

Back-Propagation Algorithm for Deep Neural Networks and Contradictive Diverse Learning for Restricted Boltzmann Machine

Masayuki Tanaka Aug. 17, 2015

http://bit.ly/dnnicpr2014

Outline

- Examples of Deep Learning
- RBM to Deep NN
- Deep Neural Network (Deep NN)
 - Back-Propagation (Supervised Learning)
- 4. Restricted Boltzmann Machine (RBM)
 - Mathematics, Probabilistic Model and Inference Model
 - Pre-training by Contradictive Diverse Learning (Unsupervised Learning)
- Inference Model with Distribution

Top performance in character recognition

MNIST (handwritten digits benchmark)

MNI	ST			
ı	1	5	4	3
7	5	3	5	3
5	5	9	0	6
3	5	2	0	0

Result	Method		Venue	Details
0.21%	Regularization of Neural Networks using DropConnect	1	ICML 2013	
0.23%	Multi-column Deep Neural Networks for Image Classification	خ	CVPR 2012	
0.35%	Deep Big Simple Neural Nets Excel on Handwritten Digit Recognition	٢	Neural Computation 2010	Details
0.39%	Efficient Learning of Sparse Representations with an Energy-Based Model	7	NIPS 2006	Details
0.39%	% Convolutional Kernel Networks		arXiv 2014	Details
0.39%	Deeply-Supervised Nets 🕭		arXiv 2014	
0.4%	Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis	Ł	Document Analysis and Recognition 2003	
0.45%	Maxout Networks		ICML 2013	Details
0.47%	Network in Network		ICLR 2014	Details
0.52 %	Trainable COSFIRE filters for keypoint detection and pattern recognition	٤	PAMI 2013	Details
0.53%	What is the Best Multi-Stage Architecture for Object Recognition?	٨	ICCV 2009	Details
0.54%	A trainable feature extractor for handwritten digit recognition	٨	Journal Pattern Recognition	Details

TOKYO INSTITUTE OF TECHNOLOGY

Top performance in image classification

CIFAR (image classification benchmark)

CIFAR10

Result	Method		Venue	Details
94%	Lessons learned from manually classifying CIFAR-10		unpublished 2011	Details
91.78%	Deeply-Supervised Nets		arXiv 2014	Details
91.2%	Network In Network ⊱		ICLR 2014	Details
90.68%	Regularization of Neural Networks using DropConnect		ICML 2013	
90.65%	Maxout Networks		ICML 2013	Details
90.61%	Improving Deep Neural Networks with Probabilistic Maxout Units	٨	ICLR 2014	Details
90.5%	Practical Bayesian Optimization of Machine Learning Algorithms	٢	NIPS 2012	Details
89%	ImageNet Classification with Deep Convolutional Neural Networks	Ł	NIPS 2012	Details
88.79%	Multi-Column Deep Neural Networks for Image Classification	7	CVPR 2012	Details
84.87%	Stochastic Pooling for Regularization of Deep Convolutional Neural Networks		arXiv 2013	
84.4%	Improving neural networks by preventing co- adaptation of feature detectors	E	arXiv 2012	Details
83.96%	Discriminative Learning of Sum-Product Networks		NIPS 2012	
82.9%	Stable and Efficient Representation Learning with Nonnegativity Constraints	1	ICML 2014	Details

Top performance in visual recognition

Team Name	Error (%)
GoogLeNet	6.7
VGG	7.3
MSRA Visual computing	8.1
Andrew Howard	8.1
DeeperVision	9.5
NUS-BST	9.8
TTIC_ECP – Epitomic Vision	10.2
XYZ	11.2
BDC-I2R-UPMC	11.3
BREIL_KAIST, Brno University of Techno DeepCNet, Fengjun Lv, libccv, MIL, Oran PassBy, SCUT_GLH, SYSU_Vision, UI, UV	nge-BUPT,

Image Large Scale Visual Recognition Challenge (ILSVRC)

Other

TOKYO INSTITUTE OF TECHNOLOGY

"Cat neuron"

Input to another layer above (image with 8 channels)

Automatic learning with youtube videos, neuron for human's face neuron for cat

10,000,000: training samples

Three days learning with 1,000 computers

http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//archive/uns upervised_icml2012.pdf **TOKYO INSTITUTE OF TECHNOLOGY

Deep??

Deep NN

(Shallow) NN

Pros and Cons of Deep NN

Deep NN

Until a few years ago...

- Tend to be overfitting
- Learning information does not reach to the lower layer
 - Pre-training with RBM
 - Big data

Image net
More than 1,5 M: Labeled images
http://www.image-net.org/

Labeled Faces in the Wild More than 10,000: Face images http://vis-www.cs.umass.edu/lfw/

High-performance network

http://bit.ly/dnnicpr2014

Outline

- Examples of Deep NNs
- 2. RBM to Deep NN
 - Deep Neural Network (Deep NN)
 - Back-Propagation (Supervised Learning)
 - 4. Restricted Boltzmann Machine (RBM)
 - Mathematics, Probabilistic Model and Inference Model
 - Pre-training by Contradictive Diverse Learning (Unsupervised Learning)
 - Inference Model with Distribution

Single Layer Neural Network

Single node output

Multiple nodes output (Single Layer NN)

Output **h** layer

Input \boldsymbol{v} Layer

Sigmoid function

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$h_j = \sigma \left(\sum_i w_{ij} v_i + b_j \right)$$

Vector representation of Single layer NN

$$\boldsymbol{h} = \sigma(\boldsymbol{W}^T \boldsymbol{v} + \boldsymbol{b})$$

It is equivalent to the inference model of the RBM

Weighted sum and Activation functions

Rectified linear unit

$$f(x) = \text{ReLU}(x) = \begin{bmatrix} 0 & (x < 0) \\ x & (x \ge 0) \end{bmatrix}$$

Single layer NN to Deep NN

The deep NN is build up by stacking single layer NNs.

Input NN

The output of the single layer NN will be the input of the next single layer NN.

The output data of the deep NN is inferred by iterating the process.

Parameters estimation for deep NN

The deep NN is build up by stacking single layer NNs.

Teach data

k-th NN

K-th iviv

Input NN

2nd NN

1st NN

Parameters are estimated by gradient descent algorithm which minimizes the difference between the output data and teach data.

Parameters estimation for deep NN

The deep NN is build up by stacking single layer NNs.

Parameters are estimated by gradient descent algorithm which minimizes the difference between the output data and teach data.

Back-propagation:

The gradients can be calculated as propagating the information backward.

TOKYO INSTITUTE OF TECHNOLOGY

Why the pre-training is necessary?

The back-propagation calculates the gradient from the output layer to the input layer.

The information of the back-propagation can not reach the deep layers.

Deep layers (1st layer, 2nd layer, ...) are better to be learned by the unsupervised learning.

Pre-training with the RBMs.

Pre-training with RBMs

The inference of the single layer NN is mathematically equivalent to the inference of the RBM.

Single layer NN

RBM

Data

The RBM parameters are estimated by maximum likelihood algorithm with given training data.

TOKYO INSTITUTE OF TECHNOLOGY

Fine-tuning of deep NN

Input data

TOKYO INS

INOLOGY

Pre-training and fine-tuning Teach data Back propagation Pre-training with RBMs Output data Pre-training for copy 2nd layer RBM copy Output data Training data copy Pre-training for 1st layer RBM

Training data

Feature vector extraction

Feature

Pre-training with RBMs

Pre-training for copy 2nd layer RBM

Output data

Training data

Pre-training for 1st layer RBM copy

Input data

Outline

- Examples of Deep NNs
- 2. RBM to Deep NN
- Deep Neural Network (Deep NN)
 - Back-Propagation (Supervised Learning)
- 4. Restricted Boltzmann Machine (RBM)
 - Mathematics, Probabilistic Model and Inference Model
 - Pre-training by Contradictive Diverse Learning (Unsupervised Learning)
- Inference Model with Distribution

Back-Propagation Algorithm

Vector representation of the single layer NN $\boldsymbol{h} = \sigma(\boldsymbol{W}^T \boldsymbol{v} + \boldsymbol{b})$

The goal of learning:

Weights W and bias b of the each layer are estimated, so that the differences between the output data and the teach data are minimized.

Objective function
$$I = \frac{1}{2} \sum_{k} \left(h_k^{(L)} - t_k \right)^2$$

Efficient calculation of the gradient $\frac{\partial I}{\partial \mathbf{w}^{(\ell)}}$ is important.

Back-propagation algorithm is an efficient algorithm to calculate the gradients.