Inhoudsopgave

Krachten, momenten, spanningne en rekken		
1.1	STAT	ICA EN EVENWICHT VAN CONSTRUCTIES
	1.1.1	Types ondersteuningen
	1.1.2	Evenwicht van een constructie
1.2	INTU	ÏtIEF BEGRIP VAN SPANNINGEN EN REKKEN
1.3	SPAN	NINGEN
	1.3.1	Definitie
	1.3.2	Verband tussen spanningsvector $\vec{\Phi}^{(n)}$ en spanningstensor $[\sigma]$
	1.3.3	Vergelijkingen van het evenwicht
	1.3.4	Transformatie van coördinaten en hoofdrichtingen

INHOUDSOPGAVE

Hoofdstuk 1

Krachten, momenten, spanningne en rekken

1.1 STATICA EN EVENWICHT VAN CONSTRUCTIES

1.1.1 Types ondersteuningen

1.1.2 Evenwicht van een constructie

$$\sum \mathbf{F} = 0$$
$$\sum \mathbf{M}_O = 0$$

1.2 INTUÏtIEF BEGRIP VAN SPANNINGEN EN REKKEN

$$\sigma = \frac{F}{A_0}$$

$$\varepsilon = \frac{\Delta L}{L_0}$$

$$\sigma = E \cdot \varepsilon$$

1.3 SPANNINGEN

1.3.1 Definitie

De spanningsvector

$$\vec{\Phi}^{(n)} = \lim_{\Delta A \to 0} \frac{\Delta F}{\Delta A} \tag{1.1}$$

De normaalspanning

$$\sigma = \lim_{\Delta A \to 0} \frac{\Delta F_n}{\Delta A} \tag{1.2}$$

De schuifspanning

$$\tau = \lim_{\Delta A \to 0} \frac{\Delta F_t}{\Delta A} \tag{1.3}$$

De spanningstensor

$$[\sigma] = \begin{bmatrix} \sigma_{xx} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_{yy} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_{zz} \end{bmatrix}$$
(1.4)

1.3.2 Verband tussen spanningsvector $\vec{\Phi}^{(n)}$ en spanningstensor $[\sigma]$

Het verband tussen de spanningsvector en spanningstensor

$$\sigma_{ij} \cdot n_i = \phi_j^{(n)} \quad (i, j = x, y, z)$$

$$\tag{1.5}$$

1.3.3 Vergelijkingen van het evenwicht

De vergelijkingen van het evenwicht

$$\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} + F_x = 0$$

$$\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_{yy}}{\partial y} + \frac{\partial \tau_{zy}}{\partial z} + F_y = 0$$

$$\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \sigma_{zz}}{\partial z} + F_z = 0$$
(1.6)

Wet van de wederkerigheid der schuifspanningen

$$\tau_{xy} = \tau_{yx} \tag{1.8}$$

$$\tau_{xz} = \tau_{zx} \tag{1.9}$$

$$\tau_{yz} = \tau_{zy} \tag{1.10}$$

(1.11)

(1.7)

1.3.4 Transformatie van coördinaten en hoofdrichtingen

$$[\sigma'] = [a] \cdot [\sigma) \cdot [a]^{\top} \tag{1.12}$$

met

$$a_{rk} = \vec{e}'_r \cdot \vec{e}_k \quad r, k = x, y, z \tag{1.13}$$

Hoofdstuk 2

Tweedimensionel problemen