Exam #1

Fall 2020

- 1. (a) 40,320
 - (b) 120,960
- 2. 0.7

3.	(a)	X, Z	0	1	2	3
		0	0.512	0.128	0	0
		1	0	0.256	0.064	0
		2	0	0	0.032	0.008

- (b) $\frac{2}{3}$
- (c) $\frac{2}{3}$
- (d) 0.960
- (e) Probability that at most 1 of first 2 patients and at most 2 of first 3 patients already had their flu shot.
- (f) No. Why???
- 4. (a) \$110,000
 - (b) $4,425,000 (\$^2)$
- 5. (a) Number of trials until $\left(\sum_{i=1}^{m} r_i\right)^{th}$ success.
 - (b) $X \sim \text{Neg Bin}(r = \sum_{i=1}^{m} r_i, p)$
 - (c) $\frac{\sum_{i=1}^{m} r_i}{p}$
 - (d) $\frac{q\sum_{i=1}^m r_i}{n^2}$
- 6. 0.8441

Exam #1 Fall 2019

- 1. (a) for n = 5: 0.007936508; for n=7: 0.0005827506
 - (b) for n = 5: 0.03968254; for n=7: 0.004079254
- 2. 0.4992474
- 3. (a) 9
 - (b) 0.1241174
 - (c) 0.5518765
- 4. (a) 0.512
 - (b)
 - (c)
 - (d)
 - (e)
 - (f)
 - (g)
- 5. (a) \$ 294,000
 - (b) $144,000 (\$^2)$

- 1. (a) 0.5923077
 - (b) 0.9984615
- $2. \ 0.9439963$
- 3. (a) 0.07992008
 - (b) 0.004872
 - (c) 0.995128
 - (d)
- 4. (b) Make sure F(3,3) = 1.
 - (f) 2.444444
 - (g) 0.4691358
- 5. (a) 6,600
 - (b) 3,630

Exam #1 Fall 2017

- 1. (a) 24
 - (b) 12
 - (c) 6.042685e+29
 - (d) 7.13288e+20
 - (e) 1.78322e+20
- 2. (a) $1 \left(\frac{35}{36}\right)^n$
 - (b) 24.6051, rounding up n = 25
- 3. (a) 0.4999997
- 4. (a) $\sum_{x=7}^{\infty} \frac{e^{-10}10^x}{x!}$
 - (b) 0.114457
 - (c) $\frac{e^{-5}5^x}{x!} \cdot {x \choose 2} (.04)^2 (.96)^{x-2}$
- 5. (a) 0.1138612
 - (b) -2.222222
 - (c) 234.5679
- 6. (a) $a^2 \operatorname{Var}(X)$
 - (b) Proof

- 1. (a) 40,320
 - (b) 120,960
- 2. (a) $\sum_{x=11}^{21} \frac{\binom{100}{x}\binom{600}{21-x}}{\binom{700}{21}}$
 - (b) $\sum_{x=11}^{21} {21 \choose x} \left(\frac{1}{7}\right)^x \left(\frac{6}{7}\right)^{21-x}$
- 3. 0.3916084
- 4. (a) $p_X(x) = \left(\frac{2}{3}\right)^{x-1} \cdot \frac{1}{3}$ for x = 1, 2, 3, 4 and $p_X(x) = \left(\frac{2}{3}\right)^4$ for x = 5
 - (b) $p_Y(y) = \frac{5}{9}$ for y = 1 and $p_Y(y) = \frac{4}{9}$ for y = 0
 - (c) 0
 - (d) 0.44444
 - (e) 0.4
 - (f) 0
- 5. (a) \$7500
 - (b) $\2 525,000
- 6. proof