SME 0520 - Introdução à Estatística

Daiane de Souza

SME/ICMC/USP

Parte II - Março de 2025

Definição:

Seja E um experimento aleatório e Ω o espaço amostral associado a esse experimento. Uma função $X(\omega)$ que associa a cada elemento $\omega \in \Omega$ a um número real $x = x(\omega)$ é denominada **variável aleatória**.

Definição:

Uma variável aleatória é uma função que mapeia o espaço amostral na reta real, sendo que cada elemento do espaço amostral é mapeado em um valor real.

Ilustração:

Exemplo 2.1: Lançamento de uma moeda duas vezes. A variável aleatória *X* é o número de caras.

 Exemplo: Em uma linha do produção, peças são classificadas em defeituosas ou não-defeituosas. Podemos definir uma variável aleatória X como:

$$X = \begin{cases} 1, & \text{a peça \'e defeituosa} \\ 0, & \text{caso contr\'ario} \end{cases}.$$

- Nesse caso, $\Omega = \{\text{peça defeituosa}; \text{peça não-defeituosa}\}.$
- Uma variável X desse tipo é chamada variável aleatória de Bernoulli.
- A variável aleatória X assume um conjunto finito de valores.

Classificação de Variáveis Aleatórias

- Se a variável aleatória X assume valores em um conjunto finito ou infinito enumerável é chamada variável aleatória discreta.
 - **Exemplo:** X indica o número de residentes em um domicílio (X pode assumir valores em \mathbb{N}).
- Se a variável aleatória X assume valores em um conjunto infinito não enumerável é chamada variável aleatória contínua.
 - **Exemplo:** X indica o tempo de vida do componente eletrônico, em horas (X pode assumir valores em \mathbb{R}^+).

Variáveis Aleatórias Discretas

Definição: Variável Aleatória Discreta.

Seja X uma **variável aleatória discreta** que assume valores em R_x , $R_x = \{x_1, x_2, \dots, x_n, \dots\}$. A cada resultado x_i , associamos a um número

$$p_{X}(x_{i}) = P(X(\omega_{i}) = x_{i}), \ \omega_{i} \in \Omega \ \ \text{e} \ \ x_{i} \in R_{X},$$

dito probabilidade de x_i .

A função $p_{\chi}(x)$ é definida como **função massa de probabilidade** de X (f.m.p. de X).

As probabilidades $p_x(x_i)$ devem satisfazer as seguintes condições:

- $\sum_{i=1}^{\infty} p_{X}(x_{i}) = 1.$

Variáveis Aleatórias Discretas

Ilustração da f.m.p.: Seja X uma variável aleatória discreta com $R_X = \{x_1, x_2, \dots, x_n\}$ e $p_X(x_i) = p_i$.

Variáveis Aleatórias Discretas

Exemplo 2.2: Lançamento de uma moeda duas vezes e *X* é o número de caras.

Exemplo 2.3: Um carregamento de 8 computadores contém 3 defeituosos. Se uma empresa faz uma compra aleatória de dois desses computadores, apresente a função de probabilidade para o número de computadores com defeitos adquiridos.

Exemplo 2.4: A demanda diária de um item é uma variável aleatória discreta com função massa de probabilidade dada por:

$$P(D=d)=\frac{2^dk}{d!},\ d=1,2,3,4.$$

- a) Determine a constante k.
- b) Calcule P(D > 2).

Introdução: Variável Aleatória Contínua.

Caracterização de variáveis cujos possíveis valores ocorrem aleatoriamente e pertencem a um intervalo dos números reais: renda, salário, tempo de uso de um equipamento, área atingida por uma praga agrícola,

Objetivos: De forma semelhante àquela desenvolvida para variáveis aleatória discretas, precisamos estabelecer, para as contínuas, a atribuição de probabilidades às suas diversas realizações que, neste caso, podem assumir um número infinito de valores diferentes.

Exemplo:

Estudos anteriores revelam a existência de um grande lençol de água no subsolo de uma região. No entanto, sua profundidade ainda não foi determinada, sabendo-se apenas que o lençol pode estar situado em qualquer ponto entre 20 e 100 metros.

Vamos supor que escolhemos, ao acaso, um ponto nessa região e dispomos de uma sonda que, ao fazer a perfuração, detecta com precisão a profundidade do reservatório de água. Denotamos por \boldsymbol{X} a variável aleatória representando a **profundidade**.

- Uma vez que não temos informações adicionais a respeito da profundidade do lençol, é razoável assumirmos que a sonda pode parar em qualquer ponto entre 20 e 100 metros;
- Assim, consideraremos todos os pontos como igualmente prováveis;
- Se utilizarmos a mesma ideia de atribuir a cada possível ponto uma probabilidade, teremos uma dificuldade extra, pois eles pertencem ao intervalo [20,100], em que existem infinitos números reais;
- Assim, se cada um deles tiver a mesma probabilidade maior que zero, a soma das probabilidades será igual a infinito e não 1, como requer a definição da função de probabilidade.

- Em geral, em situações como esta, não é de interesse considerar um único valor para a variável aleatória, mas intervalos de valores na atribuição de probabilidades;
- Neste caso, sabemos que o espaço amostral corresponde ao intervalo [20,100] e as profundidades são igualmente prováveis;
- Suponha, por um momento, que dividimos o espaço amostral em 8 intervalos de comprimento 10.
- Logo, é razoável atribuir aos intervalos a probabilidade 1/8, correspondendo à relação entre o comprimento de cada um deles e o comprimento do espaço amostral (10 para 80).

- Para construir um histograma, podemos supor que 1/8 é a frequência relativa da ocorrência de cada um dos intervalos;
- Note que, dada as características do problema, a divisão em 8 intervalos produziu o mesmo valor da densidade de 1/80 para todos eles:
- Se dividirmos o intervalo em 16 faixas iguais, temos que os intervalos terão todos a mesma probabilidade 1/16.
- Apesar de termos diferentes intervalos, a densidade permanece com o mesmo valor, igual a 1/80.

- Estamos agora em condições de caracterizar, completamente, a atribuição de probabilidades para o caso contínuo;
- Ela será definida pela área abaixo de uma função positiva, denominada densidade de probabilidade;
- Notemos que a densidade não é uma probabilidade, mas uma função matemática que nos auxilia na atribuição de probabilidade;
- Para a v.a. contínua X, a função densidade f é dada por

$$f_{x}(x) = \begin{cases} 1/80, & \text{para } 20 \le x \le 100 \\ 0, & \text{para } x < 20 \quad \text{ou} \quad x > 100. \end{cases}$$

Definição: Variável Aleatória Contínua.

Seja X uma **variável aleatória contínua** que assume valores em R_X , $R_X \in \mathbb{R}$. A função $f_X(X)$ é a **função densidade de probabilidade** (f.d.p.) para X, se satisfaz as seguintes propriedades:

- $P(a < X < b) = \int_a^b f_X(x) dx.$

Variáveis Aleatórias Contínuas

Ilustração da f.d.p.:

- Se X é uma variável aleatória contínua assumindo valores em R_X , então para todo $a \in R_X$ temos:
 - a) P(X = a) = 0;
 - b) P(X > a) = P(X > a);
 - c) $P(X < a) = P(X \le a);$
 - d) $P(X > a) = 1 P(X \le a) = 1 P(X < a);$
 - e) $P(X < a) = 1 P(X \ge a) = 1 P(X > a)$.

Exemplo 2.5: O tempo de produção de um componente (em minutos) é uma variável aleatória *X* com f.d.p. dada por:

$$f_{_{\! X}}(x) = \left\{ egin{array}{ll} \displaystyle rac{5-x}{4}, & ext{se 2} < x < 4 \ 0, & ext{caso contrário} \end{array}
ight. .$$

- a) Mostre que $f_{\nu}(x)$ é uma f.d.p..
- b) Calcule a probabilidade de que o tempo de produção de um compenente escolhido ao acaso seja menos do que 3 minutos.

Exercício Proposto 2.1: Seja *X* uma variável aleatória contínua com f.d.p. dada por:

$$f_{\scriptscriptstyle X}(x) = \left\{ egin{array}{ll} 2x, & {
m se} \ 0 \leq x \leq 1 \ 0, & {
m caso} \ {
m contrário} \end{array}
ight. .$$

- a) Verifique se $f_x(x)$ é uma f.d.p..
- b) $P(X \le \frac{1}{2})$.
- c) $P(X \le \frac{1}{2} | \frac{1}{3} \le X \le \frac{2}{3})$.

Resp.: b) $\frac{1}{4}$; c) $\frac{5}{12}$.

Função de Distribuição Acumulada

Função de Distribuição Acumulada

Definição: Função de Distribuição Acumulada (caso discreto).

Seja X uma variável aleatória discreta que assume valores em R_x e com f.m.p. $p_\chi(x)=P(X=x)$. Para qualquer $x\in\mathbb{R}$, a função de distribuição acumulada (f.d.a.) de X, denotada por $F_\chi(x)$, é definida como:

$$F_{X}(X) = P(X \le X) = \sum_{\substack{x_{i} \in R_{X}; \\ \forall x_{i} \le X}} p_{X}(x_{i})$$
$$= \sum_{\substack{x_{i} \in R_{X}; \\ \forall x_{i} < X}} P(X = x_{i}).$$

Função de Distribuição Acumulada

Exemplo 2.6: Considere o lançamento de uma moeda duas vezes e X é o número de caras. Obtenha a f.m.p. de X. Obtenha também a f.d.a. de X juntamente com a sua ilustração gráfica.

Função de Distribuição Acumulada

Definição: Função de Distribuição Acumulada (caso contínuo).

Seja X uma variável aleatória contínua que assume valores em R_X e com f.d.p. $f_X(x)$. Para qualquer $x \in \mathbb{R}$, a função de distribuição acumulada (f.d.a.) de X, denotada por $F_Y(x)$, é definida como:

$$F_X(x) = P(X \le x) = \int_{-\infty}^{x} f_X(t) dt$$
, para $-\infty < x < +\infty$.

 Como consequência imediata, podemos escrever os dois resultados:

$$P(a < X < b) = \int_{a}^{b} f_{X}(x) dx = F_{X}(b) - F_{X}(a)$$

е

$$f_{\chi}(x) = \frac{d}{dx}F_{\chi}(x),$$

se a derivada existir.

Função de Distribuição Acumulada

Exemplo 2.7: Para a função densidade dada por:

$$f_{x}(x) = \begin{cases} \frac{x^{2}}{3}, & \text{se } -1 < x < 2 \\ 0, & \text{caso contrário} \end{cases}$$

determine $F_{x}(x)$ e use-a para avaliar $P(0 \le X < 1)$.

Propriedades de uma f.d.a.:

- 1. Para todo x, $0 \ge F(x) \le 1$;
- 2. $F_x(x)$ é uma função monótona não decrescente;
- 3. $\lim_{x\to -\infty} F_x(x) = 0$ e $\lim_{x\to +\infty} F_x(x) = 1$;
- 4. Se $R_X = \{X_1, X_2, ...\}$, em que $X_1 < X_2 < ...$, então $f(X_i) = P(X = x_i) = F(X_i) F(X_{i-1})$
- 5. Se a e b são tais que a < b, então
 - (i) $P(X \le a) = F_x(a)$;
 - (ii) $P(X \ge a) = 1 P(X < a) =$;
 - (iii) $P(a < X \le b) = F_x(b) F_x(a);$
 - (iv) $P(a \le X \le b) = F_x(b) F_x(a) + P(x = a);$
 - (v) $P(a < X < b) = F_x(b) F_x(a) P(X = b)$.

Função de Distribuição Acumulada

Exercício Proposto 2.2: Seja $F_{\chi}(x)$ dada por:

$$F_{\chi}(x) = \left\{ \begin{array}{ll} 0, & \text{se } x < 0 \\ 1/8, & \text{se } 0 \leq x < 1 \\ 1/2, & \text{se } 1 \leq x < 2 \\ 5/8, & \text{se } 2 \leq x < 3 \\ 1, & \text{se } x \geq 3 \end{array} \right. .$$

Determinar:

- a) $P(1 < X \le 3)$.
- b) P(X > 2).
- c) Encontre a $p_{\chi}(x)$.

Resp.: a) $\frac{1}{2}$; b) $\frac{3}{8}$; c) $\frac{1}{8}$ se x = 0; 2 e $\frac{3}{8}$ se x = 1; 3.

Função de Distribuição Acumulada

Exercício Proposto 2.3: Seja *X* uma variável aleatória contínua com f.d.p. dada por:

$$f_{\chi}(x) = \left\{ egin{array}{ll} kx^2, & ext{se } 0 < x < 1 \ 0, & ext{caso contrário} \end{array}
ight. .$$

- a) Ache o valor de k.
- b) Determine $F_x(x)$.
- c) $P(\frac{1}{3} < X < \frac{1}{2})$.

Resp.: a) k = 3; b) x^3 , se $0 < x \le 1$; c) $\frac{19}{216}$.

Esperança Matemática de uma Variável Aleatória

Definição: Esperança Matemática.

Seja X uma variável aleatória com f.m.p. $p_{_X}(x)$ (no caso discreto) ou f.d.p. $f_{_X}(x)$ (no caso contínuo). Chamamos de esperança matemática ou valor médio de X a quantidade

$$\mu = E(X) = \sum_{x \in R_x} x p_x(x)$$
, no caso discreto

ou

$$\mu = E(X) = \int_{B_X} x f_X(x)$$
, no caso contínuo,

desde que o somatório e a integral existam.

Esperança Matemática

Algumas propriedades:

- Considere $a, b \in \mathbb{R}$, constantes.
 - a) E(aX) = aE(X);
 - b) Se X = a (constante), então E(X) = E(a) = a;
 - c) E(E(X)) = E(X);
 - d) $E(X \pm a) = E(X) \pm a$;
 - e) $E(aX \pm bY) = aE(X) \pm bE(Y)$.

Esperança Matemática

Exemplo 2.8: Seja *X* uma variável aleatória com f.m.p. dada por:

$$p_X(x) = \frac{\binom{4}{x}\binom{3}{3-x}}{\binom{7}{3}}, \ x = 0, 1, 2, 3.$$

Calcule o E(X).

Exemplo 2.9: Considere a variável aleatória *X* com f.d.p. dada por:

$$f_{x}(x) = 2x, \ 0 \le x \le 1.$$

Calcule o E(X).

Resultado: Seja X uma variável aleatória com f.m.p. $p_{X}(x)$ no caso discreto ou f.d.p. $f_{X}(x)$ no caso contínuo. Uma função de X, dita g(X), é também uma variável aleatória e

$$E(g(X)) = \sum_{x \in R_x} g(x) p_x(x)$$
, no caso discreto

ou

$$E(g(X)) = \int_{B} g(x)f_{X}(x)$$
, no caso contínuo.

Variância

Variância de uma Variável Aleatória

Definição: Variância.

Seja X uma variável aleatória com f.m.p. $p_X(x)$ (no caso discreto) ou f.d.p. $f_X(x)$ (no caso contínuo), com média $\mu = E(X)$. Chamamos de variância da variável aleatória X o valor

$$\sigma^{2} = Var(X) = E((X - E(X))^{2})$$
$$= E((X - \mu)^{2}).$$

Definição: Variância (continuação).

Ou seja:

$$\sigma^2 = Var(X) = \sum_{x \in R_x} (x - \mu)^2 p_x(x)$$
, no caso discreto

ou

$$\sigma^2 = Var(X) = \int_{\mathcal{B}} (x - \mu)^2 f_X(x)$$
, no caso contínuo.

A raiz quadrada da variância é chamada de desvio-padrão de X, $\sigma = DP(X)$.

Resultado: Podemos escrever a variância da variável aleatória X por:

$$\sigma^2 = Var(X) = E(X^2) - \{E(X)\}^2.$$

Dem.:]

$$Var(X) = E((X - E(X))^{2})$$

$$= E(X^{2} - 2XE(X) + (E(X))^{2})$$

$$= E(X^{2}) - 2E(X)E(X) + (E(X))^{2}$$

$$= E(X^{2}) - (E(X))^{2}$$

$$= E(X^{2}) - \mu^{2}.$$

Algumas propriedades:

- Considere $a, b \in \mathbb{R}$, constantes.
 - a) $Var(aX) = a^2 Var(X)$;
 - b) Se X = a (constante), então Var(X) = Var(a) = 0;
 - c) $Var(X \pm a) = Var(X)$;
 - d) $Var(aX \pm b) = a^2 Var(X);$
 - e) Se X e Y são duas **variáveis aleatórias independentes**, então $Var(aX \pm bY) = a^2 Var(X) + b^2 Var(Y)$.

Variância

Exemplo 2.10: Seja *X* uma variável aleatória com f.d.p. dada por:

$$f_{x}(x) = \frac{x^{2}}{3}, -1 < x < 2.$$

Determine:

- a) E(X).
- b) Var(X).
- c) E(4X + 3).

Esperança e Variância

Exercício Proposto 2.4: Seja *X* uma variável aleatória com f.m.p. dada por:

$$p_{\chi}(x) = \begin{cases} \frac{1}{2}, & \text{se } x = 0\\ \frac{1}{4}, & \text{se } x = 1, 2\\ 0, & \text{caso contrário} \end{cases}.$$

Considere a variável aleatória $g(X) = (X - a)^2$, a = 0; $\frac{1}{2}$; 1. Calcule:

- a) E(X) e Var(X).
- b) E(g(X)) para cada a.

Resp.: a) $\mu = \frac{3}{4}$ e $\sigma^2 = \frac{11}{16}$; b) $E(g(X)) = a^2 - \frac{3}{2}a + \frac{5}{4}$ (avaliar para cada valor de a).

Exercício Proposto 2.5: A demanda semanal de certa bebida, em milhares de litros, em uma rede de lojas de conveniência é uma variável aleatória contínua $g(X) = X^2 + X - 2$, sendo que X tem f.d.p. dada por:

$$f_{\scriptscriptstyle X}(x) = \left\{ egin{array}{ll} 2(x-1), & {
m se} \ 1 < x < 2 \ 0, & {
m caso \ contrário} \end{array}
ight. .$$

Determine o valor esperado da demanda semanal dessa bebida.

Resp.: $\frac{15}{6} = 2, 5.$