

Predicting World Cup 2018 Matches

Tanvir Ahmed

Md Kamrul Hasan

10th July, 2019

Technische Universität Berlin

Agenda

- Objective
- Problem Statement
- System Architecture
- Data Acquisition and Integration
- Data preprocessing
- Model Evaluation
- References
- Demo

Objectives

Predicting the winning probability of world cup 2018 matches through collecting data from different heterogeneous sources

Problem Statement

- Collecting featured data which impact on the matches
- ❖ Training data using ML Algorithm
- Two teams as input
- Showing their winning probability

System Architecture

Data Acquisition

Economic Factors

- 1. GDP per capita 2017(Wiki)
- 2. Population 2017 (World Bank)
- 3. Happiness rank (World Happiness Report)
- 4. Happiness score (World Happiness Report)
- 5. Life expectancy (World Happiness Report)
- 6. Freedom (World Happiness Report)
- 7. Generosity (World Happiness Report)
- 8. Government Corruption (World Happiness Report)

Data Acquisition

Supportive Factors

- 9. FIFA Rank (FIFA)
- 10. ELO Rating (Elo website)
- 11. Final appearance (Wiki)
- 12. Semi Final Appearance (Wiki)
- 13. Last best performance (Wiki)

Home Advantage

- 14. Home country advantage (Wiki)
- 15. Home continent advantage (Wiki)

• Team Structure

- 16. Players average appearance (Wiki)
- 17. Players average goals (Wiki)

http://eloratings.net

Data Acquisition

- 18. Percentage of players in foreign club (CIES)
- 19. Average age of players (CIES)
- 20. Soccer power index (FiveThirtyEight)
- 21. Star Players (EA sports)
- 22. Coach ranking (Real Sport)
- 23. Attack side (FiveThirtyEight)
- 24. Defensive side(FIFA Index)
- 25. Middle side (FIFA Index)
- 26. Defensive rating (FiveThirtyEight)
- 27. Offensive rating (FiveThirtyEight)
- 28. Over all side (FIFA Index)

Integrated Schema

['country','fifa_rank','elo','avg_age','home_country_adv','home_continen t_adv','last_best_performance','star_count','coach_performance', 'final', 'semi','foreign_club','att','def','mid','ovr','power_index','offensive','defens ive','avg_players_appearance','avg_players_goal','country_happiness_rank','gdp','population','happiness_score','life_expectancy','freedom','gener osity', 'goverment_corruption']

Data Preprocessing

Match Result 64 matches

Team-1	Team-2	Team-1 Score	Team-2 Score	
Russia	Saudi	5	0	
Egypt	Uruguay	0	1	
Iran	Morocco	1	0	

Features 28 Features

Team	fifa_rank	gdp	 govt_corruption
Russia	70	60	 0.03
Belgium	3	18	0.25

Team-1	Team-2	Team-1 Score	Team-2 Score	Team_1 fifa_rank_1	Team_2 fifa_rank_2	fifa_rank	 winner
Russia	Saudi	5	0	70	67	17	 1
Egypt	Uruguay	0	1	45	14	31	 -1

Data Preprocessing

With Duplicate value

Target Class

Team-1	Team-2	Team-1 score	Team-2 Score	Team_1_Fifa_r ank	Team_2_Fifa_rank	fifa_rank	•••	Winner
Russia	Saudi	5	0	70	67	17		1
Egypt	Uruguay	0	1	45	14	31		-1
Saudi	Russia	0	5	67	70	-17		-1
Uruguay	Egypt	1	0	14	45	-31		1

Training and Testing Data

- Training Data
 - ➤ Group stage (48 matches)
 - ➤ With duplicates (96 rows)
- Testing Data
 - > Remaining stage (16 matches)
 - ➤ With duplicates (32 rows)

Normalisation and Scaling

- To reduce the highly varying values in features
- To make all features same level of magnitudes

Three Scaling methods

- StandardScaler
- MinMaxScaler
- RobustScaler

StandardScaler

- Data is normally distributed within each feature
- The distribution is now centred around 0, with a standard deviation of 1

Formula for any feature x:

Tiny Features vs Mega Features Image: [12]

Formula: [19]

MinMaxScaler

- The values are between 0 and 1 (or -1 to 1 if there are negative values)

Formula for any feature x:

$$\frac{x_i - min(x)}{max(x) - min(x)}$$

RobustScaler

- Similar method to the Min-Max scaler but it uses the interquartile range

Normalisation and Scaling

- Feature Ranking All features
- Feature Ranking Individual feature
- Recursive Feature Elimination
- Forward Selection

Feature Ranking (All)

Model: RandomForest

• Top : Defence

• Base: Home country advantage

Feature Ranking (Individual)

Model : RandomForest

• Top : Overall rating

Base: Star player count

Recursive Feature Elimination

• Model: RandomForest

• Optimum number of features: 23

RFE Feature- RandomForestClassifier- model best score on feature selection:

Recursive Feature Elimination

[offensive, power_index, last_best_performance, att, defensive, generosity, gdp, population, coach_performance, def, elo, fifa_rank, government_corruption, life_expectancy, star_count, semi, foreign_club, freedom, happiness_score, avg_players_appearance, avg_age, final, mid]

Forward Selection Feature- RandomForestClassifier- model best accuracy score on feature selection:

Forward Selection

• Model : RandomForest

• Top : Attack

• Base : ELO rating

Final Features

['Att','avg_age','coach_performance','home_continent_adv','home_country_adv','goverment_corruption','power_index','generosity','star_count','ovr','defensive','freedom','life_expectancy','last_best_performance','population','offensive','final','avg_players_appearance','semi','happiness_score','foreign_club','country_happiness_rank','gdp','mid']

Hyperparameter optimization

- To choose a set of optimal hyperparameters for a learning algorithm
- To control the learning process

Hyperparameter Tuning Methods

- Grid search

Grid search

- Model Parameters are placed in the form of a matrix
- Each set of parameters is taken into consideration and the accuracy is noted
- The model with the set of parameters which give the top accuracy is considered to be the best

Hyperparameter optimization

Example of Grid Search:

For Support Vector Machine parameters:

```
C = [1.0, 2.0, 5.0, 10.0]
kernal= ['rbf', 'linear', 'poly']
```

All combinations to be tested:

```
svm.SVC(C=1.0 kernel='rbf')
svm.SVC(C=1.0 kernel='linear')
svm.SVC(C=1.0 kernel='poly')

svm.SVC(C=2.0 kernel='rbf')
svm.SVC(C=2.0 kernel='linear')
svm.SVC(C=2.0 kernel='poly')

svm.SVC(C=5.0 kernel='rbf')
svm.SVC(C=5.0 kernel='linear')
svm.SVC(C=5.0 kernel='poly')
```


Hyperparameter optimization

Cross Validation

- Evaluating model with fixed training and testing set is not reliable
- The accuracy obtained for one test set can be very different to the accuracy obtained for a different test set

Solutions

K-fold Cross Validation(CV)

5-Fold Cross Validation Image: [15]

- 64 matches in total (With duplicate: 128)

- 126 rows as Training data and 2 as Testing data

Iterates 64 times

- Calculate Confusion matrix
- Find out the accuracy

Cross Validation

Accuracy Score:

$$\mathtt{accuracy}(y, \hat{y}) = rac{1}{n_{\mathrm{samples}}} \sum_{i=0}^{n_{\mathrm{samples}}-1} \mathbb{1}(\hat{y}_i = y_i)$$

Confusion Matrix: Binary Class

- Handling imbalanced class problem

		Predicted Results			
		Positive	Negative		
True	Positive	TP(True Positive)	FN(False Negative)		
Condition	Negative	FP(False Positive)	TN(True Negative)		

Source: [18]

Confusion matrix: multiclass

		inferred class				inferred class				
		A	В	C			A	not-A	Model Performance	
~	A	a	b	с	70	A	a	b+c	Accuracy	= (TN+TP)/(TN+FP+FN+TP)
true class	В	d	e	f	e class		(TP)	(FN)	Precision	=TP/(FP+TP)
tru	C	g	h	i	true	not-A	d+g (FP)	e+f+h+i (TN)	Sensitivity	=TP/(TP+FN)

Source: [16] [17]

References

- [1] https://en.wikipedia.org/wiki/List_of_countries_by_GDP_(PPP)_per_capita
- [2] https://www.cia.gov/library/publications/resources/the-world-factbook/rankorder/2119rank.html
- [3] https://data.worldbank.org/indicator/SP.POP.TOTL?view=chart
- [4] https://worldhappiness.report/ed/2017/
- [5] cover image:
- https://www.soundersfc.com/post/2018/05/15/svensson-torres-and-lodeiro-take-next-steps-toward-2018-f ifa-world-cup-russia
- [6] coach rank: https://realsport101.com/news/sports/football/ranked-all-32-managers-at-the-world-cup/
- [7] Star count: https://www.easports.com/fifa/fifa-18-player-ratings-top-100
- [8] FIFAINDEX: https://www.fifaindex.com/
- [9] SPI, OFF, DEFF: https://projects.fivethirtyeight.com/2018-world-cup-predictions/?ex_cid=endlink

References

- [10]https://eu.usatoday.com/story/sports/soccer/worldcup/2018/05/16/world-cup-2018-cristiano-ronaldo-lionel-messi-head-top-50-list/610929002/
- [11] Features result: https://fixturedownload.com/results/fifa-world-cup-2018
- [12] Picture scale: https://medium.com/greyatom/why-how-and-when-to-scale-your-features-4b30ab09db5e
- [13] Hypermeter: https://en.wikipedia.org/wiki/Hyperparameter_optimization
- [14] Hypermeter: https://www.analyticsindiamag.com/why-is-random-search-better-than-grid-search-for-machine-lear ning/
- [15] Cross validation: https://medium.com/datadriveninvestor/k-fold-cross-validation-6b8518070833
- [16] Confusion Matrix: https://www.sciencedirect.com/science/article/abs/pii/S0376635717301146
- [17] https://scaryscientist.blogspot.com/2016/03/confusion-matrix.html?view=classic
- [18] https://www.mdpi.com/1424-8220/19/5/1137
- [19]http://benalexkeen.com/feature-scaling-with-scikit-learn/

Demo