Computer Architecture Lab

Lab08 - Week #8

R-type (SUBU)

R-type (SUBU)

IorD	Memory Access for Instruction or Data		
0	Instruction		
1	Data		

MemRead	Memory Read Access Enable	
0	No Memory Read Access	
1	Memory Read Access	

MemWrite	Memory Write Access Enable	
0	No Memory Write	
1	Memory Write Enable	

DatWidth	Data Width for Memory Access	
000	32-bit Word	
010	16-bit Halfword	
011	8-bit Byte	
110	16-bit Halfword /w Sign Ext	
111	8-bit Byte /w Sign Ext	

IRwrite	Instruction Register Write Enable	
0	No Instruction Register Write	
1	Instruction Register Write Enable	

RegDst	Selection for Destination Register	
00	Write to \$rt	
01	Write to \$rd	
10	Write to \$rs	
11	Write to \$31	

RegDatSel	To Select Data Source for Register Write	
000	Write ALUOut to Register file	
001	Vrite MDR to Register file	
010	Write LO to Register file	
011	Write HI to Register file	
100	Write PC to Register file	

RegWrite	Write Enable to Register File	
0	Do not write to Register file	
1	Write to Register file	

EXTmode	Immediate Data Extension Mode	
0	Zero Extension	
1	Sign Extension	

//0x05 : subu S1: Decode ALUSrcA ID ALUSrcB ALUOp ALUSrcA U15 ALUSrcB PCSrc **IRWrite** ALUOp Op = J **PCWrite** ALU Read Data2 Op = ANDI S9: Branch S10: AND S2: MemAdr Op = ADDI ALUSrcA ALUSrcA ALUSrcA ALUSrcA EX ALUSrcB ALUSrcB ALUSrcB ALUSrcB ALUOp ALUOp ALUOp ALUOp PCSrc Shift Left 2 PCWrCnd

000

ALUsrcA	ALU Input A Source Selection	
000	Register A to ALU input A	
001	0x4	
010	0x0	
011	PC to ALU input A	
100	MDR to ALU input A	

Op = LW

ALUsrcB	ALU Input B Source Selection	
000	Register B to ALU input B	
001)x4	
010	0x0	
011	SEU output to ALU input B	
100	SEU output << 2	

ALUop	ALU Operation Code		
00000	Bitwise AND	01001	a × b
00001	Bitwise OR	01010	Unsigned a × b
00010	Bitwise NOR	01011	a/b
00011	Bitwise XOR	01100	Unsigned a / b
00100	a + b	01101	b << a
00101	Unsigned a + b	01110	b >> a
00110	a – b	01111	b >>> a
00111	Unsigned a – b	10000	Set Less Than
01000	Zero	10001	Unsigned SLT
10010	HI = a	10011	LO = a

ALUctrl[1:0]	Extra ALU Control Signal
ALUctrl[0]=0	Shift = Shift Amount
ALUctrl[0]=1	Shift = \$rs
ALUctrl[1]=0	Normal ALU input (a,b)
ALUctrl[1]=1	Exchanged ALU input (b,a)

Branch	Branch Options
000	No branch condition or Jump
001	Reserved
010	Branch if not negative
011	Branch if negative
100	Branch if equal
101	Branch if not equal
110	Branch if not positive
111	Branch if positive

PCsrc	PC Data Source Selection
00	From ALU output
01	From ALUOut Register
10	From Jump Address
11	From Current PC

PCwrite	PC Register Write Enable
0	No PC Register Write
1	PC Register Write Enable

1
1

StateSel	Next State Selection Signal
00	Next State = 0
01	Next State = State Indicated by Instruction
10	Reserved
11	Next State = Current State + 1

^{* 8} bits before StateSel signal are reserved. They should be set xxxxxxxxx.

MemRead	Memory Read Access Enable
0	No Memory Read Access
1	Memory Read Access

MemWrite	Memory Write Access Enable
0	No Memory Write
1	Memory Write Enable

DatWidth	Data Width for Memory Access
000	32-bit Word
010	16-bit Halfword
011	8-bit Byte
110	16-bit Halfword /w Sign Ext
111	8-bit Byte /w Sign Ext

IRwrite	Instruction Register Write Enable
0	No Instruction Register Write
1	Instruction Register Write Enable

RegDst	Selection for Destination Register
00	Write to \$rt
01	Write to \$rd
10	Write to \$rs
11	Write to \$31

	-
RegDatSel	To Select Data Source for Register Write
000	Write ALUOut to Register file
001	Write MDR to Register file
010	Write LO to Register file
011	Write HI to Register file
100	Write PC to Register file

RegWrite	Write Enable to Register File
0	Do not write to Register file
1	Write to Register file

EXTmode	Immediate Data Extension Mode
0	Zero Extension
1	Sign Extension

ALUsrcA	ALU Input A Source Selection
000	Register A to ALU input A
001	0x4
010	0x0
011	PC to ALU input A
100	MDR to ALU input A

ALUsrcB	ALU Input B Source Selection
000	Register B to ALU input B
001	0x4
010	0x0
011	SEU output to ALU input B
100	SEU output << 2

ALUop	ALU Operation C	ode	
00000	Bitwise AND	01001	a × b
00001	Bitwise OR	01010	Unsigned a × b
00010	Bitwise NOR	01011	a/b
00011	Bitwise XOR	01100	Unsigned a / b
00100	a + b	01101	b << a
00101	Unsigned a + b	01110	b >> a
00110	a – b	01111	b >>> a
00111	Unsigned a – b	10000	Set Less Than
01000	Zero	10001	Unsigned SLT
10010	HI = a	10011	LO = a

ALUctrl[1:0]	Extra ALU Control Signal
ALUctrl[0]=0	Shift = Shift Amount
ALUctrl[0]=1	Shift = \$rs
ALUctrl[1]=0	Normal ALU input (a,b)
ALUctrl[1]=1	Exchanged ALU input (b,a)

PCsrc	PC Data Source Selection
00	From ALU output
01	From ALUOut Register
10	From Jump Address
11	From Current PC

PCwrite	PC Register Write Enable
0	No PC Register Write
1	PC Register Write Enable

StateSel	Next State Selection Signal
00	Next State = 0
01	Next State = State Indicated by Instruction
10	Reserved
11	Next State = Current State + 1

 $^{^{\}star}$ 8 bits before StateSel signal are reserved. They should be set <code>xxxxxxxxx</code>

SUBU – ROM_DISP.txt

```
🦷 *ROM DISP.txt - Windows 메모장
                                                                                    ×
Address for
                                파일(F) 편집(E) 서식(O) 보기(V) 도움말(H)
ROM_MICRO
                                1 xxxxxxxx // FN 100000 add
                                1 xxxxxxxx // FN 100001 addu
                                1 xxxxxxxx // FN 100010 sub
                                1_00000101 // FN 100011 subu
                                1 xxxxxxxxx // FN 100100 and
                                1 xxxxxxxx // FN 100101 or
                                1 xxxxxxxx // FN 100110 xor
                                1 xxxxxxxx // FN 100111 nor
                                1_xxxxxxxx // FN 101000
                                1_xxxxxxxx // FN 101001
                                1 xxxxxxxx // FN 101010 slt
                                1 xxxxxxxx // FN 101011 sltu
                                1 vvvvvvvv // FN 101100
```


SUBU – Waveform

```
o state[8:0] =003
 i Read regl[4:0] =03
 i_Read_reg2[4:0] =05
        i RegWrite=1
i Write data[31:0] =01122334
 i Write reg[4:0] =06
o_Read_data1[31:0] = 12345678
o Read data2[31:0] = 11223344
    i ALUctrl[1:0] =xx
     i ALUop[4:0] =xx
     i data1[31:0] =xxxxxxxx
     i data2[31:0] =xxxxxxxx
     i shamt[4:0] =00
           o carry=0
        o overflow=0
        o positive=0
    o result[31:0] =000000000
            o zero=1
         i x[31:0] =0XXXXXXX
         o y[31:0] = 01122334
```


Thank You