Digital Signal Processing for Music

Part 19: Modulated Effects

Andrew Beck

Introduction

- >> Modulated effects belong to one of the oldest class of audio effects
- >> Often used for guitar
- >> Examples:
 - >> Delay-Line Modulation
 - >> Vibrato
 - >> Chorus, Flanger
 - >> Other
 - >> Phaser
 - >> Wah-Wah

Delay Line

Implementation

Ring Buffer

- >> Idea
 - >> Do not move buffer contents
 - >> Instead, increment write and read positions
- >> Implementation
 - $\blacktriangleright \blacktriangleright$ Buffer length $L: L \geq M$
 - >> Store current write index n_w and read index n_r
- ightharpoonup For a simple delay $(n_w-n_r) mod L = M$

Modulated Delay Line

$$n.\,frac = M + A \cdot (2\pi rac{f_{mod}}{f_s}i)$$

- \longrightarrow M: Static delay in samples
- \Rightarrow A: Modulation amplitude in samples
- $ightharpoonup for five <math>f_{mod}$: Modulation frequency in Hertz
- >> sin: Oscillator function

Fractional indexing

Linear Interpolation Examples

Vibrato

- $\rightarrow M = any$
- \Rightarrow A = 200 samples
- $f_{mod} = 1 \text{ Hz}$

Slapback

$$\Rightarrow f_{mod} = 0$$

$$\Rightarrow A = 0$$

>>
$$M = 20 \text{ ms}$$

>>
$$BL = 0.7$$

>>
$$FF = 0.7$$

Simple echo

$$\Rightarrow f_{mod} = 0$$

$$\Rightarrow A = 0$$

>>
$$M = 50 \text{ ms}$$

>>
$$BL = 0.7$$

>>
$$FF = 0.7$$

Simple Flanger

>>
$$f_{mod} = 0.2 \text{ Hz}$$

$$\Rightarrow$$
 $A = 2 \text{ ms}$

$$\rightarrow M = 0$$

>>
$$BL = 0.7$$

>>
$$FF = 0.7$$

Slapback

- >> $f_{mod} = 1.5 \text{ Hz}$
- \Rightarrow A = 2 ms
- $\rightarrow M = 2 \text{ ms}$
- >> BL = 1.0
- >> FF = 0.7

Modulated Effect with Feedback Path

Modulated Effect with Feedback Path

Simple Flanger with Feedback

Modulated Effect with Feedback Path

Simple Flanger with Feedback

Chorus: Implementation Variant

Modulated Effects: Typical Variants

- >> Add lowpass / transfer function to feedback path
- >> Use stereo feedback

Modulated Effects: Modulation Signal

- >> Shape
 - >> Low frequency
 - >> Sinusoidal (typically) or noise (low pass filtered)
- >> Phase
 - >> Phase response becomes perceptually relevant when
 - >> 2 or more signals are added
 - >> Phase is time-variant
 - >> Phase shift between channels (localization)

Modulated Effects: Phaser

- >> Sounds similar to delay line effects
- >> but: different implementation
- >> Notch Filters

All-pass Filters

▶ 0:00 / 0:20 **→**

Modulated Effects: Wah-Wah

- >> 'Modulated' by pedal
- >> Often a biquad implementation
- >> Not really a bandpass
 - >>> Changes shape depending on frequency (resonant at low freqs, broad at high freqs)

Summary

- >> Most modulated effects are based on **delay lines**:
 - >> Input signal is added to a delayed version of itself
 - >> Delay time is modulated
- >> Modulation is at very low frequencies (or manually controlled)
 - >> Often sinusoidal
- >> Filters can also be used to create wanted phasing artifacts
 - >> All-pass and notch filters for phaser
 - >>> Band-pass for wah-wah