

DIGITAL COMMUNICATION

Bharathi V Kalghatgi.

Department of Electronics and Communication Engg

Problems on SNR for transmission with Quantization Noise

Bharathi V Kalghatgi.

Department of Electronics and Communication Engineering

Problems on SNR for transmission with Quantization Noise

1) Let X be uniform over the range -10 to 10. If it is required that $O_{\mathbb{Q}}^2 < 0.2$ what Is the minimum N required. (By default we take Mid-riser quantizer only).

Sol:

Given:
$$\delta Q^2 < 0.2$$

$$\frac{\Delta^2}{12} < 0.2$$

$$\Delta < \sqrt{2.4}$$

$$\Delta < 1.549$$

$$\Delta = \frac{2A}{3N} < 1.549.$$

$$2^{N} > \frac{20}{1.549}$$

Problems on SNR for transmission with Quantization Noise

2) Let X be uniform over the range [-A to A]. Find the SNR for N bit quantization (assume N is large).

Sol

SNR =
$$\frac{(2A)^2}{\frac{12}{\Delta^2/12}}$$
 (SNR = $\frac{\sigma_x^2}{\sigma_{q^2}^2}$).

$$SNR = \frac{4A^2}{\Delta^2}$$

$$\omega \cdot k \cdot t \cdot \Delta = \frac{2A}{2N}$$

.. SNR =
$$\frac{4A^2}{4A^2/2^{2N}}$$

In dB we have
$$SNR_{dB} = 10\log_{10}\left(\frac{Ox^{2}}{Oa^{2}}\right)$$
$$= 10\log_{10}(2^{2N}).$$
$$SNR_{dB} = 20N\log_{10}(2).$$
$$SNR_{dB} = 6.02N \approx 6N$$

Problems on SNR for transmission with Quantization Noise

3) ext let x~N(0,02). (N→Normal distribution (Gaussian).)

let x be Gaussian with mean o and varia

-nce o.2: Find SNR for N-bit Quantization.

let A = 40. (: peak for Gaussian vis at ∞).

Problems on SNR for transmission with Quantization Noise

w. k. t. for Gaussian distribution

$$f_{x}(x) = \sqrt{\frac{1}{3\pi\sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}}$$

here
$$\mu = 0$$
.
 $f_{x}(x) = \frac{1}{\sqrt{2\pi}\sigma^{2}} e^{-\frac{T^{2}}{2\sigma^{2}}}$

SNR =
$$\frac{0x^2}{06^2} = \frac{0x^2}{\frac{16}{3} \frac{0x^2}{2^{2N}}}$$

$$SNR = \frac{3}{16} 2^{2N}$$

PES UNIVERSITY

4) let
$$\alpha(n) = A\cos(\omega_0 n)$$
. find SNR . in terms of N. Sol Since $\alpha(n) = A\cos(\omega_0 n)$. i.e., $\alpha(n)$ is deterministic $SNR = \frac{Avg. Power}{\nabla g^2}$ of Input signal $= \frac{P\alpha}{\nabla g^2}$

w.k.t
$$P_x = \frac{A^2}{\vartheta}$$
 when $x(n) = A \cos \omega_0 n$.

SNR =
$$\frac{A^2}{2}/(\Delta^2/12)$$
.
= $\frac{A^2}{2}/(\Delta^2/12)$.
= $\frac{A^2}{2}/(\Delta^2/12)$.
SNR = $\frac{3}{2}2^N$
SNR = $\frac{3}{2}2^N$

Px =
$$\lim_{N\to\infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x(n)|^{2}$$

*when $x(n)$ is periodic

Px = $\frac{1}{2N} \sum_{n=0}^{N-1} |x(n)|^{2} \rightarrow 0$

Use D has we don't

know weather $x(n)$

is periodic (or) not e

express $x(n) = Aces(w_{e}n)$

as $A(e^{iw_{e}n} + e^{-iw_{e}n})$.

Observations from the previous examples

SNRdo

values of N.

From the above results we can summarize that:

- 1) SNR depends upon input signal's pdf.
- 2) $SNR_{dB} = 6N + C$ is is an incrementally linear function of N with a slope of 6dB/bit.
- 3) For every additional bit, we get an improvement of 6dB in SNR. (From 2nd Result)
- 4) If the number of bits is increased by 1, σ_Q^2 decreases by a factor of 4. The difference in performance between different signals with same peak to peak values is due to the change in signal power variation, i.e. σ_x^2

SNR for transmission with Quantization Noise

Consider the pdf $f_{\mathbf{x}}(\mathbf{x})$:

Here the value occurring near zero is more probable.

So there is more probability of values being close to zero than towards the extremes.

Thus the performance of a signal is affected by σ_x^2 and not the σ_g^2 .

So the differentiating factor for different SNR's is σ_x^2 and not the σ_g^2 .

THANK YOU

Bharathi V Kalghatgi.

Department of Electronics and Communication Engineering

BharathiV.Kalghatgi@pes.edu