Smoothness impact

Chanwoo Lee, July 20, 2021

1 When signal is zero

Let us consider $\mathcal{Y} = \Theta + \mathcal{E} \in \mathbb{R}^{d_1 \times \cdots \times d_m}$ where \mathcal{E} follows i.i.d. sub-Gaussian noise with $\sigma^2 = 1$ without loss of generality and $\Theta = \mathcal{X} + \mathcal{X}_{\perp}$ with rank $(\mathcal{X}) = (\sqrt{d_1}, \dots, \sqrt{d_m})$. For each $k = 1, \dots, n$, denote

$$X_k = \mathcal{M}_k(\mathcal{X}), \quad X_{k,\perp} = \mathcal{M}_k(\mathcal{X}_\perp), \quad E_k = \mathcal{M}_k(\mathcal{E}), \quad Y_k = \mathcal{M}_k(\mathcal{Y}),$$

and define $Z_k = X_{k,\perp} + E_k$. We consider the high-order spectral method, where we estimate the signal tensor Θ from

$$\tilde{U}_{k} = \text{SVD}_{r_{k}}(Y_{k})$$

$$\hat{U}_{k} = \text{SVD}_{r_{k}}\left(\mathcal{M}_{k}\left(\mathcal{Y} \times_{1} \tilde{U}_{1}^{T} \times \cdots \times_{k-1} \tilde{U}_{k-1}^{T} \times_{k} \tilde{U}_{k+1}^{T} \times \cdots \times_{m} \tilde{U}_{m}^{T}\right)\right)$$

$$\hat{\Theta} = \mathcal{Y} \times_{1} (\hat{U}_{1} \hat{U}_{1}^{T}) \times \cdots \times_{m} (\hat{U}_{m} \hat{U}_{m}^{t}),$$
(1)

where r_k can be set arbitrary for all $k \in [m]$.

Theorem 1.1 (Estimation of high-order spectral algorithm). Suppose that $||X_{\perp}||_F \leq \sqrt{d}$. Then, with probability at least $1 - C \exp(-c\underline{d})$, $\hat{\Theta}$ defined according to (1) satisfies,

$$\|\hat{\Theta} - \Theta\|_F^2 \lesssim \underbrace{r_* + \bar{r}^2 \bar{d} + \bar{r} d_*^{1/2}}_{(*)} + \underbrace{\bar{d}}_{(**)}.$$

Notice that

Remark 1. The condition of $||X_{\perp}||_{sp} \leq \sqrt{d}$ should be changed to $||X_{\perp}||_F \leq \sqrt{d}$ in the previous note.

Remark 2. This new theorem incorporates many scenarios with different ranks. Notice that when $r_k = 0$ for all $k \in [m]$, by definition (1), $\hat{\Theta} = 0$, therefore our estimation has

$$\|\hat{\Theta} - \Theta\|_F^2 \le \|\mathcal{X}_\perp\|_F \le \bar{d},$$

which is a special case of Theorem 1.1 when $r_k = 0$ for all $k \in [m]$.

Notice that the previous theorem assumes that $r_k = \sqrt{d_k}$ so that \bar{d} term is absorbed into $\bar{r}^2 \bar{d}$.

2 When signal is from α -smooth function

For α -smooth functino, we are using the following lemma

Lemma 2.1 (Block approximation). Suppose the true parameter Θ admits α -smoothness, i.e., $f \in \mathcal{H}(\alpha)$. For every integer $r \leq n$, there exists block tensor $\mathcal{X} = \operatorname{Block}_r(\theta)$, satisfying

$$\|\Theta - \mathcal{X}\|_F^2 \lesssim \left(\frac{d^m}{r^{2\alpha}}\right).$$

Notice the rank of \mathcal{X} is at most (r, r, \ldots, r) . If we apply this setting to Theorem 1.1, (*) term

becomes

$$(*) = r^m + r^2 d + r d^{m/2}$$

under the condition that $\left(\frac{d^m}{r^{2\alpha}}\right) \leq d$ equivalently, $d^{\frac{m-1}{2\alpha}} \leq r$. The second term (**) becomes

$$(**) = \left(\frac{d^m}{r^{2\alpha}}\right).$$

Therefore, α -smooth case, we choose r balancing (*) and (**) under the constraints $d^{\frac{m-1}{2\alpha}} \leq r$. Table 1 shows the combinations giving the optimal convergence rate balancing r between (*) and (**). It is interesting to see that dominating term changes at smoothness = 1. I am looking for the general formula of those combinations when m > 5.

	Smoothness	Dominating term	Optimal rank	Convergence rate
m=2	$\alpha > 0$	r^2d	$r = d^{1/2(\alpha+1)}$	$d^{(\alpha+2)/(\alpha+1)}$
m=3	$0 < \alpha < 1$	r^2d	$r = d^{3/(2\alpha + 1)}$	$d^{(2\alpha+4)/(2\alpha+1)}$
	$\alpha \ge 1$	$rd^{m/4}$	$r = d^{1/(\alpha+1)}$	$d^{(3\alpha+5)/(2\alpha+1)}$
m=4	$0 < \alpha < 1$	r^m	$r = d^{2/(2\alpha + 1)}$	$d^{8/(2\alpha+1)}$
	$\alpha > 1$	$rd^{m/4}$	$r = d^{2/(\alpha+2)}$	$d^{(2\alpha+6)/(\alpha+2)}$

Table 1: The best combinations of (Smoothness, tensor mode, rank) to obtain the optimal convergence rate.