

Configurable Medium Access Control for Wireless Sensor Networks

Lucas F. Wanner, Augusto B. de Oliveira, Antônio Augusto Fröhlich

http://www.lisha.ufsc.br/

IESS 2007

June 2007

Outline

- Overview of WSN
- MACs for WSN
- Communication on WSN
- C-MAC
 - Proposal
 - Implementation
 - Evaluation
- Conclusions

Communication on WSN

- There is no "single best" MAC protocol
 - Aloha, B-MAC, S-MAC, T-MAC, WiseMAC, LMAC,

. . .

- Configurable communication
 - Different communication patterns for different applications
 - Energy efficiency is the main concern

Wireless Communication HW

Data Rate

Wireless Sensor Networks

- Low-power hardware
- Limited resources
- Software-defined MAC
 - Control access to the shared medium
 - Avoid interferences between transmissions
 - Define packet format
 - Perform local/global synchronization

MACs for WSN

- Nodes powered by batteries
 - Turn off the radio whenever possible!
- Main sources of power overhead
 - Idle listening (nodes must listen for potential messages)
 - Collisions

MACs for WSN

- Main sources of power overhead (cont.)
 - Overhearing (the radio channel is a shared medium)
 - Traffic fluctuations (higher competition for the medium)
 - Protocol overhead

Communication on WSN

- No "single best" MAC protocol
 - Different applications, different communication needs
- Configurable communication could
 - Provide an unified communication interface
 - Provide a configuration framework
 - Enable applications to reach energy/communication efficiency

C-MAC

- Configurable Medium Access Control for Wireless Sensor Networks
 - Different MAC services
 - Different strategies
 - Configuration architecture
- Framework to build functional MAC protocols
 - Pre-defined configuration points
 - Protocol: compile-time (configurable traits)
 - Parameters: run-time

C-MAC

- Fundamental configuration points
 - Communication parameters
 - Frequency, power, modulation
 - Duty cycle
 - Defines organization, or lack thereof
 - Collision avoidance mechanism
 - None

- Chanel sampling
- Global synchronization
- RTS/CTS
- Collision detection mechanism
 - Confirmation

- None
- Collision handling mechanism
 - Retransmission

None

C-MAC: State Machine Overview

- Comparative Tests
 - C-MAC + EPOS
 - B-MAC + TinyOS
- Communication Parameters
 - Best reported results

Parameter	Value
Duty Cycle	100,00%
TX Power	5 dBm
Modulation	19.2 kbps, Manchester enc.
TX Backoff	0 ms
Collision detection	None
Collision handling	None
Max. data rate (theoretical)	16.4 kbps

Footprint

Conclusions

- "Ideal" MAC for sensor networks
 - Compromise between power efficiency and communication flexibility / performance
 - Current protocol designs have little space for application-determined configuration
- C-MAC
 - MAC "framework"
 - Configuration architecture
 - Competitive performance

Perspectives

- Adaptability
 - Dynamic changes in protocol behavior
 - Reactive adaptation of parameters (e.g. duty cycle)
 - Coordinated protocol alterations (aided by a metaprotocol)
- Cross-layer optimizations
 - Protocol and service integration
 - Routing, transport, localization
 - First step: C-MAC + HECOPS Localization Protocol
 - Generalized configuration architecture
- Large-scale evaluations