

Resolución de conflictos en sistemas distribuidos

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Resolución de conflictos en sistemas distribuidos

Tenemos n procesos $\{P_1,...,P_n\}$

Cada proceso no tiene comunicación con el resto.

Pueden solicitar acceso a un mismo recurso (ej: base de datos)

Las solicitudes se realizan en rondas discretas.

Si solo 1 proceso pide el recurso se concede el acceso

Si mas de un proceso solicita acceso, ninguno lo obtiene.

Cómo podemos resolver los accesos y maximizar la probabilidad de obtener el recurso?

Quiebre de simetría

Si nadie solicita el recurso

El turno se "pierde"

Si solo 1 proceso solicita el recurso

Lo obtendrá con éxito

Si mas de 1 proceso solicita el recurso

NINGUNO lo obtiene y deberá volver a solicitarlo

Si cada vez que un proceso falla,

Solicita el proceso inmediatamente en el turno siguiente

Se provocará un atasco. ← queremos evitar que esto ocurra

Una solución mediante algoritmo randomizado

Sea p > 0

la probabilidad de que un proceso solicita acceso en un determinado turno

La probabilidad es independiente entre cada proceso.

En cada ronda los procesos deciden acceder o no en base a p

Si en un turno un proceso pide el recurso y falla,

No lo pedirá deterministicamente en el siguiente.

Se aplicará la misma probabilidad "p" para solicitarlo.

Cómo se comporta el sistema? Cual deber ser el valor de p?

Evento de intento de acceso

Llamaremos al evento A[i,t]

Intento del proceso P_i de acceder al recurso en la ronda t

Sabemos que estará signado por la probabilidad p

Podemos determinar tanto el intento como el no-intento:

$$Prob(A[i,t]) = p$$

$$\overline{\text{Prob}(A[i,t])} = 1-p$$

Evento de acceso con éxito

Llamaremos S[i,t] al evento de éxito en el acceso

Implica que el proceso Pi intento acceder al recurso en la ronda t

Ningún otro proceso lo intento en esa misma ronda

Podemos expresarlo como:

$$S[i,t]=A[i,t]\cap(\cap\overline{A[j,t]}), j\neq i$$

Su probabilidad:

$$Prob(S[i,t]) = Prob(A[i,t]) \cdot \prod_{J \neq i} Prob(\overline{A[j,t]}) = p * (1-p)^{(n-1)}$$

Maximizar la probabilidad de éxito

Sea
$$f(p) = p*(1-p)^{(n-1)}$$

P es un valor entre 0 y 1

$$f(p=0) = 0 \leftarrow Nunca intento$$

$$f(p=1) = 0 \leftarrow Siempre intento$$

Maximización de f(p),

cálculo de la derivada
$$f'(p) = (1-p)^{n-1} - (n-1)p(1-p)^{n-2}$$

La derivada

tiene un cero en p= $1/n \rightarrow$ con ese valor maximizamos

Maximizar la probabilidad de éxito (cont.)

Una vez que tenemos p

Podemos reemplazarlo en nuestra probabilidad

$$Prob(S[i,t]) = \frac{1}{n} * (1 - \frac{1}{n})^{(n-1)}$$

Como se comporta esta función

En función de n?

Si analizamos
$$(1-\frac{1}{n})^{(n-1)}$$

Por lo que podemos acotar

$$\frac{1}{en} \le Prob(S[i,t]) \le \frac{1}{2n}$$

$$Prob(S[i,t]) = \Theta(\frac{1}{n})$$

Si tomamos el proceso Pi

¿Cuanto tardara en acceder al recurso?

Si n es grande

Difícilmente lo consiga en su primer intento

Llamaremos F[i,t] Fallo (del protocolo) para el proceso i

Si luego de t rondas el proceso i aun no pudo acceder al recurso

Podemos calcular

$$Pr(F[i,t]) = \overline{Pr(S[i,1])} * \overline{Pr(S[i,2])} * ... * \overline{Pr(S[i,t])}$$

Con

$$\overline{Prob(S[i,t])} = 1 - Prob(S[i,t])$$

$$\frac{1}{en} \leq Prob(S[i,t]) \leq \frac{1}{2n}$$

Por lo tanto

$$Pr(F[i,t]) \leq \left(1 - \frac{1}{en}\right)^{t}$$

Si elegimos t=[en]

$$Pr(F[i,t]) \le \left(1 - \frac{1}{en}\right)^{[en]} \le \left(1 - \frac{1}{en}\right)^{en} \le \frac{1}{e}$$

La probabilidad de que el proceso Pi no tenga éxito entre t=1 y [en]

Está acotada por e-1 (de forma independiente a n)

Si elegimos t ligeramente superior a [en]

Por ejemplo [en]*(c*ln n)

$$Pr(F[i,t]) \leq \left(\left(1 - \frac{1}{en}\right)^{\lceil en \rceil} \right)^{c * \ln n} \leq e^{-c \ln n} = n^{-c}$$

La probabilidad de que el proceso Pi no tenga éxito entre t=[en] y O(n ln n)

Desciende precipitadamente

En conclusión

Antes de Θ(n) rondas la probabilidad de fracaso está acotada por una constante

Luego, entre $\Theta(n)$ y $\Theta(n \mid n)$ rondas la probabilidad cae, delimitado por un polinomio inverso en n.

Llamaremos fallo general del protocolo F[t]

Si luego de t rondas al menos un proceso aun no pudo acceder al recurso

¿Qué valor debe tener t

Para que la probabilidad de fallo general del protocolo sea razonablemente pequeña?

$$Pr(F[t]) = Pr(F[1,t] \cup F[2,t] \cup ... \cup F[n,t])$$

Es la unión de eventos no independientes. Es complejo de calcular. Pero podemos determinar una cota

Se puede ver que

$$Pr(F[t]) = Pr(F[1,t] \cup F[2,t] \cup ... \cup F[n,t]) \le \sum_{i=1}^{n} Pr(F[i,t])$$

Las probabilidades de fallo

de cada proceso son iguales

Tenemos

n procesos → sumamos n veces F[i,t]

Para que la probabilidad de fracaso sea pequeña

F[i,t] tiene que ser significativamente menor a 1/n

Antes de ⊖(n) rondas la F[i,t] está acotada por una constante

$$Pr(F[t]) \leq \sum_{i=1}^{n} Pr(F[i,t]) \leq nc$$

No logramos la cota requerida

Si tomamos $t=[en]^*(2^*ln n) \leftarrow c=2$

$$Pr(F[t]) \le \sum_{i=1}^{n} Pr(F[i,t]) \le n * n^{-2} = \frac{1}{n}$$

logramos la cota que nos solicitamos

En conclusión

Con probabilidad de al menos 1 – 1/n

Todos los procesos

Tienen éxito en acceder al recurso al menos 1 vez

En no mas de

t=[en]*(2*ln n) rondas

Presentación realizada en Junio de 2020