INTELIGÊNCIA COMPUTACIONAL

TRABALHO COMPUTACIONAL - 4

Alunos: Ana Luísa Pereira, Felipe Israel, Izabela Rodrigues – 10º Engenharia Computação

Questões:

1) Com base nos códigos de exemplo apresentados em anexo, implemente (A) um sistema de inferência fuzzy tipo Mandani e (B) um sistema de inferência tipo Takagi-Sugeno de primeira ordem para aproximar a função SINC no intervalo de 0 a 2π .

$$Sinc(x) = \frac{\sin(x)}{x}$$

Função gerada

2) Calcular a função SINC e calcular o erro quadrático médio de cada sistema de inferência implementado na aproximação da função.

$$EQM = \frac{1}{n} \sum_{1}^{n} (y - \hat{y})^2$$

3) Elaborar um relatório contendo a descrição dos sistemas de inferência implementados, dos testes realizados e comentários sobre os resultados obtidos.

Sistema Mandani

Após análise do problema o sistema fuzzy Mandani foi implementado atráves da Toolbox Fuzzy Logic Designer. Foram adicionadas as seguintes entradas para as antecedentes e consequentes:

X (Antecedentes)	Y (Consequentes)	
pequeno	pequeno	
medio	medio	
meiogrande	meiogrande	
grande	grande	

As regras fuzzy foram definidas de acordo com a figura abaixo:

Para se aproximar da função a relação entre as regras gerou o resultado abaixo:

Variáveis de entrada

Variáveis de saída

E abaixo o resultado do gráfico de aproximação:

Assim foram definidos os valores para cada antecedente e consequente:

	Antecedentes	Consequentes
pequeno	[1.282 0.741]	[0.028 -0.2254]
medio	[0.7771 3.31]	[0.0648 -0.07129]
meiogrande	[1.147 4.67]	[0.105 0.4499]
grande	[0.05584 6.15]	[0.01799 1.01]

Para implementação manual do código fuzzy Mandani, foi necessário alterar os valores de antecedentes e consequentes, além de redefinir as regras de relações entre cada um. Após isto, foi gerado um gráfico que exibe o resultado de cada função:

Em azul: Função principal, vermelho: função gerada pela toolbox, verde: função gerada pela implementação manual.

Feito isto rodou-se um teste e através do cálculo do EQM (erro quedrático médio), pode-se comparar a eficiência de cada implementação. Este erro determina a diferença entre o estimador e o valor verdadeiro da amostra com os dados corretos. Portanto quanto menor o valor, mais precisas são as observações do estimador.

Resultados: EQM Toolbox = 0.0049

EQM Implementado = 0.0065

Sistema Takagi-Sugeno

A mesma dinâmica feita para a inferência fuzzy Mandani, foi utilizada para a de Takagi-Sugeno, com a diferença que nesta abordagem utiliza uma função do tipo crisp no consequente da regra. No caso deste trabalho utilizou-se o modelo Sugeno de ordem 0, que possui em sua saída uma constante. Após análise foram adicionadas as seguintes entradas para antecedentes e consequentes:

X (Antecedentes)	Y (Consequentes)	
pequeno	alto	
medio	zero	
meiogrande	negativo	
grande		

As regras fuzzy foram definidas de acordo com a figura abaixo:

Relação entre as regras:

Variáveis de entrada

Variáveis de saída

Resultado do gráfico de aproximação:

Valores para cada antecedente e consequente:

	Antecedentes		Consequentes
pequeno	[1.315 1.6]	alto	1
medio	[0.89 3.146]	zero	0
meiogrande	[1 4.342]	negativo	-0.2172
grande	[0.3764 6.63]		

Para implementação manual do código fuzzy Sugeno, foi necessário alterar os valores de antecedentes e consequentes, além de redefinir as regras de relações entre cada um. Após isto, foi gerado um gráfico que exibe o resultado de cada função:

Em azul: Função principal, vermelho: função gerada pela toolbox, verde: função gerada pela implementação manual.

Resultado do cálculo de EQM em cada implementação:

Resultados: EQM Toolbox = 0.0212

EQM Implementado = 0.0212