Insulin Level Prediction Using Machine Learning Approach

Submitted By

Md. Tahmidul Meshkat (2013-1-60-039)

Anindya Podder (2013-2-60-056)

B.M. Rakibul Hasan (2014-1-60-039)

Supervised By

Dr. Shamim H Ripon Associate Professor East West University

This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering

Department of Computer Science & Engineering (CSE)

East West University, Dhaka, Bangladesh Dhaka-1212, Bangladesh December, 2017

DECLARATION

This thesis has been submitted to the department of Computer Science and Engineering, East West University in the partial fulfillment of the requirement for the degree of Bachelor of Science in Computer Science and Engineering by us under the supervision of Dr. Shamim H Ripon, Associate Professor, Department of CSE at East West University under the course 'CSE 497'. We also declare that this thesis has not been submitted elsewhere for the requirement of any degree or any other purposes. This thesis complies with the regulations of this University and meets the accepted standards with respect to originality and quality. We hereby release this thesis to the public. We also authorize the University or other individuals to make copies of this thesis as needed for scholarly research.

Md. Tahmidul Meshkat
ID: 2013-1-60-039
Department of Computer Science and Engineering
East West University.
Anindya Podder
ID: 2013-2-60-056
Department of Computer Science and Engineering
East West University.
B.M. Rakibul Hasan

Department of Computer Science and Engineering,

ID: 2014-1-60-039

East West University.

LETTER OF ACCEPTANCE

The thesis entitled "Insulin Chart Prediction Using Machine Learning Approach" submitted by Md. Tahmidul Meshkat, ID: 2013-1-60-039, Anindya Podder, ID: 2013-2-60-056 & B.M. Rakibul Hasan, ID: 2014-1-60-039 to the department of Computer Science & Engineering, East West University, Dhaka 1212, Bangladesh is accepted as satisfactory for partial fulfillments for the degree of Bachelor of Science in Computer Science & Engineering in December 2017.

Board of Examiners
Supervisor
Dr. Shamim H Ripon
Associate Professor
Department of Computer Science and Engineering
East West University, Dhaka, Bangladesh
Chairperson
Dr. Ahmed Wasif Reza
Associate Professor & Chairperson
Department of Computer Science and Engineering

East West University, Dhaka, Bangladesh

ACKNOWLEDGEMENTS

First of all, we are grateful to the Almighty God for establishing me to complete this research. Therefore, we would not like to make efforts to find best words to express my thankfulness other than simply listing those people who have contributed to this thesis itself in an essential way. We wish to express my sincere thanks and gratitude to my supervisor Dr. Shamim H Ripon, Associate Professor at Dept. of CSE for the continuous support during my thesis study and related research, for his patience, motivation, and immense knowledge. His guidance helped us in all the time of research and writing of the thesis. We will always be grateful for having the opportunity to study under him.

We are thankful to all of my teachers, Department of CSE, East West University. We would also like to express our thanks to our parents and siblings for supporting us spiritually throughout writing this thesis. And we are thankful to all my friends and colleagues. And at last we again thanks to the creator Allah for everything.

ABSTRACT

Diabetes patients have to continuously monitor their blood glucose levels and adjust insulin doses, striving to keep blood glucose levels as close to normal as possible. They need to take insulin dose before their every meal. The doctors have to decide insulin doses for every patient according to the patient's previous records of doses and sugar levels measured at regular intervals. Our paper proposes a Machine Learning Approach & uses a RNN (LSTM) and ANN algorithm to predict the insulin chart for a patient efficiently to implement the model. The thirty six months chart maintained by the patient has been used to train the model and the long sequence of next insulin prediction is done on the basis of trained data. In this research, out of various existing algorithms of finding insulin level frequent item sets and mining association rule, we use predictive Apriori algorithm for this prediction.

TABLE OF CONTENTS

	Contents	Page No.
DEC	LARATION	ii
LETTER OF ACCEPTANCE		iii
ACKNOWLEDGMENTS		iv
ABSTRACT		v
TAB	LE OF CONTENTS	vi
LIST	OF ABBREVIATIONS	vii
LIST	OF FIGURES	viii-ix
LIST	OF TABLES	X
1	INTRODUCTION	
1.1	Introduction	1
1.2	Motivation	2
1.3	Objectives	2
1.4	Contribution	3
1.5	Outline	3
2	BACKGROUND STUDY	
2.1	Background Study	4
2.2	Artificial Neural Network	6
2.3	Recurrent Neural Network	9
2.4	Predictive Apriori Algorithm	13
3	METHODOLOGY	
2.1	Overview of the System	1.4
3.1	Overview of the System IMPLEMENTATION	14
4	IMPLEMENTATION	
4.1	Data Set Information	17
4.2	Implementation Diagram	19
4.3	Recurrent Neural Network	20
4.4	Artificial Neural Network	24
4.5	Predictive Apriori Algorithm	28
5	RESULT & ANALYSIS	
5.1	RNN LSTM Prediction	30
5.2	Prediction Train Score and Test Score	39
5.3	Artificial Neural Network	42
5.4	Comparison RNN and ANN	46
5.5	Predictive Apriori Algorithm	49
6	CONCLUSION	
6.1	Conclusion	51
6.2	Future Work	51
BIBI	JOGRAPHY	52

ABBREVIATIONS

- 1. RNN Recurrent Neural Network
- 2. LSTM Long Short Term Memory
- 3. PAA Predictive Apriori Algorithm
- 4. ANN Artificial Neural Network
- 5. AI Artificial Intelligence

LIST OF FIGURES

	Figures	Pages
2.1	Performance Comparison between Deep Learning and other	6
	Machine Learning Algorithms	
2.2(a)	Working method of Artificial Neural Network	7
2.2(b)	Architecture of Artificial Neural Networks	9
2.3(a)	Chain-like nature of Recurrent Neural Network	10
2.3(b)	Repeating Module in a Standard RNN Contains a Single Layer	11
2.3(c)	Repeating Module in an LSTM Contains Four Interacting Layers	11
3.1	Structure of our Research Work	15
4.1.1	Original Data	18
4.1.2	Preprocessed Data	18
4.2	Implementation Diagram of our Research Work	19
4.5.1	Weka Implementation	28
4.5.2	Predictive Apriori with Weka	29
5.1.1.1	Breakfast Prediction (0-14)	30
5.1.1.2	Breakfast Prediction (0-31)	31
5.1.1.3	Breakfast Prediction (0-46)	31
5.1.1.4	Breakfast Prediction (0-64)	32
5.1.2.1	Lunch Prediction (0-14)	33
5.1.2.2	Lunch Prediction (0-31)	34
5.1.2.3	Lunch Prediction (0-46)	34
5.1.2.4	Lunch Prediction (0-64)	35
5.1.3.1	Dinner Prediction (0-14)	35
5.1.3.2	Dinner Prediction (0-31)	36
5.1.3.3	Dinner Prediction (0-46)	36
5.1.3.4	Dinner Prediction (0-64)	37
5.1.4.1	Bedtime Prediction (0-14)	37
5.1.4.2	Bedtime Prediction (0-31)	38
5.1.4.3	Bedtime Prediction (0-46)	38
5.1.4.4	Bedtime Prediction (0-64)	39

5.2.1	Breakfast Prediction	39
5.2.2	Lunch Prediction	40
5.2.3	Dinner Prediction	41
5.2.4	Bedtime Prediction	42
5.3.1	Bedtime Prediction	43
5.3.2	Breakfast Prediction	44
5.3.3	Dinner Prediction	45
5.3.4	Lunch Prediction	45
5.4.1	Bedtime Comparison	46
5.4.2	Breakfast Comparison	47
5.4.3	Dinner Comparison	48
5.4.4	Lunch Comparison	49

LIST OF TABLES

	Tables	Pages
5.2.1	Breakfast Prediction	39
5.2.2	Lunch prediction	40
5.2.3	Dinner Prediction	41
5.2.4	Bedtime Prediction	42
5.3.1	Bedtime Prediction	43
5.3.2	Breakfast Prediction	44
5.3.3	Dinner Prediction	45
5.3.4	Lunch Prediction	46
5.4.1	Bedtime Comparison	47
5.4.2	Breakfast Comparison	48
5.4.3	Dinner Comparison	48
5.4.4	Lunch Comparison	49