

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
09/528,457	03/17/2000	Mukesh Dalal	020431.0671	4373
53184	7590	09/19/2008	EXAMINER	
i2 TECHNOLOGIES US, INC. ONE i2 PLACE, 11701 LUNA ROAD DALLAS, TX 75234			KALINOWSKI, ALEXANDER G	
ART UNIT	PAPER NUMBER			
		3691		
MAIL DATE	DELIVERY MODE			
09/19/2008	PAPER			

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

1 UNITED STATES PATENT AND TRADEMARK OFFICE

2

3

4 BEFORE THE BOARD OF PATENT APPEALS
5 AND INTERFERENCES

6

7

8 *Ex parte* MUKESH DALAL

9

10

11 Appeal 2008-2544
12 Application 09/528,457
13 Technology Center 3600

14

15

16 Decided: September 19, 2008

17

18

19 Before WILLIAM F. PATE, III, ANTON W. FETTING, and
20 STEVEN D.A. McCARTHY, *Administrative Patent Judges*.

21

22 FETTING, *Administrative Patent Judge*.

23

24 DECISION ON APPEAL

26

27 STATEMENT OF THE CASE

28

29 Mukesh Dalal (Appellant) seeks review under 35 U.S.C. § 134 of a
30 final rejection of claims 1-3, 5-7, 10-15, 17-19, 21-23, 26-31, 33-35, 37-39,
31 and 42-50, the only claims pending in the application on appeal.

32

33 We have jurisdiction over the appeal pursuant to 35 U.S.C. § 6(b)
34 (2002).

1 We AFFIRM.

2 The Appellant invented a way of optimizing results under multi-party
3 constraints (Specification 1:6-7).

4 An understanding of the invention can be derived from a reading of
5 exemplary claim 1, which is reproduced below [bracketed matter and some
6 paragraphing added].

7 1. A computer-implemented system for multi-party constrained
8 optimization, the system comprising one or more processing
9 units and one or more memory units collectively operable to:

10 [1] access

11 a first optimization problem and

12 a first threshold value corresponding to a first party to a
13 negotiation,

14 the first optimization problem comprising

15 at least one first objective to which the first
16 threshold value relates and

17 one or more first constraints to which the at least
18 one first objective relates;

19 [2] access

20 a second optimization problem and

21 a second threshold value corresponding to a second party
22 to the negotiation,

23 the second optimization problem comprising

24 at least one second objective to which the second
25 threshold value relates and

26 one or more second constraints to which the at
27 least one second objective relates;

28 [3] generate a global solution to a global optimization problem,

29 the global solution comprising

1 a first objective value for the at least one first
2 objective and
3 a second objective value for the at least one second
4 objective
5 such that the first and second objective values are
6 consistent with value [sic¹]
7 the one or more first constraints,
8 the first threshold value,
9 the one or more second constraints, and
10 the second threshold value,
11 the global solution representing
12 a first excess between
13 the first objective value and
14 the first threshold value and
15 a second excess between
16 the second objective value and
17 the second threshold value,
18 the global solution being generated considering a
19 fairness criterion specifying one of the following:
20 [4a] that the first excess must equal the second
21 excess,
22 the fairness criterion comprising an equal
23 distribution criterion;

¹ It is not clear exactly what phrasing is intended. The Appellant repeated this phrasing in the Summary of Claimed Subject Matter (Appeal Br. 7), so that section of the Brief is unhelpful. The portions of the Specification cited to support this limitation, Specification 3:11-15 and 9:18-26 (Appeal Br. 7), do not describe the consistency recited in this particular phrase in the claim. We take this phrase to mean “consistent with values relating to” based on the apparent support for this phrase at Specification 10:1-4.

- 1 [4b] that a ratio of the first excess to the second
2 excess must equal a ratio of the first threshold
3 value to the second threshold value,
4 the fairness criterion comprising a geometric
5 distribution criterion;
- 6 [4c] that a ratio of the first excess to the second
7 excess must equal a ratio of a first weight for the
8 first party to a second weight for the second party,
9 the fairness criterion comprising a weighted
10 distribution criterion; and
11 [4d] that a ratio of the first objective value to the
12 first threshold value must equal a first weight for
13 the first party and a ratio of the second objective
14 value to the second threshold value must equal a
15 second weight for the second party,
16 the fairness criterion comprising a weighted
17 geometric distribution criterion.

18
19 This appeal arises from the Examiner's Final Rejection, mailed
20 January 27, 2004. The Appellant filed an Appeal Brief in support of the
21 appeal on March 6, 2006. An Examiner's Answer to the Appeal Brief was
22 mailed on May 19, 2006. A Reply Brief was filed on July 17, 2006. A
23 corrected Appeal Brief was filed on May 8, 2007. References to the Appeal
24 Brief in this Decision refer to this corrected May 8, 2007 Appeal Brief.
25

PRIOR ART

2 The Examiner relies upon the following prior art:

Lupien	US 5,950,177	Sep. 7, 1999
Thiessen	US 5,495,412	Feb. 27, 1996
Midorikawa ²	US 5,953,708	Sep. 14, 1999

REJECTION³

5 Claims 1-3, 5-7, 10-15, 17-19, 21-23, 26-31, 33-35, 37-39, and 42-50
6 stand rejected under 35 U.S.C. § 103(a) as unpatentable over Lupien and
7 Thiessen.

ISSUES

10 The issue pertinent to this appeal is whether the Appellant has
11 sustained its burden of showing that the Examiner erred in rejecting claims
12 1-3, 5-7, 10-15, 17-19, 21-23, 26-31, 33-35, 37-39, and 42-50 under 35
13 U.S.C. § 103(a) as unpatentable over Lupien and Thiessen.

14 The pertinent issue turns on whether the art applied describes the
15 constraints of limitations [1] to [3] and any of the criteria in limitations [4a]-
16 [4d].

² The Examiner relies on Midorikawa as evidence of what one of ordinary skill knew, and does not apply this reference directly in the rejection.

³ The Examiner nominally presents this as two separate rejections over the same art (Answer 3 and 7). We treat them together because the same art is applied in both nominal rejections, and the analysis is similar in each.

1 FACTS PERTINENT TO THE ISSUES

2 The following enumerated Findings of Fact (FF) are believed to be
3 supported by a preponderance of the evidence.

4 *Lupien*

- 5 01. Lupien is directed to an automated crossing network (also
6 known as a matching system) for trading instruments, and in
7 particular, a continuous crossing network that matches buy and
8 sell orders based upon a satisfaction and size profile (Lupien 1:9-
9 13).
- 10 02. Lupien allows traders to input as orders a satisfaction density
11 profile and maximum size limit which at once characterizes the
12 trader's degree of satisfaction to trade at any and all prices and
13 sizes, up to the aggregate (or size) limit, and that matches orders
14 (as represented by each trader's satisfaction density profile) so that
15 each trader is assured that the overall outcome of the process (in
16 terms of average price and size of fill) has maximized the mutual
17 satisfaction of all traders (Lupien 3:49-58).
- 18 03. Lupien Figs. 9A-C portray contour plots of four mutual
19 satisfaction solutions, each contour representing those points
20 having the same satisfaction cross product and each chart is for a
21 separate combination of parties (Lupien 12:16-50). The mutual
22 satisfaction cross product represents the potential for that buy/sell
23 pair mutually to satisfy each side. Each point represents the price
24 and quantity bought and sold to achieve the satisfaction value
25 shown on a contour (Lupien 9:24-30).

1 *Thiessen*

- 2 04. Thiessen is directed to a way for assisting multiple parties
3 involved in complex negotiations in reaching an agreement that
4 optimizes the individual and overall benefit to the parties
5 (Thiessen 1:9-13). Thiessen does this using an Interactive
6 Computer-Assisted Negotiation Process Support System
7 (otherwise known as ICANS) which assists parties in real time
8 toward achieving an optimal, mutually satisfactory agreement in
9 dynamic, multi-issue, multi-party negotiations (Thiessen 3:11-17).
- 10 05. Thiessen optimizes the satisfaction of all parties by first having
11 parties identify at least one alternative solution to the problem that
12 their party would find acceptable. Thiessen searches for
13 equivalent alternatives to party proposals by using linear
14 programming to solve an optimization problem for which the
15 objective is to insure no loss in satisfaction for any party while
16 minimizing the maximum gain achieved by any party. If all
17 parties accept the alternative generated by ICANS as a tentative
18 agreement, that alternative is known as a common base alternative
19 (common base for short). The purpose of establishing the
20 common base is to facilitate the negotiations by converting
21 inconsistent proposals offered by each party into what is for
22 everyone an equivalent one from which joint negotiations can
23 proceed (Thiessen 3:29-43).
- 24 06. Once a common base has been established, Thiessen searches
25 for an improved alternative solution on the satisfaction tradeoff
26 function defining the efficiency frontier that will bring greater or

1 equal satisfaction to all parties as compared to the common base.
2 To find an alternative on the efficiency frontier that improves
3 upon the common base alternative, ICANS seeks to maximize the
4 minimum gain in total relative satisfaction that can be achieved by
5 each of the parties, again using standard linear programming
6 techniques. The result is an alternative agreement that improves
7 the satisfaction of one or more of the parties without decreasing
8 the satisfaction of any of the parties (Thiessen 3:52-64).

9 07. Thiessen's Fig. 5 is a graph illustrating the satisfaction of Party
10 Blue as a function of the satisfaction of Party Green. The point
11 labeled B represents the levels of satisfaction provided by Party
12 Blue's proposal, while the point labeled G represents the
13 satisfaction levels provided by Party Green's proposal. The curve
14 labeled EF in FIG. 5 is a boundary defining what is commonly
15 known in the art as the "efficiency frontier," where efficiency is
16 defined according to Pareto. This boundary defines the group of
17 satisfaction points that provide the most efficient possible
18 solutions to the conflict. In determining the common base
19 alternative represented by point E, Thiessen attempts to maintain
20 the satisfaction level of both parties the same as in their chosen
21 proposals. The goal therefore is to "minimize the maximum gain"
22 in satisfaction that either of the two parties experiences in going
23 from their proposal to the common base alternative. In other
24 words, it is most desirable that the maximum gain be zero for both
25 parties (Thiessen 15:4-29).

1 08. Thiessen's Fig. 5 also shows a diagonal ray with a slope of 1
2 that includes the equivalent satisfaction point E representing the
3 common base alternative, and passes through a shaded region
4 labeled MG known as the region of mutual gain. This region is so
5 named because any alternatives that lie therein will provide gains
6 in satisfaction to both parties as compared to the common base
7 alternative. For this two party problem, the ray divides the shaded
8 region of mutual gain into two portions. If an alternative exactly
9 equivalent to all party proposals exists, "minimizing the maximum
10 gain" will find it at the equivalent satisfaction Point E. If such an
11 alternative does not exist, the solution will be the closest feasible
12 alternative within the region of mutual gain (Thiessen 15:30-50).

13 09. Thiessen's point W results in a satisfaction to Party Blue and to
14 Party Green of 97, both of which provide substantial
15 improvements in satisfaction to each of the parties than was
16 provided by their original individual proposals (Thiessen 16:53-
17 57; Fig. 5.

18 10. Thiessen's Fig. 2A portrays a selection step in which parties
19 choose among options to define satisfaction tradeoffs that are used
20 to compute which solutions are selected.

21 *Facts Related To The Level Of Skill In The Art*

22 11. Neither the Examiner nor the Appellant has addressed the level
23 of ordinary skill in the pertinent arts of systems analysis and
24 programming, operations research, optimization theory and
25 analysis, programming techniques for optimization systems, linear
26 algebra, and management information systems design. We will

therefore consider the cited prior art as representative of the level of ordinary skill in the art. See *Okajima v. Bourdeau*, 261 F.3d 1350, 1355 (Fed. Cir. 2001) (“[T]he absence of specific findings on the level of skill in the art does not give rise to reversible error ‘where the prior art itself reflects an appropriate level and a need for testimony is not shown’”) (quoting *Litton Indus. Prods., Inc. v. Solid State Sys. Corp.*, 755 F.2d 158, 163 (Fed. Cir. 1985).

12. One of ordinary skill in the operations research arts knew that linear programming was a technique that optimized objective values under given constraints.

Facts Related To Secondary Considerations

13. There is no evidence on record of secondary considerations of non-obviousness for our consideration.

PRINCIPLES OF LAW

Claim Construction

During examination of a patent application, pending claims are given their broadest reasonable construction consistent with the specification. *In re Prater*, 415 F.2d 1393, 1404-05 (CCPA 1969); *In re Am. Acad. of Sci. Tech Ctr.*, 367 F.3d 1359, 1364, (Fed. Cir. 2004).

Limitations appearing in the specification but not recited in the claim are not read into the claim. *E-Pass Techs., Inc. v. 3Com Corp.*, 343 F.3d 1364, 1369 (Fed. Cir. 2003) (claims must be interpreted “in view of the specification” without importing limitations from the specification into the claims unnecessarily).

1 Although a patent applicant is entitled to be his or her own
2 lexicographer of patent claim terms, in *ex parte* prosecution it must be
3 within limits. *In re Corr*, 347 F.2d 578, 580 (CCPA 1965). The applicant
4 must do so by placing such definitions in the Specification with sufficient
5 clarity to provide a person of ordinary skill in the art with clear and precise
6 notice of the meaning that is to be construed. *See also In re Paulsen*, 30
7 F.3d 1475, 1480 (Fed. Cir. 1994) (although an inventor is free to define the
8 specific terms used to describe the invention, this must be done with
9 reasonable clarity, deliberateness, and precision; where an inventor chooses
10 to give terms uncommon meanings, the inventor must set out any
11 uncommon definition in some manner within the patent disclosure so as to
12 give one of ordinary skill in the art notice of the change).

13 *Obviousness*

14 A claimed invention is unpatentable if the differences between it and
15 the prior art are “such that the subject matter as a whole would have been
16 obvious at the time the invention was made to a person having ordinary skill
17 in the art.” 35 U.S.C. § 103(a) (2000); *KSR Int'l Co. v. Teleflex Inc.*, 127 S.
18 Ct. 1727, 1729-30 (2007); *Graham v. John Deere Co.*, 383 U.S. 1, 13-14
19 (1966).

20 In *Graham*, the Court held that the obviousness analysis is bottomed
21 on several basic factual inquiries: “[1] the scope and content of the prior art
22 are to be determined; [(2)] differences between the prior art and the claims at
23 issue are to be ascertained; and [(3)] the level of ordinary skill in the
24 pertinent art resolved.” 383 U.S. at 17. *See also KSR Int'l v. Teleflex Inc.*,
25 127 S. Ct. at 1734. “The combination of familiar elements according to

1 known methods is likely to be obvious when it does no more than yield
2 predictable results.” *KSR*, at 1739.

3 “When a work is available in one field of endeavor, design incentives
4 and other market forces can prompt variations of it, either in the same field
5 or a different one. If a person of ordinary skill can implement a predictable
6 variation, § 103 likely bars its patentability.” *Id.* at 1740.

7 “For the same reason, if a technique has been used to improve one
8 device, and a person of ordinary skill in the art would recognize that it would
9 improve similar devices in the same way, using the technique is obvious
10 unless its actual application is beyond his or her skill.” *Id.*

11 “Under the correct analysis, any need or problem known in the field
12 of endeavor at the time of invention and addressed by the patent can provide
13 a reason for combining the elements in the manner claimed.” *Id.* at 1742.

14 ANALYSIS

15 *Claims 1-3, 5-7, 10-15, 17-19, 21-23, 26-31, 33-35, 37-39, and 42-50*
16 *rejected under 35 U.S.C. § 103(a) as unpatentable over Lupien and*
17 *Thiessen.*

18
19 *Claims 1, 2-3, 5-7, 10, 15, 17-19, 21-23, 26, 31, 33-35, 37-39, 42, and*
20 *47*

21 The Appellant argues claims 1, 2-3, 5-7, 10, 15, 17-19, 21-23, 26, 31,
22 33-35, 37-39, 42, and 47 as a group.

23 Accordingly, we select claim 1 as representative of the group.
24 37 C.F.R. § 41.37(c)(1)(vii) (2007).

25 The Examiner found that Lupien described each of limitations [1], [2],
26 and [3], but did not describe any of the alternative limitations [4a], [4b],
27 [4c], or [4d]. To overcome this deficiency, the Examiner found that
28 Thiessen described alternative limitation [4a] (Answer 3-4). Alternatively,

1 the Examiner found that Thiessen described limitations [1] and [2], in
2 addition to alternative limitation [4a], but did not explicitly describe
3 limitation [3], and that Lupien described limitation [3] (Answer 7). The
4 Examiner implicitly found that one of ordinary skill would have known that
5 optimization users desired equitable outcomes, and relied on this to conclude
6 that it was obvious to combine Thiessen's such equity in outcome for
7 optimization problems with Lupien's optimization.

8 The Appellant contends that Thiessen fails to describe limitations [3]
9 or [3a], and that Lupien fails to describe limitations [1] and [2]. The
10 Appellant first argues that Thiessen does not describe anything regarding
11 excesses corresponding to thresholds which are to be fairly distributed to the
12 parties according to a particular fairness criterion (Appeal Br. 21:Top ¶).
13 The Examiner responds that Thiessen describes this in the portion referring
14 to Thiessen Fig. 5 (Answer 11).

15 We disagree with the Appellant. Thiessen is directed to optimization
16 of satisfaction among multiple parties (FF 04). Thiessen uses linear
17 programming, a technique that optimizes objective values under given
18 constraints (FF 12), to optimize the satisfaction of parties by first identifying
19 a common base from the parties' initial solutions and then identifying an
20 optimal solution that maximizes the satisfaction (FF 05 & 06).

21 Thiessen attempts to maintain the satisfaction level of both parties the
22 same as in their chosen proposals while doing this (FF 07). In Thiessen's
23 Fig. 5, which is a chart of possible objective values for the satisfaction of
24 two parties, the initial proposals are identified as points B and G, and the
25 common base, the point at which both parties retain their initial proposal
26 values, is identified as point E. The X and Y values of point E are the values

1 to be improved upon, and therefore represent threshold values. The points in
2 the shaded region of Fig. 5, which are those points having X and Y values
3 greater than those for point E, are therefore excesses corresponding to the
4 threshold values at point E. Thiessen identifies point W as the optimal
5 solution, which distributes the excess satisfaction in equal amounts relative
6 to point E (FF 07 - 09). Thus, Thiessen does describe excesses
7 corresponding to thresholds which are to be fairly distributed to the parties
8 according to a particular fairness criterion.

9 Next, the Appellant argues that Lupien fails to show constraints
10 (Appeal Br. 22:Top ¶; Reply Br. 3). However, the Appellant subsequently
11 acknowledges that Lupien has constraints, but that such constraints are that
12 stock prices be more or less than some value for a given quantity, which the
13 Appellant argues is the same as Lupien's threshold, while claim 1 requires
14 separate constraints and threshold values (Appeal Br. 22:Top ¶). The
15 Examiner responds that claim 1 does not require that the threshold values
16 and constraints be independent of one another (Answer 13). We agree with
17 the Examiner and find that there is no such requirement in claim 1. We also
18 find that Lupien optimizes parties' satisfaction under the constraints the
19 parties enter as to how many shares they are willing to trade at each price
20 (FF 02). Thus, even if Lupien's threshold values are stock prices, claim 1
21 does not preclude the constraints being upon those stock prices. Further,
22 because Lupien is directed to optimizing satisfaction, and therefore the
23 satisfaction value each party has for a given trade is a threshold value for
24 optimization.

25 Next, the Appellant argues that Lupien fails to describe the global
26 solution comprising a first objective value for the at least one first objective

1 and a second objective value for the at least one second objective (Appeal
2 Br. 23:Top ¶). The Examiner responds these are shown in Lupien Figs. 9A-
3 C (Answer 13-14). These figures portray contour plots of four mutual
4 satisfaction solutions, each contour representing those points having the
5 same satisfaction value (FF 03). Each chart is a set of objective values for a
6 given party combination. Thus Lupien shows three sets of objective values
7 for objectives measured for combinations of parties. Lupien's global
8 solution optimizes each of the values in these charts.

9 Finally, the Appellant argues there is no motivation to combine
10 Lupien with Thiessen (Appeal Br. 23-24). We find that both references are
11 directed to optimizing the satisfaction among multiple parties using linear
12 programming techniques. Lupien is relied on principally to show the
13 components, such as constraints, objectives, and threshold values, that are
14 required in linear programming. As such, Lupien serves to document the
15 components that also must be in Thiessen, although Lupien also shows such
16 components. Accordingly, we find the motivation of applying Lupien to be
17 that of simply documenting what must be necessarily in Thiessen in some
18 form.

19 *Claims 11-12, 27-28, and 43-44*

20 Claim 11 further requires filtering the solutions from claim 1. The
21 Examiner found that the choice of satisfaction tradeoffs in Thiessen's Fig. 2
22 portrayed a filtering, albeit of inputs, and further found that Thiessen
23 actually applied the filter after the initial results were computed, and that it
24 would have been a matter of design choice as to whether to apply a filter at
25 the very end results (Answer 6 and 15-16). The Appellant contends that it is
26 more than design choice, because the Specification discloses that by

1 applying the filter at the end results, unacceptable solutions may be
2 discarded (Appeal Br. 27:First full ¶). The Examiner responds that
3 Thiessen's filtering of the common base candidates, as a filter on a partial
4 solution, demonstrates obviousness of applying such a filter to any solution
5 stage (Answer 15-16). We agree with the Examiner that the solution activity
6 performed by Thiessen subsequent to computing the common base to
7 produce optimal solutions effectively filters the range of possible outcomes
8 from the output subsequent to Thiessen's common base stage of processing
9 (FF 10), and that from this one of ordinary skill would have been motivated
10 to apply filtering to any output stage for the purpose of selecting a subset of
11 interest.

12 The Appellant also contends that the remaining claims are each
13 separately patentable, but provides no argument to support this contention
14 (Appeal Br. 26:Top 2 ¶'s).

15 *Claims 13-14, 29-30, 45-46, and 48-50*

16 Claim 13 further requires having the parties make a selection to
17 determine the solutions from claim 1. The Examiner found that the choice
18 of satisfaction tradeoffs in Thiessen's Fig. 2 portrayed a selection to
19 determine solutions (Answer 6 and 15-16). The Appellant provides no
20 contention against this finding. We agree with the Examiner that Thiessen's
21 Fig. 2 portrayed a selection to determine solutions (FF 10).

22 Claim 14 further requires the selection approach be either an auction
23 or a random approach. The Examiner took official notice of the notoriety of
24 auction selection methods and concluded it would have been obvious to
25 employ such a method to efficiently assign an approach (Answer 9-10). The
26 Appellant argues that there is no teaching, suggestion, or motivation for such

1 an approach in the references (Appeal Br. 28:Bottom ¶ - 29:Top ¶). The
2 Examiner responds that the Appellant has not traversed the official notice
3 (Answer 16-17). We agree with the Examiner that auction selection is
4 notoriously well known and that the Appellant has not traversed this finding.
5 Further, while the teaching, suggestion, and motivation test is one way to
6 show obviousness, it is not the only way.

7 The obviousness analysis cannot be confined by a formalistic
8 conception of the words teaching, suggestion, and motivation,
9 or by overemphasis on the importance of published articles and
10 the explicit content of issued patents. The diversity of inventive
11 pursuits and of modern technology counsels against limiting the
12 analysis in this way. In many fields it may be that there is little
13 discussion of obvious techniques or combinations, and it often
14 may be the case that market demand, rather than scientific
15 literature, will drive design trends.”

16
17 *KSR*, 127 S. Ct. at 1741. In light of the notoriety of auction selection
18 methods, one of ordinary skill would have at least found this method to be a
19 predictable selection method with Lupien and Thiessen.

20
21 CONCLUSIONS OF LAW

22 The Appellant has not sustained its burden of showing that the
23 Examiner erred in rejecting claims 1-3, 5-7, 10-15, 17-19, 21-23, 26-31, 33-
24 35, 37-39, and 42-50 under 35 U.S.C. § 103(a) as unpatentable over Lupien
25 and Thiessen.

DECISION

To summarize, our decision is as follows:

- The rejection of claims 1-3, 5-7, 10-15, 17-19, 21-23, 26-31, 33-35, 37-39, and 42-50 under 35 U.S.C. § 103(a) as unpatentable over Lupien and Thiessen is sustained.

6 No time period for taking any subsequent action in connection with
7 this appeal may be extended under 37 C.F.R. § 1.136(a)(1)(iv) (2007).

AFFIRMED

hh

GREENBLUM & BERNSTEIN, P.L.C.
1950 ROLAND CLARKE PLACE
RESTON, VA 20191