Report

Statement

小時候放學回家,最期待的就是飯前收看電視播映的卡通,蠟筆小新、哆啦A夢...佔據了我的童年。我們知道,每位畫家的作品都有獨自的繪畫風格,因此,我不禁好奇電腦是否也能分辨出這些卡通的差異呢?

這次的實作我從Youtube上蒐集5部不同卡通的擷取畫面,訓練3種模型,測 試並分析它們分類卡通的能力。

當我在Kaggle上搜尋類似的卡通分類主題時,看到有位前人也是用差不多的做法建立資料集,而他的樣本是以美國卡通為主,且不侷限於"人類"角色;此外,他的截圖頻率比較高,所以有許多圖片看起來是重複的。在我的實作中改善了上述缺點。

Dataset

■ Data Type: .jpg檔

■ Amount and Composition:

共5部日本卡通,每部卡通各包含520張圖片(1088 x 1920): 蠟筆小新、哆啦A夢、我們這一家、花田少年史、櫻桃小丸子。 儲存這些圖片的資料來名稱即為他們的標籤。

■ Conditions:

挑選的5部卡通都是以"人類"角色為主,且這些人物的共同特色是臉部線條都屬於"圓滑"的類型(相對於動漫人物有稜有角的風格而言)。

每部卡通的圖片來源至少取自"5集",且故事內容經過挑選,確保場景、人物等重複出現次數不會太高(否則模型可能只是學到某些人物的特徵而已)。例如其中一集是小丸子和家人一起聊天,那另一集就會選在學校和同學玩耍的場景。此外,取樣時以每100(或200)幀截圖一次的頻率,同樣也是避免間隔太近的畫面相似度太高。

圖片品質的部分,剔除畫面邊緣有太多商標或跑馬燈的樣本,此外, 模糊(例: 幀和幀切換的瞬間)的畫面也會去掉。

Process:

- 1. 有Youtube上挑撰嫡合的卡通集數,以全螢幕撥放並螢幕錄影。
- 2. 使用"VLC media player",以每100/200幀取樣的頻率,將錄製好的

影片擷取為多張圖片。

3. 人工檢查,確保圖片品質。

VLC操作畫面與取樣設定

■ Examples:

5部卡通,資料來名稱即為標籤

Ilu資料來下的圖片

Doraemon 資料來下的圖片

Methods

■ SVM (supervised)

Libraries:

Hyperparameters:

```
re_size = (196, 196) / (144, 260)

svc_c = 5.0

k = 3

num_classes = 5
```

步驟:

- I. 圖片預處理。包含將圖片的色彩通道轉換至RGB、統一圖片大小、展開為1D數組、圖片數值正規化。
- II. 準備資料集。將所有圖片以8:2的比例切分為訓練集與測試集。
- III. 定義SVC模型。C值為5.0; kernel、gamma等其他參數採預設值。
 - IV. 用訓練集進行K折交叉驗證訓練模型。
 - V. 選擇K折中表現最佳的模型,再用整個訓練集對其訓練一次。
- VI. 在測試集上做分類,以評估訓練後的模型效能。

Opensource Code:

SVM Model

■ CNN (supervised & DL)

Libraries:

```
torch - DataLoader, random_split, Subset, Adam, CrossEntropyLoss
torchvision - transforms, resnet18
sklearn - KFold, accuracy_score, confusion_matrix
PIL - Image
```

Hyperparameters:

```
re_size = (196, 196) / (144, 260)

batch_size = 32

lr = 0.001

k = 3

num_classes = 5

epochs = 2
```

步驟:

- I. 定義圖片預處理。先將色彩通道轉換至RGB,再經由transforms的操作統一圖片大小、隨機水平翻轉、正規化。
- II. 準備資料集。將所有圖片以8:2的比例切分為訓練集與測試集。
- III. 用訓練集進行K折交叉驗證訓練模型,在每一折中:

- i. 使用在ImageNet上預訓練的ResNet18模型,並將fully connected layer的輸出維度改為5(class數量)。
- ii. 將模型移動至GPU。
- iii. 設定optimizer和loss function。
- iv. 開始訓練模型。執行2 epochs,過程利用梯度和損失更新參數。
- v. 每epoch訓練結束後,使用該折的測試子集評估模型效能。
- IV. 選擇K折中表現最佳的模型,再用整個訓練集對其訓練一次。
- V. 在測試集上做分類,以評估訓練後的模型效能。

Pretrained Model:

ResNet18 pretrained on ImageNet - resnet18(pretrained=True)

Opensource Code:

Apply K-Fold Cross Validation on ResNet

■ K-means Clustering (unsupervised)

Libraries:

sklearn - KMeans, accuracy_score, adjusted_rand_score

Hyperparameters:

```
re_size = (196, 196) / (144, 260)
num classes = 5
```

步驟:

- I. 圖片預處理。包含將圖片的色彩通道轉換至RGB、統一圖片大小、展開為1D數組、圖片數值正規化。
- II. 定義K-means模型。分為5個聚類,並設定進行10次以不同初始中心的訓練。
- III. 用整個資料集訓練模型,得到各個聚類中心以及每張圖片的預測 聚類標籤。
- IV. 使用預測聚類標籤評估訓練後的模型效能。

Opensource Code:

K-means Clustering

■ PCA (dimensionality reduction)

Libraries:

$$\neg$$
 sklearn - PCA

Hyperparameters:

$$-$$
 n_components = 300

步驟:

「I. 定義PCA模型,設定降維至300D。

II. 用資料集訓練模型。

Experiments

共進行4種實驗:

	image size	PCA	amount of data
Exp1.	196 x 196	X	1
Exp2.	196 x 196	0	1
Exp3.	144 x 260	X	1
Exp4.	196 x 196	Х	1/2

■ Description:

Exp1.是最基本的實驗設定。將圖片邊長縮放至1:1,尺寸為196是受限於硬體容量限制而定,不使用降維技術,且使用完整的資料集(共2600張圖片)。

Exp2.所有參數設定與Exp1.相同,但嘗試使用了降維的技術,將圖片映射到300D的空間中再進行訓練。對於此實驗,我的預期是模型表現會差不多,因為所使用的PCA技術是在盡量保持原特徵的情況下,對高維度的資料進行降維,所以結果不會有太大的差異;而降維不免會失去一些細節,但只要維度不降太多,保持在足夠代表特徵的限度內,對模型表現的影響應該不會太大。

Exp3.也是和Exp1.大致相同,但是讓圖片縮放後的長寬比例與原圖盡量一致(長邊大概是寬邊的1.8倍),且像素總數也和其他實驗組差不多(38416 v.s.37440)。我的預期是模型表現會略好一點,因為原本的圖片是長方形,當縮放成正方形時,長邊被壓縮得比較多,可能會失去一些訊息,因此讓圖片等比例縮放應該會比較好。

Exp4.則是參考了Spec.的建議,僅使用一半的資料集訓練模型。當訓練資料較少時,神經網路和無監督的方法理論上結果會變差;而SVM在上課時有提到,它在小樣本上訓練的表現通常會比其他模型好,但我不太確定我的1/2樣本會不會太少,反而使模型underfitting,因此對這部分的實驗結果我比較沒有把握。

1. SVM

■ Evaluation Results:

(A	ccuracy				Matr	
Exp1.	0.7769	$\begin{bmatrix} 78 \\ 13 \\ 6 \\ 10 \\ 8 \end{bmatrix}$	7 82 1 1 10	3 3 97 0 2	10 9 4 86 11	6 3 2 7 61
Exp2.	0.7904	[77 13 8 9 9	10 85 1 1 1	2 1 99 0 2	8 7 0 86 7	7 4 2 8 64
Exp3.	0.7788	$\begin{bmatrix} 77 \\ 12 \\ 7 \\ 8 \\ 9 \end{bmatrix}$	8 84 1 1 8	3 3 96 0 2	10 9 4 87 12	6 2 2 2 8 61
Exp4.	0.7308	$\begin{bmatrix} 37 \\ 7 \\ 4 \\ 2 \\ 5 \end{bmatrix}$	6 33 1 4 6	2 2 49 0 2	4 5 1 46 5	3 6 1 4 25

比較四組實驗的正確率可以觀察 到,使用 PCA 降維後的資料集表現最 佳;等比例縮小的方式確實有略好一 點;而使用一半數量的資料集,結果 差比較多。Exp2 降維後的結果變好, 可能是因為降維的過程消除了部分噪 音,並選擇了更具代表性的特徵,因 此超平面能更有效地將不同類別分 開,使正確率提升;而 Ex3、Ex4 的結 果與我預期的差不多。

觀察混淆矩陣可以發現,「我們這一家」的 Recall 及 Precision 都是最高的,可知其最具有辨識度;而「櫻桃小丸子」最常被預測錯誤,且容易與「哆啦A夢」、「花田少年史」搞混。另外我也發現,在「哆啦A夢」的 FN 中,其最常被誤認為是「蠟筆小新」。

Examples:

Pred : Hua_Family Label: Hua_Family

Pred : Hua_Family Label: Hua_Family

Pred: Hua_Family Label: Hua_Family

Hua_Family的正確率最高

Pred : Crayon_Shin Label: Doraemon

Maruko 預測為Doraemon

Doraemon預測為Craypn_Shin

2. **CNN**

Evaluation Results:

(A	ccuracy	Co	nfus	ion]	Matri	ix)
Exp1.	0.9038	$\begin{bmatrix} 96 \\ 15 \\ 2 \\ 0 \\ 15 \end{bmatrix}$	0 87 0 0	1 1 96 3 3	1 0 113 0	2
Exp2.	0.4038	77 68 19 31 48	2 1 0 0 0	15 23 65 7 31	18 15 10 56 16	$\begin{bmatrix} 0 \\ 4 \\ 0 \\ 3 \\ 11 \end{bmatrix}$
Exp3.	0.9192	$\begin{bmatrix} 93\\3\\3\\4\\0 \end{bmatrix}$	0 89 0 6 0	1 0 94 0 0	0 0 0 86 0	14] 5 4 2 116
Exp4.	0.5308	$\begin{bmatrix} 20 \\ 0 \\ 0 \\ 0 \\ 2 \end{bmatrix}$	0 42 0 1 10	0 0 8 0 0	41 8 43 50 13	4 0 0 0 0 18

CNN 這四組實驗的變化趨勢和其 他兩者差異甚大。可以看到,等比例 縮小的方式表現最佳,符合我的預 期;但使用PCA降維與一半資料集的 結果卻大幅降低,尤其是降維後的模 型,正確率不到原始的一半。

先分析 Ex2.的原因,我覺得 CNN 在這個情況下表現極差,與模型對輸

入形狀的要求有關。其他兩個模型可以直接以降維後的 1D 陣列作為輸入;但 CNN 要求輸入的形狀必需是(C, H, W), 因此, 我將降維後的 1D 陣列 reshape 回 (3, H, W)的格式時(由於使用預訓練的權重,所以需要是 C=3), 每個數值可能已經不代表原來的位置, 導致 CNN 在學習像素之間的關係特徵時就遇到了問題。

至於 Ex4,在所有模型中這個實驗的表現都會變差,但在這裡正確率下降的程度特別明顯。我覺得是因為神經網路的參數量很多,所以對訓練資料的數量特別敏感。使用一半的資料集顯然數量不足,導致模型 underfitting。

觀察混淆矩陣,Ex2的模型似乎真的學錯了特徵,很多情況都猜成了「蠟筆小新」;Ex4的矩陣看起來也有異常,大部分的猜測都是「花田少年史」。

■ Examples:

Exp2.許多預測都是Craypn Shin

Exp4.許多預測都是Ilu

3. K-means Clustering

■ Evaluation Results:

(ARI,	Accuracy)
Exp1. (0.1622,	0.4662)
Exp2. (0.1616,	0.4646)
Exp3. (0.1649,	0.4685)
Exp4. (0.1597,	0.4515)

從這兩個指標可以觀察到共同的趨勢,即等比例縮小的表現最佳; PCA降維後略差一點;而一半資料集則有較大的下降。Ex3和Ex4的結果同 樣如我預期;而至於Ex2中經過降維處理後,為何對SVM有幫助但在這裡 卻相反呢?我的推論是,由於K-means Clustering是非監督式學習的方法,因 此多一點的特徵對於它學習underlying information可能越有幫助,所以在這 裡執行降維可能較沒那麼有益。

而整體來說,K-means Clustering的表現和其他監督式學習的方法相比 差很多,因為它是在沒有真實標籤的情況下,透過自行學習資料特徵來訓 練的,所以模型表現上會有所限制。

Examples:

Pred : Doraemon

Pred : Crayon_Shin Label: Doraemon

Clustering的結果 似乎較不穩定

Discussion

Based on your experiments, are the results and observed behaviors what you expect?

我原先的預期是CNN的表現會最好,其次是SVM,最後是K-means Clustering。因為CNN最初就是為圖片任務而設計的神經網路,而且它是三者中 唯一有保留圖片空間訊息的模型 (SVM和K-means的輸入都必須是1D數組),其 次,CNN是深層的神經網路,並且我利用了在ImageNet上預訓練的模型,所以 它的性能相對要比較好;Clustering屬於非監督式的訓練,所以預期其學習效果 會最差;而SVM就是介於兩者之間。

SVM在各實驗的結果和我預期的最接近; CNN在Ex2中大幅下滑的結果令我 非常意外,這是因為我一開始忽略了降維後會打亂位置訊息的問題。另外,雖

然知道Ex4的表現會下降,但實際下降的比例也比我預期的多;而Clustering在 Ex2中略微下降的表現則是我比較沒有預料到的。以上可能造成的原因皆已在 Experiments - Evaluation Results中分析。

2. Discuss factors that affect the performance, including dataset characteristics.

根據我的實驗結果,資料維度、縮放大小、訓練資料數量都會影響模型的表現。此外,我這次沒有進行額外的特徵提取,如果加入這個處理步驟,模型的表現應該會更好。另外,還有其他影響神經網路的因素,例如batch size, learning rate, epochs等。

資料集本身的屬性也會有影響,例如資料分布、特徵的相關性、雜訊等。 在我的資料集中,每個類別的數量都一樣,所以沒有資料不平衡的問題。

3. Describe experiments that you would do if there were more time available.

如果有時間的話,我想嘗試只擷取卡通人物的"臉部"來進行分類。因為 畫風的差異主要在於人物特徵,所以我想測試電腦是否能在不受背景等其他因 素的影響下,僅單純觀察人物風格就能正確分辨出不同卡通的差別。

如果要實作這部分的話,可能需要用到一些臉部檢測的技術,如OpenCV或Dlib。

4. Indicate what you have learned from the experiments and remaining questions.

蒐集資料集的部分,在選擇主題以及搜尋資源的過程中我有一些心得:想要建立一個合理、有用的資料集需要考慮很多面向。我決定做卡通的分類,接著我要將這個問題做更嚴謹的定義,包含侷限在"人物"角色、各類別的風格挑選(例如我原本還準備了「葬送的芙莉蓮」的影片,但思考後認為卡通與動漫的風格、線條等差異太大,不適合放在一起分類),以及為了避免圖片過於相似,我也調整了截圖的頻率。如此,使得問題具有挑戰性且有意義。

在技術方面,這是我第一次練習使用無監督學習的方法,雖然效果不如監督式的模型好,但不須標籤的訓練方式非常有趣!我也順便學到了一些不需要真實標籤的評估指標。另一個嘗試是使用 PCA 降維方法,雖然它對於各個模型帶來的影響不同,但明顯感受到的是計算效率提升了(訓練過程跑得超快的)!

References

Cartoon Classification
Cross-Validation
K-means Clustering 介紹
PCA 介紹
Adjusted Rand Index