Государственное образовательное учреждение высшего профессионального образования

«Московский государственный технический университет имени Н. Э. Баумана» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ЛАБОРАТОРНАЯ РАБОТА №1

Отчет на тему:

Расстояние Левенштейна

Щербатюк Д.С.

ИУ7-54

1 Расстояние Левенштейна

1.1 Постановка задачи

Реализовать алгоритм поиска расстояния Левенштейна, использую три алгоритма:

- а) базовый
- б) модифицированный
- в) базовый через рекурсию

1.2 Алгоритм

Пусть S_1 и S_2 — две строки (длиной M и N соответственно) над некоторым алфавитом, тогда редакционное расстояние (расстояние Левенштейна) $d(S_1, S_2)$ можно подсчитать по следующей рекуррентной формуле :

$$D(S_1[1..M], S_2[1..N] = min(D(S_1[1..M-1], S_2[1..N]) + 1^D,$$
(1.1)

$$D(S_1[1..M], S_2[1..N-1]) + 1^I, (1.2)$$

$$D(S_1[1..M-1], S_2[1..N-1]) + \begin{cases} 0^M & if \ S_1[M] = S_2[N], \\ 1^R & else \end{cases}$$
 (1.3)

Где — разрешенные операции:

- 1. Замена символа (R, replace) Штраф 1.
- 2. Вставка символа (I, insert) Штраф 1.
- 3. Удаление символа (D, delete) Штраф 1.
- 4. Совпадение символа (M, match) Штраф 0.

В модифицированном алгоритме добавлена еще одна операция: 5. Перестановка символа (X, exchange) Штраф 1.

В рекуррентную формулу добавляется еще один член минимума:

$$D(S_1[1..M-1], S_2[1..N-1]) + \begin{cases} 1^X & \text{if } S_1[M-1] = S_2[N], \\ 0 & \text{else} \end{cases}$$
 (1.4)

Алгоритм можно реализовать с помощью матрицы, двигаясь построчно или по столбцам, рассматривая «квадрат» значений:

	Пустая строка	М	A
Пустая строка	0	1	2
M	1	0 +1	1 +1
E	2	1	$1 = \min(2, 2, 1)$
		+1	

1.3 Листинг кода

base.py (файл с базовыи алгоритмом)

```
def distance (s1, s2):
1
2
        11 = \mathbf{len}(s1)
3
        12 = \mathbf{len}(s2)
4
        row1 = [x \text{ for } x \text{ in } range(12 + 1)] \# we need only two rows
5
        row2 = [1] # the first row and column will be like [0, 1, ..., n] and
6
           intersect at 0
7
8
9
        for i in range (1, 11 + 1): # loop through rows
            for j in range(1, len(row1)): # loop through column
10
                 if s1[i-1] = s2[j-1]: # if symbols doesn't match
11
12
                     row2.append(min(row1[j] + 1, \# there are three variants))
                                           row2[j - 1] + 1,
13
                                           row1[j - 1] + 1))
14
15
                 else:
16
                     row2.append(min(row1[j] + 1, \# there are three variants))
                     row2\,[\;j\;\;-\;\;1]\;\;+\;\;1\;,
17
                     row1[j-1]) # if match
18
19
20
                row1 = row2 \# change rows
                row2 = [i + 1]
21
22
23
        return row1[-1] # return the lower right value matrix
24
25
   if name == " main ":
26
        print(distance("Ma", "am"))
```

base with rec.py (файл с базовым алгоритмом через рекурсию)

```
1
   def distance (s1, s2):
2
       l1 = len(s1)
       12 = len(s2)
3
       if 11 = 1 and 12 = 1: # if s1 and s2 is symbols
4
           if s1 = s2: # and they match
5
                return 0
6
7
           else:
8
                return 1
9
       else:
                if (11 > 12 = 1) or (12 > 11 = 1): # but if one of str is
10
                   not \ a \ symbols
                    return abs(11 - 12) # return distance for N inserts
11
12
       t = 0
13
```

```
14
       if s1[-1] != s2[-1]: # if the last symbols of strings aren't match
15
            t = 1
16
17
       return min(distance(s1[:11 - 1], s2) + 1,
                        distance(s1, s2[:12 - 1]) + 1,
18
                        distance(s1[:l1 - 1], s2[:l2 - 1]) + t)
19
20
21
   if __name__ = "__main__":
22
       print(distance("метра", "матрица"))
```

modified.py (файл с модифицированным алгоритмом)

```
1
   def distance (s1, s2):
2
        d = None
3
        l1 = len(s1)
        12 = \mathbf{len}(s2)
4
5
        row0 = None
6
7
        row1 = [x \text{ for } x \text{ in } range(12 + 1)] # we need only two rows
        row2 = [1] \# the \ first \ row \ and \ column \ will \ be \ like \ [0, 1, ... n] \ and
8
           intersect at 0
9
10
        for i in range (1, 11 + 1): # loop through rows
11
            for j in range(1, len(row1)): # loop through column
12
                 if j > 1 and i > 1: # if symbols doesn't match
13
                     if s1[i - 1] != s2[j - 1]:
14
15
                         row2.append(min(row1[j] + 1, # there are four variants
                                               row2[j - 1] + 1,
16
17
                                               row1[j - 1] + 1,
                                               row0[j - 2] + 1))
18
                     else:
19
                         row2.append(min(row1[j] + 1, # there are four variants
20
                                               row2[j - 1] + 1,
21
                                               row1[j-1],
22
                                               row0[j-2]+1)) # if match
23
                else:
24
                     if s1[i-1] = s2[j-1]: # if symbols doesn't match
25
                         row2.append(min(row1[j] + 1, # there are three
26
                             variants
                                               row2[j - 1] + 1,
27
                                               row1[j - 1] + 1))
28
29
                     else:
30
                         row2.append(min(row1[j] + 1, # there are three
                             variants
                                               row2[j - 1] + 1,
31
                                               row1[j-1]) # if match
32
33
```

1.4 Тесты

В таблицах 1.1 - 1.7 представлены качественные тесты алгоритмов. Первое число - базовый алгоритм, второе - базовый с рекурсией, третье - модифицированный алгоритм.

Таблица 1.1 — Тестовые данные.

Ввод		Вывод	Ожидаемое	Результат
S_1	S_2			
Январь	Февраль	4 4 3	4 4 3	V
Январь	Март	4 4 4	4 4 4	V
Январь	Апрель	5 5 3	5 5 3	V
Январь	Май	5 5 5	5 5 5	V
Январь	Июнь	5 5 4	5 5 4	V
Январь	Июль	5 5 4	5 5 4	V
Январь	Август	6 6 3	6 6 3	V
Январь	Сентябрь	5 5 4	5 5 4	V
Январь	Октябрь	5 5 3	5 5 3	V
Январь	Ноябрь	4 4 2	4 4 2	V
Январь	Декабрь	4 4 3	4 4 3	V

Таблица 1.2 — Тестовые данные.

Ввод		Вывод	Ожидаемое	Результат
S_1	S_2			
Февраль	Март	665	6 6 5	V
Февраль	Апрель	4 4 3	4 4 3	V
Февраль	Май	6 6 6	6 6 6	V
Февраль	Июнь	6 6 5	6 6 5	V
Февраль	Июль	5 5 4	5 5 4	V
Февраль	Август	6 6 4	6 6 4	V
Февраль	Сентябрь	6 6 4	6 6 4	V
Февраль	Октябрь	6 6 3	6 6 3	V
Февраль	Ноябрь	6 6 4	6 6 4	V
Февраль	Декабрь	5 5 3	5 5 3	V

Таблица 1.3 — Тестовые данные.

Ввод		Вывод	Ожидаемое	Результат
S_1	S_2			
Март	Апрель	5 5 4	5 5 4	V
Март	Май	2 2 2	2 2 2	V
Март	Июнь	4 4 2	4 4 2	V
Март	Июль	4 4 2	4 4 2	V
Март	Август	5 5 4	5 5 4	V
Март	Сентябрь	776	7 7 6	V
Март	Октябрь	665	6 6 5	V
Март	Ноябрь	5 5 4	5 5 4	V
Март	Декабрь	5 5 5	5 5 5	V

Таблица 1.4 — Тестовые данные.

Ввод		Вывод	Ожидаемое	Результат
S_1	S_2			
Апрель	Май	6 6 5	6 6 5	V
Апрель	Июнь	5 5 4	5 5 4	V
Апрель	Июль	4 4 3	4 4 3	V
Апрель	Август	5 5 3	5 5 3	V
Апрель	Сентябрь	775	775	V
Апрель	Октябрь	6 6 4	6 6 4	V
Апрель	Ноябрь	5 5 3	5 5 3	V
Апрель	Декабрь	6 6 4	6 6 4	V

Таблица 1.5 — Тестовые данные.

Ввод		Вывод	Ожидаемое	Результат
S_1	S_2			
Май	Июнь	4 4 3	4 4 3	V
Май	Июль	4 4 3	4 4 3	V
Май	Август	6 6 5	6 6 5	V
Май	Сентябрь	887	887	V
Май	Октябрь	776	776	V
Май	Ноябрь	665	6 6 5	V
Май	Декабрь	6 6 6	6 6 6	V

Таблица 1.6 — Тестовые данные.

Ввод		Вывод	Ожидаемое	Результат
S_1	S_2			
Июнь	Июль	1 1 1	111	V
Июнь	Август	6 6 4	$6\ 6\ 4$	V
Июнь	Сентябрь	$6\ 6\ 5$	$6\ 6\ 5$	V
Июнь	Октябрь	$6\ 6\ 5$	$6\ 6\ 5$	V
Июнь	Ноябрь	5 5 4	$5\; 5\; 4$	V
Июнь	Декабрь	$6\ 6\ 5$	$6\; 6\; 5$	V
Июль	Август	6 6 4	$6\ 6\ 4$	V
Июль	Сентябрь	776	776	V
Июль	Октябрь	$6\ 6\ 5$	$6\ 6\ 5$	V
Июль	Ноябрь	5 5 4	$5\; 5\; 4$	V
Июль	Декабрь	665	6 6 5	V

Таблица 1.7 — Тестовые данные.

Ввод		Вывод	Ожидаемое	Результат
S_1	S_2			
Август	Сентябрь	885	885	V
Август	Октябрь	774	774	V
Август	Ноябрь	6 6 3	6 6 3	V
Август	Декабрь	774	774	V
Сентябрь	Октябрь	3 3 2	3 3 2	V
Сентябрь	Ноябрь	4 4 3	4 4 3	V
Сентябрь	Декабрь	4 4 3	4 4 3	V
Октябрь	Ноябрь	3 3 2	3 3 2	V
Октябрь	Декабрь	4 4 2	4 4 2	V
Ноябрь	Декабрь	4 4 3	4 4 3	V

Заключение

Реализован алгоритм Левенштейна, позволяющий решать множество прикладных задач: автоматического исправления ошибок в слове, сравнения файлов, а в био-информатике генов и хромосом. Проведено сравнение 3-х реализаций алгоритмов, выявлены их слабые места. Алгоритм с рекурсией является самым медленным, его стоит заменить базовым или модифицированным. Базовый и модифицированный сильно по скорости в данной реализации не различаются.