

EarnHFT: Efficient Hierarchical Reinforcement Learning for High Frequency Trading

Shayan Kebriti
June 2025

Introduction

High Frequency Trading (HFT)

- Uses algorithms to make trading decisions in short time scales (e.g., second-level)
- Widely used in Cryptocurrency (e.g. Bitcoin)
 - High potential for profitability due to <u>high</u>
 volatility
 - Lower Risk
 - Run 24/7, No overnight risk

Helps the discovery of the true price of an asset

Chellenges

- An extremely large time horizon
 - Atari games → ~ 6,000 steps
 - \circ HFT \rightarrow ~ 1 million steps (agents need to be evaluated in dozens of days)
 - Large time horizons need more data to converge

- Dramatic market changes
 - Agents trained on historical data fail in maintaining performance <u>over long periods</u>

Proposed Method

Hierarchical MDP Formulation

- Low-level MDP (second-level operation)
 - Action: Choose a target position
 - State: Second-level market features
 - Reward: Net value change from the last second
- High-level MDP (minute-level operation):
 - Action: Choose a low-level policy (agent)
 - State: Minute-level market characteristics
 - Reward: Total profit from the chosen agent over the past minute
- Goal
 - Learn a set of diverse low-level policies for different market trends
 - Train a high-level policy to <u>dynamically select</u> the right agent based on current market conditions

Overview of EarnHFT

- Three Stages for Training
- Two-level Inference

Stage I: Optimal Action Value Aided DDQN

Stage II: Construction of Diverse Strategy Pool

Stage III: Router Optimization via DDQN

Stage 1: Efficient RL with Q-Teacher

- Computing Q* using Dynamic Programming
- Using DDQN for Q
- Overall loss:

$$L(\theta_i) = L_{td} + \alpha KL(Q_t(\chi, p, \cdot; \theta_i)||Q^*(\chi, p, \cdot))$$

$$L_{td} = (r + \gamma \max Q_t(\chi', a, \cdot; \theta_i') - Q_t(\chi, p, a; \theta_i))^2$$

• The *Optimal Actor* helps overcome the drift due to exploration of the *RL Agent*

Stage 2: Building Diverse Agents

- 1. Seprate dataset into chunks
- 2. Train agents with different market trends by giving different priorities to each chunk:

$$f(x) = \begin{cases} \frac{e^{\beta r}}{pdf(r)} & \text{if } Q_{\frac{\theta}{2}}(R) \leq r \leq Q_{1-\frac{\theta}{2}}(R) \\ e^{\beta r} & \text{if } r \geq Q_{1-\frac{\theta}{2}}(R) \vee r \leq Q_{\frac{\theta}{2}}(R) \end{cases}$$

- r → return
- β → Preference parameter (high/low return)
- pdf(r) → Probability density of return r
- Q_θ(R) → Quantile function
- $\theta \rightarrow \text{Risk threshold}$

Stage 2 (Cont.): Construction of Agent Pool

1. Market Segmentation & Labelling

2. Evaluate the trained agents and choose the top ones to construct <u>an agent pool of (m, n)</u>

 $m \rightarrow$ number of market trends

 $n \rightarrow \text{initial positions}$

Stage 3: Dynamic Routing Optimization

- Train a DDQN for Router
- We reduce the number of possible low-level agents to *m*
 - using the agents with the <u>same initial position</u>

Summary

Summary

Results

		Prof↑	RAP↑	Risk↓			Prof↑	RAP↑	Risk↓
Market	Model	TR(%)	SR	MDD(%)	Market	Model	TR(%)	SR	MDD(%)
BTCU	DRA	-4.56	-4.28	9.24	BTCT	DRA	-2.65	<u>-4.82</u>	5.84
	PPO	-3.61	-5.25	<u>6.41</u>		PPO	-0.60	-14.74	0.65
	CDQNRP	-2.83	-2.91	7.38		CDQNRP	-0.60	-19.52	0.61
	DQN	-3.48	-12.37	4.09		DQN	0.47	4.21	<u>0.66</u>
	MACD	-6.07	-10.11	9.98		MACD	-4.02	-5.80	6.44
	IV	<u>-2.99</u>	<u>-3.78</u>	8.32		IV	-12.01	-17.83	12.66
	EarnHFT	0.72	1.22	3.07		EarnHFT	0.99	1.34	5.61
ETH	DRA	-33.37	<u>-9.06</u>	45.88	GALA	DRA	10.56	4.77	10.60
	PPO	-22.61	-10.11	31.17		PPO	<u>10.56</u>	<u>4.77</u>	10.60
	CDQNRP	<u>-6.82</u>	-24.41	6.96		CDQNRP	5.22	4.51	5.41
	DQN	-11.02	-9.47	13.79		DQN	2.94	3.55	3.78
	MACD	-4.29	-1.78	16.35		MACD	2.37	1.79	9.84
	IV	-27.42	-12.27	33.96		IV	13.95	6.74	9.91
	EarnHFT	4.52	2.92	<u>13.89</u>		EarnHFT	19.41	9.77	9.26

Dataset	Dynamics	Seconds	From	То
BTC/TUSD	Sideways	4057140	23/03/30	23/05/15
BTC/USDT	Sideways	3884400	22/09/01	22/10/15
ETH/USDT	Bear	3970800	22/05/01	22/06/15
GALA/USDT	Bull	3970740	22/07/01	22/08/15

Thanks!

Appendix

Algorithm 1: Construction of Optimal Action Value

Input: Multivariate Time Series \mathcal{D} with Length N, Commission Fee Rate δ , Action Space A

Output: A Table Q^* Indicating Optimal Action Value at Time t, Position p and Action a.

- 1: Initialize Q^* with shape (N, |A|, |A|) and all elements 0.
- 2: for $t \leftarrow N-1$ to 1 do
- 3: **for** $p \leftarrow 1$ to |A| **do**
- 4: **for** $a \leftarrow 1$ to |A| **do**
- 5: $Q^*[t, p, a] \leftarrow \max_{a'} Q^*[t+1, a, a'] + a \times p_{t+1}^{b1} (p \times p_t^{b1} + E_t(p-a)).$
- 6: end for
- 7: end for
- 8: end for
- 9: return Q^*

Algorithm 2: Efficient RL with Q-Teacher

Input: Multivariate Time Series \mathcal{D} with Length N, Commission Fee Rate δ , Action Space A

Output: Network Parameter θ

- 1: Initialize experience replay R, network Q_{θ} , target network $Q_{\theta'}$ and construct the optimal action value using Algorithm 1 and trading environment Env.
- 2: Initialize trading environment Env
- 3: **for** t = 1 to N 1 **do**
- 4: Choose action a_{ϵ} using ϵ -greedy policy.
- 5: Store transition $(s, a_{\epsilon}, r, s', Q^*)$ in D
- 6: end for
- 7: Reinitialize trading environment Env
- 8: **for** t = 1 to N 1 **do**
- 9: Choose action a_o that $\operatorname{argmax}_a Q^*[t, p, a]$.
- 10: Store transition (s, a_o, r, s', Q^*) in R
- 11: end for
- 12: Sample transitions $(s_j, a_j, r_j, s'_j, Q_j^*)$
- 13: Calculate L following Equation 2, do its gradient descent on θ and update $\theta' = \tau \theta + (1 \tau)\theta'$.
- 14: **return** Q_{θ}

Algorithm 3: Market Segmentation & Labelling

Input: A Time Series \mathcal{D} with Length N

Parameter: Risk threshold θ , Label number M

Output: Labels indicating the trend they belong to for every point in time series D

- 1: $D' \leftarrow$ denoising high frequency noise D.
- 2: Divide D' according to its extrema into segments S.
- 3: Merge adjacent segments in S if DTW (Muda, Begam, and Elamvazuthi 2010) and slop difference are small enough until S is stable.
- 4: Calculate threshold $H=Q_{1-\frac{\theta}{2}}(R), L=Q_{\frac{\theta}{2}}(R)$
- 5: Calculate the upper bond and lower bonds of slopes for each label based on the quantile and the threshold.
- 6: Label each segment based on the bonds.
- 7: Return the label corresponding to each segment.

The Effectiveness of optimal value supervisor (OS) & optimal actor (OA)

\bigcap	os	(BALA		ETH			
UA		CS	RS	AHL	CS	RS	AHL	
√	√	78848						
✓		102400	0.24	38.7	102400	-1.40	4.15	
	✓				30720			
		30720	-0.01	284	30720	-29.6	39.1	

CS → Convergence Steps

RS → Converged Reward Sum

AHL → Average Holding Length