O Silício

Si, existente em grande quantidade na Terra.

Processo de Czochralski (crescimento de cristais de Si) para formação de wafers de silício.

Facilidade de obtenção do SiO₂ (um bom isolante) a temperaturas médias na presença de oxigénio.

Propriedades ópticas

O silício é muito utilizado para a construção de fotodetectores para a região visível do espectro electromagnético. A absorção pelo Si é dependente do comprimento de onda da luz incidente. Isto dificulta o fabrico de fotodetectores para a intensidade mas abre a possibilidade de fabricar sensores de côr.

Propriedades ópticas

•Dopagem p num substrato n, formando um fotodetector. Dois contactos são abertos na camada de SiO₂ para n e p.

Propriedades ópticas

• Absorção óptica dos semicondutores em função do comprimento de onda.

Si quase transparente para $\lambda > 1 \mu m$

Propriedades mecânicas

- Si é um excelente material para aplicações micromecâncias:
- -baixa densidade, 2.33x10³ kg m⁻³
- -elevado grau de elasticidade (Young's modulus), E=164 GPa
- -elevado grau de dureza, 11 GPa
- -muito boa resistência à fractura, 0.1-0.5 GPa
- -sem stress residual

Estruturas 3D em Silício

- Pontes
- Pranchas
- Frames
- Massas sólidas
- Membranas flexíveis
- Partes móveis
- Engrenagens, rodas dentadas

Propriedades térmicas do silício

• Coeficiente de expansão térmica,

 $\alpha = 2.33 \times 10^{-6} \text{K}^{-1}$

Condutividade térmica, 147 WK⁻¹m⁻¹

Materiais usados nas microtecnologias

• Materiais compatíveis com Si

- Si, puro
- p-Si, n-Si, dopagem com Boro ou Fósforo
- Si Wafer com os cristais orientados nas direcções [100], [110], [111]
- Polisilício puro, cristais sem orientação
- Poly-p, Poly-n, dopagem com Boro ou Fósforo respectivamente
- SiO₂, isolante, quase transparente à luz visível (n=1.4-1.5), ideal para membranas finas, exibe stress residual compressivo
- Si_3N_4 , isolante, quase transparente à luz visível (n=2.2-2.5), ideal para membranas finas, exibe stress residual em tensão.
- Al, metal utilizado para as ligações, bom grau de dureza para evaporação térmica ou sputtering.

Filmes finos

- Formação de filmes finos (na ordem dos micrómetros ou menor) de diferentes materiais sobre um wafer de silício
- Estes filmes podem ser formatados e padronizados por técnicas litográficas e técnicas de corrosão dos materiais em causa
- Metais nobres como o Au e a Ag, contaminam os circuitos de microelecrónica causando falhas, portanto wafers de silício com metais nobres têm que ser processados usando equipamento dedicado apenas a esta tarefa.
- Os metais nobres geralmente são padronizados recorrendo à técnica de *lift-off*.

Materiais usados nas microtecnologias

• Materiais não compatíveis com Si

- Ag e Au, muito macios para evaporação, mas com boas propriedades ópticas para a zona do visível e infra-vermelho respectivamente.
- Cu, material de baixa resistividade comparado com o Al. Requer processo especial para fazer o seu crescimento em wafers de silício.
- TiO₂, filmes finos para filtros ópticos

Stress residual em filmes finos

• Condições de deposição (temperatura, pressão) dos filmes fazem variar o stress residual. O *LPCVD* Si₃N₄ apresenta stress residual de 0.125-1 GPa conforme a variação de tempeatura e o *annealing*. Em baixo está representado o stress residual do *LPCVD Poly* quando depositado a diferentes pressões e sem *annealing*.

O silício é consumido à medida que o dióxido de silício cresce.

O crescimento ocorre em oxigénio e/ou vapor a 800-1200 °C

Filmes com ~2um é o máximo valor prático possível

Oxidação térmica

• A oxidação pode ser mascarada com nitreto de silício, que evita a difusão do O₂

nitreto de silício

Aspectos da deposição - Compatibilidade

- Compatibilidade térmica
 - A oxidação térmica e os filmes LPCVD são mutuamente compatíveis
 - A oxidação térmica e o LPCVD não são compatíveis com polímeros (derretem/ardem) e com a maioria dos metais (formação eutéctica, difusão, contaminação do forno)
- Compatibilidade topográfica
 - Não se pode fazer spin-coat sobre degraus elevados
 - -Deposição sobre rasgos profundos deixa buracos

Aspectos da deposição - Conformabilidade

- Um coating (cobertura) *conformal* cobre todas as superfícies com uma película uniforme
- Um coating planarizador tende a reduzir o degrau vertical da secção transversal
- Um coating não-*conformal* deposita mais nas superfícies do topo do que nas superfícies da base e/ou laterais

Aspectos da corrosão - Anisotropia

 Corrosivos isotrópicos removem a mesma taxa em todas as direcções

Aspectos da corrosão - Selectividade

- A selectividade é a relação entre a taxa de corrosão do material alvo e a taxa de corrosão dos outros materiais
- A corrosão química é geralmente mais selectiva do que corrosão por plasma
- A selectividade para o material da máscara e para os materiais etch-stop é importante

Spin Coating

- Um liquido viscoso é colocado no centro do wafer
- O wafer roda entre 1000-5000 RPM, 30 s
- Baked (levar ao forno) em pratos quentes 80-500 °C, 10-1000s
- Aplicação de corrosivos e solventes, secar
- Deposição de polímeros, percursores sol-gel

Physical Vapor Deposition - Evaporação

Metais evaporados num cadinho de tungsténio
 Alumínio, ouro

- Tipicamente para deposição em linha de vista
- Vácuo elevado necessário para evitar a oxidação, e.g., do alumínio

Índices de Miller

Micromaquinagem do silício

- Técnicas para:
 - -moldar e/ou criar padrões nos filmes finos que foram depositados sobre um wafer de silício
 - -mudar a forma do wafer,
 - -criar microestruturas 3D básicas.
- Técnicas associadas com a micromaquinagem do silício:
 - -deposição de filmes finos,
 - -remoção de materiais e filmes finos recorrendo à corrosão química,
 - -remoção de materiais e filmes finos por corrosão a seco (e.g, corrosão por plasma)
 - -introdução de impurezas no silício, modificando as suas propriedades (i.e, doping).

Micromaquinagem

- •Um grande número de fenómenos físicos têm um especial significado à escala do micrómetro comparado com o dispositivo macroscópico.
 - -Micro-mecânica
 - partes móveis e engrenagens
 - -Microfluidos
 - microcanais, microválvulas
 - -Micro-óptica
 - há partes móveis e engrenagens

Micromaquinagem

• Micromaquinagem volúmica - Bulk micromachining

• Micromaquinagem superficial - Surface micromachining

• Deep reactive ion etching (DRIE)

Outros materiais/processos

Volúmica, Superficial, DRIE

- Micromaquinagem volúmica envolve a remoção de material do próprio wafer de silício
 - -Tipicamente corrosão a frio
 - -Tradicionalmente na indústria MEMS
 - -Desenhos artísticos, equipamento barato
 - -Problemas com compatibilidade com IC
- Micromaquinagem superficial deixa o wafer intacto mas adiciona/remove camadas adicionais sobre a superficie do wafer
 - -Tipicamente corrosão com plasma
 - -Filosofia de desenho semelhante à do IC, equipamento relativamente barato
 - -Também se colocam questões com compatibilidade com IC
- DRIE (Deep Reactive Ion Etch) remove substrato mas assemelha-se à micromaquinagem superficial

Micromaquinagem volúmica

- Muitos dos corrosivos líquidos apresentam uma taxa de corrosão diferente para direcções diferentes
 - -<111> etch rate é a mais lenta, <100> e <110> mais rápida
 - -Rápida:lenta pode ser mais de 400:1
 - KOH, EDP, TMAH são os corrosivos anisotrópicos mais comuns para o silício
- Corrosivos isotrópicos do silício
 - -HNA (<u>Hydrofluoric acid + Nitric acid + Acetic acid</u>)
 - HF, ácidos nítricos e acético
 - Duro de utilizar
 - -XeF₂, BrF₃

Fotolitografia na micromaquinagem

- Técnica usada para definir a forma das estruturas a micromaquinar
- Uso da mesma técnica que na indústria da microelectrónica
- •Em alguns casos usa-se como máscara o SiO₂ ou Si₃N₄ em vez de *photoresist*

Corrosão com KOH

- Corrói PR e alumínio instantaneamente
- Máscaras:
 - -SiO2
 - compressivo
 - -SixNy
 - tensão
 - -Parylene!
 - -Au?

Corrosão química em solução aquosa

- óxido e nitreto são pouco corroídos em soluções aquosas de KOH.
 - -Óxido pode ser usado para máscara durante um curto período de tempo (i.e, para aberturas superficiais no silício)
 - Para longos períodos de tempo, o nitreto é a melhor máscara porque corrói mais devagar em soluções aquosas de KOH.

- Corrosão dependente da concentração de impurezas
 - -Elevados níveis de boro no silício reduz drasticamente a taxa de corrosão.
 - -Elevada concentração de boro a dopar o silício provoca a paragem da corrosão.

Corrosão anisotrópica do silício

- A corrosão anisotrópica tem taxas de corrosão dependentes das direcções do cristal
- Tipicamente, as taxas de corrosão são mais lentas para direcções perpendiculares ao plano cristalinos com a maior densidade
- Os corrosivos anisotrópicos tipicamente utilizados para o silício incluem o Hidróxido de potássio (KOH), o Tetramethyl Ammonium Hydroxide (TMAH), e o Ethylene Diamine Pyrochatecol (EDP)

Micromaquinagem de Ink Jet Nozzles

Cavidades-micromaquinagem volúmica

- Corrosão anisotrópica com KOH
- Corrosão com plasma isotrópico
- Corrosão isotrópica com BrF3 com óxido compressivo ainda visível

Micromaquinagem volúmica – Sensor de pressão

- Corrosão anisotrópica permite maquinar o silício com elevada precisão
- Silício apresenta um elevado efeito piezoresistivo
- Estas propriedades, combinadas com as propriedades mecânicas excepcionais e com um bom desenvolvimento do processo de fabrico, torna o silício o material ideal para sensores de precisão
- Sensores de pressão e acelerómetros foram os primeiros a serem desenvolvidos

Chip do sensor de pressão

Sensor de pressão encapsulado

Micromaquinagem superficial (surface micromachining)

- As técnicas de micromaquinagem superficial constróem a estrutura em camadas de filmes finos sobre o substrato de silício ou outro substrato a servir de base.
- Tipicamente são empregues filmes de dois materiais diferentes
 - O material da estrutura (quase sempre polisilício)
 - −O material de sacrifício (óxido).
 - Ambos os materiais são depositados e formatados.
 - No final o material de sacrifício é removido por corrosão química por solução aquosa de maneira a obter-se a estrutura pretendida.
 - Quanto maior o número de camadas, mais complexa é a estrutura e mais difícil se torna o seu fabrico.

Micromaquinagem superficial

Materiais para micromaquinagem superficial

• Estrutura/ sacrificio/ corrosivo

- Polisilício/ Dióxido de Silício / HF
- Dióxido de Silício / Polisilício / XeF2
- Alumínio/ photoresist/ plasma
- Photoresist/ Alumínio / corrosão de Al
- Alumínio / SCS EDP, TMAH, XeF2
- •Poly-SiGe poly-SiGe água DI

Gradientes de stress residual

Mais tenso no topo

Mais compressivo no topo

Medida certa! Após recozedura ~1000C durante ~60.

Gradientes de stress residual

Um mau dia!

Dobradiças

Deposição da camada de sacrifício Deposição e padronização da poly Depositar e padronizar a 2^a camada de sacrifício

Padronizar contactos Depositar e padronizar 2ª poly

Remover a camada de sacrifício

DRIE

- Geometrias sem restrição
- Paredes a 90°
 Elevada relação de aspecto 1:30
 Máscara fácil (PR, SiO2)
- Receita do processo depende da geometria

Estruturas DRIE

Técnicas de wafer bonding

- Usam-se técnicas de colagem e adesão para wafers e/ou *dies*:
 - -entre wafers micromaquinados e pequenos dies,
 - -entre *dies* e substratos,
 - -para formar dispositivos complexos com maior quantidade de elementos.
 - -muito usado em *Multi-Chip-Module*, combinando circuitos, sensores e actuadores num mesmo substrato ou *die*.

Fotolitografia na micromaquinagem

- Técnica usada para definir a forma das estruturas a micromaquinar
- Uso da mesma técnica que na indústria da microelectrónica
- •Em alguns casos usas-se como máscara o SiO₂ ou Si₃N₄ em vez de *photoresist*

Fotolitografia na micromaquinagem

Micromaquinagem do silício

• técnicas para:

- moldar e/ou criar padrões nos filmes finos que foram depositados sobre um wafer de silício
- mudar a forma do wafer,
- criar microestruturas 3D básicas.
- técnicas associadas com a micromaquinagem do silício:
 - deposição de filmes finos,
 - remoção de materiais e filmes finos recorrendo à corrosão química,
 - remoção de materiais e filmes finos por corrosão a seco (e.g, corrosao por plasma)
 - introdução de impurezas no silício, modificando as suas propriedades (i.e, doping).

Corrosão química

- Quando o *photoresist* não é suficientemente resistente para suportar a corrosão química
 - -Um filme fino de material mais resistente (e.g, óxido ou nitrato) é depositado e padronizado usando fotolitografia.
 - O óxido/nitreto então actua como máscara quando se dá a corrosão do material pretendido

Quando a corrosão do material está completa o óxido/nitrato que serviu de máscara é removido.

- Remoção de materiais em solução aquosa química recorrendo a uma base ou ácido forte.
 - -Corrosão isotrópica
 - a corrosão processa-se em todas as direcções e à mesma taxa
 - -Corrosão anisotrópica
 - A corrosão processa-se a diferentes taxas de corrosão em diferentes direcções. Permite a obtenção e controlo de várias formas.
 - Alguns compostos químicos corroem o silício a taxa diferentes que dependem da concentração das impurezas no silício.

- Químicos corrosivos isotrópicos
 - Disponíveis para óxido,
 nitrato, alumínio,
 polisilício, ouro, e
 silício.
 - Ataca os materiais à mesma taxa em todas as direcções, corroem debaixo da máscara à mesma taxa que corroem ao longo do material.

Na figura o *photoresist* é preto, e o substrato está representado a amarelo.

- Químicos corrosivos anisotrópicos
 - Há vários compostos químicos no mercado disponíveis para corroer os diferentes planos do silício a diferentes taxas de corrosão.
 - Hidróxido de potássio (KOH)
 - O mais popular e barato
 - Condições de segurança médias

- Aberturas em V no silício, inclinações segundo ângulos dependentes da orientação cristalina do silício.
- Wafer com orientação cristalina [100] dá origem a inclinações de 54,7°
- O uso de wafers com orientações cristalinas diferentes [110] produz aberturas em V e inclinações a 90° paredes verticais.

•KOH em RF-chips e wafers [110]

- óxido e nitrato são pouco corroídos em soluções aquosas de KOH.
 - Óxido pode ser usado para máscara durante um curto período de tempo (i.e, para aberturas superficiais no silício)
 - Para longos períodos de tempo, o nitrato é a melhor máscara porque corrói mais devagar em soluções aquosas de KOH.

- Corrosão dependente da concentração de impurezas
 - Elevados níveis de boro no silício reduz drasticamente a taxa de corrosão.
 - Elevada concentração de boro a dopar o silício provoca a paragem da corrosão.

Corrosão química volúmica em solução aquosa (Bulk silicon micromachining)

Bulk-silicon micromachining

- KOH pode ser usado para obter estruturas com a forma de mesa (a).
- Os cantos das estruturas em forma de mesa podem ser corroídos mais do que o pretendido (b) obtendo-se cantos imperfeitos.
 - Este problema pode ser resolvido com estruturas de compensação. Tipicamente a máscara de corrosão é desenhada de maneira a incluir estas estruturas nos cantos. Estas estruturas de compensação são desenhadas de maneira a que a mesa é formada obtendo-se cantos a 90°.

Bulk-silicon micromachining

Boron doped silicon.

- Diafragmas em silício com a espessura de 50 μm podem ser obtidos em wafers de Si com a corrosão por KOH.
- A espessura é controlada pelo tempo que demora a corrosão, portanto tem um intervalo de incerteza associado

- Silicon. Etch mask.
 - Diafragmas mais finos, até 20 µm de espessura, podem ser produzidos usando a dopagem por Boro para fazer parar a corrosão por KOH
 - A espessura do diafragma é dependente da profundidade à qual o Boro é difundido dentro do silício, neste processo o controlo é mais preciso que o simples controlo da corrosão por tempo.
 - O diafragma de silício é a estrutura básica dos sensores de pressão.
 - Este micro-sensor de pressão pode ser adaptado com uma mesa sobre o diafragma para servir de acelerómetro.

Bulk-silicon micromachining

• Bulk-micromachined micro-espectrómetro sintonizável para a luz visível

Tunable microspectrometer

Micromaquinagem superficial (surface micromachining)

- As técnicas de micromaquinagem superficial constroiem a estrutura em camadas de filmes finos sobre o substrato de silício ou outro substrato a servir de base.
- Tipicamente são empregues filmes de dois materiais diferentes
 - −O material da estrutura (quase sempre polisilício)
 - −O material de sacrifício (óxido).
 - Ambos os materiais são depositados e formatados.
 - No final o material de sacrifício é removido por corrosão química por solução aquosa de maneira a obter-se a estrutura pretendida.
 - Quanto maior o número de camadas, mais complexa é a estrutura e mais difícil se torna fabricá-la.

- Construção de uma prancha simples usando:
 - Uma camada de óxido é depositada na superfície do wafer.
 - Uma camada de polisilício é então depositado e padronizado utilizando técnicas de RIE.
 - O wafer é então atacado com um composto que corrói a camada de óxido debaixo do polisilício, libertando-o (b).
 - Porque o óxido não foi todo removido, fica ancorado o wafer ao polisilício por uma pequena parte de óxido.

- Uma grande variedade de estruturas fechadas (quartos) podem ser fabricadas na superfície do wafer de silício utilizando as técnicas de *surface micromachining*.
 - o volume do quarto é definido pelo volume da camada de óxido que serve de camada sacrificial (a).
 - Uma camada de polisilício é então depositada sobre a superfície do wafer. (b).
 - Uma janela é aberta no polisilício por *RIE*, e o wafer é então submerso numa solução aquosa de HF que remove todo o óxido (c).
- Surface micromachining permite o fabrico de estuturas complexas; como micro-pinças e engrenagens

Harmónico Motor

Corrosão electroquímica do silício

- Técnica electroquímica de passivação
 - Um wafer do tipo p dopado com impurezas do tipo n é usado
 - A dopagem é realizada de forma a que se obtenha uma junção pn
 - −A junção vai determinar a estrutura pretendida.
 - -Um potencial eléctrico é aplicado à junção durante o tempo que o wafer é submerso na solução aquosa de KOH para se iniciar a corrosão química.
 - -Quando a corrosão chega à junção uma fina camada de óxido forma-se a qual protege esta região da corrosão química.

Corrosão electroquímica do silício

- •É muito similar à dopagem com Boro para parar a corrosão química (corrosão dependente da concentração de impurezas).
 - -As estruturas produzidas são muito parecidas com aquelas produzidas pela técnica de paragem por doping elevado com Boro.
 - -A vantagem deste método é necessitar de baixas concentrações de impurezas.
 - Este método é mais compatível com o fabrico de microelectrónica.

Corrosão a seco

- Reactive Ion Etching (RIE)
 - -Os iões são acelerados contra um material corroendo-o.
 - Aberturas profundas com diferentes formas e com paredes verticais podem ser obtidas com esta técnica numa grande variedade de materiais incluindo o silício, óxido e nitrato.
 - Ao contrário da corrosão química aquosa anisotrópica, *RIE* não é afectado pela orientação cristalina do silício.

Técnicas de wafer bonding

- Usam-se técnicas de colagem e adesão para wafers e/ou *dies*
 - -entre wafers micromaquinados e pequenos dies,
 - -entre *dies* e substratos,
 - -para formar dispositivos complexos com maior quantidade de elementos.
 - -muito usado em *Multi-Chip-Module*, combinando circuitos, sensores e actuadores num mesmo substrato ou *die*.

LIGA

- LIGA é um acrónimo do nome em alemão para o processo (Lithographie, Galvanoformung, Abformung).
- *LIGA* usa litografia, cromagem, e moldagem para fabricar as micro-estruturas.
 - É capaz de criar com elevada resolução muito finas estuturas com alturas de 1 mm ou mais (pilares ou colunas).

Processo LIGA

- usando raios-X (litografia de raios-X) produz-se padrões em filmes de *photoresist* muito espessos:
 - -Os raios-X (precisa-se de uma fonte de raios-X suave, *synchrotron*) passam através de uma máscara especial e de uma camada espessa de photoresist que cobre o substrato.
 - -Este *photoresist* é então revelado (b).

Processo LIGA

- O padrão formado é então metalizado. (c).
- Esta estrutura em metal costuma ser o produto final, contudo é comum produzir um molde de metal (d).
- Este molde pode então ser enchido com outro material como por ex: plástico (e) para produzir o produto final neste material (f).

LIGA

- •O uso do *synchrotron* torna o processo *LIGA* muito caro
 - -Alternativas têm sido desenvolvidas
 - Um feixe de electrões colimado pode ser usado para fabricar estruturas na ordem dos 100 µm de altura.
 - Laser capaz de definir estruturas até várias centenas de micrómetros de altura.

- Evaporação, < 100 Pa
- Sputtering, < 10⁻⁴ Pa
- CVD, $< 10^{-5}$ Pa
- 1 bar=0,98 atm
- 1 mbar=100 Pa
- sccm, standard cubic centimeter per minute
- Raio do átomo de Al=0,143 nm=1,43 Angstrom