SUPERFLAT GRAPHS ARE DP-MINIMAL

ANTON BOBKOV

ABSTRACT. We show that the theory of superflat graphs is dp-minimal.

1. Preliminaries

We work with an infinite graph G and a subset of vertices $V \subset V(G)$. Say that V is n-connected if there aren't a set of n-1 vertices removing which disconnects every pair of vertices in V. Connectivity of V is the smallest n such that V are n-connected.

Definition 1.1. Suppose $V \subset V(G)$ has finite connectivity n+1. Let connectivity hull of V to be union of all n-point sets that disconnect it.

2. Connectivity hull is finite

Here we show our main technical lemma. This result is purely combinatorial, with no mention of model theory.

Lemma 2.1. Suppose $\{a,b\}$ in G have finite connectivity n+1. Then there are finitely many n-point sets that disconnect a from b.

Corollary 2.2. Suppose a finite $V \subset V(G)$ has finite connectivity n+1. Then there are finitely many n-point sets that disconnect V.

Proof. Fix set $P = p_1, \ldots, p_m$ of all unordered pairs from V. Every pair p_i has connectivity $n_i \leq n+1$ and by previous lemma has finitely many sets of n_i points that disconnect it, denoted by S_i . Every minimal set that disconnects V can be written as (not necessarily unique) union

$$\bigcup_{i \leq m \ s_i \in S_i} s_i$$

There are finitely many $(\prod |S_i|)$ ways to write that union giving finitely many minimal sets that can disconnect V.

Corollary 2.3. Suppose a countable $V \subset V(G)$ has finite connectivity n+1. Then there are finitely many n-point sets that disconnect V.

Proof. Order $V = \{v_1, v_2, \ldots\}$ and consider increasing finite parts $V_i = \{v_1, \ldots, v_i\}$. By compactness connectivity becomes equal to n+1 for large enough i. Number of sets disconnecting V is bounded by number of sets disconnecting V_i for that large i, which has to be finite by previous lemma.

1

3. Application to indiscernible sequences

In this section we work in a flat graph. It is stable so all the indiscernible sequences are totally indiscernible. Also note that by indiscernibility all pairwise distances between points are the same.

We need a refined notion of connectivity for the following argument to work. Suppose we have two points a, b distance n apart. Denote P(a, b) union of all paths of length n going from a to b. If we have a collection of vertices V such that every two have distance n between them, denote

$$P(V) = \bigcup_{a \neq b \in V} P(a, b)$$

Lemma 3.1. Let $(a_i)_{i\in I}$ be a countable indiscernible sequence over A. Let $n=d(a_i,a_j)$ for some (any) $i\neq j$. There exists a finite set B such that

$$\forall i \neq j \ d_B(a_i, a_j) > n$$

Proof. By a flatness result we can find an infinite $J \subset I$ and a finite set B' such that each pair from $(a_j)_{j \in J}$ have infinite distance over B'. Using total indiscernibility we have an automorphism sending $(a_j)_{j \in J}$ to $(a_i)_{i \in I}$. Image of B' under this automorphism is the required set B.

In other words, B disconnects $P(\{a_i\})$. This shows that $\{a_i\}$ has finite connectivity in $P(\{a_i\})$. Applying lemma from last section we obtain that connectivity hull of $\{a_i\}$ in $P(\{a_i\})$ is finite.

Lemma 3.2. Connectivity hull described above is definable.

Proof. Consider finite parts of the sequence $I_i = \{a_1, a_2, \dots, a_i\}$. $P(I_i)$ is I_i -definable as union of all n-paths. Connectivity hull is I_i -definable as well. With increasing i it should stabilize.

Lemma 3.3. $\{a_i\}$ is indiscernible over the hull $\cup A$.

Proof. Denote the hull by H. Fix an A-formula $\phi(x,y)$. Consider a collection of traces $\phi(\vec{a}_i, H^{\{|y|\}})$ for $i \in I$. Those are either all distinct or all the same. Finiteness of H forces latter. This shows indiscernability.

Corollary 3.4. Let $(a_i)_{i \in I}$ be a countable indiscernible sequence over A. Then there is a countable B such that (a_i) is indiscernible over $A \cup B$ and

$$\forall i \neq j \ d_B(a_i, a_j) = \infty$$

Proof. Keep applying previous lemma to obtain larger B_i that provide higher separation while preserving indiscernibility.

That is every indiscernible sequence can be upgraded to have infinite distance over its parameter set.

4. Superflat graphs are dp-minimal

Lemma 4.1. Suppose $a \equiv_A b$ and $d_A(a,c) = d_A(b,c) = \infty$. Then $a \equiv_{Ac} b$

Proof. partial automorphisms

Theorem 4.2. Let G be a flat graph with $(a_i)_{i\in\mathbb{Q}}$ indiscernible over A and $b\in G$. There exists $c\in\mathbb{Q}$ such that all $(a_i)_{i\in\{\mathbb{Q}-c\}}$ have the same type over Ab.

Proof. Find $B \supseteq A$ such that (a_i) is indiscernible over B and has infinite distance over B. b can have finite distance over B to only one member of the sequence. Let C be that member. Remainder of elements have the same type over Bb by the lemma.

Corollary 4.3. Flat graphs are dp-minimal.

 $E ext{-}mail\ address: bobkov@math.ucla.edu}$