Licence Informatique deuxième année Mathématiques discrètes – groupes 2 - 3 - 4 Correction du contrôle continu du 15 octobre 2020

Exercice 1: arbres binaires.

- 1. Soit A un arbre binaire ayant n noeuds et de hauteur h. Montrer par induction que $h \leq n 1$.
 - Soit $\mathcal{P}(A)$ la propriété : $h \leq n-1$. Montrons par induction que pour tout arbre binaire A, $\mathcal{P}(A)$ est vraie.
 - Soit A l'arbre vide. Par définition n=0 et par convention h=-1. Alors $h=-1 \le 0-1$. Donc $\mathcal{P}(A)$ est vraie.
 - Soient A_g et A_d deux arbres binaires. Supposons $\mathcal{P}(A_g)$ et $\mathcal{P}(A_d)$ sont vraies. Montrons que si $A = (., A_g, A_d)$ alors $\mathcal{P}(A)$.

Notons h_g la hauteur de A_g et n_g le nombre de noeuds de A_g . De même h_d est la hauteur de A_d et n_d est le nombre de noeuds de A_d .

Par hypothèse, on a $h_g \leq n_g - 1$ et $h_d \leq n_d - 1$. Alors

$$h_q + h_d \le n_q + n_d - 2 \tag{1}$$

Par définition, $h = \max(h_g, h_d) + 1$ et $n = n_g + n_d + 1$. Comme $h_g + h_d \ge \max(h_g, h_d)$, on déduit de (1) que

$$\max(h_g, h_d) \leq n_g + n_d - 2$$

$$1 + \max(h_g, h_d) \leq n_g + n_d - 1$$

$$\underbrace{1 + \max(h_g, h_d)}_{h} \leq \underbrace{(n_g + n_d + 1)}_{n} - 2 \leq n - 1.$$

Donc $\mathcal{P}(A)$ est vraie.

- D'après le principe d'induction, on en déduit que pour tout arbre binaire A, $\mathcal{P}(A)$ est vraie.
- 2. Un arbre binaire est dit localement complet si il est non vide et si chaque nœud a 0 ou 2 descendants.
 - (a) Ecrire le schéma d induction des arbres localement complets.
 - L'arbre réduit à une racine est un arbre localement complet
 - Soient A_g et A_d deux arbres localement complets. Alors l'arbre $A=(.,A_g,A_d)$ est localement complet.
 - (b) Dresser la liste des arbres binaires localement complets de hauteur 2.

Exercice 2: Ensembles

Si X et Y sont des ensembles avec $X \subset Y$.

On notera \mathcal{C}_{V}^{X} le complémentaire de X dans Y.

Soient E un ensemble et A et B des sous-ensembles de E tous non vides.

1. Définir
$$C_E^A$$
 et $C_{E \times E}^{A \times B}$

$$C_E^A = \{x \in E; \ x \notin A\}$$

$$C_{E \times E}^{A \times B} = \{(x, y) \in E \times E; \ (x, y) \notin A \times B\}$$

2. On considère $F = \mathcal{C}_{E \times E}^{A \times B}$ et $G = \mathcal{C}_{E}^{A} \times \mathcal{C}_{E}^{B}$ Montrer que $G \subset F$.

Soit
$$(x, y) \in G = \mathcal{C}_E^A \times \mathcal{C}_E^B$$
.
Alors $x \in \mathcal{C}_E^A$ et $y \in \mathcal{C}_E^B$.

Donc $x \in E$; $x \notin A$ et $y \in E$; $y \notin B$

Donc $(x, y) \in E \times E$; $x \notin A$ et $y \notin B$

Donc $(x,y) \in E \times E$; $(x,y) \notin A \times B$

Donc $(x, y) \in \mathcal{C}_{E \times E}^{A \times B} = F$.

Donc $G \subset F$.

3. L'inclusion inverse est-elle vérifiée? (On justifiera la réponse donnée).

L'inclusion inverse n'est pas vraie.

Si
$$E = \{1, 2, 3\}, A = \{1, 2\}$$
 et $B = \{3\}$ alors on a

$$\mathcal{C}_{E}^{A} = \{3\}, \mathcal{C}_{E}^{B} = \{1, 2\}, \mathcal{C}_{E}^{A} \times \mathcal{C}_{E}^{B} = \{(3, 1), (3, 2)\}, A \times B = \{(1, 3), (2, 3)\} \text{ et}$$

 $\begin{array}{l} \mathcal{C}_{E}^{A} = \{3\},\, \mathcal{C}_{E}^{B} = \{1,2\},\, \mathcal{C}_{E}^{A} \times \mathcal{C}_{E}^{B} = \{(3,1),(3,2)\},\, A \times B = \{(1,3),(2,3)\} \text{ et } \\ \mathcal{C}_{E \times E}^{A \times B} = \{(1,1),(1,2),(2,1),(2,2),(3,1),(3,2),(3,3)\}. \\ \text{Il est clair que } \mathcal{C}_{E \times E}^{A \times B} \not\subset \mathcal{C}_{E}^{A} \times \mathcal{C}_{E}^{B} \text{ car par exemple } (1,2) \in \mathcal{C}_{E \times E}^{A \times B} \text{ mais } (1,2) \notin \mathcal{C}_{E}^{A} \times \mathcal{C}_{E}^{B}. \\ \end{array}$

Exercice 3: Injection, surjection, bijection

Soit f une application d'un ensemble A dans un ensemble B.

- 1. Quand dit-on que f est une application injective? surjective? bijective?
 - f est injective si et seulement si tout élément b de B a **au plus** un antécédent par fdans A.
 - f est surjective si et seulement si tout élément b de B a **au moins** un antécédent par f dans A.
 - f est bijective si et seulement si elle est à la fois injective et surjective.
- 2. On définit l'application f par :

$$f : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$$
$$(x,y) \mapsto (x^2,y)$$

Que peut-on dire de f? Est-elle injective? Est-elle surjective? Est-elle bijective?

- On remarque que f(-1,0) = (1,0) = f(1,0). Alors (1,0) possède au moins deux antécédents. Donc f n'est pas injective et donc f n'est pas bijective.
- On remarque que (-1,1) n'a pas d'antécédent par f car si on cherche (x,y) tel que f(x,y)=(-1,1) on a y=1 et $x^2=-1$ qui est impossible dans \mathbb{R}^2 . Alors f n'est pas surjective.

3. On considère la fonction g de \mathbb{R}^2 vers \mathbb{R}^2 définie par :

$$g(x,y) = (x-y, x+y)$$

Montrer que g est bijective de \mathbb{R}^2 dans \mathbb{R}^2 . Déterminer son application réciproque g^{-1} g est bijective si et seulement si tout élément (a,b) de \mathbb{R}^2 possède exactement un antécédent (x,y) par g dans \mathbb{R}^2 . Soit $(a,b) \in \mathbb{R}^2$ et cherchons $(x,y) \in \mathbb{R}^2$ tel que g(x,y) = (a,b). On obtient (x-y,x+y) = (a,b) ce qui est équivalent au système suivant

$$\begin{cases} x - y = a & L_1 \\ x + y = b & L_2 \end{cases}$$

 $L_1 + L_2$ donne : $x = \frac{1}{2}(a+b)$ et $L_2 - L_1$ donne : $y = \frac{1}{2}(b-a)$. Alors pour tout $(a,b) \in \mathbb{R}^2$, il existe un unique antécédent dans \mathbb{R}^2 par g qui est $(\frac{1}{2}(a+b), \frac{1}{2}(b-a))$. Donc g est bijective et son inverse est définie par

$$g^{-1}(a,b) = (\frac{1}{2}(a+b), \frac{1}{2}(b-a)).$$

Exercice 4: relations

On définit sur \mathbb{Z} la relation \mathcal{R} par $a\mathcal{R}b$ si et seulement si 4 divise $a^2 - b^2$.

1. Quelles sont les propriétés que doit vérifier \mathcal{R} pour être une relation d'équivalence? (on définira chacune d'entre elles).

 \mathcal{R} est une relation d'équivalence si \mathcal{R} est réflexive, symétrique et transitive.

- 2. Montrez que \mathcal{R} est une relation d'équivalence.
 - (i) Réflexivité : \mathcal{R} est réflexive si et seulement si $\forall a \in \mathbb{Z}$, $a\mathcal{R}a$. Il est clair que $\forall a \in \mathbb{Z}$, $a^2 - a^2 = 0$ et 4 divise 0. Donc \mathcal{R} est réflexive.
 - (ii) Symétrie : \mathcal{R} est symétrique si et seulement si $\forall a \in \mathbb{Z}, \forall b \in \mathbb{Z}, a\mathcal{R}b \Rightarrow b\mathcal{R}a$. $\forall a \in \mathbb{Z}, \forall b \in \mathbb{Z}$ on a

$$a\mathcal{R}b \iff 4 \text{ divise } a^2 - b^2 \iff \exists k \in \mathbb{Z}: \ a^2 - b^2 = 4k.$$

Alors $b^2 - a^2 = 4(-k)$. Il existe donc $k' = -k \in \mathbb{Z}$ tel que $b^2 - a^2 = 4k'$. Donc 4 divise $b^2 - a^2$ et \mathcal{R} est symétrique.

(iii) Transitivité: \mathcal{R} est transitive si et seulement si $\forall a \in \mathbb{Z}, \forall b \in \mathbb{Z}, \forall c \in \mathbb{Z}; \ (a\mathcal{R}b \wedge b\mathcal{R}c) \Longrightarrow a\mathcal{R}c.$ $\forall a \in \mathbb{Z}, \forall b \in \mathbb{Z}, \forall c \in \mathbb{Z}, \text{ si } a\mathcal{R}b \wedge b\mathcal{R}c \text{ alors } 4 \text{ divise } a^2 - b^2 \text{ et } 4 \text{ divise } b^2 - c^2$ Donc $\exists k_1 \in \mathbb{Z}; \ a^2 - b^2 = 4k_1 \text{ et } \exists k_2 \in \mathbb{Z}; \ b^2 - c^2 = 4k_2.$ Donc par addition, $a^2 - c^2 = 4(k_1 + k_2)$. Il existe donc $k = k_1 + k_2 \in \mathbb{Z}$ tel que $a^2 - c^2 = 4k$. Alors $a\mathcal{R}c$ et \mathcal{R} est transitive.

 \mathcal{R} est donc une relation d'équivalence.