Практикум 2.1. Интегрирование

Цель работы — научиться использовать средства пакета Anaconda для символьного вычисления неопределенного и определенного интегралов, усвоить понятие интегральных сумм и сумм Дарбу.

Продолжительность работы - 2 часа.

Оборудование, приборы, инструментарий – работа выполняется в компьютерном классе с использованием пакета Anaconda.

Порядок выполнения

- 1. Упражнения выполняются параллельно с изучением теоретического материала.
- 2. После выполнения каждого упражнения результаты заносятся в отчёт.
- 3. При выполнении упражнений в случае появления сообщения об ошибке рекомендуется сначала самостоятельно выяснить, чем оно вызвано, и исправить команду; если многократные попытки устранить ошибку не привели к успеху, то проконсультироваться с преподавателем.
- 4. Дома доделать упражнения из раздела «Краткие теоретические сведения и практические упражнения», которые Вы не успели выполнить во время аудиторного занятия.
- 5. После выполнения упражнений выполнить дополнительные упражнения для самостоятельной работы и ответить на контрольные вопросы и (см. ниже).
- 6. Подготовить отчёт, в который включить упражнения из раздела «Краткие теоретические сведения и практические упражнения», упражнения для самостоятельной работы, индивидуальные задания. Отчёт представить в виде документа Microsoft Word, имя файла (пример): mp_10_Ivanov_P_01_s_1 (факультет_группа_Фамилия студента_Инициал_номер лабораторной, семестр). Отчет должен содержать по каждому выполненному упражнению: № упражнения, текст упражнения; команды, скопированные из командного окна, с комментариями к ним и результаты их выполнения, включая построенные графики; тексты функций; выводы.

Краткие теоретические сведения

и практические упражнения

1. Символьное вычисление неопределённого интеграла. Неопределённые интегралы от символических функций вычисляются с помощью **int**, входными аргументами указываются символическая функция и переменная, по которой ведётся интегрирование.

Пример 1.

```
from sympy import *
x = Symbol('x')
I = integrate(x**3*exp(x),x)
pprint(I)
```

Упражнение 1. Вычислить неопределённые интегралы:

a)
$$\int x \sin 5x \, dx$$
 6) $\int \frac{dx}{(x^2+1)(x-2)^2}$.

2. Символьное вычисление определённого интеграла. При вычислении определённого интеграла в символьном виде следует задать значения нижнего и верхнего предела: integrate(f,(x,a,b)).

Упражнение 2. Вычислить определённые интегралы в символьном виде:

a)
$$\int_{-1}^{1} \sqrt{1-x^2} dx$$
; 6) $\int_{0}^{1} xe^{3x} dx$.

3. Интегральные суммы и суммы Дарбу.

Упражнение 3. Создать функции, вычисляющие значения интегральных сумм на отрезке [a;b] при равномерном разбиении его на n отрезков и выбором точек на (использовать пакеты numpy и scipy):

- а) левых концах отрезков разбиения;
- б) правых концах отрезков разбиения.

Проверить работу функций, сопоставив результат выполнения программы и результат, полученный вручную, для интегральных сумм функции f(x) = x на отрезке [1;2] при разбиении его на четыре равных части.

Упражнение 4. Создать функции, вычисляющие значения верхних и нижних сумм Дарбу на отрезке [a;b] при равномерном разбиении его на n отрезков. Проверить работу функций, сопоставив результат выполнения программы и ре-

зультат, полученный вручную, для сумм Дарбу функции f(x) = x на отрезке [1;2] при разбиении его на четыре равных части.

Упражнение 5. Используя функции упр. 3 и 4, вычислить интегральные суммы и суммы Дарбу для $f(x) = e^{-x^2}$ на отрезке [1;2] при n = 1000.

4. Численное интегрирование. Функция integrate.simpson(f,x) из пакета scipy вычисляет значения определенного интеграла по формуле Симпсона для значений функции f, соответсвующих аргументам x.

```
import scipy.integrate as integrate
import numpy as np
x = np.linspace(-1,2,1000)#
integrate.simpson(np.sin(x),x)
```

Упражнение 6. Вычислить $\int\limits_{1}^{2}e^{-x^{2}}$, используя функцию integrate.simpson.

Сравнить результат с результатами упражнения 5, вычислив разности между численным значением интеграла, полученным по формуле Симпсона (взяв разбиение на 100 интервалов и на 1000), и значениями интегральных сумм и сумм Дарбу.

Задания для самостоятельной работы

- **1.** Выполнить упражнения из раздела «Краткие теоретические сведения и практические упражнения», которые не успели сделать в аудитории.
- 2. Ответить на контрольные вопросы:
- 1) Почему при символьном вычислении неопределенного интеграла от функции с действительной областью определения и действительным множеством значений результат может содержать комплексные числа?
- 2) Что представляет собой с геометрической точки зрения интегральная сумма?, нижняя сумма Дарбу?, верхняя сумма Дарбу?
- 3) Предположим, что нам неизвестно аналитическое задание функции f(x), но известно, что f(x) непрерывна на [a,b], и известны наименьшие и наибольшие значения f(x) на каждом из 100 отрезков равномерного разбиения отрезка [a,b]. Как нам оценить значения $\int_a^b f(x) dx$? Можем мы ли

мы найти приближенное значение интеграла с помощью функции integrate.simpson?

3. Самостоятельно выполнить упражнения:

Упражнение С1. Вычислить интеграл $\int \frac{dx}{\sqrt{x^2 + 2x + 3}}$:

- а) используя средства python;
- б) без использования python.

Сопоставить и объяснить результаты.

Упражнение С2. Вычислить определённый интеграл $\int_{0}^{\frac{\pi}{2}} x \cos x^{2} dx$, используя символьное вычисление python.

Упражнение С3. Создать функцию, вычисляющую значения интегральных сумм на отрезке [a;b] при равномерном разбиении его на n отрезков и выбором точек, делящих отрезки разбиения в произвольном заданном отношении λ .

Проверить работу функции, сопоставив результат выполнения программы и результат, полученный вручную, для интегральных сумм функции f(x) = x на отрезке [1;2] при разбиении его на четыре равных части и выбором точек, делящих отрезки разбиения пополам.

Индивидуальные задания

Задание 1. Вычислить значения интегральных сумм функции f(x) на отрезке [a;b] при его разбиении на n равных частей и выборе в качестве ξ_k точек, делящих отрезки разбиения в указанном отношении λ . Рассмотреть n=2,4,8,16,...,1024. Результаты представить в виде таблицы.

Сравнить результаты со значением определенного интеграла, полученным аналитически.

Задание 2. Оценить значение $\int_a^b f(x)dx$ с помощью сумм Дарбу при разбиении отрезка на n равных частей. Рассмотреть n=2,4,8,16,...,1024. Полученными результатами дополнить таблицу из задания 1.

Общие рекомендации к выполнению заданий: написанный при выполнении каждого задания m-файл протестировать, сопоставив для n=4 результаты выполнения программ с расчетами, проделанными «вручную».

Варианты выполнения заданий:

Номер ком-	f(x)	а	b	λ
пьютера				
1.	$-x^2$	-4	2	1/2
2.	$-x^3$	-2	4	1/2
3.	$ \begin{array}{r} 2x^2 \\ 2x^3 \\ x^2 + 1 \end{array} $	-4	-2	1
4.	$2x^3$	-3	1	1/3
5.	$x^{2} + 1$	-3 -3	5	1/3
6.	$x^{3} + 1$	-3	-1	1
7.	$2x^{2}-1$	-4	2	1/2
8.	$2x^{3}-1$	-2	4	1/2
9.	$-x^{2}+1$	-4	-2	1
10.	$ \begin{array}{r} x^{3} + 1 \\ 2x^{2} - 1 \\ 2x^{3} - 1 \\ -x^{2} + 1 \\ -x^{3} + 1 \end{array} $	-3	1	1/3
11.	$-2x^{2}-1$	-3	5	1/3
12.	$-2x^{3}-1$	-3	-1	1
13.	$x^{2}-1$	-4	2	1/2
14.	$ \begin{array}{r} -2x^{2} - 1 \\ -2x^{3} - 1 \\ \hline x^{2} - 1 \\ x^{3} - 1 \end{array} $	-2	4	1/2
15.	$ 2x^{2} + 1 $ $ 2x^{3} + 1 $ $ x^{2} + 1 $	-4	-2	1
16.	$2x^{3}+1$	-3	1	1/3
17.	$x^{2} + 1$	-3	5	1/3
18.	$x^{3}+1$ $2x^{2}-1$	-3	-1	1
19.	$2x^{2}-1$	-4	2	1/2
20.	$2x^{3}-1$	-2	4	1/2
21.	$-x^{2}+1$ $-x^{3}+1$	-4	-2	1
22.	$-x^{3}+1$	-3	1	1/3
23.	$-2x^{2}-1$	-3	5	1/3
24.	$-2x^{3}-1$	-3	-1	1
25.	$x^{2}-1$	-4	2	1/2
26.	$x^{3}-1$	-2	4	1/2
27.	$2x^{2}+1$	-4	-2	1
28.	$2x^{3}+1$	-3	1	1/3
l .			1	

Список рекомендуемой литературы

1. Сборник задач по математике для втузов под ред. А.В.Ефимова и А.С.Поспелова, часть 2, М.2002, - 5.5.