Segmentacja zdjęć satelitarnych

Autorzy

Witold Nowogórski, Szymon Jurecki, Arkadiusz Paterak

Metody rozwiązania problemu

Dwie klasy - mapowanie terenów zabudowanych

- klasyfikacja binarna: teren niezabudowany (lasy, pola, woda), zabudowania (miasta, drogi, wsie)
- zbiór danych stworzony samodzielnie, wykorzystując zdjęcia satelitarne pobrane za pomocą oprogramowania geoinformacyjnego QGIS, które następnie zostały podzielone na fragmenty 50x50 pixeli i oznaczane odpowiednią klasą przy użyciu prostego interfejsu użytkownika w PyQt.
- model oparty na architekturze ResNet-34 z wykorzystaniem wag dostępnych w bibliotece PyTorch.

Segmentacja semantyczna przy pomocy modelu U-Net

- zbiór danych: LandCover.ai v1; zdjęcia satelitarne z Polski wraz z adnotacjami w postaci masek
- klasy: inne (0), zabudowania (1), tereny leśne (2), woda (3), drogi (4)
- model oparty na architekturze U-Net, zaimplementowany samodzielnie w bibliotece PyTorch

Napotkane trudności i ich rozwiązania

- dobór odpowiednich parametrów trenowania ilość epok, rozmiar batch-a: model oparty na ResNet-34 po około 5 epokach, przy użyciu 3000 zdjęć i rozmiaru batcha 64, był w stanie osiągnąc dokładność 90% w klasyfikacji teren zabudowany / teren niezabudowany. Zastosowanie techniki early stopping pozwoliło uniknąć przetrenowania.
- stworzenie odpowiedniego zbioru danych do trenowania modelu klasyfikacji binarnej.
 - o rozwiązanie: wystarczająca wielkość (~3000 zdjęć), równy rozkład klas,
- zbyt duży rozmiar zdjęć ze zbioru LandCover.ai spowalniał uczenie modelu U-Net
 - o rozwiązanie: zdjęcia są skalowane do rozmiaru 64x64
- dobranie odpowiedniej funkcji straty dla modelu U-Net działającego dla wielu klas i określenie właściwych wymiarów wyjściowej warstwy (w wielu przykładach dokonywano segmentacji dla dwóch klas)
 - rozwiązanie: zastosowanie funkcji straty nn. CrossEntropyLoss oraz wyjściowej warstwy o
 wymiarach [batch_size, n_classes, image_height, image_width] (dla przypadku binarnego
 wystarcza jeden kanał w miejsce n_classes); inferencja dokonywana poprzez użycie funkcji
 softmax, a następnie wybór klasy o najwyższym prawdopodobieństwie

Kontrybucje autorów

Witold Nowogórski był odpowiedzialny za implementację klasyfikatora binarnego ResNet34, od pobierania zdjęć satelitarnych przez QGIS, następnie przez ich przetwarzanie, do trenowania modelu. Szymon Jurecki przygotował zbiór danych i go zaetykietował. Arkadiusz Paterak zaproponował użycie modelu U-Net, który zaimplementował i wytrenował, stworzył także prosty interfejs do zaprezentowania działania modelu. Wszyscy autorzy wspólnie przygotowali raport.