The Grothendieck-Teichmüller Group and the Operad of Parenthesized Braids

Yaxin Li

Contents

Chapter 1. Introduction	1
Chapter 2. Algebras of PaB 1. Braided Monoidal Categories	2 2
2. The Operad PaB of Parenthesized Braids	3
Bibliography	7

CHAPTER 1

Introduction

 $\mathcal{M}_{g,n}$ is the moduli stack (i.e. 2-scheme) of genus-g curves over \mathbb{Q} with n marked points. In his Sketch of a Program [Gro97] from 1983, Grothendieck proposes that we study $G_{\mathbb{Q}} \stackrel{\text{def}}{=} \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ through its action on the Teichmüller Tower — the collection of

$$\pi_1^{\mathrm{geom}}(\mathcal{M}_{g,n}) \stackrel{\mathrm{def}}{=} \pi_1^{\mathrm{et}}(\overline{\mathbb{Q}} \times_{\mathbb{Q}} \mathcal{M}_{g,n})$$

for all $g, n \in \mathbb{N}$. Here, π_1^{et} takes the étale fundamental group, which is the inverse limit of the automorphism groups (analogous to the groups of deck transformations) of finite étale covers.

In genus-0, it is known that $\pi_1^{\text{geom}}(\mathcal{M}_{0,4}) \cong \widehat{\mathsf{F}}_2$, the profinite completion of the free group on two generators. It follows from a theorem of Belyi's [Bel80] that $G_{\mathbb{Q}}$ acts faithfully on $\pi_1^{\text{geom}}(\mathcal{M}_{0,4})$, hence also $\{\mathcal{M}_{0,n}\}_n$. In [Iha91], Ihara showed that the image of the action of $G_{\mathbb{Q}}$ includes into the image of $\widehat{\mathsf{GT}}$, the profinite completion of the inertia-preserving automorphisms of $\{\mathcal{M}_{0,n}\}_n$, i.e. the automorphisms ϕ such that on $\widehat{\mathsf{F}}_2$, ϕ maps the procyclic subgroups $\langle x \rangle, \langle y \rangle, \langle (xy)^{-1} \rangle$ to conjugate subgroups, where x and y are the generators of F_2 [Loc].

In [Dri91], Drinfeld constructs a pro-unipotent version of GT, and uses its action on braided monoidal categories (i.e. \widehat{PaB} -algebras) to prove a result about quasitriangular quasi-Hopf algebras. In [Pet14], Petersen uses the corresponding action on \widehat{PaB} to show that E_2 (the operad of little 2-disks) is formal.

CHAPTER 2

Algebras of PaB

1. Braided Monoidal Categories

DEFINITION 1 (monoidal category). A category \mathcal{C} with a bifunctor $-\otimes -: \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ (the monoidal, or tensor product), unit object 1, and natural isomorphisms

(1)
$$\alpha: (-\otimes -) \otimes - \Rightarrow - \otimes (-\otimes -)$$

(2)
$$\lambda: \mathbf{1} \otimes - \Rightarrow \mathrm{id}_{\mathcal{C}}$$
 $\rho: - \otimes \mathbf{1} \Rightarrow \mathrm{id}_{sC}$

respectively called the associator, left unitor, right unitor, is monoidal if when we write \otimes to act componentwise on natural transformations,

- (1) the triangle identity is satisfied, i.e. $\rho \otimes id_{\mathfrak{C}} = (id_{\mathfrak{C}} \otimes \lambda) \circ \alpha$
- (2) the pentagon identity holds, i.e. for all $w, x, y, z \in \text{Obj}(\mathcal{C})$, the following diagram commutes

or as natural transformations, $\alpha \circ \alpha = (\mathrm{id}_{\mathfrak{C}} \otimes \alpha) \circ \alpha \circ (\alpha \otimes \mathrm{id}_{\mathfrak{C}})$

A monoidal category is *strict* if the components of the associator and unitors are identity morphisms.

DEFINITION 2 (braided monoidal category). If $(\mathfrak{C}, \otimes, \mathbf{1}, \alpha, \lambda, \rho)$ is a monoidal category with a natural isomorphism $\beta_{x,y} : x \otimes y \to y \otimes x$, then it is *braided* if it satisfies the hexagon identities, i.e. the following diagrams commute

$$(x \otimes y) \otimes z \xrightarrow{\alpha} x \otimes (y \otimes z) \xrightarrow{\beta} (y \otimes z) \otimes x$$

$$\downarrow^{\beta \otimes \mathrm{id}_{\mathbb{C}}} \qquad \qquad \downarrow^{\alpha}$$

$$(y \otimes x) \otimes z \xrightarrow{\alpha} y \otimes (x \otimes z) \xrightarrow{\mathrm{id}_{\mathbb{C}} \otimes \beta} y \otimes (z \otimes x)$$

$$x \otimes (y \otimes z) \xrightarrow{\alpha^{-1}} (x \otimes y) \otimes z \xrightarrow{\beta} z \otimes (x \otimes y)$$

$$\downarrow^{\operatorname{id}_{\mathfrak{C}} \otimes \beta} \qquad \qquad \downarrow^{\alpha^{-1}}$$

$$x \otimes (z \otimes y) \xrightarrow{\alpha^{-1}} (x \otimes z) \otimes y \xrightarrow{\beta \otimes \operatorname{id}_{\mathfrak{C}}} (z \otimes x) \otimes y$$

We will now build up to Mac Lane's Coherence Theorem

DEFINITION 3 (monoidal functor, or strong monoidal functor at nLab). Suppose $(\mathfrak{C}, \otimes, \mathbf{1}, \alpha, \lambda, \rho)$, and $(\mathfrak{C}', \otimes', \mathbf{1}', \alpha', \lambda', \rho')$, are monoidal categories, then a monoidal functor consists of a functor $F: \mathfrak{C} \to \mathfrak{C}'$ such that $\mathbf{1}' \cong F(\mathbf{1})$, and a natural isomorphism $m: F(-) \otimes F(-) \to F(-\otimes -)$ such that the following diagram commutes

$$(F(X) \otimes F(Y)) \otimes F(Z) \xrightarrow{\alpha'} F(X) \otimes (F(Y) \otimes F(Z))$$

$$\downarrow^{m \otimes \mathrm{id}_{\mathfrak{C}}} \qquad \qquad \downarrow^{\mathrm{id}_{\mathfrak{C}} \otimes m}$$

$$F(X \otimes Y) \otimes F(Z) \qquad \qquad F(X) \otimes F(Y \otimes Z)$$

$$\downarrow^{m} \qquad \qquad \downarrow^{m}$$

$$F((X \otimes Y) \otimes Z) \xrightarrow{F(\alpha)} F(X \otimes (Y \otimes Z))$$

A monoidal functor that happens to be an equivalence of categories is called an *equivalence of monoidal categories*.

Theorem 4 (Mac Lane's Strictness Theorem). For any monoidal category

 $(\mathfrak{C}, \otimes, \mathbf{1}, \alpha, \lambda, \rho)$, there exists a strict monoidal category $(\mathfrak{C}', \otimes', \mathbf{1}', \alpha', \lambda', \rho')$ and an equivalence of monoidal categories $L : \mathfrak{C} \to \mathfrak{C}'$.

PROOF. see p.20 of [Eti] from the 2009 lecture notes to "Topics in Lie Theory". $\hfill\Box$

The next theorem is a corollary of Mac Lane's Strictness Theorem.

THEOREM 5 (Mac Lane's Coherence Theorem). Suppose P and P' are parenthesizations of $X_1 \otimes \cdots \otimes X_n$ with arbitrary insertions of $\mathbf{1}$, and $f, g: P \to P'$ are isomorphisms built by composing associator and unitor components, then f = g.

PROOF. see p.1 of
$$[Eti09]$$

2. The Operad PaB of Parenthesized Braids

Operads are an unbiased way of keeping track of n-ary operations and how they compose. The "elements" of P(n), we imagine to be corollas, i.e., rooted trees of depth 1 with n+1 half-edges. We can treat \otimes in this "unbiased" way (i.e. ignoring how products are parenthesized, and products with units) because of Mac Lane's Coherence Theorem 5.

Definition 6 (planar operad, symmetric operad). A planar operad P in a monoidal category $(\mathfrak{C}, \otimes, \mathbf{1}, a, l, r)$ is a collection of objects $\{P(n)\}_n$, with operadic composition

$$c_{m;n_1,\cdots,n_m}: P(m)\otimes P(n_1)\otimes\cdots\otimes P(n_m)\to P(n_1+\cdots+n_m)$$

such that 1. and 2. of following are satisfied. If each object P(n) has a right S_n -action (S_n being the *n*th symmetric group), and 3. is staisfied, then P is a symmetric operad, which is what "operad" refers to from now on.

- (1) Associativity: if
 - (a) $\sum_{j=1}^{m_i} n_{i_j} = n_i$ for each $1 \le i \le k$, (b) $\sum_{i=1}^k n_i = l$, (c) $\sum_{i=1}^k m_i = m$,

then the following commutes

$$P(k) \otimes \bigotimes_{i=1}^{k} \left(P(m_i) \otimes \bigotimes_{j=1}^{m_i} P(n_{i_j}) \right) \xrightarrow{\cong} \left(P(k) \otimes \bigotimes_{i=1}^{k} P(m_i) \right) \otimes \left(\bigotimes_{i=1}^{k} \bigotimes_{j=1}^{m_i} P(n_{i_j}) \right)$$

$$\downarrow^{\operatorname{ide}} \otimes \bigotimes_{i=1}^{k} c_{m_i;n_{i_1},\cdots,n_{i_{m_i}}} \qquad \circ_{k;m_1,\cdots,m_k} \otimes \operatorname{id}_{\mathbb{C}}^{\otimes m} \downarrow$$

$$P(k) \otimes \bigotimes_{i=1}^{k} P(n_i) \qquad \qquad P(m) \otimes \left(\bigotimes_{i=1}^{k} \bigotimes_{j=1}^{m_i} P(n_{i_j}) \right)$$

$$\downarrow^{\circ_{k;n_1,\cdots,n_k}} \qquad \circ_{m;n_{i_1},\cdots,n_{k_{(m_k)}}} \downarrow$$

$$P(l) \xrightarrow{\cong} P(l)$$

(2) Unit: there exists a map $e: \mathbf{1} \to P(1)$ such that the following hold for all n

$$P(n) \xrightarrow{\lambda^{-1}} \mathbf{1} \otimes P(n) \xrightarrow{e \otimes \mathrm{id}_{\mathbb{C}}} P(1) \otimes P(n) \xrightarrow{\circ_{1;n}} P(n)$$

$$P(n) \xrightarrow{(\rho^{-1})^{\circ n}} P(n) \otimes \mathbf{1}^{\otimes n} \xrightarrow{\mathrm{id}_{\mathbb{C}} \otimes e^{\otimes n}} P(n) \otimes P(1) \xrightarrow{\circ_{n;1,\dots,1}} P(n)$$

(3) Equivariance: the right action $-\cdot \sigma: P(n) \to P(n)$ of $\sigma \in S_n$ on P(n) is given by σ permuting the n inputs of each "element" of P(n), so that on operadic composition maps, we have

$$\circ_{n;m_1,\cdots,m_n}\circ(-\cdot\sigma)=\circ_{n;m_{\sigma^{-1}(1)},\cdots,m_{\sigma^{-1}(n)}},$$

then equivariance is the condition that the following commutes

$$P(n) \otimes \bigotimes_{i=1}^{n} P(m_{i}) \underset{\mathrm{id}_{\mathcal{C}} \otimes (-)\sigma}{\longrightarrow} P(n) \otimes \bigotimes_{i=1}^{n} P(m_{\sigma^{-1}(i)})$$

$$\downarrow^{-\cdot \sigma \otimes \mathrm{id}_{\mathcal{C}}^{\otimes n}} \xrightarrow{\circ_{n;m_{\sigma^{-1}(1)},\cdots,m_{\sigma^{-1}(n)}}} \downarrow$$

$$P(n) \otimes \bigotimes_{i=1}^{n} P(m_{i}) \xrightarrow{\circ_{n;m_{1},\cdots,m_{n}}} P(m_{1}+\cdots+m_{n})$$

(where $(-)\sigma$ is the isomorphism given by σ permuting the nfactors of $\bigotimes_{i=1}^n P(m_i)$

EXAMPLE 7 (the endofunctor operad). If \mathcal{C} is a category, then the endofunctor operad, defined by $\operatorname{End}(\mathcal{C})(n) \stackrel{\text{def}}{=} \operatorname{Fun}(\mathcal{C}^{\times n}, \mathcal{C})$ for $n \in \mathbb{N}_{\geq 0}$, is a symmetric operad in $(\operatorname{Cat}, \times, \{*\})$, with

- (1) $id_{\mathfrak{C}}$ as the unit, and \times as the monoidal product.
- (2) the standard composition as the operadic composition,
- (3) $\sigma \in S_n$ acting on each element $\theta \in Fun(\mathcal{C}^{\times n}, \mathcal{C})$ by permuting the inputs, i.e. $\theta \cdot \sigma(x_1, \dots, x_n) = \theta(x_{\sigma^{-1}(1)}, \dots, x_{\sigma^{-1}(n)})$.

The endofunctor operad is a special case of the endomorphism operad; it is an endomorphism operad in $(Cat, \times, \{*\})$, a symmetric monoidal category with internal hom.

EXAMPLE 8 (the operad of parenthesized braids). This construction is similar to the one in pp.18-19 of [Fre18]. *PaB* is an operad in **Grpd** (the category of groupoids).

The objects of PaB(n) are parenthesized permutations of n elements, i.e.

$$Obj(PaB(n)) = S_n \times M_n$$

where M_n is the set of words of length n in the free magma generated by one element. If $(\sigma, w) \in PaB(n)$, then for $1 \le i \le n$, we label the ith factor of w (which must be the generating element) with $\sigma(n)$ to get the parenthesized permutation.

The morphisms of PaB(n) are braids from (σ, w) to (τ, v) such that if the l factor of w and the mth factor of v are the ends of a strand, then $\sigma(l) = \tau(m)$.

PaB has the following operadic properties:

- (1) The unit, which happens to be the only morphism of PaB(1), is the braid from (1, x) to (1, x).
- (2) The operadic composition is given by cabling:
- (3) The action of S_n on PaB(n) is given by $(\sigma, w) \stackrel{\tau}{\mapsto} (\tau \sigma, w)$ on objects.

DEFINITION 9 (operad morphism). A morphism $f: P \to Q$ of operads is a collection of maps $\{f_n: P(n) \to Q(n)\}_n$ such that

- (1) The unit is preserved, i.e. $f_1: P(1) \to Q(1)$ satisfies $f_1 \circ e^P = e^Q$.
- (2) Composition is preserved, i.e. for all $k, n_1, \dots, n_k \in \mathbb{N}_{\geq 1}$ with $l = \sum_{i=1}^k n_i$, the following commutes

$$P(k) \otimes \bigotimes_{i=1}^{k} P(n_{i}) \xrightarrow{f_{k} \otimes \bigotimes_{i=1}^{k} f_{n_{i}}} Q(k) \otimes \bigotimes_{i=1}^{k} Q(n_{i})$$

$$\downarrow^{\circ_{k;n_{1},\cdots,n_{k}}^{P}} \qquad \qquad \downarrow^{\circ_{k;n_{1},\cdots,n_{k}}^{Q}}$$

$$P(l) \xrightarrow{f_{l}} Q(l)$$

(3) The S_n -actions are preserved, i.e. for all $n \in \mathbb{N}_{\geq 1}$, $\sigma \in S_n$, $f \circ (-\cdot^P \sigma) = (-\cdot^Q \sigma) \circ f$.

DEFINITION 10 (operad algebra). For an operad P in $(\mathbf{Cat}, \times, \{*\})$, a morphism of operads $P \to \mathrm{End}(\mathfrak{C})$ gives \mathfrak{C} the structure of a P-algebra.

Bibliography

- [Bel80] G V Belyĭ. On galois extensions of a maximal cyclotomic field. Mathematics of the USSR-Izvestiya, 14(2):247–256, April 1980.
- [Dri91] Vladimir Gershonovich Drinfeld. On quasitriangular quasihopf algebras and on a group that is closely connected with $Gal(\overline{q}/\mathbb{Q})$. Leningrad Mathematical Journal, 2(4):829–860, 1991.
 - [Eti] Pavel Etingof. Monoidal functors.
- [Eti09] Pavel Etingof. MacLane Coherence Theorem, Tensor and Multitensor Categories. 2009.
- [Fre18] Benoit Fresse. Little discs operads, graph complexes and grothendieck—teichmüller groups. (arXiv:1811.12536), November 2018. arXiv:1811.12536 [math].
- [Gro97] Alexandre Grothendieck. Esquisse d'un Programme, pages 7–48. Cambridge University Press, 1 edition, July 1997.
- [Iha91] Y. Ihara. Braids, Galois Groups, and Some Arithmetic Functions. Kyoto University. Research Institute for Mathematical Sciences [RIMS]. Kyoto University. Research Institute for Mathematical Sciences [RIMS], 1991.
 - [Loc] P Lochak. Automorphism groups of profinite complexes of curves and the grothendieck-teichmu"ller group.
- [Pet14] Dan Petersen. Minimal models, gt-action and formality of the little disk operad. Selecta Mathematica, 20(3):817–822, July 2014.