

OUTLINE

CUTLASS Introduction and Roadmap

Efficient Linear Algebra Computations on GPUs

CUTLASS Deep Dive

MOTIVATION

Productivity Challenges in Deep Learning

Problem:

Multiplicity of Algorithms and Data Types

- GEMM, Convolution, Back propagation
- Mixed precision arithmetic

Kernels specialized for layout and problem size

NT, TN, NCHW, NHWC

Kernel Fusion

Custom operations composed with GEMM and convolution

Solution:

Template Library for Linear Algebra Computations in CUDA C++

• Thread-wide, warp-wide, block-wide, device-wide

Data movement and computation primitives

• Iterators, matrix fragments, matrix computations

Inspired by **CUB**

PREVIOUSLY: CUTLASS 0.1

Preview Release - December 2017

Template-oriented Implementation

- Github: https://github.com/NVIDIA/cutlass/releases/tag/v0.1.0
- Parallel For All Blog Post: https://devblogs.nvidia.com/parallelforall/cutlass-linear-algebra-cuda/

Complete implementations

• GEMM: Floating point, Integer-valued, Volta TensorCores

SOON: CUTLASS 1.0

April 2018

Core API

- Shapes and tiles: structured layout definitions and tile sizes
- Fragments and iterators: collective operations for efficient and composable data movement
- Accumulator tiles and epilogues: matrix math operations and efficient block-level reductions

Complete implementations

• **GEMM:** Floating point, Integer, Volta TensorCores

Open Source (3-clause BSD License) https://github.com/NVIDIA/cutlass

DESIGN OBJECTIVES

Span the Design Space with Generic Programming

CUDA C++ templates for composable algorithms

Performance: Implement efficient dense linear algebra kernels

Structured, reusable components: flexibility and productivity

CUTLASS PERFORMANCE

CUTLASS GEMM Performance (M=10240, N=4096, K=4096) Quadro V100

Performance relative to cuBLAS

IMPLEMENTED COMPUTATIONS

CUTLASS v1.0

	Α	В	С	Accumulator
SGEMM	float	float	float	float
DGEMM	double	double	double	double
HGEMM	half	half	half	half
IGEMM	int8_t	int8_t	int8_t	int32_t
	int8_t	int8_t	float	int32_t
WMMA GEMM	half	half	half	half
	half	half	half	float
	half	half	float	float

GEMM TEMPLATE KERNEL

CUTLASS provides building blocks for efficient device-side code

Helpers simplify common cases

```
//
// Specialization for single-precision
//
typedef cutlass::gemm::SgemmTraits<
   cutlass::MatrixLayout::kColumnMajor,
   cutlass::MatrixLayout::kRowMajor,
   cutlass::Shape<8, 128, 128>
> SgemmTraits;

// Simplified kernel launch
Gemm<SgemmTraits>::launch(params);
```

```
//
// CUTLASS GEMM kernel
//
template <typename Gemm>
   __global__ void gemm_kernel(typename Gemm::Params params) {
    // Declare shared memory
    __shared__ typename Gemm::SharedStorage shared_storage;
    // Construct the GEMM object with cleared accumulators Gemm gemm(params);
    // Compute the matrix multiply-accumulate gemm.multiply_add(shared_storage.mainloop);
    // Update output memory efficiently gemm.update(shared_storage.epilogue);
}
```

EFFICIENT LINEAR ALGEBRA COMPUTATIONS ON GPUS

GENERAL MATRIX PRODUCT

Basic definition

General matrix product

$$C = \alpha \operatorname{op}(A) * \operatorname{op}(B) + \beta C$$
 $C \operatorname{is} M \operatorname{-by-} N, \operatorname{op}(A) \operatorname{is} M \operatorname{-by-} K, \operatorname{op}(B) \operatorname{is} K \operatorname{-by-} N$

Compute independent dot products

Inefficient due to large working sets to hold parts of A and B

GENERAL MATRIX PRODUCT

Accumulated outer products

General matrix product

$$C = \alpha \operatorname{op}(A) * \operatorname{op}(B) + \beta C$$

C is M-by-N, op(A) is M-by-K, op(B) is K-by-N

Compute independent dot products

```
// Independent dot products
for (int i = 0; i < M; ++i)
    for (int j = 0; j < N; ++j)
        for (int k = 0; k < K; ++k)
        C[i][j] += A[i][k] * B[k][j];</pre>
```

Permute loop nests

Load elements of A and B exactly once

GENERAL MATRIX PRODUCT

Computing matrix product one block at a time

Partition the loop nest into *blocks* along each dimension

- Partition into Mtile-by-Ntile independent matrix products
- Compute each product by accumulating Mtile-by-Ntile-by-Ktile matrix products

B matrix

BLOCKED GEMM IN CUDA

Parallelism Among CUDA Thread Blocks

Launch a CUDA kernel grid

- Assign CUDA thread blocks to each partition of the output matrix
- CUDA thread blocks compute Mtile-by-Ntile-by-K matrix product in parallel
- Iterate over K dimension in steps, performing an accumulated matrix product

```
for (int mb = 0; mb < M; mb += Mtile)
for (int nb = 0; nb < N; nb += Ntile)

for (int kb = 0; kb < K; kb += Ktile)
{
    .. compute Mtile by Ntile by Ktile GEMM
}

by each CUDA thread block</pre>
```


B matrix

\ Ktile

Ntile

THREAD BLOCK TILE STRUCTURE

Parallelism Within a CUDA Thread Block

Decompose thread block into warp-level tiles

- Load A and B operands into Shared Memory (reuse)
- C matrix distributed among warps

Each warp computes an independent matrix product

by each CUDA warp

WARP-LEVEL TILE STRUCTURE

Warp-level matrix product

Warps perform an accumulated matrix product

- Load A and B operands from SMEM into registers
- C matrix held in registers of participating threads

Shared Memory layout is K-strided for efficient loads

```
for (int k = 0; k < Ktile; k += warp_k)
{
    .. load A tile from SMEM into registers
    .. load B tile from SMEM into registers

Th

for (int tm = 0; tm < warp_m; tm += thread_m)
    for (int tn = 0; tn < warp_n; tn += thread_n)

for (int tk = 0; tk < warp_k; tk += thread_k)
    .. compute thread_m by thread_n by thread_k GEMM</pre>
```

by each CUDA thread

THREAD-LEVEL TILE STRUCTURE

Parallelism within a thread

Threads compute accumulated matrix product

A, B, and C held in registers

Opportunity for data reuse:

O(M*N) computations on O(M+N) elements

```
for (int m = 0; m < thread_m; ++m)
  for (int n = 0; n < thread_n; ++n)

  for (int k = 0; k < thread_k; ++k)
        C[m][n] += A[m][k] * B[n][k];</pre>
```

Fused multiply-accumulate instructions

COMPLETE GEMM HIERARCHY

Data reuse at each level of the memory hierarchy

CUTLASS DEEP DIVE

CUTLASS DESIGN PATTERNS

Design patterns and template concepts in CUTLASS

Templates: generic programming and compile-time optimizations

Traits: describes properties, types, and functors used to specialize CUTLASS concepts

Params: structure containing parameters and precomputed values; passed to kernel as POD

Vectorized Memory Accesses: load and store as 32b, 64b, or 128b vectors

Shape<>: describes size of a 4D vector quantity

TileTraits<>: describes a 4D block of elements in memory

Fragment<>: partitioning of a tile across a collection of threads

TileIterator<>: loads a tile by a collection of threads; result is held in Fragment

GEMM HIERARCHY: THREAD BLOCKS

Streaming efficiently to shared memory

LOADING A TILE INTO FRAGMENTS

Abstractions for efficient data transfer

Fragment: object containing each thread's partition of a tile

Fragment<float, 8>

similar to std::array<float, 8>

Example: strip-mining a 16-by-16 tile across 32 threads, loading as 2-vector

TILE TRAITS

Specifies partitioning of tile among threads

Tile Traits: tile dimensions, fragment size, access pitch, and initial offset function

Iterations

```
/// Concept specifying traits of a tile in memory
struct TileTraits {
 // Shape of the tile in memory
 typedef Shape<1, 16, 8, 2> Tile;
 // Number of accesses performed
 typedef Shape<1, 4, 1, 1> Iterations;
 // Number of steps along each dimension between accesses
 typedef Shape<1, 4, 1, 1> Steps;
 // Function to compute each thread's initial
 // offset in the tile
 static host device
 Coord<4> thread offset() const {
      return make Coord(0, threadIdx.x / 8, threadIdx.x % 8, 0);
};
```

TILE ITERATORS

Abstraction for accessing tiles in memory

Tile Iterator: owns pointer and strides


```
// Construct load and store iterators from base pointers and strides
TileLoadIterator<TileTraits, float, MemorySpace::kGlobal> gmem_load(gmem_ptr, gmem_leading_dim);
TileStoreIterator<TileTraits, float, MemorySpace::kShared> smem_store(smem_ptr, kSmemPitch);

// Load a fragment from global memory and store to shared memory
Fragment frag;
iterator_load_post_increment(gmem_load, frag);
iterator_store(smem_store, frag);
```

ARBITRARY MATRIX DIMENSIONS

Using guard predicates with iterators

Iterators accept predicate vectors when loading or storing tiles

One predicate per memory access

GEMM computes guard predicates before entering mainloop

Predicates updated once, prior to final Ktile iteration

```
// Construct a tile load iterator with bounds
TileLoadIterator gmem_load(params, make_Coord(1, K, M));

// Initialize predicate vector with the tile load iterator
typename TileLoadIterator::PredicateVector predicates;
gmem_load.initialize_predicates(threadblock_offset, predicates.begin());

// Load tiles while iterating over K dimension
iterator_load_post_increment(gmem_load, frag, predicates.const_begin());

...

// Update predicates and load final tile
gmem_load.residue(K_remainder);
iterator_load(gmem_load, frag, predicates.const_begin());
```


GEMM HIERARCHY: WARP TILES

Loading multiplicands into registers

SHARED MEMORY TO REGISTERS

Load A and B fragments from Shared Memory with iterators

SMEM to RF: must load data faster than math throughput

Tile iterator traits determined by math instruction

Typical warp-tile fragment sizes:

SGEMM, DGEMM: 64-by-32-by-1

HGEMM: 128-by-32-by-1

• IGEMM: 64-by-32-by-4

WMMA GEMM: 64-by-32-by-16

GEMM HIERARCHY: CUDA CORES

Actually doing the math

REGISTERS TO CUDA CORES

Compute matrix multiply-accumulate on fragments held in registers


```
// Perform thread-level matrix multiply-accumulate
template <
    typename Shape,
    typename ScalarA,
    typename ScalarB,
    typename ScalarC
struct GemmMultiplyAdd {
    /// Multiply: D = A*B + C
    inline __device__ void multiply_add(
        Fragment<ScalarA, Shape::kW> const & A,
        Fragment<ScalarB, Shape::kH> const & B,
        Accumulators const & C,
        Accumulators & D) {
        // Perform M-by-N-by-1 matrix product using FMA
        for (int j = 0; j < Shape::kH; ++j) {</pre>
            for (int i = 0; i < Shape::kW; ++i) {</pre>
                D.scalars[j * Shape::kW + i] =
                    // multiply
                    A.scalars[i] * B.scalars[j] +
                    // add
                    C.scalars[j * Shape::kW + i];
};
```

EXAMPLE: VOLTA TENSOR CORES

Targeting the CUDA WMMA API

WMMA: Warp-synchronous Matrix Multiply-Accumulate

API for issuing operations to Volta Tensor Cores

```
wmma::load matrix sync()
               Warp
                                          wmma::fragment<matrix_b>[n]
wmma::load_matrix_sync()
                                                           wmma::mma_sync()
      wmma::fragment<matrix_a>[m]
                                         wmma::fragment<matrix_c>[n][m]
```

```
/// Perform warp-level multiply-accumulate using WMMA API
template <
   /// Data type of accumulator
    typename ScalarC,
    /// Shape of warp-level accumulator tile
   typename WarpTile,
    /// Shape of one WMMA operation - e.g. 16x16x16
    typename WmmaTile
struct WmmaMultiplyAdd {
    /// Compute number of WMMA operations
    typedef typename ShapeDiv<WarpTile, WmmaTile>::Shape
       Shape;
    /// Multiply: D = A*B + C
    inline device void multiply add(
        FragmentA const & A,
        FragmentB const & B,
        FragmentC const & C,
        FragmentD & D) {
        // Perform M-by-N-by-K matrix product using WMMA
        for (int n = 0; n < Shape::kH; ++n) {
            for (int m = 0; m < Shape::kW; ++m) {</pre>
                // WMMA API to invoke Tensor Cores
                nvcuda::wmma::mma sync(
                    D.elements[n][m],
                    A.elements[k][m],
                    B.elements[k][n],
                    C.elements[n][m]
               );
};
```

EXAMPLE: IGEMM

Mixed-precision Integer-valued GEMM

DP4A instruction computes 4-element dot product

- A and B are packed vectors of 8-bit integers
- Accumulator is 32-bit signed integer


```
/// Perform M-by-N-by-4 matrix product using DP4A
template <typename Shape>
struct IgemmMultiplyAdd<Shape, int8 t, int8 t, int> {
    /// Multiply: d = a*b + c
    inline device void multiply add(
        Fragment<int8 t, Shape::kW * 4> const & A,
        Fragment<int8 t, Shape::kH * 4> const & B,
        Accumulators const & C,
        Accumulators & D) {
        int const* a int =
            reinterpret cast<int const*>(&A.scalars[0]);
        int const* b int =
            reinterpret cast<int const*>(&B.scalars[0]);
        // Perform M-by-N-by-4 matrix product using DP4A
        for (int j = 0; j < Shape::kH; ++j) {</pre>
            for (int i = 0; i < Shape::kW; ++i) {</pre>
                // Inline PTX to issue DP4A instruction
                asm volatile(
                    "dp4a.s32.s32 %0, %1, %2, %3;"
                    : "=r"(D.scalars[j * Shape::kW + i])
                    : "r"(a int[i]),
                       "r"(b int[j]),
                       "r"(C.scalars[j * Shape::kW + i])
                );
};
```

EXAMPLE: IGEMM

Interleaved data layouts for efficient streaming from Shared Memory

DP4A requires operands to be contiguous along K dimension

- Efficient fragment loading requires K-strided layout in Shared Memory
- Solution: adopt a hybrid SMEM layout

GEMM HIERARCHY: TRANSFORMING FRAGMENTS

Permute fragments before storing to shared memory

PTX ISA: prmt

(IN)COMPLETE GEMM HIERARCHY

Efficiently update the output matrix

Accumulator tiles typically don't match output matrix

- Element-wise operation: C = α AB + β C
- Type Conversion: scale, convert, and pack into vectors
- Layout: C matrix is contiguous

SPATIALLY INTERLEAVED ACCUMULATORS

GEMM EPILOGUE

Restructuring accumulators, elementwise operators, and updating global memory

KERNEL FUSION

Custom element-wise operations during epilogue

Matrix product may be combined with arbitrary functions

- Element-wise operators: Scaling, bias, activation functions
- Data type conversion: F32->F16, Int32->Int8
- Matrix update operations: reductions across thread blocks

COMPLETE* GEMM DATA FLOW

Embodied by CUTLASS CUDA templates

^{*} Mostly. Not depicted: software pipelining, double-buffering, and more. Read the code. ©

CONCLUSION

CONCLUSION

CUTLASS: CUDA C++ Template Library

CUTLASS is an Open Source Project for implementing Deep Learning computations on GPUs

- https://github.com/nvidia/cutlass (3-clause BSD License)
- V1.0: April 2018

CUTLASS is efficient: >90% cuBLAS performance

Generic programming techniques span Deep Learning design space

- Hierarchical decomposition of GEMM
- Data movement primitives
- Mixed-precision and Volta Tensor Cores

CUTLASS enables developers to compose custom Deep Learning CUDA kernels

QUESTIONS?

CUTLASS: https://github.com/nvidia/cutlass

We welcome your feedback!