CSC 137 Section 02 MIDTERM 2

Show your work clearly to earn points. Work not shown will not earn any points.

Date: April 7, 2022 Instructor: Dr. Ilkan Çokgör Total: 20 points

Student Name:

Student Number:

1) Given the state transition diagram below:

a) Construct the state transition table. (2 points)

q_1	\mathbf{q}_0	х	q_1^+	q_0^+
0	0	0	0	0
0	0	1	0	1
0	1	0	0	0
0	1	1	1	0
1	0	0	0	0
1	0	1	1	0
1	1	0	Х	Х
1	1	1	Х	Х

b) Use K-maps to derive the <u>simplest</u> Boolean equations for the state variables. Take don't care cases into account. (2 points)

c) Construct the Output table. (1 point)

q_1	\mathbf{q}_0	F	
0	0	0	
0	1	1	
1	0	0	
1	1	Х	

d) Derive the <u>simplest</u> Boolean equation for the output. (1 point)

$$F = q_0$$

e) Draw the Moore machine circuit. (2 points)

RESET Omitted

2) You are tasked with designing a control unit for a 4-bit operation which is using <u>signed integers</u>. This operation is divided into microoperations and the register transfer language (RTL) description for each micro-operation is given below:

Start: REG <- inbus;

If REG < 0 then goto Stop;

Loop: $REG \leftarrow R1 - 1$;

If REG >= 0 then goto Loop;

Stop: goto Stop;

The processing hardware is a single register as shown below (Q3 is the most significant bit and Q0 is the least significant bit), and its function table is given as follows:

Function Table				
L	D	Function		
0	1	Decrement		
1	0	Load external inputs		
0	0	No change		

a) Establish the control and condition signals (if necessary), and show where they are connected on the processing circuit. Show in a table which control signal will be generated at each RTL step. (3 points)

C0 Start: REG <- inbus;</pre> T0 None If REG < 0 then goto Stop;</pre> Τ1 Loop: REG <- R1 - 1; Τ2 C1 If REG >= 0 then goto Loop; Т3 None Stop: goto Stop; Τ4 None b) Construct the state transition diagram of the control unit. <u>Show which state corresponds to which micro-operation (i.e. RTL step) in a table.</u> (3 points)

Start: REG <- inbus;</pre> T0 C0 If REG < 0 then goto Stop;</pre> T1 None Loop: REG <- R1 - 1; T2 C1 If REG >= 0 then goto Loop; Т3 None T4 Stop: goto Stop; None

c) Construct the state transition table for the control unit. (3 points)

q ₂	q ₁	q _o	REG[3]	q ₂ ⁺	q ₁ ⁺	q _o +
0	0	0	0 (X)	0	0	1
0	0	0	1 (X)	0	0	1
0	0	1	0	0	1	0
0	0	1	1	1	0	0
0	1	0	0 (X)	0	1	1
0	1	0	1 (X)	0	1	1
0	1	1	0	0	1	0
0	1	1	1	1	0	0
1	0	0	0 (X)	1	0	0
1	0	0	1 (X)	1	0	0
1	0	1	0	Х	Х	Х
1	0	1	1	Х	Х	Х
1	1	0	0	Х	Х	Х
1	1	0	1	Х	Х	Х
1	1	1	0	Х	Х	Х
1	1	1	1	Х	Х	Х

d) Derive the simplest Boolean equations for the state variables. (3 points)

