Chapitre 3 : FONCTIONS LOGARITHME ET EXPONENTIELLE

Exercice 1 Soit S l'ensemble des solutions

1)
$$ln(2x-5) + ln(1+x) = 2ln2$$

* L'équation existe ssi 2x- 5 > 0 et 1+x > 0

$$D = \frac{5}{2}; + \infty[\cap] - 1; +\infty[=] \frac{5}{2}; + \infty[.$$

$$* ln(2x-5) + ln(1+x) = 2ln2 ssi ln(2x-5)(1+x) = ln2^2$$

$$ssi(2x-5)(1+x) = 4 ssi 2x^2 -3x - 9 = 0$$

$$\Delta = 81$$
; $x_1 = 3$ et $x_2 = \frac{-3}{2}$

d'où S = {3;
$$\frac{-3}{2}$$
}∩D = {3}.

2) 2lnx + 3 = 0

- * L'équation existe ssi x > 0; D =]0; $+ \infty[$.
- * $2\ln x + 3 = 0$ ssi $\ln x = \frac{-3}{2}$ ssi $\ln x = \frac{-3}{2}$ lne ssi $\ln x = \ln e^{\frac{-3}{2}}$ ssi $x = e^{\frac{-3}{2}}$;

d'où S = {
$$e^{\frac{-3}{2}}$$
 } \cap D = { $e^{\frac{-3}{2}}$ }.

3) $(\ln x)^3 - \ln x^3 = -2$

- * L'équation existe ssi x > 0 et $x^3 > 0$ ssi x > 0; D =]0; $+ \infty[$.
- * $(lnx)^3 lnx^3 = -2 ssi (lnx)^3 3lnx + 2 = 0$;

en posant X = lnx, on obtient l'équation $X^3 - 3X + 2 = 0$.

-2 étant une racine évidente, donc X^3 - 3X + 2 = (X+2) Q(X); déterminons Q(X) par la méthode de Horner :

	1	0	-3	2
(-2)		-2	4	-2
	1	-2	1	0

Q(X) =
$$X^2$$
 - 2X + 1 = $(X - 1)^2$.
Donc X^3 - 3X + 2 = 0
ssi X = -2 ou X = 1:

or
$$X = lnx$$
, donc

$$lnx = -2$$
 ou $lnx = 1$ ssi $lnx = lne^{-2}$ ou $lnx = lne$
ssi $x = e^{-2}$ ou $x = e$ d'où $S = \{e^{-2}; e\} \cap D = \{e^{-2}; e\}$.

4)
$$lnx - ln(2-x) \ge 0$$

* L'inéquation existe ssi x > 0 et 2- x > 0;

$$D =]0; + \infty[\cap] - \infty; 2[=]0; 2[.$$

* $\ln x - \ln(2-x) \ge 0$ ssi $\ln x \ge \ln(2-x)$ ssi $x \ge 2-x$ ssi $x \ge 1$ d'où $S = [1 : +\infty] \cap D = [1 : 2[$.

5)
$$ln(\frac{x+1}{x-1}) \le 0$$

* L'inéquation existe ssi $\frac{x+1}{x-1} > 0$

X	8	-1		1	$+\infty$
x+1	+	0	-		+
$\overline{x-1}$					

$$D =]-\infty$$
; $-1[U]1$; $+\infty[$.

*
$$ln(\frac{x+1}{x-1}) \le 0$$
 ssi $ln(\frac{x+1}{x-1}) \le ln1$ ssi $\frac{x+1}{x-1} \le 1$ ssi $\frac{x+1}{x-1} - 1 \le 0$

$$ssi \frac{2}{x-1} \le 0 ssi x - 1 < 0 ssi x < 1;$$

d'où S =]-
$$\infty$$
; 1[\cap D =]- ∞ ; -1[.

6) $ln^2x - 2lnx - 3 > 0$

- * L'inéquation existe ssi x > 0; D =]0; $+ \infty[$.
- * $ln^2x 2lnx 3 > 0$; en posant lnx = X, on obtient l'inéquation

$$X^2 - 2X - 3 > 0$$
. $X_1 = -1$;
Or $X_1 X_2 = \frac{c}{a}$, donc $X_2 = 3$

X	-∞ -	1	3	+ ∞
$X^2 - 2X - 3$	+	-		+

$$X^2 - 2X - 3 > 0$$
 ssi $X \in]-\infty; -1[\cup]3; +\infty[$

ssi X < -1 ou X > 3 ssi lnx < -1 ou lnx > 3

$$lnx < lne^{-1} \text{ ou } lnx > lne^{3}$$
$$x < e^{-1} \text{ ou } x > e^{3} :$$

d'où S = (]-
$$\infty$$
; $e^{-1}[\cup]e^3$; + ∞ [) \cap D =]0; $e^{-1}[\cup]e^3$; + ∞ [.

7)
$$e^2 \cdot e^{-x} - e^{x^2 - 4} = 0$$

$$e^{2} \cdot e^{-x} - e^{x^{2}-4} = 0$$
 ssi $e^{2-x} = e^{x^{2}-4}$ ssi 2- x = $x^{2} - 4$

ssi
$$x^2 + x - 6 = 0$$
; $x_1 = 2$, or $2x_2 = -6$ donc $x_2 = -3$

d'où $S = \{2; -3\}.$

8)
$$e^{x} - 2e^{-x} = -1$$

 $e^{x} - 2e^{-x} = -1$ ssi $e^{x} - \frac{2}{e^{x}} + 1 = 0$ ssi $e^{2x} + e^{x} - 2 = 0$
ssi $(e^{x})^{2} + e^{x} - 2 = 0$; en posant $X = e^{x}$, on obtient $X^{2} + X - 2 = 0$.
 $X_{1} = 1$; $1X_{2} = -2$ ssi $X_{2} = -2$; or $X = e^{x}$, donc $e^{x} = 1$ ou $e^{x} = -2$
 $e^{x} = e^{0}$ impossible $x = 0$
D'où $S = \{0\}$.

9)
$$(e^{x-1})^4 \ge e^{x^2}$$

$$(e^{x-1})^4 \ge e^{x^2} \operatorname{ssi} e^{4x-4} \ge e^{x^2} \operatorname{ssi} 4x-4 \ge x^2$$

$$ssi - x^2 + 4x - 4 \ge 0$$

$$\Delta = 0, x_0 = 2;$$

S = {2}.

x	-∞	2	+∞
$-x^2 + 4x - 4$	ı	0	-

$$10) \begin{cases} 2lnx - 3lny = 5 \\ lnx + 2lny = -1 \end{cases}$$

* Le système existe ssi x > 0 et y > 0.

* En posant
$$X = lnx$$
 et $Y = lny$, on obtient $\begin{cases} 2X - 3Y = 5 \\ X + 2Y = -1 \end{cases}$;

Par la méthode d'addition, on trouve : X = 1 et Y = -1; or X = lnx et Y = lny donc lnx = 1 et lny = -1

$$lnx = lne$$
 et $lny = lne^{-1}$
 $x = e$ et $y = e^{-1}$;

Or e > 0 et $e^{-1} > 0$ donc $S = \{(e; e^{-1})\}.$

11)
$$\begin{cases} e^x \cdot e^y - e^5 = 0\\ lnx + lny = ln2 + ln3 \end{cases}$$

* Le système existe ssi x > 0 et y > 0.

$$\begin{cases}
 e^{x} \cdot e^{y} - e^{5} = 0 \\
 lnx + lny = ln2 + ln3
\end{cases}
\text{SSI}
\begin{cases}
 e^{x+y} = e^{5} \\
 ln(xy) = ln6
\end{cases}
\text{SSI}
\begin{cases}
 x + y = 5 \\
 xy = 6
\end{cases}$$

Si les nombres x et y existent alors ils sont solutions de l'équation $t^2 - 5t + 6 = 0$. Or $t_1 = 2$ donc $2t_2 = 6$ d'où $t_2 = 3$; 2 et 3 étant positifs donc $S = \{(2;3); (3;2)\}$

Exercice 2

$$1) f(\mathbf{x}) = x \ln x - x$$

*
$$f(x)$$
 existe ssi $x > 0$; $D_f = [0; +\infty[$.

$$* \lim_{x \to 0} f(x) = ?$$

 $\lim_{x\to 0} x \ln x = 0 \text{ et } \lim_{x\to 0} x = 0, \text{ par somme } \lim_{x\to 0} f(x) = 0.$

$$*\lim_{x\to+\infty} f(x) = \lim_{x\to+\infty} x(\ln x - 1) = ?$$

$$\lim_{x \to +\infty} x = +\infty \text{ et } \lim_{x \to +\infty} \ln x - 1 = +\infty,$$

par produit $\lim_{x\to+\infty} f(x) = +\infty$.

$$*f'(x) = (1)lnx + x(\frac{1}{x}) - 1 = lnx.$$

 $f'(x) \ge 0$ ssi $lnx \ge 0$ ssi $lnx \ge ln1$ ssi $x \ge 1$.

Х	0	1		+ ∞
f'(x)		- 0	+	
f		0	~	+ 8

$$2) f(x) = ln(\frac{1+x}{1-x})$$

*
$$f(x)$$
 existe ssi $\frac{1+x}{1-x} > 0$.

$$D_f =]-1;1[.$$

$$* \lim_{x \to -1^+} f(x) = ?$$

$$\lim_{x \to -1^+} \left(\frac{1+x}{1-x} \right) = 0^+ \text{ et } \lim_{x \to 0^+} \ln x = -\infty,$$

donc
$$\lim_{x\to -1^+} f(x) = -\infty$$
.

$$* \lim_{x \to 1^{-}} f(x) = ?$$

X	-∞	-1	1	+ ∞
<u>1+x</u>	-	0 +		-
1-x				

$$\lim_{x \to 1^{-}} \left(\frac{1+x}{1-x}\right) = + \infty \text{ et } \lim_{x \to +\infty} \ln x = +\infty,$$

$$\operatorname{donc } \lim_{x \to 1^{-}} f(x) = +\infty.$$

$$*f'(x) = \frac{\left(\frac{1+x}{1-x}\right)'}{\left(\frac{1+x}{1-x}\right)} = \frac{(1)(1-x)-(-1)(1+x)}{(1-x)^2} \left(\frac{1-x}{1+x}\right)$$

$$= \frac{2}{(1-x)(1+x)} . \quad x \in D_f \text{ donc } \frac{1+x}{1-x} > 0 \text{ ; or ce quotient a le}$$

même signe que le produit (1-x)(1+x), donc (1-x)(1+x) > 0, d'où f'(x) > 0.

* Tableau de variation

х	-	1	1
f'(x)		+	
f		***	

$$3) f(\mathbf{x}) = \frac{\ln x + 1}{\ln x - 1}$$

* f(x) existe ssi x > 0 et $lnx - 1 \neq 0$ ssi x > 0 et $x \neq e$;

d'où
$$D_f =]0$$
; $+ \infty [- \{e\} =]0$; $e[\cup]e$; $+ \infty [.$

$$* \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{(\ln x)(1 + \frac{1}{\ln x})}{(\ln x)(1 - \frac{1}{\ln x})} = \lim_{x \to 0} \frac{1 + \frac{1}{\ln x}}{1 - \frac{1}{\ln x}};$$

or $\lim_{x\to 0} \ln x = -\infty$, donc $\lim_{x\to 0} \frac{1}{\ln x} = 0$, d'où $\lim_{x\to 0} f(x) = 1$ par quotient.

$$* \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{(\ln x)(1 + \frac{1}{\ln x})}{(\ln x)(1 - \frac{1}{\ln x})} = \lim_{x \to +\infty} \frac{1 + \frac{1}{\ln x}}{1 - \frac{1}{\ln x}};$$

or
$$\lim_{x \to +\infty} \ln x = +\infty$$
, donc $\lim_{x \to +\infty} \frac{1}{\ln x} = 0$, d'où

$$\lim_{x \to +\infty} f(x) = 1 \text{ par quotient.}$$

$$* \lim_{x \to e} f(x) = ?$$

$$\lim_{x \to e} \ln x + 1 = 2 \; ; \lim_{x \to e} \ln x - 1 = 0$$

Signe du dénominateur $lnx - 1 \ge 0$ ssi $x \ge e$

X	0	e	$+\infty$
lnx-1	-	0	+

*
$$\lim_{x \to e^{-}} lnx + 1 = 2$$
 et $\lim_{x \to e^{-}} lnx - 1 = 0^{-}$, par quotient $\lim_{x \to e^{-}} f(x) = -\infty$.

*
$$\lim_{x \to e^+} \ln x + 1 = 2$$
 et $\lim_{x \to e^+} \ln x - 1 = 0^+$,

par quotient
$$\lim_{x\to e^-} f(x) = +\infty$$
.

*
$$f'(x) = \frac{\frac{1}{x}(\ln x - 1) - \frac{1}{x}(\ln x + 1)}{(\ln x - 1)^2} = \frac{-2}{x(\ln x - 1)^2}$$
. Or $x > 0$, donc $f'(x) < 0$.

* Tableau de variation

Х	0		e	+∞
f'(x)		-		-
f		1		^{+∞} → 1

4)
$$f(x) = \frac{1+e^x}{1-e^x}$$

*
$$f(x)$$
 existe ssi 1- $e^x \neq 0$ ssi $x \neq 0$; $D_f =]-\infty$; $O[\cup]0$; $+\infty[$.

$$* \lim_{x \to -\infty} f(x) = ?$$

 $\lim_{x \to -\infty} e^x = 0, \text{ donc } \lim_{x \to -\infty} f(x) = 1 \text{ par quotient.}$

*
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{e^x(\frac{1}{e^x} + 1)}{e^x(\frac{1}{e^x} - 1)} = \lim_{x \to +\infty} \frac{\frac{1}{e^x} + 1}{\frac{1}{e^x} - 1};$$

Or $\lim_{x\to+\infty} e^x = +\infty$, donc $\lim_{x\to+\infty} \frac{1}{e^x} = 0$, d'où $\lim_{x\to+\infty} f(x) = -1$ par quotient.

*
$$\lim_{x\to 0} 1 + e^x = 2$$
 et $\lim_{x\to 0} 1 - e^x = 0$;

Signe du dénominateur :

$$1 - e^x \ge 0$$
 ssi $e^x \le 1$ ssi $x \le 0$

Х	-8	0	$+\infty$
$1-e^x$	+	0	-

*
$$\lim_{x \to 0^{-}} 1 + e^{x} = 2$$
 et $\lim_{x \to 0^{-}} 1 - e^{x} = 0^{+}$, par quotient $\lim_{x \to 0^{-}} f(x) = +\infty$.

*
$$\lim_{x \to 0^+} 1 + e^x = 2$$
 et $\lim_{x \to 0^+} 1 - e^x = 0^-$
par quotient $\lim_{x \to 0^+} f(x) = -\infty$.

* $f'(x) = \frac{e^x (1 - e^x) - (-e^x)(1 + e^x)}{(1 - e^x)^2} = \frac{2 e^x}{(1 - e^x)^2}$; $f'(x) > 0$.

х	- ∞	0	+∞
f'(x)	+		+
f	1 +∞		-∞ -1

5)
$$f(x) = -2x + 1 + \ln \left| \frac{x+1}{x} \right|$$

* $f(x)$ existe ssi $\left| \frac{x+1}{x} \right| > 0$ ssi $\frac{x+1}{x} \neq 0$ ssi $x \neq -1$ et $x \neq 0$;
d'où $D_f = \mathbb{R} - \{-1; 0\} =] - \infty; -1[\cup] -1; 0[\cup] 0; + \infty[.$
* $\lim_{x \to -\infty} f(x) = ?$
 $\lim_{x \to -\infty} \frac{x+1}{x} = \lim_{x \to -\infty} \frac{x}{x} = 1; \lim_{x \to 1} |x| = 1$ et $\lim_{x \to 1} \ln x = 0$, donc $\lim_{x \to -\infty} \ln \left| \frac{x+1}{x} \right| = 0$; de plus $\lim_{x \to -\infty} -2x + 1 = + \infty$, par somme $\lim_{x \to +\infty} f(x) = ?$
 $\lim_{x \to +\infty} \frac{x+1}{x} = \lim_{x \to +\infty} \frac{x}{x} = 1; \lim_{x \to 1} |x| = 1$ et $\lim_{x \to 1} \ln x = 0$, donc $\lim_{x \to +\infty} \ln \left| \frac{x+1}{x} \right| = 0$; de plus $\lim_{x \to +\infty} -2x + 1 = - \infty$ par somme $\lim_{x \to +\infty} f(x) = -\infty$.
* $\lim_{x \to +\infty} f(x) = ?$
 $\lim_{x \to -1} \left| \frac{x+1}{x} \right| = 0^+$ et $\lim_{x \to 0^+} \ln x = -\infty$, donc $\lim_{x \to -1} \left| \frac{x+1}{x} \right| = 0^+$ et $\lim_{x \to 0^+} \ln x = -\infty$, donc

$$\lim_{x \to -1} \ln \left| \frac{x+1}{x} \right| = -\infty; \text{ de plus } \lim_{x \to -1} -2x + 1 = 3$$
d'où $\lim_{x \to -1} f(x) = -\infty$ par somme.
$$* \lim_{x \to 0} f(x) = ?$$

$$\lim_{x \to 0} \left| \frac{x+1}{x} \right| = +\infty \text{ et } \lim_{x \to +\infty} \ln x = +\infty, \text{ donc}$$

$$\lim_{x \to 0} \ln \left| \frac{x+1}{x} \right| = +\infty; \text{ de plus } \lim_{x \to 0} -2x + 1 = 1$$
d'où $\lim_{x \to 0} f(x) = +\infty$ par somme.
$$\frac{(1)(x) - (1)(x+1)}{(1)(x+1)}$$

$$*f'(x) = -2 + \frac{\frac{(1)(x) - (1)(x+1)}{x^2}}{\frac{x+1}{x}} = -2 + \frac{-1}{x(x+1)};$$

$$f'(x) = \frac{-2x^2 - 2x - 1}{x(x+1)}.$$

* Signe de
$$f'(x)$$

$$N = -2x^2 - 2x - 1;$$

$$\Delta' = (-1)^2 - (-2)(-1) = -1$$

 Δ ' < 0, N est du signe de a = -2

X	-∞ -	1	0 +∞
$-2x^2 - 2x - 1$	-	-	-
x(x+1)	+ () - () +
f'(x)	-	+	-

X	-∞	-1		0	$+\infty$
f'(x)	-		+		-
f	+∞∞		-8		+8

$$6) f(x) = x + e^{-x}$$

*
$$f(x)$$
 existe $\forall x \in \mathbb{R}$; $D_f = \mathbb{R} =]-\infty$; $+\infty[$.

$$*\lim_{x\to+\infty}f(x)=?$$

$$\lim_{x \to +\infty} x = +\infty \ et \lim_{x \to +\infty} e^{-x} = 0 ; par somme$$

$$\lim_{x\to+\infty}f(x)=+\infty.$$

*
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} e^{-x} (\frac{x}{e^{-x}} + 1)$$

= $\lim_{x \to -\infty} e^{-x} (xe^x + 1)$;

Or $\lim_{x \to -\infty} e^{-x} = +\infty$ et $\lim_{x \to -\infty} x e^{x} = 0$, donc par produit

$$\lim_{x\to-\infty}f(x)=+\infty.$$

$$*f'(x) = 1 - e^{-x}$$
. $f'(x) \ge 0 \operatorname{ssi} e^{-x} \le 1 \operatorname{ssi} -x \le 0 \operatorname{ssi} x \ge 0$.

* Tableau de variation

X	- ∞		0		+ ∞
f'(x)		-	0	+	
f	+8,	\	1 -	_	+ ∞

7)
$$f(x) = \frac{1}{x^2} e^{\frac{1}{x}}$$

* f(x) existe ssi $x \neq 0$ et $x^2 \neq 0$ ssi $x \neq 0$;

$$D_f =]-\infty; 0[\cup]0; +\infty[$$
.

$$* \lim_{x \to -\infty} f(x) = ?$$

$$\lim_{x \to -\infty} \frac{1}{x} = 0 \text{ et } \lim_{x \to 0} e^x = 1, \text{ donc } \lim_{x \to -\infty} e^{\frac{1}{x}} = 1;$$

de plus $\lim_{x \to -\infty} \frac{1}{x^2} = 0$, d'où $\lim_{x \to -\infty} f(x) = 0$ par produit.

$$* \lim_{x \to +\infty} f(x) = ?$$

$$\lim_{x \to +\infty} \frac{1}{x} = 0 \text{ et } \lim_{x \to 0} e^x = 1, \text{ donc } \lim_{x \to +\infty} e^{\frac{1}{x}} = 1;$$

de plus $\lim_{x \to +\infty} \frac{1}{x^2} = 0$, d'où $\lim_{x \to +\infty} f(x) = 0$ par produit.

$$* \lim_{x \to 0^+} f(x) = ?$$

$$\lim_{x\to 0^+} \frac{1}{x} = +\infty \text{ et } \lim_{x\to +\infty} e^x = +\infty, \text{ donc } \lim_{x\to 0^+} e^{\frac{1}{x}} = +\infty$$

de plus $\lim_{x\to 0^+} \frac{1}{x^2} = +\infty$, d'où $\lim_{x\to 0^+} f(x) = +\infty$ par produit.

$$\lim_{x \to 0^{-}} f(x) = \lim_{X \to -\infty} X^{2} e^{X} = 0 \text{ (avec } X = \frac{1}{x} \text{) .}$$

$$f'(x) = \frac{-2x}{x^{4}} e^{\frac{1}{x}} + \frac{-1}{x^{2}} e^{\frac{1}{x}} (\frac{1}{x^{2}}) = \frac{-2x - 1}{x^{4}} e^{\frac{1}{x}} \text{;}$$

$$f'(x) \ge 0 \text{ ssi } -2x - 1 \ge 0 \text{ ssi } x \le \frac{-1}{x^{2}} \text{.}$$

* Tableau de variation

X	-∞	$\frac{-1}{2}$		0	ı	+ ∞
f'(x)	+	0	-		-	
f	0	→ 4e ⁻²	→ 0		+∞ _	→ 0

8)
$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

* f(x) existe ssi $e^x + e^{-x} \neq 0$, toujours vrai (car on a une somme de termes strictement positifs); $D_f = \mathbb{R} =]-\infty$; $+\infty[$.

*
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{e^{-x}(e^{2x} - 1)}{e^{-x}(e^{2x} + 1)} = \lim_{x \to -\infty} \frac{e^{2x} - 1}{e^{2x} + 1}$$
;
or $\lim_{x \to -\infty} e^{2x} - 1 = -1$ et $\lim_{x \to -\infty} e^{2x} + 1 = 1$, donc

$$\lim_{x \to -\infty} f(x) = -1 \text{ par quotient.}$$

*
$$\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} \frac{e^x (1 - e^{-2x})}{e^x (1 + e^{-2x})} = \lim_{x \to +\infty} \frac{1 - e^{-2x}}{1 + e^{-2x}}$$
;
or $\lim_{x \to +\infty} 1 = e^{-2x} = 1$ of $\lim_{x \to +\infty} 1 = e^{-2x} = 1$ don

or
$$\lim_{x \to +\infty} 1 - e^{-2x} = 1$$
 et $\lim_{x \to +\infty} 1 + e^{-2x} = 1$, donc

 $\lim_{x \to +\infty} f(x) = 1 \text{ par quotient.}$

$$*f'(x) = \frac{(e^x + e^{-x})(e^x + e^{-x}) - (e^x - e^{-x})(e^x - e^{-x})}{(e^x + e^{-x})^2} = \frac{4}{(e^x + e^{-x})^2}.$$

х	- ∞	+ ∞
f'(x)	+	
f	-1	<u></u> 1

9)
$$f(x) = x - \ln(1 + e^x)$$

* f(x) existe ssi $1 + e^x > 0$; toujours vrai, $D_f = \mathbb{R} =]-\infty$; $+\infty[$.

$$* \lim_{x \to -\infty} f(x) = ?$$

$$\lim_{x\to-\infty}1+e^x=1\text{ et }\lim_{x\to1}\ln x=0,$$

donc $\lim_{x\to -\infty} \ln(1+e^x) = 0$.

Or $\lim_{x \to -\infty} x = -\infty$, donc $\lim_{x \to -\infty} f(x) = -\infty$ par somme.

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x - \ln[e^{x}(\frac{1}{e^{x}} + 1)]
= \lim_{x \to +\infty} x - [\ln e^{x} + \ln(e^{-x} + 1)]
= \lim_{x \to +\infty} x - [x + \ln(e^{-x} + 1)]
= \lim_{x \to +\infty} -\ln(e^{-x} + 1) = 0.
* f'(x) = 1 - \frac{e^{x}}{1 + e^{x}} = \frac{1}{1 + e^{x}}; f'(x) > 0.$$

* Tableau de variation

Х	- ∞	+ ∞
f'(x)	+	+
f		0
	- ∞	

Exercice 3

$$f(x) = \ln(\cos x)$$

1. Variations de f sur]- $\frac{\pi}{2}$; $\frac{\pi}{2}$ [?

* f(x) existe ssi cosx > 0; toujours vrai sur]- $\frac{\pi}{2}$; $\frac{\pi}{2}$ [,donc le domaine d'étude De =]- $\frac{\pi}{2}$; $\frac{\pi}{2}$ [.

*
$$f'(x) = \frac{-\sin x}{\cos x}$$
. Or $\cos x > 0$ sur]- $\frac{\pi}{2}$; $\frac{\pi}{2}$ [donc $f'(x)$ est du signe de – $\sin x$.

Or sinx < 0 sur]- $\frac{\pi}{2}$; 0[et sinx > 0 sur]0; $\frac{\pi}{2}$ [(on peut montrer ces résultats ou les déduire à partir du cercle trigonométrique) il en résulte le tableau suivant :

* Tableau de variation

x	$-\frac{\pi}{2}$ 0 +	$\frac{\pi}{2}$
f'(x)	+ 0 -	
f	- ∞ - ∞	

$$* \lim_{x \to -\frac{\pi}{2}^+} f(x) = ?$$

$$\lim_{x \to -\frac{\pi^{+}}{2}} cosx = 0^{+} \text{ et } \lim_{x \to 0^{+}} lnx = -\infty,$$

donc
$$\lim_{x \to -\frac{\pi}{2}^+} f(x) = -\infty$$
.

$$* \lim_{x \to \frac{\pi}{2}} f(x) = ?$$

$$\lim_{x \to \frac{\pi}{2}} \cos x = 0^{+} \text{ et } \lim_{x \to 0^{+}} \ln x = -\infty,$$

donc
$$\lim_{x\to\frac{\pi}{2}}f(x)=-\infty$$
.

2. a) $cosx + \sqrt{3}sinx = 0$?

$$cosx + \sqrt{3}sinx = 0$$

$$\sqrt{1^2 + \sqrt{3}^2} \cos(x - \varphi) = 0 \text{ où } \begin{cases} \cos\varphi = \frac{1}{2} \\ \sin\varphi = \frac{\sqrt{3}}{2} \end{cases} \text{ c'est-à-dire } \varphi = \frac{\pi}{3}$$

$$2\cos(x - \frac{\pi}{3}) = 0$$
 ssi $\cos(x - \frac{\pi}{3}) = 0$ ssi $\cos(x - \frac{\pi}{3}) = \cos(\frac{\pi}{2})$

ssi
$$x - \frac{\pi}{3} = \frac{\pi}{2} + 2k\pi$$
 ou $x - \frac{\pi}{3} = -\frac{\pi}{2} + 2k\pi$
 $x = \frac{5\pi}{6} + 2k\pi$ ou $x = -\frac{\pi}{6} + 2k\pi$;

L'ensemble des solutions $S = \{\frac{5\pi}{6} + 2k\pi; -\frac{\pi}{6} + 2k\pi, k \in \mathbb{Z}\}.$

b)
$$g(x) = ln(cosx + \sqrt{3}sinx)$$
, C_g ?

$$g(x) = \ln(\cos x + \sqrt{3}\sin x) = \ln[2\cos(x - \frac{\pi}{3})]$$

= $\ln 2 + \ln[\cos(x - \frac{\pi}{3})] = f(x - \frac{\pi}{3}) + \ln 2;$

d'où C_g est l'image de C_f par la translation de vecteur $\frac{\pi}{2}\vec{i} + (\ln 2)\vec{j}$.

Exercice 4

A.
$$f(x) = \frac{1}{2}x^2 - x^2 \ln x$$

1. D_f et limites aux bornes ?

*
$$f(x)$$
 existe ssi $x > 0$; d'où $D_f = [0; +\infty[$

$$* \lim_{x \to 0} f(x) = ?$$

$$\lim_{x\to 0} \frac{1}{2}x^2 = 0$$
 et $\lim_{x\to 0} x^2 \ln x = 0$, par somme

$$\lim_{x\to 0} f(x) = 0.$$

*
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^2 (\frac{1}{2} - \ln x) = ?$$

$$\lim_{x \to +\infty} x^2 = +\infty \text{ et } \lim_{x \to +\infty} \frac{1}{2} - \ln x = -\infty,$$

par produit
$$\lim_{x\to +\infty} f(x) = -\infty$$
.

2. prolongement par continuité de f en 0?

 $0 \notin D_f$ et $\lim_{x\to 0} f(x) = 0$; 0 étant fini, f peut être prolongée par continuité en 0.

Ce prolongement est la fonction k définie par

$$k(x) = \begin{cases} \frac{1}{2}x^2 - x^2 \ln x & \text{si } x > 0 \\ 0 & \text{si } x = 0 \end{cases}.$$

B.
$$\begin{cases} g(x) = \frac{1}{2}x^2 - x^2 \ln x \text{ si } x > 0 \\ g(0) = 0 \end{cases}$$

1. Dérivabilité de g sur $[0; +\infty[$?

- * Sur]0; $+\infty$ [, g étant la somme de fonctions dérivables sur $]0; +\infty[$, g est dérivable sur $]0; +\infty[$.
- * Dérivabilité de g en 0 ?

$$\lim_{x \to 0} \frac{g(x) - g(0)}{x - 0} = \lim_{x \to 0} \frac{1}{2}x - x \ln x = ?$$

$$\lim_{x \to 0} \frac{1}{2} x = 0 \text{ et } \lim_{x \to 0} x \ln x = 0,$$

$$\lim_{x \to 0} \frac{1}{2}x = 0 \text{ et } \lim_{x \to 0} x \ln x = 0,$$
par somme
$$\lim_{x \to 0} \frac{g(x) - g(0)}{x - 0} = 0 \text{ ;}$$

d'où g est dérivable en 0 et g'(0) = 0.

2. Variations de g?

$$* D_g = [0; +\infty[\text{ et } \lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} f(x) = -\infty.$$

$$* g'(x) = x \quad [2x\ln x + \frac{1}{2}(x^2)] = 2x\ln x$$

$$*g'(x) = x - [2xlnx + \frac{1}{x}(x^2)] = -2xlnx.$$

Or $x \ge 0$, donc $g'(x) \ge 0$ ssi $-2lnx \ge 0$ ssi $lnx \le 0$ ssi $x \le 1$.

* Tableau de variation

X	0		1		+∞
g'(x)	0	+	0	-	
g		_	v ¹ ∼		
			2		~ ~
	U				-∞

3.
$$h = g/[1; +\infty[$$

a) h admet une bijection réciproque ?

h étant continue (car dérivable) et strictement décroissante sur [1; $+\infty$ [, h est une bijection de [1; $+\infty$ [vers]- ∞ ; $\frac{1}{2}$] et par conséquent elle admet une bijection réciproque h^{-1} définie $]-\infty;\frac{1}{2}].$

b) Dérivabilité de h^{-1} ?

h étant dérivable et de dérivée non nulle sur]1; $+\infty$ [, h^{-1} est dérivable $sur\ h(\]1; +\infty$ [) =]- ∞ ; $\frac{1}{2}$ [.

c) Résolution de l'équation $h^{-1}(x) = e$?

$$h^{-1}(x) = e \operatorname{ssi} x = h(e) = \frac{-e^2}{2};$$

d'où l'ensemble des solutions $S = \{\frac{-e^2}{2}\}.$

d) Tracé de la courbe de g et celle de h^{-1} ?

Légende: _ Tracé de
$$C_g$$
; _ Tracé de $C_{h^{-1}}$

Exercice 5

$$f(x) = (2x+1) e^{-x}$$

1. Variation de f?

*
$$f(x)$$
 existe sur \mathbb{R} ; $D_f = \mathbb{R} =]-\infty$; $+\infty[$.

*
$$f'(x) = 2e^{-x} - (2x+1)e^{-x} = e^{-x} (1-2x).$$

$$f'(x) \ge 0 \text{ ssi } 1-2x \ge 0 \text{ ssi } x \le \frac{1}{2}$$
.

X	-∞	$\frac{1}{2}$	+∞
f'(x)	+	0	-
f	-∞/	≠ 2e =	$\frac{1}{2}$

$$* \lim_{x \to -\infty} f(x) = ?$$

$$\lim_{x\to-\infty}2x+1=-\infty \text{ et }\lim_{x\to-\infty}e^{-x}=+\infty,$$

par produit $\lim_{x\to-\infty} f(x) = -\infty$.

*
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} 2xe^{-x} + e^{-x} = ?$$

Or $\lim_{x \to +\infty} x e^{-x} = 0$ et $\lim_{x \to +\infty} e^{-x} = 0$, donc par somme $\lim_{x \to +\infty} f(x) = 0$.

2. (C) coupe (Δ) : y = x en un unique point ?

(C) coupe (Δ): y = x en un unique point d'abscisse α sur $[1; \frac{3}{2}]$ ssi l'équation f(x) = x admet α comme une unique solution sur $[1; \frac{3}{2}]$.

ssi l'équation f(x) - x = 0 admet α comme une unique solution sur $[1; \frac{3}{2}]$.

Soit
$$g(x) = f(x) - x$$
;

g étant la somme de fonctions continues et dérivables sur

 $[1; \frac{3}{2}]$, g est continue et dérivable sur $[1; \frac{3}{2}]$.

$$g'(x) = f'(x) - 1$$
; or $f'(x) < 0$ sur $[1; \frac{3}{2}]$,

donc g'(x) < 0 sur $[1; \frac{3}{2}]$.

$$g(1) = 3e^{-1} - 1 \cong 0.1$$
; $g(\frac{3}{2}) = 4e^{-\frac{3}{2}} - \frac{3}{2} \cong -0.6$.

g est continue et strictement décroissante sur $[1; \frac{3}{2}]$; de plus

 $g(1)g(\frac{3}{2}) < 0$, donc l'équation g(x) = 0 admet une unique solution α sur $[1; \frac{3}{2}]$. Par conséquent (C) coupe (Δ) en un unique point d'abscisse α appartenant à $[1; \frac{3}{2}]$.

<u>Légende</u>: — Tracé de C_f — Tracé de C_g

4. a) f admet une bijection réciproque sur $]\frac{1}{2}$; $+\infty[$? f étant continue et strictement décroissante sur $]\frac{1}{2}$; $+\infty[$, f est une bijection de $]\frac{1}{2}$; $+\infty[$ sur $f(]\frac{1}{2}$; $+\infty[$) =]0; $2e^{\frac{-1}{2}}[$;

par conséquent elle admet une bijection réciproque f^{-1} définie sur]0; $2e^{\frac{-1}{2}}[$.

b) Image de]0; $\alpha]$ par f^{-1} ?

 f^{-1} est continue et strictement décroissante (car elle varie dans le même sens que f) ;

d'où
$$f^{-1}(]0; \alpha]) = [f^{-1}(\alpha); \lim_{x \to 0} f^{-1}(x)];$$

Or $g(\alpha) = 0$ donc on $a f(\alpha) = \alpha$ d'où $\alpha = f^{-1}(\alpha)$.

D'autre part
$$f(]\frac{1}{2}; + \infty[]) =]0; 2e^{\frac{-1}{2}}[$$

ssi
$$f^{-1}(]0; 2e^{\frac{-1}{2}}[] =]\frac{1}{2}; + \infty[$$

ssi]
$$f^{-1}(2e^{\frac{-1}{2}})$$
; $\lim_{x\to 0} f^{-1}(x)[=]\frac{1}{2}$; $+\infty[$;

d'où $\lim_{x\to 0} f^{-1}(x) = +\infty$ et par conséquent

$$f^{-1}(]0;\alpha]) = [\alpha; +\infty[$$

5. Tracé de la courbe de g?

$$g(x) = |2x+1|e^{-x} = |2x+1||e^{-x}|$$

$$= |(2x+1)e^{-x}| = |f(x)| ; d'où g(x) = \begin{cases} f(x) & \text{si } f(x) \ge 0 \\ -f(x) & \text{si } f(x) \le 0 \end{cases}.$$

Par conséquent :

- Si $f(x) \ge 0$ (c'est-à-dire C_f au dessus de l'axe (x'x)) alors C_g et C_f sont confondues.
- Si $f(x) \le 0$ (c'est-à-dire C_f au dessus de l'axe (x'x)) alors C_g est le symétrique de C_f par rapport à l'axe (x'x).

Chapitre 4 : NOMBRES COMPLEXES SIMILITUDES DIRECTES