Deep Learning

Lab Session 2 - 3 Hours

Convolutional Neural Network (CNN) for Handwritten Digits Recognition

Student 1: Daniele Reda Student 2: Matteo Romiti

The aim of this session is to practice with Convolutional Neural Networks. Answers and experiments should be made by groups of one or two students. Each group should fill and run appropriate notebook cells.

Once you have completed all of the code implementations and successfully answered each question above, you may finalize your work by exporting the iPython Notebook as an pdf document using print as PDF (Ctrl+P). Do not forget to run all your cells before generating your final report and do not forget to include the names of all participants in the group. The lab session should be completed by May 29th 2017.

Send you pdf file to benoit.huet@eurecom.fr and olfa.ben-ahmed@eurecom.fr using [DeepLearning_lab2] as Subject of your email.

Introduction

In the last Lab Session, you built a Multilayer Perceptron for recognizing hand-written digits from the MNIST data-set. The best achieved accuracy on testing data was about 97%. Can you do better than these results using a deep CNN? In this Lab Session, you will build, train and optimize in TensorFlow one of the early Convolutional Neural Networks: **LeNet-5** to go to more than 99% of accuracy.

Load MNIST Data in TensorFlow

Run the cell above to load the MNIST data that comes with TensorFlow. You will use this data in **Section 1** and **Section 2**.

In [1]:

```
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input data
mnist = input data.read data sets("MNIST data/", one hot=True)
                           = mnist.train.images, mnist.train.labels
X train, y train
X validation, y validation = mnist.validation.images, mnist.validation.labels
                           = mnist.test.images, mnist.test.labels
X_test, y_test
print("Image Shape:
                       {}".format(X train[0].shape))
print("Training Set:
                       {} samples".format(len(X train)))
print("Validation Set: {} samples".format(len(X validation)))
print("Test Set:
                       {} samples".format(len(X test)))
```

```
Extracting MNIST data/train-images-idx3-ubyte.gz
Extracting MNIST data/train-labels-idx1-ubyte.gz
Extracting MNIST data/t10k-images-idx3-ubyte.gz
Extracting MNIST data/t10k-labels-idx1-ubyte.gz
Image Shape:
                (784,)
```

55000 samples Training Set: Validation Set: 5000 samples Test Set: 10000 samples

Section 1: My First Model in TensorFlow

Before starting with CNN, let's train and test in TensorFlow the example: y=softmax(Wx+b) seen in the DeepLearing course last week.

This model reaches an accuracy of about 92 %. You will also learn how to launch the tensorBoard https://www.tensorflow.org/get_started/summaries_and_tensorboard (https://www.tensorflow.org/get_started/summaries_and_tensorboard) to visualize the computation graph, statistics and learning curves.

Part 1: Read carefully the code in the cell below. Run it to perform training.

In [2]:

```
#STEP 1
# Parameters
learning_rate = 0.01
training epochs = 100
batch_size = 128
display step = 2
logs_path = 'log_files/' # useful for tensorboard
# tf Graph Input: mnist data image of shape 28*28=784
x = tf.placeholder(tf.float32, [None, 784], name='InputData')
# 0-9 digits recognition, 10 classes
y = tf.placeholder(tf.float32, [None, 10], name='LabelData')
# Set model weights
W = tf.Variable(tf.zeros([784, 10]), name='Weights')
b = tf.Variable(tf.zeros([10]), name='Bias')
# Construct model and encapsulating all ops into scopes, making Tensorboard's Gr
aph visualization more convenient
```

```
with tf.name scope('Model'):
    # Model
    pred = tf.nn.softmax(tf.matmul(x, W) + b) # Softmax
with tf.name scope('Loss'):
    # Minimize error using cross entropy
    cost = tf.reduce mean(-tf.reduce sum(y*tf.log(pred), reduction indices=1))
with tf.name scope('SGD'):
    # Gradient Descent
    optimizer = tf.train.GradientDescentOptimizer(learning rate).minimize(cost)
with tf.name scope('Accuracy'):
    # Accuracy
    acc = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
    acc = tf.reduce mean(tf.cast(acc, tf.float32))
# Initializing the variables
init = tf.global variables initializer()
# Create a summary to monitor cost tensor
tf.summary.scalar("Loss", cost)
# Create a summary to monitor accuracy tensor
tf.summary.scalar("Accuracy", acc)
# Merge all summaries into a single op
merged summary op = tf.summary.merge all()
#STEP 2
# Launch the graph for training
with tf.Session() as sess:
    sess.run(init)
    # op to write logs to Tensorboard
    summary writer = tf.summary.FileWriter(logs path,
graph=tf.get default graph())
    # Training cycle
    for epoch in range(training epochs):
        avg cost = 0.
        total batch = int(mnist.train.num examples/batch size)
        # Loop over all batches
        for i in range(total batch):
            batch xs, batch ys = mnist.train.next batch(batch size)
            # Run optimization op (backprop), cost op (to get loss value)
            # and summary nodes
            _, c, summary = sess.run([optimizer, cost, merged summary op],
                                     feed dict={x: batch xs, y: batch ys})
            # Write logs at every iteration
            summary writer.add summary(summary, epoch * total batch + i)
            # Compute average loss
            avg cost += c / total batch
        # Display logs per epoch step
        if (epoch+1) % display_step == 0:
            print("Epoch: ", '%02d' % (epoch+1), " =====> Loss=", "{:.9f}".form
at(avg cost))
    print("Optimization Finished!")
    # Test model
    # Calculate accuracy
    print("Accuracy:", acc.eval({x: mnist.test.images, y: mnist.test.labels}))
```

```
02
             ====> Loss= 0.733064874
Epoch:
Epoch:
        04
             ====> Loss= 0.536358523
Epoch:
        06
             ====> Loss= 0.471889261
Epoch:
        08
             ====> Loss= 0.435504827
Epoch:
        10
             ====> Loss= 0.412166757
Epoch:
        12
             ====> Loss= 0.397256630
Epoch:
        14
             ====> Loss= 0.384323012
Epoch:
        16
             ====> Loss= 0.374909195
Epoch:
        18
             ====> Loss= 0.365859221
        20
             ====> Loss= 0.358819640
Epoch:
Epoch:
        22
             ====> Loss= 0.353986612
Epoch:
        24
             ====> Loss= 0.349985992
Epoch:
        26
             ====> Loss= 0.345158857
Epoch:
        28
             ====> Loss= 0.340375543
Epoch:
        30
             ====> Loss= 0.337398454
Epoch:
        32
             ====> Loss= 0.333335278
        34
Epoch:
             ====> Loss= 0.330760923
Epoch:
        36
             ====> Loss= 0.326252774
Epoch:
        38
             ====> Loss= 0.325419832
Epoch:
        40
             ====> Loss= 0.322225989
        42
             ====> Loss= 0.320298648
Epoch:
Epoch:
        44
             ====> Loss= 0.319281198
Epoch:
        46
             ====> Loss= 0.318291789
Epoch:
        48
             ====> Loss= 0.314709458
Epoch:
        50
             ====> Loss= 0.313845383
Epoch:
        52
             ====> Loss= 0.309665868
Epoch:
        54
             ====> Loss= 0.311834381
Epoch:
        56
             ====> Loss= 0.306622827
Epoch:
        58
             ====> Loss= 0.308776800
Epoch:
        60
             ====> Loss= 0.305952971
Epoch:
        62
             ====> Loss= 0.303234257
Epoch:
        64
             ====> Loss= 0.304481421
Epoch:
        66
             ====> Loss= 0.302969264
Epoch:
        68
             ====> Loss= 0.304459532
Epoch:
        70
             ====> Loss= 0.303972692
Epoch:
        72
             ====> Loss= 0.298687273
        74
Epoch:
             ====> Loss= 0.300435235
Epoch:
        76
             ====> Loss= 0.297799206
Epoch:
        78
             ====> Loss= 0.299489916
Epoch:
        80
             ====> Loss= 0.295029076
        82
Epoch:
             ====> Loss= 0.297068079
Epoch:
        84
             ====> Loss= 0.296208043
Epoch:
        86
             ====> Loss= 0.293802273
        88
Epoch:
             ====> Loss= 0.290398892
Epoch:
        90
             ====> Loss= 0.294975000
Epoch:
        92
             ====> Loss= 0.291894806
Epoch:
        94
             ====> Loss= 0.292634473
Epoch:
        96
             ====> Loss= 0.292533482
        98
             ====> Loss= 0.290901574
Epoch:
Epoch:
        100
              ====> Loss= 0.289058641
Optimization Finished!
```

Accuracy: 0.9203

Part 2: Using Tensorboard, we can now visualize the created graph, giving you an overview of your architecture and how all of the major components are connected. You can also see and analyse the learning curves.

To launch tensorBoard:

- · Go to the TP2 folder,
- Open a Terminal and run the command line "tensorboard --logdir= log_files/", it will generate an http link ,ex http://666.6.6:6006 (http://666.6.6:6006),
- · Copy this link into your web browser

Enjoy It!!

Section 2: The 99% MNIST Challenge!

Part 1: LeNet5 implementation

Once you are familiar with **tensorFlow** and **tensorBoard**, you are in this section to build, train and test the baseline <u>LeNet-5</u> (http://yann.lecun.com/exdb/lenet/) model for the MNIST digits recognition problem.

In more advanced step you will make some optimizations to get more than 99% of accuracy. The best model can get to over 99.7% accuracy!

For more information, have a look at this list of results:

http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html (http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html)

The LeNet architecture accepts a 32x32xC image as input, where C is the number of color channels. Since MNIST images are grayscale, C is 1 in this case.

Layer 1: Convolutional. The output shape should be 28x28x6 **Activation.** sigmoid **Pooling.** The output shape should be 14x14x6.

Layer 2: Convolutional. The output shape should be 10x10x16. **Activation.** sigmoid **Pooling.** The output shape should be 5x5x16.

Flatten. Flatten the output shape of the final pooling layer such that it's 1D instead of 3D. You may need to use *flatten from tensorflow.contrib.layers import flatten

- Layer 3: Fully Connected. This should have 120 outputs. Activation. sigmoid
- Layer 4: Fully Connected. This should have 84 outputs. Activation. sigmoid
- Layer 5: Fully Connected. This should have 10 outputs Activation. softmax.

Question 2.1.1 Implement the Neural Network architecture described above. For that, your will use classes and functions from https://www.tensorflow.org/api docs/python/tf/nn (https://www.tensorflow.org/api docs/python/tf/nn).

We give you some helper functions for weigths and bias initilization. Also you can refer to section 1.

In [2]:

```
# Helper functions for weigths and bias initilization
def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)

def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

def conv2d(x, W, stride, padding_):
    return tf.nn.conv2d(x, W, strides=[1, stride, stride, 1], padding=padding_)
```

In [3]:

```
def LeNet5 Model(data, transfer="sigmoid", keep prob=1.):
    # your implementation goes here
    transferFuncs = {"sigmoid" : tf.sigmoid, "ReLU": tf.nn.relu}
    #first convolutional layer
    W conv1 = weight variable([5, 5, 1, 6]) ## [filter width, filter height, dep
th image in, depth image out]
    b conv1 = bias variable([6])
    h conv1 = transferFuncs[transfer](conv2d(data, W conv1, 1, 'SAME') +
    pool1 = tf.nn.pool(h conv1, [2,2], "MAX", 'VALID', strides=[2,2])
    #second convolutional layer
    W conv2 = weight variable([5, 5, 6, 16])
    b conv2 = bias variable([16])
    h conv2 = transferFuncs[transfer](conv2d(pool1, W conv2, 1, 'VALID') + b con
v2)
    pool2 = tf.nn.pool(h conv2, [2,2], "MAX", 'VALID', strides=[2,2])
    #first fully connected layer
    s = pool2.get shape().as list()
    flattened length = s[1] * s[2] * s[3]
    pool2 flat = tf.reshape(pool2, [-1, flattened length])
    W fc1 = weight variable([1*5*5*16, 120])
    b fc1 = bias variable([120])
    h fc1 = transferFuncs[transfer](tf.matmul(pool2 flat, W fc1) + b fc1)
    h fc1 drop = tf.nn.dropout(h fc1, keep prob)
    #second fully connected layer
    W fc2 = weight variable([120, 84])
    b fc2 = bias variable([84])
    h fc2 = transferFuncs[transfer](tf.matmul(h fc1 drop, W fc2) + b fc2)
    h fc2 drop = tf.nn.dropout(h fc2, keep prob)
    #third fully connected layer
    W_fc3 = weight_variable([84, 10])
    b fc3 = bias variable([10])
    h fc3 = tf.nn.softmax(tf.matmul(h fc2 drop, W fc3) + b fc3)
    return h fc3
```

Question 2.1.2. Calculate the number of parameters of this model

In [5]:

```
# first conv
pconv1 = 5*5*1*6 # filter_height * filter_width * channels_in * num_feature_maps
# second conv
pconv2 = 5*5*1*16 # filter_height * filter_width * channels_in * num_feature_map
s
# first fcl
pfcl1 = 5*5*16*120 # fcl_input_size * fcl_output_size
pfcl1# second fcl
pfcl2 = 84*120 # fcl_input_size * fcl_output_size
# third fcl
pfcl3 = 84*10 # fcl_input_size * fcl_output_size
pbias = 6+16+120+84+10 # all the biases
total = pbias + pfcl1 + pfcl2 + pfcl3 + pconv2 + pconv1
print(total)
```

59706

Question 2.1.3. Start the training with the parameters cited below:

```
Learning rate : 0.1
Loss Function : Cross entropy
Optimizer: SGD
Number of training iterations : 10000
Batch size : 128
```

In [8]:

```
learning_rate = 0.1
training_epochs = 200 # as suggested in the email
batch_size = 128
display_step = 10
logs_path = 'log_files/'
```

Question 2.1.4. Implement the evaluation function for accuracy computation

In [4]:

```
def evaluate(model, y):
    correct = tf.equal(tf.argmax(model, 1), tf.argmax(y, 1))
    return tf.reduce_mean(tf.cast(correct, tf.float32))
```

Question 2.1.5. Implement training pipeline and run the training data through it to train the model.

- Before each epoch, shuffle the training set.
- Print the loss per mini batch and the training/validation accuracy per epoch. (Display results every 100 epochs)
- · Save the model after training
- · Print after training the final testing accuracy

In [5]:

```
moid", keep probability= 1.0):
    optFunctions = {"SGD":tf.train.GradientDescentOptimizer, "Adam":tf.train.Ada
mOptimizer}
    # Erase previous graph
    tf.reset default graph()
    x = tf.placeholder(tf.float32, [None, 28, 28, 1], name='InputData')
    y = tf.placeholder(tf.float32, [None, 10], name='LabelData')
    keep prob = tf.placeholder(tf.float32)
    # Construct model
    with tf.name scope('Model'):
        pred = LeNet5 Model(x, transfer=transfer)
    # Define loss and optimizer
    with tf.name scope('Loss'):
        cost = tf.reduce mean(-tf.reduce sum(y*tf.log(pred),
reduction indices=1))
        #cost = tf.reduce mean(tf.nn.softmax cross entropy with logits(logits=pr
ed, labels=y))
    with tf.name scope(optFunction):
        if transfer is "sigmoid":
            optimizer = optFunctions[optFunction](learning rate).minimize(cost)
        else:
            opt = optFunctions[optFunction](learning_rate)
            qvs = opt.compute gradients(cost)
            capped gvs = [(tf.clip by value(grad, -1., 1.), var) for grad, var i
n gvs]
            optimizer = opt.apply gradients(capped gvs)
    # Evaluate model
    with tf.name_scope('Accuracy'):
        accuracy = evaluate(pred, y)
    # Initializing the variables
    init = tf.global_variables_initializer()
    # Create a summary to monitor cost tensor
    tf.summary.scalar("Loss", cost)
    # Create a summary to monitor accuracy tensor
    tf.summary.scalar("Accuracy", accuracy)
    # Merge all summaries into a single op
    merged summary op = tf.summary.merge all()
    x val, y val = mnist.validation.images.reshape(-1, 28, 28, 1), mnist.validat
ion.labels
    x_test, y_test = mnist.test.images.reshape(-1, 28, 28, 1), mnist.test.labels
    with tf.Session() as sess:
#
          acc history = []
        test history = []
        val history = []
#
          train history = []
        sess.run(init)
        if verbose is True:
            print("Start Training!")
```

```
# op to write logs to Tensorboard
        summarv writer = tf.summarv.FileWriter(logs path, graph=tf.get default g
raph())
        saver = tf.train.Saver()
        #Training cycle
        for epoch in range(training epochs):
            avg cost = 0.
            total batch = int(mnist.train.num examples/batch size)
            #Loop over all batches
            for i in range(total batch):
                batch xs, batch ys = mnist.train.next batch(batch size)
                batch xs = batch xs.reshape(-1, 28, 28, 1)
                # Run optimization op (backprop), cost op (to get loss value)
                # and summary nodes
                _, c, summary = sess.run([optimizer, cost, merged summary op],
                                         feed dict={x: batch xs, y: batch ys, ke
ep prob: keep probability})
                  _, c, summary = sess.run([optimizer, cost, merged summary op],
                                            feed dict={x: batch xs, y: batch ys,
keep_prob:keep prob })
                # Write logs at every iteration
                summary writer.add summary(summary, epoch * total batch + i)
                # Compute average loss
                avg cost += c / total batch
            # Display logs per epoch step
#
              train acc = accuracy.eval({x: batch xs, y:batch ys})
            val acc = accuracy.eval({x: x val, y:y val, keep prob:1.0})
            test_acc = accuracy.eval({x: x_test, y:y_test, keep_prob:1.0})
              acc history.append(acc)
              train history.append(train acc)
            val history.append(val acc)
            test history.append(test acc)
            saver.save(sess, 'Models/model ' + str(learning rate) + ' ' + str(ba
tch size) + ' ' + optFunction)
            if verbose is True and (epoch+1) % display step == 0:
                print("Epoch: ", '%02d' % (epoch+1), \
                       ====> Loss=", "{:.9f}".format(avg cost), \
                      " Validation accuracy=", val_acc, " Test accuracy=", test_
acc)
            if val acc>=0.99:
                if verbose is True:
                    print("Validation Accuracy over 99% reached after %d epoch
s" %(epoch+1))
                break
        if verbose is True:
            print("Training Finished!")
            # Test model
            # Calculate accuracy
            print("Test accuracy:", accuracy.eval({x: x_test, y:y_test, keep_pro
b:1.0}))
    return val history, test history
train.next batch() has shuffle parameter set to True by default.
```

In [9]:

val_hist, test_hist = train(learning_rate, training_epochs, batch_size)

Start Training! Epoch: 01 ====> Loss=	2 306711101	Validation	accuracy-	0 1126	
Test accuracy= 0.1135	2.300/11101	vaciuacion	accuracy-	0.1120	
Epoch: 02 ====> Loss=	2.305636428	Validation	accuracy=	0.1126	
Test accuracy= 0.1135					
Epoch: 03 ====> Loss=	2.304683939	Validation	accuracy=	0.099	T
est accuracy= 0.1009 Epoch: 04 ====> Loss=	2 304435188	Validation	accuracy=	0 0986	
Test accuracy= 0.101	21301133100	vacraacron	accaracy	0.0300	
Epoch: 05 ====> Loss=	2.302418652	Validation	accuracy=	0.1126	
Test accuracy= 0.1135	2 200472015			0.0000	
Epoch: 06 ====> Loss= Test accuracy= 0.0892	2.3004/3815	Validation	accuracy=	0.0868	
Epoch: 07 ====> Loss=	2.294925442	Validation	accuracv=	0.1582	
Test accuracy= 0.1736					
Epoch: 08 ====> Loss=	2.272766478	Validation	accuracy=	0.2568	
Test accuracy= 0.2669 Epoch: 09 ====> Loss=	1 072761227	Validation	26645264-	0 5516	
Test accuracy= 0.5554	1.9/2/0123/	Validation	accuracy=	0.5510	
Epoch: 10 ====> Loss=	1.132301843	Validation	accuracy=	0.7514	
Test accuracy= 0.7543			-		
Epoch: 11 ====> Loss=	0.731297972	Validation	accuracy=	0.8326	
Test accuracy= 0.8345 Epoch: 12 ====> Loss=	0 530246344	Validation	accuracy-	0 8642	
Test accuracy= 0.8697	0.555240544	vacidation	accuracy-	0.0042	
Epoch: 13 ====> Loss=	0.425185097	Validation	accuracy=	0.8948	
Test accuracy= 0.8911					
Epoch: 14 ====> Loss= Test accuracy= 0.9133	0.34//23823	Validation	accuracy=	0.91/8	
Epoch: 15 ====> Loss=	0.296964134	Validation	accuracv=	0.9294	
Test accuracy= 0.9254	0.123030.123.	14 (144 (15))	acca. ac,	0.323.	
Epoch: 16 ====> Loss=	0.254887692	Validation	accuracy=	0.9402	
Test accuracy= 0.9359 Epoch: 17 ====> Loss=	0 227100007	Validation	266118261/-	0 0464	
Test accuracy= 0.9392	0.22/19909/	vaciuacion	accuracy-	0.9404	
Epoch: 18 ====> Loss=	0.201696811	Validation	accuracy=	0.9488	
Test accuracy= 0.9474					
Epoch: 19 ====> Loss=	0.183556086	Validation	accuracy=	0.9548	
Test accuracy= 0.9534 Epoch: 20 ====> Loss=	0.167839546	Validation	accuracy=	0.9588	
Test accuracy= 0.9571	0.10,000	14 (144 (15))	acca. ac,	0.5500	
Epoch: 21 ====> Loss=	0.156564979	Validation	accuracy=	0.9612	
Test accuracy= 0.9588	0 144250405	Validation	200115201	0 0646	
Epoch: 22 ====> Loss= Test accuracy= 0.9632	0.144339403	Validation	accuracy=	0.9040	
Epoch: 23 ====> Loss=	0.132515675	Validation	accuracy=	0.9664	
Test accuracy= 0.9654			-		
Epoch: 24 ====> Loss=	0.127158645	Validation	accuracy=	0.9676	
Test accuracy= 0.967 Epoch: 25 ====> Loss=	0 120277383	Validation	accuracy-	0 0606	
Test accuracy= 0.9693	0.120277303	vacidation	accuracy-	0.3030	
Epoch: 26 ====> Loss=	0.112007220	Validation	accuracy=	0.97	Te
st accuracy= 0.9707	0 100000014			0 0704	
Epoch: 27 ====> Loss= Test accuracy= 0.9716	0.109625914	Validation	accuracy=	0.9704	
Epoch: 28 ====> Loss=	0.103575878	Validation	accuracy=	0.971	Т
est accuracy= 0.972				-	•
Epoch: 29 ====> Loss=	0.098601557	Validation	accuracy=	0.973	Т
est accuracy= 0.9739 Epoch: 30 ====> Loss=	0 002016171	Validation	20045204	0.074	т
LPUCII: 30 ====> LOSS=	0.030101/1	Validation	accuracy=	9/4. ט	ı

-,					
est accuracy= 0.9744 Epoch: 31 ====> Loss= Test accuracy= 0.9741	0.092868912	Validation	accuracy=	0.9726	,
Epoch: 32 ====> Loss= Test accuracy= 0.9749	0.089477438	Validation	accuracy=	0.9738	3
Epoch: 33 ====> Loss= est accuracy= 0.9769	0.084379114	Validation	accuracy=	0.976	Т
Epoch: 34 ====> Loss= Test accuracy= 0.9784	0.083824713	Validation	accuracy=	0.9772	
Epoch: 35 ====> Loss= Test accuracy= 0.9791	0.079959069	Validation	accuracy=	0.9754	ļ
Epoch: 36 ====> Loss= Test accuracy= 0.9762	0.079306742	Validation	accuracy=	0.9772	
Epoch: 37 ====> Loss= Test accuracy= 0.9787	0.076031795	Validation	accuracy=	0.9766	•
Epoch: 38 ====> Loss= Test accuracy= 0.9804	0.075798994	Validation	accuracy=	0.9764	
Epoch: 39 ====> Loss= est accuracy= 0.9806	0.071249567	Validation	accuracy=	0.976	Т
Epoch: 40 ====> Loss= Test accuracy= 0.9807	0.071117505	Validation	accuracy=	0.9784	1
Epoch: 41 ====> Loss= Test accuracy= 0.9808	0.068700804	Validation	accuracy=	0.9788	3
Epoch: 42 ====> Loss= est accuracy= 0.9817	0.068370116	Validation	accuracy=	0.978	Т
Epoch: 43 ====> Loss= Test accuracy= 0.9817	0.066696880	Validation	accuracy=	0.9776	•
Epoch: 44 ====> Loss= Test accuracy= 0.9818	0.065036479	Validation	accuracy=	0.9788	}
Epoch: 45 ====> Loss= Test accuracy= 0.9827	0.062617577	Validation	accuracy=	0.9798	}
Epoch: 46 ====> Loss= st accuracy= 0.9815	0.061715125	Validation	accuracy=	0.98	Te
Epoch: 47 ====> Loss= Test accuracy= 0.9814	0.062542747	Validation	accuracy=	0.9806	•
Epoch: 48 ====> Loss= Test accuracy= 0.9827	0.058317994	Validation	accuracy=	0.9822	
Epoch: 49 ====> Loss= Test accuracy= 0.9834	0.061187078	Validation	accuracy=	0.9804	ļ
Epoch: 50 ====> Loss= st accuracy= 0.9812	0.057029585	Validation	accuracy=	0.98	Те
Epoch: 51 ====> Loss= Test accuracy= 0.9822	0.055684161	Validation	accuracy=	0.9798	}
Epoch: 52 ====> Loss= Test accuracy= 0.9833		Validation	accuracy=	0.9818	3
Epoch: 53 ====> Loss= Test accuracy= 0.9834	0.056086201	Validation	accuracy=	0.9808	3
Epoch: 54 ====> Loss= Test accuracy= 0.9838	0.053827283	Validation	accuracy=	0.9816	•
Epoch: 55 ====> Loss= Test accuracy= 0.9839	0.051751721	Validation	accuracy=	0.9824	
Epoch: 56 ====> Loss= est accuracy= 0.9843	0.051553623	Validation	accuracy=	0.982	Т
Epoch: 57 ====> Loss= Test accuracy= 0.9846	0.052797941	Validation	accuracy=	0.9828	3
Epoch: 58 ====> Loss= est accuracy= 0.9839	0.048138580	Validation	accuracy=	0.983	T
Epoch: 59 ====> Loss= Test accuracy= 0.985	0.048249521	Validation	accuracy=	0.9834	ļ
Epoch: 60 ====> Loss=	0.048580303	Validation	accuracy=	0.9846	i

,,					
Test accuracy= 0.9849 Epoch: 61 ====> Loss= est accuracy= 0.9862	0.047425265	Validation	accuracy=	0.984	Т
Epoch: 62 ====> Loss=	0.048077195	Validation	accuracy=	0.9836	
Test accuracy= 0.9852 Epoch: 63 ====> Loss= Test accuracy= 0.9853	0.046083331	Validation	accuracy=	0.9834	
Epoch: 64 ====> Loss= Test accuracy= 0.9851	0.043985134	Validation	accuracy=	0.9836	
Epoch: 65 ====> Loss= Test accuracy= 0.9838	0.045851600	Validation	accuracy=	0.9836	
Epoch: 66 ====> Loss= Test accuracy= 0.985	0.043868013	Validation	accuracy=	0.9842	
Epoch: 67 ====> Loss= est accuracy= 0.9845	0.043159742	Validation	accuracy=	0.982	Т
Epoch: 68 ====> Loss= Test accuracy= 0.9862	0.043726347	Validation	accuracy=	0.9844	
Epoch: 69 ====> Loss= Test accuracy= 0.9856	0.041593596	Validation	accuracy=	0.9836	
Epoch: 70 ====> Loss= Test accuracy= 0.9854	0.042528965	Validation	accuracy=	0.9846	
Epoch: 71 ====> Loss= Test accuracy= 0.9858	0.040201591	Validation	accuracy=	0.9854	
Epoch: 72 ====> Loss= Test accuracy= 0.9848	0.040041049	Validation	accuracy=	0.9838	
Epoch: 73 ====> Loss= est accuracy= 0.9856	0.039296127	Validation	accuracy=	0.985	Τ
Epoch: 74 ====> Loss= Test accuracy= 0.9852	0.039682834	Validation	accuracy=	0.9846	
Epoch: 75 ====> Loss= Test accuracy= 0.9848		Validation	_		
Epoch: 76 ====> Loss= Test accuracy= 0.9856		Validation	_		
Epoch: 77 ====> Loss= Test accuracy= 0.987	0.037482553	Validation	accuracy=	0.9864	
Epoch: 78 ====> Loss= Test accuracy= 0.9867					
Epoch: 79 ====> Loss= Test accuracy= 0.986		Validation	accuracy=	0.9864	
Epoch: 80 ====> Loss= Test accuracy= 0.9864	0.036638310	Validation	accuracy=	0.9852	
Epoch: 81 ====> Loss= Test accuracy= 0.9867	0.034755491	Validation	accuracy=	0.9868	
Epoch: 82 ====> Loss= Test accuracy= 0.9865	0.036031529	Validation	accuracy=	0.9862	
Epoch: 83 ====> Loss= Test accuracy= 0.9857	0.034996243	Validation	accuracy=	0.9854	
Epoch: 84 ====> Loss= Test accuracy= 0.9868	0.032668294	Validation	accuracy=	0.9874	
Epoch: 85 ====> Loss= Test accuracy= 0.9859	0.035465714	Validation	accuracy=	0.9864	
Epoch: 86 ====> Loss= Test accuracy= 0.9878	0.032586588	Validation	accuracy=	0.9874	
Epoch: 87 ====> Loss= est accuracy= 0.9864	0.033481765	Validation	accuracy=	0.985	Т
Epoch: 88 ====> Loss= Test accuracy= 0.9863	0.031420817	Validation	accuracy=	0.9864	
Epoch: 89 ====> Loss= Test accuracy= 0.9878	0.033429292	Validation	accuracy=	0.9878	
Epoch: 90 ====> Loss=	0.031617118	Validation	accuracy=	0.9862	

,	
Test accuracy= 0.9859 Epoch: 91 =====> Loss= 0.031943024	Validation accuracy= 0.9868
Test accuracy= 0.9872	
Epoch: 92 ====> Loss= 0.031059507 Test accuracy= 0.9863	Validation accuracy= 0.9872
Epoch: 93 ====> Loss= 0.030869834	Validation accuracy= 0.9878
Test accuracy= 0.9871 Epoch: 94 =====> Loss= 0.030361671	Validation accuracy= 0.9872
Test accuracy= 0.9877 Epoch: 95 =====> Loss= 0.030616136	Validation accuracy 0.007 T
est accuracy= 0.9871	Validation accuracy= 0.987 T
Epoch: 96 ====> Loss= 0.028895149	Validation accuracy= 0.988 T
est accuracy= 0.9874 Epoch: 97 =====> Loss= 0.028924264	Validation accuracy= 0.9882
Test accuracy= 0.9877	
Epoch: 98 ====> Loss= 0.029672429 Test accuracy= 0.9879	Validation accuracy= 0.9878
Epoch: 99 ====> Loss= 0.028289247	Validation accuracy= 0.9872
Test accuracy= 0.9868 Epoch: 100 =====> Loss= 0.028785688	Validation accuracy= 0.9878
Test accuracy= 0.988	•
Epoch: 101 ====> Loss= 0.027101249 Test accuracy= 0.9867	Validation accuracy= 0.9876
Epoch: 102 ====> Loss= 0.027941262 Test accuracy= 0.9878	Validation accuracy= 0.988
Epoch: 103 ====> Loss= 0.026916288	Validation accuracy= 0.9884
Test accuracy= 0.9884	Validation accuracy 0 0004
Epoch: 104 ====> Loss= 0.025974303 Test accuracy= 0.988	Validation accuracy= 0.9884
Epoch: 105 ====> Loss= 0.028418892	Validation accuracy= 0.9866
Test accuracy= 0.9867 Epoch: 106 ====> Loss= 0.026032649	Validation accuracy= 0.9874
Test accuracy= 0.9873	vatidation accuracy= 0.9674
Epoch: 107 ====> Loss= 0.026324572 Test accuracy= 0.9868	Validation accuracy= 0.987
Epoch: 108 ====> Loss= 0.025792525	Validation accuracy= 0.9872
Test accuracy= 0.9877	
Epoch: 109 ====> Loss= 0.024758348 Test accuracy= 0.9878	Validation accuracy= 0.9874
Epoch: 110 ====> Loss= 0.026273310	Validation accuracy= 0.988
Test accuracy= 0.9875 Epoch: 111 ====> Loss= 0.024954320	Validation accuracy= 0.9868
Test accuracy= 0.9874	vacidation accuracy = 0.9000
Epoch: 112 ====> Loss= 0.024047538 Test accuracy= 0.9878	Validation accuracy= 0.988
Epoch: 113 ====> Loss= 0.024775138	Validation accuracy= 0.9878
Test accuracy= 0.9883 Epoch: 114 ====> Loss= 0.024530545	Validation accuracy= 0.9878
Test accuracy= 0.9885	•
Epoch: 115 ====> Loss= 0.024088073 Test accuracy= 0.988	Validation accuracy= 0.987
Epoch: 116 ====> Loss= 0.023213179	Validation accuracy= 0.988
Test accuracy= 0.9875 Epoch: 117 =====> Loss= 0.023963250	Validation accuracy= 0.9878
Test accuracy= 0.988	Validation accuracy 0 0074
Epoch: 118 ====> Loss= 0.021890021 Test accuracy= 0.9874	Validation accuracy= 0.9874
Epoch: 119 ====> Loss= 0.023650439	Validation accuracy= 0.9874
Test accuracy= 0.9879 Epoch: 120 ====> Loss= 0.022322848	Validation accuracy= 0.9876

3(0/2017		TPZ-notebook		
	Test accuracy= 0.988	0 022220520	Volidotion		0.000
	Epoch: 121 ====> Loss= Test accuracy= 0.9883	0.023320320	Validation	accuracy=	0.9888
	Epoch: 122 ====> Loss=	0.021696907	Validation	accuracy=	0.9876
	Test accuracy= 0.9879 Epoch: 123 ====> Loss=	0.022045037	Validation	accuracy=	0.9884
	Test accuracy= 0.9887 Epoch: 124 ====> Loss=	0.021735647	Validation	accuracv=	0.9878
	Test accuracy= 0.9881 Epoch: 125 ====> Loss=		Validation	-	
	Test accuracy= 0.9877			-	
	Epoch: 126 ====> Loss= Test accuracy= 0.9889	0.021471361	Validation	accuracy=	0.9884
	Epoch: 127 ====> Loss= Test accuracy= 0.9883	0.020926045	Validation	accuracy=	0.9872
	Epoch: 128 ====> Loss=	0.020402798	Validation	accuracy=	0.987
	Test accuracy= 0.9881 Epoch: 129 ====> Loss=	0 020623742	Validation	accuracy=	n 9878
	Test accuracy= 0.9886			-	
	Epoch: 130 ====> Loss= Test accuracy= 0.9886		Validation	accuracy=	0.9886
	Epoch: 131 ====> Loss= Test accuracy= 0.9888	0.019686457	Validation	accuracy=	0.9886
	Epoch: 132 ====> Loss= Test accuracy= 0.9883	0.020024373	Validation	accuracy=	0.988
	Epoch: 133 ====> Loss=	0.020844101	Validation	accuracy=	0.9872
	Test accuracy= 0.9886 Epoch: 134 ====> Loss=	0.018982376	Validation	accuracy=	0.9888
	Test accuracy= 0.9892 Epoch: 135 ====> Loss=	0.019082260	Validation	accuracy=	0.988
	Test accuracy= 0.9879				
	Epoch: 136 ====> Loss= Test accuracy= 0.9891	0.019065446	Validation	accuracy=	0.9876
	Epoch: 137 ====> Loss= Test accuracy= 0.9892	0.019546648	Validation	accuracy=	0.9886
	Epoch: 138 ====> Loss=	0.018960108	Validation	accuracy=	0.9876
	Test accuracy= 0.9892 Epoch: 139 ====> Loss=	0.018055711	Validation	accuracy=	0.9886
	Test accuracy= 0.9886 Epoch: 140 ====> Loss=	0.018643468	Validation	accuracy=	0.988
	Test accuracy= 0.9889			-	
	Epoch: 141 ====> Loss= Test accuracy= 0.9891		Validation	-	
	Epoch: 142 ====> Loss= Test accuracy= 0.9895	0.018018327	Validation	accuracy=	0.9882
	Epoch: 143 ====> Loss= Test accuracy= 0.9892	0.018379094	Validation	accuracy=	0.9876
	Epoch: 144 ====> Loss=	0.017671612	Validation	accuracy=	0.9874
	Test accuracy= 0.989 Epoch: 145 ====> Loss=	0.016998068	Validation	accuracy=	0.9878
	Test accuracy= 0.9884 Epoch: 146 ====> Loss=	0.017596262	Validation	accuracy=	0.9892
	Test accuracy= 0.9892 Epoch: 147 ====> Loss=		Validation	-	
	Test accuracy= 0.9884			-	
	Epoch: 148 ====> Loss= Test accuracy= 0.9902		Validation	accuracy=	U.9888
	Epoch: 149 ====> Loss= Test accuracy= 0.989	0.017785960	Validation	accuracy=	0.9876
	Epoch: 150 ====> Loss=	0.016966669	Validation	accuracy=	0.9878

٥.			11 2 HOLEBOOK		
	Test accuracy= 0.9895 Epoch: 151 ====> Loss=	0.016676137	Validation	accuracy=	0.9888
	Test accuracy= 0.9898				
	Epoch: 152 ====> Loss= Test accuracy= 0.9894	0.015744936	Validation	accuracy=	0.989
	Epoch: 153 ====> Loss= Test accuracy= 0.9895	0.016398569	Validation	accuracy=	0.9884
	Epoch: 154 ====> Loss= Test accuracy= 0.9892	0.015774943	Validation	accuracy=	0.9882
	Epoch: 155 ====> Loss=	0.015730022	Validation	accuracy=	0.9894
	Test accuracy= 0.9892 Epoch: 156 ====> Loss=	0.015811218	Validation	accuracy=	0.9882
	Test accuracy= 0.9889 Epoch: 157 ====> Loss=	0.016122183	Validation	accuracy=	0.9884
	Test accuracy= 0.9884 Epoch: 158 ====> Loss=	0.015315281	Validation	accuracv=	0.9878
	Test accuracy= 0.9886			-	
	Epoch: 159 ====> Loss= Test accuracy= 0.9895		Validation	accuracy=	0.9882
	Epoch: 160 ====> Loss= Test accuracy= 0.9893	0.015479419	Validation	accuracy=	0.988
	Epoch: 161 ====> Loss= Test accuracy= 0.9896	0.014629433	Validation	accuracy=	0.9888
	Epoch: 162 ====> Loss=	0.014732498	Validation	accuracy=	0.9884
	Test accuracy= 0.9897 Epoch: 163 ====> Loss=	0.014117643	Validation	accuracy=	0.9886
	Test accuracy= 0.9895 Epoch: 164 ====> Loss=	0.014545544	Validation	accuracy=	0.9884
	Test accuracy= 0.9899 Epoch: 165 ====> Loss=	0.014448897	Validation	accuracy=	0.9886
	Test accuracy= 0.9901 Epoch: 166 ====> Loss=	0 014977406	Validation	accuracy=	n 9884
	Test accuracy= 0.9895	0.014577400	vacidation	accuracy-	0.5004
	Epoch: 167 ====> Loss= Test accuracy= 0.9898	0.014063026	Validation	accuracy=	0.989
	Epoch: 168 ====> Loss= Test accuracy= 0.99	0.013537712	Validation	accuracy=	0.988
	Epoch: 169 ====> Loss=	0.014221393	Validation	accuracy=	0.988
	Test accuracy= 0.9893 Epoch: 170 ====> Loss=	0.014508333	Validation	accuracy=	0.988
	Test accuracy= 0.9886 Epoch: 171 ====> Loss=	0.012804839	Validation	accuracy=	0.989
	Test accuracy= 0.9894 Epoch: 172 ====> Loss=	0.013299452	Validation	accuracy=	0.9882
	Test accuracy= 0.9892 Epoch: 173 ====> Loss=	0.013026615	Validation	accuracy=	0.9898
	Test accuracy= 0.9895			-	
	Epoch: 174 ====> Loss= Test accuracy= 0.9898		Validation	-	
	Epoch: 175 ====> Loss= Test accuracy= 0.9895	0.012404188	Validation	accuracy=	0.9882
	Epoch: 176 ====> Loss= Test accuracy= 0.9899	0.013155411	Validation	accuracy=	0.988
	Epoch: 177 ====> Loss= Test accuracy= 0.9901	0.013614445	Validation	accuracy=	0.988
	Epoch: 178 ====> Loss=	0.012569072	Validation	accuracy=	0.9888
	Test accuracy= 0.9896 Epoch: 179 ====> Loss=	0.012858638	Validation	accuracy=	0.9884
	Test accuracy= 0.9897 Epoch: 180 ====> Loss=	0.012033841	Validation	accuracy=	0.9886

```
Test accuracy= 0.9895
             ====> Loss= 0.012924304 Validation accuracy= 0.9882
Epoch: 181
Test accuracy= 0.9891
             ====> Loss= 0.011285193
                                       Validation accuracy= 0.989
Epoch:
       182
Test accuracy= 0.9904
Epoch:
       183
             ====> Loss= 0.012636733
                                       Validation accuracy= 0.988
Test accuracy= 0.99
             ====> Loss= 0.011654639
                                       Validation accuracy= 0.9886
Epoch:
       184
Test accuracy= 0.9898
Epoch:
       185
             ====> Loss= 0.011734363
                                       Validation accuracy= 0.987
Test accuracy= 0.9902
            ====> Loss= 0.012098399
                                       Validation accuracy= 0.9884
Epoch:
       186
Test accuracy= 0.9896
             ====> Loss= 0.011165604
                                       Validation accuracy= 0.9884
Epoch:
       187
Test accuracy= 0.9889
       188
             ====> Loss= 0.012288753
                                       Validation accuracy= 0.989
Epoch:
Test accuracy= 0.9901
             ====> Loss= 0.010551964
                                       Validation accuracy= 0.9886
Epoch:
       189
Test accuracy= 0.99
             ====> Loss= 0.012254596
                                       Validation accuracy= 0.9882
Epoch:
       190
Test accuracy= 0.9893
                                       Validation accuracy= 0.9884
Epoch:
       191
             ====> Loss= 0.010705987
Test accuracy= 0.9905
Epoch: 192
             ====> Loss= 0.010890607
                                       Validation accuracy= 0.9892
Test accuracy= 0.9898
Epoch:
       193
             ====> Loss= 0.011106896
                                       Validation accuracy= 0.988
Test accuracy= 0.9899
Epoch:
       194
             ====> Loss= 0.010891080
                                       Validation accuracy= 0.989
 Test accuracy= 0.9906
Epoch:
                                       Validation accuracy= 0.9888
       195
             ====> Loss= 0.010817055
Test accuracy= 0.9895
Epoch:
       196
             ====> Loss= 0.011130803
                                       Validation accuracy= 0.9898
Test accuracy= 0.9894
             ====> Loss= 0.009879846
                                       Validation accuracy= 0.9884
Epoch:
       197
Test accuracy= 0.99
Epoch:
       198
             ====> Loss= 0.010734334
                                       Validation accuracy= 0.9886
Test accuracy= 0.9904
             ====> Loss= 0.010990067
Epoch:
       199
                                       Validation accuracy= 0.9884
Test accuracy= 0.9896
Epoch: 200
            ====> Loss= 0.009702761 Validation accuracy= 0.989
Test accuracy= 0.9901
Training Finished!
Test accuracy: 0.9901
```

Question 2.1.6: Use tensorBoard to visualise and save the LeNet5 Graph and all learning curves. Save all obtained figures in the folder "TP2/MNIST_99_Challenge_Figures"

Graph Model

Accuracy

Loss

Part 2: LeNET 5 Optimization

Question 2.2.1 Change the sigmoid function with a ReLU:

• Retrain your network with SGD and AdamOptimizer and then fill the table above :

Optimizer	Gradient Descent	AdamOptimizer
Validation Accuracy	0.9858	0.992
Testing Accuracy	0.9842	0.9892
Training Time	6176s	465s

- Try with different learning rates for each Optimizer (0.0001 and 0.001) and different Batch sizes (50 and 128) for 20000 Epochs.
- For each optimizer, plot (on the same curve) the **testing accuracies** function to **(learning rate, batch size)**
- Did you reach the 99% accuracy? What are the optimal parametres that gave you the best results?

Below, we print the results for the different training models, their parameters and the corresponding accuracies.

In [6]:

import time
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

In [11]:

```
learning rates = [0.001, 0.0001]
batch sizes = [50, 128]
optNames = ["SGD", "Adam"]
training\_epochs = 200
disp step = 20
# training_epochs = 3
# disp step = 1
results = []
for on in optNames:
    for lr in learning_rates:
        for bs in batch sizes:
            print("Learning rate:", lr, "Batch size:", bs, "optimizer:", on)
            t1 = time.time()
            val history, test history = train(learning rate=lr, \
                                            training epochs=training epochs, bat
ch size=bs, \
                                            display step=disp step,
optFunction=on, verbose=False, transfer="ReLU")
            t2 = time.time() - t1
            print("\t====> Time:", t2, "Validation accuracy:", val_history[-1],
"Test accuracy:", test_history[-1], \
                  "\n----
            results.append((lr, bs, on, t2, test_history, val history))
print("Optimization Finished!")
```

```
Learning rate: 0.001 Batch size: 50 optimizer: SGD
     ====> Time: 6176.0356233119965 Validation accuracy: 0.9858 T
est accuracy: 0.9842
-----
Learning rate: 0.001 Batch size: 128 optimizer: SGD
      ===> Time: 5185.878306150436 Validation accuracy: 0.9814 Te
st accuracy: 0.9822
-----
Learning rate: 0.0001 Batch size: 50 optimizer: SGD
      ====> Time: 6140.959002494812 Validation accuracy: 0.9626 Te
st accuracy: 0.9602
-----
Learning rate: 0.0001 Batch size: 128 optimizer: SGD
      ===> Time: 5140.468836069107 Validation accuracy: 0.9352 Te
st accuracy: 0.9329
-----
Learning rate: 0.001 Batch size: 50 optimizer: Adam
      ====> Time: 6156.195225954056 Validation accuracy: 0.0958 Te
st accuracy: 0.098
Learning rate: 0.001 Batch size: 128 optimizer: Adam
      ===> Time: 465.2290246486664 Validation accuracy: 0.992 Tes
t accuracy: 0.9892
-----
Learning rate: 0.0001 Batch size: 50 optimizer: Adam
      ====> Time: 904.2078680992126 Validation accuracy: 0.9904 Te
st accuracy: 0.988
-----
Learning rate: 0.0001 Batch size: 128 optimizer: Adam
      ====> Time: 5160.4019911289215 Validation accuracy: 0.0958 T
est accuracy: 0.098
-----
Optimization Finished!
```

In []:

```
plt.figure(figsize=(20,20))
plt.subplot(211)
n(results[3][4])])
plt.plot(np.arange(len(results[0][4])), results[0][4], c="r", \
        label="Learning rate:" + str(results[0][0]) + " Batch size:" + str(resu
lts[0][1]))
plt.plot(np.arange(len(results[1][4])), results[1][4], c="b", \
        label="Learning rate:" + str(results[1][0]) + " Batch size:" + str(resu
lts[1][1]))
plt.plot(np.arange(len(results[2][4])), results[2][4], c="g", \
        label="Learning rate:" + str(results[2][0]) + " Batch size:" + str(resu
plt.plot(np.arange(len(results[3][4])), results[3][4], c="k", \
        label="Learning rate:" + str(results[3][0]) + " Batch size:" + str(resu
lts[3][1]))
plt.legend()
plt.title("Test accuracy over epochs for SGD")
plt.xlabel("Epochs")
plt.vlabel("Accuracy")
plt.xlim((0, max epochs))
plt.subplot(212)
n(results[7][4])])
plt.plot(np.arange(len(results[4][4])), results[4][4], c="r", \
        label="Learning rate:" + str(results[4][0]) + " Batch size:" + str(resu
lts[4][1]))
plt.plot(np.arange(len(results[5][4])), results[5][4], c="b", \
        label="Learning rate:" + str(results[5][0]) + " Batch size:" + str(resu
lts[5][1]))
plt.plot(np.arange(len(results[6][4])), results[6][4], c="g", \
        label="Learning rate:" + str(results[6][0]) + " Batch size:" + str(resu
plt.plot(np.arange(len(results[7][4])), results[7][4], c="k", \
        label="Learning rate:" + str(results[7][0]) + " Batch size:" + str(resu
lts[7][1]))
plt.legend()
plt.title("Test accuracy over epochs for Adam Optimizer")
plt.xlabel("Epochs")
plt.ylabel("Accuracy")
plt.xlim((0, max epochs))
plt.show()
```


We sometimes obtain these drops in accuracy probably caused by vanishing gradients.

Question 2.2.2 What about applying a dropout layer on the Fully connected layer and then retraining the model with the best Optimizer and parameters (Learning rate and Batch size) obtained in *Question 2.2.1*? (probability to keep units=0.75). For this stage ensure that the keep prob is set to 1.0 to evaluate the performance of the network including all nodes.

In [8]:

```
Start Training!

Epoch: 10 ====> Loss= 0.020439351 Validation accuracy= 0.9876

Test accuracy= 0.99

Validation Accuracy over 99% reached after 16 epochs

Training Finished!

Test accuracy: 0.9899

====> Time: 277.9252426624298 Validation accuracy: 0.99 Test accuracy: 0.9899

Optimization Finished!
```

With this configuration, we are able to reach 99% accuracy in a shorter time. Dropout is a useful technique and we see it here.