Phương pháp Householder để đưa ma trận vuông đối xứng [A] về ma trận đối xứng ba đường chéo

Võ Minh Thịnh MSSV: 22280087

Ma trận Householder và tính chất

1. Ma trận Householder là ma trận trực giao

Ma trận Householder H_k được định nghĩa là:

$$H_k = I - 2\frac{ww^T}{w^Tw}$$

trong đó:

- I: ma trận đơn vị.
- w: vector phản xạ Householder, được thiết kế để triệt tiêu các phần tử không mong muốn trong vector mục tiêu.
- $w^Tw = \|w\|^2$: là khoảng cách Euclid bình phương, nếu ta chuẩn hoá w thì, $\|w\|^2 = 1$

Tính chất trực giao của H_k có nghĩa là:

$$H_k^T H_k = I$$

trong đó:

- H_k^T : chuyển vị của H_k .
- \bullet I: ma trận đơn vị.

Điều này đảm bảo rằng việc áp dụng H_k lên bất kỳ vector hoặc ma trận nào sẽ giữ nguyên "hình dạng" không gian, chỉ xoay hoặc phản xạ các thành phần.

2. Tác dụng của H_k lên một vector

Khi áp dụng H_k lên một vector x, ma trận này sẽ "xoay" vector x sao cho tất cả các phần tử trừ phần tử đầu tiên (trong không gian được chọn) bị triệt tiêu.

Ví dụ: Nếu $x = [x_1, x_2, x_3]^T$, khi triệt tiêu x_2 và x_3 , thì w được thiết kế sao cho:

$$H_k x = [\|x\|, 0, 0]^T$$

Nhờ đó, H_k không chỉ thay đổi x, mà còn "đưa" x về dạng mong muốn.

3. Tác động của H_k lên ma trận

Khi áp dụng H_k lên ma trận A, ta thực hiện phép nhân:

$$H_kAH_k$$

Do H_k trực giao và đối xứng $(H_k^T=H_k)$, phép nhân này mang tính chất "xoay" toàn bộ ma trận A trong không gian vector.

Cu thể:

- H_k tác động lên các **hàng** của A khi nhân H_kA .
- H_k tác động lên các **cột** của A khi nhân AH_k .

Kết quả là các phần tử nằm ngoài vùng cần giữ lại (ví dụ: các phần tử ngoài đường chéo hoặc dưới đường chéo phụ) sẽ bị triệt tiêu.

$\acute{\mathbf{Y}}$ tưởng thuật toán Householder để đưa ma trận về dạng ba đường chéo

1. Mục tiêu

Biến đổi ma trận đối xứng A (kích thước $n \times n$) về dạng ba đường chéo. Tức là:

$$A = \begin{bmatrix} a_{11} & a_{12} & 0 & \cdots & 0 \\ a_{12} & a_{22} & a_{23} & \cdots & 0 \\ 0 & a_{23} & a_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & a_{n-1,n} \\ 0 & 0 & 0 & a_{n-1,n} & a_{nn} \end{bmatrix}$$

Các phần tử khác ngoài ba đường chéo (chính, trên, dưới) phải được triệt tiêu.

2. Ý tưởng chính

Để đưa ma trận về dạng ba đường chéo:

- Sử dụng ma trận Householder H_k tại mỗi bước k (k = 1, ..., n 2).
- Ở mỗi bước k, chỉ tác động lên một phần con của ma trận (bắt đầu từ hàng và cột k+1 trở đi), đảm bảo triệt tiêu các phần tử dưới đường chéo phụ của cột k.

3. Các bước thực hiện

Bước 1: Khởi tạo ma trận Householder

Tại bước k, trích cột thứ k của ma trận A, từ hàng k+1 đến n, ký hiệu là \mathbf{x} .

Tính vector phản xạ Householder \mathbf{v} sao cho:

$$\mathbf{v} = \mathbf{x} - \alpha \mathbf{e}_1$$

Trong đó, \mathbf{e}_1 là vector đơn vị đầu tiên trong không gian con hiện tại.

 e_1 có dạng:

$$\mathbf{e}_1 = [1, 0, 0, ..., 0]^T$$

 α có dạng :

$$\alpha = -\operatorname{sign}(x_1)||x||$$

Lấy ngược dấu của phần tử đầu tiên là để tránh triệt tiêu phần tử này (vì đây là phần tử trên đường chéo phụ cần giữ lại)

Bước 2: Xây dựng ma trận Householder H_k

Ma trận H_k có dạng:

$$H_k = I - 2\frac{\mathbf{v}\mathbf{v}^T}{\mathbf{v}^T\mathbf{v}}$$

Bước 3: Điều chỉnh kích thước ma trân Householder

Tại mỗi bước k, ma trận Householder H_k ban đầu chỉ tác động lên ma trận con có kích thước $(n-k)\times(n-k)$. Tuy nhiên, để áp dụng lên toàn bộ ma trận A kích thước $n\times n$, ta cần mở rộng H_k lên dạng đầy đủ kích thước $n\times n$.

Phần mở rộng này được thực hiện bằng cách "điền" ma trận đơn vị I_k bậc k vào k dòng đầu và k cột đầu, giữ nguyên các giá trị ở những vị trí này.

Phần còn lại của H_k (kích thước $(n-k) \times (n-k)$) được đặt vào góc dưới bên phải của ma trận.

Cu thể:

$$H_k^{\text{m\'o r\^ong}} = \begin{bmatrix} I_k & 0\\ 0 & H_k \end{bmatrix}$$

Trong đó:

- I_k là ma trận đơn vị bậc $k \times k$, đảm bảo giữ nguyên các giá trị ở k hàng và cột đầu tiên của A (những phần không cần thay đổi).
- H_k là ma trận Householder tác động lên phần ma trận con $(n-k) \times (n-k)$.

Mục đích của việc mở rộng này là để đảm bảo các phần tử ở k hàng và k cột đầu tiên không bị thay đổi trong quá trình nhân ma trận.

Bước 4: Áp dụng H_k lên ma trận A

Tính $A' = H_k A H_k$, trong đó:

- H_kA : Tác động lên các hàng của A.
- AH_k : Tác động lên các cột của A.

Kết quả là các phần tử không mong muốn dưới đường chéo phụ của cột k sẽ bị triệt tiêu.

Bước 5: Tiếp tục lặp lại

Lặp lại quá trình từ k=1 đến n-2. (lặp đến n-2 là do hai phần tử cuối trong hai cột cuối nằm ở hai đường chéo cần giữ lại) . Với mỗi bước, kích thước ma trận con bị tác động sẽ giảm dần.

Cài đặt chương trình