

Mathematics Methods Units 3/4 Test 4 2017

Section 1 Calculator Free Calculus involving Logarithmic Functions, Continuous Random Variables

STUDENT'S NAME	Solutions		
DATE: Thursday 20 Ju	TIME: 25 minutes	MARKS: 26	
	ens, pencils, drawing templates, eraser ns worth more than 2 marks require working to be shown to receive full	marks.	
$\frac{dy}{dx} = \frac{1}{x}$ $\frac{dy}{dx} = \frac{1}{x}$ $\frac{dy}{dx} = \frac{1}{x}$ We need	$pe = 2(1) + 2(1) / n(1)^{2}$ $= 2$ $y - coordinate $	Egn of large-to $y - y_p = m(x_1 - x_2)$ $y - 0 = 2(x_1 - x_2)$ $y = 2x_1 - 2$	
•	$= (1)^{2} / (1)^{2}$ $= 0$ is $(1,0)$	Page 1 of 4	

2. (7 marks)

(a) Determine the coordinates of the point of intersection between the curve $y = \frac{1}{x}$ and the line y = 1 [1]

(ii) Hence or otherwise, determine the exact area of the region trapped between the curve $y = \frac{1}{x}$, the line x = 3, the *x-axis*, the *y-axis* and the line y = 1. [4]

Area = rectogle +
$$\int \frac{1}{x} dx$$

= $1 + \left[\frac{\ln|x|}{3} \right]^3$
= $1 + \ln 3 - \ln 1$
= $1 + \ln 3$ unifs

(b)
$$\int \frac{5x}{x^2 - 1} dx$$

$$f(x) = x^2 - 1$$
 [2]
$$f'(x) = 2x$$

$$=\frac{5}{2}\left(\frac{2z}{z^2-1}\right)dz$$

$$=\frac{5}{2}\ln|x^2-1|+C$$

3. (11 marks)

(a) Differentiate each of the following with respect to x.

(i)
$$y = \frac{\ln x}{x^3}$$

$$\frac{\partial y}{\partial x} = \frac{(x^3)(\frac{1}{x}) - (\ln x)(3x^2)}{(x^3)^2}$$

(ii)
$$y = (x + \ln \sin x)^4$$

$$\frac{dx}{dx} = 4(x + \ln \sin x)^3 \times (1 + \frac{\cos x}{\sin x})$$
[3]

(iii)
$$y = \ln \sqrt{\frac{e^{5x}}{x^2 - 1}}$$

$$= \frac{1}{2} \left(\ln e^{5x} - \ln (x^2 - 1) \right)$$

$$= \frac{1}{2} \left(5x - \ln (x^2 - 1) \right)$$

$$\frac{dy}{dx} = \frac{1}{2} \left(5 - \frac{2x}{x^2 - 1} \right)$$

(b) If
$$f(x) = \int_{1}^{x} \ln \sqrt{t} \ dt$$
, determine $f'(e^2)$ [2]

$$\Rightarrow f'(x) = h(x)$$

$$=) f'(e^2) = \ln e^2$$

$$= \ln e$$

$$= 1$$

4. (4 marks)

A continuous random variable, X, has a probability density function given by

$$f(x) = \begin{cases} \frac{1}{5}e^{-\frac{x}{5}} & x \ge 0\\ 0 & x < 0 \end{cases}$$

The median of X is m. Determine the exact value of m.

$$= 0.5 = \int_{0}^{\infty} \frac{1}{5}e^{-\frac{1}{5}x} dx$$

$$= 7 \quad 0.5 = \left[-e^{-\frac{1}{5}x} \right]^{M}$$

$$= 7 \qquad 0.5 = \left[\frac{-1}{e^{1/5}x} \right]_{0}^{m}$$

$$=7$$
 0.5 = $\frac{-1}{e^{m_{x}}}$ - $\frac{-1}{e^{\circ}}$

$$=$$
 0.5 = $\frac{-1}{e^{-y/5}}$ + 1

$$= \frac{1}{2} = \frac{1}{e^{n/5}}$$

$$=$$
 $e^{m/s} = 2$

$$= 7 \qquad m = 5h2$$

Mathematics Methods Units 3/4 Test 4 2017

Section 2 Calculator Assumed Calculus involving Logarithmic Functions, Continuous Random Variables

STUDENT'S NAME							
DATE: Thursday 20 J	July	TIME: 25 minutes	MARKS: 29				
Special Items:	* * *	awing templates, eraser s, notes on one side of a single A4 page (these no	otes to be handed in with this				
Questions or parts of questi	ions worth more	than 2 marks require working to be shown to rec	eive full marks.				

5. (6 marks)

Let $x = \log_n 5$ and $y = \log_n 4$.

(a) Write
$$x - \frac{y}{2}$$
 as a single logarithmic term. [2]
$$= x - \frac{1}{2}y \qquad = \frac{1}{2} \frac{1}{2} - \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1$$

(b) Express the following in terms of x and/or y.

(i)
$$\log_n 100 = \log_n (4 \times 5 \times 5)$$
 [2]
= $y + 2 \propto$

(ii)
$$\log_5 4 = \log_5 4$$
 [2]
$$= \frac{\log_5 4}{\log_5 5}$$

6. (15 marks)

The time (in minutes) that it takes a student to complete a puzzle is a random variable X with a probability density function given by:

$$f(x) = \begin{cases} \frac{20x - x^2}{1125} & 5 \le x \le 20\\ 0 & elsewhere \end{cases}$$

(a) Determine the probability that it takes exactly 6 minutes to complete the puzzle. [1]

$$P(X=O) = O$$

(b) Determine the probability that it takes less than 10 minutes to complete the puzzle. [2]

$$\int f(\omega) d\omega = 0.4074$$

(c) Determine the probability that it takes between 8 and 10 minutes to complete the puzzle given that it takes less than 10 minutes. [2]

$$\frac{\int_{8}^{10} f(x) dx}{\int_{5}^{10} f(x) dx} = \frac{0.1754}{0.4074} = 0.4305$$

(d) Determine the expected time it takes to complete the puzzle.

$$E(x) = \int_{5}^{20} x f(x) dx$$

$$= 11.25$$

(e) Determine the standard deviation of the random variable X. [2]

$$O(x)^{2} = \int_{5}^{20} (x - 11.25)^{2} f(x) dx$$

= 13.4375

$$G(x) = 3.67$$

[2]

$$M = -2 \times 11.25 + 5$$

$$= -17.5$$

$$\sigma^2 = |-2|^2 \times 13.4375$$

$$= 53.75$$

The time (in minutes) that it takes a student to complete a second more challenging puzzle is a random variable Y with a cumulative probability distribution function given by

$$F(y) = 1 - \frac{10}{y}$$

Determine the probability that it takes a student longer than 25 minutes to complete the (g) second (more challenging) puzzle.

$$P(Y < 20) = 1 - \frac{10}{25}$$

$$(4420) = 1 - \frac{7}{25}$$
$$= 0.6$$

(h) Determine the quickest possible time for solving this second (more challenging) puzzle. [2]

$$0 = 1 - \frac{10}{9}$$

$$=> y = 10$$

P(Y > 25) = 1 - 0.6

= 0.4

... quickest kine is when t is just greater than 10.

7. (8 marks)

The decibel scale for sound, measured in decibels (dB), is defined as $D = 20 \log_{10} \left(\frac{P}{P_0} \right)$, where P is the pressure of the sound being measured and P_0 is a fixed reference pressure.

(a) Complete the table below, giving values rounded to one decimal place.

P	$0.5P_0$	P_0	$2P_{0}$	4 <i>P</i> ₀	8 <i>P</i> ₀
D	-6.0	0	6.02	12.04	18.06

(b) Sketch the graph of $D = 20 \log_{10} \left(\frac{P}{P_0} \right)$ on the axes below labelling all key features [3]

(c) When measured at similar distances, the sound produced by a dishwashing machine measures 47 dB, while that produced by lawn mower measures 96 dB. How many times greater is the sound pressure of the mower to that of the dishwasher? [3]

$$47 = 20 \log \left(\frac{p}{R_0}\right) = 5 \frac{p}{R_0} = 223.87$$

$$96 = 20 \log (\frac{1}{R}) \implies \frac{1}{R} = 63095.73$$

$$\frac{63095.73}{223.87} = 281.83$$

[2]