ABBREVIATION USED IN DEDUCTIVE GEOMETRY A. Properties of Plane Geometry

No.	Diagram	Given Condition	Conclusion	Abbreviation
1	_a /	a and b are adjacent angles on a straight line	$a + b = 180^{\circ}$	adj. ∠s on st. line
2	c b	a, b and c are angles at a point	$a+b+c=360^{\circ}$	∠s at a pt.
3	A a b D C C B	Two straight lines AB and CD interest at point O	a = b and $c = d$	vert. opp. ∠s
4(i)	A B	AB // CD	a = b	corr. ∠s, AB // CD
4(ii)	A B	a = b	AB // CD	corr. ∠s equal
5(i)	A c B	AB // CD	c = d	alt. ∠s, AB // CD
5(ii)	A c B	c = d	AB // CD	alt. ∠s equal
6(i)	A B C D	AB // CD	e+f=180°	int. ∠s, AB // CD
6(ii)	A B	e+f=180°	AB // CD	int. ∠s supp. 高岩內母互情
7	B C	ABC is a Δ	$a + b = c = 180^{\circ}$	∠ sum of Δ
8	A a C C	ABC is a Δ	$c_1 = a + b$	ext. ∠ of Δ

No.	Diagram	Given Condition	Conclusion	Abbreviation
9	BA C	AB = AC	$\angle B = \angle C$	base ∠s, isos. △ 完全
10a	B H D H C	AB = AC and $BD = DC$	$\angle BAD = \angle CAD$ and $AD \perp BC$	prop. of isos. Δ 等混△任复
10b	B C	$AB = AC$ and $AD \perp BC$	$BD = CD$ and $\angle BAD = \angle CAD$	prop. of isos. Δ 等應 Δ-性質
10c	B C	$AB = AC \text{ and}$ $\angle BAD = \angle CAD$	$AD \perp BC$ and $BD = CD$	prop. of isos. Δ
11	B C	$\angle B = \angle C$	AB = AC	sides opp. equal ∠s 門對是相等.
12	B C	AB = BC = AC	$\angle A = \angle B = \angle C = 60^{\circ}$	prop. of equil. △
13	B	$\angle A = \angle B = \angle C$	BC = AC = AB	prop. of equil. △ 達邊△上雙
14	a ₂ a ₃	$a_1, a_2, a_3, \dots a_n$ are the interior angles of a <i>n</i> -sided convex polygon	$a_1 + a_2 + a_3 + \dots + a_n$ = $(n-2) \times 180^\circ$	∠ sum of polygon 多是的为内含如。
15	x ₁	The sides of an <i>n</i> -sided convex polygon are produced in order.	$x_1 + x_2 + x_3 + \dots + x_n = 360^{\circ}$	sum of ext. ∠s of polygon 多妻 わりみずな。

No.	Diagram	Given Condition	Conclusion	Abbreviation
16	c X Z	AB = XY and $AC = XZ$ and $BC = YZ$	$\Delta ABC \cong \Delta XYZ$	SSS
17	B X Z	$AB = XY$ and $AC = XZ$ and $\angle A = \angle X$	$\Delta ABC \cong \Delta XYZ$	SAS
18	$AB = XY \text{ and}$ $\angle A = \angle X \text{ and}$ $\angle B = \angle Y$		$\Delta ABC \cong \Delta XYZ$	ASA
19	B Z Z	$AB = XY$ and $\angle A = \angle X$ and $\angle C = \angle Z$	$\triangle ABC \cong \triangle XYZ$	AAS
20	B C X	$AB = XY$ and $AC = XZ$ and $\angle C = \angle Z = 90^{\circ}$	$\Delta ABC \cong \Delta XYZ$	RHS
21	B X C	$\Delta ABC \cong \Delta XYZ$	AB = XY and $AC = XZ$ and $BC = YZ$	corr. sides, ≅ Δs 全對人對應是
22	B X C	$\Delta ABC \cong \Delta XYZ$	$\angle A = \angle X$ and $\angle B = \angle Y$ and $\angle C = \angle Z$	corr. ∠s,≅ Δs 全對 总局。

No.	Diagram	Given Condition	Conclusion	Abbreviation
23	A C X X Z	$\angle A = \angle X$ and $\angle B = \angle Y$ and $\angle C = \angle Z$	$\Delta ABC \sim \Delta XYZ$	AAA
24	B X Z	$\frac{AB}{XY} = \frac{BC}{YZ} = \frac{CA}{ZX}$	$\Delta ABC \sim \Delta XYZ$	3 sides prop. 二島 太 叶 ろ 」
25	c x z	$\frac{AB}{XY} = \frac{AC}{XZ} \text{ and }$ $\angle A = \angle X$	$\Delta ABC \sim \Delta XYZ$	ratio of 2 sides, inc. ∠ あえばけの見な
26	$ \begin{array}{c} A \\ C \\ X \\ Z \end{array} $	$\Delta ABC \sim \Delta XYZ$	$\frac{AB}{XY} = \frac{BC}{YZ} = \frac{CA}{ZX}$	corr. sides, ~∆s 相似,△骂您,壹
27	C X Z	$\Delta ABC \sim \Delta XYZ$	$\angle A = \angle X$ and $\angle B = \angle Y$ and $\angle C = \angle Z$	corr.∠s,~∆s 胡似△對應資。
28	B C	ABC is a Δ	AB + BC > AC BC + AC > AB AB + AC > BC	
29	B X C	I is the incentre of $\triangle ABC$	I is the intersection of the angle bisectors, i.e. $\angle BAX = \angle BAX$ $\angle ABY = \angle CBY$ $\angle BCZ = \angle ACZ$	incentre of Δ 三句形がん。
30	B X C	I is the centroid of ΔABC	I is the intersection of the medians, i.e. $AZ = ZB$ $BX = XC$ $AY = YC$ $\frac{AI}{IX} = \frac{BI}{IY} = \frac{CI}{IZ} = \frac{2}{1}$	centroid of Δ 三角 引き 引える。
31	Z A C	I is the orthcentre of $\triangle ABC$	I is the intersection of the altitudes, i.e. $AX \perp BC$ $BY \perp AC$ $CZ \perp AB$	orthocentre of Δ シ合わう 重ル、

No.	Diagram	Given Condition	Conclusion	Abbreviation
32	Z X C	I is the circumcentre of $\triangle ABC$	I is the intersection of the perpendicular bisectors, i.e. $IX \perp BC$ and $BX = XC$ $IY \perp AC$ and $AY = YC$ $IZ \perp AB$ and $AZ = ZB$	circumcentre of A 三年沙升超到
33	B	ABCD is a //gram	AB = DC and $AD = BC$	opp. sides of //gram 平台四景的對意
34	B	ABCD is a //gram	$\angle A = \angle C$ and $\angle B = \angle D$	opp. ∠s of //gram 平行可急生齿.
35	B	ABCD is a //gram and O is the intersection of diagonals	AO = OC and $BO = OD$	diags. of //gram 平行四邊形對向採
36	B	AB = DC and $AD = BC$	ABCD is a //gram	opp. sides equal
37	B	$\angle A = \angle C$ and $\angle B = \angle D$	ABCD is a //gram	opp. ∠s equal 불리 원봉 _
38	B	AO = OC and $BO = OD$	ABCD is a //gram	diags. bisect each other
39	$\begin{array}{c} A \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	AD = BC and $AD // BC$	ABCD is a //gram	opp. sides equal and //
40	A D C	ABCD is a rectangle	All properties of a //gram	
41	B C	ABCD is a rectangle	All the interior angles are right angles	prop. of rectangle 表方改建 建
42	A D C	ABCD is a rectangle	Diagonals are equal $(AC = BD)$	

No.	Diagram	Given Condition	Conclusion	Abbreviation	
43	B C	ABCD is a rectangle	Diagonals bisect each other into four equal parts $(AE = EC = BE = DE)$	prop. of rectangle 表析形 比質	
44	A D C	ABCD is a square	All properties of a rectangle		
45	A D C	ABCD is a square	All sides are equal	prop. of square	
46	A C	ABCD is a square	Diagonals are perpendicular to each other $(AC \perp BD)$	正有砂山質	
47	A C	ABCD is a square	Angles between each diagonal and a side is 45°		
48	$A \longrightarrow C$	ABCD is a rhombus	All properties of a //gram		
49	$A \longrightarrow C$	ABCD is a rhombus	All sides are equal		
50	$A \longrightarrow D$	ABCD is a rhombus	Diagonals are perpendicular to each other $(AC \perp BD)$	prop. of rhombus 養 根 生	
51	A C d h C	ABCD is a rhombus	Interior angles are bisected by the diagonals (a = b = c = d and $e = f = g = h)$		
52	$AM = MB \text{ and}$ $AN = NC$ $MN // BC \text{ and}$ $MN = \frac{1}{2}BC$		mid-pt. thm.		

No.	Diagram	Given Condition	Conclusion	Abbreviation
53	$ \begin{array}{c c} A & D \\ \hline B & E \\ C & F \\ L_3 \end{array} $	$L_1/\!/ L_2/\!/ L_3$ and $AB = BC$	DE = EF	intercept thm.
54	B C	AM = MB and $MN // BC$	AN = NC	intercept thm. 武銀定選
55	A B C	In $\triangle ABC$, $\angle ABC = 90^{\circ}$	$AB^2 + BC^2 = AC^2$	Pyth. thm. 军任之理。
56	A B	In $\triangle ABC$, $AB^2 + BC^2 = AC^2$	∠ <i>ABC</i> = 90°	converse of Pyth. thm.
57	B E F C	ABCD is an isos. trapezium	AD // BC, AB = DC, AE = DF, AC = DB, BE = FC, AD = EF, $\angle ABC = \angle DCB,$ $\angle BAD = \angle CDA.$	Nil / prop. of isos. trapezium
58	$B \xrightarrow{b_1} b_2 \xrightarrow{d_1} D$ C	ABCD is a kite	AB = AD, BC = DC, $\angle ABC = \angle ADC,$ $a_1 = a_2, c_1 = c_2,$ $b_1 = d_1, b_2 = d_2,$ $AC \perp BD, BO = DO.$	Nil / prop. of a kite