

Machine Learning

Motivation I: Data Compression

Data Compression

Reduce data from 2D to 1D

Data Compression

Reduce data from 2D to 1D

$$x^{(1)} \in \mathbb{R}^2$$
 $\rightarrow z^{(1)} \in \mathbb{R}$ $x^{(2)} \in \mathbb{R}^2$ $\rightarrow z^{(2)} \in \mathbb{R}$ \vdots $x^{(m)} \in \mathbb{R}^2$ $\rightarrow z^{(m)} \in \mathbb{R}$

Data Compression

1000D -> 100D

Reduce data from 3D to 2D

Machine Learning

Motivation II: Data Visualization

Data Visualization

XE RSO	× (i) e Mso
	*

	X	X2	V -		Xs	Mean	
		Per capita	X 3	Хч	Poverty	household	
	GDP	GDP	Human		Index	income	
	(trillions of	(thousands	Develop-	Life	(Gini as	(thousands	
Country	US\$)	of intl. \$)	ment Index	expectancy	percentage)	of US\$)	•••
⇒ Canada	1.577	39.17	0.908	80.7	32.6	67.293	•••
China	5.878	7.54	0.687	73	46.9	10.22	•••
India	1.632	3.41	0.547	64.7	36.8	0.735	•••
Russia	1.48	19.84	0.755	65.5	39.9	0.72	•••
Singapore	0.223	56.69	0.866	80	42.5	67.1	•••
USA	14.527	46.86	0.91	78.3	40.8	84.3	•••
•••	•••	•••	•••	•••	•••	•••	

[resources from en.wikipedia.org]

Data Visualization

			2 " € PR
Country	z_1	z_2	
Canada	1.6	1.2	
China	1.7	0.3	Reduce data
India	1.6	0.2	from SOD
Russia	1.4	0.5	to 5D
Singapore	0.5	1.7	
USA	2	1.5	
•••	•••	•••	

Data Visualization

Machine Learning

Principal Component Analysis problem formulation

Principal Component Analysis (PCA) problem formulation

Principal Component Analysis (PCA) problem formulation

Reduce from 2-dimension to 1-dimension: Find a direction (a vector $\underline{u}^{(1)} \in \mathbb{R}^n$) onto which to project the data so as to minimize the projection error.

Reduce from n-dimension to k-dimension: Find k vectors $\underline{u^{(1)}, u^{(2)}, \dots, u^{(k)}}$ onto which to project the data, so as to minimize the projection error.

PCA is not linear regression

PCA is not linear regression

Machine Learning

Principal Component Analysis algorithm

Data preprocessing

Training set: $x^{(1)}, x^{(2)}, \dots, x^{(m)} \leftarrow$

Preprocessing (feature scaling/mean normalization):

$$\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}$$
 Replace each $x_j^{(i)}$ with $x_j - \mu_j$.

If different features on different scales (e.g., $x_1={
m size}$ of house, $x_2 = \text{number of bedrooms}$), scale features to have comparable range of values. $x_j \leftarrow \frac{x_j}{x_j} - \frac{x_j}{x_j}$

Principal Component Analysis (PCA) algorithm

Reduce data from 2D to 1D

Reduce data from 3D to 2D
$$\times (3) \in \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3} \in \mathbb{R}^{3}$$

Principal Component Analysis (PCA) algorithm

Reduce data from n-dimensions to k-dimensions Compute "covariance matrix":

$$\sum = \frac{1}{m} \sum_{i=1}^{n} \underbrace{(x^{(i)})(x^{(i)})^{T}}_{\text{nxn}}$$

$$\text{pute "eigenvectors" of matrix } \Sigma : \longrightarrow \text{Singular value decomposition}$$

$$> [U,S,V] = \text{svd}(\text{Sigma});$$

Compute "eigenvectors" of matrix Σ :

matrix.

Principal Component Analysis (PCA) algorithm

From [U,S,V] = svd(Sigma), we get:

$$\Rightarrow U = \begin{bmatrix} u^{(1)} & u^{(2)} & \dots & u^{(n)} \\ u^{(1)} & u^{(2)} & \dots & u^{(n)} \end{bmatrix} \in \mathbb{R}^{n \times n}$$

$$\times \in \mathbb{R}^{n} \Rightarrow \exists \in \mathbb{R}^{k}$$

$$Z = \begin{bmatrix} u^{(1)} & u^{(2)} & \dots & u^{(k)} \end{bmatrix}^{T} \times U$$

$$Z = \mathbb{R}^{k} \quad \text{where} \quad \text{where}$$

Principal Component Analysis (PCA) algorithm summary

After mean normalization (ensure every feature has zero mean) and optionally feature scaling:

```
Sigma = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)})(x^{(i)})^{T}
\Rightarrow [U,S,V] = \text{svd}(\text{Sigma});
\Rightarrow \text{Ureduce} = U(:,1:k);
\Rightarrow z = \text{Ureduce}' *x;
\uparrow \qquad \checkmark \in \mathbb{R}^{n}
```


Machine Learning

Reconstruction from compressed representation

Reconstruction from compressed representation

Machine Learning

Choosing the number of principal components

Choosing k (number of principal components)

Average squared projection error: $\frac{1}{m} \stackrel{\text{left}}{\approx} 11^{2}$ Total variation in the data: 👆 😤 🗓 🖍 🗥 📜 🧲

Typically, choose k to be smallest value so that

→ "99% of variance is retained"

Choosing k (number of principal components)

Algorithm:

Try PCA with k=1

Compute $U_{reduce}, \underline{z}^{(1)}, \underline{z}^{(2)},$

$$\dots, z_{approx}^{(m)}, x_{approx}^{(1)}, \dots, x_{approx}^{(m)}$$

Check if

$$\frac{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)} - x_{approx}^{(i)}\|^2}{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)}\|^2} \le 0.01?$$

Choosing k (number of principal components)

 \rightarrow [U,S,V] = svd(Sigma)

Pick smallest value of k for which

$$\frac{\sum_{i=1}^{k} S_{ii}}{\sum_{i=1}^{m} S_{ii}} \ge 0.99$$

(99% of variance retained)

Machine Learning

Advice for applying PCA

Supervised learning speedup

$$\rightarrow (x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$$

Extract inputs:

Unlabeled dataset:
$$x^{(1)}, x^{(2)}, \dots, x^{(m)} \in \mathbb{R}^{10000}$$

$$z^{(1)}, z^{(2)}, \dots, z^{(m)} \in \mathbb{R}^{1000}$$

New training set:

only on the training set. This mapping can be applied as well to the examples $x_{cv}^{(i)}$ and $x_{test}^{(i)}$ in the cross validation and test sets

Application of PCA

- Compression
 - Reduce memory/disk needed to store data
 Speed up learning algorithm

 Choose k by % of vorce retain
- Visualization

 k=2 or k=3

Bad use of PCA: To prevent overfitting

 \rightarrow Use $\underline{z^{(i)}}$ instead of $\underline{x^{(i)}}$ to reduce the number of features to k < n.

Thus, fewer features, less likely to overfit.

Bod

This might work OK, but isn't a good way to address overfitting. Use regularization instead.

PCA is sometimes used where it shouldn't be

Design of ML system:

- \rightarrow Get training set $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$
- \rightarrow Run PCA to reduce $x^{(i)}$ in dimension to get $z^{(i)}$
- \rightarrow Train logistic regression on $\{(z^{(1)}, y^{(1)}), \dots, (z^{(m)}, y^{(m)})\}$
- o Test on test set: Map $x_{test}^{(i)}$ to $z_{test}^{(i)}$. Run $h_{\theta}(z)$ on $\{(z_{test}^{(1)},y_{test}^{(1)}),\ldots,(z_{test}^{(m)},y_{test}^{(m)})\}$
- → How about doing the whole thing without using PCA?
- Before implementing PCA, first try running whatever you want to do with the original/raw data $x^{(i)}$ Only if that doesn't do what you want, then implement PCA and consider using $z^{(i)}$.