Alex Psomas: Lecture 17.

Random Variables: Variance

Alex Psomas: Lecture 17.

Random Variables: Variance

- 1. Variance
- 2. Distributions

Flip a coin:

Flip a coin: If H you make a dollar. If T you lose a dollar.

Flip a coin: If H you make a dollar. If T you lose a dollar. Let X be the RV indicating how much money you make.

Flip a coin: If H you make a dollar. If T you lose a dollar. Let X be the RV indicating how much money you make. E(X) =

Flip a coin: If H you make a dollar. If T you lose a dollar. Let X be the RV indicating how much money you make. E(X) = 0.

Flip a coin: If H you make a dollar. If T you lose a dollar. Let X be the RV indicating how much money you make. E(X) = 0.

Flip a coin:

Flip a coin: If H you make a dollar. If T you lose a dollar. Let X be the RV indicating how much money you make. E(X) = 0.

Flip a coin: If H you make a million dollars. If T you lose a million dollars.

Flip a coin: If H you make a dollar. If T you lose a dollar. Let X be the RV indicating how much money you make. E(X) = 0.

Flip a coin: If H you make a million dollars. If T you lose a million dollars.

Let *Y* be the RV indicating how much money you make.

Flip a coin: If H you make a dollar. If T you lose a dollar. Let X be the RV indicating how much money you make. E(X) = 0.

Flip a coin: If H you make a million dollars. If T you lose a million dollars.

Let Y be the RV indicating how much money you make.

$$E(Y) =$$

Flip a coin: If H you make a dollar. If T you lose a dollar. Let X be the RV indicating how much money you make. E(X) = 0.

Flip a coin: If H you make a million dollars. If T you lose a million dollars.

Let Y be the RV indicating how much money you make. E(Y) = 0.

Flip a coin: If H you make a dollar. If T you lose a dollar. Let X be the RV indicating how much money you make. E(X) = 0.

Flip a coin: If H you make a million dollars. If T you lose a million dollars.

Let Y be the RV indicating how much money you make. E(Y) = 0.

Any other measures???

Flip a coin: If H you make a dollar. If T you lose a dollar. Let X be the RV indicating how much money you make. E(X) = 0.

Flip a coin: If H you make a million dollars. If T you lose a million dollars.

Let Y be the RV indicating how much money you make. E(Y) = 0.

Any other measures??? What else that's informative can we say?

The variance measures the deviation from the mean value.

The variance measures the deviation from the mean value.

Definition: The variance of *X* is

The variance measures the deviation from the mean value.

Definition: The variance of *X* is

$$\sigma^2(X) := var[X] = E[(X - E[X])^2].$$

The variance measures the deviation from the mean value.

Definition: The variance of *X* is

$$\sigma^2(X) := var[X] = E[(X - E[X])^2].$$

 $\sigma(X)$ is called the standard deviation of X.

Fact:

$$var[X] = E[X^2] - E[X]^2$$
.

Fact:

$$var[X] = E[X^2] - E[X]^2$$
.

$$var(X) = E[(X - E[X])^2]$$

Fact:

$$var[X] = E[X^2] - E[X]^2$$
.

$$var(X) = E[(X - E[X])^{2}]$$

= $E[X^{2} - 2XE[X] + E[X]^{2}]$

Fact:

$$var[X] = E[X^2] - E[X]^2$$
.

$$var(X) = E[(X - E[X])^{2}]$$

= $E[X^{2} - 2XE[X] + E[X]^{2}$
= $E[X^{2}] - E[2XE[X]] + E[E[X]^{2}]$

Fact:

$$var[X] = E[X^2] - E[X]^2$$
.

$$var(X) = E[(X - E[X])^{2}]$$

= $E[X^{2} - 2XE[X] + E[X]^{2}$
= $E[X^{2}] - E[2XE[X]] + E[E[X]^{2}]$ by linearity

Fact:

$$var[X] = E[X^2] - E[X]^2$$
.

$$var(X) = E[(X - E[X])^{2}]$$

= $E[X^{2} - 2XE[X] + E[X]^{2}$
= $E[X^{2}] - E[2XE[X]] + E[E[X]^{2}]$ by linearity
= $E[X^{2}] - 2E[X]E[X] + E[X]^{2}$,

Fact:

$$var[X] = E[X^2] - E[X]^2$$
.

$$var(X) = E[(X - E[X])^{2}]$$

 $= E[X^{2} - 2XE[X] + E[X]^{2}$
 $= E[X^{2}] - E[2XE[X]] + E[E[X]^{2}]$ by linearity
 $= E[X^{2}] - 2E[X]E[X] + E[X]^{2},$
 $= E[X^{2}] - E[X]^{2}.$

This example illustrates the term 'standard deviation.'

This example illustrates the term 'standard deviation.'

This example illustrates the term 'standard deviation.'

Consider the random variable X such that

$$X = \begin{cases} \mu - \sigma, & \text{w.p. } 1/2\\ \mu + \sigma, & \text{w.p. } 1/2. \end{cases}$$

This example illustrates the term 'standard deviation.'

Consider the random variable X such that

$$X = \left\{ egin{array}{ll} \mu - \sigma, & ext{w.p. } 1/2 \\ \mu + \sigma, & ext{w.p. } 1/2. \end{array}
ight.$$

Then, $E[X] = \mu$ and $(X - E[X])^2 = \sigma^2$.

This example illustrates the term 'standard deviation.'

Consider the random variable X such that

$$X = \begin{cases} \mu - \sigma, & \text{w.p. } 1/2\\ \mu + \sigma, & \text{w.p. } 1/2. \end{cases}$$

Then, $E[X] = \mu$ and $(X - E[X])^2 = \sigma^2$. Hence,

$$var(X) = \sigma^2$$
 and $\sigma(X) = \sigma$.

Consider X with

$$X = \begin{cases} -1, & \text{w. p. } 0.99 \\ 99, & \text{w. p. } 0.01. \end{cases}$$

Consider X with

$$X = \begin{cases} -1, & \text{w. p. } 0.99 \\ 99, & \text{w. p. } 0.01. \end{cases}$$

Then

$$E[X] = -1 \times 0.99 + 99 \times 0.01 = 0.$$

Consider X with

$$X = \begin{cases} -1, & \text{w. p. } 0.99 \\ 99, & \text{w. p. } 0.01. \end{cases}$$

Then

$$E[X] = -1 \times 0.99 + 99 \times 0.01 = 0.$$

 $E[X^2] = 1 \times 0.99 + (99)^2 \times 0.01 \approx 100.$

Consider X with

$$X = \begin{cases} -1, & \text{w. p. } 0.99 \\ 99, & \text{w. p. } 0.01. \end{cases}$$

Then

$$E[X] = -1 \times 0.99 + 99 \times 0.01 = 0.$$

 $E[X^2] = 1 \times 0.99 + (99)^2 \times 0.01 \approx 100.$
 $Var(X) \approx 100 \Longrightarrow \sigma(X) \approx 10.$

1. $Var(cX) = c^2 Var(X)$, where c is a constant.

1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant.

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^2) - (E(cX))^2$$

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^2) - (E(cX))^2$$

= $c^2 E(X^2) - c^2 (E(X))^2$

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^2) - (E(cX))^2$$

= $c^2 E(X^2) - c^2 (E(X))^2 = c^2 (E(X^2) - E(X)^2)$

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^{2}) - (E(cX))^{2}$$

$$= c^{2}E(X^{2}) - c^{2}(E(X))^{2} = c^{2}(E(X^{2}) - E(X)^{2})$$

$$= c^{2}Var(X)$$

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^{2}) - (E(cX))^{2}$$

$$= c^{2}E(X^{2}) - c^{2}(E(X))^{2} = c^{2}(E(X^{2}) - E(X)^{2})$$

$$= c^{2}Var(X)$$

$$Var(X+c) = E((X+c-E(X+c))^{2})$$

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^{2}) - (E(cX))^{2}$$

$$= c^{2}E(X^{2}) - c^{2}(E(X))^{2} = c^{2}(E(X^{2}) - E(X)^{2})$$

$$= c^{2}Var(X)$$

$$Var(X+c) = E((X+c-E(X+c))^{2})$$

$$= E((X+c-E(X)-c)^{2})$$

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^{2}) - (E(cX))^{2}$$

$$= c^{2}E(X^{2}) - c^{2}(E(X))^{2} = c^{2}(E(X^{2}) - E(X)^{2})$$

$$= c^{2}Var(X)$$

$$Var(X+c) = E((X+c-E(X+c))^{2})$$

$$= E((X+c-E(X)-c)^{2})$$

$$= E((X-E(X))^{2})$$

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^{2}) - (E(cX))^{2}$$

$$= c^{2}E(X^{2}) - c^{2}(E(X))^{2} = c^{2}(E(X^{2}) - E(X)^{2})$$

$$= c^{2}Var(X)$$

$$Var(X+c) = E((X+c-E(X+c))^{2})$$

$$= E((X+c-E(X)-c)^{2})$$

$$= E((X-E(X))^{2}) = Var(X)$$

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^{2}) - (E(cX))^{2}$$

$$= c^{2}E(X^{2}) - c^{2}(E(X))^{2} = c^{2}(E(X^{2}) - E(X)^{2})$$

$$= c^{2}Var(X)$$

$$Var(X+c) = E((X+c-E(X+c))^{2})$$

$$= E((X+c-E(X)-c)^{2})$$

$$= E((X-E(X))^{2}) = Var(X)$$

Theorem:

If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y).$$

Theorem:

If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y)$$
.

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

Theorem:

If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y)$$
.

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Theorem:

If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y)$$
.

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

Theorem:

If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y)$$
.

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

$$var(X+Y) = E((X+Y)^2)$$

Theorem:

If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y).$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

$$var(X + Y) = E((X + Y)^2) = E(X^2 + 2XY + Y^2)$$

Theorem:

If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y)$$
.

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

$$var(X+Y) = E((X+Y)^2) = E(X^2 + 2XY + Y^2)$$

= $E(X^2) + 2E(XY) + E(Y^2)$

Theorem:

If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y).$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

$$var(X+Y) = E((X+Y)^2) = E(X^2 + 2XY + Y^2)$$

= $E(X^2) + 2E(XY) + E(Y^2) = E(X^2) + E(Y^2)$

Theorem:

If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y).$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

$$var(X+Y) = E((X+Y)^2) = E(X^2 + 2XY + Y^2)$$

$$= E(X^2) + 2E(XY) + E(Y^2) = E(X^2) + E(Y^2)$$

$$= E(X^2) - (E(X))^2 + E(Y^2) - (E(Y))^2$$

Theorem:

If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y).$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

$$var(X+Y) = E((X+Y)^2) = E(X^2 + 2XY + Y^2)$$

$$= E(X^2) + 2E(XY) + E(Y^2) = E(X^2) + E(Y^2)$$

$$= E(X^2) - (E(X))^2 + E(Y^2) - (E(Y))^2 = var(X) + var(Y).$$

Theorem:

If X, Y, Z, ... are pairwise independent, then

$$var(X + Y + Z + \cdots) = var(X) + var(Y) + var(Z) + \cdots$$

Theorem:

If X, Y, Z, ... are pairwise independent, then

$$var(X + Y + Z + \cdots) = var(X) + var(Y) + var(Z) + \cdots$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

Theorem:

If X, Y, Z, ... are pairwise independent, then

$$var(X + Y + Z + \cdots) = var(X) + var(Y) + var(Z) + \cdots$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E[X] = E[Y] = \cdots = 0$.

Theorem:

If X, Y, Z, ... are pairwise independent, then

$$var(X + Y + Z + \cdots) = var(X) + var(Y) + var(Z) + \cdots$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E[X] = E[Y] = \cdots = 0$.

Then, by independence,

$$E[XY] = E[X]E[Y] = 0.$$

Theorem:

If X, Y, Z, ... are pairwise independent, then

$$var(X + Y + Z + \cdots) = var(X) + var(Y) + var(Z) + \cdots$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E[X] = E[Y] = \cdots = 0$.

Then, by independence,

$$E[XY] = E[X]E[Y] = 0$$
. Also, $E[XZ] = E[YZ] = \cdots = 0$.

Theorem:

If X, Y, Z, ... are pairwise independent, then

$$var(X + Y + Z + \cdots) = var(X) + var(Y) + var(Z) + \cdots$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E[X] = E[Y] = \cdots = 0$.

Then, by independence,

$$E[XY] = E[X]E[Y] = 0$$
. Also, $E[XZ] = E[YZ] = \cdots = 0$.

$$var(X+Y+Z+\cdots) = E((X+Y+Z+\cdots)^2)$$

Theorem:

If X, Y, Z, \dots are pairwise independent, then

$$var(X + Y + Z + \cdots) = var(X) + var(Y) + var(Z) + \cdots$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E[X] = E[Y] = \cdots = 0$.

Then, by independence,

$$E[XY] = E[X]E[Y] = 0$$
. Also, $E[XZ] = E[YZ] = \cdots = 0$.

$$var(X + Y + Z + \cdots) = E((X + Y + Z + \cdots)^{2})$$

= $E(X^{2} + Y^{2} + Z^{2} + \cdots + 2XY + 2XZ + 2YZ + \cdots)$

Theorem:

If X, Y, Z, ... are pairwise independent, then

$$var(X + Y + Z + \cdots) = var(X) + var(Y) + var(Z) + \cdots$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E[X] = E[Y] = \cdots = 0$.

Then, by independence,

$$E[XY] = E[X]E[Y] = 0$$
. Also, $E[XZ] = E[YZ] = \cdots = 0$.

$$var(X + Y + Z + \cdots) = E((X + Y + Z + \cdots)^{2})$$

$$= E(X^{2} + Y^{2} + Z^{2} + \cdots + 2XY + 2XZ + 2YZ + \cdots)$$

$$= E(X^{2}) + E(Y^{2}) + E(Z^{2}) + \cdots + 0 + \cdots + 0$$

Theorem:

If X, Y, Z, ... are pairwise independent, then

$$var(X + Y + Z + \cdots) = var(X) + var(Y) + var(Z) + \cdots$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E[X] = E[Y] = \cdots = 0$.

Then, by independence,

$$E[XY] = E[X]E[Y] = 0$$
. Also, $E[XZ] = E[YZ] = \cdots = 0$.

$$var(X + Y + Z + \cdots) = E((X + Y + Z + \cdots)^{2})$$

$$= E(X^{2} + Y^{2} + Z^{2} + \cdots + 2XY + 2XZ + 2YZ + \cdots)$$

$$= E(X^{2}) + E(Y^{2}) + E(Z^{2}) + \cdots + 0 + \cdots + 0$$

$$= var(X) + var(Y) + var(Z) + \cdots$$

Distributions

- ▶ Bernoulli
- ▶ Binomial
- Uniform
- ▶ Geometric
- Poisson

Bernoulli

Flip a coin, with heads probability p.

Flip a coin, with heads probability p.

Random variable X: 1 is heads, 0 if not heads.

Flip a coin, with heads probability p.

Random variable X: 1 is heads, 0 if not heads.

X has the Bernoulli distribution.

Flip a coin, with heads probability p.

Random variable X: 1 is heads, 0 if not heads.

X has the Bernoulli distribution.

Flip a coin, with heads probability p.

Random variable X: 1 is heads, 0 if not heads.

X has the Bernoulli distribution.

Distribution:

X =

Flip a coin, with heads probability p.

Random variable X: 1 is heads, 0 if not heads.

X has the Bernoulli distribution.

$$X = \begin{cases} 1 & \text{w.p. } p \end{cases}$$

Flip a coin, with heads probability p.

Random variable X: 1 is heads, 0 if not heads.

X has the Bernoulli distribution.

$$X = \begin{cases} 1 & \text{w.p. } p \\ 0 & \text{w.p. } 1 - p \end{cases}$$
$$E[X] = p$$

Flip a coin, with heads probability *p*.

Random variable X: 1 is heads, 0 if not heads.

X has the Bernoulli distribution.

$$X = \begin{cases} 1 & \text{w.p. } p \\ 0 & \text{w.p. } 1 - p \end{cases}$$
$$E[X] = p$$

$$E[X^2] =$$

Flip a coin, with heads probability p.

Random variable X: 1 is heads, 0 if not heads.

X has the Bernoulli distribution.

$$X = \begin{cases} 1 & \text{w.p. } p \\ 0 & \text{w.p. } 1 - p \end{cases}$$
$$E[X] = p$$

$$E[X^2] = 1^2 \times p + 0^2 \times (1 - p)$$

Flip a coin, with heads probability p.

Random variable X: 1 is heads, 0 if not heads.

X has the Bernoulli distribution.

$$X = \begin{cases} 1 & \text{w.p. } p \\ 0 & \text{w.p. } 1 - p \end{cases}$$
$$E[X] = p$$

$$E[X^2] = 1^2 \times p + 0^2 \times (1 - p) = p$$

Flip a coin, with heads probability p.

Random variable X: 1 is heads, 0 if not heads.

X has the Bernoulli distribution.

$$X = \begin{cases} 1 & \text{w.p. } p \\ 0 & \text{w.p. } 1 - p \end{cases}$$
$$E[X] = p$$
$$E[X^{2}] = 1^{2} \times p + 0^{2} \times (1 - p) = p$$

$$Var[X] =$$

Flip a coin, with heads probability p.

Random variable X: 1 is heads, 0 if not heads.

X has the Bernoulli distribution.

$$X = \begin{cases} 1 & \text{w.p. } p \\ 0 & \text{w.p. } 1 - p \end{cases}$$
$$E[X] = p$$
$$E[X^2] = 1^2 \times p + 0^2 \times (1 - p) = p$$

$$Var[X] = E[X^2] - (E[X])^2 = p - p^2 = p(1-p)$$

Flip n coins with heads probability p.

Flip n coins with heads probability p.

Random variable: number of heads.

Flip n coins with heads probability p.

Random variable: number of heads.

Binomial Distribution: Pr[X = i], for each i.

Flip n coins with heads probability p.

Random variable: number of heads.

Binomial Distribution: Pr[X = i], for each i.

How many sample points in event "X = i"?

Flip n coins with heads probability p.

Random variable: number of heads.

Binomial Distribution: Pr[X = i], for each i.

How many sample points in event "X = i"? i heads out of n coin flips

Flip n coins with heads probability p.

Random variable: number of heads.

Binomial Distribution: Pr[X = i], for each i.

How many sample points in event "X = i"? i heads out of n coin flips $\implies \binom{n}{i}$

Flip n coins with heads probability p.

Random variable: number of heads.

Binomial Distribution: Pr[X = i], for each i.

How many sample points in event "X = i"? i heads out of n coin flips $\implies \binom{n}{i}$

Sample space: $\Omega = \{HHH...HH, HHH...HT,...\}$

Flip n coins with heads probability p.

Random variable: number of heads.

Binomial Distribution: Pr[X = i], for each i.

How many sample points in event "X = i"?

i heads out of *n* coin flips $\implies \binom{n}{i}$

Sample space: $\Omega = \{HHH...HH, HHH...HT,...\}$

What is the probability of ω if ω has i heads?

Flip n coins with heads probability p.

Random variable: number of heads.

Binomial Distribution: Pr[X = i], for each i.

How many sample points in event "X = i"? i heads out of n coin flips $\implies \binom{n}{i}$

Sample space: $\Omega = \{HHH...HH, HHH...HT,...\}$ What is the probability of ω if ω has i heads?

Probability of heads in any position is p.

Flip n coins with heads probability p.

Random variable: number of heads.

Binomial Distribution: Pr[X = i], for each i.

How many sample points in event "X = i"? i heads out of n coin flips $\implies \binom{n}{i}$

Sample space: $\Omega = \{HHH...HH, HHH...HT,...\}$ What is the probability of ω if ω has i heads? Probability of heads in any position is p. Probability of tails in any position is (1-p).

Flip n coins with heads probability p.

Random variable: number of heads.

Binomial Distribution: Pr[X = i], for each i.

How many sample points in event "X = i"? i heads out of n coin flips $\implies \binom{n}{i}$

Sample space: $\Omega = \{HHH...HH, HHH...HT,...\}$ What is the probability of ω if ω has i heads? Probability of heads in any position is p. Probability of tails in any position is (1-p). So, we get $Pr[\omega] = p^i$

Flip n coins with heads probability p.

Random variable: number of heads.

Binomial Distribution: Pr[X = i], for each i.

How many sample points in event "X = i"? i heads out of n coin flips $\Longrightarrow \binom{n}{i}$

Sample space: $\Omega = \{HHH...HH, HHH...HT,...\}$ What is the probability of ω if ω has i heads? Probability of heads in any position is p. Probability of tails in any position is (1-p). So, we get $Pr[\omega] = p^i(1-p)^{n-i}$.

Flip n coins with heads probability p.

Random variable: number of heads.

Binomial Distribution: Pr[X = i], for each i.

How many sample points in event "X = i"? i heads out of n coin flips $\implies \binom{n}{i}$

Sample space: $\Omega = \{HHH...HH, HHH...HT,...\}$ What is the probability of ω if ω has i heads? Probability of heads in any position is p. Probability of tails in any position is (1-p). So, we get $Pr[\omega] = p^i(1-p)^{n-i}$. Probability of "X = i" is sum of $Pr[\omega]$, $\omega \in "X = i$ ".

Flip n coins with heads probability p.

Random variable: number of heads.

Binomial Distribution: Pr[X = i], for each i.

How many sample points in event "X = i"? i heads out of n coin flips $\implies \binom{n}{i}$

Sample space: $\Omega = \{\textit{HHH}...\textit{HH}, \textit{HHH}...\textit{HT}, \ldots\}$

What is the probability of ω if ω has i heads?

Probability of heads in any position is p.

Probability of tails in any position is (1 - p).

So, we get $Pr[\omega] = \rho^{i}(1-\rho)^{n-i}$.

Probability of "X = i" is sum of $Pr[\omega]$, $\omega \in "X = i$ ".

$$Pr[X = i] = \binom{n}{i} p^i (1-p)^{n-i}, i = 0, 1, \dots, n : B(n, p)$$
 distribution

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

$$X_i = \left\{ egin{array}{ll} 1 & ext{ if } i ext{th flip is heads} \\ 0 & ext{ otherwise} \end{array}
ight.$$

$$E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"]$$

$$X_i = \left\{ egin{array}{ll} 1 & ext{ if } i ext{th flip is heads} \\ 0 & ext{ otherwise} \end{array}
ight.$$

$$E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.$$

$$X_i = \left\{ egin{array}{ll} 1 & ext{ if } i ext{th flip is heads} \\ 0 & ext{ otherwise} \end{array}
ight.$$

$$E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.$$

$$X_i = \left\{ egin{array}{ll} 1 & ext{ if } \emph{i} ext{th flip is heads} \ 0 & ext{ otherwise} \end{array}
ight.$$

$$E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.$$

Moreover $X = X_1 + \cdots + X_n$ and

$$E[X] = E[X_1] + E[X_2] + \cdots E[X_n]$$

$$X_i = \left\{ egin{array}{ll} 1 & ext{ if } \emph{i} ext{th flip is heads} \ 0 & ext{ otherwise} \end{array}
ight.$$

$$E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.$$

Moreover
$$X = X_1 + \cdots X_n$$
 and

$$E[X] = E[X_1] + E[X_2] + \cdots E[X_n] = n \times E[X_i]$$

$$X_i = \left\{ egin{array}{ll} 1 & ext{ if } i ext{th flip is heads} \\ 0 & ext{ otherwise} \end{array}
ight.$$

$$E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.$$

$$E[X] = E[X_1] + E[X_2] + \cdots + E[X_n] = n \times E[X_i] = np.$$

$$X_i = \left\{ egin{array}{ll} 1 & ext{ if } i ext{th flip is heads} \\ 0 & ext{ otherwise} \end{array}
ight.$$

$$E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.$$

$$E[X] = E[X_1] + E[X_2] + \cdots + E[X_n] = n \times E[X_i] = np.$$

$$X_i = \left\{ egin{array}{ll} 1 & ext{ if } i ext{th flip is heads} \\ 0 & ext{ otherwise} \end{array}
ight.$$

$$E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.$$

$$E[X] = E[X_1] + E[X_2] + \cdots + E[X_n] = n \times E[X_i] = np.$$

$$X_i = \left\{ egin{array}{ll} 1 & ext{ if } i ext{th flip is heads} \\ 0 & ext{ otherwise} \end{array}
ight.$$

$$E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.$$

$$E[X] = E[X_1] + E[X_2] + \cdots + E[X_n] = n \times E[X_i] = np.$$

$$X_i = \left\{ egin{array}{ll} 1 & ext{ if } i ext{th flip is heads} \\ 0 & ext{ otherwise} \end{array}
ight.$$

$$E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.$$

$$E[X] = E[X_1] + E[X_2] + \cdots + E[X_n] = n \times E[X_i] = np.$$

Expectation of Binomial Distribution

$$X_i = \left\{ egin{array}{ll} 1 & ext{ if } i ext{th flip is heads} \\ 0 & ext{ otherwise} \end{array}
ight.$$

$$E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.$$

Moreover $X = X_1 + \cdots + X_n$ and

$$E[X] = E[X_1] + E[X_2] + \cdots + E[X_n] = n \times E[X_i] = np.$$

Expectation of Binomial Distribution

$$X_i = \left\{ egin{array}{ll} 1 & ext{ if } i ext{th flip is heads} \\ 0 & ext{ otherwise} \end{array}
ight.$$

$$E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.$$

Moreover $X = X_1 + \cdots + X_n$ and

$$E[X] = E[X_1] + E[X_2] + \cdots + E[X_n] = n \times E[X_i] = np.$$

Expectation of Binomial Distribution

$$X_i = \left\{ egin{array}{ll} 1 & ext{ if } i ext{th flip is heads} \\ 0 & ext{ otherwise} \end{array}
ight.$$

$$E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.$$

Moreover $X = X_1 + \cdots + X_n$ and

$$E[X] = E[X_1] + E[X_2] + \cdots + E[X_n] = n \times E[X_i] = np.$$

Flip coin with heads probability p.

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

$$X_i = \left\{ egin{array}{ll} 1 & ext{ if } i ext{th flip is heads} \\ 0 & ext{ otherwise} \end{array}
ight.$$

$$E(X_i^2)$$

$$X_i = \left\{ egin{array}{ll} 1 & ext{ if } i ext{th flip is heads} \\ 0 & ext{ otherwise} \end{array}
ight.$$

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1-p)$$

$$X_i = \left\{ egin{array}{ll} 1 & ext{ if } i ext{th flip is heads} \\ 0 & ext{ otherwise} \end{array}
ight.$$

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

$$X_i = \left\{ egin{array}{ll} 1 & ext{ if } i ext{th flip is heads} \\ 0 & ext{ otherwise} \end{array}
ight.$$

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

 $Var(X_i) = p - (E(X))^2$

$$X_i = \left\{ egin{array}{ll} 1 & ext{ if } \emph{i} ext{th flip is heads} \ 0 & ext{ otherwise} \end{array}
ight.$$

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

 $Var(X_i) = p - (E(X))^2 = p - p^2$

$$X_i = \left\{ egin{array}{ll} 1 & ext{ if } i ext{th flip is heads} \\ 0 & ext{ otherwise} \end{array}
ight.$$

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

 $Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).$

$$X_i = \left\{ egin{array}{ll} 1 & ext{ if } i ext{th flip is heads} \\ 0 & ext{ otherwise} \end{array}
ight.$$

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

 $Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).$
 $p = 0$

$$X_i = \left\{ egin{array}{ll} 1 & ext{ if } i ext{th flip is heads} \\ 0 & ext{ otherwise} \end{array}
ight.$$

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

 $Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).$
 $p = 0 \implies Var(X_i) = 0$

$$X_i = \left\{ egin{array}{ll} 1 & ext{ if } i ext{th flip is heads} \\ 0 & ext{ otherwise} \end{array}
ight.$$

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

$$Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).$$

$$p = 0 \implies Var(X_i) = 0$$

$$p = 1$$

$$X_i = \left\{ egin{array}{ll} 1 & ext{ if } i ext{th flip is heads} \\ 0 & ext{ otherwise} \end{array}
ight.$$

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

 $Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).$
 $p = 0 \implies Var(X_i) = 0$
 $p = 1 \implies Var(X_i) = 0$

$$X_i = \left\{ egin{array}{ll} 1 & ext{ if } i ext{th flip is heads} \\ 0 & ext{ otherwise} \end{array}
ight.$$

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

 $Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).$
 $p = 0 \implies Var(X_i) = 0$
 $p = 1 \implies Var(X_i) = 0$

$$X_i = \left\{ egin{array}{ll} 1 & ext{ if } i ext{th flip is heads} \\ 0 & ext{ otherwise} \end{array}
ight.$$

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

$$Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).$$

$$p = 0 \implies Var(X_i) = 0$$

$$p = 1 \implies Var(X_i) = 0$$

$$X = X_1 + X_2 + \dots + X_p.$$

Flip coin with heads probability p. X- how many heads?

$$X_i = \left\{ egin{array}{ll} 1 & ext{ if } i ext{th flip is heads} \ 0 & ext{ otherwise} \end{array}
ight.$$

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

$$Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).$$

$$p = 0 \implies Var(X_i) = 0$$

$$p = 1 \implies Var(X_i) = 0$$

$$X = X_1 + X_2 + \dots + X_n.$$

 X_i and X_j are independent:

Flip coin with heads probability *p*. *X*- how many heads?

$$X_i = \left\{ egin{array}{ll} 1 & ext{ if } i ext{th flip is heads} \\ 0 & ext{ otherwise} \end{array}
ight.$$

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

$$Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).$$

$$p = 0 \implies Var(X_i) = 0$$

$$p = 1 \implies Var(X_i) = 0$$

$$X = X_1 + X_2 + \dots + X_n.$$

 X_i and X_j are independent: $Pr[X_i = 1 | X_j = 1] = Pr[X_i = 1]$.

Flip coin with heads probability *p*. *X*- how many heads?

$$X_i = \left\{ egin{array}{ll} 1 & ext{ if } i ext{th flip is heads} \\ 0 & ext{ otherwise} \end{array}
ight.$$

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

$$Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).$$

$$p = 0 \implies Var(X_i) = 0$$

$$p = 1 \implies Var(X_i) = 0$$

$$X = X_1 + X_2 + \dots + X_n.$$

 X_i and X_j are independent: $Pr[X_i = 1 | X_j = 1] = Pr[X_i = 1]$.

$$Var(X) = Var(X_1 + \cdots X_n)$$

Flip coin with heads probability *p*. *X*- how many heads?

 $X = X_1 + X_2 + \dots X_n$

$$X_i = \left\{ egin{array}{ll} 1 & ext{ if } i ext{th flip is heads} \\ 0 & ext{ otherwise} \end{array}
ight.$$

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

$$Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).$$

$$p = 0 \implies Var(X_i) = 0$$

$$p = 1 \implies Var(X_i) = 0$$

$$X_i$$
 and X_j are independent: $Pr[X_i = 1 | X_j = 1] = Pr[X_i = 1]$.

$$Var(X) = Var(X_1 + \cdots X_n) = np(1-p).$$

Flip coin with heads probability *p*. *X*- how many heads?

 $X = X_1 + X_2 + \dots X_n$

$$X_i = \left\{ egin{array}{ll} 1 & ext{ if } i ext{th flip is heads} \\ 0 & ext{ otherwise} \end{array}
ight.$$

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

$$Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).$$

$$p = 0 \implies Var(X_i) = 0$$

$$p = 1 \implies Var(X_i) = 0$$

$$X_i$$
 and X_j are independent: $Pr[X_i = 1 | X_j = 1] = Pr[X_i = 1]$.

$$Var(X) = Var(X_1 + \cdots X_n) = np(1-p).$$

Roll a six-sided balanced die. Let X be the number of pips (dots).

Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values $\{1,2,\ldots,6\}$.

Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values $\{1,2,\ldots,6\}$. We say that X is *uniformly distributed* in $\{1,2,\ldots,6\}$.

Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values $\{1,2,\ldots,6\}$. We say that X is *uniformly distributed* in $\{1,2,\ldots,6\}$.

More generally, we say that X is uniformly distributed in $\{1,2,\ldots,n\}$ if Pr[X=m]=1/n for $m=1,2,\ldots,n$.

Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values $\{1,2,\ldots,6\}$. We say that X is *uniformly distributed* in $\{1,2,\ldots,6\}$.

More generally, we say that X is uniformly distributed in $\{1,2,\ldots,n\}$ if Pr[X=m]=1/n for $m=1,2,\ldots,n$. In that case,

$$E[X] = \sum_{m=1}^{n} mPr[X = m]$$

Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values $\{1,2,\ldots,6\}$. We say that X is *uniformly distributed* in $\{1,2,\ldots,6\}$.

More generally, we say that X is uniformly distributed in $\{1,2,\ldots,n\}$ if Pr[X=m]=1/n for $m=1,2,\ldots,n$. In that case,

$$E[X] = \sum_{m=1}^{n} mPr[X = m] = \sum_{m=1}^{n} m \times \frac{1}{n}$$

Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values $\{1,2,\ldots,6\}$. We say that X is *uniformly distributed* in $\{1,2,\ldots,6\}$.

More generally, we say that X is uniformly distributed in $\{1,2,\ldots,n\}$ if Pr[X=m]=1/n for $m=1,2,\ldots,n$. In that case,

$$E[X] = \sum_{m=1}^{n} mPr[X = m] = \sum_{m=1}^{n} m \times \frac{1}{n} = \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}.$$

Assume that Pr[X = i] = 1/n for $i \in \{1, ..., n\}$. Then

Assume that Pr[X = i] = 1/n for $i \in \{1, ..., n\}$. Then

$$E[X] = \sum_{i=1}^{n} i \times Pr[X = i] = \frac{1}{n} \sum_{i=1}^{n} i$$

Assume that Pr[X = i] = 1/n for $i \in \{1, ..., n\}$. Then

$$E[X] = \sum_{i=1}^{n} i \times Pr[X = i] = \frac{1}{n} \sum_{i=1}^{n} i$$
$$= \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}.$$

Assume that Pr[X = i] = 1/n for $i \in \{1, ..., n\}$. Then

$$E[X] = \sum_{i=1}^{n} i \times Pr[X = i] = \frac{1}{n} \sum_{i=1}^{n} i$$
$$= \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}.$$

Also,

$$E[X^2] = \sum_{i=1}^{n} i^2 Pr[X = i] = \frac{1}{n} \sum_{i=1}^{n} i^2$$

Assume that Pr[X = i] = 1/n for $i \in \{1, ..., n\}$. Then

$$E[X] = \sum_{i=1}^{n} i \times Pr[X = i] = \frac{1}{n} \sum_{i=1}^{n} i$$
$$= \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}.$$

Also,

$$E[X^{2}] = \sum_{i=1}^{n} i^{2} Pr[X = i] = \frac{1}{n} \sum_{i=1}^{n} i^{2}$$
$$= \frac{1 + 3n + 2n^{2}}{6},$$

Variance of Uniform

Assume that Pr[X = i] = 1/n for $i \in \{1, ..., n\}$. Then

$$E[X] = \sum_{i=1}^{n} i \times Pr[X = i] = \frac{1}{n} \sum_{i=1}^{n} i$$
$$= \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}.$$

Also,

$$E[X^{2}] = \sum_{i=1}^{n} i^{2} Pr[X = i] = \frac{1}{n} \sum_{i=1}^{n} i^{2}$$
$$= \frac{1 + 3n + 2n^{2}}{6}, \text{ as you can verify.}$$

Variance of Uniform

Assume that Pr[X = i] = 1/n for $i \in \{1, ..., n\}$. Then

$$E[X] = \sum_{i=1}^{n} i \times Pr[X = i] = \frac{1}{n} \sum_{i=1}^{n} i$$
$$= \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}.$$

Also,

$$E[X^{2}] = \sum_{i=1}^{n} i^{2} Pr[X = i] = \frac{1}{n} \sum_{i=1}^{n} i^{2}$$

$$= \frac{1 + 3n + 2n^{2}}{6}, \text{ as you can verify.}$$

This gives

$$var(X) = \frac{1+3n+2n^2}{6} - \frac{(n+1)^2}{4} = \frac{n^2-1}{12}.$$

Let's flip a coin with Pr[H] = p until we get H.

Let's flip a coin with Pr[H] = p until we get H.

Let's flip a coin with Pr[H] = p until we get H.

$$\omega_1 = H$$
, or

Let's flip a coin with Pr[H] = p until we get H.

Let's flip a coin with Pr[H] = p until we get H.

$$\omega_1 = H$$
, or $\omega_2 = T\ H$, or $\omega_3 = T\ T\ H$, or

Let's flip a coin with Pr[H] = p until we get H.

$$\omega_1 = H$$
, or $\omega_2 = T H$, or $\omega_3 = T T H$, or $\omega_n = T T T T \cdots T H$.

Let's flip a coin with Pr[H] = p until we get H.

For instance:

$$\omega_1 = H$$
, or $\omega_2 = T H$, or $\omega_3 = T T H$, or $\omega_n = T T T T \cdots T H$.

Note that $\Omega = \{\omega_n, n = 1, 2, \ldots\}.$

Let's flip a coin with Pr[H] = p until we get H.

For instance:

$$\omega_1 = H$$
, or $\omega_2 = T H$, or $\omega_3 = T T H$, or $\omega_n = T T T T \cdots T H$.

Note that $\Omega = \{\omega_n, n = 1, 2, \ldots\}.$

Let *X* be the number of flips until the first *H*. Then, $X(\omega_n) =$

Let's flip a coin with Pr[H] = p until we get H.

For instance:

$$\omega_1 = H$$
, or $\omega_2 = T H$, or $\omega_3 = T T H$, or $\omega_n = T T T T \cdots T H$.

Note that $\Omega = \{\omega_n, n = 1, 2, \ldots\}.$

Let *X* be the number of flips until the first *H*. Then, $X(\omega_n) = n$.

Let's flip a coin with Pr[H] = p until we get H.

For instance:

$$\omega_1 = H$$
, or $\omega_2 = T H$, or $\omega_3 = T T H$, or $\omega_n = T T T T \cdots T H$.

Note that $\Omega = \{\omega_n, n = 1, 2, \ldots\}.$

Let X be the number of flips until the first H. Then, $X(\omega_n) = n$. Also,

$$Pr[X = n] =$$

Let's flip a coin with Pr[H] = p until we get H.

For instance:

$$\omega_1 = H$$
, or $\omega_2 = T H$, or $\omega_3 = T T H$, or $\omega_n = T T T T \cdots T H$.

Note that $\Omega = \{\omega_n, n = 1, 2, \ldots\}.$

Let X be the number of flips until the first H. Then, $X(\omega_n) = n$. Also,

$$Pr[X = n] = (1 - p)^{n-1}p, \ n \ge 1.$$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

$$\sum_{n=1}^{\infty} Pr[X_n] =$$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

$$\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p =$$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

$$\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1}$$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

$$\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1} = p \sum_{n=0}^{\infty} (1-p)^n.$$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

$$\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1} = p \sum_{n=0}^{\infty} (1-p)^n.$$

Now, if
$$|a| < 1$$
, then $S := \sum_{n=0}^{\infty} a^n =$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

$$\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1} = p \sum_{n=0}^{\infty} (1-p)^n.$$

Now, if
$$|a| < 1$$
, then $S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$.

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

Note that

$$\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1} = p \sum_{n=0}^{\infty} (1-p)^n.$$

Now, if |a| < 1, then $S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$. Indeed,

$$S = 1 + a + a^2 + a^3 + \cdots$$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

Note that

$$\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1} = p \sum_{n=0}^{\infty} (1-p)^n.$$

Now, if |a| < 1, then $S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$. Indeed,

$$S = 1 + a + a^2 + a^3 + \cdots$$

 $aS = a + a^2 + a^3 + a^4 + \cdots$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

Note that

$$\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1} = p \sum_{n=0}^{\infty} (1-p)^n.$$

Now, if |a| < 1, then $S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$. Indeed,

$$S = 1 + a + a^{2} + a^{3} + \cdots$$

$$aS = a + a^{2} + a^{3} + a^{4} + \cdots$$

$$(1 - a)S = 1 + a - a + a^{2} - a^{2} + \cdots = 1.$$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

Note that

$$\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1} = p \sum_{n=0}^{\infty} (1-p)^n.$$

Now, if |a| < 1, then $S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$. Indeed,

$$S = 1 + a + a^{2} + a^{3} + \cdots$$

$$aS = a + a^{2} + a^{3} + a^{4} + \cdots$$

$$(1 - a)S = 1 + a - a + a^{2} - a^{2} + \cdots = 1.$$

Hence,

$$\sum_{n=1}^{\infty} Pr[X_n] =$$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

Note that

$$\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1} = p \sum_{n=0}^{\infty} (1-p)^n.$$

Now, if |a| < 1, then $S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$. Indeed,

$$S = 1 + a + a^{2} + a^{3} + \cdots$$

$$aS = a + a^{2} + a^{3} + a^{4} + \cdots$$

$$(1 - a)S = 1 + a - a + a^{2} - a^{2} + \cdots = 1.$$

Hence,

$$\sum_{n=1}^{\infty} Pr[X_n] = p \frac{1}{1 - (1 - p)} =$$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

Note that

$$\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1} = p \sum_{n=0}^{\infty} (1-p)^n.$$

Now, if |a| < 1, then $S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$. Indeed,

$$S = 1 + a + a^{2} + a^{3} + \cdots$$

$$aS = a + a^{2} + a^{3} + a^{4} + \cdots$$

$$(1 - a)S = 1 + a - a + a^{2} - a^{2} + \cdots = 1.$$

Hence,

$$\sum_{n=1}^{\infty} Pr[X_n] = \rho \, \frac{1}{1 - (1 - \rho)} = 1.$$

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1-p)^{n-1}p, n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

$$E[X] = p+2(1-p)p+3(1-p)^2p+4(1-p)^3p+\cdots$$

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1-p)^{n-1}p, n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

$$E[X] = p+2(1-p)p+3(1-p)^2p+4(1-p)^3p+\cdots$$

(1-p)E[X] = (1-p)p+2(1-p)^2p+3(1-p)^3p+\cdots

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p$, $n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

$$E[X] = p+2(1-p)p+3(1-p)^{2}p+4(1-p)^{3}p+\cdots$$

$$(1-p)E[X] = (1-p)p+2(1-p)^{2}p+3(1-p)^{3}p+\cdots$$

$$pE[X] = p+(1-p)p+(1-p)^{2}p+(1-p)^{3}p+\cdots$$

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

$$E[X] = p + 2(1-p)p + 3(1-p)^{2}p + 4(1-p)^{3}p + \cdots$$

$$(1-p)E[X] = (1-p)p + 2(1-p)^{2}p + 3(1-p)^{3}p + \cdots$$

$$pE[X] = p + (1-p)p + (1-p)^{2}p + (1-p)^{3}p + \cdots$$
by subtracting the previous two identities

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

$$E[X] = p+2(1-p)p+3(1-p)^{2}p+4(1-p)^{3}p+\cdots$$

$$(1-p)E[X] = (1-p)p+2(1-p)^{2}p+3(1-p)^{3}p+\cdots$$

$$pE[X] = p+(1-p)p+(1-p)^{2}p+(1-p)^{3}p+\cdots$$
by subtracting the previous two identities

$$=$$
 $\sum_{n=1}^{\infty} Pr[X=n] =$

Geometric Distribution: Expectation

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

Thus,

$$E[X] = p+2(1-p)p+3(1-p)^{2}p+4(1-p)^{3}p+\cdots$$

$$(1-p)E[X] = (1-p)p+2(1-p)^{2}p+3(1-p)^{3}p+\cdots$$

$$pE[X] = p+(1-p)p+(1-p)^{2}p+(1-p)^{3}p+\cdots$$
by subtracting the previous two identities
$$= \sum_{n=1}^{\infty} Pr[X=n] = 1.$$

Geometric Distribution: Expectation

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

Thus,

$$E[X] = p+2(1-p)p+3(1-p)^2p+4(1-p)^3p+\cdots$$

$$(1-p)E[X] = (1-p)p+2(1-p)^2p+3(1-p)^3p+\cdots$$

$$pE[X] = p+(1-p)p+(1-p)^2p+(1-p)^3p+\cdots$$
by subtracting the previous two identities
$$= \sum_{n=0}^{\infty} Pr[X=n] = 1.$$

Hence,

$$E[X] = \frac{1}{p}$$
.

Experiment: Get coupons at random from n until collect all n coupons.

Experiment: Get coupons at random from *n* until collect all *n* coupons.

Outcomes: {123145...,56765...}

Experiment: Get coupons at random from *n* until collect all *n* coupons.

Outcomes: {123145...,56765...}

Random Variable: *X* - length of outcome.

Experiment: Get coupons at random from *n* until collect all *n* coupons.

Outcomes: {123145...,56765...}

Random Variable: *X* - length of outcome.

Experiment: Get coupons at random from *n* until collect all *n* coupons.

Outcomes: {123145...,56765...}

Random Variable: *X* - length of outcome.

Before: $Pr[X \ge n \ln 2n] \le \frac{1}{2}$.

Experiment: Get coupons at random from *n* until collect all *n* coupons.

Outcomes: {123145...,56765...}

Random Variable: *X* - length of outcome.

Before: $Pr[X \ge n \ln 2n] \le \frac{1}{2}$.

Today: E[X]?

Experiment: Get coupons at random from *n* until collect all *n* coupons.

Outcomes: {123145...,56765...}

Random Variable: *X* - length of outcome.

Before: $Pr[X \ge n \ln 2n] \le \frac{1}{2}$.

Today: E[X]?

X-time to get *n* coupons.

X-time to get *n* coupons.

 X_1 - time to get first coupon.

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$.

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got first coupon"]

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

 $Pr["get second coupon"]"got first coupon"] = \frac{n-1}{n}$

 $E[X_2]$?

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

 $Pr["get second coupon"]"got first coupon"] = \frac{n-1}{n}$

 $E[X_2]$? Geometric

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

 $Pr["get second coupon"]"got first coupon"] = \frac{n-1}{n}$

 $E[X_2]$? Geometric!

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

 $Pr["get second coupon"]"got first coupon"] = \frac{n-1}{n}$

 $E[X_2]$? Geometric!!

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

 $Pr["get second coupon"]"got first coupon"] = \frac{n-1}{n}$

 $E[X_2]$? Geometric!!!

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

$$E[X_2]$$
? Geometric!!! $\Longrightarrow E[X_2] = \frac{1}{p} =$

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

$$E[X_2]$$
? Geometric!!! $\Longrightarrow E[X_2] = \frac{1}{\rho} = \frac{1}{\frac{n-1}{n}}$

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

$$E[X_2]$$
? Geometric!!! $\Longrightarrow E[X_2] = \frac{1}{\rho} = \frac{1}{\frac{n-1}{n-1}} = \frac{n}{n-1}$.

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

 $Pr[\text{"get second coupon"}|\text{"got first coupon"}] = \frac{n-1}{n}$

$$E[X_2]$$
? Geometric!!! $\implies E[X_2] = \frac{1}{\rho} = \frac{1}{\frac{n-1}{n}} = \frac{n}{n-1}$.

 $Pr["getting ith coupon|"got i - 1rst coupons"] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n}$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

$$E[X_2]$$
? Geometric!!! $\implies E[X_2] = \frac{1}{\rho} = \frac{1}{\frac{n-1}{n}} = \frac{n}{n-1}$.

$$Pr["getting ith coupon|"got i - 1rst coupons"] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n}$$

 $E[X_i]$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

$$E[X_2]$$
? Geometric!!! $\implies E[X_2] = \frac{1}{\rho} = \frac{1}{\frac{n-1}{n}} = \frac{n}{n-1}$.

$$Pr["getting ith coupon|"got i - 1rst coupons"] = \frac{n - (i - 1)}{n} = \frac{n - i + 1}{n}$$

 $E[X_i] = \frac{1}{n}$

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

$$E[X_2]$$
? Geometric!!! $\implies E[X_2] = \frac{1}{\rho} = \frac{1}{\frac{n-1}{\rho}} = \frac{n}{n-1}$.

$$Pr["getting ith coupon|"got i - 1rst coupons"] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n}$$

$$E[X_i] = \frac{1}{\rho} = \frac{n}{n-i+1},$$

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

$$E[X_2]$$
? Geometric!!! $\implies E[X_2] = \frac{1}{\rho} = \frac{1}{\frac{n-1}{\rho}} = \frac{n}{n-1}$.

$$Pr["getting ith coupon|"got i - 1 rst coupons"] = \frac{n - (i - 1)}{n} = \frac{n - i + 1}{n}$$

$$E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, ..., n.$$

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

 $Pr[\text{"get second coupon"}|\text{"got first coupon"}] = \frac{n-1}{n}$

$$E[X_2]$$
? Geometric!!! $\implies E[X_2] = \frac{1}{\rho} = \frac{1}{\frac{n-1}{\rho}} = \frac{n}{n-1}$.

 $Pr["getting ith coupon|"got i - 1rst coupons"] = \frac{n - (i - 1)}{n} = \frac{n - i + 1}{n}$

$$E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, ..., n.$$

$$E[X] = E[X_1] + \cdots + E[X_n] =$$

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

 $Pr[\text{"get second coupon"}|\text{"got first coupon"}] = \frac{n-1}{n}$

$$E[X_2]$$
? Geometric!!! $\implies E[X_2] = \frac{1}{\rho} = \frac{1}{\frac{n-1}{\rho}} = \frac{n}{n-1}$.

 $Pr["getting ith coupon|"got i - 1 rst coupons"] = \frac{n - (i - 1)}{n} = \frac{n - i + 1}{n}$

$$E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, ..., n.$$

$$E[X] = E[X_1] + \dots + E[X_n] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \dots + \frac{n}{1}$$

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

 $Pr[\text{"get second coupon"}|\text{"got first coupon"}] = \frac{n-1}{n}$

$$E[X_2]$$
? Geometric!!! $\implies E[X_2] = \frac{1}{\rho} = \frac{1}{\frac{n-1}{\rho}} = \frac{n}{n-1}$.

 $Pr["getting ith coupon|"got i - 1 rst coupons"] = \frac{n - (i - 1)}{n} = \frac{n - i + 1}{n}$

$$E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, ..., n.$$

$$E[X] = E[X_1] + \dots + E[X_n] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \dots + \frac{n}{1}$$
$$= n(1 + \frac{1}{2} + \dots + \frac{1}{n}) =: nH(n)$$

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

 $Pr[\text{"get second coupon"}|\text{"got first coupon"}] = \frac{n-1}{n}$

$$E[X_2]$$
? Geometric!!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

 $Pr["getting ith coupon|"got i - 1rst coupons"] = \frac{n - (i - 1)}{n} = \frac{n - i + 1}{n}$

$$E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, ..., n.$$

$$E[X] = E[X_1] + \dots + E[X_n] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \dots + \frac{n}{1}$$
$$= n(1 + \frac{1}{2} + \dots + \frac{1}{n}) =: nH(n) \approx n(\ln n + \gamma)$$

Review: Harmonic sum

$$H(n) = 1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \int_{1}^{n} \frac{1}{x} dx = \ln(n).$$

.

Review: Harmonic sum

$$H(n) = 1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \int_{1}^{n} \frac{1}{x} dx = \ln(n).$$

.

Review: Harmonic sum

$$H(n) = 1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \int_{1}^{n} \frac{1}{x} dx = \ln(n).$$

.

A good approximation is

 $H(n) \approx \ln(n) + \gamma$ where $\gamma \approx 0.58$ (Euler-Mascheroni constant).

Consider this stack of cards (no glue!):

Consider this stack of cards (no glue!):

Consider this stack of cards (no glue!):

If each card has length 2, the stack can extend H(n) to the right of the table.

Consider this stack of cards (no glue!):

If each card has length 2, the stack can extend H(n) to the right of the table. As n increases, you can go as far as you want!

Stacking

Stacking

The cards have width 2.

Stacking

The cards have width 2. Induction shows that the center of gravity after n cards is H(n) away from the right-most edge.

Let *X* be G(p). Then, for $n \ge 0$,

Let *X* be G(p). Then, for $n \ge 0$,

$$Pr[X > n] = Pr[$$
 first n flips are $T] =$

Let *X* be G(p). Then, for $n \ge 0$,

$$Pr[X > n] = Pr[$$
 first n flips are $T] = (1 - p)^n$.

Let *X* be G(p). Then, for $n \ge 0$,

$$Pr[X > n] = Pr[$$
 first n flips are $T] = (1 - p)^n$.

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \ge 0.$$

Let *X* be G(p). Then, for $n \ge 0$,

$$Pr[X > n] = Pr[$$
 first n flips are $T] = (1 - p)^n$.

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \ge 0.$$

$$Pr[X > n + m|X > n] =$$

Let *X* be G(p). Then, for $n \ge 0$,

$$Pr[X > n] = Pr[$$
 first n flips are $T] = (1 - p)^n$.

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \ge 0.$$

$$Pr[X > n + m | X > n] = \frac{Pr[X > n + m \text{ and } X > n]}{Pr[X > n]}$$

Let *X* be G(p). Then, for $n \ge 0$,

$$Pr[X > n] = Pr[$$
 first n flips are $T] = (1 - p)^n$.

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \ge 0.$$

$$Pr[X > n + m | X > n] = \frac{Pr[X > n + m \text{ and } X > n]}{Pr[X > n]}$$
$$= \frac{Pr[X > n + m]}{Pr[X > n]}$$

Let *X* be G(p). Then, for $n \ge 0$,

$$Pr[X > n] = Pr[$$
 first n flips are $T] = (1 - p)^n$.

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \ge 0.$$

$$Pr[X > n + m | X > n] = \frac{Pr[X > n + m \text{ and } X > n]}{Pr[X > n]}$$

$$= \frac{Pr[X > n + m]}{Pr[X > n]}$$

$$= \frac{(1 - p)^{n + m}}{(1 - p)^n} =$$

Let *X* be G(p). Then, for $n \ge 0$,

$$Pr[X > n] = Pr[$$
 first n flips are $T] = (1 - p)^n$.

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \ge 0.$$

$$Pr[X > n + m | X > n] = \frac{Pr[X > n + m \text{ and } X > n]}{Pr[X > n]}$$

$$= \frac{Pr[X > n + m]}{Pr[X > n]}$$

$$= \frac{(1 - p)^{n + m}}{(1 - p)^n} = (1 - p)^m$$

Let *X* be G(p). Then, for $n \ge 0$,

$$Pr[X > n] = Pr[$$
 first n flips are $T] = (1 - p)^n$.

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \ge 0.$$

$$Pr[X > n + m | X > n] = \frac{Pr[X > n + m \text{ and } X > n]}{Pr[X > n]}$$

$$= \frac{Pr[X > n + m]}{Pr[X > n]}$$

$$= \frac{(1 - p)^{n + m}}{(1 - p)^n} = (1 - p)^m$$

$$= Pr[X > m].$$

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \ge 0.$$

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \ge 0.$$

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \ge 0.$$

$$\begin{array}{c|c}
B & A \\
\mathsf{TTT} & \mathsf{TTT} & \mathsf{TTT} & \mathsf{T}
\end{array}$$

$$\begin{array}{c|c}
n & m
\end{array}$$

$$Pr[X > n + m|X > n] = Pr[A|B] = Pr[A] = Pr[X > m].$$

$$Pr[X>n+m|X>n]=Pr[X>m], m,n\geq 0.$$

$$Pr[X > n + m | X > n] = Pr[A|B] = Pr[A] = Pr[X > m].$$

The coin is memoryless, therefore, so is X.

Theorem: For a r.v. X that takes the values $\{0,1,2,\ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \ge i].$$

[See later for a proof.]

Theorem: For a r.v. X that takes the values $\{0,1,2,\ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \ge i].$$

[See later for a proof.]

If
$$X = G(p)$$
, then $Pr[X \ge i] = Pr[X > i - 1] = (1 - p)^{i-1}$.

Theorem: For a r.v. X that takes the values $\{0,1,2,\ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \ge i].$$

[See later for a proof.]

If X = G(p), then $Pr[X \ge i] = Pr[X > i - 1] = (1 - p)^{i - 1}$. Hence,

$$E[X] = \sum_{i=1}^{\infty} (1-\rho)^{i-1} = \sum_{i=0}^{\infty} (1-\rho)^{i}$$

Theorem: For a r.v. X that takes the values $\{0,1,2,\ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \ge i].$$

[See later for a proof.]

If X = G(p), then $Pr[X \ge i] = Pr[X > i - 1] = (1 - p)^{i - 1}$. Hence,

$$E[X] = \sum_{i=1}^{\infty} (1-p)^{i-1} = \sum_{i=0}^{\infty} (1-p)^i = \frac{1}{1-(1-p)} = \frac{1}{1-(1-p)}$$

Theorem: For a r.v. X that takes the values $\{0,1,2,\ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \ge i].$$

[See later for a proof.]

If X = G(p), then $Pr[X \ge i] = Pr[X > i - 1] = (1 - p)^{i-1}$. Hence,

$$E[X] = \sum_{i=1}^{\infty} (1-p)^{i-1} = \sum_{i=0}^{\infty} (1-p)^i = \frac{1}{1-(1-p)} = \frac{1}{p}.$$

Theorem: For a r.v. X that takes values in $\{0,1,2,\ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \ge i].$$

Theorem: For a r.v. X that takes values in $\{0, 1, 2, ...\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \ge i].$$

$$E[X] = \sum_{i=1}^{\infty} i \times Pr[X=i]$$

Theorem: For a r.v. X that takes values in $\{0,1,2,\ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \ge i].$$

$$E[X] = \sum_{i=1}^{\infty} i \times Pr[X = i]$$
$$= \sum_{i=1}^{\infty} i \{ Pr[X \ge i] - Pr[X \ge i + 1] \}$$

Theorem: For a r.v. X that takes values in $\{0,1,2,\ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \ge i].$$

$$E[X] = \sum_{i=1}^{\infty} i \times Pr[X = i]$$

$$= \sum_{i=1}^{\infty} i \{ Pr[X \ge i] - Pr[X \ge i + 1] \}$$

$$= \sum_{i=1}^{\infty} \{ i \times Pr[X \ge i] - i \times Pr[X \ge i + 1] \}$$

Theorem: For a r.v. X that takes values in $\{0, 1, 2, ...\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \ge i].$$

$$E[X] = \sum_{i=1}^{\infty} i \times Pr[X = i]$$

$$= \sum_{i=1}^{\infty} i \{ Pr[X \ge i] - Pr[X \ge i + 1] \}$$

$$= \sum_{i=1}^{\infty} \{ i \times Pr[X \ge i] - i \times Pr[X \ge i + 1] \}$$

$$= \sum_{i=1}^{\infty} \{ i \times Pr[X \ge i] - (i - 1) \times Pr[X \ge i] \}$$

Theorem: For a r.v. X that takes values in $\{0, 1, 2, ...\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \ge i].$$

$$E[X] = \sum_{i=1}^{\infty} i \times Pr[X = i]$$

$$= \sum_{i=1}^{\infty} i \{ Pr[X \ge i] - Pr[X \ge i + 1] \}$$

$$= \sum_{i=1}^{\infty} \{ i \times Pr[X \ge i] - i \times Pr[X \ge i + 1] \}$$

$$= \sum_{i=1}^{\infty} \{ i \times Pr[X \ge i] - (i - 1) \times Pr[X \ge i] \}$$

$$= \sum_{i=1}^{\infty} Pr[X \ge i].$$

Theorem: For a r.v. X that takes values in $\{0,1,2,\ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \ge i].$$

Variance of geometric distribution.

X is a geometrically distributed RV with parameter *p*.

Variance of geometric distribution.

X is a geometrically distributed RV with parameter p. Thus, $Pr[X = n] = (1 - p)^{n-1}p$ for $n \ge 1$.

Variance of geometric distribution.

X is a geometrically distributed RV with parameter p. Thus, $Pr[X = n] = (1-p)^{n-1}p$ for $n \ge 1$. Recall E[X] = 1/p.

$$E[X^2] = p + 4p(1-p) + 9p(1-p)^2 + ...$$

$$E[X^2] = p + 4p(1-p) + 9p(1-p)^2 + \dots$$

-(1-p)E[X^2] = -[p(1-p) + 4p(1-p)^2 + \dots]

$$E[X^{2}] = p+4p(1-p)+9p(1-p)^{2}+...$$

$$-(1-p)E[X^{2}] = -[p(1-p)+4p(1-p)^{2}+...]$$

$$pE[X^{2}] = p+3p(1-p)+5p(1-p)^{2}+...$$

$$E[X^{2}] = p+4p(1-p)+9p(1-p)^{2}+...$$

$$-(1-p)E[X^{2}] = -[p(1-p)+4p(1-p)^{2}+...]$$

$$pE[X^{2}] = p+3p(1-p)+5p(1-p)^{2}+...$$

$$= 2(p+2p(1-p)+3p(1-p)^{2}+...) E[X]!$$

$$-(p+p(1-p)+p(1-p)^{2}+...) Distribution.$$

$$E[X^{2}] = p+4p(1-p)+9p(1-p)^{2}+...$$

$$-(1-p)E[X^{2}] = -[p(1-p)+4p(1-p)^{2}+...]$$

$$pE[X^{2}] = p+3p(1-p)+5p(1-p)^{2}+...$$

$$= 2(p+2p(1-p)+3p(1-p)^{2}+...) E[X]!$$

$$-(p+p(1-p)+p(1-p)^{2}+...) Distribution.$$

$$E[X^{2}] = p+4p(1-p)+9p(1-p)^{2}+...$$

$$-(1-p)E[X^{2}] = -[p(1-p)+4p(1-p)^{2}+...]$$

$$pE[X^{2}] = p+3p(1-p)+5p(1-p)^{2}+...$$

$$= 2(p+2p(1-p)+3p(1-p)^{2}+...) E[X]!$$

$$-(p+p(1-p)+p(1-p)^{2}+...) Distribution.$$

$$E[X^{2}] = p+4p(1-p)+9p(1-p)^{2}+...$$

$$-(1-p)E[X^{2}] = -[p(1-p)+4p(1-p)^{2}+...]$$

$$pE[X^{2}] = p+3p(1-p)+5p(1-p)^{2}+...$$

$$= 2(p+2p(1-p)+3p(1-p)^{2}+...) E[X]!$$

$$-(p+p(1-p)+p(1-p)^{2}+...) Distribution.$$

$$pE[X^{2}] = 2E[X]-1$$

$$E[X^{2}] = p+4p(1-p)+9p(1-p)^{2}+...$$

$$-(1-p)E[X^{2}] = -[p(1-p)+4p(1-p)^{2}+...]$$

$$pE[X^{2}] = p+3p(1-p)+5p(1-p)^{2}+...$$

$$= 2(p+2p(1-p)+3p(1-p)^{2}+...) \quad E[X]!$$

$$-(p+p(1-p)+p(1-p)^{2}+...) \quad \text{Distribution.}$$

$$pE[X^{2}] = 2E[X]-1$$

$$= 2(\frac{1}{p})-1$$

$$E[X^{2}] = p+4p(1-p)+9p(1-p)^{2}+...$$

$$-(1-p)E[X^{2}] = -[p(1-p)+4p(1-p)^{2}+...]$$

$$pE[X^{2}] = p+3p(1-p)+5p(1-p)^{2}+...$$

$$= 2(p+2p(1-p)+3p(1-p)^{2}+...) E[X]!$$

$$-(p+p(1-p)+p(1-p)^{2}+...) Distribution.$$

$$pE[X^{2}] = 2E[X]-1$$

$$= 2(\frac{1}{p}) - 1 = \frac{2-p}{p}$$

$$E[X^{2}] = p+4p(1-p)+9p(1-p)^{2}+...$$

$$-(1-p)E[X^{2}] = -[p(1-p)+4p(1-p)^{2}+...]$$

$$pE[X^{2}] = p+3p(1-p)+5p(1-p)^{2}+...$$

$$= 2(p+2p(1-p)+3p(1-p)^{2}+...) \quad E[X]!$$

$$-(p+p(1-p)+p(1-p)^{2}+...) \quad Distribution.$$

$$pE[X^{2}] = 2E[X]-1$$

$$= 2(\frac{1}{p})-1 = \frac{2-p}{p}$$

$$\implies E[X^2] = (2-p)/p^2$$

$$E[X^{2}] = p+4p(1-p)+9p(1-p)^{2}+...$$

$$-(1-p)E[X^{2}] = -[p(1-p)+4p(1-p)^{2}+...]$$

$$pE[X^{2}] = p+3p(1-p)+5p(1-p)^{2}+...$$

$$= 2(p+2p(1-p)+3p(1-p)^{2}+...) \quad E[X]!$$

$$-(p+p(1-p)+p(1-p)^{2}+...) \quad \text{Distribution.}$$

$$pE[X^{2}] = 2E[X]-1$$

$$= 2(\frac{1}{p})-1 = \frac{2-p}{p}$$

$$\implies E[X^2] = (2-p)/p^2$$
 and $var[X] = E[X^2] - E[X]^2$

$$E[X^{2}] = p+4p(1-p)+9p(1-p)^{2}+...$$

$$-(1-p)E[X^{2}] = -[p(1-p)+4p(1-p)^{2}+...]$$

$$pE[X^{2}] = p+3p(1-p)+5p(1-p)^{2}+...$$

$$= 2(p+2p(1-p)+3p(1-p)^{2}+...) E[X]!$$

$$-(p+p(1-p)+p(1-p)^{2}+...) Distribution.$$

$$pE[X^{2}] = 2E[X]-1$$

$$= 2(\frac{1}{p})-1 = \frac{2-p}{p}$$

$$\implies E[X^2] = (2-p)/p^2$$
 and $var[X] = E[X^2] - E[X]^2 = \frac{2-p}{p^2} - \frac{1}{p^2}$

$$E[X^{2}] = p+4p(1-p)+9p(1-p)^{2}+...$$

$$-(1-p)E[X^{2}] = -[p(1-p)+4p(1-p)^{2}+...]$$

$$pE[X^{2}] = p+3p(1-p)+5p(1-p)^{2}+...$$

$$= 2(p+2p(1-p)+3p(1-p)^{2}+...) \quad E[X]!$$

$$-(p+p(1-p)+p(1-p)^{2}+...) \quad Distribution.$$

$$pE[X^{2}] = 2E[X]-1$$

$$= 2(\frac{1}{p})-1 = \frac{2-p}{p}$$

$$\Rightarrow E[X^2] = (2-p)/p^2 \text{ and} var[X] = E[X^2] - E[X]^2 = \frac{2-p}{p^2} - \frac{1}{p^2} = \frac{1-p}{p^2}. \sigma(X) = \frac{\sqrt{1-p}}{p^2}$$

$$E[X^{2}] = p+4p(1-p)+9p(1-p)^{2}+...$$

$$-(1-p)E[X^{2}] = -[p(1-p)+4p(1-p)^{2}+...]$$

$$pE[X^{2}] = p+3p(1-p)+5p(1-p)^{2}+...$$

$$= 2(p+2p(1-p)+3p(1-p)^{2}+...) E[X]!$$

$$-(p+p(1-p)+p(1-p)^{2}+...) Distribution.$$

$$pE[X^{2}] = 2E[X]-1$$

$$= 2(\frac{1}{p})-1 = \frac{2-p}{p}$$

$$\implies E[X^{2}] = (2 - p)/p^{2} \text{ and } \\ var[X] = E[X^{2}] - E[X]^{2} = \frac{2 - p}{p^{2}} - \frac{1}{p^{2}} = \frac{1 - p}{p^{2}}. \\ \sigma(X) = \frac{\sqrt{1 - p}}{p} \approx E[X] \text{ when } p \text{ is small(ish)}.$$

$$E[X^{2}] = p+4p(1-p)+9p(1-p)^{2}+...$$

$$-(1-p)E[X^{2}] = -[p(1-p)+4p(1-p)^{2}+...]$$

$$pE[X^{2}] = p+3p(1-p)+5p(1-p)^{2}+...$$

$$= 2(p+2p(1-p)+3p(1-p)^{2}+...) E[X]!$$

$$-(p+p(1-p)+p(1-p)^{2}+...) Distribution.$$

$$pE[X^{2}] = 2E[X]-1$$

$$= 2(\frac{1}{p})-1 = \frac{2-p}{p}$$

$$\implies E[X^{2}] = (2 - p)/p^{2} \text{ and } \\ var[X] = E[X^{2}] - E[X]^{2} = \frac{2 - p}{p^{2}} - \frac{1}{p^{2}} = \frac{1 - p}{p^{2}}. \\ \sigma(X) = \frac{\sqrt{1 - p}}{p} \approx E[X] \text{ when } p \text{ is small(ish)}.$$

Experiment: flip a coin *n* times. The coin is such that

 $Pr[H] = \lambda/n$.

Random Variable: X - number of heads.

Experiment: flip a coin *n* times. The coin is such that

 $Pr[H] = \lambda/n$.

Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n)$.

Experiment: flip a coin *n* times. The coin is such that

 $Pr[H] = \lambda/n$.

Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n)$.

Poisson Distribution is distribution of *X* "for large *n*."

Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda/n$.

Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n)$.

Poisson Distribution is distribution of *X* "for large *n*."

Experiment: flip a coin *n* times. The coin is such that $Pr[H] = \lambda/n$.

Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n)$.

Poisson Distribution is distribution of *X* "for large *n*."

Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda/n$.

Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n)$.

Poisson Distribution is distribution of X "for large n."

We expect $X \ll n$.

Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda / n$.

Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n)$.

Poisson Distribution is distribution of X "for large n."

Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda/n$.

Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n)$. **Poisson Distribution** is distribution of X "for large n."

$$Pr[X = m] = {n \choose m} p^m (1-p)^{n-m}$$
, with $p = m$

Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda/n$.

Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n)$. **Poisson Distribution** is distribution of X "for large n."

$$Pr[X = m] = {n \choose m} p^m (1-p)^{n-m}$$
, with $p = \lambda/n$

Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda/n$.

Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n)$. **Poisson Distribution** is distribution of X "for large n."

$$Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1-\frac{\lambda}{n}\right)^{n-m}$$

Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda/n$.

Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n)$. **Poisson Distribution** is distribution of X "for large n." We expect $X \ll n$. For $m \ll n$ one has

$$Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$= \frac{n(n-1)\cdots(n-m+1)}{n^m} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda/n$.

Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n)$. **Poisson Distribution** is distribution of X "for large n."

$$Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$= \frac{n(n-1)\cdots(n-m+1)}{n^m} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$\approx^{(1)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda/n$.

Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n)$. **Poisson Distribution** is distribution of X "for large n." We expect $X \ll n$. For $m \ll n$ one has

$$Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$= \frac{n(n-1)\cdots(n-m+1)}{n^m} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$\approx^{(1)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m} \approx^{(2)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^n$$

Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda/n$.

Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n)$. **Poisson Distribution** is distribution of X "for large n."

$$Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$= \frac{n(n-1)\cdots(n-m+1)}{n^m} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$\approx^{(1)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m} \approx^{(2)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^n \approx \frac{\lambda^m}{m!} e^{-\lambda}.$$

Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda/n$.

Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n)$. **Poisson Distribution** is distribution of X "for large n."

We expect $X \ll n$. For $m \ll n$ one has

$$Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$= \frac{n(n-1)\cdots(n-m+1)}{n^m} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$\approx^{(1)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m} \approx^{(2)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^n \approx \frac{\lambda^m}{m!} e^{-\lambda}.$$

For (1) we used $m \ll n$;

Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda/n$.

Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n)$. **Poisson Distribution** is distribution of X "for large n." We expect $X \ll n$. For $m \ll n$ one has

$$Pr[X = m] = \binom{n}{m} p^{m} (1-p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^{m} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$= \frac{n(n-1)\cdots(n-m+1)}{n^{m}} \frac{\lambda^{m}}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$\approx^{(1)} \frac{\lambda^{m}}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m} \approx^{(2)} \frac{\lambda^{m}}{m!} \left(1-\frac{\lambda}{n}\right)^{n} \approx \frac{\lambda^{m}}{m!} e^{-\lambda}.$$

For (1) we used $m \ll n$; for (2) we used $(1 - a/n)^n \approx e^{-a}$.

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda}$$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$
$$= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!}$$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$
$$= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!} = e^{-\lambda} \lambda \sum_{m=0}^{\infty} \frac{\lambda^m}{m!}$$

Poisson Distribution: Definition and Mean

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

Proof:

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$
$$= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!} = e^{-\lambda} \lambda \sum_{m=0}^{\infty} \frac{\lambda^m}{m!}$$
$$= e^{-\lambda} \lambda e^{\lambda}$$

Poisson Distribution: Definition and Mean

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

Proof:

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$
$$= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!} = e^{-\lambda} \lambda \sum_{m=0}^{\infty} \frac{\lambda^m}{m!}$$
$$= e^{-\lambda} \lambda e^{\lambda} = \lambda.$$

▶ Bern(p) : Pr[X = 1] = p;

▶ Bern(p): Pr[X = 1] = p; E[X] = p;

▶ Bern(p): Pr[X = 1] = p; E[X] = p; Var[X] = p(1 - p);

 $B(n,p): Pr[X=m] = \binom{n}{m} p^m (1-p)^{n-m}, m=0,\ldots,n;$

Var[X] = P(Y P),

- ▶ Bern(p): Pr[X = 1] = p; E[X] = p; Var[X] = p(1 - p);
- ► $B(n,p): Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, m = 0,...,n;$ E[X] = np;

- ▶ Bern(p) : Pr[X = 1] = p; E[X] = p;
 - Var[X] = p(1-p);

Var[X] = np(1-p);

- $B(n,p): Pr[X=m] = \binom{n}{m} p^m (1-p)^{n-m}, m=0,\ldots,n;$
 - E[X] = np;

- ► $U[1,...,n]: Pr[X=m] = \frac{1}{n}, m=1,...,n;$

- ▶ Bern(p) : Pr[X = 1] = p; E[X] = p;
 - Var[X] = p(1-p);

 - $B(n,p): Pr[X=m] = \binom{n}{m} p^m (1-p)^{n-m}, m=0,\ldots,n;$
 - E[X] = np;

 $E[X] = \frac{n+1}{2}$;

Var[X] = np(1-p);

► $U[1,...,n]: Pr[X=m] = \frac{1}{n}, m=1,...,n;$

- ▶ Bern(p) : Pr[X = 1] = p; E[X] = p;
 - Var[X] = p(1-p);

- \triangleright $B(n,p): Pr[X=m] = \binom{n}{m} p^m (1-p)^{n-m}, m=0,\ldots,n;$ E[X] = np;

- $V[1,...,n]: Pr[X=m] = \frac{1}{n}, m = 1,...,n;$

 - $E[X] = \frac{n+1}{2}$;

 - $Var[X] = \frac{n^2-1}{10}$;
- ightharpoonup G(p): Pr[X=n] =

- Var[X] = np(1-p);

- ▶ Bern(p) : Pr[X = 1] = p; E[X] = p;
- Var[X] = p(1-p):

- \triangleright $B(n,p): Pr[X=m] = \binom{n}{m}p^m(1-p)^{n-m}, m=0,\ldots,n;$ E[X] = np:

 - Var[X] = np(1-p);
- ► $U[1,...,n]: Pr[X=m] = \frac{1}{n}, m=1,...,n;$

 - $E[X] = \frac{n+1}{2}$; $Var[X] = \frac{n^2-1}{10}$:
- $G(p): Pr[X = n] = (1-p)^{n-1}p, n = 1, 2, ...$

- ▶ Bern(p) : Pr[X = 1] = p; E[X] = p;
- Var[X] = p(1-p):
- \triangleright $B(n,p): Pr[X=m] = \binom{n}{m}p^m(1-p)^{n-m}, m=0,\ldots,n;$
- E[X] = np:

 $Var[X] = \frac{n^2-1}{10}$:

 $E[X] = \frac{1}{5};$

- Var[X] = np(1-p);

- $E[X] = \frac{n+1}{2}$;
- ► $U[1,...,n]: Pr[X=m] = \frac{1}{n}, m=1,...,n;$

• $G(p): Pr[X = n] = (1-p)^{n-1}p, n = 1, 2, ...$

▶
$$Bern(p) : Pr[X = 1] = p;$$

 $E[X] = p;$
 $Var[X] - p(1 - p);$

$$Var[X] = p(1-p);$$

$$B(n,p) : Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, m = 0, ..., n;$$

$$E[X] = np;$$

 $Var[X] = np(1 - pr)$

 $\triangleright P(\lambda)$:

$$U[1,\ldots,n]: Pr[X=m] =$$

•
$$U[1,...,n]: Pr[X=m] =$$

$$U[1,\ldots,n]: Pr[X=m] =$$

$$=(1-p)^{n-1}p, n=1,2,\ldots;$$

$$G(p): Pr[X = n] = (1-p)^{n-1}p, n = 1, 2, ...;$$

 $E[X] = \frac{1}{p};$
 $Var[X] = \frac{1-p}{p^2};$

$$Var[X] = np(1-p);$$

$$V[1, \dots, n] : Pr[X = m] = 0$$

- ▶ Bern(p) : Pr[X = 1] = p; E[X] = p;
- Var[X] = p(1-p):
- \triangleright B(n,p): $Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, m = 0, ..., n;$
- E[X] = np:

 $Var[X] = \frac{n^2-1}{12}$;

 $\triangleright P(\lambda): Pr[X=n] =$

 $E[X] = \frac{1}{n};$ $Var[X] = \frac{1-p}{r^2};$

- Var[X] = np(1-p);

- ► $U[1,...,n]: Pr[X=m] = \frac{1}{n}, m=1,...,n;$
- $E[X] = \frac{n+1}{2}$;

• $G(p): Pr[X = n] = (1-p)^{n-1}p, n = 1, 2, ...$

- ▶ Bern(p) : Pr[X = 1] = p; E[X] = p;
- Var[X] = p(1-p): \triangleright B(n,p): $Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, m = 0, ..., n;$
- E[X] = np: Var[X] = np(1-p):
- ► $U[1,...,n]: Pr[X=m] = \frac{1}{n}, m=1,...,n;$
- $E[X] = \frac{n+1}{2}$;
 - $Var[X] = \frac{n^2-1}{12}$;
- $G(p): Pr[X = n] = (1-p)^{n-1}p, n = 1, 2, ...$ $E[X] = \frac{1}{5};$ $Var[X] = \frac{1-p}{r^2};$
- $ightharpoonup P(\lambda): Pr[X=n] = \frac{\lambda^n}{n!}e^{-\lambda}, n > 0;$

- ▶ Bern(p) : Pr[X = 1] = p;
- E[X] = p;
- Var[X] = p(1-p):
- \triangleright B(n,p): $Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, m = 0, ..., n;$
- E[X] = np:
- Var[X] = np(1-p):
- $E[X] = \frac{n+1}{2}$;
- $Var[X] = \frac{n^2-1}{12}$;

 $E[X] = \frac{1}{n};$

 $E[X] = \lambda$; $Var[X] = \lambda$.

 $Var[X] = \frac{1-p}{r^2};$

- ► $U[1,...,n]: Pr[X=m] = \frac{1}{n}, m=1,...,n;$

• $G(p): Pr[X = n] = (1-p)^{n-1}p, n = 1, 2, ...$

 $ightharpoonup P(\lambda): Pr[X=n] = \frac{\lambda^n}{n!}e^{-\lambda}, n > 0;$

Today's gig: Two envelopes problem.

Today's gig: Two envelopes problem.

Gigs so far:

- 1. How to tell random from human.
- 2. Monty Hall.
- 3. Birthday Paradox.
- 4. St. Petersburg paradox.
- 5. Simpson's paradox.

Today:

Today's gig: Two envelopes problem.

Gigs so far:

- 1. How to tell random from human.
- 2. Monty Hall.
- 3. Birthday Paradox.
- 4. St. Petersburg paradox.
- 5. Simpson's paradox.

Today: Two envelopes problem.

Summary

Random Variables

Summary

Random Variables

- Variance.
- Distributions.