Geometry of Zones

----OLD DEFINITIONS----

A trajectory connection

of the trajectories t_1 and t_2 is the relation $C(t_1,t_2)$. It holds, if the *ending link* of the trajectory t_1 coincides with an *intermediate link* of the trajectory t_2 ;

On the set A of trajectories it is defined:

 $C_A{}^k(t_1, t_2)$, a k-th degree of connection and

 $C_A^+(t_1,t_2)$, a transitive closure.

A trajectory network W

relative to trajectory t_0 is a finite set of trajectories t_0 , t_1 ,..., t_k from the language $L_t^H(S)$: for every trajectory t_i from W (i=1, 2,..., k) the relation $C_W^+(t_i, t_0)$ holds.

A family of trajectory network languages L_C(S)

in a state S of the Complex System is the family of languages that contains strings of the form

$$t(t_1,param)t(t_2,param)...t(t_m,param),$$

where *param* in parentheses substitute for the other parameters of a particular language. All the symbols $t_1, t_2, ..., t_m$ correspond to trajectories which form a trajectory network **W** relative to t_1 .

Network language interpretation.

Language of Zones

Definition

A language $L_{\mathbf{Z}}(S)$ generated by the grammar $G_{\mathbf{Z}}$ in a state S of a Complex System is called the *Language of Zones*.

Grammar of Zones GZ

L	Q	Kernel, $\pi_k \ (\forall z \in X)$	$\pi_n (\forall z \in X)$	F_T	F_{F}	
1	Q_1	$S(u, v, w) \rightarrow A(u, v, w)$		two	Ø	
$\overline{2_i}$	Q_2	$A(u, v, w) \rightarrow t(h_i^{O}(u), l_{O}+1)$	$TIME(z) = DIST(z, h_i^{O}(u))$	3	Ø	
		$A((0, 0, 0), g(h_i^{0}(u), w))$	y), zero)			
3	Q_3	$A(u, v, w) \rightarrow A(f(u, v), v, w)$	NEXTTIME(z) =	four	5	
			init(u, NEXTTIME(z))			
4_j	Q_4	$A(u, v, w) \rightarrow t(h_j(u), TIME(y)))$	NEXTTIME(z) =	3	3	
		$A(u, v, g(h_j(u), w))$	$ALPHA(z, h_j(u), TIME(y) -$	- <i>l</i> +1 <u>)</u>		
5	Q_5	$A(u, v, w) \rightarrow A((0, 0, 0), w, zero)$	TIME(z) =	3	6	
			NEXTTIME(z)			
6	Q_6	$A(u, v, w) \rightarrow \mathbf{\varepsilon}$		Ø	Ø	
	V_{T}	$\mathbf{v} = \{t\}, \ V_{\mathbf{N}} = \{S, A\},$				
	V_{P}					
		$Pred = \{Q_1, Q_2, Q_3, Q_4, Q_5, Q_6\}$				
		$Q_1(u) = (ON(p_0) = x) \land (MAP_X)$	^1			
		$(\exists q ((ON(q) = y) \land (OP(q) = y)))$	$POSE(p_0, q))))$			
		$Q_2(u) = T$				
		$\mathbf{Q_3}(u) = (x \neq n) \lor (y \neq n)$				
		$Q_4(u) = (\exists p ((ON(p) = x) \land (l > l)))$	$(0) \land (x \neq x_0) \land (x \neq y_0)) \land$			
		$((\neg OPPOSE(p_0, p) \land (P_0, p)))$	$MAP_{x p}(y) = 1)) \vee$			
	$(OPPOSE(p_0, p) \land (MAP_{X,p}(y) \le l)))$					
		$\mathbf{Q_5}(w) = (w \neq zero)$	х,р 🗸 🗥			
		$Q_6 = T$				
	$Var = \{x, y, l, \tau, \theta, v_1, v_2,, v_n, w_1, w_2,, w_n\};$ for the sake of brevity:					
	$u = (x, y, l), v = (v_1, v_2,, v_n), w = (w_1, w_2,, w_n), zero = (0, 0,, 0)$					
	$Con = \{x_0, y_0, l_0, p_0\}; Func = Fcon \cup Fvar;$					
		$Fcon = \{f_{X}, f_{V}, f_{I}, g_{1}, g_{2},, g_{n}, h_{1}, h_{2},, g_{n}\}$				
		$h_1^0, h_2^0, \dots, h_{M}^0$, DIST, init, A		, 1. g _{v2} ,	g_{vn} .	
		$M = \mathbf{L_f}^{lo}(S) $ is the number of tra	•	(1) O (2)	, GAII),	
		$Fvar = \{x_0, y_0, l_0, p_0, TIME, NEXTTILE \}$	• , ,			
	\boldsymbol{E}	$= \mathbf{Z}_{+} \cup \mathbf{X} \cup \mathbf{P} \cup \mathbf{L}_{\mathbf{f}} \mathbf{l}_{0}(\mathbf{S}) \text{ is the subject } 0$				
		rm: $S \varnothing Var$, $A \to \{u, v, w\}$, $t \to \{p\}$				
		$\{1,3,5,6\} \cup two \cup four, two = \{2_1,2_2,,2_M\}, for$				

Definition of functions of the Grammar of Zones GZ

```
D(init) = X \times X \times Z_{+} \times Z_{+}
init (u,r) = \begin{cases} 2 \text{ n, if } u = (0,0,0), \\ r, & \text{if } u \neq (0,0,0). \end{cases}
D(f) = (X \times X \times Z_{+} \cup \{0, 0, 0\}) \cup Z_{+}^{n}
f(u,\ v) = \begin{cases} (x+1,y,l), & \text{if } ((x \neq n) \land (l \geq 0)) \lor ((y=n) \land (l \leq 0)) \\ (1,\ y+1,\ \textit{TIME}(y+1) \times v_{V+1}), & \text{if } (x=n) \lor ((l \leq 0) \land (y \neq n)). \end{cases}
D(DIST) = X \times P \times L_{\mathbf{f}} l_{\mathbf{0}}(S).
Let t_0 \in L_t^{l_0}(S), t_0 = a(z_0)a(z_1)...a(z_m), t_0 \in t_{p_0}(z_0, z_m, m);
If ((z_m = y_0) \land (p = p_0) \land (\exists k (1 \le k \le m) \land (x = z_k))) \lor
      (((z_m \neq y_0) \lor (p \neq p_0)) \land (\exists \ k \ (1 \leq k \leq m - 1) \land (x = z_k)))
       then DIST(x, p_0, t_0) = k+1
      else DIST(x, p_0, t_0) = 2n
D(ALPHA) = X \times P \times L_{t} l_{0}(S) \times Z_{+}

\int max \ (NEXTTIME \ (x), k), \ if (DIST \ (x, p_0, t_0) \neq 2 n)

                                                                                                            \land (NEXTTIME (x) \neq 2 n);
                                                     k, if DIST(x, p_0, t_0) \neq 2 n)
 \land (NEXTTIME(x) = 2 n); 
NEXTTIME(x), if <math>DIST(x, p_0, t_0) = 2 n).
 ALPHA (x, p_0, t_0, k) = \begin{cases} k, \end{cases}
                                                                                                         \wedge (NEXTTIME (x) = 2 n);
D(g_r) = P \times L_t lo(S) \times Z_+ n, r \in X.
g_{\mathbf{r}}(p_0, t_0, w) = \begin{cases} 1, & \text{if } DIST(r, p_0, t_0) < 2n, \\ w_r, & \text{if } DIST(r, p_0, t_0) = 2n. \end{cases}
D(h_i^o) = X \times X \times \mathbf{Z}_+; \qquad \text{Let TRACKS}_{p_o} = \{p_o\} \times (\ \cup L[G_t^{(2)}(x, y, k, p_o)]\}
                                                                                                  1≤k≤l
If TRACKS_{p_0} = \emptyset
       then h_i^o(u) = \varepsilon
      else TRACKS_{p_o} = \{(p_o, t_1), (p_o, t_2), \dots, (p_o, t_b)\}, (b \le M) and _
               \mathbf{h}_{i}^{o}(u) = \begin{cases} (\mathbf{p}_{o}, \mathbf{t}_{i}), & \mathbf{if} \ i \leq b, \\ (\mathbf{p}_{o}, \mathbf{t}_{b}), & \mathbf{if} \ i > b. \end{cases}
D(h_i) = X \times X \times Z_+; Let TRACKS_p = \{p\} \times (\bigcup L[G_t^{(2)}(x, y, k, p)]
                                                                                 1≤k≤l
```

If
$$TRACKS_p = \emptyset$$

then $h_i(u) = \varepsilon$
else $TRACKS_p = \{(p_1, t_1), (p_1, t_2), ..., (p_m, t_m)\}, (m \le M)$ and
$$h_i(u) = \begin{cases} (p_i, t_i), & \text{if } i \le m, \\ (p_m, t_m), & \text{if } i > m. \end{cases}$$

Trajectories t_i should not be embedded (as sub-trajectories) in the trajectories of the same negation.

At the beginning of generation:

$$u = (x_0, y_0, l_0), w = zero, v = zero, x_0 \in X, y_0 \in X, l_0 \in \mathbb{Z}_+, p_0 \in P,$$

 $TIME(z) = 2n, NEXTTIME(z) = 2n \text{ for all } z \text{ from } X.$

To study this language formally we need preliminary definitions.

Definition 1.

An *alphabet* A(Z) *of the string* Z of the parameter language L is the set symbols of this language with given parameter values, where each of the symbols with parameters is included at least once in a string Z, and e (empty symbol).

Definition 2.

A *trajectory alphabet* TA(Z) of the Zone Z is the set of trajectories from $L_t^H(S)$ that correspond to the actual parameter values of the alphabet A(Z).

Example of Zone

 $\textit{t}(\text{BOMBER}, t_{\text{B}}, 5) \textit{t}(\text{FIGHTER}, t_{\text{F}}, 5) \textit{t}(\text{MISSILE}, t_{\text{M}}, 5) \textit{t}(\text{MISSILE}, t_{\text{M}}^1, 3)$ $\textit{t}(\text{FIGHTER}, t_{\text{F}}^1, 2),$

where

$$\begin{split} t_{\text{B}} = & a(\text{h5}) a(\text{h4}) a(\text{h3}) a(\text{h2}) a(\text{h1}), \\ t_{\text{F}} = & a(\text{f6}) a(\text{e5}) a(\text{e4}) a(\text{f3}) a(\text{g2}) a(\text{h1}), \\ t_{\text{M}} = & a(\text{d7}) a(\text{b5}) a(\text{f1}) a(\text{g2}) a(\text{h1}), \\ t_{\text{M}}^{1} = & a(\text{d7}) a(\text{b5}) a(\text{f1}) a(\text{h3}), \\ t_{\text{F}}^{1} = & a(\text{f6}) a(\text{g5}) a(\text{h4}) \end{split}$$

Theorem

For any string Z from $L_Z(S)$, trajectories from TA(Z) form a trajectory network, i.e., $L_Z(S) \in L_C(S)$.

Proof

Let us consider a string $\mathbf{Z} = t(\mathbf{p_0}, \mathbf{t_0}, \mathbf{\tau_0}) \dots t(\mathbf{p_k}, \mathbf{t_k}, \mathbf{\tau_k})$.

Grammar of Zones GZ

Q		Kernel, $\pi_k \ (\forall z \in X)$	$\pi_n (\forall z \in X)$	F_T	F_{F}
1	Q_1	$S(u, v, w) \rightarrow A(u, v, w)$		two	Ø
$\overline{2_i}$	Q_2	$A(u, v, w) \rightarrow t(h_i^0(u), l_0^{+1})$	$TIME(z) = DIST(z, h_i^{O}(u))$	3	Ø
		$A((0, 0, 0), g(h_i^0(u), w))$	v), zero)		
3	Q_3	$A(u, v, w) \rightarrow A(f(u, v), v, w)$	NEXTTIME(z) = init(u, NEXTTIME(z))	four	5
$\overline{4_{j}}$	<i>Q</i> ₄	$A(u, v, w) \rightarrow t(h_j(u), TIME(y)))$	NEXTTIME(z) =	3	3
J		$A(u, v, g(h_j(u), w))$	$ALPHA(z, h_j(u), TIME(y) -$	<i>l</i> +1)	
5	<i>Q</i> ₅	$A(u, v, w) \rightarrow A((0, 0, 0), w, zero)$	TIME(z) = NEXTTIME(z)	3	6
6	Q_6	$A(u, v, w) \rightarrow \mathbf{\varepsilon}$, <i>j</i>	Ø	Ø
	$V_T V_{P_I}$	$V = \{t\}, \ V_N = \{S, A\},$ $Pred = \{Q_1, Q_2, Q_3, Q_4, Q_5, Q_6\}$ $Q_1(u) = (ON(p_0) = x) \land (MAP_X)$ $(\exists q ((ON(q) = y) \land (OP(q_0) = y)) \land (OP(q_0) = y)$	'1		

Obviously under the condition that the predicate Q_1 is true, the symbol $t(\mathbf{p_0}, \mathbf{t_0}, \mathbf{\tau_0})$ is attached to the string by applying the productions 1 and 2i.

The following proof is by induction.

We assume that all the trajectories $TA(Z_m)$ of the substring

$$Z_{m} = t(p_{0}, t_{0}, \tau_{0}) \dots t(p_{m}, t_{m}, \tau_{m})$$

form a trajectory network. Symbol $t(p_{m+1}, t_{m+1}, \tau_{m+1})$ can be attached to a string only after applying the production 4i.

L	Q	Kernel, $\pi_k \ (\forall z \in X)$	$\pi_n (\forall z \in X)$	F_T	F _F
1	Q_1	$S(u, v, w) \rightarrow A(u, v, w)$		two	Ø
$\overline{2_i}$	Q_2	$A(u, v, w) \to t(h_i^0(u), l_0^{+1})$	$TIME(z) = DIST(z, h_i^0(u))$	3	Ø
		$A((0, 0, 0), g(h_i^{0}(u), w))$	v), zero)		
3	Q_3	$A(u, v, w) \rightarrow A(f(u, v), v, w)$	NEXTTIME (z) =	four	5
			init(u, NEXTTIME(z))		
4_{j}	Q_4	$A(u, v, w) \rightarrow t(h_j(u), TIME(y)))$	NEXTTIME(z) =	3	3
3		$A(u, v, g(h_j(u), w))$	$ALPHA(z, h_j(u), TIME(y) -$	- <i>l</i> +1 <u>)</u>	
5	Q_5	$A(u, v, w) \rightarrow A((0, 0, 0), w, zero)$	TIME(z) =	3	6
			NEXTTIME(z)		
6	Q_6	$A(u, v, w) \to \mathbf{\varepsilon}$		Ø	Ø
	$V_T V_{PR}$	$=\{t\},\ V_{N}=\{S,A\},$			
		$Pred = \{Q_1, Q_2, Q_3, Q_4, Q_5, Q_6\}$			
		$Q_1(u) = (ON(p_0) = x) \land (MAP_X)$	$_{0,p_{0}}(y) \le l \le l_{0}) \land$		
		$(\exists q ((ON(q) = y) \land (OP(q) = y)))$	$POSE(p_0, q))))$		
		$\mathbf{Q}_{2}(u) = T$	-		
		$\mathbf{Q_3}(u) = (\mathbf{x} \neq \mathbf{n}) \lor (\mathbf{y} \neq \mathbf{n})$			
		$Q_4(u) = (\exists p ((ON(p) = x) \land (l > l)))$	$(x \neq x_0) \land (x \neq$		
		$((\neg OPPOSE(p_0, p) \land (1)))$			
		$(OPPOSE(p_0, p) \land (MA))$	71		
		$Q_5(w) = (w \neq zero) \qquad Q_6$	$\begin{array}{l} \prod_{x,p(y)=1}^{n} \prod_{y \in Y} \prod_{x \in Y} \prod_{x \in Y} \prod_{y \in Y} \prod_{x \in Y} \prod_$		
		$Q_5(w) = (w \neq 2ero)$ Q_6	<u> </u>		

Among the parameters of the trajectory $t_{m+1} \in t_p(x, y, l)$ we are interested in the value of y, the parameter value of the **last symbol** of the trajectory. One can pass to the production with the label 4j only after a successful application of a production with the label 3, i.e., in F_T case. Here the f(u, v) function changes the value of the parameter u = (x, y, l).

L	Q	Kernel, $\pi_k \ (\forall z \in X)$	$\pi_n \ (\forall z \in X)$	F_T	F_{F}		
1	Q_1	$S(u, v, w) \rightarrow A(u, v, w)$		two	Ø		
$\overline{2_i}$	Q_2	$A(u, v, w) \to t(h_i^0(u), l_0^{+1})$	$TIME(z) = DIST(z, h_i^{O}(u))$	3	Ø		
		$A((0, 0, 0), g(h_i^{0}(u), w))$	v), zero)				
3	<i>Q</i> ₃	$A(u, v, w) \rightarrow A(f(u, v), v, w)$	NEXTTIME(z) = init(u, NEXTTIME(z))	four	5		
4_{j}	Q_4	$A(u, v, w) \rightarrow t(h_j(u), TIME(y)))$	NEXTTIME(z) =	3	3		
J		$A(u, v, g(h_j(u), w))$	$ALPHA(z, h_j(u), TIME(y) -$	- <i>l</i> +1 <u>)</u>			
5	<i>Q</i> ₅	$A(u, v, w) \rightarrow A((0, 0, 0), w, zero)$	TIME(z) =	3	6		
			NEXTTIME(z)				
6	Q_6	$A(u, v, w) \to \mathbf{\varepsilon}$		Ø	Ø		
$V_{T} = \{t\}, \ V_{N} = \{S, A\},\$ V_{PR} $Pred = \{Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}, Q_{6}\}\}$ $Q_{1}(u) = (ON(p_{0}) = x) \land (MAP_{x,p_{0}}(y) \le l \le l_{0}) \land (\exists q ((ON(q) = y) \land (OPPOSE(p_{0}, q))))$ $Q_{2}(u) = T$ $Q_{3}(u) = (x \ne n) \lor (y \ne n)$ $Q_{4}(u) = (\exists p ((ON(p) = x) \land (l > 0) \land (x \ne x_{0}) \land (x \ne y_{0})) \land ((\neg OPPOSE(p_{0}, p) \land (MAP_{x,p}(y) = 1)) \lor (OPPOSE(p_{0}, p) \land (MAP_{x,p}(y) \le l)))$ $Q_{5}(w) = (w \ne zero)$ $Q_{6} = T$							
Ĵ	f(u, v)	$\mathbf{y} = \begin{cases} (x+1,y,l), & \text{if } \\ (1, y+1, TIME(y+1) \times v_{y+1}), & \text{if } \end{cases}$	If $((x \neq n) \land (l > 0)) \lor ((y = l))$, if $(x = n) \lor ((l \leq 0) \land (y = l))$	$n) \wedge (l \leq l \leq l \leq l \leq l)$	(0)		

The last change in the course of derivation of the value of v_y could occur only in a successful application of a production with the label 5 (if we already generated at least one 1st negation trajectory). Here, after applying the production, v_y was given the value of w_v . Consequently, $w_v \neq 0$.

Finally, such a change of the value of w_y for which it would become different from zero, could take place only in a successful application, earlier in the derivation, of one of the productions with the label 4i.

L	Q	Kernel, $\pi_k \ (\forall z \in X)$	$\pi_n (\forall z \in X)$	F_T	F_{F}
1	Q_1	$S(u, v, w) \rightarrow A(u, v, w)$		two	Ø
$\overline{2_i}$	Q_2	$A(u, v, w) \rightarrow t(h_i^{0}(u), l_0+1)$	$TIME(z) = DIST(z, h_i^0(u))$	3	Ø
		$A((0, 0, 0), g(h_i^{0}(u), w))$	v), zero)		
3	Q_3	$A(u, v, w) \rightarrow A(f(u, v), v, w)$	NEXTTIME(z) =	four	5
$\overline{4_{j}}$	Q_4	$A(u, v, w) \rightarrow t(h_j(u), TIME(y)))$	$\frac{init(u, NEXTTIME(z))}{NEXTTIME(z)} =$	3	3
J	27	$A(u, v, g(h_j(u), w))$	$ALPHA(z, h_j(u), TIME(y) -$	<i>l</i> +1 <u>)</u>	
5	<i>Q</i> ₅	$A(u, v, w) \rightarrow A((0, 0, 0), w, zero)$	TIME(z) = NEXTTIME(z)	3	6
6	Q_6	$A(u, v, w) \rightarrow \mathbf{\varepsilon}$, ,	Ø	Ø
g _r (]	p _o ,t _o , ห	$\mathbf{v} = \begin{cases} 1, & \text{if } \mathbf{DIST}(\mathbf{r}, \mathbf{p}_0, \mathbf{t}_0) < 2n, \\ w_r, & \text{if } \mathbf{DIST}(\mathbf{r}, \mathbf{p}_0, \mathbf{t}_0) = 2n. \end{cases}$			
		$d_{O}(S), t_{O} = a(z_{O})a(z_{1})a(z_{m}), t_{O} \in t_{po}(z_{0}) \land (p = p_{O}) \land (\exists k (1 \le k \le m) \land (x = p_{O}))$			
	-	y_0) \vee (p \neq p ₀)) \wedge (\exists k (1 \leq k \leq m - 1)			
		$IST(x, p_0, t_0) = k+1$			
	else <i>DI</i> S	$ST(x, p_0, t_0) = 2n$			
	$_{i}) = X \times$	$(X \times Z_+; Denote TRACKS = \cup TRACKS)$	ACKS _p , where TRACKS _p is the	e same as	for h_i^0
If	D A CIZ	ON(p)=x			
	RACK: $h_i(u)$				
else	TRAC	$CKS = \{(p_1, t_1), (p_1, t_2), \dots, (p_m, t_m)\}, (r_m)$	$\mathbf{p} \leq \mathbf{M}$ and $\mathbf{h}(\mathbf{u}) = \begin{cases} (\mathbf{p}_i, \mathbf{t}_i), \\ \mathbf{h}(\mathbf{u}) = \mathbf{h}(\mathbf{u}) \end{cases}$	if $i \le i$	m,
2130	11010	((P1, v1/9 (P1, v2/9, ···)(Pm , vm/9) (1	(p_m, t_m)), if i >	m.

This means that at some stage of derivation symbol $t(p_j, t_j, \tau_j)$ was included in the string Z. At the same time, the parameter $w^0 = (w_1^0, ..., w_n^0)$ was changed under the action of the function $g(h_j(u), w^0)$ in such a way that $w_y = g_y(h_j(u), w^0)$.

But $w_y \neq 0$; consequently, $w_y = 1$, i.e., $DIST(y, p_j, t_j) < 2n$, and hence, y is included among the parameter values of the t_j trajectory. In addition, obviously, this trajectory is included among the trajectories t_0 , t_1 , ..., t_m , since symbol $t(p_j, t_j, t_j)$ was included in Z earlier in the course of derivation.

In accord with <u>Definition of Trajectory Connection</u>, $\exists t_i$ from the set t_0 , t_1 , ..., t_m such that trajectory t_{m+1} is connected with trajectory t_i , i.e.,

$$C(t_{m+1}, t_i) = T$$
 holds, with $i \le m$.

By the assumption of induction

$$C^{+}_{TA(\mathbf{Z})}(t_{\mathbf{i}}, t_{\mathbf{0}}) = T$$

and we conclude that $C^+T_A(Z)(t_{m+1}, t_0) = T$ (because of the <u>transitivity</u> of C^+).

Thus all the trajectories t_0 , t_1 , ..., t_{m+1} form a trajectory network.

The theorem is proved.