Evaluate the reliability and the availability of a system composed of three CPUs (working in parallel and whose output is given by a voter), a RAID 1 storage system with 4+4 disks three buses (working in parallel and whose outputs are given by voters), one keyboard, one printer and one monitor. Assume that faults are exponentially distributed with rates equal to λ_{CPU} , λ_{DISK} , λ_{BUS} , λ_{KEY} , λ_{PRI} , λ_{MON} , $\lambda_{VOT-CPU}$, $\lambda_{VOT-BUS}$. The repair rate μ is equal for all components.

Subsystems: SUB_{CPU} , SUB_{BUS} , SUB_{DISK} , SUB_{PRI} , SUB_{KEY} and SUB_{MON} (SUB_{CPU} and SUB_{BUS} include voters).

Reliability:

Serial interconnections:

$$R(t) = \prod_{i=1}^{K} R_i(t)$$

Thus:

$$R(t) = R_{SUB-CPU}(t) \cdot R_{SUB-BUS}(t) \cdot R_{SUB-DISK}(t) \cdot R_{SUB-PRI}(t) \cdot R_{SUB-KEY}(t) \cdot R_{SUB-MON}(t)$$

Reliability of a generic component i:

$$R_i(t) = e^{-\lambda_i t}$$

Availability:

$$A = \prod_{i}^{K} A_{i}$$

Availability of a generic component *i*:

$$A_i = \frac{MTTF_i}{MTTF_i + MTTR_i};$$

where $MTTF_i = \frac{1}{\lambda_i}$ and $MTTR_i = \frac{1}{\mu_i}$

Reliability and availability of subsystems

 SUB_{CPU}

Triple Modular Redundant system.

$$R_{SUB-CPU}(t) = [R_C(t)^3 + 3 R_C(t)^2 \cdot (1 - R_C(t))] R_{V-CPU}(t)$$

 $A_{SUB-CPU} = [A_C^3 + 3 A_C^2 \cdot (1 - A_C)] A_{V-CPU}$

where:

 $R_C(t)$: reliability of the CPU;

 $R_{VOT-CPU}(t)$: reliability of the VOTER-CPU;

 A_C : availability of the CPU;

 $A_{VOT-CPU}$: availability of the VOTER-CPU.

 SUB_{BUS}

BUS: *Hybrid M out of N* interconnection.

$$R_{SUB-BUS}(t) = [R_B(t)^3 + 3 R_B(t)^2 \cdot (1 - R_B(t))] R_{VOT-BUS}(t)^4$$

$$A_{SUB-BUS} = [A_B^3 + 3 A_B^2 \cdot (1 - A_B)] A_{VOT-BUS}^4$$

where:

 $R_B(t)$: reliability of a BUS;

 $R_{VOT-BUS}(t)$: reliability of a VOTER-BUS;

 A_B : availability of a BUS;

 $A_{VOT-BUS}$: availability of a VOTER-BUS;

 SUB_{DISK}

• RAID 1

$$R_{SUB-DISK}(t) = R_{couple}(t)^4$$

 $A_{SUB-DISK} = A_{couple}^4$

where:

 $R_{couple}(t)$: reliability of disk couple; A_{couple} : availability of disk couple;

Reliability of a disk couple:

$$R_{couple}(t) = 1 - \left(1 - R_{DISK}(t)\right)^2$$

Availability of a disk couple:

$$A_{couple} = 1 - (1 - A_{DISK})^2$$

 SUB_{PRI}

$$R_{SUB-PRI}(t) = R_P(t)$$

$$A_{SUB-PRI} = A_P$$

where:

 $R_P(t)$: reliability of the printer; A_P : availability of the printer;

 SUB_{KEY}

$$R_{SUB-KEY}(t) = R_K(t)$$

$$A_{SUB-KEY} = A_K$$

where:

 $R_K(t)$: reliability of the keyboard; A_K : availability of the keyboard.

 SUB_{MON}

$$R_{SUB-MON}(t) = R_M(t)$$
$$A_{SUB-MON} = A_M$$

where:

 $R_M(t)$: reliability of the monitor; A_M : availability of the monitor.