TRIGONOMETRY

Tomo 7 y 8

ADVISORY

Del gráfico, efectúe

$$RT(\alpha) = RT(\beta)$$

Resolución:

Del gráfico β y 37° son ángulos coterminales, entonces se cumple que:

$$sen\beta = sen37^{\circ}$$

$$\cos\beta = \cos 37^{\circ}$$

Reemplazando en T:

$$T = sen\beta + cos\beta$$

$$T = sen37^{\circ} + cos37^{\circ}$$

$$T = \frac{3}{5} + \frac{4}{5}$$

Simplifique $P = 3sen(180^{\circ}-x) - 5sen(360^{\circ}-x)$

Resolución:

Del dato:

$$P = 3sen(180^{\circ}-x) - 5sen(360^{\circ}-x)$$

$$P = +3 senx - (-5 senx)$$

$$P = 3senx + 5senx$$

Simplifique P = $8\sec(90^{\circ}+x)$ - $\sec(270^{\circ}-x)$

Resolución:

Del dato:

$$P = 8 \sec(90^{\circ} + x) - \sec(270^{\circ} + x)$$

$$P = -8 \csc x - (+ \csc x)^{C}$$

$$P = -2cscx - cscx$$

$$\therefore P = -10 \csc x$$

La gráfica representa la cantidad de alumnos inscritos en la actividades realizadas por una institución educativa durante el ciclo de verano 2020. Si cada alumno se inscribe en una sola actividad. ¿ Cuántos alumnos se inscribieron en

total?

Donde:

$$A = 20.\cos 300^{\circ}$$

B =
$$5\sqrt{3}$$
.cot210°

Resolución:

A = 10

A =
$$20.\cos 30$$

A = $0^{\circ}\cos(360^{\circ}-60^{\circ})$
A = $20.(\cos 60^{\circ})$
A = $20.(\frac{1}{2})$

B =
$$5\sqrt{3}$$
.cot210°
IIIC
B = $5\sqrt{3}$.cot(180°+ 30°)
B = $5\sqrt{3}$.cot(30°)
B = $5\sqrt{3}$.($\sqrt{3}$)
B = 15

.: Total: 25 alumnos

Reduzca

$$R = sen150^{\circ} \cdot cos240^{\circ}$$

Resolución:

$$R = sen150^{\circ} \cdot cos240^{\circ}$$

$$R = sen(180^{\circ}-30^{\circ}). - \{cos(180^{\circ}+60^{\circ})\}$$

$$R = sen30^{\circ} \cdot (-cos60^{\circ})$$

$$R = \left(\frac{1}{2}\right) \cdot \left(-\frac{1}{2}\right)$$

$$\therefore \mathbf{R} = -\frac{1}{4}$$

Simplifique E = cosx(1 + secx) - cosx

Resolución:

$$E = \cos x (1 + \sec x) - \cos x$$

$$E = cosx.1 + cosx. secx - cosx$$

$$E = \cos x + 1 - \cos x$$

Recuerda:

$$\cos x. \sec x = 1$$

Lucía debe elegir un globo del color. Ayúdelo a resolver el siguiente ejercicio e indique cuál es el globo correcto para pepito.

Reduzca:

$$\boldsymbol{P} = \frac{\cos x + 1}{\sin x} - \cot x$$

Resolución:

Aplicamos la Identidad por División

$$\cot x = \frac{\cos x}{\sin x}$$

$$P = \frac{cosx + 1}{senx} - \frac{cosx}{senx}$$
 Id. Recíproca

$$P = \frac{\cos x + 1 - \cos x}{\sin x} \qquad P = \frac{1}{\sin x}$$

$$P = cscx$$

 Lucía debe elegir el globo anaranjado.

Simplifique E = $(\cos\theta + \sin\theta \cdot \tan\theta)\cos\theta$

Resolución:

$$E = (\cos\theta + \sin\theta \cdot \tan\theta) \cos\theta$$

$$E = \cos^2\theta + \sin\theta \cdot \tan\theta \cdot \cos\theta$$

$$E = \cos^2\theta + \sin\theta$$
. $\frac{\sin\theta}{\cos\theta}$. $\cos\theta$.

$$E = \cos^2\theta + \sin^2\theta$$

$$\therefore E = 1$$

Recuerda:

Id. Por división

$$\tan\theta = \frac{\sin\theta}{\cos\theta}$$

Id. Pitagórica

$$\sin^2\theta + \cos^2\theta = 1$$

Demostrar $P = (1 - sen^2\theta)(1 + cot^2\theta) = cot^2\theta$

Resolución:

Vamos a reemplazar:

$$P = (1 - \sin^2 \theta)(1 + \cot^2 \theta) = \cot^2 \theta$$

$$(\cos^2\theta)(\csc^2\theta)$$

$$(\cos^2\theta)\left(\frac{1}{\sin^2\theta}\right)$$

$$P = \frac{\cos^2 \theta}{\sin^2 \theta} \implies \therefore P = \cot^2 \theta$$

∴
$$P = \cot^2 \theta$$

Recuerda:

Id. Pitagórica

$$sen^2\theta + cos^2\theta = 1$$

$$\cos^2\theta = 1 - \sin^2\theta$$

$$1 + \cot^2 \theta = \csc^2 \theta$$

Id. Recíproca

$$sen\theta.csc\theta = 1$$

$$\csc\theta = \frac{1}{\sin\theta}$$

Reduzca C =
$$(2 \operatorname{senx} + \operatorname{cosx})^2 + (\operatorname{senx} - 2 \operatorname{cosx})^2$$

Resolución:

$$C = (2 senx + cosx)^2 + (senx - 2 cosx)^2$$

Recuerda:

$$(a \pm b)^2 = a^2 \pm 2ab + b^2$$

$$C = 4 sen^2 x + 2(2 sen x)(cos x) + cos^2 x + sen^2 x - 2(sen x)(2 cos x) + 4 cos^2 x$$

$$C = 5 \sin^2 x + 5 \cos^2 x$$

Vamos a factorizar:

$$C = 5(\underline{\sec^2 x + \cos^2 x})$$