

Budapesti Műszaki és Gazdaságtudományi Egyetem

Villamosmérnöki és Informatikai Kar

MÉLYTANULÁS NAGY HÁZI FELADAT

Model Ensemble for Medical Image Segmentation

Hallgatók: Berkovics Fanni, Jankó Júlia, Laczkó Anna

Konzulens: Kalapos András

Tartalomjegyzék

1 Bevezetés	2
1.1 Adathalmaz	2
1.2 LLM használat	2
1.3 Feladatmegosztás	2
2 Kód dokumentáció	
2.1 Rendszerkövetelmények	3
2.2 Data Preparation.ipynb	3
2.3 Training and Evaluation.ipynb	4
2.4 User Interface.ipynb	6
2.5 Docker	3
3 Irodalomiegyzék	7

1 Bevezetés

A kitűzött feladat célja egy modellegyüttes létrehozása, amely képi adatok alapján klasszifikációt valósít meg. A modellegyüttesek [1] használata bevett módszernek számít mind a statisztikába, mind a gépi tanulásban; több tanulási algoritmust használnak, hogy jobb prediktív teljesítményt érjenek el, mint amilyet az alkotó tanulási algoritmusok önmagukban elérnének.

1.1 Adathalmaz

A Sunnybrook Cardiac Data (SCD) [2] egy 45 MRI-felvételt tartalmazó, nyilvánosan elérhető adatkészlet. A felvételek négy patológiás csoportból (egészséges, hipertrófia, szívelégtelenség infarktussal és szívelégtelenség infarktus nélkül) származnak.

1.2 LLM használat

A feladat elvégzése során előfordult, hogy igénybe vettük a ChatGPT ingyenesen elérhető változatát, ez jellemzően a debuggolást segítette vagy a kódminőség javítását szolgálta. A dokumentáció elkészítésénél nem használtuk.

1.3 Feladatmegosztás

A mérföldköveket sprinteknek tekintve osztottuk ki egymás között a feladatokat, különös figyelmet fordítva a hallgatók aktuális elérhetőségére, preferenciáira, ugyanakkor az egyenlő terhelést szem előtt tartva.

Berkovics Fanni az első sprintben az adatgyűjtéssel és -elemzéssel, míg a második és a harmadik sprintben a kiértékeléssel és a vizualizációval foglalkozott.

Jankó Júlia az első sprintben a konténerizációval, míg a második és harmadik sprintben a baseline és a végső modellek kiválasztásával és betanításával foglalkozott.

Laczkó Anna az első sprintben az adatok előkészítésével és a GitHub létrehozásával, míg a második és harmadik sprintben az adatok effektív betöltésével és a felhasználói interfész kialakításával foglalkozott.

2 Kód dokumentáció

2.1 Rendszerkövetelmények

A notebookok a legtöbb lokális környezetben lefuttathatóak, a Docker használatához a README.md fájlban leírtakat kell követni. A használata erősen ajánlott, mivel ebben már telepítésre kerültek a szükséges Python csomagok a megfelelő verziókkal. Az egyetlen fontos kritérium, hogy az adott gépnek legalább 8 GB RAM-mal kell rendelkeznie.

2.2 Docker

A konténerizációval kapcsolatos feladatok elvégzése eleinte nehézkes volt, mivel egyikünknek sincs sok tapasztalata vele. A Dockerfile tartalma többek között a ChatGPT segítségével készült el. Egy docker image-et készítettünk a requirements.txt és a Dockerfile felhasználásával, majd ezt feltöltöttük egyikünk docker hub-jára, hogy ne kelljen mindenkinek docker image-et építeni. Ennek használására az instrukciók a README.md fájlban vannak.

2.3 Data Preparation.ipynb

Ez a notebook felelős az adatok előkészítésért és az effektív betöltésért. Az adatok effektív betöltése kiemelt szerepet kapott a projekt során, az adatok mennyiségének köszönhetően. A megoldás az lett, hogy az adatbetöltés minden lépése függvényként lett lekódolva, és összesen egy cella végzi az egész adatelőkészítés műveletét.

Ezen felül az adatok 12 db külön batch-ben kerülnek feldolgozásra, melyeket a script külön-külön is elment, hogy ne terheljük meg túlságosan a RAM-ot. Később a tanítás során ez a 12 fájl kerül betöltésre egyesével a feldolgozáshoz.

A .csv formátumban tárolt adatok feldolgozása során az életkort tartalmazó "age" jellemzőt csoportokra bontottuk, majd dummy változót hoztunk létre belőle, míg a nemet jelölő "gender" változóból flaget készítettünk.

2.4 Training and Evaluation.ipynb

Képi (szekvenciális) és táblázatos (numerikus) adataink is voltak, eleinte olyan modellt kerestünk, amely tud ezen két adaton egyszerre tanulni, azonban nem sikerült ilyen modellt találnunk. A baseline modell így két RandomForestClassifier-ből állt; egyik dolgozta fel a képi adatokat, míg a másik a táblázatosakat.

Az ensemble megoldás kivitelezéséhez a VotingClassifiert választottuk erre, soft szavazási móddal, nehogy a gyengébb, táblázatos adatokon tanult modellek elvigyék a döntést rossz irányba. A VotingClassifierbe egész pipeline-okat is be lehet adni egy-egy modellnél, így elég volt az egész dataframe struktúrát beadni tanító adatként, és az egyes modellek kiszedték az image vagy táblázatos adatokat belőle maguknak.

Inkrementálisan, batchenként tanítottuk be a modelleket, a tanító adat mérete miatt. Végső modellegyüttesünkben meghagytuk az eredendő RandomForestClassifiereket. Egy GradientBoostingClassifiert alkalmaztunk a táblázatos adatokra, mivel a képi adatokból egy batch-re több, mint 40 perc kellett volna neki. A képi adatokra még egy egyszerűbb neurális hálót tanítottunk be, mivel ebbe képi transzformációs rétegeket beletéve teljesen elszállt volna a memóriahiánytól.

A modellek betanítására az adathalmaz 75%-át használtuk. A szavazásos modellegyüttes betanítására és a tesztelésre 16% és 9% arányban adtunk adatokat.

Manuálisan optimalizáltuk a hiperparamétereket, mivel az idő nagy része az adatok memóriába való beleférésével telt el. Amennyiben nem adtunk megfelelő mennyiségű fát a RandomForestRegressor-nak, illetve a GradientBoostingClassifier-nek, nagyon rossz teljesítményük volt. Illetve az is szükséges volt az inkrementális tanításnál, hogy még több fát adjunk batch-enként, hogy ne felejtse el a régen tanultakat, és az újakat is be tudja fogadni.

A modellegyüttes teljesítményének mérésére olyan metrikákat kerestünk, amelyek alkalmasak többosztályos klasszifikációs modellek teljesítményének értékelésére. Ide sorolható az összes olyan mutató, amelyet a konfúziós mátrix értékeiből nyerhetünk ki. A modellegyüttes predikcióihoz tartozó konfúziós mátrixot az 1. ábra szemlélteti.

1. ábra: Konfúziós mátrix

A mátrix értékeiből számos mutatót származtathatunk; accuracy (0.9679), precision (0.9680), recall (0.9679), F1 Score (0.9679), Cohen-féle kappa (0.9570), Matthews-korrelációs együttható (0.9570).

A klasszifikációs modellek értékelésénél a ROC-görbe vizsgálata is elengedhetetlen, alakulása a különféle osztályok esetében a 2. ábrán látható. Mivel a négy osztály esetében nagyon hasonló görbe rajzolható ki, így jelen ábra csak azt a tartományt mutatja, ahol az eltérések a legjobban megfigyelhetőek.

2. ábra: ROC-görbe

Összességében tehát elmondható, hogy a modellegyüttes jó eredményeket ér el, teljesítménye megfelelő, legyőzi a baseline modellt.

2.5 User Interface.ipynb

Felhasználói interfész kialakításához a Gradio applikációt használtuk. Ezen notebook lefuttatásának végén egy új ablakban automatikusan megnyílik a 3. ábrával megegyező felhasználói interfész.

3. ábra: Felhasználói interfész

Először meg tudjuk adni a páciens adatait, majd kétféle képfeltöltési módból válaszhatunk; vagy egy darab képet tölthetünk fel, amit aztán kiértékel a program, vagy egy vagy akár több DICOM fájlt. Több fájl esetén a modell minden egyes képre prediktál egy címkét, majd a móduszt nevezi meg diagnózisnak. Emellett ilyenkor megjelenít egy százalékot is, melyet az alábbi képlet szerint számol:

Ez a képlet könnyen változtatható igény esetén, és akár a megfelelő modellek predict_proba értékével is helyettesíthető.

3 Irodalomjegyzék

- [1] https://scikit-learn.org/stable/modules/ensemble.html
- [2] https://www.cardiacatlas.org/sunnybrook-cardiac-data/