Jiang-Hua Lu

The University of Hong Kong

MATH4302 Algebra II

Monday March 31, 2025

Outline

closed

In this file: $\S 3.1.5$: Algebraic extensions and algebraically losed fields

- Algebraic extensions;
- Algebraically closed fields.

<u>Definition.</u> A field extension $K \to L$ is said to be algebraic if every $a \in L$ is algebraic over K.

Recall that every finite extension is algebraic.

Theorem If $K \subset \mathcal{L}$ and $L \subset M$ are algebraic field extensions, so is $K \subset M$.

Proof. Let $a \in M$ be arbitrary.

ary. use the fact that

• As the extension
$$L \subset M$$
 is algebraic, there exists $f(x) = \sum_{i=0}^{n} \alpha_i x^i \in L[x]$ such that $f(a) = 0$. Let $L' = K(\alpha_0, \alpha_1, \dots, \alpha_n) \subset L$.

- L' = $K(\alpha_0, \alpha_1, \dots, \alpha_n) \subset L$.

 As L is an algebraic extension of K, every $\alpha_i \in L$ is algebraic over K. Thus L' is a finite extension of K.
- Since a is algebraic over L', L'(a) is a finite extension over L'.
- By the Tower Theorem, L'(a) is a finite extension of K, so $a \in L'(a)$ is algebraic over K.

§3.1.5: Algebraic extensions and algebraically dosed fields Definition.: If L is a field extension of K, set

 \overline{K}^L = the set of all elements in L that are algebraic over K

and call \overline{K}^L the relative algebraic closure of K in L,

ORICL is purely transcendental ie. Vactoris transcendental over

Thus $a \pm b$, ab, $a/b \in \overline{K}^L$. If $b \neq 0$ then $f \in \overline{K}^L$ assertate over K^L then $K \subseteq \overline{K}^L \notin \overline{K}^L \subseteq \overline{K}^L$ are also as also over K^L then $K \subseteq \overline{K}^L \notin \overline{K}^L \subseteq \overline{K}^L$ are also as

• So every element in K(a, b) are algebraic over K.

• Then K(a, b) is a finite extension over K;

• Assume that $a, b \in \overline{K}^L$ and $b \neq \emptyset$.

2 \overline{K}^L is is an algebraic extension of K.

Theorem: For any field extension L of K, 1 the subset \overline{K}^L is a subfield of L;

Proof.

Recall Fundamental Theorem of Algebra:

Every polynomial $f(x) \in \mathbb{C}[x]$ has a root in \mathbb{C} .

Definition. A field L is said to be algebraically closed if every $f(x) \in L[x]$ has a root in L.

Thus the field $\mathbb C$ is algebraically closed.

Question. Are there algebraically closed fields other than \mathbb{C} ?

<u>Theorem</u>: If C is an algebraically closed field and $K \subset C$ is any subfield, then the relative algebraic closure \overline{K}^C of K in C is algebraically closed.

Proof. Let
$$L = \overline{K}^C \subset C$$
. Let

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + x^n \in L[x]$$

be arbitrary and non-zero. We need to show that f has a root in L.

- Since C is algebraically closed, f has a root α in C.
- $L(\alpha)$ is an algebraic extension of L.
- Since L is an algebraic extension of K, $L(\alpha)$ is an algebraic extension over K.
- Thus α is algebraic over K. Hence $\alpha \in L$.

Definition. The relative closure of $\mathbb Q$ in $\mathbb C$ is denoted by $\overline{\mathbb Q}$, and simply called the algebraic closure of $\mathbb Q$. So $\overline{\mathbb Q}$ is algebraically closed.

Lemma. The algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q} is a countable and $[\overline{\mathbb{Q}}:\mathbb{Q}]=+\infty$.

Proof.

- As \mathbb{Q} is countable, $\mathbb{Q}[x]$ is countable.
- As every element in $\overline{\mathbb{Q}} \subset \mathbb{C}$ is a root of some $f \in \mathbb{Q}[x]$, $\overline{\mathbb{Q}}$ is countable.
- For any integer n, $\mathbb{Q}(2^{1/n})$ has degree n over \mathbb{Q} because the minimal polynomial of $2^{1/n}$ is x^n-2 . Thus $[\overline{\mathbb{Q}}:\mathbb{Q}]\geq n$ for every n, so $[\overline{\mathbb{Q}}:\mathbb{Q}]=+\infty$.

Lemma. If $\alpha \in \overline{\mathbb{Q}}$ and $\alpha > 0$, then for any integer $n \geq 1$, $\alpha^{1/n} \in \overline{\mathbb{Q}}$.

Proof. Let $\beta = \alpha^{1/n}$.

- Since $\beta^n = \alpha$, β is algebraic over $L = \mathbb{Q}(\alpha)$, so $L(\beta)$ is an algebraic extension of L.
- Since L is an algebraic extension of \mathbb{Q} , $L(\beta)$ is an algebraic extension of \mathbb{Q} . Thus β is algebraic over \mathbb{Q} .
- Hence $\beta \in \overline{\mathbb{Q}}$.

Example. One has

$$-2i\sqrt[3]{9-\sqrt{2}} + \frac{\sqrt{\sqrt{2}+\sqrt[3]{\sqrt{5}+3}}}{-3+i\sqrt{\sqrt{7}+2\sqrt[3]{\sqrt{5}+3}}} \in \overline{\mathbb{Q}}.$$