Modeling of light propagation through smectic waveguides

Miha Čančula¹ Miha Ravnik¹ Slobodan Žumer^{1,2}

¹Faculty of Mathematics and Physics, University of Ljubljana

²Jožef Stefan Institute, Ljubljana

Motivation

- Light guiding structure play an important role in modern communication systems
- Unique optical properties of liquid crystals make them extremely useful for guiding light
- Smectic fibres with radial director can be created in a laboratory using 8CB and a surfactant[?]
- Point defect in a nematic droplet turns a Gaussian beam into Laguerre-Gaussian – is there a similar effect caused by the line defect in a fibre?

Methods

- ullet FDTD method in 3D with anisotropic arepsilon
- PBC in z direction infinite cylindrical waveguide
- Observe propagation of Gaussian laser pulse
- Staggered grid, adapted for dielectric anisotropy

Left: Yee lattice, optimized for diagonal dielectric tensor. Right: The lattice we used, suitable for full anisotropic ε . In both cases \vec{E} and \vec{H} are known at different times

 Cylindrical waveguide with a radial director profile and a singular disclination line along its axis

Results

We showed that a Gaussian beam entering a fibre quickly turns into a Laguerre-Gaussian beam, and then into something else.