Problem 3

1. Determine Power Requirements

Total Current Draw:

Motors:

Each motor: 4A

Four motors: 4 A×4=16 A

Camera: 0.5A

Total Current Draw: 16 A+0.5 A=16.5 A

Total Power Consumption:

Voltage: 12V

Power Required: $12 \text{ V} \times 16.5 \text{ A} = 198 \text{ W}$

Battery Capacity:

Operation Time: 30 minutes (0.5 hours)

Capacity Required: 198 W×0.5 hours=99 Wh

Adjust for Safety Factor:

Adjusted Capacity: 99 Wh×1.2=118.8 Wh

2. Select Suitable Batteries

Battery Type Options:

1. Lithium-Ion Batteries:

High energy density, Light weight, Higher cost

2. Lead-Acid Batteries:

Lower cost, Heavier, Larger size

Battery Specification:

• Voltage: 12V

• Capacity: Minimum 120 Wh

Example Battery Models:

Lithium-Ion Option:

• **Model:** 12V 15Ah Lithium-Ion Battery

o Capacity: 180 Wh

Weight: Approximately 2.5 kgCost: Higher, around \$150-\$200

o **Benefits:** Compact, high-energy density, longer life cycle

- Advantages:
 - o Meets capacity requirements with room for safety factor
 - o Lighter and more compact
 - o Longer lifespan and better performance in high-current applications
- Disadvantages:
 - Higher cost

Recommendation:

For the optimal balance of weight, size, and performance, a 12V 15Ah Lithium-Ion Battery is recommended. It provides sufficient capacity with a safety margin, is lighter, and more compact compared to lead-acid alternatives. Despite the higher cost, the benefits of lighter weight and longer lifespan justify the investment in high-performance applications like Cyborg's.