E. Doe Graphs

time limit per test: 3 seconds memory limit per test: 256 megabytes

input: standard input output: standard output

John Doe decided that some mathematical object must be named after him. So he invented the Doe graphs. The Doe graphs are a family of undirected graphs, each of them is characterized by a single non-negative number — its order.

We'll denote a graph of order k as D(k), and we'll denote the number of vertices in the graph D(k) as |D(k)|. Then let's define the Doe graphs as follows:

- D(0) consists of a single vertex, that has number 1.
- D(1) consists of two vertices with numbers 1 and 2, connected by an edge.
- D(n) for $n \ge 2$ is obtained from graphs D(n-1) and D(n-2). D(n-1) and D(n-2) are joined in one graph, at that numbers of all vertices of graph D(n-2) increase by |D(n-1)| (for example, vertex number 1 of graph D(n-2) becomes vertex number 1+|D(n-1)|). After that two edges are added to the graph: the first one goes between vertices with numbers |D(n-1)| and |D(n-1)|+1, the second one goes between vertices with numbers |D(n-1)|+1 and |D(n-1)|+1 and

The picture shows the Doe graphs of order 1, 2, 3 and 4, from left to right.

John thinks that Doe graphs are that great because for them exists a polynomial algorithm for the search of Hamiltonian path. However, your task is to answer queries of finding the shortest-length path between the vertices a_i and b_i in the graph D(n).

A path between a pair of vertices u and v in the graph is a sequence of vertices $x_1, x_2, ..., x_k$ ($k \ge 1$) such, that $x_1 = u$, $x_k = v$, and for any i ($i \le k$) vertices x_i and x_{i+1} are connected by a graph edge. The length of path $x_1, x_2, ..., x_k$ is number (k - 1).

Input

The first line contains two integers t and n ($1 \le t \le 10^5$; $1 \le n \le 10^3$) — the number of queries and the order of the given graph. The i-th of the next t lines contains two integers a_i and b_i ($1 \le a_i$, $b_i \le 10^{16}$, $a_i \ne b_i$) — numbers of two vertices in the i-th query. It is guaranteed that a_i , $b_i \le |D(n)|$.

Please, do not use the %11d specifier to read or write 64-bit integers in C++. It is preferred to use cin, cout streams or the %164d specifier.

Output

For each query print a single integer on a single line — the length of the shortest path between vertices a_i and b_i . Print the answers to the queries in the order, in which the queries are given in the input.

Examples

input	
10 5	
1 2	
1 3	
1 4	
1 5	
2 3	
2 4	
2 5	
3 4	
3 5	
4 5	

tput	