解析入門 解答

itleigns

2019年8月14日

第1章実数と連続

§1 実数

問 1(i)

 $a,b \in K$ が両方 (R3) を満たす 0 であると仮定する.

a が (R3) を満たす 0 なので b+a=b

b も (R3) を満たす 0 なので a+b=a

また (R1) より a+b=b+a

以上より a = b で (R3) を満たす 0 は唯一

(ii)

 $a \in K$ に対し $b, c \in K$ を両方 (R4) を満たす -a であると仮定する.

a+b=0 より (R3) と合わせ c+(a+b)=c+0=c

また a+c=0

(R1) より a+c=c+a なので c+a=0

より

$$b = b + 0 \ (\because (R3))$$

$$= 0 + b \ (\because (R1))$$

$$= (c + a) + b$$

$$= c + (a + b) \ (\because (R2))$$

$$= c$$

つまり (R4) を満たす -a は唯一

(iii)

 $a \in K$ に対し (R4) より a + (-a) = 0

(R1) $\sharp \mathcal{V}(-a) + a = a + (-a) \, \mathfrak{T}(-a) + a = 0 \, \mathfrak{E}.$

より (ii) から -(-a) = a

(iv)

* 注意

 $a \in K$ がある $b \in K$ に対して b + a = b なら a = 0 だ.

なぜなら

以下これは暗黙の了解として使う.

 $a \in K$ に対し

より 0a = 0

(v)

 $a \in K$ に対し

$$a + (-1)a = a1 + (-1)a \ (\because (R8) \ \& \ ^{i}) \ a = a1)$$

$$= 1a + (-1)a \ (\because (R5) \ \& \ ^{i}) \ a1 = 1a)$$

$$= (1 + (-1))a \ (\because (R7))$$

$$= 0a \ (\because (R4) \ \& \ ^{i}) \ 1 + (-1) = 0)$$

$$= 0 \ (\because (iv))$$

より (ii) から (以下 (ii) も暗黙の了解として使う)(-1)a = -a (vi)

$$(-1)(-1) = -(-1) \ (\because (v))$$
$$= 1 \ (\because (iii))$$

(vii)

より a(-b) = -ab

より (-a)b = -ab (viii)

(ix)

 $b \neq 0$ と仮定する. b^{-1} が存在し $bb^{-1} = 1$.

このとき

$$a = a1 \ (\because (R8))$$

$$= a(bb^{-1}) \ (\because bb^{-1} = 1)$$

$$= ab(b^{-1}) \ (\because (R6))$$

$$= 0b^{-1}$$

$$= 0 \ (\because (iv))$$

つまり a=0 または b=0

(x)

$$(-a)(-(a^{-1})) = aa^{-1} (\because (viii))$$
$$= 1 (\because (R9))$$

(ii) と同様に (R9) を満たす a^{-1} は各 $a\in K, a\neq 0$ に対し唯一なので (以下これは暗黙の了解として使う). $(-a)^{-1}=-(a^{-1})$ (xi)

$$(ab)(b^{-1}a^{-1}) = ((ab)b^{-1})a^{-1} \ (\because (R6))$$

$$= (a(bb^{-1}))a^{-1} \ (\because (R6) \ \sharp \ ^{\flat}) \ (ab)b^{-1} = a(bb^{-1}))$$

$$= (a1)a^{-1} \ (\because (R9) \ \sharp \ ^{\flat}) \ bb^{-1} = 1)$$

$$= aa^{-1} \ (\because (R8) \ \sharp \ ^{\flat}) \ a1 = a)$$

$$= 1 \ (\because (R9))$$

より
$$(ab)^{-1} = b^{-1}a^{-1}$$
 問 $2(i)$ ⇒ $a \le b \ge (R15)$ より $a + (-a) \le b + (-a)$ より $0 \le b - a$ \Leftrightarrow $0 \le b - a \ge (R15)$ より $0 + a \le (b - a) + a$ より $a \le b$ (ii) (i) より $a \le b \Leftrightarrow 0 \le b - a$ きらに (i) より $-b \le -a \Leftrightarrow 0 \le -a - (-b)$ 以上より $-a - (-b) = b - a \ge a \ge b \Rightarrow -b \le -a$ (iii) (i) と $a \le b \implies b \Rightarrow a \ge 0$ (i) と $a \le b \implies b \Rightarrow a \ge 0$ (i) と $a \le b \implies b \Rightarrow a \ge 0$ (i) と $a \le b \implies b \Rightarrow a \ge 0$ (ii) と $a \le b \implies b \Rightarrow a \ge 0$ (ii) と $a \le b \implies b \Rightarrow a \ge 0$ (iv) $a^{-1} \le 0 \implies b \Rightarrow a \ge 0$ (iv) $a^{-1} \le 0 \implies b \Rightarrow a \ge 0 \implies b \Rightarrow a \ge 0$ (iv) $a^{-1} \ge 0 \implies a \ge 0 \implies b \implies a \ge 0 \implies$

§2 実数列の極限

以上より a+c < b+d

1)(i)

N > |a| となる $N \in \mathbb{N}$ が存在.

c < d に矛盾し背理法から $a + c \neq b + d$

n > N のとき $|a_n| = |a_{n-1}| \frac{|a|}{n}, \frac{|a|}{n} < 1$ で

 $|a_n| < |a_{n-1}|$

これを繰り返し用いると $n \ge N$ で

$$|a_n| \le |a_N|$$

 $\epsilon > 0$ に対し $n \ge \max(N+1, \frac{|aa_N|}{\epsilon} + 1)$ とすると

$$|a_n| = |a_{n-1}| \frac{|a|}{n}$$

$$\leq \frac{|aa_N|}{n}$$

$$< \epsilon$$

より

$$a_n \to 0 \ (n \to \infty)$$

(ii)

 $\epsilon > 0$ に対し $\epsilon' = min(1, \epsilon)$ とする.

 $0 \le 1-\epsilon' < 1$ なので例 6 より $\lim_{n \to \infty} (1-\epsilon')^n = 0$ より a>0 より $N \in \mathbb{N}$ が存在し

$$n \ge N \Rightarrow (1 - \epsilon')^n < a$$

より $n \ge N$ のとき $-\epsilon \le -\epsilon' < \sqrt[n]{a} - 1$

また二項定理より $n \ge 1$ で

$$(1+\epsilon)^n = \sum_{k=0}^n {}_n C_k \epsilon^k > n\epsilon$$

 $M > \frac{a}{\epsilon}$ を満たすように $M \in \mathbb{N}$ を取ると

 $n \geq M$ \mathcal{C}

$$a < n\epsilon < (1+\epsilon)^n$$

より $\sqrt[n]{a} - 1 < \epsilon$

 $n \ge \max(N, M)$ のとき $|\sqrt[n]{a} - 1| < \epsilon$ で

$$a_n \to 1 \ (n \to \infty)$$

 $k=2,\cdots,n$ で $\frac{k}{n}\leqq 1$ なので辺々掛け合わせて

$$\frac{n!}{n^{n-1}} \le 1$$

より $0 < a_n \le \frac{1}{n}$ また $\lim_{n \to \infty} \frac{1}{n} = 0$ なのではさみうちの原理から

$$a_n \to 0 \ (n \to \infty)$$

(iv)

二項定理より $n \ge 2$ で

$$2^n = \sum_{k=0}^n {}_n C_k > \frac{n(n-1)}{2}$$

より
$$0 < a_n < rac{2}{n-1}$$

また $\lim_{n o \infty} rac{2}{n-1} = 0$ なのではさみうちの原理から

$$a_n \to 0 \ (n \to \infty)$$

(v)

 $\epsilon>0$ に対し $N>\frac{1}{\epsilon^2}$ となる $N\in\mathbb{N}$ が存在.

 $n \ge N$ \mathcal{C}

$$a_n = \frac{1}{\sqrt{n+1} + \sqrt{n}} < \frac{1}{\sqrt{n}} < \epsilon$$

 $a_n > 0$ も合わせて $n \ge N$ で $|a_n| < \epsilon$ なので

$$a_n \to 0 \ (n \to \infty)$$

2)

 $-1 \leq \cos(n!\pi x) \leq 1 \, \text{\r{E}}.$

 $\cos(n!\pi x) = \pm 1$ のとき $(\cos(n!\pi x))^{2m} = 1$ なので $\lim_{m \to \infty} (\cos(n!\pi x))^{2m} = 1$

 $-1 < \cos(n!\pi x) < 1$ のとき $0 \le (\cos(n!\pi x))^2 < 1$ なので例 6 より $\lim_{m \to \infty} (\cos(n!\pi x))^{2m} = 0$ $\cos(n!\pi x) = \pm 1 \Leftrightarrow n!x \in \mathbb{Z} \not \epsilon.$

x が有理数のとき $x = \frac{p}{q}, q \in \mathbb{N}, p \in \mathbb{Z}$ とおけ $n \ge q$ のとき

$$n!x = n \cdots (q+1) \cdot (q-1) \cdots 1 \cdot p \in \mathbb{Z}$$

x が無理数のとき

n!x が整数と仮定する.

 $x = \frac{n!x}{n!}$ で分母と分子が整数なのでx が有理数となり矛盾.

より n!x は整数でなく $\lim_{m\to\infty} (\cos(n!\pi x))^{2m} = 0$

 $\sharp \, \mathcal{V} \lim_{n \to \infty} \left(\lim_{m \to \infty} \left(\cos(n!\pi x) \right)^{2m} \right) = 0$

以上より

$$f(x) = \begin{cases} 1 & x が有理数 \\ 0 & x が無理数 \end{cases}$$

 $\epsilon > 0$ とする.

 $\lim_{n\to\infty}a_n=a$ なので $n\geq N'$ なら $|a_n-a|<rac{\epsilon}{2}$ となる $N'\in\mathbb{N}$ が存在.

N = max(1, N') とする.

 $n \ge \max(N, \frac{2}{\epsilon} |\sum_{k=1}^{N-1} (a_k - a)|)$ のとき

$$\left| \frac{1}{n} \sum_{k=1}^{n} a_k - a \right| \le \frac{1}{n} \left| \sum_{k=1}^{N-1} (a_k - a) \right| + \frac{1}{n} \sum_{k=N}^{n} |a_k - a| < \frac{\epsilon}{2} + \frac{n - N + 1}{2n} \epsilon < \epsilon$$

$$\sharp i) \lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n} = a$$

$$a_k \neq 0$$
 なので $a_n = a_1 \cdot \frac{a_2}{a_1} \cdot \frac{a_3}{a_2} \cdots \frac{a_n}{a_{n-1}}$

より
$$a_k > 0$$
 に注意し $\log a_n = \log a_1 + \log \frac{a_2}{a_1} + \log \frac{a_3}{a_2} + \dots + \log \frac{a_n}{a_{n-1}}$

 $n \in \mathbb{N}$ に対し $a_n > 0$ なので $b_n = \log \frac{a_{n+1}}{a_n}$ とおける.

$$\log \sqrt[n]{a_n} = \frac{b_1 + b_2 + \dots + b_n}{n} - \frac{b_n}{n} + \frac{\log a_1}{n}$$

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = a$$
 と $\log x$ が連続なので $\lim_{n \to \infty} b_n = \log a$

より
$$3$$
) より $\lim_{n\to\infty} \frac{b_1+b_2+\cdots+b_n}{n} = \log a$ また $n \ge N$ で $|b_n-\log a| < 1$ となる $N \in \mathbb{N}$ が存在.

$$n \ge N$$
 で $\frac{\log a - 1}{n} \le \frac{b_n}{n} \le \frac{\log a + 1}{n}$ で $\lim_{n \to \infty} \frac{\log a - 1}{n} = \lim_{n \to \infty} \frac{\log a + 1}{n} = 0$ なのではさみうちの原理から

$$\lim_{n \to \infty} \frac{b_n}{n} = 0$$

さらに
$$\lim_{n \to \infty} \frac{\log a_1}{n} = 0$$
 なので

$$\lim_{n \to \infty} \log \sqrt[n]{a_n} = \log a$$

$$e^x$$
 は連続なので $\lim_{n\to\infty} \sqrt[n]{a_n} = e^{\log a} = a$

5)

$$H = A \cup \{0\} \cup \{1\} \cup \cdots \cup \{m-1\}$$
 とする.

H が継承的であることを示す.

$$\{0\} \subset H$$
 なので $0 \in H$

 $x \in H$ とする

$$x=0,\cdots,m-2$$
 のとき $\{x+1\}\subset H$ なので $x+1\in H$

$$x=m-1$$
 のときイ) より $m \in A$ で $A \subset H$ なので $x+1=m \in H$

$$x \in A \mathcal{O} \mathcal{E} \mathcal{E} \mathcal{A}$$
) $\mathcal{L} \mathcal{E} \mathcal{A}$

$$x \in A, x \ge m$$
 なので口) より $x + 1 \in A$ で $A \subset H$ なので $x + 1 \in H$

以上より H は継承的.

より $\mathbb{N} \subset H$

 $n \in \mathbb{N} \ \column{c} \column{c} \column{c} n \geq m \ \column{c} \$

また
$$n \ge m$$
 なので $n \ne 0, 1, \dots, m-1$ で $n \notin \{0\} \cup \{1\} \cup \dots \cup \{m-1\}$

より
$$n \in A$$
 で $\{n \in \mathbb{N} | n \geq m\} \subset A$

次に $n \in A$ とする.

 $A \subset \mathbb{N} \ \mathcal{L}$ なので $n \in \mathbb{N}$

イ) より $n \ge m$

より
$$n \in \{n \in \mathbb{N} | n \ge m\}$$
 で $A \subset \{n \in \mathbb{N} | n \ge m\}$

以上より
$$A = \{n \in \mathbb{N} | n \ge m\}$$

 $n \in \mathbb{N}$ に対し $A_n = \{x \in \mathbb{R} | x + n \in \mathbb{N}\}$ とする.

 A_n が継承的であることを示す.

 $n \in \mathbb{N}$ なので $0 + n \in \mathbb{N}$ で $0 \in A_n$

 $x \in A_n$ とする.

 $x+n \in \mathbb{N}$ で \mathbb{N} が継承的なので $x+1+n \in \mathbb{N}$

より $x+1 \in A_n$

以上より A_n は継承的で $\mathbb{N} \subset A_n$

 $m \in \mathbb{N}$ なら $m \in A_n$ で $m + n \in \mathbb{N}$

 $n \in \mathbb{N}$ に対し $B_n = \{x \in \mathbb{R} | xn \in \mathbb{N}\}$ とする.

 B_n が継承的であることを示す.

 $0n=0\in\mathbb{N}$ なので $0\in B_n$

 $x \in B_n$ とする.

 $xn, n \in \mathbb{N}$ なので上の結果より $xn + n = (x+1)n \in \mathbb{N}$

より $x+1 \in B_n$

以上より B_n は継承的で $\mathbb{N} \subset B_n$

 $m \in \mathbb{N}$ なら $m \in B_n$ で $mn \in \mathbb{N}$

 $C = \{0\} \cup \{x \in \mathbb{N} | x - 1 \in \mathbb{N}\}$ とする.

C が継承的であることを示す.

 $\{0\} \subset C \ \sharp \ \emptyset \ 0 \in C$

 $x \in C$ とする.

 $x \in \{0\}, x \in \{x \in \mathbb{N} | x - 1 \in \mathbb{N}\}$ いずれの場合も $x \in \mathbb{N}$

 \mathbb{N} は継承的なので $x+1 \in \mathbb{N}$

また $x+1-1=x\in\mathbb{N}$ なので $x+1\in C$

以上より C は継承的で $\mathbb{N} \subset C$

 $m \in \mathbb{N}$ に対し $D_m = \{x \in \mathbb{N} | m < x$ または $m - x \in \mathbb{N} \}$ とする.

 D_m が継承的であることを示す.

 $m \in \mathbb{N}$ なので $m - 0 \in \mathbb{N}$ で $0 \in D_m$

 $x \in D_m$ とする.

 $m \leq x$ のとき m < x + 1 なので $x + 1 \in D_m$

m > x のとき $m - x \in \mathbb{N} \subset C$

さらに $m-x \neq 0$ なので $m-x-1 \in \mathbb{N}$

より $x+1 \in D_m$

いずれの場合も $x+1 \in D_m$ で $0 \in D_m$ と合わせて D_m は継承的で $\mathbb{N} \subset D_m$

より $n \in \mathbb{N}, m \ge n$ なら $m - n \in \mathbb{N}$

7)

 \mathbb{R}_+ は継承的なので $\mathbb{N} \subset \mathbb{R}_+$ で $n \in \mathbb{N}$ なら $n \ge 0$ なことに注意する.

 $n \in \mathbb{N}$ に対して $E_n = \{x \in \mathbb{N} | x \leq n \text{ または } n+1 \leq x\}$ とする.

また $F = \{n \in \mathbb{N} | \mathbb{N} \subset E_n\}$ とする.

F が継承的であることを示したい.

まず E_0 が継承的なことを示す.

 $0 \in \mathbb{N} \ \mathfrak{C} \ 0 \leq 0 \ \sharp \ \mathfrak{h} \ 0 \in E_0$

 $x \in E_0$ とする. $x \in \mathbb{N}$ で $x + 1 \in \mathbb{N}$

また $x \ge 0$ なので $1 \le x + 1$ で $x + 1 \in E_0$

より E_0 は継承的で $0 \in F$

次に $n \in F$ を仮定して $n+1 \in F$ を示す.

 $n \in F \subset \mathbb{N}$ $\Leftrightarrow 0 \subset n \geq 0 \subset 0 \leq n+1 \subset 0 \in E_{n+1}$

 $x \in E_{n+1}$ とする. $x \in \mathbb{N} \subset E_n$ なので $x \le n$ または $n+1 \le x$

より $x+1 \le n+1$ または $n+2 \le x+1$

より $x + 1 \in E_{n+1}$

以上より E_{n+1} は継承的で $\mathbb{N} \subset E_{n+1}$

より $n+1 \in F$

以上より F は継承的で $\mathbb{N} \subset F$

より $n \in \mathbb{N}$ なら $\mathbb{N} \subset \{x \in \mathbb{N} | x \leq n \text{ または } n+1 \leq x\}$ で

n < k < n+1となる自然数は存在しない.

§3 実数の連続性

1)(i)

$$a_n = \frac{\frac{1}{6}n(n+1)(2n+1)}{n^3} = \frac{1}{6} \cdot 1 \cdot (1+\frac{1}{n}) \cdot (2+\frac{1}{n}) \xrightarrow[n \to \infty]{} \frac{1}{6} \cdot 1 \cdot (1+0) \cdot (2+0) = \frac{1}{3}$$

 $a \leq 1$ のとき $M(\in \mathbb{R})$ に対し $N > \sqrt{max(0,M)}$ を満たす $N(\in \mathbb{N})$ が存在. $n \geq N$ \mathcal{C}

$$a_n = \frac{n^2}{a^n} \ge \frac{n^2}{1^n} = n^2 \ge M$$

より $\lim_{n \to \infty} a_n = +\infty$ a > 1 のとき二項定理より $n \ge 3$ で

$$a^{n} = \sum_{k=0}^{n} {}_{n}C_{k}(a-1)^{k} \cdot 1^{n-k} > \frac{1}{6}n(n-1)(n-2)(a-1)^{3}$$

より

$$\frac{n^2}{a^n} < \frac{6}{(1 - \frac{1}{n})(1 - 2 \cdot \frac{1}{n})(a - 1)^3} \cdot \frac{1}{n} \xrightarrow[n \to \infty]{} \frac{6}{(1 - 0)(1 - 2 \cdot 0)(a - 1)^3} \cdot 0 = 0$$

 $a_n > 0$ と合わせはさみうちの原理から $\lim_{n \to \infty} a_n = 0$

以上より
$$\lim_{n \to \infty} a_n = \begin{cases} +\infty & (a \le 1) \\ 0 & (a > 1) \end{cases}$$

 $n \ge 2$ のとき $\sqrt[n]{n} > 1$ で二項定理より

$$n = \sum_{k=0}^{n} {}_{n}C_{k}(\sqrt[n]{n} - 1)^{k} \cdot 1^{n-k} > \frac{n(n-1)}{2}(\sqrt[n]{n} - 1)^{2}$$

$$|\sqrt[n]{n} - 1| < \sqrt{\frac{2}{n-1}}$$

 $\epsilon > 0$ に対し $N > \frac{2}{\epsilon^2} + 1$ を満たす $N \in \mathbb{N}$ が存在.

$$n \geq \max(N, 2) |\nabla |\sqrt[n]{n} - 1| < \epsilon$$

$$\Im \sharp \, 0 \, \lim_{n \to \infty} a_n = 1$$

2) より e > 1 で $n \ge k + 1$ で二項定理より

$$e^n = \sum_{l=0}^n {}_n C_l(e-1)^l \cdot 1^{n-l} > {}_n C_{k+1}(e-1)^{k+1} > \frac{(n-k)^{k+1}}{(k+1)!} \cdot (e-1)^{k+1}$$

より

$$a_n < (\frac{1}{1 - \frac{k}{n}})^k \cdot \frac{(k+1)!}{(e-1)^{k+1}} \frac{1}{n-k} \xrightarrow[n \to \infty]{} (\frac{1}{1-0})^k \cdot \frac{(k+1)!}{(e-1)^{k+1}} \cdot 0 = 0$$

 $a_n > 0$ と合わせはさみうちの原理から $\lim_{n \to \infty} a_n = 0$

 $n \ge 2$ のとき 2) の e を用いて

$$a_n = (1 - \frac{1}{n^2})^n = (\frac{\frac{n+1}{n}}{\frac{n}{n-1}})^n = \frac{(1 + \frac{1}{n})^n}{((1 + \frac{1}{n-1})^{n-1})^{\frac{1}{1-\frac{1}{n}}}} \xrightarrow[n \to \infty]{} \frac{e}{e^1} = 1$$

(vi)

0 < c < 1 OZ

$$a_n < \frac{1}{c^{-n}} = c^n \xrightarrow[n \to \infty]{} 0$$

 $a_n > 0$ と合わせはさみうちの定理から $\lim a_n = 0$

$$c=1 \text{ OZ} \stackrel{*}{>} a_n = \frac{1}{2} \xrightarrow[n \to \infty]{} \frac{1}{2}$$

c=1 のとき $a_n=\frac{1}{2}\xrightarrow[n\to\infty]{}\frac{1}{2}$ c>1 のとき $0<\frac{1}{c}<1$ で $a_n=\frac{1}{(\frac{1}{c})^{-n}+(\frac{1}{c})^n}$ なので 0< c<1 のときの結果より $\lim_{n\to\infty}a_n=0$

以上より
$$\lim_{n \to \infty} a_n = \begin{cases} \frac{1}{2} & c = 1\\ 0 & c \neq 1 \end{cases}$$

$$b_n = rac{2\cdot 4\cdot 6\cdots 2n}{3\cdot 5\cdot 7\cdots (2n+1)}$$
 とする.

 $a_n > 0, b_n > 0$ なので両方下に有界.

$$\frac{2(n+1)}{2(n+1)+1} < 1 \$$
 $\downarrow b \ b_{n+1} < b_n$

より a_n, b_n は両方単調減少で収束する.

それぞれ a,b に収束するとすると $a \ge 0, b \ge 0$

$$n\in\mathbb{N}-\{0\}$$
 に対し $(2n)^2>(2n)^2-1\Leftrightarrow \frac{2n-1}{2n}<\frac{2n}{2n+1}$ なので

$$n=1,\cdots,k$$
 で掛けて $a_k < b_k$ より $a \le b$

また
$$a_n b_n = \frac{1}{2n+1} \xrightarrow[n \to \infty]{} 0$$
 なので $ab = 0$

$$0 \le a^2 \le ab = 0 \ \sharp \ i) \ a = 0 \ \Im \ \sharp \ i) \lim_{n \to \infty} a_n = 0$$

2)

二項定理より

$$a_n = \sum_{k=0}^{n} {}_{n}C_k(\frac{1}{n})^k, a_{n+1} = \sum_{k=0}^{n+1} {}_{n+1}C_k(\frac{1}{n+1})^k$$

 $l=0,\cdots,k-1$ に対し $n(n+1)-nl \ge n(n+1)-(n+1)l \Leftrightarrow \frac{n+1-l}{n+1} \ge \frac{n-l}{n}$ なので辺々掛けて $\frac{1}{k!}$ で割り $nC_k(\frac{1}{n})^k \le n+1$ $C_k(\frac{1}{n+1})^k$ より

$$a_n = \sum_{k=0}^{n} {}_{n}C_k(\frac{1}{n})^k \le \sum_{k=0}^{n} {}_{n+1}C_k(\frac{1}{n+1})^k < \sum_{k=0}^{n+1} {}_{n+1}C_k(\frac{1}{n+1})^k = a_{n+1}$$

より a_n は単調増加.

また ${}_{n}C_{k} \leq \frac{n^{k}}{k!}$ なので

$$a_n = \sum_{k=0}^{n} {}_{n}C_k(\frac{1}{n})^k \le \sum_{k=0}^{n} \frac{1}{k!}$$

 $n \ge 3$ で $\sum_{k=0}^{n} \frac{1}{k!} \le 2.9 - \frac{1}{n!}$ を数学的帰納法で示す.

i) $n=3 \stackrel{\kappa=0}{\mathcal{O}} \stackrel{\mathfrak{Z}}{\mathcal{Z}}$

(左辺) = $1 + 1 + \frac{1}{2} + \frac{1}{6} < 2.67 < 2.9 - \frac{1}{6} = (右辺)$ で成立.

ii) $n=l(\in\mathbb{N})$ で成立すると仮定する. $(l\geqq3)$

$$\sum_{k=0}^{l+1} \frac{1}{k!} \le 2.9 - \frac{1}{l!} + \frac{1}{(l+1)!} = 2.9 - \frac{l}{(l+1)!} < 2.9 - \frac{1}{(l+1)!}$$

より n = l + 1 も成立.

i)ii) より示された.

より $a_n \le 2.9 - \frac{1}{n!} < 2.9$ で a_n は上に有界. より a_n は e に収束するとしてよく $e \le 2.9 < 3$ $n \ge 2$ で $a_n \ge a_2 = \frac{9}{4} > 2$ より e > 2

3)

 $0 < a_n \le a_{n+1} \le b_{n+1} \le b_n$ を数学的帰納法で示す.

i) n = 0 のとき

より
$$\sqrt{a_1} < \sqrt{b_0}$$
 で $a_1 < \sqrt{a_1b_0} = b_1 < b_0$

より成立.

ii) $n = k (\in \mathbb{N})$ で成立すると仮定する.

 $0 < a_k \le a_{k+1} \le b_{k+1} \le b_k$

まず $a_{k+1} > 0$. また $a_{k+1} \leq b_{k+1}$ より $a_{k+1} \leq \frac{a_{k+1} + b_{k+1}}{2} = a_{k+2} \leq b_{k+1}$

$$\sharp i) \sqrt{a_{k+2}} \le \sqrt{b_{k+1}} \ \ \ \ \ c \ a_{k+2} \le \sqrt{a_{k+2}b_{k+1}} = b_{k+2} \le b_{k+1}$$

より n = k + 1 も成立.

i)ii) より示された.

より区間 $[a_n,b_n]$ は単調減少. また

$$b_{n+1} - a_{n+1} \le b_n - a_{n+1} = \frac{1}{2}(b_n - a_n)$$

これを繰り返し用い $b_n - a_n \leq \frac{1}{2^n} (b_0 - a_0)$

 $\lim_{n\to\infty}\frac{1}{2^n}(b-a)=0, b_n-a_n\geq 0$ よりはさみうちの原理から $\lim_{n\to\infty}b_n-a_n=0$ 以上より区間縮小法より a_n,b_n は収束し $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n$ でこの値を l とおける.

 $a_n = \frac{\sin x \cos \frac{x}{2^n}}{2^n \sin \frac{x}{2^n}} b, b_n = \frac{\sin x}{2^n \sin \frac{x}{2^n}} b$ を数学的帰納法で示す.

i) n=0 のとき

$$a_0 = b\cos x = \frac{\sin x \cos\frac{x}{20}}{2^0\sin\frac{x}{20}}b, b_0 = b = \frac{\sin x}{2^0\sin\frac{x}{20}}b$$

より成立する.

ii) $n = k (\in \mathbb{N})$ で成立すると仮定する.

$$a_{k+1} = \frac{a_k + b_k}{2} = \frac{\sin x}{2^k \sin \frac{x}{2^k}} b \cdot \frac{1 + \cos \frac{x}{2^k}}{2} = \frac{\sin x \cos^2 \frac{x}{2^{k+1}}}{2^k \sin \frac{x}{2^k}} b = \frac{\sin x \cos^2 \frac{x}{2^{k+1}}}{2^{k+1} \sin \frac{x}{2^{k+1}} \cos \frac{x}{2^{k+1}}} b = \frac{\sin x \cos \frac{x}{2^{k+1}}}{2^{k+1} \sin \frac{x}{2^{k+1}}} b$$

$$b_{k+1} = \sqrt{a_{k+1} b_k} = \sqrt{\frac{\sin x \cos \frac{x}{2^{k+1}}}{2^{k+1} \sin \frac{x}{2^{k+1}}}} b \cdot \frac{\sin x}{2^k \sin \frac{x}{2^k}} b = \sqrt{\frac{\sin x \cos \frac{x}{2^{k+1}}}{2^{k+1} \sin \frac{x}{2^{k+1}}}} b \cdot \frac{\sin x}{2^{k+1} \sin \frac{x}{2^{k+1}}} b = \frac{\sin x}{2^{k+1} \sin \frac{x}{2^{k+1}}} b$$

より n = k + 1 も成立.

i)ii) より示された.

$$\lim_{n\to\infty}\frac{x}{2^n}=0\ \text{\sharp }0\ \lim_{n\to\infty}\frac{\frac{x}{2^n}}{\sin\frac{x}{2^n}}=1\ \text{\Im}$$

$$b_n = \frac{\sin x}{x} \cdot \frac{\frac{x}{2^n}}{\sin \frac{x}{2^n}} b \xrightarrow[n \to \infty]{} \frac{\sin x}{x} b$$

より $l = \frac{\sin x}{x}b$

(おまけ)

$$a = \frac{1}{4}, b = \frac{1}{2\sqrt{2}} \mathcal{O} \succeq \mathcal{E} x = \frac{\pi}{4}$$

直径 1 の円の中心を O, この円に外接, 内接する正 2^{n+2} 角形の辺の 1 つをそれぞれ AB, A'B' とする. また AB, A'B' の中点をそれぞれ M, M' とする.

$$\angle AOM = \angle A'OM' = \frac{2\pi}{2 \cdot 2^{n+2}} = \frac{\pi}{2^{n+2}}$$

MO, A'O は円の半径で $\frac{1}{2}$

$$AM = MO \tan \frac{\pi}{2^{n+2}} = \frac{1}{2} \tan \frac{\pi}{2^{n+2}}, A'M' = A'O \sin \frac{\pi}{2^{n+2}} = \frac{1}{2} \sin \frac{\pi}{2^{n+2}}$$

AB=2AM, A'B'=2A'M' で 2^{n+2} 個合わせてそれぞれ $2^{n+2}\tan\frac{\pi}{2^{n+2}}, 2^{n+2}\sin\frac{\pi}{2^{n+2}}$ 逆数を取るとそれぞれ

$$\frac{1}{2^{n+2}\tan\frac{\pi}{2^{n+2}}} = \frac{\sin\frac{\pi}{4}\cos\frac{\pi}{2^{n+2}}}{2^n\sin\frac{\pi}{2^{n+2}}} \frac{1}{2\sqrt{2}} = \frac{\sin x\cos\frac{x}{2^n}}{2^n\sin\frac{x}{2^n}} b = a_n$$

$$\frac{1}{2^{n+2}\sin\frac{\pi}{2^{n+2}}} = \frac{\sin\frac{\pi}{4}}{2^n\sin\frac{\pi}{2^{n+2}}} \frac{1}{2\sqrt{2}} = \frac{\sin x}{2^n\sin\frac{x}{2^n}} b = b_n$$

$$\sharp \, \mathcal{T} \, l = \frac{\frac{1}{\sqrt{2}}}{\frac{\pi}{4}} \cdot \frac{1}{2\sqrt{2}} = \frac{1}{\pi}$$

 \mathbb{Q} から順序体 K への同型写像 g を探す.

$$x \in \mathbb{N}$$
 に対し $g(x) =$
$$\begin{cases} 0_K & x = 0 \\ g(x-1) + 1_K & x \neq 0 \end{cases}$$
 とする.

 $x,y \in \mathbb{N}$ に対し g(x+y) = g(x) + g(y) を y に関する数学的帰納法で示す.

i)
$$y = 0 \, \mathcal{O} \, \mathcal{E} \, \tilde{\mathcal{E}}$$

$$g(x+0) = g(x) = g(x) + 0_K = g(x) + g(0)$$

より成立.

ii) $y = k (\in \mathbb{N})$ のとき成立すると仮定する.

$$g(x+k+1) = g(x+1) + g(k) = g(x) + 1_K + g(k) = g(x) + g(k+1)$$

より y = k + 1 のときも成立.

i)ii)
$$\sharp b \ g(x+y) = g(x) + g(y)$$

 $x,y \in \mathbb{N}$ に対し g(xy) = g(x)g(y) を y に関する数学的帰納法で示す.

i) y = 0 のとき

$$g(x0) = g(0) = 0_K = g(x)0_K = g(x)g(0)$$

より成立.

ii) $y = k (\in \mathbb{N})$ のとき成立すると仮定する.

$$g(x(k+1)) = g(xk) + g(x) = g(x)g(k) + g(x) = g(x)(g(k) + 1_K) = g(x)g(k+1)$$

より y = k + 1 のときも成立.

i)ii)
$$\sharp \mathfrak{h} g(xy) = g(x)g(y)$$

 $x \in \mathbb{N} - \{0\}, y \in \mathbb{N}$ に対し g(y) < g(x+y) を x に関する数学的帰納法で示す.

i) x = 1 のとき

$$g(y) < 1_K + g(y) = g(1) + g(y) = g(1+y)$$
 より成立.

ii) $x = k (\in \mathbb{N} - \{0\})$ のとき成立すると仮定する.

 $1_K > 0 \$ \$)

$$g(y) < g(k+y) < 1_K + g(k+y) = g(1) + g(k+y) = g(k+1+y)$$

より x = k + 1 のときも成立.

$$x, y \in \mathbb{N}$$
 に対し $x < y$ なら $y - x \in \mathbb{N} - \{0\}$ で $g(x) < g(x + y - x) = g(y)$

$$x = y$$
 なら $g(x) = g(y)$

$$x > y$$
 なら $x < y$ のときと同様に $g(x) > g(y)$

$$\sharp \ \mathcal{Y} \leq y \Leftrightarrow g(x) \leq g(y)$$

以上より g は自然数に対して演算を保存.

$$x \in \mathbb{Z} - \mathbb{N}$$
 に対して $-x \in \mathbb{N}$ で $g(x) = -g(-x)$ と定義できる.

$$x, y \in \mathbb{Z}$$
 に対し $g(x+y) = g(x) + g(y)$ を示す.

 $x \ge 0, y \ge 0$ は既に示した.

$$x \ge 0, y \le 0, x + y \ge 0$$
 のとき $g(x) = g(x + y) + g(-y) = g(x + y) - g(y)$ より成立.

$$x \ge 0, y \le 0, x + y \le 0$$
 のとき $g(y) = -g(-y) = -(g(-x - y) + g(x)) = g(x + y) - g(x)$ より成立.

$$x \le 0, y \ge 0$$
 は $x \ge 0, y \le 0$ のときと同様.

$$x \leq 0, y \leq 0$$
 のとき $g(x) + g(y) = -(g(-x) + g(-y)) = -g(-x - y) = g(x + y)$ より成立.

より
$$g(x+y) = g(x) + g(y)$$

次に $x, y \in \mathbb{Z}$ に対し g(xy) = g(x)g(y) を示す.

 $x \ge 0, y \ge 0$ は既に示した.

$$x \ge 0, y \le 0$$
 のとき $g(xy) = -g(x(-y)) = -(g(x)g(-y)) = g(x)g(y)$ より成立.

$$x \le 0, y \ge 0$$
 のとき $g(xy) = -g((-x)y) = -(g(-x)g(y)) = g(x)g(y)$ より成立.

$$x \le 0, y \le 0$$
 のとき $g(xy) = g((-x)(-y)) = g(-x)g(-y) = g(x)g(y)$ より成立.

より
$$g(xy) = g(x)g(y)$$

$$x \in \mathbb{Z}, x \le 0$$
 とすると $0 \le -x$ より $g(0) \le g(-x) = -g(x)$ で $g(x) \le g(0) = 0_K$ に注意する.

$$x,y \in \mathbb{Z}$$
 に対し $x \leq y \Leftrightarrow g(x) \leq g(y)$ を示す.

 $x \ge 0, y \ge 0$ は既に示した.

$$x \ge 0, y \le 0$$
 のとき $y \le x, g(y) \le g(x)$ が常に成り立ち成立.

$$x \le 0, y \ge 0$$
 のとき $x \ge 0, y \le 0$ のときと同様に成立.

 $x \le 0, y \le 0$ のとき

$$g(x) \leq g(y) \Leftrightarrow -g(x) \geq -g(y) \Leftrightarrow g(-x) \geq g(-y) \Leftrightarrow -x \geq -y \Leftrightarrow x \leq y$$

より成立.

$$\sharp \ \mathcal{V} \ x \leq y \Leftrightarrow g(x) \leq g(y)$$

以上より g は整数に対して演算を保存.

$$x\in\mathbb{Q}$$
 とすると $x=rac{p}{q}$ とおける. $(q\in\mathbb{N}-\{0\},p\in\mathbb{Z})$

$$q>0$$
 なので $g(q)\neq 0_K$ で $g(x)=rac{g(p)}{g(q)}$ と定義できる.

 $q, s \in \mathbb{N} - \{0\}, p, r \in \mathbb{Z}$ に対し

$$\begin{split} &\frac{p}{q} = \frac{r}{s} \\ \Leftrightarrow ps - qr = 0 \\ \Leftrightarrow g(ps - qr) = 0_K \\ \Leftrightarrow &\frac{g(ps - qr)}{g(qs)} = 0_K \ (\because \frac{1_K}{g(qs)} \neq 0_K) \\ \Leftrightarrow &\frac{g(p)g(s) - g(q)g(r)}{g(q)g(s)} = 0_K \\ \Leftrightarrow &\frac{g(p)}{g(q)} = \frac{g(r)}{g(s)} \end{split}$$

 \Leftarrow から q が well-defined なことが言え \Rightarrow から q が単射なことが言える.

また $x\in\mathbb{Z}$ に対し $x=\frac{x}{1}$ で $\frac{g(x)}{g(1)}=\frac{g(x)}{1_K}=g(x)$ なので g の有理数での定義は整数での定義と矛盾しない.

 $q, s \in \mathbb{N} - \{0\}, p, r \in \mathbb{Z}$ に対し

$$g(\frac{p}{q} + \frac{r}{s})$$

$$=g(\frac{ps+qr}{qs})$$

$$=\frac{g(p)g(s) + g(q)g(r)}{g(q)g(s)}$$

$$=\frac{g(p)}{g(q)} + \frac{g(r)}{g(s)}$$

$$=g(\frac{p}{q}) + g(\frac{r}{s})$$

$$\begin{split} g(\frac{p}{q}\cdot\frac{r}{s}) \\ = & \frac{g(p)g(r)}{g(q)g(s)} \\ = & g(\frac{p}{q})g(\frac{r}{s}) \end{split}$$

$$\begin{split} &\frac{p}{q} \leq \frac{r}{s} \\ \Leftrightarrow ps - qr \leq 0 \\ \Leftrightarrow g(ps - qr) \leq 0_K \\ \Leftrightarrow &\frac{g(ps - qr)}{g(qs)} \leq 0_K \ (\because \frac{1_K}{g(qs)} > 0_K) \\ \Leftrightarrow &\frac{g(p)g(s) - g(q)g(r)}{g(q)g(s)} \leq 0_K \\ \Leftrightarrow &\frac{g(p)}{g(q)} \leq \frac{g(r)}{g(s)} \end{split}$$

以上より g は有理数に対して演算を保存.

より g は \mathbb{Q} から K への準同型写像.

g を \mathbb{Q} から $g(\mathbb{Q})$ への関数に制限すると g の単射性から同型写像.

つまり $g(\mathbb{Q})$ は \mathbb{Q} と同型な順序体.

5)

K, K' は実数の性質がすべて成り立つので実数と同じように扱えることに注意する.

K,K' に対する自然数をそれぞれ $K_{\mathbb{N}},K'_{\mathbb{N}}$ 有理数をそれぞれ $K_{\mathbb{Q}},K'_{\mathbb{Q}}$ とする.

この $K_{\mathbb{Q}}, K'_{\mathbb{Q}}$ がそれぞれ 4) の \mathbb{Q} に同型な順序体であることは後で示しまずはこれを仮定して示す.

 $K_{\mathbb{Q}}\cong \mathbb{Q}\cong K'_{\mathbb{Q}}$ となり $K_{\mathbb{Q}}$ から $K'_{\mathbb{Q}}$ への同型写像 f が存在.

f を K に拡張することを考える.

 $x \in K$ に対して定理 3.9 より $K_{\mathbb{Q}}$ の数列で x に収束する a_n がある.

 $\epsilon \in K_{\mathbb{O}}'$ が $\epsilon > 0_{K'}$ のときアルキメデスの原理から $N' \in K_{\mathbb{N}}'$ で $\epsilon > \frac{1_{K'}}{N'}$ となるものが存在.

f は全単射なので $N\in K_{\mathbb Q}$ で f(N)=N' となるものがただ 1 つ存在. $N'>0_{K'}$ より $N>0_{K}$ a_n は収束列なのでコーシー列でもあり $M\in\mathbb N$ が存在し $n,m\geqq M$ で $|a_n-a_m|<\frac{1_K}{N}$

このとき $n, m \ge M$ で $|f(a_n) - f(a_m)| < \frac{1_{K'}}{f(N)} = \frac{1_{K'}}{N'} < \epsilon$

つまり $f(a_n)$ はコーシー列で収束する. その収束先を f(x) とする.

この定義が well-defined であることを言う.

 $K_{\mathbb{Q}}$ の数列 a_n,b_n が共に x に収束するとして $f(a_n),f(b_n)$ の収束先が同じであることを言えばいい.

 ϵ, N, N' を上と同様に定義する.

 a_n-b_n は 0_K に収束するので $M\in\mathbb{N}$ が存在し $n\geqq M$ で $|a_n-b_n|< rac{1_K}{N}$

 $n \geq M \, \mathcal{C} |f(a_n) - f(b_n)| < \frac{1_{K'}}{N'} < \epsilon$

$$\sharp \, \lim_{n \to \infty} f(a_n) - f(b_n) = 0_{K'} \, \, \Im \lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} f(b_n)$$

より f は well-defined

 $K_{\mathbb{Q}}$ の数列 a_n, b_n がそれぞれ $a, b \in K$ に収束するとして a < b なら $f(a_n), f(b_n)$ の収束先 f(a), f(b) は f(a) < f(b) を満たすことを言う.

定理 3.8 を 2 度使い a < x < y < b となる $x, y \in K_{\mathbb{Q}}$ が存在することが言える.

 $n \ge M$ で $|a_n - a| < x - a, |b_n - b| < b - y$ となる $M \in \mathbb{N}$ が存在.

$$n \ge M$$
 で $a_n < x < y < b_n$ なので $f(a_n) < f(x) < f(y) < f(b_n)$

より $n \to \infty$ として $f(a) \le f(x) < f(y) \le f(b)$ で示せた.

特にfは単射.

a < b なら f(a) < f(b) で a = b なら f(a) = f(b) で b < a なら f(b) < f(a) より $a \le b \Leftrightarrow f(a) \le f(b)$ $K_{\mathbb{O}}$ の数列 a_n, b_n がそれぞれ $a, b \in K$ に収束するとすると $a_n + b_n$ は a + b に $a_n b_n$ は ab に収束する

$$f(a_n + b_n) = f(a_n) + f(b_n), f(a_n b_n) = f(a_n)f(b_n)$$

 $\forall n \to \infty \ge 0$

$$f(a + b) = f(a) + f(b), f(ab) = f(a)f(b)$$

以上より f は K から K' への同型写像.

最後に 4) で存在を示した K の含む $\mathbb Q$ と同型な体が $K_{\mathbb Q}$ であることを言う.

以下gは4)で定義したgを表す.

 $g(\mathbb{N})=K_{\mathbb{N}}$ を言えば g の整数, 有理数への拡張の仕方から $g(\mathbb{Q})=K_{\mathbb{Q}}$ が言えるのでこれを言えばいい.

 $g(\mathbb{N})$ が帰納的集合であることを言う.

 $x \in g(\mathbb{N})$ なら g(y) = x となる $y \in \mathbb{N}$ が存在. $g(y+1) = x+1_K$ で $x+1_K \in g(\mathbb{N})$

以上より $g(\mathbb{N})$ が帰納的集合で $K_{\mathbb{N}} \subset g(\mathbb{N})$

 $A = \{n \in \mathbb{N} | g(n) \in K_{\mathbb{N}} \}$ としこれが帰納的集合であることを言う.

 $g(0) = 0_K \in K_{\mathbb{N}} \ \mathfrak{C} \ 0 \in A$

 $x \in A$ のとき $g(x) \in K_{\mathbb{N}}$ で $g(x+1) = g(x) + 1_K \in K_{\mathbb{N}}$ より $x+1 \in A$

より A は帰納的集合で $\mathbb{N} \subset A$

つまり $n \in \mathbb{N}$ で $g(n) \in K_{\mathbb{N}}$

より $g(\mathbb{N}) \subset K_{\mathbb{N}}$

以上より $g(\mathbb{N}) = K_{\mathbb{N}}$

6)

(IV) と仮定する $.a \in A, b \in B$ より a < b

 $a < \frac{a+b}{2K} < b$ が言える. ただし 2K = 1K + 1K

 $\frac{a+b}{2_K} \in K$ なので $\frac{a+b}{2_K} \in A \cup B$

しかし a は A の最大元なので $\frac{a+b}{2\kappa} \notin A$

b は B の最小元なので $\frac{a+b}{2\kappa} \notin B$

より矛盾し (IV) となることはない.

7)

6) より連続の公理と順序体 K の任意の切断 < A, B > が (III) の形にならないことが同値であることを示せばいい.

 \Rightarrow

 $B \neq \emptyset$ なので $b \in B$ が存在. 任意の $a \in A$ に対し a < b なので b は A の上界.

より A は上に有界で $A \neq \emptyset$ なので A の上限 $s \in K$ が存在 $K = A \cup B$ なので $s \in A$ か $s \in B$

 $s \in A$ と仮定する.s は A の上限なので特に上界で $a \in A$ に対し $a \leq s$ より s は A の最大元.A に最大元が存在し (III) にはならない.

 $s \in B$ と仮定する $.b \in B$ とすると任意の $a \in A$ に対し a < b で b は A の上界. より S が A の上限なことより $s \le b$ で s は B の最小元.B に最小元が存在し (III) にならない.

以上より示された.

 \Leftarrow

上に有界な K の部分集合 $S(\neq\emptyset)$ を考える.S は上に有界なので $U(\subset K)$ を S の上界の集合とすると $U\neq\emptyset$ $s\in S$ が存在し $s-1_K\in K$ で $s-1_K< s$ より $s-1_K$ は S の上界でない. より $D=\{x\in K|x\notin U\}$ とすると $D\neq\emptyset$

 $x \in D$ とすると $s \in S$ が存在し x < s で $u \in U$ に対し $s \le u$ なので x < u

 $D \cup U = K, D \cap U = \emptyset$ だ

より仮定から (III) にならなく D に最大元が存在するか U に最小元が存在する.

D に最大元が存在すると仮定する. 最大元を d とすると $d \notin U$ より d < s となる $s \in S$ が存在. $\frac{s+d}{2\kappa} < s$ より $\frac{s+d}{2\kappa} \in D$ で $\frac{s+d}{2\kappa} > d$ より d が最大元なことに矛盾. より背理法から D に最大元は存在しない.

より U に最小元が存在する. つまり連続の公理が示された.

8)

問題文で定義された R を R 教科書での定義の R を $\mathbb R$ と表す. 解析入門では $\mathbb Q$ は $\mathbb R$ から定義されているのでそれに従う. つまりこの問題では $\mathbb R$ の性質を用いて R を得る.

A の要素は $\mathbb Q$ のコーシー列だが $\mathbb R$ の数列とみると収束列であることに注意する.

 0_A を $0_A = (0), -(a_n) = (-a_n)$ とすると A が問題文で与えられた演算で可換環になることは有理数が体で特に可換環であることから示せる.

まず R の加算と乗算が well-defined であることを言う.

 $(a_n),(a'_n)$ が同値で $(b_n),(b'_n)$ も同値であるとする.A の要素はコーシー列なので

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} a'_n = a, \lim_{n \to \infty} b_n = \lim_{n \to \infty} b'_n = b \ (a, b \in \mathbb{R})$$

とできる. 定理 2.5 より

$$\lim_{n \to \infty} ((a_n + b_n) - (a'_n + b'_n)) = (a + b) - (a + b) = 0, \lim_{n \to \infty} (a_n b_n - a'_n b'_n) = ab - ab = 0$$

より $(a_n + b_n)$ と $(a'_n + b'_n)$, $(a_n b_n)$ と $(a'_n b'_n)$ はそれぞれ同値で well-defined

A が可換環なので R も可換環.

 (e_n) を $e_n = 1$ となる数列とすると明らかに $(e_n) \in A$

$$(e_n)$$
 を $e_n = 1$ となる数列とすると明らかに $(e_n) \in A$ $(a_n) \in A$ が $[a_n] \neq [0]$ としたとき $b_n = \begin{cases} 1 & a_n = 0 \\ \frac{1}{a_n} & a_n \neq 0 \end{cases}$ とする.

 $\lim_{n \to \infty} a_n = a$ とすると $[a_n] \neq [0]$ より $a \neq 0$ で $n \ge M$ で $|a_n - a| < |a|$ となる $M \in \mathbb{N}$ が存在. $n \to \infty$ $n \to \infty$

$$a_nb_n=\begin{cases} 0 & a_n=0\\ 1 & a_n\neq 0 \end{cases} \ \, \mathfrak{T}\ n\geqq M\ \, \mathfrak{T}\ a_nb_n=1=e_n$$

より $1_R = [e_n], [b_n] = [a_n]^{-1}$ とすると R は (R-8), (R-9) を満たす.(R-10) は $\mathbb Q$ の 1,0 が $1 \neq 0$ なことから $1_R \neq 0_R$ で満たされる.

R の $[a_n] \leq [b_n]$ は問題文の $[a_n] < [b_n]$ または $[a_n] = [b_n]$ が成り立つという意味であることに注意する.

 $[a_n] < [b_n]$ なら $M(\in \mathbb{N}), \epsilon(>0)$ が存在して $n \ge M$ で $a_n + \epsilon < b_n$ より $n \to \infty$ とし $\lim_{n \to \infty} a_n + \epsilon \le \lim_{n \to \infty} b_n$ $\mathcal{C}\lim_{n\to\infty}a_n<\lim_{n\to\infty}b_n$

また $\lim_{n\to\infty}a_n=a$, $\lim_{n\to\infty}b_n=b$ としたとき a< b なら $n\geqq M$ で $|a_n-a|<\frac{b-a}{3},|b_n-b|<\frac{b-a}{3}$ となる $M \in \mathbb{N}$ が存在.

$$n \geqq M$$
で $a_n < a + \frac{b-a}{3}, b - \frac{b-a}{3} < b_n$ で特に $a_n + \frac{b-a}{3} < b_n$

より
$$[a_n] < [b_n]$$

以上より

$$[a_n] < [b_n] \Leftrightarrow \lim_{n \to \infty} a_n < \lim_{n \to \infty} b_n$$

 $[a_n]=[b_n]$ なら $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$ なので R の < は well-defined $a_n \in A$ に対し $\lim_{n \to \infty} a_n \in \mathbb{R}$ で \mathbb{R} は順序体の性質を満たすので R も順序体の性質を満たす.

 $a,b \in R$ を $a > 0_R, b > 0_R$ とする.

 $\frac{b}{a}\in R$ でこれの代表元を $(q_n)(\in A)$ とする. $n,m\geqq M$ で $|q_n-q_m|<\frac{1}{2}$ となる $M\in \mathbb{N}$ が存在.

$$n \ge M$$
 で $q_n < q_M + \frac{1}{2}$ より $\lim_{n \to \infty} q_n \le q_M + \frac{1}{2} < q_M + 1$ $q_M + 1 \in \mathbb{Q}$ で $\frac{p}{q}$ とおける. $(q \in \mathbb{N} - \{0\}, p \in \mathbb{Z})$

 $p \leqq 0 \text{ Tr} \lim_{n \to \infty} q_n < 0 \text{ Tr} \frac{b}{a} < 0_R \Leftrightarrow b < 0_R a$

p>0 で $\lim_{n\to\infty}q_n< p$ で $\frac{b}{a}<(p)\Leftrightarrow b<(p)a$ だ. ただし (p) はすべての自然数に対して p を返す数列.

 $(p), 0_R \in R_{\mathbb{N}}$ よりアルキメデスの原理は成立.

 (r_n) を R のコーシー数列とする. (r_{in}) を r_i の代表元の有理数列とする.

 (r_{in}) の収束先を $d_i (\in \mathbb{R})$ とする.

 $n \ge M_i$ で $|r_{in} - d_i| < \frac{1}{i+1}$ となる $M_i \in \mathbb{N}$ が存在. 有理数列 (a_i) を $a_i = r_{iM_i}$ と定義する.

 (r_n) はコーシー列なので $\epsilon>0$ に対し $i,j\geqq M$ で $|r_i-r_j|<rac{\epsilon}{4R}$ となる $M\in\mathbb{N}$ が存在.

このとき $|(r_{in})-(r_{jn})|<rac{\epsilon}{4_B}\Leftrightarrow |d_i-d_j|<rac{\epsilon}{4}$

 $|i,j| \ge \max(M, \frac{4}{\epsilon})$ $\ \ \,$ $\ \ \,$ $\ \ \, |a_i-d_i| = |r_{iM_i}-d_i| < \frac{1}{i+1} < \frac{\epsilon}{4}, |a_j-d_j| = |r_{jM_j}-d_j| < \frac{1}{i+1} < \frac{\epsilon}{4}, |d_i-d_j| < \frac{\epsilon}{4}$ $|a_i - a_j| < \frac{3\epsilon}{4} < \epsilon$ で (a_n) はコーシー列で $(a_n) \in A$

 $i \ge \max(M, \frac{4}{\epsilon})$ とし $|(r_{in}) - (a_n)|$ を考える.

 $n \ge max(M_i, i)$ $\mathfrak{C}|a_n - d_n| = |r_{nM_n} - d_n| < \frac{1}{n+1} < \frac{\epsilon}{4}, |d_i - d_n| < \frac{\epsilon}{4}, |r_{in} - d_i| < \frac{1}{i+1} < \frac{\epsilon}{4}$

より
$$|a_n-r_{in}|<\frac{3\epsilon}{4}$$
 で $n\to\infty$ とし $|\lim_{n\to\infty}a_n-\lim_{n\to\infty}r_{in}|\le\frac{3\epsilon}{4}<\epsilon$ つまり $|(a_n)-r_i|<\epsilon$ より (r_n) は $[a_n]$ に収束. つまり R のコーシー列は収束する. より連続の公理も満たされる.

$$p'_{n} = \begin{cases} k_{0} & n = 1 \\ k_{0}k_{1} + 1 & n = 2 , \ q'_{n} = \begin{cases} 1 & n = 1 \\ k_{1} & n = 2 \\ q'_{n-1}k_{n-1} + p'_{n-2} & n \ge 3 \end{cases}$$

 $n\in\mathbb{N}-\{0\}, t>1$ に対し $[k_0;\cdots,k_n,t]=rac{p'_{n+1}t+p'_n}{q'_{n+1}t+q'_n}$ を数学的帰納法で示す.

i)
$$n = 1$$
 のとき

$$[k_0; k_1, t] = k_0 + \frac{1}{k_1 + \frac{1}{t}}$$

$$= k_0 + \frac{t}{tk_1 + 1}$$

$$= \frac{(k_0k_1 + 1)t + k_0}{k_1t + 1}$$

$$= \frac{p'_2t + p'_1}{q'_2t + q'_1}$$

ii) $n = m (\in \mathbb{N} - \{0\})$ のときに成立すると仮定する.

$$\begin{split} [k_0;\cdots,k_{m+1},t] &= [k_0;\cdots,k_m,k_{m+1}+\frac{1}{t}] \\ &= \frac{p'_{m+1}(k_{m+1}+\frac{1}{t})+p'_m}{q'_{m+1}(k_{m+1}+\frac{1}{t})+q'_m} \, (:: 帰納法の仮定) \\ &= \frac{(p'_{m+1}k_{m+1}+p'_m)t+p'_{m+1}}{(q'_{m+1}k_{m+1}+q'_m)t+q'_{m+1}} \\ &= \frac{p'_{m+2}t+p'_{m+1}}{q'_{m+2}t+q'_{m+1}} \end{split}$$

i)ii) より示された.

特に
$$t=k_{n+1}$$
 として $[k_0;\cdots,k_{n+1}]=\frac{p'_{n+1}k_{n+1}+p'_n}{q'_{n+1}k_{n+1}+q'_n}=\frac{p'_{n+2}}{q'_{n+2}}$ $[k_0;]=\frac{p'_1}{q'_1},[k_0;k_1]=\frac{p'_2}{q'_2}$ と合わせて

 $[k_0;\cdots,k_n]=rac{p'_{n+1}}{q'_{n+1}}$ が任意の自然数で成り立つ.

次に $p'_{n+2}q'_{n+1} - p'_{n+1}q'_{n+2} = (-1)^n$ を数学的帰納法で示す.

i) n = 0 のとき

$$p_2'q_1' - p_1'q_2' = (k_0k_1 + 1) \cdot 1 - k_0k_1 = 1 = (-1)^0$$
 で成立.

ii) $n = m (\in \mathbb{N})$ のときに成立すると仮定する.

$$\begin{aligned} p'_{m+3}q'_{m+2} - p'_{m+2}q'_{m+3} &= (p'_{m+2}k_{m+2} + p'_{m+1})q'_{m+2} - p'_{m+2}(q'_{m+2}k_{m+2} + q'_{m+1}) \\ &= -(p'_{m+2}q'_{m+1} - p'_{m+1}q'_{m+2}) \\ &= (-1)^{m+1} \end{aligned}$$

で n=m+1も成立.

i)ii) より示された.

より p'_n, q'_n の公約数は 1 の約数で 1. つまり p'_n, q'_n は互いに素.

 $x\in\mathbb{R}-\mathbb{Q}$ に対し問題文のように変数を設定すると x の連分数展開は $k_0=[x]$ として $[k_0;\cdots,k_n,\cdots]$ 上で示したことより $a_n = \frac{q'_n}{p'}$

 p'_n, q'_n は互いに素なので $p_n = p'_n, q_n = q'_n$

より $x = \frac{p_n x_n + p_{n-1}}{q_n x_n + q_{n-1}}$ $q_n \ge n - 1$ を数学的帰納法で示す.

i) n = 1, 2, 3 のとき

 $q_1 = 1 \ge 0$

 k_1 は正整数なので $q_2 = k_1 \ge 1$

 k_2 は正整数なので $q_3 = q_2 k_2 + q_1 \ge 1 \cdot 1 + 1 \ge 2$

ii) $n = m, m + 1, m + 2(m \in \mathbb{N} - \{0\})$ のときに成立すると仮定する.

 k_{m+2} は正整数なので $q_{m+3}=q_{m+2}k_{m+2}+q_{m+1}\geqq(m+1)\cdot 1+m=2m+1\geqq m+2$ で n=m+3も成立.

i)ii) より示された.

n > 1 \tilde{C}

$$|x - a_n| = \left| \frac{p_n x_n + p_{n-1}}{q_n x_n + q_{n-1}} - \frac{p_n}{q_n} \right|$$

$$= \left| \frac{q_n p_{n-1} - p_n q_{n-1}}{q_n (q_n x_n + q_{n-1})} \right|$$

$$= \left| \frac{1}{q_n (q_n x_n + q_{n-1})} \right| (\because p_n q_{n-1} - p_{n-1} q_n = (-1)^{n-1})$$

$$\leq \left| \frac{1}{q^2} \right| (\because x_n > 1, q_{n-1} \geq n - 2 \geq 0)$$

n=0 \mathfrak{t}

$$|x - a_1| = x - [x] \le 1 = \frac{1}{q_1^2}$$

 $\epsilon(>0)$ に対し $N\in\mathbb{N}$ が $N>\frac{1}{\sqrt{\epsilon}}+1$ を満たすとする.

$$n \ge N$$
 なら $q_n > \frac{1}{\sqrt{\epsilon}}$ で $|x - a_n| \le \frac{1}{q_1^2} < \epsilon$

 $\Im \sharp \, 0 \lim_{n \to \infty} a_n = x$

上の答案は無理数の連分数展開が無限に続くことを既知としている. その証明をここに書く.

 $[k_0; k_1, k_2, \cdots, k_n]$ が有理数なことを数学的帰納法で示す. ただし k_i は $i = 0, \cdots, n$ で整数で $k_i > 0$ (i > 0)

i) n = 0 のとき

 $k_0 \in \mathbb{Z} \subset \mathbb{Q}$ で成立.

ii) $n = m (\in \mathbb{N})$ で成立すると仮定する.

$$[k_0; k_1, k_2, \cdots, k_{m+1}] = k_0 + \frac{1}{[k_1; k_2, \cdots, k_{m+1}]}$$

帰納法の仮定より $[k_1;k_2,\cdots,k_{m+1}]=rac{q}{p}\;(p,q\in\mathbb{Z})$ とおけ $[k_0;k_1,k_2,\cdots,k_{m+1}]=rac{k_0q+p}{q}$ でこれは有理数. より n = m + 1 のときも成立.

i)ii) より示された.

つまりxの連分数展開が有限ならxは有理数.

対偶を取り無理数の連分数展開は無限.

(おまけ)

有理数の連分数展開が有限の証明

 $p \in \mathbb{Z}, q \in \mathbb{N} - \{0\}$ に対し $\frac{p}{q}$ の連分数展開が有限であることを q に関する数学的帰納法で示す.

i) q=1 のとき

 $\frac{p}{a}=p$ で連分数展開は [p;] より成立.

ii) $q=1,\cdots,m$ で成立すると仮定する.

p が m+1 の倍数のとき $\frac{p}{m+1}=[\frac{p}{m+1};]$

そうでないとき p=(m+1)a+b とおける. $(a \in \mathbb{Z}, b=1, \cdots, m)$

$$\frac{p}{m+1} = a + \frac{1}{\frac{m+1}{h}}$$

帰納法の仮定から $\frac{m+1}{b}=[k_1;k_2,\cdots,k_n]$ とおける.

 $\frac{p}{m+1} = [a; k_1, k_2, \cdots, k_n]$ で連分数展開は有限.

より q = m + 1 も成立.

i)ii) より有理数の連分数展開が有限

10)

$$\sqrt{2} - 1 = \frac{1}{2 + (\sqrt{2} - 1)}$$

より $[a_0;a_1,\cdots]$ を $\sqrt{2}-1$ の連分数展開とすると $a_0=0,a_1=2,a_n=a_{n-1}(n\geqq 2)$

つまり
$$a_n = \begin{cases} 0 & n=0\\ 2 & n \neq 0 \end{cases}$$

より $\sqrt{2}$ の連分数展開は $\begin{cases} 1 & n=0 \\ 2 & n \neq 0 \end{cases}$

$$\sqrt{3} - 1 = \frac{1}{1 + \frac{\sqrt{3} - 1}{2}}, \frac{\sqrt{3} - 1}{2} = \frac{1}{2 + (\sqrt{3} - 1)}$$

より b_n, c_n をそれぞれ $\sqrt{3}-1, rac{\sqrt{3}-1}{2}$ の連分数展開とすると

$$b_n = \begin{cases} 1 & n = 1 \\ c_{n-1} & n > 1 \end{cases}, c_n = \begin{cases} 2 & n = 1 \\ b_{n-1} & n > 1 \end{cases}$$

より $b_1=1, b_2=2, b_n=b_{n-2}(n>2)$ で $\sqrt{3}$ の連分数展開は $\begin{cases} 1 & n=0\\ 1 & n$ が正の奇数 2 & n が正の偶数

$$\sqrt{5} - 2 = \frac{1}{4 + (\sqrt{5} - 2)}$$

より d_n を $\sqrt{5}-2$ の連分数展開とすると $d_n=egin{cases} 4 & n=1\\ d_{n-1} & n>1 \end{cases}$

つまり
$$d_n=4(n>0)$$
 で $\sqrt{5}$ の連分数展開は $\begin{cases} 2 & n=0\\ 4 & n\geq 0 \end{cases}$

$$\sqrt{6} - 2 = \frac{1}{2 + \frac{\sqrt{6} - 2}{2}}, \frac{\sqrt{6} - 2}{2} = \frac{1}{4 + (\sqrt{6} - 2)}$$

より e_n, f_n を $\sqrt{6} - 2, \frac{\sqrt{6} - 2}{2}$ の連分数展開とすると

$$e_n = \begin{cases} 2 & n=1\\ f_{n-1} & n>1 \end{cases}, f_n = \begin{cases} 4 & n=1\\ e_{n-1} & n>1 \end{cases}$$

より
$$e_1=2, e_2=4, e_n=e_{n-2}(n>2)$$
 で $\sqrt{6}$ の連分数展開は
$$\begin{cases} 2 & n=0\\ 2 & n$$
 が正の奇数 $4 & n$ が正の偶数

$$\sqrt{7} - 2 = \frac{1}{1 + \frac{\sqrt{7} - 1}{3}}, \frac{\sqrt{7} - 1}{3} = \frac{1}{1 + \frac{\sqrt{7} - 1}{2}}, \frac{\sqrt{7} - 1}{2} = \frac{1}{1 + \frac{\sqrt{7} - 2}{3}}, \frac{\sqrt{7} - 2}{3} = \frac{1}{4 + (\sqrt{7} - 2)}$$

より g_n,h_n,k_n,l_n を $\sqrt{7}-2,rac{\sqrt{7}-1}{3},rac{\sqrt{7}-1}{2},rac{\sqrt{7}-2}{3}$ の連分数展開とすると

$$g_n = \begin{cases} 1 & n = 1 \\ h_{n-1} & n > 1 \end{cases}, h_n = \begin{cases} 1 & n = 1 \\ k_{n-1} & n > 1 \end{cases}, k_n = \begin{cases} 1 & n = 1 \\ l_{n-1} & n > 1 \end{cases}, l_n = \begin{cases} 4 & n = 1 \\ g_{n-1} & n > 1 \end{cases}$$

より
$$g_1=1,g_2=1,g_3=1,g_4=4,g_n=g_{n-4}(n>4)$$
 で $\sqrt{7}$ の連分数展開は
$$\begin{cases} 2&n=0\\ 1&n$$
 が正で 4 の倍数でない $4&n$ が正で 4 の倍数

11)

成り立たない有理数が存在するとしそれを a とする. $\epsilon(>0)$ が存在し $x\in\mathbb{R}$ に対し $|x-a|<\epsilon$ なら $x\in\mathbb{Q}$ 例えば $\sqrt{2}$ は無理数なので無理数は存在し $p(\in\mathbb{R})$ を無理数としてもいい.

 \mathbb{Q} は \mathbb{R} で稠密なので $|q-p| < \epsilon$ を満たす $q \in \mathbb{Q}$ が存在.

 $|(a+q-p)-a|=|q-p|<\epsilon$ なので a+q-p は有理数.a,q は有理数で有理数は加算について閉じているので p も有理数となり矛盾. より背理法から示された.

$\S 4 \mathbb{R}^n \succeq \mathbb{C}$

1)

i) を満たすことを言う.

 $A,B \in \mathbb{R}^n$ に対し $B-A \in \mathbb{R}^n$ が唯一定まることを言えばいいが \mathbb{R}^n が加群であることから明らか.

ii) を満たすことを言う.

 $a,A\in\mathbb{R}^n$ に対し B-A=a を満たす $B\in\mathbb{R}^n$ が唯一存在することを言えばいい.B=A+a のときのみ成立するので ii) も満たす.

iii) を満たすことを言う.

 $A, B, C \in \mathbb{R}^n$ に対し (B - A) + (C - B) = C - A なので成立.

以上より示された.

2)

 $x, y \in \mathbb{R}^n$ に対し

$$|g(x) - g(y)| = |(f(x) - f(0)) - (f(y) - f(0))| = |f(x) - f(y)| = |x - y|$$
$$|g(x)| = |f(x) - f(0)| = |x - 0| = |x|$$
$$|g(y)| = |f(y) - f(0)| = |y - 0| = |y|$$

(4.15) より

$$|g(x) - g(y)|^2 = |g(x)|^2 - 2(g(x)|g(y)) + |g(y)|^2$$
$$|x - y|^2 = |x|^2 - 2(x|y) + |y|^2$$

以上より

$$-2(g(x)|g(y)) = -2(x|y) \Leftrightarrow (g(x)|g(y)) = (x|y)$$

(g(x)|g(y))=(x|y) と命題 4.2 を用いると $x,y\in\mathbb{R}^n$ に対し

$$\begin{split} &(g(x+y)-g(x)-g(y)|g(x+y)-g(x)-g(y))\\ =&(g(x+y)|g(x+y))+(g(x)|g(x))+(g(y)|g(y))-2(g(x)|g(x+y))-2(g(y)|g(x+y))+2(g(x)|g(y))\\ =&(x+y|x+y)+(x|x)+(y|y)-2(x|x+y)-2(y|x+y)+2(x|y)\\ =&((x+y)-x-y|(x+y)-x-y)=(0|0)=0 \end{split}$$

より命題
$$4.2$$
 4) より $g(x+y)-g(x)-g(y)=0$ つまり $g(x+y)=g(x)+g(y)$
$$(g(x)|g(y))=(x|y)$$
 と命題 4.2 を用いると $x\in\mathbb{R}^n, a\in\mathbb{R}$ に対し
$$(g(ax)-ag(x)|g(ax)-ag(x))$$

$$=(g(ax)|g(ax))+a^2(g(x)|g(x))-2a(g(x)|g(ax))$$

$$=(ax|ax)+a^2(x|x)-2a(x|ax)=(a^2+a^2-2a^2)(x|x)=0(x|x)=0$$

より命題 4.2 4) より g(ax)-ag(x)=0 つまり g(ax)=ag(x) $e_i(\in\mathbb{R}^n)$ を $i=1,\cdots,n$ で以下のように定義する.

$$e_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

 $x (\in \mathbb{R}^n)$ は

$$x = \sum_{i=1}^{n} x_i e_i$$

なので g(x+y) = g(x) + g(y), g(ax) = ag(x) を用いて

$$g(x) = \sum_{i=1}^{n} x_i g(e_i)$$

 $A \in \mathbb{R}^{n \times n}$ を以下のように定義する.

$$A_{ij} = g(e_i)_i \ (i = 1, \cdots, n, j = 1, \cdots, n)$$

以下が $j=1,\cdots,n$ で成り立つ.

$$(Ax)_j = \sum_{i=1}^n A_{ji} x_i = \sum_{i=1}^n x_i g(e_i)_j = g(x)_j$$

より Ax = g(x) また

$$(A^t A)_{ij} = \sum_{k=1}^n A_{ki} A_{kj} = \sum_{k=1}^n g(e_i)_k g(e_j)_k = (g(e_i)|g(e_j)) = (e_i|e_j)$$

ここで
$$(e_i|e_j) =$$

$$\begin{cases} 1 & i=j \\ 0 & i \neq j \end{cases}$$
 なので $(A^tA)_{ij} = \begin{cases} 1 & i=j \\ 0 & i \neq j \end{cases}$

つまり $A^t A = I_n$ で A は直交行列

さらに f(x) = g(x) + f(0) = Ax + f(0) で b = f(0) とすると f(x) = Ax + b で示された.

逆に $A(\in \mathbb{R}^{n \times n})$ が直交行列で $b \in \mathbb{R}^n$ のとき f(x) = Ax + b とすると $x, y \in \mathbb{R}^n$ に対し

$$|f(x)-f(y)|^2 = |(Ax+b)-(Ay+b)|^2 = |A(x-y)|^2 = (x-y)^t A^t A(x-y) = (x-y)^t I_n(x-y) = (x-y)^t (x-y) = |x-y|^2 I_n(x-y) = |$$

つまり |f(x) - f(y)| = |x - y| で f は合同変換.

3)

 x_1, \dots, x_n が 1 次独立なので $|x_1| \neq 0, |y_i| \neq 0$ $(i = 2, \dots, n)$ に注意する.

 $1 \le i \le k, 1 \le j \le k$ で $(u_i|u_j) = \delta_{i,j}$ が $k = 1, \dots, n$ で成り立つことを k に関する数学的帰納法で示す.

i) k = 1

$$(u_1|u_1) = \frac{(x_1|x_1)}{|x_1|^2} = 1$$

より成立.

ii) k = l での成立を仮定する. $(1 \le l \le n - 1)$

 $i=1,\cdots,l$ ${\mathfrak C}$

$$(y_{l+1}|u_i) = (x_{l+1}|u_i) - \sum_{i=1}^{l} (x_{l+1}|u_i)(u_j|u_i) = (x_{l+1}|u_i) - \sum_{i=1}^{l} (x_{l+1}|u_i)\delta_{ji} = (x_{l+1}|u_i) - (x_{l+1}|u_i) = 0$$

より
$$(u_{l+1}|u_i) = \frac{(y_{l+1}|u_i)}{|y_{l+1}|} = 0 = \delta_{l+1,i}$$

また
$$(u_i|u_{l+1}) = (u_{l+1}|u_i) = 0 = \delta_{i,l+1}$$

$$\sharp \, \not \sim (u_{l+1}|u_{l+1}) = \frac{(y_{l+1},y_{l+1})}{|y_{l+1}|^2} = 1 = \delta_{l+1,l+1}$$

帰納法の仮定と合わせて $1 \le i \le l+1, 1 \le j \le l+1$ で $(u_i|u_i) = \delta_{i,j}$

以上より成立. k = n として示された.

4)

 $x,y \in \mathbb{R}^n$ に対し

$$|S_H(x) - S_H(y)|^2 = |x - y - 2\frac{(x - y|a)}{(a|a)}a|^2$$

$$= |x - y|^2 - 4\frac{(x - y|a)}{(a|a)}(x - y|a) + 4\frac{(x - y|a)^2}{(a|a)^2}(a|a)$$

$$= |x - y|^2 - 4\frac{(x - y|a)^2}{|a|^2} + 4\frac{(x - y|a)^2}{|a|^2} = |x - y|^2$$

より S_H は \mathbb{R}^n の合同変換.

 $x \in \mathbb{R}^n$ に対し

$$(S_H(x)|a) = (x|a) - 2((x|a) - c) = 2c - (x|a)$$

よって

$$S_H^2(x) = S_H(x) - 2((S_H(x)|a) - c)\frac{a}{(a|a)} = x - 2((x|a) - c)\frac{a}{(a|a)} - 2(c - (x|a))\frac{a}{(a|a)} = x$$

つまり $S_H^2 = 1$

 $5) x \in \mathbb{R}^n$ に対して

$$d(x,a) = d(x,b) \Leftrightarrow |x - a|^2 = |x - b|^2$$

$$\Leftrightarrow |x|^2 - 2(x|a) + |a|^2 = |x|^2 - 2(x|b) + |b|^2$$

$$\Leftrightarrow (x|a) - (x|b) - \frac{|a|^2 - |b|^2}{2} = 0$$

$$\Leftrightarrow (a - b|x - \frac{a + b}{2}) = 0$$

4) $\mathcal{C} a \to a - b, c \to \frac{|a|^2 - |b|^2}{2} \succeq \cup \mathcal{C}$

$$S_H(a) = a - 2\left((a|a - b) - \frac{|a|^2 - |b|^2}{2}\right)\frac{a - b}{(a - b|a - b)} = a - 2\left(a - b|\frac{a - b}{2}\right)\frac{a - b}{(a - b|a - b)} = a - (a - b) = b$$

$$6)$$

 $x,y\in\mathbb{R}^n$ に対し $z\in\mathbb{R}^n$ を変数と見て d(z,x)=d(z,y) は xy の垂直二等分超平面でこれを H とすると |x|=|y| より

$$S_H(0) = 0 - 2\left((0|x-y) - \frac{|x|^2 - |y|^2}{2}\right)\frac{x-y}{(x-y|x-y)} = 0 - 0 = 0$$

である.4) より S_H は合同変換なので 2) より直交行列 $A \in \mathbb{R}^{n \times n}$ が存在し $Az + S_H(0) = S_H(z)$ つまり $Az = S_H(z)$. また 5) より $Ax = S_H(x) = y$

|b-a| = |b'-a'| なので A(b-a) = b'-a' を満たす直交行列 A が存在する.

$$q(x) = Ax - Aa + a'$$
 とすると q は合同変換で $q(a) = a', q(b) = b'$

g(c) = c' なら g が条件を満たす. $g(c) \neq c$ のときを考える.

H' を c'g(c) の垂直二等分超平面とする g は合同変換なので

$$|g(c) - a'| = |c - a| = |c' - a'|$$

$$|g(c) - b'| = |c - b| = |c' - b'|$$

$$|g(c)|^2 - 2(g(c)|a') + |a'|^2 = |c'|^2 - 2(c'|a') + |a'|^2 \Leftrightarrow (c' - g(c)|a' - \frac{c' + g(c)}{2}) = 0$$

$$S'_H(a') = a' - 2(c' - g(c)|a' - \frac{c' + g(c)}{2})\frac{a}{(a|a)} = a'$$
 で同様に $S'_H(b') = b'$ また 5) より $S'_H(g(c)) = c'$ 以上より $S'_H(g(a)) = a', S'_H(g(b)) = b', S'_H(g(c)) = c'$ S'_H, g は合同変換なので $x, y \in \mathbb{R}^n$ で

つまり $S'_{H}(g(x))$ は合同変換で示された.

7)

 \mathbb{R}^n の独立な n+1 個の点から等距離にある点が存在することを示す.

n+1 個の点を a_1, \cdots, a_{n+1} とする. $x \in \mathbb{R}^n$ がこれらから等距離にある条件は

$$|x - a_i| = |x - a_{i+1}| \Leftrightarrow |x - a_i|^2 = |x - a_{i+1}|^2$$

$$\Leftrightarrow |x|^2 - 2(x|a_i) + |a_i|^2 = |x|^2 - 2(x|a_{i+1}) + |a_{i+1}|^2$$

$$\Leftrightarrow (x|a_i - a_{i+1}) = \frac{|a_i|^2 - |a_{i+1}|^2}{2}$$

 $|S'_{H}(g(x)) - S'_{H}(g(y)) = |g(x) - g(y)| = |x - y|$

が $i=1,\dots,n$ で成り立てばいい.

つまり $A \in \mathbb{R}^{n \times n}, c \in \mathbb{R}^n$ を以下のように定義して

$$A_{ij} = (a_i - a_{i+1})_j, c_i = \frac{|a_i|^2 - |a_{i+1}|^2}{2}$$

Ax=c であればいい. $\det A\neq 0$ なら A^{-1} が存在し $x=A^{-1}c$ に決まる. $\det A=0$ なら Ay=0 となる $y\in\mathbb{R}^n$ が存在するがこれは

$$(a_1|y) = \dots = (a_{n+1}|y)$$

を意味する. つまり a_1, \cdots, a_{n+1} は以下の超平面上の点.

$$\{z \in \mathbb{R}^n | (z|y) = (a_1|y)\}$$

よって仮定に矛盾する.以上より示された.

8)

 $0 \, b, c$ は等距離にあるので

$$(c-b|h-a) = (c-b|c+b) = |c|^2 - |b|^2 = 0$$

つまり bc は ah と直交する.

同様に ab は ch と ca は bh と直交する.

9)

8) と同様に $\triangle abc$ を平行移動して o=0 とする.r を正の実数として |a|=|b|=|c|=r とおける.

8) $\sharp b$) h = a + b + c

 $d = \frac{o+h}{2} = \frac{a+b+c}{2}$ とする.

$$|d - \frac{b+c}{2}| = |\frac{a}{2}| = \frac{1}{2}|a| = \frac{r}{2}$$

同様にして $|d-\frac{c+a}{2}|=|d-\frac{a+b}{2}|=\frac{r}{2}$

a から bc に b から ca に c から ab に下ろした垂線の足をそれぞれ a',b',c' とする. a' は直線 bc 上の点なので $t \in \mathbb{R}$ として a' = (1-t)b + tc とおける.aa' と bc は直交するので

$$(c-b|(1-t)b + tc - a) = 0 \Leftrightarrow t = \frac{(c-b|a-b)}{|c-b|^2}$$

より

$$\begin{split} |d-a'|^2 &= |\frac{a+b+c}{2} - (1-t)b - tc|^2 \\ &= \frac{1}{4}|a + (2t-1)b + (1-2t)c|^2 \\ &= \frac{1}{4}(|a|^2 + (2t-1)^2|c-b|^2 - (4t-2)(a|c-b)) \\ &= \frac{1}{4}(|a|^2 + (2t-1)(|c-b|^2(2t-1) - 2(a|c-b))) \\ &= \frac{1}{4}(|a|^2 + (2t-1)(2|c-b|^2t - (c-b|c-b+2a))) \\ &= \frac{1}{4}(|a|^2 + (2t-1)(2|c-b|^2t - (c-b|2a-2b))) \ (\because |b| = |c| \Leftrightarrow (c-b|c+b) = 0) \\ &= \frac{|a|^2}{4} = \frac{r^2}{4} \end{split}$$

より $|d-a'| = \frac{r}{2}$ で同様にして $|d-b'| = |d-c'| = \frac{r}{2}$ また

$$|d - \frac{h+a}{2}| = \frac{|a|}{2} = \frac{r}{2}$$

同様にして $|d - \frac{h+b}{2}| = |d - \frac{h+c}{2}| = \frac{r}{2}$

以上より $\frac{a+b}{2}$, $\frac{b+c}{2}$, $\frac{c+a}{2}$, a', b', c', $\frac{h+a}{2}$, $\frac{h+b}{2}$, $\frac{h+c}{2}$ は d を中心とする半径 $\frac{r}{2}$ の円周上.

10)

一般に $B(a,r) \subset B(a',r')$ なら $r' \ge r + |a-a'|$ を示す.a = a' なら明らかなので $a \ne a'$ とする.

$$\begin{split} |a-(a+r\frac{a'-a}{|a'-a|})| &= |r\frac{a'-a}{|a'-a|}| = r$$
 なので $a+r\frac{a'-a}{|a'-a|} \in B(a,r)$ 仮定より $a+r\frac{a'-a}{|a'-a|} \in B(a',r')$ で $|a'-(a+r\frac{a'-a}{|a'-a|})| \le r'$ が成立.

$$|a' - (a + r\frac{a'-a}{|a'-a|})| = |\frac{(a'-a)}{|a'-a|}(r + |a'-a|)| = r + |a'-a|$$

より $r' \ge r + |a' - a|$ で示された.

 $B_i = (a_i, r_i) \$ とおける.

 $B_{i+1}\subset B_i$ なので $r_i\geq r_{i+1}+|a_{i+1}-a_i|\geq r_{i+1}$ で r_i は単調減少. また $r_i\geq 0$ より r_i は下に有界. より r_i はrに収束するとしていい.

 r_i は収束列なのでコーシー列でもあり $\epsilon > 0$ に対して $j,k \ge M$ で $|r_i - r_k| < \epsilon$ となる $M \in \mathbb{N}$ が存在.

 $j \geq k \geq M \ \mathfrak{C} \ B_i \subset B_k \ \mathfrak{C}$

$$r_k \geq r_i + |a_i - a_k|$$

より

$$|a_j - a_k| \le r_k - r_j < \epsilon$$

同様にして
$$k \ge j \ge M$$
 で $|a_j - a_k| < \epsilon$
以上より $j, k \ge M$ で $|a_j - a_k| < \epsilon$

より a_i はコーシー列で収束列でもありaに収束するとしていい.

$$\bigcap_{m\in\mathbb{N}} B_m = B(a,r)$$

を示す.

$$|x-a|>r$$
 とする。
$$j\geqq M\ \colone{colored} |a_j-a|<rac{|x-a|-r}{2} \\ j\geqq M'\ \colone{colored} |r_j-r|<rac{|x-a|-r}{2}$$
となる $M,M'\in\mathbb{N}$ が存在。 $j\geqq max(M,M')$ で

$$|x - a_j| \ge |x - a| - |a - a_j| > |x - a| - \frac{|x - a| - r}{2} = r + \frac{|x - a| - r}{2} > r + |r_j - r| \ge r_j$$

より
$$x \notin B_j$$
 で特に $x \notin \bigcap_{m \in \mathbb{N}} B_m$ つまり $\bigcap_{m \in \mathbb{N}} B_m \subset B(a,r)$ $|x-a| < r$ とする. $j \ge M$ で $|a_j-a| < r-|x-a|$ となる $M \in \mathbb{N}$ が存在する. $j \ge M$ で

$$|x - a_i| \le |x - a| - |a - a_i| < r \le r_i$$

つまり $x \in B_i$

$$B_0 \supset B_1 \supset \cdots \supset B_M$$
 なので $j \in \mathbb{N}$ で常に $x \in B_j$ より $x \in \bigcap_{m \in \mathbb{N}} B_m$ $\{x \in \mathbb{R}^n | |x - a| < r\} \subset \bigcap_{m \in \mathbb{N}} B_m$ も閉集合.
$$B_i \text{ は閉集合なので} \bigcap_{m \in \mathbb{N}} B_m \text{ も閉集合.}$$
 より $\overline{\{x \in \mathbb{R}^n | |x - a| < r\}} = B(a, r) \subset \bigcap_{m \in \mathbb{N}} B_m$

$$B_i$$
 は閉集合なので $\bigcap B_m$ も閉集合.

より
$$\overline{\{x \in \mathbb{R}^n | |x-a| < r\}} = B(a,r) \subset \bigcap_{m \in \mathbb{N}} B_m$$

より
$$B(a,r) = \bigcap_{m \in \mathbb{N}} B_m$$

で
$$\bigcap_{m \in \mathbb{N}} B_m$$
 は閉球.

 \mathbb{R}^4 は加群なので \mathbb{H} も (R1) - (R4) を満たし $0_{\mathbb{H}} = (0,0,0,0)$.

$$(a_1, a_2, a_3, a_4)(b_1, b_2, b_3, b_4) = (a_1b_1 - a_2b_2 - a_3b_3 - a_4b_4, a_1b_2 + a_2b_1 + a_3b_4 - a_4b_3, a_1b_3 + a_3b_1 + a_4b_2 - a_2b_4, a_1b_4 + a_4b_1 + a_2b_3 - a_3b_2)$$

$$(b_1, b_2, b_3, b_4)(c_1, c_2, c_3, c_4)$$

$$= (b_1c_1 - b_2c_2 - b_3c_3 - b_4c_4, b_1c_2 + b_2c_1 + b_3c_4 - b_4c_3, b_1c_3 + b_3c_1 + b_4c_2 - b_2c_4, b_1c_4 + b_4c_1 + b_2c_3 - b_3c_2)$$

```
(a_1b_1 - a_2b_2 - a_3b_3 - a_4b_4)c_1 - (a_1b_2 + a_2b_1 + a_3b_4 - a_4b_3)c_2 - (a_1b_3 + a_3b_1 + a_4b_2 - a_2b_4)c_3 - (a_1b_4 + a_2b_1 + a_3b_2 - a_3b_3 - a_4b_4)c_3 - (a_1b_2 + a_2b_1 + a_3b_4 - a_4b_3)c_2 - (a_1b_3 + a_3b_1 + a_4b_2 - a_2b_4)c_3 - (a_1b_4 + a_3b_4 - a_4b_3)c_2 - (a_1b_3 + a_3b_1 + a_4b_2 - a_2b_4)c_3 - (a_1b_4 + a_3b_4 - a_4b_3)c_3 - (a_1b_3 + a_3b_4 - a_3b_4 - a_4b_3)c_3 - (a_1b_3 + a_3b_4 - a_3b_4 - a_3b_4)c_3 - (a_1b_3 + a_3b_4 - a_3b_4)c_3 - (a_1b_3 + a_3b_4 - a_3b_4)c_3 - (a_1b_4 + a_3b_4 - a_3b_4)c_3 - (a
 a_4b_1 + a_2b_3 - a_3b_2)c_4
                          = a_1(b_1c_1 - b_2c_2 - b_3c_3 - b_4c_4) - a_2(b_2c_1 + b_1c_2 - b_4c_3 + b_3c_4) - a_3(b_3c_1 + b_4c_2 + b_1c_3 - b_2c_4) - a_4(b_4c_1 - b_4c_2 + b_1c_3 - b_4c_4) - a_4(b_4c_1 - b_4c_2 + b_4c_3 - b_4c_4) - a_4(b_4c_1 - b_4c_2 + b_4c_4) - a_4(b_4c_1 - b_4c_4 + b_4c_4) - a_4(b_4c_1 - b_4c_
 b_3c_2 + b_2c_3 + b_1c_4
                          = a_1(b_1c_1 - b_2c_2 - b_3c_3 - b_4c_4) - a_2(b_1c_2 + b_2c_1 + b_3c_4 - b_4c_3) - a_3(b_1c_3 + b_3c_1 + b_4c_2 - b_2c_4) - a_4(b_1c_4 + b_3c_4 - b_4c_3) - a_3(b_1c_3 + b_3c_1 + b_4c_2 - b_2c_4) - a_4(b_1c_4 + b_3c_4 - b_4c_3) - a_3(b_1c_3 + b_3c_1 + b_4c_2 - b_2c_4) - a_4(b_1c_4 + b_4c_3) - a_3(b_1c_3 + b_3c_1 + b_4c_2 - b_2c_4) - a_4(b_1c_4 + b_4c_3) - a_3(b_1c_3 + b_3c_1 + b_4c_2 - b_2c_4) - a_4(b_1c_4 + b_4c_3) - a_4(b_1c_4 + b_4c_4) - a_4(b_1c_4 +
 b_4c_1 + b_2c_3 - b_3c_2
                          で (a_1, a_2, a_3, a_4)((b_1, b_2, b_3, b_4)(c_1, c_2, c_3, c_4)) の第 1 成分と等しい.
                          より ((a_1, a_2, a_3, a_4)(b_1, b_2, b_3, b_4))(c_1, c_2, c_3, c_4) の第 2 成分は
                          (a_1b_1 - a_2b_2 - a_3b_3 - a_4b_4)c_2 + (a_1b_2 + a_2b_1 + a_3b_4 - a_4b_3)c_1 + (a_1b_3 + a_3b_1 + a_4b_2 - a_2b_4)c_4 - (a_1b_4 + a_2b_1 + a_3b_1 + a_4b_2 - a_2b_4)c_4 - (a_1b_4 + a_2b_1 + a_3b_1 + a_4b_2 - a_2b_4)c_4 - (a_1b_2 + a_2b_1 + a_3b_1 - a_4b_3)c_1 + (a_1b_3 + a_3b_1 + a_4b_2 - a_2b_4)c_4 - (a_1b_4 + a_2b_1 + a_3b_1 - a_4b_3)c_1 + (a_1b_3 + a_3b_1 + a_4b_2 - a_2b_4)c_4 - (a_1b_4 + a_2b_1 + a_3b_1 - a_4b_3)c_1 + (a_1b_3 + a_3b_1 + a_4b_2 - a_2b_4)c_4 - (a_1b_4 + a_2b_1 + a_3b_1 - a_4b_3)c_1 + (a_1b_3 + a_3b_1 + a_4b_2 - a_2b_4)c_4 - (a_1b_4 + a_2b_1 + a_3b_1 - a_4b_3)c_1 + (a_1b_3 + a_3b_1 + a_4b_2 - a_2b_4)c_4 - (a_1b_3 + a_3b_1 + a_3b_2 - a_3b_4)c_4 - (a_1b_3 + a_3b_1 + a_3b_2 - a_3b_3)c_4 + (a_1b_3 + a_3b_1 + a_3b_2 - a_3b_3)c_4 + (a_1b_3 + a_3b_3 - a_3b_3)c_5 + (a_1b_3 + a_3
 a_4b_1 + a_2b_3 - a_3b_2)c_3
                          = a_1(b_1c_2 + b_2c_1 + b_3c_4 - b_4c_3) - a_2(b_2c_2 - b_1c_1 + b_4c_4 + b_3c_3) - a_3(b_3c_2 - b_4c_1 - b_1c_4 - b_2c_3) - a_4(b_4c_2 + b_3c_3) - a_4(b_4c_2 + b_3c_3) - a_4(b_4c_3 + b_3c_3) - a_4(b_5c_3 + b_3c_3) - a_5(b_5c_3
b_3c_1 - b_2c_4 + b_1c_3
                          = a_1(b_1c_2 + b_2c_1 + b_3c_4 - b_4c_3) + a_2(b_1c_1 - b_2c_2 - b_3c_3 - b_4c_4) + a_3(b_1c_4 + b_4c_1 + b_2c_3 - b_3c_2) - a_4(b_1c_3 + b_4c_3) + a_4(b_1c_3
 b_3c_1 + b_4c_2 - b_2c_4
                          で (a_1, a_2, a_3, a_4)((b_1, b_2, b_3, b_4)(c_1, c_2, c_3, c_4)) の第 2 成分と等しい.
                          より ((a_1, a_2, a_3, a_4)(b_1, b_2, b_3, b_4))(c_1, c_2, c_3, c_4) の第 3 成分は
                         (a_1b_1 - a_2b_2 - a_3b_3 - a_4b_4)c_3 + (a_1b_3 + a_3b_1 + a_4b_2 - a_2b_4)c_1 + (a_1b_4 + a_4b_1 + a_2b_3 - a_3b_2)c_2 - (a_1b_2 + a_4b_1 + a_4
 a_2b_1 + a_3b_4 - a_4b_3)c_4
                          =a_1(b_1c_3+b_3c_1+b_4c_2-b_2c_4)-a_2(b_2c_3+b_4c_1-b_3c_2+b_1c_4)-a_3(b_3c_3-b_1c_1+b_2c_2+b_4c_4)-a_4(b_4c_3-b_3c_1+b_4c_2-b_2c_4)-a_4(b_4c_3-b_3c_1+b_4c_2-b_2c_4)-a_4(b_4c_3-b_3c_2+b_1c_4)-a_5(b_4c_3-b_3c_2+b_1c_4)-a_5(b_4c_3-b_3c_2+b_1c_4)-a_5(b_4c_3-b_3c_2+b_1c_4)-a_5(b_4c_3-b_3c_3-b_1c_1+b_2c_2+b_4c_4)-a_4(b_4c_3-b_3c_2+b_1c_4)-a_5(b_4c_3-b_3c_3-b_1c_1+b_2c_2+b_4c_4)-a_5(b_4c_3-b_3c_3-b_1c_1+b_2c_2+b_4c_4)-a_5(b_4c_3-b_3c_3-b_1c_1+b_2c_2+b_4c_4)-a_5(b_4c_3-b_3c_3-b_1c_1+b_2c_2+b_4c_4)-a_5(b_4c_3-b_3c_3-b_1c_1+b_2c_2+b_4c_4)-a_5(b_4c_3-b_3c_3-b_1c_1+b_2c_2+b_4c_4)-a_5(b_4c_3-b_3c_3-b_1c_1+b_2c_2+b_4c_4)-a_5(b_4c_3-b_3c_3-b_1c_1+b_2c_2+b_4c_4)-a_5(b_4c_3-b_3c_3-b_1c_1+b_2c_2+b_4c_4)-a_5(b_4c_3-b_3c_3-b_1c_1+b_2c_2+b_4c_4)-a_5(b_4c_3-b_3c_3-b_1c_1+b_2c_2+b_4c_4)-a_5(b_4c_3-b_3c_3-b_1c_1+b_2c_2+b_4c_4)-a_5(b_4c_3-b_3c_3-b_1c_1+b_2c_2+b_4c_4)-a_5(b_4c_3-b_3c_3-b_1c_1+b_2c_2+b_4c_4)-a_5(b_5c_3-b_3c_3-b_1c_1+b_3c_2+b_4c_4)-a_5(b_5c_3-b_3c_3-b_1c_3-b_3c_3-b_1c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_3-b_3c_
 b_2c_1 - b_1c_2 - b_3c_4
                          =a_1(b_1c_3+b_3c_1+b_4c_2-b_2c_4)+a_3(b_1c_1-b_2c_2-b_3c_3-b_4c_4)+a_4(b_1c_2+b_2c_1+b_3c_4-b_4c_3)-a_2(b_1c_4+b_3c_4-b_4c_3)+a_2(b_1c_4+b_3c_4-b_4c_3)+a_3(b_1c_4-b_2c_2-b_3c_3-b_4c_4)+a_4(b_1c_2+b_2c_1+b_3c_4-b_4c_3)-a_2(b_1c_4+b_3c_4-b_4c_3)+a_3(b_1c_4-b_2c_2-b_3c_3-b_4c_4)+a_4(b_1c_2+b_2c_1+b_3c_4-b_4c_3)-a_2(b_1c_4+b_3c_4-b_4c_3)+a_3(b_1c_4-b_4c_3-b_4c_3)+a_4(b_1c_4+b_4c_3-b_4c_3)+a_4(b_1c_4+b_4c_3-b_4c_3)+a_4(b_1c_4+b_4c_3-b_4c_3)+a_4(b_1c_4+b_4c_3-b_4c_3)+a_4(b_1c_4+b_4c_3-b_4c_3)+a_4(b_1c_4+b_4c_3-b_4c_3)+a_4(b_1c_4+b_4c_3-b_4c_3)+a_4(b_1c_4+b_4c_3-b_4c_3)+a_4(b_1c_4+b_4c_3-b_4c_3)+a_4(b_1c_4+b_4c_3-b_4c_3)+a_4(b_1c_4+b_4c_3-b_4c_3)+a_4(b_1c_4+b_4c_3-b_4c_3)+a_4(b_1c_4+b_4c_3-b_4c_3)+a_4(b_1c_4+b_4c_3-b_4c_3)+a_4(b_1c_4+b_4c_3-b_4c_3)+a_4(b_1c_4+b_4c_3-b_4c_3)+a_4(b_1c_4+b_4c_3-b_4c_3)+a_4(b_1c_4+b_4c_3-b_4c_3)+a_4(b_1c_4+b_4c_3-b_4c_3-b_4c_3)+a_4(b_1c_4+b_4c_3-b_4c_3-b_4c_3)+a_4(b_1c_4+b_4c_3-b_4c_3-b_4c_3-b_4c_3)+a_4(b_1c_4+b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_3-b_4c_
 b_4c_1 + b_2c_3 - b_3c_2
                          (a_1,a_2,a_3,a_4)((b_1,b_2,b_3,b_4)(c_1,c_2,c_3,c_4)) の第 3 成分と等しい.
                         ((a_1, a_2, a_3, a_4)(b_1, b_2, b_3, b_4))(c_1, c_2, c_3, c_4) の第 4 成分は
                          (a_1b_1 - a_2b_2 - a_3b_3 - a_4b_4)c_4 + (a_1b_4 + a_4b_1 + a_2b_3 - a_3b_2)c_1 + (a_1b_2 + a_2b_1 + a_3b_4 - a_4b_3)c_3 - (a_1b_3 + a_2b_1 + a_3b_2 - a_3b_3 - a_4b_4)c_4 + (a_1b_4 + a_4b_1 + a_2b_3 - a_3b_2)c_1 + (a_1b_2 + a_2b_1 + a_3b_4 - a_4b_3)c_3 - (a_1b_3 + a_2b_1 + a_3b_4 - a_4b_3)c_3 - (a_1b_3 + a_2b_1 + a_3b_4 - a_4b_3)c_3 - (a_1b_3 + a_2b_1 + a_2b_1 + a_3b_4 - a_4b_3)c_3 - (a_1b_3 + a_2b_1 + a_2b_1 + a_3b_4 - a_4b_3)c_3 - (a_1b_3 + a_2b_1 + a_2b
 a_3b_1 + a_4b_2 - a_2b_4)c_2
                          =a_1(b_1c_4+b_4c_1+b_2c_3-b_3c_2)-a_2(b_2c_4-b_3c_1-b_1c_3-b_4c_2)-a_3(b_3c_4+b_2c_1-b_4c_3+b_1c_2)-a_4(b_4c_4-b_4c_1+b_4c_3+b_1c_2)-a_4(b_4c_4-b_4c_1+b_4c_3+b_1c_2)-a_4(b_4c_4-b_4c_3+b_1c_2)-a_4(b_4c_4-b_4c_3+b_1c_3)-a_4(b_4c_4-b_4c_3+b_1c_3)-a_4(b_4c_4-b_4c_3+b_1c_3)-a_4(b_4c_4-b_4c_3+b_1c_3)-a_4(b_4c_4-b_4c_3+b_1c_3)-a_4(b_4c_4-b_4c_3+b_1c_3)-a_4(b_4c_4-b_4c_3+b_1c_3)-a_4(b_4c_4-b_4c_3+b_1c_3)-a_4(b_4c_4-b_4c_3+b_1c_3)-a_4(b_4c_4-b_4c_3+b_1c_3)-a_4(b_4c_4-b_4c_3+b_1c_3)-a_4(b_4c_4-b_4c_3+b_1c_3)-a_4(b_4c_4-b_4c_3+b_1c_3)-a_4(b_4c_4-b_4c_3+b_1c_3)-a_4(b_4c_4-b_4c_3+b_1c_3)-a_4(b_4c_4-b_4c_3+b_1c_3)-a_4(b_4c_4-b_4c_3+b_1c_3)-a_4(b_4c_4-b_4c_3+b_1c_3)-a_4(b_4c_4-b_4c_3+b_1c_3)-a_4(b_4c_4-b_4c_3+b_1c_3)-a_4(b_4c_4-b_4c_3+b_1c_3)-a_4(b_4c_4-b_4c_3+b_1c_3)-a_4(b_4c_4-b_4c_3+b_1c_3)-a_4(b_4c_4-b_4c_3+b_1c_3)-a_4(b_4c_4-b_4c_3+b_1c_3)-a_4(b_4c_4-b_4c_3+b_1c_3)-a_4(b_4c_4-b_4c_3+b_1c_3+b_1c_3)-a_4(b_4c_4-b_4c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_3+b_1c_
 b_1c_1 + b_3c_3 + b_2c_2
                          =a_1(b_1c_4+b_4c_1+b_2c_3-b_3c_2)+a_4(b_1c_1-b_2c_2-b_3c_3-b_4c_4)+a_2(b_1c_3+b_3c_1+b_4c_2-b_2c_4)-a_3(b_1c_2+b_4c_3-b_3c_4)+a_4(b_1c_3+b_4c_3-b_3c_4)+a_4(b_1c_3+b_4c_4-b_4c_4)+a_4(b_1c_3+b_4c_4-b_4c_4)+a_4(b_1c_3+b_4c_4-b_4c_4)+a_4(b_1c_3+b_4c_4-b_4c_4)+a_4(b_1c_3+b_4c_4-b_4c_4)+a_4(b_1c_3+b_4c_4-b_4c_4)+a_4(b_1c_3+b_4c_4-b_4c_4)+a_4(b_1c_3+b_4c_4-b_4c_4)+a_4(b_1c_3+b_4c_4-b_4c_4-b_4c_4)+a_4(b_1c_3+b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_4c_4-b_
 b_2c_1 + b_3c_4 - b_4c_3
                          で (a_1, a_2, a_3, a_4)((b_1, b_2, b_3, b_4)(c_1, c_2, c_3, c_4)) の第 4 成分と等しい.
                          以上より ((a_1,a_2,a_3,a_4)(b_1,b_2,b_3,b_4))(c_1,c_2,c_3,c_4) = (a_1,a_2,a_3,a_4)((b_1,b_2,b_3,b_4)(c_1,c_2,c_3,c_4)) で
 (R6) が成立.
                          また
                          (a_1, a_2, a_3, a_4)((b_1, b_2, b_3, b_4) + (c_1, c_2, c_3, c_4))
                          = (a_1, a_2, a_3, a_4)(b_1 + c_1, b_2 + c_2, b_3 + c_3, b_4 + c_4)
                          =(a_1b_1+a_1c_1-a_2b_2-a_2c_2-a_3b_3-a_3c_3-a_4b_4-a_4c_4,a_1b_2+a_1c_2+a_2b_1+a_2c_1+a_3b_4+a_3c_4-a_4b_3-a_4b_4-a_4c_4,a_1b_2+a_1b_2+a_2b_1+a_2b_1+a_2b_1+a_3b_4+a_3c_4-a_4b_3-a_4b_4-a_4c_4,a_1b_2+a_1b_2+a_2b_1+a_2b_1+a_3b_4+a_3c_4-a_4b_3-a_4b_4-a_4c_4,a_1b_2+a_1b_2+a_2b_1+a_2b_1+a_2b_1+a_3b_4+a_3c_4-a_4b_3-a_4b_4-a_4c_4,a_1b_2+a_1b_2+a_2b_1+a_2b_1+a_2b_1+a_3b_4+a_3c_4-a_4b_3-a_4b_4-a_4c_4,a_1b_2+a_1b_2+a_2b_1+a_2b_1+a_2b_1+a_3b_4+a_3c_4-a_4b_3-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_4-a_4b_
 a_4c_3, a_1b_3 + a_1c_3 + a_3b_1 + a_3c_1 + a_4b_2 + a_4c_2 - a_2b_4 - a_2c_4, a_1b_4 + a_1c_4 + a_4b_1 + a_4c_1 + a_2b_3 + a_2c_3 - a_3b_2 - a_3c_2)
                          =(a_1b_1-a_2b_2-a_3b_3-a_4b_4,a_1b_2+a_2b_1+a_3b_4-a_4b_3,a_1b_3+a_3b_1+a_4b_2-a_2b_4,a_1b_4+a_4b_1+a_2b_3-a_3b_2)+
 \left(a_{1}c_{1}-a_{2}c_{2}-a_{3}c_{3}-a_{4}c_{4},a_{1}c_{2}+a_{2}c_{1}+a_{3}c_{4}-a_{4}c_{3},a_{1}c_{3}+a_{3}c_{1}+a_{4}c_{2}-a_{2}c_{4},a_{1}c_{4}+a_{4}c_{1}+a_{2}c_{3}-a_{3}c_{2}\right)
```

 $(1,0,0,0) \neq (0,0,0,0)$ で (R10) は成立.

 $=(a_1^2+a_2^2+a_3^2+a_4^2,0,0,0)$

より $(a_1, a_2, a_3, a_4) \neq (0, 0, 0, 0)$ で

以上より示された.

12)

代数学の基本定理より $x \in \mathbb{C}, a_0, \dots, a_n \in \mathbb{R}$ で $a_n \neq 0$ として

$$\sum_{k=0}^{n} a_k x^k = a_n(x - \alpha_1) \cdots (x - \alpha_n)$$

となる $\alpha_1, \dots, \alpha_n \in \mathbb{C}$ が存在する.

$$f(x) = \sum_{k=0}^{n} a_k x^k$$

とすると $k \in \mathbb{N}, p, q \in \mathbb{R}$ で $f^{(k)}(p+qi) = \overline{f^{(k)}(p-qi)}$ なので $f^{(k)}(p+qi) = 0 \Leftrightarrow f^{(k)}(p-qi) = 0$ よって p+qi と p-qi で α_j に含まれる数は等しい.

より $\beta_j, \gamma_j \in \mathbb{R}, \gamma_j > 0$ として $\alpha_1 = \beta_1 + \gamma_1 i, \alpha_2 = \beta_1 - \gamma_1 i, \cdots, \alpha_{2k-1} = \beta_k + \gamma_k i, \alpha_{2k} = \beta_k - \gamma_k i$ で $\alpha_{2k+1}, \cdots, \alpha_n \in \mathbb{R}$ としていい. このとき

$$f(x) = a_n(x^2 - 2\beta_1 + \beta_1^2 + \gamma_1^2) \cdots (x^2 - 2\beta_k + \beta_k^2 + \gamma_k^2)(x - \alpha_{2k+1}) \cdots (x - \alpha_n)$$

ところで $x, a_i, b_i, c_i \in \mathbb{R}$ で

$$(\sum_{k=0}^{n} a_k x^k)(\sum_{k=0}^{m} b_k x^k) = \sum_{k=0}^{n+m} c_k x^k$$

なら

$$c_k = \sum_{i+j=k} a_i b_j$$

である. $x \in K$ でも $x^i \in K, b_j \in \mathbb{R}$ より $x^i b_j = b_j x^i$ なので

$$(\sum_{k=0}^{n} a_k x^k)(\sum_{k=0}^{m} b_k x^k) = \sum_{k=0}^{n+m} \sum_{i+j=k} a_i x^i b_j x^j = \sum_{k=0}^{n+m} \sum_{i+j=k} a_i b_j x^{i+j} = \sum_{k=0}^{n+m} c_k x^k$$

これを繰り返すと

$$f(x) = a_n(x^2 - 2\beta_1 + \beta_1^2 + \gamma_1^2) \cdots (x^2 - 2\beta_k + \beta_k^2 + \gamma_k^2)(x - \alpha_{2k+1}) \cdots (x - \alpha_n)$$

は $x \in K$ でも成り立つ.

ここで $x \in K$ とすると K は有限次元なので $\{1, x, \cdots, x^n\}$ が線形独立でなくなる n が存在しそのうち最小のものを取ると

$$\sum_{k=0}^{n} a_k x^k = 0_K$$

となる $a_k \in \mathbb{R}$ が存在し $a_n \neq 0$ となる. よって

$$a_n(x^2 - 2\beta_1 + \beta_1^2 + \gamma_1^2) \cdots (x^2 - 2\beta_k + \beta_k^2 + \gamma_k^2)(x - \alpha_{2k+1}) \cdots (x - \alpha_n) = 0_K$$

としていい $(\alpha_i, \beta_i, \gamma_i \in \mathbb{R})$.

 $(x^2-2\beta_1+\beta_1^2+\gamma_1^2), \cdots, (x^2-2\beta_k+\beta_k^2+\gamma_k^2), (x-\alpha_{2k+1}), \cdots, (x-\alpha_n)$ が全て 0_K でないとすると (R9) を使いそれぞれの項の逆元を逆順に右から掛けると $a_n=0_K$ となり矛盾する.

よりいずれかは 0_K になる.

$$x-\alpha=0_K\ \text{\it it}\ t^2-2\beta+\beta^2+\gamma^2=0_K\ \text{\it bull}\ (\alpha,\beta,\gamma\in\mathbb{R},\gamma>0).$$

ところで

$$I = \{x \in K | x^2 \in \mathbb{R}, x^2 < 0\}$$

とする. $x-\alpha=0_K$ なら $x\in\mathbb{R}$ で $x^2-2\beta+\beta^2+\gamma^2=0_K$ なら $(x-\beta)^2=-\gamma^2<0$ で $x\notin\mathbb{R}$ なら $x=y+z,y\in\mathbb{R},z\in I$ とおける.

Iの要素 x で $x^2 = -1$ となるものが存在しないとき

$$x^2-2eta+eta^2+\gamma^2=0_K$$
 なら $(rac{x-eta}{\gamma})^2=-1$ となり矛盾するので $x=lpha\in\mathbb{R}$ で $K=\mathbb{R}$

I の要素 x で $x^2=-1$ となるものが存在するときその 1 つを i とすると (-i)(-i)=(-1)(-1)i=-1 で -i も満たす. これ以外に存在しないとすると

$$x^2-2\beta+\beta^2+\gamma^2=0_K$$
 なら $\frac{x-\beta}{\gamma}=\pm i$ で $x=\beta\pm\gamma i$

 $x-\alpha=0_K$ も合わせて x=y+zi $(y,z\in\mathbb{R})$ と表せる. 逆に $1,i\in K$ で K はベクトル空間なので $y,z\in\mathbb{R}$ で y+zi は K の要素. よりこのとき K は $\mathbb C$ と同型だ.

 $j \in K$ で $j^2 = -1, j \neq i, j \neq -i$ が存在するとする.

 $a, b \in \mathbb{R}$ として $a + bi = 0_K$ とする.

$$a = -bi \, \mathcal{C} \, a^2 = (-bi)^2 = -b^2 \, \mathcal{E} \, a^2 + b^2 = 0 \, \mathcal{D} \, \mathcal{C} \, a = b = 0$$

つまり $\{1,i\}$ は 1 次独立.

$$a + bi = -ci \, \mathcal{C} \, a^2 - b^2 + 2abi = -c^2$$

$$\{1,i\}$$
 は 1 次独立なので $a^2-b^2+c^2=0$, $2ab=0$

$$b = 0 \ \text{2} + c^2 = 0 \ \text{2} \ a = b = c = 0$$

$$b \neq 0$$
 なら $a = 0$ で $c = \pm b$

$$a+bi+cj=b(i\pm j)$$
 で $b\neq 0, i\neq j, i\neq -j$ より $a+bi+cj\neq 0_K$ で不適.

以上より
$$a = b = c = 0$$
 で $\{1, i, j\}$ は 1 次独立.

$$a, b, c, d \in \mathbb{R}$$
 として $a + bi + cj + dij = 0_K$ とする.

$$d=0$$
 なら $\{1,i,j\}$ は 1 次独立なので $a=b=c=d=0$

$$d \neq 0$$
 なら $a' = -\frac{a}{d}, b' = -\frac{b}{d}, c' = -\frac{c}{d}$ として $ij = a' + b'i + c'j$

$$-j = iij = a'i - b' + c'ij = a'i - b' + c'(a' + b'i + c'j) = -b' + a'c' + (a' + b'c')i + c'^{2}j$$

 $\{1, i, j\}$ は 1 次独立なので j の係数を比較して $c'^2 + 1 = 0$ となり $c' = -\frac{c}{2} \in \mathbb{R}$ に矛盾し不適.

以上より
$$a = b = c = d = 0$$
 で $\{1, i, j, ij\}$ は 1 次独立.

次に $ij \in K$ で $\{1, ij\}$ は 1 次独立なので $ij \notin \mathbb{R}$ で ij = x + y $(x \in \mathbb{R}, y \in I)$ とおける.

$$y^2 = e \$$
 とすると $e \in \mathbb{R} \$ で $e < 0$

$$(ij-x)^2 = e$$
 なので $x^2 - e - 2ijx + ijij = 0_K$

両辺に
$$ji$$
 を右から掛けて $(x^2 - e)ji - 2x + ij = 0_K$

$$x^{2} - e > 0$$
 なので $ji = \frac{2x}{x^{2} - e} - \frac{1}{x^{2} - e}ij$

$$-j = jii = Xi + Yiji = Xi + Yi(X + Yij) = X(1 + Y)i - Y^2j$$

なので $\{i,j\}$ は 1 次独立だから

$$X(1+Y) = 0, Y \pm 1$$

$$Y = -1 \; \sharp \; \sharp \; \sharp \; X = 0, Y = 1$$

$$X=0, Y=1$$
 なら $ij=ji$ で

$$(i+j)(i-j) = i^2 - j^2 - ij + ji = -1 - (-1) - (ij-ji) = 0_K$$

 $i \neq j, i \neq -j$ なので矛盾.

より
$$Y = -1$$
 で $ij + ji = X$

このとき
$$x^2 - e = 1$$
 で $e < 0$ より $-1 < x < 1$

$$X = \frac{2x}{x^2 - e} = \frac{2x}{1} = 2x \text{ α or } -2 < X < 2$$

$$i\frac{Xi+2j}{\sqrt{4-X^2}} + \frac{Xi+2j}{\sqrt{4-X^2}}i = \frac{-2X+2(ij+ji)}{\sqrt{4-X^2}} = 0_K$$

 $(\frac{Xi+2j}{\sqrt{4-X^2}})^2 = -1$ で $i \neq \frac{Xi+2j}{\sqrt{4-X^2}}, i \neq -\frac{Xi+2j}{\sqrt{4-X^2}}$ なので $j \to \frac{Xi+2j}{\sqrt{4-X^2}}$ としてもよくこのとき $ij+ji=0_K$ ij=k とすると $k^2=ijij=-iijj=-1$

また
$$ik=iij=-j, jk=jij=-jji=i, ki=iji=-iij=j, kj=ijj=-i$$

 $l^2 = -1$ とすると $a, b, c \in \mathbb{R}$ として l = ai + bj + ck と表せることを示す. 表せないと仮定して矛盾を導く.

上と同様の議論で $l = \pm i$ か il + li = x $x \in \mathbb{R}$

l = ai + bj + ck と表せないので il + li = x

同様にして $il + li = y, kl + lk = z, y, z \in \mathbb{R}$

$$z - lk = kl = ijl = i(y - lj) = iy - ilj = iy - (x - li)j = iy - xj + lij = yi - xj + lk$$

より k = ij に注意し

$$l = (-yi + xj + z)(2k)^{-1} = \frac{1}{2}(-yi + xj + z)(-ij) = -\frac{x}{2}i - \frac{y}{2}j - \frac{z}{2}k$$

となり l = ai + bj + ck と表せないことに矛盾.

背理法から l = ai + bj + ck とおける.

$$x^2-2\beta x+\beta^2+\gamma^2=0_K$$
 なら $(\frac{(x-\beta)}{\gamma})^2=-1$ で $\frac{(x-\beta)}{\gamma}=ai+bj+ck\Leftrightarrow x=\beta+\gamma ai+\gamma bj+\gamma ck$ $x-\alpha=0_K$ なら $x=\alpha$

いずれの場合も x = a + bi + cj + dk $(a, b, c, d \in \mathbb{R})$ とおける.

逆に $1, i, j, ij \in K$ で K はベクトル空間なので $a, b, c, d \in \mathbb{R}$ で a + bi + cj + dk は K の要素.

 $\{1, i, j, k\}$ は 1 次独立だから a + bi + cj + dk は $(a, b, c, d) \in \mathbb{H}$ と 1 対 1 対応する.

 $(a_1 + a_2i + a_3j + a_4k)(b_1 + b_2i + b_3j + b_4k) = a_1b_1 - a_2b_2 - a_3b_3 - a_4b_4 + (a_1b_2 + a_2b_1 + a_3b_4 - a_4b_3)i(a_1b_3 + a_2b_1 + a_3b_2 + a_3b_3 - a_4b_4)i(a_1b_2 + a_2b_1 + a_3b_2 - a_3b_3 - a_4b_4 + a_1b_2 + a_2b_1 + a_3b_4 - a_4b_3)i(a_1b_3 + a_2b_1 + a_3b_2 - a_3b_3 - a_4b_4 + a_1b_2 + a_2b_1 + a_3b_4 - a_4b_3)i(a_1b_3 + a_2b_1 + a_3b_2 - a_3b_3 - a_4b_4 + a_3b_2 - a_3b_3 - a_4b_4 + a_3b_4 - a_4b_3)i(a_1b_3 + a_2b_1 + a_3b_2 - a_3b_3 - a_4b_4 + a_3b_4 - a_4b_3)i(a_1b_3 + a_2b_1 + a_3b_2 - a_3b_3 - a_4b_4 + a_3b_4 - a_4b_3)i(a_1b_3 + a_2b_1 + a_3b_2 - a_3b_3 - a_4b_4 + a_3b_4 - a_4b_3)i(a_1b_3 + a_2b_1 + a_3b_2 - a_3b_3 - a_4b_4 + a_3b_4 - a_4b_3)i(a_1b_3 + a_2b_1 + a_3b_2 - a_3b_3 - a_4b_4 + a_3b_4 - a_4b_3)i(a_1b_3 + a_3b_2 - a_3b_3 - a_4b_4 + a_3b_4 - a_4b_3)i(a_1b_3 + a_3b_2 - a_3b_3 - a_4b_4 - a_3b_4 - a_4b_3)i(a_1b_3 + a_3b_2 - a_3b_3 - a_4b_4 - a_3b_4 - a_4b_3)i(a_1b_3 + a_3b_2 - a_3b_3 - a_4b_4 - a_3b_4 - a_4b_3)i(a_1b_3 + a_3b_4 - a_3b_4 - a_4b_3)i(a_1b_3 + a_3b_4 - a_4b_3)i(a_1b_3 + a_3b_4 - a_3b_4 - a_4b_3)i(a_1b_3 + a_3b_4 - a_3b_4$ $a_3b_1 + a_4b_2 - a_2b_4$) $j(a_1b_4 + a_4b_1 + a_2b_3 - a_3b_2)k$

$$(a_1+a_2i+a_3j+a_4k)+(b_1+b_2i+b_3j+b_4k)=a_1+b_1+(a_2+b_2)i+(a_3+b_3)j+(a_4+b_4)k$$

なので $a+bi+cj+dk$ から $(a,b,c,d)\in\mathbb{H}$ への対応は同型写像.

以上より $K = \mathbb{R}, \mathbb{C}, \mathbb{H}$ のいずれかと同型である.

§5 級数

$$r<1$$
 なら $\frac{1-r}{2}>0$ で $\lim_{n\to\infty}\sqrt[n]{a_n}=r$ なので $n\geq n_0$ で $|\sqrt[n]{a_n}-r|<\frac{1-r}{2}$ となる $n_0\in\mathbb{N}$ が存在する. $n\geq n_0$ で $\sqrt[n]{a_n}< r+\frac{1-r}{2}=\frac{r+1}{2}$ で $\frac{r+1}{2}<1$ なので定理 5.6 1) より $\sum a_n$ は収束する. $r>1$ なら $\frac{r-1}{2}>0$ で同様にして $n\geq n_1$ で $|\sqrt[n]{a_n}-r|<\frac{r-1}{2}$ となる $n_1\in\mathbb{N}$ が存在する. $n\geq n_1$ で $\sqrt[n]{a_n}>r-\frac{r-1}{2}=\frac{r+1}{2}$ で $\frac{r+1}{2}>1$ なので定理 5.6 2) より $\sum a_n$ は発散する

 $n \ge n_1$ で $\sqrt[r]{a_n} > r - \frac{r-1}{2} = \frac{r+1}{2}$ で $\frac{r+1}{2} > 1$ なので定理 5.6 2) より $\sum a_n$ は発散する.

2)

(i)
$$\sum \frac{2n^2}{n^3+1}$$
, $\sum \frac{1}{n}$ は共に正項級数で $n \ge 1$ で $\frac{2n^2}{n^3+1} > \frac{2n^2}{n^3+n^3} = \frac{1}{n}$

例 4 より $\sum_{n=1}^{\infty} \frac{1}{n}$ は発散するので定理 5.5 より $\sum_{n=1}^{\infty} \frac{2n^2}{n^3+1}$ は発散する.

$$n > 0$$
 $\mathcal{C} \frac{\sqrt{n}}{1+n^2} < \frac{\sqrt{n}}{n^2} = \frac{1}{n^{\frac{3}{2}}}$

定理 V 2.5 より
$$\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$$
 は収束する.

より定理 5.5 から $\sum \frac{\sqrt{n}}{1+n^2}$ は収束する.

$$a>1$$
 のとき $x>0$ で $e^x>1+x$ なので $x\to \frac{\log a}{n}$ として $a^{\frac{1}{n}}-1>\frac{\log a}{n}$

例
$$4$$
 より $\sum_{n=1}^{\infty} \frac{1}{n}$ は発散するので定理 5.5 より $\sum (a^{\frac{1}{n}}-1)$ は発散する.

$$a=1$$
 なので $a^{\frac{1}{n}}-1=0$ で $\sum (a^{\frac{1}{n}}-1)=0$ で収束.

a<1 のとき $b=rac{1}{a}$ として $b^{rac{1}{n}}>rac{\log b}{n}+1$ なので $n\geqq1$ で

$$1 - a^{\frac{1}{n}} = 1 - \frac{1}{b^{\frac{1}{n}}} > 1 - \frac{1}{\frac{\log b}{n} + 1} = \frac{\frac{\log b}{n}}{\frac{\log b}{n} + 1} \ge \frac{1}{n} \cdot \frac{\log b}{\log b + 1}$$

上と同様にして $\sum (1-a^{\frac{1}{n}})$ は発散する. つまり $\sum (a^{\frac{1}{n}}-1)$ は発散する.

以上より
$$\left\{ egin{array}{ll} 発散する & a
eq 1 \end{array}
ight.$$
 収束する $a=1$

(iv)

 $b_n=rac{1}{n^2},c_n=rac{(-1)^n}{n}$ とすると例 5、例 7 より $\sum b_n$, $\sum c_n$ は収束する. それぞれ $b,c\in\mathbb{R}$ に収束するとする. $\epsilon>0$ に対して $M_1,M_2\in\mathbb{N}$ が存在し

$$n \ge M_1 \Rightarrow |\sum_{k=1}^n b_k - b| < \frac{\epsilon}{2}, n \ge M_2 \Rightarrow |\sum_{k=1}^n c_k - c| < \frac{\epsilon}{2}$$

 $n \ge 2 \max(M_1, M_2) + 2$ で n が偶数の時

$$|\sum_{k=2}^{n} a_k - (b+c)| = |(\sum_{k=1}^{\frac{n}{2}} b_k - b) + (\sum_{k=1}^{\frac{n-2}{2}} c_k - c)|$$

$$\leq |\sum_{k=1}^{\frac{n}{2}} b_k - b| + |\sum_{k=1}^{\frac{n-2}{2}} c_k - c| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \ (\because \frac{n-2}{2} \geq M_1, M_2)$$

 $n \ge 2 \max(M_1, M_2) + 1$ で n が奇数の時

$$\begin{split} |\sum_{k=2}^{n} a_k - (b+c)| &= |(\sum_{k=1}^{\frac{n-1}{2}} b_k - b) + (\sum_{k=1}^{\frac{n-1}{2}} c_k - c)| \\ &\leq |\sum_{k=1}^{\frac{n-1}{2}} b_k - b| + |\sum_{k=1}^{\frac{n-1}{2}} c_k - c| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \ (\because \frac{n-1}{2} \geq M_1, M_2) \end{split}$$

以上より $n \ge 2\max(M_1,M_2) + 2$ で $|\sum_{k=2}^n a_k - (b+c)| < \epsilon$

より $\sum a_n$ は b+c に収束する.

 (\mathbf{v})

 $a_n = rac{n}{2^n}$ とすると $\sum a_n$ は正項級数で

$$\frac{a_{n+1}}{a_n} = \frac{n+1}{2n} = \frac{1+\frac{1}{n}}{2} \xrightarrow[n \to \infty]{} \frac{1}{2}$$

よって定理 5.7 より $\sum a_n$ は収束する.

(vi)
$$a_n = \begin{cases} \frac{1}{n!} & n \text{ が奇数} \\ -\frac{1}{n} & n \text{ が偶数} \end{cases}$$
 とする.
$$b_n = \frac{1}{(2n-1)!}$$
 とすると

$$\frac{b_{n+1}}{b_n} = \frac{1}{2n(2n+1)} \xrightarrow[n \to \infty]{} 0$$

よって定理 5.7 より $\sum b_n$ は収束する. 収束値を b とする.

 $c_n = \frac{1}{2n}$ とすると例 4 より $\sum_{n=1}^{\infty} \frac{1}{n}$ は発散する. c_n は正項級数なので正の無限大に発散する. M>0 に対して $N_1,N_2\in\mathbb{N}$ が存在し

$$n \ge N_1 \Rightarrow |\sum_{k=1}^n b_k - b| < \frac{M}{2}, n \ge N_2 \Rightarrow \sum_{k=1}^n c_k > \frac{3M}{2} + b$$

 $n \ge \max(2N_1 - 1, 2N_2 + 1)$ で n が奇数の時

$$\sum_{k=1}^{n} a_k = \sum_{k=1}^{\frac{n+1}{2}} b_k - \sum_{k=1}^{\frac{n-1}{2}} c_k < (\frac{M}{2} + b) - (\frac{3M}{2} + b) < -M$$

 $n \ge \max(2N_1, 2N_2)$ で n が奇数の時

$$\sum_{k=1}^{n} a_k = \sum_{k=1}^{\frac{n}{2}} b_k - \sum_{k=1}^{\frac{n}{2}} c_k < (\frac{M}{2} + b) - (\frac{3M}{2} + b) < -M$$

以上より $n \ge \max(2N_1, 2N_2 + 1)$ で $\sum_{k=1}^n a_k < -M$ より $1 - \frac12 + \frac1{3!} - \frac14 + \dots - \frac1{2n} + \frac1{(2n+1)!} - \dots$ は負の無 限大に発散する.

(vii)

x > 0 で $x > \log(1+x)$ である.

n>0 \mathcal{C} $x\to n^{\frac{1}{4}}$ L L T

$$n^{\frac{1}{4}} > \log(1 + n^{\frac{1}{4}}) > \log n^{\frac{1}{4}} = \frac{1}{4} \log n$$

 $a_n = (-1)^n \frac{\log n}{\sqrt{n}}$ とする.

 $b_n = a_{2n+2} + a_{2n+3}$ とする.

$$\begin{split} |b_n| &= |\frac{\log(2n+2)}{\sqrt{2n+2}} - \frac{\log(2n+3)}{\sqrt{2n+3}}| \\ &= |\log(2n+2)(\frac{1}{\sqrt{2n+2}} - \frac{1}{\sqrt{2n+3}}) - \frac{\log\frac{2n+3}{2n+2}}{\sqrt{2n+3}}| \\ & \leq |\log(2n+2)(\frac{1}{\sqrt{2n+2}} - \frac{1}{\sqrt{2n+3}})| + |\frac{\log\frac{2n+3}{2n+2}}{\sqrt{2n+3}}| \\ &= |\frac{\log(2n+2)}{\sqrt{2n+2}\sqrt{2n+3}}(\sqrt{2n+2} + \sqrt{2n+3})| + |\frac{\log(1+\frac{1}{2n+2})}{\sqrt{2n+3}}| \\ &< |\frac{4(2n+2)^{\frac{1}{4}}}{\sqrt{2n+2}\sqrt{2n+3}}(\sqrt{2n+2} + \sqrt{2n+3})| + |\frac{1}{(2n+2)\sqrt{2n+3}}| \\ &< 2(2n+2)^{-\frac{5}{4}} + (2n+2)^{-\frac{3}{2}} < \frac{2}{n^{\frac{5}{4}}} + \frac{1}{n^{\frac{3}{2}}} \end{split}$$

定理 V 2.5 より $\sum \frac{1}{n^{\frac{5}{4}}}$, $\sum \frac{1}{n^{\frac{3}{4}}}$ は収束する. 命題 5.3 1) より $\sum \frac{2}{n^{\frac{5}{4}}} + \frac{1}{n^{\frac{3}{2}}}$ も収束し定理 5.5 より b_n は絶対収束し収束する.

 $\epsilon>0$ に対して $n\geq M_1$ で $|\sum_{k=1}^n b_k-b|<\frac{\epsilon}{2}$ となる $M_1\in\mathbb{N}$ が存在する. n>0 で

$$|(-1)^n \frac{\log n}{\sqrt{n}}| = \frac{\log n}{\sqrt{n}} < \frac{n^{\frac{1}{4}}}{\sqrt{n}} = n^{-\frac{1}{4}} \xrightarrow[n \to \infty]{} 0$$

より $n \geq M_2$ で $|(-1)^n \frac{\log n}{\sqrt{n}}| < \frac{\epsilon}{2}$ となる $M_2 \in \mathbb{N}$ が存在する.

 $n \ge 2M_1 + 3$ で n が奇数の時

$$|\sum_{k=1}^{n} a_k - b| = |\sum_{k=0}^{\frac{n-3}{2}} b_k - b| < \frac{\epsilon}{2} < \epsilon$$

 $n \ge \max(2M_1 + 4, M_2)$ で n が偶数の時

$$\left| \sum_{k=1}^{n} a_k - b \right| = \left| \sum_{k=0}^{\frac{n-4}{2}} b_k + (-1)^n \frac{\log n}{\sqrt{n}} - b \right| \le \left| \sum_{k=0}^{\frac{n-4}{2}} b_k - b \right| + \left| (-1)^n \frac{\log n}{\sqrt{n}} \right| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

以上より $n \ge \max(2M_1 + 4, M_2)$ で $|\sum a_n - b| < \epsilon$ で $\sum a_n$ は b に収束する.

(viii)

二項定理より $n \ge 1$ で

$$(1+\frac{1}{n})^n = \sum_{k=0}^n \frac{{}_n C_k}{n^k} \ge \frac{{}_n C_0}{n^0} + \frac{{}_n C_1}{n^1} = 2$$

よって

$$\frac{(1+n)^n}{n^{n+1}} = \frac{1}{n}(1+\frac{1}{n})^n \ge \frac{2}{n}$$

例 4 より $\sum_{n=1}^{\infty} \frac{1}{n}$ は発散するので定理 5.5 より $\sum_{n=1}^{\infty} \frac{(1+n)^n}{n^{n+1}}$ は発散する.

(ix)

$$a_n = \frac{3\cdot 5\cdots (2n+1)}{5\cdot 10\cdots 5n}$$
 とする.

$$\frac{a_{n+1}}{a_n} = \frac{2n+3}{5n+5} = \frac{2+\frac{3}{n}}{5+\frac{5}{n}} \xrightarrow[n \to \infty]{} \frac{2}{5}$$

よって定理 5.7 より $\sum a_n$ は収束する.

(x)

二項定理より $n \ge 1$ で

$$(1+\frac{1}{n})^n = \sum_{k=0}^n \frac{{}_n C_k}{n^k} \ge \frac{{}_n C_0}{n^0} + \frac{{}_n C_1}{n^1} = 2$$

よって

$$\left(\frac{n}{n+1}\right)^{n^2} = \left(\frac{1}{\left(1+\frac{1}{n}\right)^n}\right)^{-n} \le 2^{-n}$$

また

$$\sum_{k=1}^{n} 2^{-k} = \frac{1}{2} \frac{1 - (\frac{1}{2})^n}{1 - \frac{1}{2}} = 1 - \frac{1}{2}^n \xrightarrow[n \to \infty]{} 1$$

で収束する. よって定理 5.5 より $\sum (\frac{n}{n+1})^{n^2}$ は収束する.

(xi)
$$n>e^2\ \mbox{\it C}\ n>1\ \mbox{\it \sharp}\ \mbox{\it \flat}$$

$$\frac{1}{n^{\log n}}<\frac{1}{n^2}$$

例 7 より $\sum_{n=1}^{\infty} \frac{1}{n^2}$ は収束するので定理 5.5 より $\sum \frac{1}{n^{\log n}}$ は収束する.