图形学大作业实验报告

2018011316

计82 刘妮琦

一、 框架结构

以 PA1 为基础框架,扩充的内容如下:

头文件/扩充函数

功能

Constants. h	宏定义,如面光源采样率,RT 最大递归深度等
curve.hpp	Bezier曲线的定义,旋转Bezier曲面的解析法求交
object3d.hpp:getColor()	纹理贴图 (继承类中具体实现)
camera.hpp:generateRay()	景深效果
light.hpp — class AreaLight	面光源子类,实现软阴影
octTree.h + octTree.cpp	八叉树求交加速
triangle.hpp	AABB包围盒的定义,三角片构造时包围盒计算
Square.hpp	矩形面 (纹理贴图时代替无穷大平面)
RayTracing.hpp	RT 算法实现
main.cpp	超采样抗锯齿

二、 算法选型 RT

典型的 RT 算法。对于每一根从视点发出的光线,与场景求交:若无交点,返回背景色;否则:

- 1) 对于非阴影点,用Phong模型计算该点的局部光强;
- 2) 若递归深度小于上限,依据交点材质计算反射光线与折射光线,光强衰减,递归跟踪;
- 3) 记: 交点法相 N,视线方向 V(指向视点),入射角 θ_1 ,反射角 θ_2 ,入射介质折射率 η_1 , 折射介质折射率 η_2 ,相对折射率 $\eta=\frac{\eta_1}{\eta_2}$

反射光:

$$S = 2 * dot(N, V) * N - V$$

折射光:

$$T = \eta(\cos\theta_1 * N - V) - \cos\theta_2 * N$$

三、 实现功能

a) 旋转曲面解析法求交_curve.hpp_intersect()

[注: iP(t)为参数 t 在Bezier曲线上对应的点; 固定 y 轴为旋转轴]

原理:记光线与旋转曲面交点P: (x,y(t),z),有(A): $x^2+z^2=x(t)^2$,其中x(t)为 P 到旋转轴的距离;联立直线方程 $P=\vec{o}+u\vec{d}$,有(B): $\vec{o}.y+u\vec{d}.y=y(t)$,且(A)中的x,z可以用 \vec{o} 、 \vec{d} 表示。最终得到目标函数:

$$h(t) = sqrt(A(y(t)^{2} - B) + C) - x(t)$$

$$A = \frac{\vec{d} \cdot x^{2} + \vec{d} \cdot z^{2}}{\vec{d} \cdot y^{2}}$$

$$B = \vec{o} \cdot y - \vec{d} \cdot y * \frac{\vec{d} \cdot x * \vec{o} \cdot x + \vec{d} \cdot z * \vec{o} \cdot z}{\vec{d} \cdot x^{2} + \vec{d} \cdot z^{2}}$$

$$C = \frac{(\vec{d} \cdot x * \vec{o} \cdot z + \vec{d} \cdot z * \vec{o} \cdot x)^{2}}{\vec{d} \cdot x^{2} + \vec{d} \cdot z^{2}}$$

方法: 用牛顿迭代法求h(t)的零点即可得到 t 的数值解,代入(B)中求 u,得到 P 点坐标,进而计算基曲线的切向量和旋转角 $\theta = actan(\frac{P.Z}{P.x})$,最终得到交点的法向量。

若 \vec{d} . y接近 0,则 $y(t) = \vec{o}$. y,用牛顿迭代法求出 t 的近似数值,问题化简为求光线与 $y = \vec{o}$. y平面上,以(0, \vec{o} . y,0)为圆心、x(t)为半径的圆的交点。

难点 1: 牛顿迭代的初值问题: h(t)可能存在多解,只有与视点距离最近的点满足条件; 在拒绝不合理的解后,需要更换初值重新迭代。

解决方案:将(0,1)区间划分为多个子段,以各子段的中值作为初值多次迭代。

不足:对于不相交的情况,遍历子段计算,运行速度较慢。

难点 2: 对于 \vec{d} . γ 较小的点,系数 ABC 较大,算法难以收敛。

解决:对于这些点,先采用 $y(t) = \vec{o}.y$ 的做法求近似解,作为牛顿迭代的初值。

图 1. 旋转曲面——花瓶进化史

b) 景深_camera.hpp_generateRay()

设定相机光圈*Aperture*、光心到焦平面的距离*Focus_Dis*。计算通过各像素点的光线与焦平面的交点,在光圈范围内随机采样作为偏置,得到修正的光线起始点*origin*,连接该点与焦平面上的交点,得到修正的光线方向。

图 2. 景深效果对比 (聚焦左侧球)

图 3. 景深

c) 抗锯齿_main.cpp

遍历各像素点时,做 SSAA 超采样: 随机地取像素点邻域内的四个点发出光线,将结果求均值,作为该像素点的最终颜色。

图 4. 抗锯齿效果对比(左侧为 PA1 图)

d) 贴图映射关系_继承类addTexture() + getColor()

[注:记交点为P,材质纹理高h宽w,对应点的坐标(x,y)]

• 球_sphere.hpp

场景内的球各自建立球坐标系,计算 P 与 z 轴非负半轴夹角 θ 、P 在xy平面投影与 x 轴非负半轴夹角 φ :

$$x = \frac{\varphi}{2\pi} * w, y = \frac{\theta}{\pi} * h$$

图 5. 纹理贴图——球

● Bezier旋转曲面_curve.hpp

计算P.y在Bezier基曲线上的y分位数、基曲线旋转角度 θ :

$$mp = \frac{P.y - minY}{maxY - minY}$$
, $\theta = actan(\frac{P.z}{P.x})$

则:

$$x = \frac{\theta}{2\pi} * w, y = mp * h$$

图 6. 纹理贴图——旋转曲面

● 矩形面_Square.hpp

[从右上角开始,逆时针方向四个顶点记为 ABCD]

分别计算 \overrightarrow{CP} 在 \overrightarrow{CB} 、 \overrightarrow{CD} 方向的投影yy、xx,则:

$$x = xx * w, y = yy * h$$

e) 软阴影_light.hpp

增加圆形面光源*AreaLight*类: *RayTracing*计算局部光强时,面光源随机采样(圆盘均匀采样),采样点视作点光源,计算各自光强后取平均。

图 7. 软阴影

f) 求交加速——AABB 包围盒+八叉树_octTree.cpp + triangle.hpp

每一个三角片在构造函数中计算其 AABB 包围盒。网格模型中增加octTree成员,加载所有三角片后建树:子空间采用均匀划分方式,当三角片的 AABB 包围盒与子空间有交叠时,将该三角片分配给节点;树高不超过 8 层。求交时,将光线方向向量归一到第一卦限,与子空间进行求交测试;若在叶节点相交,则遍历节点内三角片,逐片求交。

速度对比(以1000片斯坦福兔子为例,有抗锯齿等附加效果):

八叉树+包围盒	直接遍历各三角片
13. 140625s	300. 21875s

g) 法向插值_mesh.cpp + triangle.hpp

网格加载三角片时:

- 1) 计算各三角片的法向量;
- 2)对于每个项点,取关联的所有三角片的法向量的均值作该项点的法向量 求交时,以三角片的三个项点为基底表示交点;取基底坐标的三个分量分别为三个项点法向量的权值,计算交点的法向量。

图 8. 法向插值

四、 效果图说明

两张成图(见"Result"文件夹下.png文件)大小均为640*640。花瓶图实现旋转曲面、软阴影、抗锯齿、纹理贴图(光圈较小,景深不明显);兔子图实现景深、软阴影、抗锯齿、纹理贴图、求交加速、法向插值。