

دانشگاه صنعتی امیرکبیر (پلی تکنیک تهران) دانشکده مهندسی کامپیوتر و فنآوری اطلاعات

> پایاننامه کارشناسی گرایش نرمافزار

> > عنوان

طراحی و پیادهسازی ابزاری به منظور اِعمال خط مشی امنیتیِ عدم تداخل مبتنی بر روش بازنویسی برنامه

> نگارش سید محمدمهدی احمدپناه

استاد راهنما دکتر مهران سلیمان فلاح

شهریور ۱۳۹۴

به نام خدا تعهدنامه اصالت اثر

تاريخ:

اینجانب سید محمدمهدی احمدپناه متعهد می شوم که مطالب مندرج در این پایان نامه حاصل کار پژوهشی اینجانب تحت نظارت و راهنمایی اساتید دانشگاه صنعتی امیرکبیر بوده و به دستاوردهای دیگران که در این پژوهش از آنها استفاده شده است، مطابق مقررات و روال متعارف ارجاع و در فهرست منابع و مآخذ ذکر گردیده است. این پایان نامه قبلاً برای احراز هیچ مدرک همسطح یا بالاتر ارائه نگردیده است.

در صورت اثبات تخلف در هر زمان، مدرک تحصیلی صادر شده توسط دانشگاه از درجه اعتبار ساقط بوده و دانشگاه حق پیگیری قانونی خواهد داشت.

کلیه نتایج و حقوق حاصل از این پایان نامه متعلق به دانشگاه صنعتی امیرکبیر میباشد. هرگونه استفاده از نتایج علمی و عملی، واگذاری اطلاعات به دیگران یا چاپ و تکثیر، نسخهبرداری، ترجمه و اقتباس از این پایان نامه بدون موافقت کتبی دانشگاه صنعتی امیرکبیر ممنوع است. نقل مطالب با ذکر مآخذ بلامانع است.

سید محمدمهدی احمدیناه

امضا

تقدیم به پدرم

کوهی استوار و حامی من در طول تمام زندگی

تقدیم به مادرم

سنگ صبوری که الفبای زندگی به من آموخت

تقدیم به خواهر و برادرم

همراهان همیشگی و پشتوانه های زندگیم

تقدیر و تشکر:

سپاس خدای را که سخنوران، در ستودن او بمانند و شمارندگان، شمردن نعمت های او ندانند و کوشندگان، حق او را گزاردن نتوانند. سلام و درود بر محمّد و خاندان پاک او، طاهران معصوم، هم آنان که وجودمان وامدار وجودشان است.

بدون شک جایگاه و منزلت معلم، بالاتر از آن است که در مقام قدردانی از زحمات بی شائبه او، با زبان قاصر و دست ناتوان، چیزی بنگارم. اما از آنجا که تجلیل از معلم، سپاس از انسانی است که هدف آفرینش را تامین میکند، به رسم ادب دست به قلم بردهام، باشد که این خردترین بخشی از زحمات آنان را سپاس گوید.

از پدر و مادر مهربانم، این دو معلم بزرگوار که همواره بر کوتاهی من، قلم عفو کشیده و کریمانه از کنار غفلتهای گذشتهاند و در تمام عرصههای زندگی یار و یاورم بودهاند؛

از استاد فرزانه و دلسوز، جناب آقای دکتر مهران سلیمان فلاح که در کمال سعه صدر، با حسن خلق و فروتنی، از هیچ کمکی در این عرصه بر من دریغ نداشتند؛

از اساتید محترم، جناب آقای دکتر محمدرضا رزازی و جناب آقای دکتر بهمن پوروطن که زحمت داوری این پایاننامه را متقبل شدند؛

از جناب آقای افشین لامعی که از آغاز پروژه در درک بهتر مفاهیم و بخشهای مختلف مقاله مرا راهنمایی کردند؛

و در پایان، از حمایتها و کمکهای دوستان عزیزم، محمد پزشکی، بهنام ستارزاده، علی قنبری، مسعود غفارینیا، احسان عدالت، حمیدرضا رمضانی، ریحانه شاهمحمدی و پرهام الوانی که در طول انجام پروژه از نظرات و راهنماییهایشان استفاده کردم؛

کمال تشکر و قدردانی را دارم.

چکیده

خط مشیِ امنیتی، تعریفی از امن بودنِ یک سیستم یا برنامه را ارائه می دهد که در آن اَعمال مجاز و غیرمجاز برای آن سیستم یا برنامه مشخص می شود. خط مشی امنیتیِ مورد نظر در این پروژه، عدم تداخل بیان می کند که یک مشاهده گر سطح پایین که فقط به برنامه و مقادیر عمومی زمان اجرا دسترسی دارد، نتواند در کی نسبت به ورودی های سطح بالا یا خصوصی پیدا کند. به عبارت دیگر، در هر دو اجرا از برنامه که ورودی های عمومی یکسان هستند، خروجی های عمومی نیز باید یکی باشند. دسته ای از خط مشی ها را می توان به صورت مجموعه ای از اجراها بیان کرد. برخلاف این گونه خط مشی ها که اصطلاحاً به آن ها خاصیت گفته می شود، عدم تداخل یک فوق خاصیت است؛ یعنی می توان آن را با مجموعه ای از مجموعه اجراها بیان کرد. از این رو، اِعمال این خط مشی برخلاف اعمال خاصیتها، با محدودیتها و دشواری هایی مواجه است. در این پروژه، با این خط مشی برخلاف اعمال خاصیتها، با محدودیتها و دشواری هایی مواجه است. در این پروژه، با تقسیم بندی این خط مشی به دو حالت غیر حساس و حساس به پیشرفت، سعی در بیان دقیق تر و اِعمال آن داریم.

هدف از انجام این پروژه، طراحی و پیادهسازی ابزاری است که بتواند با استفاده از بازنویسی برنامه، خط مشی عدم تداخل را روی آن اعمال کند. منظور از اعمال خط مشی آن است که برنامهها به شکلی بازنویسی شوند که خط مشی را برآورده کنند. در این روش، گراف وابستگی برنامه و کد مبدأ، ورودیهای الگوریتم بازنویسی خواهند بود و نتیجه بازنویسی، تغییر و جایگزینی دستوراتی است که با پیمایش در گراف وابستگی برنامه، تهدیدی برای جریان اطلاعات از سطوح بالا به سطوح پایین امنیت هستند. با بازنویسی برنامه، برخلاف مکانیزمهای دیگر، جلوی اجرای برنامههای مغایر با خط مشی، چه قبل یا چه در زمان اجرا، گرفته نمیشود؛ بلکه آنها بازنویسی میشوند و برنامههای ناامن به برنامههای امن تبدیل میشوند. صحت و شفافیت روش بازنویسی مورد استفاده، که مهم ترین عوامل مقایسه امن تبدیل میشوند. صحت و شفافیت روش بازنویسی مورد استفاده، که مهم ترین عوامل مقایسه روشهای بازنویسی به شمار می روند، اثبات شده است.

در این پروژه، ابتدا با استفاده از lexer و parser برنامههای ورودی از نظر نحوی بررسی می شوند و پس از تولید گراف وابستگی برنامه و نمایش گرافیکی آن، الگوریتمهای بازنویسی اجرا می شوند و کد خروجی، هم به زبان مدل WL و هم به زبان C، به کاربر نمایش داده می شود. همچنین،

با استفاده از موارد آزمون طراحی شده، بخش پیاده سازی این پروژه راستی آزمایی می شود و نشان داده می شود که برنامه های بازنویسی شده، خط مشی مورد نظر را بر آورده خواهند کرد.

واژههای کلیدی:

امنیت جریان اطلاعات؛ خط مشی عدم تداخل؛ گراف وابستگی برنامه؛ بازنویسی برنامه

صفحه	فهرست عناوين
1	۱ فصل اول مقدمه
۴	۲ فصل دوم خط مشي امنيتي عدم تداخل و اِعمال آن
	۱.۲ خط مشی امنیتی عدم تداخل
	۲ <mark>.۲ مروری بر</mark> کارهای گذشت <mark>ه</mark>
	۳ فصل سوم توصیف زبان برنامهنویسی WL
	۱.۳ ساختار نحوی و گرامر زبان
	۴ فصل چهارم گراف وابستگی برنامه
	۲.۴ نحوه تولید گراف وابستگی برنامه
۲۸	۵ فصل پنجم الگوريتم بازنويسي برنامه
~·	1.۵ بازنویسی برای حالت غیرحساس به پیشرفت
	۶ فصل ششم پیادهسازی و ایجاد رابط کاربری
	۱.۶ تحلیل و طراحی نرمافزار
	۲.۶ شرح کلی مراحل پیادهسازی و ابزارهای مورد استفاده
	۳.۶ ایجاد رابط کاربری گرافیکی
	۷ فصل هفتم جمعبندی و کارهای آینده
	منابع و مراجع
۶۳	پيوست

فهرست اشكال

۱۳.	شکل ۱ – ساختار نحوی زبان برنامهنویسی WLسالسسسسسسسسسسسسسسسسسسسسسسسسسسسسسس
۱۶	شکل ۲ - معناشناخت کوچکگامی برای زبان WL [۲]
۲٠.	شکل ۳ – نمونه کد مبدأ به زبان WL و گراف وابستگی برنامه مربوط به آن
۲١.	شکل ۴ - نمودار کلی نحوه تولید گراف وابستگی برنامه از روی کد مبدأ برنامه [۹]
۲۲.	شکل ۵ – نحوه تولید زیرگراف بلوک پایه و اتصال به یکدیگر [۱۰]
۲۲.	شکل ۶ - نحوه تولید زیرگراف گزارههای شرطی – حالت اول [۱۰]
۲۲.	شکل ۷ – نحوه تولید زیرگراف گزارههای شرطی – حالت دوم [۱۰]
۲٣.	شکل ۸ - نحوه تولید زیرگراف گزارههای حلقه while [۱۰]
۲۴.	شکل ۹ - محاسبه گرههای غلبه کننده برای هر گره [۱۱]
۲۶	شکل ۱۰- محاسبه گرههای پسغلبهکننده مرزی برای هر گره [۱۱]
	شکل ۱۱ – الگوریتم کلی بازنویسی برای اعمال خط مشی عدم تداخل [۲]
	شکل ۱۲ – الگوریتم بازنویسی عدم تداخل حالت غیرحساس به پیشرفت که برنامه ${f M}$ و گراف وابستگی برنام
٣٢.	مربوط به آن G را میگیرد [۲]
، در	۔ شکل ۱۳ – (الف) نمونه کد به زبان WL؛ (ب) گراف وابستگی برنامه الف؛ (ج) برنامه بازنویسیشده برنامه الف
٣٣.	
60	شکل ۱۴ – (الف) نمونه برنامه به زبان WL ؛ (ب) برنامه بازنویسی شده الف برای حالت غیرحساس به پیشرفت
٣۴.	که حالت حساس به پیشرفت را برآورده نم <i>ی کند</i>
٣۶	شکل ۱۵ – برنامهای که حلقه موجود در آن در حالتی که $11 < 1$ or $11 < 1$ باشد، خاتمه خواهد یافت
	شکل ۱۶ – الگوریتم بازنویسی عدم تداخل حالت حساس به پیشرفت که برنامه ${ m M}$ و گراف وابستگی برنامه
٣٨.	[]
٣٩.	شکل ۱۷ - کد مبدأ بازنویسی شده توسط الگوریتم حالت حساس به پیشرفت برای برنامه شکل ۱۵
۴١.	
۴۲.	شكل ۱۹ – نمودار موردكاربرد نرمافزار پروژه
	شکل ۲۰ – نمودارهای فعالیت نرمافزار پروژه
	شکل ۲۱ - نمودار کلاس نرمافزار پروژه (بدون ذکر فیلدها و متدها)
	شکل ۲۲ – نمای کلی رابط کاربری گرافیکی نرمافزار
	شکل ۲۳ – نمونهای از اجرای برنامه در رابط کاربری گرافیکی نرمافزار
	شکل ۲۴ – (الف) برنامه موردآزمون با نام O2basic.wl (ب) گراف وابستگی برنامه مربوط به برنامه الف (۰
	برنامه بازنویسی شده برای حالت غیر حساس به پیشرفت مربوط به برنامه الف

پ)	شکل ۲۵– (الف) برنامه مورداً زمون با نام 03assign.wl (ب) گراف وابستگی برنامه مربوط به برنامه الف (ب
۵٠	برنامه بازنویسی شده برای حالت غیرحساس به پیشرفت مربوط به برنامه الف
نت	شکل ۲۶– (الف) برنامه موردآزمون با نام 05if2.wl (ب) برنامه بازنویسیشده برای حالت غیرحساس به پیشرف
۵١	مربوط به برنامه الف (پ) گراف وابستگی برنامه مربوط به برنامه الف
	شکل ۲۷– (الف) برنامه موردآزمون با نام 07ifelseadvanced.wl (ب) برنامه بازنویسیشده برای حالت
۵٣	غیرحساس به پیشرفت مربوط به برنامه الف (پ) گراف وابستگی برنامه مربوط به برنامه الف
	شکل ۲۸ - (الف) برنامه موردآزمون با نام 11whilewhileconcat.wl (ب) برنامه بازنویسی شده برای حالت
به	غیرحساس به پیشرفت مربوط به برنامه الف (پ) برنامه بازنویسی شده برای حالت حساس به پیشرفت مربوط ،
۵۵	برنامه الف (ت) گراف وابستگی برنامه مربوط به برنامه الف
	شکل ۲۹ – (الف) برنامه موردآزمون با نام 17whilewhilenested.wl (ب) برنامه بازنویسی شده برای حالت
به	غیرحساس به پیشرفت مربوط به برنامه الف (پ) برنامه بازنویسی شده برای حالت حساس به پیشرفت مربوط ،
۵٧	برنامه الف (ت) گراف وابستگی برنامه مربوط به برنامه الف

صفحه	فهرست جداول

$^{ m C}$ دول ۱ $^{ m C}$ نمونه ورودیها و خروجیها برای برنامه متناظر با $^{ m O5if2.wl}$ به زبان
دول ۲ - نمونه ورودیها و خروجیها برای برنامه بازنویسیشده در حالت غیرحساس به پیشرفت متناظر با
05if2.w به زبان C به زبان C به زبان C مستسسست
Δ ۴ سنونه ورودیها و خروجیها برای برنامه متناظر با 07 ifelseadvanced.wl به زبان
دول ۴ – نمونه ورودیها و خروجیها برای برنامه بازنویسیشده در حالت غیرحساس به پیشرفت متناظر با
۵۴ ربان C به زبان 77ifelseadvanced.w
یدول ۵ – نمونه ورودیها و خروجیها برای برنامه متناظر با 11 whilewhileconcat.wl به زبان C
دول ۶ – نمونه ورودیها و خروجیها برای برنامه بازنویسیشده در حالت غیرحساس به پیشرفت متناظر با
۱1whilewhileconcat.w به زبان C
دول ۷ – نمونه ورودیها و خروجیها برای برنامه بازنویسیشده در حالت حساس به پیشرفت متناظر با
۱1whilewhileconcat.w به زبان C
دول ۸ - نمونه ورودیها و خروجیها برای برنامه متناظر با 17whilewhilenested.wl به زبان C ۵۸
دول ۹ - نمونه ورودیها و خروجیها برای برنامه بازنویسیشده در حالت غیرحساس به پیشرفت متناظر با
۱7whilewhilenested.w به زبان C
دول ۱۰ - نمونه ورودیها و خروجیها برای برنامه بازنویسیشده در حالت حساس به پیشرفت متناظر با
۵۸

فصل اول مقدمه

مقدمه

با گسترش روزافزون سیستمهای کامپیوتری، امنیت ذخیرهسازی و انتقال اطلاعات بیش از پیش اهمیت پیدا کرده است. امنیت اطلاعات در جنبههای گوناگونی نظیر امنیت شبکههای کامپیوتری، امنیت پایگاه داده، امنیت برنامههای کاربردی و غیره مورد توجه پژوهشگران این رشته است. در گذشته، مسائل امنیتی بیشتر مورد توجه مراکز نظامی و سیاسی بوده است، اما اکنون برای مردم و کاربران عادی سیستمها نیز حائز اهمیت است.

یکی از زمینههای مطرح در امنیت اطلاعات و ارتباطات، امنیت برنامههای کاربردی و به پیروی آن، امنیت زبانهای برنامهنویسی یا امنیت زبانمبنا میباشد. امنیت زبانمبنا را میتوان مجموعهای از تکنیکهای مبتنی بر نظریه زبانهای برنامهسازی و پیادهسازی آنها، شامل معناشناخت نوعها بهینهسازی و راستی آزمایی نبرای به کار گیری در مسائل امنیتی تعریف کرد. [۱] تلاش این حوزه بر این است که برنامههای کاربردی تولید شده توسط برنامهنویسان و توسعهدهندگان، با توجه به رویکردهای مختلف امنیتی، قابل اعتماد و اطمینان باشند. به همین دلیل، طراحی و توسعه زبانهای برنامهنویسی امن یا ایجاد ابزارهایی بر روی زبانهای برنامهنویسی موجود باعث میشود تا توسعهدهندگان نرمافزار، کمتر درگیر مشکلات امنیتی برنامههای خود شده و به کمک این ابزارها، با تلاش کمتری به تولید برنامههای امن بیردازند، که این خود هزینههای تولید و توسعه نرمافزارها را کاهش می دهد.

روشهای مختلفی برای تولید ابزارهای مرتبط با زبانهای برنامهنویسی با رویکرد برآورده کردن نیازها و خط مشیهای امنیتی وجود دارد که به طور کلی میتوان به دو دسته روشهای تحلیل ایستا a یا زمان b یا زمان c دستهبندی کرد. هر کدام از این روشها نقاط قوت و ضعف زمان کامپایل و تحلیل پویا c یا زمان c دستهبندی کرد.

¹ Language-based Security

² Semantics

³ Types

⁴ Verification

⁵ Static Analysis

⁶ Compile Time

مربوط به خود را دارند که بسته به کاربرد، استفاده از هر یک از آنها متفاوت خواهد بود. گرچه شایان ذکر است که تعریف و مشخص کردن دقیق مفهوم امن بودن یک سیستم یا برنامه یکی از چالشهای پیش روی متخصصان این حوزه میباشد. چنان که نحوه و رویکرد اِعمال آن نیازمندی امنیتی، وابستگی زیادی به تعریف ارائه شده خواهد داشت.

هدف از این پروژه، تولید ابزاری برای تشخیص برقراری خط مشی عدم تداخل در کد مبدأ ورودی است که در صورت نقض این خط مشی، با بهره گیری از روش بازنویسی برنامه، کد مبدأ به نحوی اصلاح شود تا این نیازمندی برآورده گردد. در اینجا، خط مشی امنیتی عدم تداخل ٔ به عنوان نیازمندی امنیتی در نظر گرفته می شود و برای اعمال این خط مشی در برنامه ها، از یکی از روشهای تحلیل ایستا؛ یعنی، روش بازنویسی برنامه ٔ ۱ استفاده میشود که در فصلهای بعدی، به شرح و توضیح آنها مے پر دازیم.

فصل دوم این پایاننامه به توضیح خط مشی امنیتی عدم تداخل و تعریف آن پرداخته خواهد شد و در ادامه، مکانیزمهای اعمال آن و به ویژه، روش بازنویسی برنامه شرح داده خواهد شد. فصل سوم به توصیف زبان مدل مطرح شده تخصیص یافته است. در فصل چهارم، درباره گراف وابستگی برنامه ۱۱ و کاربرد آن در پروژه بحث خواهد شد. فصل پنجم به توضیح الگوریتم مورد نظر برای بازنویسی کد مبدأ^{۱۲} در دو حالت خط مشی عدم تداخل و فصل ششم به فرآیند پیادهسازی و تولید ابزار می پردازیم. در نهایت، فصل هفتم دربر گیرنده جمعبندی و کارهای پیشنهادی آینده پروژه خواهد بود.

⁷ Dynamic Analysis

⁸ Run-time

⁹ Noninterference

¹⁰ Program Rewriting

¹¹ Program Dependence Graph

¹² Source Code

٢

فصل دوم خط مشي امنيتي عدم تداخل و اِعمال آن

خط مشی امنیتی عدم تداخل و اعمال آن

۱.۲ خط مشی امنیتی عدم تداخل

به طور کلی، خط مشی ۱۳ امنیتی، امنبودنِ یک سیستم یا برنامه را تعریف می کند. خط مشی امنیتی، قیود روی توابع و جریانهای بین آنها را مشخص می کند؛ مثل قیود دسترسی بر روی برنامهها و سطوح دسترسیِ دادههای بین کاربران که مانع از بروز مشکلات امنیتی از طریق سیستمهای خارجی و نفوذگران شود.

از دیدگاهی دیگر، یک خط مشی امنیتی را میتوان به عنوان یک زیرمجموعه از مجموعه توانی همه اجراها تعریف کرد که هر اجرا یک دنباله دلخواه از حالت^{۱۴}ها است. ضمناً میتوان آن را به عنوان مجموعه برنامههایی در نظر گرفت که آن خط مشی را برآورده میکنند. بعضی از خط مشیهای امنیتی، خاصیت ۱۵ هستند؛ بهخاطر این که قابل دستهبندی و تشخیص توسط مجموعه اجراهای جداگانه میباشند. از این نوع خط مشیها میتوان به خط مشیهای کنترل دسترسی اشاره کرد. [۲] برخی از نیازمندیهای مهم امنیتی، خاصیت نیستند. یک نمونه مهم از این گونه نیازمندیها، خط مشی امنیتی عدم تداخل ۱۶ است. عدم تداخل گوگن-مسگر [۳]، عدم تداخل تعمیم یافته و قطعیت مبتنی بر مشاهده از مثالهای خط مشیهایی هستند که نمیتوان آنها را در قالب خاصیت بیان کرد [۲] و به آنها اصطلاحاً فوق خاصیت ^{۱۲} گفته میشود. نکته حائز اهمیت این است که روش اِعمال خاصیتها با نحوه اعمال خط مشیهایی که خاصیت نیستند، متفاوت است.

¹³ Policy

¹⁴ State

¹⁵ Property

¹⁶ Noninterference Security Policy

¹⁷ Hyperproperty

به زبان ساده تر، خط مشی عدم تداخل بیان می کند که یک مشاهده گر^{۱۸} سطحِ پایین که فقط به برنامه و مقادیر عمومیِ زمانِ اجرا دسترسی دارد، نتواند ورودی های سطح بالا یا خصوصیِ برنامه را بفهمد. به عبارت دیگر، این خط مشی بیان می کند که در هر جفت اجراهای برنامه که ورودی های عمومی یکسان دارند، مستقل از ورودی های خصوصی متفاوت، باید خروجی های عمومی یکی باشند. به طور کلی، طبق این خط مشی، تغییرات ورودی های سطح بالا، نباید برای مشاهده گر سطح پایین قابل تشخیص و در ک باشد.

نکته مهم این است که خط مشی عدم تداخل، یک خاصیت نیست؛ زیرا توسط اجراهای جداگانه که این خط مشی را برآورده می کند، قابل تعریف نیست. [۲] این نکته باعث ایجاد محدودیتهایی برای اعمال این خط مشی در برنامهها می شود.

خط مشی عدم تداخل را می توان به دو دسته حساس به پیشرفت از و غیر حساس به پیشرفت تقسیم کرد. در عدم تداخلِ غیر حساس به پیشرفت، مشاهده گرِ سطح پایین، تنها می تواند خروجیهای میانیِ سطح پایین را ببیند؛ در حالی که یک مشاهده گرِ سطح پایین در عدم تداخلِ حساس به پیشرفت، علاوه بر دسترسیهای قبلی، به وضعیت پیشرفت از برنامه نیز دسترسی دارد. این باعث می شود تا بتواند تفاوت بین واگرایی ۲۲ برنامه با موقعیتی که برنامه خاتمه ۲۳ می یابد یا در حال محاسبه مقادیر قابل مشاهده بعدی است، را تمیز دهد. [۲]

با تعاریف بالا، سیستم یا برنامهای که خروجیهای سطح پایین آن از ورودیهای سطح بالا تاثیر نگیرد، خط مشی عدم تداخل را برآورده می کند. حال باید توجه داشت که جریان اطلاعات ^{۲۴} از سطح بالا

¹⁸ Observer

¹⁹ Progress-Sensitive

²⁰ Progress-Insensitive

²¹ Progress Status

²² Divergence

²³ Terminate

²⁴ Information Flow

به پایین ممکن است صریح^{۲۵} یا ضمنی^{۲۶} باشد. انتساب^{۲۷} یک مقدار سطح بالا به یک متغیر سطح پایین، نمونهای از جریان اطلاعات صریح است. همچنین، جریان از بالا به پایین در زمانی که مقدار یک متغیر سطح پایین مشروط به یک مقدار سطح بالا باشد یا صرفاً زمان بندی و رفتار خاتمه برنامه، می تواند نمونه ای از جریان اطلاعات ضمنی باشد.

در این سیستم، تواناییهای کاربران سطح پایین بیانگر مدل مهاجم ۲۸ خواهد بود. با توجه به این تواناییها، روشهای زیرکانه و مختلفی برای جریان اطلاعات از بالا به پایین وجود خواهد داشت. یک مکانیزم اعمال خط مشی، باید همه انواع مختلف جریانهای غیرمجاز ناشی از مدل نفوذگر را در نظر بگیرد.

۲.۲ مروری بر کارهای گذشته

وِنکَتکریشنَن و همکارانش یک روش تبدیل برنامه ی ترکیبی برای اِعمال عدم تداخل ارائه دادهاند. برنامه تغییر داده شده، سطوح امنیتی انتساب^{۲۹} را دنبال می کند و زمانی که یک جریان غیرمجاز در حال وقوع باشد، خاتمه می یابد. این روش، تنها در فرمول بندی هایی قابل استفاده است که از عدم تداخل بدون توجه به رفتار خاتمه ی برنامه ها مطرح می شود. [۲]

مَگَزینیوس و همکارانش یک چارچوب برای ناظر ٔ همای امنیتی پویای درونبرنامهای - در حالی که برنامه در حال اجراست - ساختهاند. این روش، عدم تداخلِ غیر حساس به خاتمه را تضمین می کند و قابل به کارگیری در زبانهای پرل ^{۳۱} و جاوااسکریپت ^{۳۲} است که از ارزیابی پویای کد پشتیبانی می کنند.

²⁵ Explicit

²⁶ Implicit

²⁷ Assign

²⁸ Attacker

²⁹ Assignment

³⁰ Monitor

³¹ Perl

³² JavaScript

ضمناً این روش نیاز دارد که تغییردهندهی برنامه در زمانِ اجرا در دسترس باشد که یک ناظرِ مناسب بتواند در کدی که به صورت پویا تولید میشود، ورود کند. [۲]

چادنُوف و نومَن یک ناظرِ ترکیبی برای عدم تداخلِ حساس به جریان در زبانهای با ارزیابی پویای کد پیشنهاد دادهاند. این روش ممکن است باعث وجود یک سربارِ غیرقابل قبول در زمانِ اجرا شود. همچنین این روش، اجازه وقوع مجراهای خاتمه ۳۳ را نمی دهد. سانتوس و رِزک نیز این روش را برای یک هسته JavaScript گسترش دادند. [۲]

این موضوع اثبات شده است که هیچ روش کاملاً پویایی برای اِعمال عدم تداخل حساس به جریان وجود ندارد. [۴] این موضوع باعث میشود که پروژههایی که محدودیتهای نَحوی^{۲۴} بر روی کد دارند، از اطلاعات ایستا در ناظری بر اجراهای چندگانهی برنامهها استفاده کنند.

بِلو و بونِلی یک ناظرِ اجرایی^{۳۵} پیشنهاد دادند که از یک تحلیل وابستگیِ زمانِ اجرا بهره میبرد. برای یافتن یک جریان غیرمجاز، همانطور که در طرح پیشنهادی آنها و کارهای مشابه دیگر آمده است، ممکن است نیاز به چندین اجرا از برنامه مورد نظر داشته باشد که در بسیاری از کاربردها این امکان وجود ندارد. [۲]

لِگوئِرنیک و همکارانش یک ماشین طراحی کردهاند که رخدادهای انتزاعی در زمان اجرا را دریافت می کند. این روش نیز جالب است اما دریافت می کند و اجرا را توسط بعضی از اطلاعات ایستا، ویرایش می کند. این روش نیز جالب است اما اجازه وقوع مجراهای خاتمه را می دهد. [۲]

³³ Termination Channels

³⁴ Syntactic

³⁵ Execution Monitor

³⁶ Abstract Events

٣.٢ إعمال خط مشى عدم تداخل

همانطور که در بالا آمده است، برای اعمال خط مشی عدم تداخل روشها و مکانیزمهای گوناگونی وجود دارد. اما باید توجه داشت که به طور کلی، مسئله تشخیص برنامههایی که عدم تداخل را برآورده می کنند، تصمیمناپذیر ۲۳ است. پس در حالت کلی، عدم تداخل توسط روشهای ایستا قابل اعمال نیست؛ به همین دلیل است که نوعسامانه ۲۸ های ارائه شده برای این مسئله، محافظه کارانه ۴۹ هستند و ممکن است بعضی برنامههای امن را نیز نپذیرند. از طرفی، این مسئله همبازگشتی شمارش پذیر آنیز نیست. بنابراین، توسط ناظرهای اجرایی که نقضِ خط مشی عدم تداخل در یک برنامه ی در حال اجرا را بررسی می کنند، قابل اعمال نیست. [۲]

یکی از روشهای مورد استفاده برای اعمال خط مشیهایی که خاصیت نیستند، روش بازنویسی برنامه میباشد. بازنویسی برنامه دربرگیرنده مکانیزمهایی است که یک برنامه داده شده را به برنامهای تبدیل میکند که ویژگیهای درخواستی را برآورده میکند. این روش ابتدا برای انتقال کد بین پایگاه ^{۱۹}های سختافزاری، دستگاهها و بهینهسازی کارایی استفاده میشد. [۲] این روش اخیراً به عنوان وسیلهای برای اعمال خط مشیهای امنیتی پیشنهاد شده است. [۱] از طرفی میتوان از روش بازنویسی برنامه برای اعمال خاصیتهای امنیتی گوناگونی استفاده کرد. از طرف دیگر، علی رغم تلاشهای بسیاری که در این باره صورت گرفته است، جنبههای مهمی از سرشتنمایی ^{۲۲} صوری بازنویسی برنامه کماکان از جمله مباحث باز این حوزه به شمار می رود.

در این روش، برخلاف بیشتر مکانیزمهای امنیتی، یک برنامه مغایر با خط مشی، چه قبل و چه در طول زمان اجرا، رد نمی کند؛ بلکه آنها با تغییراتی متناسب با نیاز امنیتی خواسته شده بازنویسی

³⁷ Undecidable

³⁸ Type System

³⁹ Conservative

⁴⁰ Co-recursively Enumerable

⁴¹ Platform

⁴² Characterization

می شوند و برنامههای ناامن به برنامههای امن تبدیل خواهند شد. می توان نشان داد که از نظارت اجرایی و تحلیل ایستا قدرت بیشتری دارد. [۲] در واقع، می توان روش بازنویسی برنامه را روشی بین روشهای ایستا و روشهای پویا دانست.

از طرفی، روش بازنویسیِ برنامه تغییراتی را به ذاتِ عدم تداخل وارد نمی کند؛ بلکه به جای آن، یک برنامه جدید که عدم تداخل را برآورده می کند، با حداقل تغییرات ممکن نسبت به برنامه اصلی تولید می کند. به این ترتیب، برتری این روش بر مکانیزمهای ایستا و نظارتی مشخص خواهد شد.

یک بازنویس برنامه باید با توجه به خط مشی امنیتی مورد نظر، سالم^{۴۴} و شفاف بودن به معنای این که بودن به این معنا که کد تولید شده توسط آن، خط مشی را برآورده کند و شفاف بودن به معنای این که معناشناخت و رفتار مناسب برنامه، فارغ از امن بودن یا نبودن آن، حفظ بماند. به بیان ساده تر، شفاف بودن یک بازنویس بدین معناست که تا حد ممکن، مجموعه اجراهای ممکنِ برنامه تبدیل شده، خواه امن یا ناامن، مشابه برنامهی ورودی باشد. البته تا زمانی که صحت و شفافیت دچار خدشه نشود، بازنویس برنامه می تواند هر تغییری را به کد داده شده اعمال کند. لازم بذکر است که این تعاریف را می توان به شکل ریاضی نیز بیان کرد. [۲] بدیهی است که یک بازنویس حتما باید سالم باشد تا نیاز امنیتی مورد نظر را برآورده سازد، اما شفافیت بیشتر آن بازنویس، باعث برتری آن روش بر دیگر بازنویسهای مشابه خواهد بود.

روش بازنویسی برنامه مورد استفاده در این پروژه، از گرافِ وابستگیِ برنامه [۵] استفاده می کند که قبلاً اثبات شده است که در تشخیص جریانهای اطلاعاتی احتمالی، دست کم به قدرت نوعسامانههای امنیتی است. [۶] برخلاف مکانیزمهای کنترل جریان اطلاعات مطرح شده در قبل، بازنویس مورد استفاده در اینجا، رفتارهای معتبر برنامهها را نگه می دارد؛ بدین معنا که آن دسته از اجراهای برنامه که به نقض امنیتی منجر نمی شود، تغییری نخواهند کرد. این به دلیل رویکرد تعریف و اعمال شفافیت بالشبرانگیزترین نیازمندی برای یک مکانیزم اعمال کارا- است. این روش، جریانهای غیرمجاز صریح و ضمنی کد داده شده را به همان خوبی که در صورت بروز آنها در زمان اجرا بازداشته می شود، با اصلاح

⁴⁴ Transparent

⁴³ Sound

کد برطرف می کند. همچنین، از شرطهای مسیر⁴³ به منظور بهبود تشخیص شروط مورد نیاز برای برقراری جریان غیرمجاز استفاده می شود. با این کار، رفتارهای معتبر بیشتری از برنامه داده شده حفظ خواهد شد. شفافیت به گونهای تعریف شده است که مجموعه اجراهای ممکن برنامه تبدیل شده، به نزدیکی و شباهت مجموعه اجراهای ممکن برنامه ورودی باشد. ضمناً در رابطه با مسئله شفافیت، مفهوم اعمال اصلاحی 47 برای خط مشی عدم تداخلِ مطرح شده، به شکل دقیق و صوری و با بهره گیری از رابطه پیش ترتیبی 47 بیان و اثبات شده است. یک بازنویس به شکل اصلاحی یک خط مشی را اعمال می کند، پیش ترتیبی 47 بیان و اثبات شده است. یک بازنویس به شکل اصلاحی یک خط مشی را اعمال می کند، اگر رفتارهای معتبر و مناسب برنامه ورودی –مستقل از اینکه برنامه امن است یا خیر – نگاه داشته شود. اثبات شده است که روش مورد استفاده در این پروژه سالم است، پس قطعاً برنامههای امن را تولید خواهد کرد. [۲]

توضیحات بیشتر و نحوه دقیق الگوریتم بازنویسی برنامه مورد استفاده در این پروژه، در فصل پنجم به تفصیل آمده است.

⁴⁵ Path Conditions

⁴⁶ Corrective Enforcement

⁴⁷ Preorder

٣

فصل سوم

توصیف زبان برنامهنویسی WL

توصیف زبان برنامهنویسی WL

در مقاله اصلی مورد استفاده در این پروژه [۲]، برای تعریف دقیق و صوری خط مشی عدم تداخل و روش اعمال بازنویسی برنامه، زبان مدلی به نام While Language یا به اختصار WL ارائه شده است. در این پروژه، این زبان برنامهنویسی طراحی و پیادهسازی شده است و برنامههای به این زبان، از طریق ابزار پیادهسازی شده، به زبان برنامهنویسی C قابل تبدیل میباشد. برای این کار، از ابزارهای [۷] و bison و آگا استفاده شده که در فصل ششم توضیحات کاملی در این خصوص ارائه می گردد.

۱.۳ ساختار نحوی و گرامر زبان

نکته مهم در خصوص زبان برنامهنویسی WL این است که برنامههای نوشتهشده به این زبان، می توانند مقادیر را در هر زمان دلخواه در طول زمان اجرا به عنوان خروجی نمایش داده شود. این در حالست که بیشتر کارهای مرتبط با امنیت جریان اطلاعات، محدودیت نمایش خروجی در حالت نهایی را دارند.

```
program ::= program; clist
```

clist ::= $c \mid clist$; c

 $\exp := b \mid n \mid x \mid \exp == \exp \mid \exp < \exp \mid \exp >= \exp \mid \exp > \exp \mid \exp >$

 $| \exp + \exp | \exp - \exp | \exp \operatorname{or} \exp | \exp \operatorname{and} \exp | ! \exp$

 $c ::= NOP \mid x = exp \mid inL \text{ varlist} \mid inH \text{ varlist} \mid outL x \mid outH x \mid outL BOT \mid outH BOT$

if exp then clist endif | if exp then clist else clist endif | while exp do clist done

varlist ::= $x \mid x$, varlist

b ::= true | false | TRUE | FALSE

n ::= integer_number

x := identifier

شكل ۱ - ساختار نحوى زبان برنامهنويسى WL

در شکل ۱، ساختار نحوی تجریدی h زبانِ WL آمده است. یک عبارت، یا یک عدد صحیح ثابت یا مقدار منطقی بولی p , یا یک متغیر عددی و یا یک عملیات یا ارتباط بین یک یا چند عبارت دیگر خواهد بود. مجموعه دستورات شامل NOP برای دستور هیچ عملیات h , h برای انتساب، InL مورودی گرفتن و خروجی دادن در نظر گرفته شده است h outL x inH varlist varlist varlist و معنای سطح امنیتی پایین h یا بالا h میباشد. h ایجاد دنباله دستورات است که در آنها ممکن است دستورات شرطی یا حلقه باشد. دستور BOT یا میده و میدهد میدورات است که در آنها ممکن است دستورات شرطی یا حلقه باشد. دستور خروجی میدهد که از همه مقادیر ثابت موجود در زبان متمایز است. همانطور که در نامگذاری این زبان نیز مشهود که از همه مقادیر ثابت موجود در زبان متمایز است. همانطور که در نامگذاری این زبان نیز مشهود برنامهنویسی رایج، امکان ایجاد حلقه تکرار را برای برنامهنویس فراهم می آورد. لازم به یاد آوری است که گرامر فوق، با حفظ بخشهای اصلی زبان، تغییراتی نسبت به ساختار نحوی موجود در مقاله اصلی پروژه گرامر فوق، با حفظ بخشهای اصلی زبان، تغییراتی نسبت به ساختار نحوی موجود در مقاله اصلی پروژه گرامر فوق، با حفظ بخشهای اصلی زبان، تغییراتی نسبت به ساختار نحوی موجود در مقاله اصلی پروژه آیا است.

۲.۳ معناشناخت زبان

در این زبان، این فرض صورت گرفته است که فقط در ابتدای کد مبدأ برنامه، دستورات گرفتن ورودی مای مورد نظر نوشته خواهد شد؛ گرچه دستورات خروجی در هر نقطه ای از برنامه می توانند وجود داشته باشند. یک رد ar دنباله ای از حالتهاست که انتقال به یک حالت ممکن است همراه با وقوع یک رویداد باشد. به این ترتیب، می توان یک اجرای برنامه را توسط دنباله ای از رویدادهای تولیدی آن

⁴⁸ Abstract Syntax

⁴⁹ Boolean

⁵⁰ No Operation

⁵¹ Low

⁵² High

⁵³ Trace

⁵⁴ Event

نمایش داد. در این جا، رویدادها همان ورودی گرفتن از محیط یا خروجی دادن به آن، برحسب استفاده از دستورات in و out و in است. از طرفی می توان واگرایی آرام 44 را نیز در شرایطی که توسط مشاهده گر سطح پایین قابل مشاهده باشد، به عنوان یک رویداد تلقی کرد. پس می توان یک رد را دنبالهای از رویدادهای تولید شده توسط دنبالهای از حالتها دانست.

برای بیان معناشناخت این زبان برنامهنویسی، از مفهوم پیکربندی ^{۵۶} استفاده میشود و معناشناخت بر اساس آن بیان میشود. یک پیکربندی در یکی از دو دسته زیر قرار می گیرد:

بیانگر حالتِ σ بیانگر خالی، σ مانند (ε , σ , δ , δ) که در آن، ε به معنای یک رشته خالی، σ بیانگر حالتِ پیکربندی، δ نشانه دنباله ورودیها و δ برای دنباله خروجیها میباشد.

از نمادهای اینی است.

مجموعه همه پیکربندیها توسط نماد C نمایش داده می شود. به این ترتیب و با توجه به تعاریف بالا، در قاعدههای معناشناخت رابطه انتقالیِ کوچکگامیِ $^{\circ}$ $^{\circ}$ روی $^{\circ}$ تعریف می شود که در $^{\circ}$ (c, σ , \mathring{S} , \mathring{S}) \rightarrow (c', σ' , \mathring{S} ', \mathring{S} ') $^{\circ}$ روی تعبیر می شود. حکم $^{\circ}$ (c', σ' , \mathring{S} ', \mathring{S} ') $^{\circ}$ روی تعبیر می شود. حکم $^{\circ}$ (c', \mathring{S} ', \mathring{S} ') $^{\circ}$ و با دنباله ورودیها و خروجیهای \mathring{S} و \mathring{S} , پیکربندی \mathring{S} و \mathring{S} به این معناست که اجرای دستور \mathring{S} در حالت \mathring{S} و با دنباله ورودیها و خروجیهای \mathring{S} و \mathring{S} (\mathring{S}) را نتیجه می دهد. البته ممکن است یک انتقال هیچ رویدادی را تولید نکند؛ یعنی \mathring{S} = \mathring{S} رخ \mathring{S} (\mathring{S}) \mathring{S} (\mathring{S}) \mathring{S} (\mathring{S}) \mathring{S} (\mathring{S}) بنماد عملگر خواهد داد که در آن \mathring{S} بیانگر رویداد ورودی یا خروجی تولید شده توسط انتقال است و \mathring{S} : نماد عملگر پیوند است.

صفحه ۱۵ از ۸۷

⁵⁵ Silent Divergence

⁵⁶ Configuration

⁵⁷ Terminal Configuration

⁵⁸ Intermediate Configuration

⁵⁹ Small-step Transition Rule

⁶⁰ Judgment

فرض کنید X مجموعه همه متغیرها باشد. یک حالت σ یک نگاشت به شکل مخرص فرض کنید $\sigma: X \to N \cup \{\text{null}\}$ $\sigma: X \to N \cup \{\text{null}\}$ مقدار متغیرها و باز انتساب به ورودیهای گرفته شده از محیط باشد. $\sigma(x)$ مقدار $\sigma: X \to N \cup \{\text{null}\}$ قبل از انتساب به ورودیهای گرفته شده از محیط باشد. $\sigma(x)$ مقدار عبارت $\sigma: X \to X$ خواهد بود و $\sigma: X \to X$ توسط به روزرسانی مقدار $\sigma: X \to X$ با با با با با باز $\sigma: X \to X$ توسط محیط فراهم خواهد شد $\sigma: X \to X$ با بازی سطح امنیتی است که در ساختار نحوی ارائه شده در قبل، منظور همان $\sigma: X \to X$ برای سطح امنیتی بالا یا پایین است. برای اختصار، قواعد مربوط به به روزرسانی محیط آورده نشده است.

[T] WL معناشناخت کوچکگامی برای زبان [T]

فصل چهارم گراف وابستگی برنامه

گراف وابستگی برنامه

بازنویسهای برنامه مورد استفاده در این پروژه، از گرافهای وابستگی برنامه بهره میبرند. در این فصل به معرفی گراف وابستگی برنامه، نحوه تولید آن و کاربرد آن در الگوریتم بازنویسی خواهیم پرداخت.

برای هر مکانیزمِ اعمال خط مشی عدم تداخل، به ماشینی برای تشخیص جریانهای اطلاعات ممکنِ از ورودیهای سطح بالا به خروجیهای سطح پایین نیاز است. گرافهای وابستگی برنامه یا به اختصار PDG^{۶۱}ها می توانند این امکان را برای ما فراهم کنند. گراف وابستگی برنامه، برنامه را به شکل یک گراف جهتدار نمایش می دهد که در آن، گرهها بیانگر عبارتها یا گزاره ۲۰ های برنامه هستند و یالها بیانگر وابستگیهای کنترلی یا دادهای بین گرهها می باشند. گراف وابستگی برنامه تمامی وابستگیهای بین گزارههای آن برنامه را منعکس می کند. این در حالیست که عکس این جمله لزوماً برقرار نیست.

پایه اصلی تولید گراف وابستگی برنامه، گراف جریان کنترل ^{۶۳} یا به اختصار CFG است. گراف جریان کنترل دنباله اجرای گزارهها را بیان می کند. این گراف، یک گراف جهتدار است که گرهها در آن نمایانگر گزارههای برنامه و یالها بیانگر جریانهای کنترلی بین گرهها هستند. در گراف جریان کنترل، دو گره مشخص به نامهای شروع و پایان در نظر گرفته می شود که نقاط ورود و خروج برنامه را تعیین می کنند. با به دست آوردن وابستگی های کنترلی و داده ای، گراف جریان کنترل به گراف وابستگی برنامه تبدیل می شود.

۱.۴ وابستگیهای کنترلی و دادهای

در گراف وابستگی برنامه، یک یال وابستگی دادهای از گره X به گره Y، که با $Y \to X$ نمایش داده می شود، به این معناست که گره Y دارای متغیری است که در گره X انتساب داده شده است. همچنین، یک یال وابستگی کنترلی از X به X که با $X \to X$ نمایش داده می شود، به معنای این است

63 Control Flow Graph

⁶¹ Program Dependence Graph

⁶² Statement

می توان چنین تعریف کرد که اگر مقدار محاسبه شده در Y یا صرفِ اجرای Y به مقدار محاسبه شده در X بستگی داشته باشد، آنگاه گوییم جریانی از X به Y در گراف وابستگی برنامه مربوط به برنامه M وجود دارد. باید توجه داشت که اگر جریانی از X به Y برقرار باشد، آنگاه یک مسیر از X به Y در گراف وابستگی برنامه وجود خواهد داشت؛ در حالی که برعکس آن لزوماً صحیح نیست.

همان طور که در قبل مطرح شد، می توان جریانِ از X به Y بر روی مسیر $Y \hookrightarrow X$ به دو نوع دسته بندی کرد: صریح و ضمنی. یک جریان صریح زمانی برقرار است که مقدار محاسبه شده در X مستقیماً به گره Y منتقل شود. این جریان می تواند ناشی از زنجیره انتسابهای روی آن مسیر باشد. از طرف دیگر، یک جریان ضمنی زمانی برقرار خواهد بود که مقدار محاسبه شده در Y، به اجرا شدن یا نشدنِ یک گزاره خاص در مسیر $Y \hookrightarrow X$ وابسته باشد و اجرای آن گزاره، توسط مقدار محاسبه شده در X کنترل شود.

پس با تعاریف فوق می توان چنین گفت که مسیر $Y \hookrightarrow X$ روی گراف وابستگی برنامه تعیین کننده یک جریان صریح از X به Y است اگر همه یالهای موجود در مسیر، از نوع وابستگی دادهای باشند. در غیر این صورت، آن مسیر به یک جریان ضمنی دلالت خواهد داشت.

⁶⁴ Path

شکل ۳ - نمونه کد مبدأ به زبان WL و گراف وابستگی برنامه مربوط به آن

همانطور که در شکل ۳ مشاهده می شود، یالهای با خطوط ساده نماد وابستگیهای کنترلی و یالهای خطچین نمایانگر وابستگیهای دادهای هستند.

در ادامه این فصل به توضیح نحوه ساختن گراف وابستگی برنامه از روی کد مبدأ برای زبان برنامهنویسی WL میپردازیم و در فصل بعدی، نحوه استفاده از این گراف در الگوریتم بازنویسی برنامه را به تفصیل شرح خواهیم داد.

۲.۴ نحوه تولید گراف وابستگی برنامه

برای ساخت گراف وابستگی برنامه، مطابق با شکل ۴، گرافهای مورد نیاز برای تحلیل ساخته می شود.

شکل ۴ - نمودار کلی نحوه تولید گراف وابستگی برنامه از روی کد مبدأ برنامه [۹]

ابتدا از روی کد مبدأ، گراف جریان کنترل یا CFG به دست می آید. نحوه تولید این گراف به این نحو است که گزارهها و عبارتهای برنامه، به عنوان یک گره در گراف در نظر گرفته می شود. در این گراف، مفهومی به نام بلوک پایه 80 مطرح می شود. هر بلوک پایه، شامل تعدادی گره است که تنها یک گره ورودی و یک گره خروجی در آن وجود دارد. به این منظور، برای گزارههای ساده که اجرای آنها مشروط نیست، به صورت دنباله پشت سرِ همی از گرهها در نظر گرفته می شود. پس برای این گونه گزارهها و عبارتها، تنها ساختن یک گره جدید و متصل کردن آنها به گراف کفایت می کند. شکل ۵، نحوه تولید زیر گراف بلوکهای پایه را نمایش می دهد. با همین روش، بلوکهای پایه با یکدیگر ادغام می شوند و در نهایت، گراف جریان کنترل نهایی تولید خواهد شد.

⁶⁵ Basic Block

شکل ۵ - نحوه تولید زیرگراف بلوک پایه و اتصال به یکدیگر [۱۰]

برای گزارههای شرطی، دو حالت ممکن زیر وجود دارد:

شكل ۶ - نحوه توليد زيرگراف گزارههاي شرطي - حالت اول [۱۰]

شكل ٧ - نحوه توليد زيرگراف گزارههاى شرطى - حالت دوم [١٠]

مطابق با شکل ۶ و شکل ۷، یک گره برای عبارت شرطی تولید می شود. گزارههای مربوط به برقراری عبارت شرطی در یک بلوک پایه و گزارههای متعلق به حالت عدم برقراری شرط، در بلوک پایه دیگری در نظر گرفته می شود و این دو بلوک پایه، به گره مربوط به عبارت شرطی متصل خواهند شد. پس از این کار، برای گره پایانی این بلوک پایه، یک گره مجازی 99 ایجاد می شود. وجود این گره برای این است که این زیرگراف تنها یک مجرای خروجی داشته باشد.

ساختار دیگری که در این زبان وجود دارد، ساختار حلقه یا همان while است. برای تولید زیرگراف جریان کنترل مربوط به این عنصر زبان، مطابق با شکل ۸ عمل می شود.

شکل ۸ - نحوه تولید زیرگراف گزارههای حلقه while [۱۰]

مشابه قبل، یک گره مجازی به عنوان گره پایانی به زیرگراف اضافه میشود.

حال به ازای هر قاعده موجود در زبان، مطابق با توضیحات بالا، زیرگرافهای کنترل جریان در هنگام تولید درخت تجزیه ^{۶۷} ساخته میشوند و با اتصال آنها به یکدیگر، گراف کنترل جریان برنامه به دست خواهد آمد.

⁶⁷ Parse Tree

⁶⁶ Dummy

مطابق با شکل 4 ، برای تولید گراف وابستگی کنترل یا به اختصار "CDG"، به درخت غلبه رو به جلو 69 یا درخت پسغلبه 7 نیاز خواهد بود. برای تولید این درخت، الگوریتم ساخت درخت غلبه 7 بر روی معکوس گراف جریان کنترل؛ یعنی همان گرهها ولی با جهت یالهای معکوس شده، اعمال می گردد.

برای این کار، ابتدا منظور از غلبه کردن دو گره را بیان می کنیم. گره M بر گره N غلبه می کند، اگر و تنها اگر همه مسیرهای با شروع از از گره آغازین تا گره N، حتماً و الزاماً از گره M بگذرند. همچنین، گره M بر گره N اکیداً غلبه N می کند، اگر و تنها اگر بر آن گره غلبه کند و N همان گره N نباشد. واضح است که یک گره در گراف جریان کنترل می تواند چندین غلبه کننده N داشته باشد، اما برای تولید درخت غلبه، نزدیک ترین غلبه کننده یا غلبه کننده بی درنگ N اهمیت دارد. با استفاده از شبه کد زیر می توان غلبه کننده های یک گره در گراف جریان کنترل را به دست آورد.

```
\label{eq:compute Dominators} \begin{tabular}{ll} Compute Dominators() & For (each $n \in NodeSet)$ \\ Dom(n) = NodeSet \\ WorkList = \{StartNode\}$ \\ While (WorkList $\phi \neq $)$ & Remove any node $Y$ from WorkList \\ New = \{Y\} \cup \bigcap_{x \in Pred(Y)} Dom(X)$ \\ If New $\neq Dom(Y)$ & Dom(Y) = New \\ For (each $Z \in Succ(Y))$ \\ WorkList = WorkList $U$ $\{Z\}$ \\ & \} \\ & \} \\ \end{tabular}
```

شکل ۹ - محاسبه گرههای غلبه کننده برای هر گره [۱۱]

⁶⁸ Control Dependence Graph

⁶⁹ Forward Dominance Tree

⁷⁰ Post Dominance Tree

⁷¹ Dominance Tree

⁷² Strictly Dominate

⁷³ Dominator

⁷⁴ Immediate dominator

سپس با توجه به مجموعه غلبه کنندگانِ به دست آمده از الگوریتم بالا و مقایسه با مجموعه غلبه کنندگانِ سایر گرهها، می توان گره غلبه کننده بی درنگ را یافت و درخت غلبه را تشکیل داد اما در این جا، تولید درخت پس غلبه 4 مورد نظر است. به این صورت که، گره Z، گره Y را پس غلبه می کند، اگر و تنها اگر همه مسیرهای از Y تا گره پایانی، حتماً و الزاماً از Z عبور کنند. حال، در صورتی که این الگوریتم برای معکوس گراف جریان کنترل اعمال شود، درخت پس غلبه تولید می شود.

سپس برای ساخت گراف جریان کنترل، مرزِهای پسغلبه 79 یا اختصاراً PDF، مورد نیاز است. مرز پسغلبه گره X، مجموعه گرههایی هستند که توسط X اکیداً پسغلبه نمیشوند اما گرههای مابَعدی 79 دارند که توسط X پسغلبه میشوند. تعریف ریاضی این گرهها بدین شرح است:

 $PDF(X) = \{y \mid (\exists z \in Succ(y) \text{ such that } x \text{ post-dominates } z) \text{ and } x \text{ does not strictly post-dominate } y\}$

که این مجموعه بیانگر نزدیک ترین نقاط انشعابی $^{\mathsf{v}^{\mathsf{A}}}$ است که به گره X منجر می شوند.

با استفاده از قضیه زیر، می توان وابستگیهای کنترلی برنامه را برای هر گره موجود در گراف جریان کنترل، به دست آورد:

قضیه - گره y به y وابستگی کنترلی داشته PDF(X) تعلق دارد، اگر و تنها اگر y به y وابستگی کنترلی داشته باشد.

حال با استفاده از الگوریتم شکل ۱۰، میتوان مجموعه مرزهای پسغلبه هر گره را به دست آورد که بیانگر وابستگیهای کنترلی نیز خواهند بود.

⁷⁸ Diverging points

⁷⁵ Post-Dominance Tree

⁷⁶ Post-Dominance Frontier

⁷⁷ Successor

For each x in the bottom-up traversal of the postdominator tree do

 $PDF(X) = \phi$

Step 1: For each y in Predecessor(X) do

If X is not immediate post-dominator of y then

 $PDF(X) \leftarrow PDF(X) \cup \{y\}$

Step 2: For each z that x immediately post-dominates, do

For each $y \in PDF(Z)$ do

If X is not immediate post-dominator of y then

شکل ۱۰- محاسبه گرههای پسغلبه کننده مرزی برای هر گره [۱۱]

پس از این محاسبات، وابستگیهای کنترلی برنامه برای هر گره – گزاره یا عبارت برنامه ورودی – به دست آمده است. در نتیجه، تا این مرحله، گراف وابستگی کنترلی برنامه تولید شده است.

اکنون نوبت تولید گراف وابستگی داده ای یا به اختصار $DDG^{\gamma 1}$ است. وابستگیهای داده ای مختلفی وجود دارد اما برای این پروژه، ارتباط بین گرههایی که شامل مقداردهی یک متغیر و استفاده از آن متغیر هستند، اهمیت دارد؛ یعنی گره X به گره Y وابستگی داده ای دارد، اگر و تنها اگر در گره Y متغیری وجود داشته باشد که در گره X مقداردهی شده باشد. پس با توجه به همین تعریف و مطابق با قواعد زبان، در گره مربوط به هر گزاره، متغیری که به آن مقداری نسبت داده شده یا استفاده شده است، نگهداری می شود. حال برای به دست آوردن وابستگیهای داده ای، در صورتی که در یک گره از متغیری استفاده شود که در گره دیگری مقداردهی شده است، یک وابستگی داده ای لحاظ می شود. برای افزایش دقت و عدم محافظه کارانه بودن وابستگیها، تنها نزدیک ترین گزاره ای که آن متغیر در آن مقداردهی شده است، وابستگی را خواهد داشت، و نه همه گزارههایی که آن متغیر را مقداردهی کردند که این کار با یبمایش گراف جریان کنترل امکان پذیر است.

⁷⁹ Data Dependence Graph

پس از این مرحله، گراف وابستگی دادهای برنامه نیز آماده است. بدین ترتیب گرافهای وابستگی کنترلی و دادهای از روی کد مبدأ ساخته شدهاند. با ترکیب این دو گراف که دارای گرههای یکسان هستند، گراف وابستگی برنامه تولید خواهد شد.

در فصل بعدی، نحوه بازنویسی برنامهها با استفاده از گراف وابستگی برنامه تولید شده تا این مرحله بیان میشود.

فصل پنجم الگوریتم بازنویسی برنامه

الگوريتم بازنويسي برنامه

در این فصل ابتدا الگوریتم کلی مورد استفاده برای اعمال خط مشی عدم تداخل بیان میشود. سپس به الگوریتم دقیق مربوط به حالت غیرحساس به پیشرفت یا به اختصار PINI^{۸۰} و حالت حساس به پیشرفت یا PSNI^{۸۱} خواهیم پرداخت.

با داشتن گراف وابستگی برنامه کد مبدأ ورودی، میتوان وابستگیهای موجود بین گزارههای مختلف برنامه را بررسی کرد. میتوان تابع متأثر کردن 7 یا affect را تابعی در نظر گرفت که یک عبارت یا گزاره از یک برنامه یا گره مربوط به آن در گراف وابستگی برنامه را به عنوان ورودی می گیرد و گزارهها و عباراتی که به گزاره یا عبارت گرفته شده وابستگی دارند را به عنوان خروجی برمی گرداند. با بیانی دیگر، تابع affect بر روی گره داده شده X از گراف وابستگی برنامه اجرا می شود و همه گرههای مانند Y را که یک مسیر از X به آن وجود دارد را برمی گرداند. الگوریتم کلی بازنویسی برای خط مشی عدم تداخل را می توان براساس تابع پیشنهاد شده ارائه کرد. تعبیر رویداد قابل مشاهده برای کاربر سطح پایین در این پروژه، مطابق با بیان صوری مطرح شده در مقاله اصلی مورد استفاده در پروژه است. [۲]

```
      foreach statement X producing a high input event h_{in} do

      foreach statement Y producing a low observable event e_L do

      if Y \in affect(X) then

      transform Y into Y' such that Y' \notin affect(X) in the new program end

      end

      end
```

شكل ١١ - الگوريتم كلى بازنويسى براى اعمال خط مشى عدم تداخل [٢]

_

⁸⁰ Progress-Insensitive Non-Interference

⁸¹ Progress-Sensitive Non-Interference

⁸² Affect Function

همانطور که بیان شد، یک گراف وابستگی برنامه که یک بیان ایستایی از وابستگیهای برنامه را نشان میدهد، جریانهای غیرمجاز ممکن را در خود دارد. گرچه ممکن است این جریانها در همه اجراهای برنامه رخ ندهند. بنابراین در الگوریتم شکل ۱۱، باید شرطهایی که تعیین کننده وقوع جریان غیرمجاز احتمالی هستند را لحاظ کرد.

۱.۵ بازنویسی برای حالت غیرحساس به پیشرفت

ایده اصلی استفاده شده در این بخش، دستورهای loutLکه از ورودیهای سطح بالا متأثر شدهاند، با گزارههای لـ outL یا NOP جایگزین شوند. چنین تغییراتی که مستقل از اطلاعات زماناجرا هستند، ممكن است بيش از حد مورد نياز و كمي سخت گيرانه باشد. به خاطر دسترسي برنامهها به اطلاعات زمان اجرا، می توان از این اطلاعات در برنامه بازنویسی شده استفاده کرد. به همین منظور، از گونهای از شرطهای مسیر $^{\Lambda^{r}}$ استفاده شده است. در مقاله اصلی پروژه، یک شرط مسیر p(X,Y) روی متغیرهای برنامه تعریف می شود و همان شرطهایی هستند که باعث می شوند تا جریان $X \hookrightarrow X$ واقعاً رخ بدهد. به این معنا که شرطهای مسیر باید برقرار باشند تا جریان مربوط به آن مسیر در اجرا نیز اتفاق بیفتد. این تعریف از شرطهای مسیر میتواند نشان دهد که آیا یک مسیر واقعاً در زماناجرا پیمایش می شود یا خیر. همین نکته برای تشخیص جریانهای صریح بسیار مفید خواهد بود. در حالی که برای جریانهای ضمنی، ممکن است جریان در زماناجرا به وقوع بپیوندد، حتی اگر مسیر مربوط به آن به طور $^{\Lambda^6}$ کامل پیمایش نشده باشد. این مورد زمانی اتفاق میافتد که یک گره روی مسیر با یال وارد شونده وابستگی کنترلی، به خاطر مقدار عبارت کنترلی اجرا نشود. پس اجرای همه نودهای روی مسیر تعیین کننده یک جریان ضمنی، برای وقوع آن جریان الزامی نیست. به همین ترتیب، جریان مربوط به مسیر $inH \ h o outL \ l$ وی گراف وابستگی برنامه یک برنامه به زبان $mH \ h o outL \ l$ همه گرههای آن مسیر که یال وارد شونده وابستگی دادهای دارند، اجرا شوند. میتوان چنین گفت که همه گرههای میانی روی مسیر بیان کننده یک جریان صریح، باید در زمان اجرا پیمایش شوند. همچنین،

⁸³ Path Conditions

⁸⁴ Incoming Edge

یک گره میانی روی مسیر مشخص کننده یک جریان ضمنی، فقط باید زمانی پیمایش شود که یال واردشونده به آن از نوع وابستگی دادهای باشد. همان طور که در ادامه مطرح خواهد شد، بازنویسهای استفاده شده در این پروژه، تغییراتی را در برنامه داده شده انجام می دهند چنان که بررسی می شود تا همه گرههای میانی با یال وارد شونده وابستگی دادهای بر روی مسیری که به دستورات 1 out 1 می شوند، در طول برنامه اجرا شوند. اگر مسیر چنین باشد، 1 out 1 به جای آن دستور اجرا خواهد شد، و گرنه خود دستور 1 out 1 به اجرا در می آید.

برنامههای نوشتهشده به زبان WL حاوی شرطهای مسیر ساده هستند که از شرطهای اجرای ^{۸۸} گرهها به دست می آیند. به طور کلی، شرط اجرا برای گره X با پیمایش معکوس ^{۸۸} از گره X تا گره آغازین از طریق یالهای وابستگیهای کنترلی روی مسیر حاصل می شود. شرط اجرا یک عبارت منطقی بولی است که برقرار خواهد بود، اگر و تنها اگر گزاره X اجرا شود. به همین شیوه، شرط مسیر $X \hookrightarrow X$ برای $X \hookrightarrow X$ ترکیب عطفی شرطهای اجرای گرههای روی آن مسیر تعریف می شود. شرطهای مسیر را می توان بر اساس ترکیب عطفی گرههای روی مسیر با یک یال وارد شونده وابستگی دادهای تعریف کرد. اگر چنین گرهای نباشد، شرط مسیر همواره درست محسوب می شود.

با توجه به قاعدههای زبان و استفاده مناسبتر از شرطهای مسیر، در برنامهها تنها انتسابهای یگانه ایستا^{۸۸} مجاز است. به معنای آن که برنامهها حاوی انتسابهای چندگانه برای یک متغیر نخواهد بود. البته این برنامهها به برنامههای صرفاً حاوی انتسابهای یگانه قابل تبدیل هستند. از طرفی، چنین فرض می شود که هیچ وابستگی دادهایِ حلقه نقلی ^{۸۸} در مسیرهای از ورودیهای سطح بالا به خروجیهای سطح پایین برنامه وجود ندارد.

در الگوریتم شکل ۱۲، بازنویس برای اعمال خط مشی عدم تداخل در حالت غیرحساس به M و گراف وابستگی برنامه و گراف وابستگی برنامه و گراف و گراف و گراف و آبستگی برنامه و گراف و گراف و آبستگی برنامه و گراف و گراف و گراف و آبستگی برنامه و آبستگی برنامه و گراف و آبستگی برنامه برنامه

⁸⁷ Static Single Assignment

⁸⁵ Execution Conditions

⁸⁶ Backtracking

⁸⁸ Loop-carried Data Dependency

مبدأ M' را که عدم تداخل غیرحساس به پیشرفت را برآورده می کند، به عنوان خروجی برمی گرداند. به بیان دیگر، باید دنباله خروجی های برنامه بازنویسی شده برای هر دو اجرای دلخواه از آن برنامه که ورودی های سطح پایین یکسان دارند، نسبت به حالت غیرحساس به پیشرفت معادل باشند. در ادامه، نمونه ای از نحوه عملکرد این الگوریتم را بر روی یک برنامه داده شده به زبان M' ورده شده است.

```
RW_{PINI}(M, G):
Initialize F to the set of all paths Start \hookrightarrow P \rightarrow P' in the PDG G of M where P is the node
representing a high input and P' is the node representing outL 1 for some 1;
if F = \emptyset then
        return M;
end
create a copy of M, name it M', and change it as follows:
determine the type of flow indicated by each path f \in F;
for each f \in F do:
        Generate the path condition of f as the conjunction of the execution conditions of node N
        satisfying f = Start \rightarrow X \xrightarrow{d} N \rightarrow P' if there are such nodes on the path and true
        otherwise;
end
foreach node n on G representing outL 1 for some 1 do
        let c be the disjunction of the path conditions of all f' \in F which terminate at n;
        if all paths f' \in F terminating at n indicate an explicit flow then
                replace out L l with the statement "if c then out L \perp else out L l endif";
        else
                replace outL l with the statement "if c then NOP else outL l endif";
        end
end
return M';
```

شکل ۱۲ – الگوریتم بازنویسی عدم تداخل حالت غیرحساس به پیشرفت که برنامه M و گراف وابستگی برنامه مربوط به آن G را می گیرد M

program;
inL 11, 12;
inH h1;
if 11 == 0 then
12 = h1
else
NOP
endif;
if ((11 == 0)) then
outL BOT
else
outL 12
endif

شكل ۱۳ – (الف) نمونه كد به زبان WL (ب) گراف وابستگى برنامه الف؛ (ج) برنامه بازنویسى شده برنامه الف در حالت غیرحساس به پیشرفت

۲.۵ بازنویسی برای حالت حساس به پیشرفت

حالت حساس به پیشرفت نسبت به حالت غیرحساس به پیشرفت محدودیت و قیود بیشتری روی رفتار مشاهده گر سطح پایین اعمال می کند. می توان با بررسی مثالی بیشتر به آن پرداخت. در برنامه شکل ۱۴ الگوریتم بازنویسی برای حالت غیرحساس به پیشرفت دستور ۱۲ می کند، دستور ۱۹ می کند، دستور ۱۹ می کند، گرچه نتیجه بازنویسی حالت غیرحساس به پیشرفت را برآورده می کند، اما با توجه به حالت حساس به پیشرفت، یک برنامه ناامن خواهد بود؛ چرا که حلقه while موجود در برنامه ممکن است بسته به مقدار سطح بالای ۱۹ واگرا شود یا نشود. به عبارت دیگر، یک مشاهده گر سطح پایین می تواند با بررسی روند پیشرفت برنامه، مقدار ۱۹ را استنباط کند.

```
program;
inH h1;
inL l1;
if h1 == l1 then
while true do
outL l1
done
else
NOP
endif;
outL l1
```

(ب)

شکل ۱۴ – (الف) نمونه برنامه به زبان WL؛ (ب) برنامه بازنویسی شده الف برای حالت غیر حساس به پیشرفت، که حالت حساس به پیشرفت را بر آورده نمی کند

بنابراین، برای اعمال حالت حساس به پیشرفت، باید مطمئن شد که نحوه پیشرفت برنامه نیز هیچ اطلاعات سطح بالایی را افشا نمی کند. پس برنامه باید با شروع از حالتهای آغازینِ معادل از نظر مشاهده گر سطح پایین، یا همواره خاتمه یابد یا همواره واگرا باشد. گرچه ابزارها و روشهایی برای دستههای خاصی از برنامهها وجود دارد که بررسی شود که آیا یک برنامه خاتمه می یابد یا خیر، اما این مسئله در حالت کلی تصمیم ناپذیر است. شاید به همین خاطر است که راه حلهای ارائه شده برای حالت حساس به پیشرفت، که تعداد کمی هم هستند، بسیار محافظه کارانه است و هر برنامهای که یک حلقه وابسته به مقدار سطح بالا باشد، پذیرفته نمی شود. منظور از حلقه وابسته به مقدار سطح بالا، یعنی حلقهای که اجرای بدنه آن یا تعداد تکرارهای اجرای آن به یک مقدار سطح بالا وابسته باشد. به عنوان نمونه، مور و همکارانش [۱۲] یک نوعسامانه به همراه یک مکانیزم زمان اجرا به نام پیش گویی خاتمه ۱۹ ارائه کرده است تا حلقه هایی تشخیص داده شود که وضعیت پیشرفت آنها فقط به مقادیر سطح پایین وابسته است. گرچه چنین مکانیزمی در قیاس با راه حلهای ایستا از دقت بالاتری برخوردار است، اما هزینه سربار اضافه زمان اجرا را در پی خواهد داشت. از طرفی، اگر مکانیزم پیش گویی نتواند وضعیت پیشرفت حلقه را پیش بینی کند، اجرای برنامه گیر خواهد کرد.

بازنویس مورد استفاده در این پروژه، برنامهها را به نحوی تغییر می دهد که وضعیت پیشرفت برنامه بازنویسی شده به مقادیر سطح بالا وابستگی نداشته باشد. باید توجه داشت که در برنامهای که ممکن است هنگام اجرا مقادیر سطح بالا از طریق وضعیت پیشرفت برنامه نشت پیدا کنند، به دلیل صحتِ الگوریتم بازنویسی، معناشناخت برنامه دچار تغییراتی شود. در زبان برنامهنویسی WL، عنصر while تنها ساختاری است که می تواند باعث واگرایی برنامهها شود. پس به ابزار یا تابعی برای تحلیل حلقههای while نیاز خواهد بود. در الگوریتم بازنویسی مورد استفاده چنین فرض می شود که یک تحلیل گر حلقه و جود دارد که می تواند به طور ایستا با گرفتن کد حلقه، آن را تحلیل و ارزیابی کند. این الگوریتم این تضمین را می دهد که برنامه بازنویسی شده برای حالتهای آغازینِ معادل از نظر مشاهده گر سطح پایین، یا همواره خاتمه می یابد یا همواره واگرا می شود. [۲]

⁸⁹ Termination Oracle

⁹⁰ Loop Analyzer

تحلیل گر حلقه مورد نظر در این الگوریتم چنین در نظر گرفته می شود که کد یک حلقه را می گیرد و یک عبارت منطقی بولی به عنوان نتیجه تحلیل برمی گرداند. این عبارت منطقی برای حالتهایی درست خواهد بود که اجرای آن حلقه قطعاً خاتمه می یابد. بدین معنا که تابع تحلیل گر حلقه عبارت همواره درست یا True را برمی گرداند، اگر حلقه همواره خاتمه می یابد و عبارت همواره نادرست یا False را برمی گرداند، اگر حلقه در همه حالتها واگرا باشد. این در حالیست که این تابع تحلیل گر، به عنوان مثال، برای حلقه موجود در برنامه شکل ۱۵، عبارت 0 > 11 or 11 = 11 را به عنوان نتیجه تحلیل برمی گرداند.

```
program;
inH h1;
inL l1;
while h1 < 11 do
NOP;
h1 = h1 - 11
done;
outL l1
```

شکل ۱۵ – برنامهای که حلقه موجود در آن در حالتی که 11 < 0 or 11 < 0 باشد، خاتمه خواهد یافت

الگوریتم بازنویسی مورد استفاده منوط به وجود یک تحلیل گر حلقه قدرتمند است. ابزاری که بتواند بسیاری از حلقهها را با موفقیت تحلیل کند. تولید چنین ابزاری کار دشواری است که در فصل آینده، به نحوه پیادهسازی آن خواهیم پرداخت. با این حال و با وجود تلاشهایی که در این زمینه صورت گرفته است، باز هم ممکن است حلقههایی در برنامهها وجود داشته باشند که تحلیل گر مورد استفاده، از تحلیل آنها عاجز باشد. در اینجا فرض می شود که چنین برنامههایی برای ورودی الگوریتم بازنویسی در نظر گرفته نمی شود. [۲]

پس با توضیحات فوق، بازنویس مورد استفاده در این پروژه، مسیرهای روی گراف وابستگی برنامه با شروع از متغیرهای سطح بالا تا عبارت شرطی حلقهها اور امی پیماید و با استفاده از نتیجه تحلیل گر حلقه، به بازنویسی کد مبدأ برنامه می پردازد. به این صورت که اگر نتیجه تحلیل گر حلقه برای یک حلقه داده شده، عبارت همواره درست باشد، حلقه را بدون تغییر رها می کند و مشابه این رفتار را برای یک حلقه همواره واگرا نیز خواهد داشت، به شرطی که هیچ مسیر از نوع وابستگی کنترلی از مقادیر سطح بالا به عبارت شرطی حلقه وجود نداشته باشد. در واقع، حلقهای که همواره واگراست، ممکن است باعث افشای اطلاعات سطح بالا شود، اگر آن حلقه توسط یک عبارت کنترل شود که به ورودیهای سطح بالا وابسته است. اگر چنین باشد، آن حلقه با یک ساختار if-then با همان عبارت شرطی حلقه و همان بدنه حلقه جایگزین می شود. در شرایطی که تحلیل گر حلقه عبارتی غیر از همواره درست یا همواره نادرست را بر گرداند، بازنویس اجرای آن حلقه را به همان عبارت بر گردانده شده مشروط می کند. پس به نادرست را بر گرداند، بازنویس اجرای آن حلقه را به همان عبارت بر گردانده شده مشروط می کند. پس به این ترتیب، کد برنامه جدید قطعاً خاتمه می بابد.

الگوریتم بازنویسی مطرحشده در شکل ۱۶، کد مبدأ برنامه M و گراف وابستگی برنامه متناظر آن را می گیرد و کد M' بازنویسی شده را برمی گرداند که خط مشی عدم تداخل را در حالت حساس به پیشرفت برآورده می کند. منظور از تابع LoopAnalyzer همان ابزاری است که در بالا توضیح داده شده بود و تحلیل حلقهها را برعهده داشت. این بازنویس، ابتدا بازنویس مربوط به حالت غیرحساس به پیشرفت را فراخوانی می کند. نتیجه این کار، برنامهای خواهد بود که اگر M حلقههای وابسته به مقادیر سطح بالا نداشته باشد، در حالت حساس به پیشرفت نیز پذیرفته می شود. در غیر این صورت، حلقههایی که در مسیرهای به شکل E^+ یک E^+ یک E^+ یک مسیر منتهی به یک عبارت شرطی حلقه است، ممکن است بازنویسی شوند. البته ممکن است این گونه مسیر منتهی به یک عبارت شرطی حلقه است، ممکن است بازنویسی شوند. البته ممکن است این گونه مسیرها حاوی گرههای میانی باشند که خود بیانگر عبارت شرطی حلقههای دیگری هستند. توابع مسیرها حاوی گرههای میانی باشند که خود بیانگر عبارت شرطی حلقه و کل حلقه موجود در E^+ مسیرها را برمی گرداند.

⁹¹Loop Guards

```
RW_{PSNI}(M, G):
Initialize D to the set of all paths Start \hookrightarrow P \hookrightarrow E^+ in G where E^+ is a path
terminating at a loop guard and P is the node representing a high input;
M' = RW_{PIN}(M, G);
if D = \emptyset then
        return M';
end
H = \max \{ height(n) \mid n \text{ is a node on G} \}, \text{ where } height \text{ is a function that returns the } \}
height of a given node on the tree obtained by removing data dependence edges from
G;
Change M' as follows:
for h = H to 1 do
        foreach node n with height(n) = h representing a loop on some path f \in D do
                r = LoopAnalyzer(loop(n));
                if r = False then
                         if X \stackrel{c}{\rightarrow} n appears on at least one path f \in D do
                            replace loop(n) with the statement "if guard(n) then body(n)
endif";
                         end
                else
                         if r \neq True then
                            replace loop(n) with the statement "if r then loop(n) endif";
                         end
                end
end
h = h - 1;
end
return M';
```

```
شکل ۱۶ – الگوریتم بازنویسی عدم تداخل حالت حساس به پیشرفت که برنامه {f M} و گراف وابستگی برنامه مربوط به آنِ {f G} را می گیرد {f T}] صفحه ۸۲ از ۸۷
```

همانطور که مشاهده می شود، بازنویس مطرح شده برای حالت حساس به پیشرفت ممکن است یک حلقه وابسته به مقادیر سطح بالا را به یک گزاره شرطی با همان بدنه حلقه جایگزین کند که این باعث می شود تا بدنه حلقه تنها یک بار در برنامه بازنویسی شده اجرا شود. گرچه راهبردهای دیگری مثل تغییر عبارت شرطی حلقه برای این که فقط به مقدار متناهی حلقه اجرا شود نیز وجود دارد. البته باید آن راهبردها را از نظر شفافیت با روش مورد استفاده در این جا بررسی کرد. ضمناً باید در نظر داشت که ابتدا حلقه های تودرتو^{۹۴} و سپس حلقه بیرونی تحلیل می شوند. زیرا تاثیر رفتار نسخه بعد از بازنویسی آنها ممکن است با نسخه قبل از بازنویسی متفاوت باشد. به همین منظور، الگوریتم مطرح شده ارتفاع گرههای بیانگر حلقه در درختی که با حذف یالهای وابستگی دادهای از گراف وابستگی برنامه به دست آمده است را ملاک عمل قرار می دهد. در شکل ۱۷، نمونه کد برنامه تبدیل شده توسط این الگوریتم برای کد مبدأ برنامه شکل ۱۵ را مشاهده می شود.

برای اثبات صحت و شفافیت الگوریتمهای استفاده شده در این پروژه، می توانید به مقاله اصلی یروژه [۲] بخش ششم مراجعه کنید.

شكل ١٧ - كد مبدأ بازنويسىشده توسط الگوريتم حالت حساس به پيشرفت براى برنامه شكل ١٥

0.7

⁹² Nested Loops

فصل ششم پیادهسازی و ایجاد رابط کاربری

پیادهسازی و ایجاد رابط کاربری

۱.۶ تحلیل و طراحی نرمافزار

با توجه به مشخص و ثابت بودن نیازهای این نرمافزار در همان ابتدای تعریف پروژه، میتوان از مدل فرآیندی آبشاری^{۹۳} یا چرخه حیات کلاسیک^{۹۴} استفاده کرد. همچنین، روش تحلیل و طراحی این نرمافزار با رویکرد شی گرایی^{۹۵} انجام شده است.

این مدل فرآیندی شامل پنج مرحله ارتباط 96 ، برنامهریزی 94 ، مدلسازی 96 و استقرار 97 است.

شکل ۱۸ – مدل فرآیندی آبشاری

این مدل فرآیندی زمانی به کار بسته میشود که نیازمندیهای پروژه کاملا خوش تعریف و پایدار باشند. مدل فرآیندی آبشاری یک روش ترتیبی و روشمند برای توسعه نرمافزار محسوب میشود که با مشخص کردن نیازمندیها آغاز میشود و با گذر از مراحل برنامهریزی، مدلسازی، ساخت و استقرار به

⁹³ Waterfall Process Model

⁹⁴ Classic Life Cycle

⁹⁵ Object-Oriented

⁹⁶ Communication

⁹⁷ Planning

⁹⁸ Modeling

⁹⁹ Construction

¹⁰⁰ Deployment

پایان میرسد. گام اول به تعریف و جمعآوری نیازمندیهای پروژه اختصاص پیدا می کند. پس از درک کامل آنها، گام برنامهریزی انجام می شود. در این مرحله، تخمینها و برنامهریزیهای زمانی برآورد می شود. این تخمینها و برنامهریزیها، شامل برآورد زمانی، هزینه، نیروی انسانی و سایر بخشهاست. قدم بعدی، مدل سازی یا همان تحلیل و طراحی نرمافزار خواهد بود. در این قسمت، با توجه به نیازمندیهای پروژه، تحلیلهای مربوط صورت می گیرد و مستندات و نمودارهای تحلیل و طراحی تولید می شوند. مهم ترین نمودار در مرحله تحلیل، نمودار مورد کاربرد است که با توجه به نیازمندیها و مورد کاربردهای به دست آمده از تعریف پروژه ترسیم می شود. این نمودار مبنای تحلیلهای بعدی خواهد بود. در ادامه نمودارهای مورد کاربرد و فعالیت ۲۰۰۲ به عنوان بخشی از قسمت تحلیل آمده است.

شکل ۱۹ - نمودار موردکاربرد نرمافزار پروژه

¹⁰¹ Use Case Diagram

¹⁰² Activity Diagram

شکل ۲۰ - نمودارهای فعالیت نرمافزار پروژه صفحه ۴۳ از ۸۷

در مرحله طراحی، مهمترین نمودار که آینه تمامنمای معماری نرمافزار نیز به شمار میرود، نمودار کلاس^{۱۰۳} است. این نمودار کلاسهای مورد استفاده در نرمافزار و نحوه ارتباط بین آنها را مشخص می کند. در واقع این نمودار، مرز بین تحلیل و طراحی است و از این نمودار به عنوان مبنای نمودارها و طراحیهای نرمافزار می توان نام برد. در شکل ۲۱، نمودار کلاس نرمافزار این پروژه را مشاهده می کنید. در این شکل، جزئیات فیلدها و متدهای هر کلاس آورده نشده و تنها به نام کلاسها و ارتباط بین آنها اکتفا شده است.

شكل ۲۱ - نمودار كلاس نرمافزار پروژه (بدون ذكر فيلدها و متدها)

پس از این مراحل، گام بعدی پیادهسازی و آزمون نرمافزار خواهد بود که در قسمتهای بعدی به تفصیل به آنها پرداخته میشود.

دلایل انتخاب این مدل فرآیندی، علاوه بر ثابت و مشخص بودن نیازهای پروژه در ابتدای امر عبارتند از:

• فهم این مدل نسبت به مدلهای فرآیندی دیگر سادهتر است.

¹⁰³ Class Diagram

- از حیث تولید مستندات، شرایط بهتر و آسان تری دارد.
 - مراحل به سادگی قابل بررسی و کنترل هستند.

۲.۶ شرح کلی مراحل پیادهسازی و ابزارهای مورد استفاده

در این مرحله، با توجه به طراحی انجام شده، نرمافزار پروژه پیادهسازی می شود. برای این منظور، ابتدا پس از رفع ابهام و بازنویسی گرامر زبان WL مطرحشده در مقاله اصلی پروژه، با استفاده از ابزارهای iflex و bison، دو بخش اصلی کامپایلر این زبان؛ یعنی lexer و parser، فراهم شدند. در lexer، تمامی کلمات کلیدی و عناصر مختلف زبان به صورت نشانه ۱۰^۴هایی در نظر گرفته شدند. سیس این نشانهها، به parser داده می شود و با توجه به قواعد مختلف زبان، رفتار مربوط به هر قاعده در ذیل آن نوشته می شود. به این ترتیب اجزای زبان و قواعد گرامر آن پیاده سازی می شود. در این مرحله، خطاهای نحوی^{۱۰۵} تشخیص داده می شود و در صورت بروز آنها، به کاربر گزارش داده می شود. البته لازم به یادآوری است که بنا به نیازهای پیادهسازی، قسمتهایی از parser پس از تولید توسط ابزار bison، به صورت دستی تغییر پیدا کرده است، که این امر نیازمند تسلط کافی به جزئیات این کلاس است. در صورت نیاز، نحوه اجرای کدها و تولید آنها توسط ابزارهای ذکر شده، در فایلی به نام -README GuidToRun.txt در پوشه پروژه آمده است. در کد نوشتهشده برای parser، در زمان تشکیل درخت تجزیه و بررسی برنامه داده شده به آن، به طور همزمان گراف جریان کنترل برنامه نیز تولید میشود. گرافهای مورد استفاده در این پروژه، همگی از نوع لیست پیوندی^{۱۰۶} میباشند. دلیل استفاده از این ساختمان داده، سهولت در پیمایش، عدم نیاز به دسترسی تصادفی و رعایت حفظ ترتیب گرههای فرزند و پدر است. در هر گره، اطلاعات مورد نیاز نظیر شماره گره، گزاره، اشاره گرهای بعدی و قبلی در گرافها، ارتفاع گره، متغیرهای موجود در گزاره و غیره ذخیره می شود.

¹⁰⁴ Token

¹⁰⁵ Syntax Errors

¹⁰⁶ Linked List

تا اینجا، کد برنامه داده شده به برنامه از نظر نحوی بررسی و گراف جریان کنترل ساخته شده است. اکنون با توجه به نوع درخواست کاربر؛ یعنی تولید گراف وابستگی برنامه، بازنویسی در حالت غیرحساس به پیشرفت، عملیات مربوط به هر کدام اجرا می شود.

برای نمایش گراف وابستگی برنامه، از ابزار قدرتمند [۱۳] استفاده شده است. به این شکل که کد مربوط به این ابزار به پروژه اضافه شده است و با انجام تنظیمات اولیه، با تولید گراف به زبان dot که توسط این ابزار شناخته شده است، گراف مورد نظر در قالب یک تصویر با فرمت png تولید می شود. در هنگام تولید گراف وابستگی برنامه، علاوه بر نمایش گرافیکی آن، گرافهای وابستگی کنترلی و داده ای نیز به طور مجزا ذخیره می شوند.

اما علاوه بر ابزارهای ذکر شده در بالا، برای تابع تحلیل گر حلقه که در الگوریتم بازنویسی حالت حساس به پیشرفت نقش تأثیرگذاری را ایفا می کند، ابزارهای مختلفی بررسی شد. گرچه هیچ کدام از ابزارهای بررسی شده، تحلیل مورد نیاز ما برای این تابع را ارائه نکردند، اما جستجو برای یافتن ابزار مناسب و نزدیک به خواسته ما، کار سادهای نبود. برای این قسمت، مقالات مختلفی مطالعه شد و ابزارهای گوناگونی نظیر Cooperative T2 ،T2 ،DRR، Frama-C ،Polyrank ،Cooperative T2 ،T2 ،DRR LoopFrog ،PAG ،rankFinder و AProVE [۱۴] نصب و بررسی شدند. در پایان این مرحله و با در نظر گرفتن معیارهای دقت و سرعت بالاتر، راحتی استفاده، نوع چاپ خروجی و میزان شباهت در تحلیل مورد نیاز این نرمافزار، از ابزار AProVE استفاده شده است. به این منوال که کد حلقهای که به عنوان ورودی به تابع تحلیل گر حلقه داده می شود، به زبان C تبدیل می شود و سپس، برنامه تبدیل شده به زبان C به عنوان ورودی به ابزار تحلیل حلقه AProVE داده میشود. این ابزار با توجه به کد ورودی، یکی از سه جواب ممكن Disproven ،Proven و Maybe را به سوال درباره خاتمه آن برنامه مي دهد. Proven به معنای اثبات خاتمه برنامه و Disproven به معنای اثبات عدم خاتمه برنامه تحت هر شرایطی است. این در حالیست که نتیجه تحلیل Maybe به معنای ناتوانی این ابزار در تحلیل برنامه داده شده تلقی می شود. لذاست که نتیجه تحلیل Proven معادل با عبارت همواره درست در تابع تحلیل گر حلقه خواهد بود، اما در صورتیکه پاسخ یکی از حالتهای Disproven یا Maybe باشد، بهتر است با اجرای الگوریتمهایی سعی در تحلیل حلقه داشته باشیم.

در پیادهسازی رابط کاربری گرافیکی، ظاهر برنامه متناسب با سیستم عامل کاربر است. برای ویرایش گرهای ساده، با تعریف ساختار نحوی زبان و تنظیمات صفحه ۴۶ از ۸۷

اولیه، از کتابخانه RSyntaxTextArea استفاده شده است که تجربه یک محیط کاربرپسند و حرفهای را در اختیار کاربر می گذارد.

شایان ذکر است که به طور کلی، کدهای نوشته شده به زبان WL به زبانهای سطح بالا و رایج تری مثل C قابل تبدیل است. در این نرمافزار نیز می توان کد ورودی و کدهای بازنویسی شده در هر حالت را در قالب برنامههای به زبان C نیز مشاهده کرد.

توضیحات جزئیات پیادهسازی کلاسهای مختلف نرمافزار و گزارش روند انجام کار، در فایلهای جداگانهای در پوشه پروژه موجود است. به عنوان نمونه، بخشی از کدهای نوشتهشده برای پیادهسازی در پیوست ارائه شده است.

۳.۶ ایجاد رابط کاربری گرافیکی ۳.۶

اهمیت ظاهر برنامه و صفحاتی که کاربر توسط آنها با سیستم در تعامل است، بر کسی پوشیده نیست. این اهمیت درباره نرمافزارهای مورد استفاده توسط کاربران حرفهای رایانه یا همان برنامهنویسان که کاربران اصلی این نرمافزار هستند، دوچندان می شود. چرا که طراح باید پیچیدگیها را در رابط کاربری به حداقل برساند، به نحوی که قابلیتهای برنامه کاهش نیابد. از این رو، برای طراحی رابط کاربری گرافیکی این برنامه زمان زیادی صرف شده است. ابتدا با مشورت از یکی از اساتید رشته هنر و زیبایی شناسی، طراحی کلی صفحه برنامه انجام شد. پس از آن، طرحهای مختلفی ارائه شد و به عنوان آزمایش، در اختیار تعدادی از برنامهنویسان قرار گرفت تا بازخورد آنها نسبت به رابط کاربری این برنامه سنجیده شود. در پایان، با انجام اصلاحات، رابط کاربری گرافیکی برنامه نهایی شد.

نکات زیر برای طراحی رابط کاربری این برنامه مورد استفاده قرار گرفته شده است:

- گزینهها و دکمههای موجود در صفحه باید همگون و با سبک یکسان باشند.
- در هنگام تغییر وضعیت برنامه، باید ظاهر نیز متناسب با آن تغییر یابد. یعنی برنامه متناسب با هر فعالیت، بازخورد مناسبی داشته باشد.

¹⁰⁷ Graphical User Interface

- هر گزینه باید کاملاً واضح و دارای معنای خاص باشد.
- برای همگی فعالیتها، حالتهای پیشفرض در نظر گرفته شود.
- کاربر نیازی به آموزش برای یادگیری کار با رابط کاربری نداشته باشد یا حداقل باشد.
 - اجزائی که با یکدیگر مرتبط هستند، در یک گروهبندی خاص باشند.
- از رنگها و سبکها به درستی و با توجه به گروهبندیها و معانی رنگها در ذهن کاربر با توجه به سابقه قبلی آنها استفاده شود.
 - برای گزینهها، از میانبرها و یادمان ۱۰۸ها استفاده شود.
 - برای حذف یا پاک کردن اطلاعات مهم، تأیید مجدد کاربر دریافت شود.
 - برای نمایش پیغامها از رنگهای متناسب استفاده شود.
 - به دلیل استفاده طولانی مدت کاربر از این نرمافزار، بهتر است از رنگها و چینشی استفاده شود که آلودگی بصری برای کاربر را به دنبال نداشته باشد.
- امکان تغییر ابعاد صفحه برای کاربر وجود داشته باشد و ضمناً با تغییر ابعاد پنجره برنامه، چینش اجزا در صفحه منظم باقی بماند.

در این پروژه سعی شده است تا موارد بالا تا حد امکان رعایت شوند و تجربه خوب و لذتبخشی را برای کاربر به ارمغان بیاورد. استفاده مناسب از رنگها، چینش اجزا در صفحه، ایجاد میانبرهای کاربردی و ویرایشگر کد سفارشی شده با ساختار نحوی زبان WL از جمله فعالیتهای انجام شده است.

شکل ۲۲ – نمای کلی رابط کاربری گرافیکی نرمافزار

¹⁰⁸Mnemonic

شکل ۲۳ – نمونهای از اجرای برنامه در رابط کاربری گرافیکی نرمافزار

۴.۶ راستی آزمایی و آزمون

همانطور که قبلاً ذکر شد، روش مطرح شده و الگوریتمهای بازنویسی با توجه به بیان صوری انجام شده در مقاله اصلی پروژه [۲]، از نظر صحت و شفافیت قابل اثبات است. اما راستی آزمایی و آزمون برنامه پیاده سازی شده نیز اهمیت دارد. برای این کار، با بهره گیری از آزمون دامنه یکی از مورد آزمون ابرای بررسی صحت اجرای برنامه پیاده سازی شده طراحی شد. روش آزمون دامنه یکی از روشهای پرکاربرد در آزمون نرم افزار به شمار می رود. در این روش، تعداد محدودی مورد آزمون که هر یک به عنوان نماینده ای از دسته مورد آزمونهای مشابه هستند، به عنوان ورودی به نرم افزار داده می شود و خروجی حاصل از پردازش نرم افزار بر روی داده ورودی بررسی و راستی آزمایی می شود. در این پروژه نیز با همین روش، تعداد نزدیک به سی مورد آزمون بررسی شد که هر یک شامل ساختار متفاوتی از عناصر موجود در زبان WL می باشند. با توجه به این که در حوزه زبان های برنامه سازی، استقرا از

¹⁰⁹ Domain Testing

¹¹⁰ Test Case

مرسومترین روشهای اثبات به شمار میرود، سعی شد تا با کمترین تعداد استفاده از عناصر زبان در هر برنامه، نرمافزار مورد آزمون و بررسی قرار گیرد و برنامههای مشابه یا دارای ساختار مشابه با برنامههای موردآزمون، به استقرا آزمونشده بگیریم. از طرفی، در طراحی مواردآزمون سعی شد تا انواع مختلف جریانهای صریح و ضمنی مدنظر در خط مشی عدمتداخل در هر دو حالت حساس و غیرحساس به پیشرفت مورد بررسی قرار بگیرد.

در ادامه نمونههایی از موارد آزمون و برنامههای بازنویسی شده آنها آورده شده است.

شکل ۲۴ – (الف) برنامه مورد آزمون با نام 02basic.wl (ب) گراف وابستگی برنامه مربوط به برنامه الف (پ) برنامه بازنویسی شده برای حالت غیرحساس به پیشرفت مربوط به برنامه الف

در شکل ۲۴، موردآزمونی مشاهده می شود که گرچه به صورت صریح مقدار سطح بالا در متغیر سطح پایین 11 قرار می گیرد، اما به دلیل این که دستور 0utL 11 بعد از آن دستور نیامده است، پس خط مشی را نقض نمی کند. به همین دلیل، برنامه بازنویسی شده مربوط به آن نیز تفاوتی با برنامه اولیه ندارد.

شکل ۲۵– (الف) برنامه مورد آزمون با نام 03assign.wl (ب) گراف وابستگی برنامه مربوط به برنامه الف ابزنویسی شده برای حالت غیرحساس به پیشرفت مربوط به برنامه الف مفحه 03 از 03 مفحه 03 از 03

در شکل ۲۵، به صورت صریح جریانی وجود دارد که عدم تداخل را نقض می کند. به همین دلیل و با توجه به این که شرطی برای وقوع مسیر وجود ندارد، پس هیچگاه دستور outL 11 اجرا نخواهد شد.

```
program;
inH h1, h2;
inL 11, 12;
if 11 > 0 then
       11 = 11 - 1;
       if 12 == 10 then
               if h2 > 9 then
                       11 = 11 + 2;
                       outL 11
                else
                       12 = 2
                endif
       else
               12 = h1
       endif
endif;
11 = 2;
outL 11;
outL 12
```

```
program;
inH h1, h2;
inL 11, 12;
if 11 > 0 then
        11 = 11 - 1;
        if 12 == 10 then
                 if h2 > 9 then
                        11 = 11 + 2;
                         if (12 == 10) and (11 > 0)
                and (h2 > 9) and (l2 == 10) and (l1 >
                0) ) or ((12 == 10)) and (11 > 0)) then
                                  NOP
                         else
                                  outL 11
                         endif
                 else
                        12 = 2
                endif
        else
                12 = h1
        endif
endif;
11 = 2;
outL 11;
if ((12 == 10) and (11 > 0)) or (!(12 == 10) and (11 >
0)) then
        NOP
else
        outL 12
endif
```


. شکل ۲۶– (الف) برنامه مورد آزمون با نام 05if2.wl (ب) برنامه بازنویسی شده برای حالت غیر حساس به پیشرفت مربوط به برنامه الف (پ) گراف وابستگی برنامه مربوط به برنامه الف صفحه ۵۱ از ۸۷

در شکل ۲۶، برنامه مورد آزمونی است که برای بررسی دستورات if و else طراحی شده است. مسیرهای مختلفی در این برنامه وجود دارد که ممکن است باعث نقض عدم تداخل شود. در ادامه جدول خروجیهای برنامههای به زبان C متناظر با برنامههای الف و ب برای مقادیر ورودی گوناگون آمده است که صحت برنامه بازنویسی شده را نشان می دهد.

11	12	h1	h2	outL l1 (line# 9)	outL l1 (line# 18)	outL l2 (line# 19)	Violation
0	0	1	1	-	2	0	™ T.
0	0	1	0	-	2	0	No
1	1	1	0	-	2	1	*7
1	1	0	0	-	2	0	Yes
5	10	1	10	6	2	10	*7
5	10	1	9	-	2	2	Yes

 ${f C}$ جدول ${f I}$ – نمونه ورودیها و خروجیها برای برنامه متناظر با ${f 05if2.wl}$ به زبان

11	12	h1	h2	outL l1 (line# 9)	outL l1 (line# 18)	outL l2 (line# 19)	Violation	
0	0	1	1	-	2	1	***	
0	0	1	0	-	2	-	No	
1	1	1	0	-	2	-	• •	
1	1	0	0	-	2	-	No	
5	10	1	10	-	2	-	•	
5	10	1	9	-	2	-	No	

جدول ۲ - نمونه ورودیها و خروجیها برای برنامه بازنویسی شده در حالت غیرحساس به پیشرفت متناظر با 05if2.wl به زبان که همان طور که در جدول ۲ مشاهده می شود، برنامه بازنویسی شده برخلاف برنامه اولیه، به ازای ورودی های مختلف سطح بالا تغییری نمی کند و موارد ناقض عدم تداخل اصلاح شده است.

```
program;
inL 11, 12;
inH h1, h2;
if !(11 == 0) then
       11 = 2 + 4 + 11;
       outL 11;
       if h1 > 6 then
               11 = 6;
               outL 11;
               outH h1
        endif
else
       if 12 > 3 then
               11 = 11 + 1;
               outL 11;
               outH h2
        else
               12 = 2 + h2;
               outL 12;
               outL 11
        endif
endif;
outL 11;
outL 12
```

```
program;
inL 11, 12;
inH h1, h2;
if !((11 == 0)) then
         11 = 2 + 4 + 11;
          outL 11;
          if h1 > 6 then
                   11 = 6:
                    if ((!((11 == 0)))) or ((!((11 == 0)))) and (h1 > 6)
                    and (!((11 == 0)))) then
                              NOP
                    else
                              outL 11
                    endif;
                    outH h1
          endif
else
          if 12 > 3 then
                    11 = 11 + 1;
                   outL 11;
                    outH h2
          else
                    12 = 2 + h2;
                    if (!(12 > 3)) and !(!((11 == 0)))) then
                               outL BOT
                               outL 12
                    endif;
          outL 11
          endif
endif;
if ((!((11 == 0)))) then
          NOP
else
          outL 11
endif;
if ( !(12 > 3) and !(!((11 == 0)))) then
          outL BOT
else
          outL 12
endif
```


شکل ۲۷- (الف) برنامه موردآزمون با نام 07ifelseadvanced.wl (ب) برنامه بازنویسی شده برای حالت غیرحساس به پیشرفت مربوط به برنامه الف (پ) گراف وابستگی برنامه مربوط به برنامه الف

در شکل ۲۷، موردآزمون دیگری بررسی میشود که حالت پیشرفته تری برای ساختار if و else و در شکل ۲۷، موردآزمون در این موردآزمون خروجیهای مختلف سطح پایین و بالا در نقاط متفاوتی از برنامه دیده می شود. در ادامه به تحلیل این موردآزمون خواهیم پرداخت.

11	12	h1	h2	outL 11 (line# 6)	outL 11 (line# 9)	outH h1 (line# 10)	outL 11 (line# 15)	outH h2 (line# 16)	outL 12 (line# 19)	outL 11 (line# 20)	outL 11 (line# 23)	outL 12 (line# 24)	Violation
0	4	0	0	-	-	-	1	0	-	-	1	4	Ma
0	4	1	1	-	-	-	1	1	-	-	1	4	No
0	2	0	0	-	-	-	-	-	2	0	0	2	Vac
0	2	1	1	-	-	-	-	-	3	0	0	3	Yes
1	0	7	1	7	6	7	-	-	-	-	6	0	Vac
1	0	6	1	7	-	-	-	-	-	-	7	0	Yes

C به زبان 07ifelseadvanced.wl به دول 07 به دول 07

11	12	h1	h2	outL 11 (line# 6)	outL 11 (line# 9)	outH h1 (line# 10)	outL 11 (line# 15)	outH h2 (line# 16)	outL 12 (line# 19)	outL 11 (line# 20)	outL 11 (line# 23)	outL 12 (line# 24)	Violation
0	4	0	0	-	-	-	1	0	-	-	-	4	Ma
0	4	1	1	-	-	-	1	1	-	-	-	4	No
0	2	0	0	-	-	-	-	-	BOT	0	0	BOT	Ma
0	2	1	1	-	-	-	-	-	BOT	0	0	BOT	No
1	0	7	1	7	-	7	-	-	-	-	-	0	Ma
1	0	6	1	7	-	-	-	-	-	-	-	0	No

جدول ۴ - نمونه ورودیها و خروجیها برای برنامه بازنویسی شده در حالت غیر حساس به پیشرفت متناظر با 07ifelseadvanced.wl به زبان

در موردآزمون شکل ۲۷، با توجه به وجود جریانهای صریح و ضمنی، برنامه بازنویسی شده است. همانطور که در جدول ۴ مشاهده میشود، موارد ناقض عدم تداخل برطرف شده است. باید دقت داشت که در این موردآزمون، خروجیهای سطح بالایی هم وجود دارند که تفاوت مقادیر خروجی آنها خط مشی مورد نظر را به مخاطره نمیاندازد.

تا اینجا موارد آزمون نمونه مطرح شده، به دلیل عدم وجود ساختار حلقه در آنها، در حالت حساس به پیشرفت همان برنامه بازنویسی شده در حالت غیرحساس به پیشرفت را خواهند داشت. در ادامه موارد آزمون نمونه مربوط به حالت حساس به پیشرفت آمده است.

```
program;
                                                      program;
program;
                          inL 11;
                                                      inL 11;
inL 11;
                          inH h1, h2;
                                                      inH h1, h2;
                          while 11 > 0 do
                                                      if h2 < 0 then
inH h1, h2;
                                  11 = h2 + 11
                                                              while 11 > 0 do
                          done;
                                                                      11 = h2 + 11
while 11 > 0 do
                          while h1 > 11 do
                                                              done
        11 = h2 + 11
                                  11 = 11 + 3;
                                                      endif;
                                  if TRUE then
                                                      while h1 > 11 do
done;
                                           NOP
                                                              11 = 11 + 3;
while h1 > 11 do
                                  else
                                                              if TRUE then
                                           outL 11
                                                                      NOP
        11 = 11 + 3;
                                  endif
                                                              else
        outL 11
                          done;
                                                                      outL 11
                          if TRUE then
                                                              endif
done;
                                  NOP
                                                      done;
                           else
                                                       if TRUE then
outL 11;
                                  outL 11
                                                              NOP
outH h1
                          endif;
                                                      else
                          outH h1
                                                              outL 11
                                                      endif;
                                                      outH h1
```


شکل ۲۸ – (الف) برنامه مورد آزمون با نام 11whilewhileconcat.wl (ب) برنامه بازنویسی شده برای حالت غیرحساس به پیشرفت مربوط به برنامه الف (ت) گراف وابستگی برنامه مربوط به برنامه الف الف (ت) گراف وابستگی برنامه مربوط به برنامه الف

11	h1	h2	outL l1 (line# 9)	outL l1 (line# 11)	outH h1 (line# 12)	Violation
0	1	0	3	3	1	Yes
0	5	1	3,6	6	5	res
1	0	-2	2	2	0	Vac
1	5	-2	2,5	5	5	Yes
1	1	0		V 7		
1	1	-2	2	2	1	Yes

C بنان السانه ورودیها و خروجیها برای برنامه متناظر با 11whilewhileconcat.wl به زبان 1

11	h1	h2	outL l1 (line# 9)	outL l1 (line# 11)	outH h1 (line# 12)	Violation
0	1	0	-	-	1	No
0	5	1	-	-	5	No
1	0	-2	-	-	0	No
1	5	-2	-	-	5	No
1	1	0		NI.		
1	1	-2	-	-	1	No

جدول ۶ – نمونه ورودیها و خروجیها برای برنامه بازنویسی شده در حالت غیرحساس به پیشرفت متناظر با 11whilewhileconcat.wl به زبان C

11	h1	h2	outL l1 (line# 9)	outL l1 (line# 11)	outH h1 (line# 12)	Violation
0	1	0	-	-	1	Ma
0	5	1	-	-	5	No
1	0	-2	-	-	0	No
1	5	-2	1	-	5	No
1	1	0	-	-	1	Ma
1	1	-2	-	-	1	No

جدول ۷ - نمونه ورودیها و خروجیها برای برنامه بازنویسی شده در حالت حساس به پیشرفت متناظر با 11whilewhileconcat.wi به زبان C

همان طور که در جداول فوق آمده است، با بازنویسی برنامه در حالت غیرحساس به پیشرفت، برنامه بازنویسی شده در این حالت امن تشخیص داده می شود؛ زیرا مشاهده گر سطح پایین توانایی مشاهده وضعیت پیشرفت برنامه را ندارد، پس نمی تواند تمایزی بین حالت واگرایی یا خاتمه قائل شود. اما واگرا شدن برنامه برای مقدار ورودی ۱ برای متغیر سطح پایین 11 و مقادیر ورودی متفاوت برای متغیر سطح بالای ۱۵ باعث می شود تا مشاهده گر سطح پایین با درک این تفاوت، اطلاعاتی را نسبت به

اطلاعات سطح بالا به دست آورد که در برنامه بازنویسی شده در حالت حساس به پیشرفت، از این امکان جلوگیری می شود.

در موردآزمون قبلی، دو ساختار حلقه در کنار یکدیگر بررسی شد. در موردآزمون بعدی، دو ساختار حلقه تو در تو را مورد ارزیابی قرار میدهیم.

```
program;
                                                               program;
program;
                                                               inH h1, h2;
                                inH h1, h2;
                                inL 11;
                                                               inL 11;
inH h1, h2;
                                while h1 > 11 do
                                                               while h1 > 11 do
inL 11;
                                                                  11 = 11 + 1;
                                   11 = 11 + 1;
                                   if TRUE then
                                                                  if TRUE then
while h1 > 11 do
                                         NOP
                                                                       NOP
                                   else
                                                                  else
        11 = 11 + 1;
                                         outL 11
                                                                       outL 11
                                   endif;
                                                                  endif;
        outL 11;
                                                                  if h2 < 0 then
                                   while h2 < 0 do
        while h2 < 0 do
                                        h2 = h2 - 1;
                                                                       h2 = h2 - 1;
                                        if TRUE then
                                                                        if TRUE then
            h2 = h2 - 1;
                                                 NOP
                                                                                NOP
                                         else
                                                                       else
            outL 11;
                                                 outL 11
                                                                                outL 11
            11 = h2
                                        endif;
                                                                       endif;
                                        11 = h2
                                                                       11 = h2
        done
                                   done
                                                                  endif
                                done;
                                                               done;
done;
                                if TRUE then
                                                               if TRUE then
                                   NOP
                                                                  NOP
outL 11
                                                               else
                                else
                                   outL 11
                                                                  outL 11
                                endif
                                                               endif
        (الف)
                                         (ب)
                                                                              (پ)
```


شکل ۲۹ – (الف) برنامه موردآزمون با نام 17whilewhilenested.wl (ب) برنامه بازنویسی شده برای حالت غیر حساس به پیشرفت مربوط به برنامه الف (پ) برنامه بازنویسی شده برای حالت حساس به پیشرفت مربوط به برنامه الف (ت) گراف وابستگی برنامه مربوط به برنامه الف صفحه ۵۷ | ۸۷

11	h1	h2	outL l1 (line# 6)	outL l1 (line# 9)	outL l1 (line# 13)	Violation
1	2	0	2	-	2	Voc
1	0	0	-	-	1	Yes
1	3	0	2,3	-	3	Voc
1	3	-1	2	div	Yes	
0	4	2	1,2,3,4	-	4	1 7
0	4	-5	1	div	erge	Yes

C به زبان 17whilewhilenested.wl جدول 17 به جدول 17

11	h1	h2	outL l1 (line# 6)	outL l1 (line# 9)	outL l1 (line# 13)	Violation			
1	2	0	-	-	-	Ma			
1	0	0	-	-	-	No			
1	3	0	-	-	-	No			
1	3	-1		diverge					
0	4	2	1	1	-	No			
0	4	-5		diverge		No			

جدول ۹ - نمونه ورودیها و خروجیها برای برنامه بازنویسی شده در حالت غیرحساس به پیشرفت متناظر با 17whilewhilenested.wl به زبان C

11	h1	h2	outL l1 (line# 6)	outL l1 (line# 9)	outL l1 (line# 13)	Violation
1	2	0	-	-	-	Ma
1	0	0	-	-	-	No
1	3	0	-	-	-	Ma
1	3	-1	-	-	-	No
0	4	2	-	-	-	Ma
0	4	-5	-	-	-	No

جدول ۱۰ - نمونه ورودیها و خروجیها برای برنامه بازنویسی شده در حالت حساس به پیشرفت متناظر با 17whilewhilenested.wl به زبان

همانطور که مشاهده می شود، در این مورد آزمون موارد ناقض عدم تداخل بسیاری وجود دارد. با بازنویسی برنامه در حالت غیرحساس به پیشرفت، به دلیل تأثیر مقادیر سطح بالا در متغیر 11 در سراسر برنامه، عملاً دستورات نمایش خروجی 11 با دستور NOP جایگزین شدهاند. باید توجه داشت که حتی در این حالت هم ممکن است در حالت حساس به پیشرفت، خط مشی برآورده نشود. در این نمونه، به دلیل این که حلقه درونی همواره واگراست و با توجه به الگوریتم بازنویسی در این حالت حساس به پیشرفت،

دستور while با دستور if جایگزین شده است که باعث می شود برنامه همواره خاتمه یابد. به این ترتیب، برنامه های بازنویسی شده نتایج موجود در جدول را منجر می شوند.

لازم به یادآوری است که موارد آزمون دیگری برای این پروژه در نظر گرفته شده است که به ذکر تعدادی از آنها بسنده شده است. در طراحی این موارد آزمون سعی شده است تا حالتهای ممکن در هر دو حالت حساس و غیرحساس به پیشرفت با توجه به ساختارهای مختلف زبان WL در نظر گرفته شود. همه نتایج اجراهای موجود در جداول بالا، از طریق اجرای برنامههای به زبان C به دست آمده است که متناظر با هر یک از برنامهها تولید می شود.

٧

فصل هفتم جمعبندی و کارهای آینده

جمع بندی و کارهای آینده

در طول فصول گذشته، ابتدا درباره امنیت و خط مشی امنیتی صحبت شد. سپس خط مشی امنیتی عدم تداخل را به عنوان یکی از خطوط مشی که خاصیت نیستند، معرفی کردیم و اشارهای به محدودیتهایی که این گونه خط مشیها برای اعمال دارند، شد. در ادامه انواع مختلف عدم تداخل؛ یعنی حالت غیرحساس به پیشرفت و حساس به پیشرفت را مطرح کردیم و مشاهده شد که برای اعمال این خط مشی، راههای مختلفی وجود دارد که یکی از بهترین مکانیزمها، روش بازنویسی برنامه است. در حالت غیرحساس به پیشرفت، مسیرهایی اهمیت داشت که از مقادیر ورودی سطح بالا آغاز و به دستورات خروجی مقادیر سطح پایین ختم میشدند. در حالت حساس به پیشرفت، وضعیت پیشرفت برنامه نیز ممکن بود اطلاعات سطح بالایی را به مشاهده گر سطح پایین منتقل کند. از این رو، نگاه ویژهای به ساختار ایجاد واگرایی در برنامهها داشتیم. سپس زبان برنامهنویسی مدل ارائهشده در مقاله اصلی پروژه یا همان WL شرح داده شد. این زبان شامل ساختارهای مختلف و مرسوم زبانهای برنامهنویسی بود که عنصر ایجاد حلقه در آن، ساختار هاشاله است. با توجه به تعاریف ارائه شده، الگوریتمهای بازنویسی برای حالتهای غیرحساس و حساس به پیشرفت بیان شد و همانطور که قبلاً الگوریتمهای بازنویسی، در مقاله اصلی پروژه آمده است. در ادامه به نحوه پیادهسازی و ابزارهای مورد استفاده پرداخته شد و با ارائه مورد-آزمونهای کاربردی، صحت برنامه پیادهسازی شده را نشان دادیم.

اما ایده این پروژه یکی از گامهای ابتدایی و رو به جلویی برای اعمال خط مشیهای امنیتی با حفظ شفافیت است. می توان فکر اصلی استفاده شده در این پروژه را برای زبانهای برنامهنویسی پیشرفته تر و رایج تر که ساختارهای زبانی پیچیده تری دارند به کار بست. زبانهایی که از ساختارهای کلاس، شی، چندنخی و سایر ویژگیهای نوین زبانهای برنامهنویسی امروزی پشتیبانی می کنند، می توانند به عنوان آینده این پروژه قلمداد کرد. در پیاده سازی نیز می توان با بهینه سازی کد برنامه، به سرعت و استفاده کمتر از حافظه کمک کرد. تابع تحلیل گر حلقه نیز به تنهایی می تواند موضوع پژوهش جذابی برای علاقمندان این حوزه باشد. از حیث پژوهشهای نظری نیز می توان به دسته بندی خط مشیهای قابل اعمال توسط روش بازنویسی به عنوان یکی از مسائل روز نام برد.

منابع و مراجع

- [1] F.B. Schneider, J.G. Morrisett, and R. Harper, "A Language-Based Approach to Security, in Informatics 10 Years Back. 10 Years Ahead", Springer-Verlag Berlin, Heidelberg, 2001, pp. 86-101.
- [Y] A.Lamei and M. S. Fallah, "Rewriting-Based Enforcement of Noninterference in Programs with Observable Intermediate Values", To appear in the Journal of Universal Computer Science, Vol. XX, No. XX, Month 20XX, 1-24.
- [γ] J.A. Goguen and J. Meseguer, Security policies and security models, in Proceedings of IEEE Symposium on Security and Privacy, Vol. 12, IEEE, 1982, pp. 11-18.
- [f] A. Russo and A. Sabelfeld, Dynamic vs. Static Flow-Sensitive Security Analysis, in Proceedings of the 2010 23rd IEEE Computer Security Foundations Symposium, CSF '10, IEEE, 2010, pp. 186-199.
- J. Ferrante, K.J. Ottenstein, and J.D. Warren, The program dependence graph and its use in optimization, ACM Transactions on Programing Languages and Systems 9 (1987), pp. 319-349.
- [۶] H. Mantel and H. Sudbrock, Types vs. pdgs in information ow analysis, in Logic-Based Program Synthesis and Transformation, Springer, 2013, pp. 106-121
- [y] "JFlex", Available: http://jflex.de/ [Sep. 10, 2015].
- [A] "Bison", Available: https://www.gnu.org/software/bison/ [Sep. 10, 2015].
- [9] K. M. Anderson, "Lecture 15: Control Dependence Graphs CSCI 5828 Slides", Spring 2000, Available: http://www.cs.colorado.edu/~kena/classes/5828/s00/lectures/lecture15.pdf [Jul. 25 2015].
- [1.] T. Teitelbaum, "Introduction to Compilers, Lecture 24: Control Flow Graphs Slides", 2008. http://www.cs.cornell.edu/courses/cs412/2008sp/lectures/lec24.pdf [Jul. 25 2015].
- [11] "The Program Dependence Graph: Control Flow and Control Dependences S502 Compilers Slides". Available: http://pages.cs.wisc.edu/~fischer/cs701.f08/lectures/Lecture19.4up.pdf [Jul. 25 2015].
- [17] S. Moore, A. Askarov, and S. Chong, Precise enforcement of progress-sensitive security, in Proceedings of the 2012 ACM Conference on Computer and Communications Security, CCS '12, ACM, 2012, pp. 881-893.
- [\pi] E. R. Gansner and S. C. North. "An Open Graph Visualization and Its Application to Software Engineering". Software Practice and Experience Journal, vol. 30, No. 11, pp. 1203-1233, 2000. Available: www.graphviz.org [Aug. 12 2015].
- [\f\] "AProVE", Available: http://aprove.informatik.rwth-aachen.de/index.asp?subform=home.html [Aug. 25 2015].
- [\d] "RSyntaxTextArea", Available: http://bobbylight.github.io/RSyntaxTextArea/ [Sep. 04 2015].

پیوست

قسمتهایی از کدهای پیادهسازی پروژه

```
LE_KW = (<=)
 برای مشاهده همه فایلهای مرتبط با پروژه، میتوانید از آدرس
                                                EQ_KW =(==)
 https://github.com/smahmadpanah/BScProject
                                                GT_KW = [>]
                استفاده كنيد.
                                                GE_KW = (>=)
lexer.l:
                                                LPAR_KW = [(]
(این فایل ورودی ابزار jflex است. پس از تولید فایل
                                                RPAR_KW = [)]
     Yylex.java، تغییراتی در آن فایل نیز اعمال شده است.)
                                                INTEGER_NUMBER
package wlrewriter;
                                                ="0"|({NONZERO_DIGIT}{DIGIT}*)
import java.lang.*;
                                                BOOL_CONSTANT
%%
                                                ="true"|"false"|"TRUE"|"FALSE"
%byaccj
                                                IDENTIFIER
                                                ={LETTER}+|{LETTER}({LETTER}|{DIGIT})
LETTER = [a-zA-Z]
DIGIT = [0-9]
NONZERO_DIGIT = [1-9]
                                                PROGRAM_KW = (program)
                                                %%
AND_KW = (and)
                                                {LineTerminator} {yyline++;}
OR_KW = (or)
NEG_KW = [!]
                                                {PROGRAM_KW} {
                                                        return YYParser.PROGRAM_KW;
ASSIGN_KW = [=]
                                                }
IF_KW = (if)
                                                {AND_KW} {
THEN KW = (then)
                                                        return YYParser.AND_KW;
ELSE_KW = (else)
                                                }
ENDIF_KW = (endif)
                                                {OR_KW} {
                                                       return YYParser.OR_KW;
WHILE_KW = (while)
                                                }
DO_KW = (do)
                                                {NEG_KW} {
DONE_KW = (done)
                                                       return YYParser.NEG_KW;
                                                }
NOP KW = (NOP)
                                                {ASSIGN_KW} {
BOT_KW = (BOT)
                                                        return YYParser.ASSIGN_KW;
                                                }
INL_KW = (inL)
INH_KW = (inH)
                                                {IF_KW} {
OUTL_KW = (outL)
                                                        return YYParser.IF_KW;
OUTH_KW = (outH)
                                                {THEN_KW} {
PLUS_KW = [+]
                                                        return YYParser.THEN_KW;
MINUS_KW =[-]
                                                {ELSE_KW} {
LT_KW = [<]
                                                        return YYParser.ELSE_KW;
```

```
{ENDIF_KW} {
                                               {EQ_KW} {
       return YYParser.ENDIF_KW;
                                                       return YYParser.EQ_KW;
                                               {GT_KW} {
{WHILE_KW} {
                                                       return YYParser.GT_KW;
       return YYParser.WHILE_KW;
                                               {GE_KW} {
}
{DO_KW} {
                                                      return YYParser.GE_KW;
     return YYParser.DO_KW;
}
{DONE_KW} {
                                               {INTEGER_NUMBER} {
      return YYParser.DONE_KW;
                                                       YYParser.stmt=yytext();
                                                       return YYParser.INTEGER_NUMBER;
}
{NOP_KW} {
                                               {BOOL_CONSTANT} {
       return YYParser.NOP_KW;
                                                  String s=yytext();
                                                       YYParser.stmt=yytext();
                                                       return YYParser.BOOL_CONSTANT;
{BOT_KW} {
      return YYParser.BOT_KW;
                                               }
}
                                               {IDENTIFIER} {
{INL_KW} {
                                                       YYParser.stmt=yytext();
      return YYParser.INL KW;
                                                       return YYParser.IDENTIFIER;
                                                }
{INH_KW} {
      return YYParser.INH_KW;
                                               {LPAR_KW} {
                                                       return YYParser.LPAR_KW;
{OUTL_KW} {
     return YYParser.OUTL_KW;
                                               {RPAR_KW} {
}
{OUTH_KW} {
                                                       return YYParser.RPAR_KW;
      return YYParser.OUTH_KW;
                                               }
}
                                               "," {
{PLUS_KW} {
                                                       return ',';
       return YYParser.PLUS_KW;
{MINUS_KW} {
                                                       return ';';
       return YYParser.MINUS_KW;
}
                                               . {
{LT_KW} {
       return YYParser.LT_KW;
{LE_KW} {
       return YYParser.LE_KW;
```

Parser.y:

```
(این فایل ورودی ابزار bison است. پس از تولید فایل
                                                                   public ArrayList<Variable>
  YYParser.java، تغییراتی در آن فایل نیز اعمال شده است.)
                                                          symbolTableOfVariables = new
% {
                                                          ArrayList<Variable>(); //static bood ghablan
package wlrewriter;
import java.io.*;
                                                           // public static void main(String args[]) throws
import java.lang.*;
                                                          IOException, FileNotFoundException {
import java.util.*;
                                                                           public static void
import java.awt.Color;
                                                          mainMethod(String sFileName, int selector) {
import java.util.regex.Matcher;
                                                              YYParser yyparser;
import java.util.regex.Pattern;
                                                              final Yylex lexer;
%}
                                                                            selectorPDGorPINIorPSNI =
                                                          selector;
%type <eval> program exp c clist varlist b n x M N
                                                          //
                                                               System.out.println("Enter the source code file
%token <eval> PROGRAM_KW AND_KW OR_KW
                                                          path:");
NEG_KW LPAR_KW RPAR_KW ASSIGN_KW
                                                               Scanner sc = new Scanner(System.in);
                                                          //
IF_KW THEN_KW ELSE_KW ENDIF_KW
                                                               sourceCodeFileName = sc.next();
                                                          //
WHILE KW DO KW DONE KW NOP KW
                                                              sourceCodeFileName = sFileName;
BOT_KW INL_KW INH_KW OUTL_KW
                                                               String sourceCodeFileName = "input-while.wl";
OUTH_KW PLUS_KW MINUS_KW LT_KW
LE_KW EQ_KW GT_KW GE_KW
                                                              try {
%token <eval> INTEGER_NUMBER
                                                                writer = new PrintStream(new
%token <eval> BOOL_CONSTANT
                                                          File("reduction.txt"));
%token <eval> IDENTIFIER
                                                              } catch (FileNotFoundException ex) {
                                                                System.out.println("File reduction not found.");
%code {
                                                                   GUI.terminal.appendError("File reduction
/*************
                                                          not found.");
MAIN
***************
static PrintStream writer;
                                                              Yylex yylexTemp = null;
  static String stmt;
  private int nodeCounter = 0;
                                                                yylexTemp = new Yylex(new
  private static String sourceCodeFileName;
                                                          InputStreamReader(new
                                                          FileInputStream(sourceCodeFileName)));
        private String cSourceCodeOfInput="";
                                                              } catch (Exception ex) {
        public String cSourceCodeForPSNI="";
                                                                System.err.println("Source code file not
                                                          found!");
        private int while ID = 0;
                                                                   GUI.terminal.appendError("Source code file
                                                          not found!");
        public int controlFlag = 0;
                                                                System.exit(0);
        public static int selectorPDGorPINIorPSNI;
//0: pdg | 1: pini | 2:psni
                                                               lexer = yylexTemp;
```

```
yyparser = new YYParser(new Lexer() {
                                                                 public static String getSourceCodeFileName() {
                                                                   return sourceCodeFileName;
       @Override
       public int yylex() {
         int yyl_return = -1;
         try {
            yyl_return = lexer.yylex();
         } catch (IOException e) {
            System.err.println("IO error: " + e);
                                                               }
         GUI.terminal.appendError("IO error: " + e);
                                                               %left AND_KW OR_KW
         return yyl_return;
                                                               %nonassoc q
                                                               %right ASSIGN_KW
                                                               %left EQ_KW
       @Override
                                                               %left LT_KW GT_KW
       public void yyerror(String error) {
                                                               %left LE_KW GE_KW
         //System.err.println ("Error: " + error);
                                                               %left PLUS_KW MINUS_KW
         System.err.println("**Error: Line " +
                                                               %left THEN_KW
lexer.getYyline() + " near token "" + lexer.yytext() + ""
                                                               %nonassoc p
--> Message: " + error + " **");
                                                               %nonassoc ELSE_KW
         GUI.terminal.append("**Error: Line " +
lexer.getYyline() + " near token "" + lexer.yytext() + ""
                                                               %%
--> Message: " + error + " **", Color.orange);
         writer.print("**Error: Line " +
                                                               program: PROGRAM_KW ';' clist
lexer.getYyline() + " near token "" + lexer.yytext() + ""
--> Message: " + error + " **");
                                                                                  writer.print("\t program ->
                                                               PROGRAM_KW ';' clist \n");
                                                                                  writer.print("###Hooray! - Your
       }
                                                               program is syntactically correct### \n");
                                                                                  System.out.println("###Hooray! -
       @Override
                                                               Your program is syntactically correct###");
       public Object getLVal() {
                                                                                  GUI.terminal.append("Your
         return null;
                                                               program is syntactically correct");
                                                                                  $ = new eval();
    });
                                                                                  ((eval)$$).stmt += "program; " +
                   try {
                                                               ((eval)$3).stmt;
       yyparser.parse();
                                                                                  ((eval)$$).cSourceCode +=
     } catch (IOException ex) {
                                                               "#include <stdio.h> \n \n#define TRUE 1 \n#define
       System.out.println("parse method is wrong.");
                                                               true 1 \n"
         GUI.terminal.appendError("parse method is
                                                                                                     + "#define
wrong.");
                                                               FALSE 0 \n#define false 0 \n\n\n"
    writer.close();
                                                                                                     +"int main() {
                                                               " + ((eval)$3).cSourceCode + "return 0;}";
```

```
((eval)\$\$).node.addToVariablesOfNode(varv
         //System.out.print(((eval)$$).cSourceCode);
                                                             ar);
                                                                                break;
                  cSourceCodeForPSNI =
((eval)$$).cSourceCode;
                                                                       }
                  //omit WhileIDs
                                                                                                            }
    String pattern = "~WhileID[0-9]+~";
    Pattern r = Pattern.compile(pattern);
    Matcher m = r.matcher(((eval)$$).cSourceCode);
    cSourceCodeOfInput = m.replaceAll("");
                  pattern = "~ENDWhileID[0-9]+~";
    r = Pattern.compile(pattern);
                                                                                ((eval)$$).list = new
    m = r.matcher(cSourceCodeOfInput);
                                                             MyLinkedList(((eval)$$).node);
    cSourceCodeOfInput = m.replaceAll("");
                                                                       ((eval)$$).list.merge(((eval)$3).list);
         //System.out.println("\n\n******\n\n" +
                                                                                ((eval)$$).list.merge(new
cSourceCodeOfInput);
                                                             MyLinkedList(new Node(nodeCounter++, "STOP")));
                  //*********WE CAN USE
cSourceCodeOfInput TO MAKE A .c FILE FOR
COMPILE IT IN C LANGUAGE.
                                                                                if(controlFlag==2){
                                                                                try{
                                                                                         PrintStream\ writer3 =
                  writer.print(((eval)$$).stmt+ "\n");
                                                             new PrintStream(new File(sourceCodeFileName+"-
                                                             PSNI.c"));
         //((eval)$$).variables.addAll(((eval)$3).varia
                                                                       writer3.print(cSourceCodeOfInput);
bles);
                                                                                catch (Exception e){
                  ((eval)$$).node = new
                                                                       System.out.println("ERROR in FILE.");
Node(nodeCounter++, "START");
                                                                       GUI.terminal.appendError("ERROR in
         //System.out.println(((eval)$3).nodeIdAndSt
                                                             FILE.");
mt);
                  ((eval)$$).nodeIdAndStmt += "#"
+ ((eval)\$\$).node.getNodeID() + ":" + "program; \n";
                                                                                if(controlFlag==1){
                  ((eval)$$).nodeIdAndStmt +=
                                                                                psni.setPSNICFG(((eval)$$).list);
((eval)$3).nodeIdAndStmt;
                                                                                try{
                                                                                         PrintStream writer1 =
         ((eval)$$).node.setNodeIdAndStmt(((eval)$$
                                                             new PrintStream(new File(sourceCodeFileName+"-
).nodeIdAndStmt);
                                                             PINI.c"));
                  /*for(String str:
((eval)$$).variables){
                                                                       writer1.print(cSourceCodeOfInput);
         for(Variable varvar:
                                                                                catch (Exception e){
symbolTableOfVariables){
                                                                       System.out.println("ERROR in FILE.");
         if(str.equals(varvar.name)){
                                                                       GUI.terminal.appendError("ERROR in
                                                             FILE.");
```

```
((eval)$$).nodeIdAndStmt +=
                                                                ((eval)$1).nodeIdAndStmt;
                   if(controlFlag==0){
                   System.out.println("Control Flow
                                                                          //((eval)$$).variables.addAll(((eval)$1).varia
Graph is created.");
                                                                bles);
                   GUI.terminal.append("Control
Flow Graph is created.");
                                                                                   ((eval)$).list = ((eval)$1).list;
                   try{
                                                                          };
                             PrintStream writer2 =
                                                                          | clist ';' M c
new PrintStream(new
                                                                          {
File(sourceCodeFileName+".c"));
                                                                                    writer.print("\t clist -> clist; M c
                                                                n";
         writer2.print(cSourceCodeOfInput);
                                                                                   $$=new eval();
                                                                                    ((eval)$).stmt += ((eval)$1).stmt
                   catch (Exception e){
                                                                 + "; " + ((eval)$4).stmt;
                                                                                    ((eval)$$).cSourceCode +=
         System.out.println("ERROR in FILE.");
                                                                ((eval)$1).cSourceCode + "; " +
                                                                ((eval)$4).cSourceCode;
         GUI.terminal.appendError("ERROR in
                                                                                    ((eval)$$).cSourceCode += "\n";
FILE.");
                                                                                    writer.print(((eval)$$).stmt+ "\n");
                   PDGBuilder pdg = new
PDGBuilder(((eval)$$).list); //the CFG is input to build
the Forward Dominance Tree and after that, CFG and
                                                                                   ((eval)$$).nodeIdAndStmt +=
DDG that make PDG!:)
                                                                ((eval)\$1).nodeIdAndStmt + "; \n" +
                   PINIRewriter pini = null;
                                                                ((eval)$4).nodeIdAndStmt;
                   if(selectorPDGorPINIorPSNI !=
0){ // faghat namayeshe pdg ro nemikhad, ya pini ya
psni
                                                                          //((eval)$$).variables.addAll(((eval)$1).varia
                   pini = new
                                                                bles);
PINIRewriter(pdg.getPDG());
                                                                          //((eval)$$).variables.addAll(((eval)$4).varia
                   if(selectorPDGorPINIorPSNI ==
                                                                bles);
2){
     psni = new PSNIRewriter(pini);
                   }
                                                                                   ((eval)$).list = ((eval)$1).list;
         };
                                                                          ((eval)$$).list.merge(((eval)$4).list);
clist: c
                                                                          };
                   writer.print("\t clist -> c \n");
                                                                exp:b
                   $$=new eval();
                                                                          {
                   ((eval)$).stmt += ((eval)$1).stmt;
                   ((eval)$$).cSourceCode +=
((eval)$1).cSourceCode;
                                                                                    writer.print("\t exp -> b \n");
                                                                                    $$=new eval();
                                                                                    ((eval)$$).stmt += ((eval)$1).stmt;
                   writer.print(((eval)$$).stmt+ "\n");
                                                                                    ((eval)$$).cSourceCode +=
                                                                ((eval)$1).cSourceCode;
                                                                          writer.print(((eval)\$\$).stmt+ "\n");
```

```
};
                                                                                    ((eval)$).stmt += ((eval)$1).stmt
         n
                                                                 + " == " + ((eval)\$3).stmt;
                                                                                     ((eval)$$).cSourceCode +=
                   writer.print("\t exp -> n \n");
                                                                 ((eval)$1).cSourceCode + " == "+
                   $$=new eval();
                                                                 ((eval)$3).cSourceCode;
                   ((eval)$$).stmt += ((eval)$1).stmt;
                   ((eval)$$).cSourceCode +=
                                                                                    writer.print(((eval)$$).stmt+ "\n");
((eval)$1).cSourceCode;
         writer.print(((eval)\$\$).stmt+ "\n");
                                                                           ((eval)$).variables.addAll(((eval)$1).variabl
         };
                                                                 es);
         | x
                                                                           ((eval)$$).variables.addAll(((eval)$3).variabl
         {
                                                                 es);
                   writer.print("\t exp -> x \n");
                                                                           };
                   $$=new eval();
                                                                           exp LT_KW exp
                   ((eval)$$).stmt += ((eval)$1).stmt;
                   ((eval)$$).cSourceCode +=
                                                                                    writer.print("\t exp -> exp LT_KW
((eval)$1).cSourceCode;
                                                                 exp \n");
                                                                                    $$=new eval();
                                                                                     ((eval)$).stmt += ((eval)$1).stmt
         ((eval)$$).variables.add(((eval)$1).stmt);
                                                                 + " < "+ ((eval)$3).stmt;
                                                                                     ((eval)$$).cSourceCode +=
                                                                 ((eval)\$1).cSourceCode + " < " +
         writer.print(((eval)$$).stmt+ "\n");
                                                                 ((eval)$3).cSourceCode;
                   boolean check = false;
                   for(Variable v:
                                                                                     writer.print(((eval)$$).stmt+ "\n");
symbolTableOfVariables){
                                                                           ((eval)$$).variables.addAll(((eval)$1).variabl
         if(((eval)$1).stmt.equals(v.name)){
                                                                 es);
                                       check = true;
                                                                           ((eval)$$).variables.addAll(((eval)$3).variabl
                                       break;
                                                                 es);
                             }
                   }
                                                                           | exp LE_KW exp
                                                                           {
                   if(!check){
                                                                                    writer.print("\t exp -> exp LE_KW
                                                                 exp \n");
         System.err.println("undefined variable!");
                                                                                    $$=new eval();
                                                                                    ((eval)$).stmt += ((eval)$1).stmt
                                                                 + " <= "+ ((eval)$3).stmt;
         GUI.terminal.append("undefined
variable!\n\t"+((eval)$$).stmt, Color.orange);
                                                                                    ((eval)$$).cSourceCode +=
                                                                 ((eval)$1).cSourceCode + " <= "+
         System.err.println("\t"+((eval)$$).stmt);
                                                                 ((eval)$3).cSourceCode;
                             //System.exit(0);
                             return -1;
                                                                                     writer.print(((eval)$$).stmt+ "\n");
                   }
         };
                                                                           ((eval)$$).variables.addAll(((eval)$1).variabl
         | exp EQ_KW exp
                                                                 es);
                                                                           ((eval)$).variables.addAll(((eval)$3).variabl
                   writer.print("\t exp -> exp EQ_KW
                                                                 es);
\exp \langle n'' \rangle;
                   $$=new eval();
                                                                           exp GE_KW exp
```

```
((eval)$$).variables.addAll(((eval)$3).variabl
          {
                   writer.print("\t exp -> exp GE_KW
                                                                 es);
\exp \langle n'' \rangle;
                   $$=new eval();
                                                                          exp MINUS_KW exp
                   ((eval)$).stmt += ((eval)$1).stmt
+ ">= "+ ((eval)$3).stmt;
                                                                                    writer.print("\t exp -> exp
                   ((eval)$$).cSourceCode +=
                                                                 MINUS_KW exp \n");
((eval)$1).cSourceCode + " >= "+
                                                                                    $$=new eval();
((eval)$3).cSourceCode;
                                                                                    ((eval)$).stmt += ((eval)$1).stmt
                                                                 + " - "+ ((eval)$3).stmt;
                                                                                    ((eval)$$).cSourceCode +=
                   writer.print(((eval)$).stmt+ "\n");
                                                                 ((eval)$1).cSourceCode + " - "+
                                                                 ((eval)$3).cSourceCode;
          ((eval)$).variables.addAll(((eval)$1).variabl
                                                                          writer.print(((eval)$$).stmt+ "\n");
es);
          ((eval)$).variables.addAll(((eval)$3).variabl
                                                                          ((eval)$$).variables.addAll(((eval)$1).variabl
es);
                                                                 es);
          };
                                                                          ((eval)$$).variables.addAll(((eval)$3).variabl
          | exp GT_KW exp
                                                                 es);
                   writer.print("\t exp -> exp GT_KW
                                                                          exp AND_KW M exp
\exp \langle n'' \rangle;
          $$=new eval();
                                                                                    writer.print("\t exp -> exp
                   ((eval)$).stmt += ((eval)$1).stmt
                                                                 AND_KW exp \n'');
+ " > " + ((eval)$3).stmt;
                                                                                    $$=new eval();
                   ((eval)$$).cSourceCode +=
                                                                                    ((eval)$).stmt += ((eval)$1).stmt
((eval)$1).cSourceCode + " > "+
                                                                 + " and "+ ((eval)$4).stmt;
((eval)$3).cSourceCode;
                                                                                    ((eval)$$).cSourceCode +=
                                                                 ((eval)$1).cSourceCode + " && "+
          writer.print(((eval)$$).stmt+ "\n");
                                                                 ((eval)$4).cSourceCode;
                                                                          writer.print(((eval)$$).stmt+ "\n");
          ((eval)$).variables.addAll(((eval)$1).variabl
es);
                                                                          ((eval)$$).variables.addAll(((eval)$1).variabl
          ((eval)$$).variables.addAll(((eval)$3).variabl
                                                                 es);
es);
                                                                          ((eval)$$).variables.addAll(((eval)$4).variabl
                                                                 es);
          | exp PLUS_KW exp
                                                                          | exp OR_KW M exp
                   writer.print("\t exp -> exp
PLUS_KW exp \n'');
                                                                                    writer.print("\t exp -> exp OR_KW
          $$=new eval();
                                                                 exp \n");
                   ((eval)$).stmt += ((eval)$1).stmt
                                                                                              $$=new eval();
+ " + "+ ((eval)$3).stmt;
                                                                                    ((eval)$).stmt += ((eval)$1).stmt
                   ((eval)$$).cSourceCode +=
                                                                 + " or "+ ((eval)$4).stmt;
((eval)$1).cSourceCode + " + "+
                                                                                    ((eval)$$).cSourceCode +=
((eval)$3).cSourceCode;
                                                                 ((eval)$1).cSourceCode + " || "+
                                                                 ((eval)$4).cSourceCode;
          writer.print(((eval)$$).stmt+ "\n");
                                                                 writer.print(((eval)$$).stmt+ "\n");
          ((eval)$$).variables.addAll(((eval)$1).variabl
es);
```

```
((eval)$).variables.addAll(((eval)$1).variabl
                                                                                  ((eval)$).node = new
                                                               Node(nodeCounter++, ((eval)$$).stmt);
es);
         ((eval)$$).variables.addAll(((eval)$4).variabl
                                                                                   ((eval)$$).nodeIdAndStmt += "#"
                                                               + ((eval)$$).node.getNodeID() + ":" + ((eval)$$).stmt;
es);
         };
         | NEG_KW exp %prec q
                                                                         ((eval)$).node.setNodeIdAndStmt(((eval)$$
                                                               ).nodeIdAndStmt);
                   writer.print("\t exp -> NEG_KW
                                                                                  ((eval)$).list = new
exp \n");
                                                               MyLinkedList(((eval)$$).node);
                   $$=new eval();
                   ((eval)$$).stmt += "!("+
((eval)$2).stmt + ")";
                                                                         | x ASSIGN_KW exp
                   ((eval)$$).cSourceCode += "!("+
((eval)$2).cSourceCode + ")";
                                                                                  writer.print("\t c -> x
                                                               ASSIGN_KW exp \n");
                   writer.print(((eval)$$).stmt+ "\n");
                                                                                   $$=new eval();
                                                                                   ((eval)$).stmt += ((eval)$1).stmt
                                                               + " = " + ((eval)\$3).stmt;
                                                                                   ((eval)$$).cSourceCode +=
                                                               ((eval)$1).cSourceCode + " = " +
         ((eval)$$).variables.addAll(((eval)$2).variabl
                                                               ((eval)$3).cSourceCode;
es);
                                                                                   writer.print(((eval)$$).stmt+ "\n");
         | LPAR_KW exp RPAR_KW %prec p
                   writer.print("\t exp -> LPAR_KW
exp RPAR_KW \n");
                                                                         ((eval)$$).variables.addAll(((eval)$3).variabl
                   $$=new eval();
                                                               es);
                   ((eval)$$).stmt += "("+
((eval)$2).stmt + ")";
                                                                                  boolean check = false;
                   ((eval)$$).cSourceCode += "("+
                                                                                  for(Variable v:
((eval)$2).cSourceCode + ")";
                                                               symbolTableOfVariables){
                   writer.print(((eval)$$).stmt+ "\n");
                                                                         if(((eval)$1).stmt.equals(v.name)){
                                                                                                      ((eval)$$).node
                                                               = new Node(nodeCounter++, ((eval)$$).stmt);
         ((eval)$$).variables.addAll(((eval)$2).variabl
                                                                         ((eval)$).nodeIdAndStmt += "#" +
es);
                                                               ((eval)$).node.getNodeID() + ":" + ((eval)$1).stmt + "
                                                               = " + ((eval)\$3).stmt;
         };
                                                                         ((eval)\$\$).node.setNodeIdAndStmt(((eval)\$\$
                                                               ).nodeIdAndStmt);
c: NOP_KW
         {
                                                                                                      for(String str:
                   writer.print("\t c -> NOP_KW \n")
                                                               ((eval)$$).variables){
                   $$=new eval();
                                                                         for(Variable varvar:
                   ((eval)$$).stmt += "NOP";
                                                               symbolTableOfVariables){
                   ((eval)$$).cSourceCode += ";";
                   writer.print(((eval)$$).stmt+ "\n");
                                                                         if(str.equals(varvar.name)){
```

```
| INL_KW varlist
          ((eval)$$).node.addToVariablesOfNode(varv
                                                                                    writer.print("\t c -> INL_KW
ar);
                                                                 varlist \n");
                                                                                    $$=new eval();
                   break;
                                                                                    ((eval)$$).stmt += "inL
                                                                 "+((eval)$2).stmt;
                                                                                    //((eval)$$).cSourceCode += "int
          }
                                                 }
                                                                 "+((eval)$2).cSourceCode;
                                                                                    for(String alpha:
                                       }
                                                                ((eval)$2).variables){
                                                                                              ((eval)$$).cSourceCode
                                       for(Variable
                                                                 += "int " + alpha + "; //type: low \n";
varvar : symbolTableOfVariables){
                                                                                              ((eval)$$).cSourceCode
                                                                 += "scanf(\"%d\", &" + alpha + ");\n";
          if(varvar.name.equals(((eval)$1).stmt)){
                                                                                    writer.print(((eval)$$).stmt+ "\n");
          ((eval)$$).node.setAssignedVariable(varvar);
                   break;
                                                                          ((eval)$$).variables.addAll(((eval)$2).variabl
                                                                es);
                                       ((eval)$$).list
                                                                                    boolean first = true;
= new MyLinkedList(((eval)$$).node);
                                                                                    for(String i : ((eval)$2).variables){
                                       check = true;
                                                                                              Variable currentVar =
                                       break;
                                                                new Variable(i);
                             }
                   }
                                                                                              for(Variable v:
                                                                symbolTableOfVariables){
                   if(!check){
                                                                          if(v.name.equals(currentVar.name)){
          System.err.println("undefined variable can
not be assigned:");
                                                                          v.type = "low";
          GUI.terminal.append("undefined variable
                                                                          currentVar.type = "low";
can not be assigned:\n\t"+((eval)$$).stmt,
                                                                                                        }
Color.orange);
          System.err.println("\t"+((eval)$$).stmt);
                                                                                              ((eval)$$).node = new
                             //System.exit(0);
                                                                Node(nodeCounter++, currentVar.name);
                             return -1;
                   }
                                                                          ((eval)$$).node.setAssignedVariable(current
                                                                 Var);
          ((eval)$$).variables.add(((eval)$1).stmt);
                                                                          //((eval)$$).node.addToVariablesOfNode(cur
//not necessary
                                                                rentVar);
          };
                                                                                              if(first){
```

```
((eval)$$).list
                                                                                             for(Variable v:
= new MyLinkedList(((eval)$$).node);
                                                                symbolTableOfVariables){
                                       first = false;
                                                                          if(v.name.equals(currentVar.name)){
                             else{
                                                                          v.type = "high";
         ((eval)$$).list.merge(new
MyLinkedList(((eval)$$).node));
                                                                          currentVar.type = "high";
                   }
                                                                                             }
                                                                                             ((eval)$$).node = new
         ((eval)$).nodeIdAndStmt += "#" +
                                                                Node (node Counter ++, \, current Var.name);\\
((eval)$$).node.getNodeID() + ":" + ((eval)$$).stmt;
                                                                          ((eval)$$).node.setAssignedVariable(current
         ((eval)$$).node.setNodeIdAndStmt(((eval)$$
                                                                Var);
).nodeIdAndStmt);
                                                                          //((eval)$$).node.addToVariablesOfNode(cur
                                                                rentVar);
                                                                                             if(first){
                                                                                                       ((eval)$$).list
         | INH_KW varlist
                                                                = new MyLinkedList(((eval)$$).node);
                                                                                                       first = false;
                   writer.print("\t c -> INH_KW
                                                                                             }
varlist n");
                                                                                             else{
                   $$=new eval();
                   ((eval)$$).stmt += "inH
                                                                          ((eval)$$).list.merge(new
"+((eval)$2).stmt;
                                                                MyLinkedList(((eval)$$).node));
                   //((eval)$$).cSourceCode += "int
"+((eval)$2).cSourceCode;
                   for(String alpha:
((eval)$2).variables){
                                                                          ((eval)$$).nodeIdAndStmt += "#" +
                             ((eval)$$).cSourceCode
                                                                ((eval)$).node.getNodeID() + ":" + ((eval)$$).stmt;
+= "int " + alpha + "; //type: high \n";
                             ((eval)$$).cSourceCode
                                                                          ((eval)\$\$).node.setNodeIdAndStmt(((eval)\$\$)
+= "scanf(\"%d\", &" + alpha + ");\n";
                                                                ).nodeIdAndStmt);
                   writer.print(((eval)$$).stmt+ "\n");
         ((eval)$).variables.addAll(((eval)$2).variabl
                                                                          };
                                                                          | OUTL_KW x
es);
                                                                                   writer.print("\t c -> OUTL_KW x
                                                                n";
                   boolean first = true;
                                                                                   $$=new eval();
                   for(String i : ((eval)$2).variables){
                                                                                    ((eval)$$).stmt += "outL " +
                             Variable currentVar =
                                                                ((eval)$2).stmt;
new Variable(i);
                                                                                   ((eval)$$).cSourceCode +=
                                                                "printf(\"%d\\n\","+((eval)$2).cSourceCode+")";
```

```
writer.print(((eval)$$).stmt+ "\n");
                                                                         System.err.println("undefined variable!");
                                                                         GUI.terminal.append("undefined
                                                               variable!\n\t"+((eval)$$).stmt, Color.orange);
         ((eval)$$).variables.add(((eval)$2).stmt);
                                                                         System.err.println("\t"+((eval)$$).stmt);
                   boolean check = false;
                                                                                             //System.exit(0);
                   for(Variable v:
                                                                                             return -1;
symbolTableOfVariables){
                                                                                   }
         if(((eval)$2).stmt.equals(v.name) &&
v.type.equals("low")){
                                      ((eval)$$).node
= new Node(nodeCounter++, ((eval)$$).stmt);
                                                                         };
                                                                         OUTH_KW x
         ((eval)$).nodeIdAndStmt += "#" +
((eval)$$).node.getNodeID() + ":" + ((eval)$$).stmt;
                                                                                   writer.print("\t c -> OUTH_KW x
                                                               \n'');
         ((eval)$$).node.setNodeIdAndStmt(((eval)$$
                                                                                   $$=new eval();
).nodeIdAndStmt);
                                                                                   ((eval)$$).stmt += "outH " +
                                                               ((eval)$2).stmt;
                                      for(String str:
                                                                                   ((eval)$$).cSourceCode +=
                                                                "printf(\"%d\\n\","+((eval)$2).cSourceCode+")";
((eval)$$).variables){
                                                                                   writer.print(((eval)$$).stmt+ "\n");
         for(Variable varvar:
symbolTableOfVariables){
                                                                         ((eval)$$).variables.add(((eval)$2).stmt);
         if(str.equals(varvar.name)){
                                                                                   boolean check = false;
                                                                                   for(Variable v:
         ((eval)$$).node.addToVariablesOfNode(varv
                                                               symbolTableOfVariables){
ar);
                                                                         if(((eval)$2).stmt.equals(v.name) &&
                   break;
                                                               v.type.equals("high")) \{\\
                                                                                                       ((eval)$$).node
         }
                                                               = new Node(nodeCounter++, ((eval)$$).stmt);
                                                                         ((eval)$).nodeIdAndStmt += "#" +
                                       }
                                                               ((eval)$).node.getNodeID() + ":" + ((eval)$$).stmt;
                                                                         ((eval)\$\$).node.setNodeIdAndStmt(((eval)\$\$
                                                               ).nodeIdAndStmt);
                                      ((eval)$$).list
= new MyLinkedList(((eval)$$).node);
                                                                                                       for(String str:
                                      check = true;
                                      break;
                                                               ((eval)$$).variables){
                             }
                   }
                                                                         for(Variable varvar:
                                                               symbolTableOfVariables){
                   if(!check){
                                                                         if(str.equals(varvar.name)){
```

```
((eval)$).list = new
         ((eval)$$).node.addToVariablesOfNode(varv
                                                               MyLinkedList(((eval)$$).node);
ar);
                                                                        };
                   break;
                                                                        | OUTH_KW BOT_KW
         }
                                                                                  writer.print("\t c -> OUTH_KW
                                                               BOT_KW \n");
                                                                                  $$=new eval();
                                                                                  ((eval)$).stmt += "outH BOT";
                                                                                  ((eval)$$).cSourceCode +=
                                                               "printf(\"BOT\\n\")";
                                      ((eval)$$).list
= new MyLinkedList(((eval)$$).node);
                                                                                  writer.print(((eval)$$).stmt+ "\n");
                                      check = true;
                                      break;
                                                                                  ((eval)$).node = new
                            }
                                                               Node(nodeCounter++, ((eval)$$).stmt);
                   }
                                                                                  ((eval)$$).nodeIdAndStmt += "#"
                                                               + ((eval)$$).node.getNodeID() + ":" + ((eval)$$).stmt;
                   if(!check){
                                                                        ((eval)$$).node.setNodeIdAndStmt(((eval)$$
                                                               ).nodeIdAndStmt);
         System.err.println("undefined variable!");
                                                                                  ((eval)$$).list = new
                                                               MyLinkedList(((eval)\$\$).node);
         System.err.println("\t"+((eval)$$).stmt);
         GUI.terminal.append("undefined
variable!\n\t"+((eval)$$).stmt, Color.orange);
                                                                        | IF_KW exp THEN_KW M clist
                            //System.exit(0);
                                                               ENDIF_KW %prec p
                            return -1;
                                                                        {
                   }
                                                                                  writer.print("\t c -> IF_KW exp
                                                               THEN_KW M clist ENDIF_KW \n");
                                                                                  $$=new eval();
                                                                                  ((eval)$$).stmt += " if " +
                                                               ((eval)$2).stmt + " then " + ((eval)$5).stmt + " endif";
         | OUTL_KW BOT_KW
                                                                                  ((eval)$$).cSourceCode += " if ("
                                                               + ((eval)$2).cSourceCode + ") { " +
                   writer.print("\t c -> OUTL_KW
                                                               ((eval)$5).cSourceCode + ";}";
BOT_KW \n");
                                                                                  writer.print(((eval)$$).stmt+ "\n");
                   $$=new eval();
                   ((eval)$$).stmt += "outL BOT";
                   ((eval)$$).cSourceCode +=
                                                                        ((eval)$$).variables.addAll(((eval)$2).variabl
"printf(\"BOT\\n\")";
                                                               es);
                   writer.print(((eval)$$).stmt+ "\n");
                                                                        //((eval)$$).variables.addAll(((eval)$5).varia
                   ((eval)$$).node = new
                                                               bles);
Node(nodeCounter++, ((eval)$$).stmt);
                   ((eval)$$).nodeIdAndStmt += "#"
+ ((eval)$$).node.getNodeID() + ":" + ((eval)$$).stmt;
                                                                                  ((eval)$$).node = new
                                                               Node(nodeCounter++, ((eval)$2).stmt);//condition
         ((eval)\$\$).node.setNodeIdAndStmt(((eval)\$\$)
                                                               expression node
).nodeIdAndStmt);
                                                                                  ((eval)$$).nodeIdAndStmt += " if "
                                                               + "#" + ((eval)$$).node.getNodeID() + ":" +
```

```
((eval)$2).stmt + " then n" +
                                                                                  ((eval)$$).cSourceCode += " if ("
((eval)$5).nodeIdAndStmt + " endif";
                                                              + ((eval)$2).cSourceCode + ") { " +
                                                              ((eval)$5).cSourceCode + ";} else {" +
         ((eval)$$).node.setNodeIdAndStmt(((eval)$$
                                                               ((eval)$9).cSourceCode + ";}";
).nodeIdAndStmt);
                                                                                  writer.print(((eval)$$).stmt+ "\n");
                  for(String str:
((eval)$$).variables){
                                                                        ((eval)$).variables.addAll(((eval)$2).variabl
                            for(Variable v:
                                                              es);
symbolTableOfVariables){
                                                                        //((eval)$$).variables.addAll(((eval)$5).varia
         if(str.equals(v.name)){
                                                              bles);
         ((eval)$$).node.addToVariablesOfNode(v);
                                                                        //((eval)$$).variables.addAll(((eval)$9).varia
                                                              bles);
         break;
                                      }
                                                                                  ((eval)$$).node = new
                                                              Node(nodeCounter++, ((eval)$2).stmt);//condition
                            }
                                                              expression node
                                                                                  ((eval)$$).nodeIdAndStmt += " if "
                                                               + "#" + ((eval)$$).node.getNodeID() + ":" +
                                                              ((eval)$2).stmt + " then \n" +
                  ((eval)$$).list = new
                                                              ((eval)\$5).nodeIdAndStmt + "else \n" +
MyLinkedList(((eval)$$).node);
                                                              ((eval)$9).nodeIdAndStmt + " endif ";
                  Node dummy = new
                                                                        ((eval)$$).node.setNodeIdAndStmt(((eval)$$
Node(nodeCounter++, "dummy");//dummy node for
                                                              ).nodeIdAndStmt);
last node of if
                                                                                  for(String str:
                                                              ((eval)$$).variables){
         ((eval)$$).list.getLast().setNextPointer2(dum
                                                                                           for(Variable v:
my);//if false
                                                              symbolTableOfVariables){
         dummy.addPreviousPointer(((eval)$$).list.ge
                                                                        if(str.equals(v.name)){
tLast()); //backward pointer
                                                                        ((eval)$$).node.addToVariablesOfNode(v);
                                                                        break;
         ((eval)$$).list.merge(((eval)$5).list);//if true
                                                                                                     }
                  ((eval)$$).list.merge(new
MyLinkedList(dummy));
                                                                                           }
         | IF_KW exp THEN_KW M clist ELSE_KW
N M clist ENDIF_KW
                                                                                  ((eval)$$).list = new
                   writer.print("\t c -> IF_KW exp
                                                              MyLinkedList(((eval)$$).node);
THEN_KW M clist ELSE_KW N M clist ENDIF_KW
n";
                   $$=new eval();
                                                                                 Node dummy = new
                  ((eval)$$).stmt += " if " +
                                                              Node(nodeCounter++, "dummy");//dummy node for
((eval)$2).stmt + " then " + ((eval)$5).stmt + " else " +
                                                              last node of if
((eval)$9).stmt + " endif ";
```

```
MyLinkedList\ dummyList = new
                                                                                  ((eval)$$).nodeIdAndStmt +=
MyLinkedList(dummy);
                                                               "while " + "#" + ((eval)$$).node.getNodeID() + ":" +
                                                               ((eval)\$2).stmt + "do \n" + ((eval)\$5).nodeIdAndStmt
                                                               + " done ";
         ((eval)$).list.getLast().setNextPointer2(((ev
                                                                         ((eval)$).node.setNodeIdAndStmt(((eval)$$
al)$9).list.getFirst());//if false - else section
                                                               ).nodeIdAndStmt);
         ((eval)$9).list.getFirst().addPreviousPointer((
(eval)$$).list.getLast()); //backward pointer
                                                                                  for(String str:
                                                               ((eval)$$).variables){
         ((eval)$$).list.getNodeSet().addAll(((eval)$9
                                                                                            for(Variable v:
).list.getNodeSet());
                                                               symbolTableOfVariables){
                                                                         if(str.equals(v.name)){
                                                                         ((eval)$$).node.addToVariablesOfNode(v);
                   ((eval)$9).list.merge(dummyList);
                                                                         break;
                                                                                                      }
         ((eval)$$).list.merge(((eval)$5).list);//if true
                   ((eval)$$).list.merge(dummyList);
                                                                                            }
                                                                                  }
         | WHILE_KW exp DO_KW M clist
DONE_KW
                   writer.print("\t c -> WHILE_KW
                                                                                  ((eval)$$).list = new
exp DO_KW M clist DONE_KW \n");
                                                               MyLinkedList(((eval)$$).node);
                   $$=new eval();
                   ((eval)$$).stmt += "while " +
                                                                                  Node dummy = new
((eval)$2).stmt + " do " + ((eval)$5).stmt + " done ";
                                                               Node(nodeCounter++, "dummy");//dummy node for
                   writer.print(((eval)$$).stmt+ "\n");
                                                               last node of if
                                                                                  MyLinkedList\ dummyList = new
                                                               MyLinkedList(dummy);
         ((eval)$$).variables.addAll(((eval)$2).variabl
es);
                                                                         ((eval)$$).list.getLast().setNextPointer2(dum
         ((eval)$$).variables.addAll(((eval)$5).variabl
                                                               my);//while condition false
es);
                                                                         dummy.addPreviousPointer(((eval)$$).list.ge
                   ((eval)$$).node = new
                                                               tLast()); //backward pointer
Node(nodeCounter++, ((eval)$2).stmt);//condition
expression node
                                                                         ((eval)$$).list.getNodeSet().add(dummy);
                   ((eval)$$).node.whileID =
whileID++;
                   ((eval)$$).cSourceCode +=
                                                                         ((eval)$$).list.merge(((eval)$5).list); //while
"~WhileID"+((eval)$$).node.whileID+"~while (" +
                                                               condition true (loop)
((eval)$2).cSourceCode + ") { " +
((eval)$5).cSourceCode +
":\n}"+"\sim ENDWhileID"+((eval)$$).node.whileID+"\sim"
                                                                         ((eval)$5).list.getLast().setNextPointer1(((ev
                                                               al)$$).list.getFirst());
```

```
$$=new eval();
          ((eval)\$\$).list.getFirst().addPreviousPointer((
                                                                                      ((eval)$$).stmt += ((eval)$1).stmt
(eval)$5).list.getLast());
                                                                  + ", " + ((eval)$3).stmt;
                                                                                      ((eval)$$).cSourceCode +=
                                                                  ((eval)1).cSourceCode + ", " +
                    ((eval)$$).list.setLast(dummy);
                                                                  ((eval)$3).cSourceCode;
          };
                                                                                      writer.print(((eval)$$).stmt+ "\n");
varlist: x
                    writer.print("\t varlist -> x \mid n");
                                                                                      Variable\ tempVar = new
                    $$=new eval();
                                                                  Variable(((eval)$1).stmt);
                    ((eval)$).stmt += ((eval)$1).stmt;
                    ((eval)$$).cSourceCode +=
                                                                                      boolean flag = true;
((eval)$1).cSourceCode;
                                                                                      for(int i = 0; i <
                    writer.print(((eval)$$).stmt+ "\n");
                                                                  symbolTableOfVariables.size(); i++){
                    Variable\ tempVar = new
                                                                            if (symbol Table Of Variables. get (i). name. equa\\
Variable(((eval)$1).stmt);
                                                                  ls(tempVar.name)){
                                                                                                          flag = false;
                                                                                                          break;
                    boolean flag = true;
                                                                                                }
                    for(int i = 0; i <
                                                                                      }
symbolTableOfVariables.size(); i++){
          if(symbolTableOfVariables.get(i).name.equa
ls(tempVar.name)){
                                                                                      if(flag == true){
                                        flag = false;
                                        break;
                                                                            symbol Table Of Variables. add (temp Var);\\
                    }
                                                                            ((eval)$$).variables.add(((eval)$1).stmt);
                    if(flag == true)
                                                                            ((eval)$$).variables.addAll(((eval)$3).variabl
                                                                  es);
          symbolTableOfVariables.add(tempVar);
                                                                                      }
                                                                                      else{
                                                                                                System.err.println("The
          ((eval)$).variables.add(((eval)$1).stmt);
                                                                  variable " + ((eval)$1).stmt + " is already declared!");
                    }
                    else{
                              System.err.println("The
                                                                            GUI.terminal.append("The variable " +
variable " + ((eval)$1).stmt + " is already declared!");
                                                                  ((eval)$1).stmt + " is already declared!",
                                                                  Color.orange);
          GUI.terminal.append("The variable " +
((eval)$1).stmt + " is already declared!",
                                                                            };
Color.orange);
                              //System.exit(0);
                                                                  b: BOOL_CONSTANT
                              return -1;
                                                                            {
                    }
                                                                                      writer.print("\t b ->
          };
                                                                  BOOL_CONSTANT \n");
          | x ',' varlist
                                                                                      $$=new eval();
                                                                                      ((eval)$).stmt += this.stmt;
                    writer.print("\t varlist -> x , varlist
n";
```

```
((eval)$$).cSourceCode +=
((eval)$$).stmt;
                                                                 public HashSet<String> variables = new
                 writer.print(((eval)$$).stmt+ "\n");
                                                         HashSet<String>();
        };
                                                                 public Node node;
n: INTEGER_NUMBER
                                                                 public MyLinkedList list;
                 writer.print("\t\ n\ ->
                                                        }
INTEGER_NUMBER \n");
                 $$=new eval();
                 ((eval)$$).stmt += this.stmt;
                 ((eval)$$).cSourceCode +=
((eval)$$).stmt;
                 writer.print(((eval)$$).stmt+ "\n");
        };
x: IDENTIFIER
        {
                 writer.print("\t x -> IDENTIFIER
\n");
                 $$=new eval();
                 ((eval)$$).stmt += this.stmt;
                 ((eval)$$).cSourceCode +=
((eval)$$).stmt;
                 writer.print(((eval)$$).stmt+ "\n");
        };
M://lambda
        {
        };
N://lambda
        };
%%
/******** eval
*************
class eval {
        public String stmt="";
        public String nodeIdAndStmt="";
        public String cSourceCode = "";
```

//according to the article, it needs to connect START to

PDGBuilder.java:

```
(كلاس توليدكننده گراف وابستگى برنامه)
                                                                   //print the cfg for test
* To change this license header, choose License
                                                                    cfg.printNodeSet();
Headers in Project Properties.
                                                                   //computing post dominators
* To change this template file, choose Tools |
                                                                   computePostDominators();
Templates
* and open the template in the editor.
                                                                   //print dominators
                                                                    printPostDominators();
package wlrewriter;
                                                                   //draw the FDT (Post Dom Tree) - Find the
                                                              immediate post dominance
import java.util.HashSet;
                                                                   makePostDomTree();
import java.util.Iterator;
                                                                   //find the immediate post dom for each node - It
import GraphViz.*;
                                                              must be unique, but I did not take risk and get an array
                                                              for it
/**
                                                                   setImmediatePostDoms();
* Forward Dominance Tree and Control Dependence
                                                                   //print the immediate post dom for each node that
Graph Builder Data Dependence
                                                              they are set in the field of each node
* Graph and Program Dependence Graph Builder
                                                                    printImmediatePostDoms();
                                                                   //compute PDF for each node that they will be
* @param CFG
                                                              control dependences
                                                                   computePDFs();
* @author Mohammad
                                                                   //print the PDFs for all nodes in FDTNodes
public class PDGBuilder {
                                                                    printPDFs();
                                                                   //compute Control Dependecies from PDFs
  private MyLinkedList cfg, FDTree, PDG; //FDTree
                                                                   computeControlDep();
is equal to PostDomTree
  private HashSet<Node> FDTNodes;
                                                                   //print the Control Dependecies
                                                                   printControlDeps();
  private String fileName;
// private ArrayList<DataEdge> dataDeps;//data
                                                                   //compute the Data Dependecies from CFG
dependencies - by CFG nodes and we just save the
                                                                   computeDataDep();
relation between them for data dep graph
                                                                   //print the Data Dependecies
  public PDGBuilder(MyLinkedList cfg) {
                                                                   printDataDeps();
    this.cfg = cfg;
                                                                   //merge CDG and DDG together to make PDG
                                                                   computePDG();
    fileName =
YYParser.getSourceCodeFileName().replace(".wl",
                                                                   //print and show the PDG
"");
                                                                   printPDG();
this.cfg.getFirst().setNextPointer2(this.cfg.getLast());
```

```
private void computePostDominators() {
                                                                 private void printPostDominators() {
                                                                   System.out.println("**** print Post Dominators
    for (Node n : cfg.getNodeSet()) {
       n.setPostDominators(cfg.getNodeSet());
//PostDom(n) = NodeSet
                                                                   for (Node i : cfg.getNodeSet()) {
                                                                     System.out.print("Post-Dom(" + i.getNodeID()
    }
                                                              +"):");
                                                                     for (Node alpha : i.getPostDominators()) {
    HashSet<Node> workList = new
                                                                        System.out.print(alpha.getNodeID() + ", ");
HashSet<Node>();
    workList.add(cfg.getLast()); //WorkList =
                                                                     System.out.println("");
{StopNode}
                                                                   }
    while (!workList.isEmpty()) {
                                                                 private void makePostDomTree() {
       Node y = workList.iterator().next();
                                                                   FDTNodes = new HashSet<>();
       workList.remove(y); // Remove any node Y
from Worklist
                                                                   //copy nodes from CFG to FDTNodes
                                                                   for (Node p : cfg.getNodeSet()) {
      // New = {y} + intersect PostDom(x): x is in
                                                                     Node n = new Node(p.getNodeID(),
succ(y)
                                                              p.getStatement());
       HashSet<Node> New = new HashSet<>();
                                                                     HashSet<Node> tempPostDom = new
       New.add(y);
                                                              HashSet<>(p.getPostDominators());
                                                                     n.setPostDominators(tempPostDom);
       if (y.succ().iterator().hasNext()) {
         HashSet<Node> intersect = new
                                                                     //eliminate the node from post-dominators to
HashSet<>(y.succ().iterator().next().getPostDominator
                                                              search its pred
s());
                                                                     n.getPostDominators().remove(p);
         for (Node x : y.succ()) {
                                                                     FDTNodes.add(n);
           intersect.retainAll(x.getPostDominators());
                                                                   }
         New.addAll(intersect);
                                                                   HashSet<MyLinkedList> listOfFDTNodes = new
                                                              HashSet<>();
       if (!New.equals(y.getPostDominators())) {
         y.setPostDominators(New); //PostDom(y) =
New
                                                                   for (Iterator<Node> it = FDTNodes.iterator();
                                                              it.hasNext();) {
                                                                     Node temp = it.next();
         workList.addAll(y.pred()); // for (each z in
pred(y)) worklist += \{z\}
                                                                     listOfFDTNodes.add(new
                                                              MyLinkedList(temp));
       }
                                                                   }
    // you can find post dominators for each node in
getPostDominators() method
                                                                   FDTree = new MyLinkedList(null);
                                                                   for (Iterator<MyLinkedList> it =
                                                              listOfFDTNodes.iterator(); it.hasNext();) {
  }
```

```
MyLinkedList temp = it.next();
                                                                         for \ (Node \ j: n.getPostDominators()) \ \{
       Node tempNode = temp.getFirst();
                                                                            if (!j.equals(i)) {
                                                                              if (j.getPostDominators().contains(i)) {
                                                                                 flag = false;
       if (tempNode.getStatement().equals("STOP"))
                                                                                 break;
{
         FDTree.setFirst(tempNode);
       }
       else {
                                                                         if (flag == true) {
                                                                            if (n.getImmediatePostDominator() !=
(tempNode.getStatement().equals("START")) {
                                                                null) {
            FDTree.setLast(tempNode);
                                                                              System.err.println("Immediate Post
                                                                Dom for this node is not unique!!");
         for (Iterator<Node> it2 =
cfg.getNodeSet().iterator(); it2.hasNext();) {
                                                                            n.setImmediatePostDominator(i);
            Node temp2 = it2.next();
(tempNode.getPostDominators().equals(temp2.getPost\\
                                                                            for (Node k : cfg.getNodeSet()) {
Dominators())) {
                                                                              if (k.getNodeID() == n.getNodeID()) {
              for (Iterator<MyLinkedList> it3 =
                                                                                 k.setImmediatePostDominator(i);
listOfFDTNodes.iterator(); it3.hasNext();) {
                                                                                 break;
                MyLinkedList temp3 = it3.next();
                                                                              }
                 Node tempNode3 = temp3.getFirst();
                 if (tempNode3.getNodeID() ==
temp2.getNodeID()) {
                   mergeLists(temp3, temp);
                                                                  private void printImmediatePostDoms() {
                                                                    System.out.println("**** print Immediate Post
                                                                Dominators ****");
                                                                    for (Node n : FDTNodes) {
      System.out.println("Post-Dom Tree is created");
                                                                       System.out.println("Immediate Post Dom for
                                                                Node "+n.getNodeID() + " --> "+n.getStatement() +\\
  private void mergeLists(MyLinkedList first,
                                                                ":");
MyLinkedList second) {
                                                                       if (!n.getStatement().equals("STOP")) {
first.getFirst().addNextPointersForPostDomTree(secon
                                                                //because of being null for STOP node
d.getFirst());
                                                                         Node q = n.getImmediatePostDominator();
                                                                         System.out.println("\t" + q.getNodeID() + " -
second.getFirst().addPreviousPointer(first.getFirst());
                                                                -> " + q.getStatement());
  }
                                                                       }
                                                                       else {
  private void setImmediatePostDoms() {
                                                                         System.out.println("\t");
    for (Node n : FDTNodes) {
       for (Node i : n.getPostDominators()) {
         boolean flag = true;
```

```
}
                                                               (z.getImmediatePostDominator().getNodeID() ==
                                                               x.getNodeID()) {
  private void computePDFs() {
    for (Node n : FDTNodes) {
                                                                                  for (Node y : z.getPDF()) {
(n.getNextPointersForPostDomTree().isEmpty()) {
                                                               (y.getImmediatePostDominator() != null) {
//the node is leaf of PostDomTree
         HashSet<Node> worklist = new
                                                               (y.getImmediatePostDominator().getNodeID() !=
HashSet<>();
                                                               x.getNodeID()) {
                                                                                          currentPDF.add(y);
         worklist.add(n);
         while (!worklist.isEmpty()) {
            Node x = worklist.iterator().next();
            worklist.remove(x);
                                                                                     else {
                                                                                       currentPDF.add(y);
            worklist.addAll(x.pred()); //traverse
bottom-up the postDomTree
            HashSet<Node> currentPDF = new
HashSet<>(); //PDF for node x
           ///local///
            for (Node xInCFG : cfg.getNodeSet()) {
              if (xInCFG.getNodeID() ==
                                                                           x.setPDF(currentPDF);
x.getNodeID()) { // Node xInCFG is x in CFG - we
need pred() in CFG
                                                                         }
                 if (!xInCFG.pred().isEmpty()) {
                   for (Node y : xInCFG.pred()) {
(y.getImmediatePostDominator() != null) {
(y.getImmediatePostDominator().getNodeID() \mathrel{!=}
                                                                  private void printPDFs() {
                                                                    System.out.println("**** print FDTs ****");
xInCFG.getNodeID()) {
                                                                    for (Node n : FDTNodes) {
                          currentPDF.add(y);
                                                                      System.out.println("PDF(" + n.getNodeID() +
                        }
                                                               ": " + n.getStatement() + ") = { ");
                     }
                     else {
                       currentPDF.add(y);
                                                                      for (Node q : n.getPDF()) {
                                                                         System.out.println("\t" + q.getNodeID() + ":
                   }
                                                               " + q.getStatement() + ", ");
                 }
                break;
                                                                      System.out.println("}");
                                                                  }
            ///up///
            for (Node z : FDTNodes) {
                                                                  private void computeControlDep() {
              if (z.getImmediatePostDominator() !=
                                                                    for (Node y : FDTNodes) {
null) {
                                                                      for (Node x : FDTNodes) {
```

```
for (Iterator<Node> it =
                                                                          //control dep edges: solid // for data dep
y.getPDF().iterator(); it.hasNext();) {
                                                                edges: "[style=dashed];\n";
            Node w = it.next();
            if (w.getNodeID() == x.getNodeID()) {
                                                                        System.out.println("}");
              // mitavanad tekrari bashe [dar sorati ke
                                                                     }
                                                                      System.out.println("*************\n");
be khodes nabayad vabastegi dashte bashe, in ja ye if
mizarim: if(y.getNodeId()!=x.getNodeId())]
              x.getContolDep().add(y);
                                                                     GraphDrawer gd = new GraphDrawer();
              y.getParentOfControlDep().add(x);
                                                                     gd.draw(fileName + "_CDG.", CDgraph);
                                                                     System.out.println("Control Dependence Graph is
                                                                ready.");
                                                                     GUI.terminal.append("Control Dependence Graph
                                                                is ready.");
                                                                  }
  private void printControlDeps() {
                                                                  private void computeDataDep() {
    String CDgraph = "";
System.out.println("\n^{**************} \\ nprint
                                                                     for (Node n : cfg.getNodeSet()) {
                                                                       if (n.getAssignedVariable() != null) {
Control Dependencies ");
    for (Node n : FDTNodes) {
        System.out.print("Node -->" + n.getNodeID()
                                                                          HashSet<Node> dataDepLimit = new
+ ": " + n.getStatement() + " = { ");
                                                                HashSet<>();
                                                                          for (Node zed : cfg.getNodeSet()) {
                                                                            zed.isVisited = false;
       for (Node q : n.getContolDep()) {
                                                                            if (zed.getAssignedVariable() != null) {
//
           System.out.print(q.getNodeID() + ": " +
q.getStatement() + " | ");
                                                                (zed.get Assigned Variable (). name. equals (n.get Assigned \\
         for (Node u : cfg.getNodeSet()) {
                                                                Variable().name) && zed.getNodeID() !=
            if (u.getNodeID() == q.getNodeID()) {
              if (u.getVariablesOfNode().size() > 0) {
                                                                n.getNodeID()) {
                                                                                 dataDepLimit.add(zed);
                for (Variable v:
u.getVariablesOfNode()) {
                                                                            }
                   if (v.type.equals("high")) {
                     CDgraph += " \"" + "#" +
q.getNodeID() + " - " + q.getStatement() + " \"" + "; \" ";
                 }
                                                                          HashSet<Node> worklist = new
                                                                HashSet<>();
              if (u.getAssignedVariable() != null) {
                                                                          worklist.add(n);
                if
(u.getAssignedVariable().type.equals("high")) {
                   CDgraph += " \"" + "#" +
                                                                          while (!worklist.isEmpty()) {
q.getNodeID() + " " + q.getStatement() + "\"" + ";\n";
                                                                            Node node = worklist.iterator().next();
                                                                            worklist.remove(node);
                                                                            node.isVisited = true;
            }
                                                                            boolean isLimit = false;
         CDgraph += "\"" + "#" + n.getNodeID() + "
" + n.getStatement() + "\"" + " -> " + "\"" + "#" +
q.getNodeID() + " " + q.getStatement() + "\"" + ";\n";
                                                                            for (Node h : dataDepLimit) {
```

```
if (h.getNodeID() ==
                                                                       DDgraph += "\"" + "#" + n.getNodeID() + "
                                                             " + n.getStatement() + "\"" + " -> " + "\"" + "#" +
node.getNodeID()) {
                                                             q.getNodeID() + " " + q.getStatement() + "\"" + ";\n";
                isLimit = true;
                for (Variable varc:
node.getVariablesOfNode()) {
                                                                  }
                  if
(n.getAssignedVariable().name.equals(varc.name)) {
                                                                  GraphDrawer gd = new GraphDrawer();
                                                                  gd.draw(fileName + "_DDG.", DDgraph);
n.getDataDepsForThisNode().add(node);\\
                                                                  System.out.println("Data Dependence Graph is
node.getParentsOfDataDep().add(n);
                     break;
                                                                  GUI.terminal.append("Data Dependence Graph is
                                                             ready.");
                }
                                                                }
                break;
                                                                private void computePDG() {
                                                                  PDG = cfg; //PDG is equal to CFG, updating
                                                             some items in each node:
           if (!isLimit) {
              for (Variable v:
node.getVariablesOfNode()) {
                                                                  //Node ID --> FDTNodes
                                                                  //statement --> FDTNodes
(v.name.equals(n.getAssignedVariable().name)) {//Is
                                                                  //Control Dep --> FDTNodes
assigned variable used in this node?
                                                                  //parentOfContorlDep --> FDTNodes
                                                                  //dataDepForThisNode --> CFG (PDG)
n.getDataDepsForThisNode().add(node);\\
                                                                  //parentOfDataDep --> CFG (PDG)
                                                                  //variablesOfNode --> CFG (PDG)
node.getParentsOfDataDep().add(n);\\
                                                                  //assignedVariable --> CFG (PDG)
                  break;
                                                                  for (Node nodeInPDG : PDG.getNodeSet()) {
                }
                                                                    for (Node nodeInFDT : FDTNodes) {
                                                                       if (nodeInPDG.getNodeID() ==
                                                             nodeInFDT.getNodeID()) {
              for (Node w : node.succ()) {
                                                             nodeInPDG.setStatement(nodeInFDT.getStatement());
                if (!w.isVisited) {
                  worklist.add(w);
                                                                         for (Node temp:
                                                             nodeInFDT.getContolDep()) {
                                                                           for (Node temp2 : PDG.getNodeSet()) {
                                                                              if (temp.getNodeID() ==
       }
                                                             temp2.getNodeID()) {
                                                                                for (Node temp3:
                                                             cfg.getNodeSet()) {
                                                                                  if (temp3.getNodeID() ==
                                                             temp2.getNodeID()) {
  private void printDataDeps() {
    String DDgraph = "";
                                                             temp2.setNextPointer1(temp3.getNextPointer1());
    for (Node n : cfg.getNodeSet()) {
                                                             temp2.setNextPointer2(temp3.getNextPointer2());
       for (Node q: n.getDataDepsForThisNode()) {
```

```
nodeInPDG.getContolDep().add(temp2);\\
                                                                                  for (Node temp3 : cfg.getNodeSet()) {
                                                                                                  for (Node tempq:
nodeInFDT.getParentOfControlDep()) \ \{
                                                                                                                  if (temp3.getNodeID() ==
tempq.getNodeID()) {
tempq.setNextPointer1(temp3.getNextPointer1());
tempq.setNextPointer2(temp3.getNextPointer2());
node In PDG. set Parent Of Control Dep (node In FDT. get Packet Parent Of Control Dep (node In FDT. get Packet Parent Of Control Dep (node In FDT. get Packet Parent Of Control Dep (node In FDT. get Packet Parent Of Control Dep (node In FDT. get Packet 
rentOfControlDep());
                                                                                  for (Node temp:
nodeInFDT.getDataDepsForThisNode()) \ \{
                                                                                                  for (Node temp2 : PDG.getNodeSet()) {
                                                                                                                   if (temp.getNodeID() ==
temp2.getNodeID()) {
nodeInPDG.getDataDepsForThisNode().add(temp2);\\
node In PDG. set Parents Of Data Dep (node In FDT. get Parents Of Da
ntsOfDataDep());
                                                                                  break;
               private void printPDG() {
                                String PDgraph = "";
```

```
for (Node n : PDG.getNodeSet()) {
       //Control Deps
       for (Node w : n.getContolDep()) {
         PDgraph \mathrel{+}= "\backslash "" + "\#" + n.getNodeID() + "
" + n.getStatement() + "\"" + " -> " + "\"" + "#" +
w.getNodeID() + " " + w.getStatement() + "\"" +
";\n";
       //Data Deps
       for (Node q : n.getDataDepsForThisNode()) {
         PDgraph += "\"" + "#" + n.getNodeID() + "
" + n.getStatement() + "\"" + " -> " + "\"" + "#" +
q.getNodeID() + "    " + q.getStatement() + "\"" + "
[style=dashed];\n";
     }
    GraphDrawer gd = new GraphDrawer();
     gd.draw(fileName + "_PDG.", PDgraph);
    System.out.println("Program Dependence Graph
is ready.");
    GUI.terminal.append("Program Dependence
Graph is ready.");
  }
  public MyLinkedList getPDG() {
    return PDG;
}
```


Amirkabir University of Technology (Tehran Polytechnic)

Computer and Information Technology Engineering Department

B.Sc. Thesis

Title Design and Implementation of a Tool for Rewriting-Based Enforcement of Noninterference in Programs

By Seyed Mohammad Mehdi Ahmadpanah

Supervisor Dr. Mehran S. Fallah