Other techniques for finding anomaly/novelty/outlier detections are covered in this lecture.

1. Isolation Forests

- Consider a dataset D which contains data points $x_1, x_2,, x_n$. Just like Random forests, Isolation Forests build many trees.
- Following are the steps involved in Isolation Forest:
 - o Build many trees like random forests
 - o For each tree:
 - Randomly pick a feature
 - Randomly threshold that features
 - Build each tree until the leaf consists of only one datapoint
- Isolation Forests are also known as iForests
- Consider the plot along feature f₁ and f₂ given below:

- In isolation forests, we are building totally random trees. So if we pick feature f₁ and put a threshold there will be a vertical bar.
- Similarly, if we pick feature f₂ and put a threshold there will be a horizontal bar.
- For example, if we pick feature f_1 and we select threshold as $f_1 < 1$, then our first

root node will be based on this condition

- Based on the diagram above,
 - The node containing x₁ will be at more depth.
 - \circ Observe that the point x_1 is in a dense region, and point x_2 is far away
 - \circ That is because, to break the point x_1 from all the other points, more and more splits will be required and that will increase the depth of the node containing point x_1 .
- So, to sum it up, the idea behind Isolation forest is:
 - On average outliers have lower depth in the random trees
 - On average, inliers have more depth in the random trees

Evaluation of Isolation Forest

- Imagine, we have to build random trees. For each point x_i in the dataset, we can get an average depth.
- We use this average depth to convert it into a metric.
- Apart from this, there are a lot of different metrics, that people have come up with over the years
- But, the basic intuition is that the lesser the average depth, the higher the likelihood is there that it is an outlier

Deciding average depth of a point:

- There are a lot of metrics that researchers have come up with over the years.
- But, studying them in this lecture is out of scope.

Sklearn walkthrough

We can implement Isolation Forest with the help of sklearn's **IsolationForest** method present in the **ensemble** module.

Let's see some of the parameters that IsolationForest expects:

- 1. **n_estimators**: It represents the number of base learners. By default, the value is set equal to 100
- 2. **max_sample**: It is the number of samples to extract from the dataset to build the trees(row sampling). By default the value is set to auto and sklearn picks reasonably a good figure for iForests
- 3. **contamination**: It tells the proportion of outliers in the data. The range is between [0,0.5]
- 4. **max_features**: It is the number of features to extract from the dataset to build the trees(column sampling).

Disadvantages

- One of the major limitations of iForests is that they are biased towards axis parallel splits.
- iForests makes splits and these splits are always parallel to either of the axis.
- Because of this, the boundary will not be smoothened.
 - In the diagram given below, the different shades of blue represent the likelihood of a point is an outlier. The darker the color, it is more likely that the point in that region will be an outlier
 - We've trained the iForest model using training data(white points)
 - It is tested on testing data(red + green) where red color indicates outliers

- Now imagine two points x_1 and x_2 as shown in the diagram given below.
- Both the points are almost equidistant from the nearest cluster. x_1 is on the axis and point x_2 is off-axis.
- Because the model is biased towards the axis, it will classify the point as an inlier and as an outlier
- This is also known as banding in signal processing

2. Local Outlier Factor (LOF)

- On a higher level, LOF is based on two ideas: KNN and density
- The core idea behind LOF is to compare the density of a point with its neighbors' density
- If the density of a point is less than the density of its neighbors, we flag that point as an outlier
- Imagine a bunch of datapoints as shown below

- We compute the density of a point based on average distance.
- If the average distance between a point and it's **K** nearest neighbors is large, it is more likely that the point will be an outlier
- Also, the larger the value of **K**, the more confident are the results.

Some concepts to understand the working of LOFs:

1(a) K-distance

- We define K-distance of a point A as the distance of point A to its Kth nearest neighbor
- In general, the larger the value of k-distance is, the farther away the point is from other datapoints

1(b) Set: Nk (A)

• It is a set of k-nearest neighbors of point A.

2. Reachability distance

- From point A to point B, we define reachability distance as a maximum of the distance from point A to point B and the maximum k-distance of point B
- Consider point B with some k nearest neighbors shown in the diagram below.

- There is a possibility that some neighbors might be close(condition 1) and some neighbors might be very far away(condition 2)
- In this case, there is a neighbor of point B whose k-distance is greater than the
 distance between point A and B, and hence, it is considered as its reachability
 distance.

3. Local Reachability Density

- It is often represented as Ird_k(A), which tells the local reachability density of a point A
- It is defined as the average reachability distance between point A and k neighbors

So,
$$lrd_k(A) = \frac{\sum_{B \in N_k(A)} rd_k(A, B)\$}{N_k(A)}$$

- The summation in the above equation represents the sum of reachability distances from a point A and set of neighbors B as $B \in N_k(A)$
- We define Local Outlier Factor of point as follows:

$$LOF_k(A) = \frac{\sum_{B \in N_k(A)} lrd_k(B)}{|N_k(A)|.ldr_k(A)}$$

Ird_k(A) is the density of point A

$$\frac{\sum_{B \in N_k(A)} lrd_k(B)}{|N_k(A)|}$$

The expression density

- is the average neighborhood
- So, LOF of point A is nothing but the average neighborhood density(Ird) of point A divided by the density of A

Interpretation of LOF

- If LOF(A) = 1, then we can say that the point has the same density(Ird) as its k
 nearest neighbors
- If LOF(A) > 1, then the k neighbors of point A have a higher density than point
 - o That does not mean point **A** is an outlier. It may or may not be.
 - But if LOF(A) >>> 1, then the point is definitely an outlier.
- If LOF(A) < 1, then the point has more density than its nearest neighbors.

Disadvantages of LOF

- Finding optimal K
- Finding threshold.
 - If LOF(A) >> 1, what is the threshold??
- Cannot handle high dimensional data efficiently
- High Time Complexity