

By: Afnan Alshehri Kholod Alshehri

Introduction

Rainfall in Australia is extremely varied, owing to the region's large-scale atmospheric and oceanic causes.

In this project, we train classification models on the features to predict next-day rain .

Problem statement

Predict next-day rain by training classification models on the features.

Data Description This dataset contains about 10 years of daily weather observations from many locations across Australia.

Observations were drawn from numerous weather stations.

The daily observations are available from http://www.bom.gov.au/climate/data.

Tools

the country with most rain is: cairns

presure not affecting the rain

Data Splitting

Outliers

Model Scores

Classifier	Accuracy	Recall	Precision	F score
Logistic Regression	0.851	0.680	0.604	0.640
K-Nearest Neighbor	0.902	0.680	0.604	0.640
Naive Bayes	0.809	0.551	0.711	0.621
Decision Tree	0.861	0.720	0.536	0.637
SVM	0.840	-	-	-
XGboost	0.858	-	-	-
Random forst	0.853	0.604	0.604	0.625

Classifier	Score
Stacking	0.867

