Devoir à la maison n° 15

À rendre le 22 mars

Les fonctions considérées ici sont toutes réelles.

1) Résoudre sur $I = \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ l'équation différentielle

$$\cos(t)z''(t) - 2\sin(t)z'(t) - \cos(t)z(t) = 0. \tag{E}$$

Indication : on pourra réaliser le changement de fonction inconnue : $\varphi(t) = \cos(t) \cdot z(t)$.

2) Résoudre sur J =]-1,1[l'équation différentielle

$$(1 - x2)y''(x) - 3xy'(x) - y(x) = 0.$$
 (\$\mathcal{F}\$)

Indication : on pourra réaliser le changement de variable : $x = \sin t$.

- 3) On répondra à ces questions sans utiliser la question précédente. Soit f une solution sur J de l'équation (\mathcal{F}) .
 - a) Justifier que f est infiniment dérivable.
 - b) Observer que pour tout $n \in \mathbb{N}$,

$$\forall x \in J, \quad (1 - x^2) f^{(n+2)}(x) - (2n+3)x f^{(n+1)}(x) - (n+1)^2 f^{(n)}(x) = 0.$$

- c) Pour tout $n \in \mathbb{N}$, on pose $a_n = f^{(n)}(0)$. Former une relation liant a_{n+2} et a_n .
- d) Exprimer a_{2p+1} et a_{2p} en fonction respectivement de a_1 et a_0 , et à l'aide notamment de nombres factoriels.
- 4) Déterminer les développements limités suivants.
 - a) Le DL en 0 à l'ordre de 2n + 1 de $x \mapsto \frac{\operatorname{Arcsin} x}{\sqrt{1 x^2}}$.
 - **b)** Le DL en 0 à l'ordre de 2n de $x \mapsto \frac{1}{\sqrt{1-x^2}}$.
 - c) Le DL en 0 à l'ordre de 2n + 1 de $x \mapsto \operatorname{Arcsin} x$.
- 5) En déterminant le coefficient de x^{2n+1} dans le produit des deux derniers développements limités, obtenir la formule

$$\sum_{k=0}^{n} \frac{1}{2k+1} \binom{2k}{k} \binom{2(n-k)}{n-k} = \frac{16^n}{(n+1)\binom{2n+1}{n}}.$$