

29

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B.Sc. (Joint Major) Degree in Chemistry & Physics

Fourth Year - Semester II Examination - April/May 2016

CHE 4204 – Photochemistry

Answer all four questions.

Time: Two hours

Use of a non programmable calculator is permitted.

Symbols have their usual meaning.

Speed of light = 3.0×10^8 m s⁻¹, Planck's constant = 6.63×10^{-34} J s,

Avogadro constant = $6.02 \times 10^{23} \text{ mol}^{-1}$

1.

(a) Draw the product with correct stereo-specificity of the following pericyclic reactions.

(b) Find whether the following cycloaddition reactions are allowed or forbidden using transition state theory.

- (c) What will be the product of reaction (b) ii, if the reaction is thermodynamically allowed? Explain your answer using an interaction diagram and Transition State Theory
- (d) i. Define the photopericyclic reactions

ii. If the smallest system $(2\pi_s + 2\pi_s)$ is thermodynamically forbidden. State whether the following reactions are thermodynamically or photochemically allowed

$$(10\pi_a + 24\pi_s), \qquad (8\pi_s + 16\pi_s), \qquad (6\pi_a + 12\pi_a)$$

2.

- (a) Draw the interaction diagrams for each of the systems $(4\pi_s + 2\pi_s)$, $(4\pi_a + 2\pi_a)$, $(4\pi_s + 2\pi_a)$, and $(4\pi_a + 2\pi_s)$. Find whether they are Huckel or Mobius and reaction is allowed or forbidden.
- (b) Classify the following sigmatrophic shifts according to their order

(c) Construct orbital correlation diagram for conrotatory ring closure of butadiene. Find whether the reaction is allowed or forbidden.

3.

- (a) Define or explain the following terms:
 - i. Photochemical reaction ii. Franck-Condon principle iii. Quantum yield
- (b) For 900 s, light of 436 nm was passed into a CCl_4 solution containing Br_2 and cinnamic acid (C_6H_5 CH=CHCO₂H). The average energy absorbed in this process was 19.2×10^{-4} J s⁻¹ and the total Br_2 content decreased by 3.83×10^9 molecules. In this process, some of the Br_2 reacted to give cinnamic acid dibromide (C_6H_5 CHBrCHBrCO₂H).

- i. What was the quantum yield?
- ii. State whether or not a chain reaction was involved.
- iii. If a chain mechanism was involved, suggest a suitable reaction mechanism which might explain the observed quantum yield
- (c) Explain the following observations
 - i. In some molecules Inter System Crossing (ISC) takes place with 100% efficiency, whereas in others it doesn't happen to any measurable extent.
 - ii. Observed fluorescence occurs at a longer wavelength than that of absorption and it originates from the lowest vibrational level of the electronic excited state.
- (d) List, at least five possible ways of relaxation of an excited species

4.

- (a) Explain and draw fully labeled potential energy diagrams for:
 - i. electronic transitions with the greatest probability of absorption from $S_0(\nu=0)$ where the excited state has a larger equilibrium bond distance than the ground state and the emission of fluorescence and phosphorescence.
 - ii. photodissociation
 - iii. predissociation
- (b) What would be the products for the following photoreactions?

I.
$$hv \rightarrow A \rightarrow B$$

iii.
$$\stackrel{\text{O}}{\longrightarrow}$$
 D

(c) Describe the (i) formation and (ii) applications of singlet oxygen