyl, tolyl or a substituted derivative thereof, C₁₋₄-alkylamino-C₁₋₄-alkyl, C₁₋₄-dialkylamino-C₁₋₄-alkyl, amino-C₁₋₄-alkyl, C₁₋₄-alkyloxy-C₁₋₄-alkyl, one of the residues (a1) to (a28) or is bonded to one of R⁶, R⁷ or R⁸, if present, with formation of an optionally substituted heterocyclic 4- to 6-membered ring system which includes the nitrogen atom to which R⁹ is bonded and can be saturated or unsaturated and/or can contain further heteroatoms.

10

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

15

According to a preferred embodiment, the present invention relates to compounds of the formula (1) in which

R⁴ is -SO₂R'⁴;

20

R'⁴ is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, phenyl, benzyl, tolyl or a substituted derivative thereof, -C₆H₂(CH₃)₃, -C₆(CH₃)₅, -CH₂C₆H₂(CH₃)₃, 2-chlorophenyl, 3-chlorophenyl, 4-chlorophenyl, 2,3-dichlorophenyl, 2,4-dichlorophenyl, 3,4-dichlorophenyl, 2,5-dichlorophenyl, 3,5-dichlorophenyl, 2,6-dichlorophenyl, 4-chlorophenylmethyl, 2,4-dichlorophenylmethyl, 2,6-dichlorophenylmethyl, 2-methoxy-carbonylphenylmethyl, 3-trifluoromethylphenyl, 4-trifluoromethyl-phenyl, 3,5-bis(trifluoromethyl)phenyl, 4-trifluoromethoxyphenyl, phenylmethyl, 2-acetamido-4-methyl-thiazol-5-yl, phenylethyl, 1-phenylpropyl, (S)-(+)-camphor-10-yl, (R)-(−)-camphor-10-yl, 2-phenylethenyl, 2-thiophenyl, 4-methoxyphenyl, 3,5-dimethoxyphenyl,

30

M 17-02-00

- 17 -

3-methylphenyl, 4-methylphenyl, 4-t-butylphenyl, 4-propylphenyl,
2,5-dimethylphenyl, 2-methoxy-5-methylphenyl, 2,3,5,6-tetramethyl-
phenyl, 1-naphthyl, 2-naphthyl, 4-fluorophenyl, 2,4-difluorophenyl,
2-chloro-6-methylphenyl, 2-chloro-4-fluorophenyl, 2,5-dimethoxy-
phenyl, 3,4-dimethoxyphenyl, 3-chloro-6-methoxyphenyl, 2-trifluoro-
methylphenyl, 2-alkylsulphonylphenyl, 2-arylsulphonylphenyl, 3-(N-
acetyl-6-methoxy)aniline, 4-acetamidophenyl, 2,2,2-trifluoroethyl, 5-
chloro-3-methyl-benzothiazol-2-yl, N-methoxycarbonyl-piperidin-3-
yl, thiophen-2-yl, isoxazol-5-yl, 2-chloropyridin-3-yl, pyridin-3-yl,
benzyloxy, 5-methylisoxazol-3-yl, 1-adamantyl, 4-chlorophenoxy-
methyl, 2,2-dimethyllethenyl, 2-chloropyridine-5-methyl, 5,7-
dimethyl-1,3,4-triazaindolizin-2-yl, (S)-camphan-1-yl, (R)-camphan-
1-yl or 8-quinolinyl;

10

L is -NHSO_2- , $\text{-CH}_2\text{NHSO}_2-$, $\text{-NHSO}_2\text{CH}_2-$;

15

X is N;

and the other residues are as defined above.

According to a further preferred embodiment, the present invention relates to compounds of the formula (1) in which

20

 R^4 is $\text{-COR}'$; R' is hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, phenyl, benzyl, tolyl or a substituted derivative thereof, $\text{-C}_6\text{H}_2(\text{CH}_3)_3$, $\text{-C}_6(\text{CH}_3)_5$, $\text{-CH}_2\text{C}_6\text{H}_2(\text{CH}_3)_3$, 2-chlorophenyl, 3-chlorophenyl, 4-chlorophenyl, 2,3-dichlorophenyl, 2,4-dichlorophenyl, 3,4-dichlorophenyl, 2,5-dichlorophenyl, 3,5-dichlorophenyl, 2,6-dichlorophenyl, 4-chlorophenylmethyl, 2,4-dichlorophenylmethyl, 2,6-dichlorophenylmethyl, 2-methoxycarbonylphenylmethyl, 3-trifluoromethylphenyl, 4-trifluoromethylphenyl,

25

3,5-bis(trifluoromethyl)phenyl, 4-trifluoromethoxyphenyl, phenylmethyl, 2-acetamido-4-methyl-thiazol-5-yl, phenylethyl, 1-phenyl-

30

M 17.00 · 00

- 18 -

propyl, (S)-(+)-camphor-10-yl, (R)-(-)-camphor-10-yl, 2-phenylethyl, 2-thiophenyl, 4-methoxyphenyl, 3,5-dimethoxyphenyl, 3-methylphenyl, 4-methylphenyl, 4-t-butylphenyl, 4-propylphenyl, 2,5-dimethylphenyl, 2-methoxy-5-methylphenyl, 2,3,5,6-tetramethylphenyl, 1-naphthyl, 2-naphthyl, 4-fluorophenyl, 2,4-difluorophenyl, 2-chloro-6-methylphenyl, 2-chloro-4-fluorophenyl, 2,5-dimethoxyphenyl, 3,4-dimethoxyphenyl, 3-chloro-6-methoxyphenyl, 2-trifluoromethylphenyl, 2-alkylsulphonylphenyl, 2-arylsulphonylphenyl, 3-(N-acetyl-6-methoxy)anilin, 4-acetamidophenyl, 2,2,2-trifluoroethyl, 5-chloro-3-methylbenzothiazol-2-yl, N-methoxycarbonylpiperidin-3-yl, thiophen-2-yl, isoxazol-5-yl, ethoxy, 2-chloropyridin-3-yl, pyridin-3-yl, benzyloxy, 5-methylisoxazol-3-yl, 1-adamantyl, 4-chlorophenoxy-methyl, 2,2-dimethylethenyl, 2-chloropyridine-5-methyl, 5,7-dimethyl-1,3,4-triazaindolin-2-yl, (S)-camphan-1-yl, (R)-camphan-1-yl or 8-quinolinyl;

L is -NHSO_2^- , $\text{-CH}_2\text{NHSO}_2^-$ or $\text{-NHSO}_2\text{CH}_2^-$;
X is N;

and the other residues are as defined above.

According to yet a further preferred embodiment, the present invention relates to compounds of the formula (1) in which

R⁴ is $\text{-SO}_2\text{R}^4$;

R⁴ is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, phenyl, benzyl, tolyl or a substituted derivative thereof, $-\text{C}_6\text{H}_2(\text{CH}_3)_3$, $-\text{C}_6(\text{CH}_3)_5$, $-\text{CH}_2\text{C}_6\text{H}_2(\text{CH}_3)_3$, 2-chlorophenyl, 3-chlorophenyl, 4-chlorophenyl, 2,3-dichlorophenyl, 2,4-dichlorophenyl, 3,4-dichlorophenyl, 2,5-dichlorophenyl, 3,5-dichlorophenyl, 2,6-dichlorophenyl, 4-chlorophenylmethyl, 2,4-dichlorophenylmethyl, 2,6-dichlorophenylmethyl, 2-methoxy-carbonylphenylmethyl, 3-trifluoromethylphenyl, 4-trifluoromethyl-

M 17-02-00

phenyl, 3,5-bis(trifluoromethyl)phenyl, 4-trifluoromethoxyphenyl,
phenylmethyl, 2-acetamido-4-methyl-thiazol-5-yl, phenylethyl,
1-phenylpropyl, (S)-(+)-camphor-10-yl, (R)-(-)-camphor-10-yl, 2-
phenylethenyl, 2-thiophenyl, 4-methoxyphenyl, 3,5-dimethoxyphenyl,
5
3-methylphenyl, 4-methylphenyl, 4-t-butylphenyl, 4-propylphenyl,
2,5-dimethylphenyl, 2-methoxy-5-methylphenyl, 2,3,5,6-tetramethyl-
phenyl, 1-naphthyl, 2-naphthyl, 4-fluorophenyl, 2,4-difluorophenyl,
2-chloro-6-methylphenyl, 2-chloro-4-fluorophenyl, 2,5-dimethoxy-
phenyl, 3,4-dimethoxyphenyl, 3-chloro-6-methoxyphenyl, 2-trifluoro-
methylphenyl, 2-alkylsulphonylphenyl, 2-arylsulphonylphenyl, 3-(N-
10
acetyl-6-methoxy)aniline, 4-acetamidophenyl, 2,2,2-trifluoroethyl, 5-
chloro-3-methyl-benzothiazol-2-yl, N-methoxycarbonyl-piperidin-3-
yl, thiophen-2-yl, isoxazol-5-yl, 2-chloropyridin-3-yl, pyridin-3-yl,
benzyloxy, 5-methylisoxazol-3-yl, 1-adamantyl, 4-chlorophenoxy-
methyl, 2,2-dimethylethenyl, 2-chloropyridine-5-methyl, 5,7-
15
dimethyl-1,3,4-triazaindolin-2-yl, (S)-camphan-1-yl, (R)-camphan-
1-yl or 8-quinoliny;

L is -NHCO-, -CH₂NHCO- or -NHCOCH₂-;
X is N;
20
and the other residues are as defined above.

According to yet a further preferred embodiment, the present invention relates to compounds of the formula (1) in which

R⁴ is -SO₂R⁴;
25 R⁴ is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl,
isopentyl, neopentyl, hexyl, cyclopropyl, cyclobutyl, cyclopentyl,
cyclohexyl, cycloheptyl, phenyl, benzyl, tolyl or a substituted
derivative thereof, -C₆H₅(CH₃)₃, -C₆(CH₃)₅, -CH₂C₆H₅(CH₃)₃, 2-chloro-
phenyl, 3-chlorophenyl, 4-chlorophenyl, 2,3-dichlorophenyl, 2,4-
30 dichlorophenyl, 3,4-dichlorophenyl, 2,5-dichlorophenyl, 3,5-
dichlorophenyl, 2,6-dichlorophenyl, 4-chlorophenylmethyl, 2,4-

17.02.00

5

dichlorophenylmethyl, 2,6-dichlorophenylmethyl, 2-methoxy-carbonylphenylmethyl, 3-trifluoromethylphenyl, 4-trifluoromethyl-phenyl, 3,5-bis(trifluoromethyl)phenyl, 4-trifluoromethoxyphenyl, phenylmethyl, 2-acetamido-4-methyl-thiazol-5-yl, phenylethyl, 1-phenylpropyl, (S)-(+)-camphor-10-yl, (R)-(-)-camphor-10-yl, 2-phenylethenyl, 2-thiophenyl, 4-methoxyphenyl, 3,5-dimethoxyphenyl, 3-methylphenyl, 4-methylphenyl, 4-t-butylphenyl, 4-propylphenyl, 2,5-dimethylphenyl, 2-methoxy-5-methylphenyl, 2,3,5,6-tetramethyl-phenyl, 1-naphthyl, 2-naphthyl, 4-fluorophenyl, 2,4-difluorophenyl, 2-chloro-6-methylphenyl, 2-chloro-4-fluorophenyl, 2,5-dimethoxy-phenyl, 3,4-dimethoxyphenyl, 3-chloro-6-methoxyphenyl, 2-trifluoromethylphenyl, 2-alkylsulphonylphenyl, 2-arylsulphonylphenyl, 3-(N-acetyl-6-methoxy)aniline, 4-acetamidophenyl, 2,2,2-trifluoroethyl, 5-chloro-3-methyl-benzothiazol-2-yl, N-methoxycarbonyl-piperidin-3-yl, thiophen-2-yl, isoxazol-5-yl, 2-chloropyridin-3-yl, pyridin-3-yl, benzyloxy, 5-methylisoxazol-3-yl, 1-adamantyl, 4-chlorophenoxyethyl, 2,2-dimethylethenyl, 2-chloropyridine-5-methyl, 5,7-dimethyl-1,3,4-triazaindolizin-2-yl, (S)-camphan-1-yl, (R)-camphan-1-yl or 8-quinolinyl;

10

15

20

L is $-OCH_2-$, $-CH_2O-$, $-CH_2OCH_2-$, $-CH_2CH_2O-$ or $-OCH_2CH_2-$;

X is N;

and the other residues are as defined above.

25

According to yet a further preferred embodiment, the present invention relates to compounds of the formula (1) in which

R⁴ is $-SO_2R^4$;

R⁴ is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, phenyl, benzyl, tolyl or a substituted derivative thereof, $-C_6H_2(CH_3)_3$, $-C_6(CH_3)_5$, $-CH_2C_6H_2(CH_3)_3$, 2-chlorophenyl, 3-chlorophenyl, 4-chlorophenyl, 2,3-dichlorophenyl, 2,4-

30

M 17-02-00

- 21 -

- dichlorophenyl, 3,4-dichlorophenyl, 2,5-dichlorophenyl, 3,5-dichlorophenyl, 2,6-dichlorophenyl, 4-chlorophenylmethyl, 2,4-dichlorophenylmethyl, 2,6-dichlorophenylmethyl, 2-methoxy-carbonylphenylmethyl, 3-trifluoromethylphenyl, 4-trifluoromethyl-phenyl, 3,5-bis(trifluoromethyl)phenyl, 4-trifluoromethoxyphenyl, phenylmethyl, 2-acetamido-4-methyl-thiazol-5-yl, phenylethyl, 1-phenylpropyl, (S)-(+)-camphor-10-yl, (R)-(-)-camphor-10-yl, 2-phenylethenyl, 2-thiophenyl, 4-methoxyphenyl, 3,5-dimethoxyphenyl, 3-methylphenyl, 4-methylphenyl, 4-t-butylphenyl, 4-propylphenyl, 2,5-dimethylphenyl, 2-methoxy-5-methylphenyl, 2,3,5,6-tetramethyl-phenyl, 1-naphthyl, 2-naphthyl, 4-fluorophenyl, 2,4-difluorophenyl, 2-chloro-6-methylphenyl, 2-chloro-4-fluorophenyl, 2,5-dimethoxy-phenyl, 3,4-dimethoxyphenyl, 3-chloro-6-methoxyphenyl, 2-trifluoro-methylphenyl, 2-alkylsulphonylphenyl, 2-arylsulphonylphenyl, 3-(N-acetyl-6-methoxy)aniline, 4-acetamidophenyl, 2,2,2-trifluoroethyl, 5-chloro-3-methyl-benzothiazol-2-yl, N-methoxycarbonyl-piperidin-3-yl, thiophen-2-yl, isoxazol-5-yl, 2-chloropyridine-3-yl, pyridin-3-yl, benzyloxy, 5-methylisoxazol-3-yl, 1-adamantyl, 4-chlorophenoxy-methyl, 2,2-dimethylethenyl, 2-chloropyridine-5-methyl, 5,7-dimethyl-1,3,4-triazaindolin-2-yl, (S)-camphan-1-yl, (R)-camphan-1-yl or 8-quinolinyl;
- L is -NHSO_2^- , $\text{-CH}_2\text{NHSO}_2^-$ or $\text{-NHSO}_2\text{CH}_2^-$;
- X is N;
- R⁷ and R⁹ together form an ethylene group which bonds the nitrogen atom to which R⁷ is bonded to the nitrogen atom to which R⁹ is bonded; and the other residues are as defined above.

The present invention furthermore relates to a process for the preparation of compounds of the formula (1)

M 17-02-00

- 22 -

comprising the steps

- a) reaction of a β -amino acid of the formula (2)

where

P is $-(CH_2)_mNO_2$, $-(CH_2)_mO-C_{1-6}$ -alkyl, $-(CH_2)_mSO_2P'$, $-(CH_2)_mCOP'$,
 $-(CH_2)_mCH_2O-C_{1-6}$ -alkyl, where m in each case is an integer of 0 or 1;

10 P' is $-OH$, $-O-C_{1-6}$ -alkyl,

and the other residues are as defined above;

with a compound R4-A to give a compound of the formula (3),

15 where

R4 is $-SO_2R^{4''}$, $-COOR^{4''}$, or $-COR^{4''}$;

R4 and R4'' are as defined above;

A is $-Cl$, $-Br$, $-I$, $-O$ -triflyl, $-O$ -tosyl, $-O-C_{1-6}$ -alkyl, $-O-CO-C_{1-6}$ -alkyl,
 $-O-CO-O-C_{1-6}$ -alkyl, $-OC(CH_3)=CH_2$;

M 17.02.00

and the other residues are as defined above;

- b) conversion of the residue P into the residue Q, where

5 Q is $-(CH_2)_m NH_2$, $-(CH_2)_m OH$, $-(CH_2)_m CH_2OH$, $-(CH_2)_m SO_2A$,
 $-(CH_2)_m COA$,

A is as defined above;

m is an integer of 0 or 1;

- 10 c) reaction of the compound obtained from step b) with a compound of the formula (4)

where

15 S is $ASO_2(CH_2)_n^-$, $NH_2(CH_2)_n^-$, $ACO(CH_2)_n^-$, $HOCH_2(CH_2)_n^-$, $M(CH_2)_n^-$,
 $MCH_2(CH_2)_n^-$, $HSCH_2(CH_2)_n^-$ or $HS(CH_2)_n^-$, where n is an integer of
0 or 1;

M is a residue including Mg, Li, Cd or Sn;

A is as defined above; and

C is $-NO_2$ or

20 X, R^7, R^8, R^9 and R^11 are as defined above;

to give a compound of the formula (5)

M 17-02-00

-24-

where the residues are as defined above;

- 5 d) if appropriate, conversion of C, if C is a nitro group, into an optionally cyclic urea, thiourea or guanidine unit with obtainment of the compound (1); and
- 10 e) if appropriate, removal of protective groups and/or derivatization of nitrogen atoms, which are present at preferred times within the preparation process, and/or conversion of the compound obtained into the free acid and/or conversion of the compound obtained into one of its physiologically acceptable salts by reaction with an inorganic or organic base or acid.

15 Preferably, in the process according to the invention the β -amino acid of the formula (2) is obtained by reaction of malonic acid with a benzaldehyde derivative of the formula (2a)

20 where R¹⁰ and P are as defined above, in the presence of ammonia, ammonium compounds or amines and, if appropriate, subsequent substitution in the α -position to the terminal carboxyl group.

M 17.02.00

- 25 -

Furthermore, according to a preferred embodiment of the invention, the process comprises the conversion of the nitro group in step d) by reduction to the amino group, subsequent reaction with a carbonic acid ester derivative and, if appropriate, removal of protective groups present and/or reaction with a compound containing at 5 least one amino group.

The present invention furthermore relates to a pharmaceutical composition which contains at least one of the compounds according to the invention described above.

10 The present invention furthermore relates to the use of the compounds according to the invention described above for the production of a pharmaceutical composition having integrin-antagonistic action.

15 The present invention furthermore relates to the use of the compounds according to the invention described above for the production of a pharmaceutical composition for the therapy and prophylaxis of cancer, osteolytic diseases such as osteoporosis, arteriosclerosis, restenosis and ophthalmic disorders.

Detailed description of the preferred embodiments

20 The invention is explained more exactly below with reference to preferred embodiments to which, however, it is not restricted in any way. In the description below, bivalent substituents are indicated in such a way that their respective left end is connected to the group indicated left of the corresponding substituent in formula 25 (1), and their respective right end is connected to the group indicated right of the corresponding substituent in formula (1). If, for example, the residue L is $-(CH_2)_mNHSO_2(CH_2)_n-$ in formula (1), the nitrogen atom is connected to the phenylene group located left of the residue L in formula (1) by means of the group $(CH_2)_m$.

30

M 17.02.00

- The compounds according to the invention are characterized in that, as a main structural element, they have two phenyl units connected via a linker group L, one phenylene group of which has the residue derived from a β -amino acid, while the other phenylene group carries a urea group, thiourea group or guanidine group optionally incorporated into a cyclic ring system. The phenylene units bonded by a linker group L can moreover carry further substituents in addition to the abovementioned residues.
- The terminal carboxyl unit included in the residue derived from a β -amino acid can be present as a free carboxylic acid or as an ester. In the case in which the terminal carboxyl unit is esterified, basically all carboxylic acid esters obtainable according to conventional processes and which can be metabolized into the free carboxylic acid in the animal body, such as the corresponding alkyl esters, cycloalkyl esters, aryl esters and heterocyclic analogues thereof can be used according to the invention, where alkyl esters, cycloalkyl esters and aryl esters are preferred and the alcoholic residue can carry further substituents. C₁₋₆-Alkyl esters such as the methyl ester, ethyl ester, propyl ester, isopropyl ester, butyl ester, isobutyl ester, t-butyl ester, pentyl ester, isopentyl ester, neopentyl ester, hexyl ester, cyclopropyl ester, cyclopropylmethyl ester, cyclobutyl ester, cyclopentyl ester, cyclohexyl ester, or aryl esters such as the phenyl ester, benzyl ester or tolyl ester are particularly preferred.
- The abovementioned esters can be employed as prodrugs for the treatment of the diseases mentioned at the beginning, such as cancer, osteoporosis, arteriosclerosis, restenosis or ophthalmia, since they are easily converted in an animal and in man to the corresponding carboxylic acid. However, for the treatment of the abovementioned disorders the compounds of the general formula (1) according to the invention are preferably used in a form in which the terminal carboxyl unit is present as a free carboxylic acid.
- For medicinal use, the compounds of the general formula (1) according to the invention can also be employed in the form of their physiologically acceptable salts.

M 17.02.00

Physiologically acceptable salts are understood according to the invention as meaning non-toxic salts, which in general are accessible by reaction of the compounds of the general formula (1) according to the invention with an inorganic or organic base or acid conventionally used for this purpose. Examples of preferred salts
5 of the compounds of the general formula (1) according to the invention are the corresponding alkali metal salt, e.g. the lithium, potassium or sodium salt, the corresponding alkaline earth metal salt such as the magnesium or calcium salt, a quaternary ammonium salt such as, for example, the triethylammonium salt, acetate, benzenesulphonate, benzoate, dicarbonate, disulphate, ditartrate, borate, bromide,
10 carbonate, chloride, citrate, dihydrochloride, fumarate, gluconate, glutamate, hexylresorcinate, hydrobromide, hydrochloride, hydroxynaphthoate, iodide, isothionate, lactate, laurate, malate, maleate, mandelate, mesylate, methylbromide, methylnitrate, methylsulphate, nitrate, oleate, oxalate, palmitate, pantothenate, phosphate, diphosphate, polygalacturonate, salicylate, stearate, sulphate, succinate, tartrate, tosylate and valerate, and other salts used for medicinal purposes.
15

The residue bonded to one of the two central phenylene units and derived from a β -amino acid can alternatively carry one or two additional substituents in the α -position to the carboxyl group. These substituents can in each case be selected from the group which consists of hydrogen, a substituted or unsubstituted alkyl or cycloalkyl residue, a substituted or unsubstituted aryl residue, a saturated or unsaturated, optionally substituted heterocyclic residue, an optionally substituted alkenyl residue, an optionally substituted alkinyl residue, a hydroxyl residue or an alkoxy residue. The alkyl residue can preferably be a C₁₋₆-alkyl such as, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl or hexyl. The cycloalkyl residue can preferably be a C₃₋₇-cycloalkyl such as, for example, cyclopropyl, cyclopropylmethyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl. The aryl residue can preferably be phenyl, benzyl or tolyl. The heterocyclic residue can preferably be pyrrole, pyridine, tetrahydrofuran, furan, thiophene, tetrahydrothiophene, thioxazole, benzofuran, quinoline, isoquinoline or pyrimidine.
20
25
30 The alkenyl residue can be a terminal or internal E or Z alkene unit. The alkoxy

M 17.02.00

- 28 -

- residue can preferably be a C₁₋₆-alkoxy residue such as, for example, methoxy, ethoxy, propoxy, butoxy, pentoxy, hexoxy or benzyloxy. The abovementioned residues can alternatively be substituted by one or more C₁₋₆-alkyl residues such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl or hexyl, C₃₋₇-cycloalkyl residues such as cyclopropyl, cyclopropylmethyl, cyclobutyl, cyclopentyl or cyclohexyl, aryl residues such as phenyl, benzyl, tolyl, naphthyl, heterocyclic residues such as pyrrole, pyridine, tetrahydrofuran, furan, thiophene, tetrahydrothiophene, oxazole, thiazole, thioxazole, benzofuran, benzoxazole, benzothiazole, quinoline, isoquinoline, or functional groups such as a double bond to a heteroatom such as oxygen, sulphur or nitrogen, an optionally substituted amino group, a nitro group, a halogen, a hydroxyl group, an ether group, a sulphide group, a mercaptan group, a cyano group, an isonitrile group, an alkenyl group, an alkinyl group, an aldehyde group, a keto group, a carboxyl group, an ester group, an amide group, a sulphoxide group or a sulphone group. One or more additionally saturated or unsaturated rings can furthermore be fused to the abovementioned cyclic residues with formation of, for example, a naphthyl, benzofuranyl, benzoxazolyl, benzothiazolyl, quinolinyl or isoquinolinyl unit or a partially or completely hydrogenated analogue thereof.
- The two substituents in the α -position to the terminal carboxyl group, if present, can furthermore be bonded to one another and can thus together form a carbocyclic or heterocyclic ring system together with the α -carbon atom of the residue derived from a α -amino acid. This ring system can optionally carry further substituents and/or contain further heteroatoms. According to the invention, the above ring system, if present, is preferably a 3- to 6-membered carbocyclic or heterocyclic ring system such as, for example, a cyclopropane ring, cyclobutane ring, cyclopentane ring, cyclohexane ring, dihydrofuran ring, tetrahydrofuran ring, dihydropyran ring, tetrahydropyran ring, dioxane ring, dihydrothiophene ring, tetrahydrothiophene ring or a substituted derivative thereof.

In the groups according to the invention, the amino group included in the residue derived from a β -amino acid is substituted by one of the residues $-\text{SO}_2\text{R}^4$, $-\text{COOR}^4$, $-\text{COR}^4$, $-\text{CONR}^4$, or $-\text{CSNR}^4$, where R^4 can be hydrogen, a substituted or unsubstituted alkyl or cycloalkyl residue, a substituted or unsubstituted aryl residue or a saturated or unsaturated, optionally substituted heterocyclic residue and $\text{R}^{4''}$ can be a substituted or unsubstituted alkyl or cycloalkyl residue, a substituted or unsubstituted aryl residue or a saturated or unsaturated, optionally substituted heterocyclic residue. In this context, the alkyl residue is preferably a C_{1-6} -alkyl such as, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl, the cycloalkyl residue is a C_{3-7} -cycloalkyl such as, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, the aryl residue is an aryl such as phenyl, benzyl, tolyl or a substituted derivative thereof such as $-\text{C}_6\text{H}_2(\text{CH}_3)_3$, $-\text{C}_6(\text{CH}_3)_5$, $-\text{CH}_2\text{C}_6\text{H}_2(\text{CH}_3)_3$, 2-chlorophenyl, 3-chlorophenyl, 4-chlorophenyl, 2,3-dichlorophenyl, 2,4-dichlorophenyl, 3,4-dichlorophenyl, 2,5-dichlorophenyl, 3,5-dichlorophenyl, 2,6-dichlorophenyl, 4-chlorophenylmethyl, 2,4-dichlorophenylmethyl, 2,6-dichlorophenylmethyl, 2-methoxycarbonylphenylmethyl, 3-trifluoromethylphenyl, 4-trifluoromethylphenyl, 3,5-bis(trifluoromethyl)phenyl, 4-trifluoromethoxyphenyl, phenylmethyl, 2-acetamido-4-methyl-thiazol-5-yl, phenylethyl, 1-phenylpropyl, (S)-(+)-camphor-10-yl, (R)-(−)-camphor-10-yl, 2-phenylethenyl, 2-thiophenyl, 4-methoxyphenyl, 3,5-dimethoxyphenyl, 3-methylphenyl, 4-methylphenyl, 4-t-butylphenyl, 4-propylphenyl, 2,5-dimethylphenyl, 2-methoxy-5-methylphenyl, 2,3,5,6-tetramethylphenyl, 1-naphthyl, 2-naphthyl, 4-fluorophenyl, 2,4-difluorophenyl, 2-chloro-6-methylphenyl, 2-chloro-4-fluorophenyl, 2,5-dimethoxyphenyl, 3,4-dimethoxyphenyl, 3-chloro-6-methoxyphenyl, 2-trifluoromethylphenyl, 2-alkylsulphonylphenyl, 2-arylsulphonylphenyl, 3-(N-acetyl-6-methoxy)-aniline, 4-acetamidophenyl, 2,2,2-trifluoroethyl, 5-chloro-3-methyl-benzothiazol-2-yl, N-methoxycarbonyl-piperidin-3-yl, thiophen-2-yl, isoxazol-5-yl, ethoxy, 2-chloropyridin-3-yl, pyridin-3-yl, benzyloxy, 5-methylisoxazol-3-yl, 1-adamantyl, 4-chlorophenoxyethyl, 2,2-dimethylethenyl, 2-chloropyridine-5-methyl, 5,7-dimethyl-1,3,4-triazaindolizin-2-yl, (S)-camphan-1-yl, (R)-camphan-1-yl or 8-quinolinyl.

M 17-02-00

According to the invention, the amino group included in the residue derived from a β -amino acid is particularly preferably substituted by $-\text{SO}_2\text{R}^4$ or $-\text{COR}^4$, where R^4 is as defined above. In this context, compounds are particularly preferred in which the residue derived from a β -amino acid has no substituent in the α -position to the carboxyl unit and the amino group included in this residue is substituted by $-\text{SO}_2\text{R}^4$ or $-\text{COR}^4$, where R^4 is as defined above.

In addition to one of the abovementioned residues, the nitrogen atom of the amino group situated in the β -position can have a substituent which can be from the group consisting of hydrogen, a substituted or unsubstituted alkyl or cycloalkyl residue, a substituted or unsubstituted aryl residue, a saturated or unsaturated, optionally substituted heterocyclic residue or can be bonded to one another and can thus form a heterocyclic ring system together with the nitrogen atom(s) to which they are bonded.

In this context, substituents are preferred which can be selected from the group consisting of hydrogen, a C_{1-6} -alkyl such as, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl or hexyl, a C_{3-7} -cycloalkyl such as, for example, cyclopropyl, cyclopropylmethyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl, an aryl such as, for example, phenyl, benzyl or toyl, a heterocyclic residue such as, for example, pyrrolidine, piperidine, piperazine, pyrrole, pyridine, tetrahydrofuran, furan, thiophene, tetrahydrothiophene, imidazolidine, imidazole, oxazolidine, oxazole, thiazolidine, thiazole, thioxazazole, benzofuran, benzoxazole, benzothiazole, benzimidazole, quinoline, isoquinoline, tetrahydroquinoline, tetrahydroisoquinoline, triazole, tetrazole, pyrimidine, purine, cytosine, thymine, uracil, adenine, guanine or xanthine and can alternatively be substituted by one or more C_{1-6} -alkyl residues such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl or hexyl, C_{3-7} -cycloalkyl residues such as cyclopropyl, cyclopropylmethyl, cyclobutyl, cyclopentyl or cyclohexyl, aryl residues such as phenyl, benzyl, toyl, naphthyl, indolyl, heterocyclic residues such as pyrrolidine, piperidine, piperazine, pyrrole, pyridine, tetrahydrofuran, furan, thiophene, tetrahydrothiophene, imidazolidine, imidazole, oxazolidine, oxazole, thiazolidine, thiazole, thioxazazole, benzofuran, benzoxazole,

M 17.02.00

benzothiazole, benzimidazole, quinoline, isoquinoline, tetrahydroquinoline, tetrahydroisoquinoline, triazole, tetrazole, pyrimidine, purine, cytosine, thymine, uracil, adenine, guanine or xanthine, or functional groups such as a double bond to a heteroatom such as oxygen, sulphur or nitrogen, an optionally substituted amino group, a nitro group, a halogen, a hydroxyl group, an ether group, a sulphide group, a mercaptan group, a cyano group, an isonitrile group, an alkenyl group, an alkinyl group, an aldehyde group, a keto group, a carboxyl group, an ester group, an amide group, a sulphoxide group or a sulphone group. One or more additionally saturated or unsaturated rings can furthermore be fused to the abovementioned cyclic residues with formation of, for example, a naphthyl, indolyl, benzofuranyl, benzoxazolyl, benzothiazolyl, benzimidazolyl, quinolinyl or isoquinolinyl unit or a partially or completely hydrogenated analogue thereof. Particularly preferably, the additional substituent on the nitrogen atom of the β -amino group is hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl, cyclopropyl, cyclopropylmethyl, cyclobutyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, 3,3,5-trimethylcyclohexyl, 5-methyl-2-hexyl, phenyl, benzyl, tolyl or a substituted derivative thereof, C₁₋₄-alkylamino-C₁₋₄-alkyl, C₁₋₄-dialkylamino-C₁₋₄-alkyl, amino-C₁₋₄-alkyl, C₁₋₄-alkyloxy-C₁₋₄-alkyl,

M 17·02·00

- 32 -

(a1)

(a2)

(a3)

(a4)

(a5)

(a6)

(a7)

(a8)

(a9)

(a10)

(a11)

(a12)

(a13)

(a14)

(a15)

M 17-02-00

- 33 -

The residue derived from a β -amino acid is bonded to one of the two central phenylene units which are bonded via a linker group L, and that phenylene unit will here be referred to as phenylene unit A. Apart from the residue derived from a β -amino acid and the linker group L, preferably the phenylene unit A carries no further substituents, but can contain one or more residues which are selected from the group consisting of hydrogen, a substituted or unsubstituted alkyl or cycloalkyl residue, a substituted or unsubstituted alkoxy residue or a halogen atom. The alkyl residue(s) are preferably C_{1-6} -alkyl residues such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl. The cycloalkyl residue(s) are preferably C_{3-7} -cycloalkyl residues such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl. The alkoxy residue(s) are preferably C_{1-6} -alkoxy residues such as methoxy, ethoxy, propoxy, butoxy, pentoxy or hexoxy, and the halogen atom(s) are preferably F, Cl, Br or I.

M 17-02-00

The phenylene unit A is bonded to a second central phenylene unit, which will here be referred to as phenylene unit B, via a linker group L. In addition to the linker group L, the phenylene unit B carries a further substituent which is selected from the group consisting of a guanidine, urea or thiourea unit which is optionally incorporated into a cyclic ring system. Moreover, the phenylene unit B preferably carries no further substituents, but can contain one or more residues which are selected from the group consisting of hydrogen, a substituted or unsubstituted alkyl or cycloalkyl residue, a substituted or unsubstituted alkoxy residue or a halogen atom. The alkyl residue(s) are preferably C₁₋₆-alkyl residues such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl. The cycloalkyl residue(s) are preferably C₃₋₇-cycloalkyl residues such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl. The alkoxy residue(s) are preferably C₁₋₆-alkoxy residues such as methoxy, ethoxy, propoxy, butoxy, pentoxy or hexoxy, and the halogen atom(s) are preferably F, Cl, Br or I.

The two central phenylene units can be 1,3- or 1,4-linked with respect to the linker group L and the residue derived from a β-amino acid or the guanidine, urea or thiourea unit, i.e. the residue derived from a β-amino acid and the linker group L can be substituted on the phenylene unit A in the meta- or para-position to one another, and at the same time the linker group L and the guanidine, urea or thiourea unit on the phenylene unit B can be substituted in the meta- or para-position to one another, where each combination of the abovementioned substitution patterns is possible for the central phenylene A-linker L-phenylene B unit of the compounds according to the invention. According to the present invention, compounds are particularly preferred whose central phenylene A-linker L-phenylene B unit according to the above definition consists of a p-substituted phenylene unit A and a p-substituted phenylene unit B, a p-substituted phenylene unit A and an m-substituted phenylene unit B, an m-substituted phenylene unit A and a p-substituted phenylene unit B or an m-substituted phenylene unit A and an m-substituted phenylene unit B. According to the present invention, compounds are particularly preferred whose central phenylene

M 17.02.00

A-linker L-phenylene B unit according to the above definition consists of an m-substituted phenylene unit A and an m-substituted phenylene unit B.

According to the present invention, the linker group L is selected from the group which consists of the elements -(CH₂)_mNHSO₂(CH₂)_n-, -(CH₂)_mSO₂NH(CH₂)_n-, -(CH₂)_mNHCO(CH₂)_n-, -(CH₂)_mCONH(CH₂)_n-, -(CH₂)_mOCH₂(CH₂)_n-, -(CH₂)_mCH₂O(CH₂)_n-, -(CH₂)_mCOO(CH₂)_n-, -(CH₂)_mOOC(CH₂)_n-, (CH₂)_mCH₂CO(CH₂)_n-, -(CH₂)_mCOCH₂(CH₂)_n-, -NHCONH-, -(CH₂)_mSCH₂(CH₂)_n-, -(CH₂)_mCH₂S(CH₂)_n-, -(CH₂)_mCH₂SO(CH₂)_n-, -(CH₂)_mSOCH₂(CH₂)_n-, 10 -(CH₂)_mCH₂SO₂(CH₂)_n- or -(CH₂)_mSO₂CH₂(CH₂)_n-, where m and n in each case are an integer of 0 or 1 and m + n is ≤ 1.

According to the invention, the linker group L is preferably -NHSO₂-, -CH₂NHSO₂-, -NHSO₂CH₂-, -SO₂NH-, -CH₂SO₂NH-, -SO₂NHCH₂-, -NHCO-, -CH₂NHCO-, -NHCOCH₂-, -CONH-, -CH₂CONH-, -CONHCH₂-, -OCH₂-, -CH₂OCH₂, -OCH₂CH₂-, -CH₂O-, -CH₂CH₂O-, -COO-, -CH₂COO-, -COOCH₂-, -OOC-, -OOCCH₂-, -CH₂OOC-, -CH₂CO-, -COCH₂-, -CH₂CH₂CO-, -COCH₂CH₂-, -CH₂COCH₂-, -NHCONH-, -SCH₂-, -CH₂S-, -CH₂SCH₂, -SCH₂CH₂-, CH₂CH₂S-, -SOCH₂-, -CH₂SO-, -CH₂SOCH₂-, -SOCH₂CH₂-, -CH₂CH₂SO-, -SO₂CH₂-, -CH₂SO₂-, 15 -CH₂SO₂CH₂-, -CH₂CH₂SO₂- or -SO₂CH₂CH₂-. Particularly preferred linker groups L here are -NHSO₂-, -CH₂NHSO₂-, -NHSO₂CH₂-, -SO₂NH-, -CH₂SO₂NH-, -SO₂NHCH₂-, -NHCO-, -CH₂NHCO-, -NHCOCH₂-, -CONH-, -CH₂CONH-, -CONHCH₂-, -OCH₂-, -CH₂OCH₂, -OCH₂CH₂-, -CH₂O-, -CH₂CH₂O-, -COO-, -CH₂COO-, -COOCH₂-, -OOC-, -OOCCH₂-, -CH₂OOC-, -CH₂CO-, -COCH₂-, -CH₂CH₂CO-, -COCH₂CH₂-, -CH₂COCH₂-, -NHCONH-, -SCH₂-, -CH₂S-, -CH₂SCH₂, -SCH₂CH₂-, CH₂CH₂S-, -SOCH₂-, -CH₂SO-, -CH₂SOCH₂-, -SOCH₂CH₂-, -CH₂CH₂SO-, -SO₂CH₂-, -CH₂SO₂-, 20 -CH₂SO₂CH₂-, -CH₂CH₂SO₂- or -SO₂CH₂CH₂-.

25 The central phenylene unit B carries as a substituent a residue which is selected from the group consisting of a guanidine, urea or thiourea unit. This guanidine, urea or thiourea unit can either be open-chained or a constituent of a cyclic system. The two nitrogen atoms of the respective unit, which are only bonded via single bonds, can carry additional substituents R⁶, R⁸ and R⁹. These substituents can independently of one another or simultaneously be hydrogen, a substituted or unsubstituted alkyl or cycloalkyl residue, a substituted or unsubstituted aryl residue, a saturated or

unsaturated, optionally substituted heterocyclic residue or can be bonded to one another and can thus form a heterocyclic ring system together with the nitrogen atom(s) to which they are bonded. In this context, preferred substituents are selected from the group consisting of hydrogen, a C₁₋₆-alkyl such as, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl or hexyl, a C₃₋₇-cycloalkyl such as, for example, cyclopropyl, cyclopropylmethyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl, an aryl such as, for example, phenyl, benzyl or tolyl, a heterocyclic residue such as, for example, pyrrolidine, piperidine, piperazine, pyrrole, pyridine, tetrahydrofuran, furan, thiophene, tetrahydrothiophene, imidazolidine, imidazole, oxazolidine, oxazole, thiazolidine, thiazole, thioxazole, benzofuran, benzoxazole, benzothiazole, benzimidazole, quinoline, isoquinoline, tetrahydroquinoline, tetrahydroisoquinoline, triazole, tetrazole, pyrimidine, purine, cytosine, thymine, uracil, adenine, guanine or xanthine and can alternatively be substituted by one or more C₁₋₆-alkyl residues such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl or hexyl, C₃₋₇-cycloalkyl residues such as cyclopropyl, cyclopropylmethyl, cyclobutyl, cyclopentyl or cyclohexyl, aryl residues such as phenyl, benzyl, tolyl, naphthyl, indolyl, heterocyclic residues such as pyrrolidine, piperidine, piperazine, pyrrole, pyridine, tetrahydrofuran, furan, thiophene, tetrahydrothiophene, imidazolidine, imidazole, oxazolidine, oxazole, thiazolidine, thiazole, thioxazole, benzofuran, benzoxazole, benzothiazole, benzimidazole, quinoline, isoquinoline, tetrahydroquinoline, tetrahydroisoquinoline, triazole, tetrazole, pyrimidine, purine, cytosine, thymine, uracil, adenine, guanine or xanthine, or functional groups such as a double bond to a heteroatom such as oxygen, sulphur or nitrogen, an optionally substituted amino group, a nitro group, a halogen, a hydroxyl group, an ether group, a sulphide group, a mercaptan group, a cyano group, an isonitrile group, an alkenyl group, an alkinyl group, an aldehyde group, a keto group, a carboxyl group, an ester group, an amide group, a sulphoxide group or a sulphone group. One or more additionally saturated or unsaturated rings can furthermore be fused to the abovementioned cyclic residues with formation of, for example, a naphthyl, indolyl, benzofuranyl, benzoxazolyl, benzothiazolyl, benzimidazolyl, quinolinyl or

isoquinolinyl unit or a partially or completely hydrogenated analogue thereof. Particularly preferred are substituents such as hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl, cyclopropyl, cyclopropylmethyl, cyclobutyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, 5,5-dimethylcyclohexyl, 5-methyl-2-hexyl, phenyl, benzyl, tolyl or a substituted derivative thereof, C₁₋₄-alkylamino-C₁₋₄-alkyl, C₁₋₄-dialkylamino-C₁₋₄-alkyl, amino-C₁₋₄-alkyl, C₁₋₄-alkyloxy-C₁₋₄-alkyl or one of the abovementioned residues (a1) to (a28).

10 The two residues R⁸ and R⁹ on the terminal nitrogen atom of the corresponding guanidine, urea or thiourea unit can be bonded to one another and thus, with the nitrogen atom, form a heterocyclic system which can be selected, for example, from the following, non-conclusive list:

15 where the ring systems shown can carry one or more residues which are selected from the group consisting of hydrogen, a C₁₋₆-alkyl such as, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl or

11702-00

hexyl, a C₃₋₇-cycloalkyl such as, for example, cyclopropyl, cyclopropylmethyl, cyclobutyl, cyclopentyl or cyclohexyl, an aryl such as, for example, phenyl, benzyl or tolyl, a heterocyclic residue such as, for example, pyrrolidine, piperidine, piperazine, pyrrole, pyridine, tetrahydrofuran, furan, thiophene, tetrahydrothiophene, imidazolidine, imidazole, oxazolidine, oxazole, thiazolidine, thiazole, thioxazole, benzofuran, benzoxazole, benzothiazole, benzimidazole, quinoline, isoquinoline, tetrahydroquinoline, tetrahydroisoquinoline, triazole, tetrazole, pyrimidine, purine, cytosine, thymine, uracil, adenine, guanine or xanthine, or a terminal or internal E or Z alkene unit, and can alternatively be substituted by one or more C₁₋₆-alkyl residues such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl or hexyl, C₃₋₇-cycloalkyl residues such as cyclopropyl, cyclopropylmethyl, cyclobutyl, cyclopentyl or cyclohexyl, aryl residues such as phenyl, benzyl, tolyl, naphthyl, indolyl, heterocyclic residues such as pyrrolidine, piperidine, piperazine, pyrrole, pyridine, tetrahydrofuran, furan, thiophene, tetrahydrothiophene, imidazolidine, imidazole, oxazolidine, oxazole, thiazolidine, thiazole, thioxazole, benzofuran, benzoxazole, benzothiazole, benzimidazole, quinoline, isoquinoline, tetrahydroquinoline, tetrahydroisoquinoline, triazole, tetrazole, pyrimidine, purine, cytosine, thymine, uracil, adenine, guanine or xanthine, or functional groups such as a double bond to a heteroatom such as oxygen, sulphur or nitrogen, an optionally substituted amino group, a nitro group, a halogen, a hydroxyl group, an ether group, a sulphide group, a mercaptan group, a cyano group, an isonitrile group, an alkenyl group, an alkinyl group, an aldehyde group, a keto group, a carboxyl group, an ester group, an amide group, a sulphoxide group or a sulphone group. One or more additionally saturated or unsaturated rings can furthermore be fused to the above-mentioned cyclic residues with formation of, for example, a naphthyl, indolyl, benzofuranyl, benzoxazolyl, benzothiazolyl, benzimidazolyl, quinolinyl or isoquinolinyl unit or a partially or completely hydrogenated analogue thereof.

30 Of the ring systems shown above, the four- to six-membered ring systems are preferred.

As mentioned above, the urea, thiourea or guanidine unit can be open-chained or incorporated into a cyclic system and can thus be a constituent of one of the following preferred functional units:

where the above list is not a conclusive enumeration of all possible structural units.

10

According to the invention, in addition to the abovementioned preferred structural units, their analogues are also included in which one or more 4- to 6-membered ring

M 17.02.00

- 40 -

systems are fused to the heterocycle, such as, for example, the corresponding benzo-fused analogues of the abovementioned structural units.

In the structural units shown above, R⁶, R⁸ and R⁹ are as defined above.

5

Furthermore, in the above structural units R⁷ can be absent, or can be hydrogen, a substituted or unsubstituted alkyl or cycloalkyl residue such as, for example, a C₁₋₆-alkyl such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl or a C₃₋₇-cycloalkyl such as cyclopropyl, cyclobutyl,

10 cyclopentyl, cyclohexyl, -NO₂, -CN, -COR⁷ or -COOR⁷, where R⁷ can be hydrogen, a substituted or unsubstituted alkyl or cycloalkyl residue, a substituted or unsubstituted aryl residue or a saturated or unsaturated, optionally substituted heterocyclic residue, which can be saturated or unsaturated and/or can contain further heteroatoms, and is preferably a C₁₋₆-alkyl such as, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl, a C₃₋₇-cycloalkyl such as, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, an aryl such as, for example, phenyl, benzyl, tolyl, or a substituted derivative thereof.

20

Particularly preferred compounds of the formula (1) according to the invention are those in which the amino group included in the residue derived from a α -amino acid carries a residue -SO₂R⁴, where R⁴ is preferably methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, phenyl, benzyl, tolyl or a substituted derivative thereof, -C₆H₂(CH₃)₃, -C₆(CH₃)₅, -CH₂C₆H₂(CH₃)₃, 2-chlorophenyl, 3-chlorophenyl, 4-chlorophenyl, 2,3-dichlorophenyl, 2,4-dichlorophenyl, 3,4-dichlorophenyl, 2,5-dichlorophenyl, 3,5-dichlorophenyl, 2,6-dichlorophenyl, 4-chlorophenylmethyl, 2,4-dichlorophenylmethyl, 2,6-dichlorophenylmethyl, 2-methoxycarbonylphenylmethyl, 3-trifluoromethylphenyl, 4-trifluoromethylphenyl, 3,5-bis(trifluoromethyl)phenyl, 4-trifluoromethoxyphenyl, phenylmethyl, 2-acetamido-4-methyl-thiazol-5-yl, phenylethyl, 1-phenylpropyl, (S)-(+)-camphor-10-yl, (R)-(-)-camphor-10-yl, 2-phenylethenyl, 2-thiophenyl, 4-methoxyphenyl, 3,5-dimethoxyphenyl, 3-methylphenyl, 4-

methylphenyl, 4-t-butylphenyl, 4-propylphenyl, 2,5-dimethylphenyl, 2-methoxy-5-methylphenyl, 2,3,5,6-tetramethylphenyl, 1-naphthyl, 2-naphthyl, 4-fluorophenyl, 2,4-difluorophenyl, 2-chloro-6-methylphenyl, 2-chloro-4-fluorophenyl, 2,5-dimethoxyphenyl, 3,4-dimethoxyphenyl, 3-chloro-6-methoxyphenyl, 2-trifluoromethylphenyl, 2-alkylsulphonylphenyl, 2-arylsulphonylphenyl, 3-(N-acetyl-6-methoxy)-aniline, 4-acetamidophenyl, 2,2,2-trifluoroethyl, 5-chloro-3-methylbenzothiazole-2-yl, N-methoxycarbonylpiperidin-3-yl, thiophen-2-yl, isoxazol-5-yl, ethoxy, 2-chloropyridin-3-yl, pyridin-3-yl, benzyloxy, 5-methylisoxazol-3-yl, 1-adamantyl, 4-chlorophenoxyethyl, 2,2-dimethylethenyl, 2-chloropyridine-5-methyl, 5,7-dimethyl-1,3,4-triazaindolin-2-yl, (S)-camphan-1-yl, (R)-camphan-1-yl or 8-quinolinyl, the linker group L is - NHSO_2- , - CH_2NSO_2- , - $\text{NHSO}_2\text{CH}_2-$, and the residue located on the phenylene unit is an open-chain or cyclic guanidine unit, where a cyclic guanidine unit such as, for example, a 4,5-dihydro-1H-imidazol-2-yl-amino unit is particularly preferred.

Furthermore, particularly preferred compounds of the formula (1) according to the present invention are those in which the amino group included in the residue derived from a β -amino acid carries a residue $-\text{SO}_2\text{R}^4$, where R^4 is preferably methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, phenyl, benzyl, tolyl or a substituted derivative thereof, $-\text{C}_6\text{H}_2(\text{CH}_3)_3$, $-\text{C}_6(\text{CH}_3)_5$, $-\text{CH}_2\text{C}_6\text{H}_2(\text{CH}_3)_3$, 2-chlorophenyl, 3-chlorophenyl, 4-chlorophenyl, 2,3-dichlorophenyl, 2,4-dichlorophenyl, 3,4-dichlorophenyl, 2,5-dichlorophenyl, 3,5-dichlorophenyl, 2,6-dichlorophenyl, 4-chlorophenylmethyl, 2,4-dichlorophenylmethyl, 2,6-dichlorophenylmethyl, 2-methoxycarbonylphenylmethyl, 3-trifluoromethylphenyl, 4-trifluoromethylphenyl, 3,5-bis(trifluoromethyl)phenyl, 4-trifluoromethoxyphenyl, phenylmethyl, 2-acetamido-4-methyl-thiazol-5-yl, phenylethyl, 1-phenylpropyl, (S)-(+)camphor-10-yl, (R)(-)camphor-10-yl, 2-phenylethenyl, 2-thiophenyl, 4-methoxyphenyl, 3,5-dimethoxyphenyl, 3-methylphenyl, 4-methylphenyl, 4-t-butylphenyl, 4-propylphenyl, 2,5-dimethylphenyl, 2-methoxy-5-methylphenyl, 2,3,5,6-tetramethylphenyl, 1-naphthyl, 2-naphthyl, 4-fluorophenyl, 2,4-difluorophenyl, 2-chloro-6-methyl-

phenyl, 2-chloro-4-fluorophenyl, 2,5-dimethoxyphenyl, 3,4-dimethoxyphenyl, 3-chloro-6-methoxyphenyl, 2-trifluoromethylphenyl, 2-alkylsulphonylphenyl, 2-aryl-sulphonylphenyl, 3-(N-acetyl-6-methoxy)aniline, 4-acetamidophenyl, 2,2,2-trifluoroethyl, 5-chloro-3-methyl-benzothiazol-2-yl, N-methoxycarbonyl-piperidin-3-yl, thiophen-2-yl, isoxazol-5-yl, ethoxy, 2-chloropyridin-3-yl, pyridin-3-yl, benzyloxy, 5-methylisoxazol-3-yl, 1-adamantyl, 4-chlorophenoxyethyl, 2,2-dimethylethenyl, 2-chloropyridine-5-methyl, 5,7-dimethyl-1,3,4-triazaindolin-2-yl, (S)-camphan-1-yl, (R)-camphan-1-yl or 8-quinolinyl, the linker group L is -NHCO-, -CH₂NHCO-, -NHCOC₂- or -OCH₂-, -CH₂O-, -CH₂OCH₂-, -CH₂CH₂O-, -OCH₂CH₂-, and the residue located on the phenylene unit is an open-chain or cyclic guanidine unit, where a cyclic guanidine unit such as, for example, a 4,5-dihydro-1H-imidazol-2-yl-amino unit is particularly preferred.

Moreover, particularly preferred compounds of the formula (1) according to the present invention are those in which the amino group included in the residue derived from a β -amino acid carries a residue -COR⁴, where R⁴ is preferably hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, phenyl, benzyl, tolyl or a substituted derivative thereof, -C₆H₅(CH₃)₃, -C₆(CH₃)₅, -CH₂C₆H₅(CH₃)₃, 2-chlorophenyl, 3-chlorophenyl, 4-chlorophenyl, 2,3-dichlorophenyl, 2,4-dichlorophenyl, 3,4-dichlorophenyl, 2,5-dichlorophenyl, 3,5-dichlorophenyl, 2,6-dichlorophenyl, 4-chlorophenylmethyl, 2,4-dichlorophenylmethyl, 2,6-dichlorophenylmethyl, 2-methoxycarbonylphenylmethyl, 3-trifluoromethylphenyl, 4-trifluoromethylphenyl, 3,5-bis(trifluoromethyl)phenyl, 4-trifluoromethoxyphenyl, phenylmethyl, 2-acetamido-4-methyl-thiazol-5-yl, phenylethyl, 1-phenylpropyl, (S)-(+)camphor-10-yl, (R)(-)camphor-10-yl, 2-phenylethenyl, 2-thiophenyl, 4-methoxyphenyl, 3,5-dimethoxyphenyl, 3-methylphenyl, 4-methylphenyl, 4-t-butylphenyl, 4-propylphenyl, 2,5-dimethylphenyl, 2-methoxy-5-methylphenyl, 2,3,5,6-tetramethylphenyl, 1-naphthyl, 2-naphthyl, 4-fluorophenyl, 2,4-difluorophenyl, 2-chloro-6-methoxyphenyl, 2-chloro-4-fluorophenyl, 2,5-dimethoxyphenyl, 3,4-dimethoxyphenyl, 3-chloro-6-methoxyphenyl, 2-trifluoromethylphenyl, 2-alkylsulphonylphenyl, 2-arylsulphon-

ylphenyl, 3-(N-acetyl-6-methoxy)aniline, 4-acetamidophenyl, 2,2,2-trifluoroethyl, 5-chloro-3-methyl-benzothiazol-2-yl, N-methoxycarbonyl-piperidin-3-yl, thiophen-2-yl, isoxazol-5-yl, ethoxy, 2-chloropyridin-3-yl, pyridin-3-yl, benzyloxy, 5-methylisoxazol-3-yl, 1-adamantyl, 4-chlorophenoxyethyl, 2,2-dimethylethenyl, 2-chloropyridine-5-methyl, 5,7-dimethyl-1,3,4-triazaindolizin-2-yl, (S)-camphan-1-yl, (R)-camphan-1-yl or 8-quinolinyl, the linker group L is -NHSO₂-, -CH₂NHSO₂-, -NHSO₂CH₂, and the residue located on the phenylene unit is an open-chain or cyclic guanidine unit, where a cyclic guanidine unit such as, for example, a 4,5-dihydro-1H-imidazol-2-yl-amino unit is particularly preferred.

10

The present invention comprises both the individual enantiomers or diastereomers and the corresponding racemates, diastereomer mixtures and salts of the compounds defined in Claim 1. In addition, according to the present invention all possible tautomeric forms of the compounds described above are also included. The present invention furthermore comprises the pure E and Z isomers of the compounds of the general formula (1) and their E/Z mixtures in all ratios. The diastereomer mixtures or E/Z mixtures can be separated into the individual isomers by chromatographic procedures. The racemates can be separated into the respective enantiomers either by chromatographic procedures on chiral phases or by resolution.

15

20 The compounds described above can be prepared from commercially available starting compounds. The main steps of the preparation process according to the invention are the reaction of a β-amino acid of the formula (2)

25

where

P is $-(CH_2)_mNO_2$, $-(CH_2)_mO-C_{1-6}$ -alkyl, $-(CH_2)_mSO_2P'$, $-(CH_2)_mCOP'$, $-(CH_2)_mCH_2O-C_{1-6}$ -alkyl, where m in each case is an integer of 0 or 1; P' is $-OH$, $-O-C_{1-6}$ -alkyl, and the other residues are as defined above;

5

with a compound R^4-A to give a compound of the formula (3),

where

- 10 R^4 is $-SO_2R^4'$, $-COOR^{4''}$, or $-COR^4$; R^4' and $R^{4''}$ are as defined above; A is $-Cl$, $-Br$, $-I$, $-O$ -triflyl, $-O$ -tosyl, $-O-C_{1-6}$ -alkyl, $-O-CO-C_{1-6}$ -alkyl, $-O-CO-O-C_{1-6}$ -alkyl, $-OC(CH_3)=CH_2$; and the other residues are as defined above;
the conversion of the residue P into the residue Q, where Q is $-(CH_2)_mNH_2$, $-(CH_2)_mOH$, $-(CH_2)_mCH_2OH$, $-(CH_2)_mSO_2A$, $-(CH_2)_mCOA$, A is as defined above; m is an integer of 0 or 1;
- 15 the reaction of the compound (3) obtained above with a compound of the formula (4)

- 20 where S is $ASO_2(CH_2)_n-$, $NH_2(CH_2)_n-$, $ACO(CH_2)_n-$, $HOCH_2(CH_2)_n-$, $M(CH_2)_n-$, $MCH_2(CH_2)_n-$, $HSCH_2(CH_2)_n-$ or $HS(CH_2)_n-$, where n is an integer of 0 or 1; M is a residue including Mg, Li, Cd or Sn; A is as defined above; and

17.02.00

C is -NO_2 orX, R⁷, R⁸, R⁹ and R¹¹ are as defined above;

to give a compound of the formula (5)

where the residues are as defined above;

if appropriate the conversion of C, if C is a nitro group, into an optionally cyclic urea, thiourea or guanidine unit with obtainment of the compound (1); and

10 if appropriate the removal of protective groups and/or derivatization of nitrogen atoms, which are present, at preferred times within the preparation process, and/or conversion of the compound obtained into the free acid and/or conversion of the compound obtained into one of its physiologically acceptable salts by reaction with an inorganic or organic base or acid.

15 The β -amino acid derivatives of the formula (2) are either commercially available or are accessible in a simple manner by standard chemical processes, such as are known to any person skilled in the art and described in standard works such as Houben-Weyl, Methoden der organischen Chemie [Methods of Organic Chemistry], Georg Thieme-Verlag, Stuttgart. In particular, reference is made to the preparation process for β -amino acid derivatives described by Rodionow et al., J. Am. Chem. Soc. 51, 1929, 844-846, Kunz et al., Angew. Chem. 101, 1989, 1042-1043 and Ishihara et al., Bull. Chem. Soc. Jpn., 68, 6, 1995, 1721-1730.

M 1702-00

According to a preferred embodiment of the present invention, the β -amino acid derivatives of the formula (2) are obtained by reaction of malonic acid with a benzaldehyde derivative of the formula (2a)

5

where R^{10} and P are as defined above, in the presence of ammonia, ammonium compounds or amines. Instead of malonic acid, an ester can also be used, if appropriate with addition of a base conventionally employed for these purposes, such as NaH or a sodium alkoxide, preferably sodium methoxide or sodium ethoxide. An ammonium compound such as, for example, ammonium acetate is preferably employed as the nitrogen compound.

10
15

The benzaldehyde derivatives (2a) are either commercially available or are accessible in a simple manner by standard chemical processes, such as are known to any person skilled in the art and described in standard works such as Houben-Weyl, Methoden der organischen Chemie [Methods of Organic Chemistry], Georg Thieme-Verlag, Stuttgart.

20

According to a preferred embodiment of the present invention, the compound of the formula (2a) employed is a nitrobenzaldehyde derivative such as 3- or 4-nitrobenzaldehyde or an alkoxybenzaldehyde derivative such as 3- or 4-methoxybenzaldehyde.

25

According to a preferred embodiment of the present invention, the β -amino acid of the formula (2) is obtained by reaction of approximately equimolar amounts of malonic acid, ammonium acetate and 3-nitrobenzaldehyde or 3-methoxybenzaldehyde in a solvent such as isopropanol with heating at 50 to 110°C for several

hours, preferably 2 to 6 hours, preferably under reflux of the solvent, in the surrounding atmosphere (i.e. in the air and under normal pressure).

For the following reaction steps, the carboxyl group is blocked by a conventional protective group P. Protective groups of this type are known to the person skilled in the art and do not expressly need to be mentioned here. Particularly preferably, the carboxyl group is esterified, P being a C₁₋₆-alkyl such as, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl, a C₃₋₇-cycloalkyl such as, for example, cyclopropyl, cyclopropylmethyl, cyclobutyl, cyclopentyl, cyclohexyl, an aryl such as, for example, phenyl, benzyl or tolyl or a substituted derivative thereof. Furthermore, the preparation process according to the invention for the compounds of the general formula (1) can be carried out on a solid phase. In this case the carboxyl residue can be bonded to any solid phase conventionally used for reactions of this type, such as a polystyrene resin, for example a Wang polystyrene resin.

According to a preferred embodiment according to the invention, the carboxyl group of the above β-amino acid is esterified by reaction with an alcohol such as ethanol. This can be carried out under conditions known to the person skilled in the art, such as acid catalysis and, if appropriate, addition of a dehydrating agent such as dicyclohexylcarbodiimide. Preferably, however, the β-amino acid is suspended in the appropriate alcohol, such as ethanol, which is present in excess, HCl is passed in over a period of approximately 30 minutes to approximately 2 hours and the mixture is then heated in a surrounding atmosphere for several hours, preferably approximately 1 to 6 hours and particularly preferably approximately 3 to 5 hours, at approximately 50 to approximately 100°C, preferably under reflux of the alcohol.

The carboxyl-protected β-amino acids thus accessible are reacted with a suitable sulphonylating, carbamoylating or acylating reagent in order to obtain the corresponding sulphonamide, carbamate or amide derivatives. The sulphonating reagent preferably used is a sulphonyl chloride of the formula R⁴⁻-SO₂Cl or a

carbamoyl chloride of the formula R⁴-OCOCl, where R⁴ is a C₁₋₁₀-alkyl such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl, heptyl, octyl, nonyl, decyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, or camphor-10-yl, an aryl such as phenyl, benzyl, tolyl, mesityl or substituted derivatives of these such as -C₆H₅(CH₃)₃, -C₆(CH₃)₅, -CH₂C₆H₅(CH₃)₃, 2-chlorophenyl, 3-chlorophenyl, 4-chlorophenyl, 2,3-dichlorophenyl, 2,4-dichlorophenyl, 3,4-dichlorophenyl, 2,5-dichlorophenyl, 3,5-dichlorophenyl, 2,6-dichlorophenyl, 4-chlorophenylmethyl, 2,4-dichlorophenylmethyl, 2,6-dichlorophenylmethyl, 2-methoxycarbonylphenylmethyl, 3-trifluoromethylphenyl, 4-trifluoromethylphenyl, 3,5-bis(trifluoromethyl)phenyl, 4-trifluoromethoxyphenyl, phenylmethyl, 2-acetamido-4-methylthiazol-5-yl, phenylethyl, 1-phenylpropyl, (S)-(+)-camphor-10-yl, (R)-(-)-camphor-10-yl, 2-phenylethenyl, 2-thiophenyl, 4-methoxyphenyl, 3,5-dimethoxyphenyl, 3-methylphenyl, 4-methylphenyl, 4-t-butylphenyl, 4-propylphenyl, 2,5-dimethylphenyl, 2-methoxy-5-methylphenyl, 2,3,5,6-tetramethylphenyl, 1-naphthyl, 2-naphthyl, 4-fluorophenyl, 2,4-difluorophenyl, 2-chloro-6-methylphenyl, 2-chloro-4-fluorophenyl, 2,5-dimethoxyphenyl, 3,4-dimethoxyphenyl, 3-chloro-6-methoxyphenyl, 2-trifluoromethylphenyl, 2-alkylsulphonylphenyl, 2-arylsulphonylphenyl, 3-(N-acetyl-6-methoxy)aniline, 4-acetamidophenyl, 2,2,2-trifluoroethyl, 5-chloro-3-methyl-benzothiazol-2-yl, N-methoxycarbonyl-piperidin-3-yl, thiophen-2-yl, isoxazol-5-yl, 2-chloropyridin-3-yl, pyridin-3-yl, 5-methyl-isoxazol-3-yl, 1-adamantyl, 4-chlorophenoxyethyl, 2,2-dimethylethenyl, 2-chloropyridine-5-methyl, 5,7-dimethyl-1,3,4-triazaindolin-2-yl, (S)-camphan-1-yl, (R)-camphan-1-yl, 8-quinolinyl, or a heterocyclic analogue of the abovementioned cyclic residues. Instead of the abovementioned sulphonyl or carbamoyl chlorides, the corresponding fluorides, bromides or iodides can also be employed. As an acylating reagent, the appropriate carbonyl halides or carboxylic anhydrides are reacted with the amino group, where the appropriate C₁₋₆-alkyl chlorides such as methyl chloride, ethyl chloride, propyl chloride, isopropyl chloride, butyl chloride, isobutyl chloride, t-butyl chloride, pentyl chloride, isopentyl chloride, neopentyl chloride, hexyl chloride, C₃₋₇-cycloalkyl chlorides such as cyclopropyl chloride, cyclobutyl chloride, cyclopentyl chloride, cyclohexyl chloride, aryl chlorides such as phenyl chloride,

M 17.02.00

- 49 -

benzyl chloride, tolylcarboxylic acid chlorides or substituted derivatives thereof are preferred according to the invention. For the preparation of the urea or thiourea derivatives, the amino group is preferably first reacted with a carbonic acid or thiocarbonic acid derivative such as a chloroformic acid ester or thiophosgene and then with a desired amine. The above reactions and their implementation are well known to the person skilled in the art and described in detail in standard works such as, for example, Houben-Weyl, Methoden der organischen Chemie [Methods of Organic Chemistry], Georg Thieme Verlag, Stuttgart.

- 10 According to a preferred embodiment of the invention, the carboxyl-protected β -amino acid of the formula (2) is treated with an equimolar amount or a slight excess of the appropriate sulphonylating agent, for example phenylsulphonyl chloride, or acylating agent, for example mesitylacetyl chloride, with cooling, preferably at 0°C, in a solvent such as pyridine or dioxane in a surrounding atmosphere in the presence of a base such as an amine, preferably triethylamine or diisopropylethylamine, and stirred at this temperature for a period of approximately 10 minutes to approximately 2 hours. In the case of sulphonylation, stirring at room temperature for several hours, preferably approximately 2 to 6 hours, follows this.
- 15 Before the construction of the linker group L, the residue P of the compound of the formula (3) must be converted into a group Q which can participate in a nucleophilic substitution either as a nucleophilic reagent or as a substrate. If P includes a nitro group, this is reduced to the corresponding amino group, which reduction can be carried out according to the present invention preferably by addition of tin-(II) chloride to a solution of the compound of the formula (3) in a solvent such as ethanol and subsequent heating to approximately 50 to 110°C, preferably under reflux of the solvent, for several hours, preferably approximately 1 to 4 hours, in a surrounding atmosphere. If P includes an ether group, the liberation of the corresponding hydroxyl group is preferably carried out by addition of a Lewis acid such as boron tribromide in a solvent such as dichloromethane with cooling, preferably at -78°C, and subsequent stirring for several hours, preferably 6 to 24 hours, at room
- 20
- 25
- 30

M 17.02.00

- 50 -

temperature. If P includes a sulphonic acid or carboxylic acid group, conversion into the corresponding sulphonyl or carbonyl halide preferably takes place. This can be carried out in a manner known to the person skilled in the art, for example by reaction of the corresponding sulphonic or carboxylic acid with thionyl chloride.

5

The compound prepared in this way is then reacted with a compound of the formula (4)

where

10 S is $\text{ASO}_2(\text{CH}_2)_n-$, $\text{NH}_2(\text{CH}_2)_n-$, $\text{ACO}(\text{CH}_2)_n-$, $\text{HOCH}_2(\text{CH}_2)_n-$,
 $\text{M}(\text{CH}_2)_n-$, $\text{MCH}_2(\text{CH}_2)_n-$, $\text{HSCH}_2(\text{CH}_2)_n-$ or $\text{HS}(\text{CH}_2)_n-$, where
 n is an integer of 0 or 1;

M is a residue including Mg, Li, Cd or Sn;

A is as defined above; and

C is $-\text{NO}_2$ or

15 X, R⁷, R⁸, R⁹ and R¹¹ are as defined above;

to give a compound of the formula (5)

20 where the residues are as defined above. This reaction formally represents the substitution of a leaving group in one of the starting compounds by a nucleophilic unit in the other starting compound in each case.

M 17-02-00

- 51 -

- According to a preferred embodiment of the present invention, the reactants are mixed together in approximately equimolar amounts in the presence of a base such as pyridine or sodium hydride and optionally in a solvent such as, for example, tetrahydrofuran (THF) or dimethylformamide (DMF) in a surrounding atmosphere at room temperature or with cooling, preferably at approximately 0°C, and stirred for several hours, preferably approximately 1 h to approximately 24 hours, at room temperature or with cooling, for example at 0°C.
- The compounds of the formula (5) thus obtained are converted into the compounds of the formula (1) according to the invention by conversion of the terminal nitro group into an open-chain or cyclic guanidine, urea or thiourea unit.
- For this purpose, the nitro group is first preferably converted according to the invention into an amino group by addition of a customary reducing agent such as tin-(II) chloride, if appropriate in the presence of solvents such as ethanol, by stirring the reaction mixture with heating to approximately 50 to 110°C, preferably under reflux of the solvent, in a surrounding atmosphere for approximately 2 hours.
- The amino group thus obtained is then converted into a guanidine, urea or thiourea unit. For this purpose, the above amino group is preferably first reacted with a carbonic acid ester or thiocarbonic acid ester derivative in a solvent such as dimethylformamide (DMF) in the presence of mercury-(II) chloride with cooling, preferably at approximately 0°C, and stirring for approximately 10 minutes for up to approximately 3 hours with cooling, preferably at approximately 0°C, and if appropriate then at room temperature. The carbonic acid ester or thiocarbonic acid ester derivative employed can preferably be phosgene, triphosgene, thiophosgene, chloroformic acid esters or thiopseudourea derivatives, commercially available chloroformic acid esters being preferred for the preparation of the urca derivatives, thiophosgene being preferred for the preparation of the thiourea derivatives and thiopseudourea derivatives being preferred for the preparation of the guanidine

M 17-02-00

derivatives.

The carbamates or isothiocyanates formed in this way can be converted into the corresponding urea, thiourea and guanidine derivatives by reaction with appropriate amines. Amines which can be used are substances of the formula HNRR', where R and R' independently of one another or simultaneously are hydrogen, a substituted or unsubstituted alkyl or cycloalkyl residue, a substituted or unsubstituted aryl residue, a saturated or unsaturated, optionally substituted heterocyclic residue, an alkylamine residue, an alkylamide residue or are bonded to one another and together with the nitrogen atom can form an optionally substituted heterocyclic ring system which can be saturated or unsaturated and/or can contain further heteroatoms. With respect to the preferred residues on the amine, reference is made to the above description of the compounds according to the invention. According to the invention, the carbamate or isothiocyanate is preferably reacted with an amine at room temperature with stirring for approximately 1 to 5 hours, preferably approximately 2 to 3 hours, in the presence of an auxiliary base such as diisopropylethylamine in a solvent such as dimethylformamide (DMF). In the case of the preparation of cyclic guanidine derivatives, the corresponding isothiocyanate is preferably first heated in ethanol for several hours, preferably approximately 12 to 24 hours, and then heated with a diamine such as diaminoethane in a solvent such as toluene, dimethylformamide (DMF) or a mixture of the two.

According to a further preferred embodiment of the present invention, it is also possible to generate the above guanidine, urea or thiourea group in the above manner initially on the compound of the formula (4) and to react the compound of the formula (4) thus obtained subsequently in the manner described above with the compound of the formula (3).

The compounds obtained according to the processes explained above can furthermore be derivatized by removal of protective groups which may be present, continued substitution of nitrogen atoms, which are present, at preferred positions in the

M 17.02.00

- 53 -

preparation process, and/or conversion of the compound obtained into the free acid and/or its physiologically acceptable salts. For example, the t-butoxymethoxy-carbonyl groups conventionally used as a protective group for nitrogen atoms are removed in an acidic medium, for example by addition of trifluoroacetic acid.

5 Possible alkylating agents for the derivatization of nitrogen atoms are reagents conventionally used for this purpose in this step, with which, for example, a substituted or unsubstituted alkyl or cycloalkyl residue, a substituted or unsubstituted aryl residue or a saturated or unsaturated, optionally substituted heterocyclic residue can be bonded to the appropriate nitrogen atom. With respect to the substituents

10 preferably bonded to the respective nitrogen atoms, reference is made to the above description of the compounds according to the invention. The above reactions and their implementation are well known to the person skilled in the art and described in detail in standard works such as, for example, Houben-Weyl, Methoden der organischen Chemie [Methods of Organic Chemistry], Georg Thieme Verlag,

15 Stuttgart.

The ester derivatives according to the invention can be converted into the corresponding free carboxylic acids in a customary manner, such as, for example, by basic ester hydrolysis.

20 If desired, the compounds according to the invention can be converted into their physiologically acceptable salts. This can be effected either by reaction with an organic or inorganic base such as, for example, an alkali metal hydroxide or alkaline earth metal hydroxide such as KOH, NaOH, LiOH, Mg(OH)₂ or Ca(OH)₂, as a result of which the terminal carboxyl group is deprotonated and the corresponding carboxylate is formed, or by reaction with an organic or inorganic acid such as, for example, hydrochloric acid, sulphuric acid, phosphoric acid, mandelic acid, oleic acid, linoleic acid or p-toluenesulphonic acid, as a result of which one or more of the nitrogen atoms present are protonated.

30

M 17:02:00

The steps of the preparation process according to the invention described above can be carried out in a normal atmosphere, i.e. in air, and without the use of absolute, i.e. essentially anhydrous, solvents.

5 The compounds according to the invention exhibit a very good antagonistic action against integrin receptors, in particular the $\alpha_v\beta_3$ receptor or the $\alpha_v\beta_5$ receptor. This makes them suitable for use as pharmaceutical compositions, in particular for the treatment and prophylaxis of arteriosclerosis, restenosis, osteolytic disorders such as osteoporosis, cancer and ophthalmic diseases.

10 The compounds according to the invention can be used as active compound components for the production of pharmaceutical compositions against the abovementioned diseases. For this purpose, they can be converted into the customary formulations such as tablets, coated tablets, aerosols, pills, granules, syrups, emulsions, suspensions and solutions using inert, non-toxic, pharmaceutically suitable excipients or solvents. The compounds according to the invention are preferably used here in such an amount that their concentration in the total mixture is approximately 0.5 to approximately 90% by weight, the concentration being dependent, *inter alia*, on the corresponding indication of the pharmaceutical composition.

15 The abovementioned formulations are prepared, for example, by extending the active compounds using solvents and/or excipients having the above properties, where, if appropriate, emulsifying agents or dispersing agents, and, in the case of water as a solvent, alternatively an organic solvent additionally has to be added.

20 The pharmaceutical compositions according to the invention can be administered in a customary manner.

25 The present invention is illustrated below with the aid of non-restricting examples and comparison examples.

M 17-02-00

- 55 -

Examples

In the examples below, all quantitative data relate, unless stated otherwise, to percentages by weight. The mass determinations were carried out by high-performance liquid chromatography-mass spectrometry (HPLC-MS) using the electron spray ionization (ESI) method.

卷之三

Example 1:*General synthesis scheme:*

5

- a) 2-propanol, reflux; b) HCl, ethanol; c) PhSO₂Cl, Et₃N; d) SnCl₂, ethanol; e) 3-NO₂-C₆H₄SO₂Cl; f) SnCl₂, ethanol; g) HgCl₂, 1,3-bis(tert-butyloxycarbonyl)-2-methyl-2-thiopseudourea; h) TFA, dichloromethane, i) LiOH.

3-Amino-3-(3-nitrophenyl)-propionic acid hydrochloride (1a)

151 g of 3-nitrobenzaldehyde, 94 g of ammonium acetate and 127 g of malonic acid were heated under reflux for 5 h in 1 l of isopropanol. The solution was filtered and
5 the precipitate was washed with 0.7 l of hot isopropanol. The crude product was dried in vacuo, suspended in 1.5 l of water, treated with hydrochloric acid and filtered, and the filtrate was concentrated (yield: 146 g).

10 ¹H-NMR (400 MHz, D₄-MeOH): 3.09 (m, 2 H), 4.88 (m, 1 H), 7.74 (t, 1 H), 7.90 (d, 1 H), 8.33 (d, 1 H), 8.43 (s, 1 H).

Ethyl 3-amino-3-(3-nitrophenyl)-propionate hydrochloride (1b)

15 60 g of (1a) were suspended in 660 ml of ethanol, and gaseous HCl was passed in for 1 h. The reaction mixture was then heated under reflux for 4 h and then cooled and concentrated. 62 g of a white solid were obtained.

20 ¹H-NMR (400 MHz, D₄-MeOH): 1.22 (t, 3 H), 3.12 (dd, 1 H), 3.20 (dd, 1 H), 4.18 (q, 2 H), 4.95 (t, 1 H), 7.77 (t, 1 H), 7.94 (d, 1 H), 8.35 (d, 1 H), 8.43 (s, 1 H).

Ethyl 3-benzenesulphonylamino-3-(3-nitrophenyl)-propionate (1c)

25 8.1 g of phenylsulphonyl chloride were added at 0°C to a solution of 10 g of (1b) in 100 ml of pyridine. After a reaction time of 15 min, 6.3 ml of triethylamine were added and the mixture was stirred at room temperature. After 5 h, it was concentrated, treated with 1 N HCl, extracted with dichloromethane, dried over MgSO₄ and concentrated. Chromatographic purification (dichloromethane/methanol = 5:1) yielded 11.4 g of a white solid.

30 ¹H-NMR (400 MHz, CDCl₃): 1.16 (t, 3 H), 2.80 (m, 2 H), 4.05 (q, 2 H), 4.87 (q, 1 H), 6.06 (d, 1 H), 7.35-7.50 (m, 5 H), 7.71 (d, 2 H), 7.92 (s, 1 H), 8.03 (d, 1 H).

M 17.02.00

- 58 -

Ethyl 3-(3-aminophenyl)-3-benzenesulphonylamino-propionate (1d)

4.77 g of tin-(II) chloride were added to a solution of 2.0 g of (1c) in 60 ml of ethanol, and the reaction mixture was heated under reflux for 2 h. After cooling, the
5 solution was hydrolysed by pouring it onto ice and adjusted to pH = 8 using an NaHCO₃ solution (5%). It was then extracted with dichloromethane and the organic phase was washed with NaCl, dried over MgSO₄ and concentrated. 1.79 g of a yellow oil were obtained.

10 ¹H-NMR (400 MHz, CDCl₃): 1.14 (t, 3 H), 2.72 (dd, 1 H), 2.81 (dd, 1 H), 4.02 (q, 2 H), 4.65 (q, 1 H), 5.66 (d, 1 H), 6.41 (m, 1 H), 6.48 (m, 2 H), 6.96 (t, 1 H), 7.40 (m, 2 H), 7.50 (m, 1 H), 7.75 (m, 2 H).

15 *Ethyl 3-benzenesulphonylamino-3-(3-[3-nitrophenylsulphonylamino]-phenyl)-propionate (1e)*

382 mg of 3-nitrobenzenesulphonyl chloride were added at 0°C to a solution of 500 mg of (1d) in 4 ml of pyridine. After a reaction time of 1 h at 0°C and 2 h at room temperature, the mixture was concentrated, treated with 1 N HCl and extracted with dichloromethane. After drying over MgSO₄, the solvent was removed and 20 649 mg of a solid were obtained.

25 ¹H-NMR (400 MHz, CDCl₃): 1.02 (t, 3 H), 2.50 (dd, 1 H), 2.59 (dd, 1 H), 3.88 (q, 2 H), 4.52 (q, 1 H), 5.70 (d, 1 H), 6.49 (s, 1 H), 6.82-6.90 (m, 3 H), 7.06 (t, 1 H), 7.34 (t, 2 H), 7.44 (t, 1 H), 7.59 (t, 1 H), 7.64 (d, 2 H), 7.96 (d, 1 H), 8.31 (d, 1 H), 8.49 (m, 1 H).

30 *Ethyl 3-(3-[3-aminophenylsulphonylamido]-phenyl)-3-benzenesulphonylamino-propionate (1f)*

M 1702.00

1.27 g of tin-(II) chloride were added to a solution of 600 mg of (1e) in 9 ml of ethanol, and the reaction mixture was heated under reflux for 2 h. After cooling, the solution was hydrolysed by pouring it onto ice and adjusted to pH = 8 using an NaHCO₃ solution (5%). It was then extracted with dichloromethane, and the organic phase was washed with NaCl, dried over MgSO₄ and concentrated. 394 mg of a yellow, viscous residue were obtained.

¹H-NMR (400 MHz, CDCl₃): 1.14 (t, 3 H), 2.65 (dd, 1 H), 2.73 (dd, 1 H), 4.01 (q, 2 H), 4.63 (q, 1 H), 5.81 (d, 1 H), 6.32 (s, 1 H), 6.79 (d, 2 H), 6.88 (d, 1 H), 6.99 (t, 1 H), 7.05-7.14 (m, 3 H), 7.22 (t, 1 H), 7.39 (m, 2 H), 7.51 (t, 1 H), 7.71 (d, 2 H).

Ethyl 3-benzenesulphonylamino-3-(3-(3-[N,N'-bis-t-butoxycarbonyl-guanidino]-phenylsulphonylamino)-phenyl)-propionate (1g)

15 0.16 ml of triethylamine, 195 mg of 1,3-bis(t-butoxycarbonyl)-2-methyl-2-thio-pseudourea and 132 mg of mercuric chloride were added at 0°C to a solution of 281 mg of (1f) in 10 ml of DMF. After a reaction time of 30 min at 0°C, the mixture was stirred at room temperature for a further 1.5 h. 15 ml of ethyl acetate were added, and the mixture was stirred for 30 minutes before the precipitate was filtered off. The solution was concentrated and reused without purification.

20
25 ¹H-NMR (400 MHz, CDCl₃): 1.12 (t, 3 H), 1.52 (s, 9 H), 1.54 (s, 9 H), 2.65 (dd, 1 H), 2.72 (dd, 1 H), 3.99 (q, 2 H), 4.66 (m, 1 H), 5.78 (m, 1 H), 6.72 (m, 1 H), 6.85 (d, 1 H), 6.96-7.07 (m, 3 H), 7.33-7.49 (m, 5 H), 7.65 (d, 2 H), 7.78 (m, 1 H), 8.12 (s, 1 H).

M 17-02-00

- 60 -

Ethyl 3-benzenesulphonylamino-3-(3-[3-guanidinophenylsulphonylamino]-phenyl)-propionate (1h)

2 ml of trifluoroacetic acid were added to a solution of 246 mg of (1g) in 2 ml of
5 methylene chloride. The reaction was stirred at room temperature for 4 h and the solvent was then removed on a rotary evaporator. 100 mg of a viscous oil were obtained by means of chromatographic purification (dichloromethane/methanol 1:1).

Mass spectrometry: 546(MH⁺)

10

3-Benzenesulphonylamino-3-[3-(3-guanidino-benzenesulphonylamino)-phenyl]-3-propionic acid, trifluoroacetic acid salt (1):

98 mg of lithium hydroxide monohydrate were added to a solution of 98 mg of (1h)
15 in 14 ml of water, and the reaction mixture was stirred at room temperature for 70 h. The solution was acidified to pH = 2 using trifluoroacetic acid and concentrated. The crude product was purified by RP chromatography (RP 18 water/acetonitrile). 42 mg of a white solid were obtained.

20 Elemental analysis for C₂₂H₂₃N₅O₁₁S₂ × 2.0 TFA × 2.0 H₂O:

calculated:	C 39.95;	H 3.74;	N 8.96
found:	C 39.7;	H 3.7;	N 9.1

25 Mass spectrometry: 518(MH⁺)

M 1702.00

Example 2:*General synthesis scheme:*

5

a) 3-H₂N(C=NH)NHC₆H₄COOH (2a), iBuOCOCl, N-methylmorpholine; b) LiOH.*3-((Aminoiminoethyl)amino)benzoic acid hydrochloride (2a)*

10 49.4 g of 3-aminobenzoic acid were added to a solution of 108.7 g of 3,5-dimethyl-pyrazolyl-1-carboxamidine nitrate and 54.7 g of diisopropylamine in 360 ml of dioxane and 180 ml of water. The reaction solution was heated under reflux for 18 h. After cooling, it was filtered, and the crystallize was washed with dioxane/water (2:1) and dried in vacuo. The product was dissolved in water and treated with hydrochloric acid, and the hydrochloride salt was obtained after filtration as a solid product (yield: 29.7 g).

15

Melting point: 261°C.

20

'H-NMR (400 MHz, D₄-MeOH): 7.51 (d, 1 H), 7.59 (t, 1 H), 7.91 (s, 1 H), 8.00 (d, 1 H).

M 17-02-00

*Ethyl 3-benzenesulphonylamino-3-[3-(3-guanidino-benzoylamino)-phenyl]-propionate
(2b)*

0.16 ml of N-methylmorpholine and isobutyl chloroformate were added to a solution
5 of 310 mg of (2a) in 5 ml of DMF. The solution was stirred at 0°C for 5 minutes,
then a solution of 500 mg of (1d) in 5 ml of DMF was added at 0°C. The reaction
mixture was warmed to RT overnight and then concentrated. A viscous oil (yield:
502 mg) was obtained by chromatographic purification (dichloromethane/methanol =
3:1).

10

Mass spectrometry: 510(MH⁺)

*3-Benzenesulphonylamino-3-[3-(3-guanidino-benzoylamino)-phenyl]-propionic acid,
trifluoroacetic acid salt (2):*

15

64 mg of lithium hydroxide monohydrate were added to a solution of 204 mg of (2b)
in 8 ml of water. The reaction mixture was stirred at room temperature for 48 h. The
solution was then acidified to pH = 2 using trifluoroacetic acid and concentrated. The
crude product was purified by RP chromatography (RP18 water/acetonitrile). A
white solid was obtained (yield: 11 mg).

20

Mass spectrometry: 482(MH⁺)

M 17:02:00

Example 3:*General synthesis scheme:*

5

- a) RCOCl, iPr₂EtN; b) SnCl₂, ethanol; c) 3-NO₂-C₆H₄SO₂Cl; d) SnCl₂, ethanol; e) HgCl₂, 1,3-bis(tert-butyloxycarbonyl)-2-methyl-2-thiopseudourea; f) TFA, dichloromethane, g) LiOH.

10 *Ethyl 3-(2,4,6-trimethylphenylacetylamo)-3-(3-nitrophenyl)-propionate (3a):*

3.57 g of mesitylacetyl chloride and 5.27 g of diisopropylethylamine were added at 0°C to a solution of 5.0 g of (1b) in 50 ml of dioxane. The reaction mixture was stirred at 0°C for 1 h, and was then allowed to warm to room temperature. The

M 17.02.00

solution was added to water and acidified with 1 N HCl, extracted with dichloromethane, dried over MgSO₄ and concentrated. Chromatographic purification on silica gel (dichloromethane/methanol = 20:1) afforded a white solid (yield: 6.0 g).

5 ¹H-NMR (400 MHz, CDCl₃): 1.09 (t, 3 H), 2.28 (s, 6 H), 2.30 (s, 3 H), 2.76 (m, 2 H), 3.65 (m, 2 H), 3.97 (m, 2 H), 5.48 (m, 1 H), 6.55 (d, 1 H), 6.97 (s, 2 H), 7.49 (m, 2 H), 7.95 (m, 1 H), 8.10 (d, 1 H).

Ethyl 3-(3-aminophenyl)-3-(2,4,6-trimethylphenylacetylamino)-propionate (3b):

10 12.5 of tin-(II) chloride were added to a solution of 6.0 g of (3a) in 180 ml of ethanol, and it was heated to reflux for 2 h. The reaction mixture was hydrolysed on ice after cooling and neutralized with NaHCO₃ solution (5%), then filtered through a little silica gel and washed with dichloromethane. The organic phase was dried over MgSO₄ and concentrated. 1.5 g of a white solid were obtained.

15 ¹H-NMR (400 MHz, CDCl₃): 1.11 (t, 3 H), 2.25 (s, 6 H), 2.29 (s, 3 H), 2.69 (m, 2 H), 3.61 (m, 2 H), 3.98 (m, 2 H), 5.33 (m, 1 H), 6.21 (d, 1 H), 6.42 (s, 1 H), 6.46 (d, 1 H), 6.53 (d, 1 H), 6.92 (s, 2 H), 7.04 (t, 1 H).

20 Ethyl 3-(3-nitrobenzenesulphonylamino)-phenyl-3-(2,4,6-trimethylphenylacetyl-amino)-propionate (3c):

25 3-Nitrobenzenesulphonyl chloride was added at 0°C to a solution of 1.5 g of (3b) in 12 ml of pyridine. After a reaction time of 2.5 h, the mixture was concentrated, treated with 1 N HCl and extracted with dichloromethane. After drying over MgSO₄, the solvent was removed and 2.02 g of a solid were obtained.

30 ¹H-NMR (400 MHz, CDCl₃): 1.07 (t, 3 H), 2.23 (s, 6 H), 2.30 (s, 3 H), 2.63 (m, 2 H), 3.63 (m, 2 H), 3.94 (m, 2 H), 5.27 (m, 1 H), 6.43 (d, 1 H), 6.87-6.95 (m, 5 H), 7.14-7.19 (m, 2 H), 7.62 (t, 1 H), 7.98 (d, 1 H), 8.37 (d, 1 H), 8.59 (s, 1 H).

H 17:02:00

- 65 -

Ethyl 3-(3-[3-aminobenzenesulphonylamino]-phenyl)-3-(2,4,6-trimethylphenylacetyl-amino)-propionate (3d):

5 3.8 g of tin(II) chloride were added to a solution of 2.0 g of (3c) in 30 ml of ethanol, and the reaction mixture was heated under reflux for 2 h. After cooling the solution, it was hydrolysed by pouring onto ice and neutralized with NaHCO₃ solution (5%). The mixture was filtered through a little silica gel, washed with dichloromethane, dried over MgSO₄ and concentrated. A yellowish crystalline product was obtained
10 (yield: 1.4 g).

15 ¹H-NMR (400 MHz, CDCl₃): 1.09 (t, 3 H), 2.25 (s, 6 H), 2.29 (s, 3 H), 2.68 (m, 2 H), 3.63 (s, 2 H), 3.97 (m, 4 H), 5.30 (m, 1 H), 6.44 (d, 1 H), 6.48 (s, 1 H), 6.73 (d, 1 H), 6.78 (d, 1 H), 6.88 (m, 2 H), 6.93 (s, 2 H), 7.07-7.19 (m, 4 H).

20 *Ethyl 3-(2,4,6-trimethylphenylacetylamino)-3-(3-[3-N,N'-bis(t-butoxycarbonyl)-guanidino-benzenesulphonylamino]-phenyl)-propionate (3e):*

25 0.12 ml of triethylamine, 195 mg of 1,3-bis(t-butoxycarbonyl)-2-methyl-2-thio-pseudourea and 132 mg of mercuric chloride were added at 0°C to a solution of 250 mg of (3d) in 10 ml of DMF. The reaction mixture was stirred at 0°C for 30 min and at room temperature for 2.5 h. 15 ml of ethyl acetate were added, and it was stirred for 30 min before the precipitate was removed by filtration. The solution was concentrated and reused without purification.

30 Mass spectrometry: 766(MH⁺)

Ethyl 3-(3-[3-guanidinobenzenesulphonylamino]-phenyl)-3-(2,4,6-trimethylphenyl-acetylamino)-propionate (3f):

35 3 ml of trifluoroacetic acid were added to a solution of 266 mg of (3e) in 3 ml of

M 17-02-00

methylene chloride. The reaction mixture was stirred at room temperature for 4 h and concentrated. After chromatographic purification (methylene chloride/methanol = 5:1), a viscous oil was obtained (yield: 228 mg).

5 Mass spectrometry: 566(MH⁺)

3-(3-[3-Guanidinobenzenesulphonylamino]-phenyl)-3-(2,4,6-trimethylphenylacetylamo)-propionic acid, trifluoroacetic acid salt (3):

10 64 mg of lithium hydroxide monohydrate were added to a solution of 228 mg of (3f) in 30 ml of water and 30 ml of tetrahydrofuran. The reaction mixture was stirred at room temperature for 24 h. The crude product was dried in vacuo and purified by chromatography (acetonitrile/water = 7:1). 0.1 ml of trifluoroacetic acid was added and the mixture was concentrated. A white solid was obtained (yield: 100 mg).

15 Mass spectrometry: 538(MH⁺)

¹H-NMR (400 MHz, D₄-MeOH): 2.18 (s, 6 H), 2.23 (s, 3 H), 2.73 (m, 2 H), 3.60 (m, 2 H), 5.18 (m, 1 H), 6.84 (s, 2 H), 6.97 (d, 1 H), 7.04 (d, 1 H), 7.10 (s, 1 H), 7.20 (t, 1 H), 7.39 (d, 1 H), 7.51 (m, 2 H), 7.68 (d, 1 H).

20
Example 4:

Ethyl 3-benzoylamino-3-(3-nitrophenyl)-propionate (4a):

25 Corresponding to Example 3a, 5.0 g of (1b) were acetylated by addition of benzoyl chloride. A white solid was obtained (yield: 3.3 g).

¹H-NMR (400 MHz, CDCl₃): 1.20 (t, 3 H), 3.02 (m, 2 H), 4.13 (q, 2 H), 5.71 (m, 1 H), 7.31-8.68 (m, 10 H).

M 17.02.00

Ethyl 3-(3-aminophenyl)3-benzoylamino-propionate (4b):

Corresponding to Example 3b, 3 g of (4a) were reduced using tin-(II) dichloride. A white solid was obtained (yield: 2.6 g).

5

¹H-NMR (400 MHz, CDCl₃): 1.19 (t, 3 H), 2.91 (dd, 1 H), 3.00 (dd, 1 H), 4.11 (q, 2 H), 5.54 (m, 1 H), 6.58 (d, 1 H), 6.68 (s, 1 H), 6.73 (s, 1 H), 7.12 (t, 1 H), 7.41-7.52 (m, 4 H), 7.84 (d, 2 H).

10

Ethyl 3-benzoylamino-3-(3-(3-nitrobenzenesulphonylamino)-phenyl)-propionate (4c):

Corresponding to Example 3c, 2.60 g of (4b) were reacted with 3-nitrophenylsulphonyl chloride. A solid was obtained (yield: 1.76 g).

15

¹H-NMR (400 MHz, CDCl₃): 1.18 (t, 3 H), 2.90 (m, 2 H), 4.09 (q, 2 H), 5.49 (m, 1 H), 7.00 (d, 1 H), 7.05 (s, 1 H), 7.11 (s, 1 H), 7.15 (d, 1 H), 7.23 (d, 1 H), 7.45-7.57 (m, 4 H), 7.70 (d, 1 H), 7.80 (d, 2 H), 7.95 (d, 1 H), 8.27 (d, 1 H), 8.58 (s, 1 H).

20

Ethyl 3-(3-(3-aminobenzenesulphonylamino)-phenyl)-3-benzoylamino-propionate (4d):

Corresponding to Example 3d, 1.76 g of (4c) were treated with tin-(II) chloride. A yellowish solid was obtained (yield: 779 mg).

25

¹H-NMR (400 MHz, CDCl₃): 1.20 (t, 3 H), 2.93 (m, 2 H), 3.98 (s, 2 H), 4.12 (q, 2 H), 5.52 (m, 1 H), 6.48 (s, 1 H), 6.67 (d, 1 H), 6.84 (d, 1 H), 6.90 (s, 1 H), 7.08-7.14 (m, 3 H), 7.20 (t, 1 H), 7.28 (m, 1 H), 7.45-7.56 (m, 3 H), 7.65 (d, 1 H), 7.84 (d, 2 H).

M 17.02.00

Ethyl 3-benzoylamino-3-(3-[3-N,N'-bis(tert-butoxycarbonyl)guanidino-benzene-sulphonylamino]-phenyl)-propionate (4e):

Corresponding to Example 3e, 1.76 g of (4d) were treated with mercuric chloride and
5 1,3-bis(tert-butoxycarbonyl)-2-methyl-2-thiopseudourea. 864 mg of the desired product were obtained.

Mass spectrometry: 710(MH⁺)

10 *Ethyl 3-benzoylamino-3-(3-(3-guanidinobenzenesulphonylamino)-phenyl)-propionate (4f):*

15 6 ml of trifluoroacetic acid were added to a solution of 521 mg of (4e) in 6 ml of dichloromethane. The mixture was stirred at room temperature for 4 h, concentrated and purified by chromatography (dichloromethane/methanol = 5:1). An oil was obtained (yield: 299 mg).

Mass spectrometry: 510(MH⁺)

20 *3-Benzoylamino-3-[3-(3-guanidino-benzenesulphonylamino)-phenyl]-propionic acid (4):*

25 94 mg of lithium hydroxide monohydrate were added to a solution of 298.5 mg of (4f) in 30 ml of water and 30 ml of THF. The reaction mixture was stirred at room temperature for 20 h and then concentrated. Chromatographic purification on silica gel (acetonitrile/water = 7:1) afforded a white solid (yield: 155 mg).

Mass spectrometry: 482(MH⁺)

¹H-NMR (400 MHz, D₄-MeOH): 2.81 (m, 2 H), 5.38 (m, 1 H), 6.91 (m, 1 H), 7.18 (m, 2 H), 7.34 (s, 1 H), 7.61 (s, 1 H), 7.45-7.58 (m, 5 H), 7.72 (d, 1 H), 7.86 (d, 2 H).

Example 5:

Ethyl 3-(2,4-dichlorophenylacetylamino)-3-(3-nitrophenyl)-propionate (5a):

5 Corresponding to Example 3a, 5.0 g of (1b) were acetylated by addition of 2,4-dichlorophenylacetyl chloride. A white solid was obtained (yield: 3.1 g).

10 ¹H-NMR (400 MHz, CDCl₃): 1.15 (t, 3 H), 2.87 (m, 2 H), 3.73 (s, 2 H), 4.05 (q, 2 H), 5.47 (m, 1 H), 6.99 (d, 1 H), 7.18 (d, 1 H), 7.29 (m, 1 H), 7.47 (s, 1 H), 7.50 (d, 1 H), 7.59 (d, 1 H), 8.11 (m, 2 H).

Ethyl 3-(3-aminophenyl)-3-(2,4-dichlorophenylacetylamino)-propionate (5b):

15 Corresponding to Example 3b, 3.1 g of (5a) were reduced using tin-(II) dichloride. A white solid was obtained (yield: 0.9 g).

20 ¹H-NMR (400 MHz, CDCl₃): 1.15 (t, 3 H), 2.75 (dd, 1 H), 2.84 (dd, 1 H), 3.64 (s, 2 H), 4.03 (q, 2 H), 5.31 (m, 1 H), 6.55 (m, 4 H), 7.08 (t, 1 H), 7.27 (m, 2 H), 7.43 (s, 1 H).

25 *Ethyl 3-(2,4-dichlorophenylacetylamino)-3-[3-nitrophenylsulphonylamino]-phenyl)-propionate (5c):*

Corresponding to Example 3c, 900 mg of (5b) were reacted with 3-nitrophenyl-sulphonyl chloride. A solid was obtained (yield: 1.18 g).

30 ¹H-NMR (400 MHz, CDCl₃): 1.12 (t, 3 H), 2.75 (m, 2 H), 3.70 (s, 2 H), 4.01 (m, 2 H), 5.28 (m, 1 H), 6.85 (d, 1 H), 6.91 (d, 1 H), 7.00 (m, 2 H), 7.18 (m, 2 H), 7.28 (m, 2 H), 7.62 (t, 1 H), 7.99 (d, 1 H), 8.37 (d, 1 H), 8.58 (s, 1 H).

M 17-02-00

- 70 -

Ethyl 3-(3-[3-aminophenylsulphonylamino]-phenyl)-3-(2,4-dichlorophenylacetyl-amino)-propionate (5d):

Corresponding to Example 3d, 1.18 g of (5c) were treated with tin-(II) chloride.
5 820 mg of a yellowish solid were obtained.

¹H-NMR (400 MHz, CDCl₃): 1.14 (t, 3 H), 2.79 (m, 2 H), 3.99 (s, 2 H), 4.03 (q, 2 H),
5.30 (m, 1 H), 6.41 (s, 1 H), 6.73-6.83 (m, 3 H), 6.87 (s, 1 H), 6.98 (d, 1 H), 7.11-
7.33 (m, 6 H), 7.43 (d, 1 H).

10

Ethyl 3-(2,4-dichlorophenylacetylamino)-3-(3-[3-N,N'-bis(t-butoxycarbonyl)-guanidino-benzenesulphonylamino]-phenyl)-propionate (5e):

Corresponding to Example 3e, 300 mg of (5d) were treated with mercuric chloride
15 and 1,3-bis(tert-butoxycarbonyl)-2-methyl-2-thiopseudourea. 611 mg of the desired product were obtained.

Mass spectrometry: 792(MH⁺)

20

Ethyl 3-(2,4-dichlorophenylacetylamino)-3-(3-guanidino-benzenesulphonyl-amino)-phenyl)-propionate (5f):

Corresponding to Example 4f, 432 mg of (5e) were treated with trifluoroacetic acid.
An oil was obtained (292 mg).

25

Mass spectrometry: 592(MH⁺)

3-(2,4-Dichlorophenyl)-acetyl-amino)-3-[3-(3-guanidino-benzenesulphonylamino)-phenyl]-propionic acid (5):

30

Corresponding to Example 4, 292 mg of (5f) were hydrolysed using lithium

hydroxide. A white solid was obtained (106 mg).

Mass spectrometry: 564(MH⁺)

- 5 ¹H-NMR (400 MHz, D₄-MeOH): 2.69 (m, 2 H), 3.73 (s, 2 H), 5.18 (m, 1 H), 6.78 (d, 1 H), 7.05 (d, 1 H), 7.12 (t, 1 H), 7.27 (d, 1 H), 7.33 (m, 2 H), 7.40 (d, 1 H), 7.46 (m, 2 H), 7.54 (t, 1 H), 7.71 (d, 1 H).

Example 6:

10

Ethyl 3-(3-nitrophenyl)-3-phenylpropionylamino-propionate (*6a*):

15

Corresponding to Example 3a, 5.0 g of (1b) were acetylated with addition of 3-phenylpropionyl chloride. A white solid was obtained (yield: 6.7 g).

20

¹H-NMR (400 MHz, CDCl₃): 1.16 (t, 3 H), 2.59 (t, 2 H), 2.75 (dd, 1 H), 2.85 (dd, 1 H), 4.05 (q, 2 H), 5.45 (m, 2 H), 6.75 (d, 1 H), 7.20 (m, 3 H), 7.25 (m, 2 H), 7.45 (d, 2 H), 8.06 (s, 1 H), 8.10 (m, 1 H).

25

Ethyl 3-(3-aminophenyl)-3-phenylpropionylamino-propionate (*6b*):

20

Corresponding to Example 3b, 3.0 g of (*6a*) were reduced using tin-(II) dichloride. A white solid was obtained (yield: 1.2 g).

25

¹H-NMR (400 MHz, CDCl₃): 1.17 (t, 3 H), 2.51 (t, 2 H), 2.68 (dd, 1 H), 2.84 (dd, 1 H), 2.98 (t, 2 H), 3.62 (s, 2 H), 4.04 (q, 2 H), 5.30 (m, 1 H), 6.39 (d, 1 H), 6.45 (s, 1 H), 6.55 (d, 1 H), 7.07 (t, 1 H), 7.20 (m, 3 H), 7.29 (m, 2 H).

M 17.02.00

- 72 -

Ethyl 3-[3-nitrophenylsulphonylamino]-phenyl)-3-phenylpropionylamino-propionate (6c):

Corresponding to Example 3c, 1.2 g of (6b) were reacted with 3-nitrophenylsulphonyl chloride. A solid was obtained (yield: 1.54 g).

¹H-NMR (400 MHz, CDCl₃): 1.12 (t, 3 H), 2.57 (m, 2 H), 2.65 (dd, 1 H), 2.75 (dd, 1 H), 2.98 (m, 2 H), 4.00 (m, 2 H), 5.26 (m, 1 H), 6.70 (d, 1 H), 6.76 (s, 1 H), 6.88 (d, 1 H), 6.97 (d, 2 H), 7.14 (t, 1 H), 7.21 (m, 2 H), 7.23-7.32 (m, 3 H), 7.45 (s, 1 H), 10 7.61 (t, 1 H), 8.34 (d, 1 H), 8.59 (s, 1 H).

Ethyl 3-[3-aminophenylsulphonylamino]-phenyl)-3-phenylpropionylamino-propionate (6d):

15 Corresponding to Example 3d, 1.53 g of (6c) were treated with tin-(II) chloride. A yellowish solid was obtained (yield: 1.1 g).

¹H-NMR (400 MHz, CDCl₃): 1.16 (t, 3 H), 2.57 (t, 2 H), 2.68 (dd, 1 H), 2.71 (dd, 2 H), 2.98 (t, 2 H), 4.02 (s, 2 H), 4.04 (q, 2 H), 5.30 (m, 1 H), 6.33 (s 1 H), 6.61 (d, 1 H), 6.73 (d, 1 H), 6.83 (d, 1 H), 6.90 (m, 2 H), 6.97 (s, 1 H), 7.08-7.29 (m, 8 H). 20

Ethyl 3-[3-N,N'-bis(t-butoxycarbonyl)guanidino-benzenesulphonylamino]-phenyl)-3-phenylpropionylamino-propionate (6e):

25 Corresponding to Example 3e, 500 mg of (6d) were treated with mercuric chloride and 1,3-bis(tert-butoxycarbonyl)-2-methyl-2-thiopseudourea. 1.16 g of the desired product were obtained.

Mass spectrometry: 738(MH⁺)

Ethyl 3-(3-[3-guanidino-benzenesulphonylamino]-phenyl)-3-phenylpropionylamino-propionate (6f):

Corresponding to Example 4f, 1.16 g of (6e) were treated with trifluoroacetic acid.
5 An oil was obtained (yield: 410 mg).

Mass spectrometry: 538(MH⁺)

10 *3-(3-[3-Guanidino-benzenesulphonylamino]-phenyl)-3-phenylpropionylamino-propionic acid (6):*

Corresponding to Example 4, 410 mg of (6f) were hydrolysed using lithium hydroxide. A white solid was obtained (yield: 221 mg).

15 Mass spectrometry: 510(MH⁺)
¹H-NMR (400 MHz, D₆-MeOH): 2.49 (t, 2 H), 2.61 (m, 2 H), 2.89 (t, 2 H), 5.15 (dd, 1 H), 6.83 (d, 1 H), 6.98 (d, 1 H), 7.10 (t, 1 H), 7.15-7.24 (m, 5 H), 7.28 (s, 1 H), 7.37 (s, 1 H), 7.47 (d, 1 H), 7.55 (t, 1 H), 7.72 (d, 1 H).

20 **Example 7:**

Ethyl 3-(3-nitrophenyl)-3-(2-phenylbutyryl-amino)-propionate (7a):

Corresponding to Example 3a, 5.0 g of (1b) were acetylated with addition of
25 2-phenylbutyryl chloride. A white solid was obtained (yield: 6.3 g).

¹H-NMR (400 MHz, CDCl₃): 0.89 (t, 3 H), 1.11 (m, 3 H), 1.82 (m, 1 H), 2.18 (m, 1 H), 2.80 (m, 2 H), 3.33 (t, 1 H), 3.99 and 4.02 (q, 2 H), 5.43 (m, 1 H), 6.78 (m, 1 H), 7.26-8.13 (m, 9 H) (mixture of diastereomers).

11/17/02 00

Ethyl 3-(3-aminophenyl)-3-(2-phenylbutyrylamino)-propionate (7b):

Corresponding to Example 3b, 6.3 g of (7a) were reduced using tin-(II) dichloride. A white solid was obtained (yield: 3.9 g).

5

¹H-NMR (400 MHz, CDCl₃): 0.88 (m, 3 H), 1.09 and 1.15 (t, 3 H), 1.80 (m, 1 H), 2.19 (m, 1 H), 2.61-2.85 (m, 2 H), 3.27 (m, 1 H), 3.95 and 4.03 (q, 2 H), 5.28 (m, 1 H), 6.41-6.59 (m, 3 H), 6.97 and 7.07 (t, 1 H), 7.25-7.37 (m, 5 H) (mixture of diastereomers).

10

Ethyl 3-[3-nitrophenylsulphonylamino]-phenyl)-3-(2-phenylbutyrylamino)-propionate (7c):

15

Corresponding to Example 3c, 3.9 g of (7b) were reacted with 3-nitrophenylsulphonyl chloride. A solid was obtained (yield: 5.0 g).

20

¹H-NMR (400 MHz, CDCl₃): 0.86 and 0.89 (t, 3 H), 1.06 and 1.10 (t, 3 H), 1.82 (m, 1 H), 2.16 (m, 1 H), 2.66 and 2.73 (m, 2 H), 3.33 and 3.34 (t, 1 H), 3.93 (m, 2 H), 5.24 (m, 1 H), 6.43-8.60 (m, 15 H) (mixture of diastereomers).

25

Ethyl 3-[3-aminophenylsulphonylamino]-phenyl)-3-(2-phenylbutyrylamino)-propionate (7d):

25

Corresponding to Example 3d, 5 g of (7c) were treated with tin-(II) chloride. A yellowish solid was obtained (yield: 1.8 g).

Mass spectrometry: 510(MH⁺)

M 17-02-00

- 75 -

Ethyl 3-[3-{3-N,N'-bis(t-butoxycarbonyl)guanidino-benzenesulphonylamino}-phenyl]-3-(2-phenylbutyrylamino)-propionate (7e):

Corresponding to Example 3e, 700 mg of (7d) were treated with mercuric chloride
5 and 1,3-bis(tert-butoxycarbonyl)-2-methyl-2-thiopseudourea. 1.45 g of the desired
product were obtained.

Mass spectrometry: 752(MH⁺)

10 *Ethyl 3-[3-guanidino-benzenesulphonylamino]-phenyl]-3-(2-phenylbutyrylamino)-propionate (7f):*

Corresponding to Example 4f, 1.45 g of (7e) were treated with trifluoroacetic acid.
An oil was obtained (yield: 630 mg).

15 Mass spectrometry: 552(MH⁺)

3-(3-[3-Guanidino-benzenesulphonylamino]-phenyl)-3-(2-phenylbutyrylamino)-propionic acid (7):

20 Corresponding to Example 4, 630 mg of (7f) were hydrolysed using lithium
hydroxide. A white solid was obtained (yield: 320 mg).

Mass spectrometry: 524(MH⁺)

¹H-NMR (400 MHz, D₄-MeOH): 0.82 and 0.91 (t, 3 H), 1.70-2.15 (m, 2 H), 2.67 (m,
25 2 H), 3.42 (t, 1 H), 5.15 (m, 1 H), 6.75-7.73 (m, 13 H) (mixture of diastereomers).

Example 8:*General synthesis scheme:*

5

- a) 2-propanol, reflux; b) HCl, ethanol; c) PhSO₂Cl, Et₃N; d) BBr₃; e) NaH, 3-NO₂-C₆H₄CH₂Br; f) SnCl₂, ethanol; g) HgCl₂, 1,3-bis(tert-butoxycarbonyl)-2-methyl-2-thiopseudourea; h) TFA, dichloromethane, i) LiOH.

M 17.02.00

- 77 -

3-Amino-3-(3-methoxyphenyl)-propionic acid (8a):

Corresponding to Example 1a, 200 g of 3-methoxybenzaldehyde were reacted with ammonium acetate and malonic acid. A white solid was obtained (yield: 135.5 g).

5

¹H-NMR (400 MHz, D₃-trifluoroacetic acid): 3.31 (dd, 1 H), 3.54 (dd, 1 H), 4.03 (s, 3 H), 5.00 (m, 1 H), 7.19 (m, 3 H), 7.52 (t, 1 H).

10

Ethyl 3-Amino-3-(3-methoxyphenyl)-propionate hydrochloride (8b):
Corresponding to Example 1b, 60 g of (8a) were treated with hydrochloric acid in ethanol. A white, crystalline product was obtained (yield: 75 g).

15

¹H-NMR (400 MHz, D₄-MeOH): 1.17 (t, 3 H), 3.01 (dd, 1 H), 3.14 (dd, 1 H), 3.82 (s, 3 H), 4.14 (m, 2 H), 4.70 (m, 1 H), 6.98 (d, 1 H), 7.06 (m, 2 H), 7.37 (t, 1 H).

20

Ethyl 3-benzenesulphonylamino-3-(3-methoxyphenyl)-propionate (8c):
Corresponding to Example 1c, 10 g of (8b) were treated with phenylsulphonyl chloride and triethylamine. A yellowish solid was obtained (yield: 13.2 g).

25

¹H-NMR (400 MHz, CDCl₃): 1.15 (t, 3 H), 2.78 (m, 2 H), 3.68 (s, 3 H), 4.02 (q, 2 H), 4.75 (q, 1 H), 5.75 (d, 1 H), 6.60 (s, 1 H), 6.69 (m, 2 H), 7.08 (t, 1 H), 7.38 (m, 2 H), 7.47 (t, 1 H), 7.71 (d, 2 H).

30

Methyl 3-benzenesulphonylamino-3-(3-hydroxyphenyl)-propionate (8d):

35

A solution of BBr₃ in dichloromethane (1 M) was added at -78°C to a solution of 2.0 g of (8c) in 50 ml of dichloromethane. After stirring at room temperature for 3 hours, the solution was cooled to -78°C and 100 ml of methanol were then added. The mixture was stirred at room temperature overnight and then concentrated.

M 17.02.00
- 78 -

Chromatographic purification (dichloromethane/methanol = 40 : 1) afforded a white solid (yield: 1.74 g).

5 ¹H-NMR (400 MHz, CDCl₃): 2.78 (m, 2 H), 3.57 (s, 3 H), 4.71 (m, 1 H), 5.11 (s, 1 H), 5.78 (d, 1 H), 6.60 (s, 1 H), 6.65 (m, 2 H), 7.06 (t, 1 H), 7.40 (m, 2 H), 7.50 (m, 1 H), 7.74 (d, 2 H).

Methyl 3-benzenesulphonylamino-[3-(3-nitrobenzyloxy)-phenyl]-propionate (8e):

10 1.5 g of (8d) in 30 ml of THF were added to a suspension of sodium hydride (0.2 g, 60% in paraffin oil) in 10 ml of THF. The reaction mixture was stirred at room temperature for 20 h. After addition of 75 ml of a saturated NH₄Cl solution, the mixture was extracted using ethyl acetate. The combined organic phases were dried over MgSO₄, concentrated and purified by chromatography on silica gel (cyclohexane/ethyl acetate = 2 : 1). 459 mg of the corresponding benzyl ether were obtained.

15 ¹H-NMR (400 MHz, CDCl₃): 2.79 (m, 2 H), 3.57 (s, 3 H), 4.75 (m, 1 H), 5.03 (s, 2 H), 5.78 (d, 1 H), 6.78 (m, 3 H), 7.16 (t, 1 H), 7.41 (m, 2 H), 7.51 (m, 1 H), 7.58 (t, 1 H), 7.75 (m, 3 H), 8.21 (d, 1 H), 8.29 (s, 1 H).

Methyl [3-(3-aminobenzyloxy)-phenyl]-3-benzenesulphonylamino-propionate (8f):

20 Corresponding to Example 3d, 442 mg of (8e) were treated with tin-(II) chloride. A yellowish solid was obtained (yield: 387 mg).

25 ¹H-NMR (400 MHz, CDCl₃): 2.79 (m, 2 H), 3.56 (s, 3 H), 3.72 (br.s, 2 H), 4.73 (m, 1 H), 4.83 (s, 2 H), 5.69 (d, 1 H), 6.67 (m, 3 H), 6.74 (m, 3 H), 7.08 (t, 1 H), 7.17 (t, 1 H), 7.38 (m, 2 H), 7.48 (m, 1 H), 7.71 (d, 2 H).

Methyl 3-benzenesulphonylamino-3-(3-[3-N,N'-bis(tert-butoxycarbonyl)guanidino-benzyl-oxy]-phenyl)-propionate (8g):

Corresponding to Example 3e, 382 mg of (8f) were treated with mercuric chloride
5 and 1,3-bis(tert-butoxycarbonyl)-2-methyl-2-thiopseudourea. 563 mg of the desired product were obtained.

Mass spectrometry: 683(MH⁺)

Methyl 3-benzenesulphonylamino-3-(3-[3-guanidino-benzyl oxy]-phenyl)-propionate (8h):

Corresponding to Example 4f, 536 mg of (8g) were treated with trifluoroacetic acid. An oil was obtained (yield: 471 mg).

15 Mass spectrometry: 483(MH⁺)

3-Benzenesulphonylamino-3-[3-(3-guanidino-benzyl oxy)-phenyl]-propionic acid (8):

Corresponding to Example 4g, 471 mg of (8h) were hydrolysed using lithium hydroxide. A white solid was obtained (yield: 253 mg).

¹H-NMR (400 MHz, D₆-MeOH): 2.57 (m, 2 H), 4.66 (m, 1 H), 5.05 (s, 2 H), 6.67 (d, 1 H), 6.76 (d, 1 H), 6.84 (s, 1 H), 7.00 (t, 1 H), 7.19 (d, 1 H), 7.28 (s, 1 H), 7.35-7.49 (m, 5 H), 7.67 (d, 2 H).

Example 9

General synthesis scheme:

a) thiophosgene; b) ethanol, reflux; c) 1,2-diaminoethane, toluene, reflux; d) LiOH.

Ethyl 3-benzenesulphonylamino-3-(3-isothiocyanatophenylsulphonylamino)-phenyl)-propionate (9a):

10

A solution of 935 mg of NaHCO₃ in 20 ml of water was added to a solution of 800 mg of (1f) in 20 ml of ethyl acetate. The solution was then treated with 207 mg of thiophosgene and stirred for 1 h. After the separation of the two phases, the organic phase was washed with water, dried over MgSO₄, and concentrated. After chromatographic purification (dichloromethane/methanol = 40 : 1), the product (9a) was obtained (yield: 636 mg).

15

¹H-NMR (400 MHz, CDCl₃): 1.13 (s, 3 H), 2.62 (dd, 1 H), 2.69 (dd, 1 H), 3.99 (q, 2 H), 4.66 (m, 1 H), 5.91 (d, 1 H), 6.74 (s, 1 H), 6.90-6.97 (m, 3 H), 7.11 (t, 1 H), 7.36-7.55 (m, 5 H), 7.62 (m, 2 H), 7.72 (d, 2 H).

5

Ethyl 3-benzenesulphonylamino-3-(3-[3-ethoxythiocarbonylaminophenylsulphonylamino]-phenyl)-propionate (9b):

10 200 mg of the compound (9a) were heated overnight in 5 ml of ethanol. The reaction mixture was concentrated. The product was obtained in a yield of 215 mg.

15

¹H-NMR (400 MHz, CDCl₃): 1.13 (s, 3 H), 1.35 (m, 3 H), 2.64 (dd, 1 H), 2.75 (dd, 1 H), 4.02 (m, 2 H), 4.55 (m, 2 H), 4.64 (m, 1 H), 5.89 (d, 1 H), 6.74 (s, 1 H), 6.82 (d, 1 H), 6.90 (d, 1 H), 7.08 (t, 1 H), 7.17 (s, 1 H), 7.39-7.47 (m, 3 H), 7.48-7.65 (m, 3 H), 7.73 (d, 2 H), 8.80 (s, 1 H).

Ethyl 3-benzenesulphonylamino-3-{3-[3-(4,5-dihydro 1H-imidazol-2-yl-amino)-phenylsulphonylamino]-phenyl})-propionate (9c):

20

215 mg of the compound (9b) and 33 mg of 1,2-diaminoethane were heated overnight in a mixture of 5 ml of toluene and 1 ml of DMF. The reaction mixture was concentrated, and, after chromatographic purification (dichloromethane/methanol = 1 : 1), the compound (9c) was obtained in a yield of 66 mg.

25

Mass spectrometry: 572 (MH⁺)

¹H-NMR (400 MHz, CDCl₃): 1.11 (s, 3 H), 2.59 (dd, 1 H), 2.66 (dd, 1 H), 3.55 (s, 4 H), 3.95 (m, 2 H), 4.63 (m, 1 H), 6.70 (d, 1 H), 6.83 (d, 1 H), 6.90-6.97 (m, 2 H), 7.23 (d, 1 H), 7.29 (m, 2 H), 7.39-7.49 (m, 4 H), 7.54 (d, 2 H).

M 1702.00

3-Benzenesulphonylamino-3-[3-[3-(4,5-dihydro-1H-imidazol-2-ylamino)-phenylsulphonylamino]-phenyl]-propionic acid (9):

Corresponding to Example 4g, 66 mg of (9c) were hydrolysed using lithium hydroxide. A white solid was obtained (yield: 47 mg).

Mass spectrometry: 544 (MH^+)
 $^1\text{H-NMR}$ (400 MHz, $\text{D}_4\text{-MeOH}$): 2.52 (dd, 1 H), 2.61 (dd, 1 H), 3.71 (s, 4 H), 4.63 (dd 1 H), 6.68 (d, 1 H), 6.78-6.96 (m, 2 H), 7.17 (s, 1 H), 7.37-7.55 (m, 6 H), 7.66 (m, 3 H).

Biological investigations

α,β_3 from human A375 cells was purified analogously to a procedure which was described by Wong et al. (Molecular Pharmacology, 50, 529-537 (1996)). 10 μl of α,β_3 (5 ng) in TBS pH 7.6, 2 mM CaCl_2 , 1 mM MgCl_2 , 1% n-octyl glucopyranoside (Sigma); 10 μl of test substance in TBS pH 7.6, 0.1% DMSO and 45 μl of TBS pH 7.6, 2 mM CaCl_2 , 1 mM MgCl_2 , 1 mM MnCl_2 were in each case incubated at room temperature for 1 h. 25 μl of WGA SPA beads (Amersham, 4 mg/ml) and 10 μl of echistatin (0.1 μCi , Amersham, chloramine T-labelled) were then added in each case. After 16 hours at room temperature, the samples were measured in a scintillation measuring apparatus (Wallac 1450). The test results are shown in Table 1 below.

Table 1

Example No.	$\text{IC}_{50}-\alpha,\beta_3$ (nM)
1	19
2	390
3	153
4	12.8
5	72.4
6	36.2
7	115
8	33
9	0.295

M 17.02.00

Claims

1. Compounds of the general formula (1)

wherein

- 10 R^1 is hydrogen, a substituted or unsubstituted alkyl or cycloalkyl residue, a substituted or unsubstituted aryl residue or a saturated or unsaturated, optionally substituted heterocyclic residue;
- 15 R^2 is hydrogen, a substituted or unsubstituted alkyl or cycloalkyl residue, a substituted or unsubstituted aryl residue, a saturated or unsaturated, optionally substituted heterocyclic residue, an optionally substituted alkenyl residue, an optionally substituted alkinyl residue, a hydroxyl residue or an alkoxy residue or is bonded to R^3 with formation of an optionally substituted carbocyclic or heterocyclic ring system which includes the carbon atom to which R^2 is bonded and can optionally contain heteroatoms;
- 20 R^3 is hydrogen, a substituted or unsubstituted alkyl or cycloalkyl residue, a substituted or unsubstituted aryl residue, a saturated or unsaturated, optionally substituted heterocyclic residue, an optionally substituted alkenyl residue, an optionally substituted alkinyl residue, a hydroxyl residue or an alkoxy residue or is bonded to R^2 with formation of an optionally substituted carbocyclic or heterocyclic ring system which includes the carbon atom to which R^3 is bonded and can optionally contain heteroatoms;
- 25 R^4 is $-SO_2R^{4''}$, $-COOR^{4''}$, $-COR^{4''}$, $-CONR^{4''}_2$ or $-CSNR^{4''}_2$;

M 17-02-00

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

- R⁴ is hydrogen, a substituted or unsubstituted alkyl or cycloalkyl residue, a substituted or unsubstituted aryl residue or a saturated or unsaturated, optionally substituted heterocyclic residue;
- 5 R⁴ is a substituted or unsubstituted alkyl or cycloalkyl residue, a substituted or unsubstituted aryl residue or a saturated or unsaturated, optionally substituted heterocyclic residue;
- R⁵ is hydrogen, a substituted or unsubstituted alkyl or cycloalkyl residue or a substituted or unsubstituted aryl residue;
- 10 R¹⁰ is hydrogen, a substituted or unsubstituted alkyl or cycloalkyl residue, a substituted or unsubstituted alkoxy residue or a halogen atom;
- R¹¹ is hydrogen, a substituted or unsubstituted alkyl or cycloalkyl residue, a substituted or unsubstituted alkoxy residue or a halogen atom;
- L is -(CH₂)_mNHSO₂(CH₂)_n- , -(CH₂)_mSO₂NH(CH₂)_n- , -(CH₂)_mNHCO(CH₂)_n- , -(CH₂)_mCONH(CH₂)_n- , -(CH₂)_mOCH₂(CH₂)_n- , -(CH₂)_mCH₂O(CH₂)_n- , -(CH₂)_mCOO(CH₂)_n- , -(CH₂)_mOOC(CH₂)_n- , -(CH₂)_mCH₂CO(CH₂)_n- , -(CH₂)_mCOCH₂(CH₂)_n- , -NHCONH- , -(CH₂)_mSCH₂(CH₂)_n- , -(CH₂)_mCH₂S(CH₂)_n- , -(CH₂)_mCH₂SO(CH₂)_n- , -(CH₂)_mSOCH₂(CH₂)_n- , -(CH₂)_mCH₂SO₂(CH₂)_n- or -(CH₂)_mSO₂CH₂(CH₂)_n- , wherein m and n are each an integer of 0 or 1 and m + n ≤ 1;
- 20 R⁶ is hydrogen, a substituted or unsubstituted alkyl or cycloalkyl residue, a substituted or unsubstituted aryl residue, a saturated or unsaturated, optionally substituted heterocyclic residue or is bonded to one of R⁷, R⁸ or R⁹, if present, with formation of an optionally substituted heterocyclic ring system which includes the nitrogen atom to which R⁶ is bonded and can be saturated or unsaturated and/or can contain further heteroatoms;
- X is N, O or S;
- 25 R⁷ is absent, is -H, a substituted or unsubstituted alkyl or cycloalkyl residue, -NO₂, -CN, -COR⁷, -COOR⁷, or is bonded to one of R⁶, R⁸ or R⁹ with formation of an optionally substituted heterocyclic ring

M 17.02.00

system which includes X and can be saturated or unsaturated and/or can contain further heteroatoms;

R⁷ is hydrogen, a substituted or unsubstituted alkyl or cycloalkyl residue, a substituted or unsubstituted aryl residue or a saturated or unsaturated, optionally substituted heterocyclic residue which can be saturated or unsaturated and/or can contain further heteroatoms;

5 R⁸ is hydrogen, a substituted or unsubstituted alkyl or cycloalkyl residue, a substituted or unsubstituted aryl residue, a saturated or unsaturated, optionally substituted heterocyclic residue or is bonded to one of R⁶, R⁷ or R⁹, if present, with formation of an optionally substituted heterocyclic ring system which includes the nitrogen atom to which R⁸ is bonded and can be saturated or unsaturated and/or can contain further heteroatoms;

10 R⁹ is hydrogen, a substituted or unsubstituted alkyl or cycloalkyl residue, a substituted or unsubstituted aryl residue, a saturated or unsaturated, optionally substituted heterocyclic residue or is bonded to one of R⁶, R⁷ or R⁸, if present, with formation of an optionally substituted heterocyclic ring system which includes the nitrogen atom to which R⁹ is bonded and can be saturated or unsaturated and/or can contain further heteroatoms;

15 20 and their physiologically acceptable salts and stereoisomers.

2. Compounds according to Claim 1,

characterized in that

25 R¹ is hydrogen, a C₁₋₆-alkyl residue, a C₃₋₇-cycloalkyl residue, an aryl residue or a substituted derivative thereof;

R² is hydrogen, a C₁₋₆-alkyl residue, a C₃₋₇-cycloalkyl residue, an aryl residue, an alkenyl residue, an alkinyl residue or a substituted derivative thereof; a hydroxyl residue or a C₁₋₆-alkoxy residue or is bonded to R³ with formation of an optionally substituted carbocyclic

30

- M 17-00-00
- or heterocyclic ring system which includes the carbon atom to which R² is bonded and can optionally contain heteroatoms;
- 5 R³ is hydrogen, a C₁₋₆-alkyl residue, a C₃₋₇-cycloalkyl residue, an aryl residue, an alkenyl residue, an alkynyl residue or a substituted derivative thereof; a hydroxyl residue or a C₁₋₆-alkoxy residue or is bonded to R² with formation of an optionally substituted carbocyclic or heterocyclic ring system which includes the carbon atom to which R³ is bonded and can optionally contain heteroatoms;
- 10 R⁴ is -SO₂R^{4'}, -COOR^{4''}, -COR^{4'}, -CONR^{4'}₂ or -CSNR^{4'}₂;
- 15 R^{4'} is hydrogen, a C₁₋₆-alkyl residue, a C₃₋₇-cycloalkyl residue, a substituted or unsubstituted aryl residue or a saturated or unsaturated, optionally substituted heterocyclic residue;
- 20 R^{4''} is a C₁₋₆-alkyl residue, a C₃₋₇-cycloalkyl residue, a substituted or unsubstituted aryl residue or a saturated or unsaturated, optionally substituted heterocyclic residue;
- 25 R⁵ is hydrogen, a C₁₋₆-alkyl residue, a C₃₋₇-cycloalkyl residue, an aryl residue or a substituted derivative thereof;
- 30 R¹⁰ is hydrogen, a C₁₋₆-alkyl residue, a C₃₋₇-cycloalkyl residue, a C₁₋₆ alkoxy residue or a substituted derivative thereof or F, Cl, Br or I;
- R¹¹ is hydrogen, a C₁₋₆-alkyl residue, a C₃₋₇-cycloalkyl residue, a C₁₋₆ alkoxy residue or a substituted derivative thereof or F, Cl, Br or I;
- L is -NHSO₂-, -CH₂NHSO₂-, -NHSO₂CH₂-, -SO₂NH-, -CH₂SO₂NH-, -SO₂NHCH₂-, -NHCO-, -CH₂NHCO-, -NHCOCH₂-, -CONH-, -CH₂CONH-, -CONHCH₂-, -OCH₂-, -CH₂OCH₂, -OCH₂CH₂-, -CH₂O-
 -CH₂CH₂O-, -COO-, -CH₂COO-, -COOCH₂-, -OOC-, -OOCCH₂-, -CH₂OOC-, -CH₂CO-, -COCH₂-, -CH₂CH₂CO-, -COCH₂CH₂-, -CH₂COCH₂-, -NHCONH-, -SCH₂-, -CH₂S-, -CH₂SCH₂, -SCH₂CH₂-, -CH₂CH₂S-, -SOCH₂-, -CH₂SO-, -CH₂SOCH₂-, -SOCH₂CH₂-, -CH₂CH₂SO-, -SO₂CH₂-, -CH₂SO₂-, -CH₂SO₂CH₂-, -CH₂CH₂SO₂- or -SO₂CH₂CH₂-,

M 17-02-00

- 5 R⁶ is hydrogen, a C₁₋₆-alkyl residue, a C₃₋₇-cycloalkyl residue, an aryl residue or a substituted derivative thereof or is bonded to one of R⁷, R⁸ or R⁹, if present, with formation of an optionally substituted heterocyclic ring system which includes the nitrogen atom to which R⁶ is bonded and can be saturated or unsaturated and/or can contain further heteroatoms;
- 10 X is O, N or S;
- 10 R⁷ is absent, is -H, a C₁₋₆-alkyl residue, a C₃₋₇-cycloalkyl residue, -NO₂, -CN, -COR¹, -COOR¹, or is bonded to one of R⁶, R⁸ or R⁹ with formation of an optionally substituted heterocyclic ring system which includes X and can be saturated or unsaturated and/or can contain further heteroatoms;
- 15 R⁷ is hydrogen, a C₁₋₆-alkyl residue, a C₃₋₇-cycloalkyl residue, an aryl residue or a substituted derivative thereof;
- 15 R⁸ is hydrogen, a C₁₋₆-alkyl residue, a C₃₋₇-cycloalkyl residue, an aryl residue or a substituted derivative thereof or is bonded to one of R⁶, R⁷ or R⁹, if present, with formation of an optionally substituted heterocyclic ring system which includes the nitrogen atom to which R⁸ is bonded and can be saturated or unsaturated and/or can contain further heteroatoms; and
- 20 R⁹ is hydrogen, a C₁₋₆-alkyl residue, a C₃₋₇-cycloalkyl residue, an aryl residue or a substituted derivative thereof or is bonded to one of R⁶, R⁷ or R⁸, if present, with formation of an optionally substituted heterocyclic ring system which includes the nitrogen atom to which R⁹ is bonded and can be saturated or unsaturated and/or can contain further heteroatoms.

3. Compounds according to Claim 1,
characterized in that -
- 30 R¹ is hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl, cyclopropyl, cyclobutyl, cyclo-

pentyl, cyclohexyl, cycloheptyl, phenyl, benzyl, tolyl or a substituted derivative thereof;

- 5 R² is hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, phenyl, benzyl, tolyl or a substituted derivative thereof, -OH, methoxy, ethoxy, propoxy, butoxy, pentoxy, hexoxy, benzyloxy or is bonded to R³ with formation of an optionally substituted 3- to 6-membered carbocyclic or heterocyclic ring system which includes the carbon atom to which R² is bonded and can optionally contain heteroatoms;
- 10 R³ is hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, phenyl, benzyl, tolyl or a substituted derivative thereof, -OH, methoxy, ethoxy, propoxy, butoxy, pentoxy, hexoxy, or is bonded to R² with formation of an optionally substituted 3- to 6-membered carbocyclic or heterocyclic ring system which includes the carbon atom to which R³ is bonded and can optionally contain heteroatoms;
- 15 R⁴ is -SO₂R^{4'} or -COR^{4'};
- 20 R^{4'} is hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, phenyl, benzyl, tolyl or a substituted derivative thereof, -C₆H₂(CH₃)₃, -C₆(CH₃)₅, -CH₂C₆H₂(CH₃)₃, 2-chlorophenyl, 3-chlorophenyl, 4-chlorophenyl, 2,3-dichlorophenyl, 2,4-dichlorophenyl, 3,4-dichlorophenyl, 2,5-dichlorophenyl, 3,5-dichlorophenyl, 2,6-dichlorophenyl, 4-chlorophenylmethyl, 2,4-dichlorophenylmethyl, 2,6-dichlorophenylmethyl, 2-methoxycarbonylphenylmethyl, 3-trifluoromethylphenyl, 4-trifluoromethylphenyl, 3,5-bis(trifluoromethyl)phenyl, 4-trifluoromethoxyphenyl, phenylmethyl, 2-acetamido-4-methyl-thiazol-5-yl, phenylethyl, 1-phenylpropyl, (S)-(+)-camphor-10-yl, (R)-(-)-camphor-10-yl, 2-phenylethenyl, 2-thio-

M 17.02.00

- 89 -

- phenyl, 4-methoxyphenyl, 3,5-dimethoxyphenyl, 3-methylphenyl, 4-methylphenyl, 4-t-butylphenyl, 4-propylphenyl, 2,5-dimethylphenyl, 2-methoxy-5-methylphenyl, 2,3,5,6-tetramethylphenyl, 1-naphthyl, 2-naphthyl, 4-fluorophenyl, 2,4-difluorophenyl, 2-chloro-6-methylphenyl, 2-chloro-4-fluorophenyl, 2,5-dimethoxyphenyl, 3,4-dimethoxyphenyl, 3-chloro-6-methoxyphenyl, 2-trifluoromethylphenyl, 2-alkylsulphonylphenyl, 2-arylsulphonylphenyl, 3-(N-acetyl-6-methoxy)aniline, 4-acetamidophenyl, 2,2,2-trifluoroethyl, 5-chloro-3-methylbenzothiazol-2-yl, N-methoxycarbonylpiperidin-3-yl, thiophen-2-yl, isoxazol-5-yl, ethoxy, 2-chloropyridin-3-yl, pyridin-3-yl, benzyloxy, 5-methylisoxazol-3-yl, 1-adamantyl, 4-chlorophenoxyethyl, 2,2-dimethylethenyl, 2-chloropyridine-5-methyl, 5,7-dimethyl-1,3,4-triazaindolin-2-yl, (S)-camphan-1-yl, (R)-camphan-1-yl or 8-quinolinyl;
- 15 R⁵ is hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl, cyclopropyl, cyclopropylmethyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, 4-methylcyclohexyl, 3,3,5-trimethylcyclohexyl, 5-methyl-2-hexyl, phenyl, benzyl, tolyl or a substituted derivative thereof, C₁₋₄-alkylamino-C₁₋₄-alkyl, C₁₋₄-dialkylamino-C₁₋₄-alkyl, amino-C₁₋₄-alkyl, C₁₋₄-alkyloxy-C₁₋₄-alkyl or
- 20

M 17-02-00

- 90 -

(a1)

(a2)

(a3)

(a4)

(a5)

(a6)

(a7)

(a8)

(a9)

(a10)

(a11)

(a12)

(a13)

(a14)

(a15)

(a16) (a17) (a18) (a19) (a20)

(a21) (a22) (a23) (a24)

(a25) (a26) (a27) (a28)

R¹⁰ is hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, methoxy, ethoxy, propoxy, butoxy, pentoxy or hexoxy, fluorine, chlorine, bromine or iodine;

R¹¹ is hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, methoxy, ethoxy, propoxy, butoxy, pentoxy or hexoxy, fluorine, chlorine, bromine or iodine;

L is -NHSO₂- , -CH₂NHSO₂- , -NHSO₂CH₂- , -SO₂NH- , -CH₂SO₂NH- , -SO₂NHCH₂- , -NHCO- , -CH₂NHCO- , -NHCOCH₂- , -CONH- ,

M 17-02-00

- 92 -

- CH₂CONH-, -CONHCH₂-, -OCH₂-, -CH₂OCH₂, -OCH₂CH₂-, -CH₂O-
or -CH₂CH₂O-;
- R⁶ is hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl,
pentyl, isopentyl, neopentyl, hexyl, cyclopropyl, cyclopropylmethyl,
cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, 4-methylcyclohexyl,
3,3,5-trimethylcyclohexyl, 5-methyl-2-hexyl, phenyl, benzyl, tolyl or
a substituted derivative thereof, C₁₋₄-alkylamino-C₁₋₄-alkyl, C₁₋₄-
dialkylamino-C₁₋₄-alkyl, amino-C₁₋₄-alkyl, C₁₋₄-alkyloxy-C₁₋₄-alkyl, one
of the residues (a1) to (a28) or is bonded to one of R⁷, R⁸ or R⁹, if
present, with formation of an optionally substituted heterocyclic 4- to
6-membered ring system which includes the nitrogen atom to which
R⁶ is bonded and can be saturated or unsaturated and/or can contain
further heteroatoms;
- X is N, O or S;
- R⁷ is absent, is -H, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-
butyl, pentyl, isopentyl, neopentyl, hexyl, cyclopropyl, cyclobutyl,
cyclopentyl, cyclohexyl, cycloheptyl, -NO₂, -CN, -COR⁷, -COOR⁷ or
is bonded to one of R⁶, R⁸ or R⁹ with formation of an optionally
substituted carbocyclic or heterocyclic 4- to 6-membered ring system
which includes X and can be saturated or unsaturated and/or can
contain further heteroatoms;
- R⁷ is hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl,
pentyl, isopentyl, neopentyl, hexyl, cyclopropyl, cyclobutyl, cyclo-
pentyl, cyclohexyl, cycloheptyl, phenyl, benzyl, tolyl or a substituted
derivative thereof;
- R⁸ is hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl,
pentyl, isopentyl, neopentyl, hexyl, cyclopropyl, cyclopropylmethyl,
cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, 4-methylcyclohexyl,
3,3,5-trimethylcyclohexyl, 5-methyl-2-hexyl, phenyl, benzyl, tolyl or
a substituted derivative thereof, C₁₋₄-alkylamino-C₁₋₄-alkyl, C₁₋₄-
dialkylamino-C₁₋₄-alkyl, amino-C₁₋₄-alkyl, C₁₋₄-alkyloxy-C₁₋₄-alkyl, one

of the residues (a1) to (a28) or is bonded to one of R⁶, R⁷ or R⁹, if present, with formation of an optionally substituted heterocyclic 4- to 6-membered ring system which includes the nitrogen atom to which R⁸ is bonded and can be saturated or unsaturated and/or can contain further heteroatoms; and

R⁹ is hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl, cyclopropyl, cyclopropylmethyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, 4-methylcyclohexyl, 3,3,5-trimethylcyclohexyl, 5-methyl-2-hexyl, phenyl, benzyl, tolyl or a substituted derivative thereof, C₁₋₄-alkylamino-C₁₋₄-alkyl, C₁₋₄-dialkylamino-C₁₋₄-alkyl, amino-C₁₋₄-alkyl, C₁₋₄-alkyloxy-C₁₋₄-alkyl, one of the residues (a1) to (a28) or is bonded to one of R⁶, R⁷ or R⁸, if present, with formation of an optionally substituted heterocyclic 4- to 6-membered ring system which includes the nitrogen atom to which R⁹ is bonded and can be saturated or unsaturated and/or can contain further heteroatoms.

4. Compounds according to Claim 3,

characterized in that

R⁴ is -SO₂R⁴;

R⁴ is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, phenyl, benzyl, tolyl or a substituted derivative thereof, -C₆H₅(CH₃)₃, -C₆(CH₃)₅, -CH₂C₆H₅(CH₃)₃, 2-chlorophenyl, 3-chlorophenyl, 4-chlorophenyl, 2,3-dichlorophenyl, 2,4-dichlorophenyl, 3,4-dichlorophenyl, 2,5-dichlorophenyl, 3,5-dichlorophenyl, 2,6-dichlorophenyl, 4-chlorophenylmethyl, 2,4-dichlorophenylmethyl, 2,6-dichlorophenylmethyl, 2-methoxycarbonylphenylmethyl, 3-trifluoromethylphenyl, 4-trifluoromethylphenyl, 3,5-bis(trifluoromethyl)phenyl, 4-trifluoromethoxyphenyl, phenylmethyl, 2-acetamido-4-methyl-thiazol-5-yl, phenylethyl, 1-phenylpropyl, (S)-(+)-

- camphor-10-yl, (R)-(-)-camphor-10-yl, 2-phenylethenyl, 2-thiophenyl,
4-methoxyphenyl, 3,5-dimethoxyphenyl, 3-methylphenyl, 4-methyl-
phenyl, 4-t-butylphenyl, 4-propylphenyl, 2,5-dimethylphenyl, 2-
methoxy-5-methylphenyl, 2,3,5,6-tetramethylphenyl, 1-naphthyl, 2-
naphthyl, 4-fluorophenyl, 2,4-difluorophenyl, 2-chloro-6-methyl-
phenyl, 2-chloro-4-fluorophenyl, 2,5-dimethoxyphenyl, 3,4-dimeth-
oxyphenyl, 3-chloro-6-methoxyphenyl, 2-trifluoromethylphenyl, 2-
alkylsulphonylphenyl, 2-arylsulphonylphenyl, 3-(N-acetyl-6-meth-
oxy)aniline, 4-acetamidophenyl, 2,2,2-trifluoroethyl, 5-chloro-3-meth-
yl-benzothiazol-2-yl, N-methoxycarbonyl-piperidin-3-yl, thiophen-
2-yl, isoxazol-5-yl, 2-chloropyridin-3-yl, pyridin-3-yl, benzyloxy,
5-methylisoxazol-3-yl, 1-adamantyl, 4-chlorophenoxyethyl, 2,2-
dimethylethenyl, 2-chloropyridine-5-methyl, 5,7-dimethyl-1,3,4-
triazaindolin-2-yl, (S)-camphan-1-yl, (R)-camphan-1-yl or 8-quin-
olinyl;
- L is -NHSO_2- , $\text{-CH}_2\text{NHSO}_2-$, $\text{-NHSO}_2\text{CH}_2-$;
X is N;
- and the other residues are as defined in Claim 3.
- 20 5. Compounds according to Claim 3,
characterized in that
R⁴ is -COR^4 ;
R⁴ is hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl,
pentyl, isopentyl, neopentyl, hexyl, cyclopropyl, cyclobutyl, cyclo-
pentyl, cyclohexyl, cycloheptyl, phenyl, benzyl, tolyl or a substituted
derivative thereof, $\text{-C}_6\text{H}_2(\text{CH}_3)_3$, $\text{-C}_6(\text{CH}_3)_5$, $\text{-CH}_2\text{C}_6\text{H}_2(\text{CH}_3)_3$, 2-
chlorophenyl, 3-chlorophenyl, 4-chlorophenyl, 2,3-dichlorophenyl,
2,4-dichlorophenyl, 3,4-dichlorophenyl, 2,5-dichlorophenyl, 3,5-
dichlorophenyl, 2,6-dichlorophenyl, 4-chlorophenylmethyl, 2,4-di-
chlorophenylmethyl, 2,6-dichlorophenylmethyl, 2-methoxycarbonyl-
phenylmethyl, 3-trifluoromethylphenyl, 4-trifluoromethylphenyl, 3,5-

17.02.00

bis(trifluoromethyl)phenyl, 4-trifluoromethoxyphenyl, phenylmethyl,
2-acetamido-4-methyl-thiazol-5-yl, phenylethyl, 1-phenylpropyl, (S)-
(+)-camphor-10-yl, (R)-(-)-camphor-10-yl, 2-phenylethenyl, 2-thio-
phenyl, 4-methoxyphenyl, 3,5-dimethoxyphenyl, 3-methylphenyl, 4-
methylphenyl, 4-t-butylphenyl, 4-propylphenyl, 2,5-dimethylphenyl,
2-methoxy-5-methylphenyl, 2,3,5,6-tetramethylphenyl, 1-naphthyl, 2-
naphthyl, 4-fluorophenyl, 2,4-difluorophenyl, 2-chloro-6-methyl-
phenyl, 2-chloro-4-fluorophenyl, 2,5-dimethoxyphenyl, 3,4-dimeth-
oxyphenyl, 3-chloro-6-methoxyphenyl, 2-trifluoromethylphenyl, 2-
alkylsulphonylphenyl, 2-arylsulphonylphenyl, 3-(N-acetyl-6-meth-
oxy)aniline, 4-acetamidophenyl, 2,2,2-trifluoroethyl, 5-chloro-3-
methylbenzothiazol-2-yl, N-methoxycarbonylpiperidin-3-yl, thiophen-
2-yl, isoxazol-5-yl, ethoxy, 2-chloropyridin-3-yl, pyridin-3-yl, benzyl-
oxy, 5-methylisoxazol-3-yl, 1-adamantyl, 4-chlorophenoxyethyl,
2,2-dimethylethenyl, 2-chloropyridine-5-methyl, 5,7-dimethyl-1,3,4-
triazaindolin-2-yl, (S)-camphan-1-yl, (R)-camphan-1-yl or 8-quini-
olinyl;

L is -NSO_2- , $\text{-CH}_2\text{NSO}_2-$ or $\text{-NSO}_2\text{CH}_2-$;

X is N;

and the other residues are as defined in Claim 1.

6. Compounds according to Claim 3,

characterized in that

R⁴ is $\text{-SO}_2\text{R}'$;

R⁴ is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl,
isopentyl, neopentyl, hexyl, cyclopropyl, cyclobutyl, cyclopentyl,
cyclohexyl, cycloheptyl, phenyl, benzyl, tolyl or a substituted
derivative thereof, $\text{-C}_6\text{H}_2(\text{CH}_3)_3$, $\text{-C}_6(\text{CH}_3)_5$, $\text{-CH}_2\text{C}_6\text{H}_2(\text{CH}_3)_3$, 2-chloro-
phenyl, 3-chlorophenyl, 4-chlorophenyl, 2,3-dichlorophenyl, 2,4-
dichlorophenyl, 3,4-dichlorophenyl, 2,5-dichlorophenyl, 3,5-di-
chlorophenyl, 2,6-dichlorophenyl, 4-chlorophenylmethyl, 2,4-di-

M 17-02-00

chlorophenylmethyl, 2,6-dichlorophenylmethyl, 2-methoxycarbon-
ylphenylmethyl, 3-trifluoromethylphenyl, 4-trifluoromethylphenyl,
3,5-bis(trifluoromethyl)phenyl, 4-trifluoromethoxyphenyl, phenyl-
methyl, 2-acetamido-4-methyl-thiazol-5-yl, phenylethyl, 1-phenyl-
propyl, (S)-(+)-camphor-10-yl, (R)-(-)-camphor-10-yl, 2-phenyl-
ethenyl, 2-thiophenyl, 4-methoxyphenyl, 3,5-dimethoxyphenyl, 3-
methylphenyl, 4-methylphenyl, 4-t-butylphenyl, 4-propylphenyl, 2,5-
dimethylphenyl, 2-methoxy-5-methylphenyl, 2,3,5,6-tetramethyl-
phenyl, 1-naphthyl, 2-naphthyl, 4-fluorophenyl, 2,4-difluorophenyl,
2-chloro-6-methylphenyl, 2-chloro-4-fluorophenyl, 2,5-dimethoxy-
phenyl, 3,4-dimethoxyphenyl, 3-chloro-6-methoxyphenyl, 2-trifluoro-
methylphenyl, 2-alkylsulphonylphenyl, 2-arylsulphonylphenyl, 3-(N-
acetyl-6-methoxy)aniline, 4-acetamidophenyl, 2,2,2-trifluoroethyl, 5-
chloro-3-methyl-benzothiazol-2-yl, N-methoxycarbonyl-piperidin-3-
yl, thiophen-2-yl, isoxazol-5-yl, 2-chloropyridin-3-yl, pyridin-3-yl,
benzyloxy, 5-methylisoxazol-3-yl, 1-adamantyl, 4-chlorophenoxy-
methyl, 2,2-dimethylethenyl, 2-chloropyridine-5-methyl, 5,7-
dimethyl-1,3,4-triazaindolizin-2-yl, (S)-camphan-1-yl, (R)-camphan-
1-yl or 8-quinolinyl;

20 L is -NHCO-, -CH₂NHCO- or -NHCOCH₂-;
X is N;

and the other residues are as defined in Claim 3.

7. Compounds according to Claim 3,
characterized in that
- 25 R⁴ is -SO₂R⁴;
R⁴ is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl,
isopentyl, neopentyl, hexyl, cyclopropyl, cyclobutyl, cyclopentyl,
cyclohexyl, cycloheptyl, phenyl, benzyl, tolyl or a substituted
30 derivative thereof, -C₆H₂(CH₃)₃, -C₆(CH₃)₅, -CH₂C₆H₂(CH₃)₃, 2-
chlorophenyl, 3-chlorophenyl, 4-chlorophenyl, 2,3-dichlorophenyl,

2,4-dichlorophenyl, 3,4-dichlorophenyl, 2,5-dichlorophenyl, 3,5-di-
 chlorophenyl, 2,6-dichlorophenyl, 4-chlorophenylmethyl, 2,4-di-
 chlorophenylmethyl, 2,6-dichlorophenylmethyl, 2-methoxycarbonyl-
 phenylmethyl, 3-trifluoromethylphenyl, 4-trifluoromethylphenyl, 3,5-
 bis(trifluoromethyl)phenyl, 4-trifluoromethoxyphenyl, phenylmethyl,
 5
 2-acetamido-4-methyl-thiazol-5-yl, phenylethyl, 1-phenylpropyl, (S)-
 (+)-camphor-10-yl, (R)-(-)-camphor-10-yl, 2-phenylethenyl, 2-thio-
 phenyl, 4-methoxyphenyl, 3,5-dimethoxyphenyl, 3-methylphenyl, 4-
 methylphenyl, 4-t-butylphenyl, 4-propylphenyl, 2,5-dimethylphenyl,
 10
 2-methoxy-5-methylphenyl, 2,3,5,6-tetramethylphenyl, 1-naphthyl, 2-
 naphthyl, 4-fluorophenyl, 2,4-difluorophenyl, 2-chloro-6-methyl-
 phenyl, 2-chloro-4-fluorophenyl, 2,5-dimethoxyphenyl, 3,4-dimeth-
 oxyphenyl, 3-chloro-6-methoxyphenyl, 2-trifluoromethylphenyl, 2-
 alkylsulphonylphenyl, 2-arylsulphonylphenyl, 3-(N-acetyl-6-meth-
 oxy)aniline, 4-acetamidophenyl, 2,2,2-trifluoroethyl, 5-chloro-3-meth-
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95
 100
 105
 110
 115
 120
 125
 130
 135
 140
 145
 150
 155
 160
 165
 170
 175
 180
 185
 190
 195
 200
 205
 210
 215
 220
 225
 230
 235
 240
 245
 250
 255
 260
 265
 270
 275
 280
 285
 290
 295
 300
 305
 310
 315
 320
 325
 330
 335
 340
 345
 350
 355
 360
 365
 370
 375
 380
 385
 390
 395
 400
 405
 410
 415
 420
 425
 430
 435
 440
 445
 450
 455
 460
 465
 470
 475
 480
 485
 490
 495
 500
 505
 510
 515
 520
 525
 530
 535
 540
 545
 550
 555
 560
 565
 570
 575
 580
 585
 590
 595
 600
 605
 610
 615
 620
 625
 630
 635
 640
 645
 650
 655
 660
 665
 670
 675
 680
 685
 690
 695
 700
 705
 710
 715
 720
 725
 730
 735
 740
 745
 750
 755
 760
 765
 770
 775
 780
 785
 790
 795
 800
 805
 810
 815
 820
 825
 830
 835
 840
 845
 850
 855
 860
 865
 870
 875
 880
 885
 890
 895
 900
 905
 910
 915
 920
 925
 930
 935
 940
 945
 950
 955
 960
 965
 970
 975
 980
 985
 990
 995
 1000
 1005
 1010
 1015
 1020
 1025
 1030
 1035
 1040
 1045
 1050
 1055
 1060
 1065
 1070
 1075
 1080
 1085
 1090
 1095
 1100
 1105
 1110
 1115
 1120
 1125
 1130
 1135
 1140
 1145
 1150
 1155
 1160
 1165
 1170
 1175
 1180
 1185
 1190
 1195
 1200
 1205
 1210
 1215
 1220
 1225
 1230
 1235
 1240
 1245
 1250
 1255
 1260
 1265
 1270
 1275
 1280
 1285
 1290
 1295
 1300
 1305
 1310
 1315
 1320
 1325
 1330
 1335
 1340
 1345
 1350
 1355
 1360
 1365
 1370
 1375
 1380
 1385
 1390
 1395
 1400
 1405
 1410
 1415
 1420
 1425
 1430
 1435
 1440
 1445
 1450
 1455
 1460
 1465
 1470
 1475
 1480
 1485
 1490
 1495
 1500
 1505
 1510
 1515
 1520
 1525
 1530
 1535
 1540
 1545
 1550
 1555
 1560
 1565
 1570
 1575
 1580
 1585
 1590
 1595
 1600
 1605
 1610
 1615
 1620
 1625
 1630
 1635
 1640
 1645
 1650
 1655
 1660
 1665
 1670
 1675
 1680
 1685
 1690
 1695
 1700
 1705
 1710
 1715
 1720
 1725
 1730
 1735
 1740
 1745
 1750
 1755
 1760
 1765
 1770
 1775
 1780
 1785
 1790
 1795
 1800
 1805
 1810
 1815
 1820
 1825
 1830
 1835
 1840
 1845
 1850
 1855
 1860
 1865
 1870
 1875
 1880
 1885
 1890
 1895
 1900
 1905
 1910
 1915
 1920
 1925
 1930
 1935
 1940
 1945
 1950
 1955
 1960
 1965
 1970
 1975
 1980
 1985
 1990
 1995
 2000
 2005
 2010
 2015
 2020
 2025
 2030
 2035
 2040
 2045
 2050
 2055
 2060
 2065
 2070
 2075
 2080
 2085
 2090
 2095
 2100
 2105
 2110
 2115
 2120
 2125
 2130
 2135
 2140
 2145
 2150
 2155
 2160
 2165
 2170
 2175
 2180
 2185
 2190
 2195
 2200
 2205
 2210
 2215
 2220
 2225
 2230
 2235
 2240
 2245
 2250
 2255
 2260
 2265
 2270
 2275
 2280
 2285
 2290
 2295
 2300
 2305
 2310
 2315
 2320
 2325
 2330
 2335
 2340
 2345
 2350
 2355
 2360
 2365
 2370
 2375
 2380
 2385
 2390
 2395
 2400
 2405
 2410
 2415
 2420
 2425
 2430
 2435
 2440
 2445
 2450
 2455
 2460
 2465
 2470
 2475
 2480
 2485
 2490
 2495
 2500
 2505
 2510
 2515
 2520
 2525
 2530
 2535
 2540
 2545
 2550
 2555
 2560
 2565
 2570
 2575
 2580
 2585
 2590
 2595
 2600
 2605
 2610
 2615
 2620
 2625
 2630
 2635
 2640
 2645
 2650
 2655
 2660
 2665
 2670
 2675
 2680
 2685
 2690
 2695
 2700
 2705
 2710
 2715
 2720
 2725
 2730
 2735
 2740
 2745
 2750
 2755
 2760
 2765
 2770
 2775
 2780
 2785
 2790
 2795
 2800
 2805
 2810
 2815
 2820
 2825
 2830
 2835
 2840
 2845
 2850
 2855
 2860
 2865
 2870
 2875
 2880
 2885
 2890
 2895
 2900
 2905
 2910
 2915
 2920
 2925
 2930
 2935
 2940
 2945
 2950
 2955
 2960
 2965
 2970
 2975
 2980
 2985
 2990
 2995
 3000
 3005
 3010
 3015
 3020
 3025
 3030
 3035
 3040
 3045
 3050
 3055
 3060
 3065
 3070
 3075
 3080
 3085
 3090
 3095
 3100
 3105
 3110
 3115
 3120
 3125
 3130
 3135
 3140
 3145
 3150
 3155
 3160
 3165
 3170
 3175
 3180
 3185
 3190
 3195
 3200
 3205
 3210
 3215
 3220
 3225
 3230
 3235
 3240
 3245
 3250
 3255
 3260
 3265
 3270
 3275
 3280
 3285
 3290
 3295
 3300
 3305
 3310
 3315
 3320
 3325
 3330
 3335
 3340
 3345
 3350
 3355
 3360
 3365
 3370
 3375
 3380
 3385
 3390
 3395
 3400
 3405
 3410
 3415
 3420
 3425
 3430
 3435
 3440
 3445
 3450
 3455
 3460
 3465
 3470
 3475
 3480
 3485
 3490
 3495
 3500
 3505
 3510
 3515
 3520
 3525
 3530
 3535
 3540
 3545
 3550
 3555
 3560
 3565
 3570
 3575
 3580
 3585
 3590
 3595
 3600
 3605
 3610
 3615
 3620
 3625
 3630
 3635
 3640
 3645
 3650
 3655
 3660
 3665
 3670
 3675
 3680
 3685
 3690
 3695
 3700
 3705
 3710
 3715
 3720
 3725
 3730
 3735
 3740
 3745
 3750
 3755
 3760
 3765
 3770
 3775
 3780
 3785
 3790
 3795
 3800
 3805
 3810
 3815
 3820
 3825
 3830
 3835
 3840
 3845
 3850
 3855
 3860
 3865
 3870
 3875
 3880
 3885
 3890
 3895
 3900
 3905
 3910
 3915
 3920
 3925
 3930
 3935
 3940
 3945
 3950
 3955
 3960
 3965
 3970
 3975
 3980
 3985
 3990
 3995
 4000
 4005
 4010
 4015
 4020
 4025
 4030
 4035
 4040
 4045
 4050
 4055
 4060
 4065
 4070
 4075
 4080
 4085
 4090
 4095
 4100
 4105
 4110
 4115
 4120
 4125
 4130
 4135
 4140
 4145
 4150
 4155
 4160
 4165
 4170
 4175
 4180
 4185
 4190
 4195
 4200
 4205
 4210
 4215
 4220
 4225
 4230
 4235
 4240
 4245
 4250
 4255
 4260
 4265
 4270
 4275
 4280
 4285
 4290
 4295
 4300
 4305
 4310
 4315
 4320
 4325
 4330
 4335
 4340
 4345
 4350
 4355
 4360
 4365
 4370
 4375
 4380
 4385
 4390
 4395
 4400
 4405
 4410
 4415
 4420
 4425
 4430
 4435
 4440
 4445
 4450
 4455
 4460
 4465
 4470
 4475
 4480
 4485
 4490
 4495
 4500
 4505
 4510
 4515
 4520
 4525
 4530
 4535
 4540
 4545
 4550
 4555
 4560
 4565
 4570
 4575
 4580
 4585
 4590
 4595
 4600
 4605
 4610
 4615
 4620
 4625
 4630
 4635
 4640
 4645
 4650
 4655
 4660
 4665
 4670
 4675
 4680
 4685
 4690
 4695
 4700
 4705
 4710
 4715
 4720
 4725
 4730
 4735
 4740
 4745
 4750
 4755
 4760
 4765
 4770
 4775
 4780
 4785
 4790
 4795
 4800
 4805
 4810
 4815
 4820
 4825
 4830
 4835
 4840
 4845
 4850
 4855
 4860
 4865
 4870
 4875
 4880
 4885
 4890
 4895
 4900
 4905
 4910
 4915
 4920
 4925
 4930
 4935
 4940
 4945
 4950
 4955
 4960
 4965
 4970
 4975
 4980
 4985
 4990
 4995
 5000
 5005
 5010
 5015
 5020
 5025
 5030
 5035
 5040
 5045
 5050
 5055
 5060
 5065
 5070
 5075
 5080
 5085
 5090
 5095
 5100
 5105
 5110
 5115
 5120
 5125
 5130
 5135
 5140
 5145
 5150
 5155
 5160
 5165
 5170
 5175
 5180
 5185
 5190
 5195
 5200
 5205
 5210
 5215
 5220
 5225
 5230
 5235
 5240
 5245
 5250
 5255
 5260
 5265
 5270
 5275
 5280
 5285
 5290
 5295
 5300
 5305
 5310
 5315
 5320
 5325
 5330
 5335
 5340
 5345
 5350
 5355
 5360
 5365
 5370
 5375
 5380
 5385
 5390
 5395
 5400
 5405
 5410
 5415
 5420
 5425
 5430
 5435
 5440
 5445
 5450
 5455
 5460
 5465
 5470
 5475
 5480
 5485
 5490
 5495
 5500
 5505
 5510
 5515
 5520
 5525
 5530
 5535
 5540
 5545
 5550
 5555
 5560
 5565
 5570
 5575
 5580
 5585
 5590
 5595
 5600
 5605
 5610
 5615
 5620
 5625
 5630
 5635
 5640
 5645
 5650
 5655
 5660
 5665
 5670
 5675
 5680
 5685
 5690
 5695
 5700
 5705
 5710
 5715
 5720
 5725
 5730
 5735
 5740
 5745
 5750
 5755
 5760
 5765
 5770
 5775
 5780
 5785
 5790
 5795
 5800
 5805
 5810
 5815
 5820
 5825
 5830
 5835
 5840
 5845
 5850
 5855
 5860
 5865
 5870
 5875
 5880
 5885
 5890
 5895
 5900
 5905
 5910
 5915
 5920
 5925
 5930
 5935
 5940
 5945
 5950
 5955
 5960
 5965
 5970
 5975
 5980
 5985
 5990
 5995
 6000
 6005
 6010
 6015
 6020
 6025
 6030
 6035
 6040
 6045
 6050
 6055
 6060
 6065
 6070
 6075
 6080
 6085
 6090
 6095
 6100
 6105
 6110
 6115
 6120
 6125
 6130
 6135
 6140
 6145
 6150
 6155
 6160
 6165
 6170
 6175
 6180
 6185
 6190
 6195
 6200
 6205
 6210
 6215
 6220
 6225
 6230
 6235
 6240
 6245
 6250
 6255
 6260
 6265
 6270
 6275
 6280
 6285
 6290
 6295
 6300
 6305
 6310
 6315
 6320
 6325
 6330
 6335
 6340
 6345
 6350
 6355
 6360
 6365
 6370
 6375
 6380
 6385
 6390
 6395
 6400
 6405
 6410
 6415
 6420
 6425
 6430
 6435
 6440
 6445
 6450
 6455
 6460
 6465
 6470
 6475
 6480
 6485
 6490
 6495
 6500
 6505
 6510
 6515
 6520
 6525
 6530
 6535
 6540
 6545
 6550
 6555
 6560
 6565
 6570
 6575
 6580
 6585
 6590
 6595
 6600
 6605
 6610
 6615
 6620
 6625
 6630
 6635
 6640
 6645
 6650
 6655
 6660
 6665
 6670
 6675
 6680
 6685
 6690
 6695
 6700
 6705
 6710
 6715
 6720
 6725
 6730
 6735
 6740
 6745
 6750
 6755
 6760
 6765
 6770
 6775
 6780
 6785
 6790
 6795
 6800
 6805
 6810
 6815
 6820

- 5 phenyl, 3-chlorophenyl, 4-chlorophenyl, 2,3-dichlorophenyl, 2,4-dichlorophenyl, 3,4-dichlorophenyl, 2,5-dichlorophenyl, 3,5-dichlorophenyl, 2,6-dichlorophenyl, 4-chlorophenylmethyl, 2,4-dichlorophenylmethyl, 2,6-dichlorophenylmethyl, 2-methoxycarbonylphenylmethyl, 3-trifluoromethylphenyl, 4-trifluoromethylphenyl, 3,5-bis(trifluoromethyl)phenyl, 4-trifluoromethoxyphenyl, phenylmethyl, 2-acetamido-4-methyl-thiazol-5-yl, phenylethyl, 1-phenylpropyl, (S)-(+)-camphor-10-yl, (R)-(-)-camphor-10-yl, 2-phenylethenyl, 2-thiophenyl, 4-methoxyphenyl, 3,5-dimethoxyphenyl, 3-methylphenyl, 4-methylphenyl, 4-t-butylphenyl, 4-propylphenyl, 2,5-dimethylphenyl, 2-methoxy-5-methylphenyl, 2,3,5,6-tetramethylphenyl, 1-naphthyl, 2-naphthyl, 4-fluorophenyl, 2,4-difluorophenyl, 2-chloro-6-methylphenyl, 2-chloro-4-fluorophenyl, 2,5-dimethoxyphenyl, 3,4-dimethoxyphenyl, 3-chloro-6-methoxyphenyl, 2-trifluoromethylphenyl, 2-alkylsulphonylphenyl, 2-arylsulphonylphenyl, 3-(N-acetyl-6-methoxy)aniline, 4-acetamidophenyl, 2,2,2-trifluoroethyl, 5-chloro-3-methyl-benzothiazol-2-yl, N-methoxycarbonyl-piperidin-3-yl, thiophen-2-yl, isoxazol-5-yl, 2-chloropyridin-3-yl, pyridin-3-yl, benzyl-oxy, 5-methylisoxazol-3-yl, 1-adamantyl, 4-chlorophenoxyethyl, 2,2-dimethylethenyl, 2-chloropyridine-5-methyl, 5,7-dimethyl-1,3,4-triazaindolin-2-yl, (S)-camphan-1-yl, (R)-camphan-1-yl or 8-quinolinyl;
- 10 L is $-NHSO_2-$, $-CH_2NHSO_2-$ or $-NHSO_2CH_2-$;
- 15 X is N;
- 20 R⁷ and R⁹ together form an ethylene group which bonds the nitrogen atom to which R⁷ is bonded to the nitrogen atom to which R⁹ is bonded; and the other residues are as defined in Claim 3.

9. Process for the preparation of compounds of the formula (1)

comprising the steps

- a) reaction of a β -amino acid of the formula (2)

wherein

P is $-(CH_2)_mNO_2$, $-(CH_2)_mO-C_{1-6}$ -alkyl, $-(CH_2)_mSO_2P'$,
 $-(CH_2)_mCOP'$,
 $-(CH_2)_mCH_2O-C_{1-6}$ -alkyl, wherein m in each case is an integer
of 0 or 1;
P' is -OH, -O-C₁₋₆-alkyl,
and the other residues are as defined in Claim 1

with a compound R⁴-A to give a compound of the formula (3);

wherein

R⁴ is $-SO_2R^{4\prime}$, $-COOR^{4\prime\prime}$, or $-COR^{4\prime\prime}$;
R^{4\prime} and R^{4\prime\prime} are as defined in Claim 1;
A is -Cl, -Br, -I, -O-triflyl, -O-tosyl, -O-C₁₋₆-alkyl,
-O-CO-C₁₋₆-alkyl, -O-CO-O-C₁₋₆-alkyl, -OC(CH₃)=CH₂;

M 17-02-00

- 100 -

and the other residues are as defined above;

- b) conversion of the residue P into the residue Q, wherein
 - Q is $-(CH_2)_mNH_2$, $-(CH_2)_mOH$, $-(CH_2)_mCH_2OH$, $-(CH_2)_mSO_2A$,
 - 5 $-(CH_2)_mCOA$,
 - A is as defined above;
 - m is an integer of 0 or 1;
- c) reaction of the compound obtained from step b) with a compound of
 - 10 the formula (4)

wherein

S is $ASO_2(CH_2)_n^-$, $NH_2(CH_2)_n^-$, $ACO(CH_2)_n^-$, $HOCH_2(CH_2)_n^-$,
 M(CH_2)_n⁻, $MCH_2(CH_2)_n^-$, $HSCH_2(CH_2)_n^-$ or $HS(CH_2)_n^-$,
 15 wherein n is an integer of 0 or 1;

M is a residue including Mg, Li, Cd or Sn;

A is as defined above; and

C is $-NO_2$ or

X, R⁷, R⁸, R⁹ and R¹¹ are as defined in Claim 1;

20 to give a compound of the formula (5)

M 17.02.00

- 101 -

wherein the residues are as defined in Claim 1;

- 5 d) if appropriate, conversion of C, if C is a nitro group, into an optionally cyclic urea, thiourea or guanidine unit with obtainment of the compound (1); and
- 10 e) if appropriate, removal of protective groups and/or derivatization of nitrogen atoms, which are present, at preferred times within the preparation process, and/or conversion of the compound obtained into the free acid and/or conversion of the compound obtained into one of its physiological salts by reaction with an inorganic or organic base or acid.
- 15 10. Process according to Claim 9,
characterized in that
the β-amino acid of the formula (2) is obtained by reaction of malonic acid with a benzaldehyde derivative of the formula (2a)

20

M 17-00-00

- 102

wherein R¹⁰ and P are as defined in Claim 9, in the presence of ammonia, ammonium compounds or amines and, if appropriate, subsequent substitution in the α -position to the terminal carboxyl group.

- 5 11. Process according to Claim 9,
 characterized in that
 it comprises the conversion of the nitro group in step d) by reduction to the
 amino group, subsequent reaction with a carbonic acid derivative and, if
 appropriate, removal of protective groups present and/or reaction with a
10 compound containing at least one amino group.

12. Pharmaceutical composition, comprising at least one compound according to
one of Claims 1 to 10.

15 13. Use of compounds according to one of Claims 1 to 10 for the production of a
pharmaceutical composition having integrin-antagonistic action.

20 14. Use of compounds according to one of Claims 1 to 10 for the production of a
pharmaceutical composition for the therapy and prophylaxis of cancer,
osteolytic diseases such as osteoporosis, arteriosclerosis, restenosis and
ophthalmic disorders.

M 17-02-00

- 103 -

β-Phenylalanine derivatives as integrin antagonists

Abstract

The present invention relates to compounds of the general formula (1)

wherein R⁴ is -SO₂R^{4'}, -COOR^{4''}, -COR^{4'}, -CONR^{4'}₂ or -CSNR^{4'}₂; R^{4'} is hydrogen, a substituted or unsubstituted alkyl or cycloalkyl residue, a substituted or unsubstituted aryl residue or a saturated or unsaturated, optionally substituted heterocyclic residue; R^{4''} is a substituted or unsubstituted alkyl or cycloalkyl residue, a substituted or unsubstituted aryl residue or a saturated or unsaturated, optionally substituted heterocyclic residue; L is a sulphonamide, amide, ether, ester, keto, urea, thioether, sulphoxide or sulphone unit optionally extended by one or two methylene groups; and X is N, O or S; and their physiologically acceptable salts and stereoisomers. The present invention furthermore relates to a process for the preparation of the compounds of the formula (1), a pharmaceutical composition containing at least one of these compounds, and the use of compounds of the formula (1) for the production of a pharmaceutical composition having integrin-antagonistic action and in particular for the therapy and prophylaxis of cancer, osteolytic diseases such as osteoporosis, arteriosclerosis, restenosis and ophthalmic disorders.

H17-02-00

THIS PAGE BLANK (USPTO)