RAČUNALNIŠKA ARHITEKTURA

3 Osnove delovanja računalnikov

3 Osnove delovanja računalnikov - vsebina

- Von Neumannov računalniški model
 - Von Neumannov računalniški model
 - Delovanje von Neumannovega računalnika
- Flynnova klasifikacija
- Glavni pomnilnik v von Neumannovem računalniku
 - Pomnilniška beseda
 - Pomnilniški naslov
 - Naslovni prostor
 - Vsebina pomnilniške besede
 - Princetonska in harvardska pomnilniška arhitektura
 - Dostop do pomnilnika
- Amdahlov zakon
- Jeziki, nivoji in navidezni računalniki
 - Računalnik kot zaporedje navideznih računalnikov
 - Prehajanje iz jezika J2 v jezik J1
 - Strojna in programska oprema računalnika
- Primer izvedbe programa v računalniku

Osnove delovanja računalnikov - vsebina:

- □ 3.1 Von Neumannov računalniški model
- □ 3.2 Flynnova klasifikacija
- 3.3 Glavni pomnilnik v von Neumannovem računalniku
- □ 3.4 Amdahlov zakon
- 3.5 Jeziki, nivoji in navidezni računalniki
- □ 3.6 Primer izvedbe programa v računalniku

Osnove delovanja računalnikov - cilji:

- Osnovno razumevanje delovanja računalnikov
 - □ Von Neumannov model in razširitve (paralelnost)
- Nivoji računalniškega sistema (HW <-> SW)
- Razumevanje izvedbe programa

3.1 Von Neumannov računalniški model

 Večinoma so današnji računalniki zgrajeni na osnovi modela računanja, ki je znan pod imenom von Neumannov model (John von Neumann 1945)

First Draft of a Report on the EDVAC

> by John von Neumann

von Neumannov(-a):

- model računanja,
- □ računalniški model,
- □ računalnik,
- arhitektura.

3.1 Von Neumannov računalniški model

- Sestavljajo ga trije osnovni deli:
 - □ CPE (centralna procesna enota)
 - □ Glavni pomnilnik
 - □ Vhodno-izhodni (V/I) sistem
- Je stroj s shranjenim programom, ki je shranjen v glavnem pomnilniku. Ukazi v programu določajo, kaj bo stroj delal.
- Program vodi delovanje stroja program določa, kako bo stroj deloval.
- CPE jemlje ukaze iz glavnega pomnilnika in jih izvaja drugega za drugim.

Von Neumannov računalniški model

CPE

6

- CPE iz glavnega pomnilnika jemlje ukaze in jih izvršuje. V današnjih računalnikih je poleg CPE še več procesorjev, zato oznaka centralna procesna enota. Sestavljajo jo trije deli:
 - □ KONTROLNA ENOTA skrbi za prevzemanje ukazov in operandov in aktiviranje operacij, ki so določene z ukazi.
 - □ ALE izvaja aritmetične operacije (seštevanje . . .) in logične operacije (AND . . .).
 - □ REGISTRI več povezanih pomnilniških celic, ki služijo za shranjevanje vrednosti.
 - Programsko nedostopni registri potrebni za delovanje CPE.
 - Programsko dostopni registri (arhitekturni registri) za shranjevanje operandov. Predstavljajo majhen in hiter pomnilnik v CPE.

- Glavni pomnilnik je sestavljen iz pomnilniških besed. Vsaka pomnilniška beseda ima svoj enolični naslov.
 - □ V njem so shranjeni ukazi in operandi.
 - Oznaka glavni zopet služi za razlikovanje od drugih pomnilnikov v današnjih računalnikih (predpomnilniki, navidezni pomnilnik).
- V/I sistem za prenos informacije v zunanji svet ali iz zunanjega sveta. Informacija je v CPE in glavnem pomnilniku shranjena v obliki, ki ni dostopna zunanjemu svetu.
 - Sestavni del V/I sistema so vhodno-izhodne naprave, ki pretvarjajo informacijo v neko drugo obliko, ki je primerna za uporabnika ali pa služijo kot pomožni pomnilniki.

RA - 3 © 2023, Rozman, Škraba, FRI

Delovanje von Neumannovega računalnika

- Njegovo delovanje popolnoma določajo ukazi (strojni ukazi), ki jih
 CPE jemlje iz glavnega pomnilnika zaporedoma enega za drugim.
- Strojni ukazi so v pomnilniku shranjeni eden za drugim po naraščajočih naslovih.
- Na neki način je določeno, iz katerega naslova se vzame prvi ukaz po vklopu računalnika ali po pritisku na tipko RESET.
 - Najenostavneje: prva ali zadnja pomnilniška lokacija najnižji ali najvišji naslov v pomnilniku.

Pri vsakem ukazu razlikujemo dva koraka

- 1. korak: Jemanje ukaza iz pomnilnika (FETCH) (tudi branje ali prevzem ukaza)
 - ukazno prevzemni cikel
 - angl. fetch cycle
 - □ V CPE je poseben register programski števec (PC Program Counter), ki vedno vsebuje pomnilniški naslov, na katerem je v pomnilniku shranjen naslednji ukaz.
- 2. korak: Izvrševanje v 1. koraku prevzetega ukaza (EXECUTE)
 - izvršilni cikel
 - angl. execute cycle

- Vsak ukaz vsebuje dve vrsti informacij:
 - □ informacijo o operaciji, ki naj se izvrši,
 - □ informacije o operandih, nad katerimi naj se operacija izvrši.
- CPE izvrši operacijo in poskrbi, da je v PC naslov naslednjega ukaza tako, da poveča vsebino PC-ja za 1 (ali več).
- Pravilo: ukazi v pomnilniku so shranjeni po naraščajočih naslovih zato PC ← PC + 1. To pravilo je rezultat dogovora in določa vrstni red izvajanja ukazov.

© 2023, Rozman, Škraba, FRI

Delovanje von Neumannovega računalnika

Po zaključku koraka 2 začne CPE zopet s korakom 1. Ta dva koraka se ponavljata, dokler računalnik deluje.

Izjema 1: Skočni ukazi, s katerimi lahko v PC zapišemo poljuben naslov.

■ Izjema 2: Prekinitev ali past CPE po koraku 2 ne prevzame ukaza po pravilu PC ← PC + 1, temveč začne izvajati drug program - prekinitveno servisni program (PSP). Potrebna je tudi pravilna vrnitev v prvotni program.

- Zaporedno izvajanje ukazov je počasno in predstavlja osnovno slabost von Neumannovih računalnikov.
- Razširitve osnovnega von Neumannovega modela so zajete v Flynnovi klasifikaciji iz leta 1966.

Osnove delovanja računalnikov - vsebina:

- ☐ 3.1 Von Neumannov računalniški model
- ☐ 3.2 Flynnova klasifikacija
- □ 3.3 Glavni pomnilnik v von Neumannovem računalniku
- ☐ 3.4 Amdahlov zakon
- □ 3.5 Jeziki, nivoji in navidezni računalniki
- □ 3.6 Primer izvedbe programa v računalniku

3.2 Flynnova klasifikacija

- To razvrstitev računalnikov v štiri skupine je predlagal M.J.Flynn leta 1966. Osnovna kriterija te klasifikacije za razvrstitev računalnikov sta:
 - □ število ukazov, ki se izvršujejo hkrati (instruction stream),
 - □ število operandov, ki jih en ukaz hkrati obdeluje (data stream).
- Po teh dveh kriterijih spada vsak računalnik v enega od štirih razredov:
- 1 SISD (Single Instruction Single Data)
 - klasični Von Neumannovi računalniki brez paralelizma pri ukazih in operandih
 - □ Intel Pentium 4

2 SIMD (Single Instruction Multiple Data)

- Source: ARS Technica
- Pravi vektorski računalniki (paralelni računalniki, grafični procesorji)
- Ukazi SSE (Streaming SIMD Extensions) pri procesorjih z arhitekturo x86, NEON enote pri ARM
- 3 MISD! (Multiple Instruction Single Data)
 - Neobičajna arhitektura. Več ukazov nad istimi operandi uporablja se tam, kjer se zahteva neobčutljivost na napake ("redudanca").
- 4 MIMD (Multiple Instruction Multiple Data)
 - Multiprocesorski računalniki (paralelni računalniki)

Flynnova klasifikacija

- □ Pri MIMD računalnikih se naenkrat izvaja več ukazov, vsak na svojih operandih.
- □ MIMD računalnik tvori več povezanih navadnih von Neumannovih računalnikov več CPE, ki so med seboj povezane.
- □ Večjedrne računalnike včasih štejemo tudi kar med SISD, čeprav jih lahko uvrščamo tudi v SIMD in MIMD.

SISD Instructions Results

Primer:

SIMD kot enota v CPE

Source: ARS Technica

Primer: matrično množenje: (ARM: NEON enota kot SIMD razširitev):

Figure 4.5. NEON vector-by-scalar multiplication

GPU: podobna filozofija, je širši koncept

- Ker poznavanje arhitekture in delovanja računalnikov lahko vodi v učinkovitejše programiranje (programe).
 - Primer 2: optimizacija programa za hitrejše delovanje ob upoštevanju vzporednosti delovanja – SIMD paralelnosti

```
us/Iteration | Iterations/sec
:----:::----::
2.02500 | 493827.16
0.53300 | 1876172.61
```

Spodnja rešitev (izkorišča SIMD ukaze) je skoraj 4-krat hitrejša!

Vir: "Pomen poznavanja računalniške arhitekture", avtor Miha Krajnc (e-učilnica).

```
double results[st];

for(int i = 0; i < st; ++i)
{
    results[i] = a[i] * b[i];
}</pre>
```

```
float results[st];

for(int i = 0; i < (st - 8); i += 8)
{
    __m256 i a = _mm256_load_ps(&a[i]);
    __m256 i b = _mm256_load_ps(&b[i]);
    __m256 i c = _mm256_mul_ps(i_a, i_b);
    __mm256_store_ps(&results[i], i_c);
}

for(int i = (st - 8); i < st; ++i)
{
    results[i] = a[i] * b[i];
}</pre>
```


Primera:

4 MIMD (Multiple Instruction Multiple Data)

Osnove delovanja računalnikov - vsebina:

- ☐ 3.1 Von Neumannov računalniški model
- ☐ 3.2 Flynnova klasifikacija
- ☐ 3.3 Glavni pomnilnik v von Neumannovem računalniku
- ☐ 3.4 Amdahlov zakon
- □ 3.5 Jeziki, nivoji in navidezni računalniki
- ☐ 3.6 Primer izvedbe programa v računalniku

3.3 Glavni pomnilnik v von Neumannovem računalniku

Definicija

- Glavni pomnilnik je pasivna naprava in služi za shranjevanje ukazov in operandov.
- Osnovna celica v pomnilniku je pomnilniška celica, ki lahko hrani 1 bit informacije (vsebina 0 ali 1).

■ Pomnilniška beseda (tudi pomnilniška lokacija)

- Pomnilniška beseda je definirana kot najmanjše število bitov, ki imajo svoj naslov. Pomnilniška beseda je torej najmanjša naslovljiva enota v pomnilniku.
- □ Pomnilnik je enodimenzionalno zaporedje pomnilniških besed.
- □ Pomnilniško besedo sestavlja določeno število enobitnih pomnilniških celic.
- Dolžina pomnilniške besede je število enobitnih pomnilniških celic, ki sestavljajo pomnilniško besedo. Danes je najpogostejša dolžina besede 1 bajt (= 8 bitov).

■ Pomnilniški naslov

- Je enolična oznaka vsake pomnilniške besede
- □ Vsaka pomnilniška beseda ima svoj enolični pomnilniški naslov.
- Naslov pomnilniške besede je nespremenljiv.
- □ Število bitov, ki sestavljajo naslov, imenujemo **dolžina naslova**.
- □ Dolžina naslova v bitih določa naslovni prostor.
- Naslovni prostor (tudi pomnilniški prostor)
 - □ <u>Je množica vseh naslovov</u>
 - In določa tudi največjo možno velikost pomnilnika.

- Vsebina pomnilniške besede se lahko <u>spreminja</u>. V 8-bitno pomnilniško besedo lahko shranimo 2⁸ = 256 različnih vsebin.
- Naslov pomnilniške besede pa je <u>nespremenljiv</u>.
- Število pomnilniških besed v glavnem pomnilniku ni nujno enako velikosti naslovnega prostora.
- Deli naslovnega prostora so lahko prazni (vsi naslovi niso uporabljeni) ⇒ glavni pomnilnik je običajno manjši od največje možne velikosti.

Glavni pomnilnik v von Neumannovem računalniku

Pomnilniški naslov

	Pomnilniške besede	Desetiško	Šestnajstiško	Dvojiško (16-bitni naslov)
		0	0000	0000 0000 0000 0000
		1	0001	0000 0000 0000 0001
sed		2	0002	0000 0000 0000 0010
þě		3	0003	0000 0000 0000 0011
X		4	0004	0000 0000 0000 0100
pomnilniških besed		5	0005	0000 0000 0000 0101
- E	•			
od		•		
216)	•	•		
(= 2		65531	FFFB	1111 1111 1111 1011
X		65532	FFFC	1111 1111 1111 1100
64		65533	FFFD	1111 1111 1111 1101
		65534	FFFE	1111 1111 1111 1110
		65535	FFFF	1111 1111 1111 1111

Predpone kilo, mega, giga idr. so <u>samo</u> pri velikosti pomnilnika potence števila 2!

Pomnilniki

- 1K (kilo) = 2^{10} = 1024 (1 KB = 1024 B)
- 1M (mega) = 2^{20} = 1 048 576 (1 MB = 1 048 576 B)
- 1G (giga) = 2^{30} = 1 073 741 824 (1 GB = 1024*1024*1024 = 1 073 741 824 B)
 - □ Vzrok je tehnološki: npr. 10-bitni pomnilniški naslov omogoča 2¹⁰ =1024 različnih naslovov in ne 1000.
 - □ Predlog IEC 1998: KiB = 2^{10} B, MiB = 2^{20} B, GiB = 2^{30} B

Druga področja (frekvenca, hitrost prenosa ...)

- $1k (kilo) = 10^3 = 1000 (1 km = 1000 m)$
- $1M \text{ (mega)} = 10^6 = 1 000 000 (100 \text{ Mb/s}=100 000 000 \text{ b/s})$
- 1G (giga) = 10^9 = 1 000 000 000 (1 GHz = 1 000 000 000 Hz)

Primer slike naslovnega prostora pri procesorju AT91SAM9260 (32-bitni pomnilniški naslov)

32-bitni naslov - 8 hex znakov

Slika notranjega naslovnega prostora (prvih 256 MB) do pri AT91SAM9260

Primer slike naslovnega prostora pri mikrokrmilniku STM32H750XB

32-bitni naslov - 8 hex znakov

Figure 8. Processor memory map

Naslovni prostor: $2^{32} = 4G$ naslovov

```
MEMORY
{
FLASH (rx) : ORIGIN = 0x08000000, LENGTH = 128K
DTCMRAM (xrw) : ORIGIN = 0x20000000, LENGTH = 128K
RAM_D1 (xrw) : ORIGIN = 0x24000000, LENGTH = 512K
RAM_D2 (xrw) : ORIGIN = 0x30000000, LENGTH = 288K
RAM_D3 (xrw) : ORIGIN = 0x38000000, LENGTH = 64K
ITCMRAM (xrw) : ORIGIN = 0x000000000, LENGTH = 64K
}
```


Primer slike pomnilnika (memory map) pri procesorju 68HC11 – procesor ima 16-bitni pomnilniški naslov

Von Neumannovo ozko grlo

- Prenosi CPE ↔ gl. pomnilnik promet
- Von Neumannovo ozko grlo povezava med CPE in glavnim pomnilnikom. Iz pomnilnika v CPE se prenašajo vsi ukazi in operandi iz pomnilnika ali v pomnilnik.
- Eden od načinov za razširitev tega ozkega grla je razdelitev glavnega pomnilnika v dva dela.

- Pomnilnik je pri harvardski arhitekturi razdeljen na dva ločena pomnilnika.
- V enem so shranjeni samo operandi operandni pomnilnik, v drugem pa samo ukazi – ukazni pomnilnik.
- Ukazni in operandni pomnilnik lahko delujeta istočasno. Tako lahko dosežemo do dvakrat večjo hitrost.
- Harvardska arhitektura se danes uporablja pri predpomnilniku na najnižjem nivoju (operandni in ukazni predpomnilnik L1), glavni pomnilnik pa je pri večini računalnikov en sam (princetonska arhitektura).

Dostop do pomnilnika

- CPE dostopa do pomnilniške besede tako, da v pomnilnik pošlje naslov te besede in signal za smer prenosa.
- Smer prenosa vrsta dostopa
 - □ CPE ← gl. pomnilnik branje (bralni dostop)
 - \square CPE \rightarrow gl. pomnilnik pisanje (pisalni dostop)

Povezava CPE <-> glavni pomnilnik?

Vodilo = skupina povezav (naslovno, podatkovno, kontrolno, ...)

Linija = povezava Signal = vsebina, ki se prenaša po povezavi (1bit)

RA-3

Povezava med CPE in glavnim pomnilnikom – bralni dostop

Povezava med CPE in glavnim pomnilnikom – pisalni dostop

Razširitev von Neumannovega ozkega grla

Princetonska pomnilniška arhitektura

Harvardska pomnilniška arhitektura

Povzetek lastnosti glavnega pomnilnika v von Neumannovem računalniku

- Pomnilnik je enodimenzionalen in organiziran v besede. Vsaka beseda ima svoj, enoličen naslov.
- Ni razlike med ukazi in operandi.
- Pomen ni sestavni del operandov.
- Veliko več bralnih kot pisalnih dostopov,
 - □ Razmerje: okrog 80% branj (B), 20% pisanj (P)
 - □ Zakaj?

Primer

PRO	GRAM Zbirnik
1B	adr r0,STEV1
2B	ldr r1,[r0]
1B	adr r0,STEV2
2B	ldr r2,[r0]
1B	add r3,r1,r2
1B	adr r0,REZ
1B1P	str r3,[r0]

Kombinacija 8 bitov v pomnilniku, npr. 1000 1011, lahko predstavlja:

- število brez predznaka: 139 (desetiško)
- število s predznakom: 11 (desetiško)
- znak v razširjeni ASCII abecedi: <</p>
- strojni ukaz: ADDA (op.koda strojnega ukaza procesorja 68HC11)
- pomnilniški naslov: 139 (desetiško)
- kombinacijo bitov ali
- točka slike, vzorec zvoka, . . .

Naslovi

N-2 N-1

Pomnilnik Demonstracija – Logisim EVO

RAM_pomnilnik_demo_EVO.circ

Osnove delovanja računalnikov - vsebina:

- □ 3.1 Von Neumannov računalniški model
- □ 3.2 Flynnova klasifikacija
- □ 3.3 Glavni pomnilnik v von Neumannovem računalniku
- ☐ 3.4 Amdahlov zakon
- □ 3.5 Jeziki, nivoji in navidezni računalniki
- □ 3.6 Primer izvedbe programa v računalniku

3.4 Amdahlov zakon (1967)

- G. M. Amdahl je eden od arhitektov slavne serije računalnikov IBM 370.
- Če v računalniku za faktor N (N-krat) pohitrimo delovanje pri vseh operacijah, razen pri f-temu delu od vseh operacij, potem je povečanje hitrosti celotnega računalnika S(N) enako:

$$S(N) = \frac{1}{f + \frac{1-f}{N}} = \frac{N}{1 + (N-1) * f}$$

f je delež operacij, ki niso pohitrene!

S(N) = povečanje hitrosti celotnega sistema N = faktor povečanja hitrosti (1 – f)-tega dela f = delež operacij, ki niso pohitrene 1 – f = delež operacij, ki so N-krat pohitrene

Amdahlov zakon

prej f = 0.4 1-f = 0.6

Primer 1: potem f = 0.4 pohitritev 8x (0.6/8=0.075)

- Izvajanje programov na nekem računalniku bi želeli pohitriti tako, da enojedrni procesor zamenjamo z osem-jedrnim (8 paralelno delujočih CPE).
- Kolikokrat hitreje se bodo izvajali programi, če se lahko paralelno izvaja samo 60 % programov?

f = 0.4

- N = 8 (del programov se lahko izvaja 8-krat hitreje)
- 1 f = 0.6 delež programov, ki so 8-krat pohitreni;
- f = 0,4 delež programov, ki niso pohitreni (40% programov se ne more izvajati paralelno)

potem

S(N) pohitritev celote (vseh programov)

$$S(N) = \frac{8}{1 + (8 - 1) * 0.4} = \frac{8}{1 + 2.8} = 2.1$$

- Hitrost izvajanja vseh programov se poveča za faktor 2,1 (2,1 - krat).
- Ce so se programi pred zamenjavo izvajali npr. 100 sekund, se bodo potem izvajali 47,6 sekunde (100 / 2,1 = 47,6).

prej

Primer 2:

potem

f = 0.1 pohitritev 2x (polovični čas)

- Izvajanje programa na nekem računalniku bi želeli pohitriti tako, da izvajanje 90% ukazov v programu dvakrat pohitrimo.
- Kolikokrat hitreje se bo izvajal program na takem računalniku?

$$S(N) = ?$$

prej

f = 0.11-f = 0.9

Primer 2:

potem

f = 0.1pohitritev 2x (polovični čas)

- Izvajanje programa na nekem računalniku bi želeli pohitriti tako, da izvajanje 90% ukazov dvakrat pohitrimo.
- Kolikokrat hitreje se bo izvajal program na takem računalniku?

$$S(N) = \frac{1}{0.1 + \frac{0.9}{2}} = \frac{1}{0.1 + 0.45} = \frac{1}{0.55} = 1.818181$$

Hitrost izvajanja programa se poveča za faktor 1.82.

Amdahlov zakon:

- Paralelizacija ni idealna
- Pomembnost deleža operacij, ki se pohitrijo
- Pri večjem deležu je za enak končni učinek dovolj manjša pohitritev

Paralelizacija:

- Edina možnost vsled posebnosti razvoja elektronske tehnologije
- Ni tako enostavna glede doseganja pohitritve in programiranja
- Ima potencial večje učinkovitosti z vidika porabe energije

Osnove delovanja računalnikov - vsebina:

- □ 3.1 Von Neumannov računalniški model
- □ 3.2 Flynnova klasifikacija
- 3.3 Glavni pomnilnik v von Neumannovem računalniku
- ☐ 3.4 Amdahlov zakon
- □ 3.5 Jeziki, nivoji in navidezni računalniki
- ☐ 3.6 Primer izvedbe programa v računalniku

3.5 Jeziki, nivoji in navidezni računalniki

- Za veliko večino uporabnikov so podrobnosti o zgradbi in delovanju računalnikov nepomembne.
- Računalnik in njegove lastnosti vidijo predvsem skozi lastnosti programskega jezika, ki ga uporabljajo.
- Neki programski jezik se lahko realizira na zelo različnih računalnikih, to pa pomeni, da so različni računalniki za uporabnika, ki uporablja ta programski jezik, videti bolj ali manj enaki.

Računalnik kot zaporedje navideznih računalnikov

- Pri veliki večini današnjih računalnikov imamo 6 nivojev.
- Na vsakem nivoju vidimo računalnik skozi drugačen programski jezik.
- Ta programski jezik si lahko uporabnik predstavlja kot strojni jezik nekega navideznega računalnika.
- Na najnižjem nivoju (nivo 0) elektronika (logična vrata in flip-flopi) neposredno izvaja najenostavnejše ukaze.

Računalnik kot zaporedje navideznih računalnikov

Računalnik s šestimi nivoji – splošna definicija

© 2023, Rozman, Škraba, FRI

- Nivo 1 lahko zasledimo pri mnogih današnjih računalnikih. RISC računalniki nimajo nivoja 1.
 - Vsak ukaz običajnega strojnega jezika se izvrši kot zaporedje mikroukazov – računalnikom, ki tako delujejo (imajo nivo 1), rečemo, da so mikroprogramirani.
 - Pri teh računalnikih je mikroprogramski jezik dejansko pravi strojni jezik.
 - □ Ker v začetku računalniki tega nivoja niso imeli in je za uporabnika neviden, se pojem strojni jezik uporablja na nivoju 2.
 - Mikroprogram na nivoju 1 je napisan pri proizvajalcu in pravzaprav definira običajni strojni jezik. Uporabnik ga običajno ne more spreminjati.

RA - 3 © 2023, Rozman, Škraba, FRI

- Uporabnik vidi računalnik na nivoju 2 skozi uporabo običajnih strojnih ukazov, ki tvorijo običajni strojni jezik.
 - Računalniška arhitektura je določena z zgradbo in lastnostmi računalnika, kot jih vidi programer na tem nivoju.
 - □ Zato tudi ime ISA Instruction Set Architecture.
 - □ Z običajnim strojnim jezikom ima programer popoln nadzor nad vsemi deli računalnika.
 - □ Pri prvih računalnikih višjih nivojev sploh ni bilo in je programiranje potekalo samo v običajnem strojnem jeziku.

- Nivo 3 je nivo operacijskega sistema.
 - □ Jezik na tem nivoju vsebuje vse ukaze nivoja 2, ki so jim dodani novi ukazi za lažje delo z računalnikom (npr. delo z V/I napravami, paralelno izvajanje programov, diagnostični ukazi).
 - □ Operacijski sistem je program, ki olajša delo z računalnikom in služi kot vmesnik med uporabnikom in strojno opremo računalnika.
 - □ Z operacijskim sistemom želimo doseči:
 - lažje delo,
 - boljši izkoristek strojnih zmogljivosti računalnika (v določenem času opraviti kar največ dela).

- □ Funkcije operacijskega sistema bi bilo mogoče realizirati tudi strojno na nivoju 2, vendar je programska izvedba bolj ekonomična (več operacijskih sistemov, nadgradnja . . .).
- □ Na tem nivoju je običajna tudi delitev uporabnikov z različno pravico uporabe ukazov.
- □ Nekateri ukazi nivoja 2 so običajnim uporabnikom na nivoju 3 nedostopni (dostopni samo sistemskim programerjem).
- □ Za večino današnjih programerjev je nivo 3 najnižji nivo, na katerem lahko delajo.

- Na nivoju 4 uporabnik vidi računalnik skozi zbirni jezik.
 - Zbirni jezik je samo simbolična, človeku bližja oblika jezika nivoja 3 (in s tem tudi nivoja 2).
 - □ Programe v zbirnem jeziku je treba pred izvajanjem prevesti na jezik nivoja 3 (oziroma 2).
- Nivo 5 oblikujejo višji programski jeziki, ki so namenjeni večini programerjev.
 - □ To so npr. C, C#, C++, Java, Python, BASIC, FORTRAN, COBOL in mnogi drugi.
 - Programe, napisane v teh jezikih, je treba prevesti na jezik nivoja 4 ali nivoja 3.

© 2023, Rozman, Škraba, FRI

- V računalnikih lahko ugotovimo tudi višje nivoje, kot npr. program za delo s podatkovnimi bazami, UI,
- Vsak nivo si lahko predstavljamo kot navidezni računalnik, ki ima za strojni jezik kar jezik tega nivoja, tako da običajnemu uporabniku na višjih nivojih ni potrebno poznavanje dejanskega strojnega nivoja.
- Vsekakor pa je potrebno programe, napisane v jeziku kateregakoli višjega nivoja (navideznega računalnika), pretvoriti v zaporedje ukazov strojnega jezika.
- Uporabniki se tega pretvarjanja pogosto ne zavedajo, proizvajalci računalnikov in programske opreme pa morajo poskrbeti za prehajanje iz enega jezika v drugega.

- Mehanizem prehajanja iz enega jezika v drugega je lahko realiziran na dva načina:
 - □ s prevajanjem,
 - z interpretiranjem.
- Po letu 1990 pa se je razširila še vmesna rešitev:
 - □ delno prevajanje (npr. byte code)
- Glavna razlika med prevajanjem in interpretiranjem je, da pri interpretiranju ne obstaja prevedeni (ciljni) program.

Prehajanje iz jezika J2 v jezik J1

Prevajanje

Interpretiranje

Izvorni program

- Prevedeni programi delujejo samo na računalniku s strojnim jezikom, v katerega so bili prevedeni.
- □ Pred prenosom na drugačen računalnik (z drugačnim strojnim jezikom J1) je treba izvorni program znova prevesti.
- Z vključevanjem velikega števila različnih računalnikov v omrežja je postala prenosljivost programov, ki jo omogoča interpretiranje, zelo pomembna.
- Delno prevajanje je neka vmesna rešitev med interpretiranjem in prevajanjem, ki omogoča hitrejše interpretiranje.

- Delno prevajanje: Izvorni program v jeziku J2 se prevede v program v vmesnem jeziku J1, program v J1 pa se interpretira.
- Delno prevajanje v vmesni jezik J1 omogoča hitrejše interpretiranje, ki pa je vseeno tipično 10-krat počasnejše kot izvajanje v celoti prevedenega programa.
- Tako je omogočena prenosljivost programov pri bistveno manjši izgubi hitrosti, kot če bi uporabili samo interpretiranje.

- □ Virtual Machine navidezni stroj (navidezni računalnik) je programska izvedba stroja (računalnika), ki deluje (izvaja programe) enako kot realen stroj (računalnik).
- Javanski programi se izvajajo tako, da se najprej prevedejo (delno prevajanje) v neki vmesni jezik (Java byte code), ki se interpretira s programom JVM.

© 2023, Rozman, Škraba, FRI

Računalnik s šestimi nivoji (mikroprogramiran)

Nekoliko starejši računalniki

Računalnik s petimi nivoji

Novejši računalniki

© 2023, Rozman, Škraba, FRI

Strojna in programska oprema računalnika

- Meja med strojnim in programskim delom računalnika ni trdna lahko jo premikamo.
- Vsakega od nivojev lahko realiziramo tako strojno kot tudi programsko.
- Nivo 2 je npr. lahko realiziran s programom, ki teče na drugem računalniku.

Strojna in programska oprema sta logično ekvivalentni.

- Vsaka operacija, ki jo izvede programska oprema, se lahko realizira tudi direktno strojno (hardversko).
- Prav tako pa vsak strojni ukaz, ki ga izvaja hardver, lahko simuliramo s programom.
- Razvoj večnivojskih strojev
 - Iznajdba mikroprogramiranja (1951)
 - □ Iznajdba operacijskega sistema (okrog 1960)
 - □ Selitev funkcionalnosti v mikroprogram (okrog 1970)
 - □ Opuščanje mikroprogramiranja (po 1984)
 - □ Danes običajno kombinacija:
 - kompleksni ukazi običajnega strojnega nivoja so realizirani mikroprogramsko, enostavnejši ukazi so realizirani strojno.

Osnove delovanja računalnikov - vsebina:

- ☐ 3.1 Von Neumannov računalniški model
- □ 3.2 Flynnova klasifikacija
- 3.3 Glavni pomnilnik v von Neumannovem računalniku
- ☐ 3.4 Amdahlov zakon
- □ 3.5 Jeziki, nivoji in navidezni računalniki
- ☐ 3.6 Primer izvedbe programa v računalniku

Uvodna vaja: Programiranje v zbirniku

Zgled seštevanja dveh števil : rez := stev1 + stev2

Zbirni jezik	Opis ukaza	Strojni jezik
adr r0, stev1	R0 ← nasl. stev1	0xE24F0014
ldr r1, [r0]	$R1 \leftarrow M[R0]$	0xE5901000
adr r0, stev2	R0 ← nasl. stev2	0xE24F0018
ldr r2, [r0]	$R2 \leftarrow M[R0]$	0xE5902000
add r3, r2, r1	R3 ← R1 + R2	0xE0823001
adr r0, rez	R0 ← nasl. rez	0xE24F0020
str r3, [r0]	$M[R0] \leftarrow R3$	0xE5803000

Primer izvedbe programa

UKAZ	KORAK		Komentar
		- • ·	

Začetno stanje

Kontrolna enota

ALE enota

REGISTER	VSEBINA
R0	
R1	
R2	
R3	
R15=PC	0x2C

Podatkovno vodilo

Kontrolno vodilo

VSEBINA	NASLOV	OZNAKA
0x40	0x20	STEV1
0	0x21	
0	0x22	
0	0x23	
0x10	0x24	STEV2
0	0x25	
0	0x26	
0	0x27	
0	0x28	REZ
0	0x29	
0	0x2A	
0	0x2B	
0x14	0x2C	ADR R0,STEV1
0x10	0x2D	
0x1F	0x2E	
0xE5	0x2F	
	0x30	LDR R1,[R0]
	0x34	ADR R0,STEV2
	0x38	LDR R2,[R0]
	0x3C	ADD R3,R2,R1
	0x40	ADR R0,REZ
	0x44	STR R3,[R0]

PROGRAM Zbirnik

>	ADR	R0,STEV1
	LDR	R1,[R0]

ADR R0,STEV2

LDR R2,[R0]

ADD R3,R1,R2

ADR R0,REZ

STR R3,[R0]

Strojni jezik

0xE24F0014

0xE5901000

0xE24F0018

0xE5902000

0xE0823001

0xE24F0020

0xE5803000

<u>⊌ z∪z</u>3, Rozman, Škraba, FRI

Primer izvedbe programa

UKAZ	KORAK	Komentar
ADR R0,STEV1	FETCH	Branje 1. ukaza

Kontrolna enota

<u>PC</u>

<u>0x2C</u>

Naslovno vodilo

ALE enota

<u>IR</u>

REGISTER	VSEBINA
R0	
R1	
R2	
R3	
•••	
R15=PC	0x2C

VSEBINA	NASLOV	OZNAKA
0x40	0x20	STEV1
0	0x21	
0	0x22	
0	0x23	
0x10	0x24	STEV2
0	0x25	
0	0x26	
0	0x27	
0	0x28	REZ
0	0x29	
0	0x2A	
0	0x2B	
0x14	0x2C	ADR R0,STEV1
0x00 0x2D		
0x4F 0x2E		
0xE2 0x2F		
	0x30	LDR R1,[R0]
	0x34	ADR R0,STEV2
	0x38	LDR R2,[R0]
	0x3C	ADD R3,R2,R1
	0x40	ADR R0,REZ
	0x44 STR	

PR	OGR	RAM	Zbii	rnik

ADR R0,STEV1

LDR R1,[R0]

ADR R0,STEV2

LDR R2,[R0]

ADD R3,R1,R2

ADR R0,REZ

STR R3,[R0]

Strojni jezik

0xE24F0014

0xE5901000

0xE24F0018

0xE5902000

0xE0823001

0xE24F0020

0xE5803000

#1

<u>⊌ zuz</u>3, Rozman, Škraba, FRI

KA - 3

74

ADR R0,STEV1 | EXECUTE | ALE: R0 <- PC +- ODMIK

REGISTER	VSEBINA
R0	0x00000020
R1	
R2	
R3	
R15=PC	0x2C

Podatkovno vodilo

Kontrolno vodilo

PROGRAM Zbirnik

-	ADR	RU,STEV1
	LDR	R1,[R0]

ADR R0,STEV2

LDR R2,[R0]

ADD R3,R1,R2

ADR R0,REZ

STR R3,[R0]

Strojni jezik

0xE24F0014

0xE5901000

0xE24F0018

0xE5902000

0xE0823001

0xE24F0020

0xE5803000

ONAL	RORAR	Komentai
ΙΙΚΔΖ	KORAK	Komentar

LDR R1,[R0] FETCH Branje 2. ukaza

Kontrolna enota

<u>PC</u>

ALE enota

<u>IR</u>

REGISTER	VSEBINA
R0	0x00000020
R1	
R2	
R3	
R15=PC	0x30

Podatkovno vodilo

Kontrolno vodilo

Branje ->

VSEBINA	NASLOV	OZNAKA
0x40	0x20	STEV1
0	0x21	
0	0x22	
0	0x23	
0x10	0x24	STEV2
0	0x25	
0	0x26	
0	0x27	
0	0x28	REZ
0	0x29	
0	0x2A	
0	0x2B	
0x14	0x2C	ADR R0,STEV1
0x10	0x2D	
0x1F	0x2E	
0xE5	0x2F	
	0x30	LDR R1,[R0]
	0x34	ADR R0,STEV2
	0x38	LDR R2,[R0]
	0x3C	ADD R3,R2,R1
	0x40	ADR R0,REZ
	0x44	STR R3,[R0]

PR	ROGRA	AM Zbirnik
	ADR	R0,STEV
=	LDR	R1,[R0]

LDR R2,[R0]

ADD R3,R1,R2

ADR R0,REZ

STR R3,[R0]

Strojni jezik

0xE24F0014

• 0xE5901000

0xE24F0018

0xE5902000

0xE0823001

0xE24F0020

0xE5803000

#3

♥ zuz3, Rozman, Škraba, FRI

KA - 3

70

UKAZ KORAK Komentar

LDR R1,[R0] EXECUTE Branje operanda M[R0] v R1

Kontrolna enota

<u>R0</u>

ALE enota

<u>R1</u>

REGISTER	VSEBINA
R0	0x00000020
R1	0x00000040
R2	
R3	
•••	
R15=PC	0x30

<- 0x00000040

Podatkovno vodilo

Kontrolno vodilo

Branje ->

VSEBINA	NASLOV	OZNAKA
0x40	0x20	STEV1
0	0x21	
0	0x22	
0	0x23	
0x10	0x24	STEV2
0	0x25	
0	0x26	
0	0x27	
0	0x28	REZ
0	0x29	
0	0x2A	
0	0x2B	
0x14	0x2C	ADR R0,STEV1
0x10	0x2D	
0x1F	0x2E	
0xE5	0x2F	
	0x30	LDR R1,[R0]
	0x34	ADR R0,STEV2
	0x38	LDR R2,[R0]
	0x3C	ADD R3,R2,R1
	0x40	ADR R0,REZ
	0x44	STR R3,[R0]

PR	$\cap c$	LD	ΛИЛ	7	hii	mi	L
			-41AI		ш	ш	R

ADR R0,STEV1

LDR R1,[R0]

ADR R0,STEV2

LDR R2,[R0]

ADD R3,R1,R2

ADR R0,REZ

STR R3,[R0]

Strojni jezik

0xE24F0014

• 0xE5901000

0xE24F0018

0xE5902000

0xE0823001

0xE24F0020

0xE5803000

© zuz3, Rozman, Škraba, FRI

KA - ,

77

UKAZ KORAK Komentar
ADR R0,STEV2 FETCH Branje 3. ukaza

<u>PC</u>

<u>IR</u>

ALE enota

REGISTER	VSEBINA
R0	0x00000020
R1	0x00000040
R2	
R3	
R15=PC	0x34

<- 0xE24F0018

Podatkovno vodilo

Kontrolno vodilo

Branje ->

NASLOV	OZNAKA
	STEV1
	0.27.
	STEV2
	0.2.2
	REZ
	1122
	ADR R0,STEV1
	ABICIO, OTEVI
	LDR R1,[R0]
0,00	LDR RT,[RO]
0v34	ADR R0,STEV2
	LDR R2,[R0]
	ADD R3,R2,R1
	ADR RO,REZ
	STR R3,[R0]
UX44	OTK NO,[NO]
	NASLOV 0x20 0x21 0x22 0x23 0x24 0x25 0x26 0x27 0x28 0x29 0x2A 0x2B 0x2C 0x2D 0x2E 0x30 0x34 0x36 0x40 0x44

PF	ROGRA	AM Zbirnik
	ADR	R0,STEV1

LDR R1,[R0]

ADR R0,STEV2

LDR R2,[R0]

ADD R3,R1,R2

ADR R0,REZ

STR R3,[R0]

Strojni jezik

0xE24F0014

0xE5901000

0xE24F0018

0xE5902000

0xE0823001

0xE24F0020

0xE5803000

#5

<u>⊌ z∪z</u>3, Rozman, Škraba, FRI

ADR R0,STEV2 | EXECUTE | ALI

ALE: R0 <- PC +- ODMIK

REGISTER	VSEBINA
R0	0x00000024
R1	0x00000040
R2	
R3	
R15=PC	0x34

Podatkovno vodilo

Kontrolno vodilo

VSEBINA	NASLOV	OZNAKA
0x40	0x20	STEV1
0	0x21	
0	0x22	
0	0x23	
0x10	0x24	STEV2
0	0x25	
0	0x26	
0	0x27	
0	0x28	REZ
0	0x29	
0	0x2A	
0	0x2B	
0x14	0x2C	ADR R0,STEV1
0x10	0x2D	
0x1F	0x2E	
0xE5	0x2F	
	0x30	LDR R1,[R0]
	0x34	ADR R0,STEV2
	0x38	LDR R2,[R0]
	0x3C	ADD R3,R2,R1
	0x40	ADR R0,REZ
	0x44	STR R3,[R0]

PF	ROGRA	AM Zbirnik
	ADR	R0,STEV1
	LDR	R1 [R0]

ADR R0,STEV2

LDR R2,[R0]

ADD R3,R1,R2

ADR R0,REZ

STR R3,[R0]

Strojni jezik

0xE24F0014

0xE5901000

0xE24F0018

0xE5902000

0xE0823001

0xE24F0020

0xE5803000

<u>⊌ z∪z</u>3, Rozman, Škraba, FRI

UKAZ KORAK Komentar

LDR R2,[R0] FETCH Branje 4. ukaza

Kontrolna enota

<u>PC</u>

ALE enota

<u>IR</u>

REGISTER	VSEBINA
R0	0x00000024
R1	0x00000040
R2	
R3	
•••	
R15=PC	0x38

Podatkovno vodilo

<- 0xE5902000

Kontrolno vodilo

Branje ->

VSEBINA	NASLOV	OZNAKA
0x40	0x20	STEV1
0	0x21	
0	0x22	
0	0x23	
0x10	0x24	STEV2
0	0x25	
0	0x26	
0	0x27	
0	0x28	REZ
0	0x29	
0	0x2A	
0	0x2B	
0x14	0x2C	ADR R0,STEV1
0x10	0x2D	
0x1F	0x2E	
0xE5	0x2F	
	0x30	LDR R1,[R0]
	0x34	ADR R0,STEV2
	0x38	LDR R2,[R0]
	0x3C	ADD R3,R2,R1
	0x40	ADR R0,REZ
	0x44	STR R3,[R0]

PROGRAM Zbirnik	DD	00		76	man III.
	PR	UG	KAIV	LZD	

ADR R0,STEV1

LDR R1,[R0]

ADR R0,STEV2

▶ LDR R2,[R0]

ADD R3,R1,R2

ADR R0,REZ

STR R3,[R0]

Strojni jezik

0xE24F0014

0xE5901000

0xE24F0018

→ 0xE5902000

0xE0823001

0xE24F0020

0xE5803000

#7

© z∪z3, Rozman, Škraba, FRI

KA - 3

Öυ

UKAZ	KORAK	Komentar

LDR R2,[R0]

EXECUTE

Branje operanda M[R0] v R1

Kontrolna enota

<u>R0</u>

ALE enota

<u>R2</u>

REGISTER	VSEBINA
R0	0x00000024
R1	0x00000040
R2	0x00000010
R3	
R15=PC	0x38

<- 0x00000010

Kontrolno vodilo

Branje ->

VSEBINA	NASLOV	OZNAKA
0x40	0x20	STEV1
0	0x21	
0	0x22	
0	0x23	
0x10	0x24	STEV2
0	0x25	
0	0x26	
0	0x27	
0	0x28	REZ
0	0x29	
0	0x2A	
0	0x2B	
0x14	0x2C	ADR R0,STEV1
0x10	0x2D	
0x1F	0x2E	
0xE5	0x2F	
	0x30	LDR R1,[R0]
	0x34	ADR R0,STEV2
	0x38	LDR R2,[R0]
	0x3C	ADD R3,R2,R1
	0x40	ADR R0,REZ
	0x44	STR R3,[R0]

PF	ROGRA	AM Zbirnik
	ADR	R0,STEV1

LDR R1,[R0]

ADR R0,STEV2

LDR R2,[R0]

ADD R3,R1,R2

ADR R0,REZ

STR R3,[R0]

Strojni jezik

0xE24F0014

0xE5901000

0xE24F0018

0xE5902000

0xE0823001

0xE24F0020

0xE5803000

<u>⊌ z∪z</u>3, Rozman, Škraba, FRI

UKAZ	KORAK	Komentar	
ADD R3,R2,R1	FETCH	Branje 5. ukaza	

Kontrolna enota

<u>PC</u>

<u>IR</u>

ALE enota

 REGISTER
 VSEBINA

 R0
 0x00000024

 R1
 0x00000040

 R2
 0x00000010

 R3

0x3C

R15=PC

Naslovno vodilo

Ox3C

<- 0xE0823001

Podatkovno vodilo

Kontrolno vodilo

Branje ->

VSEBINA	NASLOV	OZNAKA
0x40	0x20	STEV1
0	0x21	
0	0x22	
0	0x23	
0x10	0x24	STEV2
0	0x25	
0	0x26	
0	0x27	
0	0x28	REZ
0	0x29	
0	0x2A	
0	0x2B	
0x14	0x2C	ADR R0,STEV1
0x10	0x2D	
0x1F	0x2E	
0xE5	0x2F	
	0x30	LDR R1,[R0]
	0x34	ADR R0,STEV2
	0x38	LDR R2,[R0]
	0x3C	ADD R3,R2,R1
	0x40	ADR R0,REZ
	0x44	STR R3,[R0]

PROGRAM Zbirnik

ADR R0,STEV1

LDR R1,[R0]

ADR R0,STEV2

LDR R2,[R0]

→ ADD R3,R1,R2

ADR R0,REZ

STR R3,[R0]

Strojni jezik

0xE24F0014

0xE5901000

0xE24F0018

0xE5902000

• 0xE0823001

0xE24F0020

0xE5803000

#9

<u>⊌ z∪z</u>3, Rozman, Škraba, FRI

KA - 3

02

UKAZ	KORAK		Komentar	1
1 DD D0 D0 D1	EVECUTE	ALE D0	D0 D4 /	

ALE enota

<u>R3</u>

Podatkovno vodilo

Kontrolno vodilo

VSEBINA	NASLOV	OZNAKA
0x40	0x20	STEV1
0	0x21	
0	0x22	
0	0x23	
0x10	0x24	STEV2
0	0x25	
0	0x26	
0	0x27	
0	0x28	REZ
0	0x29	
0	0x2A	
0	0x2B	
0x14	0x2C	ADR R0,STEV1
0x10	0x2D	
0x1F	0x2E	
0xE5	0x2F	
	0x30	LDR R1,[R0]
	:	
	0x34	ADR R0,STEV2
	0x38	LDR R2,[R0]
	0x3C	ADD R3,R2,R1
	0x40	ADR R0,REZ
	0x44	STR R3,[R0]

PROGRAM Zbirnik

ADR R0,STEV1

LDR R1,[R0]

ADR R0,STEV2

LDR R2,[R0]

ADD R3,R1,R2

ADR R0,REZ

STR R3,[R0]

Strojni jezik

0xE24F0014

0xE5901000

0xE24F0018

0xE5902000

0xE0823001

0xE24F0020

0xE5803000

UKAZ	KORAK	Komentar
ADR R0,REZ	FETCH	Branje 6. ukaza

Kontrolna enota

<u>PC</u>

ALE enota

<u>IR</u>

REGISTER	VSEBINA
R0	0x00000024
R1	0x00000040
R2	0x00000010
R3	0x00000050
•••	
R15=PC	0x40

Naslovno vodilo

VSEBINA	NASLOV	OZNAKA
0x40	0x20	STEV1
0	0x21	
0	0x22	
0	0x23	
0x10	0x24	STEV2
0	0x25	
0	0x26	
0	0x27	
0	0x28	REZ
0	0x29	
0	0x2A	
0	0x2B	
0x14	0x2C	ADR R0,STEV1
0x00	0x2D	
0x4F	0x2E	
0xE2	0x2F	
	0x30	LDR R1,[R0]
	0x34	ADR R0,STEV2
	0x38	LDR R2,[R0]
	0x3C	ADD R3,R2,R1
	0x40	ADR R0,REZ
	0x44	STR R3,[R0]

PROGRAM Zbirnik ADR R0,STEV1 LDR R1,[R0] ADR R0,STEV2 LDR R2,[R0] ADD R3,R1,R2 ADR R0,REZ STR R3,[R0] Strojni jezik 0xE24F0014 0xE5901000 0xE24F0018 0xE5902000 0xE0823001 0xE24F0020 0xE5803000

REGISTER	VSEBINA
R0	0x00000028
R1	0x00000040
R2	0x00000010
R3	0x00000050
R15=PC	0x40

VOEDINA	NACLOV	OZNAKA
VSEBINA	NASLOV	OZNAKA
0x40	0x20	STEV1
0	0x21	
0	0x22	
0	0x23	
0x10	0x24	STEV2
0	0x25	
0	0x26	
0	0x27	
0	0x28	REZ
0	0x29	
0	0x2A	
0	0x2B	
0x14	0x2C	ADR R0,STEV1
0x10	0x2D	
0x1F	0x2E	
0xE5	0x2F	
	0x30	LDR R1,[R0]
	0x34	ADR R0,STEV2
	0x38	LDR R2,[R0]
	0x3C	ADD R3,R2,R1
	0x40	ADR R0,REZ
	0x44	STR R3,[R0]

PR	ROGRA	AM Zbirnik
	ADR	R0,STEV1
	LDR	R1,[R0]
	ADR	R0,STEV2
	LDR	R2,[R0]
	ADD	R3,R1,R2
	ADR	R0,REZ
	STR	R3,[R0]
	Stro	jni jezik
		jni jezik 24F0014
	0xE2	<i>,</i>
	0xE2	24F0014
	0xE2	24F0014 5901000
	0xE2 0xE2 0xE2	24F0014 5901000 24F0018
→	0xE2 0xE2 0xE2 0xE3	24F0014 5901000 24F0018 5902000

UKAZ KORAK Komentar
STR R3,[R0] FETCH Branje 7. ukaza

Kontrolna enota

<u>PC</u>

<u>IR</u>

ALE enota

REGISTER	VSEBINA
R0	0x00000028
R1	0x00000040
R2	0x00000010
R3	0x00000050
R15=PC	0x44

<- 0xE5803000

Podatkovno vodilo

Kontrolno vodilo

VSEBINA	NASLOV	OZNAKA
		<u> </u>
0x40	0x20	STEV1
0	0x21	
0	0x22	
0	0x23	
0x10	0x24	STEV2
0	0x25	
0	0x26	
0	0x27	
0	0x28	REZ
0	0x29	
0	0x2A	
0	0x2B	
0x14	0x2C	ADR R0,STEV1
0x10	0x2D	
0x1F	0x2E	
0xE5	0x2F	
	0x30	LDR R1,[R0]
	0x34	ADR R0,STEV2
	0x38	LDR R2,[R0]
	0x3C	ADD R3,R2,R1
	0x40	ADR R0,REZ
	0x44	STR R3,[R0]

ADR R0,STEV1

LDR R1,[R0]

ADR R0,STEV2

LDR R2,[R0]

ADD R3,R1,R2

ADR R0,REZ

STR R3,[R0]

Strojni jezik

0xE24F0014

0xE5901000

0xE24F0018

0xE5902000

0xE0823001

0xE24F0020

0xE5803000

#13

UKAZ	KORAK	Komentar

STR R3,REZ EXECUTE

Shranitev R3 v M[REZ]

Kontrolna enota

<u>R0</u>

ALE enota

<u>R3</u>

REGISTER	VSEBINA
R0	0x00000028
R1	0x00000040
R2	0x00000010
R3	0x00000050
•••	
R15=PC	0x44

Podatkovno vodilo

<u>0x00000050 -></u>

Kontrolno vodilo

Pisanje ->

VSEBINA	NASLOV	OZNAKA	
0x40	0x20	STEV1	
0	0x21		
0	0x22		
0	0x23		
0x10	0x24	STEV2	
0	0x25		
0	0x26		
0	0x27		
0x50	0x28	REZ	
0	0x29		
0	0x2A		
0	0x2B		
0x14	0x2C	ADR R0,STEV1	
0x10	0x2D		
0x1F	0x2E		
0xE5	0x2F		
	0x30	LDR R1,[R0]	
	0x34	ADR R0,STEV2	
	0x38	LDR R2,[R0]	
	0x3C	ADD R3,R2,R1	
	0x40	ADR R0,REZ	
	0x44	STR R3,[R0]	

PR	et:4	ΔM	/h	irnil
	\mathbf{v}_{1}	\sim		

ADR R0,STEV1

LDR R1,[R0]

ADR R0,STEV2

LDR R2,[R0]

ADD R3,R1,R2

ADR R0,REZ

STR R3,[R0]

Strojni jezik

0xE24F0014

0xE5901000

0xE24F0018

0xE5902000

0xE0823001

0xE24F0020

0xE5803000

#14

UKAZ	KORAK	Komentar		
?	FETCH	Končno stanje ?		

Kontrolna enota

ALE enota

REGISTER	VSEBINA	
R0	0x00000028	
R1	0x00000040	
R2	0x00000010	
R3	0x00000050	
R15=PC	0x48	

BESEDA	NASLOV	OZNAKA	
0x40	0x20	STEV1	
0	0x21		
0	0x22		
0	0x23		
0x10	0x24	STEV2	
0	0x25		
0	0x26		
0	0x27		
0x50	0x28	REZ	
0	0x29		
0	0x2A		
0	0x2B		
0x14	0x2C	ADR R0,STEV1	
0x10	0x2D		
0x1F	0x2E		
0xE5	0x2F		
0x14	0x30	LDR R1,[R0]	
0x20			
0x1F	0x34	ADR R0,STEV2	
0xE5	0x38	LDR R2,[R0]	
0x01	0x3C	ADD R3,R2,R1	
	0x40	ADR R0,REZ	
0x18	0x44	STR R3,[R0]	
	0x48	???	

PF	ROGRA	AM Zbirnik
	ADR	R0,STEV1
	LDR	R1,[R0]
	ADR	R0,STEV2
	LDR	R2,[R0]
	ADD	R3,R1,R2
	ADR	R0,REZ
	STR	R3,[R0]

Strojni jezik
0xE24F0014
0xE5901000
0xE24F0018
0xE5902000
0xE0823001
0xE24F0020
0xE5803000

#15

CPE	Ē	CPE	VODILA - vsebina		VODILA - vsebina Por		Pomnilnik
Opis	CPE	Opis	Naslovno	Podatkovno	Kontrolno	Opis	
ADR R0,STEV1	FETCH						
	EXECUTE						
LDR R1,[R0]	FETCH						
	EXECUTE						
ADR R0,STEV2	FETCH						
	EXECUTE						
LDR R2,[R0]	FETCH						
	EXECUTE						
ADD R3,R1,R2	FETCH						
	EXECUTE						
ADR R0,REZ	FETCH						
	EXECUTE						
STR R3,[R0]	FETCH						
	EXECUTE						