

PART02 머신러닝 기본(scikit learning)

결정트리 설명

결정트리

- 데이터에 있는 규칙을 학습을 통해 자동으로 찾아내 트리 기반으로 분류 규칙을 만듬(if else 기반 규칙)
- 데이터의 어떤 기준을 바탕으로 규칙을 만들어야 가장 효율적인 분류가 될 것 인가가 알고리즘의 성능을 크게 좌우함.

결정트리(Decision Tree)

- 데이터 마이닝에서 일반적으로 사용되는 방법론
- 몇몇 입력변수를 바탕으로 목표 변수의 값을 예측하는 모델을 생성하는 것을 목표로 함
- 트리 구조로 가지, 자식(child)노드, 잎(leaf) 노드로 구성됨

https://m.blog.naver.com/PostView.naver?is HttpsRedirect=true&blogId=moonsoo5522&lo qNo=220888886396

Scikit-learn[©] DecisionTree Estimator

- sklearn.tree.DecisionTreeClassifier(분류문제에 사용)
- sklearn.tree.DecisionTreeRegressor(회귀문제에 사용)

https://scikit-

learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier

https://scikit-

learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html#sklearn.tree.DecisionTreeRegressor

붓꽃 데이터 분류 예측 – 지도학습

- 붓꽃 데이터 세트로 붓꽃의 품종 분류 예측하기
- 붓꽃 데이터 세트 : 꽃잎의 길이와 너비, 꽃받침의 길이와 너비

붓꽃 데이터 feature

petal

Petal length Petal width

Sepal length Sepal width

붓꽃 데이터 품종(레이블)

붓꽃 품종 예측하기 프로세스

피처 레이블

학습 데이터 셋

꽃받침 길이	꽃받침 너비	꽃잎 길이	꽃잎 너비	Iris 꽃 종류
5.1	3.5	1.4	0.2	Setosa
2.9	3.0	1.4	0.2	Setosa
6.4	3.5	4.5	1.2	Versicolor

테스트 데이터 셋

	꽃받침 길이	꽃받침 너비	꽃잎 길이	꽃잎 너비	Iris 꽃 종류
<u>.</u>	5.3	3.2	1.1	0.1	?
	4.2	2.0	2.4	0.4	?
	6.5	3.8	5.5	1.1	?
	•••				

데이터 셋 준비

학습데이터와 테스트 데이터 준비, 분리 .train_test_split(X,y)

학습 데이터를 기반으로 ML 알고리즘을 적용해 모델을 학습시킴 .fit()

평가

학습된 ML모델을 이용해 테스트 데이터의 레이블(붓꽃 종류) 예측 .predict()

> 예측된 레이블 값과 실제 레이블 값으로 예측 정확도 평가

결정트리와 앙상블

- 결정 트리
 - 。장점
 - 매우 쉽고 유연하게 적용될 수 있는 알고리즘
 - 데이터 스케일링이나 정규화 등의 사전 가공의 영향이 매우 적음
 - 단점
 - 예측성능을 향상시키기 위해 복잡한 규칙 구조를 가져야함.
 - 이로인해 과적합(overfitting)이 발생해 예측성능이 저하 될 수 있음.
- 앙상블 기법
 - 결정트리의 단점이 앙상블 기법에서 장점으로 작용
 - 앙상블 기법은 매우 많은 예측 성능이 상대적으로 떨어지는 학습 알고리즘을 결합해 확률적 보완과 오류가 발생한 부분에 대한 가중치를 계속 업데이트 하면서 예측성능을 향상시킴
 - 결정 트리의 단점을 보완하여 GBM, XGBoost, LightGBM 등으로 발전함

결정트리

- 데이터에 있는 규칙을 학습을 통해 자동으로 찾아내 트리 기반으로 분류 규칙을 만듬(if else 기반 규칙)
- 데이터의 어떤 기준을 바탕으로 규칙을 만들어야 가장 효율적인 분류가 될 것 인가가 알고리즘의 성능을 크게 좌우함.

트리 분할을 위한 데이터의 균일도

• 다음 중 가장 균일한 데이터 셋은?

균일도 기반 규칙 조건

- 노랑색 블록
 - 모두 동그라미로 구성
- 빨강과 파랑 블록
 - 동그라미, 네모, 세모가 골고루 섞여 있음
- 각 레고 블록을 분류하고자 한다면,
 첫번째로 만들어져야 하는 규칙 조건은?

if 색깔 == '노란색'

정보 균일도 측정 방법

정보 이득(Information Gain) = 1 – 엔트로피 지수

- 엔트로피 개념을 기반으로 함.
- 엔트로피는 주어진 데이터 집합의 혼잡도를 의미함.
 - 서로 다른 값이 섞여 있으면 엔트로피가 높고, 같은 값이 섞여 있으면 낮음.
- 결정 트리는 정보 이득 지수로 분할 기준 정하며, 정보이득이 높은
 속성으로 분할 결정 함

지니 계수

- 지니계수는 0이 가장 평등하고, 1로 갈 수록 불평등함.
- 지니계수가 낮을 수록 데이터 균일도가 높은 것으로 해석됨
- 계수가 낮은 속성을 기준으로 분할 함.

결정트리의 규칙 노드 생성 프로세스

(4) Recursive 하게 모든 데이터 집합의 분류가 결정될때 까지 수행

결정 트리의 특징

결정 트리 장점	결정 트리 단점
 쉽다. 직관적이다. 피처의 스케일링이나 정규화 등의 사전 가공 영향도가 크지 않음. 	• 과적합으로 알고리즘 성능이 떨어질 가능성. 이를 극복하기 위해 트리의 크기를 사전에 제한하는 튜닝 필요

결정 트리 하이퍼 파라미터

하이퍼 파라미터	설명
max_depth	 트리의 최대 깊이를 규정 디폴트는 None. 완벽하게 클래스 결정 값이 될 때까지 깊이를 계속 키우며 분할하 거나 노드가 가지는 데이터 개수가 min_samples_split 보다 작아질 때까지 계속 깊이를 증가시킴.
max_features	 최적의 분할을 위해 고려할 최대 feature 개수 Default는 None으로 데이터 세트의 모든 feature를 사용해 분할 수행. Int형 : 대상 feature의 개수, float형:전체 feature 중 대상 feature의 퍼센트임. 'sqrt' : 전체 feature중 sqrt(전체 피처) 개수 만큼 선정, 'auto' 동일
min_samples_split	 노드를 분할 하기 위한 최소한의 샘플 데이터 수로 과적합을 제어하는 데 사용됨 디폴트는 2이고, 작게 설정할 수록 분할되는 노드가 많아져서 과적합 가능성 증가함, 1로 설정할 경우 분할되는 노드가 많아져서 과적합성 증가
min_samples_leaf	 말단 노드(Leaf)가 되기 위한 최소한의 샘플 데이터 수 min_samples_split와 유사하게 과적합 제어 용도. 그러나 비대칭적 데이터의 경우 특정 클래스의 데이터가 극도로 작을 수 있으므로 이 경우는 작게 설정 필요
max_leaf_nodes	• 말단 노드(Leaf)의 최대 개수

결정트리 규칙 생성 시각화 패키지

- Graphviz 패키지 다운로드 설치(c++로 개발됨)
- Graphviz의 파이썬 래퍼 모듈 설치
 - Linux : sudo apt-get install graphviz
 - odot --help : 출력되면 성공
 - o scikit learning api 제공
 - from sklearn.tree import export_graphviz

참고: https://scikit-learn.org/stable/modules/tree.html?highlight=dt

Graphviz의 시각화 노드

Target: setosa, versicolor, virginica

- petal length(cm) < 2.45 : 피처의 조건이 있는 것은 자식 노드를 만들기 위한 규칙 조건, 없으면 leaf node
- gini : 다음의 value=[]로 주어진 데이터 분포에서의 지니 계수
- samples는 현 규칙에 해당하는 데이터 건수
- value=[]: 클래스 값 기반의 데이터 건수.
 붓꽃 데이터세트는 클래스 값으로 0,1,2를
 가지고 있으며, 0: Setosa, 1: Versicolor, 2:
 Virginica 품종을 가리킴.
- Class는 value 리스트 내에 가장 많은 건수를 가진 결정 값

Graphiviz

결정트리 모델의
 Graphiviz 시각화
 결과

Max_depth에 따른 결정 트리 구조

• Max_depth제약 없음 Max_depth=4 Max_depth=3 petal length (cm) <= 2.45 petal length (cm) <= 2.45 petal length (cm) <= 2.45 gini = 0.667gini = 0.667 gini = 0.667 samples = 120 samples = 120 samples = 120 value = [41, 40, 39] value = [41, 40, 39] value = [41, 40, 39] class = setosa class = setosa class = setosa False True False False True True petal width (cm) <= 1.55 gini = 0.0petal width (cm) <= 1.55 petal width (cm) <= 1.55 gini = 0.5samples = 41 gini = 0.0gini = 0.0 samples = 79 gini = 0.5gini = 0.5 value = [41, 0, samples = 41 samples = 41 value = [0, 40, 39] samples = 79 samples = 79 class = setosa value = [41, 0, 0]value = [41, 0, 0 class = versicolor value = [0, 40, 39]value = [0, 40, 39] class = setosa class = setosa class = versicolor class = versicolor petal length (cm) ≤ 5.25 petal width (cm) ≤ 1.75 gini = 0.051gini = 0.136petal length (cm) <= 5.25 $petal width (cm) \le 1.75$ samples = 38 petal length (cm) <= 5.25 petal width (cm) <= 1.75 gini = 0.051 gini = 0.136gini = 0.136value = [0, 37, 1] value = [0, 3, 38]gini = 0.051samples = 38 samples = 41 class = virginica samples = 38 samples = 41 value = [0, 37, 1] value = [0, 3, 38]value = [0, 37, 1]value = [0, 3, 38]class = versicolor class = virginica class = versicolor class = virginica petal length (cm) <= 4.85 sepal length (cm) <= 5.45 gini = 0.0gini = 0.0gini = 0.5samples = 1 samples = 37 samples = 37 samples = 4 petal length (cm) <= 4.85 sepal length (cm) ≤ 5.45 value = [0, 37, gini = 0.0 gini = 0.053gini = 0.0gini = 0.0gini = 0.5value = [0, 2, 2]value = [0, 1, 36] gini = 0.5 gini = 0.053 class = versicol samples = 37 class = versicolor class = virginica samples = 37 samples = 1 samples = 37 samples = 1samples = 4 samples = 4 value = [0, 37, 0 value = [0, 37,value = [0, 0, 1]value = [0, 2, 2]value = [0, 2, 2]value = [0, 1, 36]class = versicolo class = versicolor class = virginica class = versicolor class = virginica petal length (cm) <= 5.45 sepal length (cm) <= 5.95 gini = 0.0gini = 0.444 gini = 0.444 samples = 1 samples = 34 value = [0, 0, 34 samples = 3 samples = 3 value = [0, 2, 1]value = [0, 1, 2]gini = 0.444gini = 0.444class = virginica class = versicolor class = virginica samples = 3 samples = 3 value = [0, 2, 1]value = [0, 1, 2]class = versicolor class = virginica class = virginica gini = 0.0samples = 2samples = 1value = [0, 2,value = [0, 1, 0] lass = versicolo

Min_samples_split에 따른 결정 트리 구조

- min_samples_split=4
- 정확도 0.933

min_samples_split=4로 설정, samples가 3개 이므로 서로 다른 class값이 있어도 split하지 않음.

Min_samples_leaf에 따른 결정트리 구조

- min_samples_leaf=4
- 정확도 0.933

min_samples_split=4이상인 노드는 리프 클래스 노드가 될 수 있으므로 규칙이 sample 4인 노드를 만들 수 있는 상황을 반영하여 변경됨

결정 트리의 feature 선택 중요도

- 사이킷런의 DecisionClassifier 객체는 feature_importances_을 통해 학습/예측을 위해서 중요한 feature들을 선택할 수 있게 정보를 제공함
- model_dtc.feature_importances_
- sns.barplot(x=model_dtc.feature_importances_, y=iris_data.feature_names

