

Matemática

Aula II: Números, Conjuntos e Funções

Data: 19/04/2024

Introdução – Conjuntos Numéricos

Representação geométrica dos Números Racionais

Na reta abaixo, $\frac{1}{2}$ é a abscissa de A.

Todo número racional r é abscissa de um ponto da reta; entretanto, nem todo ponto da reta tem abscissa racional.

Todo número racional r é abscissa de um ponto da reta; entretanto, nem todo ponto da reta tem abscissa racional.

Exemplo1. Seja a um número inteiro. Prove:

- i) Se a for impar, então a^2 também será impar;
- ii) Se a^2 for par, então a também será par.

Todo número racional r é abscissa de um ponto da reta; entretanto, nem todo ponto da reta tem abscissa racional.

Do Exemplo 1: "a" í $mpar \rightarrow "a^2$ " í $mpar ; "a^2$ " $par \rightarrow "a$ "par

Exemplo 2. A equação $x^2=2$ não admite solução em $\mathbb Q$.

Onde P é a interesecção do eixo x com a circunferência de centro 0 e raio d

Do Teorema de Pitágoras, $d^2 = 1^2 + 1^2 = 2$.

Logo a abscissa de P deveria ser d que não é um número racional

Introdução – Números Reais

Admitiremos que todo ponto da reta tem uma abscissa x. Se x não for racional, então diremos que x é irracional.

O conjunto formado por todos os números racionais e irracionais é o conjunto dos números reais (\mathbb{R})

Definição: Um conjunto é uma coleção de objetos distintos

Representação por enumeração:

$$S = \{1,2,3\}$$

Representação por descrição:

$$S = \{x \in \mathbb{Z} | 1 \le x \le 3\}$$

Definição: Um conjunto é uma coleção de objetos distintos

Pertencimento (relacionado a objetos – números)

 $2 \in S$ (lê-se "2 é um elemento do conjunto S")

 $2 \notin S$ (lê-se "2 não é um elemento do conjunto S")

Inclusão (relacionado a conjuntos)

 $T \subset S$ (lê-se "T é um subconjunto do conjunto S")

• $T \subset S$, se $x \in T$ então $x \in S$

 $T \supset S$ (lê-se "T inclui o conjunto S")

• $T \supset S$, se $x \in S$ então $x \in T$

Em geral, se um conjunto tiver n elementos, é possível formar 2^n subconjuntos com esses elementos.

Existem dois subconjuntos limites \emptyset e Ω .

Operações com Conjuntos

Intereseção:
$$A \cap B = \{x | x \in A \ e \ x \in B \}$$

$$A = \{1,2,5\} \ e \ B = \{3,4,5\} \rightarrow A \cap B = \{5\}$$

União:
$$A \cup B = \{x | x \in A \text{ ou } x \in B \}$$

$$A = \{1,2,5\} \ e \ B = \{3,4,5\} \rightarrow A \cup B = \{1,2,3,4,5\}$$

Complemento:
$$\tilde{A} = \{x | x \in \mathbb{Z} \ e \ x \notin A \}$$

$$A = \{1,2,5\} \ ent \ \tilde{a}o \ \tilde{A} = \{...-3,-2,-1,0,3,4,6,...\}$$

Lei das operações com conjuntos

Lei Comutativa: $A \cap B = B \cap A$

Lei Associativa: $A \cup (B \cup C) = (A \cup B) \cup C$

Lei Distributiva:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Análogo a lei algébrica a(b+c)=ab+ac

Lei Comutativa: $A \cap B = B \cap A$

Lei Associativa: $A \cup (B \cup C) = (A \cup B) \cup C$

Lei Distributiva:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Exemplo 3. Dado os conjuntos $A = \{4, 5\}, B = \{3, 6, 7\}$ e $C = \{2, 3\}$. Verifique a lei distributiva.

Pares Ordenados: Dado um conjunto $\{a,b\}$, quando a ordenação de a e b tem um significado, diz-se que os elementos formam um par ordenado.

Exemplo 4. Para mostrar a idade e o peso de cada aluno em uma sala de aula, podemos formar pares ordenados (a, w), nos quais o primeiro elemento indica a idade (em anos) e o segundo elemento indica o peso (em quilogramas).

Dado dois conjuntos ordenados (65, 90) e (90,65), interprete essas informações.

Relações (Inequações): Uma vez que cada par ordenado associa um valor y com um valor x, qualquer coleção de pares ordenados constituirá uma relação entre y e x.

• Dado um valor x, um ou mais valores y serão especificados por aquela relação.

Exemplo 5. Seja
$$y = \frac{x+3}{x-2}$$
, defina quando $y > 0$ e $y < 0$.

Módulo de um Número Real: Seja x um número real; definimos o módulo de x por:

$$|x| = \begin{cases} x \text{ se } x \ge 0\\ -x \text{ se } x < 0 \end{cases}$$

Exemplo 6. Resolva a equação |2x + 1| = 3

Módulo de um Número Real: Seja x um número real; definimos o módulo de x por:

$$|x| = \begin{cases} x \text{ se } x \ge 0\\ -x \text{ se } x < 0 \end{cases}$$

Exemplo 6. Resolva a equação |2x + 1| = 3

• Solução: x = 1 ou x = -2.

Módulo de um Número Real: Seja x um número real; definimos o módulo de x por:

$$|x| = \begin{cases} x \text{ se } x \ge 0\\ -x \text{ se } x < 0 \end{cases}$$

Exemplo 7. Resolva a equação |2x + 1| = 3

• Solução: x = 1 ou x = -2.

Módulo de um Número Real: Seja x um número real; definimos o módulo de x por:

$$|x| = \begin{cases} x \text{ se } x \ge 0\\ -x \text{ se } x < 0 \end{cases}$$

Exemplo 8. Mostre que: $|x|^2 = x^2 e para r > 0$,

- $|x|^2 = x^2$
- $|x| < r \rightarrow -r < x < r$