Intro to Data Science

Project 2: Logistic Regression Analysis

Chunwang Yuan, Rajendra Kumar Vechalapu, Saketh Yelamarthi Fall 2021

Outline

- 1. Abstract
- 2. Theory
- 3. Exploratory Data analysis
- 4. Analysis Results & Explanation
- 5. Conclusion

1 Abstract

The main aim of this project is to perform logistic regression analysis on the given data set that represents whether a given e-mail is spam or not spam. The dataset contains 20 features that are used to determine whether an e-mail is spam or not spam. Before performing logistic regression, we perform feature elimination so that significant feature sets are used in model analysis. After modeling the data, we iterate the model for various threshold probability values and check the values of sensitivity and specificity for various thresholds.

Therefore, our goal is to find the optimal threshold value for which the true positive rate is close to 1 so that we build an optimum classification model that classifies a spam e-mail from ham.

2 Theory

Logistic Regression falls under Supervised Learning technique and is a type of regression that contains categorical response and one or multiple numerical and/or categorical predictors. It uses a generalized linear model to model a binart categorical variable using numerical and categorical predictors. Assuming the binomial distribution producing the outcome variable and therefore want to model p the probability of success for a given set of predictors.

There are various options but of all Logit function is used in this particular model.Logit function is defined as logarithm of p over (1-p) for p lies between 0 and 1.

In this particular dataset, we analyze email which are categorized into spam or not spam. This dataset uses 20 features to determine whether the given email is spam or not. We fit the model with the given data and plot the summary. From the summary table, we discard the features whose p-value lies below the significance level i.e., below 5%. By doing this, we are performing feature elimination. After performing feature elimination we are left with the significant features which are useful in determining the classification output.

After building the model, we iterate the model for various threshold probability values and check the values of True Positive, True Negative, False Positive and False Negative. From these values we calculate Sensitivity and Specificity. And we plot the graph of sensitivity and specificity.

From this, we find True positivity rate and False positivity rate and plot the graph of these values. The plotted curve should lie above the random case curve.

This plotted curve is called ROC curve-Receiver Operating Characteristic curve. From this curve, we find the optimal threshold probability value. We find this by determining the point on the ROC curve that is close to 1 i.e., the value of true positive rate is close to 1. The ideal point is that which has TPR value of 1 and FPR value of 0. So we choose the point which is close to the ideal point.

3 Exploratory Data analysis

In this section, we created a logistic regression model to explorate the data.

In [3]:

```
import pandas as pd
import numpy as np
import statsmodels.api as sm
from patsy import dmatrices
import matplotlib.pyplot as plt
import seaborn as sns
```

Firstly, we load the data as the dataframe type set.

In [35]:

```
df = pd.read_csv('DSCI6002_prj2_data.csv')
df.head()
```

Out[35]:

	spam	to_multiple	from	СС	sent_email	time	image	attach	dollar	wi
0	0	0	1	0	0	2011- 12-31 22:16:41	0	0	0	
1	0	0	1	0	0	2011- 12-31 23:03:59	0	0	0	
2	0	0	1	0	0	2012- 01-01 08:00:32	0	0	4	
3	0	0	1	0	0	2012- 01-01 01:09:49	0	0	0	
4	0	0	1	0	0	2012- 01-01 02:00:01	0	0	0	

5 rows × 21 columns

→

In [5]:

df.shape

Out[5]:

(3921, 21)

In [6]:

```
df.dtypes
```

Out[6]:

```
int64
spam
to_multiple
                   int64
from
                   int64
СC
                   int64
sent_email
                   int64
                  object
time
                   int64
image
attach
                   int64
dollar
                   int64
winner
                  object
inherit
                   int64
                   int64
viagra
password
                   int64
num_char
                 float64
line breaks
                   int64
format
                   int64
re subj
                   int64
exclaim subj
                   int64
urgent subj
                   int64
exclaim mess
                   int64
number
                  object
dtype: object
```

Since the data type of the column of 'time' is object, we need to convert the value from object to numeric.

```
In [41]:
```

```
df['time'] = pd.to_datetime(df['time'])
df['time'] = pd.to_numeric(df['time'])
```

Because the title of 'from' column is one of keywords, we need change the title.

```
In [42]:
```

```
df['from_'] = df['from']
```

In [43]:

df.head()

Out[43]:

	spam	to_multiple	from	СС	sent_email	time	image	attac
0	0	0	1	0	0	1325369801000000000	0	_
1	0	0	1	0	0	1325372639000000000	0	
2	0	0	1	0	0	1325404832000000000	0	
3	0	0	1	0	0	1325380189000000000	0	
4	0	0	1	0	0	1325383201000000000	0	

5 rows × 22 columns

General Model

Data Preparation: using all the columns of dataset

In [44]:

Out[44]:

	Intercept	C(winner) [T.yes]	C(number) [T.none]	C(number) [T.small]	to_multiple	СС	from_	sent
0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	
1	1.0	0.0	0.0	1.0	0.0	0.0	1.0	
2	1.0	0.0	0.0	1.0	0.0	0.0	1.0	
3	1.0	0.0	0.0	1.0	0.0	0.0	1.0	
4	1.0	0.0	1.0	0.0	0.0	0.0	1.0	
3916	1.0	0.0	0.0	1.0	0.0	0.0	1.0	
3917	1.0	0.0	0.0	1.0	0.0	0.0	1.0	
3918	1.0	0.0	0.0	1.0	1.0	0.0	1.0	
3919	1.0	0.0	0.0	1.0	1.0	0.0	1.0	
3920	1.0	1.0	0.0	1.0	0.0	0.0	1.0	

3921 rows × 22 columns

localhost:8888/notebooks/6002Intro-DS/Project Logistic Regression/DSCI6002_prj2_02_group10.ipynb

In [48]:

```
logit_res1 = sm.Logit(y1, X1).fit()
print(logit_res1.summary())
```

Warning: Maximum number of iterations has been exceeded.

Current function value: 0.208584

Iterations: 35

	J	it Regressi		
=======================================				
Dep. Variable: 3921		spam N	No. Observations	:
Model:		Logit [Of Residuals:	
3899		20820	. Residuals.	
Method:		MLE D	Of Model:	
21				
Date:	Fri, 03 D	ec 2021 F	Pseudo R-squ.:	
0.3288	1	1.21.00	og likolihood.	
Time: -817.86	1	1:31:09 L	og-Likelihood:	
converged:		False L	L-Null:	
-1218.6				
Covariance Type:	no	nrobust L	LR p-value:	
4.446e-156				
===========		=======		======
=======================================				p.
[0.025 0.97		std err	Z	P> z
[0.023 0.97				
Intercept	-100.4727	151.207	-0.664	0.506
	5.888			
C(winner)[T.yes]		0.365	5.672	0.000
1.355 2.78		0.220	4 245	0 170
C(number)[T.none -0.135 0.7	_	0.220	1.345	0.179
C(number)[T.smal	_	0.196	-4.576	0.000
-1.281 -0.5	-	0.130	4.370	0.000
to multiple	-2.6802	0.327	-8.208	0.000
-3.320 -2.0				
СС	0.0188	0.022	0.854	0.393
-0.024 0.0	062			
from_	-12.5392	146.412	-0.086	0.932
	1.423	1001 354	0.013	0.000
sent_email -3553.408 350	-22.8187 07.771	1801.354	-0.013	0.990
-3333.400 330 time	8.472e-17	2.85e-17	2.974	0.003
	le-16	2.056-17	2.374	0.005
image	-1.7816	0.595	-2.996	0.003
-2.947 -0.6			-	
attach	0.7345	0.144	5.089	0.000

·				_0 , ,,	
0.452	1.017				
dollar		-0.0685	0.026	-2.588	0.010
-0.120	-0.017				
inherit	0.620	0.3146	0.156	2.022	0.043
0.010	0.620	2 0520	2707 070	0 001	0 000
viagra -7421.449	7427 152	2.8520	3787.978	0.001	0.999
password	7427.153	-0.8545	0.297	-2.876	0.004
-1.437	-0.272	-0.8343	0.237	-2.870	0.004
num char	0.272	0.0506	0.024	2.127	0.033
0.004	0.097				
line_breaks		-0.0055	0.001	-4.060	0.000
-0.008	-0.003				
format		-0.6142	0.149	-4.136	0.000
-0.905	-0.323				
re_subj		-1.6417	0.386	-4.248	0.000
	-0.884				
exclaim_sub	-	0.1421	0.243	0.585	0.558
-0.334	0.618	2 2245	4 247	2 050	0 000
urgent_subj	6 466	3.8845	1.317	2.950	0.003
1.303	6.466	0 0100	0 002	E 090	0 000
exclaim_mess	o.014	0.0108	0.002	5.980	0.000
0.007 =======					
				_	

Possibly complete quasi-separation: A fraction 0.28 of observations can be

perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified.

D:\program\Anaconda\lib\site-packages\statsmodels\base\model.py: 566: ConvergenceWarning: Maximum Likelihood optimization failed to converge. Check mle retvals

warnings.warn("Maximum Likelihood optimization failed to "

Removing the columns (cc, from_, sent_email, viagra, exclaim_subj) that have a zero beta with big probability.

In [49]:

Out[49]:

time	to_multiple	C(number) [T.small]	C(number) [T.none]	C(winner) [T.yes]	Intercept	
1.325370e+18	0.0	0.0	0.0	0.0	1.0	0
1.325373e+18	0.0	1.0	0.0	0.0	1.0	1
1.325405e+18	0.0	1.0	0.0	0.0	1.0	2
1.325380e+18	0.0	1.0	0.0	0.0	1.0	3
1.325383e+18	0.0	0.0	1.0	0.0	1.0	4
1.333127e+18	0.0	1.0	0.0	0.0	1.0	3916
1.333178e+18	0.0	1.0	0.0	0.0	1.0	3917
1.333099e+18	1.0	1.0	0.0	0.0	1.0	3918
1.332925e+18	1.0	1.0	0.0	0.0	1.0	3919
1.333160e+18	0.0	1.0	0.0	1.0	1.0	3920
	1.325370e+18 1.325373e+18 1.325405e+18 1.325380e+18 1.325383e+18 1.333127e+18 1.333178e+18 1.333099e+18 1.332925e+18	0.0 1.325370e+18 0.0 1.325373e+18 0.0 1.325405e+18 0.0 1.325380e+18 0.0 1.325383e+18 0.0 1.333127e+18 0.0 1.333178e+18 1.0 1.333099e+18 1.0 1.332925e+18	(T.small) to_multiple 0.0 0.0 1.325370e+18 1.0 0.0 1.325373e+18 1.0 0.0 1.325405e+18 1.0 0.0 1.325380e+18 0.0 0.0 1.325383e+18 1.0 0.0 1.333127e+18 1.0 0.0 1.333099e+18 1.0 1.0 1.332925e+18	[T.none] [T.small] time 0.0 0.0 0.0 1.325370e+18 0.0 1.0 0.0 1.325373e+18 0.0 1.0 0.0 1.325405e+18 0.0 1.0 0.0 1.325380e+18 1.0 0.0 0.0 1.325383e+18 0.0 1.0 0.0 1.333127e+18 0.0 1.0 0.0 1.333178e+18 0.0 1.0 1.0 1.333099e+18 0.0 1.0 1.0 1.332925e+18	[T.yes] [T.none] [T.small] time 0.0 0.0 0.0 1.325370e+18 0.0 0.0 1.0 0.0 1.325373e+18 0.0 0.0 1.0 0.0 1.325405e+18 0.0 0.0 1.0 0.0 1.325380e+18 0.0 1.0 0.0 1.325383e+18 0.0 0.0 1.0 0.0 1.333127e+18 0.0 0.0 1.0 0.0 1.333178e+18 0.0 0.0 1.0 1.0 1.333099e+18 0.0 0.0 1.0 1.0 1.3332925e+18	Intercept [T.yes] [T.none] [T.small] to_initible time 1.0 0.0 0.0 0.0 1.325370e+18 1.0 0.0 0.0 1.0 0.0 1.325373e+18 1.0 0.0 0.0 1.0 0.0 1.325405e+18 1.0 0.0 0.0 1.0 0.0 1.325380e+18 1.0 0.0 1.0 0.0 1.325383e+18 1.0 0.0 0.0 1.0 0.0 1.333127e+18 1.0 0.0 0.0 1.0 0.0 1.333127e+18 1.0 0.0 0.0 1.0 0.0 1.333178e+18 1.0 0.0 0.0 1.0 0.0 1.333178e+18 1.0 0.0 0.0 1.0 1.0 1.333099e+18 1.0 0.0 0.0 1.0 1.0 1.332925e+18

3921 rows × 17 columns

In [50]:

```
logit_res2 = sm.Logit(y2, X2).fit()
print(logit_res2.summary())
```

Optimization terminated successfully.

Current function value: 0.228731

Iterations 10

Logit Regression Results

		Logi	t Regress	sion Results	
=========	======== 				======
			cnam	No Observations	•
Dep. Varia 3921	Die.		spam	No. Observations	•
Model:			logi+	Df Residuals:	
3904			LOGIC	DI RESIGNAIS.	
Method:			MLE	Df Model:	
16			MLE	DI Model.	
		Eni O2 Da	o 2021	Decudo D cau	
Date: 0.2640		FI.I, 62 DE	2021	Pseudo R-squ.:	
		11	. 21 . 11	log likalihaad.	
Time: -896.85		11	::31:11	Log-Likelihood:	
			Tnuo	II N11.	
converged: -1218.6			True	LL-Null:	
	Typot	non	nobust	IID n value:	
Covariance 1.353e-126		non	irobust	LLR p-value:	
1.353e-120					
			std err	` Z	P> z
[0.025	0 0751	COET	Stu en	2	P7 2
-	-				
Intercept		-94.0394	36 311	-2.590	0.010
•	-22.871		30.311	2.330	0.010
C(winner)[0.361	5.949	0.000
1.441	2.857	2.1105	0.301	3.313	0.000
C(number)[-0.0752	0.211	-0.357	0.721
-0.488	0.338	0.0732	0.213	0.337	0.,21
C(number)[-0.8818	0.192	-4.594	0.000
-1.258	-	0,00=0	0122	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
to multipl		-2.6580	0.314	-8.460	0.000
-3.274	-2.042	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
time		7.049e-17	2.73e-17	2.581	0.010
1.7e-17	1.24e-16			_,,,	
image		-2.1348	0.936	-2.281	0.023
-3.969	-0.301				
attach		0.4826	0.099	4.894	0.000
0.289	0.676				
dollar		-0.0645	0.025	-2.542	0.011
-0.114	-0.015				
inherit		0.3530	0.155	2.275	0.023
0.049	0.657				
password		-0.8272	0.300	-2.756	0.006
•					

-1.415	-0.239				
num char		0.0625	0.022	2.853	0.004
0.020	0.106				
line break	S	-0.0057	0.001	-4.438	0.000
-0.008	-0.003				
format		-0.8599	0.138	-6.209	0.000
-1.131	-0.588				
re subj		-2.9963	0.386	-7.770	0.000
-3.752	-2.241				
urgent sub	j	3.7512	1.063	3.530	0.000
1.668	5.834				
exclaim_me	SS	0.0098	0.002	5.629	0.000
0.006	0.013				
========	=======	========	========	=======	=======
========	=======	==			
4					•

Thresholds

In [51]:

ROC curve

In [52]:

```
#calculate the tpr and fpr
def calculate_tpr_fpr(df, threshold):
    TP = df pred[(df pred.status == 1) & (df pred.Prob >= threshold)].count()[
    FN = df_pred[(df_pred.status == 1) & (df_pred.Prob < threshold)].count()[0
    TN = df_pred[(df_pred.status == 0) & (df_pred.Prob < threshold)].count()[0
    FP = df_pred[(df_pred.status == 0) & (df_pred.Prob >= threshold)].count()[
    sensitivity = TP/(TP + FN)
    specificity = TN/(FP + TN)
    tpr = sensitivity
    fpr = 1- specificity
    return tpr, fpr
tpr_n = []
fpr n = []
thresholds = [i/100.0 \text{ for } i \text{ in } range(0,100)]
for threshold in thresholds:
    tpr, fpr = calculate_tpr_fpr(df, threshold)
    tpr n.append(tpr)
    fpr n.append(fpr)
```

In [53]:

```
tpr_n = np.flip(tpr_n)
fpr_n = np.flip(fpr_n)
```

In [54]:

```
auc = np.trapz(tpr_n, fpr_n)
print("AUC: {}".format(auc))

plt.figure(figsize = (8,6))
plt.plot(fpr_n, tpr_n, '.-')
plt.plot([0,1], [0,1], 'k--')
plt.plot([0], [1], 'r.', markersize = 15)
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.grid()
```

AUC: 0.8605888287978851

Optimal point in ROC curve

In [55]:

```
import math
# shortest distance between best point and point on curve
best point= (.0, 1.0)
distances = []
for i in zip(fpr_n, tpr_n):
    distance = math.dist(best point, i)
    distances.append(distance)
min idx = np.argmin(distances)
print("index of min:\t{}\n"
         "threshold:\t{:2}\n"
         "fpr:\t\t{:.2}\n"
         "tpr:\t\t{:.2}".format(
         min idx,
         thresholds[99-min idx],
         fpr_n[min_idx],
         tpr_n[min_idx
              ]))
```

index of min: 89
threshold: 0.1
fpr: 0.24
tpr: 0.81

4 Analysis Results & Explanation

RESULTS:

In [56]:

print(logit_res1.summary())

	Logit Regression Results						
============		=======	======	=======================================	=======		
Dep. Variab			spam	No. Observation	ns:		
3921 Model:			Logit	Df Residuals:			
3899 Method:			MLE	Df Model:			
21							
Date: 0.3288		Fri, 03 De	ec 2021	Pseudo R-squ.:			
Time:		11	1:32:28	Log-Likelihood	•		
-817.86 converged:			False	LL-Null:			
-1218.6 Covariance	Tyne:	nor	robust	LLR p-value:			
4.446e-156	. , , ,		00050	zzik p vazaci			
			======	=======================================	=======		
========	=======		std er	r z	P> z		
[0.025	0.975]	COET	sta ei	1 2	17121		
Intercept		 -100.4727	151 20	7 -0.664	0.506		
-396 . 834			131.20	-0.004	0.300		
C(winner)[T		2.0711	0.36	5.672	0.000		
` -	2.787						
C(number)[T	.none]	0.2953	0.22	0 1.345	0.179		
-0.135	0.726						
C(number)[T	_	-0.8971	0.19	6 -4.576	0.000		
-1.281	-0.513						
<pre>to_multiple -3.320</pre>		-2.6802	0.32	-8.208	0.000		
-3.320 CC	-2.040	0.0188	0.02	2 0.854	0.393		
-0.024	0.062	0.0100	0.02	.2 0.054	0.333		
from	0,000	-12.5392	146.41	.2 -0.086	0.932		
-299 . 501	274.423						
sent_email		-22.8187	1801.35	-0.013	0.990		
-3553.408	3507.77	1					
time		8.472e-17	2.85e-1	7 2.974	0.003		
2.89e-17	1.41e-16						
image	0.616	-1.7816	0.59	-2.996	0.003		
-2.947	-0.616	0 7245	0 14	4 5 000	0.000		
attach 0.452	1.017	0.7345	0.14	4 5.089	0.000		
dollar	1.01/	-0.0685	0.02	6 -2.588	0.010		
-0.120	-0.017	0.0005	0.02	2.300	0.010		
inherit	- · · · - ·	0.3146	0.15	6 2.022	0.043		

0.010 viagra	0.620	2.8520	3787.978	0.001	0.999
-7421.449	7427.15		3707.370	0.001	0.333
password		-0.8545	0.297	-2.876	0.004
-1.437	-0.272				
num_char		0.0506	0.024	2.127	0.033
0.004	0.097				
line_breaks		-0.0055	0.001	-4.060	0.000
-0.008	-0.003				
format		-0.6142	0.149	-4.136	0.000
-0.905	-0.323				
re_subj		-1.6417	0.386	-4.248	0.000
-2.399	-0.884				
exclaim_sub	•	0.1421	0.243	0.585	0.558
-0.334	0.618				
urgent_subj		3.8845	1.317	2.950	0.003
1.303	6.466				
exclaim_mes		0.0108	0.002	5.980	0.000
0.007	0.014				

Possibly complete quasi-separation: A fraction 0.28 of observations can be

perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be ident ified.

In [57]:

print(logit_res2.summary())

	===:
=========	
Dep. Variable: spam No. Observations: 3921	
Model: Logit Df Residuals: 3904	
Method: MLE Df Model: 16	
Date: Fri, 03 Dec 2021 Pseudo R-squ.: 0.2640	
Time: 11:32:29 Log-Likelihood: -896.85	
converged: True LL-Null: -1218.6	
Covariance Type: nonrobust LLR p-value: 1.353e-126	
	===:
======================================	- I
[0.025 0.975]	-
Intercept -94.0394 36.311 -2.590 0.0	10
-165.208 -22.871	
C(winner)[T.yes] 2.1489 0.361 5.949 0.0	90
1.441 2.857	
C(number)[T.none] -0.0752 0.211 -0.357 0.7	21
-0.488	00
C(number)[T.small] -0.8818 0.192 -4.594 0.0 -1.258 -0.506	00
to_multiple -2.6580 0.314 -8.460 0.0	aa
-3.274 -2.042	00
time 7.049e-17 2.73e-17 2.581 0.0	10
1.7e-17 1.24e-16	
image -2.1348 0.936 -2.281 0.0	23
-3.969 -0.301	
attach 0.4826 0.099 4.894 0.0	00
0.289 0.676	
dollar -0.0645 0.025 -2.542 0.0	11
-0.114 -0.015	
inherit 0.3530 0.155 2.275 0.0	23
0.049 0.657	~ -
password -0.8272 0.300 -2.756 0.0	96
-1.415 -0.239 num char 0.0625 0.022 2.853 0.0	Q./I
0.020 0.106	U 4
line_breaks -0.0057 0.001 -4.438 0.0	00

```
-0.008
             -0.003
                                                 -6.209
                                                              0.000
format
                        -0.8599
                                      0.138
-1.131
             -0.588
                                                 -7.770
                        -2.9963
                                      0.386
                                                              0.000
re_subj
-3.752
             -2.241
urgent_subj
                         3.7512
                                      1.063
                                                  3.530
                                                              0.000
1.668
             5.834
exclaim_mess
                         0.0098
                                      0.002
                                                  5.629
                                                              0.000
0.006
             0.013
```

In [60]:

```
print("AUC: {}".format(auc))
plt.figure(figsize = (8,6))
plt.plot(fpr_n, tpr_n, '.-')
plt.plot([0,1], [0,1], 'k--')
plt.plot([0], [1], 'r.', markersize = 15)
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.grid()
```

AUC: 0.8605888287978851

In [58]:

index of min: 89
optimal threshold: 0.1
fpr: 0.24
tpr: 0.81

ANALYSIS & EXPLANATION:

- 1. At the beginning of this analysis with logistic regression method, we applyed all the columns to our first logistic regression model to detect the columns that have zero coefficient in our model. From the details of logit_res1.summary(), it given us a specifical result that P-values of five columns of cc, from_, sent_email, viagra and exclaim_subj were far more than alpha(0.05) and P-values of rest columns was less than alpha. For those P-values were significantly more than 0.05, we can't reject Null Hypothesis and concluded that the coefficient values of those columns were 0.
- 2. Since we concluded the the coefficient values of five columns of cc, from_, sent_email, viagra and exclaim_subj were 0, we removed those columns and applyed rest of columns into our second model to make a further detection. The informations of logit_res2.summary() revealed the P-value of remained columns were less than 0.05. We rejected the Null Hypothesis and concluded that the coefficient values of those columns were not 0.
- 3. Based on the Roc curve, the second logistic regression model got AUC of 0.86. Such high AUC illustrated that the model is splendid and accurate for the dataset.
- 4. Using the method to find the shortest distance between best point and point on curve, the optimal point was (fpr: 0.24, tpr: 0.81) corresponding to the optimal threshold of 0.1.

5 Conclusion

According to the results of logistic regression analysis, we can conclude the five columns of cc, from_, sent_email, viagra and exclaim_subj didn't relate to the target column.

By applying the rest columns into our model, we can predict the email is spam(1) or not(0) with a accuracy of 0.81 at 1 and a accuracy of 0.76 at 0.