FCC ID: U32GMRS7015RC

DATE: March 06, 2007

APPENDIX E – PROBE CALIBRATION DATA

TEL: +82 31 639 8518 FAX: +82 31 639 8525 <u>www.hct.co.kr</u>

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Certificate No: ET3-1798_Aug06

Client H-CT (Dymstec)

Calibration procedure(s)

Calibration procedure(s)

QA CAL-01.v5 and QA CAL-12.v4
Calibration procedure for dosimetric E-field probes

Calibration date:

August 25, 2006

Condition of the calibrated item

In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter E44198	GB41293874	5-Apr-06 (METAS, No. 251-00557)	Apr-07
Power sensor E4412A	MY41495277	5-Apr-06 (METAS, No. 251-00557)	Apr-07
Power sensor E4412A	MY41498087	5-Apr-06 (METAS, No. 251-00557)	Apr-07
Reference 3 dB Attenuator	SN: S5054 (3c)	10-Aug-06 (METAS, No. 217-00592)	Aug-07
Reference 20 dB Attenuator	SN: S5086 (20b)	4-Apr-06 (METAS, No. 251-00558)	Apr-07
Reference 30 dB Attenuator	SN: S5129 (30b)	10-Aug-06 (METAS, No. 217-00593)	Aug-07
Reference Probe ES3DV2	SN: 3013	2-Jan-06 (SPEAG, No. ES3-3013_Jan06)	Jan-07
DAE4	SN: 654	21-Jun-06 (SPEAG, No. DAE4-654_Jun06)	Jun-07
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (SPEAG, in house check Nov-05)	In house check: Nov-07
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Nov-05)	In house check: Nov 06
	Name	Function	Signature
Calibrated by:	Katja Pokovic	Technical Manager	Many Mist
Approved by:	Niels Kuster	Quality Manager	1/10/

Issued: August 26, 2006

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ET3-1798_Aug06

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConF sensitivity in TSL / NORMx, v, z DCP diode compression point Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1798_Aug06 Page 2 of 9

TEL: +82 31 639 8518 FAX: +82 31 639 8525 www.hct.co.kr 11 FCC ID: U32GMRS7015RC DATE: March 06, 2007

ET3DV6 SN:1798 August 25, 2006

Probe ET3DV6

SN:1798

Manufactured: August 14, 2003 Last calibrated: April 14, 2005 Recalibrated: August 25, 2006

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1798_Aug06 Page 3 of 9

ET3DV6 SN:1798 August 25, 2006

DASY - Parameters of Probe: ET3DV6 SN:1798

Sensitivity in Free Space ^A Diode Com	mpression ^B
--	------------------------

NormX	1.97 ± 10.1%	$\mu V/(V/m)^2$	DCP X	98 mV
NormY	1.79 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	92 mV
NormZ	2.05 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	95 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL 900 MHz Typical SAR gradient: 5 % per mm

Sensor Cente	r to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	7.5	3.9
SAR _{be} [%]	With Correction Algorithm	0.1	0.2

TSL 1810 MHz Typical SAR gradient: 10 % per mm

Sensor Cente	r to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	11.6	6.6
SAR _{be} [%]	With Correction Algorithm	0.2	0.3

Sensor Offset

Probe Tip to Sensor Center 2.7 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ET3-1798_Aug06 Page 4 of 9

TEL: +82 31 639 8518 FAX: +82 31 639 8525 www.hct.co.

A The uncertainties of NormX,Y,Z do not affect the E3-field uncertainty inside TSL (see Page 8).

⁸ Numerical linearization parameter: uncertainty not required.

ET3DV6 SN:1798 August 25, 2006

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ET3-1798_Aug06 Page 5 of 9

ET3DV6 SN:1798 August 25, 2006

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ET3-1798_Aug06

Page 6 of 9

ET3DV6 SN:1798 August 25, 2006

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ET3-1798_Aug06

Page 7 of 9

> ET3DV6 SN:1798 August 25, 2006

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
450	± 50 / ± 100	Head	43.5 ± 5%	0.87 ± 5%	0.35	1.82	7.59 ± 13.3% (k=2)
900	±50/±100	Head	41.5 ± 5%	$0.97 \pm 5\%$	0.54	1.80	6.73 ± 11.0% (k=2)
1810	±50/±100	Head	40.0 ± 5%	1.40 ± 5%	0.48	2.78	5.60 ± 11.0% (k=2)
1950	± 50 / ± 100	Head	$40.0 \pm 5\%$	$1.40 \pm 5\%$	0.52	2.77	5.25 ± 11.0% (k=2)
2450	±50/±100	Head	39.2 ± 5%	1.80 ± 5%	0.55	2.23	4.73 ± 11.8% (k=2)
450	± 50 / ± 100	Body	56.7 ± 5%	0.94 ± 5%	0.24	1.85	7.86 ± 13.3% (k=2)
835	±50/±100	Body	55.2 ± 5%	$0.97 \pm 5\%$	0.46	2.02	6.71 ± 11.0% (k=2)
1900	± 50 / ± 100	Body	53.3 ± 5%	$1.52 \pm 5\%$	0.64	2.69	4.80 ± 11.0% (k=2)
2450	±50/±100	Body	52.7 ± 5%	1.95 ± 5%	0.45	1.82	4.37 ± 11.8% (k=2)

Certificate No: ET3-1798_Aug06 Page 8 of 9

^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

> ET3DV6 SN:1798 August 25, 2006

Deviation from Isotropy in HSL

Error (φ, θ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ET3-1798_Aug06

Page 9 of 9