8.2 Solução Numérica de um P.V.I de Primeira Ordem

8.2.1 Método de Euler

Na Figura 8.2 a seguir estão representados o gráfico de uma função y = f(x) e uma reta r tangente a ele no ponto $P = (x_0, y_0)$. A inclinação da reta r é dada por $y'(x_0)$ e sua equação é:

$$r(x) = y_0 + y'(x_0)(x - x_0).$$

Figura 8.2:

Em particular, para $x = x_1$ tem-se $r(x_1) = y_0 + y'(x_0)(x_1 - x_0) = y_0 + y'(x_0)h$. Assim, como não se conhece o valor verdadeiro de $y_1 = y(x_1)$, o valor $r(x_1)$ pode ser tomado como uma aproximação para y_1 . Evidentemente para que tal aproximação seja satisfatória é necessário que a função f seja suave numa vizinhança de x_0 e também que h seja pequeno.

De um modo geral, dado um ponto x_n então

 $r(x_{n+1}) = y_n + y'(x_n)h$, ou simplemente,

 $y_{n+1} = y_n + hy'_n = y_n + hf(x_n, y_n)$, é tomado como uma aproximação para o valor exato de y_{n+1} . Esta é a fórmula de recorrência do método de Euler. Seja $x_0, x_1, x_2, \ldots, x_n$ uma sequência de pontos tais que $x_i - x_{i-1} = h, i = 1, 2, \ldots, n$. Se $y_0 = y(x_0)$ for conhecido o método de Euler consiste em realizar n iterações para se obter $y_1 = y(x_1), y_2 = y(x_2), \ldots, y_n = y(x_n)$.

Exemplo 8.5

Dado o PVI y' = y - x; y(0) = 3 obter y(0.4) com h = 0.1.

Solução

Neste caso

$$f(x,y) = y - x.$$

Assim,

$$y_{n+1} = y_n + hf(x_n, y_n) = y_n + 0.1(y_n - x_n) = 1.1y_n - 0.1x_n.$$

Os pontos base são $x_0 = 0, x_1 = 0.1, x_2 = 0.2, x_3 = 0.3$ e $x_4 = 0.4$.

Iterações

$$n=0: y_1=y(x_1)=1.1y_0-0.1x_0=1.1(3)-0.1(0)=3.3.$$

$$n=1: y_2=y(x_2)=1.1y_1-0.1x_1=1.1(3.3)-0.1(0.1)=3.62.$$

$$n=2: y_3=y(x_3)=1.1y_2-0.1x_2=1.1(3.62)-0.1(0.2)=3.962.$$

$$n=3: y_4=y(x_4)=1.1y_3-0.1x_3=1.1(3.962)-0.1(0.3)=4.3282.$$
 A solução procurada é $y_4=4.3282.$

Exercício

- 1) Dado o P.V.I. y' = x y + 2; y(0) = 2 determine y(0.4) com h = 0.1.
- 2) Considerando o PVI y' = -y, y(0) = 1 obtenha y(0.3) com h = 0.1.
- 3) Faça um programa para o método de Euler. Use-o para obter
 - a) y(1) com h = 0.01 nos exercícios 1.
 - b) y(1) com h = 0.05 nos exercícios 2.

Resp.: 1) 2.0561; 2) 0.7290; 3a)2.3660; 3b) 0.3585