Ćwiczenia 5

- 1. Pokaż, jak zasymulować taśmę maszyny Turinga przy użyciu automatu licznikowego z testami na zero.
- 2. Dla każdego m > 0 skonstruuj sieć Petriego rozmiaru O(n+m), która jest ograniczona, ale przez wartość nie mniejszą niż $F_m(n)$, gdzie $F_1(n) = 2n$, a $F_{m+1}(n) = F_m^n(1)$ jest n-krotnym złożeniem funkcji F_m zaaplikowanym do 1.
- 3. Z poprzedniego zadania wywnioskuj, że pesymistyczny maksymalny rozmiar drzewa pokrywalności to przynajmniej $Ack(n) = F_n(n)$, gdzie n to rozmiar sieci Petriego.
- 4. Popraw konstrukcję Liptona z wykładu, tak aby uniknąć wykładniczego wzrostu rozmiaru.
- 5. Udowodnij, że konstrukcja Liptona daje dolną granicę EXPSPACE dla pokrywalności, ograniczoności, skończoności (czy wszystkie biegi danej sieci są skończone?) i innych podobnych problemów w ogólnych sieciach Petriego.

Zadanie domowe (nieobowiązkowe)

1. Pokaż, że wszystkie interesujące pytania dla sieci 1-ograniczonych są PSPACE-trudne.