Random walks in cones

Advisors: Professors Marc Peigné and Kilian Raschel Student: Oanh Nguyen

LABORATOIRE DE MATHEMATIQUES et PHYSIQUE THEORIQUE UNIVERSITE FRANÇOIS RABELAIS, TOURS-FRANCE

June, 25th, 2012

Outline

- Random walks
- 2 Brownian motions
- 3 The approaches
- 4 Construction of a harmonic function
- **5** Coupling with Brownian motion
- 6 Main results

Definition

Let be i.i.d. random variables on . Let , . is a random walk.

Fix a point, is a random walk starting at.

- The cone Consider.
- Exit time

Let and let be a mapping from to . is a stopping time if the event is in .

For , we study the stopping time .

- Definition

 Let be mappings on such that
 - (Independent increments) If then are independent.
 - (Normally distributed) For all , .
 - (Continuous path) With probability 1, the mapping is continuous.

One can also view a Brownian motion as a mapping from to -the space of continuous functions on .

• Exit time

The corresponding exit time is

• The Donsker's theorem

The Donsker's theorem

Let be i.i.d. random variables from a probability space to whose mean is and variance . Set and

For any, we denote by the random variable with values in defined by

where . Then the law of converges weakly to that of a Brownian motion having a.e.

- Previous approach
 The Wiener Hopf factorization approach
- New approach
 Constructing a harmonic function for random walk and coupling with Brownian motion

The approach for Brownian motion

• Consider harmonic function on , vanishing on the boundary

Results

Proposition

There exists a constant such that for every and,

The approach for Brownian motion

• Results

Proposition

There exists a constant such that for every sequence converging to 0,

The approach for random walk

- Construct a harmonic function for the random walk
- Coupling with Brownian motions

A function defined on is harmonic before for the random walk if for every in , one has

Define

Properties

There exists an such that for every, the function is well defined, finite, strictly positive inside the cone and harmonic for the random walk and

The Sakhanenko's theorem

Assume that there exists an such that . Let . There exists a Brownian motion such that

where .

This provides a good control for the convergence in the invariant principle.

Asymptotics for exit time

Proposition

For all

Integral limit theorem

Proposition

For any , the distribution for weakly converges to the distribution with the density .

Random walks Brownian motions The approaches Construction of a harmonic function Coupling with Brow

Thank you for your attention