四种线性相位结构对应单位脉冲响应

第 I 类:

- N 为奇数
- 单位脉冲响应 h(n) 镜像偶对称
- 频域的 $H(\omega)$ 关于 $k\pi$ 偶对称

低通: $h_d(n) = \frac{\sin(w_c n)}{\pi n}$ 高通: $h_d(n) = \frac{\sin(\pi n) - \sin(w_c n)}{\pi n}$

带通: $h_d(n) = \frac{\sin(w_{c2}n) - \sin(w_{c1}n)}{\pi n} (0 < w_{c1} < w_{c2})$ 带阻: $h_d(n) = \frac{\sin(w_{c1}n) + \sin(\pi n) - \sin(w_{c2}n)}{\pi n} (0 < w_{c1} < w_{c2})$

第 II 类:

- N 为偶数
- 单位脉冲响应 h(n) 镜像偶对称
- 频域的 $H(\omega)$ 关于 $2k\pi$ 偶对称, 关于 $(2k+1)\pi$ 奇对称

低通: $h_d(n) = \frac{\sin(w_c n)}{\pi n}$

带通: $h_d(n) = \frac{\sin(w_{c2}n) - \sin(w_{c1}n)}{\pi n} 0 < (w_{c1} < w_{c2})$

第 III 类:

- N 为奇数
- 单位脉冲响应 h(n) 镜像反对称
- 频域的 $H(\omega)$ 关于 $k\pi$ 奇对称

带通:
$$h_d(n) = \begin{cases} \pm \frac{\cos(w_{c1}n) - \cos(w_{c2}n)}{\pi n} (0 < w_{c1} < w_{c2}), & n \neq 0 \\ 0, & n = 0 \end{cases}$$

第 IV 类:

- N 为偶数
- 单位脉冲响应 h(n) 镜像反对称
- 频域的 $H(\omega)$ 关于 $2k\pi$ 奇对称, $(2k+1)\pi$ 偶对称

高通:
$$h_d(n) = \begin{cases} \pm \frac{\cos(w_c n)}{\pi n}, & n \neq 0 \\ 0, & n = 0 \end{cases}$$
带通: $h_d(n) = \begin{cases} \pm \frac{\cos(w_{c1} n) - \cos(w_{c2} n)}{\pi n} (0 < w_{c1} < w_{c2}) 0, & n = 0 \\ 0, & n = 0 \end{cases}$