Real Analysis Homework 17

Ben Kallus, Noah Barton

Due Thursday, October 29

Acknowledgements: None.
5.
a. Claim: \mathbb{Q} is not open and not closed.
<i>Proof.</i> \mathbb{Q} is not closed, since $\sqrt{2}$ is a limit point of \mathbb{Q} , and $\sqrt{2} \notin \mathbb{Q}$. \mathbb{Q} is not open since the irrationals are dense in \mathbb{R} , so any ϵ -neighborhood of a rational number must contain an irrational number.
b. Claim: N is not open and closed.
<i>Proof.</i> $\mathbb N$ is closed, since it has no limit points. Let $\epsilon > 0$ be given. Then, the ϵ -neighborhood of 1 contains a number less than 1, which must not be a natural number. Thus, $\mathbb N$ is not open.
c. Claim: $S = \{x \in \mathbb{R} \mid x \neq 0\}$ is open and not closed.
<i>Proof.</i> S is not closed, since 0 is a limit point of S. S is open, since for all $x \in S$ $(x - \left \frac{x}{2}\right , x + \left \frac{x}{2}\right) \subseteq S$.
d. Claim: $S = \{1 + \frac{1}{4} + \frac{1}{9} + \ldots + \frac{1}{n^2} \mid n \in \mathbb{N}\}$ is not open and not closed.
<i>Proof.</i> S is not closed, since $\frac{\pi}{2}$ is a limit point of S. S is not open, since S is increasing, S's minimum is 1, and any ϵ -neighborhood of 1 must contain a number less than 1.
e. Claim: $S = \{1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} \mid n \in \mathbb{N}\}$ is
<i>Proof.</i> S is closed, since it has no limit points. S is not open, since S is increasing. S's minimum is 1, and any ϵ -neighborhood of 1 must contain a number less than

6.

a. Example: $A = \mathbb{N}$

b. Example: $A = \mathbb{Q}$

c. Example: $A = \{1\}$

d. Example:

e. Impossible.