Multi-channel Communications Fall 2022

Lecture 9

Combatting Multipath with Antennas – Spatial Diversity

Dr. R. M. Buehrer

Introduction

- Multipath fading is the dominant impediment to wireless communications
- Diversity is the primary means of combating fading
- Diversity = receiving multiple copies of the data
 - o If the copies are independent there is a good chance that one will have good fidelity
- Diversity can be accomplished in time, frequency, or space.
 - We focus on spatial diversity but much of the analysis applies to any form of diversity

Impact of Fading

o The average probability of error depends on the distribution of the signal-to-noise ratio (SNR) Distribution of SNR

$$P_{b} = \int_{0}^{\infty} P_{b}(x) f_{\gamma}(x) dx$$

Probability of error at a specific SNR

- o Thus, the primary goal of diversity is to "improve" the distribution of SNR
 - o "Improve" means shifting the distribution towards higher values of SNR and reducing the probability of low values of SNR

Rayleigh Fading

- The most common model for multipath fading is the Rayleigh fading model
- The received signal (in complex baseband) is modeled as

$$r(t) = \alpha(t)e^{j\phi(t)}x(t) + n(t)$$

- \circ $\alpha(t)$ Rayleigh distributed channel amplitude
- ο φ(t) uniformly distributed channel phase
- x(t) transmitted message signal
- o n(t) complex Gaussian noise

Rayleigh Fading – cont.

o The amplitude is distributed as

$$f_{\alpha}(x) = \frac{x}{\sigma^2} e^{-\frac{x^2}{2\sigma^2}} \quad x \ge 0$$

o Moments:
$$\mathbf{E}\{x\}=\sqrt{\frac{\pi\sigma^2}{2}}$$
 $\mathbf{E}\{x^2\}=2\sigma^2$ $\sigma_{\alpha}^2=\frac{\sigma^2(4-\pi)}{2}$

 σ^2 = variance of underlying Gaussian r.v.

SNR Distribution

o For a Rayleigh distributed amplitude, the channel power (and SNR for constant noise power) follows an exponential distribution:

$$f_{\gamma}(x) = \frac{1}{\gamma} e^{-\frac{x}{\gamma}} \quad x \ge 0$$

o where $\bar{\gamma}$ is the average channel SNR

Go to the board.....

Outage Probability

o The probability that the SNR falls below a threshold γ_{th} is found from the CDF:

$$P_{out} = \Pr\{x \le \gamma_{th}\}$$

$$= F_{\gamma}(\gamma_{th})$$

$$= 1 - e^{-(\gamma_{th}/\gamma)}$$

Outage Probability – cont.

- o In order to keep the SNR above 10dB $(\gamma_{th}=10)$ 90% of the time $(P_{out}=10\%)$, the average SNR must be 20dB
- o For P_{out} = 1%, the average SNR must be 30dB

BER for BPSK

BER for a fixed channel SNR (per bit)

$$P_e = Q\left(\sqrt{2\gamma}\right)$$

O Averaging over the SNR distribution:

$$P_{b} = \int_{0}^{\infty} f_{\gamma}(x) Q(\sqrt{2x}) dx$$

$$= \int_{0}^{\infty} \frac{1}{\gamma} e^{-\frac{x}{\gamma}} Q(\sqrt{2x}) dx$$

$$= \frac{1}{2} \left(1 - \sqrt{\frac{\gamma}{1 + \gamma}} \right)$$

$$\approx \frac{1}{\sqrt{2x}}$$

Multi-Channel Communications

ECE 6634 Fall 2022

Go to the board.....

BER for BPSK

Fading causes extremely large degradation in performance

Multi-Channel Communications ECE 6634 Fall 2022

Selection Diversity

- Simplest form of diversity
- Receiver has multiple antennas available
- Circuit in front end selects signal with the largest SNR and sends it to the receiver

Selection - SNR Distribution

 By choosing the signal with maximum SNR from L independent signals, we can improve SNR distribution

Go to the board

Selection Diversity

Fall 2022

o
$$P_{out} = 1\%$$

o $\gamma_{th} = 10dB$

L	$\frac{-}{\gamma}$
1	30 <i>dB</i>
2	20 <i>dB</i>
4	14 <i>dB</i>
8	11 <i>dB</i>

Bit Error Rate Performance (BPSK)

• We can show that the BER performance for BPSK in Rayleigh fading with L-fold selection diversity is

$$P_b = \frac{1}{2} \sum_{k=1}^{L} \begin{pmatrix} L \\ k \end{pmatrix} (-1)^{k-1} \left(1 - \sqrt{\frac{\overline{\gamma}_b}{k + \overline{\gamma}_b}} \right)$$

$$\overline{\gamma}_b = \frac{\overline{\gamma}_c}{\sum_{k=1}^L \frac{1}{k}} - \frac{\text{Average}}{\text{SNR Gain}}$$

Bit Error Rate Performance (BPSK)

- o Slope =
 diversity gain
- Diversity gain increaseswith L
- Infinite diversity approaches AWGN

Equal Gain Combining – SNR Dist.

- Instead of selecting one of L diversity branches, a better approach is to keep all signals and combine them coherently
- Let the signal on the ith antenna be written as

$$r_i(t) = \alpha_i(t)e^{j\phi_i(t)}x(t) + n_i(t)$$

The combined signal is written as

$$r(t) = \sum_{i=1}^{L} e^{-j\phi_i} r_i(t)$$

Go to the board

$$= \sum_{i=1}^{L} \alpha_i(t) x(t) + \sum_{i=1}^{L} \hat{n}_i(t)$$

Equal Gain Combining

 $_{\rm o}$ $P_{\rm out} = 1\%$

 $_{\rm o}$ $\gamma_{\rm th} = 10 \rm dE$

L	$\frac{}{\gamma}$
1	30 <i>dB</i>
2	19 <i>dB</i>
4	12 <i>dB</i>
8	7 <i>dB</i>

Optimal Combining

o In general

$$r(t) = \sum_{i=1}^{L} w_i e^{-j\phi} r_i(t)$$

o Selection

$$w_{i} = \begin{cases} 1 & i = \arg\max\left\{\alpha_{i}(t)\right\} \\ 0 & else \end{cases}$$

- o Equal Gain Combining $w_i = 1$
 - Better than selection since all signal energy captured
 - Sub-optimal since low SNR branches are given equal weight with high SNR branches
- o What are the optimal weights?

Go to the board

Maximal Ratio Combining

$$o P_{out} = 1\%$$

$$_{o}$$
 $\gamma_{th} = 10dB$

L	$\frac{-}{\gamma}$
1	30 <i>dB</i>
2	18 <i>dB</i>
4	11 <i>dB</i>
8	5.5 <i>dB</i>

Bit Error Rate Performance (BPSK)

• We can show that the BER performance for BPSK in Rayleigh fading with L-fold Maximal Ratio Combining is

$$P_b = \left[\frac{1}{2}\left(1 - \sqrt{\frac{\overline{\gamma}_b}{1 + \overline{\gamma}_b}}\right)\right]^L \sum_{k=0}^{L-1} \left(\begin{array}{c} L - 1 + k \\ k \end{array}\right) \left[\frac{1}{2}\left(1 + \sqrt{\frac{\overline{\gamma}_b}{1 + \overline{\gamma}_b}}\right)\right]^k$$

$$\overline{\gamma}_b = \overline{\frac{\gamma}{L}}$$
 Average SNR Gain

Bit Error Rate Performance (BPSK)

- o Slope =
 diversity gain
- Diversity gain increases with
- Infinite diversity approaches AWGN

Types of Gain

- o Diversity Gain
 - o Slope of the log-log outage probability curve
 - o L for all schemes

- o Average SNR Gain
 - o Improvement in average SNR
 - Varies depending on combining scheme

Go to the board

Average SNR Gain

Multi-Channel Communications ECE 6634 Fall 2022

BER Comparison

- MRC provides slight improvement (in terms of SNR per bit)
- Note that on a log-log plot, the diversity gain (i.e., slope) is what we would expect:

$$\log(P_e) = \log\left(\begin{array}{c} 2L - 1\\ L \end{array}\right) - L\log(4\overline{\gamma})$$

ECE 6634 Fall 2022

Impact of Average SNR per Branch

- All diversity schemes perform the best with equal power per branch
- We will examine the impact of unequal powers on MRC, but all degrade similarly

Go to the board

Unequal Paths

- o Same total E_b/N_o
- BPSK modulation
- o Two branches
- Diversity gain not affected, but average SNR gain reduced

Multi-Channel Communications ECE 6634 Fall 2022

Conclusions

- In this lecture we looked at one of the oldest and most dominant uses of multiple antennas – diversity
- Diversity changes the distribution of the SNR which improves BER
- MRC provides best performance of all combining techniques, but all provide substantial improvement
- Gains experience diminishing returns versus number of antennas