Reflect, Retry, Reward: Self-Improving LLMs via Reinforcement Learning (arxiv)

Key Highlights

問題

- 這篇論文旨在解決當合成數據生成不可行且只有二元反饋可用時,如何提高大型語言模型(LLM)在複雜且可驗證任務上的性能挑戰
- 現有的方法如思路鏈提示(Chain-of-Thought prompting)和自我反思(self-reflection)需要特定的提示,且其效果嚴重依賴於提示質量;它們不包括學習更好的自我反思能力
- 當前的方法要么需要額外的訓練數據(可能不存在),要么依賴於更大的教師模型 進行監督,限制了它們在即使是最先進的模型也難以完成任務時的適用性

解決方案

- 論文提出了一個稱為「反思、重試、獎勵」(Reflect, Retry, Reward)的雙階段框架:(1) 當模型在任務上失敗時,它生成自我反思的評論來分析錯誤,(2) 模型在有反思背景下重新嘗試任務,如果成功,則使用群體相對政策優化(Group Relative Policy Optimization, GRPO)對這些自我反思的標記進行獎勵
- 該方法受到自我反思和思路鏈研究的啟發,但獨特之處在於訓練模型生成更好的自 我反思,而不是特定任務的改進
- 理論基礎依賴於強化學習原理,特別是GRPO,它通過比較來自抽樣完成的結果來估計優勢,而不需要單獨的批判網絡,適合稀疏的二元反饋場景

實驗

- 該方法顯示出顯著的改善:數學方程式寫作提高了最多34.7%,函數調用任務提高了18.1%
- 較小的微調模型(150億至7B參數)在相同家族中性能超過線更大的模型10倍
- 實驗在APIGen函數調用數據集和Countdown數學方程式數據集上進行,在標準基準測試中觀察到最小的災難性遺忘
- 該方法需要二元成功/失敗驗證,並且在模型具有基本任務能力時效果最佳;一些較小的模型(如Llama3.2-3B在函數調用上)未能學會自我糾正

創新

- 新穎的方法訓練模型改善自我反思能力而不是特定任務性能,使得該方法與任務無 關
- 展示了較小的訓練模型可以通過更好的自我反思在性能上超過未訓練的更大模型
- 發現自我反思訓練即使在沒有明確反思的情況下也提高了第一次嘗試的性能,表明一般推理能力的改進

• 引入多步GRPO實施,只對自我反思標記進行獎勵,同時忽略任務完成標記

評論/批評

- 這種方法僅限於二元成功/失敗驗證明確的任務,可能不涵蓋所有現實應用
- 該方法需要模型具有基本任務能力和自我反思能力作為先決條件,限制了其對非常小或弱模型的適用性
- 由於GRPO的計算限制,論文只評估了多達8B參數的模型,對更大型模型的可擴展 性存疑
- 雖然論文聲稱有任務無關的好處,但實驗僅限於兩種類型的任務(函數調用和數學方程式),需要更廣泛的評估以證實泛化性主張

Comprehensive Analysis

Abstract

- 本篇摘要提出了一種新穎的方法,通過 自我反思和強化學習來提升大型語言模型的性能。
- 主要創新是一個雙階段框架:
- 自我反思階段: 當模型任務失敗時, 生成對其失敗嘗試的分析評論。
- **重試階段**:模型再次嘗試這個任務,現在它有了自我反思的資訊。
- 該方法使用 **詞元級別獎勵** ——如果第二次嘗試成功,自我反思詞元會得到強化,教 導模型隨時間推進生成更好的自我分析。

主要發現:-僅需二元反饋(成功/失敗)就能有效運作。-取得顯著改善:數學方程式 生成提升34.7%,函數調用提升18.1%。-**顯著的效率增益**:較小的微調模型(1.5-7B 參數)超過了大10倍的模型。-適用於各種模型架構。

• 這代表了一個有前途的方向,可以創建更具能效且能在複雜任務上自我改進的語言模型,無需大量的外部監管或合成數據生成。

1 Introduction

這篇簡介介紹了一種新穎的方法,通過學習自我反思來改善大型語言模型(LLM)的性能。

問題背景:-儘管LLM在各種任務上展現出令人印象深刻的能力,它們仍然存在盲點和不一致的表現。-傳統解決方案如重新訓練或微調需要特定任務的數據集,這些數據集可能不存在。-現有的提示方法(如Chain-of-Thought)在推理和自我反思方面受到提示效果的限制。

提出的解決方案: - 作者介紹了一種基於強化學習的方法,其中: 1. 當模型在初次嘗試某個任務時失敗,它會生成自我反思。 2. 如果模型在使用這個反思的第二次嘗試中成功,強化學習(特別是GRPO)會獎勵反思標籤。 3. 隨著時間的推移,這可以訓練模型生成更有效的自我反思。

主要貢獻: - 一種針對任務的通用方法來訓練更好的自我反思能力。 - 只需要二元的成功/失敗反饋(不需要特定任務的訓練數據)。 - 可應用於任何成功容易驗證的任務。 - 在APIGen函數調用和Countdown方程任務上的實驗驗證。

• 這種方法本質上教會模型以一般化的方式「學會如何從錯誤中學習」。

"The most direct way to address this problem is to retrain or fine-tune a model on data that represents the failed task, however this may not be possible if no such dataset exists. Furthermore, if the largest state-of-the-art models also struggle to complete the task, we similarly cannot use them to generate synthetic training data."

最直接的解決方法是基於代表失敗任務的數據,重新訓練或微調模型,然而如果不存在這樣的數據集,這可能無法實現。此外,如果最先進的模型也難以完成任務,我們同樣無法使用它們來生成合成訓練數據。

"More specifically, if a model fails to complete a task on its first attempt, it generates a self-reflection which it uses to make a second attempt. If the model then succeeds on its second attempt, we use reinforcement learning (RL), specifically Group Relative Policy Optimization (GRPO), to reward the tokens in the self-reflection, such that future self-reflections will be more effective."

更具體地說,如果模型在第一次嘗試中未能完成任務,它會生成一個自我反思,用於第二次嘗試。如果模型在第二次嘗試中成功,我們使用強化學習(RL),特別是群體相對政策優化(GRPO),來獎勵自我反思中的標記,以便未來的自我反思更加有效。

"Our main contribution is thus a novel methodology for training a model to generate better self-reflections to improve on challenging tasks in a task-agnostic way. Crucially, this method only requires a binary success/failure signal from a response verifier, which makes it well-suited to tasks where success can be easily verified."

因此,我們的主要貢獻是一種新的方法,用於訓練模型生成更好的自我反思,以在任務不可知的情況下改進困難任務。關鍵是,這種方法僅需要來自響應驗證器的二元成功/失敗 信號,這使得它非常適合成功可以輕鬆驗證的任務。

2 Related Work

這部分回顧了在大型語言模型(LLMs)中的自我反思技術,這些技術涉及模型分析和糾 正其自身推理以提高性能。

關鍵點:

- **自我反思概念**:LLMs 生成初始答案,通過自然語言反饋對其進行批評,並反覆改進回應。此方法在算術、推理和問答任務中已顯示出成功。
- 當前限制:
 - · LLMs 難以在沒有外部驗證的情況下可靠地識別自身錯誤。
 - 效果因情境而異(當初始準確性低且問題困難時效果最佳)。
 - 。 可能會影響較簡單任務或高性能模型的表現。
 - 。 重複反思的邊際效益遞減。
- **基於訓練的方法**:近期的方法在訓練過程中通過自我糾正數據的微調或強化學習融合自我改進,即使在測試階段無需反思也能顯示出持續改進。
- 作者提出的方法:該論文介紹了一種方法:
 - 僅矯正由外部驗證器識別為失敗的案例。
 - 。 將二進制反饋轉換為自我反思提示。
 - ∘ 使用群體相對政策優化(GRPO)進行訓練。
 - 。 通過僅對初始錯誤的示例應用矯正來保證性能改進。
 - 。僅依賴模型自身的輸出而無需外部 LLMs。
- 這為他們新穎的基於訓練的自我反思方法奠定了基礎,旨在比現有方法更高效和可靠。

"Self-reflection, also referred to as introspection, is a metaprompting strategy in which a language model analyzes its own reasoning in order to identify and correct potential mistakes."

自我反思,也稱為內省,是一種語言模型分析自身推理以識別和糾正潛在錯誤的元提示策略。

"Recent work has shown that the effectiveness depends strongly on the context: challenges include the inability to reliably identify self-errors without ground-truth oracles, diminishing returns from repeated reflection, and risks of performance deterioration for easier prompts or high-performing base models."

最近的研究顯示,效果很大程度上取決於上下文:挑戰包括在沒有真實可靠指示的情況下無法可靠地識別自我錯誤,反思重複次數過多導致收益遞減,並且對於較簡單的提示或高效模型可能造成性能下降的風險。

"Building on insights from prior research, we propose correcting only failed cases identified by an external verifier, converting its binary

feedback into self-reflective prompts, and training the model to use the self-reflection to succeed at the second attempt."

基於以往研究的見解,我們建議僅糾正由外部核查員識別出的失敗案例,將其二元反饋轉 化為自我反思提示,並訓練模型利用自我反思在第二次嘗試中成功。

2.2 Reinforcement Learning for Language Models

第2.2節摘要:語言模型的強化學習

本節介紹了作為本文中所使用的強化學習方法之一的群體相對策略優化 (GRPO)。
主要點包括:

什麼是GRPO: - 一種專為微調大型語言模型設計的基於結果的強化學習方法 - 與傳統的 PPO不同之處在於不需要單獨的評論網路 - 通過比對群體中多個抽樣完成結果來估計優勢

為什麼GRPO適合: - 在只在完成整個序列生成後才提供回饋的稀疏監督場景中表現優異 - 尤其對於像數學推理這樣在結束時決定成功/失敗的任務特別有效 - 適用於表示輸出質量或正確性的標量獎賞

本文的方法: - 單獨使用GRPO而無額外的監督微調階段 - 利用GRPO鼓勵通過失敗堅持和自我糾正的能力 - 基於近期研究顯示GRPO在工具使用和數學問題解決等複雜領域的效果

• 本節將GRPO定位為一種靈活且高效的優化策略,特別適合訓練LLM進行複雜推理 任務的挑戰。

"Unlike conventional approaches like Proximal Policy Optimization (PPO) (Schulman et al., 2017), GRPO dispenses with a separate value (critic) network and instead estimates advantages directly by comparing outcomes from a group of sampled completions."

與傳統方法如Proximal Policy Optimization (PPO) (Schulman et al., 2017)不同,GRPO去除了單獨的價值(評論家)網絡,而是通過比較一組採樣完成的結果直接估計優勢。

"This makes GRPO particularly well-suited to settings where supervision is sparse and only available at the conclusion of a generation—for example, whether a completed math solution is correct."

這使得GRPO特別適合於監督稀疏且僅在生成結束時可用的情境——例如,是否完成的數學解答是正確的。

"Recent research has demonstrated that modifying GRPO's reward structure can effectively encourage models to persist through failure, for instance by rewarding retries after unsuccessful attempts, thereby promoting self-correction and robustness."

最近的研究表明,修改GRPO的獎勵結構可以有效地鼓勵模型在失敗後繼續嘗試,例如通 過獎勵未成功嘗試後的重試,從而促進自我糾錯和健壯性。

3 Reflect, Retry, Reward

• 本節介紹了 **反思、重試、獎勵** 方法論,一種通過自我校正來提高 AI 模型性能的三步驟方法。

• 過程:

- 。**反思**: 當模型在一個任務中失敗時,它會生成一個自我反思,分析出錯之處。
- · **重試**: 模型根據其自我反思獲取的見解重新嘗試該任務。
- **獎勵**: 如果重試成功,僅使用 GRPO (群體相對策略優化) 獎勵自我反思的部分,而不是最終的正確答案。

• 主要特點:

- 。需要一個自動二元驗證器來判斷成功/失敗。
- 。 適用於具有明確成功標準的任務(API 調用、數學方程、代碼執行)。
- 。 某些任務可能需要黃金標準答案來進行驗證。
- 。特別獎勵自我反思過程,而不是特定任務的解決方案,以鼓勵一般自我反思能力。
- 該方法論旨在教模型如何在不同任務中更有效地進行自我校正和反思,而不僅僅是記住特定問題的正確答案。

"If it fails however, we prompt it to generate a self-reflection on what might have gone wrong."

如果它失敗了,我們會提示它生成對可能出錯的自我反省。

"If it succeeds however, we use GRPO to reward only the tokens that were generated in the self-reflection. This is possible by setting the advantage terms for all other generated tokens to zero."

如果它成功了,我們將使用GRPO僅獎勵在自我反省中生成的tokens。 這可以通過將所有其他生成的tokens的優勢條款設置為零來實現。

"We do this because we want the model to learn how to self-reflect more generally rather than specialize for a particular task. In other words, we do not reward the correct answer, we only reward the selfreflection."

我們這麼做是因為我們希望模型學習如何更廣泛地進行自我反省,而不是專注於特定任 務。 換句話說,我們不獎勵正確答案,我們只獎勵自我反省。

4 Experiments

第四節實驗摘要

本節介紹了使用兩個任務對所提方法進行的實驗評估,其中第4.1節聚焦於函數調 用。

數據集和任務設置: - 使用包含60,000個高質量函數調用示例的APIGen數據集 - 每個示例包括: 用戶查詢(文字)、帶參數的可用工具(JSON),以及正確的函數調用(JSON) - 數據集中包含4,211個獨特工具,每個工具平均有2.3個參數 - 用戶每次查詢平均可從2.8個工具中選擇(範圍:1-8個工具) - 成功既需要正確選擇工具,也需要正確生成參數

評估方案: - 只評估在2024年6月(APIGen發布前)之前發布的模型,以防止數據污染 - 測試各種模型大小:Qwen2(1.5B/7B)、Llama3.1(8B)、Phi3.5-mini,以及更大的基線模型(70B+模型) - 為每個模型家族使用優化的提示模板 - 要求與參考答案完全匹配進行驗證

自我反思組件: - 當模型在函數調用失敗時,會生成自我反思,提示要求它們分析出了什麼問題,並為未來的嘗試提供指導

• 本節建立了一個嚴格的實驗框架,用於測試函數調用能力,並通過反思失敗中的問題來進行自我改進。

"We demonstrate the effectiveness of our approach through experiments on two different tasks: function calling and math equations."

通過在兩個不同任務上的實驗展示了我們方法的有效性:函數調用和數學方程。

"A model is only considered to be correct if it not only selects the right tool, but also generates the correct parameters and values."

如果一個模型不僅選擇正確的工具,還生成正確的參數和數值,才被認為是正確的。

"To preserve the integrity of our experiments, we only evaluate models that were released before the APIGen dataset was released (June 2024). This ensures it is impossible that any of these models could have been trained on the dataset to obtain an unfair advantage."

為了保持實驗的完整性,我們僅評估在APIGen數據集發布之前(2024年6月)發布的模型。這確保了這些模型不可能使用這個數據集進行訓練以獲取不正當優勢。

4.2 Countdown Math Equations

摘要

- 本節描述使用 Countdown 數據集評估語言模型在數學推理方面的實驗設置。
- 數據集包含 450,000 個問題,模型必須在僅使用基本算術運算(加、減、乘、除)的前提下,從提供的 3-4 個數字中每個數字恰好使用一遍來達到目標數字。
- 關鍵實驗細節:
 - 任務:創建能夠使用所有提供的數字恰好一次來計算達到目標數字的方程式。
 - 數據集: TinyZero 項目的 Countdown 數據集中的 450,000 個問題。
 - 。**測試模型:**Qwen2.5, Llama3.1, Llama3.2 和 Writer's Palmyra 模型的 各種大小。
 - 。**評估標準:**必須恰好使用所有數字一次並產生正確的最終答案。
 - 。**方法論**:測試了不同的提示格式,並自動驗證對照目標答案,對失敗嘗試使用 自我反思提示。
- 研究人員確保實驗的完整性,只測試在數據集公開之前(即2025年1月)釋出的模型,以防止數據污染。

"The Countdown dataset consists of 450k lists of 3-4 numbers along with a target number. The goal is to apply basic arithmetic operations to the numbers such that the equation evaluates to the target number."

Countdown 資料集包含 450k 個由 3-4 個數字組成的列表,以及一個目標數字。目標是對這些數字應用基本的算術運算,使方程式的結果等於目標數字。

"A model is only considered to be correct if it uses all the numbers once (in any order) and if the final equation successfully evaluates to the target number."

模型只有在使用所有的數字一次(任意順序),且最終方程式成功計算出目標數字時,才被認為是正確的。

"You tried solving the problem and got the wrong answer. Reflect on what went wrong and write a short explanation that will help you do better next time."

你嘗試解決這個問題但得到錯誤的答案。思考錯誤的原因,並寫下簡短的解释幫助自己下 一次做得更好。

4.3 A Dataset of Failures

結構化摘要

- 本節描述了作者創建一個專注於模型失敗的高效訓練數據集的方法。
- 他們沒有使用完整的訓練集,而是從每個模型生成每個查詢的最多64個回應,並僅保留模型失敗的查詢(由特定任務驗證器驗證)。
- 更大的模型需要更多的回應生成,因為它們失敗的頻率較低。

這種專注於失敗的方法的主要優勢:-效率:無需訓練模型已經處理正確的查詢-**健壯性**:每個查詢的多個回應捕捉到20%的失敗案例,即使模型成功率達到80%-**精確分析**:允許精確測量達到最佳自我反思收斂所需的訓練樣本

- 作者使用了具有前綴緩存的vLLM來加速拒絕採樣過程。
- 作者強調,這種方法在功能上與真實世界的學習場景等效,同時對研究而言更加高效。

'We prompted each model for each task to generate up to 64 responses (depending on model size) to each user query and preserved only those queries where the model failed (based on each task-dependent verifier).'

我們讓每個模型在每個任務中針對每個用戶查詢生成多達64個回應(取決於模型大小),並且只保留那些模型未能成功處理的查詢(基於每個任務依賴的驗證器)。

'First and foremost, it saves time because there is no point training our self-reflection model on queries it already handles successfully and hence cannot learn from.'

首先,這樣做節省了時間,因為對於那些模型已經成功處理的查詢,訓練我們的自我反思模型毫無意義,並且無法從中學習。

'By only having failure cases in our dataset, we can precisely determine how many samples the model needed to train on before it converged on the optimum self-reflection.'

通過僅在我們的數據集中保留失敗案例,我們可以精確地確定模型在收斂到最佳自我反思之前需要訓練的樣本數量。

4.4 Multi-Step GRPO

有組織的摘要

簡要摘要

• 本部分描述了多步驟GRPO(組相對政策優化)算法的實現和訓練細節,該算法使模型能夠在初次失敗後通過自我反思進行學習。

主要技術實現

- 基於TRL框架,通過自定義的second step函數擴展GRPOTrainer
- 系統生成初始完成結果,對失敗進行自我反思,然後允許第二次嘗試
- 使用掩蔽機制僅對初始完成結果中的標記進行獎勵,而不是自我反思文本
- 支持多個順序步驟和複雜的下游獎勵機制

訓練配置

- 在失敗數據集上訓練多達1,750步(批量大小256),雖然大多數情況下收斂得更快
- 使用標準GRPO參數:KL係數0.001,學習率5e-7並使用餘弦退火
- 每個模型需要4-8個H100 GPU
- 由於GRPO的可擴展性限制,模型規模限制在1.5B-8B參數之間

實驗範圍

- 函數調用實驗平均少於25,000個獨特查詢(其中一個使用了完整的48K數據集)
- 數學方程寫作實驗平均約15,000個獨特問題
- 較小的模型(少於1.5B參數)顯示出對準確自我反思的不足能力,因此被排除在結果之外
- 該方法本質上教會模型在反思錯誤後「再試一次」,將獎勵重點放在改進的第二次 嘗試上,而不是反思過程本身。

圖像摘要

• 沒有提供圖像摘要。

"We extend the GRPOTrainer and alter its *prepare*inputs function to call a second_step function that, given the completions generated by the GRPOTrainer, will perform another step of completion generations, without affecting the mask already computed by the GRPOTrainer."

我們擴展了GRPOTrainer並修改其*prepare*inputs函數,以調用second_step函數。此函數在提供由GRPOTrainer生成的完成後,將執行另一個完成生成步驟,而不影響已由GRPOTrainer計算的遮罩。

"This multi-step approach allows us to integrate any complex downstream reward mechanism instead of only rewarding the initial completions."

這種多步驟方法使我們能夠集成任何複雜的下游獎勵機制,而不是僅僅獎勵初始完成。

"We quickly discovered, however, that these models had a very limited capacity to answer accurately and self-reflect; e.g. Qwen2/Qwen2.5 0.5B Instruct and Llama3.2-1B Instruct."

然而,我們很快發現這些模型在精確回答和自我反思方面的能力非常有限。例如,Qwen2/Qwen2.5 0.5B Instruct和Llama3.2-1B Instruct。

5 Experimental Results

以下是翻譯至繁體中文的筆記:

• 此部分展示了在兩個測試集上的模型表現,分別是APIGen(12,000個樣本)和 Countdown(15,000個樣本),比較了GRPO(通用基於獎勵的策略優化)訓練 前後的情況。

• 主要發現:

- 預期的基線行為:較大的模型表現更佳,自我反思使得模型在第二次嘗試時性能提高約4.5%。
- **GRPO訓練的有效性**:經過GRPO訓練的模型顯著改進,即使單次嘗試的表現也超越了兩次嘗試的普通(vanilla)模型。
- **推理能力的提升**:作者假設在自我反思標記上的訓練提升了綜合推理能力,即使在 未使用明確自我反思的情況下仍有裨益。
- 持續的自我反思收益:在GRPO訓練後,自我反思仍提供額外的增益(第二次嘗試性能提高約4.7%)。
- **顯著的效率提升**:經GRPO訓練的一個擁有70億參數的模型,在兩次嘗試時,其表現超過了普通的擁有720億參數(大10倍)的模型。
- 結果顯示,GRPO訓練顯著提升了模型的性能和推理能力,同時保持自我反思機制的收益。

"We see the biggest increase after our GRPO training however, where although we only reward self-reflection tokens, almost all models are able to outperform even the two-attempt vanilla models after just a single attempt."

我們看到在GRPO訓練後有最大的提升,雖然我們只對自我反思標記進行獎勵,但幾乎所有模型僅在一次嘗試後就能超越兩次嘗試的基本模型。

"We hypothesize this is because the self-reflection tokens help with model reasoning in general, so the model benefits even if it does not need to generate an explicit self-reflection."

我們假設這是因為自我反思標記有助於模型的推理,所以即使模型不需要生成明確的自我 反思,它也能受益。

"Most strikingly, we observe that our Qwen-2-7B model after GRPO training is able to outperform a vanilla Qwen-2-72B model when both models are given two attempts, even though the latter model is 10x bigger than the first."

最顯著的是,我們觀察到在GRPO訓練後,我們的 Qwen-2-7B 模型在兩次嘗試中能夠超越基本的 Qwen-2-72B 模型,儘管後者的模型比前者大10倍。

5.1 Better Self-Reflections

- 本節對比了在 GRPO (自我反思) 訓練前後的自我反思進行質性分析。
- **主要觀察**:經過 GRPO 訓練後,相較於原始模型生成的冗長、重複的輸出,模型生成的自我反思明顯更簡潔和優化。
- 主要見解:這種向簡潔性的改善符合人們對於短而清晰指示的偏好,表明訓練成功地優化了類似人類的溝通模式。
- **重要對比**:作者指出一個有趣的矛盾點——儘管訓練後簡潔的自我反思似乎更好, 這卻與"連鎖思維"原則相矛盾,因為根據該原則,冗長且詳盡的輸出通常會帶來更 好的表現。
- **未解問題**:本節最後指出一個未解的研究問題,即模型應在何時生成簡潔或冗長的輸出以達到最佳性能。
- 本節基本上表明,自我反思訓練導致了更有效、更符合人類偏好的溝通風格,同時 強調了一個更廣泛的理論問題,即在 AI 推理中簡潔性與冗長性之間的取捨。

"It is immediately obvious that vanilla self-reflections are much longer, more verbose, and repetitive compared to the more concise, optimized self-reflections after training."

很明顯,未經優化的自我反思比經過訓練後的簡潔、優化的自我反思要更長、更冗長且更 重複。

"While this intuitively makes sense – humans likewise prefer short, simple instructions – this finding contrasts with chain-of-thought-style

outputs, which are believed to perform better precisely because they are more verbose."

雖然這在直覺上是合理的——人類也更喜歡簡短、簡單的指示——但這一發現與思維鏈式輸出形式相對立,後者因其冗長而被認為能更好地表現。

"We leave it as an open question as to when it may be more beneficial for a model to generate concise vs. verbose output."

我們留下了一個開放性問題,即在何時模型生成簡潔與冗長的輸出會更有利。

5.2 Low Catastrophic Forgetting

第五節之二摘要:低災難性遺忘

本節探討所提出的自省訓練方法是否會遭遇災難性遺忘的問題——這是一種常見的問題,即模型在針對新任務進行微調後,對之前任務的表現會下降。

• 關鍵點:

- **評估設置**:作者在四個多樣化的基準測試 (MMLU-Pro, GSM8K, HellaSwag, 和 MATH) 上測試了他們的模型,涵蓋語言理解、數學推理和常識推理,測試包括自省訓練前後的表現。
- 。**假設**:由於自省訓練設計為與任務無關(提升一般推理能力而非特定任務), 因此在不同領域中的表現應該保持穩定。
- 。**結果**:實驗證實了他們的假設——大部分情況下,表現基本穩定,僅少於1%的下降。一些模型甚至表現出略微的提升(例如,Qwen-2.5-1.5B在某些基準測試中提升了0.6-0.8%)。
- 。 **結論**:作者將這些結果解釋為,他們的自省訓練方法對災難性遺忘具有穩定性,這表明其增強了普遍推理能力而不損害現有知識。

"Since our self-reflection training is designed to improve performance in a task agnostic way, we evaluate our models on several diverse benchmarks (MMLU-Pro, GSM8K, HellaSwag, and MATH) in order to assess their capacity for language understanding, mathematical problem solving, and commonsense reasoning both before and after self-reflection training."

由於我們的反思訓練旨在以任務無關的方式提升性能,我們在多個不同的基準(MMLU-Pro、GSM8K、HellaSwag 和 MATH)上評估我們的模型,以便評估它們在反思訓練前後的語言理解、數學問題解決和常識推理能力。

"Our hypothesis is that performance should remain relatively unchanged, since we never optimize for a specific task, but instead optimize self-reflection reasoning in general."

我們的假設是性能應該相對保持不變,因為我們從未針對特定任務進行優化,而是優化一般的反思推理能力。

"In most cases, there is less than 1% degradation compared to the base model, and some models even improve; e.g. Qwen-2.5-1.5B performance increases by 0.6% and 0.8% respectively on MMLU-Pro and MATH after self-reflection training on the Countdown dataset."

在大多數情況下,與基礎模型相比,退化不到1%,有些模型甚至有所提升;例如, Qwen-2.5-1.5B在Countdown數據集上進行反思訓練後,MMLU-Pro和MATH的性能 分別提高了0.6%和0.8%。

6 Conclusion

這個結論部分提出了一種通過訓練模型進行**自我反思**而不是特定任務來提高大型語言模型 (LLM)性能的新方法。

主要發現: - 這種方法只需要一個驗證器來判斷回應的正確與否,使其適用於容易驗證的任務(JSON 格式化、代碼執行、方程約束)。 - 使用 GRPO(群體相對策略優化),該方法取得了顯著進展: - 在 APIGen 函數調用上有 9.0% 的提升(12,000 個樣本)。 - 在 Countdown 數學方程上有 16.0% 的提升(15,000 個樣本)。 - 較小的訓練模型性能超出了較大的未訓練模型(例如,7B 訓練模型 > 72B 未訓練模型)。 - 模型顯示出對災難性遺忘的抵抗。

意外收穫:-模型甚至在第一次嘗試中就有改進(不需要自我反思),這表明自我反思訓練可能會增強總體推理能力,而不僅限於特定的反思技能。

未來方向: - 作者計劃研究這種自我反思訓練方法是否能在不同類型的任務中通用,從而提供一種更普遍的 LLM 改進方法。

"In this paper, we have shown that it is possible to significantly improve LLM performance by training a model to improve at self-reflection rather than at a particular task."

在本論文中,我們表明透過訓練模型提升自我反思的能力,而不是專注於特定任務,可以 顯著改善大型語言模型 (LLM) 的表現。 "We found that smaller self-reflection trained models could outperform larger untrained models on both tasks, despite their size difference; e.g. Qwen-2-7B Instruct (trained) outperformed Qwen2-72B Instruct (untrained) on function calling, and Qwen2.5-7B Instruct (trained) outperformed Qwen2.5-72B Instruct (untrained) on Countdown math equations."

我們發現,儘管有大小差異,較小的自我反思訓練模型在兩項任務中都能超越未訓練的大型模型;例如,Qwen-2-7B Instruct(訓練過)在函數調用上超越了Qwen2-72B Instruct(未訓練),而Qwen2.5-7B Instruct(訓練過)在倒數數學方程上超過了 Owen2.5-72B Instruct(未訓練)。

"Although we only trained models to improve at self-reflection, we found they also performed significantly better even when they did not need to self-reflect; i.e. they succeeded on the first attempt so there was no need to reflect and try again."

雖然我們僅訓練模型提升自我反思,但我們發現,即使在不需自我反思的情況下,這些模型的表現也顯著更好;即,它們在第一次嘗試時就成功了,因此不需要反思並再嘗試一次。

7 Limitations

這裡是整理後的摘要:

第七節摘要:局限性

- 本節概述了所提出的自我校正方法的兩個主要局限性:
- 驗證器定義挑戰:
 - 。 為每個任務創建成敗二分的驗證器可能會很困難。
 - 。 該方法是為了應對標記數據有限的情境而設計的。
 - 當有真實標籤或更大的模型可用時,這些可以作為替代驗證器。

• 模型能力要求:

- 。該方法具有固有的限制。
- 。它只能用於具有基本任務執行、自我反思和學習能力的模型。
- 。 在缺乏這些前提條件時,該方法將失效。
- 。例如:Llama3.2-3B Instruct 無法學習用於函數調用任務的自我校正。

- 局限性突顯了:
 - 該方法的有效性取決於任務是否適合二分驗證,以及模型的基本能力。
- 未提供圖片。

'It may not always be straightforward to define a binary success/fail validator for every task.'

將每個任務定義為二元成敗驗證器並不總是簡單明瞭。

'We also find that our approach does not work for all models and all tasks; the model must have some basic ability to perform the task, self-reflect, and learn in order for boosting self-correction ability to work.'

我們還發現,我們的方法並不適用於所有模型和所有任務;模型必須具備一些基本的任務 執行能力、自我反思和學習能力,才能增強自我校正能力。

'For example, Llama3.2-3B Instruct was unable to learn to self-correct on the function calling task.'

例如,Llama3.2-3B Instruct 在函數調用任務中無法學會自我校正。

References

No references found.