06/11/2024 **TEMA 7** Hoja 1 de 4

APELLIDO:		
NOMBRE:	CALIFICACIÓN:	
DNI (registrado en SIU Guaraní):		
E-MAIL:	DOCENTE (nombre y apellido):	
TEL:		
AULA:		

Tabla de uso exclusivo para el docente

	1	2	3	4
Puntaje de cada	2,50	2,50	2,50	2,50

Duración del examen: 1h 30'. Completar los datos personales con letra clara, mayúscula e imprenta.

No se aceptarán respuestas en lápiz.

1. Hallar el valor de $m \in \mathbb{R}$ para que y = mx + 3 sea recta tangente de la función $f(x) = \frac{3}{x+2} - x^3 + 5$ en el valor $x_0 = -1$.

Si la recta tangente a la función en $x_0 = -1$ es y = mx + 3 y sabiendo que la pendiente de la recta tangente a la función es el valor de la derivada evaluada en el x_0 dado, entonces debemos hallar el valor de m tal que f'(-1) = m

(Tema: Aplicación de la derivada, recta tangente).

Comenzamos derivando la función, con las reglas de derivación:

$$f'(x) = -\frac{3}{(x+2)^2} - 3x^2$$

Evaluando la función en $x_0 = -1$:

$$f'(-1) = -\frac{3}{(-1+2)^2} - 3 \cdot (-1)^2$$
$$f'(-1) = -3 - 3$$
$$f'(-1) = -6$$

Por ende, m = -6

TEMA 7 Hoja 2 de 4

APELLIDO Y NOMBRE: DNI:

2. El valor de $m \in \mathbb{R}$ para el cual $f(x) = 2(3^{x+1} - 4) - m$ tiene una raíz en x = -2.

Para resolver este ejercicio debemos trabajar con el concepto de funciones- raíz de una función- funciones exponenciales.

Para hallar el valor de "m" es importante recordar que la raíz de una función representa el punto de intersección entre la gráfica y el eje de abscisas (x), por lo tanto:

$$f(-2) = 0$$

$$f(-2) = 2 \cdot (3^{-2+1} - 4) - m = 0$$

$$2 \cdot (3^{-1} - 4) - m = 0$$

Resolvemos la ecuación para hallar el valor de "m"

$$2\left(\frac{1}{3} - 4\right) = m + 0$$
$$2 \cdot \left(-\frac{11}{3}\right) = m$$
$$-\frac{22}{3} = m$$

La función queda definida:

$$f(x) = 2(3^{x+1} - 4) + \frac{22}{3}$$

Hoja 3 de 4

APELLIDO Y NOMBRE: DNI:

3. Resolver: $\int \frac{4x-3}{2x^2-3x+1} dx$

Para la realización de este ejercicio se deben considerar los siguientes contenidos:

Sesión 4: Función cuadrática; Función polinómica; Polinomios

Sesión 9: Función logarítmica

Sesión 10: Derivadas. Tabla de derivadas

Sesión 12: Integrales; Métodos de integración

Es posible resolver esta integral mediante el método de sustitución:

$$\int \frac{4x-3}{2x^2-3x+1} \ dx$$

Realizamos un cambio de variable: $u = 2x^2 - 3x + 1$ (1)

Derivando: $du = 4x - 3 dx \qquad (2)$

Reemplazando (1) y (2) en la integral: $\int \frac{1}{u} du$

Resolviendo la integral: $\ln|u| + C$

Reemplazando en la expresión por (1): $\ln|2x^2 - 3x + 1| + C$

APELLIDO Y NOMBRE: DNI:

TEMA 7 Hoja 4 de 4

4. Dados los vectores de \mathbb{R}^2

$$\vec{a} = (1;1)$$
; $\vec{b} = (2;-3)$; $\vec{c} = (-4;0)$

Hallar: $\vec{c} \cdot \vec{b}$; $-2\vec{a} \cdot 2\vec{c}$; $\vec{a} \cdot \vec{a}$

Para la realización de este ejercicio, es conveniente ver el apunte teórico correspondiente a: Vectores en \mathbb{R}^2

Recordemos que, según lo visto en la teoría, si consideramos dos vectores $\vec{u}=(a;b)\,y$ $\vec{v}=(c;d)$, el producto escalar $\vec{u}.\vec{v}$ se calcula como:

$$\vec{u} \cdot \vec{v} = a \cdot c + b \cdot d$$

Por lo tanto, para realizar \vec{c} . \vec{b} , debemos proceder de la siguiente manera:

$$\vec{c} \cdot \vec{b} = (-4; 0) \cdot (2; -3)$$

$$\vec{c} \cdot \vec{b} = -4.2 + 0.(-3)$$

$$\vec{c} \cdot \vec{b} = -8 + 0$$

$$\vec{c} \cdot \vec{b} = -8$$

Por otro lado, al realizar $-2\vec{a}$. $2\vec{c}$, debemos recordar la siguiente propiedad:

El producto de un vector \vec{v} definido en forma cartesiana, por un escalar \vec{k} , es otro vector cuyas coordenadas son las coordenadas del vector \vec{v} multiplicadas por el escalar k.

En otras palabras:

Si $\vec{v} = (a; b) y k$ es un número real, entonces $k \cdot \vec{v} = (k \cdot a; k \cdot b)$

Entonces:

$$-2\vec{a}.\ 2\vec{c} = -2.(1;1) \ . \ 2.(-4;0)$$

$$-2\vec{a}.\ 2\vec{c} = (-2.1; -2.1) \ . \ (2.(-4); 2.0)$$

$$-2\vec{a}.2\vec{c} = (-2; -2).(-8; 0)$$

Finalmente resolvemos el producto escalar:

$$-2\vec{a}.2\vec{c} = -2.(-8) + (-2).0$$

$$-2\vec{a}.2\vec{c} = -2.(-8) + (-2).0$$

$$-2\vec{a}.\ 2\vec{c} = 16 + 0$$

$-2\vec{a}. 2\vec{c} = 16$

Por último, se nos pide calcular \vec{a} . \vec{a} . Una posible forma de resolver podría ser mediante la siguiente propiedad:

El producto escalar de un vector por sí mismo es igual al cuadrado de su módulo:

$$\vec{v}$$
. $\vec{v} = |\vec{v}|^2$

Con lo cual:

$$\vec{a}.\vec{a} = |\vec{a}|^2$$

Como a su vez, el módulo de un vector puede calcularse como la raíz cuadrada de la suma de cada una de sus componentes al cuadrado, podremos resolver de la siguiente manera:

$$\vec{a}.\,\vec{a} = \left(\sqrt{1^2 + 1^2}\right)^2$$

$$\vec{a} \cdot \vec{a} = \left(\sqrt{2}\right)^2$$

$$\vec{a} \cdot \vec{a} = 2$$