Honor code: I pledge on my honor that: I have completed all steps in the below homework on my own, I have not used any unauthorized materials while completing this homework, and I have not given anyone else access to my homework.

Name and Signature

1. (1 point) Have you read and understood the honor code?

Solution: Yes, I have read and understood the honor code.

Concept: Projection

2. (2 points) Consider a matrix A and a vector \mathbf{b} which does not lie in the column space

of A. Let **p** be the projection of **b** on to the column space of A. If $A = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 1 & 2 \\ 2 & 2 \end{bmatrix}$ and

$$\mathbf{p} = \begin{bmatrix} 4\\1\\11\\8 \end{bmatrix}, \text{ find } \mathbf{b}.$$

Solution: Given
$$A = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 1 & 2 \\ 2 & 2 \end{bmatrix}$$
 and $\mathbf{p} = \begin{bmatrix} 4 \\ 1 \\ 11 \\ 8 \end{bmatrix}$.

We know that the projection matrix P corresponding to A is given by : $P = A(A^{T}A)^{-1}A^{T}$.

$$A^{\top} = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 1 & 1 & 2 & 2 \end{bmatrix}, A^{\top}A = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 1 & 1 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 10 & 9 \\ 9 & 10 \end{bmatrix}$$
$$=> (A^{\top}A)^{-1} = (\frac{1}{19}) \begin{bmatrix} 10 & -9 \\ -9 & 10 \end{bmatrix}.$$

$$P = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 1 & 2 \\ 2 & 2 \end{bmatrix} \begin{pmatrix} \frac{1}{19} \end{pmatrix} \begin{bmatrix} 10 & -9 \\ -9 & 10 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 & 2 \\ 1 & 1 & 2 & 2 \end{bmatrix} = \begin{pmatrix} \frac{1}{19} \end{pmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 1 & 2 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 11 & -8 & 2 \\ 1 & -8 & 11 & 2 \end{bmatrix}.$$

$$=> P = \left(\frac{1}{19}\right) \begin{bmatrix} 2 & 3 & 3 & 4\\ 3 & 14 & -5 & 6\\ 3 & -5 & 14 & 6\\ 4 & 6 & 6 & 8 \end{bmatrix}.$$

Since **p** is the projection of **b** on the column space of A, we have P **b** = **p**.

To solve for **b** in the above system of linear equations we apply Gaussian Elimination:

So we have,
$$(\frac{1}{19})$$

$$\begin{bmatrix} 2 & 3 & 3 & 4 \\ 3 & 14 & -5 & 6 \\ 3 & -5 & 14 & 6 \\ 4 & 6 & 6 & 8 \end{bmatrix}$$
 $\mathbf{b} = \begin{bmatrix} 4 \\ 1 \\ 11 \\ 8 \end{bmatrix}$.

Perform row operations: $(R_2: R_2 + \frac{-3}{2}R_1), (R_3: R_3 + \frac{-3}{2}R_1), (R_4: R_4 + (-2)R_1).$

Then we have,
$$\left(\frac{1}{19}\right)$$

$$\begin{bmatrix} 2 & 3 & 3 & 4\\ 0 & \frac{19}{2} & \frac{-19}{2} & 0\\ 0 & \frac{-19}{2} & \frac{19}{2} & 0\\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 $\mathbf{b} = \begin{bmatrix} 4\\ -5\\ 5\\ 0 \end{bmatrix}$.

Perform row operations: $(R_3: R_3 + R_2)$ and let $\mathbf{b} = [b_1, b_2, b_3, b_4]$.

Then we have,
$$\left(\frac{1}{19}\right)$$
 $\begin{bmatrix} 2 & 3 & 3 & 4\\ 0 & \frac{19}{2} & \frac{-19}{2} & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} b_1\\b_2\\b_3\\b_4 \end{bmatrix} = \begin{bmatrix} 4\\-5\\0\\0 \end{bmatrix}$.

We observe that, third and fourth columns are free columns so the corresponding free variables are b_3 and b_4 .

Now we have,

$$2b_1 + 3b_2 + 3b_3 + 4b_4 = 76$$
$$b_2 - b_3 = -10$$
$$0 = 0$$
$$0 = 0$$

Let $b_3 = t$ and $b_4 = k$ then $b_2 = t - 10$ and $b_1 = 53 - 3t - 2k \ \forall k, t \in \mathbb{R}$.

We have infinite solutions for P $\mathbf{b} = \mathbf{p}$ and hence $\mathbf{b} = \{ \begin{bmatrix} 53 - 3t - 2k \\ t - 10 \\ t \\ k \end{bmatrix}, \forall k, t \in \mathbb{R} \}.$

- 3. (2 points) Consider the following statement: Two vectors \mathbf{b}_1 and \mathbf{b}_2 cannot have the same projection \mathbf{p} on the column space of A.
 - (a) Give one example where the above statement is True.

Solution: Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, $\mathbf{b_1} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$, $\mathbf{b_2} = \begin{bmatrix} 2 \\ 3 \\ 7 \end{bmatrix}$.

We know that the projection matrix P corresponding to A is given by : $P = A(A^{T}A)^{-1}A^{T}$.

$$A^{\top}A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I.$$

Then, $(A^{\top}A)^{-1} = I^{-1} = I$. So, $P = A(A^{\top}A)^{-1}A^{\top} = AIA^{\top} = AA^{\top} = I$.

Therefore,
$$P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
.

Let the projection of $\mathbf{b_1}$ on the column space of A be $\mathbf{p_1}$ and projection of $\mathbf{b_2}$ on the column space of A be $\mathbf{p_2}$.

Then,
$$\mathbf{p_1} = P \ \mathbf{b_1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}.$$

Then,
$$\mathbf{p_2} = P \ \mathbf{b_2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 7 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 7 \end{bmatrix}.$$

Here, the projections of $\mathbf{b_1}$, $\mathbf{b_2}$ on the column space of A i.e. $\mathbf{p_1}$, $\mathbf{p_2}$ are not equal.

(b) Give one example where the above statement is False.

Solution: Let
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$
, $\mathbf{b_1} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$, $\mathbf{b_2} = \begin{bmatrix} 2 \\ 3 \\ 7 \end{bmatrix}$.

We know that the projection matrix P corresponding to A is given by : $P = A(A^{T}A)^{-1}A^{T}$.

$$A^{\top}A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I.$$

Then, $(A^{\top}A)^{-1} = I^{-1} = I$. So, $P = A(A^{\top}A)^{-1}A^{\top} = AIA^{\top} = AA^{\top}$.

Therefore,
$$P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Let the projection of $\mathbf{b_1}$ on the column space of A be $\mathbf{p_1}$ and projection of $\mathbf{b_2}$ on the column space of A be $\mathbf{p_2}$.

Then,
$$\mathbf{p_1} = P \ \mathbf{b_1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}.$$

Then,
$$\mathbf{p_2} = P \ \mathbf{b_2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 7 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}.$$

Here, the projections of $\mathbf{b_1}$, $\mathbf{b_2}$ on the column space of A i.e. $\mathbf{p_1}$, $\mathbf{p_2}$ are equal.

(c) Based on the above examples, state the generic condition under which the above statement will be True or False.

Solution:

Given condition: Two vectors \mathbf{b}_1 and \mathbf{b}_2 cannot have the same projection \mathbf{p} on the column space of A.

The given condition is True except when $(\mathbf{b_1} - \mathbf{b_2})$ is orthogonal to the column space of A.

Reason: Let A be a $m \times n$ matrix and let $\mathbf{b_1}$, $\mathbf{b_2}$ be two $m \times 1$ vectors such that $(\mathbf{b_1} - \mathbf{b_2})$ is orthogonal to the column space of A.

That is $A_i^{\top}(\mathbf{b}_1 - \mathbf{b}_2) = 0 \ \forall i \in \{1, 2, 3, \dots, n\}$ where A_i denotes i^{th} column of A.

Equivalently,
$$A^{\top}(\mathbf{b}_1 - \mathbf{b}_2) = \mathbf{0} => (A(AA^{\top})^{-1})A^{\top}(\mathbf{b}_1 - \mathbf{b}_2) = \mathbf{0}.$$

=> $P(\mathbf{b}_1 - \mathbf{b}_2) = \mathbf{0}$ where $P = A(AA^{\top})^{-1}A^{\top}$ is the projection matrix corresponding to projecting onto the column space of A.

 $=> P\mathbf{b}_1 = P\mathbf{b}_2 = \mathbf{p}$ (say) i.e. the projection of \mathbf{b}_1 and the projection of \mathbf{b}_2 onto the column space of A are equal.

Therefore, if two vectors \mathbf{b}_1 and \mathbf{b}_2 are such that $(\mathbf{b_1} - \mathbf{b_2})$ is orthogonal to the column space of A then they have the same projection \mathbf{p} on the column space of A.

4. (2 points) (a) Find the projection matrix P_1 that projects onto the line through $\mathbf{a} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and also the matrix P_2 that projects onto the line perpendicular to \mathbf{a} .

Solution: Given $\mathbf{a} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$. Also P_1 is the projection matrix that projects onto the line through \mathbf{a} .

We know that
$$P_1 = \frac{aa^{\top}}{a^{\top}a} = P_1 = \frac{\begin{bmatrix} 1\\3 \end{bmatrix} \begin{bmatrix} 1 & 3 \end{bmatrix}}{\begin{bmatrix} 1 & 3 \end{bmatrix} \begin{bmatrix} 1\\3 \end{bmatrix}} = \frac{\begin{bmatrix} 1 & 3\\3 & 1 \end{bmatrix}}{{}^{10}} = P_1 = \frac{1}{10} \begin{bmatrix} 1 & 3\\3 & 9 \end{bmatrix}.$$

For any non-zero vector **b**, projection of **b** on line passing through **a** i.e. $\mathbf{p} = \frac{\mathbf{a}\mathbf{a}^{\mathsf{T}}b}{\mathbf{a}^{\mathsf{T}}\mathbf{a}}$.

Consider
$$(\mathbf{b} - \mathbf{p})$$
, then $\mathbf{a}^{\top}(\mathbf{b} - \mathbf{p}) = \mathbf{a}^{\top}\mathbf{b} - \frac{\mathbf{a}^{\top}\mathbf{a}\mathbf{a}^{\top}\mathbf{b}}{\mathbf{a}^{\top}\mathbf{a}} = \mathbf{a}^{\top}\mathbf{b} - \mathbf{a}^{\top}\mathbf{b} = \mathbf{0}$.

Let $(\mathbf{b} - \mathbf{p}) = \mathbf{e}$ then we have \mathbf{e} is perpendicular to $\mathbf{a} => \mathbf{e}$ is projection of \mathbf{b} on a line perpendicular to the line passing through the line passing through \mathbf{a} .

Then
$$\mathbf{e} = P_2 \mathbf{b} - (\mathbf{eqn1}).$$

Consider
$$\mathbf{e} = (\mathbf{b} - \mathbf{p}) = (\mathbf{b}I - \frac{\mathbf{a}\mathbf{a}^{\mathsf{T}}\mathbf{b}}{\mathbf{a}^{\mathsf{T}}\mathbf{a}}) = (I - \frac{\mathbf{a}\mathbf{a}^{\mathsf{T}}}{\mathbf{a}^{\mathsf{T}}\mathbf{a}}) \mathbf{b} = (I - P_1) \mathbf{b}$$
 (eqn2).

From
$$(\mathbf{eqn1})$$
, $(\mathbf{eqn2})$ we have,
 $P_2\mathbf{b} = (I - P_1)\mathbf{b} => P_2\mathbf{b} - (I - P_1)\mathbf{b} = \mathbf{0} => (P_2 - I + P_1)\mathbf{b} = \mathbf{0}$.

Since **b** is non-zero =>
$$(P_2 - I + P_1) = 0 => P_2 + P_1 = I$$
.—(eqn3).

Hence, we have
$$P_2 = I - P_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \frac{1}{10} \begin{bmatrix} 1 & 3 \\ 3 & 9 \end{bmatrix} = \frac{1}{10} \begin{bmatrix} 9 & -3 \\ -3 & 1 \end{bmatrix}$$
.

Therefore,
$$P_1 = \frac{1}{10} \begin{bmatrix} 1 & 3 \\ 3 & 9 \end{bmatrix}$$
 and $P_2 = \frac{1}{10} \begin{bmatrix} 9 & -3 \\ -3 & 1 \end{bmatrix}$.

(b) Compute $P_1 + P_2$ and P_1P_2 and explain the result.

Solution: We have
$$P_1 + P_2 = \frac{1}{10} \begin{bmatrix} 1 & 3 \\ 3 & 9 \end{bmatrix} + \frac{1}{10} \begin{bmatrix} 9 & -3 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$
.

Explanation:

Consider line passing through any vector \mathbf{a} then P_1 be its projection matrix and P_2 be the projection matrix corresponding to the line perpendicular the line passing through \mathbf{a} . From (eqn3) in Q4(a), we have $P_1 + P_2 = I$.

Also
$$P_1 * P_2 = \frac{1}{10} \begin{bmatrix} 1 & 3 \\ 3 & 9 \end{bmatrix} * \frac{1}{10} \begin{bmatrix} 9 & -3 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

Explanation:

Consider line passing through any vector \mathbf{a} then P_1 be its projection matrix and P_2 be the projection matrix corresponding to the line perpendicular the line passing through \mathbf{a} . From (eqn3) in Q4(a), we have $P_1 + P_2 = I$.

Then
$$P_1 * P_2 = P_1 * (I - P_1) = P_1 - (P_1)^2$$
.

We know that for any projection matrix P, $(P)^2 = P$. Hence, $(P_1)^2 = P_1$ then $P_1 * P_2 = \mathbf{0}$.

Concept: Dot product of vectors

5. (1 point) Consider two vectors \mathbf{u} and \mathbf{v} . Let θ be the angle between these two vectors. Prove that

$$cos\theta = \frac{\mathbf{u}^{\top}\mathbf{v}}{||\mathbf{u}||_2||\mathbf{v}||_2}$$

Solution: Let **p** be the projection of **v** on **u**. Then $cos\theta = \frac{||\mathbf{p}||_2}{||\mathbf{v}||_2}$.—(eqn1

Consider $||\mathbf{p}||_2$, we know that $||\mathbf{p}||_2 = \sqrt{\mathbf{p}^{\top}\mathbf{p}}$ and $\mathbf{p} = (\frac{\mathbf{u}^{\top}\mathbf{v}}{\mathbf{u}^{\top}\mathbf{u}})\mathbf{u}$.

Then,
$$||\mathbf{p}||_2 = \sqrt{((\frac{\mathbf{u}^{\top}\mathbf{v}}{\mathbf{u}^{\top}\mathbf{u}})\mathbf{u})^{\top}(\frac{\mathbf{u}^{\top}\mathbf{v}}{\mathbf{u}^{\top}\mathbf{u}})\mathbf{u}}$$
.

Since
$$(\frac{\mathbf{u}^{\top}\mathbf{v}}{\mathbf{u}^{\top}\mathbf{u}})$$
 is a scalar, $||\mathbf{p}||_2 = \sqrt{(\frac{\mathbf{u}^{\top}\mathbf{v}}{\mathbf{u}^{\top}\mathbf{u}})\mathbf{u}^{\top}(\frac{\mathbf{u}^{\top}\mathbf{v}}{\mathbf{u}^{\top}\mathbf{u}})\mathbf{u}} = \sqrt{(\frac{\mathbf{u}^{\top}\mathbf{v}}{\mathbf{u}^{\top}\mathbf{u}})^2(\mathbf{u}^{\top}\mathbf{u})} = (\frac{\mathbf{u}^{\top}\mathbf{v}}{\mathbf{u}^{\top}\mathbf{u}})\sqrt{(\mathbf{u}^{\top}\mathbf{u})}$.

Hence,
$$||\mathbf{p}||_2 = (\frac{\mathbf{u}^{\top}\mathbf{v}}{\mathbf{u}^{\top}\mathbf{u}})\sqrt{(\mathbf{u}^{\top}\mathbf{u})} = (\frac{\mathbf{u}^{\top}\mathbf{v}}{\sqrt{(\mathbf{u}^{\top}\mathbf{u})}}) = \frac{\mathbf{u}^{\top}\mathbf{v}}{||\mathbf{u}||_2}.$$

Substituting $||\mathbf{p}||_2$ in $(\mathbf{eqn1})$, we have $\cos\theta = \frac{||\mathbf{p}||_2}{||\mathbf{v}||_2} = \frac{\mathbf{u}^\top \mathbf{v}}{||\mathbf{u}||_2||\mathbf{v}||_2}$.

Therefore,

$$cos\theta = \frac{\mathbf{u}^{\top}\mathbf{v}}{||\mathbf{u}||_2||\mathbf{v}||_2}$$

Concept: Vector norms

6. (1 point) The L_p -norm of a vector $\mathbf{x} = [x_1, x_2, \dots, x_n] \in \mathbb{R}^n$ is defined as:

$$||\mathbf{x}||_p = (|x_1|^p + |x_2|^p + |x_3|^p + \dots + |x_n|^p)^{\frac{1}{p}}$$

(a) Prove that $||\mathbf{x}||_{\infty} = \max_{1 \leq i \leq n} |x_i|$

Solution: Consider $||\mathbf{x}||_p = (|x_1|^p + |x_2|^p + |x_3|^p + \dots + |x_n|^p)^{\frac{1}{p}}$.

Let
$$|x_m| = \max_{1 \le i \le n} |x_i|$$
 then $||\mathbf{x}||_p = |x_m| (|\frac{x_1}{x_m}|^p + |\frac{x_2}{x_m}|^p + |\frac{x_3}{x_m}|^p + \dots + |\frac{x_n}{x_m}|^p)^{\frac{1}{p}}$.

We know that $\left|\frac{x_i}{x_m}\right| \le 1 \ \forall i \in \{1, 2, 3, \dots, n\}.$

For all j such that $\left|\frac{x_j}{x_m}\right| < 1$, as $p \to \infty$ we have $\left|\frac{x_j}{x_m}\right|^p \to 0$.

For all l such that $\left|\frac{x_l}{x_m}\right| = 1$, as $p \to \infty$ we have $\left|\frac{x_l}{x_m}\right|^p = 1$.

So as $p \to \infty$, the sum $\left(\left|\frac{x_1}{x_m}\right|^p + \left|\frac{x_2}{x_m}\right|^p + \left|\frac{x_3}{x_m}\right|^p + \dots + \left|\frac{x_n}{x_m}\right|^p\right) \to k$, where $k \in \mathbb{Z}$.

Hence, as $p \to \infty$ we have $\frac{1}{p} \to 0$ and the expression

$$\left(\left|\frac{x_1}{x_m}\right|^p + \left|\frac{x_2}{x_m}\right|^p + \left|\frac{x_3}{x_m}\right|^p + \dots + \left|\frac{x_n}{x_m}\right|^p\right)^{\frac{1}{p}} \to (k)^{\frac{1}{p}} \to 1.$$

Therefore, $||\mathbf{x}||_{\infty} = |x_m| = \max_{1 \le i \le n} |x_i|$.

(b) True or False (explain with reason): $||\mathbf{x}||_0$ is a norm.

Solution: False.

Let
$$\mathbf{x} = [x_1] \in \mathbb{R} - \{0\}$$
 then $||\mathbf{x}||_0 = (|x_1|^0)^{\frac{1}{0}} = 1^{\infty} = 1$.

Consider $||\alpha \mathbf{x}||_0$, $\forall \alpha \in \mathbb{R}$.

case 1:
$$\alpha \neq 0 = ||\alpha \mathbf{x}||_0 = (|\alpha x_1|^0)^{\frac{1}{0}} = 1^{\infty} = 1$$
.

case 2:
$$\alpha = 0 = ||\alpha \mathbf{x}||_0 = (|\alpha x_1|^0)^{\frac{1}{0}} = (|\alpha|^0 |x_1|^0)^{\frac{1}{0}} = (0^0)^{\infty} = \text{indeterminate form.}$$

$$\alpha ||\mathbf{x}||_0 = \alpha 1 = \alpha.$$
 (1)

From case 1, case 2 and (1), we have $||\alpha \mathbf{x}||_0 \neq \alpha ||\mathbf{x}||_0$.

Therefore, $||\mathbf{x}||_0$ is not a norm.

Concept: Orthogonal/Orthonormal vectors and matrices

- 7. (1 point) Consider the following questions:
 - (a) Construct a 2×2 matrix, such that all its entries are +1 and -1 and its columns are orthogonal.

Solution: Consider the matrix $A = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$.

We have $\begin{bmatrix} -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = -1 + 1 = 0$. Hence the columns of A are orthogonal.

Therefore, A is a 2×2 orthogonal matrix, such that all its entries are +1 and -1 and its columns are orthogonal.

(b) Now, construct a 4×4 matrix, such that all its entries are +1 and -1, its columns are orthogonal and it contains the above matrix within it.

Solution: Consider the matrix $A = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$ and

$$B = \begin{bmatrix} A & & 1 & 1 \\ & 1 & -1 \\ 1 & 1 & -1 & 1 \\ 1 & -1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} & & 1 & 1 \\ & & 1 & -1 \\ & & & 1 & -1 \\ & 1 & & -1 & 1 \\ & 1 & & -1 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 1 & 1 & 1 \\ 1 & 1 & 1 & -1 \\ 1 & 1 & -1 & 1 \\ 1 & & -1 & 1 & 1 \end{bmatrix}.$$

We have,

$$\begin{bmatrix} -1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1\\1\\1\\-1 \end{bmatrix} = -2 + 2 = 0.$$

$$\begin{bmatrix} -1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1\\1\\-1\\1 \end{bmatrix} = -2 + 2 = 0.$$

$$\begin{bmatrix} -1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1\\-1\\1\\1 \end{bmatrix} = -2 + 2 = 0.$$

$$\begin{bmatrix} 1 & 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1\\1\\-1\\1 \end{bmatrix} = -2 + 2 = 0.$$

$$\begin{bmatrix} 1 & 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1\\-1\\1\\1 \end{bmatrix} = -2 + 2 = 0.$$

$$\begin{bmatrix} 1 & 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1\\-1\\1\\1 \end{bmatrix} = -2 + 2 = 0.$$

Hence, all the columns of B are orthogonal.

Therefore, B is a 4×4 matrix, such that all its entries are +1 and -1, its columns are orthogonal and it contains the above matrix A within it.

8. (1 point) Consider the vectors
$$\mathbf{a} = \begin{bmatrix} 4 \\ 5 \\ 2 \\ 2 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix}$

(a) What multiple of **a** is closest to **b**?

Solution: By definition, the projection of **b** on the **span**(**a**) is the multiple of **a** closest to **b**.

The projection of **b** on the **spanofa** i.e. $\mathbf{p} = (\frac{\mathbf{a}^{\top} \mathbf{b}}{\mathbf{a}^{\top} \mathbf{a}}) \mathbf{a}$

$$=> \mathbf{p} = (\frac{\begin{bmatrix} 4 & 5 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix}}{\begin{bmatrix} 4 \\ 5 \\ 2 \\ 2 \end{bmatrix}} \mathbf{a}.$$

$$\mathbf{p} = (\frac{4+10}{14+25+4+4})\mathbf{a} = (\frac{14}{49})\mathbf{a} = (\frac{2}{7})\mathbf{a}.$$

Therefore, $(\frac{2}{7})\mathbf{a}$ is the multiple of \mathbf{a} closest to \mathbf{b} .

(b) Find orthonormal vectors $\mathbf{q_1}$ and $\mathbf{q_2}$ that lie in the plane formed by \mathbf{a} and \mathbf{b} ?

Solution:

Using Gram-Schmidt Process: Let $a_1 = a$ and $a_2 = b$.

(i)
$$\hat{\mathbf{a_1}} = \mathbf{a_1}$$
 and $\hat{\mathbf{a_2}} = \mathbf{a_2} \cdot (\frac{\hat{\mathbf{a_1}}^{\top} \mathbf{a_2}}{\hat{\mathbf{a_1}}^{\top} \hat{\mathbf{a_1}}}) \ \hat{\mathbf{a_1}}$.

$$\hat{\mathbf{a_1}} = \begin{bmatrix} 4 \\ 5 \\ 2 \\ 2 \end{bmatrix} \text{ and } \hat{\mathbf{a_2}} = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix} - (\frac{\begin{bmatrix} 4 & 5 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix}}{\begin{bmatrix} 4 & 5 & 2 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \\ 2 \\ 2 \end{bmatrix}} = > \hat{\mathbf{a_2}} = \frac{1}{7} \begin{bmatrix} -1 \\ 4 \\ -4 \\ -4 \end{bmatrix}.$$

(ii)
$$\hat{\mathbf{q_1}} = \frac{1}{||a_1||_2} \hat{\mathbf{a_1}}$$
 and $\hat{\mathbf{q_2}} = \frac{1}{||a_2||_2} \hat{\mathbf{a_2}}$.

$$\hat{\mathbf{q_1}} = \frac{1}{\|a_1\|_2} \hat{\mathbf{a_1}} = \left(\frac{1}{\sqrt{16+25+4+4}}\right) \begin{bmatrix} 4\\5\\2\\2 \end{bmatrix} => \hat{\mathbf{q_1}} = \left(\frac{1}{7}\right) \begin{bmatrix} 4\\5\\2\\2 \end{bmatrix}.$$

$$\hat{\mathbf{q_2}} = \frac{1}{||a_2||_2} \hat{\mathbf{a_2}} = \left(\frac{1}{7*\sqrt{1}}\right) \begin{bmatrix} -1\\4\\-4\\-4 \end{bmatrix} = > \hat{\mathbf{q_2}} = \left(\frac{1}{7}\right) \begin{bmatrix} -1\\4\\-4\\-4 \end{bmatrix}.$$

$$\hat{\mathbf{q_1}}^{\top} \hat{\mathbf{q_1}} = (\frac{1}{7}) \begin{bmatrix} 4 & 5 & 2 & 2 \end{bmatrix} (\frac{1}{7}) \begin{bmatrix} 4 \\ 5 \\ 2 \\ 2 \end{bmatrix} = \frac{49}{49} = 1.$$

$$\hat{\mathbf{q_2}}^{\top} \hat{\mathbf{q_2}} = (\frac{1}{7}) \begin{bmatrix} -1 & 4 & -4 & -4 \end{bmatrix} (\frac{1}{7}) \begin{bmatrix} -1 \\ 4 \\ -4 \\ -4 \end{bmatrix} = \frac{49}{49} = 1.$$

$$\hat{\mathbf{q_1}}^{\top} \hat{\mathbf{q_2}} = \begin{pmatrix} \frac{1}{7} \end{pmatrix} \begin{bmatrix} 4 & 5 & 2 & 2 \end{bmatrix} \begin{pmatrix} \frac{1}{7} \end{pmatrix} \begin{bmatrix} -1 \\ 4 \\ -4 \\ -4 \end{bmatrix} = 0.$$

Hence $\hat{\mathbf{q_1}}$, $\hat{\mathbf{q_2}}$ are orthonormal vectors.

Let the plane formed by **a** and **b** be P i.e. $P = \{\alpha \mathbf{a} + \beta \mathbf{b}, \forall \alpha, \beta \in \mathbb{R}\}.$

Notice that P is a subspace.

By construction, $\mathbf{a_1} = \mathbf{a}$ and $\hat{\mathbf{a_2}} = \mathbf{b} - \frac{2}{7}\mathbf{a}$ and so $\hat{\mathbf{a_1}}$ and $\hat{\mathbf{a_2}} \in \mathbf{P}$.

Since $\hat{\mathbf{q_1}} = \frac{1}{||a_1||_2} \hat{\mathbf{a_1}}$ and $\hat{\mathbf{q_2}} = \frac{1}{||a_2||_2} \hat{\mathbf{a_2}}$ then $\hat{\mathbf{q_1}}$, $\hat{\mathbf{q_2}} \in \mathbf{P}$ i.e. they lie in the plane formed by \mathbf{a} and \mathbf{b} .

Therefore, $\hat{\mathbf{q_1}} = \begin{pmatrix} \frac{1}{7} \end{pmatrix} \begin{bmatrix} 4\\5\\2\\2 \end{bmatrix}$, $\hat{\mathbf{q_2}} = \begin{pmatrix} \frac{1}{7} \end{pmatrix} \begin{bmatrix} -1\\4\\-4\\-4 \end{bmatrix}$ are orthonormal vectors that lie in the

plane formed by \mathbf{a} and \mathbf{b} .

9. (1 point) Suppose $\mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_n}$ are orthogonal vectors. Prove that they are also independent.

Solution:

Given vectors $\mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_n}$ are orthogonal vectors.

Even if at least one of them is a zero vector then the vectors are linearly dependent.

Let $\mathbf{a_t}$ is $\mathbf{0}$ then $\sum_{i=1:i\neq t}^n 0\mathbf{a_i} + l\mathbf{a_t} = \mathbf{0}$, $\forall l \in \mathbb{R}$. Hence, they are linearly dependent.

So, given vectors $\mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_n}$ are orthogonal vectors such that $\mathbf{a_i} \neq \mathbf{0} \ \forall \ i \in \{1, 2, \dots, n\}$.—(eqn1)

Proof by contradiction:

Assume $\mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_n}$ are linearly dependent.

Then $c_1\mathbf{a_1} + c_2\mathbf{a_2} + \cdots + c_n\mathbf{a_n} = \mathbf{0}$ where $c_i \neq 0$ for at least one $i \in \{1, 2, \dots, n\}$.

Let $c_k \neq 0$ then consider, $\mathbf{a_k}^{\top}(c_1\mathbf{a_1} + c_2\mathbf{a_2} + \cdots + c_n\mathbf{a_n}) = \mathbf{0}$.——(eqn2)

$$c_1 \mathbf{a_k}^{\mathsf{T}} \mathbf{a_1} + \dots + c_k \mathbf{a_k}^{\mathsf{T}} \mathbf{a_k} + \dots + c_n \mathbf{a_k}^{\mathsf{T}} \mathbf{a_n} = \mathbf{0}.$$

Since vectors are orthogonal, $\mathbf{a}_{\mathbf{i}}^{\top} \mathbf{a}_{\mathbf{j}} = 0, \forall i \neq j \text{ where } i, j \in \{1, 2, \dots, n\}.$

$$c_1 \mathbf{a_k}^{\mathsf{T}} \mathbf{a_1} + \dots + c_k \mathbf{a_k}^{\mathsf{T}} \mathbf{a_k} + \dots + c_n \mathbf{a_k}^{\mathsf{T}} \mathbf{a_n} = \mathbf{0} => c_k \mathbf{a_k}^{\mathsf{T}} \mathbf{a_k} = \mathbf{0}.$$
 (eqn3)

From (eqn1), (eqn2), we have $\mathbf{a_k} \neq \mathbf{0}$ and $c_k \neq 0 = c_k \mathbf{a_k}^{\top} \mathbf{a_k} \neq \mathbf{0}$.—(eqn4)

From (eqn3), (eqn4), we have have a contradiction.

Hence, our assumption that a_1, a_2, \ldots, a_n are linearly dependent is incorrect.

Therefore, given orthogonal vectors $\mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_n}$ are linearly independent.

10. (1 point) If Q_1 and Q_2 are orthogonal matrices, show that their product Q_1Q_2 is also an orthogonal matrix.

Solution: Let Q_1 and Q_2 be $n \times n$ orthogonal matrices.

Let $Q_2 = [\mathbf{q_1} \ \mathbf{q_2} \ \dots \ \mathbf{q_n}]$ where $\mathbf{q_i}$ is the i^{th} column of Q_2 .

Consider
$$Q_1Q_2 = Q_1 \begin{bmatrix} \mathbf{q_1} & \mathbf{q_2} & \dots & \mathbf{q_n} \end{bmatrix} = \begin{bmatrix} Q_1\mathbf{q_1} & Q_1\mathbf{q_2} & \dots & Q_1\mathbf{q_n} \end{bmatrix}$$
.

Let $(Q_1Q_2)_i$, $(Q_1Q_2)_j$ be the i^{th} and j^{th} column of Q_1Q_2 respectively.

Consider
$$((Q_1Q_2)_i)^{\top}(Q_1Q_2)_j = (Q_1\mathbf{q_i})^{\top}(Q_1\mathbf{q_j}) = \mathbf{q_i}^{\top}Q_1^{\top}(Q_1\mathbf{q_j}) = \mathbf{q_i}^{\top}(Q_1^{\top}Q_1)\mathbf{q_j}$$
.

Since
$$Q_1$$
 is an orthogonal matrix, $Q_1^{\top} = Q_1^{-1} = > \mathbf{q_i}^{\top}(Q_1^{\top}Q_1)\mathbf{q_j} = \mathbf{q_i}^{\top}(I)\mathbf{q_j} = \mathbf{q_i}^{\top}\mathbf{q_j}$.

Since
$$Q_2$$
 is an orthogonal matrix, $\mathbf{q_i}^{\top}\mathbf{q_j} = \begin{cases} 1; & \text{if } i = j \\ 0; & \text{if } i \neq j \end{cases}$.

Hence,
$$((Q_1Q_2)_i)^{\top}(Q_1Q_2)_j = \begin{cases} 1; & \text{if } i = j \\ 0; & \text{if } i \neq j \end{cases}$$
.

Therefore, Q_1Q_2 is also an orthogonal matrix.

Concept: Determinants

11. (2 points) A tri-diagonal matrix is a matrix which has 1's on the main diagonal as well as on the diagonals to the left and right of the main diagonal. For example,

$$A_{4} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$A_{5} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

Let A_n be an $n \times n$ tri-diagonal matrix. Prove that $|A_n| = |A_{n-1}| - |A_{n-2}|$

Solution: Consider
$$A_n = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & \dots & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & \dots & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & \dots & 0 \end{bmatrix}$$

$$\vdots$$
Page 13

where $(A_n)_{ij}$ denotes the $(ij)^{th}$ entry of A_n and C_{ij} denotes its corresponding cofactor.

$$det(A_n) = det \begin{pmatrix} \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & \dots & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & \dots & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & \dots & 0 \\ \dots & & & & & & & \\ 0 & 0 & 0 & 0 & 0 & \dots & & 1 & 1 \end{bmatrix} \right) = (1)C_{11} + (1)C_{12} = C_{11} + C_{12}.$$

On observation we find,
$$C_{11} = det \begin{pmatrix} \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & \dots & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & \dots & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & \dots & 0 \\ \dots & & & & & & & \\ 0 & 0 & 0 & 0 & 0 & \dots & 1 & 1 \end{bmatrix} \end{pmatrix} = det(A_{n-1}).$$

Also
$$C_{12} = (-1) det \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & \dots & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & \dots & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & \dots & 0 \\ \dots & & & & & & & \\ 0 & 0 & 0 & 0 & 0 & \dots & 1 & 1 \end{bmatrix}$$
.

$$\operatorname{Let} B = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & \dots & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & \dots & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & \dots & 0 \\ \dots & & & & & & & \\ 0 & 0 & 0 & 0 & 0 & \dots & 1 & 1 \end{bmatrix}.$$

$$det(B) = det \begin{pmatrix} \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & \dots & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & \dots & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & 0 & \dots & 1 & 1 \end{bmatrix} \right) = (B)_{11}D_{11} + (B)_{12}D_{12} = D_{11} + D_{12}$$

where $(B)_{ij}$ denotes the $(ij)^{th}$ entry of B and D_{ij} denotes its corresponding co-factor.

$$det(B) = det \begin{pmatrix} \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & \dots & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & \dots & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & \dots & 0 \\ \dots & & & & & & & \\ 0 & 0 & 0 & 0 & 0 & \dots & & 1 & 1 \end{bmatrix} \end{pmatrix} = (B)_{11}D_{11} + (B)_{12}D_{12} = D_{11} + D_{12}.$$

On observation we find, $D_{11} = det \begin{pmatrix} \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & \dots & 0 \\ 1 & 1 & 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 1 & 1 & 0 & \dots & 0 \\ \dots & & & & & & \\ 0 & 0 & 0 & 0 & \dots & 1 & 1 \end{bmatrix} \end{pmatrix} = det(A_{n-2}).$

Also
$$D_{12} = (-1) det \begin{pmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & \dots & 0 \\ 0 & 1 & 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 1 & 1 & 0 & \dots & 0 \\ \dots & & & & & & & \\ 0 & 0 & 0 & 0 & \dots & 1 & 1 \end{pmatrix}$$
.

From property(10) / Q13(b) we have,
$$D_{12} = (-1) det \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & \dots & 0 \\ 0 & 1 & 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 1 & 1 & 0 & \dots & 0 \\ \dots & & & & & & \\ 0 & 0 & 0 & 0 & \dots & 1 & 1 \end{bmatrix}^{\top}$$

So
$$D_{12} = (-1) det \begin{pmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & \dots & 0 \\ 1 & 1 & 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 1 & 1 & 0 & \dots & 0 \\ \dots & & & & & & \\ 0 & 0 & 0 & 0 & \dots & 0 & 1 \end{bmatrix} \end{pmatrix} = 0.$$
 { From property (6) }

Hence,
$$C_{12} = (-1) \det(B) = (-1) (D_{11} + D_{12}) = (-1) D_{11} = -(\det(A_{n-2})).$$

So,
$$det(A_n) = C_{11} + C_{12} = det(A_{n-1}) + (-(det(A_{n-2}))) = det(A_{n-1}) - (det(A_{n-2})).$$

Therefore, $|A_n| = |A_{n-1}| - |A_{n-2}|$.

12. (1 point) State True or False and explain your answer: det(A + B) = det(A) + det(B)

Solution: False.

Consider
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ then $A + B = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.

So,
$$det(A) = 1$$
, $det(B) = 1 = det(A) + det(B) = 2$ and $det(A + B) = 0$.

Therefore, $det(A + B) \neq det(A) + det(B)$.

- 13. (1 point) This question is about properties 9 and 10 of determinants.
 - (a) Prove that det(AB) = det(A)det(B)

Solution:

Let A, B be $n \times n$ matrices.

$$\mathbf{case(i)} \colon \det(A) = 0.$$

If det(A) = 0 => A is not invertible => rank of A < n.

We know that rank of $AB \le \operatorname{rank}$ of $A => \operatorname{rank}$ of $AB < \operatorname{n}$

 $=>\exists$ a zero pivot in U_{AB} , so $det(U_{AB})=0$ where U_{AB} is the U in LU factorization of AB obtained by Gaussian Elimination.

Since row operations don't change the determinant, $det(U_{AB}) = det(AB) = 0$.

Hence, det(AB) = det(A)det(B).

 $\mathbf{case}(\mathbf{ii})$: $det(A) \neq 0$ and $det(B) \neq 0$.

If det(A) = 0 => A is invertible $=> A^{-1}$ exists.

Since A^{-1} exists => RREF(A) = I.

Also we know that RREF(A) = EA where $E = (M * E_t * E_{t-1} * \cdots * E_1)$ where each E_i is an elementary matrix and M is a diagonal matrix with non-zero entries. Also E is invertible since each E_i and M are invertible.

Then,
$$EA = I \implies A = E^{-1} \implies A = (M * E_t * E_{t-1} * \cdots * E_1)^{-1}$$

 $=>A=E_1^{-1}*\cdots*E_t^{-1}*M^{-1}=>A=F_1*F_2*\cdots*F_t*N$ where $E_i^{-1}=F_i$ which is also an elementary matrix and $M^{-1}=N$ which is also a diagonal matrix.

claim (1): If A is a diagonal matrix then det(AB) = det(A)det(B).

Proof: Let a_{ij} denote the $(ij)^{th}$ entry of A and B_i^{\top} denote the $(i)^{th}$ row of B.

Then
$$det(AB) = det \begin{pmatrix} \begin{bmatrix} a_{11}B_1^\top \\ a_{22}B_2^\top \\ & \ddots \\ a_{nn}B_n^\top \end{bmatrix}$$
. By property(2) of determinants we have,

$$\det \begin{pmatrix} \begin{bmatrix} a_{11}B_1^{\top} \\ a_{22}B_2^{\top} \\ \dots \\ a_{nn}B_n^{\top} \end{bmatrix} \end{pmatrix} = (a_{11} * a_{22} * \dots * a_{nn}) \det \begin{pmatrix} \begin{bmatrix} B_1^{\top} \\ B_2^{\top} \\ \dots \\ B_n^{\top} \end{bmatrix} \end{pmatrix}.$$

By property(7) of determinants we have,

$$(a_{11} * a_{22} * \cdots * a_{nn}) \det \begin{pmatrix} \begin{bmatrix} B_1^\top \\ B_2^\top \\ \vdots \\ B_n^\top \end{bmatrix} \end{pmatrix} = \det(A)\det(B).$$

Hence, det(AB) = det(A)det(B).

claim (2): If A is an elementary matrix then det(AB) = det(A)det(B).

Proof: We know that any elementary matrix A corresponding to some row operation is obtained by performing the same row operation on I.

Also since A is an elementary matrix corresponding to some row operation then AB is obtained by performing the same row operation on B.

Since row operations do not change the determinant of a matrix, det(A) = det(I)= 1 and det(AB) = det(B).

Then, det(A)det(B) = det(B) = det(AB).

Hence, det(AB) = det(A)det(B).

Since we have $A = F_1 * F_2 * \cdots * F_t * N$ then,

Now,
$$det(AB) = det((F_1 * F_2 * \cdots * F_t * N) * B) = det(F_1 * F_2 * \cdots * F_t * N * B).$$

By claim(2) we have,

$$det(F_1 * F_2 * \cdots * F_t * N * B) = det(F_1) * det(F_2 * \cdots * F_t * N * B).$$

By repeatedly using claim(2) we have,

$$det(F_1) * det(F_2 * \cdots * F_t * N * B) = det(F_1) * det(F_2) * \cdots * det(F_t) * det(N * B).$$

By claim(1) we have,

$$det(F_1) * det(F_2) * \cdots * det(F_t) * det(N * B) = det(F_1) * det(F_2) * \cdots * det(F_t) * det(N) * det(B).$$

Again by repeatedly using **claim(2)** we have,

$$det(F_1) * det(F_2) * \cdots * det(F_t) * det(N) * det(B) = det(F_1) * det(F_2) * \cdots * (det(F_t) * det(N)) * det(B) = det(F_1 * F_2 * \cdots * F_t * det(N)) * det(B)$$

$$det(F_1 * F_2 * \cdots * F_t * det(N)) * det(B) = det(A) * det(B).$$

Hence, det(AB) = det(A)det(B).

Therefore from **case(i)**, **case(ii)** we have det(AB) = det(A)det(B).

(b) (2 points) Prove that $det(A^{\top}) = det(A)$

Solution: Let A be an $n \times n$ matrix.

 $\mathbf{case}(\mathbf{i})$: det(A) = 0.

If $det(A) = 0 \Longrightarrow A$ is not invertible \Longrightarrow column rank of A < n.

We know that column rank of A = row rank of A => row rank of A < n.

Also, row rank of $A = \text{column rank of } A^{\top} => \text{column rank of } A^{\top} < \text{n.}$

 $=>\exists$ a zero pivot in $U_{A^{\top}}$, so $det(U_{A^{\top}})=0$ where $U_{A^{\top}}$ is the U in LU factorization of A^{\top} obtained by Gaussian Elimination.

Since row operations don't change the determinant, $det(U_{A^{\top}}) = det(A^{\top}) = 0$.

Hence, $det(A^{\top}) = det(A)$.

case(ii): $det(A) \neq 0$.

From Q13(a)'s case(ii) we have $A = F_1 * F_2 * \cdots * F_t * N$ then,

Now,
$$det(A^{\top}) = det((F_1 * F_2 * \cdots * F_t * N)^{\top}) = det(N^{\top} * F_t^{\top} * \cdots * F_2^{\top} * F_1^{\top}).$$

Since N is diagonal matrix we have,

$$det(N^\top * F_t^\top * \dots * F_2^\top * F_1^\top) = det(N * F_t^\top * \dots * F_2^\top * F_1^\top).$$

By Q13(a)'s case(ii)'s claim(1) we have,

$$\det(N*F_t^\top*\cdots*F_2^\top*F_1^\top) = \det(N)*\det(F_t^\top*\cdots*F_2^\top*F_1^\top).$$

By repeatedly using Q13(a)'s case(ii)'s claim(2) we have,

$$det(N)*det(F_t^\top*\cdots*F_2^\top*F_1^\top) = det(N)*det(F_t^\top)*(F_{t-1}^\top*\cdots*F_2^\top*F_1^\top)$$

$$det(N)*det(F_t^\top)*(F_{t-1}^\top*\dots*F_2^\top*F_1^\top) = det(N)*det(F_t^\top)*det(F_{t-1}^\top)*\dots*det(F_2^\top)*det(F_1^\top)$$

Since transpose of an elementary matrix is also an elementary matrix,

$$det(N)*det(F_t^\top)*det(F_{t-1}^\top)*\cdots*det(F_2^\top)*det(F_1^\top)=det(N)*1*\cdots*1.$$

$$det(N) * 1 * \cdots * 1 = det(N) * 1 * \cdots * 1 = 1 * \cdots * 1 * det(N) = det(F_1) * det(F_2) * \cdots * det(F_{t-1}) * det(F_t) * det(N)$$

By repeatedly using Q13(a)'s case(ii)'s claim(2) we have,

$$det(F_1) * det(F_2) * \cdots * det(F_{t-1}) * det(F_t) * det(N) = det(F_1) * det(F_2) * \cdots * det(F_{t-1}) * det(F_t * N) = det(F_1 * F_2 * \cdots * F_{t-1} * F_t * N) = det(A).$$

Hence, $det(A^{\top}) = det(A)$.

Therefore, from $\mathbf{case}(\mathbf{i})$, $\mathbf{case}(\mathbf{ii})$ we have $det(A^{\top}) = det(A)$.

- 14. (1 point) Let $\mathbf{u} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$.
 - (a) Find the area of the triangle whose vertices are $\mathbf{u}, \mathbf{v}, \mathbf{u} + \mathbf{v}$

Solution: Let **o** be the origin and
$$A = \begin{bmatrix} \mathbf{u} & \mathbf{v} \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 2 & 4 \end{bmatrix}$$

The area of the parallelogram with vertices $\{\mathbf{o}, \mathbf{u}, \mathbf{v}, \mathbf{u} + \mathbf{v}\}$ = The area of the parallelogram with vectors \mathbf{u}, \mathbf{v} as adjacent sides.

We know that area of the parallelogram with vectors \mathbf{u}, \mathbf{v} as adjacent sides = absolute value of determinant of the matrix with \mathbf{u}, \mathbf{v} as columns = |det(A)|.

Hence, area of the parallelogram with vectors \mathbf{u}, \mathbf{v} as adjacent sides = |det(A)| = |(4*3) - (2*1)| = 10 sq. units.

We know that, area of triangle with vertices $\{\mathbf{u}, \mathbf{v}, \mathbf{u} + \mathbf{v}\}$ + area of triangle with vertices $\{\mathbf{v}, \mathbf{u}, \mathbf{o}\}$

- = area of the parallelogram with vertices $\{o, u, v, u + v\}$
- = area of the parallelogram with vectors \mathbf{u}, \mathbf{v} as adjacent sides = 10 sq. units.

The triangle whose vertices are $\mathbf{u}, \mathbf{v}, \mathbf{u} + \mathbf{v}$ is congruent to the triangle with vertices $\mathbf{v}, \mathbf{u}, \mathbf{o}$ by side-side-congruence. Hence, their areas are equal.

So, (area of triangle with vertices $\{\mathbf{u}, \mathbf{v}, \mathbf{u} + \mathbf{v}\}\) * 2 = 10$ sq. units.

Therefore, area of triangle with vertices $\{\mathbf{u}, \mathbf{v}, \mathbf{u} + \mathbf{v}\} = 5$ sq. units.

(b) Find the area of the triangle whose vertices are $\mathbf{u}, \mathbf{v}, \mathbf{u} - \mathbf{v}$

Solution: Given $\mathbf{u} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$ then $\mathbf{u} - \mathbf{v} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$.

Let **o** be the origin and $B = \begin{bmatrix} \mathbf{v} & \mathbf{u} - \mathbf{v} \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 4 & -2 \end{bmatrix}$

The area of the parallelogram with vertices $\{\mathbf{o}, \mathbf{v}, \mathbf{u}, \mathbf{u} - \mathbf{v}\}$ = The area of the parallelogram with vectors $\mathbf{v}, \mathbf{u} - \mathbf{v}$ as adjacent sides.

We know that area of the parallelogram with vectors \mathbf{v} , $\mathbf{u} - \mathbf{v}$ as adjacent sides = absolute value of determinant of the matrix with \mathbf{v} , $\mathbf{u} - \mathbf{v}$ as columns = |det(B)|.

Hence, area of the parallelogram with vectors $\mathbf{v}, \mathbf{u} - \mathbf{v}$ as adjacent sides = |det(B)| = |(1 * (-2)) - (4 * 2)| = 10 sq. units.

We know that, area of triangle with vertices $\{\mathbf{u}, \mathbf{v}, \mathbf{u} - \mathbf{v}\}$ + area of triangle with vertices $\{\mathbf{o}, \mathbf{u} - \mathbf{v}, \mathbf{v}\}$

- = area of the parallelogram with vertices $\{o, v, u, u v\}$
- = area of the parallelogram with vectors $\mathbf{v}, \mathbf{u} \mathbf{v}$ as adjacent sides
- = 10 sq. units.

The triangle whose vertices are $\mathbf{u}, \mathbf{v}, \mathbf{u} - \mathbf{v}$ is congruent to the triangle with vertices $\{\mathbf{o}, \mathbf{u} - \mathbf{v}, \mathbf{v}\}$ by side-side congruence. Hence, their areas are equal.

So, (area of triangle with vertices $\mathbf{u}, \mathbf{v}, \mathbf{u} - \mathbf{v}) * 2 = 10$ sq. units.

Therefore, area of triangle with vertices $\{\mathbf{u}, \mathbf{v}, \mathbf{u} - \mathbf{v}\} = 5$ sq. units.

15. (2 points) The determinant of the following matrix can be computed as a sum of 120 (5!) terms.

$$A = \begin{bmatrix} x & x & x & x & x \\ x & x & x & x & x \\ 0 & 0 & 0 & x & x \\ 0 & 0 & 0 & x & x \\ 0 & 0 & 0 & x & x \end{bmatrix}$$

State true or false with an appropriate explanation: All the 120 terms in the determinant will be 0.

Solution: True.

Explanation:

Claim: The determinant any $n \times n$ matrix is the sum of n! terms, $\forall n \geq 1$ where $n \in \mathbb{Z}$.

Proof: We use principle of mathematical induction to prove the claim.

Base case: The claim is true for n = 1 because any matrix with only one element will have only one term in its determinant.

Induction Hypothesis: Assume the claim is true for n = k where $k \ge 1$ and $k \in \mathbb{Z}$.

Induction Step: To prove the claim is true for n = k + 1.

Let B be a $(k+1) \times (k+1)$ matrix. Then $|B| = \sum_{l=1}^{k+1} b_{1l}(C_{1l})$ where b_{ij} is the $(ij)^{th}$ entry of B and C_{ij} is its corresponding co-factor.

Each co-factor C_{ij} is the determinant of a $k \times k$ matrix and so from induction hypothesis we can say it is a sum of k! terms.

We can see that |B| is the linear combination of (k+1) co-factors each of which is in itself a sum of k! terms, so |B| is the sum of (k+1)(k!) i.e. (k+1)! terms.

Hence, proved that the claim is true for n = k + 1.

By principle of mathematical induction the claim is true $\forall n \geq 1$.

Now consider
$$|A| = det \begin{pmatrix} \begin{bmatrix} x & x & x & x & x \\ x & x & x & x & x \\ 0 & 0 & 0 & x & x \\ 0 & 0 & 0 & x & x \\ 0 & 0 & 0 & x & x \end{pmatrix}$$
.

Apply row operation $(R_1 : R_1 - R_2)$ and from property(5) of determinants we know that row operations do not change the determinant of a matrix.

So,
$$|A| = det \begin{pmatrix} \begin{bmatrix} x & x & x & x & x \\ x & x & x & x & x \\ 0 & 0 & 0 & x & x \\ 0 & 0 & 0 & x & x \\ 0 & 0 & 0 & x & x \end{bmatrix} \end{pmatrix} = det \begin{pmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ x & x & x & x & x \\ 0 & 0 & 0 & x & x \\ 0 & 0 & 0 & x & x \\ 0 & 0 & 0 & x & x \end{bmatrix} \end{pmatrix}.$$

Hence, $|A| = 0(C_{11}) + 0(C_{12}) + 0(C_{13}) + 0(C_{14}) + 0(C_{15})$, where C_{ij} is the co-factor corresponding to the $(ij)^{th}$ entry of A.

We can observe that each C_{ij} is the determinant of a 4×4 matrix, so from our **claim** we can say that each C_{ij} is a sum of 4! i.e. 24 terms.

We observe that |A| is sum of 5 co-factors each of which is multiplied by 0, so |A| is sum of 5 x 24 i.e. 120 terms each of which is 0.

Therefore, all the 120 terms in the determinant of A are 0.