Chrysler CCD/SCI Scanner UART protocol

Last update: 2020.02.27

1. Frame format

Start of frame	Data length		Data des	cription	Data	End of frame
SYNC	LENGTH HB	LENGTH LB	DATA CODE	SUB-DATA CODE	PAYLOAD	CHECKSUM
\$3D	\$00	\$06	\$05	\$01	\$00 \$3D \$14 \$B0	\$0D

Table 1. Frame format.

- 1.1 SYNC byte: fixed value at the beginning of every message (\$3D).
- 1.2 **LENGTH** bytes: number of bytes following (not including these two) until CHECKSUM byte is reached. Maximum frame length is limited to 1024 bytes. Size: 2 bytes.
- 1.3 DATA CODE byte: describes the source, target and command. Size: 1 byte.
- 1.4 **SUB-DATA CODE** byte: command extension if the command alone is not enough to describe the purpose of the message. Size: 1 byte
- 1.5 **PAYLOAD** byte(s): optional. Arbitrary data can be stored here. Size: limited to a maximum of 1024-6=1018 bytes.
- 1.6 **CHECKSUM** byte: all bytes, except SYNC, summed up, lower byte of the result is placed here for error detection. Size: 1 byte.

2. Frame bytes in detail

2.1 DATA CODE byte description

DATA CODE byte								
Sou	rce	Tar	get	Command				
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
0	0	1	0	0	1	1	0	

Table 2. DATA CODE byte description.

Bit 7:6 s	ource of the frame:	USB: the scanner/laptop itself
- 2b00: USB	- 2b01: CCD	CCD: all modules on CCD-bus
- 2b10: PCM	- 2b11: TCM	PCM: engine controller on SCI-bus
		TCM: transmission controller on a
Bit 5:4 t	arget of the frame:	separate SCI-bus
- 2b00: USB	- 2b01: CCD	
- 2b10: PCM	- 2b11: TCM	Possible routes of frames:
		USB>USB, USB>CCD, USB>PCM, USB>TCM,
		CCD>USB, PCM>USB, TCM>USB

2.2 SUB-DATA CODE byte description

SUB-DATA CODE byte								
bit 7	7 bit 6 bit 5 bit 4 bi				bit 2	bit 1	bit 0	
0	1	0	0	1	1	0	0	

Table 3. SUB-DATA CODE byte description.

Individual bits have no special meaning. Different commands have different SUB-DATA CODE bytes.

Related command: \$00 (Reset)

- \$00-\$FF: RESERVED

Related command: \$01 (Handshake)

- \$00: Request scanner to send handshake over USB connection
- \$01: Send handshake, hardware/firmware information and status too
- \$02-\$FF: RESERVED

Related command: \$02 (Status)

- \$00-\$FF: RESERVED

Related command: \$03 (Settings)

- \$00: RESERVED
- \$01: Heartbeat and indicator LED on-time
- \$02: Set CCD-bus transceiver chip on/off
- \$03: Set SCI-bus speed and configuration
- \$04: Set repeated message behavior for each bus
- \$05: Set LCD (on/off)
- \$06-\$FF: RESERVED

Related command: \$04 (Request)

- \$00: RESERVED
- \$01: Hardware/Firmware information
- \$02: Timestamp
- \$03: Battery voltage
- \$04: External EEPROM checksum byte
- \$05-\$FF: RESERVED

Related command: \$05 (Response)
- \$00-\$FF: Same as \$04 (Request)

Related command: \$06 (Message TX)

- \$00: RESERVED
- \$01: Stop message flow (repeated or repeated set)
- \$02: Send single message
- \$03: Send repeated messages
- \$03: Send repeated set of messages
- \$04-\$FF: RESERVED

Related command: \$07 (Message RX)
- \$00-\$FF: Same as \$06 (Message TX)

```
- $01: Broadcast random CCD-bus messages
- $02: Read external EEPROM
- $03: Write external EEPROM
- $04: Set arbitrary UART-speed on different UART-channels
- $00-$FF: RESERVED
Related command: $0F (OK/ERROR)
- $00: OK: general acknowledgement
- $01: ERROR: LENGTH, invalid value
- $02: ERROR: DATA CODE, invalid command
- $03: ERROR: SUB-DATA CODE, invalid value
- $04: ERROR: PAYLOAD, invalid value
- $05: ERROR: CHECKSUM, invalid value
- $06: ERROR: PACKET, timeout occurred
- $07: ERROR: Buffer overflow
- $08-$F7: RESERVED
- $F8: ERROR: SCI-bus memory table not responding (high-speed mode)
- $F9: ERROR: invalid SCI-bus memory table (high-speed mode)
- $FA: ERROR: no response from SCI-bus (high-speed mode)
- $FB: ERROR: external EEPROM not found
- $FC: ERROR: external EEPROM read error
- $FD: ERROR: external EEPROM write error
- $FE: ERROR: internal error
```

3. Example packets

- \$FF: ERROR: FATAL

Related command: \$0E (Debug)

- \$00: RESERVED

SYNC	LENGTH HB	LENGTH LB	DATA CODE	SUB-DATA CODE	PAYLOAD	CHECKSUM
\$3D	\$00	\$02	\$00	\$00		\$02

Table 4. Reboot scanner.

SYNC	LENGTH HB	LENGTH LB	DATA CODE	SUB-DATA CODE	PAYLOAD	CHECKSUM
\$3D	\$00	\$02	\$01	\$00		\$03

Table 5. Handshake request.

SYNC	LENGTH HB	LENGTH LB	DATA CODE	SUB-DATA CODE	PAYLOAD	CHECKSUM
\$3D	\$00	\$17	\$01	\$00	\$43 \$48 \$52 \$59 \$53 \$4C \$45 \$52 \$43 \$43 \$44 \$53 \$44 \$53 \$43 \$49 \$53 \$43 \$41 \$4E \$4E \$45 \$52	\$37

Table 6. Handshake response.

In the PAYLOAD section the scanner responds with an ASCII encoded text:

\$43 \$48 \$52 \$59 \$53 \$4C \$45 \$52 \$43 \$43 \$44 \$53 \$43 \$49 \$53 \$43 \$41 \$4E \$4E \$45 \$52 = CHRYSLERCCDSCISCANNER

SYNC	LENGTH HB	LENGTH LB	DATA CODE	SUB-DATA CODE	PAYLOAD	CHECKSUM
\$3D	\$00	\$08	\$16	\$01	\$B2 \$20 \$22 \$00 \$00 \$F4	\$07

Table 7. Send a DRB request message on the CCD-bus.

DRB request message: \$B2 \$20 \$22 \$00 \$00 \$F4

- \$B2: ID byte for DRB request message
- \$20: target module on the CCD-bus (\$20 = Body Control Module, BCM)
- \$22: command: read RAM/ROM/EEPROM value
- \$00: RAM/ROM/EEPROM address (16-bit) high byte
- \$00: RAM/ROM/EEPROM address (16-bit) low byte
- \$F4: checksum

SYNC	LENGTH HB	LENGTH LB	DATA CODE	SUB-DATA CODE	PAYLOAD	CHECKSUM
\$3D	\$00	\$0C	\$47	\$01	\$00 \$64 \$FC \$C9 \$B2 \$20 \$22 \$00 \$00 \$F4	\$65

Table 8. Echo of the DRB request message on the CCD-bus.

Payload contains the timestamp of message reception:

- \$00 \$64 \$FC \$C9: timestamp in milliseconds: 6618313 ms = 6618.313 s
- \$B2 \$20 \$22 \$00 \$00 \$F4: DRB request message itself

SYNC	LENGTH HB	LENGTH LB	DATA CODE	SUB-DATA CODE	PAYLOAD	CHECKSUM
\$3D	\$00	\$0C	\$47	\$01	\$00 \$64 \$FC \$E7 \$F2 \$20 \$22 \$15 \$EA \$33	\$01

Table 9. Response to a DRB request message on the CCD-bus.

Payload contains the timestamp of message reception:

- \$00 \$64 \$FC \$E7: timestamp in milliseconds: 6618343 ms = 6618.343 s
- \$F2 \$20 \$22 \$15 \$EA \$33: DRB response message

DRB response message: \$F2 \$20 \$22 \$15 \$EA \$33

- \$F2: DRB response message ID byte
- \$20: responding module on the CCD-bus (Body Control Module, BCM)
- \$22: responding to this command: read RAM/ROM/EEPROM
- \$15: RAM/ROM/EEPROM value at the previously given 16-bit address (\$0000)
- \$EA: RAM/ROM/EEPROM value at the next 16-bit address (\$0001)
- \$33: checksum

Request/response delay is extremely small, only 30 milliseconds.