Работа 5.5.5 Компьютерная сцинтилляционная γ -спектрометрия

Шарапов Денис, Колесников Иван, Б05-004

Содержание

1	Аннотация	2
2	Теоретические сведения 2.1 Энергетическое разрешение спектрометра	2 3
3	Экспериментальная установка	3
4	Результаты измерений и обработка данных 4.1 Калибровка	4 4 4 4 5
5	Вывод	6
6	Приложение: спектрограммы	6

1 Аннотация

Цель работы: исследовать спектры излучения различных источников, характеризовать различные пики в спектрах радиоактивных веществ.

В работе используются: сцинтиллятор, фотоэлектронные умножители (Φ ЭУ), предусилитель импульсов, высоковольтный блок питания для Φ ЭУ, блок преобразования аналоговых импульсов с Φ ЭУ в цифровой код, компьютер.

2 Теоретические сведения

Фотоэффект — процесс взаимодействия гамма-кванта с электроном, связанным с атомом, при котором электрону передается вся энергия гаммакванта. При этом электрону сообщается кинетическая энергия

$$T_e = E_{\gamma} - I_i$$

где E_{γ} — энергия гамма-кванта, I_i — потенциал ионизации i-той оболочки атома. Фотоэффект особенно существенен для тяжелых веществ, где он идет с заметной вероятностью даже при высоких энергиях гамма-квантов. В легких веществах фотоэффект становится заметен лишь при относительно небольших энергиях гамма-квантов. Наряду с фотоэффектом, при котором вся энергия гамма-кванта передается атомному электрону, взаимодействие гаммаизлучения со средой может приводить к его рассеянию, т.е. отклонению от первоначального направления распространения на некоторый угол.

Эффект Комптона — упругое рассеяние фотона на свободном электроне, сопровождающееся изменением длины волны фотона (реально этот процесс происходит на слабо связанных с атомом внешних электронах). Максимальная энергия образующихся комптоновских электронов соответствует рассеянию гамма-квантов на 180° и равна

$$E_{\text{max}} = \frac{\hbar\omega}{1 + \frac{mc^2}{2\hbar\omega}}.$$

Процесс образования электрон-позитронных пар. При достаточно высокой энергии гамма-кванта наряду с фотоэффектом и эффектом Комптона может происходить третий вид взаимодействия гамма-квантов с веществом — образование электрон-позитронных пар. Процесс образования пар не может происходить в пустоте, так как в этом случае не выполняются законы сохранения энергии и импульса. В присутствии ядра или электрона процесс образования пары гамма-квантов возможен, так как можно распределить энергию и импульс гамма-кванта между тремя частицами без противоречия с законами сохранения. При этом если процесс образования пары идет в кулоновском поле ядра или протона, то энергия образующегося ядра отдачи оказывается весьма малой, так что пороговая энергия гамма-кванта E_0 , необходимая для образования пары, практически совпадает с удвоенной энергией покоя электрона

$$E_0 \approx 2mc^2 = 1.022$$
 M₃B.

Появившийся в результате процесса образования пар электрон свою энергию на ионизацию среды. Таким образом, вся энергия электрона остается в детекторе. Позитрон будет двигаться до тех пор, пока практически не остановится, а затем аннигилирует с электроном среды, в результате чего появятся два гамма-кванта. Т.е., кинетическая энергия позитрона также останется в детекторе. Далее возможны три варианта развития событий:

- 1. оба родившихся гамма-кванта не вылетают из детектора, и тогда вся энергия первичного гамма-кванта останется в детекторе, а в спектре появится пик с $E=E_{\gamma}$;
- 2. один из родившихся гамма-квантов покидает детектор, и в спектре появляется пик, соответствующий энергии $E=E_{\gamma}-E_{0}$, где $E_{0}=mc^{2}=511$ кэВ;
- 3. оба родившихся гамма-кванта покидают детектор, и в спектре появляется пик, соотвествующий энергии $E=E_{\gamma}-2E_{0}$, где $2E_{0}=2mc^{2}=1022$ кэВ.

Таким образом, любой спектр, получаемый с помощью гамма-спектрометра, описывается несколькими компонентами, каждая из которых связана с определенным физическим процессом. Как описано выше, основными физическими процессами взаимодействия гамма-квантов с веществом является фотоэффект, эффект Комптона и образование электрон-позитронных пар, и каждый из них вносит свой вклад в образование спектра. Помимо этих процессов, добавляется экспонента, связанная с наличием фона, пик характеристического излучения, возникающий при взаимодействии гамма-квантов с окружающим веществом, а также пик обратного рассеяния,

образующийся при энергии квантов $E_{\gamma}\gg mc^2/2$ в результате рассеяния гамма-квантов на большие углы на материалах конструктивных элементов детектора и защиты. Положение пика обратного рассеяния определяется по формуле

$$E_{\text{ofp}} = \frac{E}{1 + 2E/mc^2},\tag{1}$$

где E – энергия фотопика.

2.1 Энергетическое разрешение спектрометра

Даже при поглощении частиц с одинаковой энергией амплитуда импульса на выходе фотоприёмника сцинтилляционного детектора меняется от события к событию. Это связано:

- 1. со статистическим характером процессов сбора фотонов на фотоприёмнике и последующего усиления,
- 2. с различной вероятностью доставки фотона к фотоприемнику из разных точек сцинтиллятора,
- 3. с разбросом высвечиваемого числа фотонов

В результате в набранном спектре линия (которая для идеального детектора представляла бы дельта-функцию) оказывается размытой, её часто описывают гауссианом. Энергетическим разрешением спектрометра называется величина

$$R_i = \frac{\Delta E_i}{E_i},\tag{2}$$

где ΔE_i — ширина пика полного поглощения, измеренная на половине высоты, E_i — энергия регистрируемого γ -излучения. Значение E_i пропорционально среднему числу фотонов $\overline{n_i}$ на выходе $\Phi \ni V$, т.е.:

$$E_i = \alpha \overline{n_i}. \tag{3}$$

Полуширина пика полного поглощения ΔE_i пропорциональна среднеквадратичной флуктуации $\overline{\Delta n_i}$. Т.к. n_i является дискретной случайной величиной, которая распределена по закону Пуассона, то $\overline{\Delta n_i} = \sqrt{\overline{n_i}}$ и поэтому

$$\Delta E_i = \alpha \overline{\Delta n_i} = \alpha \sqrt{\overline{n_i}}.$$
 (4)

Из (3), (4) получаем, что

$$R_i = \frac{\Delta E_i}{E_i} = \frac{\text{const}}{\sqrt{E_i}}.$$
 (5)

Поскольку энергетическое разрешение зависит от энергии, его следует указывать для конкретной энергии. Чаще всего разрешение указывают для энергии гамма-линии 137 Cs (661, 7 кэВ).

3 Экспериментальная установка

Принципиальная блок-схема гамма-спектрометра, изучаемого в данной работе, показана на рис. 1.

Рис. 1: Принципиальная блок-схема спектрометра: 1 — сцинтиллятор, 2 — Φ ЭУ, 3 — предусилитель импульсов, 4 — высоковольтный блок питания для Φ ЭУ, 5 — блок преобразования аналоговых импульсов с Φ ЭУ в цифровой код (АЦП), 6 — компьютер для сбора данных, их обработки и хранения

4 Результаты измерений и обработка данных

4.1 Калибровка

Используя известные значения (табл. 1) пиков в спектрах натрия и цезия, построим калибровочный график соответствия номера канала определённому значению энергии (рис. 2). Получаем уравнение для перехода от номера канала к значению энергии:

$$E = 0.73N_i - 48,41$$
 [кэВ].

Таблица 1: Известные значения пиков в спектрах натрия и цезия

Образец	E, кэ B	N
$^{22}\mathrm{Na}$	511, 0	766
^{22}Na	661, 7	971
$^{137}\mathrm{Cs}$	1275, 0	1811

Рис. 2: Калибровочный график для перехода от номера канала к значению энергии

4.2 Определение параметров образцов

Используя калибровочный график, определим для всех остальных источников значения энергии пиков полного поглощения E_i , их ширины на половине высоты $\triangle E_i$ и энергетическое разрешение R_i . Результаты занесём в таблицу 2. В последний столбец E запишем справочные значения для соответствующих энергий пиков полного поглощения.

Таблица 2: Пики полного поглощения различных образцов

Элемент	N_i	ΔN_i	E_i , МэВ	ΔE_i , МэВ	R_i	E, МэВ
²² Na	1811	83	1.274	0.030	0.023	1.274
⁶⁰ Co	1670	37	1.171	0.027	0.023	1.173
⁶⁰ Co	1892	45	1.333	0.033	0.024	1.332
$^{137}\mathrm{Cs}$	967	62	0.662	0.022	0.032	0.662
$^{241}\mathrm{Am}$	149	13	0.060	0.004	0.067	0.595
$^{152}\mathrm{Eu}$	235	17	0.123	0.006	0.045	0.122
¹⁵² Eu	399	31	0.243	0.010	0.040	0.245
¹⁵² Eu	534	41	0.341	0.015	0.041	0.344

4.3 Исследование зависимости энергетического разрешения от энергии регистрируемого излучения

Проверим зависимость (5). Для этого построим график зависимости $R^2 = f(1/E)$ (рис. 3). Наблюдается линейная зависимость. Из-за неточностей в определении полуширины пиков точки не лежат на одной прямой.

Рис. 3: Зависимость энергетического разрешения от энергии регистрируемого излучения

4.4 Энергии края комптоновского рассеяния

Определим энергии края комптоновского поглощения для образцов 22 Na, 137 Cs, 60 Co и сравним их с соответствующими справочными значениями. Результаты представлены в таблице 3.

Таблица 3: Результаты определения энергии края комптоновского поглощения

Образец	$E_{\rm exp}$, МэВ	$E_{ m thr}$, МэВ
⁶⁰ Co	0,922	0,963
$^{137}\mathrm{Cs}$	0,448	0,477
^{22}Na	0,999	1,062

В спектрах, где наблюдаются пики обратного рассеяния, определим энергии этих пиков и сравним измеренные значения с определёнными по формуле (1). Результаты представлены в таблице 4.

Таблица 4: Энергии пиков обратного рассеяния

Образец	$E_{\rm exp}$, МэВ	$E_{\rm thr}$, МэВ
60 Co	0,228	0,209
60 Co	0,228	0,214
$^{137}\mathrm{Cs}$	0,198	0, 184

Эти значения практически совпадают. Пики обратного рассеяния в спектре кобальта, отвечающие разным пикам полного поглощения, на графике неразрешимы (виден один широкий пик).

Рис. 4: Пики обратного рассеяния

5 Вывод

В ходе работы после калибровки прибора были сняты спектры образцов 22 Na, 60 Co, 137 Cs, 241 Am, 152 Eu. В спектрах были исследованы пики, соответствующие следующим взаимодействиям гамма-квантов с веществом:

- фотоэффект (пики полного поглощения)
- эффект Комптона (характерное распределение энергий в спектре, оканчивающееся комптоновским краем)
- обратное рассеяние (пики обратного рассеяния)
- аннигиляция позитронов (пик 511 кэВ в спектре натрия, по которому проводилась калибровка)

6 Приложение: спектрограммы

Рис. 5: Спектр 22 Na

Рис. 6: Спектр $^{60}\mathrm{Co}$

Рис. 7: Спектр $^{137}\mathrm{Cs}$

Рис. 8: Спектр $^{241}\mathrm{Am}$

Рис. 9: Спектр $^{152}\mathrm{Eu}$

Рис. 10: Спектр шума