Empirical studies

Definition: Evaluate

To judge the quality of

1 Empirical vs Experimental

Definition: Empirical

Relying on observation and experiment rather than theory

Definition: Experiment

A study in which an intervention is deliberately controlled to observe its effects

2 Forms of measure

Definition: Quantitative evaluation

Used to determine whether a cause effect relationship exists

- May test the effect of some intervention
- Uses measures based on "counting" scales
- Can employ statistical forms to aid analysis

Definition: Qualitative evaluation

Studies entities in their natural setting, usually through observation:

- Analysis involves interpretation based on explanations
- Recognises that there may be different interpretations

3 Primary or secondary

Definition: Primary study

Directly study the entity of interest by making observations and measurements

Definition: Secondary study

Seek to aggregate the outcomes of many different primary studies

4 The research protocol

A good evaluation process needs to be:

- Objective
- Unbiased

And should avoid "fishing" for results from the outcomes. So we first draw up a plan for conducting the study, called the research protocol

- Usually perform some form of dry run to test the protocol in a controlled situation
- When reporting the study, we also need to describe any divergences from the plan that occurred
- The protocol also identifies likely threats to validity, factors that we can't control that might reduce our confidence in the outcomes

5 The dry run

6 Primary studies in SE

Major forms of primary studies used in software engineering research:

- Controlled experiments
- Quasi experiments
- Surveys
- Case studies

7 Randomised controlled trial (RCT)

The ideal RCT includes:

- Participants being unaware of whether they are receiving the treatment or a placebo (blinding)
- Those running the trial being unaware of who is receiving the treatment (double blinding)
- The analyst working out the result not knowing who was in the trial group (triple blinding)

In SE the only element we can blind is analysis

7.1 Between subjects

Participants are divided into two groups:

- The "control", a group who performs their task using "standard" forms
- The "experimental group", who perform their task using the treatment under investigation

8 Quasi-Experiments

- Quasi-experimental forms are used when it is impossible or impractical to perform random allocation of participants to a group
- Often used when participants are required to have specific skills or knowledge
- There are many ways to organise a quasi-experiment, including
 - Cross-over forms
 - Before-after forms
 - Time interval forms

9 Analysis

- There will always be variation in the measured outcomes because we are using people and hence other factors may have an influence upon the outcomes
- This means that deciding between the hypothesis and the null hypothesis becomes a statistical task. By convention, aim for a 95% confidence level
- Experimenters are expected to report the confidence level when they state their results

10 Surveys

Used to collect information from a large group of people in a standard and systematic way, so that we can seek patterns in the data and generalise what these imply for a wider population than our sample

Typically used for two purposes:

- Experimental: To assess the impact of some intervention
- **Descriptive**: So that we can make assertions about some phenomenon of interest and where we are less interested in why this occurs as to how much it does

10.1 Key concepts

We seek a sample of respondents who are suitably representative of a larger sample frame

Selection is made through use of a sampling technique, this can be:

- Probabilistic random, systematic, stratified, cluster
- Non-probabilistic self selection, snowballing, convenience

10.2 Data collection

Questionnaires provide consistency of data collection but

- Limited as to type of question can use
- Response rates may be poor

Interviews can be either structured or semi-structured

Observations requiring no direct involvement with the participants

Literature perhaps using data mining

10.3 Problems

- We rarely know the size of our sampling frame
- Difficult to identify and access a sample of participants
- Small sample sizes make it difficult to get results with a high confidence level
- It iq quite challenging to design questions that are unbiased and that allow users to answer them reliably
- In a well designed survey the questions will reinforce each other so that during analysis we can ensure that participants are giving consistent answers

11 Case studies

Definition: Case study

A controlled form of observational field study, involving planned data collection

A case study typically involves:

- More variables of interest than data points
- Use of triangulation between multiple sources of evidence
- Prior development of propositions

11.1 Types of case study

Definition: Explanatory study

Used to answer questions about how some phenomenon works and why it works

Definition: Descriptive study

Used to produce a rich and detailed analysis of a phenomenon and its context. Involves less detail about mechanisms than an explanatory study

Definition: Exploratory study

Used to lay the groundwork for a later fuller study, perhaps by helping identify the questions or help understand a problem

11.2 Use in software engineering

Particularly useful when investigating how software engineering practices are adopted or used in an industry setting, where we have:

- Limited control of the situation, so can only observe
- Relatively few "cases"
- Many diverse sources of data, project lots, minutes of meetings, interviews with the team
- A need to study an effect "in the field"