6.006	Lecture 6	Sept. 27, 2011
TODAY: Balan	iced BSTs	
- The imp	portance of be	eing balanced
- AVL tr	finition & balan	ce
- ro	tations	
- in:	seri palanced trees	
— Data st	tructures in go	eneval
Recall: Binar	y Search Tree	s (BSTs)
- rooted k	y Search Tree sinary tree ode has	3(41)
-key		2 20 651
- left - right	pointer ø 11 pointer	
- parei	nt pointer	Ø (26)
- BST pr	operty: (x)	CLRS B.5
	<u> </u>	≥X\
- height a	st node = leng	gth (# edges) vard path to a leaf
	2019esi WUWNU	outh pain 10 a leal

AVL trees: [Adel'son-Vel'skir & Landis 1962] for every node, require heights of left & right children 11 to differ by at most ±1 - treat nil tree as height -1 each node stores its height (DATA STRUCTURE AUGMENTATION) (like subtree 517e) (alternatively, can just store difference in heights) Balance: worst when every node differs by 1 — let $N_h = (min.) \# nodes in height-h AVL tree$ $\Rightarrow N_h = N_{h-1} + N_{h-2} + 1$ $\Rightarrow N_h > 2N_{h-2}$ $\Rightarrow N_h > 2N_a$ $\Rightarrow h < 2lg N_h$ Alternatively: Nn > Fn (nth Fibonacci number) - in fact Nh = Fn+2-1 (simple induction) - $F_h = \frac{\varphi^h}{\sqrt{5'}}$ rounded to nearest integer where $\varphi = \frac{1+\sqrt{5'}}{a} \approx 1.618$ (golden vatio) \Rightarrow max. $h \approx \log \varphi \ n \approx 1.440 \lg n$

A	VL	50	svī		1	1			1		1 (4	,				\ /	^	
	-	ins	ert	_ e	ach tri	it	em) ()	nto	<i>F</i>	tVL	. †	ree		(-)(n	lg v	~)
	_	în-	ord	lev	TV	2/16	15	al							<u> </u>	1/w))	
)(n!	y v	\ <u>)</u> _
Bo	ila	vce	d	scav	ch	tr	ee 5	5;	H	16he	2 (ne	V	nar	vy.			
	<u> </u>	A۷	IL	tre	es				LA	idel	50	~-V	elsi	ĭ&	Lan	dis	190	32]
		B-	-tn	ees	/a rees	-3-	4	tre	es	(E	aye	rb	« M	cGre	ight	19	72][CLRS 18
	_	BB	slx J	t	rees	1					Viev	evg	elt	&R	eing	rold	19	1 3]
					ck		es			L	CU CO.	て く ろ	ch 0	. 13]	1	000	-7
(R)	_	Sp.	xay	lis	rees to						Due	201 1	r	Ta	rja	N T	100	IJ
(A)					t t	mes	<				_			JRiv	lest	19	937	
(R)		J.		Joan						7		1 1	0 1		1001	40		
		TY	2aps	5							disc	lex	Χr	trag	M	199	16	
			eap:													199		
			•		and	om	ηι	unl	2613 2013									
			•		and with	om	nı	umb	oers									
			•		and with zed	om h	ni igh ad	unl	oers									
			•		and with zed	om ": per	nigh ad	unl din	oers									
	R		Usa Fas am Sev	e r orti eral						s ab up	to ilit co fast	m sts	aka fa	e d	eci	siol	NS	
	R		Usa Fas am Sev	e r orti eral						s ab up	to ilit co fast	m sts	aka fa	e d	eci	siol	NS	
	R		Usa Fas am Sev	e r orti eral	and with zed of the 6.8					s ab up	to ilit co fast	m sts	aka fa	e d	eci	siol	NS	
	R		Usa Fas am Sev	e r orti eral						s ab up	to ilit co fast	m sts	aka fa	e d	eci	siol	NS	

Big picture:		
Abstract Data Type (ADT): vs. Data Structure (DS): algo	interfac	e spec.
vs. Data Structure (DS): algo	rithm for	-each op.
- many possible DSs for one e.g. much later, "heap"	AUI	
e.g. much later, heap	priority	g queue
Priority Queue ADT:	heap	AVL tree
- Q = new-empty-queue()	O(1)	<u>O(1)</u>
- Q = new-empty-queue() - Q insert(x)	O(lgn)	4 7.
-x = Q. deletemin()	O(19 m)	O(lgn)
-x=Q.findmin()	0(1)	9(6 n)
		40(1)
Predecessor/Successor ADT: -5 = new-empty() -5. insert(x) -5. delete(x)	heap	AVL tree
-5 = new-empty()	O(1) O(lg n)	9(1)
-S.insert(x)	Oly (1)	9(lg v)
-S. delete (x)	(1/2 m)	9(15 n)
- y = 3. predecessor(x)	O(n)	O(lg h)
snext-smaller	^ />	7 (0
- y = S. successor (x) next-larger	(n)	Olly n
9 next-larger		