Geometryczna Teoria Grup

Weronika Jakimowicz

Zima 2024/25

Spis treści

1	Wstępy	1
	02.10.2024 Grafy Cayleya	2
	1. Metryka słów	2
	2. Graf Cayleya	2
	09.10.2024 Lemat Milnora-Švarca	5

1. Wstępy

02.10.2024 Grafy Cayleya

1. Metryka słów

Definicja 1.1: metryka słów

Niech G będzie grupą, a S dowolnym układem jej generatorów. Wówczas dla dowolnych $g_1, g_2 \in G$ odległość między nimi w metryce słów definiujemy jako

$$ds(g_1,g_2) = min\{n \ : \ g_2 = g_1s_1,...,s_n, \ s_i \in S \cup S^{-1}\},$$

$$\mathsf{gdzie}\,\mathsf{S}^{-1}=\{\mathsf{g}^{-1}\ :\ \mathsf{g}\in\mathsf{S}\}.$$

Metryka słów jest

- 1. skończona
- 2. symetryczna (z definicji generatorów)
- 3. lewo-niezmiennicza, czyli $(\forall \gamma \in G) ds(\gamma g_1, \gamma g_2) = ds(g_1, g_2)$

Ostatnia własność oznacza, że G działa na sobie jako na przestrzeni metrycznej przez izometrie.

Gromov chce patrzeć na dyskretne przestrzenie metryczne, jakimi są grupy z metryką słów, jako na przestrzenie ciągłe (z dużej odległości).

2. Graf Cayleya

Definicja 1.2: graf Cayleya

Niech G będzie grupą, a S zbiorem jej generatorów. C(G,S) to graf Cayleya o wierzchołkach będących elementami G i skierowanych krawędziach etykietowanych generatorami:

$$g \stackrel{s}{\longrightarrow} gs$$

 $gdzie\ g\in G\ i\ s\in S.$

Przykłady

1. Dla $G=\mathbb{Z}^2$ oraz $S=\{\overbrace{(1,0)},\overbrace{(0,1)}\}$ graf Cayleya to nieskończona "kratka"

2. Dla grupy cyklicznej rzędu p z generatorem s graf Cayleya to p-kąt

3. TO DO parkietarz kwadratami

Każdy graf Cayleya jest **spójny**, bo jego krawędzie to mnożenie przez generatory. Dodatkowo, grupa G działa na nim przez automorfizmy zachowując krawędzie oraz ich etykiety. To znaczy, że krawędż z wierzchołkami g $\stackrel{\mathsf{s}}{\longrightarrow}$ gs pod działaniem elementu $\gamma \in \mathsf{G}$ staje się $\gamma \mathsf{g} \stackrel{\mathsf{s}}{\longrightarrow} \gamma \mathsf{gs}$.

Jeśli każdą krawędź w grafie Cayleya potraktujemy jako odcinek długości 1, to możemy na nim zdefiniować metrykę która jako odległość dwóch punktów przyjmuje długość najkrótszej ścieżki między nimi. Ta metryka na wierzchołkach pokrywa się z **metryką słów** na grupie G o generatorach S, której graf rozpatrujemy. Przy takiej metryce działanie grupy G jest więc działaniem nie tylko przez automorfizmy, ale przez izometrie (lewa-niezmienniczość).

Innym wariantem grafu Cayleya jest graf w którym wierzchołki są elementami grupy V = G, ale krawędzie są niezorientowane: E = $\{\{g_1,g_2\}: ds(g_1,g_2)=1\}$. W przykładzie z parkietarzem zamiast podwójnych krawędzi w obie strony będzie on miał pojedyńczą, nieskierowaną krawędź

Dla surjekcji $\pi: F_S \to G$, gdzie $G = \langle S \mid R \rangle = F_S/N$ możemy mieć dwie tak samo zorientowane strzałki między dwoma wierzchołkami (gdy np. $g_1\pi(s_1) = g_1\pi(s_2) = g_2$

Graf Cayleya grupy wolnej to nieskończone drzewo stopnia równego ilości 2· ilość genera-

torów.

Definicja 1.3: suma drzewiasta

Mając dwie grupy (G_1, S_1) i (G_2, S_2) graf Cayleya ich sumy wolnej, czyli graf $(G_1 \star G_2, S_1 \cup S_2)$ to graf pierwszej grupy, który w każdym wierzchołku ma kopię grafu drugiej grupy, która w każdym wierzchołku ma kopię pierwszej grupy...

09.10.2024 Lemat Milnora-Švarca

Lemat 1.4: Milnora-Švarca

Niech X będzie właściwą przestrzenią geodezyjną a Γ grupą działającą na X przez izometrie właściwie i kozwarcie. Wówczas Γ jest skończenie generowalna i quasi-izometryczna z X. Dokładniej, $\forall \ x_0 \in X$ odwzorowanie $\Gamma \to X$ określone przez $\gamma \mapsto \gamma \cdot x_0$ jest quasi-izometrią.

Dowód

Wybierzmy $x_0 \in X$. Z kozwartości tego działania, istnieje promień R > 0 taki, że dla kuli $B = B_R(x_0)$ o środku w x_0 taki, że rodzina przesunięć kuli $\{g \cdot B : g \in \Gamma\}$ jest pokryciem X. Rozważmy zbiór $S = \{s \in \Gamma : s \neq 1, s \cdot B \cap B \neq \emptyset\}$ niewielkich przesunięć kuli B. Z właściwości działania oraz z właściwości przestrzeni X, zbiór S jest skończony. Ponadto, zbiór jest ten jest symetryczny $S = S^{-1}$ ($s \in S \implies s^{-1} \in S$), bo jeśli $s \cdot B \cap S \neq \emptyset$ to również $s^{-1} \cdot (s \cdot B \cap B) \neq \emptyset$.

Określamy $v:=\inf\{d(B,g\cdot B):g\in\Gamma-S-\{1\}\}$ czyli najmniejsza odległość kuli od jej rozłącznych z nią przesunięć.

Clam 1: v > 0

Dla każdego $g \in \Gamma - S - \{1\}$ wiemy, że $d(B,g \cdot B) > 0$. Gdyby to infimum v = 0, to mielibyśmy ciąg parami różnych elementów $g_n \in \Gamma$ takich, że $d(B,g_n \cdot B) \searrow 0$ maleją do 0. Stąd mielibyśmy punkty $z_n \in B$ takie, że $d(z_n,g_n \cdot B) \searrow 0$ (jako punkty prawie realizujące odległość między zbiorami). Istnieje podciąg n_k taki, że $z_{n_k} \in z_0 \in B$, a stąd $d(z_0,g_n \cdot B) \searrow 0$. To oznacza, że $B_{2R}(x_0)$ przecina niepusto nieskończenie wiele spośród przesunięc $g_n \cdot B_{2R}(x_0)$, a to jest sprzeczne z właściwością działania.

Clam 2: S generuje Γ oraz dla każdego $\gamma \in \Gamma$

$$\frac{1}{\lambda} \mathsf{d}_{\mathsf{X}}(\mathsf{x}_0, \gamma \cdot \mathsf{x}_0) \leq \mathsf{d}_{\mathsf{S}}(1, \gamma) \leq \frac{1}{\mathsf{r}} \mathsf{d}_{\mathsf{X}}(\mathsf{x}_0, \gamma \cdot \mathsf{x}_0) + 1\text{,}$$

 $gdzie \lambda := max_{s \in S} d_X(x_0, s \cdot x_0).$

I scenariusz:

II scenariusz

Niech y_0 będzie punktem na geodezyjnej $[x_0, \gamma \cdot x_0] = \eta$ z kuli B najdalszy od x_0 na tej geodezyjnej. W odległości r od y_0 obierzmy punkt x_1 . Wtedy odcinek $(y_0, x_1) \subseteq \eta \subseteq \bigcup_{s \in S} s \cdot B$, ale to jest zbiór domknięty, z czego wynika, że $x_1 \in \bigcup_{s \in S} s \cdot B$, czyli $x_1 \in s_1 \cdot B$. Iterujemy się tak aż kulą $B_k = s_k s_{k-1} ... s_1 \cdot B$ trafimy w $\gamma \cdot x_0$.

W scenariuszu I mamy $\gamma \cdot \mathsf{B} \cap \mathsf{s}_{\mathsf{k}}...\mathsf{s}_1 \cdot \mathsf{B} \neq \emptyset$, bo $\gamma \mathsf{x}_0 \in \gamma \cdot \mathsf{B}$ oraz $\gamma \mathsf{x}_0 \in \mathsf{s}_{\mathsf{k}}...\mathsf{s}_1 \cdot \mathsf{B}$. W takim razie $\mathsf{s}_1^{-1}...\mathsf{s}_{\mathsf{k}}^{-1}\gamma \cdot \mathsf{B} \cap \mathsf{B} \neq \emptyset$. Czyli zachodzi jedna z równości

1.
$$s1^{-1}...s_k^{-1}\gamma = 1 \implies \gamma = s_k...s_1$$

2.
$$s_1^{-1}...s_k^{-1} \gamma = s_{k+1} \in S \implies \gamma = s_k...s_1s_{k+1}$$

W scenariuszu II d $(\gamma x_0, s_k...s_1 \cdot B) < v \implies d(x_0, \gamma^{-1}s_k...s_1 \cdot B) < r \implies d(B, \gamma^{-1}s_k...s_1 \cdot B) < r$. W takim razie znowu zachodzi jedna z równości

1.
$$s1^{-1}...s_k^{-1}\gamma = 1 \implies \gamma = s_k...s_1$$

$$\mathbf{2.}\ \mathbf{s}_{1}^{-1}...\mathbf{s}_{k}^{-1}\boldsymbol{\gamma}=\mathbf{s}_{k+1}\in\mathbf{S}\implies\boldsymbol{\gamma}=\mathbf{s}_{k}...\mathbf{s}_{1}\mathbf{s}_{k+1}$$

Dla uzyskania prawej nierówności, zauważamy, że w obu scenariuszach $d_S(1,\gamma) \leq k+1 \leq \frac{1}{r} d_X(x_0,\gamma \cdot x_0) + 1$, bo $d(x_0,\gamma \cdot x_0) \geq k \cdot r$ bo tyle razy udało nam się odłożyć r na geodezyjnej.

Jeśli d $_{\mathsf{S}}(1,\gamma)=\mathsf{m}$, a $\gamma=\mathsf{s}_1...\mathsf{s}_{\mathsf{m}}$, to wówczas

$$\label{eq:def_def} \mathsf{d}_\mathsf{X}(\mathsf{s}_1,...,\mathsf{s}_k\cdot\mathsf{x}_0,\mathsf{s}_1...\mathsf{s}_{k-1}\cdot\mathsf{x}_0) = \mathsf{d}_\mathsf{X}(\mathsf{s}_k\cdot\mathsf{x}_0,\mathsf{x}_0) \leq \lambda.$$

Z nierówności trójkąta

$$\mathsf{d}(\gamma \cdot \mathsf{x}_0, \mathsf{x}_0) = \mathsf{d}(\mathsf{s}_1...\mathsf{s}_k \cdot \mathsf{x}_0, \mathsf{x}_0) \leq \mathsf{m} \cdot \lambda = \mathsf{d}_\mathsf{S}(1, \gamma) \cdot \lambda$$

co właściwie kończy dowód Claim 2.

Pozostaje nam udowodnienie quasi-izometryczności $f(\gamma) \to \gamma \cdot x_0$, które staje się **Claim 3**.

Z lewo niezmienniczości metryki słów d $_S$ wiemy, że d $_S(\gamma_1,\gamma_2)=d_s(1,\gamma_1^{-1}\gamma_2)$, czyli wszystkie dystanse wyrażają się jako dystanse od 1. Z kolei z lewo- Γ -niezmienniczości metryki d $_X$ na X mamy

$$\mathsf{d}_{\mathsf{X}}(\mathsf{f}(\gamma_1),\mathsf{f}(\gamma_2)) = \mathsf{d}_{\mathsf{X}}(\gamma_1 \cdot \mathsf{x}_0,\gamma_2 \cdot \mathsf{x}_0) = \mathsf{d}_{\mathsf{X}}(\mathsf{x}_0,\gamma_1^{-1}\gamma_2 \cdot \mathsf{x}_0).$$

Nierówności z Claim 2 otrzymujemy następujący wariant nierówności

$$\frac{1}{\lambda}\mathsf{d}_{\mathsf{X}}(\mathsf{f}(\gamma_1),\mathsf{f}(\gamma_2)) \leq \mathsf{d}_{\mathsf{S}}(\gamma_1,\gamma_2) \leq \frac{1}{\mathsf{r}} \cdot \mathsf{d}_{\mathsf{X}}(\mathsf{f}(\gamma_1),\mathsf{f}(\gamma_2)) + 1$$

Stąd wynika, że

$$\mathsf{rd}_\mathsf{S}(\gamma_1, \gamma_2) - \mathsf{r} \le \mathsf{d}_\mathsf{X}(\mathsf{f}(\gamma_1), \mathsf{g}(\gamma_2) \le \lambda \mathsf{d}_\mathsf{S}(\gamma_1, \gamma_2)$$

i f jest quasi-izometrycznym włożeniem dla $C = \max(\lambda, \frac{1}{r})$ i L = r.

Ponadto, obraz $f(\Gamma)$ jest R-gęsty (dla R promienia z początku dowodu) w X, bo dla każdego $x \in X$ istnieje $\gamma \in \Gamma$ takie, że $x \in \gamma \cdot B_R(x_0) = B_R(\gamma \cdot x_0)$. Czyli $d_X(x, \gamma \cdot x_0) \leq R$, ale $\gamma \cdot x = f(x)$. Stąd f jest quasi-izometrią.

Niewszystkie quasi-izometryczne grupy są współmierne.

Przykłady

1. Grupy podstawowe $\pi_1(M_1)$, $\pi_1(M_2)$ zamkniętych 3-wymiarowych rozmaitości hiperbolicznych M_1 , M_2 o niewspółmiernych (jedna nie jest iloczynem drugiej przez liczbę wymierną) objętościach vol (M_i) .

Wiadomo, że istnieje wiele klas niewspółmierności wśród objętości takich rozmaitości.

Twierdzenie 1.5: Mostowa o sztywności [1968]

Dwie zamknięte hiperboliczne rozmaitości o izomorficznych grupach podstawowych są izometryczne. W szczególności, mają jednakowe objętości.

Załóżmy nie wprost, że $\pi_1(\mathsf{M}_1)$ i $\pi_1(\mathsf{M}_2)$ są współmierne, to wówczas mielibyśmy wspólną podgrupę skończonego indeksu H < $\pi_1(\mathsf{M}_1)$, H < $\pi_1(\mathsf{M}_2)$. Niech $\overline{\mathsf{M}}_1$ i $\overline{\mathsf{M}}_2$ będą nakryciami M_1 , M_2 wyznaczone przez H. Skoro indeks grupy jest skończony, to nakrycia też takie są, a więc $\overline{\mathsf{M}}_i$ są zwarte i z podniesionymi metrykami

Riemanna, a więc są w dalszym ciągu hiperboliczne.

Z teorii nakryć wiemy, że $\pi_1(\overline{\mathsf{M}}_1) \cong \mathsf{H} \cong \pi_1(\overline{\mathsf{M}}_2)$. Stąd wynika, że $\overline{\mathsf{M}}_1$ jest izometryczna z $\overline{\mathsf{M}}_2$, a więc ich objętości są równe sobie. Ale

$$\text{vol}(\overline{M}_i) = (\underbrace{\text{krotność nakrycia}}_{=[\pi_1(M_i):H]}) \cdot \text{vol}(M_i)$$

stąd

$$\frac{\text{vol}(\mathsf{M}_1)}{\text{vol}(\mathsf{M}_2)} = \frac{[\pi_1(\mathsf{M}_1) : \mathsf{H}]}{[\pi_1(\mathsf{M}_2) : \mathsf{H}]}$$

daje sprzeczność z niewspółmiernością.

2. Niech G_A będzie produktem półprostym $\mathbb{Z} \ltimes_A \mathbb{Z}^2$, gdzie $A: \mathbb{Z}^2 \to \mathbb{Z}^2$ jest zadane macierzą $A \in Sl_2\mathbb{Z}$. Chcemy, żeby A było macierzą hiperboliczną (tzn. |tr(A)| > 2) posiadającą dwie różne rzeczywiste wartości własne, odwrotne do siebie. Wówczas grupa G_A jest kratą (podgrupą dyskretną i kozwartą) w pewnej grupie Liego $Sol = (\mathbb{R}^3, \cdot)$, gdzie mnożenie jest zadane jako

$$(x,y,z)\cdot(a,b,c)=(e^Z\cdot a,e^{-Z}\cdot b,c+z)$$