## Раздел II: Электричество и магнетизм.

# Глава 5: Проводники в электрическом поле. Электроёмкость.

# 1. Распределение электрического поля и зарядов в заряженном уединённом проводнике.

Проводники – вещества, в которых есть свободные носители зарядов, способные перемещаться под действием сколь угодно слабых электрических полей.

 $\parallel$ 

а) Напряжённость поля внутри проводника равна нулю. (заряды перетекают до тех пор, пока поле внутри не обнулиться)

$$\overline{E}_{\it внутри}=0$$

б) Весь объём проводника и его поверхность эквипотенциален.

$$\boxed{\varphi_{\text{enympu}} = const} \qquad \leftarrow \quad \varphi_1 - \varphi_2 = \int_1^2 \overline{E} \cdot d\overline{l} = 0$$

в) Весь нескомпенсированный заряд растекается по поверхности, максимальная плотность зарядов на остриях.

$$ho_{\it внутри} = 0$$
  $\leftarrow \int_S \overline{E}_{\it внутри} \cdot d\overline{S} = \int 
ho dV$   $\downarrow$   $\downarrow$   $\downarrow$   $0$   $\rho = 0$ 

г) Напряжённость поля вне проводника вблизи поверхности направлена по нормали и равна  $E_n = \frac{\sigma}{\varepsilon \varepsilon_0}$ , где  $\sigma$ 

поверхностная плотность зарядов,  $\mathbf{\mathcal{E}}$  — относительная диэлектрическая проницаемость окружающего пространства.



$$\oint_{S} \overline{D} \cdot d\overline{S} = \sum_{S} q_{\text{crop.}} \to D_{n} S_{0} = \sigma S_{0}$$



Картина распределения зарядов и поля в заряженном уединённом проводнике.

### 2. Проводник во внешнем электростатическом поле.



a) 
$$\overline{E}_{\text{внугри}} = 0$$

б) 
$$\varphi_{\text{внутри}} = \text{const}$$

B) 
$$\rho_{\text{внутри}} = 0$$

$$\Gamma) E_n = \frac{\sigma}{\varepsilon \varepsilon_0}$$

(с наружи  $\overline{E} \perp$  поверхности)

#### Электроёмкость уединённого проводника.



$$\varphi_{\text{поверх.}} = const$$

$$\varphi_{\infty} = 0$$

$$\varphi_{nosepx} - \varphi_{\infty} = \int_{nosepx}^{\infty} \overline{E} dr$$

$$\downarrow \downarrow$$

$$\varphi_{\text{nosepx}} = \int_{nosepx}^{\infty} \overline{E} dr = \frac{Q}{C}$$

Электроёмкость уединённого проводника:

$$\boxed{C = rac{Q}{arphi}} \left[ arPhi 
ight]$$
 (Фарада),  $\mathrm{Q}$  — заряд проводника

Пример(шар):



$$\varphi_{uapa} = \int_{R}^{\infty} \frac{Qdr}{4\pi\varepsilon_{0}\varepsilon r^{2}} = \frac{Q}{4\pi\varepsilon_{0}\varepsilon R}$$

$$C_{\text{map}} = 4\pi\varepsilon_0 \varepsilon R$$

$$R_{3емли} = 6400 \kappa M \rightarrow C_3 e M \pi u \sim 10^{-3} \Phi$$

Электроёмкость зависит от геометрии проводника, диэлектрической проницаемости окружающиго вещества и не зависит от величины заряда Q, нанесённого на проводник.

#### 4. Конденсаторы.



$$\boxed{C = \left| \frac{Q}{\varphi_1 - \varphi_2} \right| = \frac{Q}{U}} \quad \left[ \frac{\text{K}_{\text{JI}}}{\text{B}} = \varPhi \right]$$

а) Плоский конденсатор

$$C = \frac{\varepsilon \varepsilon_0 S}{d}$$

б) Цилиндрический конденсатор



$$C = \frac{2\pi\varepsilon\varepsilon_0 l}{\ln\frac{R_2}{R_1}}$$

в) Сферический конденсатор

$$C = 4\pi\varepsilon\varepsilon_0 \frac{R_1 R_2}{R_2 - R_1}$$

#### Вопросы

1. Распределение электрического поля и заряда в уединённом заряженном проводнике.

- 2. Распределение электрического поля и заряда в проводнике, помещённом во внешнее электрическое поле.
- 3. Нарисовать распределение  $\overline{E}, \varphi, \rho$  для а)
- $_{6)} \oplus \bigcirc$  (диполь)
- 4. Что такое электроёмкость уединённого проводника?
- 5. Что такое электроёмкость конденсатора?
- 6. Ёмкость а) плоского б) цилиндрического в) сферического конденсаторов.