Подготовка к экзамену по курсу "Линейная алгебра и геометрия"

(весна 2003г., лектор - Э.Б. Винберг) 13 июня 2003 г.

1 Базис и размерность векторного пространства.

 $\underline{\mathrm{Def}}$. Векторным пространством над полем K называется аддитивная абелева группа V, в которой определена операция умножения на элементы поля K так, что выполнены следующие условия:

- 1. $\lambda(a+b) = \lambda a + \lambda b$ для всех $\lambda \in K$ и $a, b \in V$;
- 2. $(\lambda + \mu)a = \lambda a + \mu a$ для всех $\lambda, \mu \in K$ и $a \in V$;
- 3. $(\lambda \mu)a = \lambda(\mu a)$ для всех $\lambda, \mu \in K$ и $a \in V$;
- 4. $1 \cdot a = a$ для любого $a \in V$.

Элементы поля K называются скалярами (числами).

Простейшие следствия из аксиом:

- 1. $\lambda \cdot 0 = 0$ для всех $\lambda \in K$;
- 2. $\lambda(a-b) = \lambda a \lambda b$ для всех $\lambda \in K$ и $a, b \in V$;
- 3. $0 \cdot a = 0$ для любого $a \in V$;
- 4. $(\lambda \mu)a = \lambda a \mu a$ для всех $\lambda, \mu \in K$ и $a \in V$.

<u>Def.</u> Пусть есть система векторов $\{a_i\}_{i\in I}$ (не обязательно конечная). Линейной комбинацией этой системы векторов называется выражение $\sum\limits_{i\in I}\lambda_i a_i$, где $\lambda_i\in K$, причем лишь конечное число λ_i отлично от нуля.

 $\underline{\mathrm{Def}}$. Система векторов $\{a_i\}_{i\in I}$ называется линейно зависимой, если существует их нетривиальная линейная комбинация, равная нулю.

 $\underline{\mathrm{Def}}$. Базисом векторного пространства называется максимальная линейно независимая система его векторов (\Leftrightarrow линейно независимая система векторов, через которую любой вектор линейно выражается \Leftrightarrow система векторов, через которую всякий вектор линейно выражается единственным образом).

Коэффициенты этого выражения называются координатами вектора в базисе $\{e_i\}_{i\in I}$: если $x=\sum_{i\in I}x_ie_i$, то x_i - координаты вектора x.

<u>Def</u>. Векторное пространство называется конечномерным, если в нём существует конечный базис. **Теорема.** В конечномерном векторном пространстве все базисы равномощны.

Доказательство. (Первый семестр: доказывается, что конечные эквивалентные линейно независимые системы строк равномощны, что следует из основной леммы о линейной зависимости). **Q.E.D**.

 $\underline{\mathrm{Def}}$. Число векторов базиса пространства V называется размерностью данного пространства и

 $\underline{\mathrm{Def}}$. Отображение векторных пространств $\varphi:V_1\to V_2$ (над одним и тем же полем K) называется изоморфизмом, если:

- 1. φ биективно;
- 2. φ сохраняет операции, то есть:
 - $\varphi(a+b) = \varphi(a) + \varphi(b)$ для всех $a, b \in V$;
 - $\varphi(\lambda a) = \lambda \varphi(a)$ для всех $\lambda \in K$ и $a \in V$.

Если φ - изоморфизм, то $\varphi(0)=0$ и $\varphi\left(\sum_{i\in I}\lambda_ia_i\right)=\sum_{i\in I}\lambda_i\varphi\left(a_i\right)$, и поэтому φ сохраняет линейную зависимость систем векторов и переводит базис V_1 в базис V_2 .

<u>Def.</u> Векторные пространства называются изоморфными, если между ними существует хотя бы один изоморфизм.

Теорема. Векторные пространства конечной размерности изоморфны тогда и только тогда, когда их размерности равны.

Доказательство. 1) Если $\varphi:V_1\to V_2$ - изоморфизм и (e_1,\ldots,e_n) - базис V_1 , то $(\varphi(e_1),\ldots,\varphi(e_n))$ базис V_2 ;

2) Пусть $\dim V_1=\dim V_2,\ (e_1,\ldots,e_n)$ - базис $V_1,\ (f_1,\ldots,f_n)$ - базис $V_2.$ Определим $\varphi:V_1\to V_2$ по формуле $\varphi\left(\sum_{i}\lambda_{i}e_{i}\right)=\sum_{i}\lambda_{i}f_{i}$. Очевидно, что φ - изоморфизм V_{1} и V_{2} . **Q.Е.D.**

Следстсвие. Всякое n-мерное векторное пространство над K изоморфно K^n (изоморфизм осуществляется сопоставлением каждому вектору строки из его координат в каком-либо фиксированном базисе).

2 Преобразования координат в векторном пространстве.

Пусть есть (e_1,\ldots,e_n) - базис пространства V и (e'_1,\ldots,e'_n) - система n векторов пространства V. Пусть эти вектора выражаются через базисные следующим образом:

$$e'_{j} = \sum_{i=1}^{n} c_{ij} e_{i}$$
 $(j = 1, 2, \dots, n)$

Матрица, составленная из чисел c_{ij} называется матрицей перехода $C=(c_{ij})$ от базиса (e_1,\ldots,e_n) к системе векторов (e'_1, \ldots, e'_n) . Матричная запись: $(e'_1, \ldots, e'_n) = (e_1, \ldots, e_n) \cdot C$. **Теорема.** (e'_1, \ldots, e'_n) - базис \Leftrightarrow матрица C невырождена.

Доказательство. Установим изоморфизм между пространствами V и K^n , поставив в соответствие каждому вектору столбец его координат в базисе (e_1,\ldots,e_n) . При этом изоморфизме векторам e'_1, e'_2, \dots, e'_n будут соответствовать столбцы матрицы C. Система (e'_1, \dots, e'_n) линейно независима \Leftrightarrow столбцы матрицы C линейно независимы $\Leftrightarrow C$ невырождена. Q.E.D.

Если C невырождена, то $(e_1,\ldots,e_n)=(e'_1,\ldots,e'_n)\,C^{-1}$. Выведем формулы преобразования координат. Пусть $x=\sum_i x_ie_i;\quad x'=\sum_j x'_je'_j$.

Тогда
$$x=\sum_j x_j'e_j'=\sum_{i,j} x_j'c_{ij}e_i=\sum_i \left(\sum_j c_{ij}x_j'\right)e_i$$
, значит

$$x_i = \sum_{j=1}^{n} c_{ij} x'_j$$
 $(i = 1, 2, \dots, n)$

В матричной форме: пусть $X = (x_1, \dots, x_n)^\top$, $X' = (x'_1, x'_2, \dots, x'_n)^\top$. Тогда $x = (e_1, \dots, e_n) X = (e'_1, \dots, e'_n) X'$, значит $(e_1, \dots, e_n) X = (e_1, \dots, e_n) CX' \Rightarrow X = CX'$, таким образом $X' = C^{-1}X$.

3 Подпространства как множества решений систем однородных линейных уравненений.

 $\underline{\mathrm{Def}}$. Подмножество U векторного пространства V называется подпространством, если:

- 1. $a, b \in U \implies a + b \in U$;
- 2. $a \in U \implies \lambda a \in U \qquad \forall \lambda \in K;$
- 3. $0 \in U$ (непустота U).

 $\underline{\mathrm{Def}}.$ Пусть $S\subset V.$ Линейной оболочкой S называется множество

$$\langle S \rangle = \left\{ \sum_{i} \lambda_{i} x_{i} : x_{i} \in S, \lambda_{i} \in K \right\}.$$

Очевидно, что $\langle S \rangle$ - подпространство.

Более того, это наименьшее подпространство, содержащее S (в том смысле, что любое подпространство, содержащее S, должно содержать и $\langle S \rangle$), приём dim $S = \operatorname{rk} S$, и любая максимальная линейно независимая подсистема в S является базисом $\langle S \rangle$.

<u>Def.</u> Базис (e_1, \ldots, e_n) пространства V называется согласованным с подпространством U, если U натянуто на какие-то из базисных векторов.

Теорема. Для любого подпространства U существует согласованный с ним базис пространства V. Доказательство. Пусть (e_1, \ldots, e_k) - базис U. Дополним его до базиса (e_1, \ldots, e_n) всего пространства. Это и будет искомый базис пространства V. Q.E.D.

Следстсвие. $\dim U \leq \dim V$, причём $\dim U = \dim V \implies U = V$.

Теорема. Всякое подпространство $U \subset K^n$ есть множество решений некоторой системы однородных линейных уравнений.

Доказательство. Пусть (e_1,\ldots,e_n) - стандартный базис пространства $K^n,\ (e'_1,\ldots,e'_n)$ - такой базис, что $U=\langle e'_1,\ldots,e'_k\rangle$. Тогда в базисе (e'_1,\ldots,e'_n) U задаётся так:

$$U = \left\{ x = \sum_{j} x'_{j} e'_{j}, \quad x'_{k+1} = \dots = x'_{n} = 0 \right\}.$$

Пусть
$$(e'_1,\ldots,e'_n)=(e_1,\ldots,e_n)\,C$$
, тогда $\left(\begin{array}{c} x'_1\\ \vdots\\ x'_n \end{array}\right)=C^{-1}\left(\begin{array}{c} x_1\\ \vdots\\ x_n \end{array}\right)$. Подставляя в уравнения, зада-

ющие подпространство U в базисе (e'_1, \ldots, e'_n) выражения координат x'_1, x'_2, \ldots, x'_n через координаты x_1, x_2, \ldots, x_n , получим систему однородных линейных уравнений относительно x_1, x_2, \ldots, x_n , задающую U в стандартном базисе (e_1, \ldots, e_n) пространства V. **Q.E.D**.

4 Связь между размерностями суммы и пересечения двух подпространств.

Теорема. Для любых двух подпространств $U,W\subset V$ существует базис пространства V, согласованный с ними обоими.

Доказательство. Рассмотрим $U \cap W$ - также подпространство в V. Пусть (e_1, \dots, e_p) - базис $U\cap W$. Дополним его до базиса $(e_1,\ldots,e_p,e_{p+1},\ldots,e_k)$ подпространства U и его же - до базиса $(e_1, \dots, e_p, e_{k+1}, \dots, e_{k+l-p})$ подпространства W (здесь $\dim U = k, \dim W = l$). Докажем, что система векторов e_1, \ldots, e_{k+l-p} линейно независима (тогда дополним её до базиса пространства V, он и будет искомым).

Предположим, что $\sum\limits_{i=1}^{k+l-p}\lambda_ie_i=0$. Тогда $\sum\limits_{i=1}^k\lambda_ie_i=-\sum\limits_{j=1}^{k+l-p}\lambda_je_j$. Правая часть равенства - это

линейная комбинация базисных векторов подпространства U, левая - подпространства W. Значит $x=\sum\limits_{i=1}^k\lambda_ie_i\in U\cap W$, поэтому $x=\sum\limits_{i=1}^p\mu_ie_i=-\sum\limits_{j=k+1}^{k+l-p}\lambda_je_j$ (разложение вектора $\in U\cap W$ по базису

этого подпространства). Перенося всё в одну часть, получим $\sum_{i=1}^p \mu_i e_i + \sum_{j=k+1}^{k+l-p} \lambda_j e_j = 0$. Значит, $\mu_i = \lambda_j = 0 \ (i=1,\ldots,p; j=k+1,\ldots,k+l-p) \Rightarrow x=0 \Rightarrow \lambda_i = 0 \ (i=1,\ldots,k)$. Поэтому

векторы (e_1,\ldots,e_{k+l-p}) линейно независимы. Q.E.D.

 $\underline{\mathrm{Def}}$. Суммой подпространств U и $W \in V$ называется подпространство $U + W = \langle U \cup W \rangle$ - наименьшее подпространство, содержащее U и W. Ясно, что $U+W=\{u+w:u\in U,w\in W\}$ (такие векторы должны быть в U+W, но и сами они уже образуют подпространство).

Следстсвие. $\dim(U+W) = \dim U + \dim W - \dim(U\cap W)$.

Доказательство. $\dim(U+W)=k+l-p=\dim U+\dim W-\dim(U\cap W)$ - в обозначениях предыдущей теоремы: k + l - p линейно независимых векторов составляют базис U + W.

Для трёх подпространств, вообще говоря, не существует согласованного с ними базиса (рассм. 3 одномерных подпространства в \mathbb{R}^2).

5 Линейная независимость подпространств. Базис и размерность прямой суммы

 $\underline{\mathrm{Def}}$. Подпространства $U_1,\ldots,U_k\subset V$ называются линейно независимыми, если $u_1 + \dots + u_k = 0 \ (u_i \in U_i) \implies u_1 = u_2 = \dots = u_k = 0.$

Теорема. Два подпространства U и W линейно независимы $\Leftrightarrow U \cap W = 0$.

Доказательство. $u+w=0 \Leftrightarrow u=-w \in U \cap W$. Если $U \cap W=0$, то u=w=0. Обратно, если существует ненулевой вектор $z \in U \cap W$, то, сложив его с противоположным, получим z + (-z) = 0, где $z \in U, -z \in W$. Q.E.D.

Для трёх подпространств если их попарные пересечения равны {0}, то это не означает их линейной независимости.

Теорема. Если подпространства U_1, \ldots, U_k линейно независимы, то размерность их суммы равна сумме их размерностей: $\dim(U_1 + \cdots + U_k) = \dim U_1 + \cdots + \dim U_k$.

Доказательство. Пусть (e_{i1},\ldots,e_{in_i}) - базис в U_i $(i=1,\ldots,k),$ $\dim U_i=n_i$. Докажем, что

 $(e)=(e_{ij}\ :\ i=1,\ldots,k;\ j=1,\ldots,n_i)$ - базис $U_1+\cdots+U_k$:

1) Каждый вектор $u \in U_1 + \cdots + U_k$ имеет вид $u = u_1 + \cdots + u_k$ ($u_i \in U_i$) \Rightarrow выражается через (e);

2) Векторы (e) линейно независимы. Действительно, предположим, что $\sum_i \lambda_{ij} e_{ij} = 0$. Тогда

$$\sum_{i} \left(\sum_{j} \lambda_{ij} e_{ij} \right) = 0$$
; но $\forall i \ \sum_{j} \lambda_{ij} e_{ij} \in U_{i} \ \Rightarrow \ \sum_{j} \lambda_{ij} e_{ij} = 0 \ \Rightarrow \ \forall i \ \forall j \ \lambda_{ij} = 0$ (так как мы имеем

линейную комбинацию базисных векторов каждого из подпространств). Q.E.D.

Def. Сумма линейно независимых подпространств называется прямой суммой. Обозначается: $U_1\oplus U_2\oplus\cdots\oplus U_k$. Если $U_1\oplus\ldots\oplus U_k=V$, то говорят, что пространство V разложено в прямую сумму подпространств U_1,\dots,U_k . В этом случае $\dim V=\dim U_1+\dots+\dim U_k$. Каждый вектор из V единственным образом представляется в виде $x=x_1+\cdots+x_k$, где $x_i\in U_i$. Вектор x_i называется

проекцией x на U_i и обозначается $x_i = \operatorname{pr}_{U_i} x$ что зависит от всего разложения пространства V в прямую сумму.

6 Линейные отображения, их запись в координатах. Образ и ядро линейного отображения, связь между их размерностями.

<u>Def.</u> Отображение $\varphi: V \to U$ векторных пространств над полем K называется линейным, если:

- 1. $\varphi(x+y) = \varphi(x) + \varphi(y)$ для любых $x, y \in V$;
- 2. $\varphi(\lambda x) = \lambda \varphi(x)$ для любых $\lambda \in K$ и $x \in V$.

Свойства:

$$\varphi(0) = 0$$

$$\varphi(\lambda_1 x_1 + \dots + \lambda_k x_k) = \lambda_1 \varphi(x_1) + \dots + \lambda_k \varphi(x_k);$$

Линейно зависимая система векторов переходит в линейно зависимую. Линейное отображение конечномерных векторных пространств полностью определяется образами базисных векторов:

Пусть (e_1,\ldots,e_n) - базис пространства V. Линейное отображение $\varphi:V\to U$ однозначно определяется векторами $\varphi(e_j)=u_j$. Действительно, $x=\sum_i x_j e_j \ \Rightarrow \ \varphi(x)=\sum_i x_j u_j$. Обратно, если заданы

любые векторы $u_j \in U$, то можно определить линейное отображение $\varphi: V \to U$ по формуле $x = \sum_j x_j e_j \Rightarrow \varphi(x) = \sum_j x_j u_j$. Оно будет линейным и $\varphi(e_j) = u_j$.

Если в пространстве U выбран базис (f_1,\ldots,f_m) , то u_j можно разложить по этому базису: $u_j=\sum_i a_{ij}f_i$. Матрица $A=(a_{ij})$ называется матрицей линейного отображения φ относительно выбранных базисов пространств V и U. Координаты образов базисных векторов пишутся по столбцам, $(\varphi(e_1),\ldots,\varphi(e_n))=(f_1,\ldots,f_m)A$.

$$x = \sum_{j} x_{j} e_{j} \in V \implies \varphi(x) = \sum_{j} x_{j} u_{j} = \sum_{i,j} x_{j} a_{ij} f_{i} = \sum_{i} \left(\sum_{j} x_{j} a_{ij} \right) f_{i},$$

значит, если обозначить $\varphi(x)=y=\sum_i y_i f_i$, то $y_i=\sum_i a_{ij}x_j$ $(i=1,\ldots,m)$.

В матричной форме Y = AX, где $X = (x_1, x_2, \dots, x_n)^\top, Y = (y_1, y_2, \dots, y_n)^\top$. <u>Def.</u> Пусть $\varphi : V \to U$. Образом φ называется подмножество $\operatorname{Im} \varphi = \{\varphi(x) : x \in V\} \subset U;$ ядром φ - подмножество $\operatorname{Ker} \varphi = \{x \in V : \varphi(x) = 0\} \subset V.$ **Теорема.**

- 1. $\operatorname{Im} \varphi$ подпространство в U, $\dim \operatorname{Im} \varphi = \operatorname{rk} A$, где A матрица φ ;
- 2. Ker φ подпространство в V, dim Ker $\varphi = \dim V \operatorname{rk} A$;
- 3. $\forall b = \varphi(a) \in \operatorname{Im} \varphi \quad \varphi^{-1}(b) = a + \operatorname{Ker} \varphi$ (полный прообзаз равен смежному классу по ядру, в частности, φ инъективно $\Leftrightarrow \operatorname{Ker} \varphi = 0$).

Доказательство.

- 1. $\varphi(x) + \varphi(y) = \varphi(x+y) \in \operatorname{Im} \varphi;$ $\lambda \varphi(x) = \varphi(\lambda x) \in \operatorname{Im} \varphi;$
 - $0 = \varphi(0) \in \operatorname{Im} \varphi \Rightarrow \operatorname{Im} \varphi$ подпространство.

 $\operatorname{Im} \varphi = \langle \varphi(e_1), \dots, \varphi(e_n) \rangle \Rightarrow \dim \operatorname{Im} \varphi = \operatorname{rk} (\varphi(e_1), \dots, \varphi(e_n)).$

Но система векторов $(\varphi(e_1), \dots, \varphi(e_n))$ - это система столбцов матрицы A.

- 2. $\varphi(x) = \varphi(y) = 0 \Rightarrow \varphi(x+y) = \varphi(x) + \varphi(y) = 0;$
 - $\varphi(x) = 0 \Rightarrow \varphi(\lambda x) = \lambda \varphi(x) = 0;$

 $\varphi(0) = 0 \Rightarrow \operatorname{Ker} \varphi$ - подпространство.

Пусть (e_1,\ldots,e_k) - базис $\operatorname{Ker} \varphi,\ (e_1,\ldots,e_n)$ - базис V. Тогда $\operatorname{Im} \varphi = \langle \varphi(e_{k+1}),\ldots,\varphi(e_n) \rangle$. Докажем, что $\varphi(e_{k+1}),\ldots,\varphi(e_n)$ линейно независимы. Пусть $\lambda_{k+1}\varphi(e_{k+1})+\cdots+\lambda_n\varphi(e_n)=0$. Тогда $\varphi(\lambda_{k+1}e_{k+1}+\cdots+\lambda_ne_n)=0$, значит $\lambda_{k+1}e_{k+1}+\cdots+\lambda_ne_n\in\operatorname{Ker} \varphi\Rightarrow\lambda_{k+1}=\cdots=\lambda_n=0$ (иначе базис V линейно зависим). Таким образом $\dim\operatorname{Im} \varphi=n-k=\dim V-\dim\operatorname{Ker} \varphi$.

3. Пусть $b = \varphi(a) \in \operatorname{Im} \varphi$.

 $\forall y \in \operatorname{Ker} \varphi \quad \varphi(a+y) = \varphi(a) + \varphi(y) = b.$

Обратно, $\varphi(x) = b \Rightarrow \varphi(x - a) = \varphi(x) - \varphi(a) = 0 \Rightarrow x - a = y \in \operatorname{Ker} \varphi \Rightarrow x = a + y, \ y \in \operatorname{Ker} \varphi$. Значит, $\varphi^{-1}(b) = a + \operatorname{Ker} \varphi$. В частности, φ - инъективно $\Leftrightarrow |\varphi^{-1}(a)| = 1 \Leftrightarrow \operatorname{Ker} \varphi = 0$. Q.E.D.

7 Линейные функции, их запись в координатах. Сопряжённое пространство и сопряжённые базисы.

 $\underline{\mathrm{Def}}$. Функция α на векторном пространстве V со значениями в поле K называется линейной, если:

- 1. $\alpha(x+y) = \alpha(x) + \alpha(y) \quad \forall x, y \in V$:
- 2. $\alpha(\lambda x) = \lambda \alpha(x) \quad \forall \ \lambda \in K, \ \forall \ x \in V.$

Это специальный случай линейного отображения - отображение из V в поле K, рассматриваемое как векторное пространство над самим собой (dim = 1).

Запись линейной функции в координатах:

Пусть (e_1,\ldots,e_n) - базис $V,\ x=\sum\limits_{i=1}^nx_ie_i\Rightarrow\alpha(x)=\sum\limits_{i=1}^nx_i\alpha(e_i).$ Положим $a_i=\alpha(e_i),$ тогда

$$\alpha(x) = \sum_{i} a_i e_i.$$

Числа a_i называются координатами линейной функции α в базисе (e_1,\ldots,e_n) .

Преобразования координат при переходе к другому базису:

$$(e'_1, \dots, e'_n) = (e_1, \dots, e_n) C \Rightarrow (a'_1, \dots, a'_n) = (a_1, \dots, a_n) C.$$

Если $\alpha \neq 0$, то можно выбрать базис, в котором $\alpha(x) = x_1$. Действительно, dim Ker $\alpha = n-1$, пусть (e_2, \ldots, e_n) - базис Ker α . Возьмём $e_1 \notin \text{Ker } \alpha$, такой, что $\alpha(e_1) = 1$. Тогда (e_1, \ldots, e_n) - базис V, и в нём $\alpha(x) = x_1$.

Пространство линейных функций L(V,K) образует линейное (векторное) пространство над K.

Оно обозначается V^* и называется сопряжённым к V пространством.

Пусть (e_1,\ldots,e_n) - базис V. Рассмотрим координатные функции $\varepsilon_i(x)=x_i$.

Теорема. $(\varepsilon_1,\ldots,\varepsilon_n)$ - базис V^* . Доказательство. $\alpha(x) = \sum_i a_i x_i \Rightarrow \alpha = \sum_i a_i \varepsilon_i$. С другой стороны, если $\sum a_i \varepsilon_i = 0$, то $\left(\sum_{i} a_{i} \varepsilon_{i}\right)(e_{j}) = a_{j} = 0 \implies a_{1} = \dots = a_{n} = 0.$ Q.E.D. **Следстсвие.** Для конечномерного пространства $\dim V^* = \dim V$. $\underline{\mathrm{Def}}$. Базис $(\varepsilon_1,\ldots,\varepsilon_n)$ называется сопряжённым к базису (e_1,\ldots,e_n) .

8 Канонический изоморфизм конечномерного векторного пространства и второго сопряжённого пространства.

Рассмостим отображение $f: V \to V^{**}, x \mapsto f_x$, такое, что $f_x(\alpha) = \alpha(x)$. **Теорема.** f - изоморфизм. Доказательство.

1. *f* линейно:

$$f_{x+y}(\alpha) = \alpha(x+y) = \alpha(x) + \alpha(y) = f_x(\alpha) + f_y(\alpha)$$
, то есть $f_{x+y} = f_x + f_y$; $f_{\lambda x}(\alpha) = \alpha(\lambda x) = \lambda \alpha(x) = \lambda f_x(\alpha)$, то есть $f_{\lambda x} = \lambda f_x$.

2. $\dim V = \dim V^{**}$, поэтому достаточно доказать, что $\operatorname{Ker} f = 0$. $x \in \operatorname{Ker} f \Rightarrow f_x(\alpha) = 0 \ \forall \ \alpha \in V^* \Leftrightarrow \alpha(x) = 0 \ \forall \ \alpha \in V^* \Leftrightarrow x = 0$ Q.E.D.

Следстсвие. Всякий базис пространства V^* сопряжён некоторому базису пространства V. Замечание. Если $e_1,e_2,\ldots,e_n\in V,\ \varepsilon_1,\varepsilon_2,\ldots,\varepsilon_n\in V^*,$ причём $\varepsilon_i(e_j)=\delta_{ij},$ то (e_1,\ldots,e_n) и $(\varepsilon_1,\ldots,\varepsilon_n)$ - сопряжённые базисы. Действительно, если $\sum \lambda_i e_i = 0$, то рассмотрев значение ε_j от обеих частей равенства, получим $\lambda_j=0\ orall\ j\Rightarrow (e_1,\dots,e_n)$ - базис в $V\ \Rightarrow\ (arepsilon_1,\dots,arepsilon_n)$ - сопряжённый ему базис $V^*.$

Билинейные функции, их запись в координатах. Изменение матрицы билинейной функции при переходе к другому базису.

 $\underline{\mathrm{Def}}$. Билинейной функцией lpha на векторном пространстве V над полем K называется отображение $\alpha: V \times V \to K$, линейное по каждому аргументу. Запись в координатах:

Пусть
$$(e_1, \dots, e_n)$$
 - базис пространства $V, \ x = \sum_i x_i e_i, \ y = \sum_j y_j e_j.$ $\alpha(x,y) = \sum_{i,j} x_i y_j \cdot \alpha(e_i,e_j).$ Положим $a_{ij} = \alpha(e_i,e_j),$ тогда $\alpha(x,y) = \sum_{i,j} a_{ij} x_i y_j.$

Матрица $A=(a_{ij})$ называется матрицей билиниеной функции α в базисе (e_1,\ldots,e_n) . В матричной форме:

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \Rightarrow \alpha(x, y) = X^{\top} A Y.$$

При переходе к другому базису (e'_1, \ldots, e'_n) :

 $(e_1',\ldots,e_n')=(e_1,\ldots,e_n)\,C$ \Rightarrow $X=CX',\ Y=CY'.$ Тогда $\alpha(x,y)=X^\top AY=X'^\top C^\top ACY'.$ Таким образом,

 $A' = C^{\top}AC$.

<u>Def.</u> Ядром билинейной функции α называется (очевидно, подпространство)

$$\operatorname{Ker} \alpha = \{ y \in V : \alpha(x, y) = 0 \ \forall \ x \in V \}.$$

Теорема. $\dim \operatorname{Ker} \alpha = \dim V - \operatorname{rk} A$, где A - матрица функции α в каком-либо базисе.

Доказательство. $\alpha(x,y)=0 \ \forall \ x \Leftrightarrow \alpha(e_i,y)=0 \quad (i=1,\ldots,n).$

Но $\alpha(e_i,y)=\sum\limits_j a_{ij}y_j$, значит $\operatorname{Ker} \alpha$ задаётся системой однородных линейных уравнений

$$\sum_{j=1}^{n} a_{ij} y_j = 0 \quad (i = 1, \dots, n).$$

Следовательно, dim Ker $\alpha = n - \operatorname{rk} A$ Q.E.D.

10 Ортогональное дополнение к подпространству относительно симметрической или кососимметрической билинейной функции.

<u>Def.</u> Билинейная функция α называется симместрической (кососимместрической), если $\forall x,y \in V \ \alpha(x,y) = \alpha(y,x) \ (\alpha(x,y) = -\alpha(y,x), \ \mathrm{char} K \neq 2)$.

<u>Def.</u> Векторы x и y называются ортогональными относительно симметрической или кососимместрической билинейной функции α , если $\alpha(x,y)=0$.

Если α кососимметрическая, то каждый вектор ортогонален сам себе: $\alpha(x,x) = -\alpha(x,x) = 0$.

 $\underline{\mathrm{Def}}.$ Ортогональным дополнением к подпространсву $U\subset V$ относительно симметрической или кососимместрической билинейной функции α называется подпространство

 $U^{\perp}=\{y\in V\ :\ \alpha(x,y)=0\ \forall\ x\in U\}.$ В частности, $V^{\perp}=\operatorname{Ker}\alpha.$

Теорема. dim $U^{\perp} \geqslant \dim V - \dim U$.

Если же α невырождена, то $\dim U^{\perp} = \dim V - \dim U$, и $(U^{\perp})^{\perp} = U$.

Доказательство. Запишем уравнения U в координатах.

Заметим, что $U^{\perp} = \{y \in V : \alpha(e_i, y) = 0 \ \forall i\}$ (здесь e_1, \ldots, e_k - базис U). Дополним (e_1, \ldots, e_k) до базиса (e_1, \ldots, e_n) всего пространства V. В этом базисе U^{\perp} задаётся уравнениями:

$$\sum_{j} a_{ij} y_j = 0 \qquad (i = 1, \dots, k).$$

Значит, $\dim U^{\perp} \geqslant n-k = \dim V - \dim U$. Если же α невырождена, то $A=(a_{ij})$ - невырожденная матрица, следовательно её первые k строк линейно независимы, поэтому

$$\dim U^{\perp} = n - k = \dim V - \dim U.$$

Для доказательства того, что $(U^{\perp})^{\perp} = U$, достаточно заметить, что $(U^{\perp})^{\perp} \supset U$ и размерности U и $(U^{\perp})^{\perp}$ в случае невырожденности α совпадают, поэтому $(U^{\perp})^{\perp} = U$. **Q.Е.D.** <u>Def.</u> Подпростраство $U \subset V$ называется невырожденным относительно билинейной функции α , если функция $\alpha|_U$ невырождена.

Теорема. $V=U\oplus U^\perp \Leftrightarrow U$ невырождено относительно α . Доказательство.

- 1. U невырождено $\Leftrightarrow U \cap U^{\perp} = 0$ ядро $\alpha|_{U}$ нулевое;
- 2. $V = U \oplus U^{\perp} \Rightarrow U \cap U^{\perp} = 0 \Rightarrow U$ невырождено:
- 3. U невырождено $\Rightarrow U \cap U^{\perp} = 0 \Rightarrow$ сумма $U + U^{\perp}$ прямая. $\dim(U \oplus U^{\perp}) = \dim U + \dim U^{\perp} \geqslant \dim V \Rightarrow U \oplus U^{\perp} = V \qquad \mathbf{Q.E.D.}$

11 Связь между симметрическими билинейными и квадратичными функциями. Существование ортогонального базиса для симметрической билинейной функции.

<u>Def.</u> Базис (e_1, \dots, e_n) называется ортогональным относительно билинейной функции α , если в этом базисе матрица её имеет диагональный вид. В ортогональном базисе билинейная функция записывается как $\alpha(x,y) = \sum a_i x_i y_i = a_1 x_1 y_1 + \dots + a_n x_n y_n$.

<u>Def.</u> Квадратичной функцией, ассоциированной с симметрической билинейной функцией α , называется функция $q(x) = \alpha(x,x)$. В координатах: $q(x) = \sum_{i,j} a_{ij} x_i x_j$. Понятно, что α однозначно восстана-

вливается по q: $\alpha(x,y) = \frac{1}{2}(q(x+y) - q(x) - q(y))$.

Теорема. Для всякой симметрической билинейной функции α существует ортогональный базис. Доказательство. Индукцией по $n=\dim V$.

При n=1 доказывать нечего - любой базис ортогональный.

При n > 1 если $\alpha \equiv 0$, то доказывать нечего.

Пусть n>1 и $\alpha\neq 0$. Тогда и $q\neq 0$, то есть $\exists e_1\in V: q(e_1)\neq 0$. Подпространство $\langle e_1\rangle$ невырождено относительно $\alpha \Rightarrow V=\langle e_1\rangle\oplus\langle e_1\rangle^\perp$, $\dim \langle e_1\rangle^\perp=n-1$. По предположению индукции в $\langle e_1\rangle^\perp$ существует ортогональный базис (e_2,\ldots,e_n) . Значит (e_1,\ldots,e_n) - ортогональный базис V. Q.E.D.

12 Нормальный вид вещественной квадратичной функции. Закон инерции.

В ортогональном базисе матрица симметрической билинейной функции имеет вид:

$$A = \begin{pmatrix} a_1 & 0 & \dots & 0 \\ 0 & a_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_n \end{pmatrix}.$$

- 1. За счёт перестановки базисных векторов можно переставлять числа a_i ;
- 2. За счёт умножения базисных векторов на ненулевые элементы поля K, можно умножить a_i на квадраты элементов поля.

Число ненулевых коэффициентов a_i равно рангу $\operatorname{rk} q$ билинейной формы (и не зависит от базиса). Если $K = \mathbb{C}$, то можно добиться того, чтобы $a_i \in \{0,1\}$. Получим нормальный вид

$$q(x) = x_1^2 + \dots + x_{\operatorname{rk} q}^2.$$

Если $K = \mathbb{R}$, то можно добиться того, чтобы $a_i \in \{0, \pm 1\}$. Получим нормальный вид

$$q(x) = x_1^2 + x_2^2 + \dots + x_k^2 - x_{k+1}^2 - \dots - x_{k+l}^2$$
 $(k + l = \operatorname{rk} q).$

<u>Def.</u> Квадратичная функция q называется положительно определённой, если $\forall x \neq 0 \ q(x) > 0$. Квадратичная положительно определена \Leftrightarrow её нормальный вид есть $x_1^2 + \dots + x_n^2$. То есть для положительно определённой квадратичной функции её нормальный вид определяется однозначно. Понятно, что если q положительно определена, то $\det q > 0$ в любом базисе (потому что в нормальном виде $\det q = 1$).

Теорема (Закон инерции). Числа k и l в нормальном виде квадратичной функции не зависят от выбора базиса, в котором эта функция имеет нормальный вид.

Доказательство. Достаточно доказать, что k не зависит от базиса. Докажем, что k есть максимальная размерность подпространства, на котором данная квадратичная функция q положительно определена. Пусть $q(x)=x_1^2+x_2^2+\cdots+x_k^2-x_{k+1}^2-\cdots-x_{k+l}^2$ в базисе (e_1,\ldots,e_n) . На подпространстве $\langle e_1,\ldots,e_k\rangle$ q положительно определена.

Пусть теперь q положительно определена на каком-то подпространстве U и $\dim U > k$. Рассмотрим подпространство $W = \langle e_{k+1}, \dots, e_n \rangle$, $\dim W = n - k$. Но так как $\dim U + \dim W > n$, $U \cap W \neq 0$. Пусть $0 \neq x \in U \cap W$. Тогда q(x) > 0 с одной стороны и $q(x) = -x_{k+1}^2 - \dots - x_{k+l}^2 \leqslant 0$. Q.E.D. $\underline{\mathrm{Def}}$. Число k называется положительным индексом инерции квадратичной функции q, число l - отрицательным.

13 Процесс ортогонализации. Нахождение индексов инерции квадратичной функции методом Якоби.

Положим $V_k = \langle e_1, \dots, e_k \rangle$. Матрица функции $\alpha|_{V_k}$ в базисе (e_1, \dots, e_k) - это левый верхний угол порядка k матрицы A. Обозначим эту матрицу через A_k , её определитель - через δ_k .

Теорема (Процесс ортогонализации Грама - Шмидта). Предположим, что $\alpha|_{V_k}$ - невырождена, то есть $\delta_k \neq 0 \quad (k=1,\ldots,n)$. Тогда существует единственный ортогональный базис (f_1,\ldots,f_n) пространства V, для которого $f_k \in e_k + V_{k-1}$ $(k = 1, \ldots, n)$, при этом $q(f_k) = \delta_k/\delta_{k-1}$, если считать $\delta_0 = 1$ и $V_0 = 0$.

Доказательство. Положим $f_1 = e_1$, тогда $q(f_1) = q(e_1) = \delta_1$.

Далее, пусть f_1, \ldots, f_{k-1} , удовлетворяющие всем требуемым условиям, уже построены. Будем искать f_k в виде

$$f_k = e_k + \lambda_1 f_1 + \lambda_2 f_2 + \dots + \lambda_{k-1} f_{k-1} \in e_k + V_{k-1}.$$

Условия ортогональности: $\alpha(f_k, f_i) = \alpha(e_k, f_i) + \lambda_i q(f_i) = 0 \quad (i = 1, ..., k - 1).$

Так как $q(f_i) = \alpha(f_i, f_i) = \delta_i/\delta_{i-1} \neq 0$, то уравнение имеет единственное решение $\lambda_i = -\frac{\alpha(e_k, f_i)}{a(f_i)}$. Остаётся доказать, что $q(f_k) = \delta_k/\delta_{k-1}$.

Рассмотрим базисы (e_1, e_2, \dots, e_k) и (f_1, f_2, \dots, f_k) пространства V_k . Матрица перехода имеет вид

$$C = \begin{pmatrix} 1 & * & \dots & * \\ 0 & 1 & \dots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}.$$

 $\det C=1$. Значит, матрица $lpha|_{V_k}$ в обоих базисах имеет одинаковый определитель, то есть

$$\delta_k = \det A_k = \begin{vmatrix} q(f_1) & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & q(f_k) \end{vmatrix} = q(f_1) \cdot \dots \cdot q(f_k), \quad \text{ho} \quad q(f_1) \cdot \dots \cdot q(f_{k-1}) = \delta_{k-1}, \quad \mathcal{Q}.\mathcal{E}.\mathcal{D}.$$

Теорема (Метод Якоби). Пусть квадратичная функция q в каком-то базисе имеет матрицу A, все угловые миноры $\delta_1,\delta_2,\ldots,\delta_n$ которой отличны от нуля. Тогда отрицательный индекс инерции квадратичной функции q равен числу перемен знака в последовательности $(1, \delta_1, \delta_2, \dots, \delta_n)$. Доказательство. По предыдущей теореме, функцию можно привести к виду

$$\delta_1 x_1^2 + \frac{\delta_2}{\delta_1} x_2^2 + \dots + \frac{\delta_n}{\delta_{n-1}} x_n^2.$$

Коэффициент при x_i^2 отрицателен тогда и только тогда, когда на i-м месте в последовательности $(1, \delta_1, \delta_2, \dots, \delta_n)$ имеет место перемена знака. Q.E.D.

14 Критерий Сильвестра.

Теорема (Критерий Сильвестра). Пусть квадратичная функция q в каком-то базисе имеет матрицу A. Тогда q положительно определена тогда и только тогда, когда все угловые миноры марицы A положительны.

Доказательство. Если $\delta_1, \delta_2, \dots, \delta_n$ положительны, то в силу Метода Якоби отрицательный индекс инерции q равен нулю, и $\det q \neq 0$, значит q положительно определена.

Обратно, пусть q положительно определена. Положим $V_k = \langle e_1, e_2, \dots, e_k \rangle$. Тогда матрица ограничения $\alpha|_{V_k}$ есть A_k - левый верхний угол порядка k матрицы A. Ясно, что $\alpha|_{V_k}$ - положительно определённая квадратичная функция. Значит, $\det \alpha|_{V_k} = \det A_k = \delta_k > 0 \quad (k=1,2,\dots,n)$ Q.E.D.

15 Существование симплектического базиса для кососимметрической билинейной функции.

<u>Def.</u> Базис (e_1,\ldots,e_n) называется симплектическим относительно кососимметрической билинейной функции α , если $\alpha(e_1,e_2)=-\alpha(e_2,e_1)=1,\ \alpha(e_3,e_4)=-\alpha(e_4,e_3)=1,\ldots,\alpha(e_{2m-1},e_{2m})=$ $=-\alpha(e_{2m},e_{2m-1})=1$ и $\alpha(e_i,e_j)=0$ в остальных случаях. Иными словами, если матрица α в этом базисе имеет вил:

Теорема. Для любой кососимметрической билинейной функции α существует симплектический базис.

Доказательство. Индукцией по $n = \dim V$.

Если n = 0 или 1, то доказывать нечего.

Если $n\geqslant 2$, но $\alpha\equiv 0$, то тоже доказывать нечего.

Если $n\geqslant 2$, и $\alpha\neq 0$, то $\exists \,e_1,e_2$ такие, что $\alpha(e_1,e_2)\neq 0$. Нормируя, добьёмся того, чтобы $\alpha(e_1,e_2)=1$. Матрица $\alpha|_{\langle e_1,e_2\rangle^\perp}$ имеет вид

$$\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right),$$

значит, $U = \langle e_1, e_2 \rangle^{\perp}$ - невырожденное подпространство, поэтому $V = U \oplus U^{\perp}$. По предположению индукции, в U^{\perp} существует симплектический базис (e_3, e_4, \dots, e_n) . Тогда (e_1, \dots, e_n) - искомый симплектический базис всего пространства. Q.E.D.

16 Евклидовы простраснтва.

Длина вектора и угол между векторами.

 $\underline{\mathrm{Def}}$. Евклидовым векторным пространством называется вещественное векторное пространство, в котором фиксирована некоторая положительно определённая билинейная функция, называемая скалярным умножением и обозначаемая (,).

<u>Def.</u> Длиной вектора x в евклидовом векторном пространстве называется арифметическое значение квадратного корня из его скалярного квадрата: $|x| = \sqrt{(x,x)}$.

Свойство длины: $|\lambda x| = |\lambda| \cdot |x|$.

<u>Def.</u> Углом между ненулевыми векторами x и y в евклидовом векторном пространстве называется такой угол α ($0 \le \alpha \le \pi$), косинус которого равен $\cos \alpha = \frac{(x,y)}{|x| \cdot |y|}$. Корректность этого определения вытекает из следующей теоремы:

Теорема (Неравенство Коши-Буняковского). Для любых векторов $x,y \in V$ выполняется неравенство $|(x,y)| \leq |x| \cdot |y|$, причём равенство достигается $\Leftrightarrow x$ и y пропорциональны.

Доказательство. Если $y = \lambda x$, то $|(x,y)| = |\lambda| \cdot |x|^2 = |x| \cdot |y|$.

Пусть теперь x и y непропорциональны. Тогда они составляют базис подпространства $U=\langle x,y\rangle$. Ограничение $(\ ,\)|_U$ является положительно определённой симметрической билинейной функцией, значит

$$\left| \begin{array}{ccc} (x,x) & (x,y) \\ (y,x) & (y,y) \end{array} \right| > 0, \quad \Rightarrow \quad |x|^2 \cdot |y|^2 - (x,y)^2 > 0 \quad \Rightarrow \quad |(x,y)| \leqslant |x| \cdot |y|, \qquad \mathcal{Q}.\mathcal{E}.\mathcal{D}$$

Верно неравенство треугольника $|x + y| \le |x| + |y|$.

Из общей теории следует, что в любом конечномерном евклидовом векторном пространстве существует ортонормированный базис. В этом базисе скалярное умножение принимает вид:

$$(x,y) = x_1y_1 + x_2y_2 + \dots + x_ny_n.$$

<u>Def</u>. Изоморфизмом евклидовых пространств называется отображение, которое является изоморфизмом векторных пространств и сохраняет скалярное умножение. Понятно, что евклидовы пространства одинаковой конечной размерности изоморфны (возьмём два ортонормированных базиса, установим изоморфизм, ассоциированный с ними, тогда и скалярное произведение будет сохраняться).

17 Матрица и определитель Грама системы векторов евклидова пространства.

 $\underline{\mathrm{Def}}$. Пусть V - евклидово простраснтво и $a_1,a_2,\ldots,a_k\in V$. Матрицей Грама этой системы векторов называется матрица

$$G(a_1, a_2, \dots, a_k) = \begin{pmatrix} (a_1, a_1) & (a_1, a_2) & \dots & (a_1, a_k) \\ (a_2, a_1) & (a_2, a_2) & \dots & (a_2, a_k) \\ \vdots & \vdots & \ddots & \vdots \\ (a_k, a_1) & (a_k, a_2) & \dots & (a_k, a_k) \end{pmatrix}.$$

Теорема. $\det G(a_1, a_2, \ldots, a_k) \geqslant 0$, причём равенство достигается \Leftrightarrow векторы a_1, a_2, \ldots, a_k линейно зависимы. Доказательство.

- 1. Пусть a_1,a_2,\dots,a_k линейно зависимы, то есть $\sum\limits_{i=1}^k \lambda_i a_i=0$, тогда для каждого j $\sum\limits_i \lambda_i(a_i,a_j)=0$, значит, строки матрицы Грама линейно зависимы с теми же коэффициентами, значит $\det G(a_1,a_2,\dots,a_k)=0$;
- 2. Пусть a_1, a_2, \ldots, a_k линейно независимы. Тогда они составляют базис подпространства $U = \langle a_1, a_2, \ldots, a_k \rangle$. $G(a_1, a_2, \ldots, a_k)$ это матрица ограничения $(\ ,\)|_U$ в этом базисе, значит $\det G(a_1, a_2, \ldots, a_k) > 0$. Q.E.D.

18 Ортонормированные базисы евклидова пространства и ортогональные матрицы.

Теорема. Пусть (e_1, \ldots, e_n) - ортонормированный базис пространства V, и пусть $(e'_1, \ldots, e'_n) = (e_1, \ldots, e_n) C$. Тогда (e'_1, \ldots, e'_n) - также ортонормированный базис $\Leftrightarrow C^{-1} = C^{\top}$ (такие матрицы называются ортогональными).

Доказательство. $G(e'_1, e'_2, \dots, e'_n) = C^{\top} G(e_1, e_2, \dots, e_n) C = C^{\top} C$, как матрицы скалярного умножения в двух базисах. Поэтому базис (e'_1, \dots, e'_n) является ортонормированным $\Leftrightarrow G(e'_1, e'_2, \dots, e'_n) = E \Leftrightarrow C^{\top} = C^{-1}$ **Q.E.D.**

19 Расстояние от вектора до подпростраснтва, его выражение через определители Грама.

Для всякого подпростраснтва $U \in V$ евклидова векторного пространства $U \oplus U^{\perp} = V$, так как U - невырождено относительно скалярного умножения. Значит, $\forall \ x \in V$ единственным образом представим в виде x = y + z, где $y \in U, z \in U^{\perp}$. Вектор y называется ортогональной проекцией вектора x на подпространство U, вектор z - ортогональной составляющей вектора x: $y = \operatorname{pr}_{U} x, \ z = \operatorname{ort}_{U} x.$

Если (e_1, e_2, \dots, e_k) - ортонормированный базис в U, то $\operatorname{pr}_U x = \sum_{i=1}^k (x, e_i) e_i$.

Действительно, $\left(x-\sum\limits_{i=1}^k(x,e_i)e_i\;;\;e_j\right)=0\;\forall\;j,$ значит, разность принадлежит $U^\perp.$

Если же (e_1, e_2, \dots, e_k) - ортогональный базис подпространства U, то $\operatorname{pr}_U x = \sum_{i=1}^k \frac{(x, e_i)}{(e_i, e_i)} e_i$.

(действительно, рассмотрим $e_i' = \frac{e_i}{\sqrt{(e_i, e_i)}}$ и воспользумся предыдущим).

 $\underline{\underline{\mathrm{Def}}}$. Расстояние между векторами: $\rho(x,y) = |x-y|$, расстояние между подмножествами: $\rho(X,Y) = \inf_{x \in X, y \in Y} \rho(x,y)$.

Теорема. Пусть $U \subset V$ - подпространство, $x \in V$. Тогда $\rho(x, U) = |\text{ort }_U x|$, причём единственный ближайший к вектору x вектор подпространства U есть рг $_U x$.

Доказательство. Пусть x=y+z, где $y\in U,z\in U^{\perp}$. Пусть $y'\in U,\ y'\neq y$.

Надо доказать, что $\rho(x, y') > \rho(x, y)$.

x-y'=(x-y)+(y-y')=z+u, где $u\in U$, ort $_{U}x=z\perp u$. $\Rightarrow |x-y'|=\sqrt{|z|^2+|u|^2}>|z|$ Q.Е.D. Следствие. Из процесса ортогонализации вытекает, что если (e_1,e_2,\ldots,e_{k-1}) - произвольный базис в U, то

$$(\rho(x,U))^2 = \frac{\det G(e_1,\ldots,e_{k-1},x)}{\det G(e_1,\ldots,e_{k-1})}.$$

Доказательство. Действительно, рассмотрим процесс ортогонализации произвольного базиса (e_1,\ldots,e_n) пространства V (можно ортогонализовать, так как все угловые миноры положительны). Пусть получается базис (f_1,\ldots,f_n) . Понятно, что $f_k=\operatorname{ort}_{V_{k-1}}e_k$, где $V_{k-1}=\langle e_1,\ldots,e_{k-1}\rangle=\langle f_1,\ldots,f_{k-1}\rangle$. Тогда $f_k=e_k-\operatorname{pr}_{V_{k-1}}e_k=e_k-\sum_{i=1}^{k-1}\frac{(e_k,f_i)}{(f_i,f_i)}f_i$, и $(f_k,f_k)^2=\frac{\det G(e_1,\ldots,e_k)}{\det G(e_1,\ldots,e_{k-1})}$. Теперь, полагая $e_k=x$, (в случае $x\in U$ всё и так очевидно) получаем то, что надо. **Q.E.D.**

20 Объём параллелепиппеда в евклидовом пространстве (две формулы).

<u>Def.</u> Параллелепиппедом, натянутым на базис (a_1, \ldots, a_n) называется множество

 $G(a_1, ..., a_n) = A^{\top} G(e_1, ..., e_n) A = A^{\top} A. \quad \det G(a_1, ..., a_n) = (\det A)^2 \Rightarrow$

$$P(a_1, \dots, a_n) = \left\{ \sum_i \lambda_i a_i : 0 \leqslant \lambda_i \leqslant 1 \right\}$$

21 Полуторалинейные функции, их запись в координатах. Изменение матрицы полуторалинейной функции при переходе к другому базису. Эрмитовы и косоэрмитовы полуторалинейные функции, связь между ними.

<u>Def.</u> Полуторалинейной функцией на комплексном пространстве V называется функция $\alpha: V \times V \to \mathbb{C},$ обладающая линейностью по второму аргументу и антилинейностью по первому, то есть:

1.
$$\alpha(x_1 + x_2, y) = \alpha(x_1, y) + \alpha(x_2, y)$$
;

 $\Rightarrow \operatorname{vol} P(a_1, \dots, a_n) = |\det A| \quad \mathbf{Q.E.D.}$

2.
$$\alpha(\lambda x, y) = \overline{\lambda}\alpha(x, y)$$
.

Пусть (e_1,\ldots,e_n) - базис пространства V. Тогда если $x=\sum\limits_i x_ie_i,\quad y=\sum\limits_j y_je_j,$ то

$$\alpha(x,y) = \sum_{i,j} a_{ij} \overline{x}_i y_j,$$
 где $a_{ij} = \alpha(e_i,e_j).$

Матрица $A = (a_{ij})$ называется матрицей полуторалинейной функции α в базисе (e_1, \dots, e_n) (понятно, что любой комплексной матрице соответствует полуторалинейная функция).

$$\alpha(x,y) = X^*AY$$
, где $X = (x_1, x_2, \dots, x_n)^\top$, $Y = (y_1, y_2, \dots, y_n)^\top$, $X^* = \overline{X}^\top$.

Свойства:

1.
$$(C+D)^* = C^* + D^*$$
;

2.
$$(\lambda C)^* = \overline{\lambda} C^*$$
:

3.
$$(CD)^* = D^*C^*$$
.

Рассмотрим переход к другому базису: $(e'_1, \ldots, e'_n) = (e_1, \ldots, e_n) C$. Преобразования координат: X = CX', Y = CY'.

$$\alpha(x,y) = X^*AY = (CX')^*A(CY') = X'^*(C^*AC)Y'.$$

 $\underline{\mathrm{Def}}$. Ядром полуторалинейной функции lpha называется подпространство

$$\operatorname{Ker} \alpha = \{ y \in V : \alpha(x, y) = 0 \ \forall \ x \in V \} = \{ y \in V : \alpha(e_i, y) = 0 \ \forall \ i = 1, \dots, n \}$$

Теорема. $\dim \operatorname{Ker} \alpha = \dim V - \operatorname{rk} A$ **Q.E.D.** (доказательство аналогично)

<u>Def.</u> Полуторалинейная функция называется эрмитовой (косоэрмитовой), если $\alpha(x,y) = \overline{\alpha(y,x)}$ (соответственно, $\alpha(x,y) = -\overline{\alpha(y,x)}$).

Очевидно, что полуторалинейная функция α эрмитова \Leftrightarrow функция $i\alpha$ косоэрмитова.

22 Нормальный вид эрмитовой функции. Закон инерции.

Будем рассматривать только эрмитовы полуторалинейные функции.

<u>Def.</u> Векторы x и y называются ортогональными относительно эрмитовой полуторалинейной функции α , если $\alpha(x,y)=0$. Ортогональным дополнением к подпространству U называется подпространство $U^{\perp}=\{y\in V: \alpha(x,y)=0\ \forall\ x\in U\}.$

Теорема. $V = U \oplus U^{\perp} \Leftrightarrow U$ - невырожденное подпространство (относительно α). **Q.Е.D.**

<u>Def.</u> Квадратичной эрмитовой функцией, ассоциированной с эрмитовой полуторалинейной функцией α называется $q(x) = \alpha(x, x)$. Понятно, что $\overline{q(x)} = \overline{\alpha(x, x)} = \alpha(x, x) = q(x) \rightarrow q(x) \in \mathbb{R}$.

Теорема. Эрмитова полуторалинейная функция α однозначно восстанавливается по своей квадратичной функции q.

Доказательство. $q(x+y) = \alpha(x+y,x+y) = q(x) + q(y) + \alpha(x,y) + \overline{\alpha(x,y)}$.

 $q(x+iy) = \alpha(x+iy, x+iy) = q(x) + q(y) + i\alpha(x,y) - i\alpha(y,x).$

Для $\alpha(x,y)$ и $\alpha(y,x)$ получаем систему линейных уравнений с ненулевым определителем, значит восстанавливается однозначно **Q.E.D.**

Следстсвие. $q \equiv 0 \Rightarrow \alpha \equiv 0$.

Теорема. Для всякой эрмитовой полуторалинейной функции существует ортогональный базис.

Доказательство. Аналогично. Q.Е.D.

В этом базисе $\alpha(x,y)=a_1\overline{x}_1y_1+\cdots+a_n\overline{x}_ny_n$, где $a_i=q(e_i)\in\mathbb{R}.$

Нормируя базисные векторы можно добиться того, чтобы $a_i \in \{\pm 1, 0\}$. Получим нормальный вид:

$$\alpha(x,y) = \overline{x}_1 y_1 + \dots + \overline{x}_k y_k - \overline{x}_{k+1} y_{k+1} - \dots - \overline{x}_{k+l} y_{k+l};$$

$$q(x) = |x_1|^2 + \dots + |x_k|^2 - |x_{k+1}|^2 - \dots - |x_{k+l}|^2.$$

 $\underline{\mathrm{Def}}$. Эрмиова квадратичная функция q называется положительно определённой, если $q(x)>0\ \forall\ x\neq0$.

Теорема (закон инерции). Числа k и l в нормальном виде эрмитовой квадратичной функции не зависят от базиса, в котором она имеет нормальный вид

Доказательство. Аналогично. Q.Е.D.

Числа k и l называются соответственно положительным и отрицательным индексами инерции эрмитовой квадратичной функции q. Аналогично для эрмитовых полуторалинейных функций имеют место процесс ортогонализации, метод Якоби и критерий Сильвестра.

23 Эрмитовы пространства. Ортонормированные базисы эрмитова пространства и унитарные матрицы.

<u>Def.</u> Эрмитовым пространством называется комплексное векторное пространство, в котором фиксирована некоторая положительно определённая эрмитова полуторалинейная функция, называемая скалярным умножением и обозначаемая (,).

Можно определить по аналогии с евклидовым пространством длину вектора $|x| = \sqrt{(x,x)}$, угол между векторами. Верно неравенство Коши-Буняковского $|(x,y)| \leq |x| \cdot |y|$, неравенство треугольника $|x+y| \le |x| + |y|$. Определено расстояние между векторами $\rho(x,y) = |x-y|$.

В любом конечномерном эрмитовом пространстве существует ортонормированный базис, в котором

$$(x,y) = \overline{x}_1 y_1 + \dots + \overline{x}_n y_n;$$

$$(x,x) = |x_1|^2 + \dots + |x_n|^2.$$

Пусть (e_1, \dots, e_n) - ортонормированный базис, $(e'_1, \dots, e'_n) = (e_1, \dots, e_n) C$.

Тогда базис (e'_1, \dots, e'_n) ортонормирован $\Leftrightarrow C^*C = E$ (такие матрицы называются унитарными). Для любого подпространства $U \subset V$ эрмитова пространства $V = U \oplus U^{\perp}$.

24 Линейные операторы, их запись в координатах.

Изменение матрицы линейного оператора при переходе к другому базису. Ранг и определитель линейного оператора. Невырожденные линейные операторы.

 $\underline{\mathrm{Def}}$. Линейным оператором в векторном пространстве V (или линейным преобразованием пространства V) называется линейное отображение пространства V в себя $\mathcal{A}:V\to V$. Def. Подпростраснтво $U \subset V$ называется инвариантным относительно оператора \mathcal{A} , если $\mathcal{A}U\subset U$, то есть $\forall \ x\in U$ $\mathcal{A}x\in U$. В этом случае можно рассмотреть $\mathcal{A}|_U$ - линейный оператор в подпространстве U.

Теперь пусть $\dim V < \infty$, и пусть \mathcal{A} - линейный оператор в пространстве V.

Пусть (e_1,\ldots,e_n) - базис V.

Разложим $\mathcal{A}e_j=\sum a_{ij}e_i$ - в отличие от общих линейных отображений, в обоих случаях использу-

ется один и тот же базис. Матрица $A=(a_{ij})$ называется иатрицей линейного оператора ${\cal A}$ в базисе (e_1,\ldots,e_n) - в j-м столбце этой матрицы стоят координаты образа e_i в этом же базисе.

В матричной форме: $(Ae_1, \dots, Ae_n) = (e_1, \dots, e_n) A$.

Запись линейного оператора в координатах:

Запись линеиного оператора в координатах:
$$x = \sum_{i} x_{i} e_{i}, \ \mathcal{A}x = y = \sum_{j} y_{j} e_{j}, \ X = (x_{1}, x_{2}, \dots, x_{n})^{\top}, \ Y = (y_{1}, y_{2}, \dots, y_{n})^{\top}.$$
 Тогда $Y = AX$.

Изменение матрицы линейного оператора при переходе к другому базису (e'_1,\ldots,e'_n) :

Пусть
$$(e'_1, \ldots, e'_n) = (e_1, \ldots, e_n) C$$
. Тогда $(\mathcal{A}e'_1, \ldots, \mathcal{A}e'_n) = (e \ cuny \ линейности) = (\mathcal{A}e_1, \ldots, \mathcal{A}e_n) C = (e_1, \ldots, e_n) AC = (e'_1, \ldots, e'_n) C^{-1}AC$, значит $A' = C^{-1}AC$.

Понятно, что ранг и определитель линейного оператора не зависят от базиса.

Def. Линейный оператор называется невырожденным, если его определитель отличен от нуля.

Из теории общих линейных отображений следует, что

- dim Im $\mathcal{A} = \operatorname{rk} \mathcal{A}$;
- $\dim \operatorname{Ker} A = \dim V \operatorname{rk} A$.

25 Собственные векторы и собственные значения линейного оператора.

Если $V = V_1 \oplus \ldots \oplus V_s$, где V_i $(i = 1, \ldots, s)$ - инвариантные подпространства, то в соответсвующем базисе пространства V матрица $\mathcal A$ имеет блочно-диагональный вид. Рассмотрение одномерных инвариантных подпространств приводит к понятию собственного вектора.

<u>Def.</u> Ненулевой вектор $e \in V$ называется собственным вектором оператора \mathcal{A} , если $\mathcal{A}e = \lambda e$ для некоторого $\lambda \in K$. Число λ называется собственным значением оператора \mathcal{A} .

Пусть \mathcal{A} - линейный оператор в конечномерном векторном пространстве V.

Понятно, что если существуют собственные векторы с собственным значением λ , то $\det(\mathcal{A} - \lambda \mathcal{E}) = 0$, и наоборот.

Вместе с нулевым вектором собственные вектора, отвечающие одному и тому же собственному значению λ , образуют подпространство $V_{\lambda}(\mathcal{A}) = \operatorname{Ker}(\mathcal{A} - \lambda \mathcal{E})$, называемое собственным подпространством.

Def. Характеристическим многочленом оператора \mathcal{A} называется многочлен (n-й степени)

$$f_{\mathcal{A}}(t) = \det(t\mathcal{E} - \mathcal{A}) = (-1)^n \det(\mathcal{A} - t\mathcal{E}) = (-1)^n \begin{vmatrix} a_{11} - t & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - t & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - t \end{vmatrix}.$$

Непосредстсвенно из определений вытекает, что

Теорема. Число λ является собственным значением оператора $\mathcal{A} \Leftrightarrow$ оно является корнем характеристического многочлена $f_{\mathcal{A}}$. При этом $V_{\lambda}(\mathcal{A}) = \operatorname{Ker}(\mathcal{A} - \lambda \mathcal{E})$. **Q.E.D**.

Чтобы получить собственные векторы, отвечающие собственному значению λ , надо взять ненулевые решения системы уравнений $(\mathcal{A} - \lambda \mathcal{E})x = 0$.

26 Собственные подпространства линейного оператора, их свойства. Достаточное условие существования собственного базиса.

Теорема. dim $V_{\lambda}(A) \leq$ кратности корня λ в f_{A} .

Доказательство. Пусть (e_1, e_2, \dots, e_k) - базис $V_{\lambda}(\mathcal{A}), \ (e_1, \dots, e_n)$ - базис всего пространства. В этом базисе запишем матрицу линейного оператора:

$$A = \begin{pmatrix} \lambda & 0 & C \\ 0 & \lambda & C \\ 0 & \lambda & \\ 0 & B \end{pmatrix};$$

$$f_{\mathcal{A}}(t) = \det(tE - A) = \begin{vmatrix} t - \lambda & 0 & \\ 0 & t - \lambda & \\ 0 & t - \lambda & \\ 0 & tE - B \end{vmatrix} = (t - \lambda)^k f_B(t) \Rightarrow$$

Q.E.D.

 \Rightarrow кратность корня λ в $f_{\mathcal{A}}(t)$ больше либо равна k.

Теорема. Собственные подпространства, отвечающие различным собственным значениям, линейно независимы.

Доказательство. Пусть $\lambda_1,\ldots,\lambda_s$ - различные собственные значения \mathcal{A} . Докажем, что $V_{\lambda_1}(\mathcal{A}),\ldots,V_{\lambda_s}(\mathcal{A})$ линейно независимы, индукцией по s. При s=1 доказывать нечего. Предположим, что $V_{\lambda_1}(\mathcal{A}), \ldots, V_{\lambda_s}(\mathcal{A})$ линейно зависимы (s>1). Тогда найдутся такие $v_i \in V_{\lambda_i}(\mathcal{A})$ не все равные нулю, что $v_1 + \cdots + v_s = 0$. Применим к этому равенству оператор \mathcal{A} . Получим $\lambda_1 v_1 + \cdots + \lambda_s v_s = 0$. Из второго равенства вычтем первое, умноженное на λ_s : $(\lambda_1 - \lambda_s)v_1 + \dots + (\lambda_{s-1} - \lambda_s)v_{s-1} = 0$. По предположению индукции, $(\lambda_i - \lambda_s)v_i = 0$ $(i = 1, \dots, s-1)$. Но тогда $v_i = 0 \ (i = 1, ..., s-1)$ так как $\lambda_i \neq \lambda_s$. Но тогда $v_s = 0$. Противоречие. **Q.E.D**. **Следстсвие.** Если $f_{\mathcal{A}}$ имеет n различных корней, то для \mathcal{A} существует базис из собственных векторов, очевидно.

27 Инвариантные подпространства линейного оператора. Существование одномерного или двумерного инвариантного подпространства для линейного оператора в вещественном векторном пространстве.

```
\Piусть V - вещественное векторное пространство. Определим комплексификацию
V(\mathbb{C}) = \{x + iy : x, y \in V\}.
Операции:
(x_1 + iy_1) + (x_2 + iy_2) = (x_1 + x_2) + i(y_1 + y_2);
(\lambda + \mu i)(x + iy) = (\lambda x - \mu y) + i(\lambda y + \mu x).
Понятно, что V(\mathbb{C}) - векторное пространство, V(\mathbb{C}) \supset V = \{x+0i : x \in V\}.
Любой базис V над \mathbb{R} является базисом V(\mathbb{C}) над \mathbb{C}:
x = \sum_k x_k e_k; \ y = \sum_k y_k e_k \ \Rightarrow \ x + iy = \sum_k (x_k + iy_k) e_k. Всякий линейный оператор в V единственным образом продолжается до линейного оператора в
```

 $V(\mathbb{C})$: $\mathcal{A}_{\mathbb{C}}(x+iy)=\mathcal{A}x+i\mathcal{A}y$. В вещественном базисе матрица $\mathcal{A}_{\mathbb{C}}$ совпадает с матрицей \mathcal{A} .

Теорема. Для любого линейного оператора в вещественном векторном пространстве существует одномерное или двумерное инвариантное подпространство.

Доказательство. Если $f_{\mathcal{A}}$ имеет вещественный корень, то есть одномерное инвариантное подпространство. Предположим, что $f_{\mathcal{A}}$ имеет мнимый корень (то есть комплексное число с ненулевой мнимой частью) $\lambda + \mu i.\Pi$ усть $x + iy \in V(\mathbb{C})$ - вектор, отвечающий этому собственному значению,

то есть
$$Ax + iAy = (\lambda + \mu i)(x + iy)$$
. Это означает, что
$$\begin{cases} Ax = \lambda x - \mu y; \\ Ay = \mu x - \lambda y. \end{cases}$$

Мы видим, что $\langle x, y \rangle$ - не более чем двумерное инвариантное подпространство. Q.E.D.

28 Связь между линейными операторами и билинейными (полуторалинейными) функциями в евклидовом (эрмитовом) пространстве. Сопряжённые операторы.

Пусть V - евклидово пространство. Каждому линейному оператору поставим в соответствие билинейную функцию $\varphi_{\mathcal{A}}(x,y) = (x,\mathcal{A}y).$

В ортонормированном базисе матрица $\varphi_{\mathcal{A}}$ совпадает с матрицей \mathcal{A} : $\varphi_{\mathcal{A}}(e_i,e_j)=(e_i,\mathcal{A}e_j)=a_{ij}$. Отображение $\mathcal{A} \mapsto \varphi_{\mathcal{A}}$ является изоморфизмом пространства линиеных операторов на пространство билинейных функций. Но каждой билинейной функции можно поставить в соответствие "транспонированную" билинейную функцию $\varphi^{\top}(x,y) = \varphi(y,x)$. Матрица такой функции есть транспозиция исходной. В частности, можно рассмотреть $\varphi_{\mathcal{A}}^{\top}$, по определению ей соответствует линейный оператор \mathcal{A}^* , называемый сопряжённым к оператору \mathcal{A} : $(x,\mathcal{A}^*y) = (y,\mathcal{A}x) = (\mathcal{A}x,y)$. В ортонормированном базисе матрица \mathcal{A}^* является транспонированной матрицей оператора \mathcal{A} .

Def. Линейный оператор \mathcal{A} называется симметрическим (самосопряжённым), если $\mathcal{A}^* = \mathcal{A}$.

Def. Линейный оператор \mathcal{A} называется кососимметрическим, если $\mathcal{A}^* = -\mathcal{A}$.

<u>Def.</u> Линейный оператор \mathcal{A} называется ортогональным, если $\mathcal{A}^*\mathcal{A} = E$, то есть \mathcal{A} сохраняет скалярное произведение: $(\mathcal{A}x, \mathcal{A}y) = (\mathcal{A}^*\mathcal{A}x, y) = (x, y)$.

Теперь пусть V - эрмитово пространство. Также определяется полуторалинейная функция $\varphi_{\mathcal{A}}(x,y)=(x,\mathcal{A})$. В ортонормированном базисе (e_1,\ldots,e_n) матрица $\varphi_{\mathcal{A}}$ совпадает с матрицей \mathcal{A} . Введём φ^* - сопряжённую полуторалинейную функцию следующим образом: $\varphi^*(x,y)=\overline{\varphi(y,x)}$. Как и в евклидовом пространстве, сопряжённый оператор \mathcal{A}^* определяется из условия $\varphi_{\mathcal{A}^*}=\varphi_{\mathcal{A}}^*$. $\varphi_{\mathcal{A}^*}(x,y)=(x,\mathcal{A}^*y)=\varphi_{\mathcal{A}}^*(x,y)=\overline{(y,\mathcal{A}x)}=(\mathcal{A}x,y)$.

Значит, $(x, A^*y) = (Ax, y)$ - полностью аналогично евклидовому случаю.

<u>Def.</u> Оператор \mathcal{A} в эрмитовом пространстве называется эрмитовым (косоэрмитовым), если $\mathcal{A}^* = \mathcal{A}$ ($\mathcal{A}^* = -\mathcal{A}$).

 $\underline{\mathrm{Def}}$. Оператор $\mathcal A$ в эрмитовом пространстве называется унитарным, если $\mathcal A^*=\mathcal A^{-1}.$

29 Существование ортонормированного собственного базиса для симметрического оператора. Приведение квадратичной функции в евклидовом пространстве к каноническому виду.

Теорема. Пусть \mathcal{A} - симметрический, кососимметрический или ортогональный оператор в евклидовом пространстве, $U\subset V$ - инвариантное подпространство. Тогда U^\perp - тоже инвариантное подпространство.

Доказательство.

- 1. Пусть \mathcal{A} симметрический оператор. Пусть $y\in U^\perp, \ x\in U$. Тогда $(x,\mathcal{A}y)=(\mathcal{A}x,y)=0,$ так как $\mathcal{A}x\in U,y\in U^\perp.$
- 2. Для кососимметрических операторов всё аналогично.
- 3. Пусть \mathcal{A} ортогональный оператор. Тогда $\mathcal{A}|_U$ тоже ортогональный оператор, значит является невырожденным. Пусть $y \in U^\perp$, $x \in U$. Надо доказать, что $\mathcal{A}y \in U^\perp$. Но $\exists \ z \in U$ такой, что $x = \mathcal{A}z$. Тогда $(x, \mathcal{A}y) = (\mathcal{A}z, \mathcal{A}y) = (z, y) = 0$ Q.E.D.

Теорема. Для любого симметричекого оператора в евклидовом пространстве существует ортонормированный базис из собственных векторов.

Доказательство. Индукция по $n = \dim V$.

При n = 1 доказывать нечего.

Пусть n=2. В ортонормированном базисе $A=\left(\begin{array}{cc} a & b \\ b & c \end{array}\right)$. Запишем:

$$f_{\mathcal{A}}(t) = \begin{vmatrix} t-a & -b \\ -b & t-c \end{vmatrix} = t^2 - (a+c)t + ac - b^2. \ t_{1,2} = \frac{a+c \pm \sqrt{(a-c)^2 + 4b^2}}{2} \in \mathbb{R}.$$

Значит существует одномерное инвариантное подпространство $U \subset V$. Тогда $V = U \oplus U^{\perp}$, и U^{\perp} тоже инвариантно. Возьмём $e_1 \in U$, $e_2 \in U^{\perp}$ - единичные, собственные, ортогональные векторы.

Тогда (e_1, e_2) - искомый базис.

Теперь пусть n > 2. Существует одномерное или двумерное инвариантное подпространство, но и в двумерном инвариантном подпространстве существует одномерное.

Пусть U - одномерное инвариантное подпространство, тогда $V = U \oplus U^{\perp}$. Но dim $U^{\perp} = n-1$, значит по предположению индукции $\mathbf{Q}.\mathbf{E}.\mathbf{D}$.

Следстсвие. Если $\mathcal A$ - симметрический оператор, то $V=\bigoplus_{\lambda}V_{\lambda}(\mathcal A)$, причём $V_{\lambda}(\mathcal A)\bot V_{\mu}(\mathcal A)$ при $\lambda\neq\mu$.

Доказательство. Пусть (e_1, \ldots, e_n) - ортонормированный базис из собственных векторов, $\mathcal{A}e_i = \lambda_i e_i$. Тогда $V_{\lambda}(\mathcal{A}) = \langle e_i : \lambda_i = \lambda \rangle$. - линейная оболочка всех векторов e_i с собственным значением $\lambda_i = \lambda$. **Q.E.D.**

Теорема. Для любой квадратичной функции q в евклидовом пространстве V существует ортонормированный базис, в котором q имеет вид $q(x) = \lambda_1 x_1^2 + \dots + \lambda_n x_n^2$. При этом числа $\lambda_1, \lambda_2, \dots, \lambda_n$ определяются однозначно с точностью до перестановки (приведение к главным осям).

Доказательство. $q(x)=(\mathcal{A}x,x)$, где \mathcal{A} - симметрический оператор. В любом ортонормированном базисе матрица q совпадает с матрицей \mathcal{A} . В частности, $q(x)=\lambda_1x_1^2+\cdots+\lambda_nx_n^2\Leftrightarrow$ матрица \mathcal{A} в этом базисе диагональна \Leftrightarrow базис состоит из собственных векторов. По предыдущей теореме такой ортонормированный базис существует, а $\lambda_1,\lambda_2,\ldots,\lambda_n$ - собственные значения оператора \mathcal{A} , они не зависят от базиса. **Q.E.D**.

30 Приведение к каноническому виду матрицы ортогонального оператора.

Каковы собственные значения ортогонального оператора?

$$Ax = \lambda x \implies (Ax, Ax) = \lambda^2(x, x) = (x, x) \implies \lambda = \pm 1.$$

Теорема. Для любого ортогонального оператора существует ортонормированный базис, в котором его матрица имеет вид:

$$\Pi(\alpha_1)$$

$$\Pi(\alpha_m)$$

$$-1$$

$$-1$$

$$1$$

Доказательство. Индукцией по $n = \dim V$.

- n=1. Очевидно, что $A=(\pm 1)$ в любом базисе.
- $\underline{n=2}$. Пусть (e_1,e_2) ортонормированный базис. Пусть $\mathcal{A}e_1$ образует угол α с e_1 . Так как $\mathcal{A}e_1\bot\mathcal{A}e_2$, то возможно два случая:
 - 1. либо \mathcal{A} есть поворот на угол α , и тогда $A = \Pi(\alpha)$;
 - 2. либо \mathcal{A} есть отражение относительно биссектрисы угла между e_1 и $\mathcal{A}e_1$, и тогда $A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ в подходящем ортонормированном базисе.

 $\underline{n>2}$. Существует одномерное или двумерное инвариантное подпространство $U\subset V,$ тогда $V=U\oplus U^\perp,$ и U^\perp инвариантно.

Далее стандартным рассуждением получаем что надо. Q.Е.D.

31 Существование ортонормированного собственного базиса для эрмитова (унитарного) оператора.

Всякий линейный оператор в эрмитовом пространстве имеет, очевидно, собственный вектор.

Теорема. Если \mathcal{A} - эрмитовый или унитарный оператор и $U\subset V$ - инвариантное подпространство, то U^{\perp} - тоже инвариантное подпространство.

Доказательство. Аналогично вещественному случаю. Q.Е.D.

Теорема. Собственные значения эрмитова (унитарного) оператора являются вещественными (соответственно, по модулю равными единице).

Доказательство.

- 1. Если \mathcal{A} эрмитовый, то $(\mathcal{A}e, e) = \lambda(e, e) = (e, \mathcal{A}e) = \overline{\lambda}(e, e) \Rightarrow \lambda \in \mathbb{R}; \quad (e \neq 0)$
- 2. Если \mathcal{A} унитарный, то $(\mathcal{A}e, \mathcal{A}e) = \lambda \overline{\lambda}(e, e) = (e, e) \Rightarrow |\lambda| = 1. \quad (e \neq 0)$ Q.E.D.

Следстсвие. Всякий симметрический оператор в евклидовом пространстве имеет собственный вектор.

Доказательство. Рассмотрим комплексификацию. Q.E.D.

Теорема. Для всякого эрмитова (унитарного) оператора в эрмитовом пространстве существует ортонормированный базис из собственных векторов.

Доказательство. Аналогично евклидову случаю (без рассмотрения случая двумерного инвариантного подпространства.) **Q.E.D**.

32 Полярное разложение невырожденного линейного оператора в евклидовом (эрмитовом) пространстве.

<u>Def.</u> Симметрический оператор называется положительно определённым, если соответствующая квадратичная функция положительно определена, то есть все собственные значения оператора положительны.

Лемма. Для любого положительно определённого симметрического оператора $\mathcal B$ существует единственный положительно определённый симметриеский оператор $\mathcal S$, такой, что $\mathcal S^2=\mathcal B$.

Доказательство.

 $1.~\mathrm{B}~\mathrm{некотором}$ ортонормированном базисе оператор $\mathcal B$ записывается диагональной матрицей

$$\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_n \end{pmatrix}$$
, $\lambda_i > 0$. Рассмотрим оператор \mathcal{S} ,

который в том же базисе записывается матрицей $\begin{pmatrix} \sqrt{\lambda_1} & 0 \\ & \ddots \\ 0 & \sqrt{\lambda_n} \end{pmatrix}, \ \sqrt{\lambda_i} > 0.$

Очевидно, что $S^2 = \mathcal{B}$, и S - положительно определённый симметрический оператор.

2. Пусть $S^2 = \mathcal{B}$, и S - положительно определённый симметрический оператор.

Пусть μ_1,\ldots,μ_m - различные собственные значения оператора $\mathcal{S}.$

Тогда $V=V_{\mu_1}(\mathcal{S})\oplus\ldots\oplus V_{\mu_m}(\mathcal{S})$, причём различные слагаемые ортогональны.

Оператор \mathcal{B} действует на $V_{\mu_i}(\mathcal{S})$ как умножение на μ_i^2 . Значит $V_{\mu_i}(\mathcal{S}) = V_{\mu^2}(\mathcal{B})$.

Поэтому μ_i и $V_{\mu_i}(\mathcal{S})$ определены однозначно как корни из собственных значений оператора \mathcal{B} и собственные подпространства оператора \mathcal{B} . Q.E.D.

Теорема (Полярное разложение). Всякий невырожденный линейный оператор $\mathcal A$ в евклидовом пространстве единственным образом представим в виде $\mathcal A = \mathcal S \mathcal O$, где $\mathcal S$ - положительно определённый симметрический оператор, а $\mathcal O$ - ортогональный оператор.

Доказательство.

1. Пусть $\mathcal{A} = \mathcal{SO}$. Тогда $\mathcal{A}\mathcal{A}^* = \mathcal{SOO}^*\mathcal{S}^* = \mathcal{SS}^* = \mathcal{S}^2$. Заметим, что $\mathcal{A}\mathcal{A}^*$ для невырожденного оператора есть положительно определённый симметрический оператор:

 $(\mathcal{A}\mathcal{A}^*)^* = \mathcal{A}^{**}\mathcal{A}^* = \mathcal{A}\mathcal{A}^*;$ $(\mathcal{A}\mathcal{A}^*x, x) = (\mathcal{A}^*x, \mathcal{A}^*x) > 0$ при $x \neq 0$.

По лемме $\mathcal S$ определён однозначно, но тогда и $\mathcal O = \mathcal S^{-1}\mathcal A$ тоже определён однозначно.

2. Рассмотрим $\mathcal{A}\mathcal{A}^*$ - по лемме существует невырожденный положительно определённый симметрический оператор \mathcal{S} такой, что $\mathcal{A}\mathcal{A}^* = \mathcal{S}^2$. Положим $\mathcal{O} = \mathcal{S}^{-1}\mathcal{A}$, тогда $\mathcal{A} = \mathcal{S}\mathcal{O}$. Но \mathcal{O} - ортогональный оператор: $\mathcal{O}\mathcal{O}^* = \mathcal{S}^{-1}\mathcal{A}\mathcal{A}^*\mathcal{S}^{*-1} = \mathcal{S}^{-1}\mathcal{S}^2\mathcal{S}^{-1} = \mathcal{E}$, Q.E.D.

Полярное разложение невырожденного линейного оператора в эрмитовом пространстве доказывается абсолютно аналогично.

33 Корневые подпространства линейного оператора. Разложение пространства в прямую сумму корневых подпространств.

<u>Def.</u> Вектор $e \in V$ называется корневым вектором оператора \mathcal{A} , если существует такое $m \in \mathcal{N} \cup \{0\}$, что $(\mathcal{A} - \lambda \mathcal{E})^m e = 0$. Наименьшее такое m называется высотой корневого вектора e. Собственные векторы - это корневые векторы высоты 1, нулевой вектор имеет высоту 0.

Если $(A - \lambda \mathcal{E})^m e = 0$, то $(A - \lambda \mathcal{E}^{m-1} e)$ - собственный вектор с собственным значением λ . Значит, корневые векторы могут существовать только для собственных значений оператора \mathcal{A} . Совокупность всех корневых векторов, отвечающих одному и тому же λ , образует подпространство. Оно называется корневым подпространством и обозначается $V^{\lambda}(\mathcal{A})$. Понятно, что если e - корневой вектор высоты m, то $(\mathcal{A} - \lambda \mathcal{E})e$ - корневой вектор высоты m-1. Значит, $(\mathcal{A} - \lambda \mathcal{E})V^{\lambda}(\mathcal{A}) \subset V^{\lambda}(\mathcal{A})$. Поэтому $V^{\lambda}(\mathcal{A})$ инвариантно относительно $\mathcal{A} - \lambda \mathcal{E}$, значит, и относительно \mathcal{A} .

Лемма. В корневом подпространстве $V^{\lambda}(\mathcal{A})$ существует базис, в котором матрица \mathcal{A} имеет вид:

$$\left(\begin{array}{ccc} \lambda & & * \\ & \ddots & \\ 0 & & \lambda \end{array}\right).$$

Доказательство. $V^{\lambda}(\mathcal{A}) = \bigcup_{m=0}^{\infty} \operatorname{Ker} (\mathcal{A} - \lambda \mathcal{E})^m$, поэтому

$$\operatorname{Ker}(A - \lambda \mathcal{E}) \subset \operatorname{Ker}(A - \lambda \mathcal{E})^2 \subset \cdots \subset \operatorname{Ker}(A - \lambda \mathcal{E})^p = V^{\lambda}(A).$$

Выберем базис в ${\rm Ker}\,({\cal A}-\lambda{\cal E})$, дополним его до базиса ${\rm Ker}\,({\cal A}-\lambda{\cal E})^2$, и так далее. Получим базис в $V^\lambda({\cal A})$, в котором матрица ${\cal A}-\lambda{\cal E}$ имеет вид

Следстсвие. Характеристический многочлен оператора $\mathcal{A}|_{V^{\lambda}(\mathcal{A})}$ имеет вид $(t-\lambda)^q$, где $q=\dim V^{\lambda}(\mathcal{A})$.

Следстсвие. При $\lambda \neq \mu$ оператор $\mathcal{A} - \mu \mathcal{E}$ невырожден на $V^{\lambda}(\mathcal{A})$.

Теорема. dim $V^{\lambda}(\mathcal{A}) =$ кратности корня λ в $f_{\mathcal{A}}(t)$.

Доказательство. Пусть (e_1, \ldots, e_q) - базис в $V^{\lambda}(\mathcal{A})$.

Дополним его до базиса (e_1, \ldots, e_n) пространства V. В этом базисе матрица $\mathcal A$ имеет вид:

$$A = \left(\begin{array}{cc} B & D \\ 0 & C \end{array}\right),$$

где B - матрица $\mathcal{A}|_{V^{\lambda}(\mathcal{A})}$. Тогда

$$f_{\mathcal{A}}(t) = \begin{vmatrix} tE - B & -D \\ 0 & tE - C \end{vmatrix} = (t - \lambda)^q \cdot \det(tE - C).$$

Докажем, что $\det(tE-C)$ не делится на $t-\lambda$, то есть $\det(\lambda E-C)\neq 0$. Рассмотрим оператор $\mathcal C$ в пространстве $\langle e_{q+1},\dots,e_n\rangle$, задаваемый матрицей C. Если $\det(\lambda E-C)=0$, то λ - собственное значение $\mathcal C$, то есть $\exists \ e\in\langle e_{q+1},\dots,e_n\rangle\ ,\ e\neq 0$, такой что $\mathcal Ce=\lambda e$. Но тогда $\mathcal Ae=\lambda e+u$ для некоторого $u\in\langle e_1,\dots,e_q\rangle=V^\lambda(\mathcal A)$. Таким образом $(\mathcal A-\lambda\mathcal E)e\in V^\lambda(\mathcal A)\Rightarrow \ e\in V^\lambda(\mathcal A)$. Противоречие. Q.E.D.

Теорема. Корневые подпространства, отвечающие различным собственным значениям λ , линейно независимы.

Доказательство. Пусть $(\lambda_1, \dots, \lambda_s)$ - различные собственные значения.

Будем рассуждать индукцией по s.

При s = 1 доказывать нечего.

Пусть s>1. Предположим, что $v_1+\cdots+v_s=0$, где $v_i\in V^{\lambda_i}(\mathcal{A})$. Применим к этому равенству $(\mathcal{A}-\lambda_s\mathcal{E})^m$, где m выбрано так, что $(\mathcal{A}-\lambda_s\mathcal{E})^mv_s=0$. Тогда

$$(\mathcal{A} - \lambda_s \mathcal{E})^m v_1 + \dots + (\mathcal{A} - \lambda_s \mathcal{E})^m v_{s-1} = 0.$$

Заметим, что $(\mathcal{A} - \lambda_s \mathcal{E})^m v_i \in V^{\lambda_i}(\mathcal{A})$. По предподожению, все слагаемые равны нулю: $(\mathcal{A} - \lambda_s \mathcal{E})^m v_i = 0$ $i = 1, \ldots, s-1$. Но это значит, в силу невырожденности $(\mathcal{A} - \lambda_s \mathcal{E})^m$ на $V^{\lambda_i}(\mathcal{A})$ при $s \neq i$, что $v_i = 0$ $i = 1, \ldots, s-1$. Но тогда и $v_s = 0$. **Q.E.D.**

Теорема. Если $f_{\mathcal{A}}(t) = (t - \lambda_1)^{k_1} \dots (t - \lambda_s)^{k_s}$, где $\lambda_1, \dots, \lambda_s$ различны, то $V = V^{\lambda_1}(\mathcal{A}) \oplus \dots \oplus V^{\lambda_s}(\mathcal{A})$. Доказательство. По двум предыдущим теоремам, эти подпространства линейно независимы, и сумма их размерностей равна размерности всего пространства, поэтому **Q.E.D**.

34 Нильпотентные операторы. Разложение пространства в прямую сумму циклических подпространств нильпотентного оператора.

 $V^{\lambda}(\mathcal{A}) = \mathrm{Ker}\,(\mathcal{A} - \lambda \mathcal{E})^m$ для некоторого m. Значит, если обозначить $\mathcal{N} = \mathcal{A} - \lambda \mathcal{E}|_{V^{\lambda}(\mathcal{A})}$, то $\mathcal{N}^m = 0$, поэтому \mathcal{N} - нильпотентный оператор. Изучим нильпотентные операторы.

Пусть \mathcal{N} - нильпотентный оператор в пространстве V. Высотой вектора v назовём наименьшее m, для которого $\mathcal{N}^m v = 0$. Обозначается ht v.

Лемма 1. Пусть e - вектор высоты m. Тогда векторы $e, \mathcal{N}e, \dots, \mathcal{N}^{m-1}e$ линейно независимы.

Доказательство. Пусть $\lambda_0 e + \lambda_1 \mathcal{N} e + \cdots + \lambda_{m-1} \mathcal{N}^{m-1} e = 0$ - нетривиальная линейная зависимость. Пусть λ_k - первый ненулевой коэффициент. Применим \mathcal{N}^{m-k-1} , получим $\lambda_k \mathcal{N}^{m-1} e = 0$.

Противоречие. $\mathbf{Q}.\mathbf{E}.\mathbf{D}.$

<u>Def.</u> Подпространство $\langle e, \mathcal{N}e, \dots, \mathcal{N}^{m-1}e \rangle$ называется циклическим подпространством, порождённым вектором e. Это подпространство инвариантно относительно \mathcal{N} , причём в базисе

 $(e, \mathcal{N}e, \dots, \mathcal{N}^{m-1}e)$ матрица ограничения \mathcal{N} на это подпространство имеет вид:

$$\left(\begin{array}{cccc}
0 & 1 & & 0 \\
& 0 & & \\
& & \ddots & 1 \\
0 & & & 0
\end{array}\right).$$

Такая матрица называется нильпотентной жордановой клеткой.

Лемма 2. Пусть e - вектор высоты $m, U = \langle e, \mathcal{N}e, \dots, \mathcal{N}^{m-1}e \rangle$. Если $e' \in U \setminus \mathcal{N}U$, то e' порождает то же циклической попространство U.

Доказательство. $e' = \lambda_0 e + \lambda_1 \mathcal{N} e + \dots + \lambda_{m-1} \mathcal{N}^{m-1} e, \ \lambda_0 \neq 0$, значит $\mathcal{N}^{m-1} e' = \lambda_0 \mathcal{N}^{m-1} e \neq 0 \Rightarrow \text{ht } e' = m \Rightarrow \langle e', \mathcal{N} e', \dots, \mathcal{N}^{m-1} e' \rangle = U.$ Q.E.D.

Теорема. Для всякого нильпотентного оператора \mathcal{N} всё пространство может быть разложено в прямую сумму циклических подпространств, а число слагаемых в разложении равно dim Ker \mathcal{N} . Доказательство. Индукцией по $n = \dim V$.

При n = 1 доказывать нечего.

Пусть n>1. Так как $\mathcal N$ вырожден, то $\mathcal NV\neq V$. Пусть U - любое пространство размерности n-1, содержащее $\mathcal NV$. Очевидно, что U инвариантно, так как $\mathcal NV\subset U\Rightarrow \mathcal NU\subset U$. По предположению, U разложимо в прямую сумму циклических подпространств $U=U_1\oplus\ldots\oplus U_k$. Пусть $e\in V\setminus U$. Тогда $\mathcal Ne\in U\Rightarrow \mathcal Ne=u_1+\cdots+u_k$ $u_i\in U_i$. Если $u_i\in \mathcal NU_i$, то есть $u=\mathcal Nv_i$ $v_i\in U_i$, то, заменив e на $e-v_i$, получим $u_i=0$. Так что будем считать, что для каждого i либо $u_i\notin \mathcal NU_i$, либо $u_i=0$.

- 1. Пусть все $u_i=0$, то есть $\mathcal{N}e=0$. Тогда $\langle e \rangle$ одномерное циклическое подпространство, $V=\langle e \rangle \oplus U_1 \oplus \ldots \oplus U_k$.
- 2. Если не все $u_i = 0$, то ht $\mathcal{N}e = \max_{i \ : \ u_i \neq 0}$ ht $u_i = m$. Без ограничения общности считаем, что ht $u_1 = m$. Тогда ht e = m+1. Докажем, что $V = \langle e, \mathcal{N}e, \dots, \mathcal{N}^m e \rangle \oplus U_2 \oplus \dots \oplus U_k$. Надо доказать, что сумма прямая, ведь так как $u_i \notin \mathcal{N}U_i$, dim $U_1 = m$, поэтому сумма размерностей уже равна dim V. Так как U_2, \dots, U_k линейно независимы, достаточно доказать, что $\langle e, \mathcal{N}e, \dots, \mathcal{N}^m e \rangle \cap (U_2 \oplus \dots \oplus U_k) = 0$. Пусть $\lambda_0 e + \lambda_1 \mathcal{N}e + \dots + \lambda_m \mathcal{N}^m e \in U_2 \oplus \dots \oplus U_k$. Так как $e \notin U$, то $\lambda_0 = 0$. Проектируя на U_1 , получаем, что (так как $\mathcal{N}e = u_1 + \dots + u_k$) $\lambda_1 u_1 + \lambda_2 \mathcal{N}u_1 + \dots + \lambda_m \mathcal{N}^{m-1}u_1 = 0$. Но тогда по Лемме $1, \lambda_1 = \dots = \lambda_m = 0$.

Теперь докажем про число подпространств. Пусть $V = U_1 \oplus \ldots \oplus U_k$ - разложение V в прямую сумму циклических подпространств. Поэтому $\operatorname{Ker} \mathcal{N} = \operatorname{Ker} \mathcal{N}|_{U_1} \oplus \ldots \oplus \operatorname{Ker} \mathcal{N}|_{U_k}$. Но $\dim \operatorname{Ker} \mathcal{N}|_{U_i} = 1$, поэтому $\dim \operatorname{Ker} \mathcal{N} = k$. Q.E.D.

35 Приведение матрицы линейного оператора к жордановой форме. Минимальный многочлен.

Теорема Гамильтона-Кэли. Критерий существования собственного базиса.

Пусть \mathcal{A} - линейный оператор, характеристический многочлен которого раскладывается на линейные множители. Тогда $V = V^{\lambda_1}(\mathcal{A}) \oplus \ldots \oplus V^{\lambda_s}(\mathcal{A})$. Для каждого i подпространство $V^{\lambda_i}(\mathcal{A})$ может быть разложено в прямую сумму циклических подпространств относительно нильпотентного оператора $\mathcal{N}_i = \mathcal{A} - \lambda \mathcal{E}|_{V^{\lambda_i}(\mathcal{A})}$. В базисе пространства V, составленном из базисов всех этих

подпространств, матрица \mathcal{A} будет иметь вид:

$$A=\left(egin{array}{cccc} J_1 & & 0 \\ & \ddots & \\ 0 & & J_p \end{array}
ight), \ \mathrm{где}\ J_1,\ldots,J_p-$$
 матрицы вида $\left(egin{array}{cccc} \lambda & 1 & & 0 \\ & \lambda & & \\ & & \ddots & 1 \\ 0 & & & \lambda \end{array}
ight).$

— так называемые жордановы клетки (для каждого собственного значения λ может быть несколько жордановых клеток с этим значением - столько, сколько циклических подпространств). Сама матрица такого вида называется жордановой. Таким образом, доказана следующая теорема:

Теорема. Если характеристический многочлен линейного оператора раскладывается на линейные множители, то существует базис, в котором матрица этого оператора жорданова (такой базис называется жордановым). **Q.E.D.**

Можно также доказать, что жорданова форма матрицы линейного оператора единственна с точностью до перестановки клеток, хотя сам жорданов базис далеко не единствен.

Сумма порядков жордановых клеток с одним и тем же λ на диагонали равна $\dim V^{\lambda}(\mathcal{A})$, то есть кратности корня λ в $f_{\mathcal{A}}(t)$, а количество этих клеток равно $\dim V_{\lambda}(\mathcal{A})$.

Максимальный порядок этих клеток равен высоте оператора $(\mathcal{A} - \lambda \mathcal{E})|_{V^{\lambda}(\mathcal{A})}$.

<u>Def.</u> Пусть $f(t) = a_0 t^n + \dots + a_{n-1} t + a_n$, \mathcal{A} - линейный оператор. Тогда можно определить $f(\mathcal{A}) = a_0 \mathcal{A}^n + \dots + a_{n-1} \mathcal{A} + a_n \mathcal{E}$. Аналогично можно определить f(A) для матриц.

Если в каком-то базисе оператор $\mathcal A$ имеет матрицу A, то оператор $f(\mathcal A)$ имеет матрицу f(A). Понятно, что:

1.
$$(f+g)(A) = f(A) + g(A)$$
;

2.
$$(fg)(A) = f(A) \cdot g(A)$$
.

 $\underline{\mathrm{Def}}$. Многочлен f называется аннулирующим многочлленом оператора \mathcal{A} , если $f(\mathcal{A})=0$.

Лемма. Для любого линейного оператора ${\cal A}$ существует ненулевой аннулирующий многочлен.

Доказательство. Так как $\dim L(V) = n^2 < \infty$ (L(V) - пространство линейных операторов), то система $\mathcal{E}, \mathcal{A}, \mathcal{A}^2, \dots, \mathcal{A}^{n^2}$ линейно зависима. Значит, существует аннулирующий многочлен -

с коэффициентами линейной зависимости этой системы операторов. Степень этого многочлена равна n^2 . **Q.E.D.**

Любой многочлен, кратный аннулирующему, тоже является аннулирующим.

Лемма. Пусть m - аннулирующий многочлен оператора \mathcal{A} минимальной степени. Тогда всякий аннулирующий многочлен кратен m.

Доказательство. Пусть f - аннулирующий многочлен. Поделим: f = qm + r.

Но тогда r = f - qm - тоже аннулирующий многочлен. Но тогда r = 0, потому что его степень меньше степени m. **Q.E.D**.

<u>Def.</u> Аннулирующий многочлен минимальной степени со старшим коэффициентом 1 называется минимальным многочленом оператора \mathcal{A} . Обозначается $m_{\mathcal{A}}$. Всякий другой аннулирующий многочлен кратен ему.

Лемма 1. Пусть J - жорданова клетка порядка m с собственным значением λ . Тогда $m_J = (t - \lambda)^m$. Доказательство. $(J - \lambda E)^m = 0 \implies (t - \lambda)^m$ - аннулирующий многочлен.

Значит, $m_J = (t - \lambda)^k$, $k \leqslant m$. Но $(J - \lambda E)^{m-1} \neq 0 \implies k = m$. Q.E.D.

Лемма 2. Если

$$A = \left(\begin{array}{ccc} A_1 & & 0 \\ & \ddots & \\ 0 & & A_k \end{array}\right),$$

то $m_A = HOK(m_{A_1}, \ldots, m_{A_k}).$

Доказательство. Вытекает из того, что операции над клеточно-диагональной матрицей сводятся к тем же самым операциям над клетками. Поэтому $f(A) = 0 \Leftrightarrow f(A_i) = 0 \forall i \Rightarrow m_A = \text{HOK}(m_{A_1}, \dots, m_{A_k})$. **Q.E.D.**

Теорема. Пусть характеристический многочлен оператора \mathcal{A} раскладывается на линейные множители: $f_{\mathcal{A}}(t) = (t-\lambda_1)^{k_1} \dots (t-\lambda_s)^{k_s}$, где $\lambda_1, \dots, \lambda_s$ различны. Тогда $m_{\mathcal{A}}(t) = (t-\lambda_1)^{m_1} \dots (t-\lambda_s)^{m_s}$, где m_i - мксимальный порядок жордановых клеток с собственным значением λ в жордановой форме матрицы оператора \mathcal{A} .

Доказательство. Пусть

$$J = \left(\begin{array}{ccc} J_1 & & 0 \\ & \ddots & \\ 0 & & J_n \end{array}\right)$$

- жорданова форма матрицы оператора ${\cal A}$.

Тогда по Лемме 2 $m_{\mathcal{A}} = \text{HOK}(m_{J_1}, \dots, m_{J_k})$, значит по Лемме 1 Q.E.D.

Следствие (Теорема Гамильтона-Кэли). $f_{\mathcal{A}}(\mathcal{A}) = 0$.

Доказательство. Из теоремы вытекает, что $m_{\mathcal{A}}|f_{\mathcal{A}}$ - действительно, $k_i \geqslant m_i$.

Значит, $f_{\mathcal{A}}(\mathcal{A}) = 0$. Q.E.D.

Таким образом, видно, что есть аннулирующие многочлены степени не выше n.

Следствие (Критерий дигонализируемости). Матрица A диагонализируема \Leftrightarrow её характеристический многочлен разлагается на линейные множители, а минимальный не имеет кратных корней. Доказательство. Матрица приводитса к диагональному виду \Leftrightarrow её жорданова форма диагональна \Leftrightarrow все m_i в обозначениях теоремы равны 1, то есть m_A раскладывается на линейные множители \Leftrightarrow не имеет кратных корней. Q.E.D.

36 Аффинные пространства. Векторизация. Аффинные системы координат. Барицентрические линейные комбинации точек.

Пусть V - векторное простраснтво над полем K.

<u>Def.</u> Аффинным пространством, ассоциированным с векторным пространством V, называется множество S, элементы которого называются точками, вместе с операцией сложения точек и векторов $V \times S \to S$, $(p,x) \mapsto p+x$, удовлетворяющей следующим условиям:

- 1. p + (x + y) = (p + x) + y;
- 2. p + 0 = p;
- 3. $\forall \ p,q \in S \ \exists ! \ x \in V \ : \ p+x=q,$ обозначается: $x=\overrightarrow{pq}.$

Само векторное пространство V можно рассматривать как аффинное простариство, ассоциированное с самим собой (тогда сложение точек и векторов - это сложение векторов). При этом $\overrightarrow{pq} = q - p$. Каждое аффинное пространство S, ассоциированное с V, можно отождествить с V, если фиксировать начало отсчёта $o \in S$. При этом каждую точку $p \in S$ можно отождествить с её радиус-вектором \overrightarrow{op} . При этом операции сложения точек и векторов будет соответствовать операция сложения векторов: $\overrightarrow{o(p+x)} = \overrightarrow{op} + \overrightarrow{px}$, так как o + (p+x) = (o+p) + x. Операция выбора точки o и отождествления аффинного пространства S с векторным пространством называется векторизацией. Свойство: $\overrightarrow{pq} + \overrightarrow{qr} = \overrightarrow{pr}$.

Действительно, обозначим $\overrightarrow{pq} = x$, $\overrightarrow{qr} = y$, тогда $p + (x + y) = (p + x) + y = q + y = r \Rightarrow x + y = \overrightarrow{pr}$. <u>Def.</u> Размерностью аффинного пространства называется размерность соответствущего ему векторного пространства. В аффинном пространстве можно ввести систему координат. Репером в пространстве S называется система $(o; e_1, e_2, \ldots, e_n)$, где o - точка (начало отсчёта), а (e_1, \ldots, e_n) - базис пространства V. В репере каждая точка имеет свои координаты: $\forall p \in S \ \overrightarrow{op} = \sum x_i e_i$; тогда (x_1, \ldots, x_n) - координаты точки p относительно репера $(o; e_1, e_2, \ldots, e_n)$. Свойства:

- 1. Координаты точки p+x суть суммы соответствующих координат точки p и вектора x;
- 2. Координаты вектора \overrightarrow{pq} суть разности соответствующих координат точек p и q.

<u>Def.</u> Выберем начало отсчёта o и положим $p = \sum\limits_{i=1}^k \lambda_i p_i$, где $\overrightarrow{op} = \sum\limits_{i=1}^k \lambda_i \overrightarrow{op_i}$. Получим линейную комбинацию точек. Барицентрическими линейными комбинациями точек разываются такие линейные комбинации, в которых сумма коэффициентов равна единице: $\sum\limits_{i=1}^k \lambda_i = 1$.

Докажем, что точка $p=\sum\limits_{i=1}^k\lambda_ip_i$, где $\sum\limits_{i=1}^k\lambda_i=1$, не зависит от выбора точки o.

Пусть o' - другая точка. Тогда имеем: $\sum_{i} \lambda_i \overrightarrow{o'p_i} = \sum_{i} \lambda_i (\overrightarrow{o'o} + \overrightarrow{op_i}) = \sum_{i} \lambda_i \overrightarrow{o'o} + \sum_{i} \lambda_i \overrightarrow{op_i} = \overrightarrow{o'o} + \sum_{i} \lambda_i \overrightarrow{op_i}$. Значит $o' + \sum_{i} \lambda_i \overrightarrow{op_i} = o + \overrightarrow{o'o} + \sum_{i} \lambda_i \overrightarrow{op_i} = o + \sum_{i} \lambda_i \overrightarrow{op_i}$. Q.E.D.

Имеет смысл центр масс системы точек p_1,\ldots,p_k с массами m_1,\ldots,m_k - это точка

$$\operatorname{cent}(p_1, \dots, p_k; \ m_1, \dots, m_k) = \frac{1}{\sum m_i} \sum m_i p_i.$$

Центр тяжести можно брать по частям, имеет место теорема Архимеда о медианах треугольника.

37 Плоскости аффинного пространства, их задание системами линейных уравнений. Аффинная оболочка системы точек.

 $\underline{\mathrm{Def}}$. Пусть S - аффинное пространство, ассоциированное с векторным пространством V.

Плоскостью в S называется подмножество вида $P = p_0 + U$, где $p_0 \in S$, а $U \subset V$ - подпространство.

Предложение 1. $p_0 \in P \implies p'_0 + U = P$.

Доказательство. $p_0' = p_0 + u_0$ для некоторого $u_0 \in U$. Значит $p_0' + U = p_0 + u_0 + U = p_0 + U$.

Предложение 2. $p_0 + U = p_0' + U' \implies U = U'$.

Доказательство. $p_0' \in p_0 + U \ \Rightarrow \ p_0 + U = p_0' + U = p_0' + U' \ \Rightarrow \ U = U'.$

 $\underline{\mathrm{Def}}$. Подпространство U называется направляющим подпространством плоскости P.

Предложение 3. Плоскость $P \subset S$ является аффинным пространством, ассоциированным с U, отностиельно той же операции сложения точек и векторов, которая определена в пространстве S. Доказательство.

- 1. $p \in P, \ u \in U \ \Rightarrow \ p + u \in p + U = P$ замкнутость относительно операции сложения точек и векторов.
- 2. Свойства p + (x + y) = (p + x) + y и p + 0 = p выполнены, так как они выполнены в S.
- 3. $p,q\in P \Rightarrow P=p+U,\ q=p+u$ для некоторого $u\in U. \Rightarrow \overrightarrow{pq}=u\in U$, причём вектор \overrightarrow{pq} единствен, так как он единствен во всём пространстве. Q.E.D.

Следстсвие. Любая барицентрическая линейная комбинация точек из P лежит в P.

Плоскость можно определить как подмножество, замкнутое относительно взятия барицентрических линейных комбинаций.

Def. Размерность плоскости - это размерность её направляющего подпространства: $\dim P = \dim U$.

Нульмерные плоскости - это точки, одномерные плоскости называются прямыми, (n-1)-мерные плоскости называются гиперплоскостями.

 Φ иксируем в S аффинную систему координат.

Теорема. Множество всех решений совместной системы линейных уравнений является плоскостью в S, и обратно, любая плоскость является множеством рашений некоторой системы линейных уравнений.

Доказательство.

1. Пусть есть совместная система линейных уравнений

$$\sum_{j=1}^{n} a_{ij} x_j = b_i \qquad (i = 1, \dots, m).$$

Пусть $p_0 \in S$ - какое-либо её решение. Тогда множество всех её решений получается так: $p_0 + U$, где U - множество решений присоединённой однородной системы линейных уравнений. Но U- подпространство в V, если интерпретировать решения как векторы, значит множество всех решений исходной системы линейных уравнений есть плоскость.

2. Пусть $P=p_0+U$ - плоскость в S. Существует система линейных однородных уравнений, задающая направляющее подпространство U: $\sum\limits_{j=1}^n a_{ij}x_j=0 \quad (i=1,\ldots,m)$. Подставим в левые части координаты точки p_0 . Получим какие-то числа b_1,\ldots,b_m . Рассмотрим систему линейных уравнений $\sum\limits_{j=1}^n a_{ij}x_j=b_i \quad (i=1,\ldots,m)$, она и будет искомой, её множество решений - это и есть p_0+U . $\mathbf{Q}.\mathbf{E}.\mathbf{D}$.

Если $\dim P = k$, то P задаётся n-k линейно незывисимыми уравнениями. В частности, одно уравнение $a_1x_1 + \cdots + a_nx_n = b$, где не все $a_i = 0$, задаёт гиперплоскость, и обратно, всякая гиперплоскость задаётся одним линейным уравнением.

Теорема. Через любые k+1 точку $p_0, p_1, \ldots, p_k \in S$ проходит плоскость размерности $\leqslant k$, если же эти точки не лежат в плоскости размерности меньше k, то через них проходит единственная k-мерная плоскость.

Доказательство.

- 1. Рассмотрим плоскость $P = p_0 + \langle \overrightarrow{p_0p_1}, \dots, \overrightarrow{p_0p_k} \rangle$. $p_0, p_1, \dots, p_k \in P$, $\dim P = \operatorname{rk} \left\{ \overrightarrow{p_0 p_1}, \dots, \overrightarrow{p_0 p_k} \right\} \leqslant k.$
- 2. Предположим, что p_0, p_1, \ldots, p_k не лежат в плоскости размерности меньше чем k. Тогда векторы $\overline{p_0p_1},\ldots,\overline{p_0p_k}$ линейно независимы, и плоскость $P=p_0+\langle\overline{p_0p_1},\ldots,\overline{p_0p_k}\rangle$ является единственной плоскостью, содержащей все точки p_0, p_1, \ldots, p_k . Действительно, пусть $P' = p_0 + U'$ - другая k-мерная плоскость, содержащая точки p_0, p_1, \ldots, p_k . Тогда $\overrightarrow{p_0p_1}, \ldots, \overrightarrow{p_0p_k} \in U \Rightarrow$ $\Rightarrow U = \langle \overrightarrow{p_0 p_1}, \dots, \overrightarrow{p_0 p_k} \rangle$. Q.E.D.

Def. Точки p_0, p_1, \ldots, p_k называются аффинно независимыми, если они не содержатся в плоскости размерности меньше чем k, то есть если векторы $\overline{p_0p_1}, \ldots, \overline{p_0p_k}$ линейно независимы.

Пусть $M \subset S$ - произвольное непустое подмножество, $p_0 \in M$. Плоскость $P = p_0 + \langle \overrightarrow{p_0p} : p \in M \rangle$ является наименьшей плоскостью, содержащей M. Она называется аффинной оболочкой множества M и обозначается aff M.

38 Взаимное расположение плоскостей в аффинном пространстве.

Рассмотрим две плоскости: $P_1 = p_1 + U_1$ и $P_2 = p_2 + U_2$. Если их пересечение непусто, то оно является плоскостью: $p_0 \in P_1 \cap P_2 \Rightarrow P_1 = p_0 + U_1$; $P_2 = p_0 + U_2 \Rightarrow P_1 \cap P_2 = p_0 + (U_1 \cap U_2)$.

Теорема. $P_1 \cap P_2 \neq \emptyset \iff \overrightarrow{p_1p_2} \in U_1 + U_2$.

Доказательство. $P_1 \cap P_2 \neq \emptyset \Leftrightarrow \exists u_1 \in U_1, u_2 \in U_2 : p_1 + u_1 = p_2 + u_2$. Но $p_1 + u_1 = p_2 + u_2 \Leftrightarrow \overrightarrow{p_1p_2} = u_1 + (-u_2)$. Поэтому существование таких векторов u_1 и u_2 равносильно тому, что $\overrightarrow{p_1p_2} \in U_1 + U_2$. Q.E.D.

<u>Def.</u> Плоскости P_1 и P_2 называются параллельными, если $U_1 \subset U_2$ или $U_2 \subset U_1$. Плоскости P_1 и P_2 называются скрещивающимися, если $P_1 \cap P_2 = \emptyset$ и $U_1 \cap U_2 = 0$.

39 Выпуклые множества.

Выпуклая оболочка системы точек. Симплексы.

Пусть S - аффинное пространство над полем $\mathbb R$. Отрезком, соединяющим точки $p,q\in S$, называется множество $pq=\{\lambda p+(1-\lambda)q:0\leqslant \lambda\leqslant 1\}$. Множество $M\subset S$ называется выпуклым, если вместе с любыми двумя точками оно содержит и весь отрезо, их соединяющий: $\forall\ p,q\in M$ $pq\subset M$.

Пересечение выпуклых множеств является выпуклым множеством, всякая плоскость является выпуклым множетвом.

 $\underline{\mathrm{Def}}$. Выпуклой комбинацией точек пространства S называется их барицентрическая линейная комбинация с неотрицательными коэффициентами.

Теорема. Выпуклое множество M вместе с любыми точками p_0, \ldots, p_k содержит любую их выпуклую оболочку.

Доказательство. Индукцией по k

При k=0 доказывать нечего. При k=1 по определению любая выпуклая оболочка двух точек лежит на отрезке, их соединяющем, который, в свою очередь, содержится в множестве M.

При
$$k > 1$$
 пусть $p = \lambda_0 p_0 + \dots + \lambda_k p_k$, $\sum \lambda_i = 1$, $\lambda_i \geqslant 0 \ \forall i$.

Рассмотрим $p'=rac{1}{\sum\limits_{i=0}^{k-1}\lambda_i}\left(\lambda_0p_0+\cdots+\lambda_{k-1}p_{k-1}
ight)\in M$ по предположению индукции.

Но тогда
$$p = \left(\sum\limits_{i=0}^{k-1} \lambda_i\right) \cdot p' + \lambda_k p_k \in M$$
 по определению. **Q.E.D.**

Пусть $M \subset S$ - произвольное подмножество.

Теорема. Совокупность всех выпуклых линейных комбинаций точек множества M есть выпуклое множество.

Доказательство. Пусть
$$p' = \sum_{i=0}^k \lambda_i' p_i, \ p'' = \sum_{i=0}^k \lambda_i'' p_i$$
 - две линейных комбинации точек

 $p_0, p_1, \dots, p_k \in M$ (без ограничения общеости можно считать, что это линейные комбинации одинакового набора точек). Пусть $\mu', \mu'' \geqslant 0, \ \mu' + \mu'' = 1$. Тогда надо доказать, что $\mu'p' + \mu''p'' \in M$.

Но
$$\mu' p' + \mu'' p'' = \sum_{i=0}^{k} (\mu' \lambda' + \mu'' \lambda'') p_i$$
 - выпуклая комбинация точек $p_0, p_1, \dots, p_k \in M$. Q.E.D.

векторизация!

 $\underline{\mathrm{Def}}$. Совокупность выпуклых линейных комбинаций точек из M называется выпуклой оболочкой множества M. Обозначается conv M. Это наименьшее выпуклое множество, содержащее M.

 $\underline{\mathrm{Def}}$. Выпуклая оболочка аффинно независимых точек p_0, p_1, \ldots, p_k называется k—мерным симплексом, натянутым на p_0, p_1, \ldots, p_k . Нульмерный симплекс - это точка, одномерный - это отрезок. Двухмерный симплекс называется треугольником, трёхмерный - тетраэдром.

40 Полупространства. Выпуклые многогранники, их грани. Грани симплекса и параллелепиппеда.

<u>Def.</u> Полупространством называется множество, задаваемое линейным неравенством $a_1x_1 + \cdots + a_nx_n \geqslant b$, где не все $a_i = 0$. При этом гиперплоскость, задаваемая соответствующим равенством

 $a_1x_1 + \dots + a_nx_n = b$, называется граничной гиперплоскостью данного полупространства. Полупространство $a_1x_1 + \dots + a_nx_n \leqslant b$ называется противоположным полупространством.

С каждой гиперплоскостью связаны два полупространства.

Утверждение. Полупространство является выпуклым множеством.

Доказательство. Линейное неравенство, задающее полупространство, на любой прямой превращается в неравенство вида $\alpha t + \beta \geqslant 0$ (если прямая имеет вид $\overrightarrow{x} = \overrightarrow{x_0} + \overrightarrow{a}t$). Пересечение полупространства с любой прямой есть либо вся прямая, либо луч, либо оно пусто; то есть в любом случае это выпуклое множество. Значит, полуплоскость является выпуклым множеством. **Q.E.D.** <u>Def.</u> Выпуклым многогранником называется пересечение конечного числа полупространств.

Иначе говоря, выпуклый многогранник есть множество решений системы линейных неравенств:

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n \geqslant b_1; \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n \geqslant b_m. \end{cases}$$

(здесь и все a_{ij} могут быть нулями!).

<u>Def.</u> Функция вида $l(x) = a_1x_1 + \dots + a_nx_n + b$ называется аффинно-линейной функцией (здесь x_1, x_2, \dots, x_n - координаты точки x).

Можно переписать систему неравенств, задающую выпуклый многогранник:

$$\begin{cases} l_1(x) \geqslant 0; \\ \vdots \\ l_m(x) \geqslant 0. \end{cases}$$

<u>Def.</u> Гранью выпуклого многогранника M называется любое непустое подмножество $\Gamma \subset M$, которое может быть получено заменой некоторых из неравенств, задающих многогранник M, на равенства. ! Может оказаться, что какие-то из оставшихся неравенств выполняются всюду на этой грани как равенства.

! Грань грани Γ - это то же самое, что грань многогранника M, содержащаяся в Γ . Таким образом, выпуклый многогранник сам является своей гранью.

Нульмерные грани называются вершинами, одномерные - рёбрами, $(\dim M - 1)$ -мерные грани называются гипергранями.

Грани симплекса. Рассмотрим симплекс T, натянутый на репер $(p_0; \overline{p_0p_1}, \dots, \overline{p_0p_n})$.

Тогда $T = \{x = x_1p_1 + \dots + x_1p_1 : x_i \geqslant 0, \sum x_i = 1\}$. Значит, неравенства:

$$\begin{cases} x_i \geqslant 0 & i = 1, \dots, n; \\ \sum_{i=1}^{n} x_i \leqslant 1 \end{cases}$$

задают симплекс T относительно репера $(p_0; \overrightarrow{p_0p_1}, \dots, \overrightarrow{p_0p_n})$.

Грани симплекса T, проходящие через p_0 , суть пересечения координатных плоскостей с симплексом. Это будут симплексы, натянутые на точку p_0 и какие-то из точек p_1, p_2, \ldots, p_n . Таким образом, все грани симплекса - это симплексы, натянутые на всевозможные непустые подмножества множества $\{p_0, p_1, \ldots, p_n\}$. Их число $2^{n+1} - 1$. Вершины этих симплексов - это какие-то из вершин исходного симплекса.

Грани параллелепиппеда. Пусть (e_1,\dots,e_n) - базис пространства V. Параллелепиппед - это множество $P(p_0;\,e_1,e_2,\dots,e_n)=p_0+P(e_1,e_2,\dots,e_n)=\left\{p_0+\sum_i x_ie_i\,:\,0\leqslant x_i\leqslant 1\right\}$. Таким образом, параллелепиппед задаётся неравенствами: $0\leqslant x_i\leqslant 1$ $(i=1,\dots,n)$.

Найдем его грани. С точностью до нумерации координат, всякая грань размерности k задаётся соотношениями:

$$\begin{cases} 0 \leqslant x_i \leqslant 1, & i = 1, \dots, k; \\ x_j = \varepsilon_j, & j = k+1, \dots, n; \varepsilon_j \in \{0, 1\}. \end{cases}$$

41 Теорема о том, что всякий ограниченный выпуклый многогранник есть выпуклая оболочка своих вершин. Задача линейного программирования.

 $\underline{\mathrm{Def}}$. Выпуклое множество $M\subset S$ называется телесным (или выпуклым телом), если его аффинная оболочка совпадает со всем пространством: aff M = S.

Лемма. Выпуклое тело содержит внутренние точки.

Доказательство. Пусть $p_0 \in M$. Тогда aff $M = p_0 + \langle \overrightarrow{p_0p} : p \in M \rangle = S$.

Значит, $\operatorname{rk} \left\{ \overrightarrow{p_0p} : p \in M \right\} = \dim S = n \Rightarrow \exists p_1, \dots, p_n \in M$, такие, что $(\overrightarrow{p_0p_1}, \dots, \overrightarrow{p_0p_n})$ - базис пространства V. Точки p_0, p_1, \ldots, p_n аффинно независимы, и натянутый на них симплекс (в силу выпуклости M) содержится в M. Но симплекс, очевидно, содержит внутренние точки. Q.E.D. Def. dim $M = \dim M$.

Всякое выпуклое множество M является телом в aff M. Допуская вольность речи, будем называть внутренними точками множества M точки, внутренние по отношению к aff M.

Теорема (Минковского-Вейля). Всякий ограниченный выпуклый многогранник M совпадает с выпуклой оболочкой множества своих вершин.

Доказательство. Индукцией по $n = \dim M$.

При n=0 доказывать нечего: M - это точка.

Пусть n > 0. Заменив S на aff M, можно считать, что M - телесный выпуклый многогранник. Пусть p - какая-либо внутренняя точка M. Все определяющие M неравенства в точке p выполняются как строгие (иначе в любой окрестности точки p есть точки, в которых какое-либо из неравенств неверно). Проведём через p произвольную прямую l. Её пересечение с M есть ограниченное выпуклое множество - отрезок qr. В точках q и r какие-то из неравенств выполняются как равенства, значит, эти точки принадлежат собственным граням многогранника M. По предположению индукции, точки q и r принадлежат выпуклой оболочке множества вершин многогранникака $M \Rightarrow$ \Rightarrow значит и qr, и точка p тоже принадлежат этой выпуклой оболочке. Q.E.D.

! На самом деле, верно и обратное (выпуклая оболочка конечного числа точек есть выпуклый многогранник) - без довазательства.

Задача линейного программирования. Требуется найти максимум аффинно-линейной функции на ограниченном выпуклом многограннике.

Теорема. Максимум аффинно-линейной функции l на ограниченном выпуклом многограннике Mдостигается хотя бы в одной из вершин (на самом деле, множество всех точек максимума аффиннолинейной функции есть грань многогранника M - без доказательства).

Доказательство. Воспользуемся тем, что $l(\sum_{i} \lambda_{i} p_{i}) = \sum_{i} \lambda_{i} l(p_{i})$ ($\sum_{i} \lambda_{i} = 1$) - это очевидно. Пусть p_{1}, \ldots, p_{k} - все вершины M. Тогда $\forall \ p \in M : p = \sum_{i} \lambda_{i} p_{i}$ ($\sum_{i} \lambda_{i} = 1; \lambda_{i} \geqslant 0 \ \forall \ i$).

Значит, $l(p) = \sum_i \lambda_i l(p_i) \leqslant \max_i l(p_i)$. Q.Е.D.

Метод решения задачи линейного программирования - "симплекс-метод": Возьмём одну вершину, посмотрим, как изменяется функция по рёбрам, выходящим из этой вершины. Если по всем уменьшается, то это - вершина максимума. Если где-то увеличивается, то пойдём по этому ребру.

42 Аффинные отображения, их свойства. Аффинные преобразования. Существование и единственность аффинного преобразования, переводящего один заданный репер в другой. Координатный признак равенства фигур в аффинной геометрии.

Def. Пусть S и S' - аффинные пространства, ассоциированные соответственно с векторными пространствами V и V'. Отображение $f: S \to S'$ называется аффинным, если существует такое линейное отображение $\varphi: V \to V'$, что $f(p+x) = f(p) + \varphi(x) \quad \forall p \in S, x \in V$.

Свойство: $\varphi(\overrightarrow{pq}) = \overline{f(p)}f(q)$ $\forall p,q \in S$.

Действительно, $f(q) = f(p + \overrightarrow{pq}) = f(p) + \varphi(\overrightarrow{pq}).$

Значит, φ однозначно определяется по f. Линейное отображение φ называется дифференциалом аффинного отображения f и обозначается df.

Если выбрать в S и S' начала отсчёта o и o', то получим $f(o+x) = f(o) + \varphi(x) = o' + \overrightarrow{o'f(o)} + \varphi(x)$. Положим $\overrightarrow{o'f(o)} = b \in V'$. Тогда в векторизованной форме отображение f записывается в виде $f(o+x)=f(x)=\varphi(x)+b$. В координатной форме: если f(x)=y, то $y_i=\sum_i a_{ij}x_j+b_i$ в некоторых

базисах V и V'. В частности, аффинно-линейные функции - это аффинные отображения из S в K. В случае $K=\mathbb{R}$ понятие дифференциала аффинного отображения согласуется с общим понятием дифференциала гладкого отображения.

Свойства аффинного отображения:

1. Если $P \subset S$ - плоскость, то $f(P) \subset S'$ - тоже плоскость, причём если аффинное отображение f биективно, то dim $f(P) = \dim P$.

Действительно, $P = p_0 + U \Rightarrow f(P) = f(p_0) + df(U)$ - плоскость в S'.

Если f биективно, то df тоже биективно (выберем согласованные начала отсчёта в S и S', где f = df $\Rightarrow \dim df(U) = \dim U$.

2.
$$f\left(\sum_i \lambda_i p_i\right) = \sum_i \lambda_i f(p_i)$$
, где $\sum \lambda_i = 1$.

По определению, $\sum\limits_{i}\lambda_{i}p_{i}=o+\sum\limits_{i}\lambda_{i}\overrightarrow{op_{i}}$. Значит,

$$f\left(\sum_{i}\lambda_{i}p_{i}\right)=f(o)+\sum_{i}\lambda_{i}df(\overrightarrow{op_{i}})=f(o)+\sum_{i}\lambda_{i}\overset{\rightharpoonup}{(}f(o)f(p_{i}))=\sum_{i}\lambda_{i}f(p_{i})$$
 по определению барицентрических линейных комбинаций в S' .

Def. Простое отношение трёх точек на прямой в аффинном пространстве. Пусть точки p,q и rлежат на одной прямой. $q \neq r \Rightarrow \overrightarrow{pr} = c \cdot \overrightarrow{rq}$. Число c называется простым отношением (p,q;r). Если q=r, но $p\neq q$, то можно считать $(p,q;r)=\infty$. Простое отношение сохраняется при аффинном отображении (если данная прямая не переходит в точку): (f(p), f(q); f(r)) = (p, q; r).

Def. Аффинным преобразованием пространства S называется аффинное отображение $f: S \to S$. $f(p+x) = f(p) + \mathcal{A}x$, где $\mathcal{A} = df$ - линейный оператор в пространстве V. В векторизованной форме f(x) = Ax + b, где b = of(o).

Теорема. Пусть $\{p_0, p_1, \dots, p_n\}$ и $\{q_0, q_1, \dots, q_n\}$ - две аффинно независимые системы точек в n-мерном аффинном пространстве S. Тогда существует единственное аффинное преобразование f, переводящее первую систему точек во вторую: $f(p_i) = q_i \quad i = 0, 1, \dots, n.$

Доказательство. Если такое f существует, то $f(p_0+x)=q_0+\varphi(x)$, где φ - такое линейное преобразование, что $\varphi(\overline{p_0p_i}) = \overline{q_0q_i}$ $(i=1,\ldots,n)$. Так как векторы $\overline{p_0p_1},\ldots,\overline{p_0p_n}$ образуют базис пространства V, то существует единственное линенйое преобразование φ , для которого $\varphi(\overrightarrow{p_0p_i}) = \overrightarrow{q_0q_i} \quad (i=1,\ldots,n)$. Значит, f единственно.

Обратно, если определить аффинное преобразование f по формуле $f(p_0 + x) = q_0 + \varphi(x)$, где φ определено выше, то $f(p_i) = q_i$ (i = 0, 1, ..., n). **Q.E.D.**

Группа аффинных преобразований пространства S определяет аффинную геометрию. Две фигуры (то есть подмножества S) F_1 и F_2 называются равными (или конгруэнтными), если существует такое аффинное преобразование g, что $gF_1 = F_2$.

Координатный признак равенства фигур в аффинной геометрии.

Теорема. Фигуры F и F' равны в аффинной геометрии \Leftrightarrow существуют такие реперы $(o; e_1, \ldots, e_n)$ и $(o'; e'_1, \ldots, e'_n)$, что $o + \sum_i x_i e_i \in F \Leftrightarrow o' + \sum_i x_i e'_i \in F'$, то есть F и F' одинаково выглядят по отношению к этим реперам.

Доказательство. Пусть $F' = f(F), \ f \in \mathrm{GA}(S).$ Пусть $(o; e_1, \dots, e_n)$ - любой репер и рассмотрим репер $(f(o); df(e_1), \dots, df(e_n)).$ Тогда $p = o + \sum_i x_i e_i \in F \iff f(p) = f(o) + \sum_i x_i df(e_i) \in F'.$

Обратно, пусть $(o; e_1, \ldots, e_n)$ и $(o'; e'_1, \ldots, e'_n)$ - реперы, удовлетворяющие условиям теоремы. Рассмотрим $f \in GA(S)$, определяемое условиями:

$$f(o) = o';$$
 $df(e_i) = e'_i$ $i = 1, ..., n.$

Докажем, что f(F) = F'. Действительно, $p = o + \sum_i x_i e_i \in F \iff f(p) = o' + \sum_i x_i e_i' \in F'$. Q.E.D.

43 Дифференциал как гомоморфизм аффинной группы в линейную. Параллельные переносы и гомотетии.

Теорема. Пусть $f: S \to S'$ и $g: S' \to S''$ - аффинные отображения. Тогда отображение $gf: S \to S''$ также аффинно, причём $d(qf) = dq \cdot df$.

Доказательство. Действительно,

 $gf(p+x) = g(f(p+x)) = g(f(p) + df(x)) = g(f(p)) + dg(df(x)) = (gf)(p) + (dg \cdot df)(x).$ Q.E.D.

Теорема. Аффинное отображение $f:S \to S'$ биективно $\Leftrightarrow df$ биективно.

При этом f^{-1} также аффинно, и $d\left(f^{-1}\right)=\left(df\right)^{-1}$.

Доказательство. Выберем согласованные начала отсчёта в S и S' таким образом, чтобы o' = f(o). Тогда в векторизованной форме f = df. **Q.E.D**.

Биективные аффинные преобразования образуют группу GA(S), а невырожденные линейные преобразования - группу GL(V). Дифференциал есть гомоморфизм групп $d: GA(S) \to GL(V)$.

<u>Def.</u> Параллельным переносом на вектор $a \in V$ называется аффинное преобразование $t_a: p \mapsto p+a$. Параллельные переносы образуют подгруппу, так как $t_at_b=t_{a+b}; \ (t_a)^{-1}=t_{-a}; \ id=t_0$. Эта подгруппа изоморфна группе V.

Теорема. Аффинное преобразование f является параллельным переносом $\Leftrightarrow df = \mathcal{E}$.

Доказательство. $t_a(p+x)=p+x+a=t_ap+x=t_ap+\mathcal{E}x \ \Rightarrow \ dt_a=\mathcal{E}.$

Обратно, если $df = \mathcal{E}$, то $f(o+x) = f(o) + x = o + \overrightarrow{of(o)} + x = o + x + a$, где $a = \overrightarrow{of(o)}$. Q.E.D.

Теорема. Группа параллельных переносов является нормальной подгруппой в GA(S).

Доказательство. Подгруппа $H\subset G$ нормальна $\Leftrightarrow \ \forall \ g\in G \ gHg^{-1}=H.$ Докажем, что

 $\forall f \in GA(S) \ ft_a f^{-1} = t_{df(a)}.$ Действительно, $(ft_a f^{-1})(p) = f(f^{-1}(p) + a) = p + df(a)$. Q.E.D.

<u>Def.</u> Гомотетией с центром $o \in S$ и коэффициентом $\lambda \in K^*$ называется аффинное преобразование, определяемое по следующему правилу:

$$f(o+x) = o + \lambda x.$$

Гомотетия с коэффициентом -1 называется центральной симметрией относительно точки o. **Теорема.** Аффинное преобразование f является нетождественной гомотетией $\Leftrightarrow df = \lambda \mathcal{E}, \ \lambda \neq 0, 1$.

Доказательство. Дифференциал гомотетии с коэффициентом λ равен $\lambda \mathcal{E}$.

Обратно, пусть $df = \lambda \mathcal{E}$. Достаточно доказать, что f имеет неподвижную точку.

В векторизованной форме: $f(x) = \lambda x + b$. Уравнение $\lambda x + b = x$ имеет единственное решение при $\lambda \neq 0, 1$. Это и будет центр гомотетии. **Q.E.D.**

44 Квадрики в аффинном пространстве.

Центральные, конические и циллиндрические квадрики.

Будем далее считать, что $\operatorname{char} K \neq 2$.

<u>Def.</u> Аффинно-квадратичной функцией в пространстве S называется функция, которая в векторизованной форме записывается в виде Q(x)=q(x)+l(x)+c, где q - квадратичная функция, l - линейная функция, $c\in K$.

В координатах: $Q(p) = \sum_{i,j} a_{ij} x_i x_j + \sum_i b_i + c$, где $a_{ij} = a_{ji}$, а (x_1, \dots, x_n) - координаты точки p.

Очевидно, что $c=Q(o),\ b_i=rac{\partial Q}{\partial x_i}(o),$ где o - начало координат.

<u>Def.</u> Квадрикой (или гиперповерхностью второго порядка) в пространстве S называется множество, задаваемое уравнением Q(p)=0, где Q - аффинно-квадратичная функция; при условии, что оно непусто и не является плоскостью (в частности, $q\neq 0$).

Введём обозначение: X(Q) - множество точек, удовлетворяющее уравнению Q(p)=0.

<u>Def.</u> Точка o называется центром квадрики X, если $o+x\in X \Rightarrow o-x\in X$, то есть $s_oX=X$.

<u>Def</u>. Вершиной квадрики называется принадлежащий ей центр.

Теорема. Если $X(Q_1)$ и $X(Q_2)$ - совпадающие квадрики, то уравнения Q_1 и Q_2 пропорциональны. Доказательство. Возьмём в качестве точки o какую-нибудь точку квадрики X, не являющуюся её вершиной (такие точки есть, иначе квадрика была бы плоскостью). Тогда в векторизованной форме: $Q_1(x) = q_1(x) + l_1(x), \ Q_2(x) = q_2(x) + l_2(x),$ где $l_1, l_2 \neq 0$. Точки пересечения прямой $o + \langle x \rangle$ с квадрикой X определяются любым из уравнений $t^2q_1(x) + tl_1(x) = 0$ или $t^2q_2(x) + tl_2(x) = 0$. Так как относительно t эти уравнения должны иметь одинаковые решения, то при $l_1(x), l_2(x) \neq 0$ получаем, что

$$\frac{q_1(x)}{l_1(x)} = \frac{q_2(x)}{l_2(x)}.$$

Поэтому $q_1(x)l_2(x)=q_2(x)l_1(x)$. Умножая на $l_1(x)l_2(x)$, получаем, что

$$q_1(x)l_2(x)l_1(x)l_2(x) = q_2(x)l_1(x)l_1(x)l_2(x)$$

верно уже для всех x. Но так как в кольце многочленов нет делителей нуля, то можно сократить последнее равенство, поэтому можно считать, что $q_1(x)l_2(x)=q_2(x)l_1(x)$ верно тоже для всех x. Пусть l_1 и l_2 не пропорциональны. Тогда в подходящем базисе $l_1(x)=x_1,\ l_2(x)=x_2$. Поэтому $q_1(x)x_2=q_2(x)x_1$. Рассматривая левые и правые части, видим, что должно быть:

$$q_1(x) = l(x)x_1, \ q_2(x) = l(x)x_2$$

для некоторой линейной функции l(x). Значит, $Q_1(x)=(l(x)+1)x_1,\ Q_2(x)=(l(x)+1)x_2$. Так как $X=X(Q_1)$, то X содержит гиперплоскость $x_1=0$. Значит, Q_2 должна обащаться в ноль всюду на этой гиперплоскости. Но ни один из множителей x_2 и l(x)+1 не обращается на ней в ноль. Так как в кольце многочленов нет делителей нуля, то получаем противоречие. Поэтому линейные, а значит, и квадратичные части аффинно-квадратичных функций пропорциональны. Q.E.D.

Def. Квадрика называется центральной, если у неё есть хотя бы один центр.

Теорема. Множество всех центров квадрики X(Q) задаётся системой линейных уравнений

$$\frac{\partial Q}{\partial x_i} = 0; \qquad i = 1, \dots, n.$$

Доказательство. Примем о - центр квадрики - за начало координат. Тогда в векторизованной форме Q(x) = q(x) + l(x) + c. Квадрика $s_o X(Q)$ задаётся уравнением Q(-x) = 0, то есть q(x) – l(x)+c=0. Эти квадрики совпадают, значит, $Q(-x)=\lambda Q(x)$ для некоторого $\lambda\in K^*$. Сравнивая квадратичные части, видим, что $\lambda=1.$

Поэтому $s_o X = X \Leftrightarrow l(x) \equiv 0$, то есть $\frac{\partial Q}{\partial x_i} = 0; \qquad i = 1, \dots, n.$ Q.E.D.

Следстсвие. Множество всех центров либо пусто, либо является плоскостью.

Следстсвие. Если q невырожденна, то квадрика центральна, причём центр единствен.

Доказательство. $Q(p) = \sum_{i,j} a_{ij} x_i x_j + \sum_i b_i x_i + c$.

 $\frac{\partial Q}{\partial x_i}(p)=2\sum_{i}a_{ij}x_j+b_i$. Таким образом, множество всех центров задаётся системой линейных

уравнений, матрица которой есть матрица квадратичной функции q. По теореме Крамера, центр существует и единствен. Q.E.D.

Теорема. Точка o является вершиной квадрики X тогда и только тогда, когда

$$o + x \in X \implies o + \lambda x \in X \ \forall \ \lambda \in K$$

то есть квадрика инвариантна относительно всех гомотетий с центром в точке o.

Доказательство. Пусть в векторизованной форме X = X(Q). Запишем уравнение квадрики, приняв за начало отсчёта точку o: q(x) + c = 0. Если o - вершина, то c = 0.

Обратно, пусть X инвариантна. Пусть h_{λ} - гомотетия с центром o и коэффициентом λ .

Если $h_{\lambda}X=X$, то уравнение квадрики $h_{\lambda}X$ имеет вид $\lambda^{-2}q(x)+c=0$, так как $h_{\lambda}:x\mapsto\frac{x}{\lambda}$. Это уравнение должно быть пропорционально уравнению квадрики X. Значит, c=0.

Def. Множество, которое вместе с каждой точкой o + x содержит и точку $o + \lambda x \ \forall \ \lambda \in K$, то есть инвариантное относительно всех гомотетий с центром в точке o, называется конусом с вершиной в точке о. Квадрика, являющаяся конусом (то есть имеющая вершину), называется конической.

<u>Def.</u> Квадрика X называется циллиндрической, если $\exists a \in V, a \neq 0$, такой что $t_a X = X$, значит, $\forall \ \lambda \in K \ t_{\lambda a}X = X, \ \lambda \neq 0.$

Пусть α - симметрическая билинейная функция, соответствующая квадратичной функции q.

Теорема. Множество всех таких векторов a, что $t_aX = X$, является подпрстранством $\operatorname{Ker} a \cap \operatorname{Ker} l$. **Доказательство.** Пусть Q(x) = q(x) + l(x) + c = 0 - уравнение квадрики X. Уравнение квадрики $t_a X$ имеет вид

$$Q(x-a) = \alpha(x-a, x-a) + l(x-a) + c = q(x) - 2\alpha(x, a) + q(a) + l(x) + c - l(a) = 0.$$

 $t_a X = X \Leftrightarrow$ эти уравнения пропорциональны. Сравнивая квадратичные части, видим, что коэффициент пропорциональности равен единице. Значит, $\alpha(x,a)=0 \ \forall \ x\in V$, и l(a)=0, так как $q(a) = \alpha(a, a) = 0$. Таким образом, $a \in \text{Ker } \alpha \cap \text{Ker } l$. Q.E.D.

45 Аффинная классификация невырожденных вещественных квадрик.

Выберем базис пространства V, согласованный с $U = \operatorname{Ker} \alpha \cap \operatorname{Ker} l$. Пусть $U = \langle e_{m+1}, \dots, e_n \rangle$. Тогда уравнение квадрики не будет содержать членов с x_{m+1}, \ldots, x_n .

<u>Def.</u> Квадрики, не являющиеся циллиндрическими, называются невырожденными. Достаточно изучать только их, потому что вырожденные квадрики сводятся к невырожденным меньших размерностей.

Типы невырожденных квадрик.

1. Неконические центральные квадрики.

Приняв центр за начало координат, приведём уравнение квадрики к виду $q(x_1, \ldots, x_n) = 1$, где q - невырожденная квадратичная функция.

2. Конические квадрики.

Приняв центр за начало координат, приведём уравнение квадрики к виду $q(x_1, \dots, x_n) = 0$, где q - невырожденная квадратичная функция.

3. Нецентральные квадрики.

 $\operatorname{Ker} q \neq 0$, $\operatorname{Ker} \alpha \cap \operatorname{Ker} l = 0$. Значит, $\dim \operatorname{Ker} l = n - 1$, $\dim \operatorname{Ker} q = 1$, и $V = \operatorname{Ker} l \oplus \operatorname{Ker} q$. Выберем базис в V так, чтобы $\operatorname{Ker} l = \langle e_1, \dots, e_{n-1} \rangle$, $\operatorname{Ker} q = \langle e_n \rangle$. Начало отсчёта выберем на квадрике. Тогда уравнение квадрики приводится к виду $q_1(x_1,\ldots,x_{n-1})=x_n$, где qневырожденная квадратичная функция в $\langle e_1, \dots, e_{n-1} \rangle$.

Рассмотрим случай $K = \mathbb{R}$.

За счёт выбора базиса в пространстве V уравнение невырожденной квадрики приводится в одному из следующих видов:

1.
$$x_1^2 + \dots + x_k^2 - x_{k+1}^2 - \dots - x_n^2 = 1 \quad (0 < k \le n);$$

2.
$$x_1^2 + \dots + x_k^2 - x_{k+1}^2 - \dots - x_n^2 = 0 \quad \left(\left\lceil \frac{n}{2} \right\rceil \leqslant k < n \right);$$

3.
$$x_1^2 + \dots + x_k^2 - x_{k+1}^2 - \dots - x_{n-1}^2 = x_n \quad \left(\left\lceil \frac{n-1}{2} \right\rceil \le k < n \right).$$

B случае n=2:

$$\begin{array}{lll} 1 & x_1^2+x_2^2=1 & \text{эллипс;} \\ & x_1^2-x_2^2=1 & \text{гипербола;} \\ 2 & x_1^2-x_2^2=0 & \text{пара пересекающихся прямых;} \\ 3 & x_1^2=x_2 & \text{парабола.} \end{array}$$

$$x_1^2 = x_2$$
 парабола

В случае n = 3:

$$\begin{array}{lll} 1 & x_1^2+x_2^2+x_3^2=1 & \text{эллипсоид;} \\ & x_1^2+x_2^2-x_3^2=1 & \text{однополостный гиперболоид;} \\ & x_1^2-x_2^2-x_3^2=1 & \text{двуполостный гиперболоид;} \\ 2 & x_1^2+x_2^2-x_3^2=0 & \text{квадратичный конус;} \\ 3 & x_1^2+x_2^2=x_3 & \text{эллиптический параболоид;} \\ & x_1^2-x_2^2=x_3 & \text{гиперболический параболоид.} \end{array}$$

В силу координатного признака равенства фигур в аффинной геометрии, чтобы узнать, аффинно эквивалентны ли квадрики, над \mathbb{R} надо уравнения обеих квадрик привести к каноническому виду. Если уравнения совпадут, то и квадрики совпадут.

46 Евклидовы аффинные пространства. Расстояние между точками и между плоскостями.

Def. Евклидовым аффинным пространством называется вещественное аффинное пространство, ассоциированное с евклидовым векторным пространством.

Def. Расстояние между точками определяется по следующей формуле: $\rho(p,q) \doteq |\overrightarrow{pq}|$. Свойства:

1.
$$\rho(p,q) > 0$$
 при $p \neq q$, $\rho(p,p) = 0$;

2. $\rho(p,q) + \rho(q,r) \ge \rho(p,r)$.

Действительно, $|\vec{pq} + \vec{qr}| \le |\vec{pr}|$, что вытекает из неравенства Коши-Буняковского.

Таким образом, евклидово аффинное пространство является метрическим.

<u>Def.</u> Расстояние между подмножествами *P* и *Q* определяется следующим образом:

$$\rho(P,Q) = \inf_{p \in P, \ q \in Q} \rho(p,q).$$

Теорема. Для двух плоскостей P_1 и P_2 существует общий перпендикуляр, если $U_1 \cap U_2 = 0$, то он единствен. Его длина равна $\rho(P_1, P_2)$ (если плоскости пересекаются, то под общим перпендикуляром понимается точка).

Доказательство. Отрезок $[p_1+u_1,p_2+u_2]$ есть общий перпендикуляр \Leftrightarrow он ортогонален U_1+U_2 . Но этот отрезок равен $\overrightarrow{p_1p_2}-u_1+u_2$, то есть он является общим перпендикуляром $\Leftrightarrow \overrightarrow{p_1p_2}=u_1-u_2+v$, где $u_1-u_2\in U_1+U_2$, а значит, $v\in (U_1+U_2)^\perp$.

Далее,
$$\rho(P_1, P_2) = \inf_{u_1 \in U_1, \ u_2 \in U_2} \rho(p_1 + u_1, p_2 + u_2) = \inf |\overrightarrow{p_1 p_2} - u_1 + u_2| = \rho(\overrightarrow{p_1 p_2}, U_1 + U_2) = |\operatorname{ort}_{U_1 + U_2} \overrightarrow{p_1 p_2}| = |v|$$
 - длина общего перпендикуляра.

47 Движения. Дифференциал как гомоморфизм группы движений в ортогональную группу. Собственные и несобственные движения.

 $\underline{\mathrm{Def}}$. Движением аффинного пространства S называется аффинное преобразование, дифференциал которого есть ортогональное преобразование.

Так как $d(fg) = df \cdot dg$, и так как ортогональные преобразования образуют группу O(V), то и движения образуют группу Isom(S). Геометрия этой группы называется евклидовой геометрией.

В векторизованной форме движения записываются так: $f(x) = \mathcal{A}x + b$, где $\mathcal{A} = df \in \mathrm{O}(V)$, а вектор b зависит от начала отсчёта.

Значит, дифференциал осуществляет гомоморфизм $d: \text{Isom}(S) \to \mathrm{O}(V)$.

Отображение $\det d : \mathrm{Isom}(S) \to \{\pm 1\}$ - тоже гомоморфизм.

<u>Def.</u> Движение f, для которого $\det df = 1$, называется собственным, для которого -1 - несобственным. Собственные движения образуют подгруппу $\operatorname{Isom}_+(S)$, несобственные - смежный класс по этой подгруппе. Значит, $[\operatorname{Isom}(S); \operatorname{Isom}_+(S)] = 2$.

Классификация движений прямой:

- 1. Если движение f собственное, то $df = \mathcal{E}$, и f параллельный перенос.
- 2. Если f несобственное, то $df = -\mathcal{E}$. В векторизованной форме f(x) = -x + b, значит, b/2 неподвижная точка, то есть f центральная симметрия относительно этой неподвижной точки.

48 Ось движения. Геометрическое описание движений плоскости и трёхмерного пространства.

Теорема. Для любого движения f существует однозначно определённая плоскость $P = p_0 + U$ со следующими свойствами:

- 1. f(P) = P;
- 2. $f|_{P}$ параллельный перенос;

3. df не имеет неподвижных векторов в U^{\perp} .

Доказательство. Если искомая плоскость P существует, то её направляющее пространство должно совпадать с пространством неподвижных векторов оператора $\mathcal{A}=df$. Обозначим это подпространство за U. В векторизованной форме $f(x)=\mathcal{A}x+b$. Пусть $b=b_0+b_1;\ b_0\in U,\ b_1\in U^\perp$. Так как оператор $\mathcal{A}-\mathcal{E}$ невырожден на U^\perp , то существует единственный вектор $x_0\in U$, такой, что $\mathcal{A}x_0+b_1=x_0$. Пусть p_0 - соответствующая ему точка. Тогда $f(p_0)=p_0+b_0$. Плоскость $P=p_0+U$ и является той единственной плоскостью, удовлетворяющей условиям теоремы. **Q.E.D**.

Def. Плоскость из теоремы называется осью движения.

Из канонического вида матицы ортогонального преобразования следует: $\dim U^{\perp}$ чётно, если f - собственное движение, и нечётно в противном случае.

Геометрическое описание движений плоскости:

- 1. f собственное $\Rightarrow df$ поворот на угол α . В векторизованной форме $f(x) = \mathcal{A}x + b$, где матрица \mathcal{A} есть $\Pi(\alpha)$.
 - (a) Если $\alpha = 0$, то f параллельный перенос.
 - (b) Если $0 \le \alpha \le 2\pi$, то \mathcal{A} не имеет неподвижных векторов, значит, уравнение $\mathcal{A}x + b = x$ имеет единственное решение (поскольку оно равносильно уравнению $(\mathcal{A} \mathcal{E})x = -b$, и $\det(\mathcal{A} \mathcal{E}) \ne 0$). Если это решение взять за начало координат, то $f(x) = \mathcal{A}x$, то есть f поворот.
- 2. Если f несобственное, то df отражение относительно некоторого одномерного подпространства l. В векторизованной форме $f(x) = \mathcal{A}x + b$, и разложим: $b = b_0 + b_1$, $b_0 \in l$, $b_1 \perp l$. Рассмотрим прямую $\frac{b_1}{2} + l$. Она инвариантна относительно f: действительно, $f(\frac{b_1}{2} + u) = \mathcal{A}(\frac{b_1}{2} + u) + b = -\frac{b_1}{2} + u + b = (\frac{b_1}{2} + u) + b_0$. Если $o' = o + \frac{b_1}{2}$ начало отсчёта, то $f(x) = \mathcal{A}x$. Значит, f либо отражение, либо скользящая

Если $o' = o + \frac{b_1}{2}$ - начало отсчёта, то f(x) = Ax. Значит, f - либо отражение, либо скользящая симметрия.

Геометрическое описание движений пространства: Пусть $P = p_0 + U$ - ось движения f.

- 1. Если $\dim P = 3$, то f параллельный перенос;
- 2. Если dim P = 2, то ортогональное дополнение одномерно, значит, $df|_{U^{\perp}} = -\mathcal{E}$. Поэтому f есть либо отражение относительно P, либо скользящее отражение относительно P;
- 3. Если dim P=1, то $df|_{U^{\perp}}$ либо поворот относительно P, либо винтовое движение;
- 4. Если $\dim P = 0$, то, взяв эту точку за начало отсчёта, имеем, что f ортогональное преобразование, не имеющее неподвижных векторов, то есть зеркальный поворот (поворот плюс отражение).
- 49 Прямоугольные системы координат в евклидовом аффинном пространстве. Свойство максимальной подвижности и координатный признак равенства фигур в евклидовой геометрии.

<u>Def.</u> Репер $(o; e_1, \ldots, e_n)$ называется ортонормированным, если базис (e_1, \ldots, e_n) ортонормированный. Система координат, связанная с таким репером, называется прямоугольной.

Теорема. Для любых двух ортонормированных реперов существует единственное движение f, переводящее первый репер во второй, то есть f(o) = o'; $df(e_i) = e'_i$ (i = 1, ..., n).

Доказательство. Существует единственное аффинное преобразование, переводящее первый репер во второй, но поскольку df переводит ортонормированный базис векторного пространства в ортонормированный, то df ортогонально, значит, f - движение. **Q.E.D.**

Координатный признак равенства фигур:

Теорема. Фигуры F и F' равны \Leftrightarrow существуют такие ортонормированные реперы $(o; e_1, \ldots, e_n)$ и $(o'; e'_1, \ldots, e'_n)$, что $o + \sum_i x_i e_i \in F \Leftrightarrow o' + \sum_i x'_i e'_i \in F'$.

Доказательство.

- 1. Существует $f \in GA(S)$, переводящее первый репер во второй, причём f движение, и f(F) = F'. Значит, фигуры F и F' равны.
- 2. Пусть f движение, переводящее первый репер во второй. Возьмём любой ортонормированный репер $(o; e_1, \ldots, e_n)$ и рассмотрим репер $(f(o); f(e_1), \ldots, f(e_n))$. Тогда $o + \sum_i x_i e_i \in F \iff f(o) + \sum_i x_i df(e_i) \in F'$. Q.E.D.

50 Приведение уравнения невырожденной квадрики в евклидовом пространстве к каноническому виду (без доказательства единственности в случае параболоида).

Найдём канонический вид уравнения невырожденной квадрики в прямоугольной системе координат:

1. Неконическая центральная квадрика.

Выберем начало координат в центре квадрики. Свободный член сделаем равным -1. Получим $\lambda_1 x_1^2 + \dots + \lambda_n x_n^2 = 1$, где $\lambda_1, \dots, \lambda_n$ определены однозначно с точностью до перестановки и $\lambda_i \neq 0 \ \forall i=1,\dots,n$.

2. Конические квадрики.

 $\lambda_1 x_1^2 + \dots + \lambda_n x_n^2 = 0$, и $\lambda_1, \dots, \lambda_n$ определены однозначно с точностью до перестановки и умножения на одно и то же число.

3. Нецентральные квадрики (параболоиды).

Квадратичная функция приводится к виду $\lambda_1 x_1^2 + \dots + \lambda_n x_n (n-1)^2 + b_1 x_1 + \dots + b_n x_n + c = 0$. С помощью переноса начала координат можно получить $\lambda_1 x_1^2 + \dots + \lambda_n x_n (n-1)^2 + b_n x_n + c = 0$, причём $b_n \neq 0$, иначе квадрика вырождена. Сдвигая по x_n , уберём свободный член и сделаем $b_n = -1$. Получим уравнение вида $\lambda_1 x_1^2 + \dots + \lambda_n x_n (n-1)^2 = x_n$.

На самом деле, числа $\lambda_1, \dots, \lambda_{n-1}$ определены однозначно с точностью до перестановки и умножения на -1 — без доказательства.

51 Проективные пространства, их аффинные карты. Однородные и неоднородные координаты.

<u>Def.</u> Проективным пространством, ассоциированным с векторным пространством V, называется множество PV одномерных подпространств пространства V. Множество PU одномерных подпространств, содержащихся в (k+1)-мерном подпространстве U, называется k-мерной плоскостью проективного пространства PV.

Ясно, что нульмерные плоскости — это точки, одномерные — прямые, (n-1)—мерные — гиперплоскости. Если $\dim V = n+1$, то положим $\dim PV \doteqdot n$. Обозначим: если $0 \neq x \in V$, то через \widehat{x} обозначим $\langle x \rangle \in PV$.

Рассмотрим V, точку 0 и гиперплоскость S, не проходящую через 0. Пусть V_S - направляющее подпространство плоскости S. Любое одномерное подпространство, не лежащее в V_S , пересекает S и V_S . Положим $\varphi_S: PV \backslash PV_S \to S$, тогда φ_S - биекция.

<u>Def.</u> Гиперплоскость S вместе с отображением φ_S называется аффинной картой пространства PV. <u>Def.</u> Точки гиперплоскости PV_S называются бесконечно удалёнными по отношению к аффинной карте S.

k—мерная плоскость пространства PV, не лежащая в бесконечно удалённой гиперплоскости, изображается на карте k—мерной плоскостью. Точнее, изображается не вся k—мерная плоскость, а её k—мерная часть.

Пусть (e_0, e_1, \ldots, e_n) - базис пространства V.

<u>Def.</u> Однородными координатами точки \hat{x} называются координаты вектора x. Они определены с точностью до одновременного умножения на любое число из K^* . Обозначение: $\hat{x} \doteqdot (x_0 : x_1 : \cdots : x_n)$, причём не все x_i нули.

Неоднородные координаты точки $\hat{x} \in PV$ - это аффинные координаты её изображения на аффинной карте. Установим связь между однородными и неоднородными координатами.

Пусть $S = e_0 + \langle e_1, e_2, \dots, e_n \rangle$. Тогда $\widehat{x} = (x_0 : x_1 : \dots : x_n)$, и $x_0 \neq 0$.

$$x = x_0 e_0 + \dots + x_n e_n = x_0 \left(e_0 + \frac{x_1}{x_0} e_1 + \dots + \frac{x_n}{x_0} e_n \right)$$

- та же точка. Вектор $e_0+\frac{x_1}{x_0}e_1+\cdots+\frac{x_n}{x_0}e_n$ имеет координаты $\frac{x_0}{x_0},\ldots,\frac{x_n}{x_0}$ относительно репера $(e_0;\,e_1,\ldots,e_n)$. Таким образом, неоднородными координатами точки \widehat{x} служат отношения $\frac{x_0}{x_0},\ldots,\frac{x_n}{x_0}$. <u>Def.</u> Аффинным атласом называется система аффинных карт

$$S_i = e_i + \langle e_1, \dots, e_{i-1}, e_{i+1}, \dots, e_n \rangle; \qquad i = 0, 1, \dots, n.$$

Аффинный атлас полностью покрывает пространство PV.

52 Плоскости в проективном пространстве, их взаимное расположение.

Теорема. Через любые k+1 точку $p_0, p_1, \ldots, p_k \in PV$ проходит плоскость размерности $\leqslant k$. Если эти точки не содержатся в плоскости размерности меньше, чем k, то проходящая через них k-мерная плоскость единственна.

Доказательство. На языке векторного пространства V утверждение теоремы означает следующее: любые k+1 векторов $x_0, x_1, \ldots, x_k \in V$ содержатся в подпространстве размерности не выше k+1, а если они не содержатся в подпространстве размерности меньше k+1, то они содержатся в единственном (k+1)—мерном подпространстве. Это очевидно. **Q.E.D**.

Теорема. Пусть π_1, π_2 - такие плоскости пространства PV, что $\dim \pi_1 + \dim \pi_2 \geqslant n$. Тогда $\pi_1 \cap \pi_2$ непусто, причём $\dim(\pi_1 \cap \pi_2) \geqslant \dim \pi_1 + \dim \pi_2 - n$.

Доказательство. Пусть $\pi_1 = PU_1$, $\pi_2 = PU_2$. Тогда по условию, $\dim U_1 + \dim U_2 \geqslant n+2 > n+1 = \dim V$. Значит, $U_1 \cap U_2 \neq 0$, то есть $\pi_1 \cap \pi_2$ непусто. Более точно, $\dim(U_1 \cap U_2) \geqslant \dim U_1 + \dim U_2 - (n+1)$, поэтому $\dim(\pi_1 \cap \pi_2) \geqslant \dim \pi_1 + \dim \pi_2 - n$. Q.E.D.

53 Проективные преобразования. Существование и единственность проективного преобразования n-мерного проективного пространства, переводящего одну заданую систему n+2 точек общего положения в другую.

Пусть \mathcal{A} - невырожденный линейный оператор в пространстве V. Тогда \mathcal{A} переводит каждое одномерное подпространство. Тем самым, \mathcal{A} определяет рекоторое преобразование $\widehat{\mathcal{A}}$ пространства PV. Оно называется проективным преобразованием.

Свойства:
$$\widehat{\mathcal{AB}} = \widehat{\mathcal{A}} \cdot \widehat{\mathcal{B}}; \ \widehat{\mathcal{E}} = id; \ \widehat{\mathcal{A}}^{-1} = (\widehat{\mathcal{A}})^{-1}.$$

Значит, проективные преобразования образуют группу. Она называется проективной группой и обозначается $\mathrm{PGL}(V)$. Отображение $\mathcal{A} \mapsto \widehat{\mathcal{A}}$ является гомоморфизмом групп. Но это необязательно изоморфизм.

Лемма.
$$\widehat{\mathcal{A}} = id \Leftrightarrow \mathcal{A} = \lambda \mathcal{E}$$
.

Доказательство. Ясно, что $\widehat{\lambda \mathcal{E}} = id$. Обратно, пусть $\widehat{\mathcal{A}} = id$. Тогда все ненулевые векторы являются собственными векторами оператора \mathcal{A} . Но так как сумма собственных векторов с различными собственными значениями не является собственным вектором, то все собственные значения оператора \mathcal{A} одинаковы. **Q.E.D**.

Следстсвие.
$$\widehat{\mathcal{A}} = \widehat{\mathcal{B}} \iff \mathcal{B} = \lambda \mathcal{A}$$
.

Доказательство.
$$\widehat{\mathcal{A}} = \widehat{\mathcal{B}} \Leftrightarrow \widehat{\mathcal{A}^{-1}\mathcal{B}} = id \Leftrightarrow \mathcal{A}^{-1}\mathcal{B} = \lambda \mathcal{E} \Leftrightarrow \mathcal{B} = \lambda \mathcal{A}$$
. Q.E.D.

Запись в координатах:

Пусть (e_0,e_1,\ldots,e_n) - базис V. Рассмотрим аффинную карту $S_0=e_0+\langle e_1,\ldots,e_n\rangle$. Пусть $x=(x_1,x_2,\ldots,x_n)=e_0+x_1e_1+\cdots+x_ne_n\in S_0$. Тогда $\mathcal{A}x=y_0e_0+y_1e_1+\cdots+y_ne_n$, где $y_i=a_{i0}+a_{i1}x_1+\cdots+a_{in}x_n$. Значит, $\mathcal{A}x=(z_1,\ldots,z_n)$, где

$$z_i = \frac{y_i}{y_0} = \frac{a_{i0} + a_{i1}x_1 + \dots + a_{in}x_n}{a_{00} + a_{01}x_1 + \dots + a_{0n}x_n}.$$

Таким образом, проективное преобразование - это дробно-линейное преобразование.

При n=1 оно выглядит как

$$x \mapsto \frac{ax+b}{cx+d}$$
, где $\left| egin{array}{cc} a & b \\ c & d \end{array} \right|
eq 0.$

При этом $-\frac{d}{c} \mapsto \infty$, а $\infty \mapsto \frac{a}{c}$.

<u>Def.</u> Будем говорить, что точки $p_0, p_1, \ldots, p_{n+1} \in PV$ находятся в общем положении, если никакие n+1 из них не лежат в одной гиперплоскости.

Теорема. Если точки $p_0, p_1, \ldots, p_{n+1} \in PV$, а также точки $q_0, q_1, \ldots, q_{n+1} \in PV$ находятся в общем положении, то существует единственное проективное преобразование f, для которого

$$f(p_i) = q_i, \quad i = 0, 1, \dots, n+1.$$

Доказательство. Пусть $p_i = \hat{e}_i$, где $e_i \in V$. Тогда любые n+1 векторов из e_0, \ldots, e_{n+1} линейно независимы, и в частности, e_0, e_1, \ldots, e_n - базис пространства V. Тогда e_{n+1} раскладывается по этому базису. Но за счёт нормировки базисных векторов можно добиться $e_{n+1} = e_0 + e_1 + \cdots + e_n$. При этом e_0, e_1, \ldots, e_n определены однозначно с точностью до одновременного умножения на одно и то же число

Аналогично, существуют такие векторы $f_0, f_1, \dots, f_{n+1} \in V$, что $q_i = \hat{f}_i$, и $f_{n+1} = f_0 + f_1 + \dots + f_n$. Пусть \mathcal{A} - линейное преобразование, переводящее базис (e) в базис (f), тогда $\mathcal{A}e_{n+1} = f_{n+1}$, поэтому $\widehat{\mathcal{A}}p_i = q_i \ \forall i$.

Теперь пусть \mathcal{B} - линейное преобразование, такое, что $\widehat{\mathcal{B}}p_i=q_i, \quad i=0,1,\ldots,n+1$. Тогда $\mathcal{B}e_i=\lambda_i f_i$. Но так как $e_{n+1}=e_0+e_1+\cdots+e_n$, то $\mathcal{B}e_{n+1}=\mathcal{B}e_0+\cdots+\mathcal{B}e_n=\lambda_0 f_0+\cdots+\lambda_n f_n=\lambda_{n+1} f_{n+1}$. Значит, $\lambda_0=\cdots=\lambda_n=\lambda_{n+1}$ \Rightarrow $\mathcal{B}=\lambda\mathcal{A}$. **Q.E.D.**

54 Двойное отношение четвёрки точек, лежащих на одной прямой. Его инвариантность при проективных преобразованиях.

У проективного преобразования нет инварианта даже трёх точек, лежащих на одной прямой. Пусть $L = PU \subset PV$ - прямая, то есть $\dim U = 2$. Пусть (e_1, e_2) - базис в U. Пусть $p_1, p_2, p_3, p_4 \in L$, $p_i = \widehat{u}_i$, где $u_1, u_2, u_3, u_4 \in U$.

Обозначим через $\det(u,v)$ ($\forall u,v \in U$) определитель матрицы, составленный из координат векторов u и v в базисе (e_1,e_2) . Двойное отношение точек p_1,p_2,p_3,p_4 определяется по формуле

$$(p_1, p_2; p_3, p_4) = \frac{\det(u_1, u_3)}{\det(u_3, u_2)} : \frac{\det(u_1, u_4)}{\det(u_4, u_2)}.$$

Это выражение не зависит от выбора векторов $u_1, u_2, u_3, u_4 \in U$, также оно не зависит от базиса пространства U.

Выразим двойное отношение через неоднородные координаты точек p_i на прямой L.

Пусть S - аффинная карта PV. $u_1, u_2, u_3, u_4 \in S \cap L$, $u_i = e_2 + x_i e_1$. Пусть x_1, x_2, x_3, x_4 - неоднородные координаты точек p_i . Тогда

$$\det(u_i,u_j) = \left| \begin{array}{cc} x_i & 1 \\ x_j & 1 \end{array} \right| = x_i - x_j, \ \text{таким образом, } (p_1,p_2;\, p_3,p_4) = \frac{x_1 - x_3}{x_3 - x_2} : \frac{x_1 - x_4}{x_4 - x_2} = \frac{(u_1,u_2;\, u_3)}{(u_1,u_2;\, u_4)}.$$

Теорема. Проуктивное преобразование $f \in \mathrm{PGL}(V)$ сохраняет двойное отношение, то есть

$$(f(p_1), f(p_2); f(p_3), f(p_4)) = (p_1, p_2; p_3, p_4).$$

Доказательство. Пусть $p_1, p_2, p_3, p_4 \in PU$, dim U = 2. Пусть (e_1, e_2) - базис U, и $u_1, u_2, u_3, u_4 \in U$ таковы, что $\hat{u}_i = p_i$.

Пусть $f = \widehat{\mathcal{A}}, \ \mathcal{A} \in \mathrm{GL}(V)$. Пусть $v_i = \mathcal{A}u_i, \ f_1 = \mathcal{A}e_1, \ f_2 = \mathcal{A}e_2$. Тогда (f_1, f_2) - базис $\mathcal{A}U, \ \widehat{v}_i = f(p_i)$.

$$(f(p_1), f(p_2); f(p_3), f(p_4)) = \frac{\det(v_1, v_3)}{\det(v_3, v_2)} : \frac{\det(v_1, v_4)}{\det(v_4, v_2)}.$$

Но v_i выражается через (f_1, f_2) также, как u_i выражался через (e_1, e_2) , поэтому $\det(v_i, v_j) = \det(u_i, u_j)$. Таким образом, двойное отношение сохраняется при проективном преобразовании. **Q.E.D.**

55 Квадрики в проективном пространстве, их аффинные изображения. Проективная классификация невырожденных вещественных квадрик, её сопоставление с аффинной классификацией.

Def. Конусом в векторном пространстве V называется подмножество $X \subset V$, облажающее свойством

$$x \in X \implies \lambda x \in X \ \forall \ \lambda \in K.$$

Проективизацией конуса $X \subset V$ называется множество $PX \subset PV$ всех одномерных подпространств, содержащихся в X. Изображение проективизации конуса X на аффинной карте S есть $X \cap S$.

Квадратичным конусом в пространстве V называется коническая квадрика с вершиной в нуле. Проективизация квадратичного конуса называется проективной квадрикой.

Квадратичный конус - это подмножество, задаваемое уравнением $Q(x_0, x_1, \dots, x_n) = 0$, где Q квадратичная функция в пространстве V, при условии, что это множество не есть подпространство. Это же уравнение есть уравнение соответствующей проективной квадрики в однородных координатах. Изображение на аффинной карте $S_0: x_0=1$ задаётся уравнением $Q(1,x_1,\ldots,x_n)=0$.

Если это не пустое множество и не плоскость, то это аффинная квадрика (на самом деле, можно доказать, что если поле K бесконечно, то это не может быть пустым множеством). Тип этой аффинной квадрики, безусловно, зависит от аффинной карты.

Бесконечно удалённая часть проективной квадрики задаётся уравнением $Q(0, x_1, \dots, x_n) = 0$. Это уравнение в однородных координатах на бесконечно удалённой гиперплоскости, и если это не пустое множество и не плоскость, то это квадрика.

Всякая аффинная квадрика X на S_0 является изображением однозначно определённой проективной квадрики \widehat{X} . Уравнение \widehat{X} в однородных координатах получается из уравнения квадрики X путём вставления x_0 в члены первой степени и x_0^2 в свободный член.

 $\underline{\mathrm{Def}}$. Проективная квадрика $Q(x_0, x_1, \dots, x_n) = 0$ называется невырожденной, если квадратичная функция Q невырождена, и вырожденной в противном случае.

Пусть Q вырождена, и F - соответствующая симметрическая билинейная функция.

Пусть $u \in \operatorname{Ker} F$, $u \neq 0$. Тогда $Q(x) = 0 \Rightarrow Q(\lambda x + \mu u) = 0 \,\forall \, \lambda, \mu \in K$, потому что

 $Q(\lambda x + \mu u) = \lambda^2 Q(x) + 2\lambda \mu F(x, u) + \mu^2 Q(u) = 0.$

 Θ то означает, что соответствующая проективная квадрика вместе с каждой точкой p содержит прямую, проходящую через p и точки $o = \hat{u}$.

В аффинном изображении на карте S мы получим конус, если $o \in S$, и цилиндр в противном случае (если $o \notin S$, то это бесконечно удалённая точка, и $p \in$ изображению \Rightarrow прямая, параллельная o, принадлежит изображению).

Таким образом, в проективной геометрии нет разницы между конусом и цилиндром.

Рассмотрим невырожденные проективные квадрики в вещественном проективном пространстве. Канонический вид уравнения в однородных координатах:

$$x_0^2 + x_1^2 + \dots + x_k^2 - x_{k-1}^2 - \dots - x_n^2 = 0$$
 $\left(\frac{n-1}{2} \le k < n\right)$.

Рассмотрим случаи n=2 и n=3.

При n=2 есть только одна возможность:

 $x_0^2 + x_1^2 - x_3^2 = 0$. Эта квадрика называется коникой.

 Π ри n=3 - две возможности:

 $x_0^2+x_1^2+x_2^2-x_1^2=0$ - овальная квадрика, и $x_0^2+x_1^2-x_2^2-x_1^2=0$ - линейчатая квадрика.

Таблица:

n	Проективная квадрика	Аффинное изображение	Бесконечно удалённая часть
2	коника	эллипс	пусто
		парабола	точка
		гипербола	пара точек
3	овальная квадрика	эллипсоид	пусто
		эллиптический параболоид	точка
		двуполостный гиперболоид	коника
	линейчатая квадрика	однополостный гиперболоид	коника
		гиперболический параболоид	пара прямых

56 Векторные модели сферической и гиперболической геометрий. Плоскости, расстояние между точками и движения в этих моделях.

56.1 Сферическая геометрия.

Пусть E^{n+1} - (n+1)-мерное евклидово пространство со скалярным умножением

$$(x,x) = x_0^2 + x_1^2 + \dots + x_n^2$$
.

Рассмотрим S^n-n —мерную сферу, задаваемую уравнением (x,x)=1. k—мерные плоскости на S^n - это подмножества вида $S^n\cap U$, где U-(k+1)—мерное подпространство в E^{n+1} . Нульмерные плоскости - это пары диаметрально противоположных точек, одномерные - это большие круги, называемые прямыми в сферической геометрии.

Пусть $\dim \Pi_1 + \dim \Pi_2 \geqslant n$. Тогда $\Pi_1 \cap \Pi_2 \neq \emptyset$. В частности, любые две прямые на S^2 пересекаются. Через любые две точки проходит прямая.

Расстояние между точками определяется по формуле $\cos \rho(x,y) = (x,y)$, то есть равно длине дуги большого круга.

Групповой смысл:

Рассмотрим однопараметрическую группу поворотов в подпространстве $\langle x,y \rangle$. В ортонормированном базисе

$$\Pi(t) = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix}.$$

 $\Pi(t)\Pi(s)=\Pi(t+s)$. Если $y=\Pi(t)x,\ 0\leqslant t\leqslant \pi,$ то $\rho(x,y)=t.$

Отсюда следует, что расстояние аддитивно: дйествительно, для точек x,y,z, лежащих на одной полуокружности, и y - между x и z выполняется $\rho(x,y)+\rho(y,z)=\rho(x,z)$, так как $y=\Pi(t)x;\ z=\Pi(s)y$, тогда $z=\Pi(t+s)x$.

Группа движений сферической геометрии - это ортогональная группа O_{n+1} , так как эта группа сохраняет сферу.

56.2 Гиперболическая геометрия (геометрия Лобачевского).

Пусть $E^{n,1}$ - псевдоевклидово пространство сигнатуры (n,1) (пространство Минковского) со скалярным умножением

$$(x,x) = -x_0^2 + x_1^2 + \dots + x_n^2.$$

Рассмотрим гиперболоид L^n : $(x,x)=-1;\ x_0>0$ (рассматривается только одна связная компонента).

<u>Def.</u> (k+1)-мерное подпространство $U \subset E^{n,1}$ называется гиперболическим, если ограничение скалярного умножения на него имеет сигнатуру (k,1), то есть невырождено и неопределённо.

k-мерной плоскостью пространства L^n называется подмножество вида $L^n \cap U$, где

U - (k+1)-мерное гиперболическое подпространство.

Нульмерные плоскости - это точки, одномерные плоскости называются прямыми.

Расстояние между точками определяется по формуле

$$\operatorname{ch} \rho(x, y) = -(x, y).$$

Групповой смысл:

Рассмотрим однопараметрическую группу гиперболических поворотов в двумерном подпространстве $\langle x, y \rangle$. В ортонормированном базисе

$$H(t) = \begin{pmatrix} \cosh t & \sinh t \\ \sinh t & \cosh t \end{pmatrix}.$$

Групповое свойство: H(t)H(s) = H(t+s). В подходящем базисе (где $(x,x) = x_0x_1$)

$$H(t) = \left(\begin{array}{cc} e^t & 0 \\ 0 & e^{-t} \end{array} \right).$$

Такое преобразование называется ещё преобразованием Лоренца.

Если y = H(t)x, то $\rho(x,y) = t$. Действительно,пусть $(e_0 = x, e_1)$ - ортонормированный базис в $\langle x,y \rangle$. Тогда $H(t)x = x \operatorname{ch} t + e_1 \operatorname{sh} t = y$. $(x,y) = -\operatorname{ch} t \Rightarrow \operatorname{ch} \rho(x,y) = -(x,y)$.

Свойство аддитивности расстояний между точками: если точки x,y,z лежат на одной прямой, причём y лежит между x и z, то

$$\rho(x,y) + \rho(y,z) = \rho(x,z).$$

Группа движений геометрии Лобачевского - это псевдоортогональная группа $O_{n,1}$ - группа линейных преобразований $E^{n,1}$, сохраняющая скалярное умножение. Точнее, её подгруппа индекса 2 $(O'_{n,1})$, сохраняющая каждую связную компоненту гиперболоида (x,x)=-1.

57 Свойство максимальной подвижности в сферической и гиперболической геометриях.

<u>Def.</u> Ортонормированным репером в пространстве S^n (соответственно, L^n) называется система $(e_0; e_1, \ldots, e_n)$, где $e_0 \in S^n$ (соответственно, L^n), а (e_1, \ldots, e_n) - ортонормированный базис в касательном подпространстве $T_{e_0}(S^n) = \langle e_0 \rangle^{\perp}$ (соответственно, $T_{e_0}(L^n) = \langle e_0 \rangle^{\perp}$, а ортонормированный базис в $T_{e_0}(L^n)$ - это базис, для которого $(e_0, e_0) = -1$, $(e_i, e_i) = 1$ при i > 0, $(e_i, e_j) = 0$ при $i \neq j$). **Теорема.** Для любых ортонормированных реперов $(e_0; e_1, \ldots, e_n)$ и $(e'_0; e'_1, \ldots, e'_n)$ существует единственное движение, переводящее первый репер во второй (в S^n и в L^n).

Доказательство. Для S^n существует единственный линейный оператор \mathcal{A} в E^{n+1} , переводящий базис (e_0, e_1, \ldots, e_n) в базис $(e'_0, e'_1, \ldots, e'_n)$, и так как оба базиса ортонормированные, то $\mathcal{A} \in O_{n+1}$; Для L^n аналогично с тем замечанием, что $\mathcal{A}e_0 = e'_0$, поэтому $\mathcal{A} \in O'_{n,1}$. **Q.E.D**.

58 Сумма углов сферического и гиперболического треугольника.

Измерение углов между прямыми m и l:

Если $m=\Pi(t)l$, где $\Pi(t)$ - поворот вокруг точки $p=m\cap l$ на угол t в плоскости ml, то $\angle ml=t$. Если e и f - единичные векторы, ортогональные l и m соответственно, то $\cos \angle lm=-(e,f)$.

Составим матрицу для треугольника с углами α, β и γ , вершинами p, q, r и единичными нормалями к сторонам e, f, g соответственно:

$$G(e, f, g) = \begin{pmatrix} 1 & -\cos\gamma & -\cos\beta \\ -\cos\gamma & 1 & -\cos\alpha \\ -\cos\beta & -\cos\alpha & 1 \end{pmatrix}.$$

Определитель этой матрицы обозначим $\Delta(\alpha, \beta, \gamma)$:

$$\Delta(\alpha, \beta, \gamma) = \det G(e, f, g) = 1 - 2\cos\alpha\cos\gamma - \cos^2\alpha - \cos^2\beta - \cos^2\gamma.$$

Если E^2 , то $\Delta(\alpha, \beta, \gamma) = 0$, если S^2 , то $\Delta(\alpha, \beta, \gamma) > 0$, если L^2 , то $\Delta(\alpha, \beta, \gamma) < 0$.

Теорема. Сумма углов сферического (гиперболического) треугольника больше π (соответственно,

Доказательство. Докажем, что для сферического (гиперболического) треугольника $\alpha + \beta + \gamma \neq$ π . Действительно, иначе существовал бы евклидовый треугольник с теми же углами, и тогда $\Delta(\alpha, \beta, \gamma) = 0.$

Из соображений непрерывности следует, что $\alpha + \beta + \gamma - \pi$ имеет один знак для всех треугольников. Для S^2 есть тругольник с $\alpha = \beta = \gamma = \frac{\pi}{2}$.

Для L^2 - идеальный треугольник с $\alpha = \beta = \gamma = 0$. **Q.E.D**.

Рассмотрим равносторонний треугольник с $\alpha = \beta = \gamma$.

Тогда $\Delta(\alpha, \beta, \gamma) = \Delta(\alpha, \alpha, \alpha) = 1 - 3\cos^2\alpha - 2\cos^3\alpha = (1 + \cos\alpha)^2(1 - 2\cos\alpha).$

$$1-2\cos\alpha \left\{ \begin{array}{l} >0, \quad \text{для } S^2; \\ =0, \quad \text{для } E^2; \quad \text{Поэтому } \alpha \left\{ \begin{array}{l} >\frac{\pi}{3}, \quad \text{для } S^2; \\ =\frac{\pi}{3}, \quad \text{для } E^2; \\ <0, \quad \text{для } L^2. \end{array} \right.$$

59 Тензорная алгебра векторного пространства.

Def. Полилинейной функцией, или p-линейной функцией на векторном пространстве V над полем K называется отображение $\alpha:\underbrace{V\times \cdots \times V}_{p} \to K,$ линейное по каждому аргументу.

Пусть (e_1,\ldots,e_n) - базис пространства V. Положим $\alpha(e_{i_1},\ldots,e_{i_p})\doteqdot a_{i_1\ldots i_p}$. В координатах $\alpha(x_1,\ldots,x_p)=\sum\limits_{i_1,\ldots,i_p}a_{i_1\ldots i_p}x_{1i_1}\ldots x_{pi_p}$. Здесь первый индекс - это номер вектора,

второй - номер координаты.

Пространство p-линейных функций на V обозначается $T_p(V)$. Базис этого пространства составляют функции

$$\left\{ \varepsilon_{i_1...i_p} : i_1, \ldots, i_p \right\},\,$$

определяемые следующим образом:

$$\varepsilon_{i_1\dots i_p}(e_{i_1},\dots,e_{i_p})=1;$$

 $arepsilon_{i_1...i_p}(e_{j_1},\ldots,e_{j_p})$ в остальных случаях. Таким образом, $\alpha=\sum_{i_1,...,i_p}a_{i_1...i_p}arepsilon_{i_1...i_p}$, значит, базис. Поэтому $\dim T_p(V)=(\dim V)^p$.

В частности, $T_0(V) = K$; $T_1(V) = V^*$.

Тензорное умножение определяется как операция

$$\otimes: T_p(V) \times T_q(V) \to T_{p+q}(V)$$

по следующему правилу: если $\alpha \in T_p(V)$, $\beta \in T_q(V)$, то $\alpha \otimes \beta \in T_{p+q}(V)$, так, что

$$\alpha \otimes \beta(x_1, \dots, x_{p+q}) = \alpha(x_1, \dots, x_p) \cdot \beta(x_{p+1}, \dots, x_{p+q}).$$

Свойства:

- 1. Линейность по обоим аргументам: по α и по β ;
- 2. Ассоциативность: $\alpha \in T_p(V), \beta \in T_q(V), \gamma \in T_r(V) \Rightarrow (\alpha \otimes \beta) \otimes \gamma = \alpha \otimes (\beta \otimes \gamma);$

3.
$$\varepsilon_{i_1,\ldots,i_p} \in T_p(V)$$
, $\varepsilon_{i_{p+1},\ldots,i_{p+q}} \in T_q(V) \Rightarrow \varepsilon_{i_1,\ldots,i_p} \otimes \varepsilon_{i_{p+1},\ldots,i_{p+q}} = \varepsilon_{i_1,\ldots,i_{p+q}} \in T_{p+q}(V)$.

 $\underline{\mathrm{Def}}$. Тензорным произведением векторных пространств V и U называется векторное пространство W вместе с билинейным отображением $\otimes: V \times U \to W$, $(x,y) \mapsto x \otimes y$, обладающим свойством: Если (e_1,\ldots,e_n) - базис $V,\,(f_1,\ldots,f_m)$ - базис $U,\,$ то $(e_i\otimes f_j\,:\,i=1,\ldots,n;\,j=1,\ldots,m)$ - базис W.Обозначается: $W = V \otimes U$, $\dim W = \dim V \cdot \dim U$.

Таким образом, $T_{p+q}(V) = T_p(V) \otimes T_q(V)$.

Аналогично определяется тензорное произведение нескольких векторных пространств, поэтому $T_p(V) = \underbrace{V^* \otimes \ldots \otimes V^*}_p$. В частности, $\varepsilon_{i_1,\ldots,i_p} = \varepsilon_{i_1} \otimes \ldots \otimes \varepsilon_{i_p}$, где $\varepsilon_{i_1},\ldots,\varepsilon_{i_p}$ - координатные функции из V^* . Для любых $\alpha_1,\ldots,\alpha_p \in V^*$ $(\alpha_1 \otimes \ldots \otimes \alpha_p)(x_1,\ldots,x_p) = \alpha_1(x_1)\ldots\alpha_p(x_p)$. Рассмотрим $T(V^*) = \bigoplus_{p=0}^{\infty} T_p(V) \doteqdot \{(\alpha_0,\alpha_1,\ldots) : \alpha_p \in T_p(V),$ и лишь конечное число $\alpha_p \neq 0\}$.

Операции в $T(V^*)$ определяются покомпонентно. Таким образом, $T(V^*)$ - векторное пространство. Также на $T(V^*)$ определена операция тензорного умножения: $(\alpha_0, \alpha_1, \dots)(\beta_0, \beta_1, \dots) = (\gamma_0, \gamma_1, \dots),$ где

$$\gamma_p = \sum_{q+r=p} \alpha_q \otimes \beta_r.$$

 $\underline{\mathrm{Def}}$. Алгеброй над полем K называется векторное пространство над K, в котором задана билинейная операция умножения $A \times A \to A$, $(a,b) \mapsto ab$. Всё должно удовлетворять аксиомам:

- 1. Относительно сложения и умножения A кольцо;
- 2. Относительно сложения и умножения на элементы поля K A векторное пространство;
- 3. $\lambda(ab) = (\lambda a)b = a(\lambda b)$.

Операция умножения в алгебре однозначно определяется произведениями базисных векторов: $e_ie_j = \sum c_{ijk}e_k$. Числа c_{ijk} называются структурными константами алгебры.

 $T(V^*)$ - алгебра. Она называется тензорной алгеброй пространства V^* . Это ассоциативная алгебра с единицей (единицей служит единица поля $K = T_0(V)$).

Аналогично можно определить T(V).

 $T(V)=\bigoplus_{p=0}^{\infty}T^p(V),$ где $T^p(V)=\underbrace{V\otimes\ldots\otimes V}_{p}.$ Элементы $T^p(V)$ можно рассматривать как p-линейные функции на V^* : $(x_1 \otimes \ldots \otimes x_p)(\alpha_1, \ldots, \alpha_p) = x_1(\alpha_1) \ldots x_p(\alpha_p)$. $T^{1}(V) = V$, потому что векторы - это линейные функции на V^{*} .

Симметрическая алгебра векторного пространства 60 (над полем нулевой характеристики), её связь с алгеброй многочленов.

Пусть S_p - группа подстановок p элементов. $\forall \sigma \in S_p \ \ \forall \alpha \in T_p(V)$ определим $\sigma \alpha \in T_p(V)$ по формуле

$$(\sigma\alpha)(x_1,\ldots,x_p)=\alpha\left(x_{\sigma(1)},\ldots,x_{\sigma(p)}\right).$$

Лемма. $(\sigma \tau)\alpha = \sigma(\tau \alpha)$.

Доказательство. $\sigma(\tau\alpha)(x_1,\ldots,x_p)=(\tau\alpha)(x_{\sigma(1)},\ldots,x_{\sigma(p)})=$ $= (\tau \alpha)(y_1, \dots, y_p) = \alpha \left(y_{\tau(1)}, \dots, y_{\tau(p)} \right) = \alpha \left(x_{\sigma \tau(1)}, \dots, x_{\sigma \tau(p)} \right) = ((\sigma \tau)\alpha)(x_1, \dots, x_p).$ <u>Def.</u> p-линейная функция называется симметрической, если $\sigma \alpha = \alpha \ \forall \ \sigma \in S_p$. Симметрические функции образуют подпространство $S_p(V) \subset T_p(V)$. Пусть далее char K=0.

Рассмотрим отображение симметризации

Sym :
$$T_p(V) \to T_p(V)$$
, Sym $\alpha = \frac{1}{p!} \sum_{\sigma \in S_p} \sigma \alpha$.

Теорема. Оператор Sym есть проектор на подпространство $S_p(V)$. Доказательство.

- 1. Если $\alpha \in S_p(V)$, то Sym $\alpha = \alpha$;
- 2. $\forall \alpha \ \operatorname{Sym} \alpha \in S_p(V)$: $\forall \tau \quad \tau \operatorname{Sym} \alpha = \frac{1}{p!} \sum_{\sigma \in S_n} \tau \sigma \alpha = \frac{1}{p!} \sum_{\sigma' \in S_n} \sigma' \alpha = \operatorname{Sym} \alpha;$
- 3. Из доказательства следует, что $\operatorname{Sym}^2 = \operatorname{Sym}$, поэтому $\operatorname{Sym} \operatorname{проектор}$. Q.E.D.

Лемма. Sym (Sym $\alpha \otimes \beta$) = Sym ($\alpha \otimes$ Sym β) = Sym ($\alpha \otimes \beta$).

Доказательство. Действительно, $\operatorname{Sym}(\sigma\alpha\otimes\beta)=\operatorname{Sym}(\alpha\otimes\beta)$, потому что в $\sigma\alpha$ - перестановка аргументов, но в $\operatorname{Sym}(\alpha \otimes \beta)$ потос всё равно переставляем, поэтому ничего не меняется. Суммируя по всем $\sigma \in S_p$ и деля на p!, получаем, что $\operatorname{Sym}(\operatorname{Sym} \alpha \otimes \beta) = \operatorname{Sym}(\alpha \otimes \beta)$.

Вторая часть доказывается аналогично. Q.Е.D.

Def. Определим операцию симметрического умножения:

$$\vee: S_p(V) \times S_q(V) \to S_{p+q}(V); \quad \alpha \vee \beta = \operatorname{Sym}(\alpha \otimes \beta).$$

Свойства:

- 1. Линейность по обоим аргументам;
- 2. Коммутативность: $\beta \vee \alpha = \operatorname{Sym}(\beta \otimes \alpha) = \operatorname{Sym}(\rho(\alpha \otimes \beta)) = \alpha \vee \beta$ для некоторой $\rho \in S_{p+q}$.
- 3. Ассоциативность: вытекает из леммы "Sym Sym".

Рассмотрим симметрическую алгебру пространства V^* :

$$S(V^*) = \bigoplus_{p=0}^{\infty} S_p(V),$$

где операция умножения продолжается с операции \vee по линейности (аналогично $T(V^*)$).

Пусть $\alpha_1, \ldots, \alpha_p \in S_1(V) = V^*$.

$$(\alpha_1 \vee \dots \vee \alpha_p)(x_1, \dots, x_p) = \frac{1}{p!} \sum_{\sigma \in S_p} \alpha_1 \left(x_{\sigma(1)} \right) \dots \alpha_p \left(x_{\sigma(p)} \right) = \frac{1}{p!} \mathrm{per} \left(\alpha_i(x_j) \right)$$
 - перманент.

Пусть $(\varepsilon_1,\ldots,\varepsilon_n)$ - базис V^* ; $(\varepsilon_1^*,\ldots,\varepsilon_n^*)=(e_1,\ldots,e_n)$ - базис V. **Теорема.** $\varepsilon_{i_1}\vee\cdots\vee\varepsilon_{i_p}$ $(i_1\leqslant\ldots\leqslant i_p)$ — базис в $S_p(V)$.

Доказательство.

1. Произведения $\varepsilon_{i_1} \otimes \ldots \otimes \varepsilon_{i_p}$ образуют базис в $T_p(V)$, значит, произведения Sym $(\varepsilon_{i_1} \otimes \ldots \otimes \varepsilon_{i_p}) = \varepsilon_{i_1} \vee \cdots \vee \varepsilon_{i_p}$ порождают пространство $S_p(V)$. Но ввиду коммутативности достаточно рассматривать только $\varepsilon_{i_1} \vee \cdots \vee \varepsilon_{i_n}$, где $(i_1 \leqslant \ldots \leqslant i_p)$. 2. Пусть $\sum_{i_1\leqslant \ldots\leqslant i_p}a_{i_1\ldots i_p}\varepsilon_{i_1}\vee\cdots\vee\varepsilon_{i_p}=0$. Возьмём $j_1\leqslant\ldots\leqslant j_p$ и рассмотрим значение суммы на (e_{j_1},\dots,e_{j_p}) . Если $(i_1,\dots,i_p)\neq (j_1,\dots,j_p)$, то $(\varepsilon_{i_1}\vee\dots\vee\varepsilon_{i_p})$ $(e_{j_1},\dots,e_{j_p})=0$, в противном случае это значение не равно нулю. Значит, $a_{i_1\dots i_p}=0$. **Q.E.D**.

Следстсвие. $\dim S_p(V) = CC_n^p = \frac{n(n+1)\dots(n+p-1)}{p!}$ (число сочетаний с повторениями). <u>Def.</u> Функция на V со значениями в K называется многочленом, если в координатах она записыва-

ется как многочлен.

Степень многочлена не зависит от базиса (так как замена координат линейна). Многочлены образуют алгебру K[V].

$$K[V] = \bigoplus_{p=0}^{\infty} K[V]_p,$$

где $K[V]_p$ - пространство однородных многочленов степени p.

 $\underline{\mathrm{Def}}$. Для любой симметрической p-линейной функции $\alpha \in S_p(V)$ определён ассоциированный с ней многочлен $f_{\alpha}(x) = \alpha(x, x, \dots, x) \in K[V]_{p}$.

Теорема. Отображение $\alpha \mapsto f_{\alpha}$ определяет изоморфизм алгебр $S(V^*)$ и K[V]. Доказательство.

- 1. Докажем, что это гомоморфизм. Надо доказать, что $f_{\alpha\vee\beta}=f_{\alpha}f_{\beta}$. Действительно, $f_{\alpha\vee\beta}(x)=(\alpha\vee\beta)\underbrace{(x,x,\ldots,x)}_{p+q}=\alpha\underbrace{(x,\ldots,x)}_{p}\beta\underbrace{(x,\ldots,x)}_{q}=f_{\alpha}(x)f_{\beta}(x).$
- 2. $f_{\varepsilon_i}(x) = \varepsilon_i(x) = x_i \Rightarrow f_{\varepsilon_{i_1} \vee \dots \vee \varepsilon_{i_p}}(x) = x_{i_1} \dots x_{i_p}$. Но одночлены $x_{i_1} \dots x_{i_p}$ с $i_1 \leqslant \dots \leqslant i_p$ образуют базис в пространстве многочленов, а $\varepsilon_{i_1} \vee \dots \vee \varepsilon_{i_p}$ с $i_1 \leqslant \dots \leqslant i_p$ образуют базис в пространстве $S_p(V)$, так как char $K \neq 0$. Поэтому $\alpha \mapsto f_{\alpha}$ - изоморфизм. **Q.E.D.**

Аналогично строится S(V). Оно изоморфно $K[V^*]$.

61 Внешняя алгебра векторного пространства (над полем нулевой характеристики).

<u>Def.</u> p-линейная функция $\alpha \in T_p(V)$ называется кососимметрической, если $\forall \sigma \in S_p \ \sigma \alpha = (\operatorname{sgn} \sigma) \alpha$. Кососимметрические функции образуют подпространство $\Lambda_p(V) \subset T_p(V)$. <u>Def</u>. Операция альтернирования определяется следующим образом:

Alt :
$$T_p(V) \to T_p(V)$$
, Alt $\alpha = \frac{1}{p!} \sum_{\sigma \in S_p} (\operatorname{sgn} \sigma) \sigma \alpha$.

Теорема. Alt - проектор на подпространство $\Lambda_p(V)$. Доказательство.

- 1. $\alpha \in \Lambda_n(V) \Rightarrow \operatorname{Alt} \alpha = \alpha$.
- 2. $\forall \alpha \in T_p(V)$ Alt $\alpha \in \Lambda_p(V)$. Действительно, $\forall \tau \in S_p \quad \tau \text{Alt } \alpha = \frac{1}{p!} \sum_{\sigma \in S_p} (\operatorname{sgn} \sigma) \tau \sigma \alpha = \operatorname{sgn} \tau \cdot \frac{1}{p!} \sum_{\sigma \in S_p} (\operatorname{sgn} \sigma) \sigma \alpha = \operatorname{sgn} \tau \text{Alt } \alpha.$
- 3. Alt ² = Alt \Rightarrow Alt проектор на $\Lambda_n(V)$. Q.E.D.

Лемма. Alt (Alt $\alpha \otimes \beta$) = Alt ($\alpha \otimes$ Alt β) = Alt ($\alpha \otimes \beta$).

Доказательство. $\forall \sigma \in S_p$ Alt $(\sigma \alpha \otimes \beta) = (\operatorname{sgn} \alpha) \operatorname{Alt} (\alpha \otimes \beta)$. Суммируя по всем σ и деля на p!, получаем, что Alt $(\operatorname{Alt} \alpha \otimes \beta) = \operatorname{Alt} (\alpha \otimes \beta)$. Q.E.D.

<u>Def</u>. Операция внешнего умножения определяется таким образом:

$$\wedge : \Lambda_p(V) \times \Lambda_q(V) \to \Lambda_{p+q}(V), \quad \alpha \wedge \beta = \text{Alt } (\alpha \otimes \beta).$$

Свойства:

- 1. Билинейность;
- 2. Суперкоммутативность: $\beta \wedge \alpha = (-1)^{pq} \alpha \wedge \beta \ (\alpha \in \Lambda_p(V), \ \beta \in \Lambda_q(V))$ доказывается аналогично симметрическому умножению: sgn $\rho = (-1)^{pq}$.
- 3. Ассоциативность вытекает из соответствующей леммы.

Можно построить внешнюю алгебру пространства V^* :

$$\Lambda(V^*) = \bigoplus_{p=0}^{\infty} \Lambda_p(V).$$

В ней три операции: сумма, умножение на число и внешнее умножение (продолжается по дистрибутивности операции $\wedge: \Lambda_p(V) \times \Lambda_q(V) \to \Lambda_{p+q}(V)$).

$$\Lambda_0(V) = K, \quad \Lambda_1(V) = V^*.$$

Если
$$\alpha_1, \ldots, \alpha_p \in V^*$$
, то $(\alpha_1 \wedge \cdots \wedge \alpha_p)(x_1, \ldots, x_p) = \frac{1}{p!} \sum_{\sigma \in S_p} (\operatorname{sgn} \sigma) \alpha_1 (x_{\sigma(1)}) \ldots \alpha_p (x_{\sigma(p)}) = \sum_{\sigma \in S_p} (\operatorname{sgn} \sigma) \alpha_1 (x_{\sigma(1)}) \ldots \alpha_p (x_{\sigma(p)}) = \sum_{\sigma \in S_p} (\operatorname{sgn} \sigma) \alpha_1 (x_{\sigma(1)}) \ldots \alpha_p (x_{\sigma(p)}) = \sum_{\sigma \in S_p} (\operatorname{sgn} \sigma) \alpha_1 (x_{\sigma(1)}) \ldots \alpha_p (x_{\sigma(p)}) = \sum_{\sigma \in S_p} (\operatorname{sgn} \sigma) \alpha_1 (x_{\sigma(1)}) \ldots \alpha_p (x_{\sigma(p)}) = \sum_{\sigma \in S_p} (\operatorname{sgn} \sigma) \alpha_1 (x_{\sigma(1)}) \ldots \alpha_p (x_{\sigma(p)}) = \sum_{\sigma \in S_p} (\operatorname{sgn} \sigma) \alpha_1 (x_{\sigma(1)}) \ldots \alpha_p (x_{\sigma(p)}) = \sum_{\sigma \in S_p} (\operatorname{sgn} \sigma) \alpha_1 (x_{\sigma(1)}) \ldots \alpha_p (x_{\sigma(p)}) = \sum_{\sigma \in S_p} (\operatorname{sgn} \sigma) \alpha_1 (x_{\sigma(1)}) \ldots \alpha_p (x_{\sigma(p)}) = \sum_{\sigma \in S_p} (\operatorname{sgn} \sigma) \alpha_1 (x_{\sigma(1)}) \ldots \alpha_p (x_{\sigma(p)}) = \sum_{\sigma \in S_p} (\operatorname{sgn} \sigma) \alpha_1 (x_{\sigma(1)}) \ldots \alpha_p (x_{\sigma(p)}) = \sum_{\sigma \in S_p} (\operatorname{sgn} \sigma) \alpha_1 (x_{\sigma(1)}) \ldots \alpha_p (x_{\sigma(p)}) = \sum_{\sigma \in S_p} (\operatorname{sgn} \sigma) \alpha_1 (x_{\sigma(1)}) \ldots \alpha_p (x_{\sigma(p)}) = \sum_{\sigma \in S_p} (\operatorname{sgn} \sigma) \alpha_1 (x_{\sigma(1)}) \ldots \alpha_p (x_{\sigma(p)}) = \sum_{\sigma \in S_p} (\operatorname{sgn} \sigma) \alpha_1 (x_{\sigma(1)}) \ldots \alpha_p (x_{\sigma(p)}) = \sum_{\sigma \in S_p} (\operatorname{sgn} \sigma) \alpha_1 (x_{\sigma(1)}) \ldots \alpha_p (x_{\sigma(p)}) = \sum_{\sigma \in S_p} (\operatorname{sgn} \sigma) \alpha_1 (x_{\sigma(1)}) \ldots \alpha_p (x_{\sigma(p)}) = \sum_{\sigma \in S_p} (\operatorname{sgn} \sigma) \alpha_1 (x_{\sigma(1)}) \ldots \alpha_p (x_{\sigma(p)}) = \sum_{\sigma \in S_p} (\operatorname{sgn} \sigma) \alpha_1 (x_{\sigma(1)}) \ldots \alpha_p (x_{\sigma(p)}) = \sum_{\sigma \in S_p} (\operatorname{sgn} \sigma) \alpha_1 (x_{\sigma(1)}) \ldots \alpha_p (x_{\sigma(p)}) = \sum_{\sigma \in S_p} (\operatorname{sgn} \sigma) \alpha_1 (x_{\sigma(1)}) \ldots \alpha_p (x_{\sigma(p)}) = \sum_{\sigma \in S_p} (\operatorname{sgn} \sigma) \alpha_1 (x_{\sigma(p)}) = \sum_{\sigma \in S_p} (\operatorname{sg$

 $=\frac{1}{v!}\det\left(lpha_i(x_j)
ight)$ - обыкновенный определитель.

Теорема. Произведения $\varepsilon_{i_1} \wedge \cdots \wedge \varepsilon_{i_p}$, где $i_1 < \cdots < i_p$, образуют базис подпространства $\Lambda_p(V)$. Доказательство.

- 1. Так как произведения $\varepsilon_{i_1} \otimes \ldots \otimes \varepsilon_{i_p}$ образуют базис пространства $T_p(V)$, то Alt $(\varepsilon_{i_1} \otimes \ldots \otimes \varepsilon_{i_p}) = \varepsilon_{i_1} \wedge \cdots \wedge \varepsilon_{i_p}$ порождают $\Lambda_p(V)$. Если среди индексов есть одинаковые, то получается ноль. Если нет, то можно упорядочить по строгому возрастанию (при этом умножится на ± 1). Поэтому произведения $\varepsilon_{i_1} \wedge \cdots \wedge \varepsilon_{i_p}$, где $i_1 < \cdots < i_p$, порождают подпространство $\Lambda_p(V)$.
- 2. То, что это базис, доказывается аналогично симметрическому произведению. Q.E.D.

Следстсвие. $\dim \Lambda_p(V)=C_n^p$, в частности, $\dim \Lambda_p(V)=0$ при p>n. $\dim \Lambda(V^*)=2^n, \ \dim \Lambda_n(V)=1.$

Аналогично строится внешняя алгебра $\Lambda(V)=\bigoplus_{p=0}^{\infty}\Lambda^p(V).$

Элементы $\Lambda^p(V)$ называются p-векторами.

62 Разложимые поливекторы

и подпространства векторного пространства.

Теорема. Пусть $a_1, \ldots, a_p \in V$. Тогда $a_1 \wedge \cdots \wedge a_p = 0 \Leftrightarrow$ векторы линейно зависимы. Доказательство.

1. Пусть векторы линейно зависимы. Для определённости положим $a_p = \lambda_1 a_1 + \dots + \lambda_{p-1} a_{p-1}$. Тогда $a_1 \wedge \dots \wedge a_p = a_1 \wedge \dots \wedge a_{p-1} \wedge (\lambda_1 a_1 + \dots + \lambda_{p-1} a_{p-1}) = \sum_{i=1}^{p-1} \lambda_i (a_1 \wedge \dots \wedge a_{p-1} \wedge a_i) = 0$.

2. Пусть векторы линейно независимы. Включим их в базис (e_1, \ldots, e_n) пространства V, так чтобы $e_i = a_i$ $i = 1, \ldots, p$. Тогда $a_1 \wedge \cdots \wedge a_p = e_1 \wedge \cdots \wedge e_p$ - один из базисных векторов пространства $\Lambda_p(V)$, значит, не равен нулю. **Q.E.D**.

Теорема. Пусть $\{a_1, a_2, \dots, a_n\}$ и $\{b_1, b_2, \dots, b_n\}$ - две линейно независимые системы векторов V. Тогда $a_1 \wedge \dots \wedge a_p$ и $b_1 \wedge \dots \wedge b_p$ пропорциональны $\Leftrightarrow \langle a_1, \dots, a_p \rangle = \langle b_1, \dots, b_p \rangle$. Доказательство.

- 1. Пусть $\langle a_1, \dots, a_p \rangle = \langle b_1, \dots, b_p \rangle$. Тогда система (b) линейно выражается через систему (a). Подставляя это выражение в $b_1 \wedge \dots \wedge b_p$, получаем, что $b_1 \wedge \dots \wedge b_p$ линейно выражается через $a_{i_1} \wedge \dots \wedge a_{i_p}$. Но эти произведения линейно выражаются через $a_1 \wedge \dots \wedge a_p$, поэтому и $b_1 \wedge \dots \wedge b_p$ линейно выражается через $a_1 \wedge \dots \wedge a_p$.
- 2. Пусть $a_1 \wedge \cdots \wedge a_p$ и $b_1 \wedge \cdots \wedge b_p$ пропорциональны. Выберем базис (e_1, \ldots, e_n) пространства V, согласованный с $\langle a_1, \ldots, a_p \rangle$ и $\langle b_1, \ldots, b_p \rangle$. То есть, $\langle a_1, \ldots, a_p \rangle = \langle e_1, \ldots, e_p \rangle$ и $\langle b_1, \ldots, b_p \rangle = \langle e_1, \ldots, e_r \rangle \oplus \langle e_{p+1}, \ldots, e_{2p-r} \rangle$. Тогда мы видим, что $a_1 \wedge \cdots \wedge a_p$ пропорционально $e_1 \wedge \cdots \wedge e_p$, а $b_1 \wedge \cdots \wedge b_p$ пропорционально $e_1 \wedge \cdots \wedge e_r \wedge e_{p+1} \wedge \cdots \wedge e_{2p-r}$. Но $e_1 \wedge \cdots \wedge e_p$ и $e_1 \wedge \cdots \wedge e_r \wedge e_{p+1} \wedge \cdots \wedge e_{2p-r}$ (при r < p) два разных базисных вектора пространства $\Lambda_p(V)$, поэтому они непропорциональны. Значит, r = p. Q.E.D.

Таким образом, подпространство может характеризоваться лишь внешними произведениями базисных векторов. Пусть $U \subset V$, dim U = p. Пусть (a_1, \ldots, a_p) - базис U. Разложим $a_1 \wedge \cdots \wedge a_p \in \Lambda_p(V)$ по базису:

$$a_1 \wedge \dots \wedge a_p = \sum_{i_1 < \dots < i_p} M_{i_1 \dots i_p} e_{i_1} \wedge \dots \wedge e_{i_p},$$

где (e_1, \ldots, e_n) - базис пространства V. $M_{i_1 \ldots i_p}$, где $i_1 < \cdots < i_p$, называются плюккеровыми координатами подпространства U. Они однозначно определяют подпространство, но сами они однородны.

 $a_i = \sum_j a_{ij} e_j, \ A_{p \times n} = (a_{ij}). \ M_{1...p} = \sum_{\sigma \in S_p} (\operatorname{sgn} \sigma) \cdot a_{1\sigma(1)} \dots a_{p\sigma(p)}$ - угловой минор матрицы A. Таким образом, $M_{i_1...i_p}$ - тоже минор, образованный столбцами i_1, \dots, i_p .

<u>Def.</u> p-вектор, представимый в виде $a_1 \wedge \cdots \wedge a_p$, где $a_1, \ldots, a_p \in V$, называется разложимым. Только разложимые p-векторы соответствуют подпространствам.

63 Канонический вид и критерий разложимости бивектора.

Пусть $b \in \Lambda^2(V)$. Это можно рассматривать как кососимметрическую билинейную функцию на V^* . $b(\varepsilon_i, \varepsilon_j) = b_{ij}, \ B = (b_{ij})$ - матрица бивектора. Она кососимметрическая. **Лемма**. $b = \sum_{i,j} b_{ij} e_i \wedge e_j$.

Доказательство. Найдём матрицу бивектора $e_i \wedge e_j$:

$$(e_i \wedge e_j)(\varepsilon_i, \varepsilon_j) = -(e_i \wedge e_j)(\varepsilon_j, \varepsilon_i) = \frac{1}{2}e_i(\varepsilon_i)e_j(\varepsilon_j) = \frac{1}{2}.$$

Получаем $\frac{1}{2}b_{ij}$. Но в сумме будет b_{ij} , как раз. **Q.E.D.**

Теорема. $\forall b \in \Lambda^2(V)$ существует симплектический базис.

Доказательство. Вытекает из соответствующей теоремы. Q.E.D.

Теорема. Следующие условия эквивалентны:

- 1. Бивектор b разложим;
- 2. $\operatorname{rk} b \leqslant 2$;

3. $b \wedge b = 0$.

Доказательство. Пусть b разложим. Можно считать $b \neq 0$. Пусть $b = a_1 \wedge a_2$, и a_1, a_2 линейно независимы. Дополним a_1, a_2 до базиса (e_1, \dots, e_n) пространства V: $a_1 = e_1, \ a_2 = e_2$. Тогда $b = e_1 \wedge e_2$. Значит, $\operatorname{rk} b = 2$ и $b \wedge b = 0$.

Пусть b неразложим. Тогда существует базис, в котором

$$b = e_1 \wedge e_2 + e_3 \wedge e_4 + \dots + e_{2k-1} \wedge e_{2k},$$

где $k\geqslant 2$ (иначе b разложим). Поэтому rk $b=2k>2,\ b\wedge b=2e_1\wedge e_2\wedge e_3\wedge e_4+\cdots \neq 0.$

64 Определитель как единственная кососимметрическая n-линейная функция в n-мерном пространстве.

Как известно, $\dim \Lambda_p(V) = C_n^p$, то есть $\dim \Lambda_(V) = 1$. Поэтому кососимметрическая n-линейная функция в n-мерном пространстве единственна с точностью до умножения на число.

Рассмотрим определитель n векторов в пространстве V: a_1,\ldots,a_n — пусть (e_1,\ldots,e_n) - фиксированный базис пространства V, тогда составим определитель координат $\det(a_{ij})$ - первая цифра означает номер вектора, вторая - номер координаты. При переходе к другому базису определитель (как кососимметрическая n—линейная функция в n—мерном пространстве) умножается на определитель матрицы перехода.