

Parallel programming

Robotics and Computer Vision BPC-PRP

Ing. Jakub Minařík Brno University of Technology 2025

- Concurence vs parallel
- Better performance, resource utilization, scalability
- Race conditions
- Deadlocks
- Synchronization issues

	T1	Т2
1.	Read Acct (\$100)	
2.		Read Acct (\$100)
3.	Write New Amt (\$90)	
4.		Write New Amt (\$50)
5.		End
6.	End	

^{1.} https://stackoverflow.com/questions/3130079/difference-between-racearound-condition-and-deadlock

T1 T2

- 1. Lock(x)
- 2. Lock(y)
- 3. Write x=1
- 4. Write y=19
- 5. Lock(y)
- 6. Write y=x+1
- 7. Lock(x)
- 8. Write x=y+2
- 9. Unlock(x)

Parallel programming

std::mutex

- Better for complex data
- Can cost performance
- Deadlocks
- std::lock_guard
- std::unique_lock

std::atomic

- For simple data
- Only for simple use
- atomic operation in one step
- Limited by hardware

- std::thread, std::async
- Condition variables std::condition_variable
- Barriers std::barrier
- Futures and promises std::future, std::promise
- Shared locks std::shared_mutex, std::shared_lock

Jakub Minařík

203294@vut.cz

Brno University of Technology
Faculty of Electrical Engineering and Communication
Department of Control and Instrumentation

Robotics and Al Research Group