Clasificación (i)

- · La tarea de clasificación consiste en asignar objetos a una de las clases previamente definidas.
- · Se trata de una tarea presente en multitud de aplicaciones:
 - detectar correo spam (spam, no spam)
 - clasificar células tumorales (benignas, malignas)
 - · clasificar créditos bancarios (conceder, denegar)

Clasificación (ii)

- Para llevar acabo la tarea de clasificación se dispone de un conjunto de objetos caracterizados por el par de atributos (x, y), donde x es un vector de características e y es la conocida como etiqueta de clase.
- A la etiqueta de clase y se le conoce también como categoría.

Algoritmo de Hunt

Datos disponibles

			Atributos				Clase	
		x_1	X 2		Xi		Xn	У
-	.,			•		•		_
Objeto	id ₁	x_1^1	x_{2}^{1}		x_i^1		\mathbf{x}_n^1	у ¹
	id ₂	x ₁ ²	x ₂ ²		x_i^2		x_n^2	y ²
								·
	id j	x_1^j	\mathbf{x}_2^j		X _i		\mathbf{X}_{n}^{j}	y ^j
								.
	id _m	x ₁ ^m	x ₂ ^m		X m i		x _n m	y ^m

Clasificación (ii)

- **Definición.** La tarea de clasificación consiste en aprender una función *f* que asocia a cada vector *x* una de las clases predefinidas *y*.
- A la función f se la conoce también como modelo de clasificación.
- El modelo de clasificación puede adoptar diferentes formas: árbol de decisión, reglas, red neuronal ...
- \cdot El vector x puede tomar valores nominales o numéricos, pero la etiqueta y es siempre nominal. Cuando la variable y es numérica se construye un árbol de regresión.

Utilidad de la clasificación

- Modelo descriptivo. Puede servir para distinguir entre objetos de diferentes clases identificando las características que las describen.
- Modelo predictivo. Puede usarse para predecir la clase a la que pertenece un objeto conocidas sus características. Es el uso que habitualmente se le da a la clasificación.

ID	PREVISIÓN	TEMPERATURA	HUMEDAD	VIENTO	JUGAR
id_1	Soleado	Alta	Alta	Débil	No
id ₂	Soleado	Alta	Alta	Fuerte	No
id ₃	Nuboso	Alta	Alta	Débil	Sí
id4	Lluvioso	Media	Alta	Débil	Sí
id ₅	Lluvioso	Fría	Normal	Débil	Sí
id ₆	Lluvioso	Fría	Normal	Fuerte	No
id7	Nuboso	Fría	Normal	Fuerte	Sí
id ₈	Soleado	Media	Alta	Débil	No
i d 9	Soleado	Alta	Normal	Débil	Sí
id_{10}	Lluvioso	Media	Normal	Débil	Sí
id_{11}	Soleado	Media	Normal	Fuerte	Sí
id_{12}	Nuboso	Media	Alta	Fuerte	Sí
<i>id</i> 13	Nubos	Alta	Normal	Débil	Sí
id ₁₄	Lluvioso	Fría	Alta	Fuerte	No

ID	CASA	ESTADO	INGRESOS	PRÉSTAMO
id_1	Propiedad	Soltero	125000	Conceder
id_2	Alquiler	Casado	100000	Conceder
id3	Alquiler	Soltero	70000	Conceder
id4	Propiedad	Casado	12000	Conceder
id ₅	Alquiler	Divorciado	95000	Denegar
id ₆	Alquiler	Casado	60000	Conceder
id7	Propiedad	Divorciado	220000	Conceder
id ₈	Alquiler	Soltero	85000	Denegar
id9	Alquiler	Casado	75000	Conceder
<i>id</i> ₁₀	Alquiler	Soltero	90000	Conceder

¿QUÉ SON Y CÓMO SE EMPLEAN?

Descripción y uso

- · Cada nodo del árbol se corresponde con un atributo y de él parten tantas ramas como valores distintos tiene ese atributo.
- En las hojas del árbol se encuentran todos o algunos de los valores de la variable clase.
- · Dada un árbol de decisión, para clasificar una nueva instancia se inspecciona el mismo desde la raíz hasta llegar a un nodo hoja.
- · Cada nodo representa un test sobre un atributo y el valor correspondiente en la instancia indica la rama del árbol que debe recorrerse. El proceso se repite hasta alcanzar un nodo hoja. El valor de ese nodo suministra la clase a la que pertenece la instancia.

Disyunciones de conjunciones (reglas)

- En general los árboles de decisión representan disyunciones de conjunciones de los valores de los atributos.
- · Cada rama del árbol es una conjunción y el árbol en su conjunto una disyunción de esas conjunciones.

Disyunciones de conjunciones (reglas)

- El árbol del ejemplo anterior se corresponde con el siguiente conjunto de reglas:
 - \cdot IF (Previsión = Soleado) and (Humedad = alta) THEN (Jugar = No)
 - \cdot IF (Previsión = Soleado) and (Humedad = normal) THEN (Jugar = Sí)
 - IF (Previsión = Nuboso) THEN (Jugar = Sí)
 - IF (Previsión = Lluvioso) and (Viento = Fuerte) THEN (Jugar = No)
 - IF (Previsión = Lluvioso) and (Viento = Débil) THEN (Jugar = Sí)

- Instancias representadas por pares atributo valor. Los árboles son apropiados cuando cada atributo toma un número pequeño de valores.
- La funcion objetivo toma valores discretos. Aunque también existen algoritmos que permiten construir árboles de decisión cuando la variable de salida es continua.
- Los datos de entrenamiento pueden contener errores. Los algoritmos para construir árboles son robustos a errores de clasificación de los ejemplos de entrenamiento y a errores en los valores de los atributos.
- Los datos de entrenamiento pueden contener valores desconocidos en algunos atributos. Pueden construirse cuando algunos ejemplos de entrenamiento tienen valores desconocidos en algunos de los atributos.

- · Instancias representadas por pares atributo valor. Los árboles son apropiados cuando cada atributo toma un número pequeño de valores.
- · La funcion objetivo toma valores discretos. Aunque también existen algoritmos que permiten construir árboles de decisión cuando la variable de salida es continua.
- Los datos de entrenamiento pueden contener errores. Los algoritmos para construir árboles son robustos a errores de clasificación de los ejemplos de entrenamiento y a errores en los valores de los atributos.
- Los datos de entrenamiento pueden contener valores desconocidos en algunos atributos. Pueden construirse cuando algunos ejemplos de entrenamiento tienen valores desconocidos en algunos de los atributos.

- · Instancias representadas por pares atributo valor. Los árboles son apropiados cuando cada atributo toma un número pequeño de valores.
- · La funcion objetivo toma valores discretos. Aunque también existen algoritmos que permiten construir árboles de decisión cuando la variable de salida es continua.
- · Los datos de entrenamiento pueden contener errores. Los algoritmos para construir árboles son robustos a errores de clasificación de los ejemplos de entrenamiento y a errores en los valores de los atributos.
- Los datos de entrenamiento pueden contener valores desconocidos en algunos atributos. Pueden construirse cuando algunos ejemplos de entrenamiento tienen valores desconocidos en algunos de los atributos.

- · Instancias representadas por pares atributo valor. Los árboles son apropiados cuando cada atributo toma un número pequeño de valores.
- · La funcion objetivo toma valores discretos. Aunque también existen algoritmos que permiten construir árboles de decisión cuando la variable de salida es continua.
- · Los datos de entrenamiento pueden contener errores. Los algoritmos para construir árboles son robustos a errores de clasificación de los ejemplos de entrenamiento y a errores en los valores de los atributos.
- Los datos de entrenamiento pueden contener valores desconocidos en algunos atributos. Pueden construirse cuando algunos ejemplos de entrenamiento tienen valores desconocidos en algunos de los atributos.