Lecture 11

Christopher Godley
CSCI 2270 Data Structures
July 10th, 2018

Slides generated from textbook & Dr. Cochran's (WSUV) 234/RB-Tree Lecture

- A valid red-black tree holds to the following properties
 - 1. A node is either red or black
 - 2. The root node is black
 - 3. Every leaf (NULL) node is black
 - 4. If a node is red, then both of its children must be black
 - 5. For each node in the tree, all paths from that node to the leaf nodes contain the same number of black nodes

234 Trees

- A 234 tree is named after each type of node it contains
 - 2-node has 2 children
 - 3-node has 3 children
 - 4-node has 4 children

234 Trees

- To insert:
 - Search and insert into lowest internal node
 - 2-nodes become 3-nodes, 3-nodes become 4-nodes

 As we descend the tree, we split 4-nodes into two 2-nodes and move the middle element to the parent

234 Trees: Analysis

- Pros
 - Balanced
 - All subtrees have the same height!
 - O(log(N)) search, insert, (delete?)
- Cons
 - Complex node structure

```
class Node { // yuck!
  int n;
  K[] key;
  V[] val;
  Node[] children;
}
```

- 234 trees are isometrically the same as red black trees
- We can change the way we've looked at the previous trees to make them red black trees

Representing 2-3-4 nodes with BST nodes

Representing 2-3-4 nodes with Red-Black nodes

Representing 2-3-4 Tree with Red-Black Tree

- A valid red-black tree holds to the following properties
 - 1. Edges (nodes) is either red or black
 - 2. The root node is black
 - 3. Every leaf (NULL) node is black
 - 4. If a node is red, then both of its children must be black
 - 1. There should never be two consecutive red edges in a path
 - 5. For each node in the tree, all paths from that node to the leaf nodes contain the same number of black nodes
 - 1. This is known as B = "black height"

• Inserting into a 2-Node

• Inserting LEFT key into 3-Node (Case 1)

• Inserting LEFT key into 3-Node (Case 2)

• Inserting MIDDLE key into 3-Node

• Split 4-Node that is the child of a 2-Node

• Split 4-Node that is the rightmost child of 3-Node (Case 1)

• Split 4-Node that is the rightmost child of 3-Node (Case 2)

• Split 4-Node that is the MIDDLE child of 3-Node

black height B is now 4

- Refer to chapter 11 in the textbook for further descriptions of
 - Red-Black Trees
 - Their algorithms
 - Examples