Trey Fortmuller 26037758

Du: 2/13/18

Problem 1: P1 Controller Design

(the accompanying MATLA'S scripts are available) at github.com/treyfortmuller/me131

- · first enter the controller & plant toans for functions in a MATLAB work space.
- · fluen build the model in Simulihk using step, sine, LTI, summation, and scope blocks
- · Then set the parameters of input, noise, and disturbance as given & our the simulation.

Steady state response of CL system output (w/ u(t) the unit step input)

inputs			output yss
r(+)	d(t)	n (4)	Yss (t)
2 mlt)	nt)	3µ(4)	ys (+) = -1
2 sin (5-1)	sinlt)	3 u (t)	Yss (t) is oscillatory about -3 ∀ t

(step response scopes and simulink block diagram below).

· 1,05 = 10°1.

· 5% settling time to <20 s

· Rise time 5 & tr & 10s

Loure 2nd order approximation

Typical second order system: $(GG) = \frac{\omega_n^2}{s^2 + 2 \xi \omega_n s + \omega_n^2}$

Using MATLAR'S "feeback" me get the CL transfer function $H(s) = \frac{Zs + 1}{s^2 + (k_p - 1)s + k_z}$

H(s) ≈ G(s) with k_I = Wn² k_p -1 = 2 \ w_n

formulas [
% ourshoot:

$$7.05 = 100 \left(\frac{\text{Y peak} - \text{Yss}}{\text{Yss}} \right)$$

$$\xi = \frac{-\ln(\%05/100)}{\sqrt{\pi^2 + \ln^2(\%05/100)}}$$
 (2)

settling time:
$$T_s = -\ln\left(0.05\sqrt{1-\xi^2}\right)$$
 (3)

nite time:
$$T_{r} \approx \frac{0.8 + 1.15 + 1.45^{2}}{\omega_{1}}$$
 (4)

me'll solue (2) for a desirable }:

$$\frac{5}{\sqrt{\pi^2 + \ln^2(\frac{1}{10})}} = \frac{-\ln(\frac{1}{10})}{\sqrt{10}}$$
next we'll pick a rise time of 7.55 \(\frac{4}{5}\) find \(\omega_n\)

$$W_{n} \approx \frac{0.8 + 1.1(0.59) + 1.4(0.59)}{7.5} \approx 0.303$$

Now we'll just ensure these parameters satisfy the settling time constraint.

$$T_s = \frac{-\ln(0.05\sqrt{1-(6.59)^2})}{(0.59)(6.303)} = 18$$
 seconds

so the settling time constraint is satisfied. kt = Wn2 kp = 1+ 25 Wn

$$\Rightarrow$$
 $k_{I} = 0.09$ $k_{p} = 1.36$

1.3) Write a MATLAB function implementing the Controller in discrete time. $u = \text{Controller}(e, \Delta t)$ (submit the file)