يايانترم جبر خطي ۲۳ دیماه ۹۸

۱. با در نظر گرفتن ماتریسهای زیر به سوالات پاسخ دهید.

$$A = \begin{bmatrix} -1 & 1 & 7 \\ 1 & 1 & 7 \\ 7 & 7 & 9 \end{bmatrix}; \quad \mathcal{I} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\mathbf{v}$$
. تمام جوابهای معادله $\begin{bmatrix} \mathbf{v} \\ \mathbf{v} \end{bmatrix}$ تمام جوابهای معادله $\begin{bmatrix} \mathbf{v} \\ \mathbf{v} \end{bmatrix}$ تمام جوابهای معادله $\begin{bmatrix} \mathbf{v} \\ \mathbf{v} \end{bmatrix}$

 $(A \times \mathcal{I})^{*}$ دترمینان ماتریس $(A \times \mathcal{I})^{*}$ را بیابید.

ث. یایهای برای $N(L_A)$ و یایهای برای $R(L_A)$ معرفی کنید. (۱۰ نمره)

ج. اگر ماتریس قطری $B=\mathcal{I}-I$ قطری شدنی است ماتریس وارون پذیر Q و ماتریس قطری B را چنان بیابید

که $B = QDQ^{-1}$ در غیر این صورت نشان دهید B قطری شدنی نیست. (۱۵ نمره)

 $V=\mathcal{L}(\mathbb{R}^{\mathsf{m}},\mathbb{R})$ و $\beta=(u_1,u_1,u_2,u_3)$ و $\alpha=(v_1,v_2,v_3)$ فرض کنید هستند که به صورت زیر تعریف شدهاند.

$$v_1(x, y, z) = x, \quad v_7(x, y, z) = y, \qquad v_7(x, y, z) = z;$$

 $u_1(x, y, z) = x, \quad u_7(x, y, z) = x + y, \quad u_7(x, y, z) = x + y + z.$

آ. ثابت کنید $\{v_1, v_7, v_7\}$ و $\{u_1, u_7, u_7\}$ یایههایی برای V هستند. (۱۵ نمره)

راهنمایی: از آنجا که dim(V) = 0 اگر یکی از دو مورد استقلال خطی یا مولد بودن را ثابت کنید مورد دیگر نیز نتیجه می شود.

$$d(x,y,z)=(x^{\frac{1}{7}}+y^{\frac{1}{7}})^\intercal+(x^{\frac{1}{7}}-y^{\frac{1}{7}})^\intercal$$
نشان دهید $d(x,y,z)=(x^{\frac{1}{7}}+y^{\frac{1}{7}})^\intercal+(x^{\frac{1}{7}}-y^{\frac{1}{7}})^\intercal$ نسان دهید

 $(a_{\alpha}, a_{\beta}, a_{\beta}, a_{\beta})$ و $[d]_{\alpha}$ و ماتریس های $[d]_{\alpha}$ و ایرانید.

 I_{V} نمره) داشته باشیم (۱۰ نمره) تنه ماتریس تبدیل پایه $f \in V$ داشته باشیم (۱۰ نمره)

$$[f]_{\beta} = [I]_{\alpha}^{\beta} [f]_{\alpha}.$$

۳. ماتریس زیر را در نظر بگیرید.

$$A = \begin{bmatrix} 1 & \lambda & \circ & \circ & \dots & \circ & \circ \\ \circ & 1 & \lambda & \circ & \dots & \circ & \circ \\ \circ & \circ & 1 & \lambda & \dots & \circ & \circ \\ \circ & \circ & \circ & 1 & \dots & \circ & \circ \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \circ & \circ & \circ & \circ & \dots & 1 & \lambda \\ \circ & \circ & \circ & \circ & \dots & \circ & 1 \end{bmatrix}$$

نشان دهید ماتریسی مانند B وجود دارد به طوری که $BAB^{-1}=A^T$ نمره)

ور نظر بگیرید. $u,v\in\mathbb{R}^n$ دو بردار $u,v\in\mathbb{R}^n$ در نظر بگیرید.

آ. نشان دهید $\|u + v\|^{\mathsf{T}} = \|u\|^{\mathsf{T}} + \|v\|^{\mathsf{T}}$ اگر و تنها اگر $u + v\|^{\mathsf{T}} = \|u\|^{\mathsf{T}} + \|v\|^{\mathsf{T}}$ نشان دهید

(v) نمره) . $\|u+v\|^{\mathsf{T}} + \|u-v\|^{\mathsf{T}} = \mathsf{T}\|u\|^{\mathsf{T}} + \mathsf{T}\|v\|^{\mathsf{T}}$ بره) نشان دهید

 $Q \in M_{n \times n}(F)$ فرض کنید $A : A \in M_{n \times n}(F)$ را $A : A \in M_{n \times n}(F)$ فرض کنید $A \in M_{n \times n}(F)$ را $A : A \in M_{n \times n}(F)$ موجود باشند به طوری که $A = QDQ^{-1}$ درستی هر یک از موارد زیر را اثبات یا رد کنید درایههای A = A حقیقی هستند لذا $A = A^T$ ($A^{\dagger} = A^T$ نمره)

آ. اگر L_A خودالحاق باشد، A ماتریس \mathbb{R} - قطری شدنی است.

ب. اگر L_A خودالحاق باشد، A ماتریس \mathbb{C} - قطری شدنی است.

 $oldsymbol{\psi}$. اگر L_A نرمال باشد، A ماتریس $oldsymbol{\mathbb{R}}$ - قطری شدنی است.

ت. اگر L_A نرمال باشد، A ماتریس \mathbb{C} -قطری شدنی است.

موفق باشيد!