

APELLIDOS	Sol	UCION	DEL	PROF	ESOR	
NOMBRE).N.I. n.°		
ASIGNATURA	TEC. COM	PUT. // TEC.			GRUPO	2°
CURSO	GII — GIC	N.º DE MATF	RICULA		FECHA	12/02/2014

Ej. 1 — (2.0 puntos) Diseñar la ruta de datos y la unidad de control (diagrama ASM y tabla de salidas) de un sistema algoritmico que dado una clave (entrada clave de 4 bits), busque si el valor de esa clave está almacenado en una memoria RAM síncrona de 32x4 bits. Si lo está el sistema devolverá la dirección de memoria donde está almacenada la clave (salida dir, 5 bits). Además, si la entrada de control escribir vale '1', el sistema grabará en la dirección de memoria donde estaba almacenada la clave una nueva clave (entrada nueva_clave de 4 bits). Si la clave no está almacenada en memoria el sistema pondrá a '1' la señal error. El sistema no comienza a funcionar hasta que la señal ini se pone a '1'. En ese instante se almacenan los valores de clave y nueva_clave. Cuando se haya realizado la operación correspondiente el sistema volverá al estado inicial donde la señal fin es igual a '1'.

Fiercicios del ALUMNO

```
i \leftarrow 0;
                                                                entity asm is
error \leftarrow 1;
                                                                   port (clk
                                                                                        : in
                                                                                              std_logic;
while i < 32 do
                                                                          rst n
                                                                                       : in
                                                                                              std logic:
                                                                          ini
                                                                                       : in
                                                                                              std_logic;
    if mem(i) = clave then
                                                                         escribir
                                                                                       : in
                                                                                              std_logic;
       error \leftarrow 0;
                                                                         clave
                                                                                       : in
                                                                                              std_logic_vector(3 downto 0);
       dir \leftarrow i;
                                                                         nueva clave
                                                                                         in
                                                                                              std_logic_vector(3 downto 0);
                                                                         fin
       if escribir = 1 then
                                                                                       : out std_logic;
                                                                         dir
                                                                                       : out std_logic_vector(4 downto 0)
          mem(i) \leftarrow nueva\_clave;
                                                                         еггог
                                                                                       : out std_logic
       end
       break
                                                                end asm;
   end
   i \leftarrow i + 1;
                                                               entity ram is
                                                                  port (clk
                                                                               : in
                                                                                      std_logic;
end
                                                                        dina
                                                                                  in
                                                                                      std_logic_vector(3 downto 0);
                                                                        addra
                                                                               : in
                                                                                      std_logic_vector(4 downto 0)
                                                                        wea
                                                                                 in
                                                                                      std_logic;
                                                                        ena
                                                                                in
                                                                                      std_logic;
                                                                        douta : out std_logic_vector(3 downto 0); .
                                                               end ram;
```

En la ruta de datos se puede usar una memoria RAM⁽¹⁾ síncrona de un solo puerto, un contador ascendente/descendente⁽²⁾, registros y los elementos combinacionales que se consideren necesarios. Se valorará el uso del hardware mínimo.

(1). Suponer que los puertos de salida conservan el valor leído hasta que se realice una nueva lectura.

(2): La definición de puertos del contador ascendente/descendente: din, bus dato de entrada; ce, habilitación del contador; load, señal de carga; ud, cuenta arriba (ud=1) o cuenta abajo (ud=0); dout, bus de salida.

Tabl	a salida	57	. 1	,	i-ce	error-1d	P/G	weg	tin 1
-	109-10	righted	i-ld	f - ca	O error	0	0	0	1
So	0	0	0			1	0	0	0
5,	1	1	1	0		0	0	0	
Sz		0	estinam as lana ha cost cola gia esta contra	Constitution of the property o	and the same processing and the same processing and the same processing and the same same and the same same same same and the same same same same same same same sam		e, angerego a mario e angerego a como e de dece	0	0
53	0	0				0	0	0	0
54	0	0	0	0		0	0	0	0
Ss	Ô	0	0	1	0	1	0	0	0
<u> </u>	0	0	0			<i>C</i>)	1	1	0
	0	0	0	0					

Fio	rcicios	dal	ΛΙ	1 18 /	\cap
	LUCIUS	uei	AL	LJIV	11/11/

APELLIDOS				
NOMBRE		D.N.I. n.°		
ASIGNATURA	TEC. COMP	PUT. // TEC. Y ORGA. COMPUT.	GRUPO	2°
CURSO	GII — GIC	N.º DE MATRICULA	FECHA	12/02/2014

Ej. 2 — (1.5 puntos)

- 1. Diseñar, utilizando puertas lógicas, una red iterativa 1D que dado un vector de entrada, x, de n bits genere una salida, z, de n bits de forma que cada uno de los bits de la salida indique si hay cuatro unos seguidos en el vector de entrada. Se permite solapamiento. La única restricción que se impone al diseño es que la señal de interna sólo puede tener dos bits.
- 2.Demostrar que la siguiente especificación es una solución del problema anterior:

celda i-ésima

Con las condiciones de contorno:

```
zi \le (xi \text{ and } ci(0)) \text{ and } (ci(1) \text{ and } ci(2)); c0(0) \le 0'0'; ci+1(0) \le xi; c0(1) \le 0'0'; ci+1(1) \le 0'0; c0(2) \le 0'0';
```

3.Si se considera que cada puerta lógica de dos entradas tiene un retardo de 1 ns (y el retardo de las puertas NOT es despreciable), ¿Cuál será el retardo para una red de n bits tanto para el apartado 1. como para el apartado 2.?

1. Los 4 valores de la señal interne son

$$C_{i} = \begin{cases}
00 & \text{patron} & 0 - - - \\
01 & 10 - - \\
10 & 11 & 110 - -
\end{cases}$$

Descripción de alto nivel

$$Z_{i} = C_{i}^{o} C_{i}^{i} X_{i}$$

$$C_{i+1}^{o} = C_{i}^{1} X_{i} + \overline{C_{i}^{o}} X_{i}^{i} = X_{i} \left(C_{i}^{i} + \overline{C_{i}^{o}} \right)$$

$$C_{i+1}^{o} = \left(C_{i}^{o} + C_{i}^{o} \right) X_{i}^{i}$$

Condición inicial => Co= "do"

2. Lo es porqui ci transmite los 3 valors de xi anteriores
y junto con el valor de x actual, xi, permite reconocer si
se ha detectado el patron

Ej. 3 — (1.5 puntos) En el circuito de la figura los valores de propagación de los componentes son los siguientes: ADD(a \rightarrow s) = 1,56 ns, ADD(b \rightarrow s) = 1,40 ns, ADD(a \rightarrow c_{out}) = 1,70 ns, ADD(b \rightarrow c_{out}) = 1,64 ns, MUX(0 \rightarrow out) = 0,75 ns, MUX(1 \rightarrow out) = 0,70 ns, MUX(sel \rightarrow out) = 0,25 ns. Los valores en las líneas de reloj son el retardo de propagación desde la fuente de reloj. Los parámetros de los registros son: $t_{clk}\rightarrow q=0,12$ ns, $t_{setup}=0,10$ ns y $t_{hold}=0,05$ ns. (1) Calcular los márgenes de setup en los registros de destino si la frecuencia de reloj fuese 250 MHz. ¿Habría violaciones de setup? (2) ¿Cuál sería la frecuencia de reloj máxima a la que podría trabajar este circuito? (3) Con su estructura actual, el circuito tendría violaciones de setup. Para que el circuito pudiese trabajar a 250 MHz sería necesario segmentarlo. Indicar dónde se deberían introducir los registros de segmentación y calcular los nuevos margen de setup para el camino o los caminos que presentaban violaciones de setup. Supóngase que el retardo de reloj para los nuevos FF es de 0,22 ns.

Talk = 4ns

Hay 9 caminos. Calculo los skews usondo skew = relardo-destino - relardo-luction

$$C_1 = 0.23 - 0.52 = -0.29 \text{ ns}$$
 $C_2 = 0.23 - 0.52 = -0.29 \text{ ns}$
 $C_3 = 0.23 - 0.18 = 0.05 \text{ ns}$
 $C_4 = 0.23 - 0.18 = 0.05 \text{ ns}$
 $C_5 = 0.23 - 0.18 = 0.05 \text{ ns}$
 $C_7 = 0.23 - 0.18 = 0.05 \text{ ns}$
 $C_8 = 0.23 - 0.18 = 0.12 \text{ ns}$

$$C_3 = 0.23 - 0.18 = 0.05 \text{ ns}$$
 $C_4 = 0.23 - 0.18 = 0.05 \text{ ns}$
 $C_5 = 0.23 - 0.18 = 0.05 \text{ ns}$
 $C_5 = 0.23 - 0.18 = 0.05 \text{ ns}$

Ejercicios del ALUI	MNO
APELLIDOS	
NOMBRE	D.N.I. n.°
40101147119	TEC COMPLIT // TEC Y OPCA COMPLIT

Los margaio di schip = Telli + skew - [telq + keumb + kselep] $C_1 = 4 + (-0.29) - [0.12 + 1.56 + 0.75 + 1.56 + 0.1] = -0.38 \text{ ns}$ $C_2 = 4 + (0.29) - [0.11 + 1.70 + 0.25 + 1.56 + 0.1] = -0.02 \text{ ns}$ $C_3 = 4 + (0.05) - [0.12 + 1.40 + 0.75 + 1.56 + 0.1] = 0.12 \text{ ns}$ $C_4 = 4 + (0.05) - [0.12 + 1.56 + 0.70 + 1.56 + 0.1] = 0.38 \text{ ns}$ $C_5 = 4 + (0.05) - [0.12 + 1.56 + 0.70 + 1.56 + 0.1] = 0.01 \text{ ns}$ $C_6 = 4 + (0.42) - [0.12 + 1.56 + 0.1] = 2.4 \text{ ns}$ $C_7 = 4 + (0.03) - [0.12 + 1.40 + 0.70 + 1.56 + 0.1] = 0.15 \text{ ns}$ $C_8 = 4 + (0) - [0.12 + 1.40 + 0.70 + 1.56 + 0.1] = 0.15 \text{ ns}$ $C_9 = 4 + (0) - [0.12 + 1.40 + 0.1] = 2.38 \text{ ns}$ $C_9 = 4 + (0.12) - [0.12 + 1.40 + 0.1] = 2.50 \text{ ns}$

Hay violaciones a 2 caminus

La fizivacia máximo de trahajo seria $\frac{1}{1} = 4 + (0.38) = 4.38 \text{ ns} \Rightarrow \text{fmax} = 228.31 \text{ MHz}$

Para arrighar esas dos violaciones basta run incluir un registro delante de la atracta a del ADDY. Aborramos 156 ns a ex ramino que o un rabir moy seperar a la violación del ramino Ci.
Es necesario aradir otro registro de segmentación en b de ADDY para mantener la sincrenia esta los datos

Ej. 4 — (1.5 puntos) Completar el cronograma correspondiente al siguiente sistema e indicar el contenido final de la memoria. Las entradas al sistema son rd_addr, wr_addr e ini; la salida es fin; el resto de señales son señales de estado o control, estas últimas generadas por la unidad de control según tabla adjunta. Considerar que la memoria es síncrona, está siempre habilitada y se escribe cuando WEA es '1'; que ca_cntr es un contador descendente; y que rd_cntr es un contador ascendente.

Estado	rd_ld	rd_cu	wr_ld	ca_ld	ca_cd	res_ld	res_mux	addr_mux	wea	fin
S0	0	0	0	0	0	0	0	0	0	1
S1	1	0	1	0	0	1	0	0	0	0
<u>S2</u>	0	0	0	0	0	0	0	0	0	0
<u>S3</u>	0	1	0	1	0	0	0	0	0	0
54	0	0	0	0	0	0	0	0	0	0
S5	0	0	0	0	0	0	0	0	0	0
S6	0	0	0	0	1	1	1	0	0	0
S7	0	0	0	0	0	0	0	1	1	0

Dirección	Dato
0x04	0x04
0x05	0x01
0x06	0x07
0x07	0x37
0x08	0x11
0x09	(0x55)
0x0A	0x00
0x0B	0x00

Señales de control

Contenido de la memoria

0×07 4

