- 2) Несобственные интегралы
- 2.1 Определения
- 1* Интегралы на неограниченном промежутке

Геометрический смысл: пусть $f(x):[a;+\infty]\to\mathbb{R},\, f(x)\in C_{[a;+\infty]}$

Тогда определенный интеграл имеет смысл - это площадь под графиком функции:

$$\int_{a}^{b} f(x)dx = S$$

Имеет ли смысл площадь неограниченной фигуры под графиком функции?

Предел функции $\Phi(b) = \int_a^b f(x) dx$ при $b \to +\infty$ может быть конечным или бесконечным

Def.1: Определим несобственный интеграл первого рода (на неограниченном промежутке) (f(x) любого знака):

$$\int_{a}^{+\infty} f(x)dx = \lim_{b \to +\infty} \int_{a}^{b} f(x)dx$$

Nota: Если этот предел существует и конечен, то говорят, что интеграл сходится. В противном случае расходится

Def.2: Функция определена на полуинтервале $[-\infty; b]$ и непрерывна. Тогда определен:

$$\int_{-\infty}^{b} f(x)dx = \lim_{a \to -\infty} \int_{a}^{b} f(x)dx$$

Def.3:
$$\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{c} f(x)dx + \int_{c}^{+\infty} f(x)dx$$

Nota: Этот интеграл сходится, если сходятся оба интеграла справа, и расходится, если расходится хотя бы один из них (в том числе если возникает неопределенность $\infty - \infty$)

$$Ex: f(x) = \frac{1}{x}$$

Сделаем ее непрерывной

$$S_1=S_2$$
, но $I_1=-I_2$. Суммарный интеграл $\int_{-\infty}^{+\infty}f(x)dx$ должен быть равен нулю.

Ho по определению $\int_{-\infty}^{+\infty} f(x)dx$ расходится

Чтобы учесть обнуление интеграла в ситуации взаимного погашения площадей S_1 и S_2 (а это происходит тогда, когда левый и правый концы промежутка синхронно стремятся к $+\infty$)

используют понятие интеграла в смысле главного значения (v.p. - от французского valeur principale):

$$v.p. \int_{-\infty}^{+\infty} f(x)dx = \lim_{\delta \to -\infty} \int_{-\delta}^{\delta} f(x)dx$$

Разложение по формуле Йьютона-Лейбница

Ex.1:

$$\int_{-\infty}^{+\infty} \frac{dx}{1+x^2} = arctgx \Big|_{-\infty}^{+\infty} = arctgx \Big|_{-\infty}^{c=0} + arctgx \Big|_{c=0}^{+\infty} = \lim_{x \to +\infty} arctgx - arctg(0) + arctg(0) - \lim_{x \to -\infty} arctgx = \frac{\pi}{2} + \frac{\pi}{2} = \pi$$

Ex.2:

$$\int_{1}^{+\infty} \frac{dx}{x lnx} = \int_{1}^{+\infty} \frac{d lnx}{lnx} = \int_{0}^{+\infty} \frac{dt}{t} = lnt \Big|_{0}^{+\infty} = lnlnx \Big|_{1}^{+\infty} = \lim_{x \to +\infty} lnlnx - \lim_{x \to 1} lnlnx = \infty - \infty$$
 - расходится

Заметим нарушение непрерывности функции $\frac{1}{x lnx}$ в x=1, что привело к $lnlnx \to -\infty$ при $x \to 1$

Это не интеграл первого рода, а комбинация интегралов первого и второго рода

2* Интеграл от неограниченной на отрезке функции:

 $f(x):[a;b) \to \mathbb{R},$ где b - точка разрыва второго рода, а именно бесконечного

Def.1: Интеграл второго рода (несобственный)

$$\int_{a}^{b} f(x)dx = \lim_{\beta \to b} \int_{a}^{\beta} f(x)dx$$

Этот интеграл сходится, если предел существует и конечен

Def.2: Аналогично (a - точка бесконечного разрыва):

$$\int_{a}^{b} f(x)dx = \lim_{\alpha \to a} \int_{\alpha}^{b} f(x)dx$$

 $Def.3\ c \in [a;b]$ - точка бесконечного разрыва:

$$\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$$

Сходится, если оба интеграла сходятся

Ex.1:

$$\int_{-1}^{1} \frac{dx}{x} = \int_{-1}^{0} \frac{dx}{x} + \int_{0}^{1} \frac{dx}{x} = \ln|x| \Big|_{-1}^{0} + \ln|x| \Big|_{0}^{1}$$

- интеграл расходится

Не заметили
$$\int_{-1}^{1} \frac{dx}{x} = \ln|x| \Big|_{-1}^{1} = 0$$
 ???

Ex.2:

$$\int_{-1}^{1} \frac{dx}{x^2} = -\frac{dx}{x} \Big|_{-1}^{1} = -2$$

- неверно

$$\int_{-1}^{1} \frac{dx}{x^2} = \int_{-1}^{0} \frac{dx}{x^2} + \int_{0}^{1} \frac{dx}{x^2} = -\frac{dx}{x} \Big|_{-1}^{0} + -\frac{dx}{x} \Big|_{0}^{1}$$

- расходится

Nota: Если нет разбиения [a;b] по аддитивности, то неопределенности раскрываются

$$Ex: \int_{1}^{2} \frac{dx}{x^{2}-1} = \frac{1}{2} \int_{1}^{2} (\frac{1}{x-1} - \frac{1}{x+1}) dx = \frac{1}{2} (ln|x-1|-ln|x+1|) \Big|_{1}^{2} =$$

$$= \frac{1}{2} (ln|1-1|-ln|x+1|) \Big|_{1}^{2} = \infty, \text{ т. к. разбивается отрезок}$$

$$= \frac{1}{2} (ln|\frac{x-1}{x+1}) \Big|_{1}^{2} = \frac{1}{2} (ln\frac{1}{3} - ln(0)) = \infty - \text{теперь точно } \infty$$

$$= \frac{1}{2} (ln|\frac{x-1}{x+1}) \Big|_{1}^{2} = \frac{1}{2} (ln\frac{1}{3} - ln(0)) = \infty - \text{теперь точно } \infty$$

$$= \frac{1}{2} (ln|\frac{x-1}{x+1}) \Big|_{1}^{2} = \frac{1}{2} (ln\frac{1}{3} - ln(0)) = \infty - \text{теперь точно } \infty$$

- 1) Линейность: $\int_a^{+\infty} (\lambda f(x) + \mu g(x)) dx = \lambda \int_a^{+\infty} f(x) dx + \mu \int_a^{+\infty} g(x) dx$ если интегралы сходятся (иначе исследуем по определению через предел)
- 2) Аддитивность: $I = \int_a^{+\infty} f(x) dx = \int_a^c f(x) dx + \int_c^{+\infty} f(x) dx$ отсечение любого конечного интеграла $\int_a^c f(x) dx$ не влияет на сходимость

3) Знаки интегралов:

$$\int_a^{+\infty} f(x) dx \ge \int_a^{+\infty} g(x) dx$$
 при $f(x) \le g(x)$ и интегралы сходятся

В частности
$$\int_a^{+\infty} f(x) dx \ge 0$$
 при $f(x) \le 0$ на $[a; +\infty]$

Nota: Исследование интегралов двух функций используется для определения их сходимости 2.3 Сходимость несобственных интегралов

Задача: Часто нужно исследовать интеграл на сходимость без или до его вычисления (обычно приближенного для неберущихся интегралов)

Требуются признаки сходимости интегралов, часто использующие сравнение с эталонными интегралами (вычисляемые по формуле Ньютона-Лейбница)

 1^* Признак сравнения в неравенствах (далее только для интегралов $\int_a^{+\infty} f(x) dx$, для остальных аналогично)

$$f(x),g(x):[a;+\infty)$$
 $\to \mathbb{R}^+$, непрерывны на $[a;+\infty)$ и $\forall x \in [a;+\infty) f(x) \leq g(x)$ Тогда, если $\int_a^{+\infty} g(x) dx = I \in \mathbb{R}$, то $J = \int_a^{+\infty} f(x) dx$ сходится, причем $0 \leq \int_a^{+\infty} f(x) dx \leq g(x) dx$

Прежде чем использовать свойство ОИ и предельный переход в неравенства, нужно доказать, что интеграл $J=\lim_{b\to +\infty}\int_a^b f(x)dx$ сходится

Т. к.
$$f(x) \ge 0$$
, то $\int_a^b f(x) dx$ при $b \to \infty$ монотонно возрастающая функция

При этом:

$$0 \le \int_a^b f(x)dx \le \int_a^b g(x)dx \le \lim_{b \to +\infty} \int_a^b g(x)dx = I \in \mathbb{R}$$

То $J(b) = \int_a^b f(x) dx$ ограничена и по признаку Вейерштрасса сходится Можно использовать предельный переход

$$0 \le \int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx \quad \left| \lim_{b \to +\infty} 0 \le J \le I \right|$$

Nota: Можно аналогично сравнить функции отрицательного знака

Если сходится $\int_a^{+\infty} g(x)dx$ при $g(x) \le f(x) \le 0$, то сходится $\int_a^{+\infty} f(x)dx$

Интегралы от функций разных знаков этим методов не сравниваются

 $f(x) \leq g(x) \forall x \in [a; +\infty),$ но функции разных знаков, и нижняя площадь, т. е. $\int_a^b |f(x)| dx,$ больше верхней

$$1^* f(x), g(x) \in C_{[a;+\infty)}, \ 0 \le f(x) \le g(x) \forall x \in [a;+\infty)$$
 $J = \int_a^{+\infty} f(x) dx$ расходится. Тогда $I = \int_a^{+\infty} g(x) dx$ расходится \Box Lab. (от противного)

Nota. Отметим, что если f(x) не является убывающей к нулю, т. е. б. м. на $+\infty$, то $\int_{-\infty}^{\infty} f(x)dx$ разойдется

Таким образом, если сравнить б. м. $\frac{f(x)}{g(x)}$, то можно исследовать их интегралы на сходимость

2* Предельный признак сравнения

$$f(x), g(x) \in C_{[a;+\infty)}, f(x), g(x) > 0$$

 $\exists\lim_{x\to+\infty}rac{f(x)}{g(x)}=k\in\mathbb{R}\{0\}.$ Тогда $I=\int_a^{+\infty}g(x)dx$ и $J=\int_a^{+\infty}f(x)dx$ одновременно сходятся или расходятся

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = k \iff \forall \varepsilon > 0 \exists \delta > 0 | \forall x > \delta | \frac{f(x)}{g(x)} - k | < \varepsilon$$

$$-\varepsilon + k < \frac{f(x)}{g(x)} < \varepsilon + k \quad \Big| *g(x) > 0$$

$$(k-\varepsilon)g(x) < f(x) < (\varepsilon+k)g(x)$$

Т. к. k > 0 $(\frac{f(x)}{g(x)} > 0)$ и ε - сколь угодно мало, то $k \pm \varepsilon$ - положительное и не близкое к нулю

OM:
$$\int_{a}^{b} (k - \varepsilon)g(x)dx < \int_{a}^{b} f(x)dx < \int_{a}^{b} (k + \varepsilon)g(x)dx$$
$$\lim_{b \to +\infty} : (k - \varepsilon) \int_{a}^{+\infty} g(x)dx < \int_{a}^{+\infty} f(x)dx < (k + \varepsilon) \int_{a}^{+\infty} g(x)dx$$

Если $I=\infty$ (но $k-\varepsilon\neq 0$), то по первому признаку (линейность) J расходится Если $I\in\mathbb{R}$ $(k+\varepsilon \neq \infty)$, то по первому признаку (линейность) J сходится

3* Абсолютная сходимость

$$\int_{a}^{+\infty} |f(x)| dx = I \in \mathbb{R} \Longrightarrow \int_{a}^{+\infty} f(x) dx = J \in \mathbb{R}$$

Nota: Обратное неверно

□ ОИ и модуль:

$$\int_a^b f(x)dx \leq |\int_a^b f(x)dx| \leq \int_a^b |f(x)|dx$$
 Очевидно, что $0 \leq |\int_a^b f(x)dx| \leq \int_a^b |f(x)|dx \leq \lim_{b \to \infty} \int_a^b |f(x)|dx = I$
$$-I \leq \int_a^b f(x)dx \leq I$$

$$0 \leq \lim_{b \to \infty} |\int_a^b f(x)dx| = |\lim_{b \to \infty} \int_a^b f(x)dx| \leq \int_a^b |f(x)|dx = I$$

Nota: Если $I = \int_{a}^{+\infty} f(x)dx$ сходится, но $|\int_{a}^{+\infty} f(x)dx|$ расходится, то I называют условно сходящимся

$$Ex: I = \int_{a}^{+\infty} \frac{\sin x}{8x^{2} + 3} dx$$

$$\int_{a}^{+\infty} |\frac{\sin x}{8x^{2} + 3}| dx = \int_{a}^{+\infty} \frac{|\sin x|}{8x^{2} + 3} dx$$
 синус ограничен $\leq \int_{a}^{+\infty} \frac{dx}{8x^{2} + 3} dx = \frac{1}{k} \operatorname{arct} g \frac{x}{k} \Big|_{1}^{+\infty} \in \mathbb{R}$

В качестве эталонных интегралов удобно использовать:

I рода:
$$\int_{a}^{+\infty} \frac{dx}{x^{n}}$$
II рода:
$$\int_{a}^{b} \frac{dx}{(b-x)^{n}}$$

Lab. Исследовать на сходимость в зависимости от $n \in \mathbb{Z}(\mathbb{Q})$

3 Интегралы зависящие от параметра

Задача.
$$Ex~(\alpha \neq 0).$$
 $\int_0^1 cos\alpha x dx = \frac{1}{\alpha} \int_0^1 cos\alpha x d\alpha x = \frac{1}{\alpha} sin\alpha x \Big|_0^1 = \frac{sin\alpha}{\alpha} = \phi(\alpha)$

$$J(\alpha) = \int_a^b f(x,\alpha) dx$$
 - интеграл, зависящий от параметра

 $f(x,\alpha)$ непрерывна в $a\leq x\leq b,\,c\leq \alpha\leq d$ и существует непрерывная производная f'_{α}

Тогда на
$$[c;d]$$
 определена $J_{\alpha}'(\alpha) = \left(\int_a^b f(x,\alpha)dx\right)_{\alpha}' = \int_a^b f_{\alpha}'dx$

Если последний интеграл берется лучше, чем исходный, то теорема полезна

$$\Box J_{\alpha}'(\alpha) = \lim_{\Delta \alpha \to 0} \frac{J(\alpha + \Delta \alpha) - J(\alpha)}{\Delta \alpha} = \lim_{\Delta \alpha \to 0} \frac{1}{\Delta \alpha} \left(\int_{a}^{b} f(x, \alpha + \Delta \alpha) dx - \int_{a}^{b} f(x, \alpha) dx \right) = \lim_{\Delta \alpha \to 0} \frac{1}{\Delta \alpha} \left(\int_{a}^{b} (f(x, \alpha + \Delta \alpha) - f(x, \alpha)) dx \right)$$

По теореме Лагранжа о среднем $\exists \xi \in [\alpha; \alpha + \Delta \alpha]$

$$= \lim_{\Delta \alpha \to 0} \int_{a}^{b} f(x, \xi) dx$$

$$=\lim_{\Delta\alpha\to 0}\int_a^b f(x,\xi)dx$$
 T. к. f_α' непрерывна, то $f_\alpha'(x,\xi)=\lim_{\xi\to\alpha}f_\alpha'(x,\xi)+\varepsilon=f_\alpha'(x,\alpha)+\varepsilon$

Таким образом
$$J'_{\alpha}(\alpha) = \lim_{\Delta \alpha \to 0} \int_a^b f'_{\alpha}(x,\alpha) dx + \lim_{\Delta \alpha \to 0} \int_a^b \varepsilon dx = \lim_{\Delta \alpha \to 0} \int_a^b f'_{\alpha}(x,\xi) dx$$