CPS510 Fall2021 Section 04

Group-11

Assignment 8

Normalization / BCNF

Conversion of 3NF to BCNF Normalize form by using Algorithm

Application Name: Online Job Bank System.

Group Member names:

1. Tusaif Azmat

Student#: 500660278

2. Ankit Dheedsa

Student#: 500975118

3. Mahdi Alam

Student#: 500969935

- -- Normalization/ Conversion of 3NF to BCNF with the help of Algorithm.
- --- We used Bernstein's Algorithm to achieve this task:

Bernstein's Algorithm - Broken down into 4 steps:

- 1) Determine all the functional dependencies
- 2) a) Find and remove redundanciesb) Find and remove partial dependencies
- 3) Find keys
- 4) Create tables

Step 1 (finding all functional dependencies)

- **Member_id** → {Member_type, address, date_created, Subscriptions}

```
JB_Members

# * Member_id
o Member_type
o address
Subscriptions
o date_created
o login_id
```

Login_id → { password}

```
JB_Users

# * Login_id
opassword
```

Recr_id → {company_name, Manager_name}

Qualification_id→ {Edu_level, Experience, cover_letter, Certi_license}

```
# * Qualification_id
    o Edu_level
    oJB_user_id
    o Experience
    o Cover_leter
    o Certi_license
```

depart_id → {depart_name, HR_manager}

job_id → {work_period, company, salary, job_title, job_location, job_type,Effect_date, End_date}

Conn_id → {Date_made, Conn_details}

Step 2a (Break RHS and find redundancies)

Get rid of Redundancies

- **Member_id** → {Member_type, address, date_created, Subscriptions}
 - Reduced list of FD's:
 - **Member_id**→ {Member_type}
 - **Member_id** →{address}
 - **Member_id** →{date_created}
 - Member_id →{Subscripts}
 - No redundancies
 - Login_id → { password}

- Reduced list of FD's:
- Login_id -> {password}
- No redundancies
- Recr_id → {company_name, Manager_name}
 - Reduced list of FD's:
 - Recr_id → {company_name}
 - **Recr_id** → {Manger_name}
 - No redundancies
- Qualification_id → {Edu_level, experience, cover_letter, Certi_license}
 - Reduced list of FD's:
 - **Qualification** id → {user degree}
 - **Qualification id** →{ experience}
 - **Qualification_id** →{cover_letter}
 - **Qualification_id** →{Certi_license}
 - No redundancies
- depart_id → {depart_name, HR_manager}
 - Reduced list of FD's:
 - depart_id → {depart_name}
 - **depart_id** → {HR_manager}
 - No redundancies
- job_id → {work_period, company, salary, job_title, job_location, job_type, Effect_date, End_date}
 - Reduced list of FD's:
 - job_id →{work_period}
 - job_id →{company}
 - job_id → {salary}
 - **job_id** → {job_title}
 - **job_id** → {job_location}
 - job_id →{job_type}
 - job_id →{Effect_date}
 - job_id →{End_date}
 - No redundancies
- Conn_id → {money}
 - Reduced list of FD's:
 - **conn_id** → {Date_made}
 - conn_id → {conn_details}
 - No redundancies

Step 2b (Minimize LHS, find and remove partial dependencies)

- LHS is already minimized, therefore there are no partial dependencies

Step 3(Find keys) (relational schema)

- **Member_id**→ {Member_type, address, date_created, subscriptions}
 - Attributes on RHS but not on LHS (cannot be keys)
 - Member_type
 - Address
 - Date created
 - Subscriptions
 - Possible Keys
 - Member_id
- Login_id → { password}
 - Attributes on RHS but not on LHS (cannot be keys)
 - password
 - Possible Keys
 - Login_id
- Recr_id → {company_name, manager_name}
 - Attributes on RHS but not on LHS (cannot be keys)
 - Company_name
 - Manger_name
 - Possible Keys
 - Recr_id
- depart_id → {depart_name, HR_manager}
 - Attributes on RHS but not on LHS (cannot be keys)
 - depart_name
 - HR_Manger
 - Possible Keys
 - depart_id

- qualification_id → {Edu_level, experience, cover_letter, Certi_license}
 - Attributes on RHS but not on LHS (cannot be keys)
 - Edu_level
 - Experience
 - Cover_letter
 - Certi_license
 - Possible Keys
 - Qualification_id
- job_id → {work_period, company, salary, job_title, job_location, job_type, Effect_date, End_date}
 - Attributes on RHS but not on LHS (cannot be keys)
 - work_period
 - company
 - salary
 - job_title
 - job_location
 - job_type
 - Effect date
 - End date
 - Possible Keys
 - job_id
- Conn_id → {Date_made, Conn_details}
 - Attributes on RHS but not on LHS (cannot be keys)
 - Date_made
 - Conn_details
 - Possible Keys
 - Conn_id

Step 4(Make tables)

```
R1 (member_id, member_type, address, date_created, subscriptions, login_id)
With
FD: member_id → { member_type, address, date_created, subscriptions }
R2 (Login id, password)
With
FD: user_id →{ user_password}
R3 (recr_id, company_name, manager_name, member_id)
With
FD: recr_id → {company_name, manager_name }
R4 (<u>depart_id</u>, depart_name, hr_manager,Org_id)
With
FD: depart_id →{ depart_name, hr_manager }
R5 (qualification_id, edu_level, experience, cover_letter, Certi_license, user_id)
With
FD: qualification_id → { edu_level, experience, cover_letter, Certi_license }
R6 (job_id, work_period, company, salary, job_title, job_location, job_type,
effect date, end date, depart id)
With
FD: job_id \rightarrow{, work_period, company, salary, job_title, job_location, job_type,
effect_date,end_date }
R7 (conn id, date made, conn details, member id)
With
FD: conn_id → { date_made, conn_details }
```

BCNF (Boyce/Codd Normal Form)

Step 1 (finding all functional dependencies (List of all attributes and FDs))

- **member_id** → { member_type, address, date_created, subscriptions, login_id }

```
# * Member_id
o Member_type
o address
Subscriptions
o date_created
o login_id
```

Login_id → { password}

```
JB_Users

# * Login_id
opassword
```

Recr_id → {company_name, Manager_name, member_id}

```
Recruiters

# * Recr_id
    o Company_name
    o Manager_name
    o Member_id
```

- **Qualification_id→** {Edu_level, Experience, cover_letter, Certi_license, jb_user_id}

depart_id → {depart name, HR_manager, Organi_id}

- **job_id** → {work_period, company, salary, job_title, job_location, job_type, Effect_date, End_date, depart_id, Depart_id}

Conn_id → {Date_made, Conn_details, member_id}

Step 2 (make sure that the left hand side are keys, if not decompose)

Consider the relation schema

R1 (<u>member_id</u>, member_type, address, date_created, subscriptions, login_id) With FD

member_id → { member_type, address, date_created , subscriptions }

This schema has one candidate key

member_id

Therefore this schema is in BCNF

Consider the relation schema

R2 (Login_id, password)

With FD

Login_id → {password}

This schema has one candidate key

login_id

Therefore this schema is in BCNF

Consider the relation schema

R3 (<u>recr_id</u>, company_name, manager_name, member_id)

With FD

recr_id → {company_name, manager_name }

This schema has one candidate key

recr_id

Therefore this schema is in BCNF

Consider the relation schema

R4 (<u>depart_id</u>, depart_name, hr_manager,Org_id)

With FD

depart_id → { depart_name, hr_manager }

This schema has one candidate key

depart_id

Therefore this schema is in BCNF

Consider the relation schema

R5 (<u>qualification_id</u>, edu_level, experience, cover_letter, Certi_license, user_id) With FD

qualification_id → { edu_level, experience, cover_letter, Certi_license }

This schema has one candidate key

qualification_id

Therefore this schema is in BCNF

Consider the relation schema

R6 (<u>iob_id</u>, work_period, company, salary, job_title, job_location, job_type, effect_date,end_date, depart_id)

With FD

job_id → { work_period, company, salary, job_title, job_location,

job_type,effect_date,end_date}

This schema has one candidate key

job_id

Therefore this schema is in BCNF

Consider the relation schema

R7 (<u>conn_id</u>, date_made, conn_details, member_id)

With FD

conn_id → { date_made, conn_details }

This schema has one candidate key

conn_id

Therefore this schema is in BCNF

Step 3 (final BCNF schema for R)

R1 (<u>member_id</u>, member_type, address, date_created, subscriptions, login_id)

R2 (**Login_id**, password)

R3 (<u>recr_id</u>, company_name, manager_name, member_id)

R4 (<u>depart_id</u>, depart_name, hr_manager,Org_id)

R5 (<u>qualification_id</u>, edu_level, experience, cover_letter, Certi_license, user_id)

R6 (<u>job_id</u>, work_period, company, salary, job_title, job_location, job_type, effect_date,end_date, depart_id)

R7 (<u>conn_id</u>, date_made, conn_details, member_id)

Note: All the tables are of the form BCNF and we didn't need to combine any tables for this stage.