8.1 Introduction

CSE 674 Advanced Data Structures and Algorithms

8.2 Introduction to Graphs

CSE 674 Advanced Data Structures and Algorithms

Graphs

A Graph:
$$G = (V, E)$$

- 1. Definition: Undirected Graphs; Directed Graphs
- 2. Terms vertices, edges, paths, degrees, connected graphs, cycles etc.
- 3. Facts such as:

Handshaking Lemma :
$$\sum_{v \in V} \deg(v) = 2|E|$$

4. Representation: Adjacency Matrix; Adjacency List

Illustrations: Graphs and its basic features I

Illustrations: Graphs and its basic features II

Undirected Graphs

Figure: Representing an un-directed graph

Directed Graphs

Figure: Representing a directed graph

Question

Draw the adjacency matrix for the *directed* graph $H = (V_H, E_H)$ where

- 1. Vertex set of $H = V_H = \{1, 2, 3, 4, 5\}$
- 2. The set of edges of *H*:

$$E_H = \{(1\ 2), (2\ 3), (1\ 3), (2\ 4), (5\ 1), (5\ 3)\}$$

Answer:

Illustrations: Adjacency Lists and its features

8.3 Breadth First Search I

CSE 674 Advanced Data Structures and Algorithms

Graph Search: Basic Algorithms

- 1. Breadth First Search
- 2. Depth First Search

Illustrations for Basic Graph Search Strategies

Breadth First Depth First

Breadth First Search Example

Illustrations: Breadth First Search

Question

Question Fill in the blanks:

When performing *breadth first search*, we use the _____ data structure to help selecting the next vertex to be examined.

The Breadth First Search Algorithm

```
BFS(V, E, s)
 for each u \in V - \{s\}
      u.d = \infty
 s.d = 0
 O = \emptyset
 ENQUEUE(Q, s)
 while Q \neq \emptyset
      u = \text{DEQUEUE}(Q)
      for each v \in G.Adj[u]
           if v.d == \infty
                v.d = u.d + 1
                ENQUEUE(O, v)
```

Question

T:11	:	ـ ـ اـ	L	٠. ـ ا	I
FIII	ı ın	the	D	ıan	KS:

In the pseudocode of the breadth first search algorithm given:

8.4 Breadth First Search II

CSE 674 Advanced Data Structures and Algorithms

Analyzing Breadth First Search: Background

- 1. For a graph G=(V,E), its 'size' has two parameters: |V| and |E|
- 2. If the graph is a tree, then |E| = |V| 1 = O(|V|)
- 3. If the graph is a complete graph, then

$$|E| = \frac{|V|(|V|-1)}{2} = O(|V|^2)$$

- 4. When $|E| = \Theta(|V|^2)$, we may call that graph a *dense* graph.
- 5. When |E| = O(|V|), we may call that graph a *sparse* graph.

The Breadth First Search Algorithm

```
BFS(V, E, s)
 for each u \in V - \{s\}
      u.d = \infty
 s.d = 0
 O = \emptyset
 ENQUEUE(Q, s)
 while Q \neq \emptyset
      u = \text{DEQUEUE}(Q)
      for each v \in G.Adj[u]
           if v.d == \infty
                v.d = u.d + 1
                ENQUEUE(O, v)
```

Analyzing Breadth First Search I

Discussions What is the worst case running time for Breadth First Search?

Analyzing Breadth First Search II

Question

I	Fi	il	П	in	١t	h	٩	h	دا	n	ks	
1		ш		ш	ΙL	П		U	ıa	и	N5	

Given a graph G with n vertices, the worst case running time for running breadth first search over G is (in Big-O notation):

Case 1: The graph is sparse

Case 2: The graph is *dense*

Finding Shortest Path via BFS

- 1. When performing BFS, we are building a BFS tree.
- 2. We can remember the predecessor π of each node in the tree.
- 3. We can recover the shortest path from the predecessor relation π after running BFS.

Question

Fill in the blanks:

vertex	r	s	t	и	V	W	X	у
predecessor								

Illustrations: Finding Shortest Path

Finding Shortest Path: Code

```
PRINT-PATH(G, s, v)

1 if v == s

2 print s

3 elseif v.\pi == NIL

4 print "no path from" s "to" v "exists"

5 else PRINT-PATH(G, s, v.\pi)

6 print v
```

8.5 Depth First Search I

CSE 674 Advanced Data Structures and Algorithms

Depth First Search: Example

Question

Question: Which of the following best describes the key features in the previous sequence of diagrams:

- 1. Each node is colored either in white, grey or black
- 2. Each node is eventually labelled by 2 numbers
- 3. Each edge is either without labelled or eventually labelled by one of these symbols: *C*, *B* or *F*.
- 4. All of the above

Illustrations: Depth First Search I

Illustrations: Depth First Search II

Properties of Depth First Search

Pseudocode for DFS (Part I)

```
\begin{aligned} \mathsf{DFS}(G) \\ & \textbf{for} \ \mathsf{each} \ u \in G.V \\ & u.color = \mathsf{WHITE} \\ & \mathit{time} = 0 \\ & \textbf{for} \ \mathsf{each} \ u \in G.V \\ & \textbf{if} \ u.color == \mathsf{WHITE} \\ & \mathsf{DFS-VISIT}(G,u) \end{aligned}
```

Pseudocode for DFS (Part II)

```
DFS-VISIT(G, u)
 time = time + 1
 u.d = time
 u.color = GRAY
                                // discover u
 for each v \in G.Adj[u]
                                /\!\!/ explore (u, v)
      if v.color == WHITE
          DFS-VISIT(\nu)
 u.color = BLACK
 time = time + 1
 u.f = time
                                // finish u
```

8.6 Depth First Search II

CSE 674 Advanced Data Structures and Algorithms

Pseudocode for DFS

We will re-visit the pseudocode for DFS, which consists of

- 1. DFS-VISIT
- 2. DFS

Pseudocode for DFS	Pseudocode for DFS-VISIT	
$\begin{aligned} DFS(G) \\ & \textbf{for } each \ u \in G.V \\ & u.color = WHITE \\ & \mathit{time} = 0 \\ & \textbf{for } each \ u \in G.V \\ & \mathbf{if} \ u.color == WHITE \\ & DFS-VISIT(G,u) \end{aligned}$	$\begin{aligned} & \text{DFS-VISIT}(G, u) \\ & \textit{time} = \textit{time} + 1 \\ & \textit{u.d} = \textit{time} \\ & \textit{u.color} = \text{GRAY} \\ & \textbf{for each } v \in \textit{G.Adj[u]} \\ & \textbf{if } v.color = \text{WHITE} \\ & \textit{DFS-VISIT}(v) \\ & \textit{u.color} = \text{BLACK} \\ & \textit{time} = \textit{time} + 1 \\ & \textit{u.f} = \textit{time} \end{aligned}$	// discover u // explore (u, v) // finish u

Worst Case Analysis

Discussions It is known that the worst case time complexity for DFS is $\Theta(|V| + |E|)$. Why ?

Question

Question Fill in the blanks:

Given a graph G with n vertices, the worst case running time for running depth first search over G is (in Big-O notation):

Case 1: The graph is *sparse*

Case 2: The graph is dense

Using DFS I

Types of edges:

- 1. Directed graphs: tree, forward, back, cross edges
- 2. Undirected graphs: tree and back edges

Question

Fill in the blanks:

After running DFS over a directed graph G, if there is at least one back edge found, then G has a ______.

Discussions

Discussions If a directed graph G has a cycle, will running DFS over G always produce at least one back edge?

8.7 Dijkstra's Algorithm

CSE 674 Advanced Data Structures and Algorithms

Shortest Path Algorithms I: Introduction

Single Source Shortest Path Problem

- G = (V, E); source vertex s
- ▶ Determine a shortest path from s to any vertex v, $v \in V$.

Noteworthy Properties

- Subpaths of shortest paths are shortest paths (Lemma 24.1)
- ▶ If *G* contains no negative weight cycles reachable from the source *s*, then the shortest-path weight remains well defined (can be negative).
- A shortest path can be made cycle free.

Shortest Path Algorithms II: Variants

Variants may include

1. Traversing an edge in E may include a cost.

Directed Graph G = (V, E) & weight function $w : E \to \mathbb{R}$

- 2. The cost of some edges may be negative
- 3. The graphs we consider has specific properties (e.g. acyclic, disconnected etc.)

Shortest Path Algorithms II: Variants

Similar formulations (See CLRS page 644):

- Single-destination shortest-paths problem
 Reverse the direction of each edge may help
- Single-pair shortest-path problem
 Set the source s to be the beginning vertex
- All-pairs shortest-paths problem Run a single source shortest path algorithm multiple times Can we have a faster method?

Shortest Path Algorithms III: Design Paradigms and new techniques

- Dynamic Programming
- Greedy Choice
- Relaxation Method
- Use properties of shortest paths and relaxation

Relaxation Method: The Two Steps

INIT-SINGLE-SOURCE (G, s) for each $v \in G$. V $v.d = \infty$ $v.\pi = \text{NIL}$	RELAX (u, v, w) if $v.d > u.d + w(u, v)$ v.d = u.d + w(u, v)
s.d = 0	$v.\pi = u$

Figure: Relaxing an edge

Relaxation Method: Discussions

Discussions

Can we view relaxation method as a basic step in developing short path algorithms ?

Breadth First Search (BFS) Revisited

Figure: An illustration for running BFS

Dijkstra's Algorithm

Figure: Running Dijkstra's Algorithm: an example

Questions Can you spot an relaxation step? Which data structure may help to locate the next vertex to be explored?

Dijkstra's Algorithm: Pseudocode

```
DIJKSTRA(G, w, s)

INIT-SINGLE-SOURCE(G, s)
S = \emptyset
Q = G.V  // i.e., insert all vertices into Q
while Q \neq \emptyset
u = \text{EXTRACT-MIN}(Q)
S = S \cup \{u\}
for each vertex v \in G.Adj[u]
\text{RELAX}(u, v, w)
```

Figure : Pseudocode for Dijkstra's Algorithm

Discussions

Does Dijkstra's algorithm apply the greedy strategy?

Dijkstra's Algorithm: Correctness

Figure: Why Dijkstra's Algorithm works as expected

Discussions

Use this diagram to explain why Dijkstra's algorithm work.

Dijkstra's Algorithm: Complexity

- 1. Choice of Data structure matters
- 2. $O(V^2)$ if an array is used to maintain the priority queue
- 3. O((|V| + |E|)Ig|V|) if a binary heap is used to maintain the priority queue
- 4. Can you more advanced data structure (Fibonacci Heap) to improve the run time (use amortized analysis)

SYRACUSE UNIVERSITY ENGINEERING & COMPUTER SCIENCE

CSE 674 Advanced Data Structures and Algorithms