HW#1.

- * Exercise
 - * Sec. 1.1 5 Write an algorithm that finds the greatest common divisor of two integers.
 - * Sec. 1.4 15 Show directly that $f(n) = n^2 + 3n^3 \in \Theta(n^3)$. That is, use the definitions of O and Ω to show that f(n) is both $O(n^3)$ and $\Omega(n^3)$
 - * Additional exercise
 - 26. Derive the proof of Theorem 1.3.
 - 27. Show the correctness of the following statements.
 - (a) $\lg n \in O(n)$
 - (b) $n \in O(n \lg n)$
 - (c) $n \lg n \in O(n^2)$
 - (d) $2^n \in \Omega(5^{\ln n})$
 - (e) $\lg^3 n \in o(n^{0.5})$
 - 30. Consider the following algorithm:

```
j = 1;
while (j <= n/2) {
    i = 1;
    while (j <= i) {
        cout << j << i;
        i++;
    }
    j++;
}</pre>
```

- (a) What is the output when n = 6, n = 8, and n = 10?
- (b) What is the time complexity T(n)? You may assume that the input n is divisible by 2.

Due Date: 2020. 3.28