

Charles W. Davidson College of Engineering

Department of Computer Engineering

Real-Time Embedded System
Co-Design
CMPE 146 Section 1
Fall 2024

MCU Clock System

External Oscillators to MCU

- Two quartz crystal oscillator modules connected to MSP432 on LaunchPad
 - HFX: High-frequency oscillator at 48 MHz
 - LFX: Low-frequency oscillator at 32 kHz
- Crystal oscillator provides very high accuracy and stability
 - Oscillation frequency can be manufactured precisely
 - Quartz crystal is quite temperature insensitive
 - ~0.001% over the operating range
 - Stability is in the range of 0.005%

Low-Frequency Base Clock (ext. osc. 1)

- I FXTCI K
 - Low-frequency oscillator or external clock source in the 32-kHz or below range
 - In bypass mode, driven with an external square wave signal
- Disabled by default
 - LFXIN and LFXOUT pins are set to be used as GPIOs
- Can generate interrupt if fault is detected

- HFXTCLK
 - High-frequency oscillator in the 1-MHz to 48-MHz range
 - In bypass mode, HFXTCLK can be driven with an external square wave signal
- Disabled by default
 - HFXIN and HFXOUT pins are set to be used as GPIOs
- Can generate interrupt if fault is detected

SJSU SAN JOSÉ STATE UNIVERSITY

MCU Internal Oscillators

Five internal sources

- VLO
 - Very-low-power low-frequency oscillator
 - 9.4-kHz typical frequency
- REFO
 - Low-power low-frequency oscillator
 - Selectable 32-kHz or 128-kHz typical frequencies
- MODOSC
 - Low-power oscillator
 - 25-MHz typical frequency
- SYSOSC
 - Regular oscillator
 - 5-MHz typical frequency
- DCO
 - Digitally controlled oscillator (DCO) generating programmable frequencies

MCU Base Clock - VLOCLK (int. osc. 1)

- Very-low-power low-frequency oscillator (VLO)
- 9.4-kHz typical frequency
- A low-cost ultra-low-power clock source for applications that do not require an accurate time base
 - 50-nA current consumption (typical)
- Oscillator can be powered down when clock is not needed
- Used in low-power mode

SJSU SAN JOSÉ STATE MCU Base Clock - REFOCLK (int. osc. 2)

- Low-power low-frequency oscillator (REFO)
- Selectable 32-kHz or 128-kHz typical frequencies
- A low-cost ultra low-power clock source for applications that do not require a crystal-accurate time base
 - More accurate than VLO
 - $-0.6-\mu A$ (32 kHz) or 1- μA (128 kHz) current consumption (typical)
- REFO is turned on whenever HFXT oscillator is enabled for use
 - Used to check the stability of the HFXTCLK
 - Can generate clock fault signal
- Fail-safe clock source for LFXTCLK
- Used in low-power mode
- Oscillator can be powered down when clock is not needed

SJSU SAN JOSÉ STATE MCU Base Clock - MODCLK (int. osc. 3)

- Internal low-power oscillator (MODOSC)
- 25-MHz typical frequency
- 50-μA current consumption (typical)
- Oscillator can be powered down when clock is not needed
- Can be used in both active and low-power modes

MCU Base Clock - SYSCLK (int. osc. 4)

- Regular oscillator (SYSOSC)
- 5-MHz typical frequency
- 30-µA current consumption (typical)
- For general-purpose timing for certain modules that do not require the stringent accuracy and start-up requirements of MODOSC
 - Start-up time for high-accuracy clocks could be longer
- SYSOSC is used by the system for
 - Memory controllers (flash and SRAM) state machine clock
 - Fail-safe clock source for HFXTCLK
 - Power control manager (PCM) and power supply system (PSS) state machine clock
 - Serial communication peripherals

MCU Base Clock - DCOCLK (int. osc. 5)

- An integrated digitally controlled oscillator (DCO)
- Six ranges, factory calibrated for the center frequencies
 - Each range overlaps with its neighboring ranges
 - On MSP432P401R, 1 to 52 MHz outputs, 8-MHz range
- Frequency can be changed during runtime
 - A settling time (<10 μs) is required before final selected frequency is obtained
- Used in both active and low-power modes

MSP432 MCU

Primary System Clocks

Five primary system clocks are derived from one of the base clocks

- ACLK: Auxiliary Clock
 - Base clock sources: LFXTCLK, VLOCLK, REFOCLK
 - Can be divided by 1, 2, 4, 8, 16, 32, 64, or 128
 - Software selectable by individual peripheral modules
 - Restricted to maximum frequency of operation of 128 kHz
- MCLK: Master Clock
 - Base clock sources: LFXTCLK, VLOCLK, REFOCLK, DCOCLK, MODCLK, HFXTCLK
 - Can be divided by 1, 2, 4, 8, 16, 32, 64, or 128
 - Used by the CPU and peripheral module interfaces
- HSMCLK: Subsystem Master Clock
 - Base clock sources: LFXTCLK, VLOCLK, REFOCLK, DCOCLK, MODCLK, HFXTCLK
 - Can be divided by 1, 2, 4, 8, 16, 32, 64, or 128
 - Software selectable by individual peripheral modules

Primary System Clocks (cont'd)

- SMCLK: Low-speed Subsystem Master Clock
 - Base clock source: HSMCLK
 - Can be divided by 1, 2, 4, 8, 16, 32, 64, or 128
 - Limited in frequency to half of the rated maximum frequency of HSMCLK
 - Software selectable by individual peripheral modules
- BCLK: Low-speed Backup Domain Clock
 - Base clock sources: LFXTCLK, REFOCLK
 - Used primarily in the backup domain (real-time clock, watchdog timer, 6-KB SRAM)
 - Restricted to a maximum frequency of 32 kHz

Clock System Summary

Clock System Main Features

- Clock system can be configured or reconfigured by software at any time during program execution
- Dedicated clock distribution to peripherals
 - Peripheral requests clock sources from the clock system through dedicated signal lines
 - Clock system distributes clocks through dedicated clock lines to peripheral
 - As a result, it reduces dynamic power to peripherals that do not require a particular clock
- Clock variety supports wide range of applications based on requirements of
 - Power
 - Speed
 - Cost
 - Clock accuracy
- Clock dividers provide flexibility to fine tune individual clock requirements
- Failsafe mechanism for higher reliability