Viktor Kunčak

Satisfiability Modulo Theories

Satisfiability Modulo Theories (SMT) Solvers

SMT solvers are the most widely used tools for automation of program verification Examples of solvers:

- CVC5 (successor of CVC4): https://github.com/cvc5/cvc5
- Z3: https://github.com/Z3Prover/z3
- Princess: http://www.philipp.ruemmer.org/princess.shtml
- Yices: https://yices.csl.sri.com/

Competitions of solvers: https://smt-comp.github.io/2023/ Tools using them:

- Stainless: https://github.com/epfl-lara/stainless/
- Dafny: https://github.com/dafny-lang/dafny
- Fstar: https://www.fstar-lang.org/
- ▶ Viper: https://www.pm.inf.ethz.ch/research/viper.html

- ▶ formula: $p \land (\neg q \lor r) \land s$
- ▶ Do there exist truth values p, q, r, s that make formula true?

- formula: $p \wedge (\neg q \vee r) \wedge s$
- ▶ Do there exist truth values p, q, r, s that make formula true? yes, e.g., $p \mapsto 1, q \mapsto 0, s \mapsto 1$ (r is any)

- ▶ formula: $p \land (\neg q \lor r) \land s$
- ▶ Do there exist truth values p, q, r, s that make formula true? yes, e.g., $p \mapsto 1, q \mapsto 0, s \mapsto 1 \ (r \text{ is anv})$
- SMT = Satisfiability Modulo Theories (e.g. Z3 solver)
- formula: $a = b \land (\neg(f(a) = f(b)) \lor b = c) \land \neg(f(a) = f(c))$
- ▶ Do there exist values of a, b, c that makes formula true?

- ▶ formula: $p \land (\neg q \lor r) \land s$
- Do there exist truth values p, q, r, s that make formula true? yes, e.g., $p \mapsto 1, q \mapsto 0, s \mapsto 1$ (r is any)

- formula: $a = b \land (\neg(f(a) = f(b)) \lor b = c) \land \neg(f(a) = f(c))$
- Do there exist values of a, b, c that makes formula true? No. We have: a = b, f(a) = f(b), b = c, a = c, f(a) = f(c), $\neg (f(a) = f(c))$ - unsat

SAT = Satisfiability for Propositional Logic

Another example: $x = y \land f(x) < f(y)$

- ightharpoonup formula: $p \wedge (\neg q \vee r) \wedge s$
- ▶ Do there exist truth values p, q, r, s that make formula true? yes, e.g., $p \mapsto 1, q \mapsto 0, s \mapsto 1$ (r is any)

- formula: $a = b \land (\neg(f(a) = f(b)) \lor b = c) \land \neg(f(a) = f(c))$
- ▶ Do there exist values of a, b, c that makes formula true? No. We have:

a = b, f(a) = f(b), b = c, a = c, f(a) = f(c), $\neg (f(a) = f(c))$ - unsat

- ightharpoonup formula: $p \wedge (\neg q \vee r) \wedge s$
- ▶ Do there exist truth values p, q, r, s that make formula true? yes, e.g., $p \mapsto 1, q \mapsto 0, s \mapsto 1 \ (r \text{ is anv})$

- formula: $a = b \land (\neg(f(a) = f(b)) \lor b = c) \land \neg(f(a) = f(c))$
- ▶ Do there exist values of a, b, c that makes formula true? No. We have:
- a = b, f(a) = f(b), b = c, a = c, f(a) = f(c), $\neg (f(a) = f(c))$ unsat Another example: $x = v \land f(x) < f(v)$ - unsat

SAT = Satisfiability for Propositional Logic

- ightharpoonup formula: $p \wedge (\neg q \vee r) \wedge s$
- ▶ Do there exist truth values p, q, r, s that make formula true? yes, e.g., $p \mapsto 1, q \mapsto 0, s \mapsto 1 \ (r \text{ is anv})$

SMT = Satisfiability Modulo Theories (e.g. Z3 solver)

- formula: $a = b \land (\neg(f(a) = f(b)) \lor b = c) \land \neg(f(a) = f(c))$
- ▶ Do there exist values of a, b, c that makes formula true? No. We have: a = b, f(a) = f(b), b = c, a = c, f(a) = f(c), $\neg (f(a) = f(c))$ - unsat
- Another example: $x = v \land f(x) < f(v)$ unsat
- Another example: $1 \le x \land x \le 2 \land f(x) \ne f(1)$

- ightharpoonup formula: $p \wedge (\neg q \vee r) \wedge s$
- ▶ Do there exist truth values p, q, r, s that make formula true? yes, e.g., $p \mapsto 1, q \mapsto 0, s \mapsto 1$ (r is any)

- formula: $a = b \land (\neg(f(a) = f(b)) \lor b = c) \land \neg(f(a) = f(c))$
- ▶ Do there exist values of a, b, c that makes formula true? No. We have:
 - a = b, f(a) = f(b), b = c, a = c, f(a) = f(c), $\neg (f(a) = f(c))$ unsat
- Another example: $x = v \land f(x) < f(v)$ unsat
- ▶ Another example: $1 \le x \land x \le 2 \land f(x) \ne f(1)$: $x \mapsto 2$

SAT = Satisfiability for Propositional Logic

- formula: $p \wedge (\neg q \vee r) \wedge s$
- ▶ Do there exist truth values p, q, r, s that make formula true? yes, e.g., $p \mapsto 1, q \mapsto 0, s \mapsto 1$ (r is any)

SMT = Satisfiability Modulo Theories (e.g. Z3 solver)

- ▶ formula: $a = b \land (\neg(f(a) = f(b)) \lor b = c) \land \neg(f(a) = f(c))$
 - ▶ Do there exist values of *a*, *b*, *c* that makes formula true? No. We have:
 - a = b, f(a) = f(b), b = c, a = c, f(a) = f(c), $\neg(f(a) = f(c))$ unsat Another example: $x = y \land f(x) < f(y)$ - unsat
- ▶ Another example: $1 \le x \land x \le 2 \land f(x) \ne f(1) : x \mapsto 2$

Large formulas with few no or few quantifiers (unlike pure FOL provers)

- propositional structure explored using SAT solver
 function and relation symbols come from decidable theories (quantifier-free linear arithmetic, algebraic data types)
 - atomic formulas solved using decision procedures (theory solvers)
 - quantifiers handled mostly by instantiation

$$a = b \land (f(a) \neq f(b) \lor b = c) \land f(a) \neq f(c)$$

for each atomic formula introduce propositional variable:

$$a = b \wedge (f(a) \neq f(b) \vee b = c) \wedge f(a) \neq f(c)$$

 $for \ each \ atomic \ formula \ introduce \ propositional \ variable:$

$$p \land (\neg q \lor r) \land \neg s$$

$$p \Leftrightarrow a = b$$

$$q \Leftrightarrow f(a) = f(b)$$

$$r \Leftrightarrow b = c$$

$$s \Leftrightarrow f(a) = f(c)$$

$$a = b \wedge (f(a) \neq f(b) \vee b = c) \wedge f(a) \neq f(c)$$

for each atomic formula introduce propositional variable:

$$p \land (\neg q \lor r) \land \neg s$$

$$p \Leftrightarrow a = b$$

$$q \Leftrightarrow f(a) = f(b)$$

$$r \Leftrightarrow b = c$$

$$s \Leftrightarrow f(a) = f(c)$$

```
p \wedge (\neg q \vee r) \wedge \neg s give to SAT solver, who returns e.g. p \wedge \neg q \wedge \neg s
```

$$a = b \land (f(a) \neq f(b) \lor b = c) \land f(a) \neq f(c)$$

for each atomic formula introduce propositional variable:

$$p \land (\neg q \lor r) \land \neg s$$

$$p \Leftrightarrow a = b$$

$$q \Leftrightarrow f(a) = f(b)$$

$$r \Leftrightarrow b = c$$

$$s \Leftrightarrow f(a) = f(c)$$

$$p \land (\neg q \lor r) \land \neg s$$
 give to SAT solver, who returns e.g. $p \land \neg q \land \neg s$
 $p \Leftrightarrow a = b$
 $q \Leftrightarrow f_a = f_b$
 $r \Leftrightarrow b = c$
 $s \Leftrightarrow f_a = f_c$
maps prop. assignment to conjunction of literals
 $a = b \land f_a \neq f_b \land f_a \neq f_c$

$$a = b \land (f(a) \neq f(b) \lor b = c) \land f(a) \neq f(c)$$

for each atomic formula introduce propositional variable:

$$p \land (\neg q \lor r) \land \neg s$$

$$p \Leftrightarrow a = b$$

$$q \Leftrightarrow f(a) = f(b)$$

$$r \Leftrightarrow b = c$$

$$s \Leftrightarrow f(a) = f(c)$$

```
\begin{array}{l} p \wedge (\neg q \vee r) \wedge \neg s \\ p \Leftrightarrow a = b \\ q \Leftrightarrow f_a = f_b \\ r \Leftrightarrow b = c \\ s \Leftrightarrow f_a = f_c \end{array} \right\} \quad \text{maps prop. assignment to conjunction of literals} \\ a = b \wedge f_a \neq f_b \wedge f_a \neq f_c \\ f_a = f(a) \\ f_b = f(b) \\ f_c = f(c) \end{array} \right\} \quad \text{each theory uses its conjuncts and definitions} \\ \dots \wedge a = b \wedge f_a \neq f_b \wedge f_a \neq f_c \\ \text{UNSAT, give to SAT solver new clause to conjoin:} \neg (p \wedge \neg q \wedge \neg s) \end{array}
```

Formula containing function symbols and arithmetic

- ► f is uninterpreted symbol (as in FOL)
- $+,<,\leq,1,3,5$ are as in linear integer arithmetic; x is of type integer

$$\underbrace{1 \leq x}_{p} \wedge \underbrace{x < 3}_{q} \wedge \underbrace{\left(\underbrace{f(1) + 1 \leq f(x)}_{t} \wedge \underbrace{f(x) < f(2)}_{s}\right)} \vee \underbrace{4 = 2x}_{t}$$

Formula containing function symbols and arithmetic

- f is uninterpreted symbol (as in FOL)
 - \rightarrow +,<, \leq ,1,3,5 are as in linear integer arithmetic; x is of type integer

 $r \Leftrightarrow u_1 \leq u_2 \land u_1 = u_3 + 1 \land u_3 = f(u_4) \land u_2 = f(x) \land u_4 = 1$

$$\underbrace{1 \leq x \land x < 3}_{p} \land \underbrace{(f(1) + 1 \leq f(x))}_{r} \land \underbrace{f(x) < f(2)}_{s}) \lor \underbrace{4 = 2x}_{t})$$

$$\underbrace{1 \le x \land x < 3}_{p} \land \underbrace{(f(1) + 1 \le f(x))}_{r} \land \underbrace{f(x) < f(2)}_{s}) \lor \underbrace{4 = 2x}_{t}$$

$$p \land q \land ((r \land s) \lor t) \land$$

$$p \Leftrightarrow 1 \le x \land$$

$$q \Leftrightarrow x < 3 \land$$

 $s \Leftrightarrow u_2 < u_5 \land u_5 = f(u_6) \land u_6 = 2$ $t \Leftrightarrow u_7 = u_0 \land u_7 = 4 \land u_0 = 2x$

Formula containing function symbols and arithmetic

- f is uninterpreted symbol (as in FOL)
- +, <, \leq , 1, 3, 5 are as in linear integer arithmetic; x is of type integer

$$\underbrace{1 \le x \land x < 3}_{p} \land \underbrace{(f(1) + 1 \le f(x))}_{r} \land \underbrace{f(x) < f(2)}_{s}) \lor \underbrace{4 = 2x}_{t})$$

$$p \land q \land ((r \land s) \lor t) \land$$

$$p \Leftrightarrow 1 \leq x \land$$

$$q \Leftrightarrow x < 3 \land$$

$$r \Leftrightarrow u_1 \leq u_2 \land \quad u_1 = u_3 + 1 \land u_3 = f(u_4) \land u_2 = f(x) \land u_4 = 1$$

$$s \Leftrightarrow u_2 < u_5 \land \quad u_5 = f(u_6) \land u_6 = 2$$

$$t \Leftrightarrow u_7 = u_8 \land \quad u_7 = 4 \land u_8 = 2x$$
Who handles which part in this example:

Who bandles which nort in this avanable

vino nandies which part in this example.		
	propositional formula	SAT solver
	pure equalities $(u_7 = u_8)$	both theory solvers
	highlighted formulas	solver for theory of uninterpreted functions
	remaining ones	solver for theory of integer linear arithmetic

Theory of Uninterpreted Function Symbols

Quantifier-free first-order logic with equality

Assume it is interpreted over an infinite domain

Assume no relation symbols: replace $R(t_1,...,t_n)$ with $f_R(t_1,...,t_n)=T$ for some fresh constant T

SAT solver handles disjunctions: assume conjunction of equalities and disequalities Key inference rule, for each function symbol f of n arguments:

$$\frac{t_1 = t_1' \dots t_n = t_n'}{f(t_1, \dots, t_n) = f(t_1', \dots, t_n')}$$

Also: "=" is equivalence relation and $t \neq t$ is contradictory Apply these rules only to those terms that occur in the formula Implementation: E-graph stores congruence relation computed so far.

Applying rules: merging nodes in this graph

Example of Running the Algorithm

Let $f^k(a)$ denote f(...f(a)...) with k-fold application of f. Consider

$$f^3(a) = a \wedge f^5(a) = a \wedge f^2(a) \neq a$$

Apply the congruence closure algorithm to check its satisfiability. Initial graph of all ground terms and the given equalities:

Congruence rule

in this case:
$$x = y \longrightarrow f(x) = f(y)$$

Equivalence maintained using union-find algorithm

Conjunction is unsatisfiable \Leftrightarrow there is literal $t_1 \neq t_2$ where t_1, t_2 are merged

⇐): by properties of equality, conclusions are sound

⇒): contrapositive: congruence extends to congruence on the Herbrand model

Decision Procedures are Building Blocks of SMT Solvers

Decision procedures:

- uninterpreted functions
- algebraic data types
- rational linear arithmetic
- integer linear arithmetic

Many other decidable theories exist (e.g. sets with cardinality bounds)

Tarski has shown that there exists a quantifier elimination algorithm for conjunction of polynomials over reals and over complex numbers.

Later method: Cylindrical Algebraic Decomposition (CUD), used in computer algebra systems

Versions of Z3 and CVC4 have implementations of complete procedures for reals: Deciding the Consistency of Non-Linear Real Arithmetic Constraints with a Conflict Driven Search Using Cylindrical Algebraic Coverings

Over integers, the problem is undecidable: 10th Hilbert's problem (Y. Matiyasevich)

Quantifier Instantiation During SMT Solving Process

$$G \wedge \forall x. F(x) \rightsquigarrow G \wedge F(t) \wedge \forall x. F(x)$$

where t is a term occurring in G

- this can go on forever
- in general this is incomplete: may need to invent terms that do not occur
- even in the limit it is not complete with respect to the ideal semantics of e.g. integers (theory of quantified integers is not even enumerable)

Controlling the instantiation process using triggers

- ▶ for each quantified formula $\forall \bar{x}.F(\bar{x})$ require a pattern $P(\bar{x})$ that contains all free variables in $F(\bar{x})$
- instantiate $F(\bar{x})$ only if the the pattern P(x) occurs in the ground formula so far
- ▶ introduced in Simplify: a theorem prover for program checking

More information in these papers

- Solving Quantified Verification Conditions using Satisfiability Modulo Theories
- ► Efficient E-matching for SMT solvers