Del Toque a la Acción: Explorando el Procesamiento de Estímulos en Humanos y Robots

1. Objetivo

El objetivo de esta actividad es que los estudiantes comprendan cómo los robots y los humanos procesan estímulos del entorno. Los estudiantes simularán el procesamiento de información, comparando las diferencias y similitudes entre el sistema nervioso humano y los circuitos de un robot.

2. Duración

2 horas

3. Materiales Necesarios

- Proyector o pantalla para mostrar videos e imágenes.
- Imágenes y videos de robots y sistemas nerviosos humanos.
- Dispositivos electrónicos para la investigación y simulación.
- Software de simulación de robótica (como Blockly o Arduino).
- Materiales para diagramas (papel, lápices, marcadores).
- Modelos o prototipos de robots (si están disponibles).

4. Estructura de la Actividad

4.1. Introducción al Procesamiento de Estímulos (10 minutos)

- Explicación de cómo los estímulos externos son captados y procesados tanto por el sistema nervioso humano como por un robot.
- Mostrar ejemplos de cómo un estímulo, como el toque en la piel o un sensor de proximidad, desencadena una respuesta.

ENLACE: Del Toque a la Acción: Explorando el Procesamiento de Estímulos en Humanos y Robots (gamma.site)

4.2. Simulación del Camino de un Estímulo en Humanos (20 minutos)

- Dividir a los estudiantes en grupos pequeños.
- Cada grupo simula el recorrido de un estímulo en el cuerpo humano (por ejemplo, tocar una llama y retirar la mano). Los estudiantes deben crear un diagrama que muestre este proceso, destacando cada paso: recepción, transmisión, procesamiento y respuesta.

4.3. Simulación del Camino de un Estímulo en Robots (30 minutos)

- En los mismos grupos, los estudiantes ahora deben simular cómo un robot procesa un estímulo similar (por ejemplo, un sensor detecta un objeto cercano y el robot se detiene).
- Usando software de simulación o programación simple, deben programar un circuito básico que replique este proceso en un robot.
- Crear un diagrama comparativo entre el proceso humano y el proceso robótico.

ENLACE: invideo AI - Turn ideas into videos - AI video creator

4.4. Presentación de Simulaciones (40 minutos)

- Los grupos presentan sus simulaciones y diagramas a la clase, explicando las diferencias y similitudes entre los dos procesos.
- Se fomenta la participación del resto de la clase para hacer preguntas y discutir los desafíos encontrados durante la simulación.

4.5. Discusión y Reflexión Final (20 minutos)

- Reflexión sobre los procesos: ¿Qué diferencias fundamentales existen entre cómo los humanos y los robots procesan la información?
- Discutir las implicaciones de estas diferencias en áreas como la robótica médica y la inteligencia artificial.

5. Rúbrica de Calificación

Criterio	No Entrega	Mejorable	Bien	Excelente
Simulación	No se	Simulación	Simulación	Simulación
Humana	presenta	básica	clara	destacada
	(0 puntos)	(2 puntos)	(3 puntos)	(4 puntos)
Simulación	No se	Simulación	Simulación	Simulación
Robótica	presenta	básica	clara	destacada
	(0 puntos)	(2 puntos)	(3 puntos)	(4 puntos)
Reflexión	No se	Reflexión	Reflexión	
Crítica	presenta	superficial	adecuada	
	(0 puntos)	(2 puntos)	(3 puntos)	

6. Objetivos de Desarrollo Sostenible (ODS) relacionados:

- **ODS 4: Educación de calidad** Fomentar una educación inclusiva y de calidad a través de la comprensión de tecnologías avanzadas.
- **ODS 9: Industria, innovación e infraestructura** Promover la innovación tecnológica y sus impactos en la sociedad.
- ODS 16: Paz, justicia e instituciones sólidas Reflexionar sobre la ética en la inteligencia artificial y la robótica.

7. Inclusión de los DUA

- Principio 1: Proporcionar múltiples medios de representación
 - Aplicación en la Actividad: Durante la actividad, se utilizarán diagramas visuales y explicaciones verbales para asegurarse de que los estudiantes con diferentes estilos de aprendizaje (visual, auditivo, etc.) puedan acceder a la información de manera efectiva.
- o Principio 2: Proporcionar múltiples medios de acción y expresión
 - Aplicación en la Actividad: Los estudiantes tendrán la opción de expresar su comprensión a través de simulaciones, presentaciones orales o diagramas, permitiendo diferentes formas de participación.
- o Principio 3: Proporcionar múltiples medios de implicación
 - Aplicación en la Actividad: Se fomentará la participación de todos los estudiantes mediante la asignación de roles y la colaboración en grupos, asegurando que cada estudiante esté involucrado y motivado a participar.

8. Resultados Esperados

Al finalizar la actividad, los estudiantes habrán:

- Desarrollado una comprensión más profunda de cómo los estímulos son procesados en sistemas humanos y robóticos.
- Ejercitado su capacidad para diseñar y simular procesos en ambas entidades.
- Reflexionado críticamente sobre las diferencias y similitudes entre los sistemas humanos y robóticos.