Data Science and Artificial Intelligence Probability and Statistics

Bivariate Random Variable

By-Rahul Sir

Lecture No.- 06

Topic

Problems Based on Volume Via Double Integral

Topic

Change the Order of Integration

Topic

Bivariate Continuous Random Variables

Sædædy AKRegin

Q3. Illustration

y = 0

 $\iint x^2 dx dy$ where A is the region in the Ist quadrant bounded by Hyperbola

$$xy = 16$$

$$x = 8$$

$$x = y$$

$$x = y$$

$$x = y$$

$$x = y$$

$$x = \frac{16}{x}$$

$$x^{2} = 16$$

$$x = \pm 4$$

$$x = 4$$

Ind region =
$$\begin{cases} 8 & \frac{16}{2} \\ \frac{16}{2} & \frac{16}{2} \end{cases}$$

$$= 64 + 384$$

$$\Rightarrow \begin{cases} 8 & \frac{16}{2} \\ \frac{16}{2} & \frac{16}{2} \end{cases}$$

$$= 448 \text{ Az}$$

$$\Rightarrow \begin{cases} 9 & \frac{16}{2} \\ \frac{16}{2} & \frac{16}{2} \end{cases}$$

$$\Rightarrow \begin{cases} 8 & \frac{16}{2} \\ \frac{16}{2} & \frac{16}{2} \end{cases}$$

$$\Rightarrow \begin{cases} 16 & \frac{16}{2} \\ \frac{16}{2} & \frac{16}{2} \end{cases}$$

$$\Rightarrow \begin{cases} 16 & \frac{16}{2} \\ \frac{16}{2} & \frac{16}{2} \end{cases}$$

$$\Rightarrow \begin{cases} 16 & \frac{16}{2} \\ \frac{16}{2} & \frac{16}{2} \end{cases}$$

$$\Rightarrow \begin{cases} 16 & \frac{16}{2} \\ \frac{16}{2} & \frac{16}{2} \end{cases}$$

$$\Rightarrow \begin{cases} 16 & \frac{16}{2} \\ \frac{16}{2} & \frac{16}{2} \end{cases}$$

$$\Rightarrow \begin{cases} 16 & \frac{16}{2} \\ \frac{16}{2} & \frac{16}{2} \end{cases}$$

$$\Rightarrow \begin{cases} 16 & \frac{16}{2} \\ \frac{16}{2} & \frac{16}{2} \end{cases}$$

$$\Rightarrow \begin{cases} 16 & \frac{16}{2} \\ \frac{16}{2} & \frac{16}{2} \end{cases}$$

$$\Rightarrow \begin{cases} 16 & \frac{16}{2} \\ \frac{16}{2} & \frac{16}{2} \end{cases}$$

$$\Rightarrow \begin{cases} 16 & \frac{16}{2} \\ \frac{16}{2} & \frac{16}{2} \end{cases}$$

$$\Rightarrow \begin{cases} 16 & \frac{16}{2} \\ \frac{16}{2} & \frac{16}{2} \end{cases}$$

$$\Rightarrow \begin{cases} 16 & \frac{16}{2} \\ \frac{16}{2} & \frac{16}{2} \end{cases}$$

$$\Rightarrow \begin{cases} 16 & \frac{16}{2} \\ \frac{16}{2} & \frac{16}{2} \end{cases}$$

$$\Rightarrow \begin{cases} 16 & \frac{16}{2} \\ \frac{16}{2} & \frac{16}{2} \end{cases}$$

$$\Rightarrow \begin{cases} 16 & \frac{16}{2} \\ \frac{16}{2} & \frac{16}{2} \end{cases}$$

$$\Rightarrow \begin{cases} 16 & \frac{16}{2} \\ \frac{16}{2} & \frac{16}{2} \end{cases}$$

$$\Rightarrow \begin{cases} 16 & \frac{16}{2} \\ \frac{16}{2} & \frac{16}{2} \end{cases}$$

$$\Rightarrow \begin{cases} 16 & \frac{16}{2} \\ \frac{16}{2} & \frac{16}{2} \end{cases}$$

$$\Rightarrow \begin{cases} 16 & \frac{16}{2} \\ \frac{16}{2} & \frac{16}{2} \end{cases}$$

$$\Rightarrow \begin{cases} 16 & \frac{16}{2} \\ \frac{16}{2} & \frac{16}{2} \end{cases}$$

$$\Rightarrow \begin{cases} 16 & \frac{16}{2} \\ \frac{16}{2} & \frac{16}{2} \end{cases}$$

$$\Rightarrow \begin{cases} 16 & \frac{16}{2} \\ \frac{16}{2} & \frac{16}{2} \end{cases}$$

$$\Rightarrow \begin{cases} 16 & \frac{16}{2} \\ \frac{16}{2} & \frac{16}{2} \end{cases}$$

$$\Rightarrow \begin{cases} 16 & \frac{16}{2} \\ \frac{16}{2} & \frac{16}{2} \end{cases}$$

$$\Rightarrow \begin{cases} 16 & \frac{16}{2} \\ \frac{16}{2} & \frac{16}{2} \end{cases}$$

$$\Rightarrow \begin{cases} 16 & \frac{16}{2} \\ \frac{16}{2} & \frac{16}{2} \end{cases}$$

$$\Rightarrow \begin{cases} 16 & \frac{16}{2} \\ \frac{16}{2} & \frac{16}{2} \end{cases}$$

$$\Rightarrow \begin{cases} 16 & \frac{16}{2} \\ \frac{16}{2} & \frac{16}{2} \end{cases}$$

$$\Rightarrow \begin{cases} 16 & \frac{16}{2} \\ \frac{16}{2} & \frac{16}{2} \end{cases}$$

$$\Rightarrow \begin{cases} 16 & \frac{16}{2} \\ \frac{16}{2} & \frac{16}{2} \end{cases}$$

$$\Rightarrow \begin{cases} 16 & \frac{16}{2} \\ \frac{16}{2} & \frac{16}{2} \end{cases}$$

$$\Rightarrow \begin{cases} 16 & \frac{16}{2} \\ \frac{16}{2} \\ \frac{16}{2} \\ \frac{16}{2} \\ \frac{16}{2} \end{cases}$$

$$\Rightarrow \begin{cases} 16 & \frac{16}{2} \\ \frac{16}{2}$$

dad region

Q1. Illustration

The volume enclosed by the surface $f(x, y) = e^x$ over the triangle bounded by

lines
$$T = \iint f(x,y) dy dx$$

 $x = y$
 $x = 0$
 $y = 1$ in the xy plane $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$
 $= 0$

xex = (x-1)ex

$$= \int_{0}^{1} e^{x} (1-x) dx$$

$$= \int_{0}^{1} e^{x} dx - \int_{0}^{1} xe^{x} dx$$

$$= \int_{0}^{1} e^{x} dx - \int_{0}^{1} xe^{x} dx$$

$$= \int_{0}^{1} e^{x} dx - \int_{0}^{1} xe^{x} dx$$

$$= \int_{0}^{1} (e^{x} - 1)e^{x} dx$$

$$= \int_{0}^{1$$

Q2.
$$\int \int (x^2 + y^2) dx dy$$
 over the region bounded by $y = x^2 \& y^2 = x$

$$\sum_{i=1}^{n} \chi^{i} \left(\begin{array}{c} \chi = 1 \\ \chi = 1 \end{array} \right)$$

ス⁴-ス= U

$$= \int (x^{2}+y^{2}) dy dx$$

$$= \int (x^{2}+y^{2}) dy dx$$

$$\Rightarrow \int (x^{2}+y^{2}) dy$$

$$\Rightarrow \int$$

Doyouse

Q10. The solution of $\int_{1}^{\infty} \int_{1}^{\infty} \frac{dxdy}{xy}$ is

 $\int_0^1 e^{x^2} dx \int_{y=0}^{2x} dy = \int_0^1 e^{x^2} \left[2x\right] = \int_0^1 e^{x^2} 2x dx = dx$ $\int_0^1 e^{x^2} dx \int_{y=0}^{2x} dy = \int_0^1 e^{x^2} 2x dx = dx$

	CHANGE THE Order of Integration	Plat The Curve (Limit)
	Check - Horizontal Stanto IV	estical etal
Q	Check-Horizontal Starpi/v. V Konizontal	
	Slenda	Vertical
	Yconstant	Story.
	X variable.	Xeonstant
		y vanable
	dydx = dxdy	

Q12. Changing the order of integration in double integral

$$I = \int_{x=0}^{8} \int_{y=\frac{x}{4}}^{2} f(x,y) dy dx$$

leads to I = $\int_r^s \int_p^q f(x, y) dx dy$. What is q?

Q13. $\int \int \cos(x+y) \, dxdy \, over \, the \, region \, enclosed \, by \, y=x, \, y=\pi, \, x=0$

Q14. The value of double integral

value of double integral
$$\int_{x=0}^{\pi} \int_{y=0}^{x} \frac{\sin y}{(\pi - y)} dy dx$$

Q15. The value of the integral $\int_{y=0}^{\pi} \int_{y=y}^{\pi} \frac{\sin x}{dxdy}$ is equal to

$$I = \int_{0}^{\pi} \int_{x=y}^{\pi} \frac{\sin x}{x} dx dy$$

The value of integral

$$\int_{0}^{2x} \int_{0}^{x+y} e^{x+y} dx dy$$
 is

$$I = \int_0^2 \int_0^{\infty} e^{x+y} dxdy is$$

(a)
$$\frac{1}{2}(e-1)$$

(b)
$$\frac{1}{2}(e^2-1)^2$$

(c)
$$\frac{1}{2}(e^2-e)$$

(d)
$$\frac{1}{2}\left(e-\frac{1}{e}\right)^2 = \left(\frac{1}{2}e^{\frac{1}{2}}\right)^2$$

$$I = \int_{0}^{2} \int_{0}^{x} e^{x} e^{y} dx dy = \int_{0}^{2} e^{2x} e^{x} dx$$

$$= \left[\int_{0}^{2} e^{x} dx \right] \left[\int_{0}^{x} e^{y} dy \right] \Rightarrow \left[\frac{e^{2x}}{2} - e^{x} \right]^{2}$$

$$\Rightarrow \int_{0}^{2} e^{x} \left[e^{y} \right]_{0}^{x} dx \Rightarrow \left[\frac{e^{y}}{2} - e^{2} \right] - \left[\frac{e^{0}}{2} - e^{0} \right]$$

$$\int_{0}^{2} e^{x} \left[e^{x} - e^{0} \right] dx \Rightarrow \left[\frac{e^{y}}{2} - e^{2} \right] - \left[\frac{e^{0}}{2} - e^{0} \right]$$

Q17. The double integral $\int_0^a \int_0^y f(x,y) dx dy$ is equivalent to

(a)
$$\int_0^x \int_0^y f(x,y) dx dy$$

(b)
$$\int_0^a \int_x^y f(x,y) dx dy$$

(c)
$$\int_0^a \int_x^a f(x,y) dy dx$$

(d)
$$\int_0^a \int_0^a f(x,y) dx dy$$

THANK - YOU