

Parcours Data sciences | ABBOUD Marwa | 14 novembre 2020

Encadrant :Bertrand Beaufils

Evaluateur : Sarah Ghidalia

Sommaire

- 1. Idée d'application
- 2. Etude exploratoire
- 3. Analyse statistique multivariée
- 4. Application
- 5. Conclusion

Idée d'application

Prédiction du Nutriscore

À partir des indicateurs nutritionnels

Qualité nutritionnelle d'un produit

Objectif de l'application

Prédire le nutriscore d'un produit qu'on n'aurait que quelques informations nutritionnelle sur ce produit

Source des données Open Food Fact : https://world.openfoodfacts.org/

Nettoyage de jeu de données

• Base de données regroupant les produits avec différents Indicateurs Nutritionnelle

Processus de nettoyage

- 1. Etudes des indicateurs nutritionnelle pertinents
- 2. Etude des valeurs manquantes
- 3. Détection des valeurs aberrantes
- 4. Imputation des valeurs manquantes par la méthodes des K plus proches voisins

1. Etudes des indicateurs nutritionnelle pertinents :

Supprime les dates

Nutriscore de Pays : France Uniquement

Supprime toutes les colonnes sans nutriscore renseigné

Sélection les colonnes ayant un Taux de 100g

Dimensions initiale du jeu de données (16959, 181)

Dimensions (10483, 112)

- 2. Etude des valeurs manquantes
- Calcul le Taux de NaN uniquement pour les aliments qui ont un nutriscore renseigné

2. Etude des valeurs manquantes

• Sélectionner les colonnes qui ont au moins 25% de valeurs renseignées :

Nouvel dimensions: (10483,17)

3. Détection des valeurs aberrantes

Bilan du nettoyage

181 colonnes réduites à 17 colonnes

16959 lignes réduites à 10097 lignes

4-Imputation des valeurs manquantes par la méthodes des K plus proches voisins

Différentes unités —

Centrage et réduction : Standard Scaler

→ | k

KNNImputer(missing_values=np.nan, n_neighbors=3)

4-Imputation des valeurs manquantes par la méthodes des K plus proches voisins

Effet de chaque variable sur le nutri-grade

Décrire le jeu de données afin de comprendre les relations entre les indicateurs

1. Matrices de corrélations

2.1 Distributions:

ne suivent pas la distribution normale

• Test de Normalite "Kolmogorov Smirnov (K-S)":

Pour tous les indicateurs p-value < alpha

Confirme la non normalité des distributions de données

- 2.2 Test d'analyse de variance ANOVA
- En l'absence de validation de l'hypothèse de normalité, on ne peut pas applique l'analyse de la variance

Influence de la grade de nutriscore sur les variables ?

Plupart de variables étudies ont une distribution qui change en fonction des valeurs de nutriscore_grade sauf dans le cas de :

Indicateurs	p-val	test
energy-kcal_100g	0.000000e+00	True
fat_100g	0.000000e+00	True
saturated-fat_100g	0.000000e+00	True
trans-fat_100g	3.741685e-07	True
cholesterol_100g	1.031522e-01	False
carbohydrates_100g	1.662625e-179	True
sugars_100g	0.000000e+00	True
fiber_100g	6.012651e-79	True
proteins_100g	2.567503e-31	True
salt_100g	4.429233e-31	True
vitamin-a_100g	7.484492e-07	True
vitamin-c_100g	1.125143e-12	True
calcium_100g	5.020524e-40	True
iron_100g	8.227479e-01	False
nutrition-score-fr_100g	0.000000e+00	True

3. Test du CHI2

Variables non indépendantes

• Le test du CHI2 conclut au rejet de l'hypothèse d'indépendance entre fat et nutri-grade:

lien entre le grade du nutriscore et le fat

Analyse univariée :

5. Analyse par Composantes Principales (ACP)

• Les deux premières composantes principales F1 et F2 représentent environ 33% de la variance des données

Prédiction du nutriscore par régression KNN

Root Mean Square Error (RMSE) = 2.782

	nutriscore	prediction_nutriscore
product_name		
Fruit bars	-2.0	-7.000000
Hearts of palm in brine	-4.0	4.000000
Ice cream	11.0	11.000000
Enriched noodle product, wide egg noodles	-4.0	-4.000000
Petite diced tomatoes	-4.0	-3.666667
Super shreds super foods, brussels sprouts shreds	-9.0	-9.333333
Roundy's, toaster pastries, frosted chocolate fudge	18.0	18.000000
Roundy's, pilaf rice mix	11.0	10.666667
Chocolat stella, lait milk chocolate	11.0	16.000000
Banana & Berries	-4.0	-3.000000

Comparaison de la performance entre le model de :régression et classification

Détermine le grade de nutriscore

Classification K-Nearest Neighbour (KNN)

Pour n_neighbors=3 RMSE sur le jeu de test : 2.782 - Coefficient de détermination R² sur jeu de test : 0.663

- RMSE sur le jeu du test: 5.375

Pour n_neighbors=3 accuracy sur le jeu de test :0.82

```
[[277 20 10 2 0]
[34 89 21 5 1]
[21 32 218 34 1]
[4 6 31 446 24]
[2 0 5 35 298]]
```

Sélectionner le meilleur modèle : Régression KNN avec **n_neighbors** = 3

Identifier le nutriscore du nouveau produit renseigne à l'aide de notre model

Nutriscore : D

Produit:

Barres céréales au chocolat NESQUIK

les 6 barres de 25 g

1,72€

11.47 € / Kilogramme

1 prediction(energy=408,fat=14.1,saturatedfat=6.9,transfat=np.nan,cholesterol=np.nan,carbohydrates=62.4,
2 sugars=24.9,fiber=6,proteins=7.3,salt= 0.44,vitamina=np.nan,vitaminc=np.nan,calcium=1.4,iron=0.01)

15.67

Nombre de valeur renseigné	Indicateurs renseigné	Nutriscore
3	Stat-fat	20
4	+Fat	23.6
5	+Proteins	23.6
6	+Fibre	18
7	+Sugar	23
8	+lron	23
9	+Calcium	23
10	+Carbohydrate	14
11	+Energy	15.67
12	+Salt	15.66

Conclusion:

- Indication de nutriscore approché (RMSE= 2.7) avec 14 variables : faisabilité de l'application
- Résultats de l'application cohérents avec ce qui est observé dans l'analyse multivariée
- Variables les plus pertinents pour l'application : energy, fat, sat-fat, carbohydrates et sugars.
- Résultats cohérents avec les principes nutritionnels:

Indicateur renseigne	Nutriscore
Fat, energy	15.67
Energy, sugars	15.66
Fat, sugars	14
Sta-fat, sugars	14

Merci de votre attention

Prédiction du nutriscore par Régression linéaire

Tableaux représente le poids de chaque variable dans la régression

energy	fat	saturated-fat	trans-fat	cholesterol	carbohydrates	sugars	fiber	proteins	salt	vitamin-a	vitamin-c	calcium	iron
3.735	0.296	2.563	0.094	0.047	-0.27	3.2	-2.217	-0.023	1.37	0.16	-0.153	0.09	-0.024

Ces résultats sont cohérents avec ce qui est observé dans l'analyse multivariée sauf pour le carbohydrates.

