Exploring Data Augmentation Techniques to Generate Synthetic Images for Improving Object Detection Performance

Kalpit Munot | Ruthvika Reddy Loka | Mahitha Pillodi | Rishideep Reddy Rallabandi

Problem Statement

- Object detection is critical in computer vision, but training deep learning models rely heavily on large and diverse datasets, which can be expensive and time-consuming to collect and annotate.
- To address this, data augmentation is a common technique. We propose a novel approach using Stable Diffusion (SD) and Generative Adversarial Networks (GANs) to generate synthetic images for augmentation.
- The objective is to assess the efficacy of the YOLOv5 algorithm and analyze how the model's performance is impacted by the integration of synthetic images.
- Our approach can be applied to various domains, including driving, surveillance, and medical imaging.

Current Work

- Current research on synthetic image generation is limited, with only a few studies exploring the use of synthetic images for object detection.
- Our work is novel in that it aims to utilize advanced techniques like Stable diffusion and GAN to generate realistic and diverse synthetic images for object detection.
- Our study fills a gap in the existing research by incorporating these techniques to generate new high-quality synthetic images and evaluating their effectiveness for object detection.

Experimental Design

Dataset Curation

- Our dataset consists of three parts: the original set, the synthetic set, and the test set. We used the COCO 2017 dataset for the original set, which contains over 118,000 images.
- We generated a synthetic set using Stable Diffusion and GANs and labeled them manually using makesense.ai tool.
- We also created a test set with images from a similar distribution to the original set.

Data Augmentation

Generative Adversarial Networks

- GANs consist of a generator and a discriminator that are trained together to create synthetic data samples similar to real ones.
- We chose ICGAN model and fine-tuned it, which can produce targeted image outputs based on specific conditions. Our model can generate high-resolution and diverse images.
- We generated images by providing an input image for reference or specifying an input image class for reference.
- We created images with different contexts and scenarios for training.

Stable Diffusion

- Stable diffusion image creation is a process that generates visually appealing and coherent images using diffusion models.
- We used stable-diffusion-v1-4
 pre-trained model from Hugging face.
- A neural captioning model was used to generate neural captions which was fed to this model to generate images

Object Detection - YOLOv5

- We used the YOLOv5 algorithm for real-time object detection and applied transfer learning to train a custom dataset. We combined original images from the COCO dataset with synthetic images generated from a pre-trained stable diffusion model to improve diversity and model performance.
- The model was trained and results were evaluated using manually generated annotations.
- Our experimental design demonstrates nearly same accuracy and efficiency like natural with synthetic and augmented datasets as well.

Results

Object Detection Results

GAN+SD

Evaluation Metrics

- TP,FP,FN:- True Positives, False Positive, False Negative
- Recall:- TP / (TP + FN)
- Precision:- TP / (TP + FP)
- F1 Score:- 2 * (Precision * Recall) / (Precision + Recall)
- $MAP:-(AP_1 + AP_2 + ... + AP_\square) / n$

Results

NATURAL + GAN + SD + AUG

NATURAL + SD + AUG

Confusion Matrix

F1-Confidence Curve

PR Curve

mAP Graph

Model's performance on different datasets

Models' performance in label distribution

Models' performance (except natural) in label distribution. natural sd aug natural gan sd natural aug natural gan sd aug

Conclusion

- Synthetic images yield comparable results to natural images for object detection tasks, making it a valuable technique.
- GAN technique exhibits lower performance than other synthetic datasets, possibly due to distorted images.
- Results can be replicated with advanced techniques like Stable Diffusion and GANs by reducing the dataset by 40-60%.
- We gained knowledge about different data augmentation methods and their implementation.
- We acquired insights into techniques for enhancing object detection performance.

Future Work

- We could explore the potential of using other advanced generative models, such as VAEs and flow-based models, to generate synthetic images for object detection.
- The study could be extended to evaluate the effectiveness of the proposed approach on different object detection algorithms, such as Faster R-CNN and RetinaNet.
- The impact of different augmentation parameters, such as rotation and scaling, could be analyzed to determine their influence on the model's performance.
- The approach could be applied to different domains, such as robotics and autonomous vehicles, to assess its effectiveness in diverse real-world scenarios.

