LTE vs LTEA			
		LTE	LTE-Advanced
Data Rate	DL	300 Mbps	1 Gbps
	UL	75 Mbps	500 Mbps
Spectrum Efficiency (bps/Hz)	DL	15	30
	UL	3.75	15
Bandwidth (MHz)		1.4 to 20	1.4 to 100
Antenna Configuration		Up to 4x4	Up to 8x8
Coverage		Full performance up to 5 km	Same as LTE. Optimized for local area environments
Mobility		High performance up to 120 km/hr	Same as LTE

Carrier aggregation

- Purpose: increase the amount of utilized bandwidth?
- LTE-A uses BWs of up to 100 MHz in several freq. bands:
 - 450-470 MHz; 698-960 MHz, 1710-2025 MHz, 2110-2200 MHz;
 - 2300-2400 MHz; 2500-2690 MHz and 3400-3600 MHz
- Problem: UE that works in one country or region may not in another.
- One solution: design devices which can work on multiple freq.
 bands → costly

Carrier aggregation: current status

- Around 40 operating bands for LTE and LTE-A
 - Supporting CA across all bands is complex & costly.
- Possible Combinations:
 - For Contiguous CA → 5 bands studied in Rel-11; 3 bands under study.
 - For Non-contiguous CA (INTRABAND)
 → 4 bands under study (Rel-12).
 - For Non-contiguous CA (INTERBAND)
 → 20 bands studied in Rel-11; 11 bands under study in Rel-12.

Network Infrastructures – Tommaso Melodia

Carrier aggregation: Benefits

- Higher Throughput
 - Wider BWs lead to very high bit rates (up to 1Gbps)
- Inter-Cell Interference and Mobility Improvements:
 - Continuous and non-interfering coverage is provided by power adjustments for each carrier

Notwork Infrastructures Temmasa Maladia

Carrier aggregation: Benefits

- Load Balancing
 - Load is distributed across multiple carriers to reduce NW congestion
- Energy Savings
 - Current specification allows dynamically turning on and off the carriers
 - → Energy consumption can be adjusted according to NW load

Enhanced MIMO for LTEA

- Novel Features:
 - Antenna Configuration
 - 8x8 in DL; 4x4 in UL
 - Dynamic SU/MU-MIMO Switching
 - Fast timescale adaptation transparent to higher layers
 - Advanced beamforming and scheduling techniques
 - Proprietary and implementation-specific
 - Implications on reference signals, feedback design, precoding codebooks, MIMO detector, etc.
 - Very active research is being carried out

Network Infrastructures – Tommaso Melodia

Full Dimension (FD) MIMO

- A large two-dimensional array of transmit antenna ports (16, 32, or 64) at the eNB makes use of the so-called Active Antenna System (AAS) to provide accurate 3D beamforming to targeted users.
- FD MIMO allows tx beams to be steered by the eNBs in both the azimuth and elevation dimensions.
 - -> a higher degree of flexibility than traditional beamforming.

- Benefits from the (many) excess antennas
 - Simplified multiuser processing
 - Reduced transmit power
 - Thermal noise and fast fading vanish
- Differences with MU MIMO in conventional cellular systems
 - Time division duplexing used to enable channel estimation
 - Pilot contamination limits performance

Network Infrastructures – Tommaso Melodi

- Benefits from the (many) excess antennas
 - Simplified multiuser processing
 - Reduced transmit power
 - Thermal noise and fast fading vanish
- Differences with MU MIMO in conventional cellular systems
 - Time division duplexing used to enable channel estimation
 - Pilot contamination limits performance

Coordinated MIMO & CoMP

- Set of techniques to improve coverage, cell-edge throughput and system efficiency.
- Principle: UEs at the cell-edge can communicate with several cell sites, both for the DL and UL.
 - Also viewed as Distributed MIMO
 - Coordination can be simple (e.g. signaling to avoid interference) or complex.
 (e.g., data is transmitted from multiple cell sites)
- Moved to Rel-11 due to challenges in practical implementation

Ф

Benefits of Relays

- Improved performance
 - Coverage and data rate
- Lower OPEX and CAPEX
 - Lower H/W requirements than eNB's
 - Easier to install
 - Do not require dedicated locations
- Reach new areas
 - Can be deployed in locations where eNBs cannot
- Temporary network deployment
 - Their ease of installation allows faster deployment and removal

M2M Key Issues

- Massive Deployment of M2M Devices
 - Huge amount of signaling/data overload of the access and core NW
 - High Collision Probability during Channel Access
 - Insufficient control resources to respond to resource request

Need: Efficient congestion handling, mainly, in the control plane.

D2D vs M2M

- M2M:
 - Communications between non-human devices
 - Requires a cellular infrastructure, i.e., a core NW & a BS
- D2D (Device-to-Device Communications):
 - Ad-hoc peer-to-peer communication between devices
 - Does not require communication through the core NW

Network Infrastructures – Tommaso Melodia

D2D Woice and Data p2p Network Core Coordination Evolved Packet Core

- NW coordinated communication between local devices bypassing core NW for data traffic
- Reduce NW capacity demand, provide higher QoS and increased security over unlicensed D2D like Bluetooth
- FCC will start using LTE for Public Safety NWs (natural disasters)

D2D

- Unlicensed Operation
 - Operators can add automated device pairing, authentication, and global identity
- Licensed Operation
 - Same benefits as unlicensed, plus:
 - Can better guarantee availability
 - Requires expensive spectrum and interference coordination
 - Public Safety devices can operate with zero core NW interaction

Heterogeneous Networks (HetNets)

Macrocell area underlaid with number of small cells

- Over 2000x increase in network capacity
- Cost-effective coverage extension and green radio solution

Network Infrastructures – Tommaso Melodia

Heterogeneous Networks (HetNets)

Conditions:Association Policy:High UL data rate⇒ BS with minimum pathlossHigh load→ Offload to small cellsLow Load⇒ BS with best DL SINR

Largest Downlink (DL) SINR based Cell Association

- Does not apply anymore to HetNets!

4

HetNets: Inter Cell Interference Cancellation (ICIC)

- Rel-8 and Rel-9: ICIC
 - Use different carrier freqs. for diff. cell layers
 - Power control schemes
 - Adaptive fractional frequency reuse
 - Spatial antenna techniques includ. MIMO &SDMA
 - Adaptive Beamforming
- Rel-11: Enhanced ICIC (elCIC) (due to Carrier Aggeregation)
 - Time-domain based schemes
 - Frequency domain based schemes

