Data preprocessing, model complexity.

Victor Kitov

v v kit ov@yandex ru

Table of Contents

- Model complexity
- 2 Data preprocessing

Data preprocessing, model complexity. - Victor Kitov

Model complexity

Hyperparameters selection

- Using CV we can select hyperparameters of the model¹
- Each model has hyperparameter, corresponding to model complexity.
- Model complexity ability to reproduce training set.
- Examples:
 - regression: # of features d, e.g. $x, x^2, ... x^d$
 - K-NN: number of neighbors K

¹can we use CV loss in this case as estimation for future losses?

Data preprocessing, model complexity. - Victor Kitov

Model complexity

Underfitted and overfitted models²

Too simple (underfitted) model

Model that oversimplifies true relationship $\mathcal{X} \to \mathcal{Y}$.

Too complex (overfitted) model

Model that is too tuned on particular peculiarities (noise) of the training set instead of the true relationship $\mathcal{X} \to \mathcal{Y}$.

²In fact most models overfit, meaning that empirical risk<expected risk. Underfitted models just have lower difference than overfitted ones.

Examples of overfitted / underfitted models

- ____ true relationship
 - estimated relationship with polynimes of order M
 - o objects of the training sample

Loss vs. model complexity

Comments:

- expected loss on test set is always higher than on train set.
- left to A: model too simple, underfitting, high bias
- right to A: model too complex, overfitting, high variance

Loss vs. train set size

Comments:

- expected loss on test set is always higher than on train set.
- right to B there is no need to further increase training set size
 - useful to limit training set size when model fitting is time consuming

Table of Contents

- Model complexity
- 2 Data preprocessing
 - Missing data
 - Data reduction
 - Normalization of features
 - Feature type transformations

What we need to do

- Data preprocessing:
 - deal with missing data
 - clean incorrect data
 - data subsampling
 - data scaling
 - data type transformtion

Data preprocessing, model complexity. - Victor Kitov
Data preprocessing
Missing data

- 2 Data preprocessing
 - Missing data
 - Data reduction
 - Normalization of features
 - Feature type transformations

Missing data

What we can do with missing features:

- remove all objects, having at least one missing feature
 - easiest way, but lose information
- fill missing features using most likely value
 - mean, median for numeric features
 - averaged neighbours for continious time-series
 - mode for categorical feature
- predict missing features using known features
 - regression task for numeric features
 - classification task for categorical feature
- use models, which ignore missing features
 - such as decision trees

Comments on imputation

- imputing missing features with estimates induces imputation bias
 - to get rid of this bias: for feature d add binary feature, indicating whether this feature was known or was imputed.
- imputation implies that feature absence and feature value are independent
 - may not be the case
 - in surveys people prefer not to tell their salary when it is big.
 - if they are dependent additional expert info should be used for feature reconstruction

Incorrect data

We can detect incorrect data using:

- inconsistency detection
 - e.g. surname of the same person is spelled differently in different records
- domain knowledge
 - e.g. human height cannot be 4 meters
- statistical methods: remove outliers

 ${\bf Data\ preprocessing,\ model\ complexity.\ -\ Victor\ Kitov}$

Data preprocessing Missing data

Outlier removal, having extreme values

• 1D outlier removal:

³which of these measures are robust to outliers and why?

⁴which of these measures are robust to outliers and why?

Outlier removal, having extreme values

- 1D outlier removal:
 - outliers are outside [center $-\alpha$ scatter, center $+\alpha$ scatter], $\alpha>0$
 - center³: mean, median
 - scatter⁴: standard deviation, 95% quantile 5%quantile, median {|x - median {x}}
- Outliers can be not errors, but interesting regimes:
 - medical data: rare disease
 - network data: hacker attack
 - card transaction data: fraud
 - manual inspection of outliers needed

³which of these measures are robust to outliers and why?

⁴which of these measures are robust to outliers and why?

Data preprocessing, model complexity. - Victor Kitov
Data preprocessing
Data reduction

- 2 Data preprocessing
 - Missing data
 - Data reduction
 - Normalization of features
 - Feature type transformations

Objects reduction

If N is too large, then

- additional memory/disk/CPU data transfer requirements
- slow-down of optimization in ML methods

Objects reduction:

- Purely random subsampling
 - usually without replacement
- Random with stratification
 - stratification by output
 - preserve classes distribution
 - stratification by feature value
 - preserve object types distribution

Objects reduction

Objects reduction:

- Random non-uniform sampling (less common)
 - sample harder objects more (mistakes)
 - regression: based on $|f_{\theta}(x) y|$
 - classification: based on margin (few etalons, then lowest margin objects)
 - sample rare classes/objects more (underrepresented data)
 - sample new objects more (in dynamic context)

Margin

- Consider
 - $(x_1, y_1), (x_2, y_2), ...(x_N, y_N)$ training set
 - $Y = \{1, 2, ... C\}$ set of all possible classes.
- Define margin:

$$M(x_i, y_i) = g_{y_i}(x_i) - \max_{c \in \mathbf{Y} \setminus \{\mathbf{y}_i\}} g_c(x_i)$$

- Margin shows the preference of the algorithm to assign x_i to the correct class y_i compared to other classes.
 - ullet being continious margin is more informative than $\mathbb{I}[\widehat{y}(x_i)=y_i]$
- Margin is negative <=> object x_i was incorrectly classified.

Data preprocessing, model complexity. - Victor Kitov

Categorization of objects based on margin

Estimate margin for each object in the training set and order objects by margin:

Good classifier should:

- minimize the number of negative margin region
- classify correctly with high margin

Margin for binary classification

Consider

- $y \in \{+1, -1\}$
- $g(\mathbf{x}) = g_{+1}(\mathbf{x}) g_{-1}(\mathbf{x})$ score of positive class versus negative.

•
$$\widehat{y}(x) = \operatorname{sign} g(x)$$

 $M(x, y) = g_y(x) - g_{-y}(x) = y(g_{+1}(x) - g_{-1}(x)) = yg(x)$

Feature reduction

• Feature selection vs. feature extraction:

- Feature selection:
 - unsupervised (e.g. variance<threshold)
 - filter (e.g. by correlation with output)
 - wrapper (e.g. compare performance with/without feature)
 - embedded inside ML model

Brute-force feature selection may lead to information loss

Data preprocessing, model complexity. - Victor Kitov
Data preprocessing
Normalization of features

- 2 Data preprocessing
 - Missing data
 - Data reduction
 - Normalization of features
 - Feature type transformations

Normalization of features

- Feature scaling may affect ML model, e.g. K-NN.
- If different features should have equal impact make their scatter common.
- If some features should be more important give them higher scatter.
- Typical normalizations:

Name	Transformation	Properties of resulting feature		
Autoscaling	$x_j' = \frac{x_j - \mu_j}{\sigma_j}$	zero mean and unit variance.		
Range scaling	$x_j' = \frac{x_j - L_j}{U_j - L_j}$	belongs to $\left[0,1\right]$ interval.		

where μ_j , σ_j , L_j , U_j are mean value, standard deviation, minimum and maximum value of the j-th feature.

Data preprocessing, model complexity. - Victor Kitov

Data preprocessing

Normalization of features

Discussion

- For non-negative features range scaling does not affect feature sparsity: 0->0.
- Autoscaling is more robust to outliers than range scaling⁵

⁵Propose a scaling that is fully robust to outliers.

Normalization of features

- Non-linear transformations incorporating features with rare large values:
 - $x_i' = \log(x_i)$
 - $x_i' = x^p, \ 0 \le p < 1$
- For $F_i(\alpha) = P(x^i \le \alpha)$ transformation $\tilde{x}^i \to F_i(x^i)$ will give feature uniformly distributed on $[0,1]^6$.
- Sometimes scaling is performed not per feature, but per object $x \to x/\|x\|$
 - e.g.: x- counts of words within document->frequencies of words within document documents of different length become comparable!

⁶Prove that

- 2 Data preprocessing
 - Missing data
 - Data reduction
 - Normalization of features
 - Feature type transformations

Possible features types

- Numeric
 - salary
 - flat size
- Categorical
 - occupation (programmer, manager, engineer, etc.)
 - sex (male, female)
 - city (Moscow, Kaluga, etc.)
- Binary (may be considered both numeric and categorical)
 - sex
 - marital status

Numeric->categorical

- Numeric->categorical (discretization):
 - Split feature domain into intervals $[b_1, b_2], [b_2, b_3], ...[b_K, b_{K+1}]$
 - $\tilde{f} \to \tilde{f} \in \mathbb{R}^K$

$$\tilde{f} = (\mathbb{I}[f \in [b_1, b_2]], \, \mathbb{I}[f \in [b_2, b_3]], ... \mathbb{I}[f \in [b_K, b_{K+1}]])^T$$

- Loose some information.
- Such representation may be better for the model (e.g. linear regression).
- Intervals selection:
 - equiwidth (equal length of each interval)
 - equidepth (equal density of points in each interval)
 - sort feature values in increasing order and set new border every $\frac{N}{K}$ objects.

Categorical->numeric

• One hot encoding - encode categorical feature $f \in \{c_1, c_2, ... c_K\}$ with $\tilde{f} \in \mathbb{R}^K$

$$\tilde{f} = (\mathbb{I}[f = c_1], \, \mathbb{I}[f = c_2], \, ... \, \mathbb{I}[f = c_K])^T$$

Original data:		One-hot encoding format:						
id	Color		id	White	Red	Black	Purple	Gold
1	White		1	1	0	0	0	0
2	Red		2	0	1	0	0	0
3	Black		3	0	0	1	0	0
4	Purple		4	0	0	0	1	0
5	Gold		5	0	0	0	0	1

Categorical->numeric

Probabilistic encoding - replace discrete feature f with aggregated another feature g.

- Continious g:
 - replace f with average(g|f)
- Discrete $g \in \{1, 2, ... C\}$:
 - replace f with C binary features p(g=1|f), p(g=2|f), ..., p(g=C|f)

g may be taken as output y.

- intuitive method but overfits
 - e.g. consider f = client id, unique for each object.
- to prevent overfitting calculate aggregation statistics on separate training set.

Summary

- Each model has complexity parameter tune it!
- Data preprocessing is important and includes the following steps:
 - deal with missing data
 - clean incorrect data
 - data subsampling
 - data scaling
 - data type transformation
 - one-hot and aggregation encodings are most important.