### Government websites as data:

# A methodological pipeline with application to the websites of municipalities in the United States

Markus Neumann\* Fridolin Linder<sup>†</sup> Bruce Desmarais<sup>‡</sup>
May 6, 2019

#### Abstract

A local government's website is an important source of information about policies and procedures for residents, community stakeholders and scholars. Existing research in public administration, public policy, and political science has relied on manual methods of website content collection and processing, limiting the scale and scope of website content analysis. We develop a methodological pipeline that researchers can follow in order to gather, process, and analyze website content. Our approach, which represents a considerable improvement in scalability, involves downloading the entire contents of a website, extracting the text and discarding redundant information through a new method of boilerplate removal. We illustrate our methodological pipeline through the collection and analysis of a new and innovative dataset—the websites of over two hundred municipal governments in the United States. We build upon recent research that analyzes how variation in the partisan control of government relates to content made available on the government's website. Using a structural topic model, we find that cities with Democratic mayors provide more information on policy deliberation and crime control, whereas Republicans prioritize basic utilities and services such as water, electricity and fire safety.

PA Letter Requirements:

2-4 pages

no longer than 1500-3000 words

1-3 small display items (figures, tables, or equations)

200-300 word abstract

<sup>\*</sup>Department of Political Science, The Pennsylvania State University, University Park, PA 16802, USA. Email: mvn5218@psu.edu. Corresponding author.

<sup>&</sup>lt;sup>†</sup>Department of Political Science, Social Media and Political Participation Lab, New York University, New York, NY 10012, USA. Email: fridolin.linder@nyu.edu

<sup>&</sup>lt;sup>‡</sup>Department of Political Science, The Pennsylvania State University, University Park, PA 16802, USA. Email: bdesmarais@psu.edu

#### 1 Introduction

Local governments convey voluminous information about all aspects of their policymaking, policy implementation, and public deliberation, via their official websites. The vital role of official websites in connecting the government and the governed has motivated a wave of research on the contents of government websites (e.g., Grimmelikhuijsen 2010; Wang, Bretschneider and Gant 2005; Osman, Anouze, Irani, Al-Ayoubi, Lee, Balcı, Medeni and Weerakkody 2014; Eschenfelder, Beachboard, McClure and Wyman 1997). The conventional approach to data collection in projects focused on government websites involves manual content extraction from each website in the dataset. Though accurate, the manual approach to data collection is costly for large-scale analysis. We present a methodological pipeline that can be used to automatically scrape government websites in order to build datasets that can be used for text analysis—describing challenges in data collection and processing, as well as the solutions we adopt. We provide an illustrative application in which we explore the ways in which the textual contents on city government websites in six American states correlate with the partisanship of the city mayor.

# 2 Mayoral Politics and City Government Website Content

A substantial body of research has found that the partisanship of the mayor affects city governance along multiple dimensions of spending and policy attention (Gerber and Hopkins 2011; de Benedictis-Kessner and Warshaw 2016; Einstein and Glick 2016; Marion and Oliver 2013). Official city websites allow mayors to present their views and policy priorities to the public. In local politics, where campaign funds are low, this lends incumbents a crucial advantage in becoming more well-known among their constituencies (Stanyer 2008). Local government websites are frequently visited by the public (Thomas and Streib 2003). City websites can be used to communicate the stance of a mayor on social or economic programs.

The existing research that uses scraped websites provides an indication of the theoretical value of empirical analysis of web contents. Research 'e-governance' evaluates government websites in terms of accessibility, ease-of-use, and function (e.g., Urban 2002; McNutt 2010; Armstrong 2011; Feeney and Brown 2017). As an example, Grimmelikhuijsen and Welch (2012) study local government websites of Dutch municipalities to measure government transparency regarding air quality in the municipalities. The websites of politicians and their parties have also been the object of research (Druckman, Kifer and Parkin 2009; Druckman, Hennessy, Kifer and Parkin 2010; Cryer 2017; Esterling, Lazer and Neblo 2011; Esterling and Neblo 2011; Norris 2003; Therriault 2010). For example, (Druckman et al. 2010) analyze the issues engaged on websites for candidates in U.S. Congressional elections, and find that candidates strategically engage just a few issues based on the priorities in their districts and the characteristics of their opponents.

# 3 Data: US Municipal Government Website Text

For data availability reasons, we focus our analysis of municipal websites on six states—Indiana, Louisiana, New York, Washington, California, and Texas. [Markus, when were the websites scarped—need to indicate year and/or month]. The selection of states and cities is largely dictated by the presence of partisan mayors and availability of the relevant data. Municipal elections in Indiana and Louisiana are partisan across the board, so our sample is primarily focused on these two states. For Indiana and Louisiana, all cities with a website are included, resulting in a considerably larger sample than for the other four states. New York and Washington do not have nominally partisan elections, but for a subset of cities, partisanship can be determined through contribution data (see appendix for more detail). California and Texas contain a number of large cities whose mayors are sufficiently well-known for their partisanship to be available. Our sample is well-balanced on a number of theoretically important dimension. One, each of the four geographic regions [Markus, are these census regions?] are represented with at least one state. Two, we have

a fairly well-balanced sample with respect to the urban/rural cleavage. Furthermore, the sample is politically balanced—we have three blue states, and three red states. The partisan breakdown of city websites is depicted in Table 1. Details on the sources and methods of raw data collection can be found in the Appendix.

| State      | Democratic | Republican |
|------------|------------|------------|
| California | 9          | 6          |
| Indiana    | 46         | 54         |
| Louisiana  | 28         | 17         |
| New York   | 36         | 16         |
| Texas      | 2          | 7          |
| Washington | 11         | 2          |

Table 1: Descriptive statistics on the partisanship of the cities in the corpus.

One of the more subtle aspects of local government is the presence of different types of government structures. Between council-manager governments and mayor-council governments (Morgan and Watson 1992)—either in the weak or strong mayor variant (DeSantis and Renner 2002)—there is variance in where a city's executive authority lies. We do not have access to information about the type of governments across the breadth of our dataset. Given the prominent place that mayors tend to have on their cities' websites, we feel that any bias arising from this nuance should be minor. Gerber and Hopkins (2011), whose model is somewhat comparable to ours in the sense that they also test the effect of mayoral partisanship on city policy priorities.

# 4 The Web to Text Pipeline

Once we have gathered the website files we need to pre-process the data (Denny and Spirling 2018). In this section, we describe our pre-processing pipeline, with which we take an archive of website files, and output a corpus of formatted plain text files that are suitable for comparative analysis with text as data methods. In this pipeline, we address two methodological challenges.

First, though they contain significant amounts of text, websites are not comprised of clean plain text files. Rather, the files available at websites are of multiple types, including HTML, PDF, word processor, plain text, and image files. The first step in the methodological pipeline is aimed simply at extracting clean plain text from this heterogeneous file base. The second step in our methodological pipeline is to process the text to remove boilerplate language—language that is effective at differentiating one website from another but is uninformative regarding policy or political differences between governments. Some of the steps we take in this processing pipeline are universally applicable in the analysis of textual data, and some of them are most appropriate for the particular type of text analysis that we apply to this data—statistical topic modeling. We will clarify this distinction as we describe steps in our pipeline.

#### 4.1 Site to Text Conversion

The format of a file has a major impact on whether and how textual data can be extracted from a document. For all text analysis projects, researchers need to consider file formats. For the most part, the file type of a document can be correctly determined through the filename ending—its extension. However, there are exceptions to this, which, if ignored, can lead to large amounts of improperly formatted text, arising from incorrectly converted documents, which leads to a general decrease in the amount of usable data. Two issues, in particular, need to be addressed: One, HTML files on city websites frequently do not have an ending but are still perfectly readable if correctly identified as such. Second, some documents contain the incorrect file ending. For example, we found thousands of documents that ended in .html, when they were actually PDFs. To accurately assess their type, we rely on the R package wand (Rudis, Zoulas, Rullgard and Ong 2016), which is an R interface to the Unix library libmagic (Darwin 2008), which determines the type of a file on the basis of its file signature - or "magic number". This short sequence of bytes at the start (and sometimes end) of files is unique for each file type and therefore allows its correct identification

through computer forensics tools such as libmagic.

Consequently, we rename all documents so that their file ending reflects their actual file type. This is strictly necessary because we rely on the readtext R package (Benoit and Obeng 2018), which determines a document's type solely through its ending—to convert the files to plain text. The breakdown of the files by type is given in Table 2. The most frequent file types are HTML and PDF, from which we are able to extract a substantial amount of usable text. Files of type XML, DOC, TXT, and DOCX, also occur regularly in our corpus and offer a considerable volume of textual data.

| Filetype | Occurances Before | Occurances After |
|----------|-------------------|------------------|
| html     | 211682            | 887362           |
| pdf      | 464842            | 638802           |
| jpg      | 0                 | 36958            |
| xml      | 0                 | 29638            |
| Other    | 162681            | 9475             |
| ics      | 435               | 8950             |
| png      | 0                 | 8863             |
| doc      | 6972              | 8430             |
| txt      | 317               | 6025             |
|          | 793990            | 5234             |
| docx     | 3137              | 4319             |
| TOTAL    | 1644056           | 1644056          |

Table 2: Number of files per type, before and after detecing them via their magic number. The table shows that a lot of files originally have the wrong type, and that converting them correctly has a large impact on how many of them end up being usable.

We then take several steps to pre-process the data as required for the subsequent analysis. Preprocessing choices should be contingent on the analysis being conducted with the text later and can have significant effects on the outcomes of an analysis (Denny and Spirling 2018). The type of text analysis we conduct—topic modeling—requires that the words in the document be meaningful and interpretable, and does not make use of the sequence of words within a document (i.e., is a

<sup>&</sup>lt;sup>1</sup>We have also experimented with several Unix-based alternatives, but found that they largely led to the same results as readtext.

bag-of-words method).

The text documents are converted to UTF-8 character encoding and then stripped of dates, punctuation, numbers, and words connected by underscores. At this point, the documents of one city still closely resemble one another in the form of boilerplate content, be it website elements (i.e. "You are here", "Home", "Directory" etc.) in HTML documents, or commonly used forms or phrases in pdf, doc and docx files. This is an issue, because this boilerplate content causes the results of analyzing this data with text analysis methods to characterize documents primarily by the cities from which they originate (through their unique boilerplate structure, e.g. a menu with certain terms repeated on every site of the domain), and not the substantive features of their contents. Boilerplate removal is a useful step in many forms of text analysis, as the analysis is focused in on text that varies above and beyond a standard template for textual content. Our solution to this problem is described in more detail in Section 4.2.

The last round of preprocessing is intended to remove everything from the file that is not an English word. This step is tailored to our intention to use the text for topic modeling. The final preprocessing round includes setting every character to lowercase, as well as the removal of bullet points which frequently occur in HTML documents, extraneous whitespace, XML documents mislabeled as HTML files, and empty documents. Furthermore, some documents contain gibberish, often as a result of faulty or impartial optical character recognition applied to text that was produced through a non-machine-readable medium. To combat this problem, we employ two solutions. One, we use spellchecking, implemented through the hunspell R package (Ooms 2017), to remove all non-English words. However, hunspell does not cover everything, either because some tokens are not actual words (for example artifacts from defective encoding), or because random sequences of characters just so happen to form words that exist in a dictionary (for example

<sup>&</sup>lt;sup>2</sup>Some of the cities, for example, Los Angeles, do contain a sizable proportion of Spanish content. The analysis of this content is beyond the scope of this paper but could be explored in future work, for example using methods of text processing that are applicable to multilingual corpora (Lucas, Nielsen, Roberts, Stewart, Storer and Tingley 2015).

"eh" or "duh"). Since we rely on a bag-of-words model in which syntax does not matter, we can ameliorate these problems by removing all text except for whitespaces and the characters that appear in the English alphabet. Since a lot of the nonsensical text tends to be quite repetitive, we also delete all documents in which the proportion of unique to the total number of tokens is less than 0.15. Furthermore, hunspell does not spellcheck individual characters or two-character words, so we remove these token types entirely. Since these pre-processing steps reduce documents which are largely unsuitable to only a few tokens (i.e., word occurrences), we also remove all remaining documents containing less than 50 tokens. Finally, to remove words that are extremely rare (which also has the advantage of eliminating any remaining oddities) and thus add nothing substantive<sup>3</sup> to our models while increasing their computational cost, we also discard any token types that occur in only one document. We also conduct lemmatization to reduce words to their basic form. Lemmatization is similar to stemming but works in a somewhat more sophisticated manner by taking grammar and surrounding words into account to identify the dictionary form of a word. For example, the lemma of the word "lemmatization" would be "lemmatize", whereas most stemmers would simply chop off the ending, which would yield "lemmatiz". Thus, lemmatization makes the results more easily comprehensible. To this end, we rely on the R package spacyr, which provides an R implementation of the Python library spaCy.

#### 4.2 Boilerplate Removal

As noted above, city websites contain a large amount of text that is uninformative for its actual content, and therefore a hindrance to understanding through algorithmic text analysis. This is a common issue with textual data in which informative content is embedded in technically structured documents. See, e.g., Burgess, Giraudy, Katz-Samuels, Walsh, Willis, Haynes and Ghani (2016); Wilkerson, Smith and Stramp (2015) and Linder, Desmarais, Burgess and Giraudy (Forthcoming)

<sup>&</sup>lt;sup>3</sup>Topic models essentially do not pick up on extremely rare words, so their inclusion is a waste of computational resources. Removing them in this manner is also the default preprocessing choice in the stm package.

for examples of boilerplate removal in the analysis of legislative text. In the case of websites, lines in documents are generally quite informative, so all of our boilerplate removal efforts are done at the line level.

#### **Boilerplate Classification**

In order to determine whether a line should be discarded, we train a classifier on a human-coded sample. We sampled 500 lines from documents in each of the following five cities: Los Angeles, CA, Indianapolis, IN, New York, NY, Shreveport, LA, and Seattle, WA. To ensure that lines which occur more frequently in these cities (sometimes hundreds of thousands of times) had a higher probability of being scrutinized by the classifier, we use sampling weights equivalent to the proportion of total lines in a city's corpus made up by each specific line type. As an example, the most common line throughout all pages of the city of Seattle consists only of the word "total" and occurs 103,068 times. Similarly, the line "page" occurs 58,833 times. Even something completely nonsensical such as "a a" still appears on 376 occasions. To account for the higher likelihood of some lines being part of the training set, we use inverse probability weights in training the classifier—the weight of each line in the sample is 1/[number of occurrences in the corpus].<sup>4</sup>

These 500 lines were then hand-coded as either substantively informative (210 lines) or not (290 lines). We then trained a number of different classifiers with this informativeness measure as the dependent variable. The independent variables we use are: (1) number of times the line was duplicated within the city, (2) the length of the line, in characters, (3) the number of tokens in the line, and (4) the median distance from the document midpoint to the position of the line itself. The purpose of these covariates is as follows:

• Line length: The length of the line and the number of tokens are ways to find lines consisting of only a word or two. This is highly predictive of lines which are used as website headers

<sup>&</sup>lt;sup>4</sup>Note that the performance of the classifier is robust to the use of these weights and only changes by about one percentage point if they are not used.

and navigational elements, which are of zero substantive interest to us but are very effective at differentiating cities. These terms also happen to be fairly common, which causes them to be overweighted by the topic model.

- Number of line duplications: To directly address the latter problem, we include a measure of the number of times a line is duplicated within a city. Many lines occur hundreds or even thousands of times on a single website and therefore are terms that are highly predictive of the website, which causes the topic model to find topics that are highly predictive of cities, but not substantively informative.
- Line position in the document Since boilerplate terms such as navigational elements, headers, footers, and so on, should occur more frequently at the beginning and the end of websites, we attempt to identify such content as following: We measure the distance between the midpoint of a document and the position of a line, expressed as quantiles (to account for differing document lengths). Since lines can occur in multiple documents or multiple times in the same document, we take the median of these measures. Thus, for example, a line which often occurs at the beginning of documents might have a score of 0.45, whereas a line that tends to be found more in the center, and thus is indicative of more relevant content, might be scored with a 0.11 instead.

|                             | Value |
|-----------------------------|-------|
| Percent Correctly Predicted | 0.87  |
| Precision                   | 0.87  |
| Recall                      | 0.91  |
| F1-Score                    | 0.89  |

Table 3: Performance metrics for random forest boilerplate classifier, with inverse probability weights.

We rely on a random forest as the final classifier, which offers slightly better performance than

logistic regression. We assess the performance of this classifier through five-fold cross-validation. This means that the classifier is trained on 400 samples and then tested on the held-out set of 100, measuring metrics such as percent correctly predicted, precision, recall, and F1 score. This procedure is carried out five times so that each sample is part of the test set once. The aggregated (mean) results of this process can be found in Table 3. For the implementation of this method, we rely on the R package caret, whose random forest classifier is based on the package ranger. We use this classifier to flag and remove all lines that are not classified (based on a threshold of p = 0.5) as substantively meaningful. The effect of this process on the corpus is illustrated with the corpus of Anchorage, AK (i.e. a city that isn't part of our sample used in the analysis) as an example in Figures 1 to 4. Before the lines identified by the classifier as boilerplate are removed, lines with very few characters and words are the most common. After the removal, the distribution has changed—lines of medium length now occur more frequently than extremely short ones, which are unlikely to be substantively meaningful (see figures 1 and 2). Furthermore, lines that are duplicated only a few times rather than dozens, hundreds or even thousands are now more common (see figure 3). Finally, the position of the line in the documents is not as important to the random forest, and this also shows in the results. However, this feature still has a positive effect, as lines at either end of the document are a bit less common now (see figure 4). Table 4 provides further illustration by listing the top 10 most likely boilerplate lines (in Anchorage, AK) – all of which were flagged as such with a probability of 1. After all the preprocessing is set and done, our corpus consists of 259,099 documents.

<sup>&</sup>lt;sup>5</sup>We also tried SVM, boosted trees and AdaBoost, with similar results and chose the random forests because this method has a probabilistic basis and is more intuitive.

Figure 1: Effects of the boilerplate classifier on the corpus of the city of Anchorage, AK. After the boilerplate content is removed, extremely short lines are less common.



Figure 2: Effects of the boilerplate classifier on the corpus of the city of Anchorage, AK. After the boilerplate content is removed, extremely short lines are less common.



Figure 3: Effects of the boilerplate classifier on the corpus of the city of Anchorage, AK. After the boilerplate content is removed, lines that are duplicated hundreds or thousands of times are less common.



Figure 4: Effects of the boilerplate classifier on the corpus of the city of Anchorage, AK. After the boilerplate content is removed, lines at the beginning and end of documents are less common.



# 5 Partisan Language on Municipal Websites

We illustrate the analysis of municipal website content by studying differences in website content based on the party of the mayor. As we reviewed above, the partisanship of the mayor has been found in past research to affect several features of city governance. However, Gerber and Hopkins (2011) note that, due to the constraints of state and national policies, municipalities lack discretion in many domains of governance. These constraints do not apply to website contents. City governments have great discretion in composing their websites, modifying website content is low cost relative to other policy changes, and, as reviewed above, city websites provide an effective and often-used means of communication with city residents.

| Line                               | Boilerplate Probability | Line Frequency |
|------------------------------------|-------------------------|----------------|
| elections                          | 0.92                    | 4895           |
| assembly                           | 0.91                    | 6996           |
| library                            | 0.91                    | 4888           |
| ombudsman                          | 0.90                    | 2930           |
| of                                 | 0.90                    | 2767           |
| police department                  | 0.90                    | 5101           |
| office                             | 0.90                    | 2926           |
| fire department                    | 0.90                    | 5047           |
| municipal clerk                    | 0.89                    | 3440           |
| parks and recreation               | 0.89                    | 5397           |
| assembly memorandum no             | 0.89                    | 4827           |
| boards and commissions             | 0.89                    | 3012           |
| municipality of anchorage          | 0.89                    | 3357           |
|                                    | 0.88                    | 461487         |
| anchorage alaska page              | 0.88                    | 5684           |
| resolution no ar                   | 0.88                    | 4627           |
| a assembly memorandum no           | 0.86                    | 4579           |
| health and human services          | 0.84                    | 2863           |
| regular assembly meeting page      | 0.81                    | 3080           |
| economic and community development | 0.74                    | 2891           |

Table 4: The 20 most frequent lines in the corpus of Anchorage, AK, sorted according to the probability with which the classifier identifies them as boilerplate. This table illustrates that the boilerplate classifier correctly flags and removes interpretable but unimportant content which would otherwise have a disproportionate impact on the topic model.

In order to analyze content differences between government websites based on mayoral partisanship, we draw upon a recently-developed class model for text, the structural topic model (STM), developed by Roberts, Stewart, Tingley, Lucas, Leder-Luis, Gadarian, Albertson and Rand (2014). Building on the conception of "topics" in Latent Dirichlet Allocation, in the STM a topic is a multinomial distribution defined on the word types in the corpus dictionary. The log-odds of the topic probabilities in each document-specific multinomial distribution over topics are drawn from a multivariate normal distribution in which the topic-specific means are determined by a linear regression function that associates document-attributed covariates with topics. For example, in the context of municipal website content, the structural topic model can be used to estimate a regression coefficient that defines the linear relationship between the log-odds of the municipality's population and the log-odds of each topic. For our primary empirical investigation, the STM provides with a tool with which to estimate the relationship between the party of the city's mayor and the prevalence of each topic we estimate. Further details on our STM specification can be found in the appendix.

#### **5.0.1** Structural topic model results

The results are shown in Table 5. Many of the topics associated with Democrats fit with what we understand to be national party priorities. Topic 21, on affordable housing, clearly resonates with the Democratic party's appeal to low-income voters. Similarly, employee rights are represented in Topic 47. Democrats also exhibit a strong preference for words related to public finances, such as Topic 32 ('budget', 'revenue', 'expenditure') as well as Topic 19 ('debt', 'bond', 'financial'). We suspect that the association of Democratic mayors with finance-related terms is indicative of a greater willingness to emphasize the city's efforts to raise and spend money. This finding is consistent with (Einstein and Kogan 2015), who show that Democratic mayors tend to favor greater spending. A second, consistent Democratic focus appears to be law enforcement: The most Democratic topic, 55 ('robbery', 'homicide', 'sergeant') (a comparable topic is also the

most Democratic topic in the model with 120 topics in tables 6 and 7 of the Appendix) depicts Democrats' complicated relationship with law enforcement. On the one hand, Democratic partisans have a more negative perception of the police, rating it considerably more negatively on the appropriate use of force and the equal treatment of minorities (Brown 2017). On the other hand, the literature has also shown that cities with a higher Democratic vote share spend more on the police, even after controlling for crime (Einstein and Kogan 2015). Finally, Democrats also focus more on the deliberative process of policymaking, as topics 31 ('agenda', 'committee'), 34 ( 'comment', 'draft', 'feedback'), 48 ('absent', 'aye', 'nay'), and 37 ('audit', 'procedure', 'oversight') attest to. This openness regarding the policy process on behalf of cities with Democratic mayors fits with the findings of Grimmelikhuijsen and Welch (2012), which are that left-wing local governments exhibit greater transparency via website content.

City websites with Republican mayors, meanwhile, exhibit a pronounced focus on the essential functions of government. Basic utilities such as energy (Topic 7), fire protection (Topic 17), drinking water (53), and garbage removal (Topic 49) are included among those topics that are more prevalent in cities with Democratic mayors. Similarly, protecting citizens from natural disasters is a focus in topics 1 ('storm', 'runoff', 'drainage') and 42 ('breastfeed', 'infection', 'mosquito' – and so, essentially, about the Zika virus), which may reflect the greater prevalence of Republican mayors in the southeast, a region which is more often affected by hurricanes and tropical diseases.

#### 6 Conclusion

We have developed a methodological pipeline for automatically gathering and preparing government websites for comparative content analysis. This methodology holds the potential to vastly scale up the data collection efforts underpinning the growing body of research that is focused on government website analysis. Through an application to the analysis of municipal websites in six different states, we show how our pipeline is capable of gathering corpora that shed light on the

forms and functions of local government. We find that government website contents are associated with the partisanship of the mayor in ways that would be expected based on the parties' national priorities and past research on the effects of mayoral partisanship on city governments.

# **Funding**

This work was supported by the National Science Foundation [1320219, 1637089, 1641047].

# References

Armstrong, Cory L. 2011. "Providing a clearer view: An examination of transparency on local government websites." *Government Information Quarterly* 28(1):11–16.

Benoit, Kenneth and Adam Obeng. 2018. *readtext: Import and Handling for Plain and Formatted Text Files*. R package version 0.71.

**URL:** https://CRAN.R-project.org/package=readtext

Brown, Anna. 2017. "Republicans more likely than Democrats to have confidence in police.".

**URL:** http://www.pewresearch.org/fact-tank/2017/01/13/republicans-more-likely-than-democrats-to-have-confidence-in-police/

Bureau of Economic Analysis. 2017. "Per capita real GDP by state (chained 2009 dollars).".

URL: https://www.bea.gov/iTable/drilldown.cfm?reqid=70&stepnum=11&AreaTypeKeyGdp=1&GeoFipsGdp=XX&1&YearGdpEnd=-1&UnitOfMeasureKeyGdp=levels&RankKeyGdp=1&Drill=1&nRange=5

Burgess, Matthew, Eugenia Giraudy, Julian Katz-Samuels, Joe Walsh, Derek Willis, Lauren Haynes and Rayid Ghani. 2016. The Legislative Influence Detector: Finding Text Reuse in State Legislation. In *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*. ACM pp. 57–66.

Cryer, J. E. 2017. "Candidate Identity and Strategic Communication." pp. 1–42.

Darwin, IF. 2008. "Libmagic.".

de Benedictis-Kessner, Justin and Christopher Warshaw. 2016. "Mayoral partisanship and municipal fiscal policy." *The Journal of Politics* 78(4):1124–1138.

Denny, Matthew J and Arthur Spirling. 2018. "Text preprocessing for unsupervised learning: why it matters, when it misleads, and what to do about it." *Political Analysis* 26(2):168–189.

DeSantis, Victor S and Tari Renner. 2002. "City government structures: An attempt at clarification." *State and Local Government Review* 34(2):95–104.

Druckman, James N., Cari Lynn Hennessy, Martin J. Kifer and Michael Parkin. 2010. "Issue Engagement on Congressional Candidate Web Sites, 2002—2006." *Social Science Computer Review* 28(1):3–23.

URL: http://journals.sagepub.com/doi/10.1177/0894439309335485

Druckman, James N., Martin Kifer and Michael Parkin. 2009. "Campaign Communications in U.S. Congressional Elections." *American Political Science Review* 103(03):343–366.

**URL:** http://www.journals.cambridge.org/abstract\_S0003055409990037

Einstein, Katherine Levine and David M Glick. 2016. "Mayors, partisanship, and redistribution: Evidence directly from US mayors." *Urban Affairs Review* p. 1078087416674829.

Einstein, Katherine Levine and Vladimir Kogan. 2015. "Pushing the City Limits: Policy Responsiveness in Municipal Government." *Urban Affairs Review* pp. 1–30.

Eschenfelder, Kristin R, John C Beachboard, Charles R McClure and Steven K Wyman. 1997. "Assessing U.S. federal government websites." *Government Information Quarterly* 14(2):173–189.

**URL:** http://www.sciencedirect.com/science/article/pii/S0740624X97900186%5Cnpapers2://publication/doi/10.1016624X(97)90018-6

Esterling, Kevin M, David MJ Lazer and Michael A Neblo. 2011. "Representative communication: Web site interactivity and distributional path dependence in the US Congress." *Political Communication* 28(4):409–439.

Esterling, Kevin M. and Michael A. Neblo. 2011. "Explaining the Diffusion of Representation Practices among Congressional Websites." *Working Paper* pp. 1–42.

- Feeney, Mary K. and Adrian Brown. 2017. "Are small cities online? Content, ranking, and variation of U.S. municipal websites." *Government Information Quarterly* 34(1):62–74.

  URL: http://dx.doi.org/10.1016/j.giq.2016.10.005
- Gerber, Elisabeth R and Daniel J Hopkins. 2011. "When mayors matter: estimating the impact of mayoral partisanship on city policy." *American Journal of Political Science* 55(2):326–339.
- Glez-Peña, Daniel, Anália Lourenço, Hugo López-Fernández, Miguel Reboiro-Jato and Florentino Fdez-Riverola. 2013. "Web scraping technologies in an API world." *Briefings in bioinformatics* 15(5):788–797.
- Grimmelikhuijsen, Stephan G. 2010. "Transparency of Public Decision-Making: Towards Trust in Local Government?" *Policy & Internet* 2(1):5–35.
- Grimmelikhuijsen, Stephan G and Eric W Welch. 2012. "Developing and testing a theoretical framework for computer-mediated transparency of local governments." *Public administration review* 72(4):562–571.
- Guillamón, Ma Dolores, Francisco Bastida and Bernardino Benito. 2013. "The electoral budget cycle on municipal police expenditure." *European Journal of Law and Economics* 36(3):447–469.
- Linder, Fridolin, Bruce A Desmarais, Matthew Burgess and Eugenia Giraudy. Forthcoming. "Text as Policy: Measuring Policy Similarity Through Bill Text Reuse." *Policy Studies Journal*.
- Lucas, Christopher, Richard A Nielsen, Margaret E Roberts, Brandon M Stewart, Alex Storer and Dustin Tingley. 2015. "Computer-assisted text analysis for comparative politics." *Political Analysis* 23(2):254–277.
- Marion, Nancy E and Willard M Oliver. 2013. "When the Mayor Speaks... Mayoral Crime Control

Rhetoric in the Top US Cities: Symbolic or Tangible?" *Criminal justice policy review* 24(4):473–491.

Marschall, Melissa and Paru Shah. 2013. "Local Elections in America Project." Center for Local Elections in American Politics. Kinder Institute for Urban Research, Rice University.(Database)

**URL:** http://www.leap-elections.org/

Mayhew, David. 1974. Congress: The Electoral Connection. Yale University Press.

McNutt, Kathleen. 2010. "Virtual policy networks: Where all roads lead to Rome." *Canadian Journal of Political Science/Revue canadienne de science politique* 43(4):915–935.

Monroe, Burt L., Michael P. Colaresi and Kevin M. Quinn. 2008. "Fightin' words: Lexical feature selection and evaluation for identifying the content of political conflict." *Political Analysis* 16(4 SPEC. ISS.):372–403.

Morgan, David R and Sheilah S Watson. 1992. "Policy leadership in council-manager cities: Comparing mayor and manager." *Public Administration Review* pp. 438–446.

Norris, P. 2003. "Preaching to the Converted?: Pluralism, Participation and Party Websites." *Party Politics* 9(1):21–45.

Ooms, Jeroen. 2017. hunspell: High-Performance Stemmer, Tokenizer, and Spell Checker. R package version 2.9.

**URL:** https://CRAN.R-project.org/package=hunspell

Osman, Ibrahim H, Abdel Latef Anouze, Zahir Irani, Baydaa Al-Ayoubi, Habin Lee, Asım Balcı, Tunç D Medeni and Vishanth Weerakkody. 2014. "COBRA framework to evaluate e-government services: A citizen-centric perspective." *Government Information Quarterly* 31(2):243–256.

Roberts, Margaret E., Brandon M. Stewart and Dustin Tingley. 2018. *stm: R Package for Structural Topic Models*. R package version 1.3.3.

**URL:** http://www.structuraltopicmodel.com

Roberts, Margaret E., Brandon M. Stewart, Dustin Tingley, Christopher Lucas, Jetson Leder-Luis, Shana Kushner Gadarian, Bethany Albertson and David G. Rand. 2014. "Structural topic models for open-ended survey responses." *American Journal of Political Science* 58(4):1064–1082.

Rudis, Bob, Christos Zoulas, Mans Rullgard and Jonathan Ong. 2016. wand: Retrieve 'Magic' Attributes from Files and Directories. R package version 0.2.0.

**URL:** https://CRAN.R-project.org/package=wand

Stanyer, James. 2008. "Elected representatives, online self-presentation and the personal vote: Party, personality and webstyles in the United States and United Kingdom." *Information, Community & Society* 11(3):414–432.

Therriault, Andrew. 2010. "Taking Campaign Strategy Online: Using Candidate Websites to Advance the Study of Issue Emphases." pp. 1–23.

URL: http://poseidon01.ssrn.com/delivery.php?ID=5881250961130801011070071091041011210350310770540170

Thomas, John Clayton and Gregory Streib. 2003. "The new face of government: citizen-initiated contacts in the era of E-Government." *Journal of public administration research and theory* 13(1):83–102.

Urban, Florian. 2002. "Small town, big website? Cities and their representation on the internet." *Cities* 19(1):49–59.

Wang, Lili, Stuart Bretschneider and Jon Gant. 2005. Evaluating web-based e-government services with a citizen-centric approach. In *System Sciences*, 2005. *HICSS'05*. *Proceedings of the 38th Annual Hawaii International Conference on*. Ieee pp. 129b–129b.

Wilkerson, John, David Smith and Nicholas Stramp. 2015. "Tracing the flow of policy ideas in legislatures: A text reuse approach." *American Journal of Political Science* 59(4):943–956.

## **Appendix**

#### Raw data collection methods and sources

We acquired the website URLs from two sources: One, we scraped the URLs of city websites from their respective Wikipedia pages, which we found from lists of cities contained within each state. Two, the General Services Administration (GSA) maintains all '.gov' addresses, and provides a complete list of all such domains to the public.<sup>6</sup> The data from the GSA contains the following variables: (1) domain name, specifically, the all-uppercase version of domain and top-level domain (for example, 'ABERDEENMD.GOV'); (2) the type of government entity to which the domain is registered, such as city, county, federal agency, etc; (3) for federal agencies, the name is specified; (4) the city in which the domain is registered. Naturally, the GSA's list does not contain cities which do not use a '.gov' website (or, in many cases, a city owns a registered '.gov' address, but uses a different one). Furthermore, some of the links are non-functional, and some of the county websites on the list are incorrectly marked as city websites (and vice versa). Since the GSA data is less complete and less reliable than the URLs found on Wikipedia, we mainly rely on the former and only supplement them with the GSA data if a specific city doesn't have a URL recorded on Wikipedia, or our tests (see below) find it to be non-functional.

Not all of the URLs contained in these archives are functional. To test the URLs' functionality, we use a web driver-controlled browser - a browser that is automatically controlled by a program rather than a human user. We use the Python bindings for the program Selenium, which we use to control Firefox through the web driver Geckodriver. This is advantageous compared to conventional scraping tools such as Beautiful Soup or Rvest because most websites are designed to be explored by browsers. Modern browsers perform a lot of actions behind the scenes, such as URL resolution and redirection. The use of a web driver-controlled browser is necessary

<sup>&</sup>lt;sup>6</sup>The dataset is made available at https://github.com/GSA/data/tree/gh-pages/dotgov-domains. This list is updated once per month—we rely on the version released on January 16, 2017.

in our case because a) some city websites simply don't work, but they don't always output an error code correctly (this can fail, for example, if a webmaster simply stops maintaining a site without removing it entirely) which would throw off an automatic scraper, and more often, b) cities sometimes change their websites' URLs, in which case they redirect from the old to the new URL. A web driver-controlled browser, unlike the more rigid conventional scraping tools, will simply follow this redirection. This allows us to subsequently record and use the new URL for the actual website scraping. Consequently, an automated browser allows us to robustly answer the following questions: Is the website actually there? Does it work? If not, is it somewhere else or is it broken? We record this information and construct a list of verified URLs.

To download the websites, we rely on the Unix command line tool wget. This program is used to download files from the Internet, and with the use of a recursive option, acts like a web crawler and scraper. This means that wget downloads HTML files, parses them and then follows the links contained therein. Then it follows those links and repeats the process until it has constructed a complete tree of the website (note that the program is instructed to stay on the same domain, i.e. it does not follow external links). This way, all the files that make up a website are downloaded. For some cities, whose websites make heavy use of JavaScript to serve content dynamically, such content is not reachable with our methodology and would require additional steps to obtain. For this paper, we ignore such sites and restricted our corpus to cities with at least three successfully downloaded pages.<sup>7</sup>

The partisanship of the mayor of each city is coded in different ways, depending on the state. For Indiana, where elections are nominally partisan, this information is accessible through the state government's website<sup>8</sup>. For Louisiana, we received data on the outcomes of mayoral elections

<sup>&</sup>lt;sup>7</sup>There is a possibility that this leads to a small bias in selecting against cities with the resources to build more elaborate websites. However, given that our sample is generally more on the wealthy side, this, if anything, should lead to a more balanced sample.

<sup>&</sup>lt;sup>8</sup>http://www.in.gov/apps/sos/election/general/general2015?page=office&countyID=1&officeID=32&districtID=-1&candidate=

from the Local Elections in America Project (LEAP) (Marschall and Shah 2013). For the other states, where mayoral elections are not nominally partisan (but the partisanship of the mayor is still well-known), we employed different means: For New York and Washington, we searched the state campaign finance websites, and coded the parties of the candidates based on the party committees from which they received donations. For California and Texas, where our data consists of highly populated cities, partisanship information was acquired from Ballotpedia<sup>9</sup>. Finally, we also scraped mayoral partisanship from the cities' Wikipedia pages. When compared to the other data sources above, (and manual searches in case of conflicts) Wikipedia proved to be very reliable and added additional cases to our dataset even for Indiana and Louisiana. Generally speaking, we found data scraped from Wikipedia, aided by manual corrections in case of missing or conflicting data, to be more reliable than data from governmental sources.<sup>10</sup>

Information on other covariates (population and median household income - from the American Community Survey 5) was acquired through the API of the U.S. Census Bureau<sup>11</sup>.

# **Details on STM specification**

The structural topic model is implemented in the R package STM (Roberts, Stewart and Tingley 2018). We use 60 topics—the number recommended by the authors<sup>12</sup> for medium- to large-sized corpora. Since our corpus is at the larger end of that spectrum, the appendix also contains the results of a model with 120 topics, which corroborates the findings of the one presented here. We use four covariates: First, *party*, to estimate the difference in topic prevalence based on whether mayors are Republican or Democratic. Second, *city population*, which the literature frequently emphasizes as

<sup>&</sup>lt;sup>9</sup>https://ballotpedia.org/List\_of\_current\_mayors\_of\_the\_top\_100\_cities\_in\_the\_United\_States

<sup>&</sup>lt;sup>10</sup>In Indiana, the data includes only cities - incorporated municipalities with at least 2,000 inhabitants - as opposed to towns.

<sup>&</sup>lt;sup>11</sup>https://www.census.gov/data/developers/data-sets.html

 $<sup>^{12}</sup>$ For this recommendation, see the documentation for the function stm() in version 1.3.0 of the R package stm (Roberts, Stewart and Tingley 2018).

a determinant of the issues a city faces (see, for example, Guillamón, Bastida and Benito (2013)). Third, we control for wealth by relying on *median income* as a covariate, which we use as a proxy for the tax base in a city. Fourth and finally, we include state dummy variables, which should account for language that is associated with state-specific issues, and general background variables that vary across states.<sup>13</sup>

<sup>&</sup>lt;sup>13</sup>The "Fightin' Words" methodology developed by Monroe, Colaresi and Quinn (2008) could also be used to analyze word-frequency differences between cities based on mayors' partisanship, but we elected to use the structural topic model since, unlike "Fightin' Words", the structural topic model enables us to adjust for several other features through multiple regression.

| #        | Top Word 1  | Top Word 2    | Top Word 3     | Top Word 4        | Top Word 5     | Top Word 6     | Tokens assigned |
|----------|-------------|---------------|----------------|-------------------|----------------|----------------|-----------------|
| 43       | fun         | player        | dream          | celebration       | favorite       | blog           | 3460            |
| 5        | please      | email         | contact        | copy              | mail           | click          | 201             |
| 42       | breastfeed  | vaccine       | infection      | symptom           | asthma         | mosquito       | 2497            |
| 17       | alarm       | disaster      | fire           | rescue            | preparedness   | evacuation     | 989             |
| 53       | drinking    | wastewater    | water          | pipeline          | pump           | disinfection   | 461             |
| 50       | buffalo     | news          | honor          | warren            | announce       | lovely         | 1106            |
| 52       | reappoints  | digest        | cat            | leg               | legislator     | sander         | 997             |
| 33       | really      | think         | something      | thing             | somebody       | anybody        | 1873            |
| ,3<br> 4 | shall       | herein        | forth          | deem              | thereof        | pursuant       | 405             |
| 8        | invoice     | card          |                | filer             | debit          | officeholder   |                 |
| o<br>26  |             |               | amt<br>billing |                   |                | monthly        |                 |
|          | fee         | charge        | -              | per               | meter          | •              |                 |
| 2        | yon         | borough       | comm           | gen               | sou            | spec           | 709             |
| 9        | bin         | recycling     | garbage        | recyclables       | recyclable     | bag            | 1791            |
| 7        | energy      | garland       | renewable      | solar             | electricity    | climate        | 742             |
| .3       | bid         | proposer      | bidder         | contractor        | subcontractor  | contract       | 447             |
| 7        | duct        | conduit       | bolt           | splice            | valve          | fitting        | 1373            |
| 3        | server      | wireless      | software       | telecommunication | subscriber     | desktop        | 1092            |
| 4        | motion      | adjourn       | second         | unanimously       | ayes           | carry          | 474             |
| 1        | storm       | runoff        | infiltration   | discharge         | drainage       | drain          | 516             |
| 8        | youth       | student       | parent         | teacher           | immigrant      | literacy       | 714             |
| 5        | artist      | rouge         | baton          | art               | artwork        | exhibition     | 1632            |
| 9        | sampling    | sample        | analytical     | concentration     | hydrocarbon    | toxicity       | 1241            |
| 3        | portfolio   | yield         | jun            | maturity          | investment     | rating         | 544             |
| 5        | premise     | licensee      | violation      | license           | permit         | inspection     | 509             |
| 9        | para        | persona       | ante           | horas             | junta          | largo          | 1469            |
| 0        | exhaust     | fugitive      | aircraft       | airport           | aviation       | diesel         | 731             |
| )        | fort        | thence        | blvd           | worth             | ave            | west           | 681             |
| 3        | councilor   | auburn        | plain          | ward              | beech          | glen           | 480             |
| 1        | whereas     | councilman    | alderman       | ordain            | hereby         | resolution     | 420             |
|          |             |               |                |                   | •              |                |                 |
| 6        | recreation  | park          | golf           | playground        | picnic         | Z00            | 682             |
| 6        | retiree     | retirement    | actuarial      | deductible        | dental         | pension        | 470             |
| 7        | exam        | incumbent     | supervise      | supervision       | examination    | knowledge      | 687             |
| 6        | historic    | landmark      | revival        | archaeological    | century        | historian      | 2587            |
| 2        | parking     | hotel         | garage         | space             | retail         | square         | 321             |
| 1        | tax         | exemption     | abatement      | real              | estate         | property       | 310             |
| 4        | facade      | awning        | porch          | roof              | balcony        | exterior       | 1108            |
| 8        | census      | population    | respondent     | figure            | percent        | margin         | 541             |
| 8        | prune       | tree          | deer           | forestry          | shrub          | bulrush        | 2522            |
| 5        | complainant | defendant     | allegation     | complaint         | allege         | discrimination | 1384            |
| )        | noise       | mitigation    | impact         | adverse           | significant    | vibration      | 325             |
| Ļ        | yes         | agency        | federal        | recipient         | compliance     | entity         | 205             |
| 6        | variance    | setback       | plat           | zoning            | yard           | fence          | 289             |
| 9        | learn       | neighborhood  | graffito       | event             | resident       | online         | 196             |
| 5        | cannabis    | marijuana     | senate         | dispensary        | ballot         | cultivation    | 1188            |
| 2        | priority    | strategic     | ongoing        | goal              | implementation | implement      | 141             |
| 6        | project     | improvement   | phase          | replacement       | upgrade        | capital        | 174             |
| 1        | shoreline   | beach         | marina         | coastal           | waterfront     | salmon         | 1069            |
| 4        | attract     | economy       | workforce      | innovation        | sector         | economic       | 748             |
| 7        | employee    | overtime      | sick           |                   | grievance      | bargaining     | 511             |
| ,<br>9   | tab         | accessibility |                | wage              | alt            | false          | 259             |
| 9        |             | •             | mode           | var               |                |                |                 |
|          | density     | village       | urban          | us                | mixed          | corridor       | 358             |
| 7        | audit       | auditor       | internal       | procedure         | accountability | oversight      | 420             |
| 1        | housing     | affordable    | homeless       | homelessness      | affordability  | landlord       | 318             |
| 4        | comment     | draft         | feedback       | stakeholder       | suggest        | discussion     | 289             |
| 9        | debt        | bond          | governmental   | obligation        | financial      | accounting     | 251             |
| 0        | bicycle     | bike          | lane           | crosswalk         | pedestrian     | bicyclist      | 574             |
| 2        | budget      | revenue       | expenditure    | appropriation     | fund           | million        | 242             |
| 8        | absent      | aye           | khan           | nay               | berry          | voting         | 528             |
| 1        | chair       | agenda        | commission     | speaker           | chairperson    | committee      | 314             |
| 5        | robbery     | homicide      | arrest         | sergeant          | suspect        | burglary       | 1395            |

Table 5: Top words from a structural topic model with 60 topics and FREX scoring. Colors depict partisanship based on coefficient size. White cells are non-significant topics.

| #   | Top Word 1     | Top Word 2   | Top Word 3    | Top Word 4      | Top Word 5    | Top Word 6   | Tokens assigned |
|-----|----------------|--------------|---------------|-----------------|---------------|--------------|-----------------|
| 115 | garland        | celebration  | blog          | dream           | sorry         | copyright    | 994             |
| 52  | dog            | legislator   | spay          | neuter          | animal        | microchip    | 761             |
| 44  | copy           | record       | mail          | request         | notice        | notify       | 120             |
| 98  | neighborhood   | community    | resident      | safe            | life          | quality      | 95              |
| 88  | war            | professor    | sister        | bachelor        | daughter      | soldier      | 2516            |
| 43  | camp           | yoga         | camper        | fun             | librarian     | library      | 1080            |
| 42  | infection      | tuberculosis | breastfeed    | hepatitis       | vaccine       | condom       | 1608            |
| 72  | drinking       | water        | contaminant   | reservoir       | pipeline      | irrigation   | 216             |
| 84  | say            | ask          | explain       | reply           | horn          | advise       | 454             |
| 18  | player         | coach        | game          | umpire          | ball          | shirt        | 1595            |
| 61  | unanimously    | motion       | prince        | adjourn         | carry         | ken          | 192             |
| 63  | mosquito       | spray        | rodent        | pesticide       | repellent     | pest         | 851             |
| 81  | effluent       | sludge       | lbs           | mercury         | wastewater    | gal          | 540             |
| 60  | shall          | deem         | forth         | unless          | except        | thereof      | 119             |
| 69  | ethic          | candidate    | lobbyist      | filer           | political     | officeholder | 355             |
| 33  | think          | really       | something     | thing           | just          | go           | 826             |
| 119 | firefighter    | fire         | chief         | police          | captain       | patrol       | 248             |
| 37  | physician      | nursing      | medical       | nurse           | outpatient    | medicaid     | 352             |
| 5   | home           | homeowner    | alarm         | detector        | monoxide      | header       | 209             |
| 23  | proposer       | bidder       | subcontractor | bid             | contractor    | subcontract  | 239             |
| 116 | councilor      | alderman     | councilwoman  | alderwoman      | quill         | councilors   | 268             |
| 15  | trademark      | borough      | new           | immigration     | immigrant     | pour         | 274             |
| 67  | discrimination | disability   | gender        | religion        | accommodation | origin       | 373             |
| 117 | asthma         | overdose     | obesity       | hospitalization | diabetes      | prevalence   | 659             |
| 94  | duct           | valve        | sprinkler     | combustible     | splice        | conductor    | 778             |
| 58  | event          | firework     | parade        | press           | holiday       | troy         | 335             |
| 70  | whereas        | hereby       | resolve       | duly            | authorize     | therefore    | 202             |
| 30  | disaster       | emergency    | preparedness  | evacuation      | dispatch      | homeland     | 365             |
| 38  | student        | parent       | school        | teacher         | academic      | youth        | 354             |
| 93  | city           | fort         | worth         | manager         | hall          | charter      | 16              |
| 75  | online         | click        | plain         | website         | download      | learn        | 165             |
| 3   | value          | market       | productivity  | customize       | yrs           | index        | 126             |
| 49  | recycling      | recycle      | garbage       | waste           | trash         | landfill     | 408             |
| 111 | franchisee     | indemnify    | arise         | harmless        | breach        | party        | 307             |
| 17  | snow           | plow         | tornado       | flood           | pothole       | crew         | 552             |
| 89  | vend           | food         | meat          | utensil         | calorie       | vending      | 1174            |
| 45  | application    | applicant    | certificate   | must            | license       | permit       | 151             |
| 85  | runoff         | sanitary     | infiltration  | storm           | drainage      | drain        | 241             |
| 106 | equipment      | boiler       | fleet         | crane           | mechanic      | fuel         | 539             |
| 8   | invoice        | payment      | card          | credit          | account       | cash         | 187             |
| 13  | class          | test         | adobe         | embed           | reader        | acrobat      | 312             |
| 108 | cigarette      | senate       | tobacco       | consumer        | smoking       | ban          | 542             |
| 25  | coal           | hazard       | hazardous     | toxic           | radiation     | substance    | 288             |
| 86  | groundwater    | sample       | asbestos      | analytical      | remediation   | remedial     | 345             |
| 1   | golf           | exhibit      | lessee        | course          | lessor        | lease        | 401             |
| 9   | para           | persona      | ante          | horas           | junta         | sin          | 635             |
| 24  | phone          | name         | page          | address         | glen          | cove         | 158             |
| 7   | energy         | renewable    | solar         | electricity     | climate       | efficiency   | 399             |
| 66  | plat           | thence       | easement      | pud             | tract         | subdivision  | 230             |
| 57  | dwell          | unit         | remodel       | condominium     | dwelling      | residential  | 167             |
| 95  | roof           | masonry      | porch         | exterior        | would         | brick        | 611             |
| 26  | fee            | charge       | per           | cost            | plus          | rate         | 102             |
| 51  | chapter        | code         | violation     | subsection      | article       | sec          | 151             |
| 59  | zoning         | conditional  | zone          | cannabis        | overlay       | district     | 241             |
| 101 | height         | foot         | square        | feet            | setback       | frontage     | 124             |
| 96  | house          | cemetery     | burial        | butler          | funeral       | barber       | 472             |
| 65  | ballot         | vista        | ranch         | canyon          | silicon       | voter        | 518             |
| 120 | bend           | fir          | hometown      | twelfth         | exceptional   | rodeo        | 271             |
| 36  | aviation       | airport      | airline       | runway          | aircraft      | hangar       | 429             |
| 34  | plan           | planning     | comprehensive | master          | review        | amendment    | 42              |
|     |                |              |               | 31              |               |              |                 |

Table 6: Top words from a structural topic model with 120 topics (first 60 topics displayed here) and FREX scoring. Colors depict partisanship based on coefficient size. White cells are non-significant topics.

| #        | Top Word 1    | Top Word 2    | Top Word 3     | Top Word 4     | Top Word 5   | Top Word 6     | Tokens | assigned |
|----------|---------------|---------------|----------------|----------------|--------------|----------------|--------|----------|
| 82       | com           | mar           | spec           | jun            | est          | comm           | 1388   |          |
| 22       | server        | software      | wireless       | technology     | desktop      | broadband      | 430    |          |
| 80       | artist        | art           | artwork        | exhibition     | artistic     | sculpture      | 1099   |          |
| 113      | trench        | thickness     | compaction     | concrete       | slab         | excavation     | 766    |          |
| 87       | respondent    | survey        | census         | racial         | demographic  | score          | 427    |          |
| 83       | homeless      | homelessness  | supportive     | client         | transitional | encampment     | 229    |          |
| 20       | noise         | fugitive      | receptor       | exhaust        | vibration    | emission       | 376    |          |
| 35       | landlord      | tenant        | owner          | property       | rent         | lien           | 205    | _        |
| 105      | beach         | orange        | arena          | rainier        | ocean        | resort         | 457    |          |
| 2        | yon           | bay           | gen            | sou            | coliseum     | estuary        | 385    |          |
| 6        | redevelopment | land          | developer      | parcel         | development  | area           | 70     | 7        |
| 104      | riparian      | wetland       | habitat        | marsh          |              | grassland      | 968    |          |
| 41       | *             |               | taxable        | deduction      | floodplain   | _              | 172    |          |
|          | tax           | exemption     |                |                | levy         | taxpayer       |        | •        |
| 68       | economy       | workforce     | economic       | sector .       | industry     | innovation     | 332    |          |
| 28       | figure        | table         | scenario       | margin         | analysis     | appendix       | 207    |          |
| 110      | bond          | maturity      | debt           | issuer         | redemption   | obligation     | 232    |          |
| 102      | sidewalk      | curb          | pole           | crosswalk      | ramp         | sign           | 237    |          |
| 118      | project       | phase         | construction   | completion     | improvement  | complete       | 45     | 1        |
| 78       | parking       | tow           | vehicle        | garage         | car          | motor          | 210    |          |
| 71       | actuarial     | retiree       | retirement     | pension        | deductible   | unfunded       | 239    |          |
| 91       | prune         | tree          | forestry       | deer           | shrub        | planting       | 1240   |          |
| 114      | incumbent     | exam          | supervision    | supervise      | examination  | ability        | 432    |          |
| 16       | park          | recreation    | playground     | zoo            | trail        | picnic         | 290    |          |
| 53       | waterfront    | boat          | shoreline      | maritime       | dock         | barge          | 800    |          |
| 76       | felony        | violent       | offender       | gang           | theft        | inmate         | 783    |          |
| 4        | courtyard     | realm         | design         | facade         | proponent    | articulation   | 608    |          |
| 100      | division      | manage        | staffing       | oversee        | management   | analyst        | 100    |          |
| 97       | mitigation    | impact        | adverse        | significant    | alternative  | propose        | 132    | •        |
| 11       | historic      | landmark      | revival        | archaeological | preservation | historical     | 876    |          |
| 77       | million       | fiscal        |                | revenue        | •            | billion        | 138    |          |
| 77<br>74 |               |               | forecast       |                | quarter      |                |        | •        |
|          | board         | chairperson   | secretary      | member         | appoint      | executive      | 118    |          |
| 47       | allegation    | complainant   | misconduct     | bias           | complaint    | allege         | 580    |          |
| 92       | sick          | employee      | wage           | overtime       | grievance    | bargaining     | 260    |          |
| 10       | ave           | avenue        | south          | east           | west         | blvd           | 189    |          |
| 112      | grant         | loan          | funding        | program        | recipient    | federal        | 85     | 1        |
| 56       | downtown      | mall          | midtown        | uptown         | hotel        | shopping       | 414    |          |
| 14       | yes           | agency        | successor      | oversight      | attachment   | describe       | 125    | •        |
| 40       | bicycle       | bike          | transit        | bicyclist      | lane         | bus            | 315    |          |
| 62       | affordable    | housing       | affordability  | income         | household    | moderate       | 188    |          |
| 99       | memorandum    | resolution    | council        | legislation    | entitle      | commission     | 173    |          |
| 19       | governmental  | accounting    | asset          | statement      | financial    | net            | 156    |          |
| 103      | permission    | ayes          | correspondence | bid            | smith        | demolition     | 203    |          |
| 107      | appropriated  | dollars       | thousand       | ongoing        | matrix       | justification  | 117    |          |
| 12       | approach      | difficult     | achieve        | challenge      | critical     | often          | 257    |          |
| 46       | variance      | fence         | setback        | exception      | yard         | applicant      | 136    | ī        |
| 90       | audit         | auditor       | procedure      | internal       | auditing     | documentation  | 226    |          |
| 64       | density       | urban         | corridor       | village        | orient       | transit        | 165    | -        |
| 21       | goal          | strategy      | outreach       | priority       | strategic    | implementation | 105    | î.       |
| 73       | parish        | rouge         | baton          | hogan          | councilman   | thereto        | 482    | _        |
| 29       | comment       | draft         | discussion     | feedback       | discuss      | presentation   | 168    | _        |
| 32       | budget        | expenditure   | appropriation  | fund           | endorse      | balance        | 129    | 1        |
| 54       | •             | absent        |                |                |              | voting         | 344    |          |
|          | aye           |               | khan           | nay            | berry        | -              |        |          |
| 39       | mode          | accessibility | tab            | focus          | else         | alt            | 117    | 1        |
| 109      | auburn        | buffalo       | ward           | brown          | announce     | casino         | 177    |          |
| 50       | news          | warren        | lovely         | release        | leader       | proud          | 498    |          |
| 79       | digest        | proposal      | sander         | reappoints     | metropolitan | gray           | 236    |          |
| 27       | bankruptcy    | plaintiff     | creditor       | trial          | court        | supreme        | 810    |          |
| 31       | agenda        | speaker       | item           | committee      | chair        | divided        | 146    |          |
|          | 11 1 . 1      | aantin aan ar | rainvactment   | inc            | contract     | authorize      | 134    | •        |
| 48       | consolidated  | contingency   | reinvestment   | homicide       | contract     | authorize      | 154    | •        |

Table 7: Top words from a structural topic model with 120 topics (second 60 topics displayed here) and FREX scoring. Colors depict partisanship based on coefficient size. White cells are non-significant topics.