Help smitha_kannur ▼

Course

Progress

<u>Dates</u>

Discussion

Resources

☆ Course / Unit 1 Linear Classifiers and Generalizations (2 weeks) / Homework 1

4. Linear Support Vector Machines

□ Bookmark this page

Homework due Sep 30, 2020 05:29 IST Completed

In this problem, we will investigate minimizing the training objective for a Support Vector Machine (with margin loss).

The training objective for the Support Vector Machine (with margin loss) can be seen as optimizing a balance between the average hinge loss over the examples and a regularization term that tries to keep the parameters small (increase the margin). This balance is set by the regularization parameter $\lambda>0$. Here we only consider the case without the offset parameter θ_0 (setting it to zero) so that the training objective is given by

$$\left[\frac{1}{n}\sum_{i=1}^{n}Loss_{h}\left(y^{(i)}\,\theta\cdot x^{(i)}\,\right)\right] + \frac{\lambda}{2}\|\theta\|^{2} = \frac{1}{n}\sum_{i=1}^{n}\left[Loss_{h}\left(y^{(i)}\,\theta\cdot x^{(i)}\,\right) + \frac{\lambda}{2}\|\theta\|^{2}\right] \tag{4.3}$$

where the hinge loss is given by

$$Loss_h(y(\theta \cdot x)) = \max\{0, 1 - y(\theta \cdot x)\}\$$

$$\hat{\theta} = \operatorname{Argmin}_{\theta} \left[\operatorname{Loss}_{h} \left(y \, \theta \cdot x \, \right) + \frac{\lambda}{2} \|\theta\|^{2} \right] \tag{4.4}$$

Note: For all of the exercises on this page, assume that n=1 where n is the number of training examples and $x=x^{(1)}$ and $y=y^{(1)}$.

Minimizing Loss - Case 1

1/1 point (graded)

In this question, suppose that $\operatorname{Loss}_h(y(\hat{\theta}\cdot x))>0$. Under this hypothesis, solve for optimisation problem and express $\hat{\theta}$ in terms of x,y and λ

y*x/lambda ✓ Answer: x*y/lambda

STANDARD NOTATION

Solution:

$$\hat{ heta} = \operatorname{Argmin}_{ heta} \left[\operatorname{Loss}_h \left(y \, heta \cdot x \,
ight) + rac{\lambda}{2} \| heta\|^2
ight]$$

The above loss can be minimized by solving for the following equation

$$0 =
abla_{ heta} \left[\operatorname{Loss}_h \left(y \left(heta \cdot x
ight)
ight)
ight] +
abla_{ heta} \left[rac{\lambda}{2} \| heta \|^2
ight]$$

Given that

$$egin{array}{lll} \operatorname{Loss}_h\left(y\left(\hat{ heta}\cdot x
ight)
ight) &> 0 \ &\operatorname{Loss}_h\left(y\left(\hat{ heta}\cdot x
ight)
ight) &= \max\{0,1-y\left(heta\cdot x
ight)\} \ &\operatorname{Loss}_h\left(y\left(\hat{ heta}\cdot x
ight)
ight) &= 1-y\left(heta\cdot x
ight) \ &
abla_{ heta}\left[\operatorname{Loss}_h\left(y\left(heta\cdot x
ight)
ight)
ight] &= -yx \end{array}$$

ı

Plugging this back in the previous equation, we get:

$$0 = \lambda \hat{\theta} - yx$$

$$\hat{ heta} = rac{1}{\lambda} y x$$

Submit

You have used 1 of 3 attempts

• Answers are displayed within the problem

Minimizing Loss - Numerical Example (1)

1/2 points (graded)

Consider minimizing the above objective fuction for the following numerical example:

$$\lambda=0.5, y=1, x=\left[egin{array}{c}1\0\end{array}
ight]$$

Note that this is a classification problem where points lie on a two dimensional space. Hence $\hat{\theta}$ would be a two dimensional vector.

Let $\hat{\theta}=\left[\,\hat{\theta_1},\hat{\theta_2}\,\right]$, where $\hat{\theta_1},\hat{\theta_2}$ are the first and second components of $\hat{\theta}$ respectively.

Solve for $\hat{ heta_1},\hat{ heta_2}$.

Hint: For the above example, show that $\mathrm{Loss}_{\hbar}\left(y\left(\hat{ heta}\cdot x
ight)
ight)\leq0$

$$\hat{\theta_1} =$$

0.25

X Answer: 1.0

$$\hat{\theta_2} =$$

0

✓ Answer: 0.0

Solution:

First note that for this example $Loss_{h}\left(y\left(heta\cdot x
ight)
ight)\leq0.$

To show this we use proof by contradiction.

Suppose $Loss_h(y(\theta \cdot x)) > 0$:

From the previous problem, we know that under this condition, $\hat{\theta}=rac{yx}{\lambda}$

For this example, $\hat{ heta} = egin{bmatrix} 2 \\ 0 \end{bmatrix}$.

For this value of $\hat{ heta}$, we see that $1-(y(heta\cdot x))=1-2=-1<0$ contradicting our original assumption.

Hence, $\mathrm{Loss}_{h}\left(y\left(heta\cdot x
ight)
ight)\leq0$, which implies that $y\left(heta\cdot x
ight)\geq1$.

We are left with minimizing $rac{\lambda}{2}\| heta\|^2$ under the constraint $y\left(heta\cdot x
ight)\geq 1.$

The geometry of the problem implies that in fact, $y(\theta \cdot x) = 1$.

That is, $1-(\hat{ heta_1}*1+\hat{ heta_2}*0)=0$ implying that $\hat{ heta_1}=1.$

Then, to minize $\| heta\|$, $\hat{ heta_2}=0$.

Therefore $\hat{ heta} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

In fact, we can show that $\hat{theta} = \frac{x}{y\|(\|x\|^2)}$. Looking back at the previous question, the solution of the optimization is then necessarily of the form $\hat{ heta}=\eta yx$ for some real $\eta>0$.

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

Minimizing Loss - Numerical Example (2)

1.0/1 point (graded)

Now, let $\hat{\theta} = \hat{\theta}(\lambda)$ be the solution as a function of λ .

For what value of $\|x\|^2$, the training example (x,y) will be misclassified by $\hat{\theta}$ (λ) ?

$$\|x\|^2 = \boxed{egin{array}{c} 0 \end{array}}$$
 Answer: 0

Solution:

For a point to be considered misclassified

$$y\hat{\theta} \cdot x < 0$$

The above condition implies that the hinge loss is greater than zero. From above problems, we know that under this condition,

$$\hat{\theta} = \frac{yx}{\lambda}$$

$$y\hat{ heta}\cdot x=rac{y^2{\|x\|}^2}{\lambda}{\le}0$$

All terms of the product are non-negative, making it impossible to be < 0. But if ||x||=0, the product can be 0.

Hence $\|x\|^2=0$

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

Discussion

Hide Discussion