

Technische Grundlagen der Informatik 2 Rechnerorganisation

Kapitel 3: Rechnerarithmetik

Prof. Dr. Ben Juurlink

Fachgebiet: Architektur eingebetteter System
Institut für Technische Informatik und Mikroelektronik
Fak. IV – Elektrotechnik und Informatik

SS 2013

Ziele

Nach dieser Vorlesung sollten Sie in der Lage sein:

- Binär-/Octal-/Hexadezimalzahlen zu Dezimalzahlen zu konvertieren und umgekehrt.
- 2-Komplement-Zahlen zu negieren.
- m-Bit 2-Komplement-Zahlen zu n-Bit zu konvertieren.
- die Unterschiede zwischen addi und addiu, slt und sltu, lb und lbu, etc. zu benennen.
- Überlauf (overflow) zu erklären. Erläutern wann er auftritt und wie er behandelt wird.
- Einen einfachen Addierer zu designen und zu erweitern.
- Einen "Carry-Look-Ahead"-Addierer zu beschreiben.
- Eine Fraktalzahl in "IEEE 754" FP-Standard zu konvertieren und umgekehrt.
- MIPS-FP (Floating Point)-Befehlssatz zu nutzen.

Inhalte

- Vorzeichenbehaftete (signed) und vorzeichenlose (unsigned)
 Zahlen
- Addition und Subtraktion
- Multiplikation
- Division
- Gleitkommazahlen (Floating Point)
- Gleitkommazahlen in MIPS
- "Pentium bug"

Zahlenbasen

Natürliche Zahlen können in jeder Basis repräsentiert werden:

$$a_{n-1}a_{n-2}...a_{1}a_{o(Basis B)} = a_{n-1}B^{n-1} + ... + a_{1}B^{1} + a_{o}B^{o} = \sum_{i=0}^{n-1}a_{i}B^{i}$$

- B: Basis (Radix), z.B. 10 (dezimal), 2 (binär), 8 (octal), 16 (hexadezimal)
- Bⁱ: Gewicht (weight) der i-ten Ziffer (digit)
- a_i: i-te Ziffer aus der Menge {0, 1, ..., B-1}

Konvertierung

Zerlegung nach Horner-Schema:

$$\sum_{i=0}^{n-1} a_i B^i = ((...(a_{n-1}B + a_{n-2})B + ... + a_2)B + a_1)B + a_0$$

Dezimal nach dual / binär:

$$167_{D}$$
 -> $167 / 2 = 83$ Rest 1
 $83 / 2 = 41$ Rest 1
 $41 / 2 = 20$ Rest 1
 $20 / 2 = 10$ Rest 0
 $10 / 2 = 5$ Rest 0
 $5 / 2 = 2$ Rest 1
 $2 / 2 = 1$ Rest 0
 $1 / 2 = 0$ Rest 1

Niederwertigstes Bit (least significant bit (LSB))

Höchstwertigstes Bit (most significant bit (MSB))

• $167_D = 10100111_B$

Hexadezimalzahlen

- Um lange Folgen mit Binärzahlen zu vermeiden, werden oft Hexadezimalzahlen (Basis 16) verwendet.
- Ziffernmenge: { 0, 1, 2, ..., 8, 9, A, B, ..., F }
- Dezimal nach hexadezimal:

$$167_D \rightarrow 167 / 16 = 10$$
 Rest 7
 $10 / 16 = 0$ Rest A

- $-167_{D} = A7_{H}$
- In C/Java: 0xa7
- Binär nach hexadezimal:

Negative Zahlen

Einige Möglichkeiten negative Zahlen zu repräsentieren:

- Vorzeichen-/Betrags-Zahlen (Sign-magnitude numbers)
 - MSB zeigt Vorzeichen (sign) an (0: positiv, 1: negativ).
 - Die übrigbleibenden (n-1) Bits bilden den Betrag (magnitude).
- 1-Komplement-Zahlen (One's complement numbers)
 - Zahl wird durch die Invertierung aller Bits negiert.
 - MSB impliziert das Vorzeichen.
- 2-Komplement-Zahlen (Two's complement numbers)
 - MBS hat ein negatives Gewicht (-2ⁿ⁻¹).
 - $-b_{n-1}b_{n-2}...b_1b_0$ (binär) = $-b_{n-1}2^{n-1}+b_{n-2}2^{n-2}+...+b_12^1+b_02^0$ (dezimal)
 - MSB impliziert das Vorzeichen.

Beispiel (4-Bit)

Dezimal	Vorzeichen-/Betrags- Zahlen (Sign-Magnitude)	1-Komplement-Zahlen (One's complement)	2-Komplement-Zahlen (Two's complement)
-0	1000	1111	
-1	1001	1110	1111
-2	1010	1101	1110
-3	1011	1100	1101
-4	1100	1011	1100
-5	1101	1010	1011
-6	1110	1001	1010
-7	1111	1000	1001
-8			1000

Und der Gewinner ist ...

- 2-Komplement-Zahlen
 - Arithmetik ist einfacher (identisch zu vorzeichenlos).
 - Es gibt nur eine Möglichkeit die 0 zu repräsentieren.
- MIPS benutzt 32-Bit 2-Komplement-Zahlen
- $b_{31}b_{30}...b_1b_0$ (binär) = $-b_{31}2^{31}+b_{30}2^{30}+...+b_12^{1}+b_02^{0}$ (dezimal)
 - Was ist die <u>kleinste</u> von MIPS repräsentierbare Integerzahl?
 - Was ist die größte von MIPS repräsentierbare Integerzahl?
 - Was ist die binäre Repräsentation der 42? Hexadezimal?

Negation

- Negation von 2-Komplement-Zahlen:
 - Invertiere alle Bits und addiere 1
- 8-Bit-Beispiel: $0110\ 1001_B = +105_D$

invertieren: 1001 0110

1 addieren: $1001\ 0111 = -128 + 16 + 7 = -105$

Rückwärts:

invertieren: 0110 1000

1 addieren: 0110 1001

Vorzeichenerweiterung

- Konvertierung einer n-Bit 2-Komplenent-Zahl in eine m-Bit 2-Komplenent-Zahl (m>n):
 - MIPS' 16-Bit Immediats werden für die Arithmetik auf 32 Bit erweitert.
 - Kopiere das MBS (sign bit) in die anderen Bitpositionen.
 - Beispiel (4-Bit -> 8-Bit):

Dies wird Vorzeichenerweiterung (sign extension) genannt.

Vorzeichenbehaftete und vorzeichenlose Zahlen

• Einige Sprachen (z.B. C) können mit vorzeichenbehafteten (signed) und vorzeichenlosen (unsigned) Zahlen arbeiten.

C Datentyp	MIPS Datentyp	MIPS Ladebefehl	
int	32-Bit Wort	lw	
unsigned int	32-Bit wort	lw	
short	16-Bit Halbwort	lh	
unsigned short	16-Bit Halbwort (unsigned)	lhu	
char	Byte	lb	
unsigned char	Byte (unsigned)	lbu	

- Javas primitive Datentypen (byte, short, int, long) sind signed.
- 1h und 1b machen für das zu ladene Byte/Halfwort eine Vorzeichenerweiterung (1hu und 1bu nicht).

Verzeichbehaftete Vs. vorzeichenlose Vergleiche

- MIPS bietet 2 Versionen für einen set-on-less-than—Befehl an:
 - slt und slti arbeiten mit vorzeichenbehafteten Integers.
 - sltu und sltiu arbeiten mit vorzeichenlosen Integers.
- Beispiel:

```
slt $t0,$s0,$s1  # $t0 = 1 (wahr[true])
sltu $t1,$s0,$s1  # $t1 = 0 (falsch[false])
```


Binäre Addition

- Addition von rechts nach links mit Übertrag (carry) wie in der Grundschule
- Beispiele (4-Bit):

Rechenregeln:

$$\bullet$$
 0 + 0 = 0

•
$$0 + 1 = 1$$

•
$$1 + 0 = 1$$

•
$$1 + 1 = \frac{1}{10}$$

??? Überlauf (overflow)

Binäre Subtraktion

• Beispiele (4-Bit):

Rechenregeln:

- 0 0 = 0
- 0 1 = 1 (Borrow)
- 1 0 = 1
- 1 1 = 0

7 wieder Überlauf

Alternative:

Den 2. Operanden negieren und dann beide addieren. (Wir werden diesen Trick beim Erstellen unserer Arithmetic Logic Unit (ALU) nutzen.)

Überlauf / 1

Überlauf(overflow):

- Das Ergebnis ist zu groß für ein endliches Computer-Wort.
- z.B. Addition von zwei n-Bit-Zahlen muss keine n-Bit-Zahl ergeben.
- Kein Überlauf, wenn ...
 - Addition von 2 Zahlen mit entgegengesetztem Vorzeichen
 - Betrag der Summe ist immer ≤ den Beträgen der beiden Operanden
 - Beispiel: -10 + 6 = -4
 - Subtraktion von 2 Zahlen mit dem selben Vorzeichen
- Overflow tritt auf, wenn...

Operation	Α	В	Ergebnis
A+B	<u>≥</u> 0	<u>≥</u> 0	< 0
A+B	< 0	< 0	<u>≥</u> 0
A-B	<u>≥</u> 0	< 0	< 0
A-B	< 0	<u>≥</u> 0	<u>></u> 0

Überlauf / 2

- Vergleich der Operantionen A + B und A B
 - Kann ein Überlauf auftreten, wenn B = 0 ist?
 - Kann ein Überlauf auftreten, wenn A = 0 ist?
- Überlauf tritt nur auf, wenn das Übertragsbit (carry in) für das MSB ≠ dem entstehenden Übertragsbit (carry out) aus der Operation der beiden MSBs ist.
- Beispiele (4-Bit):

Überlaufbehandlung

- Wie werden Überläufe behandelt?
 - Eine Exception (Interrupt) wird ausgelöst.
 - Sprung zu einer vordefinierten Adresse, um die Ausnahme (Exception) zu behandeln.
 - Interrupt Handler (Teil des Betriebssystems (Operating System [OS]))
 - Register \$k0 (26) und \$k1 (27) sind fürs OS reserviert.
 - Unterbrochene Adresse wurde für einen möglichen Rücksprung im exception program counter (\$epc) gespeichert.
 - Neuer MIPS-Befehl: move from coprocessor 0 (mfc0 \$k0, \$epc)
- Details basieren auf dem Software-System / der Software-Sprache
 - C/Java ignorieren Überlauf, Fortran nicht
- Nicht immer soll ein Überlauf angezeigt werden.
 - neue MIPS-Befehle: addu, addiu, sltu, sltiu, subu
 - addiu und sltiu "sign extend" ihre 16-Bit Immediats bereits!

1-Bit Volladdierer

- Wir werden jetzt ein Addierer basteln.
- Dazu brauchen wir einen 1-Bit Volladdierer (1-bit Full Adder).

Blockbild:

Wahrheitstabelle (Truth table):

а	b	C _{in}	C _{out}	Sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Boolsche Gleichungen für den 1-BitVolladdierer

Boolsche Gleichungen (Summe von Produkten):

$$Sum = abc_{in} + abc_{in} + abc_{in} + abc_{in}$$

$$c_{out} = abc_{in} + abc_{in} + abc_{in} + abc_{in}$$

Vereinfachung:

$$Sum = a XOR b XOR c_{in}$$

$$c_{out} = ab + ac_{in} + bc_{in}$$

а	b	C _{in}	C _{out}	Sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

1-Bit Volladdierer (Schaltung)

32-Bit Addierer

Ripple-Carry-Addierer:

- Problem: Lange Durchlaufzeit für den Übertrag bei großer Stellenzahl, z.B. bei 32-Bit- oder 64-Bit-Addierer.
- Lösung: Parallelisierung der Übertragsbildung:
 →Carry-Look-Ahead-Addierer (CLA-Addierer)

Carry-Look-Ahead Addierer (Motivation)

Gleichungen (Summe von Produkten):

$$c_1 = b_0c_0 + a_0c_0 + a_0b_0$$

$$c_2 = b_1c_1 + a_1c_1 + a_1b_1 = b_1b_0c_0 + b_1a_0c_0 + b_1a_0b_0 + a_1b_0c_0 + a_1a_0c_0 + a_1a_0b_0 + a_1b_1$$

$$c_3 = b_2c_2 + a_2c_2 + a_2b_2 = ...$$

$$c_4 = b_3c_3 + a_3c_3 + a_3b_3 = ...$$

- Nicht umsetzbar! Warum?
- VA_i wird immer ein Übertrag generieren, wenn g_i = a_i b_i (= 1)
- VA_i propagiert ein Übertrag, wenn p_i = a_i + b_i (= 1)

$$c_1 = g_0 + p_0 c_0$$

$$c_2 = g_1 + p_1 c_1 = g_1 + p_1 g_0 + p_1 p_0 c_0$$

$$c_3 = g_2 + p_2 c_2 = g_2 + p_2 g_1 + p_2 p_1 g_0 + p_2 p_1 p_0 c_0$$

$$c_4 = g_3 + p_3 c_3 = \dots$$

Umsetzbar! Warum?

Carry-Look-Ahead Addierer (4-Bit)

- Man kann so keinen 16-Bit Addierer realisieren (zu groß).
- Man könnte den Übertrag durch ein Hintereinanderschalten von 4-Bit CLA-Addierern realisieren (Ripple-Carry-Prinzip).
- Besser: erneutes Anwenden des CLA -Prinzips!

Multiplikation

- Für den Moment betrachten wir nur positive Zahlen.
- Schulmathematik:

Multiplikand		1101	13
Multiplikator	X	1011	<u>x 11</u>
		1101	
		1101	
		0000	
		1101	
Produkt		10001111	143

Produkt erfordert doppelte Stellenanzahl.

Algorithmus für einen sequentiellen Multiplizierer

C-Algorithmus für einen sequentiellen Multiplizierer

- Multiplikand: 2n-Bit Register
- Multiplikator: n-Bit Register
- Produkt: 2n-Bit Register
- Verfügen über 2n-Bit Addierer

Multiplikationshardware

Schnelle Multiplikationshardware

Hardware, die die Schleife "ausrollt"

Multiplikation in MIPS

- Das Multiplizieren von zwei 32-Bit Zahlen kann ein 64-Bit Produkt ergeben.
 - Neue Register: Hi und Lo
 - Hi beinhaltet die 32 MSBs des 64-Bit Produkts.
 - Lo beinhaltet die 32 LSBs.
 - MIPS-Befehle:
 - mult \$s2,\$s3 # Hi#Lo = \$s2x\$s3
 - multu \$s2,\$s3 # Hi#Lo = \$s2x\$s3 (unsigned)
 - *Move from 10*: mflo \$s1 # \$s1 = Lo
 - Move from hi: mfhi \$s1 # \$s1 = Hi
- Pseudo-Instruktion: mul \$s1,\$s2,\$s3
- Reale Umsetzung: mult \$s2,\$s3

mflo \$s1

/ 1000

Division / 1

• Schulmathematik:

Dividend

Divisor

Quotient

1001010

1000

Τ

Division / 2

• Schulmathematik:

Division / 3

• Schulmathematik:

Division / 4

• Schulmathematik:

Divisionsalgorithmus

C-Algorithmus für Division

- Quotient: n-Bit Register
- Divisor:

 2n-Bit Register, Divisor wird
 zu Beginn in der linken Hälfte
 abgelegt
- Rest:
 2n-Bit Register, wird mit
 Dividenden initialisiert
- Verfügen über 2n-Bit Substrahierer

```
Quotient = 0;
Rest = Dividend;
Divisor <<= n;
for (i=0; i<=n; i++) {
   Quotient <<= 1;
   if (Rest>=Divisor) {
      Rest -= Divisor;
      Quotient |= 1;
   Divisor >>= 1;
```


4-Bit Beispiel

7_D durch 2_D, d. h. 0111_B durch 0010_B

Iteration	Quot	Divisor	Rest	Anm.
Anfangsw.	0000	0010 0000	0000 0111	R < D
0	0000	0001 0000	0000 0111	R < D
1	0000	0000 1000	0000 0111	R < D
2	0000	0000 0100	0000 0111	R <u>></u> D
3	0001	0000 0010	0000 0011	R ≥ D
4	0011	0000 0001	0000 0001	

```
Quotient = 0;
Rest = Dividend;
Divisor <<= n;</pre>
for (i=0; i<=n; i++) {
   Quotient <<= 1;
   if (Rest>=Divisor) {
      Rest -= Divisor;
      Quotient |= 1;
   Divisor >>= 1;
```


Division in MIPS

- Dividieren in MIPS:
 - Benutzt auch die Register Hi und Lo
 - Quotient befindet sich im Lo, Rest im Hi.
 - Rest wird als Nebeneffekt der Division mitproduziert.
- MIPS-Befehle:

```
- div $$$$s2,$$$$$ # Lo = $$2/$$$, Hi = $$2%$$$
```

- divu \$s2,\$s3 # idem unsigned

- Pseudo-Befehle:
 - div \$s1,\$s2,\$s3
 - rem \$s1,\$s2,\$s3

Gebrochene Zahlen

Darstellung gebrochener Zahlen:

$$\begin{aligned} &a_{n-1}a_{n-2}\dots a_{0}, a_{-1}a_{-2}\dots a_{-m} \\ &= a_{n-1}B^{n-1} + \dots + a_{0}B^{0} + a_{-1}B^{-1} + a_{-2}B^{-2} + \dots + a_{-m}B^{-m} \\ &= \sum_{i=0}^{n-1} a_{i}B^{i} + \sum_{i=-m}^{-1} a_{i}B^{i} \end{aligned}$$

Beispiel (binär):

$$11.1010_{B} = 3 + 2^{-1} + 2^{-3}$$
$$= 3 + 0.5 + 0.125 = 3.625_{D}$$

Konvertierung

Dezimal nach Dual

- Beispiel: 0,24_D

$$0.24_{D} ->$$

$$0.24 \cdot 2 = 0.48 + 0$$

$$0.48 \cdot 2 = 0.96 + 0$$

$$0.96 \cdot 2 = 0.92 + 1$$

$$0.92 \cdot 2 = 0.84 + 1$$

$$0.84 \cdot 2 = 0.68 + 1$$

$$0.68 \cdot 2 = 0.36 + 1$$

$$0.36 \cdot 2 = 0.72 + 0$$

$$0.72 \cdot 2 = 0.44 + 1$$

MSb!

Abbruch nach 8 Stellen (Näherung mit 0,238...)

Gleitkommazahlen (floating point)

Näherung für reelle Zahlen:

$$(-1)^s \times 1.f \times 2^E$$

- s: Vorzeichen (sign): $0 \rightarrow$ positiv, $1 \rightarrow$ negativ
- 1.f: Mantisse (Betrag, significand) als normalisierte Zahl
 - Zahl wird so lange geschoben, bis sie führende 1 aufweist
 - Binärpunkt wird rechts von dieser 1 festgelegt $(1.0 \le 1.f < 2.0)$
- f: nur der Bruch f (fraction) wird gespeichert, führende 1 ist implizit (wird von Recheneinheit ergänzt)
- E: vorzeichenbehafteter Exponent, wird als transformierter
 Exponent e gespeichert
- -e:e=E+bias
 - bias wird so gewählt, dass 2-Komplement-Zahl E zur vorzeichenlosen Dualzahl e wird

IEEE-754 Standard

Einfache Genauigkeit (single precision, 32 Bit)

- bias = 127
- C/Java: float

• Doppelte Genauigkeit (double precision, 64 Bit)

- bias = 1023
- C/Java: double

Beispiel

- -0,75_D mit einfacher Genauigkeit
 - s = 1
 - 0,75_D als gebrochene Dualzahl ist 0.11_B
 - Normalisiere: $0.11 = 1.1 \times 2^{-1}$
 - führende 1 ist implizit → Bruch = 10000....
 - transformierter Exponent e

$$e = E + bias = -1 + 127 = 126 = 0111 1110_{R}$$

 1
 8
 23 Bit

 1
 0111 1110
 100 0000 0000 0000 0000 0000

Sonderfälle

- Neben normalisierten Zahlen sind außerhalb des Zahlenraums definiert:
 - \pm Null
 - ± Unendlich: z. B. Division durch Null
 - ± unnormalisierte (unnormalized) Zahlen: winzige (tiny) Zahlen
 - Nichtzahlen (Not a Number, NaN): Ergebnis ungültiger Operation wie
 0/0
- Codiert durch den größten und kleinsten Exponentwert e und f:

- normal.:
$$(-1)^s \times 1.f \times 2^{e-127/-1023}$$

- Null:
$$(-1)^s \times 0$$

– Unendlich:
$$(-1)^s$$
 x ∞

- unnorm.:
$$(-1)^s \times 0.f \times 2^{-126/-1022}$$

$$e = 0, f = 0$$

$$e = 255/2047, f = 0$$

$$e = 0, f \neq 0$$
; interpretiert mit $e = 1$

$$e = 255/2047, f \neq 0$$

Addition von Gleitpunktzahlen / 1

Beispiel basiert auf 16-Bit Minifloat Format:

1	5	10 Bit	
S	е	f	

• Z = X + Y mit

$$- X = 2.35_D = 10.010110011001 \dots_B$$

$$- Y = 10,17_D = 1010.0010 1011 1000 0101 ..._B$$

• 1. Schritt:

— Normalisieren und Anpassung an 16-Bit-Format:

$$- X = 1.0010 1100 11 \cdot 2^{1}$$

$$- Y = 1.0100010101 \cdot 2^3$$

→ Verlust von signifikanten Stellen!

Addition von Gleitpunktzahlen / 2

2. Schritt:

- Vergleichen der beiden Exponenten E.
- Bei Ungleichheit kleinere Exponent an den größeren anpassen
- $X = 0.0100 1011 00 11 \cdot 2^3$
 - → rot dargestellten Stellen gehen verloren

• 3. Schritt:

– Addieren der Mantissen:

 $0.0100\ 1011\ 00\ (X)$

+ 1.0100 0101 01 (Y)

1.1001 0000 01 (*Z*)

• Ergebnis

- muss ggf. noch normalisiert werden (hier nicht)
- $-Z = 1.1001\ 0000\ 01 \cdot 2^3 = 12,500\ 975\ 656\ 2510$ (korrekt wäre: 12,52).

MIPS hat

- 32 Floating-Point-Register mit einfacher Genauigkeit (single-precision) [\$f0,\$f1,...,\$f31] oder
- 16 Register mit doppelter Genauigkeit (double-precision) [\$f0,\$f2,...,\$f30]

WIPS Floating Point Befehle

FP add single	add.s \$f0,\$f1,\$f2	\$f0=\$f1+\$f2
FP sub. single	sub.s \$f0,\$f1,\$f2	\$f0=\$f1-\$f2
FP mult. single	mul.s \$f0,\$f1,\$f2	\$f0=\$f1*\$f2
FP div. single	div.s \$f0,\$f1,\$f2	\$f0=\$f1/\$f2
FP add double	add.d \$f0,\$f2,\$f4	f0,f1 = f2,f3 + f4,f5
FP sub. double	sub.d \$f0,\$f2,\$f4	f0,f1 = f2,f3 - f4,f5
FP mult. double	mul.d \$f0,\$f2,\$f4	\$f0,\$f1 = \$f2,\$f3 * \$f4,\$f5
FP div. double	div.d \$f0,\$f2,\$f4	\$f0,\$f1 = \$f2,\$f3 / \$f4,\$f5
load word coproc. 1	lwc1 \$f0,100(\$s0)	\$f0=Mem[\$s0+100]
store word copr. 1	swc1 \$f0,100(\$s0)	Mem[\$s0+100]=\$f0
branch on coproc.1 true	bc1t 25	if (cond) goto PC+4+100
branch on coproc.1 false	bc1f 25	if (!cond) goto PC+4+100
FP compare single	c.lt.s \$f0,\$f1	cond = (\$f0 < \$f1)
FP compare double	c.ge.d \$f0,\$f2	cond = $($f0,$f1 >= $f2,$f3)$

MIPS Floating Point Sprungbefehle / 1

- Vergleich-Befehle setzen den condition code (cc)
- Sukzessive Branch-Befehle testen, ob cc erfüllt ist (true) oder nicht (false)
- Beispiel: Suche nach kleinstem n, so dass gilt $0.5^n \le 1.0 \cdot 10^{-9}$

```
int n = 1;
float exp = 0.5;
while (exp > 1e-9) {
    exp = exp*0.5;
    n++;
}
```


MIPS Floating Point Sprungbefehle / 2


```
int n = 1;
float exp = 0.5;
while (exp > 1e-9) {
    exp = exp*0.5;
    n++;
}
```

```
$t0,$zero,1
  addi
                               \# n = 1
            $f0,fphalf($gp)
                               \# \exp = 0.5
  lwc1
  lwc1
            $f1,fptiny($gp)
                               # $f1 = 1e-9
                               # $f2 = 0.5
  lwc1
            $f2,fphalf($gp)
while:
            $f0,$f1
  c.gt.s
                               \# cc = exp>1e-9
            endwhile
                               # if (!cc) goto enwhile
  bc1f
  mul.s
            $f0,$f0,$f2
                               \# \exp = \exp *0.5
  addi
            $t0,$t0,1
                               # n++
                               # goto while
            while
endwhile:
```


Pentium Bug

Fehler im Divisionsalgorithmus für Gleitpunktzahlen

Juli 1994: I
 100K\$

 Sept. 1994 offizielle St

7. Nov. 199

 22. Nov. 19 verursache

5. Dez. 199
 auftreten k

12. Dez. 19
 Fehler

ben: einige

keine hternet

an 9. Stelle

000 Jahren

24 Tage

• 21. Dez. 1994: Intel gibt zu: Jeder Besitzer darf Pentium austauschen. Geschätzte Kosten: 500 M\$!

4195835.0/3145727.0 = 1.333 820 449 136 241 002 (korrekter Wert) 4195835.0/3145727.0 = 1.333 739 068 902 037 589 (fehlerhaften Pentium)

- Computer-Arithmetik ist beschränkt durch limitierte Genauigkeit.
 - Overflow (Überlauf)
 - Underflow (floating point)
- Bitmuster haben keine inherente Bedeutung, es gibt jedoch Standards
 - 2-Komplement
 - IEEE 754 Floating Point
- Computer-Befehle bestimmen die "Bedeutung" der Bitmuster.
- Leistung und Genauigkeit sind wichtig. Daraus ergeben sich viele Komplexitäten für reale Maschinen.
 - z.B. Algorithmen und Implementierungen
- Was kommt als Nächstes?
 - Wir werden einen Prozessor implementieren.
 - Zuerst müssen wir jedoch "Leistung" verstehen.