CH402 Chemical Engineering Process Design

Class Notes L9

Heat Exchanger Design – You are expected to know this!

Problem 14-15 using CHEMCAD

"3-Step" Heat Exchanger Design Method

(use desktop computer unless to have v8.1 on laptop)

Problem Statement 14-15

The overhead vapor from the C2 splitter in Figure 3-13 is partially condensed in E-601. The process conditions for the vapor entering the condenser are

Temperature, °C -30.1 Pressure, kPa 1945*

Species Flow rates, kg/s

 CH_4 0.003 C_2H_6 0.0626 C_2H_4 64.53 * Value has been changed from the book value. The authors report 2944 kPa.

A shell-and-tube heat exchanger is to be used to condense 73.5 % of the overhead vapor. Use an appropriate software package (based on TEMA guidelines) to obtain the overall heat transfer coefficient and the area required for the condensation if the tubes have an outside diameter of 0.0127 m and an inside diameter of 0.0094 m. Assuming that the maximum length of the tubes is 3.05 m long, how many tubes will be required and what shell diameter is recommended? Propylene at -46 °C and 125 kPa serves as the coolant for the condensation process.

Additional Questions: (1) Identify the largest resistance to heat transfer in the exchanger and, (2) determine the total purchase cost of the exchanger in Feb. 2024.

Process Background - Conventional Ethylene Process - Fig. 3-7.

Figure 3-13. Product Separation Section

Figure 3-13. Product separation section.

On my computer, I have Common SI set as the default.

[&]quot;Thermodynamic Suggestions" window launches automatically when you click OK.

Thermodynamic Suggestions

Thermodynamic suggestions: Check defaults in both tabs and click OK.

Set Feed Stream 1: Propylene

(Propylene at -46 °C and 125 kPa is available as a coolant.)

Place propylene coolant tubeside (Stream 1)

Tube-side coolant in a condenser is a good idea.

tream No.	1	3
tream Name		
Temp C	-46	-30.1
Pres kPa	125	1945.806
Vapor Fraction	0	1
Enthalpy J/sec	-77463.29	1.114613e+08
Total flow	1	64.5956
Total flow unit	kg/sec	kg/sec
Comp unit	kg/sec	kg/sec
Methane	0	0.003
Ethane	0	0.0626
Ethylene	0	64.53
Propylene	1	0

Two specs needed: Set temperature and vapor fraction.

We don't know the propylene flow rate. Set it to 1 kg/s.

CHEMCAD will solve for the actual flow rate later.

Complete Specs on Heat Exchanger and Coolant Flow Rate

Note 1: The largest "thermal reservoir" in the coolant is the latent heat of the phase transition. Any further warming of the coolant will involve relatively small enthalpy changes.

Click OK, then Run

Run the Simulation and Confirm Results (1/3)

Confirm Results (2/3)

Confirm Results (3/3)

Numbers in gray fields were calculated by CHEMCAD

STOP HERE

Confirm results in slides 12 to 14 before proceeding

Step 1 (L8 Slide 5) is complete:

Determined the flow rates and heat transfer rates necessary to meet the given conditions.

TEMA Type AEL Exchanger. Take all defaults.

Heating-cooling curve can be seen by clicking "Heat Curve Specification."

Design Results

TABULATED ANALYSIS						
Overall Data:						
Area Total	m2	2758.72	% Excess		8.57	
Area Required	m2		U Calc. W/m2		492.75	
Area Effective			U Service W/m2		453.85	
Area Per Shell			Heat Duty J/se			
Weight LMTD C	12.80	LMTD CORR Fac	ctor 1.0000 C	ORR LMTD C	12.80	
Shell:						
Shell O.D.	m	3.99	Orientation		H	
Shell I.D.	m	3.96	Shell in Seri	es	1	
Bonnet I.D.	m	3.96	Shell in Para	llel	1	
Type		AEL	Max. Heat Flux	Btu/ft2-hr	0.00	
Imping. Plate	Impin	Impingement Plate Sealing Strip		5		
Tubes:						
Number		22685	Tube Type		Bare	
Length	m	3.05	Free Int. Fl	Area m2	0.00	
Tube O.D.	m	0.013	Fin Efficienc	У	0.000	
Tube I.D.	m	0.009	Tube Pattern		TRI60	
Tube Wall Thk.	m	0.002	Tube Pitch	m	0.024	
No. Tube Pass		1				
Inner Roughness	m	0.0000016				
Number of tubesheets 2		Tubesheet thi	ckness, m	0.019		
Resistances:						
Shell-side Film			m2-K/W	0.0009	1	
Shell-side Foul:	ing		m2-K/W	0.0001	8	
Tube Wall			m2-K/W	0.0000	4	
Tube-side Foulin	ng		m2-K/W	0.0001	8	

Answers to first three questions are found here.

STOP HERE

Confirm results in slide 12 before proceeding

Steps 2-5 of L8 Slide 5 are complete:

Type of exchanger, geometric details, overall U, thermal driving force, area, and P-drops.

Exchanger Simulation

Copying and pasting is an important step.

It preserves the design work down in exchanger 2 as a backup.

Heat Exchanger Before Running

Heat Exchanger After Running

Click OK then run the simulation.

Cost Results

Answer to last question is found here.

STOP HERE

Finished.

Submit CHEMCAD file, tabulated results report, and answers to the four (4) questions