Class Imbalance

Problem Motivation

- Classification datasets can be "imbalanced"
 - o i.e. many observations of one class, few of another
- Costs of false positive different from cost of false negative
 - e.g. missing fraud can be more costly than screening legitimate activity
- Accuracy-driven models will over-predict the majority class

Solutions

- Cost-sensitive learning
 - thresholding (aka "profit curves")
 - modified objective functions
- Sampling
 - Oversampling
 - Undersampling
 - SMOTE Synthetic Minority Oversampling TEchnique

Recall the ROC Curve:

ROC shows precision vs recall

 doesn't give preference to one over the other

Q: How to handle unequal error costs?

A: Plot expected profit

Computing Expected Profit

Step 1 - Compute error probabilities

Computing Expected Profit

Step 2 - Determine error costs and benefits

Find the profit-maximizing threshold

- For each possible threshold, compute expected profit
- Then select threshold with highest expected profit

Cost-sensitive Learning Modified Objective Functions

- models with explicit cost function can be modified to incorporate classification cost e.g. logistic regression
- can affect optimization
 - e.g. cost-sensitive logistic regression is not convex
- not all models have a cost-sensitive implementation

Sampling Techniques

Sampling Techniques - Undersampling

- Undersampling randomly discards majority class observations to balance training sample
- PRO: Reduces runtime on very large datasets
- CON:
 Discards potentially important observations

Sampling Techniques - Oversampling

- Oversampling replicates observations from minority class to balance training sample
- PRO: Doesn't discard information
- CON: Likely to overfit
- Often better to use SMOTE

Sampling Techniques - SMOTE

- SMOTE Synthetic Minority Oversampling TEchnique
- Generates new observations from minority class

Sampling Techniques - SMOTE

SMOTE pseudocode

Sampling Techniques - SMOTE

- For each minority class observation and for each feature, randomly generate between it and any/all of its k-nearest neighbors
- Can be combined with undersampling and other techniques
- See also SMOTEBoosting and SMOTEBagging

Sampling Techniques - Distribution

What's the right amount of over-/under-sampling?

- If you know the cost matrix:
 - If CTP = CTN = 0,
 set target proportion = P(N) / P(P) = C(FP) / C(FN)
 - Can maximize profit curve over target proportion
- If you don't know the cost matrix:
 - No clear answer
 - ROC plot's AUC may be more useful

Cost Sensitivity vs Sampling

- Neither is strictly superior
- Oversampling tends to work better than undersampling on small datasets
- Some algorithms don't have an obvious cost-sensitive adaptation, requiring sampling

Evaluation Metrics Review

Confusion Matrix

	Predicted Positive	Predicted Negative
Actually	True	False
Positive	Positives	Negatives
Actually	False	True
Negative	Positives	Negatives

Classifier Metrics

Accuracy

$$\frac{TP+TN}{n}$$

True Positive Rate (Sensitivity/Recall)

$$\frac{TP}{P} = \frac{TP}{TP + FN}$$

True Negative Rate (Specificity)

$$\frac{TN}{N} = \frac{TN}{TN + FP}$$

Precision

$$\frac{TP}{TP + FP}$$

F1 Score

harmonic mean of precision and recall

$$F_1 = \frac{2*precision*recall}{precision+recall} = \frac{2}{\frac{1}{precision}+\frac{1}{recall}}$$

F_β Score

$$F_{\beta} = (1 + \beta^2) \frac{precision * recall}{\beta^2 precision + recall}$$

ROC Plot

- If classifier A's ROC curve is strictly greater than classifier B's, then classifier A is always preferred
- If two classifier's ROC curves intersect, then the choice depends on relative importance of sensitivity and specificity

ROC - Area Under Curve (AUC)

- equals the probability that the model will rank a randomly chosen positive observation higher than a randomly chosen negative observation
- useful for comparing different classes of models in general setting

Cost-sensitive Logistic Regression

Logistic regression's usual objective function:

$$\ln p(\vec{y}|X;\theta) = \sum_{i=1}^{n} (y_i \ln h_{\theta}(x_i) + (1 - y_i) \ln(1 - h_{\theta}(x_i)))$$

New objective function, representing expected cost:

$$J^{c}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \left(y_{i} (h_{\theta}(X_{i}) C_{TP_{i}} + (1 - h_{\theta}(X_{i})) C_{FN_{i}}) + (1 - y_{i}) (h_{\theta}(X_{i}) C_{FP_{i}} + (1 - h_{\theta}(X_{i})) C_{TN_{i}}) \right).$$

Cost-sensitive Logistic Regression

- Logistic regression goal: accurately estimate parameter of Bernoulli random variables
- Cost-sensitive logistic regression goal: minimize misclassification cost
- Both assume that observations are Bernoulli

Computing Expected Profit

Step 3 - Combine probabilities and payoffs

$$E[Profit] = P(Y,p) \cdot b(Y,p) + P(Y,n) \cdot c(Y,n) + P(N,p) \cdot c(N,p) + P(N,n) \cdot b(N,n)$$

$$= P(Y|p) \cdot P(p) \cdot b(Y,p) + P(Y|n) \cdot P(n) \cdot c(Y,n) + P(N|p) \cdot P(p) \cdot c(N,p) + P(N|n) \cdot P(n) \cdot b(N,n)$$

$$= P(p) \cdot [P(Y|p) \cdot b(Y,p) + P(N|p) \cdot c(N,p)] + P(n) \cdot [P(Y|n) \cdot c(Y,n) + P(N|n) \cdot b(N,n)]$$