

Multiple Imputation and subsequent calculations

Simon Ress | Ruhr-Universität Bochum September 22, 2022

Workshop at hr&c, Bochum, 2021

Content

1. Examplary Data Set

2. Missing Patterns

- 3. Slide with R Output
- 4. Figures caption

Examplary Data Set

Planing the interdependencies of variables

- Every variable is constructed by an random term
- Some variables are influenced by values of other variables
- e.g. "Mann" = 1 increases the probability for FK=1 by 20%

Data Set Creation

```
#Create variables
set.seed(415)
Mann = ifelse(runif(5000,0,1) < 0.50,1,0)
Alter = as.numeric(cut(runif(5000,20,70),
                       c(20,30,40,50,60,70))
FK = ifelse((Mann*0.2 + Alter*0.1 +
             runif(5000,0,0.6)) > 0.95, 1, 0)
B2.1 = as.numeric(cut(FK*2 +
                      rnorm(5000,2,0.35), c(0,1,2,3,4,6))
set.seed(1015)
B5.1 = as.numeric(cut(FK*1.5 + B2.1*0.2 + Alter*(-0.30) +
                      rnorm(5000, 2.5, 0.30), c(-2, 1, 2, 3, 4, 8)))
#Build data frame
df = data.frame(Mann, Alter, FK, B2.1, B5.1)
```

View Data Set

head(df, 10)

```
##
      Mann Alter FK B2.1 B5.1
## 1
                4 0
## 2
## 3
                    0
                5 1
                         4
                               3
## 4
                    0
                               2
## 5
## 6
                3 1
                          4
                               4
                               3
## 7
                    0
                    0
                          3
                               3
## 8
## 9
                               2
                               3
## 10
```

I. Check whether true effects can be estimated

Table 1: $Im(FK\sim Mann) \mid Mann: +0.2$

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.0596	0.0070	8.5438	0
Mann	0.2001	0.0099	20.1491	0

Table 2: $Im(FK\sim Alter) \mid Alter: +0.1$

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-0.1406	0.0110	-12.7686	0
Alter	0.1002	0.0033	30.0803	0

Table 3: $Im(B2.1 \sim FK) \mid FK: +2$

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	2.4980	0.0079	318.0197	0
FK	2.0115	0.0197	101.8565	0

II. Check whether true effects can be estimated (!)

Table 4: $Im(B5.1 \sim FK) \mid FK: +1.5$

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	2.6745	0.0088	302.2230	0
FK	1.4519	0.0222	65.2572	0

Table 5: $Im(B5.1\sim B2.1) \mid B2.1: +0.2$

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	1.3494	0.0283	47.6337	0
B2.1	0.5521	0.0096	57.5786	0

Table 6: Im(B5.1~Alter) | Alter: -0.3

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	3.2286	0.0251	128.6139	0
Alter	-0.1088	0.0076	-14.3234	0

Excursus: Modern Causal Analysis

- Satisfaction of the Conditional Independence Assumption (CIA) necessary to estimate true causal effects
- Meet the CIA using an appropriate set of control variables
- Choose control variables by a Directed Acyclic Graph (DAG)

Excursus MCA: DAG (B5.1 <- FK)

Table 7: Im(B5.1~FK+B2.1+Alter) | FK: +1.5

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	2.9909	0.0311	96.2506	0
FK	1.5033	0.0283	53.1769	0

Excursus MCA: DAG (B5.1 <- B2.1)

Table 8: $Im(B5.1 \sim B2.1 + FK + Alter) \mid B2.1: +0.2$

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	2.9909	0.0311	96.2506	0
B2.1	0.2031	0.0112	18.0842	0

Excursus MCA: DAG (B5.1 <- Alter)

Table 9: $Im(B5.1\sim Alter+FK+B2.1) \mid Alter: -0.3$

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	2.9909	0.0311	96.2506	0
Alter	-0.3007	0.0044	-68.9450	0

Missing Patterns

Missing Patterns: Missing completely at random (MCAR)

- Values are randomly missing in the dataset
 - Missing data values do not relate to any other data
 - There is no pattern to the actual values of the missing data themselves
- For instance, when smoking status is not recorded in a random subset of patients
- This is easy to handle, but unfortunately, data are almost never missing completely at random

MCAR: Inserting Missing values in data frame

Missing Patterns: Missing at random (MAR)

- Confusing and would be better stated as missing conditionally at random
- Missing data do have a relationship with other variables in the dataset
 - Whether a value is missing or not depends on other variables
- The actual values that are missing are random
- For example, smoking status is not documented in female patients because the doctor was too shy to ask

Missing Patterns: Missing not at random (MNAR)

- The pattern of missingness is related to other variables in the dataset
- In addition, the values of the missing data are not random
 - Whether a value is missing or not depends on other variables
- For example, when smoking status is not recorded in patients admitted as an emergency, who are also more likely to have worse outcomes from surgery

Main Repos

- Official GitHub Repo of Metropolis (formerly mtheme); older version in TeXLive
- My GitHub Repo for a local Ubuntu package of Metropolis formerly mtheme
- Manuel

Slide with Bullets

- Bullet 1
- Bullet 2
- Bullet 3

Slide with R Output

Slide with R Output

summary(cars)

```
##
      speed
            dist
   Min. : 4.0 Min. : 2.00
##
##
   1st Qu.:12.0 1st Qu.: 26.00
##
   Median: 15.0 Median: 36.00
   Mean :15.4 Mean : 42.98
##
   3rd Qu.:19.0
                3rd Qu.: 56.00
##
##
   Max. :25.0 Max. :120.00
```

Slide with Plot

Two column layout

Here is some text above which goes over to whole slide

- Description of plot
- Second point

and here some text below which goes over to whole slide

Breakout page

Figures caption

Figures caption

 $\textbf{Figure 1:} \ \, \textbf{Figure: Here is a really important caption}.$

Using LaTeX Parts: Blocks

As one example of falling back into LATEX, consider the example of three different block environments are pre-defined and may be styled with an optional background color.

Default

Block content.

Alert

Block content.

Example

Block content.