Lecture Contents

- Types of Knowledge: procedural, declarative, meta, heuristic, structural
- Knowledge Representation Techniques
 - Facts
 - Object-attribute Value Triplets
 - Semantic Networks
 - Frames
 - Logic:
 - Propositional Calculus
 - Predicate Calculus

The Al Cycle

PERCEPTION

KNOWLEDGE
REPRESENTATION
(KR)

LEARNING

PLANNING

EXECUTION

The Dilemma

- We do not know how the KR and reasoning components are implemented in humans, even though we can see their manifestation in the form of intelligent behavior.
- Hence, the need for a synthetic (artificial)
 way to model the knowledge
 representation and reasoning capability of
 humans in computers.

The Simple Approach

- Instead of focusing on how knowledge is acquired, we will assume for now that knowledge is externally injected into the system.
- For now, we focus on how to represent some given knowledge and then how to reason about that knowledge for the purpose of inference
- Knowledge acquisition and learning will be discussed later

What is Knowledge

- "Understanding of a subject area"
 Durkin
- Domain: A well-focused subject area

Types of Knowledge

- Procedural knowledge Describes how to do things, provides a set of directions of how to perform certain tasks, e.g., how to drive a car
- Declarative knowledge: It describes objects, rather than processes. What is known about a situation. e.g. it is sunny today, cherries are red
- Meta knowledge Knowledge about knowledge, e.g., the knowledge that blood pressure is more important for diagnosing a medical condition than eye color.
- Heuristic knowledge: Rule-of-thumb. e.g. if I start seeing shops, I am close to the market.
 - Sometimes called shallow knowledge.
 - Empirical as opposed to deterministic
- Structural knowledge Describes structures and their relationships. e.g. the how the various parts of the car fit together to make a car, or knowledge structures in terms of concepts, sub concepts, and objects.

Types of Knowledge

Towards Representation

- There are multiple approaches that come to mind
 - Pictures and symbols. This is how the earliest humans represented knowledge when sophisticated linguistic systems had not yet evolved
 - Graphs and Networks
 - Numbers

Representation: Pictures

- What types of knowledge is best represented using pictures? e.g. can we represent the relationship between individuals in a family using a picture?
- To store procedural knowledge, we could use a series of pictures. e.g. how to boil an egg. A series of pictures showing the process.
 - Pictures are best suited for recognition tasks
 - Structural information
- How useful is such a representation for a computer?
 - Not very easily translated to useful information because computers cannot interpret pictures automatically.
 - But useful for human understanding because they allow a high level view of a concept to be obtained readily.

Representation: Graphs & Networks

Graphs and Networks allow <u>relationships</u>
between entities to be incorporated, e.g., to
show family relationships, now we can use a
graph.

Graphs and Networks

- May be used to represent procedural knowledge.
- e.g.How to start a car?

Representation: Numbers

- Numbers are an integral part of the knowledge representation used by humans.
- Translate easily to computer representation.
- Eventually, every representation we use gets translated to numbers in the computers internal representation.

Knowledge of a Family

- By a picture
- By a graph
- Description in words
 - Tariq is Mona's Father
 - Ayesha is Mona's Mother
 - Mona is Tariq and Ayesha's Daughter

Formal KR Techniques

- Now, we will discuss some formal methods of knowledge representation in AI.
- Each method is suited to representing a certain type of knowledge.
- Choosing the proper representation is important because it must facilitate reasoning. As the saying goes 'Knowledge is Power'.

Facts

- Facts are a basic block of knowledge (the atomic units of knowledge)
- They represent declarative knowledge.
- A Proposition is the statement of a fact. Each proposition has an associated truth value. It may be true or false.
- In AI, to represent a fact, we use a proposition and its associated truth value
- e.g.
 - Proposition A: It is raining
 - Proposition B: I have an umbrella
 - Proposition C: I will go to school

Types of facts

- individual can only have one eye color, but may have many cars. So the value of attribute cars may contain more than one value.
- today. We may chose to store numerical certainty values with such facts.
- e.g. The book is heavy/light. Fuzzy representation used. Use certainty factor values to specify value of "truth".

Object-Attribute-Value Triplets

- A type of fact composed of three parts
- Used to assert a particular property of some object.
- e.g. Ali's eye color is brown.

- Object: Ali

- Attribute: eye color

Value: brown

e.g. Ahmed's son is Ali

Object: Ahmed

- Attribute: son

Value: Ali

Rules

- "A Knowledge structure that relates some known information to other information that can be concluded or inferred to be true." (Durkin)
- Represent procedural knowledge
- Components of a rule
 - Antecedent or premise: IF part
 - Consequent or conclusion: THEN part
- e.g. IF it is raining THEN I will not go to school
 - Premise: It is raining
 - Conclusion: I will not go to school.

Compound Rules

- Multiple premises may be joined using AND (conjunctions) and OR (disjunctions)
- e.g.

IF it is raining AND I have an umbrella THEN I will go to school.

IF it is raining OR it is snowing THEN I will not go to school

Types of Rules

- Relationship
 - e.g. IF you hear a loud sound THEN the silencer is not working
- Recommendation
 - IF it is raining THEN bring an umbrella
- Directive
 - IF it is raining AND you don't have an umbrella THEN wait for the rain to stop

Types of Rules (Cont.)

Variable Rules

- If the same type of rule is to be applied to multiple objects, we use variable rules, i.e. rules with variables
- e.g.
 If X is a Student
 AND X's GPA>3.7
 THEN place X on honor roll.
- Such rules are called pattern-matching rules.
- The rule is matched with known facts and different possibilities for the variables are tested, to determine the truth of the fact.

Types of Rules (Cont.)

Uncertain Rules

 e.g. IF you have never won a match THEN you will most probably not win this time.

Meta Rules

- Rules that describe how to use other rules
- e.g. IF You are coughing AND you have chest congestion THEN use the set of respiratory disease rules.

Rule Sets

 As in the previous example, we may group rules into categories in our knowledge representation, e.g. the set of respiratory disease rules