

Deep Learning

Wintersemester 2024/25

Übungsblatt 2

Besprechung am 22.10.2024

Den Code für dieses Übungsblatt finden Sie als Jupyter Notebooks im Repository: https://gitlab.hs-coburg.de/fei/education/master/deep-learning/2024-wise/material-und-aufgaben/deepl-computation-graphs

Aufgabe 1 – Lineare Regression

a) Die Loss Function $\mathcal L$ für ein Model mit linearer Regression lautet:

$$\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} (w_0 + w_1 x_i - y_i)^2$$

Das Model entspricht also eine Gerade mit Steigung w_1 , welche die y-Achse bei w_0 schneidet. Berechnen Sie jeweils die partielle Ableitung bzgl. w_0 und w_1 , also $\frac{\partial \mathcal{L}}{\partial w_0}$ und $\frac{\partial \mathcal{L}}{\partial w_1}$.

- b) Im Jupyter Notebook linear_regression.ipynb finden Sie Code zum Laden eines gegebenen Datensatzes und ein unvollständiges Code-Gerüst zum Training eines Linear Regression Models.
 - Implementieren Sie die Funktion compute_derivatives (x, y, slope, offset_y), wobei x und y hier NumPy-Arrays gleicher Größe sind, welche die Eingabedaten (x_1, x_2, \dots, x_N) und die Soll-Werte (y_1, y_2, \dots, y_N) enthalten. slope ist die Steigung w_1 und offset_y entspricht w_0 .
 - Die Funktion soll ein Tuple zurückgeben, welches den partiellen Ableitungen $\left(\frac{\partial \mathcal{L}}{\partial w_0}, \frac{\partial \mathcal{L}}{\partial w_1}\right)$ entspricht, also dem Gradienten. Überprüfen Sie, ob Ihre Implementierung richtig ist, indem Sie ein Linear Regression Model trainieren lassen und das Model plotten.
- c) Wie in der Vorlesung gezeigt, gibt es für dieses Problem auch eine analytische Lösung. Implementieren Sie diese Lösung in der Funktion compute_weights_cf(X, y), welche slope und offset_y als Tupel zurückgibt. Sie können Ihre Lösung überprüfen, indem Sie sie plotten und mit der Lösung aus b) vergleichen.

Viel Erfolg!