Trabajo Práctico RNA - 1C 2019: Prediciendo enfermedad cardiaca en individuos

EDA (Explanatory Data Analisys)

El objetivo de un EDA es presentar al lector un análisis estadístico de un set de datos. En el presente trabajo, consideramos que hacer uno añade valor al mismo. Explicaremos paso a paso qué se hace en cada tramo de código y brindaremos explicaciones teóricas del mismo.

1.- Inspeccionemos el dataset

```
In [1]:
```

```
import pandas as pd

df = pd.read_csv('heart.csv')
df.head()
```

Out[1]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	targ
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	

Kaggle nos proporciona la siguiente información (en inglés) de las variables (que en adelante llamaremos features).

- · age age in years
- sex (1 = male; 0 = female)
- · cp chest pain type
- trestbps resting blood pressure (in mm Hg on admission to the hospital)
- chol serum cholestoral in mg/dl
- fbs (fasting blood sugar > 120 mg/dl) (1 = true; 0 = false)
- · restecg resting electrocardiographic results
- · thalach maximum heart rate achieved
- exang exercise induced angina (1 = yes; 0 = no)
- · oldpeak ST depression induced by exercise relative to rest
- slope the slope of the peak exercise ST segment
- ca number of major vessels (0-3) colored by flourosopy
- thal 3 = normal; 6 = fixed defect; 7 = reversable defect
- target 1 or 0

Nuestra variable y (dependiente) será target ya que como mencionamos, nuestro objetivo es predecir enfermedad cardiaca en individuos en base a las features proporcionada por el dataset.

Veamos la distribución de las variables

```
In [3]:
```

```
import matplotlib.pyplot as plt

df.hist(figsize=(15,15))
plt.show()
```


Algunos insights que vemos de las distribuciones:

- La mayoría de individuos tiene entre 40 y 65 años aproximadamente. Con la media estando en 50-55 años.
- La media de colesterol ronda 250mg/dl. Con una persona por arriba de 500mg/dl 😡
- Hay mitad de personas que presentan dolor de pecho, la mayoría presenta un dolor tipo 2, que consideramos un dolor "medio".
- La mayoría de los individuos del estudio son hombres.
- La mayoría de los individuos presentan un ritmo cardiaco máximo bastante normal (thalach), tomando como referencia la imagen debajo (fuente: *American Heart Association*).

Average heart rates by age					
Age in years	Average maximum heart rate in beats per minute	Target heart rate range in beats per minute			
40	180	90 to 153			
45	175	88 to 149			
50	170	85 to 145			
55	165	83 to 140 80 to 136			
60	160				
65	155	78 to 132			
70	150	75 to 128			
Source: American Heart Association.					

Separamos las features con la variable a predecir.

```
In [2]:
```

```
X = df.iloc[:, :-1].values
y = df.iloc[:, -1].values
```

2.- Separación del dataset

Dividamos el dataset en un set de entrenamiento y otro para pruebas. Hagamos un 20% para pruebas. Esto nos permite usar el 80% del mismo para entrenar el modelo y el 20% restante para probarlo. Si usaramos el 100% del dataset para entrar y lo probaramos con el mismo dataset, estaríamos cometiendo una suerte de falacia, ya que estamos usando los mismos datos que entraron a la red, para predecir los mismos datos.

```
In [3]:
```

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, rando
m_state = 0)
```

Procesemos un poco el dataset. Hagamos que la media de cada feature sea 0 y su desviación estándar 1. Esto sirve mucho para algoritmos de machine learning en general, como está descrito en este <u>artículo</u> (https://en.wikipedia.org/wiki/Feature_scaling).

In [4]:

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train)
X_train = scaler.transform(X_train)
# apply same transformation to test data
X_test = scaler.transform(X_test)
```

Ahora la parte divertida!

3.- Generemos el modelo y alimentémoslo con los datos de entrenamiento

```
In [5]:
```

```
import numpy as np
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import accuracy_score
```

Probemos diferentes configuraciones de redes neuronales. Vayamos de 1 hidden layer con 3 neuronas a 5 capas con 12 neuronas cada una. Serían 5 x 10 combinaciones.

In [6]:

```
mlp_accuracies_df = pd.DataFrame(columns=['neurons', 'layers', 'score'])

for layers in range(1,5+1):
    for neurons in range(3,12+1):
        clf = MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(neurons, layers), random_state=1)
        clf.fit(X_train, y_train)
        y_pred = clf.predict(X_test)
        accuracy = accuracy_score(y_test, y_pred)
        mlp_accuracies_df = mlp_accuracies_df.append({'neurons': neurons, 'layers': layers, 'score': accuracy}, ignore_index=True)
```

```
In [7]:
```

mlp_accuracies_df.sort_values(by='score', ascending=False)

	neurons	layers	score
27	10.0	3.0	0.901639
28	11.0	3.0	0.885246
9	12.0	1.0	0.885246
15	8.0	2.0	0.868852
14	7.0	2.0	0.868852
	5.0	2.0	0.868852
12		5.0	0.852459
46	9.0		
39	12.0	4.0	0.836066
30	3.0	4.0	0.836066
22	5.0	3.0	0.836066
49	12.0	5.0	0.836066
43	6.0	5.0	0.836066
6	9.0	1.0	0.836066
47	10.0	5.0	0.836066
38	11.0	4.0	0.819672
40	3.0	5.0	0.819672
44	7.0	5.0	0.819672
36	9.0	4.0	0.819672
18	11.0	2.0	0.819672
32	5.0	4.0	0.819672
20	3.0	3.0	0.819672
21	4.0	3.0	0.819672
24	7.0	3.0	0.819672
34	7.0	4.0	0.803279
48	11.0	5.0	0.803279
37	10.0	4.0	0.803279
25	8.0	3.0	0.803279
11	4.0	2.0	0.803279
2	5.0	1.0	0.803279
23	6.0	3.0	0.803279
1	4.0	1.0	0.803279
17	10.0	2.0	0.803279
13	6.0	2.0	0.803279
16	9.0	2.0	0.786885
3	6.0	1.0	0.786885
5	8.0	1.0	0.786885

neurons	layers	score
9.0	3.0	0.786885
6.0	4.0	0.786885
12.0	3.0	0.786885
8.0	5.0	0.770492
7.0	1.0	0.770492
3.0	2.0	0.754098
12.0	2.0	0.754098
8.0	4.0	0.737705
11.0	1.0	0.737705
5.0	5.0	0.737705
4.0	5.0	0.704918
4.0	4.0	0.672131
10.0	1.0	0.557377
3.0	1.0	0.557377
	9.0 6.0 12.0 8.0 7.0 3.0 12.0 8.0 11.0 5.0 4.0 4.0	9.0 3.0 6.0 4.0 12.0 3.0 8.0 5.0 7.0 1.0 3.0 2.0 12.0 2.0 8.0 4.0 11.0 1.0 5.0 5.0 4.0 4.0 10.0 1.0

In [11]:

```
clf
```

Out[11]:

```
MLPClassifier(activation='relu', alpha=1e-05, batch_size='auto', bet
a_1=0.9,
    beta_2=0.999, early_stopping=False, epsilon=1e-08,
    hidden_layer_sizes=(6, 5), learning_rate='constant',
    learning_rate_init=0.001, max_iter=200, momentum=0.9,
    n_iter_no_change=10, nesterovs_momentum=True, power_t=0.5,
    random_state=1, shuffle=True, solver='lbfgs', tol=0.0001,
    validation fraction=0.1, verbose=False, warm start=False)
```

4.- Analicemos el modelo hecho

Podemos ver los atributos que maneja la clase de Multi-Layer Perceptron Classifier. Posee un learning_rate de 1e-5 (alpha) y usa como función de activación la ReLU.

En este caso, podemos ver que comparando el accuracy scoring (acertados/total) que la configuración de 2 capas escondidas con 5 neuronas cada una (hidden_layer_sizes) es la más óptima para este dataset.

A su vez, la documentación de Sklearn nos dice que su clase utiliza back-propagation <u>aquí (https://scikitlearn.org/stable/modules/neural_networks_supervised.html#classification)</u>.

5.- Veamos qué tan bien va el modelo con los datos de prueba

```
In [10]:
```

```
clf = MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(10, 3), rand
om_state=1)
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)

from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
```

```
In [11]:
```

cm

Out[11]:

```
array([[25, 2], [ 4, 30]])
```