# **Best Available Copy**



WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



# INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: **G06T** 

US

(11) International Publication Number:

WO 97/35280

(43) International Publication Date: 25 September 1997 (25.09.97)

Ask (III OPPRIIT

(21) International Application Number:

PCT/IL97/00093

(22) International Filing Date:

13 March 1997 (13.03.97)

(30) Priority Data:

60/013,624

15 March 1996 (15.03.96)

Yoav [IL/IL]; 5 Hofyan Street, 69103. Tel Aviv (IL). LIVINE, Eyal [IL/IL]; 8 Karl Neter Street, 44421 K'far Saba (IL). KIKIN, Ruth [IL/IL]; 33 Gordon Street, 63407 Tel Aviv (IL). ZUCKERMAN, Oren [IL/IL]; 5 Herut Street, 52541 Ramat Gan (IL). KAAS, Ron [IL/IL]; 5 Moshav, 73115 Ben-Shemen (IL).

(74) Agents: SANFORD, T., Colb et al.; Sanford T. Colb & Co., P.O. Box 2273, 76122 Rehovot (IL).

(71) Applicant (for all designated States except US): ZAPA DIGI-TAL ARTS LTD. [IL/IL]; 14 Yehuda Halevi Street, 65137 Tel Aviv (IL).

(72) Inventors; and

(75) Inventors/Applicants (for US only): GEVER, Eyal [IL/IL]; 18 Ha'kovshim Street, 68012 Tel Aviv (IL), HERMONI. Nir [IL/IL]; 35 Sokolov Street, 52564 Ramat Gan (IL). BERGMAN, Orit [IL/IL]; 11 K'far Yona Street, 69053 Tel Aviv (IL). TAYAR, Gil [IL/IL]; 69 Jabotinski Street, 53319 Giv'atayim (IL). RESHEF, Eilon [IL/IL]; 31 Melchet Street, 63114 Tel Aviv (IL). GILL, Doron [IL/IL]; 24 Arlozorov Street, 53373 Giv'atayim (IL). FEUERSTEIN, Addy [IL/IL]; 33 Balfur Street, 65211 Tel Aviv (IL). CANETI, Yaron [IL/IL]; 16 Karmiah Street, 64259 Tel Aviv (IL). OPPENHEIM, Roy [IL/IL]; 18 Ha'hashmona'im Street, 63264 Tel Aviv (IL). ETAM, Eran [IL/IL]; 1 Rekanati Street, 69494 Tel Aviv (IL). SHPEIZER, Zohar [IL/IL]; 3 La'hover Street, 69023 Tel Aviv (IL). BORER,

(81) Designated States: AL, AM, AT, AT (Utility model), AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, CZ (Utility model), DE, DE (Utility model), DK, DK (Utility model), EE, EE (Utility model), ES, FI, FI (Utility model), GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, SUR; LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (Utility model).
TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patenti (AT, BE; iv (12)). (3) CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, SMC, NE, PT, SE), OAPI patent (BF, BJ, CF, CG&CI, CM#GA2GN) from Simple (\$221) ML, MR, NE, SN, TD, TG). CANETI, Yaron IIL/ILI: 16 Karmich S

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: PROGRAMMABLE COMPUTER GRAPHIC OBJECTS



(57) Abstract

A method for producing an animation sequence on a graphic display driven by a computer, including defining an object that includes a geometrical description of an animated character and characteristics of social behaviour of the character and animating an image of the character responsive to the characteristics. The character is programmed with a predetermined response, such as a rule governing motion of the character, to a sensitivity condition occurring externally to the object. The geometrical description of the object includes a geometrical skeleton characterized by a hierarchy of sub-objects connected by joints, the rule governing motion defines motions of the joints.

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.  $\frac{2.5}{1.5}$ 

| AL   | Albania                  | ES   | Spain               | LS   | Lesotho               | SI   | Slovenia                 |     |
|------|--------------------------|------|---------------------|------|-----------------------|------|--------------------------|-----|
| AM - | Armenia                  | FI   | Finland             | LT   | Lithuania             | SK   | Slovakia                 |     |
| AT   | Austria                  | FR   | France              | LU   | Luxembourg            | SN   | Senegal                  |     |
| AÜ   | Australia                | GA   | Gabon               | LV   | Latvia                | SZ   | Swaziland                |     |
| AZ   | Azerbaijan               | GB   | United Kingdom      | MC   | Monaco                | TD   | Chad                     |     |
| BA   | Bosnia and Herzegovina   | GE   | Georgia             | MD   | Republic of Moldova   | TG   | Togo                     |     |
| ВВ   | Barbados                 | GH   | Ghana               | MG   | Madagascar            | TJ.  | Tajikistan               |     |
| BE   | Belgium                  | GN   | Guinea "            | MK   | The former Yugoslav   | TM   | Turkmenistan             | .50 |
| BF   | Burkina Faso             | GR   | Greece              |      | Republic of Macedonia | TR   | - Turkey                 |     |
| BG   | Bulgaria                 | HU   | Hungary             | ML   | Mali                  | π    | Trinidad and Tobago      |     |
| BJ   | Benin                    | Æ    | Ireland             | MN   | Mongolia              | · UA | Ukraine                  |     |
| BR   | Brazil                   | Œ    | Israel              | MR   | Mauritania            | UG   | Uganda                   |     |
| BY   | Belarus                  | IS   | Iceland             | MW   | Malawi                | US   | United States of America |     |
| CA   | Canada                   | IT   | Ital <del>y</del>   | MX   | Mexico                | UZ.  | Uzbekistan               |     |
| CF   | Central African Republic | JP   | Japan               | NE   | Niger                 | VN   | Vict Nam                 |     |
| CG   | Congo                    | KE   | Kenya               | NL   | Netherlands           | YU   | Yugoslavia               | •   |
| СН   | Switzerland              | KG   | Kyrgyzstan          | NO   | Norway                | zw   | Zimbabwe                 | ~ ~ |
| a    | Côte d'Ivoire            | . KP | Democratic People's | NZ   | New Zealand           |      |                          | 05  |
| СМ   | Carseroon                |      | Republic of Korea   | PL   | Poland                |      |                          | ,   |
| CN   | China .                  | KR   | Republic of Korea   | PT   | Portugal              |      |                          |     |
| . cu | Cuba .                   | KZ · | Kazakstan           | · RO | Romania               |      | ,                        |     |
| cz   | Czech Republic           | LC   | Saint Lucia         | RU   | Russian Federation    |      | •                        | . " |
| DE   | Germany                  | u    | Liechtenstein       | SD   | Sudan                 |      |                          |     |
| DK   | Denmark                  | LK   | Sri Lanka           | SE   | Sweden                |      |                          |     |
| EE   | Estonia                  | LR   | Liberia             | SG   | Singapore             |      |                          |     |
|      |                          |      |                     |      |                       |      |                          |     |

event sur larst until re

. 50ii'

for 3D graph staletons, o

CONCUE THEY the joints. T Head, arms, darutios we\_

desired path , or more key are interpola

48 Februared C - example, "Is rendering so

5

10

15

20

25

30

35

## PROGRAMMABLE COMPUTER GRAPHIC OBJECTS

This application claims the benefit of U.S. Provisional Patent Application No. . . 60/013,624, filed March 15, 1996, which is incorporated herein by reference.

#### FIELD OF THE INVENTION

The present invention relates generally to computer animation, and specifically to interactive generation and manipulation of moving computer graphic objects.

## **BACKGROUND OF THE INVENTION**

Computer animation systems and methods are well known in the art, serving a wide a constituent of applications in which a computer is used to generate and/or manipulate moving images.

In recent years, the rapid advance in computing speed and reduction in cost of personal computers (PC's) has made computer animation widely accessible. Because of the relatively C's has made computers (PC's) has made computer animation widely accessible. Because of the relatively C's has made computer to another load associated with three-dimensional (3D) image rendering, most of the latively C's has made computer animation programs for PC's have been able to offer only 2D imaging or very limited 3D effects ograms for PC's has Similarly, although 2D animations are now commonly conveyed from one computer to another made over the Internet and other network systems, the bandwidth limitations of the Internet have, as made it generally impractical to convey 3D animations.

Software tools and languages are available to assist programmers in creating 30 vare tools and languages are available to assist programmers in creating 30 vare tools and languages animations. For example, "LightWave 5:0," produced by Newtek, Inc., of Topeka, Kansas, is a roll example. "LightWave 5:0," produced by Newtek, Inc., of Topeka, Kansas, is a roll example. "LightWave 5:0," produced by Newtek, Inc., of Topeka, Kansas, is a roll example. "Light was software package that enables users to define and manipulate geometrical models and animations in a computer animation environment. Such objects are defined as objects within a skeletons, or hierarchies of geometrical shapes that are connected together at joints enough the reservoires of geometrical shapes that are connected together at joints environment include methods, or program routines, that define the basic movements of include methods may further include methods, or program routines, that define the basic movements of including increase include methods may further include methods and animated humanoid character may be defined by a skeleton including increase, hands, feet, the describe walking, running, hands, feet, and other features, with interlinking joints and methods in the legs. hands, feet, describe walking, running, hand-waving and other actions. Motion of the character along alking, running, hand desired path in a 3D virtual space may be engendered by indicating positions of the object in two frames frames, whereupon are interpolated, using the appropriate methods belonging to the object.

Based on the 3D geometrical definition of the object, an image of the animated characterd on the 3D geometric is rendered on a computer screen. Various software packages are available for 3D rendering from a computer screen example, "RenderWare V2.0," produced by Criterion Software Ltd. of Surrey. The enderWare V2.0," rendering software typically takes into account the effects of light, shade, color, surface textures, tware typically takes perspective and other visual elements, to create a convincingly "3D" image on the flat computer and other visual elements screen. Generally, multiple 3D objects are rendered together, along with a suitable background erally, multiple 3D of to form a single image on screen.

U.S. Patent 5,261,041, to Susman, which is incorporated herein by reference, describes a Patent 5,261,041, or computer-controlled animation system based on manipulation of animated objects. Each object

\_)

includes state data and methods, or functions, defining the behavior of the object. The objects also have associated affect volumes and affect agents, or methods, that determine how they will interact with each other as an animation sequence progresses. The animation sequence is governed by a set of rules, graphs or scripts. The behavior of the objects in the sequence is modeled and rendered on a display screen.

5

10

15

20

25

30

35

U.S. Patent 5,483,630, to Unuma et al., which is incorporated herein by reference, describes a method for representing motion of multiple-jointed objects, for use in computer animation. The bending angles of the joints of a multiple-jointed object are represented by functions expressed independently of the length between the joints. Based on the functions, contour data are produced representing the motion of the joints, which data are used in rendering the objects in computer animation sequences. Parameters of the functions can be adjusted so that the motion of the joints has a desired character, for example, running or walking motion, or motion having a manner intended to give a sense of an emotional quality.

gripar vrom, 5g

arawset, spej

าขอดีกกลังเอ เ

r im nalappie

Gimensional,

mound, inch

myyrpynarcy.

iyear ammane

ياسهارين صحادات

تروق أنهمها والمتعادلة

charroters, na

airmatea mee

patucidants. :

mon ticking:

U.S. Patent 5,267,154, to Takeuchi et al., which is incorporated herein by reference, describes a system for producing "biological images," i.e., animated computer images of human and animal characters. Images are synthesized by combining data from several databases in which shapes, motions and external features and textures are stored. The system is used to produce a variety of 3D animated characters, which take part in computer-animated image sequences.

U.S. Patent 5,577,185, to Tunnell et al., which is incorporated herein by reference, describes a method and apparatus for creating computer-animated puzzles. The puzzles are made up of animated objects, such as structural members and characters, displayed on a computer screen. Each of the objects has a set of programmed physical and behavioral attributes, as a result of which the objects appear on screen to be aware of and to react to one another. They are programmed to appear to obey physical laws, such as the laws of gravity and motion, and to exhibit natural tendencies, such as hunger and affinity. The puzzles are created by selecting the desired objects from a menu displayed on the computer screen.

Computer-animated images may be overlaid on other images and/or windows on a computer display screen. For example, U.S. Patent 5,546,518, to Blossom et al., which is incorporated herein by reference, describes a system and method for composing a display frame of multiple, layered graphic "sprites." A sprite is a graphic image that forms a part or a region of an overall computer display screen. The sprites are overlaid one above the other. The sprites preferably include transparent pixels in certain areas, through which underlying graphics can be seen. The system of sprites is used to combine video and/or animated images together with still images on a single screen.

Recently, tools have begun to emerge for sending and receiving 3D animations over computer networks, such as the Internet, for example, Version 2.0 of the Virtual Reality Modeling Language (VRML 2.0), as described in "Moving Worlds," at http://vrml.sgi.com

(Silicon Graphics Inc.), and incorporated herein by reference. VRML 2.0 was developed by a group of companies to provide a language for creating animations in a compact form that is convenient for transmission over the Internet, and for viewing the animations at the receiving end. VRML 2.0 includes conventions for a user at a source computer to define and organize elements of an interactive animated image, such as 3D object geometries, surface textures, motion and action scripts and to encapsulate these elements for Internet transmission. When the encapsulated elements are received by a target computer having VRML-compatible network browser software, the animated image created at the source computer is rendered on the target computer screen.

Viewers of 3D animations generally require user interface software to enable them to observe and manipulate the animated images. Such software is known in the art, for example, "CosmoPlayer," a VRML 2:0-compatible network browser, available from Silicon Graphics at http://vrml.sgi.com, as described above. CosmoPlayer operates as a "plug-in" to an Internet web toom, as described browser, such as Netscape "Navigator" or Microsoft Internet Explorer." CosmoPlayer enables a user to view animations of 3D objects and to vary a point of view from which the animations are rendered to the user's computer screen by means of "free navigation" in a virtual 3D space. It was a suppreciated that because the computer screen and user controls are essentially two-college that because dimensional, "free navigation" is generally difficult for a non-expert user to master.

10

15

20

Computer-animated images may likewise be used to create an animated electronic meeting place, as described, for example, in U.S. Patent 5,347,306, to Nitta, which is incorporated herein by reference. Each participant in a meeting has a terminal with prestored merein by reference local animation graphics. The terminals are connected to a network, over which the meeting on graphics. The takes place. The meeting is shown on the display of each of the terminals using real-time that incoming is animated 3D graphic characters and sound, representing the participants' motions, expressions because the characters, having a persona which may be chosen by the participant. The characters in the animated meeting are driven by sensors that sense the movement and speech of the actual are grown of participants. The participants may also use view controls, such as a joystick, to zoom of to after the participant may meeting perspectives.

#### SUMMARY OF THE INVENTION

It is an object of the present invention to provide improved methods and apparatus for producing an animated image of an object, preferably a three-dimensional (3D) object, in a computer graphic display.

5

10

15

20

25

30

35

Unlike computer animations known in the art, animated objects in accordance with preferred embodiments of the present invention are substantially autonomous, i.e., the objects include rules, preferably in the form of a scripting language, which are sufficient to determine how they will behave in a given scene. In some aspects of the present invention, the objects correspond to humanoid characters, and the rules define social behavior of the characters in the scene, imparting human personality types to the animated characters. Furthermore, the animated objects, including the rules, are modular, in that behaviors may be transferred freely among objects of a common type. The methods of implementation and the implications of this autonomy and behavioral modularity of animated objects are described below.

It is an object of some aspects of the present invention to enable the image of the 3D object to be rendered as an overlay on a display generated by another software application, not necessarily related to the Scene Manager program, for example, an Internet Web Browser.

It is a further object of some aspects of the present invention to provide methods and apparatus for representing an object by means of a modular set of parameters and/or data, which is transferred over a computer network from a source computer to a destination computer, whereupon an image of the object is produced in an animated computer graphic display at the destination computer.

Preferably, the set of parameters and/or data is encapsulated and transferred in the form of an electronic mail message.

It is another object of some aspects of the present invention to provide user interface methods and apparatus, for use in interactively viewing and controlling computer animations.

It is an additional object of some aspects of the present invention to provide visual methods and apparatus enabling a user to search conveniently through a database or library of computer graphic objects, useful particularly in creating computer animations.

In preferred embodiments of the present invention, computer animation apparatus comprises an animation generator, typically a computer, for example, a personal computer (PC). The computer has an associated video graphic display, memory and user input devices, such as a keyboard, mouse and/or joystick, as are known in the art. Preferably, the computer also includes a network connection, for example, a modem through which the computer is connected to the Internet. The computer is programmed to produce an animated graphic sequence, using methods described below, and the sequence is shown on the display.

In preferred embodiments of the present invention, the animated graphic sequence is produced using 3D Smart Objects, as described herein. In the context of the present patent application, the term "object" is used to refer to a modular, graphic and/or mathematical

those parts, decoribe at:

""afarchical control occurvior, accorrated to

are intermedia

GERERAL PROPERTY.

specimes an

Ima:

urcion and

ion that

months a

with underty

in Experience

decided the

combination

voice and o

preferably, to

particular on

PTG:(

conditions to objects in the single person see-cojects computer at applications,

Smart Ohio

35

description of an image element (generally a representation of a physical object, which may be naturalistic or fanciful), whose representation may appear in the animation sequence. The term "Smart Object" as used herein, in accordance with preferred embodiments of the present invention, refers to an object comprising both the graphic/mathematical description of an image element and embedded ancillary information about the element. Such ancillary information preferably comprises procedures, typically in the form of scripts, which describe attributes, motion and behavior of the element, as described hereinbelow, and may also include other information, such as textual reference data. "3D Smart Objects" include attributes of shape and motion that are used in rendering 3D images of the corresponding image elements.

Each Smart Object preferably comprises a set of sub-objects in a predetermined hierarchy, which defines the relationships between the sub-objects. The hierarchy preferably includes a "skeleton," defining the parts of the body of the image element, the joints connecting those parts, and the motions of the parts in animation. Other components of the Smart Object and the motions of describe attributes such as sound and rules governing behavior of the Smart Object. The base such as sound and rules governing behavior of the Smart Object. The base such as sound as behaviors, between Smart Objects allows a user to exchange organs and sub-organs, as well as behaviors, between Smart Objects that share a common hierarchy. New Smart Objects may be created by inheritance of attributes from an existing Smart Object.

10

15

.20

25

30

Image elements or characters that correspond to Smart Objects appear in a computer elements of characters animation sequence to move and function autonomously, based on the behavioral rules animation sequence to move and function autonomously, based on the behavioral rules and embedded in the Smart Objects. For example, a sub-object of a Smart Object preferably separated and other action that the corresponding image element to demonstrate when the Smart Object has received no other program instructions for the same of the smart object has received no other program instructions for the same of the sa

Preferably, Smart Objects also include sub-objects that define their response to sensitivities by Smart Objects conditions that may arise externally to the Smart Object itself, such as the presence of other may arise external objects in the computer display. Such sub-objects may specify an interaction or response of one computer display. Smart Object to another Smart Object, for example, attraction of one Smart Object having a to another smart male persona to another Smart Object having a female persona. Additionally or alternatively, to another smart sub-objects may specify the response of the Smart Object to other image elements shown in the may specify the response computer display, for example, to static or moving graphic icons generated by other software specify applications, which may or may not include animation and which do not themselves make use of vocations. Smart Objects. Furthermore, Smart Objects may include sub-objects that have learning as a sense of the smart objects.

capabilities, as are known in the art, whereby the behavior of the Smart Object is modified adaptively in response to inputs from the computer-animated environment.

A Smart Object, as described herein, includes data, such as geometrical parameters and scripts, which are read by a program that generates an animated image sequence including the image element corresponding to the Smart Object. In the context of the present patent application and in the claims, such a program is referred to as a Scene Manager. The Scene Manager preferably includes program modules that read the data from the Smart Object and then, based on the Smart Object's geometrical and behavioral parameters, create an animated mathematical representation of the Smart Object. This representation is rendered to the computer display, preferably by means of a rendering module within the Scene manager, using 3D rendering techniques known in the art.

10

15

20

25

30

35

In some preferred embodiments of the present invention, the Scene Manager comprises a "plug-in" to network browser software. The Scene Manager plug-in is installed and operated by a user of the browser software in a manner similar to other animation plug-ins known in the art. In these preferred embodiments, the Scene Manager can receive Smart Objects, preferably 3D Smart Objects, over the network and then can render images of the Smart Objects within or overlaid on the browser window on the computer display.

In other preferred embodiments of the present invention, the Scene Manager comprises an application program, which runs in the framework of an operating system, preferably a windows-based operating system, as is well known in the art. In these preferred embodiments, the Scene Manager operates to create animated images, as described herein, while other, generally unrelated applications, such as a word processor program, are simultaneously running on the computer.

In some preferred embodiments of the present invention, a computer animation sequence is controlled by scripts, which control the actions of the Smart Objects in the sequence, responsive to the attributes defined by the Smart Objects themselves. The scripts are preferably embedded within the Smart Objects, as described above, but may, alternatively or additionally, belong to the Scene Manager program, which interacts with and controls the Smart Objects. The scripts preferably comprise motion scripts, which include instructions to modify the position, orientation or other attributes of the Smart Objects over time, from one animation frame to the next. Additionally or alternatively, the scripts may comprise connection scripts, which link the Smart Objects to input devices, such as a mouse or 3D pointing device, which are then used to manipulate the Smart Objects in the display. Further additionally or alternatively, the scripts may comprise trigger scripts, which are invoked when a predetermined sensitivity condition or event occurs, for example, a collision of the Smart Object with another object or selection of the Smart Object in the display.

In some preferred embodiments of the present invention, an object, preferably a 3D Smart Object, is used in rendering an image element that is overlaid over a window in the

tendered, sur
tendered, sur
tendered, sur
to the tendered
to the tendered
tyncowrise
overlaying me

COMERT OUTCOME

COMERT OF THE

COMERT OF CASE

FOR CASE

FOR SIMULIANA

LIPS COMPANY

encurs a ພະຍາ

one need on a fine son

willour servics

गा इठम : ८) रहुसगत चेमङ्

ここ

display. For example, a suitable Smart Object may be used to produce a 3D image of a human figure, which walks across a window created by some other software application, such as an Internet browser or a word processor program. The window over which the image element is overlaid may be an Internet Web page, for example, and may include text or two- or three-dimensional graphics, or some combination of text and graphics. The software application associated with the window preferably continues to operate while the Smart Object is running.

Preferably, attributes of the Smart Object and/or a script associated therewith cause the Smart Object to react to or interact with elements in the window, for example, by reading aloud text displayed in the window or pointing to an on-screen push-button control.

10

15

20

25

30

35

Preferably, the image element that is overlaid over the window obscures only the portion of the window immediately behind the element, while the remainder of the window is unobscured, and the application associated with the window continues to function. For each frame in a computer animation sequence involving the Smart Object, as the image element is computer animation rendered, a transparent mask is concomitantly created, defining the area of the display that will transparent mask is not be obscured by the image element. This mask is used to create a window for the Smart object that is exactly shaped to fit a border circumscribing the image element. The shape of this window is adjusted in response to the full 3D motion of the Smart Object, unlike sprite adjusted in response overlaying methods known in the art, in which changes in the transparent areas of the sprite are methods known in the substantially limited to 2D effects.

In some preferred embodiments of the present invention, a user interface is provided to me translation and control smart Objects and computer animation sequences using the to program and co Smart Objects. The user preferably creates animations by choosing Smart Objects from libraries of sub-objects that define attributes of the user preferred and/or by creating Smart Objects from libraries of sub-objects that define attributes of the user animation of the Smart Objects, as described above. Further preferably the user and behavior of the interface enables the user to create scripts and otherwise define animation sequences including the paths, coun with a viewer. In addition, the user interface preferably allows the user to define camera angles. In addition, the user interface preferably allows the user to define camera angles. In addition, the user interface preferably allows the user to define camera angles. In addition, the user interface preferably allows the user to define camera angles.

In one preferred embodiment of the present invention, the user creates a Smart Objecture preferred embodiment which serves as an avatar for the user or for another individual. An image of the user of the user of the another individual may preferably be scanned into the computer, as is known in the art; and widual may preferably on a surface of the image element corresponding to the Smart Object, preferably on a surface of the image element.

In some of these preferred embodiments, the user interface enables the user to choose the of these preferred and navigate in virtual 3D space among predefined viewpoints. For each viewpoint, an image of in virtual 3D space an animation scene is rendered and displayed corresponding to an image of the scene that would seem is rendered as be captured by a camera filming the scene from the location of the viewpoint. At each

viewpoint, the user is able to alter the effective camera angle, up/down and left/right, and to zoom in or out. The viewpoints may be stationary, but preferably, paths are defined between reference points in the 3D space, along which paths the viewpoints are to move, so that the virtual camera position changes accordingly. Additionally or alternatively, a user may indicate a reference point in the 3D space and instruct the viewpoint to orbit around the point and/or to move toward or away from the point. These methods for user control of the viewpoint are substantially easier for the user to conceptualize and control than are "free navigation" user interface tools known in the art, for example, "CosmoPlayer," a commonly-available VRML 2.0 browser program, described above.

10

15

20

25

30

35

In some of these preferred embodiments, the user interface includes on-screen graphic devices, with which the user interacts, preferably using a mouse or 3D pointing device, known in the art, to control the animation. These devices preferably include one or more sliders, push buttons, dubbing strips and other elements known in the art. The on-screen user interface devices are, preferably, automatically scaled, such that when the user resizes or changes the shape of the window on the computer screen in which the animation is displayed, the sizes, positions and spacing of the devices are adjusted accordingly. Adjusting the sizes and positions of the on-screen devices allows a maximal portion of the window to be used for displaying the animation and enhances the esthetic appeal of the display. The scaling of the user interface allows all of the controls to be seen simultaneously on the screen, even when the window is substantially reduced in size, unlike user interfaces known in the art, in which some or all of the controls disappear from the window under such conditions.

magniot to w

of interest i

ilio i

C ...

CARLOTTE FO

مان مانون بالمانون مانون بالمانون

المارين المسترات المسترات

the comito st

search engine

nnages more

works as prou

wara pracas

aGF SCAFCHING I

Janapara roje

aîninahon' his

riescribed abor-

14 500

Among the on-screen devices, the user interface preferably includes a 3D joystick, which the user manipulates to navigate in the 3D space. The 3D joystick moves in a plane, thus controlling two degrees of freedom. Preferably, the joystick is used to control tilt and pan of a virtual camera from whose point of view the scene is rendered, while a slider controls the camera's zoom. Alternatively or additionally, the joystick may be used to control revolution of the virtual camera about a selected reference point in the scene.

Preferably, the portion of the window used for displaying the animation is not strictly rectangular, but is rather surrounded and framed by non-animated elements, including the user interface devices. The devices may penetrate into the edges of the frame containing the animated images. The non-rectangular frame is preferably designed to give the animated scene a more realistic appearance, as though it were taking place, for example, in an auditorium or a television studio.

In some preferred embodiments of the present invention, an associative visual search engine is provided to assist the user in selecting elements to be incorporated in a computer animation. The engine is used in searching through an image database that may include image representations of Smart Objects and sub-objects thereof, as well as other animations, still objects and background and border images. One or more keywords, generally a plurality of

keywords, are associated with each of the images in the database. The keywords preferably describe various aspects of the images, including image subject, content, style, color and other attributes. The keywords associated with each image are preferably ordered hierarchically, from the keyword that is most descriptive of the image to keywords that are less descriptive thereof.

To use the search engine, a user preferably enters a keyword or selects an image from an initial group of images displayed on the computer screen. The engine then searches the database for images matching the keyword that was entered or matching a keyword or keywords associated with the selected image. The user may narrow the search by specifying a characteristic of the selected image to be matched, such as its subject matter or color, for example. Images in the database that are found by the engine to match the keyword or keywords are displayed on the computer screen in a hierarchical, preferably generally concentric pattern. Preferably, images matching the keyword or keywords most closely, i.e., images with respect to which the keyword or keywords searched for occupy the highest positions in the images' respective hierarchies of associated keywords, are positioned nearest the center of the display and scaled to a relatively large size. Images matching the keyword or keywords more remotely are positioned peripherally.

10

15

20

25

The user may browse through the images displayed on the screen by pointing to images and provide the of interest, for example, using a mouse. When the user points to an image, the image is or example, using preferably enlarged and/or expanded. If the image represents a 3D image element, it is preferably rendered in three dimensions. If the image represents an animation of animated object, for example, a Smart Object, at least a portion of the animation or a movement of the object is displayed. The user selects images from the search for inclusion in an animation of the user selects images from the search for inclusion in an animation of the user selects images from the search for inclusion in an animation of an

It will be appreciated that the search engine and search method described above allows be appreciated that the user to search through an image database in a more intuitive manner than is possible with enter incomen an insearch engines and methods known in the art, and therefore enables the user to find suitable and methods known images more efficiently and quickly. Although the associative visual search engine described between an end above is preferably used in generating computer animation sequences, as described herein, in the latter of the present invention, the engine may be used advantageously and computer animate of the present invention, the engine may be used advantageously and computer animage databases of other types and for other purposes.

In some preferred embodiments of the present invention, after the user has used a source accompanied embodiments of the present invention, after the user has used a source accompanied embodiment of the animation is encapsulated and conveyed over a computer network, preferably the Internet, to a destination computer. In this context, the term "computer animation" means a computer animation sequence, which is preferably created by the user as computer an described above, or a Smart Object having attributes of motion. Encapsulating and conveying the animation comprises sending files associated with the animation over the network, preferably in the form of an electronic mail message or other network communication. Preferably, the

animation file is encapsulated as a 3D VRML-compatible animation file, as described above, or alternatively, as a JAVA applet or HTML file or in another standard file format recognized by suitable Internet browser programs. When the animation is received, it may be replayed as an animation sequence on the destination computer display, or incorporated in an animation sequence running on the destination computer.

In some of these preferred embodiments, the animation sent from the source to the destination computer comprises an animated "letter," for example, a greeting card, sent by electronic mail. The letter preferably includes one or more Smart Objects, which are programmed at the source computer to convey a desired message and/or exhibit a desired behavior when animated on the destination computer.

10

15

20

25

30

35

In other preferred embodiments of this type, the animation sent from the source to the destination computer comprises an entertainment or educational program, distributed by a network server to a plurality of client computers. Each of the clients receives the animation as created and sent by the server, but the client user may then control certain aspects of the rendering of the animated images on the client computer screen, such as varying the viewpoint, lighting and appearance of the characters, for example. Preferably, the clients include both viewers, who receive the animation from the source but are allowed relatively little control over the animation, and participants, who may actually control a character appearing in the animation. Most preferably, each participant controls a respective character by defining the appearance and behavior of a Smart Object corresponding to the character.

In still other preferred embodiments of this type, the animation sent from the source to the destination computer comprises a Smart Object, preferably a 3D Smart Object programmed as an avatar of the user, as described above. Preferably, the avatar conveys an electronic mail message to a user at the destination computer. Additionally or alternatively, the avatar may be incorporated as a participant in an interactive, animated program on the destination computer, for example, as a participant in a conference, interview or panel discussion conducted over the Internet or another network.

There is therefore provided, in accordance with a preferred embodiment of the present invention, a method for producing an animation sequence on a graphic display driven by a computer, including:

defining an object, which includes data including a geometrical description of an animated character and characteristics of social behavior of the character; and

animating an image of the character responsive to the characteristics.

Preferably, defining the object includes programming a predetermined response of the character to a sensitivity condition occurring externally to the object.

Further preferably, programming the predetermined response to the interaction condition includes programming a rule governing motion of the object responsive to the condition

characte:

. संबंधित

л бідал Разия 2000 жинтитипд

of the

Additi 20 games veg

wherein the se nere nere nechtor, a in aispia

> scaling There

eomputer, inci

· invention; a r.

genera gyeriaj

definin

me transparen

additionally pr

35

10

Additionally or alternatively, defining the object includes defining sufficient characteristics of the behavior of the character such that the image is animated substantially without reference to animation instructions external to the object.

Preferably, animating the image includes rendering a three-dimensional image of the character.

There is also provided, in accordance with a preferred embodiment of the present invention, a method for producing an animation sequence on a graphic display driven by a computer, including:

defining a group of objects, each such object associated with a respective animated character and including data, which includes:

10

15

20

25

30

35

a geometrical skeleton common to all the objects in the grouped, characterized by a hierarchy of sub-objects connected by joints, and

of the joints and are interchangeable among any of a plurality of the objects; and animating an image of at least one of the characters responsive to the rules.

Preferably, defining the group of objects includes defining a three-dimensional skeleton; which is a community that g and animating the image includes rendering a three-dimensional image.

Additionally or alternatively, defining the group of objects includes defining fulles consider on alternative governing behavior of a predetermined personality type, associated with one or more of them an impact of the animated characters.

Preferably, defining the group of objects includes defining first and second objects; defining the group of objects includes defining first and second objects; defining the group of objects defined by inheritance from the first object.

There is further provided, in accordance with a preferred embodiment of the present in interface in a computer graphic display, including the a memor for providing a user interface in a computer graphic display, including the a memor for providing displaying one or more user control icons in a window in the display; and

scaling the one or more icons responsive to a change of scale of the window.

There is also provided, in accordance with a preferred embodiment of the present is also provided, in invention, a method for producing an animation sequence on a graphic display driven by a method for producing computer, including:

producing a frame image having a non-rectangular transparent area; generating an animation sequence on the display; and

overlaying the frame image on the animation sequence, so that the animation is framed by young the manifesting the transparent area.

In accordance with another preferred embodiment of the present invention, there is equalities with another additionally provided a method for producing an animation sequence on a graphic display driven provided, a method ro: by a computer, including:

defining a three-dimensional geometrical description of an animation scene

scaling the one or more in-

producing a mathe image (

Benerating an amination se

selecting first and second reference points relative to the scene and defining a geometrical path dependent on the points;

rendering a first image of the scene as seen from a viewpoint at a first position on the geometrical path;

translating the viewpoint to a second position along the geometrical path; and rendering a second image of the scene as seen from the second position.

There is additionally provided, in accordance with a preferred embodiment of the present invention, a method for producing an animated overlay image on a graphic display driven by a computer, including:

525- °

in group of chan

. Denavior or m

interchangeable

abel illictinge ica

an annigh

a usu m. (ค**า**ตระก่อง

... There is

mvention, a-syste

nom - micket i d

the animation sec

no nansparent

e wapatan.

rauerthir.

en enime

generating a three-dimensional animated image element; and

5

10

15

20

25

30

35

overlaying the animated image element on a window in the graphic display driven by a software application substantially unrelated to the generation of the animated image element.

Preferably, the substantially unrelated software application continues to run substantially as though the image element was not overlaid on the window, and the only portion of the window obscured is the portion directly behind the image element on the graphic display.

There is also provided, in accordance with another preferred embodiment of the present invention, a method for conveying an animation from a source computer to a destination computer, including:

defining an object in the source computer, the object including data, which includes a graphic description of an element for inclusion in the animation and a characteristic of motion of the element,

transmitting the object from the source computer to the destination computer via a network; and

displaying an animated image on a display driven by the destination computer, wherein the image includes a graphic rendition of the element, moving in accordance with the characteristic.

Preferably, transmitting the object via the network includes encapsulating the object and transmitting the encapsulated object in the form of an electronic mail message.

Alternatively or additionally, a script is transmitted over the network, which script defines an animation sequence including the element, and wherein transmitting the object and transmitting the script include transmitting the object and the script to a plurality of destination computers.

In accordance with another preferred embodiment of the present invention, there is moreover provided a method for finding a desired image among a library of images stored by a computer, including:

displaying a first plurality of images from the library on a display associated with the computer;

selecting a first image from among the first plurality; and

12

searching through the library to find a second plurality of images resembling the first image in one or more characteristics thereof.

Preferably, a cursor is shown on the display and one of the images is altered when the cursor points to the one of the images, preferably by animating the image.

There is further provided, in accordance with a preferred embodiment of the present in further provided invention, a system for producing an animation sequence, including:

an animation generator, which generates an animated image of a character, responsive to an object including a geometrical description of the character and characteristics of social behavior of the character; and

a display, which is driven by the computer to display the animated image.

In addition, in accordance with another preferred embodiment of the present invention, in accordance with another preferred embodiment of the present invention, in accordance with another preferred embodiment of the present invention, in accordance with another preferred embodiment of the present invention, in accordance with another preferred embodiment of the present invention, in accordance with another preferred embodiment of the present invention, in accordance with another preferred embodiment of the present invention, in accordance with another preferred embodiment of the present invention, in accordance with another preferred embodiment of the present invention, in accordance with another preferred embodiment of the present invention, in accordance with another preferred embodiment of the present invention, in accordance with another preferred embodiment of the present invention, in accordance with a second of the present invention and a second of the second of the present invention and a second o

an animation generator which generates an animated image of at least one character from mation generator will a group of characters, responsive to a respective one of a group of objects, A group of characters, responsive to

wherein the objects include a geometrical skeleton common to all the objects in the list Green states group, characterized by a hierarchy of sub-objects connected by joints, and rules governing to the points and are the respective characters, which rules define motions of the joints and are the respective characters, which rules define motions of the joints and are the respective characters, and interchangeable among any of a plurality of the objects; and

a display, which is driven by the computer to display the animated image.

There is also provided, in accordance with a preferred embodiment of the present of the present

an animation generator, which generates a scalable graphic window with one or more matter generator, we user interface icons contained therein, such that the icons are scaled responsive to a scale of the scale window;

a user input device for scaling the window; and

5

10

15

20

25

30

35

a display, which is driven by the computer to display the window with the icons. A display, which is driven by

of which is a relative to

a User Inhat Gevice (O) Seal

There is moreover provided, in accordance with a preferred embodiment of the present is moreover provide invention, a system for producing an animation sequence, including:

an animation generator, which generates an animation sequence and which produced animation generator, we frame image having a non-rectangular transparent area, such that the frame image is overlaids on a non-rectangular transparent area, such that the frame image is overlaids on a non-rectangular transparent area, and a nimation sequence, whereby the animation is framed by the transparent area, and a nimation sequence, whereby the animation is framed by the transparent area, and a nimation sequence, whereby the animation is framed by the transparent area, and a nimation sequence, whereby the animation is framed by the transparent area, and a nimation sequence, whereby the animation is framed by the transparent area, and a nimation sequence and which produced a nimation generator, we have the animation area.

a display, which is driven by the computer to display the animation sequence framed by any, which is arriven to the transparent area.

Additionally, in accordance with another preferred embodiment of the present invention, the accordance with another preferred embodiment of the present invention, the accordance with another preferred embodiment of the present invention, the accordance with another preferred embodiment of the present invention, the accordance with another preferred embodiment of the present invention, the accordance with another preferred embodiment of the present invention, the accordance with another preferred embodiment of the present invention, the accordance with another preferred embodiment of the present invention, the accordance with another preferred embodiment of the present invention, the accordance with another preferred embodiment of the present invention, the accordance with a constant and the accordance with a c

an animation generator, which renders animated images of a three-dimensional scene imation generator, we each image rendered as seen from a respective viewpoint, including a first image of the scene as a few from

seen from a first viewpoint along a predetermined geometrical path and a second image of the scene as seen from a second viewpoint along the path;

a user input device, for selecting first and second reference points, which determine the geometrical path; and

a display, which is driven by the computer to display the animated images.

5

10

15

20

25

30

35

There is further provided, in accordance with a preferred embodiment of the present invention, a system for producing an animated image, including:

an animation generator, which generates a three-dimensional animated image element and produces a display window driven by a software application substantially unrelated to the generation of the animated image element, and which overlays the animated image element on the window; and

a display, which is driven by the computer to display the window with the animated image overlaid thereon.

There is further provided, in accordance with a preferred embodiment of the present invention, a system for conveying an animation over a network, including a source animation agenerator, coupled to the network, which defines an animation file comprising an object, which includes a graphic description of an image element for inclusion in the animation and a characteristic of motion of the element and transmits the object over the network in the form of an electronic mail message.

In accordance with another preferred embodiment of the present invention, there is provided a system for conveying an animation over a network, including a network animation server, which receives a textual description of an animation object, generates an animation file based thereon, and delivers the animation file to a destination computer.

There is also provided, in accordance with another preferred embodiment of the present invention, a system for viewing an animation, including:

a destination animation generator, coupled to a network, which receives via the network a script defining the animation along with an object including a geometrical description of an image element for inclusion in the animation and a characteristic of motion of the element, and renders animated images responsive thereto;

user controls, coupled to the destination animation generator, for controlling rendition of 30 the animated images; and

a display, which is driven by the destination animation generator to display the animated images.

There is additionally provided, in accordance with a preferred embodiment of the present invention, a system for searching a library of images, including:

image storage apparatus, which stores the library of images and selects a first plurality of the images to be displayed; High 2 Highty screen militarid end

Figs. 7 On the comm

់ម៉ាត្រ, ប

Fig. 5: Including the uresent invent

Figs. (c)
ficomputer display windor
embodiment c
Fig. 74

window of F:

graphic user i cmonoment of

. 35

Figs. 9 January James September 2018

a display, which is driven by the image storage apparatus to display the images selected by the animation generator; and

a user input device, coupled to the image storage apparatus, for pointing to and selecting a first image from among the first plurality of the images displayed,

5

10

15

20

25

30

35

wherein the animation generator searches through the library and selects images the commented resembling the first image in one or more characteristics thereof, for inclusion in a second in the plurality of images.

The present invention will be more fully understood from the following detailed description of the preferred embodiments thereof, taken together with the drawings in which a fifthe preferred could

## **BRIEF DESCRIPTION OF THE DRAWINGS**

Fig. 1 is a schematic representation of a computer system for use in producing and in a secondary displaying animation sequences, in accordance with a preferred embodiment of the present invention;

Fig. 2 is a graphic representation of a computer image element generated on a computer? is a graphic representation of a Scene Manager responsive to a 3D Smart Object, in accordance with an by a Scene Manager responsive to a 3D Smart Object, in accordance with an by a Scene Manager responsive to a 3D Smart Object, in accordance with an by a Scene Manager responsive to a 3D Smart Object, in accordance with an by a Scene Manager responsive to a 3D Smart Object, in accordance with an by a Scene Manager responsive to a 3D Smart Object, in accordance with an by a Scene Manager responsive to a 3D Smart Object, in accordance with an by a Scene Manager responsive to a 3D Smart Object, in accordance with an by a Scene Manager responsive to a 3D Smart Object, in accordance with an object of the present invention;

Figs. 3A and 3B are graphic representations of the computer image elements generated 3A and 3B are graphon the computer display screen by Smart Objects, illustrating animation of the elements inputer display screen response to one another, in accordance with a preferred embodiment of the present invention; to one another, in accordance with a preferred embodiment of the present invention; to one another, in accordance with a preferred embodiment of the present invention; to one another, in accordance with a preferred embodiment of the present invention; to one another, in accordance with a preferred embodiment of the present invention; to one another, in accordance with a preferred embodiment of the present invention; to one another, in accordance with a preferred embodiment of the present invention; to one another, in accordance with a preferred embodiment of the present invention; to one another, in accordance with a preferred embodiment of the present invention; to one another, in accordance with a preferred embodiment of the present invention; to one another, in accordance with a preferred embodiment of the present invention; to one another, in accordance with a preferred embodiment of the present invention; to one another the present invention; the present invention and the preferred embodiment of the present invention and the preferred embodiment of the present invention and the present invention and the preferred embodiment of the present invention and the preferred embodiment of the present invention and the preferred embodiment of the present invention and the present invention and the preferred embodiment of the present invention and the preferred embodiment of the present invention and the pres

Fig. 4 is a block diagram illustrating the program structure of a 3D Smart Object on 4 is a block diagram accordance with a preferred embodiment of the present invention;

Fig. 5 is a flow chart illustrating a method of generating a computer animation sequences is a flow chart illustrating the 3D Smart Object of Fig. 4, in accordance with a preferred embodiment of the 3D Smart Object present invention;

Figs. 6A and 6B are graphic representations of an image element generated fores 6A and 6B are graphic computer display screen by a 3D Smart Object, wherein the image element is overlaid on asplay screen by a 3 display window generated by another software application, in accordance with apprehendion generated by a embodiment of the present invention;

Fig. 7 is a flow chart illustrating a method of overlaying the image element on the display is a flow chart illustrating window of Figs. 6A and 6B, in accordance with a preferred embodiment of the present Figs. 6A and 6B, invention;

Fig. 8 is a graphic representation of a computer display screen illustrating elements of a graphic remember graphic user interface presented in a window on the screen, in accordance with applied interface presented embodiment of the present invention;

Figs. 9A and 9B are graphic representations of the computer display screen of Figigs, 9A and 9B are graphic showing changes in the shapes and sizes of elements of the graphic user interface as the size and size in the shapes in the shapes and sizes of elements of the graphic user interface as the size and size in the shapes and sizes of elements of the graphic user interface as the size and size in the shapes and sizes of elements of the graphic user interface as the size and size in the shapes in the

Figs. 10A and 10B are schematic illustrations of a computer animation scene, useful in understanding the operation of virtual cameras for rendering computer animation sequences from different viewpoints, in accordance with a preferred embodiment of the present invention.

Figs. 11A and 11B are graphic representations of the computer display screen of Fig. 8, showing changes in rendering of the scene responsive to selection and movement of the virtual cameras of Figs. 10A and 10B, in accordance with a preferred embodiment of the present invention;

Fig. 12 is a graphic representation of a 3D joystick, shown on the computer display screen of Fig. 8, for use in controlling the operation of the virtual cameras of Figs. 10A and 10B;

Figs. 13A and 13B are graphic representation of a computer display screen, illustrating a graphic user interface used in conjunction with an associative visual search engine, in accordance with a preferred embodiment of the present invention;

10

15

20

25

30

Fig. 14 is a flow chart illustrating the operation of the visual search engine whose user interface is shown in Figs. 13A and 13B, in accordance with a preferred embodiment of the present invention;

Fig. 15 is a block diagram illustrating a system architecture for transmission of a computer animation program over a computer network, in accordance with a preferred embodiment of the present invention;

Fig. 16 is a block diagram illustrating a system architecture for transmission of an animated message over a computer network, in accordance with another preferred embodiment of the present invention;

Fig. 17A is a graphic representation of a computer display screen illustrating the preparation of an animated message, in accordance with a preferred embodiment of the present invention;

Fig. 17B is a flow chart illustrating a method for preparation of the animated message of Fig. 17A, in accordance with a preferred embodiment of the present invention;

Fig. 18A is a graphic representation of a computer display screen illustrating playback of the animated message of Fig. 17A by a recipient thereof, in accordance with a preferred embodiment of the present invention, and

Fig. 18B is a flow chart illustrating a method for playback of the animated message of Fig. 18A, in accordance with a preferred embodiment of the present invention.

produced by a

remitte præse prowser, suita Fig. 2 :

ift by turners.

montor an approach some second of win according to the second portion of win according to the second second second described below

aubin the elementary more textual reference manuacions in the manu

45. d€:

image elements

### DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Reference is now made to Fig. 1, which is a schematic representation of an animation generator, preferably a computer system 40, for use in producing and displaying computer animation sequences, in accordance with a preferred embodiment of the present invention. Computer 40 comprises a console 42, including a processor 44 and memory 46, preferably comprising both RAM and disk memory, as are known in the art. The computer also includes user input devices, such as a keyboard 48 and pointing device 50, for example, a mouse.

Computer 40 includes image rendering software, such as RenderWare, described above, which enables processor 44 to produce animated computer graphic images 51, which are seen on a display 52. Animated images 51 are preferably produced in response to an animation program, run by processor 44, preferably a Scene Manager program, which generates images based on 3D.

Smart Objects, as described herein. Preferably, the images are accompanied by sound, which is produced by an audio device 56, such as a speaker, coupled to the processor.

10

15

20

25

30

35

Computer 40 is preferably coupled via a modem 54 to a computer network 60, preferably purious as preferably the Internet, and sends and receives animation files over the network, as described below. And receives animation files over the network, as described below. And received animation files over the network, as described below. And received the recomputer browser, suitable for viewing animations conveyed over the network.

Fig. 2 is a graphic representation of display 52, showing an animated image produced by 2 is a graphic represe processor 44 based on a 3D Smart Object, representing a young female character 64%. The constitution of a representation of an application window 66. The application that drives window 66 is generally unfellated processor window 66. The application that drives window 66 is generally unfellated processor window 66 to the Scene Manager animation program and to the Smart Object, and the application continues invanager animation protection of unimated image. Character 64 obscures only the initiative unimated portion of window 66 that the character directly covers, while the rest of the window remains and overlaying the character on the window are in producing the animation and overlaying the character on the window are in producing the described below.

As described above, the term "Smart Object" as used herein, in accordance with escribed above, the preferred embodiments of the present invention, refers to an object, or module, comprising boiling boiling the present invention, refers to an object, or module, comprising boiling boiling boiling the present invention of an image element and embedded ancillary information matternation description about the element. Such ancillary information preferably comprises procedures, which describe the procedures are preferably comprises procedures, which describe the procedure and preferably in the form of scripts, it is not to the procedure of the element, as described hereinbelow, and may also include to the procedure of the preferably in the form of scripts, it is not to the procedure of the preferably in the form of scripts, it is not to the procedure of the preferably that the procedure of the preferably in the form of scripts, it is not to the procedure of the preferably that the procedure of the procedure of

Figs. 3A and 3B are graphic representations of display 52, showing animated images produced by processor 44, which illustrate further aspects of the behavior of 3D Smart Objects.

In Fig. 3A, young female character 64 has walked out onto the screen, while a male character 68 stands at the opposite side. The Smart Object corresponding to male character 68 includes animation scripts that define the character's behavior in response to young female characters. These scripts are triggered by the presence of female character 64 within a predetermined region of proximity to male character 68. For character 68, the region of proximity is determined to be the entire area of display 52.

As shown in Fig. 3B, in response to the proximity of female character 64, the scripts that are triggered cause male character 68 first to look at the female character and then to jump excitedly. The scripts that determine these behaviors are contained entirely within the Smart Object, so that the response of male character 68 to female character 64 is generated substantially autonomously by the Smart Object. There is no need for a script or program external to the Smart Object to create the behavior, although it is possible to manipulate Smart Objects using such external scripts.

10

15

20

25

30

35

Furthermore, although character 68 exhibits, in this case, behavior that would be characteristic of a young male, the behavior may be transferred in a modular fashion from one Smart Object to another, independent of their physical appearance and other characteristics. Thus, for example, any or all of the behavioral routines that make up the young, male "personality" assumed by character 68 may be transferred to another character having the appearance of an old man or woman, or of a robot. It is sufficient to transfer the specific routines that are triggered by the proximity of female character 64 to cause the other character to look at the female character and jump excitedly. Unlike animation programs known in the art, no other reprogramming or adjustment of the animation of the other character is generally needed.

## 3D SMART OBJECTS

Fig. 4 is a block diagram illustrating the data structure of a 3D Smart Object 70, in accordance with a preferred embodiment of the present invention. The hierarchical structure of Smart Object 70 is what makes possible the autonomy and modularity of Smart Objects, as described above with reference to Figs. 3A and 3B.

Smart Object 70 comprises a skeleton, including surfaces 76, a hierarchy of organs 78 and behaviors 74. Organs 78 are made up of sub-organs 90, which are in turn made up of 3-D objects 86, comprising 3D geometrical shapes connected by joints, as are known in the art. The term "organ," as used herein, refers to a coherent group of 3D objects 86 that form a part of the physical representation of the Smart Object. Surfaces 76 and surface details 94, as described below, relate to corresponding 3D objects 86 and define these objects' surface appearance when the Smart Object is rendered to display 52. While the skeleton of Smart Object 70 is common to all Smart Objects of a given class, for example, humanoid Smart Objects, each Smart Object in the class has its own specific geometry 72, defined by the set of 3D objects 86 and surface details 94 belonging to the Smart Object.

នភ្ជាក់ ការស្ន<del>ី</del>ស្នេទីដ 5212000 Cibicat avises PAULESSIONS 1 enng, or a ce Aitho. complete cor. other words មិន ប្រសាល់ពេកនេះ animation &b The s Correin sypo, was thing our oo Biay oo ga Cojects genve 121 241 1415 . 11.44 4 OL aliminations. dialibitinea to คลิฮ์ (อี ริบม-ดา: The hi rools known modulezny-oi ayerana kiros using Light. line luciules (), ciested by Hr 

misci. New .

oxisting Smill

(بيت

15

Behaviors 74 include 3D animations 88 of the Smart Object, defining motions of organs 78 and sub-organs 90 at joints thereof. The behaviors may also operate on surfaces 76, for example, by changing the color of a selected surface under certain predefined circumstances. Animations 88 are preferably grouped as mandatory animations 80, conditional animations 82 and optional animations 84. The meanings of these groupings are discussed below. Preferably, behaviors 74 belonging to a given Smart Object are chosen and programmed so that the Smart Object exhibits a desired personality, such as the "young male" personality of character 68 (Figs. 3A and 3B). In the context of the present patent application and in the claims, the term "personality" used in reference to a Smart Object or an animated character associated therewith refers to a set of behaviors that cause the character to move and otherwise exhibit reactions and expressions in a manner that is reminiscent of the behavior of a real character, typically a human being, of a certain type.

10

15

20.

25

30

35

(ں۔

Although the hierarchies of geometry 72 and behaviors 74 are separate, there is a well the meracones complete correspondence between the set of 3D animations 88 and the set of 3D objects 86. In the performed other words, each animation 88 comprises a mathematical description that dictates operations to the performed in a predetermined way on certain objects 86 in the geometrical hierarchy. Each the performance animation 88 operates on certain organs 78 and sub-organs 90 and the joints connecting them.

The same hierarchies of geometry and behavior are used for all Smart Objects of asame hierarchies of certain type, for example, humanoid characters or four-legged creatures, or inanimate (buttern possibly animated) objects, such as tables or chairs. Therefore, 3D objects 86-and 3D animations are objects, such 88 may be exchanged freely, in modular fashion, among all Smart Objects of the type, i.e. Smart changed freely, in modular fashion, among all Smart Objects of the type, i.e. Smart changed freely, in modular fashion, among all Smart Objects and animations or four the same skeleton, whether at the level of individual objects and animations or or true same same or at the levels of organs 78 or groups of animations 80, 82 and 84. By transferring such groups are personally or transferred to or inherited by another Smart Object. Similar conventions apply to surfaces 760 or inherited by another Smart Object. Similar conventions apply to surfaces 760 or inherited by another Smart Object. Similar conventions apply to surfaces 760 or inherited by another Smart Object. Similar conventions apply to surfaces 760 or inherited by another Smart Object.

The hierarchical structure of Smart Object 70 is constructed using 3D animation software hierarchical structures tools known in the art, for example, LightWave 5.0 software, as described above of Theorem in the art, for example, modularity of the behavior of Smart Objects, however, is not achieved by animation objects and the behavior of Smart Objects, however, is not achieved by animation objects and the behavior of Smart Objects that are created initially in the art, and it using LightWave, for example, must be converted to Smart Objects that are created initially in the art, and it using LightWave, for example, must be converted to Smart Object form. Smart Objects have are according to the features of an object-oriented programming system. They enable animated characters to be an object-oriented created by transfer of physical and/or behavioral characteristics between different Smart Objects and or between a Smart Object and a library of such characteristics, while leaving the hierarchy of smart Objects and classes of Smart Objects may be created by inheritance from Smart Objects and existing Smart Objects, including multiple inheritance, as is known generally in areas of the objects, including conventional object-oriented programming.

Grouping of 3D objects 86 into organs 78 and sub-organs 90 serves the purpose of enabling objects to be exchanged among Smart Objects in such a way that an appearance of natural motion of the animated image element corresponding to the Smart Object is preserved, and that suitable proportions are maintained between closely-related 3D objects 86 and groups of such objects. It will be understood that sub-organs 90 are themselves treated as organs, and furthermore, that a sub-organ may contain other sub-organs, below it in the hierarchy. Thus, for example, the hands of a humanoid skeleton are defined as one sub-organ, so that both hands are exchanged as a single unit. The basic hierarchy of organs 78 and sub-organs 90 and 3D objects 86 in skeleton 70 of a humanoid Smart Object is preferably defined by the following file structure, wherein the term "name" in each case refers to the reference name of a Smart Object character with which the organ, sub-organ or object is associated:

# basenull

5

10

35

```
cameranull
15
            name abdomen
                   name body
                          name an back
                          name_hand_lt_01_upperarm
                                name hand It 02 lowerarm
20
                                       name hand It 03 palm
                                             name hand It 04 fingers
                                             name hand It 05 thumb
                         name_hand_rt_01_upperarm
                                name hand rt 02 lowerarm
25
                                       name hand rt 03 palm
                                             name hand rt 04 fingers
                                             name hand rt 05_thumb
                          name neck
                                name head
30
                                       name an head
                                      name an mustache
                                       name brow It
                                       name brow rt
                                       name eye lt
```

11.000 717 \$ Utilitati stri Smart Object mey us cons Sup-Olyans 5 organs. For the arms. Y are mapped . above, so in ey ins curt. Like поску динои: s norrongua (nygh hala) . used orrectly similariy i.a c

35

name eye rt

name eyelid It

name\_eyelid\_rt name\_mouth

```
name ponytail 01
      name ponytail 02
             name ponytail 03
```

name\_leg\_lt\_01\_thigh name\_leg\_lt\_02\_shin name\_leg\_lt\_03\_shoefront name leg lt 04 shoeback

name\_leg\_rt\_01\_thigh name leg rt 02 shin name\_leg\_rt\_03\_shoefront

name leg\_rt\_04\_shoeback name tail 01

name tail 02

5

15

20

25

30

35

name tail 03

The above hierarchy of organs 78 and sub-organs 90 is largely self-explanatory, but above merarchy or includes a number of unique features. The abbreviation "an" in certain of the above organs, for unique feat example, "name\_an\_head," refers to an "accessory null," for attaching an external accessory null," refers such as a hat, in the case of name an head, to the associated organ. The expression as a "cameranull" refers to an optional connection point for attaching a "virtual camera" to the Smart arms to an option. Object, so that an image of an animation scene is rendered as seen from the point of view of the artist image or an an Smart Object. The expression "basenull" refers to a dummy joint, at which one Smart Objects. The expression may be connected to another if desired. many or connected to another if a

name fail

กล

Surfaces 76 comprise mathematical descriptions of the external appearance of organs 78 aces 70 comprise ma sub-organs 90 and 3D objects 86. A surface can include geometrical items belonging to several and 3D objects 86. organs. For example, a shirt surface includes geometrical data belonging both to the body and to example, a shirt surface. the arms. When the image of Smart Object 70 is rendered to computer screen 52, the surfaces when the image of S are mapped onto the 3D-objects by suitable rendering software, such as RenderWare, described onto the 3D-objects. above, so that each 3D object 86 is shown on the screen with a surface appearance determined at each 3D object 86 by the corresponding sub-surfaces and surface details. by the corresponding sub-surface

Like 3D objects 86, surfaces 76 and surface details 94 may be exchanged and inherited 3D objects 80, surfaces 76 and surface details 94 may be exchanged and inherited 3D objects 80, surfaces 76 and surface details 94 may be exchanged and inherited 3D objects 80, surfaces 76 and surface details 94 may be exchanged and inherited 3D objects 80, surfaces 76 and surface details 94 may be exchanged and inherited 3D objects 80, surfaces 76 and surface details 94 may be exchanged and inherited 3D objects 80, surfaces 76 and surface details 94 may be exchanged and inherited 3D objects 80, surfaces 76 and surface details 94 may be exchanged and inherited 3D objects 80, surfaces 76 and surface details 94 may be exchanged and inherited 3D objects 80, surfaces 76 and surface details 94 may be exchanged and inherited 3D objects 80, surfaces 76 and 80 freely among Smart Objects of the same type. The term "inherit" is used in the present patents Smart Objects of the application and in the claims in the sense of the term that is known in the art of object of entering in the claims in the programming, to mean that 3D objects and surfaces may be taken from one Smart Object and S. To Theorem and S. To used directly in creating a new Smart Object without additional adaptation. Animations 88 cair in creating a new o similarly be exchanged and inherited, as described below. Preferably, surfaces 76 of a hidrian ordex changed and inherit Smart Object include: Seeri Object include:

name skin
name body top (generally the shirt)
name body bottom (generally skirt or pants)
name hair
name eyes (iris)
name shoes
name lips

Surface details 94 are defined so as to enable the user to edit the colors, shapes, textures and other surface features that are mapped onto 3D objects 86 when the Smart Object is rendered to display screen 52. For example, surface details 94 of a humanoid Smart Object preferably include:

name eyes pupils
name skin face
name skin face nose
name skin face ears

and so forth. Surface details 94 may further include a logo, for example, text or an insignia, to be displayed on the shirt of a character rendered on screen 52

Every Smart Object 70 includes a set of mandatory animations 80 that define the basic behaviors of the animated character associated with the Smart Object: Preferably, mandatory animations 80 for a humanoid skeleton include the following motions:

25 I. Appear.

5

10

15

20

- 2. Disappear.
- 3. Advance (three variations fast, slow and "slow motion").
- 4. Idle (3 variations).
- 5. Talk.
- 30 6. Positive.
  - 7. Negative.
  - 8. Greeting (2 variations).
  - 9. Don't know (perplexity or uncertainty).
  - 10. Yes.
- 35 11. No.
  - 12. Special.

example, a si

70 and inco

11. July 20. "a

11. July 20. a

11. July 20.

Zinnen in

ugnaniah ani

70 as are () animations ?

10 0711

20

Out the Sman

scene, and c

30 scene, and c

t dain swaa

10

15

20

25

30

35

Each of mandatory animations 80 comprises a mathematical description of motion of the Smart Object corresponding to a predetermined type of behavior, generally indicated by the name of the animation. "Idle" refers to behavior assumed by an animated character associated with Smart Object 70 when the Smart Object has not been selected or activated to modify its position, orientation or other attributes for a predetermined period of time. 5 Idle behavior of 1000 to character 68 (Figs. 3A and 3B) could include, for example, crossing his arms and tapping his foot if female character 64 does not appear. Each Smart Object also includes a "Special" animation, specific to its character type. Preferably, Smart Object 70 also includes optional animations 84. The optional animations can include variations on mandatory animations, for example, walking in a way that a viewer of the animation would associate with "cool" or "sexy" " example, walking in a way that a viewer of the animation would associate with "cool" or "sexy" " example, walking in a way that a viewer of the animation would associate with "cool" or "sexy" " example, walking in a way that a viewer of the animation would associate with "cool" or "sexy" " example, walking in a way that a viewer of the animation would associate with "cool" or "sexy" " example, walking in a way that a viewer of the animation would associate with "cool" or "sexy" " example, walking in a way that a viewer of the animation would associate with "cool" or "sexy" " example, walking in a way that a viewer of the animation would associate with "cool" or "sexy" " example, which is a cool of the animation would associate with "cool" or "sexy" " example, which is a cool of the animation would associate with " example, which is a cool of the animation would associate with " example, which is a cool of the animation would associate with " example with " exa behavior, in addition to the three mandatory "advance" animations. Additionally or alternatively optional animations 84 can include animations specific to a certain type of Smart Object (Formities Committee of Smart) example, a soccer player Smart Object can have a "kicking" animation. Preferably, Smart Object can have a "kicking" animation. 70 also includes a set of conditional animations 82, which define the response of the Smart case a set or condu Object to "sensitivity conditions," i.e., events or interactions that trigger the animations (Such military conditions) events and conditions may include, for example, proximity to or collision with another object and thousands in the conditions and a motivation of the conditions are a motivation of the conditions and a motivation of the conditions are a motivation of the conditions and a motivation of the conditions are a motivation of the conditions and a motivation of the conditions are a motivation of the condition (which may or may not be a Smart Object) or selection of the Smart Object by avuser, withen may not be a Sm conditional animations preferably comprise scripts, which call for predetermined mandatory minimations preferably and/or optional animations in response to sensitivity conditions. It will thus be understood; that it a contraction in response to sensitivity conditions. the reaction of young male character 68 to female character 64, shown in Figs 3B, is-controlled a variable of the character 68 to female character 64, shown in Figs 3B, is-controlled a variable of the character 68 to female character 64, shown in Figs 3B, is-controlled a variable of the character 68 to female character 64, shown in Figs 3B, is-controlled a variable of the character 68 to female character 64, shown in Figs 3B, is-controlled a variable of the character 68 to female character 68 to fema by an appropriate conditional animation within the Smart Object associated with male characteristic conditional animation within the Smart Object associated with male characteristic conditional animation within the Smart Object associated with male characteristic conditional animation within the Smart Object associated with male characteristic conditional animation within the Smart Object associated with male characteristic conditional animation within the Smart Object associated with male characteristic conditional animation within the Smart Object associated with male characteristic conditional animation within the Smart Object associated with male characteristic conditional animation within the Smart Object associated with male characteristic conditional animation within the Smart Object associated with male characteristic conditional animation within the Smart Object associated with male characteristic conditional animation within the Smart Object associated with male characteristic conditional animation within the Smart Object associated with male characteristic conditional animation within the Smart Object associated with male characteristic conditional animation within the Smart Object associated with male characteristic conditional animation with the Smart Object associated with the Smart Object associated with the characteristic conditional animation with the characteris 68, responsive to the proximity of the female character thereto. As a further example, received to the proximity of of character 68, by pointing to the character and/or clicking on the character using mouse 5000. Dy pointing to a (Fig. 1), preferably triggers a conditional animation that causes the character to turn to face the graphy triggers a conuser or, alternatively or additionally, to change color, smile, wave or exhibit Lany desired matively or additionally behavior. USHAVIOT.

It will be understood that conditional animations 82 are as much a part of Smart Object! he understood that 70 as are the features of the Smart Object's geometry 72. Taken together with mandatority features of the Si animations 80 and optional animations 84, the conditional animations define rules of behavior and optional animations that impart to the Smart Object a substantially autonomous "personality." Although the Smart object is Object may be animated using a program, such as a script, that is external to the Smart Object pe animated using a roo such external script is required to engender the autonomous motion and response animation may script is required of the Smart Object. When an external script is used, it is generally sufficient that the script Object. When an external script is used, it is generally sufficient that the script Object. When an external script is used, positions that they are to assume the action start object characters to speak, positions that they are to assume the animations an include lines for the Smart Object characters to speak, positions that they are to assume the cause of animations and script is animations 80 and 84 that the Smart Objects are to undertake.

As described above, all 3D animations 88 defining behavior 74 of Smart Objects of a scribed above, all 3 certain type, such as humanoid characters, correspond strictly to the skeleton of organs 78 and sub-organs 90 belonging to the type. As long as the skeleton is unchanged, each animation 88

operates on specific organs 78, sub-organs 90 and 3D objects 86, irrespective of their shapes and sizes. In consequence, the behaviors of Smart Objects are entirely modular, just as the elements of their geometry and physical appearance are. Smart Object behaviors are themselves objects that may be exchanged and inherited freely between characters, without the need for reprogramming when the behaviors are changed or exchanged.

5

10

15

20

25

30

35

Fig. 5 is a flow chart illustrating a method for animating one or more Smart Objects 70 in an animation scene, based on autonomous behavior 74 of the Smart Object, in accordance with a preferred embodiment of the present invention. As described above, the method makes use of a "Scene Manager" program to coordinate the actions of Smart Object 70 and other objects in the scene. The Scene Manager reads geometrical data 72 and animations 88 from each Smart Object 70, and uses them as input data for an executable program module, controlled by the Scene Manager, including a moving geometrical representation of the Smart Object. Preferably, the Scene Manager maintains a table indicating the status of all the Smart Objects in the scene, including their positions and sensitivities, i.e., conditions and events capable of triggering conditional animations 82 belonging to each of the Smart Objects. Further preferably, the Scene Manager also includes image rendering routines, for example, executable code belonging to RenderWare, as described above, for rendering an image based on the geometrical representation of the Smart Object to display 52.

The Scene Manager preferably runs as a plug-in software module together with network browsing software known in the art, such as Netscape "Navigator," version 3.0 or higher, or Microsoft "Internet Explorer," version 3.0 or higher. Alternatively or additionally, the Scene Manager can run as a stand-alone application, preferably in a windows-based operating system, most preferably a Microsoft "Win32"-type operating system, as is known in the art.

As shown in Fig. 5, after initial animations have been selected for each Smart Object in an animation scene, each cycle of the method begins with a "tick," or incremental advance, of a 25 system clock that drives the animation scene. Each Smart Object in the scene is indicated by an index I. At each tick, the Scene Manager reads the selected animation from each of the Smart Objects in sequence, either the initially-selected animation or another animation selected later, as described below. The Scene Manager activates the program module corresponding to the Smart Object to perform the selected animation. The animation causes the program module to alter the 30 status of the geometrical representation of the Smart Object, for example, its position, orientation, expression or other aspects of its physical appearance. The program module, in turn, sends a message back to the Scene Manager indicating its new status, and updating the table of Smart Object status accordingly. This process continues until all of the Smart Objects in the scene have been activated. The Scene Manager then renders an image of the Smart Objects, 35 based on the new status of the geometrical representations.

After all of the Smart Objects have been activated, the Scene Manager checks the updated status table of the Smart Objects in the animation scene, to determine whether any

Hall man ONE confidence detection of the Oscara confidence detection of the Oscara confidence detection of the man sensitivity.

and fac cycle r

For example, at the finant Object Shields.

Referrin Window 66, wl Character 64 al partly transpare

Charact
"Transparent 3!
"The art, they are
or the character
overtain one up
dimensional in a
described below

Figs. 6A the principles of the present inve-110 is used to application with

sensitivity conditions have been created. Preferably, the Scene Manager also checks whether a user has provided any input that would have an impact on any of the Smart Objects, for example, selecting one of the Smart Objects using pointing device 50 (Fig. 1). If no new sensitivity condition has been created and no user input has been provided, the system clock is advanced, and the cycle repeats.

5

10

15

20

25

30

35

If the Scene Manager detects that a new sensitivity condition has been created for any of the Smart Objects, however, the Scene Manager informs the Smart Object of the change and triggers the appropriate conditional animation of the Smart Object. The clock is then advanced, and the cycle repeats. Thus, referring again to the example shown in Fig. 3B, when the Scene Manager detects that female character 64 has moved into sufficient proximity to male character 68, the Scene Manager triggers an appropriate "excited" animation of the male character. The subsequent behavior of the male character is controlled by the Smart Object itself, until the Scene Manager detects a significant change in the position of the female character or until some sensitivity condition arises.

The method illustrated by Fig. 5 is simplified for the sake of clarity of explanation. It will be appreciated that the Scene Manager may fulfill other functions besides those described above.

For example, as described above, the Scene Manager may apply an external animation script to the Smart Object. Similarly, other animation and rendering programs may be used to animate Similarly. Smart Objects. It will also be appreciated that the method described above may be applied to a single Smart Object, as well as to a plurality of interacting Smart Objects.

### TRANSPARENT 3D GRAPHIC OVERLAYS

Referring back to Fig. 2, it is observed that 3D character 64 is overlaid on applicationing back to Fig. 2, window 66, while covering only that part of the window that is directly behind the character, while covering only Character 64 appears to cast a shadow 98 on window 66, but the shadow is preferably at least appears to cast a shadow partly transparent, and the window text 100 is seen through the shadow.

"Transparent 3D." Although transparent image overlays, commonly called sprites, are known in Although transparent image overlays, commonly called sprites, are known in Although transparent 3D." Although transparent images produced by 2D rendering and allow only 2D motion are generally limited to of the characters or objects in the images. A sense of depth is achieved only when 2D sprites are upon another. By contrast, transparent 3D image element 64 in Fig. 2 is fully three upon another. By codimensional in its rendering, as well as in the range of animated motions that it can undertake, as described below.

Figs. 6A and 6B are graphic representations of computer screen 52, further exemplifying 6A and 6B are graph the principles of Transparent 3D graphic overlays, in accordance with a preferred embodiment of of Transparent 3D g the present invention. In these figures, a 3D Smart Object corresponding to a circling airplane invention. In these figures as 3D overlay image of the airplane, overlaid on an 10 galaxies a Transparent 3D overlay image of the airplane, overlaid on an 10 galaxies a Transparent application window 112, for example, an Internet Web page. Airplane 110 circles continuously above window 112 along a 3D path indicated by arrows 116. It will be observed that as the

٠.٠

airplane "flies" from its position in Fig. 6A to that in Fig. 6B, the shape of the airplane, as reflected by a border 114 circumscribing the airplane, changes responsive to the changing angle and perspective distance from which the airplane is seen. Yet the only part of text 100 in window 112 that is obscured is that which is directly behind the image of airplane 110, as defined by border 114.

5

10

15

25

30

35

Fig. 7 is a flow chart illustrating a method for creating Transparent 3D image overlays, in accordance with a preferred embodiment of the present invention. The method is based on the use of irregular-shaped, i.e., non-rectangular, windows on computer display screen 52. particularly as defined and supported by Microsoft Win32-type operating systems, such as Windows 95 and Windows NT 4.0. The method is also applicable, however, to computer animation systems using other operating systems that support irregular-shaped windows.

To create a Transparent 3D overlay, a 3D object is chosen, preferably a 3D Smart Object, such as that corresponding to airplane 110 in Figs. 6A and 6B, as described above. The behavior, particularly the motion, of the object is determined, and a suitable 3D view, generally comprising a viewpoint and view angle, are chosen for rendering the object. A 3D rendering engine, for example, the rendering module of the Scene Manager, preferably using RenderWare software, as described above, renders an image of the object to an off-screen bitmap. Within this bitmap, the rendering engine or another software module identifies which pixels have been written to, i.e., which pixels are occupied by the image of the object, and which have not. This information is used to create a mask exactly covering the pixels that were written to, so as to delineate a border 114 of the image and a transparent area outside the border. The mask, surrounded by border 114, thus defines a window shape that exactly fits the image of the 3D object.

This window definition is passed to the operating system running on processor 44, and is used by the operating system to shape a window for the object that exactly fits border 114, 55 making use of a capability of Win32 and other, similar operating systems of creating irregularshaped windows. The operating system thus draws a window on screen 52 that contains the image, for example, the image of airplane 110. This window is overlaid above other windows on the screen, such as application window 112. Since the window containing airplane 110 exactly fits the shape of border 114, the remainder of application window 112 is substantially unobscured.

The shape and position of the window containing the image of the 3D object remain unchanged for as long as the object's behavior and position and the 3D view for rendering the image of the object do not change. In general, however, Transparent 3D image overlays comprise animated images, which do change, substantially continuously. Thus, as shown in Fig. 35 7, the Scene Manager checks regularly to determine whether the 3D view or the object's behavior has changed. For example, a sensitivity condition may have triggered a change in the behavior of a Smart Object, as described above with reference to Fig. 5. In such a case, a new

muzzem i l<u>a</u> c Äimbu of 312 imags c A PERMANES II ra <del>m</del>rajona ad dejects mond , թ. Ե-բւ օցյ գույո

.. Refere - illustrating a embodiment o contained with animizmon secu Onerector 160 which Fig. 2 character 64, c ns described.e with CHATACE anarandaea in

Frame animation area Frama 136 is r display 52 ins irragitter shage بمانية فيرجرتهم بالأراث

3D view and/or new object behavior is determined, and the process of drawing a suitably-shaped window for the new image of the 3D object is repeated. Similarly, if the 3D view and object behavior are unchanged, but the animated object is in motion, as shown, for example, in Figs. 6A and 6B, then the window containing the image of the object must be continually redrawn. In the either case, a new image of the object is rendered to the off-screen bitmap, overwritingaffie a new image of the previous bitmap, and the new bitmap is used in re-shaping the object window, as described above.

Whenever the shape and/or position of the object window changes, a different portion of application window 112 will be exposed. This newly-exposed portion of display 52 is quickly redrawn, in accordance with the application driving window 112. Throughout the process of drawing and displaying the Transparent 3D overlay image of airplane 110, the application of displaying the Transparent 3D overlay image of airplane 110, the application of displaying the Transparent 3D overlay image of airplane 110, the application of displaying the Transparent 3D overlay image of airplane 110, the application of displaying the Transparent 3D overlay image of airplane 110, the application of displaying the Transparent 3D overlay image of airplane 110, the application of displaying the Transparent 3D overlay image of airplane 110, the application of displaying the Transparent 3D overlay image of airplane 110, the application of displaying the Transparent 3D overlay image of airplane 110, the application of displaying the Transparent 3D overlay image of airplane 110, the application of displaying the Transparent 3D overlay image of airplane 110, the application of displaying the Transparent 3D overlay image of airplane 110, the application of displaying the Transparent 3D overlay image of airplane 110, the application of displaying the Transparent 3D overlay image of airplane 110, the application of displaying the Transparent 3D overlay image of airplane 110, the application of displaying the Transparent 3D overlay image of airplane 110, the application of displaying the Transparent 3D overlay image of airplane 110, the application of displaying the Transparent 3D overlay image of airplane 110, the application of displaying the Transparent 3D overlay image of airplane 110, the application of displaying the Transparent 3D overlay image of airplane 110, the application of displaying the Transparent 3D overlay image of airplane 110, the application of displaying the Transparent 3D overlay image of airplane 110, the application of disp

Although sprite overlays are known in the art, as described above, none has been capable or sprite overlays of 3D image overlays with real-time animation, and none has combined 3D image rendering with overlays with real-time animation, and none has combined 3D image rendering with overlays with real-time with objects allow complete freedom of the overlays with real-time with objects allow complete freedom of the overlays with real-time animation, based on manipulation of geometrical models, including arbitrary changes in the complete of the overlay including animation, behavior and rendering. Animated image overlays known in the artifuse onlysion, habitrary pre-programmed animations, allowing very limited variations in the appearance of the overlay animations, allowing image.

## 20 USER INTERFACE

٠5

10

15

25

30

35

Reference is now made to Fig. 8, which is a graphic representation of display \$20 ference is now made illustrating a computer animation application window 140, in accordance with a preferred a computer animation embodiment of the present invention. Window 140 includes an animation area 142 whichers of the present invertice contained within a frame 136 including graphic user interface controls 138. A computer within a frame 136 animation sequence is displayed in animation area 142, including female character 64 and a hose quence is displayed in character 160, which preferably correspond to respective 3D Smart Objects. The sequence from 0, which preferably computer is taken represent to the sequence of the associated Smart Objects is taken represent character 64, based on a script and on the appropriate behaviors of the associated Smart Objects based on a script at as described above. The script of the talk show appears, line by line, in a dubbing sing 154d above. The script while characters 64 and 160 are also seen and can preferably also be heard to speak striggeters 64 and 160 and 160 are also seen and can preferably also be heard to speak striggeters 64 and 160 appropriate lines.

Frame 136 preferably comprises a 3D still image, having a transparent region defining 136 preferably comanimation area 142. As shown in Fig. 8, the transparent region is preferably non-rectangular area 142. As shown in Frame 136 is rendered as an overlay, above animation area 142, so that the animation is seen on the second display 52 inside a correspondingly non-rectangular "window," defined by the frame of the inside a corresponding irregular shape of the animation area adds interest to the scene, and also serves to emphasize the pe of the animation a functionality of user controls 138 in relation to the scene. Using this method, animation area 142/ of user controls 138 may be given any desired shape, and frame 136 may comprise any suitable still image. For

example, the frame may have the appearance of an auditorium, and the animation area may be shaped as a stage.

User interface controls 138 include an on-screen joystick 144, slider 156, selector push buttons 146, a start button 152, pause button 150, and user response button 148. These controls are used primarily to control the operation of virtual "cameras," defining the 3D view from which the scene in animation area 142 is rendered, as described in greater detail below. User controls 138 are preferably themselves 3D graphic objects, which are rendered as part of the image of frame 136. Thus, the sizes and shapes of the user controls and the distances between them may be altered as desired to enhance their functionality and ease of use.

5

10

15

20

25

30

35

Figs. 9A and 9B are graphic representations of display 52, illustrating changes in the sizes and spacing of user controls 138, responsive to scaling of animation application window 140, in accordance with a preferred embodiment of the present invention. In Fig. 9A, window 140 has been scaled down vertically. In consequence, the height of slider 156 is reduced to fit the window dimension. Similarly, in Fig. 9B, the width of window 140 is reduced, and the spaces between push-buttons 146 are concomitantly narrowed. Dubbing strip 154 is narrowed at the same time.

The variable sizes and spacing of user controls 138 in Figs. 8, 9A and 9B enable a user to operate the controls by means of pointing device 50 with greater ease and accuracy. The variations in size and spacing of the controls also give window 140 a more pleasing aesthetic appearance. By contrast, graphic user interface controls known in the art generally have fixed sizes and spacings, regardless of the scaling of the window in which the controls are contained.

Figs. 10A and 10B are schematic diagrams showing the positions of 3D objects in a 3D animated scene 170, and illustrating the operation of virtual cameras 172, 174 and 176 in rendering the scene to image area 142 of display 52 (shown in Fig. 8), in accordance with a preferred embodiment of the present invention. Fig. 10A is a top view of scene 170, and Fig. 10B is a side view. The 3D objects comprise Smart Objects 64' and 160', which are rendered respectively as images of characters 64 and 160 in image area 142, and furniture objects 162' and 164', rendered respectively as couch 162 and table 164 in the image.

Each of virtual cameras 172, 174 and 176 corresponds to and defines a 3D view of scene 170. Each camera is selected by pressing an appropriate one of push buttons 146. In a preferred embodiment of the present invention, five virtual cameras are used, corresponding to the five selection buttons 146, but for simplicity of illustration, only three cameras 172, 174 and 176 are shown in Fig. 10A, and only two of the cameras are shown in Fig. 10B. Thus, the view rendered in Fig. 8 corresponds generally to that seen by camera 176.

As illustrated in Figs. 10A and 10B, each of cameras 172, 174 and 176 is capable of a range of virtual motions, changing the cameras' viewpoints (spatial positions), zoom angles and orientations. For example, as shown in Fig. 10A, camera 174 may be panned about its viewpoint 175, as indicated by an arrow 178. The camera's zoom angle, indicated by an arrow 180, may be

neticon no.

reclica e gra

esgranagiar

camarasi na

con con con

transcon con

transcon con

equally to a

170, includi:

esmera mon rig. 11A sti ero shown st Fig.

-On the annual animated im.
Vianalizing:
172 in the recommera has commera has

commons 4.35
40 to choose
predision and
let the art [a].

varied between wide-angle and close-up views. The zoom is preferably controlled by shifting slider 156.

Camera 174 may also be moved along a straight or curved path in space, as shown, for the example, by an arrow 182, indicating that the camera is translating from a starting point 184 to the an end point 186. Preferably, these paths are predefined, to give a well-controlled range of 186. Preferably, these paths are predefined, to give a well-controlled range of 186. Preferably camera positions, analogous to movement of real video cameras in an actual television studio.

When camera 174 is selected, a user initiates motion of the camera along the path indicated by arrow 182 by pressing start button 152. To stop the camera's motion, the user presses pause button 150.

10

15

20

25

30

35

Other camera motions are illustrated in Fig. 10B. For example, camera 172 tilts up and down about its viewpoint 195, as indicated by an arrow 190. A point in space may be rehosen, its address of the such as a point 196, and camera 176 may be controlled to revolve about the point in a position 196, and camera 176 may be controlled to revolve about the point in a position 196, and camera 197, for example, and continuing as indicated by an arrower paring he a position 193, for cameras' tilt, pan and revolution are preferably controlled using joystick 144, as its further, pan and revolute described below. Likewise, camera 172 may be made to close in toward point 196, along tailor. Likewise, camera 172 may be made to close in toward point 196, along tailor. Likewise are linear path indicated by an arrow 192, and may similarly be made to pull out, away from iscene used to an arrow 170, along an opposite path. Point 196 may be chosen to be anywhere in the 3D space of scene opposite path. Point 196 may be chosen to be anywhere in the 3D space of scene opposite path. Point 196 including in or adjacent to one of the objects in the scene.

It will be understood that although certain of these camera motions are described herein to the cameras are described herein to the cameras as well as to additional virtual cameras, not shown in the figures of the cameras, as which may be provided.

Figs. 11A and 11B are graphic representations of display 52, illustrating the effects of the 11A and 11B are graphic representations of display 52, illustrating the effects of the 11A are graphic camera selection described above on images rendered in image area partions and camera selection and camera selection are selection described above on images rendered in image area partions and camera selection are selection described above on images rendered in image area partions and camera selection described above on images rendered in image area partions and camera selection described above on images rendered in image area partions and camera selection described above on images rendered in image area partions and camera selection described above on images rendered in image area partions and camera selection described above on images rendered in image area partions and camera selection described above on images rendered in image area partions and camera selection described above on images rendered in image area partions and camera selection area particles. The particles are particle

Fig. 11A also includes a schematic, outline representation of camera 172, superimposed 11A also includes a continuous formation of the camera is not shown in atheriand scene. Ordinarily, this representation of the camera is not shown in atheriand scene. Ordinarily, this representation of the camera is not shown in atheriand scene. Ordinarily, this representation of the camera is not shown in atheriand scene. Ordinarily, this representation of the camera is not shown in atheriand scene. Ordinarily animated scene. Ordinarily animated image area. The user may choose to display the camera outline, however, to assist the area area. The user is used in the user area area. The user may choose a solution shown in Fig. 11A, i.e., Fig. 11B shows the view of camera 172, affect the ostron shown in the camera has closed in toward point 196 (Fig. 10B), as described above.

It will be appreciated that the user interface described above, comprising on-screen to appreciated a controls 138 and virtual cameras 172, 174 and 176, allows a user of computer animation system and virtual cameras 40 to choose and manipulate the viewpoints from which scene 170 is rendered with substantials and manipulate are precision and flexibility and with relative ease. In interactive computer animation systems known flexibility and with in the art, a user is generally limited either to a fixed viewpoint, giving relatively little flexibility, where it is a fixed viewpoint, giving relatively little flexibility, where it is a fixed viewpoint, giving relatively little flexibility.

to control, since pointing devices and on-screen controls typically have only two degrees of freedom, while the virtual camera has three. In accordance with the principles of the present invention, however, navigation in 3D space is based on selection from among predefined viewpoints, on zoom, pan and tilt angles centered on these viewpoints, and on movement of the viewpoints along predetermined, linear and arcuate paths. The viewpoints and paths are preferably pre-programmed and supplied to a user as part of an animation software package. Alternatively or additionally, the user may independently designate viewpoints and paths, preferably using pointing device 50 (Fig. 1).

Fig. 12 is a graphic representation showing a portion of display 52, illustrating the operation of on-screen joystick 144. The joystick is operated by selecting it, preferably using pointing device 50, and then dragging it in a desired direction by a desired amount. In Fig. 12, joystick 144 has been dragged to the left:

10

15

20

25

30

35

Joystick 144 has two alternative functions: Either pan and tilt of one of the virtual cameras that has been selected, or revolution of the selected camera about a point in scene 170. When the joystick is used to control camera revolution, left-right movement of the joystick drives the revolution in a horizontal plane, while up-down movement drives the revolution in a vertical plane. Preferably, user response button 148 is used to toggle between the tilt/pan and revolutionary movements of the selected camera.

### ASSOCIATIVE VISUAL SEARCH

Figs. 13A and 13B are graphic representations of display 52, schematically illustrating a user interface window 200 associated with a visual search engine, in accordance with a preferred embodiment of the present invention. The search engine is preferably used to search through a library of animations and/or animated objects, most preferably, 3D Smart Objects, and it is particularly useful in creating computer animations. But it may, alternatively or additionally, be used in searching through databases of still images, particularly including background and border images for use in creating computer animations.

Fig. 14 is a flow chart, illustrating a method of operation of the visual search engine, in accordance with a preferred embodiment of the present invention.

Each item in the library or database to be searched must have at least one, and preferably a plurality, of keywords associated therewith. The keywords preferably describe different aspects of the item, such as its name and type, subject matter, character, appearance, style, color, size, etc. The keywords for each item are hierarchically ranked, with one of the keywords chosen to be the premier keyword for the item. Preferably, each item also has a unique name by which it is identified.

As shown in Fig. 13A, to begin a search, a user preferably enters a starting keyword or name in an entry field 202 in window 200, and then selects a "search" button 204. Based on the starting keyword or name, a primary search is conducted of the library or database. The search engine finds keywords or names associated with items in the library that match the keyword that

ji równ 216 away:

in tr

molt in the language of the control of the search engine the control of the contr

meteir close

case, the ser random-agar tiser wisness rather than t

20

20

30

images 222 man with a to points to rife a 3D object it w 13B make : preferably 3

searching the Returnishing the

is entered, and displays the matching keywords or names in a match field 218: Preferably, the search engine includes a thesaurus, which enables the engine to select and search for other keywords synonymous with the starting keyword, particularly when the starting keyword is not found among the keywords of the library or database.

5

10

15

20

25

30

35

Once the primary search is complete, the results are displayed in an image area 210 of window 200. An image of an item, in this case a bouquet 208, that most closely matched the starting keyword is displayed in a central portion 216 of the image area. Images of other items that matched the starting keyword are also displayed within area 210, in a generally concentric arrangement around central portion 216. Images of items that matched the starting keyword more closely, such as an image of a flower 212, are displayed in closest proximity to central portion 216, while those that matched less closely, such as a banner 214, are displayed farther away.

In the context of the present patent application and the claims, an item is considered to context of the pre-match closely a keyword that is searched for when the keyword searched for occupies a highy a keyword that is rank in the hierarchy of keywords associated with the item. Generally, the higher the rank of the searched for is in the hierarchy, the closer is the match. It will be appreciated to the present invention, the principles of these in other preferred embodiments of the present invention, the principles of these in other preferred embodiments of the graphic user interface associated therewith as a described herein and particularly the graphic user interface associated therewith as a described herein and particularly the graphic user interface associated therewith as a described herein and particularly the graphic user interface associated therewith as a described herein and particularly the graphic user interface associated therewith as a described herein and particularly the graphic user interface associated therewith as a described herein and particularly the graphic user interface associated therewith as a described herein and particularly the graphic user interface associated therewith as a described herein and particularly the graphic user interface associated therewith as a described herein and particularly the graphic user interface associated therewith as a described herein and particularly the graphic user interface associated therewith as a described herein and particularly the graphic user interface associated therewith as a described herein as a described herein and particularly the graphic user interface associated therewith as a described herein and particularly the graphic user interface associated therewith as a described herein and particularly the graphic user interface associated therewith a described herein and particularly the graphic user interface.

Alternatively, the user may begin a search by selecting a "random" button 206. In this case, the search engine performs a random search through the database or library and presents at the engine performs random assortment of images in window 200. This random search feature is useful when the timent or mages in user wishes to browse through the library or database so as to intuitively seek associations, to browse through rather than using the more directed keyword search.

Once the primary search or random search has been performed, the user visually reviews the primary search the images in window 200. Preferably, as shown in Fig. 13B, when the user points to one of the window 200. Error images 222 with a cursor 220 (without necessarily selecting the image), the image, in this case avian a cursor 220 (without necessarily selecting the image), the image, in this case avian a cursor 220 (without necessarily selecting the image), the image, in this case avian a cursor 220 (without necessarily selecting the image), the image, in this case avian a cursor 220 (without necessarily selecting the image), the image, in this case aviance and a summation associated therewith is run. Similarly, if image 222 represents unage, an animation associated therewith is run. Similarly, if image 222 represents unage, an animation associated therewith is run. Similarly, if image 222 represents unage, an animation associated therewith is run. Similarly, if image 222 represents unage, an animation associated therewith is run.

It will thus be appreciated that the properties of the search engine exemplified by Figin thus be appreciated 13B make it particularly useful for searching through a library of Smart Objects, and mostic particularly useful preferably 3D Smart Objects. On the other hand, it will also be understood that the unique smart Objects. Caspects of the search engine and the user interface associated therewith will be useful for the search engine and search engine and databases, as well.

Returning to the flow chart in Fig. 14, after the primary or random search results are using to the how chart in Fig. 14, after the primary or random search results are using to the how chart in Fig. 14, after the primary or random search results are using to the how chart in Fig. 14, after the primary or random search results are using to the how chart in Fig. 14, after the primary or random search results are using to the how chart in Fig. 14, after the primary or random search results are using to the how chart in Fig. 14, after the primary or random search results are using to the how chart in Fig. 14, after the primary or random search results are using to the how chart in Fig. 14, after the primary or random search results are using to the how chart in Fig. 14, after the primary or random search results are using the how chart in Fig. 14, after the primary or random search results are using the how chart in Fig. 14, after the primary or random search results are using the how chart in Fig. 14, after the primary or random search results are using the how chart in Fig. 14, after the primary or random search results are using the how chart in Fig. 14, after the primary or random search results are using the how chart in Fig. 14, after the primary or random search results are using the how chart in Fig. 14, after the primary or random search results are using the how chart in Fig. 14, after the primary or random search results are using the how chart in Fig. 14, after the primary or random search results are using the how chart in Fig. 14, after the primary or random search results are using the how chart in Fig. 14, after the primary or random search results are using the how chart in Fig. 14, after the primary or random search results are using the how chart in Fig. 14, after the primary or random search results are using the how chart in Fig. 14, after the primary or random search results are using the how chart in Fig. 14, after the primary or random search results are using the how chart in Fig. 14, afte

portion 216 of window 200, instead of the image that was displayed there previously. The search engine conducts a secondary search, preferably based on the principles of keyword matching described above in reference to the primary search. Since the item associated with image 222 will generally have a different set of keywords from that used in the primary search, the secondary search will find new items in the library or database. The new items are displayed in image area 210 in the same concentric arrangement as described above.

The user reviews the new items found in the secondary search. If the user finds a desired item, for example, an object to be used in an animation, that item is selected, and the search ends. If the desired item is not found, the user preferably selects a new one of the items in image area 210 that has some association with a type of item or concept that the user has in mind. This new item then serves as the starting point for another search, like the secondary search described above. This iterative cycle of association (by the user) and search (by the search engine) may be repeated indefinitely until the desired item is found. It will be appreciated that an associative search of this sort is useful both for finding a specific item or type of item in a library or database and for browsing through the library or database in search of a new, as-yet-unformulated idea.

10

15

20

25

30

35

### TRANSMITTING ANIMATION OVER A NETWORK

Reference is now made to Fig. 15, which is a block diagram illustrating a system architecture 231 for transmission of an interactive computer animation over a computer network 236, preferably over the Internet, in accordance with a preferred embodiment of the present invention. The animation, for example, a talk show, as described above with reference to Fig. 8, is produced by a server 230 and is distributed over network 236 to multiple clients 232 and 234. The clients include viewers 234, who use computers such as computer 40, shown in Fig. 1, to receive the animation from the server and view the animation on local display 52. The clients may also include participants 232, who not only view the animation, but also participate in the animation, for example, by controlling respective avatars in the talk show. Preferably, the animation is based on Smart Objects, most preferably 3D Smart Objects, as described above.

For the sake of clarity of explanation, the following description of Fig. 15 assumes that the animation transmitted over network 236 comprises a talk show, as illustrated and described above. It will be appreciated, however, that the principles of the present invention, as described with reference to the talk show, may similarly be applied to transmit other types of animated information, entertainment and advertising programs over a network. Thus, the animation may comprise, for example, a game show, a soap opera, or an interactive shopping program, which are preferably realized using Smart Objects.

In order to transmit the talk show of Fig. 8 to one of viewers 234, the Smart Objects representing female character 64 and host 160 are transmitted by server 230 over network 236 and are preferably stored in local memory 46 of the viewer's computer 40. The Smart Objects need be transmitted only once. In fact, assuming host 160 appears in a series of talk show

citents 232 at edditional ca

transmit en

merchange

COmmonwar

screen conti

corrador en

VIOTE THEY.

்ற்ற விட்

ن در چېښې

ejimiantin zo

manarim (co c

host 160.of r

Trumation.

āppearnig in

FOSHBORNE 2V

nom me sec

situmadon r

rridupants.

11121

. . . نا دلا

VICU.

Partie

15

32

សារិកការ វិទ្ធិម្នាំ អង្គសូម

10

15

20

25

30

35

programs transmitted by server 230, the host Smart Object may be recalled from local memory and need not be retransmitted over the network for each new talk show transmission.

As a result of this use of Smart Objects in the show, the time and bandwidth needed to transmit each show over network 236 is substantially reduced. All that is necessary is to transmit an animation script. The animated Smart Objects speak their lines and move between nimation script appropriate, predetermined positions within an animation scene, such as scene 170 shown in Figs. 10A and 10B, in accordance with the script. On account of the substantial autonomy of the Smart Objects, substantial portions of the appearance, gestures and expressions of the characters are filled in by the Smart Objects themselves, and need not be transmitted over the network. The animated talk show is rendered to display 52 by a rendering engine running on computer 40, as described above.

Preferably, the Smart Objects and the animation script are compatible with animation interchange tools and conventions known in the art, most preferably with VRME 2:0,8 as well convention described above. Such compatibility allows viewers 234 to receive and view animations using the Compatibility allows viewers 234 to receive and view animations using the Compatibility allows viewers 234 to receive and view animations using the Compatibility allows viewers 234 to receive and view animations using the Compatibility allows viewers 234 to receive and view animations using the Compatibility allows viewers 234 to receive and view animations using the Compatibility allows viewers 234 to receive and view animations using the Compatibility allows viewers 234 to receive and view animations using the Compatibility allows viewers 234 to receive and view animations using the Compatibility allows viewers 234 to receive and view animations using the Compatibility allows viewers and view animations of the Compatibility allows viewers and view animations of the Compatibility allows viewers and view animations of the Compatibility allows viewers and view animation of the Compatibility allows and view animation of the Compatibility allows and view animation of the Compatibility allows and viewers and viewer commonly-available Internet browsing software, with suitable animation plug-ins, as are known with the Internet have in the art.

Further preferably, viewers 234 are provided with user interface controls, such as only professiony, wow screen controls 138 shown in Fig. 8. As described above, controls 138 are used to vary theols 138 shown in F selection and viewpoints of virtual cameras 172, 174 and 176 (Figs. 10A and 10B), so that the viewer may, for example, choose between the wide angle view of Fig. 11A and the close-up of ion example, choose Fig. 11B. User controls may also be provided to change other aspects of the animation, such asser controls may also lighting or background. Haming or Daighground

Viewers 234 have only limited opportunity, however, to interact with and affect the city animation script. Such interaction is typically limited to indicating a selection which may be true acre transmitted back to the server, for example, answering a multiple choice question put to them: by and the server, in nost 160 of the talk show, by tell host 160 of the talk show, by "clicking on" user response button 148.

Participants 232 are clients of server 230 who are given a more active role in afficipants 232 are clie animation. For example, the participants may control respective Smart Object with a ractions for examinist the appearing in the talk show, wherein the Smart Objects preferably comprise the participants the talk show, with respective avatars. Each participant 232 preferably inputs text, along with a suitable animation rates. Each participant from the set of animations belonging to the participant's respective Smart Object." The text and or animations belong animation are conveyed over network 236 to server 230 and sent out to viewers 234 re conveyed over Participants 232 may further control their avatars' motions, preferably using a pointing device, 454 may turther con such as pointing device 50 (Fig. 1), or by other means known in the art. evon as pointing acount to the ...

The local computer hardware and animation rendering software required by participant ocal computer hards clients 232 and by viewer clients 234 are substantially the same. Participants 232 generally havend by viewer clients additional software enabling them to participate in the animation. A further feature of animation floore enabling them

programs transmitted over network 236 by server 230 is that one or more of viewers 234 may be invited to become participants in such a program.

Fig. 16 is a block diagram illustrating another system architecture 239 for transmission of computer animations over network 236, in accordance with another preferred embodiment of the present invention. System architecture 239 includes a network server 246, which is connected via network 236 to a source client 240 and a recipient client 254. The system is used by source client 240 to prepare an animation, for example, an animated message as described below, and send the animation in the form of electronic mail to recipient 254 for viewing.

In the preferred embodiment illustrated by Fig. 16, the animation is prepared at source 240 and sent to recipient 254 using conventions that are well known in the art. Source 240 and recipient 254 are preferably equipped with computers 40 as shown in Fig. 1, or with similar equipment. Preferably, as shown in Fig. 16, the animation sent to recipient 254 is based on the JAVA language and HTML file format. It will be appreciated that the principles of the present invention, as exemplified by Fig. 16 and described with reference thereto, may similarly be applied to prepare and transmit electronic mail that includes 3D animations, using VRML, for example.

15

20

25

30

35

Source client 240 uses a message editor 242 and assets 244, comprising a library of animation elements, as described below, to prepare an animated message for recipient 254. The message is conveyed to server 246 via network 236, addressed to recipient 254, in the form of an encapsulated textual description, rather than as an animation, and thus substantially reduces transmission-time and memory needed to contain the message.

Server 246 includes a JAVA message generator program 248. The server maintains in its memory JAVA classes 250, including program routines for producing animations, sound, and text, as are known in the art, and assets 252, generally matching the set of assets 244 of source client 240. Message generator 248 converts the source client's message to HTML. Message generator 248 receives the textual description of the animation from source client 240 and uses it to generate an HTML document. Server 246 transmits a URL reference to the HTML document, as is known in the art, in the form of an electronic mail message over network 236 to recipient 254. When recipient 254 opens the message, the HTML document activates a JAVA applet on server 246. The applet causes the animation prepared by source client 240 to be replayed on the recipient's computer screen, thus conveying the animated message. System 239 allows a user of source computer 240 to compose and send an animated message to recipient 254 in a manner analogous to sending an electronic mail letter, without the need to understand or follow the conventions of the JAVA language and HTML files.

Fig. 17A is a graphic representation of display 52, illustrating an on-screen window 260 used by editor 242 (Fig. 16) to create an animated message, in accordance with a preferred embodiment of the present invention. Window 260 includes an animation area 262, which displays an animated scene that includes an animated character 264, text 266 and other elements

.

UT 18 THERUS

aneti aneti anima mina a Saan Off

. A recipioni se

Constant of the constant of th

waer

...o..een.co hTML file, ... textuál descri

Source chent

30

or juny 52, m receives the r "hot link" app to variand to

rig. .

. 15

20

25

30

to be included in the message. The window also includes menus 272 and user controls 268, which are used in producing and editing the message.

Fig. 17B is a flow chart illustrating a method for creating and editing the message of Fig.

17A, in accordance with a preferred embodiment of the present invention. A user of editor 242 uses menus 272 and user controls 268 to compose the animated scene. The user selects tiles and 72 and user control colors for the background and the border of the scene. Preferably, at least one animation object is selected, such as character 264, along with a message, such as text 266. The background, since as control border and animation object are preferably chosen from among assets 244 using an associative search engine, as described above with reference to Figs. 13A, 13B and 14. It will be a subscribed understood, however, that the steps of choosing the background and border are optional, and in the user does not choose a background and/or border, editor 242 provides at the user does not default background and border.

The user next inputs characteristics of the motion of the animation object and voice user next inputs on and/or sound effects to be included with the message. Preferably the animation object comprises enects to be included a Smart Object, and the user needs only to define a path within the scene along which the object and the user near its to move. Further preferably, the user may assign to the animation object certain responses to purpose precedity, events and user interactions, for example, defining a response of the object that is invoked when ser interactions, for a recipient selects the object. In the case of Smart Objects, such responses may be assigned by elects the object. In adding conditional and/or optional animations to the Smart Object, as described above with house and or optional animations to the Smart Object, as described above with house and or optional animations.

Once the elements of the scene in animation area 262 have been composed, the user may the elements of the observe and edit the scene and make any desired changes. The user may also add additional edit the scene and a scenes, in sequence, so as to create a multi-scene message.

When the animated message is complete, the user may preview the animation using an the animated mess on-screen control bar 270, shown in Fig. 17A. The message may also be saved to disk as an on-screen control bar 270, shown in Fig. 17A. The message may also be saved to disk as an on-screen control bar 270, shown in Fig. 17A. The message may also be saved to disk as an on-screen control bar 270, shown in Fig. 17A. The message may also be saved to disk as an on-screen control bar 270, shown in Fig. 17A. The message may also be saved to disk as an on-screen control bar 270, shown in Fig. 17A. The message may also be saved to disk as an on-screen control bar 270, shown in Fig. 17A. The message may also be saved to disk as an on-screen control bar 270, shown in Fig. 17A. The message may also be saved to disk as an on-screen control bar 270, shown in Fig. 17A. The message may also be saved to disk as an on-screen control bar 270, shown in Fig. 17A. The message may also be saved to disk as an on-screen control bar 270, shown in Fig. 17A. The message may also be saved to disk as an on-screen control bar 27D, and the when the message is textual description of the message is conveyed to server 246, as described above.

Fig. 18A is a graphic representation of display 52 belonging to recipient 254 (Fig. Fig.), 18A is regraphic reasonable showing the message conveyed from source client 240, in accordance with showing message conveye embodiment of the present invention. A window 280 on the screen of display 52 is created by a of the present invention well-known Internet browser. Animated character 264 and text message 266, as created by the internet provider a source client, appear within an animation area 282 in window 280.

Fig. 18B is a flow chart illustrating a method by which the message is presented on less is a now chan display 52, in accordance with a preferred embodiment of the present invention. Recipient 25411 accordance with a receives the electronic mail message conveyed by server 246. When the message is opened, a electronic mail message that link appears in the message, as is known in the art, providing a link to a URL created by present in the message server 246 for displaying the animated message created by source client 240. When the hot link is selected, the Internet browser associated with window 280 is opened (if it is not open already).

and the animated message is displayed in the window, as shown in Fig. 18A. Alternatively, the recipient user may himself determine that the message contains an HTML file and open the browser to display the animation. When other, non-HTML electronic mail messages are received by recipient 254, they are simply read as text.

5

10

15

20

Although the animated electronic mail message of Fig. 18A comprises a JAVA applet. which drives an animation that is displayed in a dedicated animation area 282, the principles of the present invention may be employed to encapsulate and send animated messages of other types, as well. For example, a 3D Smart Object may be created in a VRML-compatible format to serve as the animated avatar of a user. This avatar may be incorporated into an mail message sent by the user, so that when recipient opens the message using a VRML-compatible browser, the animated 3D avatar will appear on the recipient's computer display. If desired, the avatar can speak (or even sing) the user's message. The 3D Smart Object is preferably rendered as a Transparent 3D overlay on the browser window, as shown, for example, in Fig. 2.

It will be appreciated that Smart Objects are particularly well suited for encapsulation and transmission over computer networks. The modularity of Smart Objects allows them to be easily customized, to present a desired animated image, such as an avatar, and/or to convey a message chosen by a user. Furthermore, the substantial autonomy of Smart Objects allows animation files that include Smart Objects to be relatively compact, since beyond the Smart Objects themselves, such files must generally contain only a script, and need not include details of the animation.

It will moreover be appreciated that the preferred embodiments described above are cited by way of example, and the full scope of the invention is limited only by the claims.

i fili in<mark>te</mark>ninc CHECK facinitation. Goints, and w iginir וושוויםנו ווסנואוו without act of t response con www.inc. comprises pr response to p.

10

15

25

anna.

A mo

·A. m

7. mc

A mei

A mei

A mei

"to the other is to me omer n

character to ti unage is rende the computer:

Fil Jobsercome

## **CLAIMS**

1. A method for producing an animation sequence on a graphic display driven by a computer, comprising:

defining an object comprising data, including a geometrical description of an animated character and characteristics of social behavior of the character; and animating an image of the character responsive to the characteristics.

5

15

25

35

- 2. A method according to claim 1, wherein defining the object comprises programming a predetermined response of the character to a sensitivity condition occurring externally to the object.
- 3. A method according to claim 2, wherein programming the predetermined response to the interaction condition comprises programming a rule governing motion of the object responsive to the condition.
  - 4. A method according to claim 3, wherein defining the object comprises defining according to geometrical skeleton of the object characterized by a hierarchy of sub-objects connected by stellar or the case joints, and wherein programming the rule governing motion comprises defining motions of the vitereum programming joints.
    - 5. A method according to any of claims 2-4, and comprising assigning the character action according to human personality type and programming a set of responses appropriate to the personality type, which set of responses includes the predetermined response to the condition.
- 6. A method according to any of claims 2-5, wherein programming the predetermined according to response comprises programming a response of the character to another item whose image is programming shown in the display.
  - 7. A method according to claim 6, wherein programming the response to the other item to according to comprises programming a response of the character to the other item that is triggered in regression response to proximity of the item to the character in the display.

    25 response to proximity of the item to
  - 8. A method according to claim 6 or 7, wherein programming the response of the character exhibits a response members programming a response such that the character exhibits a response members program to the other item indicative of a human emotion.
- 9. A method according to any of claims 6-8, wherein programming the response of the character to the other item comprises programming a response of the character to an item whose mean comprise image is rendered on the display substantially under the control of another program running on the computer substantially unrelated to the object.
  - 10. A method according to any of claims 2-9, wherein programming the predetermined according to a response comprises programming a response of the character to being selected by a user of the computer graphic display.

11. A method according to any of claims 2-10, wherein programming the predetermined response comprises programming an idle behavior undertaken by the character when a predetermined time has elapsed without another sensitivity condition having occurred.

12. A method according to any of claims 2-11, wherein animating the image of the character and according to any comprises animating the image responsive to a script, wherein the script includes the sensitivity condition that elicits the predetermined response of the character.

5

10

25

- 13. A method according to any of claims 2-12, and comprising transferring the object over a network from a source computer to a destination computer, wherein animating the image comprises animating an image of the character on a display associated with the destination computer, in accordance with the predetermined response of the character to a sensitivity condition created at the destination computer.
- 14. A method according to any of the preceding claims, wherein defining the object according to a coordinate are comprises defining sufficient characteristics of the behavior of the character such that the image image is animated substantially without reference to animation instructions external to the object.
- 15. A method according to any of the preceding claims, wherein animating the image entropy to as comprises rendering a three-dimensional image of the character.
  - 16. A method according to claim 15, wherein rendering the three-dimensional image comprises overlaying the image on a window in the display generated by a program running on the computer substantially independently of the object.
- 20 17. A method according to claim 16, wherein overlaying the image on the window comprises that according to claim overlaying an image such that substantially the only portion of the window that is obscured in the related portion directly behind the image of the character.
  - 18. A method according to any of the preceding claims, wherein defining the object entitles of according to an comprises defining a first object comprising a geometrical description and characteristics of entities object comprising a first object comprising defining a second object comprising for of a first animated circumstant description of a second animated character and characteristics of social behavioral description of a second animated character and characteristics of social behavioral description of a second thereof by transferring at least some elements of the first object to the second object.
  - 19. A method for producing an animation sequence on a graphic display driven by method for producing a computer, comprising:
- defining a group of objects, each such object associated with a respective animated ing a group of objects character and comprising data including:
  - a geometrical skeleton common to all the objects in the grouped, characterized by a geometrical skeleto a hierarchy of sub-objects connected by joints; and
- of the joints and are interchangeable among any of a plurality of the objects; and animating an image of at least one of the characters responsive to the rules.

20. A method according to claims 19, wherein defining the group of objects comprising the geometrical skeleton comprises defining a three-dimensional skeleton, and wherein animating the image comprises rendering a three-dimensional image.

21. A method according to claim 19 or 20, wherein defining the group of objects comprises defining an accessory null within the geometrical skeleton, at which null an accessory is coupled 5 to at least one of the objects.

5

10

25

35

- 22. A method according to any of claims 19-21, wherein defining the group of objects comprises defining a camera null within the geometrical skeleton, for coupling a virtual camera to at least one of the objects so as to render an image of a scene from a point of view associated with the at least one object.
- 23. A method according to any of claims 19-22, wherein defining the group of objects comprising the rules governing behavior comprises defining rules governing behavior of a predetermined personality type, associated with one or more of the animated characters.
- 24. A method according to any of claims 19-23, wherein defining the group of objects comprises defining first and second objects, wherein the second object is defined by inheritance from the first object.
  - 25. A method for providing a user interface in a computer graphic display, comprising: displaying one or more user control icons in a window in the display; and scaling the one or more icons responsive to a change of scale of the window.
- 26. A method according to claim 25, wherein displaying the one or more icons comprises displaying two icons in mutual proximity, and wherein scaling the one or more icons comprises changing a distance between the two icons.
  - 27. A method according to claim 25 or 26, wherein displaying the one or more icons comprises displaying an elongate icon of predetermined length, and wherein scaling the one or more icons comprises changing the length of the elongate icon.
  - 28. A method according to any of claims 25-27, wherein displaying the one or more user control icons comprises producing a frame image including the icons and having a transparent area, and overlaying the frame image on an animation generated on the display, such that the animation is framed within the transparent area.
- 30 29. A method according to claim 28, wherein producing the frame image having the transparent area comprises producing a frame image having a non-rectangular transparent area.
  - 30. A method for producing an animation sequence on a graphic display driven by a computer, comprising:

producing a frame image having a non-rectangular transparent area; generating an animation sequence on the display; and

DZ. V. Mo

60...ពីមាន ៩៩៤ 34. – As កាល

enining a ma

35. Ameri

comprises sele

scene as seen rendering the second viewpo image of the s

36. A mei

grenom

sortware appli

39. A meti

PCT/IL97/00093 WO 97/35280

overlaying the frame image on the animation sequence, so that the animation is framed by the transparent area.

31. A method for producing an animation sequence on a graphic display driven by a comprising:

defining a three-dimensional geometrical description of an animation scene; definition a three-dimensional selecting first and second reference points relative to the scene and defining a geometrical and second reference points relative to the scene and defining a geometrical and second reference points relative to the scene and defining a geometrical and second reference points relative to the scene and defining a geometrical and second reference points relative to the scene and defining a geometrical and second reference points relative to the scene and defining a geometrical and second reference points relative to the scene and defining a geometrical and second reference points relative to the scene and defining a geometrical and second reference points relative to the scene and defining a geometrical and second reference points relative to the scene and defining a geometrical and second reference points are second reference points. path dependent on the points; think on the police

rendering a first image of the scene as seen from a viewpoint at a first position on the light land in geometrical path;

translating the viewpoint to a second position along the geometrical path; and rendering a second image of the scene as seen from the second position.

5

10

25

30

35

- 32. A method according to claim 31, wherein defining the geometrical path comprises were according to the defining a substantially linear path connecting the first and second reference points. According a substantially linear path connecting the first and second reference points.
- A method according to claim 31, wherein defining the geometrical path comprises that a contribution of 15 defining a generally arcuate path connecting the first and second reference points. Contain a second reference points.
  - A method according to claim 31, wherein defining the geometrical path comprises their according to claim defining a path of revolution generally centered at the second reference point and impassing an or revolution generally through the first reference point.
- 35. A-method according to any of claims 31-34, wherein selecting the second reference point had according to any c 20 comprises selecting a point corresponding generally to the position of a character in the scene selecting a point corresponding
  - 36. A method according to any of claims 31-35, wherein translating the viewpoint comprises non-according to any of translating the viewpoint using an on-screen joystick control. translating the viewpoint using an or.
  - 37. A method according to any of claims 31-36, wherein rendering the first image of thethod according to any scene as seen from the viewpoint at the first position on the geometrical pathecomprises n from the viewpoint rendering the image of the scene as seen from a first viewpoint, and confiprising defining the image of the scene as second viewpoint and providing an on-screen control such that when the control is activated amount and providing an i ... mage of the scene is rendered from image of the scene is rendered from the second viewpoint.
  - 38. A method for producing an animated overlay image on a graphic display driven/bynation for producing an computer, comprising: Compater, Comprising.

generating a three-dimensional animated image element, and generating a three-dimension overlaying the animated image element on a window in the graphic display driver by favying the animated image software application substantially unrelated to the generation of the animated image element application substantially un

39. A method according to claim 38, wherein overlaying the image element on the window had according to claim comprises overlaying an image element such that the substantially unrelated software application who have the substantial software application which is substantially unrelated software application who have the substantial continues to run substantially as though the image element was not overlaid on the window.

Authority is reader the wife

40. A method according to claim 38 or 39, wherein overlaying the image element on the window comprises overlaying an image element such that substantially the only portion of the window obscured is the portion directly behind the image element on the graphic display.

41. A method according to any of claims 38-40, wherein overlaying the animated image element comprises finding a border circumscribing the image element, defining an animation window which is shaped to fit the border, and altering the shape of the animation window substantially whenever the border changes.

5

10

15

20

25

30

- 42. A method according to any of claims 38-41, wherein generating the animated image element comprises controlling a motion of the element responsive to a characteristic of the display driven by the substantially unrelated software application.
- 43. A method according to claim 42, wherein controlling the motion responsive to the characteristic of the display comprises controlling a motion responsive to a graphic icon in the display.
- 44. A method according to claim 42 or 43, wherein generating the animated image element comprises defining an object corresponding to the image element and including a rule governing motion of the object, and wherein controlling the motion of the element comprises controlling a motion responsive to the rule.
  - 45. A method according to any of claims 38-44, and comprising transferring a data module corresponding to the image element over a network from a source computer to a destination computer, wherein generating and overlaying the image element comprise generating and overlaying an image on a display associated with the destination computer.
  - 46. A method for conveying an animation from a source computer to a destination computer, comprising:

defining an object in the source computer, the object comprising a graphic description of an element for inclusion in the animation and a characteristic of motion of the element;

transmitting the object from the source computer to the destination computer via a network; and

displaying an animated image on a display driven by the destination computer, wherein the image includes a graphic rendition of the element, moving in accordance with the characteristic.

- 47. A method according to claim 46, wherein transmitting the object via the network comprises encapsulating the object and transmitting the encapsulated object in the form of an electronic mail message.
- 48. A method according to claim 47, wherein encapsulating the object comprises generating attextual description of the object, and wherein transmitting the object comprises transmitting the

tim or the time of the computers for a computers for a computer of the computers for a computer of the compute

CHEVITAEN CONTRACTOR

L. COTTO CO & V....

54 A method of the control of the co

COMBUILD;

A Inchio

selecting
searching
image in one or a
50. A metho

or. A methodine the first image in manages consigning.

the msi mase n

-50. A metho

textual description to a server computer, which generates an animation file based on the textual description and delivers the animation file to the destination computer.

- 49. A method according to claim 47 or 48, wherein encapsulating the object comprises generating a HTML document that invokes a JAVA applet.
- 5 50. A method according to claim 46, and comprising transmitting a script over the network, which script defines an animation sequence including the element, and wherein transmitting the defines and object and transmitting the script comprise transmitting the object and the script to a plurality of destination computers.
- A method according to claim 50, wherein displaying the animated image on the display driven by the destination computer comprises providing user controls on the destination computers for controlling rendition of the animated image.
  - 52. A method according to claim 51, wherein providing user controls comprises providing to claim on-screen control icons on the display.
- 53. A method according to claim 52, and comprising scaling the icons responsive to a change thou according to claim in scale of a window on the display containing the animated image.
  - 54. A method according to any of claims 51-53, wherein controlling rendition of the short according as an animated image comprises changing a viewpoint with respect to which the image is rendered image training a viewpoint with respect to which the image is rendered image training a viewpoint with respect to which the image is rendered image training.
  - 55. A method for finding a desired image among a library of images stored by a computer, enhanced for finding a comprising:
- displaying a first plurality of images from the library on a display associated with the aving a first plurality of computer.

selecting a first image from among the first plurality; and

35

selecting a first image from >

searching through the library to find a second plurality of images resembling the first range in one or more characteristics thereof.

- 56. A method according to claim 55, and comprising displaying the first image and the ethod according to classecond plurality of images, such that the images of the second plurality most closely resembling any or images, such that the first image in the one or more characteristics are displayed in closest proximity to the first image.
- 57. A method according to claim 56, wherein displaying the first image comprises displaying according to claim 50, the first image in a central position on the display, and wherein displaying the second plurality of the images comprises displaying the images of the second plurality in a generally concentric pattern in the contract of the image.
  - 58. A method according to any of claims 55-57, wherein displaying the images comprises that according to any displaying a cursor on the display and altering one of the images when the cursor points to the cursor points to the cursor one of the images.

10

15

- 59. A method according to claim 58, wherein altering one of the images comprises animating the image.
- 60. A method according to claim 58 or 59, wherein altering one of the images comprises enlarging the image.
- 5 61. A method according to any of claims 58-60, wherein altering one of the images comprises displaying a three-dimensional rendition of the image.
  - 62. A method according to any of claims 55-61, and comprising repeating the steps of selecting and searching with respect to a second image from among the second plurality.
  - 63. A method according to any of claims 55-62, and comprising assigning keywords to the images in the library, wherein searching through the library to find the second plurality of images resembling the first image comprises searching to find images having at least one common keyword with the first image.
    - 64. A method according to claim 63, and comprising choosing a starting keyword, wherein displaying the first plurality of images comprises displaying images matching the starting keyword.
    - 65. A system for producing an animation sequence, comprising:

an animation generator, which generates an animated image of a character, responsive to an object comprising a geometrical description of the character and characteristics of social behavior of the character; and

a display, which is driven by the animation generator to display the animated image.

- 66. A system according to claim 65, wherein the characteristics of social behavior of the character comprise a predetermined response of the character to a sensitivity condition occurring externally to the object.
- 67. A system according to claim 66, wherein the predetermined response comprises a rule governing motion of the object.
  - 68. A system according to claim 67, wherein the geometrical description comprises a geometrical skeleton of the object characterized by a hierarchy of sub-objects connected by joints, and wherein the rule governing motion defines motions of the joints.
- 69. A system according to any of claims 66-68, wherein the character has a human personality type associated therewith, and wherein the predetermined response belongs to a set of responses appropriate to the personality type.
  - 70. A system according to any of claims 66-69, wherein the predetermined response comprises a response of the character to an item whose image is shown on the display.

the character el

ime, of the

**न**्र

آجوزا والمراد وجير يعاد المآماء

72. A syste comprises an invithour anothe.

76. A systemora to sensitivity cond.

ii. is syste.io speciment an

- 76. A systematical image A systematical image Three-dimension
- 80. A system generated by the of the object
- only portion of conracter.
- 82. A system and wherein the responsive to a characteristics of

71. A system according to claim 70, wherein the predetermined response is triggered responsive to proximity of the item to the character on the display.

- 72. A system according to claim 70 or 71, wherein the predetermined response is such that the character exhibits an attraction to the item.
- A system according to any of claims 70-72, wherein the animation generator renders the image of the item on the display responsive to another program running on the animation generator substantially independently of the object.
  - 74. A system according to any of claims 66-73, and comprising a user input device for selecting the character, wherein the predetermined response comprises a response of the character to being selected.

10

- 75. A system according to any of claims 66-74, wherein the predetermined response to according to any of claims 66-74, wherein the predetermined response to according to any of claims 66-74, wherein the predetermined response to according to any of claims 66-74, wherein the predetermined response to according to any of claims 66-74, wherein the predetermined response to according to any of claims 66-74, wherein the predetermined response to according to any of claims 66-74, wherein the predetermined response to according to any of claims 66-74, wherein the predetermined response to according to any of claims 66-74, wherein the predetermined response to according to according to any of claims 66-74, wherein the predetermined response to according to
- 76. A system according to any of claims 66-75, wherein the animation generator is in the produce the animation sequence according to a script, which includes the produce and an sensitivity condition that elicits the predetermined response of the character.
  - 77. A system according to any of claims 66-76, wherein the animation generator is connected? Street according to any of claims 66-76, wherein the animation generator is connected? Street according to any of claims 66-76, wherein the animation generator is connected? Street according to any of claims 66-76, wherein the animation generator is connected? Street according to any of claims 66-76, wherein the animation generator is connected? Street according to any of claims 66-76, wherein the animation generator is connected? Street according to any of claims 66-76, wherein the animation generator is connected? Street according to any of claims 66-76, wherein the animation generator is connected?
- 78. A system according to any of claims 65-77, wherein the object comprises sufficient according to a characteristics of the behavior of the character so that the animation generator generates the control of the character so that the animation generator generates the control of the character so that the animation generator generates the control of the character so that the animation generator generates the control of the character so that the animation generator generates the control of the character so that the animation generator generates the control of the character so that the animation generator generates the control of the character so that the animation generator generates the control of the character so that the animation generator generates the control of the character so that the animation generator generates the control of the character so that the animation generator generates the control of the character so that the animation generator generates the control of the character so that the animation generator generates animated image substantially without reference to program instructions external to the object.
  - 79. A system according to any of claims 65-78, wherein the animation generator-renders as seem according to another three-dimensional image of the character.
- 80. A system according to claim 79, wherein the image is overlaid on a window in the display/stem according to claim 25 generated by the animation generator in response to another program substantially independently the animation generator of the object.
  - 81. A system according to claim 80, wherein the image is overlaid so that substantially/theystem according to claim only portion of the window that is obscured is the portion directly behind the image of the window that character.
- 30 82. A system according to any of claims 65-81, wherein the object comprises a first object of according to any and wherein the animation generator generates an animated image of anotherneharacteris the animation generator penerator of the other characteristics of social behavior thereof, defined by transferring at least some elements of the or coefficient of social behavior first object to the second object.

15

30

83. A system for producing an animation sequence, comprising:

an animation generator, which generates an animated image of at least one character from a group of characters, responsive to a respective one of a group of objects,

the objects comprising data that includes a geometrical skeleton common to all the objects in the group, characterized by a hierarchy of sub-objects connected by joints, and rules governing behavior of the respective characters, which rules define motions of the joints and are interchangeable among any of the objects; and

a display, which is driven by the animation generator to display the animated image.

- 84. A system according to claim 83, wherein the skeleton comprises a three-dimensional skeleton and the animation generator renders a three-dimensional image to the display.
- 85. A system according to claim 83 or 84, wherein the skeleton comprises an accessory null, at which null an accessory is coupled to at least one of the objects.
- A method according to any of claims 83-85, wherein the skeleton comprises a camera null, for coupling a virtual camera to at least one of the objects so as to render an image of a scene from a point of view associated with the at least one object.
- 87. A system according to any of claims 83-86, wherein the rules governing behavior comprise rules governing behavior of a predetermined personality type associated with one or more of the animated characters.
- 88. A system according to any of claims 83-87, wherein the group of objects comprises a first object and a second object, which is defined by inheritance from the first object.
  - 89. A system for producing graphic images, comprising.

an animation generator, which generates a scalable graphic window with one or more user interface icons contained therein, such that the icons are scaled responsive to a scale of the window;

- a user input device for scaling the window, and
  a display, which is driven by the animation generator to display the window with the icons.
  - 90. A system according to claim 89, wherein the one or more icons comprise two icons in mutual proximity, and wherein a distance between the two icons is changed when the icons are scaled.
  - 91. A system according to claim 89 or 90, wherein the one or more icons comprise an elongated icon of a predetermined length, which length changes when the icon is scaled.
  - 92. A system according to any of claims 89-91, wherein the animation generator generates a frame image including the icons and having a transparent area, and wherein the frame image is

94. A syst-

for outeach image ren seen from a in-

s orshit

75 545L

21. A syste

Strang points

90. A systemeter point reference point.

A Systi

corresponds gr 190. A syste an on-screen jo

aiong the geon

99.

101. A syste on on soreon of animation gene

102. – Alsysia.

overlaid on an animation generated by the animation generator on the display, such that the animation is framed within the transparent area.

93. A system according to claim 92, wherein the transparent area is non-rectangular.

the animation sequence, whereby the animation is framed by the transparent area; and

94. A system for producing an animation sequence, comprising:

an animation generator, which generates an animation sequence and which produced a

frame image having a non-rectangular transparent area, such that the frame image is overlaid on the sequence and which produced a

a display, which is driven by the animation generator to display the animation sequence framed by the transparent area.

10 95. A system for producing an animation sequence, comprising:

5

an animation generator, which renders animated images of a three-dimensional scene, including a first image of the scene as seen from a respective viewpoint, including a first image of the scene as seen from a first viewpoint along a predetermined geometrical path and a second image of the first viewpoint along a scene as seen from a second viewpoint along the path;

- a user input device, for selecting first and second reference points, which determine their input device, for selecting first and second reference points, which determine their input device, for selecting first and second reference points, which determine their input device, for selecting first and second reference points, which determine their input device, for selecting first and second reference points, which determine their input device, for selecting first and second reference points, which determine their input device, for selecting first and second reference points, which determine their input device, for selecting first and second reference points, which determine their input device, for selecting first and second reference points.
  - a display, which is driven by the animation generator to display the animated images: 515,010 g. 400,000 content by
  - 96. A system according to claim 95; wherein the geometrical path comprises a substantially seem according to claim linear path connecting the first and second reference points.
- 20 97. A system according to claim 95, wherein the geometrical path comprises a generally stem according to claim arcuate path connecting the first and second reference points.
  - 98. A system according to claim 95, wherein the geometrical path comprises a path of stem according to claim revolution generally centered at the second reference point and passing through of the off reference point.
- 25 99. A system according to any of claims 95-98, wherein the second reference pointystem according to at corresponds generally to the position of a character in the scene.
  - 100. A system according to any of claims 95-99, wherein the animation generator generates according to any an on-screen joystick control that is activated using the input device for translating the viewpoint joystick control that is along the geometrical path.
- 30 101. A system according to any of claims 95-100, wherein the animation generator ligeneratestem according to any c an on-screen control that is activated using the input device to switch the image rendered by the control that is activated animation generator between at least two different viewpoints:
  - 102. A system for producing an animated image, comprising:
- an animation generator, which generates a three-dimensional animated image element and include the state of t

Eustation for the title of

generation of the animated image element, and which overlays the animated image element on the window; and

3

20

30

a display, which is driven by the animation generator to display the window with the animated image overlaid thereon.

- 5 103. A system according to claim 102, wherein the software application continues to run substantially as though the image element was not overlaid on the window.
  - 104. A system according to claim 102 or 103, wherein substantially the only portion of the window obscured by the overlay is the portion directly behind the image element.
- 105. A system according to any of claims 102-104, wherein the animation generator finds a border circumscribing the image element, defines an animation window shaped to fit the borders, and alters the shape of the animation window whenever the borders change.
  - 106. A system according to any of claims 102-105, wherein the animation generator controls a motion of the image element responsive to a characteristic of the display window driven by the substantially independent software application.
- 15 107. A system according to claim 106, wherein the animation generator controls the motion of the image element response to a graphic icon in the display.
  - 108. A system according to claim 106 or 107, wherein the animation generator generates the animated image element responsive to an object corresponding to the image element, wherein the object includes a rule governing motion of the object, and the animation generator controls the motion of the image element responsive to the rule.
  - 109. A system according to any of claims 102-108, wherein the animation generator is connected to a network and receives therefrom a file corresponding to the image element.
  - 110. A system for conveying an animation over a network, comprising a source animation generator, coupled to the network, which defines an animation file comprising an object, which includes a graphic description of an image element for inclusion in the animation and a characteristic of motion of the element and transmits the object over the network in the form of an electronic mail message.
  - 111. A system for conveying an animation over a network, comprising a network animation server, which receives a textual description of an animation object, generates an animation file based thereon, and delivers the animation file to a destination computer.
  - 112. A system according to claim 110 or 111, wherein the animation file comprises a set of parameters to be executed by a JAVA applet.
  - 113. A system for conveying an animation over a network, comprising a network animation server, which transmits over the network a script defining the animation to a plurality of

116 Å ny feriodes generate

Til. Fr syst vantow on th

LUB A Syste

image:
the images to r
disple
by the apparatu

a useri a ursi image m wasren

resembling the

izu. A syste

that most clos-

121. A syst.

destination computers, along with an object that comprises a geometrical description of a character for inclusion in the animation and characteristics of social behavior of the character.

- 114. A system according to any of claims 110-113, and comprising a network, over which the animations are conveyed.
- 5 115. A system for viewing an animation, comprising:

a destination animation generator, coupled to a network, which receives via the network a script defining the animation along with an object comprising a geometrical description of an extension image element for inclusion in the animation and a characteristic of motion of the element; and the inclusion in the animation and a characteristic of motion of the element; and the inclusion in the animated images responsive thereto;

user controls, coupled to the destination animation generator, for confrolling rendition openators counted to the animated images; and

a display, which is driven by the destination animation generator to display the animated lay, which is unless a images.

- 116. A system according to claim 115, wherein the user controls comprise on-screen controls according to claim 5 icons generated by the animation generator on the display.
  - 117. A system according to claim 116, wherein the animated images are contained in sastant according to a window on the display, and wherein the icons are scaled responsive to a change in scale of the he display, and where window.
- 118. A system according to any of claims 115-117, wherein the user controls are used to stem according to any change a viewpoint with respect to which the images are rendered.
  - 119. A system for searching a library of images, comprising:

25

30

image storage apparatus, which stores the library of images and selects a first plurality of storage apparatus. we the images to be displayed;

a display, which is driven by the image storage apparatus to display the images selected play, which is driven to by the apparatus; and

25 by the apparatus; and

a user input device, coupled to the image storage apparatus, for pointing to and selecting input device, coupled a first image from among the first plurality of the images displayed,

a first image from among the first plurality of the images displayed,

wherein the image storage apparatus searches through the library and selects images in the image storage resembling the first image in one or more characteristics thereof, for inclusion in an enterpolar inclusion in the plurality of images.

- 120. A system according to claim 119, wherein the images included in the second pluralitystem according to cize that most closely resemble the first image are displayed in closest proximity thereto reactive resemble the first display.
- on the display, and wherein the images included in the second plurality are displayed in a central position and generally concentric pattern around the first image.

119. A system for searching a mi

122. A system according to any of claims 119-121, wherein when the user input device is used to point to one of the images, the image is altered.

- 123. A system according to claim 122, wherein when the user input device is used to point to one of the images, the image is animated.
- 5 124. A system according to claim 122 or 123, wherein when the user input device is used to point to one of the images, the image is enlarged.
  - 125. A system according to any of claims 122-124, wherein when the user input device is used to point to one of the images, the image is rendered in three dimensions.
- 126 A system according to any of claims 119-125, wherein the user input device is used to select a second image from among the second plurality of the images displayed, and the image storage apparatus searches through the library and selects images resembling the second image in one or more characteristics thereof.
  - 127. A system according to any of claims 119-126, wherein the image storage apparatus stores keywords assigned to each of the images in the library, and wherein the image storage apparatus searches through the library and selects images having at least one keyword in common with the image that is selected.

15

128. A system according to claim 127, wherein the image storage apparatus selects the first plurality of images by finding images matching a starting keyword entered by a user.





\_06Y (ZAPA'S

nart 3D Objects- intelligent inhabitants hal react to and yenerale events Sutonomously

- Pre-programmable intelligent behavior
  - Audilory, visual and spatial sensors
- Capacity for timitless number of events

Graphical, intuitive interface-allows fo simple implementation of advanced eatures- Na programming required!











8/26 FIG. 6B

Stock Quotes - Today's Net

NEW COOL BANDOM

Found 203 matches containing airlines. Displaying matches 1-25.

e chack unt vocation packagesi

Yahoo Categories

Yahoo Categories - Yahoo Sites - <u>AltaVista Web Pages</u>

Business and Economy.Companies.Trayel:Airlines

Business and Economy.Companies:Travel:Airlines:America West Airlines



YES



PCT/1L97/00093



12/26





FIG. 10A



FIG. 010B







IG. 12

18/26







FIG. 14



FIG. 16









.

-

C)#

FIG. 18B



## This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

| □ BLACK BORDERS                                         |
|---------------------------------------------------------|
| $\square$ image cut off at top, bottom or sides         |
| A FADED TEXT OR DRAWING                                 |
| ☑ BLURRED OR ILLEGIBLE TEXT OR DRAWING                  |
| ☐ SKEWED/SLANTED IMAGES                                 |
| O COLOR OR BLACK AND WHITE PHOTOGRAPHS                  |
| ☐ GRAY SCALE DOCUMENTS                                  |
| ☐ LINES OR MARKS ON ORIGINAL DOCUMENT                   |
| ☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY |
| OTHER:                                                  |

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.