ONE-TO-ONE and ONTO LINEAR TRANSFORMATIONS

- $T:V \to W$ is called one-to-one if T maps distinct vectors in V to distinct vectors in W.
- T is called onto if range(T) = W.
 - $T:V \to W$ is one-to-one if for all vectors in V , $u \neq v$ implies that $T(u) \neq T(v)$ and T(u) = T(v) implies that u = v.

EXAMPLES:

$$T: \mathbb{R}^2 \to \mathbb{R}^3: T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2x \\ x - y \\ 0 \end{bmatrix}$$

• T is one-to-one because Let $T\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = T\begin{bmatrix} x_2 \\ y_2 \end{bmatrix}$. Then $\begin{bmatrix} 2x_1 \\ x_1 - y_1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2x_2 \\ x_2 - y_2 \\ 0 \end{bmatrix}$, which implies

$$2x_1 = 2x_2$$
 and $x_1 - y_1 = x_2 - y_2$ so $x_1 = x_2$ and $y_1 = y_2$.

• T is NOT onto because its range is not all of \mathbb{R}^3 . There is no vector such that $T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

$$D: P_3 \to P_2: D(p(x)) = p'(x)$$

- ullet D is not one-to-one because distinct polynomials in P_3 can have the same derivative.
 - D is onto because $range(D) = P_2$.

 $T \begin{bmatrix} a \\ b \end{bmatrix} = a + (a+b)x$ is one-to-one because $\ker(T) = 0$ since if T(A) = 0, then a = 0 and a+b=0

(therefore b=0). $T\begin{bmatrix} a \\ b \end{bmatrix} = a + (a+b)x$ is also onto because if $\ker(T) = 0$ then it is full rank:

$$rank(T) = dim(\mathbb{R}^2) - nullity(T) = 2 - 0 = 2$$