

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

Hydrologic and chemical data for wells, springs, and streams in central Nevada, Tps. 1-21 N. and Rs. 41-57 E.*

Ву

B. P. Robinson, William Thordarson, and W. A. Beetem

December 1967

Report TEI-871

Open-file report

This report is preliminary and has not been edited for conformity with Geological Survey format and nomenclature.

*Prepared on behalf of the U. S. Atomic Energy Commission

GB 1025 .N3 R63 1967

ID: 88079976

GB 1025 .N3 R63 1967

CONTENTS

	Page
Abstract	. 1
Introduction	. 2
Hydrologic Task Force's scope of work	. 2
Hydrologic contamination	. 2
Well damage	. 3
Water supplies	. 3
Water yield	. 3
Containment	. 3
Geochemistry	. 3
Scope of this report	. 4
Selected wells and springs in central Nevada	. 4
Numbering system for wells and springs in Nevada	. 4
Geology	. 5
Precipitation	. 8
Surface water	. 8
Ground water	. 8
Water-level contours	9
Uses of wells and springs	. 10
Chemical quality	. 10
References	. 11

BLM Library
Denver Federal Center
Bldg. 50, OC-521
P.O. Box 25047
Denver, CO 80225

ILLUSTRATIONS

Plate	1.	Locations of selected wells and springs	
		and preliminary water-level contours	
		in central Nevada (In pocke	et)
Figure	1.	Numbering system for wells and springs	
		in Nevada	
		TABLES	
Table	1.	Hydrologic data for water wells in	
		central Nevada	
	2.	Hydrologic data for springs in central Nevada 39	
	3.	Average monthly and annual precipitation in	
		inches, central Nevada	
	4.	Streamflow in central Nevada	
	5.	Percentages of wells that penetrate different	
		aquifers	
	6.	Uses of wells in central Nevada	
	7.	Uses of springs in central Nevada	
	8.	Chemical data for wells and springs in	
		central Nevada	
	9.	Chemical data for surface water in	
		central Nevada	

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

HYDROLOGIC AND CHEMICAL DATA FOR WELLS, SPRINGS, AND STREAMS IN CENTRAL NEVADA, Tps. 1-21 N. and Rs. 41-57 E.

By

B. P. Robinson, William Thordarson, and W. A. Beetem

ABSTRACT

Studies of published and unpublished geologic, hydrologic, and chemical-quality data for ground and surface water in central Nevada, Tps. 1 to 21 N. and Rs. 41 to 57 E., Mount Diablo base and meridian, reveal the following information:

Rocks exposed in central Nevada are of sedimentary and igneous origin and range in age from Cambrian to Recent. Rocks of Paleozoic age generally are carbonate or clastic, and rocks of Mesozoic age generally are clastic and granitic. Rocks of Tertiary age principally are volcanic, and the valley fill of Quaternary age is alluvial-fan and lake deposits. The rocks are folded, faulted, and highly fractured.

Precipitation is closely related to altitude. In general, as the altitude increases the precipitation increases.

Most of the streamflow in the valleys originates as snow in the nearby mountains. The streams generally flow only in response to snowmelt and to flash-flood-producing storms.

Important chemical quality characteristics of the ground and surface water in central Nevada are hardness, expressed as ${\rm CaCO_3}$, generally in excess of 120 ppm, and a dissolved-solids content of less than 500 ppm. The principal chemical types of both ground and surface waters are sodium and calcium bicarbonates.

The major uses of ground water in central Nevada are for irrigation and stock. Frequency of use of wells in decreasing order is: irrigation, stock, domestic, industrial, municipal, and observation. Of the 606 wells tabulated, 29 have multiple uses. Frequency of use of spring water in decreasing order is: stock, irrigation, domestic, and public facilities. Of the 135 springs tabulated, 5 have multiple uses.

Harris of the Continues

ACCURAGE ALLEY FOR ALLE AND DESCRIPTION OF ACCOUNTS

the first little and the second state of the second state of

THEFT

and adjusted to the second of the second of

The state of the s

The electric of the party of th

AND ALL HE SE SERVICE THE PROPERTY OF THE PROP

The interest of the control of the c

The major pass of prount of access to control branch and order to the control branch access to the control branch actes to the control branch

INTRODUCTION

In October 1966 a Hydrologic Task Force, consisting of the USGS (U. S. Geological Survey), CWRR (Center for Water Resources Research, Univ. of Nevada), and PAL (Palo Alto Lab of Isotopes, Inc.) (formerly Hazleton-Nuclear Science Corporation) was established to advise the U. S. Atomic Energy Commission on problems of hydrologic safety related to underground nuclear testing in central Nevada. This report contains data that were assembled by the USGS before the Hydrologic Task Force was organized. It represents the first phase in the evaluation of the hydrologic environment of central Nevada. The Hydrologic Task Force program is being extended from this initial phase of hydrologic studies.

Hydrologic Task Force's scope of work

The Hydrologic Task Force is primarily concerned with six water problems related to nuclear testing in central Nevada. A description of each problem follows:

Hydrologic contamination

Ground water in some of the basins of the area is under artesian pressure, and much of the natural discharge of ground water is by springs and seeps in the lowest parts of the basins. Explosions that produce sinks and high-collapse chimneys or that reactivate faults in the interior of these basins could provide avenues for underground circulation and, therefore, increase surface discharge of contaminated water. Designation of small sites for individual tests will increase the probability of off-site contamination.

In preparation with a federate of the local decembers of the date.

(B. 8. Sealogness Survey), Cara leader for Mathy Manederes Research, Juniv. of Secondary, and fall (Tale alter to a tractor of impropes, 126.) (Adverting the leader formers) and the standard formers of the secondary of the seco

Parameter and description of the principal of the principal and the principal of the principal and p

Distribution Show State

presented and and of the remark of the spine of the spine

Well damage

Under some conditions of well construction, physical environment, and distance from shot point, nuclear explosions may result in extensive damage claims related to wells. A documentation of well structure and physical environment both preshot and postshot is desirable to judge these claims.

Water supplies

Adequate water supplies must be developed for drilling, construction projects, and camp sites.

Water yield

The water yield of rocks is critical to the safe mining of chambers.

Also critical is the rate at which some types of radioactive contaminants

are transported by underground circulation of water.

Containment

Nuclear testing in deep holes will require containment within certain stratigraphic limits to eliminate or minimize the circulation of contaminated water between interconnected aquifers. Interconnection of aquifers is caused by the creation of a rubble chimney whose outer limits cut across two or more aquifers and thus provide a circulatory channel between adjacent aquifers. Inadvertent venting could result in surface-water and shallow ground-water contamination.

Geochemistry

The chemical and radiochemical quality of water in the vicinity of an underground nuclear test must be determined preshot and monitored postshot to determine whether the test has contaminated the water. The chemical composition of the rock affects the rate at which different radionuclides in solution can move away from the source of contamination.

sarah Link

Under and other to a selection of the constitute of the selection of the s

sellons rough

Adequate value and come as a complete street.

Also critical is the the the tenter who could be the meter and the bridge of chapters.

Also critical is the three of which who cause it is locally a contribution of wheel

THE MARKET

Contract and antition of the application of a provider of the application of the applicat

Generalistics

terminor has reduced and terminor to describe and terminor and termino

Scope of this report

This report summarizes published and unpublished hydrologic, geologic, and chemical data for wells, springs, and streams in central Nevada, Tps. 1 to 21 N. and Rs. 41 to 57 E., Mount Diablo base and meridian.

SELECTED WELLS AND SPRINGS IN CENTRAL NEVADA

Hydrologic, geologic, and chemical data for wells and springs in central Nevada are from various sources such as the State of Nevada, Water Resources Reconnaissance Series; U. S. Geological Survey, Water-Supply Papers and Professional Papers; Nevada State Engineer's office records; and a few others. The hydrologic and the geologic data are summarized in tables 1, 2, and 5 (all tables follow References). All well and spring locations (tables 1 and 2) are plotted on plate 1. Some locations coincide, however.

No attempt was made to separate the thermal springs (23) from the other springs. However, available temperatures are listed for spring water (table 2). For the reader who is particularly interested in thermal springs the paper by White and Brannock (25), though outside the area of this report, may be helpful.

NUMBERING SYSTEM FOR WELLS AND SPRINGS IN NEVADA

The numbering system that the U. S. Geological Survey uses for wells and springs in Nevada is based on the Mount Diablo base line and meridian network of surveys established by the General Land Office (now known as the U. S. Bureau of Land Management) (9). A typical number is composed of four segments. The first segment indicates the township. If the township number is followed by an "N",

Ready of the Ready-

degrees of knowled best thought out to be the content of the contents by a property to the contents by a property of the contents of the conte

Dispersion of the sentence of the sent days of the color of the color

the article of the company of the co

the township is north of the Mount Diablo base line; if the township number is followed by an "S", the township is south of the Mount Diablo base line. The second segment, separated from the first by a slant, indicates the range east of the Mount Diablo meridian. The third segment, separated from the second by a hyphen, indicates the section and the location of the well or spring within the section. Lowercase letters—a, b, c, and d—assigned in a counter-clockwise direction, designate the northeast, northwest, southwest, and southeast quarter sections, quarter—quarter sections, and quarter—quarter—quarter sections (160—acre, 40—acre, and 10—acre tracts). The fourth segment, a number separated from the third segment by a hyphen, indicates the chronological order in which the wells were drilled. If two or more wells are in the subdivision, consecutive numbers are assigned in the order in which the well data are recorded. Thus, well number 3N/42-04aa-3 (fig. 1) designates the third well recorded in the NE4NE4 sec. 4, T. 3 N., R. 42 E.

GEOLOGY

Rocks exposed in central Nevada are of sedimentary and igneous origin and range in age from Cambrian to Recent. Rocks of Paleozoic age are divided into two contrasting facies along a north-south line approximately at the crest of the Toquima Range (16, 30). The eastern facies is mostly miogeosynclinal carbonate rocks and orthoquartzite, and the western facies is dominantly eugeosynclinal graywacke, chert, argillite, and volcanic rocks. These strata of Paleozoic age, about 20,000 feet thick, crop out in only about 5 percent of the total area of central Nevada. Although Paleozoic rocks are poorly exposed in the area, they almost certainly underlie the younger volcanic and sedimentary rocks at depths to 10,000 feet below the land surface. Exceptions include areas where intrusive granites of Mesozoic age are present.

The same and the same of the s

Figure 1.--Numbering system for wells and springs in Nevada.

where it were not the development and the state of the st

Rocks of Mesozoic age have contrasting lithologic characteristics in the western and eastern parts of the areas. In the western part, rocks of Mesozoic age consist of scattered outcrops of sedimentary marine clastic rocks of Triassic and Jurassic age and some limestone and granitic stocks and batholiths of Jurassic age. In the eastern part, they consist of continental clastic rocks of early Cretaceous age and some fresh-water limestone, which probably are best preserved in the valley deposits where they were protected from erosion. Some scattered granitic stocks of late Cretaceous and Eocene age are found in the eastern part of the area. Rocks of Mesozoic age crop out in only 1 percent of the total area, because they were eroded away, have been covered by younger rocks, or were never deposited.

Rocks of Cenozoic age consist of Tertiary volcanic rocks and Tertiary and Quaternary valley fill. The volcanic rocks include principally welded tuff and lava flows, and, to a lesser extent, bedded zeolitized, ash-fall tuff. Cooling joints and tectonic fractures are prominent in the welded tuffs, but these fractures do not pass easily through the less competent, basal, non-welded parts of the tuffs. These volcanic rocks average about 3,500 feet in thickness and have a maximum thickness of about 6,000 feet. Volcanic rocks crop out in about 40 percent of the area, and underlie alluvium in much of the valley areas.

The valley fill of Tertiary and Quaternary age is composed of alluvial-fan deposits, which are principally sand and gravel, and lake deposits, which are predominantly silt and clay. The valley fill is as much as 4,000 feet thick and crops out in about 55 percent of the area in central Nevada.

Rocks of Memorels are contrasting if the design characteristics in the vesters and estions parts of the areas. In the design part, rocks of Memorals are consist of scrittered outcrops of sesteratory marine classic and fundamic age not some limentance and graphic stocks and harboliths of Jurasaic age. In the assessm part, they consist of continental classic rocks at early Gretaceurs age and some tipest-outer limentance, which probably are past preserved in the vally deposite where they were protected from erealism. Some search grantice atooks of late destaceurs and Assens are stond in the correct part of the area. Asoka of Mestaceurs and Assens are stond in the correct part of the area. Mestaceurs they were conted away, have been covered by vennest cotal area, were they were conted away, have been covered by vennest cotal area, were never deposited.

Rocks of Fernale are consist of Terristy volumes broke and Torristy without Quarternary walley 1111. The volumes rocks include principally without and love flows, or J, he a lossest extent, her to excitit and continue, selected to the formation of the continues are presented in the selection without the continues are presented in the selections of the continues and the continues are the continued to the selection of the continues and the continues are marked to the continues and the continues and the continues of the continues

The valley itil of Tertiary and quarerousy age to compass of miterial-"Ten deposits, which are principally and dot gravel, and laws a protts,
which are predominantly sale and clay. The valley fill is as such as 1,100

Seet thick and crops out in about 55 percent of the area in the colors Navada. The structural geology of the area shows at least two periods of deformation during the Paleozoic Era and at least one period of deformation during the Mesozoic Era. These Paleozoic and Mesozoic rocks are folded, faulted, and highly fractured. During the Tertiary and Quaternary Periods, the area was faulted and deformed into the present basin and range topography.

PRECIPITATION

The long-term average annual precipitation data for central Nevada (table 3) indicate that precipitation is closely related to altitude (2, 3, 7, and 19). In general, the data show that as the altitude increases the precipitation increases.

SURFACE WATER

Surface water in central Nevada (table 4) is derived from precipitation within the drainage area (7, 19, and 26). Precipitation is slight on the valley floors, and most of the streamflow in the valleys originates in the mountains where the precipitation occurs. The streams generally flow only in response to snowmelt and flash-flood-producing storms.

GROUND WATER

Ground water in central Nevada occurs in three principal rock types:

(a) valley fill of Cenozoic age, (b) volcanic rocks of Tertiary age, and

(c) carbonate and clastic rocks of Paleozoic age. In general, ground

water in the area is recharged from precipitation on the mountains and

the alluvial fans and is stored in the valley fill. Between some valleys,

interbasin movement or discharge of ground water occurs through fractures

or solution openings in the carbonate rocks and through fractures and

interflow zones in volcanic rocks.

The structural residence of the state and shows on periodic and contract of the contract of the state of the

MULTIPLY TO THE

The large-rate average action of the large property to the contract of the large average and the large average avera

STREET, STATISTICS

Section while the section of the section (), is setting the printing to all the section of the s

SETAN OFFICE

(a) relies that of General species (5) which is the state of the state of the state (6) and the (6) (6) selected to the state of the st

Sand and gravel of the valley fill is largely unconsolidated and transmits water through interstitial pore spaces. Some wells produce 500 to 1,000 gallons per minute, although they penetrate less than 200 feet of saturated material.

Table 5 shows the percentage of wells that penetrated different aquifers. A majority of wells (87.7 percent) penetrated valley fill only and about 70 percent of the wells that reached consolidated rocks were terminated in volcanic rocks.

Water-level contours

The preliminary water-level contours shown in plate 1 represent
many aquifers in both the valley fill and the bedrock. These water-level
contours were drawn to show the gross picture of water levels in central
Nevada. However, plate 1 is subject to modification at a later date because
such factors as artesian water, perched water, and interbasin flow of
ground water have not yet been evaluated. In drawing this water-level
map, only enough data were used to draw a preliminary map; many other
water levels can be found in table 1. One important conclusion from the
water-level map is that the water levels seem to be nearly parallel to the
topography in the mountains as well as in the valleys.

Camerate water variety between the party of the party of the product of a 1,000 party of manufacture, although the penetrate less than 222 feet of agreety of and agreety of the party of t

Application of becoming the contract of the proportion of the proportion of the contract of th

Handston Tives - Anti-

The preliming value in to him willow this and the balench. There iter-level concours were rewin to show the private factors of pater levels in charing partial payable. There is no concours were rewin to show the private factors of pater levels in charing data consumer payable. However, practs I is subject in medicination of a large data consumer such factors as acceptant where the carries were not pay been such than well in this carries and the carries and and many only entire large terms of the carries and the constraint and the constraint and the constraint and the constraint are the captured to the constraint and the constraint are the captured to the nearly modeled as the captured to the nearly modeled as the captured to the nearly modeled as the

Uses of wells and springs

Wells and springs are tabulated according to use in tables 6 and 7, respectively. An examination of the tables shows that the major uses of ground water in central Nevada are for irrigation and stock. Frequency of use of wells in decreasing order is: irrigation, stock, domestic, industrial, municipal, and observation. Of the 606 wells tabulated, 29 have multiple uses. Frequency of use of spring water in decreasing order is: stock, irrigation, domestic, and public facilities. Of the 135 springs tabulated, 5 have multiple uses.

CHEMICAL QUALITY

Table 8 reveals that ground water in central Nevada is generally hard (hardness as CaCO₃ >120 ppm). Many of the water samples have dissolved-solids contents of less than 500 ppm; however, several samples have dissolved-solids contents in the range from 500 to 1,000 ppm, and one sample has a dissolved-solids content of 370,000 ppm. All samples, except one brine sample, have sodium-adsorption ratios of less than 50. Twenty of 75 "percent-sodium" values exceed 50.

Table 9 reveals that surface water in central Nevada also is generally hard and has dissolved-solids contents of less than 500 ppm. Sodium-adsorption ratios range from 0.1 to 3.1, and most of the "percent-sodium" values are less than 50.

combige has alley 12 20 d

Veils and opings are cabested according to see include out of the major with and greater treated at another out of ground acres that the major with and ground acres that the major with an acres to the major with an acres to the major with a see of the major with a see o

THE TO LET THE

Table C revenue and the company of the contest beauty of contest and the contest beauty of the contest of the contest beauty of the contest of th

The contract of the contract o

REFERENCES

- Crosthwaite, E. G., 1963, Ground-water appraisal of Antelope and Middle Reese River valleys, Lander County, Nevada: Nevada Dept. Conserv. Nat. Resources, Ground-Water Resources Reconn. Series Rept. 19, 33 p.
- 2. Eakin, T. E., 1960, Ground-water appraisal of Newark Valley, White Pine County, Nevada: Nevada Dept. Conserv. Nat. Resources, Ground-Water Resources Reconn. Series Rept. 1, 33 p.
- 3. 1962, Ground-water appraisal of Diamond Valley,
 Eureka and Elko Counties, Nevada: Nevada Dept. Conserv.
 Nat. Resources, Ground-Water Resources Reconn. Series
 Rept. 6, 60 p.
- 4. 1962, Ground-water appraisal of Ralston and Stonecabin Valleys, New County, Nevada: Nevada Dept. Conserv. Nat. Resources, Ground-Water Resources Reconn. Series Rept. 12, 32 p.
- 5. 1966, A regional interbasin ground-water system in the White River area, southeastern Nevada: Nevada Dept. Conserv. Nat. Resources, Water Resources Bull. no. 33 (Reprinted from Water Resources Research, v. 2, no. 2. 2d quart. 1966, p. 251-271, Am. Geophys. Union).
- 6. Eakin, T. E., Moore, D. O., and Everett, D. E., 1964, Water resources appraisal of the upper Reese River valley, Lander and Nye Counties, Nevada: Nevada Dept. Conserv. Nat. Resources, Water Resources Reconn. Series Rept. 31, 47 p.
- 7. Everett, D. E., and Rush, F. E., 1966, A brief appraisal of the water resources of Grass and Carico Lake Valleys, Lander and Eureka Counties, Nevada: Nevada Dept. Conserv. Nat. Resources, Water Resources Reconn. Series Rept. 37, 27 p.
- 8. Ferguson, H. G., and Cathcart, S. H., 1954, Geology of the Round Mountain quadrangle, Nevada: U. S. Geol. Survey Geol. Quad. GQ-40.
- 9. Hackett, O. M., and others, 1963, Ground-water levels in the U. S., Southwestern States: U. S. Geol. Survey Water-Supply Paper 1770, 160 p.

STATE OF THE PARTY OF THE PARTY

- L. Brustmudice, K. Gr. 1210. Growningers appraised of Astrings
 and Middle Rose, Witter, Valleye, Leader Count., Mevalue
 Relate Poor, Coursey, No. Menderen, Growning-Varee
 Resource Recom, Suries Rept. 12, 12, 12
- Making To El. 175, draund-barter septential of hemanic values, and therefore the control of the
- Special and Elic Course, Newton Period Day of Mannes Willey,
 Special and Elic Course, Newton Period Days Course Days
 Hate Special Meximo-Water Resources Days Series
 Note to Course Days of Course Days o
- School of the Colocy November 1975 of Street, Street, Street, Spinster, Spin
- Pierra Maria Maria
- for Rahlas E. E., Moore, D. G., and Everytt, D. E., 1964, Meter for Rahlas and the Country November 20, 1964, November 21, 1964
- Equents, D. E., and South, F. E., 1907. A votor source of the unior resources of driver and Carles for a valleys. Landur and Soroka Grontles, Movement Marine Popt. Conserv. Mod. Engources, Water Resources Section Serves Sortes Sortes To at pa
 - B. Ferguson, B. G., and Cythoart, G. E., Lith, Derloge of the Assent March Markey of the Assent March Markey of the Carl Markey Carl Marke
- P. Macheer, D. M., and detarra, 1989, Province-value lively to the party of the control of the c

- 10. Horton, R. C., 1964, Hot springs, sinter deposits, and volcanic cones in Nevada: Nevada Bur. Mines, Map 25.
- Lehner, R. E., Tagg, K. M., Bell, M. M., and Roberts, R. J., 1961, Preliminary geologic map of Eureka County, Nevada: U. S. Geol. Survey Mineral Inv. Field Studies Map MF-178.
- 12. Mabey, D. R., 1964, Gravity map of Eureka County and adjoining areas, Nevada: U. S. Geol. Survey Geophys. Inv. Map GP-415.
- 13. Meinzer, O. E., 1917, Geology and water resources of Big Smoky, Clayton, and Alkali Spring Valleys, Nevada: U. S. Geol. Survey Water-Supply Paper 423, 167 p.
- 14. 1924, Origin of the thermal springs of Nevada, Utah, and southern Idaho: Jour. Geology, v. 32, no. 4, p. 295-303.
- 15. Merriam, C. W., 1963, Paleozoic rocks of Antelope Valley, Eureka and Nye Counties, Nevada: U. S. Geol. Survey Prof. Paper 423, 67 p.
- 16. Merriam, C. W., and Anderson, C. A., 1942, Reconnaissance survey of the Roberts Mountains, Nevada: Geol. Soc. America Bull., v. 53, no. 12, p. 1,675-1,728.
- 17. Montgomery, Kathleen M., and others, 1967, Preliminary geologic map of Nevada: U. S. Geol. Survey open-file ser.
- 18. Nolan, T. B., 1962, The Eureka Mining District, Nevada: U. S. Geol. Survey Prof. Paper 406, 78 p.
- 19. Rush, F. E., and Everett, D. E., 1964, Ground-water appraisal of Monitor, Antelope, and Kobeh Valleys, Nevada: Nevada Dept. Conserv. Nat. Resources, Ground-Water Resources Reconn. Series Rept. 30, 45 p.
- 20. Scott, R. C., and Barker, F. B., 1962, Data on uranium and radium in ground water in the United States 1954 to 1957: U. S. Geol. Survey Prof. Paper 426, 115 p.
- 21. Snyder, C. T., 1963, Hydrology of stock-water development in the Ely grazing district, Nevada: U. S. Geol. Survey Water-Supply Paper 1475-L, 58 p.

- 10. Morton, R. C., 1961, Rot aprince, wister deposits, and volumnic coper in Natural Review Burn Minus, the 18.
- 11. Leibner, R. A., Isage, E. M., Bell, N. M., and Schorts, N. J.,
 1961, Profinitorry Scalagic enp of Eureba Country, Moundair
 U. S. Geol. Survey Minural Lav. Steld Studies San En-175.
- 12, Marcy, D. S., 1975, Oravicy was of Eurale County and adopting
 - 13- Meditaer O. S., 1917, Sectors and vater consumes of Mag tacky.

 Clayton, and Alkalt Spring Vellovs, Mavaner V. S. cont.
- Linear absent to apply or the charact applying to the part to the character to the contract to
- 15. Nertes, C. W., 1965, Paleozota saaks on anadam faites Sinker as an Paleozota Sinker and Mye Counties, Meradan C. S. Venn. Sarvey Paleonal Sages on Other
 - 16. Moreton, C. W., and endermon, C. A., 1942, We montanger of proof the Roberts Mountains, Newpork Comp. Not. Not. Not. 1941.
 - 17. Montgomery, Kathias H., and observ. 1955, Fraintent qualogra-
 - 16. Mclay I. L. 1911, The Social Highest State Lavelas No. 5.
 - 19. Such, F. M., and Microsop, D. S., april, Or und-vacer opportunit
 of Monteon, Asterbaye, and Monte Vellage, Seventa Microsophia.
 Navel Construct Science Science Science States Resources
 - ED. Scott, S. C., and Harker, S. M., 1962, usts on ranker and ration in quotes in the United States 15th to 1981; U. S. Cool, Success Prof. Paper Lift p
 - 21. Engder, G. T., 1965, Spicology of whether after development in the fity graning distribute. Novadat U. V. Sool. Survey Career. Supply Supp

- 22. Spurr, J. E., 1903, Descriptive geology of Nevada south of the fortieth parallel and adjacent portions of California: U. S. Geol. Survey Bull. 208, 229 p.
- 23. Waring, G. A., revised by Blankenship, R. R., and Bentall, Ray, 1965, Thermal springs of the United States and other countries of the world--A summary: U. S. Geol. Survey Prof. Paper 492, 383 p.
- 24. Webb, Barbara, and Wilson, R. V., 1962, Progress geologic map of Nevada: Nevada Bur. Mines, Map 16.
- 25. White, D. E., and Brannock, W. W., 1950, The sources of heat and water supply of thermal springs with particular reference to Steamboat Springs, Nev.: Am. Geophys. Union Trans., v. 31, no. 4, p. 566-574.
- 26. Rush, F. E., and Everett, D. C., 1966, Water-resources appraisal of Little Fish Lake, Hot Creek, and Little Smoky Valleys, Nevada: Nevada Dept. Conserv. Nat. Resources, Water Resources Reconn. Series Rept. 38, 38 p.
- 27. Peal, A. C., 1886, Lists and analyses of the mineral springs of the United States (A preliminary study): U. S. Geol. Survey Bull. 32, 235 p.
- 28. Carpenter, Everett, 1915, Ground water in southeastern Nevada: U. S. Geol. Survey Water-Supply Paper 365, 86 p.
- 29. Waring, G. A., 1918, Ground water in Reese River basin and adjacent parts of Humboldt River basin: U. S. Geol. Survey Water-Supply Paper 425-D, p. 95-129.
- 30. Kay, Marshall, and Crawford, J. P., 1964, Paleozoic facies from the miogeosynclinal to the eugeosynclinal belt in thrust slices, central Nevada: Geol. Soc. America Bull., v. 75, no. 5, p. 425-454.

- 102 Spiret L C., 10.5, Univertation mestage at Maria or one or instance of particular particular of California;
- Lect, Descript of the Administration of the
 - The Birthers and Hilleria B. V. 1757, Program suchages
 - and order on a charmon of the control of the contro
- The large accuracy of the late of the same of the late of the same of the same
 - of the intro braves (a scaling of the story) of a last . The last of the form of the fact of the first of the fact of the fact
 - - Ison throwest, and Communes of the augmented below in throw the following the street below to the augmented below to the augmented below to the second of the second below to the second below to the second below to the second below to the second to the second below to the second to

Explanation

Latitude and longitude: Values are reported to the nearest 10 seconds.

Well number: See text for explanation of well and spring numbering system.

033

County: Esmeralda: 009
Eureka: 011
Lander: 015
Nye: 023

Depth of well: Depths are in feet below land surface. Reported depths are given to nearest foot. Measured depths are given to nearest tenth of a foot.

Casing: The "Type" column lists one of the following (where available): casing material (concrete, steel, etc.); gauge number (in parentheses);

or wall thickness (inches).

Aquifer: Qal (alluvium and other valley fill)

White Pine:

Pc (Paleozoic carbonate)
Pcl (Paleozoic clastic)
Tv (volcanic)
pc (Precambrian)

Altitude: Altitude of land surface at well, above mean sea level.

Water level: Reported depths are given to nearest foot, above mean sea level.

Measured depths are given to nearest tenth of a foot.

Yield; Rate is the gallons pumped per minute or the unrestricted flow from

artesian wells.

Temperature: Temperature of water.

Type of pump: C, centrifugal; J, jet; P, plunger, piston, or cylinder;

S, submersible; T, turbine.

Use: D, domestic (a source that furnishes drinking and culinary water for

one or several households); I, irrigation; Ind, industrial (includes wells used for highway construction); M, municipal; S, stock;

Obs, observation; and U, unused.

Rources of data: Numbers refer to references listed on pages 16.18. UR means unpublished records of the Nevada State Engineer's office and the U. S. Geological

Survey. For many of the wells, unpublished records were the sole source

of data.

Remarks: CA, chemical analysis available; DL, drillers log available (number after

DL is Nevada State Engineer's log number); DW, dug well; and RC, radiochemical

analysis available.

14

Table 1.--Hydrologic data for water wells in central Nevada Tps. 1-21 N. and Rs. 41-57 E.

Latitude	Longitude	Well	County	Date	Depth		sing		Aquifer		Water			Y:	le1d		Temp	Туре	Use	Sources	Remarks
North (degrees, minutes,	West (degrees, minutes, and seconds)	no,		drilled	of well (ft)	Type (gauge) or thickness (in.)	Diam. (in.)	Depth (ft)		(ft)	Depth (ft)	Date	Rate (gpm)	Draw- down (ft)	Date	Duration (hrs)	(°F)	of pump		of data	
		1N/41-26d (Proj.)	009		125-		8	125 -	Qal	4,901	61									13	Gottschalk well, p. 148, ref. 13.
		1N/42-33d	209		160				Qal	4,970(?)	148		40	9	Pre-1917				Ind	13	DW. Klandike well, p. 148, ref. 13.
37 57 10	116 49 50	1N/46-09bd	023	1-12-59(?)	184	0.188	6	0-184	Qal		136								S	UR	DL 4,442.
		1N/46-09c-1	023		184		6		Qal	1/5,395	129.9 128.2	5-22-56 6-19-62						P	s	4	DL.
		1N/46-25c-1	023				8		Qa1	5,360	107.1	6-19-62	~					S	Ind	4	
37 53 20	116 52 00	1N/46-31cd	023	1-7-59	117	.188	6	0-117	Qa1		75								S	UR	DL 4,441.
		1N/46-31d-1	023		117		6		Qal	1/5,295	90	5-22-56						P	S	4	DL.
'		1N/47-30a-1	023				14		Qal	5,400	102.1	5-22-56						P	S	4	
37 53 20	116 29 10	1N/49-34c	023	6-27-64	127	3/16	8	0-127	Qal		17(?)		40						Ind	UR	DL 8,029.
37 55 30	116 00 30	1N/53-27bb	023	9-29-48	200		6	0-190	Qa1	1/4,980	180(?)			and the					s	UR	DL 792.
37 54 00	116 03 10	1N/53-31d	023	11-21-51	272	1/4	5	0-272	Qa1	1/5,050	205		12				50		s	UR	DL 1,804.
37 54 20	116 02 20	1N/53-32caa	023	5-5-57	292	1/2	8	0-292	Qa1		225			AND 000					D	UR	DL 3,772.
15		2N/43-18 (Proj.)	023	7-23-49	65	(No Casin	g)	Tv		Dry								U	UR	DL 1,005.
		2N/43-18 (Proj.)	023	7-21-49	225	(No Casin	g)	Tv		Dry								Ū	UR	DL 1,004.
38 02 40	117 04 10	2N/44-08b-1	023		264				Qal		Dry									4	
38 00 30	117 03 10	2N/45-21c-1	023		325		8		Qa1									P	S	4	
		2N/46-15d-1	023		325		8		Qa1									P	S	4	
		2N/47-34d-1	023						Qa1	1									U	4	
		2N/50-34c-1	023				6		Qa1	6,350	11.7	10-17-65					~~		S	26	
38 01 10	115 59 20	2N/53-22da	023	9-30-62	180.5	1/2	6	0-180	Qal	1/4,880	100								S	UR	DL 6,777.
38 01 10	115 59 20	2N/53-22da	023	9-18-62	180	3/8	6	0-180	Qa1	1/4,880	120(?)			0					S	UR	DL 7,969.
		3N/41-10c	009		210				Qal	1/4,980	202	8-31-13						009 tod	U	13	DW. CA. See W16, p. 148, ref. 13.
		3N/41-26	023	10-24-63	179	1/4	8	0-179	Tv	1/5,200	20		***						м	UR	DL 7,682.
		3N/41-26	023	10-20-63	312	1/4	8	0-150	Tv	1/5,200	9			***				Ma cor	м	UR	DL 7,683.
		3N/41-28	.009	11-1949	310	3/16	6	0-310	Qa1		240		10				50		- S	UR	DL 1,212.
		3N/42-04-1 (Proj.)	023	8-25-49	330	(12)	15	0-6	Tv	1/5,650	140		2							UR	DL 1,158.

Latitude	Longitude	Well	County	Date	Depth		ing		Aquifer	Altitude	Water 1	evel		Yi	eld		Temp	Type	Use	Sources	Remarks
North (degrees, minutes,	West (degrees, minutes, and seconds)	no.		drilled	of well (ft)	(gauge) or thickness (in)	Diam. (in.)	Depth (ft)		(ft)	Depth (ft)	Date	Rate (gpm)	Draw- down (ft)	Date	Duration (hrs)	(°F)	of pump		of data	
		3N/42-04-2	023	8-6-49	30	(12)	8	0-30	Qal, Tv	1/5,680	15		25	~-						UR	DL 1,159.
		3N/42-04aa-3	023	8-7-49	30	(12)	8	0-30	Qal, Tv											UR	DL 1,160.
		3N/42-11 (Proj.)	023	7-29-49	330	3/16	15	0-6(?)	Tv	1/6,020	132					90E 300			D	UR	DL 1,017.
		3N/42-11 (Proj.)	023	7-31-49	35		8	0-20	Qal	1/5,970	13								D	UR	DL 1,016 or 1,011.
		3N/42-21 (Proj.)	023	11-20-63	312	1/4	8	0-150	Tv	¥5,630	9								М	UR	DL 7,499.
		3N/42-32 (Proj.)	023	10-24-63	179	1/4	8	0-180	Tv	1/5,520	20								М	UR	DL 7,446.
38 06 30	117 03 10	3N/44-16c-1	023		540		6	0-540	Qal	1/5,487	480	5-18-47					72		S	4, UR	DL 69.
38 04 00	117 00 20	3 N /44-35d-1	023				10		Qal	1/5,380	377.9 383.2	11 - 9 - 56 12 - 1 - 60						P	S	4	
		3N/46-10c-1	023				8		Qa1	1/5,850	28.9	6-20-62						P	S	4	
16		3N/48-32b-1	023		150		6		Qal	1/5,550	109.9	6-20-62						P	S	14	DL.
		3N/51-19c-1	023	8-10-48	320		6	0-315	Qal	1/5,450	280	1964							s	26, UR	DL 672. Formerly 3N/50-15ac.
38 09 00	115 56 00	3N/54-05cb	023	11-5-48	325		6	0-177		1/5,095	265								S	UR	DL 757.
38 06 50	115 34 40	3N/57-16c	023	2-20-60	92	1/2	16	0-90	Qa1, Pc(?	1/6,400	36								I	UR	DL 5,086.
38 13 20	117 03 50	4N/44=08ab-1	. 023	10-1943	63	1/8	142	0-70	Qal,Tv(?		11.7 (Pump of	6-18-62 2 min.	150					Т	М	4, UR	DL 236.
38 13 20	117 03 50	4 N /44-08ab-2	023	10-1943	80	1/8	14½	0-53	Qal,Tv(?	1/5,740	11.9 8.7 (Pump of	5-12-48 6-18-62 3 days	200					T	М	4, UR	DL 235.
38 13 20	117 03 50	4N/44-08ab-3	023	1913	60	(12)	12	0-65	Qal		8	7-	200					T	M	4, UR	DL 234.
38 13 20	117 04 00	4N/44-08ba-1	023	10-1943	89	1/8	142	0-83	Qal, Tv(?	1/5,735	8.1 8.8 (Pump of	5-12-48 6-18-62 5 minu					54	т	М	4, 20, UR	DL 233. CA. RC.
38 12 40	117 04 20	4N/44-08cc-1	023		38		8		Qa1	1/5,710	8.2±	5-12-48						т	M	24	
38 12 40	117 04 20	4N/44-08cc-2	023	-	38		8		Qal		~-		125					T	M	4	
38 11 10	117 04 40	4N/44-18ad-1	023		46 to 5	L	12		Qa1										U	4	
38 11 10	117 04 40	4N/44-18ad-2	023	640 000	47		12		Qal	1/5,685	10.9±	5-12-48						т	U	14	
38 11 10	117 04 40	4N/44-18ad-3	023		47(8)		12		Qal										U	14	
38 11 00	117 04 40	4N/44-18da-1	023		60				Qal, Tv(?										U	<u>j</u> †	DW.

Latitude	Longitude	Well	County	Date	Depth	Cas	ing		Agulfer	Altitude	Water	Level		Y	eld		Temp	Type	Use	Sources	Remarks
North (degrees, minutes, and seconds)	West (degrees, minutes, and seconds)	no.		drilled	of well (ft)	(Type (gauge) thickness (in.)		Depth (ft)		(ft)	Depth (ft)	Date	Rate (gpm)	Draw-	Date	Duration (hrs)	(°F)	of pump		of data	
38 10 30	117 04 40	4N/44-19aa-1	023	08.00	55				Qal, Tv(?	±/5,655	8							es 600		1,	Location has 10 wells about 100 ft. apart.
38 10 30	117 04 40	4N/44-19aa-2	023		45				Qa1				150					С	U	4	DW. Destroyed by flood in 1913.
		4N/49-32d-1	023		380	****	6		Qa1	1/5,850	325	5-20-52					52		s	4	DL.
		4N/51-13d-1	023	10-5-59	300	1/2	8	0-300	Qal	1/5,120	3	1959							υ	26, UR	DL 5,083. CA. Well no. given as 4N/51-03dd in UR. DL 1,793.
		4 N /51-27d	023	9-6-51	137	1/4	5	0-137	Qal,Tv	1/5,950	95		20				65		S	UR	DL 1,793.
		4N/51-29c-1	023						Qal	h /,										26	CA.
		4N/54-17cb	023	8-18-48	150	~~	9	0-140	Qal	4,950	130									UR	DL 671.
		4N/55-19d	023	6-21-51	255	3/16	6	0-255	Qal	5,050	215				W 100		70		S	UR	DL 1,704.
		5N/41-05c	023	12-29-64	180	.188	10 1/4	0-180	Qal	5,010	125		20			***	54		S	UR	DL 8,302.
17		5N/41-06a (Proj.)	023		135				Qa1	12/5,020	124	9-6-13	27		1913				D	13	DW. CA. See W15, p. 155, ref. 13.
		5N/44-07b-1	023				11000		Qa1	1/5,890	70.8	6-16-62						P	S	4	DW.
		5N/44-10d-1	023		80		6		Qa1	1/5,900	80(1)								s	4	
		5N/44-32bb-1	023		18			MR 240	Qa1		11.8	3-23-56							U	9	DW.
		5N/44-32c-1	023		18			ME 740	Qal	5,778	12.2	5-12-48 6-18-62							U	4	DW. DL.
		5N/50-10a (Proj.)	023	7-20-48	205		6	0-205	Qa1	5,350	170								S	UR	DL 668.
		5N/51-10d (Proj.)	023	10-25-50	60	1/4	6 (%)	0-60	Qal	1/5,240	20								S	UR	DL 1,471.
		5N/51-11c-1	023				6		Qal	5,250	24.7	10-18-65							S	26	
		5N/51-19b-1	023			~ **	48 x 48	3	Qal	5,220	48.6	10-17-65							S	26	
		5N/54-24ab	023	8-31-51	100	3/8	6 (2)	0-100	Qal	4,870	52								S	UR	DL 1,741.
		5N/54-32c	023	8-26-48	110		10	0-107	Qal	5,050	80									UR	DL 670.
		5N/55-28cc	023	2-6-64	212	.219	16	0-212	Qal	4,850	142								I	UR	DL 7,876.
		5N/55-28db	023	2-12-64	219	.219	16	0-219	Qal	4,840	38								I	UR	DL 7,877.
		5N/55-34ab	023	6-5-51	75	3/16	6 1/4	0-75	Qal	4,860	27		50				50		S	UR	DL 1,649.
			023	2-27-64		.219	16	0-220	Qal	4,880	65	gar 100							I	UR	DL 7,875.
		5N/55-34cd 5N/55-36da	023	6-2-51	105	(10)	8	0-105		1/ 4,890	50		100				50		S	UR	DL 1,650.

Latitude	Longitude	Well	County	Date	Donth	0	1		1												
North (degrees, minutes, and seconds)	West (degrees, minutes,	no.	Country	drilled	Depth of well (ft)	Type (gauge) or thickness (in.)	Diam. (in.)	Depth (ft)	Aquiter	Altitude (ft)	Water Depth (ft)	Date Date	Rate (gpm)	Draw- down (ft)	eld Date	Duration (hrs)	(°F)	Type of pump	Use	Sources of data	Remarks
		6N/41-07ba	023	12-10-63	350	Steel	- 12	200-350	Qa1	1/5,110	92								I	ŬR	DL 7,553.
		6N/41-07ca	023	2-1964	244	(10)	16	0-244	Qa1	1/5,100	87								I	UR	DL 7,659.
		6N/41-16(?)	023	5-20-50	230	1/8	6	0-230	Qa1		150		30				54		S	UR	DL 1,309.
		6N/41-18ca	023	11-18-63	400	Steel	12	185-385	Qa1	1/5,075	92								I	UR	DL 7,505.
		6N/41-18cb	023	12-12-62	191	(10)	16	0-191	Qa1	1/5,075	78								I	UR	DL 6,982.
		6N/43-22dc	023	2-16-50	320	1/4	8	0-320	Tv	1/6,050	227	2-16-50	50			8	46	T	S	4, UR	DL 1 213 Same as well 6N/43-22d-1 in ref.
		6N/44-14d-1	023	11-4-48	260	1/8	<6	0-260	Qal	1/5,080	192	11-4-48	50	0		40 m	50		S	4, UR	DL 707.
		6N/44-33	023	1-2-64	110	3/8	6	0-110	Qal		40								S	UR	DL 7,681.
		6N/50-11b-1	023				6		Qa1	5,540	183.0	10-17-65			500 to	so las			s	26	
		6N/50-17c (Proj.)	083	7,-20-48	216	1/4	6	0-90	Qal,Pcl (?)	1/6,200	90						00 m		S	UR	DL 667 or DL 661(?).
8 20 20	116 18 30	6N/50-35a-1	023						Qal	5,320									S	26	
		6N/51-15a-1	023				10		Qal	5,360	40.8	10-17-65							D	26	CA.
		6N/51-16c (Proj.)	023	7-2-48	220	1/4	6	0-220	Qal	1/5,290	185		600 tot						S	UR	DL 669.
		6 N /51=22ba	023	8-26-60	238	3/8	8	0-238	Qal	1/5,300	44							60 700	Ind	UR	DL 5,366.
										3 /											
		7N/42-15	023	3-26-49	240	(12)	8	0-240	Qa1	1/5,600	180		50				50	T	S	UR	DL 851.
		7N/42-17c (Proj.)	023		14				Qal	1/5,430	14	9-7-13				200 mp			IJ	13	DW. CA. See W14, p. ref. 13.
		7N/42-18-1	023	5-6-49	172	(10)	14	0-172	Qal		Flowing		15				50		I	UR	DL 956.
		7N/42-18-2	023	5-11-49	40	(10)	14	0-40	Qal		Flowing		20 125	10			50		I	UR	DL 957.
		7N/42-18-3	023	5-13-49	64	(10)	14	0-64	Qa1		Flowing		10 112	10			50		I	UR	DL 958.
		7N/42-18-4	023	5-14-49	35	(10)	14	0-35	Qa1		Flowing		15		40.50		50		I	UR	DL 959.
		7N/42-18-5	023	5-20-49	40	(10)	14	0-40	Qa1		Flowing		20 125	10			50		I	UR	DL 960.
		7N/42-18-6		5-22-49	40	(10)	14	0-40	Qal		Flowing	ma hap	25 130	 10			50		I	UR	DL 961.
		7N/42-18-7	023	5-28-49	84	(10)	14	0-84	Qa1	1/5,350	12		30(?		-		50	`	S	UR	DL 962.
		7N/42-18-8	023	5-31-49	36	(10)	14	0-36	Qal		Flowing		7 20(?	10(?)	000 000 000 000		50		S	UR	DL 963.
		7N/42-18-9	023	6-3-49	48	(10)	14	0-48	Qal	1/5,350	10		55				50		I	UR	DL 964.
		7N/42-18-10	023	6-11-49	100	(10)	14	0-100	Qa1		Flowing		45	50 mm			50		I	UR	DL 965.
		7N/42-18	023	9-11-49	70	(10)	14	0-70	Qa1		Flowing		60	40,000					I	UR	DL 1,086.
										4											

Latitude North	Longitude West	Well no.	County	Date drilled	Depth	Type	ing Diam.	Depth	Aquifer	Altitude (ft)	Water:]	evel Date	Rate	Y:	leld Date	Duration	Temp (°F)	Type	Use	Sources	Remarks
(degrees, minutes, and seconds)	(degrees, minutes, and seconds)				well (ft)	(gauge) or thickness (in.)	(in.)	(ft)			(ft)		(gpm)	down (ft)		(hrs)		pump		data	
		7 N /42-18	023	9-15-49	60	(10)	14(?)	0-60	Qal		Flowing		15						I	UR	DL 1,085.
		7 N /42 -1 8	023	9-4-49	40	(10)	14	0-40	Qa1		Flowing		15						1	UR	DL 1,087.
		7N/42-20-11	023	6-14-49	30	(10)	14	0-30	Qa1	¹ √ _{5,430}	17		150				50		D	UR	DL 966.
		7N/44-29d	023	10-26-59	203	(8)	101	0-201	Qal		92								I	UR	DL 4,910.
		7N/44-36c-1	023		240				Qa1	1/6,200	182	10-28-48					50		S	4, UR	DL.
		7N/45-05d-1	023		250				Qal	1/6,405	200	6-18-62							s	4	
		7N/55-28c	023	8-19-55	46	1/4	6	0-40	Qal	1/4,770	Flowing		20						Ind	UR	DL 3,128.
		7N/56-02da	023	8-30-54	285		6 5/8	0-260	Qa1	1/4,660	180		3		8-30-54	1			U(?)	UR	DL 2,967.
		7N/57-04a	023	8-12-61	60	5/16	6	0-60	Qal	1/4,695	0								Ind	UR	DL 6,081.
•		7N/57-05a	023	11-5-61	85	5/16	6	0-85	Qa1	1/4,690	10								Ind	UR	DL 6,243.
		8N/42-16 (Proj.)	023	3-23-40	126	(10)	18	0-116	Qa1, Tv (?)	1/5,980	44.2	200	450	70					Ind	UR	DL 230. Peavine test well no. 3.
19		8N/42-18 (Proj.)	023	1-5-40	100	1/4	6	0-100	Qal, Tv		38(2)								Ind	UR	DL 229. Peavine test well no. 1.
		8N/42-18 (Proj.)	023	1-15-40	86	1/4	6	0-86	Qa1, Tv (?)		46(2)								Ind	UR	DL 228. Peavine test well no. 2.
		8 n /42-18	023	4-20-49	55	1/4	6	0-55(?	Qal		35(2)						55		s	UR	DL 863.
		8 n /43 -15d	023	Pre-1917			wa mb		Pc1(?)	6,475 ± 50	40								U	8, 13	See Plate II, ref. 13.
		8 n /43-21a	023	Pre-1917	90				Qa1(?)	6,350 ± 50	85	9 - 8-13							U	8, 13	DW. CA. See W12, p. 155 and Plate II, ref. 13.
		8 n /43-23a	023	Pre-1917					Qa1(?)	6,580 ± 50	26								U	8, 13	See Plate II, ref. 13.
		8 N /43-23a	023	Pre-1917					Qa1(?)	6,580 ± 50	35								U	8, 13	See Plate II, ref. 13.
		8N/44-08aa	023	7-1-60	250	1/4	14 1/4	0-248.6	Qal		38(?)		750	14					I	UR	DL 8,528. Pump, but type not given.
		8 n /44-08bb	023	7-1-60	600	(10)	10 3/4	0-60	Qal								00.00		U	UR	DL 5,329.
38 32 10	117 03 50	8N/44-20b (Proj.)	023	Pre-1913	50					7,130 ± 10									M(?)	8, 13	DW.
38 31 40	117 04 10	8N/44-20c (Proj.)	023	Pre-1913	60				Qal,Pcl	7,205 ± 10	*	1913	35		1913				м	8, 13	DW. CA. See W13, p. 155, ref. 13.
38 31 40	117 04 10	8N/44-20c (Proj.)	023	1913	125				Pcl	7,210 ± 10									м	8, 13	See p. 127, ref. 13.
38 32 00	117 04 20	8N/44-20c (Proj.)	023	Pre-1913	50			-	Qal,Pcl	7,120 ± 10	***		20		1913				M	8, 13	DW. See p. 127, ref. 13.

Latitude	Longitude	Well	County	Date	Depth		sing		Aquifer	Altitude	Water	level			leld		Temp	Type	Use	Courses	Remarks
North (degrees, minutes, and seconds)	West (degrees, minutes, and seconds)	no.		drilled	of well (ft)	(gauge) or thickness (in.)	Diam. (in.)	Depth (ft)		(ft)	Depth (ft)	Date	Rate (gpm)	Draw- down (ft)	Date	Duration (hrs)	Temp (°F)	of pump		Sources of data	Kenarks
		8N/45-17d-1 (Proj.)	023	9-28-49	260	(10)	14	0-260	Qa1	1/6,605	200 214.8	9-28-49 6-18-62	100			***	52	Т	S	4, UR	DL 1,084.
		8N/50-33d (Proj.)	023	12-19-48	180		6	0-180	Qal	1/5,580	150								D	UR	DL 799.
		8N/51-34ca	023	11-11-48	155		5	0-155	Qa1	5,500	110	1948					71		s	26, UR	DL 793.
		8n/56-02ad	023		1,204		00 Mg		Qal	70 00	Flowing (?)		20(7)							UR	DL 365.
		8 n /56-02d-1	023		1,204		10(?)	0-1,204	Qal		Flowing	6-8-54	200				68		I	20	CA. RC:
		8 n /56-01b	023	1912(?)	1		12	(2)	Qal		7	1912(?)								28	DL. CA.
		8N/57-14ac	023	8-4-51	185	(10)	14	0-185	Qal		Flowing		600			os	71		I	UR	DL 1,724.
		8N/57-14ac	023	8-31-48	120		5	0-118	Qa1		Flowing		60						D, I	UR	DL 758.
		8 n /57-22	023	12-6-55	60	1/4	6	0-40	Qa1	¹ / _{5,750}	1								Ind	UR	DL 3,290.
		8n/57-22cd-1	023	12-6-55	60	1/4	6 5/8	0-40	Qa1	1/5,750	1		20		NO.000				Ind	UR	DL 3,291.
		8 n /57-27	023	7-29-51	220	1/4	6	0-175	Qal	1/4,750	12						68		D	UR	DL 1,725.
		8N/57-27aa	023	6-16-54	75		6 5/8	0-66	Qal	1/4,760	12		35			3			Ind	UR	DL 2,966.
		9N/42-31ad	023	6-4-48(?)	92.8		14	0-90.9	Qal, Tv	1/6,150	17								I	UR	DL 550 (or 556?
		9N/43-05cd	023	8-18-50	202	3/8	6	0-202	Qal	1/5,775	115(?)		20			5		P	D, S	UR	DL 1,423.
		9N/43-09ad	023	10-28-62	513	1/4	16 1/4	0-513	Qal	1/5,775	140		1,600	10				T	I	UR	DL 6,855.
		9N/54-09a-1	023						Qal, Tv	6,900	15	1966							s	26	
		9N/57-01ca	023	8-1954(?)	200	(10)	14	0-200	Qa1	1/4,900	100		1,200	53				T	I	UR	DL 2,724.
		9N/57-01db	023	7-27-54	200	(10)	142	0-200	Qal	1/4,905	130		1,000	26				T	I	UR	DL 2,679.
		9 N /57-02ь	023	6-12-54	100	3/8	6	0-92	Qa1	1/4,880	78								D	UR	DL 2,589.
*		9N/57-06aa	023	11-30-56	52.5	(10)	12	0-52.5	Qal	1/4,850	8				m.m.				ı	UR	DL 4,778.
		9N/57-06da	023	6-23-63	138	(10)	4	0-141	Qal	1/4,840	7.5		<1				54	s	D	UR	DL 7,340.
		9N/57-12ab	023	10-28-65	220	3/16	16	0-222		1/4,900	100								ı	UR	DL 8,714.
-		9 N /57-26	023	4-8-55	90	1/4	6(2)	0-61	Qa1	1/4,780	3								Ind	UR	DL 2,909.
		9N/57-26dc	023	4-8-55	90	1/4		0-61		1/4,780	3		33						Ind	UR	DL 3,135.
		9N/57-34	023	1-8-56	55	1/4		0-41	Qal	1/4,770	4								Ind	UR	DL 3,291A.
		9N/57-34bb		1-8-56	50	1/4		0-41	Oa1	1/4,770	4		_25	11		1/4			Ind	UR	DL 3,336.
		9N/57-34da-1		6-17-55	65	1/4		0-41	Qal	1/4,770	2		30			1/4			Ind	UR	DL 3,136.
		9M/57-35		12-20-54	78	1/4		0-78	Qa1	1/4,790	2					-					
		JM/ JI ~ 37	023	22-20-54	10	1/4	0	0-10	QaI	7,190	6								Ind	UR	DL 2,831.

Latitude	Longitude	Well	County	Date	Depth		ing		Aquifer	Altitude	Water				leld		Temp	Type	Use	Sources	Remarks
North (degrees, minutes, and seconds)	West (degrees, minutes, and seconds)	no.		drilled	of well (ft)	(gauge) or thickness (in.)	Diam. (in.)	Depth (ft)		(ft)	Depth (ft)	Date	Rate (gpm)	Draw- down (ft)	Date	Duration (hrs)	(°F)	of pump		of data	
		9 N /57-35	023	2-21-55	90	1/4	6(2)	0-76	Qal		3	00 105							Ind	UR	DL 2,908.
		9N/57-35	023	6-17-55	65	1/4	6	0-41	Qal		2								Ind	UR	DL 3,013.
		9N/57-35a	023	1-6-54(?)	65	1/4	8	0-47	Qa1		4			100 cm					Ind	UR	DL 2,468.
		9N/57-35ba-1	023	12-19-53	60	~~ 24	5	0-60	Qal		15		10	any mar	MO 1900	~~			Ind	UR	DL 2,969.
		9N/57-35ba-2	023	12-22-53	200		5	0-200	Qal		2.5		3_						Ind	UR	DL 2,968.
		9N/57-35ca	023	12-24-54	65		6 5/8	0-65	Qal	1/4,790	20		25	00 PF		***			Ind	UR	DL 2,965.
		10N/42-28 (Proj.)	023	9-29-48	230				Qal		6		-						U(?) UR	DL 705.
		10N/42-28 (Proj.)	023	8-29-48	100				Pc1		40		1						U	UR	DL 706.
		10N/43-04	023	6-10-51	155	1/8	14	0-155	Qa1	1/5,650	8		25	23			64	T	I	UR	DL 1,675.
		10N/43-04c (Proj.)	023		20				Qal	1/5,675	19	10-1-13				W0 140			D	13	DW. CA. See W11, p. 155, ref. 13.
		10N/43-05aa	023	6-15-51	55	1/8	14	0-55	Qa1		Flowing		10				66		S, I	UR	DL 1,674.
		10N/43-05aa-1	023		70		14(?	0-70(?	Qa1	1 5,640	9.2	5-2-57 12-1-60							υ	9	
2		10N/43-20aa	023	11-13-48	592	(10)	16	0-480	Qa1,Pc1 (?)	1/5,780	105		1,835	139					Ind	UR	DL 743.
		10N/43-28c	023	3-6-63	485	.219	16	0-485	Qal	1/5,770	53		3,880	37					I	UR	DL 7,211.
		10N/44-20b (Proj.)	023	11-20-48	307	(8)	20	0-266	Qal	¹ / _{6,350}	40		900	150					Ind	UR	DL 747.
		10N/46-12a-1	023	8-1947	13		12		Qal	6,895	7.0	9-19-61					min ton	P	S	19	
		10N/46-13a-1	023	9-12-47	96	(10)	12	0-96	Qal	6,900	7	8-47	600	33			46		1	19, UR	DL 153.
		10N/46-13a-2	023	8-25-47	94	(10)	12	0-94	Qal	6,900	7	8-47	600	25			52		I	19, UR	DL 154.
		10N/49-11c-1	023						Qal	6,500	30	1965					65		D	26	CA.
		10N/54-18ab	023	8-16-61	170	(10)	15	0-170	Qal	1/6,125	15						56		I	UR	DL 6,378.
		11N/43-01c (Proj.)	023		16			~~	Qa1	1/5,580	12	9-26-13					53		U	13	DW. CA. See W9, p. 155, ref. 13.
		11N/43-08cc	023	10-30-50	55	3/8	6(2)	0-55	Qal		Flowing		14				50		D	UR	DL 1,493.
		11N/43-12bd	023	1-1959(?)	75	3/16	12	0-74	Qa1	1/5,585	18					0010	46		1	UR	DL 4,414.
		11N/43-22c (Proj.)	023	10-1913(?	12				Qal	1/5,580	6.5	9-10-13	Several	~=	1913	(ME to			S	13	DW. CA. See W10, p. 155, ref. 13.
		11N/43-27d	023	12-18-61	750		16	0-303	Qal				3,000		40.00			COPING	I	UR	DI. 6,329.
	1	1			1		1	1		l	1	1	1		1	1					GPO 830914

		** 11	0	D-44	Donath		ing		Aguit for	Altitude	Water I	evel		Yi	eld		Temp	Type	Use	Sources	Remarks
Latitude North (degrees, minutes, and seconds)	Longitude West (degrees, minutes, and seconds)	Well no.	County	Date drilled	Depth of well (ft)	Type (gauge) or thickness (in.)	Diam. (in.)	Depth (ft)	nquiter	(ft)	Depth (ft)	Date	Rate (gpm)	Draw- down (ft)	Date	Duration (hrs)	(°F)	of pump		of data	
		11N/43-29b(?) (Proj.)	023	7-16-52	372	(10)	16	0-352	Qal	¹ / _{5,655}	98		2,000	32		16	62		Ind	UR	DL 1,999. Formerly 10N/43-20(?).
38 47 20	117 10 20	11N/43-29bd	023	6-30-56	300	3/8	16	0 -	Qa1	~ **	Flowing		200					44 40	I	UR	DL 3,679.
		11N/43-30aa	023	10-23-48	118			0-118	Qal		45(?)								U	UR	DL 2,033.
		11N/43-33b	023	7-14-65	295		12	0-295	Qal		Flowing		10						I	UR	DL 8,596.
		11N/46-11c-1	023				6		Qal	1/6,865	8.5	4-15-64						P	s	19	
		11N/53-06c-1	023		900				Qal, Tv(?	6,550	500	1966							S	21, 26	Well no. given as 11N/53-6 in ref. 21
		11N/55-02d	023		300		co ea		Qal	5,965	Dry								υ	21	DW.
		11N/55-11cd	023	1-8-58	289	1/4	6(1)	0-289	Qa1	46,100	230								S	UR	DL 4,000.
		11N/55-21d	023		16.6				Qa1	6,550	10								U	21	DW.
		11N/56-02ca	023	12-20-59	250	.188	6	0-85	Qal, Tv(?	5,170	20			10000					D	UR	DL 5,071.
		11N/56-02da	023	12-17-59	250	5/16	14	0-160	Qal, Tv(?	1/5,140	29		889	132		1		T	I	UR	DL 5,718.
		11N/57-16a-1	023		354		6(1)	0-354	Qal	1/5,095	175.2 172.3	2-13-48 10-25-57							S	9	
S.		11N/57-16c	023		354				Qal	5,070	185								S	21	
		12N/43-03b	023	9-5-65	545	.250	18	0-40	Qa1	/ _{5,535}	5		1,750	270					I	UR	DL 8,668. Pump, but type not given.
		12N/43-04c (Proj.)	023		10				Qa1	1/5,640	7	9-27-13	Seve ral		1913				D	13	DW. CA. See W8, p. 155, ref. 13.
		12N/43-09	023	5-14-51	330	(10)	14	0-286	Qal	1/5,580	60		300				62		I	UR	DL 1,651.
		12N/43-09c	023	4-3-51	207	(10)	14	0-190	Qa1	5,560	35		1,200				45		I	UR	DL 1,608.
		12N/43-09ca-1	023		190		12(?)	0-190	Qa1	1/5,590	31.6 35.6	5-2-57 12-1-60							U	9	
		12N/43-11b	023	3-6-51	73	3/16	6 1/4	0-73	Qal		Flowing		4				50		S	UR	DL 1,581.
		12N/43-18 (Proj.)	023	10-21-60	500	3/16	14	0-500	Qal	2/5,765	90		2,100	150		-			I	UR	DL 7,283.
		12N/44-04dd	023	8-10-50	55	3/8	6	0-55	Qal	5,790	16						50		D	UR	DL 1,446.
		12N/47-18c-1	023	(?)			24		Qal	6,820	4.2	4-15-64						P	S	19	
		12N/55-25c	023		289				Qa1	5,675	205								S	21	
		12N/56-19b	023		20.	7			Qal	5,490	Dry								U	21	DW.
		12N/56-21d	023		107				Qa1	5,350	20								D, S	21	
			1		1		1	1	1	!	1	1	1		1		1	1	1	1	GPO 830-914

Latitude	Longitude	Well	County	Date	Depth	Ca	sing		Aguifer	Altitude	Water	level		Yi	eld		Temp	Type	Use	Sources	Remarks
North (degrees, minutes, and seconds)	West (degrees, minutes,	no.	Godine,	drilled	of well (ft)	Type (gauge) or thickness (in.)		Depth (ft)		(ft)	Depth (ft)	Date	Rate (gpm)	Draw- down (ft)	Date	Duration (hrs)	(°F)	of pump		of data	
		12N/56-27 (Proj.)	023	2-26-53	400	(:	o casin	8)	Qal,Tv	1/5,250	Dry									UR	DL 2,175. Formerly 13N/55-27.
		12N/56-27cd	023	12-18-59	86				Qal, Tv		21		6						S	UR	DL 5,723.
		12N/56-34cc	023	10-30-59	202	1/4	14	0-200	Qal	1/5,230	7								I	UR	DL 5,072.
		12 N /57-17d	023		350				Qal	5,490	280								S	21	
		13N/43-04b (Proj.)	023		5				Qa1	1/5,510	1.6	9 -11-1 3							U	13	DW. CA. See W4, p. 155, ref. 13.
		13N/43-05b	023	1914	101		6		Qal		Flowing	10-6-14	40	0	10-6-14		64		D	13	CA. See W5, p. 155, ref. 13.
		13N/43-06d	023	8-5-64	400		6		Qal,Pc1(?)		3.4	4-15-64					-54	P	I	UR	DL 8,240.
		13N/43-18d	023	1913(?	15				Qal	1/5,550	9	9-29-13	Several		1913		54		D	13	DW. CA. See W6, p. 155, ref. 13.
		13N/43-20c	023		127		6	0-127	Qa1		Flowing	10-7-14	120	0	10-7-14		53		I	13	CA. See W7, p. 155, ref. 13.
		13N/47-29c-1	023				6	(3)	Qal	1/6,790	3.4	4-15-64					54	P	S	19	
		13N/56-19	023		85				Qal.	5,595	80								D	21	DW.
23		14N/41-08c-1	023	7-24-50	50		6	0-50	Qal		10	7-24-50	83	0(?)			50		D	6, UR	DL 1,447. Same as 15N/41-8c-1 in ref.6?
		14N/41-18a-1	023	7-31-50	65	1/8	6	0-65	Qal	1/6,395	22	7-31-50					50		D	6, UR	DL 1,448.
		14N/41-18b-1	023				6		Qal		25.6	6-24-64							D	6	
		14N/41-19c-1	023				8		Qal	1/6,440	15.8	6-24-64							S	6	
		14N/41-19d-1	023	10-1950	268		14		Qal,Tv(?		28	10-13-50	500						I	6	DL 1,455.
		14N/43-10a (Proj.)	023	1913	133 or 190 (?)		6	0-133	Qal	1/5,560	Flowing	9-20-13	10(?)	0	9-20-13				S	13	CA. See W3, p. 155, ref. 13.
		14N/43-16	023	6-5-50	204	(10)	12	0-204	Qal		Flowing		10						I	UR	DL 1,337.
		14N/51-13	023	12-4-48	210		6	0-210	Qal	1/7,020	Flowing		50						S	UR	DL 791.
		14N/55-12	033		400.0	o			Qal	5,960	Dry								U	21	
		14 N /56-19b	033						Qal	5,820									Ū	21	
										1/										-	CA.
		15N/41-28c-1	023				6		Qal	1/6,320		6-24-64	1						D	6	
		15N/44-02c	015		22		6	***	Qal	1/5,590	17.4	9-19-13	40	0	10-6-14		64		S	13	DW. CA. See W2, p. 155, ref. 13.
		15N/44-20ba-	023		57		6(?) 0-57(?) Qal		33.8 38.6	5-2-57 12-1-60							U	9	
		1	1	1	1	1	L	1	1	1	1	1	1	1	1	1	1	l	1	l	GPO 830-914

Latitude	Longitude	Well	County	Date	Depth		sing	Danah	Aquifer		Water		Date		eld	Duration	Temp (°F)	Type	Use	Sources	Remarks
North (degrees, minutes, and seconds)	West (degrees, minutes, and seconds)	no.		arrired	well (ft)	Type (gauge) or thickness (in.)	Diam. (in.)	Depth (ft)		(ft)	Depth (ft)	Date	Rate (gpm)	Draw- down (ft)	Date	(hrs)	(2-)	pump		of data	
		15N/47-08a-1	023	· · · · ·	210		~-	W1 540	Qal	6,720	170	4-14-64			w-m				D	19	- Veren
		15N/48-30d-1	023	1959	350		12		Qal	6,692	10	1959	1,000	100					I	19, UR	DL 4,939.
		15N/50-04da	011	2-5-64	252	3/16	161/2	0-252	Qa1	6,460	125	2-1964	2,550	47		8			I	19, UR	DL 7,649.
		15N/52-13ba	011	11-8-42	376	0.425	8 1/4	0 - 375.1	Qal, Tv	6,400	347	1942							D, S	26, UR	DL 213. Well no. given as 15N/52-13b-1 in ref. 26.
		15N/52-35c	023		500	au de			Qal	6,435	400	1963							s	21, 26	Well no. given as
		15N/53-23a	023		350				Qal	6,125									s	21	15N/52-35c-1 in ref. 26.
		15N/53-23d-1	023		350				Qal	6,160	186	1965							S	26	
		15N/53-25d	023		200		6		Qal	6,200	155	1963		~~					S	21, 26	- 1/2
		15N/53-28a-1	023	1956	242		8		Qa1	6,180	220	1956							S	26	DL 3,421.
		15N/53-28b	023		350				Qa1	6,180					~-				S	21	
		15N/53-31a	023		256				Qal	6,225	235								U	21	
		15N/53-32b 15N/53-32ca	023	1953	240 300		12		Qal Qal, Tv(?)	6,210 6,260	248.0	10-20-65							U	26, UR	DL 2.405. Well no. given
	_	15N/54-02	033	1975	14.9	NO 110			Qal	6,380	10								S	21	DL 2,405, Well no. given as 15N/53-32c-1 UR.
42		15N/54-02	033		44.7				Qal	6,395	15									21	
		15N/54-06d-1	011		164				Qal	6,100	158.5	10-20-65					57		S	21, 26	DW. CA. Well no. given as 15N/54-6 in ref. 21.
		15N/54-11a-1	033		45				Qa1	6,395	15	1963							s	26	19N/94=0 III let. 21.
		15N/54-20d	023		164				Qal,Pc(?	6,600	Dry	1963							U	21, 26	Well no. given as 15N/54-20d-1 in ref. 26.
		15N/55-21	033		271.4				Qal	6,335	Dry								ថ	21	
		15N/55-36b	033						Qa1	6,055	Dry								U	21	
		15N/57-17d	033		200				Qal	6,085	200								S	21	
		16N/41-16d	023	12-22-64	101	.188	10 1/4	0-101	Qa1		50		15				52		S	UR	DL 8,303 or 8,308.
		16N/42-07	015	5-26-50	200	(10)	6	0-20	Qal	1/5,990	80								D	UR	DL 1,342.
		16N/42-07	015	5-21-50	988	3/16	16	0-288	Qal	1/5,990	47.4	5-22-50							I	6, UR	DL 1,343. May be well 16N/42-08ca-1 in ref. 6.
		16 n /42-08	015	11-17-48	103	3/8	6	0-103	Qa1		Dry								U	UR	DL 750.
		16N/42-08cb-7	015	12-1956	143	.188	8	0-143	Qal	1/5,990	110	11-30-56		L		no 146			S	6, UR	DL 3,612. Well no. given as 16N/42-08cb-1 in ref.6.
		16N/42-09-6	015	12-1956	146	.188	8	0-146	Qal	1/5,990	108.1	6-23-64							S	6, UR	DL 3,613. Well no. given
		16N/42-19bb-1	015		20		48		Qal	1/6,030	13.2	6-9-48							U	6	as 16N/42-09b-1 in ref. 6.
		16N/42-19dd	015	10-19-50	146	3/8	8	0-146	Qa1	1/6,125	107.9	6-23-64	75				50		I	6, UR	DL 1,454. CA. Probably well 16N/42-19dd-1in
		16N/42-19dd-2	015				8		Qal		81.0	6-23-64							υ	6	well 16N/42-19dd-11n ref. 6.
		16N/42-30ad	015	9-16-50	250	(10)	14	0-250	Qal	±√6,155	64.1	6-23-64	600				50		I	6, UR	DL 1,438.
]																

Latitude	Longitude	Well	County		Depth		ing		Aquifer	Altitude	Water 1		Port		Leld	Demotification	Temp	Type	Use	Sources	Remarks
North (degrees, minutes, and seconds)	West (degrees, minutes, and seconds)	no.		drilled	of well (ft)	(gauge) or thickness (in.)	Diam. (in.)	Depth (ft)		(ft)	Depth (ft)	Date	Rate (gpm)	Draw- down (ft)	Date	Duration (hrs)	(°F)	of pump		of data	
		16N/44-23a	015		15				Qa1	1/5,590	11.7	9-18-13							S	13	DW. CA. See W1, p. 155 and Plate II, ref. 13.
		16N/44-24bd	015	10-1-48	120	3/16	5 5/8	0-120	Qal	1/5,530	Flowing		6				84		s	UR	DL 778.
		16N/45-32 (approx. loc.	015	12-1-54	200	1/8	6		Qal	1/5,550	Flowing		2				67		S	UR	DL 2,670.
		16 N /47-04d-1	015				6		Qal	6,450	58.2	9-21-61					60	P	S	19	
		16N/47-26d-1	015				6		Qal	6,510	84.6	4-14-64						P	S	19	
	- 4	16 N /48-08ba	023	1-24-59	250	1/4	12	0-250	Qal		108								I	UR	DL 4,432.
		16 N /48-10	023	12-2-60	285	.250	12 3/4	0-220	Qa1		20						54		I	UR	DL 7,129.
		16N/50-29a-1	011				6		Qal	6,540	216.5	4-16-64						P	S	19	
		16N/51-07da	011	6-1-63	105	5/16	6	0-105	Qal	6,325	25.6		18	31			54	T	S	19, UR	DL 7,232.
		16N/51-07d-1	011		30		72		Qal	6,325	25.4	7-21-49							S,Obs	19	
		16 N /52 -1 9	011	1-12-50	130	3/16	6 3/8		Qal		60						68		D	UR	DL 1,325.
25		16N/52-19	011	1-6-50	130	3/16	10 3/8		Qal	1/6,700	60						68		I	UR	DL 1,326.
		16N/53-10d-1	011		539		12	0-127	Qal	6,050	4.9	8-13-48	800					T	U	2, 21, 26	DL. Unused in 1966.
		16N/53-30bd	011	11-20-42	186	.425	8.15	0 - 182.8	Qal, Tv	6,119	81 78.2	1942 9-1-65							S	11, 26, UR	DL 214.
		16N/53-36d	011						Qal											21	
		16N/54-15b	033				48		Qal	6,060	85	1963							S	21, 26	DW.
		16N/54-17	011		126				Qa1	5,965	70								S	21	
		16N/54-20b-1	011	1956	125		6		Qal	6,060	77	1956							U	26	DL 3,545.
		16N/57-14a	033		69.1				Pc (?)	8,120	50									21	DW.
		17N/41-12ab-1	015				16		Qal		78.3	6-25-64	400 est.						I	6	
		17N/41-13ab-1	015				16		Qal				1,000 est.						I	6	
		17N/41-13dc	015	6-8-61	216	(10)	16	0-216	Qal		41	6-8-61	1,700	52		10		T	I	6, UR	DL 6,026. Well no. given as 17N/41-13dc-1 in ref. 6.
		17N/41-23 (approx. loc	015	3-14-48	122		6	0-129	Qal		82								S	UR	DL 413.
		17N/41-24bc	015	3-21-62	287	1/4	16	0-287	Qal		98.9	6-25-64							D, I	6, UR	DL 6,507 Well no. given as 17N/41-24bb-1 in
		17N/41-24cc-	1 015	3-1948	118		6		Qal	1/5,950	79.5	6-9-48	90.00						S	6	ref. 6.
		1	1	1	1	1			1	1	1			-	1	-		1			GPO 830-914

Latitude	Longitude	Well	County	Date	Depth		ing		Aquifer	Altitude	Water				leld		Temp	Type	Use	Sources	Remarks
North (degrees, minutes, and seconds)	West (degrees, minutes, and seconds)	no.		drilled	of well (ft)	Type (gauge) thickness (in.)	Diam. (in.)	Depth (ft)		(ft)	Depth (ft)	Date	Rate (gpm)	Draw- down (ft)	Date	Duration (hrs)	(°F)	of pump		of data	
		terriba ob	015	3-18-62	265	1/4	16	0-265	Qal		110	6-25-64							D, I	6, UR	DL 6.508. Well no. given
		17N/41-24cc	015	3-10-02	290	(10)	16	0-212	Qal			0-2)-04							I	UR	DL 6,508. Well no. given as 17N/42-24cc-2 in ref. 6. DL 7,167.
		17N/41-24db	015	9-1964	412	1/4	16	0-414	Qal				2,700					-	I	UR	DL 8,170.
		17N/41-25dc	015	2-24-65	400	1/4	16	0-402	Qal		42		2,900	125					I	UR	DL 8,505.
		17N/42-03-4	015			.188	8	0-	Qal		21.2	6-23-64							S	6, UR	DL 3,616. Well no. given
		r (m/ +2=0)=+	015	11-1956	70.2	.100		70.2	dar												as 17N/42-03c-1 in ref. 6.
		17N/42-06cb	015	5-15-62	332	(10)	16	0-268	Qal		43	5-4-63	1,700	77		14		T	1	6, UR	DL 7,032. Well no. given as 17N/42-06cb-l in ref. 6.
		17N/42-28-8	015	12-1956	104.1	.188	8	0-104	Qal		70.7	6-23-64							S	6, UR	DL 3,611. Well no. given as 17N/42-28a-1 in ref. 6.
		17N/42-34-5	015	11-1956	115.2	.188	8	0-	Qa1	5,960	91.6	6-23-64							S	6, UR	DL 3,615.
		17N/44-12	015	6-15-51	322	3/16	6	0-301	Qal, Tv	1/5,880(2)	241								D, S	17, UR	DL 1,695.
		17N/45½-13dc	015	11-9-48	60	3/16	5 5/8		Qa1	5,730(?)	Flowing		3				110		D, S	UR	DL 779.
		17N/47-08a-1	015				6		Qal	6,380	76.7	4-14-64						P	S	19	
		17N/49-09dd	023	4-7-64	315	1/4	14	0-315	Qa1		40								I	UR	DL 7,787.
		17N/50-25	011	6-10-51	60	1/2	6	0-42	Qa1	6,270	16	6-51							S	19, UR	DL 1,684.
26		17N/51-22b (Proj.)	011	8-5-51	,116	1/2	6	0-116	Qa1		90								S	UR	DL 1,722.
		17N/51-27cc (unsurveyed)	011	9-7-42	272	.362	6.276	0-267.3	Qal, Tv	6,410	157 161.7	9-42 7-20-49							D, S	11, 19, UR	DL 212.
		17N/51-31b-1	011		18		6		Qal	6,290	14.9 14.4	7-20-49						P	S	19	
		17N/52-17b-1	011		26		14		Qa1	6,800	23.8	7-21-49							U	19	
		17N/52-07eb	011	8-26-42	351	.362	6 5/8	0-229	Qal, Pc	6,570	318	8-26-42					58		S	11,15,19,UR	DL 211.
		17N/53-29bd	011	5-20-43	172	.425	8.15	0-	Qal	6,190	149								S	26, UR	DL 215.
		17N/54-02dd-9	033	1961	76	(10)		171.2	Qal	5,960	30	1961							S	26, UR	DL 5,988. Well no. given as 17N/54-2d-1 in ref. 26.
		17N/54-08	011	8-25-56	223				Qal											UR	Fish Creek Ranch No. 9. DL 3,544.
		17N/54-14b-1	033						Qal	5,980	51.9	10-20-65							s	26	
		17N/54-16b-1	033	1965			16		Qal	6,020	84.3	10-20-65					57		I	26	CA.
		17M/54-22a	033		48.5				Qal	5,980	48.5								s	21	DW.
		17N/54-29c	011						Qal	5,987									S	21	DW.
		17N/54-29ca	011	1961 (?)	61		48		Qal	5,987	49.5	1961							S	26, UR	DL 5,635. Well no. given as 17N/54-29c-1 in ref. 26.
		17N/55-04b	033					no bea	Qal	5,960	55								S	21	
		17N/55-06 (Proj.)	011	8-10-49	70	3/16	6	p-70	Qa1		35		40+				45		D	UR	DL 1,035. Log shows 18N/54.
		17N/55-27d	033	and the	39.8				Qal	6,330	35									21	DW.
		17N/57-24c	033						Qa1	6,880									S	21	DW.

Latitude	Longitude	Well	County	Date	Depth		sing		Aquifer		Water I				eld		Temp	Type	Use	Sources	Remarks
North (degrees, minutes, and seconds)	West (degrees, minutes, and seconds)	no.		drilled	of well (ft)	Type (gauge) or thickness (in.)	Diam. (in.)	Depth (ft)		(ft)	Depth (ft)	Date	Rate (gpm)	Draw- down (ft)	Date	Duration (hrs)	(°F)	of pump		of data	
		18N/41-36cc	015	3-9-62	325	(10)	16	0-248	Qal		83.2	6-25-64	600 est.					T	I	6, UR	DL 7,031. Well no. given as 18N/41-36dc-1 in ref. 6.
		18 N /42-09bb	015	8-8-61	240	(10)	16	0-240	Qa1	1/5,800	41.8	6-24-64	450	158.2			58	T	I	6, UR	DL 6,114. Well no. given as 18N/42-09bb-1 in
		18 N /42-09eb-1	015	1960			16		Qal		40.8	5-1-63							I	6	ref. 6.
		18N/42-14c-1	015		12				Qal		4.2	6-24-64							D	6	
		18 n /42-16bb	015	5-18-65	420	1/4	16	0-422	Qal		28		1,700	117					I	UR	DL 8,506.
		18N/42-17ab	015	8-18-65	410	1/4	16	0-412	Qal		46		1,300	325					I	UR	DL 8,766.
,		18N/42-17ba-1	015	1960					Qa1		46.9	5-1-63							I	6	
		18N/42-17bb	015	1-15-60	316	(10)	16	0=284	Qa1	1/ _{5,850}	49.5- 51.5 (?)	6-24-64	1,300			140			I	6, UR	DL 5,571. Well no. give as 18N/42-17bb-1 in ref. 6.
		18N/42-17bb	015	1-15-60	432	(10)	16	0-284	Qal		44		1,700			141			I	UR	DL 5,571a.
3		18N/42-19ba	015	10-6-65	516	1/4	16	0-517	Qal		65		2,550	189					I	UR	DL 8,725.
4		18N/42-19ca	015	4-1965	497	1/4	16	0-498	Qal		64	040 MB	2,500	125					I	UR	DL 8,498.
		18 N /42-20ba	015	5-25-62	499	1/4	16	0=274	Qal		63.4	6-24-64	200- 300 est.						D, I	6, UR	DL 6,587. Deepening of well 18N/42-20b-1, ref. 6?
		18 n /42-26-1	015	11-1956	47.4	.188	8	0 -	Qa1	1/5,800	8.6	6-24-64							S	6, UR	DL 3,618. Well no. give as 18N/42-26c-1 in ref. 6.
		18 n /42-28	015	11-1956 or 12-1956	20	1/4	10	0-20	Qal		10.2	6-25-64							S	6, UR	DL 3,614. Well no. give as 18N/42-28c-1 in ref. 6.
		18N/42-28b-1	015				10		Qa1		7.6	6-24-64							S	6	
		18N/42-30bb	015	3-1965	506	1/4	16		Qal		65		3,000	57					I	UR	DL 8,428.
		18n/42-30cb-1	015				16		Qal		93.2	6-25-64	750						I	6	
		18N/42-30cb	015	2-19-64	520	1/4	16	0-520	Qal	***	65		2,400	93					I	UR	DL 7,713.
		18N/42-31bb	015	8-1964	401	1/4	16	0-402	Qa1		65		2,600	83					I	UR	DL 8,169.
		18N/42-31bb-1	015	12-1949	221		16		Qal		48.5	6-24-64	1,380	31.5					I	6	
		18N/42-31cc-1	015				16		Qal	1/5,880	64.4	6-25-64							I	6	
		18N/42-31cc	015	12-20-59	221	(10)	16	0-212	Qal		41		1,380	80				T	I	UR	DL 5,573.
		18 n /42-33-2	015	11-1956	38.7	.188	8	0 - 38.7	Qal	1/5,820	17.2	6-24-64	500 est.						S	6, UR	DL 3,617. Well no. give as 18N/42-34c-1 in ref. 6.

Remarks	Sources	Use	Type	Temp		eld				Water	Altitude	Aquifer	-	sing	Ca	Depth	Date	County	Well	Longitude	Latitude
	of data		of pump	(°F)	Duration (hrs)	Date	Draw- down (ft)	Rate (gpm)	Date	Depth (ft)	(ft)		Depth (ft)	Diam. (in.)	Type (gauge) or thickness (in.)	of well (ft)	drilled		no.	West (degrees, minutes, and seconds)	North (degrees, minutes, and seconds)
	6	D, S			min top				6-25-64	7.1	1/5,850	Qal		8		450	en me	015	18 n /42-35 c -1		
DL 5,574. Well no. g as 18N/43-06d-1 in	6, UR	I			9		29.3	1,880	6-25-64	8.7	1/5,740	Qal	0-241	16 3/8	(10)	241	7-31-59	015	18n/43-06		
as 18N/43=06d=1 in	6	D, I				244 tab			6-24-64	Flowing	1/5,800	Qal		4		71		015	18N/43-17b-1		
DL 2,297.	UR	D								36	- /	Qal, Pc(?)	0-72	6	(12)	78	6-27-53	015	18n/45-20		
DL 451.	UR	D						5		20	1/5,705	Qal				40		015	18n/45-35c		
DL 2,579.	UR	Ind								110	1/5,725	Qal, Tv	0-64	10	3/8	175	6-5-54	015	18N/46-35 (Proj.)		
CA. Well no. given 18N/47-08c-1 in Re	19	s	P	71							6,317	Qal		6				015	18 n /47-08d-1		
Near line between La	19	s	P						4-14-64	153.6	6,370	Qal		6				015(?)	18n/48-07b-1		
and Eureka Counties	19	υ		72					7-20-49 4-16-64	4.6 4.8	6,340	Qal		12		35		011	18N/50-28d-1		
CA.	19	s, D		158		4-16-64		500	7-20-49	Flowing	6,340	Qal				39.5	10-1942	011	18N/50-28d-2		
	19	s	P					(3)	4-16-64	176.7	6,230	Qal		6				011	18N/51-10b-1		
DL 216. Well no. giv as 18N/51-18c-1 in ref. 19.	19, UR	I, D		72		8-8-49 		14 76 (Test		Flowing	6,160	Qal,Tv, Pc	0-40.4	12	308	648	8-21-43	011	18 N /51-18ce		
DL 1,330. Well no. gi as 18N/51-22b-1 inr	19, UR	S	P	69					4-16-64	58.8	6,230	Qal		6 3/8	3/16	135	6-1950	011	18N/51-22cb		
as 18N/51-22b-1 inro	19			72		8-2-49 4-16-64		170 200	8-18-49	Flowing	6,090	Qal, Pc		nd 900		***	11-1943	011	18 n /51-30b-1		
DL 217 Well no. giv as 18N/51-30d-1 in ref. 19.	11, 19, UR	I, D		54		8-18-49	13	5 100 (Test cumped)		Flowing	6,090	Qal, Pc	0-32	13	.281	738	11-18-43	011	18N/51-30da		
CA.	9, 11, 19	s		61					7-20-49	94.1	6,330	Qal	0-134	6		134		011	18 n /51-34 d-1		
DL 8,537.	UR	1		63		5-1-65		450	3-24-64 6-1-65	94.4	1/5,934	Qa1	(?) p-176	16	1/4	176	6-1-65	033	18N/55-03c		
DL 6,693.	UR	Ind								118	1/5,960	Qal	0-147	10	(6)	147	8-4-62	033	18N/55-08d		
DL 8,396.	UR	I								55	1/5,936	Qa1	0-204	16	3/16	204	5-31-64	033	18м/55-09ьь		
DL 8,397.	UR									45	1/5,918	Qa1	0-83	14	3/16	240	4-20-64	033	18N/55-11cd		

Latitude	Longitude	Well	County	Date	Depth	Cas	ing		Aquifer	Altitude	Water	level		Y	ield		Temp	Type	Use	Sources	Remarks
North (degrees, minutes,	West (degrees, minutes,	no.		drilled	of well	Type (gauge) or thickness (in.)	Diam. (in.)	Depth (ft)		(ft)	Depth (ft)	Date	Rate (gpm)	Draw- down (ft)	Date	Duration (hrs)	(°F)	of pump		of data	
		18N/55-23b-1	033		58.0				Qal	5,920	54.1 54.9	5-28-54 8-24-60	~~					P	S	2, 21	DW. Well no. given as 18N/55-23b in ref. 21.
		18n/55-31c-1	033		43.2	Concrete	3	0-43.2	Qal	5,940	34.6 33.6	12-21-46 12-18-59						P	S	2, 21	DW. Well no. given as 18N/55-31c in ref. 21.
		18 n /56-02b-1	033		143(?)				Qa1	6,030	145-150			sir 300				P	s	2, 21	DW.
		18 n /56-21d-1	033		41			en 00	Qa1	6,480	24.8	8-27-57							s	2, 21	DW.
		18n/56-33a-1	033		20.3		and the		Qa1	6,550	7.9	8-22-57							S	2, 21	DW.
		18N/57-15b-1	033		14.0	00 00			Qa1	6,480	10.4	8-22-57							S	2, 21	DW.
•		18½ n/47- 05d-1	015		115		6		Qa1	6,299	81.5 80.8	4-15-47 3-16-48						P	S	19	Well no. given as $18\frac{1}{2}$ N/47-05c-1 in Ref. 19.
		19N/43-15dd	015	5-25-63	400	1/4	16	0-60	Qa1	1/5,790	105	8-13-63	550	120	7-15-63				M	6, UR	DL 7,326. Well no. given as 19N/43-15dd-1 in ref. 6.
29		19N/43-16d	015	8-27-47	110		6	0-107	Qa1	1/5,760	64.9	6-24-64							S	6, UR	DL 106. Well no. given as 19N/43-16d-1 in ref. 6.
		19N/43-17d-1	015	1921	365		24		Qa1											6	Oil test.
		19N/43-20da	015	9-17-47	345		8	0-58	Qa1	1/5,715	Flowing	6-24-64	5						S	6, UR	DL 105. Well no. given as 19N/43-20d-1 in ref. 6.
		19N/44-13bd	015	9-9-59	55.5	3/16	6	0-55	Qa1	1/6,480	12(?)		35				55		D	UR	DL 4,864.
		19N/45-35cb	015	1961(?)	50		12	0-50	Qa1	1/5,990	0								I	UR	DL 6,304.
		19N/47-09a-1	015		119				Qa1	6,359						00 se			S	19	
		19 N /47-36bb	011	4-28-58	102	.188	8	0-102	Qal	6,260	56 47.6	4-19-58							Ind	19, UR	DL 7,146. Well no. given as 19N/47-36b-1 in ref. 19.
		19N/49-05cc	011	10-13-51	280	1/4	12	0-100	Qal	1/6,161	6+(?)								I	19, UR	DL 1.885. Well no. given as 19N/49-05d-l in ref. 19.
		19N/49-18ca	011	9-1-59	90	.188	6 1/4	p-90	Qal	1/6,183	23	8-1959	15				52	un ten	S	19, UR	DL 5,515. Well no. given as 19N/48-12a-1 in ref. 19.
		19N/49-30aa	011	8-18-59	223	W 200	18	0-223	Qa1, Tv	6,280	85 90	8 - 1959 5 - 1964							D, I	11, 19, UR	
		19N/50-16b-1	011		315				Qal, Pc(?)	1/6,105	Flowing	8-18-49							D,S,I	19	
		19N/52-34d-1	011		540		6		Qal	7,210	461.3	11-17-5	3						U	19	
		19N/53-08ab-	1 011				6		Qal	6,110	178.3	9-28-60						P	S	3	
		19N/53-12c-1	011		7.6		30	0-7.6	Qal	6,440	5.5	3-9-61					46		D	3	
		19N/53-13	011	1947	200	Steel	6	0-40	Tv	see has	40		10						D	18, UR	DL 449.
		1	1)	1				1							1	1	1		1		GPO 830-914

	V 2 4 2 1	Well	County	Date	Depth	Cas	ing		Aquifer	Altitude	Water	evel		Yi	eld		Temp	Type	Use	Sources	Remarks
Latitude North degrees, minutes,	Longitude West (degrees, minutes,	no.	Country	drilled	of well (ft)	(gauge) or thickness (in.)	Diam. (in.)	Depth (ft)		(ft)	Depth (ft)	Date	Rate (gpm)	Draw- down (ft)	Date	Duration (hrs)	(°F)	of pump		of data	
l seconds)	and seconds)	19N/53-13b	011	8-16-49	141	1/4	6	0-141	Qal		111		10				40	J	S	UR	DL 1,063.
		19N/53-13c	011	9-2-56	60	(12)	6	0-60	Qal		14								I	UR	DL 3,546.
		19N/53-14da	011	4-18-62	265		8(?)	0-265	Qal, Pc	1/6,465	44.3	4-5-66							I	UR	DL 8,329.
		19N/53-24 (or 22?)	011	8-9-61	294	5/16	6	0-294	Qal, Pcl		30								D	UR	DL 6,077.
		19 N /53 - 25	011	7-24-54	60	3/16	16	0-60	Qal, Tv (?)		39								М	UR	DL 2,669.
		19N/53-25c	011	4-20-56	75	(12)	8	0-70	Qal		14								D	UR	DL 3,390.
		19N/55-15	033	11-7-63	200	3/16	16	0-200	Qa1	1/5,877	35								I	UR	DL 7,878.
		19N/55-16aa-3	033	7-27-62	82	(6)	10	0-82	Qal	1/5,880	40								Ind	UR	DL 6,692.
		19N/56-30d-1	033		35				Qal		32.8	4-30-48							S	2	DW.
		19 N /5 6 -30 d -2	033		37	Concrete			Qa1	5,895	32.0 32.7	4-30-48 8-28-60						P	S	2, 21	
		19N/57-05a-1	033		61		6	0-61(?	Qal	1/6,010	24.7	4-30-48		***				P	S	2	
		19N/57-05d	033		29				Qal	6,045	30									21	DW.
		19N/57-19b-1	033		130.5				Qal	5,995	108.1	4-29-48 8-28-60						P	S	2, 21	DW. Well no. given 19N/57-19b in ref.
			-																		
		20N/42-35d-1 (Unsurveyed)	015	10-22-47	225		6	0-225	Qal	1/5,900	160	10-22-47							S	6, UR	DL 262.
	-	20N/43-14a	015		306	Steel	6	0-284	Qal	1/5,995	207.5	6-22-64							S	6, UR	DL 2,169. Well no. gi
		20N/43-33d-1	015				6		Qal	1/5,690	Flowing	6-24-61							S	6	
		20 N /43-33	015	9-1-48	154	3/16	5	0-150	Qal	1/5,690	107								S	UR	DL 664.
		20N/43-35c-1	015				6		Qal	1/5,820	84.9	6-23-61							U	6	
		20 N /45-02c	015	Prior to 2-1-47(?			6	0-20	Qal		20		20						S	7, UR	DL 452(?). Well no. given as 20N/45-02 in ref. 7?
		20N/49=09c-1	011		23		4		Q al	6,154	7.3	1-15-48	3						S	19	
		20N/49-09cd	011	9-15-51	250	3/16	12	0-100	Qa1	1/6,165	6								1	19, UR	DL 1,887. Well no. as 20N/49-09c-2 in
		20N/52-17c-1	011		25		6		Qal	1/6,008	6.3	11-1-53							S	19	1
		20N/52-17d-1	011		90		10		Qal	1/6,016	17.8	11-18-53	390 - 500		11-8-53				I	19	
		20N/52-20a	011	5-10-51	120	1/8	9 3/1	+ 0-120	Qal	1/6,015	16	5-1951	600	29			68	T	I	19, UR	DL 1,676. Well no. g as 20N/52-20a-1 in
		20N/53-01	011	9-15-60	173	Concrete	17	p -1 73	Qa1		79.8		914	65.8			58		I	UR	DL 5,542.

0___

Latitude	Longitude	Well	County	Date	Depth	Cas	ine		Aquifer	Altitude	Water 1	evel I		Y1	eld		Temp	Type	Use	Sources	Remarks
North (degrees, minutes,	West (degrees, minutes,	no.	Jouney	drilled	of well (ft)	Type (gauge) or thickness	Diam. (in.)	Depth (ft)		(ft)	Depth (ft)	Date	Rate (gpm)	Draw- down (ft)	Date	Duration (hrs)	(°F)	of pump		of data	
and seconds)			4-4			(in.)		-0-1-	\		04.0	0.10.(1						T	I	3	
		20N/53-01bd-1			181			0-181(?		5,955	81.8	9-12-61			40.00						ny O 411.
		20N/53-02dd	011	9-1-63	250	.219	16	0-250	Qa1		102				011.000		58		I	UR	DL 8,114.
		20N/53-04ad	011	11-1-61	131	Concrete	13	0-131	Qa1		55		2,790	27		wa so	58		I	UR	DL 6,313.
		20 n /53-04d	011	4-9-61	177	3/16	16	0-177	Qal		54		1,600	24			58		I	UR	DL 6,152.
		20 N /53-04dd-1	011		180	Concrete	13	0-180(1) Qal	5,928	56.5	9-13-61						T	I	3	
		20N/53-10ad	011	7-19-61	180	(10)	16	0-182	Qal	5,994	71.5	9-13-61	1,600	25			54	т	I	3, UR	DL 6.117. Well no. given as 20N/53-10ad-1 in ref. 3.
		20 N /53-10ba	011	1963(?)	220	3/16	16	0-214	Qa1						del ser				I	UR	DL 7,401.
		20N/53-10ca	011	1963(?)	220	3/16	16	0-214	Qa1										I	UR	DL 7,402.
		20 N /53=10dd	011	8-9-61	200	(10)	16	0-200	Qal	5,953	80.0	9-13-61	1,620	27			54	T	I	3, UR	DL 6,118. Well no. given as 20N/53-10dd-linref. 3.
		20N/53-11ac	011	5-1-62	182	1/4	16	0-182	Qal		85			w m	wa wa		58		I	UR	DL 6,889.
		20N/53-11cd	011	1964	300	1/8	16	0-240	Qal		90(?)								I	UR	DL 8,124.
		20N/53-11dd	011	5-28-62	275	3/16	16	0-256	Qa1		96									UR	DL 8,125.
		20N/53-15b-1	011		99	Concrete	48	0-99	Qal	5,951	71.8	4-30-48 9-13-61						Р	S	3, 9	
		20N/53-17cc	011	1-26-64	275	3/16	16	0-175	Qal		1414								I	UR	DL 7,625.
31			011	5-1963	214	.219	16	0-214	Qal		52						58		I	UR	DL 7,586.
		20N/53-17dc 20N/53-18	011	4-3-62	165	(8)	16	0-125	Qal,Tv		1414								I	11, 12, UR	DL 6,454.
		2011/ /3-10	011	7 5 5 2	1	()			(3)												DY 9 100
		20N/53-20	011	8-27-64	260	3/16	16	0-258	Qa1		81.7									11, 12, UR	
		20N/53-20ad	011	4-15-65	275	3/16	16	0-275	Qa1		95								I	UR	DL 8,497.
		20N/53-20dc	011	4-20-61	200	(10)	16	0-200	Qal		97		1,460	49(?)		3	58	T	S, I	UR	DL 7,640.
		20 N /53-20cc	011	4-1-61	200	(10)	16	0-200	Qal		98		760	48(?)		2	58	T	S, I	UR	DL 7,641.
		20N/53-21ad	011	8-24-61	213	1/4	16	0-195	Qal	5,970	101.0	9-15-61	1,330	22			55	T	I	3, UR	DL 6,116. Well no. given as 20N/53-2lad-1 in ref. 3.
		20N/53-21ba	011	3-5-62	200	(10)	16	0-202	Qal		99		1,520	22	3-62	3	56		I	UR	DL 6,523.
		20 N /53-21bd	011	4-14-64	248	3/16	17	0-248	Qal, Pc		93								I	11, 12, UR	DL 7,993.
		20 N /53-22bc	011	5-26-64	320	3/16	17	0-258	Qal, Pc (?)		132		1,800	88					I	11, 12, UR	DL 8,017.
		20N/53-23db-	011				6		Qal	6,030	134.2	9-12-6	1					P	S	3	
		20N/53-24dc	011	10-15-56	155	(12)	8	0-155	Qal	1/6,110	120								I	UR	DL 3,566.
		20N/53-28a	011	2-16-62	225	(10)	16	0-220	Qa1		125.0	4-5-66					56		I	UR	DL 6,522.
		20N/53=28bd	011	5-18-65	230	3/16	16	0-230	Qal		128	~ **							I	UR	DL 8,589. Writing on log illegible.
		(or 20?)			1	1	1	1	1		1	1	1		1		1	1	1	1	GPO 830-914

*	T /	Well	County	Date	Depth	Cas	ing		Aquifer	Altitude	Water	level		Yı	eld		Temp	Type	Use	Sources	Remarks
Latitude North (degrees, minutes, and seconds)	Longitude West (degrees, minutes, and seconds)	no.	Councy	drilled	of well (ft)	Type (gauge) or thickness	Diam. (in.)	Depth (ft)	nquzzu	(ft)	Depth (ft)	Date	Rate (gpm)	Draw- down (ft)	Date	Duration (hrs)	(°F)	of pump		of data	
		20N/53-29b-1	011		142		6	0-142	Qa1	5,988	103.9	8-28-56	40	on 50			40	J	S	3	DL.
		20 N /53-29b	011	3-12-63	302	9/64	16	0-196	Qal, Pc		102		740				54	т	s, 1	11, 12, UR	DL 7,465.
		20N/53-30ac	011	11-15-60	150	3/16	16	0-150	Qal		54.5		825	53.5			54		D, 1	UR	DL 6,027(?).
	4	20N/53-30ab	011	12-1960	156	3/16	16	0-155	Qa1		54.6		825	53.4		ma 140	54		I	UR	DL 6,644.
		20N/53-31d-1	011				6(2)		Qa1		157.4 158.4	1-20-56 9-27-60							S	9, 11	
		20N/53-32bd	011	12-4-61	218	3/8	12	0-203	Qal								70		I	UR	DL 6,312.
		20N/53=32cc	011	10-4-62	255		14	0-255	Qal		124.7		1,240	35.3			54	т	I	UR	DL 7,301.
		20 N /54-19bc-	011		189		8 3/4	0-189	Qal	6,070	168.1	9-12-61							U	3	
		20 N /55=10d=1	033		22	Concrete	36(?)	0-22	Qa1	5,871	8.2 9.5	1-14-48 12-21-59							S	2, 9	
		20N/55-34d-1	033				6(?)		Qal	1/5,897	25.8 24.2	1-14-48						P	S	2, 21	DW.
			701																		
₩ 20		21 N /41-24bb-	015				6		Qal, Tv		458.0	4-24-63							S	1	
		21N/42-01c-1	015	8-1947	190		6		Qa1		Flowing	6-23-64							S	6	
		21N/42-01	015	8-1947	190		6	0-151.5	Qa1		Flowing		4						s	UR	DL 92.
		21N/42-24	015	8-1947	180		6	0-140-5	Qal	1/5,517	Flowing		14						s	UR	DL 94.
		21N/42-25	015	8-10-47	178		6(?)		Qal	1/5,533	Flowing		24						s	UR	DL 72.
		21N/42-25a-1	015	8-1947	177		6		Qal			6-7-48							S	6	
		21N/42-25a-2	015		9		48		Qal	1/5,555	5.4	6-7-48							U	6	
		21N/42-36b-1	015	8-1947	185		6	0-145	Qal	1/5,590	(?) Flowing	6-8-48	4				56		s	6, UR	DL 93.
		21N/46-01bc	015	10-12-60	60	1/4	12 3/4	p-60	Qal	1/5,761	17	12-12-60							D	7, UR	DL 5,619. Well no. given as 21N/46-Olb-1 in ref. 7.
		21N/46-09aa	015	10-20-60	32	1/4	12 3/4	0-32	Qal	1/5,893	9	12-12-60							S	7, UR	DL 5,618. Well no. given as 21N/46-09a-lin ref.7.
	-	21N/46-09d-1	015				48		Qal		53.2	6-15-65							D	7	CA.
		21N/48-10c-1	011	10-1947	20		6		Qal, Tv	6,600	10	10-47							D	19	
		21N/48-10d	011	1947	20	***	6	0-18	Qal, Tv	1/6,600	10		3						D	11, 12, UR	DL 448.
		21N/49-16c-1	011	1945	60		6		Qal	6,230	40.9	1-15-48 3-24-61						P	S,Obs	19	
			1 20																	-	GPO 830-914

when the same of t

Latitude North degrees, minutes, d seconds)	Longitude West (degrees,	Well Co						Date	Depth	Cas				Altitude	Water				eld		Temp	Type	Use	Sources	Remarks
	minutes, and seconds)			diffied	of well (ft)	Type (gauge) or thickness (in.)	Diam. (in.)	Depth (ft)		(ft)	Depth (ft)	Date	Rate (gpm)	Draw- down (ft)	Date	Duration (hrs)	(°F)	of pump		of data					
		21 N /53 - 01	011	7-27-61	210	1/4	16	0-210	Qal								65		I	UR	DL 6,058.				
		21 N /53-01d	011	2-3-61	182	3/16	16	0-182	Qa1		33		2,200	69			58		1	UR	DL 6,155.				
		21N/53-01dd	011	11-6-61	184	1/4	16	0-184	Qa1		37						56		I	UR	DL 6,376.				
		21N/53-01ac	011	8-3-61	184	1/4	16	0-184	Qa1		38						58		I	UR	DL 6,722.				
		21N/53-01bd	011	11-25-61	210	1/4	16	0-210	Qa1		38						58		I	UR	DL 6,721.				
		21N/53-01bd-1	011				16		Qal	5,882	32.4	9-13-61						T	I	3					
		21N/53-01cd-2	011				16		Qa1	5,886	36.6	9-13-61							I	3	-				
		21 N /53-02bc	011	10-22-63	190	.219	16	0-190	Qal		36								I	UR	DL 7,635.				
		21N/53-02c	011	5-26-61	182	3/16	16	0-182	Qal		35		2,449	66			58		I	UR	DL 6,146.				
		21N/53=03c	011	8-29-64	182	3/16	16	0-180	Qal				3,305	65			58		I	UR	DL 8,149.				
		21N/53-03cd-1	011		182		16		Qa1	5,883	37.8	9-13-61						T	I	3	DL.				
		21N/53-03db-1	011		182	3/16	16	0-182	Qa1	5,883	38.2	9-13-61	2,512	45			58	T	I	3	DL 6,060.				
		21N/53-03dd	011	5-16-61	182	3/16	16	0-182	Qal		34		2,512	45			58		I	UR	DL 6,166.				
		21N/53-04ad	011	5-3-61	182	1/4	16	0-222	Qa1		36						63		I	UR	DL 6,709.				
		21N/53-04bd	011	6-17-63	188	1/4	16	0-188	Qal		37						58		I	UR	DL 7,426.				
		21N/53-04cd	011	7-21-63	188	1/4	16	0-188	Qal		42						58		I	UR	DL 7,425.				
		21 N /53-04dd	011	9-30-60	182	1/4	16	0-182	Qal	5,885	34.1	9-12-61	2,160	53			58		I	3, UR	DL 5,549. Well no. g as 21N/53-04dd-1 in re				
		21N/53-04dd	011	7-17-61	200	1/4	16	0-180	Qa1	5,886	37.6	9-12-61					65	T	I	3, UR	DL 6,774. Well no. 8 as 21N/53-04dd-2 in re				
		21N/53-05c-1	011		42		48	0-42	Qa1	5,879	28.9 30.9	3-26-56 9-12-61						P	S	3, 9, 11					
		21 n /53 - 06	011	1-30-64	252	Steel	16	0-252	Qal		38		2,520	142		8	59		I	UR	DL 7,653.				
		21N/53-06aa	011	10-17-63	210		15	0-210	Qal		32						58		I	UR	DL 7,445.				
		21N/53-06dc	011	7-26-62	120	(10)	16	0-120	Qal		39						58		I	UR	DL 6,670.				
		21N/53-06dd	011	2-15-62	175	1/4	14	0-175	Qa1		33						58		I	UR	DL 6,640.				
		21N/53-07bb	011	6-13-64	182	.219	16	0-182	Qal		47								I	UR	DL 7,874.				
		21 N /53-07da	011	4-10-62	164	(10)	18	0-162	Qal, Tv (?)		39						58		I	11, 12, UR					
		21N/53-08a	011	5-11-61	192	Concrete	13	0-192	Qal		46		2,364	58			59		I	UR	DL 6,063.				
		21N/53-08ac	011	7-14-62	180	Concrete	13	0-184	Qal		39						58		I	UR	DL 6,669.				
		21 N /53-08c	011	5-13-61	164	Concrete	13	0-164	Qa1		46		2,556	29			59		I	UR	DL 6,062.				

The State of the Art o

Table 1.--Hydrologic data for water wells in central Mevada Tps. 1-21 N. and Rs. 41-57 E. --Continued

Latitude	Longitude	Well	County	Date	Depth		ing		Aquifer	Altitude	Water				eld		Temp	Type	Use	Sources	Remarks
North (degrees,	West (degrees,	no.		drilled	of well	(gauge)	Diam. (in.)	Depth (ft)		(ft)	Depth (ft)	Date	Rate (gpm)	Draw-	Date	Duration (hrs)	(oF)	of pump		of data	
minutes, and seconds)	minutes,				(ft)	thickness in.								(ft)							
		21N/53-08e	011	5-16-61	164	Concrete	13	0-164	Qa1		46		2,556	29			58		I	UR	DL 6,158.
		21N/53-08d	011	5-16-61	192	Concrete	13	0-192	Qal	5,896	42.1	9-12-61	2,364	58			58		I	3, UR	DL 6,159. Ref. 3 gives
		21N/53-09a-1	011	7-23-64	183	3/16	16	0-183	Qa1		54		2,965	54		3 3/4	58		1	UR	no. as 21N/53-08dc-1. DL 8,144.
		21N/53-09d(?)	011	8-11-61	182	Concrete	13	0-182	Qa1		46	8-10-61	2,556	1414	8-10-61		58		ı	UR	DL 6,149.
		21N/53-09b	011	7-20-64	183	3/16	16	0-183	Qa1	29 800	55		3,035	80		2 3/4	58		I	UR	DL 8,143.
		21N/53-09c	011	8-11-61	182	Concrete	13	0-182	Qa1		43	8-18-61	2,430	37	8-18-61		58		I	UR	DL 6,148.
		21N/53-10ac	011	9-8-62	176	2	13	1-176	Qa1		43		2,510	42		mates.	53		1	UR	DL 7,364.
		21N/53-10bc	011	9-5-62	176	2	13	1-176	Qa1		43		2,460	35			53		1	UR	DL 7,363.
		21N/53-10c	011	7-18-61	182	Concrete	13	0-182	Qal		52		2,490	56			58		I	WR	DL -6,161.
		21N/53-10de	011	7-26-61	182	Concrete	13	0-182	Qal		52		2,556	47			58		I	UR	DL 6,150.
		21N/53-10dc-1	011				13		Qa1	5,892	41.9	9-13-61							I	3	
		21N/53-11ad	011	10-30-62	183	1/4	16	0-182	Qal		43						58		I	UR	DL 6,892.
34		21N/53-11ba	011	11-6-60	192	1/4	16	0-192	Qal		36		2,240	72			58		1	UR	DL 5,578.
		21N/53-11ca	011	9-30-60	186	Concrete	17	0-186	Qa1		36		1,500	75			58		I	UR	DL 5,551.
		21W/53-11ad	011	10-25-62	192	1/4	16	0-192	Qa1		52					-	58		1	UR.	DL 8,692. Range 53 (?).
		21N/53-11dd	011	10-29-62	183	1/4	16	0-183	Qal		46						58		I	UR	DL 8,693.
		21N/53-11dd	011	10-26-62	192	1/4	16	0-192	Qa1		45						58	****	ı	UR	DL 6,891.
		21N/53-12a	011	4-5-63	230	1/4	16	0-230	Qa1		42						58		ı	UR	DL 7,429.
		21N/53-12bc	011	8-20-61	200	1/4	16	0-200	Qa1		42		-				63		D, I	UR	DL 6,689.
		21N/53-12ec	011	5-12-61	200	1/4	16	0-200	Qa1		24.24					No. 20	63		D, I	UR	DL 6,688.
		21N/53-12cc-1	011				16		Qa1	5,895	41.7	9-13-61						т	I	3	
		21N/53-12d	011	2-2-61	192	3/16	16	0-192	Qal		38		1,253	61			58		I	UR	DL 6,162.
		21N/53-13aa	011	6-18-62	250	1/4	16	0-250	Qa1		63		-			2010	58		1	UR	DL 6,631.
		21N/53-13ba	011	4-16-61	182	Steel	16	0-182	Qa1		38		2,350	57			58		I	UR	DL 6,151.
		21N/53-13bb-1	011		182		16	0-182	Qal	5,897	42.2	9-13-61	2,300	57				T	I	3	
	-	21N/53-13c a	011	6-20-60	171	Concrete	17	0-171	Qa1		42		1,506	46			58		I	UR	DL 5,545.
		21N/53-13da	011	6-26-62	250	1/4	16	0-250	Qa1		63						58		I	UR	DL 6,630
		21N/53-14aa	011	4-16-61	182	3/16	16	0-182	Qal	5,898	42	4-15-61	2,350	57			58	т	I	3, UR	DL 6,154. Ref. 3 gives no. as 21N/53-14aa-1.
	1				1			1	1	1	1	1		1	1						

Table 1.--Hydrologic data for water wells in central Nevada

Tps. 1-21 N. and Rs. 41-57 E. --Continued

Latitude	Longitude	Well	County	Date	Depth	Cas	ing		Aquifer	Altitude	Water	1evel		. Y:	leld		Temp	Type	Use	Sources	Remarks
North (degrees, minutes, and seconds)	West (degrees, minutes, and seconds)	no.		drilled	of well (ft)	(gauge) or thickness (in.)	Diam. (in.)	Depth (ft)		(ft)	Depth (ft)	Date	Rate (gpm)	Draw- down (ft)	Date	Duration (hrs)	(oF)	of pump		of data	ACCEPTANCE OF THE PROPERTY OF
		21N/53-14ba	011	1-11-63	182	1/4	16	0-182	Qa1		42						58		I	UR	DL 6,979.
		21N/53-14ca	011	9-14-62	180	1/4	16	0-180	Qal		45						58		1	UR	DL 6,754.
		21N/53-14da	011	11-9-60	182	1/4	16	0-182	Qa1	5,900	44.5		1,480	74			58		I	3, UR	DL 5,582. Ref. 3 give
		21M/53-15ac	011	8-24-62	180	1/4	16	0-180	Qa1		34						63		D, I	UR	no. as 21N/53-14da-1 DL 6,724
		21M/53-15bc	011	9-27-60	182	1/4	16	0-182	Qal	5,900	43.3	9-13-61	2,205	72			58		I	3, UR	DL 5,548. Ref. 3 give
		21M/53-15ec	011	10-12-62	182	1/4	16	0-182	Qal		47						58		I	UR	no. as 21N/53-15bc-1 DL 7,419.
		21M/53-15de (?)	011	10-14-62	180	1/4	16	0-180	Qa1		39						58		I	UR	DL 7,420.
		21N/53-15de	011	10-14-62	180	1/4	16	0-180	Qal		45						58		I	UR	DL 8,694.
		21N/53-16ad	011	6-15-62	182	1/4	16	0-182	Qa1		44						58		I	UR	DL 6,638.
		21N/53-16bc	011	10-19-62	182	1/4	16	0-182	Qa1		43						58		I	UR	DL 7,447.
		21N/53-16cc	011	10-7-60	183	1/4	16	0-183	Qal		56.5		2,550	23.5			58		I	UR	DL 5,550.
		21N/53-16cc	011	11-16-62	182	1/4	16	0-182	Qal		14.14						58		I	UR	DL 6,888.
G		21N/53-17bb	011	4-28-64	165	.250	16	0-165	Qal		56						50		I	UR	DL 7,854.
		21N/53-17cc	011	6-3-64	200	.219	16	0-200	Qa1		56								1	UR	DL 7,888.
		21N/53-18cc	011	6-11-64	134	.219	16	0-134	Qa1		55								1	UR	DL 7,873.
		21N/53-18dc	011	1-21-64	165	(10)	16	0-39	Qal, Tv		65								I	11, 12, UR	DL 7,646.
		21N/53-20a	011	9-13-61	196	3/16	16	0-196	Qal		72		2,748	38			58		I	UR	DL 6,169.
		21N/53-20aa-1	011		196		16	0-196	Qa1	5,930	70.8	9-12-61							I	3	
		21N/53-20ca	011	9-13-61	172	3/16	16	0-172	Qal		78		1,480	45			59		I	UR	DL 6,168.
		21N/53-20cc	011	4-21-62	150	3/16	16	0~150	Qal, Tv		83	4-20-63	1,404	37			58		I	11, 12, UR	DL 6,509.
		21 N /53=20d	011	9-12-62	183	4	16	0-183	Qal, Tv (?)		83		2,522	21			58		I	11, 12, UR	di, 6,769.
		21N/53-21a	011	3-16-61	182	3/16	16	0-182	Qal	5,910	48	3-15-61	2,410	53			58	T	I	3, UR	DL 6,153. Ref. 3 gives
		21N/53-21ac	011	5-8-63	180	1/4	16	0-180	Qal, Tv		42			w		***	58		I	11, 12, UR	no. as 21N/53-21aa-1 DL 7,872.
		21N/53-21be	011	8-31-61	190	1/4	16	0-190	Qal, Tv		52						63		D, I	11, 12, UR	DL 6,725.
		21N/53-21bc-1	011	~==			16		Qal	5,917	59.2	9-12-61							I	3	
		21N/53-21cc	011	10-24-62	186	1/4	16	0-186	Qal, Tv (?)		78						58		I	11, 12, UR	DL 7,448.

Table 1.--Hydrologic data for water wells in central Nevada Tps. 1-21 N. and Rs. 41-77 E. --Continued

Latitude	Longitude	Well	County	Date	Depth	Cas	ing		Aquifer	Altitude	Water 1	evel			eld		Temp	Type	Use	Sources	Remarks
North (degrees, minutes,	West (degrees, minutes, and seconds)	no.		drilled	of well (ft)	Type (gauge) or thickness (in.)	Diam. (in.)	Depth (ft)		(ft)	Depth (ft)	Date	Rate (gpm)	Draw- down (ft)	Date	Duration (hrs)	(°F)	of pump		of data	
		21M/53-21dc (?)	011	5-8-63	180	1/4	16	0-180	Qal, Tv (?)		42						58		I	11, 12, UR	DL 7,208.
		21N/53-22ad	011	12-30-62	260	1/4	16	0-260	Qal		42		2,540	106	1-4-63	1½(?)	58		I	UR	DL 6,978.
		21N/53-22ba	011	5-12-63	1.80	1/4	16	0-180	Qal		51						58		I	UR	DL 7,430.
		21N/53-22ca	011	11-7-62	222	1/4	16	0-222	Qal Tv		1414						58		I	11, 12, UR	DL 6,964.
		21N/53-22cd-1	011				6		Qal	5,910	50.4	9-13-61						P	S	3	
		21N/53-22dc	011	6-7-60	117	Steel	16	0-117	Qal	5,910	47.6	6-7-60	1,750	26			58		I	3, UR	DL 5,546. Ref. 3 give no. as 21N/53-22dc-1
		21N/53-23aa	011	9-18-60	172	Concrete	17	0-172	Qal		44		2,480	38		8	58		I	UR	DL 5,547.
		21N/53-23ba	011	6-22-62	216	1/4	16	0-216	Qal		65						58		I	UR	DL 6,632.
		21N/53-23ca	011	4-16-61	177	3/16	16	0-177	Qa1		43		2,410	51			58		I	UR	DL 6,147.
		21N/53-23da	011	6-18-60	166	Concrete	17	0-166	Qal	5,905	49.9	9-13-61	2,040	27			58		I	3, UR	DL 5,544. Ref. 3 give no. as 21N/53-23da-1
		21N/53-24a	011	11-10-61	186	Concrete	17	0-186	Qal		34		585	106			58		I	UR	DL 6,201(?).
		21N/53-24bd	011	10-26-62	400	3/16	16	0-240	Qal		48								I	UR	DL 7,115.
Š.		21N/53-24cd	011	1964	280	1/4	16	0-280	Qal		62						58		I	UR	DL 7,941.
ON.		21N/53-26aa-1	011				13		Qal	5,910	50.6	9-13-61							I	3	
		21N/53-26ac	011	9-13-61	181	Concrete	13	0-181	Qa1		48		2,890	39			58		I	UR	DL 6,167.
		21N/53-26ba	011	11-11-60	176	1/4	16	0-176	Qa1	5,910	54	11-11-60	2,250	61			58	T	I	3, UR	DL 5,581. Ref. 3 give no. as 21N/53-26ba-1
		21N/53-26ca	011	9-5-62	162	1/4	16	0-162	Qal		54						58		I	UR	DL 6,720.
		21N/53-26da	011	8-1962	184	Concrete	13	0-184	Qal		49		585	97			58		I	UR	DL 6,673.
		21N/53-26da	011	5-30-64	218	.219	16	0-218	Qa1								58		I	UR	DL 7,954.
		21N/53-27b	011	9-8-62	232	Concrete	17	0-232	Qa1		58		2,522	58			58		I	UR	DL 6,770.
		21N/53-27cc	011	11-15-60	151	3/16	16	0-151	Qa1	5,915	54.4	9-12-61	2,480	49			59	T	I	3, UR	DL 5,597. Ref. 3 give no. as 21N/53-27cc-
		21N/53-27d	011	8-5-64	198	3/16	16	0-198	Qa1		60		2,870	40		mass.	58		I	UR	DL 8,173.
		21N/53-27dc	011	2-18-64	248	.219	16	0-248	Qal								58		I	UR	DL 7,654.
		21N/53-28aa	011	1964	210	.219	16	0-210	Qal		55(?)					60,00	58		I	UR	DL 7,953.
		21N/53-28cc	011	2-10-64	186	.219	16	0-186	Qa1		82		2,520	78(?)			58		I	UR	DL 7,652.
		21N/53-28cc	011	8-25-64	185	3/16	16	0-185	Qa1				2,920	45(?)		00.00	58		I	UR	DL 8,151.
		21N/53-28dd	011	2-15-61	209	1/4	161/2	0-205	Qal		54		2,240	56		2 <u>1</u>	54	T	I	UR	DL 6,437.
		21N/53-29a	011	6-15-61	188		16	0-188	Qal		85	****	2,250	19					I	UR	DL 6,751.

Table 1.--Hydrologic data for water wells in central Nevada Tps. 1-21 N. and Rs. 41-57 E. --Continued

Latitude	Longitude	Well	County	Date	Depth	Cas	ing		Aquifer	Altitude	Water	level		Y1	eld		Temp	Type	Use	Sources	Remarks
North (degrees,	West (degrees,	no.	Jouney	drilled	of well	Type (gauge)	Diam.	Depth (ft)	riquirei	(ft)	Depth (ft)	Date	Rate (gpm)	Draw- down	Date	Duration (hrs)	(°F)	of pump		of data	
minutes, and seconds)	minutes,				(ft)	thickness	(111.)	(10)			(10)		(gpm)	(ft)		(1120)		F			
and seconds)	And seconds)	21N/53-29bd	011	6-6-60	250	1/4	16월	0-230	Qal, Tv		84								I	11, 12, UR	DL 5,270.
		21N/53-29bd	011	5-15-64	170		16	0-170	Qal, Tv		80						58		I	11, 12, UR	DL 8,251.
		21 N /53-33a	011	4-17-61	112	Concrete	13	0-112	(?) Qal	B0 405	56	00 00	2,410	28			58		I	UR	DL 6,157.
		21N/53-33ac-1	011		118		13	0-118	Qal	5,920	56		2,400	37				т	I	3	0,-0,1
		21N/53-33d	011	4-19-61	112	Concrete	13	0-112	Qa1		57		2,315	37			58		I	UR	DL 6,156.
		21N/53-33dd-1	011		118		13	0-118	Qal	5,922	56							T	I	3	
		21N/53-34a	011	7-10-61	128	Concrete	13	0-128	Qa1		60		2,460	28			58		I	UR	DL 6,674.
		21N/53-34a	011	8-28-62	126	Concrete	17	0-126	Qa1		59.5		1,092	22.5			58		I	UR	DL 6,863.
*		21N/53-34bb-1	011	~~			13		Qa1	5,922	57.1	9-13-61							I	3	
		21N/53-34c	011	8-30-62	126	Concrete	17	0-126	Qal		60.8		1,620	18.2			58		I	UR	DL 6,864.
		21 n /53-34d	011	7-20-61	157	Concrete	13	0-157	Qal, Tv		60		2,430	36			58		I	11, 12, UR	DL number not legible.
		21N/53-35	011	9-28-63	300	3/16	16	0-185	Qal										I	UR	DL 7,434.
		21N/53-35cd	011	6-13-61	195	(10)	18	0-195	Qal	5,922	51.6	9-13-61	1,640	42			54	T	I	3, UR	DL 5,969. Well no. given as 21N/53-35cd-1 in ref. 3
37		21N/53-35dd	011	6-7-61	187	(10)	16	0-189	Qal		63		1,350	w 00			54	T	I	UR	DL 5,968.
		21N/53-36ac	011	8-29-60	152	Concrete	17	0-152	Qal	80 GR	61.5		863	66.5			58		I	UR	DL 5,543.
		21N/53-36ac	011	5-1-63	300	.219	16	0-250	Qal		68	~=	1,200	42				T	I	UR	DL 7,286.
		21N/53-36ad	011	4-15-62	300	(7)	16	0-166	Qal		64		1,000			30 day	57	T	I	UR	DL 6,550.
		21N/53-36cd	011	8-14-62	274	3/16	16	0-112	Qal		79.2		1,100			16	58	T	S, I	UR	DL 6,694.
		21N/54-04ad	011	10-8-50	120		12	0-120	Qal	5,893	38.2	9-13-61	1,000					Т	I	3, UR	DL 1,478. Well no. given as 21N/54-O4ad-1 in ref. 3
		21N/54-05ab	011	4-17-64	244	.219	16	0-244	Qal	***	21						58		1	UR	DL 7,974.
		21 N /54-05ba	011	10-10-62	150	(10)			Qal		22						58		I	UR	DL 6,887.
		21N/54-05ba	011	10-10-62	150	(10)		0-150	Qal		22						58		I	UR	DL 7,700.
		21N/54-05cc	011	11-20-61	150	(10)	15	0-150	Qa1		21		na 00						I	UR	DL 6,461.
		21 N /54-05dc	011	4-18-62	190	1/4	14	0-190	Qa1		21						58		I	UR	DL 6,641.
		21N/54-08cc	011	8-29-64	203	.219	16	0-203	Qa1		37						50		I	UR	DL 8,061.
		21N/54-08dd	011	9-15-64	245	1/4	16	0-240	Qal		48(?)						52		1	UR	DL 8,081.
		21N/54-09bc-2	011				6		Qal	5,881	87.2	9-13-61						P	S	3	
		21N/54-16cd	011	7-31-60	240	3/16	16	0-240	Qal		120		2,100	75		5			I	UR	DL 7,324.
		21N/54-17ab	011	4-3-63	210	3/16	16	0-210	Qal		44.7							600 cm	I	UR	DL 7,101.
		21N/54-17ab	011	4-13-62	225	3/16	16	0-222	Qa1		40.7								I	UR	DL 7,124.
		1		,											•						GPO 830-914

Table 1.-- Hydrologic data for water wells in central Nevada Tps. 1-21 N. and Rs. 41-57 E. -- Continued

Latitude	Longitude	Well	County		Depth		ing		Aquifer	Altitude	Water				eld		Temp (°F)	Type	Use	Sources	Remarks
North (degrees, minutes,	West (degrees, minutes, and seconds)	no.		drilled	of well (ft)	(gauge) or thickness (in.)	Diam. (in.)	Depth (ft)		(ft)	Depth (ft)	Date	Rate (gpm)		Date	Duration (hrs)	(°F)	of pump		of data	
		21N/54-17dd	011	6-15-62	200	(10)	16	0-200	Qal		105								I	UR	DL 6,635.
		21N/54-17cd	011	6-24-62	240	3/16	16	0-240	Qa1		60								I	UR	DL 6,637.
		21N/54-20cc	011	6-16-62	230	3/16	16	0-222	Qa1		80								I	UR	DL 6,633.
		21N/54-20dd	011	7-10-62	240	3/16	16	0-240	Qa1		150								1	UR	DL 6,634.
		21N/54-29cb	011	4-27-53	130	1/4	8	0-115	Qal	5,955	87.2	9-13-61						P	S	3, UR	DL 2,216. Well no. gi as 21N/54-29cb-lin ref.
		21N/55-034-1	033		8.5	Concrete	42	0-8.5	Qa1(?	1/5,852	4.8 6.9	4-30-48 12-18-59						P	S	2	
		21N/55-10c-1	033		33-5	Wood		0-34	Qa1(?	1/5,940	17.8 18.9	1-14-48 12-21-59							D	2, 9	
·		21N/55-22c-1	033		18	Concrete	42	0-18	Qa1(?	1/5,858	8.3	4-30-48							U	2	DW.
		21N/55-27c	033						Qal									,000	s	21	DW.
		21N/57-32cc	033	11-19-58	130	1/4	6	0-130	Qal	1/7,100	74		20	2					s	UR	DL 4,342. Probable well no.

^{1/} Interpolated from 1:62,500 topographic maps with contour intervals of mostly 40 feet, but a few 80 feet, and from 1:250,000 Army Map Service maps with contour intervals of 100 feet.

Table 2.--Hydrologic data for springs in central Nevada, Tps. 1-21 N. and Rs. 41-57 E.

Explanation

Spring number: See text for explanation of well and spring numbering system.

County: Eureka: 011 Lander: 015

Lincoln: 017
Nye: 023

White Pine: 033

Qal (alluvium and other valley fill)

Pc (Paleozoic carbonate)

Tv (volcanic)

Temperature:

Temperature of water.

Use:

Aquifer:

39

D, domestic (a source that furnishes drinking and culinary water for one or several households; I, irrigation; S, stock; Pf, public facilities (sources available to segments of the general public other than municipal supply, including such places as hospitals, military bases, and public parks.)

Sources of data:

Numbers refer to references listed on pages 16-18.

Remarks:

CA, chemical analysis available; RC, radiochemical analysis available.

Table 2.--Hydrologic data for springs in central Nevada

Tps. 1-21 N. and Rs. 41-57 E.

	Spring	County	Aquifer	Yield		Temp (°F)	Use	Sources	Remarks
	no.			Rate (gpm)	Date	(°F)		of data	
	2 n /57 - 07	017	Qa1		500 MB	***	and may	21	At county line.
	3N/57-28	023	Pc(?)					21	
	4N/50-20c	023	Tv					10, 17, 23	
	4N/50-20c	023	Tv					10, 17, 23	
	4N/50-20c→1	023	Tv					26	CA.
	5N/46-28	023	Tv					10	
5	6N/47-36a	023	Qal					10	
	6N/54-11a-1	023	Tv					26	CA.
	6N/57-05	023	Qal	30	man hilling	60	S	23	
	6N/57-05	023	Qa1	(total for 2 springs)		60	S	23	
	7N/42-17c	023	Tv		660 SSG			23	
	7N/50-23d-1	023	Qal					26	CA.
	7N/51-30	023	Tv		too mo			23	Several spgs.
	7N/55-16	023	Qal	100		130 - 160	S	23	
	7N/55-16	023	Qal	(total for	care sate	130 160	S	23	
	7N/55-16	023	Qal	3 springs)	ting time	130 - 160	S	23	
	7N/55-16c-1	023	Qal					26	CA.

The delication of against the fall along the control beveck

									All phones da	
	10									
		197		Santana		0.00/00		- Constitution		

Table 2.--Hydrologic data for springs in central Nevada, Tps. 1-21 N. and Rs. 41-57 E.--Continued

		4						
Spring	County	Aquifer	Yield		Temp (°F)	Use	Sources	Remarks
no.			Rate (gpm)	Date	(°F)		of data	
			(gpiii)					
7N/57-28	023	Qal	10		59	S	23	
8 N /49-24d-1	023	Pc					26	CA.
8 n /49 - 25	023	Pc(?)					22, 24	No. 18 In State of the Land
		rc(1)						
8N/50-29d-1	023	Pc					26	CA. Composite
8 n /50-29 d -2	023	Pc					26	sample from a 3-spring
								complex.
8 n /50-29d-3	023	Pc					26	
8 n /55-14b-1	023	Tv					26	CA.
8 n /55-15	023	Qal	2,000		93 - 99	I	23	
8 n /55-15	023		(total					
	043	Qal	for 4 springs)		93 - 99	I	23	1 200 314
8 n/55-1 5	023	Qa1	, opings,		93~- 99	I	23	1 125, 711 11-
8 n /55-15	023	Qal			93 - 99	I	23	
8 n /55-15d-1	023	Tv					26	CA.
8n/57-11	023	Qa1	1,385 (total for		82	I	23, 28	CA.
8 n /57-11	023	Qal	2 springs)		82	I	23, 28	
8 n /57-14	023	Qa1	14		73	D, I	23	
8 n /57-27	023	Qal	227		64	I	23	120 120 120
			(total for					tets orcans
8 n /57-27	023	Qal	2 springs)		64	I	23	is Issue
								1

Table 8 .- Pydrologio data for surings in central Revada,

						(8)48		
Salasapad . Ad								
1		,						
	(2)							
					Vegen /			
							8	
						,		
	0.0	-	- 60	1	100 053103	. 69	1000	15-10 985

Table 2.--Hydrologic data for springs in central Nevada, Tps. 1-21 N. and Rs. 41-57 E.--Continued

Spring	County	Aquifer	Yield		Temp (°F)	Use	Sources	Remarks
no.			Rate (gpm)	Date	(°F)		of data	
8 n /57-34	023	Qal	2		57	S	23	
8 n /57-34	023	Qal	(total for 2 springs)		57	S	23	
10 N /43-05a	023	Qal					13	
10 N /44 - 16c	023	Qal	400				13	CA. See S14, p. 154, ref. 13.
11 N /42-14	023	Tv	600	State sale			23	
11 N /43 - 05c	023	Qal	9				13	
11 N /43-07	023	Qal		W NO	180 - 200	I, Pf	20	CA. RC.
11 N /43-07d	023	Qal			190		13	
11 N /43-08b	023	Qa1			58		13	CA. See S12, p. 154, ref. 13.
1125/1.1-011				-\				
11 N /43-08b	023	Qa1	***	NO 500	58	~~	13	
11м/43-08ь	023	Qa1		600 600	58	=	13	
11 N /43-08c	023	Qal					13	
11 N /43-08c	023	Qal		/	900 Mile		13	
11 n /43-18b	023	Qal	anti-tade	our sax	000 MB		13	CA. See S13, p. 154, ref. 13
								Main spring at house.
11N/43-18d	023	Qal	900	9-13	53 - 591		13	

El Tax Page 1				

Table 2.--Hydrologic data for springs in central Nevada, Tps. 1-21 N. and Rs. 41-57 E.--Continued

Spring	County	Aquifer	Yiel		Temp (°F)	Use	Sources	Remarks
no.			Rate (gpm)	Date	(°F)		of data	
11 N /43-19	023	Qal	900	9-13	53 - 59½		13	
11N/43-32d	023	Qa1					13	
11N/49-26	023	Tv					23	
11 N /49-35	023	Tv					23	
11N/54-24	023	Qal	<1				21	
11м/55-06ь	023	Qa1(?)	<1				21	
12 N /43-03bb	023	Qa1	ee un				13	
12N/43-04aa	023	Qal					13	
12N/43-04ab	023	Qal					13	
12N/43-04ac	023	Qal		400 000	54		13	
12N/43-09ab	023	Qal					13	
12N/43-22d	023	Qal	1	9-13	51		13	CA. See S11,
12м/56-05ь	023	Qal		600 600			21	p. 154, ref. 13.
12N/56-14c	023	Qa1					21	
13N/43-05a	023	Qa1		400.000			13	
13N/43-05a	023	Qal			es es		13	
13 N /43-05cd	023	Qal	049 MA	600 600			13	CA. See S9, p. 154, ref. 13.

+3

		The state of the s						

Table 2.--Hydrologic data for springs in central Nevada, Tps. 1-21 N. and Rs. 41-57 E.--Continued

Spring no. Aquifer Yield Temp (°F) Use Rate (gpm) Date (°F)	13 13 13
	13
	13
13N/43-05ch 023 021	
2547 15 0500 025	13
13N/43-18a 023 Qal	13
13N/43-18d 023 Qal	13
13N/43-18d 023 Qa1	13
13N/43-34c 023 Qal	13
= 13N/44-16dc 023 Qa1	13, 23
13N/44-21ab 023 Qa1	13, 23
13N/44-21cc 023 Qa1	13, 23
13N/44-29aa 023 Qa1	13, 23
13N/44-29bd 023 Qa1 50 (9-23-13)	13, 23 CA. See S10, p. 154, ref. 13.
(9-23-13)	p. 194, ref. 13.
13N/44-29cb 023 Qa1	13, 23
13N/44-29da 023 Qa1	13, 23
13N/55-05b 023 Qal	21
13N/55-19 023 Tv(?) 1 s	21
13N/55-20 023 Qa1 .5 s	21

inte 2. -- Bydrologic data for aprint in central Mayada

			14						
				8					

Table 2.--Hydrologic data for springs in central Nevada, Tps. 1-21 N. and Rs. 41-57 E.--Continued

Spring	County	Aquifer	Yiel		Temp (°F)	Use	Sources of	Remarks
no.			Rate (gpm)	Dat∈	(°F)		of data	
13N/55-29	023	Qal	0.5			S	21	
13N/56-32	023	Qal				I	23	
13N/56-32c	023	Qal	6,270			I	21	
14N/43-15b	023	Qal	made trans				13, 14, 23	
14N/43-17a	023	Qal					13, 14, 23	CA. See S8, p. 154, ref. 13.
14 N /43-20cc	023	Qal					13	
14N/43-22a	023	Qal					13, 14, 23	
14 N /43-22b	023	Qal			61		13, 14, 23	CA. See S7,
				- \-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\	(9-12-13)			p. 154, ref. 13
14N/43-24b	023	Qal					13, 14, 23	
14N/43-27cb	023	Qal	30(3)				13	
14N/43-27	023	Qal					23	
14N/43-28ad	023	Qal		DIO MIO	57.5	des 100	13	
14N/43-28ad	023	Qa1			57.5		13	
14 N /43-28da	023	Qal	note tous				13	

				10 May 19

Table 2.--Hydrologic data for springs in central Nevada, Tps. 1-21 N. and Rs. 41-57 E.--Continued

Spring	County	Aquifer	Yiel		Temp	Use	Sources	Remarks
no.			Rate (gpm)	Date	Temp (°F)		Sources of data	
14N/47-01	023	Tv					23	
14N/47-22	023	Qal					23	
14N/56-14d	033	Pc	2,240			I	21	
14N/56-23	033	Pc(?)					23, 27	CA,in ref. 27.
14м/56-25ь	033	Pc		trea mar		S, I	21	
14N/57-23b	033	Pc	1		and any	S	21	
15 N /44-22b	023	Qal	450	9-22-13			13	CA. See S6,
15N/55-04	033	Pc(?)					21	p. 154, ref. 13.
15N/55-29	033	Pc(?)				S	21	
15N/57-33c	033	Qal	896		\	I	21	
16N/45-14	015	Tv	5	ass 800			23	
16n/53-07	011	Qal	4,000		66	I	23	About 20 deep
104/30-074							1	pools in 0.5 mile diameter area at head of
								Fish Creek.
16N/53-08a-1	011	Pc	MA MA				26	CA.
16N/53-09c-1	011	Pc	000 MM				26	CA.
							24	

Shike 2. -- Bydrologic data for aprings in continue the sate of

					The test Silver		
			in.				
					- 620		

Table 2.--Hydrologic data for springs in central Nevada, Tps. 1-21 N. and Rs. 41-57 E.--Continued

Spring	County	Aquifer	Yiel		Temp (°F)	Use	Sources	Remarks
no.			Rate (gpm)	Date	(°F)		of data	
16 n /57-15	033	Pc(?)	00			S	21	
17N/44-33	015	Qal	270	6-13-15	54 (9-29-14)		13	
17N/45-13a	015	Tv			117 - 144		13, 14, 23	See Plate II, ref.
								13.
17N/45-13d	015	Tv		an an	117 - 144	000 SHY	13, 14, 23	Do
17N/45-13d	015	Tv	400 ma		117 - 144		13, 14, 23	Do
17N/45-13d	015	Tv			117 - 144		13, 14, 23	Do
17 N /45½-24b	015	Tv	600 SEC		117 - 144	500 EST	13, 14, 23	CA. See S5, p. 154, ref. 13.
17N/57-35c	033	Pc			\	500 500	21	
18 N /42-22c-1	015	Qal				000 000	6	CA.
18 n /50-28	011	Qal	100		142	S	23	
18 n /55-07c	033	Qal				S	21	
18 n /56-16c	033	Qa1, Tv(?)	66 Top				2	
18м/56-21ь	033	Pc(?)				S	21	
18 n /57-11d	033	Tv		00 to		S	21	

Abayair Lagorana at applying not have the highest the Affect of the Benediction of the Be

		,				
			1			
				20,		
				E4.		
	 -	-	7	-	100	Control of the Contro

Table 2.--Hydrologic data for springs in central Nevada, Tps. 1-21 N. and Rs. 41-57 E.--Continued

Spring	County	Aquifer	Yiel		Temp (°F)	Use	Sources	Remarks
no.			Rate (gpm)	Date	(°F)		of data	
19 n /50 - 05	011	Qal	10	has sas	105	tod too	23	
19 N /50 - 05	011	Qal	10	no see	108		23	
19N/55-31a	033	Pc	2	440 840	***	S	21	
19N/55-31d	033	Pc	2	ted teb	CHIEF COME	S	21	
19N/57-34a	033	Pc	M0-606	100 Ger	040 000	S	21	
20 N /56-23c	033	Qal	1.5	pr ==		S	21	
20N/57-06a	033	Pc					21	
21 N /42-11b	015	Tv	1			U	29	Map-no. 65, plate 8, ref. 29
21 N /56-05b	033	Qal	date time			s, I	21	prace o, rer. L
21 N /56-10ь	033	Pc	2 25			s, I	21	
21 N /56-15d	033	Pc		000 000			21	

£

Intit S .- Sydrologic here for springer in sentral Mereda.

							77	
								4
								31
					Ų,	,		
				ı				

Table 3.--Average monthly and annual inches precipitation in central Nevada,

Tps. 1-21 W. and Rs. 41-57 E.

(County code: O11, Eureka; O15, Lander; O23, Nye; and O33, White Pine)

	Location																	Sources of	
Site	County	T.	R.	Sec.	Jan.	Feb.	March	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Annual	data	Remarks
Tonopah	023	2 N.	42 E.	2	0.43	0.42	0.54	0.59	0.38	0.21	0.38	0.44	0.37	0.49	0.34	0.39	4.98	19	Period of record: 1907-53. Alt, 6,093 ft.
Tonopah Airport	023	3 N.	44 E.	31	.25	.32	.16	.20	.70	.09	-54	.43	.43	.22	.28	.16	3.78	19	Period of record: 1954-62. Alt, 5,426 ft.
Belmont	023	9 N.	45 E.	26	.85	1.01	•97	.68	.80	.40	.48	.84	.47	.65	.29	1.09	8.53	19	Period of record: 1889-96, 1900-05, and 1915-16. Alt, 7,600 ft.
Potts	023	15 N.	47 E.	35	.56	.66	.74	.72	•95	.36	.51	- 44	.27	•33	•37	.42	6.33	19	Period of record: 1892-1919. Alt, 6,635 ft.
Fish Creek Ranch	011	16 N.	53 E.	10	. 44	.32	•53	.51	.62	.34	•55	.48	•53	•33	•59	.50	5.74	19	Period of record: 1944-62 (continuing Alt, 6,050 ft.
Hamilton	033	16 N.	58 E.	18	2.29	2.15	2.23	1,29	1.49	.88	•53	•99	.63	1.22	1.65	2.50	14. 8 8	2	Period of record, 4 years: 1878, 1879 1895, and 1901. Partial record in 1877, 1880, 1896, 1897, 1900, 1902-09 Alt, 7,977 ft. Location uncertain.
harnac Basin	011	17 N.	49 Е.	20	.92	1.46	1.12	1.24	2.02	.66	.41	.66	.63	.62	1.04	.83	11.61	19	Period of record: 1955-61 (Storage gage). Alt, 8,500 ft.
Austin	015	19 N.	44 E.	19	1.14	1.14	1.46	1.64	1.43	.80	.60	•53	.48	•93	.85	1.06	12.06	7	Period of record: 1877-1964 (continui Alt, 6,594 ft.
Sureka	011	19 N.	53 E.	13	1.11	1.08	1.49	1.33	1.49	.86	•73	.66	.66	.89	.66	.82	11.78	3	Period of record, 40 years: 1889, 1891, 1902-18, 1922-30, 1939-42, 1953-60 (continuous Alt, 6,550 ft.

	2					

y

Table 4.--Streamflow in central Nevada, Tps. 1-21 N. and Rs. 41-57 E.

(Estimated, unless otherwise indicated)

(County code: Ol1, Eureka; Ol5, Lander; O23, Nye; and O33, White Pine)

			Location			Discharge			
Site	County	T.	R.	Sec.	Date	(cfs)	Remarks		
Reveille Wash	023	2 N.	51 E.	20	10-21-65	0	Map-no. 29, ref. 26.		
Warm Springs	023	4 N.	50 E.	20	10-21-65	1.5	Map-no. 24, ref. 26.		
Warm Springs Creek	023	4 N.	50 E.	21	10-21-65	.2	Map-no. 25, ref. 26.		
Do	023	4 N.	50 E.	23	10-21-65	.15	Map-no. 26, ref. 26.		
Reveille Wash	023	4 N.	51 E.	16	10-21-65	0	Map-no. 30, ref. 26.		
Hot Creek above ranch	023	4 N.	51 E.	13	10-21-65	0	Map-no. 31, ref. 26.		
Hot Creek below ranch	023	4 N.	52 E.	19	11-03-65	.4	Map-no. 32, ref. 26.		
Warm Springs Creek	023	5 N.	51 E.	33	10-21-65	0	Map-no. 27, ref. 26.		
Unnamed wash	023	6 N.	50 E.	35	10-21-65	0	Map-no. 28, ref. 26.		
Hot Creek at Hwy.	023	6 N.	51 E.	21	10-21-65	0	Map-no. 23, ref. 26.		
Tybo Creek	023	7 N.	50 E.	26	10-20-65	0	Map-no. 18, ref. 26.		
Moores Creek at crossing	023	7 N.	51 E.	4	10-20-65	0	Map-no. 22, ref. 26.		
Unnamed wash	023	7 N.	53 E.	13	10-21-65	0	Map-no. 39, ref. 26.		
Fish Lake Creek at gap	023	8 N.	49 E.	8	9-01-65 10-19-65	0	Map-no. 10, ref. 26.		
Hot Creek	023	8 N.	49 E.	29	9-01-65	0	Map=no. 11, ref. 26.		
	023	O N.	77 E.	29	10-19-65	0	201		
Hot Creek	023	8 N.	49 E.	21	9-01-65	.01	Map-no. 12, ref. 26.		

NAME AND POST OF PERSONS PROPERTY AND PERSONS PROPERTY PROPERTY

County was diff properties for contract took which was not seen

	r							
					e-			

Table 4.--Streamflow in central Nevada, Tps. 1-21 N. and Rs. 41-57 E.--Continued

(Estimated, unless otherwise indicated)

(County code: Oll, Eureka; Ol5, Lander; O23, Nye; and O33, White Pine)

			Location			Discharge	
Site	County	T.	R.	Sec.	Date	(cfs)	Remarks
Hot Creek at upper ranch	023	8 N.	49 E.	25	9-01-65 11-03-65	1/.80	Map-no. 13, ref. 26.
Hot Creek below lower spgs.	023	8 N.	50 E.	32	10-20-65 11-03-65	<u>1</u> J _{1.69}	Map-no. 14, ref. 26.
Hot Creek below ranch	023	8 n.	50 E.	34	10-20-65	1.3	Map-no. 15, ref. 26.
Sixmile Creek	023	8 n.	50 E.		10-20-65	.2	Map-no. 16, ref. 26.
Sixmile Creek	023	8 n.	50 E.	24	10-20-65	0	Map-no. 17, ref. 26.
Meadow Creek	023	9 N.	46 E.	8	4-15-64	0.4	Map-no. 1, ref. 19.
Barley Creek	023	9 N.	47 E.	16	4-15-64	2	Map-no. 4, ref. 19.
Moores Creek at crossing	023	9 N.	51 E.	24	9 - 02 - 65 10 - 20 - 65	0	Map-no. 21, ref. 26.
Unnamed wash	023	9 N.	53 E.		10-21-65	0	Map-no. 38, ref. 26.
Corcoran Canyon	023	10 N.	46 E.	28	4-15-64	.2	Map-no. 3, ref. 19.
Meadow Creek	023	10 N.	46 E.	35	4-15-64	.02	Map-no. 2, ref. 19.
Danville Creek	023	10 N.	49 E.	3	10-19-65	.2	Map-no. 7, ref. 26.
Clover Creek	023	10 N.	49 E.	29	5-31-65	1/20	Map-no. 8, ref. 26.
Fish Lake Creek at crossing	023	10 N.	49 E.	34	9-01-65	0	Map-no. 9, ref. 26.
Moores Creek at Moores Station	023	10 N.	51 E.		9 - 02 - 65 10 - 20 - 65	.02	Map-no. 20, ref. 26.

AND STREET STREET, SILVER

				Constant Con			

Charles reger large parties (1) proper large than man ch

52

Table 4.--Streamflow in central Nevada, Tps. 1-21 N. and Rs. 41-57 E.--Continued

(Estimated, unless otherwise indicated)

(County code: Oll, Eureka; Olj, Lander; O23, Nye; and O33, White Pine)

Site			Location			Discharge	
Site	County	T.	R.	Sec.	Date	(cfs)	Remarks
Pine Creek	023	11 N.	46 E.	16	5-21-64	2	Map-no. 5, ref. 19.
Meadow Creek	023	11 N.	47 E.	6	5-21-64	0	Map-no. 5a, ref. 19.
Danville Creek above spring	023	11 N.	48 E.	25	9-01-65	1	Map-no. 5, ref. 26.
Danville Canyon Spring	023	11 N.	48 E.	25	9-01-65	.1	Map-no. 5, ref. 26.
Danville Creek at crossing	023	11 N.	49 E.	23	5-31-65 9-01-65	1.81	Map-no. 6, ref. 26.
Clear Creek at ranch	023	11 N.	49 E.	4	9-01-65	1.5	Map-no. 3, ref. 26.
Sawmill Creek at crossing	023	11 N.	49 E.	16	9-01-65	.1	Map-no. 4, ref. 26.
Fish Lake Creek	023	11 N.	50 E.	7	10-19-65	.05	Map-no. 2, ref. 26.
Moores Creek	023	11 N.	51 E.	25	9-02-65	0	Map-no. 19, ref. 26.
South Fork, Mesquito Creek	023	12 N.	47 E.	32	4-15-64	2	Map-no. 6, ref. 19.
Fish Lake Creek at crossing	023	12 N.	50 E.	5	10-19-65	0	Map-no. 1, ref. 26.
Tributary to Stoneberger Creek	023	13 N.	47 E.	9	4-15-64	0	Map-no. 7, ref. 19.
Do	023	14 N.	47 E.	2	4-15-64	2	Map-no. 9, ref. 19.
Do	023	14 N.	47 E.	22	4-15-64	2	Map-no. 8, ref. 19
Villow Creek	023	14 N.	51 E.	24	6-01-65	1/.14	Map-no. 35, ref. 26.

The state of the s

The same and the s

53

Table 4.--Streamflow in central Nevada, Tps. 1-21 N. and Rs. 41-57 E.--Continued

(Estimated, unless otherwise indicated)

(County code: Oll, Eureka; Ol5, Lander; O23, Nye; and O33, White Pine)

			Location			Discharge	
Site	County	T.	R.	Sec.	Date	(cfs)	Remarks
Stoneberger Creek	023	15 N.	47 E.	14	4-15-64	1.5	Map-no. 10, ref. 19.
Villow Creek	023	15 N.	47 E.	25	4-15-64	.5	Map-no. 12, ref. 19.
Thite Sage Canyon	023	15 N.	48 E.	15	5-21-64	0	Map-no. 13, ref. 19.
Cributary to Willow Creek	023	15 N.	48 E.	29	5-21-64	1	Map-no. 11, ref. 19.
openhagen Canyon	023	15 N.	49 E.	24	5-21-64	2	Map-no. 23, ref. 19.
Innamed wash	023	15 N.	53 E.	36	10-20-65	0	Map-no. 36, ref. 26.
toneberger Creek	015	16 N.	47 E.	3	4-13-64	0	Map-no. 14, ref. 19.
Do	015	16 N.	47 E.	35	4-13-64	0	Map-no. 13a, ref. 19.
ine Mile Creek	011	16 N.	50 E.	25	5-21-64	1.5	Map-no. 26, ref. 19.
ntelope Wash	011	16 N.	50 E.	26	5-21-64	0	Map-no. 25, ref. 19.
openhagen Canyon	011	16 N.	50 E.	30	5-21-64	0	Map-no. 24, ref. 19.
ish Creek Springs	011	16 N.	53 E.	8	11-01-65	1/5.4	Map-no. 33, ref. 26.
ish Creek at road	011	16 N.	53 E.	12	9-03-65 10-18-65	.05	Map-no. 34, ref. 26.
Allison Creek	011	17 N.	50 E.	29	4-15-64	0	Map-no. 29, ref. 19.
Do	011	17 N.	50 E.	30	4-15-64	1	Map-no. 28, ref. 19.
ntelope Wash	011	17 N.	50 E.	31	4-15-64	0	Map-no. 27, ref. 19.
ish Creek at gap	033	17 N.	54 E.	14	10-20-65	0	Map-no. 37, ref. 26.
ot Spring Wash	011	18 N.	50 E.	28	4-15-64	1	Map-no. 30, ref. 19.

the last of the la

(particle breat COT) perpenting the property (and the COT) for plant)

		4							
					14.				

Table 4.--Streamflow in central Nevada, Tps. 1-21 N. and Rs. 41-57 E.--Continued

(Estimated, unless otherwise indicated)

(County code: O11, Eureka; O15, Lander; O23, Nye; and O33, White Pine)

Site			Location			Discharge		
Site	County	T.	R.	Sec.	Date	(cfs)	Remarks	
toneberger Creek	015	19 N.	47 E.	35	4-13-64	0	Map-no. 15, ref. 19.	
illow Creek	011	19 N.	49 E.	20	5-18-64	1	Map-no. 17, ref. 19.	
aggett Creek	011	19 N.	51 E.	7	4-16-64	1.5	Map-no. 32, ref. 19.	
rowns Canyon	011	19 N.	51 E.	21	4-16-64	0	Map-no. 33, ref. 19.	
ntelope Wash	011	19 N.	51 E.	30	4-16-64	0	Map-no. 31, ref. 19.	
ottonwood Spring at road	015	20 N.	45 E.	4	6-14-65	0	Map-no. 13, ref. 7.	
ckerman Canyon	015	20 N.	47 E.	25	5-19-64	.5	Map-no. 16, ref. 19.	
ributary to Coils Creek	011	20 N.	49 E.	23	5-19-64	1	Map-no. 20, ref. 19.	
ributary to Slough Creek	011	20 N.	51 E.	11	5-19-64	0	Map-no. 35, ref. 19.	
Do	011	20 N.	51 E.	12	5-19-64	0	Map-no. 37, ref. 19.	
lough Creek	011	20 M.	51 E.	22	5-19-64	1.5	Map=no. 34, ref. 19.	
lough Creek at Devils Gate	011	20 N.	52 E.	26	5-19-64	2.5	Map-no. 38, ref. 19.	
allaghan Creek above ranch	015	21 N.	45 E.	28	6-14-65 10-22-65	2/1.05	Map-no. 8, ref. 7.	
kull Creek	015	21 N.	46 E.	8	6-14-65 10-22-65	15 2/.59	Map.no. 10, ref. 7.	
allaghan Creek at crossing	015	21 N.	46 E.	17	6-14-65	3	Map-no. 9, ref. 7.	

STATE OF STREET, STREE

	- 10 20 2 2 2 2 2	
	A SECTION	

Table 4.--Streamflow in central Nevada, Tps. 1-21 N. and Rs. 41-57 E.--Continued

(Estimated, unless otherwise indicated)

(County code: O11, Eureka; O15, Lander; O23, Nye; and O33, White Pine)

			Location			Discharge	
Site	County	T.	R.	Sec.	Date	(cfs)	Remarks
Unnamed creek at crossing	015	21 N.	46 E.	17	6-14-65	•5	Map-no. 11, ref. 7.
Skull Creek at crossing	015	21 N.	46 E.	9	6-14-65	10	Map-no. 12, ref. 7.
Steiner Creek	015	21 N.	46 E.	27	5-14-65 10-22-65	2/3.40 2/.17	Map_no. 14, ref. 7.
Ox Corral Creek at crossing	015	21 N.	46 E.	28	6-15-65	4	Map-no. 15, ref. 7.
Unnamed creek	015	21 N.	46 E.	2	5-14-65 6-14-65	2/.51 1.25	Map-no. 17, ref. 7.
Ferguson Creek	011	21 N.	48 E.	11	5-19-64	14	Map-no. 19, ref. 19
Tributary to Slough Creek	011	21 N.	51 E.	26	5-19-64	0	Map-no. 36, ref. 19

^{1/} Measured with flow meter.

^{2/} Measured with current meter.

Standard by or name with

(harted to the forestee that a state of the case of the late of th

Table 5.--Percentages of wells that penetrate different aquifers

Types of rock: Qal, alluvium and other valley fill; Tv, volcanic;
Pc, Paleozoic carbonate; Pcl, Paleozoic clastic.

Probable types of rock supplying water to wells	Number of wells penetrating types of rock indicated	Percentage of wells penetrating types of rock indicated	Number of wells penetrating consolidated rocks	Percentage of wells penetrating consolidated rocks
Qal	532	87.7	NA 240	
Qal, Tv	43	7.1	43	58.0
Qal, Pc	10	1.7	10	14.0
Qal, Pcl	6	1.0	6	8.0
Qal, Tv, Pc	1	.2	1	1.0
Tv	11	1.8	11	15.0
Pc	1	.2	1	1.0
Pc1	2	•3	6	3.0
Total	606	100.0	78	100.0

Table 3. -Percentages of wells that puncture different Apprint

Types of rock: Oal, alluvium and other wailer fill Tv, voluenty:

Parentage Beneration Peneration Computates		Personage of vella penatruting types of rock ladinated	Members of sulls types of rock todisated	
		8.		
	By			

Table 6.--Uses of wells in central Nevada (Tps. 1-21 N. and Rs. 41-57 E.)

Domestic	Industrial	Stock	Municipal	Irrigation	Multiple use	Observation	Unused	Use not given	Total number of wells
62	32	177	16	275	29	2	49	23	606

Table 7.--Uses of springs in central Nevada (Tps. 1-21 N. and Rs. 41-57 E.)

Domestic	Stock	Irrigation	Public facility	Multiple use	Use not given	Total number of springs
1	25	18	1	5	95	135

the plant of the last of the delicate of the last

the party of the p

Table 8.--Chemical data for wells and springs in central Nevada, Tps. 1-21 N. and Rs. 41-57 N.

(Unless noted otherwise, chemical data are in parts per million)

Loca	ition	Well or spring (W, S)	Date of collection	Tem- per- ature (op)	Silica (SiO _E)	Iron (Fe)	Cal- cium (Ca)	Mag- ne- sium (Mg)	Sodium (Na)	Na + K (Calc.)	Potas- sium (K)	bonate	Bicar- bonate (MCO ₃)	fate	Chlo- ride (C1)	Fluo- ride (F)	Ni- trate (NO ₅)	roa ph	os-	solids residue m evap- oration)	Cal-	Non- carbon- ate	So- dium adsorp- tion ratio	Specific conduct- ance (micro- mhos at 25°C)		bu	Sources2	Remarks
48/48	-08ba-1	W W S S	8-31-13 5- 1-57 10-17-65 10-20-65	 141 63	74 60 80	0.01	43 23 55	14 2.4 2.1 36 5.4	25 36	352 206 74	7.4 7.8	0 0 0 0	807 137 130 712 248	11 34 19 98 32	13 13 32	0.3	C.0 11 2.4		.20	1,190 270	185 117 66 285 97	0 5 0 0	11 1.0 1.9 5.3 3.2	357 1,270 487	92 32 57 61 62	7.4 7.9 7.4	13 20 4 26 26	See W16, p. 177, ref. 13.
58/41 58/55 68/51	-29c-1 -06a 5-28cc -15a-1 1-11a-1	W W W S	10-17-65 9- 6-13 10-17-65 11- 2-65	62 64 85	14	tr	73	25 8 12 4.0 30	42	77 45 59 138	5	0 0 0	428 187 152 184 736	56 95 80 24 57	12	=======================================	3.6	==	=======================================	433 355	288 215 94 64 388	0 62 0 0	2.0 1.3 1.9 3.2 3.1	363 1,170	37 33 48 67 44	7.4 7.6 7.6	26 13 UR 26 26	See W15, p. 157, ref. 13.
7M/50	1-36c-1 1-23d-1 5-16c-1	W W S S	9- 7-13 10-17-65 11- 2-65 9- 8-13	150	28 57 14	tr tr	37	7.4 5.4 54 22 71	32	31 564 70 56	5.8	0 0 51 0 0	139 154 1,120 433 151	69 37 302 51 1,170	11	.1	2.5		==	313 1,980	142 120 310 270 1,280	29 0 0 0 1,160	1.1 1.3 14 1.9	2,540 763	32 39 80 36 9	8.5 7.4	13 4 26 26 26 13	See W14, p. 197, ref. 13.
8m/50	-29b -24d-1)-29d-1,2, 5-14b-1 5-15d-1	3 5 5 5	9- 8-13 8-29-65 8-30-65 11- 2-65 11- 2-65	92 94 95 95	13	tr	13 63	7 26 26 25 23		16 52 124 60 68		0 0 0 0	236 204 340 380 376	69 64 81 60 63	33 12		4.0		==	346	258 152 140 260 242	66 0 0 0	1.8 4.6 1.6 1.9	462 718 694 684	12 43 66 33 38	8.0 8.2 7.6 8.1	13 26 26 26 26 26	See W13, p. 157, ref. 13.
108/43 108/4	5-02d-1 3-04c	WWSS	10-31-12 6- 8-54 10- 1-13 9- 9-13 10-30-65	65	83 80 32 24	1.7 .05 tr tr	86.	8.9 11 9 4.3 58	65	69 5 21 18	10	0 0 0	223 220 200 124 260	69 38 105	24 15 14	.9	3.0 .5 9.4 .0	==	==	421 324 321 220	100 88 252 115 331	0 99 13 118	3.0 .1 1.2	448	28	7.8	28 20 13 13 26	Potash well. See Wll, p. 157, ref. 13. See Sl4, p. 154, ref. 13.
1m/4: 1m/4: 1m/4: 1m/4:	3-08b 3-22c	W S W	9-26-13 9-30-13 9-10-13 1-31-57		38 18 14 105	.8 tr tr	68 34 43 1.2	5.6	104	70 33	2.4	0 0 0 24	290 105 141 112	58 26 31 40	74		tr tr	.27	.10	439 131 224 369	192 118 123 3	0 32 8 0	2.2 .0 1.3 26	472	44 2 37 99	8.7	13 13 13 20	See W9, p. 157, ref. 13. See 812, p. 154, ref. 13. See W10, p. 157, ref. 13.
12號/年 12號/年 13號/年 13號/年	3-22d 3-04b	W S W S	9-27-13 9-27-13 9-11-13 9-11-13	=	14 16 110 13	tr tr tr	39 28 80 46	13 1.9 er 7.4		0 6 144,000 1.1		29,400	114 80 3,960 129	18,600 32	169,000		2.8 8.0 82	=	3	180 120 70,000 157	151 78 200 145	58 12 0 40	 -3 4,440 .0		14 99.9 2		13 13 13	See W0, p. 157, ref. 13. See S11, p. 154, ref. 13. See W4, p. 157, ref. 13. See S9, p. 154, ref. 13.

	至,		
11.00			
	BERNE		
	Ticon.		
	Tatt.		
gair			
	1500		

NAME AND POST OFFICE ADDRESS OF THE PARTY OF

Table 8.--Chemical data for wells and springs in central Nevada,

Ips. 1-21 N. and Rs. 41-77 E.-- Continued

(Unless noted otherwise, chemical data are in parts per million)

Location	Well or spring (W, S)	Date of collection	Tem- per- ature (OF)	Silica (SiO _k)	Iron (Fe)	Cal- cium (Ca)	Mag- ne- sium (Mg)	Sodium (Na)	Ne + K (Calc.)	Potas- sium (K)	bonate	Bicar- bonate		Chlo- ride (C1)	ride	Ni- trate (NO _b)	ron p	hate	Dissolved solids (residue on evap- oration)	Cal- cium mag-	Non- carbon- ate	So~ dium adsorp- tion			Hq	Sources 1/of	Remarks
13M/43-05b 13M/43-18d 13M/43-20c 13M/44-29bd 13M/47-29c-1	W W S	10- 6-14 9-29-13 10- 7-14 9-23-13 4-14-64	 54	24 27 24 45	tr tr tr	61 27	7 18 7 4 39	201	5 6 14 11		0 0 26 0 20	124 266 149 96 212	25 48 33 17 340	5 11 9 8 110	=======================================	0.2 tr 	==		179 329 239 189	124 271 181 84 280	22 53 16 6 73	0.2 .2 .5 .5	25°C)	8 5 14 22 61	8.7	13 13 13 13 13	See W5, p. 157, ref. 13. See W6, p. 157, ref. 13. See W7, p. 157, ref. 13. See W7, p. 157, ref. 13.
14m/41-18d 14m/43-10a 14m/43-22b 15m/41-28c-1	W W S	916 9-20-13 9-12-13 8- 5-64	=======================================	39 16 23	.02 .2 tr	22 92	14 2.6 9.1 5.2		41 4.4 7 46		0 0 h.8	237 75 224 173	41 8 62 24	27 4 19 15		.0			368 104 353	185 65 266 89	0 4 75 0	1.3 .2 .2 .2	363	33 13 5 53	7.6	29 .13 13 6	See no. 85, p. 129, ref. 29. See W3, p. 157, ref. 13. See 87, p. 154, ref. 13.
15M/44-02e 15M/44-22b 15M/54-06d-1 16M/42-07b 16M/42-19d	S W W	9-19-13 9-22-13 10-20-65 916 916	57	39 14 44 67	4.8 tr tr tr	68 73 30 84 64	32 24 4.6 tr 10		70 3.1 16 32 62		0 0 0 12	283 126 212 237	tr 41 20 55 64	68 9 6.6 20		3.6			494 302 366 468	301 280 94 210 200	0 48 0 16	1.8 .1 .7 1.0	254	39 2 27 25 40	7.6	13 13 26 29 29	See W2, p. 157, ref. 13. See S6, p. 154, ref. 13. See no. 82, p. 129, ref. 29. See no. 83, p. 129, ref. 29.
16m/42-19dd-1 16m/44-23a 16m/47-04d-1 16m/50-29a-1 16m/53-08a-1	W W W	8- 5-64 9-18-13 4-14-64 4-16-64 8-30-65	60 67 63	46	1.5	43 93 50 53 28	7.9 58 8.8 19 29	31 22	67 98 38		0 0 0 14	280 422 182 212 267	44 90 55 48 37	6.6 171 15 9		3.4			764	140 470 161 211 189	0 124 12 13	2.5 2.0 1.1 .7 1.2	562 460 481	51	8.0 7.6 8.7	6 13 19 19 26	See WI, p. 177, ref. 13.
16M/53-09c-1 17M/42-06cb-1 17M/45½-24b 17M/54-16b-1 18M/42-11b	S U S U	8-29-65 8- 5-64 9-16-13 10-20-65 916	64 144 57	34 54	 .2 tr	37 35 57 28 75	29 5.0 18 24 42		36 18 197 31 66		0 0 12 0	273 137 646 219 417	51 20 52 42 109	8.6 9.6 28 9.0		0			802	212 108 216 169 360	0 0 0 0	1.1 .7 5.9 1.0 1.5	462 280 409	27 26 7	8.2	26 6 13 26 29	See 85, p. 154, ref. 13.
18m/42-21c 18m/42-22c-1 18m/42-26c-1 18m/42-30cb-1 18m/42-31cc-1	W S W W	916 8- 5-64 6-23-64 6-24-64 8- 5-64		37	tr 	67 20 61 19 34	15 14 11 1.8 4.4		46 43 40 42 24		0 17 0 0	310 97 265 136 139	40 64 38 20 24	23 19 19 10		.0			410	228 108 198 55 103	0 0 0 0	1.3 1.8 1.2 2.5	385 545 294 284	30 47 30 63	7.7	29 6 6 6	See no. 72, p. 129, ref. 29. See no. 74, p. 129, ref. 29.
18m/42-35b 18m/43-08b 18m/43-09b 18m/43-17b-1 18m/47-08d-1	W W W	916 916 916 8- 5-64 4-14-64	71	22 17 33	tr tr tr	64 65 157 59 62	35 28 52 27 12	36	4.5 2.8 22 16		0 0 0 0 0	273 261 670 268 160	75 57 89 59 88	8.0 7.0 8.0 7.8 43		.0			369 345 694	304 277 606 258 204	80 63 56 39 73	.1 .1 .4 .4	526 579		7.8	29 29 29 6	See no. 76, p. 129, ref. 29. See no. 78, p. 129, ref. 29 See no. 80, p. 129, ref. 29. Jell no. given as 18M/47-20a-1 in

or or other lates or

Table 8.--Chemical data for wells and springs in central Nevada, Tps. 1-21 N. and Re. 41-57 E.--Continued

(Unless noted otherwise, chemical data ere in parts per million)

Location	Well or spring (W, S)	Date of collection	Tem- per- ature (°F)	Silica (SiO _B)	Iron (Fe)	Cal- cium (Ca)	Mag- ne- sium (Mg)	Sodium (Ma)	Ma + K (Calc.)	Potas- sium (K)	bonate	Bicar- bons te (MCO ₃)	fate	Chlo- ride (C1)	Fluo- ride (F)	Ni- trate (NO ₃)	on phe	te (residu	as Cal-	CaCO. Non- carbon- ate	So- dium	Specific conduct- ance (micro- mhos at 25°C)	Per- cent so-	Sources1/	Remarks
18W/50-28d-1 18W/50-28d-2 18W/51-30b-1 18W/51-34d-1 19W/53-15bd	W W W	5-21-64 5-21-64 4-16-64 4-16-64 1-21-53	72 158 72 61		.02	.0 24 31 52	.0 7.8 15 26	8.3	72 71 36 21	1.4	29 26 12 0	92 94 135 164 238	22 22 28 32 38	7.1				26	0 92 139	0 0.0 0 0 5 42			>99 9. >99 9. 46 8. 25 8. 8 7.	0 19 7 19 2 19	
20#/43-332-1 20#/53-15cb-1 21#/42-01c-1 21#/42-25a 21#/46-09d-1	W W W	8- 5-64 6- 6-49 8- 6-64 916 6-15-65	60	27	•75	37	3.8 14 .5 37 7.2		51 48 72 174 91		0 13 24 0	155 247 108 439 331	44 16 36 211 45			.0	2	29 91	150 10 342	0 0 0 0 0	2.1 1.7 9.9 4.1 3.3	432 337 592	51 8. 41 8. 94 8. 53 - 57 7.	3 8 6 - 29	See no. 66, p. 127, ref. 29.

^{1/} Some values in Ref. 13 have been rounded off to agree with current Survey reporting.

^{2/} Al, 0.0 ppm; Mm, 0.01 ppm. Ref. b also gives a chemical analysis.

THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE OW

Table 9.-Chemical data for surface waters in central Mevada, Tps. 1-21 M. and Rs. 41-57 E.

(Unless noted otherwise, chemical data are in parts per million)

	Location	Name	Date of collection	Tem- per- ature (°F)	Silica (SiO ₂)		Cal- cium (Ca)	ne-			Potas- sium (K)	Car- bonate (CO ₅)	Bicar- bonate (HCO _b)	fate	Chlo- ride (C1)	Ni- trate (NO ₅)	Dissolved solids (residue on evap- oration)	Hardi as Co Cal- cium, mag- nesium		So- dium adsorp- tion ratio	Specific conduct- ance (micro- mhos at 25°C)	Per- cent so- dium	pН	Sources of data	Remarks
61	11#/49=33 12#/42-15 14#/41-8a 15#/41-22a	Danville Creek South Twin River do Cottonwood Creek	8-29-65 10- 7-14 8- 5-64 8- 5-64	62	22	tr	33 22 46 47	15 5 13 7•7		14 2 55 19		0 0 0	148 83 280 196	47 3.7 34 23	4.6 6 16 4.0	tr	112	144 75 168 149	23 7 0 0	0.5 .1 1.8 .7	294 540 357	17 5 41 22	7.9 8.0 8.0	13	See St, p. 154, and plate II, ref. I3.
	16M/41-13dd 16M/43-35a 16M/44-18	Reese River do Kingston Creek Santa Fe Creek Reese River	8- 5-64 8- 5-64 10- 1-14 9-30-14 8- 5-64	46 50	14	tr 0.05	33 12 48 59 32	7.4 3.2 12 10 19		41 46 13 7 48		0 24 19 10 4	188 64 151 169 211	32 32 31 36 52	11 13 6 7 20	1.0	290 203	113 43 169 188 158	0 0 45 50 0	1.7 3.1 .4 .2 1.7	385 282 502	44 70 14 7 40	8.1 9.3 8.5	13 13 6	See S3, p. 15% and plate KI, ref. 13. See S2, p. 15% and plate KI, ref. 13.
	18m/44-29 20m/52-26a	Birch Creek Surface water at Devil's Gate	9-27-14 4-10-54	56	25 21	.1	65 41	16 94	1,020	30	98	14 35	239 834	59 918	8 800	1.5	328 3,440	228 489	32 0	2.0	5,370	83 83	8.3		See S1, p. 154 and plate II, ref. 13.

	14	
	2. 11. 11. 11.	
		1 1 1 1

A STATE OF THE PARTY OF THE PAR

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

PREPARED IN CO

1,400,000

T.8 N.

Location of selected wells and springs and prelimin

BLM Library
Denver Federal Center
Bldg. 50, OC-521
P.O. Box 25047
Denver, CO 80225

