ACH2016 - Inteligência Artificial Aula 12 - Busca Não Determinista e Observação Parcial

Valdinei Freire da Silva valdinei.freire@usp.br - Bloco A1 100-0

Russell e Norvig, Capítulo 4

AlphaGo

- Solução: busca aleatória heurística + aprendizado por reforço + redes neurais
- Documentário: AlphaGo

1

Resolução de Problemas

Ambientes: completamente observável, único agente, conhecido, determinístico, discreto, sequencial, estático.

Formulação de Problemas

- estado inicial: é o estado no tempo t = 0.
- ações possíveis: a função ACTIONS(s) retorna o conjunto de ações que podem ser executadas no estado s.
- modelo de transição: a função RESULT(s, a) retorna o estado resultante de aplicar a ação a no estado s.
- ullet teste de meta: a função $\mathrm{GOAL}(s)$ determina se o estado s é um estado meta.
- solução: plano ρ que consiste em uma sequência de ações
 ρ = a₀, a₁,..., a_{T-2}, a_{T-1}.

Mundo do Aspirador de Pó

Estado Inicial: aspirador do lado esquerdo, dois cômodos sujos

Estado Meta: cômodos limpos

SRS, LRSSLS são planos?

3

Observação Parcial

Observação Completa: o estado do ambiente sempre é conhecido

Observação Parcial:

- nenhuma observação
- sensores

Como planejar sem conhecer o estado?

Estado de Crença

Estado de Crença (belief state): representa a crença atual do agente de quais estados ele possa estar.

O estado de crença cria um novo espaço de planejamento:

- nenhuma observação: solução, quando houver, é um plano, uma sequência de ações
- sensores: solução é um plano contingencial, isto é, uma política que mapeia cada sequência de observações e ações em uma ação

Espaço de Crença sem Observação

Considere o ambiente adjacente E: ACTIONS $_E(s)$, RESULT $_E(s,a)$, e GOAL $_E(s)$.

- Estados de Crença B: seja N a quantidade de estados em E, então os estados são todos os possíveis subconjuntos dos estados de E, totalizando 2^N estados de crenca;
- Estado Inicial: tipicamente o conjunto de todos os estados de *E*;
- Ações Possíveis: assumindo que ações ilegais tem nenhum efeito no mundo, para todo b ∈ B:

$$\operatorname{ACTIONS}(b) = \bigcup_{s \in b} \operatorname{ACTIONS}_{E}(s)$$

 Modelo de Transição: como o agente não sabe onde está, os estados futuros são todos os estados resultante dos possíveis estados:

$$b' = \text{RESULT}(b, a) = \{s' | s' = \text{RESULT}_{E}(s, a) \land s \in b\}$$

• Teste de Meta: todos estados que formam a crença devem ser estado meta

$$GOAL(b) = \begin{cases} True, \text{ se para todo } s' \in b \text{ tem-se } GOAL_E(s) = True \\ False, \text{ caso contrário} \end{cases}$$

Espaço de Crença: Aspirador de Pó

Espaço de Crença sem Observação

- problemas sem observação também são chamados de conformantes
- nem todo problema é solucionável sem observação
- a solução consiste em uma sequência de ações (um plano)
- considere que ações ilegais tem nenhum efeito no mundo, então se um plano ρ
 é uma solução para o estado inicial b, então, o mesmo plano é uma solução
 para qualquer b' subconjunto de b (b' ⊆ b)
- se um estado b já foi gerado na árvore de busca, qualquer estado b' que contém o estado b pode ser descartado $(b \subseteq b')$

Estado de Crença com Observação

Exemplo de Observação Parcial:

- estado completo: (posição do aspirador, condição do cômodo A, condição do cômodo B)
- observação parcial: (posição do aspirador, condição do cômodo ocupado pelo aspirador)
- exemplo: s = (A, Dirty, Clean) e o = (A, Dirty)

Formalização:

• Predição: é o modelo de transição quando não há observação

$$\hat{b} = \text{PREDICT}(b, a) = \{s' | s' = \text{RESULT}_{E}(s, a) \land s \in b\}$$

 Atualização: para cada percepção o ∈ O determina o estado de crença resultante

$$b' = \text{UPDATE}(\hat{b}, o) = \{s | o = \text{PERCEPT}(s) \land s \in \hat{b}\}\$$

Espaço de Crença: Navegação Robótica

(a) Possible locations of robot after $E_1 = NSW$

(b) Possible locations of robot After $E_1 = NSW$, $E_2 = NS$

Observação Parcial e Não Determinismo

Observações Possíveis:

$$\text{POSSIBLE-PERCEPTS}(\hat{b}) = \{o | o = \text{PERCEPT}(s) \land s \in \hat{b}\}$$

• Resultados Possíveis:

$$\begin{split} \text{RESULTS}(b, a) = \{b' & | b' = \text{UPDATE}(\text{PREDICT}(b, a), o) \land \\ & o \in \text{POSSIBLE-PERCEPTS}(\text{PREDICT}(b, a))\} \end{split}$$

Grafo AND-OR

Ambiente Não-Determinista

• Observação Completa:

$$o = PERCEPT(s) = s$$

 Modelo de Transição: dados um estado atual e uma ação executada, existem vários possíveis próximos estados

$$s' \in \text{RESULTS}(s, a) \subseteq S$$

• Solução: plano contingencial

• Política: mapeia estados em ações

$$\pi: \mathcal{S} \to \mathcal{A}$$

				State = 3	State = 4	Left
State = 5	Right	State = 6	Suck	State = 7	State = 8	

Aspirador de Pó Errático

Busca AND-OR

```
function AND-OR-GRAPH-SEARCH(problem) returns a conditional plan, or failure
  OR-SEARCH(problem.INITIAL-STATE, problem, [])
function OR-SEARCH(state, problem, path) returns a conditional plan, or failure
  if problem.GOAL-TEST(state) then return the empty plan
  if state is on path then return failure
  for each action in problem.ACTIONS(state) do
      plan \leftarrow And-Search(Results(state, action), problem, [state | path])
      if plan \neq failure then return [action \mid plan]
  return failure
function AND-SEARCH(states, problem, path) returns a conditional plan, or failure
  for each si in states do
      plan_i \leftarrow OR\text{-}SEARCH(s_i, problem, path)
      if plan_i = failure then return failure
  return [if s_1 then plan_1 else if s_2 then plan_2 else ... if s_{n-1} then plan_{n-1} else plan_n]
```

Figure 4.11 An algorithm for searching AND–OR graphs generated by nondeterministic environments. It returns a conditional plan that reaches a goal state in all circumstances. (The notation $[x \mid l]$ refers to the list formed by adding object x to the front of list l.)