Messages and signals

Information (message) to be transmitted (issued by a source):

- analog: e.g. speech, music, pictures -> infinite number of values
- digital (discrete): e.g. text -> finite number of values

Signals carrying this information:

- analog signals: represent an analog message
- digital (discrete) signals: represent digital but also an analog source (Analog to Digital conversion)

Telecommunication systems:

- analog, e.g. FM commercial broadcasting
- digital, e.g. GSM, LTE, DAB, DMB

Analog and digital transmission

Analog transmission

Channel

Digital transmission – better resistance to channel distortions:

Repeater

In history...

Digital transmission

- Static electricity (A. de Betancourt ~1790)
- □ Optical telegraph (C. Chappe ~1800)
- Electrical telegraph (Gauss, Weber, Steinheil, Morse ~1830)
- Wireless telegraph (Hertz 1888, Popov, Marconi 1899)

□ PCM, digital telephony (~1950-70)

Analog transmission

- Telephone (Graham Bell 1876)
- Analog telephony (1890)
- AM/FM broadcast, terrestrial TV (1920)

Modulation, demodulation

Signal to noise ratio

- output of the channel SNR = S/N
- output of the receiver $SNR_0 = S_0/N_0$

Digital transmission

P_e=BER= probability of error

Digital transmission of analog signals basic processes (1)

Quantizing

Modulation

Transmission

Digital transmission of analog signals basic processes (2)

Reception 110

Reconstruction of the sample

Reconstruction of continuous signal x*(t)

Signals and their models: 1. modulating signal m(t)

Example: speech signal

Speech signal

Models of the speech waveform m(t)

 $p_m(x)$ - probability density function (pdf)

Gauss

$$p_m(x) = \frac{1}{\sqrt{2\pi \sigma_m^2}} \exp\left(-\frac{x^2}{2\sigma_m^2}\right)$$

Laplace

$$p_m(x) = \frac{1}{\sqrt{2\sigma_m^2}} \exp\left(-\sqrt{2} \frac{|x|}{\sigma_m}\right)$$

$$\sigma_{m}^{2}$$
 - variance

Spectrum, power spectral density (psd)

Spectrum (Fourier transform)

$$M(f) = \int_{-\infty}^{\infty} m(t) e^{-j2\pi f t} dt$$

Amplitude spectrum |M(f)|

Energy spectrum $|M(f)|^2$

Power spectrum (psd) $\frac{1}{T} |M_T(f)|^2$, $M_T(f) = \int_{-T/2}^{T/2} m(t) e^{-j2\pi ft} dt$, $T \to \infty$

Psd $G_m(f) = \lim_{T \to \infty} \frac{1}{T} |M_T(f)|^2$

$$G_{m}(f)$$

Power
$$P = \int_{-\infty}^{\infty} G_m(f) df = \int_{-\infty}^{\infty} x^2 p_m(x) dx = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} m^2(t) dt$$

Signals and their models: 2. noise n(t)

In the channel: white gaussian noise (AWGN)

in the output of the channel – noise $n_1(t)$, power $N=\eta B$

Signals and their models: 3. modulated signal s(t)

It depends on the modulation: s(t) may be a baseband, passband, analog or digital signal Power: S, Bandwidth B

Signals and their models: 4. the output signal $m^*(t)=s_0(t)+n_0(t)$

A (distorted) copy of the modulating signal

signal power: S₀ noise power: N₀

$$SNR_0 = \frac{S_0}{N_0} = \frac{\sigma_x^2}{\sigma_e^2}$$

$$SNR_0[dB] = 10\log_{10}\left[\frac{\sigma_x^2}{\sigma_e^2}\right]$$

Telecommunication channels

DISTORTIONS:

additive noise

marriage property -

pulses

fading

Telecommunication channels

DISTORTIONS:

intersymbol interference

phase errors

nonlinear distortions

Simplified model of a channel

Why do we use modulations?

- Adaptation of the modulating signal (e.g. speech, music) to the transmission channel
- Sharing the same channel: (FDM frequency division multiplexing, TDM – time division multiplexing)

