Basi di Dati Modulo Tecnologie

Strutture fisiche e strutture di accesso ai dati (Il parte)

Dr. Sara Migliorini

AA 2024-2025

DBMS e File System

• Il DBMS gestisce i blocchi dei file allocati nel file system come se fossero un unico grande spazio di memoria secondaria e costruisce in tale spazio le strutture fisiche con cui implementa le relazioni (tabelle).

 Nel caso più frequente, ogni blocco è dedicato a tuple di un'unica relazione, ma esistono tecniche che prevedono la memorizzazione delle tuple di più tabelle, tra loro correlate, negli stessi blocchi.

Gestore dei metodi di accesso (Cap. 11.2 -> 11.5)

- E' il modulo del DBMS che esegue il piano di esecuzione prodotto dall'ottimizzatore e produce sequenze richieste di accessi ai blocchi della base di dati presenti in memoria secondaria.
- Le richieste vengono inviate al gestore del buffer che si occupa di caricare i blocchi necessari in pagine di memoria centrale.

contengono DATI o INDICI (fix, unfix, setDirty)

Gestore del buffer

Gestore dei metodi di accesso

Metodi d'accesso

• Sono i moduli software che implementano gli algoritmi di *accesso* e *manipolazione* dei dati organizzati in specifiche strutture fisiche.

- Esempio:
 - Scansione sequenziale
 - Accesso via indice
 - Ordinamento
 - Varie implementazioni del join

Gestore dei metodi di accesso

Ogni metodo d'accesso ai dati conosce:

 L'organizzazione delle tuple (o dei record di indice) nei blocchi DATI (o INDICE) salvati in memoria secondaria → come una tabella (o indice) viene organizzata in pagine della memoria secondaria.

• L'organizzazione fisica interna delle pagine sia quando contengono DATI (vale a dire, tuple di una tabella) sia quando contengono strutture fisiche di accesso o INDICI (vale a dire, record di un indice).

- In una pagina sono presenti informazioni utili e informazioni di controllo:
 - Informazioni utili: dati veri e propri (tuple della tabella)
 - Informazioni di controllo: consentono di accedere alle informazioni utili (dizionario, bit di parità, altre informazioni del file system o della specifica struttura fisica).

Block header e block trailer

Ogni pagina poichè coincide con un blocco di memoria di massa, ha una parte iniziale ed una parte finale che contengono informazioni di controllo utilizzate dal file system

Page header e page trailer

Ogni pagina poichè contenente dati gestiti dal DBMS, ha una parte iniziale ed una finale contenenti l'informazione di controllo relativa alla specifica struttura fisica.

Es: identificatore dell'oggetto (tabella, indice, dizionario dei dati, ecc.) contenuto nella pagina, puntatori a pagine successive o precedenti nella struttura dati, numero di dati utili elementari (tuple) contenuti nella pagina e quantità di memoria libera (contigua o non contigua) disponibile nella pagina.

Dizionario di pagina

Contiene puntatori a ciascun dato utile elementare contenuto della pagina.

Parte utile

Contiene i dati.

Dizionari di pagina e parte utile crescono come stack contrapposti, lasciando libera la parte centrale in uno spazio contiguo.

Bit di parità

Verifica che l'informazione contenuta nella pagina sia valida.

Struttura del dizionario

- Tuple di lunghezza fissa: il dizionario non è necessario, si deve solo memorizzare la dimensione delle tuple e l'offset del punto iniziale.
- Tuple di **lunghezza variabile** (valori null oppure di tipo stringa): il dizionario memorizza l'offset di ogni tupla presente nel blocco e di ogni attributo di ogni tupla.

Molti gestori delle pagine non consentono la separazione di una tupla su più pagine → la dimensione massima di una tupla = dimensione massima dell'area disponibile su un blocco

Alcuni gestori delle pagine consentono di distribuire una tupla su più pagine, altrimenti va gestito il caso di tuple memorizzate su più pagine \rightarrow in PostgreSQL si veda la soluzione TOAST - The Oversized-Attribute Storage Technique.

Operazioni sulle pagine

- Inserimento ed aggiornamento di una tupla:
 - Se esiste spazio contiguo sufficiente: inserimento semplice.
 - Se non esiste spazio contiguo ma esiste spazio sufficiente: riorganizzare lo spazio ed eseguire un inserimento semplice (operazione in memoria centrale).
 - Operazione aggiuntiva: riorganizzazione della pagina.
 - Se non esiste spazio sufficiente: interazione col file system per allocare nuovi blocchi per il file.
- Cancellazione: sempre possibile anche senza riorganizzare il contenuto nella pagina.
- Accesso ad una tupla particolare tramite il valore di chiave oppure l'offset nel dizionario.
 - Accesso sequenziale a più tuple.
- Accesso ad un attributo di una tupla: identificato in base all'offset e alla lunghezza del campo dopo aver identificato la tupla tramite la chiave o il suo offset.

Strutture primarie per l'organizzazione di file

- La struttura primaria di un file stabilisce il criterio secondo il quale sono disposte le tuple all'interno del file presente in memoria di massa.
 - Sequenziali: disposizione consecutiva delle tuple che si basa su un criterio specifico, come l'ordine di inserimento.
 - Ad accesso calcolato (hash): collocano le tuple in posizioni determinate sulla base dell'esecuzione di un algoritmo di hash.
 - Ad albero: utilizzate soprattutto come strutture secondarie (indici)

Struttura Sequenziale

- Un file è costituito da blocchi "logicamente" consecutivi.
- Le tuple vengono inserite nei blocchi rispettando una sequenza:
 - Struttura sequenziale disordinata (o seriale): le tuple sono disposte in base al loro ordine di inserimento.
 - Struttura sequenziale ad array: le tuple sono disposte come in un array, e la loro posizione dipende dal valore assunto in ciascuna tupla da un campo detto indice.
 - Struttura sequenziale ordinata: la sequenza delle tuple dipende dal valore assunto in ciascuna tupla da un campo del file.

Struttura Sequenziale Seriale o Disordinata

- È la struttura sequenziale più semplice e più diffusa.
- Le tuple vengono aggiunte nel file nell'ordine con cui si sono state inserite.
- Inserimento: operazione molto efficiente, è sufficiente mantenere un riferimento all'ultimo blocco e richiede un solo accesso in memoria secondaria.
 - Costo maggiore in caso di verifica dei vincoli di integrità (vedi ricerca).
- Ricerca: operazione non efficiente, richiede ogni volta una scansione sequenziale che consideri tutti i record.
 - Costo lineare nel numero di blocchi.
 - Uso assieme a strutture secondarie (indici).
- Eliminazione e modifica: facili una volta individuate le tuple coinvolte.
 - Eliminazione: si marcano le tuple come «cancellate», senza riorganizzazione locale.
 - Modifiche: si procede in loco se possibile (nessuna modifica alla dimensione della tupla), oppure cancellazione ed inserimento in fondo al file.
- Eliminazioni e modifiche possono portare ad un uso non ottimale dello spazio \rightarrow riorganizzazioni periodiche.

Struttura Sequenziale ad Array

- È possibile solo quando le tuple di una tabella hanno una dimensione fissa.
 - Questa struttura non è quasi mai usata nei DBMS reali perché difficilmente sono soddisfatte le condizioni per la loro applicabilità.
- Ad ogni file viene assegnato un numero n di blocchi contigui e ciascun blocco è dotato di un numero m di «posizioni» disponibili per le tuple \rightarrow array di nxm posizioni
- Ciascuna tupla è dotata di un valore numerico i che funge da indice → posto nella i-esima posizione dell'array.
- Inserimento:
 - Iniziale \rightarrow l'indice i viene ottenuto incrementando un contatore.
 - Successivo → in una posizione libera oppure alla fine del file.
- Cancellazioni: creano delle posizioni libere

Struttura Sequenziale Ordinata

• Una struttura sequenziale ordinata è un file sequenziale dove le tuple sono ordinate secondo una chiave di ordinamento (diversa dalla chiave primaria!).

• Esempio

chiave ordinamento

	Filiale	Conto	Cliente	Saldo	
Blocco 1	А	102	Rossi	1000	
	В	110	Rossi	3020	
	В	198	Bianchi	500	
	Е	17	Neri	345	
Blocco 2	Е	102	Verdi	1200	
	Е	113	Bianchi	200	
	Н	53	Neri	120	
	F	78	Verdi	3400	

Struttura Sequenziale Ordinata

- Una struttura sequenziale ordinata è un file sequenziale dove le tuple sono ordinate secondo una chiave di ordinamento (diversa dalla chiave primaria!).
- Rendono efficienti le operazioni che hanno bisogno dell'ordinamento utilizzato: elenco ordinato, range query, operazioni aggregate.
- Inconvenienti in caso di aggiornamento: necessità di mantenere l'ordinamento.
 - Periodiche riorganizzazioni.

chiave primaria

	Filiale	Conto	Cliente	Saldo	
Blocco 1	А	102	Rossi	1000	
	В	110	Rossi	3020	
	В	198	Bianchi	500	
Blocco 2	Е	17	Neri	345	
	Е	102	Verdi	1200	
	Е	113	Bianchi	200	
	Н	53	Neri	120	
	F	78	Verdi	3400	

Struttura sequenziale ordinata: Operazioni

- Inserimento di una tupla
 - Individuare il blocco B che contiene la **tupla che precede**, nell'ordine della chiave, la tupla da inserire.
 - Se B contiene spazio sufficiente per la nuova tupla: inserire la nuova tupla in B.
 - Altrimenti si aggiunge un nuovo blocco (detto, overflow page) alla struttura e si inserisce la tupla nel nuovo blocco e si aggiusta la catena di puntatori.
- Scansione sequenziale ordinata secondo la chiave (seguendo i puntatori)

•

File Sequenziale: Operazioni

- Cancellazione di una tupla
 - Individuare il blocco B che contiene la tupla da cancellare.
 - Cancellare la tupla da B.
 - Aggiustare la catena di puntatori.
- Riorganizzazione: si assegnano le tuple ai blocchi in base ad opportuni coefficienti di riempimento, riaggiustando i puntatori.

Indici

- Per aumentare le prestazioni degli accessi alle tuple memorizzate nelle strutture fisiche (file sequenziale), si introducono strutture ausiliarie (dette strutture di accesso ai dati o INDICI).
- Tali strutture velocizzano l'accesso casuale via chiave di ricerca. La chiave di ricerca è un insieme di attributi utilizzati dall'indice nella ricerca.
- Indici su file sequenziali
 - INDICE PRIMARIO: in questo caso la **chiave di ordinamento** del file sequenziale <u>coincide</u> con la **chiave** di ricerca dell'indice.
 - INDICE SECONDARIO: in questo caso invece la chiave di ordinamento e la chiave di ricerca sono diverse.

Indice PRIMARIO

- Usa una chiave di ricerca che coincide con la chiave di ordinamento del file sequenziale.
- Ogni record dell'indice primario contiene una coppia
 <v_i, p_i>:
 - v_i: valore della chiave di ricerca;
 - p_i : puntatore al primo record nel file sequenziale con chiave v_i
- Esistono due varianti dell'indice primario:
 - Indice denso: per ogni occorrenza della chiave presente nel file esiste un corrispondente record nell'indice.
 - Indice sparso: solo per alcune occorrenze della chiave presenti nel file esiste un corrispondente record nell'indice, tipicamente una per blocco.

Indice PRIMARIO

Esempio

- Ricerca di una tupla con chiave di ricerca K.
 - DENSO (⇒ K è presente nell'indice)
 - Scansione sequenziale dell'indice per trovare il record (K, p_k)
 - Accesso al file attraverso il puntatore p_k
 - Costo: 1 accesso indice + 1 accesso blocco dati

Esempio ricerca dei conti della filiale B

- Ricerca di una tupla con chiave di ricerca K.
 - SPARSO (⇒ K potrebbe non essere presente nell'indice)
 - Scansione sequenziale dell'indice fino al record (K', $p_{k'}$) dove K' è il valore più grande che sia minore o uguale a K
 - Accesso al file attraverso il puntatore $p_{k'}$ e scansione del file (blocco corrente) per trovare le tuple con chiave K.
 - Costo: 1 accesso indice + 1 accesso blocco dati

Esempio ricerca dei conti della filiale B

Indice PRIMARIO: Inserimento

- Inserimento di un record nell'indice.
 - Come inserimento nel FILE SEQUENZIALE (nel blocco della memoria secondaria invece di tuple ci sono record dell'indice)
 - DENSO
 - L'inserimento nell'indice avviene solo se la tupla inserita nel file ha un valore di chiave K che non è già presente.
 - SPARSO
 - L'inserimento avviene solo quando, per effetto dell'inserimento di una nuova tupla, si aggiunge un blocco dati alla struttura; in tutti gli altri casi l'indice rimane invariato.

Indice PRIMARIO: Cancellazione

- Cancellazione di un record nell'indice
 - Come cancellazione nel FILE SEQUENZIALE
 - DENSO
 - La cancellazione nell'indice avviene solo se la tupla cancellata nel file è l'ultima tupla con valore di chiave K.
 - SPARSO
 - La cancellazione nell'indice avviene solo quando K è presente nell'indice e il corrispondente blocco viene eliminato; altrimenti, se il blocco sopravvive, va sostituito K nel record dell'indice con il primo valore K presente nel blocco.

Indice SECONDARIO

- Usa una chiave di ricerca che NON coincide con la chiave di ordinamento del file sequenziale.
- Ogni record dell'indice secondario contiene una coppia <v_i, p_i>:
 - v_i: valore della chiave di ricerca;
 - p_i : puntatore al bucket di puntatori che individuano nel file sequenziale tutte le tuple con valore di chiave v_i .

• Gli indici secondari sono sempre DENSI.

Indice SECONDARIO

Esempio

Indice SECONDARIO: Operazioni - Ricerca

- Ricerca di una tupla con chiave di ricerca K.
 - Scansione sequenziale dell'indice per trovare il record (K, p_k)
 - Accesso al bucket B di puntatori attraverso il puntatore p_k
 - Accesso al file attraverso i puntatori del bucket B.
- Costo: 1 accesso indice + 1 accesso al bucket + n accessi pagine dati

• Inserimento e cancellazione: come indice primario denso con in più l'aggiornamento dei bucket.

Indice SECONDARIO: Operazioni - Ricerca

Esempio di ricerca dei conti di Verdi

