Formal Language Selected Homework Chapter 4.3

2. Prove the following generalization of the pumping lemma, which includes Theorem 4.8 as well as Exercise 1 as special cases.

If L is regular, then there exists an m, such that the following holds for every sufficiently long $w \in L$ and every one of its decompositions $w = u_1 v u_2$, with $u_1, u_2 \in \Sigma^*, |v| \geq m$. The middle string v can be written as v = xyz, with $|xy| \leq m, |y| \geq 1$, such that $u_1xy^izu_2 \in L$ for all i = 0, 1, 2, ...

4. Prove that the following languages are not regular.

(a)
$$L = \{a^n b^l a^k : k \ge n + l\}.$$

(b)
$$L = \{a^n b^l a^k : k \neq n + l\}.$$

(c)
$$L = \{a^n b^l a^k : n = l \text{ or } l \neq k\}.$$

$$(d) L = \{a^n b^l : n \le l\}.$$

(e)
$$L = \{w : n_a(w) \neq n_b(w)\}.$$

- 5. Determine whether or not the following languages on $\Sigma = \{a\}$ are regular.
 - (a) $L = \{a^n : n \ge 2, \text{ is a prime number}\}.$
 - (b) $L = \{a^n : n \text{ is not a prime number}\}.$
 - (c) $L = \{a^n : n = k^3 \text{ for some } k \ge 0\}.$
 - (d) $L = \{a^n : n = 2^k \text{ for some } k \ge 0\}.$
- 14. Prove or disprove the following statement: If L_1 and L_2 are nonregular languages, then $L_1 \cup L_2$ is also nonregular.
- 15. Consider the languages below. For each, make a conjecture whether or not it is regular. Then prove your conjecture.

(a)
$$L = \{a^n b^l a^k : n + l + k > 5\}$$

(a)
$$L = \{a^n b^l a^k : n + l + k > 5\}.$$

(b) $L = \{a^n b^l a^k : n > 5, l > 3, k \le l\}.$

(c)
$$L = \{a^n b^l : n/l \text{ is an integer}\}.$$

(d)
$$L = \{a^n b^l : n + l \text{ is a prime number}\}.$$

(e)
$$L = \{a^n b^l : n \le l \le 2n\}.$$

- 17. Let L_1 and L_2 be regular languages. Is the language $L = \{w : w \in L_1, w^R \in L_2\}$ necessarily regular?
- 19. Are the following languages regular?

(a)
$$L = \{uww^Rv : u, v, w \in \{a, b\}^+\}$$
.

★ (b)
$$L = \{uww^Rv : u, v, w \in \{a, b\}^+, |u| \ge |v|\}.$$

- 21. Let P be an infinite but countable set, and associate with each $p \in P$ a language L_p . The smallest set containing every L_p is the union over the infinite set P; it will be denoted by $\bigcup_{p \in P} L_p$. Show by example that the family of regular languages is not closed under infinite union.
- **25.** In the chain code language in Exercise 24, Section 3.1, let L be the set of all $w \in \{u, r, l, d\}^*$ that describe rectangles. Show that L is not a regular language.