Le sujet de cette séance est ensemble et application. Ce thème est généralement propice à l'utilisation de la *rédaction automatique* mais il peut aussi des fois être utile de faire des schémas pour bien se représenter les choses (dans l'exercice 3 notamment).

Exercice 1. Echauffement Soit E un ensemble, montrer que $E = \bigcup_{x \in E} \{x\}$

Exercice 2. Produit cartésien Soit A,B et C 3 ensembles tels que $A \times B \subseteq B \times C$. Montrer que $A \subseteq C$.

Exercice 3. Différence symétrique Soit Ω un ensemble. Si $A, B \subseteq \Omega$, on définit

$$A\triangle B = (A\backslash B) \cup (B\backslash A)$$

- 1. Montrer que $A \triangle B = (A \cup B) \setminus (A \cap B)$
- 2. Caractériser les $E \subseteq \Omega$ tels que $A \triangle E = A$
- 3. Caractériser les $E\subseteq \Omega$ tels que $A\triangle E=\emptyset$

Exercice 4. Irrationalité de $\sqrt{2}$ Montrer que $\sqrt{2}$ est irrationnel

Indication : On raisonnera par l'absurde et on posera $\sqrt{2} = \frac{p}{q}$ avec p et q premiers entre eux.

Pour aller plus loin: Montrer que $\forall n \in \mathbb{N}, \sqrt{n} \in \mathbb{N}$ ou $\sqrt{n} \notin \mathbb{Q}$

Exercice 5. Bijections et parité Soit $f: \mathbb{R} \to \mathbb{R}$ bijective.

- 1. Montrer que f est impaire ssi f^{-1} l'est.
- 2. A-t-on le même résultat pour la parité?

Exercice 6. Images directes et réciproques Soit $f: E \to F$.

- 1. Soit $A \subseteq E$, montrer que $A \subseteq f^{-1}[f[A]]$ et donner un exemple prouvant qu'il n'y a pas toujours égalité.
- 2. Montrer que f est injective si et seulement si $\forall A \subseteq E, f^{-1}[f[A]] = A$
- 3. Soit $B\subseteq F$, montrer que $f[f^{-1}[B]]\subseteq B$ et donner un exemple prouvant qu'il n'y a pas toujours égalité.
- 4. Montrer que f est surjective si et seulement si $\forall B, f[f^{-1}[B]] = B$

Exercice 7. Tri de liste Montrer que trier une liste de n éléments demande au moins $\log_2(n!)$ comparaisons de 2 éléments.

Indication: On pourra utiliser un arbre de décision

Exercice 8. Caractérisation des ensembles infinis (X) Soit X un ensemble.

Montrer que X infini $\Leftrightarrow \forall f \in X^X, \exists A \in P(A) \backslash \emptyset, X, f[A] \subseteq A$.

Indication: Pour le sens direct, prendre une $f \in X^X$ et commencer par rajouter un certain x quelconque à A. Puis aggrandir A de manière naturelle jusqu'à ce que $f[A] \subseteq A$.. Faire le sens réciproque par contraposée en s'intéressant au n-cycles.