DESIGN AND ANALYSIS OF CMOS LOGIC GATES IN CADENCE VIRTUOSO TOOL

Presented By: Vinayak Agrawal

• Roll No.: 21BIT044

Presented To: AMIT M KUMAR

INTRODUCTION

Overview of CMOS Technology:

- CMOS (Complementary Metal-Oxide-Semiconductor) combines NMOS and PMOS transistors to create efficient digital logic circuits.
- Widely used in VLSI design due to its low power consumption and high noise immunity.

Objectives of the Presentation:

- Focuses on the design and transient analysis of basic logic gates (Inverter, OR, NOR, AND, NAND) using CMOS technology.
- Showcasing the use of Cadence Virtuoso for CMOS circuit design and simulation.

LITERATURE WORK

CMOS Fundamentals:

- CMOS technology is preferred due to its low power consumption and high noise immunity.
- NMOS transistors are used to pull the output down (0), while PMOS transistors are used to pull the output up (1).

Recent Trends in CMOSVLSI:

- **Scaling challenges**: As transistors shrink, problems like short-channel effects and leakage currents increase.
- Advancements: Innovations like FinFET, SOI (Silicon-On-Insulator)
 have helped overcome some scaling limitations.

Name	Graphical Symbol	Algebraic Function	Truth Table
AND	А В	F = A • B or F = AB	AB F 0000 010 100 111
OR	А В	F = A + B	AB F 0000 011 101 111
NOT	A — F	F=A'	A F 0 1 1 0
NAND	А В	F = AB	AB F 00 1 01 1 10 1 11 0
NOR	А	F = A + B	A B F 0 0 1 0 1 0 1 0 0 1 1 0

METHODOLOGY

Designing CMOS Logic Gates in Cadence Virtuoso:

Step-by-step design of Inverter, OR, NOR, AND, NAND gates using NMOS and PMOS transistors.

Simulation and Transient Analysis:

Transient analysis is performed to observe the switching behavior of the gates, showing how the output transitions over time with varying inputs.

Tools used:

Cadence Virtuoso for schematic capture and simulation.

DESIGN & RESULTS

BASIC LOGIC GATES (INVERTER, OR, NOR, AND, NAND)

INVERTER

IPMOS & I NMOS connected in series

- Graph showing the input switching between 0 and 1, with corresponding output switching inversely.
- Inverter shows perfect switching behavior with minimal delay.

NOR GATE

2 PMOS in series & 2 NMOS in parallel connected together in series

NOR gate outputs low when either input is high.

OR GATE

2 PMOS in series & 2 NMOS in parallel connected together in series & inverter connected before output.

 OR gate output follows the logical OR behavior, outputting I when any input is I.

NAND GATE

2 PMOS in parallel & 2 NMOS in series connected together in series.

NAND gate output is high except when both inputs are high.

AND GATE

2 PMOS in parallel & 2 NMOS in series connected together in series & inverter connected before output

 AND gate outputs high only when both inputs are high.

CONCLUSION

Key Points:

- Successfully designed and simulated basic CMOS logic gates (Inverter, OR, NOR, AND, NAND) in Cadence Virtuoso.
- > The transient analysis graphs confirm the correct logical behavior of each gate.

Why CMOS is Efficient:

CMOS consumes power only during switching, making it more power-efficient compared to other technologies.

Future Prospects:

- > As technology scales down, challenges such as leakage current need to be addressed.
- CMOS will continue to evolve with new designs like FinFETs for more power-efficient and faster circuits.

REFERENCES

- CMOS VLSI Design: A Circuits and Systems Perspective Neil H. E. Weste and David Harris.
- Digital Integrated Circuits: A Design Perspective Jan M. Rabaey.
- Cadence Virtuoso Documentation for design and simulation methodology.
- CMOS VLSI Design faculty guidance.

THANK YOU!!!

