Lecture 7 **Независимости в байесовских сетях**

Machine Learning Ivan Smetannikov

15.04.2021

Lecture plan

- Условная независимость
- Независимость в Байесовских сетях
- Наивный Баес

Lecture plan

- Условная независимость
- Независимость в Байесовских сетях
- Наивный Баес

Независимость

Для событий α , β , $P \models \alpha \perp \beta$ if:

Independence

For events $\alpha, \beta, P \models \alpha \perp^{independence} \beta$ if:

•
$$P(\alpha, \beta) = P(\alpha)P(\beta)$$

•
$$P(\alpha|\beta) = P(\alpha)$$

•
$$P(\beta | \alpha) = P(\beta)$$

For random variables $X, Y, P \models X \perp Y$ if:

•
$$P(X,Y) = P(X)P(Y)$$
 Universal or Factors

•
$$P(X|Y) = P(X)$$

•
$$P(Y|X) = P(Y)$$

Independence

I	D	G	P(I,D,G)
i^0	d^0	g^1	0.126
i^0	d^0	g^2	0.168
i^0	d^0	g^3	0.126
i^0	d^1	g^1	0.009
i^0	d^1	g^2	0.045
i^0	d^1	g^3	0.126
i^1	d^0	g^1	0.252
i^1	d^0	g^2	0.0224
i^1	d^0	g^3	0.0056
i^1	d^1	g^1	0.06
i^1	d^1	g^2	0.036
i^1	d^1	g^3	0.024

I	D	P(I,D)			
i ⁰	d^0	0.42			
i ⁰	d^1	0.18			
i^1	d^0	0.28			
i^1	d^1	0.12			

Independence

ı	D	G	P(I,D,G)
i^0	d^0	g^1	0.126
i^0	d^0	g^2	0.168
i^0	d^0	g^3	0.126
i^0	d^1	g^1	0.009
i^0	d^1	g^2	0.045
i^0	d^1	g^3	0.126
i^1	d^0	g^1	0.252
i^1	d^0	g^2	0.0224
i^1	d^0	g^3	0.0056
i^1	d^1	g^1	0.06
i^1	d^1	g^2	0.036
i^1	d^1	g^3	0.024

P(I,D)=P(I)P(D)

I	D	P(I,D)
i^0	d^0	0.42
i^0	d^1	0.18
i^1	d^0	0.28
i^1	d^1	0.12

I	P(I)
i^0	0.6
i^1	0.4

D	P(D)
d^0	0.7
d^1	0.3

For (sets of) random variables X, Y, Z $P \models (X \perp Y | Z)$ if:

For (sets of) random variables X, Y, Z

$$P \models (X \perp Y | \mathcal{D})$$
 if:

- P(X,Y|Z) = P(X|Z)P(Y|Z)
 P(X|Y,Z) = P(X|Z)
 P(Y|X,Z) = P(Y|Z)

- $P(X,Y,Z) \propto \phi_1(X,Z)\phi(Y,Z)$

Two coins:

- Normal
- Biased with heads coming 90% of the time

 Pick a random coin, toss gives heads. Probability of heads on the second toss?

Two coins:

- Normal
- Biased with heads coming 90% of the time

- Pick a random coin, toss gives heads. Probability of heads on the second toss? It increases.
- Pick a Normal (or Biased) coin directly, toss gives heads.
 Probability of heads on the second toss? The same.

Two coins:

- Normal
- Biased with heads coming 90% of the time

- Pick a random coin, toss gives heads. Probability of heads on the second toss? It increases.
- Pick a Normal (or Biased) coin directly, toss gives heads.
 Probability of heads on the second toss? The same.

$$P \not\models (X_1 \perp X_2)$$
$$P \models (X_1 \perp X_2 | C)$$

Conditioning can Lose Independences

ı	D	G	P(I,D,G)
i^0	d^0	g^1	0.126
i^0	d^0	g^2	0.168
i^0	d^0	g^3	0.126
i^0	d^1	g^1	0.009
i^0	d^1	g^2	0.045
i^0	d^1	g^3	0.126
i^1	d^0	g^1	0.252
i^1	d^0	g^2	0.0224
i^1	d^0	g^3	0.0056
i^1	d^1	g^1	0.06
i^1	d^1	g^2	0.036
i^1	d^1	g^3	0.024

1	$P(I i^0)$
i^0	0.6
i^1	0.4

I	D	$P(I,D i^0)$
i^0	d^0	0.282
i^0	d^1	0.02
i^1	d^0	0.564
i^1	d^1	0.134

D	$P(D i^0)$
d^0	0.7
d^1	0.3

D		
	G	

Conditioning can Lose Independences

ı	D	G	P(I,D,G)				7	(D)		
i^0	d^0	g^1	0.126	1	I	P(I <i>i</i> ⁰)				
i^0	d^0	g^2	0.168	H	i^0	0.6			(G)
i^0	d^0	g^3	0.126	7	i^1	0.4				
<i>i</i> ⁰	d^1	g^1	0.009		ı	D	$P(I,D i^0)$	1	ı	P(I <i>i</i> ⁰)
i ⁰	d^1	g^2	0.045		i^0	d^0	0.282		i ⁰	0.284
i ⁰	d^1	g^3	0.126	A	i^0	d^1	0.02		i^1	0.698
i^1	d^0	g^1	0.252	7	i^1	d^0	0.564			
i^1	d^0	g^2	0.0224	1	i^1	d^1	0.134		D	$P(D i^0)$
i^1	d^0	g^3	0.0056		ι-	<i>u</i> -	0.134		d^0	0.846
i^1	d^1	$\frac{g}{g^1}$	0.06		D	P(D <i>i</i> ⁰)]		d^1	0.154
i^1	d^1	g^2	0.036		d^0	0.7				
i^1	d^1	g^3	0.024		d^1	0.3]			

Lecture plan

- Условная независимость
- Независимость в Байесовских сетях
- Наивный Баес

Independence and Factorization

$$P(X,Y) = P(X)P(Y)$$

 X,Y independent
 $P(X,Y,Z) \propto \phi_1(X,Z)\phi(Y,Z)$
 $(X \perp Y|Z)$

Independence and Factorization

$$P(X,Y) = P(X)P(Y)$$

 X,Y independent
 $P(X,Y,Z) \propto \phi_1(X,Z)\phi(Y,Z)$
 $(X \perp Y|Z)$

- Factorization of a distribution P implies independencies that hold in P
- If P factorizes over G, can we read these independencies from the structure of G?

Flow of influence and d-separation

Definition: **X** and **Y** are <u>d-separated</u> in **G** given **Z** if there is no active trail in **G** between **X** and **Y** given **Z**

Notation: $dsep_G(X, Y|Z)$

Theorem: If P factorizes over G, and $dsep_G(X,Y|Z)$ then P satisfies $(X\perp Y|Z)$ G S

Theorem: If P factorizes over G, and $dsep_G(X,Y|Z)$ then P satisfies $(X \perp Y|Z)$ G

Chain rule P(D,I,G,S,L) = P(D)P(I)P(G|D,I)P(D|I)P(L|G)

Theorem: If P factorizes over G, and $dsep_G(X, Y|Z)$ then P satisfies $(X \perp Y|Z)$

$$P(D, I, G, S, L) = P(D)P(I)P(G|D, I)P(D|I)P(L|G)$$

$$P(D,S) = \sum_{G,L,I} P(D)P(I)P(G|D,I)P(S|I)P(L|G) =$$
$$\sum_{I} P(D)P(I)P(S|I)\sum_{G} (P(G|D,I)\sum_{L} P(L|G)) =$$

Theorem: If P factorizes over G, and $dsep_G(X, Y|Z)$ then P satisfies $(X \perp Y|Z)$

$$P(D, I, G, S, L) = P(D)P(I)P(G|D, I)P(D|I)P(L|G)$$

$$P(D,S) = \sum_{G,L,I} P(D)P(I)P(G|D,I)P(S|I)P(L|G) =$$

$$\sum_{I} P(D)P(I)P(S|I) \sum_{G} (P(G|D,I) \sum_{L} P(L|G)) =$$

$$P(D)(\sum_{I} P(I)P(S|I))$$

Theorem: If P factorizes over G, and $dsep_G(X,Y|Z)$ then P satisfies $(X \perp Y|Z)$

$$P(D,I,G,S,L) = P(D)P(I)P(G|D,I)P(D|I)P(L|G)$$

$$P(D,S) = \sum_{G,L,I} P(D)P(I)P(G|D,I)P(S|I)P(L|G) =$$

$$\sum_{I} P(D)P(I)P(S|I) \sum_{G} (P(G|D,I) \sum_{L} P(L|G)) =$$

$$P(D)(\sum_{I} P(I)P(S|I))$$

$$\frac{\Phi_{1}(D)}{\Phi_{2}(S)}$$

Flow of influence and d-separation

Any node is d-separated from its non-descendants given its parents

If P factorizes over G, then in P, any variable is independent of its non-descendants given its parents

Lecture plan

- Условная независимость
- Независимость в Байесовских сетях
- Наивный Баес

 $(X_i \perp X_j \mid C)$ for all X_i, X_j X_i, X_j are conditionally independent given C

 $(X_i \perp X_j \mid C)$ for all X_i, X_j X_i, X_j are conditionally independent given C

$$P(C, X_1, ..., X_n) = P(C) \sum_{i=1}^{n} P(X_i | C)$$

$$\frac{P(C=c^1|x_1,\ldots,x_n)}{P(C=c^2|x_1,\ldots,x_n)} =$$

$$\frac{P(C=c^1|x_1,...,x_n)}{P(C=c^2|x_1,...,x_n)} = \frac{P(C=c^1)}{P(C=c^2)} \prod_{i=1}^n \frac{P(x_i|C=c^1)}{P(x_i|C=c^2)}$$

Summary

- Simple approach for classification
 - Computationally efficient
 - Easy to construct
- Surprisingly effective in domains with many weakly relevant features
- Strong independence assumptions reduce performance when many features are strongly correlated