Multichannel Cross-Layer Routing for Sensor Networks

Noradila Nordin University College London Email: noradila.nordin.12@ucl.ac.uk Richard G Clegg Imperial College London Email: richard@richardclegg.org Miguel Rio University College London Email: miguel.rio@ucl.ac.uk

Abstract—

I. INTRODUCTION

The description of the RPL protocols is extremely poorly done, even with misleading sentences. For example, "RPL is a routing protocol for WSN based on IEEE 802.15.4". No, RPL has been constructed independently from the MAC layer. Also, "As in standard RPL all nodes are initialized to channel 26 by default". No, the MAC layer defines the channel, and not RPL. Finally, I think the whole paragraph on RPL should be re-written.

The authors state that they enabled "the RPL control messages to be sent through unicast in order to reduce unnecessary transmitting in broadcast". However, how can a node discover new neighbors if it does not know its address to send packets in unicast? Also, the increase in overhead is not at all studied.

Here is a list of some examples of wrong assumptions in the paper, and some comments about them: - In its most usual mode of operation, RPL operates with a layer two which uses only a single channel. - RPL is a routing layer that is independent from the underlying MAC.

- Chrysso [12] uses channel 11, 14, 20, 22 and 26, and MiCMAC [1] uses channel 15, 20, 25 and 26. There is nothing preventing you from using all the available channels in these protocols.
- Multichannel synchronous protocols include MC-LMAC [11] which uses a time slot to transmit on a particular channel and Y-MAC [13], EM-MAC [17] and TSCH EM-MAC is NOT synchronous. It is asynchronous.
- Recent multichannel protocols such as MiCMAC uses RPL as the routing protocol. The MAC layer does not use a routing protocol. MiCMAC does not depend on RPL to work. It is up to the developer to select the routing protocol.
- RPL finds the path with the minimum number of transmissions .. This is true only for the ETX metric which the default one, but RPL could another metric such as number of hops.
- As in standard RPL all nodes are initialised to channel 26 by default. Channel 26 is not part of the standard. It is just the default one in Contiki.
- * Link qualities are known to fluctuate. For this reason, RPL uses beacons, which allow nodes to determine link quality estimates. The paper doesn't explain if and how beacons are still used, and what is the overhead w.r.t. plain RPL. Indeed,

in the latter a single beacon reaches all neighbors; instead, in a multichannel approach, the beacon must in principle be re-sent N times, if N is the number of distinct channels a node's neighbors are listening on. Actually, it appears that the authors assume that the tree is "frozen", and only channels are changed. This "feeling" is reinforced by the discussion at the end of IV.C where the authors argue that the channel checking cost is a "one-off" cost. This may be a very poor choice, as the parent may have been determined at a time when the corresponding link was good, and later change to dead (e.g., due to an obstruction appearing on the link, environmental conditions, etc.). The authors should discuss and evaluate this aspect.

- what's the rationale of "a node listens on a single channel but sends on many channels"? - in the related work, a citation to TSCH is needed as well. Also, about LEACH: the original work by Heinzelman et al. should be cited instead of the derivative work by others chosen by the authors - LPBR: this is mentioned in the abstract without being defined - the authors resort too much to forward references in the text, which impairs readability. - some English problems: "trickle timer to doubleS", "are less frequently invoke", "does not formed"

II. RELATED WORK

III. MULTICHANNEL CROSS-LAYER ROUTING PROTOCOL

Please consider the following notes on the design: - What if the current channel that you are using to communicate channel-switch decision is too bad that you could not get the message through? - Channel conditions change rapidly with time. What about the communication time from the central coordinator to the node?

* The authors state that channel quality checking is performed by sending 8 packets to each neighbor. Apart from the evaluation of this overhead, the authors fail to state the inter-packet interval, which (if too short) may have an effect on the estimate. Also, the threshold of 7 appears to be quite high. What happens if no neighbors meets the threshold (see above examples)?

IV. EVALUATION

The authors present a centralized solution that wastes a lot of energy on probing. In the evaluation section, they do not compare their proposal against any of the existing solutions. Also, the increase in overhead is not at all studied. ///need to have more details!

In the evaluation section, the proposed solution is not evaluated against the existing ones! Even the comparison against standard RPL is done using different parameter settings. ///scenario 1 and 2 -¿ single channel would have worse result

- * The approach proposed by the authors is centralized, and requires communication from the LPBR to the nodes and viceversa. The latter appears to occur upon each channel switching. The communication overhead is never evaluated in the paper: only a passing mention to packets is provided, which is only a part of the picture from an energy standpoint.
- * The evaluation uses end-to-end packet delivery as the main performance metric. However, the authors fail to state the key parameter affecting this metric, i.e., the diameter of the network.
- * I would have expected that MCRP is able to identify the good channels and use them. Therefore, in the mixed scenario 2, I would have expected MCRP to exploit the 4 good channels, leading the performance at least in between the one of good and mild. Instead, performance is between mild and moderate... why?
- * Moreover, in scenario 2 performance still appears to degrade over time as shown in Fig.3, which doesn't happen in scenario 1. Why? It seems that in this latter case MCRP provides only marginal advantages over a single channel (and I would argue it uses more energy, see above)

V. CONCLUSION

ACKNOWLEDGMENTS

Noradila Nordin is a King's Scholar sponsored by the Government of Malaysia.

REFERENCES

- B. Al Nahas, S. Duquennoy, V. Iyer, and T. Voigt. Low-power listening goes multi-channel. In 2014 IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS), pages 2–9, May 2014
- [2] Asaduzzaman and Hyung Yun Kong. Energy efficient cooperative leach protocol for wireless sensor networks. *Communications and Networks*, *Journal of*, 12(4):358–365, Aug 2010.
- [3] Carlo Alberto Boano, Thiemo Voigt, Nicolas Tsiftes, Luca Mottola, Kay Römer, and Marco Antonio Zúñiga. Making sensornet mac protocols robust against interference. In Proceedings of the 7th European Conference on Wireless Sensor Networks, EWSN'10, pages 272–288, 2010.
- [4] Joris Borms, Kris Steenhaut, and Bart Lemmens. Low-overhead dynamic multi-channel mac for wireless sensor networks. In *Proceedings of* the 7th European Conference on Wireless Sensor Networks, EWSN'10, pages 81–96, 2010.
- [5] Thang Vu Chien, Hung Nguyen Chan, and Thanh Nguyen Huu. A comparative study on operating system for wireless sensor networks. In 2011 International Conference on Advanced Computer Science and Information System (ICACSIS), pages 73–78, December 2011.
- [6] Adam Dunkels. The ContikiMAC radio duty cycling protocol. Technical Report T2011:13. ISSN 1100-3154 http://dunkels.com/adam/dunkels11contikimac.pdf, 2011.
- [7] Simon Duquennoy, Olaf Landsiedel, and Thiemo Voigt. Let the tree bloom: Scalable opportunistic routing with ORPL. In *Proceedings of* the 11th ACM Conference on Embedded Networked Sensor Systems, SenSys '13, pages 2:1–2:14, 2013.

- [8] Omprakash Gnawali. The minimum rank with hysteresis objective function, RFC6719. https://tools.ietf.org/html/rfc6719, 2012.
- [9] Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, David Moss, and Philip Levis. Collection tree protocol. In *Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems*, SenSys '09, pages 1–14, 2009.
- [10] IEEE. IEEE standard for information technology-telecommunications and information exchange between systems local and metropolitan area networks-specific requirements part 11. IEEE Std 802.11-2012 (Revision of IEEE Std 802.11-2007), pages 1–2793, March 2012.
- [11] Ozlem Durmaz Incel, Lodewijk van Hoesel, Pierre Jansen, and Paul Havinga. MC-LMAC: A multi-channel MAC protocol for wireless sensor networks. Ad Hoc Netw., 9(1):73–94, January 2011.
- [12] V. Iyer, M. Woehrle, and K. Langendoen. Chrysso a multi-channel approach to mitigate external interference. In 2011 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), pages 449–457, June 2011.
- [13] Youngmin Kim, Hyojeong Shin, and Hojung Cha. Y-MAC: An energy-efficient multi-channel MAC protocol for dense wireless sensor networks. In *Information Processing in Sensor Networks*, 2008. IPSN '08. International Conference on, pages 53–63, April 2008.
- [14] Philip Levis, T Clausen, Jonathan Hui, Omprakash Gnawali, and J Ko. RFC6206: The trickle algorithm. https://tools.ietf.org/html/rfc6206, 2011.
- [15] S. Lindsey and C.S. Raghavendra. Pegasis: Power-efficient gathering in sensor information systems. In *Aerospace Conference Proceedings*, 2002. IEEE, volume 3, pages 3–1125–3–1130 vol.3, 2002.
- [16] Lanny Sitanayah, Cormac J. Sreenan, and Szymon Fedor. A cooja-based tool for maintaining sensor network coverage requirements in a building. In *Proceedings of the 11th ACM Conference on Embedded Networked Sensor Systems*, SenSys '13, pages 70:1–70:2, 2013.
- [17] A. Sivanantha, B. Hamdaoui, M. Guizani, Xiuzhen Cheng, and T. Znati. Em-mac: An energy-aware multi-channel mac protocol for multi-hop wireless networks. In Wireless Communications and Mobile Computing Conference (IWCMC), 2012 8th International, pages 1159–1164, Aug 2012.
- [18] Luigi Alfredo Grieco Thomas Watteyne, Maria Rita Palattella. Using IEEE802.15.4e TSCH in an LLN context: Overview, problem statement and goals. https://tools.ietf.org/html/draft-ietf-6tisch-tsch-05, 2014.
- [19] Pascal Thubert. Objective function zero for the routing protocol for low-power and lossy networks (RPL), RFC6552. https://tools.ietf.org/html/rfc6552, 2012.
- [20] Nicolas Tsiftes, Joakim Eriksson, Niclas Finne, Fredrik Osterlind, Joel Hglund, and Adam Dunkels. A framework for low-power IPv6 routing simulation, experimentation, and evaluation. In *Proceedings of the ACM SIGCOMM 2010 Conference*, SIGCOMM '10, pages 479–480, New York, NY, USA, 2010.
- [21] Tsvetko Tsvetkov. RPL: IPv6 routing protocol for low power and lossy networks. Sensor Nodes-Operation, Network and Application (SN), 59:2, 2011.
- [22] J Vasseur, M Kim, K Pister, N Dejean, and D Barthel. Routing metrics used for path calculation in low power and lossy networks. https://tools.ietf.org/html/draft-ietf-roll-routing-metrics-19, 2011.
- [23] Thomas Watteyne, Ankur Mehta, and Kris Pister. Reliability through frequency diversity: Why channel hopping makes sense. In *Proceedings* of the 6th ACM Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks, pages 116–123, 2009.
- [24] T Winter, P Thubert, T Clausen, J Hui, R Kelsey, P Levis, K Pister, R Struik, and J Vasseur. RPL: IPv6 routing protocol for low power and lossy networks, RFC 6550. https://tools.ietf.org/html/rfc6550, 2012.
- [25] Yafeng Wu, J.A. Stankovic, Tian He, and Shan Lin. Realistic and efficient multi-channel communications in wireless sensor networks. In IEEE INFOCOM 2008. The 27th Conference on Computer Communications, April 2008.