Chapitre 4

Quelques structures algébriques

4.1 Loi de composition intrene

Définition 4.1.1 On appelle loi de composition interne (ou opération binaire) sur un ensemble non vide E, toute application * de $E \times E$ dans E. # L'image * (x, y) est souvent notée x * y.

C.à. d:
$$\begin{pmatrix} * \ est \ une \ loi \ de \\ composition \ interne \ sur \ E \end{pmatrix} \Leftrightarrow \left\{ \begin{array}{l} \forall x,y \in E, x*y \in E \\ \forall x,y,x',y' \in E, (x=x' \ \text{et} \ y=y') \Rightarrow x*y=x'*y' \end{array} \right.$$

Exemples

1) On sait que : $\forall x, y \in \mathbb{N}$: $x + y \in \mathbb{N}$ et $x \cdot y \in \mathbb{N}$ et $\forall x, y, x', y' \in \mathbb{N}$, $(x = x' \text{ et } y = y') \Rightarrow (x + y = x' + y' \text{ et } x \cdot y = x' \cdot y')$ Alors, l'addition usuelle "+" et la multiplication usuelle "\cdot" sont des lois de composition internes sur \mathbb{N} .

Il est clair que l'addition usuelle "+" et la multiplication usuelle "·" sont des lois de composition internes sur \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} et \mathbb{C} .

- 2) La soustraction usuelle "-" est une loi de composition interne sur \mathbb{Z} , \mathbb{Q} , \mathbb{R} et \mathbb{C} , mais pas sur \mathbb{N} .
- 3) L'addition usuelle "+" sur l'ensemble $B=\{0,1\}$ n'est pas une loi de composition interne. En effet :

La multiplication usuelle "·" sur l'ensemble $B = \{0, 1\}$ est une loi de composition interne. En effet :

4) Le produit scalaire
$$\diamond: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$$
 défini par $\begin{pmatrix} x \\ y \end{pmatrix} \diamond \begin{pmatrix} x' \\ y' \end{pmatrix} = xx' + yy'$ n'est

pas une loi de composition interne.

- 5) La composition \circ est une loi de composition interne sur l'ensemble A(E,E) des applications de E dans E. En effet : Si $f:E\to E$ et $g:E\to E$ sont deux applications alors, $f\circ g:E\to E$ est une application.
- 6) L'intersection \cap est une loi de composition interne sur l'ensemble $\mathcal{P}(E)$ des parties de E.

Définition 4.1.2 Soit * une loi de composition interne sur un ensemble non vide E. Alors:

- 1) La loi * est dite associative, si $\forall x, y, z \in E, (x * y) * z = x * (y * z)$
- 2) La loi * admet un élément neutre si $\exists e \in E, \forall x \in E, (x * e = x) \land (e * x = x)$ L'élément e (s'il existe) est appelé élément neutre de *.
- 3) Dans le cas où * admet un élément neutre e, on dit que tout élément de E est inversible (ou symétrisable) par rapport à *, si $\forall x \in E, \exists x' \in E, (x * x' = e) \land (x' * x = e)$

L'élément x' (s'il existe) est appelé inverse (ou symétrique) de x et est noté x^{-1} .

4) La loi * est dite commutative, si $\forall x, y \in E, x * y = y * x$

Remarque 4.1.1

- 1) La disposition des parenthèses est inutile si la loi * est associative et on peut écrire x * y * z au lieu de (x * y) * z et x * (y * z)
- 2) Si x^{-1} existe, alors $(x^{-1})^{-1} = x$.

Exemples

1) On sait que $\forall x, y, z \in \mathbb{R}, x + (y + z) = (x + y) + z$, donc l'addition usuelle "+" est associative dans \mathbb{R} .

 $\exists e = 0 \in \mathbb{R}, \forall x \in \mathbb{R}, (x + 0 = x) \land (0 + x = x), \text{ donc } 0 \text{ est l'élément neutre de "+" dans } \mathbb{R}.$

 $\forall x \in \mathbb{R}, \exists x' = -x \in \mathbb{R}, (x + (-x) = 0) \land ((-x) + x = 0), \text{ donc tout élément de } \mathbb{R}$ est inversible par rapport à "+".

 $\forall x, y \in \mathbb{R}, x + y = y + x$, donc l'addition usuelle "+" est commutative dans \mathbb{R} .

2) On sait que $\forall x, y, z \in \mathbb{R}, x \cdot (y \cdot z) = (x \cdot y) \cdot z$, donc la multiplication usuelle "·" est associative dans \mathbb{R} .

 $\exists e = 1 \in \mathbb{R}, \forall x \in \mathbb{R}, (x \cdot 1 = x) \land (1 \cdot x = x), \text{ donc } 1 \text{ est l'élément neutre de "·" dans } \mathbb{R}.$

Pour x = 0 on ne peut pas trouver $x' \in \mathbb{R}$ tel que $0 \cdot x' = 1$; donc x = 0 n'est pas inversible par rapport à la multiplication usuelle ".":

C.à.d: $\exists x = 0 \in \mathbb{R}, \forall x' \in \mathbb{R}, (x \cdot x' \neq 1) \lor (x' \cdot x \neq 1)$, donc les éléments de \mathbb{R} ne sont pas tous inversibles par rapport à "·".

 $\forall x, y \in \mathbb{R}, x \cdot y = y \cdot x$, donc la multiplication usuelle "·" est commutative dans \mathbb{R} .

3) Etudions l'opération \intercal définie sur \mathbb{Z} par $n \intercal m = -n - m$ pour $n, m \in \mathbb{Z}$.. Soient $n, m, s \in \mathbb{Z}$..

$$\begin{array}{l} (n \intercal m) \intercal s = (-n-m) \intercal s = n+m-s \\ n \intercal (m \intercal s) = n \intercal (-m-s) = -n+m+s \\ \text{On a, par exemple, } (1 \intercal 2) \intercal 3 = (-1-2) \intercal 3 = 3-3 = 0 \\ \text{et } 1 \intercal (2 \intercal 3) = 1 \intercal (-2-3) = -1+5 = 4 \neq (1 \intercal 2) \intercal 3 ; \end{array}$$

donc τ n'est pas associative dans \mathbb{Z} .

Supposons e est l'élément neutre de l'opération τ dans \mathbb{Z} .

C.à.d
$$\forall n \in \mathbb{Z}, \ n \uparrow e = n \land e \uparrow n = n.$$

$$n \intercal e = n \Leftrightarrow -n - e = n \Leftrightarrow e = -2n$$

donc \intercal n'admet pas d'élément neutre, car l'élément neutre doit être le même pour tous les $n \in \mathbb{Z}$.

On ne peut pas chercher l'inverse d'un élément, car \intercal n'admet pas d'élément neutre $n \intercal m = -n - m = -m - n = m \intercal n$, donc \intercal est commutative dans \mathbb{Z} .

4.2 Structure de groupe

Définition 4.2.1 Soit * une loi de composition interne sur un ensemble non vide G. On dit que (G,*) est un groupe si* est associative, admet un élément neutre e et tout élément de G est inversible par rapport $\grave{a}*$.

Si en plus, * est commutative, le groupe est dit commutatif ou abélien.

Exemples

- 1) Les structures $(\mathbb{Z}, +)$, $(\mathbb{Q}, +)$, $(\mathbb{R}, +)$ et $(\mathbb{C}, +)$ sont des groupes commutatifs.
- 2) Les structures $(\mathbb{Q}, \cdot), (\mathbb{R}, \cdot)$ et (\mathbb{C}, \cdot) ne sont pas des groupes (car 0 n'a pas d'inverse pour la multiplication usuelle " \cdot ")
- 3) Les structures $(\mathbb{Q}^*,\cdot),(\mathbb{R}^*,\cdot)$ et (\mathbb{C}^*,\cdot) sont des groupes commutatifs.
- 4) Les structures $(\mathbb{N}, +)$, (\mathbb{N}, \cdot) , (\mathbb{Z}, \cdot) ne sont pas des groupes.
- 5) (\mathbb{Z}, T) telle que $n \mathsf{T} m = -n m$, n'est pas un groupe.

4.2.1 Sous groupe

Définition 4.2.2 Soit (G,*) un groupe et H une partie de G.

On dit (H,*) est un sous groupe de (G,*) si (H,*) est lui même un groupe pour la loi * restreinte à H.

Proposition 4.2.1 Soit H une partie d'un groupe (G,*) d'élément neutre e. Alors, ((H,*) est un sous groupe de (G,*) \Leftrightarrow $\begin{cases} e \in H \\ \forall x,y \in H : x * y^{-1} \in H \end{cases}$

Preuve: a) Supposons que (H,*) est un sous groupe de (G,*) et montrons que $\begin{cases} \forall x, y \in H : x * y^{-1} \in H \\ \text{Soit } x, y \in H, \end{cases}$

on a $x,y^{-1} \in H$ (car tout élément de H admet un inverse par rapport à * dans H). et $x * y^{-1} \in H$ (car * est une loi de composition interne dans H).

Donc $\forall x, y \in H : x * y^{-1} \in H$.

Mais $H \neq \emptyset$, donc $\exists x_0 \in G : x_0 \in H$, d'où $x_0 * x_0^{-1} \in H$. C.à.d $e \in H$.

b) Supposons que $\left\{\begin{array}{l} e\in H\\ \forall x,y\in H: x*y^{-1}\in H\end{array}\right. \text{ et montrons que }(H,*) \text{ est un sous }$

On a $H \neq \emptyset$ car $e \in H$,

et comme $\forall x \in G : x * e = x = e * x$. En particulier $\forall x \in H : x * e = x = e * x$ C.à.d : e est l'élément neutre de * dans H.

Soit $y \in H$ et $x = e \in H$, alors $x * y^{-1} = e * y^{-1} = y^{-1} \in H$, donc $\forall y \in H : y^{-1} \in H$. C.à.d : Tout élément de H admet un inverse par rapport à * dans H.

Soit $x, y \in H$, alors $x, y^{-1} \in H$ d'où $x*(y^{-1})^{-1} = x*y \in H$; donc $\forall x, y \in H : x*y \in H$. C.à.d : * est une loi de composition interne dans H.

Soit $x, y, z \in H$, alors $x, y, z \in G$, d'où (x * y) * z = x * (y * z), donc $\forall x, y, z \in H : (x * y) * z = x * (y * z)$. C.à.d : * est une loi associative dans H. Ainsi (H, *) vérifie toutes les conditions d'un groupe, donc c'est bien un sous groupe de(G,*).

Exemples

1) \mathbb{Z} est une partie de \mathbb{Q} et $(\mathbb{Q}, +)$ est un groupe.

On a
$$\begin{cases} 0 \in \mathbb{Z} \\ \forall x, y \in \mathbb{Z} : x + (-y) \in \mathbb{Z} \end{cases}, \text{ alors } (\mathbb{Z}, +) \text{ est un sous groupe de } (\mathbb{Q}, +).$$
 De même $(\mathbb{Q}, +)$ est un sous groupe de $(\mathbb{R}, +)$ et de $(\mathbb{C}, +)$.

2) Si (G, *) est un groupe d'élément neutre e.

On a
$$\begin{cases} e \in G \\ \forall x, y \in G : x * y^{-1} \in G \end{cases}$$
, alors $(G, *)$ est un sous groupe de $(G, *)$.
On a
$$\begin{cases} e \in \{e\} \\ \forall x, y \in \{e\} : x * y^{-1} \in \{e\} \end{cases}$$
, alors $(\{e\}, *)$ est un sous groupe de $(G, *)$.
 $(\{e\}, *)$ et $(G, *)$ sont appelés sous groupes triviaux de $(G, *)$.

3) Le cercle unité $S^1=\{z\in\mathbb{C}\ /\ |z|=1\}$ est une partie de \mathbb{C}^* et (\mathbb{C}^*,\cdot) est un groupe.

On a |1| = 1 donc $1 \in S^1$.

Soit
$$z, z' \in S^1$$
, on a $\left| z \cdot (z')^{-1} \right| = \frac{|z|}{|z'|} = 1$, donc $z \cdot (z')^{-1} \in S^1$

Soit
$$z, z' \in S^1$$
, on a $\left|z \cdot (z')^{-1}\right| = \frac{|z|}{|z'|} = 1$, donc $z \cdot (z')^{-1} \in S^1$
Ainsi,
$$\begin{cases} 1 \in S^1 \\ \forall z, z' \in S^1 : z \cdot (z')^{-1} \in S^1 \end{cases}$$
, alors (S^1, \cdot) est un sous groupe de (\mathbb{C}^*, \cdot) .

4) \mathbb{R}^{*+} est une partie de \mathbb{R}^{*} et (\mathbb{R}^{*},\cdot) est un groupe. On a $1 \in \mathbb{R}^{*+}$. Soit $x, x' \in \mathbb{R}^{*+}$, on a $x \cdot (x')^{-1} = \frac{x}{x'} > 0$, donc $x \cdot (x')^{-1} \in \mathbb{R}^{*+}$ Ainsi, $\begin{cases} 1 \in \mathbb{R}^{*+} \\ \forall x, x' \in \mathbb{R}^{*+} : x \cdot (x')^{-1} \in \mathbb{R}^{*+} \end{cases}$, alors (\mathbb{R}^{*+}, \cdot) est un sous groupe de (\mathbb{R}^{*}, \cdot) .

4.3 Homomorphismes de groupes

Définition 4.3.1 On appelle homomorphisme du groupe (G,*) dans le groupe (G',*'), toute application $f: G \to G'$ telle que :

$$\forall x, y \in G : f(x * y) = f(x) *' f(y)$$

Exemples

1) Soit l'application $h: \mathbb{R} \to \mathbb{R}^{*+}$ telle que $h(x) = e^x$ et soit $x, y \in \mathbb{R}$. On a $h(x+y) = e^{x+y} = e^x \cdot e^y = h(x) \cdot h(y)$.

Alors h est un homorphisme du groupe $(\mathbb{R}, +)$ dans le groupe (\mathbb{R}^{*+}, \cdot)

2) Soit l'application $f: \mathbb{C}^* \to \mathbb{R}^*$ telle que f(z) = |z| et soit $z, z' \in \mathbb{C}^*$. On a $f(z \cdot z') = |z \cdot z'| = |z| \cdot |z'| = f(z) \cdot f(z')$. Alors f est un homorphisme du groupe (\mathbb{C}^*, \cdot) dans le groupe (\mathbb{R}^*, \cdot)

Théorème 4.3.1 Soit $f: G \to G'$ un homomorphisme du groupe (G,*) dans le groupe (G',*') d'éléments neutres respectifs e et e', alors

1) f(e) = e'.

2)
$$\forall x \in G, (f(x))^{-1} = f(x^{-1}).$$

Preuve:

1) On a
$$f(e) = f(e) *' e' = f(e) *' [f(x) *' (f(x))^{-1}] = [f(e) *' f(x)] *' (f(x))^{-1} = f(e * x) *' (f(x))^{-1} = f(x) *' (f(x))^{-1} = e'$$

2) Soit $x \in G$, on a

$$f(x^{-1}) *' f(x) = f(x^{-1} * x) = f(e) = e'$$
 et $f(x) *' f(x^{-1}) = f(x * x^{-1}) = f(e) = e'$.
Alors $(f(x))^{-1} = f(x^{-1})$.

4.4 Structure d'Anneau

Définition 4.4.1 Soit A un ensemble non vide muni de deux lois de composition interne $*_1$ et $*_2$. On dit que $(A, *_1, *_2)$ est un anneau si

- 1) $(A, *_1)$ est un groupe commutatif.
- 2) La loi $*_2$ est associative.

3)
$$\forall x, y, z \in A : \begin{cases} et & x *_2 (y *_1 z) = (x *_2 y) *_1 (x *_2 z) \\ & (y *_1 z) *_2 x = (y *_2 x) *_1 (z *_2 x) \end{cases}$$
.

(Cette condition est appelée distributivité de la loi *2 par rapport à la loi *1).

Si la loi $*_2$ admet un élément neutre, on l'appelle unité et on dit que l'anneau est unitaire.

Si la loi *2 est commutative, on dit que l'anneau est commutatif.

Exemples

1) On sait que $(\mathbb{Z}, +)$ est un groupe commutatif, et on sait que la multiplication usuelle "·" est associative et distributive par rapport à l'addition usuelle "+" dans \mathbb{Z} . Alors $(\mathbb{Z}, +, \cdot)$ est un anneau.

De plus, la deuxième loi "·" est commutative et adment 1 comme élément neutre, donc $(\mathbb{Z}, +, \cdot)$ est un anneau commutatif et unitaire.

De même, $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$ et $(\mathbb{C}, +, \cdot)$ sont des anneaux unitaires, commutatifs.

Remarque 4.4.1

Les lois d'un anneau $(A, *_1, *_2)$ sont souvent notées $+_A$ et \cdot_A au lieu de $*_1$ et $*_2$ et pour cette raison on note l'élément neutre de $+_A$ par 0_A et l'inverse de x par rapport $a +_A par -x$.

Aussi, on note l'élément neutre de \cdot_A (s'il existe) par 1_A et l'inverse de x par rapport à \cdot_A (s'il existe) par x^{-1} .

4.4.1 Quelques règles de calcul

Proposition 4.4.1 Soit $(A, +_A, \cdot_A)$ un anneau d'élément neutre 0_A . Alors :

- 1) $\forall x \in A : x \cdot_A 0_A = 0_A = 0_A \cdot_A x$
- 2) $\forall x, y \in A : (-x) \cdot_A y = -(x \cdot_A y) = x \cdot_A (-y)$
- 3) $\forall x, y \in A : (-x) \cdot_A (-y) = x \cdot_A y$
- 4) Si l'anneau admet un élément unité 1_A , alors $\forall x \in A : -x = (-1_A) \cdot_A x$.

Preuve

1) Soit
$$x \in A$$
, on a
$$x \cdot_A 0_A = x \cdot_A 0_A +_A 0_A \\ = x \cdot_A 0_A +_A [x \cdot_A 0_A +_A (-(x \cdot_A 0_A))], \quad \text{car } -x \cdot_A 0_A \text{ est le symétrique de } x \cdot_A 0_A \\ = x \cdot_A (0_A +_A 0_A) +_A (-(x \cdot_A 0_A)), \quad \text{car } -x \cdot_A 0_A \text{ est le symétrique de } x \cdot_A 0_A \\ = x \cdot_A (0_A +_A 0_A) +_A (-(x \cdot_A 0_A)), \quad \text{car } \cdot_A \text{ est distributive par rapport $\hat{\mathbf{a}}$} +_A \\ = x \cdot_A 0_A +_A (-(x \cdot_A 0_A)) \\ = 0_A$$

De la même façon on montre que $-\left(x\cdot_{{\scriptscriptstyle{A}}}y\right)=x\cdot_{{\scriptscriptstyle{A}}}\left(-y\right)$

2) Soit $x, y \in A$, on a

39

$$x \cdot_A y +_A ((-x) \cdot_A y) = (x +_A (-x)) \cdot_A y$$
, car \cdot_A est distributive par rapport à $+_A$ = $0_A \cdot_A y$ = 0_A , d'après 1).

Alors
$$(-x) \cdot_{A} y = -(x \cdot_{A} y)$$
.

De la même façon on montre que $0_A \cdot_A x = 0_A$.

3) Soient $x, y \in A$, on a $(-x) \cdot_A (-y) = -(x \cdot_A (-y)), \quad \text{d'après 2})$ $= -(-(x \cdot_A y)), \quad \text{d'après 2})$ $= x \cdot_A y$

4.4.2 Anneau intègre

Définition 4.4.2 On dit qu'un anneau $(A, +_A, \cdot_A)$ est intègre, si

$$\forall x, y \in A : (x \cdot_A y = 0_A \Rightarrow (x = 0_A \lor y = 0_A))$$

Exemple

Les structures $(\mathbb{Z}, +, \cdot)$, $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$ et $(\mathbb{C}, +, \cdot)$ sont des anneaux intègres.

4.5 Structure de corps

Définition 4.5.1 *Soit* $(K, +_K, \cdot_K)$ *un anneau unitaire.*

On dit que $(K, +_{\kappa}, \cdot_{\kappa})$ est un corps si

- 1) $1_K \neq 0_K$
- 2) Tout élément de $K \{0_K\}$ est inversible par rapport à la loi \cdot_K .

Le corps est dit commutatif si la loi $\cdot_{\scriptscriptstyle{K}}$ est commutative.

Remarque 4.5.1 1) Si $(K, +_K, \cdot_K)$ est un corps, alors (K^*, \cdot_K) est un groupe (où $K^* = K - \{0_K\}$).

2) Tout corps K est un anneau intègre.

En effet : Soit $a, b \in K$, on a

$$\begin{array}{ll} a \cdot_K b = 0_K & \Rightarrow (a \cdot_K b = 0_K \wedge (a = 0_K \vee a \neq 0_K)) \\ & \Rightarrow ((a \cdot_K b = 0_K \wedge a = 0_K) \vee (a \cdot_K b = 0_K \wedge a \neq 0_K)) \\ & \Rightarrow ((a = 0_K) \vee (a^{-1} \cdot_K a \cdot_K b = a^{-1} \cdot_K 0_K)) \,, \; car \; a \neq 0_K \; assure \; que \; a^{-1} \; existe \\ & \Rightarrow ((a = 0_K) \vee (b = 0_K)) \end{array}$$

Exemples

- 1) Les structures $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$ et $(\mathbb{C}, +, \cdot)$ sont des corps commutatifs.
- 2) La structure $(\mathbb{Z}, +, \cdot)$ n'est pas un corps, car les seuls éléments inversibles dans \mathbb{Z}^* par rapport à la multiplication usuelle \cdot sont 1 et -1.

4.6 Exercices du chapitre 4

Exercice 4.1 1) On munit \mathbb{Z} par la loi de composition * définie par :

$$\forall x, y \in \mathbb{Z} : x * y = x + y + x^2 y.$$

Montrer que * est une loi interne; puis étudier, pour cette loi, la commutativité, l'associativité, l'existence de l'élément neutre et l'existence du symétrique.

2) Même question pour la loi de composition Δ définie sur \mathbb{R}_+^* par : $\forall x, y \in \mathbb{R}_+^* : x * y = \sqrt{x^2 + y^2}$.

Exercice 4.2 On munit l'intervalle]-1,1[par la loi de composition interne * définie par : $\forall x,y \in \mathbb{Z}: x*y = \frac{x+y}{1+xy}$. Montrer que (]-1,1[,*) est un groupe commutatif.

Exercice 4.3 Sur \mathbb{Q} , on définit l'opération \triangle par

$$\forall \alpha, \beta \in \mathbb{Q} : \alpha \triangle \beta = (\alpha - 1)(\beta - 1) + 1.$$

- 1) Montrer (\mathbb{Q}, \triangle) n'est pas un groupe commutatif.
- 2) Trouver le plus grand ensemble $E \subset \mathbb{Q}$ pour lequel (E, \triangle) soit un groupe commutatif.
- 3) Soit $f: E \longrightarrow \mathbb{Q}^*$ l'application définie par : $\forall \alpha \in E : f(\alpha) = \alpha 1$.

Montrer que f est un homomorphisme du groupe (E, \triangle) dans le groupe $(\mathbb{Q}^*, .)$.

Pour tout
$$n \in \mathbb{N}^* \setminus \{1\}$$
 et $\alpha \in E$, posons $\alpha^{(n)} = \underbrace{\alpha \triangle \alpha \triangle ... \triangle \alpha}_{n\text{-}fois}$.

Déterminer une expression simple de $\alpha^{(n)}$, puis calculer $3^{(11)} - 3^{(5)}$.

Exercice 4.4 Soit $Aff(\mathbb{R})$ l'ensemble des applications affines de \mathbb{R} dans \mathbb{R} . $Aff(\mathbb{R}) = \{\varphi_{(a,b)} : \mathbb{R} \to \mathbb{R} \ / \ (a,b) \in \mathbb{R}^* \times \mathbb{R} \ et \ \forall x \in \mathbb{R} : \varphi_{(a,b)} (x) = ax + b\}$

- 1) Montrer que $(Aff(\mathbb{R}), \circ)$ est un groupe non commutatif.
- 2) Montrer que l'ensemble $T(\mathbb{R}) = \{\varphi_{(1,b)} / b \in \mathbb{R}\}$ des translations de \mathbb{R} , est un sous groupe de $(Aff(\mathbb{R}), \circ)$.

Exercice 4.5 Soient (G, *) un groupe et Z(G) l'ensemble des éléments de G qui commutent avec tous les éléments de G. Montrer que Z(G) est un sous groupe de G.

Exercice 4.6 Soient (G,*) un groupe d'élément neutre e, tel que pour tout $x \in G$: $x^3 = e$. Montrer que pour tous $x, y \in G$: $(x*y)^2 = y^2 * x^2$ et $x*y^2 * x = y*x^2 * y$. Noter que $x^2 = x*x$ et $x^3 = x*x*x$

Exercice 4.7 Soit \mathcal{R} une relation d'équivalence sur un ensemble G muni d'une opération *. On dit que \mathcal{R} est compatible avec la loi * si, pour tous $x, y, a, b \in G$: $(x\mathcal{R}y \text{ et } a\mathcal{R}b) \Longrightarrow (x*a) \mathcal{R}(y*b)$.

On définit l'opération * sur $G_{/\mathcal{R}}$ par $x * y = \widehat{x * y}$.

- 1) Montrer que si (G,*) est un groupe, alors $(G/\mathcal{R}, \overset{\bullet}{*})$ est aussi un groupe.
- 2) Application: $(G,*) = (\mathbb{Z},+)$ et \mathcal{R}_n la congruence modulo n.

41

Exercice 4.8 Soient * l'opération définie sur \mathbb{R} donnée dans l'exercice 1 et la multiplication usuelle de \mathbb{R} . Etudier la distributivité de chaque loi par rapport à l'autre.

Exercice 4.9 Montrer que $\left(\mathbb{Z}_{/p\mathbb{Z}}, \stackrel{\bullet}{+}, \stackrel{\bullet}{\times}\right)$ est un anneau commutatif unitaire et qu'il s'agit d'un corps si p est premier. $(\forall \overset{\bullet}{x}, \overset{\bullet}{y} \in \mathbb{Z}_{/p\mathbb{Z}} : \overset{\bullet}{x} + \overset{\bullet}{y} = \overset{\bullet}{x+y} \text{ et } \overset{\bullet}{x} \times \overset{\bullet}{y} = \overset{\bullet}{x \times y})$

Exercice 4.10 Soit $(A, +_A, \cdot_A)$ un anneau vérifiant $x^2 = x$ pour tout $x \in A$. (On dit que x est idempotent et que A est un anneau de Boole)

- 1) Montrer que $2x = 0_A$
- 2) Montrer que A est commutatif. En déduire la valeur de $(x\cdot_A y)\cdot_A (x+_A y)$ Noter que $x^2=x\cdot_A x$ et $2x=x+_A x$

Exercice 4.11 Soit (G, *) un groupe. Trouver une condition pour que l'application $f: G \to G$ telle que f(x) = x * x soit un endomorphisme.

Exercice 4.12 Montrer que (μ_n, \times) est isomorphe à $\left(\mathbb{Z}/n\mathbb{Z}, \stackrel{\bullet}{+}\right)$ $\mu_n = \{z \in \mathbb{C} \ / \ z^n = 1\} \ (n \in \mathbb{N}^*)$ est l'ensemble des racines $n - \grave{e}me$ complexes de l'unité 1

Exercice 4.13 L'application $f: \mathbb{C}^* \to \mathbb{R}^*$ telle que f(z) = |z|1) Montrer que f est un homomorphisme du groupe (\mathbb{C}^*, \cdot) dans le groupe (\mathbb{R}^*, \cdot)

Exercice 4.14 Montrer que le composé de deux homomorphismes de groupes est un homomorphisme de groupes.