Conditional Probability For events A, B, the probability of A, given B has occurred (denoted as $P(A|B) = \frac{P(A \cap B)}{P(B)}$ * P(B) must be > 0

Independence

If there are 2 events, A,B, they are (poiraise) independent when $P(A \cap B) = P(A) P(B)$

If there are n ≥ 3 events Au..., An,
they are mutually indepent if
for any arbitrary subsollection of the Ai's

 (A_h, \dots, A_{kn}) $P(A_k \cap \dots \cap A_{kn}) = P(A_H) \cdots P(A_{kn})$

Bayes' Rule

For events, A,B, $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$ REMEMBER: Pairwise incloanderse

DOES NOT imply

mutual independence

$$\begin{pmatrix}
P(A \cap B) = P(A)P(B) \\
P(B \cap C) = P(B)P(C) \\
P(A \cap C) = P(A)P(C)
\end{pmatrix}$$

$$P(A \cap B \cap C) = P(A)P(B)P(C)$$

Tules for calculating an unknown, when you are given conditional probabilities.

Conditional Independence

Events A.B. are conditionally independent given C, when

P(ABC)=P(AC)P(BC)

implies P(A|B,C)=P(A|C)
P(B|A|C)=P(B|C)

REMEMBER: Conditional independence

DOES NOT imply

independence (unless A, B, C are)

(P(AnBIC)=P(AlC)P(BlC) / P(AnB)=P(A)P(B)

Useful Things to Remember

Law of Total Probability

For partition of S: A, A, ..., A, and event B.

From this, we have

* Very useful when using Bayes' Rule

Multiplication Rule

For events A, Az,..., An

$$P(A_1 \cap A_2 \cap ... \cap A_n) = P(A_1) \times P(A_2 \cap A_1) \times P(A_3 \cap A_1) \times P(A_3 \cap A_1, A_2) \times ...$$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

$$= \frac{P(B|A)P(A)}{P(B|A)P(A)+P(B|A')P(A')}$$

5.1)
$$P(A, \cap A_2) \neq P(A, | P(A_1))$$

We went to show this B —the event of biased die
 $P(A_1) = P(A, |B) P(B) + P(A, |B') P(B')$
 $= \frac{2}{6}, \frac{1}{2} + \frac{1}{6}, \frac{1}{2}$
 $= \frac{1}{4}$
 $P(A_1 \cap A_2) = P(A_1 \cap A_2 | B) P(B) + P(A_1 \cap A_2 | B') P(B')$
Biased
 $E(1,2|3|4|6|6) = \frac{4}{36}, \frac{1}{2} + \frac{1}{36}, \frac{1}{2}$
 $= \frac{5}{72}$

$$P(A_1)P(A_2) = \frac{1}{4} \cdot \frac{1}{16} P(A_1)P(A_2) + P(A_1)P(A_2)$$

5.11) a)
$$P(A_1 \cap A_2 | B) = P(A_1 | B) P(A_2 | B)$$

 $P(A_1 \cap A_2 | B) = \frac{4}{36}$

Die Oxtromes: {1,2,3,4,6,6,3

$$A_1 \cap A_2 \mid B = \{ (6_3, 6_3), (6_3, 6_6), (6_3, 6_6), (6_6, 6_6) \}$$

$$P(A|B) = \frac{2}{6} P(A_2|B) = \frac{2}{6}$$

b)
$$P(A_1 \cap A_2 | B^c) = P(A_1 | B^c) P(A_2 | B^c)$$

 $P(A_1 \cap A_2 | B^c) = \frac{1}{36}$
 $P(A_1 | B^c) = \frac{1}{6}$, $P(A_2 | B^c) = \frac{1}{6}$

$$= \frac{P(A \cap B)}{P(B)}$$

$$= \frac{P(A) P(B)}{P(B)} = P(A)$$

$$P(A|C) = \frac{P(A \cap C)}{P(C)}$$

$$= \frac{P(A)}{P(C)}$$