定理 1.15 有限集合 $A \geq B$ について,次の式が成り立つ。

- (1) $|A \cup B| = |A| + |B| |A \cap B|$
- (2) $|A \oplus B| = |A| + |B| 2|A \cap B|$
- (3) $|A \cup B|$ |A| + |B|
- (4) $|A \cap B| \min\{|A|, |B|\}$
- ($\min\{a,b\} = \begin{cases} a & ,a & b \mathcal{O}$ 時 $b & ,a > b \mathcal{O}$ 時 (5) |A-B| |A|-|B|

【証明】

- (1): $|A-B|+|A\cap B|+|B-A|=|A\cup B|$ $|A-B|+|A\cap B| = |A|$, $|B-A|+|A\cap B| = |B|$, $|A \cup B| = |A| + |B| - |A \cap B|_{\circ}$
- (2): $|A \oplus B| = A \cup B |A \cap B| = |A| + |B| 2|A \cap B|$
- (3): $|A \cup B| = |A| + |B| |A \cap B| |A| + |B|$
- $(4): |A \cap B| |A|$ かつ $|A \cap B| |B|$ より , $|A \cap B| \min\{|A|, |B|\}$ である。
- (5): $|A-B|+|A\cap B|=|A|$ $m \cap |B-A|+|A\cap B|=|B|$ & |A||A-B| |A-B|-|B-A|=|A|-|B|が成り立つ。