Sistemas de Ecuaciones Diferenciales Ordinarias

Recordemos que si G(t) es un vector cuyas n componentes son funciones derivables, esto es, $G(t) = (g_1(t), \dots, g_n(t))$ entonces su derivada es la derivada de cada componente $G'(t) = (g'_1(t), \dots, g'_n(t))$.

Ejemplo

Si
$$G(t) = (e^{3t}, sen(t^2))$$
 entonces $G'(t) = (3e^{3t}, 2t cos(t^2))$.

Estudiaremos Sistemas de Ecuaciones Diferenciales Ordinarias, S-EDO, del tipo

$$X'(t) = AX(t) + F(t) \text{ donde}$$
(1)

X(t) es un vector con funciones incógnitas, $X(t) = (x_1(t), x_2(t), \cdots, x_n(t));$

A es una matriz de orden n por n;

F(t) es un vector conocido de n componentes, cuyas componentes son funciones, $F(t)=(f_1(t),\cdots,f_n(t))$.

Observación: En el sistema (1), en general, los coeficientes de la matriz A son funciones de la variable independiente, esto es, $A = (a_{ij}(t))$ para $i, j \in \{1, \dots, n\}$; se dice que A es la matriz de los coeficientes del sistemas.

Sigue entonces que la igualdad en (1), es una igualdad matricial. Por tanto, en (1) X(t) y F(t) deben escribirse en forma matricial, esto es, $X(t) = (x_1(t) \cdots x_n(t))^t$ (la t indica transpuesto) y $F(t) = (f_1(t) \cdots f_n(t))^t$. Así, la suma en el lado derecho de (1), es una suma de matrices (de orden $n \times 1$).

Ejemplo: Consideremos el SEDO

$$\begin{cases} x'(t) = 2x(t) + 2y(t) + (5/3)e^{4t} \\ y'(t) = 3x(t) + y(t) + e^{-t}. \end{cases}$$
 (2)

Aquí, X(t) = (x(t), y(t)), tenemos un sistema de dos ecuaciones diferenciales ordinarias. Observe que el sistema (2) en forma matricial, es:

$$\begin{pmatrix} x'(t) \\ y'(t) \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} + \begin{pmatrix} (5/3)e^{4t} \\ e^{-t} \end{pmatrix},$$

el cual, de manera equivalente, se puede escribir como

$$\frac{d}{dt} \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} + \begin{pmatrix} (5/3)e^{4t} \\ e^{-t} \end{pmatrix}.$$

Definición: Si en el SEDO (1) el vector F es cero, esto es, $F(t) = (0, \dots, 0)$ entonces el sistema se denomina HOMOGÉNEO; en caso contrario, el sistema se dice no-homogéneo.

Definición: Una solución para el Sistema SEDO (1) es un vector $X(t) = (x_1(t), x_2(t), \dots, x_n(t))$, de modo que el sistema (1) se satisface.

Ejemplo:

(I) El vector $X_1(t) = (e^t, e^t)$ es una solución del SEDO no homogéneo

$$\boldsymbol{X}'(t) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \boldsymbol{X}(t) \tag{3}$$

Observe que el sistema (3) es una representación matricial del sistema de ecuaciones:

$$\begin{cases} x'(t) = y(t) \\ y'(t) = x(t). \end{cases}$$
 (4)

(II) El vector

$$\frac{1}{4} \left(\begin{array}{c} (2t+1)(e^t - e^{-t}) \\ (2t-1)(e^t + e^{-t}) \end{array} \right)$$

es una solución del Sistema no homogéneo

$$\boldsymbol{X}'(t) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \boldsymbol{X}(t) + \begin{pmatrix} e^t \\ e^{-t} \end{pmatrix}, \tag{5}$$

Observe que el sistema (5) es una representación matricial del sistema no homogéneo

$$\begin{cases} x'(t) = y(t) + e^t \\ y'(t) = x(t) + e^{-t}. \end{cases}$$
 (6)

Nuestro objetivo es determinar la o las soluciones de los SEDO. Dividiremos nuestro objetivo en sistemas homogéneos y en sistemas no homogéneos.

Pasando de EDO de orden superior a un SEDO:

Antes de los métodos para determinar la o las soluciones de los SEDO, veamos como convertior una EDO lineal de orden superior en un SEDO.

Consideremos la EDO lineal de orden n, en general a coeficientes variables:

$$y^{(n)}(t) + a_{n-1}(t) y^{(n-1)}(t) + \dots + a_1(t) y'(t) + a_0(t)y(t) = f(t).$$

Haciendo los cambios de variables que se indican, transformaremos la EDO dada en un SEDO de primer orden con n ecuaciones y n incógnitas:

$$\begin{cases} x_1(t) = y(t) \\ x_2(t) = y'(t) = x_1'(t) \\ \vdots \\ x_{n-1}(t) = y^{(n-2)}(t) \\ x_n(t) = y^{(n-1)}(t) \end{cases}$$
 de donde obtenemos
$$\begin{cases} x_1'(t) = x_2(t) \\ x_2'(t) = x_3(t) \\ \vdots \\ x_n'(t) = x_n(t) \\ x_n'(t) = x_n(t) \\ x_n'(t) = y^{(n)}(t) \end{cases}$$

Ejemplo:

Consideremos la EDO lineal de orden 3 y a coeficientes variables:

$$y'''(t) - (t-1)y''(t) - t^2y'(t) + y(t) = \operatorname{sen}(2t).$$

Haciendo los cambios de variable indicados en el proceso anterior, se obtiene $\begin{cases} x_1'(t) = x_2(t) \\ x_2'(t) = x_3(t) \\ x_3'(t) = y'''(t), \end{cases}$

de donde
$$\begin{cases} x_1'(t) = x_2(t) \\ x_2'(t) = x_3(t) \\ x_3'(t) = \operatorname{sen}(2t) + (t-1)x_3(t) + t^2x_2(t) - x_1(t). \square \end{cases}$$

En el lenguaje matricial, el SEDO anterior se escribe como

$$X'(t) = AX(t) + F(t)$$

donde
$$X(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{pmatrix}$$
, $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & t^2 & (t-1) \end{pmatrix}$ y $F(t) = \begin{pmatrix} 0 \\ 0 \\ \sin(2t) \end{pmatrix}$.

Antes de presentar el método para determinar soluciones de los SEDO, veamos el

Teorema: (de existencia y Unicidad de soluciones)

Sean J :=]a, b[un intervalo real, A = A(t) una matriz cuadrada $n \times n$ cuyas entradas $a_{ij} = a_{ij}(t)$ son funciones reales y continuas en J; B = B(t) un vector columna $n \times 1$ formado por n funciones reales y continuas en J. y X_0 un vector de n componentes componentes cono Entonces el PROBLEMA CON VALOR INICIAL (P),

$$\left\{ \begin{array}{lcl} X'(t) & = & A(t)X(t) + B(t) \\ X(t_0) & = & X_0 \end{array} \right.$$

tiene única solución.

 $(X_0 \text{ un vector conocido de n componentes reales.})$

Definición:

El SEDO X'(t) = A(t)X(t) + B(t) junto a la condición, $X(t_0) = X_0$ se conoce como **problema con valor inicial**, denotado abreviadamente PVI.

Ejemplo:

El PVI

$$\begin{cases} x'(t) = -2x(t) + y(t) + z(t), & \cos x(0) = 1, \\ y'(t) = -x(t) - 2y(t) - z(t), & \cos y(0) = -1, \\ z'(t) = x(t) - y(t) - 2z(t) & \cos z(0) = 1. \end{cases}$$

tiene por única solución a

$$X(t) = e^{-2t} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} - 2e^{-t} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}. \square$$

Observación:

Note que toda solución del SEDO X'(t) = A(t)X(t), es un vector cuyas componentes son funciones derivables, por tanto continuas. Así, podemos definir el conjunto formado por todas las soluciones del sistema homogéneo

$$V = \{ X \in C^1(I, \mathbb{R}^n) : X'(t) = A(t)X(t) \}. \tag{7}$$

Definición: El conjunto V en (7) se denomina el espacio solución del SISTEMA HOMOGENEO X'(t) = A(t)X(t)

Ejemplo En el Ejemplo del PVI anterior, a saber,

$$\begin{cases} x'(t) = -2x(t) + y(t) + z(t), \\ y'(t) = -x(t) - 2y(t) - z(t), \\ z'(t) = x(t) - y(t) - 2z(t), \end{cases}$$

los vectores
$$X_1(t) = e^{-2t} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, X_2(t) = e^{-t} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$
 y $X_3(t) = e^{-3t} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$

pertenecen al espacio V asociado al sistema de ecuaciones diferenciales ordinarias considerado.

Definición:

Sea $B = \{X_1(t), X_2(t), \dots, X_n(t)\}$ donde para cada $j \in \{1, \dots, n\}, X_j(t) = (x_{1j}, x_{2j}, \dots, x_{nj}),$ un conjunto de n soluciones de X'(t) = A(t)X(t), con A matriz de $n \times n$, entonces se denomina **Wronskiano** de las funciones $X_1(t), X_2(t), \dots, X_n(t)$ asociado al SEDO, denotado por $W(X_1(t), \dots, X_n(t))$ a:

$$W(X_1(t), \dots, X_n(t)) := \begin{vmatrix} x_{11}(t) & \dots & x_{1n}(t) \\ x_{21}(t) & \dots & x_{2n}(t) \\ & \dots & \\ x_{n1}(t) & \dots & x_{nn}(t) \end{vmatrix}$$

En el ejemplo anterior

$$W(X_1(0), X_2(0), X_3(0)) := \begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ -1 & -1 & -1 \end{vmatrix}$$

Teorema (de la dimensión del espacio solución homogéneo)

Para $A = A(t) \in \mathcal{M}_{n \times n}$, consideremos el SEDO (S) X'(t) = A(t)X(t). Entonces:

- (i) Si A es una matriz cuyas componentes $a_{ij} = a_{ij}(t)$ son todas continuas, entonces el conjunto V de todas las soluciones del sistema (S) es un espacio vectorial de dimensión igual al orden de la matriz A.
- (ii) Sea $B = \{X_1(t), X_2(t), \dots, X_n(t)\}$ un conjunto de n soluciones de (S). Entonces B es base para V si, y sólo si $W(X_1(t_0), \dots, X_n(t_0)) \neq 0$ para algún $t_0 \in \mathbb{R}$.

Dem: La demostración de la parte (1) se basa en el Teorema de existencia y Unicidad, la parte (2) es analoga a lo hecho en las EDO de orden superior.

Ahora vamos a la determinación de soluciones de los SEDO.

Observación Importante:

Sean $X_1(t)$ y $X_2(t)$ dos soluciones del sistema no homogeneo (1), X'(t) = AX(t) + F(t), entonces

$$\begin{cases} X_1'(t) = A X_1(t) + F(t) \\ X_2'(t) = A X_2(t) + F(t) \end{cases}$$

de donde $X_1'(t) - X_2'(t) = A(X_1(t) - X_2(t))$. Por tanto, poniendo $Y(t) = X_1(t) - X_2(t)$, resulta que

$$Y'(t) = AY(t)$$

de lo anterior se deduce siguiente e importante

Proposición (*)

Sea Z = Z(t) una solución del sistema (1). Entonces $Z(t) = Y_h(t) + X_p(t)$, donde $Y_h(t)$ es una solución del sistema homogéneo asociado a (1) y $X_p(t)$ es una solución del sistema no homogéneo (1) (esta última se conoce como solución particular del sistema (1)).

Ejemplo (Este ejemplo es muy importante pues muestra el camino que seguiremos para determinar la solución general de un SEDO)

Consideremos el Sistema no homogéneo (2)

$$\begin{cases} x'(t) = 2x(t) + 2y(t) + (5/3)e^{4t} \\ y'(t) = 3x(t) + y(t) + e^{-t}. \end{cases}$$

Primero observemos que el Sistema homogéneo asociado al sistema dado es:

$$\begin{cases} x'(t) = 2x(t) + 2y(t) \\ y'(t) = 3x(t) + y(t). \end{cases}$$
 (8)

Se puede ver que los vectores

$$X_1(t) = e^t \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 y $X_2(t) = e^{-t} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

son dos soluciones del sistema (8). Puesto que sabemos que el espacio solución de (8) tiene dimensión dos y

$$w(X_1(0), X_2(0)) = \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} \neq 0$$

sigue que toda solución $X_h(t)$ del sistema (8), se escribe como

$$X_h(t) = c_1 e^t \begin{pmatrix} 1 \\ 1 \end{pmatrix} + c_2 e^{-t} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

donde c_1 y c_2 son constantes reales arbitrarias.

Además vimos a inicios de capitulo que el vector

$$X_p(t) = \frac{1}{4} \begin{pmatrix} (2t+1)(e^t - e^{-t}) \\ (2t-1)(e^t + e^{-t}) \end{pmatrix}$$

es una solución particular del sistema no homogéneo considerado. Así, toda solución Z(t) del sistema no homogenéo es del tipo

$$Z(t) = X_h(t) + X_n(t)$$

esto es,

$$Z(t) = c_1 e^t \begin{pmatrix} 1 \\ 1 \end{pmatrix} + c_2 e^{-t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} (2t+1)(e^t - e^{-t}) \\ (2t-1)(e^t + e^{-t}) \end{pmatrix}.$$

donde c_1 y c_2 son constantes reales arbitrarias.

Observación:

De acuerdo al ejemplo anterior para determinar las soluciones del sistema X'(t) = AX(t) + F(t), primero debemos resolver el sistema homogeñeo asociado, para luego buscar soluciones particulares, eso lo haremos al final.

Caso Homogéneo:

$$X'(t) = AX(t) \tag{9}$$

Recordemos que dada la matriz A de orden $n \times n$ con entradas reales a_{ij} , decimos que $\lambda \in \mathbb{C}$ es una valor propio para A, si existe vector $u \in \mathbb{C}^n$, $u \neq \theta$ de modo que $A(u) = \lambda u$ (en tal caso se dice que u es un vector propio asociado a λ). Lo anterior es equivalente a decir que λ es una raíz del polinomio caracteístico $p(\lambda) := Det[A - \lambda A]$.

Se puede probar el siguiente

Teorema

Sean A una matriz real de orden $n \times n$, λ un valor propio para A con vector propio asociado u. Entonces el vector $X(t) = e^{\lambda t} u$ es una solución para el SEDO X'(t) = A X(t).

Además, si (β, v) son tales que $A(v) = \beta v$, con $\lambda \neq \beta$, entonces el conjunto de soluciones $\{e^{\lambda t} u, e^{\beta t} v\}$ es linealmente independiente.

Dem:

$$\frac{d}{dt}[X(t)] = \frac{d}{dt}[e^{\lambda t}]u = e^{\lambda t}\lambda \ u = e^{\lambda t}Au = A(e^{\lambda t}u) = AX(t).$$

El hecho que $\{e^{\lambda t} u, e^{\beta t} v\}$ sea linealmente independiente sigue del curso de Algebra Lineal.

Ejemplo:

Determine todas las soluciones del SEDO homogéneo

$$\begin{cases} x'(t) = -2x(t) + y(t) + z(t) \\ y'(t) = -x(t) - 2y(t) - z(t) \\ z'(t) = x(t) - y(t) - 2z(t) \end{cases}$$

- (i) Si el vector $X_1(t) = e^{-2t}(1, 1, -1)$ es solución del sistema de EDO lineal homogéneo asociado al sistema dado, escriba la solución general del **sistema lineal homogéneo** correspondiente.
- (ii) Determine una solución particular para el sistema dado.
- (iii) Determine la solución general del sistema dado.

SOLUCION

Aquí la matriz de los coeficientes del sistema homogéneo, es
$$A = \begin{bmatrix} -2 & 1 & 1 \\ -1 & -2 & -1 \\ 1 & -1 & -2 \end{bmatrix}$$

Por tanto, las raíces del polinomio característico $p(\lambda) = \det(A - \lambda I) = 0$ proporciona los valores propios

$$\lambda_1 = -2; \ \lambda_2 = -3; \ \lambda_3 = -1$$

Para determinar los correspondientes vectores propios, buscamos los espacios propios correspondientes, esto es , $\operatorname{Ker}(A-\lambda\,I)$ pues como veremos mas adelante la información de la dimensión de ese subespacio es vital.

En general, para un valor propio λ , el espacio propio, S_{λ} es:

$$S_{\lambda} = \operatorname{Ker}(A - \lambda I) = \{ x \in \mathbb{C}^n : (A - \lambda I)(x) = \theta \}.$$
(10)

En este caso resulta que

$$S_{\lambda_1} = \{x \in \mathbb{C}^n : (A - (-2)I)(x) = \theta\} = <\{(1, 1, -1)\} >$$

$$S_{\lambda_2} = \{x \in \mathbb{C}^n : (A - (-3)I)(x) = \theta\} = <\{(1, 0, -1)\} >$$

$$S_{\lambda_2} = \{x \in \mathbb{C}^n : (A - (-1)I)(x) = \theta\} = <\{(0, 1, -1)\} >$$

En consecuencia formamos las soluciones

$$X_1(t) = e^{-2t} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \ X_2(t) = e^{-3t} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \ \ y \ X_3(t) = e^{-t} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}.$$

Además

$$W(X_1(0), X_2(0), X_3(0)) \neq 0$$

de donde el conjunto $\{X_1(t), X_2(t), X_3(t)\}$ es linealmente independiente. Por el Teorema de la dimensión sigue que

$$B = \{X_1(t), X_2(t), X_3(t)\}\$$

es base del espacio solución del sistema homogéneo considerado. Por tanto toda solución $X_h(t)$ del sistema viene dada como

$$X_h(t) = C_1 e^{-2t} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} + C_2 e^{-3t} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + C_3 e^{-t} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \quad \text{con } C_1, C_2, C_3 \text{ constants arbitrarias.}$$

Definición:

Toda base de un espacio solución de un sistema homogéneo de EDO, se conoce como SISTEMA FUNDAMENTAL DE SOLUCIONES del sistema homogéneo considerado.

En el ejemplo anterior, los Vectores X_1 , X_2 y X_3 forman un sistema fundamental para el sistema homogéneo considerado.

Definición

Dada la matriz A, si $A(u) = \lambda u$, la multiplicidad de λ como raíz del polinomio característico, se denomina **multiplicidad algebraíca de** λ . De otra parte, la dimensión del espacio propio asociado a λ , esto es, dim $\left[\operatorname{Ker}(A - \lambda I)\right]$ se denomina **multiplicidad geométrica de** λ .

Ejemplo.

En el Ejemplo anterior, la multiplicidad algebraíca de cada autovalor es uno. Lo mismo ocurre para la multiplicidad geométrica.

Ejercicio.

Determine la solución general del sistema de ecuaciones diferenciales ordinarias dado por

$$\begin{bmatrix} x'(t) \\ y'(t) \\ z'(t) \end{bmatrix} = \begin{bmatrix} -3 & 0 & -4 \\ 4 & 1 & 4 \\ 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} x(t) \\ y(t) \\ z(t) \end{bmatrix}$$
(11)

Note que el sistema anterior es equivalente a

$$\begin{cases}
-x'(t) = 3x + 4z \\
y'(t) = 4x + y + 4z \\
z'(t) = 3z + 2x
\end{cases}$$

Solución

Sabemos que $\vec{x}=\vec{v}e^{\lambda t}$ es una solución de (11) sí y sólo si λ es valor propio de A con vector propio asociado \vec{v} . Es decir, si λ es raíz de

$$p(\lambda) = |A - \lambda I| = \begin{vmatrix} -3 - \lambda & 0 & -4 \\ 4 & 1 - \lambda & 4 \\ 2 & 0 & 3 - \lambda \end{vmatrix} = (1 - \lambda) \begin{vmatrix} -3 - \lambda & -4 \\ 2 & 3 - \lambda \end{vmatrix} = (1 - \lambda)(\lambda^2 - 1) = 0$$

Así, los valores propios obtenidos son

$$\lambda_1 = \lambda_2 = 1$$
 y $\lambda_3 = -1$.

En este caso los espacios propios resultan ser:

$$S_{\lambda_1} = \{(a, b, c)^t : a + c = 0, b \in \mathbb{R}\} = \langle \{(1, 0, -1)^t, (0, 1, 0)^t\} \rangle$$

$$S_{\lambda_2} = \{(a, b, c)^t : a + 2c = 0, a + b = 0, a \in \mathbb{R}\} = \langle \{(-2, 2, -1)^t\} \rangle.$$

Así, obtenemos las soluciones

$$X_1(t) = e^t \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \quad X_2(t) = e^t \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad X_3(t) = e^{-t} \begin{bmatrix} -2 \\ 2 \\ -1 \end{bmatrix}.$$

Puesto que $W(X_1(0), X_2(0), X_3(0)) \neq 0$, $\{X_1, X_2, X_3\}$ forman un Sistema Fundamental de Soluciónes para (11).

Finalmente, toda solución del sistema, es de la forma

$$\begin{bmatrix} x(t) \\ y(t) \\ z(t) \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} e^t + c_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} e^t + c_3 \begin{bmatrix} -2 \\ 2 \\ -1 \end{bmatrix} e^{-t},$$

donde c_1 , c_2 y c_3 son constantes arbitrarias.

El caso Complejo:

Teorema

Suponga que el sistema

$$X'(t) = AX(t), (12)$$

es tal que la matriz A tiene un valor propio complejo $\lambda = a + bi$, con vector propio asociado igual a u.

Entonces los vectores de componente real, X_1 y X_2 , definidos por

$$X_1(t) = \operatorname{Re}(e^{\lambda t} u), \ \ y \ \ X_2(t) = \operatorname{Im}(e^{\lambda t} u)$$

son soluciones l.i. para el sistema (12).

Ejemplo AGREGAR

Ejemplo (en que la m.a es mayor a la m.g.)

Consideremos el siguiente SEDO

$$\begin{cases} x'(t) = x(t) + y(t) + z(t), & x(0) = -1 \\ y'(t) = 2x(t) + y(t) - z(t), & y(0) = 0; \\ z'(t) = -y(t) + z(t), & z(0) = 1. \end{cases}$$

SOLUCION

Solución: El sistema homogéneo dado puede ser escrito en la forma

$$X'(t) = AX(t)$$

donde

$$X = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} \quad \text{y} \quad A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix}$$

Los valores propios son las raíces de $P(\lambda) = \det(A - \lambda I)$. Haciendo el cálculo en este caso, sigue:

$$\det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 1 & 1 \\ 2 & 1 - \lambda & -1 \\ 0 & -1 & 1 - \lambda \end{vmatrix}$$

$$= (1 - \lambda) \begin{vmatrix} 1 - \lambda & -1 \\ -1 & 1 - \lambda \end{vmatrix} - 2 \begin{vmatrix} 1 & 1 \\ -1 & 1 - \lambda \end{vmatrix}$$

$$= (1 - \lambda)((1 - \lambda)^2 - 1) - 2((1 - \lambda) + 1)$$

$$= (1 - \lambda)(\lambda^2 - 2\lambda) + 2(\lambda - 2)$$

$$= \lambda(1 - \lambda)(\lambda - 2) + 2(\lambda - 2)$$

$$= (\lambda - 2)(\lambda(1 - \lambda) + 2)$$

$$= -(\lambda^2 - \lambda - 2)(\lambda - 2)$$

$$= -(\lambda + 1)(\lambda - 2)^2 = 0$$

Así, $\lambda_1 = -1$ y $\lambda_2 = \lambda_3 = 2$ son valores propios de la matriz A, siendo m.a. $(\lambda_1) = 1$ y m.a. $(\lambda_2) = 2$. De otra parte, se puede ver que

$$S_{\lambda_1} = \langle \{(-3, 4, 2)\} \rangle \quad \mathbf{y}$$
$$S_{\lambda_2} = \langle \{(0, -1, 1)\} \rangle$$

de donde la m.g. $(\lambda_1) = \text{m.g.}(\lambda_2) = 1$.

En este caso, solamente podemos formar las soluciones

$$X_1(t) = e^{-t} \begin{bmatrix} -3\\4\\2 \end{bmatrix}, \quad X_2(t) = e^{3t} \begin{bmatrix} 0\\-1\\1 \end{bmatrix},$$

por lo que nos encontramos frente a un problema con degeneramiento de orden 1.

Observación:

Este semestre 2022-2 no nos ocuparemos de determinar la solución que falta para completar un Sistema Fundamental.

Caso No Homogéneo:

Veamos ahora como se determina la solución del sistema (1)

$$X'(t) = AX(t) + F(t)$$

Recordemos que de acuerdo a la Proposición (*) Toda solución Z(t) de (1), se escribe como

$$Z(t) = X_h(t) + X_p(t).$$

donde X_h es solución del SEDO homogéneo asociado y X_p es una solución particular de (1).

Usamos el método de Variación de Parámetros. Este consiste en buscar una solución particular, X_p para (1) como

$$X_p(t) = \sum_{j=1}^{n} c_j(t) X_j(t)$$
 (13)

donde para cada $j \in \{1, ..., n\}$, $c_j(t)$ son incógnitas y $\{X_1(t), ..., X_n(t)\}$ forman base del espacio solución del SEDO homogéneo.

Al incorporar la forma de X_p en (13) en el sistema (1) se puede ver que las funciones $c_j(t)$ buscadas deben satisfacer el sistema:

$$\sum c_j'(t) X_j(t) = f_j(t) \tag{14}$$

donde $F_j(t) = (f_1(t), ..., f_n(t))^t$.

Ejemplo.

Determine la solución general del SEDO no homogéneo

$$\begin{cases} x'(t) = -2x(t) + y(t) + z(t) \\ y'(t) = -x(t) - 2y(t) - z(t) + e^{-t} \\ z'(t) = x(t) - y(t) - 2z(t) - (e^{-t} + e^{-3t}) \end{cases}$$

como sabemos la solución general del problema es $X(t) = X_h(t) + X_p(t)$, donde $X_h(t)$ es la solución general del problema homogéneo asociado y $X_p(t)$ es una solución particular del problema.

Aquí la matriz de coeficientes del sistema homogéneo, es
$$A = \begin{bmatrix} -2 & 1 & 1 \\ -1 & -2 & -1 \\ 1 & -1 & -2 \end{bmatrix}$$

El polinomio característico $p(\lambda) = \det(A - \lambda I) = 0$ proporciona los valores propios

$$\lambda_1 = -2; \ \lambda_2 = -3; \ \lambda_3 = -1$$

Los espacios propios, S_{λ_i} , resultan ser:

$$S_{\lambda_1} = \langle \{(1,1,-1)\} \rangle$$

$$S_{\lambda_2} = \langle \{(1,0,-1)\} \rangle$$

$$S_{\lambda_3} = \langle \{(0,1,-1)\} \rangle$$

Asi, obtenemos que toda solución, $X_h(t)$, del problema homogéneo asociado es

$$X_h(t) = A e^{-2t} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} + B e^{-3t} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + C e^{-t} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$

donde A, B y C son constantes arbitrarias.

Usando variación de paramétros buscamos una solución particular $X_p(t)$ del tipo

$$X_p(t) = c_1(t)X_1(t) + c_2(t)X_2(t) + c_3(t)X_3(t),$$

donde las derivadas de las incógnitas $c_1(t)$, $c_2(t)$ y $c_3(t)$ deben verificar el sistema

$$\begin{pmatrix} e^{-2t} & e^{-3t} & 0 \\ e^{-2t} & 0 & e^{-t} \\ -e^{-2t} & -e^{-3t} & -e^{-t} \end{pmatrix} \begin{pmatrix} c'_1(t) \\ c'_2(t) \\ c'_3(t) \end{pmatrix} = \begin{pmatrix} 0 \\ e^{-t} \\ -\left(e^{-t} + e^{-3t}\right) \end{pmatrix}.$$

Resolviendo el sistema anterior, resulta

$$\begin{cases} c_1(t) = e^{-t} \\ c_2(t) = t \\ c_3(t) = t - \frac{1}{2}e^{-2t}. \end{cases}$$

Así, se obtiene la solución particular

$$X_p(t) = e^{-t}e^{-2t} \begin{pmatrix} 1\\1\\-1 \end{pmatrix} + te^{-3t} \begin{pmatrix} 1\\0\\-1 \end{pmatrix} + (t - \frac{1}{2}e^{-2t})e^{-t} \begin{pmatrix} 0\\1\\-1 \end{pmatrix},$$

esto es,

$$X_p(t) = e^{-3t} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} + t e^{-3t} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + (te^{-t} - \frac{1}{2}e^{-3t}) \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix},$$

Finalmente, la solución general del sistema es:

$$X(t) = A e^{-2t} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} + B e^{-3t} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + C e^{-t} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} + e^{-3t} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} + t e^{-3t} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + (te^{-t} - \frac{1}{2}e^{-3t}) \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$

donde $A,\,B$ y C son constantes arbitrarias.

Ejercicio.

(a) Sabiendo que la matriz de los coeficientes del sistema de ecuaciones diferenciales que sigue tiene al valor 1 como autovalor, determine la solución general del sistema

$$\begin{cases} x'(t) = 3x - y(t) - z(t), \\ y'(t) = x(t) + y(t) - z(t), \\ z'(t) = x(t) - y(t) + z(t). \end{cases}$$
 (15)

(b) Escriba la EDO lineal de orden 3 que sigue, como un sistema de 3 ecuaciones diferenciales ordinarias de primer orden (no se pide resolver).

$$x'''(t) - t x''(t) + 2 x'(t) - t x(t) = te^{3t}.$$

Ejercicio.

1. Exprese el siguiente sistema lineal de ecuaciones de orden superior como un sistema EDO de primer orden, en su forma matricial.

$$\begin{cases} x''(t) - e^t y(t) + 2 \operatorname{sen}(2t) y'(t) = t^3 - 1, \\ y'''(t) + (t - 1) x'(t) - \cos(3t) x(t) = \ln(t^2 + 1). \end{cases}$$

2. Aplicando el método de valores y vectores propios, resolver el PVI:

$$\mathbf{X}'(t) = \begin{pmatrix} 4 & 1 \\ 24 & 9 \end{pmatrix} \mathbf{X}(t) , \quad \mathbf{X}(0) = \begin{pmatrix} 5 \\ -4 \end{pmatrix}.$$

JMS//jms

Noviembre de 2021.