O-notace

Bc. Katarína Olejková

KATEDRA INFORMATIKY
UNIVERZITA PALACKÉHO V OLOMOUCI

O-notace

- Presná analýza časovej zložitosti T(n) (doteraz):
 - Počítali sme počet výpočetných krokov, ktoré algoritmus prevedie
 - Nevýhoda konštantny závisia na konkrétnom pseudokóde/implementácii
- Nepresná analýza časovej zložitosti T(n):
 - Zaujíma nás ako časová zložitosť rastie keď veľkosť vstupu n → ∞
 - Bude nás zaujímať ako rastie najdôležitejší člen budeme potlačovať zbytočné konštanty
 - Postačujúca aj keď nie je presná, vyzdvihuje to najpodstatnejšie
 - Na túto analýzu budeme používať matematický nástroj O-notace

O-notace

- Budeme mať dve funkcie f(n), g(n)
 - Nebude nás zaujímať ktorá funkcia je menšia/väčšia pre malé hodnoty n (n veľkosť vstupu)
 - Nebudú náš zaujímať konštantné faktory rastu funkcie (môžeme funkciu g násobiť)

O(g) ... asymptotická horní mez (odhad)

Definice Pro funkci g(n) je

$$O(g(n)) = \{f(n) \mid \text{ existuje } c > 0 \text{ a } n_0 \in \mathbb{N} \text{ tak,}$$

že pro každé $n \geq n_0$ je $0 \leq f(n) \leq cg(n)\}$

$$f = O(g)$$
 f nerastie rýchlejšie ako g

$\Omega(g)$... asymptotická dolní mez (odhad)

Definice Pro funkci g(n) je

$$\Omega(g(n)) = \{f(n) \mid \text{ existuje } c > 0 \text{ a } n_0 \in \mathbb{N} \text{ tak,}$$

že pro každé $n \geq n_0$ je $0 \leq cg(n) \leq f(n)\}$

$$f = \Omega(g)$$

f rastie aspoň tak rýchlo ako g

$\Theta(g)$... asymptotická oboustranná (těsná) mez (odhad)

Definice Pro funkci g(n) je

$$\Theta(g(n))=\{f(n)\mid ext{ existujf } c_1>0,\ c_2>0 ext{ a } n_0\in\mathbb{N} ext{ tak,} \qquad n_0=\max(n_{1,0},n_{2,0})\}$$

že pro každé $n\geq n_0$ je $0\leq c_1g(n)\leq f(n)\leq c_2g(n)\}$

$$f = \Theta(g)$$

f rastie asymptoticky rovnako ako g

Pozn.

- Dôležitý vzťah:
 - $f(n) = \Theta(g(n))$ práve keď f(n) = O(g(n)) a $f(n) = \Omega(g(n))$

$o(g) \dots$ asymptotická ostrá (netěsná) horní mez (odhad)

Definice Pro funkci g(n) je

$$o(g(n)) = \{f(n) \mid \text{pro každou } c > 0 \text{ existuje } n_0 > 0 \text{ tak,}$$

že pro každé $n \ge n_0$ je $0 \le f(n) < cg(n)\}$

$$f = o(g)$$
 f rastie pomalšie ako g

$\omega(g)$... asymptotická ostrá dolní mez (odhad)

Definice Pro funkci g(n) je

$$\omega(g(n)) = \{f(n) \mid \text{pro každou } c > 0 \text{ existuje } n_0 > 0 \text{ tak,}$$

že pro každé $n \geq n_0$ je $0 \leq cg(n) < f(n)\}$

$$f = \omega(g)$$
f rastie rýchlejšie ako g

Top 5 Sorting Algorithms and their time complexities

Algorithm	Best Case	Average Case	Worst Case
Bubble Sort	O(N)	O(N^2)	O(N^2)
Selection Sort	O(N^2)	O(N^2)	O(N^2)
Insertion Sort	O(N)	O(N^2)	O(N^2)
Merge Sort	O(NlogN)	O(NlogN)	O(NlogN)
Quick Sort	O(NlogN)	O(NlogN)	O(N^2)

Úkol

- Dokážte, či nasledujúce výrazy platia:
 - $5n^2 + 3 = \Theta(n)$
 - $5n^2 + 3 = \Theta(n^2)$
 - $3n^3 = O(n^3)$
 - $3n^3 = o(n^3)$
 - $2n^2 + 3n 2 = O(n!)$
 - $5\log_2 n = \Theta(\log_2 n)$
- Budúci týždeň uverejním riešenia