

Introduction to biostatistics and FSharp.Stats

Benedikt Venn
Computational Systems Biology
Kaiserslautern University of Technology

General goal in statistics

Drawing conclusions from sample to population

Central tendency

• Finding the expected value by measures of the central tendency using (type L) point estimators

Measures of central tendency: mode

The mode is the most frequently occurring category

Measures of central tendency: mean

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{n} x_i$$

• The mean is not robust against outliers (equally influenced by all values)


```
open FSharp.Stats
```

let
$$x = [|11.0; 13.0; 14.5; 18.0; 10.0|]$$

let meanOfX = x > Seq.mean

FSharp Interactive

val meanOfX : float = 13.3

Measures of central tendency: median

$$P(X \le m) = P(X \ge m) = \int_{-\infty}^{m} f(x) dx = \frac{1}{2}.$$

- The median is that value such that half of data points fall above it an half below it
 - => more robust against outliers

open FSharp.Stats

let x = [|11.0; 13.0; 14.5; 18.0; 10.0|]

let medianOfX = x > Seq.median

FSharp Interactive

val medianOfX : float = 13.0

Trimmed mean

- A trimmed mean involves the calculation of the mean after discarding given parts of a sample at the high and low end
- Typically 5% to 25% of the values are discarded at both ends

Describing distributions

- Central tendency
 - mode
 - mean
 - median
 - trimmed mean

Dispersion

- range
- mean (absolute) deviation
- variance & standard deviation
- coefficient of variation

Estimating dispersion

• Estimating the spread/dispersion of the data distribution

The range

The range is the difference between the highest and lowest value
 => not robust against extrema

Mean deviation of a sample

$$MD = \frac{1}{N} \sum_{i=1}^{N} |x_i - \bar{x}|$$

 The sum of the absolute amount of deviations from the mean divided by their number

Variance and Standard Deviation of a sample

Variance: Sum of all squared distances divided by their number

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2$$

• Standard Deviation is the square root of the variance to get back to the original units

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2}$$

The Variance and Standard Deviation of a population

• Variance: Sum of all distance quadrates divided by the degrees of freedom (N-1)

Computational

Systems Biology

The Variance and Standard Deviation of a population - Bessel's correction -

sample variance

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2$$

population variance

$$\sigma^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$

3 independent observations from population ($\mu = 3$)

i	x_i	$x_i - \mu$
1	5	5 - 3 = 2
2	0	0 - 3 = -3
3	?	?

3 independent observations from population ($\bar{x} = 5$)

i	x_i	$x_i - \overline{x}$
1	7	7 - 5 = 2
2	6	6 - 5 = 1
3		


```
open FSharp.Stats
let x = [|11.0; 13.0; 14.5; 18.0; 10.0|]
```

let stDevPop = x |> Seq.stDevPopulation
let stDevSample = x |> Seq.stDev

FSharp Interactive

val stDevPop : float = 2.821347196

val stDevSample : float = 3.154362059

Coefficient of variation

$$c_{v}=rac{\sigma}{\mu}$$
 σ = standard deviation μ = mean

 The coefficient of variation represents the ratio of the standard deviation to the mean.
 It is a useful statistic for comparing the degree of variation from one data series to another, even if the means are drastically different from each other


```
open FSharp.Stats
```

let
$$x = [|11.0; 13.0; 14.5; 18.0; 10.0|]$$

FSharp Interactive

val cvOfX : float = 0.2371700796

Describing distributions

- Central tendency
 - mode
 - mean
 - median
 - trimmed mean

- Dispersion
 - range
 - mean (absolute) deviation
 - variance & standard deviation
 - coefficient of variation

Hypothesis testing: A framework for finding the differences

Sampling | sample | population distribution

Computational

Systems Biology

 The sampling distribution is the distribution of the estimated parameter values (here: expected value) of the population taken from the sample distribution

Central limit theorem

No matter how the population is distributed: the population of sample means will approximate a Gaussian distribution if the sample size is large enough

Central limit theorem ("simulation")

$$s_2 = [1; 5; 8; 10]$$
 $\bar{x}_2 = 6.0$

$$\bar{x}_3$$
= 5.0

 $\bar{x}_1 = 5.5$

•••

$$s_n = [\dots]$$

Central limit theorem ("simulation")

• Sample size ---> ∞

Computational

Systems Biology

Sampling distribution ---> normal distribution

Standard error of the mean

aka: the standard deviation of the sampling distribution of the sample means

Remark: Standard error of the mean

 It defines the standard deviation of different samples means taken from the same population

Computational

Systems Biology

Hypothesis testing

Question: Is the effect I observe true/real or occurred by chance?

Proof by contradiction:

To prove A, you temporarily assume that A is false. If the assumption leads to a contradiction, you conclude that A must actually be true.

Establish two hypothesis

Null hypothesis (H₀)

Alternative hypothesis (H₁)

Is the effect I observe true?

• Alternative hypothesis states that the populations are different

Is the effect I observe true?

Null hypothesis states that the populations are equal

Computational

Systems Biology

Is the effect I observe true?

What is the probability of obtaining a value at least as extreme as the one that was observed?

• The difference between $\mu 1$ and $\mu 2$ was most probably by chance: We take H₀ as true -> no effect

Systems Biology

What is the probability of obtaining a value at least as extreme as the one that was observed?

Proof by contradiction:
 If we can reject H₀ than we assume H₁ to be true

Computational

Systems Biology

P-Value

Computational

Systems Biology

• A p-value is the probability of obtaining a value at least as extreme as the one that was observed

Power of a Test

Increase sample size

Significance criterion (when to reject H₀)

• The most common approach to hypothesis testing is to choose a threshold α for the p-value and to accept as significant any effect with a p-value $\leq \alpha$

P-value	Interpretation
P < 0.01	very strong evidence against H ₀
$0.01 \leq P < 0.05$	moderate evidence against H ₀
$0.05 \leq P < 0.10$	suggestive evidence against H ₀
$0.10 \leq P$	little or no real evidences against H ₀

Multiple testing remarks

- The hypothesis test framework was built to perform one test only.
- What about testing multiple times?
- What does that mean for the p-value?

Estimating the proportion of truly Null Tests

Under the alternative hypothesis p-values are skewed towards 0

Estimating the proportion of truly Null Tests

 Under the null hypothesis p-values are expected to be uniformly distributed between 0 and 1

Adaptation to multiple testing

• Family wise error rates:

$$P(\#false\ positives\ \geq 1)$$

False discovery rate:

$$E\left[\frac{\#false\ positives}{\#\ total\ discoveries}\right]$$

Example:

Given: 550 out of 10 000 genes are significant at 0.05 level

P-value < 0.05
 Expect 0.05 * 10 000 = 500 false positives

False discovery rate < 0.05
 Expect 0.05 * 550 = 27.5 false positives

• Family wise error rate < 0.05 The probability of at least 1 false positive ≤ 0.05

Be aware...

• Statistical significance can mean totally different thing depending on

how it is used!

ratio

$$x_1 = 5.0$$
 $\delta x_1 = 2.0$

$$x_2 = 2.5$$
 $\delta x_2 = 1.0$

$$f_{(x1,x2)} = \frac{x_1}{x_2} = 2.0$$

$$\frac{\partial f}{\partial x_1} = \frac{1}{x_2}$$

$$\frac{\partial f}{\partial x_2} = \frac{x_1}{{x_2}^2}$$

error propagation

$$\sigma = \sqrt{\sum_{j=1}^{m} \left(\frac{\partial f}{\partial x_j}\right)^2} \cdot \sigma_{x_j}^2$$

$$\sigma = \sqrt{\left(\frac{\partial f}{\partial x_1}\right)^2 \cdot \sigma_{x_1}^2 + \left(\frac{\partial f}{\partial x_2}\right)^2 \cdot \sigma_{x_2}^2}$$

$$\sigma = \sqrt{\left(\frac{1}{x_2}\right)^2 \cdot \delta x_1^2 + \left(\frac{x_1}{x_2^2}\right)^2 \cdot \delta x_2^2}$$

$$\sigma = \sqrt{\left(\frac{1}{2.5}\right)^2 \cdot 2^2 + \left(\frac{5}{6.25}\right)^2 \cdot 1^2}$$

$$\sigma = \sqrt{1.28} = 1.1314 = 1.2$$

$$\frac{\partial f}{\partial x_1} = \frac{1}{x_2}$$

$$\frac{\partial f}{\partial x_2} = \frac{x_1}{{x_2}^2}$$

error propagation

addition or subtraction

$$Q=x_1+x_2+\cdots$$

$$\delta Q = \sqrt{(\delta x_1)^2 + (\delta x_2)^2 + \cdots}$$

multiplication or division

$$Q = \frac{x_1 \cdot x_3 \dots}{x_2 \cdot x_4 \dots}$$

$$\frac{\delta Q}{|Q|} = \sqrt{\left(\frac{\delta x_1}{x_1}\right)^2 + \left(\frac{\delta x_2}{x_2}\right)^2 + \cdots}$$

$$\frac{\delta Q}{2} = \sqrt{\left(\frac{2}{5}\right)^2 + \left(\frac{1}{2.5}\right)^2}$$

$$\frac{\delta Q}{2} = 0.56569$$

$$\delta Q = 1.1318 = 1.2$$

Coding 1: sampling

```
open FSharp.Stats
                                                                                                     include FSharp.Stats
let gauss1 = Distributions.Continuous.normal 3. 2.0
let gauss2 = Distributions.Continuous.normal 3. 0.5
                                                                                             instantiation of normal distributions
let gauss3 = Distributions.Continuous.normal 6. 1.5
                                                                                                 get a sample of gauss1 (n=1)
gauss1.Sample()
let sampleFrom (distribution:Distributions.Distribution<float,float>) sampleSize =
                                                                                                function to generate samples
    Vector.init sampleSize (fun x -> distribution.Sample())
sampleFrom gauss1 50
let meanOfSample distribution sampleSize =
                                                                                             function to calculate mean of sample
    sampleFrom distribution sampleSize
     > Seq.mean
```

- 1. write a function that takes a distribution and a sample size and gives the standard deviation
- 2. calculate means of gauss1 and gaus2-samples of different sample sizes and compare them

Normal distribution with different o

n vs. σ (sample size vs. stDev)

Coding 2: testing

Testing.TTest.twoSample

```
val twoSample : assumeEqualVariances:bool -> sample1:Vector<float> -> sample2:Vector<float> -> Testing.TestStatistics.TTestStatistics
Computes a t-test or a Welch test
Full name: FSharp.Stats.Testing.TTest.twoSample
```

testing function

testing result

1. test samples of different distributions (regarding to p value) and mediate the sample size

Pitfall: Small sample sizes

• Small sample sizes (n < 10) can have a strong effect on the estimation of the central tendency and data dispersion of a population

Central limit theorem

No matter how the population is distributed: the population of sample means will approximate a Gaussian distribution if the sample size is large enough

- "Large" depends on the real population distribution
 - Less normal population distribution => more sample (N >= 100)
 - More normal population distribution => N >= 10)

The Gaussian "Normal Distribution"

Temporal classification using constrained splines

Motivation

How to choose a model?

Modelling time courses:

- model has to be tailored to the process being investigated
 - teach the computer to interpret the data
 - measurement variance has to be considered
 - → transfer of information
 - dynamics of proteins are known
 - → shape assumptions

Partition based clustering – kMeans

Time series processing – Clustering:

- kMeans clustering
 - set number of clusters beforehand (k)
 - similarity measurement based on object distances

Basic distance measurements are not suited for clustering time series data

Time series analysis - extrema

#Class	Shape
1	
2	
3	
4	
5	
6	

The most interesting features of time series are their extrema

Curve fitting possibilities

Smoothing splines

Smoothing splines:

- function formed by connecting polynomial segments of degree d
- function is continuous
- incorporates surrounding information

$$\min \sum_{i=1}^{n} [y_i - f(x_i)]^2 + \lambda \int_{0}^{\infty} [f''(x)]^2 dx$$

Constrained smoothing splines

Constraints and weighting matrix:

- correct for noise derived extrema
- limit the degrees of freedom according to the system level looked at (mRNA, Proteins, ...)
- choose the best fit for temporal classification

Experiment

- Chlamydomonas reinhardtii
- Heat shock experiment
 24 h heat shock + 8 h recovery
- Temporal classification method yields
 45 shape classes

Clusters consist of several shapes

- kMeans clustering exclusively relies on distance measurements
- with temporal classification several subclasses are found within a kMeans cluster

Determination of cluster 'pureness'

Assumptions:

- co-regulation encoded in clusters
- functional similarity based on gene ontology terms

Shannon entropy:

the probability of term i appearing in the stream of terms in a cluster
 → entropy decreases with cluster pureness

$$H = -\sum_{i} p_{i} \cdot log_{b}(p_{i}) \qquad p_{i} = \frac{Count(Terms in cluster)}{Count(Terms in experiment)}$$

Entropy distribution of clusters/classes

- entropy decreases with cluster pureness -

kMeans vs. temporal classification entropy

- optimal cluster number was determined to be 6
 - entropy is high because of cluster heterogeneity
- 45 classes perform better than 45 kMeans clusters

Chaperone HSP22 family

Systems Biology

Thank you for your attention!

PhD students: David Zimmer Nathan Mikhaylenko Timo Mühlhaus Benedikt Venn Sabrina Gödel master students: bachelor student: Lukas Weil Mark Gottlieb Kevin Schneider Patrick Blume Lukas Schuck

70

Thomas Leifeld (EIT, Zhang)

kMeans clustering algorithm

- 1. initiate k random means
- 2. k clusters are created by sorting to nearest mean
- 3. means are shifted to new cluster centroids
- 4. repeat 2 and 3 until convergence has been reached

Clustering – determining optimal k

- W_k = intra-cluster sums of squares
- Compare dispersion decline of data and random data
- Highest 'gap' indicates correct number of k

