Lista 1 - Métodos Numéricos

EPGE/FGV - 2018 Professor: Cezar Santos Aluno: Raul Guarini

Calibração Original: $\rho = 0.95$

Os códigos principais que resolvem esta lista são ps1.m e ps1.py. O primeiro passo foi construir as matrizes de transição dos processos discretizados, seguindo a calibração indicada. O parâmetro de *scaling* m do método de Tauchen foi calibrado como m=3, seguindo os slides da aula. Encontrei as seguintes matrizes:

P_tauchen =								
0.7644	0.2347	0.0009	0.0000	0.0000	0	0	0	0
0.0592	0.7405	0.1997	0.0006	0.0000	0.0000	0	0	0
0.0001	0.0747	0.7569	0.1679	0.0004	0.0000	0.0000	0	0
0.0000	0.0001	0.0931	0.7669	0.1396	0.0002	0.0000	0.0000	0
0.0000	0.0000	0.0002	0.1147	0.7702	0.1147	0.0002	0.0000	0
0.0000	0.0000	0.0000	0.0002	0.1396	0.7669	0.0931	0.0001	0.0000
0.0000	0.0000	0.0000	0.0000	0.0004	0.1679	0.7569	0.0747	0.0001
0.0000	0.0000	0.0000	0.0000	0.0000	0.0006	0.1997	0.7405	0.0592
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0009	0.2347	0.7644
P_rou =								
0.8167	0.1675	0.0150	0.0008	0.0000	0.0000	0.0000	0.0000	0.0000
0.0209	0.8204	0.1469	0.0113	0.0005	0.0000	0.0000	0.0000	0.0000
0.0005	0.0420	0.8231	0.1261	0.0081	0.0003	0.0000	0.0000	0.0000
0.0000	0.0016	0.0630	0.8247	0.1051	0.0054	0.0001	0.0000	0.0000
0.0000	0.0001	0.0032	0.0841	0.8253	0.0841	0.0032	0.0001	0.0000
0.0000	0.0000	0.0001	0.0054	0.1051	0.8247	0.0630	0.0016	0.0000
0.0000	0.0000	0.0000	0.0003	0.0081	0.1261	0.8231	0.0420	0.0005
0.0000	0.0000	0.0000	0.0000	0.0005	0.0113	0.1469	0.8204	0.0209
0.0000	0.0000	0.0000	0.0000	0.0000	0.0008	0.0150	0.1675	0.8167

Figura 1: Matrizes de Transição, N=9 e $\rho=0.95$

Em seguida, simulei o AR(1) verdadeiro em questão por 10100 períodos, sendo os 100 primeiros períodos utilizados como "burn" para eliminar o efeito da condição inicial (sempre o centro do grid). O caminho simulado é ilustrado a seguir. Utilizando a mesma sequência de choques gaussianos ϵ_t , computei os caminhos gerados pelos dois processos (Tauchen em vermelho e Rouwenhorst em verde).

Computei também o Erro Quadrático Médio em cada caso e obtive quantidades comparáveis. No caso de Tauchen, o EQM foi de 2.5456e-04, enquanto o algoritmo de Rouwenhorst gerou um EQM de 2.2068e-04. Se adicionarmos mais pontos ao grid, teremos uma solução melhor. Passando para N=90, a aderência ao processo azul aumenta consideravelmente.

Visualmente, as linhas vermelha e verde parecem cobrir melhor a linha azul, como era esperado. De fato, isto pode ser confirmado pelo cálculo do EQM: 1.9380e-06 no caso de Tauchen e 2.0595e-05 para Rouwenhorst. Nota-se que o EQM do método de Tauchen desta vez é de uma ordem de grandeza menor do que o de Rouwenhorst, indicando uma melhor performance.

O passo seguinte consistiu em validar as simulações estimando o parâmetro ρ com base nos caminhos gerados

Figura 2: AR(1) Contínuo, $\rho=0.95$

Figura 3: Simulação - $N=9, \rho=0.95$

pelos dois métodos. Com o método de Tauchen, e a calibração N=9 e $\rho=0.95$, pude estimar $\hat{\rho}_{Tauchen}=0.9513$. Tendo por base a simulação feita através de Rouwenhorst, $\hat{\rho}_{Rouwenhorst}=0.9492$.

Ao utilizar N=90, os valores se tornaram $\hat{\rho}_{Tauchen}=0.9576$ e $\hat{\rho}_{Rouwenhorst}=0.9482$. Ambos os métodos se saíram ligeiramente pior em termos de estimativas pontuais com um número maior de estados.

Figura 4: Simulação - $N=90, \rho=0.95$

Calibração Alternativa: $\rho = 0.99$

Tudo se mantém como antes a menos do aumento do valor de ρ para 0.99. A próxima figura mostra a simulação do AR(1) contínuo, com variância maior do que o caso anterior, como era esperado:

Figura 5: AR(1) Contínuo - $\rho = 0.99$

Com respeito às simulações de Tauchen e Rouwenhorst, o primeiro método se saiu muito pior do que o segundo. Isto pode ser confirmado não só visualmente mas também através do EQM. Desta vez, os EQM's foram, respectivamente, 0.0074 e 0.0030. Nota-se que o EQM do método de Tauchen foi mais do que o dobro do EQM do método de Rouwenhorst. As estimativas de ρ foram $\hat{\rho}_{Tauchen} = 0.9987$ e $\hat{\rho}_{Rouwenhorst} = 0.9892$.

Figura 6: Simulação - $N=9, \rho=0.99$

Se aumentarmos o número de pontos no grid para 90, assim como antes, temos o seguinte:

O método de Tauchen melhorou muito seu desempenho. Inclusive, gerou EQM de 6.1956e-05, enquanto

Rouwenhorst teve EQM de 5.9823e-04. As estimativas de ρ foram $\hat{\rho}_{Tauchen}=0.9881$ e $\hat{\rho}_{Rouwenhorst}=0.9872$.