COS433/Math 473: Cryptography

Mark Zhandry
Princeton University
Spring 2017

Announcements

Homework 1 up

You should be able to complete it after today's lecture

Office Hours

Mark: Mondays 3pm-4pm in COS 314

Fermi: Fridays 2-3pm in Theory Lounge

(3rd floor of COS)

Last Time

Many examples of classical cryptosystems

- Substitution ciphers
- Disk-based ciphers
- Transposition ciphers
- Anagrams
- Enigma

Essentially all completely insecure

Today

Some basic principles

Defining encryption: perfect security

The one-time pad

Kerckhoffs's Principle

Security should only depend on the secrecy of the key

Should still be secure if attacker knows encryption procedure

Why?

- Bad things happen
- Hard to update entire system, easy to update key
- System can be analyzed by crypto community
- Easier to formalize security notions

Designing Crypto Is Hard

Cannot discern security through program analysis

- Just because it compiles doesn't mean it's secure
- Just because you can't see how to break it doesn't mean someone else can't

Even experts get it wrong

Unexpected attack vectors

- Known/chosen plaintext attack
- Chosen ciphertext attack
- Timing attack
- Power analysis
- Acoustic cryptanalysis

Solution

When designing new crypto, should have a formal argument why is should resist ALL attacks

 Not always possible; if not, use crypto standards vetted by crypto community

Better yet: only use well-known crypto libraries

- Don't implement crypto yourself
- You'll probably get it wrong and introduce sidechannels

Defining Crypto

Formal security notion a necessary step before proving anything

Syntax: The algorithms in the cryptosystem and their inputs

• E.g. Enc, Dec, keys, messages, etc

Correctness/Completeness: Functional relationships between algorithms

• E.g. Dec(k, Enc(k, m)) = m

Security: What an attacker should not be able to do

Defining Encryption

Encryption Basics (for now)

Syntax:

- Key space K (usually {0,1}^λ)
- Message space M (usually {0,1}ⁿ)
- Ciphertext space C (usually {0,1}^m)
- Enc: $K \times M \rightarrow C$
- Dec: $K \times C \rightarrow M$

Correctness:

• For all $k \in K$, $m \in M$, Dec(k, Enc(k,m)) = m

Encryption Security?

Questions to think about:

What kind of messages?

What does the adversary already know?

What information are we trying to protect?

Examples:

- Messages are always either "attack at dawn" or "attack at dusk", trying to hide which is the case
- Messages are status updates ("<person> reports
 <event> at <location>"). Which data is sensitive?

Encryption Security?

Questions to think about:

What kind of messages?

What does the adversary already know?

What information are we trying to protect?

Goal:

Rather than design a separate system for each use case, design a system that works in all possible settings

Semantic Security

Idea:

- Plaintext comes from an arbitrary distribution
- Adversary initially has some information about the plaintext
- Seeing the ciphertext should not reveal any more information

(Perfect) Semantic Security

```
Definition: A scheme (Enc, Dec) is (perfectly)
semantically secure if, for all:
                                     Plaintext distribution
  Distributions D on M
                                      Info adv gets
 Functions I:M \rightarrow \{0,1\}^*
                                     Info adv tries to learn
  Functions f:M \rightarrow \{0,1\}^*
  Functions A: C \times \{0,1\}^* \rightarrow \{0,1\}^*
There exists a function S:\{0,1\}^* \rightarrow \{0,1\}^* such that
     Pr[A(Enc(k,m),I(m))=f(m)]
            = Pr[S(I(m)) = f(m)]
```

where probabilities are taken over $k \leftarrow K$, $m \leftarrow D$

Semantic Security

Captures what we want out of an encryption scheme

But, complicated, with many moving parts

Want: something simpler...

Perfect Secrecy [Shannon'49]

Definition: A scheme **(Enc,Dec)** has **perfect secrecy** if, for all:

- Two messages \mathbf{m}_0 , $\mathbf{m}_1 \in \mathbf{M}$
- Ciphertext $\mathbf{c} \in \mathbf{C}$

 $Pr[Enc(k, m_0) = c] = Pr[Enc(k, m_1) = c]$

where probabilities are taken over $\mathbf{k} \leftarrow \mathbf{K}$

Notation

Two random variables X,Y over a finite set S have identical distributions if, for all $s \in S$,

$$Pr[X = s] = Pr[Y = s]$$

In this case, we write

Perfect Secrecy [Shannon'49]

Definition: A scheme (**Enc,Dec**) has **perfect** secrecy if, for any two messages $\mathbf{m_0}$, $\mathbf{m_1} \subseteq \mathbf{M}$

 $Enc(K, m_0) \stackrel{d}{=} Enc(K, m_1)$

Random variable corresponding to uniform distribution over **K**

Random variable corresponding to encrypting $\mathbf{m_1}$ using a uniformly random key

Obtaining Perfect Secrecy: The One-Time Pad

Key space $K = \{0,1\}^n$ Message space $M = \{0,1\}^n$ Ciphertext space $C = \{0,1\}^n$

```
Enc(k, m) = k \oplus m
Dec(k, c) = k \oplus c
```

Example:

k = 0011010110 m = 1001010101 c = 1010000011

Correctness:

Dec(k, Enc(k, m)) =
$$k\oplus(k\oplus m)$$

= $(k\oplus k)\oplus m$
= $0\oplus m$
= m

Obtaining Perfect Secrecy: The One-Time Pad

Security?

```
Theorem: For any message m \in \{0,1\}^n and ciphertext c \in \{0,1\}^n,
```

$$Pr[Enc(k, m) = c] = 2^{-n}$$

Proof:

Pr[Enc(k, m) = c] = Pr[k
$$\oplus$$
m = c]
= Pr[k = c \oplus m]
= 2⁻ⁿ

Obtaining Perfect Secrecy: The One-Time Pad

Security?

Theorem: For any message $m \in \{0,1\}^n$ and ciphertext $c \in \{0,1\}^n$,

$$Pr[Enc(k, m) = c] = 2^{-n}$$

In other words, for any m, Enc(K,m) = C

Perfect secrecy easily follows:

$$Enc(K, m_0) \stackrel{d}{=} C \stackrel{d}{=} Enc(K, m_1)$$

Meaning of Perfect Secrecy

Perfect secrecy is a great definition

- Simple
- Easy to prove

However, it doesn't obviously capture what we need

What does adversary learn about plaintext?

Semantic Security = Perfect Secrecy

Theorem: A scheme **(Enc,Dec)** is semantically secure if and only if it has perfect secrecy

Perfect Secrecy ⇒ Semantic Security

Given arbitrary:

- Distribution **D** on **M**
- Function $I:M \rightarrow \{0,1\}^*$
- Function $f:M \rightarrow \{0,1\}^*$
- Function A: $C \times \{0,1\}^* \rightarrow \{0,1\}^*$

Know:
$$E(K, m_0) \stackrel{d}{=} E(K, m_1)$$

Goal: Construct
$$S:\{0,1\}^* \rightarrow \{0,1\}^*$$
 such that $Pr[A(Enc(k,m), I(m)) = f(m)]$ = $Pr[S(I(m)) = f(m)]$

Perfect Secrecy ⇒ Semantic Security

S(i):

- Choose random k ← K
- Set $c \leftarrow Enc(k,0)$
- Run and output A(c,i)

Semantic Security ⇒ Perfect Secrecy

Proof by contrapositive:

- Assume $\exists m_0, m_1$ s.t. $Enc(K, m_0) \neq enc(K, m_1)$
- Devise **D,I,f,A** such that no **S** exists

```
D: pick b \leftarrow \{0,1\} at random, output m_b
I: empty
f(m_b) = b
A(c) = 1 iff Pr[Enc(K,m_1) = c] > Enc(K,m_0) = c]
```

Semantic Security ⇒ Perfect Secrecy

```
Let T = \{c: Pr[Enc(K,m_1) = c] > Enc(K,m_0) = c]\}
Pr[A(Enc(K,m)) = f(m) : m \leftarrow D]
        = \frac{1}{2} Pr[A(Enc(K,m_0)) = 0]
           + \frac{1}{2} Pr[A(Enc(K,m_1)) = 1]
        = \frac{1}{2} Pr[ Enc(K,m<sub>0</sub>) \notin T]
           + \frac{1}{2} Pr[ Enc(K,m<sub>1</sub>) \in T]
        = \frac{1}{2} + \frac{1}{2} (Pr[ Enc(K,m<sub>1</sub>) \in T]
                         - Pr[ Enc(K,m<sub>0</sub>) \in T])
```

Semantic Security → Perfect Secrecy

```
Pr[ Enc(K,m<sub>b</sub>) \in T ]
= \Sigma_{c \in T} Pr[Enc(K,m<sub>b</sub>) = c]
= 1 - \Sigma_{c \notin T} Pr[Enc(K,m<sub>b</sub>) = c]
```

```
Pr[ Enc(K,m<sub>1</sub>) \in T] - Pr[ Enc(K,m<sub>0</sub>) \in T]

= \sum_{c \in T} Pr[Enc(K,m<sub>1</sub>) = c] - Pr[Enc(K,m<sub>0</sub>) = c]

= \sum_{c \notin T} Pr[Enc(K,m<sub>0</sub>) = c] - Pr[Enc(K,m<sub>1</sub>) = c]

= \frac{1}{2} \sum_{c} | Pr[Pr[Enc(K,m<sub>1</sub>)=c] - Pr[Enc(K,m<sub>0</sub>)=c] |
```

Notation: Statistical Distance

Given two distributions D_1 , D_2 over a set X, define

$$\Delta(D_1,D_2) = \frac{1}{2}\sum_{x} | Pr[D_1=x] - Pr[D_2=x] |$$

Observations:

$$0 \le \Delta(D_1,D_2) \le 1$$

$$\Delta(D_1,D_2) = 0 \iff D_1 = D_2$$

Semantic Security ⇒ Perfect Secrecy

```
Pr[Enc(K,m_1) \in T] - Pr[Enc(K,m_0) \in T]
        = \frac{1}{2} \sum_{c} | Pr[Pr[Enc(K,m_1)=c] - Pr[Enc(K,m_0)=c] |
        = \Delta( Enc(K,m<sub>0</sub>) , Enc(K,m<sub>1</sub>) )
Therefore,
Pr[A(Enc(K,m)) = f(m)]
        = \frac{1}{2} + \frac{1}{2} \Delta( Enc(K,m<sub>0</sub>) , Enc(K,m<sub>1</sub>) )
Since E(K, m_0) \neq E(K, m_1),
        \Rightarrow \Delta( Enc(K,m<sub>0</sub>) , Enc(K,m<sub>1</sub>) ) > 0
        \Rightarrow Pr[A(Enc(K,m)) = f(m)] > ½
```

Semantic Security → Perfect Secrecy

$$Pr[A(Enc(K,m)) = f(m)] > \frac{1}{2}$$

However, for any **S**,

$$Pr[S() = f(m)] = Pr[S() = b: b \leftarrow \{0,1\}]$$

= \(\frac{1}{2}\)

Therefore, contradicts semantic security

Another View of One-Time Pad

Can be thought of as instance of Vigenère cipher

- Alphabet = **{0,1}**
- Shift by **0** means identity
- Shift by 1 means negation
- · |Message| = |Key|

What Happens if Message > |Key|?

Use Vigenère's convention: repeat key bits as necessary

Example:

```
k = 00110001100011000110
```

m = 10010101011001010010

c = 10100100111010010100

Does this satisfy perfect secrecy/semantic security?

What Happens if Message > |Key|?

No perfect secrecy/semantic security

Example:

- $m_0 = 0^{|k|}0$
- $m_1 = 0^{|k|}1$
- Enc(k,m_o) will always have first and last bit identical
- Enc(k,m₁) will always have first and last bit different
- Therefore, distributions are not the same

Variations

$$K = M = C = \mathbb{Z}_{N} := \{0, 1, ..., N-1\}$$

$$Enc(k, m) = (m + k) \mod N$$

 $Dec(k, c) = (c - k) \mod N$

Correctness:

$$Dec(k, Enc(k, m)) = (m + k)-k \mod N$$
$$= m \mod N$$

Security:

$$Enc(K,m_0) \stackrel{d}{=} \mathbb{Z}_N \stackrel{d}{=} Enc(K,m_1)$$

Variations

$$K = M = C = \mathbb{Z}_N^* := \{x \in \mathbb{Z}_N : GCD(x,N)=1\}$$

$$Enc(k, m) = (m \times k) \mod N$$

 $Dec(k, c) = (c/k) \mod N$

Correctness:

$$Dec(k, Enc(k, m)) = (m \times k)/k \mod N$$

= m mod N

Security:

$$Enc(K,m_0) \stackrel{d}{=} \mathbb{Z}_N^* \stackrel{d}{=} Enc(K,m_1)$$

Other Examples

```
K = M = \{0,1\}^n, C = \{0,1\}^{3n}
Enc(k,m) =
            For i=1,..., n:
                        Let \mathbf{t_i} = \mathbf{m_i} \oplus \mathbf{k_i}
                        Choose random bits c_{i1}, c_{i2}, c_{i3}
                                     such that c_{i1} \oplus c_{i2} \oplus c_{i3} = t_i
            Output C<sub>11</sub>C<sub>12</sub>C<sub>13</sub>C<sub>21</sub>C<sub>22</sub>C<sub>23</sub>...
Dec(k,c) =
            For i=1,..., n:
                        Let m<sub>i</sub> = c<sub>i1</sub>⊕c<sub>i2</sub>⊕c<sub>i3</sub>⊕k<sub>i</sub>
```

Other Examples

```
K = M = \{0,1\}^n C = \{0,1\}^{3n}
Enc(k,m)

For i k = 00110101101

m = 1001010101
                        c = 1100011100
                                1010101101
                                1100110010
          Outp
Dec(k,c) =
          For i=1,..., n:
                    Let \mathbf{m}_{i} = \mathbf{c}_{i1} \oplus \mathbf{c}_{i2} \oplus \mathbf{c}_{i3} \oplus \mathbf{k}_{i}
```

Probabilistic Functions

Intuition: a function that flips random coins

Definition: A probabilistic function \mathbf{f} with domain \mathbf{X} and co-domain \mathbf{Y} is a function $\mathbf{F}: \mathbf{X} \rightarrow \mathbf{Dist}(\mathbf{Y})$.

We will write f(x) to denote running $D \leftarrow F(x)$, and then choosing a random sample y according to D

Example:

• f:{0,1} \rightarrow {0,1}³, on input **b**, choose random c_1 , c_2 , c_3 such that **b** = $c_{i1} \oplus c_{i2} \oplus c_{i3}$

Probabilistic Functions

Intuition: a function that flips random coins

Definition: A probabilistic function \mathbf{f} with domain \mathbf{X} and co-domain \mathbf{Y} is a function $\mathbf{F}: \mathbf{X} \rightarrow \mathbf{Dist}(\mathbf{Y})$.

We will write f(x) to denote running $D \leftarrow F(x)$, and then choosing a random sample y according to D

In cryptography, we generally allow all functions/algorithms to be probabilistic, including cryptosystem procedures and adversaries

Randomized Encryption

Syntax:

- Key space K (usually {0,1}^λ)
- Message space M (usually {0,1}ⁿ)
- Ciphertext space C (usually {0,1}^m)
- Enc: K×M → C (potentially probabilistic)
- Dec: K×C → M (usually deterministic)

Correctness:

· For all k⊂K, m⊂M, Dec(k, Enc(k,m)) = m

Randomized Encryption

Syntax:

- Key space **K** (usually $\{0,1\}^{\lambda}$)
- Message space M (usually {0,1}ⁿ)
- Ciphertext space C (usually {0,1}^m)
- Enc: K×M → C (potentially probabilistic)
- Dec: K×C → M (usually deterministic)

Correctness:

• For all $k \in K$, $m \in M$, Pr[Dec(k, Enc(k,m)) = m] = 1

Back To Our Example

```
K = M = \{0,1\}^n, C = \{0,1\}^{3n}
Enc(k,m) =
             For i=1,..., n:
                          Let \mathbf{t}_i = \mathbf{m}_i \oplus \mathbf{k}_i
                          Choose random bits c_{i1}, c_{i2}, c_{i3}
                                       such that c_{i1} \oplus c_{i2} \oplus c_{i3} = t_i
             Output C<sub>11</sub>C<sub>12</sub>C<sub>13</sub>C<sub>21</sub>C<sub>22</sub>C<sub>23</sub>...
Dec(k,c) =
             For i=1,..., n:
                          Let \mathbf{m}_{i} = \mathbf{c}_{i1} \oplus \mathbf{c}_{i2} \oplus \mathbf{c}_{i3} \oplus \mathbf{k}_{i}
```

Security Proof

Distribution of **Enc(K,m)**?

- Given any ciphertext c, exactly one k that gives
 Enc(k,m)=c (k_i = m_i⊕c_{i1}⊕c_{i2}⊕c_{i3})
- If encrypting with this \mathbf{k} , prob of seeing \mathbf{c} is $\mathbf{4}^{-n}$ (For position \mathbf{i} , $\mathbf{4}$ possibilities for \mathbf{c}_{i1} , \mathbf{c}_{i2} , \mathbf{c}_{i3})
- $Pr[Enc(K,m) = c] = 2^{-n} \times 4^{-n} = 8^{-n}$
- Meaning Enc(K,m) ^d C

Alternate Security Proof

```
Let f:\{0,1\} \rightarrow \{0,1\}^3, on input b, choose random c_1, c_2, c_3 such that b = c_{i1} \oplus c_{i2} \oplus c_{i3}
```

$$Enc(k,m) = f(OTP(k,m))$$

```
Therefore,
```

```
Enc(K,m<sub>0</sub>) = f(OTP(K,m_0)) (Definition)
= f(OTP(K,m_1)) (OTP Security)
= Enc(K,m_1) (Definition)
```

Example: Homophonic Substitution

```
M = \{0,1\}^n

C = \Gamma^n where \Gamma = \{A,B,C,...,Z\}

K = \text{Partition of }\Gamma \text{ into two sets }S_0,S_1 \text{ of size }13
```

Enc(k,m) = For i=1,..., n, let c_i be random element of S_{m_i}

Dec(k,c) =
For
$$i=1,..., n$$
: find c_i in S_b , let $m_i = b$

Example: Homophonic Substitution

$$M = \{0,1\}^n$$

Example:

```
k = \{S_0 = \{B,D,H,I,J,L,O,P,R,T,V,W,Z\},
S_1 = \{A,C,E,F,G,K,M,N,Q,S,U,X,Y\}\}
m = 100101011
c = MJWEZKPXOA
```

For i=1,..., n: find c_i in S_b , let $m_i = b$

Example: Homophonic Substitution

Q: Does hom. substitution have perfect secrecy?

A: NO

Proof:

```
m_0 = 00, m_1 = 01

Pr[Enc(K,m_0) \text{ repeats}] = 1/13

Pr[Enc(K,m_1) \text{ repeats}] = 0
```

Variable-Length Messages

So far, assumed all messages are same length

Not reasonable in practice

Likely want to allow variable-length messages

$$M = \{0,1\}^* \text{ or } \{0,1\}^{\leq n}$$

Variable-Length OTP

```
Key space K = \{0,1\}^n
Message space M = \{0,1\}^{\leq n}
Ciphertext space C = \{0,1\}^{\leq n}
```

Enc(k, m) =
$$k_{[1, |m|]} \oplus m$$

Dec(k, c) = $k_{[1, |m|]} \oplus c$

Example:

$$k = 0011010110$$

 $m = 10010$
 $c = 10100$

Variable-Length OTP

Q: Is it secure?

A: NO, but for an unavoidable reason

Theorem: If $M = \{0,1\}^*$, perfect secrecy is impossible for any encryption scheme*

Proof

```
Let \mathbf{m}_0 = \mathbf{0}, let \mathbf{f}_0 = \mathbb{E}[|\mathsf{Enc}(\mathsf{K}, \mathbf{m}_0)|], \mathbf{u} = \mathbf{f}_0 + \mathbf{3}

Claim: \mathbb{E}[|\mathsf{Enc}(\mathsf{K}, \mathsf{M})|] \ge \mathbf{u} - 2, where \mathsf{M} = \{0,1\}^{\mathsf{u}}

Fix \mathbf{k}. Each possible \mathbf{m} must map to different ciphertexts (by correctness).

At most \mathbf{2}^i ciphertexts of length \mathbf{i}

\mathbb{E}[||\mathbf{c}||] \ge \Sigma_{0 \le i \le 1} 2^{\mathbf{i} - \mathbf{u}} \times \mathbf{i} \ge \mathbf{u} - 2
```

Therefore, $\exists m_1 \subseteq M$ where $t_1 := \mathbb{E}[|\text{Enc}(K,m_1)|] \ge u-2 = t_0+1$ Thus, $\text{Enc}(K,m_0) \neq \text{Enc}(K,m_1)$

Variable-Length OTP

Q: Is it secure?

A: NO, but for an unavoidable reason

Theorem: If $M = \{0,1\}^*$, perfect secrecy is impossible for any encryption scheme*

Message length always leaked to some extent

Therefore, we will explicitly leak message length in security definition

^{*} Assuming finite expected message length

(Perfect) Semantic Security for Variable Length Messages

Definition: A scheme **(Enc,Dec)** is **(perfectly) semantically secure** if, for all:

- Distributions D on M
- (Probabilistic) Functions $I:M \rightarrow \{0,1\}^*$
- (Probabilistic) Functions **f:M→{0,1}***
- (Probabilistic) Functions A:C×{0,1}*→{0,1}*

There exists (probabilistic) func $S:\{0,1\}^* \rightarrow \{0,1\}^*$ s.t.

$$Pr[A(Enc(k,m), I(m)) = f(m)]$$

= $Pr[S(I(m), |m|) = f(m)]$

where probabilities are taken over $k \leftarrow K$, $m \leftarrow D$

Perfect Secrecy For Variable Length Messages

Definition: A scheme (**Enc,Dec**) has **perfect secrecy** if, for any two messages \mathbf{m}_0 , \mathbf{m}_1 where $|\mathbf{m}_0| = |\mathbf{m}_1|$,

 $Enc(K, m_0) \stackrel{d}{=} Enc(K, m_1)$

Easy to adapt earlier proof to show:

Theorem: A scheme **(Enc,Dec)** is semantically secure if and only if it has perfect secrecy

Encrypting Variable Length Messages

Leakage of message length unavoidable

However, this can lead to exploits:

- CRIME/BREACH attacks:
 - Leverage compression in HTTP protocol
 - Compression before encrypting
 - Higher compression means shorter ciphertext
 - Able to gain some info about plaintext by amount of compression seen

Other Limitations of OTP

It is only one-time

Try to encrypt two messages, security will fail

Enc(k,m₀)
$$\oplus$$
 Enc(k,m₁)
= (k \oplus m₀) \oplus (k \oplus m₁)
= m₀ \oplus m₁

Key length ≥ message length

 Limited use in practice: if I can securely transmit nbit key, why don't I just use that to transmit n-bit message?

Next Week

Multiple message security

Limitations of perfect secrecy/semantic security

• |k| ≥ |m| is inherent

How do we fix this?

For next time: brush up on your number theory