

C++面向对象程序设计 实验指导书

(8) Arduino 开发--交通灯设计实验

燕山大学软件工程系 2018 年 10 月

目 录

实验 8	Arduino 开发交通灯设计实验	1
1.1	时间安排	1
1.2	实验目的和要求	1
1.3	实验报告的撰写要求	1
1.4	实验内容	1
	1.4.1 熟悉 Arduino 编程环境	1
	1.4.2 部署电路板	7
	143 实验任务	ጸ

实验 8 Arduino 开发--交通灯设计实验

1.1 时间安排

本实验安排2个实验课时。

1.2 实验目的和要求

- 1. 熟悉 Arduino 编程环境,编制简单 C++程序并运行,熟悉 C++的编辑、编译、连接、运行、断点调试等过程。
 - 2. 了解交通灯设计实验的电子原理图,熟悉电路板布局图,熟悉烧制程序到电路板。
 - 3. 掌握交通灯程序的设计和运行原理,并能够根据自己的能力做相应的扩展
 - 4. 分支和循环结构的使用

1.3 实验报告的撰写要求

将实验任务中红色字体的题目的构思过程、源码、运行结果(截图)、心得体会等内容 按要求填写,详见实验报告模板。

1.4 实验内容

1.4.1 熟悉 Arduino 编程环境

- 1、Arduino 编程环境安装
- (1) 硬件准备 arduino UNO

(2) Type—B usb 连接线

(3) 软件安装

安装 arduino-1.0.5-windows.exe, 安装完成后, 文件目录如下:

2、Arduino 驱动安装

通过 USB 线将 arduino uno 和电脑相连 (Windows7 系统), 打开计算机管理如下图:

双击"未知设备",出现如下界面:

点击"更新驱动程序"->"从计算机的设备驱动列表中选择",出现如下界面:

选择列表中的"通用串行总线控制器",点击"下一步",出现如下界面

点击"从磁盘安装",选择 driver 文件夹的"Arduino MEGA ADK R3.inf",出现如下界面:

选中"显示兼容硬件"中的"Arduino UNO R3",点击下一步。出现下面界面

选择"始终安装此驱动程序软件",完成驱动安装。

3. 设置 Arduino IDE

打开 arduino IDE 如下图:

arduino IDE

设置正确的端口

4. 测试 Hello World

我们按照上面所讲的将 Arduino 的驱动安装好后,我们打开 Arduino 的软件,编写一段程序让 Arduino 接受到我们发的指令就显示"Hello World!"字符串,当然您也可以让 Arduino 不用接受任何指令就直接不断回显"Hello World!",其实很简单,一条

if ()语句就可以让你的 Arduino 听从你的指令了,我们再借用一下 Arduino 自带的数字 13 口 LED,让 Arduino 接受到指令时 LED 闪烁一下,再显示"Hello World!"

下面给大家一段参考程序。

```
int val;//定义变量 val
int ledpin=13;//定义数字接口 13
void setup()
{
Serial.begin(9600);//设置波特率为9600,这里要跟软件设置相一致。当接入特定设备(如: 蓝牙)时,我们也要跟其他设
备的波特率达到一致。
pinMode(ledpin,OUTPUT);//设置数字 13 口为输出接口,Arduino 上我们用到的 I/O 口都要进行类似这样的定义。
}
void loop()
{
val=Serial.read();//读取 PC 机发送给 Arduino 的指令或字符,并将该指令或字符赋给 val
if(val=='R')//判断接收到的指令或字符是否是"R"。
{//如果接收到的是"R"字符
digitalWrite(ledpin,HIGH);//点亮数字 13 口 LED。
delay(500);
digitalWrite(ledpin,LOW);//熄灭数字 13 口 LED
delay(500);
Serial.println("Hello World!");//显示 "Hello World!" 字符串
}
}
```

1.4.2 部署电路板

需要硬件列表:

Arduino 控制器;

下载线;

3种颜色直插LED各1

220Ω电阻*3

面包板*1

面包板跳线*1 扎

准备好上述元件我们就可以开工了,下面是我们提供参考的原理图,使用的分别是数字10、7、4、接口.

1.4.3 实验任务

(1)在Arduino上烤制下面程序,观察电路板效果。

```
int redled =10; //定义数字10 接口
int yellowled =7; //定义数字7 接口
int greenled =4; //定义数字4 接口
void setup()
pinMode(redled, OUTPUT);//定义红色小灯接口为输出接口
pinMode(yellowled, OUTPUT); //定义黄色小灯接口为输出接口
pinMode(greenled, OUTPUT); //定义绿色小灯接口为输出接口
void loop()
digitalWrite(redled, HIGH);//点亮红色小灯
delay(1000);//延时1 秒
digitalWrite(redled, LOW); //熄灭红色小灯
digitalWrite(yellowled, HIGH);//点亮黄色小灯
delay(200);//延时0.2 秒
digitalWrite(yellowled, LOW);//熄灭黄色小灯
digitalWrite(greenled, HIGH);//点亮绿色小灯
delay(1000);//延时1 秒
digitalWrite(greenled, LOW);//熄灭绿色小灯
```

(2)修改代码改变小灯延迟时间,观察效果。

(3)修改代码改变小灯开关逻辑,生成自定义的效果