In [268]: import pandas as pd
import warnings
warnings.filterwarnings("ignore")

In [269]: data=pd.read_csv("/home/placement/Downloads/Titanic Dataset.csv")

In [270]: data.describe()

Out[270]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

0

In [271]:	data.isna().su	m ()
Out[271]:	PassengerId Survived	6

0 Survived **Pclass** 0 Name 0 Sex 0 Age 177 SibSp 0 Parch 0 Ticket 0 Fare 0 Cabin 687 Embarked 2 dtype: int64

In [272]: data.head(10)

Out[272]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q
6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	S
7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	NaN	S
8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333	NaN	S
9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	0	237736	30.0708	NaN	С

```
In [273]: data['Pclass'].unique()
Out[273]: array([3, 1, 2])
In [274]: data['Survived'].unique()
Out[274]: array([0, 1])
In [275]: data['SibSp'].unique()
Out[275]: array([1, 0, 3, 4, 2, 5, 8])
In [276]: data['Age'].unique()
Out[276]: array([22. , 38. , 26. , 35. ,
                                           nan, 54. , 2. , 27. , 14. ,
                   , 58. , 20. , 39. , 55. , 31. , 34. , 15.
                 4.
                          , 40. , 66. , 42. , 21.
                                                    , 18.
                                                           , 3.
                49. , 29. , 65. , 28.5 , 5. , 11. , 45.
                                                           , 17.
                          , 0.83, 30.
                                       , 33. , 23.
                                                    , 24.
                71. , 37. , 47. , 14.5 , 70.5 , 32.5 , 12.
                                                          , 50.
                51. , 55.5 , 40.5 , 44. , 1. , 61. , 56.
                45.5 , 20.5 , 62. , 41. , 52. , 63. , 23.5 , 0.92, 43. ,
                60. , 10. , 64. , 13. , 48. , 0.75, 53. , 57. , 80. ,
                70. , 24.5 , 6. , 0.67, 30.5 , 0.42, 34.5 , 74. ])
In [277]: data['Parch'].unique()
Out[277]: array([0, 1, 2, 5, 3, 4, 6])
```

```
In [278]: data['Ticket'].unique()
                  112UJB , JOZUBB , C.M. 1/240 , JA/UOJ , FC 1/JOZ , FC 1//UU ,
                  '113798', '250644', 'PC 17596', '370375', '13502', '347073',
                  '239853'. 'C.A. 2673'. '336439'. '347464'. '345778'. 'A/5. 10482'.
                  '113056', '349239', '345774', '349206', '237798', '370373',
                  '19877', '11967', 'SC/Paris 2163', '349236', '349233', 'PC 17612',
                  '2693', '113781', '19988', '9234', '367226', '226593', 'A/5 2466',
                  '17421', 'PC 17758', 'P/PP 3381', 'PC 17485', '11767', 'PC 17608',
                  '250651', '349243', 'F.C.C. 13529', '347470', '29011', '36928',
                  '16966', 'A/5 21172', '349219', '234818', '345364', '28551',
                  '111361', '113043', 'PC 17611', '349225', '7598', '113784',
                  '248740', '244361', '229236', '248733', '31418', '386525',
                  'C.A. 37671', '315088', '7267', '113510', '2695', '2647', '345783',
                  '237671', '330931', '330980', 'SC/PARIS 2167', '2691',
                  'SOTON/0.0. 3101310', 'C 7076', '110813', '2626', '14313',
                  'PC 17477', '11765', '3101267', '323951', 'C 7077', '113503',
                  '2648', '347069', 'PC 17757', '2653', 'STON/0 2. 3101293',
                  '349227', '27849', '367655', 'SC 1748', '113760', '350034',
                  '3101277', '350052', '350407', '28403', '244278', '240929',
                  'STON/O 2. 3101289', '341826', '4137', '315096', '28664', '347064',
                  '29106', '312992', '349222', '394140', 'STON/O 2. 3101269',
```

```
data['Fare'].unique()
In [279]:
Out[279]: array([
                    7.25
                              71.2833,
                                         7.925 ,
                                                   53.1
                                                               8.05
                                                                         8.4583.
                   51.8625.
                              21.075 .
                                        11.1333.
                                                   30.0708.
                                                              16.7
                                                                         26.55
                               7.8542.
                                                   29.125 .
                                                              13.
                   31.275 .
                                        16.
                                                                         18.
                                                              31.3875,
                    7.225 ,
                                          8.0292,
                                                   35.5
                              26.
                                                                       263.
                    7.8792,
                               7.8958,
                                        27.7208, 146.5208,
                                                               7.75
                   82.1708.
                              52.
                                         7.2292,
                                                               9.475 .
                                                                         21.
                                                   11.2417,
                   41.5792,
                              15.5
                                        21.6792,
                                                   17.8
                                                              39.6875,
                                                                         7.8
                   76.7292,
                                                   46.9
                                                              80.
                                                                        83.475 ,
                              61.9792,
                                        27.75 ,
                                          8.1583,
                                                    8.6625,
                   27.9
                              15.2458.
                                                              73.5
                                                                         14.4542.
                               7.65
                                                               9.
                   56.4958,
                                         29.
                                                   12.475 ,
                                                                          9.5
                                        15.85
                                                   34.375 ,
                                                              61.175
                    7.7875,
                              47.1
                                                                         20.575
                                        23.
                                                   77.2875,
                                                               8.6542,
                   34.6542,
                              63.3583,
                                                                          7.775 ,
                               9.825 ,
                                        14.4583, 247.5208,
                   24.15
                                                               7.1417,
                                                                         22.3583,
                    6.975 ,
                                        14.5
                               7.05
                                                   15.0458,
                                                              26.2833,
                                                                          9.2167,
                                    ,
                                               ,
                   79.2
                               6.75
                                        11.5
                                                   36.75
                                                               7.7958,
                                                                         12.525 ,
                   66.6
                               7.3125,
                                        61.3792,
                                                    7.7333,
                                                              69.55
                                                                         16.1
                   15.75
                              20.525 ,
                                        55.
                                                   25.925 ,
                                                              33.5
                                                                         30.6958,
                                                              39.
                                          0.
                   25.4667,
                              28.7125,
                                                   15.05
                                                                         22.025 ,
                   50.
                               8.4042,
                                          6.4958,
                                                   10.4625,
                                                              18.7875,
                                                                         31.
                                        76.2917,
                              27.
                                                   90.
                                                               9.35
                  113.275 ,
                                                                         13.5
                              26.25
                                        12.275 ,
                                                    7.125 ,
                                                              52.5542,
                    7.55
                                                                         20.2125,
                   86.5
                           , 512.3292,
                                        79.65
                                               , 153.4625, 135.6333,
                                                                         19.5
                   29.7
                             77.9583,
                                        20.25
                                                   78.85
                                                             91.0792,
                                                                        12.875 ,
                    8.85
                           , 151.55
                                        30.5
                                                   23.25
                                                              12.35
                                                                     , 110.8833,
                                         56.9292,
                                                   83.1583, 262.375 ,
                  108.9
                              24.
                                                                        14.
                  164.8667, 134.5
                                         6.2375,
                                                   57.9792,
                                                              28.5
                                                                      , 133.65
                   15.9
                               9.225 ,
                                        35.
                                                   75.25
                                                              69.3
                                                                        55.4417,
                               4.0125, 227.525 ,
                                                   15.7417,
                  211.5
                                                               7.7292,
                                                                         12.
                  120.
                              12.65
                                        18.75
                                                    6.8583,
                                                              32.5
                                                                         7.875 ,
                                                              19.2583,
                              55.9
                                          8.1125,
                   14.4
                                                   81.8583,
                                                                         19.9667,
                   89.1042,
                              38.5
                                          7.725 ,
                                                   13.7917,
                                                               9.8375,
                                                                          7.0458,
                                          9.5875,
                    7.5208,
                              12.2875,
                                                   49.5042,
                                                              78.2667,
                                                                         15.1
                    7.6292,
                              22.525 ,
                                        26.2875,
                                                   59.4
                                                               7.4958,
                                                                         34.0208,
                   93.5
                           , 221.7792, 106.425 ,
                                                   49.5
                                                              71.
                                                                         13.8625,
                    7.8292,
                              39.6
                                                   51.4792,
                                                              26.3875,
                                        17.4
                                                                         30.
                               8.7125,
                                        15.
                                                   33.
                                                              42.4
                                                                        15.55 ,
                   40.125 .
                              32.3208.
                                         7.0542,
                                                              25.5875,
                   65.
                                                    8.4333,
                                                                          9.8417.
                    8.1375,
                              10.1708, 211.3375,
                                                   57.
                                                              13.4167,
                                                                          7.7417,
                    9.4833,
                                         8.3625,
                                                   23.45
                               7.7375,
                                                              25.9292,
                                                                          8.6833,
```

```
6.45 ,
                   8.5167.
                             7.8875. 37.0042.
                                                            6.95 ,
                                                                      8.3
                                  , 14.1083, 13.8583,
                   6.4375.
                            39.4
                                                           50.4958.
                                                                      5.
                   9.8458. 10.51671)
In [280]: data['Cabin'].unique()
Out[280]: array([nan, 'C85', 'C123', 'E46', 'G6', 'C103', 'D56', 'A6',
                 'C23 C25 C27', 'B78', 'D33', 'B30', 'C52', 'B28', 'C83', 'F33',
                 'F G73', 'E31', 'A5', 'D10 D12', 'D26', 'C110', 'B58 B60', 'E101'
                 'F E69', 'D47', 'B86', 'F2', 'C2', 'E33', 'B19', 'A7', 'C49', 'F4',
                 'A32', 'B4', 'B80', 'A31', 'D36', 'D15', 'C93', 'C78', 'D35',
                 'C87', 'B77', 'E67', 'B94', 'C125', 'C99', 'C118', 'D7', 'A19',
                 'B49', 'D', 'C22 C26', 'C106', 'C65', 'E36', 'C54',
                 'B57 B59 B63 B66', 'C7', 'E34', 'C32', 'B18', 'C124', 'C91', 'E40',
                 'T', 'C128', 'D37', 'B35', 'E50', 'C82', 'B96 B98', 'E10', 'E44',
                 'A34', 'C104', 'C111', 'C92', 'E38', 'D21', 'E12', 'E63', 'A14',
                 'B37'. 'C30'. 'D20', 'B79', 'E25', 'D46', 'B73', 'C95', 'B38'
                 'B39', 'B22', 'C86', 'C70', 'A16', 'C101', 'C68', 'A10', 'E68',
                 'B41', 'A20', 'D19', 'D50', 'D9', 'A23', 'B50', 'A26', 'D48',
                 'E58', 'C126', 'B71', 'B51 B53 B55', 'D49', 'B5', 'B20', 'F G63',
                 'C62 C64', 'E24', 'C90', 'C45', 'E8', 'B101', 'D45', 'C46', 'D30',
                 'E121', 'D11', 'E77', 'F38', 'B3', 'D6', 'B82 B84', 'D17', 'A36',
                 'B102', 'B69', 'E49', 'C47', 'D28', 'E17', 'A24', 'C50', 'B42',
                  'C148'l, dtype=object)
In [281]: data['Embarked'].unique()
Out[281]: array(['S', 'C', 'Q', nan], dtype=object)
In [282]: | data['Sex'].unique()
Out[282]: array(['male', 'female'], dtype=object)
```

In [283]: datal=data.drop(['PassengerId','Cabin','Name','Ticket','SibSp','Parch'],axis=1)
 datal

Out[283]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	male	22.0	7.2500	S
1	1	1	female	38.0	71.2833	С
2	1	3	female	26.0	7.9250	S
3	1	1	female	35.0	53.1000	S
4	0	3	male	35.0	8.0500	S
886	0	2	male	27.0	13.0000	S
887	1	1	female	19.0	30.0000	S
888	0	3	female	NaN	23.4500	S
889	1	1	male	26.0	30.0000	С
890	0	3	male	32.0	7.7500	Q

891 rows × 6 columns

```
In [284]: list(data1)
```

Out[284]: ['Survived', 'Pclass', 'Sex', 'Age', 'Fare', 'Embarked']

```
In [285]: data1.isna().sum()
Out[285]: Survived
                        0
          Pclass
                        0
          Sex
                        0
          Age
                      177
          Fare
          Embarked
          dtype: int64
In [286]:
          data1.shape
Out[286]: (891, 6)
In [287]: data1['Sex']=data1['Sex'].map({'male':1, 'female':0})
          data1
Out[287]:
```

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	1	22.0	7.2500	S
1	1	1	0	38.0	71.2833	С
2	1	3	0	26.0	7.9250	S
3	1	1	0	35.0	53.1000	S
4	0	3	1	35.0	8.0500	S
		•••				
886	0	2	1	27.0	13.0000	S
887	1	1	0	19.0	30.0000	S
888	0	3	0	NaN	23.4500	S
889	1	1	1	26.0	30.0000	С
890	0	3	1	32.0	7.7500	Q

891 rows × 6 columns

```
In [288]: data1['Pclass'].unique()
```

Out[288]: array([3, 1, 2])

In [289]: data2=data1.fillna(data1.median())
 data2

Out[289]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	1	22.0	7.2500	S
1	1	1	0	38.0	71.2833	С
2	1	3	0	26.0	7.9250	S
3	1	1	0	35.0	53.1000	S
4	0	3	1	35.0	8.0500	S
886	0	2	1	27.0	13.0000	S
887	1	1	0	19.0	30.0000	S
888	0	3	0	28.0	23.4500	S
889	1	1	1	26.0	30.0000	С
890	0	3	1	32.0	7.7500	Q

891 rows × 6 columns

Out[290]: <AxesSubplot:>


```
In [291]: plt.hist(data1['Age'])
#plt.hist(data1['Age'])
```



```
data2.isna().sum()
In [293]:
Out[293]: Survived
                          0
            Pclass
                          0
            Sex
                          0
            Age
                          0
            Fare
            Embarked
            dtype: int64
            data2.fillna(35,inplace=True)
In [294]:
            data2.isna().sum()
In [295]:
Out[295]: Survived
                          0
            Pclass
                          0
            Sex
                          0
            Age
                          0
            Fare
            Embarked
            dtype: int64
            data2.describe()
In [296]:
Out[296]:
                     Survived
                                  Pclass
                                               Sex
                                                         Age
                                                                    Fare
                   891.000000
                              891.000000
                                         891.000000
                                                    891.000000
                                                              891.000000
             count
             mean
                     0.383838
                                2.308642
                                           0.647587
                                                     29.361582
                                                               32.204208
                     0.486592
                                0.836071
                                           0.477990
                                                     13.019697
                                                                49.693429
               std
                     0.000000
                                1.000000
                                           0.000000
                                                     0.420000
                                                                0.000000
               min
              25%
                                2.000000
                                                     22.000000
                     0.000000
                                           0.000000
                                                                 7.910400
                                3.000000
                                           1.000000
                                                    28.000000
              50%
                     0.000000
                                                               14.454200
              75%
                     1.000000
                                3.000000
                                           1.000000
                                                     35.000000
                                                               31.000000
```

max

1.000000

3.000000

1.000000

80.000000

512.329200

```
In [297]: data2['Age'].unique()
Out[297]: array([22. , 38. , 26. , 35. , 28. , 54. , 2. , 27. , 14. ,
                4. , 58.
                          , 20. , 39.
                                       , 55. , 31.
                                                    , 34.
                                                          , 15.
                          , 66. , 42. , 21.
                                             , 18.
                                                    , 3.
                                                          , 7.
                   , 65. , 28.5 , 5.
                                      , 11.
                                             , 45.
                                                    , 17.
                                                          , 32.
               25. , 0.83, 30. , 33. , 23. , 24.
                                                    , 46.
                                                          , 59.
               37. , 47. , 14.5 , 70.5 , 32.5 , 12.
               55.5 , 40.5 , 44. , 1. , 61. , 56.
                                                   , 50.
               20.5 , 62. , 41. , 52. , 63. , 23.5 , 0.92, 43.
               10. , 64. , 13. , 48. , 0.75, 53. , 57. , 80. , 70. ,
               24.5 , 6. , 0.67, 30.5 , 0.42, 34.5 , 74. 1)
In [298]: | data3=data2.groupby(['Age']).count()
         data3
```

Out[298]:

	Surviveu	PCIass	Sex	raie	Ellibarkeu
Age					
0.42	1	1	1	1	1
0.67	1	1	1	1	1
0.75	2	2	2	2	2
0.83	2	2	2	2	2
0.92	1	1	1	1	1
70.00	2	2	2	2	2
70.50	1	1	1	1	1
71.00	2	2	2	2	2
74.00	1	1	1	1	1
80.00	1	1	1	1	1

Survived Polass Sex Fare Embarked

88 rows × 5 columns

In [299]: data2['Pclass']=data2['Pclass'].map({1:'F',2:'S',3:'Third'})
 data2

Out[299]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	Third	1	22.0	7.2500	S
1	1	F	0	38.0	71.2833	С
2	1	Third	0	26.0	7.9250	S
3	1	F	0	35.0	53.1000	S
4	0	Third	1	35.0	8.0500	S
886	0	S	1	27.0	13.0000	S
887	1	F	0	19.0	30.0000	S
888	0	Third	0	28.0	23.4500	S
889	1	F	1	26.0	30.0000	С
890	0	Third	1	32.0	7.7500	Q

891 rows × 6 columns

In [300]: data4=pd.get_dummies(data2)
 data4

Out[300]:

	Survived	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_Third	Embarked_35	Embarked_C	Embarked_Q	Embarked_S
0	0	1	22.0	7.2500	0	0	1	0	0	0	1
1	1	0	38.0	71.2833	1	0	0	0	1	0	0
2	1	0	26.0	7.9250	0	0	1	0	0	0	1
3	1	0	35.0	53.1000	1	0	0	0	0	0	1
4	0	1	35.0	8.0500	0	0	1	0	0	0	1
886	0	1	27.0	13.0000	0	1	0	0	0	0	1
887	1	0	19.0	30.0000	1	0	0	0	0	0	1
888	0	0	28.0	23.4500	0	0	1	0	0	0	1
889	1	1	26.0	30.0000	1	0	0	0	1	0	0
890	0	1	32.0	7.7500	0	0	1	0	0	1	0

891 rows × 11 columns

In [301]: cor_mat=data4.corr()
 cor_mat

Out[301]:

	Survived	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_Third	Embarked_35	Embarked_C	Embarked_Q	Embarked
Survived	1.000000	-0.543351	-0.064910	0.257307	0.285904	0.093349	-0.322308	0.060095	0.168240	0.003650	-0.1556
Sex	-0.543351	1.000000	0.081163	-0.182333	-0.098013	-0.064746	0.137143	-0.064296	-0.082853	-0.074115	0.1257
Age	-0.064910	0.081163	1.000000	0.096688	0.323896	0.015831	-0.291955	0.075229	0.030248	-0.031415	-0.0146
Fare	0.257307	-0.182333	0.096688	1.000000	0.591711	-0.118557	-0.413333	0.045646	0.269335	-0.117216	-0.1666
Pclass_F	0.285904	-0.098013	0.323896	0.591711	1.000000	-0.288585	-0.626738	0.083847	0.296423	-0.155342	-0.1703
Pclass_S	0.093349	-0.064746	0.015831	-0.118557	-0.288585	1.000000	-0.565210	-0.024197	-0.125416	-0.127301	0.1920
Pclass_Third	-0.322308	0.137143	-0.291955	-0.413333	-0.626738	-0.565210	1.000000	-0.052550	-0.153329	0.237449	-0.0095
Embarked_35	0.060095	-0.064296	0.075229	0.045646	0.083847	-0.024197	-0.052550	1.000000	-0.022864	-0.014588	-0.0765
Embarked_C	0.168240	-0.082853	0.030248	0.269335	0.296423	-0.125416	-0.153329	-0.022864	1.000000	-0.148258	-0.7783
Embarked_Q	0.003650	-0.074115	-0.031415	-0.117216	-0.155342	-0.127301	0.237449	-0.014588	-0.148258	1.000000	-0.4966
Embarked_S	-0.155660	0.125722	-0.014665	-0.166603	-0.170379	0.192061	-0.009511	-0.076588	-0.778359	-0.496624	1.0000

```
In [302]: import seaborn as sns
    sns.heatmap(cor_mat,vmax=1,vmin=-1,annot=True,linewidths=.5,cmap='bwr')
Out[302]: <AxesSubplot:>
```



```
In [303]: data4.groupby('Survived').count()
Out[303]:
                   Sex Age Fare Pclass_F Pclass_S Pclass_Third Embarked_35 Embarked_C Embarked_Q Embarked_S
           Survived
                 0 549 549
                            549
                                     549
                                             549
                                                        549
                                                                    549
                                                                               549
                                                                                          549
                                                                                                    549
                                     342
                                             342
                                                        342
                                                                    342
                                                                               342
                                                                                          342
                                                                                                    342
                 1 342 342
                            342
In [304]: y=data4['Survived']
           x=data4.drop('Survived',axis=1)
In [305]: v
Out[305]: 0
                  0
                  1
           2
           4
                  0
          886
          887
                  1
          888
                  0
          889
                  1
          890
          Name: Survived, Length: 891, dtype: int64
In [306]: from sklearn.model_selection import train_test_split
           x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=42)
```

In [307]: x_test.head(5)

Out[307]:

	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_Third	Embarked_35	Embarked_C	Embarked_Q	Embarked_S
709	1	28.0	15.2458	0	0	1	0	1	0	0
439	1	31.0	10.5000	0	1	0	0	0	0	1
840	1	20.0	7.9250	0	0	1	0	0	0	1
720	0	6.0	33.0000	0	1	0	0	0	0	1
39	0	14.0	11.2417	0	0	1	0	1	0	0

In [308]: y_test.head(5)

Out[308]: 709

709 1 439 0

840

720

39 1

Name: Survived, dtype: int64

In [309]: x_train.head(5)

Out[309]:

	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_Third	Embarked_35	Embarked_C	Embarked_Q	Embarked_S
6	1	54.0	51.8625	1	0	0	0	0	0	1
718	1	28.0	15.5000	0	0	1	0	0	1	0
685	1	25.0	41.5792	0	1	0	0	1	0	0
73	1	26.0	14.4542	0	0	1	0	1	0	0
882	0	22.0	10.5167	0	0	1	0	0	0	1

```
In [310]: y train.head(5)
Out[310]: 6
                 0
          718
                 0
          685
          73
          882
          Name: Survived, dtype: int64
In [311]: from sklearn.linear model import LogisticRegression
          classifier=LogisticRegression()
          classifier.fit(x train,y train)
Out[311]: LogisticRegression()
In [312]: y pred=classifier.predict(x test)
In [313]: y_pred
Out[313]: array([0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
                 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0,
                 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1,
                 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1,
                 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
                 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0,
                 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1,
                 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0,
                 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0,
                 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0,
                 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1,
                 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0,
                 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
                 1, 0, 0, 0, 0, 0, 1, 1, 01)
```

```
In [316]: from sklearn.metrics import confusion matrix
          confusion_matrix(y_test,y_pred)
Out[316]: array([[154, 21],
                 [ 37, 83]])
In [317]: from sklearn.metrics import accuracy_score
          accuracy_score(y_test,y_pred)
Out[317]: 0.8033898305084746
In [318]: y
Out[318]: 0
                 0
                 1
          2
                 0
          886
          887
                 1
          888
          889
                 1
          890
          Name: Survived, Length: 891, dtype: int64
 In [ ]:
```