Tutorial 7

Research Methods for Political Science - PO3110

Andrea Salvi

12 & 13 November 2019

Trinity College Dublin,

https://andrsalvi.github.io/research-methods/

Table of contents

- 1. About HMW3
- 2. Other measures of association: λ and γ

About HMW3

Systematic and Random Measurement Errors

Systematic:

- Consistently overestimate values for certain types of units (e.g. students always over-reporting their income)
- Biased inferences
- Examples: quantitative text analysis; misreporting/consistent misunderstanding; sample selection bias

Systematic and Random Measurement Errors

Systematic:

- Consistently overestimate values for certain types of units (e.g. students always over-reporting their income)
- · Biased inferences
- Examples: quantitative text analysis; misreporting/consistent misunderstanding; sample selection bias

Random:

- · Random fluctuations without a clear pattern
- · More uncertainty in results, only sometimes biased inferences
- Examples: human coding (if not depending on codebook)

Other measures of association: λ and γ

· Relationship between two nominal variables

- · Relationship between two nominal variables
- Can we reduce the amount of error by introducing an explanatory variable?

- · Relationship between two nominal variables
- Can we reduce the amount of error by introducing an explanatory variable?
- Lambda is a PRE measure and its value has fairly direct interpretation.

- · Relationship between two nominal variables
- Can we reduce the amount of error by introducing an explanatory variable?
- Lambda is a PRE measure and its value has fairly direct interpretation.
- PRE stands for Proportional Reduction in Error

- · Relationship between two nominal variables
- Can we reduce the amount of error by introducing an explanatory variable?
- Lambda is a PRE measure and its value has fairly direct interpretation.
- PRE stands for Proportional Reduction in Error
- Lambda tells us the improvement in predicting Y while taking X into account.

- · Relationship between two nominal variables
- Can we reduce the amount of error by introducing an explanatory variable?
- Lambda is a PRE measure and its value has fairly direct interpretation.
- · PRE stands for Proportional Reduction in Error
- Lambda tells us the improvement in predicting Y while taking X into account.
- $0 \le \lambda \le 1$
- Useful to compare the strength of bi-variate relationships.

3

• Association = $\frac{\textit{Original Error} - \textit{Remaining Error}}{\textit{OriginalError}}$

- Association = $\frac{\text{Original Error} \text{Remaining Error}}{\text{Original Error}}$
- $\lambda = \frac{E_1 E_2}{E_1}$

- $\lambda = \frac{E_1 E_2}{E_1}$
- $E_1 = (N the largest row total)$
- E_2 = (For each column, subtract the largest cell frequency from its column total and then add the differences together)

Efficiency/Authoritarianism	Low	High	Total
Low	10	12	22
High	17	5	22
Total	27	17	44

¹From Professor Patricia Pakvis material

Efficiency/Authoritarianism	Low	High	Total
Low	10	12	22
High	17	5	22
Total	27	17	44

• $E_1 = N - largest row total = 44 - 22 = 22$

¹From Professor Patricia Pakvis material

Efficiency/Authoritarianism	Low	High	Total
Low	10	12	22
High	17	5	22
Total	27	17	44

- $E_1 = N \text{largest row total} = 44 22 = 22$
- E_2 = For each column, subtract the largest cell frequency from the col. total and add together = (27 17) + (17 12) = 10 + 5 = 15

¹From Professor Patricia Pakvis material

Efficiency/Authoritarianism	Low	High	Total
Low	10	12	22
High	17	5	22
Total	27	17	44

- $E_1 = N \text{largest row total} = 44 22 = 22$
- E_2 = For each column, subtract the largest cell frequency from the col. total and add together = = (27 17) + (17 12) = 10 + 5 = 15

•
$$\lambda = \frac{22-15}{22} = 0.32$$

¹From Professor Patricia Pakvis material

Efficiency/Authoritarianism	Low	High	Total
Low	10	12	22
High	17	5	22
Total	27	17	44

- $E_1 = N \text{largest row total} = 44 22 = 22$
- E_2 = For each column, subtract the largest cell frequency from the col. total and add together = = (27 17) + (17 12) = 10 + 5 = 15
- $\lambda = \frac{22-15}{22} = 0.32$
- Error reduced by 32%

¹From Professor Patricia Pakvis material

Practice in SPSS

Download data with party ID: https://tinyurl.com/datapartyid

Practice in SPSS

- Download data with party ID: https://tinyurl.com/datapartyid
- · Create a cross-table

Practice in SPSS

- Download data with party ID: https://tinyurl.com/datapartyid
- · Create a cross-table
- · Calculate Lambda

 Measure for relationship between two ordinal variables (e.g. time spent studying and grade)

- Measure for relationship between two ordinal variables (e.g. time spent studying and grade)
- Values between -1 and 1: -1 strong negative relationship; 0 no relationship; +1 strong positive relationship

- Measure for relationship between two ordinal variables (e.g. time spent studying and grade)
- Values between -1 and 1: -1 strong negative relationship; 0 no relationship; +1 strong positive relationship

Grades/Time Spent Studying	Minimal	Extensive
Bad	20	5
Good	6	10

- Measure for relationship between two ordinal variables (e.g. time spent studying and grade)
- Values between -1 and 1: -1 strong negative relationship; 0 no relationship; +1 strong positive relationship

Grades/Time Spent Studying	Minimal	Extensive
Bad	20	5
Good	6	10

• Find number of concordant pairs, N_c

- Measure for relationship between two ordinal variables (e.g. time spent studying and grade)
- Values between -1 and 1: -1 strong negative relationship; 0 no relationship; +1 strong positive relationship

Grades/Time Spent Studying	Minimal	Extensive
Bad	20	5
Good	6	10

- Find number of concordant pairs, N_c
- \cdot Find number of discordant pairs, N_d

Concordant pairs

Grades/Time Spent Studying	Minimal	Extensive
Bad	20	5
Good	6	<u>10</u>

$$N_c = 10 \times 20 = 200$$

Discordant pairs

Grades/Time Spent Studying	Minimal	Extensive
Bad	20	<u>5</u>
Good	6	10

$$N_c = 10 \times 20 = 200 \ N_d = 6 = 30$$

•
$$N_c = 10 \times 20 = 200$$

•
$$N_d = 6 = 30$$

•
$$N_c = 10 \times 20 = 200$$

•
$$N_d = 6 = 30$$

•
$$\gamma = \frac{N_c - N_d}{N_c + N_d}$$

•
$$N_c = 10 \times 20 = 200$$

•
$$N_d = 6 = 30$$

•
$$\gamma = \frac{N_c - N_d}{N_c + N_d}$$

•
$$\gamma = \frac{200-30}{200+30} = 0.73$$

Furthering your project

Team up and discuss (some of) the following aspects:

- 1. Research question + relevance
- 2. Theoretical argument + hypothesis
- 3. Type of data + operationalisation of variables
- 4. Ways of analysing your data

I am available for further questions/feedback!