

Series de Tiempo: Proyecto Final

Alejandra Lelo de Larrea Ibarra 00124433 Victor Quintero Mármol González 000175897

15 de mayo del 2018

Index

1. Introducción

- 2. Datos
- 3. Modelos Clásicos
- 4. Modelo Dinámico Lineal
- 5. Comparación de Modelos
- 6. Conclusiones

Introducción

- Datos de la cantidad de Monóxido de Carbono (CO) promedio en partículas por millón (ppm) para la Ciudad de México desde 1995.
- Norma vigente: el límite de CO en el ambiente es de 11 ppm para un promedio de 8 horas.
- Relevante en temas de salud:
 - √ Puede causar afectaciones al corazón o al cerebro
 - √ Uno de los tipos más comúnes de envenenamiento
- Relevante en temas de políticas públicas:
 - ✓ Indicador para definir la calidad del aire y declarar contignencias ambientales.
 - ✓ Parámetros de la SEDENA:
 - Buena: 0.00-5.50
 - Regular: 5.51-11.00
 - Mala: 11.01-16.50
 - Muy mala: 16.51-22.00
 - Extremadamente mala: >22.00

Objetivo

■ El objetivo de este trabjo es ajustar distintos modelos Estacionales Autorregresivos Integrados de Promedios Móviles (SARIMA), así como un Modelo Dinámico Lineal (DLM) para posteriormente comprar el desempeño de ambas metodologías.

Index

1. Introducción

2. Datos

3. Modelos Clásicos

4. Modelo Dinámico Lineal

5. Comparación de Modelos

6. Conclusiones

Datos

- Datos del nivel de CO por hora en la Ciudad de México obtenidos de la SEDEMA.
- Se agregan los datos mensualmente: 276 observaciones del promedio mensual de CO.
- Periodo muestral: enero de 1995 a diciembre del 2017.

Datos

■ La serie tiene un componente estacional, tendencia decreciente y cambios en la varianza.

Datos

■ Para tratar de eliminar los cambios en la varianza se obtiene el logaritmo del CO.

■ Varianza es más homogénea, persiste la tendencía y la estacionalidad.

ACF y PACF Log-CO

ACF para la serie mensual del Log-CO

PACF para la serie mensual del Log-CO

- ACF: varios rezagos significativos, comportamiento de una serie con componente estacional.
- PACF: algunos rezagos significativos, parece que se corta rápidamente.

Diferencia Orden 1

- Para eliminar la estacionalidad diferenciamos de orden uno.
- Persiste la estacionalidad.

ACF v PACF Diferencia Orden 1

ACF para la serie mensual ΔLog-CO

PACF para la serie mensual \(\Delta Log-CO \)

- Se eliminó el patrón estacional que mostraba el ACF, sigue habiendo rezagos significativos que parecen decrecer.
- PACF sigue mostrando algunos rezagos significativos que se cortan rápidamente.

Diferencia de Orden 12 de la Diferencia

- Para eliminar la estacionalidad, diferenciamos de orden 12 la serie ya diferenciada.
- Ya no hay tendencia ni estacionalidad.
- Persisten algunos cambios en la varianza hacia el final de la serie.

ACF y PACF Diferencia Orden 12 de la Diferencia

- ACF: se corta después del segundo rezago y muestra un valor significativo en el rezago 9.
- PACF se corta después de 4 rezagos aproximadamente (o podría decrecer).
- Esto nos hace pensar en un modelo $SARIMA(p,d,q)(P,D,Q)_s$ o un DLM.

Index Introducción Datos Modelos Clásicos

- 5. Comparación de Modelos
- 6. Conclusiones

Estimación de Modelos SARIMA

- Es claro que d = 1, D = 1 y s = 12.
- Valores de los parámetros p, q, P y Q no son tan claros.
- \blacksquare Creamos una función para estimar distintos modelos SARIMA(p,d,q)(P,D,Q)_s
 - ✓ Se hace una búsqueda exhaustiva en grid con código en paralelo.
 - ✓ Posibles valores para cada parámetro:
 - p = 1, 2, 3, 4, 5
 - q = 1, 2, 3, 4, 5
 - P = 1, 2, 3, 4, 5
 - Q = 1, 2, 3, 4, 5
 - ✓ En total se ajustaron 1296 modelos
 - ✓ 288 modelos no pudieron ser estimados con la función arima.
 - √ Se eligen los 5 modelos con menor AIC para competir y realizar las pruebas de diagnóstico.

Selección de Modelos SARIMA

Comparación AIC's para modelos SARIMA(p,d,q)x(P,D,Q)s

Modelo							Criterio		
р	d	q	Р	D	Q	S	Log-Like.	AIC	
2	1	4	0	1	1	12	208.7130	-401.4260	
0	1	2	0	1	1	12	204.3997	-400.7993	
2	1	1	0	1	1	12	205.2593	-400.5186	
0	1	3	0	1	1	12	205.2478	-400.4956	
0	1	2	1	1	2	12	206.1918	-400.3836	

- Los mejores modelos tienen parametros de orden chico para la parte estacional, pero mayores para la parte no estacional.
- El valor del AIC es muy similar entre los 5 modelos
- Hay mayor variabilidad en el valor de la verosimilitud.

Diagnóstico de Residuales: Prueba LJung-Box

Prueba Ljung-Box para modelos SARIMA(p,d,q)x(P,D,Q)s

		ı	Ljung-Box				
р	d	q	Р	D	Q	s	p-value
2	1	4	0	1	1	12	0.9881
0	1	2	0	1	1	12	0.8495
2	1	1	0	1	1	12	0.9885
0	1	3	0	1	1	12	0.9883
0	1	2	1	1	2	12	0.9021

- Los cinco modelos pasan la prueba.
- No hay evidencia de errores autocorrelacionados.

Diagnóstico de Residuales: ACF y PACF

- ACF: rezagos de los residuales no significativos para todos los modelos.
- PACF se tiene un rezago "marginalmente" significativo (el rezago 4) en los modelos 2, 3 y 4.

ACF SARIMA(2,1,4)x(0,1,1)_12

PACF SARIMA(2,1,4)x(0,1,1)_12

Diagnóstico de Residuales: ACF y PACF

Diagnóstico de Residuales: ACF y PACF

Diagnóstico de Residuales: Histogramas y Q-Q Plots

- La distribución de los residuales parecen tener cola derecha ligeramente más pesada.
- Los modelos 2, 3 y 4 parecen ser aquellos para los que el histograma de los residuales es más distinto al histograma de una normal simulados
- Los 5 Q-Q plots muestran mayor diferencia respecto a la línea de 45° en la cola derecha.

Diagnóstico de Residuales: Histogramas y Q-Q Plots

Diagnóstico de Residuales: Histogramas y Q-Q Plots

ECM Para Predicciones

- Se reserva el 20% final de la muestra para evaluar el ECM de las predicciones.
- Todos los modelos presentan un ECM muy pequeño.
- El primer modelo $(SARIMA(0,1,4)x(0,1,1)_12)$ el que da el menor ECM para las predicciones del CO.
 - ✓ La diferencia en ECM entre el primer y quinto modelo es muy pequeña, pero el quinto modelo tiene 2 parámetros menos a estimar.

Comparación ECM's para modelos SARIMA(p,d,q)X(P,D,Q)_s

		ľ	Criterio				
р	d	q	Р	D	Q	S	ECM
2	1	4	0	1	1	12	0.014716
0	1	2	0	1	1	12	0.014900
2	1	1	0	1	1	12	0.014955
0	1	3	0	1	1	12	0.014959
0	1	2	1	1	2	12	0.014728

ECM Para Predicciones

ECM Para Predicciones

■ Los 5 modelos reproducen de manera correcta la estacionalidad de la serie, pero subestiman ligeramente los valles sobre todo a finales del 2017.

Elección del Modelo

- Tomando en cuenta el ACF, PACF, AIC, análisis de residuales y ECM obtenidos, así como la idea de tener un modelo parsimonioso, se decide utilizar el quinto modelo; es decir, un $SARIMA(0,1,2)X(1,1,2)_{12}$.
- El modelo final está dado por:

$$(1 - \Phi_1 B^{12})(1 - B)(1 - B^{12})CO_t = (1 + \theta_1 B^{12} + \theta_2 B^{24})(1 + \Theta_1 B^{12} + \Theta_2 B^{24})Z_t,$$

- Los valores estimados para los parámetros son:
 - $\sqrt{\theta_1} = -0.5078$
 - $\sqrt{\theta_2} = -0.3345$
 - $\checkmark \Phi_1 = -0.7622$
 - $\checkmark \Theta_1 = -0.0518$
 - $\sqrt{\Theta_2} = -0.6546$
 - $\sqrt{\sigma^2} = 0.0143$

Elección del Modelo

 Desarrolando polinomios característicos y sustituyendo el valor de los parámetros, se tiene que el mejor modelo SARIMA es

$$CO_{t} = CO_{t-1} + 0.2378CO_{t-12} - 0.2378CO_{t-13} + 0.7622CO_{t-24} - 0.7622CO_{t-25}$$

$$+ Z_{t} - 0.5078Z_{t-1} - 0.3345Z_{t-2} - 0.0518Z_{t-12} + 0.0263Z_{t-13}$$

$$+ 0.0173Z_{t-14} + -0.6546Z_{t-24} + 0.3324Z_{t-25} + 0.2189Z_{t-26}$$

$$(1)$$

donde Z_t es ruido blanco con media cero y varianza $\sigma^2 = 0.0143$.

Index 1. Introducción 2. Datos 3. Modelos Clásicos 4. Modelo Dinámico Lineal 5. Comparación de Modelos

6. Conclusiones

Selección del DML

- La serie del Log-CO tiene tendencia decreciente y estacionalidad.
- Por lo tanto, se necesita un DLM polinomial de segundo orden junto con un DLM estacional.
- Para el DLM polinomial se tiene el siguiente modelo Espacio-Estado:

$$Y_t^{(1)} = A_1 X_t^{(1)} + V_t^{(1)} X_{t+1}^{(1)} = G_1 X_t^{(1)} + W_t^{(1)}$$

donde
$$A_1 = [1,0]$$
, $V_t^{(1)} = V^{(1)}$, $W_t^{(1)} = diag(W_1, W_2)$ y $G_1 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

lacktriangle Para el DLM estacional con periodo s=12, se tiene el siguiente modelo Espacio-Estado:

$$Y_t^{(2)} = A_2 X_t^{(2)} + V_t^{(2)}$$

 $X_{t+1}^{(2)} = G_2 X_t^{(2)} + W_t^{(2)}$

donde
$$A_2 = [1, 0_{1 \times 10}], \ V_t^{(2)} = 0, \ W_t^{(2)} = diag(\sigma_w^2, 0_{1 \times 10}) \ y \ G_2 = \begin{bmatrix} -\mathbb{1}_{10 \times 10} & 0 \\ I_{10 \times 10} & 0_{10 \times 1} \end{bmatrix}.$$

Estimación de V y W vía Máxima Verosimitud

- Se estiman los valores máximo verosímiles de las matrices V y W en ambos DLM'S.
- Después de revisar la convergencia, se obtienen los siguientes estimadores:

$$\checkmark \hat{V}^{(1)} = 0.0101$$

$$\sqrt{\hat{W}_1} = 9 \times 10^{-4}$$

$$\sqrt{\hat{W}_2} = 0$$

$$\checkmark \hat{\sigma}_W^2 = 0.$$

■ Una vez conocidas las estimaciones de V y W se puede proceder a estimar el filtrado, suavizado y la predicción del modelo DLM.

Filtrado

- El Filtro de Kalman es que es sensible a condiciones iniciales; este efecto se puede notar en el inicio del filtrado de los tres estados
 - ✓ Sin embargo, el filtro corrige rápidamente las trayectorias.
- El nivel sigue muy de cerca la dinámica de la serie observada.
- La pendiente decrece a lo largo de los primeros dos años y después se mantiene relativamente constante.
- La dinámica de la componente estacional parece ser constante a lo largo de la muestra.

Filtrado

Filtrado

■ Se puede observar una variabilidad mucho menor en la serie filtrada que en la observada, esto debido principalmente a que el cociente V/W es grande $(V/W_1 = 11.04)$.

Suavizado

■ Las tres series tienen menor variabilidad que las series filtradas pues toman en cuenta los

Suavizado

Predicción

- Se realiza la predicción para los siguientes 2 años (24 observaciones) y se simulan 1000 trayectorias.
- Parece que un mayor número de trayectorias quedan fuera del intervalo de confianza para el nivel que para los otros dos estados.
- Los intervalos de confianza para la pendiente y estacionalidad son más angostos que para el nivel.
- Los valores pronosticados para los tres estados parecen continuar de manera razonable con la trayectoria de las series filtradas.

Predicción

Predicción

■ Se puede apreciar que el pronóstico mantiene bien la estacionalidad de la serie y es acorde a la tendencia que presentaba la serie.

Análisis de Residuales

Se obtienen los residuales del modelo DLM estimado; éstos fluctúan al rededor del cero y parecen tener varianza constante.

Análisis de Residuales: Prueba LJung-Box

Prueba Ljung-Box Residuales

Rezago	Valor.p
1	0.000258
2	0.000182
3	0.000168
4	0.000447
5	0.000213
6	0.000045
7	0.000079
8	0.000122
9	0.000117
10	0.000228
11	0.000226
12	0.000089

■ En todos los casos se rechaza la hipótesis nula de no correlación de los residuales

Análisis de Residuales: Histograma y Q-Q plot

■ Los residuales sí parecen tener una forma de normal.

ECM Para Predicciones

- Se reserva el 20% final de la muestra para evaluar el ECM de las predicciones del DLM.
- El modelo está sobrestimando, pero todas las observaciones quedaron dentro del IC.
- El ECM para este modelo es de 0.0125.

Log-Monóxido de Carbono

Index 1. Introducción 2. Datos 3. Modelos Clásicos 4. Modelo Dinámico Lineal

6. Conclusiones

5. Comparación de Modelos

Comparación de modelos

Comparación entre el modelo clásico y el DLM	Comparación	entre e	el modelo	clásico v	el DLM
--	-------------	---------	-----------	-----------	--------

	$SARIMA(0,1,2)X(1,1,2)_{12}$	DLM (n=2 + Est.)		
Ajuste	√	✓		
No correl. residuales	\checkmark	×		
Residuales Normales	\checkmark	✓		
ECM Predicciones	0.0147	0.0125		

- El modelo clásico pasa todas las pruebas de validación mientras que el DLM tiene errores autocorrelacionados.
- El modelo clásico tiene mayor ECM para el pronóstico del útimo 20% de la muestra que el DLM, aunque la diferencia entre ambos es mínima.

Index 1. Introducción 2. Datos

3. Modelos Clásicos

4. Modelo Dinámico Lineal

5. Comparación de Modelos

6. Conclusiones

Consideraciones Finales

- En este trabajo se utilizaron modelos clásicos y modelos Dinámicos Lineales para ajustar y estimar un modelo para el logaritmo del promedio mensual del Monóxido de Carbono (Log-CO) en la Ciudad de México.
- La serie Log-CO presenta tendencia decreciente y estacionalidad.
- Dentro de los modelos clásicos se realizó una búsqueda en grid con código en paralelo para distintas combinaciones de los parámetros de un SARIMA(p,d,q)(P,D,Q)_s.
 - ✓ Se estimaron 1296 modelos.
 - ✓ Se compararon los 5 modelos con menor AIC.
 - √ Únicamente 2 de los 5 modelos pasaron todas las pruebas de diagnóstico.
 - ✓ Los 5 modelos tienen un ECM pequeño (0.0149 aprox.)
 - ✓ Se eligió el modelo $SARIMA(0,1,2)X(1,1,2)_{12}$ como el mejor modelo clásico.

Consideraciones Finales

- Para el DLM se utilizó un modelo polinomial de orden 2 con estacionalidad.
 - ✓ Las matrices de varianzas y covarianzas se estimaron vía Máxima Verosimilitud.
 - ✓ Se obutvo el filtrado, suavizado y predicciones (a 24 meses) para la serie del Log-CO.
 - √ Los residuales del modelo pasan todas las pruebas de diagnósticos excepto la de autocorrelación.
 - ✓ El modelo tiene un ECM de 0.0125.
- Entre el modelo $SARIMA(0,1,2)X(1,1,2)_{12}$ y el DLM polinomial con estacionalidad se eligió el modelo clásico para ajustar el Log-CO.

