Dataset Overview

- The dataset for our project is "Steel Industry Energy Consumption", gathered by the DAEWOO Steel Co. Ltd in South Korea.
- Data Source: https://archive.ics.uci.edu/dataset/851/steel+industry+energy+consumption
- **Response variable:** "Usage_kwh".
- **Predictors:** There are 10 features, including date, lagging/leading reactive power, lagging/leading power factor, CO2, weekStatus, day of week.
- Number of observations : 35040
- The screenshot of first two samples of data is attached below.

```
> head(data,2)
              date Usage_kWh Lagging_Current_Reactive.Power_kVarh Leading_Current_Reactive_Power_kVarh CO2.tCO2.
1 01/01/2018 00:15
                        3.17
                                                              2.95
                                                             4.46
2 01/01/2018 00:30
                        4.00
  Lagging_Current_Power_Factor Leading_Current_Power_Factor NSM WeekStatus Day_of_week Load_Type
                                                                                 Monday Light_Load
                         73.21
                                                        100 900
                                                                     Weekdav
                         66.77
                                                        100 1800
                                                                                 Monday Light_Load
                                                                     Weekdav
```

Dataset Overview cont.

Table 2.1: Dataset feature description

Feature	Description
Date	Data collected in real time on the first of the month
_Usage_kWh	Energy Consumption in Industry kWh continuous
Lagging Current	Reactive energy kVarh Continuous
Leading Current	Reactive energy kVarh Continuous
CO2	CO2 Continuous ppm
NSM	Minutes and seconds since midnight S Continuous
Week status	Weekday or Weekend
Day of week	Sunday, Mondayetc
Load Type	Light Load, Medium Load, Maximum Load

Procedures/methods

- 1. Data Preprocessing
- 2. Data Visualization
- 3. Evaluation methods/criteria
- 4. Statistical Learning Methods

1. Data Preprocessing steps

1. Null Values Handling

• Removed null values from the data

2. Feature Extraction

• Extracted "Month" from "Date" feature

3. Feature Removal

- Removed "Date" as similar features such as Month, weekStatus, and Day of week are present in the Dataset.
- Removed "Load_Type" as it's similar to the response variable, "Usage_kWh."

4. Categorical to Numerical Conversion

• Converted categorical features (weekStatus, Day of week, Month) to numerical representations.

4. Train-Test splits

• Performed a 70-30 train-test split for model evaluation

2. Data Visualization

Fig. The correlation matrix

2. Data Visualization cont.

Fig. matrix of scatterplots for each pair of variables

2. Data Visualization cont.

Energy Consumption vs. Lagging Current Reactive Power

Energy Consumption vs. CO2 emmision

Energy Consumption vs. Leading Current Reactive_Power

Energy Consumption vs. Leading_Current_Power_Factor

2. Data Visualization

3. Evaluation methods/criteria

1. K-folds Cross Validation

2. Test MSE

 $MSE = (1/n) * \sum_{i=1}^{n} (yi - \hat{yi})^2$, where yi is the actual observed values, and \hat{yi} is the predicted values

3. Test R-sauared

 $R^2 = 1 - \frac{SSR}{SST}$, where SSR is the sum of the squared residuals, and SST is the total sum of squares.

4. Statistical Learning Methods

- 1. Linear Regression Model
- 2. Subset Selection
- 3. LASSO Regression Model
- 4. Ridge Regression Model
- 5. Principal Component Analysis (PCA)
- 6. Random Forest Model
- 7. Random Forest Model with CV (Proposed Method)

Results

- From the summary table, all features are significant as their p-value is greater than 0.05.
- Achieved MSE of 22.85 and R-squared value of 0.97 on test data.

```
> summary(1m_model)
call:
lm(formula = Usage_kwh ~ ., data = train_data)
Residuals:
            10 Median
-16.201 -0.958
                0.062 1.224 118.706
Coefficients:
                                      Estimate Std. Error t value Pr(>|t|)
(Intercept)
                                    -1.191e+01 4.749e-01 -25.075 < 2e-16
Lagging_Current_Reactive.Power_kVarh 3.011e-01 4.635e-03 64.980
Leading_Current_Reactive_Power_kVarh 1.185e-01 1.263e-02
CO2.tCO2.
                                     1.687e+03 5.764e+00 292.705 < 2e-16
Lagging_Current_Power_Factor
                                     1.229e-01 3.024e-03 40.642 < 2e-16
Leading_Current_Power_Factor
                                     6.917e-02 3.264e-03 21.191
NSM
                                     9.684e-06 1.476e-06
                                                         6.560 5.49e-11
WeekStatus
                                    -1.601e-01 7.281e-02 -2.199
Day_of_week
                                     4.158e-02 1.505e-02 2.764 0.00572 **
Month
                                    -9.822e-02 8.880e-03 -11.061 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.655 on 24518 degrees of freedom
Multiple R-squared: 0.9807,
                              Adjusted R-squared: 0.9807
F-statistic: 1.384e+05 on 9 and 24518 DF, p-value: < 2.2e-16
> cat(" Mean Squared Error (MSE):", mse, "\n")
Mean Squared Error (MSE): 22.85371
> cat("R-squared:", r_squared, "\n")
```

R-squared: 0.979435

2. Subset Selection

- Applied Forward subset selection
- Based on adjusted R-squared, the minimum number of variables is 8.

 Achieved MSE of 22.85 and R-squared value of 0.97 on test data using LR on selected subsets.

Fig. Adjusted R-squared curve

```
> # Calculate Mean Squared Error (MSE)
> mse_subset_lr <- mean((actual_Y - Y_pred)^2)
> mse_subset_lr
[1] 22.85903
> R_squared_subset_lr
[1] 0.9794302
```

3. LASSO and Ridge Regression Models

- Achieved MSE of 21.124 using Lasso model with best lambda of 0.078
- Got Zero coefficients for two features using Lasso

 Achieved MSE of 30.145 using Ridge model with best lambda of 3.3096

Fig. MSE Vs Log(lamda) for Lasso and Ridge model

U

- From summary table, all features sorted by their contribution using PCA.
- Selected top 7 features and applied LR model.
- Achieved MSE of 22.86914 adjusted R-squared of 0.9794 on test data.

```
> summary(model_pcr)
call:
lm(formula = Usage_kwh ~ ., data = selected_data)
Residuals:
            10 Median
-16.201 -0.958
                 0.062
                         1.224 118.706
Coefficients:
                                      Estimate Std. Error t value Pr(>|t|)
(Intercept)
                                    -1.191e+01 4.749e-01 -25.075
                                     9.684e-06 1.476e-06
Leading_Current_Power_Factor
                                     6.917e-02 3.264e-03 21.191
Lagging_Current_Power_Factor
                                     1.229e-01 3.024e-03 40.642
Leading_Current_Reactive_Power_kVarh 1.185e-01 1.263e-02 9.382
Lagging_Current_Reactive.Power_kVarh 3.011e-01 4.635e-03 64.980
Month
                                    -9.822e-02 8.880e-03 -11.061
CO2.tCO2.
                                     1.687e+03 5.764e+00 292.705
Day_of_week
WeekStatus
                                    -1.601e-01 7.281e-02 -2.199 0.02788 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 4.655 on 24518 degrees of freedom
Multiple R-squared: 0.9807,
                               Adjusted R-squared: 0.9807
F-statistic: 1.384e+05 on 9 and 24518 DF, p-value: < 2.2e-16
```

Fig. Summary table for PCA model

```
> cat("MSE:", mse, "\n")
MSE: 22.86914
> # Print the R-squared value
> cat("R-squared:", R_squared_pcr, "\n")
R-squared: 0.9794211
```

5. Random Forest

- We applied RF model on train data and evaluated trained model on test data.
- We achieved MSE of 2.7521 and R-squared of 0.9975 on test data.

> summary(rf_model)

```
Length Class Mode
call
                       -none- call
type
                       -none- character
predicted
                24528
                       -none- numeric
                       -none- numeric
mse
                  500
                       -none- numeric
rsq
oob.times
                24528
                      -none- numeric
importance
                      -none- numeric
importanceSD
                       -none- NULL
localImportance
                      -none- NULL
proximity
                       -none- NULL
ntree
                       -none- numeric
                       -none- numeric
mtry
forest
                       -none- list
coefs
                       -none- NULL
                       -none- numeric
test
                       -none- NULL
inbag
                       -none- NULL
                       terms call
terms
```

```
> cat(" Mean Squared Error (MSE):", mse, "\n")
Mean Squared Error (MSE): 2.752177
> cat("R-squared:", r_squared, "\n")
R-squared: 0.9975234
```

6. Random Forest with CV

- Applied 5-folds CV on training dataset to train RF model.
- Evaluated cross-validated model on test data.
- We achieved MSE of 1.148884 and R-squared of 0.999082 on test data

```
> # Print the metrics
> cat("MSE for RF-Cv model on test data:", mse_cv, "\n")
MSE for RF-Cv model on test data: 1.148884
> cat("R-squared for RF-Cv model on test data on test data:", r_squared_cv, "\n")
R-squared for RF-Cv model on test data on test data: 0.9989662
```

The final value used for the model was mtry = 9.

RMSE was used to select the optimal model using the smallest value.

Comparison

Conclusion

- In this project, we have successfully explored various statistical learning methods on the *Steel Industry Energy Consumption dataset*. our proposed model emerged as the top-performing solution.
- Among the various models used for detecting power consumption, RF with CV achieved higher R-squared of 0.999082 and lower test MSE of 1.148884.
- Hence, the success of the model in accurately predicting energy consumption signifies a significant step toward achieving enhanced efficiency and cost reduction in energy consumption within the steel industry.