Exercise: Understanding Potential Outcomes

1. We are going to generate simulated data on a population of 1,000 people. Specifically, create a variable x that randomly assigns these people to be male or female (50:50). Hint: In R, try rbinom and in Stata, try rbinomial.

```
N <- 1000
x <- rbinom(N,1,0.5)
```

2. Now we are going to simulate the potential outcomes - a measure of attitudes - if our units were not treated (y_0) for our population. Create another variable of random normally-distributed values with mean of 5 and standard deviation of 1. Hint: In R, try rnorm and in Stata, try rnormal.

```
y0 <- rnorm(N,5,1)
```

3. One problem with observational data is that potential outcomes are often correlated with other variables such as gender. Perhaps women are simply more conservative, for example. Adjust your value of y_0 to add 1 (one) for all units who are male.

```
y0 <- y0 + x
```

4. Now simulate potential outcomes if the units receive treatment (y_1) for all units. Define a constant treatment effect of c = 2 and create another variable $y_1 = y_0 + c$.

```
c <-2
y1 <- y0 + c
```

5. To compare our two sets of potential outcomes, plot two density charts on the same figure - one for y_0 and one for y_1 .

```
data <- tibble(x,y0,y1)

data %>% ggplot() +
   geom_density(aes(x=y0), col="blue") +
   geom_density(aes(x=y1),col="dark green") +
   theme_classic()
```


- 6. Next, let us assume a specific **Treatment Assignment Mechanism** where men are more likely than women to receive treatment. This requires a few steps:
 - a. First, we need to generate some noise so treatment is not simply identical to gender. Create a random uniform variable u that can take on values between 0 and 1 for all our units. Hint: In R, try runif and in Stata, try runiform.
 - b. Second, let's combine this with a function of gender: z = 0.5x + u
 - c. Third, we can make a treatment variable D to assign binary treatment values of 0 or 1:

7. To show that gender (x) and treatment (D) are related, calculate the correlation between x and D.

```
cor(data$x,data$D)
```

[1] 0.4437775

8. What is the average of the *real* indvidual treatment effects based on all the potential outcomes, $E(y_1 - y_0)$?

```
Actual_causal_effect <- data %>%
    summarize(Actual_ATE=mean(y1-y0))
Actual_causal_effect
```

```
## # A tibble: 1 x 1
## Actual_ATE
## <dbl>
## 1 2
```

9. The Fundamental Problem of Causal Inference is that we cannot calculate (8.) above. Instead, we only observe one value: y_{obs} . Create a new variable y_{obs} which equals y_1 if D=1 but which equals y_0 if D=0.

10. Based on the observable data, run the basic regression of treatment (D) on observable outcomes (y_{obs}) . Interpret the result. Is this an accurate estimate of the treatment effect that we assumed at the start?

data %>% lm(y_obs~D,data=.) %>% stargazer(keep.stat=c("n"), header=F)

Table 1:

	Dependent variable:
	y_obs
D	2.473***
	(0.068)
Constant	5.280***
	(0.048)
Observations	1,000
Note:	*p<0.1; **p<0.05; ***p<0.01

11. Re-run all your code above but this time with c = 0 so we are assuming **NO** treatment effect. Run the regression in (10.) again - what is the result?


```
data_no_effect %>% lm(y_obs~D,data=.) %>% stargazer(keep.stat=c("n"), header=F)
```

12. To see why, let's plot two density charts on the same figure - one for the distribution of observable

Table 2:

	Dependent variable:
	y_obs
D	0.473***
	(0.067)
Constant	5.302***
	(0.048)
Observations	1,000
Note:	*p<0.1; **p<0.05; ***p<0.01

 y_{obs} for the treated group $(y_{obs}|D==1)$ and one for the distribution of observable y_{obs} for the control group $(y_{obs}|D==0)$.

```
data_no_effect %>% ggplot() +
  geom_density(data=data_no_effect %>% filter(D==0),aes(x=y_obs), col="blue") +
  geom_density(data=data_no_effect %>% filter(D==1),aes(x=y_obs),col="dark green") +
  theme_classic()
```


13. Run your code again for c = 0, but this time assume a larger population of N = 1,000,000. Does that solve the problem?

```
geom_density(aes(x=y0), col="blue") +
geom_density(aes(x=y1),col="dark green") +
theme_classic()
```


data_large_N %>% lm(y_obs~D,data=.) %>% stargazer(keep.stat=c("n"), header=F)

14. For c = 0, run the regression of treatment on observable outcomes, but this time controlling for gender.

```
data_no_effect %>% lm(y_obs~D + x,data=.) %>% stargazer(keep.stat=c("n"), header=F)
```

Stata Code

```
set obs 1000 gen x=rbinomial(1,0.5) gen y0=rnormal(5,1) replace y0=y0+x gen y1=y0+2 kdensity y0, addplot(kdensity y1) gen rnd=0.5*x+runiform(0,1) gen D=0
```

Table 4:

	Dependent variable:
	y_obs
D	0.049
	(0.074)
x	0.817***
	(0.074)
Constant	5.099***
	(0.049)
Observations	1,000
Note:	*p<0.1; **p<0.05; ***p<0.01

*p<0.1; **p<0.05; ***p<

replace D=1 if rnd>0.75 correlate x D gen real_TE=y1-y0 mean real_TE $gen y_obs=y0$ replace y_obs=y1 if D==1 regress y_obs D regress y_obs D x