Lemma 3. Let X be a pseudocompact space and f be a continuous mapping of $X \times T(|\beta X|^+)$ onto a space Z. Let $C_1 = \{x \in \beta X \setminus X : |\bar{f}[\{x\} \times T(|\beta X|^+)] \cap$ $|Z| = |\beta X|^+$ If $x \in C_1$, then there exist an element $y_x \in X$ and a subset $T_x \subseteq T(|\beta X|^+)$ satisfying the following conditions:

- 1. $|T_x| = |\beta X|^+$
- 2. The set T_x is closed in $T(|\beta X|^+)$.
- 3. For any ordinal number $\alpha \in T_x$, $\bar{f}(x,\alpha) = f(y_x,\alpha)$ holds.

Proof:

Let $x \in C_1$. Since f is onto, we can write $Z = \bigcup \{f[\{y\} \times T(|\beta X|^+)] : y \in X\}$. Then we have:

$$\begin{split} &\bar{f}[\{x\} \times T(|\beta X|^+)] \cap Z \\ &= \bar{f}[\{x\} \times T(|\beta X|^+)] \cap (\cup \{f[\{y\} \times T(|\beta X|^+)] : y \in X\}) \\ &= \cup \{\bar{f}[\{x\} \times T(|\beta X|^+)] \cap f[\{y\} \times T(|\beta X|^+)] : y \in X\} \end{split}$$

As $|\beta X|^+$ is regular, $|X| < |\beta X|^+ = cf(|\beta X|^+)$. So, at lease one of the terms of our union is of cardinality $|\beta X|^+$. Let that term be:

$$\bar{f}[\{x\} \times T(|\beta X|^+)] \cap f[\{y_x\} \times T(|\beta X|^+)].$$

Fix this y_x . We will now construct the set $T_x = \{\beta_\alpha : \alpha < |\beta X|^+\}$ by transfinite induction:

Step 1.

Pick two ordinals, α_1 and α^1 from $T(|\beta X|^+)$ such that $\bar{f}(x,\alpha_1) = f(y_x,\alpha^1)$. This can be done because $\bar{f}[\{x\} \times T(|\beta X|^+)] \cap f[\{y_x\} \times T(|\beta X|^+)]$ is nonempty.

Induction Hypothesis.

For each k < n, we can find two ordinals α_k and α^k from $T(|\beta X|^+)$, satisfying the following conditions:

- a) $\bar{f}(x, \alpha_k) = f(y_x, \alpha^k)$. b) $\alpha_k > \max\{\alpha_{k-1}, \alpha^{k-1}\}$. c) $\alpha^k > \max\{\alpha_{k-1}, \alpha^{k-1}\}$.

Step N.

Let $\alpha = max\{\alpha_{n-1}, \alpha^{n-1}\}$. Now,

$$\begin{aligned} & |\beta X|^{+} \\ &= |\bar{f}[\{x\} \times T(|\beta X|^{+})] \cap f[\{y_{x}\} \times T(|\beta X|^{+})]| \\ &= |\bar{f}[\{x\} \times T(|\beta X|^{+})] \cap f[\{y_{x}\} \times T(\alpha)]| \\ &+ |\bar{f}[\{x\} \times T(\alpha)] \cap f[\{y_{x}\} \times T(|\beta X|^{+})]| \\ &+ |\bar{f}[\{x\} \times T(|\beta X|^{+}) \setminus T(\alpha)] \cap f[\{y_{x}\} \times T(|\beta X|^{+}) \setminus T(\alpha)]| \end{aligned}$$

Since the first two terms of the sum both have cardinality no more than α , where $\alpha < |\beta X|^+$, the third term must have cardinality equal to $|\beta X|^+$. Otherwise the sum of these three terms will not add up to $|\beta X|^+$. Hence, $\bar{f}[\{x\} \times T(|\beta X|^+) \backslash T(\alpha)] \cap f[\{y_x\} \times T(|\beta X|^+) \backslash T(\alpha)]$ is nonempty. So, we can pick two ordinals α_n and α^n from $T(|\beta X|^+) \backslash T(\alpha)$ such that these conditions hold:

```
a) \bar{f}(x,\alpha_n)=f(y_x,\alpha^n).
b) \alpha_n>\alpha=\max\{\alpha_{n-1},\alpha^{n-1}\}.
c) \alpha^n>\alpha=\max\{\alpha_{n-1},\alpha^{n-1}\}.
```

This completes Step N. Hence, we can define α_n and α^n for all $n < \omega$.

Let $\beta_1 = \sup\{\alpha_n : n < \omega\} = \sup\{\alpha^n : n < \omega\}$. Such β_1 exists because by condition b) and c), the least upper bounds must equal, provided they exist. They indeed exist because $cf(|\beta X|^+) > \omega$.

```
Since f is continuous, \{f(y_x, \alpha^n) : n < \omega\} converges to f(y_x, \beta_1).
Since \bar{f}(x, \alpha_n) = f(y_x, \alpha^n) for all n < \omega, \{\bar{f}(x, \alpha_n) n < \omega\} converges to f(y_x, \beta_1) also. Finally, since \bar{f} is continuous, we must have \bar{f}(x, \beta_1) = f(y_x, \beta_1).
```

Now, we will define all the other β_{α} 's by transfinite induction:

Induction Hypothesis.

Let β_{α} be defined for all $\alpha < \gamma$ such that $\bar{f}(x, \beta_{\alpha}) = f(y_x, \beta_{\alpha})$.

Step γ (isolated ordinal).

As $\bar{f}[\{x\} \times T(|\beta X|^+) \setminus T(\beta_{\gamma-1})] \cap f[\{y_x\} \times T(|\beta X|^+) \setminus T(\beta_{\gamma-1})]$ is nonempty, we can find a pair of ordinals in $T(|\beta X|^+) \setminus T(\beta_{\gamma-1})$, enabling us to start from Step 1 with those two ordinals. Then, we can constuct β_{γ} in the way as we did for β_1 .

Step γ (limite ordinal).

Define $\beta_{\gamma} = \sup\{\beta_{\alpha} : \alpha < \gamma\}$. Again, the \sup exists because $\gamma < |\beta X|^+ = cf|\beta X|^+$. Furthermore, $\bar{f}(x,\beta_{\gamma}) = f(y_x,\beta_{\gamma})$ by the continuity of \bar{f} .

Since the Step γ works for all $\gamma < |\beta X|^+$, we've just successfully constructed $T_x = \{\beta_\alpha : \alpha < |\beta X|^+\}$. By the way T_x and y_x were defined, conditions 1 and 3 as required by the lemma automatically follow. $T_x = \{\beta_\alpha : \alpha < |\beta X|^+\}$ is closed in $T(|\beta X|^+)$ because we defined $\beta_\gamma = \sup\{\beta_\alpha : \alpha < \gamma\}$ if γ is a limit ordinal. Hence condition 2 of the lemma follows as well. Lemma 3 is proved.