V/V	e1	e2	e3	e4	e5	e6	e7	e8	е9	e10	e11	e12
e1	0		4	3			2	2	2	4		3
e2		0					1	4		5	1	
е3	4		0		3	2			1	4	4	3
e4	3			0		3	5		2		3	4
e5			3		0	1	4	5	3		1	5
e6			2	3	1	0	2	2				
e7	2	1		5	4	2	0	1		2		3
e8	2	4			5	2	1	0			3	5
е9	2		1	2	3				0		1	
e10	4	5	4				2			0	1	1
e11		1	4	3	1			3	1	1	0	
e12	3		3	4	5		3	5		1		0

Нахождение гамильтонова цикла:

Включаем в S вершину $x1. S = \{x1\}$

Возможная вершина: $x3. S = \{x1, x3\}$

Возможная вершина: $x5. S=\{x1,x3,x5\}$

Возможная вершина: $x6. S = \{x1, x3, x5, x6\}$

Возможная вершина: $x4. S=\{x1,x3,x5,x6,x4\}$

Возможная вершина: $x7. S=\{x1,x3,x5,x6,x4,x7\}$

Возможная вершина: x2. $S=\{x1,x3,x5,x6,x4,x7,x2\}$

Возможная вершина: $x8. S = \{x1, x3, x5, x6, x4, x7, x2, x8\}$

Возможная вершина: $x11. S=\{x1,x3,x5,x6,x4,x7,x2,x8,x11\}$

Возможная вершина: $x9. S=\{x1,x3,x5,x6,x4,x7,x2,x8,x11,x9\}$ У x9 больше нет

возможных вершин, удалим ее. Перейдем к х11.

 $S=\{x1,x3,x5,x6,x4,x7,x2,x8,x11\}$ Возможная вершина: x10.

 $S=\{x1,x3,x5,x6,x4,x7,x2,x8,x11,x10\}$ Возможная вершина: x12.

 $S=\{x1,x3,x5,x6,x4,x7,x2,x8,x11,x10,x12\}$ У x12 больше нет возможных вершин, удалим ее.

Перейдем к х10. $S=\{x1,x3,x5,x6,x4,x7,x2,x8,x11,x10\}$ У х10 больше нет возможных вершин, удалим ее.

Перейдем к х11. $S=\{x1,x3,x5,x6,x4,x7,x2,x8,x11\}$ У х11 больше нет возможных вершин, удалим ее.

Перейдем к x8. $S=\{x1,x3,x5,x6,x4,x7,x2,x8\}$ Возможная вершина: x12.

 $S=\{x1,x3,x5,x6,x4,x7,x2,x8,x12\}$ Возможная вершина: x10.

 $S=\{x1,x3,x5,x6,x4,x7,x2,x8,x12,x10\}$ Возможная вершина: x11.

 $S=\{x1,x3,x5,x6,x4,x7,x2,x8,x12,x10,x11\}$ Возможная вершина: x9.

 $S=\{x1,x3,x5,x6,x4,x7,x2,x8,x12,x10,x11,x9\}$ Гамильтонов цикл найден.

Переименуем вершины графа

X1	Х3	X5	Х6	X4	X7	X2	X8	X12	X10	X11	X9
X1	X2	Х3	X4	X5	Х6	X7	X8	X9	X10	X11	X12

Матрица соединений с переименованными вершинами

	X1	X2	Х3	X4	X5	Х6	X7	X8	Х9	X10	X11	X12
X1	0	Х			1	1		1	1	1		1
X2	Х	0	Х	1					1	1	1	1
Х3		Х	0	Х		1		1	1		1	1
X4		1	Х	0	Χ	1		1				
X5	1			Χ	0	Х			1		1	1
Х6	1		1	1	Χ	0	Χ	1	1	1		
X7						Х	0	Х		1	1	
X8	1		1	1		1	Х	0	Χ		1	
Х9	1	1	1		1	1		Х	0	X		
X10	1	1				1	1		Χ	0	Х	
X11		1	1		1		1	1		Х	0	Х
X12	1	1	1		1						Х	0

Построим граф пересечений

	Tiotiponiii Tpup Tiepede Tetrivii														
	U1-5	U2-12	U1-6	U1-8	U1-9	U1-10	U2-11	U2-10	U2-9	U3-12	U2-4	U3-11	U3-9	U3-8	U3-6
U1-5	1	1	0	0	0	0	1	1	1	1	0	1	1	1	1
U2-12	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
U1-6	0	1	1	0	0	0	1	1	1	1	0	1	1	1	0
U1-8	0	1	0	1	0	0	1	1	1	1	0	1	1	0	0
U1-9	0	1	0	0	1	0	1	1	0	1	0	1	0	0	0
U1-10	0	1	0	0	0	1	1	0	0	1	0	1	0	0	0
U2-11	1	0	1	1	1	1	1	0	0	1	0	0	0	0	0
U2-10	1	0	1	1	1	0	0	1	0	1	0	1	0	0	0
U2-9	1	0	1	1	0	0	0	0	1	1	0	1	0	0	0
U3-12	1	0	1	1	1	1	1	1	1	1	1	0	0	0	0
U2-4	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
U3-11	1	0	1	1	1	1	0	1	1	0	1	1	0	0	0
U3-9	1	0	1	1	0	0	0	0	0	0	1	0	1	0	0
U3-8	1	0	1	0	0	0	0	0	0	0	1	0	0	1	0
U3-6	1	0	0	0	0	0	0	0	0	0	1	0	0	0	1

Построение семейства ψ_{g} .

 $J(i) = \{3, 4, 5, 6, 11\}$

 $M_{1,3} = \{111000111101111\}$

 $J(i) = \{4, 5, 6, 11\}$

 $M_{1,3,4} = \{111100111101111\}$

 $J(i) = \{5, 6, 11\}$

 $M_{1, 3, 4, 5} = \{111110111101111\}$

 $J(i) = \{6, 11\}$

```
J(i) = \{11\}
\psi 1 = \{u1 - 5, u1 - 6, u1 - 8, u1 - 9, u1 - 10, u2 - 4\}
Дальше покрывать невозможно, переходим к следующей строке.
J(i) = \{7, 8, 9, 10, 11, 12, 13, 14, 15\}
M_{2.7} = \{1111111100100000\}
J(i) = \{8, 9, 11, 12, 13, 14, 15\}
M_{2,7,8} = \{1111111110101000\}
J(i) = \{9, 11, 13, 14, 15\}
M_{2,7,8,9} = \{1111111111101000\}
J(i) = \{11, 13, 14, 15\}
\psi2 = {u2 - 12, u2 - 11, u2 - 10, u2 - 9, u2 - 4}
M_{2,7,8,9,13} = \{1111111111111100\}
J(i) = \{14, 15\}
J(i) = \{15\}
\psi3 = {u2 - 12, u2 - 11, u2 - 10, u2 - 9, u3 - 9, u3 - 8, u3 - 6}
\psi 4 = \{u2 - 12, u2 - 11, u3 - 11, u3 - 9, u3 - 8, u3 - 6\}
M_{2,10} = \{1111111111110000\}
J(i) = \{12, 13, 14, 15\}
M_{2, 10, 12} = \{1111111111111000\}
J(i) = \{13, 14, 15\}
M_{2, 10, 12, 13} = \{1111111111111100\}
J(i) = \{14, 15\}
J(i) = \{15\}
\psi 5 = \{u2 - 12, u3 - 12, u3 - 11, u3 - 9, u3 - 8, u3 - 6\}
Дальше покрыть невозможно, переходим к следующей строке.
M_{3,4} = \{111100111101110\}
J(i) = \{5, 6, 11, 15\}
M_{3, 4, 5} = \{111110111101110\}
J(i) = \{6, 11, 15\}
J(i) = \{11, 15\}
\psi 6 = \{u1 - 6, u1 - 8, u1 - 9, u1 - 10, u3 - 6\}
Дальше покрыть невозможно, переходим к следующей строке.
M_{4, 5} = \{111110111101100\}
J(i) = \{6, 11, 14, 15\}
```

 $M_{4, 5, 6} = \{11111111111101100\}$

```
J(i) = \{11, 14, 15\}
J(i) = \{15\}
\psi7 = {u1 - 8, u1 - 9, u1 - 10, u3 - 8, u3 - 6}
Дальше покрыть невозможно, переходим к следующей строке.
M_{5, 6} = \{1111111110101000\}
J(i) = \{9, 11, 13, 14, 15\}
M_{5, 6, 9} = \{11111111111101000\}
J(i) = \{11, 13, 14, 15\}
\psi8 = {u1 - 9, u1 - 10, u2 - 9, u2 - 4}
M_{5, 6, 9, 13} = \{1111111111111100\}
J(i) = \{14, 15\}
J(i) = \{15\}
\psi9 = {u1 - 9, u1 - 10, u2 - 9, u3 - 9, u3 - 8, 3 - 6}
Дальше покрыть невозможно, переходим к следующей строке.
M_{6.8} = \{1111111110101000\}
J(i) = \{9, 11, 13, 14, 15\}
M_{6, 8, 9} = \{11111111111101000\}
J(i) = {11, 13, 14, 15}
\psi10 = {u1 - 10, u2 - 10, u2 - 9, u2 - 4}
M_{6,\,8\,,\,9,\,13} = {11111111111100}
J(i) = \{14, 15\}
J(i) = \{15\}
\psi11 = {u1 - 10, u2 - 10, u2 - 9, u3 - 9, u3 - 8, u3 - 6}
```

Строки с номером больше 6 не смогут закрыть 0 в позиции 2!

Семейство максимальных внутрение устойчивых множеств ψ_G построено. Это:

```
\begin{array}{l} \psi_1 = \{u_{1\,5}, u_{1\,6}, u_{1\,8}, u_{1\,9}, u_{1\,10}, u_{2\,4}\} \\ \psi_2 = \{u_{2\,12}, u_{2\,11}, u_{2\,10}, u_{2\,9}, u_{2\,4}\} \\ \psi_3 = \{u_{2\,12}, u_{2\,11}, u_{2\,10}, u_{2\,9}, u_{3\,9}, u_{3\,8}, u_{3\,6}\} \\ \psi_4 = \{u_{2\,12}, u_{2\,11}, u_{3\,11}, u_{3\,9}, u_{3\,8}, u_{3\,6}\} \\ \psi_5 = \{u_{2\,12}, u_{3\,12}, u_{3\,11}, u_{3\,9}, u_{3\,8}, u_{3\,6}\} \\ \psi_6 = \{u_{1\,6}, u_{1\,8}, u_{1\,9}, u_{1\,10}, u_{3\,6}\} \\ \psi_7 = \{u_{1\,8}, u_{1\,9}, u_{1\,10}, u_{3\,8}, u_{3\,6}\} \\ \psi_8 = \{u_{1\,9}, u_{1\,10}, u_{2\,9}, u_{2\,4}\} \\ \psi_9 = \{u_{1\,9}, u_{1\,10}, u_{2\,9}, u_{3\,9}, u_{3\,8}, u_{3\,6}\} \\ \psi_{10} = \{u_{1\,10}, u_{2\,10}, u_{2\,9}, u_{2\,4}\} \\ \psi_{11} = \{u_{1\,10}, u_{2\,10}, u_{2\,9}, u_{3\,9}, u_{3\,8}, u_{3\,6}\} \end{array}
```

Матрица значений критерия $\alpha\gamma\delta=|\psi\gamma|+|\psi\delta|-|\psi\gamma\cap\psi\delta|$

- 		1	' - ' -		i	T - '	1_	1 _	1 _		
	1	2	3	4	5	6	7	8	9	10	11
1	0	10	<mark>13</mark>	12	12	7	8	7	10	8	11
2		0	8	9	10	10	10	7	10	6	9
3			0	8	9	11	10	10	9	9	8
4				0	7	10	9	10	9	10	9
5					0	10	9	10	9	10	9
6						0	6	7	8	8	9
7							0	7	7	8	8
8								0	7	5	8
9									0	8	7
10										0	7
11											0

Max = a1,3

Возьмем эти множества

Ребра, вошедшие в $\psi 1$ – внутри гамильтонова цикла, а ребра, вошедшие в $\psi 3$ – снаружи.

Удаление из ψ реализованных ребер:

 $\psi 2 = \{\}$

 ψ 4 = {u3-11}

 ψ 5 = {u3-12, u3-11}

 ψ 6 ={}

 ψ 7 = {}

 $\psi 8 = \{\}$

 $\psi 9 = \{\}$

 $\psi 10 = \{\}$

 ψ 11 ={}

Объединение множеств:

 $\psi 2 = \{\}$

Объединяем множества и получаем:

 $\psi 2 = \{\}$

 ψ 4 = {u3-11}

 ψ 5 = {u3-12, u3-11}

	2	4	5
2	0	1	2
4		0	<mark>2</mark>
5			0

Max = a2,5: a4,5

Возьмем множества ψ 4и ψ 5

Ребра, вошедшие в $\psi 4$ – внутри гамильтонова цикла, а ребра, вошедшие в $\psi 5$ – снаружи.

Удалив все реализованные ребра, получили пустое множество. Все ребра реализованы. Толщина графа m = 2.