22. Séries

Exercice 1. (c)/ (m) Calculer les sommes des séries suivantes :

1)
$$\sum_{k=0}^{+\infty} e^{-3k}.$$
 2)
$$\sum_{k=0}^{+\infty} \overline{k}$$

$$\frac{1}{k^2 - 1}.$$

$$3) \quad \sum_{k=2}^{+\infty} \ln\left(1 - \frac{1}{k^2}\right).$$

1)
$$\sum_{k=0}^{+\infty} e^{-3k}$$
. 2) $\sum_{k=2}^{+\infty} \frac{1}{k^2 - 1}$. 3) $\sum_{k=2}^{+\infty} \ln\left(1 - \frac{1}{k^2}\right)$. 4) $\sum_{k=2}^{+\infty} \ln\left(1 + \frac{(-1)^k}{k}\right)$.

Exercice 2. (c)/(m) Déterminer la nature des séries suivantes :

$$1) \qquad \sum_{n\in\mathbb{N}} \frac{n^3+n^2}{n^5+n+1}.$$

$$2) \qquad \sum_{n \in \mathbb{N}} \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n} + \sqrt{n+1}}.$$

2)
$$\sum_{n \in \mathbb{N}} \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n} + \sqrt{n+1}}.$$
 3)
$$\sum_{n \in \mathbb{N}^*} \ln\left(1 + \frac{1}{n}\right).$$

4)
$$\sum_{n \in \mathbb{N}} n^3 \arctan\left(e^{-n}\right).$$

5)
$$\sum_{n \in \mathbb{N}^*} \frac{3^n + n^5}{\ln(n) + 5^n}.$$

6)
$$\sum_{n \in \mathbb{N}^*} n^2 \left(\ln \left(1 + \frac{1}{n^2} \right) - \sin \left(\frac{1}{n^2} \right) \right).$$

7)
$$\sum_{n \in \mathbb{N}} \frac{\operatorname{sh}(n)}{\operatorname{ch}(2n)}.$$

$$8) \qquad \sum_{n \in \mathbb{N}^*} \left(1 - \frac{1}{\sqrt{n}} \right)^n.$$

9)
$$\sum_{n \in \mathbb{N}} \frac{(3n)!}{3^{3n} (n!)^3}$$

Exercice 3. (m) Déterminer en fonction des paramètres $a, b \in \mathbb{R}$ la nature des séries suivantes :

1)
$$\sum_{n} \left(e^{\frac{1}{n}} - a - \frac{b}{n} \right)$$

1)
$$\sum_{n \in \mathbb{N}^*} \left(e^{\frac{1}{n}} - a - \frac{b}{n} \right)$$
 2) $\sum_{n \in \mathbb{N}^*} \left(\ln(n) + a \ln(n+1) + \frac{b}{n+1} \right)$ 3) $\sum_{n \in \mathbb{N}^*} \left(\frac{1}{n} \right)^{a + \frac{b}{n}}$.

$$3) \sum_{n \in \mathbb{N}^*} \left(\frac{1}{n}\right)^{a + \frac{b}{n}}$$

Exercice 4. © Soit (u_n) la suite définie par $u_0 = 0$, $u_1 = 1$ et $u_{n+2} = \frac{5}{6}u_{n+1} - \frac{1}{6}u_n$ pour $n \in \mathbb{N}$. Montrer que $\sum u_n$ converge et calculer sa somme.

Exercice 5. (c) Déterminer la nature des séries suivantes :

$$1) \quad \sum_{n \in \mathbb{N}^*} \frac{\cos(n)}{n^3}.$$

$$2) \quad \sum_{n \in \mathbb{N}^*} \left(\frac{1+i}{2}\right)^n$$

$$3) \quad \sum_{n \in \mathbb{N}} \frac{(-1)^n}{\sqrt{n+1}}.$$

$$1) \quad \sum_{n \in \mathbb{N}^*} \frac{\cos(n)}{n^3}. \qquad 2) \quad \sum_{n \in \mathbb{N}^*} \left(\frac{1+i}{2}\right)^n. \qquad 3) \quad \sum_{n \in \mathbb{N}} \frac{(-1)^n}{\sqrt{n+1}}. \qquad 4) \quad \sum_{n \in \mathbb{N}^*} \frac{(-1)^n \ln(n)}{n}.$$

Exercice 6. (m) Déterminer la nature des séries suivantes :

1)
$$\sum_{n \in \mathbb{N}^*} \ln \left(1 + \frac{(-1)^n}{\sqrt{n}} \right)$$

$$1) \sum_{n \in \mathbb{N}^*} \ln\left(1 + \frac{(-1)^n}{\sqrt{n}}\right) \qquad 2) \sum_{n \in \mathbb{N}^*} (-1)^n \left(2\arctan\left(\frac{1}{\sqrt{n}}\right) - \sin\left(\frac{1}{n}\right)\right) \qquad 3) \sum_{n \in \mathbb{N}^*} \frac{(-1)^n}{n + 3\sin(n)}.$$

1

$$3) \sum_{n \in \mathbb{N}^*} \frac{(-1)^n}{n + 3\sin(n)}$$

Exercice 7. (m) Discuter suivant la valeur de $a \in \mathbb{R}$ la nature des séries suivantes :

$$1) \quad \sum_{n \in \mathbb{N}} \frac{a^n}{1 + a^n}$$

$$2) \quad \sum_{n \in \mathbb{N}} \frac{a^n}{1 + a^{2n}}$$

1)
$$\sum_{n \in \mathbb{N}} \frac{a^n}{1+a^n}.$$
 2)
$$\sum_{n \in \mathbb{N}} \frac{a^n}{1+a^{2n}}$$
 3)
$$\sum_{n \in \mathbb{N}^*} \ln\left(1+\frac{(-1)^n}{n^a}\right).$$

Exercice 8. (i) Soit $(u_n)_{n\in\mathbb{N}}$ une suite décroissante réelle telle que $\sum_{n\in\mathbb{N}}u_n$ converge. On note $S_n=\sum_{n=0}^nu_n$. En considérant $S_{2n}-S_n$, montrer que $2nu_{2n}\to 0$ puis en déduire que $nu_n\to 0$.

Exercice 9. (i) Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0\in[0,1]$ et $u_{n+1}=u_n-u_n^2$ pour $n\in\mathbb{N}$. Montrer que $(u_n)_{n\in\mathbb{N}}$ converge et en déduire que la série $\sum_{n\in\mathbb{N}}u_n^2$ est convergente.

Exercice 10. (m) On pose $u_n = \sum_{k=1}^n \ln(k)$.

- 1) Déterminer à l'aide d'une comparaison série/intégrale un équivalent de u_n .
- 2) Montrer de même que $\sum_{k=2}^{n} \frac{1}{k \ln(k)} \sim_{+\infty} \ln(\ln(n))$. En déduire la nature de la série $\sum_{n \geq 2} \frac{1}{u_n}$.

Exercice 11. Constante d'Euler. ©/ (m) On pose $H_n = \sum_{k=1}^n \frac{1}{k}$.

- 1) Montrer que $H_n \sim_{+\infty} \ln(n)$.
- 2) Montrer que la suite $u_n = H_n \ln(n)$ est décroissante et positive. En déduire l'existence d'une constante γ (la constante d'Euler) telle que $H_n = \ln(n) + \gamma + o(1)$.
- 3) On pose $H'_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{k}$. Montrer que H'_n est convergente et tend vers $\ln(2)$. On pourra étudier H'_{2n} et en déterminer un développement asymptotique à l'aide de la question précédente.

Exercice 12. (m) Justifier que pour tout $a \in \mathbb{R}_+^*$, la série $\sum_{n \in \mathbb{N}^*} \frac{a}{n^2 + a^2}$ est convergente. En utilisant une comparaison série/intégrale, déterminer alors $\lim_{a \to +\infty} \sum_{n=1}^{+\infty} \frac{a}{n^2 + a^2}$.

Exercice 13. Critère de d'Alembert. (m) Soit $\sum_{n\in\mathbb{N}}u_n$ une série à termes strictement positifs. On suppose que $\lim_{n\to+\infty}\frac{u_{n+1}}{u_n}=l\in\mathbb{R}$.

- 1) Montrer que si l>1, alors $\sum_{n\in\mathbb{N}}u_n$ diverge grossièrement.
- 2) On suppose l < 1. Montrer qu'il existe un rang $N \in \mathbb{N}$ tel que $\forall n \geq N, \ u_{n+1} \leq \left(\frac{l+1}{2}\right)u_n$. En déduire que $\forall n \geq N, \ u_n \leq \left(\frac{l+1}{2}\right)^{n-N} \times u_N$ puis que la série $\sum_{n \in \mathbb{N}} u_n$ converge.
- 3) Montrer que l'on ne peut pas conclure si l=1 en exhibant un exemple de chaque nature.

Exercice 14. (i) Calculer la partie entière de $\sum_{k=1}^{10^9} k^{-2/3}$.

Exercice 15. (*) Déterminer la nature de $\sum_{n\in\mathbb{N}}\sin(\pi(2+\sqrt{3})^n)$.