Jakýsi úvod do diskrétní matematiky

Áďa Klepáčovic

25. května 2023

Obsah

1	Teorie grafů			
	1.1	Graf ja	ako algebraická struktura	8
		111	Podgrafy souvislost a metrika	10

1 | Teorie grafů

Velkou část moderní matematiky (zcela jistě topologii, geometrii i algebru) tvoří studium "struktur". Toto obecně nedefinované slovo obvykle značí množinu s nějakou další informací o vztahu mezi jejími prvky – tím obvykle bývá operace nebo třeba, jako v případě grafů, relace.

Tato kapitola zároveň značí jakýsi milník ve vývoji matematického myšlení, především algebraickým směrem. Můžeme se totiž začít bavit o speciálních zobrazeních, které zachovávají strukturu na množinách, mezi kterými vedou, tzv. homomorfismech; pochopit, že je dobré mít více popisů stejné struktury ekvivalentních v tom smyslu, že poskytují stejné množství informací, přestože se o žádné bijekci nedá formálně hovořit; uvidět, že je užitečné dva různé grafy (či obecně dvě různé struktury) považovat za stejné, když se liší pouze zanedbatelně.

Jednou, avšak zdaleka ne *jedinou*, motivací pro teorii grafů je schopnost analyzovat struktury tvořené množinou "uzlů", mezi některýmiž vedou "spojnice". Takováto struktura úspěšně modeluje až neuvěřitelné množství přírodních i společenských úkazů. Mezi nimi jmenujmež

- návrhy elektrických obvodů, kde uzly jsou elektrická zařízení a spojnice jsou kabely mezi nimi vedoucí;
- lingvistické modely, kde uzly jsou slova a spojnice vede mezi těmi syntakticky souvisejícími;
- studium molekul, kde uzly jsou atomy a spojnice vazby mezi nimi;
- analýza šíření fámy v sociologii, kde uzly jsou lidské komunity a spojnice vede mezi komunitami s bezprostředním kontaktem.

Snad pro to, že uzly a spojnice grafu se obvykle kreslí jako body a úsečky v prostoru, ujaly se pro ně názvy *vrcholy* a *hrany* (jako v mnohoúhelnících), respektive. Struktura zvaná *graf* tedy sestává ze dvou údajů:

- (1) množiny (obvykle konečné) vrcholů značené V a
- (2) množiny hran *E*, která je spjata s množinou vrcholů; toto "sepětí" se však definuje různě, v závislosti na vkusu a aplikaci. My si ukážeme tři z jistě většího množství různých definic.

Asi prvním přirozeným kandidátem pro "strukturu" je množina s relací. To je také první způsob, jak si budeme definovat pojem *graf*. Je to také ten nejobecnější v tom smyslu, že jeho pouze drobné modifikace nám umožní definovat i obdobné struktury, jež také zmateně slují *grafy*, byť s připojeným atributem.

Abychom úsečky mezi body mohli popsat jako relaci, čili pomocí uspořádaných dvojic bodů, zcela jistě budeme požadovat, aby nevedly úsečky z bodu do něho samého. Úsečku délky 0 lze totiž triviálně ztotožnit s bodem. Dále, úsečka z bodu A do bodu B je jistě tatáž, kterak úsečka z bodu B do bodu A. Tento fakt musí rovněž relace E odrážet.

První vlastností relace se, snad nepřekvapivě, říká *antireflexivita*. Čili, relace E na V je *antireflexivní*, když hrana $(v, v) \notin E$ pro každý vrchol $v \in V$.

Druhou vlastnost už jsme potkali a nazvali ji symetrií. Požadujeme, aby s hranou $(v, w) \in E$ obsahovala E též hranu $(w, v) \in E$ pro každé dva vrcholy $v, w \in V$.

Definice 1.0.1 (Graf poprvé). Dvojici G := (V, E), kde V je konečná množina a E je relace na V, nazveme grafem, pokud je E antireflexivní a symetrická.

Poznámka. Z hlediska ryze formálního neodpovídá tato definice dokonale naší geometrické představě. My jsme totiž pouze požadovali, aby E obsahovala jak úsečku z v do w, tak úsečku z w do v, ale nikoli, aby se jednalo o $tut\acute{e}$ ž úsečku. Tedy, jedna úsečka mezi body je v množině E reprezentována dvěma dvojicemi.

Nápravou by bylo definovat navíc ještě relaci R na E, kde (v,v') je v relaci R s (w,w') právě tehdy, když (w,w')=(v',v) nebo (w,w')=(v,v'). Jinak řečeno, úsečka z bodu v do bodu v' je v relaci sama se sebou a s úsečkou z bodu v' do bodu v.

Uvážíme-li pak jako hrany grafu *G* nikoli množinu *E*, ale její třídy ekvivalence podle *R* (**Ověřte, že** *R* **je ekvivalence!**), dostaneme již přesnou množinovou paralelu bodů a úseček.

My však budeme v zájmu přehlednosti tento nedostatek ignorovat, protože není pro pochopení ani rozvoj teorie relevantní.

Cesta k druhé možné definici grafu není od první daleká. Stačí vlastně relaci E interpretovat trochu jinak. Přece, antireflexivní a symetrická relace je "totéž" jako množina dvouprvkových podmnožin V.

Vskutku, vezměme nějakou $E'\subseteq\binom{V}{2}$. Relaci E z definice 1.0.1 sestrojíme tak, že z množiny $\{v,w\}\in E'$ vyrobíme dvojice (v,w) a (w,v). Protože prvky v množině nejsou uspořádané a nemohou se opakovat, dává tato konstrukce opravdu antireflexivní a symetrickou relaci. Vizuálně odpovídá rozdělení úsečky mezi v a w na šipku z v do v a šipku z v do v.

Z druhé strany, mějme nějakou antireflexivní a symetrickou relaci E na V. Protože s dvojicí (v,w) obsahuje E i dvojici (w,v), můžeme z těchto dvojic ztvárnit množinu $\{v,w\}$. Relace E je antireflexivní, čili se nemůže stát, že v=w, a množina $\{v,w\}$ je pročež vždy dvouprvková. Posbíráme-li všechny množiny $\{v,w\}$ do jedné velké množiny E', bude platit $E'\subseteq \binom{V}{2}$. Vizuálně odpovídá tato konstrukce slepení šipky z v do v a šipky z v do v do jedné úsečky mezi v a v.

Výstraha. Mezi množinami E a E' **nemůže existovat bijekce**, třeba jen pro to, že #E = 2#E'. Co konstrukce v předchozích dvou odstavcích ukazují, je pouze fakt, že pro naše účely definují E a E' stejnou strukturu na množině V.

Ovšem, uvážili-li bychom místo E pouze třídy ekvivalence jejích prvků podle relace R popsané v poznámce pod definicí 1.0.1, pak bychom skutečně tímto způsobem našli bijekci s množinou E'.

Definice 1.0.2 (Graf podruhé). Dvojici G := (V, E'), kde V je konečná množina a $E' \subseteq \binom{V}{2}$, nazveme *grafem*.

Třetí pohled na hrany v grafu je více "kategoriální". Zatímco množiny E a E' jsou závislé ve své definici na množině V, třetí množina hran E'', kterou si zde definujeme, bude libovolná konečná množina.

Tento popis grafové struktury bude odpovídat trochu jiné představě; konkrétně takové, kdy začínáme s množinou bodů V a s množinou šipek E (jež jsou od sebe naprosto odděleny) a oba konce každé šipky zapíchneme do dvou různých bodů z V. Toto "zapíchnutí" realizují zobrazení $s,t:E''\to V$ (z angl. source a target), která zobrazují šipky z E'' do bodů z V. Přičemž

budeme trvat na tom, aby $s(e) \neq t(e)$ pro všechny šipky $e \in E''$ a navíc, aby pro každou $e \in E''$ existovala šipka $e' \in E''$ taková, že s(e) = t(e'), t(e) = s(e'). Lidsky řečeno, nesmíme zapíchnout konce šipky do téhož vrcholu a, když zapíchneme začátek šipky do bodu v a její konec do bodu w, pak musíme vzít další šipku, jejíž začátek zapíchneme do w a konec do v.

Je snadné si rozmyslet, že z množiny šipek E'' zrekonstruujeme množinu E z definice 1.0.1 tak, že z šipky $e \in E''$ vytvoříme dvojici $(s(e), t(e)) \in E$. Podmínky kladené na zobrazení s a t zaručují, že vzniklá množina E je relace na V, která je antireflexivní a symetrická. V tomto případě dává uvedená konstrukce dokonce bijekci $E \cong E''$, čili jsme opět definovali tutéž strukturu na V.

Tato struktura bude zvlášť užitečná, až budeme probírat toky v síti.

Definice 1.0.3 (Graf potřetí). Čtveřici G := (V, E'', s, t), kde V a E'' jsou konečné množiny a s a t jsou zobrazení $E'' \rightarrow V$ nazveme grafem, pokud

- (a) $s(e) \neq t(e) \forall e \in E''$ a
- (b) $\forall e \in E'' \exists e' \in E'' : s(e) = t(e') \land t(e) = s(e').$

Poznámka. Opět, aby definice 1.0.3 odpovídala představě bodů a úseček (nebo oboustranných šipek), museli bychom definovat relaci R na E tak, aby e a e' byly v R, právě když s(e) = s(e') a t(e) = t(e') nebo s(e) = t(e') a t(e) = s(e'). V takovém případě bychom mohli sestrojit bijekci mezi E'' a E' z definice 1.0.2.

Příklad. Af $V := \{1, 2, 3, 4, 5\}$ a

- (1) $E := \{(1,2),(2,1),(1,3),(3,1),(1,4),(4,1),(1,5),(5,1),(2,3),(3,2),(4,5),(5,4)\};$
- (2) $E' := \{\{1,2\},\{1,3\},\{1,4\},\{1,5\},\{2,3\},\{4,5\}\};$
- (3) $E'' := \{e_1, e_2, e_3, e_4, e_5, e_6, e_1', e_2', e_3', e_4', e_5', e_6'\}$, kde (a) $s(e_1) = s(e_2) = s(e_3) = s(e_4) = 1$, $s(e_5) = 2$, $s(e_6) = 4$,

- (b) $t(e_1) = 2$, $t(e_2) = t(e_5) = 3$, $t(e_3) = 4$, $t(e_4) = t(e_6) = 5$ a
- (c) $(s(e_i), t(e_i)) = (t(e_i'), s(e_i'))$ pro všechna $i \le 6$.

Není těžké nahlédnout, že E, E' i (E'',s,t) definují tutéž strukturu na V. Nakreslíme si grafy G=(V,E), G'=(V,E') a G''=(V,E'',s,t). Přičemž hrany z E budeme kreslit jako oboustranné šipky, ty z E' jako prosté úsečky a ty z E'' rozdělíme na dvě protichůdné šipky, abychom vyjádřili rozdíly v interpretaci těchto grafových struktur.

Graf G = (V, E) vypadá například takto. Pomněte, že například oboustranná šipka mezi vrcholy 1 a 2 představuje ve skutečnosti **dvě** dvojice – (1,2) a (2,1) z relace E.

Obrázek 1: Graf jako množina V s relací E.

Zcela stejně vypadá i graf G' = (V, E').

Obrázek 2: Graf jako množiny V a $E' \subseteq {V \choose 2}$.

Konečně, G'' = (V, E'', s, t) můžeme načrtnout taktéž velmi podobně.

Výstraha. Grafová struktura je obecně zcela nezávislá na jejím nakreslení. Například graf G = (V, E') z předchozího příkladu lze ekvivalentně vyobrazit třeba následovně.

Obrázek 4: Graf G = (V, E') nakreslený jinak.

V následujícím textu spojíme všechny tři interpretace dohromady a pro $v,w\in V$ budeme hranu mezi v a w značit zjednodušeně jako vw. Pokud nehrozí nedorozumění, budeme pod tímto zápisem rozumět hranu, jejíž začátek je v a konec w, čili s(vw)=v a t(vw)=w. Avšak, kdykoli se nám to bude hodit, ztotožníme ji bez okolků s hranou wv s obrácenými konci.

Tento neformální přístup k popisu hran se může zdát jako nebezpečný, ale jak uvidíme, ve skutečnosti velmi zjednodušuje zápis a újma na rigorozitě je obecně minimální. Kompletněji řečeno, hranou mezi dvěma vrcholy $v,w\in V$ myslíme buď dvojici $(v,w)\in E$ nebo dvojici $(w,v)\in E$ nebo množinu $\{v,w\}\in E'$ nebo prvek $e\in E''$ takový, že s(e)=v a t(e)=w, nebo prvek $e'\in E''$ takový, že s(e')=w a t(e')=v, a je nám to u ...

Obecně, v teorii grafů se velmi často pracuje s konečnými posloupnostmi (či *n*-ticemi, chcete-li) vrcholů a hran. Zavedeme proto zjednodušené zna-

čení $x_1x_2\cdots x_n$ pro uspořádanou n-tici (x_1,\ldots,x_n) . Kdyby hrozil konflikt se zápisem součinu prvků $x_1,...,x_n$, samozřejmě tento úzus dočasně opustíme.

Cvičení 1.0.1. Nakreslete graf G = (V, E), kde

- $V = \{1, ..., 5\}, E = \{\{1, 2\}, \{1, 3\}, \{1, 5\}, \{2, 3\}, \{3, 4\}, \{4, 5\}\}.$
- $V = \{1, ..., 5\}, E = {V \choose 2}.$ $V = \{1, ..., 8\}, E = \{e_1, ..., e_8\}$ a $t(e_i) = s(e_{i+1}) = i + 1$ pro všechna $i \le 7$, $\circ t(e_8) = s(e_1) = 1.$

Cvičení 1.0.2. Popište všechny grafy G = (V, E), kde E je relace na V, která je antireflexivní, symetrická (to je součástí definice grafu) a navíc transitivní.

Cvičení 1.0.3. At V je konečná množina a E je relace na V, která je antireflexivní a symetrická. Definujme navíc na E další relaci ~ předpisem

$$(v,v') \sim (w,w') \Leftrightarrow (v,v') = (w,w') \lor (v,v') = (w',w).$$

Dokažte, že pak existuje bijekce mezi $[E]_{\sim}$ a množinou

$$E' := \{ \{v, v'\} \mid (v, v') \in E \},$$

čili mezi množinou tříd ekvivalence E podle ~ a množinou, kterou dostanu tak, že z uspořádaných dvojic v E udělám neuspořádané dvojice, tj. dvouprvkové podmnožiny. Pro intuici vizte poznámku pod definicí 1.0.1.

Cvičení 1.0.4. Spočtěte, kolik existuje grafů na *n* vrcholech.

1.1 Graf jako algebraická struktura

Snad poněkud tajemný název sekce v sobě skrývá jiný pohled na graf, než jsme chovali doposud. Mimo jejich využití v modelování systémů, které lze reprezentovat jako sítě uzlů a spojnic, jsou grafy též velmi užitečné ve více "abstraktních" údech matematiky. Představují totiž v jistém smyslu nejvolnější strukturu na množině, která je vůbec ještě užitečná.

Abychom osvětlili, co tímto výrokem míníme, uvážíme *ještě další* pohled na hrany grafu *G*. Záměrně jsme teď neuvedli množinu hran, neb o nich vůbec nechceme takto přemýšlet. Samozřejmě, stále potřebujeme mít nějakou množinu *V*, na níž onu strukturu stavíme; tu někdy přezdíváme *bázovou*, protože skutečně tvoří jakýsi "základ" sestrojené struktury.

Intuitivně je příjemné nahlížet na množinové struktury jako na stavebnice. Bázová množina jsou její díly (každý máme k dispozici, kolikrát chceme) a způsob, kterým do sebe díly zapadají, je právě ona struktura.

Aniž si to pravděpodobně uvědomujete, narazili jste už v matematice na celou řadu struktur. Jako příklad uveď me množinu celých čísel \mathbb{Z} s operací násobení. Zde \mathbb{Z} je bázová množina a operace · je struktura na \mathbb{Z} . Definuje *jeden možný způsob*, jak do sebe díly nazvané celá čísla zapadají. Možná jste někdy přemýšleli o tom, co vlastně znamená slovo "operace". V případě · hovoříme o **binární** operaci, tedy o operaci na **dvou prvcích**. Přirozeně, nic nám nebrání definovat si operace na libovolném počtu celých čísel. Asi nejvíce přímočarý způsob, jak definovat (binární) operaci, je přes zobrazení. Čili, · je zobrazení

$$\cdot: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$$
,

které každou dvojici $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ zobrazí na $x \cdot y$.

Zkusme teď podobným způsobem definovat hrany na množině V. Binární operace na V by znamenala zobrazení $V \times V \to V$, tedy zobrazení, jež dvěma vrcholům přiřadí třetí vrchol. To asi není v tomto případě příliš směrodatné. Hrany však vždy existují mezi dvěma vrcholy, tedy volba množiny $V \times V$ jako domény se zdá smysluplná. Otázkou je, co má být kodoménou. Jedna možnost by byla opravdu uvážit nějakou další množinu hran E a směřovat zobrazení do ní. Tento pohled je vlastně opačný k našemu třetímu pojetí grafu. Místo toho, abychom přiřazovali dva vrcholy jedné hraně, tak přiřazujeme hranu páru vrcholů.

Existuje však mnohem přímější způsob. Přeci, abych dal najevo, že mezi párem vrcholů vede hrana, nemusím vybírat žádnou konkrétní hranu z předem definované množiny. Všechny hrany jsou stejné! Stačí mi si pouze u každých dvou vrcholů pamatovat, jestli mezi nimi vede hrana, či nikoliv. To jest, stačí mi libovolná dvouprvková podmnožina, jejíž jeden prvek znamená "Mezi těmito vrcholy nevede hrana," a ten druhý naopak "Mezi těmito vrcholy hrana vede".

Obvyklou volbou (zvláště v informatice) je množina $\{0,1\}$, kde 0 tradičně značí, že hrana neexistuje, a 1, že ano. Příznivci čisté logiky možná uvítají množinu $\{\bot, \top\}$, kde \bot je logická konstanta "lež" a \top je logická konstanta "pravda". My se budeme držet čtenářům spíše přirozenější volby, $\{0,1\}$.

Čili, hranami mezi vrcholy z množiny V myslíme strukturu na V danou zobrazením

$$\varepsilon: V \times V \to \{0,1\}.$$

Konečně vysvětlíme, co myslíme tím, že takováto struktura je v podstatě nejvolnější možná. Totiž, když pro libovolnou dvojici $v,w \in V$ změníme obraz $\varepsilon(v,w)$ třeba z 0 na 1, stále tím dostaneme validní strukturu hran na V ve smyslu svojí definice. Čili, **úplně každé** zobrazení $V \times V \rightarrow \{0,1\}$ postaví strukturu na množině V. To je intuitivně ekvivalentní tomu, že každé dva díly stavebnice do sebe zapadají jakýmkoli způsobem. Je zřejmé, že "volnější" stavebnice než taková už neexistuje.

Naopak, vratme se k příkladu celých čísel s operací násobení. Co by se stalo, kdybychom se ráno vzbudili a rozhodli se, že odteď $2 \cdot 3 = 5$, ale veškeré ostatní vlastnosti násobení (jako třeba i komutativita a asociativita) zůstanou beze změny? Tato jedna úprava by zcela rozbourala celou strukturu násobení na \mathbb{Z} , protože najednou by například nebylo možné definovat sudá a lichá čísla (2 by dělila všechny násobky 5), 6 by byla prvočíslo (její rozklad býval $2 \cdot 3$), 10 by se rovnalo 12, jelikož

$$10 = 2 \cdot 5 = 2 \cdot (2 \cdot 3) = (2 \cdot 2) \cdot 3 = 4 \cdot 3 = 12$$
,

a způsobila nekonečně mnoho dalších trhlin. Intuitivně, násobení na \mathbb{Z} je stavebnice, kde do sebe každé dva díly zapadají přesně jediným způsobem.

Po tomto neformálním úvodu se na chvíli ponoříme do hlubin struktury zvané *graf*, povíme si, co znamená "podstruktura", že graf se dá též vnímat jako prostor, a že můžeme přes zobrazení skákat mezi různými grafy.

V následujícím nemusíme hovořit o hranách jako o zobrazení $\varepsilon: V \times V \to \{0,1\}$ popsaném výše. Naše původní představa množiny E postačuje. Není však špatné tuto myšlenku uchovat v hlavě, k čemuž slouží následující, extrémně snadné, cvičení.

Cvičení 1.1.1. Rozmyslete si, jak upravit zobrazení

$$\varepsilon: V \times V \rightarrow \{0,1\}$$

definující hranovou strukturu na množině vrcholů tak, aby zahrnovalo i všechny **ohodnocené** grafy.

1.1.1 Podgrafy, souvislost a metrika

V této relativně krátké podsekci dáme formální tvář představě, že

- (1) nějaký graf je "uvnitř" druhého;
- (2) graf je souvislý a rozpadá se na tzv. *komponenty souvislosti*, tedy maximální souvislé části;
- (3) graf je *metrický* prostor, tedy prostor, ve kterém lze měřit vzdálenosti.

Začneme bodem (1), vedoucím na pojem *podgrafu*. Jeho definice je opravdu nejjednodušší možná, požadujeme pouze, aby vrcholy a hrany podgrafu tvořili podmnožinu vrcholů a hran většího grafu.

Definice 1.1.1 (Podgraf). Af G = (V, E) je graf. Řekneme, že graf H = (V', E') je podgrafem G, pokud

$$V' \subseteq V$$
 a $E' \subseteq E$.

Poznámka. Žádáme čtenáře, aby sobě povšimli, že podgraf **nemusí zachovat** hranovou strukturu svého nadgrafu. Přesněji, definice podgrafu neobsahuje podmínku, že mezi vrcholy *H* musí vést hrana, pokud mezi těmi samými vrcholy v *G* hrana vedla.

Taková definice je z pohledu algebraika zhola zbytečná, bať odpudivá. Hranová struktura je zásadní součástí definice grafu a měla by být dodržena. Z tohoto důvodu se nehodí říkat, že by podgraf byl *podstrukturou* svého nadgrafu, kterakžekolivěk vágně je ono slovo vyloženo.

Předchozí poznámka motivuje definici *indukovaného podgrafu*, podgrafu, jemuž je přikázáno původní strukturu zachovat. Žargonový výraz "indukovaný" v tomto kontextu obyčejně znamená přibližně "plynoucí z". Čili, indukovaný podgraf je podgraf, jehož struktura **plyne ze** struktury vyššího grafu.

Tuto podmínku lze formulovat snadno. Díváme-li se na hrany jako na podmnožiny systému dvouprvkových podmnožin V, tedy jako na množinu $E\subseteq\binom{V}{2}$, pak požadavek, aby nějaký podgraf H=(V',E') grafu G=(V,E) obsahoval spolu s každou dvojicí vrcholů i hranu mezi nimi, pokud je v E, lze vyjádřit zkrátka tak, že nařídíme, aby $E'=E\cap\binom{V'}{2}$, tedy aby E' byla vlastně množina E, ve které necháme jen ty hrany, které vedou mezi vrcholy z V'.

Definice 1.1.2 (Indukovaný podgraf). Af G = (V, E) je graf a H = (V', E') jeho podgraf. Řekneme, že H je indukovaný (grafem G), pokud **zachovává hranovou strukturu na** G, to jest,

$$E' = E \cap \binom{V'}{2}.$$

(b) Indukovaný podgraf.

Obrázek 5: Rozdíl mezi podgrafem a *indukovaným* podgrafem.