UNIVERSIDADE ESTADUAL DE CAMPINAS

Instituto de Computação

Disciplina	Entrega
MC202	27/08/2020, 21:00
Professor	
Iago Augusto de Carvalho	
Monitores	
Arthur (PAD), Brenner (PED), Deyvison (PED), Enoque (PED), Matteus (PED), Thiago (PAD).	

Exame final RA com dígito final ímpar

Instruções

Esta prova contém um total de quatro questões. Ela terá início as 19 horas e fim as 21 horas.

A prova deverá ser resolvida a lapis ou a caneta e, posteriormente, fotografada e enviada por email para mim até o prazo limite de 21h20. Desta forma, existe um prazo de 20 minutos para que vocês fotografem a prova e a enviem por e-mail após sua finalização.

O e-mail deverá conter os seguintes dados:

- Nome completo
- RA
- Turma (D, E, F ou G)
- Fotos da prova em anexo (em formato .zip ou em uma sequência lógica)

Questão 1 - Listas encadeadas e vetores (valor: 0.25)

Você tem que implementar uma estrutura de dados para um software específico de um cliente. Você sabe que os dados armazenados nesta estrutura sofrerão diversas operações de inserção e modificação/atualização, mas praticamente nenhuma operação de remoção. Qual estrutura de dados você escolheria para implementar nesta situação? Justifique sua resposta.

Resposta: Deveria ser utilizado um vetor alocado dinamicamente. A inserção é feita sempre no fim do vetor e a modificação/atualização pode ser realizada em O(1). Remoções são caras (pois necessitam mover todos os itens logo após o item removido), mas não são um problema pois elas são raras.

Questão 2 - Algoritmos de Ordenação (valor: 0.25)

Considere os seguintes algoritmos de ordenação: (i) Insertion sort; (ii) Selection sort; (iii) Quicksort; e (iv) Mergesort. Você recebe dois conjuntos de inteiros A e B e deve criar um conjunto $C = A \cup B$ tal que os elementos em C estejam ordenados em ordem **crescente**. Considere que |A| representa o número de elementos contidos em A e |B| representa o número de elementos contidos em B. Nas situações abaixo, qual algoritmo de ordenação você escolheria? Justifique sua resposta.

- (a) |A| = 10000 e |B| = 10000. Os números em A e em B não possuem nenhuma ordenação específica.
- (b) |A| = 10000 e |B| = 5. Os números em A estão ordenados em ordem crescente e os números em B não possuem nenhuma ordem específica.
- (c) |A| = 1 e |B| = 10000. Os números em A e em B estão ordenados em ordem decrecente.

Respostas:

(a) Tanto o Quicksort como o Mergesort são adequados, pois a complexidade de ambos os algoritmos são O(nlogn). O Mergesort deve ser utilizado caso você não possa tolerar um pior caso de $O(n^2)$, enquanto o Quicksort deve ser utilizado caso memória seja um problema.

- (b) O correto seria utilizar o Insertion sort. Este é o algorimo mais eficiente para inserir um pequeno número de elementos em um vetor já ordenado.
- (c) Quicksort deve ser utilizado devido a fácil localização do pivô inicial.

Questão 3 - Árvores binárias não balanceadas (valor: 0.25)

Para cada um dos conjuntos de inteiros a seguir, desenhe como será a árvore binária não balanceada obtida ao inserir os números na ordem em que são dados, isto é, da esquerda para a direita.

- (a) 5 10 15 20 2 4 1 9 12 6
- (b) 1 2 3 4 5 7 6 8 10 9
- (c) 10 1 3 9 7 5 4 12 17 15

Respostas: Ver Figura 1.

Questão 4 - Tabelas de hash (valor: 0.25)

Você possui uma tabela de hash de endereçamento aberto implementada como uma lista circular, com tamanho n=10. Você deve inserir o conjunto de inteiros 10,12,7,9,8,11,13,15,1,3 nesta tabela hash, sempre da esquerda para a direita (primeiro você insere o número 10, depois o número 12, depois o 7, e assim por diante). Desenhe como será a organização final dos números na tabela para as seguintes funções de hash:

- (a) $h(x) = 2x \mod 10$
- (b) $h(x) = x \mod 5$
- (c) $h(x) = (3x 2) \mod 10$

Respostas: Ver Figura 2.

Figura 1: Respostas da questão 3

Figura 2: Respostas da questão 4