

Señales en tiempo, capacitores e Inductores

Función Step - Paso

La señal de paso es equivalente a aplicar una señal a un sistema cuya magnitud cambia repentinamente y permanece constante para siempre después de la aplicación.

$$u(t) = \begin{cases} 0, & t < 0 \\ 1, & t > 0 \end{cases}$$

Figure 7.23
The unit step function.

Función Step - Paso

Derivada

Tomado Fundamentals of Electric Circuits Pag. 267

$$\delta(t) = \frac{d}{dt}u(t) = \begin{cases} 0, & t < 0 \\ \text{Undefined}, & t = 0 \\ 0, & t > 0 \end{cases}$$

Función Impulso unitario

Integral

Tomado Fundamentals of Electric Circuits Pag. 268

$$r(t) = \begin{cases} 0, & t \le 0 \\ t, & t \ge 0 \end{cases}$$

Función rampa unitaria

Ejemplo 1 y 2

Grafique la función

Tomado Fundamentals of Electric Circuits Pag. 270

Tomado Fundamentals of Electric Circuits Pag. 270

Figure 7.34

Integral of i(t) in Fig. 7.33.

Equivalente circuital de una señal paso

Figure 7.25

(a) Voltage source of $V_0u(t)$, (b) its equivalent circuit.

Figure 7.26

(a) Current source of $I_0u(t)$, (b) its equivalent circuit.

Capacitores

- Un condensador es un elemento pasivo que almacena energía en su **campo eléctrico**.
- Consta de dos placas conductoras separadas por un aislante (o dieléctrico).
- Las placas son típicamente papel de aluminio.
- El dieléctrico suele ser aire, cerámica, papel, plástico o mica.
- La unidad de capacitancia son los Faradios (F) un farad es 1 culombio/voltio.
- La mayoría de los condensadores están clasificados en picofaradios (pF) y microfaradios (µF)
- La capacitancia está determinada por la geometría del capacitor:

$$C = \frac{\varepsilon A}{d}$$

Figure 6.1
A typical capacitor.

Capacitores

Un capacitor cargado se comporta como un **abierto**

Un capacitor no permite cambios **abruptos de voltaje**

$$v(t) = \frac{1}{C} \int_{t_0}^{t} i(\tau) d\tau + v(t_0)$$

Figure 6.2
A capacitor with applied voltage v.
Tomado Fundamentals of Electric Circuits Pag. 216

Figure 6.4

Fixed capacitors: (a) polyester capacitor, (b) ceramic capacitor, (c) electrolytic capacitor.

Courtesy of Tech America. Tomado Fundamentals of Electric Circuits Pag. 218

- Un inductor es un elemento pasivo que almacena energía en su campo magnético.
- Tienen aplicaciones en fuentes de alimentación, transformadores, radios, televisores, radares y motores eléctricos.
- Cualquier conductor tiene inductancia, pero el efecto se mejora al enrollar el cable y añadir un núcleo.
- La unidad de los inductores son los Henrios (H), un Henrio es 1 webber/amperio.
- La inductancia está determinada por la geometría del inductor:

$$L = \frac{N^2 \mu A}{I}$$

Inductores

$$v = L \frac{di}{dt}$$

Un inductor cargado se comporta como un **corto**

Un inductor no permite cambios **abruptos de corriente**

$$i = \frac{1}{L} \int_{t_0}^{t} v(\tau) d\tau + i(t_0)$$

Figure 6.22
Various types of inductors: (a) solenoidal wound inductor, (b) toroidal inductor, (c) chip inductor.
Courtesy of Tech America.

TABLE 6.1

Important characteristics of the basic elements.†

Relation	Resistor (R	Capacitor (C)	Inductor (L)
v-i:	v = iR	$v = \frac{1}{C} \int_{t_0}^t i(\tau) d\tau + v(t_0)$	$v = L \frac{di}{dt}$
i-v:	i = v/R	$i = C\frac{dv}{dt}$	$i = \frac{1}{L} \int_{t_0}^{t} v(\tau) d\tau + i(t_0)$
p or w:	$p = i^2 R = \frac{v^2}{R}$	$w = \frac{1}{2}Cv^2$	$w = \frac{1}{2}Li^2$
Series:	$R_{\rm eq} = R_1 + R_2$	$C_{\text{eq}} = \frac{C_1 C_2}{C_1 + C_2}$	$L_{\rm eq} = L_1 + L_2$
Parallel:	$R_{\rm eq} = \frac{R_1 R_2}{R_1 + R_2}$	$C_{\rm eq} = C_1 + C_2$	$L_{\text{eq}} = \frac{L_1 L_2}{L_1 + L_2}$
At dc:	Same		Short circuit
Circuit va			
change abruptly: Not applicable v			i

[†] Passive sign convention is assumed.

Ejemplo 3

11

6.31 If v(0) = 0, find v(t), $i_1(t)$, and $i_2(t)$ in the circuit of Fig. 6.63.

Figure 6.63 For Prob. 6.31.

6.16 The equivalent capacitance at terminals a-b in the circuit of Fig. 6.50 is 30 μ F. Calculate the value of C.

Figure 6.50 For Prob. 6.16.

