Europäisches Patentamt Eur p an Patent Offic

ffice européen des brevets

EP 0368341 B1 (11)

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 31.01.1996 Bulletin 1996/05

(51) Int Cl.6: C11D 3/386, C11D 3/20

(21) Application number: 89120891.0

(22) Date of filing: 10.11.1989

(54) Enzymatic detergent composition

Enzymhaltige Detergenszusammensetzung Composition détergente contenant des enzymes

(84) Designated Contracting States: DE ES FR GB IT

(30) Priority: 11.11.1988 JP 285424/88 11.11.1988 JP 285425/88 11.11.1988 JP 285426/88

(43) Date of publication of application: 16.05.1990 Bulletin 1990/20

(73) Proprietor: KAO CORPORATION Chuo-ku, Tokyo (JP)

(72) Inventors:

 Sone, Taeko Utsunomiya-shi, Tochigi (JP) • Saijo, Hiroyuki Utsunomiya-shi, Tochigi (JP)

· Deguchi, Katsuhiko Utsunomiya-shi, Tochigi (JP)

(74) Representative: Hansen, Bernd, Dr.rer.nat. et al D-81904 München (DE)

(56) References cited:

EP-A- 0 320 852

FR-A- 1 600 256

FR-A- 2 118 560

GB-A- 1 293 613

JP-A-63 119 408

• PATENT ABSTRACTS OF JAPAN, vol. 12, no. 365 (C- 532)(3212), 29 September 1988; & JP-A-63 119 408

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Offic of opposition to the European patent granted. Notice of pposition shall be filed in a written reasoned statement. It shall not be diemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

De ription

5

15

40

45

50

This invintion relates to a detirgent composition which contains at least in e surfactant and an enzyme.

It is already a convintional practice till incorporate enzymes into detergent compositions. Enzymes in detergent compositions serve as auxiliary detergents or washing promotines. Thus, for example, enzymes in laundry detergent compositions decompose or denature various kinds of dirt (or soil) and stains adhering to clothes, and enzymes in dishwashing detergent compositions decompose or denature fats and oils, proteins, starch and the like remaining on the dishware surface, to thereby facilitate and promote removal of the various kinds of dirt.

GB-A-1 293 613 discloses a liquid detergent composition comprising 0.001% to 5% by weight of proteolytic enzyme, amylolytic enzyme, lipolytic enzyme, or a mixture thereof, optionally together with one or more enzyme carriers, and at least 88% by weight of an essentially 100% active stable liquid detergent material, and water representing the balance. A surfactant may also be present in said detergent composition.

Enhanced detergency can be attained by immersing articles to be washed in an α -amylase-containing washing solution for a prolonged period of time. However, α -amylase can hardly function to a satisfactory extent within an ordinary washing time of 5 to 30 minutes.

JP-A-63-119 408 discloses a cosmetic composition containing a starch hydrolyzing enzyme in the form of a powder. The enzyme is, for example, α-amylase, β-amylase, glucoamylase, isoamylase or pullulanase.

To keep abreast with the recent rapid spread of automatic dishwashers not only among restaurants and other commercial facilities but also among homes, detergent compositions for use in automatic-dishwashing have been developed. Thus, for example, automatic-dishwashing detergent compositions, which are available on the market in the powder form and constitute a typical class among dishwashing detergent compositions, comprise, as major components, inorganic alkaline substances or builders, such as pyrophosphates, tripolyphosphates, orthophosphates, carbonates, bicarbonates, sesquicarbonates, silicates and borates, and, as minor components, surfactants or lipase for enhancing fatty or oily dirt detergency, α-amylase for enhancing starchy dirt detergency, protease for enhancing proteinaceous dirt detergency, bleaching agents for enhanching pigment stain (e.g., tea stain) detergency, as necessary or as desired. In automatic-dishwashing detergent compositions in the liquid form, surfactants are the major components, with enzymes and other ingredients added in small amounts.

Incorporation of α -amylase and the like enzymes into automatic-dishwashing detergent compositions, however, still cannot result in satisfactory removal of starchy dirt firmly adhering to dishware within a short period of time. Improvements are desired.

Thus, the invention provides an automatic dishwashing or a laundering composition comprising at least one surfactant, which is characterized in that it contains at least one starch debranching enzyme selected from the group consisting of pullulanase, isopullulanase and isoamylase.

The detergent compositions of the invention preferably further contain α-amylase as component (c).

The detergent compositions of the invention contain the component (a), namely at least one surfactant, preferably in an amount of 0.5% to 60% by weight based on the composition although the content of component (a) is not limited to any particular level or range.

Surfactants which can be used as component (a) in the detergent composition of the invention include:

Anionic surfactants such as alkylbenzenesulfonic acid salts, alkyl or alkenyl ether sulfate salts, alkyl or alkenyl sulfate salts, olefinsulfonic acid salts, alkanesulfonic acid salts, saturated or unsaturated fatty acid salts, alkyl or alkenyl ether carboxylic acid salts, α-sulfo fatty acid salts or esters, amino acid type surfactants, N-acyl amino acid type surfactants, alkyl or alkenyl acid phosphate esters or salts thereof;

Amphoteric surfactants such as carboxy- or sulfobetaine type surfactants;

Nonionic surfactants such as polyoxyalkylene alkyl or alkenyl ethers, polyoxyethylene alkylphenyl ethers, higher fatty acid alkanolamides or alkylene oxide adducts derived therefrom, sucrose fatty acid esters, fatty acid glycerin monoesters and alkylamine oxides; and

Cationic surfactants such as quaternary ammonium salts.

When the detergent composition of the invention is to be used as an automatic-dishwashing detergent composition, as the component (a), namely at least one surfactant, a low-foaming or nonfoaming nonionic surfactants are preferred.

Examples of such type of surfactant include alkoxylated nonionic surfactants (ethoxylated with ethylene oxide (EO), propoxylated with propylene oxide or mixedly ethoxylated and propoxylated). Preferred examples of such surfactants are PLURAFAC® LF403 (manufactured by BASF Japan), PLURAFAC® LF1300 (manufactured by BASF Japan) and SOFTANOL® EP7045 (manufactured by Nippon Shokubai Kagaku Kogyo Co., Ltd.).

For use the detergent composition of the invention as an automatic-dishwashing detergent composition, a surfactant is contained in an amount of preferably 0.5 to 30% by weight based on the composition.

The component (b), namely starch debranching enzyme to be used in the composition of the invention, can be

obtained from various sources. Generally, however, it is derived from microorganisms. Preferred species of the starch debranching nzyme are pullulanase, isopullulanase and isoamylase, which show amylopectin 6-glucanohydrolase activity, derived from, for example, microbial strains belonging to the genus <u>Klebsiella</u>, <u>Bacillus</u>, <u>Aspergillus</u> or <u>Pseudomonas</u>.

These enzymes are c mmercially btainable and examples thereof include SPLENTASE® (manufactured by Amano Pharmaceutical Co., Ltd.) and PROMOZYME® 200L (manufactured by Novo Industri A/S), as for pullulanase; and "isoamylase" (reagent, manufactured by Seikagaku Kogyo Co., Ltd.), as for isoamylase. Such starch debranching enzymes are supplied generally in the form of granules and have an enzymatic activity of about 10⁵ to 10⁸ units per liter.

The starch debranching enzyme is contained in the detergent composition of the invention in an amount of preferably 0.01 to 10% by weight, more preferably 0.01 to 5% by weight.

In order to improve detergency for starchy dirt, the detergent composition of the invention may preferably contains α -amylase, in addition to the above-mentioned essential components (a) and (b), as component (c).

α-Arnylase, which is to be added as optional component (c) to the detergent composition of the invention, is an enzyme so far used in detergent compositions and any species thereof may be used. Among them, α-amylase derived from <u>Bacillus licheniformis</u> or <u>Bacillus subtilis</u> are preferred, and the enzymes can be obtained as commercial products under the name of, for example, TERMAMYL® (manufactured by Novo Industri A/S) and MAXAMYL® (manufactured by Gist-Brocades).

When α -amylase is additionally used in the detergent composition of the invention, starch debranching enzyme and α -amylase are contained in the composition in an amount to satisfy the relation such that an activity ratio (starch debranching enzyme activity/ α -amylase activity ratio) is in the range of preferably 1/10³ to 10⁸/1, more preferably 1/10 to 10²/1, as determined by the DNS (3,5-dinitrosalicylic acid) method. The total content of starch debranching enzyme and α -amylase in the detergent composition of the invention generally amounts to 0.1 to 10% by weight, preferably 0.1 to 5% by weight.

In washing operations using the detergent composition of the invention, it is preferable to use the composition in an amount such that the washing solution contains the starch debranching enzyme and α -amylase each in an amount of not less than 4 units per liter as expressed in terms of enzymatic activity. Each unit (U) of enzymatic activity is defined as the amount of enzyme sufficient to form 1 micromole (μ mol) of glucose per minute.

For enzymatic activity measurements, the following methods are used.

1) Starch debranching enzyme activity

Substrate: 0.5% (by weight) pullulan solution.

Preparation of substrate solution:

Pullulan (0.5 g) is dissolved in 90 ml of deionized water, and 5 ml of 1 M Tris-HCl buffer (pH 5.9) is added thereto, and then the volume is made 100 ml with deionized water.

Testing of samples:

5

10

35

40

The substrate solution (0.5 ml) is placed in a test tube, 0.4 ml of the buffer and 0.1 ml of an adequately diluted enzyme solution are added and the reaction is allowed to proceed in a constant-temperature bath maintained at 40°C for 30 minutes. Then, 1 ml of DNS test solution is added and the test tube contents are heated in boiling water exactly for 5 minutes for color development. Then, the tube is immediately cooled in an ice water bath. After cooling, 4 ml of deionized water is added and, after thorough mixing, the absorbance at 535 nm is measured quickly.

Blank testing:

The substrate (0.5 ml) and 0.4 ml of the buffer are placed in a test tube, followed by addition of 1.0 ml of DNS test solution. Furthermore, 0.1 ml of the adequately diluted enzyme solution is added and the test tube is put in boiling water immediately and heated therein exactly for 5 minutes for color development. Then the tube is immediately cooled in an ice water bath. After cooling, 4 ml of deionized water is added and, after thorough mixing, the absorbance at 535 nm is measured quickly.

Calibration curve construction:

The substrate solution is distributed in 0.5-ml portions and the buffer in 0.4-ml portions into test tubes. Then, glucose solutions for calibration are added each in an amount of 0.1 ml so as to giv glucos concentrations of 250 to 1,500

µmol/liter. Furthermore, 1.0 ml of DNS test silution is added to each tube. The subsequent procedure is the same as in testing if samples. After plotting the data thus obtained (abscissa for glucose concentration and ordinate for absorbance), the gradient (slope) of the resulting curve is determined and the conversion factor (F) is calculated as follows:

$$F = \frac{1}{Gradient} \times \frac{1}{30} \times \frac{1}{0.1}$$

Activity calculation:

The enzymatic activity is calculated by the following equation:

Activity (U/liter) = δ absorbance \times F \times Dilution factor where δ absorbance = (absorbance for sample) - (absorbance for blank).

2) α-Amylase activity

15 Substrate:

5

10

20

0.5% by weight solution of soluble starch (manufactured by Merck Inc.).

Preparation of substrate solution:

Toparation of oddonate deletion

Soluble starch (0.5 g) is dissolved in 90 ml of deionized water, 5 ml of 1 M Tris-HCl buffer (pH 5.9) is added and the volume is then made 100 ml with deionized water.

Testing of samples:

25

The substrate solution (0.9 ml) is placed in a test tube, followed by addition of 0.1 ml of an adequately diluted enzyme solution. The reaction is then allowed to proceed in a constant-temperature bath maintained at 50°C for 15 minutes. Then, 1 ml of DNS test solution is added and the test tube contents are heated in boiling water exactly for 5 minutes for color development and then immediately cooled in an ice water bath. After cooling, 4 ml of deionized water is added and, after thorough mixing, the absorbance at 535 nm is measured quickly.

Blank testing:

The substrate solution (0.9 ml) is placed in a test tube and then 1.0 ml of DNS test solution is added. Furthermore, 0.1 ml of the adequately diluted enzyme solution is added. The test tube is quickly put in boiling water and heated therein exactly for 5 minutes for color development. After immediate cooling in an ice water bath, 4 ml of deionized water is added and, after thorough mixing, the absorbance at 535 nm is measured quickly.

Calibration curve construction:

40

30

The substrate solution is distributed in 0.9-ml portions into test tubes. Glucose solutions for calibration are then added each in an amount of 0.1 ml so as to give glucose concentrations of 250 to 1,500 µmol/liter. Furthermore, 1.0 ml of DNS test solution is added to each tube. The subsequent procedure is the same as in testing of samples. The data thus obtained are plotted (abscissa for glucose concentration, ordinate for absorbance) and the gradient is determined. The conversion curve (F) is determined as follows:

$$F = \frac{1}{Gradient} \times \frac{1}{15} \times \frac{1}{0.1}$$

Activity calculation:

50

The activity is calculated as follows:

Activity (U/liter) = δ absorbance \times F \times Dilution factor where δ absorbance = (absorbance for sample) - (absorbance for blank).

Preparation of 3,5-dinitrosalicylic acid (DNS) test solution (1 liter):

Sodium hydroxide (16 g) is dissolved in 200 ml of deionized water. To the solution is added portionwis 5 g of DNS. After complete dissolution of DNS, 300 g of potassium sodium tartrate is added. After complete dissolution of potassium

sodium tartrat, the volume is made 1,000 ml with deionized water.

5

10

15

20

30

40

45

50

The det rgent c mposition if the invention may c ntain other ingredients gen rally incorporated in conventional det rgent compositions depending on the intended use of the detergent composition without any particular limitations. Such ingredients are described below.

(1) Alkaline substances such as carbonates, bicarbonates, silicates, borates and alkanolamine salts; or inorganic electrolytes such as sulfates, are incorporated in the composition generally in an amount of 0 to 90% by weight.

- (2) Divalent metal ions sequestering agents, for example, phosphates such as tripolyphosphates, pyrophosphates and orthophosphates; phosphonates such as ethane-1,1-diphosphonates; phosphonocarboxylates such as 2-phosphonobutane-1,2-dicarboxylates; amino acid salts such as aspartates and glutamates; aminopolyacetates such as nitrilotriacetates and ethylenediaminetetraacetates; high molecular chelating agents such as polyacrylic acid and polyaconitic acid; organic acid salts such as oxalates and citrates; and aluminosilicates, are incorporated in the composition generally in an amount of 0 to 50% by weight.
- (3) Bleaching agents such as sodium percarbonate, sodium perborate, sodium hypochlorite and dichloroisocyanuric acid, and incorporated into the composition generally in an amount of 0 to 85% by weight.
- (4) Other minor components, which may optionally be incorporated in the composition as necessary, include antiredeposition agents such as polyethylene glycol and carboxymethylcellulose; enzymes, such protease lipase and cellulase; enzyme deactivation inhibitors such as sulfites; fluorescent whitening agents (or optical brighteners); bluing agents; colorants; caking inhibitors; solubilizing agents; activators for enzymes or bleaching agents; corrosion inhibitors and so forth.

For use in automatic-dishwashers, the detergent composition of the invention, when it is in the powder form, should contain, in addition to the essential components mentioned above, at least one inorganic alkaline substance selected from among sodium pyrophosphate, sodium orthophosphate, sodium tripolyphosphate, sodium carbonate, sodium bicarbonate, sodium sesquicarbonate, borax or sodium silicate. It is preferable to use sodium silicate in combination with one or more other alkaline substances since sodium silicate has corrosion inhibitor activity. The combined use of 2 to 15% by weight of sodium silicate (SiO₂/Na₂O ratio being 1/1 to 4/1, preferably 2/1 to 2.5/1) and 35 to 85% by weight of one or more other alkaline substances is most preferred. The total inorganic alkaline substance content should be adjusted so that the washing solution, when it contains the detergent composition in a concentration of 0.05 to 1% by weight, may have a pH of 9.0 to 11.0. In the case of liquid detergent composition, water accounts for the balance.

In view of the current trend towards phosphate-free detergents to avoid or solve environmental or eutrophication problems, it may become important to formulate phosphate-free compositions for machine dishwashing with the spread of automatic-dishwashers, without any significant decrease in detergency towards various kinds of dirt. In formulating such phosphate-free detergent compositions, it is preferable to incorporate hydrogenpolycarboxylic acid represented by the formula (I) below, or water-soluble salts thereof, into the detergent composition of the invention as a divalent metal ions sequestering agent:

wherein X represents H, -CH₃, -CH₂COOH or -CH(OH)COOH; and Y represents H or -OH.

Among the compounds represented by the above formula (I), citric acid, malic acid and tartaric acid are preferred. Examples of the water-soluble salts thereof include the sodium salt, potassium salt, monoethanolamine salt, diethanolamine salt and triethanolamine salt.

The detergent composition of the invention contains the hydrogenpolycarboxylic acid or water-soluble salts thereof in an amount of preferably 0.5 to 30% by weight.

Furthermore, it is preferable for formulating such phosphate-free detergent composition to use a high molecular chelating agent as a divalent metal ions sequestering agent in an amount of 1 to 10% by weight. As the high molecular chelating agent, a divalent metal ions sequestering polyelectrolyte as disclosed in JP-A-57-145199 (the term "JP-A" as used herein means an "unexamined published Japanese Patent Application") can be used, and examples thereof include polymers of acrylic acid or methacrylic acid, acrylic acid-methacrylic acid copolymers, and water-soluble salts of these. Their average molecular weights should preferably amount to 1,500 to 100,000, more preferably 3,000 to 20,000.

The automatic-dishwashing detergent composition of the invention may further contains conventional ingredients, for xample proteolytic enzymes, bleaching agents such as dichloroisocyanuric acid, and copper corrosion inhibitors, if

necessary.

Preferr d example of the proteolytic enzyme which may be used in the composition of the invention is subtilisin, and it can be obtain d from specific microbial strains belonging to the species Bacillus subtilis or <a href="Bacillus subtilis o

It is also effective to add a fatty acid having a hydrocarbon chain length of about 8 to 18 or benzotriazole or the like as a copper corrosion inhibitor.

The detergent composition of the invention which contains the starch debranching enzyme specified herein show significantly improved starchy dirt detergency within an ordinary time of washing. Additional incorporation of a hydroxypolycarboxylic acid or a salt thereof markedly enhance not only starchy dirt detergency but also fatty or oily dirt detergency.

The following examples are further illustrative of the present invention but by no means limitative of the scope thereof. In the examples, unless otherwise specified, "%" means "% by weight" and the ratios given are weight ratios.

EXAMPLE 1

15

20

30

35

Automatic-dishwashing detergent compositions

The washing conditions and detergency evaluation method used in this example and the results obtained are as follows:

1) Washing conditions

Washer: Model NP-600 full-automatic dishwasher manufactured by Matsushita Electric Industrial Co., Ltd. In this model, an aqueous detergent solution ejected from a rotary nozzle means washes the dishes and the like positioned in the orbital plane of the nozzle means.

Washing temperature: The temperature is gradually raised from 5°C up to 55°C.

Washing water: Water having a hardness of 3.5° DH.

Detergent concentration: 0.2% (enzyme activity in washing solution being 440 U/liter).

Washing time: Washing solution application 20 minutes, rinsing 20 minutes.

Amount of circulating washing solution: 2.5 liters.

2) Detergency evaluation

(Starchy dirt-carrying plates)

Rice-flour dumplings and cooked rice are mixed in a ratio of 9:1. An equal amount of tap water is added to the mixture and the whole is blended in a mixer. This dirt mixture (4 g) is uniformly applied to a ceramic plate having a diameter of 22 cm and air-dried for a whole day.

For each washing test run, 3 plates soiled in the above manner are used.

(Evaluation of starchy dirt detergency)

Residual starch is determined by color reaction with iodine followed by determination of the resulting blue-colored area (P₁) by a photograph. The detergency is calculated in comparison with the initial soiled surface area (S₀) by the following equation:

Detergency (%) = $((S_0 - P_1)/S_0) \times 100$

50

3) Detergent composition formulation

SOFTANOL EP 7045

Sodium citrate

Sodium silicate, grade No. 1

Enzyme

Enzyme

Sodium carbonate

Note: The numerical values are in % by weight.

4) Results of detergency test

15

20

The results obtained are shown in Table 1 below, where Compositions Nos. 1 to 3 are of the present invention and Nos. 4 and 5 are for comparison.

	· TABLE 1	
25	Composition No. 1 2 3 4 5	
	Enzymes	
30	SPLENTASE ¹⁾ 1.0	
30	PROMOZYME ²⁾ 5.2	
	Isoamylase ³⁾ 0.02	
35	TERMAMYL 300L ⁴) 0.03	
	MAXAMYL WL ⁵⁾ 0.05	
40	Detergency (%) 75 60 70 30 35	
	Notes:	
45	1) Pullulanase, manufactured by Amano Pharmaceutical Co., Ltd.; 6.1×10 ⁶ U/liter.	
	 Pullulanase, manufactured by Novo Industri A/S; 4.5×10⁵ U/liter. 	
50	3) Isoamylase, manufactured by Seikagaku Kogyo Co., Ltd.; 5.9×10 ⁷ U/liter.	

- 4) α -Amylase, manufactured by Novo Industri A/S; 4.4×10 7 U/liter.
- 5) α -Amylas , manufactured by Gist-Brocades; 7.2×10 6 U/liter.

EXAMPLE 2

5

15

20

Laundry detergent compositions

The washing conditions and detergency test method used in this example and the results obtained are as follows;

1) Artificially soiled cloth

Rice-flour dumplings and cooked rice are combined in a ratio of 9:1. After two-fold dilution with tap water, the whole is blended in a mixer. The resulting mixture is applied to cotton cloth testpieces having a size of 10 cm \times 10 cm at a level of 2.5 to 5% based on the cloth weight. The thus-soiled cloths are dried at 20°C for 24 hours and then tested.

2) Washing conditions and method

The detergent composition (in powder form) to be tested is dissolved in hard water (4° DH) to give 1 liter of a 0.665% aqueous detergent solution (enzymatic activity of washing solution 1.98×10³ U/liter), Five artificially soiled cotton cloth testpieces are placed in the washing solution and, after 1-hour standing at 40°C, the washing solution and artificially soiled testpieces are transferred to a stainless steel beaker for a Terg-o-Tometer. Washing is performed in the Terg-O-Tometer at 20°C for 10 minutes with stirring at 100 rpm. After rinsing with running water, the testpieces are dried at 20°C for 24 hours and then weighed.

3) Detergency evaluation

The detergency (%) is calculated based on the weight of the five cloth testpieces before soiling (original weight), their weight after soiling (weight before washing) and their weight after washing, by the following equation:

Detergency (%) = (Weight before washing) - (Weight after washing) × 100 (Weight before washing) - (Original weight)

The detergency values given in Table 2 each is the mean for five testpieces.

4) Detergent composition formulation

35	Sodium n-dodecylbenzenesulfonate	15
35	Sodium alkylethoxylate sulfate $(C_{14}-C_{15}, \overrightarrow{E0} = 3 \text{ moles})$	5
40	Type 4A zeolite	15
40	Sodium silicate	15
	Sodium carbonate	15
45	Sodium polyacrylate ($\overline{MW} = 8,000$)	1.5
	Polyethylene glycol $(\widetilde{MW} = 6,000)$	1.5
50	Enzyme	See Table 2
	Optical brightener	0.5
	Sodium sulfate	Balance
55	Water	5
	Note: The numerical value are in %	by weight.

5) Detergency test results

5

The test results obtained are shown in Table 2, in which Compositions Nos. 1 to 3 are of the present invention and Nos. 4 and 5 are for comparison.

TABLE 2

10		11	Comp	osition 3	No4	
	Enzymes					
15	SPLENTASE1)	1.8				
10	PROMOZYME1)		9.4			
	Isoamylase ¹⁾			0.036		
20	TERMAMYL 300L ¹⁾				0.054	
	MAXAMYL WL1)					0.27
25	Detergency (%)	70	70	70	30	35
	Note: 1) Respec	ctively	same as	in Exam	ple 1.	

30 EXAMPLE 3

Automatic-dishwashing detergent compositions

1) Washing conditions

Same as in Example 1.

2) Plates soiled with cooked rice and method of evaluation

(Soiled plates)

Cooked rice, freshly boiled to a soft consistency, is allowed to stand at room temperature for 30 minutes, then applied, with smashing, to ceramic plates having a diameter of 25 cm (3 g of cooked rice per plate), and dried for a whole day at room temperature. For each washing test run, 6 plates soiled in the above manner are used.

(Evaluation of starchy dirt detergency)

Same as in Example 1.

3) Detergent composition formulation

55

50

35

	SOFTANO	L EP 7045		2.0	
5	Sodium	tripolyphosphate	•	20.0	
	Sodium	silicate, grade	No. 1	5.0	
	Enzyme			See Table 3	
10	Sodium	carbonate		Balance	
	Note:	The numerical va	alues are in % h	y weight.	
15	4) Detergency test results				
	The test results obtained Nos. 5 and 6 are for compa		ere Compositions Nos. 1 to	4 are of the present invention and	j
20					
25					
30					
35					
40					
45					
50					

5		11				2.75×10 ³		5.5×10 ²	5.0	8	
10		10			1.0×10 ²			5.5×10 ²	0.18	æ S	
15		6				1.1×10 ²	5.5×10 ²		0.3	. 67	
		8			5.5×10 ²		5.5×10 ²		1.0	8 S	·
20		1		2.6×10 ³				5.5×10 ²	4.7	80 80	
25	က	Composition No.						2.0×10 ³	ı	S E	Composition for comparison Pullulanase, Amano Pharmaceutical Co., Ltd.; 6.1×10 ⁶ U/liter Pullulanase, Novo Industri A/S; 4.3×10 ⁵ U/liter Isoamylase, Selkagaku Kogyo Co., Ltd.; 5.9×10 ⁷ U/liter α-Amylase, Novo Industri A/S; 4.4×10 ⁷ U/liter α-Amylase, Gist-Brocades; 7.2×10 ⁶ U/liter
30	TABLE 3	Com					2.0×10 ³		1 -	20	1 Co., Ltd.; 6.1X1 4.3X10 ⁵ U/11ter Ltd.; 5.9X10 ⁷ U/1 1X10 ⁷ U/11ter 0 ⁶ U/11ter
35				1.6×10 ³			5.5×10 ²		2.9	81	ral Co., El ; 4.3×10 ⁵ ; , Etd.; 5. 1.4×10 ⁷ U/ ×10 ⁶ U/lit
40				2.6×10 ²			9.4X10 ²			82	Composition for comparison Pullulanase, Amano Pharmaceutical Co., Ltd.; 6.1X10 ⁶ U, Pullulanase, Novo Industri A/S; 4.3X10 ⁵ U/liter Isoamylase, Selkagaku Kogyo Co., Ltd.; 5.9X10 ⁷ U/liter n-Amylase, Novo Industri A/S; 4.4X10 ⁷ U/liter n-Amylase, Gist-Brocades; 7.2X10 ⁶ U/liter
45		2		3.2×10 ²			5.5×10 ²		9	85	for comp a, Amano Pl e, Novo In Selkagak Novo Indu
				2.6×10 ³			" 5,5×10 ²		.4.7	8	Composition for Pullulanase, Ami Pullulanase, No: Isoamylase, Seli n-Amylase, Novo
50			ity in	SPLENTASE ¹⁾	Pronozyne ²⁾	Isoamylase ³⁾	TERMANY 10004) 5.5×10 ²	HAXANYL WL ⁵⁾	Debranching enzyme/ o-amylase activity ratio	ency	. 28875
55			Enzyme (Activity units)	SPLE	PROM	Isoa	TERM	KAXA	Debranching enzyme/ a-amylase activity ra	Detergency	No fees

EXAMPLE 4

Laundry detergent compositions

5 The washing conditions and detergency test method used in this xample and the results obtained are as follows:

1) Artificially soiled cloth

Cooked rice is two-fold diluted with tap water and subjected to blending in a mixer. The resulting mass is applied to cotton cloth testpieces having a size of 10 cm × 10 cm to a weight increase of 2.5 to 5% based on the cloth weight, then dried at 20°C for 24 hours and tested.

2) Washing conditions and method

15 Same as in Example 2.

3) Detergency evaluation

Same as in Example 2.

20

4) Detergent composition formulation

25	Sodium n-dodecylbenzenesulfonate	15
	Sodium alkylethoxylate sulfate $(C_{14}-C_{15}, EO = 3 \text{ moles})$	5
30	Type 4A zeolite	15
	Sodium silicate	15
	Sodium carbonate	15
35	Sodium polyacrylate (MW = 8,000)	1.5
	Polyethylene glycol ($\overrightarrow{MW} = 6,000$)	1.5
40	·	
	Enzyme	See Table 4
45	Optical brightener	0.5
	Sodium sulfate	Balance
	Water	5
50	Note: The numerical value are in	by weight.

5) Detergency test results

The test results obtained are shown in Table 4, where Compositions 1 is of the present invention and Composition No. 2 is for comparison.

TABLE 4

_		Composi	tion No.
5		_1_	2
	Enzyme	•	
10	SPLENTASE ¹⁾	3.2×10 ²	-
	TERMAMYL 300L ¹⁾	5.5×10 ²	2.0×10 ³
	Activity ratio	0.6	-
15	Detergency (%)	80	30

Note: The numerical values given for the enzymes indicate the activities in units per liter of washing solution.

25 EXAMPLE 5

20

30

Automatic-dishwashing detergent compositions

1) Washing conditions

Same as in Example 1.

- 2) Detergency evaluation
- (1) Fat-soiled plates and method of evaluation

(Soiled plates)

Beef tallow (5 g) is applied to each of ceramic plates (25 cm in diameter) and air-dried for a whole day. For each test run, 2 plates are used.

(Evaluation for fatty dirt detergency)

After washing, an Oil Red solution is poured onto each plate. The thus-colored area (S₁) on the plate surface is measured by a photograph and compared with the initial soiled area (S₀). The detergency is thus calculated by the following equation:

Detergency (%) =
$$((S_0 - S_1)/S_0) \times 100$$

(2) Rice-soiled plates and method of evaluation

(Soiled plates)

55

Same as in Example 3.

(Evaluation of starchy dirt detergency)

Same as in Example 1.

The compositions specified in Table 5 below were prepared and evaluated for detergency by the abeve-mentioned methods of valuation. The results obtained are also shown in Table 5.

In Tabl 5, Compositions Nos. 1 and 2 are for comparison, while the other compositions fall within the scope of the present invention. From the data shown in Table 5, it is apparent that the combined use of the components (a), (b) and (c) of the present invention can produc a significant synergistic effect.

5			7	7		0.01		0.99	20	20		Ø	ហ			ស	100	80	iter;
10			9	7	0.975		0.025		20				ທ .	٠	٠	9	100	080	4×10 ⁷ U/J ⁶ U/liter ".
15		No.	2	7	0.95		0.05		20			æ	5			က	100	80	Novo Industri A/S, 4.4×10 ⁷ U/liter; Gist-Brocades, 7.2×10 ⁶ U/liter; B stands for "balance".
20		Composition No.	4	7	0.75		0.25		20			曲	ĸ			9.0	100	80	Industri Brocades Inds for
25		Comp	3	7	0.67		0.33		20			ф	S			0.26	100	80	4) Novo 5) Gist- 6) B sta
30	TABLE 5		2	7				1	20			Ø	'n			1	20	80	U/liter er
ar.	H			7			-1					B ₆)	Ŋ			ı	20	20	Ltd., 6.1×10 ⁴ U/liter ⁱ U/liter , 5.9×10 ⁷ U/liter
35			1										•	(0					
40													ri .	e (MW600	crylic MWB000)				utical Co., Ltd., 6. A/S, 4.3×10 ⁵ U/liter o Co., Ltd., 5.9×10 ⁷
45				7045		~	10L4)	=	rate	rate	nalate	onate	cate No	/acrylat	ld/metha /mer > 90/10,	y ratio	gency	rgency	armaceut ustri A/ u Kogyo
50			Component	(a) SOFTANOL EP	(b) SPLENTASE ¹⁾	Isoamylase ³⁾	(c) TERMAMYL 300L ⁴⁾	MAXAMYL WL ⁵	(d) Sodium citrate	Sodium tartrate	Potassium malate	(e) Sodium carbonate	Sodium silicate No. l	Sodium polyacrylate (MW6000)	Acrylic acid/methacrylic acid copolymer (mole ratio 90/10, MWB000	(b)/(c) activity ratio	Rice dirt detergency	Patty dirt detergency	es: 1) Amano Pharmaceutical Co., I 2) Novo Industri A/S, 4.3x10 ⁵ 3) Seikagaku Kogyo Co., Ltd.,
55		(COM	(a) SO	4S (q)	N H	国L (0)	MA	(d) So	SO	Po	(e) So	SO	SO	Ac a A	(p)/(c	Rice d	Patty	Notes: 1) 2) 3)

5		13	2	0.75			0.25		20			Ф	2	•	w į	9.0	100	06	4.4×10 ⁷ U/li :10 ⁶ U/liter; :ce".
10		12	7	0.75			0.25		20			м	Ŋ	S		9.0	100	06	Novo Industri A/S, 4.4× Gist-Brocades, 7.2×10 ⁶ B stands for "balance".
15	ion No.	11	7			0.74	0.26				20	Д				0.2	100	80	Novo Industri A/S, Gist-Brocades, 7.2× B stands for "balan
20	U Composition No.	10	8		0.99		0.01			20		(21)	S			7	100	80	4) Novo 5) Gist- 6) B sta
25	TABLE 5 (cont'd)	6	8		0.998			0.002	20			øq.	Ŋ			40	100	80	U/liter :er
30	TABLE	8	7	0.991				0.009			20	æ	ιΩ			70	100	80	Co., Ltd., 6.1×10 ⁴ U/liter .3×10 ⁵ U/liter Ltd., 5.9×10 ⁷ U/liter
35																			Ltd., U/li 5.9×
40													ר .	e (MW6000)	crylic WW8000)				Amano Pharmaceutical Co., Ltd., 6.1×10 ⁴ U/ Novo Industri A/S, 4.3×10 ⁵ U/liter Seikagaku Kogyo Co., Ltd., 5.9×10 ⁷ U/liter
45			7045				£1		te	ate	late	nate	ate No. 1	crylat	/metha er 90/10,	ratio	ency	gency	rmaceu stri A Kogyo
50		Component	(a) SOFTANOL EP	(b) SPLENTASE ¹⁾	PROMOZYME ²⁾	Isoamylase ³⁾	(c) TERMAMYL 300L4	MAXAMYL WL ⁵⁾	(d) Sodium citrate	Sodium tartrat	Potassium mala	(e) Sodium carbona	Sodium silicat	Sodium polyacrylate (MW6000)	Acrylic acid/methacrylic acid copolymer (mole ratio 90/10, MW800	(b)/(c) activity 1	Rice dirt detergency	Fatty dirt detergency	Notes: 1) Amano Pharmaceutical Co., Ltd., 6. 2) Novo Industri A/S, 4.3×10 ⁵ U/liter 3) Seikagaku Kogyo Co., Ltd., 5.9×10 ⁷
<i>5</i> 5			a	٩	•		0		g)			e)				<u>a</u>	Ri	Fa	Ž

While th invention has been described in detail and with reference to specific embodiments thereof, it will be ap-

parent to one skilled in the art that various changes and modifications can be made therein without departing from the scope thoreof.

5 Claims

10

20

30

40

- An automatic-dishwashing detergent composition comprising at least one surfactant, which is characterized in that
 it contains at least one starch debranching enzyme selected from the group consisting of pullulanase, isopullulanase
 and isoamylase.
- 2. The automatic-dishwashing detergent composition of claim 1, wherein said composition further contains α -amylase.
- The automatic-dishwashing detergent composition of claim 2, wherein said starch debranching enzyme and said α-amylase are contained in an amount to satisfy the relation such that an activity ratio of said starch debranching enzyme and said α-amylase is 1/10³ to 10⁸/1, as determined by the DNS method.
 - 4. The automatic-dishwashing detergent composition of claim 3, wherein said starch debranching enzyme and said α-amylase are contained in an amount to satisfy the relation such that an activity ratio of said starch debranching enzyme and said α-amylase is 1/10 to 10²/1, as determined by the DNS method.
 - 5. The automatic-dishwashing detergent composition of claim 1, wherein said surfactant is present in an amount of 0.5 to 60 % by weight and said starch debranching enzyme is present in an amount of 0.01 to 10 % by weight.
- 6. The automatic-dishwashing detergent composition of claim 2, wherein said surfactant is present in an amount of 0.5 to 60 % by weight and said starch debranching enzyme and said α-amylase are present in a total amount of 0.1 to 10 % by weight.
 - The automatic-dishwashing detergent composition of claim 2, wherein said detergent composition further contains a hydroxypolycarboxylic acid or a salt thereof.
 - 8. The automatic-dishwashing detergent composition of claim 7, wherein said surfactant is present in an amount of 0.5 to 30 % by weight, said starch debranching enzyme and said α-amylase are present in a total amount of 0.1 to 5 % by weight, and said hydroxypolycarboxylic acid or a salt thereof is present in an amount of 0.5 to 30 % by weight.
- 9. A laundering detergent composition comprising at least one surfactant, which is characterized in that it contains at least one starch debranching enzyme selected from the group consisting of pullulanase, isopullulanase and isoamylase.
 - 10. The laundering detergent composition of claim 9, wherein said composition further contains α -amylase.
 - 11. The laundering detergent composition of claim 10, wherein said starch debranching enzyme and said α-amylase are contained in an amount to satisfy the relation such that an activity ratio of said starch debranching enzyme and said α-amylase is 1/10³ to 10⁸/1, as determined by the DNS method.
- 45 12. The laundering detergent composition of claim 11, wherein said starch debranching enzyme and said α-amylase are contained in an amount to satisfy the relation such that an activity ratio of said starch debranching enzyme and said α-amylase is 1/10 to 10²/1, as determined by the DNS method.
- 13. The laundering detergent composition of claim 9, wherein said surfactant is present in an amount of 0.5 to 60 % by weight and said starch debranching enzyme is present in an amount of 0.01 to 10 % by weight.
 - 14. The laundering detergent composition of claim 10, wherein said surfactant is present in an amount of 0.5 to 60 % by weight and said starch debranching enzyme and said α-amylase are present in a total amount of 0.1 to 10 % by weight.
 - 15. The laundering detergent composition of claim 10, wherein said detergent composition further contains a hydroxy-polycarboxylic acid or a salt thereof.

- 16. The laundering det rgent composition of claim 15, wherein said surfactant is present in an amount of 0.5 to 30 % by weight, said starch dibranching enzyme and said α-amylase are present in a total amount of 0.1 to 5 % by weight, and said hydroxypolycarboxylic acid or a salt thereof is present in an amount of 0.5 to 30 % by weight.
- 5 17. Use of a composition comprising at least one surfactant and at least one starch debranching enzyme selected from the group consisting of pullulanase, isopullulanase and isoamylase as an automatic-dishwashing detergent or a laundering detergent.

10 Patentansprüche

15

- Detergenszusammensetzung zum automatischen Geschirrspülen, umfassend zumindest ein Tensid, dadurch gekennzeichnet, daß sie zumindest ein stärkeabbauendes Enzym enthält, ausgewählt aus der Gruppe, bestehend aus Pullulanase, Isopullulanase und Isoamylase.
- 2. Detergenszusammensetzung zum automatischen Geschirrspülen nach Anspruch 1, worin die Zusammensetzung weiterhin α-Amylase enthält.
- Detergenszusammensetzung zum automatsichen Geschirrspülen nach Anspruch 2, worin das stärkeabbauende Enzym und die α-Amylase in einer Menge enthalten sind, daß die Beziehung erfüllt wird, daß ein Aktivitätsverhältnis des stärkeabbauenden Enzyms und der α-Amylase 1/10³ bis 10⁸/1 ist, bestimmt durch das DNS-Verfahren.
- 4. Detergenszusammensetzung zum automatischen Geschirrspülen nach Anspruch 3, worin das stärkeabbauende Enzym und die α-Amylase in einer Menge enthalten sind, so daß die Beziehung erfüllt wird, daß ein Aktivitätsverhältnis des stärkeabbauenden Enzyms und der α-Amylase 1/10 bis 10²/1 ist, bestimmt durch das DNS-Verfahren.
- Detergenszusammensetzung zum automatischen Geschirrspülen nach Anspruch 1, worin das Tensid in einer Menge von 0,5 bis 60 Gew.% und das stärkeabbauende Enzym in einer Menge von 0,01 bis 10 Gew.% vorhanden sind.
 - 6. Detergenszusammensetzung zum automatischen Geschirrspülen nach Anspruch 2, worin das Tensid in einer Menge von 0,5 bis 60 Gew.% und das stärkeabbauende Enzym und die α-Amylase in einer Gesamtmenge von 0,1 bis 10 Gew.% vorhanden sind.
 - 7. Detergenszusammensetzung zum automatischen Geschirrspülen nach Anspruch 2, worin die Detergenszusammensetzung weiterhin eine Hydroxypolycarbonsäure oder ein Salz davon umfaßt.
- 8. Detergenszusammensetzung zum automatischen Geschirrspülen nach Anspruch 7, worin das Tensid in einer Menge von 0,5 bis 30 Gew.%, das stärkeabbauende Enzym und die α-Amylase in einer Gesamtmenge von 0,1 bis 5 Gew.% und die Hydroxypolycarbonsäure oder ein Salz davon in einer Menge von 0,5 bis 30 Gew.% vorhanden sind
- Detergenszusammensetzung zum Waschen, umfassend zumindest ein Tensid, dadurch gekennzeichnet, daß sie zumindest ein stärkeabbauendes Enzym enthält, ausgewählt aus der Gruppe, bestehend aus Pullulanase, Isopullulanase und Isoamylase.
 - Detergenszusammensetzung zum Waschen nach Anspruch 9, worin die Zusammensetzung weiterhin α-Amylase enthält.
 - 11. Detergenszusammensetzung zum Waschen nach Anspruch 10, worin das stärkeabbauende Enzym und die α -Amylase in einer Menge enthalten sind, daß die Beziehung erfüllt wird, daß ein Aktivitätsverhältnis des stärkeabbauenden Enzyms und der α -Amylase 1/10³ bis 10 8 /1 ist, bestimmt durch das DNS-Verfahren.
- 55 12. Detergenszusammensetzung zum Waschen nach Anspruch 11, worin das stärkeabbauende Enzym und die α-Amylase in einer Menge enthalten sind, so daß die Beziehung erfüllt wird, daß ein Aktivitätsverhältnis des stärkeabbauenden Enzyms und der α-Amylase 1/10 bis 10²/1 ist, bestimmt durch das DNS-Verfahren.

- 13. Detergenszusammensetzung zum Waschen nach Anspruch 9, worin das Tensid in ein r Menge von 0,5 bis 60 Gew.% und das stärkeabbauende Enzym in einer Menge von 0,01 bis 10 Gew.% vorhanden sind.
- 14. Detergenszusammensetzung zum Waschen nach Anspruch 10, worin das Tensid in ein r M nge von 0,5 bis 60 Gew.% und das stärkeabbauende Enzym und die α-Amylase in ein r Gesamtm nge von 0,1 bis 10 Gew.% vorhanden sind.
 - 15. Detergenszusammensetzung zum Waschen nach Anspruch 10, worin die Detergenszusammensetzung weiterhin eine Hydroxypolycarbonsäure oder ein Salz davon umfaßt.
 - 16. Detergenszusammensetzung zum Waschen nach Anspruch 15, worin das Tensid in einer Menge von 0,5 bis 30 Gew.%, das stärkeabbauende Enzym und die α-Amylase in einer Gesamtmenge von 0,1 bis 5 Gew.% und die Hydroxypolycarbonsäure oder ein Salz davon in einer Menge von 0,5 bis 30 Gew.% vorhanden sind.
- 17. Verwendung einer Zusammensetzung, umfassend zumindest ein Tensid und zumindest ein stärkeabbauendes Enzym, ausgewählt aus der Gurppe, bestehend aus Pullulanase, Isopullulanase und Isoamylase als ein Detergens zum automatischen Geschirrspülen oder ein Detergens zum Waschen.

Revendications

5

10

20

25

- Composition détergente de lavage de vaisselle automatique comprenant au moins un tensioactif, qui est caractérisée en ce qu'elle contient au moins une enzyme de dégradation d'amidon choisie dans le groupe constitué des pullulanase, isopullulanase et isoamylase.
- 2. Composition détergente de lavage de vaisselle automatique selon la revendication 1, où ladite composition contient en outre de l'α-amylase.
- Composition détergente de lavage de vaisselle automatique selon la revendication 2, où ladite enzyme de dégradation d'amidon et ladite α-amylase sont contenues en une quantité suffisante pour satisfaire la relation telle que
 le rapport d'activité de ladite enzyme de dégradation d'amidon et de ladite α-amylase est 1/10³ à 10⁸/1, comme
 c'est déterminé par le procédé DNS.
- 4. Composition détergente de lavage de vaisselle automatique selon la revendication 3, où ladite enzyme de dégradation d'amidon et ladite α-amylase sont contenues en une quantité suffisante pour satisfaire la relation telle que le rapport d'activité de ladite enzyme de dégradation d'amidon et de ladite α-amylase est 1/10 à 10²/1 comme c'est déterminé par le procédé DNS.
- 5. Composition détergente de lavage de vaisselle automatique selon la revendication 1, où ledit tensioactif est présent en une quantité de 0,5 à 60 % en poids et ladite enzyme de dégradation d'amidon est présente en une quantité de 0,01 à 10 % en poids.
 - 6. Composition détergente de lavage de vaisselle automatique de la revendication 2, où ledit tensioactif est présent en une quantité de 0,5 à 60 % en poids et ladite enzyme de dégradation d'amidon et ladite α-amylase sont présentes en une quantité totale de 0,1 à 10 % en poids.
 - Composition détergente de lavage de vaisselle automatique selon la revendication 2, où ladite composition détergente contient en outre un acide hydroxypolycarboxylique ou un de ses sels.
- 8. Composition détergente de lavage de vaisselle automatique selon la revendication 7, où ledit tensioactif est présent en une quantité de 0,5 à 30 % en poids, ladite enzyme de dégradation d'amidon et ladite α-amylase sont présentes en une quantité totale de 0,1 à 5 % en poids, et ledit acide hydroxypolycarboxylique ou un de ses sels est présent en une quantité de 0,5 à 30 % en poids.
- 9. Composition détergente de lessive comprenant au moins un tensioactif, qui est caractérisée en ce qu'elle contient au moins une enzym de dégradation d'amidon choisie dans le groupe constitué de pullulanase, isopullulanase et isoamylas.

- 10. Composition détergent de lessiv selon la revendication 9, où ladite composition contient en utre de l'α-amylase.
- 11. Composition détergente de lessive selon la revendication 10, où ladite enzyme de dégradation d'amidon et ladite α-amylas sont comprises en un quantité suffisant pour satisfaire la relation telle que le rapport d'activité de ladite enzyme de dégradation d'amid in et de ladite α-amylase est 1/10³ à 10⁸/1 comme c'est déterminé par le procédé DNS.

5

10

20

25

30

35

40

45

50

- 12. Composition détergente de lessive selon la revendication 11, où ladite enzyme de dégradation et ladite α-amylase sont contenues en une quantité suffisante pour satisfaire la relation telle que le rapport d'activité de ladite enzyme de dégradation d'amidon et de ladite α-amylase est 1/10 à 10²/1, comme c'est déterminé par le procédé DNS.
- 13. Composition détergente de lessive de la revendication 9, où ledit tensioactif est présent en une quantité de 0,5 à 60 % en poids et ladite enzyme de dégradation est présente en une quantité de 0,01 à 10 % en poids.
- 15 14. Composition détergente de lessive de la revendication 10, où ledit tensioactif est présent en une quantité de 0,5 à 60 % en poids et ladite enzyme de dégradation d'amidon et ladite α-amylase sont présentes en une quantité totale de 0,1 à 10 % en poids.
 - 15. Composition détergente de lessive selon la revendication 10, où ladite composition détergente contient en outre un acide hydroxypolycarboxylique ou un de ses sels.
 - 16. Composition détergente de lessive selon la revendication 15, où ledit tensioactif est présent en une quantité de 0,5 à 30 % en poids, ladite enzyme de dégradation d'amidon et ladite α-amylase sont présentes en une quantité totale de 0,1 à 5 % en poids, et ledit acide hydroxypolycarboxylique ou un de ses sels est présent en une quantité de 0,5 à 30 % en poids.
 - 17. Utilisation d'une composition comprenant au moins un tensioactif et au moins une enzyme de dégradation d'amidon choisie dans le groupe constitué des pullulanase, isopullulanase et isoamylase en tant que détergent de lavage de vaisselle automatique ou de détergent de lessive.