

NOV 29, 2023

selSeq: A method for the enrichment of nonpolyadenylated RNAs including enhancer and long noncoding RNAs for sequencing

Jason D Iohn Alina

Joel Ernst¹, Metcalfe¹, Nalyvayko¹ Limberis¹,

¹University of California, San Francisco

Jason D Limberis University of California, San Francisco

ABSTRACT

Non-polyadenylated RNA includes a large subset of crucial regulators of RNA expression and constitutes a substantial portion of the transcriptome, playing essential roles in gene regulation. For example, enhancer RNAs are long non-coding RNAs that perform enhancer-like functions, are bi-directionally transcribed, and usually lack polyA tails. This paper presents a novel method, selSeq, that selectively removes mRNA and pre-mRNA from samples to enable the selective sequencing of crucial regulatory elements, including non-polyadenylated RNAssuch as long noncoding RNA, enhancer RNA, and non-canonical mRNA.

OPEN ACCESS

DOI:

dx.doi.org/10.17504/protocol s.io.j8nlkwpk6l5r/v1

Protocol Citation: Jason D Limberis, Joel Ernst, John Metcalfe, Alina Nalyvayko 2023. selSeq: A method for the enrichment of nonpolyadenylated RNAs including enhancer and long non-coding RNAs for sequencing. protocols.io https://dx.doi.org/10.17504/p rotocols.io.j8nlkwpk6l5r/v1

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: Mar 28, 2023

Last Modified: Nov 29,

2023

PROTOCOL integer ID:

79597

Funders Acknowledgement:

Program for Breakthrough Biomedical Research (PBBR) Grant ID: NA MATERIALS

Required

- SuperScript® III First-Strand Synthesis System Thermo Scientific Catalog #18080-051
- RNase H 1,250 units New England
 Biolabs Catalog #M0297L
- X TURBO DNase 2 U/uL Fisher Scientific Catalog #AM2239
- Agencourt RNAClean XP Magnetic Beads Beckman Coulter Catalog #A63987

A thermocycler and a qPCR machine

A magnetic rack

Optional

- Luna Universal Probe One-Step RT-qPCR Kit 200 rxns New England Biolabs Catalog #E3006S
- Eukaryotic 18S rRNA Endogenous Control (FAM™/MGB probe, non-primer limited) Thermo Fisher Catalog #4333760F
- TaqMan™ GAPDH Control Reagents (human) **Thermo**Fisher Catalog #402869

rRNA depletion oligos

BEFORE START INSTRUCTIONS

Prewarm SuperScript III 10X Buffer to

Room temperature

poly-A tailed cDNA synthesis

1 Mix the following in a 0.2ml tube

A	В
Component	Volume (μl)
Total RNA	1
Oligo dTs	1.5
10 mM dNTP mix	1.5
Nuclease-free H2O	10

poly-A tailed cDNA reaction synthesis components

3 Spin tube briefly and add the following and mix by pipetting

55m

A	В
Component	Volume (μl)
10X SuperScript III Buffer	2
25mM MgCl2	4
0.1M DTT	2
Superscript III Reverse Transcriptase	2

poly-A tailed cDNA reaction synthesis components

Incubate \$ 50 °C for \bigcirc 00:50:00 followed by \bigcirc 00:05:00 at \$ 85 °C to deactivate the enzyme, then cool to \$ 4 °C and proceed to the next step

Optional: rRNA depletion

Add in the appropriate rRNA depletion oligos for you sample
Incubate 90 °C for 00:02:00 and ramp down to Room temperature at 0.1 °C per second then proceed to the next step

poly-A tailed (and ribosomal) RNA depletion

5 Add $\mathbb{Z}_{2\mu L}$ of RNase H

Incubate 37 °C for 00:20:00 followed by 00:05:00 at 65 °C to deactivate the enz 25m then cool it to 4 °C and proceed to the next step

poly-A tailed (and ribosomal) DNA depletion

7 Add in the following components and mix gently by pipetting

A	В
Component	Volume (μl)
10X Turbo DNase Buffer	4
Turbo DNase	4
Nuclease-free H20	10

DNase treatment components

8 Incubate at \$\mathbb{E}\$ 37 °C for \(\oldsymbol{O} \) 00:30:00

30m

Bead cleanup

- 9 Add 90 μ l (1.8X) of resuspended RNAClean XP Beads to the sample Mix by pipetting 10x
- 10 Incubate 00:15:00 at 0 On ice

15m

- Place on the magnet, allow the beads to aggregate, and remove and discard the supernatant
- Add Δ 200 μL [M] 80 % (v/v) ethanol and incubate (still on the magnet) for ৩ 00:00:30
- **12.1** Remove the supernatant

Oct 29 2023

- 12.2 Repeat <u>so go to step #12</u> for a total of 2 washes
- Air dry for 00:00:30, don't allow the beads to become cracked

30s

Remove the tubes from the magnetic rack

Add \perp 50 μ L H20 (optionally add-in \perp 1 μ L RNase inhibitor) and resuspend the beads by pipetting \geq 10x

15 Incubate 000:05:00 at 8 Room temperature

5m

Place on the magnet, aspirate $\mathbb{Z}_{50 \mu L}$ of the eluant into a new tube

Optional: One-step RT-qPCR quantification

17

A	В
Component	Volume (μl)
Luna Universal Probe One-Step Reaction Mix (2X)	5
Luna WarmStart RT Enzyme Mix (20X)	0.5
TaqMan GAPDH Control Reagents (human; 20x)	0.5
TaqMan 18S rRNA Control Reagents (eukaryotic; 20x)	0.5
RNA	2
Nuclease-free H2O	1.5

A	В	С	D	E
Step	Temp (C)	Time (s)	Cycles	Ramp Rate (C/s)
Reverse transcription	55	600	1	2.73
Denaturation	95	60	45	2.73
Denaturation	95	10		2.73
Amplification	60	30		2.11
Capture	60	0		_

Cycle parameters for QuantStudio 3