bu örnek projede diger sık kullanılan saklayıcı tasarımlarında biri olan "kaydırmalı saklayıcı " kullanılmıştır.

bir önceki verilen (proje_44) vhdl kodunda ufak bir degişiklik yapılarak tasarımda sinyal veri nesnesi yerine variabile veri nesnesi kullanılmıştır.

process içersinde eş zamanlı olmayan reset kullanılmıştır. yani reset giriş portu '1' degerini aldıgında tüm cıkışlara '0' atanacak

ve in_reset girişinin diger durumlarında ise in_clk portunun yükselen kenarı ile birlikte koşul ifadesiyle in_giriş giriş portu degeri

v_saklayıci degişkeninin en anlamlı bitine atanmaktadır.

v_saklayici sinyalinin 3. biti 2. bitine,2. biti 1. bitine,1. bit en anlamsız bite atanmaktadır.

variable veri nesnesi tüm atama işlemleri o anda yapılıdıgından dolayı, in_giriş portunun degeri '1' oldugunda, r_saklayıcı sinyali ve out_cıkış cıkış portu "1111" degerini almaktadır.

aynı şeklide in_giriş portunun degeri '0' olduğunda, r_saklayıcı sinyali ve out_cıkış cıkış portu "0000" degerini almaktadır.

benzetim cıktılarından görülecegi üzere verilen kaydırmali_saklayıcı.vhd VHDL kodu kaydırmalı saklayıcı işlevini yerine getirmemektedir.

kodun kaydırmalı sayıcı işlevini yapabilmesi için elsif riging_edg(in_clk) koşul yapısı içine aşagıdaki kodu yazarak degiştirirsek kaydırmalı saklayıcı işlevini saglamış oluruz.

```
v_saklayici(0) := v_saklayici(1);
v_saklayici(1) := v_saklayici(2);
v_saklayici(2) := v_saklayici(3);
v_saklayici(3) := in_giris;
```

benzetim sonucları kodumuzu dogrulamaktadır.