AMENDMENTS TO THE CLAIMS

Following is a listing of all claims in the present application, which listing supersedes all previously presented claims:

Listing of Claims:

- 1. (Currently Amended) A stack-type capacitor, comprising:
- a lower electrode on a diffusion barrier layer;
- a dielectric layer formed on the lower electrode; and
- an upper electrode formed on the dielectric layer,

wherein the lower electrode includes:

- a first metal layer having a cylindrical shape and defining a cylindrical space; and
- a second metal layer completely filling the cylindrical space defined by the first metal layer,

the second metal layer has a greater reactivity towards oxygen than the diffusion barrier layer,

the diffusion barrier layer is a nitride layer, and the second metal layer is a nitride and aluminum layer.

- 2. (Cancelled).
- 3. (Currently Amended) The capacitor as claimed in claim 1 [[2]], wherein the nitride and aluminum layer is a titanium aluminum nitride layer or a tantalum aluminum nitride layer.
- 4. (Currently Amended) The capacitor as claimed in claim $\underline{1}$ [[2]], wherein the first metal layer upper electrode is a ruthenium layer.

5. (Currently Amended) A semiconductor memory device including a stack-type capacitor, the device comprising a transistor and a capacitor,

wherein the capacitor includes:

a lower electrode on a diffusion barrier layer;

a dielectric layer formed on the lower electrode; and

an upper electrode formed on the dielectric layer,

wherein the lower electrode includes:

a first metal layer having a cylindrical shape and defining a cylindrical space; and

a second metal layer completely filling the cylindrical space defined by the first metal layer.

the second metal layer has a greater reactivity towards oxygen than the diffusion barrier layer,

the diffusion barrier layer is a nitride layer, and the second metal layer is a nitride and aluminum layer.

- 6. (Currently Amended). The device as claimed in claim 7 [[5]], wherein the transistor is electrically connected to the capacitor by the [[a]] conductive plug disposed under the diffusion barrier layer.
- 7. (Currently Amended) The device as claimed in claim 5 [[6]], wherein the [[a]] diffusion barrier layer is formed between the lower electrode and a [[the]] conductive plug.
 - 8. (Cancelled).

- 9. (Currently Amended) The device as claimed in claim 5, wherein the first metal layer is a ruthenium layer, and the second metal layer is a nitride and aluminum layer.
- 10. (Currently Amended) The device as claimed in claim 5 [[9]], wherein the nitride and aluminum layer is a titanium aluminum nitride layer or a tantalum aluminum nitride layer.
- 11. (Original) The device as claimed in claim 9, wherein the upper electrode is a ruthenium layer.
 - 12-24. (Cancelled).
- 25. (New) The capacitor as claimed in claim 1, wherein the second metal layer includes aluminum.
- 26. (New) The capacitor as claimed in claim 25, wherein the diffusion barrier layer is substantially free of aluminum.
- 27. (New) The capacitor as claimed in claim 1, wherein:
 the diffusion barrier layer consists of a first set of compounds, and
 the second metal layer includes the first set of compounds and a material that is
 reactive towards oxygen.
- 28. (New) The capacitor as claimed in claim 27, wherein the material that is reactive towards oxygen includes aluminum.

- 29. (New) The capacitor as claimed in claim 3, wherein the diffusion barrier layer includes titanium and nitride, tungsten and nitride, and/or tantalum and nitride.
- 30. (New) The capacitor as claimed in claim 1, wherein the first metal layer is disposed proximate to and substantially equidistant to both the diffusion barrier layer and the second metal layer.
- 31. The device as claimed in claim 5, wherein the second metal layer includes aluminum.
- 32. (New) The device as claimed in claim 31, wherein the diffusion barrier layer is substantially free of aluminum.
- 33. (New) The device as claimed in claim 5, wherein:
 the diffusion barrier layer consists of a first set of compounds, and
 the second metal layer includes the first set of compounds and a material that is
 reactive towards oxygen.
- 34. (New) The device as claimed in claim 33, wherein the material that is reactive towards oxygen includes aluminum.
- 35. (New) The device as claimed in claim 5, wherein the diffusion barrier layer includes titanium and nitride, tungsten and nitride, and/or tantalum and nitride.

36. (New) The device as claimed in claim 5, wherein the first metal layer is disposed proximate to and substantially equidistant to both the diffusion barrier layer and the second metal layer.