Homework 3¹

Question 1

Suppose a MAC system (S, V) is used to protect files in a file system by appending a MAC tag to each file. The MAC signing algorithm S is applied to the file contents and nothing else. What tampering attacks are not prevented by this system?

- **1.** Swapping two files in the file system.
- **2.** Replacing the tag and contents of one file with the tag and contents of a file from another computer protected by the same MAC system, but a different key.
- 3. Replacing the contents of a file with the concatenation of two files on the file system.
- **4.** Erasing the last byte of the file contents.

Question 2

Let (S,V) be a secure MAC defined over (K,M,T) where $M = \{0,1\}^n$ and $T = \{0,1\}^{128}$ (i.e. the key space is K, message space is $\{0,1\}^n$, and tag space is $\{0,1\}^{128}$). Which of the following is a secure MAC: (as usual, we use $\|$ to denote string concatenation).

1.
$$S'(k,m) = S(k, m[0,...,n-2]||0)$$
 and $V'(k,m,t) = V(k, m[0,...,n-2]||0, t)$

2.
$$S'(k,m) = S(k,m)[0,...,126]$$
 and $V'(k,m,t) = [V(k,m,t||0) \text{ or } V(k,m,t||1)]$ (i.e., $V'(k,m,t)$ outputs "1" if either $t||0$ or $t||1$ is a valid tag for m).

3.
$$S'(k,m) = S(k, m||m)$$
 and $V'(k,m,t) = V(k, m||m, t)$.

4.

$$S'(k,m) = S(k,m)$$
 and $V'(k,m,t) = \begin{cases} V(k,m,t) & \text{if } m \neq 0^n \\ \text{"1"} & \text{otherwise} \end{cases}$

5.

$$S'(k,m) = S(k,m)$$
 and $V'(k,m,t) = [V(k,m,t) \text{ or } V(k,m \oplus 1^n, t)]$

(i.e., V'(k, m, t) outputs "1" if t is a valid tag for either m or $m \oplus 1^n$).

6.

$$S'((k_1,k_2), m) = (S(k_1,m),S(k_2,m))$$
 and $V'((k_1,k_2),m,(t_1,t_2)) = [V(k_1,m,t_1) \text{ and } V(k_2,m,t_2)]$

(i.e., $V'((k_1,k_2),m,(t_1,t_2))$ outputs "1" if both t_1 and t_2 are valid tags).

https://class.coursera.org/crypto-012/

Question 3

Recall that the ECBC-MAC uses a fixed IV (in the lecture we simply set the IV to 0). Suppose instead we chose a random IV for every message being signed and include the IV in the tag. In other words, $S(k,m) := (r, ECBC_r(k,m))$ where $ECBC_r(k,m)$ refers to the ECBC function using r as the IV. The verification algorithm V given key k, message m, and tag (r,t) outputs "1" if $t = ECBC_r(k,m)$ and outputs "0" otherwise.

The resulting MAC system is insecure. An attacker can query for the tag of the 1-block message m and obtain the tag (r,t). He can then generate the following existential forgery: (we assume that the underlying block cipher operates on n-bit blocks)

- **1.** The tag $(r, t \oplus r)$ is a valid tag for the 1-block message 0^n .
- **2.** The tag $(m \oplus t, t)$ is a valid tag for the 1-block message 0^n .
- **3.** The tag $(r \oplus 1^n, t)$ is a valid tag for the 1-block message $m \oplus 1^n$.
- **4.** The tag $(m \oplus t, r)$ is a valid tag for the 1-block message 0^n .

Question 4

Suppose Alice is broadcasting packets to 6 recipients B_1, \dots, B_6 should be assured that the packets he is receiving were sent by Alice.

Alice decides to use a MAC. Suppose Alice and B_1, \ldots, B_6 all share a secret key k. Alice computes a tag for every packet she sends using key k. Each user B_i verifies the tag when receiving the packet and drops the packet if the tag is invalid. Alice notices that this scheme is insecure because user B_1 can use the key k to send packets with a valid tag to users B_1, \ldots, B_6 and they will all be fooled into thinking that these packets are from Alice.

Instead, Alice sets up a set of 4 secret keys $S = \{k_1, \dots, k_4\}$. She gives each user B_i some subset $S_i \subseteq S$ of the keys. When Alice transmits a packet she appends 4 tags to it by computing the tag with each of her 4 keys. When user B_i receives a packet he accepts it as valid only if all tags corresponding to his keys in S_i are valid. For example, if user B_1 is given keys $\{k_1, k_2\}$ he will accept an incoming packet only if the first and second tags are valid. Note that B_1 cannot validate the 3rd and 4th tags because he does not have k_3 or k_4 .

How should Alice assign keys to the 6 users so that no single user can forge packets on behalf of Alice and fool some other user?

1.
$$S_1 = \{k_1, k_2\}, S_2 = \{k_1\}, S_3 = \{k_1, k_4\}, S_4 = \{k_2, k_3\}, S_5 = \{k_2, k_4\}, S_6 = \{k_3, k_4\}$$

2.
$$S_1 = \{k_1, k_2\}, S_2 = \{k_1, k_3\}, S_3 = \{k_1, k_4\}, S_4 = \{k_2, k_3, k_4\}, S_5 = \{k_2, k_3\}, S_6 = \{k_3, k_4\}$$

3.
$$S_1 = \{k_1, k_2\}, S_2 = \{k_1, k_3\}, S_3 = \{k_1, k_4\}, S_4 = \{k_2, k_3\}, S_5 = \{k_2, k_4\}, S_6 = \{k_3, k_4\}$$

4.
$$S_1 = \{k_1, k_2\}, S_2 = \{k_1, k_3\}, S_3 = \{k_1, k_4\}, S_4 = \{k_2, k_3\}, S_5 = \{k_2, k_4\}, S_6 = \{k_4\}$$

Question 5

Consider the encrypted CBC MAC built from AES. Suppose we compute the tag for a long message m comprising of n AES blocks. Let m' be the n-block message obtained from m by flipping the last bit of m (i.e. if the last bit of m is m the last bit of m' is m 1). How many calls to AES would it take to compute the tag for m' from the tag for m and the MAC key? (in this question please ignore message padding and simply assume that the message length is always a multiple of the AES block size)

- **1.** 4
- **2.** 5
- **3.** 2
- **4.** *n*

Question 6

Let $H: M \to T$ be a collision resistant hash function. Which of the following is collision resistant: (as usual, we use \parallel to denote string concatenation).

- 1. H'(m) = H(m||m)
- **2.** $H'(m) = H(m) \oplus H(m)$
- **3.** H'(m) = H(|m|) (i.e. hash the length of m)
- **4.** $H'(m) = H(m) \bigoplus H(m \oplus 1^{|m|})$ (where $m \oplus 1^{|m|}$ is the complement of m)
- 5. H'(m) = H(m) ||H(m)||
- **6.** H'(m) = H(0)
- 7. H'(m) = H(m) ||H(0)||

Question 7

Suppose H_1 and H_2 are collision resistant hash functions mapping inputs in a set M to $\{0,1\}^{256}$. Our goal is to show that the function $H_2(H_1(m))$ is also collision resistant. We prove the contrapositive: suppose $H_2(H_1(\cdot))$ is not collision resistant, that is, we are given $x \neq y$ such that $H_2(H_1(x)) = H_2(H_1(y))$. We build a collision for either H_1 or for H_2 . This will prove that if H_1 and H_2 are collision resistant then so is $H_2(H_1(\cdot))$. Which of the following must be true:

- **1.** Either $x, H_1(y)$ are a collision for H_2 or $H_2(x), y$ are a collision for H_1 .
- **2.** Either x, y are a collision for H_2 or $H_1(x), H_1(y)$ are a collision for H_1 .
- **3.** Either x, y are a collision for H_1 or $H_1(x), H_1(y)$ are a collision for H_2 .
- **4.** Either $H_2(x), H_2(y)$ are a collision for H_1 or x, y are a collision for H_2 .

Question 8

In this question and the next, you are asked to find collisions on two compression functions:

$$f_1(x,y) = AES(y,x) \bigoplus y$$
 and $f_2(x,y) = AES(x,x) \bigoplus y$

where AES(x, y) is the AES-128 encryption of y under key x.

Your goal is to find four distinct pairs $(x_1, y_1), (x_2, y_2), (x_3, y_3), (x_4, y_4)$ such that $f_1(x_1, y_1) = f_1(x_2, y_2)$ and $f_2(x_3, y_3) = f_2(x_4, y_4)$. In other words, the first two pairs are a collision for f_1 and the last two pairs are a collision for f_2 .

Question 9

Let $H: M \to T$ be a random hash function where $|M| \gg |T|$ (i.e. the size of M is much larger than the size of T). In lecture we showed that finding a collision on H can be done with $O(|T|^{1/2})$ random samples of H. How many random samples would it take until we obtain a three way collision, namely distinct strings x, y, z in M such that H(x) = H(y) = H(z)?

- 1. $O(|T|^{1/3})$
- **2.** $O(|T|^{1/2})$
- 3. O(|T|)
- **4.** $O(|T|^{2/3})$