CSE472

Machine Learning Project:

Brain Tumor Detection and Classification

ARNOB SAHA ANKON (1905108) Md. JARIF AHSAN (1905092)

December 18, 2024

Introduction

This report outlines the methodologies and results of our machine learning project focused on brain tumor detection and classification. The project consists of two main objectives:

- Detection: Determining whether a brain tumor exists.
- Classification: Identifying the type of brain tumor among four classes: glioma tumor, meningioma tumor, pituitary tumor, and no tumor.

Detection

The goal of the detection task was to determine the presence of a brain tumor.

Methodology

We employed a Vision Transformer (ViT-google/vit-base-patch16-224) for image classification for this task.

Figure 1: Methodology for Brain Tumor Detection

Dataset Augmentation: We did not apply any form of augmentation, as the testing accuracy was satisfactory without it.

Optimizer: Adam

Loss Function: Cross entropy loss

Results

Hyperparameters

The following hyperparameters were used in our experiments:

• Learning rate: 10^{-4}

• Number of epochs: 2

• Batch size: 32

The model achieved the following performance metrics during training, validation, and testing:

• Epoch 1: Training accuracy = 97%, Validation accuracy = 99%

• Epoch 2: Training accuracy = 98%, Validation accuracy = 99%

• Testing accuracy: 97%

Classification

The classification task involved identifying the type of brain tumor. We considered four categories:

- 1. Glioma tumor
- 2. Meningioma tumor
- 3. Pituitary tumor
- 4. No tumor

Methodology

Dataset Augmentation

To improve the robustness of our model, we augmented the dataset using the following techniques:

- Random horizontal flip
- Random vertical flip
- Combined horizontal and vertical flip
- Random rotation

Figure 2: Examples of Dataset Augmentation Techniques

Models

For this task, we utilized three models:

- Vision Transformer (ViT-google/vit-base-patch16-224)
- EfficientNet (efficientnet_b0)
- YOLO (yolov8n-cls)

Figure 3: Methodology for Brain Tumor Classification

Results from Vision Transformer (ViT)

Dataset Augmentation

- Random horizontal flip
- Random vertical flip
- Combined horizontal and vertical flip
- Random rotation

Hyperparameters

- Learning rate: 10^{-4}
- Number of epochs: 4
- Batch size: 32

Performance

- Epoch 1: Train Accuracy = 95%
- Epoch 2: Train Accuracy = 97%
- Epoch 3: Train Accuracy = 98%
- Epoch 4: Train Accuracy = 98%
- Test Accuracy = 77%

Results from EfficientNet

Dataset Augmentation

- Random horizontal flip
- Random vertical flip
- Combined horizontal and vertical flip

Hyperparameters

- Learning rate: 10^{-4}
- Number of epochs: 22
- Batch size: 32

Performance

- Epoch 1: Train Accuracy = 89%, Loss = 0.362
- Epoch 2: Train Accuracy = 94%, Loss = 0.394
- Epoch 3: Train Accuracy = 96%, Loss = 0.409
 - . . .
- Epoch 22: Train Accuracy = 99%, Loss = 0.585
- Test Accuracy = 79%

Results from YOLO

Hyperparameters

• Batch size: 16

• Learning rate: 10^{-4}

• Number of epochs: 30

• Training settings:

```
model.train(
    data=dataset_dir, # Dataset folder organized by class
    epochs=30, # Training epochs
    batch=16, # Batch size
    imgsz=224 # Image size (224x224)
)
```

Performance

• Train Accuracy: 82.70%

• Test Accuracy: 83.50%

Graphs

Figure 4: Confusion matrix for Classification

Figure 5: Resulting graphs for Classification

Challenges and Refinements

While the models performed well for *no tumor*, *meningioma tumor* and *pituitary tumor*, they struggled to classify *glioma tumor*.

Figure 6: Confusion matrix for Classification

To address this, we conducted a secondary classification focusing solely on the *meningioma tumor* and *glioma tumor* categories, using Vit and YOLO, as glioma tumors are often misclassified as meningioma tumors.

Additional preprocessing steps, such as contour detection and clipping, were employed.

Figure 7: Finding contour of Image Data

Figure 8: Clipping of Image Data

Summary of Results

Initial Results:

• Prediction accuracy: 79.07%

• Precision: 0.55

• Recall: 1

• Specificity: 0.718

• F1-score: 0.71

After applying additional augmentation:

• Prediction accuracy: 82.79%

• Precision: 0.64

• Recall: 0.9846

• Specificity: 0.76

• F1-score: 0.776

Figure 9: Performance Improvement

Figure 10: Resulting Graphs

Modified Classification

After applying additional augmentation:

 \bullet Prediction accuracy: 83.50%

• Precision: 0.72

• Recall: 1

• Specificity: 0.83

• F1-score: 0.835

Although the overall accuracy does not increase significantly, the following graphs show that the classification is better than before.

Figure 11: Performance Improvement

Figure 12: Performance Improvement

Figure 13: Resulting Graphs

Conclusion

In this project, we successfully implemented models for brain tumor detection and classification. While the detection task achieved high accuracy (97% on test data), the classification task revealed challenges (83.50% on test data), particularly for certain tumor types. Future work will focus on improving the accuracy of glioma tumor classification and exploring additional techniques to enhance overall performance.

References

Literature Insights:

- MRI-Based Brain Tumor Classification Using Ensemble of Deep Features and Machine Learning Classifiers: This study focuses on brain tumor classification using an ensemble of deep features and machine learning classifiers.
- Brain Tumor Detection Using a Deep CNN Model: This paper presents brain tumor classification using a CNN model with the Adam optimizer.

Dataset:

• Brain Tumor Classification: 3264 brain MRI images with tumor and non-tumor labels, split into test and train sets.

Access Link: Dataset

• Brain Tumor Detection: 3060 brain MRI images with tumor and non-tumor labels, split into test and train sets.

Access Link: Dataset