디지털논리회로

이론, 실습, 시뮬레이션

(Problem Solutions of Chapter 12)

1. 목적에 적합한 메모리

① RAM ② ROM ③ EPROM 또는 EEPROM

2. 주소선의 수와 데이터 선의 수 결정

① 2K×16, 주소선의 수: 11,데이터 선의 수: 16② 64K×8, 주소선의 수: 16,데이터 선의 수: 8③ 16M×32, 주소선의 수: 24,데이터 선의 수: 32④ 96K×12, 주소선의 수: 17,데이터 선의 수: 12

3. 플립플롭 개수 및 메모리 용량

한 워드가 32비트이며, 8192개의 워드가 저장되므로 8K×32의 용량을 갖는다. 따라서 MAR은 13(2¹³=8192)개의 플립플롭, MBR은 32개의 플립플롭으로 구성된다. MAR이 15(2¹⁵=32K)비트인 경우에는 32K×32의 저장용량을 갖는다.

4. PROM 칩 개수 및 주소선 수

4개의 PROM 칩이 필요하며, 주소선의 수는 13개이다.

5. ROM 진리표 결정

기호	입 력	출 력				
기오	X Y Z	A B C D				
m_0	0 0 0	0 1 0 0				
m_1	0 0 1	1 1 0 1				
m_2	0 1 0	1 0 1 1				
m_3	0 1 1	0 0 0 1				
m_4	1 0 0	1 0 0 0				
m_5	1 0 1	0 0 0 1				
m_6	1 1 0	1 1 1 0				
m_7	1 1 1	0 1 0 1				

6. 128×8 ROM 구성

1

7. 주소선의 수와 데이터 선의 수 결정

- ① 주소선 수 = 10, 데이터 선 수 = 8
- ② 32개 IC, 주소선 수 = 14, 데이터 선 수 = 16

8. PLA를 이용한 논리 방정식을 설계

9. BCD-3초과코드 부호변환기

 $E_3 = B_3 + B_2 B_1 + B_2 B_0, \quad E_2 = \overline{B_2} B_1 + \overline{B_2} B_0 + B_2 \overline{B_1} \overline{B_0}, \quad E_1 = \overline{B_1} \overline{B_0} + B_1 B_0, \quad E_0 = \overline{B_0}$

7-4-2절에서는 7404, 7408, 7432, 7486 각각 1개가 필요하므로 IC 3개가 절약된다.

10. PLA, PLE, PAL OIOH

① PLA : 최소 2^n 개, PLE : 2^n 개, PAL : 설계에 따라 다르다.

② 예상되는 출력의 수만큼 필요하다.

③ PLA, PLE : 2^n 개, PAL : 설계에 따라 다르다. ④ PLA, PLE : 2^n 개, PAL : 설계에 따라 다르다.

11. PAL을 이용한 설계

먼저 각 방정식을 간소화한다.

$$F_1(A,B,C) = \sum m(0,1,2,7)$$

= $\overline{A}\overline{B} + \overline{A}\overline{C} + ABC$

$$\begin{split} F_2(A,B,C) &= \varSigma m \, (3,5,6,7) \\ &= AB + BC + AC \end{split}$$

$$\begin{split} F_3(A,B,C) &= \varSigma m \left(0,3,4,6\right) \\ &= A \, \overline{C} + \overline{B} \, \overline{C} + \overline{A} B C \end{split}$$

 $F_{A}(A,B,C) = \Sigma m(0,3)$ $=\overline{A}\overline{B}\overline{C}+\overline{A}BC$

간소화된 방정식을 PAL로 실현하면 아래 그림과 같다.

12. PLA를 이용한 설계

(2)

기호		입	력		2	출 르	벽
	Α	В	С	D	Χ	У	Z
m_0	0	0	0	0	0	0	0
m_1	0	0	0	1	1	0	0
m_2	0	0	1	0	0	0	0
m_3	0	0	1	1	0	0	0
m_4	0	1	0	0	0	0	0
m_5	0	1	0	1	1	1	1
m_6	0	1	1	0	0	0	0
m_7	0	1	1	1	1	1	1
m_8	1	0	0	0	1	1	1
m_9	1	0	0	1	1	1	0
m_{10}	1	0	1	0	1	1	0
m_{11}	1	0	1	1	1	1	0
m_{12}	1	1	0	0	0	0	0
m_{13}	1	1	0	1	1	0	0
m_{14}	1	1	1	0	0	0	1
m_{15}	1	1	1	1	0	1	1

13. GAL을 이용한 설계

① $F = A\overline{B}C + \overline{A}B\overline{C} + A\overline{B} + BC$

② $F = \overline{A}\overline{B} + \overline{A}\overline{C} + AB + B\overline{C}$

