ET 2060 - Tín hiệu và hệ thống Các phép biến đổi Fourier

TS. Đặng Quang Hiếu

Trường Đại học Bách Khoa Hà Nội Viện Điện tử - Viễn thông

2017-2018

Vai trò của biến đổi Fourier

Quan trọng trong toán học, vật lý và các ngành kỹ thuật đặc biệt là xử lý tín hiệu.

Vai trò của biến đổi Fourier

- Quan trọng trong toán học, vật lý và các ngành kỹ thuật đặc biệt là xử lý tín hiệu.
- Khái niệm chuỗi Fourier do Joseph Fourier giới thiệu vào năm 1807, và sau đó được phát triển bởi nhiều nhà khoa học nổi tiếng khác. Phân loại:
 - Chuỗi Fourier (FS)
 - Chuỗi Fourier rời rạc theo thời gian (DTFS)
 - Biến đổi Fourier (FT)
 - Biến đổi Fourier rời rạc theo thời gian (DTFT)

Vai trò của biến đổi Fourier

- Quan trọng trong toán học, vật lý và các ngành kỹ thuật đặc biệt là xử lý tín hiệu.
- Khái niệm chuỗi Fourier do Joseph Fourier giới thiệu vào năm 1807, và sau đó được phát triển bởi nhiều nhà khoa học nổi tiếng khác. Phân loại:
 - Chuỗi Fourier (FS)
 - Chuỗi Fourier rời rạc theo thời gian (DTFS)
 - ▶ Biến đổi Fourier (FT)
 - ▶ Biến đổi Fourier rời rạc theo thời gian (DTFT)
- Biến đổi Fourier rời rạc (DFT) có thể được thực hiện nhanh (các thuật toán FFT).

Tín hiệu trên miền thời gian và miền tần số

Tín hiệu trên miền thời gian và miền tần số

Outline

Chuỗi Fourier cho tín hiệu liên tục

Chuỗi Fourier cho tín hiệu rời rạc

Biến đổi Fourier

Biến đổi Fourier rời rạc theo thời gian

Chuỗi Fourier (FS)

Mọi tín hiệu x(t) tuần hoàn với chu kỳ cơ bản T đều có thể được biểu diễn bởi chuỗi Fourier (FS) như sau:

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{j\frac{2\pi}{T}kt}$$

trong đó

Chuỗi Fourier (FS)

Mọi tín hiệu x(t) tuần hoàn với chu kỳ cơ bản $\mathcal T$ đều có thể được biểu diễn bởi chuỗi Fourier (FS) như sau:

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{j\frac{2\pi}{T}kt}$$

trong đó

$$c_k = \frac{1}{T} \int_T x(t) e^{-j\frac{2\pi}{T}kt} dt$$

- $ightharpoonup c_k e^{jk\frac{2\pi}{T}t}$ được gọi là thành phần hài bậc k.
- $\{c_k\}$ được gọi là các hệ số chuỗi Fourier hay các hệ số phổ của tín hiệu x(t).
- Tích phân tính trên một chu kỳ (bất kỳ)

Ví dụ về FS

Tìm khai triển chuỗi Fourier cho các tín hiệu sau với chu kỳ T.

(a) Dãy xung vuông tuần hoàn

$$x(t) = \left\{ egin{array}{ll} 1, & \ell T - rac{T_0}{2} \leq t \leq \ell T + rac{T_0}{2}, & \ell \in \mathbb{Z} \\ 0, & t ext{ còn lại} \end{array}
ight.$$

- (b) $x(t) = \cos(\frac{2\pi}{T}t)$
- (c) Dãy xung đơn vị tuần hoàn

$$x(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT)$$

Khai triển chuỗi Fourier của hàm xung vuông tuần hoàn

Điều kiện tồn tại FS

Các điều kiện Dirichlet:

- 1. x(t) bị chặn
- 2. x(t) có hữu hạn các cực đại và cực tiểu trong một chu kỳ
- 3. x(t) có hữu hạn các điểm gián đoạn trong một chu kỳ

Tín hiệu có năng lượng hữu hạn trên một chu kỳ:

$$\int_{T} |x(t)|^2 dt < \infty$$

Tính chất tuyến tính

Nếu $x_1(t), x_2(t)$ cùng chu kỳ

$$x_1(t) \xleftarrow{\text{FS}} c_k^{(1)}$$

 $x_2(t) \xleftarrow{\text{FS}} c_k^{(2)}$

thì

$$\alpha x_1(t) + \beta x_2(t) \stackrel{\text{FS}}{\longleftrightarrow} \alpha c_k^{(1)} + \beta c_k^{(2)}$$

Tính chất dịch

Dịch theo thời gian:

$$x(t-t_0) \stackrel{\mathrm{FS}}{\longleftrightarrow} e^{-j\frac{2\pi}{T}kt_0}c_k$$

Dịch tần số:

$$e^{j\frac{2\pi}{T}k_0t}x(t) \stackrel{\mathrm{FS}}{\longleftrightarrow} c_{k-k_0}$$

Ví dụ: Tìm khai triển FS cho tín hiệu tuần hoàn với chu kỳ T

$$x(t) = \left\{ egin{array}{ll} 1, & \ell T \leq t \leq \ell T + T_0, & \ell \in \mathbb{Z} \\ 0, & t ext{ còn lại} \end{array}
ight.$$

Quan hệ Parseval

$$\frac{1}{T}\int_{T}|x(t)|^{2}dt=\sum_{k=-\infty}^{\infty}|c_{k}|^{2}$$

Ý nghĩa: FS bảo toàn công suất của tín hiệu.

Outline

Chuỗi Fourier cho tín hiệu liên tục

Chuỗi Fourier cho tín hiệu rời rạc

Biến đổi Fourier

Biến đổi Fourier rời rạc theo thời gian

Khái niệm chuỗi Fourier rời rạc (DTFS)

Dãy x[n] bất kỳ tuần hoàn với chu kỳ N có thể được khai triển thành chuỗi Fourier (DTFS) như sau:

$$x[n] = \sum_{k=0}^{N-1} c_k e^{j\frac{2\pi}{N}kn}$$

trong đó

$$c_k = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi}{N}kn}$$

- Khác biệt so với khai triển chuỗi Fourier cho tín hiệu liên tục?
- Nhấn mạnh về sự tuần hoàn và chu kỳ: $\tilde{x}[n]_N$
- Trong công thức trên, $c_k = c_{k+N}$. Do vậy, có thể coi là dãy tuần hoàn \tilde{c}_k

Ví dụ về DTFS

(1) Tìm khai triển Fourier của dãy

$$\widetilde{x}[n] = \sum_{r=-\infty}^{\infty} \delta(n - rN) = \begin{cases} 1, & n = rN, & \forall r \in \mathbb{Z} \\ 0, & n \neq rN \end{cases}$$

Ví dụ về DTFS

(1) Tìm khai triển Fourier của dãy

$$\tilde{x}[n] = \sum_{r=-\infty}^{\infty} \delta(n - rN) = \begin{cases} 1, & n = rN, & \forall r \in \mathbb{Z} \\ 0, & n \neq rN \end{cases}$$

(2) Cho $\tilde{x}[n]$ là dãy tuần hoàn với chu kỳ N

$$ilde{x}[n] = \left\{ egin{array}{ll} 1, & \ell N \leq n \leq \ell N + M - 1, & orall n \in \mathbb{Z}, M < N \\ 0, & n & ext{còn lại} \end{array}
ight.$$

Hãy tìm \tilde{c}_k , $|\tilde{c}_k|$, $\arg{\{\tilde{c}_k\}}$.

Ví dụ về DTFS

(1) Tìm khai triển Fourier của dãy

$$\tilde{x}[n] = \sum_{r=-\infty}^{\infty} \delta(n - rN) = \begin{cases} 1, & n = rN, & \forall r \in \mathbb{Z} \\ 0, & n \neq rN \end{cases}$$

(2) Cho $\tilde{x}[n]$ là dãy tuần hoàn với chu kỳ N

$$ilde{x}[n] = \left\{ egin{array}{ll} 1, & \ell N \leq n \leq \ell N + M - 1, & orall n \in \mathbb{Z}, M < N \\ 0, & n & ext{còn lại} \end{array}
ight.$$

Hãy tìm \tilde{c}_k , $|\tilde{c}_k|$, $\arg{\{\tilde{c}_k\}}$.

(3) Dãy $\tilde{x}[n]$ tuần hoàn với chu kỳ N cũng có thể coi là một dãy tuần hoàn có chu kỳ 2N. Nếu $\tilde{c}_k^{(N)} := \mathrm{DTFS}\{\tilde{x}[n]_N\}$ và $\tilde{c}_k^{(2N)} := \mathrm{DTFS}\{\tilde{x}[n]_{2N}\}$. Hãy tính $\tilde{c}_k^{(2N)}$ theo $\tilde{c}_k^{(N)}$.

DTFS của dãy xung chữ nhật tuần hoàn N=100, M=10

Các tính chất của chuỗi Fourier rời rạc

(1) Tuyến tính (cùng chu kỳ N):

$$a_1 \tilde{x}^{(1)}[n] + a_2 \tilde{x}^{(2)}[n] \xleftarrow{\mathrm{DTFS}} a_1 \tilde{c}_k^{(1)} + a_2 \tilde{c}_k^{(2)}$$

Các tính chất của chuỗi Fourier rời rạc

(1) Tuyến tính (cùng chu kỳ N):

$$a_1 \tilde{x}^{(1)}[n] + a_2 \tilde{x}^{(2)}[n] \xleftarrow{\mathrm{DTFS}} a_1 \tilde{c}_k^{(1)} + a_2 \tilde{c}_k^{(2)}$$

(2) Dịch thời gian

$$\tilde{x}[n-n_0] \stackrel{\text{DTFS}}{\longleftrightarrow} e^{-j\frac{2\pi}{N}kn_0} \tilde{c}_k$$

Các tính chất của chuỗi Fourier rời rạc

(1) Tuyến tính (cùng chu kỳ N):

$$a_1 \tilde{x}^{(1)}[n] + a_2 \tilde{x}^{(2)}[n] \xleftarrow{\mathrm{DTFS}} a_1 \tilde{c}_k^{(1)} + a_2 \tilde{c}_k^{(2)}$$

(2) Dịch thời gian

$$\tilde{x}[n-n_0] \stackrel{\text{DTFS}}{\longleftrightarrow} e^{-j\frac{2\pi}{N}kn_0} \tilde{c}_k$$

(3) Dịch tần số

$$e^{j\frac{2\pi}{N}k_0n}\tilde{x}[n] \stackrel{\text{DTFS}}{\longleftrightarrow} \tilde{c}_{k-k_0}$$

Bài tập

Cho tín hiệu liên tục (tuần hoàn) $x_c(t)$ có khai triển Fourier như sau:

$$x_c(t) = \sum_{k=-9}^{9} a_k e^{j2\pi kt/10^{-3}}$$

trong đó các hệ số $a_k=0$, $\forall |k|>9$. Tín hiệu này được lấy mẫu với chu kỳ $T=\frac{1}{6}10^{-3}$ [s] để tạo thành dãy $x[n]=x_c(nT)$.

- (a) Dãy x[n] có tuần hoàn không, nếu có thì chu kỳ bao nhiêu?
- (b) Hãy tính \tilde{c}_k theo các hệ số a_k .

Outline

Chuỗi Fourier cho tín hiệu liên tục

Chuỗi Fourier cho tín hiệu rời rạc

Biến đổi Fourier

Biến đổi Fourier rời rạc theo thời gian

Biến đổi Fourier (FT) cho tín hiệu liên tục

trong đó:

$$X(j\Omega) = \mathrm{FT}\{x(t)\} = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt$$

 $X(j\Omega)$ được gọi là phổ của tín hiệu x(t):

- ▶ $|X(j\Omega)|$ phổ biên độ
- ▶ $arg\{X(j\Omega)\}$ phổ pha

Điều kiện tồn tại FT

- (i) $\int_{-\infty}^{\infty} |x(t)| dt < \infty$
- (ii) x(t) có hữu hạn các cực đại và cực tiểu trong bất cứ khoảng thời gian hữu hạn nào.
- (iii) x(r) có hữu hạn các điểm gián đoạn trong bất cứ khoảng thời gian hữu hạn nào và mỗi điểm gián đoạn đó phải có giá trị hữu hạn.

 ${
m f V}{
m f i}$ ${
m d}{
m f u}$: Hãy tìm ${
m FT}$ của các tín hiệu sau

- (a) Hàm lũy thừa: $x(t) = e^{at}u(t)$
- (b) Xung đơn vị: $x(t) = \delta(t)$
- (c) Xung vuông:

$$x(t) = \begin{cases} 1, & |t| < T_0/2 \\ 0, & |t| > T_0/2 \end{cases}$$

(d) $x(t) = \cos(\Omega_0 t)$

Phổ của tín hiệu hàm mũ thực $x(t) = e^{at}u(t)$

Phổ của xung vuông $T_0=1$

Biến đổi Fourier ngược

$$x(t) = \mathrm{FT}^{-1}\{X(j\Omega)\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\Omega) e^{j\Omega t} d\Omega$$

Ví dụ: Hãy tìm x(t) khi

$$X(j\Omega) = \frac{1}{1+j\Omega}$$

FT cho tín hiệu tuần hoàn

Xét tín hiệu ở miền tần số $X(j\Omega)=2\pi\delta(\Omega-\Omega_0)$, ta có:

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} 2\pi \delta(\Omega - \Omega_0) e^{j\Omega t} d\Omega$$
$$= e^{j\Omega_0 t}$$

FT cho tín hiệu tuần hoàn

Xét tín hiệu ở miền tần số $X(j\Omega)=2\pi\delta(\Omega-\Omega_0)$, ta có:

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} 2\pi \delta(\Omega - \Omega_0) e^{j\Omega t} d\Omega$$
$$= e^{j\Omega_0 t}$$

 \mathbf{V} í dụ: Tìm FT của các tín hiệu sau

- (a) $x(t) = \cos(\Omega_0 t)$
- (b) $x(t) = \sum_{k=-\infty}^{\infty} \delta(t kT)$
- (c) Xung vuông tuần hoàn

$$x(t) = \left\{ egin{array}{ll} 1, & \ell T \leq t \leq \ell T + T_0, & \ell \in \mathbb{Z} \\ 0, & t ext{ còn lại} \end{array}
ight.$$

Các tính chất của biến đổi Fourier

(1) Tuyến tính

$$a_1x_1(t) + a_2x_2(t) \stackrel{\text{FT}}{\longleftrightarrow} a_1X_1(j\Omega) + a_2X_2(j\Omega)$$

(2) Dịch thời gian

$$x(t-t_0) \stackrel{\mathrm{FT}}{\longleftrightarrow} e^{-j\Omega t_0} X(j\Omega)$$

(3) Dịch tần số

$$e^{j\Omega_0t}x(t) \stackrel{\text{FT}}{\longleftrightarrow} X(j(\Omega-\Omega_0))$$

(4) Chập trên miền thời gian

$$x_1(t) * x_2(t) \stackrel{\text{FT}}{\longleftrightarrow} X_1(j\Omega)X_2(j\Omega)$$

Tính chất đối xứng

$$x^*(t) \overset{\text{FT}}{\longleftrightarrow} X^*(-j\Omega)$$

Tính chất đối xứng

$$x^*(t) \stackrel{\mathrm{FT}}{\longleftrightarrow} X^*(-j\Omega)$$

► Phổ của các tín hiệu trên thực tế?

Tính chất đối xứng

$$x^*(t) \overset{\text{FT}}{\longleftrightarrow} X^*(-j\Omega)$$

- ► Phổ của các tín hiệu trên thực tế?
- Nếu x(t) thực và $x(t) = x_e(t) + x_o(t)$, hãy tìm FT của $x_e(t)$ và của $x_o(t)$?

Co dãn trên miền thời gian và tần số

$$x(at) \stackrel{\text{FT}}{\longleftrightarrow} \frac{1}{|a|} X(\frac{j\Omega}{a})$$

Đối ngẫu. Nếu

$$x(t) \stackrel{\mathrm{FT}}{\longleftrightarrow} X(j\Omega)$$

thì

$$X(jt) \stackrel{\text{FT}}{\longleftrightarrow} 2\pi x(-\Omega)$$

Quan hệ Parseval

$$\int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(j\Omega)|^2 d\Omega$$

Đáp ứng tần số của hệ thống LTI

Dáp ứng tần số:

$$H(j\Omega) := \operatorname{FT}\{h(t)\} = \int_{-\infty}^{\infty} h(t)e^{-j\Omega t}dt$$

- Đáp ứng biên độ: $|H(j\Omega)|$
- ▶ Đáp ứng pha: $arg\{H(j\Omega)\}$
- ▶ Đồ thị Bode: $20 \log_{10} H(j\Omega)$

Khái niệm bộ lọc

Phân loại bộ lọc lý tưởng

- Mọi hệ thống LTI đều có thể được coi là bộ lọc.
- Các bộ lọc chọn lọc tần số lý tưởng: Thông thấp, thông cao, thông dải, chắn dải.

Đáp ứng xung của bộ lọc lý tưởng

Ví dụ: Hãy tìm đáp ứng xung của bộ lọc thông thấp lý tưởng sau

$$H(j\Omega) = \left\{ egin{array}{ll} 1, & |\Omega| \leq \Omega_c \ 0, & |\Omega| > \Omega_c \end{array}
ight.$$

Đáp ứng xung của bộ lọc lý tưởng

Ví dụ: Hãy tìm đáp ứng xung của bộ lọc thông thấp lý tưởng sau

$$H(j\Omega) = \left\{ egin{array}{ll} 1, & |\Omega| \leq \Omega_c \ 0, & |\Omega| > \Omega_c \end{array}
ight.$$

Khái niệm độ rộng băng thông (bandwidth)

Xét hệ thống LTI với đáp ứng tần số H(jΩ)

- (i) Độ rộng băng thông tuyệt đối:
 - ullet $B=\Omega_c$ (hệ thống thống thấp lý tưởng)
 - $B = \Omega_H \Omega_L$ (hệ thống thông dải lý tưởng).
- (ii) Độ rộng băng thông 3-dB: $|H(j\Omega)|^2$ giảm một nửa so với giá tri lớn nhất.
- (iii) Tương tự đối với tín hiệu.

Outline

Chuỗi Fourier cho tín hiệu liên tục

Chuỗi Fourier cho tín hiệu rời rạc

Biến đổi Fourier

Biến đổi Fourier rời rạc theo thời gian

FT cho tín hiệu rời rạc (DTFT)

Biến đổi thuận:

$$x[n] \xrightarrow{\mathrm{FT}} X(e^{j\omega}) = \mathrm{FT}\{x[n]\} = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

 $X(e^{j\omega})$ - phổ của tín hiệu x[n].

ightharpoonup Tuần hoàn với chu kỳ 2π

FT cho tín hiệu rời rạc (DTFT)

Biến đổi thuận:

$$x[n] \xrightarrow{\mathrm{FT}} X(e^{j\omega}) = \mathrm{FT}\{x[n]\} = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

 $X(e^{j\omega})$ - phổ của tín hiệu x[n].

- ▶ Tuần hoàn với chu kỳ 2π
- ▶ Phổ biên độ: $|X(e^{j\omega})|$, và phổ pha: $\arg\{X(e^{j\omega})\}$.

Ví dụ

Tìm $X(e^{j\omega})$, $|X(e^{j\omega})|$ và $\arg\{X(e^{j\omega})\}$ của các dãy sau:

- (a) $x[n] = \delta[n]$
- (b) $x[n] = \delta[n-2]$
- (c) $x[n] = \delta[n-2] \delta[n]$
- (d) $x[n] = rect_N[n]$
- (e) $x[n] = (0.5)^n u[n]$
- (f) x[n] = u[n]

Phổ biên độ và phổ pha của dãy $\mathrm{rect}_{10}[n]$

Biến đổi Fourier ngược

$$X(e^{j\omega}) \xrightarrow{\mathrm{FT}^{-1}} X[n] = \mathrm{FT}^{-1}\{X(e^{j\omega})\} = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

Ví dụ: Xét bộ lọc thông thấp lý tưởng có đáp ứng tần số như trong hình vẽ

- (a) Hãy tìm đáp ứng xung $h_{lp}[n]$ của bộ lọc này.
- (b) Xét các trường hợp bộ lọc thông cao, thông dải, chắn dải lý tưởng?

Sự tồn tại của biến đổi Fourier

FT tồn tại khi dãy sau hội tụ:

$$\sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

Điều kiện hội tụ trên miền n:

$$\sum_{n=-\infty}^{\infty} |x[n]| < \infty$$

Khi x[n] tuần hoàn?

$$e^{j\omega_0 n} \stackrel{\text{FT}}{\longleftrightarrow} 2\pi \sum_{\ell=-\infty}^{\infty} \delta(\omega - \omega_0 - 2\pi\ell)$$

Nếu $\tilde{x}[n]_N$ có khai triển Fourier (DTFS):

$$\tilde{x}[n] = \sum_{k=0}^{N-1} \tilde{c}_k e^{j\frac{2\pi}{N}kn}$$

Khi x[n] tuần hoàn?

$$e^{j\omega_0 n} \stackrel{\text{FT}}{\longleftrightarrow} 2\pi \sum_{\ell=-\infty}^{\infty} \delta(\omega - \omega_0 - 2\pi\ell)$$

Nếu $\tilde{x}[n]_N$ có khai triển Fourier (DTFS):

$$\tilde{x}[n] = \sum_{k=0}^{N-1} \tilde{c}_k e^{j\frac{2\pi}{N}kn}$$

thì có biến đổi Fourier (FT) như sau:

$$X(e^{j\omega}) = 2\pi \sum_{k=-\infty}^{\infty} \tilde{c}_k \delta(\omega - k \frac{2\pi}{N})$$

▶ Tuyến tính: $FT\{a_1x_1[n] + a_2x_2[n]\} = a_1X_1(e^{j\omega}) + a_2X_2(e^{j\omega})$

- ▶ Tuyến tính: $FT\{a_1x_1[n] + a_2x_2[n]\} = a_1X_1(e^{j\omega}) + a_2X_2(e^{j\omega})$
- ▶ Trễ thời gian: $\mathrm{FT}\{x[n-n_0]\}=e^{-j\omega n_0}X(e^{j\omega})$

- ▶ Tuyến tính: $FT\{a_1x_1[n] + a_2x_2[n]\} = a_1X_1(e^{j\omega}) + a_2X_2(e^{j\omega})$
- ▶ Trễ thời gian: $\mathrm{FT}\{x[n-n_0]\}=e^{-j\omega n_0}X(e^{j\omega})$
- ▶ Trễ tần số: $FT\{e^{j\omega_0n}x[n]\}=X(e^{j(\omega-\omega_0)})$

- ▶ Tuyến tính: $\mathrm{FT}\{a_1x_1[n] + a_2x_2[n]\} = a_1X_1(e^{j\omega}) + a_2X_2(e^{j\omega})$
- ▶ Trễ thời gian: $FT\{x[n-n_0]\}=e^{-j\omega n_0}X(e^{j\omega})$
- ▶ Trễ tần số: $FT\{e^{j\omega_0 n}x[n]\} = X(e^{j(\omega-\omega_0)})$
- ▶ Đảo trục thời gian: $FT\{x[-n]\} = X(e^{-j\omega})$

- ▶ Tuyến tính: $\mathrm{FT}\{a_1x_1[n] + a_2x_2[n]\} = a_1X_1(e^{j\omega}) + a_2X_2(e^{j\omega})$
- ▶ Trễ thời gian: $FT\{x[n-n_0]\}=e^{-j\omega n_0}X(e^{j\omega})$
- ▶ Trễ tần số: $FT\{e^{j\omega_0 n}x[n]\}=X(e^{j(\omega-\omega_0)})$
- ▶ Đảo trục thời gian: $FT\{x[-n]\} = X(e^{-j\omega})$
- ▶ Đạo hàm trên miền tần số: $\mathrm{FT}\{nx[n]\}=jrac{dX(e^{j\omega})}{d\omega}$

- ▶ Tuyến tính: $\mathrm{FT}\{a_1x_1[n] + a_2x_2[n]\} = a_1X_1(e^{j\omega}) + a_2X_2(e^{j\omega})$
- ▶ Trễ thời gian: $FT\{x[n-n_0]\}=e^{-j\omega n_0}X(e^{j\omega})$
- ▶ Trễ tần số: $FT\{e^{j\omega_0n}x[n]\}=X(e^{j(\omega-\omega_0)})$
- ▶ Đảo trục thời gian: $FT\{x[-n]\} = X(e^{-j\omega})$
- ▶ Đạo hàm trên miền tần số: $\mathrm{FT}\{nx[n]\}=jrac{dX(e^{j\omega})}{d\omega}$
- Chập $FT\{x_1[n] * x_2[n]\} = X_1(e^{j\omega})X_2(e^{j\omega})$

- ▶ Tuyến tính: $\mathrm{FT}\{a_1x_1[n] + a_2x_2[n]\} = a_1X_1(e^{j\omega}) + a_2X_2(e^{j\omega})$
- ▶ Trễ thời gian: $FT\{x[n-n_0]\}=e^{-j\omega n_0}X(e^{j\omega})$
- ▶ Trễ tần số: $FT\{e^{j\omega_0n}x[n]\}=X(e^{j(\omega-\omega_0)})$
- ▶ Đảo trục thời gian: $FT\{x[-n]\} = X(e^{-j\omega})$
- ▶ Đạo hàm trên miền tần số: $\mathrm{FT}\{nx[n]\}=jrac{dX(e^{j\omega})}{d\omega}$
- Chập $FT\{x_1[n] * x_2[n]\} = X_1(e^{j\omega})X_2(e^{j\omega})$
- ▶ Nhân $FT\{x_1[n]x_2[n]\} = \frac{1}{2\pi} \int_{-\pi}^{\pi} X_1(e^{j\theta}) X_2(e^{j(\omega-\theta)}) d\theta$

(a)
$$FT\{x^*[n]\} = X^*(e^{-j\omega})$$

- (a) $FT\{x^*[n]\} = X^*(e^{-j\omega})$
- (b) $FT\{x^*[-n]\} = X^*(e^{j\omega})$

- (a) $FT\{x^*[n]\} = X^*(e^{-j\omega})$
- (b) $FT\{x^*[-n]\} = X^*(e^{j\omega})$
- (c) $FT\{Re[x[n]]\} = \frac{1}{2}[X(e^{j\omega}) + X^*(e^{-j\omega})]$

- (a) $FT\{x^*[n]\} = X^*(e^{-j\omega})$
- (b) $FT\{x^*[-n]\} = X^*(e^{j\omega})$
- (c) $FT\{Re[x[n]]\} = \frac{1}{2}[X(e^{j\omega}) + X^*(e^{-j\omega})]$
- (d) Khi $x[n] \in \mathbb{R}$

- (a) $FT\{x^*[n]\} = X^*(e^{-j\omega})$
- (b) $FT\{x^*[-n]\} = X^*(e^{j\omega})$
- (c) $FT\{Re[x[n]]\} = \frac{1}{2}[X(e^{j\omega}) + X^*(e^{-j\omega})]$
- (d) Khi $x[n] \in \mathbb{R}$
 - $X(e^{j\omega}) = X^*(e^{-j\omega})$
 - $\qquad \qquad \operatorname{Re}[X(e^{j\omega})] = \operatorname{Re}[X(e^{-j\omega})]$
 - $\operatorname{Im}[X(e^{j\omega})] = -\operatorname{Im}[X(e^{-j\omega})]$
 - $|X(e^{j\omega})| = |X(e^{-j\omega})|$
 - $\Rightarrow \arg\{X(e^{j\omega})\} = -\arg\{X(e^{-j\omega})\}$

- (a) $FT\{x^*[n]\} = X^*(e^{-j\omega})$
- (b) $FT\{x^*[-n]\} = X^*(e^{j\omega})$
- (c) $FT\{Re[x[n]]\} = \frac{1}{2}[X(e^{j\omega}) + X^*(e^{-j\omega})]$
- (d) Khi $x[n] \in \mathbb{R}$
 - $X(e^{j\omega}) = X^*(e^{-j\omega})$
 - $\qquad \qquad \operatorname{Re}[X(e^{j\omega})] = \operatorname{Re}[X(e^{-j\omega})]$
 - $\operatorname{Im}[X(e^{j\omega})] = -\operatorname{Im}[X(e^{-j\omega})]$
 - $|X(e^{j\omega})| = |X(e^{-j\omega})|$
 - $\Rightarrow \arg\{X(e^{j\omega})\} = -\arg\{X(e^{-j\omega})\}$
- (e) Khi $x[n] \in \mathbb{R}$ và x[n] chẵn?
- (f) Khi $x[n] \in \mathbb{R}$ và x[n] lẻ?

Quan hệ Parseval:

$$\sum_{n=-\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega$$

Quan hệ Parseval:

$$\sum_{n=-\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega$$

► Tương quan:

$$FT\{r_{x_1x_2}[n]\} = S_{X_1X_2}(e^{j\omega}) = X_1(e^{j\omega})X_2(e^{-j\omega})$$

Quan hệ Parseval:

$$\sum_{n=-\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega$$

▶ Tương quan:

$$FT\{r_{x_1x_2}[n]\} = S_{X_1X_2}(e^{j\omega}) = X_1(e^{j\omega})X_2(e^{-j\omega})$$

▶ Định lý Wiener - Khintchine: Nếu $x[n] \in \mathbb{R}$ thì

$$FT\{r_{xx}[n]\} = S_{XX}(e^{j\omega}) = |X(e^{j\omega})|^2$$

trong đó $S_{XX}(e^{j\omega})$ gọi là phổ mật độ năng lượng (energy density spectrum) của tín hiệu x[n].

Quan hệ Parseval:

$$\sum_{n=-\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega$$

► Tương quan:

$$\mathrm{FT}\{r_{x_1x_2}[n]\} = S_{X_1X_2}(e^{j\omega}) = X_1(e^{j\omega})X_2(e^{-j\omega})$$

▶ Định lý Wiener - Khintchine: Nếu $x[n] \in \mathbb{R}$ thì

$$FT\{r_{xx}[n]\} = S_{XX}(e^{j\omega}) = |X(e^{j\omega})|^2$$

trong đó $S_{XX}(e^{j\omega})$ gọi là phổ mật độ năng lượng (energy density spectrum) của tín hiệu x[n].

Điều chế (modulation):

$$FT\{x[n]\cos(\omega_0 n)\} = ?$$

Phương trình sai phân tuyến tính hệ số hằng

Xét hệ thống LTI được biểu diễn bởi phương trình sai phân tuyến tính hệ số hằng:

$$\sum_{k=0}^{N-1} a_k y[n-k] = \sum_{r=0}^{M-1} a_r x[n-r]$$

Biến đổi Fourier cả hai vế và áp dụng tính chất dịch

$$\sum_{k=0}^{N-1} a_k e^{-jk\omega} Y(e^{j\omega}) = \sum_{r=0}^{M-1} b_r e^{-jr\omega} X(e^{j\omega})$$

Ta có đáp ứng tần số của hệ thống:

$$H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{\sum_{r=0}^{M-1} b_r e^{-jr\omega}}{\sum_{k=0}^{M-1} a_k e^{-jk\omega}}$$

Bài tập Matlab

- 1. Viết chương trình Matlab để tính biến đổi Fourier cho một dãy có chiều dài hữu hạn.
- 2. Vẽ phổ biên độ và phổ pha của các dãy đã cho trong ví dụ.
- 3. Dùng hàm freqz và freqs trong Matlab để vẽ đáp ứng tần số của hệ thống được mô tả bởi phương trình sai phân / vi phân tuyến tính hệ số hàng.