15

WHAT IS CLAIMED IS:

1. A compound of Formula (I):

wherein A is phenyl or phenyl fused to a carbocycle to form a fused carbocyclic ring system;

A is substituted by R1, R2, R3, and R4;

- 10 L is a linker connecting a ring atom of A to the nitrogen of the $-N(R^5)$ moiety, wherein L is
 - (i) a single bond,
 - (ii) $-(C_{1-6} \text{ alkyl})-,$
 - (iii) -(C₂₋₆ alkenyl)-,
 - (iv) $-(C_{0-6} \text{ alkyl})-(C_{3-6} \text{ cycloalkyl})-(C_{0-6} \text{ alkyl})-, \text{ or }$
 - (v) $-(C_{0-6} \text{ alkyl})-M-(C_{0-6} \text{ alkyl})-$, wherein M is $-N(R^a)-$,

-OC(=O)-, or -C(=O)O-; wherein the alkenyl in (iii) and the alkyls in (ii), (iv), and (v) are independently and optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, -OH, -C1-6 alkyl, -O-C1-6 alkyl,

20 -CO₂Ra, -CO₂(CH₂)₁₋₂Rk, -C₁₋₆ alkyl-ORa, -Rk, -(CH₂), -2Rk, -CH(ORa)-Rk, and -CH(N(Ra)₂)-Rk;

X is N or C-Q¹;

25 Y is N or C-Q2, provided that X and Y are not both N;

 Z^1 is N or C-Q³;

 Z^2 is N or C-Q⁴; Q1, Q2, Q3, and Q4 are as defined in (i) or (ii) as follows: each of Q1, Q2, Q3, and Q4 is independently (i) (1)-H, (2) -C₁₋₆ alkyl, 10 (3) C₁₋₆ haloalkyl, (4) -**Q**-C₁₋₆ alkyl, (5) -O\C₁₋₆ haloalkyl, (6) halo, (7) -CN, -C₁₋₆ alkyl-OR^a, 15 (8) (9) $-C_{0-6}$ alkyl-C(=O)Ra, -C₀₋₆ alkyl-CO₂R^a, (10)(11)-C₀₋₆ alkyl-\$R^a, $-N(R^{a})_{2}$ (12)20 -C₁₋₆ alkyl-N(\hat{R}_{i}^{a})₂, (13) $-C_{0-6}$ alkyl-C(=0)N(Ra)2, (14)-C₀₋₆ alkyl-G-C₁₋₆ alkyl-C(=O)N(Ra)₂, wherein G is O, S, (15) $N(R^a)$, or $N(SO_2R^a)$, $-N(R^a)-C(R^a)=O$ (16) $-C_{1-6}$ alkyl-N(Ra)-C(Ra)=O, 25 (17) $-C(=O)-N(R^a)-C_{1-6}$ alkyl $-(C(=O))_{0-1}-N(R^a)_{2}$, (18)(19)-C(=O)-N(Ra)-C₁₋₆ alkyl substituted with 1 or 2 -ORa, (20)-C₀₋₆ alkyl-SO₂Ra, (21) -C₀₋₆ alkyl-N(R_a)SO₂R_a, 30 (22)-C₂₋₆ alkenyl, (23) $-C_{2-6}$ alkenyl-C(=O)-N(Ra)₂, (24)-C2-5 alkynyl, (25)-C2-5 alkynyl-CH2N(Ra)2,

(26)

-C2-5 alkynyl-CH2ORa,

		\	•
		(27)	-C ₂₋₅ alkynyl-CH ₂ S(O) _n -R ^a , or
		\	NR ^a
$\Delta 1$			N_a $N(R^a)_2$
AX'		(28)	$ \begin{bmatrix} $
Con	J.		R ^a
	4		M_OH
		(29)	WR ^a ,
		(30)	$-C(=NR^a)-N(R^a)_2,$
	5	(31)	$-N(R^a)-C_{1-6}$ alkyl-S(O) _n R ^a ,
		(32)	-N(Ra)-C ₁₋₆ alkyl-ORa,
		(33)	$-N(R^a)$ - C_{1-6} alkyl- $N(R^a)_2$,
r _i		(34)	$-N(R^a)$ - C_{1-6} alkyl- $N(R^a)$ - $C(R^a)$ = O ,
;) }		(35)	$-N(R^a)-C_{0-6}$ alkyl- $[C(=O)]_{1-2}N(R^a)_2$,
1	10	(36)	-N(Ra)-C ₁ alkyl-CO ₂ Ra,
		(37)	$-N(R^a)C(=0)N(R^a)-C_{1-6}$ alkyl- $C(=0)N(R^a)_2$,
		(38)	$-N(R^a)C(=0)$, $-C_{1-6}$ alkyl- $N(R^a)_2$,
		(39)	$-N(R^a)-SO_2-N(R^a)_2$,
		(40)	-Rk,
	15	(41)	-C ₁₋₆ alkyl substituted with Rk,
		(42)	-C ₁₋₆ haloalkyl substituted with R ^k ,
		(43)	-C ₂₋₅ alkenyl-R ^k ,
		(44)	-C ₂₋₅ alkynyl-R ^k ,
		(45)	$-C_{0-6}$ alkyl-O-R ^k , \downarrow
	20	(46)	-C ₀₋₆ alkyl-O-C ₁₋₆ alkyl-R ^k ,
		(47)	$-C_{0-6}$ alkyl-S(O) _n -R ^k
		(48)	$-C_{0-6}$ alkyl-S(O) _n -C ₁ - ϵ alkyl-R ^k ,
		(49)	-O-C ₁₋₆ alkyl-OR ^k ,
		(50)	-O-C ₁₋₆ alkyl-O-C ₁₋₆ alkyl-R ^k ,
	25	(51)	$-O-C_{1-6}$ alkyl-S(O) _n R ^k , $\$
		(52)	$-C_{0-6}$ alkyl-N(Rc)-Rk,
		(53)	-C ₀₋₆ alkyl-N(R ^c)-C ₁₋₆ alkyl substituted with one or two R ^k
			groups,
		(54)	$-C_{0-6}$ alkyl- $N(R^c)$ - C_{1-6} alkyl- QR^k ,
	30	(55)	-C ₀₋₆ alkyl-C(=O)- R^k ,

a' cont 5

10

15

20

(56) $-C_{0-6}$ alkyl-C(=O)N(Ra)-Rk,

- (5V) -C₀₋₆ alkyl-N(R^a)C(=O)-R^k,
- (58) C_{0-6} alkyl-C(=O)N(Ra)-C₁₋₆ alkyl-R^k, or
- which they are attached and the fused ring carbon atom attached therebetween form a 5- or 6-membered monocyclic carbocycle or a 5- or 6-membered monocyclic heterocycle, wherein the heterocycle contains 1 or 2 heteroatoms selected from nitrogen, oxygen and sulfur, and wherein either the carbocycle or heterocycle is optionally substituted with from 1 to 3 substituents independently selected from
 - (1) -C₁₋₆ alky
 - (3) -C₁₋₆ haloalkyl,
 - (4) $-O-C_{1-6}$ alkyl,
 - (5) -O-C₁₋₆ haloalkyl,
 - (6) halo,
 - (7) -CN,
 - (8) $-C_{1-6}$ alkyl-ORa,
 - (9) $-C_{1-6}$ alkyl-S(O)_nRa
 - (10) $-C_{1-6}$ alkyl-N(Ra)₂,
 - (11) $-C_{1-6}$ alkyl-C(=O)-N(R $^{\frac{1}{2}}$)2,
 - (12) $-C_{1-6}$ alkyl- CO_2R^a ,
 - (13) oxo,
 - (14) -Rk, and
- 25 (15) $-C_{1-6}$ alkyl substituted with $\mathbf{R}^{\mathbf{k}}$; and

Q1 and Q4 are independently as defined in (i) above;

each of R¹ and R² is independently:

- 30 (1) -H,
 - (2) $-C_{1-6}$ alkyl,
 - (3) -C₁₋₆ haloalkyl,
 - (4) -O-C₁₋₆ alkyl,
 - (5) -O-C₁₋₆ haloalkyl,

	(6)	-OH
	\	halo,
	(8)	NO_2 ,
	(9)	-CN,
5	(10)	-C ₁ -6 alkyl-ORa,
	(11)	$-C_{0-6}$ alkyl-C(=O)Ra,
	(12)	-C ₀₋₆ alkyl-CO ₂ R ^a ,
	(13)	-C ₀₋₆ alkyl-SR ^a ,
	(14)	$-N(R^a)_2$,
10	(15)	$-C_{1-6}$ alkyl- $N(R^a)_2$,
	(16)	$-C_{0-6}$ alkyl- $C(=0)N(R^a)_2$,
•	(17)	$-C_{1-6}$ alkyl-N(R ^a)-C(R ^a)=O,
	(18)	-SO ₂ R ^a ,
	(19)	$-N(R^a)SO_2R^a$,
15	(20)	-C ₂₋₅ alkenyl,
	(21)	-O-C ₁₋₆ alkyl-OR ^a , \
	(22)	-O-C ₁₋₆ alkyl-SR ^a ,
	(23)	-O-C ₁₋₆ alkyl-NH-CO ₂ R ^a ,
	(24)	$-O-C_{2-6}$ alkyl-N(Ra) ₂ ,
20	(25)	$-N(R^a)-C_{1-6}$ alkyl-SR ^a ,
	(26)	$-N(R^a)-C_{1-6}$ alkyl-OR ^a ,
	(27)	$-N(R^a)-C_{1-6}$ alkyl- $N(R^a)_2$,
	(28)	$-N(R^a)-C_{1-6}$ alkyl- $N(R^a)-C(R^a) = 0$,
	(29)	-R ^k ,
25	-	-C ₁₋₆ alkyl substituted with 1 or 2 \mathbb{R}^k groups,
		-C ₁₋₆ haloalkyl substituted with 1 or 2 R ^k groups,
		-C ₂₋₅ alkenyl-R ^k ,
		-C ₂₋₅ alkynyl-R ^k ,
		-O-Rk,
30		-O-C ₁₋₆ alkyl-R ^k ,
		$-S(O)_n-R^k$,
		$-S(O)_n$ -C ₁₋₆ alkyl-R ^k ,
		-O-C ₁₋₆ alkyl-OR ^k ,
	(39)	$-O-C_{1-6}$ alkyl- $O-C_{1-6}$ alkyl- R^k ,
		\
	15	(9) (10) (11) (12) (13) (14) (10) (15) (16) (17) (18) (19) (15) (20) (21) (22) (23) (24) (24) (20) (25) (26) (27) (28) (29) (25) (30) (31) (32) (33) (34) (34) (35) (36) (37)

		(40)	-O-C ₁	-6 alkyl-S(O) _n R ^k ,
		(41)	-C ₁₋₆	alkyl $(OR^b)(R^k)$,
^ 1		(42)	-C ₁₋₆	alkyl (ORb)(-C ₁₋₆ alkyl-Rk),
/ / / /		(43)	1	alkyl-N(Rb)(Rk),
a cont	5	(44)	•	alkyl- $N(R^b)$ (- C_{1-6} alkyl- R^k),
Con		(45)	1	alkyl S(O) _n -R ^k ,
.		(46)	//	alkyl S(O)n-C1-6 alkyl-Rk,
				alkyl C(O)-Rk, or
		(48)		alkyl C(O)-C ₁₋₆ alkyl-Rk,
	10	, ,	0 0	
	10	each of R3 and	d R4 is	independently
;**** <u>}</u>			(1)	-Н,
			(2)	halo,
		•	(3)	-CN,
	15		(4)	-NO ₂ ,
A) L1			(5)	-OH,
			(6)	C ₁₋₆ alkyl,
si Įmės				C ₁₋₆ haloalkyl,
			(8)	-O-C ₁₋₆ alkyl,
lud:	20			-O-C ₁₋₆ haloalkyl, \
			(10)	-C ₁₋₆ alkyl-OR ^a ,
int.			(11)	-C ₀₋₆ alkyl-C(=O)R a ,
			(12)	-C ₀₋₆ alkyl-CO ₂ R ^a ,
			(13)	-C ₀₋₆ alkyl-SR ^a ,
	25		(14)	-N(Ra)2,
			(15)	-C ₁₋₆ alkyl-N(R ^a) ₂ ,
			(16)	-C ₀₋₆ alkyl-C(=O)N(R ^a) ₂ , \mathbb{I}
			(17)	-SO ₂ Ra,
			(18)	-N(Ra)SO ₂ Ra,
	30		(19)	-C ₂₋₅ alkenyl,
			(20)	-O-C ₁₋₆ alkyl-ORa,
			(21)	-O-C ₁₋₆ alkyl-SR ^a ,
			(22)	-O-C ₁₋₆ alkyl-NH-CO ₂ Ra, or
			(23)	-O-C ₂₋₆ alkyl-N(R ^a) ₂ ;

1 5 cont

10

R5 is

- -H,
- -C₁₋₆ alkyl, optionally substituted with from 1 to 5 substituents independently selected from halogen, -O-C₁₋₆ alkyl, -O-C₁₋₆ haloalkyl, -N(R^a)₂, and -CO₂R^a;
- (3) aryl optionally substituted with from 1 to 5 substituents independently selected from halogen, C₁₋₆ alkyl, C₁₋₆ haloalkyl, -O-C₁₋₆ alkyl, -O-C₁₋₆ haloalkyl, -S-C₁₋₆ alkyl, -CN, and -OH, or
- (4) $-C_{1-6}$ alkyl substituted with R^k ;

each Ra is independently -H, -C \(\) alkyl, or -C1-6 haloalkyl;

- each Rb is independently:
 - (1) -H,
 - (2) -C₁₋₄ alkyl,
 - (3) -C₁₋₄ haloalkyl,
 - (4) -R k ,
- 20 (5) -C₂₋₃ alkenyl,
 - (6) $-C_{1-4}$ alkyl- R^k ,
 - (7) $-C_{2-3}$ alkenyl- \mathbb{R}^k ,
 - (8) $-S(O)_n-R^k$, or
 - (9) $-C(O)-R^{k}$;

25

each Rc is independently

- (1) -H,
- (2) -C₁₋₆ alkyl,
- (3) -C₁₋₆ alkyl substituted with -N(R^a) 2 or
- 30 (4) -C₁₋₄ alkyl-aryl, wherein aryl is optionally substituted with 1 to 5 substituents independently selected from halogen, C₁₋₆ alkyl, C₁₋₆ haloalkyl, -O-C₁₋₆ alkyl, -O-C₁₋₆ haloalkyl, -S-C₁₋₆ alkyl, -CN, and -OH;

each R^k is independently carbocycle or heterocycle, wherein the carbocycle and heterocycle are unsubstituted or substituted with from 1 to 5 substituents each of which is independently selected from

	which is indep	pendenti	ly selected from
^ 1		(a)	halogen,
M_{\odot}	5	(b)	C_{1-6} alkyl,
CA A		(c)	-\$\frac{1}{1}-6 haloalkyl,
UNI		(d)	-OC1-6 alkyl,
		(e)	-O-\$\dag{1-6} haloalkyl,
		(f)	-S-C ₁ 6 alkyl,
	10	(g)	-CN, \
		(h)	-ОН, \
[ma]		(i)	oxo,
		(j)	$-C_{0-6}$ alkyl $C(=O)N(R^a)_2$,
		(k)	$-C_{0-6}$ alkyl- $\mathbb{Q}(=0)$ R ^a ,
	15	(l)	-N(Ra)-C(=O)Ra
N M		(m)	-N(Ra)-CO ₂ Ra,
		(n)	$-C_{1-6}$ alkyl-N(R 3)-C(=O)R a ,
ii iid		(o)	$-N(R^a)_2$,
==== ====		(p)	-C ₁₋₆ alkyl-N(R ^a)2,
#1 #1 #1	20	(q)	-C ₁₋₆ alkyl-OR ^a ,
## 		(r)	-C ₀₋₆ alkyl-CO ₂ R ^a ,
#\$1 _.		(s)	-C ₀₋₆ alkyl-O-C ₁₋₆ alkyl-OR ^a ,
		(t)	-SO ₂ Ra,
		(u)	-SO ₂ N(R ^a) ₂ ,
	25	(v)	-C ₀₋₆ alkyl-CO ₂ -C ₂₋₅ alkenyl,
		(w)	aryl,
		(x)	aryloxy-,
		(y)	-C ₁₋₄ alkyl substituted with aryl,
		(z)	heteromonocycle,
	30	(aa)	-C ₁₋₄ alkyl substituted with a heteromonocycle,
			"

(bb)

(cc) N-heteromonocyclyl-N-C₁₋₆ alkyl-amino-; wherein the aryl group in (w) aryl, (x) aryloxy, and (y) -C₁₋₄ alkyl substituted with aryl, is optionally substituted with from 1 to 4

heteromonocyclylcarbonyl-C₀₋₆ alkyl-, and

al cont

10

15

25

substituents independently selected from halogen, C_{1-6} alkyl, -O- C_{1-6} alkyl, C_{1-6} alkyl substituted with $N(R^a)_2$, C_{1-6} haloalkyl, and -OH; and

wherein the heteromonocyclyl group in (z) heteromonocycle, (aa) -C₁-4 alkyl substituted with a heteromonocycle, (bb) heteromonocyclyl-carbonyl-C₀-6 alkyl-, and (cc) N-heteromonocyclyl-N-C₁-6 alkyl-amino- is optionally substituted with from 1 to 4 substituents independently selected from halogen, C₁-6 alkyl, -O-C₁-6 alkyl, C₁-6 haloalkyl, oxo, and -OH; and

each n is independently an integer equal to 0, 1 or 2;

and with the proviso that when \mathbb{Z}^1 is C-Q³, \mathbb{Z}^2 is C-Q⁴, \mathbb{Z}^3 is CH, and X is C-Q¹, then Y is not C-Q²;

or a pharmaceutically acceptable salt thereof.

2. The compound according to claim 1, wherein

20 X is N;

Y is $C-Q^2$;

 Z^1 is C-Q³;

 Z^2 is C-Q⁴; and

 Z^3 is CH;

- 30 or a pharmaceutically acceptable salt thereof.
 - 3. The compound according to claim 2, wherein

A is phenyl; and

 Q^3 and Q^4 are both -H;

or a pharmaceutically acceptable salt thereof.

The compound according to claim 1, which is a compound of

Formula (II):

5

 R^3 R^4 Q^2 Z^1 Q^4 Q^2 Q^4 Q^4 Q^2 Q^4 Q^2 Q^4 Q^4 Q^2 Q^4 Q^4 Q^2 Q^4 Q^4

10 wherein

A is

Lis

15

(i) a single bond;

(ii) -(CH₂)₁₋₃-, which is optionally substituted with 1 or 2 substituents independently selected from the group consisting of halogen, -OH, -C₁₋₄ alkyl, -O-C₁₋₄ alkyl, -CO₂CH₃, -CO₂CH₂-phenyl, phenyl, benzyl, -(CH₂)₁₋₂OH, -CH(OH)-phenyl, and -CH(NH₂)-phenyl;

(iii) -(CH₂)₀₋₁-CH=CH-(CH₂)-, which is optionally substituted with 1 or 2 substituents independently selected from the group consisting of halogen, -OH, -C₁₋₄ alkyl, and -O-C₁₋₄ alkyl;

25 (iv)

, wherein u and v are

each integers having a value of from 0 to 4, provided that the sum of u + v is 1, 2, 3 or 4; or

a heteroatom-containing chain which is -N(Ra)-(CH2)1-2-, $-CH_2-OC(=O)-CH_2-$, or $-CH_2-C(=O)O-CH_2-$;

 Z^1 is N or C-Q³;

 Q^2 and Q^3 are as defined in (i) or (ii) as follows:

- 10 (i) Q^2 is
 - **(1)** -H,
 - (2) -C₁₋₄ alkyl,
 - (3) -C₁₋₄ fluoroalkyl,
 - (4) -O-C₁₋₄ alkyl,
 - (5) -O-C₁₋₄ fluoroalkyl,
 - (6) halo,
 - -CN, (7)
 - (8) -C₁₋₄ alkyl-OR^a,
 - (9) $-(CH_2)_{0-2}C(=O)Ra$
 - (10)-(CH2)0-2CO2Ra,
 - -(CH₂)₀₋₂SR^a, (11)
 - (12) $-N(R^{a})_{2}$
 - (13) $-C_{1-4}$ alkyl $-N(R^a)_2$,
 - $-(CH_2)_{0-2}C(=O)N(R^a)_2$, (14)
- -G-C₁₋₆ alkyl-C(=O)N(R^a)₂, wherein G is O, S, N(R^a), or 25 (15) $N(SO_2R^a)$,
 - -N(Ra)-C(Ra)=O, (16)
 - $-(CH_2)_{1-3}-N(R_a)-C(R_a)=O$, (17)
 - $-C(=O)-N(R^a)-(CH_2)_{1-3}-[C(=O)]_{0-1}N(R^a)_{2}$ (18)
- 30 -C(=O)-N(Ra)-C₁₋₄ alkyl substituted with 1 or 2 -ORa, (19)
 - (20)-SO₂Ra,
 - (21) -N(Ra)SO2Ra,

15

20

		\	
		(32)	-C2-4 alkenyl,
		(23)	$-C_{2-4}$ alkenyl- $C(=O)-N(R^a)_2$,
		(24)	-C ₂₋₃ alkynyl,
	01	(25)	V—C≡C−CH ₂ N(R ^a) ₂
(Cont 5	(26)	C≡C-CH ₂ OR ^a
(Cont	(27)	$-C = C - CH_2SR^a$
		(28)	—O≡C−CH₂SO₂Rª
		(26)	NR ^a
		(29)	N_a $N(R^a)_2$
		()	R ^a V
			\bar{\bar{\bar{\bar{\bar{\bar{\bar{\b
		(30)	NR ^a ,
***	10	(31)	-N(R ^a)-C ₁₋₄ alkyl-SR ^a ,
ij		(32)	$-N(R^a)-C_{1-4}$ alkyl $-OR^a$,
f		(33)	$-N(R^a)-C_{1-4}$ alkyl $-N(R^a)_2$,
J.		(34)	$-N(R^a)-C_{1-4}$ alkyl $-N(R^a)-C(R^a)=O$,
n i		(35)	$-N(R^a)-C_{0-4}$ alkyl- $[C(=O)]_{1-2}N(R^a)_2$,
ali ali	15	(36)	-N(R ^a)-C ₁₋₄ alkyl-CO ₂ R ^a ,
		(37)	$-N(R^a)C(=O)N(R^a)-C_1$ alkyl- $C(=O)N(R^a)_2$,
		(38)	$-N(R^a)C(=O)-C_{1-4}$ alkyl- $N(R^a)_2$,
ų,		(39)	$-N(R^a)-SO_2-N(R^a)_2,$
		(40)	$-\mathbf{R}^{\mathbf{k}}$,
	20		-C ₁₋₄ alkyl substituted with R ^k
			-C ₁₋₄ fluoroalkyl substituted with R ^k ,
		•	-C ₂₋₅ alkenyl-R ^k ,
			-C ₂₋₅ alkynyl-R ^k ,
			-O-Rk,
	25		-O-C ₁₋₄ alkyl-R ^k ,
		• •	$-S(O)_n-R^k$,
		•	$-S(O)_n$ -C ₁₋₄ alkyl-R ^k ,
			-O-C ₁₋₄ alkyl-OR ^k ,
	20		-O-C ₁₋₄ alkyl-O-C ₁₋₄ alkyl-R ^k ,
	30	(51)	-O-C ₁₋₄ alkyl-S(O) _n R k ,
			•

- 370 -

 $-N(R^c)-R^k$ -N(R^c)-C₁₋₄ alkyl substituted with one or two R^k groups, (53)-N(Rc)-C1-4 alkyl-ORk, (54) $_{s}C(=O)-R^{k}$ (55) $-\mathbf{c}(=O)N(Ra)-Rk$ (56)-N(Ra)C(=O)-Rk(57) $-C(=Q)N(R^a)-C_{1-4}$ alkyl-R^k, or (58) $-N(Ra)_{CO-4}$ alkyl-S(O)_nR^k; (59) Q^3 is 10 (1) -H, (2) -C₁₋₄ alkyl, -C1-4 fluoroalkyl, (3) (4) -O-C₁₋₄ alkyl, -O-C₁₋₄ fluoroalkyl, 15 (5) halo selected from F, -Cl, and -Br, (6) (7) -CN, -C₁₋₄ alkyl-ORa, or (8) -C₁₋₄ alkyl substituted with R^k; or (9) 20 alternatively, Q^2 and Q^3 together with the carbon atoms to (ii) which they are attached and the fused ring carbon atom attached therebetween form a 5- or 6-membered monocyclic heterocycle, wherein the heterocycle contains 1 or 2 heteroatoms selected from nitrogen, oxygen and sulfur, and wherein the heterocycle is 25 optionally substituted with from 1 to 3 substituents independently selected from (1) -C₁₋₄ alkyl, -C₁₋₄ fluoroalkyl, (3) (4) -O-C₁₋₄ alkyl, -O-C₁₋₄ fluoroalkyl, **(5)** . 30 (6) halo, -CN, (7) -C₁₋₄ alkyl-ORa, (8) (9) $-C_{1-4}$ alkyl- $S(O)_nRa$,

-C₁₋₄ alkyl-N(Ra)₂,

(10)

	U 5		(11) -C ₁₋₄ alkyl-C(=O)-N(R ^a) ₂ , (12) -C ₁₋₄ alkyl-CO ₂ R ^a , (13) oxo, (14) -R ^k , and (15) -C ₁₋₄ alkyl substituted with R ^k ;
		Q ⁴ is:	
		(1)	-Н,
		(2)	-C ₁₋₄ alkyl,
	10	(3)	-C ₁₋₄ fluoroalkyl,
		(4)	-O-C ₁₋₄ alkyl, \setminus
		(5)	-O-C ₁₋₄ fluoroalkyl,
u) Li		(6)	halo selected from F, -Cl, and -Br,
7		(7)	-CN,
[4] [7]	15	(8)	$-C_{1-6}$ alkyl-OR ^a ,
ETELZEGE		(9)	$-N(R^a)_2$, or
		(10)	-C ₁₋₆ alkyl -N(\mathbb{R}^a) ₂ ;
ii Jaali			\
		each of R ¹ an	nd R ² is independently:
==== =====	20	(1)	-Н,
		(2)	-C ₁₋₄ alkyl,
=4 :	-		•
		(4)	•
		(5)	-O-C ₁₋₄ fluoroalkyl,
	25	(6)	-OH,
		(7)	halo,
		(8)	-CN,
		(9)	-C ₁₋₄ alkyl-OR ^a ,
			-(CH ₂) ₀₋₂ C(=O)R ^a ,
	30		-(CH ₂) ₀₋₂ CO ₂ R ^a ,
			-(CH ₂) ₀₋₂ SR ^a ,
		, ,	-N(Ra) ₂ ,
			-C ₁₋₄ alkyl N(R ^a) ₂ ,
		(15)	$-(CH_2)_{0-2}C(=O)N(R^a)_2,$
			\
			- 372 -
			- 312 -

		•	
	(16)	C_{1-4} alkyl-N(Ra)-C(Ra)=O.
	(17)	SORa,	, -,
$\Delta 1$		N(Ra)SO ₂ Ra,	
Cont's		O-C ₁ 4 alkyl-ORa,	
Con 5		O-C ₁₋₄ alkyl-SR ^a ,	
	(21)	O-C ₁₋₄ alkyl-NH-C	O ₂ Ra,
	(22)	O-C2-4 alkyl-N(Ra)2	2,
	(23)	N(Ra)-C14 alkyl-SR	a,
	(24)	N(Ra)-C ₁₋₄ alkyl-OI	₹a,
10	(25)	$N(R^a)$ - C_1 - 4 alkyl- $N($	Ra)2,
	(26)	$N(R^a)$ - C_{1-4} alkyl- $N($	R^a)- $C(R^a)$ = O ,
	(27)		_
			d with 1 or 2 R ^k groups,
		1	stituted with 1 or 2 Rk groups,
15	` '	O-Rk,	
		O-C ₁₋₄ alkyl-R ^k ,	
	, ,	$-S(O)_n-R^k$,	
		$S(O)_n$ - C_{1-4} alkyl- R^k	,
20		O-C ₁₋₄ alkyl-OR ^k ,	u . pk
20		O-C ₁₋₄ alkyl-O-C ₁₋₄	*
		O-C ₁₋₄ alkyl-S(O) _n F	"
	(37)	·C ₀₋₄ alkyl-N(R ^b)(R ^l	•);
		n/ :- :	
25	each of R ³ an	R ⁴ is independently	\
25		(1) -H, (2) halo,	
		(2) halo, (3) -CN,	\
		(4) -OH,	\
		(5) C ₁₋₄ alkyl,	\
30		(6) C ₁₋₄ fluoroalk	xyl,
		(7) -O-C ₁₋₄ alkyl	
		(8) -O-C ₁₋₄ fluore	oalkyl,
		(9) -C ₁₋₄ alkyl-O	Ra,
		(10) -O-C ₁₋₄ alkyl	-ORa,
		,	\
			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
			- 373 -
			1
			1

-O-C₁₋₄ alkyl-SRa, (11)-O-C₁₋₄ alkyl-NH-CO₂Ra, or (12)O-C2-4 alkyl-N(Ra)2; (13)R5 is (1) (2) -C₁4 alkyl, optionally substituted with 1 or 2 substituents independently selected from halogen, -O-C1-4 alkyl, -O-C1-4 fluoroalkyl, -N(Ra)2, and -CO2Ra; phenyl optionally substituted with from 1 to 3 substituents 10 (3) independently selected from halogen, C1-4 alkyl, C1-4 fluoroalkyl, -O-C₁₋₄ alkyl, -O-C₁₋₄ fluoroalkyl, -S-C₁₋₄ alkyl, -CN, and -OH, or (4) -C₁₋₄ alkyl substituted with phenyl; 15 each Ra is independently -H or -C1-4 alkyl; each Rb is independently: (1) -H, 20 -C₁₋₄ alkyl, (2) -C₁₋₄ fluoroalkyl, (3) -Rk, (4) -C₁₋₄ alkyl-R^k, (5) (6) $-S(O)_n-R^k$, or 25 $-C(=O)-R^k$; (7) each Rc is independently (1) -H, (2) -C₁₋₄ alkyl, -C₁₋₄ alkyl substituted with N(Ra)₂, or 30 (3) **(4)** -C₁₋₄ alkyl-phenyl, wherein the phenyl is optionally substituted with 1 to 3 substituents independently selected from halogen, C_{1-4} alkyl, C_{1-4} fluoroalkyl, $-\Phi$ - C_{1-4} alkyl, $-\Theta$ - C_{1-4} fluoroalkyl, -S-C₁₋₄ alkyl, -CN, and -OH;

each Rk is independently:

al

10

15

20

25

30

aryl selected from phenyl and naphthyl, wherein aryl is unsubstituted or substituted with from 1 to 5 substituents independently selected from:

- (a) halogen,
- (b) C_{1-6} alkyl,
- (c) C₁₋₆ fluoroalkyl,
- (0) -O-C₁₋₆ alkyl,
- (e) -O-C₁₋₆ fluoroalkyl,
- (f) henyl,
- (g) $\sqrt{-S-C_{1-6}}$ alkyl,
- (h) \-CN,
- (i) ****OH,
- (j) phenyloxy, unsubstituted or substituted with from 1 to 3 substituents independently selected from:
 - (i) halogen,
 - (ii) \setminus C₁₋₆ alkyl,
 - (iii) C_{1-6} fluoroalkyl, and
 - (iv) -**Q**H,
- (k) $-N(R^a)_2$,
- (l) $-C_{1-6}$ alkyl $N(R^a)_2$,
- (m) - R^{t} ,
- (p) $-(CH_2)_{0-3}C(=O)N(R^a)_2$, and
- (q) $-(CH_2)_{0-3}C(=0)R^a$;

(2) -C₃₋₇ cycloalkyl, unsubstituted or substituted with from 1 to 3 substituents independently selected from:

- (a) halogen,
- (b) C_{1-6} alkyl,
- (c) -O-C₁₋₆ alkyl,
- (d) C₁₋₆ fluoroalkyl,
- (e) -O-C₁₋₆ fluoroalkyl,
- (f) -CN,
- (h) phenyl, and
- (j) -OH;

\3) -C3-7	cycloalkyl fused with a phenyl ring, unsubstituted or
1	
1	halogen,
	C ₁₋₆ alkyl,
	-O-C ₁₋₆ alkyl,
	C ₁₋₆ fluoroalkyl,
(e)	-O-C ₁₋₆ fluoroalkyl,
(f)	\-CN, and
	-QH;
	6- membered heteroaromatic ring containing from 1 to 4
heteroatoms independently se	elected from oxygen, nitrogen and sulfur, wherein the
heteroaromatic ring is unsubs	stituted or substituted on nitrogen or carbon with from 1
to 5 substituents independent	ly selected from:
(a)	halogen,
	C ₁₋₆ alkyl
	C ₁₋₆ fluoroalkyl,
	-O-C ₁₋₆ alkyl
	-O-C ₁₋₆ fluoroalkyl,
	phenyl,
	-S-C ₁₋₆ alkyl,
• •	-CN,
	-OH,
(I)	phenyloxy, unsubstituted or substituted with from 1 to 3 substituents independently selected from:
	(i) halogen,
	(ii) C ₁₋₆ alkyl,
	(iii) C ₁₋₆ fluoroalkyl, and
	(iv) -OH,
(k)	-N(Ra) ₂ ,
(1)	$-C_{1-6}$ alkyl-N(Ra) ₂ ,
(m)	-Rt,
(n)	oxo,
(o)	$-(CH_2)_{0-3}C(=O)N(R^a)_2$, and
(p)	-(CH ₂) ₀₋₃ C(=O)R ^a ;
	substituted with from 1 to 5 s (a) (b) (c) (d) (e) (f) (g) (4) a 5- or heteroatoms independently s heteroaromatic ring is unsubs to 5 substituents independent (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o)

(5) a 5- or 6- or 7- membered saturated heterocyclic ring					
containing from 1 to 3 heteroatoms independently selected from oxygen, nitrogen and					
containing from 1 to 3 heteroatoms independently selected from oxygen, nitrogen and sulfur, wherein the heterocyclic ring is unsubstituted or substituted with from 1 to 4					
substituents independently selected from:					

1	sarrar, wherein the heteroeye	me mig is ansassinated of sassinated wi		
. 0	substituents independently selected from:			
n 5	(a)	halogen,		
•	(p)	C ₁₋₆ alkyl,		
	(c)	-O-C ₁₋₆ alkyl,		
	(d)	C ₁₋₆ fluoroalkyl,		
	(e)	-O-C ₁₋₆ fluoroalkyl,		
10	(f)	- Q N,		
	(g)	oxo		
	(h)	phenyl		
	(i)	benzyl,		
	(j)	phenylethyl,		
15	(k)	-ОН,		
	(1)	$-(CH_2)_{0-3}C(=O)N(R^a)_2,$		
	(m)	$-(CH_2)_{0-3}C(=0)R^a,$		
	(n)	$-N(R^a)-C(=O)R^a$		
	(o)	-N(R ^a)-CO ₂ R ^a , \		
20	(p)	$-(CH_2)_{1-3}N(R^a)-\ddot{C}(=O)R^a,$		
	(q)	-N(R ^a) ₂ ,		
	(r)	$-(CH_2)_{1-3}N(R^a)_2,$		
•	(s)	-(CH ₂) ₁₋₃ -OR ^a ,		
	(t)	-(CH ₂) ₀₋₃ CO ₂ R ^a ,		
25	(u)	-(CH ₂) ₀₋₃ -O-(CH ₂) ₁₋₃ -OR _a ,		
	(v)	-SO ₂ Ra,		
	(w)	$-SO_2N(R^a)_2,$		
	(x)	$-(CH_2)_{0-3}C(=O)O(CH_2)_{1-2}CH_{=}CH_2,$		
	(y)	-Rt,		
30	(z)	$-(CH_2)_{0-3}C(=O)R^t$,		
	(aa)			
	(bb)	-(CH ₂) ₁₋₃ R ^t ; or \setminus		

(6) an 8- to 10- membered heterobicyclic ring containing from 1 to 4 heteroatoms independently selected from oxygen, nitrogen and sulfur, wherein the

heterobic yelic ring is saturated or unsaturated, and is unsubstituted or substituted with from 1 to 5 substituents independently selected from:

- - 5

 - 10

15

- (a) halogen,
- C₁₋₆ alkyl, (b)
- -O-C₁₋₆ alkyl, (c)
- C₁₋₆ fluoroalkyl,
- -O-C₁₋₆ fluoroalkyl, (e)
- -CN,
- =O, and
- -OH;

Rt is naphthyl or a 5- or 6-membered heteromonocylic ring containing from 1 to 4 nitrogen atoms, wherein the heteromonocyclic ring is saturated or unsaturated, and wherein the naphthyl or the heteromonocyclic ring is unsubstituted or substituted with from 1 to 4 substituents independently selected from halogen, oxo, C₁₋₄ alkyl, and -O-C₁₋₄ alkyl; and

n is an integer equal to 0, 1 or 2;

- or a pharmaceutically acceptable salt thereof. 20
 - 5. The compound according to claim 4, wherein

 Z^1 is CH:

25

 Q^2 is

- -H, (1)
- -C₁₋₄ alkyl, (2)
- -(CH₂)₀₋₂CF₃ (3)
- 30 -O-C₁₋₄ alkyl, (4)
 - -O-(CH₂)₀₋₂CF₃, (5)
 - (6) halo selected from -F, -Cl and -Br,
 - (7) -CN,
 - -(CH2)1-3ORa, (8)

```
(9)
                        -(\mathbf{C}H_2)_{0-2}C(=0)R^a
               (10)
                       -(CH2)0-2CO2Ra,
                       -(CH_2)_{0-2}SR^a,
               (11)
                       -N(R^{2})_{2}
               (12)
               (13)
                       -(CH_2)_{1-3}N(R^a)_2
                       -(CH_2)_02C(=O)N(Ra)2,
               (14)
                       -G-(CH_2)_{1-2}-C(=O)N(R^a)_2, wherein G is O, S, N(R^a), or N(SO_2R^a),
               (15)
                       -N(R^a)-C(R^a)=O
               (16)
                       -(CH_2)_{1-2}-N(R^a)-C(R^a)=O,
               (17)
10
               (18)
                       -C(=O)-N(R^{a})-(CH_{2})_{1-3}-[C(=O)]_{0-1}-N(R^{a})_{2}
               (19)
                       -C(=O)-N(Ra) (CH<sub>2</sub>)<sub>1-2</sub>H substituted with 1 or 2 -ORa,
               (20)
                       -SO<sub>2</sub>Ra,
               (21)
                       -N(Ra)SO2Ra,
               (22)
                       -CH=CH-(CH<sub>2</sub>)_{0}1-C(=O)-N(Ra)<sub>2</sub>,
                        —C≡C−CH<sub>2</sub>ORa
15
               (23)
                         C≡C-CH<sub>2</sub>SR
               (24)
                           C≡C−CH₂SO₂Ř
               (25)
                          NR^a
               (26)
               (27)
                       -N(R^a)-(CH_2)_{1-4}SR^a,
20
               (28)
                       -N(Ra)-(CH_2)_{1-4}ORa,
               (29)
                       -N(R^a)-(CH_2)_{1-4}-N(R^a)_2,
               (30)
                       -N(R^a)-(CH_2)_{1-4}N(R^a)-C(R^a)=O
                       -N(R^a)-(CH_2)_{0-2}-[C(=O)]_{1-2}N(R^a)_{2}
               (31)
                       -N(Ra)-(CH_2)_{1-4}-CO_2Ra,
               (32)
25
                       -N(Ra)C(=O)N(Ra)-(CH_2)_{1-4}-(C(=O)N(Ra)_2,
               (33)
               (34)
                       -N(R^a)C(=O)-(CH_2)_{1-4}-N(R^a)_2^b
               (35)
                       -N(R^a)-SO_2-N(R^a)_2
                       -Rk.
               (36)
               (37)
                       -(CH_2)_{1-4}R^k,
                        —C≡C−CH<sub>2</sub>R<sup>k</sup>
30
               (38)
                       -O-Rk,
               (39)
               (40)
                       -S(O)_n-R^k
```

- 379 -

 $-N(R^c)-R^k$ (41) N(Rc)-(CH2)1-4H substituted with one or two Rk groups, (42)-N(Rc)-(CH2)1-4ORk, (43)-C(**≜**O)-Rk, (44)-C(=0)N(Ra)-Rk(45) $-N(R^a)C(=O)-R^k$, or (46) $-C(=O)N(R^a)-(CH_2)_{1-4}R^k$; and (47) $-N(R^a)-S(Q)_nR^k$; (48)10 Q^4 is -H; each of R¹ and R² is independently: (1) -H, -C₁₋₄ alkyl, (2) 15 (3) -(CH₂)₀₋₂CF₃ (4) -O-C₁₋₄ alkyl, (5) -O-(CH₂)₀₋₂CF₃, (6) -OH, (7) halo selected from -F, -Cl and -Br, -CN, 20 (8) (9) -(CH₂)₁₋₃OR^a, $-(CH_2)_{0-2}C(=O)R^a$, (10)(11)-(CH₂)₀-₂CO₂R^a, -(CH2)0-2SRa, (12)25 (13) $-N(R^{a})_{2}$, (14) $-(CH_2)_{1-3}N(R^a)_2$, (15) $-(CH_2)_{0-2}C(=O)N(R^a)_2$, (16) $-C_{1-4}$ alkyl-N(Ra)-C(Ra)=O, (17)-SO₂Ra, 30 (18)-N(Ra)SO2Ra, (19)-O-(CH2)1-4ORa, -O-(CH₂)₁₋₄SRa, (20)-O-(CH₂)₁₋₄NH-CO₂Ra, (21)(22)-O-(CH₂)₂₋₄N(Ra)₂, - 380 -

		/	
	(23)	N(Ra)-(CH ₂) ₁₋₄ SR ^a ,
	(24)	-N(Ra)-(CH ₂) ₁₋₄ OR ^a ,
α	(25)	-N(Ra	1)-(CH ₂) ₁₋₄ N(R ^a) ₂ ,
12 1	(26)	-N(Ra	$^{\circ}$)-(CH ₂) ₁₋₄ N(R ^a)-C(R ^a)=O,
nort 5	(27)	₋Rk, [™]	
O	(28)	-(CH ₂	2) 1-4H substituted with 1 or 2 Rk groups,
	(29)	-O-Rk	s, \
	(30)	-O-(C	H ₂) ₁ 4R ^k ,
	(31)	-S(O) ₁	n-R ^k , \
10	(32)	-S(O) ₁	n-(CH ₂) ₁₋₄ R ^k ,
	(33)	-O-(C	H ₂) ₁₋₄ OR ^k ,
	(34)	-O-(C	H ₂) ₁₋₄ -O-(CH ₂) ₁₋₄ R ^k ,
	(35)	-O-(C	H2)1-4SR ^k ,\or
	(36)	-(CH ₂	() ₀₋₄ N(R ^b)(R ^k);
15			
	each of R ³ ar	nd R ⁴ is	independently
		(1)	-H,
		(2)	halo selected from -F, -Cl and -Br,
		(3)	-CN,
20		(4)	-OH,
		(5)	C ₁₋₄ alkyl,
		(6)	-(CH ₂) ₀₋₂ CF ₃ ,
		(7)	-O-C ₁₋₄ alkyl, or
		(8)	-O(CH ₂) ₀₋₂ CF ₃ ; and
25			
	R ⁵ is		
		(1)	-H,
		(2)	-C ₁₋₄ alkyl,
		(3)	$-(CH_2)_{1-4}N(R^a)_2,$
30		(4)	-(CH ₂) ₁₋₄ CO ₂ Ra,
		(5)	phenyl optionally substituted with from 1 to 3 substituents
			independently selected from halogen, C ₁₋₄ alkyl, -(CH ₂) ₀₋
			$2CF_3$, $-O-C_{1-4}$ alkyl, $-O(CH_2)_{0-2}CF_3$, $-S-C_{1-4}$ alkyl, $-CN$,
			and -OH, or

(6) -(CH₂)₁₋₄-phenyl;

or a pharmaceutically acceptable salt thereof.

6. The compound according to claim 5, which is a compound of

Formula (III):

- or a pharmaceutically acceptable salt thereof.
 - 7. The compound according to claim 6, wherein

L is

(i) a single bond;

(ii) -(CH₂)₁₋₃-, which is optionally substituted with 1 or 2 substituents independently selected from the group consisting of -F, -Cl, -Br, -OH, methyl, ethyl, -CO₂CH₃, -CO₂CH₂-phenyl, phenyl, benzyl, -(CH₂)₁₋₂OH, -CH(OH)-phenyl, and -CH(NH₂)-phenyl; or

20 (iii)

$$-(CH_2)_{0-1}$$
 $(CH_2)_{0-1}$

wherein u and v are

each integers having a value of from 0 to 3, provided that the sum of u + v is 1, 2, 3 or 4;

- each of R¹ and R² is independently:
 - (1) -H,
 - (2) methyl,

	Q' cont 5	(3) (4) (5) (6) (7) (8) (9) (10)	-CN, -CH ₂	oxy, y 3 elected from -F, -Cl and -Br, QR ^a ,
	10	(11) (12) (13) (14)		^a) ₂ , ₂₎₁₋₃ N(R ^a) ₂ ,
	15	(15) (16) (17) (18)	-Rk,	Ra, $2)_{1-2}N(Ra)$ - $C(Ra)=0$, $2)_{1-3}H$ substituted with 1 or 2 R^k groups,
	20	(19) (20) R ⁵ is	-O-R ^k -O-(C	K, or EH ₂) ₁₋ 3R ^k ;
# # #			(1) (2) (3) (4)	-H, methyl, -(CH ₂) ₁₋₂ N(R ^a) ₂ , -(CH ₂) ₁₋₂ CO ₂ CH ₃ , or
	25			-(CH ₂) ₁ - ₂ CO ₂ CH ₂ CH ₃ ; phenyl, or benzyl;
	20	each Ra is inc	depende	ently -H or -C ₁₋₄ alkyl;
	30	each R ^c is inc	depende	ently
			(1)	-Н,
			(2)	-C ₁₋₄ alkyl,
			(3)	•
				- 383 -

al cont 5

10

15

20

25

-(CH₂)₁₋₄-phenyl, wherein the phenyl is optionally substituted with 1 to 3 substituents independently selected from halogen, C₁₋₄ alkyl, C₁₋₄ fluoroalkyl, -O-C₁₋₄ alkyl, -O-C₁₋₄ alkyl, -S-C₁₋₄ alkyl, -CN, and -OH; and

each Rk is independently:

(1) aryl selected from phenyl and naphthyl, wherein aryl is unsubstituted or substituted with from 1 to 4 substituents independently selected from:

- (a) halogen,
- (b) C_1 - $\frac{1}{4}$ alkyl,
- (c) C₁₋₄ fluoroalkyl,
- (d) -O-C₁₋₄alkyl,
- (e) -O-C₁₋₄ Ruoroalkyl,
- (f) phenyl,
- (g) -S-C₁₋₄ alky
- (h) -CN,
- (i) -OH,
- (j) phenyloxy, unsubstituted or substituted with from 1 to 3 substituents independently selected from:
 - (i) halogen,
 - (ii) C_{1-4} alkyl,
 - (iii) C₁₋₄ fluoroalkyl, and
 - (iv) -OH,
- (k) -N(Ra)2,
- (l) $-C_{1-4}$ alkyl-N(Ra)₂,
- (m) -R^t,
- (p) $-(CH_2)_{0-3}C(=O)N(R^a)_2$, and
- (q) $-(CH_2)_{0-3}C(=O)Ra;$
- (2) -C₃₋₆ cycloalkyl, unsubstituted or substituted with from 1 to 3
- 30 substituents independently selected from:
 - (a) halogen,
 - (b) C₁₋₄ alkyl,
 - (c) -O-C₁₋₄ alkyl,
 - (d) C₁₋₄ fluoroalkyl,

		\		
		(e)	-O-C ₁	-4 fluoroalkyl,
	al Conto	\ (f)	-CN,	
		(h)	pheny	l, and
		(i)	-OH;	
	Cout 5	$(3) -\dot{a}_{3-6}$	cycloal	kyl fused with a phenyl ring, unsubstituted or
		substituted with from 1 to	substitu	ents independently selected from:
		(a) \	\ haloge	en,
		(b)	Ç1-4 a	alkyl,
	10	(c)	-⁄ ∂ -C1	₋4 alkyl,
		(d)	$C_1 \frac{1}{4}$	luoroalkyl,
		(e)	-O-C/	_4 fluoroalkyl,
		(f)	-CN, a	nd
	15	(g)	-OH;	
		(4) a 5- or	r 6- mer	nbered heteroaromatic ring selected from thienyl,
		pyridyl, imidazolyl, pyrrolyl	, pyrazc	lyl, thiazolyl, isothiazolyl, oxazolyl, isooxazolyl,
F)				razolyl, furanyl, and pyridazinyl, wherein the
Ļİ		heteroaromatic ring is unsub	stituted	or substituted on nitrogen or carbon with from 1
ı j ı	20	to 4 substituents independen	tly selec	eted from:
.i.		(a)	haloge	1
12. 12.		(b)	C ₁₋₄ a	\
# # # # # # # # # # # # # # # # # # #		(c)		luoroalkyl,
Ŧ 1		(d)		_4 alkyl,
	25	(e)		_4 fluoroalkyl,
		(f)	pheny	1
		(g)		_4 alkyl,
		(h)	-CN,	
		(i) (j)	-OH,	loxy, unsubstituted or substituted with from 1 to 3
	30	()	-	tuents independently selected from:
			(i)	halogen,
	50		(ii)	C ₁₋₄ alkyl,
			(iii)	C ₁₋₄ fluoroalkyl, and
			(iv)	-OH,
		(k)	-N(Ra	\
				\

Cont

10

15

20

25

30

- (l) $-C_{1-4}$ alkyl-N(Ra)2,
- (m) - R^t ,
- (n) oxo,
 - $-(CH_2)_{0-3}C(=O)N(R^a)_2$, and
- (p) $(CH_2)_{0-3}C(=O)R^a$;
- (5) a 5- or 6- or 7- membered saturated heterocyclic ring selected from piperidinyl, morpholinyl, thiomorpholinyl, thiazolidinyl, isothiazolidinyl, oxazolidinyl, isooxazolidinyl, pyrrolidinyl, imidazolidinyl, piperazinyl, tetrahydrofuranyl, pyrazolidinyl, hexahydropyrimidinyl, thiazinanyl, thiazepanyl, azepanyl, thiadiazepanyl, dithiazepanyl, diazepanyl, and thiadiazinanyl, and wherein the heterocyclic ring is unsubstituted or substituted with from 1 to 4 substituents independently selected from:
 - (a) halogen,
 - (b) C₁₋₆ alky
 - (c) -O-C₁₋₆ alkyl,
 - (d) C₁₋₆ fluoroalkyl,
 - (e) -O-C₁-6 fluordalkyl,
 - (f) -CN,
 - (g) oxo,
 - (h) phenyl
 - (i) benzyl,
 - (j) phenylethyl,
 - (k) -OH,
 - (1) $-(CH_2)_{0-3}C(=O)N(R_a)_2$
 - (m) $-(CH_2)_{0-3}C(=O)R^a$,
 - (n) -N(Ra)-C(=O)Ra,
 - (o) $-N(R^a)-CO_2R^a$,
 - (p) $-(CH_2)_{1-3}N(R_a)-C(=O)R_a$,
 - (q) $-N(R^a)_2$,
 - (r) $-(CH_2)_{1-3}N(R^a)_2$,
 - (s) $-(CH_2)_{1-3}-OR^a$,
 - (t) $-(CH_2)_{0-3}CO_2R^a$,
 - (u) $-(CH_2)_{0-3}-O-(CH_2)_{1-3}-OR^a$,
 - (v) -SO₂Ra,

a cont

- (w) $-SO_2N(R^a)_2$,
- (x) $-(CH_2)_{0-3}C(=O)O(CH_2)_{1-2}CH=CH_2$,
 - \mathbf{v}) $-\mathbf{R}^{\mathbf{t}}$,
- (z) -(CH₂)₀₋₃C(=O)R^t,
- (aa) -N(Ra)Rt, and
- (bb) $(CH_2)_{1-3}R^t$; or
- indolyl, benzotriazolyl, benzoimidazolyl, imidazo[4,5-b]pyridinyl, dihydroimidazo[4,5-b]pyridinyl, pyrazolo[4,3-c]pyridinyl, dihydropyrazolo[4,3-c]pyridinyl, pyrrolo[1,2-a]pyrazinyl, dihydropyrrolo[1,2-a]pyrazinyl, tetrahydropyrrolo[1,2-a]pyrazinyl, octahydropyrrolo[1,2-a]pyrazinyl, isoindolyl, indazolyl, indolinyl, isoindolinyl, quinolinyl, isoquinolinyl, quinoxalinyl, quinazolinyl, cinnolinyl, chromanyl, isochromanyl, hexahydropyrazolo[4,3-c]pyridinyl, hexahydropyrinyl, and 1,2,3,4-tetrahydro-1,8-naphthyridinyl; and 1,2,3,4-tetrahydr
- hexahydrooxazolo[3,4a]pyrazinyl, and 1,2,3,4-tetrahydro-1,8-naphthyridinyl; and wherein the bicyclic ring is unsubstituted or substituted with from 1 to 3 substituents independently selected from:
 - (a) halogen,
 - (b) C_{1-4} alkyl,
 - (c) -O-C₁₋₄ alkyl,
 - (d) C₁₋₄ fluoroalkyl,
 - (e) -O-C₁₋₄ fluoroalkyl,
 - (f) -CN,
 - (g) =O, and
 - (h) -OH;

25

30

20

R^t is naphthyl or a 5- or 6-membered heteromonocylic ring selected from pyrrolidinyl, pyrazolidinyl, imidazolinyl, piperidinyl, piperazinyl, pyrrolyl, pyridyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, pyrazinyl, pyrimidinyl, and pyradizinyl; and wherein the naphthyl or the heteromonocyclic ring is unsubstituted or substituted with 1 or 2 substituents independently selected from halogen, oxo, C₁₋₄ alkyl, and -O-C₁₋₄ alkyl;

or a pharmaceutically acceptable salt thereof.

Cont

8. A compound of Formula (IV):

wherein

5

 Q^2 is

- (1) -H,
 - (2) -C₁₋₄ alkyl,
 - (3) $-(CH_2)_{0-2}CF_3$
- 10 (4) -O-C₁₋₄ alkyl,
 - (4) -0-c1-4 aikyi,
 - (5) $-O-(CH_2)_{0-2}CF_{3}$,
 - (6) halo selected from -F, -Cland -Br,
 - (7) -CN,
 - (8) $-(CH_2)_{1-3}OR^a$,
- 15 (9) $-(CH_2)_{0-2}C(=O)R^a$,
 - (10) - $(CH_2)_{0-2}CO_2R^a$,
 - (11) $-(CH_2)_{0-2}SR^a$,
 - (12) $-N(R^a)_2$,
 - (13) $-(CH_2)_{1-3}N(R^a)_2$,
- 20 (14) -(CH₂)₀₋₂C(=O)N(Ra)₂,
 - (15) $-G-(CH_2)_{1-2}-C(=O)N(R^a)_2$, wherein G is O, S, N(Ra), or N(SO₂Ra),
 - (16) $-N(R^a)-C(R^a)=O$,
 - (17) $-(CH_2)_{1-2}-N(R^a)-C(R^a)=O$,
 - (18) $-C(=O)-N(R^a)-(CH_2)_{1-3}-[C(=O)]_{0-1}-N(R^a)_{2}$,
- 25 (19) $-C(=O)-N(R^a)-(CH_2)_{1-2}H$ substituted with 1 or 2 $-OR_a$,
 - (20) -SO₂Ra,
 - (21) $-N(Ra)SO_2Ra$,
 - (22) $-CH=CH-(CH_2)_{0-1}-C(=O)-N(R^a)_2$,
 - (23) —C=C-CH₂OR^a

		\		
•		(6)	ethoxy	
		()	-OCF3	
	Ω	(8)	halo se	elected from -F, -Cl and -Br,
	Cont 5	(9)	√-CN,	
	Dant 5	(10)	-CH2C	ORa,
		(11)	-CQ2F	Ra,
		(12)	-SRa	
		(13)	-N(Ra))2,
	10	(14)	-(CH ₂)	$(R^a)_2$,
		(15)	-SO ₂ R	· ·
		(16)	-(CH ₂)	$)_{1-2}N(R^a)-C(R^a)=O,$
-		(17)	-Rk,	
		(18)) ₁₋₃ H substituted with 1 or 2 R ^k groups,
bee !		(19)	-O-Rk	· · · · · · · · · · · · · · · · · · ·
u 1	15	(20)	-O-(CI	$H_{2})_{1-3}R^{k};$
The state of the s		each Ra is inde	ependei	ntly -H or -C ₁₋₄ alkyl;
# # # # # # # # # # # # # # # # # # # #		each Rc is inde	ependei	ntly
d: d:	20		(1)	-Н,
4) 4) 4)			(2)	-C ₁₋₄ alkyl,
h			(3)	$-(CH_2)_{1-4}N(R^a)_2$, or \setminus
			(4)	-(CH ₂) ₁₋₄ -phenyl, wherein the phenyl is optionally substituted
				with 1 to 3 substituents independently selected from halogen,
	25			C ₁₋₄ alkyl, C ₁₋₄ fluoroalkyl, O-C ₁₋₄ alkyl, -O-C ₁₋₄
				fluoroalkyl, -S-C ₁₋₄ alkyl, -CN and -OH; and
		each Rk is ind	epende:	ntly:
			(1)	aryl selected from phenyl and naphthyl, wherein aryl is
	30 ι	unsubstituted	or subst	tituted with from 1 to 4 substituents independently selected from:
				(a) halogen,
				(b) C_{1-4} alkyl,
				(c) C ₁₋₄ fluoroalkyl,
				(d) -O-C ₁₋₄ alkyl,

	\		
	\ (e	e) -O-	C ₁₋₄ fluoroalkyl,
	\setminus (f)) phe	nyl,
Ω^{1}	\(\sqrt{g}\)		C ₁₋₄ alkyl,
Cont 5	\(\lambda_{h}\)	ı) -Cî	1,
Coul 5	(i)		I,
	(j)) phe	nyloxy, unsubstituted or substituted with from 1 to 3
	•	1	stituents independently selected from:
		\((i)	halogen,
		(ii)	C ₁₋₄ alkyl,
10		(iji)	C ₁₋₄ fluoroalkyl, and
		(iv	, -ОН,
)	(k	(x) -N(R _a) ₂ ,
	(1)) -C ₁	-4 alkyl-N(Ra)2,
	(n	n) -R ^t	/
15	(p		$H_2)_{0-3}C(=0)N(R^a)_2$, and
	(q		$H_{2})_{0-3}$ $\mathbb{C}(=0)$ \mathbb{R}^{a} ;
	(2) -C	C3-6 cycl	palkyl, unsubstituted or substituted with from 1 to 3
	substituents independent	tly selecte	ed from:
	(a		ogen,
20			4 alkyl,
			C ₁₋₄ alkyl,
			4 fluoroalkyl,
			C ₁₋₄ fluoroalkyl,
	. (f)		•
25	(h	_	nyl, and
	(j)		
			palkyl fused with a phenyl ring, unsubstituted or
			ituents independently selected from:
30	(a		ogen, 4 alkyl,
30		-	
	·		C ₁₋₄ alkyl, 4 fluoroalkyl,
		-	C ₁₋₄ fluoroalkyl,
	(f	.) -CI	N, and

10

15

20

25

-OH; (g)

a 5- or 6- membered heteroaromatic ring selected from thienyl, pyridyl, imidazolyl, pyrrolyl, pyrazolyl, thiazolyl, isothiazolyl, oxazolyl, isooxazolyl, pyrazinyl, pyrimidinyl, triazolyl, tetrazolyl, furanyl, and pyridazinyl, wherein the heteroaromatic ring is unsubstituted or substituted on nitrogen or carbon with from 1 to 4 substituents independently selected from:

- (a) halogen,
- C₁₋₄ alkyl,
- (c) C₁₋₄ fluoroalkyl,
- (d) -O-C₁₋₄ alkyl,
- O-C1-4 fluoroalkyl, (e)
- (f) phenyl,
- $-S-C_{1-4}$ alkyl, (g)
- (h) -CN
- -OH, (i)
- phenyloxy, unsubstituted or substituted with from 1 to 3 (j) substituents independently selected from:
 - (i) halogen,
 - C₁₋₄ alkyl, (ii)
 - C₁₋₄ fluoroalkyl, and (iii)
 - -OH, (iv)
- $-N(R^{a})_{2}$ (k)
- **(l)** -C₁₋₄ alkyl-N(R^a)2
- -Rt, (m)
- (n) oxo,
- $-(CH_2)_{0-3}C(=O)N(R_a)_2$, and (o)
- $-(CH_2)_{0-3}C(=O)R^a;$ (p)
- a 5- or 6- or 7- membered saturated heterocyclic ring selected (5) from piperidinyl, morpholinyl, thiomorpholinyl, thiazolidinyl, isothiazolidinyl, 30 oxazolidinyl, isooxazolidinyl, pyrrolidinyl, imidazolidinyl, piperazinyl, tetrahydrofuranyl, pyrazolidinyl, hexahydropyrimidinyl, thiazinanyl, thiazepanyl, azepanyl, thiadiazepanyl, dithiazepanyl, diazepanyl, and thiadiazinanyl, and wherein the heterocyclic ring is unsubstituted or substituted with from 1 to 4 substituents independently selected from:

(6) an 8- to 10- membered heterobicyclic ring selected from indolyl, benzotriazolyl, benzoimidazolyl, imidazo[4,5-b]pyridinyl, dihydroimidazo[4,5-b]pyridinyl, pyrazolo[4,3-c]pyridinyl, dihydropyrazolo[4,3-c]pyridinyl, pyrrolo[1,2-a]pyrazinyl, dihydropyrrolo[1,2-a]pyrazinyl, tetrahydropyrrolo[1,2-a]pyrazinyl, octahydropyrrolo[1,2-a]pyrazinyl, isoindolyl, indazolyl, indolinyl, isoindolinyl,

Ont 5

10

quinolinyl, isoquinolinyl, quinoxalinyl, quinazolinyl, cinnolinyl, chromanyl, isochromanyl, hexahydropyrazolo[4,3-c]pyridinyl, hexahydropurinyl, hexahydrooxazolo[3,4a]pyrazinyl, and 1,2,3,4-tetrahydro-1,8-naphthyridinyl; and wherein the bicyclic ring is unsubstituted or substituted with from 1 to 3 substituents independently selected from:

- (a) halogen,
- (b) C_{1-4} alkyl,
- (c) -O-C₁₋₄ alkyl,
- (d) C₁₋₄ fluoroalkyl,
- (e) -O-C₁₋₄ fluoroalkyl,
- (f) -CN,
- (g)\\ =O, and
- (h) \setminus -OH; and
- Rt is naphthyl or a 5- or 6-membered heteromonocylic ring selected from pyrrolidinyl, pyrazolidinyl, imidazolinyl, piperidinyl, piperazinyl, pyrrolyl, pyridyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, pyrazinyl, pyrimidinyl, and pyradizinyl; and wherein the naphthyl or the heteromonocyclic ring is unsubstituted or substituted with 1 or 2 substituents independently selected from halogen, oxo, C₁₋₄ alkyl, and -O-C₁₋₄ alkyl;

or a pharmaceutically acceptable salt thereof.

9. The compound according to claim 8, wherein

25

30

 O^2 is

- (1) -H,
- (2) methyl,
- (3) ethyl,
- (4) CF₃,
- (5) methoxy,
- (6) ethoxy
- (7) -OCF₃
- (8) halo selected from -F, -Cl and -Br,

(40)

-CH₂OCH₃ $-(CH_2)_{0-2}C(=O)CH_3$, -(CH2)0-2CO2CH3, $-(CH_2)_{1-2}N(R^a)_2$, $-(CH_2)_{0-2}C(=O)N(R^a)_2,$ -S-CH2-C(=O)N(Ra)2, $-O-CH^{2}C(=O)N(R^{a})_{2}$ $-N(SO_2R^{a})-CH_2-C(=O)N(R^{a})_2$, -N(Ra)-C(Ra)=O, $-C(=O)-N(Ra)(CH_2)_{1-2}-C(=O)N(Ra)_2$, $-C(=O)-N(R^a)-(CH_2)_{1-2}OR^a$, $-C(=O)-N(R^a)-(CH_2)_{1-3}-N(R^a)_2,$ $-N(Ra)SO_2Ra$, $-CH=CH-C(=O)-N(R^a)^{\frac{1}{2}}$ -C≡C-CH₂OR^a --C≡C-CH₂SR^a C≡C−CH₂SO₂R^a $-N(R^a)-(CH_2)_{1-3}SR^a$, $-N(Ra)-(CH_2)_{1-3}ORa$, $-N(R^a)-(CH_2)_{1-3}N(R^a)_2$, $-N(Ra)-(CH_2)_{1-3}N(Ra)-C(Ra)=O$, $-N(Ra)CH_2-C(=O)N(Ra)_2$, $-N(R^a)-C(=O)-C(=O)-N(R^a)_2$, $-N(R^a)-C(=O)-N(R^a)_2$, -N(Ra)-(CH2)1-2-CO2Ra,

 $-N(R^a)-C(=O)-N(R^a)-(CH_2)_{1-2}-C(=O)-N(R^a)_2$

```
(41)
                                     -N(R^a)-C(=O)-(CH_2)_{1-2}-C(=O)-N(R^a)_{2}
                             (42)
                                     -N(Ra)-SO2-N(Ra)2,
                                     -Rk,
                             (43)
                                     -(CH_2)_{1-4}R^k,
                             (44)
                                         ·C≡C−CH<sub>2</sub>R<sup>k</sup>
                            (45)
                            (46)
                                     -O<sup>®</sup>Rk.
                                     -S-RÌ
                            (47)
                                     -SO2-Rik
                            (48)
                                     -N(R^c)-R
                            (49)
                                     -N(R<sup>c</sup>)-(CH<sub>2</sub>)<sub>1-4</sub>H substituted with one or two R<sup>k</sup> groups,
            10
                            (50)
                                     -N(R^c)-(CH_2)_{1-4}OR^k,
                            (51)
                                     -C(=O)-R^k,
                            (52)
                                     -C(=O)N(Ra)-Rk
                            (53)
                                     -N(R^a)-C(=O)-R^k
                            (54)
                                     -C(=O)N(Ra)-(CH_2)\mathbb{A}_4R^k, or
            15
                            (55)
                                     -N(R^a)--SO_2R^k,
                            (56)
                   each of R<sup>1</sup> and R<sup>2</sup> is independently:
(1)
                                     -H,
            20
                            (2)
                                     methyl,
                            (3)
                                     ethyl,
                            (4)
                                     CF<sub>3</sub>,
                            (5)
                                     methoxy,
                                     ethoxy
                            (6)
            25
                                     -OCF3
                            (7)
                            (8)
                                     halo selected from -F and -Cl,
                            (9)
                                     -CN,
                            (10)
                                     -CH2ORa,
                            (11)
                                     -CO<sub>2</sub>Ra,
            30
                            (12)
                                     -SRa,
                                     -N(R^a)_2,
                            (13)
                            (14)
                                     -(CH2)1-3N(Ra)2,
                            (15)
                                     -SO<sub>2</sub>Ra,
                                     -Rk,
                            (16)
```


- 398 -

ant.

(p) (CH₂)₁₋₃N(Ra)-C(=O)Ra, (q) N(Ra)₂, (r) (CH₂)₁₋₃N(Ra)₂, (s) SO₂Ra, (t) -(CH₂)₀₋₃C(=O)R^t, (u) -R^t, (v) -N(Ra)R^t, and

 $-(CH_2)_{1-3}R^t$; and

- (5) an 8- to 10- membered heterobicyclic ring selected from
- indolyl, benzotriazolyl, benzoimidazolyl, imidazo[4,5-b]pyridinyl, dihydroimidazo[4,5-b]pyridinyl, pyrazolo[4,3-c]pyridinyl, dihydropyrazolo[4,3-c]pyridinyl, pyrrolo[1,2-a]pyrazinyl, dihydropyrrolo[1,2-a]pyrazinyl, tetrahydropyrrolo[1,2-a]pyrazinyl, octahydropyrrolo[1,2-a]pyrazinyl, isoindolyl, indazolyl, indolinyl, isoindolinyl, quinolinyl, isoquinolinyl, quinoxalinyl, quinazolinyl, cinnolinyl, chromanyl, isochromanyl, and 1,2,3,4-tetrahydro-1,8-naphthyridinyl, wherein the bicyclic ring is unsubstituted or substituted with 1 or 2 substituents independently selected from:
 - (a) halogen selected from -F, -Cl, and -Br,
 - (b) methyl or ethyl,
 - (c) -CF₃.

(w)

- (d) methoxy,
- (e) -OCF3,
- (f) -CN,
- (g) =O, and
- (h) -OH;

25

20

Rt is selected from pyrrolidinyl, pyrazolidinyl, imidazolinyl, piperidinyl, piperazinyl,

and pyradizinyl; any one of which is unsubstituted or substituted with 1 or 2 substituents independently selected from -F, -Cl, -Br, oxo, methyl, and methoxy;

pyrrolyl, pyridyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, pyrazinyl, pyrimidinyl,

or a pharmaceutically acceptable salt thereof.

10. The compound according to claim 9, which is a compound of

Formula (VI):

CI

N

O

OH

(VI);

or a pharmaceutically acceptable salt thereof.

11. A compound of Formula (V-A):

 Q^2 is

5

10 (1) -H,

- (2) methyl,
- (3) ethyl,
- (4) CF₃,
- (5) methoxy,

15 (6) ethoxy

- (7) -OCF₃
- (8) halo selected from -F, -Cl and -Br,
- (9) -CN,
- (10) -CH₂OH,

20 (11) -CH₂OCH₃

- (12) $-(CH_2)_{0-2}C(=O)CH_3$,
- (13) -(CH₂)₀₋₂CO₂CH₃,
- (14) -SRa,
- (15) $-N(R^a)_2$,

25 (16) $-(CH_2)_{1-2}N(R^a)_2$,

```
-N(R^c)-R^k
                            (49)
                            (50)
                                    -N(R^c)-(CH_2)_1-4H substituted with one or two R^k groups,
                                    -N(R^c)-(CH_2)_{1-4}OR^k,
                                    -C(=O)-R^k
                            (52)
                                     C(=O)N(R^a)-R^k
                            (53)
                                    -N(R^a)-C(=O)-R^k
                            (54)
                                    -C(=O)N(R^a)-(CH_2)_{1-4}R^k, or
                            (55)
                                    -N(R^a)--SO_2R^k
                            (56)
                  each of R<sup>1</sup> and R<sup>2</sup> is independently:
            10
                            (1)
                                    -H,
                                    methyl,
                           (2)
(3)
                                    ethyl,
                            (4)
                                    CF<sub>3</sub>.
            15
                            (5)
                                    methoxy,
                            (6)
                                    ethoxy
                            (7)
                                    -OCF3
(8)
                                    halo selected from -F and -Cl,
(9)
                                    -CN,
            20
                            (10)
                                    -CH2ORa,
                                    -CO<sub>2</sub>Ra,
                            (11)
                            (12)
                                    -SRa,
                            (13)
                                    -N(R^a)_2,
                            (14)
                                    -(CH_2)_{1-3}N(R^a)_2,
           25
                            (15)
                                    -SO<sub>2</sub>Ra,
                                    -Rk.
                           (16)
                                    -(CH_2)_{1-3}R^k,
                           (17)
                                    -O-Rk, or
                           (18)
                                    -O-(CH_2)_{1-3}R^k;
                           (19)
            30
                   each Ra is independently -H or -C1-4 alkyl;
                   each Rc is independently -H, -C<sub>1-4</sub> alkyl, or -(CH<sub>2</sub>)<sub>1-3</sub>N(R<sup>a</sup>)<sub>2</sub>;
```

15

20

25

30

each Rk is independently:

phenyl which is unsubstituted or substituted with from 1 to 4 substituents independently selected from:

- (a) halogen selected from -F, -Cl, and -Br,
- (b) methyl or ethyl,
- (c) -CF₃.
- (d) methoxy,
- (e) -OCF₃,
- (f) henyl,
- (g) \\-S-CH₃,
- (h) -CN,
- (i) -OH,
- (j) phenyloxy
- (k) $-N(R^{\frac{1}{2}})_2$,
- (l) $-(CH_2)_{k-3}^{k}N(R^a)_2$,
- (m) - R^{t} ,
- (p) $-(CH_2)_{0-3}C(=O)N(R^a)_2$, and
- (q) -(CH₂)₀-3C(=C)Ra;
- (2) -C₃₋₆ cycloalkyl,

(3) a 5- or 6- membered heteroaromatic ring selected from thienyl, pyridyl, imidazolyl, pyrrolyl, pyrazolyl, thiazolyl, isothiazolyl, oxazolyl, isooxazolyl, pyrazinyl, pyrimidinyl, triazolyl, tetrazolyl, furanyl, and pyridazinyl, wherein the heteroaromatic ring is unsubstituted or substituted on nitrogen or carbon with 1 or 2 substituents independently selected from:

- (a) halogen selected from -F₃-Cl, and -Br,
- (b) methyl or ethyl,
- (c) -CF₃
- (d) methoxy,
- (e) -OCF₃,
- (f) $-S-C_{1-6}$ alkyl,
- (g) -CN,
- (h) -OH,
- (i) $-N(R^a)_2$,
- (j) $-C_{1-6}$ alkyl-N(Ra)2,

15

20

25

30

-Rt, (k) (l) oxo, (m) $-(CH_2)_{0-3}C(=O)N(R_a)_2$, and (n) $-(CH_2)_{0-3}C(=O)R^a$;

(4) a \subsection or 7- membered saturated heterocyclic ring selected from piperidinyl, morpholinyl, thiomorpholinyl, thiazolidinyl, isothiazolidinyl, oxazolidinyl, isooxazolidinyl, pyrrolidinyl, imidazolidinyl, piperazinyl, tetrahydrofuranyl, pyrazolidinyl, hexahydropyrimidinyl, thiazinanyl, thiazepanyl, azepanyl, thiadiazepanyl, dithiazepanyl, diazepanyl, and thiadiazinanyl; and wherein the heterocyclic ring is unsubstituted or substituted with 1 to 4 substituents independently selected from:

- halogen selected from -F, -Cl, and -Br, (a)
- methyl or ethyl, (b)
- (c) -CF₃.
- (d) methoxy,
- (e) -OCF₃,
- (f) -CN,
- =O, (g)
- (h) phenyl,
- benzyl, (i)
- (j) phenylethyl,
- (k) -OH,
- $-(CH_2)_{0-3}C(=O)N(R^a)_2$ **(1)**
- (m) $-(CH_2)_{0-3}C(=O)R^a$,
- N(Ra)-C(=O)Ra, (n)
- (o) N(Ra)-CO₂Ra,
- $(CH_2)_{1-3}N(R_a)-C(=O)R_a$ (p) .
- $N(R^a)_2$ (q)
- (r) $(CH_2)_{1-3}N(R^a)_2$,
- SO₂Ra, (s)
- $-(CH_2)_{0-3}C(=O)R^{t}$, (t)
- -Rt, (u)
- (v) -N(Ra)Rt, and
- $-(CH_2)_{1-3}R^t$; and (w)

 O't

(5) an 8- to 10- membered heterobicyclic ring selected from indolyl, benzotriazolyl, benzoimidazolyl, imidazo[4,5-b]pyridinyl, dihydroimidazo[4,5-b]pyridinyl, pyrazolo[4,3-c]pyridinyl, dihydropyrazolo[4,3-c]pyridinyl, pyrrolo[1,2-a]pyrazinyl, dihydropyrrolo[1,2-a]pyrazinyl, tetrahydropyrrolo[1,2-a]pyrazinyl, octahydropyrrolo[1,2-a]pyrazinyl, isoindolyl, indazolyl, indolinyl, isoindolinyl, quinolinyl, isoquinolinyl, quinoxalinyl, quinazolinyl, cinnolinyl, chromanyl, isochromanyl, and 1,2,3,4-tetrahydro-1,8-naphthyridinyl, wherein the bicyclic ring is unsubstituted or substituted with 1 or 2 substituents independently selected from:

10

15

- (a) halogen selected from -F, -Cl, and -Br,
- (b) methyl or ethyl,
- (c) -CF3.
- (d) methoxy,
- (e) -OCF3,
- (f) -CN,
- (g) =0, and
- (h) -OH;

20

R^t is selected from pyrrolidinyl, pyrazolidinyl, imidazolinyl, piperidinyl, piperazinyl, pyrrolyl, pyridyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, pyrazinyl, pyrimidinyl, and pyradizinyl; any one of which is unsubstituted or substituted with 1 or 2 substituents independently selected from -F, -Cl, -Br, oxo, methyl, and methoxy;

or a pharmaceutically acceptable salt thereof.

25

12. The compound according to claim 11, wherein R¹ is H or F, and R² is H or -SO₂CH₃, with the proviso that R¹ and R² are not both H;

or a pharmaceutically acceptable salt thereof.

30

13. The compound according to claim 12, which is a compound of Formula (VIII):

(Q) I

F Q²
H N O OH (VIII);

or a pharmaceutically acceptable salt.

5 14. The compound according to claim 12, wherein

 Q^2 is:

- (1) $-C(=O)N(R^{\frac{1}{2}})_2$,
- (2) $-CH_2C(=O)N(\mathbb{R}^a)_2$,
- 10 (3) $-CH_2CH_2C(=O)N(R^a)_2$,
 - (4) -S-CH₂-C(=O)N(\mathbb{R}^{a})₂,
 - (5) $-O-CH_2-C(=O)N(R^3)_2$
 - (6) $-N(R^a)-C(R^a)=O$,
 - (7) $-N(SO_2R^a)-CH_2-C(=O)N(R^a)_2$,
- 15 (8) $-N(R^a)-C(=O)-C(=O)-N(R^a)_2$,
 - (9) $-N(R^a)SO_2R^a$,
 - (10) $-CH=CH-C(=O)-N(Ra)_2$,
 - (11) $-N(R^a)CH_2-C(=O)N(R^a)_2$,
 - (12) $-N(R^a)-C(=O)-N(R^a)_2$,
- 20 (13) $-R^k$,

25

30

- (14) $-(CH_2)_{1-3}R^k$, or
- (15) $-N(R^c)-(CH_2)_{1-3}R^k$,

each Ra is independently -H or -C1-4 alkyl;

each Rc is independently -H or -C1-4 alkyl; and

Rk is a saturated heterocyclic ring selected from piperidinyl, morpholinyl, thiomorpholinyl, thiazolidinyl, isothiazolidinyl, oxazolidinyl, isooxazolidinyl, pyrrolidinyl, imidazolidinyl, piperazinyl, tetrahydrofuranyl, pyrazolidinyl,

hexahydropyrimidinyl, 1,2-thiazinanyl, 1,4-thiazepanyl, 1,2,5-thiadiazepanyl, 1,5,2dithiazepanyl, 1,4-diazepanyl, and 1,2,6-thiadiazinanyl, wherein the heterocyclic ring is unsubstituted or substituted with 1 to 4 substituents independently selected from:

- methyl or ethyl, (a)
- (b) =O,
- $-C(=O)N(R^a)_2$, (c)
- $-CH_2C(=O)N(Ra)_2$, (d)
- -C(=O)Ra, or
- -SO₂Ra;

10

or a pharmaceutically acceptable salt thereof.

- 15. The compound according to claim 14, wherein
- Q^2 is: 15
- $-C(=O)N(R^{a})_{2}$ **(1)**
- $-CH_2C(=O)N(R^a)_2$, (2)
- (3) $-CH_2CH_2C(=O)N(R^a)_2$,
- (4) $-S-CH_2-C(=O)N(R^a)_2$,
- 20
 - $-O-CH_2-C(=O)N(R^a)_2$, (5)
 - $-N(SO_2R^a)-CH_2-C(=O)N(R^a)^2$ (6)
 - $-N(R^a)-C(=O)-C(=O)-N(R^a)_2$, (7)
 - -N(Ra)SO2Ra, (8)
 - (9) $-CH=CH-C(=O)-N(Ra)_2$,
- 25 (10) $-N(Ra)CH_2-C(=O)N(Ra)_2$,
 - (11) $-N(Ra)-C(=O)-N(Ra)_2$,
 - (12)-Rk.
 - $-(CH_2)_{1-2}R^k$, or (13)
 - $-NH-(CH_2)_{1-2}R^k;$ (14)

30

each Ra is independently methyl, ethyl, or isopropyl; and

Rk is a saturated heterocyclic ring selected from piperidinyl, morpholinyl, thiomorpholinyl, thiazolidinyl, isothiazolidinyl, oxazolidinyl, isooxazolidinyl, pyrrolidinyl, imidazolidinyl, piperazinyl, tetrahydrofuranyl, pyrazolidinyl, hexahydropyrimidinyl, 1,2-thiazinanyl, 1,4-thiazepanyl, 1,2,5-thiadiazepanyl, 1,5,2-dithiazepanyl, 1,4-diazepanyl, and 1,2,6-thiadiazinanyl, wherein the heterocyclic ring is unsubstituted or substituted with 1 to 4 substituents independently selected from:

- (a) methyl or ethyl,
- (b) =0,
- (c) $-C(=O)NH_2$,
- (d) $-C(=O)CH_3$, or
- (e) -SO₂CH₃;

or a pharmaceutically acceptable salt thereof.

16. The compound according to claim 4, which is a compound of

Formula (IX):

$$R^4$$
 R^5
 R^5
 R^7
 R^8
 R^9
 Q^4
 R^2
 R^1
 Q^4
 wherein

15

25

10

each of R⁶ and R⁹ is independently:

- 20 (1) -H
 - (2) -C₁₋₄ alkyl,
 - (3) -C₁₋₄ fluoroalkyl,
 - (4) -C₁₋₄ alkyl-ORa,
 - (5) $-C_{1-4}$ alkyl-S(O)_nRa,
 - (6) $-C_{1-4}$ alkyl-N(Ra)₂,
 - (7) $-C_{1-4}$ alkyl-C(=O)-N(R^a)₂,
 - (8) -C₁₋₄ alkyl-CO₂Ra, and
 - (9) $-C_{1-4}$ alkyl substituted with R^k ; and

15

each of R and R8 is independently:

- (1) -H
- (2) -C₁₋₄ alkyl,
- (3), -C₁₋₄ fluoroalkyl,
- (4) $\left(-C_{1-4} \text{ alkyl-ORa} \right)$
- (5) $\sqrt{-C_{1-4}}$ alkyl-SRa,
- (6) $-C_{1-4}$ alkyl-N(R^a)₂,
- (7) $-C_{1-4}$ alkyl-C(=O)-N(Ra)₂,
- (8) -C₁-4 alkyl-CO₂R^a, and
- (9) -C₁₋₄ alkyl substituted with R^k;

or R7 and R8 together form oxo;

or a pharmaceutically acceptable salt thereof.

17. The compound according to claim 16, which is a compound of Formula (X):

- or a pharmaceutically acceptable salt thereof.
 - 18. The compound according to claim 17, which is a compound of Formula (XI):

or a pharmaceutically acceptable salt thereof.

Formula (XII):

19. The compound according to claim 18, which is a compound of

or a pharmaceutically acceptable salt thereof.

The compound a

20. The compound according to claim 19, wherein

R6 is:

15

20

- (1) -H
- (2) methyl,
 - (3) ethyl
 - (4) -CF₃,
 - (4) $-(CH_2)_{1-3}-OR^a$,
 - (5) $-(CH_2)_{1-3}-SR^a$,
 - (6) $-(CH_2)_{1-3}-SO_2R^a$,
 - (7) $-(CH_2)_{1-3}-N(R^a)_2$,

 - (9) -(CH₂)₁₋₃-CO₂Ra;

25 R⁹ is:

- (1) -H
- (2) methyl,
- (3) ethyl,
- (4) -CF₃,

Chil.

- (4) -(CH₂)₁₋₃-OR^a,
- (5) $-(CH_2)_{1-3}-SR^a$,
- (6) $-(CH_2)_{1-3}-SO_2R^a$,
- (7) -(CH₂)₁₋₃-N(R^a)₂,
- (8) $(CH_2)_{1-3}-C(=O)-N(R_a)_2$,
- (9) \setminus -(CH₂)₁₋₃-CO₂Ra, or
- (10) $(CH_2)_{1-3}-R^k$;

each Ra is independently H, methyl, or ethyl;

10

15

20

Rk is a saturated heterocyclic ring selected from piperidinyl, morpholinyl, thiomorpholinyl, thiazolidinyl, isothiazolidinyl, oxazolidinyl, isooxazolidinyl, pyrrolidinyl, imidazolidinyl, piperazinyl, tetrahydrofuranyl, and pyrazolidinyl; and wherein the heterocyclic ring is unsubstituted or substituted with from 1 to 3 substituents independently selected from:

- (a) halogen selected from -F, -Cl, and -Br,
- (b) methyl,
- (c) -CF₃
- (d) methoxy,
- (e) -OCF₃,
- (f) -CN, and
- (g) = 0;

or a pharmaceutically acceptable salt thereof.

25

21. A compound according to claim 1, which is a compound selected from the group consisting of

N-(3,5-dichlorobenzyl)-8-hydroxy-1,6-naphthyridine-7-carboxamide;

30

N-(2,5-dichlorobenzyl)-8-hydroxy-1,6-naphthyridine-7-carboxamide;

N-[(1R,S)-2,3-dihydro-1H-inden-1-yl]-8-hydroxy-1,6-naphthyridine-7-carboxamide;

a cont

10

20

30

N-[2-(3-hlorophenyl)ethyl]-8-hydroxy-1,6-naphthyridine-7-carboxamide;

N-[2-(2-chlorophenyl)ethyl]-8-hydroxy-1,6-naphthyridine-7-carboxamide;

5 N-[2-(1,1'-biphenyl-4-yl)ethyl]-8-hydroxy-1,6-naphthyridine-7-carboxamide;

8-hydroxy-N-[2-(4-phenoxyphenyl)ethyl]-1,6-naphthyridine-7-carboxamide;

8-hydroxy-N-(3-phenylpropyl)-1,6-naphthyridine-7-carboxamide;

N-(1,1'-biphenyl-2-ylmethyl)-8-hydroxy-1,6-naphthyridine-7-carboxamide;

N-(1,1'-biphenyl-3-ylmethyl)-\&-hydroxy-1,6-naphthyridine-7-carboxamide;

8-hydroxy-N-phenyl-1,6-naphthynidine-7-carboxamide;

8 N-(2-chlorobenzyl)-8-hydroxy-1,6\(\frac{1}{2}\)naphthyridine-7-carboxamide;

N-benzyl-8-hydroxy-N-methyl-1,6-naphthyridine-7-carboxamide;

8-hydroxy-N-(1-methyl-1-phenylethyl)-1,6 naphthyridine-7-carboxamide;

8-hydroxy-N-(2-phenylethyl)-1,6-naphthyridine-7-carboxamide;

8-hydroxy-N-(1-naphthylmethyl)-1,6-naphthyridi\(\hat{ne}\)-7-carboxamide;

N-benzyl-8-hydroxy-N-phenyl-1,6-naphthyridine-7-carboxamide;

N-(3-chlorobenzyl)-8-hydroxy-1,6-naphthyridine-7-carboxamide;

N-(4-chlorobenzyl)-8-hydroxy-1,6-naphthyridine-7-carboxamide;

Methyl (2S)-{[(8-hydroxy-1,6-naphthyridin-7-yl)carbonyl]amino} (phenyl)ethanoate;

Q' cont

10

20

Ethyl N-benzyl-N-[(8-hydroxy-1,6-naphthyridin-7-yl)carbonyl]glycinate;

N-benzyl-8-hydroxy-N-(2-phenylethyl)-1,6-naphthyridine-7-carboxamide;

5 N-(1,2-diphenylethyl)-8-hydroxy-1,6-naphthyridine-7-carboxamide;

N-(2,3-dihydro-1H-inden-2-yl)-8-hydroxy-1,6-naphthyridine-7-carboxamide;

N-benzyl-8-hydroxy-1,6-naphthyridine-7-carboxamide;

N-(2-anilinoethyl)-8-hydroxy-1,6-naphthyridine-7-carboxamide;

N-(2,2-diphenylethyl)-8-hydroxy-1,6-naphthyridine-7-carboxamide;

N-(3,3-diphenylpropyl)-8-hydroxy-1,6-naphthyridine-7-carboxamide;

N-(2-chloro-6-phenoxybenzyl)-8-hydroxy-1,6-naphthyridine-7-carboxamide;

Methyl (2R)-{[(8-hydroxy-1,6-naphthyridin-7-yl)carbonyl]amino} (phenyl)ethanoate;

8-hydroxy-N-(1,2,3,4-tetrahydronaphthalen-1-yl)-1,6-naphthyridine-7-carboxamide;

N-(2,3-dihydro-1H-inden-1-ylmethyl)-8-hydroxy-1,6-naphthyridine-7-carboxamide;

8-hydroxy-N-(6,7,8,9-tetrahydro-5H-benzo[a][7]annulen-6-ylmethyl)-1,6-naphthyridine-7-carboxamide;

8-hydroxy-N-[2-(1-naphthylamino)ethyl]-1,6-naphthyridine-7-carboxamide;

N-(2,3-dihydro-1H-inden-2-ylmethyl)-8-hydroxy-1,6-naphthyridine-7-carboxamide;

8-hydroxy-N-[(1R)-1-phenylethyl]-1,6-naphthyridine-λ-carboxamide;

8-hydroxy-N-[(1S)-1-phenylethyl]-1,6-naphthyridine-7-carboxamide;

- 413 -

25

30

a' cont

8-hydroxy-N-(3-hydroxy-1-phenylpropyl)-1,6-naphthyridine-7-carboxamide;

N-[2-(4-chlorophenyl)ethyl]-8-hydroxy-1,6-naphthyridine-7-carboxamide;

8-hydroxy-N-[(1R)-2-hydroxy-1-phenylethyl]-1,6-naphthyridine-7-carboxamide;

N-[(1S)-1-benzyl-2-hydroxyethyl]-8-hydroxy-1,6-naphthyridine-7-carboxamide;

N-[(1R)-1-benzyl-2-hydroxyethyl]-8-hydroxy-1,6-naphthyridine-7-carboxamide;

8-hydroxy-N-(2-hydroxy-2-phen thyl)-1,6-naphthyridine-7-carboxamide;

5-chloro-N-(3,5-dichlorobenzyl)-8-hydroxy-1,6-naphthyridine-7-carboxamide;

N-(3,5-dichlorobenzyl)-8-hydroxy-5-piperidin-1-yl-1,6-naphthyridine-7-carboxamide;

N-(3,5-dichlorobenzyl)-8-hydroxy-5-phenyl-1,6-naphthyridine-7-carboxamide;

20 N-(3,5-dichlorobenzyl)-8-hydroxy-5-(1H-imidazol-1-yl)-1,6-naphthyridine-7-carboxamide;

N-(3,5-dichlorobenzyl)-8-hydroxy-5-morpholih-4-yl-1,6-naphthyridine-7-carboxamide;

(±)-8-hydroxy-N-[(cis)-3-phenyl-2,3-dihydro-1H-inden-1-yl]-1,6-naphthyridine-7-carboxamide

5-bromo-N-(3,5-dichlorobenzyl)-8-hydroxy-1, 6-napht hyridine-7-carbox a mide;

N-(benzyl)-8-hydroxy-5-phenyl-1,6-naphthyridine-7-carboxamide;

N-(2,3-dihydro-1H-inden-1-yl)-8-hydroxy-5-phenyl-1,6-naphthyridine-7-carboxamide;

Cont 5

8-hydroxy-N-(1-naphthylmethyl)-5-phenyl-1,6-naphthyridine-7-carboxamide;

N-(2,5-dichlorobenzyl) 8-hydroxy-5-phenyl-1,6-naphthyridine-7-carboxamide;

N-(3-chlorobenzyl)-8-hydroxy-5-phenyl-1,6-naphthyridine-7-carboxamide;

N-[(1S)-2,3-dihydro-1H-inden-1-yl]-8-hydroxy-1,6-naphthyridine-7-carboxamide;

- 10 N-(3,5-dichlorobenzyl)-8-hydroxy-5-phenoxy-1,6-naphthyridine-7-carboxamide;
 - N-(3,5-dichlorobenzyl)-8-hydroxy-5-(4-methylpiperazin-1-yl)-1,6-naphthyridine-7-carboxamide;
- 5-(4-benzylpiperazin-1-yl)-N-(3,5-dichlorobenzyl)-8-hydroxy-1,6-naphthyridine-7-carboxamide;
 - N-(3,5-dichlorobenzyl)-5-{4-[2-(formylamino)ethyl]piperazin-1-yl}-8-hydroxy-1,6-naphthyridine-7-carboxamide;
 - N-(3,5-dichlorobenzyl)-8-hydroxy-5-(4-pyridin-2-ylpiperazin-1-yl)-1,6-naphthyridine-7-carboxamide;
- N-(3,5-dichlorobenzyl)-8-hydroxy-5-(4-pyrrolidin-1-yl)piperidin-1-yl)-1,6-25 naphthyridine-7-carboxamide;
 - 5-anilino-N-(3,5-dichlorobenzyl)-8-hydroxy-1,6-naphthyridine-7-carboxamide;
- N-(3,5-dichlorobenzyl)-5-{[3-(formylamino)propyl]amino}-8-hydroxy-1,6-30 naphthyridine-7-carboxamide;
 - N-(3,5-dichlorobenzyl)-5-{[2-(dimethylamino)ethyl]amino}-8-hydroxy-1,6-naphthyridine-7-carboxamide;

Q' Cont N-(3,5-dichlorobenzyl)-8-hydroxy-5-[(2-morpholin-4-ylethyl)amino]-1,6-naphthyridine-7-carboxamide;

5-[(1-benzylpiperidin-4-yl)amino]-N-(3,5-dichlorobenzyl)-8-hydroxy-1,6-naphthyridine-7-carboxamide;

N-(3,5-dichlorobenzyl)-5-[[2-(dimethylamino)ethyl](methyl)amino]-8-hydroxy-1,6-naphthyridine-7-carbox amide;

10 8-Hydroxy-5-phenylsulfanyl-[1,6]naphthyridine-7-carboxylic acid 3,5-dichlorobenzylamide;

5-benzenesulfonyl-8-hydroxy [1,6]naphthyridine-7-carboxylic acid 3,5-dichlorobenzylamide;

tert-butyl 1-(7-{[(3,5-dichlorobenzyl)amino]carbonyl}-8-hydroxy-1,6-naphthyridin-5-yl)pyrrolidin-3-ylcarbamate;

5-(3-aminopyrrolidin-1-yl)-N-(3,5-dichlorobenzyl)-8-hydroxy-1,6-naphthyridine-7-20 carboxamide trifluoroacetate;

N-(3,5-dichlorobenzyl)-8-hydroxy-5-(4H-1,2,4-triazol-4-yl)-1,6-naphthyridine-7-carboxamide;

25 N-(3,5-dichlorobenzyl)-8-hydroxy-5-(1H-1,2,4-triazol-1-yl)-1,6-naphthyridine-7-carboxamide;

N-(3,5-dichlorobenzyl)-8-hydroxy-5-(3-hydroxypyrrollidin-1-yl)-1,6-naphthyridine-7-carboxamide;

30

15

5-[3-(acetylamino)pyrrolidin-1-yl]-*N*-(3,5-dichlorobenzyl) 8-hydroxy-1,6-naphthyridine-7-carboxamide;

30

N-(3,5-dichlorobenzyl)-5-(4-formylpiperazin-1-yl)-8-hydroxy-1,6-naphthyridine-7-carboxamide;

1-(7-{[(3,5-dichlorobenzyl)amino]carbonyl}-8-hydroxy-1,6-naphthyridin-5-yl)piperazine;

- 8-Hydroxy-5-(3-hydroxy-prop-1-ynyl)-[1,6]naphthyridine-7-carboxylic acid 3,5-dichloro-benzylamide,
- 10 1-(7-{[(3,5-dichlorobenzyl)amino]carbonyl}-8-hydroxy-1,6-naphthyridin-5-yl)-4-(2-oxo-2-pyrrolidin-1-ylethyl)piperazine;
 - 8-Hydroxy-5-(3-piperidin-1-yl-prop-1-ynyl)-[1,6]naphthyridine-7-carboxylic acid 3,5-dichloro-benzylamide;
 - N-(3,5-dichlorobenzyl)-8-hydroxy 5-thiomorpholin-4-yl-1,6-naphthyridine-7-carboxamide;
- 5-[3-(aminocarbonyl)piperidin-1-yl]-*N*²-(3,5-dichlorobenzyl)-8-hydroxy-1,6-20 naphthyridine-7-carboxamide;
 - 1-(7-{[(3,5-dichlorobenzyl)amino]carbonyl}-8-hydroxy-1,6-naphthyridin-5-yl)-4-(2-phenylethyl)piperazine;
- 4-[(7-{[(3,5-dichlorobenzyl)amino]carbonyl}-8\hydroxy-1,6-naphthyridin-5-yl)amino]pyridine;
 - 5-[(cyclopropylmethyl)amino]-*N*-(3,5-dichlorobenzyl)-8-hydroxy-1,6-naphthyridine-7-carboxamide;
 - N-(3,5-dichlorobenzyl)-5-{[2-(formylamino)ethyl]amino}-8-hydroxy-1,6-naphthyridine-7-carboxamide;

Cont

2-[(7-{[3,5-dichlorobenzyl)amino]carbonyl}-8-hydroxy-1,6-naphthyridin-5-yl)amino]ethanamine;

N-(3,5-dichlor benzyl)-8-hydroxy-5-[(2-methoxyethyl)amino]-1,6-naphthyridine-7-carboxamide;

N-(3,5-dichlorobenzyl)-8-hydroxy-5-{[2-(methylthio)ethyl]amino}-1,6-naphthyridine-7-carboxamide;

1-{2-[(7-{[(3,5-dichlorobenzyl)amino]carbonyl}-8-hydroxy-1,6-naphthyridin-5-yl)amino]ethyl}pyrrolidine;

1 *N*-(3,5-dichlorobenzyl)-8-hydroxy-5-pyrrolidin-1-yl-1,6-naphthyridine-7-carboxamide;

15

3-{2-[(7-{[(3,5-dichlorobenzyl)amino]carbonyl}-8-hydroxy-1,6-naphthyridin-5-yl)amino]ethyl}pyridine;

1-{3-[(7-{[(3,5-dichlorobenzyl)amino]carbonyl}-8-hydroxy-1,6-naphthyridin-5-20 yl)amino]propyl}-1*H*-imidazoline;

1-{3-[(7-{[(3,5-dichlorobenzyl)amino]carbonyl}-\delta-hydroxy-1,6-naphthyridin-5-yl)amino]propyl}pyrrolidine;

25 1-(2-aminoethyl)-4-(7-{[(3,5-dichlorobenzyl)amino]carbonyl}-8-hydroxy-1,6-naphthyridin-5-yl)piperazine;

N-(3,5-dichlorobenzyl)-8-hydroxy-5-[(2-phenoxyethyl)amino]-1,6-naphthyridine-7-carboxamide;

30

N-(3,5-dichlorobenzyl)-8-hydroxy-5-{[3-(2-oxopyrrolidin-1-yl)propyl]amino}-1,6-naphthyridine-7-carboxamide;

20

25

2-[benzyl(7-{[(3,5-dichlorobenzyl)amino]carbonyl}-8-hydroxy-1,6-naphthyridin-5-yl)amino]ethanamine;

1-{3-[(7-{[(3,5-dichlorobenzyl)amino]carbonyl}-8-hydroxy-1,6-naphthyridin-5-yl)amino]propyl}-4-methylpiperazine;

1:1 mixture of 1-(7-\[(3,5-\)dichlorobenzyl)amino]carbonyl\}-8-\)hydroxy-1,6-naphthyridin-5-yl\)-1H-imidazo[4,5-b]pyridine and 3-(7-\{[(3,5-\)dichlorobenzyl)amino]carbonyl\}-8-\)hydroxy-1,6-naphthyridin-5-yl\)-3H-imidazo[4,5-b]pyridine;

N-(3,5-dichlorobenzyl)-8-hydroxy-5-{[4-(3-methyl-2-oxoimidazolidin-1-yl)phenyl]amino}-1,6-naphthyridine-7-carboxamide;

N-(3,5-dichlorobenzyl)-8-hydroxy-S-(1,4,6,7-tetrahydro-SH-pyrazolo[4,3-c]pyridin-5-yl)-1,6-naphthyridine-7-carboxamide,

N-(3,5-dichlorobenzyl)-8-hydroxy-5-({[(2R)-5-oxopyrrolidin-2-yl]methyl}amino)-1,6-naphthyridine-7-carboxamide;

N-(3,5-dichlorobenzyl)-8-hydroxy-5-{[(5-oxo-4,5-dihydro-1H-1,2,4-triazol-3-yl)methyl]amino}-1,6-naphthyridine-7-carboxamide;

2-(7-{[(3,5-dichlorobenzyl)amino]carbonyl}-8-hydroxy-1,6-naphthyridin-5-yl)octahydropyrrolo[1,2-a]pyrazine;

N-(3,5-dichlorobenzyl)-8-hydroxy-5-[4-(pyrimidin-2-ylamino)piperidin-1-yl]-1,6-naphthyridine-7-carboxamide

30 2-{2-[(7-{[(3,5-dichlorobenzyl)amino]carbonyl}-8-hydroxy-1,6-naphthyridin-5-yl)(methyl)amino]ethyl}pyridine;

N-(3,5-dichlorobenzyl)-5-(dimethylamino)-8-hydroxy-1,6-naphthyridine-7-carboxamide;

25

Cont 5

8-Hydroxy-5-3-morpholin-4-yl-prop-1-ynyl)-[1,6]naphthyridine-7-carboxylic acid 3,5-dichloro-benzylamide;

N-(3,5-difluorobenzyl)-8-hydroxy-5-(methylsulfonyl)-1,6-naphthyridine-7-carboxamide;

5-cyano-N-(2,3-dimethoxybenzyl)-8-hydroxy-1,6-naphthyridine-7-carboxamide;

10 N-(3,5-dichlorobenzyl)-8-hydroxy-5-thien-2-yl-1,6-naphthyridine-7-carboxamide;

8-hydroxy-5-phenylsulfanyl-[1,6]naphthyridine-7-carboxylic acid 2-methylsulfanylbenzylamide;

N-(2,3-dimethoxybenzyl)-8-hydroxy-5-(methylsulfonyl)-1,6-naphthyridine-7-carboxamide;

N-(3,5-dichlorobenzyl)-8-hydroxy-5-[(2-hydroxyethyl)amino]-1,6-naphthyridine-7-carboxamide;

N-(3,5-dichlorobenzyl)-8-hydroxy-5-(propylamino)-1,6-naphthyridine-7-carboxamide;

N-(3,5-dichlorobenzyl)-8-hydroxy-5-[(1H-imidazol-4-ylethyl)amino]-1,6-naphthyridine-7-carboxamide;

N-(3,5-dichlorobenzyl)-8-hydroxy-5-[(3-phenylprop-lyl)amino]-1,6-naphthyridine-7-carboxamide;

N-(3,5-dichlorobenzyl)-8-hydroxy-5-[(3-morpholin-4-ylpropyl)amino]-1,6-naphthyridine-7-carboxamide;

N-(3,5-dichlorobenzyl)-8-hydroxy-5-[4-(pyridin-2-ylmethyl)piperazin-1-yl]-1,6-naphthyridine-7-carboxamide;

N-(3,5-dichlorobenzyl)-8-hydroxy-5-[(2-morpholin-4-yl-2-pyridin-3-ylethyl)amino]-1,6-naphthyridine-7-carboxamide;

(X'

N-(2,3-dimethoxybenzyl)-5-{[4-(dimethylamino)phenyl]thio}-8-hydroxy-1,6-naphthyridine-7-carboxamide;

8-hydroxy-6-methyl-[1,6]naphthyridine-7-carboxylic acid 3,5-dichloro-benzylamide;

8-hydroxy-6-methyl-[1,6] naphthyridine-7-carboxylic acid 4-fluoro-benzylamide;

5-bromo-N-(4-fluorobenzyl)- $8_{\bar{x}}$ hydroxy-1,6-naphthyridine-7-carboxamide;

1-(7-{[(4-fluorobenzyl)amino]carbonyl}-8-hydroxy-1,6-naphthyridin-5-yl)-4-

15 methylpiperazine;

1-(7-{[(4-fluorobenzyl)amino]carbonyl}-8-hydroxy-1,6-naphthyridin-5-yl)piperazine;

5-[[2-(dimethylamino)-2-oxoethyl](methyl)amino]-N-(4-fluorobenzyl)-8-hydroxy-

20 1,6-naphthyridine-7-carboxamide;

 $N-1-(7-\{[(4-fluorobenzyl)amino]carbonyl\}-8-hydroxy-1,6-naphthyridin-5-yl)-N-1-,N-2-,N-2-trimethylethanediamide \; ;$

25 N-(4-fluorobenzyl)-5-(2,6-dioxohexahydropyrimidin 4-yl)-8-hydroxy-[1,6]napthyridine-7-carboxamide;

5-(1,3-dimethyl-2,6-dioxohexahydro-4-pyrimidinyl)-N-(4\fluorobenzyl)-8-hydroxy[1,6]-naphthyridine-7-carboxamide;

30

5-(1-methyl-2,6-dioxohexahydro-4-pyrimidinyl)-N-(4-fluorobenzyl)-8-hydroxy[1,6]-naphthyridine-7-carboxamide;

Cont

15

30

5-(3-methyl-2,6-dioxohexahydro-4-pyrimidinyl)-N-(4-fluorobenzyl)-8-hydroxy[1,6]-naphthyridine-7-carboxamide;

N-(4-fluorobanzyl)-8-hydroxy-5-(5-oxo-1,4-thiazepan-7-yl)[1,6]naphthyridine-7-carboxamide;

N-(4-fluorobenzyl) 8-hydroxy-5-(1-oxido-5-oxo-1,4-thiazepan-7-yl)-[1,6]naphthyridine-7-carboxamide;

N-(4-fluorobenzyl)-8-hydroxy-5-(1,1-dioxido-5-oxo-1,4-thiazepan-7-yl)[1,6]-naphthyridine-7-carboxamide;

N-(4-fluorobenzyl)-5-{[2-(dimethylamino)-2-oxoethyl]sulfanyl}-8-hydroxy-[1,6]napthyridine-7-carboxamide;

N-(4-fluorobenzyl)-5-[2-(dimethylamino)-2-oxoethoxy]-8-hydroxy-[1,6]napthyridine-7-carboxamide;

N-(4-fluorobenzyl)-5-{[2-(dimethylamino)-2-oxoethyl](methylsulfonyl)amino}-8-20 hydroxy-[1,6]napthyridine-7-carboxamide;

N-(4-fluorobenzyl)-5-[3-(dimethylamino)-3-oxopropyl]-8-hydroxy-[1,6]napthyridine-7-carboxamide;

25 *N*-(4-fluorobenzyl)-5-[(1*E*)-3-(dimethylamino)-3-oxo-1-propenyl]-8-hydroxy-[1,6]napthyridine-7-carboxamide;

N-(4-fluorobenzyl)-5-[2-(3-oxo-1-piperazinyl)ethyl]-8-hydroxy-[1,6]napthyridine-7-carboxamide;

N-(4-fluorobenzyl)-5-[2-(2-oxo-1-imidazolidinyl)ethyl]-8-hydroxy\[1,6]napthyridine-7-carboxamide;

N-(4-fluorobenzyl)-5-[2-(2-oxo-1-piperazinyl)ethyl]-8-hydroxy-[1,6]napthyridine-7-carboxamide;

Cont

5-(1,1-dioxido 1,2-thiazinan-2-yl)-*N*-(4-fluorobenzyl)-8-hydroxy-1,6-naphthyridine-7-carboxamide;

5-(1,1-dioxidoisothiazolidin-2-yl)-*N*-(4-fluorobenzyl)-8-hydroxy-1,6-naphthyridine-7-carboxamide;

10 *N*-(4-fluorobenzyl)-8-hydroxy-5-[methyl(methylsulfonyl)amino]-1,6-naphthyridine-7-carboxamide;

5-[acetyl(methyl)amino]-*N*-(4-fluorobenzyl)-8-hydroxy-1,6-naphthyridine-7-carboxamide;

15

5-[[(dimethylamino)carbonyl](methyl)amino]-*N*-(4-fluorobenzyl)-8-hydroxy-1,6-naphthyridine-7-carboxamide;

20

N-(4-fluorobenzyl)-6-hydroxy-3-methyl-1-(2 morpholin-4-ylethyl)-2-oxo-2,3-dihydro-1H-pyrimido[4,5,6-de]-1,6-naphthyridine-5-carboxamide;

N-(4-fluorobenzyl)-8-hydroxy-5-thiomorpholin-4-yl-1,6-naphthyridine-7-carboxamide;

25 5-(1,1-dioxidothiomorpholin-4-yl)-*N*-(4-fluorobenzyl)-8 hydroxy-1,6-naphthyridine-7-carboxamide;

N-(4-fluorobenzyl)-8-hydroxy-5-(4-methyl-3-oxopiperazin-1-yl)-1,6-naphthyridine-7-carboxamide;

30

1-(7-{[4-fluorobenzyl)amino]carbonyl}-8-hydroxy-1,6-naphthyridin-5-yl-L-prolinamide;

al conts

N-(4-fluorobenzyl)-8-hydroxy-5-(2-oxotetrahydropyrimidin-1(2H)-yl)-1,6-naphthyridine-7 carboxamide;

N-(4-fluorobenzyl)-8-hydroxy-5-(2-oxoimidazolidin-1-yl)-1,6-naphthyridine-7-carboxamide;

N-7-(4-fluorobenzyl)-8-hydroxy-*N* 5, *N* 5-dimethyl-1,6-naphthyridine-5,7-dicarboxamide;

10 *N*-7-(4-fluorobenzyl)-8-hydroxy-*N* 5-isopropyl-*N* 5-methyl-1,6-naphthyridine-5,7-dicarboxamide;

N-7-(4-fluorobenzyl)-8-hydroxy-*N* \$-(2-morpholin-4-ylethyl)-1,6-naphthyridine-5,7-dicarboxamide;

15

N 5-[2-(dimethylamino)-2-oxoethyl]-*N* 7-(4-fluorobenzyl)-8-hydroxy-*N* 5-methyl-1,6-naphthyridine-5,7-dicarboxamide;

N-(4-fluorobenzyl)-5-(1,1-dioxido-4-oxo-1,2,5-thiadiazepan-2-yl)-8-hydroxy-

20 [1,6]napthyridine-7-carboxamide;

N-(4-fluorobenzyl)-5-(1,1-dioxido-5-methyl-4-ox\(\frac{1}{2}\),5-thiadiazepan-2-yl)-8-hydroxy-[1,6]napthyridine-7-carboxamide;

25 *N*-(4-fluorobenzyl)-5-(1,1-dioxido-5-ethyl-4-oxo-1,2,5-thiadiazepan-2-yl)-8-hydroxy-[1,6]napthyridine-7-carboxamide;

N-(4-fluorobenzyl)-5-(1,1-dioxido-1,5,2-dithiazepan-2-yl) 8-hydroxy-[1,6]napthyridine-7-carboxamide;

30

N-(4-fluorobenzyl)-5-(1,1,5,5-tetraoxido-1,5,2-dithiazepan-2-yl)-8-hydroxy-[1,6]napthyridine-7-carboxamide;

30

O' cont

N-(4-fluorobenzyl)-5-(1,4-dimethyl-7-oxo-1,4-diazepan-5-yl)-8-hydroxy-[1,6]-napthyridine-7-carboxamide;

N-(4-fluorobenzyl)-5-(1-methyl-7-oxo-1,4-diazepan-5-yl)-8-hydroxy-[1,6]-napthyridine-7-carboxamide;

N-(4-Fluorobenzyl)-5-(7-oxo-1,4-diazepan-5-yl)-8-hydroxy-[1,6]-napthyridine-7-carboxamide

10 N-(4-fluorobenzyl)-5-[4-(methylsulfonyl)thiomorpholin-2-yl]-8-hydroxy-[1,6]napthyridine-7-carboxamide;

N-(4-fluorobenzyl)-5-[4-(methylsulfonyl)-1-oxidothiomorpholin-2-yl]-8-hydroxy-[1,6]napthyridine-7-carboxamide;

N-(4-fluorobenzyl)-5-[4-(methylsulfonyl)-1,1-dioxidothiomorpholin-2-yl]-8-hydroxy[1,6]napthyridine-7-carboxamide;

N-(4-fluorobenzyl)-5-(2-Acetyl-1-methylpyrazolidin-3-yl)-8-hydroxy-

20 [1,6]napthyridine-7-carboxamide;

N-(4-fluorobenzyl)-5-(1,1-dioxido-1,2,5-thiadiazepan-2-yl)-8-hydroxy-[1,6]napthyridine-7-carboxamide;

25 *N*-(4-fluorobenzyl)-8-hydroxy-5-[5-(methylsulfonyl)-1,1-dioxido-1,2,5-thiadiazepan-2-yl]-1,6-naphthyridine-7-carboxamide;

N-(4-fluorobenzyl)-8-hydroxy-5(6-methyl-1,1-dioxido-1,2,6-thiadiazinan-2yl)-1,6-naphthyridine-7-carboxamide;

N-(4-fluorobenzyl)-8-hydroxy-5-{methyl[(1-methyl-1*H*-imidazol-4-yl)sulfonyl]amino}-1,6-naphthyridine-7-carboxamide;

20

25

30

and cont

 $N-[4-t]uoro-2-(methylsulfonyl)benzyl]-8-hydroxy-5-{methyl[(1-methyl-1<math>H$ -imidazol-4-yl)sulfonyl]amino}-1,6-naphthyridine-7-carboxamide;

N-7-[4-fluor -2-(methylsulfonyl)benzyl]-8-hydroxy-N-5-,N-5-dimethyl-1,6-naphthyridine-5,7-dicarboxamide;

N-[4-fluoro-2-(methylsulfonyl)benzyl]-8-hydroxy-5-(1,1-dioxido-1,2-thiazinan-2-yl)-1,6-naphthyridine-7-carboxamide

N-(2-(methylsulfonyl)behzyl)-5-(1,1-dioxido-1,2-thiazinan-2-yl)-8-hydroxy-1,6-naphthyridine-7-carboxamide;

N-(2-[(dimethylaminosulfonyl]-4-fluorobenzyl)-5-(1,1-dioxido-1,2-thiazinan-2-yl)-8-hydroxy-1,6-naphthyridine-7-carboxamide;

N-(4-fluorobenzyl)-8-hydroxy-5-(1-methyl-5-oxopyrrolidin-3-yl)-1,6-naphthyridine-7-carboxamide;

and pharmaceutically acceptable salts thereof.

22. A compound according to claim 21, which is a compound selected from the group consisting of

1-(7-{[(4-fluorobenzyl)amino]carbonyl}-8-hydroxy-1,6-naphthyridin-5-yl)-4-methylpiperazine;

1-(7-{[(4-fluorobenzyl)amino]carbonyl}-8-hydroxy-1,6-naphthyridin-5-yl)piperazine;

N-(3,5-dichlorobenzyl)-5-(4-formylpiperazin-1-yl)-8-hydroxy-1,6-naphthyridine-7-carboxamide;

N-(3,5-dichlorobenzyl)-5-{4-[2-(formylamino)ethyl]piperazin 1-yl}-8-hydroxy-1,6-naphthyridine-7-carboxamide;

Cost

N-(3,5-drchlorobenzyl)-8-hydroxy-5-[4-(pyridin-2-ylmethyl)piperazin-1-yl]-1,6-naphthyridine-7-carboxamide;

1-(7-{[(3,5-dichlorobenzyl)amino]carbonyl}-8-hydroxy-1,6-naphthyridin-5-yl)-4-(2-oxo-2-pyrrolidin-1-ylethyl)piperazine;

1-(7-{[(3,5-dichlorobenzyl)amino]carbonyl}-8-hydroxy-1,6-naphthyridin-5-yl)piperazine;

2-(7-{[(3,5-dichlorobenzyl)amino]carbonyl}-8-hydroxy-1,6-naphthyridin-5-yl)octahydropyrrolo[1,2-a]pyrazine;

N-(3,5-dichlorobenzyl)-8-hydroxy-5-(1,4,6,7-tetrahydro-5H-pyrazolo[4,3-c]pyridin-5-yl)-1,6-naphthyridine-7-carboxamide;

15

20

N-(3,5-dichlorobenzyl)-8-hydroxy-5-{[4-(3-methyl-2-oxoimidazolidin-1-yl)phenyl]amino}-1,6-naphthyridine-7-carboxamide;

5-[3-(aminocarbonyl)piperidin-1-yl]-*N*-(3,5-dichlorobenzyl)-8-hydroxy-1,6-naphthyridine-7-carboxamide;

N-(3,5-dichlorobenzyl)-8-hydroxy-5-(4-pyrrolidin-1-yl)-1,6-naphthyridine-7-carboxamide;

N-(3,5-dichlorobenzyl)-8-hydroxy-5-[(2-morpholin-4-ylethyl)amino]-1,6-naphthyridine-7-carboxamide;

N-(3,5-dichlorobenzyl)-8-hydroxy-5-(4-methylpiperazin-1-yl)-1,6-naphthyridine-7-carboxamide;

30

8-hydroxy-6-methyl-[1,6]naphthyridine-7-carboxylic acid 3,5-dichloro-benzylamide;

N-(3,5-dichlorobenzyl)-8-hydroxy-5-[4-(pyrimidin-2-ylamino)piperidin-1-yl]-1,6-naphthyridine-7-carboxamide

cont

N-(3,5-dichlorobenzyl)-8-hydroxy-5-[(3-morpholin-4-ylpropyl)amino]-1,6-naphthyridine-7-carboxamide;

N-(3,5-dichlorobenzyl)-8-hydroxy-5-[(2-morpholin-4-yl-2-pyridin-3-ylethyl)amino]-1,6-naphthyridine-7-carboxamide;

2-{2-[(7-{[(3,5-dichlorobenzyl)amino]carbonyl}-8-hydroxy-1,6-naphthyridin-5-yl)(methyl)amino]ethyl}pyridine;

10 N-(3,5-dichlorobenzyl)-8-hydroxy-5-(4-pyridin-2-ylpiperazin-1-yl)-1,6-

and pharmaceutically acceptable salts thereof.

naphthyridine-7-carboxamide;

23. A compound according to claim 21, which is a compound selected from the group consisting of

5-[[2-(dimethylamino)-2-oxoethyl](methyl)amino]-N-(4-fluorobenzyl)-8-hydroxy-1,6-naphthyridine-7-carboxamide;

N-1-(7-{[(4-fluorobenzyl)amino]carbonyl}-8-hydroxy-1,6-naphthyridin-5-yl)-N-1-,N-2-,N-2-trimethylethanediamide;

25 N-(4-fluorobenzyl)-5-(2,6-dioxohexahydropyrimidin 4-yl)-8-hydroxy[1,6]napthyridine-7-carboxamide;

5-(1,3-dimethyl-2,6-dioxohexahydro-4-pyrimidinyl)-N-(4-fluorobenzyl)-8-hydroxy[1,6]-naphthyridine-7-carboxamide;

5-(1-methyl-2,6-dioxohexahydro-4-pyrimidinyl)-N-(4-fluorobenzyl)-8-hydroxy[1,6]-naphthyridine-7-carboxamide;

30

15

20

3-(3-methyl-2,6-dioxohexahydro-4-pyrimidinyl)-N-(4-fluorobenzyl)-8-hydroxy[1,6]-naphthyridine-7-carboxamide;

C' cont

N-(4-fluorobenzyl)-8-hydroxy-5-(5-oxo-1,4-thiazepan-7-yl)[1,6]naphthyridine-7-carboxamide;

N-(4-fluorobenzyl)-8-hydroxy-5-(1-oxido-5-oxo-1,4-thiazepan-7-yl)-[1,6]naphthyridine-7-carboxamide;

10 N-(4-fluorobenzyl)-8-hydroxy-5-(1,1-dioxido-5-oxo-1,4-thiazepan-7-yl)[1,6]-naphthyridine-7-carboxamide;

N-(4-fluorobenzyl)-5-{[2-(dimethylamino)-2-oxoethyl]sulfanyl}-8-hydroxy-[1,6]napthyridine-7-carboxamide;

15

N-(4-fluorobenzyl)-5-[2-(dimethylamino)-2-oxoethoxy]-8-hydroxy-[1,6]napthyridine-7-carboxamide;

N-(4-fluorobenzyl)-5-{[2-(dimethylamino)-2-oxoethyl](methylsulfonyl)amino}-8-20 hydroxy-[1,6]napthyridine-7-carboxamide;

N-(4-fluorobenzyl)-5-[3-(dimethylamino)-3-oxopropyl]-8-hydroxy-[1,6]napthyridine-7-carboxamide;

25 N-(4-fluorobenzyl)-5-[(1E)-3-(dimethylamino)-3-oxo-1-propenyl]-8-hydroxy-[1,6]napthyridine-7-carboxamide;

N-(4-fluorobenzyl)-5-[2-(3-oxo-1-piperazinyl)ethyl]-8-hydroxy-[1,6]napthyridine-7-carboxamide;

30

N-(4-fluorobenzyl)-5-[2-(2-oxo-1-imidazolidinyl)ethyl]-8-hydroxy-[1,6]napthyridine-7-carboxamide;

30

a' cont

A (4-fluorobenzyl)-5-[2-(2-oxo-1-piperazinyl)ethyl]-8-hydroxy-[1,6]napthyridine-7-carboxamide;

5-(1,1-dioxido-1,2-thiazinan-2-yl)-*N*-(4-fluorobenzyl)-8-hydroxy-1,6-naphthyridine-7-carboxamide;

5-(1,1-dioxidoisofhiazolidin-2-yl)-*N*-(4-fluorobenzyl)-8-hydroxy-1,6-naphthyridine-7-carboxamide;

- 10 *N*-(4-fluorobenzyl)-8-hydroxy-5-[methyl(methylsulfonyl)amino]-1,6-naphthyridine-7-carboxamide;
 - 5-[acetyl(methyl)amino]-*N*-(4-fluorobenzyl)-8-hydroxy-1,6-naphthyridine-7-carboxamide;

5-[[(dimethylamino)carbonyl](methyl)amino]-*N*-(4-fluorobenzyl)-8-hydroxy-1,6-naphthyridine-7-carboxamide;

N-(4-fluorobenzyl)-6-hydroxy-3-methyl-1-(2-morpholin-4-ylethyl)-2-oxo-2,3-dihydro-1H-pyrimido[4,5,6-de]-1,6-naphthyridine-5-carboxamide;

N-(4-fluorobenzyl)-8-hydroxy-5-thiomorpholin-4-yl-1,6-naphthyridine-7-carboxamide;

5-(1,1-dioxidothiomorpholin-4-yl)-*N*-(4-fluorobenzyl)-8-hydroxy-1,6-naphthyridine-7-carboxamide;

N-(4-fluorobenzyl)-8-hydroxy-5-(4-methyl-3-oxopiperazin-1-yl)-1,6-naphthyridine-7-carboxamide;

1-(7-{[4-fluorobenzyl)amino]carbonyl}-8-hydroxy-1,6-naphthyridin-5-yl-lyprolinamide;

Cont

W-(4-fluorobenzyl)-8-hydroxy-5-(2-oxotetrahydropyrimidin-1(2*H*)-yl)-1,6-naphthyridine-7-carboxamide;

N-(4-fluorobenzyl)-8-hydroxy-5-(2-oxoimidazolidin-1-yl)-1,6-naphthyridine-7-carboxamide;

N-7-(4-fluorobenzyl)-8-hydroxy-*N* 5, *N* 5-dimethyl-1,6-naphthyridine-5,7-dicarboxamide,

10 N 7-(4-fluorobenzyl)-8-hydroxy-N 5-isopropyl-N 5-methyl-1,6-naphthyridine-5,7-dicarboxamide;

N 7-(4-fluorobenzyl)-8-hydroxy-N 5-(2-morpholin-4-ylethyl)-1,6-naphthyridine-5,7-dicarboxamide;

N 5-[2-(dimethylamino)-2-oxoethyl]-N 7-(4-fluorobenzyl)-8-hydroxy-N 5-methyl-1,6-naphthyridine-5,7-dicarboxamide;

N-(4-fluorobenzyl)-5-(1,1-dioxido-4-oxo-1,2,5-thiadiazepan-2-yl)-8-hydroxy-20 [1,6]napthyridine-7-carboxamide;

and pharmaceutically acceptable salts thereof,

24. A compound according to claim 21, which is a compound selected from the group consisting of

N-(4-fluorobenzyl)-5-(1,1-dioxido-5-methyl-4-oxo-1,2,5-thiadiazepan-2-yl)-8-hydroxy-[1,6]napthyridine-7-carboxamide;

30 *N*-(4-fluorobenzyl)-5-(1,1-dioxido-5-ethyl-4-oxo-1,2,5-thiadiazepan-2-yl)-8-hydroxy-[1,6]napthyridine-7-carboxamide;

N-(4-fluorobenzyl)-5-(1,1-dioxido-1,5,2-dithiazepan-2-yl)-8-hydroxy-[1,6]napthyridine-7-carboxamide;

Cont

N-(4-fluorobenzyl)-5-(1,1,5,5-tetraoxido-1,5,2-dithiazepan-2-yl)-8-hydroxy-[1,6]napthyridine-7-carboxamide;

N-(4-fluorobenzyl)-5-(1,4-dimethyl-7-oxo-1,4-diazepan-5-yl)-8-hydroxy-[1,6]-napthyridine-**V**-carboxamide;

N-(4-fluorobenzyl)-5-(1-methyl-7-oxo-1,4-diazepan-5-yl)-8-hydroxy-[1,6]-napthyridine-7-carboxamide;

10

N-(4-Fluorobenzyl)-5-(7-exo-1,4-diazepan-5-yl)-8-hydroxy-[1,6]-napthyridine-7-carboxamide

N-(4-fluorobenzyl)-5-[4-(methyleulfonyl)thiomorpholin-2-yl]-8-hydroxy-

15 [1,6]napthyridine-7-carboxamide;

N-(4-fluorobenzyl)-5-[4-(methylsulfonyl)-1-oxidothiomorpholin-2-yl]-8-hydroxy-[1,6]napthyridine-7-carboxamide;

20 *N*-(4-fluorobenzyl)-5-[4-(methylsulfonyl)-1, dioxidothiomorpholin-2-yl]-8-hydroxy-[1,6]napthyridine-7-carboxamide;

N-(4-fluorobenzyl)-5-(2-Acetyl-1-methylpyrazolidin-3-yl)-8-hydroxy-[1,6]napthyridine-7-carboxamide;

25

30

N-(4-fluorobenzyl)-5-(1,1-dioxido-1,2,5-thiadiazepan-2yl)-8-hydroxy-[1,6]napthyridine-7-carboxamide;

N-(4-fluorobenzyl)-8-hydroxy-5-[5-(methylsulfonyl)-1,1-dioxido-1,2,5-thiadiazepan-2-yl]-1,6-naphthyridine-7-carboxamide;

N-(4-fluorobenzyl)-8-hydroxy-5(6-methyl-1,1-dioxido-1,2,6-thiadiazinan-2yl)-1,6-naphthyridine-7-carboxamide;

20

a' cont

(4-fluorobenzyl)-8-hydroxy-5-{methyl[(1-methyl-1*H*-imidazol-4-yl)sulfonyl]amino}-1,6-naphthyridine-7-carboxamide;

N-[4-fluoro-2-(methylsulfonyl)benzyl]-8-hydroxy-5-{methyl[(1-methyl-1*H*-imidazol-4-yl)sulfonyl]amino}-1,6-naphthyridine-7-carboxamide;

N-7-[4-fluoro-2-(methylsulfonyl)benzyl]-8-hydroxy-N-5-,N-5-dimethyl-1,6-naphthyridine-5,∇-dicarboxamide;

N-[4-fluoro-2-(methylsulfonyl)benzyl]-8-hydroxy-5-(1,1-dioxido-1,2-thiazinan-2-yl)-1,6-naphthyridine-7-carboxamide

N-(2-(methylsulfonyl)benzyl)-5-(1,1-dioxido-1,2-thiazinan-2-yl)-8-hydroxy-1,6-naphthyridine-7-carboxamide

N-(2-[(dimethylaminosulfonyl]-4-fluorobenzyl)-5-(1,1-dioxido-1,2-thiazinan-2-yl)-8-hydroxy-1,6-naphthyridine-7-carboxamide;

N-(4-fluorobenzyl)-8-hydroxy-5-(1-methyl-5-oxopyrrolidin-3-yl)-1,6-naphthyridine-7-carboxamide;

and pharmaceutically acceptable salts thereof.

- 25. A pharmaceutical composition comprising a therapeutically effective amount of a compound according to claim 1, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
- 26. A method of inhibiting HIV integrase in a subject in need thereof which comprises administering to the subject a therapeutically effective
 30 amount of the compound according to claim 1 or a pharmaceutically acceptable salt thereof.
 - 27. A method for preventing or treating infection by HIV or for preventing, treating or delaying the onset of AIDS in a subject in need thereof which

30

al conts

comprises administering to the subject a therapeutically effective amount of the compound according to claim 1 or a pharmaceutically acceptable salt thereof.

- 28. The method according to claim 27, wherein the compound is administered in combination with a therapeutically effective amount of at least one HIV infection/AIDS treatment agent selected from the group consisting of HIV/AIDS antiviral agents, immunomodulators, and anti-infective agents.
- 29. The method according to claim 27, wherein the compound is administered in combination with a therapeutically effective amount of at least one antiviral selected from the group consisting of HIV protease inhibitors, non-nucleoside HIV reverse transcriptase inhibitors and nucleoside HIV reverse transcriptase inhibitors.
 - 30. A method of inhibiting HIV integrase in a subject in need thereof which comprises administering to the subject a therapeutically effective amount of the composition according to claim 25.
- 31. A method for preventing or treating infection by HIV or for preventing, treating, or delaying the onset of AIDS in a subject in need thereof which comprises administering to the subject a therapeutically effective amount of the composition according to claim 25.
- 32. A pharmaceutical composition which comprises the product prepared by combining an effective amount of a compound of claim 1, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
 - 33. A combination useful for inhibiting HIV integrase, for treating or preventing infection by HIV, or for preventing, treating or delaying the onset of AIDS, which is a therapeutically effective amount of a compound according to claim 1, or a pharmaceutically acceptable salt thereof, and a therapeutically effective amount of an HIV infection/AIDS treatment agent selected from the group consisting of HIV/AIDS antiviral agents, immunomodulators, and anti-infective agents.

a' cont

34. The combination according to claim 33, wherein the HIV infection/AIDS treatment agent is an antiviral selected from the group consisting of HIV profease inhibitors, non-nucleoside HIV reverse transcriptase inhibitors and nucleoside HIV reverse transcriptase inhibitors.

A method of inhibiting HIV integrase, for preventing or treating infection by HIV or for preventing, treating or delaying the onset of AIDS in a subject in need thereof, which comprises administering to the subject a therapeutically effective amount of a compound of Formula (I-A):

$$R^3$$
 A
 Q^1
 Q^2
 Q^3
 Q^4
 Q^4
 Q^2
 Q^3
 Q^4
 Q^2
 Q^4
 Q^4
 Q^2
 Q^4
 Q^4
 Q^2
 Q^4
 10

wherein A is phenyl or phenyl fused to a carbocycle to form a fused carbocyclic ring system;

A is substituted by R1, R2, R3, and R4;

15

20

25

L is a linker connecting a ring atom of A to the nitrogen of the $-N(R^5)$ - moiety, wherein L is

- (i) a single bond,
- (ii) $-(C_{1-6} \text{ alkyl})-,$
- (iii) -(C₂₋₆ alkenyl)-,
- (iv) -(C₀₋₆ alkyl)-(C₃₋₆ cycloalkyl)-(C₀₋₆ alkyl)-, or
- (v) $-(C_{0-6} \text{ alkyl})-M-(C_{0-6} \text{ alkyl})-$, wherein M is $-N(R^a)-$,

-OC(=O)-, or -C(=O)O-; wherein the alkenyl in (iii) and the alkyls in (ii), (iv), and (v) are independently and optionally substituted with 1, 2, or 3 substituents independently selected from the group consisting of halogen, -OH, -C1-6 alkyl, -O-C1-6 alkyl, -CO2Ra, -CO2(CH2)1-2Rk, -C1-6 alkyl-ORa, -Rk, -(CH2)1-2Rk, -CH(QRa)-Rk, and -CH(N(Ra)2)-Rk;

each of Q^1 , Q^2 , Q^3 , and Q^4 is independently: -H, (1) (2) -C₁₋₆ alkyl, (3)-C₁₋₆ haloalkyl, -O-C₁₋₆ alkyl, (5)-O-C₁₋₆ haloalkyl, (6) halo, (7) ¹CN, -C₁₋₆ alkyl-ORa, (8) 10 (9) $-C_0$ alkyl-C(=O)Ra, -C₀₋₆ alkyl-CO₂Ra, (10)-C₀₋₆ alkyl-SRa, (11) $-N(R^{a})_{2}$ (12)-C₁₋₆ alkyl $N(R^a)_2$, (13)15 $-C_{0-6}$ alkyl- \dot{C} (=O)N(Ra)₂, (14)-C₀₋₆ alkyl-G-C₁₋₆ alkyl-C(=O)N(Ra)₂, wherein G is O, S, (15) $N(R^a)$, or $N(SO_2^3R^a)$, -N(Ra)-C(Ra)=O(16)(17) -C₁₋₆ alkyl-N(Ra)- $\mathring{\mathbb{C}}$ (Ra)=O, $-C(=O)-N(R^a)-C_{1-6} \stackrel{a}{\sim} [kyl-[C(=O)]_{0-1}-N(R^a)_2,$ 20 (18)-C(=O)-N(Ra)-C₁₋₆ alkyl substituted with 1 or 2 -ORa, (19)(20)-C₀₋₆ alkyl-SO₂Ra, (21) -C₀₋₆ alkyl-N(R^a)SO₂R^a, (22)-C₂₋₆ alkenyl, 25 -C₂₋₆ alkenyl-C(=O)-N(R^a)₂, (23)(24)-C2-5 alkynyl, (25)-C2-5 alkynyl-CH2N(Ra)2, (26)-C2-5 alkynyl-CH2ORa, (27) -C2-5 alkynyl-CH2S(O)n-Ra, or 30 (28)

		R ^a	
	01	/ он	
	Cont	(29)	
		(30) $\sqrt{-C(=NR^a)-N(R^a)_2}$,	
		(31) $N(R^a)$ -C ₁₋₆ alkyl-S(O) _n R ^a ,	
	5	(32) $-N(R^a)-C_{1-6}$ alkyl-OR ^a ,	
		(33) $-N(R^a)-C_{1-6}$ alkyl- $N(R^a)_2$,	
		(34) $-N(R^{a})-C_{1-6}$ alkyl- $N(R^{a})-C(R^{a})$	
		(35) $-N(R^a)$ - C_{0-6} alkyl- $[C(=O)]_{1-2}$	$2N(R^a)_2$,
		(36) $-N(R^a)-C_{1-6}$ alkyl-CO ₂ Ra,	
		(37) $-N(R^a)C(=0)N(R^a)-C_{1-6}$ alky	
fama?		(38) $-N(R^a)C(=O) C_{1-6}$ alkyl- $N(R^a)$	a)2,
		(39) $-N(R^a)-SO_2-N(R^a)_2$,	
		$(40) -R^k,$	
		(41) -C ₁₋₆ alkyl substituted with R	
u u u		(42) -C ₁₋₆ haloalkyl substituted wi	th R ^K ,
	15	(43) $-C_{2-5}$ alkenyl- \mathbb{R}^k ,	
Ħ		(44) -C ₂₋₅ alkynyl-R ^k ,	
		(45) $-C_{0-6}$ alkyl-O-R ^k ,	
lah.		(46) -C ₀₋₆ alkyl-O-C ₁₋₆ alkyl-Ř ^k ,	
		(47) $-C_{0-6}$ alkyl-S(O) _n -R ^k ,	_ 1
ļud.	20 25 30	$(48) -C_{0-6} \text{ alkyl-}S(O)_{n}-C_{1-6} \text{ alkyl-}$	₽RK,
		(49) -O-C ₁₋₆ alkyl-OR ^k ,	. \
		(50) -O-C ₁₋₆ alkyl-O-C ₁₋₆ alkyl-R	к, \
		(51) $-O-C_{1-6}$ alkyl-S(O) _n R ^k ,	\
		(52) -C ₀₋₆ alkyl-N(R ^c)-R ^k ,	
		(53) $-C_{0-6}$ alkyl-N(R ^c)-C ₁₋₆ alkyl	substituted with one or two Rk
		groups,	onk \
		(54) $-C_{0-6}$ alkyl-N(R ^c)-C ₁₋₆ alkyl-	·OR ^k ,
		(55) $-C_{0-6}$ alkyl-C(=0)-R ^k ,	\
		(56) $-C_{0-6}$ alkyl- $C(=O)N(R^a)-R^k$,	\
		(57) $-C_{0-6}$ alkyl-N(Ra)C(=0)-Rk,	. u .pk
		(58) $-C_{0-6}$ alkyl- $C(=0)N(R^a)-C_{1-6}$	
		(59) $-C_{0-6}$ alkyl-N(Ra)-C ₀₋₆ alkyl-	$S(O)_n R^K;$

each of R¹ and R² is independently: (1)-H, -C₁₋₆ alkyl, -C₁₋₆ haloalkyl, (4)-O-C₁₋₆ alkyl, (5) -O-C₁₋₆ haloalkyl, (6) HO halo, (7) -NQ2, 10 (8) (9) -CN. -C₁₋₆ alkyl-ORa, (10) $-C_{0-6}$ alkyl-C(=O)Ra, (11)(12)-C₀₋₆ alkxl-CO₂Ra, -C₀₋₆ alkyl\SRa, 15 (13) $-N(R^{a})_{2}$, (14) $-C_{1-6}$ alkyl-N(\mathbb{R}^a)2, (15) $-C_{0-6}$ alkyl- $C(=0)N(R^a)_2$, (16)(17) $-C_{1-6}$ alkyl-N(Ra)-C(Ra)=O, 20 (18)-SO₂Ra, (19) $-N(R^a)SO_2R^a$, (20)-C2-5 alkenyl, -O-C₁₋₆ alkyl-OR^a, (21) (22)-O-C₁₋₆ alkyl-SR^a, 25 (23)-O-C₁₋₆ alkyl-NH-CO₂Ra (24)-O-C2-6 alkyl-N(Ra)2, (25) $-N(R^a)-C_{1-6}$ alkyl-SRa, -N(Ra)-C1-6 alkyl-ORa, (26)(27) $-N(R^a)-C_{1-6}$ alkyl $-N(R^a)_2$, 30 (28) $-N(R^a)-C_{1-6}$ alkyl $-N(R^a)-C(R^a)=\dot{O}$ (29)-Rk, -C₁₋₆ alkyl substituted with 1 or 2 R^k groups, (30)-C₁₋₆ haloalkyl substituted with 1 or 2 R^k groups, (31)(32)-C₂₋₅ alkenyl-R^k,

		\		
		(33)	-C ₂ -5	alkynyl-Rk,
	Λ	(34)	-O-Rk	
	α	(35)	-O-C1	-6 alkyl-R ^k ,
	Cont	(36)	$\sqrt{-S(O)_1}$	n-R ^k ,
	5	(37)	$S(O)_n$ - C_{1-6} alkyl- R^k ,	
		(38)	- \d -C ₁₋₆ alkyl-OR ^k ,	
		(39)) $-O(C_{1-6} \text{ alkyl-O-C}_{1-6} \text{ alkyl-R}^k)$	
		(40)	-o-q1	$_{-6}$ alkyl-S(O) _n R ^k ,
		(41)	-C1-6	alkyl (OR ^b)(R ^k) ,
	10	(42)		
		(43)		alkyl-N(Rb)(Rk),
•		(44)	-C0-6	alkyl-N(R ^b)(-C ₁₋₆ alkyl-R ^k),
		(45)		alkyl $S(O)_n$ - R^k ,
				alkyl $\S(O)_n$ - C_{1-6} alkyl- R^k ,
	15	(47)		alkyl C(O)-R ^k , or
		(48)	-C ₀ -6	alkyl C(\lozenge)-C ₁₋₆ alkyl-R ^k ,
				\
	each	of R ³ an	d R4 is	independently
			(1)	-H, \
	20		(2)	halo,
			(3)	-CN,
			(4)	-NO ₂ ,
			(5)	-ОН,
			(6)	C_{1-6} alkyl,
	25		(7)	C ₁₋₆ haloalkyl,
			(8)	-O-C ₁₋₆ alkyl,
				-O-C ₁₋₆ haloalkyl,
			(10)	-C ₁₋₆ alkyl-OR a ,
			(11)	-C ₀₋₆ alkyl-C(=O) R^a ,
	30		(12)	-C ₀₋₆ alkyl-CO ₂ R a ,
			(13)	-C ₀₋₆ alkyl-SR a ,
			(14)	$-N(R^a)_2$,
			(15)	$-C_{1-6}$ alkyl-N(R ^a) ₂ ,
			(16)	-C ₀₋₆ alkyl-C(=O) $N(R^a)_2$,

(17) -SO₂Ra,

(18) $-N(Ra)SO_2Ra$,

(19) -C₂₋₅ alkenyl,

(20) -O-C₁₋₆ alkyl-ORa,

(21) -O-C₁₋₆ alkyl-SR^a,

(22) -O-C₁₋₆ alkyl-NH-CO₂R a , or

(23) \setminus -O-C₂₋₆ alkyl-N(R^a)₂;

R5 is

10

15

(1) -H,

- -C₁₋₆ alkyl, optionally substituted with from 1 to 5 substituents independently selected from halogen, -O-C₁₋₆ alkyl, -O-C₁₋₆ haloalkyl, -N(R^a)₂, and -CO₂R^a;
- (3) aryl optionally substituted with from 1 to 5 substituents independently selected from halogen, C₁₋₆ alkyl, C₁₋₆ haloalkyl, -O-C₁₋₆ alkyl, -O-C₁₋₆ haloalkyl, -S-C₁₋₆ alkyl, -CN, and -OH, or

(4) -C₁₋₆ alkyl substituted with R^k;

20 each R^a is independently -H, -C₁₋₆ alkyl, or C_{1-6} haloalkyl;

each Rb is independently:

- (1) -H,
- (2) -C₁₋₄ alkyl,
- 25 (3) -C₁₋₄ haloalkyl,
 - (4) -R k ,
 - (5) -C₂₋₃ alkenyl,
 - (6) $-C_{1-4}$ alkyl- R^k ,
 - (7) $-C_{2-3}$ alkenyl- R^k ,
- 30 (8) $-S(O)_n-R^k$, or
 - (9) $-C(O)-R^{k}$;

each R^c is independently

(1) -H,

15

20

30

(2) -C₁₋₆ alkyl,

(3) $-C_{1-6}$ alkyl substituted with $-N(R^a)_2$, or

-C₁₋₄ alkyl-aryl, wherein aryl is optionally substituted with 1 to 5 substituents independently selected from halogen, C₁₋₆ alkyl, C₁₋₆ haloalkyl, -O-C₁₋₆ alkyl, -O-C₁₋₆ haloalkyl, -S-C₁₋₆ alkyl, -CN, and -OH;

each R^k is independently carbocycle or heterocycle, wherein the carbocycle and heterocycle are unsubstituted or substituted with from 1 to 5 substituents each of which is independently selected from

- (a) halogen
- (b) $-C_{1-6}$ alkyl,
- (c) -C₁₋₆ haloalkyl,
- (d) $-O-C_{1-6}$ alk χ l,
- (e) -O-C₁₋₆ haloalkyl,
- (f) $-S-C_{1-6}$ alkyl,
- (g) -CN,
- (h) -OH,
- (i) oxo,
- (j) $-C_{0-6}$ alkyl-C(=O)N(R_{a}^{a})2,
- (k) $-C_{0-6}$ alkyl-C(=0)Ra,
- (1) -N(Ra)-C(=O)Ra,
- (m) $-N(Ra)-CO_2Ra$,
- (n) $-C_{1-6}$ alkyl-N(Ra)-C(=O)Ra
- 25 (o) $-N(R^a)_2$,
 - (p) $-C_{1-6}$ alkyl-N(Ra)₂,
 - (q) $-C_{1-6}$ alkyl-ORa,
 - (r) $-C_{0-6}$ alkyl- CO_2R^a ,
 - (s) -C₀₋₆ alkyl-O-C₁₋₆ alkyl-ORa,
 - (t) $-SO_2Ra$,
 - (u) $-SO_2N(R^a)_2$,
 - (v) -C₀₋₆ alkyl-CO₂-C₂₋₅ alkenyl,
 - (w) aryl,
 - (x) aryloxy-,

ļuh

-C₁₋₄ alkyl substituted with aryl,

- heteromonocycle, (z)
- -C₁₋₄ alkyl substituted with a heteromonocycle, (aa)
- (bb) heteromonocyclylcarbonyl-C₀₋₆ alkyl-, and
- N-heteromonocyclyl-N-C₁₋₆ alkyl-amino-; (cc)

wherein the aryl group in (w) aryl, (x) aryloxy, and (y) -C₁₋₄ alkyl substituted with aryl, is optionally substituted with from 1 to 4 substituents independently selected from halogen, C1-6 alkyl, -O-C1-6 alkyl, C₁₋₆ alkyl substituted with N(Ra)₂, C₁₋₆ haloalkyl, and -OH; and

10

wherein the heteromonocyclyl group in (z) heteromonocycle,

- (aa) -C₁₋₄ alkyl substituted with a heteromonocycle,
- (bb) heteromonocyclyl-carbonyl-C₀₋₆ alkyl-, and (cc) Nheteromonocyclyl-N-Cl-6 alkyl-amino- is optionally substituted with from 1 to 4 substituents independently selected from halogen, C₁₋₆ alkyl, -O-C₁₋₆ alkyl, C₁₋₆ haloalkyl, oxo, and -OH; and

15

each n is independently an integer equal to 0, 1 or 2;

- 20 or a pharmaceutically acceptable salt thereof.
 - The method according to claim 35, wherein the compound is 36. selected from the group consisting of:
- 25 benzyl 8-hydroxyquinoline-7-carboxamide;
 - 1-Methyl-3-phenylpropyl 8-hydroxyquinoline-7-carboxamide;
 - 2-Phenylcyclopropyl 8-hydroxyquinoline-7-carboxamide;

30

1-Indanyl 8-hydroxyquinoline-7-carboxamide;

N-[(2E)-3-Phenyl-2-propenyl] 8-hydroxyquinoline-7-carboxamide;

Benzyl 8-Hydroxyquinoline-7-carboxamide;

and pharmaceutically acceptable salts thereof.