Unit 2

Addition and Subtraction:

Addition and Subtraction

- Where the signed numbers are added or subtracted, we find that there are eight different conditions to consider, depending on the sign of the numbers and the operation performed.
- The algorithms for addition and subtraction are derived from the table and can be stated as follows (the words parentheses should be used for the subtraction algorithm)

SIGNED MAGNITUDEADDITION AND SUBTRACTION

Addition: A + B; A: Augend; B: Addend Subtraction: A - B: A: Minuend; B: Subtrahend

Operation	Add Magnitude	Subtract Magnitude		
		When A>B	When A <b< th=""><th>When A=B</th></b<>	When A=B
(+A) + (+B)	+(A + B)			
(+A) + (- B)		+(A - B)	- (B - A)	+(A - B)
(-A) + (+B)	l .	- (A - B)	+(B - A)	+(A - B)
(-A) + (-B)	- (A + B)	180		
(+A) - (+B)	, , ,	+(A - B)	- (B - A)	+(A - B)
(+A) - (-B)	+(A + B)			
(-A) - (+B)	- (A + B)			
(-A) - (-B)	13 Key 20 3	- (A - B)	+(B - A)	+(A - B)

Computer Organization

Prof. H. Yoon

Hardware for signed magnitude addition and subtraction

Hardware implementation working

- Figure in previous slide, shows a block diagram of the hardware for implementing the addition and subtraction operations.
- It consists of registers A and B and sign flip-flops As and Bs.
- Subtraction is done by adding A to the 2's complement of B.
- The output carry is transferred to flip-flop E, where it can be checked to determine the relative magnitudes of two numbers.
- The add-overflow flip-flop AVF holds the overflow bit when A and B are added.
- The A register provides other micro-operations that may be needed when we specify the sequence of steps in the algorithm.

Algorithm

- The flowchart is shown in Figure 10.2. The two signs A, and B, are compared by an exclusive-OR gate.
- If the output of the gate is 0 the signs are identical; If it is 1, the signs are different.
- For an add operation, identical signs dictate that the magnitudes be added. For a subtract operation, different signs dictate that the magnitudes be added.
- The magnitudes are added with a micro-operation EA A + B, where EA is a register that combines E and A. The carry in E after the addition constitutes an overflow if it is equal to 1. The value of E is transferred into the add-overflow flip-flop AVF.
- The two magnitudes are subtracted if the signs are different for an add operation or identical for a subtract operation. The magnitudes are subtracted by adding A to the 2's complemented B. No overflow can occur if the numbers are subtracted so AVF is cleared to 0.

Continue

- 1 in E indicates that A >= B and the number in A is the correct result. If this numbs is zero, the sign A must be made positive to avoid a negative zero.
- 0 in E indicates that A < B. For this case it is necessary to take the 2's complement of the value in A. The operation can be done with one micro-operation A A' +1. However, we assume that the A register has circuits for micro-operations complement and increment, so the 2's complement is obtained from these two micro-operations.
- In other paths of the flowchart, the sign of the result is the same as the sign of A. so no change in A is required. However, when A < B, the sign of the result is the complement of the original sign of A. It is then necessary to complement A, to obtain the correct sign.
- The final result is found in register A and its sign in As. The value in AVF provides an overflow indication. The final value of E is immaterial

Figure 10-2 Flowchart for add and subtract operations.

Addition and Subtraction with Signed-2's Complement Data

- The register configuration for the hardware implementation is shown in Fig. 10-3.
- We name the A register AC (accumulator) and the B register BR. The leftmost bit in AC and BR represent the sign bits of the numbers.
- The two sign bits are added or subtracted together with the other bits in the complementer and parallel adder.
- The overflow flip-flop V is set to 1 if there is an overflow.
- The output carry in this case is discarded.

Figure 10-3 Hardware for signed-2's complement addition and subtraction.

Algorithm for adding and subtracting 2 binary numbers in signed- 2's complement

- The representation is shown in the flowchart of Fig. 10-4.
- The sum is obtained by adding the contents of AC and BR (including their sign bits). The overflow bit V is set to 1 if the exclusive-OR of the last two carries is 1, and it is cleared to 0 otherwise.
- The subtraction operation is accomplished by adding the content of AC to the 2's complement of BR .
- Taking the 2's complement of BR has the effect of changing a positive number to negative, and vice versa.
- An overflow must be checked during this operation because the two numbers added could have the same sign.
- The programmer must realize that if an overflow occurs, there will be an erroneous result in the AC register

Figure 10-4 Algorithm for adding and subtracting numbers in signed-2's complement representation.