TRIGONOMETRIJSKI KRUG

Uglovi mogu da se mere u stepenima i radijanima. Sa pojmom stepena smo se upoznali još u osnovnoj školi i ako se sećate , njega smo podelili na minute i sekunde.(1^0 =60° , 1'=60°). Da bi objasnili šta je to radijan, posmatraćemo kružnicu poluprečnika R .Obim kružnice se računa po formuli $O=2R\pi$, a znamo da je $\pi\approx 3,14$.Ako uzmemo deo te kružnice (kružni luk) koji je dužine baš R , njemu odgovara neki centralni ugao φ .

Mera centralnog ugla koji odgovara luku dužine R je jedan radijan.

Jasno je da onda pun ugao ima 2π radijana. Odnosno:

$$360^0 = 2 \pi$$
 radijana

$$180^0 = \pi$$
 ZAPAMTI

$$1^0 = \frac{\pi}{180} radijana$$

Važi dakle:

$$1 = \frac{\pi}{180*60}$$
 radijana

$$1^{\sim} = \frac{\pi}{180*60*60} radijana$$

I obrnuto: $1rad = \frac{180^{\circ}}{\pi} \approx 57^{\circ}17'45$

Primer 1:

Nađi radijansku meru ugla od:

- a) 75°
- $b) 245^{0}$
- $v) 82^{0}30$

Rešenje: a) Kako je $1^0 = \frac{\pi}{180}$ radijana to je $75^0 = 75 \frac{\pi}{180} = \frac{5\pi}{12}$

b)
$$245^{\circ} = 245 \frac{\pi}{180} = \frac{49\pi}{36}$$

v)
$$82^{\circ}30 = 82 \frac{\pi}{180} + 30 \frac{\pi}{180 * 60} = \frac{11\pi}{24}$$

Primer 2.

Naći meru u stepenima ugla čija je radijanska mera:

a)
$$\frac{3\pi}{4}$$

b)
$$\frac{11\pi}{6}$$

v) 5radijana

Rešenje:

$$a)\frac{3\pi}{4} = \frac{3*180}{4} = 135^0$$

$$b)\frac{11\pi}{6} = \frac{11*180}{6} = 330^{0}$$

$$v)$$
5 $radijana = 5 \cdot (57^{0}17'45'')$

$$=285^{\circ}85^{\circ}225^{\circ}$$

$$=285^{0}88^{\circ}45^{\circ}$$

$$=286^{\circ}28^{\circ}45^{\circ}$$

Dalje smo ugao definisali kao dve poluprave sa zajedničkim početkom. A možemo razmišljati i ovako: Uočimo jednu polupravu koja može da se obrće oko svoje početne tačke O. Pri obrtanju ćemo razlikovati dva smera:

POZITIVAN – smer suprotan od smera kretanja kazaljke na časovniku i

NEGATIVAN- smer kretanja kazaljke časovnika.

Ako obeležimo sa **a** početni i sa **b** završni položaj poluprave nakon obrtanja tačke O u jednom ili drugom smeru, ugao **ab** zovemo ORIJENTISAN UGAO.

TRIGONOMETRIJSKI KRUG je krug poluprečnika 1 čiji je centar u koordinatnom početku.

Tačka A(1,0) koja pripada trigonometrijskom krugu zove se POČETNA tačka. Na trigonometrijskom krugu ćemo posmatrati različite lukove koji svi počinju u tački A. Luk koji obilazimo u smeru suprotnom od kazaljke na časovniku je POZITIVAN luk, a u smeru kazaljke je NEGATIVAN luk. Uglovi po kvadrantima idu ovako:

iz I kvadranta: $0 < \alpha < \frac{\pi}{2}$

iz II kvadranta : $\frac{\pi}{2} < \alpha < \pi$

iz III kvadranta : $\pi < \alpha < \frac{3\pi}{2}$

iz IV kvadranta : $\frac{3\pi}{2} < \alpha < 2\pi$

Uglovi $0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}$, su granični i podrazumeva se da nisu ni u jednom kvadrantu. Uglove čije ćemo vrednosti očitavati sa trigonometrijskog kruga su sledeći:

Sinus i kosinus proizvoljnog ugla

Za bilo koji proizvoljan ugao uvek jedan krak poklopimo sa x- osom, tj, sa početnom tačkom A(1,0), drugi krak seče trigonometrijski u nekoj tački M(x_0 , y_0). Iz te tačke spustimo normale na x i y osu. Te dužine su:

- Na x-osi $\cos \alpha$ ($\cos \alpha = x_0$)
- Na y-osi $\sin \alpha$ ($\sin \alpha = y_0$)

Evo našeg predloga kako da zapamtite vrednosti i da ih "pročitate" sa kruga.

Zapamtimo tri broja:

$$\frac{1}{2}$$
, $\frac{\sqrt{2}}{2}$, $\frac{\sqrt{3}}{2}$

koji su poređani od najmanjeg do najvećeg.

Broj u sredini $\frac{\sqrt{2}}{2}$ odgovara uglovima koji su sredine kvadranata!

Znači sinusi i kosinusi uglova od 45 , 135 , 225 i 315 stepeni imaju vrednost $\frac{\sqrt{2}}{2}$, samo vodimo računa da li

je ta vrednost $+\frac{\sqrt{2}}{2}$ ili $-\frac{\sqrt{2}}{2}$.

Evo to na slikama , pa će biti jasnije:

$$\sin 45^0 = \cos 45^0 = \frac{\sqrt{2}}{2}$$

 $\sin 135^0 = \frac{\sqrt{2}}{2} \text{ a } \cos 135^0 = -\frac{\sqrt{2}}{2}$

$$\sin 225^0 = -\frac{\sqrt{2}}{2} \quad \cos 225^0 = -\frac{\sqrt{2}}{2}$$

$$\sin 315^0 = -\frac{\sqrt{2}}{2}$$
 a $\cos 315^0 = \frac{\sqrt{2}}{2}$

Za ostale uglove vrednosti će biti $\frac{\sqrt{2}}{2}$ ili $\frac{\sqrt{3}}{2}$, naravno opet gledamo da li je + ili - . Evo par primera:

Primer1.

Nađi $\sin 60^{\circ}$ i $\cos 60^{\circ}$ $\sin 60^{\circ}$ $\cos 60^{\circ}$

Kako ugao od 60° nije sredina kvadranta, to će vrednosti za sin 60° i cos 60° biti $\frac{1}{2}$ i $\frac{\sqrt{3}}{2}$ i to obe pozitivne. Pošto je crta za sin 60° **duža**, ona mora biti $\frac{\sqrt{3}}{2}$ (jer je veći broj) a cos 60° je $\frac{1}{2}$ jer je crta tu kraća.

Dakle: $\sin 60^0 = \frac{\sqrt{3}}{2}$ i $\cos 60^0 = \frac{1}{2}$

Primer 2.

Nađi $\sin 150^{0}$ i $\cos 150^{0}$

Crta za $\sin 150^{\circ}$ je kraća i pozitivna a crta za $\cos 150^{\circ}$ je duža i negativna, pa je : $\sin 150^{\circ} = \frac{1}{2}$ a $\cos 150^{\circ} = -\frac{\sqrt{3}}{2}$

Primer 3.

Nađi
$$\sin \frac{4\pi}{3} i \cos \frac{4\pi}{3}$$
.

Ako date uglove u radijanima prebacimo u stepene, dobijamo da je to $\frac{4\pi}{3}$ = 240°

Znači, radi se o uglu u trećem kvadrantu i nije sredina kvadranta. Primetićemo da su obe vrednosti negativne, sinus je duži a kosinus kraći. Zaključujemo: $\sin\frac{4\pi}{3} = -\frac{\sqrt{3}}{2}$ i $\cos\frac{4\pi}{3} = -\frac{1}{2}$

Primer 4.

Nađi
$$\sin(-30^{0})$$
 i $\cos(-30^{0})$

Ovaj ugao, pošto je negativan ide u smeru kazaljke na satu. U pozitivnom smeru to bi bio ugao od 330°.

$$\sin(-30^{\circ}) = \sin 330^{\circ} = -\frac{1}{2}$$
 i $\cos(-30^{\circ}) = \cos 330^{\circ} = \frac{\sqrt{3}}{2}$

Da pogledamo šta je sa uglovima od
$$0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}$$
 (granični uglovi)

Kraci ovog ugla se poklapaju , x-osu seku do jedinice, a y-osu nigde, zato je $\cos 0^0 = 1$ (cela crta) a $\sin 0^0 = 0$ (nema crte)

Ugao od 90^0 seče y- osu po celoj crti a x- osu nigde. Pa je sin 90^0 =1 a cos 90^0 =0

 $\sin 180^0 = 0$ $\cos 180^0 = -1$

 $\sin 270^0 = -1$ $\cos 270^0 = 0$

Tangens i kontangens proizvoljnog ugla

Već smo se ranije upoznali sa formulama $tg\alpha = \frac{\sin \alpha}{\cos \alpha}$ i $ctg\alpha = \frac{\cos \alpha}{\sin \alpha}$, naravno pod uslovima da su imenioci različiti od nule.

Možemo zaključiti da je $\mathbf{tg} \alpha$ definisan za $\cos \alpha \neq 0$, odnosno za $\alpha \neq \frac{\pi}{2} + \mathbf{k} \pi$, $\mathbf{k} \in \mathbf{Z}$

A ctg α za sin $\alpha \neq 0$, odnosno za $\alpha \neq k \pi$, $k \in \mathbb{Z}$

To znači da ako znamo da nađemo $\sin \alpha$ i $\cos \alpha$, znamo $\operatorname{tg} \alpha$ i $\operatorname{ctg} \alpha$

Primer 1.

Nađi:

- a) $tg\frac{\pi}{4}$
- b) $ctg 300^0$

b)
$$\operatorname{ctg} 300^{0} = \frac{\cos 300^{0}}{\sin 300^{0}} = \frac{\frac{1}{2}}{-\frac{\sqrt{3}}{2}} = -\frac{\sqrt{3}}{3}$$

Naučimo sada gde se čitaju tangensi i kotangensi na trigonometrijskom krugu.

Uočimo pravu x=1. Ona očigledno prolazi kroz tačku A(1,0) i paralelna je sa y- osom. Jedan krak datog ugla α opet poklopimo sa x- osom a drugi krak će seći ovu pravu x=1 koju ćemo zvati **TANGENSNA osa**. Odsečak na tangensnoj osi je ustvari vrednost za tg α . Evo to na slici:

Uočimo sada pravu y=1 koja prolazi kroz tačku B(0,1) i paralelna je x- osi. Tu pravu ćemo zvati **KOTANGENSNA osa** i na njoj ćemo očitavati vrednost za kotangense uglova.

Evo slike:

Ovde razmišljamo slično kao za sinuse i cosinuse, samo moramo da zapamtimo nova tri broja:

$$\frac{\sqrt{3}}{3}$$
, 1, $\sqrt{3}$

Broj 1, pozitivan ili negativan je vrednost za tangense i kotangense uglova koji su sredine kvadranata, tj. za 45, 135, 225 i 315 stepeni a za ostale uglove gledamo dužinu CRTA koje odsecaju na tangensnoj i kotangesnoj osi i da li je pozitivna ili negativna.

Veća crta je $\sqrt{3}$, a manja je $\frac{\sqrt{3}}{3}$ Evo nekoliko primera:

 $tg45^0=1$ i $ctg45^0=1$ Sredina kvadranta je u pitanju, pa su vrednosti 1.

PAZI:

Pošto krak ugla ne seče tangensnu osu, moramo ga produžiti do preseka sa osom. Uočimo da su obe vrednosti negativne i da je tangens duži a kotangens kraći!

Dakle:
$$tg 120^0 = -\sqrt{3}$$
 i $ctg 120^0 = -\frac{\sqrt{3}}{3}$

tg240⁰=
$$\sqrt{3}$$
 i ctg 240⁰= $\frac{\sqrt{3}}{3}$ (uoči dužine ovih podebljanih crta)

Šta je sa graničnim uglovima?

Za 0 stepeni vidimo da ugao ne seče nigde tangensnu osu , pa je $tg0^0=0$, za $ctg0^0$ krak i kotangensna osa idu paralelno, pa kažemo da ctg x teži beskonačnosti kad x teži nuli u pozitivnom smeru.

Slično je za ugao od 180° . Opet je tangens nula a kotangens teži - ∞ .

Za ugao od 90^0 je obrnuta situacija: $ctg90^0=0$ a $tg90^0$ teži $+\infty$.

Za ugao od 270^0 je ctg 270^0 =0 a tg 270^0 teži - ∞ .

