

Computational modelling of infants' word acquisition

Jing Liu

Master Thesis proposal

Department of Computer Science, KU Leuven

Research environment

How to reverse engineer infants' acquisition of vocabulary?

Infants' acquisition of words

- Infants capacity to acquire words
- starts as early as 4 months(recognize their name) [1]
- 6 7 months: know the meaning of many common nouns [2] and segment words from fluent speech [3]
- 1 year old: comprehend around 80 words [4]

Infants' acquisition of words

- Twinkəltwinkəllitlstar
 - -

twinkle, twinkle, little star

- Infants capacity to acquire words
- starts as early as 4 months(recognize their name) [1]
- 6 7 months: know the meaning of many common nouns [2] and segment words from fluent speech [3]
- 1 year old: comprehend around 80 words [4]

Infants' acquisition of words

Twɪŋkəltwɪŋkəllɪtlstar

otorto oo oorly oo 1 montho/rooogni-

Infants capacity to acquire words

- starts as early as 4 months(recognize their name) [1]

- 6 - 7 months: know the meaning of many common nouns [2]

and segment words from fluent speech [3]

- 1 year old: comprehend around 80 words [4]

What mechanism can explain this learning?

Statistical learning: the ability to extract statistical regularities from the speech input [5]

twinkle, twinkle, little star

Statistical learning experiments

Highly controlled experimental setting

Artificial language learning paradigm

- Simplified stimulus: tri-syllabic words
- Transitional probability is controlled

Statistical learning experiments

Highly controlled experimental setting

Artificial language learning paradigm

- Simplified stimulus: tri-syllabic words
- Transitional probability is controlled

- Call for more ecologically valid setting
- Raw speech as input
- Few studies on statistical learning framework to bootstrap language
- Self-supervised learning algorithm relying on the statistical learning hypothesis [6]

The proposed model (STELA)

- Input: English audiobooks from LibriSpeech read by native speakers (3200h, 64*50h)
- Acoustic model: Contrastive Predictive Coding (CPC, to predict next 12 frames, 120ms)
- Quantizer: K-means (to simulate phonemes)
- Language model: 3-layer LSTM (trained on discretized version of the audio files returned by the Quantizer.

The proposed model (STELA)

Lexical score

- Spot the word task: present the network with a minimal pair of word and non-word (e.g., 'brick' versus 'blick')
- The accuracy score was averaged across all of the pairs in the test set
- Non-words are generated by the Wuggy toolbox

The problem

The frequency effect on the lexical task

Words in the 64th class of frequency are present at least one time in the 50-hours training sets, two times in the 100 hours, Words belonging to the 32th class of frequency are present at least one time in the 100 hours training sets, 2 times in the 200 hours, etc.

Training efficiency

-> non-exponential increase

Hypotheses

- Morphological rule learning
- High acoustic variability
- Possible ceiling effect
- -> test different types of input data
- The acquisition of proto-lexicons
- -> test different segmentation algorithms
- A lack of memory mechanism
 - Episodic memory
 - Long-term memory

Testing different inputs and segmentation models

Models

- Accumulator model (baseline): frequency-based
- STELA: Clustered CPC + LSTM
- DP-Parse: Non-parametric Bayesian model
- Unit level
- Word
- Unsegmented phonemes: phonetic transcription
- Raw speech

Evaluation

The average of the indicator function score(word) > score(nonword) over the test set of pairs (word, nonword).

Unit level	Model
Word	Accumulator
	LSTM
Unsegmented phonemes	DP-Parse
	DP-Parse + LSTM
	Clustered CPC + LSTM
Raw speech	DP-Parse
	DP-Parse + LSTM
	Clustered CPC + LSTM

Integrating memory mechanism

- Episodic memory
- Add the episodic memory module to the LSTM
- Selective mechanism

Similarity-based v.s. Surprisal-based

Memory	Unit level	Model
Similarity- based	Word	LSTM
	Unsegmented	DP-Parse + LSTM
	phonemes	Clustered CPC + LSTM
	Raw speech	DP-Parse + LSTM
		Clustered CPC + LSTM
Surprisal- phonemes	Word	LSTM
	Unsegmented	DP-Parse + LSTM
	phonemes	Clustered CPC + LSTM
	Raw speech	DP-Parse + LSTM
		Clustered CPC + LSTM

Integrating memory mechanism

Long-term memory

Q: Online v.s. offline knowledge distillation?

Looking forward to your suggestions & comments!

