Image Processing and Visual Communications

Image Segmentation

Zhou Wang

Dept. of Electrical and Computer Engineering University of Waterloo

Concepts and Approaches

What is Image Segmentation?

Partition an image into region, each associated with an object but what defines an object?

From Prof. Xin Li

• Image Segmentation Methods

- Thresholding
- Boundary-based
- Region-based: region growing, splitting and merging

Color Polor Printing Printing

Color Printing Printing

From Prof. Xin Li

single threshold

multiple thresholds

From [Gonzalez & Woods]

Global Thresholding: When does It Work?

- Global Thresholding: When does It NOT Work?
 - A meaningful global threshold may not exist
 - Image-dependent

true object boundary

1	1	2	2	3	3	4	4	5	5
1	1	2	2	8	3	4	4	5	5
1	1	2	7	8	9	4	4	5	5
1	1	6	7	8	9	10	4	5	5
1	5	6	7	8	9	10	11	5	5
1	5	6	7	8	9	10	11	5	5
1	5	6	7	3	9	10	11	5	5
1	5	6	2	3	3	10	11	5	5
1	5	2	2	3	3	4	11	5	5
1	1	2	2	3	3	4	4	5	5

Thresholding T = 4.5

Thresholding T = 5.5

Solution

- Spatially adaptive thresholding
- Localized processing

1	1	2	2	3	3	4	4	5	5
1	1	2	2	8	3	4	4	5	5
1	1	2	7	8	9	4	4	5	5
1	1	6	7	8	9	10	4	5	5
1	5	6	7	8	9	10	11	5	5
1	5	6	7	8	9	10	11	5	5
1	5	6	7	3	9	10	11	5	5
1	5	6	2	3	3	10	11	5	5
1	5	2	2	3	3	4	11	5	5
1	1	2	2	3	3	4	4	5	5

Split

spatially adaptive threshold selection

Thresholding

$$T = 4$$

Thresholding	
T = 4	

Thresholding

$$T = 7$$

0	0	0	0	0
0	0	0	0	0
1	0	0	0	0
1	1	0	0	0
1	1	1	0	0

9	10	11	5	5
9	10	11	5	5
3	10	11	5	5
3	4	11	5	5
3	4	4	5	5

10 11

Thresholding

$$T = 7$$

1	1	1	0	0
1	1	1	0	0
0	1	1	0	0
0	0	1	0	0
0	0	0	0	0

merge local segmentation results

0	0	0	0	0
0	0	0	0	0
1	0	0	0	0
1	1	0	0	0
1	1	1	0	0

0	1	1	1	1
0	1	1	1	0
0	1	1	0	0
0	1	0	0	0
0	0	0	0	0

merge

merge

merge

merge

1	1	1	0	0
1	1	1	0	0
0	1	1	0	0
0	0	1	0	0
0	0	0	0	0

Boundary-Based Method

Color P Color Print Of Printing Printing

Color Polor Printing Printing

Boundary-Based Method

- Advanced Method: Active Contour (Snake) Model
 - Iteratively update contour (region boundary)
 - Partial differential equation (PDE) based optimization

11

Region-Based Method: Region Growing

Region Growing

- Start from a seed, and let it grow (include similar neighborhood)

Key: similarity measure

• Split and Merge

- Iteratively split (non-similar region) and merge (similar regions)
- Example: quadtree approach

• Example: Quadtree Split and Merge Procedure

Split Step → split every non-uniform region to 4 **Merge Step** → merge all uniform adjacent regions

• Example: Quadtree Split and Merge Procedure

Split Step → split every non-uniform region to 4 **Merge Step** → merge all uniform adjacent regions

• Example: Quadtree Split and Merge Procedure

Hard Problem: Textures

Similarity measure makes the difference

Image Segmentation: Documents

• Applications:

- compression
- recognition
- classification
- retrieval