Project Design Phase-I Proposed Solution Template

Date	19 September 2022
Team ID	598189
Project Name	Project - Image Caption Generation
Maximum Marks	2 Marks

Proposed Solution:

PROJECT TITLE: IMAGE CAPTION GENERATION

S.No	Parameters	Description
1.	Problem Statement (Problem to be	The problem at hand is to
	solved)	automatically generate
		human-readable textual
		descriptions (captions) for images,
		particularly photographs. This task
		is challenging for computers as it
		requires understanding the image
		content and translating it into
		natural language
2.	Idea / Solution description	Our solution involves building an
		Image Caption Generator using the
		Flickr 8K dataset, which consists of
		8,000 images , each paired with
		five different captions. We will use
		a CNN, specifically the Inception
		V3 model, to extract image
		features and encode the input
		image. These features will serve as
		the initial input to the RNN-based
		LSTM layers, which will generate
		image captions. This approach
		distinguishes our model from
		others, as it provides the image

		embedding as the first input to the
		RNN only once.
3.	Novelty / Uniqueness	The novelty of our solution lies in
		the use of a hybrid model
		combining CNNs and RNNs with
		LSTM layers to generate image
		captions. Additionally, we use the
		Inception V3 model for feature
		extraction. The solution aims to
		provide accurate and contextually
		relevant image captions.
4.	Social Impact / Customer Satisfaction	The social impact of our solution is
		significant, as it can benefit
		individuals with visual impairments
		by providing them with detailed
		image descriptions. It can also be
		used in various applications, such
		as content indexing, image
		retrieval, and improving the
		accessibility of image-based
		content. Customer satisfaction is
		expected to increase as the system
		can automatically generate
		descriptive captions for
		images,reducing the need for
		manual captioning.
5.	Business Model (Revenue Model)	The business model for this project
		can include licensing the Image
		Caption Generator to various
		industries that rely on image data.
		Potential revenue sources may
		come from selling licenses to
		media companies, e-commerce
		platforms, or content management
		systems. Alternatively, a
		subscription-based service for
		individuals and businesses looking
		to automatically caption their

		images can be explored.
6.	Scalability of the Solution	The solution is designed to be
		scalable. As more data becomes
		available, the model can be
		retrained to improve caption
		quality. The use of pre-trained CNN
		models and deep learning
		techniques makes it adaptable to
		larger datasets and evolving
		technology. Furthermore, the
		solution can be deployed on cloud
		infrastructure to handle a higher
		volume of image caption requests,
		ensuring scalability.