5

We claim:

1. A method of decreasing bacterial quantity in a biological sample comprising the step of contacting said biological sample with a compound of formula I:

$$\begin{array}{c}
R^1 \\
R^2 \\
N \\
Z \\
HN \\
R^5
\end{array}$$

I

or a pharmaceutically acceptable derivative or prodrug thereof, wherein:

Z is O or N-R4;

W is nitrogen or CRa;

 R^a is selected from hydrogen, halogen, $-CF_3$, R^7 , $-OR^7$, or $-N(R^7)_2$;

R¹ is an aryl or heteroaryl ring, wherein said ring is optionally substituted by up to four R⁹; wherein an R⁹ substituent in the ortho-position of R¹ taken together with R² may form a fused, unsaturated or partially unsaturated, optionally substituted 5-8 membered ring having 0-2 ring heteroatoms selected from nitrogen, oxygen, or sulfur;

R² and R³ are each independently selected from R⁶, halogen, CN, SR⁶, OR⁶, N(R⁶)₂, NRCO₂R⁶, NRCON(R⁶)₂,

CON(R⁶)₂, NRCOR⁶, NRN(R⁶)₂, COR⁶, CO₂R⁶, COCOR⁶, SO₂R⁶, SO₂N(R⁶)₂, or NRSO₂R⁶; or R² and R³ are taken together to form a fused, unsaturated or partially unsaturated, optionally substituted 5-8 membered ring containing 0-2

5

- ring heteroatoms selected from nitrogen, oxygen, or sulfur;
- R^4 is selected from R^6 , $CON(R^6)$, COR^6 , CO_2R^6 , $COCOR^6$, SO_2R^6 , $SO_2N(R^6)_2$, or $(CH_2)_YR^2$;
- y is 1-6;
- $$\begin{split} \text{R}^5 &\text{ is selected from R}^7, \text{ Ar, COAr, CON}(\text{R}^7) \text{Ar, } (\text{CH}_2)_{\text{y}} \text{CO}_2 \text{R,} \\ &(\text{CH}_2)_{\text{y}} \text{N}(\text{R}^7)_2, \text{ C}(=\text{NR}^{10}) \text{N}(\text{R}^7)_2, \text{ C}(=\text{NR}^{10}) \text{NRCOR,} \\ &\text{C}(=\text{S}) \text{N}(\text{R}^7)_2, \text{ CON}(\text{R}^7)_2, \text{ COR, SO}_2 \text{R, or SO}_2 \text{N}(\text{R}^7)_2;} \end{split}$$
- Ar is a five membered heteroaryl, heterocyclyl, or carbocyclyl ring, wherein said ring is optionally substituted by up to three substituents selected from oxo, halogen, CN, NO₂, R⁸, OR⁸, NHR⁸, NHCOR⁸, NHCONHR⁸, COR⁸, CONHR⁸, SO₂R⁸, NHSO₂NHR⁸ or SO₂NHR⁸;
- each R⁶ is independently selected from R⁷ or an optionally substituted group selected from alkoxy, hydroxyalkyl, heterocyclyl, heterocyclcylalkyl, aryl, aralkyl, aralkoxy, aryloxyalkyl, heteroaryl, heteroaralkyl, heteroaralkoxy, or heteroarayloxyalkyl;
- each R⁷ is independently selected from hydrogen or an optionally substituted aliphatic group having one to six carbons, or two R⁷ on the same nitrogen taken together with the nitrogen optionally form a four to six member, saturated or unsaturated heterocyclic ring having one to three heteroatoms;
- R^8 is a C_1 - C_4 aliphatic group, wherein two R^8 on adjacent positions of Ar, or an aryl or heteroaryl ring, may be taken together with their intervening atoms to form a three to six membered fused ring;
- each R^9 is independently selected from oxo, halogen, CN, NO₂, T_n(haloalkyl), R^6 , SR^6 , OR^6 , OR^8 , $N(R^6)_2$, $CON(R^6)_2$, $CON(R)COR^6$, CO_2R^6 , $CO_2N(R^6)_2$, $COCOR^6$, SO_2R^6 , $SO_2N(R^6)_2$, $N(R)T_nCO_2R^6$, $N(R)T_nCON(R^6)_2$, $N(R)T_nNRCO_2R^6$, $N(R)T_nNRCOR^6$, $N(R)T_nNRCOR^6$, $N(R)T_nNRCOR^6$,

 $N(R) T_n SO_2 N(R^6)_2$, $N(R) T_n SO_2 R^6$, $T_n PO(OR^7)_2$, $T_n OPO(OR^7)_2$, $T_n SP(OR^7)_2$, $T_n PO(OR^7)_2$, or $T_n NPO(OR^7)_2$;

each Q is an independently selected C_1 - C_3 branched or straight alkyl;

T is selected from -Q- or $-Q_m$ -CH(Q_m -R²)-; each m and n are independently selected from zero or one; and R¹⁰ is selected from R⁷ or Ar.

2. The method according to claim 1, wherein said compound has the formula Ia or Ib:

or a pharmaceutically acceptable derivative or prodrug thereof.

- 3. The method according to claim 2, wherein said compound has one or more features selected from the group consisting of:
 - (a) R¹ is an optionally substituted aryl or heteroaryl ring;
 - (b) R^2 and R^3 are each independently selected from halogen, CN, CO_2R^6 , OR^6 , or R^6 ;
 - (c) R^5 is CO_2R , COAr, COR, $CON(R^7)_2$, Ar, $(CH_2)_YCO_2R$, or $(CH_2)_YN(R^7)_2$; and

- 4. The method according to claim 3, wherein:
 - (a) R¹ is an optionally substituted aryl or heteroaryl ring;
 - (b) R^2 and R^3 are each independently selected from halogen, CN, CO_2R^6 , OR^6 , or R^6 ;
 - (c) R^5 is CO_2R , COAr, COR, $CON(R^7)_2$, Ar, $(CH_2)_yCO_2R$, or $(CH_2)_yN(R^7)_2$; and
- 5. The method according to claim 3, wherein said compound has one or more features selected from the group consisting of:
 - (a) R¹ is an optionally substituted ring selected from phenyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, thienyl, pyrimidyl, imidazol-1-yl, imidazol-2yl, pyrazol-1-yl, amino-pyrimidinyl, quinolinyl, aminobenzimidazole, or indolyl;
 - (b) R2 is hydrogen, alkoxy, aminoalkyl, or halogen;
 - (c) R³ is hydrogen, alkoxy, aralkoxy, or halogen;
 - (d) R^4 is hydrogen or $(CH_2)_yR^2$;
 - (e) R^5 is $CON(R^7)_2$, Ar, $(CH_2)_yCO_2R$, or $(CH_2)_yN(R^7)_2$; and
 - (f) R^9 is halogen, CN, oxo, R^6 , SR^6 , OR^6 , $N(R^6)_2$, $CON(R^6)_2$, CO_2R^6 , $CON(R)COR^6$, or $N(R)T_nCO_2R^6$.
- 6. The method according to claim 5, wherein:
 - (a) R¹ is an optionally substituted ring selected from phenyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, thienyl, pyrimidyl, imidazol-1-yl, imidazol-2-

yl, pyrazol-1-yl, amino-pyrimidinyl, quinolinyl, aminobenzimidazole, or indolyl;

- (b) R² is hydrogen, alkoxy, aminoalkyl, or halogen;
- (c) R3 is hydrogen, alkoxy, aralkoxy, or halogen;
- (d) R⁴ is hydrogen or (CH₂)_vR²;
- (e) R^5 is $CON(R^7)_2$, Ar, $(CH_2)_yCO_2R$, or $(CH_2)_yN(R^7)_2$; and
- (f) R^9 is halogen, CN, oxo, R^6 , SR^6 , OR^6 , $N(R^6)_2$, $CON(R^6)_2$, CO_2R^6 , $CON(R)COR^6$, or $N(R)T_nCO_2R^6$.
- 7. The method according to claim 1, wherein said compound has the formula IIa or IIb:

$$R^{1}$$
 R^{2}
 R^{3}
 R^{4}
 R^{7}
 R^{7}

or a pharmaceutically acceptable derivative or prodrug thereof, wherein:

or a pharmaceutically acceptable derivative or prodrug thereof, wherein:

W is nitrogen or CRa;

- R^a is selected from hydrogen, halogen, $-CF_3$, R^7 , $-OR^7$, or $-N(R^7)_2$;
- R^1 is an aryl or heteroaryl ring, wherein said ring is optionally substituted by up to four R^9 ; wherein an R^9 substituent in the ortho-position of R^1 taken together with R^2 may form a fused, unsaturated or partially unsaturated, optionally substituted 5-8 membered ring

- having 0-2 ring heteroatoms selected from nitrogen, oxygen, or sulfur;
- R^2 and R^3 are each independently selected from R^6 , halogen, CN, SR^6 , OR^6 , $N(R^6)_2$, $NRCO_2R^6$, $NRCON(R^6)_2$, $CON(R^6)_2$, $NRCOR^6$, $NRN(R^6)_2$, COR^6 , CO_2R^6 , $COCOR^6$, SO_2R^6 , $SO_2N(R^6)_2$, or $NRSO_2R^6$; or R^2 and R^3 are taken together to form a fused, unsaturated or partially unsaturated, optionally substituted 5-8 membered ring containing 0-2 ring heteroatoms selected from nitrogen, oxygen, or sulfur;
- R^4 is selected from R^6 , $CON(R^6)$, COR^6 , CO_2R^6 , $COCOR^6$, SO_2R^6 , $SO_2N(R^6)_2$, or $(CH_2)_YR^2$;

- Ar is a five membered heteroaryl, heterocyclyl, or carbocyclyl ring, wherein said ring is optionally substituted by up to three substituents selected from oxo, halogen, CN, NO₂, R⁸, OR⁸, NHR⁸, NHCOR⁸, NHCONHR⁸, COR⁸, CONHR⁸, SO₂R⁸, NHSO₂NHR⁸ or SO₂NHR⁸;
- each R⁶ is independently selected from R⁷ or an optionally substituted group selected from alkoxy, hydroxyalkyl, heterocyclyl, heterocyclcylalkyl, aryl, aralkyl, aralkoxy, aryloxyalkyl, heteroaryl, heteroaralkyl, heteroaralkoxy, or heteroarayloxyalkyl;
- each R⁷ is independently selected from hydrogen or an optionally substituted aliphatic group having one to six carbons, or two R⁷ on the same nitrogen taken together with the nitrogen optionally form a four to six member, saturated or unsaturated heterocyclic ring having one to three heteroatoms;
- R^8 is a C_1 - C_4 aliphatic group, wherein two R^8 on adjacent positions of Ar, or an aryl or heteroaryl ring, may be taken together with their intervening atoms to form a three to six membered fused ring;

- each R^9 is independently selected from oxo, halogen, CN, NO₂, T_n(haloalkyl), R^6 , SR^6 , OR^6 , OR^8 , $N(R^6)_2$, $CON(R^6)_2$, $CON(R)COR^6$, CO_2R^6 , CO_2R^6 , $CO_2N(R^6)_2$, $COCOR^6$, SO_2R^6 , $SO_2N(R^6)_2$, $N(R)T_nCO_2R^6$, $N(R)T_nCON(R^6)_2$, $N(R)T_nN(R^6)_2$, $N(R)T_nNRCO_2R^6$, $N(R)T_nNRCON(R^6)_2$, $N(R)T_nCOR^6$, $N(R)T_nNRCOR^6$, $N(R)T_nSO_2N(R^6)_2$, $N(R)T_nSO_2R^6$, $T_nPO(OR^7)_2$, $T_nOPO(OR^7)_2$, $T_nSP(OR^7)_2$, $T_nPO(OR^7)_2$, or $T_nNPO(OR^7)_2$;
- each Q is an independently selected C_1 - C_3 branched or straight alkyl;

T is selected from -Q- or $-Q_m-CH(Q_m-R^2)-$; and each m and n are independently selected from zero or one.

- 8. The method according to claim 7, wherein said compound has one or more features selected from the group consisting of:
 - (a) R¹ is an optionally substituted aryl or heteroaryl ring;
 - (b) R² and R³ are each independently selected from halogen, CN, CO₂R⁶, OR⁶, or R⁶; and
 - (c) R^9 is halogen, CN, oxo, R^6 , SR^6 , OR^6 , $N(R^6)_2$, $CON(R^6)_2$, CO_2R^6 , $CON(R)COR^6$, $N(R)T_nCO_2R^6$, $N(R)T_nNRCO_2R^6$, $N(R)T_nN(R^6)_2$, NO_2 , T_n (haloalkyl), $CO_2N(R^6)_2$, COR^6 , SO_2R^6 , or $SO_2N(R^6)_2$.
- 9. The method according to claim 8, wherein:
 - (a) R¹ is an optionally substituted aryl or heteroaryl ring;
 - (b) R^2 and R^3 are each independently selected from halogen, CN, CO_2R^6 , OR^6 , or R^6 ; and
 - (c) R^9 is halogen, CN, OXO, R^6 , SR^6 , OR^6 , $N(R^6)_2$, $CON(R^6)_2$, CO_2R^6 , $CON(R)COR^6$, $N(R)T_nCO_2R^6$, $N(R)T_nNRCO_2R^6$, $N(R)T_nN(R^6)_2$, NO_2 , T_n (haloalkyl), $CO_2N(R^6)_2$, COR^6 , SO_2R^6 , or $SO_2N(R^6)_2$.

- 10. The method according to claim 8, wherein said compound has one or more features selected from the group consisting of:
 - (a) R¹ is an optionally substituted ring selected from phenyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, thienyl, pyrimidyl, imidazol-1-yl, imidazol-2yl, pyrazol-1-yl, amino-pyrimidinyl, quinolinyl, aminobenzimidazole, or indolyl;
 - (b) R2 is hydrogen, alkoxy, aminoalkyl, or halogen;
 - (c) R³ is hydrogen, alkoxy, aralkoxy, or halogen;
 - (d) R^4 is hydrogen or $(CH_2)_vR^2$; and
 - (e) R^9 is halogen, CN, oxo, R^6 , SR^6 , OR^6 , $N(R^6)_2$, $CON(R^6)_2$, CO_2R^6 , $CON(R)COR^6$, or $N(R)T_nCO_2R^6$.
- 11. The method according to claim 10, wherein:
 - (a) R¹ is an optionally substituted ring selected from phenyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, thienyl, pyrimidyl, imidazol-1-yl, imidazol-2yl, pyrazol-1-yl, amino-pyrimidinyl, quinolinyl, aminobenzimidazole, or indolyl;
 - (b) R2 is hydrogen, alkoxy, aminoalkyl, or halogen;
 - (c) R³ is hydrogen, alkoxy, aralkoxy, or halogen;
 - (d) R4 is hydrogen or (CH2)yR2; and
 - (e) R^9 is halogen, CN, oxo, R^6 , SR^6 , OR^6 , $N(R^6)_2$, $CON(R^6)_2$, CO_2R^6 , $CON(R)COR^6$, or $N(R)T_nCO_2R^6$.
- 12. The method according to claim 1, wherein said compound has the formula IIIa or IIIb:

W is nitrogen or CRa;

 R^a is selected from hydrogen, halogen, $-CF_3$, R^7 , $-OR^7$, or $-N(R^7)_2$;

Ring A is optionally substituted with up to three R⁹; wherein when an R⁹ substituent is in the ortho-position of Ring A, said R⁹ substituent may be taken together with R² to form an optionally substituted 5-7 membered ring containing 0-2 ring heteroatoms selected from nitrogen, oxygen, or sulfur;

 R^2 and R^3 are each independently selected from R^6 , halogen, CN, SR^6 , OR^6 , $N(R^6)_2$, $NRCO_2R^6$, $NRCON(R^6)_2$, $CON(R^6)_2$, $NRCOR^6$, $NRN(R^6)_2$, COR^6 , CO_2R^6 , $COCOR^6$, SO_2R^6 , $SO_2N(R^6)_2$, or $NRSO_2R^6$; or R^2 and R^3 are taken together to form a fused, unsaturated or partially unsaturated, optionally substituted 5-8 membered ring containing 0-2 ring heteroatoms selected from nitrogen, oxygen, or sulfur;

 $\rm R^4$ is selected from $\rm R^6$, $\rm CON\,(R^6)$, $\rm COR^6$, $\rm CO_2R^6$, $\rm COCOR^6$, $\rm SO_2R^6$, $\rm SO_2N\,(R^6)_2$, or $\rm (CH_2)_yR^2$;

- R^{5} is selected from R^{7} , Ar, COAr, CON(R^{7})Ar, (CH₂)_yCO₂R, (CH₂)_yN(R^{7})₂, C(=NR¹⁰)-N(R^{7})₂, C(=NR¹⁰)-NRCOR, C(=S)-N(R^{7})₂, CON(R^{7})₂, COR, SO₂R, or SO₂N(R^{7})₂;
- Ar is a five membered heteroaryl, heterocyclyl, or carbocyclyl ring, wherein said ring is optionally substituted by up to three substituents selected from oxo, halogen, CN, NO₂, R⁸, OR⁸, NHR⁸, NHCOR⁸, NHCONHR⁸, COR⁸, CONHR⁸, SO₂R⁸, NHSO₂NHR⁸ or SO₂NHR⁸;
- each R⁶ is independently selected from R⁷ or an optionally substituted group selected from alkoxy, hydroxyalkyl, heterocyclyl, heterocyclcylalkyl, aryl, aralkyl, aralkoxy, aryloxyalkyl, heteroaryl, heteroaralkyl, heteroaralkoxy, or heteroarayloxyalkyl;
- each R⁷ is independently selected from hydrogen or an optionally substituted aliphatic group having one to six carbons, or two R⁷ on the same nitrogen taken together with the nitrogen optionally form a four to six member, saturated or unsaturated heterocyclic ring having one to three heteroatoms;
- R^8 is a C_1 - C_4 aliphatic group, wherein two R^8 on adjacent positions of Ar, or an aryl or heteroaryl ring, may be taken together with their intervening atoms to form a three to six membered fused ring;
- each R^9 is independently selected from oxo, halogen, CN, NO_2 , T_n (haloalkyl), R^6 , SR^6 , OR^6 , OR^8 , $N(R^6)_2$, $CON(R^6)_2$, $CON(R)COR^6$, COR^6 , CO_2R^6 , $CO_2N(R^6)_2$, $COCOR^6$, SO_2R^6 , $SO_2N(R^6)_2$, $N(R)T_nCO_2R^6$, $N(R)T_nCON(R^6)_2$, $N(R)T_nN(R^6)_2$, $N(R)T_nNRCO_2R^6$, $N(R)T_nNRCON(R^6)_2$, $N(R)T_nCOR^6$, $N(R)T_nNRCOR^6$, $N(R)T_nSO_2N(R^6)_2$, $N(R)T_nSO_2R^6$, $T_nPO(OR^7)_2$, $T_nOPO(OR^7)_2$, $T_nSP(OR^7)_2$, $T_nPO(OR^7)_2$, or $T_nNPO(OR^7)_2$;
- each Q is an independently selected C_1 - C_3 branched or straight alkyl;
- T is selected from -Q- or $-Q_m$ -CH(Q_m - \mathbb{R}^2)-;

each m and n are independently selected from zero or one; and R^{10} is selected from R^7 or Ar.

- 13. The method according to claim 12, wherein said compound has one or more features selected from the group consisting of:
 - (a) R² and R³ are each independently selected from halogen, CN, CO₂R⁶, OR⁶, or R⁶;
 - (b) R^5 is CO_2R , COAr, COR, $CON(R^7)_2$, Ar, $(CH_2)_yCO_2R$, or $(CH_2)_yN(R^7)_2$; and
 - (c) R^9 is halogen, CN, oxo, R^6 , SR^6 , OR^6 , $N(R^6)_2$, $CON(R^6)_2$, CO_2R^6 , $CON(R)COR^6$, $N(R)T_nCO_2R^6$, $N(R)T_nNRCO_2R^6$, $N(R)T_nN(R^6)_2$, NO_2 , T_n (haloalkyl), $CO_2N(R^6)_2$, COR^6 , SO_2R^6 , or $SO_2N(R^6)_2$.
- 14. The method according to claim 13, wherein:
 - (a) R^2 and R^3 are each independently selected from halogen, CN, CO_2R^6 , OR^6 , or R^6 ;
 - (b) R^5 is CO_2R , COAr, COR, $CON(R^7)_2$, Ar, $(CH_2)_YCO_2R$, or $(CH_2)_YN(R^7)_2$; and
 - (c) R^9 is halogen, CN, oxo, R^6 , SR^6 , OR^6 , $N(R^6)_2$, $CON(R^6)_2$, CO_2R^6 , $CON(R)COR^6$, $N(R)T_nCO_2R^6$, $N(R)T_nNRCO_2R^6$, $N(R)T_nN(R^6)_2$, NO_2 , T_n (haloalkyl), $CO_2N(R^6)_2$, COR^6 , SO_2R^6 , or $SO_2N(R^6)_2$.
- 15. The method according to claim 13, wherein said compound has one or more features selected from the group consisting of:
 - (a) R^2 is hydrogen, alkoxy, aminoalkyl, or halogen;
 - (b) R^3 is hydrogen, alkoxy, aralkoxy, or halogen;
 - (c) R^4 is hydrogen or $(CH_2)_yR^2$;
 - (d) R^5 is $CON(R^7)_2$, Ar, $(CH_2)_yCO_2R$, or $(CH_2)_yN(R^7)_2$; and

- (e) R^9 is halogen, CN, oxo, R^6 , SR^6 , OR^6 , $N(R^6)_2$, $CON(R^6)_2$, CO_2R^6 , $CON(R)COR^6$, or $N(R)T_nCO_2R^6$.
- 16. The method according to claim 15, wherein:
 - (a) R2 is hydrogen, alkoxy, aminoalkyl, or halogen;
 - (b) R³ is hydrogen, alkoxy, aralkoxy, or halogen;
 - (c) R⁴ is hydrogen or (CH₂)_yR²;
 - (d) R^5 is $CON(R^7)_2$, Ar, $(CH_2)_yCO_2R$, or $(CH_2)_yN(R^7)_2$; and
 - (e) R^9 is halogen, CN, oxo, R^6 , SR^6 , OR^6 , $N(R^6)_2$, $CON(R^6)_2$, CO_2R^6 , $CON(R)COR^6$, or $N(R)T_nCO_2R^6$.
- 17. The method according to claim 1, wherein said compound is selected from those listed in either of Tables 1 or 2.
- 18. The method according to claim 1 further comprising the step of contacting said biological sample with an agent which increases the susceptibility of bacterial organisms to antibiotics.
- 19. A method of treating a bacterial infection in a mammal in need thereof, comprising the step of administering to said mammal a therapeutically effective amount of a compound of formula I:

$$R^{1}$$
 R^{2}
 R^{3}
 R^{5}

Z is 0 or $N-R^4$;

W is nitrogen or CRa;

- R^a is selected from hydrogen, halogen, $-CF_3$, R^7 , $-OR^7$, or $-N(R^7)_2$;
- R¹ is an aryl or heteroaryl ring, wherein said ring is optionally substituted by up to four R⁹; wherein an R⁹ substituent in the ortho-position of R¹ taken together with R² may form a fused, unsaturated or partially unsaturated, optionally substituted 5-8 membered ring having 0-2 ring heteroatoms selected from nitrogen, oxygen, or sulfur;
- R² and R³ are each independently selected from R⁶, halogen, CN, SR⁶, OR⁶, N(R⁶)₂, NRCO₂R⁶, NRCON(R⁶)₂, CON(R⁶)₂, NRCOR⁶, NRN(R⁶)₂, COR⁶, CO₂R⁶, COCOR⁶, SO₂R⁶, SO₂N(R⁶)₂, or NRSO₂R⁶; or R² and R³ are taken together to form a fused, unsaturated or partially unsaturated, optionally substituted 5-8 membered ring containing 0-2 ring heteroatoms selected from nitrogen, oxygen, or sulfur;
- R^4 is selected from R^6 , $CON(R^6)$, COR^6 , CO_2R^6 , $COCOR^6$, SO_2R^6 , $SO_2N(R^6)_2$, or $(CH_2)_yR^2$;

- R^{5} is selected from R^{7} , Ar, COAr, CON(R^{7})Ar, (CH₂)_yCO₂R, (CH₂)_yN(R^{7})₂, C(=NR¹⁰)-N(R^{7})₂, C(=NR¹⁰)-NRCOR, C(=S)-N(R^{7})₂, CON(R^{7})₂, COR, SO₂R, or SO₂N(R^{7})₂;
- Ar is a five membered heteroaryl, heterocyclyl, or carbocyclyl ring, wherein said ring is optionally substituted by up to three substituents selected from oxo, halogen, CN, NO₂, R⁸, OR⁸, NHR⁸, NHCOR⁸, NHCONHR⁸, COR⁸, CONHR⁸, SO₂R⁸, NHSO₂NHR⁸ or SO₂NHR⁸;

- each R⁶ is independently selected from R⁷ or an optionally substituted group selected from alkoxy, hydroxyalkyl, heterocyclyl, heterocyclcylalkyl, aryl, aralkyl, aralkoxy, aryloxyalkyl, heteroaryl, heteroaralkyl, heteroaralkoxy, or heteroarayloxyalkyl;
- each R⁷ is independently selected from hydrogen or an optionally substituted aliphatic group having one to six carbons, or two R⁷ on the same nitrogen taken together with the nitrogen optionally form a four to six member, saturated or unsaturated heterocyclic ring having one to three heteroatoms;
- R^8 is a C_1 - C_4 aliphatic group, wherein two R^8 on adjacent positions of Ar, or an aryl or heteroaryl ring, may be taken together with their intervening atoms to form a three to six membered fused ring;
- each R^9 is independently selected from oxo, halogen, CN, NO₂, T_n (haloalkyl), R^6 , SR^6 , OR^6 , OR^8 , $N(R^6)_2$, $CON(R^6)_2$, $CON(R)COR^6$, COR^6 , CO_2R^6 , $CO_2N(R^6)_2$, $COCOR^6$, SO_2R^6 , $SO_2N(R^6)_2$, $N(R)T_nCO_2R^6$, $N(R)T_nCON(R^6)_2$, $N(R)T_nN(R^6)_2$, $N(R)T_nNRCO_2R^6$, $N(R)T_nNRCON(R^6)_2$, $N(R)T_nCOR^6$, $N(R)T_nNRCOR^6$, $N(R)T_nSO_2N(R^6)_2$, $N(R)T_nSO_2R^6$, $T_nPO(OR^7)_2$, $T_nOPO(OR^7)_2$, $T_nSP(OR^7)_2$, $T_nPO(OR^7)_2$, or $T_nNPO(OR^7)_2$;
- each Q is an independently selected C_1 - C_3 branched or straight alkyl;
- T is selected from -Q- or $-Q_m$ -CH(Q_m -R²)-; each m and n are independently selected from zero or one; and R¹⁰ is selected from R⁷ or Ar.
- 20. The method according to claim 19, wherein said compound has the formula Ia or Ib:

- 21. The method according to claim 20, wherein said compound has one or more features selected from the group consisting of:
 - (a) R¹ is an optionally substituted aryl or heteroaryl ring;
 - (b) R² and R³ are each independently selected from halogen, CN, CO₂R⁶, OR⁶, or R⁶;
 - (c) R^5 is CO_2R , COAr, COR, $CON(R^7)_2$, Ar, $(CH_2)_yCO_2R$, or $(CH_2)_yN(R^7)_2$; and
 - (d) R^9 is halogen, CN, OXO, R^6 , SR^6 , OR^6 , $N(R^6)_2$, $CON(R^6)_2$, CO_2R^6 , $CON(R)COR^6$, $N(R)T_nCO_2R^6$, $N(R)T_nNRCO_2R^6$, $N(R)T_nN(R^6)_2$, NO_2 , T_n (haloalkyl), $CO_2N(R^6)_2$, COR^6 , SO_2R^6 , or $SO_2N(R^6)_2$.
- 22. The method according to claim 21, wherein:
 - (a) R¹ is an optionally substituted aryl or heteroaryl ring;
 - (b) R^2 and R^3 are each independently selected from halogen, CN, CO_2R^6 , OR^6 , or R^6 ;
 - (c) R^5 is CO_2R , COAr, COR, $CON(R^7)_2$, Ar, $(CH_2)_YCO_2R$, or $(CH_2)_YN(R^7)_2$; and
 - (d) R^9 is halogen, CN, oxo, R^6 , SR^6 , OR^6 , $N(R^6)_2$, $CON(R^6)_2$, CO_2R^6 , $CON(R)COR^6$, $N(R)T_nCO_2R^6$,

 $N(R) T_n NRCO_2 R^6$, $N(R) T_n N(R^6)_2$, NO_2 , T_n (haloalkyl), $CO_2 N(R^6)_2$, COR^6 , $SO_2 R^6$, or $SO_2 N(R^6)_2$.

- 23. The method according to claim 21, wherein said compound has one or more features selected from the group consisting of:
 - (a) R¹ is an optionally substituted ring selected from phenyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, thienyl, pyrimidyl, imidazol-1-yl, imidazol-2yl, pyrazol-1-yl, amino-pyrimidinyl, quinolinyl, aminobenzimidazole, or indolyl;
 - (b) R² is hydrogen, alkoxy, aminoalkyl, or halogen;
 - (c) R³ is hydrogen, alkoxy, aralkoxy, or halogen;
 - (d) R4 is hydrogen or (CH2)vR2;
 - (e) R^5 is $CON(R^7)_2$, Ar, $(CH_2)_yCO_2R$, or $(CH_2)_yN(R^7)_2$; and
 - (f) R^9 is halogen, CN, oxo, R^6 , SR^6 , OR^6 , $N(R^6)_2$, $CON(R^6)_2$, CO_2R^6 , $CON(R)COR^6$, or $N(R)T_nCO_2R^6$.
- 24. The method according to claim 23, wherein:
 - (a) R¹ is an optionally substituted ring selected from phenyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, thienyl, pyrimidyl, imidazol-1-yl, imidazol-2yl, pyrazol-1-yl, amino-pyrimidinyl, quinolinyl, aminobenzimidazole, or indolyl;
 - (b) R² is hydrogen, alkoxy, aminoalkyl, or halogen;
 - (c) R³ is hydrogen, alkoxy, aralkoxy, or halogen;
 - (d) R^4 is hydrogen or $(CH_2)_vR^2$;
 - (e) R^5 is $CON(R^7)_2$, Ar, $(CH_2)_yCO_2R$, or $(CH_2)_yN(R^7)_2$; and
 - (f) R^9 is halogen, CN, oxo, R^6 , SR^6 , OR^6 , $N(R^6)_2$, $CON(R^6)_2$, CO_2R^6 , $CON(R)COR^6$, or $N(R)T_nCO_2R^6$.
- 25. The method according to claim 19, wherein said compound has the formula IIa or IIb:

$$R^1$$
 R^2
 R^3
 R^3
 R^7
 R^7

or a pharmaceutically acceptable derivative or prodrug thereof, wherein:

W is nitrogen or CRa;

- R^a is selected from hydrogen, halogen, $-CF_3$, R^7 , $-OR^7$, or $-N(R^7)_2$;
- R¹ is an aryl or heteroaryl ring, wherein said ring is optionally substituted by up to four R⁹; wherein an R⁹ substituent in the ortho-position of R¹ taken together with R² may form a fused, unsaturated or partially unsaturated, optionally substituted 5-8 membered ring having 0-2 ring heteroatoms selected from nitrogen, oxygen, or sulfur;
- R² and R³ are each independently selected from R⁶, halogen, CN, SR⁶, OR⁶, N(R⁶)₂, NRCO₂R⁶, NRCON(R⁶)₂, CON(R⁶)₂, NRCOR⁶, NRN(R⁶)₂, COR⁶, CO₂R⁶, COCOR⁶, SO₂R⁶, SO₂N(R⁶)₂, or NRSO₂R⁶; or R² and R³ are taken together to form a fused, unsaturated or partially unsaturated, optionally substituted 5-8 membered ring containing 0-2 ring heteroatoms selected from nitrogen, oxygen, or sulfur;

 R^4 is selected from R^6 , $CON(R^6)$, COR^6 , CO_2R^6 , $COCOR^6$, SO_2R^6 , $SO_2N(R^6)_2$, or $(CH_2)_yR^2$;

- Ar is a five membered heteroaryl, heterocyclyl, or carbocyclyl ring, wherein said ring is optionally substituted by up to three substituents selected from oxo, halogen, CN, NO₂, R⁸, OR⁸, NHR⁸, NHCOR⁸, NHCONHR⁸, COR⁸, CONHR⁸, SO₂R⁸, NHSO₂NHR⁸ or SO₂NHR⁸;
- each R⁶ is independently selected from R⁷ or an optionally substituted group selected from alkoxy, hydroxyalkyl, heterocyclyl, heterocyclcylalkyl, aryl, aralkyl, aralkoxy, aryloxyalkyl, heteroaryl, heteroaralkyl, heteroaralkoxy, or heteroarayloxyalkyl;
- each R⁷ is independently selected from hydrogen or an optionally substituted aliphatic group having one to six carbons, or two R⁷ on the same nitrogen taken together with the nitrogen optionally form a four to six member, saturated or unsaturated heterocyclic ring having one to three heteroatoms;
- R^8 is a C_1 - C_4 aliphatic group, wherein two R^8 on adjacent positions of Ar, or an aryl or heteroaryl ring, may be taken together with their intervening atoms to form a three to six membered fused ring;
- each R⁹ is independently selected from oxo, halogen, CN, NO₂, T_n (haloalkyl), R^6 , SR^6 , OR^6 , OR^8 , $N(R^6)_2$, $CON(R^6)_2$, $CON(R)COR^6$, COR^6 , CO_2R^6 , $CO_2N(R^6)_2$, $COCOR^6$, SO_2R^6 , $SO_2N(R^6)_2$, $N(R)T_nCO_2R^6$, $N(R)T_nCON(R^6)_2$, $N(R)T_nN(R^6)_2$, $N(R)T_nNRCO_2R^6$, $N(R)T_nNRCON(R^6)_2$, $N(R)T_nCOR^6$, $N(R)T_nNRCOR^6$, $N(R)T_nSO_2N(R^6)_2$, $N(R)T_nSO_2R^6$, $T_nPO(OR^7)_2$, $T_nOPO(OR^7)_2$, $T_nPO(OR^7)_2$, $T_nPO(OR^7)_2$, or $T_nNPO(OR^7)_2$;
- each Q is an independently selected $C_1\text{-}C_3$ branched or straight alkyl;
- T is selected from -Q- or -Q_m-CH(Q_m-R²)-; and

each m and n are independently selected from zero or one.

- 26. The method according to claim 25, wherein said compound has one or more features selected from the group consisting of:
 - (a) R¹ is an optionally substituted aryl or heteroaryl ring;
 - (b) R² and R³ are each independently selected from halogen, CN, CO₂R⁶, OR⁶, or R⁶; and
 - (c) R^9 is halogen, CN, oxo, R^6 , SR^6 , OR^6 , $N(R^6)_2$, $CON(R^6)_2$, CO_2R^6 , $CON(R)COR^6$, $N(R)T_nCO_2R^6$, $N(R)T_nNRCO_2R^6$, $N(R)T_nN(R^6)_2$, NO_2 , T_n (haloalkyl), $CO_2N(R^6)_2$, COR^6 , SO_2R^6 , or $SO_2N(R^6)_2$.
- 27. The method according to claim 26, wherein:
 - (a) R¹ is an optionally substituted aryl or heteroaryl ring;
 - (b) R^2 and R^3 are each independently selected from halogen, CN, CO_2R^6 , OR^6 , or R^6 ; and
 - (c) R^9 is halogen, CN, OXO, R^6 , SR^6 , OR^6 , $N(R^6)_2$, $CON(R^6)_2$, CO_2R^6 , $CON(R)COR^6$, $N(R)T_nCO_2R^6$, $N(R)T_nNRCO_2R^6$, $N(R)T_nN(R^6)_2$, NO_2 , T_n (haloalkyl), $CO_2N(R^6)_2$, COR^6 , SO_2R^6 , or $SO_2N(R^6)_2$.
- 28. The method according to claim 26, wherein said compound has one or more features selected from the group consisting of:
 - (a) R¹ is an optionally substituted ring selected from phenyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, thienyl, pyrimidyl, imidazol-1-yl, imidazol-2yl, pyrazol-1-yl, amino-pyrimidinyl, quinolinyl, aminobenzimidazole, or indolyl;
 - (b) R² is hydrogen, alkoxy, aminoalkyl, or halogen;

- (c) R³ is hydrogen, alkoxy, aralkoxy, or halogen;
- (d) R^4 is hydrogen or $(CH_2)_yR^2$; and
- (e) R^9 is halogen, CN, oxo, R^6 , SR^6 , OR^6 , $N(R^6)_2$, $CON(R^6)_2$, CO_2R^6 , $CON(R)COR^6$, or $N(R)T_nCO_2R^6$.
- 29. The method according to claim 28, wherein:
 - (a) R¹ is an optionally substituted ring selected from phenyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, thienyl, pyrimidyl, imidazol-1-yl, imidazol-2yl, pyrazol-1-yl, amino-pyrimidinyl, quinolinyl, aminobenzimidazole, or indolyl;
 - (b) R2 is hydrogen, alkoxy, aminoalkyl, or halogen;
 - (c) R³ is hydrogen, alkoxy, aralkoxy, or halogen;
 - (d) R^4 is hydrogen or $(CH_2)_yR^2$; and
 - (e) R^9 is halogen, CN, oxo, R^6 , SR^6 , OR^6 , $N(R^6)_2$, $CON(R^6)_2$, CO_2R^6 , $CON(R)COR^6$, or $N(R)T_nCO_2R^6$.
- 30. The method according to claim 19, wherein said compound has the formula IIIa or IIIb:

W is nitrogen or CRa;

- R^a is selected from hydrogen, halogen, $-CF_3$, R^7 , $-OR^7$, or $-N(R^7)_2$;
- Ring A is optionally substituted with up to three R⁹; wherein when an R⁹ substituent is in the ortho-position of Ring A, said R⁹ substituent may be taken together with R² to form an optionally substituted 5-7 membered ring containing 0-2 ring heteroatoms selected from nitrogen, oxygen, or sulfur;
- R^2 and R^3 are each independently selected from R^6 , halogen, CN, SR^6 , OR^6 , $N(R^6)_2$, $NRCO_2R^6$, $NRCON(R^6)_2$, $CON(R^6)_2$, $NRCOR^6$, $NRN(R^6)_2$, COR^6 , CO_2R^6 , $COCOR^6$, SO_2R^6 , $SO_2N(R^6)_2$, or $NRSO_2R^6$; or R^2 and R^3 are taken together to form a fused, unsaturated or partially unsaturated, optionally substituted 5-8 membered ring containing 0-2 ring heteroatoms selected from nitrogen, oxygen, or sulfur;
- R^4 is selected from R^6 , $CON\,(R^6)$, CO_2^6 , CO_2R^6 , $COCOR^6$, SO_2R^6 , $SO_2N\,(R^6)_{\,2}\,, \text{ or } (CH_2)_{\,\gamma}R^2\,;$
- y is 1-6;
- $\begin{array}{l} {\rm R}^5 \ \ {\rm is \ selected \ from \ R^7, \ Ar, \ COAr, \ CON(R^7)Ar, \ (CH_2)_yCO_2R,} \\ \\ {\rm (CH_2)_yN(R^7)_2, \ C(=NR^{10})-N(R^7)_2, \ C(=NR^{10})-NRCOR,} \\ \\ {\rm C(=S)-N(R^7)_2, \ CON(R^7)_2, \ COR, \ SO_2R, \ or \ SO_2N(R^7)_2;} \end{array}$
- Ar is a five membered heteroaryl, heterocyclyl, or carbocyclyl ring, wherein said ring is optionally substituted by up to three substituents selected from oxo, halogen, CN, NO₂, R⁸, OR⁸, NHR⁸, NHCOR⁸, NHCONHR⁸, COR⁸, CONHR⁸, SO₂R⁸, NHSO₂NHR⁸ or SO₂NHR⁸;
- each R⁶ is independently selected from R⁷ or an optionally substituted group selected from alkoxy, hydroxyalkyl, heterocyclyl, heterocyclcylalkyl, aryl, aralkyl, aralkoxy, aryloxyalkyl, heteroaryl, heteroaralkyl, heteroaralkoxy, or heteroarayloxyalkyl;

- each R⁷ is independently selected from hydrogen or an optionally substituted aliphatic group having one to six carbons, or two R⁷ on the same nitrogen taken together with the nitrogen optionally form a four to six member, saturated or unsaturated heterocyclic ring having one to three heteroatoms;
- R^8 is a C_1 - C_4 aliphatic group, wherein two R^8 on adjacent positions of Ar, or an aryl or heteroaryl ring, may be taken together with their intervening atoms to form a three to six membered fused ring;
- each R^9 is independently selected from oxo, halogen, CN, NO₂, T_n (haloalkyl), R^6 , SR^6 , OR^6 , OR^8 , $N(R^6)_2$, $CON(R^6)_2$, $CON(R)COR^6$, COR^6 , CO_2R^6 , $CO_2N(R^6)_2$, $COCOR^6$, SO_2R^6 , $SO_2N(R^6)_2$, $N(R)T_nCO_2R^6$, $N(R)T_nCON(R^6)_2$, $N(R)T_nN(R^6)_2$, $N(R)T_nNRCO_2R^6$, $N(R)T_nNRCON(R^6)_2$, $N(R)T_nCOR^6$, $N(R)T_nNRCOR^6$, $N(R)T_nSO_2N(R^6)_2$, $N(R)T_nSO_2R^6$, $T_nPO(OR^7)_2$, $T_nOPO(OR^7)_2$, $T_nSP(OR^7)_2$, $T_nPO(OR^7)_2$, or $T_nNPO(OR^7)_2$;
- each Q is an independently selected C_1 - C_3 branched or straight alkyl;
- T is selected from -Q- or $-Q_m$ -CH(Q_m - R^2)-; each m and n are independently selected from zero or one; and R^{10} is selected from R^7 or Ar.
- 31. The method according to claim 30, wherein said compound has one or more features selected from the group consisting of:
 - (a) R² and R³ are each independently selected from halogen, CN, CO₂R⁶, OR⁶, or R⁶;
 - (b) R^5 is CO_2R , COAr, COR, $CON(R^7)_2$, Ar, $(CH_2)_yCO_2R$, or $(CH_2)_yN(R^7)_2$; and
 - (c) R^9 is halogen, CN, oxo, R^6 , SR^6 , OR^6 , $N(R^6)_2$, $CON(R^6)_2$, CO_2R^6 , $CON(R)COR^6$, $N(R)T_nCO_2R^6$,

 $N(R) T_n NRCO_2 R^6$, $N(R) T_n N(R^6)_2$, NO_2 , T_n (haloalkyl), $CO_2 N(R^6)_2$, COR^6 , $SO_2 R^6$, or $SO_2 N(R^6)_2$.

- 32. The method according to claim 31, wherein:
 - (a) R² and R³ are each independently selected from halogen, CN, CO₂R⁶, OR⁶, or R⁶;
 - (b) R^5 is CO_2R , COAr, COR, $CON(R^7)_2$, Ar, $(CH_2)_yCO_2R$, or $(CH_2)_vN(R^7)_2$; and
 - (c) R^9 is halogen, CN, OxO, R^6 , SR^6 , OR^6 , $N(R^6)_2$, $CON(R^6)_2$, CO_2R^6 , $CON(R)COR^6$, $N(R)T_nCO_2R^6$, $N(R)T_nNRCO_2R^6$, $N(R)T_nN(R^6)_2$, NO_2 , T_n (haloalkyl), $CO_2N(R^6)_2$, COR^6 , SO_2R^6 , or $SO_2N(R^6)_2$.
- 33. The method according to claim 31, wherein said compound has one or more features selected from the group consisting of:
 - (a) R² is hydrogen, alkoxy, aminoalkyl, or halogen;
 - (b) R³ is hydrogen, alkoxy, aralkoxy, or halogen;
 - (c) R^4 is hydrogen or $(CH_2)_yR^2$;
 - (d) R^5 is $CON(R^7)_2$, Ar, $(CH_2)_yCO_2R$, or $(CH_2)_yN(R^7)_2$; and
 - (e) R^9 is halogen, CN, oxo, R^6 , SR^6 , OR^6 , $N(R^6)_2$, $CON(R^6)_2$, CO_2R^6 , $CON(R)COR^6$, or $N(R)T_nCO_2R^6$.
- 34. The method according to claim 33, wherein:
 - (a) R² is hydrogen, alkoxy, aminoalkyl, or halogen;
 - (b) R³ is hydrogen, alkoxy, aralkoxy, or halogen;
 - (c) R^4 is hydrogen or $(CH_2)_yR^2$;
 - (d) R^5 is $CON(R^7)_2$, Ar, $(CH_2)_yCO_2R$, or $(CH_2)_yN(R^7)_2$; and
 - (e) R^9 is halogen, CN, oxo, R^6 , SR^6 , OR^6 , $N(R^6)_2$, $CON(R^6)_2$, CO_2R^6 , $CON(R)COR^6$, or $N(R)T_nCO_2R^6$.

- 35. The method according to claim 19, wherein said compound is selected from those listed in either of Tables 1 and 2.
- 36. The method according to claim 19, wherein the disease in mammals is alleviated by administration of an inhibitor of gyrase.
- 37. The method according to claim 19, wherein the bacterial infection to be treated is characterized by the presence of one or more of the following: Streptococcus pneumoniae, Streptococcus pyrogenes, Enterococcus fecalis, Enterococcus faecium, Klebsiella pneumoniae, Enterobacter sps. Proteus sps. Pseudomonas aeruginosa, E. coli, Serratia marcesens, S. aureus, or Coag. Neg. Staph.
- 38. The method according to claim 19, wherein the bacterial infection to be treated is selected from one or more of the following: urinary tract infections, pneumonia, prostatitis, skin and soft tissue infections, intra-abdominal infections, or infections of febrile neutropenic patients.
- 39. The method according to claim 19 further comprising the step of administering to said patient an additional therapeutic agent either as part of a multiple dosage form together with said compound or as a separate dosage form.
- 40. The method according to claim 19 further comprising the step of administering to said patient an agent that increases the susceptibility of bacterial organisms to antibiotics.

41. A compound of formula IIa or IIb:

$$R^1$$
 R^2
 R^3
 R^7
 R^7

or a pharmaceutically acceptable derivative or prodrug thereof, wherein:

or a pharmaceutically acceptable derivative or prodrug thereof, wherein:

W is nitrogen or CRa;

- R^a is selected from hydrogen, halogen, $-CF_3$, R^7 , $-OR^7$, or $-N(R^7)_2$;
- R¹ is an aryl or heteroaryl ring, wherein said ring is optionally substituted by up to four R⁹; wherein an R⁹ substituent in the ortho-position of R¹ taken together with R² may form a fused, unsaturated or partially unsaturated, optionally substituted 5-8 membered ring having 0-2 ring heteroatoms selected from nitrogen, oxygen, or sulfur;
- R^2 and R^3 are each independently selected from R^6 , halogen, CN, SR^6 , OR^6 , $N(R^6)_2$, $NRCO_2R^6$, $NRCON(R^6)_2$, $CON(R^6)_2$, $NRCOR^6$, $NRN(R^6)_2$, COR^6 , CO_2R^6 , $COCOR^6$, SO_2R^6 , $SO_2N(R^6)_2$, or $NRSO_2R^6$; or R^2 and R^3 are taken together to form a fused, unsaturated or partially unsaturated, optionally substituted 5-8 membered ring containing 0-2 ring heteroatoms selected from nitrogen, oxygen, or sulfur;
- R^4 is selected from R^6 , $CON(R^6)$, COR^6 , CO_2R^6 , $COCOR^6$, SO_2R^6 , $SO_2N(R^6)_2$, or $(CH_2)_yR^2$;

- Constitution of the Company of th

- Ar is a five membered heteroaryl, heterocyclyl, or carbocyclyl ring, wherein said ring is optionally substituted by up to three substituents selected from oxo, halogen, CN, NO₂, R⁸, OR⁸, NHR⁸, NHCOR⁸, NHCONHR⁸, COR⁸, CONHR⁸, SO₂R⁸, NHSO₂NHR⁸ or SO₂NHR⁸;
- each R⁶ is independently selected from R⁷ or an optionally substituted group selected from alkoxy, hydroxyalkyl, heterocyclyl, heterocyclcylalkyl, aryl, aralkyl, aralkoxy, aryloxyalkyl, heteroaryl, heteroaralkyl, heteroaralkoxy, or heteroarayloxyalkyl;
- each R⁷ is independently selected from hydrogen or an optionally substituted aliphatic group having one to six carbons, or two R⁷ on the same nitrogen taken together with the nitrogen optionally form a four to six member, saturated or unsaturated heterocyclic ring having one to three heteroatoms;
- R^8 is a C_1 - C_4 aliphatic group, wherein two R^8 on adjacent positions of Ar, or an aryl or heteroaryl ring, may be taken together with their intervening atoms to form a three to six membered fused ring;
- each R^9 is independently selected from oxo, halogen, CN, NO₂, T_n (haloalkyl), R^6 , SR^6 , OR^6 , OR^8 , $N(R^6)_2$, $CON(R^6)_2$, $CON(R)COR^6$, COR^6 , CO_2R^6 , $CO_2N(R^6)_2$, $COCOR^6$, SO_2R^6 , $SO_2N(R^6)_2$, $N(R)T_nCO_2R^6$, $N(R)T_nCON(R^6)_2$, $N(R)T_nN(R^6)_2$, $N(R)T_nNRCO_2R^6$, $N(R)T_nNRCON(R^6)_2$, $N(R)T_nCOR^6$, $N(R)T_nNRCOR^6$, $N(R)T_nSO_2N(R^6)_2$, $N(R)T_nSO_2R^6$, $T_nPO(OR^7)_2$, $T_nOPO(OR^7)_2$, $T_nSP(OR^7)_2$, $T_nPO(OR^7)_2$, or $T_nNPO(OR^7)_2$;
- each Q is an independently selected C_1 - C_3 branched or straight alkyl;
- T is selected from -Q- or $-Q_m$ -CH(Q_m -R²)-; and each m and n are independently selected from zero or one.

- 42. The compound according to claim 41, wherein said compound has one or more features selected from the group consisting of:
 - (a) R¹ is an optionally substituted aryl or heteroaryl ring;
 - (b) R^2 and R^3 are each independently selected from halogen, CN, CO_2R^6 , OR^6 , or R^6 ; and
 - (c) R^9 is halogen, CN, oxo, R^6 , SR^6 , OR^6 , $N(R^6)_2$, $CON(R^6)_2$, CO_2R^6 , $CON(R)COR^6$, $N(R)T_nCO_2R^6$, $N(R)T_nNRCO_2R^6$, $N(R)T_nN(R^6)_2$, NO_2 , N
- 43. The compound according to claim 42, wherein:
 - (a) R^1 is an optionally substituted aryl or heteroaryl ring;
 - (b) R^2 and R^3 are each independently selected from halogen, CN, CO_2R^6 , OR^6 , or R^6 ; and
 - (c) R^9 is halogen, CN, oxo, R^6 , SR^6 , OR^6 , $N(R^6)_2$, $CON(R^6)_2$, CO_2R^6 , $CON(R)COR^6$, $N(R)T_nCO_2R^6$, $N(R)T_nNRCO_2R^6$, $N(R)T_nN(R^6)_2$, NO_2 , $T_n(haloalkyl)$, $CO_2N(R^6)_2$, COR^6 , SO_2R^6 , or $SO_2N(R^6)_2$.
- 44. The compound according to claim 42, wherein said compound has one or more features selected from the group consisting of:
 - (a) R¹ is an optionally substituted ring selected from phenyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, thienyl, pyrimidyl, imidazol-1-yl, imidazol-2yl, pyrazol-1-yl, amino-pyrimidinyl, quinolinyl, aminobenzimidazole, or indolyl;
 - (b) R2 is hydrogen, alkoxy, aminoalkyl, or halogen;
 - (c) R3 is hydrogen, alkoxy, aralkoxy, or halogen;
 - (d) R^4 is hydrogen or $(CH_2)_yR^2$; and

- (e) R^9 is halogen, CN, oxo, R^6 , SR^6 , OR^6 , $N(R^6)_2$, $CON(R^6)_2$, CO_2R^6 , $CON(R)COR^6$, or $N(R)T_nCO_2R^6$.
- 45. The compound according to claim 44, wherein:
 - (a) R¹ is an optionally substituted ring selected from phenyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, thienyl, pyrimidyl, imidazol-1-yl, imidazol-2yl, pyrazol-1-yl, amino-pyrimidinyl, quinolinyl, aminobenzimidazole, or indolyl;
 - (b) R2 is hydrogen, alkoxy, aminoalkyl, or halogen;
 - (c) R3 is hydrogen, alkoxy, aralkoxy, or halogen;
 - (d) R^4 is hydrogen or $(CH_2)_yR^2$; and
 - (e) R^9 is halogen, CN, oxo, R^6 , SR^6 , OR^6 , $N(R^6)_2$, $CON(R^6)_2$, CO_2R^6 , $CON(R)COR^6$, or $N(R)T_nCO_2R^6$.
- 46. A compound of formula IIIa or IIIb:

$$R^{2}$$
 R^{3}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}

W is nitrogen or CRa;

 R^a is selected from hydrogen, halogen, $-CF_3$, R^7 , $-OR^7$, or $-N(R^7)_2$;

- Ring A is optionally substituted with up to three R⁹;
 wherein when an R⁹ substituent is in the ortho-position
 of Ring A, said R⁹ substituent may be taken together
 with R² to form an optionally substituted 5-7 membered
 ring containing 0-2 ring heteroatoms selected from
 nitrogen, oxygen, or sulfur;
- R^2 and R^3 are each independently selected from R^6 , halogen, CN, SR^6 , OR^6 , $N(R^6)_2$, $NRCO_2R^6$, $NRCON(R^6)_2$, $CON(R^6)_2$, $NRCOR^6$, $NRN(R^6)_2$, COR^6 , CO_2R^6 , $COCOR^6$, SO_2R^6 , $SO_2N(R^6)_2$, or $NRSO_2R^6$; or R^2 and R^3 are taken together to form a fused, unsaturated or partially unsaturated, optionally substituted 5-8 membered ring containing 0-2 ring heteroatoms selected from nitrogen, oxygen, or sulfur;
- R^4 is selected from R^6 , $CON(R^6)$, COR^6 , CO_2R^6 , $COCOR^6$, SO_2R^6 , $SO_2N(R^6)_2$, or $(CH_2)_yR^2$;

- $\begin{array}{l} {\rm R}^5 \ \ {\rm is \ selected \ from \ R}^7, \ \ {\rm Ar, \ \ COAr, \ \ CON \, (R}^7) \, {\rm Ar, \ \ \ } ({\rm CH_2})_{\rm y} {\rm CO}_2 {\rm R}, \\ \\ ({\rm CH_2})_{\rm y} {\rm N \, (R}^7)_{\rm 2}, \ \ {\rm C \, (=NR^{10}) N \, (R^7)_{\rm 2}, \ \ C \, (=NR^{10}) NRCOR, \\ \\ {\rm C \, (=S) N \, (R}^7)_{\rm 2}, \ \ {\rm CON \, (R}^7)_{\rm 2}, \ \ {\rm COR, \ \ SO_2 R, \ \ or \ \ SO_2 N \, (R}^7)_{\rm 2}; \\ \end{array}$
- Ar is a five membered heteroaryl, heterocyclyl, or carbocyclyl ring, wherein said ring is optionally substituted by up to three substituents selected from oxo, halogen, CN, NO₂, R⁸, OR⁸, NHR⁸, NHCOR⁸, NHCONHR⁸, COR⁸, CONHR⁸, SO₂R⁸, NHSO₂NHR⁸ or SO₂NHR⁸;
- each R⁶ is independently selected from R⁷ or an optionally substituted group selected from alkoxy, hydroxyalkyl, heterocyclyl, heterocyclcylalkyl, aryl, aralkyl, aralkoxy, aryloxyalkyl, heteroaryl, heteroaralkyl, heteroaralkoxy, or heteroarayloxyalkyl;
- each R^7 is independently selected from hydrogen or an optionally substituted aliphatic group having one to six carbons, or two R^7 on the same nitrogen taken

- together with the nitrogen optionally form a four to six member, saturated or unsaturated heterocyclic ring having one to three heteroatoms;
- R^8 is a C_1 - C_4 aliphatic group, wherein two R^8 on adjacent positions of Ar, or an aryl or heteroaryl ring, may be taken together with their intervening atoms to form a three to six membered fused ring;
- each R^9 is independently selected from oxo, halogen, CN, NO₂, T_n (haloalkyl), R^6 , SR^6 , OR^6 , OR^8 , $N(R^6)_2$, $CON(R^6)_2$, $CON(R)COR^6$, COR^6 , CO_2R^6 , $CO_2N(R^6)_2$, $COCOR^6$, SO_2R^6 , $SO_2N(R^6)_2$, $N(R)T_nCO_2R^6$, $N(R)T_nCON(R^6)_2$, $N(R)T_nN(R^6)_2$, $N(R)T_nNRCO_2R^6$, $N(R)T_nNRCON(R^6)_2$, $N(R)T_nCOR^6$, $N(R)T_nNRCOR^6$, $N(R)T_nSO_2N(R^6)_2$, $N(R)T_nSO_2R^6$, $T_nPO(OR^7)_2$, $T_nOPO(OR^7)_2$, $T_nSP(OR^7)_2$, $T_nPO(OR^7)_2$, or $T_nNPO(OR^7)_2$;
- each Q is an independently selected C₁-C₃ branched or straight alkyl;

T is selected from -Q- or $-Q_m$ -CH(Q_m - R^2)-; each m and n are independently selected from zero or one; and R^{10} is selected from R^7 or Ar.

- 47. The compound according to claim 46, wherein said compound has one or more features selected from the group consisting of:
 - (a) R^2 and R^3 are each independently selected from halogen, CN, CO_2R^6 , OR^6 , or R^6 ;
 - (b) R^5 is CO_2R , COAr, COR, $CON(R^7)_2$, Ar, $(CH_2)_yCO_2R$, or $(CH_2)_yN(R^7)_2$; and
 - (c) R^9 is halogen, CN, OXO, R^6 , SR^6 , OR^6 , $N(R^6)_2$, $CON(R^6)_2$, CO_2R^6 , $CON(R)COR^6$, $N(R)T_nCO_2R^6$, $N(R)T_nNRCO_2R^6$, $N(R)T_nN(R^6)_2$, NO_2 , T_n (haloalkyl), $CO_2N(R^6)_2$, COR^6 , SO_2R^6 , or $SO_2N(R^6)_2$.
- 48. The compound according to claim 47, wherein:

- (a) R² and R³ are each independently selected from halogen, CN, CO₂R⁶, OR⁶, or R⁶;
- (b) R^5 is CO_2R , COAr, COR, $CON(R^7)_2$, Ar, $(CH_2)_yCO_2R$, or $(CH_2)_yN(R^7)_2$; and
- (c) R^9 is halogen, CN, OXO, R^6 , SR^6 , OR^6 , $N(R^6)_2$, $CON(R^6)_2$, CO_2R^6 , $CON(R)COR^6$, $N(R)T_nCO_2R^6$, $N(R)T_nNRCO_2R^6$, $N(R)T_nN(R^6)_2$, NO_2 , T_n (haloalkyl), $CO_2N(R^6)_2$, COR^6 , SO_2R^6 , or $SO_2N(R^6)_2$.
- 49. The compound according to claim 47, wherein said compound has one or more features selected from the group consisting of:
 - (a) R² is hydrogen, alkoxy, aminoalkyl, or halogen;
 - (b) R3 is hydrogen, alkoxy, aralkoxy, or halogen;
 - (c) R^4 is hydrogen or $(CH_2)_yR^2$;
 - (d) R^5 is $CON(R^7)_2$, Ar, $(CH_2)_yCO_2R$, or $(CH_2)_yN(R^7)_2$; and
 - (e) R^9 is halogen, CN, oxo, R^6 , SR^6 , OR^6 , $N(R^6)_2$, $CON(R^6)_2$, CO_2R^6 , $CON(R)COR^6$, or $N(R)T_nCO_2R^6$.
- 50. The compound according to claim 49, wherein:
 - (a) R^2 is hydrogen, alkoxy, aminoalkyl, or halogen;
 - (b) R³ is hydrogen, alkoxy, aralkoxy, or halogen;
 - (c) R^4 is hydrogen or $(CH_2)_yR^2$;
 - (d) R^5 is $CON(R^7)_2$, Ar, $(CH_2)_yCO_2R$, or $(CH_2)_yN(R^7)_2$; and
 - (e) R^9 is halogen, CN, oxo, R^6 , SR^6 , OR^6 , $N(R^6)_2$, $CON(R^6)_2$, CO_2R^6 , $CON(R)COR^6$, or $N(R)T_nCO_2R^6$.
- 51. A composition comprising a compound according to any one of claims 41 to 50; and a pharmaceutically acceptable carrier.

- 52. The composition according to claim 51, wherein said compound is formulated in a pharmaceutically acceptable manner for administration to a patient.
- 53. The composition according to claim 51 further comprising an additional therapeutic agent.
- 54. The composition according to claim 52 further comprising an additional therapeutic agent.
- 55. The composition according to claim 51 further comprising an agent that increases the susceptibility of bacterial organisms to antibiotics.
- 56. The composition according to claim 53 further comprising an agent that increases the susceptibility of bacterial organisms to antibiotics.