Árboles

Santi Seguí

Árboles

Objetivos

- Entender qué tipos de estructuras hay
- Entender qué es una estructura de árbol y para qué sirve
- Definir la estructura del árbol recursivamente
- ¿Qué componentes tiene un árbol?
- ¿Qué propiedades tiene un árbol?

Los arboles

- Las listas enlazadas son estructuras lineales
 - Son secuenciales, un elemento detrás de otro
- Los árboles
 - Junto con los grafos son estructuras de datos no lineales
 - Superan las desventajas de las listas
 - Distintas formas de recorrido
- Para que pueden ser muy útiles?
 - Son muy útiles para la búsqueda y recuperación de información

Colecciones jerárquicas

Estructura árbol

Elementos de los Arboles

Ejemplos

Ejemplos

La jerarquía del sistema de ficheros en Unix

Estructura de directorios y ficheros

Árbol correspondiente a las etiquetas de una página web

Ejemplos

- El árbol está compuesto por **nodos** y **ramas que conectan los nodos**, de forma que **cada nodo contiene un único predeceso**r!
- El nodo contiene la información
- Las ramas la conexión a otros nodos

- El nodo raíz (root) es el nodo principal (no hay ninguna rama que llega a este nodo)
- Nodo padre de un nodo n es el nodo desde donde sale la única rama que entra en el nodo n.
- Nodo hoja: un nodo que no tiene hijos

- Nodos hermanos: son los nodos que tienen el mismo padre
- Ancestros: son el padre de un nodo o el padre de algún nodo ancestro.
 - El nodo raíz es el ancestro de todos los nodos
- Nodo descendiente: el hijo de un nodo o el hijo de un descendiente suyo.
 - Todos los nodos son descendientes del nodo raíz.

Propiedades de un árbol

 Primera propiedad: los árboles son jerárquicos

 Segunda propiedad: Todos los hijos de un nodo son independientes

 Tercera propiedad: El camino hasta cualquier hoja es único

Definición recursiva de un árbol

Definición recursiva: el árbol es un conjunto finito de nodos que cumple

Existe un nodo especial llamado raíz

El resto de nodos están en n (n>= 0) particiones de conjuntos disjuntos T1, T2,Tn donde cada uno de estos conjuntos es un árbol.

• T1, T2,Tn son los subárboles del nodo raíz.

- Los subárboles de un nodo son disjuntos e.d. no puede haber conexiones entre los subárboles de un nodo.
- Nota: es una definición recursiva. Facilita la definición y la aplicación de funciones recursivas.

Terminologia de los Arboles

- Nivel de un Nodo
- Profundidad de un Nodo
- Altura (o profundidad) de un Árbol
- Altura de un Nodo
- Grado de un Árbol Grado de un Nodo
- Logitud de camino de un Árbol

¿Nivel de un nodo?

- El nivel de un nodo se define como sigue:
 - El nivel del nodo raíz es 1
 - Si un nodo está en el nivel L, sus hijos están en el nivel L+1
- La altura o profundidad de un árbol es el máximo nivel

¿Cómo medimos el grado de un árbol?

 El número de hijos de un nodo es el grado del nodo

 Las hojas o nodos terminales tienen grado cero

 Grado de un árbol: es el máximo grado de sus nodos

¿Cómo representar un árbol?

Podemos representar un árbol como una lista enlaza:

¿Cómo representar un árbol con una lista?

¿Si un nodo tiene n hijos, cuántos nodos auxiliares necesita?

- => Se utilizan mucho más nodos de los que tiene el árbol (desperdicio de memoria).
- => Se dificulta el diseño de los algoritmos

¿Cómo representar un árbol con una lista?

- Es deseable tener una representación específica para árboles
- El tamaño de los nodos (en particular, el número de enlaces) puede ser variable o fijo
- Se suele utilizar tamaño fijo según el grado del árbol

Info Hijo1 Hijo2	•••••	HijoN-1	HijoN
------------------	-------	---------	-------

¿Cuál es el grado óptimo de los árboles?

Propiedad: Si T es un árbol de grado k con n nodos de tamaño fijo,

entonces: n*(k-1)+1 de los enlaces son None, n>=1.

Demostración:

- El número de campos hijos distintos de cero en un árbol de n nodos es
 - n-1 (cada nodo es referenciado por una conexión excepto el nodo raíz).
- El número total de campos hijo en un árbol de grado k con n nodos será:
 - n*k.
- Los enlaces vacíos son el complemento de los enlaces ocupados:
 - (n*k)-(n-1)=n*(k-1)+1.

¿Cuál es el grado óptimo de los árboles?

- Los enlaces vacíos son: (n * k) (n 1) = n * (k 1) + 1
- Nota: Imaginemos un árbol de 1.000.000 nodos y grado 2. Tendremos 1.000.000+1 enlaces vacíos.
- Imaginemos un árbol de 1.000.000 nodos y grado 10000. Tendremos 1.000.000*9999+1 enlaces vacíos.
- Teniendo la misma cantidad de información (el mismo numero de nodos), "malgastaremos" mucha memoria
- Conclusión: hemos de intentar trabajar con árboles de grado pequeño.
- ¿Qué grados tienen sentido?
 - Si k=1: tenemos una lista.
 - Si k=2: tenemos un árbol donde cada nodo puede tener como máximo
 2 hijos. Se llama árbol binario.

¿Podemos decidir el grado del árbol?

Propiedad: Un árbol de cualquier grado se puede representar como árbol binario.

