Analytics Early Talent Case Study - Interview

Data Source: https://archive.ics.uci.edu/ml/datasets/Covertype

Introduction

In this classic dataset, over 50 attributes are made available. The goal of this dataset is to help predict the Cover Type. In other words, we want to know what type of tree grows in an area based on the attributes provided. Your tasks are to complete an exploratory data analysis, develop and execute a modeling strategy, and provide results & conclusions. Please note that this case study is not designed to have you develop the best performing model. Rather, the key focus is on understanding the approach.

Exploratory Data Analysis (EDA)

1. Describe the dataset and any interesting variables (feel free to include response).

Hint: It may be useful to provide a high-level summary (i.e. descriptive statistics) on the variables

The dataset is heterogeneous (binary and continuous variables)

The dataset is high-dimensional with high number of samples

The problem is a 7-way (supervised) classification task (baseline = 14.29% accuracy)

6 general quantitative (elevation, aspect, slope, hori/vert distances to water features, hori distance to roadways, hori distance to fire points), 3 quantitative features on hillshade index at 3 different times of the day (9am, noon, 3pm), 4 wilderness areas, 40 soil types (non-independent), 7 cover types (discrete response)

54 predictors and 1 response

2. Provide up to 5 key insights that you learned from this dataset

Hint: Do not focus on statistical summaries. Consider focusing on groups and clusters and describing them

A lot of the variables were Normally distribution, but many were uniformly distributed as well.

vertical_distance_to_hydrology, horizontal_distance_to_fire_points, slope, horizontal_distance_to_hydrology, hillshade_9am (all from random forest), and wilderness_area_3 (from decision tree) are the most important features of this dataset.

cł	_	enges		enges								-			
		Hint	: If th	here are	mi	ssing d	ata,	how v	voula	you ac	ldres	ss this?			
-		The	re we	ere no r	niss	ing valu	es	or wei	rd va	lues in	the	datase	t.		
				s imbal				1							
				randon			om 1	the lar	ger c	lasses	so t	hey all	have	the	
				mber of											
				isn't no bias tov										the	
			_	with res						y we na	10 0	0 11011111	31120	1110	
dol	lin	g St	rato	VDA											
l. W	/hat		` ′	are you		-									
	a.	Norr	naliz	ation o	fall	feature	s (fi	irst us	ed m	inmax,	then	used (gauss	sian)	
	b.	PCA	ana	lysis fo	r dii	nensior	alit	y redu	ction						
			i. B	efore cl	ass	balanci	ng:								
		i	i. N	_compo	ner	ts = 30	=>	97.71	% va	riability					
		ii	i. N	compo	ner	ıts = 20	=>	91.21	% va	riability	П		П		
		iν		compo											
				compo											
		·		Compe) I ICI	113 – 10		7-7.75	70 v a	liability					
			PC	CA Varia	abili	ity Exp	lain	ed vs.	Nun	nber of	Co	mpone	nts		
		120 —													
	_	100 —													
	% Variability Explained	80 —													
	Expl														
	oillity	60 —													
	ariak	40 —													
	N %	10													
		20 —													
		0 —		10			15			20			3)	
							Nι	ımber of	Comp	onents					
_			T.												
	+	V		fter clas			1								
		vi	i. N	_compo	ner	its = 30	=>	97.29	% va	riability					

	x. N_components = 10 => 70.13% variability
	xi. After switching to gaussian normalization:
	xii. N_components = 30 => 92.60% variability
	xiii. N_components = 20 => 83.95% variability
	xiv. N_components = 15 => 75.73% variability
	xv. N_components = 10 => 62.50% variability
C	c. Lasso for the feature selection, compared to Ridge regression
C	d. SVM due to its strength in previous works, also helps with inference
6	e. Logistic regression due to its inference abilities
f	Decision tree due to binary nature of some datapoints
9	g. Random forests to produce low variance models of decision trees
ŀ	n. DBScan to find outliers
2. Des	cribe (in detail) how each model was developed
Results	
1. Des	cribe your model results
	Hint: It may be helpful to include tables or graphs
	Training DBScan with eps = 0.2 and min_samples = 3
	Epsilon: 0.2, Min samples: 3, Num outliers: 9909, Score: - 0.5594504635496482
	Training DBScan with eps = 0.2 and min_samples = 5
	Epsilon: 0.2, Min samples: 5, Num outliers: 11995, Score: -
	0.6832048304002939
	Training DBScan with eps = 0.2 and min_samples = 10
	Epsilon: 0.2, Min samples: 10, Num outliers: 13223, Score: -
	0.4304529893288533
	Training DBScan with eps = 0.5 and min_samples = 3
	Epsilon: 0.5, Min samples: 3, Num outliers: 1606, Score: -
	0.1326926021099541
	Training DBScan with eps = 0.5 and min_samples = 5
	Epsilon: 0.5, Min samples: 5, Num outliers: 2454, Score: - 0.04738586686913065
	Training DBScan with eps = 0.5 and min_samples = 10
	Epsilon: 0.5, Min samples: 10, Num outliers: 4223, Score: -
	0.03814675306936041
	Training DBScan with eps = 1.0 and min_samples = 3

Engilon: 1.0 Min complex: 2 Num outliers: 110 Seers:
Epsilon: 1.0, Min samples: 3, Num outliers: 110, Score: 0.29439934959530417
Training DBScan with eps = 1.0 and min_samples = 5
Epsilon: 1.0, Min samples: 5, Num outliers: 212, Score: 0.3038236139340124
Training DBScan with eps = 1.0 and min_samples = 10
Epsilon: 1.0, Min samples: 10, Num outliers: 558, Score: 0.2999014259663512
Conclusion: Not a ton of outliers
Used silhouette score as scoring metric (ranges from -1 to +1, where values near 0 indicate overlapping clusters, -1 means wrong cluster assignments, and 1 is perfect separation of clusters)
Train on 0.5% of 581,012 samples (2905 samples)
Linear kernels
One-vs-rest classification scheme
Using 20 PCA components
Uniform scaling
Before class balancing:
SVM (C = 0.1) = 0.6229
[9015 9707 1377 133 478 842 1037]
SVM (C = 0.1) = 0.6399
[8501 9046 1175 133 478 842 928]
SVM (C = 0.5) = 0.6410
[8486 9112 1197 131 478 842 856]
SVM (C = 1.0) = 0.6410
[8470 9126 1192 129 478 842 827]
SVM (C = 2.0) = 0.6100
[8487 9215 1210 128 478 842 820] With dimensionality reduction, still training on 0.5% of data, accuracies
drop by about 4% on all models
After class balancing:
Linear Kernel
Using 0.5% of data for training
SVM (C = 0.1) = 0.1425
SVM (C = 0.1) = 0.4048

0)/	MA (O O S) O 5004
	M (C = 0.5) = 0.5291
SV	M (C = 1.0) = 0.5373
Us	ing 50% of data for training
SV	M (C = 0.1) = 0.5572
SV	M (C = 0.1) = 0.5688
SV	M(C = 0.5) = 0.5759
SV	M (C = 1.0) = 0.5762
Us	ing 70% of data for training
SV	M (C = 0.1) = 0.5517
SV	M (C = 0.1) = 0.5654
SV	M (C = 0.5) = 0.5720
SV	M (C = 1.0) = 0.5725
Us	ing 70% of data for training (ovr instead of ovo classification)
sv	M (C = 0.1) = 0.5623
sv	M (C = 0.1) = 0.5814
sv	M(C = 0.5) = 0.5900
	M (C = 1.0) = 0.5935
DR	F Kernel
	r classification
	M(C = 0.1) = 0.3956
	M(C = 0.1) = 0.5542
	M (C = 0.5) = 0.5679
	M(C = 1.0) = 0.5706
	o classification
	M(C = 0.1) = 0.4082
	M (C = 0.1) = 0.5614
	M (C = 0.5) = 0.5783
SV	M(C = 1.0) = 0.5831
Po	lynomial Kernel (degree = 3)
sv	M (C = 0.1) = 0.1375
	M(C = 0.1) = 0.1375

SVM (C = 0.5) = 0.1375 SVM (C = 1.0) = 0.1375
ovo classification
SVM (C = 0.1) = 0.1392
SVM (C = 0.1) = 0.1392
SVM (C = 0.5) = 0.1392
SVM (C = 1.0) = 0.1392
We will continue with a linear kernel:
ovr classification
Gaussian scaling
SVM (C = 0.1) = 0.5781
SVM (C = 0.1) = 0.5828
SVM (C = 0.5) = 0.5864
SVM (C = 1.0) = 0.5946
Decision tree score (5-fold CV): 65.96%
Random forest score: 69.79%
Logistic regression (L1 regularization): 59.68%
Logistic regression (L2 regularization): 58.71%
Analyzed all coefficients of logistic regression, random forest, and decision tree models.
I found all principal components are pretty useful for the project, none
of them are "more important" or have a higher coefficient than the
other, for the most part.
Random forest importances of features:
[0.08410482 0.07925606 0.05358839 0.0548627 0.04280521 0.03941313 0.04313247 0.04117022 0.04581392 0.03151285
0.02887122 0.02878627 0.06509489 0.03706813 0.047941
0.051307 0.05468086 0.0890564 0.04454073 0.03699371]
Then switched to using all 53 features:
Decision tree score (5-fold CV): 76.91%
Random forest score: 79.58%
Logistic regression (L1 regularization): 64.06%

Logistic regression (L2 regularization): 63.82%
Decision tree importances of features:
[0.04607704 0.02957654 0.07665138 0.0476782 0.13072399
0.07199059 0.04267652 0.03540508 0.12260777 0.00424185
0.00069534 0.0104947 0.11041007 0.00128324 0.01508742 0.02114243 0.0187542 0.0013094 0.00327764 0. 0. 0.
0.0246174 0.00536415 0.0069637 0.00353211 0.000482 0.
0.00170454 0.00937221 0.00326218 0.00016469 0.00081057
0.00015855 0.004709 0.00579501 0.00268675 0. 0.00183433
0.00053593 0.00035953 0.00682012 0.01335041 0.00258122 0.00427237 0.00265049 0.00050071 0.00832232 0. 0.0014669
0.03549884 0.03572728 0.02637332]
Random forest importances of features:
[5.95545201e-02 5.14750378e-02 8.42776220e-02 6.27941605e-02
1.30460529e-01 6.03394109e-02 5.40961502e-02 5.93826923e-02
9.99611566e-02 2.71591485e-02 5.40864429e-03 2.33267559e-02
4.83928874e-02 2.21526632e-03 1.15220754e-02 2.55244186e-02
1.53659934e-02 9.57661120e-04 4.30932538e-03 3.50305755e-07
3.53643144e-05 8.66064435e-05 2.57969312e-02 5.57970369e-03
5.71382869e-03 8.03090532e-03 7.74375189e-04 9.24805073e-06
1.19101615e-03 6.37213977e-03 1.22254076e-03 7.35430238e-04
1.82115337e-03 3.90860739e-04 8.20948104e-03 7.10097252e-03
2.92214549e-03 1.27142598e-05 1.09652844e-03 1.89528940e-04
1.31690298e-04 8.03623413e-03 1.04023751e-02 3.76175746e-03
5.00791446e-03 5.50516634e-03 3.17568812e-04 3.34171388e-03
1.27052418e-04 9.20002609e-04 2.35699435e-02 2.26149645e-02
1.24483354e-02]
2. (OPTIONAL) If more than 1 model was developed, please explain which
model should be chosen and why.
a. Random forests due to low variance, high accuracy, and possibility of inference.
3. If more time were provided, what other strategies would you pursue? Why?
 a. Honestly, I would try Neural Networks and Decision Trees. This problem is very clearly strongly supervised, which would make it perfect
for a NN. I also would've done more hyperparameter tuning on the
random forests.

<u>Supplemental</u>
['elevation', 'aspect', 'slope', 'horizontal_distance_to_hydrology',
'vertical_distance_to_hydrology', 'hillshade_9am', 'hillshade_noon',
'hillshade_3pm', 'horizontal_distance_to_fire_points',
'wilderness_area_0', 'wilderness_area_1', 'wilderness_area_2',
'wilderness_area_3', 'soil_type_0', 'soil_type_1', 'soil_type_2',
'soil_type_3', 'soil_type_4', 'soil_type_5', 'soil_type_6',
'soil_type_7', 'soil_type_8', 'soil_type_9', 'soil_type_10',
'soil_type_11', 'soil_type_12', 'soil_type_13', 'soil_type_14',
'soil_type_15', 'soil_type_16', 'soil_type_17', 'soil_type_18',
'soil_type_19', 'soil_type_20', 'soil_type_21', 'soil_type_22',
'soil_type_23', 'soil_type_24', 'soil_type_25', 'soil_type_26',
'soil_type_27', 'soil_type_28', 'soil_type_29', 'soil_type_30',
'soil_type_31', 'soil_type_32', 'soil_type_33', 'soil_type_34',
'soil_type_35', 'soil_type_36', 'soil_type_37', 'soil_type_38',
'soil_type_39', 'cover_type']
<u>Notes</u>
Used 70/30 train/test split because some variables don't have a ton of positive samples
Would've used 60/40 split otherwise due to low dimensionality with high number of samples
Shuffled data before train/test split
No validation set was used
"Comparative Accuracies of Artificial Neural Networks and Discriminant Analysis in Predicting Forest Cover Types from Cartographic Variables" (Denis Joseph Dean) was the paper from 2000
Achieved 70.52% accuracy with ANN
Achieved 58.38% accuracy with LDA Mean classification accuracy was the evaluation metric
Normally distributed
Aspect
Cover_type
Hillshade_3pm
Hillshade_9am
Hillshade_noon

Horizontal_distance_to_fire_points		
Horizontal_distance_to_hydrology		
Tienzenai_dictance_to_nyarciogy		
Uniformly distributed		
Elevation		
Vertical_distance_to_hydrology		
Wilderness_area_0		
Wilderness_area_2		
winderness_area_2		
Other distribution		
Slope		
Soil_type_28		
Nothing special		
Soil_type_X for all X from 0 to 39, except for	28	
Wilderness_area_1		
Wilderness_area_3		
Technologies used		
Python3		
Numpy		
Pandas		
Sklearn		
Matplotlib		
Seaborn		
Coapon		

								-

								-