- a_n Folge reeller Zahlen
 - $-f(x) = \sum_{n=0}^{\infty} a_n x^n$ ist eine Potenzreihe
 - f(x) konvergiert für
 - Wurzeltest:
 - $* \ \lim \sup (\sqrt[n]{|a_n|*|x|^n}) = |x| \lim \sup (\sqrt[n]{|a_n|})$
 - \bullet >1 ==> divergent
 - * Konvergenzradius $R = \frac{1}{\lim \sup (\sqrt[n]{|a_n|})} = \lim |\frac{a_n}{a_{n+1}}|$ R > 0 ==> Potenzreihe konvergiert überall

 - |x| < R ==> konvergent
 - |x| > R ==> divergent
- Ist f(x) eine Potenzreihe mit positivem Konvergenzradius R
 - f(x) ist an der Stelle 0 stetig

[[Reihen und Folgen]]