SM4 可逆性证明

加密过程:对于明文(M_1 , M_2 , M_3 , M_4),和秘钥(rK_i),i∈ (0,1,2.....31) ,SM4 对这样的 4 字节明文进行 32 轮的轮函数

$$X_{i+4} = F(X_i, X_{i+1}, X_{i+2}, X_{i+3}, rk_i)$$

= $X_i \oplus T(X_{i+1} \oplus X_{i+2} \oplus X_{i+3} \oplus rk_i), i = 0,1,2.....31$

迭代得到 $(X_{32}, X_{33}, X_{34}, X_{35})$, 在经过反序操作得到密文 (Y_1, Y_2, Y_3, Y_4) ,

解密操作: 首先对密文 (Y_1, Y_2, Y_3, Y_4) 反序操作得到 $(X_{32}, X_{33}, X_{34}, X_{35})$

由于异或运算本身可逆,即对于 $X \oplus K = Y$ 有 $Y \oplus K = X$,故逆序使用轮秘钥 rk_i (i = 31,30.....,0)

$$\begin{split} X_{i} &= \mathrm{F}(X_{i+4}, X_{i+3}, X_{i+2}, X_{i+1}, rk_{i}) \\ &= X_{i+4} \oplus T(X_{i+3} \oplus X_{i+2} \oplus X_{i+1} \oplus rk_{i}), i = 31,30, \dots 1,0 \end{split}$$

得到 (X_3, X_2, X_1, X_0) ,再进过反序操作可以得到明文 (M_1, M_2, M_3, M_4)

可见由密文可以解得明文, 故 SM4 算法可逆。