

Комбинирование нейронных сетей и синтаксического анализа для предсказания вторичной структуры генетических цепочек

Лунина Полина Сергеевна Научный руководитель: Григорьев С.В. Рецензент: Малыгина Т.С.

Санкт-Петербургский государственный университет

9 июня 2021г.

Введение

Геномные последовательности

- PHK
- ДНК
- Белки

Уровни молекулярной организации

- Первичная структура (линейная)
- Вторичная структура (пространственная)

Задачи

- Распознавание последовательностей
- Классификация организмов
- Предсказание вторичных структур
- •

Значение

- Транскрипция, трансляция
- Филогенетика, таксономия

Значение

- Транскрипция, трансляция
- Филогенетика, таксономия

Методы предсказания

- Лабораторные
- Сравнительные
- Вычислительные
 - Минимизация свободной энергии
 - Стохастические модели и грамматики
 - Машинное обучение
 - · ...

Проблемы

- Сложность формализации
- Предсказание псевдоузлов
- Вариативность элементов
- Зашумленность данных

Проблемы

- Сложность формализации
- Предсказание псевдоузлов
- Вариативность элементов
- Зашумленность данных

Проблемы

- Сложность формализации
- Предсказание псевдоузлов
- Вариативность элементов
- Зашумленность данных

Проблемы

- Сложность формализации
- Предсказание псевдоузлов
- Вариативность элементов
- Зашумленность данных

Наше решение

- Формальная грамматика для описания базовых законов
- Нейронная сеть для синтеза вторичной структуры

Постановка задачи

Цель — исследование возможности применения подхода, основанного на комбинировании нейронных сетей и синтаксического анализа, к задаче предсказания вторичной структуры молекулы PHK

Задачи

- Разработка архитектуры решения, конкретизирующей форматы данных, используемые грамматики и нейронные сети
- Проведение экспериментальных исследований, сравнение с аналогами

- Вторичная структура как рекурсивная композиция базовых элементов — шпилек (stem-loop)
- КС грамматика для описания общего вида шпильки
- Ограничения: размер петли (1-20), высота (от 3), канонические пары (A-U, C-G)

- Вторичная структура как рекурсивная композиция базовых элементов — шпилек (stem-loop)
- КС грамматика для описания общего вида шпильки
- Ограничения: размер петли (1-20), высота (от 3), канонические пары (A-U, C-G)

- Вторичная структура как рекурсивная композиция базовых элементов — шпилек (stem-loop)
- КС грамматика для описания общего вида шпильки
- Ограничения: размер петли (1-20), высота (от 3), канонические пары (A-U, C-G)

- Вторичная структура как рекурсивная композиция базовых элементов — шпилек (stem-loop)
- КС грамматика для описания общего вида шпильки
- Ограничения: размер петли (1-20), высота (от 3), канонические пары (A-U, C-G)

- Вторичная структура как рекурсивная композиция базовых элементов — шпилек (stem-loop)
- КС грамматика для описания общего вида шпильки
- Ограничения: размер петли (1-20), высота (от 3), канонические пары (A-U, C-G)

- Вторичная структура как рекурсивная композиция базовых элементов — шпилек (stem-loop)
- КС грамматика для описания общего вида шпильки
- Ограничения: размер петли (1-20), высота (от 3), канонические пары (A-U, C-G)

- Вторичная структура как рекурсивная композиция базовых элементов — шпилек (stem-loop)
- КС грамматика для описания общего вида шпильки
- Ограничения: размер петли (1-20), высота (от 3), канонические пары (A-U, C-G)

- Вторичная структура как рекурсивная композиция базовых элементов — шпилек (stem-loop)
- КС грамматика для описания общего вида шпильки
- Ограничения: размер петли (1-20), высота (от 3), канонические пары (A-U, C-G)

Синтаксический анализатор

- Задача поиска всех возможных шпилек в последовательности
- ullet Результат работы матрица разбора $M_p(seq)$: $M_p[i,j]=1 \iff seq[i..j]$ выводима в грамматике
- ullet Шпильке высоты $n\geq 3$ соответствует столбик из n-2 единиц

Синтаксический анализатор

- Псевдоузлы не выводимы в КС грамматике
- Шпильки, из которых они состоят, выводимы по отдельности
- ⇒ Наш подход позволяет учитывать псевдоузлы

Нейронная сеть

- ullet Парсер находит все возможные шпильки \Rightarrow избыточность M_p
- ullet В грамматике есть ограничения \Rightarrow недостаточность M_p
- Решение обработка матриц разбора нейронной сетью
- ullet Эталон матрица контактов реальной вторичной структуры $M_c(seq)$: $M_c[i,j]=1 \iff seq[i]$ и seq[j] образуют контакт

Вторичная структура

Эталонное изображение (матрица контактов)

Входное изображение (матрица разбора)

Нейронная сеть

- ullet Парсер находит все возможные шпильки \Rightarrow избыточность M_p
- ullet В грамматике есть ограничения \Rightarrow недостаточность M_p
- Решение обработка матриц разбора нейронной сетью
- Эталон матрица контактов реальной вторичной структуры $M_c(seq)$: $M_c[i,j]=1 \iff seq[i]$ и seq[j] образуют контакт

Вторичная структура

Эталонное изображение (матрица контактов)

Входное изображение (матрица разбора)

Нейронная сеть

- Параллельная остаточная архитектура
- Dropout и L2-регуляризация для снижения переобучения

Эксперименты

Задача — предсказание вторичных структур для цепочек РНК с имеющимися достоверными эталонными данными

Данные

- База RNAstrand (последовательности + вторичные структуры)
- 800 последовательностей длины до 100 (74 с псевдоузлами)
- Data augmentation отражение относительно побочной диагонали

Технологии

- Синтаксический анализ: платформа YaccConstructor
- Нейронные сети: библиотека Keras и фреймворк Tensorflow

Эксперименты

Аналоги

- HotKnots MFE + эвристический алгоритм
- SPOT-RNA машинное обучение
- PknotsRG MFE + Turner energy rules
- RNAstructure MFE + динамическое программирование
- Ipknot MEA + целочисленное программирование

Метрики

- $Precision = \frac{TP}{TP+FP}$ (доля верных контактов среди предсказанных)
- $Recall = \frac{TP}{TP+FN}$ (доля предсказанных контактов среди искомых)
- $F1 = 2 * \frac{Precision*Recall}{Precision+Recall}$ (объединяющая метрика)

Результаты

Значения метрики F1 на тестовых выборках для нашей модели и на всей выборке для остальных инструментов

Результаты

Значения метрик *Precision* и *Recall* на тестовых выборках для нашей модели и на всей выборке для остальных инструментов

Заключение

- Разработана архитектура решения для предсказания вторичной структуры РНК на основе комбинирования методов синтаксического анализа и машинного обучения
- Проведены эксперименты на реальных данных и сравнение полученных результатов с аналогами
- Представлен постер "Secondary structure prediction by combination of formal grammars and neural networks"на конференции Biata 2020 и опубликована одноименная статья (BMC Bioinformatics, Scopus)

Время работы алгоритмов

- Операционная система: Ubuntu 20.04.2 LTS
- Центральный процессор: Intel Core i5-10210U CPU 1.60GHz
- Графический процессор: NVIDIA GeForce MX250
- Объем оперативной памяти: 7.5 GB

Tool	Time, s (100 sequences)
Ipknot	0.8
RNAstructure	10.3
PknotsRG	14.9
Hotknots	37.0
SPOT-RNA (GPU)	67.8
New-model (PA + NN)	103.1 (80.7 + 22.4)
SPOT-RNA (CPU)	109.7
Knotty	282.8