Graph Theory and Optimization Examples of (Integer) Linear Programming

Nicolas Nisse

Inria, France

Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, Sophia Antipolis, France

October 2018

- Reminder
- First examples of modelling
- 3 Exercises: understand a LP
- More Examples

Linear Programme (reminder)

Linear programmes can be written under the standard form:

Maximize
$$\sum_{j=1}^n c_j x_j$$

Subject to: $\sum_{j=1}^n a_{ij} x_j \le b_i$ for all $1 \le i \le m$
 $x_j \ge 0$ for all $1 \le j \le n$.

- the problem is a maximization;
- all constraints are inequalities (and not equations);
- all variables x_1, \dots, x_n are non-negative.

Linear Programme (reminder)

Linear programmes can be written under the standard form:

Maximize
$$\sum_{j=1}^n c_j x_j$$

Subject to: $\sum_{j=1}^n a_{ij} x_j \le b_i$ for all $1 \le i \le m$
 $x_j \ge 0$ for all $1 \le j \le n$.

- the problem is a maximization;
- all constraints are inequalities (and not equations);
- all variables x_1, \dots, x_n are non-negative.

Linear Programme (Real variables) can be solved in polynomial-time in the number of variables and constraints (e.g., ellipsoid method)

Outline

- Reminder
- First examples of modelling
- Exercises: understand a LP
- More Examples

D = (V, A) be a graph with capacity $c : A \to \mathbb{R}^+$, and $s, t \in V$. **Problem:** Compute a maximum flow from s to t.

Solution: $f: A \to \mathbb{R}^+$

 \Rightarrow variables f_a , for each $a \in A$

D = (V, A) be a graph with capacity $c : A \to \mathbb{R}^+$, and $s, t \in V$. **Problem:** Compute a maximum flow from *s* to *t*.

Solution: $f: A \to \mathbb{R}^+$ \Rightarrow variables f_a , for each $a \in A$

• flow conservation:
$$\sum_{u \in N^+(v)} f(vu) = \sum_{u \in N^-(v)} f(uv), \forall v \in V \setminus \{s, t\}$$

D = (V, A) be a graph with capacity $c : A \to \mathbb{R}^+$, and $s, t \in V$.

Problem: Compute a maximum flow from *s* to *t*.

Solution: $f: A \to \mathbb{R}^+$ \Rightarrow variables f_a , for each $a \in A$ $\sum_{i} f(su)$ Objective function: maximize value of the flow $u \in N^+(s)$

D = (V, A) be a graph with capacity $c : A \to \mathbb{R}^+$, and $s, t \in V$.

Problem: Compute a maximum flow from s to t.

Solution: $f: A \to \mathbb{R}^+$ \Rightarrow variables f_a , for each $a \in A$ Objective function: maximize value of the flow $\sum_{u \in N^+(s)} f(su)$

Constraints:

• capacity constraints: $f(a) \le c(a)$ for each $a \in A$

• flow conservation: $\sum_{u \in N^+(v)} f(vu) = \sum_{u \in N^-(v)} f(uv), \forall v \in V \setminus \{s,t\}$

D = (V, A) be a graph with capacity $c : A \to \mathbb{R}^+$, and $s, t \in V$.

Problem: Compute a maximum flow from s to t.

Solution: $f: A \to \mathbb{R}^+$ \Rightarrow variables f_a , for each $a \in A$

Maximize
$$\sum_{u \in N^+(s)} f(su)$$
 Subject to:
$$f(a) \leq c(a) \qquad \text{for all } a \in A$$

$$\sum_{u \in N^+(v)} f(vu) = \sum_{u \in N^-(v)} f(uv) \qquad \text{for all } v \in V \setminus \{s,t\}$$

$$f(a) \geq 0 \qquad \qquad \text{for all } a \in A$$

Integer Programme Example: Shortest path

G = (V, E) be a graph with length $\ell : E \to \mathbb{R}^+$, and $s, t \in V$. **Problem:** Compute a shortest path from s to t.

Solution: A path P from s to t \Rightarrow variables x_e for each $e \in E$ $x_e = 1$ if $e \in E(P)$, $x_e = 0$ otherwise.

G = (V, E) be a graph with length $\ell : E \to \mathbb{R}^+$, and $s, t \in V$.

Problem: Compute a shortest path from *s* to *t*.

Solution: A path *P* from *s* to *t*

 \Rightarrow variables x_e for each $e \in E$ $x_e = 1$ if $e \in E(P)$, $x_e = 0$ otherwise.

Integer Programme Example: Shortest path

G = (V, E) be a graph with length $\ell : E \to \mathbb{R}^+$, and $s, t \in V$. **Problem:** Compute a shortest path from *s* to *t*.

Solution: A path *P* from *s* to *t* \Rightarrow variables x_e for each $e \in E$ $x_e = 1$ if $e \in E(P)$, $x_e = 0$ otherwise.

$$\begin{array}{llll} \text{Minimize} & \displaystyle \sum_{e \in E} \ell(e) x_e \\ \text{Subject to:} & \displaystyle \sum_{u \in N(s)} x(su) & = & 1 \\ & \displaystyle \sum_{u \in N(t)} x(tu) & = & 1 \\ & \displaystyle \sum_{u \in N(v)} x(vu) & = & 2 & \text{for all } v \in V \setminus \{s,t\} \\ & & x(e) & \in & \{0,1\} & \text{for all } e \in E \end{array}$$

Integer Programme Example: Minimum Cut

G = (V, E) be a graph with capacity $c : E \to \mathbb{R}^+$, and $s, t \in V$. **Problem:** Compute a minimum s, t-cut

Solution: A partition (S, T) of V with $s \in S$ and $t \in T$ \Rightarrow variables x_V for each $v \in V$ $x_V = 1$ if $v \in S$, $x_V = 0$ otherwise.

Minimize
$$\sum_{\{u,v\}\in E} c(\{u,v\})|x_u-x_v|$$
 Subject to:
$$x_s = 1 \\ x_t = 0 \\ x_v \in \{0,1\} \quad \text{for all } v \in V$$

Integer Programme Example: Minimum Spanning Tree

G = (V, E) be a graph with weight $w : E \to \mathbb{R}^+$, and $s, t \in V$.

Problem: Compute a minimum spanning tree

Solution: A spanning tree *T* \Rightarrow variables x_e for each $e \in E$ $x_E = 1$ if $e \in E(T)$, $x_e = 0$ otherwise.

Minimize
$$\sum_{e \in E} w(e) x_e$$
 Subject to:
$$\sum_{e = \{u,v\} \in E, u \in S, v \notin S} x_e \geq 1 \qquad \text{for all } S \subseteq V$$

$$x_e \in \{0,1\} \qquad \text{for all } e \in E$$

Remark: The number of constraints is exponential

- Reminder
- First examples of modelling
- 3 Exercises: understand a LP
- More Examples

(Integer) Linear Programme Example: Exercises

G = (V, E) be a graph with weight $w : E \to \mathbb{R}^+$, and $s, t \in V$. What compute the following programmes?

Maximize
$$\sum_{P \text{ path from s to t}} x_P$$
 Subject to:
$$\sum_{P,e \in E(P)} x_P \leq w(e) \qquad \text{for all } e \in E$$

$$x_P \in \{0,1\} \qquad \text{for all paths } P$$
 from s to t

Maximize
$$x_t$$
 Subject to: $x_s = 0$ $x_v \le x_u + w(\{u,v\})$ for all $\{v,u\} \in E$ $x_v \ge 0$ for all $v \in V$

Outline

- Reminder
- First examples of modelling
- Exercises: understand a LP
- More Examples

Integer Programme Example: Maximum Matching

G = (V, E) be a graph

Problem: Compute a maximum matching

Solution: a set $M \subseteq E$ of pairwise disjoint edges

$$\Rightarrow$$
 variables x_e for each $e \in E$ $x_e = 1$ if $e \in M$, $x_e = 0$ otherwise.

$$x_e = 1 \text{ if } e \in M, \, x_e = 0 \text{ oth}$$
 Maximize
$$\sum_{e \in E, v \in e} x_e$$
 Subject to:
$$\sum_{e \in E, v \in e} x_e \leq 1 \quad \text{ for all } v \in V$$

$$x_e \in \{0,1\} \quad \text{ for all } e \in E$$

