

Dispensador Inteligente de Comida para Gatos

Autor:

Ing. Durante Matías Nahuel

Director:

Ing. Bualó Santiago (FIUBA)

${\rm \acute{I}ndice}$

1. Descripción técnica-conceptual del proyecto a realizar	5
2. Identificación y análisis de los interesados	6
3. Propósito del proyecto	7
4. Alcance del proyecto	7
5. Supuestos del proyecto	8
6. Requerimientos	8
7. Historias de usuarios (<i>Product backlog</i>)	9
8. Entregables principales del proyecto	9
9. Desglose del trabajo en tareas	.0
10. Diagrama de Activity On Node	.1
11. Diagrama de Gantt	.2
12. Presupuesto detallado del proyecto	.5
13. Gestión de riesgos	.5
14. Gestión de la calidad	.6
15. Procesos de cierre	7د

Registros de cambios

]	Revisión	Detalles de los cambios realizados	Fecha
	0	Creación del documento	21 de Octubre de 2025
	1	Primera entrega	04 de Noviembre de 2025

Acta de constitución del proyecto

Buenos Aires, 21 de Octubre de 2025

Por medio de la presente se acuerda con el Ing. Durante Matías Nahuel que su Trabajo Final de la Carrera de Especialización en Sistemas Embebidos se titulará "Dispensador Inteligente de Comida para Gatos" y consistirá en la implementación de un prototipo de un sistema de dispensador inteligante de comida para gatos, capaz de automatizar la entrega de alimento seco en horarios programados, monitorear el consumo y reportar la información a una plataforma web, y tendrá un presupuesto preliminar estimado de 640 horas y un costo estimado de \$8000, con fecha de inicio el 21 de Octubre de 2025 y fecha de presentación pública el 15 de mayo de 2024.

Se adjunta a esta acta la planificación inicial.

Dr. Ing. Ariel Lutenberg Director posgrado FIUBA

Ing. Bualó Santiago Director del Trabajo Final

1. Descripción técnica-conceptual del proyecto a realizar

El presente trabajo práctico busca implementar un sistema de alimentación inteligente para mascotas, capaz de administrar y controlar de manera automática la entrega de alimento, supervisando su consumo y registrando la información correspondiente. El sistema tiene como finalidad facilitar el cuidado de los gatos en el hogar, asegurando que reciban la cantidad adecuada de comida en los horarios establecidos, incluso en ausencia de los dueños.

Se ha observado que una de las problemáticas más comunes entre los propietarios de mascotas es la dificultad para garantizar una alimentación constante y controlada, especialmente cuando no se encuentran en el hogar debido a largas jornadas laborales o deben ausentarse por períodos prolongados. En muchos casos, se depende de terceros o de dispensadores automáticos simples que no brindan información sobre si el animal efectivamente se alimentó, ni permiten llevar un registro del consumo diario. El objetivo principal de este proyecto es dar una solución tecnológica a esta necesidad, aplicando principios de automatización y monitoreo inteligente, a fin de mejorar la calidad de vida tanto de las mascotas como de sus dueños.

El sistema a desarrollar se basará en un conjunto de sensores que permitirán controlar la cantidad de alimento dispensado y verificar su consumo, junto con un mecanismo automatizado que permitirá dosificar las raciones según los horarios programados. Además, el sistema incluirá un registro continuo de datos que posibilitará identificar patrones y comportamientos alimentarios de la mascota, aportando información valiosa para la evaluación y mejora del plan de alimentación junto a profesionales del área. El dispositivo tendrá la capacidad de funcionar de manera autónoma, controlando la entrega del alimento, detectando si la ración fue consumida, y comunicándose con una interfaz externa, desde la cual el usuario podrá visualizar reportes, modificar horarios o recibir alertas cuando el depósito de alimento esté próximo a vaciarse.

Actualmente, existen en el mercado diversos dispositivos que permiten automatizar la entrega de comida para mascotas, pero la mayoría presenta limitaciones en cuanto al monitoreo del consumo o la disponibilidad de información remota. En la mayoría de los casos, el usuario no puede saber si el animal efectivamente comió o si se produjo alguna falla en la dispensación. La propuesta de este proyecto busca superar esas limitaciones, ofreciendo una solución que combina la automatización, el sensado, el control inteligente y la conectividad. De esta forma, no solo se garantiza la alimentación adecuada del animal, sino que además se obtiene información confiable y útil para su seguimiento.

La iniciativa también pretende sentar las bases de un nuevo enfoque en el cuidado automatizado de mascotas, incorporando tecnologías que hasta el momento se aplicaban principalmente en entornos industriales o de domótica. Así, se impulsa un paradigma en el que la automatización del hogar se extiende al bienestar animal, contribuyendo a una gestión más eficiente del tiempo y a una mejor calidad de vida en los hogares. Con esta nueva gestión automatizada de la alimentación, se podrán mejorar los siguientes aspectos:

- Mantener un control preciso de las raciones diarias y del consumo efectivo de la mascota.
- Establecer rutinas automáticas y personalizadas de alimentación.
- Generar reportes de consumo útiles para el seguimiento nutricional.

Para llevar a cabo este proyecto, se propone un módulo integral que gestione de forma automática el almacenamiento, dispensado y monitoreo del alimento. Dicho módulo será capaz de administrar el proceso completo de alimentación, registrando la información de consumo y enviándola a una interfaz de usuario desde la cual el propietario podrá consultar el estado del sistema, modificar configuraciones o recibir alertas en caso de que el alimento disponible se encuentre próximo a agotarse. El sistema será autónomo, de fácil instalación y adaptable a diferentes entornos domésticos, de modo que pueda operar sin depender de una ubicación fija ni de supervisión constante.

A continuación, se presenta en la Figura 1 un diagrama en bloques del sistema propuesto, en el cual se observan los principales módulos que lo componen:

Figura 1. Diagrama en bloques del sistema.

2. Identificación y análisis de los interesados

A continuación se listan todas las partes involucradas en el proyecto:

Rol	Nombre y Apellido	Organización	Puesto
Auspiciante	Ing. Durante Matías	-	
	Nahuel		
Responsable	Ing. Durante Matías	FIUBA	Alumno
	Nahuel		
Orientador	Ing. Bualó Santiago	FIUBA	Director del Trabajo Final
Usuario final	Dueños de mascotas		

Cuadro 1. Identificación de los interesados

- Auspiciante: siendo un proyecto de carácter personal, todos los gastos y/o beneficios económicos asociados serán asumidos por el autor del trabajo.
- Responsable: Ing. Durante Matías Nahuel, quien será el responsable de la planificación, diseño, desarrollo e implementación del sistema propuesto.
- Orientador: Ing. Bualó Santiago, quien actuará como director del trabajo final, brindando acompañamiento y supervisión técnica durante el desarrollo del proyecto.
- Usuario final: dado que el proyecto se orienta a ofrecer una solución para el cuidado automatizado de mascotas, los usuarios finales serán todas aquellas personas que posean gatos y deseen optimizar su alimentación diaria mediante un sistema automático y monitoreado.

3. Propósito del proyecto

El propósito de este proyecto es aplicar tecnologías de automatización y monitoreo inteligente al ámbito del cuidado doméstico de mascotas, a través del desarrollo de un sistema que administre la alimentación de forma confiable, eficiente y adaptable. La iniciativa busca brindar una solución que facilite la rutina diaria de los dueños de gatos, asegurando que el animal reciba la cantidad adecuada de alimento en los horarios establecidos, incluso en situaciones en las que el propietario no pueda supervisar directamente el proceso. Además, el sistema permitirá registrar y analizar el consumo de alimento, aportando información útil para el seguimiento nutricional. En términos generales, este proyecto se orienta a mejorar la calidad de vida de las mascotas y optimizar el tiempo de sus cuidadores, incorporando soluciones tecnológicas al ámbito doméstico.

4. Alcance del proyecto

Dentro del alcance del proyecto se contemplan las siguientes tareas principales:

- El desarrollo de un dispositivo capaz de automatizar la alimentación de gatos, permitiendo dispensar el alimento mediante los siguientes modos:
 - Automático: mediante la programación de horarios y raciones predefinidas.
 - Manual: a través de un pulsador que permitirá activar el dispensado del alimento.
 - Remoto (opcional): mediante una aplicación móvil o conexión web, que posibilitará la gestión y el monitoreo del sistema a distancia.
- El diseño del sistema de sensado, encargado de controlar el nivel de alimento disponible tanto en el depósito como en el plato.
- La implementación de un sistema de registro de datos que permita almacenar información sobre las raciones dispensadas y el consumo de alimento.
- El desarrollo de una interfaz externa al dispositivo, desde la cual el usuario podrá visualizar el estado del sistema, modificar los horarios de alimentación y recibir alertas ante fallas o niveles bajos de alimento.
- El sistema de alimentación propio del prototipo.

No serán parte del proyecto los siguientes:

- No se desarrollará una aplicación móvil o plataforma web completa.
- No se incorporará identificación individual de las mascotas.
- No se contemplará la utilización de servicios de almacenamiento externo o en la nube.
- No se desarrollará un prototipo final destinado a su comercialización.
- No se diseñará la estructura definitiva del dispositivo.

5. Supuestos del proyecto

Para el desarrollo del presente proyecto se supone que:

- Se dispondrá de los recursos económicos para la adquisición de materiales y componentes requeridos.
- Los componentes electrónicos y mecánicos necesarios estarán disponibles en el mercado local.
- El dispositivo podrá ser probado en un entorno doméstico con suministro eléctrico.
- No habrá restricciones reglamentarias, técnicas o logísticas que impidan el desarrollo y la validación del prototipo.
- El alimento utilizado será de tipo seco, con formato y tamaño compatibles con el mecanismo de dosificación a implementar.

6. Requerimientos

A continuación se enumeran los requerimientos del proyecto:

1. Requerimientos funcionales:

- 1.1. El sistema debe dispensar alimento seco de manera automática en horarios programados.
- 1.2. El sistema debe permitir el dispensado manual mediante un botón físico.
- 1.3. El sistema debe registrar y almacenar los datos de consumo diario.
- 1.4. El sistema debe detectar el nivel de alimento disponible en el tanque.
- 1.5. El sistema debe medir el peso del alimento dispensado en el plato.
- 1.6. El sistema debe emitir una alerta cuando el nivel de alimento del tanque sea bajo.
- 1.7. El sistema debe ser capaz de operar de forma autónoma sin conexión a internet.
- 1.8. El sistema debe permitir la visualización de reportes e historial de consumo desde una interfaz web o aplicación.

2. Requerimientos de hardware:

- 2.1. El sistema deberá incorporar una placa microcontroladora de la familia STM, a fin de mantener la compatibilidad con las bibliotecas HAL (Hardware Abstraction Layer) utilizadas en el desarrollo del firmware.
- 2.2. El sensado de peso se realizará mediante módulos HX711 y celdas de carga.
- 2.3. El sistema deberá incorporar un módulo Wi-Fi (ESP8266 o ESP32) para la comunicación remota.
- 2.4. El sistema deberá contar con un botón físico para el accionamiento manual.
- 2.5. El prototipo deberá alimentarse mediante una fuente externa.

3. Requerimiento de firmware:

- 3.1. El firmware deberá ser desarrollado en lenguaje C.
- 3.2. Se deberá integrar un sistema operativo en tiempo real (FreeRTOS) para la gestión de tareas concurrentes.
- 3.3. El sistema deberá incluir rutinas de verificación de sensores y comunicación, realizando pruebas unitarias e integrales de cada módulo.

4. Requerimientos de gestión:

- 4.1. Se utilizará un repositorio público (GitHub) para el control de versiones y seguimiento del código.
- 4.2. El tiempo total estimado para el desarrollo del prototipo será de 640 horas.
- 4.3. Se establecerán reuniones periódicas de seguimiento con el director del trabajo final para evaluar el progreso del proyecto.

7. Historias de usuarios (*Product backlog*)

Descripción: en esta sección se deben incluir las historias de usuarios y su ponderación (history points). Recordar que las historias de usuarios son descripciones cortas y simples de una característica contada desde la perspectiva de la persona que desea la nueva capacidad, generalmente un usuario o cliente del sistema. La ponderación es un número entero que representa el tamaño de la historia comparada con otras historias de similar tipo.

Se debe indicar explícitamente el criterio para calcular los story points de cada historia.

El formato propuesto es:

"Como [rol] quiero [tal cosa] para [tal otra cosa]."
 Story points: 8 (complejidad: 3, dificultad: 2, incertidumbre: 3)

8. Entregables principales del proyecto

Los entregables del proyecto son (ejemplo):

Manual de usuario.

- Diagrama de circuitos esquemáticos.
- Código fuente del firmware.
- Diagrama de instalación.
- Memoria del trabajo final.
- etc...

9. Desglose del trabajo en tareas

El WBS debe tener relación directa o indirecta con los requerimientos. Son todas las actividades que se harán en el proyecto para dar cumplimiento a los requerimientos. Se recomienda mostrar el WBS mediante una lista indexada:

- 1. Grupo de tareas 1 (suma h)
 - 1.1. Tarea 1 (tantas h)
 - 1.2. Tarea 2 (tantas h)
 - 1.3. Tarea 3 (tantas h)
- 2. Grupo de tareas 2 (suma h)
 - 2.1. Tarea 1 (tantas h)
 - 2.2. Tarea 2 (tantas h)
 - 2.3. Tarea 3 (tantas h)
- 3. Grupo de tareas 3 (suma h)
 - 3.1. Tarea 1 (tantas h)
 - 3.2. Tarea 2 (tantas h)
 - 3.3. Tarea 3 (tantas h)
 - 3.4. Tarea 4 (tantas h)
 - 3.5. Tarea 5 (tantas h)

Cantidad total de horas: tantas.

¡Importante!: la unidad de horas es h y va separada por espacio del número. Es incorrecto escribir "23hs".

Se recomienda que no haya ninguna tarea que lleve más de 40 h. De ser así se recomienda dividirla en tareas de menor duración.

Figura 2. Diagrama de Activity on Node.

10. Diagrama de Activity On Node

Armar el AoN a partir del WBS definido en la etapa anterior.

Una herramienta simple para desarrollar los diagramas es el Draw.io (https://app.diagrams.net/). Draw.io

Indicar claramente en qué unidades están expresados los tiempos. De ser necesario indicar los caminos semi críticos y analizar sus tiempos mediante un cuadro. Es recomendable usar colores y un cuadro indicativo describiendo qué representa cada color.

11. Diagrama de Gantt

Existen muchos programas y recursos *online* para hacer diagramas de Gantt, entre los cuales destacamos:

- Planner
- GanttProject
- Trello + plugins. En el siguiente link hay un tutorial oficial: https://blog.trello.com/es/diagrama-de-gantt-de-un-proyecto
- Creately, herramienta online colaborativa.
 https://creately.com/diagram/example/ieb3p3ml/LaTeX
- Se puede hacer en latex con el paquete pgfgantt
 http://ctan.dcc.uchile.cl/graphics/pgf/contrib/pgfgantt/pgfgantt.pdf

Pegar acá una captura de pantalla del diagrama de Gantt, cuidando que la letra sea suficientemente grande como para ser legible. Si el diagrama queda demasiado ancho, se puede pegar primero la "tabla" del Gantt y luego pegar la parte del diagrama de barras del diagrama de Gantt.

Configurar el software para que en la parte de la tabla muestre los códigos del EDT (WBS). Configurar el software para que al lado de cada barra muestre el nombre de cada tarea. Revisar que la fecha de finalización coincida con lo indicado en el Acta Constitutiva.

En la figura 3, se muestra un ejemplo de diagrama de gantt realizado con el paquete de *pgfgantt*. En la plantilla pueden ver el código que lo genera y usarlo de base para construir el propio.

Las fechas pueden ser calculadas utilizando alguna de las herramientas antes citadas. Sin embargo, el siguiente ejemplo fue elaborado utilizando esta hoja de cálculo.

Es importante destacar que el ancho del diagrama estará dado por la longitud del texto utilizado para las tareas (Ejemplo: tarea 1, tarea 2, etcétera) y el valor x unit. Para mejorar la apariencia del diagrama, es necesario ajustar este valor y, quizás, acortar los nombres de las tareas.

Figura 3. Diagrama de gantt de ejemplo

Figura 4. Ejemplo de diagrama de Gantt (apaisado).

12. Presupuesto detallado del proyecto

Si el proyecto es complejo entonces separarlo en partes:

- Un total global, indicando el subtotal acumulado por cada una de las áreas.
- El desglose detallado del subtotal de cada una de las áreas.

IMPORTANTE: No olvidarse de considerar los COSTOS INDIRECTOS.

Incluir la aclaración de si se emplea como moneda el peso argentino (ARS) o si se usa moneda extranjera (USD, EUR, etc). Si es en moneda extranjera se debe indicar la tasa de conversión respecto a la moneda local en una fecha dada.

COSTOS DIRECTOS						
Descripción	Cantidad	Valor unitario	Valor total			
SUBTOTAL						
COSTOS INDIRECTOS						
Descripción	Cantidad	Valor unitario	Valor total			
SUBTOTAL						
TOTAL						

13. Gestión de riesgos

a) Identificación de los riesgos (al menos cinco) y estimación de sus consecuencias:

Riesgo 1: detallar el riesgo (riesgo es algo que si ocurre altera los planes previstos de forma negativa)

- Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S).
- Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar del 1 al 10).
 Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2:

• Severidad (S): X. Justificación...

Ocurrencia (O): Y.
 Justificación...

Riesgo 3:

- Severidad (S): X. Justificación...
- Ocurrencia (O): Y. Justificación...
- b) Tabla de gestión de riesgos: (El RPN se calcula como RPN=SxO)

Riesgo	S	О	RPN	S*	O*	RPN*

Criterio adoptado:

Se tomarán medidas de mitigación en los riesgos cuyos números de RPN sean mayores a...

Nota: los valores marcados con (*) en la tabla corresponden luego de haber aplicado la mitigación.

c) Plan de mitigación de los riesgos que originalmente excedían el RPN máximo establecido:

Riesgo 1: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación). Nueva asignación de S y O, con su respectiva justificación:

- Severidad (S*): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S).
- Probabilidad de ocurrencia (O*): mientras más probable, más alto es el número (usar del 1 al 10). Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

Riesgo 3: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

14. Gestión de la calidad

Elija al menos diez requerimientos que a su criterio sean los más importantes/críticos/que aportan más valor y para cada uno de ellos indique las acciones de verificación y validación que permitan asegurar su cumplimiento.

• Req #1: copiar acá el requerimiento con su correspondiente número.

- Verificación para confirmar si se cumplió con lo requerido antes de mostrar el sistema al cliente. Detallar.
- Validación con el cliente para confirmar que está de acuerdo en que se cumplió con lo requerido. Detallar.

Tener en cuenta que en este contexto se pueden mencionar simulaciones, cálculos, revisión de hojas de datos, consulta con expertos, mediciones, etc.

Las acciones de verificación suelen considerar al entregable como "caja blanca", es decir se conoce en profundidad su funcionamiento interno.

En cambio, las acciones de validación suelen considerar al entregable como "caja negra", es decir, que no se conocen los detalles de su funcionamiento interno.

15. Procesos de cierre

Establecer las pautas de trabajo para realizar una reunión final de evaluación del proyecto, tal que contemple las siguientes actividades:

- Pautas de trabajo que se seguirán para analizar si se respetó el Plan de Proyecto original:
 - Indicar quién se ocupará de hacer esto y cuál será el procedimiento a aplicar.
- Identificación de las técnicas y procedimientos útiles e inútiles que se emplearon, los problemas que surgieron y cómo se solucionaron:
 - Indicar quién se ocupará de hacer esto y cuál será el procedimiento para dejar registro.
- Indicar quién organizará el acto de agradecimiento a todos los interesados, y en especial al equipo de trabajo y colaboradores:
 - Indicar esto y quién financiará los gastos correspondientes.