

University of New Haven

Pompea College of Business

Course: BANL-6430-03 – Database Management for Business <u>Analytics</u>

Instructor: Dr. Pindaro Demertzoglou

Project Title:

Port Authority Bus Terminal Passenger Prediction

Project Progress Report-2

Prepared By:

Aastha Kale
Ayesha Kabir
Meghana Lakshminarayana Swamy
Rajyalakshmi Nelakurthi
Venkata Sai Phanindra Namburu

Submission Date- March 17, 2025

Project Progress Report:

1. Data Sources and Integration Report

1. Available Data Sources

The project incorporates multiple datasets, both internal and external, to analyze the impact of various factors on passenger flow and mechanical failures.

Company-Provided Datasets

- Weather Data (Tbl_Weather)
- Tracks weather conditions that could impact bus operations.
- Fields include: Date, PRCP (Precipitation), TMAX (Max Temperature), TMIN (Min Temperature), SNOW (Snowfall).

External Datasets

1. MTA Bus Mechanical Failure Data

- Provides breakdown patterns over time to analyze their effect on passenger experience and ridership.
- Used to assess service reliability and identify maintenance improvement areas.
 Available at: Data Catalog Port Authority Bus Terminal

2. Data Preparation, Integration, and Cleaning

To ensure accurate analysis, the data is cleaned, formatted, and integrated using **Microsoft SQL**.

Data Cleaning

1. Checking for Missing Values:

SELECT * FROM MTA_Bus WHERE MonthlyMiles IS NULL OR MonthlyRoadCallCount IS NULL OR MonthlyMDBF IS NULL;

SELECT * FROM Tbl_Weather WHERE PRCP IS NULL OR TMAX IS NULL OR TMIN IS NULL:

2. Handling Missing Data:

 Replacing missing values in the weather dataset using averages from nearby dates: UPDATE Tbl_Weather
SET AWND = (SELECT AVG(AWND) FROM Tbl_Weather
WHERE DATE BETWEEN DATEADD(day, -3, DATE) AND DATEADD(day, 3, DATE))
WHERE AWND IS NULL:

Standardizing Data Formats:

Converting Month field into a DATE format for compatibility:

```
ALTER TABLE MTA_Bus ADD MonthDate DATE;
UPDATE MTA_Bus
SET MonthDate = CONVERT(DATE, Month + '/01/' + RIGHT(Month, 4), 101);
```

Data Integration

Aggregating Weather Data to Monthly Level:

```
SELECT DATEPART(year, DATE) AS Year, DATEPART(month, DATE) AS Month,
AVG(TMAX) AS AvgTMAX, AVG(TMIN) AS AvgTMIN,
SUM(PRCP) AS TotalPRCP, SUM(SNOW) AS TotalSNOW
INTO MonthlyWeather
FROM Tbl_Weather
GROUP BY DATEPART(year, DATE), DATEPART(month, DATE);
```

• Joining Datasets (MTA Bus + Weather Data):

SELECT MTA.MonthDate, MTA.Borough, MTA.MonthlyMiles, MTA.MonthlyRoadCallCount, MTA.MonthlyMDBF,

W.AvgTMAX, W.AvgTMIN, W.TotalPRCP, W.TotalSNOW

INTO FinalDataset

FROM MTA Bus MTA

LEFT JOIN MonthlyWeather W

ON DATEPART(year, MTA.MonthDate) = W.Year AND DATEPART(month, MTA.MonthDate) = W.Month;

Ensuring Data Quality

Checking Row Consistency:

```
SELECT COUNT(*) FROM MTA_Bus;
SELECT COUNT(*) FROM FinalDataset;
```

o This ensures that the integrated dataset does not lose records during merging.

3. Use of External Datasets

Yes, in addition to the company's provided datasets, we are incorporating an **external dataset: MTA Bus Mechanical Failure Data** to analyze the impact of mechanical breakdowns on **passenger flow, service reliability, and demand**.

Importance of this dataset:

- **Impact on Ridership**: Frequent bus breakdowns can cause delays, leading passengers to shift to alternative transport like subways or ride-sharing.
 - Example: If a route has high breakdowns, a decline in ticket sales may be observed.
- Correlation with Service Availability: More failures mean fewer operational buses, leading to overcrowding.
 - Example: If maintenance issues reduce bus availability during peak hours, wait times increase.
- Maintenance Planning: Identifying seasonal breakdown patterns allows for better fleet maintenance scheduling.
 - Example: If failures peak in winter, preventive maintenance can be scheduled in advance.
- Pre/Post-COVID Comparison: Analyzing trends before and after 2020 helps assess the impact of aging fleets.
 - Example: If failure rates increased post-pandemic, fleet upgrades may be necessary.

This dataset enhances the study by **correlating mechanical failures with passenger trends**, improving reliability and planning.

4. Managing Large Datasets Efficiently

After integrating the MTA Bus Performance Data and Weather Data, a large volume of records will be generated. To ensure efficient data management, we will use SQL Server Management Studio (SSMS) and apply the GROUP BY function to aggregate key metrics.

Steps to Create a Manageable Dataset:

- Merging Data by Month: The datasets will be joined on the month and borough, summarizing key variables such as:
 - Breakdowns (road call count)
 - Miles Driven (total monthly mileage)
 - Weather Metrics (average precipitation, temperature, snowfall)

- Eliminating Redundancy & Incomplete Entries: By grouping similar data, we
 will filter out duplicate or missing records, ensuring only relevant information is
 retained.
- Optimizing for Quick Queries: The final dataset will be structured by month and borough, allowing for faster retrieval and analysis.

The large dataset resulting from the joins, **SQL Server Management Studio (SSMS)** is used to efficiently manage and summarize the data.

Grouping the data by month and borough:

SELECT MonthDate, Borough,

SUM(MonthlyMiles) AS TotalMiles,

SUM(MonthlyRoadCallCount) AS TotalRoadCalls,

AVG(MonthlyMDBF) AS AvgMDBF,

AVG(AvgTMAX) AS AvgTMAX, AVG(AvgTMIN) AS AvgTMIN,

SUM(TotalPRCP) AS TotalPRCP, SUM(TotalSNOW) AS TotalSNOW

INTO ManageableDataset

FROM FinalDataset

GROUP BY MonthDate, Borough;

- Benefits of this approach:
 - Reduces redundancy.
 - Optimizes query performance.
 - Ensures quick access to data insights.

Outcome:

This approach reduces data complexity, improves query performance, and creates a streamlined dataset optimized for trend analysis and forecasting.

5. Final Dataset Showcase with SQL Query

The final dataset is structured to provide **comprehensive insights** into bus performance and weather impact across **various NYC boroughs**.

Dataset Summary

This **SQL-based dataset** tracks:

Bus Service Performance:

- Monthly miles traveled per borough.
- Road call counts (mechanical failures).
- Mean Distance Between Failures (MDBF), a key reliability metric.

Weather Conditions:

- Average Maximum Temperature: [avgtmax]°F
- Average Minimum Temperature: [avgtmin]°F
- Total Precipitation: [totalprcp] inches
- Total Snowfall: [totalsnow] inches

Key Insights Enabled by the Dataset

- Breakdown Trends: Helps in analyzing fleet performance and identifying highfailure routes.
- Maintenance Planning: Identifies peak failure months to optimize preventive maintenance schedules.
- Climate Impact on Bus Performance: Correlates weather conditions with bus failures, supporting transit resilience strategies.
- Optimized Transit Operations: Enables data-driven decision-making for resource allocation and scheduling improvements.

SQL Query Used to Generate the Final Dataset

To generate the final dataset, the following **SQL query** is used:

```
SELECT
MTA_Bus.Month AS ReportMonth,
MTA_Bus.Borough,
MTA_Bus.MonthlyMiles,
MTA_Bus.MonthlyRoadCallCount,
MTA_Bus.MonthlyMDBF,
Weather.AvgTMAX,
Weather.AvgTMIN,
Weather.TotalPRCP,
Weather.TotalSNOW
INTO FinalDataset
FROM MTA_Bus
LEFT JOIN Weather
```

ON DATEPART(year, MTA_Bus.Month) = Weather.Year AND DATEPART(month, MTA_Bus.Month) = Weather.Month ORDER BY ReportMonth, Borough;

Conclusion

This project integrates MTA Bus Performance Data and Weather Data to analyze the impact of mechanical failures on passenger flow, service reliability, and maintenance planning. By leveraging SQL-based data cleaning, integration, and aggregation techniques, we have developed a comprehensive dataset that provides insights into transit operations across NYC boroughs.

Key Findings & Insights

1. Mechanical Failures Impact Ridership

 Frequent breakdowns correlate with longer wait times, overcrowding, and potential ridership declines as commuters shift to alternative transport options.

2. Service Availability & Fleet Management

- Increased road call counts result in fewer operational buses, leading to higher congestion at bus stops and route inefficiencies.
- Pre/Post-COVID comparison highlights the need for fleet upgrades and preventive maintenance.

3. Weather Conditions Affect Bus Performance

- Harsh weather (e.g., snow and heavy precipitation) contributes to higher mechanical failures and reduced service efficiency.
- Understanding these trends allows for better scheduling and resource allocation.

4. Data Optimization for Decision-Making

- The final dataset is structured efficiently, ensuring quick query execution and improved analysis.
- SQL-based grouping, filtering, and summarization have enabled a streamlined, manageable dataset for forecasting.

Dataset 1:

	А	C D		Е	F	G	
1	DATE	AWND	PRCP	snow	SNWD	TMAX	TMIN
2	2024-03-08 00:00:00	5.14	0	0	0	57	40
3	2024-03-09 00:00:00	7.38	1.53	0	0	49	41
4	2024-03-10 00:00:00	9.62	0.03	0	0	51	37
5	2024-03-11 00:00:00	12.75	0	0	0	52	35
6	2024-03-12 00:00:00	6.04	0	0	0	66	43
7	2024-03-13 00:00:00	3.58	0	0	0	62	48
8	2024-03-14 00:00:00	2.46	0	0	0	74	46
9	2024-03-15 00:00:00	6.71	0	0	0	73	51
10	2024-03-16 00:00:00	4.47	0	0	0	61	47
11	2024-03-17 00:00:00	6.71	0	0	0	63	48
12	2024-03-18 00:00:00	7.38	0	0	0	51	38
13	2024-03-19 00:00:00	7.61	0	0	0	48	36
14	2024-03-20 00:00:00	6.71	0.01	0	0	57	34
15	2024-03-21 00:00:00	9.17	0	0	0	43	30
16	2024-03-22 00:00:00	4.92	0	0	0	46	29
17	2024-03-23 00:00:00	7.16	3.66	0	0	50	35
18	2024-03-24 00:00:00	7.83	0	0	0	48	31
19	2024-03-25 00:00:00	8.72	0	0	0	53	35
20	2024-03-26 00:00:00	6.04	0	0	0	53	39
21	2024-03-27 00:00:00	2.68	0.06	0	0	52	42
22	2024-03-28 00:00:00	4.7	0.7	0	0	51	44
23	2024-03-29 00:00:00	11.18	0	0	0	56	42
24	2024-03-30 00:00:00	8.5	0.04	0	0	62	41
25	2024-03-31 00:00:00	4.47	0.02	0	0	62	47
26	2024-04-01 00:00:00	2.91	0.01	0	0	54	49
27	2024-04-02 00:00:00	6.93	0.87	0	0	51	44
28	2024-04-03 00:00:00	14.09	1.55	0	0	45	41
29	2024-04-04 00:00:00	6.71	0.21	0	0	53	37
30	2024-04-05 00:00:00	8.05	0	0	0	50	38
31	2024-04-06 00:00:00	7.61	0	0	0	54	42
32	2024-04-07 00:00:00	6.49	0	0	0	60	43
33	2024-04-08 00:00:00	2.24	0	0	0	69	43

Dataset 2:

	А	В	С	D	E	F	G
1	Month	Borough	Monthly Miles	Monthly Road Call Count	Monthly MDBF		
2	2015-01-01 00:00:00	Bronx	2166371	434	4992		
3	2015-01-01 00:00:00	Brooklyn	2901602	576	5038		
4	2015-01-01 00:00:00	Manhattan	1283763	458	2803		
5	2015-01-01 00:00:00	Queens	4032200	810	4978		
6	2015-01-01 00:00:00	Staten Island	2029610	230	8824		
7	2015-02-01 00:00:00	Bronx	1962258	518	3788		
8	2015-02-01 00:00:00	Brooklyn	2767879	571	4847		
9	2015-02-01 00:00:00	Manhattan	1200788	422	2845		
LO	2015-02-01 00:00:00	Queens	3675299	956	3844		
11	2015-02-01 00:00:00	Staten Island	1906088	278	6856		
12	2015-03-01 00:00:00	Bronx	2258765	609	3709		
L3	2015-03-01 00:00:00	Brooklyn	3117255	617	5052		
4	2015-03-01 00:00:00	Manhattan	1351993	434	3115		
15	2015-03-01 00:00:00	Queens	4310871	991	4350		
16	2015-03-01 00:00:00	Staten Island	2184715	303	7210		
17	2015-04-01 00:00:00	Bronx	2279624	511	4461		
18	2015-04-01 00:00:00	Brooklyn	3044734	474	6423		
19	2015-04-01 00:00:00	Manhattan	1316299	430	3061		
20	2015-04-01 00:00:00	Queens	4270979	950	4496		
21	2015-04-01 00:00:00	Staten Island	2167176	233	9301		
22	2015-05-01 00:00:00	Bronx	2231238	558	3999		
23	2015-05-01 00:00:00	Brooklyn	3075059	480	6406		
24	2015-05-01 00:00:00	Manhattan	1301748	444	2932		
25	2015-05-01 00:00:00	Queens	4164297	982	4241		
26	2015-05-01 00:00:00	Staten Island	2086027	271	7698		
27	2015-06-01 00:00:00	Bronx	2248911	641	3508		
28	2015-06-01 00:00:00	Brooklyn	3019898	524	5763		
29	2015-06-01 00:00:00	Manhattan	1301651	493	2640		
30	2015-06-01 00:00:00	Queens	4218402	1088	3877		
31	2015-06-01 00:00:00	Staten Island	2148061	328	6549		
32	2015-07-01 00:00:00	Bronx	2324600	618	3761		
33	2015-07-01 00:00:00	Brooklyn	3053172	515	5928		

This is the Screenshot for final dataset available for further analysis.