Lecture 25

Simple Linear Regression: Model Assumptions & Inferences

Text: Chapter 11

STAT 8010 Statistical Methods I November 24, 2020

> Whitney Huang Clemson University

Notes

Linear Regression Fit

Question: Is linear relationship between max heart rate and age reasonable? ⇒ Residual Analysis

N	0	te	s

Residuals

 The residuals are the differences between the observed and fitted values:

$$e_i = Y_i - \hat{Y}_i,$$

where $\hat{Y}_i = \hat{eta}_0 + \hat{eta}_1 X_i$

- ullet e_i is NOT the error term $arepsilon_i = Y_i \mathrm{E}[Y_i]$
- Residuals are very useful in assessing the appropriateness of the assumptions on ε_i . Recall
 - $E[\varepsilon_i] = 0$
 - $Var[\varepsilon_i] = \sigma^2$
 - $\operatorname{Cov}[\varepsilon_i, \varepsilon_j] = 0, \quad i \neq j$

Simple Linear Regression: Model Assumptions & Inferences
Residual Analysis
Confidence/Prediction Intervals

Notes			

Maximum Heart Rate vs. Age Residual Plot: ε vs. X

Notes			

Interpreting Residual Plots

Figure: Figure courtesy of Faraway's Linear Models with R (2005, p. 59).

Simple Linear Regression: Model Assumptions & Inferences
Residual Analysis
Confidence/Prediction Intervals

Notes			

Recap: Simple Linear Regression

Y: dependent (response) variable; X: independent (predictor) variable

 In SLR we assume there is a linear relationship between X and Y:

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i,$$

where $\mathrm{E}(\varepsilon_i)=0$, and $\mathrm{Var}(\varepsilon_i)=\sigma^2, \forall i.$ Furthermore, $\mathrm{Cov}(\varepsilon_i,\varepsilon_j)=0, \forall i\neq j$

Least Squares Estimation:

$$\underset{\boldsymbol{\beta}_{1} = \sum_{i=1}^{n} (X_{i} - (\beta_{0} + \beta_{1}X_{i}))^{2}}{\operatorname{argmin}_{\beta_{0},\beta_{1}} \sum_{i=1}^{n} (X_{i} - \bar{X})(Y_{i} - \bar{Y})}} \Rightarrow \hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^n (Y_i - \hat{Y}_i)^2}{n-2}$$

• Residuals: $e_i = Y_i - \hat{Y}_i$, where $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$

Simple Linear Regression: Model Assumptions & Inferences
CLEMS N

Residual Analysis

Hypothesis Testing

Notes			
-			

Recap: Residual Analysis

- Residual Analysis: To check the appropriateness of SLR model
 - Is the regression function linear?
 - Do ε_i 's have constant variance σ^2 ?
 - Are ε_i 's indepdent to each other?

We plot residuals e_i 's against X_i 's (or \hat{Y}_i 's) to assess these aspects

Figure: Figure courtesy of Faraway's Linear Models with R (2005, p. 59).

Notes

How (Un)certain We Are?

Can we formally quantify our estimation uncertainty? \Rightarrow We need additional (distributional) assumption on ε

Notes

Normal Error Regression Model

Recall

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

- $\bullet \ \, \text{Further assume} \,\, \varepsilon_i \sim \mathrm{N}(0,\sigma^2) \Rightarrow Y_i \sim \mathrm{N}(\beta_0 + \beta_1 X_i,\sigma^2) \\$
- With normality assumption, we can derive the sampling distribution of $\hat{\beta}_1$ and $\hat{\beta}_0 \Rightarrow$

$$\begin{split} & \bullet \quad \hat{\beta}_{1} - \beta_{1} \\ & \hat{\sigma}_{\hat{\beta}_{1}} \sim t_{n-2}, \quad \hat{\sigma}_{\hat{\beta}_{1}} = \frac{\hat{\sigma}}{\sqrt{\sum_{i=1}^{n}(X_{i} - \bar{X})^{2}}} \\ & \bullet \quad \frac{\hat{\beta}_{0} - \beta_{0}}{\hat{\sigma}_{\hat{\beta}_{0}}} \sim t_{n-2}, \quad \hat{\sigma}_{\hat{\beta}_{0}} = \hat{\sigma}\sqrt{\left(\frac{1}{n} + \frac{\bar{X}^{2}}{\sum_{i=1}^{n}(X_{i} - \bar{X})^{2}}\right)} \end{aligned}$$

where t_{n-2} denotes the Student's t distribution with n-2 degrees of freedom

Notes			

Confidence Intervals

• Recall $\frac{\hat{\beta}_1-\beta_1}{\hat{\sigma}_{\hat{\beta}_1}}\sim t_{n-2},$ we use this fact to construct **confidence intervals (CIs)** for β_1 :

$$\left[\hat{\beta}_1 - t_{\alpha/2, n-2}\hat{\sigma}_{\hat{\beta}_1}, \hat{\beta}_1 + t_{\alpha/2, n-2}\hat{\sigma}_{\hat{\beta}_1}\right],$$

where α is the **confidence level** and $t_{\alpha/2,n-2}$ denotes the $1-\alpha/2$ percentile of a student's t distribution with n-2 degrees of freedom

• Similarly, we can construct CIs for β_0 :

$$\left[\hat{\beta}_0 - t_{\alpha/2, n-2}\hat{\sigma}_{\hat{\beta}_0}, \hat{\beta}_0 + t_{\alpha/2, n-2}\hat{\sigma}_{\hat{\beta}_0}\right]$$

Simple Linear Regression: Model Assumptions & Inferences
CLEMS N
Confidence/Prediction Intervals

Interval Estimation of $E(Y_h)$

- We often interested in estimating the **mean** response for a particular value of predictor, say, X_h . Therefore we would like to construct CI for $\mathrm{E}[Y_h]$
- We need sampling distribution of \hat{Y}_h to form CI:
 - $\bullet \ \frac{\hat{Y}_h Y_h}{\hat{\sigma} \hat{Y}_h} \sim t_{n-2}, \quad \hat{\sigma}_{\hat{Y}_h} = \hat{\sigma} \sqrt{\left(\frac{1}{n} + \frac{(X_h \bar{X})^2}{\sum_{i=1}^n (X_i \bar{X})^2}\right)}$

a CI

$$\left[\hat{Y}_h - t_{\alpha/2, n-2}\hat{\sigma}_{\hat{Y}_h}, \hat{Y}_h + t_{\alpha/2, n-2}\hat{\sigma}_{\hat{Y}_h}\right]$$

• Quiz: Use this formula to construct CI for β_0

Notes

Prediction Intervals

- Suppose we want to predict the response of a future observation given $X = X_h$
- We need to account for added variability as a new observation does not fall directly on the regression line (i.e., $Y_{h(\text{new})} = E[Y_h] + \varepsilon_h$)
- $\bullet \text{ Replace } \hat{\sigma}_{\hat{Y}_h} \text{ by } \hat{\sigma}_{\hat{Y}_{\text{h(new)}}} = \hat{\sigma} \sqrt{\left(1 + \frac{1}{n} + \frac{(X_h \bar{X})^2}{\sum_{i=1}^n (X_i \bar{X})^2}\right)} \text{ to } \\ \text{construct CIs for } Y_{\text{h(new)}}$

Simple Linear Regression: Model Assumptions & Inferences
Confidence/Prediction Intervals

Notes				
				_
				_

Maximum Heart Rate vs. Age Revisited

The maximum heart rate ${\tt MaxHeartRate}$ (${\tt HR}_{\it max}$) of a person is often said to be related to age ${\tt Age}$ by the equation:

$$HR_{max} = 220 - Age.$$

Suppose we have 15 people of varying ages are tested for their maximum heart rate (bpm)

 Age
 18
 23
 25
 35
 65
 54
 34
 56
 72
 19
 23
 42
 18
 39
 37

 HR_{max}
 202
 186
 187
 180
 156
 169
 174
 172
 153
 199
 193
 174
 198
 183
 178

 174
 175
 174
 199
 193
 174
 198
 183
 178

- Construct the 95% CI for β_1
- \bullet Compute the estimate for mean <code>MaxHeartRate</code> given <code>Age=40</code> and construct the associated 90% CI
- Construct the prediction interval for a new observation given Age = 40

Notes

Maximum Heart Rate vs. Age: Hypothesis Test for Slope

- **1** $H_0: \beta_1 = 0$ vs. $H_a: \beta_1 \neq 0$
- ② Compute the **test statistic**: $t^* = \frac{\hat{\beta}_1 0}{\hat{\sigma}_{\hat{\beta}_1}} = \frac{-0.7977}{0.06996} = -11.40$
- **Outpute P-value:** $P(|t^*| \ge |t_{obs}|) = 3.85 \times 10^{-8}$
- **⑤** Compare to α and draw conclusion:

Reject H_0 at α = .05 level, evidence suggests a negative linear relationship between MaxHeartRate and Age

Notes

Maximum Heart Rate vs. Age: Hypothesis Test for Intercept

- **1** $H_0: \beta_0 = 0$ vs. $H_a: \beta_0 \neq 0$
- ② Compute the **test statistic**: $t^* = \frac{\hat{\beta}_0 0}{\hat{\sigma}_{\beta_0}} = \frac{210.0485}{2.86694} = 73.27$
- **Solution Order O**
- **①** Compare to α and draw conclusion:

Reject H_0 at $\alpha=.05$ level, evidence suggests evidence suggests the intercept (the expected MaxHeartRate at age 0) is different from 0

Simple Linear Regression: Model Assumptions & Inferences
Confidence/Prediction Intervals
Hypothesis Testing

Notes				

Hypothesis Tests for $\beta_{\rm age} = -1$

$$H_0: eta_{\mathsf{age}} = -1 \ \mathsf{vs.} \ H_a: eta_{\mathsf{age}}
eq -1$$

Test Statistic:
$$\frac{\hat{eta}_{age}-(-1)}{\hat{\sigma}_{\hat{eta}_{age}}}=\frac{-0.79773-(-1)}{0.06996}=2.8912$$

P-value: $2 \times \mathbb{P}(t^* > 2.8912) = 0.013$, where $t^* \sim t_{df=13}$

Simple Linear Regression: Model Assumptions & Inferences
Confidence/Prediction Intervals
Hypothesis Testing

Notes

Summary

In this lecture, we learned

- Residual Analysis for checking model assumptions
- Normal Error Regression Model and statistical inference for β_0 and β_1
- Confidence/Prediction Intervals & Hypothesis Testing

Next time we will talk about

- Analysis of Variance (ANOVA) Approach to Regression
- ② Correlation (r) & Coefficient of Determination (R^2)

Simple Linear Regression: Model Assumptions & Inferences
CLEMS N
Confidence/Prediction Intervals
Hypothesis Testing

Notes			

Notes			