4. TEST OF ELECTRONIC SYSTEMS

Fernando Gonçalves ©

Projecto, Teste e Fiabilidade de Sistemas Electrónicos - 2019/2020

1

Outline

- Introduction to the test of electronic systems
- Reliability
- Test economics
- Quality metrics
- Test phases: planning, preparation, application

Fernando Gonçalves

Projecto, Teste e Fiabilidade de Sistemas Electrónicos – 2019/2020

Test Objectives

- to discriminate good from defective devices
 GOOD means without manufacturing defects, operating according to product specifications
- to diagnose and locate faults for repair or monitoring process line quality and improvement

Fernando Gonçalves

Projecto, Teste e Fiabilidade de Sistemas Electrónicos - 2019/2020

3

3

Test and Diagnosis

- Test: analysis of the system outputs in order to evaluate its behavior
- Diagnosis: locates the cause of the incorrect response.
 Requires ...
 - knowledge of the internal structure of the system (black box model is not enough)
 - run fault simulation to generate a fault dictionary

Fernando Gonçalves

Projecto, Teste e Fiabilidade de Sistemas Electrónicos – 2019/2020

4

Testing

- as an END to ...
 - identify design errors,
 - identify defective parts,
 - perform failure diagnosis
- as a MEAN to ...
 - reinforce the product quality,
 - obtain defect statistics,
 - evaluate the reliability at component or system level

Fernando Gonçalves

Projecto, Teste e Fiabilidade de Sistemas Electrónicos - 2019/2020

5

Failures, Defects and Faults

- A failure occurs when the system functionality differs from the specified functionality
- A physical defect is a modification of the physical structure of a device, compared to the original design (e.g. missing material, extra material, crystal defects)
- The **faults** are the modifications of the circuit topology
- A fault is called a realistic fault when the modification of the circuit topology is caused by a physical defect

Fernando Gonçalves

Projecto, Teste e Fiabilidade de Sistemas Electrónicos - 2019/2020

7

7

Test Possibilities

Test phases	Fault manifestation	Test operation modes	Test application
Prototype	Permanent	Off-line	External
Production	Transient	On-line	Internal (BIST)
System	Intermittent		(5101)
Field			

Fernando Gonçalves

Projecto, Teste e Fiabilidade de Sistemas Electrónicos – 2019/2020

Fault Manifestation

- Permanent faults: affects the behavior of a system permanently. Examples:
 - broken lines
 - short circuited lines
 - design errors
- Transient faults: are caused by environmental conditions such as cosmic rays, humidity, temperature
- Intermittent faults: are caused by non-environmental conditions such as deteriorating or ageing components

Fernando Gonçalves

Projecto, Teste e Fiabilidade de Sistemas Electrónicos - 2019/2020

9

9

Test Operation Modes

- Off-line testing: the system stops normal operation, the test vectors are applied and the responses are compared against the correct ones
 - Test vector generation requires high effort: an ATPG (Automatic Test Pattern Generator) is needed
- On-line testing: the system is continuously checking for any incorrect behavior
 - No test vectors are needed, but extra hardware has to be added to the original circuitry (e.g. checkers).
 - Typically applied to safety critical applications (for instance, avionics)

Fernando Gonçalves

Projecto, Teste e Fiabilidade de Sistemas Electrónicos – 2019/2020

- 10

Benefits of a Good Quality Test

- Shorter Time-to-Market
- Lower manufacturing cost (reduce test application time)
- Lower investment in ATE (Automatic Test Equipment)
- Increased system up-time
- Increased product reliability
- Lower field/maintenance cost

11

Manufacturing Test

- Verifies correctness of manufactured hardware
- Test application performed on every manufactured device

15

Burn-in or Stress Test

Procedure

 Subject chips to high temperature & over-voltage supply, while running production tests

Catches

- Weak components that have a high risk of failing during early life under normal operating conditions. These component failures are called freak failures.
- The failures can be mechanical such as a weak wire bond, or a defective metal line

Fernando Gonçalves

Projecto, Teste e Fiabilidade de Sistemas Electrónicos – 2019/2020

16

Reliability

- The time at which a failure occurs can be considered a random variable
- The probability of a failure before time t, F(t), is the unreliability of a system
- The reliability of a system, R(t), is the probability of a correct functioning system at time t; it can be expressed as
 R(t) = 1-F(t)

TÉCNICO LISBOA

Fernando Gonçalves

Projecto, Teste e Fiabilidade de Sistemas Electrónicos – 2019/2020

Reliability

The mean time to failure (MTTF) is expressed as

$$MTTF = \int_{0}^{\infty} R(t) dt$$

Assuming a system with the following reliability: $\mathbf{R}(\mathbf{t}) = e^{-\lambda \mathbf{t}}$

and assuming that faults occur randomly, the MTTF is given by $$^{_{\infty}}$$

 $MTTF = \int_{0}^{\infty} e^{-\lambda t} dt = \frac{1}{\lambda}$

Fernando Gonçalves

Projecto, Teste e Fiabilidade de Sistemas Electrónicos – 2019/2020

19

New Product Development

- Innovation
- Performance
- Complexity
- Quality
- Time-to-Market

Test represents a growing percentage of the development costs and a barrier to Time-to-Market reduction

6 months delay \Rightarrow 30% loss in total profit

Fernando Gonçalves

Projecto, Teste e Fiabilidade de Sistemas Electrónicos – 2019/2020

20

Test Costs

- Test Preparation
 - Test generation
 - Fault simulation
- Test Application
 - Test programming and debug
 - ATE cost
 - ATE operational cost
- Design for Testability
 - Design flow overhead
 - Product overhead: silicon area, performance degradation, increased pin count

Fernando Gonçalves

Projecto, Teste e Fiabilidade de Sistemas Electrónicos – 2019/2020

31

31

Test Application Costs

- ATE purchase price
 - 0.5 to 1.0 GHz analog instruments and 1,024 digital pins
 - $= $1.2M + 1,024 \times $3,000 = $4.272M$
- Running cost (five-year linear depreciation)
 - Depreciation + Maintenance + Operation
 - = \$0.854M + \$0.085M + \$0.5M = \$1.439M/year
- Test cost (24 hour ATE operation)
 - $= $1.439M/(365 \times 24 \times 3,600)$
 - = 4.5 cents/second

Test length is critical!

Fernando Gonçalves

Projecto, Teste e Fiabilidade de Sistemas Electrónicos – 2019/2020

32

Defective Products Screening

Ideal

- Yield=1 (zero defects), manufacturing is perfect
- If not, test detects all defects induced during manufacturing

Real

- Yield<1, manufacturing is not perfect
- Real test is based on fault models, which cannot accurately describe all likely defects induced during manufacturing

Yield: Percentage of manufactured devices that are defect-free

Fernando Gonçalves

Projecto, Teste e Fiabilidade de Sistemas Electrónicos - 2019/2020

33

33

Yield as a Function of the Die Area

Area circuit 1 < Area circuit 2

Yield₁ > Yield₂

Assuming a random spot defects density ...

A larger die area, A, increases the probability of a given die being defective

Fernando Gonçalves

Projecto, Teste e Fiabilidade de Sistemas Electrónicos – 2019/2020

37

37

Yield: Questions

Question 1:

Assume a process line with D = 0.5 defects/cm².

What will be the expected yield of a product with a die area of (a) $A1 = 0.1 \text{ cm}^2$? (b) $A2 = 1 \text{ cm}^2$?

What would be the probability of manufacturing a 4" (inch) wafer without defects? and a 12" wafer?

Question 2:

What would be the required defects density for a given process line, to manufacture 1 cm² dies with 85% Yield? How many good chips would we get from a 12" wafer?

Fernando Gonçalves

Projecto, Teste e Fiabilidade de Sistemas Electrónicos – 2019/2020

30

Quality Metrics: Fault Coverage (FC)

Fault coverage depends on

1. the fault model
2. the test patterns

FC = #F_{detected} / #F_{total}

Typical fault model for digital designs: Stuck-At (SA)

Test Planning

- Test specifications
 - Physical constraints package, pin numbers, etc.
 - Environmental characteristics supply voltage, temperature, humidity, etc.
 - Quality and Reliability acceptance quality level (DL), failure rate, etc.
 - Functional characteristics per DUT what DfT technique
- Test plan generated from specifications
 - Type(s) of ATE to be used
 - Types of tests
 - Fault coverage requirement

Fernando Gonçalves

Projecto, Teste e Fiabilidade de Sistemas Electrónicos – 2019/2020

020 44

Test Preparation

- Test hardware synthesis
 - Generation of specific test structures
 - Analysis of test overhead (trade-off analysis)
- Test generation and validation
 - Automatic Test Pattern Generation
 - Fault simulation
 - Fault coverage evaluation
- Test program generation

Fernando Gonçalves

Projecto, Teste e Fiabilidade de Sistemas Electrónicos – 2019/2020

45

Test Application

- Target ATE
 - Wafer probe
 - Final test
 - Test fixture and pin electronics

Fernando Gonçalves

Projecto, Teste e Fiabilidade de Sistemas Electrónicos – 2019/2020