Criptografía de clave pública

Características de la Criptografía de clave pública Complejidad computacional Servicios de seguridad

Criptografía de clave pública

Características

- Cifrado en bloque. Tamaño de bloques de al menos 1024 bits.
- Se construye sobre funciones unidireccionales ("one-way"), basadas en problemas matemáticos de difícil solución.
- Cada usuario posee dos claves: una clave pública y una clave privada.
- Las claves son de mayor tamaño que en el cifrado simétrico.
- La tasa de cifrado es sensiblemente inferior a la del cifrado simétrico.
- Aparece en 1976: Intercambio de claves de Diffie-Hellman.
- Algunos criptosistemas de clave pública: RSA, ElGamal, ECC, criptosistema de Rabin.

- Se utilizan diferentes algoritmos para cifrar y descifrar.
- Dos claves:
 - Clave de cifrado K_E (pública).
 - Clave de descifrado K_D (privada).
- $K_{
 m D}$ no puede deducirse de $K_{
 m E}$ (bajo el mismo coste computacional).
- Es más eficiente para distribuir claves que el cifrado simétrico.
- Es fácil efectuar ataques de texto en claro elegido:

$$C = E(M, K_E).$$

Fundamentos

 ${\mathcal M}$ conjunto de mensajes en claro, ${\mathcal C}$ conjunto de mensajes cifrados,

$$\begin{array}{ccc} \mathcal{M} & \stackrel{\mathrm{E}}{\longrightarrow} & \mathcal{C} \\ M & \mapsto & C \end{array}$$

E función de cifrado, biyectiva, E^{-1} función de descifrado.

Características de E:

- $C = E(M, K_E)$ fácil de calcular conociendo K_E .
- $M = E^{-1}(C, K_D)$ cálculo imposible sin K_D ("trapdoor").

Una función con estas propiedades se denomina función "one-way".

Orden de una función

Definición

Sean $f,g:\mathbb{R} \longrightarrow \mathbb{R}$, g función positiva. Se dice que $f=\mathcal{O}(g)$ si existen C>0 y $x_0\in\mathbb{R}$, tales que $|f(x)|< C\cdot g(x), \quad \forall \ x>x_0.$

Ejemplos:

$$x = \mathcal{O}(x), \quad x = \mathcal{O}(x^2), \quad \log x = \mathcal{O}(x), \quad x^r = \mathcal{O}(e^x), \quad r \in \mathbb{N}$$

Nota: Si f y g son evaluadas sobre los enteros positivos, la definición anterior sigue siendo válida.

Representación de un entero decimal en base 2

Dado n entero positivo, existe k entero tal que

$$2^{k-1} \le n < 2^k,$$

entonces,

$$(k-1)\log 2 \le \log n < k \log 2,$$

 $(k-1) \le \frac{\log n}{\log 2} \longrightarrow k = \mathcal{O}(\log n).$

<u>Nota</u>: Observemos que k es el número de bits necesarios para representar n ($k = [\log_2 n] + 1$).

Complejidad computacional

Definición

Sea n el mayor entero positivo que interviene en un algoritmo. Se dice que el algoritmo tiene

- coste computacional polinomial si existe $r \in \mathbb{N}$ tal que el número de operaciones necesarias para su ejecución es $\mathcal{O}(\log^r n)$.
- coste computacional exponencial si el número de operaciones necesarias para su ejecución no es polinomial.

Funciones "one-way"

Una función $E: \mathcal{M} \longrightarrow \mathcal{C}$ biyectiva es "one-way" si

- la función de cifrado E presenta complejidad polinomial (computacionalmente factible (conocida K_E)).
- la función de descifrado E^{-1} complejidad exponencial (coste computacional prohibitivo (desconocida $K_{\rm D}$)).

Nota:

- Una función es "one-way" computacionalmente (podría cambiar en el futuro: paralelismo, nuevos algoritmos, ...).
- No se ha demostrado que ninguna función sea "one-way".

Algunos costes computacionales

a, b, x, n enteros de a lo sumo k-bits,

```
Multiplicación ab: O(k^2)
Convertir entero de k-bits bin a dec: O(k^2)
Hallar mcd(a, b), (alg. Euclides): O(k^3)
Calcular potencias a^x \mod n: O(k^3)
Factorial n!: no algoritmo polinomial
```

Coste computacional de la multiplicación

Sean m, n enteros de k, ℓ bits respectivamente, $k \geq \ell$

Ejemplo:

				1			0 0		k bits (entero mayor) ℓ bits
				1	1	0	0	1	entero n
		1	1	0	0	1	0		desplazamiento a izda
	1	1	0	0	1				$\leq \ell$ filas de $\leq k + \ell$ bits
1	0	1	0	0	0	1	0	1	$\ell-1$ sumas de enteros de $\leq k+\ell$ bits

Nota:

- Suma de dos enteros de k bits \rightarrow entero de a lo sumo k+1 bits.
- Cada suma produce un entero de a lo sumo $(k + \ell)$ bits (la última a lo sumo $\leq k + \ell + 1$).
- Cada suma: $k + \ell$ operaciones de bit.
- Coste total $\leq \ell(k+\ell) \sim O(k^2)$.

Coste computacional del cifrado-descifrado afín

Ejemplo

Sea $k = [\log_2 M] + 1$ la longitud en bits de un mensaje M

Para cifrar: $C = (aM + b) \mod n$

Clave de cifrado: $K_{\rm E} = (a, b)$

Coste computacional: $\mathcal{O}(k^2)$

Para descifrar: $M = (a^{-1}C - a^{-1}b) \mod n$

Clave de descifrado: $K_D = (a^{-1}, -a^{-1}b)$ Coste computacional: $\mathcal{O}(k^3)$ (inversos)

Servicios Criptográficos

Los servicios criptográficos que ofrece la Criptografía de clave pública son:

- Confidencialidad (cifrado).
- Intercambio de claves.
- Establecimiento de comunicación.
- Autenticación de origen (se requiere Firma Digital).
- Integridad (se requiere MAC o Funciones Hash).

Esquema de cifrado de clave pública

Fuente: Internet, "draw+of+public+key+cryptography"

Cifrado

<u>Usuarios</u>: A y B. E_A , E_B funciones de cifrado de A y B.

Objetivo: A pretende enviar a B un mensaje cifrado M.

Protocolo:

A envía: $E_B(M)$

Observaciones:

- Se necesita autenticación de la clave pública de B
 (se requiere una Infraestructura de Clave Pública (PKI) que la certifique).
- Confidencialidad (sólo B puede leer M).
- No se garantiza autenticidad de origen (se requiere firma digital).
- No se garantiza integridad (se requiere MAC o funciones hash).

Intercambio de claves

<u>Usuarios</u>: $A y B. E_A, E_B$ funciones de cifrado de A y B.

Objetivo: A, B pretenden intercambiar una clave secreta.

Protocolo:

A envía: $E_B E_A^{-1}(K)$

B calcula: $E_B^{-1} \stackrel{\frown}{E_B} E_A^{-1}(K)$

B envía: $E_A E_B^{-1} E_A^{-1}(K)$

A calcula: $E_A^{-1} \stackrel{\smile}{E}_A \stackrel{\frown}{E_B^{-1}} \stackrel{\smile}{E}_A^{-1}(K)$

Observaciones:

- $E_B^{-1} E_A^{-1}(K)$ es la clave compartida.
- Disponible para iniciar un criptosistema simétrico.
- Se necesita autenticación de E_A, E_B (requiere una PKI).

Establecimiento de comunicación

<u>Usuarios</u>: A y B. E_A , E_B funciones de cifrado de A y B.

 $\frac{\text{Objetivo:}}{\text{(demostrar a la otra parte quienes son)}}.$

Protocolo:

A elige: un número aleatorio n y envía $E_B(n)$

B elige: un número aleatorio m y envía $E_A(m)$

A descifra: $E_A^{-1} E_A(m)$ y envía $E_B(m)$ B descifra: $E_B^{-1} E_B(n)$ y envía $E_A(n)$

A descifra: $E_A^{-1} E_A(n)$ B descifra: $E_B^{-1} E_B(m)$

Nota: Se necesita autenticación de E_A, E_B (requiere una PKI).

Autenticidad de origen: Firma Digital

<u>Usuarios</u>: A y B. E_A, E_B funciones de cifrado de A y B.

Objetivo: A pretende enviar a B un mensaje firmado M. Sea S la firma.

<u>Protocolo</u>:

A envía: $M \text{ y } E_A^{-1}(S)$ B recibe: $M \text{ y } E_A^{-1}(S)$ B descifra y verifica: $E_A E_A^{-1}(S)$

Observaciones:

- Garantiza a B que el mensaje viene de A.
- No garantiza autenticidad de contenido de M.
- No garantiza confidencialidad.
- La firma S puede ser el propio mensaje M. Conviene que S incluya datos de identificación personal de A, datos temporales, u otros.
- Si M grande, firma de un resumen de M.

Integridad

<u>Usuarios</u>: A y B. E_A, E_B funciones de cifrado de A y B.

Objetivo: A pretende enviar a B un mensaje M con autenticación de contenido. A y B acuerdan utilizar una función hash H(.).

Protocolo:

A envía: M y H(M)B recibe: M y H(M)

B calcula y verifica: H(M)

Problemas matemáticos en los que se basa

- Cálculo del logaritmo discreto en cuerpos finitos:
 - Intercambio de claves de Diffie-Hellman.
 - Cifrado de Massey-Omura.
 - Criptosistema de ElGamal.
- El problema de la factorización de enteros:
 - Algoritmo RSA (Rivest, Shamir, Adleman).
- Cálculo de raíces cuadradas modulares:
 - Criptosistema de Rabin.
- Cálculo del logaritmo elíptico en cuerpos finitos:
 - Intercambio de claves (análogo de Diffie-Hellman).
 - Cifrado análogo al de Massey-Omura.
 - Cifrado análogo al de ElGamal.

Fin de la sección