1

Supplementary Materials On: "A Simple Subject Independent Channel Selection in EEG for Motor Imagery Task"

Raghav Dev, Sandeep Kumar, and Tapan Kumar Gandhi Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India

I. SELECTED CHANNELS

Table I
CHANNEL RANKING AS PER SUBJECT INDEPENDENT FOR BCIC 3 4A DATASET

Rank Ch Num		Ch Name	Rank	Ch Num	Ch Name	Rank	Ch Num	Ch Name		
1	52	'C3'	41	90	'P1'	81	40	'FT8'		
2	54	'Cz'	42	79	'PCP5'	82	101	'PPO6'		
3	56	'C4'	43	74	'CP4'	83	113	'Oz'		
4	45	'CFC1'	44	59	'CCP7'	84	95	'P8'		
5	63	'CCP2'	45	83	'PCP4'	85	104	'PO3'		
6	62	'CCP1'	46	75	'CP6'	86	116	'OI2'		
7	53	'C1'	47	29	'FFC6'	87	114	'O2'		
8	72	'CPz'	48	89	'P3'	88	67	'TP9'		
9	55	'C2'	49	49	'CFC8'	89	31	'FT9'		
10	46	'CFC2'	50	66	'CCP8'	90	115	'OI1'		
11	44	'CFC3'	51	24	'FFC5'	91	30	'FFC8'		
12	34	'FC3'	52	68	'TP7'	92	102	'PPO8'		
13	35	'FC1'	53	93	'P4'	93	108	'PO4'		
14	61	'CCP3'	54	99	'PPO1'	94	112	'O1'		
15	73	'CP2'	55	84	'PCP6'	95	103	'PO7'		
16	47	'CFC4'	56	76	'TP8'	96	11	'FAF1'		
17	71	'CP1'	57	78	'PCP7'	97	23	'FFC7'		
18	36	'FCz'	58	20	'F4'	98	96	'P10'		
19	81	'PCP1'	59	28	'FFC4'	99	41	'FT10'		
20	43	'CFC5'	60	18	'Fz'	100	22	'F8'		
21	91	'Pz'	61	100	'PPO2'	101	109	'PO8'		
22	26	'FFC1'	62	58	'T8'	102	86	'P9'		
23	82	'PCP2'	63	50	'T7'	103	15	'F5'		
24	60	'CCP5'	64	85	'PCP8'	104	12	'FAF2'		
25	37	'FC2'	65	98	'PPO5'	105	10	'FAF5'		
26	48	'CFC6'	66	42	'CFC7'	106	14	'F7'		
27	38	'FC4'	67	88	'P5'	107	117	'I1'		
28	25	'FFC3'	68	105	'PO1'	108	13	'FAF6'		
29	65	'CCP6'	69	107	'PO2'	109	7	'AF3'		
30	64	'CCP4'	70	106	'POz'	110	8	'AF4'		
31	27	'FFC2'	71	21	'F6'	111	9	'AF8'		
32	80	'PCP3'	72	77	'TP10'	112	4	'AFp2'		
33	70	'CP3'	73	19	'F2'	113	6	'AF7'		
34	33	'FC5'	74	17	'F1'	114	2	'AFp1'		
35	69	'CP5'	75	97	'PPO7'	115	5	'Fp2'		
36	57	'C6'	76	87	'P7'	116	3	'Fpz'		
37	51	'C5'	77	111	'OPO2'	117	1	'Fp1'		
38	92	'P2'	78	32	'FT7'	118	118	'I2'		
39	39	'FC6'	79	94	'P6'					
40	16	'F3'	80	110	'OPO1'					

Table II SELECTED CHANNEL RANK FOR SUBJECT INDEPENDENT MODEL FOR PHYSIONET DATASET

Rank	Ch Num Ch Name		Rank Ch Num		Ch Name	Rank	Ch Num	Ch Name	
1	11	Cz	23	52	P2	45	64	Iz	
2	10	C1	24	2	FC3	46	7	FC6	
3	12	C2	25 49		P3	47	40	FT8	
4	9	C3	26 42		T8	48	34	Fz	
5	13	C4	27	6	FC4	49	33	F1	
6	18	CPz	28	54	P6	50	32	F3	
7	8	C5	29	50	P1	51	35	F2	
8	16	CP3	30	48	P5	52	36	F4	
9	17	CP1	31	55	P8	53	31	F5	
10	20	CP4	32	1	FC5	54	30	F7	
11	19	CP2	33	47	P7	55	37	F6	
12	21	CP6	34	43	T9	56	27	AFz	
13	14	C6	35	44	T10	57	25	AF7	
14	15	CP5	36	57	PO3	58	26	AF3	
15	41	T7	37	59	PO4	59	38	F8	
16	4	FCz	38	39	FT7	60	22	Fp1	
17	3	FC1	39	58	POz	61	28	AF4	
18	46	TP8	40	62	Oz	62	23	Fpz	
19	5	FC2	41	56	PO7	63	29	AF8	
20	45	TP7	42	60	PO8	64	24	Fp2	
21	53	P4	43	63	O2				
22	51	Pz	44	61	O1				

Figure 1. Number of different channels selected because of filtering the signal before channel selection for the BCICIVa [?]. It can be seen that with or without filtering algorithms share almost 85% of the channels.

II. COMPARISON ALGORITHMS

A. CSP Rank

Let $\mathbf{X}_y \in \mathbb{R}^{N \times M \times T \cdot S}$ is the EEG signal where N, T, and S has the usual meaning. Then covariances are defined as

$$C_{y} = \frac{1}{T \cdot S} \sum_{i=1}^{T \cdot S} \frac{\mathbf{X}_{y}(:,:,i) \cdot \mathbf{X}_{y}(:,:,i)'}{trace(\mathbf{X}_{y}(:,:,i) \cdot \mathbf{X}_{y}(:,:,i)')}$$
(1)

and

$$C = C_1 + C_2 \tag{2}$$

and spatial filters are defined as

$$W_{y} = eig(C_{y}, C) \tag{3}$$

$$\bar{W}_{y} = sort(W_{y}) \tag{4}$$

The above equation returns spatial filter matrix $W_y \in \mathbb{R}^{N \times N}$ for each label. We take 2 spatial filters with highest eigen values and 2 with lowest from both labels and take square root sum to constitute the channel rank.

Implementation is a little modification to the work presented in *Arpaia, P., Donnarumma, F., Esposito, A.* and *Parvis, M., 2021. Channel selection for optimal EEG measurement in motor imagery-based brain-computer interfaces. International Journal of Neural Systems, 31(03), p.2150003, doi: 10.1142/S0129065721500039.*

III. PHISIONET ACCURACY TABLE

							Accuracy									
	35 Subjects			50 Subjects			85 Subjects			94 Subjects						
4 4 4 4 4 4	10 Chs	25 Chs	40 Chs	55 Chs	10 Ch	25 ch	40 ch	55 ch	10 Ch	25 ch	40 ch	55 ch	10 Ch	25 ch	40 ch	55 c
Rand Avg	75.37	87.03	92.46	95.56	72.89	85.15	90.82	94.01	68.24	80.70	86.23	89.62	66.81	79.01	84.46	87.4
CSP Rank	83.91	93.67	98.77	99.72	79.42	90.23	95.93	97.43	70.89	83.00	89.99	91.09	66.93	80.83	87.36	87.5
NMI	83.92	94.81	97.93	99.56	80.41	91.71	95.57	97.35	71.20	83.65	89.60	91.16	67.44	81.09	86.72	88.6
FS	81.07	93.81	97.53	99.85	77.46	90.61	94.97	97.62	68.98	83.27	89.13	92.03	65.20	80.76	86.97	89.0
Sub Indp	82.17	94.63	99.18	100.00	78.58	91.93	96.75	97.82	70.98	84.09	89.72	92.34	67.61	81.53	87.03	90.1
							SD									
	35 Subjects				50 Subjects			85 Subjects			94 Subjects					
	10 Ch	25 ch	40 ch	55 ch	10 Ch	25 ch	40 ch	55 ch	10 Ch	25 ch	40 ch	55 ch	10 Ch	25 ch	40 ch	55 c
rand	5.30	4.17	2.82	2.56	5.89	4.54	3.48	3.24	7.36	6.85	6.59	6.26	8.31	8.40	8.38	8.93
csp_rank	7.82	5.61	2.81	1.15	9.52	7.11	5.01	3.73	13.24	10.72	8.56	8.84	17.82	12.36	11.62	14.1
nmi	6.94	4.90	3.15	1.45	7.99	6.39	4.53	3.72	13.81	11.35	8.87	8.61	17.86	13.41	12.46	11.3
fishers	5.59	5.20	3.54	0.88	7.33	6.64	4.98	3.61	12.43	10.60	8.47	8.04	16.77	12.78	10.70	12.3
sub indp	7.46	4.44	2.06	0.00	8.39	5.66	4.16	3.45	11.86	10.76	9.78	7.64	15.77	13.50	12.66	10.1

Figure 2. It shows that for different numbers of best-performing subjects, the proposed model consistently outperforms, indicating its generalizability over subjects. In addition, the standard deviation (in the interest of brevity, it has been provided in supplementary materials) of these accuracies is also lower which further enforces the generalizability of the proposed model.