Streaming Machine Learning Introduction

Alessio Bernardo

Post-doc @ Politecnico di Milano

CTO & Co-founder @ Motus ml

Me

Alessio Bernardo, Ph.D.

Post-doc @ Politecnico di Milano CTO & Co-founder @ Motus ml

- 5 years of experience in research in the Streaming Machine Learning field with evolving data streams, concept drifts, and class imbalance;
- Focus on applying Streaming Machine Learning techniques in constrained environments at the network's edge.

https://alessiobernardo.github.io/

https://motusml.com/

It is a Streaming World ...

It is a Streaming World ...

E. Della Valle, S. Ceri, F. van Harmelen, D. Fensel It's a Streaming World! Reasoning upon Rapidly Changing Information. IEEE Intelligent Systems 2009

... looking for reactive answers ...

E. Della Valle, S. Ceri, F. van Harmelen, D. Fensel It's a Streaming World! Reasoning upon Rapidly Changing Information. IEEE Intelligent Systems 2009

... but with conflicting requirements ...

A system able to answer those queries must be able to

- handle volume
- handle velocity
- handle variety
- cope with incompleteness
- cope with noise
- provide reactive answers
- support fine-grained access
- integrate complex domain models
- offer high-level languages

... and 68% of data are not used

Src: Seagate

Internet minute in 2023

Src: eDiscovery Today & LTMG

Traditional approach vs ...

Traditional approach

Stop data to analyse

Batch of data

Random access to data

No restrictions on memory/time for training

Well defined training phase

Access to all labelled data used for training

ML models

Traditional vs. Velocity-oriented approach

Traditional approach

Velocity approach

12

Data Stream

Continuous flow of data generated at high-speed in dynamic, time-changing environments

Sequential access only

Strict time/memory requirements

Evolving data

Characteristics of data seen so far

SML models

A. Bifet, G. de Francisci Morales, J. Read, G. Holmes, and B. Pfahringer Efficient online evaluation of big data stream classifiers. ACM SIGKDD 2015

Prequential evaluation

Estimate prequential error (PE):

Sliding window of size w

Fading factor

$$PE_i = \frac{\sum_{k=1}^{i} a^{i-k} * e_k}{\sum_{k=1}^{i} a^{i-k}}$$
 with $0 \ll \alpha \le 1$

Gama, J., Sebastião, R. and Rodrigues, P.P.: Issues in evaluation of stream learning algorithms. In ACM KDD, 2009.

Prequential evaluation - Cross Validation

- K-fold distributed cross-validation:
 each sample is used for testing in one classifier selected
 randomly, and used for training and testing all the others
- K-fold distributed split-validation: each sample is used for training in one classifier selected randomly, and for testing in all the classifiers
- K-fold distributed bootstrap-validation:
 each sample is used for training in approximately 2/3 of
 the classifiers, with a separate weight in each classifier,
 and for testing in all the classifiers

Bifet, A., et al: Efficient Online Evaluation of Big Data Stream Classifiers. In ACM SIGKDD, 2015.

Prequential evaluation - Delayed

- In real environments, can happen that the label arrives **delayed** w.r.t. the features
- Test the model with the features and wait for the label to train it

Gomes, HM., et al: Adaptive random forests for evolving data stream classification. In Machine Learning, 2017.

Evaluation metric - Kappa statistic

$$k = \frac{p - p_{rand}}{1 - p_{rand}}$$

where p is the accuracy of the classifier under consideration and p_{rand} is the accuracy of the Random classifier.

- If the classifier is perfectly correct, then k = 1.
- If the classifier achieves the same accuracy as the Random classifier, then k = 0.

Evaluation metric - Kappa-Temporal statistic

$$k = \frac{p - p_{per}}{1 - p_{per}}$$

where p is the accuracy of the classifier under consideration and p_{per} is the accuracy of the Persistent classifier.

- If the classifier is perfectly correct, then k = 1.
- If the classifier achieves the same accuracy as the Persistent classifier, then k = 0.
- If the classifier performs worse than the Persistent classifier, then k < 0.

SML models

- Incrementally incorporate data on the fly
- Unbounded real-time data
- Resource efficient
- Dynamic models

SML models

Benefits

- One sample at a time
- Incremental models
- Time & Memory management

Challenges

- Data stationarity (concept drift)
- Class imbalance
- Hyper-parameter tuning

Exercise 1: From batch to stream learning

Credits

- Albert Bifet DATA STREAM MINING 2020-2021 course at Telecom Paris
- Alessio Bernardo & Emanuele Della Valle

Streaming Machine Learning Introduction

Alessio Bernardo

Post-doc @ Politecnico di Milano

CTO & Co-founder @ Motus ml

