

Газовый цех

Автоматизированная система учета

РАСХОДА ГАЗА: ДОМЕННОГО, КОКСОВОГО, ПРИРОДНОГО

РУКОВОДСТВО ПРОГРАММИСТА

Программный модуль учета газа

на <u>22</u> листах

«»	_ 2017 г.
	К.С.Теличко
Начальник УВСИTL	ÍЛ
СОГЛАСОВАНО:	

лист согласования

к Руководству программиста

СОГЛАСОВАНО:	
УВСИТЦУ:	
Начальник отдела автоматизации	И.Н.Резепин
Начальник бюро программирования	А.А.Загиров
Начальник бюро ДПиУЭ	А.В.Суковицин
РАЗРАБОТАЛ:	
Математик	Н.А.Иванов

Оглавление

1.	Основная информация	4
2.	Алгоритм работы программы MathTU	4
3.	Инициализация функции расчета расхода ДГ,КГ,ПГ	6
4.	Описание структуры программного модуля	7
4.1.	Глобальные константы	7
4.2.	Описание функций	7
4.2.	4. Функция расчета молярной доли компонентов Х	10
4.2.	5. Функция расчета псевдо-критической температуры <i>T_nk</i>	11
4.2.	6. Функция расчета псевдо-критического давления <i>P_nk</i>	11
4.2.	7. Функция расчета абсолютной температуры Т_а	11
4.2.	8. Функция расчета абсолютного давления Р_а	11
4.2.	9. Функция расчета фактора сжимаемости в рабочих условиях Z	12
4.2.	10. Функция расчета фактора сжимаемости в стандартных условиях $Z_{-}c$	12
4.2.	11. Функция расчета плотности при стандартных условиях <i>Plot_c</i>	12
4.2.	12. Функция расчета плотности в рабочих условиях <i>Plot</i>	13
4.2.	13. Функция расчета диаметра ИТ в рабочих условиях <i>D_it</i>	13
4.2.	14. Функция расчета диаметра СУ в рабочих условиях <i>D_cy</i>	13
4.2.		
	пературе <i>Otn_D</i>	
4.2.	,	
4.2.		
4.2.	18. Функция расчета коэффициента расширения <i>Eps</i>	14
4.2.	19. Функция расчета коэффициента истечения С	15
4.2. Kn	 Функция расчета коэффициента поправки на закругление входной кромки С 15 	У
4.2.	21. Функция расчета вязкости <i>U</i>	15
4.2.	22. Функция расчета коэффициента шероховатости Кw	15
4.2.	23. Функция расчета критерия Рейнольдса <i>Re</i>	16
4.2.		
•	овиям <i>Qс</i>	
	Список используемой литературы	
При	иложение №1	18

1. Основная информация

Автоматизированная система контроля и учета энергоресурсов АСУ ЭНЕРГО имеет в своем составе одну базу данных (БД), которая хранит всю информацию о расходах энергоносителей. БД представляет собой реляционную нераспределенную базу данных, разработанную при помощи пакета программ Sybase SQL Anywhere 5.00. В качестве носителя информации используется жесткий диск сервера системы. Диспетчер данных также хранится на данном ПК.

Для корректного функционирования базы данных необходимы следующие условия:

- компьютер с характеристиками не ниже Celeron 1800, RAM 256Mb, HD 10Gb;
- операционная среда QNX 4.25;
- установленное стандартное программное обеспечение для работы с сервером базы данных (БД) Sybase SQL Anywhere 5.00;
- настроенная по протоколу TCP/IP связь с сервером базы данных

Для работы всей математики программы задействуется порядка 17 мбайт ОЗУ. Программа написана на объектно-ориентированном языке программирования Watcom C++10.6 с использованием стандартных методов и функций данного языка. Программа работает в ОС QNX4.25.

В приложении №1 указаны примеры листинга программы.

2. Алгоритм работы программы MathTU

Вся информация с датчиков поступает на устройство сбора данных (УСД) далее программным кодом (драйвер) при помощи программы Transport заносится в поле диспетчера данных (ДД) №1. Далее программа Normal нормализует данные из поля ДД №1 и переправляет их в поле ДД №2.

За работу математики отвечает программа MathTU, которая выполняет следующий алгоритм действий:

1) Запрашивает с базы данных (БД) формулы для расчета, константы, поля для вывода информации.

- 2) Регистрируется в ДД в поле №2 (в нём содержатся все нормализованные данные с датчиков) и №255 (передает № полей ДД, в которые нужно будет переправить обработанные программой MathTU данные). Указывает значения полей данных, которые ему необходимы для расчета данных формул (указано в БД), переходит в режим ожидания прокси-сигнала (сообщение о наличии значения в поле).
- 3) Как только приходит прокси-сигнал о том, что в поле появилось значение или если сработал таймер (периодическая проверка состояния поля), получает значение с поля данных.
- 4) Распаковывает данные.
- 5) Рассчитывает физические величины для точек учета и групп по формулам, определенным в базе данных для каждой конкретной точки учета или группы.
- 6) Выбранная из базы данных формула передается в функцию calc_func(), которая находится в файле /energo/src/MathBlock/calc.cpp, эта функция проверяет соответствует ли данная формула проинициализированным функциям в файле /energo/src/MathBlock/func.h, если да, то вызывает такую функцию из файла /energo/src/MathBlock/func.cpp.
- 7) Упаковывает данные в структуры массивов данных двух типов:
 - Структура IMPULS, которая формирует точку учета (номера счетчика, количество накопленных импульсов, номер группы учета, статус канала, ошибки, выход за пределы, наличие обрыва связи, формулы, поля: 0-датчик, 1-точка учета, 2-группа, 3-телесигнализация). Тело структуры находится в файле /energo/src/MathBlock/ktsern.h.
 - Структура POLE9, которая содержит номера полей в которые математика отправила данные и размеры этих данных. Тело структуры находится в файле /energo/src/MathBlock/ktsern.h.

Далее программа MathTU отправляет структуры 1ого типа в указанные поля (№11-№224) и создает поле ДД №9, в которое отправляет структуру 2ого типа.

3. Инициализация функции расчета расхода ДГ,КГ,ПГ

Для того чтобы программа MathTU обработала новую функцию расчета расхода доменного, коксового и природного газов, её нужно инициализировать.

Тело функции расчета расхода газа добавлено в файл который находится на ПК с функциями приема и обработки данных газового цеха: /energo/src/MathBlock/func.cpp.

На выходе данные сформированы в виде функций: PG_2016 (12 входных параметров), DG_2016 (16 входных параметров), KG_2016 (17 входных параметров). Название функции и все входные параметры описаны в БД.

Эти функции проинициализированы в следующих файлах:

1) /energo/src/MathBlock/calc.h

В структуре func_t[] увеличен размер массива обрабатываемых входных параметров par[] до 17(максимальное количество входных параметров функции).

2) /energo/src/MathBlock/func.h

Объявлены функции (тип функции, данных, спецификатор extern): PG_2016(), DG_2016(), KG_2016().

3) /energo/src/MathBlock/calc.cpp

В массиве nfunc[32] добавлены элементы: "PG_2016, DG_2016, KG_2016".

В функции calc_func добавлены строки:

If (strcmp(Func[n].name,"KG_2016")==0) return

 $\label{eq:KG_2016} KG_2016(Func[n].par[0], Func[n].par[1], Func[n].par[2], Func[n].par[3], Func[n].par[4], Func[n].par[5], Func[n].par[6], Func[n].par[7], Func[n].par[8], Func[n].par[9], Func[n].par[10], (int)Func[n].par[11], (int)Func[n].par[12], Func[n].par[13], Func[n].par[14], (int)Func[n].par[15], (int)Func[n].par[16]);$

if (strcmp(Func[n].name,"DG_2016")==0) return

DG_2016(Func[n].par[0], Func[n].par[1], Func[n].par[2], Func[n].par[3], Func[n].par[4], Func[n].par[5], Func[n].par[6], Func[n].par[7], Func[n].par[8], Func[n].par[9], (int)Func[n].par[10], (int)Func[n].par[11], Func[n].par[12], Func[n].par[13], (int)Func[n].par[14], (int)Func[n].par[15]);

if (strcmp(Func[n].name,"PG_2016")==0) return

PG_2016(Func[n].par[0], Func[n].par[1], Func[n].par[2], Func[n].par[3], Func[n].par[4], Func[n].par[5], (int)Func[n].par[6], (int)Func[n].par[7], Func[n].par[8], Func[n].par[9], (int)Func[n].par[10], (int)Func[n].par[11]);

4) /energo/src/MathBlock

Скомпилирована программа MathTU, для этого набрана команда: "make MathTU". После этого заменён файл MathTU из /energo/bin на новый из файла /energo/src/MathBlock. Далее перезапущена математика командой: "slay MathTU".

4. Описание структуры программного модуля gaz2016

4.1. Глобальные константы

Константы, перечисленные в [1] пункт 4 определены как:

- Тип переменных: double.
- Столбцы таб. №4.1,4.2 объединены в массивы.

Константы, перечисленные в [1] пункт 2.1.1 таб. №1 определены как:

- Тип переменных: double.
- Значения таблицы объединены в двухмерный массив Steel[26 строк][3 столбца].
- Значения первой строки [0,0,0].

.

4.2. Описание функций

4.2.1. Функция интерфейс для природного газа *PG_2016*

Входные данные для функции:

- **P_izb** избыточное давление в (кгс/см²);
- P_bar атмосферное давление в (кгс/см²);
- **T_cel** температура среды в (градусах Цельсия);
- dP перепад давления в (кгс/м²);
- **D_it_20** диаметр ИТ в (мм) при температуре 20 градусов Цельсия;
- **D cy 20** диаметр СУ в (мм) при температуре 20 градусов Цельсия;
- **nt** номер материала ИТ;
- **nd** номер материала СУ;
- rn начальный радиус закругления входной кромки в (мм);
- **Ra** коэффициент шероховатости;
- data время эксплуатации РУ в (год);

• **method** - метод отбора давления (угловой = 0, трёхрадиусный = 1, фланцевый = 2).

Работа функции:

- тип функции: double;
- записывает входные данные в структуру;
- проводит проверку на соблюдение граничных условий (смотри [1] пункт 3), в случае ошибки производит запись в файл /energo/report при помощи команды info.report("1","1","сообщение");
- проводит проверку на нулевое и отрицательное значение расхода, в случае успеха записывает в файл /energo/report/text сообщение об ошибке, значение всех констант и расчетные значения функций.

Выходные данные:

• Возвращает значение объемного расхода, которое ей передает функция **Qc**.

4.2.2. Функция интерфейс для доменного газа DG_2016

Входные данные для функции:

- **CH4 dg** объёмная доля метана в (%);
- **CO2_dg** объёмная доля диоксида углерода в (%);
- **H2_dg** объёмная доля водорода в (%);
- **CO_dg** объёмная доля моноксида углерода в (%);
- **P izb** избыточное давление в (кгс/см²);
- P bar атмосферное давление в (кгс/см²);
- **T_cel** температура среды в (градусах Цельсия);
- **dP** перепад давления в (кгс/м²);
- **D_it_20** диаметр ИТ в (мм) при температуре 20 градусов Цельсия;
- **D_cy_20** диаметр СУ в (мм) при температуре 20 градусов Цельсия;
- **nt** номер материала ИТ;
- **nd** номер материала СУ;
- rn начальный радиус закругления входной кромки в (мм);

- **Ra** коэффициент шероховатости;
- data время эксплуатации РУ в (год);
- **method** метод отбора давления (угловой = 0, трёхрадиусный = 1, фланцевый = 2).

Работа функции:

- тип функции: double;
- записывает входные данные в структуру;
- проводит проверку на соблюдение граничных условий (смотри [1] пункт 3), в случае ошибки производит запись в файл /energo/report при помощи команды info.report("1","1","сообщение");
- проводит проверку на нулевое и отрицательное значение расхода, в случае успеха записывает в файл /energo/report/text сообщение об ошибке, значение всех констант и расчетные значения функций.

Выходные данные:

• Возвращает значение объемного расхода, которое ей передает функция **Qc**.

4.2.3. Функция интерфейс для коксового газа КG_2016

Входные данные для функции:

- **CH4_dg** объёмная доля метана в (%);
- CO2_dg объёмная доля диоксида углерода в (%);
- **H2_dg** объёмная доля водорода в (%);
- CO_dg объёмная доля моноксида углерода в (%);
- CnHn_kg объёмная доля непрерывных углеводородов в (%);
- **P izb** избыточное давление в (кгс/см²);
- P_bar атмосферное давление в (кгс/см²);
- **T_cel** температура среды в (градусах Цельсия);
- dP перепад давления в (кгс/м²);
- **D_it_20** диаметр ИТ в (мм) при температуре 20 градусов Цельсия;
- **D cy 20** диаметр СУ в (мм) при температуре 20 градусов Цельсия;

- **nt** номер материала ИТ;
- **nd** номер материала СУ;
- rn начальный радиус закругления входной кромки в (мм);
- Ra коэффициент шероховатости;
- data время эксплуатации РУ в (год);
- **method** метод отбора давления (угловой = 0, трёхрадиусный = 1, фланцевый = 2).

Работа функции:

- тип функции: double;
- записывает входные данные в структуру;
- проводит проверку на соблюдение граничных условий (смотри [1] пункт 3), в случае ошибки производит запись в файл /energo/report при помощи команды info.report("1","1","сообщение");
- проводит проверку на нулевое и отрицательное значение расхода, в случае успеха записывает в файл /energo/report/text сообщение об ошибке, значение всех констант и расчетные значения функций.

Выходные данные:

• Возвращает значение объемного расхода, которое ей передает функция **Qc**.

4.2.4. Функция расчета молярной доли компонентов *X*

Входные данные:

- Значение типа integer, которое определяет, для какого газа проводить вычисления при помощи оператора переключения switch(int) case (3 ПГ, 5 ДГ, 7 КГ). Цифры соответствуют количеству составных компонент газа.
- Указатель на элемент массива double *out_x, размерностью (3 ПГ, 5 ДГ, 7 КГ).

Работа функции:

- Тип функции double*.
- Алгоритм расчета описан в [1] пункт 2.2.6.

Выходные данные:

• Функция на выходе выдает значение out_x (тип: double).

4.2.5. Функция расчета псевдо-критической температуры *T_nk* Входные данные:

 Функция принимает значение типа integer, которое определяет, для какого газа проводить вычисления при помощи оператора переключения switch(int) - case (5 – ДГ, 7 – КГ). Цифры соответствуют количеству составных компонент газа.

Работа функции:

• Алгоритм расчета описан в [1] пункт 2.2.8.

Выходные данные:

• Функция на выходе выдает значение типа: double.

4.2.6. Функция расчета псевдо-критического давления *P_nk* Входные данные:

 Функция принимает значение типа integer, которое определяет, для какого газа проводить вычисления при помощи оператора переключения switch(int) - case (5 – ДГ, 7 – КГ). Цифры соответствуют количеству составных компонент газа.

Работа функции:

• Алгоритм расчета описан в [1] пункт 2.2.9.

Выходные данные:

• Функция на выходе выдает значение типа: double.

4.2.7. Функция расчета абсолютной температуры *T_a* Работа функции:

• Алгоритм расчета описан в [1] пункт 2.2.5.

Выходные данные:

• Функция на выходе выдает значение типа: double.

4.2.8. Функция расчета абсолютного давления *P***_а** Работа функции:

• Алгоритм расчета описан в [1] пункт 2.2.4.

Выходные данные:

• Функция на выходе выдает значение типа: double.

4.2.9. Функция расчета фактора сжимаемости в рабочих условиях **Z** Входные данные:

 Функция принимает значение типа integer, которое определяет, для какого газа проводить вычисления при помощи оператора переключения switch(int) - case (3 – ПГ, 5 – ДГ, 7 – КГ). Цифры соответствуют количеству составных компонент газа.

Работа функции:

- Алгоритм расчета описан в [1] пункт 2.2.10.
- В расчете для ПГ используется абсолютное давление в Мпа, учитывая это, во всех формулах для ПГ сделана поправка (значение которое передает функция Р_а делим на миллион) **Р_a()/1000000**.

Выходные данные:

• Функция на выходе выдает значение типа: double.

4.2.10. Функция расчета фактора сжимаемости в стандартных условиях Z_c

Входные данные:

• Функция принимает значение типа integer, которое определяет, для какого газа проводить вычисления при помощи оператора переключения switch(int) - case (3 – ПГ, 5 – ДГ, 7 – КГ). Цифры соответствуют количеству составных компонент газа.

Работа функции:

• Алгоритм расчета описан в [1] пункт 2.2.11.

Выходные данные:

• Функция на выходе выдает значение типа: double.

4.2.11. Функция расчета плотности при стандартных условиях Plot c

Входные данные:

 Функция принимает значение типа integer, которое определяет, для какого газа проводить вычисления при помощи оператора переключения switch(int) - case (3 – ПГ, 5 – ДГ, 7 – КГ). Цифры соответствуют количеству составных компонент газа.

Работа функции:

- Алгоритм расчета описан в [1] пункт 2.2.13.
- В расчете для ПГ используется абсолютное давление в Мпа, учитывая это, во всех формулах для ПГ сделана поправка (значение которое передает функция Р_а делим на миллион) *P_a()/1000000*.

Выходные данные:

• Функция на выходе выдает значение типа: double.

4.2.12. Функция расчета плотности в рабочих условиях *Plot* Входные данные:

 Функция принимает значение типа integer, которое определяет, для какого газа проводить вычисления при помощи оператора переключения switch(int) - case (3 – ПГ, 5 – ДГ, 7 – КГ). Цифры соответствуют количеству составных компонент газа.

Работа функции:

- Алгоритм расчета описан в [1] пункт 2.2.14.
- В расчете для ПГ используется абсолютное давление в Мпа, учитывая это, во всех формулах для ПГ сделана поправка (значение которое передает функция Р_а делим на миллион) *P_a()/1000000*.

Выходные данные:

• Функция на выходе выдает значение типа: double.

4.2.13. Функция расчета диаметра ИТ в рабочих условиях *D_it* Работа функции:

• Алгоритм расчета описан в [1] пункт 2.2.1.

Выходные данные:

• Функция на выходе выдает значение типа: double.

4.2.14. Функция расчета диаметра СУ в рабочих условиях *D_су* Работа функции:

• Алгоритм расчета описан в [1] пункт 2.2.1.

Выходные данные:

• Функция на выходе выдает значение типа: double.

4.2.15. Функция расчета относительного диаметра отверстия СУ при рабочей температуре *Otn_D*

Работа функции:

• Алгоритм расчета описан в [1] пункт 2.2.1.

Выходные данные:

• Функция на выходе выдает значение типа: double.

4.2.16. Функция расчета перевода перепада давления в Па *dP_pr* Работа функции:

• Алгоритм расчета описан в [1] пункт 2.2.4.

Выходные данные:

• Функция на выходе выдает значение типа: double.

4.2.17. Функция расчета коэффициента скорости входа *E* Работа функции:

• Алгоритм расчета описан в [1] пункт 2.2.3.

Выходные данные:

• Функция на выходе выдает значение типа: double.

4.2.18. Функция расчета коэффициента расширения *Eps* Входные данные:

 Функция принимает значение типа integer, которое определяет, для какого газа проводить вычисления при помощи оператора переключения switch(int) - case (3 – ПГ, 5 – ДГ, 7 – КГ). Цифры соответствуют количеству составных компонент газа.

Работа функции:

- Алгоритм расчета описан в [1] пункт 2.2.16.
- В расчете для ПГ используется абсолютное давление в Мпа, учитывая это, во всех формулах для ПГ сделана поправка (значение которое передает функция Р_а делим на миллион) **Р_a()/1000000**.
- Вычисляет показатель адиабаты k (см. [1] пункт 2.2.15) необходимый для расчета коэффициента расширения ϵ .

Выходные данные:

• Функция на выходе выдает значение типа: double.

4.2.19. Функция расчета коэффициента истечения С

Входные данные:

• Функция принимает значение, которое возвращает функция **Re** (тип double).

Работа функции:

• Алгоритм расчета описан в [1] пункт 2.2.18.

Выходные данные:

• Функция на выходе выдает значение типа: double.

4.2.20. Функция расчета коэффициента поправки на закругление входной кромки СУ *Кп*

Работа функции:

• Алгоритм расчета описан в [1] пункт 2.2.2.

Выходные данные:

• Функция на выходе выдает значение типа: double.

4.2.21. Функция расчета вязкости U

Входные данные:

 Функция принимает значение типа integer, которое определяет, для какого газа проводить вычисления при помощи оператора переключения switch(int) - case (3 – ПГ, 5 – ДГ, 7 – КГ). Цифры соответствуют количеству составных компонент газа.

Работа функции:

- Алгоритм расчета описан в [1] пункт 2.2.7.
- В расчете для ПГ используется абсолютное давление в Мпа, учитывая это, во всех формулах для ПГ сделана поправка (значение которое передает функция Р_а делим на миллион) **Р_a()/1000000**.

Выходные данные:

• Функция на выходе выдает значение типа: double.

4.2.22. Функция расчета коэффициента шероховатости *Кw* Входные данные:

• Функция принимает значение, которое возвращает функция **Re** (тип double).

Работа функции:

• Алгоритм расчета описан в [1] пункт 2.2.20.

Выходные данные:

• Функция на выходе выдает значение типа: double.

4.2.23. Функция расчета критерия Рейнольдса *Re*

Входные данные:

 Функция принимает значение типа integer, которое определяет, для какого газа проводить вычисления при помощи оператора переключения switch(int) - case (3 – ПГ, 5 – ДГ, 7 – КГ). Цифры соответствуют количеству составных компонент газа.

Работа функции:

• Алгоритм расчета описан в [1] пункт 2.2.22.

Выходные данные:

• Функция на выходе выдает значение типа: double.

4.2.24. Функция расчета объёмного расхода среды приведённого к стандартным условиям *Qc*

Входные данные:

 Функция принимает значение типа integer, которое определяет, для какого газа проводить вычисления при помощи оператора переключения switch(int) - case (3 – ПГ, 5 – ДГ, 7 – КГ). Цифры соответствуют количеству составных компонент газа.

Работа функции:

• Алгоритм расчета описан в [1] пункт 2.2.23.

Выходные данные:

• Функция на выходе выдает значение типа: double.

5. Список используемой литературы

- 1. Математическое обеспечение. Алгоритм расчета доменного, коксового и природного газов. Челябинск, 2017.
- 2. Общеотраслевые руководящие методические материалы по созданию и применению автоматизированных систем управления технологическими процессами в отраслях промышленности. 1986.
- 3. Автоматизированная система диспетчерского управления газообразным топливом на ОАО "Мечел" (Газовый цех) том 3. Программное обеспечение. Книга 3. Описание программ нижнего уровня (QNX). Челябинск, 2004.
- 4. Автоматизированная система контроля и учета энергоресурсов АСУ ЭНЕРГО. Описание организации информационной базы данных. Челябинск 2004.
- 5. Н. Н. Мартынов. Программирование для Windows на C/C++ том 1. ООО «Бином-Пресс», 2004.

Приложение №1

Описание констант.

```
//коэффициенты для расчета фактора сжимаемости
double W a = 0.42748;
double W b = 0.08664:
double B pq[3] = \{0.0436, 0.0173, 0.0728\};
//температура при стандартных условиях (в Кельвинах)
double T c = 293.15;
//давление при стандартных условиях (в Паскалях)
double P_c = 101325;
//универсальная газовая постоянная
double R = 8.31451;
//число Пи
double Pi = 3.14159;
//объёмная доля (і-ого компонента природного газа)
double r pg[3]={99.09,0.79,0.12};
// температура критическая і-ого компонента доменного газа (в Кельвинах)
double T k dg[5] = \{190.6, 126.2, 304.2, 33.2, 132.9\};
// температура критическая і-ого компонента коксового газа (в Кельвинах)
double T_k [7] = \{190.6, 126.2, 304.2, 33.2, 132.9, 154.6, 493.1\};
// давление критическое і-ого компонента доменного газа (в Паскалях)
double P_k_dg[5] = \{4587579.2,3385108,7356294.4,1293414.4,3486156\};
// давление критическое і-ого компонента коксового газа (в Паскалях)
double P k kq[7] = \{4587579,3385108,7356294,1293414,3486156,5032190,4984192\};
// фактор сжимаемости при стандартных условиях і-ого компонента природного
газа
double z_c_pg[3] = \{0.9981, 0.9997, 0.9947\};
// фактор сжимаемости при стандартных условиях
double z c dg[5] = \{0.9981, 0.9997, 0.9947, 1.0006, 0.9996\};
// фактор сжимаемости при стандартных условиях і-ого компонента коксового газа
double z c kg[7] = \{0.9981, 0.9997, 0.9947, 1.0006, 0.9996, 0.9993, 0.9537\};
// молярная масса і-ого компонента природного газа (в кг/кмоль)
double M_pg[3] = \{16.043, 28.135, 44.01\};
// молярная масса і-ого компонента доменного газа (в кг/моль)
double M_dg[5] = \{0.01604, 0.02813, 0.04401, 0.00201, 0.02801\};
```

```
// молярная масса i-ого компонента коксового газа (в кг/моль) double M_kg[7] = \{0.01604,0.02813,0.04401,0.00201,0.02801,0.03199,0.06509\}; // плотность при стандартных условиях i-ого компонента доменного газа (в кг/м³) double Plot_c_dg[5] = \{0.66692,1.16455,1.82954,0.083803,1.1644\}; // плотность при стандартных условиях i-ого компонента коксового газа (в кг/м³) double Plot_c_kg[7] = \{0.66692,1.16455,1.82954,0.083803,1.1644,1.33022,2.435467\}; // показатель адиабаты i-ого компонента доменного газа double k_dg[5] = \{1.295,1.4,1.285,1.405,1.4\}; // показатель адиабаты i-ого компонента коксового газа double k_kg[7] = \{1.295,1.4,1.285,1.405,1.4,1.395,1.225\};
```

Инициализация функций.

```
double* x(int j, double *out_x);
double T nk(int i);
double P_nk( int j);
double P_a();
double T a();
double Z(int j);
double Z c(int i);
double Plot_c(int j);
double Plot(int i);
double D_it();
double D_cy();
double Otn D();
double dP_pr();
double E();
double Eps(int i):
double C(double pRe);
double Kn();
double U(int j);
double Kw(double pRe);
double Re(int j);
double Qc(int j);
double Qm(int j);
```

double PG_2016(double P_izb, double P_bar, double T_cel, double dP, double D_it_20, double D_cy_20, int nt, int nd, double rn, double Ra, int data, int method);

double DG_2016(double CH4_dg, double CO2_dg, double H2_dg, double CO_dg, double P_izb, double P_bar, double T_cel, double dP, double D_it_20, double D_cy_20, int nt, int nd, double rn, double Ra, int data, int method);

double KG_2016(double CH4_kg, double CO2_kg, double H2_kg, double CO_kg, double CnHn_kg, double P_izb, double P_bar, double T_cel, double dP, double D_it_20, double D_cy_20, int nt, int nd, double rn, double Ra, int data, int method);

Функция интерфейс доменного газа.

```
double DG_2016(double CH4_dg, double CO2_dg, double H2_dg, double CO_dg, double P_izb, double P_bar, double T_cel, double dP, double D_it_20, double D_cy_20, int nt, int nd, double rn, double Ra, int data, int method) {
// запись входных параметров в структуру
```

```
double N2_dg = 100 - (CH4_dg+CO2_dg+H2_dg+CO_dg);
     Gaz.VC_r_dg[0] = CH4_dg;
     Gaz.VC_r_dg[1] = N2_dg;
     Gaz.VC_r_dg[2] = CO2_dg;
     Gaz.VC_r_dg[3] = H2_dg;
     Gaz.VC_r_dg[4] = CO_dg;
     Gaz.VC P izb = P izb;
     Gaz.VC_P_bar = P_bar;
     Gaz.VC_T_cel = T_cel;
     Gaz.VC_dP = dP:
     Gaz.VC D it 20 = D it 20:
     Gaz.VC_D_{cy}_{20} = D_{cy}_{20};
     Gaz.VC nt = nt;
     Gaz.VC_nd = nd;
     Gaz.VC_rn = rn;
     Gaz.VC_Ra = Ra;
     Gaz.VC_data = data;
     Gaz.VC method = method;
     // проверка граничных условий, если произошёл выход за предел
происходит запись в файл «energo/report»
     if(D_cy_20<12.5)
           info.Report("1","1","DG: ПАРАМЕТР НЕ ВХОДИТ В ДИАПАЗОН!
D_{cy}_{20(mm)} >= 12.5!");
     }
     if(D_it_20<50 || D_it_20>1000)
           info.Report("1","1","DG: ПАРАМЕТР НЕ ВХОДИТ В ДИАПАЗОН!
50 <= D_it_20(mm) <= 1000 ! ");
     if(Otn_D()<0.1 || Otn_D()>0.75)
           info.Report("1","1","DG: ПАРАМЕТР НЕ ВХОДИТ В ДИАПАЗОН!
0.1 \le Otn D \le 0.75!");
     if((dP_pr()/P_a())>0.25)
           info.Report("1","1","DG: ПАРАМЕТР НЕ ВХОДИТ В ДИАПАЗОН!
```

```
dP/P \le 0.25!!");
      if(T_a()>350 || T_a()<250)
            info.Report("1","1","DG: ПАРАМЕТР НЕ ВХОДИТ В ДИАПАЗОН!
250 \le T(K) \le 350 ! ");
      }
      if((P_a()/1000000)>7.5 || (P_a()/1000000)<0.1)
            info.Report("1","1","DG: ПАРАМЕТР НЕ ВХОДИТ В ДИАПАЗОН!
0.1 \le P_a(mPa) \le 7.5!");
      if(Otn_D() <= 0.56)
            if(Re(5) < 5000)
                  info.Report("1","1","DG: ПАРАМЕТР НЕ ВХОДИТ В ДИАПАЗОН!
Re >= 5000, при Otn_D <= 0.56 ! ");
      }
      else
            if((int)method == 2)
                  if(Re(5)<170000*pow(Otn_D(),2)*D_it())
                        info.Report("1","1","DG: ΠΑΡΑΜΕΤΡ
                                                              НЕ ВХОДИТ
                                                                               В
ДИАПАЗОН! Re >= 16000*(Otn_D^2), при Otn_D > 0.56!");
            }
            else
                  if(Re(5)<16000*pow(Otn_D(),2))
                        info.Report("1","1","DG: ΠΑΡΑΜΕΤΡ
                                                              HE
                                                                    ВХОДИТ
                                                                               В
ДИАПАЗОН! Re >= 16000*(Otn_D^2), при Otn_D > 0.56!");
            }
      }
      // запуск функции расчета молярной доли компонентов ДГ
      double px[5];
      x(5,px);
      // проверка значения расхода, если меньше или равно нулю, то записывает
значения всех констант и расчетных величин в файл «energo/report/text»
      if(Qc(5) \le 0)
```

 $info.Report("/energo/report/text.txt","1","Error: Qc_DG = \%f(m3/h) !!! \noindent \no$

info.Report("/energo/report/text.txt","1","Global_const: W a=%f, \n T k dq[CH4]=%f(K), W b=%f, T c=%f(K), P c=%f(Pa), R=%f, Pi=%f, \n $T_k_dg[H2]=\%f$, $T_k_dg[N2]=\%f$, $T_k_dg[CO2]=\%f$ $T_k_dg[CO]=\%f$ \n \n $P_k_dg[CH4]=\%f$ $P_k_dg[N2]=\%f(Pa), P_k_dg[CO2]=\%f,$ $P_k_dg[H2]=\%f$, \n P k dg[CO]=%f\n ",W_a,W_b,T_c,P_c,R,Pi,T_k_dg[0],T_k_dg[1],T_k_dg[2],T_k_dg[3],T_k_dg[4],P_k_dg[0],P_k_dg[1],P_k_dg[2],P_k_dg[3],P_k_dg[4]);

info.Report("/energo/report/text.txt","1","z_c_dg[CH4]=%f, z_c_dg[N2]=%f, $z \in dg[CO2]=\%f$, $z \in dg[H2]=\%f$, $n \in dg[CO]=\%f$, \n M dq[CH4]=%f(kJ/mol), $M_dg[N2]=\%f$, $M_dg[CO2]=\%f$ $M_{dg}[H2]=\%f$ \n $M_dg[CO]=\%f$ \n Plot c dg[CH4]=%f(kJ/m3), Plot c dg[N2]=%f, Plot c dg[CO2]=%f, Plot c dg[H2]=%f, $\n Plot_c_dg[CO]=\%f, \n k_dg[CH4]=\%f, k_dg[N2]=\%f, k_dg[CO2]=\%f, k_dg[H2]=\%f, \n Plot_c_dg[CO]=\%f, \n Plot_c_dg[$ $k_dg[CO]=%f$ \n $\n",z_c_dg[0],z_c_dg[1],z_c_dg[2],z_c_dg[3],z_c_dg[4],M_dg[0],M_dg[1],M_dg[2],M_dg[1],M_dg[2$ [3],M_dg[4],Plot_c_dg[0],Plot_c_dg[1],Plot_c_dg[2],Plot_c_dg[3],Plot_c_dg[4],k_dg[0],k _dg[1],k_dg[2],k_dg[3],k_dg[4]); }

return Qc(5);

}