Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

ì	(currently amended): A method of making a proton exchange fuel cell
2	electrode, comprising:
3	forming carbon nanotubes on a substrate, to form a catalyst support;
4	depositing a precious metal on the nanotubes, to form a carbon nanotube
5	supported catalyst; and
6	incorporating a polymer membrane into the spaces between the carbon nanotube
7	supported catalyst, to form the electrode,
8	wherein said forming comprises directly growing carbon nanotubes on a carbon
9	substrate using a chemical vapor deposition process, and said forming comprises depositing a
10	catalyst selected from the group consisting of cobalt, iron, boron, and combinations thereof, on
11	the carbon substrate, for catalyzing the growing of the carbon nanotubes, and wherein said
12	depositing cobalt comprises electrodepositing on one side of the carbon substrate by a three-
13	electrode dc method in a 5 wt. % CoSO ₄ and 2 wt. % H ₃ BO ₃ aqueous solution at 20°C.
1	2 (original): The method of claim 1 wherein said forming comprises forming
2	carbon nanotubes on a gas diffusion layer substrate.
1	3 (original): The method of claim 1 wherein said forming comprises forming
2	single walled carbon nanotubes.
1	4 (original): The method of claim 1 wherein said forming comprises forming
2	multi-walled carbon nanotubes.

1	5 (original): The method of claim I wherein said forming comprises preparing
2	an array of anodic porous alumina templates on a substrate before said forming, to form an
3	aligned array of carbon nanotubes.
1	6 (original): The method of claim 5 comprising preparing an array of anodic
2	porous alumina templates on a porous silicon substrate before said forming, to form an aligned
3	array of carbon nanotubes.
1	7 (original): The method of claim 1 wherein said forming comprises growing
2	carbon nanotubes on the substrate using a chemical vapor deposition process using acetylene in
3	nitrogen as a carbon source.
1	8 (original): The method of claim 7 wherein said forming comprises growing
2	boron dopes carbon nanotubes on the substrate using a chemical vapor deposition process using
3	acetylene in nitrogen as a carbon source.
1	9-11 (canceled)
1	12 (currently amended): The method of claim 11 1 wherein the cobalt loading i
2	between none and 20 mg/m ² .
1	13 (original): The method of claim 12 wherein the size of the deposited catalys
2	particles is a function of the catalyst loading, such that an increase in catalyst loading produces
3	larger cobalt particles.
1	14 (canceled)
1	15 (original): The method of claim 1 wherein said depositing comprises
2	depositing a metal selected from the group consisting of platinum, gold, other precious metals,
3	and combinations thereof.

Appl. No. 10/713,774 Amdt. dated April 19, 2006 Reply to Office Action of October 19, 2005

1	16 (original): The method of claim 1 wherein said depositing comprises surface
2	functionalizing the surface of the nanotubes through a chemical oxidation treatment and
3	depositing the precious metal by an incipient-wetness process.
1	17 (canceled)
1	18 (currently amended): A method of making a proton exchange fuel cell
2	electrode, comprising:
3	forming carbon nanotubes on a substrate, to form a catalyst support;
4	depositing a precious metal on the nanotubes, to form a carbon nanotube
5	supported catalyst; and
6	incorporating a polymer membrane into the spaces between the carbon nanotube
7	supported catalyst, to form the electrode,
8	wherein said depositing comprises an electrodeposition process, and
9	The method of claim 17 wherein the electrodeposition process comprises
10	electrodepositing platinum on the nanotubes by a three-electrode dc method in 5 mM H ₂ PtCl ₆
11	and 0.5 M H ₂ SO ₄ aqueous solution.
1	19 (original): The method of claim 1 wherein said incorporating a polymer
2	membrane comprises depositing a solubilized perfluorosulfonate ionomer into the spare space
3	between nanotubes to form a 4-phase boundary.
1	20 (original): The method of claim 1 further comprising forming a proton
2	exchange membrane fuel cell utilizing the formed electrode, comprising:
3	adding a proton conducting membrane; and
4	adding electron collectors having fuel flow fields, to form the proton exchange
5	membrane fuel cell.