中山大学本科生模拟期末考试

考试科目:《高等数学一(II)》

学年学期: 2017 学年第 2 学期	姓 名:	_学号:	
考试时长: 120 分钟	成绩评定:	_阅卷教师:	
警示《中山大学授予学士学位工作细则》第八条:"考试作弊者,不授予学士学位。"			
以下为	试题区域,共13题,总分10	00 分	
一、计算二重积分 $\iint_D e^{x+y} dx dy$, 其中 D	$= \{(x,y) x + y \le 1\}_{\circ}$		(7分)

二、计算曲线积分 $\int_L z ds$,其中L为球面 $x^2+y^2+z^2=a^2$,(a>0)在第一卦限部分的边界(7分)

中山大学本科生模拟期末考试试卷

四、计算曲面积分 $\oint_{\Sigma} x dy dz + (y^2 + z) dz dx + z dx dy$,其中 $\Sigma: x = \sqrt{1 - 3y^2 - 3z^2}$,方向取x轴正方向一侧(8分)

五、求解微分方程初值问题 $xy' + 2y = \sin x, y(\pi) = 0$ (7分)

六、判断数项级数 $\sum_{n=2}^{\infty} \frac{(-1)^{n-1}}{\ln^2 n}$ 的敛散性,并指明其为绝对收敛或条件收敛

■中山大学本科生模拟期末考试试卷

七、判断数项级数 $\sum_{n=1}^{\infty} \sin 2n \sin \left(\frac{1}{n}\right)$ 的敛散性 (7分)

八、证明: 级数 $f(x) = \sum_{n=1}^{\infty} \arctan\left(\frac{x^2}{2^n}\right)$ 在 $(-\infty, +\infty)$ 有连续的导函数(8分)

中山大学本科生模拟期末考试试卷

九、计算幂级数 $\sum_{n=1}^{\infty} \frac{n}{n+1} x^{n+1}$ 的收敛域与和函数(8分)

十、判断广义积分 $\int_{1}^{+\infty} \frac{1}{\sqrt{\ln x} \cdot x^2} dx$ 的敛散性(8 分)

十一、 求积分
$$\int_0^{+\infty} \frac{e^{-2x} - e^{-3x}}{x} dx$$
 (8分)

十二、 将
$$f(x) = x^2 + 1(0 < x \le 1)$$
在 $(0,1]$ 上展开成正弦级数 (8分)

中山大学本科生模拟期末考试试卷 ____

十三、 设含参变量瑕积分 $g(y)=\int_a^b f(x,y)\,\mathrm{d}x$ 仅有x=a一个瑕点,并假设 $\int_a^b f(x,y)\,\mathrm{d}x$ 在 $y\in Y$ 上点点收敛到函数 g(y),试给出 $g(y)=\int_a^b f(x,y)\,\mathrm{d}x$ 在 $y\in Y$ 上一致收敛到g(y)的柯西收敛原理描述,并证明该柯西收敛原理(8分)