4. Suites géométriques Terminale STMG

qkzk

Suites géométriques

1. Termes consécutifs

2, 8, 32 sont-ils trois termes consécutifs d'une suite géométrique?

Pour répondre on calcule les quotients $\frac{8}{2}=4$ et $\frac{32}{8}=4$. La réponse est oui, ce sont trois termes consécutifs d'une suite géométrique de raison q=4.

Figure 1: 3 termes en progression géométrique

Lorsque ces quotients sont différents (comme pour 2, 8 et 16) alors ce ne sont pas trois termes consécutifs d'une suite géométrique.

Figure 2: 3 termes qui ne progressent pas géométriquement

2. Définition & formule explicite

Définition

Une suite (v_n) vérifiant $v_{n+1} = qv_n$ est géométrique de raison q.

La raison doit être constante (indépendante de n).

Démontrer qu'une suite est géométrique On l'a vu, pour démontrer qu'une suite *n'est pas géométrique*, il suffit de le vérifier sur trois termes.

Mais pour démontrer qu'une suite est géométrique, il faut le faire pour tous les termes.

Considérons $v_n = 7 \times 4^n$. Prouvons qu'elle est géométrique.

On peut vérifier que les trois premiers termes progressent géométriquement : $v_0 = 7$, $v_1 = 28$, $v_2 = 112$ qui progressent avec un facteur q = 4.

Prouvons le :

$$v_{n+1} = 7 \times 4^{n+1}$$
 et

$$\frac{v_{n+1}}{v_n} = \frac{7 \times 4^{n+1}}{7 \times 4^n} = \frac{4^n \times 4}{4^n} = 4 \Longrightarrow v_{n+1} = 4v_n$$

 (v_n) est une suite géométrique de raison 4.

Formule explicite

Si (v_n) est une suite géométrique de raison q alors, pour tout $n \in \mathbb{N}$, on a : $v_n = v_0 q^n$.

Par exemple, si $v_{n+1} = 0.5v_n$ et $v_0 = 17$, on a $v_n = 17 \times 0.5^n$.

Réciproque Toute suite donc le terme général s'écrit sous la forme $v_n = v_0 q^n$ est géométrique de raison q.

Exemple On a placé un capital de 1000€ en 2010 sur un compte bloqué rapportant 1.5% d'intérêts composés annuels ¹.

- 1. Exprimer la relation entre le capital à l'année n et celui à l'année n+1.
- 2. Calculer le montant en 2022.

Facile!

1. D'une année n à la suivante, le capital est augmenté de 1.5%. Il est donc multiplié par 1.015. On a donc $v_{n+1}=1.015v_n$. C'est une suite géométrique de raison 1.015.

On a aussi $v_n = 1000 \times 1.015^n$

2. En 2022, 12 ans se sont écoulés depluis le placement. Il y aura donc $1000 \times 1.015^{12} \approx 1195.62$ €.

¹Les intérêts composés génèrent des intérêts. D'une année à l'autre le capital est augmenté par les intérêts avant de calculer les intérêts de l'année suivante. Ce n'est pas le cas des intérêts simples où les intérêts sont fixes.

3. Représentation graphique

Lorsqu'on représente une suite on place en abscisse (horizontal) les indices et en ordonnée (vertical) les valeurs.

Représenter une suite sur la Numworks Par exemple avec u_3 et $u_{n+1} = 1.6 * u_n$.

Menu Suites, ajouter une suite, Récurrente d'ordre 1, $u_{n+1} = 1.6 \times u_n$

Figure 3: Progression géométrique vers l'infini

Lorsqu'on trace les termes d'une suite géométrique on remarque une progression exponentielle.

Cas d'une raison entre 0 et 1 Lorsque la raison d'une suite géométrique est entre 0 et 1, les termes convergent rapidement vers 0.

Par exemple pour $v_n = 1000 \times 0.6^n$

Figure 4: Progression géométrique vers 0

Cas d'une raison négative Lorsque la raison est négative, les valeurs de la suite géoémtrique changent de signe à chaque terme.

Par exemple pour $v_n = 150 \times (-1.2)^n$

Variations

Si (v_n) est géométrique de raison q et de premier terme v_0

- si $v_0 > 0$ et q > 1 la suite (v_n) est *croissante*,
- si $v_0 > 0$ et 0 < q < 1 la suite (v_n) est décroissante,
- Les autres cas ne sont pas à retenir.

4. Somme des termes consécutifs d'une suite géométrique

Propriété La somme S_n des termes consécutifs d'une suite géométrique

$$S_n = v_0 + v_1 + \dots + v_n = \sum_{k=0}^n v_k = v_0 \frac{1 - q^{n+1}}{1 - q}$$

Exemples

- 1. Calculer la somme des 10 premiers termes de la suite géométrique de raison 2 et de premier terme 5.
- 2. Chaque début d'année on place un capital de 500€ sur un compte à intérêts composés avec un taux annuel de 3%. Calculer le capital après 7 ans.

Réponses

1. Les dix premiers termes donc pour k allant de 0 à **9** (vérifiez en comptant sur vos doigts à partir de 0) On applique la formule et

$$S = \sum_{k=0}^{9} 5 \times 2^{k} = 5 \times \frac{1 - 2^{10}}{1 - 2} = 5 \times 1023 = 5115$$

2. Attention! Contrairement à l'exemple bancaire précédent, cette fois on place de l'argent tous les ans.

Le capital total ne suit plus une progression géométrique.

On considère v_n la valeur acquise pour $500 \\in$ placés après n années.

 v_n est une suite géométrique de raison 1.03 (intérêts composés) et de premier terme 500.

Donc $v_n = 500 \times 1.03^n$

- Le premier versement reste placé 7 ans, donc rapporte $v_7 = 500 \times 1.03^7$
- Le second versement reste placé 6 ans, donc rapporte $v_6 = 500 \times 1.03^6$
- · ·
- Le sixième versement reste placé 2 ans, donc rapporte $v_2 = 500 \times 1.03^2$
- Le septième versement reste placé 1 an, donc rapporte $v_1 = 500 \times 1.03^1$

Après 7 années, le capital est donc

$$v_0 + v_1 + \dots + v_6 = \sum_{k=0}^{6} v_k = \sum_{k=0}^{6} 500 \times 1.03^k = 500 \frac{1 - 1.03^7}{1 - 1.03} = 3831.23$$

Calculer une somme sur la Numworks On reprend le dernier exemple :

Menu Calculs, touche Paste, choisir Analye puis Somme et saisir :

Figure 5: Somme des termes sur la numworks

Résumé

Résumé	Cours	Exemple
Définition	(v_n) géométrique - de raison q , - de premier terme v_0	$q = 1.7, v_0 = 400$
Propriété	$v_{n+1} = q \times v_n$	$v_{n+1} = 1.7 \times v_n$
Variations	s Si $q > 1$ et $v_0 > (v_n)$ est croissante Si $q \in]0,1[$ et $v_0 > 0, v$ est décroissante	$q = 1.7 > 1$ et $v_0 > 0$ La suite est croissante
Somme	$S = v_0 \times \frac{1 - q^{n+1}}{1 - q}$	$v_0 + \dots + v_9 = 400 \frac{1 - 1.7^10}{1 - 0.7}$
Graphe	Les points de la représentation graphique ne sont pas alignés	rad SUITES Suites Graphique Tableau
		Suites Graphique Tableau Auto Axes Naviguer Calcul
		1800
		1000
		1000-
	On parle de croissance exponentielle	n=4