1. Ear cutting

A polygon is defined by vertices [0, 0], [1, 2], [0, 4], [4, 4], [3, 2], and [4, 0]. What are the ears that are cut by the ear-cutting algorithm?

2. Clipping line segments

For clipping a line segment connecting $[x_1, y_1]$ and $[x_2, y_2]$, how can an intersection point with a borderline $x=x_{max}$ be calculated?

3. Viewport transformation

How can normalized device coordinates x_{ndc} and y_{ndc} be mapped onto pixel coordinates x_{pix} and y_{pix} if the bottom-left corner of the viewport is $[v_x, v_y]$, and the width and height of the viewport are defined by v_{width} , and v_{height} , respectively?

4. Rasterization

What are the coordinates of the pixels that are painted by the rasterization of a line segment connecting points [0, 0] and [3, 2]?

5. Texture mapping

The vertices of a triangle are defined as [-1, -1], [1, -1], [-1, 1]. The corresponding texture coordinates are [0, 0], [1, 0], and [0, 1], respectively. What are the texture coordinates that correspond to the point [0, 0]?

6. Graphics hardware

What are the functionalities of the fixed pipeline between the vertex shader and the fragment shader?

Using ray tracing, how can an intersection point be calculated between a ray defined by $\mathbf{r}(t) = \mathbf{o} + \mathbf{d} \cdot t$ and a plane defined by $(\mathbf{r} - \mathbf{p}) \cdot \mathbf{n} = 0$?

Using ray tracing, how can it be determined that an intersection point between a ray and a plane of a triangle is inside the given triangle?

Using ray tracing, how can it be determined whether a light source contributes to the illumination of a surface point?

Using recursive ray tracing, how can an infinite recursion be avoided?