

Regularization: Observation and Feature Sampling

For each tree, select from P features (columns) and N rows

$$\mathcal{P} \in \{1, 2, \dots, P\}$$

$$\mathcal{N} \in \{1, 2, \dots, N\}$$

$$\mathcal{P}^{[i]} \subseteq \mathcal{P}, \ |\mathcal{P}^{[i]}| = P^{[i]} = \gamma_{\text{COL}} P$$

$$\mathcal{N}^{[i]} \subseteq \mathcal{N}, \ |\mathcal{N}^{[i]}| = N^{[i]} = \gamma_{\text{ROW}} N$$

Scoring and Stopping

- How often should we check our validation error? (Computation time versus generalization)
 - o score each iteration: score model after each tree
 - o score tree interval: score model after n trees
- Setting criteria for stopping
 - stopping_rounds: early stop if stopping metric's moving average does not improve for this many rounds
 - o stopping_metric: metric for early stopping
 - stopping_tolerance: Relative tolerance for metric-based stopping criterion (stop if relative improvement is not at least this much)
 - o max_runtime_secs: maximum runtime to allow for model building

Regularization: Observation and Feature Sampling

• For each tree, select from P features (columns) and N rows

$$\mathcal{P} \in \{1, 2, \dots, P\}$$

$$\mathcal{P}^{[i]} \subseteq \mathcal{P}, \ |\mathcal{P}^{[i]}| = P^{[i]} = \gamma_{\text{COL}}P$$

$$\mathcal{N}^{[i]} \subseteq \mathcal{N}, \ |\mathcal{N}^{[i]}| = N^{[i]} = \gamma_{\text{ROW}}N$$

