2 Álgebra das Proposições

Após termos visto que a tabela verdade pode ser utilizada como ferramenta de apoio para demonstração de todas as propriedades e relações então (em disciplina), vista até nossa iá iniciaremos hoje o estudo do formalismo algébrico cálculo proposicional. embasa aue 0 formalismo é chamado nesta disciplina de álgebra das proposições (ou álgebra proposicional).

razão o estudo para da **álgebra** maior proposicional é permitir cálculo que 0 proposicional possa utilizado ser ferramenta alternativa à tabela verdade. Neste primeiro momento, estudaremos as propriedade dos operadores da lógica proposicional, bem como as regras de equivalências notáveis.

2.1 - Operadores de Conjunção e Disjunção

Para os operadores "\" (conjunção) e "\" (disjunção), valem as seguintes propriedades:

a) Idempotente:

$$p \wedge p \Leftrightarrow p$$
$$p \vee p \Leftrightarrow p$$

b) Comutativa:

$$p \land q \Leftrightarrow q \land p$$

 $p \lor q \Leftrightarrow q \lor p$

c) Associativa:

$$(p \land q) \land r \Leftrightarrow p \land (q \land r) \Leftrightarrow p \land q \land r$$
$$(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r) \Leftrightarrow p \lor q \lor r$$

d) Identidade:

Considere t uma proposição simples com valor lógico V, e c uma proposição simples com valor lógico F.

 $\mathbf{p} \wedge t \Leftrightarrow \mathbf{p}$ (t é o elemento neutro da conjunção)

 $\mathbf{p} \wedge c \Leftrightarrow c \ (c \in o \ elemento \ absorvente \ da \ conjunção)$

 $\mathbf{p} \lor \mathbf{t} \Leftrightarrow \mathbf{t}$ (t é o elemento absorvente da disjunção)

 $\mathbf{p} \lor c \Leftrightarrow \mathbf{p}$ (c é o elemento neutro da disjunção)

2.2 - Conjunção e Disjunção em uma mesma proposição

Para as proposições que possuem ambos operadores os operadores "\" (conjunção) e "\" (disjunção), valem as seguintes propriedades:

a) Distributiva:

i)
$$p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$$

ii)
$$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$$

b) Absorção:

i)
$$p \land (p \lor q) \Leftrightarrow p$$

ii)
$$p \lor (p \land q) \Leftrightarrow p$$

Além disso, para as proposições que possuem o operador "¬" (negação) e ambos operadores os operadores "∧" (conjunção) e "∨" (disjunção), também valem as equivalências

notáveis dadas pelas regras de De Morgan:

Regras de De Morgan:

i) A negação da conjunção entre duas ou mais proposições é equivalente à disjunção destas proposições negadas:

$$\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$$

ii) A negação da disjunção entre duas ou mais proposições é equivalente à conjunção destas proposições negadas:

$$\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$$

Com base nas regras de De Morgan pode-se verificar que:

$$p \lor q \Leftrightarrow \neg(\neg p \land \neg q)$$

 $p \land q \Leftrightarrow \neg(\neg p \lor \neg q)$

As equivalências notáveis dadas pelas regras da Negação do Condicional, bem como pela negação do bicondicional também são importantes:

a) Negação Condicional:

$$\neg(p \rightarrow q) \Leftrightarrow p \land \neg q$$

Verifique a aplicação da negação nas duas proposições desta equivalência

$$\neg\neg(p \rightarrow q) \Leftrightarrow \neg(p \land \neg q)$$

b) Negação Bicondicional:

$$\neg (p \leftrightarrow q) \Leftrightarrow (p \land \neg q) \lor (\neg p \land q)$$

Exercícios:

- 1) Mostre como é a negação das proposições abaixo através da linguagem corrente.
 - p: Bia estuda muito.
 - q: Lia gosta de ler.
 - r: Lea viaja bastante.
 - a) $p \rightarrow q$
 - b) $\neg q \lor r \leftrightarrow p$
 - c) $\neg (p \rightarrow q) \leftrightarrow (q \rightarrow r)$
 - d) $(\neg r \land p \rightarrow q) \rightarrow p$
- 2) Mostre, através da tabela verdade, se as propriedades comutativa, associativa e idempotente são válidas para o condicional e bicondicional.