Introduction to Mobile Robotics

Wheeled Locomotion

On this Episode of Mobile Robotics...

Locomotion of Wheeled Robots

Locomotion (Oxford Dict.): Power of motion from place to place

- Differential drive (AmigoBot, Pioneer 2-DX)
- Car drive (Ackerman steering)
- Synchronous drive (B21)
- XR4000
- Mecanum wheels

we also allow wheels to rotate around the z axis

Instantaneous Center of Curvature

For rolling motion to occur, each wheel has to move along its y-axis

Differential Drive

 $ICC = [x - R\sin\theta, y + R\cos\theta]$

$$\omega(R+1/2) = Vr$$

$$\omega(R-1/2) = Vi$$

$$R = \frac{1}{2} \frac{(Vi + Vr)}{(Vr - Vi)}$$

$$\omega = \frac{Vr - Vi}{I}$$

$$V = \frac{Vr + Vi}{2}$$

Differential Drive Motion Patterns

$$R = \frac{l}{2} \frac{(v_l + v_r)}{(v_r - v_l)}, \qquad \omega = \frac{v_r - v_l}{l}$$

$$v_l = v_r$$

$$v_l < v_r \\ v_l > 0$$

$$v_l = 0$$
 $v_r > 0$

$$v_l = -v_r$$

Differential Drive: Forward Kinematics

$$\begin{bmatrix} x' \\ y' \\ \theta' \end{bmatrix} = \begin{bmatrix} \cos(\omega \delta t) & -\sin(\omega \delta t) & 0 \\ \sin(\omega \delta t) & \cos(\omega \delta t) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x - ICC_x \\ y - ICC_y \\ \theta \end{bmatrix} + \begin{bmatrix} ICC_x \\ ICC_y \\ \omega \delta t \end{bmatrix}$$

$$x(t) = \int_{0}^{t} v(t') \cos[\theta(t')]dt'$$

$$y(t) = \int_{0}^{t} v(t') \sin[\theta(t')]dt'$$

$$\theta(t) = \int_{0}^{t} \omega(t') dt'$$

Differential Drive: Forward Kinematics

$$\begin{bmatrix} x' \\ y' \\ \theta' \end{bmatrix} = \begin{bmatrix} \cos(\omega \delta t) & -\sin(\omega \delta t) & 0 \\ \sin(\omega \delta t) & \cos(\omega \delta t) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x - ICC_x \\ y - ICC_y \\ \theta \end{bmatrix} + \begin{bmatrix} ICC_x \\ ICC_y \\ \omega \delta t \end{bmatrix}$$

$$x(t) = \frac{1}{2} \int_{0}^{t} [v_{r}(t') + v_{l}(t')] \cos[\theta(t')] dt'$$

$$y(t) = \frac{1}{2} \int_{0}^{t} [v_{r}(t') + v_{l}(t')] \sin[\theta(t')] dt'$$

$$\theta(t) = \frac{1}{l} \int_{0}^{t} [v_{r}(t') - v_{l}(t')] dt'$$

Ackermann Drive

ICC =
$$[x - R \sin \theta, y + R \cos \theta]$$

$$R = \frac{d}{\tan \varphi}$$

$$\omega(R + l/2) = v_{r}$$

$$\omega(R - l/2) = v_{l}$$

$$R = \frac{l}{2} \frac{(v_{l} + v_{r})}{(v_{r} - v_{l})}$$

$$\omega = \frac{v_{r} - v_{l}}{l}$$

Synchronous Drive

$$x(t) = \int_{0}^{t} v(t') \cos[\theta(t')]dt'$$

$$y(t) = \int_{0}^{t} v(t') \sin[\theta(t')]dt'$$

$$\theta(t) = \int_{0}^{t} \omega(t') dt'$$

XR4000 Drive

Mecanum Wheels

$$v_y = (v_0 + v_1 + v_2 + v_3)/4$$

$$v_x = (v_0 - v_1 + v_2 - v_3)/4$$

$$v_\theta = (v_0 - v_1 - v_2 + v_3)/4$$

$$v_{error} = (v_0 + v_1 - v_2 - v_3)/4$$

$$v_y = (v_0 + v_1 + v_2 + v_3)/4$$

$$v_x = (v_0 - v_1 + v_2 - v_3)/4$$

$$v_\theta = (v_0 - v_1 - v_2 + v_3)/4$$

$$v_{error} = (v_0 + v_1 - v_2 - v_3)/4$$

$$v_y = (v_0 + v_1 + v_2 + v_3)/4$$

$$v_x = (v_0 - v_1 + v_2 - v_3)/4$$

$$v_\theta = (v_0 - v_1 - v_2 + v_3)/4$$

$$v_{error} = (v_0 + v_1 - v_2 - v_3)/4$$

$$v_y = (v_0 + v_1 + v_2 + v_3)/4$$

$$v_x = (v_0 - v_1 + v_2 - v_3)/4$$

$$v_\theta = (v_0 - v_1 - v_2 + v_3)/4$$

$$v_{error} = (v_0 + v_1 - v_2 - v_3)/4$$

The Kuka OmniRob Platform

Example: KUKA youBot

Tracked Vehicles

Non-Holonomic Constraints

- Non-holonomic constraints limit the possible incremental movements within the configuration space of the robot.
- Robots with differential drive or synchro-drive move on a circular trajectory and cannot move sideways.
- Mecanum-wheeled robots can move sideways (they have no non-holonomic constraints).

Holonomic vs. Non-Holonomic

- Non-holonomic constraints reduce the control space with respect to the current configuration
 - E.g., moving sideways is impossible.
- Holonomic constraints reduce the configuration space.
 - E.g., a train on tracks (not all positions and orientations are possible)

Drives with Non-Holonomic Constraints

- Synchro-drive
- Differential drive
- Ackermann drive

Drives without Non-Holonomic Constraints

Mecanum wheels

Dead Reckoning and Odometry

- Estimating the motion based on the issued controls/wheel encoder readings
- Integrated over time

Summary

- Introduced different types of drives for wheeled robots
- Math to describe the motion of the basic drives given the speed of the wheels
- Non-holonomic constraints
- Odometry and dead reckoning