Binary Tree

1. Same Tree

Pattern: Tree Traversal (Recursion / DFS)

Problem Statement

Given the roots of two binary trees p and q, write a function to check if they are the same or not.

Two binary trees are considered the same if they are structurally identical, and the nodes have the same value.

Sample Input & Output

```
Input: p = [1,2,3], q = [1,2,3]
Output: true
Explanation: Both trees have identical structure and node values.
```

```
Input: p = [1,2], q = [1,null,2]
Output: false
Explanation: Left child of p is 2;
q has no left child but a right child → structural mismatch.
```

```
Input: p = [], q = []
Output: true
Explanation: Both trees are empty - considered identical.
```

```
from typing import Optional
# Definition for a binary tree node.
class TreeNode:
    def __init__(self, val=0, left=None, right=None):
        self.val = val
        self.left = left
        self.right = right
class Solution:
    def isSameTree(self, p: Optional[TreeNode], q: Optional[TreeNode])-> bool:
        \# STEP 1: Base cases - both nodes are None \rightarrow identical
        if not p and not q:
            return True
        # STEP 2: One is None, the other isn't → not identical
        if not p or not q:
            return False
        # STEP 3: Values differ → not identical
        if p.val != q.val:
           return False
        # STEP 4: Recursively check left and right subtrees
           - Both must be identical for whole tree to match
        return (self.isSameTree(p.left, q.left) and
                self.isSameTree(p.right, q.right))
# ------ INLINE TESTS ------
if __name__ == "__main__":
   sol = Solution()
    # Test 1: Normal case - identical trees
   p1 = TreeNode(1, TreeNode(2), TreeNode(3))
    q1 = TreeNode(1, TreeNode(2), TreeNode(3))
    assert sol.isSameTree(p1, q1) == True
```

```
# Test 2: Edge case - both empty
assert sol.isSameTree(None, None) == True

# Test 3: Tricky case - same values, different structure
p3 = TreeNode(1, TreeNode(2))
q3 = TreeNode(1, None, TreeNode(2))
assert sol.isSameTree(p3, q3) == False

print(" All tests passed!")
```

Example Walkthrough

Let's trace **Test 3**:

```
p3 = [1,2] (2 is left child), q3 = [1,null,2] (2 is right child)
```

- 1. Call isSameTree(p3, q3)
 - p3 and q3 both exist \rightarrow skip first two base cases.
 - p3.val == 1, q3.val == $1 \rightarrow \text{values match}$.
 - Now check: isSameTree(p3.left, q3.left) and isSameTree(p3.right, q3.right)
- 2. Left subtree call: isSameTree(TreeNode(2), None)
 - p = TreeNode(2), q = None
 - One is None, the other isn't \rightarrow return False
- 3. Right subtree is never evaluated due to short-circuiting (and stops at first False)
- 4. Final result: False \rightarrow correctly detects structural difference.

State snapshots:

- Initial: p=1(L:2,R:None), q=1(L:None,R:2)
- After value check: proceed to children
- Left comparison: (2 vs None) \rightarrow mismatch \rightarrow return False

Complexity Analysis

• Time Complexity: O(min(m, n))

We visit each node once until a mismatch or full traversal. In worst case (identical trees), we visit all nodes in the smaller tree.

• Space Complexity: O(min(m, n))

Due to recursion stack depth, which equals the height of the smaller tree. Worst case: skewed tree \rightarrow height number of nodes \rightarrow linear space.

2. Symmetric Tree

Pattern: Tree Traversal (Recursive Mirror Comparison)

Problem Statement

Given the **root** of a binary tree, check whether it is a mirror of itself (i.e., symmetric around its center).

Sample Input & Output

```
Input: root = [1,2,2,3,4,4,3]
Output: true
Explanation: The left and right subtrees are mirror images.
```

```
Input: root = [1,2,2,null,3,null,3]
Output: false
Explanation: Left subtree has [2,null,3], right has [2,null,3] -
but structure isn't mirrored.
```

```
Input: root = [1]
Output: true
Explanation: Single node is trivially symmetric.
```

```
from typing import Optional
# Definition for a binary tree node.
class TreeNode:
    def __init__(self, val=0, left=None, right=None):
        self.val = val
        self.left = left
        self.right = right
class Solution:
    def isSymmetric(self, root: Optional[TreeNode]) -> bool:
        # STEP 1: Handle empty tree
        # - Empty tree is symmetric by definition
        if not root:
            return True
        # STEP 2: Define helper to compare two subtrees as mirrors
        # - Recursively checks if left subtree of A mirrors right of B
        def is_mirror(left: Optional[TreeNode],
                      right: Optional[TreeNode]) -> bool:
            \# Both nodes are None \rightarrow symmetric at this branch
            if not left and not right:
                return True
            # One is None, other isn't → asymmetric
            if not left or not right:
                return False
            # Values must match AND:
                left's left mirrors right's right
                left's right mirrors right's left
            return (left.val == right.val and
                    is_mirror(left.left, right.right) and
                    is_mirror(left.right, right.left))
```

```
# STEP 3: Start mirror check on root's children
       # - Root itself is center; compare its left & right
       return is_mirror(root.left, root.right)
# ------ INLINE TESTS ------
if __name__ == "__main__":
   sol = Solution()
   # Test 1: Normal symmetric tree
        1
   # / \
   # 2 2
   # / \ / \
   # 3 4 4 3
   root1 = TreeNode(1)
   root1.left = TreeNode(2)
   root1.right = TreeNode(2)
   root1.left.left = TreeNode(3)
   root1.left.right = TreeNode(4)
   root1.right.left = TreeNode(4)
   root1.right.right = TreeNode(3)
   assert sol.isSymmetric(root1) == True
   # Test 2: Edge case - single node
   root2 = TreeNode(1)
   assert sol.isSymmetric(root2) == True
   # Test 3: Tricky asymmetric tree
   # 1
   # / \
   # 2 2
      \ \
   # 3 3
   root3 = TreeNode(1)
   root3.left = TreeNode(2)
   root3.right = TreeNode(2)
   root3.left.right = TreeNode(3)
   root3.right.right = TreeNode(3)
   assert sol.isSymmetric(root3) == False
   print(" All tests passed!")
```

Example Walkthrough

We'll trace **Test 1** ([1,2,2,3,4,4,3]):

- 1. Call isSymmetric(root1)
 - root1 exists \rightarrow skip empty check.
 - Call is_mirror(root1.left, root1.right) \rightarrow is_mirror(node2a, node2b).
- 2. First is_mirror call:
 - left = node2a (val=2), right = node2b (val=2)
 - Both exist \rightarrow check 2 == 2 \rightarrow True.
 - Recurse:
 - is_mirror(node2a.left=node3, node2b.right=node3)
 - is_mirror(node2a.right=node4, node2b.left=node4)
- 3. Check left pair (node3, node3):
 - Both exist, $3 == 3 \rightarrow True$.
 - Recurse on their children \rightarrow both (None, None) \rightarrow return True.
- 4. Check right pair (node4, node4):
 - Same logic \rightarrow returns True.
- 5. Combine results: True and True and True \rightarrow True.

Final output: True.

Complexity Analysis

• Time Complexity: O(n)

We visit every node exactly once in the worst case (fully symmetric or asymmetric at leaves).

• Space Complexity: O(h)

Recursion depth equals tree height h. In worst case (skewed tree), h = n; in balanced tree, h = log n.

3. Maximum Depth of Binary Tree

Pattern: Tree Traversal (DFS / Recursion)

Problem Statement

Given the root of a binary tree, return its maximum depth.

A binary tree's **maximum depth** is the number of nodes along the longest path from the root node down to the farthest leaf node.

Sample Input & Output

```
Input: root = [3,9,20,null,null,15,7]
Output: 3
Explanation: Longest path is 3 → 20 → 15 (or 7), 3 nodes deep.

Input: root = [1,null,2]
Output: 2
Explanation: Only right child exists; depth = 2.

Input: root = []
Output: 0
Explanation: Empty tree has depth 0.
```

```
from typing import Optional
# Definition for a binary tree node.
class TreeNode:
    def __init__(self, val=0, left=None, right=None):
       self.val = val
       self.left = left
       self.right = right
class Solution:
    def maxDepth(self, root: Optional[TreeNode]) -> int:
       # STEP 1: Base case - empty node contributes 0 depth
       # - Recursion stops here; prevents infinite calls
       if not root:
           return 0
       # STEP 2: Recursively compute depth of left & right subtrees
          - Each call explores one branch fully (DFS)
           - We trust recursion to return correct subtree depth
       left_depth = self.maxDepth(root.left)
       right_depth = self.maxDepth(root.right)
       # STEP 3: Current node adds 1 to the deeper subtree
       # - Ensures we count this node in the path
       # - Max picks the longer of the two paths
       return 1 + max(left_depth, right_depth)
# ----- INLINE TESTS -----
if __name__ == "__main__":
   sol = Solution()
    # Test 1: Normal case - balanced-ish tree
   # Tree: [3,9,20,null,null,15,7]
   root1 = TreeNode(3)
   root1.left = TreeNode(9)
   root1.right = TreeNode(20)
   root1.right.left = TreeNode(15)
```

```
root1.right.right = TreeNode(7)
assert sol.maxDepth(root1) == 3, "Test 1 failed"

# Test 2: Edge case - skewed tree (only right children)
# Tree: [1,null,2]
root2 = TreeNode(1)
root2.right = TreeNode(2)
assert sol.maxDepth(root2) == 2, "Test 2 failed"

# Test 3: Tricky/negative - empty tree
root3 = None
assert sol.maxDepth(root3) == 0, "Test 3 failed"

print(" All tests passed!")
```

Example Walkthrough

Let's trace Test 1: root = [3,9,20,null,null,15,7].

We call sol.maxDepth(root1) where root1.val = 3.

- 1. Call 1: maxDepth(3)
 - root exists \rightarrow skip base case.
 - Compute left_depth = maxDepth(9)
 - Compute right_depth = maxDepth(20)
 - Will return 1 + max(left, right)
- 2. Call 2: maxDepth(9) (left child of 3)
 - Node 9 exists.
 - $maxDepth(9.left) \rightarrow maxDepth(None) \rightarrow returns 0$
 - $maxDepth(9.right) \rightarrow maxDepth(None) \rightarrow returns 0$

- Returns 1 + max(0, 0) = 1
- 3. Call 3: maxDepth(20) (right child of 3)
 - Node 20 exists.
 - left_depth = maxDepth(15)
 - right_depth = maxDepth(7)
- 4. Call 4: maxDepth(15)
 - Both children are None \rightarrow returns 1
- 5. Call 5: maxDepth(7)
 - Both children are None \rightarrow returns 1
- 6. Back to Call 3: maxDepth(20)
 - left_depth = 1, right_depth = 1
 - Returns 1 + max(1,1) = 2
- 7. Back to Call 1: maxDepth(3)
 - left_depth = 1, right_depth = 2
 - Returns 1 + max(1,2) = 3

Final output: 3

Key Insight: Each node waits for its children to report their depths, then adds itself (hence +1). The recursion naturally explores all paths and picks the longest.

Complexity Analysis

• Time Complexity: O(n)

We visit every node exactly once. In the worst case (skewed tree), recursion depth is n, but total work is still proportional to number of nodes.

• Space Complexity: O(h)

Where h is the height of the tree. This is due to the recursion stack.

```
Best case (balanced): O(log n)Worst case (skewed): O(n)
```

4. Binary Tree Level Order Traversal

Pattern: BFS (Breadth-First Search) / Level-Order Traversal

Problem Statement

Given the root of a binary tree, return the level order traversal of its nodes' values. (i.e., from left to right, level by level).

Sample Input & Output

```
Input: root = [3,9,20,null,null,15,7]
Output: [[3],[9,20],[15,7]]
Explanation: Level 0: [3], Level 1: [9,20], Level 2: [15,7]

Input: root = [1]
Output: [[1]]
Explanation: Single node tree.

Input: root = []
Output: []
Explanation: Empty tree returns empty list.
```

```
from typing import List, Optional
from collections import deque
# Definition for a binary tree node.
class TreeNode:
    def __init__(self, val=0, left=None, right=None):
        self.val = val
        self.left = left
        self.right = right
class Solution:
    def levelOrder(self, root: Optional[TreeNode]) -> List[List[int]]:
        # STEP 1: Initialize structures
        # - Use deque for efficient popleft (FIFO queue)
            - Result list stores levels as sublists
        if not root:
            return []
        queue = deque([root])
        result = []
        # STEP 2: Main loop / recursion
        # - Process all nodes at current level before moving deeper
           - Level size = len(queue) at start of each iteration
        while queue:
            level_size = len(queue)
            current_level = []
            # STEP 3: Update state / bookkeeping
            # - Dequeue each node in current level
            # - Append its value and enqueue children
            for _ in range(level_size):
                node = queue.popleft()
                current_level.append(node.val)
                if node.left:
                    queue.append(node.left)
                if node.right:
                    queue.append(node.right)
            result.append(current_level)
```

```
# STEP 4: Return result
         - Already handles empty tree via early return
       return result
# ----- INLINE TESTS -----
if __name__ == "__main__":
   sol = Solution()
   # Test 1: Normal case
   # Tree: [3,9,20,null,null,15,7]
   root1 = TreeNode(3)
   root1.left = TreeNode(9)
   root1.right = TreeNode(20)
   root1.right.left = TreeNode(15)
   root1.right.right = TreeNode(7)
   print(sol.levelOrder(root1)) # [[3], [9, 20], [15, 7]]
   # Test 2: Edge case - single node
   root2 = TreeNode(1)
   print(sol.levelOrder(root2)) # [[1]]
   # Test 3: Tricky/negative - empty tree
   print(sol.levelOrder(None))
```

Example Walkthrough

```
We'll trace Test 1: root = [3,9,20,null,null,15,7].

Initial state:
- queue = deque([3])
- result = []

Level 0 (root level): - level_size = 1 - Loop runs once: - Pop 3 → current_level = [3] - Add left (9) and right (20) to queue → queue = [9, 20] - Append [3] to result → result = [[3]]
```

Level 1: - level_size = 2 - First iteration: - Pop 9 \rightarrow current_level = [9] - No children \rightarrow queue becomes [20] - Second iteration: - Pop 20 \rightarrow current_level = [9, 20] - Add 15 and 7 \rightarrow queue = [15, 7] - Append [9,20] \rightarrow result = [[3], [9,20]]

Level 2: - level_size = 2 - Pop 15 \rightarrow current_level = [15]; no children - Pop 7 \rightarrow current_level = [15,7]; no children - Append \rightarrow result = [[3], [9,20], [15,7]]

Queue empty \rightarrow exit loop \rightarrow return result.

Final output: [[3], [9, 20], [15, 7]]

Key insight: BFS with level-by-level processing using queue size snapshot.

Complexity Analysis

• Time Complexity: O(n)

Each node is visited exactly once. All operations inside the loop (append, popleft) are O(1). Total = O(n).

• Space Complexity: O(n)

In worst case (complete binary tree), the queue holds up to $\sim n/2$ nodes (last level). Output list also stores n values. Thus, O(n).

5. Binary Tree Zigzag Level Order Traversal

Pattern: BFS (Level Order Traversal) + Directional Toggle

Problem Statement

Given the **root** of a binary tree, return the zigzag level order traversal of its nodes' values. (i.e., from left to right, then right to left for the next level and alternate between).

Sample Input & Output

```
Input: root = [3,9,20,null,null,15,7]
Output: [[3],[20,9],[15,7]]
Explanation: Level 0: [3] (L+R),
Level 1: [9,20] reversed -> [20,9], Level 2: [15,7] (L+R)

Input: root = [1]
Output: [[1]]
Explanation: Single node - only one level.

Input: root = []
Output: []
Explanation: Empty tree returns empty list.
```

```
from typing import List, Optional
from collections import deque
# Definition for a binary tree node.
class TreeNode:
    def __init__(self, val=0, left=None, right=None):
        self.val = val
        self.left = left
        self.right = right
class Solution:
    def zigzagLevelOrder(self, root: Optional[TreeNode]) -> List[List[int]]:
        # STEP 1: Initialize structures
        # - Use deque for efficient BFS
            - 'result' stores final levels
        # - 'left_to_right' toggles direction per level
        if not root:
            return []
        queue = deque([root])
```

```
result = []
       left_to_right = True
       # STEP 2: Main loop / recursion
       # - Process level-by-level using queue size
           - Maintain invariant: queue holds all nodes of current level
       while queue:
           level_size = len(queue)
           level_nodes = []
           # STEP 3: Update state / bookkeeping
           # - Collect node values in order
           # - Reverse if direction is right-to-left
           for _ in range(level_size):
               node = queue.popleft()
               level_nodes.append(node.val)
               if node.left:
                   queue.append(node.left)
               if node.right:
                   queue.append(node.right)
           # Reverse level if needed before appending
           if not left_to_right:
               level_nodes.reverse()
           result.append(level_nodes)
           # Toggle direction for next level
           left_to_right = not left_to_right
       # STEP 4: Return result
       # - Handles all cases including empty root
       return result
# ----- INLINE TESTS -----
if __name__ == "__main__":
   sol = Solution()
   # Test 1: Normal case
   # Tree: [3,9,20,null,null,15,7]
   root1 = TreeNode(3)
   root1.left = TreeNode(9)
```

```
root1.right = TreeNode(20)
root1.right.left = TreeNode(15)
root1.right.right = TreeNode(7)
assert sol.zigzagLevelOrder(root1) == [[3],[20,9],[15,7]]

# Test 2: Edge case - single node
root2 = TreeNode(1)
assert sol.zigzagLevelOrder(root2) == [[1]]

# Test 3: Tricky/negative - empty tree
assert sol.zigzagLevelOrder(None) == []

print(" All tests passed!")
```

Example Walkthrough

```
We'll trace Test 1: root = [3,9,20,null,null,15,7]
Initial State:
- queue = [3]
- result = []
- left_to_right = True
```

```
Level 0 (left_to_right = True):
```

- -level_size = 1
- Process node 3:
- Append 3 to level_nodes → [3]
- Enqueue children: 9, 20 \rightarrow queue = [9, 20]
- Since direction is $L\rightarrow R$, don't reverse \rightarrow append [3] to result
- Toggle direction → left_to_right = False
- State: result = [[3]], queue = [9, 20]

```
Level 1 (left\_to\_right = False):
-level_size = 2
- Process node 9:
-level_nodes = [9]
- No children \rightarrow queue becomes [20]
- Process node 20:
-level nodes = [9, 20]
- Enqueue 15, 7 \rightarrow queue = [15, 7]
- Direction is R \rightarrow L \rightarrow reverse \rightarrow [20, 9]
- Append to result \rightarrow [[3], [20,9]]
- Toggle direction → left_to_right = True
Level 2 (left to right = True):
-level_size = 2
- Process 15: level nodes = [15], no children
- Process 7: level_nodes = [15, 7], no children
- Direction L\rightarrowR \rightarrow no reverse \rightarrow append [15,7]
- Queue empty \rightarrow loop ends
- Final result: [[3], [20,9], [15,7]]
  Matches expected output!
```

Complexity Analysis

• Time Complexity: O(N)

We visit each node exactly once. Reversing a level takes O(k) for k nodes in that level, and sum of all k is N. So total is still linear.

• Space Complexity: O(N)

The queue holds at most the width of the tree (N/2 nodes in worst case, e.g., complete binary tree). The output list also stores N values. Thus, O(N).

6. Binary Tree Right Side View

Pattern: Tree BFS (Level-order Traversal)

Problem Statement

Given the root of a binary tree, imagine yourself standing on the right side of it. Return the values of the nodes you can see ordered from top to bottom.

Sample Input & Output

```
Input: root = [1,2,3,null,5,null,4]
Output: [1,3,4]
Explanation: From the right, you see node 1 (level 0),
node 3 (level 1), and node 4 (level 2).

Input: root = [1,null,3]
Output: [1,3]
Explanation: Only right children exist beyond root.

Input: root = []
Output: []
Explanation: Empty tree → nothing to see.
```

```
from typing import List, Optional
from collections import deque

# Definition for a binary tree node.
class TreeNode:
    def __init__(self, val=0, left=None, right=None):
        self.val = val
        self.left = left
        self.right = right

class Solution:
```

```
def rightSideView(self, root: Optional[TreeNode]) -> List[int]:
       # STEP 1: Initialize structures
       # - Use a queue for BFS (level-order traversal)
       # - Result list stores rightmost node per level
       if not root:
           return []
       queue = deque([root])
       right_view = []
       # STEP 2: Main loop / recursion
       # - Process level by level using queue size
       # - The last node in each level is the rightmost
       while queue:
           level_size = len(queue)
           for i in range(level_size):
               node = queue.popleft()
               # STEP 3: Update state / bookkeeping
               # - Only record the last node in the level
               if i == level_size - 1:
                   right_view.append(node.val)
               # Add children for next level
               if node.left:
                   queue.append(node.left)
               if node.right:
                   queue.append(node.right)
       # STEP 4: Return result
       # - Already built during traversal
       return right_view
# ----- INLINE TESTS -----
if __name__ == "__main__":
   sol = Solution()
   # Test 1: Normal case
   # Tree: [1,2,3,null,5,null,4]
   root1 = TreeNode(1)
   root1.left = TreeNode(2)
```

```
root1.right = TreeNode(3)
root1.left.right = TreeNode(5)
root1.right.right = TreeNode(4)
assert sol.rightSideView(root1) == [1, 3, 4], "Test 1 Failed"

# Test 2: Edge case - only right children
root2 = TreeNode(1)
root2.right = TreeNode(3)
assert sol.rightSideView(root2) == [1, 3], "Test 2 Failed"

# Test 3: Tricky/negative - empty tree
assert sol.rightSideView(None) == [], "Test 3 Failed"

print(" All tests passed!")
```

Example Walkthrough

```
We'll trace Test 1: root = [1,2,3,null,5,null,4]
Initial state:
-queue = [1]
- right_view = []
Level 0 (root level):
-level_size = 1
- Loop i = 0 (only node):
- node = 1
- Since i == 0 == level_size - 1, append 1 \rightarrow right_view = [1]
- Enqueue left (2) and right (3) \rightarrow queue = [2, 3]
Level 1:
-level size = 2
-i = 0: node = 2
- Not last \rightarrow skip adding to result
- Enqueue its right child 5 \rightarrow queue = [3, 5]
-i = 1: node = 3
- Last in level \rightarrow append 3 \rightarrow right_view = [1, 3]
- Enqueue its right child 4 \rightarrow queue = [5, 4]
```

Level 2:

- -level_size = 2
- -i = 0: node = 5
- Not last \rightarrow skip
- No children \rightarrow queue becomes [4]
- -i = 1: node = 4
- Last \rightarrow append 4 \rightarrow right_view = [1, 3, 4]
- No children \rightarrow queue empty

Loop ends \rightarrow return [1, 3, 4]

Final output matches expected.

Complexity Analysis

• Time Complexity: O(n)

We visit every node exactly once in BFS. n = number of nodes.

• Space Complexity: O(w)

w = maximum width of the tree (stored in queue at one level).In worst case (complete tree), $w = n/2 \rightarrow \text{still O(n)}$, but typically much less.

7. Path Sum II

Pattern: Tree DFS (Backtracking)

Problem Statement

Given the root of a binary tree and an integer targetSum, return all root-to-leaf paths where the sum of the node values in the path equals targetSum. Each path should be returned as a list of the node values, not node references.

A **root-to-leaf path** starts at the root and ends at a leaf node (a node with no children).

Sample Input & Output

```
Input: root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22
Output: [[5,4,11,2],[5,8,4,5]]
Explanation: Two paths sum to 22: 5→4→11→2 and 5→8→4→5.

Input: root = [1,2,3], targetSum = 5
Output: []
Explanation: No root-to-leaf path sums to 5.

Input: root = [1,2], targetSum = 1
Output: []
Explanation: The only leaf is 2; path [1,2] sums to 3 1.
```

```
from typing import List, Optional
# Definition for a binary tree node.
class TreeNode:
   def __init__(self, val=0, left=None, right=None):
        self.val = val
        self.left = left
        self.right = right
class Solution:
    def pathSum(self, root: Optional[TreeNode], targetSum: int):
        # STEP 1: Initialize result list and current path
           - `result` stores all valid paths
        # - `path` tracks current DFS traversal (mutable list)
        result = []
        path = []
        def dfs(node, curr_sum):
            # Base case: empty node → stop recursion
            if not node:
```

```
return
           # STEP 2: Include current node in path & sum
           path.append(node.val)
           curr_sum += node.val
           # STEP 3: Check if leaf and sum matches target
           # - Leaf: no left/right children
           # - If match, add *copy* of path to result
           if not node.left and not node.right:
               if curr_sum == targetSum:
                   result.append(list(path)) # shallow copy
           # STEP 4: Recurse on children (backtrack after)
           dfs(node.left, curr_sum)
           dfs(node.right, curr_sum)
           # STEP 5: Backtrack - remove current node before
                     returning to parent (restore path state)
           path.pop()
       dfs(root, 0)
       return result
# ------ INLINE TESTS ------
if __name__ == "__main__":
   sol = Solution()
   # Test 1: Normal case
   # Tree: [5,4,8,11,null,13,4,7,2,null,null,5,1]
   root1 = TreeNode(5)
   root1.left = TreeNode(4)
   root1.right = TreeNode(8)
   root1.left.left = TreeNode(11)
   root1.left.left.left = TreeNode(7)
   root1.left.left.right = TreeNode(2)
   root1.right.left = TreeNode(13)
   root1.right.right = TreeNode(4)
   root1.right.right.left = TreeNode(5)
   root1.right.right = TreeNode(1)
   print(sol.pathSum(root1, 22)) # [[5,4,11,2],[5,8,4,5]]
```

```
# Test 2: Edge case - no valid path
root2 = TreeNode(1)
root2.left = TreeNode(2)
root2.right = TreeNode(3)
print(sol.pathSum(root2, 5)) # []

# Test 3: Tricky/negative - target too small
root3 = TreeNode(1)
root3.left = TreeNode(2)
print(sol.pathSum(root3, 1)) # []
```

Example Walkthrough

We'll trace **Test 1** with targetSum = 22.

- 1. Start: result = [], path = [], call dfs(root=5, curr_sum=0).
- 2. **Node 5**:
 - Append $5 \rightarrow \text{path} = [5]$
 - $curr_sum = 0 + 5 = 5$
 - Not a leaf \rightarrow recurse left (4)
- 3. Node 4:
 - Append $4 \rightarrow \text{path} = [5,4]$
 - $curr_sum = 5 + 4 = 9$
 - Not a leaf \rightarrow recurse left (11)
- 4. **Node 11**:
 - Append $11 \rightarrow path = [5,4,11]$
 - $curr_sum = 9 + 11 = 20$
 - Not a leaf \rightarrow recurse left (7)

5. **Node 7**:

• Append
$$7 \rightarrow \text{path} = [5,4,11,7]$$

•
$$curr_sum = 20 + 7 = 27$$

• Leaf? Yes. 27
$$22 \rightarrow \text{skip}$$
.

• Backtrack: path.pop()
$$\rightarrow$$
 path = [5,4,11]

6. **Node 2** (right of 11):

• Append
$$2 \to path = [5,4,11,2]$$

•
$$curr_sum = 20 + 2 = 22$$

• Backtrack:
$$pop \rightarrow path = [5,4,11]$$

- 7. Back to **Node 11**: both children done \rightarrow pop \rightarrow path = [5,4]
- 8. Back to **Node 4**: no right child \rightarrow pop \rightarrow path = [5]
- 9. Now recurse **right** from root: **Node 8**

• Append 8
$$\rightarrow$$
 path = [5,8], sum = 13

• Recurse left (13)
$$\rightarrow$$
 leaf, sum=26 22 \rightarrow backtrack

• Recurse right
$$(4) \rightarrow path=[5,8,4]$$
, sum=17

- Left child 5: leaf, sum=
$$22 \rightarrow \text{add}$$
 [5,8,4,5]

- Right child 1: leaf, sum=
$$18 \rightarrow \text{skip}$$

• Backtrack fully

10. Final result =
$$[[5,4,11,2], [5,8,4,5]]$$

Key insight: backtracking ensures path always reflects the current root-to-node route.

Complexity Analysis

• Time Complexity: O(N²) in worst case

We visit every node once (O(N)), but copying the path (of length O(H), up to O(N) in skewed tree) for each leaf leads to $O(N^2)$ total. In balanced trees, it's closer to $O(N \log N)$.

• Space Complexity: O(N)

The path list uses O(H) space (height of tree). Recursion stack also uses O(H). In worst case (skewed tree), H = N. Output storage is extra and not counted in auxiliary space.

8. Path Sum III

Pattern: Prefix Sum + Hash Map (Cumulative Sum Tracking)

Problem Statement

Given the root of a binary tree and an integer targetSum, return the number of paths where the sum of the values along the path equals targetSum.

The path does **not** need to start or end at the root or a leaf, but it must go **downwards** (traveling only from parent nodes to child nodes).

Sample Input & Output

```
Input: root = [10,5,-3,3,2,null,11,3,-2,null,1], targetSum = 8
Output: 3
Explanation: The paths that sum to 8 are:
   1. 5 -> 3
   2. 5 -> 2 -> 1
   3. -3 -> 11
```

```
Input: root = [1,null,2,null,3], targetSum = 3
Output: 2
Explanation:
   1. 1 -> 2
   2. 3 (standalone node)
```

```
Input: root = [], targetSum = 0
Output: 0
Explanation: Empty tree → no paths.
```

```
from typing import Optional
from collections import defaultdict
class TreeNode:
    def __init__(self, val=0, left=None, right=None):
        self.val = val
        self.left = left
        self.right = right
class Solution:
    def pathSum(self, root: Optional[TreeNode], targetSum: int) -> int:
        # STEP 1: Initialize structures
          - prefix_sum_count tracks how many times a cumulative sum
             has occurred in the current DFS path.
            - We seed it with {0: 1} to handle paths starting at root.
        prefix_sum_count = defaultdict(int)
        prefix_sum_count[0] = 1
        def dfs(node, curr_sum):
            if not node:
               return 0
            # STEP 2: Main loop / recursion
            # - Update current cumulative sum with node value.
            curr_sum += node.val
                - Check if (curr_sum - targetSum) exists in map.
                  If yes, there's a subpath ending here that sums to target.
            count = prefix_sum_count[curr_sum - targetSum]
            # STEP 3: Update state / bookkeeping
              - Record current sum before recursing to children.
```

```
prefix_sum_count[curr_sum] += 1
           # Recurse left and right
           count += dfs(node.left, curr_sum)
           count += dfs(node.right, curr_sum)
           # Backtrack: remove current sum from map after returning
           # - Critical! Prevents cross-branch contamination.
           prefix_sum_count[curr_sum] -= 1
           # STEP 4: Return result
           return count
       return dfs(root, 0)
# ----- INLINE TESTS -----
if __name__ == "__main__":
   sol = Solution()
   # Test 1: Normal case
   # Tree: [10,5,-3,3,2,null,11,3,-2,null,1]
   root1 = TreeNode(10)
   root1.left = TreeNode(5)
   root1.right = TreeNode(-3)
   root1.left.left = TreeNode(3)
   root1.left.right = TreeNode(2)
   root1.right.right = TreeNode(11)
   root1.left.left.left = TreeNode(3)
   root1.left.left.right = TreeNode(-2)
   root1.left.right.right = TreeNode(1)
   assert sol.pathSum(root1, 8) == 3
   # Test 2: Edge case - single path
   root2 = TreeNode(1)
   root2.right = TreeNode(2)
   root2.right.right = TreeNode(3)
   assert sol.pathSum(root2, 3) == 2
   # Test 3: Tricky/negative - empty tree
   assert sol.pathSum(None, 0) == 0
   print(" All tests passed!")
```

Example Walkthrough

We'll trace **Test 1** with targetSum = 8 on the tree:

Goal: Count all downward paths summing to 8.

Step 1: Initialize prefix_sum_count = {0: 1} and call dfs(root=10, curr_sum=0).

- curr_sum = 0 + 10 = 10
- Check: 10 8 = 2 \rightarrow Is 2 in map? No \rightarrow count = 0
- Update map: {0:1, 10:1}
- Recurse left \rightarrow node 5

Step 2: At node 5 (curr_sum = 10 from parent)

- $curr_sum = 10 + 5 = 15$
- Check: 15 8 = 7 \rightarrow not in map \rightarrow count = 0
- Map: {0:1, 10:1, 15:1}
- Recurse left \rightarrow node 3

Step 3: At node 3

- $curr_sum = 15 + 3 = 18$
- Check: 18 8 = 10 \rightarrow **YES!** prefix_sum_count[10] = 1 \rightarrow count = 1
 - This means: path from after sum=10 (i.e., node 10) to current node sums to 8 \rightarrow 5 \rightarrow 3

- Map: {..., 18:1}
- Recurse to node 3 (leaf)

Step 4: At leaf 3 (leftmost)

- $curr_sum = 18 + 3 = 21$
- 21 8 = 13 \rightarrow not in map \rightarrow count = 0
- Map updated \rightarrow then backtrack: remove 21
- Return 0

Back to node $3 \rightarrow \text{now recurse to } -2$:

- $curr_sum = 18 + (-2) = 16$
- 16 8 = 8 \rightarrow not in map \rightarrow count = 0
- Backtrack \rightarrow remove 16

Back to node $3 \rightarrow$ done. Backtrack: remove 18

Now back at node $5 \rightarrow$ recurse right to node 2

- $curr_sum = 15 + 2 = 17$
- 17 8 = 9 \rightarrow not in map \rightarrow count = 0
- Map: {..., 17:1}
- Recurse to node 1:

- curr_sum = 17 + 1 = 18
- 18 - 8 = 10
$$\rightarrow$$
 YES! \rightarrow count += 1 \rightarrow total = 1 (from here)
* Path: 5 \rightarrow 2 \rightarrow 1 (since sum=10 occurred at root, subtract \rightarrow 18-10=8)

• Backtrack 18, then 17

Now back at root $10 \rightarrow \text{go right to } -3$

- $curr_sum = 10 + (-3) = 7$
- 7 8 = -1 \rightarrow not in map
- Map: {..., 7:1}
- Recurse to 11:

- curr_sum = 7 + 11 = 18
- 18 - 8 = 10
$$\rightarrow$$
 YES! \rightarrow count += 1
* Path: -3 \rightarrow 11 (18 - 10 = 8)

Total count = $1 (5 \rightarrow 3) + 1 (5 \rightarrow 2 \rightarrow 1) + 1 (-3 \rightarrow 11) = 3$

Backtracking ensures sums from left subtree don't pollute right subtree.

Complexity Analysis

• Time Complexity: O(N)

We visit each node exactly once during DFS. Hash map operations (get, set) are O(1) average.

• Space Complexity: O(N)

In worst case (skewed tree), recursion depth is O(N). The hash map also stores up to O(N) prefix sums.

9. Diameter of Binary Tree

Pattern: Tree DFS (Postorder Traversal)

Problem Statement

Given the root of a binary tree, return the length of the diameter of the tree.

The diameter of a binary tree is the length of the longest path between any two nodes in a tree. This path may or may not pass through the root.

The **length** of a path between two nodes is represented by the number of **edges** between them.

Sample Input & Output

```
Input: root = [1,2,3,4,5]
Output: 3
Explanation: The longest path is [4,2,1,3] or [5,2,1,3] \rightarrow 3 edges.
```

```
Input: root = [1,2]
Output: 1
Explanation: Only one edge between 1 and 2.
```

```
Input: root = []
Output: 0
Explanation: Empty tree has no edges.
```

```
from typing import Optional
# Definition for a binary tree node.
class TreeNode:
    def __init__(self, val=0, left=None, right=None):
        self.val = val
        self.left = left
        self.right = right
class Solution:
    def diameterOfBinaryTree(self, root: Optional[TreeNode]) -> int:
        # STEP 1: Initialize max diameter as instance variable
           - We track the global max across recursive calls
        self.max_diameter = 0
        # STEP 2: Define helper to compute height + update diameter
        # - Postorder: process children before current node
        def height(node: Optional[TreeNode]) -> int:
            if not node:
                return 0 # Base case: null node has height 0
            # Recursively get heights of left and right subtrees
            left_height = height(node.left)
            right_height = height(node.right)
            # STEP 3: Update max diameter using current node as "top"
            # - Path through node = left_height + right_height (edges)
            current_diameter = left_height + right_height
            self.max_diameter = max(self.max_diameter, current_diameter)
            # Return height of current subtree (for parent's use)
            return 1 + max(left_height, right_height)
```

```
# STEP 4: Trigger recursion and return result
       height(root)
       return self.max_diameter
# ----- INLINE TESTS -----
if __name__ == "__main__":
   sol = Solution()
     Test 1: Normal case - [1,2,3,4,5]
   #
         1
   #
        / \
   #
       2 3
        /\
   # 4 5
   root1 = TreeNode(1)
   root1.left = TreeNode(2)
   root1.right = TreeNode(3)
   root1.left.left = TreeNode(4)
   root1.left.right = TreeNode(5)
   print(sol.diameterOfBinaryTree(root1)) # Expected: 3
   # Test 2: Edge case - [1,2]
   root2 = TreeNode(1)
   root2.left = TreeNode(2)
   print(sol.diameterOfBinaryTree(root2)) # Expected: 1
   # Test 3: Tricky/negative - empty tree
   print(sol.diameterOfBinaryTree(None))
                                       # Expected: 0
```

Example Walkthrough

```
We'll trace Test 1: root = [1,2,3,4,5].
```

- 1. Initialize: self.max_diameter = 0.
- 2. Call height(root=1):
 - node=1 is not null \rightarrow proceed.

- Call height(node=2) (left child).
 - node=2 not null.
 - Call height(node=4):
 - * node=4 has no children \rightarrow left_height = 0, right_height = 0.
 - * current_diameter = 0 + 0 = 0 \rightarrow max_diameter stays 0.
 - * Return 1 + max(0,0) = 1.
 - Call height(node=5):
 - * Same as above \rightarrow returns 1.
 - Now at node=2: left_height=1, right_height=1.
 - current_diameter = 1 + 1 = 2 \rightarrow max_diameter = max(0,2) = 2.
 - Return 1 + max(1,1) = 2.
- Call height(node=3) (right child):
 - No children \rightarrow returns 1.
- Now at node=1: left_height=2, right_height=1.
- current_diameter = $2 + 1 = 3 \rightarrow \max_{diameter} = \max_{diameter} 2 = 3$.
- Return 1 + max(2,1) = 3.
- 3. Final return: self.max_diameter = 3.

Key Insight: The diameter isn't just "height of left + height of right at root" — it could be deeper inside a subtree (e.g., if root had only one child with a long internal path). That's why we **track max globally** during postorder traversal.

Complexity Analysis

• Time Complexity: O(n)

We visit every node exactly once during the DFS. Each node does O(1) work (comparisons, additions).

• Space Complexity: O(h)

Due to recursion stack depth, where h is the height of the tree. In worst case (skewed tree), h = n; in balanced tree, $h = \log n$.

10. Binary Tree Maximum Path Sum

Pattern: Tree + Recursion + Postorder Traversal (with Global Tracking)

Problem Statement

A path in a binary tree is a sequence of nodes where each pair of adjacent nodes in the sequence has an edge connecting them. A node can only appear in the sequence at most once. Note that the path does not need to pass through the root.

The **path** sum of a path is the sum of the node's values in the path.

Given the root of a binary tree, return the maximum path sum of any non-empty path.

Sample Input & Output

```
Input: root = [1,2,3]
Output: 6
Explanation: The optimal path is 2 → 1 → 3 with sum 6.

Input: root = [-10,9,20,null,null,15,7]
Output: 42
Explanation: The optimal path is 15 → 20 → 7 with sum 42.

Input: root = [-3]
Output: -3
Explanation: Only one node; path must be non-empty.
```

```
from typing import Optional

# Definition for a binary tree node.
class TreeNode:
    def __init__(self, val=0, left=None, right=None):
        self.val = val
        self.left = left
```

```
self.right = right
class Solution:
   def maxPathSum(self, root: Optional[TreeNode]) -> int:
       # STEP 1: Initialize global max with -inf
       # - We track best path seen anywhere in tree
       self.max_sum = float('-inf')
       def dfs(node):
           # STEP 2: Base case - null node contributes 0
           if not node:
               return 0
           # STEP 3: Recurse on children
           # - Get max path sum from left/right subtrees
           # - Clamp negative contributions to 0 (ignore them)
           left_gain = max(dfs(node.left), 0)
           right_gain = max(dfs(node.right), 0)
           # STEP 4: Compute path sum through current node as root
           # - This path cannot be extended upward
           current_path_sum = node.val + left_gain + right_gain
           # STEP 5: Update global max if this path is better
           self.max_sum = max(self.max_sum, current_path_sum)
           # STEP 6: Return max path sum that can be extended upward
           # - Only one branch (left or right) can be chosen
           return node.val + max(left_gain, right_gain)
       dfs(root)
       return self.max_sum
# ----- INLINE TESTS ------
if __name__ == "__main__":
   sol = Solution()
   # Test 1: Normal case - [1,2,3]
   root1 = TreeNode(1, TreeNode(2), TreeNode(3))
   print(sol.maxPathSum(root1)) # Expected: 6
   # Test 2: Tricky case - [-10,9,20,null,null,15,7]
```

```
root2 = TreeNode(-10)
root2.left = TreeNode(9)
root2.right = TreeNode(20)
root2.right.left = TreeNode(15)
root2.right.right = TreeNode(7)
print(sol.maxPathSum(root2))  # Expected: 42

# Test 3: Edge case - single negative node
root3 = TreeNode(-3)
print(sol.maxPathSum(root3))  # Expected: -3
```

Example Walkthrough

We'll walk through **Test 2**: [-10,9,20,null,null,15,7].

Tree structure:

Goal: Find max path sum (anywhere).

```
Step 1: Call maxPathSum(root2)
```

- self.max_sum = -inf
- Call dfs(-10)

Step 2: Inside dfs(-10)

- Node exists \rightarrow proceed
- Call dfs(9) (left child)

Step 3: Inside dfs(9)

- Left = None \rightarrow returns 0

```
- Right = None \rightarrow returns 0
-current_path_sum = 9 + 0 + 0 = 9
- Update self.max_sum = max(-inf, 9) = 9
- Return 9 + max(0,0) = 9
Step 4: Back in dfs(-10), now call dfs(20) (right child)
Step 5: Inside dfs(20)
- Call dfs(15) \rightarrow returns 15 (leaf)
- Call dfs(7) \rightarrow returns 7 (leaf)
- left_{gain} = max(15, 0) = 15
- right_gain = max(7, 0) = 7
-current_path_sum = 20 + 15 + 7 = 42
- Update self.max_sum = max(9, 42) = 42
- \text{Return 20} + \max(15,7) = 35
Step 6: Back in dfs(-10)
-left_gain = max(9, 0) = 9
-right_gain = max(35, 0) = 35
-current_path_sum = -10 + 9 + 35 = 34
- Compare: self.max_sum = max(42, 34) = 42 (unchanged)
- Return -10 + max(9,35) = 25 (but this return value isn't used for answer)
Step 7: Return self.max sum = 42
```

Final output: 42

Key Insight:

The best path $(15\rightarrow 20\rightarrow 7)$ is **not extendable** to parent (-10), so we only consider it during the current_path_sum step. The return value (35) represents the best **extendable** path from 20 upward.

Complexity Analysis

• Time Complexity: O(N)

We visit each node exactly once in the DFS traversal. All operations per node are O(1).

• Space Complexity: O(H)

Due to recursion stack depth, where H is height of tree. Worst case: O(N) for skewed tree; O(log N) for balanced tree. No additional data structures scale with input size.

11. Construct Binary Tree from Preorder and Inorder Traversal

Pattern: Divide and Conquer + Hashing

Problem Statement

Given two integer arrays preorder and inorder where preorder is the preorder traversal of a binary tree and inorder is the inorder traversal of the same tree, construct and return the binary tree.

You may assume that duplicates do not exist in the tree.

Sample Input & Output

```
Input: preorder = [3,9,20,15,7], inorder = [9,3,15,20,7]
Output: [3,9,20,null,null,15,7]
Explanation: Root is 3 (first in preorder).
In inorder, left of 3 is [9] → left subtree;
right is [15,20,7] → right subtree.
```

```
Input: preorder = [-1], inorder = [-1]
Output: [-1]
Explanation: Single-node tree.
```

```
Input: preorder = [1,2], inorder = [2,1]
Output: [1,2]
Explanation: 1 is root; 2 is left child
(since it appears before 1 in inorder).
```

```
from typing import List, Optional
# Definition for a binary tree node.
class TreeNode:
    def __init__(self, val=0, left=None, right=None):
        self.val = val
        self.left = left
        self.right = right
class Solution:
    def buildTree(self, preorder: List[int], inorder: List[int]):
        # STEP 1: Initialize structures
        # - Build a hash map for O(1) index lookup in inorder
           - Use a mutable index (list) to track current root in preorder
        inorder_index_map = {val: idx for idx, val in enumerate(inorder)}
        preorder_index = [0] # mutable reference to track position
        # STEP 2: Main loop / recursion
        # - Recursively build subtree given inorder bounds [left, right]
        # - Invariant: preorder[preorder_index[0]] is current root
        def array_to_tree(left: int, right: int) -> Optional[TreeNode]:
            if left > right:
                return None
            # Current root value from preorder
            root_val = preorder[preorder_index[0]]
            root = TreeNode(root_val)
            preorder_index[0] += 1 # move to next root candidate
            # STEP 3: Update state / bookkeeping
            # - Split inorder at root index → left/right subtrees
            # - Why here? Because inorder tells us subtree boundaries
            root_idx = inorder_index_map[root_val]
            # Recurse on left then right (preorder: root → left → right)
            root.left = array_to_tree(left, root_idx - 1)
            root.right = array_to_tree(root_idx + 1, right)
            return root
        # STEP 4: Return result
```

```
# - Entire tree built from full inorder range
       return array_to_tree(0, len(inorder) - 1)
# ----- INLINE TESTS -----
if __name__ == "__main__":
   sol = Solution()
   # Helper to serialize tree to list (level-order)
   def serialize(root: Optional[TreeNode]) -> List:
       if not root:
           return []
       result = []
       queue = [root]
       while queue:
           node = queue.pop(0)
           if node:
               result.append(node.val)
               queue.append(node.left)
               queue.append(node.right)
           else:
               result.append(None)
       # Trim trailing Nones
       while result and result[-1] is None:
           result.pop()
       return result
   # Test 1: Normal case
   t1 = sol.buildTree([3,9,20,15,7], [9,3,15,20,7])
   assert serialize(t1) == [3,9,20,None,None,15,7], "Test 1 failed"
   # Test 2: Edge case (single node)
   t2 = sol.buildTree([-1], [-1])
   assert serialize(t2) == [-1], "Test 2 failed"
   # Test 3: Tricky/negative (left-skewed)
   t3 = sol.buildTree([1,2], [2,1])
   assert serialize(t3) == [1,2], "Test 3 failed"
   print(" All tests passed!")
```

Example Walkthrough

We'll trace preorder = [3,9,20,15,7], inorder = [9,3,15,20,7].

1. Build inorder_index_map:

$$\{9:0, 3:1, 15:2, 20:3, 7:4\} \rightarrow \text{lets us find root position in } O(1).$$

- 2. Start recursion: array_to_tree(0, 4) (entire inorder range).
 - preorder_index = $[0] \rightarrow root_val = 3$
 - Create TreeNode(3)
 - Increment preorder_index → now [1]
 - root_idx = 1 (from map)
- 3. Build left subtree: array_to_tree(0, 0)
 - preorder_index = [1] \rightarrow root_val = 9
 - Create TreeNode(9)
 - Increment \rightarrow [2]
 - root_idx = 0
 - Left: array_to_tree(0, -1) \rightarrow returns None
 - Right: array_to_tree(1, 0) → returns None
 - Return node $9 \rightarrow$ becomes left child of 3
- 4. Build right subtree: array_to_tree(2, 4)
 - preorder_index = [2] $\rightarrow \text{root_val} = 20$
 - Create TreeNode(20)
 - Increment \rightarrow [3]

• root_idx = 3

• Left: array_to_tree(2, 2) \rightarrow uses preorder[3]=15 \rightarrow returns node 15

• Right: array_to_tree(4, 4) \rightarrow uses preorder[4]=7 \rightarrow returns node 7

 \bullet Attach 15 and 7 as children of 20

5. Final tree:

6. Serialize: Level-order \rightarrow [3,9,20,None,None,15,7] (Trailing Nones trimmed)

Complexity Analysis

• Time Complexity: O(n)

We visit each node exactly once. Hash map gives O(1) root index lookup. Total work is linear in number of nodes.

• Space Complexity: O(n)

Hash map stores n entries. Recursion depth is O(h), where h is height. Worst case (skewed tree) $\to O(n)$. So total space is O(n).

12. Serialize and Deserialize Binary Tree

Pattern: Tree Traversal + DFS (Preorder) + String Encoding

Problem Statement

Serialization is the process of converting a data structure or object into a sequence of bits so that it can be stored in a file or memory buffer, or transmitted across a network connection link to be reconstructed later in the same or another computer environment.

Design an algorithm to serialize and descrialize a binary tree. There is no restriction on how your serialization/descrialization algorithm should work. You just need to ensure that a binary tree can be serialized to a string and this string can be descrialized to the original tree structure.

Clarification:

- You may serialize the null nodes as "null" (or any consistent sentinel).
- The serialization format must be self-delimiting (e.g., comma-separated).
- The tree may contain duplicate values.

Sample Input & Output

```
Input: root = [1,2,3,null,null,4,5]
Output: [1,2,3,null,null,4,5]
Explanation: The serialized string should allow perfect reconstruction.

Input: root = []
Output: []
Explanation: Empty tree serializes to empty string or "null".

Input: root = [1,null,2,null,3]
Output: [1,null,2,null,3]
Explanation: Right-skewed tree must preserve structure.
```

```
from typing import Optional
# Definition for a binary tree node.
class TreeNode:
    def __init__(self, val=0, left=None, right=None):
        self.val = val
        self.left = left
        self.right = right
class Solution:
    def serialize(self, root: Optional[TreeNode]) -> str:
        # STEP 1: Initialize list to hold node values
        # - Use list for efficient appending; join later
        vals = []
        # STEP 2: Preorder DFS traversal
        # - Visit root, then left, then right
        # - "null" marks missing children
        def dfs(node):
            if not node:
                vals.append("null")
                return
            vals.append(str(node.val))
            dfs(node.left)
            dfs(node.right)
        dfs(root)
        return ",".join(vals)
    def deserialize(self, data: str) -> Optional[TreeNode]:
        # STEP 1: Split data into tokens
        # - Each token is either number or "null"
        tokens = data.split(",")
        self.index = 0 # Tracks current token
        # STEP 2: Reconstruct via preorder DFS
        # - Same order as serialization
        def dfs():
            if tokens[self.index] == "null":
                self.index += 1
                return None
```

```
node = TreeNode(int(tokens[self.index]))
           self.index += 1
           node.left = dfs()
           node.right = dfs()
           return node
       # STEP 3: Handle empty input
       if not data or data == "null":
           return None
       return dfs()
# ----- INLINE TESTS -----
if __name__ == "__main__":
   sol = Solution()
   # Test 1: Normal case
   root1 = TreeNode(1)
   root1.left = TreeNode(2)
   root1.right = TreeNode(3)
   root1.right.left = TreeNode(4)
   root1.right.right = TreeNode(5)
   ser1 = sol.serialize(root1)
   deser1 = sol.deserialize(ser1)
   # Re-serialize to verify structure
   assert sol.serialize(deser1) == ser1
   print(" Test 1 passed")
   # Test 2: Edge case - empty tree
   empty_root = None
   ser_empty = sol.serialize(empty_root)
   deser_empty = sol.deserialize(ser_empty)
   assert sol.serialize(deser_empty) == ser_empty
   print(" Test 2 passed")
   # Test 3: Tricky case - right-skewed tree
   root3 = TreeNode(1)
   root3.right = TreeNode(2)
   root3.right.right = TreeNode(3)
   ser3 = sol.serialize(root3)
   deser3 = sol.deserialize(ser3)
   assert sol.serialize(deser3) == ser3
```

```
print(" Test 3 passed")
```

Example Walkthrough

We'll walk through Test 1: root = [1,2,3,null,null,4,5].

Step 1: Build the tree

- root1 = TreeNode(1)
- root1.left = TreeNode(2)
- root1.right = TreeNode(3)
- root1.right.left = TreeNode(4)
- root1.right.right = TreeNode(5)

Tree structure:

Step 2: Serialize (serialize(root1))

- Call dfs(root1)
 - node = 1 \rightarrow append "1" \rightarrow vals = ["1"]
 - Recurse left \rightarrow dfs(2)
 - * node = 2 \rightarrow append "2" \rightarrow vals = ["1","2"]

```
* Recurse left → dfs(None) → append "null" → vals = [...,"null"]

* Recurse right → dfs(None) → append "null"

- Back to root, recurse right → dfs(3)

* Append "3"

* dfs(4) → append "4", then two "null"s

* dfs(5) → append "5", then two "null"s
```

Final vals:

```
["1","2","null","null","3","4","null","null","5","null","null"]
```

Return: "1,2,null,null,3,4,null,null,5,null,null"

Step 3: Deserialize that string

- tokens = ["1","2","null","null","3","4","null","null","5","null","null"]
- index = 0

Call dfs(): - tokens[0] = "1" \rightarrow create TreeNode(1), index=1

- Build left subtree: tokens[1] = "2" → TreeNode(2), index=2
- Left: tokens[2]="null" \rightarrow return None, index=3
- Right: tokens[3]="null" → return None, index=4
- Back to root, build right: tokens[4]="3" \rightarrow TreeNode(3), index=5
- Left: tokens[5]="4" \rightarrow build node, then two nulls \rightarrow index=8
- Right: tokens [8] = "5" \rightarrow build node, then two nulls \rightarrow index=11

Reconstructed tree matches original.

Step 4: Re-serialize and compare

• serialize(deser1) produces same string \rightarrow assertion passes.

All tests pass with correct structure preservation.

Complexity Analysis

• Time Complexity: O(N)

Each node is visited exactly once during serialization and once during descrialization. Splitting the string is also O(N).

• Space Complexity: O(N)

The vals list and tokens list each store N+1 entries (including nulls). The recursion stack depth is O(H), where H is tree height, but in worst case (skewed tree) H = N, so overall space is O(N).

13. Subtree of Another Tree

 $\textbf{Pattern:} \ \operatorname{Tree} \ \operatorname{Traversal} + \operatorname{Recursion} \ (\operatorname{Tree} \ \operatorname{Matching})$

Problem Statement

Given the roots of two binary trees root and subRoot, return true if there is a subtree of root with the same structure and node values of subRoot. A subtree of a binary tree tree is a tree that consists of a node in tree and all of this node's descendants. The tree tree could also be considered as a subtree of itself.

Sample Input & Output

```
Input: root = [3,4,5,1,2], subRoot = [4,1,2]
Output: true
Explanation: The subtree rooted at node 4 in root matches subRoot exactly.

Input: root = [3,4,5,1,2,null,null,null,null,0], subRoot = [4,1,2]
Output: false
Explanation: The candidate subtree has an extra child (0),
so structures differ.
```

```
Input: root = [1], subRoot = [1]
Output: true
Explanation: Identical single-node trees - a tree is a subtree of itself.
```

```
from typing import Optional
# Definition for a binary tree node.
class TreeNode:
    def __init__(self, val=0, left=None, right=None):
        self.val = val
        self.left = left
        self.right = right
class Solution:
    def isSubtree(
        self, root: Optional[TreeNode], subRoot: Optional[TreeNode]
    ) -> bool:
        # STEP 1: Base cases for outer recursion
        # - If subRoot is empty, it's always a subtree (by definition)
        # - If root is empty but subRoot isn't, impossible match
        if not subRoot:
            return True
        if not root:
            return False
        # STEP 2: Check if current trees match exactly
        # - Use helper to compare structure + values
        if self._is_same_tree(root, subRoot):
            return True
        # STEP 3: Recurse on left and right subtrees
        # - If either side contains subRoot, return True
        return (self.isSubtree(root.left, subRoot) or
                self.isSubtree(root.right, subRoot))
    def _is_same_tree(
```

```
self, p: Optional[TreeNode], q: Optional[TreeNode]
    ) -> bool:
        # STEP 1: Both nodes null → identical
        if not p and not q:
            return True
        # STEP 2: One null, other not → not identical
        if not p or not q:
            return False
        # STEP 3: Values differ → not identical
        if p.val != q.val:
            return False
        # STEP 4: Recurse on children
        return (self._is_same_tree(p.left, q.left) and
                self._is_same_tree(p.right, q.right))
# ----- INLINE TESTS -----
if __name__ == "__main__":
   sol = Solution()
    # Test 1: Normal case
    \# \text{ root} = [3,4,5,1,2], \text{ subRoot} = [4,1,2]
   root1 = TreeNode(3)
   root1.left = TreeNode(4)
   root1.right = TreeNode(5)
   root1.left.left = TreeNode(1)
   root1.left.right = TreeNode(2)
    sub1 = TreeNode(4)
    sub1.left = TreeNode(1)
    sub1.right = TreeNode(2)
    assert sol.isSubtree(root1, sub1) == True
   print(" Test 1 passed")
    # Test 2: Edge case - extra node breaks match
    \# \text{ root} = [3,4,5,1,2,\text{null},\text{null},\text{null},\text{null},0], \text{ subRoot} = [4,1,2]
   root2 = TreeNode(3)
   root2.left = TreeNode(4)
   root2.right = TreeNode(5)
   root2.left.left = TreeNode(1)
   root2.left.right = TreeNode(2)
   root2.left.right.left = TreeNode(0) # extra node
```

```
sub2 = TreeNode(4)
sub2.left = TreeNode(1)
sub2.right = TreeNode(2)

assert sol.isSubtree(root2, sub2) == False
print(" Test 2 passed")

# Test 3: Tricky/negative - single node match
# root = [1], subRoot = [1]
root3 = TreeNode(1)
sub3 = TreeNode(1)
assert sol.isSubtree(root3, sub3) == True
print(" Test 3 passed")
```

Example Walkthrough

We'll trace **Test 1** step by step:

- 1. Initial Call: isSubtree(root1, sub1)
 - root1.val = 3, sub1.val = $4 \rightarrow \text{not equal}$
 - So, skip _is_same_tree (returns False)
 - Recurse left: isSubtree(root1.left, sub1) → now root = node(4)
- 2. Second Call: isSubtree(node(4), sub1)
 - Now both roots have value $4 \rightarrow \text{call } \text{_is_same_tree(node(4), sub1)}$
- 3. Inside _is_same_tree:
 - Compare $4 == 4 \rightarrow OK$
 - Recurse left: _is_same_tree(node(1), node(1)) → both exist, values equal, children null → returns True

- Recurse right: $is_same_tree(node(2), node(2)) \rightarrow same_logic \rightarrow True$
- So _is_same_tree returns True
- 4. Back to isSubtree: returns True immediately → propagate up

Final Output: True

Match found at left child of root.

Complexity Analysis

• Time Complexity: O(m * n)

In worst case, we compare subRoot (size n) against every node in root (size m). Each comparison takes O(n), leading to O(m * n). Common when trees are skewed or many partial matches exist.

• Space Complexity: O(m + n)

Due to recursion stack depth. In worst case (skewed trees), depth is O(m) for outer recursion and O(n) for _is_same_tree, totaling O(m + n).

14. Balanced Binary Tree

Pattern: Tree DFS (Postorder Traversal + Early Termination)

Problem Statement

Given a binary tree, determine if it is height-balanced.

A height-balanced binary tree is defined as a binary tree in which the left and right subtrees of every node differ in height by no more than one.

Sample Input & Output

```
Input: root = [3,9,20,null,null,15,7]
Output: true
Explanation: Heights of left (1) and right (2) subtrees of root differ by 1.

Input: root = [1,2,2,3,3,null,null,4,4]
Output: false
Explanation: Left subtree of root has height 3, right has height 1 → diff = 2.

Input: root = []
Output: true
Explanation: Empty tree is trivially balanced.
```

```
from typing import Optional
# Definition for a binary tree node.
class TreeNode:
    def __init__(self, val=0, left=None, right=None):
        self.val = val
        self.left = left
        self.right = right
class Solution:
    def isBalanced(self, root: Optional[TreeNode]) -> bool:
        # STEP 1: Define helper that returns (is_balanced, height)
          - Returns (-1, _) if unbalanced to signal early exit
        def check_height(node):
            if not node:
                return 0 # Base case: height = 0
            # STEP 2: Recurse left and right (postorder)
            # - Process children before current node
            left_height = check_height(node.left)
            if left_height == -1:
                return -1 # Propagate imbalance upward
```

```
right_height = check_height(node.right)
           if right_height == -1:
               return -1 # Propagate imbalance upward
           # STEP 3: Check balance condition at current node
           # - If diff > 1, mark as unbalanced (-1)
           if abs(left_height - right_height) > 1:
               return -1
           # STEP 4: Return actual height if balanced
           # - Height = 1 + max(child heights)
           return 1 + max(left_height, right_height)
       # Final check: if helper returns -1 → unbalanced
       return check_height(root) != -1
# ----- INLINE TESTS -----
if __name__ == "__main__":
   sol = Solution()
   # Test 1: Normal case - balanced
       3
   # / \
   # 9 20
   # / \
      15
   root1 = TreeNode(3)
   root1.left = TreeNode(9)
   root1.right = TreeNode(20)
   root1.right.left = TreeNode(15)
   root1.right.right = TreeNode(7)
   print(sol.isBalanced(root1)) # Expected: True
   # Test 2: Edge case - empty tree
   print(sol.isBalanced(None)) # Expected: True
      Test 3: Tricky/negative - unbalanced deep left
           1
   #
   #
           / \
         2 2
   #
   #
   #
         3 3
```

```
# /\
# 4 4
root3 = TreeNode(1)
root3.left = TreeNode(2)
root3.right = TreeNode(2)
root3.left.left = TreeNode(3)
root3.left.right = TreeNode(3)
root3.left.left.left = TreeNode(4)
root3.left.left.right = TreeNode(4)
print(sol.isBalanced(root3)) # Expected: False
```

Example Walkthrough

We'll trace Test 1 (root = [3,9,20,null,null,15,7]):

- 1. Call isBalanced(root1)
 - → Enters helper check_height(root1) where root1.val = 3.
- Recurse left: check_height(node=9)
 - Node 9 has no children → calls check_height (None) twice → both return 0.
 - abs(0 0) = 0 1 \rightarrow returns 1 + max(0,0) = 1. \rightarrow left_height = 1
- 3. Recurse right: check_height(node=20)
 - Node 20 has left=15, right=7.
 - check_height(15) \rightarrow leaf \rightarrow returns 1.
 - check_height(7) \rightarrow leaf \rightarrow returns 1.
 - abs(1 1) = 0 1 \rightarrow returns 1 + 1 = 2. \rightarrow right_height = 2
- 4. At root (3):

- abs(1 2) = 1 $1 \rightarrow \text{balanced}!$
- Returns $1 + \max(1,2) = 3$ (but we only care it's -1).
- 5. Final return: 3 != $-1 \rightarrow \text{True}$.

State Summary:

- All subtrees checked bottom-up (postorder).
- No subtree violated balance \rightarrow result is True.

Complexity Analysis

• Time Complexity: O(n)

Each node is visited exactly once in postorder traversal. Early termination avoids unnecessary work but worst-case still visits all nodes.

• Space Complexity: O(h) where h = height of tree

Due to recursion stack depth. In worst case (skewed tree), h = n; in balanced tree, h = log n.

15. Lowest Common Ancestor of a Binary Tree

Pattern: Tree Traversal (Postorder DFS)

Problem Statement

Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.

According to the definition of LCA on Wikipedia: "The lowest common ancestor is defined between two nodes p and q as the lowest node in T that has both p and q as descendants (where we allow a node to be a descendant of itself)."

Sample Input & Output

```
Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
Output: 3
Explanation: Nodes 5 and 1 are in left and right subtrees of 3 → LCA is 3.

Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
Output: 5
Explanation: Node 4 is in subtree of 5 → LCA is 5
(a node is ancestor of itself).

Input: root = [1,2], p = 1, q = 2
Output: 1
Explanation: Edge case - one node is root, other is its child.
```

```
from typing import Optional
# Definition for a binary tree node.
class TreeNode:
    def __init__(self, x):
        self.val = x
        self.left = None
        self.right = None
class Solution:
    def lowestCommonAncestor(
        self,
        root: 'TreeNode',
        p: 'TreeNode',
        q: 'TreeNode'
    ) -> 'TreeNode':
        # STEP 1: Base case - if root is None or matches p/q,
                 we've found one of the targets or hit leaf.
        if not root or root == p or root == q:
            return root
```

```
# STEP 2: Recurse on left and right subtrees.
       # - Postorder: explore children before deciding at root.
       left = self.lowestCommonAncestor(root.left, p, q)
       right = self.lowestCommonAncestor(root.right, p, q)
       # STEP 3: Decide based on what left/right returned.
       # - If both non-null: current root is LCA.
       # - If only one side non-null: that side has both nodes.
       if left and right:
           return root
       return left or right # return whichever is not None
# ----- INLINE TESTS -----
if __name__ == "__main__":
   sol = Solution()
   # Build tree: [3,5,1,6,2,0,8,null,null,7,4]
   root = TreeNode(3)
   root.left = TreeNode(5)
   root.right = TreeNode(1)
   root.left.left = TreeNode(6)
   root.left.right = TreeNode(2)
   root.right.left = TreeNode(0)
   root.right.right = TreeNode(8)
   root.left.right.left = TreeNode(7)
   root.left.right.right = TreeNode(4)
   p = root.left
                     # node 5
   q = root.right
                     # node 1
   # Test 1: Normal case - LCA is root (3)
   result1 = sol.lowestCommonAncestor(root, p, q)
   assert result1.val == 3, f"Expected 3, got {result1.val}"
   # Test 2: Tricky case - q is descendant of p (LCA = p = 5)
   q2 = root.left.right.right # node 4
   result2 = sol.lowestCommonAncestor(root, p, q2)
   assert result2.val == 5, f"Expected 5, got {result2.val}"
   # Test 3: Edge case - one node is root
   p3 = root
               # node 3
   q3 = root.left # node 5
```

```
result3 = sol.lowestCommonAncestor(root, p3, q3)
assert result3.val == 3, f"Expected 3, got {result3.val}"
print(" All tests passed!")
```

Example Walkthrough

We'll trace **Test 2**: p = node 5, q = node 4 in the tree:

Goal: Find LCA of 5 and 4.

Step 1: Call lowestCommonAncestor(root=3, p=5, q=4)

- Root (3) p and $q \rightarrow$ recurse left and right.

Step 2: Left call \rightarrow lowestCommonAncestor(5, 5, 4)

- Root (5) equals $\mathbf{p} \to \mathbf{return} \ \mathbf{5} \ \mathbf{immediately}$ (base case).

Step 3: Right call \rightarrow lowestCommonAncestor(1, 5, 4)

- Root (1) $p/q \rightarrow \text{recurse its left (0)}$ and right (8).
- Both return None (no p/q in subtree).
- So this call returns None.

Step 4: Back at root=3:

- -left = node 5, right = None
- Since only one side non-null \rightarrow return left \rightarrow node 5

Final Output: 5 — correct! Because 4 is in subtree of 5, so 5 is LCA.

Key insight: The recursion "bubbles up" the first node that sees both targets in different subtrees — or the target itself if the other is below it.

Complexity Analysis

• Time Complexity: O(N)

In worst case, visit every node once (e.g., when p/q are leaves). DFS explores entire tree.

• Space Complexity: O(H)

Due to recursion stack depth, where $\mathtt{H} = \mathrm{height}$ of tree. Worst case: $\mathtt{O}(\mathtt{N})$ for skewed tree; best case: $\mathtt{O}(\log \mathtt{N})$ for balanced tree.

16. All Nodes Distance K in Binary Tree

Pattern: Tree Traversal + Graph Conversion (BFS/DFS)

Problem Statement

Given the root of a binary tree, a target node, and an integer k, return an array of the values of all nodes that have a distance k from the target node.

You can return the answer in any order.

The distance between two nodes is the number of edges on the path between them.

Sample Input & Output

```
Input: root = [3,5,1,6,2,0,8,null,null,7,4], target = 5, k = 2
Output: [7,4,1]
Explanation: Nodes at distance 2 from node 5 are 7, 4
(children of its child 2) and 1 (sibling via root).

Input: root = [1], target = 1, k = 3
Output: []
Explanation: Only one node exists; no node is 3 edges away.

Input: root = [0,1,null,3,2], target = 2, k = 1
Output: [1]
Explanation: Node 2's only neighbor at distance 1 is its parent, node 1.
```

```
from typing import List
from collections import defaultdict, deque
class Solution:
    def distanceK(
        self, root: 'TreeNode', target: 'TreeNode', k: int
    ) -> List[int]:
        # STEP 1: Build adjacency list (graph) via DFS
            - Treat tree as undirected graph so we can move
              upward (to parent) and downward (to children).
        graph = defaultdict(list)
        def build_graph(node, parent):
            if not node:
                return
            if parent:
                graph[node.val].append(parent.val)
                graph[parent.val].append(node.val)
            build_graph(node.left, node)
```

```
build_graph(node.right, node)
       build_graph(root, None)
       # STEP 2: BFS from target node up to distance k
       # - Maintain queue of (node_value, distance)
       # - Stop when distance exceeds k
       queue = deque([(target.val, 0)])
       visited = {target.val}
       result = []
       while queue:
           node_val, dist = queue.popleft()
           # STEP 3: Collect nodes exactly at distance k
           if dist == k:
               result.append(node_val)
               continue # No need to explore further
           # Explore neighbors (parent + children)
           for neighbor in graph[node_val]:
               if neighbor not in visited:
                   visited.add(neighbor)
                   queue.append((neighbor, dist + 1))
       # STEP 4: Return result (empty if k too large)
       return result
# ----- INLINE TESTS -----
if __name__ == "__main__":
   # Mock TreeNode for testing
   class TreeNode:
       def __init__(self, x, left=None, right=None):
           self.val = x
           self.left = left
           self.right = right
   sol = Solution()
   # Test 1: Normal case
   # Tree: [3,5,1,6,2,0,8,null,null,7,4], target=5, k=2
   node4 = TreeNode(4)
```

```
node7 = TreeNode(7)
node2 = TreeNode(2, node7, node4)
node6 = TreeNode(6)
node5 = TreeNode(5, node6, node2) # target
node0 = TreeNode(0)
node8 = TreeNode(8)
node1 = TreeNode(1, node0, node8)
root1 = TreeNode(3, node5, node1)
assert set(sol.distanceK(root1, node5, 2)) == {7, 4, 1}
# Test 2: Edge case - k too large
root2 = TreeNode(1)
assert sol.distanceK(root2, root2, 3) == []
# Test 3: Tricky - target is leaf, k=1
# Tree: [0,1,null,3,2], target=2, k=1
node2 = TreeNode(2) # target
node3 = TreeNode(3)
node1 = TreeNode(1, node3, node2)
root3 = TreeNode(0, node1)
assert sol.distanceK(root3, node2, 1) == [1]
print(" All tests passed!")
```

Example Walkthrough

We'll walk through **Test 1** step by step:

Tree structure:

```
3
/\
5 1
/\\
6 2 0 8
/\
7 4
```

Step 1: Build graph via build_graph (DFS)

- Start at root (3), parent = None \rightarrow no edge added yet.
- Recurse to 5 (parent=3): add edge 3 5.
- Recurse to 6 (parent=5): add 5 6.
- Recurse to 2 (parent=5): add 5 2.
- Recurse to 7 (parent=2): add 2 7.
- Recurse to 4 (parent=2): add 2 4.
- Back to root \rightarrow recurse to 1 (parent=3): add 3 1.
- Then 0 and 8: add 10, 18.

Resulting graph (adjacency list):

- 3: [5, 1]
- 5: [3, 6, 2]
- 1: [3, 0, 8]
- 6: [5]
- 2: [5, 7, 4]
- 0: [1]
- 8: [1]
- 7: [2]
- 4: [2]

Step 2: BFS from target (5)

- Queue: [(5, 0)], visited = $\{5\}$
- Pop (5,0): dist $2 \rightarrow$ enqueue neighbors 3,6,2 \rightarrow queue = [(3,1),(6,1),(2,1)], visited = {5,3,6,2}
 - Pop (3,1): dist $2 \rightarrow$ neighbors: 5 (visited), $1 \rightarrow$ enqueue (1,2)
 - Pop (6,1): neighbors: 5 (visited) \rightarrow nothing
 - Pop (2,1): neighbors: 5 (visited), 7, 4 \rightarrow enqueue (7,2), (4,2)

Now queue = [(1,2), (7,2), (4,2)]

- Pop (1,2): dist $== 2 \rightarrow \text{add 1}$ to result
- Pop (7,2): dist == 2 \rightarrow add 7

• Pop (4,2): dist == 2 \rightarrow add 4

Result = $[1,7,4] \rightarrow \text{order may vary, but set} = \{1,7,4\}$

Final output matches expected.

Complexity Analysis

• Time Complexity: O(N)

We visit each node **twice**: once during graph construction (DFS) and once during BFS. All operations per node are O(1). N = number of nodes.

• Space Complexity: O(N)

The adjacency list stores up to 2*(N-1) edges (tree has N-1 edges, undirected $\rightarrow 2\times$). BFS queue and visited set also store up to O(N) entries.

17. Maximum Width of Binary Tree

Pattern: BFS (Level-Order Traversal) + Indexing Trick

Problem Statement

Given the root of a binary tree, return the maximum width of the tree.

The width of one level is defined as the length between the leftmost and rightmost non-null nodes in that level (including any null nodes in between).

The maximum width is the maximum width among all levels.

The answer will be in the range of a **32-bit signed integer**.

Clarification: We assign an index to each node as if the tree were a complete binary tree:

- Root has index 1
- Left child of node with index i \rightarrow 2 * i
- Right child \rightarrow 2 * i + 1

Width of a level = last_index - first_index + 1

Sample Input & Output

```
Input: root = [1,3,2,5,3,null,9]
Output: 4
Explanation: Level 3 has nodes at indices 4,5,null,7 → width = 7 - 4 + 1 = 4

Input: root = [1,3,null,5,3]
Output: 2
Explanation: Level 2: [3, null] → indices 2 and (none for right),
but level 3: [5,3] at indices 4 and 5 → width = 5 - 4 + 1 = 2

Input: root = [1,3,2,5]
Output: 2
Explanation: Level 2: [3,2] → indices 2,3 → width = 2;
Level 3: [5] → only one node → width = 1 → max = 2
```

```
from collections import deque
from typing import Optional

class TreeNode:
    def __init__(self, val=0, left=None, right=None):
        self.val = val
        self.left = left
        self.right = right

class Solution:
    def widthOfBinaryTree(self, root: Optional[TreeNode]) -> int:
        if not root:
            return 0

# STEP 1: Initialize queue with (node, index)
# - Indexing mimics complete binary tree (root=1)
        queue = deque([(root, 1)])
        max_width = 0
```

```
# STEP 2: BFS level-by-level
       # - For each level, record first and last index
          - Width = last - first + 1
       while queue:
           level_size = len(queue)
           first_index = queue[0][1]
           last_index = first_index
           # Process all nodes at current level
           for _ in range(level_size):
               node, idx = queue.popleft()
               last_index = idx # update to current (rightmost so far)
               # STEP 3: Enqueue children with correct indices
               # - Prevents overflow by using relative indexing
               # - But we keep absolute for clarity (Python handles big int)
               if node.left:
                   queue.append((node.left, 2 * idx))
               if node.right:
                   queue.append((node.right, 2 * idx + 1))
           # STEP 4: Update max_width after processing level
           current_width = last_index - first_index + 1
           max_width = max(max_width, current_width)
       return max_width
# ----- INLINE TESTS -----
if __name__ == "__main__":
   sol = Solution()
   # Test 1: Normal case - [1,3,2,5,3,null,9]
   root1 = TreeNode(1)
   root1.left = TreeNode(3)
   root1.right = TreeNode(2)
   root1.left.left = TreeNode(5)
   root1.left.right = TreeNode(3)
   root1.right.right = TreeNode(9)
   assert sol.widthOfBinaryTree(root1) == 4, "Test 1 Failed"
   print(" Test 1 Passed")
   # Test 2: Edge case - skewed left [1,3,null,5,3]
```

```
root2 = TreeNode(1)
root2.left = TreeNode(3)
root2.left.left = TreeNode(5)
root2.left.right = TreeNode(3)
assert sol.widthOfBinaryTree(root2) == 2, "Test 2 Failed"
print(" Test 2 Passed")

# Test 3: Tricky - only root and left child [1,3,2,5]
root3 = TreeNode(1)
root3.left = TreeNode(3)
root3.right = TreeNode(2)
root3.left.left = TreeNode(5)
assert sol.widthOfBinaryTree(root3) == 2, "Test 3 Failed"
print(" Test 3 Passed")
```

Example Walkthrough

```
Let's trace Test 1: root = [1,3,2,5,3,null,9]
Initial state:
- Queue = [(node1, 1)]
- \max_{\text{width}} = 0
Level 0 (root):
-level_size = 1
-first_index = 1, last_index = 1
- Pop (1,1) \rightarrow enqueue left (3,2), right (2,3)
- Width = 1 - 1 + 1 = 1 \rightarrow max_width = 1
- Queue now: [(3,2), (2,3)]
Level 1:
-level size = 2
-first_index = 2
- Pop (3,2) \to \text{enqueue } (5,4), (3,5)
- Pop (2,3) \rightarrow enqueue nothing for left, (9,7) for right
-last_index = 7
- Width = 7 - 2 + 1 = 6? Wait—no!
 Mistake! Actually, we only process nodes in this level.
```

```
But note: the level has two nodes: indices 2 and 3 \rightarrow
- After popping both: last_index = 3
- Width = 3 - 2 + 1 = 2 \rightarrow max_width = max(1,2) = 2
- Queue now: [(5,4), (3,5), (9,7)]

Level 2:
- level_size = 3
- first_index = 4
- Pop (5,4) \rightarrow no children
- Pop (3,5) \rightarrow no children
- Pop (9,7) \rightarrow no children
- last_index = 7
- Width = 7 - 4 + 1 = 4 \rightarrow max_width = max(2,4) = 4
```

Final result: 4

Key insight: We only consider nodes actually present in the level, but their indices reflect their position in a complete tree, so gaps (nulls) are implicitly counted via index difference.

Complexity Analysis

• Time Complexity: O(N)

We visit each node exactly once in BFS. Each enqueue/dequeue is O(1). Total nodes = N.

• Space Complexity: O(W)

Where W is the maximum width of the tree (i.e., max number of nodes in a level).

In worst case (complete tree), W $N/2 \rightarrow O(N)$.

Queue stores at most one level's nodes.

18. Invert Binary Tree

Pattern: Tree Traversal (DFS / Recursion)

Problem Statement

Given the root of a binary tree, invert the tree, and return its root. Inverting a binary tree means swapping the left and right children of all nodes.

Sample Input & Output

```
Input: root = [4,2,7,1,3,6,9]
Output: [4,7,2,9,6,3,1]
Explanation: Every node's left and right subtrees are swapped.

Input: root = []
Output: []
Explanation: Empty tree remains empty.

Input: root = [1]
Output: [1]
Explanation: Single node - no children to swap.
```

```
from typing import Optional

# Definition for a binary tree node.
class TreeNode:
    def __init__(self, val=0, left=None, right=None):
        self.val = val
        self.left = left
        self.right = right

class Solution:
    def invertTree(self, root: Optional[TreeNode]) -> Optional[TreeNode]:
        # STEP 1: Base case - empty node
```

```
# - If node is None, nothing to invert; return None.
       if not root:
           return None
       # STEP 2: Swap left and right subtrees
       # - This is the core inversion step.
       root.left, root.right = root.right, root.left
       # STEP 3: Recursively invert the new left and right subtrees
           - After swap, left is original right, and vice versa.
           - Recursion ensures all descendants are inverted.
       self.invertTree(root.left)
       self.invertTree(root.right)
       # STEP 4: Return the root (now inverted)
       # - Root structure is modified in-place; return it.
       return root
# ----- INLINE TESTS -----
if __name__ == "__main__":
   sol = Solution()
   # Helper to build tree from list (level-order)
   def build_tree(vals):
       if not vals:
           return None
       nodes = [TreeNode(v) if v is not None else None for v in vals]
       kids = nodes[::-1]
       root = kids.pop()
       for node in nodes:
           if node:
               if kids:
                   node.left = kids.pop()
               if kids:
                   node.right = kids.pop()
       return root
   # Helper to serialize tree to list (level-order)
   from collections import deque
   def serialize(root):
       if not root:
           return []
```

```
result = []
    q = deque([root])
    while q:
        node = q.popleft()
        if node:
            result.append(node.val)
            q.append(node.left)
            q.append(node.right)
            result.append(None)
    # Trim trailing Nones
    while result and result[-1] is None:
        result.pop()
    return result
# Test 1: Normal case
t1 = build_tree([4,2,7,1,3,6,9])
inverted = sol.invertTree(t1)
assert serialize(inverted) == [4,7,2,9,6,3,1]
# Test 2: Edge case - empty tree
t2 = build_tree([])
inverted = sol.invertTree(t2)
assert serialize(inverted) == []
# Test 3: Tricky/negative - single node
t3 = build_tree([1])
inverted = sol.invertTree(t3)
assert serialize(inverted) == [1]
print(" All tests passed!")
```

Example Walkthrough

We'll trace invertTree on input [4,2,7,1,3,6,9].

1. Initial Call: invertTree(root=4)

- root exists \rightarrow proceed.
- Swap left=2 and right=7 \rightarrow now left=7, right=2.
- Recurse on new left (7) and new right (2).
- 2. Recurse Left: invertTree(root=7)
 - Swap left=6 and right=9 \rightarrow now left=9, right=6.
 - Recurse on 9 and 6.
 - Both are leaves \rightarrow swap (no effect), then return.
- 3. Recurse Right: invertTree(root=2)
 - Swap left=1 and right=3 \rightarrow now left=3, right=1.
 - Recurse on 3 and $1 \rightarrow$ both leaves, return.
- 4. Unwind: All recursive calls return. Original root (4) is returned.

Final Tree Structure:

Serialized as [4,7,2,9,6,3,1].

Complexity Analysis

• Time Complexity: O(n)

We visit every node exactly once. Each swap is O(1). Total = O(n).

• Space Complexity: O(h)

Recursion stack depth = height of tree (h).

Worst case (skewed tree): O(n).

Best case (balanced): O(log n).