igcap may have a solution if A is a square	matrix.
has a unique solution if and only if .	A is non-singular.
$igcap$ has a unique solution if $ \exists x \in { m R}^n$ (for every $b\in \mathbb{R}^n$.
WAII of the above. Answ	<u>ar</u>
of order $n imes n$ This matrix \mathbb{R}^n	trix A of the linear system described by $Ax=b$ is A is transformed into a lower triangular form by nethod. How many matrix elements of A are
$\sum_{n=1}^{\infty} \frac{1}{2} n(n-1)$ (Answer	
$\bigcap \frac{1}{2}n\left(n+1\right)$	15
$\bigcirc \frac{1}{2}n$.	
$\bigcirc n+1$	
Q#3: Which of the followin elemination method?	g statement(s) is(are) NOT true about the Gaussia
$\bigcirc\det\left(A ight)$ does not change.	
The lower triangular and upper tria	angular form gives the same solution.
$igcup \det L = \det U$ where L and U are	the lower and upper triangular forms of A

Us. (Answer)	
() 10. *** ***	
It canot be determined. Need more information	n.
O 11.	
row operation in the Gaussian elim	nanged to an upper triangular form by the ination method. After the completion of natrix elements of $oldsymbol{A}$ has been chnaged to
<u>22.</u>	
<u>12.</u>	
4218. (Answer)	
<u>13.</u>	
about the solution of the example?	
Back substitution method is used to solve the p	
There was a typo in the typed lecture slide which occur in the example part of the lecture.	ch was corrected during the video lecture. That typo did not
The problem could also been solved by transfo	rming the matrix $m{A}$ into lower triangular form.

Q#4: Suppose you have a linear system where A is 10 imes 10 square matrix.

Q#7: In the LU-decomposition method, the matrix A is transformed into

(Answer) Lupper triangular form.

- lower triangular form.
- singular form.
- None of them above.

>>Q#8: The lower trangular matrix L is defined as

$$L \equiv \left(F^{(1)}
ight)^{-1} \left(F^{(2)}
ight)^{-1} \cdots \left(F^{(n-1)}
ight)^{-1} \,,$$

where the matrix $F^{(k)}$ are constructed out of the row multipliers and 1's as shown in the lecture. If $n=15\,\mathrm{how}$ many matrix elements of $F^{(5)}$ will be non-zero?

 \bigcirc 15.

 \bigcirc 20.

Answer)

 \bigcirc 16.

Problem: The Augmented matrix of a linear system is given by

$$Aug(A) \equiv \begin{pmatrix} 1 & 2 & 1 & 0 \\ 1 & -2 & 2 & 4 \\ 2 & 12 & -2 & 4 \end{pmatrix} \Rightarrow A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & -2 & 2 \\ 2 & 412 & -2 \end{pmatrix} & \begin{pmatrix} 6 & 4 & 6 \\ 4 & 4 & 4 \\ 4 & 4 & 4 \end{pmatrix}$$

Q#9: [1 Mark] Find the matrix $F^{(1)}$. Show calculations.

Q#10: [1 Mark] Find the matrix $F^{(2)}$, Show calculations.

Note that the FIB matrices are made of ant

Note that the FIB matrices are made of ant

of the now multipliers, mix's.

of the now multipliers, mix's.

$$P^{(1)} = \begin{pmatrix} 1 & 0 & 0 \\ -m_{21} & 1 & 0 \\ -m_{31} & 0 & 1 \end{pmatrix}$$

Here:
$$m_{21} = \frac{a_{21}}{a_{11}} = \frac{1}{1} = 1$$
 (From the streen matter A)

and
$$m_{31} = \frac{a_{31}}{a_{11}} = \frac{3}{1} = 2$$

Therefore:
$$F^{(1)} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix}$$

So,
$$P^{(2)} = \begin{pmatrix} 1 & 6 & 6 \\ 6 & 1 & 6 \\ 6 & -m_{32} & 1 \end{pmatrix}$$

there: $m_{32} = \frac{a_{32}}{a_{22}}$; but here a_{32} and a_{12} are element of $A^{(1)}$.

There:
$$m_{32} = \frac{u_{32}}{a_{22}} + horizonal$$

Where $A^{(1)} = P^{(1)}A = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 \\ 1 & -2 & 2 \\ 2 & 12 & -2 \end{pmatrix} \begin{pmatrix} 0 \\ 4 \\ 4 \end{pmatrix} \begin{pmatrix} 0 \\ -4 \\ 0 \\ 8 & -4 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix}$

thence:
$$m_{32} = \frac{a_{32}}{a_{12}} = \frac{8}{-4} = -2$$

Therefore:
$$F^{(2)} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix}$$