SPEECH MODELS: MEL FREQUENCY CEPSTRAL COEFFICIENTS (MFCC)

Michele Rossi rossi@dei.unipd.it

Dept. of Information Engineering University of Padova, IT

Outline

- MFCCs: what are they for?
- The 6 steps to compute them (intuition)
- The Mel scale for human perceived frequency
- The 6 steps in greater detail

MFCC – what are they for?

- First step in any speech recognition system is
 - To extract features: should be good for identifying the linguistic content (neglecting background noise, emotion, etc.)
- Sounds generated by humans
 - Are filtered by the shape of the vocal tract, including tongue, teeth, etc.
 - This shape determines which sound comes out
 - If we determine this shape accurately, this should give a good representation of the phoneme that is being produced
- Shape of the vocal tract
 - Manifest itself in the envelope of the short-term power spectrum
 - The job of MFCCs is to accurately represent this envelope [1]

[1] S. Davis, P. Mermelstein, "Comparison of parametric representations for monosyllabic word recognition in continuously spoken sequences," *IEEE Transactions on Acoustic, Speech and Signal Processing*, Vol. 28, No. 4, Aug. 1980.

Their computation involves 6 steps

- 1. Frame the signal into short frames
- 2. For each frame: calculate its power spectrum
- Apply the Mel filterbank to the power spectrum
 - sum the energy in each filter
- 4. Take the logarithm of all filterbank energies
- 5. Take the DCT of the log filterbank energies
- 6. Keep DCT coefficients 2-13, discard the others

Step 1 - framing

- An audio signal is constantly changing (non-stationary)
- It is difficult to deal with non-stationary data
- To simplify things
 - We assume that on short time scales the signal does not change much
 - "Doe not change" means it is statistically stationary
- This is why we frame the signal into 20-40ms time windows
 - Standard value is 25ms
 - Shorter values: not enough samples to get a reliable spectral estimate
 - Larger values: the signal (statistics) changes too much in the frame

Step 2 – power spectrum

- Compute the power spectrum of a frame
 - This is motivated by the human cochlea (organ in the ear)
 - Which vibrates at different spots depending on the frequency of the incoming sound waves
 - Depending on the location of the cochlea that vibrates, different nerves fires informing the brain that certain frequencies are present
- The periodogram estimate of the power spectrum
 - Does a similar job
 - Informing us which frequencies are present in the current frame

Step 3 – filterbank

- The periodogram estimate of the power spectrum
 - Still contains a lot of information that is not required by Autonomous Speech Recognition (ASR) systems
 - In fact, the cochlea cannot discern the difference between two closely spaced frequencies
 - This effect becomes more apparent as frequencies increase

Hence:

- We take clumps of periodogram bins and sum them up to get an idea of how much energy there exists in each region
- This is performed using a Mel filterbank
 - First Mel filter is very narrow: to get an idea of how much energy there is around 0 Hertz
 - Filters get wider as frequencies get higher: we become less concerned about variations (Mel scale tells us exactly how to space filterbanks)

Step 4 – logarithm

- Once we have the filterbank energies
 - We take their logarithm
 - This is also motivated by human hearing: we do not hear loudness on a linear scale
 - Generally, to double the perceived volume of a sound we need to put
 8 times as much energy into it
 - This means that large variations in energy may not sound that different if the sound is loud

Hence

 This compression operation (logarithm) makes our features match more closely to what humans actually hear

Steps 5 and 6 – DCT

- Discrete Cosine Transform (DCT)
 - There are two main reasons for applying it
 - First: filterbanks are quite overlapping (meaning that filterbank energies are quite correlated with each other)
 - DCT decorrelated filterbank energies
 - This means that diagonal covariance matrices can be used to model the features with GMM and/or GMM/HMM systems (very desirable)
 - Also (energy compaction property of DCT) we obtain a compact representation in the first DCT coefficients
 - Second: discard some information for improved performance
 - Only 12 of the 26 DCT coefficients are kept
 - Higher DCT coefficients represent fast changes in the filterbank energies
 - These fast changes degrade ASR performance
 - A (small) improvement is achieved by dropping them

The Mel scale - M(f)

- Relates the human perceived frequency (or pitch) of a pure tone to its actual measured frequency
- Humans are much better at discerning small changes in pitch at low frequencies that they are at high frequencies
- Incorporating it makes ASR match more closely what humans hear

STEPS 1-6 IN MORE DETAIL

Step 1 - framing

- Frame the audio signal into [20,40] ms frames (standard value is 25 ms)
- For a 20.480 kHz signal, with 25 ms we have

320____

20,480 samples per second

• 0.025 * 20,480 = 512 samples per frame

0 _____ 511

- Frame step is usually, e.g., 10 ms (160 samples)
 - This allows for some overlapping between subsequent frames
 - First frame (of 512 samples) starts at sample 0
 - Second frame (still of 512 samples) start at sample 160, etc.
 - Keep framing until the end of the speech signal
 - If the signal does not divide into an even number of frames, pad it with zeros so it does

Notation

- s(n) is the audio signal (time domain signal)
- s_i(n) is frame i with n ranging from 0 to 511 in our example

Step 2 – power spectrum (1/4)

- For each frame $s_i(n)$, n = 0, 1, ..., N 1 (N = 512)
 - Calculate the complex DFT (Discrete Fourier Transform)

$$S_i(k) = \sum_{n=0}^{N-1} s_i(n)w(n)e^{-j2\pi kn/N}, k = 0, 1, \dots, N-1$$

- DFT
 - Converts a time sequence of N equally spaced samples into an N-long complex sequence, which is a complex-valued function of frequency
 - The DFT (with w(n)=1) completely describes the discrete Fourier transform onto an N-periodic time sequence
 - When applying DFT, we are implicitly applying it to an infinitely repeating (periodic) signal. However, if this is not the case, e.g., first and last samples of s_i(n) do not match, this is *interpreted as a discontinuity* in the signal and *generates a lot of high frequency response in the transformed signal*, that we do not want \rightarrow use of "windowing" w(n)

Step 2 – power spectrum (2/4)

Often used: Hamming window - w(n)

$$w(n) = 0.54 - 0.46 \cos\left(\frac{2\pi n}{N-1}\right), n = 0, \dots, N-1$$

Step 2 – power spectrum (3/4)

Hamming window – transformation (with N=20)

- The center of the main lobe of a smoothing window occurs at each frequency component of the input signal (of course, freq. plot is symmetric around zero)
- Center lobe width (across negative & positive freqs.) is $4\Omega_N=4(2\pi/N)$
- Ideally, only the main lobe should be emphasized while the side lobes should be zeroed (this prevents energy leakage across subsequent frequencies)

Step 2 – power spectrum (4/4)

Note

- Among the N=512 complex DCT values
- Only the first 1+N/2 values are significant, the remaining ones are complex conjugates of the first 1+N/2 values (this is how DCT works)
- Hence, the first 1+N/2=257 elements are kept, while the remaining ones (N/2-1 values) are discarded
- Compute the periodogram estimate of the power spectrum:

$$P_i(k) = \frac{|S_i(k)|^2}{N}, k = 0, \dots, N/2$$

Remember that: k=0 is the DC component (frequency f=0). Then, with DCT the step size if F_s/N (F_s is the sampling frequency). Hence, k=1 corresponds to frequency $f_1=F_s/N$ and element k=N/2 corresponds to frequency $f_{N/2}=F_s/2$ (this is the, so called, *Nyquist critical frequency*, i.e., the highest that can be represented by sampling at frequency F_s)

Step 3 – filterbanks (1/3)

- Compute Mel-spaced filterbanks (through Mel's equation)
 - They amounts to 20-40 triangular filters
 - Each filter (in our case) has 257 values (to match the output of step
 2) and it is multiplied by the entire power spectrum from step 2

full filterbank (left) full power spectrum (right)

filter 8 from filterbank (left) output when this filter is applied (right)

filter 20 from filterbank (left) output when this filter is applied (right)

Step 3 – filterbanks (2/3)

Obtain N_{fb} Mel-spaced triangular filters

- Pick the number of filters (usually N_{fb}=26)
- Set the maximum frequency as F_{max}=F_s/2
- Set the minimum frequency as, e.g., F_{min}=300 Hz (user defined)
- Compute N_{fb} center frequencies f(1), f(2), ..., f(N_{fb})
 - Linearly spaced in Mel's domain
 - Non-linearly spaced in frequency domain [Hz]

Each filter m

- Is centered at frequency f(m)
- Is equal to 1 for f(m) and decreasing linearly otherwise
- Is zero at f(m-1), f(m+1) and outside [f(m-1), f(m+1)]
- N_{fb} filters require N_{fb}+2 thresholds

f(m)

Step 3 – filterbanks (3/3)

- Example
 - F_s = 20.480 kHz, N=512, N_{fb} =10, f_{max} =Fs/2=10,240, f_{min} =300 Hz
- Frequencies [Hz]

 $300 = f_{min}$ 543=f(1) 845=f(2) 1,220=f(3) 1,687=f(4) 2,267=f(5) 2,988=f(6) 3,883=f(7) 4,997=f(8) 6,381=f(9) 8,102=f(10) 10,240= f_{max}

Corresponding DCT indices

[7 13 21 30 42 56 74 97 125 159 202 256]

Step 4 – logarithms

- We now have N_{fb} Mel-spaced triangular filters
- For each filter m=1,2,..., N_{fb}
 - 1. Multiply filter m by the full power spectrum from step 2 (the resulting energy trace will be mostly 0 (besides around f(m), the filter acts as a mask, centered at f(m))
 - 2. Add up the non-zero coefficients in this trace $\rightarrow E_{\rm m}$
 - 3. Take the logarithm: $log(E_m)$
- This gives us N_{fb} real values:
- log(E₁), log(E₂), ..., log(E_M), with M= N_{fb}
 - One for each Mel's frequency band
 - They tell how much energy there is within each band

Steps 5 and 6

- Step 5 for each frame
 - Take the DCT (Discrete Cosine Transform) of the vector containing the logarithms of the energy within each band
 - The result of the DCT is a vector of N_{fb} cepstral coefficients
- Step 6 for each frame
 - For ASR, the cepstral coefficients no. 2,3, ...,13 are kept
 - The remaining ones are discarded
 - Note that: the first DCT coefficient is the sum of all the log-energies computed at the previous step (by the very def. of DCT) – thus, it is an overall measure of signal loudness and is not very informative - it is often discarded for speech recognition or speaker id applications where the system has to be robust to loudness variations
- Final result of this processing is
 - 12 cepstral coefficients for each frame

Some visual insight (1/2)

 $F_s = 8 \text{ kHz time signal}$

Signal in the Time Domain

After applying the filterbank to the power spectrum (periodogram):

Spectrogram of the Signal

Some visual insight (2/2)

Mel's Frequency Cepstral Coefficients (MFCCs):

Phyton library to extract MFCCs

https://github.com/jameslyons/python_speech_features

APPENDIXA

Matlab code to compute filterbanks

Filterbanks Matlab code (1/2)

```
Fs=20480:
                       % sampling rate
                       % number of DFT samples
nDFT=512:
Fnyq=Fs/2;
                       % Nyquist frequency
Nfb=10:
                       % number of filterbanks to generate
Fmin=300:
                       % min frequency of filterbanks [Hz]
Fmax=Fnyq;
                       % max frequency of filterbanks [Hz]
FminMel=1125*log(1+(Fmin/700)); % min Mel's frequency
FmaxMel=1125*log(1+(Fmax/700)); % Max Mel's frequency
Nthresh=Nfb+2;
                       % number of required frequency thresholds
step=(FmaxMel-FminMel)/(Nthresh-1); % step size (linearly partition Mel's space)
% allocate memory for frequency thresholds
melvec=zeros(1,Nthresh);
freqvec=zeros(1,Nthresh);
f=zeros(1,Nthresh);
% for each frequency threshold do
for i = 0:(Nthresh-1)
  melvec(i+1) = FminMel+i*step;
                                               % assign Mel thresholds (linearly)
  freqvec(i+1) = 700*(exp(melvec(i+1)/1125)-1); % compute corresponding frequencies (Mel's transformation)
  f(i+1) = floor((nDFT+1)*freqvec(i+1)/Fs);
                                               % express frequency thresholds in terms of DFT indeces
end
```

Filterbanks Matlab code (2/2)

% read Filterbank matrix by row, each row contains a filter

plot(H(m,:),'LineWidth',3)

end

```
H=zeros(Nfb,Nthresh); % filterbank matrix, here we store the N<sub>fb</sub> filters
% for each filter m do (m is the filterbank index)
for m = 2:(Nfb+1)
  for k=1:f(Nthresh)
            ((k \ge f(m-1)) \&\& (k \le f(m))) H(m-1,k) = (k-f(m-1))/(f(m)-f(m-1)); % increase
     elseif ((k \ge f(m)) \& \& (k \le f(m+1))) H(m-1,k) = (f(m+1)-k)/(f(m+1)-f(m)); % decrease
            H(m-1,k) = 0;
     else
     end
  end
end
clf
figure(1);
hold on
for m = 1:Nfb
```

SPEECH MODELS: MEL FREQUENCY CEPSTRAL COEFFICIENTS (MFCC)

Michele Rossi rossi@dei.unipd.it

Dept. of Information Engineering University of Padova, IT

