

Trabalho prático 2

Projeto de um amplificador de transcondutância Miller de dois estágios

Circuitos Integrados Analógicos

Mairon Schneider Cardoso; maironschneider@gmail.com

- 4 Parte A Projeto à Mão: Comece o projeto usando o modelo quadrático do MOSFET para determinar os seguintes parâmetros:
 - Capacitor de compensação CC;
 - Polarização DC dos transistores;
 - Razão de aspecto (W/L) dos transistores.

Utilize a metodologia de projeto proposta na Seção 6.3 do livro CMOS Analog Circuit Design, de Allen e Holberg [1]. Os Capítulos 6 dos livros [2] e [3] também são ótimas referências para o projeto. Para minimizar os efeitos de segunda ordem, empregue transistores com L = 4Lmin. Como citado anteriormente, considere que a corrente de polarização IB é fornecida por outra parte do circuito e não se preocupe em como gerála. Depois de dimensionados, preencha a Tabela 3 com o valor dos parâmetros estimados à mão para cada transistor. *Em negrito os valores retirados do op(com fonte VOS para garantir saturação).

Parâmetro	Transistor							
	M1	M2	M3	M4	M5	M6	M7	M8
<i>W</i> [μm]	12.67658	12.67658	1.3405	1.3405	10.773	73.93554	2.9708	4.3092
<i>L</i> [μm]	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
W/L	9.0547	9.0547	0.9575	0.9575	7.6951	52.8111	2.1220	3.0780
I _D [μΑ]	12.5	12.5	12.5	12.5	25	689.42	689.42	10
V _{DS} [V]	889.9217m	950.8769m	1.5614	1.5005	546.3426m	1.4979	1.4998	736.8258m
V _{GS} [V]	653.3392m	653.0516m	1.5624	1.5624	736.9545m	1.5014	736.9502m	736.9558m
g _m [μΑ/V]	157.08	157.08	-31.328	-31.328	204.788	1727.871	346.355	50.239
g _{DS} [A/V]	335.7385n	323.9223n	415.0134n	428.6681n	999.8380n	24.4945u	12.1301u	271.7012n

- **Parte B Desempenho Esperado:** Baseado no dimensionamento desenvolvido na Parte A, calcule teoricamente as seguintes características esperadas para o amplificador:
 - Grandes sinais (estático)

Excursão de sinal de saída;

Resposta: $V_{outm\acute{a}x} = 2.202000899574543$

 $V_{outmin} = 0.3$

• Pequenos sinais (baixas frequências)

Ganho diferencial;

Resposta: 13.20829181062338u

• Pequenos sinais

Produto ganho-faixa;

Resposta: $(157.08\mu/2.5p) = 62.832MHz$

Frequência do primeiro pólo (largura de banda de -3 dB);

Resposta: 638.09KHz

- 6 Parte D- Simulações em Laço Aberto da primeira projeção do Amplificador.
- Ganho DC diferencial de pequenos sinais (adotando a fonte de OFFSET).

• Ganho DC de CM de pequenos sinais (adotando a fonte de OFFSET).

• CMRR

 $CMRR = 20*log(A_d/A_{cm}) = 62.72629848;$

Offset de entrada para V_{OUTDC} = V_{DD}/2

• Resposta em frequência e fase, Produto ganho-faixa e Margem de fase para ganho de 0dB(adotando a fonte de OFFSET).

• Slew-rates de subida e descida.

•SR_{Rise}:

•SR_{Fall}:

• Excursão de sinal de saída

• Faixa de tensão de entrada de modo comum

• Consumo de potência média

$$V_{DD} = -2.2631m$$

$$I_B = 22.6291u$$

$$TOTAL = -2.2404m$$