Charge Extraction

Lecture 9 – 10/06/2011

MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011

Prof. Tonio Buonassisi

2.626/2.627 Roadmap

2.626/2.627: Fundamentals

Every photovoltaic device must obey:

Conversion Efficiency
$$(\eta) \equiv \frac{\text{Output Energy}}{\text{Input Energy}}$$

For most solar cells, this breaks down into:

Inputs Outputs

$$\eta_{\mathrm{total}} = \eta_{\mathrm{absorption}} \times \eta_{\mathrm{excitation}} \times \eta_{\mathrm{drift/diffusion}} \times \eta_{\mathrm{separation}} \times \eta_{\mathrm{collection}}$$

Liebig's Law of the Minimum

S. Glunz, Advances in Optoelectronics 97370 (2007)

Image by S. W. Glunz. License: CC-BY. Source: "High-Efficiency Crystalline Silicon Solar Cells." Advances in OptoElectronics (2007).

$$\eta_{\text{total}} = \eta_{\text{absorption}} \times \eta_{\text{excitation}} \times \eta_{\text{drift/diffusion}} \times \eta_{\text{separation}} \times \eta_{\text{collection}}$$

Learning Objectives: Charge Extraction

- 1. Describe the purpose of contacts, and their most common types.
- 2. Describe the impact of good and poor contacts on IV characteristics.
- 3. Sketch the IV characteristics of Schottky and Ohmic contacts.
- 4. Describe what fundamental material parameters determine the IV characteristics of a contact/semiconductor junction.
- 5. Sketch common band alignments (Types 1, 2, 3 junctions).
- 6. Sketch common solar cell device architectures.

Contacts

- …extract carriers from device.
- ...prevent back-diffusion of carriers into device.
- ...are studied extensively in the semiconductor industry (several good review papers) for "common" semiconductors.
- ...are semiconductor-specific: While fundamentals generally apply universally, the devil is in the details, and each material system requires individual optimization.
- ... are influenced heavily by surface states (i.e., repeatable surface preparation is a <u>must</u>!)

Materials Commonly Used for Contacts

Metals

- Optically opaque.
- Electrically conductive.

Transparent Conducting Oxides (TCOs)

- Optically transparent.
- Electrically conductive.

Properties of TCOs

Transparency

- Transmittance: > 80% (Films)
- Range: 400 ~ 700 nm
- Band gap > 3.1eV

Conductivity (σ)

$$\sigma = n \mu e$$

- 1 carrier conc. (cm⁻³)
- μ mobility (cm²/Vs)
- e charge per carrier

How TCOs Work

Learning Objectives: Charge Extraction

- 1. Describe the purpose of contacts, and their most common types.
- 2. Describe the impact of good and poor contacts on IV characteristics.
- 3. Sketch the IV characteristics of Schottky and Ohmic contacts.
- 4. Describe what fundamental material parameters determine the IV characteristics of a contact/semiconductor junction.
- 5. Sketch common band alignments (Types 1, 2, 3 junctions).
- 6. Sketch common solar cell device architectures.

Buonassisi (MIT) 2011

Voltage (V)

Buonassisi (MIT) 2011

$$J = J_0 \left(\exp \left(\frac{q(V - JR_s)}{kT} \right) - 1 \right) + \frac{V - JR_s}{R_{sh}} - J_L$$

Courtesy of PVCDROM. Used with permission.

Firing contacts? Three possibilities:

- 1. Contact just right: low R_s , large R_{sh} .
- 2. "Underfired" contact: Poor contact with Si, large $R_{\rm s}$.
- 3. "Overfired" contact: Metal drives too deep into Si, low $R_{\rm sh}$.

Learning Objectives: Charge Extraction

- 1. Describe the purpose of contacts, and their most common types.
- 2. Describe the impact of good and poor contacts on IV characteristics.
- 3. Sketch the IV characteristics of Schottky and Ohmic contacts.
- 4. Describe what fundamental material parameters determine the IV characteristics of a contact/semiconductor junction.
- 5. Sketch common band alignments (Type 1, 2, 3, and 4 junctions).
- 6. Sketch common solar cell device architectures.

Classes of Contacts

Ohmic:

- Linear I-V curve.
- Typically used when charge separation is not a goal for metallization.

Schottky:

- Exponential I-V curve.
- Used when charge separation is desired.

Learning Objectives: Charge Extraction

- 1. Describe the purpose of contacts, and their most common types.
- 2. Describe the impact of good and poor contacts on IV characteristics.
- 3. Sketch the IV characteristics of Schottky and Ohmic contacts.
- 4. Describe what fundamental material parameters determine the IV characteristics of a contact/semiconductor junction.
- 5. Sketch common band alignments (Types 1, 2, 3 junctions).
- 6. Sketch common solar cell device architectures.

Step #1: Schottky Theory (the ideal case)

- For Ohmic contact: $\phi_{\rm m} > \phi_{\rm s}$
- Barrier Height: $\phi_{\rm b} = \phi_{\rm m} \chi$
- Contact Potential: $V_{bi} = \phi_{m} \phi_{s}$
- E_{F} E_{C} $Q\phi_{s}$ $Q\chi$ $Q\phi_{m}$ $Q\phi_{m}$

Vacuum level

Space-charge region width:

$$W = \sqrt{\frac{2\varepsilon_{\rm s}}{qN_{\rm D}}V_{\rm o}}$$

Courtesy of Tesfaye Ayalew. Used with permission.

Classes of Contacts

Ohmic:

- Electron barrier height ≤ 0 (for n-type)
- Linear I-V curve.
- Typically used when charge separation is not a goal for metallization.

Schottky:

- Electron barrier height > 0 (for p-type)
- Exponential I-V curve.
- Used when charge separation is desired.

Evaluating Metals for Contacts - Schottky Model

Courtesy of Tesfaye Ayalew. Used with permission.

http://www.iue.tuwien.ac.at/phd/ayalew/node56.html

Reality: Deviations from Schottky theory

- Substantial deviations from Schottky theory are possible, due to interface effects including:
 - Orientation-dependent surface states.
 - Elemental nature of surface termination in binary compounds (e.g., A or B element?).
 - Interface dipoles.
 - and more...

Table 3.1: Work function of selected metals and their measured and calculated barrier height on n-type 4H-SiC.

	Al	Ti	Zn	W	Mo	Cu	Ni	Au	Pt	
$\phi_{ extbf{m}}$	4.28	4.33	4.33	4.55	4.60	4.65	5.10	5.15	5.65	
$\phi_{\mathbf{B}}$ (Si-face)		1.12					1.69	1.81		
$\phi_{ m B}$ (C-face)		1.25					1.87	2.07		
$\phi_{ m B}$ (calculated)	1.01	1.06	1.06	1.28	1.33	1.38	1.63	1.68	2.08	

Courtesy of Tesfaye Ayalew. Used with permission.

Role of Surface States

For related visuals, please see the lecture 9 video or the reference below.

- For Ohmic contact: $\phi_{\rm m} > \phi_{\rm s}$
- Barrier Height: $\phi_{\rm b} = \phi_{\rm m} \chi$
- Contact Potential: $V_{bi} = \phi_{m} \phi_{s}$

Space-charge region width:

$$W = \sqrt{\frac{2\varepsilon_{\rm s}}{qN_{\rm D}}V_{\rm o}}$$

Courtesy of Tesfaye Ayalew. Used with permission.

(a)

Thermionic Emission & Field Emission Effects

For related visuals, please see the lecture 9 video or the reference below.

Evaluating Metals for Contacts - Practical

Sources:

- Reference books
- Review articles
- Scientific articles
- Trusted websites

https://web.archive.org/web/20130818214213/http://www.siliconfareast.com/ohmic_table.htm

• NB:

Surface states
 matter!! Be sure
 you have
 repeatable surface
 preparation.

Learning Objectives: Charge Extraction

- 1. Describe the purpose of contacts, and their most common types.
- 2. Describe the impact of good and poor contacts on IV characteristics.
- 3. Sketch the IV characteristics of Schottky and Ohmic contacts.
- 4. Describe what fundamental material parameters determine the IV characteristics of a contact/semiconductor junction.
- 5. Sketch common band alignments (Types 1, 2, 3 junctions).
- 6. Sketch common solar cell device architectures.

Evaluating Heterojunctions

Not always possible to dope a material both *n*- and *p*-type. Not always possible to find the perfect contact material. Need: heterojunction.

(At least) three types of heterojunction:

What junction will separate charge?

Evaluating Heterojunctions

Simplest case (analogy to Schottky band alignment for metalsemiconductor contacts):

- 1- Set chemical potential equal across entire device.
- 2- Then, align vacuum levels.
- 3- Note that VB and CB must follow vacuum levels.

Evaluating Heterojunctions

Simplest case (analogy to Schottky band alignment for metalsemiconductor contacts):

- 1- Set chemical potential equal across entire device.
- 2- Then, align vacuum levels.
- 3- Note that VB and CB must follow vacuum levels.

MIT OpenCourseWare http://ocw.mit.edu

2.627 / 2.626 Fundamentals of Photovoltaics Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.