(19) 国家知识产权局

(12) 发明专利

(10)授权公告号 CN 115322216 B (45)授权公告日 2024.03.12

(21)申请号 202210502823.9

(22)申请日 2022.05.09

(65) 同一申请的已公布的文献号 申请公布号 CN 115322216 A

(43)申请公布日 2022.11.11

(73) **专利权人** 山西大学 **地址** 030006 山西省太原市坞城路92号

(72) 发明人 毕欢 侯文静 韩高义

(74) 专利代理机构 太原申立德知识产权代理事务所(特殊普通合伙) 14115

专利代理师 程园园

(51) Int.CI.

CO7F 7/18 (2006.01)

H10K 71/12 (2023.01)

H10K 30/40 (2023.01)

H10K 30/50 (2023.01) *H10K* 85/50 (2023.01)

(56) 对比文件

CN 1771304 A,2006.05.10

CN 114400291 A, 2022.04.26

CN 1922267 A,2007.02.28

CN 112687807 A,2021.04.20

CN 1922265 A,2007.02.28

IP 2017024932 A, 2017.02.02

CN 113725365 A,2021.11.30

审查员 秦茜

权利要求书1页 说明书3页 附图4页

(54) 发明名称

一种用于制备有机-无机杂化钛矿太阳能电 池的锂盐溶剂

(57) 摘要

本发明属于太阳能电池技术领域,具体涉及一种用于制备有机-无机杂化钛矿太阳能电池的锂盐溶剂。为解决空穴传输层中Li离子的迁移带来的器件失效等问题,本发明将巯基丙基三甲氧基硅烷作为一种新型Li盐溶剂,不仅可以有效抑制Li离子迁移,同时,该溶剂还会有效减少钙钛矿薄膜的缺陷,减少器件的界面非辐射复合,最终器件的效率和稳定性都得到了显著的改善,从而促进了钙钛矿太阳能电池的商业化和大规模进程。

1.一种有机-无机杂化钛矿太阳能电池的制备方法,其特征在于,包括以下步骤:

步骤1,将导电玻璃依次使用洗涤剂、去离子水、无水乙醇超声处理后用吹干,然后经紫外臭氧处理,取出备用;

步骤2,将蒸馏水与四氯化钛混合,将步骤1臭氧处理的导电玻璃浸泡在混合后的溶液中,然后烘干,取出用蒸馏水冲洗,氮气吹干,退火,制得电子传输层,随后对电子传输层进行紫外臭氧处理;

步骤3,将钙钛矿吸光层材料溶解在DMF和DMSO混合溶剂中,得到钙钛矿前驱体溶液,震荡、过滤后旋涂在电子传输层上,随后退火,其在钙钛矿前驱体溶液旋涂结束前,滴加氯苯;

步骤4,将空穴传输层材料溶解在氯苯中,并加入TBP和Li-TFSI的巯基丙基三甲氧基硅烷溶液,混匀后旋涂到步骤3中制得的钙钛矿吸光层上,制得空穴传输层;

步骤5,在高真空下,通过热蒸法在步骤4中制得的空穴传输层上蒸镀金属背电极。

- 2.根据权利要求1所述的一种有机-无机杂化钛矿太阳能电池的制备方法,其特征在于,所述步骤1中导电玻璃为IT0或FT0,所述超声处理的时间为20min,所述紫外臭氧处理的时间为20~30min。
- 3.根据权利要求1所述的一种有机-无机杂化钛矿太阳能电池的制备方法,其特征在于,所述步骤2中蒸馏水与四氯化钛的体积比为1:1~3,所述烘干温度为75℃,时间为45min,所述退火温度为200℃,时间为30min,所述紫外臭氧处理的时间为20~30min。
- 4.根据权利要求1所述的一种有机-无机杂化钛矿太阳能电池的制备方法,其特征在于,所述步骤3中钙钛矿吸光层材料为机胺盐和卤化铅盐,所述DMF和DMSO的体积比为4:1。
- 5.根据权利要求1所述的一种有机-无机杂化钛矿太阳能电池的制备方法,其特征在于,所述步骤3中所述震荡的时间为5min,所述旋涂的速度为4000rpm,时间为30s,所述退火的温度为130℃,时间为28min。
- 6.根据权利要求1所述的一种有机-无机杂化钛矿太阳能电池的制备方法,其特征在于,所述步骤4中空穴传输层材料为2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴。
- 7.根据权利要求1所述的一种有机-无机杂化钛矿太阳能电池的制备方法,其特征在于,所述步骤4中Li-TFSI的巯基丙基三甲氧基硅烷溶液的浓度为250~520 mg/mL。
- 8.根据权利要求1所述的一种有机-无机杂化钛矿太阳能电池的制备方法,其特征在于,所述步骤4中所述旋涂的速度为3000rpm,时间为30s。
- 9.根据权利要求1所述的一种有机-无机杂化钛矿太阳能电池的制备方法,其特征在于,所述步骤5中金属背电极为金、银、铜或铝,所述蒸镀厚度为100nm。

一种用于制备有机-无机杂化钛矿太阳能电池的锂盐溶剂

技术领域

[0001] 本发明属于太阳能电池技术领域,具体涉及一种用于制备有机-无机杂化钛矿太阳能电池的锂盐溶剂。

背景技术

[0002] 据统计,氢能,风能,核能和太阳能等均取得了不小的发展。其中,太阳能作为一种取之不尽的清洁能源,被格外重视。目前为止,太阳能电池已经来到了第三代薄膜太阳能电池。值得一提的是,自从2012年以来,钙钛矿材料由于具有优异的吸光系数,合适的带隙以及高的容忍因子等,被视为是用于太阳能电池的不二之选。目前,钙钛矿太阳能电池的效率已经突破了25.5%,可以与硅电池相媲美了。然而,仍然有一些问题需要引起关注,例如,薄膜缺陷,界面处的非辐射复合以及功能层之间的离子迁移等。

[0003] 空穴传输层中使用的双三氟甲烷磺酰亚胺锂(Li盐)已经被广泛证实有利于空穴传输层中的空穴迁移。然而,Li离子的迁移加速器件的失效。这是由于Li离子在迁移过程中会与钙钛矿中的卤素产生化学作用,从而破坏薄膜的稳定性。因此,如何抑制空穴传输层中的锂离子迁移,对于钙钛矿太阳能电池的商业化进程至关重要。

发明内容

[0004] 针对上述问题本发明提供了一种用于制备有机-无机杂化钛矿太阳能电池的锂盐溶剂。

[0005] 为了达到上述目的,本发明采用了下列技术方案:

[0006] 一种用于制备有机-无机杂化钛矿太阳能电池的锂盐溶剂,为巯基丙基三甲氧基 硅烷。

[0007] 进一步,所述有机-无机杂化钛矿太阳能电池的制备方法,包括以下步骤:

[0008] 步骤1,将导电玻璃依次使用洗涤剂、去离子水、无水乙醇超声处理后用吹干,然后经紫外臭氧处理,取出备用;

[0009] 步骤2,将蒸馏水与四氯化钛混合,将步骤1臭氧处理的导电玻璃浸泡在混合后的溶液中,然后烘干,取出用蒸馏水冲洗,氮气吹干,退火,制得电子传输层,随后对电子传输层进行紫外臭氧处理;

[0010] 步骤3,将钙钛矿吸光层材料溶解在DMF和DMSO混合溶剂中,得到钙钛矿前驱体溶液,震荡、过滤后旋涂在电子传输层上,随后退火,其在钙钛矿前驱体溶液旋涂结束前,滴加氯苯;

[0011] 步骤4,将空穴传输层材料溶解在氯苯中,并加入TBP和Li-TFSI的巯基丙基三甲氧基硅烷溶液,混匀后旋涂到步骤3中制得的钙钛矿吸光层上,制得空穴传输层;

[0012] 步骤5,在高真空下,通过热蒸发在步骤4中制得的空穴传输层上蒸镀金属背电极。

[0013] 进一步,所述步骤1中导电玻璃为IT0或FT0,所述超声处理的时间为20min,所述紫外臭氧处理的时间为20~30min。

[0014] 进一步,所述步骤2中蒸馏水与四氯化钛的体积比为1:1~3,所述烘干温度为75℃,时间为45min,所述退火温度为200℃,时间为30min,所述紫外臭氧处理的时间为20~30min。

[0015] 进一步,所述步骤3中钙钛矿吸光层材料为机胺盐和卤化铅盐,所述DMF和DMS0的体积比为4:1。

[0016] 进一步于,所述步骤3中所述震荡的时间为5min,所述旋涂的速度为4000rpm,时间为30s,所述退火的温度为130℃,时间为28min。

[0017] 进一步,所述步骤4中空穴传输层材料为2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴。

[0018] 进一步,所述步骤4中Li-TFSI的巯基丙基三甲氧基硅烷溶液的浓度为250~520mg/mL。

[0019] 进一步,所述步骤4中所述旋涂的速度为3000rpm,时间为30s。

[0020] 进一步,所述步骤5中金属背电极为金、银、铜或铝,所述蒸镀厚度为100nm。

[0021] 与现有技术相比本发明具有以下优点:

[0022] 通过将Li盐溶解在巯基丙基三甲氧基硅烷中,以替代目前常用的乙腈溶剂。通过使用巯基丙基三甲氧基硅烷,空穴传输层中的Li离子迁移被明显抑制。同时,钙钛矿薄膜的缺陷有效减少,薄膜的平均寿命显著提高。此外,器件的界面非辐射复合也被显著抑制。这都有利于器件性能的提高。同时,器件的适度稳定性也显著改善,这促进了钙钛矿太阳能电池的商业化进程。

附图说明

[0023] 图1为对比实例和实施例1中钙钛矿太阳能电池的电流-电压正扫曲线图;

[0024] 图2为对比实施例和实施例1中钙钛矿太阳能电池的载流子寿命图;

[0025] 图3为实施例2中钙钛矿太阳能电池的电流-电压正扫曲线图;

[0026] 图4为实施例3中钙钛矿太阳能电池的电流-电压正扫曲线图。

具体实施方式

[0027] 对比实例

[0028] 有机-无机杂化钛矿太阳能电池的制备方法,包括以下步骤:

[0029] (1) 将FTO导电基底依次使用洗涤剂、去离子水、无水乙醇超声处理20min后用吹干,然后经紫外臭氧处理30min,取出备用;

[0030] (2) 将蒸馏水和四氯化钛以1:2.25的体积比进行混合,然后将(1)中的FT0浸泡在混合溶液中,然后放置在75℃的烘箱中45分钟,然后取出用蒸馏水冲洗几遍,之后用氮气吹干,然后在200℃的热台上退火30分钟,制得电子传输层,随后对电子传输层进行紫外臭氧照射处理20min;

[0031] (3) 将FAI (248mg)、PbBr₂ (8.5mg)、RbI (6.6mg)、MACI (35.0mg)、PbI₂ (682.7mg)、CsI (19.7mg) 和PbCl₂ (12.7mg) 溶解在DMF和DMSO混合液中 ($V_{DMF}:V_{DMSO}=4:1$),震荡5min后,将钙钛矿溶液滴加到步骤 (2) 中制得的电子传输层上,以4000rpm的速度旋涂30s,随后在130℃下退火28min,其中,在钙钛矿溶液旋涂结束前16s,在2s内滴加完80 μ L氯苯,制得钙钛矿吸

光层;

[0032] (4) 将72.3mg的2,2',7,7'-四[N,N-二(4-甲氧基苯基) 氨基]-9,9'-螺二芴 (Spiro-OMeTAD) 溶解在1mL的氯苯中,并加入29 μ L的TBP和18 μ L的Li-TFSI (浓度为520mg/mL,溶剂为无水乙腈),混匀后滴加到步骤(3) 中制得的钙钛矿吸光层上,以3000rpm的速度 旋涂30s,制得空穴传输层;

[0033] (5) 在高真空 (10^{-4} Pa)下,通过热蒸发在步骤 (4) 中制得的空穴传输层上蒸镀厚度为80nm的Ag电极,即可。

[0034] 实施例1

[0035] 与对比实例的区别在于,在步骤(4)中,Li-TFSI的溶剂为巯基丙基三甲氧基硅烷,浓度为520mg/mL。

[0036] 图1为对比实施例和实施例1中钙钛矿太阳能电池的电流-电压正扫曲线图,由图1可知实施实例1中钙钛矿太阳能电池的效率显著提升。

[0037] 图2为对比实例和实施例1中钙钛矿太阳能电池的载流子寿命图,可知实施例1中钙钛矿薄膜的载流子提取明显改善。

[0038] 实施例2

[0039] 与实施实例1的区别在于,Li-TFSI的浓度变为250mg/mL。

[0040] 图3为实施例2中钙钛矿太阳能电池的电流-电压正扫曲线图,可知该电池的效率为21.52%,相比于对比实例中电池的效率(20.73%),器件效率有明显的提升。

[0041] 实施例3

[0042] 与实施例1的区别在于,Li-TFSI的浓度变为350mg/mL。

[0043] 图4为实施例3中钙钛矿太阳能电池的电流-电压正扫曲线图,可知该电池的效率为21.85%,相比于对比实例中电池的效率(20.73%),器件效率有明显的提升。

图1

图2

图3

图4