Midterm Exam. Econ720. Fall 2016

Professor Lutz Hendricks. UNC.

- Answer all questions.
- Write legibly! Write legibly! Write legibly!
- Write on only one side of each sheet.
- $\bullet\,$ The total time is 1:15 hours.
- ullet A good answer should explain what you are doing. For example: "To find the consumption function, I take first order conditions, then use the budget constraint to solve for c." Then comes the math...

1 CIA with cash and credit goods

85 points total.

Demographics: There is a representative household of unit mass who lives forever.

Preferences: $\sum_{t=0}^{\infty} \beta^t U(c_{1,t}, c_{2,t})$ with the usual assumptions on U.

Endowments: y_t units of goods; M_0 units of money at t = 0; B_0 units of nominal one period bonds at t = 0

Government: Prints new money and hands it out as lump sum transfer: $M_{t+1} - M_t = T_t$

Technology:

- The endowment can be made into two types of consumption goods: $y_t = c_{1,t} + c_{2,t}$. This implies that the price of both goods is the same (p_t) .
- CIA: $p_t c_{1,t} \leq M_t$.

Markets: competive markets for goods (price p_t for both), bonds (price 1), money (price 1).

Questions:

1. Write down the household problem. Derive the first-order conditions and define a solution. Show that

$$u_2R = u_2 + \lambda = u_1 \tag{1}$$

$$u_2(1+\pi') = R'\beta u_2(')$$
 (2)

where λ is the Lagrange multiplier on the CIA constraint and R-1 is the nominal interest rate.

Hint: the budget constraint is

$$M_{t+1} + B_{t+1} + p_t c_{1,t} + p_t c_{2,t} = p_t y_t + M_t + T_t + R_t B_t$$
(3)

- 2. Interpret the first-order conditions (1) and (2).
- 3. Define a competitive equlibrium.
- 4. Suppose that the government fixes the interest rate at a constant R > 1 in every period. Characterize the equilibrium consumption allocation.
- 5. Show hat the Friedman Rule is optimal (zero nominal interest rate). Hint: this is very short.

2 Carrol et. al (2000)

15 points total.

An infinitely lived household in continuous time solves $\max \int_0^\infty e^{-\theta t} U\left(c_t, h_t\right)$ subject to $\dot{k}_t = r_t k_t + w_t - c_t$ and $\dot{h}_t = \rho\left(c_t - h_t\right)$. The control is c_t . The interpretation is habit formation where past consumption affects current marginal utility.

Questions:

- 1. Write down the current value Hamiltonian.
- 2. Derive the necessary first-order conditions.

End of exam.

3 Answer: CIA with cash and credit goods¹

1. Budget constraint in real terms:

$$(m'+b')(1+\pi') + c_1 + c_2 = y + m + \tau + Rb \tag{4}$$

where m = M/P, b = B/p, $\tau = T/p$.

Bellman:

$$V(m,b) = \max U(c_1, y + m + \tau + Rb - c_1 - (m' + b')(1 + \pi'))$$
(5)

$$+\beta V\left(m',b'\right) + \lambda \left(m - c_1\right) \tag{6}$$

FOCs:

$$u_1 = u_2 + \lambda \tag{7}$$

$$u_2(1+\pi') = \beta V_b(') = \beta V_m(') \tag{8}$$

$$V_m = u_2 + \lambda \tag{9}$$

$$V_b = u_2 R \tag{10}$$

Simplify:

$$u_2R = u_2 + \lambda = u_1 \tag{11}$$

$$u_2(1+\pi') = R'\beta u_2(')$$
 (12)

Solution: $\{c_1, c_2, m, b, \lambda\}$ that satisfy 3 FOCs, budget constraint, and CIA or $\lambda = 0$.

- 2. Interpretation:
 - (a) $u_1 = u_2 + \lambda$: give up a unit of c_1 . Then you can eat one unit of c_2 and you relax the CIA constraint.
 - (b) $u_2R = u_1$: In order to buy good 2, you can bring a bond into the period. This earns nominal interest R. In order to buy good 1, you need cash with nominal interest 1. So R is effectively the relative price of the 2 goods.
 - (c) $u_2 = R'/(1+\pi') \beta u_2$ ('): this is the standard Euler equation for the credit good, where $R/(1+\pi)$ is the real interest rate.
- 3. CE: $\{c_1, c_2, m, b, \lambda\}$ and $\{p, R\}$ that satisfy
 - (a) household: 5
 - (b) government budget constraint
 - (c) goods market (RC)

 $^{^1\}mathrm{Based}$ on the Minnesota Qualifying Exam 2008.

(d) money market: implicit

(e) bond market: b = 0

- 4. If R > 1: CIA constraint binds in every period. $u_2R = u_1$ and the resource constraint fully pin down a unique allocation $\{c_{1,t}, c_{2,t}\}$.
- 5. Zero nominal interest rate (R = 1): We get the same allocation as in an economy without money. So the Friedman Rule is optimal.

To see this: $u_1 = u_2$ means: no distortion to the static allocation. This determines consumption in each period (with the resource constraint).

4 Answer: Carrol et al (2000)

1.
$$H = U(c, h) + \lambda [rk + w - c] + \mu [c - h]$$

2. Optimality requires:

$$U_c = \lambda + \rho \mu \tag{13}$$

$$\dot{\lambda} = (\theta - r) \lambda \tag{14}$$

$$\dot{\mu} = (\theta - \rho)\,\mu - U_h \tag{15}$$

End of file.