Computer Architecture Tutorial 3

Combinational Logic Circuits

Artem Burmyakov, Alexander Tormasov

September 09, 2021

A Boolean function

(introduced by George Boole)

A function taking one or multiple binary inputs and producing exactly one binary output

Sample boolean variables:

$$A, B, C, D, F \in \{0,1\}$$

Expressions in one notation:

$$F(A,B) = A * B$$

$$F(A,B,C) = A * B + C$$

$$F(A, B, C, D) = A * (B + C) + D$$

Another notation:

$$F(A,B) = AND(A,B)$$

$$F(A, B, C) = OR(AND(A, B), C)$$

$$F(A, B, C, D) = \mathbf{OR}(\mathbf{AND}(A, \mathbf{OR}(B, C)), D)$$

Other notations are used as well

A Boolean function (introduced by George Boole)	A function taking one or multiple binary inputs and producing exactly one binary output	
Truth table	A table specifying the output of a Boolean function for every combination of input values	

Truth table for function F = A * B:

A	В	F = A * B
0	0	0
1	0	0
0	1	0
1	1	1

A Boolean function (introduced by George Boole)	A function taking one or multiple binary inputs and producing exactly one binary output
Truth table	A table specifying the output of a Boolean function for every combination of input values
A logic gate	An abstract or physical device implementing a Boolean function

Sample logic gates:

A Boolean function (introduced by George Boole)	A function taking one or multiple binary inputs and producing exactly one binary output
Truth table	A table specifying the output of a Boolean function for every combination of input values
A logic gate	An abstract or physical device implementing a Boolean function
A logic circuit	Composition of logic gates, to implement a certain function

Sample logic circuit:

A Boolean function (introduced by George Boole)	A function taking one or multiple binary inputs and producing exactly one binary output
Truth table	A table specifying the output of a Boolean function for every combination of input values
A logic gate	An abstract or physical device implementing a Boolean function
A logic circuit	Composition of logic gates, to implement a certain function
An Integrated Circuit (informally: chip, or microchip)	The antonym for a "discrete electrical circuit", that is a set of discrete electrical devices, which can be assembled and reassembled again;

A Boolean function (introduced by George Boole)	A function taking one or multiple binary inputs and producing exactly one binary output
Truth table	A table specifying the output of a Boolean function for every combination of input values
A logic gate	An abstract or physical device implementing a Boolean function
A logic circuit	Composition of logic gates, to implement a certain function
An Internated Cinevit	The antonym for a "discrete electrical circuit", that is a set of discrete electrical devices, which can be assembled and reassembled again;
An Integrated Circuit	Key advantages over discrete circuits:
(informally: chip, or microchip)	 Compact size; Performance (e.g. the propagation delay – to be discussed next); Lower manufacturing price

Logic Gate	Symbolic Representation	Truth	Truth Table		
AND	$\frac{A}{B}$ AND Q		Α	В	Q=AB
			0	0	0
			1	0	0
			0	1	0
			1	1	1

Logic Gate	Symbolic Representation	Truth Table	Truth Table	
		A	В	Q=AB
	$A \longrightarrow Q$	0	0	0
AND		1	0	0
	B	0	1	0
		1	1	1
OR		Α	В	Q=A+B
	$A \longrightarrow Q$ $B \longrightarrow Q$	0	0	0
		1	0	1
		0	1	1
		1	1	1

Symbolic Representation	Truth Table
	A B Q=
$\frac{A}{B}$ AND Q	0 0 0
	1 0 0
	0 1 0
	1 1 1
$A \longrightarrow Q$ $B \longrightarrow Q$	A B Q=A
	0 0 0
	1 0 1
	0 1 1
	1 1 1
$A \longrightarrow Q$	A Q=A' 0 1 1 0
	$ \begin{array}{c c} A \\ \hline B \end{array} $ OR $ \begin{array}{c} Q \\ \hline B \end{array} $

Transistor is a fast switch:

If there is voltage at the Base terminal (Base = "1"), then current flows between Emitter and Collector; Otherwise (Base = "0"), there is no current

Note: Current direction depends on the transistor type (e.g. NPN or PNP)

Transistor is a fast switch:

If there is voltage at the Base terminal (Base = "1"), then current flows between Emitter and Collector; Otherwise (Base = "0"), there is no current

Transistor is a fast switch:

If there is voltage at the Base terminal (Base = "1"), then current flows between Emitter and Collector; Otherwise (Base = "0"), there is no current

Logic Gate	Symbolic Representation	Truth Table	Implementation with Transistors
AND	$A \longrightarrow Q$ $B \longrightarrow Q$	A B Q=AB 0 0 0 1 0 0 0 1 0 1 1 1	$A \circ \bigvee_{\substack{2N2222\\ \text{typ.}}} A \circ \bigvee_{\substack{10K\\ \text{4.7K} \\ }} Q = AB$
OR	$A \longrightarrow Q$ $B \longrightarrow Q$	A B Q=A+B 0 0 0 1 0 1 0 1 1 1 1 1	
NOT	$A \longrightarrow Q$	A Q=A' 0 1 1 0	

Logic Gate	Symbolic Representation	Truth Table	Implementation with Transistors
	$A \longrightarrow a$	A B Q=AB 0 0 0	A ••••••••••••••••••••••••••••••••••••
AND	B AND Q	1 0 0	B •••••
		0 1 0 1 1 1	Q = AB
			+6V
OR	$A \longrightarrow Q$ $B \longrightarrow Q$	A B Q=A+B	A • 10K
		0 0 0 1 0 1	2N2222 typ.
		0 1 1	$B \sim M$
		1 1 1	Q = A + B
NOT	$A \qquad Q$	A Q=A' 0 1	
		1 0	

Basic Logic Gates

AND

A	В	Output	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

Α	
В) <u>, Q</u>

NAND

A	В	Output
0	0	1
0	1	1
1	0	1
1	1	0

OR

A	В	Output
0	0	0
0	1	1
1	0	1
1	1	1

NOR

A	В	Output
0	0	1
0	1	0
1	0	0
1	1	0

$$\frac{A}{B}$$
 Q

XOR

A	В	Output
0	0	0
0	1	1
1	0	1
1	1	0

XNOR

A	В	Output
0	0	1
0	1	0
1	0	0
1	1	1

Basic Logic Gates

AND

A	В	Output
0	0	0
0	1	0
1	0	0
1	1	1

Α	
В) <u>, Q</u>
	1 /

NAND

A	В	Output
0	0	1
0	1	1
1	0	1
1	1	0

OR

A	В	Output
0	0	0
0	1	1
1	0	1
1	1	1

NOR

A	В	Output
0	0	1
0	1	0
1	0	0
1	1	0

XOR

200	A	В	Output
	0	0	0
9	0	1	1
	1	0	1
	1	1	0

XOR = **eXceptional OR**:

unlike OR, if both inputs are "1"s, the output is "0"

Α	75	_
В)	$>$ $\frac{\mathbf{q}}{\mathbf{q}}$
	$\neg \bot \!$	

XNOR

A	В	Output
0	0	1
0	1	0
1	0	0
1	1	1

NAND and NOR Logic Gates

We can implement any other gate, by using one of them

$$\frac{A}{B}$$
 OR $\frac{Q}{Q}$

We can implement any other gate, by using one of them

Example: AND gate through NAND

$$\frac{A}{B}$$
 OR $\frac{Q}{A}$

We can implement any other gate, by using one of them

Example: AND gate through NAND

To proof circuits equivalence, we compare truth tables:

A	В	Q=AB
0	0	0
1	0	0
0	1	0
1	1	1

Α	В	Q_1	Q_1	Q
0	0	1	1	0
1	0	1	1	0
0	1	1	1	0
1	1	0	0	1

We can implement any other gate, by using one of them

Example: AND gate through NAND

To proof circuits equivalence, we compare truth tables:

A	В	Q=AB
0	0	0
1	0	0
0	1	0
1	1	1

A	В	Q_1	Q_1	Q
0	0	1	1	0
1	0	1	1	0
0	1	1	1	0
1	1	0	0	1

We can implement any other gate, by using one of them

Example: AND gate through NAND

To proof circuits equivalence, we compare truth tables:

A	В	Q=AB
0	0	0
1	0	0
0	1	0
1	1	1

Α	В	Q_1	Q_1	Q
0	0	1	1	0
1	0	1	1	0
0	1	1	1	0
1	1	0	0	1

We can implement any other gate, by using one of them

NAND impl.:

NOR impl.:

We can implement any other gate, by using one of them

NOR impl.: Original gate: NAND impl.: **NAND** Q_1 OR b^{Q_1} AND AND В AND <u>B</u> OR В OR NOR Q_1 AND Q_1 OR OR OR AND В Q_2 AND

Universal Logic Gates: NAND and NOR
We can implement any other gate,
by using one of them

type	NAND construction	NOR construction
NOT	A	A-L_DO-Q
AND	AQ	A-LDO-Q B-LDO-Q
NAND	A Q	
OR	A-TDO-Q B-TDO-Q	AQ
NOR		A Do-Q
XOR	A DO DO O	A B D O O
XNOR		A DO O

How to Prove the Equivalence of Logic Circuits?

Way 1: Truth Tables

Α	В	Q=AB
0	0	0
1	0	0
0	1	0
1	1	1

A	В	Q_1	Q_2	Q
0	0	1	1	0
1	0	0	1	0
0	1	1	0	0
1	1	0	0	1

How to Prove the Equivalence of Logic Circuits?

Way 1: Truth Tables

Α	В	Q=AB
0	0	0
1	0	0
0	1	0
1	1	1

A	В	Q_1	Q_2	Q
0	0	1	1	0
1	0	0	1	0
0	1	1	0	0
1	1	0	0	1

Way 2: Boolean Algebra Laws

Name	AND Form	OR Form
Identity Law	1A = A	0 + A = A
Null Law	0A = 0	1 + A = 1
Idempotent Law	AA = A	A + A = A
Inverse Law	AA' = 0	A + A' = 1
Commutative Law	AB = BA	A + B = B + A
Associative Law	(AB)C = A(BC)	(A + B) + C = A + (B + C)
Distributive Law	A + BC = (A + B) (A + C)	A(B + C) = AB + AC
Absorption Law	A(A + B) = A	A + AB = A
De Morgan's Law	$\overline{AB} = \overline{A} + \overline{B}$	$\overline{A+B} = \overline{A}\overline{B}$

Mountsiple: xthre(of o lSe Weictgor) ir aunit Example of a Combinational Logic Circuit

Multiplexor (or Selector): an Example of a Combinational Logic Circuit

Sample Implementation of a 2-to-1 Multiplexor

Verification of correctness:

I_1	I_2	S	Q
0	0	0	0
1	0	0	1
0	1	0	0
1	1	0	1
0	0	1	0
1	0	1	0
0	1	1	1
1	1	1	1

Verification of correctness:

I_1	I_2	S	Q
0	0	0	0
1	0	0	1
0	1	0	0
1	1	0	1
0	0	1	0
1	0	1	0
0	1	1	1
1	1	1	1

Verification of correctness:

I_1	I_2	S	Q
0	0	0	0
1	0	0	1
0	1	0	0
1	1	0	1
0	0	1	0
1	0	1	0
0	1	1	1
1	1	1	1

Multiplexer

(selector signals)

Multiplexer

Q 2^n input pins I_{2^n} S_1 n control pins (selector signals)

Demultiplexer

Demultiplexer

Based on control pin signals, demultiplexor sends its input to one of its outputs

n control pins(selector signals)

Demultiplexer

Based on control pin signals, demultiplexor sends its input to one of its outputs

All other outputs are set to some default value (e.g. 0)

n control pins

(selector signals)

1) We keep only control pins, and remove input pin Q;

Decoder

Modifications to the Decoder:

- 1) We keep only control pins, and remove input pin Q;
- 2) We set to "1" the output pin, which corresponds to the values of control pins;
- 3) We change the shape to a rectangle

Decoder

Modifications to the Decoder:

- 1) We keep only control pins, and remove input pin Q;
- 2) We set to "1" the output pin, which corresponds to the values of control pins;
- 3) We change the shape to a rectangle

Multiplexor

Sets a specific output to one of its inputs, based on selector signals

Up to 2^n input pins

Demultiplexor

Forwards input signal to one of its multiple outputs, based on the selector signals (other outputs remain "0") I Only 1 I input pin $S_1 = S_n$ I On the selector signals $S_1 = S_n$ output pins $S_n = S_n$ output pins $S_n = S_n$ output pins $S_n = S_n$

Decoder

Sets to "1" exactly one output pin, which corresponds to the signals of input pins; All other pins are set to "0"

Encoder

The opposite function of a decoder; Only one input pin can be set to "1", while all others – "0"

Propagation Delay

There is ALWAYS a time delay between the change of input signals, and the update of an output signal

Critical Path and Propagation Delay

There is ALWAYS a time delay between the change of input signals, and the update of an output signal

Combinational Logic Circuit

- Combines input signals and outputs the result;
- Implemented by using logic gates, such as AND, OR, NOT, NAND, etc.
- Does not use memory elements (registers);
- Does not use clock signal (typically)

Typical use: arithmetic operations

Types of Logic Circuits for CPU Components

Types of Logic Circuits for CPU Components

