Residuals and residual variation

Brian Caffo, Jeff Leek and Roger Peng

May 19, 2016

Motivating example

diamond data set from UsingR

Data is diamond prices (Singapore dollars) and diamond weight in carats (standard measure of diamond mass, 0.2~g). To get the data use library(UsingR); data(diamond)

Residuals

- ▶ Model $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$ where $\epsilon_i \sim N(0, \sigma^2)$.
- ▶ Observed outcome i is Y_i at predictor value X_i
- ▶ Predicted outcome i is \hat{Y}_i at predictor value X_i is

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$$

Residual, the between the observed and predicted outcome

$$e_i = Y_i - \hat{Y}_i$$

- ► The vertical distance between the observed data point and the regression line
- ► Least squares minimizes $\sum_{i=1}^{n} e_i^2$
- ▶ The e_i can be thought of as estimates of the ϵ_i .

Properties of the residuals

- ▶ $E[e_i] = 0.$
- ▶ If an intercept is included, $\sum_{i=1}^{n} e_i = 0$
- ▶ If a regressor variable, X_i , is included in the model $\sum_{i=1}^{n} e_i X_i = 0$.
- Residuals are useful for investigating poor model fit.
- Positive residuals are above the line, negative residuals are below.
- ▶ Residuals can be thought of as the outcome (Y) with the linear association of the predictor (X) removed.
- One differentiates residual variation (variation after removing the predictor) from systematic variation (variation explained by the regression model).
- Residual plots highlight poor model fit.

Code

```
data(diamond)
y <- diamond$price; x <- diamond$carat; n <- length(y)
fit <- lm(y ~ x)
e <- resid(fit)
yhat <- predict(fit)
max(abs(e -(y - yhat)))
max(abs(e - (y - coef(fit)[1] - coef(fit)[2] * x)))</pre>
```

Residuals are the signed length of the red lines

Residuals versus X

Non-linear data

Residual plot

Heteroskedasticity

Getting rid of the blank space can be helpful

Diamond data residual plot

Diamond data residual plot

Estimating residual variation

- ▶ Model $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$ where $\epsilon_i \sim N(0, \sigma^2)$.
- ► The ML estimate of σ^2 is $\frac{1}{n} \sum_{i=1}^n e_i^2$, the average squared residual.
- Most people use

$$\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^n e_i^2.$$

▶ The n-2 instead of n is so that $E[\hat{\sigma}^2] = \sigma^2$

Diamond example

```
y <- diamond$price; x <- diamond$carat; n <- length(y) fit <- lm(y \sim x) summary(fit)$sigma sqrt(sum(resid(fit)^2) / (n - 2))
```

Summarizing variation

- ► The total variability in our response is the variability around an intercept (think mean only regression) $\sum_{i=1}^{n} (Y_i \bar{Y})^2$
- ► The regression variability is the variability that is explained by adding the predictor $\sum_{i=1}^{n} (\hat{Y}_i \bar{Y})^2$
- ► The error variability is what's leftover around the regression line $\sum_{i=1}^{n} (Y_i \hat{Y}_i)^2$
- ► Neat fact

$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 + \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2$$

R squared

▶ R squared is the percentage of the total variability that is explained by the linear relationship with the predictor

$$R^2 = \frac{\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2}{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}$$

Some facts about R^2

- R² is the percentage of variation explained by the regression model.
- ▶ $0 \le R^2 \le 1$
- $ightharpoonup R^2$ is the sample correlation squared.
- $ightharpoonup R^2$ can be a misleading summary of model fit.
- ▶ Deleting data can inflate R^2 .
- (For later.) Adding terms to a regression model always increases R^2 .
- ▶ Do example(anscombe) to see the following data.
- Basically same mean and variance of X and Y.
- ▶ Identical correlations (hence same R^2).
- Same linear regression relationship.

data(anscombe); example(anscombe)

How to derive R squared (Not required!)

For those that are interested

$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} (Y_i - \hat{Y}_i + \hat{Y}_i - \bar{Y})^2$$

$$= \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 + 2\sum_{i=1}^{n} (Y_i - \hat{Y}_i)(\hat{Y}_i - \bar{Y}) + \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2$$

Scratch work

$$(Y_{i} - \hat{Y}_{i}) = \{Y_{i} - (\bar{Y} - \hat{\beta}_{1}\bar{X}) - \hat{\beta}_{1}X_{i}\} = (Y_{i} - \bar{Y}) - \hat{\beta}_{1}(X_{i} - \bar{X})$$

$$(\hat{Y}_{i} - \bar{Y}) = (\bar{Y} - \hat{\beta}_{1}\bar{X} - \hat{\beta}_{1}X_{i} - \bar{Y}) = \hat{\beta}_{1}(X_{i} - \bar{X})$$

$$\sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})(\hat{Y}_{i} - \bar{Y}) = \sum_{i=1}^{n} \{(Y_{i} - \bar{Y}) - \hat{\beta}_{1}(X_{i} - \bar{X})\} \{\hat{\beta}_{1}(X_{i} - \bar{X})\}$$

$$= \hat{\beta}_{1} \sum_{i=1}^{n} (Y_{i} - \bar{Y})(X_{i} - \bar{X}) - \hat{\beta}_{1}^{2} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

$$= \hat{\beta}_{1}^{2} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} - \hat{\beta}_{1}^{2} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} = 0$$

The relation between R squared and r

(Again not required)

Recall that $(\hat{Y}_i - \bar{Y}) = \hat{eta}_1(X_i - \bar{X})$ so that

$$R^{2} = \frac{\sum_{i=1}^{n} (\hat{Y}_{i} - \bar{Y})^{2}}{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}} = \hat{\beta}_{1}^{2} \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}} = Cor(Y, X)^{2}$$

Since, recall,

$$\hat{\beta}_1 = Cor(Y, X) \frac{Sd(Y)}{Sd(X)}$$

So, R^2 is literally r squared.