16-782 Planning & Decision-making in Robotics

Case Study:
Planning for
Mobile Manipulation and Legged Robots

Maxim Likhachev
Robotics Institute
Carnegie Mellon University

Two Examples

• Planning for Mobile Manipulation

Planning for Legged Robots

Two Examples

• Planning for Mobile Manipulation

Planning for Legged Robots

Robotic Bartender Demo ([Phillips et al.])

• Robot takes in a command from User Interface as to what soda can and snack to deliver

Graph for Navigation with Complex 3D Body [Hornung et al., '12]

- 3D (x,y,θ) lattice-based graph representation for full-body collision checking
 - takes set of motion primitives as input
 - takes N footprints of the robot defined as polygons as input
 - each footprint corresponds to the projection of a part of the body onto x,y plane
 - collision checking/cost computation is done for each footprint at the corresponding projection of the 3D map

Graph for Navigation with Complex 3D Body [Hornung et al., '12]

- 3D (x,y,θ) lattice-based graph representation for full-body collision checking
 - takes set of motion primitives as input
 - takes N footprints of the robot defined as polygons as input
 - each footprint corresponds to the projection of a part of the body onto x,y plane
 - collision checking/cost computation is done for each footprint at the corresponding projection of the 3D map

Two Examples

• Planning for Mobile Manipulation

Planning for Legged Robots

Little Dog Demo [Vernaza et al., '09]

• Little Dog robot needs to traverse a fully-known terrain

Planning

- Plans footsteps first with an anytime variant of A*
- Compute COM of the robot afterwards to support execution

Assumptions of the planner:

 Only one leg lifted at a time to ensure static stability

 Center of mass shifts during quadsupport phase to prevent tipping

 Footholds chosen deliberately to maximize stability

Planner builds Graph:

What are states?
What are edges?

Planner builds Graph:

Implicit or explicit graph?

- State (stance): 9-dimensional foothold configuration
 - feet positions and current gait phase

 Edge costs for transitions computed based on risk, anticipated delay

Planner builds (implicit) Graph:

Requires definition of:

State (stance): 9-dimension

GetSuccessors(state S)
GetCost(state S, state S')

- feet positions and current gait phase

• Edge: feasible transition between stances

 Edge costs for transitions computed based on risk, anticipated delay

Implementation of GetSuccessors(s) Function

- Valid stances are kinematically feasible 4-tuples of candidate footholds
- Successors of a given stance computed by:
 - determining reachable candidate footholds that result in a valid stance

• Edgecosts are weighted sum of:

Edgecosts are weighted sum of:

Fixed cost per step

Minimizes # of steps in the plan

Center of mass travel

 Discourages unnecessary motion of COM

Incircle radius

 Discourages stances with small incircle radii (distance from point 3 to point 5 in the picture)

Edgecosts are weighted sum of:

Collision

Risk of body/foot colliding with terrain

Foot height variance

Encourages robot to stay level

Edgecosts are weighted sum of:

Reachability

 Robot's ability to reach next foothold, switch to next support triangle without dragging feet

Terrain slope

 Ensures terrain slope supports direction of motion

Terrain cost

 Considers slippage potential given terrain

Edgecosts are weighted sum of:

Reachability

Lots of features make up the cost function.

Robot's ability to Fine tuning them is not fun support triangle without

Terrain slope

 Ensures terrain slope supports direction of motion

Terrain cost

 Considers slippage potential given terrain

Edgecosts are weighted sum of:

Reachability

Lots of features make up the cost function.

• Robot's ability to Fine tuning them is not fun Support triangle without

Terrain slope

• Ensures terrain direction There are ways to learn the weights

(e.g., Learning to Search [Ratliff, Silver & Bagnell, '09])

Terrain cost

 Considers slippage potential given terrain

Sometimes smart but often stupid

Search-based planning for a legged robot over rough terrain

Paul Vernaza, Maxim Likhachev, Subhrajit Bhattacharya, Sachin Chitta*, Aleksandr Kushleyev, Daniel D. Lee

GRASP Laboratory University of Pennsylvania

*Willow Garage, Inc.

no footstep planning

What You Should Know...

• General state machine for mobile manipulation

• The dimensionality when planning footsteps for quadrupedal (and bipedal) robots

• Appreciate the complexity of cost components when planning for quadrupedal (and bipedal) robots