

Représentations numériques et codes

Exercices Conception numérique

Solution vs. Hints:

Toutes les réponses fournies ici ne sont pas des solutions complètes. Certaines ne sont que des indices pour vous aider à trouver la solution vous-même. Dans d'autres cas, seule une partie de la solution est fournie.

1 NUM - Systèmes de numération

- 1.1 Déterminer jusqu'à quelle valeur on peut compter avec des nombres codés sur:
 - a) 0 to 15
 - b) 0 to 255
 - c) 0 to 1023

- d) 0 to 65535
- e) 0 to 4'294'967'295 (4 Gbit)

num/number-systems-01

- 1.2 Déterminer jusqu'à quelle valeur on peut compter avec des nombres hexadécimaux codés sur:
 - a) 0 to 65535

b) 0 to 4'294'967'295 (4 Gbit)

num/number-systems-02

NUM - Conversion d'un systèmes de numération à un autre

Effectuer la imal:	conversion	des	nombres	binaires	purs	suivants	en	format
a) 6 ₁₀		c) 7	4_{10}		e)	255_{10}		

num/conversion-01

2.2	Effectuer l	la conversion of	des nom	bres d	lécimaux	suivants	en format	binaire:
	\		\			\	2	

a) 111 1101₂ b) 1 0000₂

b) 15₁₀

c) 1111 1110 0101 1001₂ e) 1001₂

d) 1 0000 0000₂

d) 11₁₀

num/conversion-02

2.3 Effectuer la conversion des nombres hexadécimaux suivants en format binaire:

a) 1110₂

c) 1010 1011 0011 1101₂ e) 10 0011 0100 0110₂

b) 1 0101 1100₂

d) 1001 1111 0111₂

num/conversion-03

2.4 Effectuer la conversion des nombres binaires purs suivants en format hexadécimal:

a) A_{16}

c) EB₁₆

e) C_{16}

b) 6₁₆

d) $2F_{16}$

num/conversion-04

2.5 Effectuer la conversion des nombres hexadécimaux suivants en format décimal:

a) 13₁₀

c) 564_{10}

e) 42681₁₀

b) 348₁₀

d) 254₁₀

num/conversion-05

2.6 Effectuer la conversion des nombres décimaux suivants en format hexadécimal:

1. 80₁₆

3. FE59₁₆

5. 9₁₆

2. 10₁₆

4. D1₁₆

num/conversion-06

3 | NUM - Opération sur les nombres logiques

- 3.1 Effectuer dans le système binaire les additions suivantes:
 - $1.\ \ 0010\ \ 1010_2$

 $3. 1011 0011_2$

2. 0110 1001₂

4. 1000 0000₂

num/operation-01

- 3.2 Effectuer dans le système binaire les soustractions suivantes:
 - $1. \ 0011 \ 1010_2$

3. $0000\ 1100_2$

2. 0011 1010₂

4. 0111 1111₂

num/operations-02

- 3.3 Effectuer dans le système binaire les multiplications suivantes:
 - $1. \ 0011 \ 1100_2$

 $3. 0011 0000_2$

2. 0011 1100₂

4. 0110 0010₂

num/operation-03

- 3.4 Effectuer dans le système hexadécimal les additions suivantes:
 - 1. 1300₁₆

3. 1333₁₆

2. 8984₁₆

4. 13534₁₆

num/operation-04

- 3.5 Déterminer l'expression binaire de:
 - 1. 1001₂

3. 11100001₂

2. 110001₂

4. 111110000001_2 ; $(2^{n-1}-1)*2^{n+1}+1$

num/operation-05

4 NUM - Codes

- 4.1 Effectuer les additions sur les nombres BCD suivants:
 - 1. 0100 0100 0100_{BCD}

3. $1001\ 0010_{BCD}$

2. 0110 0011 0011 $_{\rm BCD}$

4. 0001 0000 0000_{BCD}

num/codes-01

4.2 Convertir à l'aide de la formule de récurrence du polycopié le code de Gray $1001_{\rm Gray}$ en nombre binaire.

 1110_2

num/codes-02

5 | NUM - Représentation des nombres signés

5.1 Donner la représentation en signe-amplitude, complément à 1 et complément à 2 sur huit bits des nombres décimaux et binaires purs suivants:

1. $0001 \ 0010_s$	4. $0001\ 1010_s$
$0001\ 0010_{\rm 1cl}$	$0001\ 1010_{1\mathrm{cl}}$
$0001\ 0010_{\rm 2cl}$	$0001\ 1010_{2\mathrm{cl}}$
2. $1000\ 0011_s$	5. $0000 \ 1010_s$
$1111 1100_{1{ m cl}}$	$0000\ 1010_{1\mathrm{cl}}$
$1111 1101_{ m 2cl}$	$0000\ 1010_{\rm 2cl}$
3. $0000 \ 0000_s; 1000 \ 0000_s$	6. $1110\ 0100_s$
$0000\ 0000_{\rm 1cl}; 1111\ 1111_{\rm 1cl}$	$1001\ 1011_{1{\rm cl}}$
$0000\ 0000_{\rm 2cl}$	$1001\ 1100_{\rm 2cl}$

num/representation-01

5.2 Effectuer un changement de signe sur les nombres suivants codés en complément à 2:

1. 1111 1111₂ 2. 1000 1000₂ $3. \ 0001 \ 0000_2$

5. BC₁₆

4. FF₁₆

6. $7F_{16}$

num/representation-02

5.3 Soit les nombres arithmétiques binaires 0001_2 et 1001_2 exprimés en complément à 2 sur 4 bits. Représenter ces même nombres en complément à 2 sur 8 bits.

0000 0001;1111 1001

num/representation-03