Министерство образования и науки Российской Федерации Московский физико-технический институт (государственный университет)

Физтех-Школа Прикладной Математики Кафедра Интеллектуальных Систем

Выпускная квалификационная работа бакалавра по направлению 010900 «Прикладные математика и физика»

Проверка гипотез условной независимости в тематических моделях

Студент 574 группы Рогозина А. А.

Научный руководитель Воронцов К. В.

Содержание

1.	. Введение						
2.	Пос	танові	ка задачи	3			
	2.1.	Задач	а тематического моделирования и гипотеза условной независимости	3			
	2.2.	Поста	новка задачи	4			
3.	Ста	неские тесты проверки гипотезы условной независимости	5				
	3.1.	Дивер	генция Кресси-Рида	5			
	3.2.	Приме	енимость для разреженных распределений	6			
		3.2.1.	Возможные приближения	6			
		3.2.2.	Эмпирическое распределение статистики Кресси-Рида	6			
4. Оценка качества тем в тематической модели с помощью тестов							
	проверяющих выполнение гипотезы условной независимости в кол-						
	лек	ции		7			
	4.1.	Сбала	нсированность тем	7			
5.	Экс	перим	енты	11			
	5.1.	Даннь	ме	11			
	5.2.	Сбала	нсированность	11			
		5.2.1.	Общая постановка эксперимента	11			
		5.2.2.	Выбор параметра λ в статистике Кресси-Рида	12			
		5.2.3.	Проверка сбалансированности предобученной модели	12			
		5.2.4.	Зависимость сбалансированности модели от количества тем	14			
		5.2.5.	Влияние регуляризатора декоррелирования на сбалансирован-				
			ность тем	14			

Введение

Задача определения тематики текста имеет множество практических приложений:(цитата, цитата, цитата). Один из способов определения тематики текста - тематическое моделирование. Вероятностное тематическое моделирование определяет набор тем в коллекции, для каждого документа в коллекции определяет дискретное распределение тем в документе $p(t \mid d)$, и для каждой темы - дискретное распределение слов в этой теме $(w \mid t)$.

Вероятностная модель тематического модели опирается на гипотезу условной независимости: предполагается, что распределения слов темы t во всех документах d совпадают с общим распределением $p(w \mid t)$ и не зависят от документа d. В естественном языке такое предположение может не выполняться: например, из-за явления повторяемости слов(word burstiness)[цитата][цитата]: если слово встретилось в тексте один раз, велика вероятность, что оно встретится в тексте еще раз. Это происходит потому, что, несмотря на наличие множества синонимов в теме, автор часто выбирает один предпочтительный термин(или небольшое множество терминов) и использует только их на протяжении всего написания текста. В работе приводится способ оценки выполнимости гипотезы условной независимости для коллекции D и построенной по ней тематической модели (Φ , Θ).

На основе оценки выполнимости гипотезы условной независимости в работе предлагается критерий оценивания качества построенных тем. Для оценивания качества тем в тематическом моделировании считается, например, когерентность [цитата] тем. Однако в большинстве случаев качество тем определяется по mon-словам memu - набору |U| первых k слов из отсортированного по убыванию вектора $p(w \mid t)$. Таким образом, чтобы оценить качество тем, необходимо проверить набор топ-слов для каждой темы на интерпретируемость, однородность и убедиться, что эти наборы различны по смыслу для разных тем. Такой подход становится неэффективным, если мощность множества тем |T| составляет несколько десятков. Такой подход становится невозможным, если коллекция документов написана на неизвестном вам языке, или словарь вообще не является множеством слов (например, множество кодов). Таким образом, предложенный в работе критерий оценивания качества построенных тем

позволяет перевести однородность и непохожесть на остальные темы в количественную характеристику и избавляет от необходимости просматривать набор топ-слов каждой темы.

Постановка задачи

2.1 Задача тематического моделирования и гипотеза условной независимости

Пусть D - коллекция документов, W — множество токенов (слов или словосочетаний). Каждый документ $d \in D$ представляет собой последовательность n_d терминов (w_1, \ldots, w_{nd}) из словаря W. Обозначим частоту встречаемости слова w в документе d как n_{wd} Задача тематического моделирования основана на следующих предположениях:

- 1. Возможность разделения на темы: предполагается, что существует определенный набор тем $T:(t_1,\ldots,t_T)$, для которого каждое слово в документе относится какой-то теме $t\in T$. Таким образом, коллекция D представляет множество троек (t,d,w), выбранных случайно и независимо из дискретного распределения p(t,d,w) на множестве $|T|\times |D|\times |W|$. Слова w и документы d являются наблюдаемыми переменными, темы t латентными.
- 2. Гипотеза «мешка слов» предполагает, что тематика документа описывается лишь частотой встречаемости слов в документе n_{wd} , но не их порядком. Тематика документа сохраняется даже при произвольной перестановке слов в документе. Порядок документов в коллекции так же неважен.
- 3. Гипотеза условной независимости заключается в предположении, что распределения слов, относящихся к теме t в документе d совпадают с распределением слов в теме t, $p(w \mid t, d) = p(w \mid t)$

Сделанные предположения позволяют записать распределение слов в документе через распределение слов в теме в компактной форме: $p(w \mid d) = \sum_t p(w \mid t) p(t \mid d)$ Задача тематического моделирования заключается в нахождении по известным $p(w \mid d) = \frac{n_{wd}}{n_d}$ множества тем T, дискретных распределений $p(w \mid t)$ слов в теме и дискретных распределений тем в документе $p(t \mid d)$ для всех $d \in D$, $w \in W$, $t \in T$.

Обозначим за Φ матрицу $w \times t$, в которой каждый элемент ϕ_{wt} равен вероятности слова w в теме t, $\phi_{wt} = p(w \mid t)$ и за Θ матрицу $t \times d$, в которой каждый элемент θ_{td} равен вероятности встретить тему t в документе d, $\theta_{td} = p(t \mid d)$. Запишем правдоподобие выборки, применив новые обозначения и предположения (1 - 3):

$$L((d_i, w_i)_{i=1}^n, \Phi, \Theta) = \prod_{i=1}^n p(d_i, w_i) = \prod_{d \in D} \prod_{w \in d} p(w \mid d)^{n_{wd}} p(d)^{n_{wd}} =$$

$$= \prod_{d \in D} \prod_{w \in d} (\sum_t \phi_{wt} \theta_{td})^{n_{wd}} p(d)^{n_{wd}} \to \max_{\Phi, \Theta}$$

Учитывая, что член $p(d)^{n_w d}$ является константой и не зависит от параметров модели и логарифмируя правдоподобие, получаем следующую задачу минимизации с ограничениями:

$$\sum_{d \in D} \sum_{w \in d} n_{wd} \ln(\sum \phi_{wt} \theta_{td}) \to \max_{\Phi, \Theta}$$

$$\sum_{w \in W} \phi_{wt} = 1; \quad \phi_{wt} \ge 0 \qquad \sum_{t \in T} \theta_{td} = 1; \quad \theta_{td} \ge 0$$

2.2 Постановка задачи

Дана коллекция документов D. По этой коллекции построена тематическая модель (Φ,Θ) . Построение тематической модели основывается на гипотезе условной независимости распределения слов w в теме t от документа d: $p(w \mid t, d) = p(w \mid t)$. Предлагается разработать критерии, оценивающие насколько для данной модели (Φ,Θ) в данной коллекции D выполняется гипотеза условной независимости. Основываясь на этих критериях, предлагается оценить качество тем, построенных моделью (Φ,Θ) .

Статистические тесты проверки гипотезы условной независимости

3.1 Дивергенция Кресси-Рида

Дана выборка $X = \{x_1, ..., x_n\}$ реализаций независимы одинаково распределенных случайных величин, принимающих значения из конечного множества Ω . Проверяется гипотеза о том, что данная выборка X была получена из известного нам распределения p(x):

$$H_0: X = \{x_1, \dots, n\} \in p(x)$$

 $H_1: X = \{x_1, \dots, n\} \notin p(x)$

Критерии, проверяющие гипотезу о равенстве распределений, называются *критериями согласия*. К таким, например, относится критерий Хи-квадрат Пирсона, дивергенция Кульбака—Лейблера, расстояние Хеллингера. Все они являются частым случаем семейства *дивергенций Кресси-Рида* между двумя распределениями:

$$CR_{\lambda}(\hat{p}(w \mid d, t) : \hat{p}(w \mid t)) = \frac{2n_{td}}{\lambda(\lambda + 1)} \sum_{w \in W} \hat{p}(w \mid d, t) \left(\left(\frac{\hat{p}(w \mid d, t)}{\hat{p}(w \mid t)} \right)^{\lambda} - 1 \right) =$$

$$= \frac{2}{\lambda(\lambda + 1)} \sum_{w \in W} n_{tdw} \left(\left(\frac{n_{tdw} n_t}{n_{td} n_{wt}} \right)^{\lambda} - 1 \right). \tag{1}$$

При $\lambda=1$ дивергенция Кресси-Рида преходит в статистику хи-квадрат Пирсона, при $\lambda\to 0$ в дивергенцию Кульбака—Лейблера, при $\lambda=-\frac{1}{2}$ - в расстояние Хеллингера. Все эти статистики в условии истинности нулевой гипотезы асимптотически стремятся к распределению χ^2 с $k=|\Omega|-1$ степенями свободы χ^2

3.2 Применимость для разреженных распределений

Асимптотика χ^2 применима для проверки равенства распределений, если размер выборки ≥ 50 и наблюдений $np(x) \geq 5$ для всех $x \in \Omega$. Если же вероятности p(x) малы для многих x или $|\Omega| \gg n$, асимптотика не выполняется. Распределения слов в теме $p(w \mid t)$ и слов в документе $p(w \mid t, d)$ разреженные, так как размер словаря как правило гораздо больше длины документа $|W| \gg n$, кроме того, p(w) мала для многих w, поэтому асимптотика χ^2 неприменима для сравнения распределений слов. Необходимо ослабить статистические тесты.

3.2.1 Возможные приближения

В работах [надо][процитировать] предлагается группировать слова, увеличивая тем самым вероятности p(x), а так же количество разбиений для каждого наблюдения np(x). Однако, такой способ оказывается неустойчивым, так как результаты сильно зависят от способа разбиения, выбираемого произвольно. Предлагается также фильтровать словарь и проводить тесты для вектора из слов, относящихся к теме t, игнорируя нетематические слова, вероятность встретить которые в этой теме меньше равномерного распределения, $p(w \mid t) < \frac{1}{W}$. Кроме того, предлагается проводить тесты равенства $p(w \mid t, d)$ и $p(w \mid t)$ только для слов, которые встретились в документе d.

3.2.2 Эмпирическое распределение статистики Кресси-Рида

Для проверки равенства распределений $\hat{p}(w \mid t, d)$ и $p(w \mid t)$ на уровне значимости α необходимо вычислить $(1-\alpha)$ квантиль распределения статистики Креси-Рида CR_{λ} . Однако экспериментально показано, что распределение статистики Кресси-Рида для условных распределений слов в документах $p(w \mid t, d)$ в условиях истинности нулевой гипотезы зависит от количества n_{td} вхождений слов темы t в документ d и от темы t.

Оценка качества тем в тематической модели с помощью тестов, проверяющих выполнение гипотезы условной независимости в коллекции

4.1 Сбалансированность тем

Дана коллекция документов D. По коллекции построена тематическая модель Φ , Θ . Рассмотрим пространство дискретных распределений слов из словаря W, p(w). В условиях истинности гипотезы условной независимости(Π . 3), для любой темы t и документа d, распределения $p(w \mid t)$ и $p(w \mid t, d)$ совпадают. Это означает, что в пространстве распределений p(w) множество $p(w \mid t, d)$ представляет собой t точек, совпадающий с $p(w \mid t)$.

В действительности, в естественном языке гипотеза условной независимости не выполняется. Кроме того, нам доступны только частотные оценки распределений $p(w \mid t, d)$ (в дальнейшем обозначаются как $\hat{p}(w \mid t, d)$). Вместо гипотезы условной независимости вводится гипотеза компактности: предполагается, что для каждой темы t распределения $\hat{p}(w \mid t, d)$ представляют собой кластер, центром которого является распределение $p(w \mid t)$. Границы кластера оцениваются с помощью проверки гипотезы том, что эмпирическое распределение $\hat{p}(w \mid t, d)$ было сгенерировано из распределения $p(w \mid t)$.

 $Paduycom\ cemaнтической\ неоднородности\ R_t^{lpha}(n_{td})\$ темы t на уровне значимости lpha назовем (1-lpha) квантиль распределения статистики Кресси-Рида $S_{dt}=CR_{\lambda}(\hat{p}(u\,|\,d,t):\hat{p}(u\,|\,t)).$ Он показывает, насколько точка $p(w\,|\,d,t)$ может удалиться от центра кластера, не нарушая при этом нулевую гипотезу. Радиус семантической однородности зависит от размера выборки n_{td} , темы t и уровня значимости lpha. Cтепенью семантической неоднородности темы t назовем взвешенную долю доку-

ментов d, для которых значение статистики S_{td} больше радиуса семантической однородности $R_t^{\alpha}(n_{td})$.

SemHeterogeneity(t) =
$$\sum_{d \in D} \hat{p}(d \mid t) \left[S_{dt} < R_t^{\alpha}(n_{td}) \right] = \sum_{d \in D} \frac{n_{td}}{n_t} \left[S_{dt} < R_t^{\alpha}(n_{td}) \right]$$
,

Степень семантической неоднородности изменяется от 0 до 1 и показывает, какая доля точек кластера темы t находится за пределами радиуса семантической однородности и нарушает нулевую гипотезу. Если для темы t степень семантической неоднородности больше α , назовем ее семантически неоднородной.

Степенью семантической загрязненности темы t назовем долю документов d, для которых нулевая гипотеза не отвергается не только для темы t, но и еще для какой-то темы t':

SemImpurity(t) =
$$\sum_{d \in D} p(d | t) [S_{dt} < R_t^{\alpha}(n_{td})] [S_{dt'} < R_{t'}^{\alpha}(n_{td})],$$

где дивергенция $S_{dt'}$ измеряет расстояние от распределения $\hat{p}(u \mid d, t)$ до центра ближайшего чужого кластера $\hat{p}(u \mid t')$:

$$S_{dt'} = \min_{t' \in T \setminus t} \lambda \left(\hat{p}(u \mid d, t) : \hat{p}(u \mid t') \right).$$

Степень семантической загрязнённости принимает значения от 0 до 1 и показывает, какая доля точек кластера относится также и к другим кластерам. Тему, в которой степень семантической загрязненности больше α , назовем семантически загрязненной.

На рисунке 1 показана иллюстрация к подсчету степеней загрязненности и неод-

Рис. 1. Иллюстрация работы кластерной структуры распределений

нородности: для подсчета степени неоднородности нужно найти расстояние $S_{td} = CR_{\lambda}(\hat{p}(w \mid d, t) : p(w \mid t))$ и сравнить его с $R_t^{\alpha}(n_{td})$, а для подсчета степеней загрязненности нужно сравнить все $S_{t'd} = CR_{\lambda}(\hat{p}(w \mid d, t) : p(w \mid t'))$ и выбрать минимальное расстояние $S_{t_{min}d}$ и сравнить его с $R_{t_{min}}^{\alpha}(n_{td})$. Если тема не является ни семантически неоднородной, ни семантически загрязненной, назовем ее *сбалансированной*.

Эксперименты

5.1 Данные

В качестве данных берется коллекция документов из «Постнауки». Она содержит 3404 документа и состоит из небольших заметок на какую-то научно-популярную тему.

5.2 Сбалансированность

5.2.1 Общая постановка эксперимента

Необходимо для модели (Φ, Θ) и коллекции документов D определить несбалансированность тем, то есть для каждой темы t определить ее степень неоднородности и степень загрязненности. В качестве сужения множества альтернатив H_1 для применимости статистики Кресси-Рида к разреженным распределениям предлагается для каждого документа t и темы d выбирать подмножество слов U,

 $\{U \subseteq W : \forall u \in Up(u \mid t) > \frac{1}{W}, n_{tdu} \geq 0\}$, и считать $S_{dt} = CR_{\lambda}(\hat{p}(u \mid d, t) : \hat{p}(u \mid t))$. Ниже представлен алгоритм, вычисляющий SemH и SemI.

Эксперимент состоит из следующих частей:

- 1. Выбор способа группировки слов U для сужения множества альтернатив H_1 и значения λ в статистике Кресси-Рида. Предлагается в качестве сужения проверять гипотезу о равентсв распределений для подожества U слов W, $\{U \subseteq W : \forall u \in Up(u \mid T) \geq \frac{1}{W}, n_{tdu} > 0\}$.
- 2. Выяснение зависимости радиуса семантической однородности $R_t^{\alpha}(n_{td})$ для всех тем t.
- 3. Подсчет степеней неоднородности и загрязненности для всех тем t.

Algorithm 5.2.1 Подсчет SemH и SemI для тематической модели

```
1: for t \in T do
        Сгенерировать коллекцию документов D из p(w \mid t) с различными n_{td}, полу-
        чить \{(n_{tdw}, n_{td})\}_{d \in D}
        Преобразовать (n_{tdw}, p(w \mid t)) \rightarrow (n_{tdu}, p(u \mid t)),
 3:
        в которых \forall u \in U : p(u \mid t \ge \frac{1}{W}, n_{tdu} \ge 0)
 4:
       По (n_{tdu}, n_{td}, p(u | t)) построить непараметрическую квантильную регрес-
 5:
        сию R_t^{\alpha}(n_{td}))
 6: for t \in T do
 7:
       for d \in D do
           (n_{tdw}, p(w \mid t)) \rightarrow (n_{tdu}, p(u \mid t))
 8:
           Вычислить S_{dt} = CR_{\lambda}(\hat{p}(u \mid d, t) : \hat{p}(u \mid t)))
 9:
10:
           Сравнить S_{dt} и R_t^{\alpha}(n_{td}))
           if S_{dt} \leq R_t^{\alpha}(n_{td}) then
11:
              for t' \in T do
12:
                 Вычислить S_{dt} = CR_{\lambda}(\hat{p}(u \mid d, t) : \hat{p}(u \mid t'))
13:
                 Найти t_{min} =_{t'\neq t} S_{dt'}
14:
                 Сравнить S_{dt_{min}} и R_{t_{min}}^{\alpha}(n_{td}))
15:
        Вычислить SemH, SemI по формулам(), ()
16:
```

5.2.2 Выбор параметра λ в статистике Кресси-Рида

Была обучена модель на 80 тем на «Постнауке» исследована зависимость средних SemH, SemI от параметра λ в статистике Кресси-Рида. На рисунке 2 представлена эта зависимость. Видно, что при $\lambda ge0$ степень загрязненности становится нерепрезентативной и практически нулевой, а при $\lambda le-1$ степень неоднородности становится практически 1, что эквивалентно стягиванию кластеров тем в точку. Поэтому рекомендуется выбирать $-1 < \lambda < 0$. В дальнейших экспериментах будем выбирать $\lambda = \frac{1}{30}$.

5.2.3 Проверка сбалансированности предобученной модели

Предобученная модель содержит 20 тем, причем двадцатая тема — фоновая, то есть содержит общеупотребительные слова, стоп-слова и связывающие обороты. Для наглядности на гистограммах ниже будет показываться 1 — SemHeterogeneity(t) и SemImpurity(t): таким образом, гистограмма разделится на три секции: SemImpurity(t) — доля документов, содержащих как минимум две темы, t — SemImpurity(t) — SemHeterogeneity(t) — доля документов, сожержащих тему t и только её, и SemHeterogeneity(t) — доля документов, не содержащих тему t. На Рис. 3 слева показана гистограмма t — SemHeterogeneity(t) и SemImpurity(t) для предобученной модели: видно, что доля тем, содержащих только одни тему, очень мала. Если пересчитать степени загрязненности, исключив фоновую тему t0 из множества тем, среди которых ищется минимальное расстояние t1.

$$S_{dt'} = \min_{t' \in T \setminus t, t_{back}} {}_{\lambda} (\hat{p}(u \mid d, t) : \hat{p}(u \mid t')),$$

Рис. 2. Зависимость степеней загрязненности и неоднородности от параметра λ

получим(на Рис. 3, справа), что степени загрязненности резко уменьшаются для всех тем. Это подтверждает предположение, что фоновая тема состоит из общеупотребительных слов и присутствует практически в каждом документе.

b)Фоновая тема исключена

Рис. 3. Сравнение 1 — SemH и SemI для предобученной модели.

5.2.4 Зависимость сбалансированности модели от количества тем

Для этого эксперимента обучался набор моделей $\{(\Phi,\Theta)\}_{i=1}^n$ по одной и той же коллекции, но с разным числом тем. Модели обучались без регуляризаторов. На рис. 4 представлена зависимость средних SemH и SemI от числа тем. Видно, что при увеличении числа тем и SemH, и SemI увеличиваются.

Рис. 4. Зависимость степеней загрязненности и неоднородности от числа тем в модели

5.2.5 Влияние регуляризатора декоррелирования на сбалансированность тем

Обучался набор моделей $\{(\Phi,\Theta)\}_{i=1}^n$ на 80 тем по одной и той же коллекции «Постнауки» и с разным значением τ в регуляризаторе декоррелирования. На рис. 5 представлена зависимость средних SemH и SemI от значения τ в модели. Кроме того, на графике изображена так же перплексия модели. Видим, что в при увеличении tau загрязненность SemI падает, а неоднородность SemH растет. Это легко интерпретируется: при добавлении регуляризатора декоррелирования темы становятся более непохожими друг на друга, а значит кластеры сужаются и становятся более обособленными. Кроме того, если обратить внимание на момент, когда перплексия резко

Рис. 5. Зависимость степеней загрязненности и неоднородности от параметра τ в регуляризаторе декоррелирования

вырастает (что свидетельствует о вырождении модели), видно, что степень загрязненности SemI становится практически нулевой, а неоднородность SemH претерпевает скачки. Значит, можно использовать SemH, и SemI для определения подходящего параметра τ в регуляризаторе декоррелирования.