ProbLimI: Pset I

Youngduck Choi CIMS New York University yc1104@nyu.edu

Abstract

This work contains solutions to the exercises of the problem set I.

Question 1.

- 1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and let $A \in \mathcal{F}$ and $A_k \in \mathcal{F}$ $(k \ge 1)$.
 - (i) Prove the sub-additivity property: $\mathbb{P}(\bigcup_k A_k) \leq \sum_k \mathbb{P}(A_k)$.
 - (ii) Prove the *continuity* property: If $A_k \uparrow A$ (i.e. $A_k \subseteq A_{k+1}$ for all k and $\cup_k A_k = A$) then $\mathbb{P}(A_k) \uparrow \mathbb{P}(A)$, and if $A_k \downarrow A$ (i.e. $A_k \supseteq A_{k+1}$ for all k and $\cap_k A_k = A$) then $\mathbb{P}(A_k) \downarrow \mathbb{P}(A)$.

Solution.

(i) Note that we have finite additivity property of measure, as the emptyset belong to any σ -field by definition. We first have

$$A, B \in \mathscr{F}, A \subset B \implies \mathbb{P}(A) \leq \mathbb{P}(B) \ (*),$$

because

$$\mathbb{P}(B) = \mathbb{P}((B \setminus A) \cup A) = \mathbb{P}(B \setminus A) + \mathbb{P}(A).$$

Now, define $A_0 = \emptyset$, and

$$\tilde{A}_k = A_k \setminus (\bigcup_{0 \le n \le k} A_n) \quad (k \ge 1).$$

It follows that $\{\tilde{A}_k\}$ is a pairwise disjoint collection such that

$$\bigcup_k \tilde{A}_k = \bigcup_k A_k \text{ and } \tilde{A}_k \subset A_k \ (k \ge 1).$$

The union equality holds, since if $x \in \bigcup_k A_k$, then $x \in A_{k'}$ for some k', and $x \in \tilde{A}_{k^*}$, where

$$k^* = \inf\{k; x \in A_k\},\$$

as $x \notin A_k$ for $k < k^*$ and $x \in A_{k^*}$. Hence, by countable additivity,

$$\mathbb{P}(\bigcup_k A_k) = \mathbb{P}(\bigcup_k \tilde{A}_k) = \sum_k \mathbb{P}(\tilde{A}_k) \le \sum_k \mathbb{P}(A_k),$$

where the last inequality follows from (*).

(ii) Define $A_0, \tilde{A}_0 = \emptyset$ and

$$\tilde{A}_k = A_k \setminus A_{k-1} \quad (k \ge 1).$$

By finite additivity and the fact that $\{A_k\}$ is increasing, we have, for any $k \geq 1$,

$$\mathbb{P}(A_k) = \mathbb{P}(A_{k-1} \cup (A_k \setminus A_{k-1})) = \mathbb{P}(A_{k-1}) + \mathbb{P}(A_k \setminus A_{k-1}),$$

and by re-arranging

$$\mathbb{P}(\tilde{A}_k) = \mathbb{P}(A_k) - \mathbb{P}(A_{k-1}).$$

Now, $\{\tilde{A}_k\}$ are disjoint, so by countable additivity, we have

$$\mathbb{P}(A) = \mathbb{P}(\bigcup_{k} A_{k}) = \mathbb{P}(\bigcup_{k} \tilde{A}_{k}) = \sum_{k} \mathbb{P}(\tilde{A}_{k}) = \lim_{k \to \infty} \sum_{n=1}^{k} \mathbb{P}(A_{n}) - \mathbb{P}(A_{n-1})$$
$$= \lim_{k \to \infty} \mathbb{P}(A_{k}) - \mathbb{P}(A_{0}) = \lim_{k \to \infty} \mathbb{P}(A_{k}),$$

as required. Now, we show the continuity from above. Note that $\{A_k^c\}$ forms an increasing collection. By the DeMorgan's law, and continuity from below,

$$1 - \mathbb{P}(\bigcap_k A_k) \quad = \quad \mathbb{P}((\bigcap_k A_k)^c) = \mathbb{P}(\bigcup_k A_k^c) = \lim_{k \to \infty} \mathbb{P}(A_k^c) = 1 - \lim_{k \to \infty} \mathbb{P}(A_k),$$

so

$$\mathbb{P}(A) = \mathbb{P}(\bigcap_{k} A_{k}) = \lim_{k \to \infty} \mathbb{P}(A_{k}),$$

as required.

Question 2.

2. Let \mathcal{F} be a field.

- (i) Show that if $\{\mathcal{G}_{\alpha}\}$ is a (possibly uncountable) family of σ -fields then $\bigcap_{\alpha} \mathcal{G}_{\alpha}$ is also a σ -field. Conclude that $\sigma(\mathcal{F}) = \bigcap \{\mathcal{G} \supseteq \mathcal{F} : \mathcal{G} \text{ is a } \sigma\text{-field}\}.$
- (ii) Prove that if \mathcal{M} is a monotone class and $\mathcal{F} \subseteq \mathcal{M}$ then $\sigma(\mathcal{F}) \subseteq \mathcal{M}$. Conclude that $\sigma(\mathcal{F})$ is equal to $m(\mathcal{F}) := \bigcap \{ \mathcal{M} \supseteq \mathcal{F} : \mathcal{M} \text{ is a monotone class} \}.$

Solution.

(i) We just note that the index set must be non-empty. As \emptyset and Ω are in \mathscr{G}_{α} for all α , by the σ -field property of each \mathscr{G}_{α} , it follows that \emptyset , $\Omega \in \bigcap_{\alpha} \mathscr{G}_{\alpha}$. Now, it suffices to show that

$$A \in \bigcap_{\alpha} \mathscr{G}_{\alpha} \quad \Longrightarrow \quad A^{c} \in \bigcap_{\alpha} \mathscr{G}_{\alpha},$$
$$\{A_{n}\} \subset \bigcap_{\alpha} \mathscr{G}_{\alpha} \quad \Longrightarrow \quad \bigcap_{n} A_{n} \in \bigcap_{\alpha} \mathscr{G}_{\alpha}.$$

If $A \in \bigcap_{\alpha} \mathscr{G}_{\alpha}$ then, $A \in \mathscr{G}_{\alpha}$ for all α , and by the σ -field assumption on each \mathscr{G}_{α} , it follows that $A^c \in \mathscr{G}_{\alpha}$ for all α , so $A^c \in \bigcap_{\alpha} \mathscr{G}_{\alpha}$.

If $\{A_n\} \subset \bigcap_{\alpha} \mathscr{G}_{\alpha}$, then $\{A_n\} \subset \mathscr{G}_{\alpha}$ for all α , and by the $\sigma-$ field assumption on each \mathscr{G}_{α} , it follows that $\bigcap_{n} A_n \in \mathscr{G}_{\alpha}$ for all α , so $\bigcap_{n} A_n \in \bigcap_{\alpha} \mathscr{G}_{\alpha}$.

First, note that $\{\mathscr{F}\subset\mathscr{G}\mid\mathscr{G}\text{ is a }\sigma\text{-field}\}$ is non-empty, as 2^Ω belongs to it. So by the above result $\mathscr{G}=\bigcap\{\mathscr{F}\subset\mathscr{G}\mid\mathscr{G}\text{ is a }\sigma\text{-field}\}$ is a $\sigma\text{-field}$. Now, recall that $\sigma(\mathscr{F})$ is defined to be the smallest $\sigma\text{-field}$ containing \mathscr{F} . Consider the family of $\sigma\text{-field}$ that contains \mathscr{F} , and denote it by $\{\mathscr{G}_\alpha\}$. The above result shows that $\bigcap_\alpha\mathscr{G}_\alpha$ is a $\sigma\text{-field}$, and it is trivial that it contains \mathscr{F} . Obviously, for any $\alpha,\bigcap_\alpha\mathscr{G}_\alpha\subset\mathscr{G}_\alpha$, which tells us that any $\sigma\text{-algebra containing }\mathscr{F}$ contains $\bigcap_\alpha\mathscr{G}_\alpha$, so it follows that $\bigcap_\alpha\mathscr{G}_\alpha$ is the smallest $\sigma\text{-algebra containing }\mathscr{F}$ and notationally we have

$$\sigma(\mathscr{F}) = \{\mathscr{F} \subset \mathscr{G} : \mathscr{G} \text{ is a } \sigma - \text{field}\},\$$

as required.

(ii) Let $\{A_k\} \subset \mathscr{F}$, and define

$$\tilde{A}_k = \bigcup_{n \le k} A_n \ (k \ge 1).$$

Then, $\{\tilde{A}_k\}$ is an increasing sequence, so by a monotone class property,

$$\bigcup_{k} A_{k}) = \bigcup_{k} \tilde{A}_{k} \in \mathscr{M}.$$

Similarly,

Question 3.

3. Prove that if $f:\mathbb{R}^n \to [-\infty,\infty]$ is lower semi-continuous (that is, $\liminf_{\|x-x_0\|\downarrow 0} f(x) \ge f(x_0)$ for every $x_0 \in \mathbb{R}^n$) then it is a Borel function, and conclude that continuous functions are Borel measurable. (*Hint: first show every set of the form* $\{x: f(x) \le a\}$ $(a \in \mathbb{R})$ is closed.)

Solution.

Question 4.

4. Let $m\mathcal{F}$ denote the set of measurable functions from $(\Omega,\mathcal{F}) \to ([-\infty,\infty],\mathcal{B}_{[-\infty,\infty]})$, where $\mathcal{B}_{[-\infty,\infty]} = \sigma([-\infty,a]:a\in\mathbb{R})$. Prove that

(a) every simple function $f:(\Omega,\mathcal{F})\to(\mathbb{R},\mathcal{B}_{\mathbb{R}})$ belongs to $m\mathcal{F}$.

(b) if $X_n \in m\mathcal{F}$ $(n \geq 1)$ then $\liminf_{n \to \infty} X_n$ and $\limsup_{n \to \infty} X_n$ also belong to $m\mathcal{F}$.

Conclude that $m\mathcal{F}$ is the smallest class of functions satisfying properties (a) and (b).

Solution.

(a) Let f be a simple function, i.e.

$$f = \sum_{i=1}^{n} a_i X_{E_i},$$

where $a_i \in \mathbb{R}$, $E_i \in \mathscr{F}$ pairwise disjoint for $1 \le i \le n$, and $\bigcup_{i=1}^n E_i = \Omega$. For sake of completeness, we show that f is $(\mathscr{F}, \mathscr{B}_{\mathbb{R}})$ measurable. For any $a \in \mathbb{R}$, observe that $f^{-1}((-\infty, a])$ is a union of sub-collection (allowing the empty collection) of $\{E_i\}$, so it is in \mathscr{F} . Hence, any simple function is $(\mathscr{F}, \mathscr{B}_{\mathbb{R}})$ measurable.

Fix $a \in \mathbb{R}$. As $f^{-1}(-\infty) = \emptyset$ and f is $(\mathscr{F}, \mathscr{B}_{\mathbb{R}})$ measurable, it follows that

$$f^{-1}([-\infty, a]) = f^{-1}(-\infty) \cup f^{-1}((-\infty, a]) \in \mathscr{F}.$$

So, f is $(\mathscr{F},\mathscr{B}_{[-\infty,\infty]})$ measurable, i.e. $f\in m\mathscr{F}$.

(b) Observe that

$$\lim_{n \to \infty} \inf X_n = \sup_{k} \inf_{n \ge k} X_n
\lim_{n \to \infty} X_n = \inf_{k} \sup_{n \ge k} X_n$$

Hence, with symmetry of \inf and \sup , it suffices to show that $\sup_n X_n$ is measurable.

Fix $a \in \mathbb{R}$. Then, we have

$$(\sup_{n} X_{n})^{-1}([-\infty, a]) = \bigcap_{n} X_{n}^{-1}([-\infty, a]) \in \mathscr{F}.$$
 (*)

We now prove (*). If $w \in \bigcap_n X_n^{-1}([-\infty,a])$, then $X_n(w) \in [-\infty,a]$ for all n, so $\sup_n X_n(w) \in [-\infty,a]$, and $w \in \sup_n^{-1}([-\infty,a])$. If $w \in \sup_n X_n^{-1}([-\infty,a])$, then $\sup_n X_n(w) \in [-\infty,a]$, which implies $X_n(w) \in [-\infty,a]$ for all n. Hence, (*) is true and $\sup_n X_n(w) \in [-\infty,a]$.

Let \mathscr{G} be a class of functions such that (a) and (b) are true. We wish to show that $m\mathscr{F} \subset \mathscr{G}$. By (a), we know that simple functions are in \mathscr{G} . Now, if $f \in m\mathscr{F}$, then by the simple approximation lemma, there exists a sequence of simple functions $\{X_n\}$ such that X_n converges pointwise to f. Then, by (b),

$$f = \limsup_{n \to \infty} X_n \in \mathscr{G},$$

so $m\mathscr{F} \subset \mathscr{G}$, and $m\mathscr{F}$ is the smallest class of functions satisfying properties (a) and (b).