Question	Scheme	Marks
number		
6 a	$r = \frac{q(2p-3)}{q(2p+3)} = \frac{q(2p+3)}{q(4p+1)}$	M1
	$(4p+1)(2p-3) = (2p+3)^2$	dM1
	$2p^2 - 11p - 6 = 0$	A1
	(2p+1)(p-6) = 0	M1
	$p = -\frac{1}{2} \text{or} p = 6$	A1 (5)
b	When $p = 6$ $r = \frac{3}{5}$ and $U_1 = q(4 \times '6' + 1) = (25q)$	M1
	$S_{\infty} = \frac{25q}{\frac{2}{5}} = 250 \Rightarrow q = 4$	dM1 A1 (3)
	Total 8 marks	

Part	Mark	Notes
(a)	M1	For $r = \frac{3\text{rd term}}{2} = \frac{2\text{nd term}}{2}$
		2nd term 1st term
	dM1	For attempting to remove the denominators/simplifying the expression
		to attempt to obtain a 3TQ. Allow one processing error.
		Allow a minimally acceptable $4p^2 \pm Xp \pm Y = (0)$ or $2p^2 \pm Pp \pm Q = (0)$ $X, Y, P, Q \neq 0$
	A1	Note: This mark is dependent on the previous M mark. For obtaining $2p^2 - 11p - 6 = (0)$ or equivalent.
	711	` '
		Their working will give them $4p^2 - 22p - 12 = (0)$ before further
	N/1	simplification
	M1	For a valid attempt to solve the 3TQ. Note this is an independent mark for their 3TQ.
		See General Guidance.
		The 3TQ must have come from some attempted manipulation
		involving $q(2p-3)$, $q(2p+3)$ and $q(4p+1)$
	A1	For $p = -\frac{1}{2}$ or $p = 6$
(b)	M1	For finding:
		• A value of r for their p .
		Allow any value of $r r \neq 0$
		E.g. $r = \frac{(2 \times '6' - 3)}{(2 \times '6' + 3)} = \dots$ (Note: for $p = -\frac{1}{2}$ $r = -2$)
		$ullet$ A value for $U_{\scriptscriptstyle 1}$
		$U_1 = q(4 \times '6' + 1) =$ (Note: for $p = -\frac{1}{2}, U_1 = -q$)
		You may see $a = 100$ after later working to find the sum to infinity.
		If their values of p are incorrect, we must see working here. NOTE: This is a B mark in Epen.
	dM1	For use of $S_{\infty} = \frac{a}{1-r} = 250$ with their r and their U_1 provided $ r < 1$
		If they use the formula for the sum to infinity on an $ r > 1$ withhold
		this mark even if they use it on one valid and one invalid attempt.
	A 1	Note: This mark is dependent on the previous M mark.
	A1	For $q = 4$