15

CLAIMS

 Polyhydroxyalkanoate comprised of at least a unit represented by a chemical formula (1) within the
 molecule:

$$\begin{array}{c}
R\\N-H\\ = O\\ (CH_2)m\\ -\left(-O-\frac{1}{2}\right)-\\ Z\end{array}$$

$$\begin{array}{c}
(1)
\end{array}$$

wherein R represents $-A_1-SO_2R_1$; R_1 represents OH, a halogen atom, ONa, OK or OR_{1a} ; R_{1a} and A_1 each independently represents a group having a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure or a substituted or unsubstituted heterocyclic structure; m represents an integer selected from 0 - 8; Z represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group; and in case plural units are present, R, R_1 , R_{1a} , A_1 , m and Z have the aforementioned meanings independently for each unit.

Polyhydroxyalkanoate according to claim 1,
 comprised of, as the unit represented by the chemical formula (1), at least a unit represented by a chemical formula (2), a chemical formula (3), a chemical formula (4A) or (4B), within a molecule:

$$\begin{array}{c} SO_{2}R_{2} \\ A_{2} \\ N-H \\ C=O \\ (CH_{2})m \\ C=O \end{array}$$

wherein R₂ represents OH, a halogen atom, ONa, OK or OR_{2a}; R_{2a} represents a linear or branched alkyl group with 1 to 8 carbon atoms or a substituted or

5 unsubstituted phenyl group; A₂ represents a linear or branched alkylene group with 1 to 8 carbon atoms; m represents an integer selected from 0 - 8; Z₂ represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group; and in case plural units are present, A₂, R₂, R_{2a}, m and Z₂ have the aforementioned meanings independently for each unit;

$$R_{3b}$$
 R_{3c}
 R_{3d}
 R_{3e}
 R_{3e}
 R_{3e}
 $C=0$
 $CH_2)m$
 $C=0$
 $CH_2)m$
 $C=0$
 CH_2
 C

wherein R_{3a} , R_{3b} , R_{3c} , R_{3d} and R_{3e} each independently 15 represents SO_2R_{3f} (R_{3f} representing OH, a halogen atom, ONa, OK or OR_{3f1} (R_{3f1} representing a linear or branched

10

15

20

alkyl group with 1 to 8 carbon atoms or a substituted or unsubstituted phenyl group)), a hydrogen atom, a halogen atom, an alkyl group with 1-20 carbon atoms, an alkoxy group with 1-20 carbon atoms, an OH group, an NH₂ group, an NO₂ group, COOR_{3g} (R_{3g} representing a H atom, a Na atom or a K atom), an acetamide group, an OPh group, a NHPh group, a CF₃ group, a C₂F₅ group or a C₃F₇ group (Ph indicating a phenyl group), of which at least one is SO_2R_{3f} ; m represents an integer selected from 0-8; Z₃ represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group; and in case plural units are present, R_{3a}, R_{3b}, R_{3c}, R_{3d}, R_{3e}, R_{3f}, R_{3f1}, R_{3g1}, m and Z₃ have the aforementioned meanings independently for each unit;

$$\begin{array}{c|c} R_{4e} \\ R_{4f} \\ R_{4g} \\ R_{4a} \\ R_{4b} \\ R_{4d} \\ R_{$$

wherein R_{4a} , R_{4b} , R_{4c} , R_{4d} , R_{4e} , R_{4f} and R_{4g} each independently represents SO_2R_{4o} (R_{4o} representing OH, a halogen atom, ONa, OK or OR_{4o1} (R_{4o1} representing a linear or branched alkyl group with 1 to 8 carbon

10

15

20

atoms or a substituted or unsubstituted phenyl group)), a hydrogen atom, a halogen atom, an alkyl group with 1 - 20 carbon atoms, an alkoxy group with 1 - 20 carbon atoms, an OH group, an NH₂ group, an NO₂ group, COOR_{4p} (R_{4p} representing a H atom, a Na atom or a K atom), an acetamide group, an OPh group, an NHPh group, a CF₃ group, a C₂F₅ group or a C₃F₇ group (Ph indicating a phenyl group), of which at least one is SO₂R_{4o}; m represents an integer selected from 0 - 8; Z_{4a} represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group; and in case plural units are present, R_{4a}, R_{4b}, R_{4c}, R_{4d}, R_{4e}, R_{4f}, R_{4g}, R_{4o}, R_{4o1}, R_{4p}, m and Z_{4a} have the aforementioned meanings independently for each unit;

$$\begin{array}{c|cccc} R_{4k} & R_{4j} & & & \\ R_{4m} & R_{4h} & R_{4h} & & \\ R_{4m} & R_{4h} & R_{4h} & & \\ \hline & C=O & & & \\ & (CH_2)m & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & &$$

wherein R_{4h} , R_{4j} , R_{4j} , R_{4k} , R_{4l} , R_{4m} and R_{4n} each independently represents SO_2R_{4o} (R_{4o} representing OH, a halogen atom, ONa, OK or OR_{4o1} (R_{4o1} representing a linear or branched alkyl group with 1 to 8 carbon atoms or a substituted or unsubstituted phenyl

10

group)), a hydrogen atom, a halogen atom, an alkyl group with 1-20 carbon atoms, an alkoxy group with 1-20 carbon atoms, an OH group, an NH₂ group, an NO₂ group, COOR_{4p} (R_{4p} representing a H atom, a Na atom or a K atom), an acetamide group, an OPh group, an NHPh group, a CF₃ group, a C₂F₅ group or a C₃F₇ group (Ph indicating a phenyl group), of which at least one is SO_2R_{4o} ; m represents an integer selected from 0-8; Z_{4b} represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group; and in case plural units are present, R_{4h} , R_{4i} , R_{4j} , R_{4k} , R_{4l} , R_{4m} , R_{4n} , R_{4o} , R_{4o1} , R_{4p} , m and Z_{4b} have the aforementioned meanings independently for each unit.

3. Polyhydroxyalkanoate comprised of at least a unit represented by a chemical formula (5) within a molecule:

$$\begin{array}{c}
COOR_5 \\
(CH_2)m \\
O \\
- CO \\
Z_5
\end{array}$$

wherein R₅ represents hydrogen, a group capable of
20 forming a salt or R_{5a}; R_{5a} represents a linear or
branched alkyl group with 1 - 12 carbon atoms, an
aralkyl group or a substituent having a sugar; m
represents an integer selected from 0 - 8; Z₅
represents a linear or branched alkyl group, an aryl

group or an aralkyl group substituted with an aryl group; however R_5 only represents a substituent having a sugar in case Z_5 is a methyl group and m is 0-1; and in case plural units are present, R_5 , R_{5a} , m and Z_5 have the aforementioned meanings independently for each unit.

4. Polyhydroxyalkanoate according to any one of claims 1 to 3, further comprised of a unit represented by a chemical formula (6) within a molecule:

10

15

20

25

wherein R₆ represents a linear or branched alkylene with 1 - 11 carbon atoms, alkyleneoxyalkylene group (each alkylene group being independently with 1 - 2 carbon atoms), a linear or branched alkenyl group with 1 - 11 carbon atoms or an alkylidene group with 1 - 5 carbon atoms which may be substituted with an aryl group; and in case plural units are present, R₆ has the aforementioned meanings independently for each unit.

5. A method for producing a polyhydroxyalkanoate comprising a unit represented by a chemical formula (8), comprised of a step of executing hydrolysis of a polyhydroxyalkanoate comprising a unit represented by a chemical formula

(7) in the presence of an acid or an alkali, or a step of executing hydrogenolysis comprising a catalytic reduction of a polyhydroxyalkanoate comprising a unit represented by a chemical formula (7):

$$\begin{array}{c}
COOR_7 \\
(CH_2)m \\
O \\
Z_7
\end{array}$$
(7)

5

wherein R₇ represents a linear or branched alkyl group with 1 - 12 carbon atoms or an aralkyl group; m represents an integer selected from 0 - 8; Z₇

10 represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group, and m represents an integer selected from 2 - 8 in case Z₇ is a methyl group; and in case plural units are present, R₇, m and Z₇ have the

15 aforementioned meanings independently for each unit;

wherein R₈ represents hydrogen, or a group capable of forming a salt; m represents an integer selected from 0 - 8; Z₈ represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group, and m represents an integer selected from

- 2-8 in case Z_8 is a methyl group; and, in case plural units are present, R_8 , m and Z_8 have the aforementioned meanings independently for each unit.
 - 6. A method for producing a
- 5 polyhydroxyalkanoate comprising a unit represented by a chemical formula (1), comprised of a step of executing a condensation reaction of a polyhydroxyalkanoate comprising a unit represented by a chemical formula (9) and an amine compound 10 represented by a chemical formula (10):

$$\begin{array}{c}
COOR_9 \\
(CH_2)m \\
O \\
Z_9
\end{array}$$

wherein R₉ represents hydrogen, or a group capable of forming a salt; m represents an integer selected from 0 - 8; Z₉ represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group; and, in case plural units are present, m, R₉ and Z₉ have the aforementioned meanings independently for each unit;

$$H_2N - A_3 - SO_2R_{10}$$
 (10)

wherein R_{10} represents OH, a halogen atom, ONa, OK or OR_{10a} ; R_{10a} and A_3 each independently is selected from a group having a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted

aromatic ring structure, or a substituted or unsubstituted heterocyclic structure; and, in case plural units are present, R_{10} , R_{10a} and A_3 have the aforementioned meanings independently for each unit;

5

10

15

20

wherein R represents -A₁-SO₂R₁; R₁ represents OH, a halogen atom, ONa, OK or OR_{1a}; R_{1a} and A₁ each independently represents a group having a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure or a substituted or unsubstituted heterocyclic structure; m represents an integer selected from 0 - 8; Z represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group; and in case plural units are present, R, R₁, R_{1a}, A₁, m and Z have the aforementioned meanings independently for each unit.

7. A method for producing a polyhydroxyalkanoate comprising a unit represented by a chemical formula (13), comprised of:

a step of reacting a polyhydroxyalkanoate comprising a unit represented by a chemical formula (11) with a base; and

a step of reacting a compound obtained in the aforementioned step with a compound represented by a chemical formula (12):

wherein Z_{11} represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group; and in case plural units are present, Z_{11} has the aforementioned meanings independently for each unit;

10

15

20

$$X(CH_2)mCOOR_{12}$$
 (12)

wherein m represents an integer selected from 0-8; X represents a halogen atom; and R_{12} represents a linear or branched alkyl group with 1-12 carbon atoms or an aralkyl group;

$$\begin{array}{c}
COOR_{13} \\
(CH_2)m \\
O \\
\downarrow I \\
Z_{13}
\end{array}$$
(13)

wherein m represents an integer selected from 0 - 8; R_{13} represents a linear or branched alkyl group with 1 - 12 carbon atoms or an aralkyl group; Z_{13} represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group, and m represents an integer selected from 2 - 8 in case Z_{13}

is a methyl group; and in case plural units are present, R_{13} , m and Z_{13} have the aforementioned meanings independently for each unit.

8. A method for producing a

5 polyhydroxyalkanoate comprising a unit represented by a chemical formula (15), comprised of:

a step of reacting a polyhydroxyalkanoate comprising a unit represented by a chemical formula (11) with a base; and

a step of reacting a compound obtained in the aforementioned step with a compound represented by a chemical formula (14):

wherein Z_{11} represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group; and in case plural units are present, Z_{11} has the aforementioned meanings independently for each unit;

$$\begin{array}{c}
 & \text{H} \\
 & \text{R}_{14}
\end{array}$$
(14)

Ċ

wherein R_{14} represents $-A_{14}-SO_2R_{14a}$; R_{14a} represents OH, a halogen atom, ONa, OK or OR_{14b} ; R_{14b} and A_{14} each independently is selected from a group having a substituted or unsubstituted aliphatic hydrocarbon

structure, a substituted or unsubstituted aromatic ring structure or a substituted or unsubstituted heterocyclic structure; and in case plural units are present, R_{14} , R_{14a} , R_{14b} , and A_{14} have the aforementioned meanings independently for each unit;

$$\begin{array}{c}
R_{15} \\
N-H \\
= 0 \\
(CH_2)_{20} \\
-(-0-1) \\
Z_{15}
\end{array}$$
(15)

5

wherein R₁₅ represents -A₁₅-SO₂R_{15a}; R_{15a} represents OH, a halogen atom, ONa, OK or OR_{15b}; R_{15b} and A₁₅ each independently represents a group having a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure or a substituted or unsubstituted heterocyclic structure; Z₁₅ represents a linear or branched alkyl group, an aryl group or an aralkyl group substituted with an aryl group; and in case plural units are present, R₁₅, R_{15a}, R_{15b}, and A₁₅ have the aforementioned meanings independently for each unit.