Exemplar Problem

Trigonometric Functions

29. Find the general solution of the equation $(\sqrt{3} - 1) \cos \theta + (\sqrt{3} + 1) \sin \theta = 2$

[Hint: Put $\sqrt{3} - 1 = r \sin \alpha$, $\sqrt{3} + 1 = r \cos \alpha$ which gives $\tan \alpha = \tan((\pi/4) - (\pi/6)) \alpha = \pi/12$]

Solution:

Let,
$$r \sin \alpha = \sqrt{3} - 1$$
 and $r \cos \alpha = \sqrt{3} + 1$

Therefore,
$$r = \sqrt{(\sqrt{3} - 1)^2 + (\sqrt{3} + 1)^2} = \sqrt{8} = 2\sqrt{2}$$

And,
$$\tan \alpha = (\sqrt{3} - 1) / (\sqrt{3} + 1)$$

Therefore,
$$r(\sin \alpha \cos \theta + \cos \alpha \sin \theta) = 2$$

$$\Rightarrow$$
 r sin (θ + α) = 2

$$\Rightarrow$$
 sin $(\theta+\alpha) = 1/\sqrt{2}$

$$\Rightarrow$$
 sin $(\theta+\alpha)$ = sin $(\pi/4)$

$$\Rightarrow$$
 θ + α = $n\pi$ + $(-1)^n$ $(\pi/4)$, $n \in Z$

$$\Rightarrow$$
 θ = $n\pi$ + $(-1)^n$ $(\pi/4)$ - $(\pi/12)$, $n \in Z$