Credit Card Fraud detection - Capstone Project

Vivek SD

Senior Manager, Schneider Electric **Yash Khatavkar**

Data Analyst
Blue Star

Vikas Bhartiya

Database Manager

Introduction

- Problem statement thro' 5W-How Analysis
- Dataset(Highly Imbalanced)
- Exploratory Data Analysis
- Model Building and Evaluation
- Testing the best model
- Cost Benefit Analysis
- Recommendation

Problem Statement

Who is involved in this process?

The fraudster attempting to steal the money, the customer whose credit card information is being used without his/her knowledge, and the credit card company responsible for detecting and preventing such fraudulent transactions.

What do they do with it?

Fraudster tries to steal money while the customers are unaware of such fraudulent activities made using their credit card.

What

Where

Where do the transactions happen?

Fraudulent transactions can happen anywhere credit cards are accepted for payment be it in-person at a physical store or online.

When does it happen?

Fraudulent transactions can happen anytime but they occur more frequently during online transactions and/or during holiday seasons

When

Why

Why do credit card fraud transaction occur?

Fraudsters seek to gain unauthorized access to funds, goods or services without being detected.

How business is affected?

Can lead to financial losses for credit card companies and customers, damage to their reputation, and increased costs for implementing fraud detection measures.

How

Dataset and Data imbalance

DATASET

Train & Test dataset provided to build and come up with the best model for Credit Card fraud detection.

	Rows	Columns
Train dataset	1296675	23
Test dataset	555719	23

DATA IMBALANCE

Exploratory Data Analysis

Exploratory Data Analysis

GAS _ TRANSPORT have the HIGHEST number of transactions

TRAVEL the LEAST number of transactions

made more number of transactions than

MORE number of transactions at NIGHT

MORE on Sunday and MONDAY and the LEAST on Wednesday

MORE number of transactions observed towards YEAR END

Dataset is HIGHLY SKEWED**

Model Building and Evaluation

	Model Name	Training Score	Testing Score	Accuracy	F1 Score	Precision	Recall
0	Logistic Regression - without balancing	0.993720	0.995609	0.995609	0.993948	0.000000	0.000000
1	Logistic Regression - Random Under Sampling	0.830796	0.833259	0.925450	0.957731	0.037356	0.739394
2	Logistic Regression - Random Over Sampling	0.829232	0.833809	0.927084	0.958615	0.037750	0.730536
3	Logistic Regression - SMOTE	0.827151	0.834617	0.928095	0.959163	0.038336	0.731935
4	Decision Tree - Random Under Sampling	0.980301	0.967362	0.958567	0.975576	0.082867	0.966900
5	Decision Tree - Random Over Sampling	0.986404	0.955598	0.956868	0.974671	0.080146	0.971096
6	Decision Tree - SMOTE	0.989901	0.962845	0.954709	0.973514	0.075860	0.959907
7	Random Forest - Random Under Sampling	1.000000	0.975799	0.977503	0.985723	0.142492	0.962238
8	Random Forest - Random Over Sampling	1.000000	0.968918	0.975673	0.984734	0.133570	0.966434
9	Random Forest - SMOTE	1.000000	0.967377	0.973625	0.983624	0.123767	0.959441

RANDOM FOREST - yields the BEST RESULT amongst the models tested

Model Building and Evaluation

Data Imbalance posed difficulty in training the models as it resulted in overfitting.

Logistic regression – Precision and recall are almost same when applying random under sampling ,

Oversampling and SMOTE but better than applying without any sampling.

Decision tree- preformed better than the logistic regression using all 3 method.

Random forest performs better than all the other models

RANDOM FOREST - yields the BEST RESULT amongst the models tested

Features Importance

amt trans_hour age city_pop category_gas_transport category_shopping_net category_food_dining gender_M category_home category_misc_pos category_misc_pos category_shopping_pos category_shopping_pos category_travel category_travel category_tds_pets category_presonal_care category_personal_care category_health_fitness residence_semi_urban day_of_week_Sunday day_of_week_Monday day_of_week_Tuesday residence_urban day_of_week_Thursday day_of_week_Thursday day_of_week_Wednesday dtype: float64	0.525422 0.214341 0.043452 0.038603 0.025702 0.020065 0.014919 0.011062 0.010137 0.010059 0.009227 0.008335 0.007459 0.007114 0.007009 0.005645 0.005004 0.004824 0.004824 0.004802 0.004802 0.00487 0.003976 0.003976 0.003749 0.003527 0.003490 0.003435
acype: ! toutou	

Amount, transaction hour and age are the top features contributing in model.

Testing the Best Model

)	precision	recall	f1-score	support
0	1.00	0.97	0.99	1289169
1	0.18	0.98	0.30	7506
accuracy			0.97	1296675
macro avg	0.59	0.98	0.64	1296675
weighted avg	1.00	0.97	0.98	1296675
	precision	recall	f1-score	support
0	precision	recall 0.97	f1-score 0.99	support 553574
0 1				
_	1.00	0.97	0.99	553574
1	1.00	0.97	0.99 0.22	553574 2145

PRECISION and RECALL scores are HIGH

COST BENEFIT ANALYSIS to be done to identify the affordability of the model

S. No	Questions	Answer
1	Cost incurred per month before the model was deployed (b*c)	2,13,392.22
2	Average number of transactions per month detected as fraudulent by the model (TF)	2400
3	Cost of providing customer executive support per fraudulent transaction detected by the model	1.5
4	Total cost of providing customer support per month for fraudulent transactions detected by the model (TF*\$1.5)	8778
5	Average number of transactions per month that are fraudulent but not detected by the model (FN)	10
6	Cost incurred due to fraudulent transactions left undetected by the model (FN*c)	12,205.21
7	Cost incurred per month after the model is built and deployed (4+6)	\$20,983
8	Final savings = Cost incurred before - Cost incurred after(1-7)	\$1,92,409

\$1,92,409

Savings due to our model

