Национальный исследовательский университет «Высшая Школа Экономики» Московский институт электроники и математики им. А. Н. Тихонова

Лабораторная работа №3

Выполнил:

Дёма Иван Романович, СКБ212

Проверил:

Драчёв Григорий Александрович

Москва, 2024

1. Задание

Модифицировать (предложить собственные) два метода генерации псевдослучайных чисел.

2. Задание

Сравнение скорости работы двух алгоритмов со встроенным

3. Задание

Репозиторий с исходным кодом:

Ссылка

Документаци

Алфавитный указатель классов

Классы

Класс	сы с их кратким описанием.	
L	XRandomGenerator (Второй класс генератора случайных чисел) 5	
R	AandomGenerator (Класс генератора случайных чисел)	

Список файлов

Файлы

Полный список фай	лов.
main.cpp	8
mygenerators.h	

Классы

Класс LXRandomGenerator

Второй класс генератора случайных чисел #include <mygenerators.h>

Открытые члены

- LXRandomGenerator (const unsigned int seed)
 Стандартный конструктор класса
- unsigned int **generate** ()
 Открытая функция, позволяющая пользователю получить новое число из генератора

Подробное описание

Второй класс генератора случайных чисел

Класс основан на конкатенации Хог-шифта и лиейно-конгурентного метода

Класс имеет приватное поле:

Параметры шаблона

state	- состояние генератора. Из этого числа расчитывается каждое следующее	
	число	

Конструктор(ы)

LXRandomGenerator::LXRandomGenerator (const unsigned int seed)[inline], [explicit]

Стандартный конструктор класса

Инициализирует поле state, как seed, подаваемый при первоначальной инициализации пользователем

Методы

unsigned int LXRandomGenerator::generate ()[inline]

Открытая функция, позволяющая пользователю получить новое число из генератора

Возвращает

число, полученное после конкатенации результатов приватных функций xorshift() и lcg()

_	бъявления и						
1 16			UHAHAD	VE3CC3	LOVADOTAG	\mathbf{p}	VOIMED.
\mathbf{v}	ЈОЛОЈІСПИЛ И	ОПИСАПИЯ	ATICHOD	пласса	паходятья	D U	Javijie.

mygenerators.h

Класс RandomGenerator

Класс генератора случайных чисел #include <mygenerators.h>

Открытые члены

- **RandomGenerator** (unsigned int seed) Стандартный конструктор класса
- unsigned int **generate** ()
 Открытая функция, позволяющая пользователю получить новое число из генератора

Подробное описание

Класс генератора случайных чисел

Класс основан на использовании Хог-шифта с модификациями

Класс имеет приватное поле:

Параметры шаблона

state	- состояние генератора. Из этого числа расчитывается каждое следующее
	число

Конструктор(ы)

RandomGenerator::RandomGenerator (unsigned int seed)[inline], [explicit]

Стандартный конструктор класса

Инициализирует поле state, как seed, подаваемый при первоначальной инициализации пользователем

Методы

unsigned int RandomGenerator::generate()[inline]

Открытая функция, позволяющая пользователю получить новое число из генератора

Возвращает

число, полученное после выполнения приватной функции xorshift()

Объявления и описания членов класса находятся в файле: mygenerators.h

Файлы

Файл main.cpp

```
#include <ctime>
#include <fstream>
#include <iostream>
#include <vector>
#include "mygenerators.h"
```

Макросы

• #define SIZE 20

Устанавливает количество выборок, которые мы будем генерировать

Функции

template<typename S > std::ostream & operator<< (std::ostream &os, const std::vector< S > &vector)

Перегрузка оператора << для последовательного вывода вектора

• int main ()

Основная функция в программе

Макросы

#define SIZE 20

Устанавливает количество выборок, которые мы будем генерировать

Функции

int main ()

Основная функция в программе

Возвращает

ноль, если программа завершилась успешно

В начале программы создаётся массив sample_sizez, в котором описаны все размеры, которые будут генерироваться.

```
int sample_sizes[SIZE];
```

Проходим два цикла (так как два метода генерации) по всем размерам и генерируем данные по заданным размерам Создание объекта первого генератора

```
LXRandomGenerator generator(n)
```

Создание объекта второго генератора

RandomGenerator generator(n)

Проходим цикл по всем размерам от 1e3 до 1e7 и замеряем время генерации каждого типа (два собственной реализации и один встроенный) Создание объекта первого генератора

LXRandomGenerator generator(n)

Создание объекта второго генератора

RandomGenerator generator(n)

Использование третьего (встроенного) генератора

std::rand()

template<typename S > std::ostream & operator<< (std::ostream & os, const std::vector< S > & vector)

Перегрузка оператора << для последовательного вывода вектора

Аргументы

OS	- адрес буфера, в которой необходимо записывать данные
vector	- вектор, который необходимо вывести

Возвращает

адрес буфера

Файл mygenerators.h

Классы

class RandomGeneratorКласс генератора случайных чисел class LXRandomGeneratorВторой класс генератора случайных чисел

Макросы

- #define A 214013
 Устанавливает параметр А для линейно-конгруентного метода
- #define C 2531011 Устанавливает параметр С для линейно-конгруентного метода

Макросы

#define A 214013

Устанавливает параметр А для линейно-конгруентного метода

#define C 2531011

Устанавливает параметр С для линейно-конгруентного метода

mygenerators.h

См. документацию.

```
1 #ifndef MYGENERATORS H
2 #define MYGENERATORS_H
6 #define A 214013
9 #define C 2531011
10
11
21 class RandomGenerator {
22 private:
23
      unsigned int state;
24
29
      unsigned int xorshift() {
      state += C ^ state;
state ^= (state << 13);
30
31
           state ^= (state >> 17);
state ^= (state << 5);
32
33
           state *= 0x2545F4914F6CDD1D;
34
35
           return state;
     }
36
37
38 public:
43
      explicit RandomGenerator(unsigned int seed) : state(seed) {}
44
49
       unsigned int generate() { return xorshift(); }
50 };
51
52
60 class LXRandomGenerator {
61 private:
62
      unsigned int state;
63
68
      unsigned int lcg() {
       state = A * state + C;
69
70
            return state;
71
      }
72
77
      unsigned int xorshift() {
       state ^= (state << 13);
state ^= (state >> 17);
state ^= (state << 5);
78
79
80
81
           return state;
82
83
84 public:
89
      explicit LXRandomGenerator(const unsigned int seed) : state(seed) {}
90
95
       unsigned int generate() { return lcg() ^ xorshift(); }
96 };
98 #endif // MYGENERATORS H
```