

Lezione 06 - Sistemi aperti

Corso di Fisica Tecnica a.a. 2019-2020

*Prof. Gaël R. Guédon*Dipartimento di Energia, Politecnico di Milano

Obiettivi della lezione

- > Definire un sistema aperto
- > Ricavare le equazioni di bilancio nel ipotesi di regime stazionario
- Definire la macchine aperta, lo scambiatore di calore, il diffusore e la valvola di laminazione
- > Definire il **rendimento isoentropico** di una macchina aperta

Il sistema aperto

<u>Sistema di riferimento **Euleriano**</u>: il volume di controllo è fisso rispetto ad un sistema di riferimento inerziale.

Il sistema aperto

- Per semplicità considereremo una sola sezione di ingresso ed una sola sezione di uscita
- Il sistema è percorso da flussi monodimensionali:
 - sono presenti condizioni di equilibrio termodinamico sulle sezioni di ingresso e di uscita
 - > non viene fatta alcuna ipotesi in merito alla trasformazione termodinamica che il fluido subisce all'interno del sistema
- E' un sistema fluente e di conseguenza è necessario introdurre la variabile tempo (t) e di conseguenza i flussi di massa, di energia, di entropia, ecc

m Ė Ü H Š Q L

Bilancio di massa

$$\frac{dM}{dt} = \sum_{k} \dot{m}_{k}^{\leftarrow}$$

$$\frac{dM}{dt} = \dot{m}_i - \dot{m}_u$$

Equazione di continuità

$$\dot{m} = \rho w \Omega$$

 ρ : massa volumica

w: velocità media

 Ω : area della sezione di passaggio

Bilancio di energia

$$\frac{dE}{dt} = \dot{E}^{\leftarrow}$$

$$\dot{E}^{\leftarrow} = \dot{Q}^{\leftarrow} - \dot{L}^{\rightarrow} + \sum_{k} \dot{E}_{m,k}^{\leftarrow} + \text{sorgenti}$$

- Calore scambiato
- Lavoro scambiato
- Energia associata al trasporto di massa
- Energia dovuta ad una sorgente

Calore scambiato

- \succ Calore scambiato per unità di tempo attraverso le sezioni non attraversate dalla massa: \dot{Q}^{\leftarrow}
- Calore scambiato per unità di tempo attraverso le sezioni attraversate dalla massa (ingresso e uscita): trascurabile

Lavoro scambiato

- \succ Lavoro scambiato per unità di tempo attraverso le sezioni non attraversate dalla massa: **lavoro di elica** $-\dot{L}_e^{\rightarrow}$
- \succ Lavoro scambiato per unità di tempo attraverso le sezioni attraversate dalla massa (ingresso e uscita): **lavoro di pulsione** \dot{L}_{P}^{\leftarrow}

Lavoro di pulsione

➤ E' il lavoro necessario per immettere nel sistema la massa che il sistema scambia con l'esterno

Si consideri un sistema $V + V_m$ occupato dalla massa $M + M_i$. Se si immette la massa M_i nel volume V il sistema complessivo subisce una variazione (riduzione) di volume mantenendo costante la massa.

Lavoro di pulsione

 \triangleright Questo è un sistema chiuso che scambia con l'esterno un lavoro L_P^{\leftarrow} :

$$L_P^{\leftarrow} = -\int_{V+V_m}^{V} PdV = PV_m$$

$$L_P^{\leftarrow} = M_i P v_i$$

Questo termine di lavoro compare per ogni sezione di ingresso e di uscita della massa

Energia associata al trasporto di massa

- \triangleright Nel valutare l'energia entrante nel sistema occorre tenere presente che la massa che attraversa la superficie di controllo trasporta con sé energia (E_m)
- Risulta somma delle energie associate ai flussi di massa (energia interna, energia potenziale ed energia cinetica):

$$\dot{E}_m = \sum_{k} \dot{m}_k^{\leftarrow} \left(u + gz + \frac{w^2}{2} \right)_{k}$$

Termini sorgenti

- Effetto joule (es. fornello a induzione)
- Reazioni chimiche (es. combustione)
- Reazioni nucleari
- Radiazioni (es. microonde)
- ➤ Ecc

Bilancio energetico

$$\frac{dE}{dt} = \dot{E}_m + \dot{Q}^{\leftarrow} - \dot{L}_e^{\rightarrow} + \sum_{k} (\dot{L}_P^{\leftarrow})_k$$

ovvero:

$$\frac{dE}{dt} = \dot{m}_{i} \left(u + gz + \frac{w^{2}}{2} \right)_{i} - \dot{m}_{u} \left(u + gz + \frac{w^{2}}{2} \right)_{u} + \dot{Q}^{\leftarrow} - \dot{L}_{e}^{\rightarrow} + \dot{m}_{i} (Pv)_{i} - \dot{m}_{u} (Pv)_{u}$$

$$(u + Pv)_{k} = (h)_{k}$$

$$\frac{dE}{dt} = \sum_{k} \dot{m}_{k}^{\leftarrow} \left(h + gz + \frac{w^{2}}{2} \right)_{k} + \dot{Q}^{\leftarrow} - \dot{L}_{e}^{\rightarrow}$$

Bilancio di entropia

In modo analogo è possibile ricavare l'equazione di bilancio entropico:

$$\frac{dS}{dt} = \sum_{k} \dot{m}_{k}^{\leftarrow} s_{k} + \dot{S}_{Q}^{\leftarrow} + \dot{S}_{irr}$$

Regime stazionario

Tra le situazioni che si presentano più frequentemente in ingegneria vi sono le cosiddette condizioni di stazionarietà o di regime permanente:

$$\frac{dM}{dt} = 0 \qquad \frac{dE}{dt} = 0 \qquad \frac{dS}{dt} = 0$$

$$\dot{m}_i^{\leftarrow} = -\dot{m}_u^{\leftarrow} = \dot{m}$$

$$\dot{m} \left[(h_i - h_u) + g(z_i - z_u) + \frac{w_i^2 - w_u^2}{2} \right] + \dot{Q}^{\leftarrow} - \dot{L}_e^{\rightarrow} = 0$$

$$\dot{m}(s_i - s_u) + \dot{S}_o^{\leftarrow} + \dot{S}_{irr} = 0$$

Macchina aperta

E' un **dispositivo adiabatico** destinato a **scambiare lavoro** per il quale si ipotizzano trascurabili le variazioni di energia potenziale e di energia cinetica tra le sezioni di ingresso e di uscita.

il fluido di lavoro è un **gas**

il fluido di lavoro è un **liquido**

$$\dot{m}(h_i - h_u) - \dot{L}_e^{\rightarrow} = 0 \qquad \qquad \dot{m}(s_i - s_u) + \dot{S}_{irr} = 0$$

Scambiatore di calore

E' un dispositivo destinato a **scambiare calore** e che **non scambia lavoro** per il quale si ipotizzano trascurabili le variazioni di energia potenziale e di energia cinetica tra le sezioni di ingresso e di uscita.

$$\dot{m}(h_i - h_u) + \dot{Q}^{\leftarrow} = 0$$

$$\dot{m}(s_i - s_u) + \dot{S}_Q^{\leftarrow} + \dot{S}_{irr} = 0$$

Diffusore (w \) e ugello (w /)

I diffusori e gli ugelli sono sistemi aperti stazionari che operano **senza scambio di lavoro né calore** per i quali si ipotizzano trascurabili le variazioni di energia potenziale tra le sezioni di ingresso e di uscita.

$$\left[(h_i - h_u) + \frac{w_i^2 - w_u^2}{2} \right] = 0$$

$$\dot{m}(s_i - s_u) + \dot{S}_{irr} = 0$$

Valvola di laminazione

E' un **dispositivo adiabatico** che **non scambia lavoro** per il quale si ipotizzano trascurabili le variazioni di energia potenziale e di energia cinetica tra le sezioni di ingresso e di uscita. Si ottiene un processo detto di **laminazione isoentalpica**.

$$(h_i - h_u) = 0$$

$$\dot{m}(s_i - s_u) + \dot{S}_{irr} = 0$$

Turbina

Si chiama rendimento isoentropico di una **macchina motrice aperta** (turbina) il rapporto fra la potenza realmente ottenuta e la potenza massima ottenibile in condizioni ideali (trasformazione del fluido isoentropica e quindi adiabatica reversibile) a parità di condizioni in ingresso e a parità di pressione di fine espansione.

$$\eta_T = \frac{\dot{L}_{reale}^{\rightarrow}}{\dot{L}_{ideale}^{\rightarrow}} = \frac{(h_1 - h_2)}{(h_1 - h_2)}$$

Compressore e pompa

Si chiama rendimento isoentropico di una **macchina operatrice aperta** (compressore e pompa) il rapporto fra la potenza minima spesa in condizioni ideali (trasformazione del fluido isoentropica e quindi adiabatica reversibile) e la potenza realmente spesa a parità di condizioni in ingresso e a parità di pressione di fine espansione.

$$\eta_C = \frac{\dot{L}_{ideale}^{\rightarrow}}{\dot{L}_{reale}^{\rightarrow}} = \frac{(h_1 - h_2)}{(h_1 - h_2)}$$

Si consideri il moto stazionario di un fluido in un tratto di condotta infinitesimo con l'ipotesi che lo scambio di calore con l'esterno sia realizzato in modo reversibile. Dopo opportuni passaggi e trascurando le variazioni di energia cinetica e potenziale, il bilancio energetico ed entropico per unità di massa sono:

$$\begin{aligned} -dh + \delta q_{rev}^{\leftarrow} - \delta l_e^{\rightarrow} &= 0 \\ -ds + \frac{\delta q_{rev}^{\leftarrow}}{T} + ds_{irr} &= 0 \\ \text{e quindi} \qquad Tds &= \delta q_{rev}^{\leftarrow} + Tds_{irr} \end{aligned}$$

Ricordando che dh = du + vdP + Pdv (definizione) e $du = \delta q^{\leftarrow} - \delta l^{\rightarrow}$ (primo principio sistema chiuso)

Essendo u funzione di stato posso considerare una trasformazione reversibile e scrivere du = Tds - Pdv, da cui otteniamo dh = Tds + vdP

Si ottiene quindi:

$$dh = \delta q_{rev}^{\leftarrow} - \delta l_e^{\rightarrow}$$
$$dh = \delta q_{rev}^{\leftarrow} + T ds_{irr} + v dP$$

E quindi:

$$\delta l_e^{\rightarrow} = -vdP - Tds_{irr}$$

Integrando fra la sezione di ingresso e quella di uscita:

$$l_e^{\rightarrow} = -\int_i^u v dP - \int_i^u T ds_{irr}$$

 l_{rev}^{\rightarrow}

Energia dissipata per irreversibilità interna (in generale porta a un incremento di T)

In generale l'irreversibilità interna associata al moto si traduce in una spesa energetica per movimentare il fluido che può essere espressa come

$$\dot{L} = \dot{V}\Delta P$$

 \dot{L} Potenza meccanica necessaria a movimentare il fluido (W)

 $\dot{V} = w\Omega$ Portata volumetrica (m^3/s)

 ΔP Perdite di carico (Pa)

Le perdite di carico possono avere diverse origine: attrito, cambi di direzione, cambi di sezione, ostacoli, ecc

Nel caso di perdite di carico concentrate:

$$\Delta P = K \rho \frac{w^2}{2}$$

con la costante di proporzionalità K che dipende dalla singolarità geometrica e che è determinata sperimentalmente. Qualche esempio nella seguente tabella:

	Restringimento brusco	Allargamento brusco	Gomito a 40°	Gomito a 60°	Gomito a 90°	Curva a 90°	Diramaz. a T (per entrambi i flussi)	Diramaz. a gomito	Tratto che segue la diramaz.
		—			Ţ	J.	V1 V2	V ₁ V ₂	<u></u> ,
K	0,5	1	0,14	0,36	1	0,5	3	1,5	1

Nel caso di perdite distribuite:

$$\Delta P = f \frac{L}{D} \rho \frac{w^2}{2}$$

ove L e D rappresentano rispettivamente la lunghezza ed il diametro del condotto. Il coefficiente adimensionale f è detto fattore di attrito (di Darcy) ed è funzione delle caratteristiche di moto del fluido, in particolare del numero di Reynolds ($Re = \rho w D/\mu$).

Per un moto laminare (Re < 2000)

$$f = \frac{64}{Re}$$

Per un moto turbolento (Blausius)

$$f = \frac{0.3164}{Re^{0.25}}$$

Compressore alternativo ideale

Diagramma della macchina ideale

$$l_{ca}^{\rightarrow} = -\int_{2}^{3} v dP$$

Pompa ideale

