 1. A single parameter model has mean-square error (MSE) defined below 1/1 . We have a half term in the front because, 	
$\frac{1}{2N} \sum_{n=1}^{N} (y_n - \beta_0)^2$	
Scaling MSE by half makes gradient descent converge faster.	
Presence of half makes it easy to do grid search.	
It does not matter whether half is there or not.	
None of the above	
2. A researcher wants to perform a simple linear regression to find out if 1/1 the socio-economic status of a teacher can predict whether they work at a primary or a secondary school. Why can't this be done?	
Because there are not enough variables for the analysis	
Because the outcome variable is nominal not continuous	
Can't Say	
Because socio-economic status can not be used as a predictor variable	

 \checkmark 3. Hypothesis function of a logistic regression classifier is given below. 2/2 Which of the following will represent the decision boundary of the classifier?

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

Where

$$\theta_0 = 6, \theta_1 = 0, \theta_2 = -1.$$

A

B

 \checkmark 4. If a linear regression model has zero training set error, then:

2/2

- Test error = Train error
- Can't comment on test error
- Test error is also always zero
- Test error is non-zero

✓ 13. Initialize A = 1.0, B = -2.0 . Setting alpha = 0.01 what would be the value of A (rounded off upto 3 decimal places) computed by gradient descent after 2500 iterations :	
● -3.839	
-3.843	
3.861	
-3.865	
14. For population of 135000, what is estimated profit predicted by the model (in \$) (For A=0.69,B=-0.42, Alpha = 0.01, Iterations=2500)	
160364.89	
O 16.04	
12.19	
15. For a population size of 80000, what is the predicted profit (in \$)? 3/3 (For A=2.0,B=-1.0, Alpha = 0.001, Iterations=1500)	
5.58	
6.56	
55800	
You've reached the end of the quiz! 0 of 0 points	
I have read all my answers and this is my final submission. *	
Yes	
○ No	

This content is neither created nor endorsed by Google. - $\underline{\text{Terms of Service}}$ - $\underline{\text{Privacy Policy}}$