Batch vs Streaming Processing

Rosa Filgueira

Terracorrelator Machine (TC)

- New HPC facility
- Designed for real-time cross-correlational analyses.
- 2 nodes each with 2TB shared memory and 32 cores.
 - cross-correlation
 - post-processing
- 2 Intel Xeon Phi nodes
 - pre-processing

Also used by: X-ray tomography, and climate science

Batch Processing

 Batch data processing is an efficient way of processing high volumes of data which is collected over a period of time.

 Data is collected, entered, processed and then the batch results are produced

Streaming processing

 Streaming processing involves a continual input, process and output of data.

 Data must be processed in a small time period (or near real time).

Processing messages one at time

What we want

- Continuous processing:
 - Source ?
 - Is the data going to be stored in the Terracorrelator?
 - If so, where?
 - » Shared memory (/dev/shm/)?
 - » File System
 - Or, Is the data going to be stored in somewhere else?
 - » Another machine
 - » Cluster?
- Compatible with Shared Memory
- Avoid writing intermediate files

Batch Technology

- Distributed memory:
 - MPI
 - Based on Hadoop:
 - Spark
 - MapReduce
 - dispel4py
- Shared memory:
 - One one machine:
 - Mutiple CPUs/GPUS share memory
 - On multiple machines:
 - Shared memory via network
 - OpenMP
 - Multiprocessing Python Libraries
 - pthreads POSIX

Hadoop

- Hadoop clusters consist of
 - up to thousands of commodity computers
 - a distributed file system called HDFS
- Distributed Programming Model
 - MapReduce:
 - Run code where data resides
 - Based on Maps & Reduce functions
 - Reads and writes from File System
 - Spark
 - Faster than MapReduce
 - DAG graphs Directed acyclic graph
 - Handles most its operations in memory:
 - Spark Straeming → data stream processing in near real time by using microbatches
 - Mlib -→ Library for machine learing
 - Relative immature

Map Reduce Example

MapReduce - Problems

- State between steps goes to distributed file systems
- Slow due to replication and disk storage
- It is needed HDFS file system

Spark

- Resilient Distributed Dataset (RDD)
 - Fault tolerant collection of elements distributed across many serves on which we can perform parallel operations
 - Persistence:
 - HDFS
 - Memory
- Operations:
 - Transformations : Operations on RDDs that return new RDDs
 - Actions: Operations on RDD witch return a final value or write the data to an external storage system

Spark

```
file.map(lambda rec: (rec.type, 1))
    .reduceByKey(lambda x, y: x + y)
    .filter(lambda (type, count): count > 10)
```


Spark -RDD

RDD

- transformations
 - lazy, form the DAG
 - map, filter, flatMap, mapPartitions, mapPartitionsWithIndex, sample, union, intersection, distinct, groupByKey, reduceByKey, sortByKey, join, cogroup, repatition, cartesian, glom, ...
- actions
 - execute DAG
 - retrieve result
 - reduce, collect, count, first, take, foreach, saveAs..., min, max, ...
- different categories of transformations with different complexity, performance and sematics
- e.g. mapping, filtering, grouping, set operations, sorting, reducing, partitioning
- full list https://spark.apache.org/docs/1.3.0/api/scala/index.html#org.apache.spark.
 rdd.RDD

Spark Scheduler

MapReduce Vs Spark

Streaming Technology

- Distributed Memory:
 - Storm
 - Spark Streaming
 - dispel4py
- Shared Memory:
 - dispel4py
 - Storm ??

Storm

- Storm supports true streaming processing model (via Core storm layer) in strictest sense, with an additional microbatching model
- Main concepts:
 - Stream: sequence of tuples
 - Storm provides primitives to transform a stream into a new one.
 - Spout: Source of stream
 - Bolt: Consumes any number of input streams, does some processing, and possible emits new stream.
 - Topology: The abstraction of the program to submit to a Storm cluster for execution.

Stream transformation

Bolt

Tuple

stream

Bolt

Spout

Stream source

Spout

- Edges: Links between the nodes.
- Communication between nodes:
 - Same node: Inter-thread messaging library
 - Different nodes: ZeroMQ or Netty (network)

Storm -- Problems

It is necessary to have a Storm cluster

Spark Streaming

Run a streaming computation as a series of very small, deterministic batch jobs

- Chop up the live stream into batches of X seconds
- Spark treats each batch of data as RDDs and processes them using RDD operations
- Finally, the processed results of the RDD operations are returned in batches

Spark Streaming

- Spark Streaming is a wrapper over Spark (Batch processing) framework
- It internally converts the incoming stream into small micro-batches, which are then handed over to Spark framework for processing
- DStream: Abstraction in Spark Streaming, is a continuous sequence of RDDs (of the same type) representing a continuous stream of data
- Two operations:
 - Stream transformations:
 - Convert a DStream to another
 - Output operators
 - Write data to external systems.
- Periodically async writes to file systems (HDFS)

Spark Streaming

- Data receiving:
 - Receive data and store data in Spark
- Data processing
 - Transfer the data stored in Spark into the Dstream
 - Then you can apply the two operations on the Dstream
- Two types of parallelism:
 - Receiving the stream
 - Processing the stream
- http://stanford.edu/~rezab/dao/slides/lec12.pdf

Spark Streaming – Problems

Problems:

- Run Spark on the same nodes as HDFS
- While Spark can perform a lot of its computation in memory, it still uses local disks to store data that doesn't fit in RAM, as well as to preserve intermediate output between stages
- Distributed environments
- http://es.slideshare.net/DavorinVukelic/realtimestreaming-with-apache-spark-streaming-andapache-storm

dispel4py

- Stream-based
 - Tasks are connected by streams and not by intermediate files
 - Multiple streams in & out
 - Optimization based on avoiding IO
- Maps workflows dynamically onto multiple enactment systems:
 - Automatic parallelization
 - Without cost to users
- Python language for describing tasks and connections

dispel4py – Processing element

- PEs represent the basic computational:
 Algorithm, service, data transformation
- Shared: Storing them into the registry
- PEs ~ "Lego bricks" of tasks.
 Users can assemble them into workflow as they wish.
- Consume/Produce any number and types of input/output streams

Seismic ambient noise cross-correlation – dispel4py workflow + TC + multi mapping

- Phase 1- Preprocess: Time series data (traces) from seismic stations are preprocessed in parallel
- Phase 2: Cross-Correlation: Pairs all of the stations and calculates the cross-correlation for each pair (complexity O(n2)).

- Select vertical component (channel BHZ)
- Decimation to 4 Hz sampling rate
- Remove mean & trend
- Remove station response
- Bandpass filter for 0.01 Hz 1.00 Hz
- Moving average re-normalization
- Spectral whitening

dispel4py mappings

Sequential

- Sequential mapping for local testing
- Ideal for local resources: Laptops and Desktops

Multiprocessing

- Python's multiprocessing library
- Ideal for shared memory resources

MPI

- Distributed Memory, message-passing parallel programming model
- Ideal for HPC clusters

STORM

- Distributed Real-Time computation System
- Fault-tolerant and scalable

dispelp4y basic concepts— Example of a dispel4py workflow

```
counter
                                                                      HashTag
                                                                            hash_tag_count
from dispel4py.workflow graph import WorkflowGraph
                                                            hash_tag
                                                                                 input1
                                                          filter
                                                                                  stastistics
                                                          pe1
pe1 = filterTweet ()
                                                                                   pe4
                                 PEs objects
pe2 = counterHashTag ()
                                                           langugage
pe3 = counterLanguage ()
                                    Graph
pe4 = statistics ()
                                                                           language count
                                                                      counter
                                                                      Language
graph = WorkflowGraph ( )
                                 Connections
                                                         Users only have to implement:
graph.connect(pe1,'language',pe3,'input')
                                                          PFs
graph.connect(pe2,'hash tag count',pe4,'input1')
                                                           Connections
graph.connect(pe3,'language count',pe4,'input2')
```

dispel4py --- Installations and Links

This is all you need:

pip install dispel4py

- Web site http://dispel4py.org/
- GitHub: https://github.com/dispel4py/dispel4py
- Documentation: http://dispel4py.org/documentation/
- I have plenty material that I could share ©

dispel4py – problems

- The workflow finishes after processing an input stream data
- Cronjobs are needed for continuing data processing.

Real time and Batch processing

- The decision to select the best data processing depends on:
 - the types and sources of data
 - processing time needed to get the job done
 - hardware

Conclusions

- For the Terracorrelator Machine:
 - Continuous processing technology
 - Compatible with Shared Memory
 - Avoid writing intermediate files
 - dispel4py
 - Could be Storm, but I am not 100 % convinced.