Correction proposée par El Amdaoui École Royale de l'Air-Marrakech.Maroc

Problème 1

Partie I: Théorème de Weierstrass

1. (a) On fait appel à la formule du binôme de Newton, on obtient

$$\sum_{k=0}^{n} B_{n,k} = \sum_{k=0}^{n} C_n^k X^k (1 - X)^{n-k} = 1$$

- (b) Il est clair que pour tout $x \in [0,1]$, $B_{n,k}(x) = C_n^k x^k (1-x)^{n-k} \ge 0$. D'autre part, d'après la question précédente, $B_{n,k}(x) \le \sum_{k=0}^n B_{n,k}(x) = 1$
- 2. On utilise la formule $kC_n^k = nC_{n-1}^{k-1}$ pour tout $k \in [1, n]$, alors

$$\sum_{k=0}^{n} k B_{n,k} = \sum_{k=1}^{n} k B_{n,k} = \sum_{k=1}^{n} k C_n^k X^k (1 - X)^{n-k}$$

$$= \sum_{k=1}^{n} n C_{n-1}^{k-1} X^k (1 - X)^{n-k}$$

$$= \sum_{k=0}^{n-1} n C_{n-1}^k X^{k+1} (1 - X)^{n-1-k}$$

$$= n X (X + (1 - X))^{n-1} = n X$$

• Pour n = 1, on a bien $\sum_{k=0}^{n} k(k-1)B_{n,k} = 0$. Si $n \ge 2$, on utilise la formule $k(-1)C_n^k = n(n-1)C_{n-2}^{k-2}$ pour tout $k \in [2, n]$, alors

$$\sum_{k=0}^{n} k(k-1)B_{n,k} = \sum_{k=2}^{n} k(k-1)B_{n,k} = \sum_{k=2}^{n} k(k-1)C_n^k X^k (1-X)^{n-k}$$

$$= \sum_{k=2}^{n} n(n-1)C_{n-2}^{k-2} X^k (1-X)^{n-k}$$

$$= \sum_{k=0}^{n-2} n(n-1)C_{n-2}^k X^{k+2} (1-X)^{n-2-k}$$

$$= n(n-1)X^2 (X + (1-X))^{n-2} = n(n-1)X^2$$

Donc

$$\sum_{k=0}^{n} k(k-1)B_{n,k} = n(n-1)X^{2}$$

Cette égalité est valable aussi pour n=1

• Le polynôme $\sum_{k=0}^{n} k^2 B_{n,k}$ est la somme de deux précédents

$$\sum_{k=0}^{n} k^2 B_{n,k} = n(n-1)X^2 + nX$$

- 3. (a) Soit $n \in \mathbb{N}^*$ et $k \in [0, n]$. On distingue trois cas
 - Si k = 0, on a $B_{n,0} = (1 X)^n$, donc $B'_{n,0} = -n(1 X)^{n-1} = -nB_{n-1,0}$

- Si k = n, on a $B_{n,n} = X^n$, donc $B'_{n,n} = nX^{n-1} = nB_{n-1,n-1}$
- Si $k \neq 0$ et $k \neq n$, on a

$$B'_{n,k} = kC_n^k X^{k-1} (1-X)^{n-k} - (n-k)C_n^k X^k (1-X)^{n-k-1}$$

$$= nC_{n-1}^{k-1} X^{k-1} (1-X)^{n-k} - nC_{n-1}^k X^k (1-X)^{n-k-1}$$

$$= n (B_{n-1,k-1} - B_{n-1,k})$$

(b) Soit $n \in \mathbb{N}^*$, on a:

$$\begin{split} &(P_n(f))' &= \sum_{k=0}^n f\left(\frac{k}{n}\right) B'_{n,k} \\ &= f\left(0\right) B'_{n,0} + f\left(1\right) B'_{n,n} + \sum_{k=1}^{n-1} f\left(\frac{k}{n}\right) B'_{n,k} \\ &= -nf(0) B_{n-1,0} + nf\left(1\right) B_{n-1,n-1} + n \sum_{k=1}^{n-1} f\left(\frac{k}{n}\right) \left(B_{n-1,k-1} - B_{n-1,k}\right) \\ &= -nf(0) B_{n-1,0} + nf\left(1\right) B_{n-1,n-1} + n \sum_{k=1}^{n-1} f\left(\frac{k}{n}\right) B_{n-1,k-1} - n \sum_{k=1}^{n-1} f\left(\frac{k}{n}\right) B_{n-1,k} \\ &= -nf(0) B_{n-1,0} + nf\left(1\right) B_{n-1,n-1} + n \sum_{k=0}^{n-2} f\left(\frac{k+1}{n}\right) B_{n-1,k} - n \sum_{k=1}^{n-1} f\left(\frac{k}{n}\right) B_{n-1,k} \\ &= nf\left(1\right) B_{n-1,n-1} + n \sum_{k=0}^{n-2} f\left(\frac{k+1}{n}\right) B_{n-1,k} - n \sum_{k=1}^{n-1} f\left(\frac{k}{n}\right) B_{n-1,k} - nf(0) B_{n-1,0} \\ &= n \sum_{k=0}^{n-1} f\left(\frac{k+1}{n}\right) B_{n-1,k} - n \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) B_{n-1,k} \\ &= n \sum_{k=0}^{n-1} \left(f\left(\frac{k+1}{n}\right) - f\left(\frac{k}{n}\right)\right) B_{n-1,k} \end{split}$$

Ainsi l'égalité souhaitée, pour tout $x \in [0,1], (P_n(f))'(x) = n \sum_{k=0}^{n-1} \left(f\left(\frac{k+1}{n}\right) - f\left(\frac{k}{n}\right) \right) B_{n-1,k}(x)$

- (c) Si f est croissante sur [0,1], alors pour tout $k \in [0,n-1]$, on a $\frac{k}{n}, \frac{k+1}{n} \in [0,1]$ et $\frac{k}{n} < \frac{k+1}{n}$, alors par croissance de f, on a $f\left(\frac{k+1}{n}\right) f\left(\frac{k}{n}\right) \ge 0$. En outre, d'après la question ??, pour tout $x \in [0,1]$, on a $B_{n-1,k}(x) \ge 0$ et, par suite, $(P_n(f))'(x) \ge 0$. Ceci montre que $P_n(f)$ est croissante sur [0,1]
- 4. On fixe $\varepsilon > 0$
 - (a) Soit $x \in [0,1]$, par un calcul direct

$$\sum_{k=0}^{n} \left(x - \frac{k}{n} \right)^{2} B_{n,k}(x) = \sum_{k=0}^{n} \left(x^{2} - 2x \frac{k}{n} + \frac{k^{2}}{n^{2}} \right) B_{n,k}(x)$$

$$= x^{2} \sum_{k=0}^{n} B_{n,k}(x) - 2 \frac{x}{n} \sum_{k=0}^{n} k B_{n,k}(x) + \frac{1}{n^{2}} \sum_{k=0}^{n} k^{2} B_{n,k}(x)$$

$$= x^{2} - 2 \frac{x}{n} . nx + \frac{1}{n^{2}} \left(n(n-1)x^{2} + nx \right)$$

$$= \frac{x(1-x)}{n}$$

(b) Par absurde supposons que pour tout $\alpha > 0$, il existe $x,y \in [0,1]$ tel que $|x-y| \leqslant \alpha$ et $|f(x) - f(y)| > \frac{\varepsilon}{2}$. Pour $n \in \mathbb{N}$, il existe $x_n, y_n \in [0,1]$ tels que $|x_n - y_n| \leqslant \frac{1}{2^n}$ et $|f(x_n) - f(y_n)| > \frac{\varepsilon}{2}$.

 $\begin{array}{l} [0,1] \text{ est compact donc } [0,1] \times [0,1] \text{ est compact d'où on peut extraire de } (x_n,y_n) \text{ une suite convergente } (x_{\varphi(n)},y_{\varphi(n)}) \text{ d'où les deux suites } (x_{\varphi(n)}) \text{ et } (y_{\varphi(n)}) \text{ convergent. Posons } x = \lim x_{\varphi(n)} \text{ et } y = \lim y_{\varphi(n)}. \text{ On a } x_n - y_n \xrightarrow[n \to +\infty]{} 0 \text{ donc } x_{\varphi(n)} - y_{\varphi(n)} \xrightarrow[n \to +\infty]{} 0 \text{ d'où } x = y. \text{ La fonction } f \text{ est continue sur } [0,1] \text{ donc } f(x_{\varphi(n)}) - f(y_{\varphi(n)}) \to f(x) - f(y) = 0. \text{ Absurde, car } \left| f(x_{\varphi(n)}) - f(y_{\varphi(n)}) \right| > \frac{\varepsilon}{2} > 0. \end{array}$

(c) i. Par construction de A, pour tout $k \in A$, on a : $\left| f(x) - f\left(\frac{k}{n}\right) \right| \leqslant \frac{\varepsilon}{2}$, donc

$$\sum_{k \in A} \left| f(x) - f\left(\frac{k}{n}\right) \right| B_{n,k}(x) \leqslant \frac{\varepsilon}{2} \sum_{k \in A} B_{n,k}(x) \leqslant \frac{\varepsilon}{2} \sum_{k=0}^{n} B_{n,k}(x) = \frac{\varepsilon}{2}$$

ii. Remarquons que si $k \in B$, alors $\left|x - \frac{k}{n}\right| > \alpha$, on a alors $1 \leqslant \frac{1}{\alpha^2} \left(x - \frac{k}{n}\right)^2$. On en déduit :

$$\sum_{k \in B} \left| f(x) - f\left(\frac{k}{n}\right) \right| B_{n,k}(x) \leq 2M \sum_{k \in B} B_{n,k}(x)$$

$$\leq \frac{2M}{\alpha^2} \sum_{k \in B} \left(x - \frac{k}{n}\right)^2 B_{n,k}(x)$$

$$\leq \frac{2M}{\alpha^2} \sum_{k=0}^n \left(x - \frac{k}{n}\right)^2 B_{n,k}(x)$$

$$\leq \frac{2M}{\alpha^2} \frac{x(1-x)}{n}$$

$$\leq \frac{M}{2\pi\alpha^2}$$

où la dernière inégalité vient du fait que le maximum de $x\mapsto x(1-x)$ sur [0,1] est atteint en $\frac{1}{2}$ et vaut $\frac{1}{4}$.

(d) Soit $x \in [0,1]$, remarquons d'abord que $f(x) = \sum_{k=0}^{n} f(x)B_{n,k}(x)$, $[0,n] = A \cup B$ et $A \cap B = \emptyset$, on obtient alors

$$|P_{n}(f)(x) - f(x)| = \left| \sum_{k=0}^{n} f\left(\frac{k}{n}\right) B_{n,k}(x) - \sum_{k=0}^{n} f(x) B_{n,k}(x) \right|$$

$$= \left| \sum_{k=0}^{n} \left(f\left(\frac{k}{n}\right) - f(x) \right) B_{n,k}(x) \right|$$

$$= \left| \sum_{k \in A} \left(f\left(\frac{k}{n}\right) - f(x) \right) B_{n,k}(x) + \sum_{k \in B} \left(f\left(\frac{k}{n}\right) - f(x) \right) B_{n,k}(x) \right|$$

$$\leqslant \sum_{k \in A} \left| f\left(\frac{k}{n}\right) - f(x) \right| B_{n,k}(x) + \sum_{k \in B} \left| f\left(\frac{k}{n}\right) - f(x) \right| B_{n,k}(x)$$

$$\leqslant \frac{\varepsilon}{2} + \frac{M}{2\pi\alpha^{2}}$$

(e) Fixons $\varepsilon > 0$ et soit α le réel strictment positif donné par l'uniforme continuité. On fixe ensuite n_0 suffisamment grand tel que :

$$\forall n \geqslant n_0, \quad \frac{M}{2n\alpha^2} \leqslant \frac{\varepsilon}{2}$$

On a alors, pour $n \ge n_0$:

$$\forall x \in [0,1], |f(x) - P_n(f)(x)| \leqslant \varepsilon.$$

Ceci prouve bien la convergence uniforme de la suite $(P_n(f))_{n\geq 0}$ vers f.

5. L'application $f: x \in [0,1] \longmapsto g(a+(b-a)x)$ est continue, par composition, sur [0,1]. Posons $Q_n(g)(x) = P_n(f)\left(\frac{x-a}{b-a}\right)$, pour $x \in [a,b]$, où $(P_n(f))$ la suite de polynômes de Bernstein associée à f converge uniformément vers f sur [0,1]. $(Q_n(g))$ est encore une suite de fonctions polynomiales, et pour tout $x \in [a,b]$, on a:

$$|Q_n(g)(x) - g(x)| = \left| P_n(f) \left(\frac{x-a}{b-a} \right) - f \left(\frac{x-a}{b-a} \right) \right| \le ||P_n(f) - f||_{\infty}^{[0,1]}$$

Donc $(Q_n(g))$ converge uniformément vers g sur [a, b].

Partie II: Une démonstration probabiliste du théorème de Stone Weierstrass

Soit $f:[0,1] \longrightarrow \mathbb{R}$ une fonction continue et $n \in \mathbb{N}^*$

- 1. (a) $S_n \hookrightarrow \mathcal{B}(n,x)$, donc $\mathbb{E}(S_n) = nx$ et $\mathbb{V}(S_n) = nx(1-x)$, en conséquence, l'espérance et la variance de X_n sont respectivement $\mathbb{E}(X_n) = \frac{1}{n}\mathbb{E}(X_n) = x$ et $\mathbb{V}(X_n) = \frac{1}{n^2}\mathbb{V}(S_n) = \frac{x(1-x)}{n}$
 - (b) Soit $\delta > 0$, l'inégalité de Bienaymé Chebychev nous donne

$$\mathbb{P}\left(\left|X_{n}-x\right|\geqslant\delta\right)\leqslant\frac{\mathbb{V}\left(X_{n}\right)}{\delta^{2}}=\frac{x(1-x)}{n\delta^{2}}\leqslant\frac{1}{4n\delta^{2}}$$

2. (a) On a $X_n(\Omega) = \left\{\frac{k}{n}, k \in [0, n]\right\}$ et $P\left(X_n = \frac{k}{n}\right) = P(S_n = k)$. $f(X_n)$ est bient définier car f est continue sur [0, 1] et X à valeurs dans [0, 1]. $X_n(\Omega)$ est fini; on peut appliquer le théorème de transfert:

$$C_n(f)(x) = \mathbb{E}(Y_n) = \sum_{k \in S_n(\Omega)} f\left(\frac{k}{n}\right) \mathbb{P}(S_n = k)$$
$$= \sum_{k=0}^n f\left(\frac{k}{n}\right) C_n^k x^k (1-x)^{n-k}$$

ce qui montre que $x \longmapsto C_n(f)(x)$ est une fonction polynomiale

(b) i. Par construction de β , on a pour tout $k \in [0, n]$ tel que $\left|\frac{k}{n} - x\right| \leqslant \beta$ on a : $\left|f(x) - f\left(\frac{k}{n}\right)\right| \leqslant \frac{\varepsilon}{2}$, donc

$$\left| \sum_{\left| \frac{k}{n} - x \right| \leq \beta} \left(f(x) - f\left(\frac{k}{n}\right) \right) \mathbb{P}\left(X_n = \frac{k}{n} \right) \right| \leq \sum_{\left| \frac{k}{n} - x \right| \leq \beta} \left| f(x) - f\left(\frac{k}{n}\right) \right| \mathbb{P}\left(X_n = \frac{k}{n} \right)$$

$$\leq \frac{\varepsilon}{2} \sum_{\left| \frac{k}{n} - x \right| \leq \beta} \mathbb{P}\left(X_n = \frac{k}{n} \right)$$

$$\leq \frac{\varepsilon}{2} \sum_{k=0}^{n} \mathbb{P}\left(X_n = \frac{k}{n} \right) = \frac{\varepsilon}{2}$$

ii. Remarquons que $[|X_n - x| > \beta] \subset [|X_n - x| \ge \beta]$

$$\left| \sum_{\left| \frac{k}{n} - x \right| > \beta} \left(f(x) - f\left(\frac{k}{n}\right) \right) \mathbb{P}\left(X_n = \frac{k}{n} \right) \right| \leq \sum_{\left| \frac{k}{n} - x \right| > \beta} \left| f(x) - f\left(\frac{k}{n}\right) \right| \mathbb{P}\left(X_n = \frac{k}{n} \right)$$

$$\leq 2M \sum_{\left| \frac{k}{n} - x \right| > \beta} \mathbb{P}\left(X_n = \frac{k}{n} \right)$$

$$\leq 2M \mathbb{P}\left(|X_n - x| > \beta \right)$$

$$\leq 2M \frac{\mathbb{V}(X_n)}{\beta^2}$$

$$\leq \frac{2M}{\beta^2} \frac{x(1 - x)}{n}$$

$$\leq \frac{M}{2n\beta^2}$$

où la quatrième inégalité vient de l'inégalité de Bienyamé Tchebychev, vu que $\mathbb{E}(X_n) = x$ et la dernière inégalité vient du fait que le maximum de $x \mapsto x(1-x)$ sur [0,1] est atteint en $\frac{1}{2}$ et vaut $\frac{1}{4}$.

(c) Soit $\varepsilon > 0$ et soit $\beta > 0$ obtenu du théorème de Heine. Soit $x \in [0,1]$, alors par l'inégalité triangulaire et les inégalités des deux dernières questions, on a :

$$|C_n(f)(x) - f(x)| \le \frac{\varepsilon}{2} + \frac{M}{2n\beta^2}$$

Avec $M = \sup_{t \in [0,1]} |f(t)|$. On fixe ensuite n_0 suffisamment grand tel que :

$$\forall n \geqslant n_0, \quad \frac{M}{2n\beta^2} \leqslant \frac{\varepsilon}{2}$$

On a alors, pour $n \ge n_0$:

$$\forall x \in [0,1], |C_n(f)(x) - f(x)| \leq \varepsilon.$$

Ceci prouve bien la convergence uniforme de la suite $(C_n(f))_{n\geqslant 1}$ vers f.

Partie III: Application

1. (a) Par linéarité de l'intégrale, pour tout polynôme $P \in \mathbb{R}[X]$, on a :

$$\int_{a}^{b} P(x) f(x) dx = 0$$

D'après théorème de Weierstrass, il existe une suite $(P_n)_{n\in\mathbb{N}}$ convergeant uniformément sur [a,b] vers f.

Pour tout $n \in \mathbb{N}$ et tout $x \in [a, b]$, en écrivant

$$|f(x)^2 - f(x)P_n(x)| = |f(x)(f(x) - P_n(x))| \le ||f||_{\infty}^{[a,b]} ||f - P_n||_{\infty}^{[a,b]}$$

et il en résulte que la suite $(fP_n)_{n\in\mathbb{N}}$ converge uniformément vers f^2 sur [a,b]. D'après le théorème d'intégration des limites uniformes, il vient alors :

$$\int_{a}^{b} f(x)^{2} dx = \lim_{n \to +\infty} \int_{a}^{b} f(x) P_{n}(x) dx$$

Donc

$$\int_{a}^{b} f(x)^2 \, \mathrm{d}x = 0$$

La fonction f^2 étant continue positive sur le segment [a,b] d'intégrale nulle, donc $f^2=0$, ainsi la nullité de f

- (b) Convergence: Soit $n \in \mathbb{N}$, l'application $x \mapsto x^n e^{-(1-i)x}$ est continue sur $[0, +\infty[$, donc I_n est impropre en $+\infty$, mais $x^n e^{-(1-i)x} = \circ \left(\frac{1}{x^2}\right)$, donc I_n converge.
 - Calcul: Les deux fonctions $x \mapsto x^{n+1}$ et $x \mapsto e^{-(1-i)x}$ sont de classe \mathcal{C}^1 sur $[0, +\infty[$ telles que $x^{n+1}e^{-(1-i)x} \xrightarrow[x \to +\infty]{} 0$, alors par une intégration par parties

$$I_{n+1} = \int_0^{+\infty} x^{n+1} e^{-(1-i)x} dx$$

$$= \int_0^{+\infty} x^{n+1} \left(\frac{e^{-(1-i)x}}{-(1-i)} \right)' dx$$

$$= \left[x^{n+1} \left(\frac{e^{-(1-i)x}}{-(1-i)} \right) \right]_0^{+\infty} + \frac{n+1}{1-i} \int_0^{+\infty} x^n e^{-(1-i)x} dx$$

$$= \frac{n+1}{1-i} I_n$$

On en déduit que $I_n = \frac{n!}{(1-i)^n} I_0$, avec $I_0 = \frac{1}{1-i}$, alors

$$\forall n \in \mathbb{N}, \quad I_n = \frac{n!}{(1-i)^{n+1}} = \frac{n!}{\sqrt{2}^{n+1}} e^{\frac{(n+1)\pi}{4}}$$

(c) Soit $n \in \mathbb{N}$, remarquons que $I_{4n+3} \in \mathbb{R}$, en conséquence

$$\int_0^{+\infty} x^{4n+3} e^{-x} \sin(x) \, \mathrm{d}x = 0$$

L'application $t \longmapsto \sqrt[4]{t}$ est une bijection de classe \mathcal{C}^1 de $]0, +\infty[$ vers lui même, donc par intégration par changement de variable, on obtient

$$\int_0^{+\infty} x^{4n+3} e^{-x} \sin(x) dx = \frac{1}{4} \int_0^{+\infty} t^n e^{-\sqrt[4]{t}} \sin\left(\sqrt[4]{t}\right) dt$$

Posons alors $\phi: x \in [0, +\infty[\longrightarrow \frac{1}{4}e^{-\sqrt[4]{x}}\sin(\sqrt[4]{x})$, une telle fonction répond aux contraintes demandées

2. D'après le théorème de Stone Weierstrass, il existe une suite de polynômes $(Q_n)_n$ qui converge uniformément vers g sur I.

Pour $n \in \mathbb{N}$, on définit $P_n : x \longmapsto Q_n(x) - \int_a^b Q_n(t) dt$. La suite de polynômes (P_n) vérifie pour tout $n \in \mathbb{N}$, $\int_a^b P_n(t) dt = 0$. D'autre part pour tout $x \in I$, on a

$$|P_n(x) - g(x)| \leqslant |Q_n(x) - g(x)| + \left| \int_a^b Q_n(t) \, \mathrm{d}t \right| \leqslant \|Q_n - g\|_{\infty} + \left| \int_a^b Q_n(t) \, \mathrm{d}t \right|$$
Or $Q_n \xrightarrow[I]{\text{cvu}} g$, donc $\|Q_n - g\|_{\infty} \xrightarrow[n \to +\infty]{\text{cv}} 0$ et $\int_a^b Q_n(t) \, \mathrm{d}t \xrightarrow[n \to +\infty]{\text{cv}} \int_a^b g(t) \, \mathrm{d}t = 0$. Ainsi $P_n \xrightarrow[I]{\text{cvu}} g$

3. φ est de classe \mathcal{C}^1 sur I, en particulier φ' est continue sur I, d'après le théorème de Stone Weierstrass, il existe une suite de polynômes $(Q_n)_n$ qui converge uniformément vers φ' sur I. Pour $n \in \mathbb{N}$, on définit $P_n: x \longmapsto \varphi(a) + \int_a^x Q_n(t) \, \mathrm{d}t$. Comme φ est de classe \mathcal{C}^1 sur [a,b], alors pour tout $x \in [a,b]$, on peut écrire $\varphi(x) = \varphi(a) + \int_a^x \varphi'(t) \, \mathrm{d}t$ et on a :

$$|P_n(x) - \varphi(x)| = \left| \int_a^x Q_n(t) - \varphi'(t) \, \mathrm{d}t \right| \le (b - a) \parallel Q_n - \varphi' \parallel_{\infty}$$

Ceci montre $P_n \xrightarrow{\text{cvu}} \varphi$, et comme $P'_n = Q_n$, alors on a aussi $P'_n \xrightarrow{\text{cvu}} \varphi'$

4. On peut se ramener au cas I = [0,1], la construction des polynômes de Bernstein donnée auparavant $P_n = \sum_{k=0}^n \psi\left(\frac{k}{n}\right) B_{n,k}$, montre que $\forall t \in [0,1]$, $P_n(t) \geqslant 0$, car ψ est positive sur I, et $P_n \xrightarrow{\text{cvu}} \psi$

Problème 2

Partie I: Cas particulier : variables aléatoires discrètes finies

1. $Z \hookrightarrow \mathcal{B}(p)$, alors e^{tZ} est finie, par le théorème du transfert, pour tout $t \in \mathbb{R}$,

$$M_Z(t) = \mathbb{P}(Z=0) + e^t \mathbb{P}(Z=1) = p(e^t - 1) + 1$$

2. X est finie, alors pour tout $t \in \mathbb{R}$ la variable e^{tZ} est finie, en particulier elle admet une espérance, par le théorème du transfert, pour tout $t \in \mathbb{R}$,

$$M_X(t) = \sum_{i=1}^r e^{tx_i} \mathbb{P}(X = x_i) = \sum_{i=1}^r p_i e^{tx_i}$$

Donc M_X est de classe \mathcal{C}^{∞} sur \mathbb{R} , comme somme de fonctions de classe \mathcal{C}^{∞} et pour tout entier naturel k,

$$M_X^{(k)}(t) = \sum_{i=1}^r x_i^k e^{tx_i} \mathbb{P}(X = x_i)$$

En particulier $M_X^{(k)}(0) = \sum_{i=1}^r x_i^k \mathbb{P}(X = x_i) = \mathbb{E}(X^k)$

3. (a) La famille $([X=x_i])_{i\in \llbracket 1,r\rrbracket}$ est un système complet d'événements, en particulier $\sum_{i=1}^r p_i = 1$. En outre pour tous $t\in \mathbb{R}$ et $i\in \llbracket 1,r\rrbracket$, on a $e^{tx_i}>0$, donc $M_X(t)=\sum_{i=1}^r e^{tx_i}\mathbb{P}\left(X=x_i\right)>0$. Ainsi φ_X est définie sur \mathbb{R}^* .

Le développement limité à l'ordre 1 en 0 de ${\cal M}_X$ est donné par

$$M_X(t) = M_X(0) + tM'_Y(0) + \circ(t) = 1 + t\mathbb{E}(X) + \circ(t)$$

Par composition $\varphi_X(t) = \mathbb{E}(X) + o(1)$, donc φ_X est prolongeable par continuité en 0.

(b) Le développement limité à l'ordre 2 en 0 de ${\cal M}_X$ est donné par

$$M_X(t) = M_X(0) + tM_X'(0) + \frac{M_X''(0)}{2}t^2 + o(t^2) = 1 + t\mathbb{E}(X) + \frac{\mathbb{E}(X^2)}{2}t^2 + o(t^2)$$

Par composition

$$\varphi_X(t) = \frac{1}{t} \ln(M_X(t))$$

$$= \frac{1}{t} \ln\left(1 + t\mathbb{E}(X) + \frac{\mathbb{E}(X^2)}{2}t^2 + \circ(t^2)\right)$$

$$= \frac{1}{t} \left(t\mathbb{E}(X) + \frac{\mathbb{E}(X^2)}{2}t^2 - \frac{\left(t\mathbb{E}(X) + \frac{\mathbb{E}(X^2)}{2}t^2\right)^2}{2} + \circ(t^2)\right)$$

$$= \mathbb{E}(X) + \frac{\mathbb{E}(X^2) - \mathbb{E}(X)^2}{2}t + \circ(t)$$

Donc φ_X est dérivable en 0 et $\varphi_X'(0) = \frac{\mathbb{E}\left(X^2\right) - \mathbb{E}\left(X\right)^2}{2} = \frac{\mathbb{V}\left(X\right)}{2}$

(c) i. Soit $u \leq 0$, d'après la formule de Taylor avec reste intégrale, on a

$$e^{u} = 1 + u + \frac{1}{2}u^{2} + \int_{0}^{u} \frac{(u-t)^{2}}{2} e^{t} dt$$

La fonction $t \mapsto \frac{(u-t)^2}{2}e^t$ est continue et positive sur [u,0], donc $\int_0^u \frac{(u-t)^2}{2}e^t dt \le 0$, soit $e^u \le 1 + u + \frac{1}{2}u^2$

ii. Soit t > 0, comme $\forall i \in [1, r]$ on a $x_i \leq 0$, alors

$$\forall i \in [1, r], \quad e^{tx_i} \le 1 + tx_i + \frac{t^2}{2}x_i^2$$

Par le théorème du transfert et par positivité de la probabilité

$$\mathbb{E}\left(e^{tX}\right) = \sum_{i=1}^{r} e^{tx_i} \mathbb{P}\left(X = x_i\right)$$

$$\leqslant \sum_{i=1}^{r} \left(1 + tx_i + \frac{t^2}{2}x_i^2\right) \mathbb{P}\left(X = x_i\right)$$

$$\leqslant \sum_{i=1}^{r} \mathbb{P}\left(X = x_i\right) + t\sum_{i=1}^{r} x_i \mathbb{P}\left(X = x_i\right) + \frac{t^2}{2} \sum_{i=1}^{r} x_i^2 \mathbb{P}\left(X = x_i\right)$$

$$\leqslant 1 + t\mathbb{E}\left(X\right) + \frac{t^2}{2} \mathbb{E}\left(X^2\right)$$

Finalement, la croissance de l
n et l'inégalité de convexité : $\forall x>-1,\quad \ln(1+x)\leqslant x,$ donnent

$$\varphi_X(t) \leqslant \mathbb{E}(X) + \frac{t}{2}\mathbb{E}(X^2)$$

Une telle inégalité reste valable si t = 0, car $\varphi_X(0) = \mathbb{E}(X)$

(d) i. Quitte à réordonner les x_i , on peut supposer que $x_1 > x_2 > \ldots > x_r$. Supposons qu'il existe des réels $\lambda_1, \ldots, \lambda_r$ tels que $\sum_{i=1}^r \lambda_i f_i = 0$. Cela signifie que, quelque soit

$$t \in \mathbb{R}$$
, alors $\sum_{i=1}^r \lambda_i f_i(t) = 0$, autrement dit pour tout $t \in \mathbb{R}$: $\sum_{i=1}^r \lambda_i e^{tx_i} = 0$. Facto-

risons par
$$e^{tx_1}$$
: $e^{tx_1} \sum_{i=1}^r \lambda_i e^{t(x_i - x_1)} = 0$. Mais $e^{tx_1} \neq 0$ donc: $\sum_{i=1}^r \lambda_i e^{t(x_i - x_1)} = 0$.

Lorsque $t \to +\infty$ alors $e^{t(x_i-x_1)} \to 0$ (pour tout $i \ge 2$, car $x_i-x_1 < 0$). Donc pour $i \ge 2$, $\lambda_i e^{t(x_i-x_1)} \to 0$ et en passant à la limite dans l'égalité ci-dessus on trouve : $\lambda_1 = 0$.

Le premier coefficients est donc nul. On repart de la combinaison linéaire qui est maintenant $\lambda_2 f_2 + \cdots + \lambda_r f_r = 0$ et en appliquant le raisonnement ci-dessus on prouve par récurrence $\lambda_1 = \lambda_2 = \cdots = \lambda_r = 0$. Donc la famille (f_1, \dots, f_r) est libre.

ii. \Rightarrow) Si X et Y suivent la même loi, alors $X(\Omega) = Y(\Omega)$ et $\forall x \in X(\Omega)$, $\mathbb{P}(X = x) = \mathbb{P}(Y = x)$. On tire $\mathbb{E}(X) = \mathbb{E}(Y)$ et par le théorème du transfert pour tout $t \in \mathbb{R}^*$,

$$\mathbb{E}\left(e^{tX}\right) = \sum_{x \in X(\Omega)} e^{tx} \mathbb{P}\left(X = x\right) = \sum_{x \in X(\Omega)} e^{tx} \mathbb{P}\left(Y = x\right) = \mathbb{E}\left(e^{tY}\right)$$

Donc les fonctions φ_X et φ_Y sont égales;

 \Leftarrow) Posons $X(\Omega) = \{x_1, \dots, x_n\}$ et $Y(\Omega) = \{y_1, \dots, y_m\}$ l'ensemble des valeures prises effectivement par X et Y tels que $x_1 > \dots > x_n$ et $y_1 > \dots > y_m$. L'hypothèse $\varphi_X = \varphi_Y$ donne

$$\forall t \in \mathbb{R}, \quad \sum_{i=1}^{n} e^{tx_i} \mathbb{P}(X = x_i) = \sum_{j=1}^{m} e^{ty_j} \mathbb{P}(X = y_j)$$

Par unicité de l'écriture $n=m, x_i=y_i$ et $\mathbb{P}(X=x_i)=\mathbb{P}(Y=y_i)$

(e) Soit $t \in \mathbb{R}^*$, les deux variables e^{tX} et e^{tY} sont indépendantes, car X et Y le sont, donc

$$M_{X+Y}(t) = \mathbb{E}\left(e^{t(X+Y)}\right) = \mathbb{E}\left(e^{tX}e^{tY}\right) = \mathbb{E}\left(e^{tX}\right)\mathbb{E}\left(e^{tY}\right)$$

Par définition, on a

$$\varphi_{X+Y}(t) = \frac{1}{t} \ln(M_{X+Y}(t)) = \frac{1}{t} \ln\left(\mathbb{E}\left(e^{tX}\right)\right) + \frac{1}{t} \ln\left(\mathbb{E}\left(e^{tY}\right)\right) = \varphi_X(t) + \varphi_Y(t)$$

Pour t = 0, on a $\varphi(0) = \mathbb{E}(X + Y) = \mathbb{E}(X) + \mathbb{E}(Y) = \varphi_X(0) + \varphi_Y(0)$. Bref

$$\varphi_{X+Y} = \varphi_X + \varphi_Y$$

(f) $X \hookrightarrow \mathcal{B}(s,p)$, alors $X = \sum_{i=1}^{s} X_i$, où X_1, \cdots, X_s sont indépendantes et suivent la loi de Bernoulli de paramètre p. Pour $t \in \mathbb{R}$, les variables $e^{tX_1}, \cdots, e^{tX_s}$ sont indépendantes, donc

$$M_X(t) = \mathbb{E}\left(e^{tX}\right) = \mathbb{E}\left(\prod_{i=1}^s e^{tX_i}\right) = \prod_{i=1}^s \mathbb{E}\left(e^{tX_i}\right) = \left(p\left(e^t - 1\right) + 1\right)^s$$

(g) \Leftarrow) Supposons que X est une variable aléatoire réelle symétrique, alors $X(\Omega) = -X(\Omega)$ et pour tout $x \in X(\Omega)$, on a $\mathbb{P}(X = x) = \mathbb{P}(X = -x)$. On montre que $\forall t \in \mathbb{R}, \mathbb{E}(e^{-tX}) = \mathbb{E}(e^{tX})$, pour le faire on fixe $t \in \mathbb{R}$, par le théorème du transfert

$$\mathbb{E}\left(e^{-tX}\right) = \sum_{x \in X(\Omega)} e^{-tx} \mathbb{P}\left(X = x\right)$$

l'application $x \longmapsto -x$ est une bijection de $X\left(\Omega\right)$ vers lui même, alors

$$\mathbb{E}\left(e^{-tX}\right) = \sum_{x \in X(\Omega)} e^{tx} \mathbb{P}\left(X = -x\right)$$
$$= \sum_{x \in X(\Omega)} e^{tx} \mathbb{P}\left(X = x\right)$$
$$= \mathbb{E}\left(e^{tX}\right)$$

Donc pour tout $t \in \mathbb{R}^*$, on a $\varphi_X(-t) = -\varphi_X(t)$ et pour t = 0, on a $\mathbb{E}(X) = \mathbb{E}(-X)$, cela entraı̂ne $\mathbb{E}(X) = 0$, c'est-à-dire $\varphi_X(0) = 0$. On conclut alors φ_X est impaire.

 \Rightarrow) Soit $t \in \mathbb{R}^*$, on a

$$\varphi_{-X}(t) = \frac{1}{t} \ln \left(\mathbb{E} \left(e^{-tX} \right) \right) = -\varphi_X(-t) = \varphi_X(t)$$

D'autre part $\varphi_X(0) = 0$, car φ_X est impaire, donc $\varphi_{-X}(0) = \mathbb{E}(-X) = -\mathbb{E}(X) = 0$, ceci montre que $\varphi_X = \varphi_{-X}$. D'après la question $\ref{eq:partial}$, X et -X ont la même loi

4. (a) Soit $n \in \mathbb{N}^*$ et $t \in \mathbb{R}^*$. On a $\mathbb{E}(S_n) = nm$ et $\mathbb{V}(S_n) = n\sigma^2$, d'autre part les variables $t \frac{X_1 - m}{\sqrt{n}\sigma}, \dots, t \frac{X_n - m}{\sqrt{n}\sigma}$ sont finies et mutullement indépendantes, et par un calcul

direct

$$\varphi_{S_n^*}(t) = \frac{1}{t} \ln \left(\mathbb{E} \left(e^{tS_n^*} \right) \right) = \frac{1}{t} \ln \left(\mathbb{E} \left(\sum_{e=1}^n t \frac{X_i - m}{\sqrt{n}\sigma} \right) \right)$$

$$= \frac{1}{t} \ln \left(\mathbb{E} \left(\prod_{i=1}^n e^{t \frac{X_i - m}{\sqrt{n}\sigma}} \right) \right) = \frac{1}{t} \ln \left(\prod_{i=1}^n \mathbb{E} \left(e^{t \frac{X_i - m}{\sqrt{n}\sigma}} \right) \right) \quad \text{Par indépendance}$$

$$= \frac{1}{t} \sum_{i=1}^n \ln \left(\mathbb{E} \left(e^{t \frac{X_i - m}{\sqrt{n}\sigma}} \right) \right) = \frac{1}{t} \sum_{i=1}^n \ln \left(e^{t \frac{-i}{\sqrt{n}\sigma}} \mathbb{E} \left(e^{t \frac{X_i}{\sqrt{n}\sigma}} \right) \right)$$

$$= \frac{1}{t} \sum_{i=1}^n \ln \left(e^{t \frac{-m}{\sqrt{n}\sigma}} \right) + \frac{1}{t} \sum_{i=1}^n \ln \left(\mathbb{E} \left(e^{t \frac{X_i}{\sqrt{n}\sigma}} \right) \right)$$

$$= \frac{-nm}{\sqrt{n}\sigma} + \frac{1}{\sqrt{n}\sigma} \sum_{i=1}^n \varphi_{X_i} \left(\frac{t}{\sqrt{n}\sigma} \right)$$

$$= \frac{-m\sqrt{n}}{\sigma} + \frac{\sqrt{n}\sigma}{\sigma} \varphi_X \left(\frac{t}{\sigma\sqrt{n}\sigma} \right) \quad \text{car } \forall i, \ \varphi_{X_i} = \varphi_X$$

(b) Le développement limité à l'ordre 1 en 0 de φ_X donne

$$\varphi_X\left(\frac{t}{\sigma\sqrt{n}}\right) = \varphi_X\left(0\right) + \frac{t}{\sigma\sqrt{n}}\varphi_X'\left(0\right) + \circ\left(\frac{1}{\sqrt{n}}\right)$$

$$= \mathbb{E}\left(X\right) + \frac{t}{\sigma\sqrt{n}}\frac{\mathbb{V}\left(X\right)}{2} + \circ\left(\frac{1}{\sqrt{n}}\right)$$

$$= m + \frac{t}{\sigma\sqrt{n}}\frac{\sigma^2}{2} + \circ\left(\frac{1}{\sqrt{n}}\right)$$

$$= m + \frac{t\sigma}{2\sqrt{n}} + \circ\left(\frac{1}{\sqrt{n}}\right)$$

puis

$$\varphi_{S_n^*}(t) = \frac{-m\sqrt{n}}{\sigma} + \frac{\sqrt{n}}{\sigma} \left(m + \frac{t\sigma}{2\sqrt{n}} + \circ \left(\frac{1}{\sqrt{n}} \right) \right)$$
$$= \frac{t}{2} + \circ(1)$$

On en déduit $\lim_{n\to+\infty} \varphi_{S_n^*}(t) = \frac{t}{2}$.

Partie II: Cas des variables aléatoires discrètes réelles infinies

1. (a) On peut écrire $b = \lambda a + (1 - \lambda)c$, avec $\lambda \in [0, 1]$, et par convexité de la fonction exponentielle

$$e^{bx} = e^{\lambda ax + (1-\lambda)cx} \leqslant \lambda e^{ax} + (1-\lambda)e^{cx} \leqslant e^{ax} + e^{cx}$$

(b) •
$$1 \in I_X$$
, car $\mathbb{E}\left(e^{0X}\right) = \sum_{x \in X(\Omega)} \mathbb{P}\left(X = x\right) = 1$

• Soit $a,c \in I_X$ tel que $a \leq c$. Montrons que $[a,c] \subset I_X$. D'après la question précédente, pour tout $x \in \mathbb{R}$, $e^{bx} \leq e^{ax} + e^{cx}$, donc $e^{bX} \leq e^{aX} + e^{cX}$, et comme les deux variables positives admettent des espérances, alors la variable positive e^{bX} admet une espérance, donc $b \in I_X$, ainsi l'inclusion $[a,c] \subset I_X$. On déduit I_X est un intervalle de \mathbb{R} .

2. Soit $t \in \mathbb{R}$, la variable e^{tX} admet une espérance si, et seulement, si la série à termes positifs $\sum_{n\geqslant 0} e^{tn} \frac{\lambda^n}{n!} e^{-\lambda} \text{ converge. Or la série exponentielle } \sum_{n\geqslant 0} \frac{\left(\lambda e^t\right)^n}{n!} \text{ converge de somme } e^{\lambda e^t}, \text{ donc } M_Y \text{ est définie sur } \mathbb{R} \text{ et}$

$$\forall t \in \mathbb{R}, \quad M_Y(t) = e^{\lambda e^t - \lambda}$$

3. (a) Soit $k \in \mathbb{N}$, l'application $u_n : t \in]-\alpha, \alpha[\longmapsto P(X=x_n)e^{tx_n}$ est de classe \mathcal{C}^k et ,

$$u_n^{(k)}(t) = P(X = x_n)x_n^k e^{tx_n}$$

les inégalités $e^{tx_n} \leq e^{|t||x_n|} \leq e^{\alpha|x_n|}$ donnent

$$\left|u_n^{(k)}(t)\right| \leqslant P(X = x_n) \left|x_n\right|^k e^{\alpha |x_n|}$$

(b) Soit $k \in \mathbb{N}^*$. La fonction $\psi_k : x \in \mathbb{R}_+ \longmapsto x^k e^{(\alpha - \rho)x}$ est continue, positive, strictement décroissante sur $\left[\frac{k}{\rho - \alpha}, +\infty\right[$ et strictement croissante sur $\left[0, \frac{k}{\rho - \alpha}\right]$ il existe $M_k = \psi_k \left(\frac{k}{\rho - \alpha}\right) > 0$,

Pour k = 0, la fonction $\psi_k : x \in \mathbb{R}_+ \longrightarrow e^{(\alpha - \rho)x}$ est décroissante sur \mathbb{R}_+ , alors $M_0 = 1$.

Bref pour tout $t \in]-\alpha, \alpha[$ et tout $n \in \mathbb{N},$

$$|u_n^{(k)}(t)| \leqslant P(X = x_n) |x_n|^k e^{\alpha |x_n|} = P(X = x_n) \psi_k(|x_n|) e^{\rho |x_n|} \leqslant M_k P(X = x_n) |e^{\rho |x_n|}.$$

- (c) Pour tout $n \in \mathbb{N}$, la fonction u_n est de classe \mathcal{C}^{∞} sur $]-\alpha,\alpha[$
 - Soit $k \in \mathbb{N}$, on a pour tout $n \in \mathbb{N}$, $e^{\rho|x_n|} \leq e^{\rho x_n} + e^{-\rho x_n}$ et $-\rho, \rho \in]-\alpha, [\alpha, donc la série à termes positifs <math>\sum_{n \geq 0} P(X = x_n) |e^{\rho|x_n|}$ converge et, par suite, la série

 $\sum_{n\geqslant 0} u_n^{(k)}$ converge normalement sur tout segment [-a,a] inclus dans $]-\alpha,\alpha[$

Donc, par le théorème de dérivation terme à terme, $M_X = \sum_{n=0}^{+\infty} u_n$ est de classe \mathcal{C}^{∞} sur $]-\alpha,\alpha[$, et

$$\forall t \in]-\alpha, \alpha[, \quad \forall k \in \mathbb{N}, \quad M_X^{(k)}(t) = \sum_{n=0}^{+\infty} x_n^k e^{tx_n} \mathbb{P}(X = x_n)$$

En particulier pour tout $k \in \mathbb{N}$ la série $\sum_{n \geqslant 0} x_n^k \mathbb{P}(X = x_n)$ est absolument convergente, donc X admet un moment d'ordre k. Ainsi

$$\forall k \in \mathbb{N}, \quad M_X^{(k)}(0) = \mathbb{E}\left(X^k\right)$$

4. Dans ce cas $M_Y: t \longmapsto e^{\lambda e^t - \lambda}$ qui est de classe \mathcal{C}^{∞} et pour tout $t \in \mathbb{R}$

$$M'_Y(t) = \lambda e^t e^{\lambda e^t - \lambda}$$

$$M'_Y(0) = \lambda$$

$$M''_Y(t) = \lambda^2 e^t e^{\lambda e^t - \lambda} + \lambda e^{2t} e^{\lambda e^t - \lambda}$$

$$M''_Y(0) = \lambda^2 + \lambda$$

Alors $\mathbb{E}(Y) = M'_Y(0) = \lambda$ et par la formule de Huygens kænig

$$\mathbb{V}\left(X\right) = \mathbb{E}\left(X^{2}\right) - \mathbb{E}\left(X\right)^{2} = M_{Y}^{\prime\prime}(0) - M_{Y}^{\prime}(0) = \lambda$$

Partie III: Cas des variables aléatoires à densité

1. Soit $t \in I_X \cap I_Y$, les deux variables e^{tX} et e^{tY} sont indépendantes, car X et Y le sont. Comme e^{tX} et e^{tY} admettent des espérances alors, par indépendance, $e^{t(X+Y)} = e^{tX}e^{tY}$ admet une espérance et

$$M_{X+Y}(t) = \mathbb{E}\left(e^{t(X+Y)}\right) = \mathbb{E}\left(e^{tX}e^{tY}\right) = \mathbb{E}\left(e^{tX}\right)\mathbb{E}\left(e^{tY}\right) = M_X(t)M_Y(t)$$

Remarque : Les deux applications ne sont pas forcément égales mais elles coïncident sur $I_X \cap I_Y$

- 2. (a) Soit $t \in \mathbb{R}$, la série à termes positifs $\sum_{k \geqslant 0} \frac{|st|^k}{k!}$ converge de somme $e^{s|t|}$, donc pour tout $k \in \mathbb{N}^*$, $\frac{|st|^k}{k!} \leqslant e^{s|t|}$ ou encore $|t^k| \leqslant \frac{k!}{s^k} e^{s|t|}$.
 - (b) Soit $k \in \mathbb{N}^*$, d'après la question précédente

$$\forall t \in \mathbb{R}, \quad |t^k| \leqslant \frac{k!}{s^k} e^{s|t|} \leqslant \frac{k!}{s^k} \left(e^{st} + e^{-st} \right)$$

Soit

$$|X|^k \leqslant \frac{k!}{s^k} \left(e^{sX} + e^{-sX} \right)$$

Les deux variables positives e^{sX} et e^{-sX} admettent des espérances car $-s, s \in]a, b[$, alors par comparaison, la variable $|X|^k$ admet une espérance.

Remarque : On a aussi l'inégalité $\mathbb{E}\left(|X|^k\right) \leqslant \frac{k!}{s^k} \left(M_X(s) + M_X(-s)\right)$ qui sera utilisée à la question suivante

(c) Soit $-\infty = a_0 < a_1 < \cdots < a_r = +\infty$ tels que pour tout $i \in [0, r-1]$ la fonction f est continue sur $]a_i, a_{i+1}[$. On va appliquer le théorème de convergence dominée sur chaque intervalle $]a_i, a_{i+1}[$.

Fixons $t \in]-s, s[$

- Pour tout $k \in \mathbb{K}$, l'application $f_k : x \longmapsto \frac{t^k x^k}{k!} f(x)$ est continue sur $]a_i, a_{i+1}[$ et intégrable car $\mathbb{E}\left(|X|^k\right)$ est finie
- La série $\sum_{k\geqslant 0} f_k$ converge simplement sur $]a_i,a_{i+1}[$ de somme $x\longmapsto e^{tx}f(x)$ qui est continue sur $]a_i,a_{i+1}[$
- Pour tout $k \in \mathbb{N}$, on a

$$\int_{a_i}^{a_{i+1}} |f_k(x)| dx = \int_{a_i}^{a_{i+1}} \left| \frac{t^k x^k}{k!} f(x) \right| dx$$

$$\leqslant \frac{|t|^k}{k!} \mathbb{E}\left(|X|^k\right)$$

$$\leqslant \frac{|t|^k}{k!} \frac{k!}{s^k} \left(M_X(s) + M_X(-s)\right)$$

$$\leqslant \left(M_X(s) + M_X(-s)\right) \frac{|t|^k}{s^k}$$

et la série géométrique du terme général $\frac{|t|^k}{s^k}$ converge. Bref la série du terme général $\int_{a_i}^{a_{i+1}} |f_k(x)| dx$ converge

Donc d'après le théorème de la convergence dominée, on peut intégrer terme à terme, soit

$$\int_{a_{i}}^{a_{i+1}} e^{tx} f(x) dx = \int_{a_{i}}^{a_{i+1}} \sum_{k=0}^{+\infty} \frac{t^{k} x^{k}}{k!} f(x) dx$$
$$= \sum_{k=0}^{+\infty} \frac{t^{k}}{k!} \int_{a_{i}}^{a_{i+1}} x^{k} f(x) dx$$

Ceci vrai pour tout $i \in [0, r-1]$, alors on conclut par la relation de Chasles que, pour tout $t \in]-s, s[, M_X(t) = \sum_{k=0}^{+\infty} \mathbb{E}\left(X^k\right) \frac{t^k}{k!}$

Remarque : On ne peut pas appliquer le théorème d'intégration terme à terme sur \mathbb{R} , car f n'est pas forcément continue par morceaux sur \mathbb{R}

(d) M_X est développable en série entier en 0, alors elle est de classe \mathcal{C}^{∞} sur]-s,s[et

$$\forall k \in \mathbb{N}, \quad \frac{M_X^{(k)}(0)}{k!} = \frac{\mathbb{E}\left(X^k\right)}{k!}$$