EXERCISE - I

SINGLE CORRECT (OBJECTIVE QUESTIONS)

1. If z is a complex number such that |z| = 4 and

 $arg(z) = \frac{5\pi}{6}$, then z is equal to

- (A) $-2\sqrt{3} + 2i$
- (B) $2\sqrt{3} + i$
- (C) $2\sqrt{3} 2i$ (D) $-\sqrt{3} + i$
- 2. The argument of the complex number

 $\sin \frac{6\pi}{5} + i \left(1 + \cos \frac{6\pi}{5}\right)$ is

- (A) $\frac{6\pi}{5}$ (B) $\frac{5\pi}{6}$ (C) $\frac{9\pi}{10}$ (D) $\frac{2\pi}{5}$
- **3.** The points z_1 , z_2 , z_3 , z_4 in the complex plane are the vertices of a parallelogram taken in order if and
- (A) $z_1 + z_4 = z_2 + z_3$ (B) $z_1 + z_3 = z_2 + z_4$ (C) $z_1 + z_2 = z_3 + z_4$ (D) None of these

- **4.** The curve represented by $Re(z)^2 = 4$ is
- (A) a parabola
- (B) an ellipse
- (C) a circle
- (D) a rectangular hyperbola
- **5.** The inequality |z 4| < |z 2| represents
- (A) Re(z) > 0
- (B) Re(z) < 0
- (C) Re(z) > 2
- (D) Re(z) > 3
- **6.** The number of solutions of the system of equations Re $(z^2) = 0$, |z| = 2 is
- (A) 4
- (B) 3
- (C) 2
- (D) 1
- **7.** If $z \neq -1$ is a complex number such that $\frac{z-1}{z+1}$ is purely imaginary, then |z| is equal to
- (A) 1
- (B) 2
- (C)3
- (D) 5
- **8.** If $|z_1| = |z_2| = |z_3| = 1$ and z_1 , z_2 , z_3 are represented by the vertices of an equilateral triangle
- (A) $z_1 + z_2 + z_3 = 0$ (B) $z_1 z_2 z_3 = 1$
- (C) $z_1z_2 + z_2z_3 + z_3z_1 = 0$ (D) None of these

9. If Arg $(z-2-3i)=\frac{\pi}{4}$, then the locus of z is

- **10.** The locus of z which lies in shaded region is best represented by
- (A) $|z| \le 1$, $\frac{-\pi}{2} \le \arg z \le \frac{\pi}{2}$

- (B) |z| = 1, $\frac{-\pi}{2} \le \arg z \le 10$
- (C) $|z| \ge 0$, $0 \le \text{arg } z \le \frac{\pi}{2}$ (D) $|z| \le 1$, $\frac{\pi}{2} \le \text{arg } z \le \pi$
- **11.** If z_1 , z_2 , z_3 are vertices of an equilateral triangle inscribed in the circle |z|=2 and if $z_1=1+i\sqrt{3}$ then
- (A) $z_2 = -2$, $z_3 = 1 + i\sqrt{3}$ (B) $z_2 = 2$, $z_3 = 1 i\sqrt{3}$

- (C) $z_2 = -2$, $z_3 = 1 i\sqrt{3}$ (D) $z_2 = 1 i\sqrt{3}$, $z_3 = -1 i\sqrt{3}$
- **12.** If $(\cos \theta + i \sin \theta)$ $(\cos 2\theta + i \sin 2\theta)$ $\cos n\theta + i \sin n\theta$) = 1, then the value of θ is
- (A) $4m\pi$, $m \in Z$ (B) $\frac{2m\pi}{n(n+1)}$, $m \in Z$
- (C) $\frac{4m\pi}{n(n+1)}$, $m \in Z$ (D) $\frac{m\pi}{n(n+1)}$, $m \in Z$
- **13.** If x = a + b + c, $y = a\alpha + b\beta + c$ and $z = a\beta + b\alpha + c$, where α and β are complex cube roots of unity then xyz equals

- (A) $2(a^3 + b^3 + c^3)$ (B) $2(a^3 b^3 c^3)$ (C) $a^3 + b^3 + c^3 3abc$ (D) $a^3 b^3 c^3$

- **14.** The equation $|z 1|^2 + |z + 1|^2 = 2$ represents
- (A) a circle of radius '1' (B) a straight line
- (C) the ordered pair (0, 0) (D) None of these
- 15. The region of Argand diagram defined by $|z - 1| + |z + 1| \le 4$ is
- (A) interior of an ellipse (B) exterior of a circle
- (C) interior and boundary of an ellipse
- (D) None of these
- **16.** Let z_1 and z_2 be to non real complex cube roots of unity and $|z - z_1|^2 + |z - z_2|^2 = \lambda$ be the equation of a circle with z_1 , z_2 as ends of a diameter then the value of λ is
- (A) 4
- (B) 3
- (C) 2
- (D) $\sqrt{2}$
- **17.** The curve represented by |z| = Re(z) + 2 is
- (A) a straight line
- (B) a circle
- (C) an ellipse
- (D) None of these
- **18.** The set of values of $a \in R$ for which $x^2 + i(a - 1) x + 5 = 0$ will have a pair of conjugate imaginary roots is
- (A) R

- (B) {1}
- (C) { $|a| a^2 2a + 21 > 0$ } (D) None of these
- **19.** If $z_1 = -3 + 5i$; $z_2 = -5 3i$ and z is a complex number lying on the line segment joining $z_1 \& z_2$, then arg(z) can be
- (A) $-\frac{3\pi}{4}$ (B) $-\frac{\pi}{4}$ (C) $\frac{\pi}{6}$ (D) $\frac{5\pi}{6}$
- 20. In G.P. the first term and common ratio are both
- $\frac{1}{2}(\sqrt{3}+i)$, then the absolute value of its nth term is
- (A) 1
- (B) 2^{n}
- (C) 4ⁿ
- (D) None of these
- **21.** If z = x + iy and $z^{1/3} = a ib$ then $\frac{x}{a} \frac{y}{b} = k (a^2 b^2)$ where k equals
- (A) 1
- (B)2

- 22. Let A, B, C represent the complex numbers z_1 , z_2 , z_3 respectively on the complex plane. If the circumcentre of the triangle ABC lies at the origin, then the orthocentre is represented by the complex number
- (A) $z_1 + z_2 z_3$
- (B) $z_2 + z_3 z_1$
- (C) $z_3 + z_1 z_2$
- (D) $z_1 + z_2 + z_3$

- **23.** Find the least value of n (n \in N), for which $\left(\frac{1+i}{1-i}\right)^n$ is real
- (A) 1
- (B) 2
- (C) 3
- (D) 4
- **24.** If $(a + ib)^5 = \alpha + i\beta$ then $(b + ia)^5$ is equal to
- (A) $\beta + i\alpha$ (B) $\alpha i\beta$
- (C) β iα
- **25.** If $|z| = \max\{|z-1|, |z+1|\}$ then
- (A) $|z + \bar{z}| = 1/2$
- (B) $z + \overline{z} = 1$
- (C) $|z + \overline{z}| = 1$
- (D) None of these
- **26.** If $|z_1 1| < 1$, $|z_2 2| < 2$, $|z_3 3| < 3$ then $|z_1 + z_2 + z_3|$
- (A) is less than 6
- (B) is more than 3
- (C) is less than 12
- (D) lies between 6 and 12
- **27.** The vector z = -4 + 5i is turned counter clockwise through an angle of 180° & stretched 1.5 times. The complex number corresponding to the newly obtained vector is
- (A) $6 \frac{15}{2}$ i
- (B) $-6 + \frac{15}{2}i$
- (C) $6 + \frac{15}{2}i$
- (D) None of these
- **28.** Points $z_1 \& z_2$ are adjacent vertices of a regular octagon. The vertex z_3 adjacent to z_2 ($z_3 \neq z_1$) is represented by
- (A) $z_2 + \frac{1}{\sqrt{2}} (1\pm i) (z_1 + z_2)$ (B) $z_2 + \frac{1}{\sqrt{2}} (1+i) (z_1 z_2)$
- (C) $z_2 + \frac{1}{\sqrt{2}}$ (1±i) $(z_2 z_1)$ (D) None of these
- **29.** If $z_1 \& z_2$ are two complex number & if
- arg $\frac{z_1 + z_2}{z_1 z_2} = \frac{\pi}{2}$ but $|z_1 + z_2| \neq |z_1 z_2|$ then the figure
- formed by the points represented by 0, z_1 , $z_2 \& z_1 + z_2$ is
- (A) a parallelogram but not a rectangle or a rhombus
- (B) a rectangle but not a square
- (C) a rhombus but not a square
- (D) a square

30. The expression $\left[\frac{1+i\tan\alpha}{1-i\tan\alpha}\right]^n - \frac{1+i\tan n\alpha}{1-i\tan n\alpha}$ when

simplified reduces to

- (A) zero
- (B) 2 $\sin n \alpha$
- (C) 2 cos n α
- (D) None of these
- **31.** If $p = a + b\omega + c\omega^2$; $q = b + c\omega + a\omega^2$ and $r = c + a\omega + b\omega^2$ where a, b, $c \neq 0$ and ω is the complex cube root of unity then
- (A) p + q + r = a + b + c (B) $p^2+q^2+r^2=a^2+b^2+c^2$
- (C) $p^2+q^2+r^2=2(pq+qr+rp)$ (D) None of these
- **32.** If $x^2 + x + 1 = 0$ then the numerical value of the expression

$$\left(x + \frac{1}{x} \right)^2 + \left(x^2 + \frac{1}{x^2} \right)^2 + \left(x^3 + \frac{1}{x^3} \right)^2 + \left(x^4 + \frac{1}{x^4} \right)^2 + \dots$$

- + $\left(x^{27} + \frac{1}{x^{27}} \right)^2$ is
- (A) 54
- (B) 36
- (C) 27
- (D) 18
- **33.** If α is non real and $\alpha = \sqrt[5]{1}$ then the value of

 $2^{|1+\alpha+\alpha^2+\alpha^{-2}-\alpha^{-1}|}$ is equal to

- (A) 4
- (B) 2
- (C) 1
- (D) None of these
- **34.** Number of roots of the equation $z^{10} z^5 992 = 0$ with real part negative is
- (A) 3
- (B) 4
- (C) 5
- (D) 6
- **35.** The points $z_1 = 3 + \sqrt{3} i$ and $z_2 = 2\sqrt{3} + 6i$ are given on a complex plane. The complex number lying on the bisector of the angle formed by the vectors z_1 and z_2 is
- (A) $z = \frac{(3+2\sqrt{3})}{2} + \frac{\sqrt{3}+2}{2}i$ (B) z = 5 + 5i
- (C) z = -1 i
- (D) None of these
- **36.** The points of intersection of the two curves |z - 3| = 2 and |z| = 2 in an argand plane are
- (A) $\frac{1}{2}(7 \pm i\sqrt{3})$ (B) $\frac{1}{2}(3 \pm i\sqrt{7})$ (C) $\frac{3}{2} \pm i\sqrt{\frac{7}{2}}$ (D) $\frac{7}{2} \pm i\sqrt{\frac{3}{2}}$

- 37. The equation of the radical axis of the two circles represented by the equations, |z - 2| = 3 and |z - 2 - 3i| = 4 on the complex plane is
- (A) $3iz 3i\overline{z} 2 = 0$ (B) $3iz 3i\overline{z} + 2 = 0$
- (C) $iz i\overline{z} + 1 = 0$ (D) $2iz 2i\overline{z} + 3 = 0$
- **38.** If $(1 + i)z = (1 i)\overline{z}$ then z is
- (A) $t(1 i), t \in R$ (B) $t(1 + i), t \in R$
- (C) $\frac{t}{1+i}$, $t \in \mathbb{R}^+$
- (D) None of these
- **39.** If $|z + 4| \le 3$, then the maximum value of |z + 1| is
- (A) 4
- (B) 10
- (C) 6
- (D) 0
- **40.** The value of $\sum_{k=1}^{10} \left(\sin \frac{2k\pi}{11} + i \cos \frac{k\pi}{11} \right)$
- (A) 1
- (B) 1 (C) i
- (D) i
- **41.** If the cube roots of unity are 1, ω , ω^2 , then roots of the equation $(x - 1)^3 + 8 = 0$ are
- (A) -1, $1 + 2\omega$, $1 + 2\omega^2$ (B) -1, $1 2\omega$, $1 2\omega^2$
- (D) -1, $-1 + 2\omega$, $-1 2\omega^2$
- **42.** If \mathbf{z}_1 and \mathbf{z}_2 are two non-zero complex numbers such that $|z_1 + z_2| = |z_1| + |z_2|$ then arg z_1 – arg z_2 is equal to
- (A) $-\frac{\pi}{2}$ (B) 0 (C) $-\pi$ (D) $\frac{\pi}{2}$
- **43.** If $w = \frac{z}{z \frac{1}{z}i}$ and |w| = 1, then z lies on
- (A) a parabola
- (B) a straight line
- (C) a circle
- (D) an ellipse
- **44.** Let z, w be complex numbers such that $\vec{z} + i\vec{w} = 0$ and arg $zw = \pi$. Then arg z equals

- (A) $\frac{\pi}{4}$ (B) $\frac{\pi}{2}$ (C) $\frac{3\pi}{4}$ (D) $\frac{5\pi}{4}$
- **45.** If $|z^2 1| = |z^2| + 1$, then z lies on
- (A) the real axis
- (B) the imaginary axis
- (C) a circle
- (D) an ellipse

- **46.** Let z_1 and z_2 be two roots of the equation 2 + az + b = 0, z being complex. Further, assume that he origin z_1 and z_2 form an equilateral triangle. Then (A) $a^2 = b$ (B) $a^2 = 2b$ (C) $a^2 = 3b$ (D) $a^2 = 4b$
- **47.** If z and ω are two non-zero complex numbers

such that $|z\omega| = 1$, and arg $(z) - arg(\omega) = \frac{\pi}{2}$ then

 \bar{z}_{ω} is equal to

- (A) 1
- (B) -1
- (C) i
- (D) i
- **48.** If $z_r = \cos\left(\frac{\pi}{2^r}\right) + i \sin\left(\frac{\pi}{2^r}\right)$, r = 1, 2, then

 $z_1 z_2 z_3$ is equal to (A) -1 (B) i (C) - i

- **49.** $\left(1 + \cos\frac{\pi}{8}\right) \left(1 + \cos\frac{3\pi}{8}\right) \left(1 + \cos\frac{5\pi}{8}\right) \left(1 + \cos\frac{7\pi}{8}\right)$ is
- (A) $\frac{1+\sqrt{2}}{2\sqrt{2}}$ (B) $\frac{1}{8}$ (C) $\cos \frac{\pi}{8}$ (D) $\frac{1}{2}$
- **50.** The product of cube roots of -1 is equal to
- (A) -2
- (B) 0
- (C) -1
- (D) 4
- **51.** If the complex numbers iz, z and z + iz represent the three vertices of a triangle then the area of the triangle is
- (A) $\frac{1}{2}|z-1|$ (B) $|z|^2$ (C) $\frac{1}{2}|z|^2$ (D) $|z-1|^2$

- **52.** Complex number z_1 , z_2 and z_3 in AP
- (A) lie on ellipse
- (B) lie on a parabola
- (C) lie on line
- (D) lie on circle
- **53.** If $\sin^3 x \sin 3x = \sum_{m=0}^{n} C_m \cos mx$ is an identity in x, where $C_0,\ C_1,\ \ldots\ldots\ C_n$ are constants and $C_n\neq 0$ then the value of n equals
- (A) 2
- (B)4
- (C) 6
- (D)8
- **54.** If magnitude of a complex number 4 3i is tripled and is rotated by an angle π anticlockwise then resulting complex number would be
- (A) -12 + 9i
- (B) 12 + 9i (C) 7 6i (D) 7 + 6i

- **55.** If |z 2 3i| + |z + 2 6i| = 4 where $i = \sqrt{-1}$ then locus of P(z) is
- (A) an ellipse
- (B) b
- (C) segment joining the point 2 + 3i; 2 + 6i
- (D) None of these
- **56.** For all complex numbers z_1 , z_2 satisfying $|z_1| = 12$ and $|z_2 - 3 - 4i| = 5$, the minimum value of $|z_1 - z_2|$ is
- **57.** If z_1 , z_2 and z_3 are complex numbers such that

 $|z_1| = |z_2| = |z_3| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1$, then $z_1 + z_2 + z_3$ is

- (C) greater than 3
- (D) equal to 3
- **58.** If 1, α , α^2 ,....., α^{n-1} are nth roots of unity. The value of $(3 - \alpha) (3 - \alpha^2) (3 - \alpha^3) \dots (3 - \alpha^{n-1})$ is

- (A) n (B) 0 (C) $\frac{3^n-1}{2}$ (D) $\frac{3^n+1}{2}$
- **59.** In one root of the quadratic equation $(1 + i) x^2 - (7 + 3i) x + (6 + 8i) = 0 is 4 - 3i$, then the other root must be
- (A) 1 + i (B) 4 + 3i (C) 1 i (D) None of these
- **60.** If P, P' represent the complex number z_1 and its additive inverse respectively then the complex equation of the circle with PP' as a diameter is
- (A) $\frac{z}{z_1} = \left(\frac{z_1}{z}\right)$
- (B) $z\overline{z} + z_1\overline{z}_1 = 0$
- (C) $z\overline{z} + \overline{z}z_1 = 0$
- (D) None of these
- **61.** If z = x + iy satisfies amp (z 1) = amp (z + 3)then the value of (x - 1): y is equal to
- (A) 2:1 (B) 1:3 (C) -1:3 (D) does not exist

- **62.** Let $z \neq 2$ be a complex number such that $\log_{1/2}|z - 2| > \log_{1/2}|z|$, then
- (A) Re(z) > 1
- (B) Im(z) > 1
- (C) Re(z) = 1
- (D) Im(z) = 1
- **63.** The number of solutions of $z^3 + \overline{z} = 0$ is
- (A) 2
- (B)3
- (C) 4
- (D) 5

- **64.** If $iz^3 + z^2 z + i = 0$, then |z| equals
- (A) 4
- (B) 3
- (C) 2
- (D) 1

- (A) (1, 3) (B) $(\sqrt{2}, \sqrt{3})$ (C) (0, 3)
- **66.** If $w \ne 1$ is nth root of unity, then value of
- $\sum_{k=1}^{n-1} |z_1 + w^k z_2|^2 \text{ is}$

- (A) $n(|z_1|^2 + |z_2|^2)$ (B) $|z_1|^2 + |z_2|^2$ (C) $(|z_1| + |z_2|)^2$ (D) $n(|z_1| + |z_2|)^2$
- **67.** If $|z_1| = 2$, $|z_2| = 3$, $|z_3| = 4$ and $|2z_1 + 3z_2 + 4z_3| = 4$ then absolute value of $8z_2z_3 + 27z_3z_1 + 64z_1z_2$ equals (A) 24 (B) 48 (C) 72

- (D) 96
- **68.** If z_1 , z_2 , z_3 are three complex numbers such that $4z_1 - 7z_2 + 3z_3 = 0$, then z_1 , z_2 , z_3 are
- (A) vertices of a scalane triangle
- (B) vertices of a right triangle
- (C) points on a circle
- (D) collinear points
- **69.** If z = x + iy then the equation of a straight line Ax + By + C = 0 where A, B, $C \in R$, can be written on the complex plane in the form $\overline{a}z + a\overline{z} + 2C = 0$ where 'a' is equal to
- $(A) \frac{(A+iB)}{2}$ $(B) \frac{A-iB}{2}$ (C) A+iB (D) None of these
- **70.** If $z_1, z_2, z_3, ..., z_n$ lie on the circle |z| = 2, then
- $E = |z_1 + z_2 + \dots + z_n| 4 \left| \frac{1}{z_1} + \frac{1}{z_2} + \dots + \frac{1}{z_n} \right|$ is

- (C) –n (D) None of these
- **71.** The number of solutions of the equation in
- $z, z\bar{z} (3 + i)z (3 i)\bar{z} 6 = 0$ is
- (A) 0 (B) 1
- (C) 2
- (D) infinite
- **72.** If $1 + x^2 = \sqrt{3} x$ then $\sum_{n=1}^{24} \left(x^n \frac{1}{x^n} \right)$ is equal to
- (A) 48 (B) -48 (C) $\pm 48 (\omega \omega^2)$ (D) None of these

73. If w $(\neq 1)$ is a cube root of unity, then

65. If a > 0 and the equation
$$|z - a^2| + |z - 2a| = 3$$
 represents an ellipse then a lies in (A) (1, 3) (B) $(\sqrt{2}, \sqrt{3})$ (C) (0, 3) (D) $(1, \sqrt{3})$ $= \begin{bmatrix} 1 & 1+i+\omega^2 & \omega^2 \\ 1-i & -1 & \omega^2 - 1 \\ -i & -i+\omega - 1 & -1 \end{bmatrix}$ equals

- (C) i
- (D) ω