Jinaykumer Patel
HW1
ROBOTICS
CSE 5364

For this assignment an external library (GSL) has been utilized for matrix operations.

The GNU Scientific Library (GSL) is a numerical library for C and C++ programmers. It is free software under the GNU General Public License.

How to Install GSL on Linux:

https://coral.ise.lehigh.edu/jild13/2016/07/11/hello/

https://gist.github.com/TysonRayJones/af7bedcdb8dc59868c7966232b4da903

Running GSL

- 1. export LD_LIBRARY_PATH=/usr/local/lib
- 2. gcc -Wall -L/usr/local/lib/ kin_fncs.c -o output_name.o -lgsl -lgslcblas -lm
- 3. ./output name.o

int gsl_matrix_memcpy(gsl_matrix *dest, const gsl_matrix *src)

This function copies the elements of the matrix src into the matrix dest. The two matrices must have the same size.

PART 1. Forward Kinematics

To determine the transformation from configunation space to contesion location of Tool frame (T) in the base frame (B), following are the Series of refational matrices used to express the frame (T) with respect to frame (B).

$$R_{z}(\theta_{0})D_{z}(\theta_{0})R_{y}(\theta_{1})D_{x}(\theta_{1})R_{y}(\theta_{2})D_{y}(\theta_{1})D_{x}(\theta_{2})R_{y}(\theta_{3})D_{z}(\theta_{2})R_{x}(\theta_{4})D_{x}(\theta_{2})$$
where,
$$R_{z}(\theta_{0}) = \begin{bmatrix} \cos\theta_{0} & -\sin\theta_{0} & 0 & 0 \\ \sin\theta_{0} & \cos\theta_{0} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_{y}(\theta_{1}) = \begin{bmatrix} \cos\theta_{1} & 0 & \sin\theta_{1} & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\theta_{1} & 0 & \cos\theta_{1} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_{y}(\theta_{1}) = \begin{bmatrix} \cos\theta_{1} & 0 & \sin\theta_{1} & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\theta_{1} & 0 & \cos\theta_{1} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_{y}(\theta_{1}) = \begin{bmatrix} \cos\theta_{1} & 0 & \sin\theta_{1} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_{y}(\theta_{2}) = \begin{bmatrix} \cos \theta_{2} & 0 & \sin \theta_{2} & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta_{2} & 0 & \cos \theta_{2} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_{y}(\theta_{2}) = \begin{bmatrix} \cos \theta_{3} & 0 & \sin \theta_{3} & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta_{3} & 0 & \cos \theta_{3} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_{X}(\theta_{4}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 65\theta_{4} & -5in\theta_{5} & 0 \\ 0 & 5in\theta_{5} & 665\theta_{5} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$D_{Z}(L_{0}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$D_{X}(L_{1}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 6 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$D_{Y}(L_{1}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 6 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$D_{x}(l_{2}) = \begin{bmatrix} 1 & 0 & 0 & l_{2} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$D_{z}(d_{2}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & d_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$D_{X}(L_{3}) = \begin{bmatrix} 1 & 0 & 0 & L_{3} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

PART 2. Inverse Kinematics

Evaluating 00 Considering the following XY View ma (x', y')

 $\theta_0 = Y - \beta$

$$\frac{y}{(x,y)}$$

$$\frac{d^{2}(x,y)}{(x,y)}$$

$$\frac{d^{2}(x,y)}{(x,y)}$$

$$\frac{d^{2}(x,y)}{(x,y)}$$

$$\frac{d^{2}(x,y)}{(x,y)}$$

x in the grame
$$(x''-y'')$$

 $x'' = \sqrt{(x-d_2(os\theta_0)^2 + (y-d_2sin\theta_0)^2}$

$$\bar{x}$$
 in the frame $\{x''-y''\}$

$$\bar{x} = \sqrt{(x-d_2\cos\theta_0 + d_1\sin\theta_0)^2 + (y-d_2\sin\theta_0 - d_1\cos\theta_0)^2}$$

$$Q_{1} + \theta_{2} + \theta_{3} = \frac{\pi}{2}$$

$$R'' = \sqrt{x^{2} + (z + l_{3} - l_{0})^{2}}$$

$$R'' = \sqrt{(x - d_{2} \cos \theta_{0} + d_{1} \sin \theta_{0})^{2} + (y - d_{2} \sin \theta_{0} - d_{1} \cos \theta_{0})^{2} + (z + l_{3} - l_{0})^{2}}$$

$$(0s(\pi-0_2) = \frac{\lambda_1^2 + \lambda_2^2 - {k''}^2}{2 \lambda_1 \lambda_2}$$

$$(2 + k'')^2 - \lambda_2^2$$

Cos
$$x = \frac{4 + 3c - 3c^2}{24 k''}$$
 $\theta_1 = Y + x + 0k + \theta_1 = Y - x$

depending on the Sign of θ_2

Once, we have $0_1 4 0_2$ from this, $0_3 = \frac{\pi}{2} - 0_1 - 0_2$

PART 3. Jacobian Matrix

In order to get Jacobian Matrix, Series of rotational matrices are multiplied as done in PART 1 (kinematics).

Following 9s the matheb Code Snippet for multiplying the matrices using Symbolic toolbox of MATLAB.

```
function mat = Jacobian()

syms theta0 theta1 theta2 theta3 I0 I1 d1 I2 d2 I3

R0 = [cos(theta0) -sin(theta0) 0 0; sin(theta0) cos(theta0) 0 0; 0 0 1 0; 0 0 0 1];

R1 = [1 0 0 0; 0 1 0 0; 0 0 1 10; 0 0 0 1];

R2 = [cos(theta1) 0 sin(theta1) 0; 0 1 0 0; -sin(theta1) 0 cos(theta1) 0; 0 0 0 1];

R3 = [1 0 0 I1; 0 1 0 0; 0 0 1 0; 0 0 0 1];

R4 = [cos(theta2) 0 sin(theta2) 0; 0 1 0 0; -sin(theta2) 0 cos(theta2) 0; 0 0 0 1];

R5 = [1 0 0 0; 0 1 0 d1; 0 0 1 0; 0 0 0 1];

R6 = [1 0 0 I2; 0 1 0 0; 0 0 1 0; 0 0 0 0 1];

R7 = [cos(theta3) 0 sin(theta3) 0; 0 1 0 0; -sin(theta3) 0 cos(theta3) 0; 0 0 0 1];

R8 = [1 0 0 0; 0 1 0 0; 0 1 0 d2; 0 0 0 1];

R8 = [1 0 0 I3; 0 1 0 0; 0 1 0 0; 0 0 0 0 1];

R = R0*R1*R2*R3*R4*R5*R6*R7*R8;

mat = R(1:end-1,end);
```

end

We are Only concerned with the position in the matrix i.e. last Column.

The Output from the above Code is

$$\frac{\partial x}{\partial \theta_0} = I_2 \left[\sin \theta_0 \sin \theta_1 \sin \theta_2 - \cos \theta_1 \cos \theta_2 \sin \theta_0 \right]$$

$$- J_2 \left[\cos \theta_3 \left(\cos \theta_1 \sin \theta_0 \sin \theta_2 + \cos \theta_2 \sin \theta_0 \sin \theta_1 \right) \right]$$

$$- Sin \theta_3 \left(\sin \theta_0 \sin \theta_1 \sin \theta_2 - \cos \theta_1 \cos \theta_2 \sin \theta_0 \right)$$

$$+ J_3 \left[\cos \theta_3 \left(\sin \theta_0 \sin \theta_1 \sin \theta_2 - \cos \theta_1 \cos \theta_2 \sin \theta_0 \right) \right]$$

$$+ Sin \theta_3 \left(\cos \theta_1 \sin \theta_0 \sin \theta_2 + \cos \theta_2 \sin \theta_0 \sin \theta_1 \right)$$

$$-d_1 \cos \theta_0 - d_1 \cos \theta_1 \sin \theta_0$$

$$-d_{2} \sin \theta_{3} \sin \theta_{0} \cos (\theta_{1} + \theta_{2})$$

$$-d_{3} \cos \theta_{3} \sin \theta_{0} \cos (\theta_{1} + \theta_{2})$$

$$+d_{3} \sin \theta_{3} \sin \theta_{0} \sin (\theta_{1} + \theta_{2})$$

$$-d_{1} \cos \theta_{0} -d_{1} \cos \theta_{1} \sin \theta_{0}$$

$$\frac{\partial x}{\partial \theta_{1}} = -d_{2} \left(\cos \theta_{0} \cos \theta_{1} \sin \theta_{2} + \cos \theta_{0} \cos \theta_{2} \sin \theta_{1}\right)$$

$$-d_{2} \left[\cos \theta_{3} \left(\cos \theta_{0} \sin \theta_{1} \sin \theta_{2} - \cos \theta_{0} \cos \theta_{1} \cos \theta_{2} \sin \theta_{1}\right)\right]$$

$$+\sin \theta_{3} \left(\cos \theta_{0} \cos \theta_{1} \sin \theta_{2} + \cos \theta_{0} \cos \theta_{2} \sin \theta_{1}\right)$$

$$-d_{3} \left[\cos \theta_{3} \left(\cos \theta_{0} \cos \theta_{1} \sin \theta_{2} + \cos \theta_{0} \cos \theta_{2} \sin \theta_{1}\right)\right]$$

$$-\sin \theta_{3} \left(\cos \theta_{0} \cos \theta_{1} \sin \theta_{2} + \cos \theta_{0} \cos \theta_{2} \sin \theta_{1}\right)$$

$$-\sin \theta_{3} \left(\cos \theta_{0} \sin \theta_{1} \sin \theta_{2} - \cos \theta_{0} \cos \theta_{2} \sin \theta_{1}\right)$$

- $d_2 \cos \theta_3 \sin \theta_0 \sin (q + \theta_2)$

 $\frac{\partial x}{\partial \theta_1} = -L_2 \sin \theta_0 \cos (\theta_1 + \theta_2)$

- l, cos Oo Sin On

$$-L_{3}\cos\theta_{3}\cos\theta_{0}\sin(\theta_{1}+\theta_{2})$$

$$-L_{2}\sin\theta_{3}\cos\theta_{0}\cos\theta_{0}\cos(\theta_{1}+\theta_{2})$$

$$-L_{1}\cos\theta_{0}\sin\theta_{1}$$

$$-L_{1}\cos\theta_{0}\sin\theta_{1}+\cos\theta_{0}\cos\theta_{2}\sin\theta_{1})$$

$$-d_{2}\left[\cos\theta_{3}\left(\cos\theta_{0}\sin\theta_{1}\sin\theta_{2}-\cos\theta_{0}\cos\theta_{1}\cos\theta_{2}\right)\right]$$

$$+\sin\theta_{3}\left(\cos\theta_{0}\cos\theta_{1}\sin\theta_{2}+\cos\theta_{0}\cos\theta_{2}\sin\theta_{1}\right)$$

$$-L_{3}\left[\cos\theta_{3}\left(\cos\theta_{0}\cos\theta_{1}\sin\theta_{2}+\cos\theta_{0}\cos\theta_{2}\sin\theta_{1}\right)\right]$$

$$-\sin\theta_{3}\left(\cos\theta_{0}\cos\theta_{1}\sin\theta_{2}+\cos\theta_{0}\cos\theta_{2}\sin\theta_{1}\right)$$

$$-\sin\theta_{3}\left(\cos\theta_{0}\sin\theta_{1}\sin\theta_{2}-\cos\theta_{0}\cos\theta_{2}\sin\theta_{1}\right)$$

$$-\sin\theta_{3}\left(\cos\theta_{0}\sin\theta_{1}\sin\theta_{2}-\cos\theta_{0}\cos\theta_{2}\sin\theta_{1}\right)$$

 $\frac{\partial x}{\partial \theta_1} = -L_2 \cos \theta_0 \sin(\theta_1 + \theta_2)$

 $+d_2\cos\theta_3\cos\theta_0\cos(\theta_1+\theta_2)$

 $-d_2 \sin \theta_3 \cos \theta_0 \sin (\theta_1 + \theta_2)$

$$- I_{3} \cos \theta_{3} \cos \theta_{0} \sin(\theta_{1} + \theta_{2})$$

$$- I_{3} \sin \theta_{3} \cos \theta_{0} \cos(\theta_{1} + \theta_{2})$$

$$- I_{3} \sin \theta_{3} \cos \theta_{0} \cos(\theta_{1} + \theta_{2})$$

$$+ \sin \theta_{3} \left(\cos \theta_{0} \sin \theta_{1} \sin \theta_{2} - \cos \theta_{0} \cos \theta_{1} \cos \theta_{2}\right)$$

$$+ \sin \theta_{3} \left(\cos \theta_{0} \cos \theta_{1} \sin \theta_{2} + \cos \theta_{0} \cos \theta_{2} \sin \theta_{1}\right)$$

$$- I_{3} \left[\cos \theta_{3} \left(\cos \theta_{0} \cos \theta_{1} \sin \theta_{2} + \cos \theta_{0} \cos \theta_{2} \sin \theta_{1}\right)\right]$$

$$- \sin \theta_{3} \left(\cos \theta_{0} \sin \theta_{1} \sin \theta_{2} - \cos \theta_{0} \cos \theta_{1} \cos \theta_{2}\right)$$

- L2 Cos O, sin (O1 + O2)

 $+ d_2 \cos \theta_3 \cos \theta_0 \cos (\theta_1 + \theta_2)$

- d2 Sin 03 Cos 0, sin (0, + 02)

$$\frac{\partial X}{\partial \theta_{3}} = d_{2} \cos \theta_{3} \cos \theta_{6} \cos (\theta_{1} + \theta_{2})$$

$$- d_{2} \sin \theta_{3} \cos \theta_{6} \sin (\theta_{1} + \theta_{2})$$

$$- d_{3} \cos \theta_{3} \cos \theta_{6} \sin (\theta_{1} + \theta_{2})$$

$$- d_{3} \sin \theta_{3} \cos \theta_{6} \cos (\theta_{1} + \theta_{2})$$

$$- d_{3} \sin \theta_{3} \cos \theta_{6} \cos (\theta_{1} + \theta_{2})$$

$$+ d_{2} \sin \theta_{3} \cos \theta_{6} \cos (\theta_{1} + \theta_{2})$$

$$+ d_{2} \sin \theta_{3} \cos \theta_{6} \cos (\theta_{1} + \theta_{2})$$

$$+ d_{3} \cos \theta_{3} \cos \theta_{6} \cos (\theta_{1} + \theta_{2})$$

$$- d_{3} \sin \theta_{3} \cos \theta_{6} \sin (\theta_{1} + \theta_{2})$$

$$- d_{1} \sin \theta_{6} + d_{1} \cos \theta_{6} \cos \theta_{1}$$

$$-d_{2} \sin \theta_{3} \sin \theta_{0} \sin (\theta_{1} + \theta_{2})$$

$$-d_{3} \cos \theta_{3} \sin \theta_{0} \sin (\theta_{1} + \theta_{2})$$

$$-d_{3} \sin \theta_{3} \sin \theta_{0} \cos (\theta_{1} + \theta_{2})$$

$$-d_{4} \sin \theta_{0} \sin \theta_{1}$$

$$+d_{2} \cos \theta_{3} \sin \theta_{0} \cos (\theta_{1} + \theta_{2})$$

$$+d_{2} \cos \theta_{3} \sin \theta_{0} \cos (\theta_{1} + \theta_{2})$$

$$-d_{2} \sin \theta_{3} \sin \theta_{0} \sin (\theta_{1} + \theta_{2})$$

$$-d_{3} \cos \theta_{3} \sin \theta_{0} \sin (\theta_{1} + \theta_{2})$$

$$-d_{3} \sin \theta_{3} \sin \theta_{0} \cos (\theta_{1} + \theta_{2})$$

$$-d_{3} \sin \theta_{3} \sin \theta_{0} \cos (\theta_{1} + \theta_{2})$$

 $+d_2 \cos \theta_3 \sin \theta_0 \cos (\theta_1 + \theta_2)$

 $\frac{\partial \gamma}{\partial \theta_1} = -L_2 \sin \theta_0 \sin (\theta_1 + \theta_2)$

$$\frac{\partial \gamma}{\partial \theta_3} = d_2 \cos \theta_3 \sin \theta_0 \cos (\theta_1 + \theta_2)$$

$$-d_2 \sin \theta_3 \sin \theta_0 \sin (\theta_1 + \theta_2)$$

$$-d_3 \cos \theta_3 \sin \theta_0 \sin (\theta_1 + \theta_2)$$

$$-d_3 \sin \theta_3 \sin \theta_0 \cos (\theta_1 + \theta_2)$$

$$-d_3 \sin \theta_3 \sin \theta_0 \cos (\theta_1 + \theta_2)$$

$$-d_3 \sin \theta_3 \sin \theta_0 \cos (\theta_1 + \theta_2)$$

200	
<u> </u>	$-\frac{1}{2}\cos(\theta_1+\theta_2)-\frac{1}{4}\cos\theta_1$
891	- d2 cos 03 Sin (01+02)
	- $d_2 \sin \theta_3 \cos(\theta_1 + \theta_2)$
	- 13 Cos03 Cos (9+ 02)

- Lz sin Oz sin (O1+ O2)

$$-d_{2}\sin\theta_{3}\cos(\theta_{1}+\theta_{2})$$

$$-d_{3}\cos\theta_{3}\cos(\theta_{1}+\theta_{2})$$

$$-d_{3}\cos\theta_{3}\cos(\theta_{1}+\theta_{2})$$

-1, $\cos(\theta_1 + \theta_2) - d_2 \cos \theta_3 \sin(\theta_1 + \theta_2)$

	+ $L_3 \sin \Theta_3 \sin (\theta_1 + \Theta_2)$
7 =	$-d_2 \cos \theta_3 \sin(9+\theta_2)$

- d2 Sin 0, Cos (0,+ 02)

- 13 (0503 (01+02)

+ L2 Sin O3 Sin (01+ O2)

$$J(\theta_0, \theta_1, \theta_2, \theta_3) = \begin{bmatrix} \frac{\partial x}{\partial \theta_0} & \frac{\partial x}{\partial \theta_1} & \frac{\partial x}{\partial \theta_2} & \frac{\partial x}{\partial \theta_3} \\ \frac{\partial y}{\partial \theta_0} & \frac{\partial y}{\partial \theta_1} & \frac{\partial y}{\partial \theta_2} & \frac{\partial y}{\partial \theta_3} \\ \frac{\partial z}{\partial \theta_0} & \frac{\partial z}{\partial \theta_1} & \frac{\partial z}{\partial \theta_2} & \frac{\partial z}{\partial \theta_3} \end{bmatrix}_{3\times4}$$