

HRA an USIUA The Gazette of India

असाधारण EXTRAORDINARY

NAT II—gus 8—sq-qus (i)

PART II—Section 3—Sub-section (i)

प्राधिकार से प्रकाशित PUBLISHED BY AUTHORITY

₹. 365]

गई विल्ली, बृहस्पतिबार, अगस्त 30, 1990/भाव 8, 1912

No. 365]

NEW DELHI, THURSDAY, AUGUST 30, 1990/BHADRA 8, 1912

aanne kaan maan oo in saaraan kaan oo oo aaraan maan oo aan ah waxaa aa aa aan ah aa aa aa aa aa aa aa aa aa a

इ.स. भाग में भिन्न पुष्ठ संख्या की जाती है जिससे कि यह अलग संकालन को रूप में रसा जा सकी

Separate Paging is given to this Part in order that it may be filed as a separate compilation

पर्यावरण और वन मंद्रालय

(पर्यावरण, यन और वन्यजीय विभाग)

ग्रधिमुचना

नई दिल्ली, 30 ग्रगस्त, 1990

सा. का. नि. 742(अ):— केन्द्रीय मरकार, पर्यावरण (संरक्षण) प्रधिनियम, 1986 (1986 का 29) की धारा 25 द्वारा प्रदत्त णक्तियों का प्रयोग करते हुए पर्यावरण (संरक्षण) नियम, 1986 में और संशोधन करने के लिए निस्नलिखित नियम बनानी है, अर्थात ——

- ा. (1) इन नियमों का संक्षिप्त नाम पर्यात्ररण (संरक्षण) तीसरा संगोधन नियम, 1990 है।
 - (2) ये राजपन में प्रकाणन की नारीख को प्रबत्त होंगे।

2. पर्यावरण (संरक्षण) नियम, 1986 में, कम संख्या 31 और उससे संबंधित प्रविष्टियों के पश्चात निम्नलिखित कम संख्यांक और प्रविष्टियां भ्रम्त:स्थापित की जाएंगी, श्रश्रीत ---

ऋ. सं.	उद्यो ग	पैराभीटर	मानक (मि. ग्रा. /एन. एम ³)
1	2	3	4
32 R	ं द्याम शालाः	उत्सर्जन	هند پوده چه پردارات اور که اما پدید، به که که اینکان که اینکان که در اینکان که در اینکان که در اینکان که در ای در اینکان که در اینکان که در اینکان که در پدید، به که اینکان که در اینکان که در اینکان که در اینکان که در اینک
(क) क्य्पोला		
	क्षमता (गलन दर)		
	3 एमटी/घंटा से कम	कणिकीय पदार्थ	450
	3 एमटी/घंटा और अधिक	य थोक्त	150

टिप्पण : यह स्नावश्यक है कि स्टैक धान-द्वार के परे क्यूपोला के ऊपर बनाया जाए और उत्पर्धन स्टैक के माध्यम से किया जाए जो क्युपोला के व्यास से कम मे कम छह गुना होना चाहिए।

(ख) धार्क भटटी

क्षमता: सभी श्राकार की

कणिकीय पदार्थ

150

(ग) प्रेरण भट्टी

क्षमता: सभी श्राकार की

यथोक्त

टिप्पण : मार्च भटटी और प्रेरण भटटी की बाबत स्टैक के माध्यम से उत्सर्जन के त्रिसर्जन से पूर्व धुंम संग्रहण करने के लिए अवस्था करनी पहेंगी।

33. तापीय शक्ति संयंत्रः

स्टैंक अंचाई की सीमा शक्ति उत्पादन क्षमताः

-500 मे. वा. और ग्रिधिक

275

-200 मे. वा. /210 मे. वा. और श्रिधिक किम्तु 500 मे. वा. से कम 220

- 200 मे. वा. /210 मे. वा. से कम्

एच = 14 (क्यू) 0.3 जहां क्यू. कि. ग्रा./ घंटा में एस ओें की विसर्जन दर है और एच मीटरों में स्टैंक की अंबाई है।

वाप्प उत्पादन क्षमता:

-2 टन/घंटा से कम

श्रासपास की इमारतों की अंचाई का 2.1/2 गुना या 9 मीटर (जो भी अधिक है)

- 2 टन विंटा से श्रधिक 5 टन/ घंटा सक

12

- 5 टम/घंटा से श्रधिक 10 टन/ घंटा सक

15

- 10 टन/घंटा से श्रधिक

18

21

- 15 दन/षंटा से ग्रधिक 20टन/ घंटा तक

1 2	3	4
	─ 20 टन घंटा से अधिक 25टन/ घंटा तक	24
	25 टन/बंटा से अधिक 30टन घंटा तक	27
	— 30 टन/षंटा से प्रधिक	30 या एच ⇒ 14 (क्यू) 0.3 फार्मुला का प्रयोग करते हुए (ओ भी ग्राधिक हों) जहां क्यू के.गा./बंटा एच ओ₂ की उत्सर्जन दर है अतर एच मीटरों में स्टैक की ऊंचाई है।
34. छोटे बायलर बायलर की क्षमता	जत्सर्जन ^क कणिकीय पदार्थ	
2 टन/बंटा से कम		1600
— 2 टन से कम 15 टन/यटा		1200
— ≀5 टन /घंटा से फ्रधिक		150
12 प्रतिशत कार्वन डाईप्राक्साइ 35. तेल परिकरणी मल्कर डाइग्राक्साइड	ड तक सामान्यक्रत समा उत्स्वजन जत्सर्जन ग्रासवन (वायुमंडलीय पन निर्वात)	भरण का 0.25 कि. जी./एम. टी
	– उत्प्रेरकी भंजक	भरण का 2.5 किटी/एम. टी.
	– सल्फर पुन प्राप्ति एक क	भरण में सल्फर का 120 कि. गा./एम. टी.
* भरण केवल विचाराधीन प्रक्रिय	ा के भाग के लिए भरण को उपदर्शित क	रता है।
36. ऐतुमिनियम संयंत	उत्सर्जन	
(क) ऐलुमिनि या ांथंव'		
(1) कच्ची सामग्री की उठाई-धराई	प्राथमिक और द्वितीक कणिकीय पदार्थ वलित्र	150
(2) वर्षण क्षेत्र - निस्तापन	कणिकीय प रार्थ कार्बन मोना क्साइड स्टेक ऊंचाई	250 1 प्रतिशास प्रधिकतम $H=14$ (क्यू) 0.3 जहां क्यू. कि. ग्रा./घंटा में एक औ $_2$ की उत्सर्जनदर से और एच स्टैक मीटरों में स्टैक की ऊंचाई है।
(खा) प्रभासक संयंध	कणिकीय पदार्थ	
(1) हरित ऐनोड कर्मशाला	संशोक्त	150
(2) एंनोड पकाई अवन	कणिकीय पदार्थ कुल फ्लोराइड (एफ)	150 ऐलुमिनियम के 0.3 कि.ग्रा./एम. टी.

1 2 3

(3) पात्रकका

कणिकीय पदायं कुल फ्लोराइड (एफ) नी एस एस एच एस एस पी नी एस डब्ल्यू पी नी सी डक्ल्यू स्टैक ऊंचाई

150

उत्पादित एलुमिनियम का 4.7 कि. ग्रा./एम टी उत्पादित ऐलुमिनियम का 6.0 कि. ग्रा. एमटी उत्पादित एलुमिनियम का 2.5 कि ग्रा/एमटी उत्पादित ऐलुमिनियम का 1.0 कि ग्रा/एमटी एव ⇒ 14 (क्यू) 0.3 जहां क्यू किंग्रा/ बंटा में एस औ₂ की उत्सर्जन दर है और एच मीटरों में स्टैक की ऊधाई है।

टिप्पण

बी एस एस == अध्याधित स्टब्ड साहरवर्ग एच एस एन == भौतिज स्टब्ड साहरवर्ग पी बी एस डब्स्यू == भर्जम पूर्व साहड चालित पी बी सी डब्स्यू == भर्जम पूर्व केन्द्र चालित

37. पत्थर दलम एकक

विलंबित कणिकीय पदार्थ (एस पी एम) मानकों के दो भाग हैं

- (1) निम्नलिखित प्रकृषण नियंक्षण उपायी का कायन्त्रियन :
 - (क) उपस्कर के लिए धूल संरोबन और लुप्तांगला प्रणाली।
 - (ख) बात-रोधी बीवारी का सनिर्माण।
 - (ग) परिसर के भीतर पत्रकी सङ्कों का निर्माण।
 - (घ) परिसर के भीतर भूमि को नियमित रूप से साफ करना और गीला करना।
 - (इ.) सीमा रेखाके साथ साथ हरित पटटी की व्यवस्था करना।
 - (2) एस पी एम के लिए मालात्मक मानक: किसी नियंत्रित एकल स्थान से तथा प्रनेक एककों के बीच स्थित किसी एकक से चालीस मीटर की दूरी पर निलंबित कणिकीय पदार्थ अंग भूल्य 600 एम जी/एम एमें ते कम होना चाहिए मांपन धर्ष के सभी 12 महीनों में कम से कम दो बार किया जाना चाहिए।

क, सं. उद्योग	पै रामीटर	मानक (संकेन्द्रण एम औ/एल में, पी एच, तापमान, धिनिद्धित नाणक, जीवमार और जैंब स्रमापन जांच को छोड़कर)
1 2	3	4
38. पेट्रोरसायन मूल श्रौर मध्य	बहिस्राव पी एच ^४ बीओ डी (पर 20 [°] सी 5 दिनों पर)	6.58.5 50
	** फिन ग्व	5
	शल्फाष्टक एस के 👟 पर्भ	2
	सी ओ ढी	250
•	सादनाइड सी एन के रूप मे	0 . 2
	*** पलोरा इड एक के रूप में	15
	कुल निसंबित पिड है श्साबेल ेंट फोमियम	1000
	कार के रूप में	0.1
	^{क्षकंक} कुल क्रोमिसम (सीग्रारके क्ष्पमें)	2.0

^{*} राज्य बोर्ड 30 एम जी/एल का बीओ डी मूल्य विहित और सकते है, यदि प्रतिप्राह् यता प्रणाली ऐसी मांग करती है।

^{****} कुल और हैक्सावलैंट क्रोमियम की सीमाओं को क्रोमट निकासी एकक के निर्गम पर समवित्यासन किया जाएगा इसमें यह विवक्षित है कि अंतिम रूप से अभिक्षियित वहिः स्राय में कुल हेक्सावेलैंट क्रोमियम इस में बिहित से ग्रम होगा ।

39. भेषजिक बिनिर्माण ग्रीर सूत्रण	बह्-स्राय	
उद्योग	1. पी एच	5.5-9.0
	2. तेल और ग्रीस	10
	3. कुल निलंबिन पिष्ड	100
	4. बी ओ ढी (पर 20 सी 5 विनों पर)	30
	5. जैव ग्र मापभ जांच	100% बहि.साव में 96 घटां क पश्चात् मछलियों का 90% जीवित रहना।
	6. पार द	0.01

^{**} फिलोल के लिए सीमा का फिलोल पंग्रंख की अध्यजन प्रतिक्रिया के निर्धम पर समित्रियासन किया जाएगः परन्तु अधिज भ्ययन बिन्दु पर सीमा एमजी/एल से कम होगी ।

^{***} पत्नोराष्ट्रं की सीमा का फ्लोराष्ट्रं विकासी एकक के निगंग पर समिबन्यासन किया जाएगा परन्तु व्यक्त विन्त्रु पर क्लोर राष्ट्रं सकेंद्रण 5 एमजी/एल में कम होगा।

1	2	3	4
	7.	ग्रा संनिक	0.20
	8	. क्रोमियम (हैक्सावेलैंट)	0.10
	9.	सीसा	0.10
	10-	सायनाइड	0.10
	11.	फिनोलिक (सी ₆ एच ₅ ओ एच के रूप में)	1.00
	12	सल्फाइडस एसके रूप में	2,00
	1 3.	फार् फेट स पी के रूप में	5.00

हिप्पण :

- 1 से 13 कम संख्या के रूप में यूचीबढ़ पैरामीटर सूचकों के लिए अनिवार्य है। परन्तु ग्रेप पैरामीटर (6 से 13 तक) प्रत्य के लिए बैकल्पिक होंगे।
- 2. राज्य बोर्ड बी ओ डी सीमा से सहसंबंधित रासायनिक आक्सीजन मांग के लिए सीमा विहित कर संकेगा ।
- राज्यबोर्ड कृत विलीन पिंडों के लिए सीमा विहित कर सकेगा किन्तु यह प्रतिप्राह्म जल राणि के उपयोगों पर निर्नर करेगा ।
- 4. सीमाओं का, कारखाना की सीमाओं के बाहर भेजने से पूर्व प्रभिक्रिया एकक टर्मिनल पर प्रनुपालन किया आएगा।
- 5. सीमाओं के अनुपालन के लिए, 8 बंटे तक प्रत्येक बंटे में संप्रहीत संयुक्त नम्ने का विश्लेषण किया जाएगा ।

40. नाशक जीवमार।वनिर्माण श्रीर	बहि:स्नाव	•
सूत्रण उद्योग	1. तापमान	प्रतिप्रहीत जात तस्यमान से ऊपर 5° सी से अधिक नहीं होगा ।
	2. पी एच	6. 5-8 .5
	3. नेल और ग्रीम	10
	4. भाँ औं औ	39
	(पर 20 $^\circ$ सी 5 दिनों पर)	
	 कुल निलंबित पिंड 	100
	 जैब-ग्रमापन जांच 	100% वहि : जात्र में 96 बंदे के पण्यात् मछलियों का 90% जीवित रङ्ता।
	 (क) विनिधिष्ट नाशक जीवमारः 	
	बेर्जान हैक्साअलोगाइड	10
	कार्बोरिल	10
	जी जी टी	10
	एन्डोसल्फन	10
	डामैंघोट	150
	फैनिट् <u>रो</u> थायान	10

1	2	3	4
		मैं लथायान	10
		फोर [े] ट	10
		मेथिल पैराथायान	10
		फ़ैन्थोट	10
		प [ः] इरध् भम	10
		कापर भाविसक्लोर।इड	9600
		क्तपर मल्फेट	50
		जिस्म	1000
		सल्फर	30
		पैराक्वैट	23000
		प्रोपानिल	7300
		नाष्ट्रोजन	780
		(ख) भारी धातु:	
		तीबा	1.00
		में गनीज	1.00
	1	जिक	1.00
		पारव	υ. 01
		टिन	0.10
		कोई श्रन्य धांतु जैस निकैल श्रादि	बी ग्राई एस के गेयजल मानकों के 5 गुना से श्रनक्षिक
		(ग) कार्बनिक :	1.0
		फीनाल और फीनोलिक	
		मिश्र सी ₆ एच ₅ ओ एच के रूप में	
		(घ) ग्रकार्बनिक :	
		न्नार्सेनिक एस के रूप में	0.2
		मायनाइड सीएन के रूप में	0.2
		नाइट्रेट एन ओ _उ के रूप में	50.0
		फास्फेट पी के रूप में	5,0

टिप्पण

- 1. सीमाओं का किसी तनुकरण से पूर्व ग्राभिकिया संयंत्र अंतिम सिरे पर ग्रनुपालन किया जाना चाहिए ।
- 2. जैव-म्राम।पन जांच ग्रनिग्राही जल में मछली की उपलब्ध स्पीसीज द्वारा की जानी चाहिए।
- 3. राज्य बोर्ड कुल विलीन पिंड (टी.डी.एस) मरूफेंट और क्लोराइड की सीमाएं विहित कर सकेंगे परन्तु यह श्रभिग्राही जलराणि के उपयोग पर निर्भर करेगा ।
- 4. राष्य बोर्ड बीओ डी सीमा से सहसंबंधित सीओ डी सीमा विहित कर सकेगा ।
- 5. नाशक जीवमार के बारों में यह ज्ञात है जिनमें भेटाबोलाईट और आइसोमर होते हैं । यदि वो सार्थक मकेन्द्रण में पाए जाने हैं तो केन्द्रीय या राज्य बोर्ड उनके लिए, जो सूचीबङ हैं, मान विहित कर सकेंगे ।
- 6. उद्योगों से यह अपेक्षा की जाती है कि वे अपिशष्ट जल में नाशक जीव मार का उच्च विश्लेंबक पत्रतियों जैसें जी एव सी/एच पी एल सी द्वारा विश्लेषण करें।
- सभी पैरा मीटर सुत्रकों के लिए अनिवार्य होंगे किन्तु अन्य के लिए मातवां पैरा मीटर वैंकिपिक होगा ।

1	2	3	4
41.	हैं मरी (प्राथमिक ग्रभिक्तिया के पण्चात्) व्ययन : चैनल/नलिका जो अप- क्रिया : जल को दितीयक ग्रभि- क्रिया गंग्रन तक से जाए !	वहि:स्राथ	
	टैनरी के प्रकार		
	क्रोम टैनरीज/संयुक्त क्रोम श्रीर जनस्पति टैनरीज एग एम	पीएच	6.5-9. 0 600 से श्रनधिक
		स्रक्षित्रिया के पण्चात् कोम जल क्रमाशिष्ट मस्ति। में क्रोमियक संकेखण	4 5
	—वनस्पति टैनरीज	पी एम एस एम	6.5-8.5 600 में भ्रनधिक

टिप्पण :उगरोक्त मानक उन टैनरी एककों को लागू होंगे जिन्होंने ऐसे मामान्य बहि:स्नाब ग्रभिकिया संयंत्र (सी ई टी पी) में जिनमें दितीयक ग्रभिकिया सम्मिलित है, पूर्ण ग्रभिदाय किया है जिन्होंने कोई ग्रभिदाय नहीं किया है वे इससे पहली भिध्यस्थना संख्या का ग्रा 42, नारीख 18 जनवरी, 1988 द्वारा णानित होंगे।

42. पेंट उद्योग	बहिःसा⊲	
(ग्रपशिष्ट जल विसर्जन)	पी ^{ण्} च	6,0-8,5
	निलंचित पिंड	100
	बी श्रो डी. ₅ 20° सी	5 0
	फि मौ लिको	•
	मी ₆ एच ₅ क्रो एच के रूप में	. 1., 0
	सेल ग्रौर ग्रीम	10,00
	जैय श्रामापन जांच	96 वंटों में 90% जीविता
	मीमा पी बी के रूप में	0.1
	कोमियम सी श्रार के रूप में	
	हैश्सावैलेंट	0.1
	कु ल	2 0
	शांवासीयू के रूप में	2.0
	निकैल एन ग्राई के रूप में	2,0
	जिंक जेड एन के रूप में	5.0
	कुल भारी धातुएं	7.0
43. श्रकाबीनिक रसायनिक उद्योग	वहि.साय	
(ग्रपणिष्ट जल विसर्जन)	दीग् थ	6.0-8.5
भाग । (ऋोमियम,	क्रोमियम सी श्रार के रूप में	•
मैगनीज, निकैल	है _व माबेलेंट	0.1
तांबा, जिक, कैडमियम,	कुल	2 0
मीमा ग्रौर पारद के धानुमिश्र) मैगनीज एम एन के रूप में	2.0

1 2	3	4
	निकैल एन आई के कप में	2.0
	तांबासी यूके रूप में	2.0
	जिंक जीड एन के रूप में	5.0
	भीडमियम सीडी के रूप में	0.2
	सीपीकी के रूप में	0.1
	पारव एच जी के रूप में	0.01
	सायनाइड सी एन के रूप में	0.2
	तेल भौर ग्रीस	10.0
	निलंबित पिंड	30.0
उपरोक्त के ग्रतिरिक्त कु	ल भारी घातु 7 एम जी/एल तक सीमित होंगे ।	
44. बुलियन परिष्करण	बहिस्राव	
(ग्रपशिष्ट जल वसर्जन)	पीएव	6,5-8,5
	सायनाइड सी एन के रूप में	0.2
	सल्फाइड एस के रूप में	0.2
	नाइट्रेट	10.0
	मुक्तसीएल 2सी एल के रूप में	1.0
	जिंक जैंड एन के रूप में	5. 0
	तौबासी यूके रूप में	2.0
	निकौल एन भ्राई के रूप में	2.0
	शार्सेनिक ए एस के रूप में	0,1
	कैडमियम सी डी के रूप में	0.2
	तेल भौर ग्रीस	10.0
	निलंबित पिंड	100
45. रंजक ग्रीर रंजक	बहि:स्राव	
मध्यक उद्योग	पीएभ	6,5-8.5
(ग्रंपशिष्ट जल वसर्जन)	रंग एजन हैकक	400
	निलंबित पिड	100
	बीक्रोडी₅ 20° सी	100
	तेल धौर गी स	10
	फीनालिक सी ₆ ्ए च₅	1,0
•	ग्रो एच के रूप में ♣०	0.0
	कैडमियम सी डी के रूप में 	0.2
	तांबासी यूके रूप में	2.0
	मैगनीज एम एन के रूप में	2.0
	सीपीबीकेरूप में	0, 1

1 2	3	4
	पारव एचजी के रूप में	0.01
	निकैल एन ग्राई के रूप में	2.0
	जिंक जेड एन के रूप में	5.0
	कोमियम सी श्रार के रूप में	
	हैक्सावेलैंट	0.1
	দু ন্ধ	2 0
	जैव भामापन जांच	96 घंटों में 90 प्रतियात जीविता
प्रवर्ग		मानक डी यी (ए)
(4) 4000	गडकिल, स्कृटर श्रौर निपाहिया	80
(ख) यात्री य		82
(ग) 4 एम ट	ितक के या यात्री वाणिज्यिक यान	85
(ग) 4 एम ट (घ) 4 एम ट	ी तक के <mark>या यात्री वाणिज्यिक यान</mark> ी से श्रिधिक श्रीर 12 एम टी तक के यात्री या वाणिज्यिक या	85
(ग) 4 एम ट (घ) 4 एम ट	ितक के या यात्री वाणिज्यिक यान	85
(ग) 4 एम ट (घ) 4 एम ट (इ) 12 एम	ी तक के <mark>या यात्री वाणिज्यिक यान</mark> ी से श्रिधिक श्रीर 12 एम टी तक के यात्री या वाणिज्यिक या	85 स
(ग) 4 एम ट (घ) 4 एम ट (इ) 12 एम	ी तक के या यादी वाणिज्यिक यान ीं से ग्रिधिक श्रीर 12 एम टी तक के यादी या वाणिज्यिक या टी से श्रिधिक के यादी या वाणिज्यिक यान	85 उन 89 91
(ग) 4 एम ट (घ) 4 एम ट (इ) 12 एम 17. विनिर्माण प्र	ी तक के या यात्री वाणिज्यिक यान ी से श्रीधिक श्रीर 12 एम टी तक के यात्री या वाणिज्यिक या टी से श्रीधिक के यात्री या वाणिज्यिक यान कम पर घरेलू साधिक श्रीर संनिर्माण उपस्कर	85 उन 89 91
(ग) 4 एम ट (घ) 4 एम ट (इ) 12 एम 17. विनिर्माण प्र	ितक के या यात्री वाणिज्यिक यान िसंग्रिकि श्रीर 12 एम टी तक के यात्री या वाणिज्यिक या दी से श्रीधिक के यात्री या वाणिज्यिक यान क्रम पर घरेलू साधिक श्रीर संनिर्माण उपस्कर (वर्ष 1993 तक प्राप्य से 1.5टन तक के खिड़की घातानुकलक	85 89 91
(ग) 4 एम ट (घ) 4 एम ट (इ) 12 एम 17. विनिर्माण प्र (क) एक टन	ितक के या यात्री वाणिज्यिक यात िसंग्रिधिक श्रीर 12 एम टी त्रक के यात्री या वाणिज्यिक या टी से श्रिधिक के यात्री या वाणिज्यिक यान क्रम पर घरेलू साधिक श्रीर संनिर्माण उपस्कर (वर्ष 1993 तक प्राप्य से 1.5टन तक के खिड़की घातानुकलक	85 89 91)
(ग) 4 एम ट (घ) 4 एम ट (इ) 12 एम 17 विनिर्माण प्र (भ) एक टन (ख) वायु र्स (ग) प्रशीतिन	ितक के या यात्री वाणिज्यिक यात िसंग्रिधिक श्रीर 12 एम टी त्रक के यात्री या वाणिज्यिक या टी से श्रिधिक के यात्री या वाणिज्यिक यान क्रम पर घरेलू साधिक श्रीर संनिर्माण उपस्कर (वर्ष 1993 तक प्राप्य से 1.5टन तक के खिड़की घातानुकलक	85 89 91) 68 60

[संख्या नय् . 15013/2/89-सीपीडब्ल्यू) मुक्ल सावल, संयुक्त मजिव

पाद टिप्पण

मूल नियम का.घा. सं. 844(घ), तारीख 10 नवस्वर, 1986 द्वारा प्रकाणित किने गो थे। संगोधन कारी नियम का.घा. सं. 82(घ), तारीख 16 फरवरी, 1987; का.घा. सं. 393(घ), तारीख 16 अप्रैल, 1987; की.घा. सं. 443 (ग्र) तारीख 28 प्रप्रैल, 1987; का. घा. सं. 64(घ), तारीख 18 जनवरी, 1988; सा.का.नि. सं. 919(घ्र) तारीख 12 सितम्बर, 1988; का.घा. सं. 8(घ्र), तारीख 3 जनवरी, 1989; सा. का. नि. सं. 913(घ्र), तारीख 24 प्रक्तूबर, 1989; का. था. सं. 114 (अ), तारीख 24 अक्तूबर, 1969 सा.का. न. सं. 1063 (घ्र), तारीख 26 दिसम्बर, 1989; का.घा. सं. 12(घ्र) तारीख 8 जनवरी, 1990; यौर सा. का. सा.का. नि. सं. 54(घ्र) तारीख 5 फरवरी, 1990 दारा अकाणित किये गर्य थे।

MINISTRY OF ENVIRONMENT & FORESTS

(Department of Environment, Forests & Wildlife)

NOTIFICATION

New Delhi, the 30th Aug., 1990

- G.S.R. 742(E):—In exercise of the powers conferred by Section 25 of the Environment (Protection) Act. 1986 (29 of 1986), the Central Government hereby makes the following rules further to amend the Environment (Protection) Rules, 1986, namely:—
 - 1. (1) These rules may be called the Environment (Protection) Third Amendment Rules, 1990.
 - (2) They shall come into force on the date of their publication in the Official Gazette.
- 2. In schedule I to the Environment (Protection) Rules, 1986, after serial number 31 and the entries relating thereto the following serial numbers and entries shall be inserted, namely:—

SI. No.	In đ ustry	Parameters	Stan d ar d s (mg/Nm³)
1	2	3	4
32.	FOUNDRIES: (a) Cupola Capacity (Melting rate)	EMISSIONS	
	Less than 3 MT/hr	Particulate matter	450
	3 MT/hr and above	-d o-	150
Note		-	beyond the charging door and the emissi- atleast six times the diameter of cupola.
(b) Arc Furnaces Capacity: All sizes	Particulate matter	150
(e) Induction Furnaces Capacity: All sizes	-do-	150

Note:—In respect of Arc Furnaces and Induction Furnaces provision has to be made for collecting the furnes before discharging the emissions through the stack.

Power generation Capacity:

33. THERMAL POWER PLANTS STACK HEIGHT/LIMITS

-- 500 MW and above 275 -- 200 MW/210 MW and above to less than 500 MW 220

- Less than 200 MW/210 MW H-14(Q)^{0.3} where Q is emission rate of SO₂ in kg/h. and HiStack height in meters

Steam generating Capacity:

- Loss than 2 ton/hr

2½ times the neighbouring building height or 9 meters (whichever is more).

1 ^	The state of the s	[FAR] II—3EC. 3(I)
1 2	3	4
	— More than 2 ton/hr	
	to 5 ton/hr	12
	— More than 5 ton/hr to 10 ton/hr	15
	More than 10 ton/hr	18
	- More than 15 ton/hr to	10
	20 ton/hr	15
	- More than 20 ton/hr to	24
	25 ton/hr More than 25 ton/hr to	24
	30 ton/hr	27
	— More than 30 ton/hr	30 or using formula
		$H = 14(Q)^{0.3}$
		(whichever is more) where Q is emission rate of SO ₂ in kg/hr and H-Stack height in meters.
34. SMALL BOILERS	EMISSIONS*	
Capacity of Boiler	Particulate matter	
— Less than 2 ton/hr		1600
- 2 to 15 ton/hr		1200
— More than 15 ton/h	г	150
*All emissions norm	alized to 12 percent carbondioxíde	
35. OIL REFINERIES (Sulphur dioxide)	EMISSIONS*	
, ,	 Distillation (Atmospheric plus Vaccum) 	0.25 kg/MT of feed*
	- Catalytic Cracker - Sulphur Recovery Unit	2.5 kg/ MT of feed 120 kg/ MT of Sulphur in the feed
*Feed indicates the feed	I for that part of the process under consi	deration only.
36. ALUMINIUM PLANT (a) Alumina Plant:		
(i) Raw Material Handling	Primary and Secondary Crusher Particulate Matter	150
(ii) Recipitation A	Area.	
-Calcination	•	250
	Carbon Monoxide	1% max.
	Stack height	$H = 14(Q)^{0.3}$
		where Q is emission rate of SO ₂ in kg/hr and H-Stack height in meters.
(b) Smelter Plant	Particulate matter	
(i) Green Anode S	shop -do-	150
(ii) Anode Bake O		150
	Total Fluoride (F)	0.3 Kg/MT of Aluminium

1	SCHEDULE—(Contd.)	
(iii) Potroom	Particulate Matter Total Flouroide (F)	150
	VSS	4.7 kg/MT of Aluminium produced
	HSS	6.0 Kg/MT of Aluminium produced.
	PBSW	2.5 Kg/MT of Aluminium produced
	PBCW	1.0 Kg/MT of Aluminium produced.
NOTE	Stack height	$H=14(Q)^{0.8}$ where Q is emission rate of SO_2 in kg/hr and H—Stack height in meters.
NOTE:		

VSS=VERTICAL STUD SODERBERG HSS = HORIZONTAL STUD SODERBERG PBSW=PREBACKED SIDE WORKED PBCW=PREBACKED CENTRE WORKED

37. STONE CRUSHING UNIT Suspended particulate matter (SPM)

The standards consist of two parts:

- (i) Implementation of the following pollution Control measures :
- (a) Dust containment cum suppression system for the equipment.
- (b) Construction of wind breaking walls.
- (c) Construction of the metalled roads within the premises.
- (d) Regular cleaning and wetting of the ground within the premises.
- (e) Growing of a green belt along the periphery.
- (fi) Quantitative standard for the SPM:

The suspended particulate matter contribution value at a distance of 40 meters from a controlled isolated as well as from a unit located in a cluster should be less than 600 mg/Nm³. The measurements are to be conducted at least twice a month for all the 12 months in a year.

SI. No.	Industry	Parameter	Standards (concentrations in mg/l except for pH temperature specific pesticides and Bioassay test)
1	2	3	4
38.	PETROCHEMICALS	EFFLUENTS	
	(Basic & intermediates)	pН	6.58.5
		*BOD	50
		(5 days at 20°C)	
		**Phenol	5
		Sulphide (as S)	2
		COD	250
		Cyanide (as CN)	0.2
		***Fluoride (as F)	15
		Total Suspended solids	1000
		Hexavalent Chromium (as CR)	0.1
		****Total Chromium (as CR)	2.0

- * State Boards may prescribe the BOD value of 30 mg/l if the recepient system so demands.
- ** The limit for phenol shall be conformed to at the outlet of effluent treatment of phenol plant. However, at the final disposal point, the limit shall be less than 1 mg/1.
- *** The limit for fluoride shall be conformed to at the outlet of fluoride removal unit. However, at the disposal point fluoride concentration shall be lower than 5 mg/1.
- **** The limits for total and hexavalent chromium shall be conformed to at the outlet of the chromate removal unit. This implies that in the final treated effluent, total and hexavalent chromium shall be lower than prescribed herein.

39.	PHARMACEUTICAL MANUFACTURING AND		EFFLUENTS	
	FORMULATION INDUSTRY	1.	pН	5.5-9.0
		2.	Oil & Grease	10
		3.	Total Suspended Solids	100
		4.	BOD (5 days at 20°C)	30
		5.	Bio -assay test	90% Survival of fish after 96 hrs in 100% effluent.
		6.	Mercury	0.01
		7.	Arsenic	0.20
		8.	Chromium (Hexavalent)	0.10
		9.	Lead	0.10
	•	10.	Cyanide	0.10
		11.	Phenolics (as C ₅ H ₅ OH)	1.00

1	2	3
	12. Sulphides (as S)	2.00
	13. Phosphates (as P)	5.00

Note: __

- 1. Parameters listed as 1 to 13 are compulsory for Formulators. However, the remaining parameters (6 to 13) will be optional for others.
- 2. State Board may prescribed limit for chemical oxygen demand (COD) correlated with BOD limit.
- 3. State Board may prescribe limit for total dissolved solids depending upon uses of recipient water body.
- 4. Limits should be complied with at the terminal of the treatment unit before letting out of the factory boundary limits.
- 5. For the compliance of limits, analysis should be done in the composite sample collected every hour for a period of 8 hours.

40. PESTICIDE MANUFAC-TURING AND FORMULA TION INDUSTRY

	EF	FFLUENTS	
A-	1.	Temperature	Shall not exceed 5°C above the receiving water temperature.
	2.	pН	6.5-8.5
	3.	Oil & Grease	10
	4.	BOD (5 days at 20°C)	30
	5.	Total suspended solids	100
	6.	Bio-assay test	90% survival of fish after 96 hours in 100% effluent.
	7.	(a) Specific Pesticides: Benzenl hexachloride Carboryl DDT Endosulfan Diamethoate Fenitrothion Malathion Phorate Methyl Parathlon Phenthoate Pyrethrums Copper Oxychloride Copper Sulphate Ziram Sulphur Paraquat	10 10 10 10 10 450 10 10 10 10 10 10 10 10 10 10 30 2300
		Proponil	7300

780

Nitrogen

1	2		3	4	<u>-</u>
	<u>, i e y e e e e e e e e e e e e e e e e e</u>	(b)	Heavy Metals:		
			Copper	1.00	
			Manganese	1.00	
			Zinc	1.00	
			Mercury	0.01	
			Tin	0.10	
			Any other metal like Nickel,	Shall not	exceed 5 times th
			eto.	drinking	water standards o
				BIS.	
		(c)	Organics:		
		, ,	Phenol and phenolic com-		
			pounds as C ₆ H ₅ OH	1.0	
		(d)	Inorganics	•	
		()	Arsenics (as As)	0.2	
			Cyanide (as CN)	0.2	
			Nitrate (as NO ₈)	50.0	
			Phosphate (as P)	5.0	
			Phosphate (as P)	3.0	

NOTE:-

- 1. Limits should be complied with at the end of the treatment plant before any dilution.
- 2. Bio-assay test should be carried out with available species of fish in receiving water.
- 3. State Boards may prescribe limits of total dissolved solids (TDS) sulphates and chlorides depending on the uses of recipient water body.
- 4. State Board may prescribe COD limit correlated with BOD limit.
- 5. Pesticides are known to have metabolites and isomers. If they are found in significant concentration, standards may be prescribed for those in the list by Central or State Board.
- 6. Industries are required to analyse pesticides in waste water by advanced analytical method such as GLC/HPLC.
- 7. All the parameters will be compulsory for formulators, for others, the 7th will be optional.

41. TANNERY (after primary treatment) Disposal: Channel/Conduit Carrying waste waters to Secondary treatment plants	EFFLUENTS	
Type of Tanneries — Chrome tanneries/combined chrome & vegetable tanneries	pH SS	6.5-9.0 Not to exceed 600
	Chromium concentration after treatment in the chrome waste water stream	
Vegetable tanneries	pH SS	6.5—9.0 Not to exceed 600

Note: The above standards will apply to those tannery units which have made full contribution to a Common Effluent Treatment Plant (CETP) comprising secondary treatment. Those who have not contributed will be governed by earlier Notification No. S.O. 42, dated January, 18, 1988.

1	2	3	4
42.	PAINT INDUSTRY	EFFLUENTS	
	(Waste water discharge)	рH	6.0-8.5
	•	Suspended	
		Solids	100
		BOD ₅ 20°C	50
		Phenolics as	
		C ₆ H ₅ OH	1.0
		Oil & Grease	10.0
		Bio-assay test	90% survival in 96 hours
		Lead as Pb	0.1
		Chromium as Cr	
		Hexavalent	0.1
		To	otal 2.0
		Copper as Cu	2.0
		Nickol as Ni	2.0
		Zinc as Zn	5.0
		Total heavy metals	7.0
4 3.	INORGANIC CHEMICAL		
	INDUSTRY	EFFLUENTS	
	(Waste Water discharge)		
	Part 1 (metal compounds of	рH	6.0 -8.5
	Chromium, Manganese,	•	
	Nickel, Copper, Zinc,		
	Cadmium, Lead and Mercur	y) Chromium as Cr	
	·	Hexavalent	0.1
		Total	2.0
		Manganese as Mn	2.0
		Nickel as Ni	2.0
		Copper as Cu	2.0
		Zinc as Zn	5.0
		Cadmium as Cd	0.2
		Lead as Pb	0.1
		Mercury as HG	0.01
		Cyanide as CN	0.2
		Oil & Grease	10.0
		Suspended Solids	30.0
	In addition to the above, tot	al heavy metals are to be	limited to 7mg/1,
44.	BULLION REFINING	EFFLUENTS	
	(Waste-water discharge)	pH	6,5—8.5
		Cyanide as CN	0.2
		Sulphide as S	0.2
		Nitrate as N	10.0
		Free Cl. as Cl	1.0
		Zinc as Zn	5.0
		Copper as Cu	2.0
		Nickel as Ni	2.0
		Arsenic as As	0.1
		Cadmium as Cd	0.2
		Oil and Grease	10.0
		Suspended Solids	100

EFFLUENTS		- —
рН	6.0—8.5	
Colour, Hazen	400.0	
Unit	400.0	
-		
•		
Phenolics as	10.0	
	1.0	
Cadmium as Cd	0.2	
Copper as Cu	2.0	
Manganese as Mn	2.0	
Lead as Pb	0.1	
Mercury as Hg	0.01	
Nickel as Ni	2.0	
Zinc as Zn	5.0	
Bio-assay test	90 percent survival in 96 hours.	
SCHEDULE		_
	Standards, dB (A)	
	3	
		992
& Three Wheelers	80	
	•	
-		
	Co H ₅ OH Cadmium as Cd Copper as Cu Manganese as Mn Lead as Pb Mercury as Hg Nickel as Ni Zinc as Zn Chromium as Cr Hexavalent Total Bio-assay test SCHEDULE TOMOBILES (FREE FIELD AFACTURING STAGE) TO B & Three Wheelers reial Vehicles upto 4 MT reial Vehicles above 4 MT an reial Vehicles exceeding 12 MT ES AND CONSTRUCTION E	BOD, 20° C 100.0 Oil and Grease 10.0 Phenolics as Co H3 OH 1.0 Cadmium as Cd 0.2 Copper as Cu 2.0 Manganese as Mn 2.0 Lead as Pb 0.1 Mercury as Hg 0.01 Nickel as Ni 2.0 Zinc as Zn 5.0 Chromium as Cr Hexavalent 0.1 Total 2.0 Bio-assay test 90 percent survival in 96 hours. SCHEDULE Standards. dB (A) TOMOBILES (FREE FIELD AT ONE METER IN FACTURING STAGE) TO BE ACHIEVED BY THE YEAR In 80 & Three Wheelers 80

[भाग II—श्रंड 3(i)]		ड 3(i)]	भीरत का राजपत्न : ग्रसंधारण -		19	
1	2			3		
	(b)	Air coolers		60		
	(c)	Refrigerators		46		
	(d)	Diesel generators for d	omestic purposes	8590		
	(c) Compactors (rollers) Front loaders, Concrete mix			s (movable)		
	-	Vibrators and Saws.		7 5		

[No. Q. 15013/2/89-CPW)] MUKUL SANWAL, Jt. Secy.

Foot Note:

Principal rules published vide S.O. No. 844(E), dated the 19th November, 1986. Amending Rules published vide S.O. No. 82(E), dated the 16th February, 1987, S.O. 393(E), dated 16th April, 1987; S.O. 443(E), dated the 28th April, 1987; S.O. 64(E), dated the 18th January, 1988; G.S.R. 919 (E), dated the 12th September, 1988; S.O. 8(E), dated the 3rd January, 1989; G.S.R. 913(E), dated 24th October, 1989; S.O. 914(E), dated 24th October, 1989; G.S.R. 1063(E), dated 26th December, 1989; S.O. 12(F), dated 8th January, 1990 and G.S.R. 54(E), dated 5th February, 1990.