Objective Questions

Question 1.

Mark $(\sqrt{\ })$ against the correct answer in the following:

 $f: N \rightarrow N: f(x) = 2x is$

- A. one one and onto
- B. one one and into
- C. many one and onto
- D. many one and into

Answer:

$$f(x) = 2x$$

For One - One

$$f(x_1) = 2x_1$$

$$f(x_2) = 2x_2$$

put $f(x_1) = f(x_2)$ we get

$$2x_1 = 2x_2$$

Hence, if $f(x_1) = f(x_2)$, $x_1 = x_2$

Function f is one - one

For Onto

$$f(x) = 2x$$

let f(x) = y, such that $y \in N$

$$2x = y$$

$$\Rightarrow X = \frac{y}{2}$$

If y = 1

$$x = \frac{1}{2} = 0.5$$

which is not possible as $x \in N$

Hence, f is not onto., f is into

Hence, option b is correct

Question 2.

Mark $(\sqrt{\ })$ against the correct answer in the following:

 $f: N \to N: f(x) = x^2 + x + 1 is$

A. one - one and onto

B. one - one and into

C. many - one and onto

D. many - one and into

Answer:

In the given range of N f(x) is monotonically increasing.

 $f(x) = x^2 + x + 1$ is one one.

But Range of $f(n) = [0.75, \infty) \neq N(codomain)$

Hence, f(x) is not onto.

Hence, the function $f: N \rightarrow N: f(x) = (x^2 + x + 1)$ is one - one but not onto. i.e. into

Question 3.

Mark $(\sqrt{\ })$ against the correct answer in the following:

 $f: R \rightarrow R: f(x) = x^2$ is

A. one - one and onto

B. one - one and into

C. many - one and onto

D. many - one and into

Answer:

$$f(x) = x^2$$

$$\Rightarrow y = x^2$$

in this range the lines cut the curve in 2 equal valued points of y, therefore, the function $f(x) = x^2$ is many - one .

Range of $f(x) = (0, \infty) \neq R(codomain)$

 $\therefore f(x)$ is into

 \therefore f: R \rightarrow R: f(x) = x^2 is many - one into

Question 4.

Mark $(\sqrt{\ })$ against the correct answer in the following:

 $f: R \rightarrow R: f(x) = x^3$ is

A. one - one and onto

B. one - one and into

C. many - one and onto

D. many - one and into

Answer:

$$f(x) = x^3$$

Since the function f(x) is monotonically increasing from the domain $R \rightarrow R$

f(x) is one –one

Range of $f(x) = (-\infty, \infty) \neq R(codomain)$

f(x) is into

 \therefore f : R \rightarrow R: f(x) = x^3 is one - one into.

Question 5.

Mark $(\sqrt{\ })$ against the correct answer in the following:

 $f: R^+ \to R^+: f(x) = e^x$ is

A. many - one and into

B. many - one and onto

C. one - one and into

D. one - one and onto

Answer:

$$f(x) = e^x$$

Since the function f(x) is monotonically increasing from the domain R $^+ \rightarrow$ R $^+$

 $\therefore f(x)$ is one –one

Range of $f(x) = (1, \infty) = R^+$ (codomain)

∴f(x) is onto

 \therefore f : R ⁺ \rightarrow R ⁺ : f(x) = e^x is one - one onto.

Question 6.

Mark $(\sqrt{\ })$ against the correct answer in the following:

$$f: \left[\frac{-\pi}{2}, \frac{\pi}{2}\right] \rightarrow \left[-1, 1\right]: f(x) = \sin x \text{ is}$$

A. one - one and into

B. one - one and onto

C. many - one and into

D. many - one and onto

Answer:

$$f: \left[\frac{-\pi}{2}, \frac{\pi}{2}\right] \rightarrow \left[-1, 1\right]: f(x) = \sin x$$

Here in this range, the function is NOT repeating its value,

Therefore it is one - one.

Range = Codomain

:: Function is onto

Hence, option B is the correct choice.

Question 7.

Mark $(\sqrt{\ })$ against the correct answer in the following:

$$f: R \rightarrow R: f(x) = \cos x is$$

A. one - one and into

B. one - one and onto

C. many - one and into

D. many - one and onto

Answer:

$$f(x) = cosx$$

$$y = cosx$$

Here in this range the lines cut the curve in many equal valued points of y therefore the function $f(x) = \cos x$ is not one - one.

$$\Rightarrow f(x) = many one$$

Range of $f(x) = [-1,1] \neq R(codomain)$

f(x) is not onto.

$$\Rightarrow f(x) = into$$

Hence, $f(x) = \cos x$ is many one and into

Ans: (c) many - one and into

Question 8.

Mark $(\sqrt{\ })$ against the correct answer in the following:

$$f: C \rightarrow R: f(z) = |z|$$
 is

A. one - one and into

B. one - one and onto

C. many - one and into

D. many - one and onto

Here in this range the lines cut the curve in 2 equal valued points of y therefore the function f(z) = |z| is not one - one

 $\Rightarrow f(z) = many one.$

Range of $f(z) = [0, \infty) \neq R(codomain)$

f(z) is not onto.

$$\Rightarrow f(z) = into$$

Hence, f(z) = |z| is many one and into

Question 9.

Mark $(\sqrt{\ })$ against the correct answer in the following:

Let A = R - {3} and B = R - {1}. Then
$$f: A \rightarrow A: f(x) = \frac{(x-2)}{(x-3)}$$
 is

A. one - one and into

B. one - one and onto

C. many - one and into

D. many - one and onto

$$f: A \to A: f(x) = \frac{(x-2)}{(x-3)}$$

xezpeendoly-therefthe and mantates of this chevenand to an energy and order therefore the camein and compe

and the function has no value at y = 1 here range = codomain

 $\therefore f(x)$ is onto

Question 10.

Mark $(\sqrt{\ })$ against the correct answer in the following:

Let A and B be two non - empty sets and let

 $f: (A \times B) \rightarrow (B \times A) : f(a, b) = (b, a)$. Then, f is

A. one - one and into

B. one - one and onto

C. many - one and into

D. many - one and onto

Answer:

SINCE, f(a, b) = (b, a). There is no same value of y at different values of x : function is one one

∴Range(A×B)≠Codomain(B × A)

⇒function is into

Question 11.

Mark $(\sqrt{\ })$ against the correct answer in the following:

Let $f: Q \to Q: f(x) = (2x + 3)$. Then, $f^{-1}(y) = ?$

A. (2y - 3)

B.
$$\frac{1}{(2y-3)}$$

C.
$$\frac{1}{2}(y-3)$$

D. none of these

$$f(x) = 2x + 3$$

$$\Rightarrow$$
y = 2x + 3

х⇔у

$$\Rightarrow$$
x = 2y + 3

$$\Rightarrow$$
x - 3 = 2y

$$\Rightarrow \frac{x-3}{2} = y$$

х⇔у

$$\Rightarrow \frac{y-3}{2} = x$$

Question 12.

Mark $(\sqrt{\ })$ against the correct answer in the following:

Let
$$f: R - \left\{\frac{-4}{3}\right\} \to -\left\{\frac{4}{3}\right\}: f(x) = \frac{4x}{(3x+4)}$$
. Then $f^{-1}(y) = ?$

A.
$$\frac{4y}{(4-3y)}$$

B.
$$\frac{4y}{(4y+3)}$$

$$C. \frac{4y}{\left(3y-4\right)}$$

D. None of these

$$f(x) = \frac{4x}{3x+4}$$

$$\Rightarrow$$
y = $\frac{4x}{3x+4}$

$$\Rightarrow X = \frac{4y}{3y+4}$$

$$\Rightarrow$$
3yx + 4x = 4y

$$\Rightarrow$$
y(3x - 4) = -4x

$$\Rightarrow y = \frac{4x}{4 - 3x}$$

$$\Rightarrow X = \frac{4y}{4-3y}$$

Question 13.

Mark $(\sqrt{\ })$ against the correct answer in the following:

If
$$f(x) = \frac{(4x+3)}{(6x-4)}$$
, $x \neq \frac{2}{3}$ then (f o f) (x) = ?

A. x

B.
$$(2x - 3)$$

C.
$$\frac{4x-6}{3x+4}$$

D. None of these

Answer:
$$f(x) = \frac{4x + 3}{6x - 4}$$

$$\Rightarrow f(f(x)) = \frac{4f(x) + 3}{6f(x) - 4} = (f \circ f)(x)$$

$$\Rightarrow f(f(x)) = \frac{4(\frac{4x+3}{6x-4}) + 3}{6(\frac{4x+3}{6x-4}) - 4}$$

$$\Rightarrow f(f(x)) = \frac{16x + 12 + 18x - 12}{24x + 18 - 24x + 16} = \frac{34x}{34} = x$$

Question 14.

Mark $(\sqrt{\ })$ against the correct answer in the following:

If $f(x) = (x^2 - 1)$ and g(x) = (2x + 3) then $(g \circ f)(x) = ?$

- A. $(2x^2 + 3)$
- B. $(3x^2 + 2)$
- C. $(2x^2 + 1)$
- D. None of these

Answer:
$$f(x) = (x^2 - 1)$$

$$g(x) = (2x + 3)$$

$$\therefore (g \circ f) (x) = g(f(x))$$

$$\Rightarrow g(f(x)) = 2f(x) + 3$$

$$\Rightarrow g(f(x)) = 2((x^2 - 1)) + 3 = 2x^2 - 2 + 3 = 2x^2 + 1$$

Question 15.

Mark $(\sqrt{\ })$ against the correct answer in the following:

If
$$f\left(x + \frac{1}{x}\right) = x^2 + \frac{1}{x^2}$$
 then $f(x) = ?$

- $A. x^2$
- B. $(x^2 1)$
- C. $(x^2 2)$
- D. None of these

$$f\left(x + \frac{1}{x}\right) = x^2 + \frac{1}{x^2} = \left(x + \frac{1}{x}\right)^2 - 2$$

$$\Rightarrow f(x) = x^2 - 2$$

Question 16.

Mark ($\sqrt{\ }$) against the correct answer in the following:

If
$$f(x) = \frac{1}{(1-x)}$$
 then (f o f o f) (x) = ?

A.
$$\frac{1}{(1-3x)}$$

B.
$$\frac{x}{(1+3x)}$$

- C. x
- D. None of these

Answer:
$$f(x) = \frac{1}{1-x}$$

$$\Rightarrow$$
 (f o f o f)(x) = f(f(f(x)))

$$\Rightarrow f(f(x)) = \frac{1}{1 - f(x)} = \frac{1}{1 - \frac{1}{1 - x}} = \frac{1 - x}{1 - x - 1} = \frac{x - 1}{x} = 1 - \frac{1}{x}$$

$$\Rightarrow f\Big(f\big(f(x)\big)\Big) \,=\, \frac{1}{1-f\big(f(x)\big)} \,=\, \frac{1}{1-\Big(1-\frac{1}{x}\Big)} \,=\, \frac{1}{\frac{1}{x}} \,=\, x$$

Question 17.

Mark $(\sqrt{\ })$ against the correct answer in the following:

If
$$f(x) = \sqrt[3]{3 - x^3}$$
 then (f o f) (x) = ?

A.
$$_{\rm X}^{1/3}$$

$$C.\left(1-x^{\frac{1}{3}}\right)$$

D. None of these

Answer:

$$f(x) = \sqrt[3]{3 - x^3}$$

$$\Rightarrow f(f(x)) = \sqrt[3]{3 - f(x)^3} = \sqrt[3]{3 - (\sqrt[3]{3 - x^3})^3}$$

$$\Rightarrow f(f(x)) = \sqrt[3]{3 - (3 - x^3)}$$

$$\Rightarrow f(f(x)) = \sqrt[3]{x^3} = x$$

Question 18.

Mark $(\sqrt{\ })$ against the correct answer in the following:

If
$$f(x) = x^2 - 3x + 2$$
 then (f o f) $f(x) = 2$?

B.
$$x^4 - 6x^3$$

C.
$$x^4 - 6x^3 + 10x^2$$

D. None of these

Answer:
$$f(x) = x^2 - 3x + 2$$

$$\Rightarrow$$
f(x) = x² - 2x - x + 2 = x(x - 2) - 1(x - 2)

$$\Rightarrow f(x) = (x - 2)(x - 1)$$

$$\Rightarrow f(x) = (x - 2)(x - 1)$$

$$\Rightarrow f(f(x)) = (f(x) - 2)(f(x) - 1)$$

$$\Rightarrow f(f(x)) = ((x-2)(x-1)-2)((x-2)(x-1)-1)$$

$$\Rightarrow$$
f(f(x)) = (x² - 3x + 2 - 2) (x² - 3x + 2 - 1)

$$\Rightarrow f(f(x)) = (x^2 - 3x) (x^2 - 3x + 1)$$

$$\Rightarrow$$
f(f(x)) = x⁴ - 3x³ + x² - 3x³ + 9x² - 3x

$$\Rightarrow f(f(x)) = x^4 - 6x^3 + 10x^2 - 3x$$

Question 19.

Mark $(\sqrt{\ })$ against the correct answer in the following:

If $f(x) = 8x^3$ and $g(x) = x^{1/3}$ then $(g \circ f)(x) = ?$

- A. x
- B. 2x
- C. $\frac{x}{2}$
- D. $3x^{2}$

Answer:

$$f(x) = 8x^3$$

$$g(x) = x^{1/3}$$

$$\Rightarrow$$
 (g o f)(x) = $(f(x))^{\frac{1}{3}} = (8x^3)^{\frac{1}{3}} = 2x$

Question 20.

Mark $(\sqrt{\ })$ against the correct answer in the following:

If $f(x) = x^2$, $g(x) = \tan x$ and $h(x) = \log x$ then $\{h \ o(g \ o \ f)\} \left(\sqrt{\frac{\pi}{4}}\right) = ?$

- A. 0
- B. 1
- C. $\frac{1}{x}$
- D. $\frac{1}{2}\log\frac{\pi}{4}$

Answer

 $f(x) = x^2$, $g(x) = \tan x$ and $h(x) = \log x$

$$\Rightarrow g(f(x)) = tan(f(x)) = tan(x^2)$$

$$\Rightarrow h(g(f(x))) = log(g(f(x))) = log(tan(x^2))$$

$$\Rightarrow h\left(g\left(f\left(\sqrt{\frac{\pi}{4}}\right)\right)\right) = \log\left(\tan\left(\sqrt{\frac{\pi}{4}}^2\right)\right) = \log\left(\tan\left(\frac{\pi}{4}\right)\right) = \log(1) = 0$$

Question 21.

Mark $(\sqrt{\ })$ against the correct answer in the following:

If $f = \{(1, 2), (3, 5), (4, 1)\}$ and $g = \{(2, 3), (5, 1), (1, 3)\}$ then $(g \circ f) = ?$

- A. {(3, 1), (1, 3), (3, 4)}
- B. {(1, 3), (3, 1), (4, 3)}
- C. {(3, 4), (4, 3), (1, 3)}
- D. {(2, 5), (5, 2), (1, 5)}

Answer:

 $g = \{(2, 3), (5, 1), (1, 3)\}$

 $(g \circ f) = \{(dom(f), 3), (dom(f), 1), (dom(f), 3)\}$

 \Rightarrow (g o f) = {(1, 3), (3, 1), (4, 3)}

Question 22.

Mark $(\sqrt{\ })$ against the correct answer in the following:

Let
$$f(x) = \sqrt{9 - x^2}$$
. Then, dom (f) = ?

D. (-
$$\infty$$
, - 3] \cup (4, ∞)

Answer:
$$F(x) = \sqrt{9 - x^2}$$

$$\sqrt{9-x^2}$$
 should be ≥ 0

$$\Rightarrow 9 - x^2 \ge 0$$

$$\Rightarrow x^2 \leq 9$$

$$\Rightarrow -3 \le x \le 3$$

$$:.dom(f) = [-3, 3]$$

Question 23.

Mark $(\sqrt{\ })$ against the correct answer in the following:

Let
$$f(x)\sqrt{\frac{x-1}{x+4}}$$
. Then, dom (f) -?

D.
$$(-\infty, 1] \cup (4, \infty)$$

$$f(x) = \sqrt{\frac{x-1}{x-4}}$$

$$\sqrt{\frac{x-1}{x-4}} \ge 0$$

$$\Rightarrow x-1 \ge 0$$

$$\Rightarrow x \ge 1$$

$$\Rightarrow$$
 dom (f) = $(-\infty, 1] \cup (4, \infty)$

Question 24.

Mark $(\sqrt{\ })$ against the correct answer in the following:

Let
$$f(x) = e^{\sqrt{x^2-1}} \cdot \log(x-1)$$
. Then, dom (f) = ?

- A. (∞, 1]
- B. [1, ∞)
- C. (1, ∞)
- D. $(-\infty, -1] \cup (1, \infty)$

Answer:

$$f(x) = e^{\sqrt{x^2 - 1}} \log(x - 1)$$

$$x - 1 > 0$$

$$\Rightarrow x > 1$$

And

$$\Rightarrow x^2 - 1 \ge 0$$

$$\Rightarrow x^2 \ge 1$$

$$\Rightarrow -1 \le x \ge 1$$

Taking the intersection we get

$$Dom(f) = (1, \infty)$$

Question 25.

Mark $(\sqrt{\ })$ against the correct answer in the following:

Let
$$f(x) = \frac{x}{(x^2 - 1)}$$
. Then, dom (f) =?

A.R

B.
$$R - \{1\}$$

C.
$$R - \{ -1 \}$$

Answer:
$$f(x) = \frac{x}{x^2 - 1}$$

$$x \neq (1, -1)$$

$$\therefore$$
 Dom(f) = R - { - 1,1}

Question 26.

Mark $(\sqrt{\ })$ against the correct answer in the following:

Let
$$f(x) = \frac{\sin^{-1} x}{x}$$
. Then, dom (f) = ?

A. (-1, 1)

C.
$$[-1, 1] - \{0\}$$

D. none of these

Answer:

Given:
$$f(x) = \frac{\sin^{-1} x}{x}$$

From f(x), $x \neq 0$

Now, domain of $\sin^{-1}x$ is [-1, 1] as the values of $\sin^{-1}x$ lies between -1 and 1.

We can see that from this graph:

Domain of f(x) = [-1, 1] - 0

Hence, B is the correct answer.

Question 27.

Mark $(\sqrt{\ })$ against the correct answer in the following:

Let $f(x) = \cos^{-1} 2x$. Then, dom (f) = ?

A. [- 1, 1]

B.
$$\left[\frac{-1}{2}, \frac{1}{2}\right]$$

$$C.\left[\frac{-\pi}{2},\frac{\pi}{2}\right]$$

$$D.\left[\frac{-\pi}{4},\frac{\pi}{4}\right]$$

Answer:

$$f(x) = \cos^{-1} 2x$$
.

domain of $\cos^{-1}x = [-1,1]$

on multiplying by an integer the domain decreases by same number

 \Rightarrow domain of cos $^{-1}2x = [-1/2,1/2]$

Question 28.

Mark $(\sqrt{\ })$ against the correct answer in the following:

Let $f(x) = \cos^{-1}(3x - 1)$. Then, dom (f) = ?

- $A.\left(0,\frac{2}{3}\right)$
- B. $\left[0, \frac{2}{3}\right]$
- $C.\left[\frac{-2}{3},\frac{2}{3}\right]$

D. None of these

Answer:

$$f(x) = \cos^{-1}(3x - 1).$$

domain of $\cos^{-1}x = [-1,1]$

on multiplying by an integer the domain decreases by same number

 \Rightarrow domain of cos $^{-1}3x = [-1/3,1/3]$

 \Rightarrow domain of cos⁻¹ (3x - 1) = [1/3 - 1/3,1/3 + 1/3] = [0,2/3]

Question 29.

Mark $(\sqrt{\ })$ against the correct answer in the following:

Let $f(x) = \sqrt{\cos x}$. Then, dom (f) = ?

A.
$$\left[0, \frac{\pi}{2}\right]$$

B.
$$\left[\frac{3\pi}{2}, 2\pi\right]$$

$$C.\left[0,\frac{\pi}{2}\right] \cup \left[\frac{3\pi}{2},2\pi\right]$$

D. none of these

Answer:

$$f(x) = \sqrt{\cos x}$$

As per the diagram

We can imply that domain of $\sqrt{\cos x}$

$$\text{is}\!\left[0,\!\frac{\pi}{2}\right]\!\left[\!\frac{3\pi}{2},2\pi\right]$$

Question 30.

Mark $(\sqrt{\ })$ against the correct answer in the following:

Let $f(x) = \sqrt{\log (2x - x^2)}$. Then, dom (f) = ?

A. (0, 2)

B. [1, 2]

C. (- ∞, 1]

D. None of these

$$f(x) = \sqrt{\log (2x - x^2)}$$
.

$$2x - x^2 > 1$$

$$\Rightarrow x^2 - 2x + 1 < 0$$

$$\Rightarrow (x-1)^2 < 0$$

$$\Rightarrow x-1 < 0$$

$$\Rightarrow x < 1$$

$$\log(2x - x^2) > 0$$

$$\Rightarrow 2x - x^2 > e^0 = 1$$

$$\Rightarrow x < 1$$

$$Dom(f) = (-\infty, 1)$$

Question 31.

Mark $(\sqrt{\ })$ against the correct answer in the following:

Let $f(x) = x^2$. Then, dom (f) and range (f) are respectively.

A. R and R

B. R $^{+}$ and R $^{+}$

C. R and R +

D. R and R - {0}

Answer:

According to sketched graph of x^2

Domain of f(x) = R

And Range of $f(x) = R^+$

Question 32.

Mark $(\sqrt{\ })$ against the correct answer in the following:

Let $f(x) = x^3$. Then, dom (f) and range (f) are respectively

A. R and R

B. R^+ and R^+

C. R and R $^{\rm +}$

D. R + and R

Answer:

According to sketched graph of x³

Domain of f(x) = R

And Range of f(x) = R

Since x^3 is a, monotonically increasing function

Question 33.

Mark $(\sqrt{\ })$ against the correct answer in the following:

Let $f(x) = \log (1 - x) + \sqrt{x^2 - 1}$. Then, dom (f) = ?

A. (1, ∞)

B. (- ∞, - 1]

C. [- 1, 1)

D. (0, 1)

Answer:
$$\log (1 - x) + \sqrt{(x^2 - 1)}$$

1 - x>0

x < 1

X² - 1≥0

X²≥1

$$\Rightarrow -1 \le x \ge 1$$

Taking intersection of the ranges we get

Dom (f) = (b)
$$(-\infty, -1]$$

Question 34.

Mark $(\sqrt{\ })$ against the correct answer in the following:

Let
$$f(x) = \frac{1}{(1-x^2)}$$
. Then, range (f) = ?

- A. (∞, 1]
- B. [1, ∞)
- C. [1, 1]
- D. none of these

$$f(x) = \frac{1}{1 - x^2}$$

$$\Rightarrow y = \frac{1}{1 - x^2}$$

$$\Rightarrow y - yx^2 = 1$$

$$\Rightarrow$$
 y - 1 = yx²

$$\Rightarrow x = \sqrt{\frac{y-1}{y}}$$

$$\Rightarrow \frac{y-1}{v} \ge 0$$

$$\Rightarrow$$
 y \geq 1

$$\therefore$$
 range (f) = [1, ∞)

Question 35.

Mark $(\sqrt{\ })$ against the correct answer in the following:

Let $f(x) = \frac{x^2}{(1+x^2)}$. Then, range (f) = ?

- A. [1, ∞)
- B. [0, 1)
- C. [1, 1]
- D. (0, 1]

Answer

$$f(x) = \frac{x^2}{1 + x^2}$$

$$\Rightarrow y = \frac{x^2}{1 + x^2}$$

$$\Rightarrow y + yx^2 = x^2$$

$$\Rightarrow y = x^2(1-y)$$

$$\Rightarrow x \, = \, \sqrt{\frac{y}{1-y}}$$

$$\frac{y}{1-y} \ge 0$$

And

range
$$(f) = [0, 1)$$

Question 36.

Mark $(\sqrt{\ })$ against the correct answer in the following:

The range of $f(x) = x + \frac{1}{x}$ is

- A. [2, 2]
- B. [2, ∞)
- C. (-∞, -2]
- D. none of these

Answer:

$$f(x) = x + \frac{1}{x}$$

For this type

Range is

$$-2 \le y \ge 2$$

Question 37.

Mark $(\sqrt{\ })$ against the correct answer in the following:

The range of $f(x) = a^x$, where a > 0 is

- A. [∞, 0]
- B. [∞, 0)
- C. [0, ∞)
- D. (0, ∞)

Answer:

$$f(x) = a^x$$

when x<0

$$0 < a^{x} < 1$$

When x≥0

 $a^{x}>0$

Therefore range of $f(x) = a^x = (0, \infty)$

Question 38.

Mark $(\sqrt{\ })$ against the correct answer in the following:

Let $f: N \to N: f(x) = \begin{cases} \frac{1}{2}(n+1), \text{ when } n \text{ is odd} \\ \frac{n}{2}, \text{ when } n \text{ is even.} \end{cases}$

Then, f is

A. one - one and into

B. one - one and onto

C. many - one and into

D. many - one and onto

Answer:

$$f(1) = 1$$

$$f(2) = 1$$

$$f(3) = 2$$

$$f(4) = 2$$

$$f(5) = 3$$

$$f(6) = 3$$

Since at different values of x we get same value of y := f(n) is many –one

And range of f(n) = N = N(codomain)

 \therefore the function f: N \rightarrow Z, defined by

$$f:N\to N: f\left(x\right) = \begin{cases} \frac{1}{2}\big(n+1\big), \text{ when } n \text{ is odd} \\ \frac{n}{2}, \text{ when } n \text{ is even.} \end{cases}$$
 is both many - one and onto.

Question 39.

Mark $(\sqrt{\ })$ against the correct answer in the following:

Let $f: N \to X: f(x) = 4x^2 + 12x + 15$. Then, $f^{-1}(y) = ?$

A.
$$\frac{1}{2}\left(\sqrt{y-4}+3\right)$$

B.
$$\frac{1}{2} (\sqrt{y-6} - 3)$$

C.
$$\frac{1}{2} \left(\sqrt{y-4} + 5 \right)$$

D. None of these

$$f(x) = 4x^2 + 12x + 15$$

$$\Rightarrow y = 4x^2 + 12x + 15$$

$$\Rightarrow y = (2x + 3)^2 + 6$$

$$\Rightarrow \sqrt{(y-6)} = 2x + 3$$

$$\Rightarrow \frac{1}{2} \left(\sqrt{y-6} - 3 \right) = x$$

$$f^{-1}(y) = \frac{1}{2}(\sqrt{y-6}-3)$$