# Artificial Intelligence: A Modern Approach

#### Fourth Edition



Chapter 3

Solving Problems By Searching



1

#### Outline

- ♦ Problem-solving agents
- ♦ Example Problems
- ♦ Problem formulation
- ♦ Search Algorithms
- Uninformed Search Strategies
- Informed (Heuristic)Search Strategies
- ♦ Heuristic Functions



#### Introduction

- This section shows how an <u>informed search strategy</u>—one that uses domainspecific hints about the location of goals—can find solutions more efficiently than an uninformed strategy.
- The hints come in the form of <u>a heuristic function</u>, denoted h(n)

 $h(n) = \underline{\text{estimated cost}}$  of the cheapest path from the state at node n to the goal

• For example, in route-finding problems, we can estimate the distance from the current state to a goal by computing the <u>straight-line distance</u> on the map between the two points.



## Romania with step costs in km



## Straight-line distance to Bucharest

| Arad               | 366 |
|--------------------|-----|
| Bucharest          | (   |
| Craiova            | 160 |
| Oobreta            | 242 |
| Eforie             | 161 |
| agaras             | 178 |
| Giurgiu            | 77  |
| Iirsova            | 151 |
| asi                | 226 |
| <b>Jugoj</b>       | 244 |
| <b>Aehadia</b>     | 241 |
| <b>Neamt</b>       | 234 |
| <b>Dradea</b>      | 380 |
| Pitesti            | 98  |
| Rimnicu Vilcea     | 193 |
| Sibiu              | 253 |
| Timisoara          | 329 |
| J <b>rziceni</b>   | 80  |
| <sup>7</sup> aslui | 199 |
| Zerind             | 374 |
|                    |     |



#### Greedy search

- Greedy best-first search is a form of best-first search that expands first the node with the lowest value—the node that appears to be closest to the goal—on the grounds that this is likely to lead to a solution quickly.
- So, the evaluation function f(n) = h(n)
- Notice that the values of h<sub>sld</sub> cannot be computed from the problem description itself (that is, the ACTIONS and RESULT functions).
- It takes a certain amount of <u>world knowledge</u> to know that h<sub>sld</sub> is <u>correlated</u> with actual road distances and is, therefore, a useful <u>heuristic</u>.



## Greedy search

Evaluation function h(n) (heuristic) = estimate of cost from n to the closest goal

E.g.,  $h_{SLD}(n) = \text{straight-line distance from } n \text{ to Bucharest}$ 

Greedy search expands the node that appears to be closest to goal





#### Straight-line distance to Bucharest

| Arad           | 366 |
|----------------|-----|
| Bucharest      | 0   |
| Craiova        | 160 |
| Dobreta        | 242 |
| Eforie         | 161 |
| Fagaras        | 178 |
| Giurgiu        | 77  |
| Hirsova        | 151 |
| [asi           | 226 |
| Lugoj          | 244 |
| Mehadia        | 241 |
| Neamt          | 234 |
| Oradea         | 380 |
| Pitesti        | 98  |
| Rimnicu Vilcea | 193 |
| Sibiu          | 253 |
| Timisoara      | 329 |
| Urziceni       | 80  |
| Vaslui         | 199 |
| Zerind         | 374 |
|                |     |





# Straight-line distance to Bucharest

| Arad           | 366 |
|----------------|-----|
| Bucharest      | 0   |
| Craiova        | 160 |
| Dobreta        | 242 |
| Eforie         | 161 |
| Fagaras        | 178 |
| Giurgiu        | 77  |
| Hirsova        | 151 |
| Iasi           | 226 |
| Lugoj          | 244 |
| Mehadia        | 241 |
| Neamt          | 234 |
| Oradea         | 380 |
| Pitesti        | 98  |
| Rimnicu Vilcea | 193 |
| Sibiu          | 253 |
| Timisoara      | 329 |
| Urziceni       | 80  |
| Vaslui         | 199 |

374



Zerind

Chapter

Sections



Rimnicu Vilcea

193

# Straight-line distance to Bucharest

| 366 |
|-----|
| 0   |
| 160 |
| 242 |
| 161 |
| 178 |
| 77  |
| 151 |
| 226 |
| 244 |
| 241 |
| 234 |
| 380 |
| 98  |
| 193 |
|     |



Arad

366

Fagaras

176

Oradea

380

253

Sibiu



Straight-line distance

366

160

242

161

178

77

151

226

244

241

234

380

98

193

253

329

80

199

374

0

to Bucharest

Bucharest

Craiova

Dobreta

**Fagaras** 

Giurgiu

Hirsova

Iasi

Lugoj

Neamt

Oradea

Rimnicu Vilcea

Pitesti

Sibiu

Timisoara

Urziceni

Zerind

Mehadia

**Eforie** 

Arad



#### Greedy search

- For this particular problem, greedy best-first search using h<sub>sld</sub> finds a solution without ever expanding a node that is not on the solution path.
- The solution it found does not have optimal cost, however ☺
- The path via Sibiu and Fagaras to Bucharest is 32 miles longer than the path through Rimnicu Vilcea and Pitesti.
- This is why the algorithm is called <u>"greedy"</u>—on each iteration it tries to get as close to a goal as it can, but <u>greediness can lead to</u> <u>worse results than being careful</u>.



#### Greedy search

- Greedy best-first graph search is complete in finite state spaces, but not in infinite ones.
- With a good heuristic function, the complexity can be reduced substantially, on certain problems reaching O(bm)



Complete??



Time??



Complete?? No-can get stuck in loops, e.g.,
 Iasi → Neamt → Iasi → Neamt →
 Complete in finite space with repeated-state checking

<u>Time??</u>  $O(b^m)$ , but a good heuristic can give dramatic improvement

Space??



<u>Complete</u>?? No—can get stuck in loops, e.g.,

Iasi → Neamt → Iasi → Neamt →

Complete in finite space with repeated-state checking

<u>Time??</u>  $O(b^m)$ , but a good heuristic can give dramatic improvement

<u>Space</u>??  $O(b^m)$ —keeps all nodes in memory

Optimal??



<u>Complete</u>?? No—can get stuck in loops, e.g., Iasi

→ Neamt → Iasi → Neamt →

Complete in finite space with repeated-state checking

<u>Time??</u>  $O(b^m)$ , but a good heuristic can give dramatic improvement

<u>Space</u>??  $O(b^m)$ —keeps all nodes in memory

Optimal?? No



#### A\* search

- The most common informed search algorithm is A\* search (pronounced "A-star search"),
- It is a best-first search that uses the evaluation function

$$f(n) = g(n) + h(n)$$

#### where:

g(n) is the path cost from the initial state to node n and h(n) is the estimated cost of the shortest path from n to a goal state, so we have

f(n) = estimated cost of the best path that <u>continues</u> from n to goal



#### $\mathsf{A}^*$ search

Idea: avoid expanding paths that are already expensive

Evaluation function f(n) = g(n) + h(n)

g(n) = real/actual cost so far to reach n

h(n) = estimated cost to goal from n

f(n) = estimated total cost of path through n to goal

A\* search uses an **admissible** heuristic

i.e.,  $h(n) \le h^*(n)$  where  $h^*(n)$  is the true cost from n. (Also require  $h(n) \ge 0$ , so h(G) = 0 for any goal G.)

#### E.g., $h_{SLD}(n)$ never overestimates the actual road distance

Theorem: A\* search is optimal







#### Straight-line distance to Bucharest

| 366 |
|-----|
| 0   |
| 160 |
| 242 |
| 161 |
| 178 |
| 77  |
| 151 |
| 226 |
| 244 |
| 241 |
| 234 |
| 380 |
| 98  |
| 193 |
| 253 |
| 329 |
| 80  |
| 199 |
| 374 |
|     |













Pearson

#### Straight-line distance to Bucharest

| Bucharest    |     |
|--------------|-----|
| ad           | 360 |
| ıcharest     | (   |
| raiova       | 160 |
| breta        | 242 |
| orie         | 16  |
| garas        | 173 |
| urgiu        | 7   |
| irsova       | 15  |
| si           | 220 |
| ıgoj         | 24  |
| ehadia       | 24  |
| eamt         | 234 |
| radea        | 380 |
| testi        | 98  |
| mnicu Vilcea | 193 |
| biu          | 253 |
| misoara      | 329 |
| ziceni       | 80  |
| ıslui        | 199 |
|              |     |

1-2

374







Arad 366 **Bucharest** Craiova 160 Dobreta 242 **Eforie** 161 **Fagaras** 178 77 Giurgiu 151

0

226

244

241

234

380

98

193

253

329

80

199

374

Hirsova Iasi Lugoj Mehadia

Neamt

Oradea Pitesti

Rimnicu Vilcea Sibiu

**Timisoara** Urziceni

Vaslui Zerind

1-2







## Optimality of A \* (standard proof)

Suppose some suboptimal goal  $G_2$  has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G.

Start



$$f(G_2) = g(G_2)$$
 since  $h(G_2) = 0$   
>  $g(G)$  since  $G_2$  is suboptimal  
 $\geq f(n)$  since  $h$  is admissible

Since  $f(G_2) \ge f(n)$ , A\* will never select  $G_2$  for expansion



## Optimality of A\* (more useful)

Lemma:  $A^*$  expands nodes in order of increasing f value\*

Gradually adds "f-contours" of nodes (cf. breadth-first adds layers)

Contour i has all nodes with  $f = f_i$ , where  $f_i < f_{i+1}$ 





Complete??



<u>Complete</u>?? Yes, unless there are infinitely many nodes with  $f \leq f(G)$ 

Time??



<u>Complete</u>?? Yes, unless there are infinitely many nodes with  $f \leq f(G)$ 

<u>Time??</u> Exponential in [relative error in  $h \times$  length of soln.]

Space??



<u>Complete</u>?? Yes, unless there are infinitely many nodes with  $f \leq f(G)$ 

<u>Time</u>?? Exponential in [relative error in  $h \times length$  of soln.]

Space?? Keeps all nodes in memory

Optimal??



<u>Complete</u>?? Yes, unless there are infinitely many nodes with  $f \leq f(G)$ 

<u>Time</u>?? Exponential in [relative error in  $h \times$  length of soln.]

Space?? Keeps all nodes in memory

Optimal?? Yes—cannot expand  $f_{i+1}$  until  $f_i$  is finished

A\* expands all nodes with  $f(n) < C^*$ 

A\*expands some nodes with  $f(n) = C^*$ 

A\*expands no nodes with  $f(n) > C^*$ 

- There are 9!/2 reachable states in an 8-puzzle, so a search could easily keep them all in memory.
- But for the 15-puzzle, there are 16!/2 states—over 10 trillion—so to search that space we will need the help of a good admissible heuristic function.
- There is a long history of such heuristics for the 15-puzzle; here are two commonly used candidates:





long.

#### E.g., for the 8-puzzle:

 $h_1(n)$  = number of misplaced tiles (blank included)

 $h_2(n)$  = total Manhattan distance

(i.e., no. of squares from desired location of each tile)



 $\frac{h_1(S)}{h_2(S)} = ??$ 

A typical instance of the 8-puzzle. The shortest solution is 26 actions long.

#### E.g., for the 8-puzzle:

 $h_1(n)$  = number of misplaced tiles

 $h_2(n)$  = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

$$\frac{h_1(S)}{h_2(S)} = ??? 8$$
  
 $\frac{h_2(S)}{h_2(S)} = ??? 4+0+3+4+1+0+2+1= 15$ 



A typical instance of the 8-puzzle. The shortest solution is 26 actions long.



- H<sub>1</sub> is an admissible heuristic because any tile that is out of place will require at least one move to get it to the right place.
- H<sub>2</sub> is also admissible because all any move can do is move one tile one step closer to the goal.



#### Dominance

If  $h_2(n) \ge h_1(n)$  for all n (both admissible), then  $h_2$  dominates  $h_1$  and is better for search

#### Typical search costs:

$$d = 14$$
 IDS = 3,473,941 nodes  
 $A^*(h_1) = 539$  nodes  
 $A^*(h_2) = 113$  nodes  
 $d = 24$  IDS  $\approx 54,000,000,000$  nodes  
 $A^*(h_1) = 39,135$  nodes  
 $A^*(h_2) = 1,641$  nodes

Given any admissible heuristics  $h_a$ ,  $h_b$ ,

$$h(n) = \max(h_a(n), h_b(n))$$

is also admissible and dominates  $h_a$ ,  $h_b$ 



#### Relaxed problems

Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then  $h_1(n)$  gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square, then  $h_2(n)$  gives the shortest solution

Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem



#### Summary

A problem consists of five parts: the **initial state**, a set of **actions**, a **transition model** describing the results of those actions, a set of **goal states**, and an **action cost function**.

**Uninformed search** methods have access only to the **problem definition**. Algorithms build a search tree in an attempt to find a solution.

**Informed search** methods have access to a **heuristic** function h(n) that estimates the cost of a solution from n.

