Scilab Textbook Companion for Advanced Strength and Applied Elasticity by A. C. Ugural and S. K. Fenster¹

Created by
Reshma Sunil Konjari
MTech
Electrical Engineering
VIT University
College Teacher
None
Cross-Checked by
None

February 25, 2015

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Advanced Strength and Applied Elasticity

Author: A. C. Ugural and S. K. Fenster

Publisher: Prentice Hall

Edition: 2

Year: 1981

ISBN: 0713134364

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		
1	Analysis of Stress	6
2	Strain and stress strain relations	8
3	Two dimensional problems in elasticity	11
4	Mechanical behaviour of materials	13
5	Bending of beams	21
6	Torsion of prismatic bars	2 5
7	Numerical methods	28
8	Axisymmetrically loaded members	39
9	Beams on elastic foundations	46
11	Elastic stability	48
12	Plastic behavior of solids	50

List of Scilab Codes

Exa 1.1	Find stress
Exa 1.2	Normal and shear stresses
Exa 2.1	Principal strains
Exa 2.2	Principal stresses and their directions
Exa 3.5	Size of the contact area and maxi contact pressure 1
Exa 4.1	Calculate diameter
Exa 4.3	Calculate limiting torque
Exa 4.4	Determine reversed axial load
Exa 4.5	Compute the value of p
Exa 4.6	Determine fatigue
Exa 4.7	Determine instantaneous maxi deflection
Exa 5.1	Determine neutral axis
Exa 5.4	Determine flange
Exa 5.5	Determine area and tangential stress
Exa 6.2	Shearing stress and angle of twist
Exa 6.4	Maxi longitudinal stress and angle of twist
Exa 7.3	Find shearing stress
Exa 7.6	Determine moments of the supports of the beam 2
Exa 7.7	Determine stiffness matrix and nodal force matrix 3
Exa 7.8	Calculate deflections
Exa 7.9	Calculate finite element
Exa 8.1	Determine maxi internal and external pressure
Exa 8.2	Calculate internal pressure
Exa 8.3	Distribution of tangential stress
Exa 8.4	Determine shrinking allowance and maxi stress
Exa 8.5	Determine maxi stress and radial displacement 4
Exa 8.6	Distribution stress and disk profile
Eva 9.1	Calculate may deflections and force per unit length

Exa 9.4	Find maxi moment and deflection	47
Exa 11.1	Buckling load of the column	48
Exa 12.1	Determine maxi plastic stress and strain	50

Analysis of Stress

Scilab code Exa 1.1 Find stress

```
1 //Mohr's circle
3 clc;
4 \text{ sigma} = ((40+80)/2)
5 disp(sigma, "center of the circle in MPa = ")
7 //solution a
8 x = ((80-40)^2);
9 y = 30^2;
10 sigma1 = 60 + sqrt((.25*x) + y)
11 disp(sigma1, "maxi pricipal stress in MPa = ");//
      displaying result
12 sigma2=60-sqrt((.25*x)+y)
13 disp(sigma2, "mini pricipal stress in MPa = ");//
      displaying result
14 theta1=((atand(30/20))/2)
15 disp(theta1, "pricipal stresses in degree");//
      displaying result
16 theta2=(((atand(30/20))+180)/2)
17 disp(theta2, "pricipal stresses in degree");//
      displaying result
```

```
18
19 //solution b
20 tau = sqrt((.25*x)+y)
21 disp(tau,"maxi shearing stress in MPa = ");//
      displaying result
22 theta3=theta1+45
23 disp(theta3, "stress in MPa = "); // displaying result
24 theta4=theta2+45
25 disp(theta4, "stress in MPa = "); // displaying result
26
27 //final solution in matrix form
28 p = [80 30 ; 30 40]
29 disp(p)
30 q = [sigma1 0 ; 0 sigma2]
31 disp(q)
32 r=[sigma -tau ; -tau sigma]
33 \text{ disp}(r)
```

Scilab code Exa 1.2 Normal and shear stresses

```
//Mohr's circle

clc;
radius=((14+28)/2)
disp(radius, "radius of the circle in degree = ")
sigma1=(7+radius *cosd(60))
disp(sigma1," the circle in MPa = ")
sigma2=(7-radius *cosd(60))
disp(sigma2," the circle in MPa = ")
tau1=radius*sind(60)
disp(tau1," orientation of the stresses in MPa = ")
```

Strain and stress strain relations

Scilab code Exa 2.1 Principal strains

```
1 clc;
3 radius=((sqrt(195^2+130^2))*10^(-6));
4 disp(radius, "radius of the circle in degree = ")
5 \text{ theta1} = (\text{atand}(130/195))
6 disp(theta1, "pricipal stresses in degree");//
      displaying result
7 epsilonx = 510*10^{(-6)}
8 epsilony=120*10^{(-6)}
9 epsilon=(epsilonx+epsilony)/2
10 \operatorname{disp}(\operatorname{epsilon}, \operatorname{"distance"})
11
12 //solution a
13 angle=60- theta1
14 disp(angle, "angle of ACA1 in degree = ")//
      displaying result
15 epsilonx1=epsilon+radius*cosd(26.3)
16 disp(epsilonx1, "strains in x axis=")// displaying
      result
```

```
17 epsilony1=epsilon-radius*cosd(26.3)
18 disp(epsilony1, "strains in y axis=")// displaying
      result
19 gammaxy = -2*(radius*sind(26.3))
20 disp(gammaxy, "shear strain")// displaying result
21
22 //solution b
23 epsilon1=epsilon+radius
24 disp(epsilon1, "strains in x axis=")// displaying
      result
25 epsilon2=epsilon-radius
26 disp(epsilon2, "strains in x axis=")// displaying
      result
27
28 //solution c
29 gammamax = -+468*10^{(-6)}
30 disp(gammamax, "maxi shear stress=")
```

Scilab code Exa 2.2 Principal stresses and their directions

```
1 clc;
2
3 epsilon0=190*10^(-6)
4 epsilon60=200*10^(-6)
5 epsilon120=-300*10^(-6)
6 E=200// GPa
7 v=0.3
8 epsilonx=epsilon0
9 disp(epsilonx,"value of epsilonx is=")
10
11 // epsilon60=((epsilonx+epsilony)/2)-((epsilonx-epsilony)/4)+(gammaxy*sqrt(3))/4 eqn 1
12 // epsilon120=((epsilonx+epsilony)/2)-((epsilonx-epsilony)/4)-(gammaxy*sqrt(3))/4 eqn 2
13
```

```
14 epsilony = (2*(epsilon60+epsilon120)-epsilon0)/3
15 disp(epsilony, "value of epsilony is=")
16 gammaxy=(2/sqrt(3))*(epsilon60-epsilon120)// from
     eqn 1 and eqn 2
17 disp(gammaxy, "value of gammaxy is=")
18 epsilon1=((epsilonx+epsilony)/2)+sqrt(((epsilonx-
     epsilony)/2)^2+(gammaxy/2)^2)// epsilony value is
       in negative so the sign changes in the equ
19 disp(epsilon1, "value of epsilon1 is=")
20 epsilon2=((epsilonx+epsilony)/2)-sqrt(((epsilonx-
     epsilony)/2)^2+(gammaxy/2)^2)//epsilony value is
     in negative so the sign changes in the equ
21 disp(epsilon2, "value of epsilon2 is=")
22
23 gammamax = (2*10^-6)*sqrt(((epsilonx-epsilony)/2)^2+(
     gammaxy/2)^2
24 disp(gammamax,"max shear strain is=")
25 thetap=atand(577/320)/2
26 disp(thetap, "orientations of principal axes is=")
     // or
27 \text{ thetap1=atand}(577/320)*2
28 disp(thetap1, "orientations of principal axes is=")
29 sigma1 = (200*10^9/(1-0.09))*(epsilon1+0.3*epsilon2)
30 disp(sigma1, "plane stresss is Pa= ")
31 \text{ sigma2} = (200*10^3/(1-0.09))*(epsilon2+0.3*epsilon1)
32 disp(sigma2, "plane stresss is MPa=")
33
34 \quad taumax = (200*10^9/(2*(1+0.3)))*gammamax
35 disp(taumax,"plane stresss is MPa=")
```

Two dimensional problems in elasticity

Scilab code Exa 3.5 Size of the contact area and maxi contact pressure

```
1 clc;
3 E = 210 //GPa
4 v = 0.3
5 \text{ r1=0.4} / \text{m radius}
6 \text{ r2=0.3} //\text{m cross radius}
7 P=90 //kN compression load
8 1/r1'==1/r2'==0
10 m=4/((1/r1)+(1/r2))
11 disp(m)
12 A = (1/2) * ((1/r1) + (1/r2))
13 disp(A)
14 B=(1/2)*((1/r1)-(1/r2))
15 disp(B)
16 coss = (((1/r1) - (1/r2))/((1/r1) + (1/r2)))
17 disp(coss, "cos aplha is=")
18 n = (4 * E * 10^9) / (3 * (1 - v^2))
19 disp(n,"n is ")
```

```
20  s=acosd(coss)
21  disp(s," s is alpha value = ") // ans is 81.79 degree
        but here since cosa is in negative we get ans as
        98.21
22  ca=1.1040 // from the interpolating table
23  cb=0.9112 // from the interpolating table
24  a=ca*(90000*m/n)^(0.33)
25  disp(a,"semiaxes of the elliptical contact area in
        meter is= ")
26  b=cb*(90000*m/n)^(0.33)
27  disp(b,"semiaxes of the elliptical contact area in
        meter is= ")
28  sigmac=1.5*(90000/(%pi*a*b))
29  disp(sigmac,"max contact pressure in Pa is= ") //
        text book ans is wrong
```

Mechanical behaviour of materials

Scilab code Exa 4.1 Calculate diameter

```
1 clc;
 3 sigmayp=350 //MPa
 4 \text{ sigma3=0}
 5 \text{ M=8} //\text{kN}
 6 \text{ Mt} = 24 / \text{kNm}
 7 N=2
 8 v = 0.3
10 // sigma = My/I ==32M/\%pid^3
11 // tau = Mt*r/J == 16Mt/\%pid^3
12 // \operatorname{sigma1} = (16 * (M + \operatorname{sqrt} (M^2 + Mt^2))) / (\% \operatorname{pi} * d^3)
13 // \operatorname{sigma2} = (16 * (M - \operatorname{sqrt} (M^2 + Mt^2))) / (\% \operatorname{pi} * d^3)
14
15 //solution a: max principal stress theory
16 //(16*(M+sqrt(M^2+Mt^2)))/(\%pi*d^3)=sigmayp/N
17
18 a = (16*(M+sqrt(M^2+Mt^2)))/\%pi
19 disp(a)
```

```
20 b = sigmayp * 10^6/N
21 disp(b)
22 d=(a/b)^{(1/3)}
23 disp(d, "diameter of the bar in meter is=")
24
25 //solution b:max shearing stress theory
26
27 c = (32*sqrt(M^2+Mt^2))/\%pi
28 disp(c)
29 d=(c/b)^{(1/3)}
30 disp(d, "diameter of the bar in meter is=")
31
32 //solution c:max principal strain theory
33 // epsilon1 = (sigma1 - v(sigma2 + sigma3))/E = epsilonyp/N =
      sigmayp/EN
                     Or
34 / \operatorname{sigma1-v}(\operatorname{sigma2+sigma3}) = b
                                      given
35 / sigma1 = b + v (sigma2 + sigma3)
                                     substituting the
      values of the sigma 1,2 and 3 we get
36 //(16*(M+sqrt(M^2+Mt^2)-vM-v*sqrt(M^2+Mt^2))))/(\%pi*d
      ^{3} = b
37 e = (16*(M+sqrt(M^2+Mt^2)-v*M-v*sqrt(M^2+Mt^2)))/\%pi
38 disp(e)
39 d=(e/b)^{(1/3)}
40 disp(d, "diameter of the bar in meter is=")
41
42 //solution d:max energy of distortion theory
43
44 f = (16*sqrt(4*M^2+3*Mt^2))/\%pi
45 disp(f)
46 d=(f/b)^{(1/3)}
47 disp(d, "diameter of the bar in meter is=")
```

Scilab code Exa 4.3 Calculate limiting torque

```
1 clc
```

```
2
3 sigmau1=300 //MPa
4 sigmau2=700 //MPa
5 b=0.105 / m outer diameter
6 \text{ a=0.100} / \text{m inner diameter}
8 / \operatorname{sigma1} = (-\operatorname{sigma2}) = \operatorname{tau}
9
10 \text{ sigma3=0}
11
12 / Mt = J * tau / r = (\%pi * (b^2 - a^2)) / 2 * b
13 //Mt = ((\%pi * (b^4 - a^4)) / (2*b)) * tau
                                                     equation a
14 q = (\%pi*(b^4-a^4))/(2*b)
15
16 //solution a: max principal stress theory
17 tau=sigmau1
18 Mt=q*tau*10^6
19 disp(Mt, "max principal stress in Nm is=")
20
21 //solution b:max shearing stress theory
22 // |\operatorname{sigma1} - \operatorname{sigma2}| = \operatorname{sigmau1}
23 // 2*sigma1==sigmau1==2*tau
24
25 \text{ Mt} = q * tau * 10^6
26 disp(Mt, "max shearing stress in Nm is=")
27
28 //solution c:Coulomb- mohr theory
29 / (tau/sigmau1) - (-tau/sigmau2) = 1
30 tau=1*((sigmau1*sigmau2)/(sigmau1+sigmau2))
31 disp(tau, "tau in MPa is=")
32 Mt=q*tau*10^6
33 disp(Mt, "Coulomb- mohr in Nm is=")
```

Scilab code Exa 4.4 Determine reversed axial load

```
1 clc
2
3 a=0.05 // m
4 Fm=90 //kN
5 \text{ sigmacr=210} // \text{MPa}
6 sigmayp=280 // MPa
8 // sigmaa = Ma * c / I
                          equation 1
9 / Ma = 0.025 * Fa
10 c = 0.025
11 I=(a^4)/12
12 disp(I)
13 // sigmaa = ((0.025*Fa)*c)/I substituting the values
14
15
16 / sigmam = Fm/A
                              equation 2
17 sigmam = Fm/(a*a)
18 disp(sigmam, "in kilo Pa is=")
19
20 //(((1200*Fa)/sigmacr)+(sigmam/sigmayp))=1
21 Fa=(1-(sigmam/sigmayp))*(sigmacr/1200)
22 disp(Fa, "load Fa in N is=")
                                 //wrong ans in textbook
```

Scilab code Exa 4.5 Compute the value of p

```
1 clc
2
3 r=0.04 //m
4 t=5 //mm
5 sigmae=250 //MPa
6 sigmay=300 //MPa
7
8 //sigmathetamax=(p*r)/t =8*p max values of tangential stresses
```

```
9 // sigmathetamin = ((-p/4)*r)/t = -2*p min values of
       tangential stresses
10 / \operatorname{sigmazamax} = (p * r) / 2 * t = 4 * p
                                         axial principal
       stresses
11 // sigmazmin = ((-p/4)*r)/2*t = -p
12
13 //sigmathetaa=(sigmathetamax-sigmathetamin)/2= 5p
           alternating and mean stresses
14 //sigmathetam=(sigmathetamax+sigmathetamin)/2= 3p
15 / \sin \alpha z = (\sin \alpha z - \sin \alpha z - \sin \alpha z - \sin \alpha z) / 2 = 2.5 p
16 // sigmazm = (sigmazamax + sigmazmin)/2 = 1.5p
17
18 // sqrt (sigmathetaa^2 - sigmathetaa * sigmaza + sigmaza^2) =
       sigmaea
19 // sqrt (sigmathetam^2-sigmathetam*sigmazm+sigmazm^2)=
       sigmaem
20
21 / \operatorname{sqrt} (25 \, \text{p}^2 - 12.3 \, \text{p}^2 + 6.25 \, \text{p}^2) = \operatorname{sigmaea}
22 / sqrt(9p^2-4.5p^2+2.25p^2) = sigmaem
       solving this equation we get
23 sigmaea=4.33 //p
24 \text{ sigmaem} = 2.60 //p
25
26 p=1/((sigmaea/sigmae)+(sigmaem/sigmay))
27 disp(p," the value of p in MPa is=")
```

Scilab code Exa 4.6 Determine fatigue

```
1 clc
2
3 a=[700 14 0; 14 -350 0; 0 0 -350]
4 disp(a)
5 c=[-660 -7 0; -7 -350 0; 0 0 -350]
6 disp(c)
7 sigmau=2400 //MPa
```

```
8 K=1
9 \text{ sigmae=800 } / \text{MPa}
10 Nf=1 // \text{cycles} for SAE
11 Nff=10^3 //cycles for Gerber
12 Ne=10^8 // \text{cycles}
13
14 \text{ sigmaxa} = (700+660)/2
15 disp(sigmaxa," alternating and mean values of
      stresses in MPa is=")
16 \text{ sigmaxm} = (700-660)/2
17 disp(sigmaxm, "alternating and mean values of
      stresses in MPa is=")
18 sigmaya = (-350+350)/2
19 disp(sigmaya," alternating and mean values of
      stresses in MPa is=")
20 \text{ sigmaym} = (-350-350)/2
21 disp(sigmaym," alternating and mean values of
      stresses in MPa is=")
22 \text{ sigmazm} = (-350-350)/2
23 disp(sigmazm, "alternating and mean values of
      stresses in MPa is=")
24 \text{ tauxya} = (14+7)/2
25 disp(tauxya," alternating and mean values of stresses
       in MPa is=")
26 \text{ tauxym} = (14-7)/2
27 disp(tauxym, "alternating and mean values of stresses
       in MPa is=")
28
29 sigmaea=sqrt(((sigmaxa-sigmaya)^2+(sigmaya-sigmaxa)
      ^2+6*(tauxya)^2)/2)
30 disp(sigmaea, "in MPa is =")
31 sigmaem=sqrt(((sigmaxm-sigmaym)^2+(sigmaym-sigmaxm)
      ^2+6*(tauxym)^2)/2)
32 disp(sigmaem, "in MPa is=")
33
34 //solution a:
35 sigmacr=sigmaea/(1-(sigmaem/2400))
36 disp(sigmacr)
```

```
37 b=log(sigmau/sigmae)/log(1/Ne)
38 disp(b)
39
40 Ncr=1*(sigmacr/2400)^(1/b)
41 disp(Ncr,"in cycles is=")
42
43 //solution b:
44 sigmacr=sigmaea/(1-(sigmaem/sigmau)^2)
45 disp(sigmacr,"in MPa is=")
46 b=log(0.9*2400/sigmae)/log(Nff/Ne)
47 disp(b)
48
49 Ncr=Nff*(sigmacr/(0.9*2400))^(-11.587)
50 disp(Ncr,"in cycles is=")
```

Scilab code Exa 4.7 Determine instantaneous maxi deflection

```
1 clc
3 \text{ W} = 180 / N
4 h=0.1 //m
5 L=1.16 / m
6 \text{ w=0.025 } / \text{m}
7 d=0.075 / m
8 E = 200 //GPa
9 k = 180 / kN/m
10
11 I=w*d^3
12 disp(I)
13 // \det t \operatorname{ast} = (W*L^3)/(48*E*I)
                                           equation 1
14 deltast = (W*L^3*12)/(48*E*10^9*I)
15 disp(deltast, "deflection of a point in meter is=")
16
17 / deltastmax=Mc/I
                                           equation 2
18 deltastmax = (W*L*12*0.0375)/(4*I)
```

```
19 disp(deltastmax, "deflection of a point in Pa is=")
20
21 //solution a:
22 a=1+sqrt(1+((2*h)/deltast))
23 disp(a, "imapet factor is=")
24 deltamax=deltast*a
25 disp(deltamax, "in meter is =")
26 sigmamax=deltastmax*a
27 disp(sigmamax, "in Pa is=")
28
29 //solution b:
30 \text{ deltast=deltast+}(90/180000)
31 disp(deltast," static deflection of the beam in meter
       is = ")
32 \ a=1+sqrt(1+((2*h)/deltast))
33 disp(a, "imapet factor is=")
34 deltamax=deltast*a
35 disp(deltamax, "in meter is =")
36 \text{ sigmamax=deltastmax*a}
37 disp(sigmamax, "in Pa is=")
```

Bending of beams

Scilab code Exa 5.1 Determine neutral axis

```
1 clc
2
3 \text{ Mz} = 11000 / \text{Nm}
4 A1=0.13*0.02 //m
5 \text{ A2=0.15*0.02 } / \text{m}
6 z1=0.01 /m
7 z2=0.075 / m
8 \text{ yA} = 0.043 \text{ //m}
9 \text{ zA} = -0.106 / \text{m}
10 yB = -0.063 / m
11 zB=0
12
13 //location of the centroid
14 z = (A1*z1+A2*z2)/(A1+A2)
15 disp(z,"in meter is= ")
16
17 Iz = (0.02*(0.13)^3)/12+ (0.13*0.02*(0.04)^2)
      +(0.15*(0.02)^3)/12+ (0.15*0.02*(0.035)^2)
18 disp(Iz, "Iz in meter 4 is=")
19 Iy = (0.02*(0.13)^3)/12+ (0.13*0.02*(0.04)^2)
      +(0.15*(0.02)^3)/12+(0.15*0.02*(0.035)^2)
```

```
20 disp(Iy, "Iy in meter 4 is=")
21 Iyz=0+A1*0.04*(-0.035)+0+A2*(-0.035)*0.03
22 disp(Iyz, "Iyz in meter 4 is=")
23 // \text{thetap} = (\text{atand}((-2*Iyz))/(Iz-Iy)))/2
24 // disp(thetap)
25 I1=(Iz+sqrt(0+(6.79*10^-6)^2))
26 disp(I1,"I1 in meter 4 is=")
27 I2=(Iz-sqrt(0+(6.79*10^-6)^2))
28 disp(I2, "I2 in meter 4 is=")
29 \text{ My1}=11000*sind(45)
30 disp(My1, "My1 in Nm is")
31 \text{ Mz1}=11000*sind(45)
32 disp(Mz1, "Mz1 in Nm is")
33
34 sigmaxA = ((My1*(zA))/I1) - ((Mz1*yA)/I2)
35 disp(sigmaxA, "sigmaxA in MPa is")
36 \text{ sigmaxB=0-((My1*yB)/I2)}
37 disp(sigmaxB, "sigmaxB in MPa is")
38
39 \text{ My} = 0
40 y = ((Mz*Iyz)*z)/(Mz*Iy) //....equal to z=-1.71y
41 disp(y)
```

Scilab code Exa 5.4 Determine flange

```
1 clc

2

3 t=1.25 //mm

4 y=15.87 //mm

5 z=5.28 //mm

6 Iy=4765.62 //mm^4

7 Iz=21054.69 //mm^4

8 Iyz=3984.37 //mm^4

9 thetap=13.05 //degree

10 Iy1=3828.12 //mm^4
```

```
11 Iz1 = 21953.12 / mm^4
12 s = 12.5
13
14 // tau = (Vy/Iz1*t)*s*t(19.55+s*asind(13.05)/2)...
      equation 1
15 / F1 = integrate ((tau*t) ds)
16 x = integrate('(0)', 's', 0, 1)
17 / F1 = 0.0912 * Vy1
                                           substituting the
      value of tau we get F1
18 / Vy1 * ez1 = 37.5 * F1
                                           substituting the
      value of F1 we get ez1
19 ez1=37.5*0.0912
20 disp(ez1, "the distance in mm is=")
21
22 / \tan(\nabla z 1/(1 + t) *s *t(12.05 - s *a sind(13.05)/2) \dots
      equation 2
23 //F1 = integrate((tau*t)ds)
24 \text{ x=integrate}('(0)', 's', 0, 1)
25 / F1 = 0.204 * Vz1
                                          substituting the
      value of tau we get F1
26 / Vz1 * ey1 = 37.5 * F1
                                           substituting the
      value of F1 we get ez1
27 \text{ ey} 1 = 37.5 * 0.204
28 disp(ey1,"the distance in mm is=")
```

Scilab code Exa 5.5 Determine area and tangential stress

```
1 clc

2

3 P=70 //kN

4 c=0.05//m

5 c1=c

6 c2=c

7 R=0.1+0.05

8 A=0.005
```

```
9
10 //m = (-1/(2*c))*integrate((y/R+y)dy)
11 x=integrate('(-c)', 'c', 0, 1)
12 m=-1+(R/2*c)*log((R+c)/(R-c))
13 disp(m)
14 //m = (-1/(2*c))*integrate((y/R)-(y^2/R^2)+(y^3/R^3)-(
      y^4/R^4) + \dots dy
15 m = -1 + (3/2) * log(2)
16 disp(m)
17
18 \quad M = P * R
19 disp(M)
20 sigmatheta1=(-P*c2)/(m*A*(R-c1))
21 disp(sigmatheta1, "stress in Pa is=")
22 sigmatheta2=(P*c2)/(m*A*(R+c2))
23 disp(sigmatheta2, "stress in Pa is=")
```

Torsion of prismatic bars

Scilab code Exa 6.2 Shearing stress and angle of twist

```
1 clc
3 \text{ G=} 28 \text{ //GPa}
4 t1=0.012
5 t2=0.006
6 t3=0.01
7 t4=0.006
8 \quad A = 0.125
9 h = 226000 / N/m
10 Mt = 2 * A * h
11 disp(Mt, "applied torque in Nm is=")
12
13 \quad tau1=(h/t1)
14 disp(tau1, "shearing stress in Pa is=")
15 \text{ tau2=(h/t2)}
16 disp(tau2, "shearing stress in Pa is=")
17 tau3=(h/t3)
18 disp(tau3, "shearing stress in Pa is=")
19 tau4 = (h/t4)
20 disp(tau4, "shearing stress in Pa is=")
21
```

```
22 //theta=(h/2*G*A) intc((1/t)ds)
23 theta=(h/(2*G*10^9*A))*((0.25/t1)+2*(0.5/t2)+(0.25/t3))
24 disp(theta, "angle of twist per unit length in rad/m is=")
```

Scilab code Exa 6.4 Maxi longitudinal stress and angle of twist

```
1 clc
2
3 \text{ G=80} //\text{GPa}
4 E=200 //GPa
5 \text{ tf} = 10 / \text{mm}
6 \text{ tw} = 0.007 / \text{m}
7 t1=tw
8 t2=0.01
9 h = 0.2 / m
10 b=0.1 //m
11 b2=b
12 b1=0.19
13 L=2.4 //m
14 If=0.01*0.1<sup>3</sup>
15 \text{ Mt} = 1200
16 L=2.4
17
18 //solution a:
19 //C = Mt/theta
20 /C = (b1*t1^3+2*b2*t2^3)*(G/3)
21 C = ((b1*t1^3+2*b2*t2^3)/3)//
                                          without substituting
       the value of G we get C
22 disp(C, "torsional rigidity of the beam is=")
23
24 / a = (If *E) / 12
25 a = If / 12 / /
                                    without substituting the
       value of E we get a
```

```
26 disp(a)
27 / \text{alpha} = 1/(h * \text{sqrt} ((E * If) / (2 * C)))
28 y=sqrt((2.5*a)/(2*C))// without substituting the
      value of h
29 disp(y)
30 //(1/alpha) == y
31 / sigmafmax = (Mfmax*x) / If
32 \text{ sigmafmax} = (3.43*Mt*0.05)/a
33 disp(sigmafmax," maxi longitudinal bending stress in
      the flange in MPa is=")
34
35 //soluton b:
36 \text{ si} = (Mt/(C*G*10^9))*(L-y*h)
37 disp(si,"the angle of twist at the free end in
      radian is =")
38 \text{ si1}=(Mt*L)/(C*G*10^9)
39 disp(si1, "total angle of twist in radians is=")
```

Numerical methods

Scilab code Exa 7.3 Find shearing stress

```
1 clc
2 a=15 /mm
3 b = 10 / mm
4 h=5 /mm
5 \text{ h1} = 4.4 / \text{mm}
6 h2=2.45 / mm
7 h3=3 / mm
9 x=[2 0 0 0 2 -4;0 2 0 1 -4 1;0 0 2 -4 1 0;-4 2 0 0 0
       1;1 -4.27 1 0 1.06 0;0 1.25 -7.41 1.34 0 0]
10 disp(x)
11 y = [-2; -2; -2; -2; -2]
12 disp(y)
13 z=inv(x)*y
14 printf ('fi=\%f G*h^2*theta \n',z)
15
16 dfi=2.075
17 d3fi = -0.001
18 d2fi = -1.383
19 d4fi=0.002
20
```

```
//tauB=derivative(fi,y)B
tauB=(dfi+(d2fi/2)-(d3fi/3)+(d4fi/4))
printf('tauB=%f G*thetab\n',tauB)

dfi=1.536
d2fi=-0.613
d3fi=-0.002
d4fi=0.001
d5fi=0.001
d6fi=-0.002

//tauA=derivative(fi,x)A
tauA=(dfi+(-d2fi/2)-(d3fi/3)-(d4fi/4)+(d5fi/5)+(d6fi/6))
printf('tauA=%f G*thetaa\n',tauA)
```

Scilab code Exa 7.6 Determine moments of the supports of the beam

```
1 clc
2
3 p = 15
4 P = 45
5 a=3
6 b=1.5
7 L1=3
8 L2=4.5
9 MfAB = -(p*L1^2)/12
10 disp(MfAB, "in kNm is=")
11 MfBA = (11.25)
12 disp(MfBA, "in kNm is=")
13 MfBC = -(P*a*b^2)/L2^2
14 disp(MfBC, "in kNm is=")
15 MfCB = (P*b*a^2)/L2^2
16 disp(MfCB, "in kNm is=")
17 B=MfBA+MfBC
```

```
disp(B,"effective fem at joint B in kNm is=")
19 AB=0.429*-B // joint rotates
    until a change in moment is +3.75
20 disp(AB,"the change of moment in beam segment AB in
    kN is=")
21 BC=0.571*-B
22 disp(BC,"the change of moment in beam segment AB in
    kN is=")
```

Scilab code Exa 7.7 Determine stiffness matrix and nodal force matrix

```
1 clc
3 p=14 //MPa
4 t=0.3 / cm
5 E = 200 //GPa
6 v = 0.3
7 gamma1=77 //kN/m^3
8 alpha=12*10^-6 // per degree celcius
9 A = 2
10 T=50 //degree celcius
11
12 D=[3.33 0.99 0;0.99 3.3 0;0 0 1.16]
13 disp(D)
14 //[D*]=(t*[D])/4*A
15 [D1] = (10^6 * [D])/4 * A
16 disp(D1)
17
18 //solution a: stiffness matrix
19 \, xi = 0
20 x1=0
21 \, xj = 4
22 x2=4
23 \text{ xm} = 0
24 x3=0
```

```
25 \text{ yi} = -1
26 \quad y1 = -1
27 \text{ yj} = -1
28 \quad y2 = -1
29 \text{ ym} = 1
30 y3=1
31
32 \text{ ai} = 0 - 4
33 \quad a1 = 0 - 4
34 disp(ai,a1)
35 \text{ aj} = 0 - 0
36 \quad a2 = 0 - 0
37 disp(aj,a2)
38 \text{ am} = 4 - 0
39 \quad a3 = 4 - 0
40 disp(am, a3)
41
42 \, \text{bi} = -1 - 1
43 \quad b1 = -1 - 1
44 disp(bi,b1)
45 \, \text{bj} = 1 + 1
46 b2=1+1
47 disp(bj,b2)
48 \, \text{bm} = -1 + 1
49 b3=-1+1
50 disp(bm,b3)
51
52 \text{ k11} = (10^6/8) * (3.3*4+1.16*16)
53 printf('k11=\%f\n', k11)
54 \text{ k12} = (10^6/8) * (3.3*2*-2+0)
55 printf ('k12=\%f n', k12)
56 \text{ k13} = (10^6/8) * (0+1.16*4*-4)
57 printf ('k13=\%f\n', k13)
58 \text{ k22} = (10^6/8) * (3.3*4+0)
59 printf ('k22=\%f n', k22)
60 k23=0
61 printf('k23=\%f\n', k23)
62 k32=0
```

```
63 printf ('k32 = \% f \ n', k32)
64 \text{ k21} = (10^6/8) * (3.3*2*-2+0)
65 printf ('k21=\%f n', k21)
66 \text{ k31} = (10^6/8) * (0+1.16*4*-4)
67 printf ('k31=\%f\n',k31)
68 \text{ k}33 = (10^6/8) * (0+1.16*16)
69 printf ('k33=\%f n', k33)
70
71 kuu=[k11 k12 k13;k21 k22 k23;k31 k32 k33]
72 disp(kuu)
73 kuv = 10^6 * [2.15 -1.16 -0.99; -0.99 0 0.99; -1.16 1.16
      0]
74 disp(kuv)
75 kvv=10^6*[7.18 -0.58 -6.6; -0.58 0.58 0; -6.6 0 6.6]
76 disp(kvv)
77 kvu = [2.15 -0.99 -1.16; -1.16 0 1.16; -0.99 0.99 0]
78 disp(kvu)
79
80 ke=[kuu kuv;kvu kvv]
81 disp(ke)
82
83 //solution b:
84 \, \text{Fx} = 0
85 Fy = 0.077 //N/cm^2
86 Qbe=\{0,0,0,-0.0308,-0.0308,-0.0308\}/N
87 disp(Qbe)
88 stp=(sqrt(20)*0.3)*{-2*(1400/sqrt(20)),-4*(1400/sqrt)}
       (20))}
89 disp(stp)
90 Qp3 = \{0, -420, -420, 0, -840, -840\}
91 disp(Qp3)
92
93 epsilon=alpha*T
94 printf ('epsilon=%f \n', epsilon)
95 // \text{Qte} = [B'] * [D] * epsilon * At
96 \text{ Qte} = (1/8) * [-2 \ 0 \ -4; 2 \ 0 \ 0; 0 \ 0 \ 4; 0 \ -4 \ -2; 0 \ 0 \ 2; 0 \ 4
       0]*((200*10^5)/0.91)*[1 0.3 0;0.3 1 0;0 0
       0.35] * [0.0006; 0.0006; 0] * (1.2)
```

```
97 printf('Qte=%f in N\n',Qte) 98 99 Qe={-5142.85;4742.85;-400;-10285.71;-840.03;9445.67} 100 disp(Qe,"in N is=")
```

Scilab code Exa 7.8 Calculate deflections

```
1 clc
 2
 3 t=0.3 /cm
4 E=200 //GPa
 5 v = 0.3
 6 i = 2
 7 \quad j=4
 8 m=3
9 L = 5000 / N
10
11 \quad a1 = 0 - 4
12 \quad a2 = 0 - 4
13 disp(a1,a2)
14 \, aj = 4 - 0
15 \quad a4 = 4 - 0
16 disp(aj,a4)
17 \text{ am} = 4 - 4
18 \quad a3 = 4 - 4
19 disp(am, a3)
20
21 \text{ bi} = 1 - 1
22 b2=1-1
23 disp(bi,b2)
24 \, \text{bj} = 1 + 1
25 b4=1+1
26 disp(bj,b4)
27 \, \text{bm} = -1 - 1
28 b3 = -1 - 1
```

```
29 disp(bm,b3)
30
31 \text{ k22} = (10^6/8) * (3.3*0+1.16*16)
32 printf ('k22=\%f n', k22)
33 k44 = (10^6/8) * (3.3*4*+1.16*16)
34 printf ('k44 = \% f n', k44)
35 k24 = (10^6/8) * (3.3*0+1.16*4*-4)
36 printf ('k24=\%f\n', k24)
37 \text{ k42} = (10^6/8) * (3.3*0+1.16*4*-4)
38 printf ('k42=\%f n', k42)
39 k23=0
40 printf ('k23=\%f n', k23)
41 k32=0
42 printf ('k32=\%f n', k32)
43 k43 = (10^6/8) * (3.3*2*-2+1.16*0)
44 printf ('k43 = \% f \ n', k43)
45 k34 = (10^6/8) * (3.3*2*-2+1.16*0)
46 printf ('k34=\%f\n', k34)
47 \text{ k33} = (10^6/8) * (3.3*4+1.16*0)
48 printf ('k33=\%f\n',k33)
49
50
51 kuu=[k22 k23 k24;k32 k33 k34;k42 k43 k44]
52 disp(kuu)
53 \text{ kuv} = 10^6 * [0 \ 1.16 \ -1.16; 0.99 \ 0 \ -0.99; -0.99 \ -1.16
       2.15]
54 disp(kuv)
55 \text{ kvv} = 10^6 * [6.6 \ 0 \ -6.6; 0 \ 0.58 \ -0.58; -6.6 \ -0.58 \ 7.18]
56 disp(kvv)
57 kvu=10^6*[0 0.99 -0.99;1.16 0 -1.16;-1.16 -0.99
       2.15]
58 disp(kvu)
59
60 ke=[kuu kuv;kvu kvv]
61 disp(ke)
62
63 \text{ k1} = [3.97 -1.65 -2.32 \ 0; -1.65 \ 1.65 \ 0 \ 0; -2.32 \ 0 \ 2.32
       0;0 0 0 0]
```

```
64 disp(k1)
65 \text{ k2} = [2.15 -1.16 -0.99 \ 0; -0.99 \ 0.99 \ 0; -1.16 \ 1.16 \ 0
       0;0 0 0 0]
66 \text{ disp}(k2)
67 \text{ k3} = [2.15 -0.99 -1.16 \ 0; -1.16 \ 0 \ 1.16 \ 0; -0.99 \ 0.99 \ 0
       0;0 0 0 0]
68 disp(k3)
69 \text{ k4} = [7.18 -0.58 -6.6 \ 0; -0.58 \ 0.58 \ 0.58 \ 0; -6.6 \ 0; 0
       0 0 0]
70 disp(k4)
71
72 \text{ ka} = [k1 \ k2 \ ;k3 \ k4]
73 disp(ka)
74
75 \text{ k5} = [0\ 0\ 0\ 0; 0\ 2.32\ 0\ -2.32; 0\ 0\ 1.65\ -1.65; 0\ -2.32
       -1.65 3.97]
76 disp(k5)
77 k6 = [0 \ 0 \ 0; 0 \ 0 \ 1.16 \ -1.16; 0 \ 0.99 \ 0 \ -0.99; 0 \ -0.99
        -1.16 2.15]
78 disp(k6)
79 \text{ k7} = [0 \ 0 \ 0; 0 \ 0 \ 0.99 \ -0.99; 0 \ 1.16 \ 0 \ -1.16; 0 \ -1.16
        -0.99 2.15
80 \text{ disp}(k7)
81 \text{ k8} = [0 \ 0 \ 0; 0 \ 6.6 \ 0 \ -6.6; 0 \ 0 \ 0.58 \ -0.58; 0 \ -6.6 \ -0.58]
         7.187
82 disp(k8)
83
84 \text{ kb} = [k5 \text{ k6}; k7 \text{ k8}]
85 \text{ disp(kb)}
86
87 K = [ka + kb]
88 disp(K)
89
90 Qy4 = ((3*(-5000))/4*1)*{(1/2)*(1+1)}
       +0.33*[-0.25*(1-1+1)-0.75]
91 printf ('Qy4=\%f N\n',Qy4)
                                                   // textbook ans
       is wrong
```

```
92 Qy2 = ((3*(-5000))/4*1)*{(1/2)*(1+1)}
        -0.33*[1+0.75*(1-1+1)-0.75]
 93 printf('Qy2=%f N\n',Qy2)
                                                  // textbook ans
        is wrong
 94
95 Q=[0 0 0 0 0 Qy4 0 Qy2]
96 disp(Q)
97 u1=0
98 u3=0
99 v1 = 0
100 \text{ v3} = 0
101
102 \quad Z = [3.97 \quad -2.32 \quad 0 \quad -1.16; -2.32 \quad 3.97 \quad -0.99 \quad 2.15; 0 \quad -0.99
        7.18 - 6.6; -1.16 \ 2.15 - 6.6 \ 7.18
103 disp(Z)
104 z = inv(Z)
105 \text{ disp}(z)
106 X = (z * [0; 0; -2512.5; -2512.5])
107 disp(X)
108 \quad X1 = X * 10 * * -6
109 disp(X1,"u2 u4 v2 v4 is=")
110
111 Y = [-2 \ 2 \ 0 \ 0 \ 0; 0 \ 0 \ -4 \ 0 \ 4; -4 \ 0 \ 4 \ -2 \ 2 \ 0]
112 \quad disp(Y)
113 W = (Y * [0; -0.0012; 0; 0; -0.0068; 0])
114 disp(W)
115 \quad W1 = W * (1/8)
116 disp(W1, "espx epsy gammaxy is=")
117
118 y = [1 \ 0.3 \ 0; 0.3 \ 1 \ 0; 0 \ 0 \ 0.35] * W1
119 disp(y)
120 u = (200*10^9/0.91)
121 disp(u)
122 \quad U=u*y
123 disp(U, "sigmax sigmay tauxy in Pa is=")
```

Scilab code Exa 7.9 Calculate finite element

```
1 clc
3 L = 76.2 / mm
4 h=50.8 / mm
5 t = 25.4 / mm
6 p = 6895 / kPa
7 E = 207 //GPa
8 v = 0.15
9
10 //solution a: exact solution
11 / p = Mh / I
12 / sigmax = -(y/h) *p
13 \text{ sigmay=0}
14 \text{ tauxy=0}
15 // \operatorname{derivative}(\mathbf{u}, \mathbf{x}) = -(\mathbf{yp}/\mathbf{Eh})
16 // \det i v a t i v e (v, y) = (v * y * p) / (Eh)
17 // derivative(u, y) + derivative(v, x) = 0
                                                     // for u
18 //u = -(p/E*h)*x*y
       (0,0)=v(0,0)=0 and u(L,0)=0
19 //v = -(p/2*E*h)*(x^2+v*y^2)
20 / \sin ax = -(1/0.0508) * (y*p)
21 sigmaxmax=6895 //kPa
22 / u(0.0762, -0.0254) = 25.4*10^{-6} / m
23 //v(0.0762,0) = 1.905*10^-6 //m
24
25 //solution b:
26 \text{ Qx}10 = ((0.0254*0.0254)/6)*((2*sigmaxmax)+3447.5)
27 disp(Qx10,"in mN is=")
28 \text{ Qx}11 = ((0.0254*0.0254)/6)*(2*3447.5+sigmaxmax)
       +((0.0254*0.0254)/6)*(2*3447.5+0)
29 disp(Qx11, "in mN is=")
30 Qx12 = ((0.0254*0.0254)/6)*(0+3447.5)
```

disp(Qx12, "in mN is=")

Axisymmetrically loaded members

Scilab code Exa 8.1 Determine maxi internal and external pressure

```
1 clc
3 \text{ di} = 0.3 / \text{m}
4 de=0.4 //m
5 v = 0.3
6 sigmathetamax=250*10^6 //Pa
7 p0 = 0
8 pi=0
10 //solution a:
11 a=0.15
12 b=0.2
13 \text{ r=a}
14 // sigmathetamax = pi * ((b^2 + a^2) / (b^2 - a^2))
15 pi=sigmathetamax*((b^2-a^2)/(b^2+a^2))
16 disp(pi, "in Pa is= ")
17
18 //solution b:
19 \text{ r=a}
```

```
20  //sigmathetamax=-2*p0*(b^2/(b^2-a^2))
21  p0=-(-sigmathetamax)*((b^2-a^2)/(2*b^2))
22  disp(p0,"in Pa is= ")
23
24  //solution c:
25  u=((a^3*pi)/(b^2-a^2))*(0.7+1.3*(b^2/a^2))
26  disp(u,"in per E meter is= ")
27  sigmaz=(pi*a^2-p0*b^2)/(b^2-a^2)
28  disp(sigmaz," for longitudinal stress is")
```

Scilab code Exa 8.2 Calculate internal pressure

```
1 clc
2
3 \text{ sigmayp} = 340 / \text{MPa}
4 tauyp=sigmayp/2 //MPa
5 disp(tauyp, "in MPa is=")
6 a=0.1 / m
7 b=0.15 / m
8 v = 0.3
9 / pi = 4*p0
10 // sigmatheta = (pi * (a^2+b^2) - 2*p0*b^2) / (b^2-a^2)
11 / sigmatheta = 1.7*pi
12
13 //sloution a: maxi principal stress theory
14 sigmatheta=1.7
15 pi=sigmayp/sigmatheta
16 disp(pi, "in MPa is=")
17
18 //sloution b: maxi shearing stress theory
19 //(sigmatheta-sigmar)/2=1.35*pi
20 \text{ pi=tauyp/1.35}
21 disp(pi, "in MPa is=")
22
23 //solution c: energy of distortion theory
```

```
24 \text{ sigmar=-1}
25 sigmayp1=sqrt(sigmatheta^2+sigmar^2-sigmatheta*
      sigmar)//*pi
26 disp(sigmayp1)
27 pi=sigmayp/sigmayp1
28 disp(pi, "in MPa is=")
29
30 //solution d: maxi principal strain theory
31 / (sigmatheta - v * sigmar) / E = sigmayp / E
32 pi=sigmayp/(sigmatheta-v*sigmar)
33 disp(pi, "in MPa is=")
34
35 //solution e: octahedral shearing stress theory:
36 pi=(sqrt(2)*sigmayp)/sqrt((sigmatheta-sigmar)^2+
      sigmar^2+(-sigmatheta)^2)
37 disp(pi, "in MPa is=")
```

Scilab code Exa 8.3 Distribution of tangential stress

```
1 clc
2
3 a=0.15 //m
4 b=0.2 //m
5 c=0.25 //m
6 E=200*10^9 //Pa
7 delta=0.0001 //m
8 140 //MPa
9
10 p=((E*delta)/8)*(((b^2-a^2)*(c^2-b^2))/(2*(b^2)*(c^2-a^2)))
11 disp(p,"the contact pressure in Pa is=") // textbook ans is wrong
12
13 p=12.3*10^6
14 sigmatheta=p*((b^2+c^2)/(c^2-b^2)) // where r=0.2
```

Scilab code Exa 8.4 Determine shrinking allowance and maxi stress

```
1 clc
2
3 \, dn = 0.1 \, //m
4 do=0.5 //m
5 t=0.08 / m
6 \text{ w} = 6900*(2*\%\text{pi}/60) //\text{rpm}
7 row = 7.8*10^3 / Ns^2 / m^4
8 E=200*10^9 //Pa
9 v = 0.3
10 b = 0.05
11 c=0.25
12
13
14 //solution a:
15 //ud = ((0.05*3.3*0.7)*(0.0025+0.0625-(1.3/3.3))
       *0.0025 + (1.3/0.7) *0.0625) *row *w^2 / (8*E)
16 \text{ ud} = ((0.05*3.3*0.7)*(b^2+c^2-(1.3/3.3)*b^2+(1.3/0.7)*
      c^2))/(8)
17 disp(ud, "radial displacement of the disk in meter is
      = ")
18
```

```
19 //us = ((0.05*0.7)*(3.3*0.0025 - 1.3*0.0025)*row*w^2)
      /(8*E)
20 us=((0.05*0.7)*(3.3*b^2-1.3*b^2))/(8)
21 disp(us," radial displacement of the shaft in meter
      is = ")
22 delta=(ud-us)*row*w^2/E
23 disp(delta)
24
25 //solution b:
26 //p=E*delta*(c^2-b^2)/(2*b*c^2)
27 p=E*delta*(c^2-b^2)/(2*b*c^2)
28 disp(p,"in Pa is=")
29 sigmathetamax=p*(c^2+b^2)/(c^2-b^2)
30 \text{ disp}(sigmathetamax,"in Pa is=")
31
32 //solution c:
33 sigmathetamax=3.3*(b^2+c^2-(1.9/3.3)*b^2+c^2)*row*w
      ^2/8
34 disp(sigmathetamax, "in Pa is=")
```

Scilab code Exa 8.5 Determine maxi stress and radial displacement

```
1 clc
2
3 ti=0.075 //m
4 to=0.015//m
5 a=0.05//m
6 b=0.25//m
7 delta=0.05 //mm
8 w=6900*(2*%pi/60) //rpm
9 s=1
10 row=7.8*10^3//Ns^2/m^4
11 E=200 //GPa
12
13 //solution a:
```

```
14 t1=ti*a^s
15 disp(t1,"t1 is=")
16 t1=to*b^2
17 disp(t1,"t1 is=")
18 //(ti/to) = (t1*a^-s)/(t1*b^-s) = (b/a)^s
19 c = (b/a)^s
20
21 (ti/to) == c
22 disp(ti/to,"ti/t0 is=")
23 m1 = -0.5 + sqrt((0.5)^2 + (1+0.3*1))
24 disp(m1, "m1 is=")
25 m2=-0.5-sqrt((0.5)^2+(1+0.3*1))
26 disp(m2, "m2 is=")
27
28 // sigmar = 0 = (c1/t1) * (0.05) m1 + (c2/t1) * (0.05) (m2)
      -0.00176*row*w^2 // r=0.05
  // sigmar = 0 = (c1/t1) * (0.25) m1 + (c2/t1) * (0.25) (m2)
      -0.0439*row*w^2 // r=0.25
30
31 c1=t1*0.12529*row*w^2
32 disp(c1, "c1 is=")
33 c2=t1*-6.272*10^-5*row*w^2
34 disp(c2, "c2 is=")
35
36 r = 0.05
37 sigmar = (0.12529 * r^0.745 - 6.272 * 10^-5 * r^(-1.745) - 0.70 *
      r^2) / *row*w^2
38 disp(sigmar, "sigmar is=")
39
40 sigmatheta=(0.09334*r^0.745+1.095*10^-4*r^(-1.745)
      -0.40*r^2)//*row*w^2
41 disp(sigmatheta, "sigmatheta is=")
42
43 //solution b:
44 r=0.05
45 //ur = (r * sigmatheta) / E
46 ur=(r*sigmatheta)
47 disp(ur, "ur is= ")
```

Scilab code Exa 8.6 Distribution stress and disk profile

```
1 clc
2
3 b=0.25 /m
4 \text{ w} = 6900*(2*\%\text{pi}/60) //\text{rpm}
5 t1=0.075 / m
6 t2=0.015 / m
7 row=7.8*10^3/Ns^2/m^4
8 c1 = t1
9
10 x=t2/t1
11 disp(x)
12
13 //(t2/t1) == (c1 * exp(-(row*w^2/2*sigma)*b^2))/c1
14 / \exp(-(row*w^2/2*sigma)*b^2) = x
15 //\log(x) = -(row*w^2*b^2/2*sigma)
16 y=2*log(x)
17 disp(y)
18 sigma=-(row*w^2*b^2)/y
19 disp(sigma, "in Pa is= ")
20
21 // t = c1 * exp(-row * (w^2/2 * sigma) * r^2)
22 z = row * (w^2/(2*sigma))
23 disp(z)
```

Beams on elastic foundations

Scilab code Exa 9.1 Calculate maxi deflections and force per unit length

```
1 clc
2
3 \text{ w=0.1} / \text{m}
4 d=0.115 /m
5 1=4 /m
6 p=175 / kN/m
7 k=14*10^6 //Pa
8 E=200*10^9 //Pa
9 I = (0.1*(0.15)^3)
10
11 // deltav = (p/2*k)*derivative(x)*beta*exp^(betax)*(cos
       beta(x)+sin beta(x)
12 /vA = (p/2k)*(2-exp^(betaa)*cos betaa - exp^(betab)*
      cos betab)
13
14 beta=(k/(4*E*I/12))^(0.25)
15 disp(beta, "in meter inverse is=")
16
17 vmax = (p*(2-(-0.0345)-(0.0345)))/(2*14000)
18 disp(vmax, "in meter is=")
19 z=k*vmax
```

Scilab code Exa 9.4 Find maxi moment and deflection

```
1 clc
2
3 a=1.5 /m
4 E=206.8*10^9 //Pa
5 \text{ K=10000} //\text{N/m}
6 I = 6 * 10^{-6} / m^{4}
7 P = 6700 / N
8 c = 0.05
9
10 \text{ k=K/a}
11 disp(k, "foundation modulus of the equivalent
      continuous elastic support in Pa is=")
12
13 beta=(k/(4*E*I))^(1/4)
14 disp(beta)
15
16 // sigmamax = (M*c/I) = (P*c/4*beta*I)
17 sigmamax = ((P*c)/(4*beta*I))
18 disp(sigmamax, "in Pa is=")
19
20 \text{ vmax} = (P*beta)/(2*k)
21 disp(vmax, "in meter is=")
```

Elastic stability

Scilab code Exa 11.1 Buckling load of the column

```
1 clc
2
3 E=210*10^9 //Pa
4 d = 100 / mm
5 t = 50 / mm
6 \quad A = 0.005
7 Iz=0.05*(0.1^3)/12
8 disp(Iz)
9 Iy=0.1*(0.05^3)/12
10 disp(Iy)
11 //r = sqrt(Iy/A)
12 r = sqrt(Iy/A)
13 disp(r)/mm
14 L=2.75
15
16 //P=W/t and (15) = 3.732
17 Pcr=(%pi^2*E*Iz)/L^2
18 disp(Pcr, "into W is= ")
19 W = Pcr/3.732
20 disp(W, "in N is=")
21
```

```
22  Pcr=(%pi^2*E*Iy)/L^2
23  disp(Pcr,"into W is= ")
24  W=Pcr/3.732
25  disp(W,"in N is= ")
26
27  // Ans varies due to round of error
```

Plastic behavior of solids

Scilab code Exa 12.1 Determine maxi plastic stress and strain

```
1 clc
2
3 \text{ alpha=45}
4 sigmayp=35*10^6 //Pa
5 \text{ k} = 840 / \text{MPa}
6 n = 0.2
7 \text{ L0=3 } //\text{m}
8 Aad=10*10^-5 //m^2
9 Acd=10*10^-5 //m^2
10 Abd=15*10^-5 //\text{m}^2
11
12 P=sigmayp*Abd+2*sigmayp*Aad*cosd(45)
13 disp(P, "plastic yeilding in N is=")
14 \text{ sigma=k*n^n}
15 disp(sigma, "maxi allowable stress in MPa is=")
16 epsilon1=n
17 disp(epsilon1, "axial stress is=")
18 \text{ epsilon2} = -0.1
19 disp(epsilon2, "transverse stress is=")
20 \text{ epsilon3} = -0.1
21 disp(epsilon3,"transverse stress is=")
```

```
22 z = 3 * n
```

 $\operatorname{disp}(z,"\text{total elongation for stability in meter is}="")$