Subregular Complexity

Jeffrey Heinz

jeffrey.heinz@stonybrook.edu

Computational Complexity

Part I

Some Motivation

Some linguistics as motivation

ptak thole hlad plast sram mgla vlas flitch dnom rtut

Halle, M. 1978. In *Linguistic Theory and Pyschological Reality*. MIT Press.

Phonotactics

possible English words	impossible English words
thole	ptak
plast	hlad
flitch	sram
	mgla
	vlas
	dnom
	rtut

Phonotactics

possible English words	impossible English words
thole	ptak
plast	hlad
flitch	sram
	mgla
	vlas
	dnom
	rtut

This is knowledge English speakers have learned, but were not taught.

Phonotactics - Samala Version

stojonowonowas
stojonowonowas
stojonowonowas
stojonowonowas
stojonowonowas
stojonowonowas
pisotonosikiwat
pisotonosikiwat
sanisotonosikiwas
sanisotonosikiwas

Phonotactics - Samala Version

possible Samala words	impossible Samala words
∫tojonowonowa∫	stojonowonowa∫
stojonowonowas	∫tojonowonowas
pistonoskiwat	pisotono∫ikiwat
sanisotonoskiwas	∫anipisotono∫ikiwas

- 1. How do Samala speakers know which of these words belong to different columns? How did they acquire this knowledge?
- 2. By the way, ftoyonowonowaf means 'it stood upright' (Applegate 1972)

Phonotactics - Samala Version

possible Samala words	impossible Samala words
∫tojonowonowa∫	stojonowonowa∫
stojonowonowa <mark>s</mark>	∫tojonowonowa <mark>s</mark>
pistonoskiwat	pisotono∫ikiwat
sanisotonoskiwas	∫anipisotono∫ikiwas

- 1. How do Samala speakers know which of these words belong to different columns? How did they acquire this knowledge?
- 2. By the way, ftoyonowonowaf means 'it stood upright' (Applegate 1972)

Exercise

- 1. Write a DFA or regular expression for the language of those strings which do not begin with pt. Assume an alphabet {p, t, k, o}.
- 2. Write a DFA or regular expression for the language of those strings which do not contain both s and S. Assume an alphabet {s, S, t, o}.

My own interests in subregular complexity...

... began with these observations:

- 1. Many phonotactic patterns are regular.
- 2. Many regular patterns are *not* possible phonotactic patterns.

So which regular languages constitute possible phonotactic patterns?

Along the way I learned:

- 1. There is a rich field of study in computer science on *subregular* complexity.
- 2. There is a rich field of study in computer science on *machine* learning of regular languages and transductions.
- 3. There are many applications in linguistics, artificial intelligence, robotic planning and control, model checking, ...

Part II

Measuring Complexity

Computational Complexity

Some hypotheses

Some ways to measure complexity

A regular language L_1 is more complex than L_2 if

- 1. The smallest DFA recognizing L_1 is larger than the smallest DFA recognizing L_2 .
- 2. The smallest regular expression recognizing L_1 is larger than the smallest regular expression recognizing L_2 .

In contrast to these *intensional* measures

1. The subregular classes we study today will provide complexity measures *independent* of the size of such representations.

- (1) Strings end with a b.
- (2) The second to last symbol in all strings is b.
- (3) The third to last symbol in all strings is b.

- (4) Strings contain at least one b.
- (5) Strings contain at most one b.
- (6) Strings contain exactly one b.

- (7) Strings contain at least one bb substring.
- (8) Strings contain at least two bs.
- (9) Strings contain at least two bb substrings.

- (10) Strings contain an a between every pair of bs.
- (11) Strings contain an odd number of bs.

Comparing "final-b" with "odd-b"

Strings end with b.

Strings have odd many bs.

Comparing "at least one b" with "exactly one b" Strings with at least one b.

Strings with exactly one b.

Subregular Complexity

Regular Languages

Myhill/Nerode Theorem

- For all $L \subseteq \Sigma^*, u \in \Sigma^*$, let $T_L(u) = \{v \mid uv \in L\}$.
- L is regular iff $|\{T_L(u) \mid u \in \Sigma^*\}|$ is finite.

Theorem

• L is regular iff $L \in [DFA] = [NFA] = [RE] = [GRE]$ = [MSO(+1)] = [MSO(<)]

Characterizing Regular Languages

Myhill/Nerode Theorem

- For all $L \subseteq \Sigma^*, u \in \Sigma^*$, let $T_L(u) = \{v \mid uv \in L\}$.
- L is regular iff $|\{T_L(u) \mid u \in \Sigma^*\}|$ is finite.

Theorems

• L is regular iff $L \in \mathbb{Q}[DFA] = \mathbb{Q}[NFA] = \mathbb{Q}[RE] = \mathbb{Q}[GRE]$ = $\mathbb{Q}[MSO(+1)] = \mathbb{Q}[MSO(<)]$

Deterministic and Non-deterministic Finite-state Acceptors

Characterizing Regular Languages

Myhill/Nerode Theorem

- For all $L \subseteq \Sigma^*, u \in \Sigma^*$, let $T_L(u) = \{v \mid uv \in L\}$.
- L is regular iff $|\{T_L(u) \mid u \in \Sigma^*\}|$ is finite.

Theorems

• L is regular iff $L \in [DFA] = [NFA] = [RE] = [GRE]$ = [MSO(+1)] = [MSO(<)]

Regular Expressions and Generalized Regular Expressions

Characterizing Regular Languages

Myhill/Nerode Theorem

- For all $L \subseteq \Sigma^*, u \in \Sigma^*$, let $T_L(u) = \{v \mid uv \in L\}$.
- L is regular iff $|\{T_L(u) \mid u \in \Sigma^*\}|$ is finite.

Theorems

• L is regular iff $L \in [DFA] = [NFA] = [RE] = [GRE]$ = ([MSO(+1)] = [MSO(<)]

Monadic Second Order logic with successor (+1) and precedence (<)

Regular Expressions

Syntax

REs include

- each $\sigma \in \Sigma$
- 6
- Ø

If R and S are REs then so are

- \bullet (R*)

Semantics

- $\bullet \ \llbracket \sigma \rrbracket = \{\sigma\}$
- $\bullet \ \ \llbracket \epsilon \rrbracket = \{ \epsilon \}$
- $\bullet \quad \llbracket \varnothing \rrbracket = \{\}$

- (Kleene star) $\lceil (R^*) \rceil = \lceil R \rceil^*$

Generalized Regular Expressions

Syntax

GREs include

- each $\sigma \in \Sigma$
- 6

If R and S are GREs then so are

- \bullet (R·S)
- (R+S)
- (Kleene star) $[(R^*)] = [R]^*$ \bullet (R*)
- (R&S)
- \bullet $(\overline{\mathbf{R}})$ (complement)

Semantics

- $\bullet \|\sigma\| = \{\sigma\}$
- $\bullet \ \llbracket \epsilon \rrbracket = \{ \epsilon \}$
- $\bullet \quad \llbracket \varnothing \rrbracket = \{\}$

$$\bullet \ \ \llbracket (R \cdot S) \rrbracket = \llbracket R \rrbracket \cdot \llbracket S \rrbracket$$

$$(concatenation) \qquad \bullet \quad [(R \cdot S)] = [R] \cdot [S]$$
$$(union) \qquad \bullet \quad [(R+S)] = [R] \cup [S]$$

$$\bullet \ \left[\left(R^* \right) \right] = \left[R \right]^*$$

$$(intersection) \qquad \bullet \quad \llbracket (R\&S) \rrbracket = \llbracket R \rrbracket \cap \llbracket S \rrbracket$$

$$\bullet \ \overline{\mathbb{R}} = \Sigma^* - \overline{\mathbb{R}}$$

Generalized Regular Expressions

Syntax

Semantics

GREs include

- each $\sigma \in \Sigma$
- 6
- Ø

$$\bullet \ \llbracket \sigma \rrbracket = \{\sigma\}$$

- $\bullet \ \llbracket \epsilon \rrbracket = \{ \epsilon \}$
- $\bullet \quad \llbracket \varnothing \rrbracket = \{\}$

If R and S are GREs then so are

- \bullet (R·S)
- (R+S)
- (Kleene star) $[(R^*)] = [R]^*$ \bullet (R*)
- (R&S)
- \bullet $(\overline{\mathbf{R}})$ (complement)

- $\bullet \| (R \cdot S) \| = \| R \| \cdot \| S \|$
- $(concatenation) \qquad \bullet \quad [(R \cdot S)] = [R] \cdot [S]$ $(union) \qquad \bullet \quad [(R+S)] = [R] \cup [S]$

 - $(intersection) \qquad \bullet \quad \llbracket (R\&S) \rrbracket = \llbracket R \rrbracket \cap \llbracket S \rrbracket$
 - $\bullet \quad \overline{\mathbb{R}} = \Sigma^* \overline{\mathbb{R}}$

Adding intersection and complement does not increase power of REs!

Cat-Union Expressions

Syntax

CUEs include

- each $\sigma \in \Sigma$
- 6

If R and S are CUEs then so are

- \bullet (R·S)
- (R+S)
- \bullet (R*)
- \bullet $(\overline{\mathbf{R}})$

Semantics

- $\bullet \|\sigma\| = \{\sigma\}$
- $\bullet \ \llbracket \epsilon \rrbracket = \{ \epsilon \}$
- $\bullet \quad \llbracket \varnothing \rrbracket = \{\}$

$$\bullet \ [(R \cdot S)] = [R] \cdot [S]$$

$$(union) \qquad \bullet \quad \llbracket (R+S) \rrbracket = \llbracket R \rrbracket \cup \llbracket S \rrbracket$$

$$(Kleene \ star) \qquad \bullet \ [\![(R^*)]\!] = [\![R]\!]^*$$

•
$$(R\&S)$$
 $(intersection)$ • $[(R\&S)] = [R] \cap [S]$

(complement) •
$$\overline{\mathbb{R}} = \Sigma^* - \mathbb{R}$$

(concatenation)

Cat-Union Expressions

Syntax

Semantics

CUEs include

- each $\sigma \in \Sigma$
- \bullet ϵ
- Ø

$$\bullet \ \llbracket \sigma \rrbracket = \{\sigma\}$$

$$\bullet \quad \llbracket \epsilon \rrbracket = \{ \epsilon \}$$

$$\bullet \quad \llbracket \varnothing \rrbracket = \{\}$$

If R and S are CUEs then so are

 \bullet (R·S) (concatenation)

• (R+S)

 \bullet (\overline{R})

(complement)

- $\bullet \| (R \cdot S) \| = \| R \| \cdot \| S \|$
- $(union) \qquad \bullet \quad \llbracket (R+S) \rrbracket = \llbracket R \rrbracket \cup \llbracket S \rrbracket$
- (R&S) (intersection) • $[(R\&S)] = [R] \cap [S]$
 - $\bullet \quad \overline{\mathbb{R}} = \Sigma^* \overline{\mathbb{R}}$

Theorem: $\llbracket \text{CUE} \rrbracket = \{ L \subseteq \Sigma^* \mid |L| \text{ is finite} \} \subsetneq \llbracket \text{RE} \rrbracket = \llbracket \text{GRE} \rrbracket$

Finite Languages

Star-Free Regular Expressions

Syntax

SFEs include

- each $\sigma \in \Sigma$
- 6

If R and S are SFEs then so are

•
$$(R \cdot S)$$
 (concatenation)

- (R+S)
- $(Kleene \ star) \qquad \bullet \ [\![(R^*)]\!] = [\![R]\!]^*$ \bullet (R*)
- (R&S)
- \bullet $(\overline{\mathbf{R}})$ (complement)

Semantics

$$\bullet \ \llbracket \sigma \rrbracket = \{\sigma\}$$

$$\bullet \ \llbracket \epsilon \rrbracket = \{ \epsilon \}$$

$$\bullet \ \llbracket \varnothing \rrbracket = \{\}$$

$$\bullet \ \left[(R \cdot S) \right] = \left[R \right] \cdot \left[S \right]$$

$$(union) \qquad \bullet \quad \llbracket (R+S) \rrbracket = \llbracket R \rrbracket \cup \llbracket S \rrbracket$$

$$\bullet \ \left[\left(R^* \right) \right] = \left[R \right]^*$$

$$(intersection) \qquad \bullet \quad \llbracket (R\&S) \rrbracket = \llbracket R \rrbracket \cap \llbracket S \rrbracket$$

$$\bullet \ \llbracket \overline{\mathbf{R}} \rrbracket = \Sigma^* - \llbracket \mathbf{R} \rrbracket$$

Star-Free Regular Expressions

Syntax

Semantics

SFEs include

- each $\sigma \in \Sigma$
- 6
- Ø

$$\bullet \ \llbracket \sigma \rrbracket = \{\sigma\}$$

- $\bullet \ \llbracket \epsilon \rrbracket = \{ \epsilon \}$
- $\bullet \quad \llbracket \varnothing \rrbracket = \{\}$

If R and S are SFEs then so are

 \bullet (R*)

• (R&S)

 \bullet $(\overline{\mathbf{R}})$

(complement)

- $\bullet (R \cdot S) \qquad (concatenation) \qquad \bullet [[(R \cdot S)]] = [[R]] \cdot [[S]]$ $\bullet (R + S) \qquad (union) \qquad \bullet [[(R + S)]] = [[R]] \cup [[S]]$
 - $(Kleene \ star) \qquad \bullet \ \llbracket (R^*) \rrbracket = \llbracket R \rrbracket^*$
 - $(intersection) \qquad \bullet \quad \overline{[(R\&S)]} = \overline{[R]} \cap \overline{[S]}$
 - $\bullet \quad \overline{\|\mathbf{R}\|} = \Sigma^* \overline{\|\mathbf{R}\|}$

Theorem: $[SFE] \subseteq [RE] = [GRE]$

Star-free Languages

Expression Summary

Finite Languages

concatenation union

Star-Free Languages

concatenation union

complement

(intersection)

Regular Languages

concatenation union

Kleene star

(complement) (intersection)

Expressivity ————

Exercise

Write Star-Free Expressions for the following languages. Let $\Sigma = \{a, b\}$.

- 1. Σ^* .
- 2. Strings which end with a b.
- 3. Strings which contain a bb.
- 4. Strings which do not contain a bb.
- 5. Strings which contain two bs.
- 6. Strings which do not contain two bs.

Characterizing Star-Free Languages

Grammar-independent characterization

• $L \in \llbracket \text{SFE} \rrbracket$ iff there exists n such that for all $x, y, z \in \Sigma^*$ and m > n if $xy^nz \in L$ then $xy^mz \in L$.

Theorems

- $L \in \llbracket SFE \rrbracket$ iff L is definable with First Order logic with precedence $(L \in \llbracket FO(<) \rrbracket)$.
- L is Star-Free iff the syntactic monoid of its DFA is aperiodic.

(McNaughton and Papert 1971)

Exercise

Prove the language below is not Star-Free.

(11) Strings contain an odd number of bs.

Star-free Languages

Intuitively, a language is SL if can be defined by forbidding finitely many strings from appearing at the beginnings, middles, and ends of words.

$w\overline{\varnothing}$ strings beginning with w $\overline{\varnothing}w\overline{\varnothing}$ strings containing w $\overline{\varnothing}w$ strings ending with w

Intuitively, a language is SL if can be defined by forbidding finitely many *substrings* from appearing at the beginnings, middles, and ends of words.

Key expressions				
$ \frac{\overline{w}\overline{\varnothing}}{\overline{\varnothing}w\overline{\varnothing}} $ $ \frac{\overline{\varpi}w}{\overline{\varnothing}w} $	strings not beginning with w strings not containing w strings not ending with w			

A Formal Definition

A language L is Strictly Local if there are three, possibly empty, sets of strings

P =
$$\{p_1, p_2, \dots p_m\}$$

W = $\{w_1, w_2, \dots w_n\}$
S = $\{s_1, s_2, \dots s_\ell\}$

and a SFE expression E of the form

$$\underset{p_i \in P}{\&} \overline{p_i \overline{\varnothing}} \quad \underset{w_i \in W}{\&} \overline{\overline{\varnothing} w_i \overline{\varnothing}} \quad \underset{s_i \in S}{\&} \overline{\overline{\varnothing} s_i}$$

such that $L = \llbracket E \rrbracket$.

Strictly Local Languages: Scanners

Intuitively, if L is Strictly k-Local, then deciding whether a string w belongs to L simply requires scanning w for forbidden prefixes, substrings, and suffixes. If any is found w is rejected. If every prefix, substring, and suffix in w is permissible then w is accepted.

(McNaughton and Papert 1971, Rogers and Pullum 2011)

Strictly Local Languages: Scanners

Intuitively, if L is Strictly k-Local, then deciding whether a string w belongs to L simply requires scanning w for forbidden prefixes, substrings, and suffixes. If any is found w is rejected. If every prefix, substring, and suffix in w is permissible then w is accepted.

(McNaughton and Papert 1971, Rogers and Pullum 2011)

Strictly Local Languages: Scanners

Intuitively, if L is Strictly k-Local, then deciding whether a string w belongs to L simply requires scanning w for forbidden prefixes, substrings, and suffixes. If any is found w is rejected. If every prefix, substring, and suffix in w is permissible then w is accepted.

(McNaughton and Papert 1971, Rogers and Pullum 2011)

More exercises

Recall some of the languages mentioned earlier.

- (1) Strings end with a b.
- (2) The second to last symbol in all strings is b.
- (3) The third to last symbol in all strings is b.

For each, one explain why it is Strictly Local. Assume $\Sigma = \{a,b\}$.

Let
$$L=[(ba)^*]$$

Logical Characterization

Conjunctions of Negative Literals (with successor)

$$E = \overline{\mathbf{a} \overline{\varnothing}} \ \& \ \overline{\overline{\varnothing}} \mathbf{a} \mathbf{a} \overline{\overline{\varnothing}} \ \& \ \overline{\overline{\varnothing}} \mathbf{b} \mathbf{b} \overline{\overline{\varnothing}} \ \& \ \overline{\overline{\varnothing}} \mathbf{a}$$

$$\phi = \neg \rtimes \mathbf{a} \wedge \neg \mathbf{a} \mathbf{a} \wedge \neg \mathbf{b} \mathbf{b} \wedge \neg \mathbf{a} \ltimes$$

where the above are interpreted as *substrings* (per the successor word model)

$$\text{Let L=}\llbracket (\texttt{ba})^* \rrbracket$$

DFA Characterization

 $Q = \Sigma^{\leq k}$

 $q_0 = \epsilon$

 $F = q \in Q$ such that q is not a forbidden suffix

 $\delta(q, a) = \operatorname{Suffix}^{k-1} qa \text{ if } q, \operatorname{Suffix}^{k-1} qa \text{ are not forbidden}$

A language L is Strictly k-Local if there is a Strictly Local expression E such that $L = \llbracket E \rrbracket$ and

$$k = \max\{|w| \mid w \in W\} \cup \{|v| + 1 \mid P \cup S\}$$
.

Exercises

For what k are the following Strictly Local?

- (1) Strings end with a b.
- (2) The second to last symbol in all strings is b.
- (3) The third to last symbol in all strings is b.

Theorems

- 1. $SL_1 \subsetneq SL_2 \dots SL_k \subsetneq SL_{k+1} \dots \subseteq SL$
- 2. FIN \subsetneq SL
- 3. For each k, FIN $\not\subseteq \operatorname{SL}_k$
- 4. For each k, SL_k is closed under intersection, but neither complement nor union.

Grammar-independent Characterization of SL

Suffix Substitution Closure

A language L is Strictly Local iff there is a k such that for all strings $u_1, v_1, u_2, v_2 \in \Sigma^*$ and for all strings x of length k-1 whenever $u_1xv_1, u_2xv_2 \in L$ then $u_1xv_2 \in L$.

Proving some languages are not SL

The SSC helps us prove languages are not Strictly k-Local and even not Strictly Local for any k.

• To show L is not SL_k , find u_1, v_1, u_2, v_2 and x of length k-1 such that

In a picture						
$\vdash k-1 \dashv$						
	u_1	x	v_1	$\in L$		
	u_2	x	v_2	$\in L$		
	u_1	\overline{x}	v_2	otag L		
	1		2	,		

• To show L is not SL, find u_1, v_1, u_2, v_2 and x for each k!

Exercises

Prove the following languages are not SL for any k.

- (4) Strings contain at least one b.
- (5) Strings contain at most one b.
- (10) Strings contain an a between every pair of bs.

Intuitively, a language is SP if can be defined by forbidding finitely many *subsequences*.

Key Expression

 $\overline{\varnothing}\sigma_1\overline{\varnothing}\sigma_2\overline{\varnothing}\dots\sigma_n\overline{\varnothing}$ strings containing $\sigma_1\sigma_2\dots\sigma_n$ as a subsequence

For example, $\overline{\varnothing}a\overline{\varnothing}b\overline{\varnothing}$ designates those strings containing ab as a subsequence like: ab, cccaccccccccc and so on.

Intuitively, a language is SP if can be defined by forbidding finitely many *subsequences*.

Key Expression

 $\overline{\overline{\varnothing}\sigma_1\overline{\varnothing}\sigma_2\overline{\varnothing}\dots\sigma_n\overline{\varnothing}}$ strings not containing $\sigma_1\sigma_2\dots\sigma_n$ as a subsequence

For example, $\overline{\varnothing} \overline{a} \overline{\overline{\varnothing}} \overline{b} \overline{\overline{\varnothing}}$ designates those strings *not* containing **ab** as a subsequence.

A Formal Definition

A language L is Strictly Piecewise if there is finite set of strings

$$w_1 = \sigma_1^1 \sigma_2^1 \dots \sigma_{|w_1|}^1$$

 $w_2 = \sigma_1^2 \sigma_2^2 \dots \sigma_{|w_2|}^2$

$$w_2 = \sigma_1^2 \sigma_2^2 \dots \sigma_{|w_2|}^2$$

$$w_n = \sigma_1^n \sigma_2^n \dots \sigma_{|w_n|}^n$$

and a SFE expression E of the form

$$\& _{w_{i} \in W} \overline{\overline{\varnothing} \sigma_{1}^{i} \overline{\varnothing} \sigma_{2}^{i} \overline{\varnothing} \dots \sigma_{|w_{i}|}^{i} \overline{\varnothing} }$$

such that $L = \llbracket E \rrbracket$.

Exercises

- 1. Recall this language mentioned earlier.
 - (5) Strings contain at most one b.

Explain why it is Strictly 2-Piecewise. Assume $\Sigma = \{a,b\}$.

2. Recall Samala.

possible Samala words	impossible Samala words		
∫tojonowonowa∫	stojonowonowa∫		
stojonowonowas	∫tojonowonowas		
pistonoskiwat	pisotono∫ikiwat		
sanisotonoskiwas	∫anipisotono∫ikiwas		

Assuming $\Sigma = \{s,S,t,o\}$, what are the forbidden subsequences?

Intuitively, if L is Strictly k-Piecewise, then deciding whether a string w belongs to L simply requires checking its k-subsequences for forbidden ones. If any is found w is rejected. If every subsequence in w is permissible then w is accepted.

(Rogers et al. 2010)

Let
$$L=a^*+b^*$$

Logical Characterization

Conjunctions of Negative Literals (with precedence)

$$E = \overline{\overline{\varnothing} \mathbf{a} \overline{\varnothing} \mathbf{b} \overline{\varnothing}} \ \& \ \overline{\overline{\varnothing} \mathbf{b} \overline{\varnothing} \mathbf{a} \overline{\varnothing}}$$

$$\phi = \neg \mathtt{ab} \wedge \neg \mathtt{ba}$$

where the above are interpreted as *subsequences* (per the precedence word model)

Theorems

- 1. $SP_1 \subsetneq SP_2 \dots SP_k \subsetneq SP_{k+1} \dots \subseteq SP$
- 2. FIN \nsubseteq SP
- 3. For each k, SP_k is closed under intersection, but neither complement nor union.

(Rogers et al. 2010)

Characterizing Strictly Piecewise Languages

Subsequence Closure

A language L is Strictly Piecewise iff whenever $w \in L$ every subsequence of w also belongs to L.

Subsequence Closure helps us prove languages are not Strictly Piecewise.

(Rogers et al. 2010)

Exercises

Prove the following languages are not SP.

- (4) Strings contain at least one b.
- (10) Strings contain an a between every pair of bs.
- (11) Strings contain an odd number of bs.

Locally Testable Languages

Locally Testable Languages

A language L is Locally k-Testable if it a Boolean combination of finitely many Strictly k-Local languages.

Boolean operations (and regular expression equivalents)

- intersection $(L_1 \& L_2)$
- union $(L_1 + L_2)$
- complement (\overline{L})

A language is Locally Testable if it is Locally k-Testable for some k.

Exercises

Recall some of the languages mentioned earlier.

- (4) Strings contain at least one b.
- (7) Strings contain at least one bb substring.

For each, one explain why it is Locally Testable. What is the k value?

L = strings containing a or strings containing bb $Logical \ Characterization$

Propositional logic (with successor)

$$E=\overline{\varnothing}\mathtt{a}\overline{\varnothing}+\overline{\varnothing}\mathtt{b}\mathtt{b}\overline{\varnothing}$$

$$\phi = \mathtt{a} \vee \mathtt{bb}$$

where the above are interpreted as *substrings* (per the successor word model)

Locally Testable Languages

Intuitively, membership in an LT_k language depends only on the sets of prefixes of length k-1, substrings of length k, and suffixes of length k-1. So these elements need to be identified and stored in memory to decide membership.

Grammar-independent characterization of Locally Testable Languages

Locally Testability

A language L is Locally Testable iff there exists k such that for all $u, v \in \Sigma^*$, if u and v have the same k-1 prefix, k-long substrings, and k-1 suffix then either $u, v \in L$ or $u, v \notin L$.

(McNaughton and Papert 1971, Rogers and Pullum 2011)

Exercise

Using Locally Testable Equivalence, prove the language below is not PT.

(5) String contain exactly one b.

Theorems

- 1. $LT_1 \subsetneq LT_2 \dots LT_k \subsetneq LT_{k+1} \dots \subseteq LT$.
- 2. For each k, $SL_k \subseteq LT_k$.
- 3. LT and SP are incomparable.
- 4. Closing LT under concatenation yields the Star-Free languages.

(McNaughton and Papert 1971, Rogers and Pullum 2011)

Locally Testable Languages

Piecewise Testable Languages

Piecewise Testable Languages

A language L is Piecewise k-Testable if it a Boolean combination of finitely many Strictly k-Piecewise languages.

Boolean operations (and regular expression equivalents)

- intersection $(L_1 \& L_2)$
- union $(L_1 + L_2)$
- complement (\overline{L})

A language is Piecewise Testable if it is Piecewise k-Testable for some k.

Exercises

Recall this language mentioned earlier.

(8) Strings contain at least two bs.

Explain why it is Piecewise Testable. What is the k value?

Example L

Consider the set of strings w such that if w contains a bb subsequence then w also contains an aa subsequence.

Logical Characterization

Propositional logic (with precedence)

$$\phi = \mathtt{bb} o \mathtt{aa}$$

where the above are interpreted as *subsequences* (per the precedence word model)

Piecewise Testable Languages

Intuitively, membership in an PT_k language depends only on the set of subsequences of length k. So these elements need to be identified and stored in memory to decide membership.

Grammar-independent characterization of Piecewise Testable Languages

Piecewise Testability

A language L is Piecewise Testable iff there exists k such that for all $u, v \in \Sigma^*$, if u and v have the same k-long subsequences then either $u, v \in L$ or $u, v \notin L$.

(Simon 1975)

Theorems

- 1. $PT_1 \subsetneq PT_2 \dots PT_k \subsetneq PT_{k+1} \dots \subseteq PT$.
- 2. For each k, $SP_k \subseteq PT_k$.
- 3. PT and LT are incomparable.

(Rogers et al. 2010, 2013)

Piecewise Testable Languages

Locally Threshold Testable Languages

Locally Threshold Testable Languages

Intuitively, membership in an $LT_{t,k}$ language depends only on the sets of prefixes of length k-1, substrings of length k, and suffixes of length k-1, counting their occurrences up to some threshold t. So this information needs to be identified and stored in memory to decide membership.

Grammar-independent characterization of Locally Threshold Testable Languages

Locally Theshold Testability

A language L is Locally Testable iff there exists k such that for all $u, v \in \Sigma^*$, if u and v have the same k-1 prefix, k-1 suffix, and the same number of occurrences of the same k-long substrings, counting up to some threshold t, then either $u, v \in L$ or $u, v \notin L$.

(Thomas 1982, Rogers and Pullum 2011)

Exercises

- Explain why (9) is LTT. What are the t and k values?
 - (9) Strings contain two bb substrings.
- Explain why the language below is not LTT for any t, k.
 - (L) Strings do not contain ab as a subsequence. Assume $\Sigma = \{a,b,c\}$.

Logical Characterization

A language L is Locally Theshold Testable iff L is definable with First Order logic with successor $(L \in [FO(+1)])$.

(Thomas 1982, 1999)

Exercise

Using Locally Testable Equivalence, prove the language below is not PT.

(5) String contain exactly one b.

Theorems

- 1. For each k, $LT_{t,k} \subseteq LT_{t,k+1} \subseteq LT$.
- 2. For each k, $LT_{t,k} \subsetneq LT_{t+1} \subseteq LT$.
- 3. For each k, t > 1, $LT_k \subseteq LT_{t,k}$.
- 4. $LTT_{1,k} = LT_k$.
- 5. LTT and SP are incomparable.
- 6. LTT \subseteq SF.

(Thomas 1982, Rogers and Pullum 2011)

Locally Threshold Testable Languages

Natural language phonotactics are simple!

Remember This:

- 1. There are many important subregular classes of formal languages.
- 2. They are natural with converging definitions in terms of regular expressions, automata, logic, and abstract algebra.
- 3. They have grammar-independent characterizations which identify the kind of memory necessary for deciding membership.
- 4. They provide complexity measures for classifying regular patterns.
- 5. Probabilistic variants of these classes also exist.
- 6. SL_k , SP_k , LT_k , PT_k and $LTT_{t,k}$ are machine-learnable from positive examples under various definitions of "learnable."

Current research

- 1. Regular string tranductions
- 2. Regular tree languages and tree transductions
- 3. Regular sets and transductions over other representations (e.g. graphs)

Applications

Much of this work has applications in linguistics and natural language processing, but also in other domains such as artificial intelligence, planning and control, model checking, . . .

Computational Complexity

Thanks

Jim Rogers

Thank you!

