Application No.: 10/807,376

Page - 2 -

AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the

application:

LISTING OF CLAIMS:

1. (Withdrawn) Method of depositing a crystalline α -Al₂O₃-layer onto a cutting

tool insert by chemical vapor deposition comprising the following steps:

depositing a from about 0.1 to about 1.5 μ m layer of TiC_xN_yO_z where x+y+z>=1 and

z>0;

treating said layer at from about 625 to about 1000 °C in a gas mixture containing

from about 0.5 to about 3 vol-% O₂ for a short period of time from about 0.5 to about 4 min;

and

depositing said Al₂O₃-layer by bringing said treated layer into contact with a gas

mixture containing from about 2 to about 10 vol-% of AlCl₃, from about 16 to about 40 vol-

% of CO₂, in H₂ and from about 0.8 to about 2 vol-% of a sulphur--containing agent at a

process pressure of from about 40 to about 300 mbar and a temperature of from about 625 to

about 800 °C.

2. (Withdrawn) The method of claim 1 wherein

in said depositing a from about 0.1 to about 1.5 μ m layer of TiC_xN_yO_z, x+y+z>=1 and

z>0.2;

in said treating said layer at from about 625 to about 1000 °C in a gas mixture

containing O₂, said O₂ is present as CO₂ + H₂ or O₂ + H₂ and said treating occurs for a short

period of time from about 0.5 to about 4 min; and

DC\593448\1

Application No.: 10/807,376

Page - 3 -

in said depositing said Al₂O₃-layer, the temperature is from about 625 to 700 °C.

3. (Withdrawn) The method of claim 2 wherein the depositing temperature is

from about 650 to 695 °C.

5.

4. (Withdrawn) The method of claim 1 wherein said treating step is also carried

out in the presence of from about 0.5 to about 6 vol-% HCl.

(Previously Presented) Cutting tool comprising a body with, at least on

functioning parts of a surface of the body, a hard and wear resistant coating comprising at

least one layer consisting essentially of crystalline α-Al₂O₃ with a thickness of from about 0.5

to about 10 μm, said crystalline α-Al₂O₃ having columnar grains with an average grain width

of from about 0.1 to about 1.1 µm and being deposited by chemical vapor deposition at a

temperature of from about 625 to about 800 °C.

6. (Previously Presented) The cutting tool of claim 19 wherein said body

comprises a body of cubic boron nitride or diamond.

7. (Original) The cutting tool of claim 5 wherein said coating comprises at least

one layer consisting of Ti(C,N) with a thickness of from about 0.5 to about 10 µm deposited

between the body and said α-Al₂O₃-layer by the MTCVD technique at a temperature less than

885 °C.

DC\593448\1

Application No.: 10/807,376

Page - 4 -

8. (Original) The cutting tool according to claim 7 wherein said coating further comprises an intermediate layer of from about 0.5 to about 1.5 μ m of TiC_xN_yO_z where x+y+z>=1 and z>0 between the α -Al₂O₃-layer and the MTCVD-TiCN-layer.

- 9. (Original) The cutting tool according to claim 8 wherein in said intermediate layer z>0.2.
- 10. (Original) The cutting tool according to claim 9 wherein in said coating intermediate layer z>0.2, y=0 and x>=0.
- 11. (Original) The cutting tool of claim 5 wherein said coating comprises at least one layer adjacent to the tool body deposited by PVD or PACVD.
- 12. (Original) The cutting tool of claim 11 wherein said coating comprises an intermediate layer of from about 0.1 to about 1.5 μ m TiC_xN_yO_z between the α -Al₂O₃ and the PVD or PACVD-layer(s₂) where x+y+z>=1 and z>0.
- 13. (Original) The cutting tool of claim 12 wherein in said intermediate layer z>0.2.
- 14. (Original) The cutting tool of claim 13 wherein in said intermediate layer z>0.2, y>=0 and x<0.1.

Application No.: 10/807,376

Page - 5 -

15. (Original) The cutting tool of claim 11 wherein said coating has a pronounced

columnar grain structure with a grain width of <0.5 μm.

16. (Previously Presented) The cutting tool of claim 5 wherein one such α-Al₂O₃

layer is a top visible layer at least along a cutting edge line.

17. (Previously Presented) The cutting tool of claim 5 wherein the coating on a

rake face and along an edge line has been smoothed by brushing or by blasting to a surface

roughness, R_a, of less than 0.2 μm over a measured length of 5 μm.

18. (Withdrawn) The cutting tool of claim 5 wherein said tool is a cutting insert, a

solid carbide drill or a carbide end-mill.

19. (Previously Presented) The cutting tool of claim 5, wherein the body

comprises sintered cemented carbide, cermet, ceramic, high speed steel or superhard

materials.

20. (Previously Presented) A cutting tool comprising:

a body including a plurality of functioning parts on a surface of the body;

a hard and wear resistant coating on at least the functioning parts,

wherein the body comprises cubic boron nitride or diamond,

wherein the coating comprises at least one layer consisting essentially of crystalline α -

Al₂O₃ with a thickness of from about 0.5 to about 10 μm, the crystalline α-Al₂O₃ having

columnar grains with an average grain width of from about 0.1 to about 1.1 µm and being

DC\593448\1

Application No.: 10/807,376

Page - 6 -

deposited by chemical vapor deposition at a temperature of from about 625 to about 800 °C, and

wherein said coating comprises at least one layer consisting of Ti(C,N) with a thickness of from about 0.5 to about 10 μ m deposited between the body and said α -Al₂O₃-layer.

21. (Previously Presented) The cutting tool of claim 20, wherein said coating further comprises an intermediate layer of from about 0.5 to about 1.5 μ m of TiC_xN_yO_z between the α -Al₂O₃-layer and the Ti(C₃N)-layer, where x+y+z>=1 and z>0.