Common Al Algorithms

(SENG 463 - Game Programming)

Dr.Çağatay ÜNDEĞER

Research and Innovation Director SimBT Inc.

e-mail:

cagatay.undeger@simbt.com.tr cagatay@undeger.com

Outline

- Finite-State Machines
- Decision Trees
- Instance-Based Learning
- Artificial Neural Networks
- Deep Learning

- Defined by a set of states and transitions between them.
- Transition from a state to another state is triggered by a change (event or action) in the environment.

- FSMs are used broadly in the video game industry.
 - Quake and Quake 2: a simple FSM system.
 - Warcraft III: a complex FSM system
- FSMs also have a large role outside of the video game industry.
 - For example, cars, airplanes, robots, etc. have complex FSMs for controlling the devices.

Also called "State Transition Networks/Diagrams"

- An FSM has an entry (initial) state for starting the execution.
- After execution starts, events and/or actions cause state transitions.
- Each state may execute a code while;
 - Entering a state
 - Maintaining a state in every step and/or
 - Leaving a state

A Sample

Hierarchical Finite-State Machines

- When the number of states increases,
 - It becomes very complicated to define the FSMs and
 - High probable to have some bugs!
- A solution is
 - To define some higher level states, and
 - Refine the details of states hierarchically.

A Sample

Advantages

- Very fast to execute.
- Expressive enough for simple behaviors.
- Can create tools for non-programmers to build behaviors.
- Probabilistic transitions can be introduced to make unpredictable transitions/behaviors.

Disadvantages

- Number of states and arcs can grow very fast.
- Easy to do errors in complex FSMs.
- Difficult to;
 - Put propositional representations such as:
 - Pick up the best weapon
 - Attack the closest enemy
 - Count such as:
 - Wait until the third time I see the enemy, then attack
 - Perform actions in parallel

Improvements

- But they are still prefered in many games, and
- They can be improved with some special additions such as:
 - Parallel finite-state machines
 - Higher level scripts to perform complex transitions

Decision Trees

- Rules are defined as a tree.
- Conditions are non-leaf nodes.
- Actions/decisions are leaf nodes.

 Decision trees can be learned (e.g. ID3) from instances (via questions and known answers)

Sample Inputs & Outputs

- Inputs (State Space variables)
 - Safety (in danger, not safe, safe)
 - See something (yes, no)
 - Theat situation (firing at me, attacting me, escaping)
- Outputs (Actions)
 - Fire at the threat
 - Lay down rapidly
 - Escape from threat
 - Crouch and wait silently
 - Walk around
 - Sleep somewhere

Sample Instances For Learning

- If in danger, see something and threat firing at me.
 - then Fire at the threat (instance count = 2)
- If in danger, see something and threat firing at me
 - then Lay down rapidly (instance count = 1)
- If in danger, see something and threat attacking me.
 - then Escape from threat (instance count = 1)
- If in danger, see something and threat attacking me
 - then Fire at the threat (instance count = 1)
- If in danger, see something and threat escaping
 - then Fire at the threat (instance count = 2)
- If not safe and see something
 - then Crouch and wait silently (instance count = 1)
- If not safe and not see something
 - then Walk around (instance count = 1)
- If safe
 - then Sleep somewhere (instance count = 1)

A Sample Decision Tree

Advantages

- A simple and compact representation.
- Easy to create and understand:
 - Can also be represented as rules
- Decision trees can be learned.

Disadvantages

- Decision tree learning algorithm is complex (hard to be coded).
- Need as many examples as possible.
- Sensitive to the errors in instances,
 - Learned decision trees may contain errors.

Artificial Neural Networks (NNets)

- Inspired by human brain.
- Fundamental functional units of brain are:
 - Neurons / soma / nerve cells and
 - Axons / dendrites connecting nerve cells.

Artificial Neural Networks (NNets)

- Neural networks use a similar approach.
- Consist of:
 - Input arcs collect the signals,
 - Neuron sums the signals and
 - Output arcs transmit the summed signal based on a transmit function.

Neural networks can be learned.

Neural Network Architecture

A Sample Neural Network

- The inputs are state variables that equal to either 0 (no) or 1 (yes).
- Outputs are action variables that are between 0 and 1.
- The action with the greatest output is selected.

Common Usage of NNets

- Environmental Scanning and Classification:
 - Interpret vision and auditory information
- Memory:
 - Can learn through experience
- Behavior Control:
 - Outputs can be used as actions to be performed.
- Response Mapping:
 - Any input output mapping and association.

Usage of NNets

- The usage of NNets is a little bit fuzzy.
- No exact cases and rules.
- Assume it as a tool and use your creativity to get whatever you like.
- It is the second best solution to a problem,
 - Use it if there is no known exact solution to the problem

Advantages

- Handle errors well.
- Graceful degradation.
- Can learn novel solutions.

Disadvantages

- Can't understand how the learned network works, therefore they are the second best way to do something.
- Need as many examples as possible.
- Learning takes too much time / processing.
- Sometimes the network may not converge.

Deep Learning

- Deep Learning is an extended version of classical artificial neural networks.
- If you are just starting out in the field of deep learning or you had some experience with neural networks some time ago,
 - You may be confused.
- Indeed Deep Learning is Large Multi-Layer Neural Network with new techniques introduced to handle large and deep networks better.

Deep Learning

- What was wrong with classical neural networks in back 1980s.
 - Our labeled datasets were thousands of times too smaller
 - Our computers were millions of times too slow
 - We initialized the weights in a wrong way
 - We used the wrong type of non-linearity

Deep Learning

Improved learning performance

Advantages

- Highly Scalable.
- Ability to perform automatic feature extraction from raw data.
- Discover and learn good representations using feature learning.

Disdvantages

- Needs too much time and processing power to do training.
- Needs strong hardware to execute learned deep networks.