Data Science Practice

STATS 369 Coursebook: Week 1

Plan for this week

• [L01] Introduction

- Course logistics
- Course overview
- (Quick) introduction to R

• [L02] Reproducibility

- Reproducible data analysis
- o (r)markdown
- Examples

• [L03] Package {tidyverse}

- Tidy data (or not)
- o {tidyverse} operations

STATS369 2 / 49

Course logistics

Lectures

Instructors

Weeks 1 to 6

Liza Bolton liza.bolton@auckland.ac.nz

Time & Location

P BIO100

Wed, 4 to 5 PM Thurs, 1 to 2 PM Fri, 10 to 11 AM

Weeks 7 to 12

Lisa Chen lisa.chen@auckland.ac.nz

We use two textbooks in this course. Both are available as free e-book version.

- *R for Data Science* by Grolemund and Wickham (note: there is now a second edition, but the first edition is what our references are to, currently)
- An Introduction to Statistical Learning (2nd Edition), by James, Witten, Hstie, and Tibshirani

STATS369 4 / 49

Labs

<u>Time & Location</u> 9 302.190

Fri, 12 to 1 PM Fri, 1 to 2 PM Fri, 2 to 3 PM

Choose one time to attend. Liza will not be available at the 1 to 2 PM lab, but there will be a tutor. Attendance is not required but is highly recommended. Labs will not be recorded.

There will be **10** labs, starting from **week 1** (this Friday).

Structure

Each lab has hand-on exercise; and it is to be **handed** in **electronically** a week after it is given out. Labs are mainly based on the previous week's lecture.

STATS369 5 / 49

Assessments

- 10 labs, worth a total of 6% (graded on 'reasonable attempt' basis) 6%
- Assignments **24%** (4 * 6% each)
- Midterm test (25 August, in-person) **20%**
- Final exam (Set by Exams Office, in-person) **50%**

Restricted book

Both your test and exam will be 'restricted book'. This means you can bring a single A4 sheet (you can write on both sides) with any notes you would like to bring in with you.

STATS369 6 / 49

Overview of the course

Course overview

- Introduction
- Data manipulation and visualisation (in R)
 - tidy data concept
 - o {tidyverse}
 - o {ggplot2}
- Modelling (in R)
 - regression
 - trees
 - neural networks
- Ethics
- Review

Image Sourced from the 'R for Data Science' book

STATS369 8 / 49

Introduction to R

Why R?

Currently, there are two major languages (commonly) used in data science: R and Python

- We used R in this course, but you really should learn both (use the right tool for the right job).
- R is easier, but might be slower.
- Python is a more general programming language.
- R has better packages with new/common statistical toolkits.

STATS369 10 / 49

Why people PR (optional)

Here are some videos from University of Toronto faculty & students about why they love using R. (I used to teach there, and you'll notice a lot of Southern Hemisphere accents for a Canadian Uni! (9)

STATS369 11 / 49

Why people PR (continued)

STATS369 12 / 49

RStudio

Data analysis IDE built on top of (mainly) R. FYI -- the current version also supports SQL, Python etc.

Supports rmarkdown for reproducible data analysis.

Uses a feature called *Projects* (.RProj) which makes directory management easier.

Introduction to R

Undergraduate student-developed modules from the University of Toronto

STATS369 13 / 49

Lecture 2

STATS369 14 / 49

Plan for this week

• [L01] Introduction

- Course logistics
- Course overview
- (Quick) introduction to R

• [L02] Reproducibility

- Reproducible data analysis
- o (r)markdown
- Examples

• [L03] Package {tidyverse}

- Tidy data (or not)
- o {tidyverse} operations

STATS369 15 / 49

Reproducible Data Analysis

Why do we need reproducibility?

Any data analysis work or report is likely to be rerun -- especially out in the real world!

- your boss has new problem
- your data set gets updated (possibly by your colleagues)
- review or QA may want a (slightly) different analysis
- revisit of the past work (e.g. re-do data cleaning)

We need tools and means for re-doing and updating data analyses *easily* and *reliably*.

STATS369 17 / 49

Version control

It is important! Especially when you are collaborating with others in a (large) project.

- you want to keep track of the work you (and/or your colleagues) have done
- you want to be able to 'revert' back to older version when you can/need to
- you want an easy way to explore ideas without affecting the current (stable) work progress.

Git

All data scientists should learn and use Git in their day-to-day work.

Here is a useful page to get you started.

STATS369 18 / 49

(r)markdown

Markdown

A simple text markup language that allows the conversion to many output formats (the original output format is HTML).

- *italics* italics
- **bold** bold
- ~~strikeout~~ strikeout
- mathematical formulas e.g. E = mc^2,

$$E=mc^2$$

rmarkdown

rmarkdown is an extension that supports R code chunks to be embedded and run, and output to be rendered as part of the report.

A quick tour

rmarkdown quick tour by RStudio

STATS369 21 / 49

Lecture 3

STATS369 22 / 49

Plan for this week

- [L01] Introduction 👍
 - Course logistics
 - Course overview
 - (Quick) introduction to R
- [L02] Reproducibility 👍
 - o Reproducible data analysis
 - o (r)markdown
 - Examples
- [L03] Package {tidyverse}
 - Tidy data (or not)
 - Common data operations using {tidyverse}

STATS369 23 / 49

Tidy Data (or not)

Tidy data

A dataset is a collection of **values**, which is recorded by:

- a variable (or attribute, or feature); and
- an *observation* (or *record*)

Variables contains all values that measure the same attribute (e.g., height, weight) across units (e.g., a group of people).

An **observation** contains all values measured on a same unit (e.g., a person).

Tidy data has one row per observation and one column per variable, and one table per type of observational unit.

STATS369 25 / 49

In the real world ...

Data is often **NOT** tidy.

Tidy data is natural for **computing**, but it may or may not be *human friendly*. It is often useful to split a variable across columns to simplify comparisons.

If your data source is a human-readable tables, it may need tidying.

STATS369 26 / 49

alarm_id	d.2023.05.17	d.2023.05.18	d.2023.05.19	d.2023.05.20	d.2023.05.21	d.2023.05.22
alarms_N	322	548	199	40	513	664
alarms_O	253	342	577	668	309	575
alarms_Y	53	138	525	132	703	281
alarms_D	185	671	114	259	32	55
alarms_X	555	155	741	694	358	272
alarms_H	1	40	337	390	302	479
alarms_G	473	75	698	614	418	278
alarms_V	456	458	738	52	675	608
alarms_J	650	64	240	302	518	305
alarms_S	563	398	562	154	95	451

STATS369 27 / 49

alarm_ID alarms_region

alarms_N AKL_North

alarms_O AKL_Central

alarms_Y Waiheke

alarms_D AKL_South

alarms_X AKL_Others

alarms_H AKL_North

alarms_G AKL_Central

alarms_V Waiheke

alarms_J AKL_South

alarms_S AKL_Others

STATS369 28 / 49

(Potential) questions of interest

- What is the total number of alarms per region each day?
- Assuming that an alarm that occurs over 400 times/day is highly frequent, what is the proportion of highly frequent alarms in each region per day?
- What is the average number of alarms per day in each region?
- Which days of the week has the highest and the lowest average number of alarms across Auckland?

STATS369 29 / 49

Common data operations using {tidyverse}

{tidyverse} package

{tidyverse} is An opinionated collection of R packages designed for data science

Pro:

- Good abstractions for data management and summarising
- Database interfaces for larger datasets
- Some operations are optimised (i.e., faster)
- Consistent syntax and design
- Trendy

Con:

- Not so good for modelling (yet)
- Might be a pain to use in programming

install.packages("tidyverse")

STATS369 31 / 49

Common operations

- reshaping: pivot_wider, pivot_longer...
- subsetting and addition: select, filter, mutate...
- joining: left_join, right_join...
- grouping: group_by, summarise...

STATS369 32 / 49

Reshaping

pivot_longer function can *gather* columns into rows; pivot_wider function does the opposite -- it *spreads* rows into columns. (Note, both gather are spread functions were retired and replaced by pivot_longer and pivot_wider respectively)

knitr::kable(head(alarms_count.df[,1:7]))

alarm_id	d.2023.05.17	d.2023.05.18	d.2023.05.19	d.2023.05.20	d.2023.05.21	d.2023.05.22
alarms_N	322	548	199	40	513	664
alarms_O	253	342	577	668	309	575
alarms_Y	53	138	525	132	703	281
alarms_D	185	671	114	259	32	55
alarms_X	555	155	741	694	358	272
alarms_H	1	40	337	390	302	479

STATS369 33 / 49

alarms_count_long.df <- alarms_count.df %>%
 gather('date', 'frequency', -alarm_id)
knitr::kable(head(alarms_count_long.df))

alarm_id	date	frequency
alarms_N	d.2023.05.17	322
alarms_O	d.2023.05.17	253
alarms_Y	d.2023.05.17	53
alarms_D	d.2023.05.17	185
alarms_X	d.2023.05.17	555
alarms_H	d.2023.05.17	1

STATS369 34 / 49

Piping operator

%>% is called a piping operator. It takes the left-side object as the *first* argument (or . argument) for the right-hand side function. E.g.

```
x %>% myFun(y) is the same as myFun(x, y) x %>% myFun(y, ., z) is the same as myFun(y, x, z)
```

Piping makes the code more readable, especially for data wrangling tasks (examples to come).

STATS369 35 / 49

Reshaping (Cont.)

separate separates one column into multiple columns; unite does the opposite -- it units multiple columns into one.

knitr::kable(head(alarms_count_long.df))

alarm_id	date	frequency
alarms_N	d.2023.05.17	322
alarms_O	d.2023.05.17	253
alarms_Y	d.2023.05.17	53
alarms_D	d.2023.05.17	185
alarms_X	d.2023.05.17	555
alarms_H	d.2023.05.17	1

STATS369 36 / 49


```
alarms_count_long.df <- alarms_count_long.df %>%
  separate(date, c('prefix', 'year', 'month', 'day'))
knitr::kable(head(alarms_count_long.df))
```

alarm_id	prefix	year	month	day	frequency
alarms_N	d	2023	05	17	322
alarms_O	d	2023	05	17	253
alarms_Y	d	2023	05	17	53
alarms_D	d	2023	05	17	185
alarms_X	d	2023	05	17	555
alarms_H	d	2023	05	17	1

STATS369 37 / 49

Subsetting and adding columns

select subsets columns from a dataset; filter subsets rows from a dataset. mutate generates new columns (often based on existing columns).

```
alarms_count_sa.df <- alarms_count_long.df %>%
   select(-prefix) %>% # remove 'prefix'
   mutate(category = if_else(frequency >= 400, 'High', 'Low')) # add 'category'
knitr::kable(head(alarms_count_sa.df))
```

alarm_id	year	month	day	frequency	category
alarms_N	2023	05	17	322	Low
alarms_O	2023	05	17	253	Low
alarms_Y	2023	05	17	53	Low
alarms_D	2023	05	17	185	Low
alarms_X	2023	05	17	555	High
alarms_H	2023	05	17	1	Low

STATS369 38 / 49

Joining

The joining in tidyverse is very similar to joins in SQL. i.e.

STATS369 39 / 49

```
names(alarms_count_sa.df)

## [1] "alarm_id" "year" "month" "day" "frequency" "category"

names(alarms_info.df)

## [1] "alarm_ID" "alarms_region"

alarms_merged.df <- alarms_count_sa.df %>%
```

left_join(alarms_info.df, by = c('alarm_id' = 'alarm_ID'))

STATS369 40 / 49

alarm_id	year	month	day	frequency	category	alarms_region
alarms_N	2023	05	17	322	Low	AKL_North
alarms_O	2023	05	17	253	Low	AKL_Central
alarms_Y	2023	05	17	53	Low	Waiheke
alarms_D	2023	05	17	185	Low	AKL_South
alarms_X	2023	05	17	555	High	AKL_Others
alarms_H	2023	05	17	1	Low	AKL_North

STATS369 41 / 49

Summarising

group_by groups the dataset into chunks, summarise performs a summary that we specify (e.g., mean, median, max, min) within the chunk.

STATS369 42 / 49

year	month	day	alarms_region	total	percent_high
2023	05	17	AKL_Central	726	50
2023	05	17	AKL_North	323	0
2023	05	17	AKL_Others	1118	100
2023	05	17	AKL_South	835	50
2023	05	17	Waiheke	509	50
2023	05	18	AKL_Central	417	0

STATS369 43 / 49

Questions of interest -- revisit

We have answered the following two questions.

- What is the total number of alarms per region each day?
- Assuming that an alarm that occurs over 400 times/day is highly frequent, what is the proportion of highly frequent alarms in each region per day?
- What is the average number of alarms per day in each region?
- Which days of the week has the highest and the lowest average number of alarms across Auckland?

STATS369 44 / 49

Raw data -- revisit

knitr::kable(alarms_count.df[,1:7])

alarm_id	d.2023.05.17	d.2023.05.18	d.2023.05.19	d.2023.05.20	d.2023.05.21	d.2023.05.22
alarms_N	322	548	199	40	513	664
alarms_O	253	342	577	668	309	575
alarms_Y	53	138	525	132	703	281
alarms_D	185	671	114	259	32	55
alarms_X	555	155	741	694	358	272
alarms_H	1	40	337	390	302	479
alarms_G	473	75	698	614	418	278
alarms_V	456	458	738	52	675	608
alarms_J	650	64	240	302	518	305
alarms_S	563	398	562	154	95	451

STATS369 45 / 49

alarm_ID alarms_region

alarms_N AKL_North

alarms_O AKL_Central

alarms_Y Waiheke

alarms_D AKL_South

alarms_X AKL_Others

alarms_H AKL_North

STATS369 46 / 49

Code -- putting everything together

STATS369 47 / 49

year	month	day	alarms_region	total	percent_high
2023	05	17	AKL_Central	726	50
2023	05	17	AKL_North	323	0
2023	05	17	AKL_Others	1118	100
2023	05	17	AKL_South	835	50
2023	05	17	Waiheke	509	50
2023	05	18	AKL_Central	417	0

STATS369 48 / 49

Resources

- rmarkdown cheatsheet (or this more screen reader friendly version)
- dpylr cheatsheet (or this more screen reader friendly version)
 - tidyr cheatsheet (or the more screen reader friendly version)

Note: Translated versions of these cheatsheets are available in Chinese for dplyr and tidyr. Several of the cheatsheets are available in additional languages, as well.

STATS369 49 / 49