

0.1 Non ramifiée, modérément, sauvagement, totalement ramifié

Pour le vocabulaire : Avec L/K extension de corps de valuations discrètes, i.e. v_K discrète fixée.

- 1. Non ramifié : Pour chaque $i, e_i = 1$ et k_{L_i}/k_K est séparable.
- 2. Modérément ramifié : pour chaque $i, p \nmid e_i$ et k_{L_i}/k_K est séparable.
- 3. Sauvagement ramifié : il existe un i tq $p \mid e_i$ ou k_{L_i}/k_K inséparable.
- 4. Totalement ramiifié : [L:K] = e et $\tilde{\mathcal{O}}_K = \mathcal{O}_L$. (On a la condition de finitude)

Attention y'a pas toujours l'égalité $\sum e_i f_i = [L:K]$, dans la plupart des cas qui m'intéressent si quand même.

0.2 Lien entre liberté dans k_K, k_L et dans L/K

On regarde $L = K(\alpha)$ et $P = \mu_{\alpha}$ unitaire dans $\mathcal{O}_{K}[X]$. Si $\overline{Q(\alpha)} = 0$ (liberté de (α^{i})) on a $Q(\alpha) \in \mathfrak{m}_{L}$ et pas dans \mathfrak{m}_{K} . D'où on peut pas directement comparer les libertés dans ce sens ! À l'inverse, si $(\bar{e}_{i})_{i}$ est libre dans $k_{L} - k_{K}$ et qu'on a $\sum a_{i}e_{i} = 0$ alors $a_{i} \in \mathfrak{m}_{L} \cap \mathcal{O}_{K} = \mathfrak{m}_{K}$. Si y sont tous non nuls $0 < |(\sum a_{i}e_{i})|$ on a un problème.

0.3 Factorisation de $\bar{P} = F^d$ et $e.f = d \deg F$

Même contexte, dans le cas complet c'est plus simple : Par Hensel $\bar{P} = F^d$ et $\deg(F) \mid f$ parce que F se scinde dans k_L vu que P se scinde dans \mathcal{O}_L . En particulier on peut faire descendre la racine. On déduit

$$e.f = \deg(P) = d.\deg(F)$$

d'où $e \mid d$ et $\deg(F) \mid f$.

Remarque 1. Comme Vincent m'a fait remarquer pas d'égalité vu que par exemple si $K[\alpha]/K$ est non ramifiée et α engendre l'extension résiduelle alors $\pi_L^d P(X/\pi_L)$ annule $\pi_L \alpha$ mais $F = X^d$, donc on est dans le pire cas.

0.4 Polynômes d'eisenstein et extensions totalement ramifiées

(1)

Si $P(X) = X^d + \sum a_i X^i$ avec $v_K(a_0) = 1$ et $v_K(a_i) \ge 1$ alors L = K[X]/(P(X)) est totalement ramifiée et X est une uniformisante. Si α est une racine dans L de P:

Y'a deux points, $B = \mathcal{O}_K[\alpha]$ a un seul idéal maximal car a_0 et α sont dans le même idéal maximal et y contiennent tous a_0 (!) puis $(a_0, \alpha) = \alpha B$ est maximal (via le quotient!). Ça prouve que B est local et principal donc un DVR, i.e. $\tilde{\mathcal{O}}_K = B$. Pour la valuation e = d = [L:K] directement, d'où le résultat.

(2)

Si L/K est totalement ramifiée, alors π_L est annulé par un Eisenstein. L'idée c'est que si P l'annule, alors si $a_{i_0} \notin \mathfrak{m}_K$ alors :

$$\pi_L^{i_0}(a_{i_0}/\pi_L^{i_0} + \sum_{i=i_0}^n a_i \pi_L^{i-i_0})$$

est de valuation i_0 . Si $v_K(a_j) > 0$ pour $j < i_0$ alors la valuation est strictement plus grande que $e = v_L(\pi_K)$. Sauf que

$$\sum_{i=0}^{i_0-1} a_i \pi_L^i = \pi_L^{i_0} (a_{i_0} / \pi_L^{i_0} + \sum_{i=i_0}^n a_i \pi_L^{i-i_0})$$

d'où c'est eisenstein. En plus

$$a_0/\pi_L^n = -1 + \sum a_i \pi_L^i / \pi_L^n$$

d'où $v_L(a_0/\pi_L^n) = 0$ vu que $v_L(a_i) \ge e$ et n = e.

0.4 Polynômes d'eisenstein et extensions totalement ramifiées

Chapitre 1

Cas complet

1.1 Extension totalement modérément ramifiée

Cette fois on peut trouver π_L et π_K tels que $P(X) = X^e - \pi_K$. Déjà

$$\mathcal{O}_K/\mathfrak{m}_K o \mathcal{O}_L/\mathfrak{m}_L$$

est un iso et donc si $u\pi_L^e = \pi_K$, on regarde u = v dans k_L (car c'est là que u vit) avec $v \in \mathcal{O}_K$. D'où $u = v + \epsilon$, $\epsilon \in \mathfrak{m}_L$ (car c'est dans k_L l'égalité). Ensuite $u = v(1 + v^{-1}\epsilon)$. Sauf que $1 + v^{-1}\epsilon$ a une racine e-ème par Hensel, ζ . D'où $(\pi_L\zeta)^e = \pi_K/v$.

1.2 Trouver les extensions totalement modérement ramifiées

En gros dans L/K finie complète telle que $k_K - k_L$ est purement inséparable (c'est juste une généralisation), On regarde presque le corps engendré par $\pi_L^{e/e'}$. On choisit $e' \mid e/p_p^v(e)$, il existe $k_L^{p^r} \subset k_K$ alors $ap^r + be' = 1$ et

$$\bar{u} = (\bar{u}^{p^r})^a (\bar{u}^b)^{e'} \mod \mathfrak{m}_L$$

et ducoup on relève $u=\lambda^a(\bar{u}^b)^{e'}(1+\epsilon)$ avec $\lambda\in\mathcal{O}_K^{\times}$ puis comme d'hab le truc à droite a une racine e'-ème par hensel, disons ζ . D'où en notant $\pi_{e'}=u^b\zeta\pi_L^{e/e'}$ c'est une racine e'-ème de π_K/λ^a . Alors

$$K(\pi_{e'})$$

est totalement ramifiée vu que engendrée par un eisenstein.

1.2.1 Unicité

C'est pas très satisfaisant.

Apparté

Si on regarde $\mathcal{O}_K \to \mathcal{O}_L/\mathfrak{m}_L$ ça induit $i \colon k_K \to k_L$. En particulier dire que $u \in k_L$ est en fait dans k_K ça veut dire que $u + \mathfrak{m}_L = v + \mathfrak{m}_L$ avec $v \in \mathcal{O}_K$.

Preuve

Concrètement, $\lambda = (\pi_1 \pi_2^{-1})^{e'} \in \mathcal{O}_K^{\times}$ et en regardant dans k_L ça engendrerait une sous-extension de degré premier à p^r , i.e 1. D'où $\bar{u} = \bar{v} \in k_K$ et $(\bar{v})^{e'}(1 + \epsilon) = \lambda$ sauf que $(1 + \epsilon) = \lambda/(v)^{e'}$ d'où est dans \mathcal{O}_K puis $1 + \mathfrak{m}_K$ c'est que des puissances e'-ème. On obtient que $(\pi_1 \pi_2^{-1})^{e'} = (v')^{e'}$ avec $v' \in \mathcal{O}_K \times$. En particulier comme les racines e'-ème de l'unité sont dans \mathcal{O}_K $\pi_1 = u\pi_2$ avec $u \in \mathcal{O}_K^{\times}$ d'où unicité.

Remarque 2. En résumé, pour tout $e' \mid e/p^{v_p(e)}$, on a une sous-extension $K - L_{e'} - L$, dans le cas complet sous l'hypothèse d'extension résiduelle purement inséparable.

1.3 Trouver les sous-extensions non ramifiée

En dessous de K - L on regarde $k_K - k - k_L$ avec $k_K - k$ séparable. On a une correspondance entre k et $K - K_k - L$ où la première est non ramifiée.

1.3.1 Existence

 $k_K^{sep} = k_K(\bar{\theta})$. Comme **tout se passe dans** k_L on lift un polynôme $P \in \mathcal{O}_L[X]$ de même degré. **Par hensel**, θ en est une racine et il est **scindé séparable** dans L. On regarde $K(\theta)$, c'est séparable vu que \bar{P} est séparable **via la dérivée** mod \mathfrak{m}_L (!). Et c'est non ramifié vu que $f = \deg(\bar{P}) = \deg(P) = [K(\theta) : K]$.

1.3.2 Unicité

Donc le détail encore c'est qu'on plonge k dans k_L . I.e. on peut faire Hensel QUE dans $\mathcal{O}_L[X]$ en gros (c'est presque pas un abus). Donc dire qu'on a un sous-corps F' de L ou on lift $\bar{t}heta$ en α . En fait $\alpha = \theta$ par unicité dans L. Parce que par définition le sous-corps k est considéré dans k_L . D'où dans \mathcal{O}_L .

Remarque 3. Le seul détail là c'est $k^{sep} \subset k_L$ par déf.

1.3.3 Extension non ramifiée maximale

On prend $k = k_K^{sep}$ et un générateur $\bar{\theta}$ fournit $K(\theta) =: K^{un}$ puis pour n'importe quelle sous-extension non ramifiée de L, F, on applique la partie d'avant dans K^{un}/K à k_F pour obtenir $F' \subset K^{un}$, sauf que $k_F = k_{F'}$ dans k_L d'où F = F'.

1.4 Extensions modérément ramifiée maximale

On prend K^{tam} qui correspond à $e/p_p^v(e)$ dans $L-K^{un}$. Pour prouver que c'est maximal on prend une extension modérement ramifiée L-F-K, on peut considérer $F-F^un-L$. Et on a $k_{F^{un}}=k_K^{sep}$, ducoup on remplace F par F^{un} . Et on a $K^{un} \subset F^{un}$ en regardant dans $F^{un}-K$ puis L-K. Ensuite, $K^{un}-F^{un}$ est totalement modérément ramifiée, d'où par construction dans l'autre section $F^{un} \subset K^{tam}$.

Remarque 4. $K - F - F^{un}$ est modérement ramifiée! Et $k_{F^{un}} - k_F - k_K$ est séparable car les deux intermédiaires sont séparable.

1.5 Résumé

On a un premier découpage

$$K \to K^{un} \to K^{tam} \to L$$

dans le cas complet et L/K finie. On peut aussi facilement regarder les extensions intérmédiaires des deux premières sous-extensions.

$1.5~R\acute{e}sum\acute{e}$

Chapitre 2

Cas galoisien

2.1 Un peu de théorie de Galois

Peut-être la chose la plus importante. Quand on a une extension normale finie L/K, on a

$$Aut(L/K) = Gal(K^{sep}/K)$$

ÉTant donné $K - L^H = F - L$ galoisienne, F/K est galoisienne si et seulement si $H \leq G := Gal(L/K)$ est distingué. Ou F est stable par l'action de Gal(L/K).

2.2 Groupe de décomposiiton et groupe de Galois résiduel

Étant donné L/K finie galoisienne, et \mathfrak{m} un idéal max. On regarde $D=D_{\mathfrak{m}}$ et $I=I_{\mathfrak{m}}$. Avec pour rappel

$$D_{\mathfrak{m}} = \{ \sigma \in Gal(L/K) | \sigma(\mathfrak{m}) = \mathfrak{m} \}$$

et $I_{\mathfrak{m}} = \ker(D_{\mathfrak{m}} \to Aut(k_L/k_K)) = Gal(k_K^{sep}/k_K).$

2.2.1 $1 \to I_{\mathfrak{m}} \to D_{\mathfrak{m}} \to Aut_k(k_{\mathfrak{m}}) \to 1$ et $k - k_{\mathfrak{m}}$ est normale

L'idée c'est de voir que dans $\mathcal{O}_{\underline{K}}[X]$ on a $P(X) = \prod (X - \sigma(x))$ et si $\bar{x} \in k_{\mathfrak{m}}$ de pol min p(X) alors $\bar{P}(\bar{x}) = \overline{P(x)} = 0$ d'où

$$p\mid \bar{P}$$

et le deuxième est scindé dans L donc dans $k_{\mathfrak{m}}$. Ensuite faut montrer que $D_{\mathfrak{m}} \to Aut_k(k_{\mathfrak{m}}) = Gal(k_{\mathfrak{m}}^s/k)$ est surjectif. L'idée c'est de lift un générateur

$$k(\bar{\theta}) = k_{\rm m}^s$$

alors si $\tau \in Gal(k_{\mathfrak{m}}^s/k)$ on peut trouver $\sigma \in G$ tel que $\overline{\sigma(\theta)} = \tau(\overline{\theta})$ parce que $p \mid P!!!$ Ensuite faut juste lift θ intelligemment pour que $\sigma \in D_{\mathfrak{m}}$. On lift de

$$\ker(\prod \tilde{\mathcal{O}}_K/\mathfrak{m}' \to \tilde{\mathcal{O}}_K/\mathfrak{m})$$

i.e. $\theta \in \prod_{\mathfrak{m} \neq \mathfrak{m}'} \mathfrak{m}' - \mathfrak{m}$ alors $\sigma^{-1}\mathfrak{m} = \mathfrak{m}'$ force $\sigma(\theta) \in \mathfrak{m}$ d'où

$$\tau(\bar{\theta}) = 0$$

puis $k_{\mathfrak{m}}^s=k.$ Suffit d'exclure ce cas (où le résultat est clair).

2.3 Résumé bref

Remarque 5. On a des nouvelles formules : e.f.g = [L : K]. ET |G| = |Gal(L/K)| = [L : K]. Faut utiliser ça exhaustivement.

Si L/K est galoisienne, pas forcément complète, on a une décomposition similaire, on fixe $\mathfrak{m} = \mathfrak{m}_L$ et $|.|_D, |.|_I$ les restriction de $|.|_{\mathfrak{m}}$ on a:

$$K - L^D - L^I - L$$

où $D=D_{\mathfrak{m}}$ et $I=I_{\mathfrak{m}}$. Maintenant L^D-K est inerte en \mathfrak{m} (e=1=f, d'où $\hat{K}=\hat{L^D}$!) et non ramifiée ($k_{L^D}-k_K$ est séparable). La raison

$$\bullet \ (|G|/|D|)e_{L/K}f_{L/K} = [L:K] \ \mathrm{et} \ |D| = e_{L/L^D}f_{L/L^D}.$$

Le dernier argument c'est quon a une unique extension de $|.|_D$ à $|.|_L$ vu que le groupe de galois (ici D)agit transitivement. En plus, $L \otimes_{L^D} \hat{L^D}$ est galoisienne sur $\hat{L^D}$ de même groupe de galois. Maintenant

$$L^D - L^I$$

est non ramifiée, $k_D = k_K$ et $k_I = k_{\mathfrak{m}}^s$ la clôture séparable de k_K dans $k_L = k_{\mathfrak{m}}$. Et $L^I - L$ est totalement ramifiée (elle a toute la ramification), en plus $k_{\mathfrak{m}}^s = k_I - k_{\mathfrak{m}}$ est purement inséparable. L'argument pour les deux consiste à utiliser exhaustivement l'exactitude de

$$1 \to I_{\mathfrak{m}} \to D_{\mathfrak{m}} \to Aut_k(k_L)$$

et le fait que $k_L - k$ est normale dans le cas où L/K galois (ca se montre bien en liftant etc..).

2.4 Résumé très bref

L'extension $K - L^D$ est immédiate car $\#\{\mathfrak{m}|\mathfrak{m}_K\} = |G/D| = [L^D:K]$, et $efg = |G/D||D| = |G/D|e_Df_D$. Maintenant k_L/k_I est purement inséparable car $Aut(k_L/k_I) = I/I = 1$ par la suite exacte sur L/L^I . Enfin,

$$[k_m^s:k] \le [k_I:k] = [k_I:k_D] \le |D/I|$$

sauf que le truc de gauche c'est |D/I| par la suite exacte car L/K est galoisienne d'où k_L/k est normale et $|Gal(k_{\mathfrak{m}}/k)| = k_{\mathfrak{m}}^s$. Et là $f_{sep} = [L^I : L^D]$. En conclusion k_L/k_I contient f_{insep} , L/L^I contient e, et L^I/L^D contient f_{sep} . Enfin, on regarde $L^I - L$, on peut supposer L^I complet, et $E = (L^I)^{tam}$. D'où la tour

$$L^{I}-(L^{I})^{tam}-L$$

Là $(L^I)^{tam}-L^I$ est totalement modérément ramifiée et fixée par I, d'où galoisienne de groupe de Galois T=I/P avec P le (car normal) p-sylow. Vu que $e_{L/(L^I)^{tam}}=p^{v_p(e)}$ et $k_L-k_{L^{I^{tam}}}=k_{L^I}$ est purement inséparable. Enfin, T est cyclique car L^I contient les racines $e/p^{v_p(e)}$ -eme de l'unité. Le groupe T est donné par $T\to \mu_{e/p^vp^{(e)}}$. Alors on a

$$K - L^D - L^I - L^P - L$$

2.5 Groupes de ramification

On se place dans le cas complet, alors G = D. On regarde les

$$G_i = \ker(Gal(L/K) \to \mathcal{O}_L/\mathfrak{m}_L^{i+1})$$

qu'on peut traduire en $v_L(\sigma(x)-x) \ge i+1$ pour tout $x \in \mathcal{O}_L$. Si $\mathcal{O}_L = \mathcal{O}_K[\alpha]$ on peut juste regarder sur α . On déf

$$i_G(\sigma) := v_L(\sigma(\alpha) - \alpha)$$

Remarque 6. On pourrait probablement le définir comme un min sinon. On a aussi $I = G_0$ et $P = G_1$ (c'est pas trivial le deuxième).

2.5.1 Quotients des groupes de ramifications

On regarde les G_i/G_{i+1} , le cas i=-1 c'est $D/I=Gal(k_L/k)$ donc on le saute. Le cas i=0 est un peu différent. On note $U^{(i)}=\ker(\mathcal{O}_L^{\times}\to (\mathcal{O}_L/\mathfrak{m}_L^i)^{\times})$. On a $U^{(i)}=1+\mathfrak{m}_L^i$ pour i>0 et $U^{(0)}=\mathcal{O}_L^{\times}$. On a (!)

$$\begin{cases} U^{(i)}/U^{(i+1)} \simeq k, \ i \neq 0 \\ U^{(0)}/U^{(1)} \simeq k^{\times}, \ i = 0 \end{cases}$$

le premier donné par $1 + \pi_L^i x \mapsto x$ le deuxième par $x \mapsto x$ (oui ca marche). Pour le premier, la multiplicativité modulo $U^{(i+1)}$ on écrit $y = 1 + \pi_L^i (x_1 + x_2) + \pi_L^{2i}(x_1x_2)$ et $x^{-1} = (1 + \pi_L^{2i}(x_1x_2)) \in U^{(2i)}$. Alors $x^{-1}y = 1 + \pi_L^i (x^{-1}(x_1 + x_2)) \mapsto x^{-1}(x_1 + x_2) = x_2 + x_2 \mod \mathfrak{m}_L$ car $x^{-1} \in 1 + \mathfrak{m}_L$. L'isomorphisme est une question de cardinalité. Maintenant on a

$$G_i/G_{i+1} \to U^{(i)}/U^{(i+1)}$$

donné par $\sigma \mapsto \sigma(\pi_L)/\pi_L$. En particulier, G_i/G_{i+1} est cyclique pour tout $i \geq 0$. Et dès que i > 0 c'est un p-groupe!

Remarque 7. $\sigma \mapsto \sigma(\pi_L)/\pi_L$ c'est l'ami de toujours, c'est un super morphisme de groupes injectifs. Injectif c'est facile mais morphisme de groupe c'est pas évident.

Plusieurs idées dans cette partie : L'idée c'est que $\sigma(x) - x \in \mathfrak{m}_L^{i+1}$ se traduit en $\sigma(x)/x - 1\mathfrak{m}_L^{i+1}/x$. Ducoup avec $x = \pi_L$,

$$\sigma(\pi_L)/\pi_L \in 1 + \mathfrak{m}_L^i = U^{(i)}$$

et avec $x = u \in U^{(i)}$ (!)

$$\sigma(u)/u \in 1 + \mathfrak{m}_L^{i+1} = U^{(i+1)}$$

trop cool. Ducoup en notant $\sigma(\pi_L) = \pi_L u$ avec $u \in U^{(i)}$ on a

$$\sigma_1(\sigma(\pi_L))/\pi_L = \sigma_1(\pi_L)\sigma_1(u)/\pi_L$$

et $\sigma_1(u) = (\sigma_2(\pi_L)/\pi_L)\sigma_1(u)/u$. Ducoup modulo $U^{(i+1)}$ c'est un morphisme de groupe (!).

Remarque 8. Pour rappel, on se restreint bien à $i \geq 0$. Quand i = -1 $\sigma \mapsto \sigma(\pi_L)/\pi_L$ est pas à valeur dans $U^{(i)}$, y'a pas de $U^{(-1)}$.