

Shannon Lietz

Director, DevSecOps Intuit @devsecops

<me />

SOFTWARE SAFER **SOONER**

PRESENT 1984 1989 1996 2001 2011 **DEVELOPER SECURITY OPERATIONS** MIANS "DEVSECOPS" "RUGGED"

action ...

The Problem... Are we chasing the right issues?

- 1. How are the current issues the "right" issues?
- 2. Is what we are testing driving us towards the "right" issues?
- 3. Are we using the "right" tools?

How will we know?

Dimensions of the Proof

We will know when:

- 1) We <u>understand</u> our application and its adversaries.
- 2) We measure and track results.
- 3) We correct continuously to get ahead of adversaries.

a) Know our Application

occurrey i	au		
Original Lines of Code		300	
Open Source Components		25	
Type: Embedded	Version	1.0	
Intended Version Lifetime/Expiration	0	2/2020	
Organization Security Trend at Release 3.2			
Security Degradation Rating		Α	
Required Monthly Customer Maintain	ence	2	
9	6 Control	Values	
Adversary Interest		97%	
Residual Risk		8%	
Preventative Measures		93%	
Access Control		100%	
Encryption		95%	
Tamper		91%	
Detective Measures		99%	
Remote		99%	
Local		99%	
NIST 99% ■ OPN	GBK	91%	
PCI DSS 92% •			

^{*} All values are based on modeled Abuse and FMEA cases for this class of device and applicable implementation patterns. Your results may fluctuate according to intended business risk profile and residual risk tolerances that allow for some controls to be less restrictive. Actual results may also vary with creative use or experimental implementation.

What do we know?

- 1) **Deployment Architecture** -> Attack Map or Threat Model
- 2) **Component Manifest** -> Required Patching Frequency/Upkeep
- 3) Lines of Code -> Defect Density
- 4) **Tests Applied** -> Quality

b) Know our Application's Adversaries

Original Lir	curity Fa	300
Type: Emb	ce Components edded Vers	
Intended V	02/2020	
Organizatio	3.2	
Security De	Α	
Required Monthly Customer Maintainence		2
	0/ 0-2	
	% Co	ntroi vaiues
Adversary		97%
Adversary Residual F		97% 8%
nesidual [870
Preventati	liek	93% 100%
Preventati	ve Measures Control	93% 100% 95%
Preventati Access	ive Measures s Control tion	
Preventati Access Encryp	ve Measures s Control otion	93% 100% 95% 91%
Preventati Access Encryp Tamper	ive Measures s Control otion r Measures	93% 100% 95% 91%
Preventati Access Encryp Tamper	ive Measures s Control otion r Measures	93% 100% 95% 91%
Preventati Access Encryp Tamper Detective Remote	ive Measures s Control otion r Measures	93% 100% 95% 91% 99%

with creative use or experimental implementation.

Approach

- Study for a year with layering approach
- Experiments should not overlap when possible
- Measurements are evaluated for skew
- Attackers should be unaware of the experiment
- We must understand motivations, methods, and interest

Tools used in this Research

HONEY

DETECTION

Top 10 Comparison

	OWASP TOP 10 App Sec Risks	Real-World Top 10 Attacks
1	Injection	Direct Object Reference
2	Broken Authentication	Forceful Browsing
3	Sensitive Data Exposure	Null Byte Attack
4	XML External Exposures (XXE)	Command Injection
5	Broken Access Control	Feature Abuse
6	Security Misconfiguration	Evasion Techniques
7	Cross Site Scripting	Subdomain Takeover
8	Insecure Deserialization	Misconfiguration
9	Using Components with Known Vulnerabilities	Cross Site Scripting
10	Insufficient Logging/Monitoring	SQL Injection

Categories of Adversaries

Scanners

Researchers

Paid Noise

Advanced Adversaries

Motivations

Information Brokerage

Fame / Payment

Continuous Payment

Control / Payment

OWASP vs. Real World

Adversaries + IPs

seel to ...

Scanners

- Continuously running on a schedule
- Scanners run for good and/or bad purpose
- Cost of running vs. Cost of information discovered

Scanners

Scanner

Researchers

- Commonly apply their efforts to get paid through bug bounties
- More likely to use common tools and standards
- Time spent must be worth effort

Researchers

Paid Noise

- Running when other attacks occur
- Used to outrun automated detection and AI/ML
- Cost of running must be low enough to allow for profit

Noise

Advanced Adversaries

- Commonly low and slow
- Leverages more human assisted automation schemes
- Investment must not be easy to disrupt

Bad IPs

Some interesting insights...

Bad guys:

- like to use scanning signatures to <u>whitelist themselves</u>
- don't use commercial scanners except for noise or whitelisting
- have a few <u>"goto" TTPs</u> because they just work
- don't underestimate the value of <u>cryptocurrency</u> mining
- are not afraid of AI/ML
- <u>hide</u> in lots of noise

Measurements

- 1) How often do adversaries return? Return Rate
- 2) How often do adversaries change their tactics? Rate of Change
- 3) How confident is the adversary? *Cost of fix*
- 4) How long do they have to find an issue? *Mean Time to Identification*

Adversary Return Rate

Mean Time to Identification

How do we correct continuously?

MATTERS #RSAC

- Everyone knows Maslow...
- If you can remember 5 things, remember these ->

"Apps & data are as safe as where you put it, what's in it, how you inspect it, who talks to it, and how its protected..."

How do we keep pace?

How do we get ahead?

Apply What You Have Learned Today

- Next week you should:
 - Assess your attack surface and collect telemetry
- In the first three months following this presentation you should:
 - Examine telemetry data and determine the characteristics for your application's adversaries
 - Can you say who your top adversary or attack is?
- Within six months you should:
 - Understand how to forecast the most important issues to fix
 - Be able to measure and report on defects fixed ahead of adversaries

