Analysis of Stegosystems

Sam Britt, Tushar Humbe, Ben Perry, Sanchita Vijayvargiya

December 7, 2012

Introduction

Security Definitions

Primitives

Let P_X be a probability mass function with support χ , where X is a discrete random variable taking the values in χ . The *entropy* of X is

$$H(X) = E(-\lg P_X),$$

where $E(\cdot)$ is the expected value (weighted average) function; that is,

$$H(X) = -\sum_{x \in \chi} P_X(x) \lg P_X(x). \tag{1}$$

Intuitively, the entropy of X is a measure of the number of bits of uncertainty in X. For example, suppose χ is the set of all n-bit strings, and $P_X(x) = 1/2^n$ for any $x \in \chi$; that is, every n-bit string is equally likely to be pulled from P_X . This would represent a distribution of maximum uncertainty, and it is straightforward to show that Eqn. (1) evaluates to n in this case. In fact, $H(X) = \lg |\chi|$ is an upper bound for H, where $|\chi|$ denotes the cardinality of χ .

The *minimum entropy* of a distribution P_X is defined as

$$H_{\infty}(X) = \min_{x \in \gamma} \{-\lg P_X(x)\}$$
 (2)

This can be understood as a measure of uncertainty for the "most probable" element in χ according to P_X . For example, if there is some element x_0 with $P_X(x_0) = 1$, then $H_\infty(X) = 0$ (there is no uncertainty in X). Suppose

the most probable element x_0 has probability $P_X(x_0) = 1/2$. Intuitively, the uncertainty is unity; that is, we can guess that the next value of X will be x_0 to within a single coin flip. Indeed, evaluating Eqn. (2) for such a distribution shows that $H_\infty(X) = 1$.

Given two probability mass functions P_X and P_Y , both with support χ , the *relative entropy*, also called the Kullback-Leibler divergence, from P_X to P_Y is defined to be

$$D(P_X || P_Y) = \sum_{x \in \chi} P_X(x) \lg \frac{P_X(x)}{P_Y(x)}.$$
 (3)

Intuitively, the relative entropy is a measure of the difference between P_X and P_Y , although it is important to note that it is not symmetric; that is, $D(P_X||P_Y) \neq D(P_Y||P_X)$. However, $D(P_X||P_Y) = 0$ if and only if $P_X = P_Y$, and increases indefinitely as P_Y diverges from P_X .

A *channel* as defined by TODO: cite is a distribution on timestamped bit sequences; i.e., a channel \mathcal{C} is a distribution with support $\{(\{0,1\},t_1),(\{0,1\},t_2),\ldots\}$, where each $t_i \leq t_{i+1}$. The intent is to model communication, where not just the content but also the timing of the communication may be relevant. Since a particular draw from the distribution \mathcal{C} depends the history of previously drawn bits, define \mathcal{C}_h to be the distribution conditioned on history h. Furthermore, it is useful to think of drawing from the channel in chunks of h bits at a time, so define \mathcal{C}_h^b to be the distribution on the next h bits after the history h.

Security Definitions

Hopper paper:

Hopper, et. al TODO: cite define a stegosystem S as a pair of randomized algorithms (SE, SD). SE takes as input a shared key k, a hiddentext message m, and a message history h, and an oracle M(h) that samples according to channel distribution \mathcal{C}_h^b , where channels are required to satisfy $H_\infty(\mathcal{C}_h^b) > 1 \forall h$ drawn from \mathcal{C} . As output, $\mathsf{SE}_k^M(m,h)$ returns a sequence $c_1 \| c_2 \| \ldots \| c_\ell$ in the support of $\mathcal{C}_h^{\ell b}$. The decryption algorithm $\mathsf{SD}_k^M(c_1 \| c_2 \| \ldots \| c_\ell, h)$ returns a message m, which should be "correct"; that is, the same message encoded by SE, at least 2/3 of the time.

The authors define the security of a stegosystem in terms of a game. The adversary warden W is given access to M(h), which returns draws from \mathcal{C}_h^b , and an oracle \mathcal{O} . The oracle \mathcal{O} is either SE_k or a function $O(\cdot,\cdot)$, where O(m,h) simply returns a draw from $\mathcal{C}_h^{|\mathsf{SE}_k(m,h)|}$. The warden also has

access to randomness r. The warden's advantage against the steganographic secrecy under chosen hiddentext attack for channel $\mathcal C$ of stegosystem S is defined by Hopper et. al to be

$$\mathbf{Adv}_{\mathsf{S},\mathcal{C}}^{\mathsf{ss\text{-}cha\text{-}}\mathcal{C}}(W) = \left| \Pr_{k,r,M,\mathsf{SE}} \left[W_r^{M,\mathsf{SE}_k(\cdot,\cdot)} \mathsf{accepts} \right] - \Pr_{r,M,O} \left[W_r^{M,O(\cdot,\cdot)} \mathsf{accepts} \right] \right|.$$

A stegosystem S is $(t, q, \ell, \varepsilon)$ -steganographically secret under chosen hiddenttext attack for channel \mathcal{C} (SS-CHA- \mathcal{C}) if, for any warden W making at most q queries totaling at most ℓ bits of hiddentext, and running in time at most t,

$$\mathbf{Adv}_{S.C}^{\text{ss-cha-}C}(W) \leq \varepsilon;$$

that is, the stegosystem S is insecure if an efficient warden can (with high probability) distinguish between the output of $\mathsf{SE}_k(m,h)$ and draws from $\mathcal{C}_h^{|\mathsf{SE}_k(m,h)|}$, even when given access to \mathcal{C}_h^b through M.

A stegosystem S is (t,q,ℓ,ε) -universally steganographically secret under chosen hiddenttext attack for channel \mathcal{C} (USS-CHA- \mathcal{C}) if it is (t,q,ℓ,ε) -SS-CHA- \mathcal{C} for any channel \mathcal{C} that satisfies $H_{\infty}(\mathcal{C}_h^b) > 1 \forall h$ drawn from \mathcal{C} .

Cachin paper:

Good Stego

Bad Stego

Conclusion

References