Тема 6. Функции и пределы

Содержание

Тема 6. Функции и пределы	1
6.4. Предел функции	
6.4.1. Определение предела	
 6.4.2. Операции над пределами функций 	
6.4.3. Пределы функций и неравенства	
6.4.4. Предел функции на бесконечности	
6.4.5. Односторонние пределы	
6.4.6. Замечательные пределы	
6.4.7. Бесконечно малые и бесконечно большие функции	
φ/11καμ111 1111 1111 1111 111 111 111 111 111	

6.4. Предел функции

6.4.1. Определение предела

 \Rightarrow Окрестностью точки x_0 называется любой интервал с центром в точке x_0 .

Пусть функция f(x) определена в некоторой окрестности точки x_0 кроме, быть может, самой точки x_0 . Дадим первое определение предела функции (по Гейне):

 \Rightarrow Число A называется npedenom функции f(x) в точке x_0 , если для любой последовательности $\{x_n\}$, сходящейся к x_0 ($x_n \neq x_0$ $\forall n$), последовательность $\{f(x_n)\}$ соответствующих значений функции сходится к A.

Обозначается это так: $\lim_{x \to x_0} f(x) = A$ или $f(x) \to A$ (при $x \to x_0$).

Первое определение предела функции эквивалентно второму определению (по Коши):

 \Rightarrow Число A называется пределом функции f(x) в точке x_0 , если для любого сколь угодно малого числа $\varepsilon > 0$ найдется такое число $\delta > 0$ (вообще говоря, зависящее от ε), что для всех x таких, что $|x-x_0| < \delta$, $x \neq x_0$, выполняется неравенство $|f(x)-A| < \varepsilon$.

Первое определение называется также определением предела функции «на языке последовательностей», а второе — определением предела «на языке ε - δ » (эпсилон-дельта).

6.4.2. Операции над пределами функций

Пусть функции f(x) и g(x) определены в некоторой окрестности точки x_0 и, кроме того, $\lim_{x\to x_0}f(x)=A, \lim_{x\to x_0}g(x)=B.$ Тогда:

1. Предел суммы (разности) этих функций равен сумме (соответственно, разности) их пределов, т.е.

$$\lim_{x\to x_0}[f(x)\pm g(x)]=A\pm B.$$

 Предел произведения функций равен произведению их пределов, т. е.

$$\lim_{x \to x_0} [f(x) \cdot g(x)] = A \cdot B.$$

3. Предел частного функций равен частному их пределов (при условии $B \neq 0$), т. е.

$$\lim_{x\to x_0}\frac{f(x)}{g(x)}=\frac{A}{B}.$$

Отсюда, в частности, вытекает, что постоянный множитель можно выносить за знак предела функции, т.е.

$$\lim_{x \to x_0} f(x) = A \implies \forall \alpha \in R : \lim_{x \to x_0} \alpha f(x) = \alpha \lim_{x \to x_0} f(x) = \alpha A.$$

Для функций справедливы аналоги соответствующих теорем для последовательностей о пределах корня и степени.

6.4.3. Пределы функций и неравенства

Пусть функции $f_1(x)$ и $f_2(x)$ определены в некоторой окрестности точки x_0 (кроме, быть может, самой этой точки) и $f_1(x) \leqslant f_2(x)$ для всех значений x из этой окрестности. Пусть, кроме того,

$$\lim_{x \to x_0} f_1(x) = A_1, \quad \lim_{x \to x_0} f_2(x) = A_2.$$

Тогда $A_1 \leqslant A_2$.

Теорема 6.2 (о промежуточной переменной). Пусть функции $f_1(x)$, f(x), $f_2(x)$ определены в некоторой окрестности $U(x_0)$ точки x_0 (кроме, быть может, самой этой точки) и для всех $x \in U(x_0)$, $x \neq x_0$ верно неравенство $f_1(x) \leqslant f(x) \leqslant f_2(x)$. Пусть, кроме того, $\lim_{x \to x_0} f_1(x) = \lim_{x \to x_0} f_2(x) = A$. Тогда $\lim_{x \to x_0} f(x)$ также существует и равен A.

Теорема 6.3 (о сохранении знака). Если предел функции в данной точке x_0 положителен, то и все значения функции в некоторой окрестности этой точки (кроме, быть может, самой точки x_0) положительны.

Теорема 6.4 (об ограниченности функции, имеющей предел). Пусть функция имеет предел в данной точке. Тогда она ограничена в некоторой окрестности этой точки.

6.4.4. Предел функции на бесконечности

Пусть функция f(x) определена на бесконечном промежутке $(a; +\infty)$.

 \Rightarrow Число A называется пределом функции f(x) при $x \to +\infty$, если для любой положительной бесконечно большой последовательности $\{x_n\}$ (т. е. $x_n \to +\infty$, $n \to \infty$) последовательность $\{f(x_n)\}$ соответствующих значений функции сходится к A.

Обозначение: $\lim_{x \to +\infty} f(x) = A$.

Равносильное определение предела функции при $x \to +\infty$ на языке ε - δ будет выглядеть так:

 \Rightarrow Число A называется пределом функции f(x) при $x \to +\infty$, если для любого числа $\varepsilon > 0$ найдется такое число M > 0, что для всех значений x > M выполняется неравенство $|f(x) - A| < \varepsilon$.

Аналогично определяется предел функции f(x) при $x \to -\infty$. Обозначение: $\lim_{x \to -\infty} f(x) = A$.

6.4.5. Односторонние пределы

 \Rightarrow Пусть функция f(x) определена в правой полуокрестности точки x_0 , т. е. на некотором интервале $(x_0, x_0 + \delta)$, где $\delta > 0$. Тогда говорят, что число A называется пределом функции f(x) справа в точке x_0 (или правосторонним пределом), если для любой последовательности $\{x_n\}$, сходящейся к x_0 и такой, что все ее члены больше, чем x_0 , соответствующая последовательность значений функции $\{f(x_n)\}$ сходится к числу A.

Обозначения: $\lim_{x \to x_0 + 0} f(x) = A$ или $f(x_0 + 0) = A$.

Аналогично определяется предел функции слева (или левосторонний предел) в точке x_0 , обозначаемый $\lim_{x\to x_0-0}f(x)$ или $f(x_0-0)$.

Очевидно, что $\lim_{x\to x_0} f(x)$ существует в том и только в том случае, когда существуют и односторонние пределы $\lim_{x\to x_0+0} f(x)$ и $\lim_{x\to x_0-0} f(x)$, причем все три числа равны, т. е.

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0 + 0} f(x) = \lim_{x \to x_0 - 0} f(x).$$

Первый замечательный предел

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

Второй замечательный предел

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e.$$

Часто используются следующие следствия из обоих замечательных пределов:

$$\lim_{x\to 0}\frac{\sin\alpha x}{x}=\alpha,\quad \alpha\in\mathbb{R};$$

$$\lim_{x\to 0}(1+x)^{\frac{1}{x}}=e,\quad \lim_{x\to 0}\frac{\ln(1+x)}{x}=1,\quad \lim_{x\to 0}\frac{e^x-1}{x}=1.$$

6.4.7. Бесконечно малые и бесконечно большие функции

 \Rightarrow Функция $\varphi(x)$ называется бесконечно малой при $x \to x_0$ (или в окрестности точки x_0), если $\lim_{x \to x_0} \varphi(x) = 0$.

Таким образом,

$$A = \lim_{x \to x_0} f(x) \iff f(x) = A + \alpha(x),$$

где $\alpha(x)$ — бесконечно малая при $x \to x_0$.

- \Rightarrow Пусть $\alpha(x)$ и $\beta(x)$ бесконечно малые функции при $x \to x_0$ Тогда:
 - 1) Если $\lim_{x\to x_0} \frac{\alpha(x)}{\beta(x)} = A \neq 0$, то функции $\alpha(x)$ и $\beta(x)$ называются бесконечно малыми одного порядка в окрестности точки x_0 .

В частности, если $\lim_{x\to x_0} \frac{\alpha(x)}{\beta(x)} = 1$, то $\alpha(x)$ и $\beta(x)$ называются эквивалентными бесконечно малыми (в окрестности точки x_0), что обозначается так: $\alpha(x) \sim \beta(x)$, $x\to x_0$.

2) Если $\lim_{x\to x_0}\frac{\alpha(x)}{\beta(x)}=0$, то функция $\alpha(x)$ называется бесконечно малой более высокого порядка, чем $\beta(x)$. Этот факт записывается так: $\alpha(x)=o(\beta(x)),\,x\to x_0$ и говорят, что $\alpha(x)$ — о малое от $\beta(x)$ при $x\to x_0$. В частности, если $\alpha(x)$ — бесконечно малая при $x\to x_0$, то $\alpha(x)=o(1),\,x\to x_0$.

При решении многих задач используются следующие эквивалентности, верные при $x \to 0$:

$$\sin x\sim x,\quad 1-\cos x\sim \frac{x^2}{2},\quad \operatorname{tg} x\sim x,\quad rcsin x\sim x,\quad rctg x\sim x,$$

$$\ln(1+x)\sim x,\quad a^x-1\sim x\ln a\ (\text{в частности},\,e^x-1\sim x),$$

$$\sqrt[n]{1+x}-1\sim \frac{x}{n}.$$

Кроме того, имеет место следующий факт: если $\beta(x)\sim\beta_1(x),\,x\to x_0$ и существуют пределы $\lim_{x\to x_0}\alpha(x)\cdot\beta(x)$ и $\lim_{x\to x_0}\frac{\alpha(x)}{\beta(x)},$ то

$$\lim_{x \to x_0} \alpha(x) \cdot \beta(x) = \lim_{x \to x_0} \alpha(x) \cdot \beta_1(x),$$

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to x_0} \frac{\alpha(x)}{\beta_1(x)}.$$

Таким образом, предел произведения или частного двух бесконечно малых не меняется при замене любой из них на эквивалентную бесконечно малую.