Chemical Mechanism of MECCA

KPP version: 2.2.3_rs3

MECCA version: 4.4.0.m1

Date: March 1, 2021

Batch file: CCMI2-base-01.bat

Integrator: rosenbrock_mz

Gas equation file: gas.eqn

Replacement file: mim1-CCMI2-base-01

Selected reactions:

"(((Tr && (G || Het) && !I) || St) && !Hg)"

Number of aerosol phases: 0

Number of species in selected mechanism:

Gas phase: 158

Aqueous phase:

All species:

Number of reactions in selected mechanism: Gas phase (Gnnn): 261

Aqueous phase (Annn): Henry (Hnnn):

Photolysis (Jnnn):

Heterogeneous (HETnnn): Aqueous phase photolysis (PHnnn):

Equilibria (EQnn): Isotope exchange (IEXnnn):

All equations:

Table 1: Gas phase reactions

#	labels	reaction	rate coefficient	reference
G1000	$\operatorname{UpStTrG}$	$O_2 + O(^1D) \to O(^3P) + O_2$	3.3E-11*EXP(55./temp)	Burkholder et al. (2015)
G1001	$\operatorname{UpStTrG}$	$\mathrm{O_2} + \mathrm{O(^3P)} \rightarrow \mathrm{O_3}$	6.0E-34*((temp/300.)**(-2.4))	Burkholder et al. (2015)
			*cair	
G1002a	UpStG	$O_3 + O(^1D) \rightarrow 2.0 \text{ LossO3O} + 2.0 \text{ LossO3} + 2 O_2$	1.2E-10	Burkholder et al. $(2015)^*$
G1003	UpStG	$O_3 + O(^3P) \rightarrow 2.0 \text{ LossO3O} + 2.0 \text{ LossO3} + 2 O_2$	8.0E-12*EXP(-2060./temp)	Burkholder et al. (2015)
G2100	UpStTrG	$\mathrm{H} + \mathrm{O}_2 \to \mathrm{HO}_2$	k_3rd(temp,cair,4.4E-32,1.3,	Burkholder et al. (2015)
			7.5E-11,-0.2,0.6)	
G2101	UpStG	$H + O_3 \rightarrow 1.0 \text{ LossO3H} + 1.0 \text{ LossO3} + OH + O_2$	1.4E-10*EXP(-470./temp)	Burkholder et al. (2015)
G2102	UpStG	$H_2 + O(^1D) \rightarrow 1.0 \text{ LossO3H} + 1.0 \text{ LossO3} + H + OH$	1.2E-10	Burkholder et al. (2015)
G2103	UpStG	$OH + O(^{3}P) \rightarrow 1.0 \text{ LossO3H} + 1.0 \text{ LossO3} + H + O_{2}$	1.8E-11*EXP(180./temp)	Burkholder et al. (2015)
G2104	UpStTrG	$OH + O_3 \rightarrow 1.0 LossO3H + LossOH + 1.0 LossO3 + HO_2$	1.7E-12*EXP(-940./temp)	Burkholder et al. (2015)
		$+ O_2$		
G2105	UpStTrG	$OH + H_2 \rightarrow ProdH2O + H_2O + H$	2.8E-12*EXP(-1800./temp)	Burkholder et al. (2015)
G2106	UpStG	$\mathrm{HO_2} + \mathrm{O(^3P)} \rightarrow 1.0 \; \mathrm{LossO3H} + 1.0 \; \mathrm{LossO3} + \mathrm{OH} + \mathrm{O_2}$	3.E-11*EXP(200./temp)	Burkholder et al. (2015)
G2107	UpStTrG	$\mathrm{HO_2} + \mathrm{O_3} \rightarrow 1.0 \; \mathrm{LossO3H} + \mathrm{LossHO2} + 1.0 \; \mathrm{LossO3} +$	1.E-14*EXP(-490./temp)	Burkholder et al. (2015)
		$OH + 2 O_2$		
G2108a	UpStG	$\mathrm{HO_2} + \mathrm{H} \rightarrow 2 \mathrm{OH}$	7.2E-11	Burkholder et al. (2015)
G2108b	UpStG	$\mathrm{HO_2} + \mathrm{H} \rightarrow \mathrm{H_2} + \mathrm{O_2}$	6.9E-12	Burkholder et al. (2015)
G2108c	UpStG	$\mathrm{HO_2} + \mathrm{H} \rightarrow \mathrm{ProdH2O} + 1.0 \ \mathrm{ProdO3} + \mathrm{O(^3P)} + \mathrm{H_2O}$	1.6E-12	Burkholder et al. (2015)
G2109	$\operatorname{UpStTrG}$	$HO_2 + OH \rightarrow ProdH2O + H_2O + O_2$	4.8E-11*EXP(250./temp)	Burkholder et al. (2015)
G2110	$\operatorname{UpStTrG}$	$\mathrm{HO_2} + \mathrm{HO_2} \rightarrow \mathrm{H_2O_2} + \mathrm{O_2}$	k_H02_H02	Burkholder et al. $(2015)^*$
G2111	$\operatorname{UpStTrG}$	$H_2O + O(^1D) \rightarrow LossH2O + 1.0 LossO3O + LossO1D +$	1.63E-10*EXP(60./temp)	Burkholder et al. (2015)
		1.0 LossO3 + 2 OH		
G2112	UpStTrG	$H_2O_2 + OH \rightarrow ProdH2O + H_2O + HO_2$	1.8E-12	Burkholder et al. (2015)
G3100	UpStGN	$N + O_2 \rightarrow 1.0 \text{ ProdO3} + NO + O(^3P)$	1.5E-11*EXP(-3600./temp)	Burkholder et al. (2015)
G3101	UpStTrGN	$N_2 + O(^1D) \to O(^3P) + N_2$	2.15E-11*EXP(110./temp)	Burkholder et al. (2015)
G3102a	UpStGN	$N_2O + O(^1D) \rightarrow 1.0 \text{ LossO3O} + 1.0 \text{ LossO3} + 2 \text{ NO}$	7.259E-11*EXP(20./temp)	Burkholder et al. (2015)
G3102b	StGN	$N_2O + O(^1D) \rightarrow 1.0 \text{ LossO3O} + 1.0 \text{ LossO3} + N_2 + O_2$	4.641E-11*EXP(20./temp)	Burkholder et al. (2015)
G3103	UpStTrGN	$NO + O_3 \rightarrow NO_2 + O_2$	3.0E-12*EXP(-1500./temp)	Burkholder et al. (2015)
G3104	UpStGN	$NO + N \rightarrow 1.0 \text{ ProdO3} + O(^{3}P) + N_{2}$	2.1E-11*EXP(100./temp)	Burkholder et al. (2015)
G3105	UpStGN	$NO_2 + O(^3P) \rightarrow 2.0 \text{ LossO3N} + 2.0 \text{ LossO3} + NO + O_2$	5.1E-12*EXP(210./temp)	Burkholder et al. (2015)
G3106	StTrGN	$NO_2 + O_3 \rightarrow NO_3 + O_2$	1.2E-13*EXP(-2450./temp)	Burkholder et al. (2015)
G3107	UpStGN	$NO_2 + N \rightarrow N_2O + O(^3P)$	5.8E-12*EXP(220./temp)	Burkholder et al. (2015)
G3108	StTrGN	$NO_3 + NO \rightarrow 2 NO_2$	1.5E-11*EXP(170./temp)	Burkholder et al. (2015)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G3109	UpStTrGN	$NO_3 + NO_2 \rightarrow N_2O_5$	k_N03_N02	Burkholder et al. (2015)*
G3110	StTrGN	$N_2O_5 \rightarrow NO_2 + NO_3$	k_NO3_NO2/(5.8E-27*EXP(10840./ temp))	Burkholder et al. (2015)*
G3200	TrGN	$NO + OH \rightarrow HONO$	k_3rd(temp,cair,7.0E-31,2.6, 3.6E-11,0.1,0.6)	Burkholder et al. (2015)
G3201	UpStTrGN	$NO + HO_2 \rightarrow ProdHO2 + 1.0 ProdO3 + NO_2 + OH$	3.3E-12*EXP(270./temp)	Burkholder et al. (2015)
G3202	UpStTrGN	$NO_2 + OH \rightarrow HNO_3$	k_3rd(temp,cair,1.8E-30,3.0, 2.8E-11,0.,0.6)	Burkholder et al. (2015)
G3203	StTrGN	$NO_2 + HO_2 \rightarrow HNO_4$	k_N02_H02	Burkholder et al. (2015)*
G3204	TrGN	$NO_3 + HO_2 \rightarrow 1.0 \text{ LossO3N} + 1.0 \text{ LossO3} + NO_2 + OH + O_2$	3.5E-12	Burkholder et al. (2015)
G3205	$\operatorname{Tr} \operatorname{GN}$	$HONO + OH \rightarrow ProdH2O + 1.0 ProdO3 + NO_2 + H_2O$	1.8E-11*EXP(-390./temp)	Burkholder et al. (2015)
G3206	StTrGN	$\text{HNO}_3 + \text{OH} \rightarrow \text{ProdH2O} + 1.0 \text{ ProdO3} + \text{H}_2\text{O} + \text{NO}_3$	k_HNO3_OH	Dulitz et al. (2018)*
G3207	StTrGN	$\mathrm{HNO_4} \rightarrow \mathrm{NO_2} + \mathrm{HO_2}$	k_NO2_HO2/(2.1E-27*EXP(10900./ temp))	Burkholder et al. (2015)*
G3208	StTrGN	$HNO_4 + OH \rightarrow ProdH2O + NO_2 + H_2O$	1.3E-12*EXP(380./temp)	Burkholder et al. (2015)
G3209	TrGN	$NH_3 + OH \rightarrow ProdH2O + NH_2 + H_2O$	1.7E-12*EXP(-710./temp)	Kohlmann and Poppe (1999)
G3210	TrGN	$NH_2 + O_3 \rightarrow 1.0 LossO3N + 1.0 LossO3 + NH_2O + O_2$	4.3E-12*EXP(-930./temp)	Kohlmann and Poppe (1999)
G3211	TrGN	$NH_2 + HO_2 \rightarrow NH_2O + OH$	4.8E-07*EXP(-628./temp)*(temp) **(-1.32)	Kohlmann and Poppe (1999)
G3212	TrGN	$NH_2 + HO_2 \rightarrow ProdH2O + HNO + H_2O$	9.4E-09*EXP(-356./temp)*(temp) **(-1.12)	Kohlmann and Poppe (1999)
G3213	$\operatorname{Tr} \operatorname{GN}$	$NH_2 + NO \rightarrow HO_2 + OH + N_2$	1.92E-12*((temp/298.)**(-1.5))	Kohlmann and Poppe (1999)
G3214	$\operatorname{Tr} \operatorname{GN}$	$NH_2 + NO \rightarrow ProdH2O + N_2 + H_2O$	1.41E-11*((temp/298.)**(-1.5))	Kohlmann and Poppe (1999)
G3215	TrGN	$NH_2 + NO_2 \rightarrow ProdH2O + 1.0 LossO3N + 1.0 LossO3 + N_2O + H_2O$	1.2E-11*((temp/298.)**(-2.0))	Kohlmann and Poppe (1999)
G3216	TrGN	$NH_2 + NO_2 \rightarrow 1.0 LossO3N + 1.0 LossO3 + NH_2O + NO$	0.8E-11*((temp/298.)**(-2.0))	Kohlmann and Poppe (1999)
G3217	TrGN	$NH_2O + O_3 \rightarrow 1.0 LossO3N + 1.0 LossO3 + NH_2 + O_2$	1.2E-14	Kohlmann and Poppe (1999)
G3218	TrGN	$\mathrm{NH_{2}O} \rightarrow \mathrm{NHOH}$	1.3E3	Kohlmann and Poppe (1999)
G3219	TrGN	$\mathrm{HNO} + \mathrm{OH} \rightarrow \mathrm{ProdH2O} + \mathrm{NO} + \mathrm{H_2O}$	8.0E-11*EXP(-500./temp)	Kohlmann and Poppe (1999)
G3220	TrGN	$\mathrm{HNO} + \mathrm{NHOH} \rightarrow \mathrm{NH_2OH} + \mathrm{NO}$	1.66E-12*EXP(-1500./temp)	Kohlmann and Poppe (1999)
G3221	TrGN	$\mathrm{HNO} + \mathrm{NO}_2 \rightarrow 1.0 \; \mathrm{LossO3N} + 1.0 \; \mathrm{LossO3} + \mathrm{HONO} + \mathrm{NO}$	1.0E-12*EXP(-1000./temp)	Kohlmann and Poppe (1999)
G3222	TrGN	$NHOH + OH \rightarrow ProdH2O + HNO + H_2O$	1.66E-12	Kohlmann and Poppe (1999)
G3223	TrGN	$NH_2OH + OH \rightarrow ProdH2O + NHOH + H_2O$	4.13E-11*EXP(-2138./temp)	Kohlmann and Poppe (1999)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G3224	TrGN	$HNO + O_2 \rightarrow HO_2 + NO$	3.65E-14*EXP(-4600./temp)	Kohlmann and Poppe (1999)
G4100	UpStG	${\rm CH_4 + O(^1D) \rightarrow 1.0\; LossO3O + 1.0\; LossO3 + .75\; CH_3O_2} \ + .75\; {\rm OH} + .25\; {\rm HCHO} + .4\; {\rm H} + .05\; {\rm H_2}$	1.75E-10	Sander et al. (2011)
G4101	StTrG	$CH_4 + OH \rightarrow ProdH2O + CH_3O_2 + H_2O$	1.85E-20*EXP(2.82*LOG(temp) -987./temp)	Atkinson (2003)
G4102	$\operatorname{Tr} G$	$\mathrm{CH_3OH} + \mathrm{OH} \rightarrow \mathrm{HCHO} + \mathrm{HO_2}$	2.9E-12*EXP(-345./temp)	Sander et al. (2011)
G4103	StTrG	$\mathrm{CH_3O_2} + \mathrm{HO_2} \rightarrow \mathrm{CH_3OOH} + \mathrm{O_2}$	4.1E-13*EXP(750./temp)	Sander et al. (2011)*
G4104	UpStTrGN	$\mathrm{CH_3O_2} + \mathrm{NO} \rightarrow \mathrm{ProdMeO2} + 1.0 \ \mathrm{ProdO3} + \mathrm{HCHO} + \mathrm{NO_2} + \mathrm{HO_2}$	2.8E-12*EXP(300./temp)	Sander et al. (2011)
G4105	TrGN	$\mathrm{CH_3O_2} + \mathrm{NO_3} \rightarrow 1.0 \ \mathrm{LossO3R} + 1.0 \ \mathrm{LossO3} + \mathrm{HCHO} + \mathrm{HO_2} + \mathrm{NO_2}$	1.3E-12	Atkinson et al. (2006)
G4106a	StTrG	$\mathrm{CH_3O_2} + \mathrm{CH_3O_2} \rightarrow 2 \; \mathrm{HCHO} + 2 \; \mathrm{HO_2}$	9.5E-14*EXP(390./temp)/(1.+1./ 26.2*EXP(1130./temp))	Sander et al. (2011)
G4106b	StTrG	$CH_3O_2 + CH_3O_2 \rightarrow HCHO + CH_3OH + O_2$	9.5E-14*EXP(390./temp)/(1.+ 26.2*EXP(-1130./temp))	Sander et al. (2011)
G4107	StTrG	$\mathrm{CH_3OOH} + \mathrm{OH} \rightarrow \mathrm{ProdH2O} + .7~\mathrm{CH_3O_2} + .3~\mathrm{HCHO} + .3~\mathrm{OH} + \mathrm{H_2O}$	k_CH300H_OH	Wallington et al. (2018)
G4108	StTrG	$\mathrm{HCHO} + \mathrm{OH} \rightarrow \mathrm{ProdH2O} + \mathrm{CO} + \mathrm{H_2O} + \mathrm{HO_2}$	9.52E-18*EXP(2.03*LOG(temp) +636./temp)	Sivakumaran et al. (2003)
G4109	TrGN	$\mathrm{HCHO} + \mathrm{NO_3} \rightarrow 1.0 \; \mathrm{LossO3R} + 1.0 \; \mathrm{LossO3} + \mathrm{HNO_3} + \mathrm{CO} + \mathrm{HO_2}$	3.4E-13*EXP(-1900./temp)	Sander et al. (2011)*
G4110	$\operatorname{UpStTrG}$	$CO + OH \rightarrow H + CO_2$	(1.57E-13+cair*3.54E-33)	McCabe et al. (2001)
G4111	TrG	$\mathrm{HCOOH} + \mathrm{OH} \rightarrow \mathrm{ProdH2O} + \mathrm{CO}_2 + \mathrm{HO}_2 + \mathrm{H}_2\mathrm{O}$	4.0E-13	Sander et al. (2011)
G4200	TrGC	$C_2H_6 + OH \rightarrow ProdH2O + C_2H_5O_2 + H_2O$	1.49E-17*temp*temp*EXP(-499./ temp)	Atkinson (2003)
G4201	TrGC	$C_2H_4 + O_3 \rightarrow 1.0 \text{ LossO3R} + 1.0 \text{ LossO3} + \text{HCHO} + .63$ $CO + .13 \text{ HO}_2 + 0.23125 \text{ HCOOH} + 0.13875 \text{ HCHO} + 0.13875 \text{ H}_2O_2 + .13 \text{ OH}$	1.2E-14*EXP(-2630./temp)	Sander et al. (2011)*
G4202	TrGC	$C_2H_4 + OH \rightarrow .6666667 CH_3CH(O_2)CH_2OH$	k_3rd(temp,cair,1.0E-28,4.5, 7.5E-12,0.85,0.6)	Sander et al. (2011)
G4203	TrGC	$C_2H_5O_2 + HO_2 \rightarrow C_2H_5OOH$	7.5E-13*EXP(700./temp)	Sander et al. (2011)
G4204	TrGCN	$C_2H_5O_2 + NO \rightarrow ProdRO2 + 1.0 ProdO3 + CH_3CHO + HO_2 + NO_2$	2.6E-12*EXP(365./temp)	Sander et al. (2011)
G4205	TrGCN	$\begin{array}{l} {\rm C_2H_5O_2+NO_3 \rightarrow 1.0\;LossO3R+1.0\;LossO3+CH_3CHO}\\ {\rm +\;HO_2+NO_2} \end{array}$	2.3E-12	Wallington et al. (2018)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G4206	TrGC	$C_2H_5O_2 + CH_3O_2 \rightarrow .75 \text{ HCHO} + HO_2 + .75 \text{ CH}_3\text{CHO} + .25 \text{ CH}_3\text{OH}$	1.6E-13*EXP(195./temp)	see note*
G4207	TrGC	$C_2H_5OOH + OH \rightarrow .3 C_2H_5O_2 + .7 CH_3CHO + .7 OH$	k_CH3OOH_OH	see note*
G4208	TrGC	$CH_3CHO + OH \rightarrow ProdH2O + CH_3C(O)OO + H_2O$	4.4E-12*EXP(365./temp)	Atkinson et al. (2006)
G4209	TrGCN	$\mathrm{CH_3CHO} + \mathrm{NO_3} \rightarrow 1.0 \ \mathrm{LossO3R} + 1.0 \ \mathrm{LossO3} + \\ \mathrm{CH_3C(O)OO} + \mathrm{HNO_3}$	1.4E-12*EXP(-1900./temp)	Sander et al. (2011)
G4210	TrGC	$CH_3COOH + OH \rightarrow ProdH2O + CH_3O_2 + CO_2 + H_2O$	4.2E-14*EXP(855./temp)	Atkinson et al. (2006)
G4211a	TrGC	$\mathrm{CH_3C}(\mathrm{O})\mathrm{OO} + \mathrm{HO_2} \to \mathrm{CH_3C}(\mathrm{O})\mathrm{OOH}$	4.3E-13*EXP(1040./temp)/(1.+1./ 37.*EXP(660./temp))	Tyndall et al. (2001a)
G4211b	TrGC	$\mathrm{CH_3C(O)OO} + \mathrm{HO_2} \rightarrow 1.0 \ \mathrm{ProdO3} + \mathrm{CH_3COOH} + \mathrm{O_3}$	4.3E-13*EXP(1040./temp)/(1.+ 37.*EXP(-660./temp))	Tyndall et al. (2001a)
G4212	TrGCN	$\mathrm{CH_3C(O)OO} + \mathrm{NO} \rightarrow \mathrm{ProdRO2} + 1.0 \ \mathrm{ProdO3} + \mathrm{CH_3O_2} + \mathrm{CO_2} + \mathrm{NO_2}$	8.1E-12*EXP(270./temp)	Tyndall et al. (2001a)
G4213	TrGCN	$\mathrm{CH_3C(O)OO} + \mathrm{NO_2} \to \mathrm{PAN}$	k_CH3CO3_NO2	Sander et al. $(2011)^*$
G4214	TrGCN	$\mathrm{CH_3C(O)OO} + \mathrm{NO_3} \rightarrow 1.0 \ \mathrm{LossO3R} + 1.0 \ \mathrm{LossO3} + \mathrm{CH_3O_2} + \mathrm{NO_2} + \mathrm{CO_2}$	4.E-12	Canosa-Mas et al. (1996)
G4215a	TrGC	$\mathrm{CH_3C}(\mathrm{O})\mathrm{OO} + \mathrm{CH_3O_2} \to \mathrm{HCHO} + \mathrm{HO_2} + \mathrm{CH_3O_2} + \mathrm{CO_2}$	0.9*2.0E-12*EXP(500./temp)	Sander et al. (2011)
G4215b	TrGC	$CH_3C(O)OO + CH_3O_2 \rightarrow CH_3COOH + HCHO$	0.1*2.0E-12*EXP(500./temp)	Sander et al. (2011)
G4216	TrGC	$\mathrm{CH_3C(O)OO} + \mathrm{C_2H_5O_2} \rightarrow .82\ \mathrm{CH_3O_2} + \mathrm{CH_3CHO} + .82\ \mathrm{HO_2} + .18\ \mathrm{CH_3COOH}$	4.9E-12*EXP(211./temp)	Wallington et al. (2018), Kirchner and Stockwell (1996)
G4217	TrGC	$\mathrm{CH_3C}(\mathrm{O})\mathrm{OO} + \mathrm{CH_3C}(\mathrm{O})\mathrm{OO} \rightarrow 2\ \mathrm{CH_3O_2} + 2\ \mathrm{CO_2} + \mathrm{O_2}$	2.5E-12*EXP(500./temp)	Tyndall et al. (2001a)
G4218	TrGC	$\mathrm{CH_3C}(\mathrm{O})\mathrm{OOH} + \mathrm{OH} \to \mathrm{ProdH2O} + \mathrm{CH_3C}(\mathrm{O})\mathrm{OO} + \mathrm{H_2O}$	0.6*k_CH300H_OH	Rickard and Pascoe (2009)
G4219	TrGCN	$NACA + OH \rightarrow NO_2 + HCHO + CO$	5.6E-12*EXP(270./temp)	Pöschl et al. (2000)
G4220	TrGCN	$PAN + OH \rightarrow ProdH2O + HCHO + CO + NO_2 + H_2O$	9.50E-13*EXP(-650./temp)	Rickard and Pascoe (2009)
G4221	TrGCN	$PAN \rightarrow CH_3C(O)OO + NO_2$	k_PAN_M	Sander et al. (2011)*
G4222	TrGC	$C_2H_2 + OH \rightarrow CH_3O_2$	k_3rd(temp,cair,5.5e-30,0.0, 8.3e-13,-2.,0.6)	Sander et al. (2011)
G4300	TrGC	$C_3H_8 + OH \rightarrow ProdH2O + .82 iC_3H_7O_2 + .18 C_2H_5O_2 + H_2O$	1.65E-17*temp*temp*EXP(-87./temp)	Atkinson (2003)
G4301	TrGC	$C_3H_6 + O_3 \rightarrow 1.0 \text{ LossO}3R + 1.0 \text{ LossO}3 + .57 \text{ HCHO}$ + .47 CH ₃ CHO + .33 OH + .26 HO ₂ + .07 CH ₃ O ₂ + .06 C ₂ H ₅ O ₂ + .23 CH ₃ C(O)OO + .04 MGLYOX + .06 CH ₄ + .31 CO + .22 HCOOH + .03 CH ₃ OH	6.5E-15*EXP(-1900./temp)	Sander et al. (2011)
G4302	TrGC	$C_3H_6 + OH \rightarrow CH_3CH(O_2)CH_2OH$	k_3rd(temp,cair,8.E-27,3.5, 3.E-11,0.,0.5)	Wallington et al. (2018)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G4303	TrGCN	$C_3H_6 + NO_3 \rightarrow 1.0 LossO3R + 1.0 LossO3 + LC4H9NO3$	4.6E-13*EXP(-1155./temp)	Wallington et al. (2018)
G4304	TrGC	$iC_3H_7O_2 + HO_2 \rightarrow iC_3H_7OOH$	k_Pr02_H02	Atkinson (1997)
G4305	TrGCN	$iC_3H_7O_2 + NO \rightarrow ProdRO2 + 1.0 ProdO3 + .96$ $CH_3COCH_3 + .96 HO_2 + .96 NO_2 + .04 iC_3H_7ONO_2$	k_Pr02_N0	Wallington et al. (2018)
G4306	TrGC	iC ₃ H ₇ O ₂ + CH ₃ O ₂ → CH ₃ COCH ₃ + .8 HCHO + .8 HO ₂ + .2 CH ₃ OH	k_Pr02_CH302	Kirchner and Stockwell (1996)
G4307	TrGC	$iC_3H_7OOH + OH \rightarrow .3 iC_3H_7O_2 + .7 CH_3COCH_3 + .7 OH$	k_CH300H_OH	see note*
G4308	TrGC	$\mathrm{CH_3CH}(\mathrm{O_2})\mathrm{CH_2OH} + \mathrm{HO_2} \rightarrow \mathrm{CH_3CH}(\mathrm{OOH})\mathrm{CH_2OH}$	6.5E-13*EXP(650./temp)	Müller and Brasseur (1995)
G4309	TrGCN	$\mathrm{CH_3CH(O_2)CH_2OH} + \mathrm{NO} \rightarrow \mathrm{ProdRO2} + 1.0 \ \mathrm{ProdO3} + .98 \ \mathrm{CH_3CHO} + .98 \ \mathrm{HCHO} + .98 \ \mathrm{HO_2} + .98 \ \mathrm{NO_2} + .02 \ \mathrm{LC4H9NO3}$	4.2E-12*EXP(180./temp)	Müller and Brasseur (1995)
G4310	TrGC	CH ₃ CH(OOH)CH ₂ OH + OH \rightarrow ProdH2O + .5 CH ₃ CH(O ₂)CH ₂ OH + .5 CH ₃ COCH ₂ OH + .5 OH + H ₂ O	3.8E-12*EXP(200./temp)	Müller and Brasseur (1995)
G4311	TrGC	$CH_3COCH_3 + OH \rightarrow ProdH2O + CH_3COCH_2O_2 + H_2O$	1.33E-13+3.82E-11*EXP(-2000./ temp)	Sander et al. (2011)
G4312	TrGC	$\mathrm{CH_3COCH_2O_2} + \mathrm{HO_2} \rightarrow \mathrm{CH_3COCH_2O_2H}$	8.6E-13*EXP(700./temp)	Tyndall et al. (2001a)
G4313	TrGCN	$\mathrm{CH_3COCH_2O_2} + \mathrm{NO} \rightarrow \mathrm{ProdRO2} + 1.0 \ \mathrm{ProdO3} + \mathrm{CH_3C(O)OO} + \mathrm{HCHO} + \mathrm{NO_2}$	2.9E-12*EXP(300./temp)	Sander et al. (2011)
G4314	TrGC	$\mathrm{CH_3COCH_2O_2} + \mathrm{CH_3O_2} \rightarrow .5 \ \mathrm{MGLYOX} + .5 \ \mathrm{CH_3OH} + .3 \ \mathrm{CH_3C(O)OO} + .8 \ \mathrm{HCHO} + .3 \ \mathrm{HO_2} + .2 \ \mathrm{CH_3COCH_2OH}$	7.5E-13*EXP(500./temp)	Tyndall et al. (2001a)
G4315	TrGC	$\mathrm{CH_3COCH_2O_2H}$ + OH \rightarrow .3 $\mathrm{CH_3COCH_2O_2}$ + .7 MGLYOX + .7 OH	k_CH300H_OH	see note*
G4316	TrGC	$\text{CH}_3\text{COCH}_2\text{OH} + \text{OH} \rightarrow \text{MGLYOX} + \text{HO}_2$	2.15E-12*EXP(305./temp)	Dillon et al. (2006)
G4317	TrGC	$MGLYOX + OH \rightarrow CH_3C(O)OO + CO$	8.4E-13*EXP(830./temp)	Tyndall et al. (1995)
G4320	TrGCN	$iC_3H_7ONO_2 + OH \rightarrow CH_3COCH_3 + NO_2$	6.2E-13*EXP(-230./temp)	Wallington et al. (2018)
G4400	TrGC	$C_4H_{10} + OH \rightarrow ProdH2O + LC_4H_9O_2 + H_2O$	1.81E-17*temp*temp*EXP(114./temp)	Atkinson (2003)
G4401	TrGC	$LC_4H_9O_2 + CH_3O_2 \rightarrow .88 \text{ MEK} + .68 \text{ HCHO} + 1.23 \text{ HO}_2 + .12 \text{ CH}_3\text{CHO} + .12 \text{ C}_2H_5O_2 + .18 \text{ CH}_3\text{OH}$	k_Pr02_CH302	see note*
G4402	TrGC	$LC_4H_9O_2 + HO_2 \rightarrow LC_4H_9OOH$	k_Pr02_H02	see note*
G4403	TrGCN	$\begin{array}{c} {\rm LC_4H_9O_2 + NO \rightarrow ProdRO2 + 1.0\; ProdO3 + .84\; NO_2 + } \\ {\rm .56\; MEK + .56\; HO_2 + .28\; C_2H_5O_2 + .28\; CH_3CHO + .16} \\ {\rm LC4H9NO3} \end{array}$	k_Pr02_N0	see note*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G4404	TrGC	$LC_4H_9OOH + OH \rightarrow 0.85 \text{ ProdH2O} + .15 LC_4H_9O_2 + .85$	k_CH300H_OH	see note*
		$MEK + .85 OH + .85 H_2O$		
G4405	TrGC	$MVK + O_3 \rightarrow 1.0 LossO3R + 1.0 LossO3 + .45 HCOOH$	-	Pöschl et al. (2000)
		$+ .9 \text{ MGLYOX} + .1 \text{ CH}_3\text{C(O)OO} + .19 \text{ OH} + .22 \text{ CO} +$	+7.51E-16*EXP(-1521./temp))	
		$.32~\mathrm{HO_2}$		
G4406	TrGC	$MVK + OH \rightarrow MVKO2$.5*(4.1E-12*EXP(452./temp)	Pöschl et al. (2000)
			+1.9E-11*EXP(175./temp))	
G4407	TrGC	$MVKO2 + HO_2 \rightarrow MVKOOH$	1.82E-13*EXP(1300./temp)	Pöschl et al. (2000)
G4408	TrGCN	$MVKO2 + NO \rightarrow ProdRO2 + 1.0 ProdO3 + NO_2 + .25$	2.54E-12*EXP(360./temp)	Pöschl et al. (2000)
		$CH_3C(O)OO + .25 CH_3COCH_2OH + .75 HCHO + .25 CO$		
		$+.75~\mathrm{HO_2} +.5~\mathrm{MGLYOX}$		
G4409	TrGCN	$MVKO2 + NO_2 \rightarrow MPAN$	$.25*k_3rd(temp, cair, 9.7E-29, 5.6,$	Pöschl et al. (2000)
			9.3E-12,1.5,0.6)	
G4410	TrGC	$MVKO2 + CH_3O_2 \rightarrow .5 MGLYOX + .375 CH_3COCH_2OH$	2.E-12	von Kuhlmann (2001)
		$+ .125 \text{ CH}_3\text{C(O)OO} + 1.125 \text{ HCHO} + .875 \text{ HO}_2 + .125$		
		$CO + .25 CH_3OH$		
G4411	TrGC	$MVKO2 + MVKO2 \rightarrow CH_3COCH_2OH + MGLYOX + .5$	2.E-12	Pöschl et al. (2000)
		$CO + .5 HCHO + HO_2$		
G4412	TrGC	$MVKOOH + OH \rightarrow MVKO2$	3.E-11	Pöschl et al. (2000)
G4413	TrGC	$MEK + OH \rightarrow LMEKO2$	1.3E-12*EXP(-25./temp)	Wallington et al. (2018)
G4414	TrGC	$LMEKO2 + HO_2 \rightarrow LMEKOOH$	k_Pr02_H02	see note*
G4415	TrGCN	$LMEKO2 + NO \rightarrow ProdRO2 + 1.0 ProdO3 + .985$	k_Pr02_NO	see note*
		$CH_3CHO + .985 CH_3C(O)OO + .985 NO_2 + .015$		
		LC4H9NO3		
G4416	TrGC	$LMEKOOH + OH \rightarrow .8 BIACET + .8 OH + .2 LMEKO2$	k_CH300H_OH	see note*
G4417	TrGCN	$LC4H9NO3 + OH \rightarrow ProdH2O + MEK + NO_2 + H_2O$	1.7E-12	Wallington et al. (2018)
G4418	TrGCN	$MPAN + OH \rightarrow CH_3COCH_2OH + NO_2$	3.2E-11	Orlando et al. (2002)
G4419	TrGCN	$MPAN \rightarrow MVKO2 + NO_2$	k_PAN_M	see note*
G4500	TrGC	$C_5H_8 + O_3 \rightarrow 1.0 \text{ LossO3R} + 1.0 \text{ LossO3} + .28 \text{ HCOOH}$	7.86E-15*EXP(-1913./temp)	Pöschl et al. (2000)
		$+ .65 \text{ MVK} + .1 \text{ MVKO2} + .1 \text{ CH}_{3}\text{C(O)OO} + .14 \text{ CO} +$		
		$.58 \text{ HCHO} + .09 \text{ H}_2\text{O}_2 + .08 \text{ CH}_3\text{O}_2 + .25 \text{ OH} + .25 \text{ HO}_2$		
G4501	TrGC	$C_5H_8 + OH \rightarrow ISO2$	2.54E-11*EXP(410./temp)	Pöschl et al. (2000)
G4502	TrGCN	$C_5H_8 + NO_3 \rightarrow 1.0 LossO3R + 1.0 LossO3 + ISON$	3.03E-12*EXP(-446./temp)	Pöschl et al. (2000)
G4503	TrGC	$ISO2 + HO_2 \rightarrow ISOOH$	2.22E-13*EXP(1300./temp)	Boyd et al. (2003)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G4504	TrGCN	$ISO2 + NO \rightarrow ProdRO2 + 1.0 ProdO3 + .956 NO_2 + .956$	2.54E-12*EXP(360./temp)	Pöschl et al. (2000)
		$MVK + .956 HCHO + .956 HO_2 + .044 ISON$		
G4505	TrGC	$ISO2 + CH3O2 \rightarrow .5 MVK + 1.25 HCHO + HO2 + .25$	2.E-12	von Kuhlmann (2001)
		$MGLYOX + .25 CH_3COCH_2OH + .25 CH_3OH$		
G4506	TrGC	$ISO2 + ISO2 \rightarrow 2 MVK + HCHO + HO_2$	2.E-12	Pöschl et al. (2000)
G4507	TrGC	$ISOOH + OH \rightarrow MVK + OH$	1.E-10	Pöschl et al. (2000)
G4508	TrGCN	$ISON + OH \rightarrow CH_3COCH_2OH + NACA$	1.3E-11	Pöschl et al. (2000)
G6100	UpStTrGCl	$Cl + O_3 \rightarrow ClO + O_2$	2.8E-11*EXP(-250./temp)	Atkinson et al. (2007)
G6101	UpStGCl	$ClO + O(^{3}P) \rightarrow 2.0 LossO3Cl + 2.0 LossO3 + Cl + O_{2}$	2.5E-11*EXP(110./temp)	Atkinson et al. (2007)
G6102a	StTrGCl	$ClO + ClO \rightarrow 2.0 LossO3Cl + 2.0 LossO3 + Cl2 + O2$	1.0E-12*EXP(-1590./temp)	Atkinson et al. (2007)
G6102b	StTrGCl	$ClO + ClO \rightarrow 2.0 LossO3Cl + 2.0 LossO3 + 2 Cl + O_2$	3.0E-11*EXP(-2450./temp)	Atkinson et al. (2007)
G6102c	StTrGCl	$ClO + ClO \rightarrow 1.0 LossO3Cl + 1.0 LossO3 + Cl + OClO$	3.5E-13*EXP(-1370./temp)	Atkinson et al. (2007)
G6102d	StTrGCl	$ClO + ClO \rightarrow Cl_2O_2$	k_C10_C10	Burkholder et al. (2015)
G6103	StTrGCl	$\text{Cl}_2\text{O}_2 \to \text{ClO} + \text{ClO}$	k_ClO_ClO/(2.16E-27*EXP(8537./	Burkholder et al. (2015)*
			temp))	
G6200	StGCl	$Cl + H_2 \rightarrow HCl + H$	3.9E-11*EXP(-2310./temp)	Atkinson et al. (2007)
G6201a	StGCl	$Cl + HO_2 \rightarrow HCl + O_2$	4.4E-11-7.5E-11*EXP(-620./temp)	Atkinson et al. (2007)
G6201b	StGCl	$Cl + HO_2 \rightarrow 1.0 \text{ ProdO3} + ClO + OH$	7.5E-11*EXP(-620./temp)	Atkinson et al. (2007)
G6202	StTrGCl	$Cl + H_2O_2 \rightarrow HCl + HO_2$	1.1E-11*EXP(-980./temp)	Atkinson et al. (2007)
G6203	StGCl	$ClO + OH \rightarrow 1.0 LossO3Cl + 1.0 LossO3 + .94 Cl + .94$	7.3E-12*EXP(300./temp)	Atkinson et al. (2007)
		$HO_2 + .06 \ HCl + .06 \ O_2$		
G6204	StTrGCl	$ClO + HO_2 \rightarrow HOCl + O_2$	2.2E-12*EXP(340./temp)	Atkinson et al. $(2007)^*$
G6205	StTrGCl	$HCl + OH \rightarrow ProdH2O + Cl + H_2O$	1.7E-12*EXP(-230./temp)	Atkinson et al. (2007)
G6206	StGCl	$HOCl + OH \rightarrow ProdH2O + ClO + H_2O$	3.0E-12*EXP(-500./temp)	Burkholder et al. (2015)
G6300	UpStTrGClN	$ClO + NO \rightarrow NO_2 + Cl$	6.2E-12*EXP(295./temp)	Atkinson et al. (2007)
G6301	StTrGClN	$ClO + NO_2 \rightarrow ClNO_3$	k_3rd_iupac(temp,cair,1.6E-31,	Atkinson et al. (2007)
			3.4,7.E-11,0.,0.4)	
G6302	TrGClN	$ClNO_3 \rightarrow ClO + NO_2$	6.918E-7*EXP(-10909./temp)*cair	Anderson and Fahey (1990)
G6303	StGClN	$\text{ClNO}_3 + \text{O(}^3\text{P)} \rightarrow \text{ClO} + \text{NO}_3$	4.5E-12*EXP(-900./temp)	Atkinson et al. (2007)
G6304	StTrGClN	$\text{ClNO}_3 + \text{Cl} \rightarrow \text{Cl}_2 + \text{NO}_3$	6.2E-12*EXP(145./temp)	Atkinson et al. (2007)
G6400	StTrGCl	$Cl + CH_4 \rightarrow HCl + CH_3O_2$	6.6E-12*EXP(-1240./temp)	Atkinson et al. (2006)
G6401	StTrGCl	$Cl + HCHO \rightarrow HCl + CO + HO_2$	8.1E-11*EXP(-34./temp)	Atkinson et al. (2006)
G6402	StTrGCl	$Cl + CH_3OOH \rightarrow HCHO + HCl + OH$	5.9E-11	Atkinson et al. $(2006)^*$
G6403	StTrGCl	$ClO + CH_3O_2 \rightarrow 1.0 LossO3Cl + 1.0 LossO3 + HO_2 + Cl$	1.8E-12*EXP(-600./temp)	Burkholder et al. (2015)
		+ HCHO		

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G6404	StGCl	$CCl_4 + O(^1D) \rightarrow 4.0 \text{ ProdLCl} + LCARBON + ClO + 3$ Cl	3.3E-10	Burkholder et al. (2015)
G6405	StGCl	$CH_3Cl + O(^1D) \rightarrow 1.0 \text{ ProdLCl} + 1.0 \text{ LossO3Cl} + 1.0 \text{ LossO3} + OH + Cl$	1.65E-10	see note*
G6406	StGCl	$CH_3Cl + OH \rightarrow ProdH2O + 1.0 ProdLCl + LCARBON + H_2O + Cl$	1.96E-12*EXP(-1200./temp)	Burkholder et al. (2015)
G6407	StGCCl	$CH_3CCl_3 + O(^1D) \rightarrow 3.0 \text{ ProdLCl} + 1.0 \text{ LossO3Cl} + 1.0 \text{ LossO3} + 2 \text{ LCARBON} + OH + 3 \text{ Cl}$	3.25E-10	Burkholder et al. (2015)
G6408	StTrGCCl	$CH_3CCl_3 + OH \rightarrow ProdH2O + 3.0 ProdLCl + 2$ $LCARBON + H_2O + 3 Cl$	1.64E-12*EXP(-1520./temp)	Burkholder et al. (2015)
G6409	TrGCCl	$Cl + C_2H_4 \rightarrow .6666667 CH_3CH(O_2)CH_2OH + HCl$	<pre>k_3rd_iupac(temp,cair,1.85E-29, 3.3,6.0E-10,0.0,0.4)</pre>	Atkinson et al. (2006)
G6410	TrGCCl	$Cl + CH_3CHO \rightarrow HCl + CH_3C(O)OO$	8.0e-11	Atkinson et al. (2006)
G6411	TrGCCl	$C_2H_2 + Cl \rightarrow LCARBON + CH_3 + HCl$	k_3rd_iupac(temp,cair,6.1e-30, 3.0,2.0e-10,0.,0.6)	Atkinson et al. (2006)
G6412	TrGCCl	$C_2H_6 + Cl \rightarrow C_2H_5O_2 + HCl$	8.3E-11*EXP(-100./temp)	Atkinson et al. (2006)
G6500	StGClF	$CF_2Cl_2 + O(^1D) \rightarrow 2.0 \text{ ProdLCl} + LCARBON + 2$ LFLUORINE + ClO + Cl	1.4E-10	Burkholder et al. (2015)
G6501	StGClF	$CFCl_3 + O(^1D) \rightarrow 3.0 \text{ ProdLCl} + LCARBON + LFLUORINE + ClO + 2 Cl$	2.3E-10	Burkholder et al. (2015)
G7100	$\operatorname{StTr}\operatorname{GBr}$	$Br + O_3 \rightarrow BrO + O_2$	1.7E-11*EXP(-800./temp)	Atkinson et al. (2007)
G7101	StGBr	$BrO + O(^{3}P) \rightarrow 2.0 LossO3Br + 2.0 LossO3 + Br + O_{2}$	1.9E-11*EXP(230./temp)	Atkinson et al. (2007)
G7102a	StTrGBr	$BrO + BrO \rightarrow 2.0 \; LossO3Br + 2.0 \; LossO3 + 2 \; Br + O_2$	2.7E-12	Atkinson et al. (2007)
G7102b	$\operatorname{StTr}\operatorname{GBr}$	$BrO + BrO \rightarrow 2.0 LossO3Br + 2.0 LossO3 + Br_2 + O_2$	2.9E-14*EXP(840./temp)	Atkinson et al. (2007)
G7200	$\operatorname{StTr}\operatorname{GBr}$	$Br + HO_2 \rightarrow HBr + O_2$	7.7E-12*EXP(-450./temp)	Atkinson et al. (2007)
G7201	$\operatorname{StTr}\operatorname{GBr}$	$BrO + HO_2 \rightarrow HOBr + O_2$	4.5E-12*EXP(500./temp)	Atkinson et al. (2007)
G7202	StTrGBr	$HBr + OH \rightarrow ProdH2O + Br + H_2O$	6.7E-12*EXP(155./temp)	Atkinson et al. (2007)
G7203	StGBr	$HOBr + O(^{3}P) \rightarrow 1.0 LossO3Br + 1.0 LossO3 + OH + BrO$	1.2E-10*EXP(-430./temp)	Atkinson et al. (2007)
G7204	$\operatorname{StTr}\operatorname{GBr}$	$\mathrm{Br}_2 + \mathrm{OH} \rightarrow 1.0 \; \mathrm{ProdO3} + \mathrm{HOBr} + \mathrm{Br}$	2.0E-11*EXP(240./temp)	Atkinson et al. (2007)
G7300	$\operatorname{Tr}\operatorname{GBrN}$	$Br + BrNO_3 \rightarrow Br_2 + NO_3$	4.9E-11	Orlando and Tyndall (1996)
G7301	StTrGBrN	$BrO + NO \rightarrow Br + NO_2$	8.7E-12*EXP(260./temp)	Atkinson et al. (2007)
G7302	StTrGBrN	$BrO + NO_2 \rightarrow BrNO_3$	k_BrO_NO2	Atkinson et al. $(2007)^*$

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G7303	TrGBrN	$BrNO_3 \rightarrow BrO + NO_2$	k_BrO_NO2/(5.44E-9*EXP(14192./	Orlando and Tyndall (1996),
			<pre>temp)*1.E6*R_gas*temp/(atm2Pa*N_ A))</pre>	Atkinson et al. $(2007)^*$
G7400	StTrGBr	$\mathrm{Br} + \mathrm{HCHO} \rightarrow \mathrm{HBr} + \mathrm{CO} + \mathrm{HO}_2$	7.7E-12*EXP(-580./temp)	Atkinson et al. (2006)
G7401	TrGBr	$Br + CH_3OOH \rightarrow CH_3O_2 + HBr$	2.6E-12*EXP(-1600./temp)	Kondo and Benson (1984)
G7402a	TrGBr	$\mathrm{BrO} + \mathrm{CH_3O_2} \rightarrow \mathrm{HOBr} + \mathrm{HCHO}$	f_Br0_CH302*5.7E-12	Aranda et al. (1997)
G7402b	TrGBr	BrO + CH ₃ O ₂ \rightarrow 1.0 LossO3Br + 1.0 LossO3 + Br + HCHO + HO ₂	(1f_Br0_CH302)*5.7E-12	Aranda et al. (1997)
G7403	StTrGBr	$CH_3Br + OH \rightarrow ProdH2O + 1.0 ProdLBr + LCARBON + H_2O + Br$	1.42E-12*EXP(-1150./temp)	Burkholder et al. (2015)
G7404	TrGBrC	$Br + C_2H_4 \rightarrow .6666667 CH_3CH(O_2)CH_2OH + HBr$	2.8E-13*EXP(224./temp)/(1.+ 1.13E24*EXP(-3200./temp) /C(ind_02))	Atkinson et al. (2006)
G7405	TrGBrC	$Br + CH_3CHO \rightarrow HBr + CH_3C(O)OO$	1.8e-11*EXP(-460./temp)	Atkinson et al. (2006)
G7406	TrGBrC	$Br + C_2H_2 \rightarrow LCARBON + CH_3O_2 + HBr$	6.35e-15*EXP(440./temp)	Atkinson et al. (2006)
G7407	TrGBr	$CHBr_3 + OH \rightarrow ProdH2O + 3.0 ProdSBr + LCARBON + H_2O + 3 Br$	9.0E-13*EXP(-360./temp)	Burkholder et al. $(2015)^*$
G7408	TrGBr	$\mathrm{CH_2Br_2} + \mathrm{OH} \rightarrow \mathrm{ProdH2O} + 2.0 \ \mathrm{ProdSBr} + \mathrm{LCARBON} + \mathrm{H_2O} + 2 \ \mathrm{Br}$	2.0E-12*EXP(-840./temp)	Burkholder et al. $(2015)^*$
G7600	TrGBrCl	$Br + BrCl \rightarrow Br_2 + Cl$	3.32E-15	Manion et al. (2015)
G7601	TrGBrCl	$Br + Cl_2 \rightarrow BrCl + Cl$	1.10E-15	Dolson and Leone (1987)
G7602	TrGBrCl	$Br_2 + Cl \rightarrow BrCl + Br$	2.3E-10*EXP(135./temp)	Bedjanian et al. (1998)
G7603a	StTrGBrCl	$BrO + ClO \rightarrow 0.5 LossO3Br + 0.5 LossO3Cl + 1.0 LossO3 + Br + OClO$	1.6E-12*EXP(430./temp)	Atkinson et al. (2007)
G7603b	StTrGBrCl	$BrO + ClO \rightarrow 1.0 LossO3Br + 1.0 LossO3Cl + 2.0 LossO3 + Br + Cl + O_2$	2.9E-12*EXP(220./temp)	Atkinson et al. (2007)
G7603c	$\operatorname{StTrGBrCl}$	$BrO + ClO \rightarrow 1.0 LossO3Br + 1.0 LossO3Cl + 2.0 LossO3 + BrCl + O_2$	5.8E-13*EXP(170./temp)	Atkinson et al. (2007)
G7604	TrGBrCl	$BrCl + Cl \rightarrow Br + Cl_2$	1.45E-11	Clyne and Cruse (1972)
G7605	TrGBrCl	$\text{CHCl}_2\text{Br} + \text{OH} \rightarrow \text{ProdH2O} + 1.0 \text{ProdSBr} + 2.0 \text{ProdSCl} + \text{LCARBON} + 2 \text{Cl} + \text{H}_2\text{O} + \text{Br}$	2.0E-12*EXP(-840./temp)	see note*
G7606	TrGBrCl	$\label{eq:chclbr2} \begin{split} & \text{CHClBr}_2 + \text{OH} \rightarrow \text{ProdH2O} + 2.0 \text{ProdSBr} + 1.0 \text{ProdSCl} \\ & + \text{LCARBON} + \text{Cl} + \text{H}_2\text{O} + 2 \text{Br} \end{split}$	2.0E-12*EXP(-840./temp)	see note*

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G7607	TrGBrCl	$\label{eq:CH2ClBr} \begin{split} & \text{CH}_2\text{ClBr} + \text{OH} \rightarrow \text{ProdH2O} + 1.0 \text{ProdSBr} + 1.0 \text{ProdSCl} \\ & + \text{LCARBON} + \text{Cl} + \text{H}_2\text{O} + \text{Br} \end{split}$	2.1E-12*EXP(-880./temp)	Burkholder et al. (2015)*
G9200a	StTrGS	$SO_2 + OH \rightarrow 1.0 \text{ ProdO3} + SO_3 + HO_2$	k_3rd(temp,cair,3.3E-31,4.3, 1.6E-12,0.,0.6)	Sander et al. (2011)
G9400a	TrGCS	$DMS + OH \rightarrow 1.0 \text{ ProdO3} + CH_3SO_2 + HCHO$	1.13E-11*EXP(-253./temp)	Atkinson et al. $(2004)^*$
G9400b	TrGCS	$DMS + OH \rightarrow 1.0 \text{ ProdO3} + DMSO + HO_2$	k_DMS_OH	Atkinson et al. $(2004)^*$
G9401	TrGCNS	$DMS + NO_3 \rightarrow CH_3SO_2 + HNO_3 + HCHO$	1.9E-13*EXP(520./temp)	Atkinson et al. (2004)
G9402	TrGCS	DMSO + OH \rightarrow 0.40 ProdO3 + .6 SO ₂ + HCHO + .6 CH ₃ O ₂ + .4 HO ₂ + .4 CH ₃ SO ₃ H	1.E-10	Hynes and Wine (1996)
G9403	TrGS	$\mathrm{CH_3SO_2} \to \mathrm{SO_2} + \mathrm{CH_3O_2}$	1.8E13*EXP(-8661./temp)	Barone et al. (1995)
G9404	TrGS	$\mathrm{CH_3SO_2} + \mathrm{O_3} \to \mathrm{CH_3SO_3}$	3.E-13	Barone et al. (1995)
G9405	TrGS	$\mathrm{CH_3SO_3} + \mathrm{HO_2} \rightarrow \mathrm{CH_3SO_3H}$	5.E-11	Barone et al. (1995)
G9600	TrGCClS	$DMS + Cl \rightarrow 1.0 \text{ ProdO3} + CH_3SO_2 + HCl + HCHO$	3.3E-10	Atkinson et al. (2004)
G9700	TrGBrCS	$DMS + Br \rightarrow 1.0 \text{ ProdO3} + CH_3SO_2 + HBr + HCHO$	9.E-11*EXP(-2386./temp)	Jefferson et al. (1994)
G9701	TrGBrCS	$DMS + BrO \rightarrow DMSO + Br$	4.4E-13	Ingham et al. (1999)
G01Diag	StTrG	$O_3(s) \to LO_3(s)$	k_03s	Roelofs and Lelieveld (1997)
G42085abS	TrGCN	$\mathrm{CH_{3}CN} + \mathrm{OH} \rightarrow \mathrm{OH}$	8.1E-13*EXP(-1080./temp)	Atkinson et al. (2006), Tyndall et al. (2001b)
G42086bcS	TrGCN	$CH_3CN + O(^1D) \rightarrow O(^1D)$	2.54E-10*EXP(-24./temp) *(10.0269*EXP(137./temp))	Strekowski et al. (2010)
G6416S	TrGCCIN	$Cl + CH_3CN \rightarrow Cl$	1.6E-11*EXP(-2104./temp)	Tyndall et al. (1996), Tyndall et al. (2001b), Sander et al. (2019)
G6500dc01	StGClF	CHF ₂ Cl + O(1 D) \rightarrow 0.72 ProdLCl + 0.17 LossO3O + 0.17 LossO3 + 0.55 ClO + 0.05 OH + 0.28 O(3 P) + 0.28 CHF ₂ Cl +0.72 LCARBON + 0.17 Cl	1.0E-10	Sander et al. (2011)
G6500dc02	StG	$CHF_2Cl + OH \rightarrow ProdH2O + LCARBON + H_2O$	1.05e-12*EXP(-1600./temp)	Sander et al. (2011)
G6500dc03	StG	$CHF_2Cl + Cl \rightarrow HCl + LCARBON$	1.05e-12*EXP(-2430./temp)	Sander et al. (2011)
G5300dc01	StGCF	$CH_2FCF_3 + O(^1D) \rightarrow 0.35 LossO3O + 0.35 LossO3 + 0.65$ $O(^3P) + 0.65 CH_2FCF_3 + 0.24 OH + 0.70 LCARBON$	4.9E-11	Sander et al. $(2011)^*$
G5300dc02	StG	$CH_2FCF_3 + OH \rightarrow ProdH2O + 2 LCARBON + H_2O$	1.05e-12*EXP(-1630./temp)	Sander et al. (2011)
G5300dc03	StG	$CH_2FCF_3 + Cl \rightarrow HCl + 2 LCARBON$	2.4e-12*EXP(-2200./temp)	Sander et al. (2011)
G6500dc04	StG	$CF_2ClCFCl_2 + O(^1D) \rightarrow 2.4 \text{ ProdLCl} + 0.2 \text{ O}(^3P) + 0.2$ $CF_2ClCFCl_2 + 0.8 \text{ ClO} + 1.6 \text{ LCARBON} + 1.6 \text{ Cl}$	2.0E-10	Sander et al. (2011)
G6400dc01	StG	$CH_2Cl_2 + OH \rightarrow ProdH2O + LCARBON + H_2O$	1.09e-12*EXP(-870./temp)	Sander et al. (2011)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G6400dc02	StG	$CH_2Cl_2 + Cl \rightarrow LCARBON + HCl$.4e-12*EXP(-910./temp)	Sander et al. (2011)
G5300dc04	StG	$CHF_3 + O(^1D) \rightarrow 0.23 \text{ LossO3O} + 0.23 \text{ LossO3} + 0.77$ $O(^3P) + 0.77 \text{ CHF}_3 + 0.23 \text{ LCARBON}$	9.1E-12	Sander et al. (2011)*
G5300dc05	StG	$CHF_3 + OH \rightarrow ProdH2O + LCARBON + H_2O$	5.2e-13*EXP(-2210./temp)	Sander et al. (2011)
G6500dc05	StG	$\text{CH}_3\text{CFCl}_2 + \text{O(}^1\text{D)} \rightarrow 0.69 \text{ LossO3O} + 0.69 \text{ LossO3} + 0.31 \text{ O(}^3\text{P)} + 0.31 \text{ CH}_3\text{CFCl}_2 + 0.69 \text{ LCARBON} + 0.69 \text{ Cl}$	2.6E-10	Sander et al. (2011)*
G6500dc06	StG	$CH_3CFCl_2 + OH \rightarrow ProdH2O + H_2O + 2 LCARBON$	1.25e-12*EXP(-1600./temp)	Sander et al. (2011)
G6500dc07	StG	$CH_3CFCl_2 + Cl \rightarrow HCl + 2 LCARBON$	3.4e-12*EXP(-2200./temp)	Sander et al. (2011)
G6500dc08	StG	$\text{CF}_2\text{ClCF}_2\text{Cl} + \text{O(^1D)} \rightarrow 0.75 \text{ LossO3O} + 0.75 \text{ LossO3} + 0.25 \text{ O(^3P)} + 0.25 \text{ CF}_2\text{ClCF}_2\text{Cl} + 0.75 \text{ LCARBON}$	1.3E-10	Sander et al. (2011)
G5300dc06	StG	$CHF_2CF_3 + O(^1D) \rightarrow 0.76 LossO3O + 0.76 LossO3 + 0.24$ $O(^3P) + 0.24 CHF_2CF_3 + 0.6 OH + 1.52 LCARBON$	1.2E-10	Sander et al. (2011)*
G5300dc07	StG	$CHF_2CF_3 + OH \rightarrow ProdH2O + H_2O + 2 LCARBON$	6.0e-13*EXP(-1700./temp)	Sander et al. (2011)
G6500dc09	StG	$CHF_2CF_3 + Cl \rightarrow HCl + 2 LCARBON$	1.8e-12*EXP(-2600./temp)	Sander et al. (2011)
G5300dc08	StG	$\text{CH}_3\text{CF}_3 + \text{O(^1D)} \rightarrow 0.82 \text{ LossO3O} + 0.82 \text{ LossO3} + 0.18$ $\text{O(^3P)} + 0.18 \text{ CH}_3\text{CF}_3 + 0.38 \text{ OH} + 0.8 \text{ LCARBON}$	4.4E-11	Sander et al. (2011)*
G5300dc09	StG	$CH_3CF_3 + OH \rightarrow ProdH2O + H_2O + 2 LCARBON$	1.1e-12*EXP(-2010./temp)	Sander et al. (2011)
G6500dc10	StG	$CH_3CF_3 + Cl \rightarrow HCl + 2 LCARBON$	1.44e-11*EXP(-3940./temp)	Sander et al. (2011)
G6400dc03	StG	$CHCl_3 + OH \rightarrow ProdH2O + H_2O + LCARBON + 3 Cl$	2.2e-12*EXP(-920./temp)	Sander et al. (2011)
G6400dc04	StG	$CHCl_3 + Cl \rightarrow HCl + LCARBON + 3 Cl$	3.31e-12*EXP(-990./temp)	Sander et al. (2011)
G6500dc11	StG	$CF_3CF_2Cl + O(^1D) \rightarrow 0.30 LossO3O + 0.30 LossO3 + 0.7$ $O(^3P) + 0.7 CF_3CF_2Cl + 0.6 LCARBON$	5.0E-11	Sander et al. (2011)
G5300dc10	StG	${\rm CH_2F_2} + {\rm O(^1D)} \rightarrow 0.30~{\rm LossO3O} + 0.30~{\rm LossO3} + 0.7~{\rm O(^3P)} + 0.7~{\rm CH_2F_2} + 0.3~{\rm LCARBON}$	5.1e-11	Sander et al. (2011)
G5300dc11	StG	$CH_2F_2 + OH \rightarrow ProdH2O + H_2O + LCARBON$	1.7e-12*EXP(-1500./temp)	Sander et al. (2011)
G5300dc12	StG	$\text{CH}_3\text{CHF}_2 + \text{O(^1D)} \rightarrow 0.66 \text{ LossO3O} + 0.66 \text{ LossO3} + 0.34$ $\text{O(^1D)} + 0.34 \text{ CH}_3\text{CHF}_2 + 0.15 \text{ OH} + \text{LCARBON}$	1.75e-10	Sander et al. (2011)
G5300dc13	StG	$CH_3CHF_2 + OH \rightarrow 2 LCARBON$	8.7e-13*EXP(-975./temp)	Sander et al. (2011)
G6500dc12	StG	$CH_3CHF_2 + Cl \rightarrow HCl + 2 LCARBON$	6.0e-12*EXP(-960./temp)	Sander et al. (2011)
G9100	TrStGS	$SO + O_2 \rightarrow 2.0 \text{ ProdO3} + SO_2 + O(^3P)$	1.25e-13*exp(-2190/temp)	Sander et al. (2011)
G9101	TrStGS	$SO + O_3 \rightarrow SO_2 + O_2$	3.4e-12*exp(-1100/temp)	Sander et al. (2011)
G9102	TrStGS	$S + O_2 \rightarrow 1.0 \text{ ProdO3} + SO + O(^3P)$	2.3e-12	Sander et al. (2011)
G9201	TrStGS	$SH + O_2 \rightarrow OH + SO$	4.e-19	Sander et al. (2011)

Table 1: Gas phase reactions (... continued)

#	labels	reaction	rate coefficient	reference
G9202	TrStGS	$SO_3 + H_2O \rightarrow LossH2O + H_2SO_4$	8.5e-41*exp(6540./temp)*C(ind_ H2O)	Sander et al. (2003)
G9406	TrStGS	$OCS + OH \rightarrow SH + CO_2$	1.1e-13*exp(-1200./temp)	Sander et al. (2011)
G9407	TrStGS	$OCS + O(^{3}P) \rightarrow 1.0 LossO3Su + 1.0 LossO3 + CO + SO$	2.1e-11*exp(-2200./temp)	Sander et al. (2011)

General notes

Three-body reactions

Rate coefficients for three-body reactions are defined via the function $k_3rd(T, M, k_0^{300}, n, k_{\inf}^{300}, m, f_c)$. In the code, the temperature T is called temp and the concentration of "air molecules" M is called cair. Using the auxiliary variables $k_0(T)$, $k_{\inf}(T)$, and k_{ratio} , k_3rd is defined as:

$$k_0(T) = k_0^{300} \times \left(\frac{300 \text{K}}{T}\right)^n \tag{1}$$

$$k_{\rm inf}(T) = k_{\rm inf}^{300} \times \left(\frac{300 \text{K}}{T}\right)^m$$
 (2)

$$k_{\text{ratio}} = \frac{k_0(T)M}{k_{\text{inf}}(T)} \tag{3}$$

k_3rd =
$$\frac{k_0(T)M}{1 + k_{\text{ratio}}} \times f_c^{\left(\frac{1}{1 + (\log_{10}(k_{\text{ratio}}))^2}\right)}$$
(4)

A similar function, called k_3rd_iupac here, is used by Wallington et al. (2018) for three-body reactions. It has the same function parameters as k_3rd and it is defined as:

$$k_0(T) = k_0^{300} \times \left(\frac{300 \text{K}}{T}\right)^n$$
 (5)

$$k_{\rm inf}(T) = k_{\rm inf}^{300} \times \left(\frac{300 \text{K}}{T}\right)^m$$
 (6)

$$k_{\text{ratio}} = \frac{k_0(T)M}{k_{\text{inf}}(T)} \tag{7}$$

$$N = 0.75 - 1.27 \times \log_{10}(f_{\rm c}) \tag{8}$$

$$\texttt{k_3rd_iupac} = \frac{k_0(T)M}{1 + k_{\mathrm{ratio}}} \times f_{\mathrm{c}}^{\left(\frac{1}{1 + (\log_{10}(k_{\mathrm{ratio}})/N)^2}\right)}(9)$$

Structure-Activity Relationships (SAR)

Some unmeasured rate coefficients are estimated with structure-activity relationships, using the following parameters and substituent factors:

k for H-abstraction by OH in cm ⁻³ s ⁻¹			
k_p	$4.49 \times 10^{-18} \times (T/K)^2 \exp(-320 K/T)$		
k_s	$4.50 \times 10^{-18} \times (T/K)^2 \exp(253 K/T)$		
k_t	$2.12 \times 10^{-18} \times (T/\mathrm{K})^2 \exp(696\mathrm{K}/T)$		
k_ROHRO	$2.1 \times 10^{-18} \times (T/\mathrm{K})^2 \exp(-85\mathrm{K}/T)$		
k_CO2H	$0.7 \times k_{\mathrm{CH_3CO_2H+OH}}$		
k_ROOHRO	$0.6 \times k_{\mathrm{CH_3OOH+OH}}$		
f_alk	1.23		
f_sOH	3.44		
f_tOH	2.68		
f_s00H	8.		
f_t00H	8.		
f_0N02	0.04		
f_CH20N02	0.20		
f_cpan	0.25		
f_allyl	3.6		
f_CHO	0.55		
f_CO2H	1.67		
f_CO	0.73		
f_0	8.15		
f_pCH2OH	1.29		
f_tCH2OH	0.53		

k for OH-addition to double bonds in ${\rm cm^{-3}s^{-1}}$			
k_adp	$4.5 \times 10^{-12} \times (T/300 \mathrm{K})^{-0.85}$		
k_ads	$1/4 \times (1.1 \times 10^{-11} \times \exp(485 \mathrm{K}/T) +$		
	$1.0 \times 10^{-11} \times \exp(553 \mathrm{K}/T))$		
k_adt	$1.922 \times 10^{-11} \times \exp(450 \mathrm{K/T}) - k_{\mathrm{ads}}$		
$k_adsecprim$	3.0×10^{-11}		
$k_adtertprim$	5.7×10^{-11}		
a_PAN	0.56		
a_CHO	0.31		
a_COCH3	0.76		
a_CH2OH	1.7		
a_CH200H	1.7		
a_COH	2.2		
a_COOH	2.2		
a_CO2H	0.25		
a_CH20N02	0.64		

RO₂ self and cross reactions

The self and cross reactions of organic peroxy radicals are treated according to the permutation reaction formalism as implemented in the MCM (Rickard and Pascoe, 2009), as decribed by Jenkin et al. (1997). Every organic peroxy radical reacts in a pseudo-first-order reaction with a rate constant that is expressed as $k^{\rm 1st} = 2 \times \sqrt{k_{\rm self} \times k_{\rm CH302}} \times [{\rm RO_2}]$ where $k_{\rm self} =$ second-order rate coefficient of the self reaction of the organic peroxy radical, k_CH302 = second-order rate coefficient of the self reaction of CH₃O₂, and [RO₂] = sum of the concentrations of all organic peroxy radicals.

Specific notes

G1002a: The path leading to $2 O(^{3}P) + O_{2}$ results in a null cycle regarding odd oxygen and is neglected.

G2110: The rate coefficient is: k_HO2_HO2 = (3.0E-13*EXP(460./temp)+2.1E-33*EXP(920./temp) *cair)*(1.+1.4E-21*EXP(2200./temp)*C(ind_H20)).

G3109: The rate coefficient is: $k_N03_N02 = k_3rd(temp, cair, 2.4E-30, 3.0, 1.6E-12, -0.1, 0.6)$.

G3110: The rate coefficient is defined as backward reaction divided by equilibrium constant.

G3203: The rate coefficient is: $k_N02_H02 = k_3rd(temp, cair, 1.9E-31, 3.4, 4.0E-12, 0.3, 0.6)$.

G3206: The rate coefficient is: k_HNO3_OH =

1.32E-14 * EXP(527/temp) + 1 / (1 / (7.39E-32 * EXP(453/temp)*cair) + 1 /

(9.73E-17 * EXP(1910/temp)))

G3207: The rate coefficient is defined as backward reaction divided by equilibrium constant.

G4103: Sander et al. (2006) recommend a zero product yield for HCHO.

G4109: The same temperature dependence assumed as for CH₃CHO+NO₃. At 298 K, $k=5.8\times10^{-16}$.

G4201: The product distribution is from Rickard and Pascoe (2009), after substitution of the Criegee intermediate by its decomposition products.

G4206: The product C_2H_5OH , which reacts only with OH, is substituted by its degradation products ≈ 0.1 HOCH₂CH₂O₂ + 0.9 CH₃CHO + 0.9 HO₂.

G4207: Same value as for G4107

G4213: The rate coefficient is: $k_CH3CO3_NO2 = k_3Td(temp, cair, 9.7E-29, 5.6, 9.3E-12, 1.5, 0.6)$.

G4221: The rate coefficient isk_PAN_M = k_CH3CO3_N02/9.E-29*EXP(-14000./temp), i.e. the rate coefficient is defined as backward reaction divided by equilibrium constant.

G4307: Same value as for G4107

G4315: Same value as for G4107

 $\tt G4401:$ Same value as for G4306

G4402: Same value as for G4304

G4403: Same value as for G4305

G4404: Same value as for G4107

G4414: Same value as for G4304

G4415: Same value as for G4305

G4416: Same value as for G4107

G4419: Same value as for G4221

G6103: The rate coefficient is defined as backward reaction divided by equilibrium constant.

G6204: At low temperatures, there may be a minor reaction channel leading to O_3+HCl . See Finkbeiner et al. (1995) for details. It is neglected here.

G6402: The initial products are probably HCl and $\rm CH_2OOH$ (Atkinson et al., 2006). It is assumed that $\rm CH_2OOH$ dissociates into HCHO and OH.

G6405: Sander et al. (2006), but simplified shortcut to release all Cl

G7302: The rate coefficient is: $k_Br0_N02 = k_3rd(temp, cair, 5.2E-31, 3.2, 6.9E-12, 2.9, 0.6)$.

G7303: The rate coefficient is defined as backward reaction (Atkinson et al., 2007) divided by equilibrium constant (Orlando and Tyndall, 1996).

G7407: It is assumed that the reaction liberates all Br atoms. The fate of the carbon atom is currently not considered.

G7408: It is assumed that the reaction liberates all Br atoms. The fate of the carbon atom is currently not considered.

G7605: Same value as for G7408: ${\rm CH_2Br_2}{+}{\rm OH}$ assumed. It is assumed that the reaction liberates all

Br and all Cl. The fate of the carbon atom is currently not considered.

G7606: Same value as for G7408: CH_2Br_2+OH assumed. It is assumed that the reaction liberates all Br atoms and also Cl. The fate of the carbon atom is currently not considered.

G7607: It is assumed that the reaction liberates all Br atoms and also Cl. The fate of the carbon atom is currently not considered.

G9400a: For the abstraction path, the assumed reaction sequence (omitting H_2O and O_2 as products) according to Yin et al. (1990) is:

$$\begin{array}{ccccc} DMS + OH & \rightarrow & CH_3SCH_2 \\ CH_3SCH_2 + O_2 & \rightarrow & CH_3SCH_2OO \\ CH_3SCH_2OO + NO & \rightarrow & CH_3SCH_2O + NO_2 \\ CH_3SCH_2O & \rightarrow & CH_3S + HCHO \\ CH_3S + O_3 & \rightarrow & CH_3SO \\ CH_3SO + O_3 & \rightarrow & CH_3SO_2 \\ DMS + OH + NO + 2O_3 & \rightarrow & CH_3SO_2 + HCHO + NO_2 \end{array}$$

Neglecting the effect on O_3 and NO_x , the remaining reaction is:

$$DMS + OH + O_3 \rightarrow CH_3SO_2 + HCHO$$

G9400b: For the addition path, the rate coefficient is: k_DMS_OH = 1.0E-39*EXP(5820./temp)*C(ind_O2) / (1.+5.0E-30*EXP(6280./temp)*C(ind_O2)).

G5300dc01: Kono and Matsumi 2001

 ${\tt G5300dc04} :$ force and wiesenfeld 1981

<code>G6500dc05:</code> physical quenching (O1D- $\cdit{\iota}$ O3P) Warren 1991

G5300dc06: Kono and Matsumi

G5300dc08: Kono and Matsumi

Table 2: Photolysis reactions

#	labels	reaction	rate coefficient	reference
J (gas)				
J1000a	UpStTrGJ	$O_2 + h\nu \rightarrow 2.0 \text{ ProdO3} + O(^3P) + O(^3P)$	jx(ip_02)	Sander et al. (2014)
J1001a	UpStTrGJ	$\mathrm{O_3} + \mathrm{h}\nu \rightarrow \mathrm{O(^1D)} + \mathrm{O_2}$	jx(ip_01D)	Sander et al. (2014)
J1001b	UpStTrGJ	$O_3 + h\nu \rightarrow O(^3P) + O_2$	jx(ip_03P)	Sander et al. (2014)
J2100a	UpStGJ	$H_2O + h\nu \rightarrow LossH2O + H + OH$	jx(ip_H20)	Sander et al. (2014)
J2101	$\operatorname{UpStTrGJ}$	$\mathrm{H_2O_2} + \mathrm{h}\nu \rightarrow 2 \mathrm{OH}$	jx(ip_H2O2)	Sander et al. (2014)
J3100	UpStGJN	$N_2O + h\nu \to 1.0 \text{ ProdO3} + O(^1D) + N_2$	jx(ip_N20)	Sander et al. (2014)
J3101	UpStTrGJN	$NO_2 + h\nu \rightarrow NO + O(^3P)$	jx(ip_NO2)	Sander et al. (2014)
J3102a	UpStGJN	$NO + h\nu \rightarrow 1.0 \text{ ProdO3} + N + O(^{3}P)$	jx(ip_NO)	Sander et al. (2014)
J3103a	UpStTrGJN	$NO_3 + h\nu \rightarrow NO_2 + O(^3P)$	jx(ip_N020)	Sander et al. (2014)
J3103b	$\operatorname{UpStTrGJN}$	$NO_3 + h\nu \rightarrow 2.0 LossO3N + 2.0 LossO3 + NO + O_2$	jx(ip_N002)	Sander et al. (2014)
J3104	StTrGJN	$N_2O_5 + h\nu \rightarrow NO_2 + NO_3$	jx(ip_N2O5)	Sander et al. (2014)
J3200	TrGJN	$HONO + h\nu \rightarrow NO + OH$	jx(ip_HONO)	Sander et al. (2014)
J3201	StTrGJN	$HNO_3 + h\nu \rightarrow NO_2 + OH$	jx(ip_HNO3)	Sander et al. (2014)
J3202	$\operatorname{StTrGJN}$	$HNO_4 + h\nu \rightarrow 0.333 \text{ ProdO3} + .667 \text{ NO}_2 + .667 \text{ HO}_2 + .333$	jx(ip_HNO4)	Sander et al. (2014)
		$NO_3 + .333 \text{ OH}$,
J4100	StTrGJ	$CH_3OOH + h\nu \rightarrow HCHO + OH + HO_2$	jx(ip_CH3OOH)	Sander et al. (2014)
J4101a	StTrGJ	$\text{HCHO} + \text{h}\nu \rightarrow \text{H}_2 + \text{CO}$	jx(ip_COH2)	Sander et al. (2014)
J4101b	StTrGJ	$\mathrm{HCHO} + \mathrm{h}\nu \rightarrow \mathrm{H} + \mathrm{CO} + \mathrm{HO}_2$	jx(ip_CHOH)	Sander et al. (2014)
J4102	StGJ	$\mathrm{CO_2} + \mathrm{h}\nu \rightarrow 1.0 \ \mathrm{ProdO3} + \mathrm{CO} + \mathrm{O(^3P)}$	jx(ip_CO2)	Sander et al. (2014)
J4103	StGJ	$CH_4 + h\nu \rightarrow 1.155 \text{ ProdH2O} + CO + 0.31 \text{ H} + 0.69 \text{ H}_2 + 1.155$	jx(ip_CH4)	Sander et al. (2014)
		$\mathrm{H}_2\mathrm{O}$		
J4200	TrGJC	$C_2H_5OOH + h\nu \rightarrow CH_3CHO + HO_2 + OH$	jx(ip_CH3OOH)	von Kuhlmann (2001)
J4201	TrGJC	$\mathrm{CH_3CHO} + \mathrm{h}\nu \rightarrow \mathrm{CH_3O_2} + \mathrm{HO_2} + \mathrm{CO}$	jx(ip_CH3CH0)	Sander et al. (2014)
J4202	TrGJC	$\mathrm{CH_3C}(\mathrm{O})\mathrm{OOH} + \mathrm{h}\nu \rightarrow \mathrm{CH_3O_2} + \mathrm{OH} + \mathrm{CO_2}$	jx(ip_CH3CO3H)	Sander et al. (2014)
J4203	TrGJCN	$NACA + h\nu \rightarrow NO_2 + HCHO + CO$	0.19*jx(ip_CHOH)	von Kuhlmann (2001)
J4204	TrGJCN	$PAN + h\nu \rightarrow CH_3C(O)OO + NO_2$	jx(ip_PAN)	Sander et al. (2014)
J4300	TrGJC	$iC_3H_7OOH + h\nu \rightarrow CH_3COCH_3 + HO_2 + OH$	jx(ip_CH3OOH)	von Kuhlmann (2001)
J4301	TrGJC	$\mathrm{CH_3COCH_3} + \mathrm{h}\nu \rightarrow \mathrm{CH_3C(O)OO} + \mathrm{CH_3O_2}$	jx(ip_CH3COCH3)	Sander et al. (2014)
J4302	TrGJC	$CH_3COCH_2OH + h\nu \rightarrow CH_3C(O)OO + HCHO + HO_2$	0.074*jx(ip_CHOH)	see note*
J4303	TrGJC	$MGLYOX + h\nu \rightarrow CH_3C(O)OO + CO + HO_2$	jx(ip_MGLYOX)	Sander et al. (2014)
J4304	TrGJC	$\text{CH}_3\text{COCH}_2\text{O}_2\text{H} + \text{h}\nu \rightarrow \text{CH}_3\text{C}(\text{O})\text{OO} + \text{HCHO} + \text{OH}$	jx(ip_CH300H)	see note*
J4306	TrGJCN	$iC_3H_7ONO_2 + h\nu \rightarrow CH_3COCH_3 + NO_2 + HO_2$	3.7*jx(ip_PAN)	von Kuhlmann et al. $(2003)^*$

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J4400	TrGJC	$LC_4H_9OOH + h\nu \rightarrow OH + .67 \text{ MEK} + .67 \text{ HO}_2 + .33 C_2H_5O_2 + .33 CH_3CHO$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J4401	TrGJC	$MVK + h\nu \rightarrow CH_3C(O)OO + HCHO + CO + HO_2$	0.019*jx(ip_COH2)+.015*jx(ip_ MGLYOX)	Sander et al. (2014)
J4402	TrGJC	MVKOOH + h ν \rightarrow OH + .5 MGLYOX + .25 CH ₃ COCH ₂ OH + .75 HCHO + .75 HO ₂ + .25 CH ₃ C(O)OO + .25 CO	jx(ip_CH300H)	see note*
J4403	TrGJC	$\text{MEK} + \text{h}\nu \rightarrow \text{CH}_3\text{C(O)OO} + \text{C}_2\text{H}_5\text{O}_2$	0.42*jx(ip_CHOH)	von Kuhlmann et al. (2003)
J4404	TrGJC	$LMEKOOH + h\nu \rightarrow CH_3C(O)OO + CH_3CHO + OH$	jx(ip_CH300H)	Rickard and Pascoe (2009)
J4405	TrGJC	$BIACET + h\nu \rightarrow 2 CH_3C(O)OO$	2.15*jx(ip_MGLYOX)	see note*
J4406	TrGJCN	LC4H9NO3 + h $\nu \rightarrow$ NO ₂ + .67 MEK + .67 HO ₂ + .33 C ₂ H ₅ O ₂ + .33 CH ₃ CHO	3.7*jx(ip_PAN)	von Kuhlmann (2001)
J4407	TrGJCN	$MPAN + h\nu \rightarrow CH_3COCH_2OH + NO_2$	jx(ip_PAN)	see note*
J4500	TrGJC	ISOOH + $h\nu \rightarrow MVK + HCHO + HO_2 + OH$	jx(ip_CH300H)	see note*
J4501	TrGJCN	$ISON + h\nu \rightarrow MVK + HCHO + NO_2 + HO_2$	3.7*jx(ip_PAN)	von Kuhlmann (2001)
J6000	StTrGJCl	$\text{Cl}_2 + \text{h}\nu \rightarrow \text{Cl} + \text{Cl}$	jx(ip_Cl2)	Sander et al. (2014)
J6100	StTrGJCl	$\text{Cl}_2\text{O}_2 + \text{h}\nu \rightarrow 2.0 \text{ LossO3Cl} + 2.0 \text{ LossO3} + 2 \text{ Cl}$	jx(ip_Cl2O2)	Sander et al. (2014)
J6101	StTrGJCl	$OClO + h\nu \rightarrow 1.0 \text{ ProdO3} + ClO + O(^{3}P)$	jx(ip_OClO)	Sander et al. (2014)
J6200	StGJCl	$\mathrm{HCl} + \mathrm{h} \nu \to \mathrm{Cl} + \mathrm{H}$	jx(ip_HCl)	Sander et al. (2014)
J6201	StTrGJCl	$HOCl + h\nu \rightarrow 1.0 LossO3Cl + 1.0 LossO3 + OH + Cl$	jx(ip_HOC1)	Sander et al. (2014)
J6300	TrGJClN	$\text{ClNO}_2 + \text{h}\nu \rightarrow 1.0 \text{ ProdO3} + \text{Cl} + \text{NO}_2$	jx(ip_ClNO2)	Sander et al. (2014)
J6301a	StTrGJClN	$\text{ClNO}_3 + \text{h}\nu \rightarrow \text{Cl} + \text{NO}_3$	jx(ip_ClNO3)	Sander et al. (2014)
J6301b	StTrGJClN	$\text{ClNO}_3 + \text{h}\nu \rightarrow \text{ClO} + \text{NO}_2$	jx(ip_C10N02)	Sander et al. (2014)
J6400	StGJCl	$\mathrm{CH_3Cl} + \mathrm{h}\nu \to 1.0 \; \mathrm{ProdLCl} + \mathrm{Cl} + \mathrm{CH_3O_2}$	jx(ip_CH3Cl)	Sander et al. (2014)
J6401	StGJCl	$\mathrm{CCl_4} + \mathrm{h}\nu \rightarrow 4.0 \; \mathrm{ProdLCl} + \mathrm{LCARBON} + 4 \; \mathrm{Cl}$	jx(ip_CCl4)	Sander et al. (2014)
J6402	StGJCCl	$\mathrm{CH_3CCl_3} + \mathrm{h}\nu \rightarrow 3.0 \; \mathrm{ProdLCl} + 2 \; \mathrm{LCARBON} + 3 \; \mathrm{Cl}$	jx(ip_CH3CC13)	Sander et al. (2014)
J6500	StGJClF	$CFCl_3 + h\nu \rightarrow 3.0 \text{ ProdLCl} + 3 \text{ Cl} + LCARBON + LFLUORINE$	jx(ip_CFCl3)	Sander et al. (2014)
J6501	StGJClF	$\mathrm{CF_2Cl_2} + \mathrm{h}\nu \rightarrow 2.0$ ProdLCl + 2 Cl + LCARBON + 2 LFLUORINE	jx(ip_CF2C12)	Sander et al. (2014)
J7000	StTrGJBr	$Br_2 + h\nu \rightarrow Br + Br$	jx(ip_Br2)	Sander et al. (2014)
J7100	StTrGJBr	$\mathrm{BrO} + \mathrm{h}\nu \to \mathrm{Br} + \mathrm{O}(^{3}\mathrm{P})$	jx(ip_Br0)	Sander et al. (2014)
J7200	StTrGJBr	$HOBr + h\nu \rightarrow 1.0 LossO3Br + 1.0 LossO3 + Br + OH$	jx(ip_HOBr)	Sander et al. (2014)
J7300	TrGJBrN	$BrNO_2 + h\nu \rightarrow 1.0 \text{ ProdO3} + Br + NO_2$	jx(ip_BrNO2)	Sander et al. (2014)
J7301	StTrGJBrN	$\rm BrNO_3 + h\nu \rightarrow .85~Br + .85~NO_3 + .15~BrO + .15~NO_2$	jx(ip_BrNO3)	Sander et al. (2014)*
J7400	StGJBr	$CH_3Br + h\nu \rightarrow 1.0 \text{ ProdLBr} + Br + CH_3O_2$	jx(ip_CH3Br)	Sander et al. (2014)

Table 2: Photolysis reactions (... continued)

#	labels	reaction	rate coefficient	reference
J7401	TrGJBr	$\mathrm{CH_2Br_2} + \mathrm{h}\nu \rightarrow 2.0 \; \mathrm{ProdSBr} + \mathrm{LCARBON} + 2 \; \mathrm{Br}$	jx(ip_CH2Br2)	Sander et al. (2014)
J7402	TrGJBr	$CHBr_3 + h\nu \rightarrow 3.0 \text{ ProdSBr} + LCARBON + 3 \text{ Br}$	jx(ip_CHBr3)	Sander et al. (2014)
J7500	StGJBrF	${\rm CF_3Br} + {\rm h}\nu \rightarrow 1.0~{\rm ProdLBr} + {\rm LCARBON} + 3~{\rm LFLUORINE} + {\rm Br}$	jx(ip_CF3Br)	Sander et al. (2014)
J7600	StTrGJBrCl	$BrCl + h\nu \rightarrow Br + Cl$	jx(ip_BrCl)	Sander et al. (2014)
J7601	StGJBrClF	$CF_2ClBr + h\nu \rightarrow 1.0 \text{ ProdLBr} + 1.0 \text{ ProdLCl} + LCARBON + 2 LFLUORINE + Br + Cl$	jx(ip_CF2C1Br)	Sander et al. (2014)
J7602	TrGJBrCl	$\mathrm{CH_2ClBr} + \mathrm{h}\nu \to 1.0$ ProdSBr + 1.0 ProdSCl + LCARBON + Br + Cl	jx(ip_CH2C1Br)	Sander et al. (2014)
J7603	TrGJBrCl	$\rm CHCl_2Br + h\nu \rightarrow 1.0~ProdSBr + 2.0~ProdSCl + LCARBON + Br + 2~Cl$	jx(ip_CHC12Br)	Sander et al. (2014)
J7604	TrGJBrCl	CHClBr ₂ + h $\nu \rightarrow 2.0$ ProdSBr + 1.0 ProdSCl + LCARBON + 2 Br + Cl	jx(ip_CHC1Br2)	Sander et al. (2014)
J8401	StTrGJI	$\mathrm{CH_3I} + \mathrm{h}\nu \to \mathrm{CH_3O_2}$	JX(ip_CH3I)	Sander et al. (2014)
J6500dc01	StGJClF	$\mathrm{CHF_2Cl} + \mathrm{h}\nu \rightarrow 1.0 \ \mathrm{ProdLCl} + \mathrm{Cl} + \mathrm{LCARBON} + 2$ LFLUORINE	jx(ip_CHF2C1)	Sander et al. (2011)*
J6500dc02	StGJCClF	$CF_2ClCFCl_2 + h\nu \rightarrow 3.0 \text{ ProdLCl} + 3 \text{ Cl} + 2 \text{ LCARBON}$	jx(ip_CF2C1CFC12)	Sander et al. (2011)
J6400dc01	StGJCl	$\mathrm{CH_2Cl_2} + \mathrm{h}\nu \rightarrow 2.0 \; \mathrm{ProdLCl} + 2 \; \mathrm{Cl} + \mathrm{LCARBON}$	jx(ip_CH2Cl2)	Sander et al. (2011)
J6500dc03	StGJCClF	$CH_3CFCl_2 + h\nu \rightarrow 2.0 \text{ ProdLCl} + 2 \text{ Cl} + 2 \text{ LCARBON}$	jx(ip_CH3CFC12)	Sander et al. (2011)
J6500dc04	StGJCClF	$CF_2ClCF_2Cl + h\nu \rightarrow 2.0 \text{ ProdLCl} + 2 \text{ Cl} + 2 \text{ LCARBON}$	jx(ip_CF2C1CF2C1)	Sander et al. (2011)
J6400dc02	StGJCl	$\mathrm{CHCl}_3 + \mathrm{h}\nu \rightarrow 3.0 \; \mathrm{ProdLCl} + 3 \; \mathrm{Cl} + \mathrm{LCARBON}$	jx(ip_CHCl3)	Sander et al. (2011)
J6500dc05	StGJCClF	$CF_3CF_2Cl + h\nu \rightarrow 1.0 \text{ ProdLCl} + Cl + 2 \text{ LCARBON}$	jx(ip_CF3CF2C1)	Sander et al. (2011)
J6500dc06	StG	$CH_2F_2 + Cl \rightarrow HCl + LCARBON$	4.9e-12*EXP(-1500./temp)	Sander et al. (2011)
J9000	TrStGJS	$OCS + h\nu \rightarrow CO + S$	JX(ip_OCS)	
J9001	TrStGJS	$SO_2 + h\nu \rightarrow SO + O(^3P)$	60.*JX(ip_OCS)	
J9002	TrStGJS	$SO_3 + h\nu \rightarrow SO_2 + O(^3P)$	JX(ip_SO3)	
J9003 PH (aqueous)	TrStGJS	$H_2SO_4 + h\nu \rightarrow ProdH2O + SO_3 + H_2O$	JX(ip_H2SO4)	

General notes

j-values are calculated with an external module (e.g., JVAL) and then supplied to the MECCA chemistry.

Values that originate from the Master Chemical Mech-

 $j(41) \rightarrow jx(ip_CH300H)$

 $j(53) \rightarrow j(isopropyl nitrate)$

 $j(54) \rightarrow j(isopropyl nitrate)$

 $j(55) \rightarrow j(isopropyl nitrate)$

 $j(56)+j(57) \rightarrow jx(ip_NOA)$

Specific notes

J4302: It is assumed that $J(CH_3COCH_2OH)$ is 0.074 times that of J4101b.

J4304: It is assumed that $J(CH_3COCH_2O_2H)$ is the same as $J(CH_3OOH)$.

J4306: Following von Kuhlmann et al. (2003), we use $J(iC_3H_7ONO_2) = 3.7*jx(ip_PAN)$.

J4402: It is assumed that J(MVKOOH) is the same as $J(CH_3OOH)$.

J4405: It is assumed that J(BIACET) is 2.15 times larger than J(MGLYOX), consistent with the photolysis rate coefficients used in the MCM (Rickard and Pascoe, 2009).

J4407: It is assumed that J(MPAN) is the same as J(PAN).

J4500: It is assumed that J(ISOOH) is the same as $J(CH_3OOH)$.

J7301: The quantum yields are recommended by Burkholder et al. (2015) for $\lambda > 300 \text{nm}$ and used here for the entire spectrum.

J6500dc01: OKAY!

Table 3: Reversible (Henry's law) equilibria and irreversible ("heterogenous") uptake

# labels reaction	rate coefficient	reference	

General notes

The forward (k_exf) and backward (k_exb) rate coefficients are calculated insubmecca_aero_calc_k_ex in the file routine messy_mecca_aero.f90 using accommodation coefficients and Henry's law constants from chemprop (see chemprop.pdf).

subsequent reaction with H₂O, Cl⁻, and Br⁻ in H3201, H6300, H6301, H6302, H7300, H7301, H7302, H7601, and H7602, we define:

$$k_{\rm exf}({\rm X}){=}\frac{k_{\rm mt}({\rm X})\times {\rm LWC}}{[{\rm H_2O}]+5\times 10^2[{\rm Cl^-}]+3\times 10^5[{\rm Br^-}]}$$

Here, $k_{\rm mt} = {\rm mass}$ transfer coefficient, and LWC = liquid water content of the aerosol. The total uptake rate For uptake of X (X = N_2O_5 , ClNO₃, or BrNO₃) and of X is only determined by $k_{\rm mt}$. The factors only affect

the branching between hydrolysis and the halide reactions. The factor 5×10^2 was chosen such that the chloride reaction dominates over hydrolysis at about [Cl⁻] > 0.1 M (see Fig. 3 in Behnke et al. (1997)), i.e. when the ratio $[H_2O]/[Cl^-]$ is less than 5×10^2 . The ratio $5\times10^2/3\times10^5$ was chosen such that the reactions with chloride and bromide are roughly equal for sea water composition (Behnke et al., 1994). These ratios were measured for uptake of N₂O₅. Here, they are also used for $ClNO_3$ and $BrNO_3$.

Table 4: Heterogeneous reactions

#	labels	reaction	rate coefficient	reference
HET200	StHetN	$N_2O_5 + H_2O \rightarrow LossH2O + 1.0 LossO3N + 1.0 LossO3 + 2 HNO_3$	khet_St(ihs_N2O5_H2O)	see general notes*
HET201	TrHetN	$N_2O_5 \rightarrow 3.0 \text{ LossO3N} + 3.0 \text{ LossO3} + 2 \text{ NO}_3^-(cs) + 2 \text{ H}^+(cs)$	khet_Tr(iht_N2O5)	see general notes*
HET410	StHetCl	$HOCl + HCl \rightarrow ProdH2O + 1.0 LossO3Cl + 1.0 LossO3 + Cl2 + H2O$	khet_St(ihs_HOCl_HCl)	see general notes*
HET420	StHetClN	$\text{ClNO}_3 + \text{HCl} \rightarrow 0.5 \text{ LossO3Cl} + 0.5 \text{ LossO3N} + 1.0 \text{ LossO3} + \text{Cl}_2 + \text{HNO}_3$	khet_St(ihs_C1NO3_HC1)	see general notes*
HET421	StHetClN	$ClNO_3 + H_2O \rightarrow LossH2O + HOCl + HNO_3$	khet_St(ihs_C1NO3_H2O)	see general notes*
HET422	StHetClN	$N_2O_5 + HCl \rightarrow 1.0 LossO3Cl + 1.0 LossO3N + 2.0 LossO3 + ClNO_2 + HNO_3$	khet_St(ihs_N2O5_HC1)	see general notes*
HET510	StHetBr	$HOBr + HBr \rightarrow ProdH2O + 1.0 LossO3Br + 1.0 LossO3 + Br2 + H2O$	khet_St(ihs_HOBr_HBr)	see general notes*
HET520	StHetBrN	$BrNO_3 + H_2O \rightarrow LossH2O + HOBr + HNO_3$	khet_St(ihs_BrNO3_H2O)	see general notes*
HET540	StHetBrClN	$CINO_3 + HBr \rightarrow 0.333333 LossO3Br + 0.333333 LossO3Cl + 0.333333 LossO3N + 1.0 LossO3 + BrCl + HNO_3$	khet_St(ihs_C1NO3_HBr)	see general notes*
HET541	StHetBrClN	$BrNO_3 + HCl \rightarrow 0.333333 LossO3Br + 0.333333 LossO3Cl + 0.333333 LossO3N + 1.0 LossO3 + BrCl + HNO_3$	khet_St(ihs_BrNO3_HC1)	see general notes*
HET542	StHetBrCl	$\begin{aligned} & HOCl + HBr \rightarrow ProdH2O + 0.5 \ LossO3Br + 0.5 \ LossO3Cl \\ & + 1.0 \ LossO3 + BrCl + H_2O \end{aligned}$	khet_St(ihs_HOC1_HBr)	see general notes*
HET543	StHetBrCl	$\begin{aligned} & HOBr + HCl \rightarrow ProdH2O + 0.5 \ LossO3Br + 0.5 \ LossO3Cl \\ & + 1.0 \ LossO3 + BrCl + H_2O \end{aligned}$	khet_St(ihs_HOBr_HCl)	see general notes*

$General\ notes$

Heterogeneous reaction rates are calculated with an external module (e.g., MECCA_KHET) and then supplied to the MECCA chemistry (see www.messy-interface.org for details)

Table 5: Acid-base and other equilibria $\,$

# labels reaction	$K_0[M^{m-n}]$	$-\Delta H/R[K]$	reference	

Specific notes

Table 6: Aqueous phase reactions

# labels reaction	$k_0 \ [M^{1-n}s^{-1}]$	$-E_a/R[K]$	reference	

Specific notes

References

- Anderson, L. C. and Fahey, D. W.: Studies with ClONO₂: Thermal dissociation rate and catalytic conversion to NO using an NO/O₃ chemiluminescence detector, J. Phys. Chem., 94, 644–652, doi: 10.1021/J100365A027, 1990.
- Aranda, A., Le Bras, G., La Verdet, G., and Poulet, G.: The $BrO + CH_3O_2$ reaction: Kinetics and role in the atmospheric ozone budget, Geophys. Res. Lett., 24, 2745-2748, doi:10.1029/97GL02686, 1997.
- Atkinson, R.: Gas-phase tropospheric chemistry of volatile organic compounds: 1. Alkanes and alkenes, J. Phys. Chem. Ref. Data, 26, 215–290, doi:10.1063/1.556012, 1997.
- Atkinson, R.: Kinetics of the gas-phase reactions of OH radicals with alkanes and cycloalkanes, Atmos. Chem. Phys., 3, 2233–2307, doi:10.5194/ACP-3-2233-2003, 2003.
- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I gas phase reactions of O_x , HO_x , NO_x and SO_x species, Atmos. Chem. Phys., 4, 1461–1738, doi: 10.5194/ACP-4-1461-2004, 2004.
- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055, doi:10.5194/ACP-6-3625-2006, 2006.
- Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E.,

- Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III gas phase reactions of inorganic halogens, Atmos. Chem. Phys., 7, 981–1191, doi:10.5194/ACP-7-981-2007, 2007.
- Barone, S. B., Turnipseed, A. A., and Ravishankara, A. R.: Role of adducts in the atmospheric oxidation of dimethyl sulfide, Faraday Discuss., 100, 39–54, doi: 10.1039/FD9950000039, 1995.
- Bedjanian, Y., Laverdet, G., and Le Bras, G.: Low-pressure study of the reaction of Cl atoms with iso-prene, J. Phys. Chem. A, 102, 953–959, doi:10.1021/JP973336C, 1998.
- Behnke, W., Scheer, V., and Zetzsch, C.: Production of $BrNO_2$, Br_2 and $ClNO_2$ from the reaction between sea spray aerosol and N_2O_5 , J. Aerosol Sci., 25, S277–S278, doi:10.1016/0021-8502(94)90369-7, 1994.
- Behnke, W., George, C., Scheer, V., and Zetzsch, C.: Production and decay of ClNO_2 from the reaction of gaseous N_2O_5 with NaCl solution: Bulk and aerosol experiments, J. Geophys. Res., 102D, 3795–3804, doi: 10.1029/96JD03057, 1997.
- Boyd, A. A., Flaud, P.-M., Daugey, N., and Lesclaux,
 R.: Rate constants for RO₂ + HO₂ reactions measured under a large excess of HO₂, J. Phys. Chem.
 A, 107, 818–821, doi:10.1021/JP026581R, 2003.
- Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., and Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena, http://jpldataeval.jpl.nasa.gov, 2015.

- Canosa-Mas, C. E., King, M. D., Lopez, R., Percival, C. J., Wayne, R. P., Shallcross, D. E., Pyle, J. A., and Daele, V.: Is the reaction between CH₃(O)O₂ and NO₃ important in the night-time troposphere?, J. Chem. Soc. Faraday Trans., 92, 2211–2222, doi: 10.1039/FT9969202211, 1996.
- Clyne, M. A. A. and Cruse, H. W.: Atomic resonance fluorescence spectrometry for the rate constants of rapid bimolecular reactions. Part 2. Reactions Cl + BrCl, Cl + Br₂, Cl + ICl, Br + IBr, Br + ICl, J. Chem. Soc. Faraday Trans. 2, 68, 1377–1387, doi: 10.1039/F29726801377, 1972.
- Dillon, T. J., Horowitz, A., Hölscher, D., Crowley, J. N., Vereecken, L., and Peeters, J.: Reaction of HO with hydroxyacetone (HOCH₂C(O)CH₃): rate coefficients (233-363 K) and mechanism, Phys. Chem. Chem. Phys., 8, 236-246, doi:10.1039/B513056E, 2006.
- Dolson, D. A. and Leone, S. R.: A reinvestigation of the laser-initiated chlorine/hydrogen bromide chain reaction: absolute rate constants and the v=2/v=1 ratio from chlorine atom + hydrogen bromide \rightarrow hydrogen chloride(v) + bromine atom, J. Phys. Chem., 91, 3543–3550, doi:10.1021/J100297A016, 1987.
- Dulitz, K., Amedro, D., Dillon, T. J., Pozzer, A., and Crowley, J. N.: Temperature (208–318 K) and pressure (18–696 Torr) dependent rate coefficients for the reaction between OH and HNO₃, Atmos. Chem. Phys., 18, 2381–2394, doi:10.5194/acp-18-2381-2018, 2018.
- Finkbeiner, M., Crowley, J. N., Horie, O., Müller, R., Moortgat, G. K., and Crutzen, P. J.: Reaction between HO₂ and ClO: Product formation between 210 and 300 K, J. Phys. Chem., 99, 16264–16275, doi: 10.1021/J100044A011, 1995.

- Hynes, A. J. and Wine, P. H.: The atmospheric chemistry of dimethylsulfoxide (DMSO) kinetics and mechanism of the OH + DMSO reaction, J. Atmos. Chem., 24, 23–37, doi:10.1007/BF00053821, 1996.
- Ingham, T., Bauer, D., Sander, R., Crutzen, P. J., and
 Crowley, J. N.: Kinetics and products of the reactions
 BrO + DMS and Br + DMS at 298 K, J. Phys. Chem.
 A, 103, 7199–7209, doi:10.1021/JP9905979, 1999.
- Jefferson, A., Nicovich, J. M., and Wine, P. H.: Temperature-dependent kinetics studies of the reactions ${\rm Br}(^2{\rm P}_{3/2}) + {\rm CH}_3{\rm SCH}_3 \leftrightarrow {\rm CH}_3{\rm SCH}_2 + {\rm HBr}.$ Heat of formation of the CH $_3{\rm SCH}_2$ radical, J. Phys. Chem., 98, 7128–7135, doi:10.1021/J100080A006, 1994.
- Jenkin, M., Saunders, S. M., and Pilling, M. J.: The tropospheric degradation of volatile organic compounds: A protocol for mechanism development, Atmos. Environ., 31, 81–104, doi:10.1016/ S1352-2310(96)00105-7, 1997.
- Kirchner, F. and Stockwell, W. R.: Effect of peroxy radical reactions on the predicted concentrations of ozone, nitrogenous compounds, and radicals, J. Geophys. Res., 101D, 21007–21022, doi: 10.1029/96JD01519, 1996.
- Kohlmann, J.-P. and Poppe, D.: The tropospheric gasphase degradation of NH_3 and its impact on the formation of N_2O and NO_x , J. Atmos. Chem., 32, 397–415, doi:10.1023/A:1006162910279, 1999.
- Kondo, O. and Benson, S. W.: Kinetics and equilibria in the system $Br + CH_3OOH \rightleftharpoons HBr + CH_3OO$. An upper limit for the heat of formation of the methylperoxy radical, J. Phys. Chem., 88, 6675–6680, doi: 10.1021/J150670A034, 1984.

- Manion, J. A., Huie, R. E., Levin, R. D., Burgess, Jr.,
 D. R., Orkin, V. L., Tsang, W., McGivern, W. S.,
 Hudgens, J. W., Knyazev, V. D., Atkinson, D. B.,
 Chai, E., Tereza, A. M., Lin, C.-Y., Allison, T. C.,
 Mallard, W. G., Westley, F., Herron, J. T., Hampson,
 R. F., and Frizzell, D. H.: NIST Chemical Kinetics Database, NIST Standard Reference Database 17
 (Web Version), http://kinetics.nist.gov, 2015.
- McCabe, D. C., Gierczak, T., Talukdar, R. K., and Ravishankara, A. R.: Kinetics of the reaction OH + CO under atmospheric conditions, Geophys. Res. Lett., 28, 3135–3138, doi:10.1029/2000GL012719, 2001.
- Müller, J.-F. and Brasseur, G.: IMAGES: A three-dimensional chemical transport model of the global troposphere, J. Geophys. Res., 100D, 16445–16490, doi:10.1029/94JD03254, 1995.
- Orlando, J. J. and Tyndall, G. S.: Rate coefficients for the thermal decomposition of BrONO₂ and the heat of formation of BrONO₂, J. Phys. Chem., 100, 19 398–19 405, doi:10.1021/JP9620274, 1996.
- Orlando, J. J., Tyndall, G. S., Bertman, S. B., Chen, W., and Burkholder, J. B.: Rate coefficient for the reaction of OH with $\mathrm{CH_2}{=}\mathrm{C}(\mathrm{CH_3})\mathrm{C}(\mathrm{O})\mathrm{OONO_2}$ (MPAN), Atmos. Environ., 36, 1895–1900, doi:10. 1016/S1352-2310(02)00090-0, 2002.
- Pöschl, U., von Kuhlmann, R., Poisson, N., and Crutzen, P. J.: Development and intercomparison of condensed isoprene oxidation mechanisms for global atmospheric modeling, J. Atmos. Chem., 37, 29–52, doi:10.1023/A:1006391009798, 2000.
- Rickard, A. and Pascoe, S.: The Master Chemical Mechanism (MCM), http://mcm.leeds.ac.uk, 2009.

- Roelofs, G.-J. and Lelieveld, J.: Model study of the influence of cross-tropopause O₃ transports of tropospheric O₃ levels, Tellus, 49B, 38–55, doi:10.3402/TELLUSB.V49I1.15949, 1997.
- Sander, R., Jöckel, P., Kirner, O., Kunert, A. T., Landgraf, J., and Pozzer, A.: The photolysis module JVAL-14, compatible with the MESSy standard, and the JVal PreProcessor (JVPP), Geosci. Model Dev., 7, 2653–2662, doi:10.5194/GMD-7-2653-2014, 2014.
- Sander, R., Baumgaertner, A., Cabrera-Perez, D., Frank, F., Gromov, S., Grooß, J.-U., Harder, H., Huijnen, V., Jöckel, P., Karydis, V. A., Niemeyer, K. E., Pozzer, A., Riede, H., Schultz, M. G., Taraborrelli, D., and Tauer, S.: The community atmospheric chemistry box model CAABA/MECCA-4.0, Geosci. Model Dev., 12, 1365–1385, doi:10.5194/ gmd-12-1365-2019, 2019.
- Sander, S. P., Finlayson-Pitts, B. J., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Molina, M. J., Moortgat, G. K., Orkin, V. L., and Ravishankara, A. R.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 14, JPL Publication 02-25, Jet Propulsion Laboratory, Pasadena, CA, 2003.
- Sander, S. P., Friedl, R. R., Golden, D. M., Kurylo, M. J., Moortgat, G. K., Keller-Rudek, H., Wine, P. H., Ravishankara, A. R., Kolb, C. E., Molina, M. J., Finlayson-Pitts, B. J., Huie, R. E., and Orkin, V. L.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 15, JPL Publication 06-2, Jet Propulsion Laboratory, Pasadena, CA, http://jpldataeval.jpl.nasa.gov, 2006.
- Sander, S. P., Abbatt, J., Barker, J. R., Burkholder, J. B., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb,

- C. E., Kurylo, M. J., Moortgat, G. K., Orkin, V. L., and Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 17, JPL Publication 10-6, Jet Propulsion Laboratory, Pasadena, http://jpldataeval.jpl.nasa.gov, 2011.
- Sivakumaran, V., Hölscher, D., Dillon, T. J., and Crowley, J. N.: Reaction between OH and HCHO: temperature dependent rate coefficients (202-399 K) and product pathways (298 K), Phys. Chem. Chem. Phys., 5, 4821–4827, doi:10.1039/B306859E, 2003.
- Strekowski, R. S., Nicovich, J. M., and Wine, P. H.: Kinetic and mechanistic study of the Reactions of $O(^1D_2)$ with HCN and CH₃CN, Chem. Phys. Chem., 11, 3942–3955, doi:10.1002/cphc.201000550, 2010.
- Tyndall, G. S., Staffelbach, T. A., Orlando, J. J., and Calvert, J. G.: Rate coefficients for the reactions of OH radicals with methylglyoxal and acetaldehyde, Int. J. Chem. Kinet., 27, 1009–1020, doi: 10.1002/KIN.550271006, 1995.

- Tyndall, G. S., Orlando, J. J., Wallington, T. J., Sehested, J., and Nielsen, O. J.: Kinetics of the reactions of acetonitrile with chlorine and fluorine atoms, J. Phys. Chem., 100, 660–668, doi:10.1021/jp9521417, 1996.
- Tyndall, G. S., Cox, R. A., Granier, C., Lesclaux, R., Moortgat, G. K., Pilling, M. J., Ravishankara, A. R., and Wallington, T. J.: The atmospheric chemistry of small organic peroxy radicals, J. Geophys. Res., 106D, 12157–12182, doi:10.1029/2000JD900746, 2001a.
- Tyndall, G. S., Orlando, J. J., Wallington, T. J., and Hurley, M. D.: Products of the chlorine-atom-and hydroxyl-radical-initiated oxidation of CH₃CN, J. Phys. Chem. A, 105, 5380–5384, doi:10.1021/jp004318p, 2001b.
- von Kuhlmann, R.: Tropospheric photochemistry of ozone, its precursors and the hydroxyl radical: A 3D-modeling study considering non-methane hydrocar-

- bons, Ph.D. thesis, Johannes Gutenberg-Universität, Mainz, Germany, 2001.
- von Kuhlmann, R., Lawrence, M. G., Crutzen, P. J., and Rasch, P. J.: A model for studies of tropospheric ozone and nonmethane hydrocarbons: Model description and ozone results, J. Geophys. Res., 108D, 4294, doi:10.1029/2002JD002893, 2003.
- Wallington, T. J., Ammann, M., Cox, R. A., Crowley, J. N., Herrmann, H., Jenkin, M. E., McNeill, V., Mellouki, A., Rossi, M. J., and Troe, J.: IUPAC Task group on atmospheric chemical kinetic data evaluation: Evaluated kinetic data, http://iupac.pole-ether.fr, 2018.
- Yin, F., Grosjean, D., and Seinfeld, J. H.: Photooxidation of dimethyl sulfide and dimethyl disulfide. I: Mechanism development, J. Atmos. Chem., 11, 309–364. doi:10.1007/BF00053780, 1990.