备考

1 原理题

- 1.1 无线电通信机原理
 - 1.1.1 考核要点
 - 1.1.2 题目分析
- 1.2 线性调制原理
 - 1.2.1 考核要点
 - 1.2.2 题目分析
- 1.3 非线性调制原理
 - 1.3.1 考核要点
 - 1.3.2 题目分析

2 分析题

- 2.1 噪声与非线性分析
 - 2.1.1 考核要点
 - 2.1.2 题目分析
- 2.2 线性频谱搬移电路分析
 - 2.2.1 考核要点
 - 2.2.2 题目分析
- 2.3 振荡器电路分析
 - 2.3.1 考核要点
 - 2.3.2 题目分析

1 原理题

1.1 无线电通信机原理

1.1.1 考核要点

- 1. 能够画出超外差式收发机原理框图;
- 2. 能够从时域和频域两个角度,用数学、文字、示意图等方法阐述整机及功能单元的工作原理;
- 3. 能够阐述超外差式收发机的一般设计原则,包括:增益分配原则、如何保证选择性、中频频点设计原则,信道选择原理、如何处理中频干扰和镜像干扰、如何选择功率放大方案。

1.1.2 题目分析

涉及内容: 4.2.1、4.4

- 原理框图
 - 。 超外差式发射机

。 超外差式接收机

• 工作原理

- 。 超外差式发射机
 - 基带信号:即低频的调制信号 (音频信号) $v_{\Omega}(t) = v_{\Omega m} \cos(\Omega t)$.
 - 振荡器: 产生载波信号 $v_{\rm c}(t) = V_{\rm cm} \cos(\omega_{\rm c} t)$.
 - 调制器:通过载波信号与调制信号产生调幅波 (AM、DSB、SSB; PM、FM)
 - 上变频:通过本振信号 $v_L(t)$ 与调幅波相乘,增大频率.
 - 高频功率放大器:将信号放大功率后送上天线.
- 。 超外差式接收机
 - BPF1:选择频带,消除镜像干扰.
 - 小信号放大器: 低噪声放大器, 放大射频小信号.
 - 下变频:通过本振信号 $v_{LO}(t)$ 将射频信号 $v_{RF}(t)$ 降为频率固定的中频信号 $v_{IF}(t)$.
 - BPF2: 中频滤波,选择信道.
 - 中频放大器: 使镜像频率远离有用信号.

• 设计原则

- 。 增益分配原则
 - 发射机
 - 振荡器、调制器、混频器,均用于产生调幅或调频信号.
 - 高频功率放大器提供主要增益,可达几十 dB,并且可以使用多级放大电路.
 - 接收机
 - 小信号放大器增益不宜过大,以免经变频器后失真,一般不超过 15 dB.
 - 下混频器的增益也不大:无源的小于一倍,有源的可能有 10 dB 左右.
 - 增益主要来自中频放大器,一般有几十倍的增益.
- 。 如何保证选择性
 - 通过上述接收机框图中的 BPF1 选择频带.
 - 通过 BPF2 进一步选择信道.
- 。 中频频点设计原则
 - 中频的性能
 - 高中频:镜像频率远离有用信号,有利于抑制镜像频率干扰,提高灵敏度.(干扰 性)
 - 低中频:有利于抑制相邻信道的干扰信号,选择信道,提供稳定的高增益.(选择性)
 - 中频的选择
 - 根据对抑制镜像通道的要求.
 - 根据对中频干扰的抑制要求.

- 根据中频滤波器的可实现性.
- 根据抑制寄生通道干扰要求.
- 。 信道选择原理
 - 发射机:通过上变频器选择要发送的信道.
 - 接收机:通过中频滤波器选择接受的信道.
- 如何处理中频干扰和镜像干扰
 - 选择合适的中频,提高中频抗拒比.
 - 二次变频方案
 - 1中频选择高中频值,抑制镜像频率干扰.
 - || 中频选择地中品质,抑制邻道干扰.
 - 直接下变频方案:不存在镜像频率干扰.
 - 镜频抑制接受方案: 改变电路结构以抑制镜频干扰.
- 。 如何选择功率放大方案
 - A、B、AB 类放大器属于线性放大器,一般情况下都可以使用,不过效率不够高.
 - C、D、E 类放大器属于非线性放大器,一般只有包络恒定时才可以使用. (调幅波不可以, 调频波与调相波可以)

1.2 线性调制原理

1.2.1 考核要点

- 1. 能够从时域和频域两个角度,用数学、文字、方框图等方法阐述 AM、 DSB 和 SSB 调制解调方案的工作原理;
- 2. 能够计算信号带宽和信号功率。

1.2.2 题目分析

涉及内容: 3.2.1

文字与框图略.

- 调制
 - o AM
 - 时域: $v(t) = V_{\rm cm}(1 + m_{\rm a}\cos\Omega t)\cos\omega_{\rm c}t$.
 - 频域: ω_c, ω_c ± Ω.
 - 实现:乘法器、加法器.
 - o DSB
 - 时域: $v(t) = AV_{\Omega m}V_{cm}\cos\Omega t\cos\omega_c t$.
 - 频域: ω_c ± Ω.
 - 实现: 乘法器.
 - o SSB

- 时域: $v(t)=rac{1}{2}AV_{\Omega\mathrm{m}}V_{\mathrm{cm}}\cos(\omega_{\mathrm{c}}+\Omega t).$
- 频域: ω_c + Ω.
- 实现:滤波法;移相法.
- 解调
 - 相干解调 (同步检波): 适用于 AM、DSB、SSB.
 - 步骤
 - 步骤一: 载波提取.
 - 步骤二: 频谱搬移.
 - 乘积型同步检波
 - 方案一: 二极管双平衡混频器+低通滤波器.
 - 方案二: 吉尔伯特模拟乘法器 + 低通滤波器.
 - 叠加型同步检波: 双边检波、单边检波.
 - 。 包络检波 (非相干解调): 适用于 AM.
 - 小信号: 二极管平方律检波
 - 大信号
 - 串联型峰值包络检波
 - 并联型峰值包络检波
 - 晶体管平均包络检波
- 带宽与功率
 - 。 带宽
 - \blacksquare AM, DSB: 2F.
 - \blacksquare SSB: F.
 - 。 功率: 以 AM 为例
 - 调幅功率: $P = rac{V_{
 m cm}^2(t)}{2} = rac{V_{
 m cm}^2}{2} (1 + m_{
 m a} \cos \Omega t)^2.$
 - 功率最值: $P_{\mathrm{max}}, P_{\mathrm{min}} = \frac{V_{\mathrm{cm}}^2}{2} (1 \pm m_{\mathrm{a}})^2.$
 - $lacksymbol{\blacksquare}$ 调制信号的平均功率: $P_{
 m avg}=rac{V_{
 m cm}^2}{2}igg(1+rac{1}{2}m_{
 m a}^2igg).$
 - $lacksymbol{\bullet}$ 载频功率: $P_{
 m c}=rac{V_{
 m cm}^2}{2}.$
 - 总旁频功率: $2P_{\omega\pm\Omega}=rac{m_{
 m a}^2P_{
 m c}}{2}$. (很小,如 4.5%)

1.3 非线性调制原理

1.3.1 考核要点

- 1. 能够从时域和频域两个角度,用数学、文字、方框图等方法阐述 FM、 PM 调制解调方案的工作原理;
- 2. 能够计算信号带宽和信号功率。

1.3.2 题目分析

涉及内容: 3.2.2

- 调制
 - o FM
 - 时域: $v(t) = V_{\rm cm} \cos(\omega_{\rm c} t + m_{\rm f} \sin \Omega t)$.
 - 频域: $\Delta f_{\mathrm{m}} = m_{\mathrm{f}} F$. (实际有无数对边频分量)
 - o PM
 - 时域: $v(t) = V_{\rm cm} \cos(\omega_{\rm c} t + m_{\rm p} \cos \Omega t)$.
 - 频域: $\Delta f_{\rm m} = m_{\rm r} p F$. (实际有无数对边频分量)
- 解调
 - 。 解调思路
 - 法一: 直接调频法
 - 用调制信号直接控制振荡器的频率.
 - 频偏较大,但是频率稳定度不高.
 - 法二:间接调频法
 - 用调制信号的积分值控制调相电路.
 - 频率稳定度高,但是频偏较小.
 - 。 鉴相方法
 - 模拟鉴相器:适用于锁相合成,灵敏度低,线性较好,锁定时相移 90°.
 - 数字鉴相器:适用于频率合成.
 - 门鉴相器:输入对称方波,锁定时相移90°
 - R-S 触发器鉴相器:输入脉冲或方波,锁定时相移 90°.
 - 边沿触发鉴频鉴相器:输入脉冲或方波,锁定时相移 0°或 180°.
 - 鉴频方法 (先限幅,后鉴频)
 - 斜率鉴频
 - 单失谐回路斜率鉴频器
 - 双失谐回路斜率鉴频器
 - 正交鉴频: 频相转换网络 + 鉴相器 (模拟乘法器 + 低通滤波器)
 - 锁相鉴频
- 带宽与功率
 - 。 卡尔逊带宽
 - FM: BW_{CR} = $2(m_{\rm f}+1)F = 2(\Delta f_{\rm m}+F)$.
 - $lacksquare PM: \ \mathrm{BW}_{\mathrm{CR}} = 2(m_{\mathrm{p}} + 1)F = 2(\Delta f_{\mathrm{m}} + F).$
 - 。 功率: 均为 $\frac{V_{\rm cm}^2}{2}$.

2 分析题

2.1 噪声与非线性分析

2.1.1 考核要点

- 1. 能够阐述和计算系统多级级联系统的噪声系数和噪声温度;
- 2. 能够用文字、数学方法解释、分析电子系统典型非线性失真现象的产生机理,包括:谐波、堵塞、 互调;
- 3. 能够计算多级级联系统的灵敏度、动态范围。

2.1.2 题目分析

涉及内容: 第二章

- 分贝单位
 - 。 无量纲单位
 - 电压增益: $A_{\rm V} = 20 \lg A_{\rm V} \, ({\rm dB})$.
 - 助率増益: G_P = 10 lg G_P (dB).
 - ullet 当输入输出阻抗相同时, $G_{
 m P}=rac{V_{
 m o}^2/R_{
 m o}}{V_{
 m i}^2/R_{
 m i}}=A_{
 m V}^2.$
 - 。 有量纲单位

■ 电压:
$$U = 20 \lg \frac{U}{1 \text{ V}} \text{ (dBV)} = 20 \lg \frac{U}{1 \text{ mV}} \text{ (dBmV)}.$$

■ 功率:
$$P = 10 \lg \frac{P}{1 \text{ W}} \text{ (dBW)} = 10 \lg \frac{P}{1 \text{ mW}} \text{ (dBm)}.$$

- 。 运算说明
 - dB 可加减(结果为 dB),不可乘除.
 - dBm与dBm可相减(结果为dB),不可相加
 - dB与dBm可加减,结果为dBm或dBm⁻¹.
- 噪声系数和噪声温度
 - 。 单个系统

■ 噪声系数:
$$F := \frac{(\mathrm{SNR})_{\mathrm{i}}}{(\mathrm{SNR})_{\mathrm{o}}} = \frac{P_{\mathrm{i}}/N_{\mathrm{i}}}{P_{\mathrm{o}}/N_{\mathrm{o}}}.$$

- 等效噪声温度: $T_{
 m e} := rac{N_{
 m h}}{kBG_{
 m p}}$
- 。 多级级联

■ 噪声系数:
$$F = F_1 + \frac{F_2 - 1}{G_{\text{PA1}}} + \frac{F_3 - 1}{G_{\text{PA1}}G_{\text{PA2}}} + \cdots$$

- 等效噪声温度: $T_{\rm e} = T_{\rm e_1} + \frac{T_{\rm e_2}}{G_{\rm PA1}} + \frac{T_{\rm e_3}}{G_{\rm PA1}G_{\rm PA2}} + \cdots$.
- 非线性失真
 - 。 输入端只有一个有用信号
 - 将非线性函数幂级数展开,代入信号(三角函数)后利用倍角公式,从而转化为各次谐波的一次项. 因此单个正弦信号经过非线性系统,也会产生谐波分量.

- 1 dB 增益压缩点: $V_{\mathrm{im-1dB}} = \sqrt{0.145 \left| \frac{a_1}{a_3} \right|}$.
- 。 输入端有两个及以上信号

■ 谐波: 同单个信号的情况,产生各次谐波分量.

■ 堵塞:强干扰信号引起弱有用信号的输出电流变小,以至为零.

交叉调制:若干扰信号为振幅调制信号,则由经过系统后的展开式,会发生交叉调制失真.

■ 互相调制:两个频率相近的信号产生各次组合频率分量.

- 。 互调失真比
 - 电压比: $\mathrm{IMR} = \frac{3a_3V_\mathrm{m}^2}{4a_1}$.
 - 功率比: $P_{\text{IMR}} = (\text{IMR})^2$
- 。 三阶互调截点
 - 基波功率 P_{o1} 等于三阶互调功率 P_{o3} 时的输入功率记为 IIP_3 ,输出功率为 OIP_3 .
 - 三阶截点输入信号幅度: $V_{ ext{mIP}_3} pprox \sqrt{rac{4}{3} \left| rac{a_1}{a_3}
 ight|}.$
- 灵敏度和动态范围
 - 。 灵敏度
 - 灵敏度(最低输入信号电平): $P_{\text{in, min}} = k [T_a + (F-1)T_0]B \cdot (SNR)_{o, \text{min}}$.
 - 基底噪声 (系统总合成噪声) : $F_{\rm t} = k [T_{\rm a} + (F-1)T_0]B$.
 - 。 动态范围
 - $lacksymbol{\bullet}$ 线性动态范围: $\mathrm{DR_l} = rac{P_{\mathrm{i,\,1dB}}}{P_{\mathrm{in,min}}}.$
 - 无杂散动态范围: $DR_f(dB) = \frac{2}{3}[IIP_3(dBm) F_t(dBm)].$
 - 级联系统的动态范围:求出噪声系数或等效噪声温度后,使用上述公式。

2.2 线性频谱搬移电路分析

2.2.1 考核要点

- 1. 能够用文字、数学方法解释、分析二极管平衡电路、三极管平衡电路的输出信号频谱构成;
- 2. 能够计算完成调制、解调、混频、鉴相功能所需要的电路参数。

2.2.2 题目分析

涉及内容

• 平衡电路 (用于调制、混频): 6.2、6.3、9.1

• 调制解调: 9.1、9.4

• 鉴相电路: 8.6.1

• 调频电路 (角度调制): 9.5

• 鉴频电路 (角度解调): 9.6

- 频谱搬移(混频器、幅度调制、相干解调)
 - 有源混频器电路 (三极管平衡电路)
 - 单平衡混频器
 - 吉尔伯特双平衡混频器
 - 。 无源混频器电路 (二极管平衡电路)
 - 线性时变状态二极管
 - 二极管双平衡混频器
- 检波
 - 相干解调 (同步检波): 适用于 AM、DSB、SSB.
 - 歩骤
 - 步骤一: 载波提取.
 - 步骤二: 频谱搬移.
 - 乘积型同步检波
 - 方案一: 二极管双平衡混频器 + 低通滤波器
 - 方案二: 吉尔伯特模拟乘法器 + 低通滤波器.
 - 叠加型同步检波: 双边检波、单边检波.
 - 包络检波 (非相干解调): 适用于 AM.
 - 小信号: 二极管平方律检波
 - 大信号
 - 串联型峰值包络检波 (输入阻抗: $\frac{R}{2}$)
 - 并联型峰值包络检波 (輸入阻抗: $\frac{R}{3}$)
 - 晶体管平均包络检波 (输入阻抗: $\frac{R}{2}$)
 - 参数要求

■ 避免惰性失真:
$$au = RC \leq rac{\sqrt{1-m_{
m a}^2}}{\Omega m_{
m a}}.$$

■ 避免负峰切割失真:
$$m_{
m a} rac{R_-}{R_\sim} = m_{
m a} rac{R}{R \; / \! / \; R_{
m L}} < 1.$$

- 调频
 - 直接调频:控制频率
 - LC 正弦振荡器直接调频
 - 晶体直接调频振荡电路
 - 张弛振荡器的直接调频
 - 间接调频:控制相位
 - 可变移相法调相电路
 - 可变时延法调相电路
 - 矢量合成法调相电路

- 间接调频的频偏扩展
- 鉴相
 - 。 模拟鉴相: 吉尔伯特乘法单元
 - 门鉴相器: 异或门鉴相器
- 鉴频 (先限幅,后鉴频)
 - o 斜率鉴频
 - 单失谐回路斜率鉴频器
 - 双失谐回路斜率鉴频器
 - o 正交鉴频
 - 频相转换网络
 - 鉴相器 (模拟乘法器+低通滤波器)

2.3 振荡器电路分析

2.3.1 考核要点

能够用文字、数学方法解释、分析三点式振荡器电路和晶体振荡电路的工作原理,包括:

- 1. 能够判断相位平衡条件,
- 2. 分析起振条件并计算电路参数,
- 3. 分析振荡电路的稳定条件,
- 4. 估算振荡频率。

2.3.2 题目分析

- 涉及内容: 第七章
- 振荡的条件
 - 。 平衡条件: $\dot{T}(\mathrm{j}\omega_{\mathrm{osc}})=1$.
 - 振幅平衡条件: $\left|\dot{T}(\mathrm{j}\omega)\right| = \left|\dot{A}(\mathrm{j}\omega)\dot{F}(\mathrm{j}\omega)\right| = 1.$
 - 相位平衡条件: $arphi_{\dot{T}(\mathrm{j}\omega_{\mathrm{osc}})}=arphi_{\dot{A}}+arphi_{\dot{F}}=2n\pi, n\in\mathbb{N}.$
 - 。 起振条件
 - 振幅条件: $\left|\dot{T}(\mathrm{j}\omega)\right| > 1$.
 - 相位条件: $\varphi_{\dot{T}(\mathrm{j}\omega)}=0.$
 - 。 稳定条件
 - 振幅稳定条件: $\left. \frac{\partial T}{\partial V_i} \right|_{_{\Psi_{mb}}} < 0.$
 - 相位稳定条件: $\left. \frac{\partial \varphi_{\mathrm{T}}}{\partial \omega} \right|_{\mathrm{平衡点}} < 0.$
- 三点式振荡器

- 平衡条件 (一般原则)
 - 与发射极相连的两个电抗元件必须同性质.
 - 另一个电抗元件必须异性质.
- 。 稳定条件: LC 谐振回路确保了相位稳定.
- 。 分类
 - 电容三点式振荡器: 考毕兹振荡器.
 - 电感三点式振荡器:哈脱莱振荡器.
 - 改进型电容三点式振荡器
 - 克拉泼振荡器:增加串联小电容.
 - 西勒振荡器:增加并联可变电容.
- ο 振荡频率

• 近似值:
$$\omega_{\rm osc} \approx \omega_0 = \frac{1}{\sqrt{LC}}$$
.

■ 准确值

$$lacksquare g_{
m m} := rac{\dot{I}_{
m c}}{\dot{U}_{
m b'e}} = rac{eta \dot{I}_{
m b}}{\dot{I}_{
m b} r_{
m b'e}} = rac{eta}{r_{
m b'e}}.$$

$$lacksquare r_{
m e} = rac{1}{g_{
m m}}, \; g_{
m i} pprox g_{
m m}.$$

$$lacksquare \omega_{
m osc} = \omega_0 \sqrt{1 + rac{g_{
m i} g_{
m L}'}{\omega_0^2 C_1 C_2'}}.$$

• 晶体振荡电路

。 串联型晶振电路:
$$f_{
m q}=rac{1}{2\pi\sqrt{L_{
m q}C_{
m q}}}.$$

。 并联型晶振电路:
$$f_{
m p}=rac{1}{2\pi\sqrt{L_qC_{\sum}}}pprox f_{
m q}\left(1+rac{C_{
m q}}{2C_0}
ight)$$
.