Assume that your company owns trucks with a cargo space of 16.5m long, 2.5m wide and 4m high. Assume that your company transports parcels of different sizes A, B and C.

- e A: 1m x 1m x 2m
- B: 1m x 1.5m x 2m
- e C: 1.5m x 1.5m x 1.5m

Is it possible to fill the complete cargo space with A, B and C parcels, without any gaps? If yes, show how. If no, give a proof why not.

(The first to send in a correct solution by email receives chocolate)

Revision

- · Truth tables
- · Proofs
 - * proof by contradiction. (know the principle.)
- . . * contrapositive.
 - + biconditional (= 2 implications;
 - + induction ... (learn how to set up.)
 - * QUANTIFIERS: study how to nead quantifier statements

 Venn diagrams 160 verify 1. understand statements with sets). Proofs with sets → to prove that A ⊆ B, you take x ∈ A, and show x ∈ B. → to prove that A = B, you prove A⊆B and B⊆A. → typically, the proof consists of translating sets to logic. trucks Ex. x ∈ AUB, so x ∈ A ∨ x ∈ B. → proofs by contradiction of ten work well with empty sets. I contra positive. remember: A⊆B: (∀x) (x ∈ A → x ∈ B). subset. 		complement, power set, product set, partition.	
Proofs with sets → to prove that A ⊆ B, you take x ∈ A, and show x ∈ B → to prove that A = B, you prove A⊆B and B⊆A → typically, the proof consists of translating sets to logic tricks ex. x ∈ AUB, so x ∈ A ∨ x ∈ B → proofs by contradiction of ten work well with empty acts contra positive	Ö	Venn diagrams 160 verify lunderstand statements with sets)	
The prove that $A \subseteq B$, you take $x \in A$, and show $x \in B$. I to prove that $A = B$, you prove $A \subseteq B$ and $B \subseteq A$. I typically, the proof consists of translating sets to logic tricks. Ex. $x \in A \cup B$, so $x \in A \cup X \in B$. I contradiction of ten work well with empty acts contradiction of ten work well with empty acts. I contra positive.		30	
tricks ex. $x \in AUB$, so $x \in A \lor x \in B$ proofs by contradiction often work with empty nets contra positive remember: $A \in B$: $(\forall x) \notin x \in A \to x \in B$) subset			
tricks ex. $x \in AUB$, so $x \in A \lor x \in B$ Tricks ex. $x \in AUB$, so $x \in A \lor x \in B$ The proofs by contradiction often work well with empty nets contra positive The contradiction of the work well with empty nets The contradiction of the work well with empty nets The contradiction of the work well with empty nets The contradiction of the work well with empty nets The contradiction of the work well with empty nets The contradiction of the work well with empty nets The contradiction of the work well with empty nets		-> to prove that A=B, you prove A CB and B CA	
tricks ex. $x \in AUB$, so $x \in A \lor x \in B$ $\Rightarrow proofs by contradiction often work with empty nets$ $\Rightarrow contra positive$			
-> proofs by contradiction often work with empty nets contrapositive remember: $A \in B$: $(\forall x) \notin x \in A \longrightarrow x \in B$) subset	tricks		
remember: A & B: (\forall x) (
$A \not\equiv B : (\exists x) (x \in A \land x \not\equiv B)$ not a subject	reme		
		$A \notin B$: $(\exists x)(x \in A \land x \notin B)$ not a subset	

Relations on a set A
Relation diagrams
Reflexive VXEA: XRX [every element has a loop).
not reflexive. $\exists x \in A : \times A \times -> find a counterexample. \times that is not related to itself$
Symmetric Ux, y EA: xRy -s. yRx. I every arrow goes in two directions).
not symmetric . Jx, y &A: xRy n y Rx.
Transitive Vx, y, 2 EA: (xRy n y R2) -> xR2
not transitive $\exists x,y,z$ $\times Ry \land yRz \land \times Rz$
• Anti-symmetric $\forall x,y \in A : (xRy \land x \neq y) \rightarrow y \not \in X$ $(xRy \land yRx) \rightarrow x = y$
not onti-syn: 3 xy EA x xxy n yxx n x +y.

Functions

· Definition, domain, co-domain

g: A-> B , g(x) & B exists and is unique for all x & A.

- Composition for f: A→B and g: C→D, fog: C→B is well.

 defined if range (g) ⊆ domain (f)
- Injective functions

J. A.>B. is injective if $\forall x, y \in A: x \neq y \rightarrow f(x) \neq f(y)$

NOT igetive $\exists x, y \in A : x \neq y \land f(x) = f(y)$

• Surjective functions

f: A > B is ougestive if Yy & B = 3 x & A : f(x) = y

Not sugestive if. I.y. EB, $\forall x \in A$. $f(x) \neq y$.

- Injective + surjective = bijective. Bijective = invertible.
- Inverse functions

of A>B and GB>A are involve if

 $\forall x \in A \quad g(f(x)) = x$ $\forall y \in B \quad f(g(y)) = y$

Combinatorics · Selecting with/without repetition/order • Inclusion-exclusion · Practice a lot!

Good luck with your exams!!!