Marcos arreglados

27 de febrero de 2025

Juan Carlos Monter Cortés

Universidad de Guadalajara

≥ juan.monter2902@alumnos.udg.mx

- Una de las aplicaciones de la teoría de marcos es que, en cierto punto, un marco puede llegar a mimetizar el comportamiento de la topología de un espacio.
- En este sentido, los marcos arreglados buscan imitar la propiedad de que un espacio sea empaquetado.
- Como es habitual, las variantes que proporcionan los marcos son caracterizaciones "libres de puntos".

Espacio de parches

Sea $S \in \textbf{Top}$. El espacio de parches, denotado por pS , es el espacio cuya topología está dada por

$$pbase = \{U \cap Q' \mid U \in \mathcal{OS}, Q \in \mathcal{QS}\}\$$

Un espacio es *empaquetado* si todo conjunto compacto (saturado) es cerrado.

Propiedades:

- $T_2 \Rightarrow \text{empaquetado} \Rightarrow T_1$
- $S = {}^{p}S \Leftrightarrow S$ es empaquetado
- ppS = pppS.

Filtros en Frm

Sea $A \in \mathbf{Frm}$. Para $F \subseteq A$, decimos que F es un filtro si:

- 1. $1 \in F$.
- 2. $a \leq b$, $a \in F \Rightarrow b \in F$.
- 3. $a, b \in F \Rightarrow a \land b \in F$.

Filtros en Frm

Sea $A \in \mathbf{Frm}$. Para $F \subseteq A$, decimos que F es un filtro si:

- 1. $1 \in F$.
- 2. $a \leqslant b$, $a \in F \Rightarrow b \in F$.
- 3. $a, b \in F \Rightarrow a \land b \in F$.

Existen diferentes tipos de filtros:

- Propio
- Primo

- (Scott) abierto
- Admisible ($\nabla(j)$)
- Completamente primo

Sea $j \in NA$. El filtro de admisibilidad de j es el conjunto

$$\nabla(j) = \{ a \in A \mid j(a) = 1 \}.$$

Sea $j \in NA$. El filtro de admisibilidad de j es el conjunto

$$\nabla(j) = \{ a \in A \mid j(a) = 1 \}.$$

Sea $j \in NA$. El filtro de admisibilidad de j es el conjunto

$$\nabla(j) = \{ a \in A \mid j(a) = 1 \}.$$

Observaciones:

• $j, k \in NA, j \sim k \Leftrightarrow \nabla(j) = \nabla(k)$.

Sea $j \in NA$. El filtro de admisibilidad de j es el conjunto

$$\nabla(j) = \{ a \in A \mid j(a) = 1 \}.$$

- $j, k \in NA, j \sim k \Leftrightarrow \nabla(j) = \nabla(k)$.
- $j \in NA$ es *ajustado* si es el menor elemento de su bloque.

Sea $j \in NA$. El filtro de admisibilidad de j es el conjunto

$$\nabla(j) = \{ a \in A \mid j(a) = 1 \}.$$

Observaciones:

INFORMACIÓN SOBRE LOS PARCHES

- $j, k \in NA, j \sim k \Leftrightarrow \nabla(j) = \nabla(k)$.
- $j \in NA$ es *ajustado* si es el menor elemento de su bloque.
- $F \in A^{\wedge} \Rightarrow F = \nabla(j)$ para algún $j \in NA$.

Sea $j \in NA$. El filtro de admisibilidad de j es el conjunto

$$\nabla(j) = \{ a \in A \mid j(a) = 1 \}.$$

- $j, k \in NA, j \sim k \Leftrightarrow \nabla(j) = \nabla(k)$.
- $j \in NA$ es *ajustado* si es el menor elemento de su bloque.
- $F \in A^{\wedge} \Rightarrow F = \nabla(j)$ para algún $j \in NA$.
- $F \in A^{\wedge} \Rightarrow [v_F, w_F]$.

Teorema (Hoffman-Mislove):

Sean $A \in \mathbf{Frm}$ y $S = \mathsf{pt}(A)$, entonces existe una correspondencia biyectiva entre:

- 1. QS = compactos saturados en S
- 2. A^{\wedge} = filtros abiertos en A

Teorema (Hoffman-Mislove extendido):

Sean $A \in \mathbf{Frm}$ y $S = \mathsf{pt}(A)$, entonces existe una correspondencia biyectiva entre:

- 1. QS = compactos saturados en S
- 2. A^{\wedge} = filtros abjectos en A
- 3. $v_F = \text{núcleos ajustados}$

Teorema (Hoffman-Mislove extendido):

Sean $A \in \mathbf{Frm}$ y $S = \mathsf{pt}(A)$, entonces existe una correspondencia biyectiva entre:

- 1. QS = compactos saturados en S
- 2. A^{\wedge} = filtros abiertos en A
- 3. $v_F = \text{núcleos ajustados}$

El Teorema de H.-M. nos proporciona $(F, Q, \nabla(Q))$

$$F \in A^{\wedge} \leftrightarrow Q \in \Omega S \leftrightarrow \nabla(Q) \in \mathcal{O}S^{\wedge}$$

$$x \in F \Leftrightarrow Q \subseteq U_A(x) \Leftrightarrow U_A(x) \in \nabla(Q)$$

El marco de parches

Basados en el Teorema de H.-M. se introduce el marco de parches.

$$Pbase(A) = \{u_a \wedge v_F \mid a \in A, F \in A^{\wedge}\}.$$

El marco de parches

Basados en el Teorema de H.-M. se introduce el marco de parches.

$$Pbase(A) = \{u_a \wedge v_F \mid a \in A, F \in A^{\wedge}\}.$$

- *PA* es el marco generado por la Pbase.
- $A \in \mathbf{Frm}$ es parche trivial si $A \simeq PA$
- *A* es parche trivial $\Leftrightarrow u_d = v_F$

El marco de parches

Basados en el Teorema de H.-M. se introduce el marco de parches.

$$Pbase(A) = \{u_a \wedge v_F \mid a \in A, F \in A^{\wedge}\}.$$

- *PA* es el marco generado por la Pbase.
- $A \in \mathbf{Frm}$ es parche trivial si $A \simeq PA$
- *A* es parche trivial $\Leftrightarrow u_d = v_F$

$$A \xrightarrow{i} PA \xrightarrow{\iota} NA$$

Marcos arreglados

Sea $A \in \mathbf{Frm} \ y \ \alpha \in \mathbf{Ord}$.

• $F \in A^{\wedge}$ es α -arreglado si

$$x \in F \Rightarrow u_d(x) = d \lor x = 1$$
,

donde
$$d = d(\alpha) = f^{\alpha}(0)$$
 y $f = \bigvee \{v_a \mid a \in F\}$

- A es α -arreglado si todo $F \in A^{\wedge}$ es α -arreglado.
- A es arreglado si A es α -arreglado para algún α .

Marcos arreglados

Propiedades:

- Parche trivial ⇔ arreglado
- Arreglado ⇔ empaquetado + apilado
- Un espacio S tiene topología 1-arreglada $\Leftrightarrow S$ es T_2 .
- Arreglado $\Rightarrow T_1$
- Regularidad ⇒ arreglado
- $(\mathbf{fH}) \Rightarrow \text{arreglado}$

 $Si A \in \mathbf{Frm} \ y j \in NA \Rightarrow A_j \in \mathbf{Frm}.$

Si $A \in \mathbf{Frm} \ y \ j \in NA \Rightarrow A_i \in \mathbf{Frm}$.

Si $A \in \mathbf{Frm} \ y \ j \in NA \Rightarrow A_i \in \mathbf{Frm}$.

Observaciones:

• A_i es un cociente de A.

Si $A \in \mathbf{Frm} \ y \ j \in NA \Rightarrow A_i \in \mathbf{Frm}$.

- A_i es un cociente de A.
- A_j es compacto $\Leftrightarrow \nabla(j) \in A^{\wedge}$.

Si $A \in \mathbf{Frm} \ y \ j \in NA \Rightarrow A_i \in \mathbf{Frm}$.

- A_i es un cociente de A.
- A_j es compacto $\Leftrightarrow \nabla(j) \in A^{\wedge}$.
- $F \in A^{\wedge} \Rightarrow F = \nabla(j)$.

Si $A \in \mathbf{Frm} \ y \ j \in NA \Rightarrow A_i \in \mathbf{Frm}$.

- A_i es un cociente de A.
- A_j es compacto $\Leftrightarrow \nabla(j) \in A^{\wedge}$.
- $F \in A^{\wedge} \Rightarrow F = \nabla(j)$.
- *A* es arreglado si todo cociente compacto es cerrado.

Si $A \in \mathbf{Frm} \ y \ j \in NA \Rightarrow A_i \in \mathbf{Frm}$.

- A_i es un cociente de A.
- A_j es compacto $\Leftrightarrow \nabla(j) \in A^{\wedge}$.
- $F \in A^{\wedge} \Rightarrow F = \nabla(j)$.
- *A* es arreglado si todo cociente compacto es cerrado.
- $F \in [v_F, w_F]$ produce una familia de cocientes compactos.

Si $A \in \mathbf{Frm} \ y \ j \in NA \Rightarrow A_j \in \mathbf{Frm}$.

- A_i es un cociente de A.
- A_j es compacto $\Leftrightarrow \nabla(j) \in A^{\wedge}$.
- $F \in A^{\wedge} \Rightarrow F = \nabla(j)$.
- *A* es arreglado si todo cociente compacto es cerrado.
- $F \in [v_F, w_F]$ produce una familia de cocientes compactos.
- $v_F = w_F$ produce un único cociente compacto.

Colapso del intervalo de admisibilidad

Resultados probados

Proposición:

Para $F \in A^{\wedge}$ y $Q \in \mathcal{Q}S$, si $j \in [V_Q, W_Q]$, entonces

$$\nabla(U_*jU^*)=F.$$

De esta manera $\mho \colon [V_Q, W_Q] \to [V_F, W_F]$

$$\begin{array}{ccc}
NA & & & & & & \\
& & & & & & \\
\uparrow & & & & & \\
\downarrow & & & & & \\
[v_F, w_F] & & & & & \\
\hline
 & & & & \\
\hline
 & & & & \\
\hline
 & & &$$

Resultados probados

Proposición:

Para un marco A Hausdorff, el intervalo de admisibilidad asociado a un filtro abierto es trivial. En otras palabras, para $F \in A^{\wedge}$, $[v_F, w_F] = \{*\}$, es decir, $v_F = w_F$.

Teorema:

En un marco Hausdorff todo cociente compacto es isomorfo a un cociente cerrado de la topología de un espacio Hausdorff.

EL Q-cuadrado

Ingredientes:

• U_A : OS

- $\nabla \in \mathfrak{O}S \to \nu_{\nabla}$
- \bullet $Q = \operatorname{pt} A_F$

 \bullet $g = G_{|A_F}$

- $F \in A^{\wedge} \to \nu_F$
- $\bullet \ \, \mathfrak{O}S_{\nabla} = \mathfrak{O}S_{\nu_{\nabla}}$

• ?: $OS_{\nabla} \rightarrow A_{F}$

 $\bullet \ A_F = A_{\nu_F}$

• $G = \nabla U_A$

Resultados probados

Proposición:

Sea A un marco y $j \in NA$. Si A es arreglado, entonces A_j es arreglado.

Preguntas abiertas

- ¿Se cumple que PPA = PA o PPPA = PPA?
- $\xi(\mathbf{H}) \Rightarrow \text{arreglado}$?
- ¿A arreglado $\Rightarrow \prod A$ arreglado?
- ¿Cómo se puede medir el fallo de la condición de arreglo?
- ¿Qué significa que un marco sea apilado?
- ¿Existen ejemplos de marcos (locales) Hausdorff y compactos que sean cerrados?