

Vektoren und Matrizen

- •Masterkurs: Vertiefung der Grundlagen der Computerlinguistik
- •Referenten: Shuzhou Yuan, Erika Worm

Gliederung

- Vektoren
 - Begriffe
 - Beispiele
- Matrizen
 - Begriffe
 - Beispiele
- Anwendung in der Computerlinguistik

Gliederung

- Operationen und Algorithmen mit Vektoren und Matrizen
 - Matrix-Vektor Multiplikation
 - Matrix-Matrix Multiplikation
 - Vektornormierung
- Lineare Unabhängigkeit

Vektoren

- ·Skalar, reallezahl
- •• Weektoor: Größe unnd Richtung

=> zw[f]|Kompionoenteenenzeve=Dimeensioenen
ein Vektor besteht ausberliebigeraelleazahlen/Komponenten
Zahlober Komponenteen=ZahhbeeDimeensioenen

column vector:
$$=$$
 column vector: \Rightarrow $=$ $\begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$ ow vector: \Rightarrow $=$ $[v_1 \dots v_n]$

Beispiel

• Die Punkte in x-y-Achse könnten als Vektoren darstellen

Beispiel

· Wektor Listes von Zatalen In Nur könnten wirdie Verktoren bernutzen munedie Zexte zu ver arbeiten.

Treat 1: I like you.

$$= \begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \end{array}$$

Textelt the leatersmae.

$$= \bigvee_{v_2} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

Matrizen

$$\hat{\bullet} \quad \mathbf{A} = \begin{bmatrix} A_{11} & \cdots & A_{1n} \\ \vdots & \ddots & \vdots \\ A_{m1} & \cdots & A_{mn} \end{bmatrix}$$

A ist die Matrizen mit Größe m*n A_{ij}: die i-te Zeile/row, j-te Spalte/column A ist die Matrizen mit Größe m*n A_{ij}: die i-te Zeile/row, j-te Spalte/column

- quadratische Matrix/squarexmatrix: m=n
- Diagonalmatrix: Als Diagonalmatrix bezeichnet man in der linearen Algebra eine Diagonalmatrix bezeichnet man in der linearen Algebra eine Haghtillageralinearen Algebra eine quadratische Matrix, bei der alle Elemente außerhalb der Hauptdiagon [ale Nubjsind.
 - : · : -0 ··· 2

Beispiel

10*10 Pixelsahwavavaveißesofotor Ichiwase, hwarzy Onfür weiß

L0	0	0	0	0	0	0	0	0	07
0	0	0	1	1	1	0	0	0	0
0	0	1	0	0	0	1	0	0	0
0	0	1	0	0	0	h	0	0	0
0	0	0	0	0	1	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0
0	0	1	1	1	1	_1	0	0	0
L_0	0	0	0	0	0	0	0	0	01

Anwendung in der Computerlinguistik

Term-document matrices are used in *information retrieval*. Consider the following selection of five documents. Key words, which we call *t erms*, are marked in boldface.

Document 1: The Google matrix P is a model of the Internet.

Document 2: P_{ij} is nonzero if there is a **link** from **Web page** j to i.

Document 3: The Google matrix is used to rank all Web pages.

Document 4: The **ranking** is done by solving a **matrix eigenvalue** problem.

Document 5: England dropped out of the top 10 in the FIFA ranking.

If we count the frequency of terms in each document we get the following result:

Term	Doc 1	Doc 2	Doc 3	$\operatorname{Doc} 4$	Doc 5
eigenvalue	0	0	0	1	0
England	0	0	0	0	1
FIFA	0	0	0	0	1
Google	1	0	1	0	0
${\bf Internet}$	1	0	0	0	0
link	0	1	0	0	0
matrix	1	0	1	1	0
page	0	1	1	0	0
rank	0	0	1	1	1
Web	0	1	1	0	0

Thus each documents seperesented by a week tor, a bain in thin, 10, and week an organize and documents in the atemorphism of the particular of the property of the particular of the particular

$$A = egin{pmatrix} 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 & 0 \ 1 & 0 & 1 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 \ 1 & 0 & 1 & 1 & 0 \ 0 & 1 & 1 & 0 & 0 \ 0 & 0 & 1 & 1 & 1 \ 0 & 1 & 1 & 0 & 0 \end{pmatrix}$$

ow assume that we want to find all documents that are relevant to the uery "ranking of Web pages". This is represented by a query vector, instructed in a way analogous to the term-document matrix:

$$A = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \end{pmatrix}$$

$$q = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{pmatrix} \in \mathbb{R}^{10}.$$

Timus the querys its elfois some ides educum entratament materials can retwick early the the proposition of the proposition of

$$A = egin{pmatrix} 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 & 0 \ 1 & 0 & 1 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 \ 1 & 0 & 1 & 1 & 0 \ 0 & 1 & 1 & 0 & 0 \ 0 & 0 & 1 & 1 & 1 \ 0 & 1 & 1 & 0 & 0 \end{pmatrix}$$

$$q = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{pmatrix} \in \mathbb{R}^{10}.$$

Anwendung in PageRanking

The core of the Google search engine is a matrix computation, probably the largest that is performed routinely. The Google matrix P is of the order billions, i.e., close to the total number of Web pages on the Internet. The matrix is constructed based on the link structure of the Web, and element P_{ij} is nonzero if there is a link-from Web page j to i.

Anwendung in PageRank

$$P = \begin{pmatrix} 0 & \frac{1}{3} & 0 & 0 & 0 & 0 \\ \frac{1}{3} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{3} & 0 & 0 & \frac{1}{3} & \frac{1}{2} \\ \frac{1}{3} & 0 & 0 & 0 & \frac{1}{3} & 0 \\ \frac{1}{3} & \frac{1}{3} & 0 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 1 & 0 & \frac{1}{3} & 0 \end{pmatrix}$$

Operationen und Algorithmen mit Vekt oren und Matrizen

• Schritte im Algorithmus/in der Operation nicht immer in selb er Reihenfolge

 Definition eines Algorithmus setzt nicht genaue Berechnungs struktur voraus

Matrix-Vektor Multiplikation

Reihenweise:
Apas mxn Matrix

$$y = Ax$$
, $y_i = \sum_{j=1}^{n} a_{ij}x_j$, $i = 1, ..., m$

Matrix-Vektor Multiplikation

Spaltenweise:

$$y = Ax = (a_{\cdot 1} \quad a_{\cdot 2} \quad \dots \quad a_{\cdot n})$$

$$Anwendungsbeispiel;$$

$$Basisvektoren \qquad Koordinaten$$

$$Anwendungsbeispiel:$$

$$a_{\cdot j} \rightarrow Basisvektoren \qquad x_{j} \rightarrow Koordinaten$$

Matrix-Matrix Multiplikation

- •Geg. zwei Matrizen: $A \in \mathbb{R}^{mxk}$, $B \in \mathbb{R}^{kxn}$
- Definition:

$$\mathbb{R}^{mxn}\ni C=AB$$

$$c_{ij} = \sum_{s=1}^{k} a_{is} b_{sj}, i = 1, ..., m, \qquad j = 1, ..., n$$

Berechnung eines Skalarprodukts für unabhängig von Reihenfolge Berechnung eines Skalarprodukts für c_{ij} unabhängig von Reihenfolge

Matrix-Matrix Multiplikation

Analog zu VXMMultiplikation:

$$C = AB = (a_{.1} \quad a_{.2} \quad \dots \quad a_{.k}) \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_k \end{pmatrix}^T = \sum_{s=1}^k a_{.s} b_s^T.$$
 Auch genannt: Dyadisches Produkt

Auch genannt: Dyadisches Produkt

Übergeordnete Normierungs; PNSARM

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

Verschiedene Normierungen:

$\ x\ _1 = \sum_{i=1}^n$	$ x_i $
--------------------------	---------

 $||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$

 $||x||_{\infty} = \max_{1 \le i \le n} |x_i|$

$$||x||_1 = \sum_{i=1}^n |x_i|$$

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

 $||x||_{\infty} = \max_{1 \le i \le n} |x_i|$

$$||x||_1 = \sum_{i=1}^n |x_i|$$

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

 $||x||_{\infty} = \max_{1 \le i \le n} |x_i|$

Summennorm

Euklidische Norm

Maximumsnorm

Summennorm

Euklidische Norm

Maximumsnorm

Summennorm

Euklidische Norm

Maximumsnorm

Summennorm

Euklidische Norm

Maximumsnorm

- ·Mithilfe von Normierungssind Enbleeberechnungen genöglich
- · Vektoren stellenze. Wörten Dakumentendar

Absoluter Fehler:

$$\|\delta x\| = \|\bar{x} - x\|$$

Relativer Fehler:

$$\frac{\|\delta x\|}{\|x\|} = \frac{\|\bar{x} - x\|}{\|x\|}$$

- · Vergleich der Ähnlichkeitzweier Verktoren
- >Kosimus ihrer Winkal

$$\cos \theta(x, y) = \frac{x^T y}{\|x\|_2 \|y\|_2}$$

Bsp.: Vektoren stellen Dokumente dar
Bsp.: Vektoren stellen Dokumente dar
Wenn Kosinus nahe an 1: Dokumente besitzen ähnlichen Inhal
Wenn Kosinus nahe an 1: Dokumente besitzen ahnlichen Inhalt

Anwendung in Information Retrieval Anwendung in Information Retrieval

Lineare Unabhängigkeit

- Basisvektoren (zz.Bx,x,, y, z.Achseinimaklassischen Koordinaten system) als Besteranzen für Wektor im Raum
- •• Def: Lineare Umabhanggigkeit Geg: Vekteren $(v_j)_{j=1}^n$

$$\sum_{j=1}^{n} \alpha_j v_j = 0$$
, wenn für $\alpha_j = 0$ für $j = 1, 2, ..., n$.

Wenn Set von Vektoren dieser Art gegeben: Basis Wenn Set von Vektoren dieser Art gegeben: Basis

Lineare Unabhängigkeit

- Anwendungsbeispiel:
- Geg.: Set von linear abhängigen Vektoren (V)
 Subset von unabhängigen V
- Ausdrücken der abhängigen V mithilfe des Subsets
- Anzahl der unabhängigen V als Maß der Information, die im S et beinhaltet wird
- Komprimierung der Vektoren
- □ Datenreduktion

Lineare Unabhängigkeit

Wichtig:

• In Realität ist lineare Unabhängigkeit fast nie möglich

 Stattdessen wichtiges Kriterium für Basisvektoren: Orthogon alität

Vielen Dank!

