Homotopy Analysis for Tensor PCA Yuan Deng Duke University

Joint work with Anima Anandkumar, Rong Ge, Hossein Mobahi

Non-convex Optimization

Optimizing smooth function f(x).

How to get rid of local optima

- How to decide how much to smooth?
- How to recover the original global optium?

Homotopy Method

Try all level of smoothing!

Homotopy Method

Computer Vision

• image deblurring [Boccuto et al., 2002]

• image restoration [Nikolova et al., 2010]

optical flow [Brox & Malik, 2011]

Clustering [Gold, 1994]

Graph matching [Zaslavskiy et al., 2009]

- No theoretical guarantees on the solution
 - too restrictive [Mobahi and Fisher III, 2015]
 - difficult to check [Hazan et al., 2016]

Homotopy Method

- Handcrafted the choice of smoothing levels
- Slow: Local search is repeated for each smoothing level

Tensor PCA [Richard and Montanari 2014]

Probabilistic model for PCA

 $v \in \mathbb{R}^d$, $\tau \geq 0$ is the signal-to-noise ratio

$$M = \tau v v^{\mathsf{T}} + A$$

Signal Gaussian Noise

Tensor PCA: $T = \tau v \otimes v \otimes v + A$

Objective:

• Design an efficient algorithm for as small au as possible

Previous Work

• [Richard & Montanari 2014] Can find v when $\tau = \Omega(d)$ in poly time, and $\tau = \Omega(\sqrt{d})$ in exp. time.

- [Hopkins, Shi & Steurer 2015] Sum-of-Squares technique, can find v when $\tau = \widetilde{\Omega}(d^{3/4})$ in poly time
 - Basic Sum-of-Squares algorithm is very slow.
 - Running time can be improved $\widetilde{\Omega}(d^3)$, nearly linear

Our Results

Method	Bound on $ au$	Time	Extra Space
Ours	$\widetilde{\Omega}(d^{3/4})$	$\widetilde{\Omega}(d^3)$	O(d)
State-of-Art	$\widetilde{\Omega}(d^{3/4})$	$\widetilde{\Omega}(d^3)$	$O(d^2)$

Guarantee matches best known result

Better convergence rate when τ is closed to $d^{3/4}$

One of the first results on provably analyzing homotopy method

Optimization for tensor PCA

• Recall: for matrix PCA, we optimize

$$\max \mathbf{x}^{\mathsf{T}} M \mathbf{x} = \tau \langle \mathbf{v}, \mathbf{x} \rangle^2 + \mathbf{x}^{\mathsf{T}} A \mathbf{x}$$
$$\|\mathbf{x}\| = 1$$

• For tensor PCA, we optimize

$$\max T(x, x, x) = \tau \langle v, x \rangle^3 + A(x, x, x)$$
$$||x|| = 1$$

Infinite Smoothing

unique optimum x^* :

correlation $\tau / d = \Omega(d^{-0.25})$

[random unit vector : $d^{-0.5}$]

$$t = \infty$$

Phase Transition in Homotopy Method

• Lemma*: there is a threshold θ ,

- If using infinite steps, i.e., continuously $\infty \to 0$
 - $t > \theta$, $||x^t x^*|| \le o(1)||x^*||$
 - $t < \theta, \langle x^t, v \rangle = \Omega(1)$

Phase Transition $f(x) = -x^4 + 0.8x^2$

Phase Transition

- If using infinite steps, i.e., continuously $\infty \to 0$
 - $t > \theta$, $||x^t x^*|| \le o(1)||x^*||$ $t_1 = \infty$
 - $t < \theta, \langle x^t, v \rangle = \Omega(1)$ $t_2 = 0$

Input: Tensor $T = \tau \cdot v^{\otimes 3} + A$;

Output: Approximation of v;

$$m = O(\log \log n);$$

$$egin{aligned} orall j, oldsymbol{x}_j^0 &= \sum_i oldsymbol{T}_{iij} + oldsymbol{T}_{iji} + oldsymbol{T}_{jii}; \ oldsymbol{x}^0 &= oldsymbol{x}^0 / \|oldsymbol{x}^0\|; \end{aligned}$$

Infinite smoothing

Power Method at 0 smoothing

for k = 0 to m do

$$egin{aligned} m{x}^{k+1} &= m{T}(m{x}^k, m{x}^k, :) + m{T}(m{x}^k, :, m{x}^k) + m{T}(:, m{x}^k, m{x}^k); \ m{x}^{k+1} &= m{x}^{k+1} / \|m{x}^{k+1}\|; \end{aligned}$$

end

return x^m ;

Conclusions

 Homotopy method gives near-optimal results for tensor PCA.

 Possible to analyze non-convex functions even when they really have bad local optima.

Open Problems

- More examples of Homotopy method?
 - When the tensor has higher rank?

- General results for effects of smoothing
 - What kind of local optima will disappear?

Different way of smoothing/regularization?

Thank You!