

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА - Российский технологический университет»

РТУ МИРЭА

Институт радиоэлектроники и информатики Кафедра геоинформационных систем

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ № 7

реализация заданной логической функции от четырех переменных на дешифраторах 4-16, 3-8 и 2-4

по дисциплине «ИНФОРМАТИКА»

Выполнил студент группы U	Боргачев Т. М		
Принял Ассистент кафедры ГИС Ассистент кафедры ГИС			Синичкина Д. А. Чижикова Н. С.
Практическая работа выполнена	« <u> » </u>	2023 г.	
«Зачтено»	« <u> » </u>	2023 г.	

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	
2 ПРОЕКТИРОВАНИЕ И РЕАЛИЗАЦИЯ	4
2.1 Построение таблицы истинности	4
2.2 Сбор схем	5
3 ВЫВОДЫ	8
4 ИНФОРМАЦИОННЫЕ ИСТОЧНИКИ	9

1 ПОСТАНОВКА ЗАДАЧИ

- 1. Запустить лабораторный комплекс и получить персональные исходные данные для работы.
- 2. По полученным из лабораторного комплекса персональным данным (смотреть рис. 1) необходимо восстановить таблицу истинности, по таблице истинности реализовать в лабораторном комплексе логическую функцию на дешифраторах тремя способами:
 - используя дешифратор 4-16 и одну дополнительную схему «или»;
 - используя необходимое количество дешифраторов 3-8, одну дополнительную схему «ИЛИ» и одну схему «НЕ»;
 - используя необходимое количество дешифраторов 2-4 и одну дополнительную схему «или».

Рисунок 1 - Персональные данные

- 3. Запустить процесс тестирования схем, чтобы убедиться в правильности их работы. В случае обнаружения ошибки найти ее и исправить.
- 4. Продемонстрировать правильность работы схем преподавателю
- 5. Оформить отчет по практической работе в соответствии с требуемым содержанием.
- 6. Защитить практическую работу, отвечая на дополнительные вопросы, и получить роспись преподавателя в тетради учета.

2 ПРОЕКТИРОВАНИЕ И РЕАЛИЗАЦИЯ

2.1 Построение таблицы истинности

Число F1 представлено в 16-ичной системе счисления, для восстановления таблицы истинности, необходимо каждую цифру числа поочередно перевести в двоичную систему счисления. Таким образом число E95A примет вид: 1110 1001 0101 1010. Представим каждую цифру в качестве a, b, c, d, а само число функцией F соответственно, тогда таблица истинности примет вид:

Таблица 1 - Таблица истинности для функции F

a	b	c	d	F
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

2.2 Сбор схем

Реализуем функцию, используя дешифратор 4-16 и одну дополнительную схему «или». Выберем лишь те выходы дешифратора, номера которых совпадают с номерами наборов значений переменных, на которых функция равна единице. Объединим эти выходы дешифратора через «или» и получим требуемую реализацию (рис. 2).

Рисунок 2 - Верная схема, реализующая логическую функцию на дешифраторе 4-16

Реализуем функцию, используя дешифраторы 3-8 и необходимую дополнительную логику. Подадим значения трех младших переменных функции на адресные входы обоих дешифраторов: младшую переменную «d» — на младший адресный вход, старшую переменную «b» — на старший адресный вход, переменную «c» — аналогично. Переменная «а» используется для управления дешифраторами.

У первого дешифратора выберем лишь те выходы, чьи номера совпадают с номерами наборов значений переменных, на которых функция равна единице, из первой половины таблицы.

У второго дешифратора выберем лишь те выходы, чьи номера совпадают с номерами наборов значений переменных за вычетом 8, на которых функция равна единице, из второй половины таблицы. Объединим выбранные выходы

обоих дешифраторов через «или» и получим требуемую реализацию (рис. 3).

Рисунок 3 — Верная схема, реализующая логическую функцию на дешифраторах 3-8

Реализуем функцию, используя дешифраторы 2-4 и дополнительную схему «ИЛИ». Количество выходов у дешифратора 2-4 в четыре раза меньше количества значений логической функции, поэтому нам потребуется разместить на рабочей области лабораторного комплекса не более четырех дешифраторов 2-4, которые мы будем называть операционными, а также еще один дешифратор 2-4, который будет управлять остальными — назовем его управляющим. Итого потребуется не более пяти дешифраторов 2-4 и дополнительная схема «ИЛИ».

Переменные «а» и «b» используется для управления операционными дешифраторами и аналогичным образом подаются на адресные входы управляющего дешифратора. Выберем у каждого операционного дешифратора лишь те выходы, которые соответствуют единичным значениям нашей функции. Объединим выбранные выходы всех операционных дешифраторов через «ИЛИ» и получим требуемую реализацию (рис. 4).

Рисунок 4 — Верная схема, реализующая логическую функцию на дешифраторах 2-4

Тестирование подтвердило правильность работы схем.

3 ВЫВОДЫ

Используя персональные исходные данные, была восстановлена таблица истинности, продемонстрированы визуализация и построение комбинационных схем, реализующих логическую функцию на различных дешифраторах тремя способами.

Был запущен процесс тестирования, показавший положительный результат, означающий верное составление схем.

Работа была продемонстрирована преподавателю.

4 ИНФОРМАЦИОННЫЕ ИСТОЧНИКИ

- 1. Смирнов, С.С., Карпов Д.А., Информатика: Методические указания по выполнению практических работ / С.С. Смирнов, Д.А. Карпов М., МИРЭА Российский технологический университет, 2020. 102 с. URL: https://cloud.mirea.ru/index.php/s/HQgynJsikf2ZsE3?dir=undefined&path=%2F&openfile=9637128 (дата обращения: 30.09.2023). Режим доступа: Электронно-облачная система Cloud MIREA PTУ МИРЭА. Текст: электронный.
- 2. Требования к оформлению электронных отчетов по работам 5-12-М., МИРЭА Российский технологический университет. 10с. URL: https://cloud.mirea.ru/index.php/s/HQgynJsikf2ZsE3?dir=undefined&path=%2FJOB T%2FTpe6oBahuяПоОформлениюОтчетов&openfile=9815338 (дата обращения: 30.09.2023). Режим доступа: Электронно-облачная система Cloud MIREA РТУ МИРЭА. Текст: электронный.