Collisions of Primordial Black Holes and Neutron Stars

IIItroduction

Flat Star Model

Future Work

Collisions of Primordial Black Holes and Neutron Stars

Brady Metherall 100516905

Monday November 28, 2016

Primordial Black Holes

Collisions of Primordial Black Holes and Neutron Stars

Brady Metheral

Introduction

Flat Star Model

Future Wor

- Normal black holes have a minimum mass on the order of a few solar masses.
- In the early universe while it was very hot and dense, small perturbations could be enough to create a small black hole.
- The mass of a primordial black hole is much less than one solar mass $(10^{-18} 10^{-6} M_{\odot})$, and microscopic in size.

Primordial Black Holes as Dark Matter

Collisions of Primordial Black Holes and Neutron Stars

Metherall

Introduction

Flat Star Model

Future Worl

Dark matter is matter that does not emit/absorb light, and is chargeless. Dark matter accounts for about a quarter of the matter in the universe, but we don't know what it is.

Primordial black holes may be a good candidate for dark matter since: they are chargeless, do not emit light, have a very small radius, and are non-relativistic. Also, most other proposed explanations of dark matter involve creating a new particle not part of the standard model.

Flat Star Model

Collisions of Primordial Black Holes and Neutron Stars

> Brady Metheral

Introductio

Flat Star Model

Solving for φ Solving for η Plotting η Solving for E

Future Wor

- Neutron stars are flat and infinite
- Primordial black holes are point masses
- Neutron stars are incompressible fluids
- Gravitational interactions are Newtonian
- Constant velocity

Eigenfunctions of Laplacian

Collisions of Primordial Black Holes and Neutron Stars

> Brady Metheral

ntroduction

Flat Star Model Solving for φ

Solving for φ Solving for η Plotting η Solving for E

uture Work

Assume a product solution for the velocity potential and solve the Laplacian.

$$\varphi = R(r)Z(z)\Theta(\theta)T(t)$$

$$\nabla^{2}\varphi = 0$$

$$\implies \varphi \propto \begin{cases} J_{\mu}(kr) \\ Y_{\mu}(kr) \end{cases} \begin{cases} e^{-kz} \\ e^{kz} \end{cases} \begin{cases} \sin(\mu\theta) \\ \cos(\mu\theta) \end{cases} T(t)$$

$$\implies \varphi \propto J_{0}(kr)e^{kz}T(t)$$

T(t) comes from boundary conditions.

Metherall

ntroductio

Flat Star Model

Solving for φ Solving for η Plotting η Solving for E

Future Wor

Definition

The Hankel transform of a function f(s) is given by

$$\mathscr{H}_{\nu}{f}(\sigma) = \int_0^\infty f(s)J_{\nu}(s\sigma)s\,ds,$$

where J_{ν} is the Bessel function of the first kind, of order $\nu \geq -\frac{1}{2}$, and σ is a non-negative real variable.

Corollary

The Hankel transform is self-reciprocal, that is, the inverse Hankel transform is also given by Definition 1.

Flat Star

Solving for φ Solving for η Plotting η Solving for E

Future Work

From the pressure condition:

$$\begin{split} \left(\frac{\partial^2\varphi}{\partial t^2} + g\frac{\partial\varphi}{\partial z} + \frac{\partial\Phi}{\partial t}\right)\bigg|_{z=0} &= 0\\ \text{where } \Phi = \frac{-Gm}{\sqrt{r^2 + (z+vt)^2}} = \int_0^\infty a(k)J_0(kr)k\,dk\\ \varphi &= \frac{Gmv}{g}\int_0^\infty \frac{J_0(kr)e^{kz}}{1+kv^2/g}\left(-\operatorname{sgn}(t)e^{-kv|t|} + 2\operatorname{H}(t)\cos(\omega_k t)\right)dk\\ \text{with } \omega_k^2 &= gk \end{split}$$

troduction

Flat Star Model Solving for φ Solving for η Plotting η Solving for E

Future Work

We can easily solve for the shape of the surface now that we have the velocity potential,

$$\left. \frac{\partial \varphi}{\partial z} \right|_{z=0} = \frac{\partial \eta}{\partial t}$$

$$\eta = \frac{Gm}{g} \int_0^\infty \frac{J_0(kr)}{1 + kv^2/g} \left(e^{-kv|t|} + 2 \operatorname{H}(t) v \sqrt{\frac{k}{g}} \sin(\omega_k t) \right) dk.$$

Maple was used to perform numerical integration and plot the surface waves.

Collisions of Primordial Black Holes and Neutron Stars

Brady Methera

Introductio

Flat Star Model Solving for φ Solving for η Plotting η

Future Work

Figure : t = -1 s.

Collisions of Primordial Black Holes and Neutron Stars

Brady Metheral

Introductio

Flat Star Model Solving for φ Solving for η Plotting η

Future Work

Figure : t = 0 s.

Collisions of Primordial Black Holes and Neutron Stars

Plotting η

Figure : t = 1 s.

Collisions of Primordial Black Holes and Neutron Stars

> Brady Metheral

Introductio

Flat Star
Model
Solving for φ Solving for η Plotting η

-Future Work

Figure : t=2 s.

Collisions of Primordial Black Holes and Neutron Stars

> Brady Metheral

Introductio

Flat Star Model
Solving for φ Solving for η Plotting η

-Future Work

Figure : t=3 s.

Collisions of Primordial Black Holes and Neutron Stars

> Brady Metheral

Introductio

Model
Solving for φ Solving for η Plotting η

Future Work

Figure : t=4 s.

Energy Transferred

Collisions of Primordial Black Holes and Neutron Stars

> Brady Metherall

ntroduction

Flat Star Model Solving for φ Solving for η Plotting η Solving for E

-uture Work We can calculate the energy by taking the sum of the kinetic, and potential energies,

$$\begin{split} E &= \lim_{t \to \infty} \frac{1}{2} \rho \int_{-\infty}^{0} \int_{0}^{\infty} |\nabla \varphi|^{2} \, r dr dz \int_{0}^{2\pi} d\theta \\ &+ \rho g \int_{0}^{\infty} \int_{0}^{\eta} z dz \, r dr \int_{0}^{2\pi} d\theta \\ &= 4\pi \rho \frac{G^{2} m^{2}}{a}. \end{split}$$

We take the limit as t approaches infinity, because we are interested in the total energy transferred.

Future Work

Collisions of Primordial Black Holes and Neutron Stars

> Brady Methera

Introductio

Flat Sta Model

Future Work Smooth Particle Hydrodynamics My focus next semester will be on simulating the collision with smooth particle hydrodynamics. Smooth particle hydrodynamics is a computational fluid dynamics method that uses N-Body methods, and is typically used for free surface simulations.