Step 1: Business and Data Understanding

1. What decisions needs to be made?

The decision is predicting how much money the company can expect to earn from sending out a catalog to 250 new customers.

2. What data is needed to inform those decisions?

We need customers data, mailing data in Excel sheet and two variables: Numerical variable and Categorical variable i.e. Avg_Num_Products_Purchased, Customer Segment.

Cost of Catalogue \$6.50 and gross margin 50%.

Step 2: Analysis, Modeling, and Validation

3. How and why did you select the predictor variables in your model? For this model, The Avg_Sale_Amount is the target variable and that only two predictor variables are statistically significant Customer_Segments and Avg_Num_Products_Purchased so we can leave them in because these have P-value less than 0.05. Let's take a look at the adjusted R-squared. It's above 0.8, which is good because The higher the r-squared, the higher the explanatory power of the model.

From the Scatter plot would indicate the (Avg_Num_Products_Purchased) would be a good candidate to be a predictor variable for the target variable (Avg_Sale_Amount), because have a positive relationship.

For categorical variables, I have included a screenshot the Linear Regression Report below and We are looking for P-values less than 0.05, So would be a good candidate to be a predictor variable for the target variable (Avg Sale Amount).

1. Explain why you believe your linear model is a good model. You must justify your reasoning using the statistical results that your regression model created. For each variable you selected, please justify how each variable is a good fit for your model by using the p-values and R-squared values that your model produced.

Coefficients:				
	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	303.46	10.576	28.69	< 2.2e-16 ***
Customer_SegmentLoyalty Club Only	-149.36	8.973	-16.65	< 2.2e-16 ****
Customer_SegmentLoyalty Club and Credit Card	281.84	11.910	23.66	< 2.2e-16 ***
Customer_SegmentStore Mailing List	-245.42	9.768	-25.13	< 2.2e-16 ***
Avg_Num_Products_Purchased	66.98	1.515	44.21	< 2.2e-16 ***
Significance codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1				
lesidual standard error: 137.48 on 2370 degrees of freedom fultiple R-squared: 0.8369, Adjusted R-Squared: 0.8366 r-statistic: 3040 on 4 and 2370 degrees of freedom (DF), p-value < 2.2e-16				
Type II ANOVA Analysis				
Response: Avg_Sale_Amount				
	Sum Sq	DF F	value	Pr(>F)
Customer_Segment	28715078.96	3	506.4	< 2.2e-16 ***
Avg_Num_Products_Purchased	36939582.5	1 19	54.31	< 2.2e-16 ***
Residuals	44796869.07	2370		

From the table above two variables are statistically significant Customer_Segments and Avg_Num_Products_Purchased because these have P-value less than 0.05. Let's take a look at the adjusted R-squared value 0.8366, which is good. So this good model because the p-value and R-squared value are statically significant.

2. What is the best linear regression equation based on the available data?

Avg_Sale_Amount= 303.46-149.36*(customer_segment: loyalty club
only)+281.84*(customer_segment: loyalty club& credit card)-245.42*(customer_segment: Mailing list)

Step 3: Presentation/Visualization

1. What is your recommendation? Should the company send the catalog to these 250 customers?

Yes, the company should send catalogues to these 250 customer.

- 2. How did you come up with your recommendation? (Please explain your process so reviewers can give you feedback on your process)
 First calculate the Avg_Sales using the linear regression model. Then multiplied the Score by Score_yes. Then calculate the profit using 50% margin and \$6.50 cost of each catalogue and for 250 customer.
- 3. What is the expected profit from the new catalog (assuming the catalog is sent to these 250 customers)?

• Alteryx workflow

