30. a.i.	Describe the scalability metrics for achieving parallel scalability.	4	1	. 3	2			
ii.	Discuss in detail the different variants of parallelization methods.	8	-1	3	2			
b.i.	(OR) Examine the fat-tree network hierarchies for the given scenarios: In a fat- tree network with static routing, what are the consequences of a 4:3 over subscription on the links to the spine switches?	8	2	3	2			
ii.	List out the basic performance characteristics of networks in a parallel computers.	4	2	3	2			
31. a.i.	a.i. With a snippet of code, illustrate how work sharing for loops is implemented in open MP.							
ii.	With an example, explain the REDUCTION clause.	4	2	4	3			
b.	(OR) Elaborate on various ways to convert (or) reduce parallelism to run serial code if parallelism does not pay off.	12	1	4	1			
32. a.	Analyze how non-blocking point-to-point communication takes place in a distributed memory parallel programming with MPI.	12	2	5	2			
b.	(OR) Examine the operation of synchronization and implicit serialization in order to deliver an efficient MPI programming.	12	2	5	2			

Reg. No.		
----------	--	--

B.Tech. DEGREE EXAMINATION, MAY 2023 Sixth & Seventh Semester

18CSE454T – HIGH PERFORMANCE COMPUTING

(For the candidates admitted from the academic year 2018-2019 to 2021-2022)

Note: (i) (ii)	Part - A should be answered in OMR over to hall invigilator at the end of 40 th Part - B & Part - C should be answered	sheet minute	within first 40 minutes and OMR she	et shoul	d be	han	ded			
Time: 3	nours		·	Max. M	arks	: 10	0			
Ĭ,	PART – A (20 × 1			Marks	BL	CO	PO			
1	Answer ALL Questions 1. The most sensible time measure in benchmarking of processor is									
1.										
	(A) Peak time		Elapsed time Load / stone time							
	(C) CPU time	(D)	Load / Stone time							
2	2. The power dissipation of CPU is proportional to									
۷.	(A) Clock frequency		Supply voltage							
		` '	Third power of clock frequency							
	(C) Third power of supply voltage	(D)	Time power of electric mequency							
3	To execute one instruction in per cl	ock cy	cle, what is the maximum number	r ¹	1	1	1			
٥.	of instructions for a pipeline with 5									
	(A) 5	(B)								
	(C) 3	(D)								
	(C) 3	(2)								
4.	Several threads on a physical core w	ait fo	r some event to occur by executin	g 1	1	1	1			
	tight loops is known as									
	(A) Loop waiting	(B)	Spin waiting							
	(C) Bottle neck	(D)	Stalls							
-		1.	-hiiil-d	1	1	2	1			
5.	5. Gathering information about a programs behavior is called									
	(A) Hot spots	` ,	Parallelism							
	(C) Profiling	(D)	Scaling							
6.	6. Shrinking the working set of a code is good because it									
	(A) Raises the probability fo	r (B)	Raises the probability for cach	e						
	cache hits	` '	miss							
	(C) Decreases the running time o	f (D)	Increases the running time of	a						
	a code	()	code							
				1.	1	2	1			
7.	Function in-lining is used to	(T)		1	1	2				
	(A) Reduce elapsed time	. ,	Reduce runtime							
	(C) Increase elapsed time	(D)	Increase runtime							
8.	occurs if the CPII does no	nt hav	e enough registers to hold all th	ie ¹	1	2	2			
0.	required operands inside a complex									
	(A) Inlining		Aliasing							
	(C) Profiling	` ,	Register pressure							
	() 1101111115	(2)	D F							

9.	In a distributed memory system		1	1	3	1		2	19	. The format for MPI_FINALIZE is	1	1	5	1
	(A) All processor share the same global memory	(B) There is an interconnection network connecting the processors						02		(A) int MPI_Finalize (void) (B) char MPI_Finalize (void) (C) int MPI_Finalize (int) (D) int MPI_Finalize (int, int)				
	(C) Processes share the same heap	(D) A processor can access data from another processor's memory							20	. Which function distributer distinct messages from a single source task to each task in the group?	1	1	5	1
		using the load/store instruction						121		(A) MPI_Scatter (B) MPI_Gather				
10.	In ccNUMA machines, bus logic litrack of the location and state of each	ke chipsets or memory interfaces keep	1	1	3	1							-	
	(A) False sharing(C) Directory-based protocol	(B) Front side bus (D) Quick path						.23		PART – B ($5 \times 4 = 20$ Marks) Answer ANY FIVE Questions	Marks	BL	CO	PC
11.	Parallel efficiency is defined as	(2) Quiek paul	1	1	3	1			21	List out the design principles of vector processors for vectorizing the code for massive parallelism.	4	2	1	1
	(A) Speedup / N	(B) N/speedup			,						2			
	(C) Speedup / N-1	(D) N-1/speedup							22	. Mention and describe any four events that can be monitored by hardware performance counters.	4	2	2	1
12.	Multiple processors working on diffe (A) Multitasking	rent part of the data is known as (B) Data parallelism	1	1	3	2			22	Ct. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	1	2	2
	(C) Domain decomposition	(D) Functional decomposition							23	. State any two scalability laws for parallelism.	4	1	3	2
13.	Which command is used to set programming?	the number of threads in open MP	1	1	4	1			24	Explain how cache coherence protocols are implemented in shared memory computers.		1	3	1
	(A) OMP_NUM_THREAD (C) OMP_NUM_THREADS	(B) OMP_THREADS_NUM (D) OMP_THREAD NUM					997		25	. How task directive is used as a work sharing construct in open MP?	4	1	4	1
14.		ort the creation and handling of virtual	1	1	4	1			26	Analyze the various MPI constructs used for collective communication.	4	2	5	1
	topologies. (A) MPI_CART_CREATE() (C) MPI_CART()	(B) MPI_COORS() (D) MPI_SHIFT()							27	List the communication parameters and protocols used in point-to-point message transfer in MPI.	4	1	5	2
15.		the non-blocking point to point	1	1	4	1				$PART - C (5 \times 12 = 60 \text{ Marks})$	Marks	BL	CO	PO
	communication? (A) MPI_SEND()	(B) MPI SSEND()								Answer ALL Questions				
	(C) MPI_BSEND()	(D) MPI_ISEND()						8	28. a	With a neat sketch illustrate how multi-threading enhances the instruction throughput by eliminating the pipeline bubbles.	12	1	1	1
16.	Within a parallel region, declared var	-	1	1	4	1				unoughput by eminiating the piperine outboles.				
	(A) Private (C) Loco	(B) Local (D) Shared							b.i	(OR) What is pipelining? What are the pitfalls involved in executing instructions	6	1	1	1
17.	A construct by itself creat	tes a "single program multiple data"	1	1	5	1				through pipelining?				
	program i.e each thread execute the second (A) Parallel	ame code, (B) Section							ii	Discuss in detail the pros and cons of cache mapping techniques.	6	1	1	1
	(C) Single	(D) Master							29. a	Examine the function and line-based runtime profiling while optimizing the serial code.	12	2	2	2
18.	is a form of parallelization	n across multiple processor in parallel	1	1.	5	1	ē			Serial Couc.				
	computing environments. (A) Work-sharing constructs (C) Functional parallelism	(B) Data parallelism(D) Handling loops							b	esting surfaces, examine the procedures of dynamic memory	12	2	2	2
	(-) - monomin paramonom	(2) Handing toops								management involved in C++ optimization.				