1 目的

単相交流回路の電力の測定方法には、電力計による測定方法と、電圧計や電流計を用いる間接的な方法等がある。本実験ではもっとも簡単な電圧計による方法を習得する.

2 理論

直流において,抵抗で消費される電力は電圧と電流の積で求められるが,交流の電圧は,電圧の実効値と電流の実効値の積だけでは決まらない.

実際に消費される電力は、電圧 V と電流 I の積に力率 $\cos\theta$ をかけたものである $(W=VI\cos\theta)$. この電力の 測定は単相電力計 1 個によって行うことができる.

単相電力 $P = VI \cos \theta$ [W] 皮相電力 Pa = VI [VA] 無効電力 $Pr = VI \sin \theta$ [var] 力率 $\cos \theta = \frac{W}{VI} \times 100$ [%]

3 接続図と使用器具

VR: 電圧調節器 B27-1-44

W: 単相電力計 L142-1-82

V: 電圧計 No.78-AE-1111

I: 電流計 L116-1-255

 $L_1 \sim L_5$: 電球負荷 $1 \sim 5$

 $S_1 \sim S_5$: $\lambda = 1 \sim 5$

SW: 負荷切替スイッチ

 C_1 : コンデンサ (50 μ F) No.5

 C_2 : コンデンサ (100 μ F) No.5

4 実験方法

- 1. 接続図のように接続する. L(電球負荷) の S が全て OFF であることを確認し, VR を調節し,100V と する (電圧計にて確認).
- 2. 次いで L_1 を点灯させ、電圧を 100V に調節し、その時の電圧 V、電流 I、電力 P を読み、記録する.
- 3. $L_2 \sim L_5$ まで、順次点灯させ、電圧を 100V に調節し、電圧 V、電流 I、電力 P を読み、記録する.
- 4. 電球負荷の端子にコンデンサ $(50\mu F)$ を並列に接続し、1. から 3. までを繰り返し行う.
- 5. 電球負荷の端子にコンデンサ $(100\mu F)$ を並列に接続し、1. から 3. までを繰り返し行う.

5 実験結果

表 1: コンデンサ無し

 負荷	電流 I	皮相電力 Pa	電力 P			力率
	[A]	[W]	ふれ	定数	W [W]	[%]
L_1	0.56	56	10.5	5	52.5	94
$L_1 + L_2$	1.1	1.1×10^{2}	21.0	5	105	97
$L_1 + L_2 + L_3$	1.6	1.6×10^{2}	31.0	5	155	98
$L_1 + L_2 + L_3 + L_4$	2.2	2.2×10^{2}	41.5	5	208	96
$L_1 + L_2 + L_3 + L_4 + L_5$	2.7	2.7×10^{2}	52.5	5	263	98

図 1: コンデンサ無し P-I グラフ

図 2: コンデンサ無し Pa-I グラフ

表 2: $C = 50 \; [\mu F]$

負荷	電流 I	皮相電力 Pa	電力 P			力率
	[A]	[W]	ふれ	定数	W [W]	[%]
L_1	1.8	1.8×10^{2}	10.5	5	52.5	29
$L_1 + L_2$	2.1	2.1×10^{2}	21.5	5	108	52
$L_1 + L_2 + L_3$	2.4	2.4×10^{2}	31.5	5	158	67
$L_1 + L_2 + L_3 + L_4$	2.7	2.7×10^{2}	42.0	5	210	77
$L_1 + L_2 + L_3 + L_4 + L_5$	3.2	3.2×10^{2}	51.8	5	259	82

図 3: C = 50 [μ F] P - I グラフ

図 4: C = 50 [μ F] Pa - I グラフ

表 3: $C = 100 \; [\mu F]$

負荷	電流 I	皮相電力 Pa	電力 P			力率
	[A]	[W]	ふれ	定数	W [W]	[%]
L_1	3.3	3.3×10^{2}	10.8	5	54.0	16
$L_1 + L_2$	3.5	3.5×10^{2}	21.2	5	106	30
$L_1 + L_2 + L_3$	3.7	3.7×10^{2}	31.8	5	159	43
$L_1 + L_2 + L_3 + L_4$	3.9	3.9×10^{2}	42.0	5	210	53
$L_1 + L_2 + L_3 + L_4 + L_5$	4.2	4.2×10^{2}	52.0	5	260	62

図 5: $C = 100 \ [\mu F] \ P - I$ グラフ

図 6: $C = 100~[\mu F]~Pa - I$ グラフ

6 考察

1. 曲線上のPとPaはどのようになったか.

コンデンサを接続した二つの実験では、直線のグラフになったが、(0,0)の点を通ることを考えると、曲線のグラフになることも予想される。また、コンデンサを接続しない実験では、グラフは完全な直線になってしまった。

2. 力率を計算してグラフを描く.

図 7: コンデンサ無し $\cos \theta - I$ グラフ

図 8: $C = 50 [\mu F] \cos \theta - I$ グラフ

3. 有効電力と無効電力について調べよ.

有効電力は、上に書いてある単相電力、または三相交流回路における三相電力と同じである。単相電力は $VI\cos\theta$ 、三相電力は $\sqrt{3}VI\cos\theta$ で表される。また無効電力は、電源とコンデンサを行き来し、実際は消費されない電力のことを言い、 $VI\sin\theta$ で表される。

4. 単相電力の2乗と無効電力の2乗の和が、皮相電力の2乗に等しいことを示せ.

$$P^2 + Pr^2 = Pa^2$$

(左辺) = $(VI\cos\theta)^2 + (VI\sin\theta)^2$
= $(VI)^2(\sin^2\theta + \cos^2\theta)$
= $(VI)^2$
= (右辺)

参考文献

- [1]「有効電力と無効電力」http://denk.pipin.jp/jitumu/yuukoumukou.html
- [2] 「三相電力の公式はなぜ $\sqrt{3}$ 倍なのか?」 https://eleking.net/study/s-accircuit/sac-3phasepower.html