1. Measure Spaces

1.1. Overview

Measure theory provides the rigorous foundation for integration, probability, and analysis. A measure assigns sizes to sets in a way that generalizes length, area, volume, and probability. This module establishes the fundamental theory of measures and measure spaces in Mathlib.

1.2. Core Concepts

1.2.1. Measures

A measure on a measurable space (α, \mathcal{M}) is a function $\mu : \mathcal{M} \to [0, \infty]$ satisfying:

- 1. Empty set has measure zero: $\mu(\emptyset) = 0$
- 2. Countable additivity: For pairwise disjoint measurable sets $(E_i)_{\{i \in \mathbb{N}\}}$: $\mu(\bigcup \{i=1\} \land \infty \ E_i) = \Sigma \{i=1\} \land \infty$ $\mu(E_i)$

In Mathlib, measures are implemented as outer measures that are countably additive on measurable sets.

1.2.2. Outer Measures

Every measure extends to an outer measure μ^* defined on all subsets:

- $\mu^*(A) = \inf\{\mu(E) : E \supseteq A, E \text{ measurable}\}\$
- Provides values for non-measurable sets
- Satisfies countable subadditivity for all sets

1.2.3. Null Sets and Almost Everywhere

Null sets are sets with measure zero:

- *N* is null if $\mu^*(N) = 0$ (may not be measurable)
- Property holds almost everywhere (a.e.) if it holds except on a null set
- Notation: $\forall^{\mu}x, P(x)$ means "P(x) holds for μ -almost all x"

1.3. Main Types and Structures

1.3.1. Basic Types

- Measure α : Type of measures on α
- MeasureSpace α: Class providing a canonical measure called volume
- OuterMeasure α : Outer measures on α

1.3.2. Key Definitions

Measure from Measurable Sets (Measure.ofMeasurable): Define a measure by specifying values only on measurable sets and proving:

- Empty set has measure zero
- Countable additivity for disjoint measurable sets

Measure from Outer Measure (OuterMeasure.toMeasure): Convert an outer measure to a measure by verifying all measurable sets are Carathéodory measurable.

1.3.3. Complete Measures

The completion of a measure includes all null-measurable sets:

- A set is null-measurable if it differs from a measurable set by a null set
- Completion is the smallest σ -algebra containing original measurable sets and null sets
- Completed measure assigns 0 to null sets

1.4. Key Theorems

1.4.1. Measure Properties

Monotonicity: If $s \subseteq t$ then $\mu(s) \leq \mu(t)$

Countable Subadditivity: For any sequence (s_i) : $\mu(\bigcup i \ s_i) \le \Sigma i \ \mu(s_i)$

Continuity from Below: For increasing (s_n) with $s_n \uparrow s$: $\mu(s) = \lim \mu(s_n)$ space "as" space $n \to \infty$

Continuity from Above: For decreasing (s_n) with $s_n \downarrow s$ and $\mu(s_1) < \infty$: $\mu(s) = \lim \mu(s_n)$ space "as" space $n \to \infty$

1.4.2. Operations on Sets

Union-Intersection Formula (measure_union_add_inter): For measurable t: $\mu(s \cup t) + \mu(s \cap t) = \mu(s) + \mu(t)$

Difference Formula (measure_diff): For $s_2 \subseteq s_1$, measurable $s_2, \mu(s_2) < \infty$: $\mu(s_1 \setminus s_2) = \mu(s_1) - \mu(s_2)$

Symmetric Difference (measure_symmDiff_eq): For null-measurable $s, t: \mu(s \Delta t) = \mu(s \setminus t) + \mu(t \setminus s)$

1.4.3. Disjoint Unions

Countable Disjoint Union (measure_biUnion): For countable S, pairwise disjoint measurable $(f_i)_{\{i \in S\}}$: $\mu(\bigcup \{i \text{ in } S\} f_i) = \Sigma \{i \text{ in } S\} \mu(f_i)$

Finite Disjoint Union (measure_biUnion_finset): For finite set s, pairwise disjoint measurable $(f_i)_{\{i \in s\}}$: $\mu(\bigcup \{i \text{ in } s\} f_i) = \Sigma \{i \text{ in } s\} \mu(f_i)$

Uncountable Union Inequality (tsum_meas_le_meas_iUnion_of_disjoint): Even for uncountable index sets with pairwise disjoint measurable sets: $\sum i \mu(A_i) \le \mu(\bigcup i A_i)$

1.4.4. Preimages and Fibers

Singleton Preimage Sum (tsum_measure_preimage_singleton): For countable S and measurable fibers: $\mu(f^{-1}(S)) = \Sigma$ "over" y in $S: \mu(f^{-1}(\{y\}))$

Finite Singleton Sum (sum_measure_singleton): In spaces with measurable singletons: $\mu(s) = \Sigma$ "over" x in $s: \mu(x)$

1.5. Measure Extension Theorems

1.5.1. π - λ Theorem Applications

Extension from π -System (ext_of_generateFrom_of_iUnion): Two measures are equal if they agree on a π -system that:

- Generates the σ -algebra
- Contains an increasing sequence covering the space
- Takes finite values on the sequence

Finite Measure Extension (ext_of_generate_finite): Two finite measures are equal if they agree on a π -system generating the σ -algebra.

1.5.2. Uniqueness Criteria

Measurable Sets (ext): Two measures are equal iff they agree on all measurable sets.

 σ -Finite Case: For σ -finite measures, equality on a generating π -system implies equality everywhere.

1.6. Special Properties

1.6.1. Almost Everywhere Properties

AE Filter (ae): The filter of sets whose complements have measure zero:

- $s \in ae(\mu) \iff \mu(s^c) = 0$
- Properties hold a.e. if they belong to this filter

AE Disjoint (AEDisjoint): Sets are a.e. disjoint if their intersection is null:

• Allows measure additivity even with negligible overlap

1.6.2. Null-Measurable Sets

A set is null-measurable if it equals a measurable set up to a null set:

- Broader than measurable sets
- Closed under measure-preserving operations
- Used in integration theory

1.7. Lattice Structure

Measures form a complete lattice:

- Supremum: $\sup_i \mu_i$ is the smallest measure dominating all μ_i
- Infimum: Defined via outer measures
- Scalar multiplication: $(c \cdot \mu)(s) = c \cdot \mu(s)$ for $c \in [0, \infty]$

1.8. MeasureSpace Class

The MeasureSpace class provides:

- A measurable space structure
- A canonical measure called volume
- Used for spaces with a natural measure (e.g., Lebesgue measure on \mathbb{R}^n)

1.9. Implementation Notes

1.9.1. Design Choices

- 1. Outer Measure Extension: Measures automatically extend to outer measures
 - Allows applying measures to non-measurable sets
 - · Simplifies many proofs
- 2. Null-Measurable Focus: Many theorems work with null-measurable sets
 - More general than just measurable sets
 - Natural for integration theory
- 3. Constructor Alternatives:
 - Measure.ofMeasurable: Define from measurable sets
 - OuterMeasure.toMeasure: Convert from outer measure
 - Direct construction rarely used

1.9.2. Proof Techniques

Measure Equality:

- 1. Show equality on measurable sets (ext)
- 2. Use π - λ theorem for generating sets
- 3. For finite measures, use ext_of_generate_finite

Null Set Arguments:

- · Work modulo null sets using a.e. equivalence
- Extend from measurable to null-measurable

1.10. Applications

1.10.1. Integration Theory

- Measures provide the foundation for the Lebesgue integral
- Null sets determine when functions are equal a.e.
- Completion ensures integrability is preserved under a.e. modifications

1.10.2. Probability Theory

- Probability measures satisfy $\mu(\Omega)=1$
- Events with probability 0 occur "almost never"
- Independence defined via product measures

1.10.3. Functional Analysis

- Measures on function spaces (e.g., Wiener measure)
- Radon measures on locally compact spaces
- Spectral measures in operator theory

1.10.4. Ergodic Theory

- Invariant measures for dynamical systems
- Birkhoff's ergodic theorem
- Entropy via measure-theoretic techniques

1.11. Historical Context

Measure theory was developed to address limitations of the Riemann integral:

- Lebesgue (1902): Introduced measure and integration
- Carathéodory (1914): Outer measure approach
- Completion: Ensures nice properties for integration

The theory unifies:

- Length, area, volume in geometry
- Probability in stochastics
- Integration in analysis