Lecture 9: KNN Regression, Regression Trees, and Feature Selection

Benjamin M. Marlin

College of Information and Computer Sciences University of Massachusetts Amherst

Slides by Benjamin M. Marlin (marlin@cs.umass.edu). Created with support from National Science Foundation Award# IIS-1350522.

The Regression Task

Definition: The Regression Task

Given a feature vector $\mathbf{x} \in \mathbb{R}^D$, predict it's corresponding output value y.

The Regression Learning Problem

Definition: Regression Learning Problem

Given a data set of example pairs $\mathcal{D} = \{(\mathbf{x}_i, y_i), i = 1 : N\}$ where $\mathbf{x}_i \in \mathbb{R}^D$ is a feature vector and $y_i \in \mathbb{R}$ is the output, learn a function $f: \mathbb{R}^D \to \mathbb{R}$ that accurately predicts y for any feature vector **x**.

Review 000

Review 000

Definition: Mean Squared Error

Given a data set of example pairs $\mathcal{D} = \{(\mathbf{x}_i, y_i), i = 1 : N\}$ and a function $f: \mathbb{R}^D \to \mathcal{Y}$, the mean squared error of f on \mathcal{D} is:

$$MSE(f, \mathcal{D}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - f(\mathbf{x}_i))^2$$

Related measures include:

Sum of Squared Errors: $SSE(f, \mathcal{D}) = N \cdot MSE(f, \mathcal{D})$

Risidual Sum of Squares: $RSS(f, \mathcal{D}) = N \cdot MSE(f, \mathcal{D})$

Root Mean Squared Error: $RMSE(f, \mathcal{D}) = \sqrt{MSE(f, \mathcal{D})}$

The KNN regression is a non-parametric regression method that simply stores the training data \mathcal{D} and makes a prediction for each new instance \mathbf{x} using an average over it's set of K nearest neighbors $\mathcal{N}_K(\mathbf{x})$ computed using any distance function $d: \mathbb{R}^D \times \mathbb{R}^D \to \mathbb{R}$.

KNN Regression Function

$$f_{KNN}(\mathbf{x}) = \frac{1}{K} \sum_{i \in \mathcal{N}_K(\mathbf{x})} y_i$$

As with classification, use of KNN requires choosing the distance function d and the number of neighbors K.

Example: 1D KNN (K=1 vs K=9)

Example: 2D KNN (K=1 vs K=9)

Weighted KNN Regression

Instead of giving all of the *K* neighbors equal weight in the average, a distance-weighted average can be used:

$$f_{KNN}(\mathbf{x}) = \frac{\sum_{i \in \mathcal{N}_K(\mathbf{x})} w_i y_i}{\sum_{i \in \mathcal{N}_K(\mathbf{x})} w_i}$$
$$w_i = \exp(-\alpha d_i)$$

- A regression tree makes predictions using a conjunction of rules organized into a binary tree structure.
- Each internal node in a regression tree contains a rule of the form $(x_d < t)$ or $(x_d = t)$ that tests a single data dimension d against a single threshold value t and assigns the data case to it's left or right sub-tree according to the result.
- A data case is routed through the tree from the root to a leaf. Each leaf node is associated with a predicted output, and a data case is assigned the output of the leaf node it is routed to.

Example: 2D Regression Trees

Building Regression Trees

Algorithm 1 BuildTree(Root, \mathcal{D} , h, minS, maxD)

```
d, t = BestSplit(\mathcal{D})
\mathcal{D}_1 = \{(y_i, \mathbf{x}_i) | x_{di} \le t\}, \, \mathcal{D}_2 = \{(y_i, \mathbf{x}_i) | x_{di} > t\}
if |\mathcal{D}_1| \le minS or h+1 \ge maxD then
   Root.RightChild.Prediction = \frac{1}{|\mathcal{D}_1|} \sum_{y \in \mathcal{D}_1} y
else
   BuildTree(Root.RightChild, \mathcal{D}_1, h+1, minS, maxD)
if |\mathcal{D}_2| \le minS or h+1 \ge maxD then
   Root.LeftChild.Prediction = \frac{1}{|\mathcal{D}_2|} \sum_{v \in \mathcal{D}_2} y
else
   BuildTree(Root.LeftChild, \mathcal{D}_2, h+1, minS, maxD)
Root.d = d.Root.t = t
return Root
```

Finding the Best Split

Review

Algorithm 2 $BestSplit(\mathcal{D})$

```
for d from 1 to D do
    \mathbf{s} = sort(\{x_{d1}, ..., x_{dN}\})
    for t in \{(s_i + s_{i+1})/2 | i = 1...N - 1\} do
         \mathcal{D}_1 = \{(y_i, \mathbf{x}_i) | x_{di} < t\}
        \mathcal{D}_2 = \{(y_i, \mathbf{x}_i) | x_{di} > t\}
        \bar{y}_1 = \frac{1}{|\mathcal{D}_1|} \sum_{y \in \mathcal{D}_1} y
        \bar{y}_2 = \frac{1}{|\mathcal{D}_2|} \sum_{y \in \mathcal{D}_2} y
        Score(d, t) = \sum_{y \in D_1} (y - \bar{y}_1)^2 + \sum_{y \in D_2} (y - \bar{y}_2)^2
d, t = \arg\min_{d', t'} Score(d, t)
return (d,t)
```

Example: Building Regression Trees

Best Subset Selection

Review

Algorithm 6.1 Best subset selection

- 1. Let \mathcal{M}_0 denote the null model, which contains no predictors. This model simply predicts the sample mean for each observation.
- 2. For $k = 1, 2, \dots p$:
 - (a) Fit all $\binom{p}{k}$ models that contain exactly k predictors.
 - (b) Pick the best among these $\binom{p}{k}$ models, and call it \mathcal{M}_k . Here best is defined as having the smallest RSS, or equivalently largest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using crossvalidated prediction error, C_p (AIC), BIC, or adjusted \mathbb{R}^2 .

Algorithm 6.2 Forward stepwise selection

- 1. Let \mathcal{M}_0 denote the *null* model, which contains no predictors.
- 2. For $k = 0, \ldots, p-1$:
 - (a) Consider all p-k models that augment the predictors in \mathcal{M}_k with one additional predictor.
 - (b) Choose the best among these p-k models, and call it \mathcal{M}_{k+1} . Here best is defined as having smallest RSS or highest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using crossvalidated prediction error, C_p (AIC), BIC, or adjusted \mathbb{R}^2 .

Backward Stepwise Selection

Algorithm 6.3 Backward stepwise selection

- 1. Let \mathcal{M}_p denote the full model, which contains all p predictors.
- 2. For $k = p, p 1, \dots, 1$:
 - (a) Consider all k models that contain all but one of the predictors in \mathcal{M}_k , for a total of k-1 predictors.
 - (b) Choose the best among these k models, and call it \mathcal{M}_{k-1} . Here best is defined as having smallest RSS or highest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using crossvalidated prediction error, C_n (AIC), BIC, or adjusted R^2 .