ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФАКУЛЬТЕТ ОБЩЕЙ И ПРИКЛАДНОЙ ФИЗИКИ

Лабораторная работа № 2.3.1 **Получение и измерение вакуума**

Петряев Александр Группа Б03-301 **Цель работы:** 1) измеренеи объёмов форвакуумной и высоковакуумной частей установки; 2) определение скорости откачки системы в стационарном режиме, а также по ухудшению и по улучшению вакуума.

В работе используются: вакуумная установка с манометрами: масляным, термопарным и ионизационным. По степени разряжения вакуумные установки принято делить на три класса: 1) низковакуумные – до 10^{-2} - 10^{-3} торр; 2) высоковакуумные – 10^{-4} - 10^{-7} торр; 3) установки сверхвысокого вакуума – 10^{-8} - 10^{-11} торр. С физической точки зрения низкий вакуум переходит в высокий, когда длина свободного пробега молекул газа оказывается сравнима с размерами установки; сверхвысокий вакуум характерен крайней важностью процессов адсорбции частиц на поверхности вакуумной камеры.

1. Теоретическая часть

1.1. Процесс откачки

Производительность насоса определяется скоростью откачки W (π/c): W — это объем газа, удаляемого из сосуда при данном давлении за единицу времени. Скорость откачки форвакуумного насоса равна емкости воздухозаборной камеры, умноженной на число оборотов в секунду. Рассмотрим обычную схему откачки. Разделим вакуумную систему на две части: «откачиваемый объем» (в состав которого включим используемые для работы части установки) и «насос», к которому, кроме самого насоса, отнесем трубопроводы и краны, через которые производится откачка нашего объема. Обозначим через Q_d количество газа, десорбирующегося с поверхности откачиваемого объема в единицу времени, через Q_i — количество газа, проникающего в единицу времени в этот объем извне — через течи. Будем считать, что насос обладает скоростью откачки W и в то же время сам является источником газа; пусть Q_n — поток газа, поступающего из насоса назад в откачиваемую систему. Будем измерять количество газа Q_d , Q_i и Q_n в единицах PV (легко видеть, что это произведение с точностью до множителя RT/μ равно массе газа). Основное уравнение, описывающее процесс откачки, имеет вид

$$-VdP = (PW - Q_d - Q_n - Q_i)dt. (1)$$

Левая часть этого уравнения равна убыли газа в откачиваемом объеме V, а правая определяет количество газа, уносимого насосом, и количество прибывающего вследствие перечисленных выше причин за время dt. При достижении предельного вакуума (давление P_{pr})

$$\frac{dP}{dt} = 0, (2)$$

$$W = \frac{\sum Q_i}{P_{pr}}. (3)$$

Обычно Q_i постоянно, а Q_n и Q_d слабо зависят от времени, поэтому в наших условиях все эти члены можно считать постоянными. Считая также постоянной скорость откачки W, уравнение (1) можно проинтегрировать и, используя (2), получить

$$P = P_o \exp\left(-\frac{W}{V}t\right) + P_{pr}.\tag{4}$$

1.2. Течение газа через трубу

Характер течения газа существенно зависит от соотношения между размерами системы и длиной свободного пробега молекул. При атмосферном давлении и даже при понижении давления до форвакуумного длина свободного пробега меньше диаметра трубок и течение откачиваемого газа определяется его вязкостью, т. е. взаимодействием его молекул. При переходе к высокому вакууму картина меняется. Столкновения молекул между собой начинают играть меньшую роль, чем соударения со стенками. Течение газа в трубе напоминает в этих условиях диффузию газа из области больших концентраций в области, где концентрация ниже, причем роль длины свободного пробега играет ширина трубы. Для количества газа, протекающего через трубу в условиях высокого вакуума или, как говорят, в кнудсеновском режиме, справедлива формула

$$\frac{d(PV)}{dt} = \frac{4}{3}r^3 \sqrt{\frac{2\pi RT}{\mu}} \frac{P_2 - P_1}{L}.$$
 (5)

Применим эту формулу к случаю, когда труба соединяет установку с насосом. Пренебрежем давлением P_1 у конца, обращенного к насосу. Будем измерять количество газа, покидающего установку при давлении $P = P_2$. Пропускная способность трубы

$$C_{tr} = \left(\frac{dV}{dt}\right)_{tr} = \frac{4}{3} \frac{r^3}{L} \sqrt{\frac{2\pi RT}{\mu}}.$$
 (6)

Мы видим, что пропускная способность зависит от радиуса трубы в третьей степени и обратно пропорциональна ее длине. В вакуумных установках следует поэтому применять широкие короткие трубы.

При расчете вакуумных систем нужно принимать во внимание также пропускную способность отверстий, например, в кранах. Для диффузионного насоса можно считать, что каждая молекула воздуха, попавшая в кольцевой зазор между соплом и стенками насоса, увлекается струей пара и не возвращается обратно в откачиваемый объем. Скорость откачки такого насоса можно считать равной пропускной способности отверстия с площадью, равной площади кольцевого зазора, т. е. насос качает как кольцевой зазор, с одной стороны которого расположен откачиваемый объем, а с другой – пустота.

2. Модель экспермиента

1. Определим объемы форвакуумной и высоковакуумной частей установки. Сначала впустим атмосферу в установку. Запрем воздух при комнатных условиях в капилляре между кранами 5 и 6. После этого откачаем воздух из оставшейся части установки (сделав это в два этапа - сначала насос должен откачать сам себя, а только потом - установку). После этого мы сначала высвободим запертый воздух только в ФВ часть, а затем добавим к ней и ВВ. Тогда записав уравнение Менделеева-Клапейрона и зная объем капилляра, мы найдем объемы соответствующих частей установки:

$$P_0 V_0 = P_v (V_f + V_v), (7)$$

где P_0 – атмосферное давление; V_0 – объем капилляра и кранов 5 и 6; P_v – установившееся давление; V_f и V_v – соотвественно объемы форвауумной и высоковакуумной частей.

2. Для измерения скорости откачки диффузионного насоса измерим улучшение вакуума во времени. Построим график зависимости $-\ln\frac{P-P_{pr}}{P_0}$ от t. Из формулы (4) следует, что наклон, построенной кривой, есть W/V

3. Откроем кран 6 и создадим исскуственную течь через капилляр. Рассчитаем производительность насоса по различию P_{pr} и P_u , где P_u – установившееся давление в высоковакуумной части с искусственной течью. В условиях высокого вакуума справдлива формула (5), где положим $P_1 := P_u$, P_2 – давление в форвакуумной части.

3. Ход работы

1. Определим объемы высоко-вакуумной и форвакуумной частей установки, используя параметры установки:

$$\rho_m = 0.885 \ g/cm^3, V_k = 50 \ cm^3, P_0 = 99.3 \ KPa$$

Подставим все в следующие формулы. Получим высокий вакуум и запишем значение предельного давления:

$$V_{wv} = \frac{P_0 V_0}{\rho g \Delta h_{wv}} = \frac{99.3 \cdot 10^3 \cdot 50 \cdot 10^{-3}}{885 \cdot 9.8 \cdot 0.27} = 2.12 \ l$$

$$V_{vv} = V_p - V_{wv} = \frac{P_0 V_0}{\rho g \Delta h_p} - V = 1.19 \ l$$

$$P_{pr} = 7.9 \cdot 10^{-5} \ torr$$

Проведем измерения по ухудшению и улучшению и занесем данные в таблицу 1:

$N_{\overline{0}}$	t, c	P										
	ул	т. 1	ул	ı. 2	ул	ı. 3	yx	r. 1	ух	r. 2	yx	x. 3
1	1	7.5	1	7.5	1	7.3	1	0.77	1	0.8	1	0.8
2	2	6.8	2	7.0	2	6.5	2	0.79	2	0.82	2	0.82
3	3	5.3	3	6.2	3	5.6	3	0.81	3	0.87	3	0.86
4	4	4.4	4	5.2	4	4.7	4	0.82	4	0.94	4	0.93
5	5	4.0	5	4.3	5	3.8	5	0.82	5	1.0	5	1.0
6	6	3.4	6	3.6	6	3.2	6	0.84	6	1.2	6	1.1
7	7	2.9	7	3.0	7	2.7	7	0.85	7	1.3	7	1.3
8	8	2.5	8	2.6	8	2.3	8	0.87	8	1.4	8	1.4
9	9	2.2	9	2.2	9	2.0	9	0.94	9	1.5	9	1.5
10	10	1.9	10	2.0	10	1.8	10	1.1	10	1.6	10	1.6
11	11	1.7	11	1.7	11	1.6	11	1.2	11	1.7	11	1.8
12	12	1.6	12	1.6	12	1.5	12	1.3	12	1.9	12	1.9
13	13	1.5	13	1.4	13	1.3	13	1.4	13	2.0	13	2.0
14	14	1.4	14	1.3	14	1.2	14	1.5	14	2.1	14	2.1
15	19	1.1	19	0.99	19	0.97	15	1.6	15	2.2	15	2.2
16	24	0.98	24	0.89	24	0.88	16	1.7	16	2.3	16	2.4
17	29	0.94	29	0.85	29	0.84	17	1.9	17	2.4	17	2.5
18	39	0.9	34	0.83	34	0.82	18	2.0	18	2.5	18	2.6
19	49	0.89	44	0.81	44	0.81	19	2.1	19	2.6	19	2.7
20	59	0.87	54	0.8	54	0.8	20	2.2	20	2.8	20	2.8

Таблица 1: Результаты измерений

2. Построим графики зависимостей Логарифма разности текущего и предельного давлений от времени по улучшению вакуума:

Рис. 1: График №2

3. Используя МНК аппроксимируем линейный участок и найдем коэффициент k наклона графика:

$$k_{1} = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^{2} \rangle - \langle x \rangle^{2}} = \frac{-35.48 + 8.27 \cdot 3.78}{91.73 - 8.27^{2}} = -0.18$$

$$\sigma_{k_{1}} = \frac{1}{\sqrt{n}} \cdot \sqrt{\frac{\langle y^{2} \rangle - \langle y \rangle^{2}}{\langle x^{2} \rangle - \langle x \rangle^{2}} - k^{2}} = \frac{1}{\sqrt{15}} \cdot \sqrt{\frac{15.07 - 3.78^{2}}{91.73 - 8.27^{2}} - 0.18^{2}} = 0.005$$

$$k_1 = (-0.18 \pm 0.01) \frac{1}{c}$$

$$k_2 = (-0.205 \pm 0.003) \frac{1}{c}$$

$$k_3 = (-0.210 \pm 0.003) \frac{1}{c}$$

No॒	t, c	$\ln(P-P)$	t^2, c^2	$\ln\left(P-P\right)^2$	$\ln\left(P - P\right) \cdot t$
1	1	-2.41	1	5.83	-2.41
2	2	-2.52	4	6.37	-5.05
3	3	-2.81	9	7.9	-8.43
4	4	-3.03	16	9.21	-12.14
5	5	-3.15	25	9.93	-15.76
6	6	-3.36	36	11.28	-20.15
7	7	-3.57	49	12.75	-25.0
8	8	-3.78	64	14.3	-30.25
9	9	-3.97	81	15.79	-35.77
10	10	-4.21	100	17.75	-42.13
11	11	-4.41	121	19.47	-48.53
12	12	-4.53	144	20.51	-54.34
13	13	-4.66	169	21.72	-60.58
14	14	-4.81	196	23.16	-67.37
15	19	-5.49	361	30.13	-104.29
$\langle \rangle$	8.27	-3.78	91.73	15.07	-35.48

Таблица 2: Данные для МНК по улучшению 1

$N_{\overline{0}}$	t, c	$\ln\left(P-P\right)$	t^2, c^2	$\ln\left(P-P\right)^2$	$\ln\left(P - P\right) \cdot t$
1	1	-2.41	1	5.83	-2.41
2	2	-2.49	4	6.21	-4.98
3	3	-2.63	9	6.91	-7.89
4	4	-2.83	16	8.03	-11.34
5	5	-3.06	25	9.38	-15.31
6	6	-3.28	36	10.79	-19.71
7	7	-3.52	49	12.42	-24.67
8	8	-3.72	64	13.87	-29.8
9	9	-3.97	81	15.79	-35.77
10	10	-4.13	100	17.03	-41.27
11	11	-4.41	121	19.47	-48.53
12	12	-4.53	144	20.51	-54.34
13	13	-4.81	169	23.16	-62.56
14	14	-4.99	196	24.91	-69.88
15	19	-5.93	361	35.13	-112.62
$\langle \rangle$	8.27	-3.78	91.73	15.3	-36.07

Таблица 3: Данные для МНК по улучшению 2

$N_{\overline{0}}$	t, c	$\ln\left(P-P\right)$	t^2, c^2	$\ln\left(P-P\right)^2$	$\ln\left(P-P\right)\cdot t$
1	1	-2.44	1	5.98	-2.44
2	2	-2.58	4	6.63	-5.15
3	3	-2.75	9	7.55	-8.24
4	4	-2.95	16	8.73	-11.82
5	5	-3.22	25	10.34	-16.08
6	6	-3.44	36	11.82	-20.63
7	7	-3.67	49	13.47	-25.69
8	8	-3.91	64	15.25	-31.25
9	9	-4.13	81	17.03	-37.14
10	10	-4.31	100	18.56	-43.08
11	11	-4.53	121	20.51	-49.81
12	12	-4.66	144	21.72	-55.92
13	13	-4.99	169	24.91	-64.88
14	14	-5.21	196	27.14	-72.93
15	19	-6.03	361	36.39	-114.62
$\langle \rangle$	8.27	-3.92	91.73	16.4	-37.31

Таблица 4: Данные для МНК по улучшению 3

4. Используя эти данные найдем скорость откачки W диффузионного насоса:

$$W_1 = -k_1 \cdot V = 0.18 \cdot 1.19 = 0.214 \frac{l}{c}$$

$$\sigma_{W_1} = \varepsilon_{k_1} \cdot W_1 = \frac{0.005}{0.18} \cdot 0.214 = 0.006 \frac{l}{c}$$

$$W_1 = (0.214 \pm 0.006) \frac{l}{c}$$

$$W_2 = (0.244 \pm 0.004) \frac{l}{c}$$

$$W_3 = (0.250 \pm 0.004) \frac{l}{c}$$

5. Теперь построим графики для ухудшения вакуума:

Рис. 2: График №2

6. Вспользуя МНК аппроксимируем линейный участок и найдем коэффициент k наклона графика:

$$k_1 = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2} = \frac{1.21 - 24.68 \cdot 0.04}{857.4 - 24.68^2} = 1.39 \cdot 10^{-3} \frac{Pa}{c}$$

$$\sigma_{k_1} = \frac{1}{\sqrt{n}} \cdot \sqrt{\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2} - k^2} = \frac{1}{\sqrt{19}} \cdot \sqrt{\frac{17.09 \cdot 10^{-4} - 0.04^2}{857.4 - 24.68^2} - 1.39^2 \cdot 10^{-6}} = 0.01 \cdot 10^{-3} \frac{Pa}{c}$$

$$k_1 = (1.39 \pm 0.01) \cdot 10^{-3} (\frac{Pa}{c})$$

$$k_2 = (1.47 \pm 0.01) \cdot 10^{-3} (\frac{Pa}{c})$$

$$k_3 = (1.51 \pm 0.01) \cdot 10^{-3} (\frac{Pa}{c})$$

Nº	t, c	P,	t^2, c^2	$P^2 \cdot 10^4, ^2$	$P \cdot t$, ·
1	9	0.01	81	1.57	0.11
2	10	0.01	100	2.15	0.15
3	11	0.02	121	2.56	0.18
4	12	0.02	144	3.0	0.21
5	13	0.02	169	3.48	0.24
6	14	0.02	196	4.0	0.28
7	15	0.02	225	4.55	0.32
8	16	0.02	256	5.14	0.36
9	17	0.03	289	6.41	0.43
10	18	0.03	324	7.11	0.48
11	19	0.03	361	7.84	0.53
12	20	0.03	400	8.6	0.59
13	25	0.03	625	12.01	0.87
14	30	0.04	900	17.08	1.24
15	35	0.05	1225	24.33	1.73
16	40	0.06	1600	31.34	2.24
17	45	0.06	2025	39.25	2.82
18	55	0.08	3025	59.77	4.25
19	65	0.09	4225	84.6	5.98
$\langle \rangle$	24.68	0.04	857.42	17.09	1.21

Таблица 5: Данные для МНК по ухудшению 1

No॒	t, c	P,	t^2, c^2	$P^2 \cdot 10^4, ^2$	$P \cdot t$, ·
1	5	0.01	25	1.78	0.07
2	6	0.02	36	2.56	0.1
3	7	0.02	49	3.0	0.12
4	8	0.02	64	3.48	0.15
5	9	0.02	81	4.0	0.18
6	10	0.02	100	4.55	0.21
7	11	0.02	121	5.14	0.25
8	12	0.03	144	6.41	0.3
9	13	0.03	169	7.11	0.35
10	14	0.03	196	7.84	0.39
11	15	0.03	225	8.6	0.44
12	16	0.03	256	9.4	0.49
13	17	0.03	289	10.23	0.54
14	18	0.03	324	11.11	0.6
15	19	0.03	361	12.01	0.66
16	20	0.04	400	13.93	0.75
17	25	0.04	625	19.35	1.1
18	30	0.05	900	27.03	1.56
19	35	0.06	1225	34.4	2.05
20	40	0.07	1600	42.66	2.61
21	45	0.07	2025	53.75	3.3
22	55	0.09	3025	77.4	4.84
23	65	0.1	4225	105.35	6.67
$\langle \rangle$	21.52	0.04	715.87	20.48	1.21

Таблица 6: Данные для МНК по ухудшению 2

Nº	t, c	P,	t^2, c^2	$P^2 \cdot 10^4, ^2$	$P \cdot t$, ·
1	5	0.01	25	1.78	0.07
2	6	0.01	36	2.15	0.09
3	7	0.02	49	3.0	0.12
4	8	0.02	64	3.48	0.15
5	9	0.02	81	4.0	0.18
6	10	0.02	100	4.55	0.21
7	11	0.02	121	5.76	0.26
8	12	0.03	144	6.41	0.3
9	13	0.03	169	7.11	0.35
10	14	0.03	196	7.84	0.39
11	15	0.03	225	8.6	0.44
12	16	0.03	256	10.23	0.51
13	17	0.03	289	11.11	0.57
14	18	0.03	324	12.01	0.62
15	19	0.04	361	12.95	0.68
16	20	0.04	400	13.93	0.75
17	25	0.05	625	20.54	1.13
18	30	0.05	900	27.03	1.56
19	35	0.06	1225	35.98	2.1
20	40	0.07	1600	46.22	2.72
21	45	0.07	2025	55.72	3.36
22	55	0.09	3025	79.76	4.91
23	65	0.1	4225	108.11	6.76
$\langle \rangle$	21.52	0.04	715.87	21.23	1.23

Таблица 7: Данные для МНК по ухудшению 3

7. Зная эти коэффициенты вычислим значения оттока газа $Q_n + Q_d$:

$$(Q_n + Q_d)_1 = k \cdot V_{vv} = 1.39 \cdot 10^{-3} \cdot 1.19 \cdot 10^{-3} = 1.65 \cdot 10^{-6} \frac{Pa \cdot m^3}{c}$$

$$\sigma_{Q_1} = \varepsilon_{k_1} \cdot Q_1 = \frac{0.01}{1.39} \cdot 1.65 \cdot 10^{-6} = 0.01 \cdot 10^{-6} \frac{Pa \cdot m^3}{c}$$

$$Q_1 = (1.65 \pm 0.01) \cdot 10^{-6} \frac{Pa \cdot m^3}{c}$$

$$Q_2 = (1.74 \pm 0.01) \cdot 10^{-6} \frac{Pa \cdot m^3}{c}$$

$$Q_3 = (1.80 \pm 0.01) \cdot 10^{-6} \frac{Pa \cdot m^3}{c}$$

8. Оценим пропускную способность трубы от вакуумного баллона. Рассчитаем производительность насоса ещё одним способом: создав искусственную течь. Открываем кран K_6 при включённом насосе и измеряем давление, установившееся при течи. Оно равно

$$d \sim 10^{-2} \text{ м}, \quad L \sim 1 \text{ м}, \quad \sqrt{\frac{RT}{\mu}} \sim 500 \text{ м/c},$$

$$C_{\text{тр}} = \frac{4r^3}{3l} \sqrt{\frac{2\pi RT}{\mu}} \approx 1 \text{ л/c}$$
 (8)
$$P_{\text{уст}} = 1,4 \cdot 10^{-4} \text{ торр}.$$

$$P_{\text{пр}}W = Q_1, \quad P_{\text{уст}}W = Q_1 + \frac{(PV)_{\text{капилляр}}}{dt}$$

$$(P_{\text{уст}} - P_{\text{пр}})W = \frac{4}{3}(d/2)^3 \sqrt{\frac{2\pi RT}{\mu}} \frac{P_{\text{фB}}}{L},$$

где d и L — диаметр и длина капилляра, равные

$$d = 0.8 \text{ mm}, \quad L = 108 \text{ mm}, \quad P = 2.2 \cdot 10^{-3}$$

$$W = \frac{4r^3}{3L}\sqrt{\frac{2\pi RT}{\mu}}\frac{P}{P-P} = \frac{4\cdot0.0008^3}{3\cdot0.108}\sqrt{\frac{2\pi8.31\cdot295}{0.03}}\frac{2.2\cdot10^{-3}}{1.4\cdot10^{-4}-7.9\cdot10^{-5}} = 0.16~\text{m/c}$$

4. Вывод

Получили высокий вакуум: $P=7.9\cdot 10^{-5}$ торр. По улучшению вакуума определили скорость откачки насоса:

 $W=(0.244\pm0.004)~{\rm n/c}.$ По скорости течения газа в трубе в высоком вакууме определили скорость откачки насоса: $W=0.16~{\rm n/c}.$