Les points rationnels des courbes elliptiques

Théophile Hontang

12 mars 2017

Table des matières

Ι	Géométrie et Arithmétique		
	I.1	Groupe des Rationnels	3
	I.2	Weierstrass et formule de duplication	5
	I.3	Poins d'ordre fini	6
II	Thé	orème de Mordell-Weil	7
II	Cry	ptographie	13
A	Bib	liographie	15

Introduction

I Géométrie et Arithmétique

I.1 Groupe des Rationnels

FIGURE 1 – Loi d'addition

On note $I(C_1 \cap C_2, P)$ la multiplicité de P, point d'intersection de $C_1 \cap C_2$

Théorème 1 (Bézout). Soit C_1 et C_2 deux courbes projectives avec des composantes non communes. Alors :

$$\sum_{P \in C_1 \cap C_2} I(C_1 \cap C_2, P) = (\deg C_1)(\deg C_2)$$

Soit C une courbe elliptique. Elle est donnée par une équation de la forme F(X,Y,Z)=0 où F est un polynôme homogène de degré 3. Nous verrons dans la prochaine section qu'une réduction est possible (dite de Weierstrass).

Soit $L \in \mathbb{P}^2$ une droite. Par le théorème de Bézout, L intersecte C en trois points (Ces points ne sont pas forcément distincts).

Définissons la loi de composition + de C par la règle suivante.

Loi de Composition 1. Soient $P,Q \in C$, L la droite joignant P et Q (ou la tangente si P=Q), et P*Q le troisième point d'intersection de L par C. Soit L' la droite joignant P*Q et O. Alors P+Q est le point tel que L' intersecte C aux points P*Q, O et P+Q. C'est à dire:

$$P + Q = O * (P * Q)$$

Proposition 1. C, muni de la loi de composition +, est un groupe abélien avec O comme élément neutre. E vérifie alors les propriétés suivantes :

1. Si L intersecte C aux points P,Q et R alors

$$(P+Q)+R=O$$

2.
$$\forall P \in C$$
,

$$P + O = P$$

3.
$$\forall P, Q \in C$$

$$P + Q = Q + P$$

4. Soit $P \in C.$ Il existe un point, qu'on note -P, tel que

$$P + (-P) = O$$

5. Soit $P, Q, R \in C$. Alors

$$(P+Q) + R = P + (Q+R)$$

 $D\'{e}monstration.$ 1. Trivial par la loi de composition.

- 2. (Voir Figure 2) L et L' coïncident. L intersecte C aux points P, O, R et L' intersecte C aux points P + O, O, R d'où P + O = P.
- 3. Par construction.
- 4. (Voir Figure 2) La droite, qui passe par P et O, intersecte C au point qu'on nomme R. En utilisant 1) et 2), nous obtenons

$$O = (P + O) + R = P + R$$

5. (Voir Figure 3)

FIGURE 2 – Opposé et Élément neutre

FIGURE 3 – Associativité

I.2 Weierstrass et formule de duplication

Une courbe elliptique C est donnée par F(x,y)=0 où $\deg_x F=\deg_y F=3$. Nous nous plaçons dans le plan projectif \mathbb{P}^2 . L'idée est de réaliser une transformation projective pour réduire la forme de F. Pour cela, prenons un point rationnel \mathcal{O} sur C. Soit Z=0 la tangente de C en \mathcal{O} . Cette droite coupe C en un autre point qu'on nomme P. Soit X=0 la tangente de C en P, elle coupe C en un point Q. On choisit Y=0 une droite qui passe par \mathcal{O} mais différent de Z=0. En posant x=X/Z et y=Y/Z, on obtient une transformation projective et l'équation est alors de la forme dite de Weierstrass :

$$F: y^2 = ax^3 + bx^2 + cx + d$$

Le lecteur pourra se reporter sur le livre [Silverman, 2009] pour les calculs. La loi du groupe sur la forme de Weierstrass reste identique à celle vue précédemment. Dans ce cas , l'élément neutre $\mathcal O$ est un point à l'infini. Le point P*Q=(x,y), défini comme précédemment, donne le point P+Q=(x,-y), point symétrique par rapport à un axe. Nous remarquons alors que si $P=(x,y)\in C$ alors $-P=(x,-y)\in C$.

Proposition 2 (Formule de Duplication). Soit C une courbe elliptique de la forme de Weierstrass $(C): y^2 = x^3 + ax^2 + bx + c$.

1. Soient $P_i = (x_i, y_i) \in C$ pour $i \in \{1, 2\}$. alors $P_1 + P_2 = (x_3, y_3)$ avec

$$x_3 = \lambda^2 - a - x_1 - x_2$$
 $y_3 = \lambda x_3 + \nu$ $\lambda = \frac{y_2 - y_1}{x_2 - x_1}$

2. Soit $P_0 = (x_0, y_0) \in C$. Alors la coordonnée en x de 2P est :

$$x(2P) = \frac{x_0^4 - 2bx_0^2 - 8cx_0 + b^2 - 4ac}{4x_0^3 + 4ax_0^2 + 4bx_0 + 4c}$$

 $D\'{e}monstration$. 1) Soient $P_1*P_2=(x_*,y_*)$. La droite joignant P_1 et P_2 est définie par l'équation $y=\lambda x+\nu$ avec $\lambda=\frac{y_2-y_1}{x_2-x_1}$ et $\nu=y_1-\lambda x_1$. L'intersection de cette droite avec C est définie par :

$$x^{3} + (a - \lambda^{2})x^{2} + (b - 2\lambda\nu)x + (c - \nu^{2}) = 0$$

Les trois racines de ce polynôme sont x_1, x_2 et x_* . Par les relations de Viète qui expriment les coefficients du polynôme par les racines, nous obtenons :

$$a - \lambda^2 = -(x_1 + x_2 + x_3)$$

Comme $x_3=x_*$ et $y_3=-y_*$, nous obtenons bien les coordonnées de P_1+P_2 . 2) P*P est obtenu par l'intersection de C et de la tangente de C en P. La pente est $\lambda=\frac{dy}{dx}(P_0)=\frac{f'(x_0)}{2y_0}$. En substituant λ dans les équations obtenues en 1) et en remplaçant y^2 par x^3+ax^2+bx+c , nous obtenons le résultat.

I.3 Poins d'ordre fini

Définition 1. Un point P est d'ordre fini m si

$$mP = \underbrace{P + \ldots + P}_{mfois} = \mathcal{O}$$

Sinon P est d'ordre infini.

Définition 2. Soit C une courbe cubique donnée par

$$C: y^2 = f(x) = x^3 + ax^2 + bx + c$$

est dite non-singuliere si f et f' ont aucune racine commune; i.e f n'admet que des racines simples.

Théorème 2 (Points d'ordre 2 et 3). Soit C une courbe cubique non-singulière donnée par (2)

- 1. Un point P = (x, y) sur C est d'ordre 2 ssi y = 0.
- 2. C a quatre points d'ordre divisant 2. Ces quatre points forment un groupe isomorphe à $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$
- 3. Un point P = (x, y) est d'ordre 3 ssi x est racine du polynôme :

$$\chi(x) = 3x^4 + 4ax^3 + 6bx^2 + 12cx + 4ac - b^2$$

4. C a neuf points d'ordre divisant 3. Ces neuf points forment un groupe isomorphe à $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$.

 $D\acute{e}monstration.$

Théorème 3 (Nagell-Lutz [Lutz, 1937] [Nagell, 1935]). Soit

$$y^2 = x^3 + ax^2 + bx + c$$

une courbe cubique non-singulière avec $a,b,c\in\mathbb{N}$ et D le discriminant; i.e

$$D = -4a^3c + a^2b^2 + 18abc - 4b^3 - 27c^3$$

Soit P = (x, y) un point rationnel d'ordre fini. Alors $x, y \in \mathbb{N}$ et soit P est d'ordre 2, soit y divise D.

Théorème 4 ([Mazur, 1977] [Mazur, 1978]). Soit C une courbe cubique rationnel non-singulière, et supposons que $C(\mathbb{Q})$ contient un point d'ordre fini m. Alors

$$1 \leqslant m \leqslant 10$$
 ou $m = 12$

Dans la prochaine section, nous allons montrer que $C(\mathbb{Q})$ est de type fini, i.e $C(\mathbb{Q}) \simeq \mathbb{Z}^r \times C(\mathbb{Q})_{tors}$ où r est le rang de la courbe. Le sous-groupe de torsion $C(\mathbb{Q})_{tors}$ peut alors être identifié à quinze groupes :

$$\mathbb{Z}/n\mathbb{Z}$$
 $0 \leqslant n \leqslant 10$ ou $n = 12$

$$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2n\mathbb{Z}$$
 $1 \leqslant n \leqslant 4$

II Théorème de Mordell-Weil

Théorème 5 ([Mordell, 1922]). Soit C une courbe elliptique définie par l'équation

$$C: y^2 = x^3 + ax^2 + bx$$

avec $a, b \in \mathbb{N}$. Alors $C(\mathbb{Q})$ est un groupe abélien de type fini.

 $D\'{e}monstration.$

Théorème 6 (Descente). Soit Γ un groupe commutatif et soit la fonction

$$h:\Gamma\to[0,\infty]$$

vérifiant les propriétés suivantes :

- 1. Quelque soit M réel, $\{P \in \Gamma : h(P) \leq M\}$ est fini
- 2. Quelque soit P_0 point de Γ , il existe κ_0 tel que

$$h(P+P_0) \leqslant 2h(P) + \kappa_0 \quad \forall P \in \Gamma$$

3. Il existe une constante κ telle que :

$$h(2P) \geqslant 4h(P) - \kappa \quad \forall P \in \Gamma$$

4. $|\Gamma:2\Gamma|$ est fini

Alors Γ est de type fini

Démonstration. D'après 4), il existe un nombre fini de représentants de classe de $\Gamma/2\Gamma$ qu'on note $Q_1,Q_2,...,Q_n$. Cela signifie que pour tout $P\in\Gamma$, il existe un indice i_1 , dépendant de P, tel que $P-Q_{i_1}\in 2\Gamma$. On peut alors noter $P-Q_{i_1}=2P_1$ pour $P_1\in\Gamma$. En procédant de même, on peut écrire :

$$\begin{aligned} P - Q_{i_1} &= 2P_1 \\ P_1 - Q_{i_2} &= 2P_2 \\ P_2 - Q_{i_3} &= 2P_3 \\ &\vdots \\ P_{m-1} - Q_{i_m} &= 2P_m \end{aligned}$$

où $Q_{i_1},...,Q_{i_m}$ sont choisis parmi les représentants $Q_1,...,Q_n$ et $P_1,...,P_m \in \Gamma$. En substituant la j-ème ligne dans la(j-1)-ème ligne, et par une rapide récurrence, nous obtenons :

$$P = Q_{i_1} + 2Q_{i_2} + \dots + 2^{m-1}Q_{i_m} + 2^m P_m$$
 (1)

Nous allons appliquer la méthode de descente infinie dans le but de contrôler P_m par la hauteur. Par 2), $h(P-Q_i) \leq 2h(P) + \kappa_i \leq 2h(P) + \kappa'$ pour tout $P \in \Gamma$ et $\kappa' = \max_{1 \leq j \leq n} k_j$. Par 3), pour tout $j \in [1, n]$

$$4h(P_j) \leqslant h(2P_j) + \kappa = h(P_{j-1} - Q_{i_j}) + \kappa \leqslant 2h(P_{j-1}) + \kappa' + \kappa$$
$$h(P_j) \leqslant \frac{3}{4}h(P_{j-1}) - \frac{1}{4}(h(P_{j-1}) - (\kappa' + \kappa))$$

Si $(*)h(P_{j-1}) \ge \kappa' + \kappa$ alors $h(P_j) \le \frac{3}{4}h(P_{j-1})$. Tant que la condition (*) est vraie, le prochain point dans la suite $P_1, ..., P_n$ possède une hauteur plus petite. Il existe un indice m tel que $h(P_m) \le \kappa' + \kappa$. Ainsi, l'ensemble

$$\{Q_1, Q_2, ..., Q_n\} \cup \{P \in \Gamma; h(P) \leqslant \kappa' + \kappa\}$$

engendre Γ . Par 1) et 4), l'ensemble est fini d'où Γ est de type fini.

Définition 3. Soit $t \in \mathbb{Q}$ et t = p/q avec pgcd(p,q) = 1. La hauteur H(t) de t est défini par

$$H(t) = max\{|p|, |q|\}$$

Définition 4. La hauteur sur $C(\mathbb{Q})$ est la fonction :

$$h: C(\mathbb{Q}) \to \mathbb{R}$$

$$h(P(x,y)) = log(H(x))$$

La hauteur fera office de fonction et $C(\mathbb{Q})$ de groupe commutatif dans le théorème de la descente. Les quatre hypothèses sur h sont démontrés ci-dessous et ainsi le théorème de Mordell sera démontré.

Lemme 1. L'ensemble des rationnels, dont la hauteur est plus petit qu'un nombre fixé, est un ensemble fini.

$$\forall M \in \mathbb{R}, \{P \in \Gamma : h(P) \leqslant M\} \text{ est fini}$$

Démonstration. Si $x = \frac{m}{n}$ est plus petite qu'une constante, alors |m| et |n| sont plus petites que cette constante donc il existe un nombre fini de possibilités pour m et n.

Lemme 2. $\forall P_0 \in \Gamma$, il existe κ_0 (dépendant de P_0, a, b, c) tel que

$$h(P+P_0) \leqslant 2h(P) + \kappa_0 \quad \forall P \in \Gamma$$
 (2)

 $D\'{e}monstration$. Par des opérations élémentaires, on peut montrer que chaque point rationnel P=(x,y) peut être mis sous la forme suivante :

$$x = \frac{m}{e^2} \qquad y = \frac{n}{e^3} \qquad e, m, n \in \mathbb{N}^*$$
 (3)

avec pgcd(e, m) = 1 et pgcd(e, n) = 1.

En la mettant dans l'équation de la cubique, on a :

$$n^2 = m^3 + ae^2m^2 + be^4m + ce^6$$

En utilisant le fait que : $\mid m \mid \leqslant H(P)$ et $e^2 \leqslant H(P)$ et par l'inégalité triangulaire, on a :

$$|n^2| \le KH(P)^3$$
 $K = \sqrt{1 + |a| + |b| + |c|}.$ (4)

Supposons que $P = (x, y) \notin \{P_0, -P_0, \mathcal{O}\}$ avec $P_0 = (x_0, y_0)$ et que $P + P_0 = (\xi, \eta)$. La formule de duplication nous donne :

$$\xi + x + x_0 = \left(\frac{y - y_0}{x - x_0}\right)^2 - a$$

$$\iff \xi = \frac{Ane + Bm^2 + Cme^2 + De^4}{Em^2 + Fme^2 + Ge^4}$$

avec $A,B,C,D,E,F,G\in\mathbb{N}$. D'où $H(\xi)\leqslant \max\{|Ane+Bm^2+Cme^2+De^4|,|Em^2+Fme^2+Ge^4|\}$ Par les inégalités obtenues en et ,

$$H(P+P_0) = H(\xi) \le max\{|AK| + |B| + |C| + |D|, |E| + |F| + |G|\}H(P)^2$$

En appliquant la fonction logarithme, on a bien le résultat avec $\kappa_0 = log(max\{|AK| + |B| + |C| + |D|, |E| + |F| + |G|\})$

Lemme 3. Il existe une constante $\kappa(d\text{\'e}pendant\ de\ a,b,c)$ tel que :

$$h(2P) \geqslant 4h(P) - \kappa \quad \forall P \in \Gamma$$
 (5)

 $D\'{e}monstration$. Soit P=(x,y) un point qui n'est pas d'ordre 2 et $2P=(\xi,\eta)$. Formule de duplication

$$\xi + 2x = \left(\frac{f'(x)}{2u}\right)^2 - a$$

$$\xi = \frac{f'(x)^2 - (8x + 4a)f(x)}{4f(x)} = \frac{x^4 + \dots}{4x^3 + \dots}$$

 ξ est le quotient de deux polynômes qui n'ont aucune racine complexe commune car C est non-singulière.

Comme h(P) = h(x) et $h(2P) = h(\xi)$, nous allons prouver

$$h(\xi) \leqslant 4h(x) - \kappa$$

SubLemma 1. Soit ϕ et ψ des polynômes à coefficients entiers et aucune racine complexe commune. Soit $d = max(deg(\phi), deg(\psi))$

i) Il existe un entier $R \geqslant 1$ dépendant de ϕ et ψ telle que, pour tout rationnel m/n,

$$pgcd\Big(n^d\phi\Big(\frac{m}{n}\Big), n^d\psi\Big(\frac{m}{n}\Big)\Big) \mid R$$

ii) Ils existent des constantes κ_1 et κ_2 (dépendant de ϕ et ψ) telle que, pour tout rationnel m/n,

$$dh\left(\frac{m}{n}\right) - \kappa_1 \leqslant h\left(\frac{\phi(m/n)}{\psi(m/n)}\right)$$

Démonstration. Posons $deg(\phi) = d$ et $deg(\psi) = e \leqslant d$. On peut écrire

$$n^{d}\phi\left(\frac{m}{n}\right) = a_{0}nm^{d} + a_{1}m^{d-1} + \dots + a_{n}n^{d}$$
$$n^{d}\psi\left(\frac{m}{n}\right) = b_{0}m^{e}n^{d-e} + b_{1}m^{e-1}n^{d-e-1} + \dots + b_{e}n^{d}$$

On va poser $\Phi(m,n) = n^d \phi\left(\frac{m}{n}\right)$ et $\Psi(m,n) = n^d \psi\left(\frac{m}{n}\right)$ Comme ψ et ϕ n'ont pas de racines communes, ils sont premiers dans l'anneau euclidien $\mathbb{Q}[X]$. Il existe alors deux polynômes F et G de $\mathbb{Q}[X]$ tels que

$$F(X)\phi(X) + G(X)\psi(X) = 1$$

Soit A un entier tel que AG(X) et AF(X) soient à coefficients entiers. Soit $D = \max(deg(F), deg(G))$. En évaluant en X = m/n

$$n^DAF\Big(\frac{m}{n}\Big)*n^d\phi\Big(\frac{m}{n}\Big)+n^DAG\Big(\frac{m}{n}\Big)*n^d\psi\Big(\frac{m}{n}\Big)=An^{D+d}$$

 $\gamma = pgcd(\Phi(m,n), \Psi(m,n)) \mid An^{D+d}$ Comme γ divise $\Phi(m,n), \gamma$ divise aussi:

$$An^{D+d-1}\Phi(m,n) = Aa_0m^dn^{D+d-1} + Aa_1m^{d-1}n^{D+d} + \dots + Aa_dn^{D+2d-1}$$

Chaque terme contient An^{D+d} et on vient de prouver que γ divise An^{D+d} . Alors γ divise $Aa_0m^dn^{D+d-1}$. Ensuite

$$\gamma$$
 divise $pgcd(Aa_0m^dn^{D+d-1},An^{D+d})$

Comme m et n sont premiers entre eux, γ divise $Aa_0m^dn^{D+d-1}$. En utilisant le fait que γ divise $Aa_0m^dn^{D+d-2}\Phi(m,n)$ et en répétant les mêmes arguments, γ divise $Aa_0^2m^dn^{D+d-2}$. Par récurrence, on arrive à la conclusion suivante : γ divise Aa_0^{d+D} , ce qui montre i).

Pour ii), en continuant avec les notations de i),

$$\xi = \frac{\phi\left(\frac{m}{n}\right)}{\psi\left(\frac{m}{n}\right)} = \frac{\Phi(m,n)}{\Psi(m,n)}$$

D'après ii), il existe un entier $R\geqslant 1$ tel que $pgcd(\Phi(m,n),\Psi(m,n))$ divise R. On a :

$$\begin{split} H(\xi) \geqslant &\frac{1}{R} max\{ \mid \Phi(m,n) \mid, \mid \Psi(m,n) \mid \} \\ \geqslant &\frac{1}{2R} \left(\mid n^d \phi\left(\frac{m}{n}\right) \mid + \mid n^d \psi\left(\frac{m}{n}\right) \mid \right) \end{split}$$

Ce qui équivaut à :

$$\frac{H(\xi)}{H(m/n)^d} \geqslant \frac{1}{2R} \frac{\mid n^d \phi\left(\frac{m}{n}\right) \mid + \mid n^d \psi\left(\frac{m}{n}\right) \mid}{\max\{\mid m\mid^d, \mid n\mid^d} = \frac{1}{2R} \frac{\mid \phi\left(\frac{m}{n}\right) \mid + \mid \psi\left(\frac{m}{n}\right) \mid}{\max\{\mid \frac{m}{n}\mid^d, 1\}}$$

Considérons la fonction d'une variable réelle :

$$p(t) = \frac{\mid \phi(t) \mid + \mid \psi(t) \mid}{\max\{\mid t^d, 1\}}$$

Comme ϕ est de degré d et ψ de degré au moins d, les limites en l'infini de p ne sont pas nulles. Dans un intervalle fermé, p est continue donc atteint ses bornes. Comme la fonction ne s'annule jamais (ϕ et ψ n'ont pas de racines communes), il existe une constante $C_1 > 0$ telle que $p(t) \geqslant C_1$ pour tout t. En utilisant l'inégalité précédente, on peut dire :

$$H(\xi) \geqslant \frac{C_1}{2R} H\left(\frac{m}{n}\right)^d$$

Par l'image du logarithme, on arrive au résultat avec $\kappa_1 = log(2R/C_1)$

Le Lemme 3 est un cas particulier de Sublemma 1.

Lemme 4 (Mordell-Weil Faible). $|C(\mathbb{Q}): 2C(\mathbb{Q})|$ est fini.

Démonstration. Posons $\Gamma=C(\mathbb{Q})$. Soient $C:y^2=f(x)=x^3+ax^2+bx+c$. Supposons que f ait une racine rationnel x_0 . Comme f est un polynômes à coefficients entiers, par le théorème de Nagell-Lutz, x_0 est entier. Par un changement de coordonnées, on peut déplacer le point $(x_0,0)$ à l'origine. C est alors de la forme : $y^2=x^3+ax^2+bx$. Soient T=(0,0), $\overline{C}:y^2=x^3+\overline{a}x^2+\overline{b}x$ avec $\overline{a}=-2a$ et $\overline{b}=a^2-4b$.

Proposition 3. On considère les applications suivantes :

$$\phi((x,y)) = \left(\frac{y^2}{x^2}, \frac{y(x^2 - b)}{x^2}\right) \qquad \quad \psi((\overline{x}, \overline{y})) = \left(\frac{\overline{y}^2}{\overline{x}^2}, \frac{\overline{y}(\overline{x}^2 - \overline{b})}{\overline{x}^2}\right)$$

et $\phi(\mathcal{O}) = \phi(T) = \overline{\mathcal{O}}$ et $\psi(\overline{\mathcal{O}}) = \psi(\overline{T}) = \mathcal{O}$.

1. $\phi: C \to \overline{C}$ et $\psi: \overline{C} \to C$ sont des homomorphismes.

2. $\psi \circ \phi(P) = 2P$

 $D\'{e}monstration.$ 1. Plusieurs cas sont à distinguer. Si l'un des points est \mathcal{O} , il n'y a rien à prouver. Si l'un des points est T, en utilisant la loi d'addition, on a pour P = (x, y)

 $P+T=\left(\frac{b}{x},-\frac{by}{x^2}\right)$

En les remettant dans l'application ϕ , nous obtenons bien : $\phi(P+T) = \phi(P)$. Par un calcul rapide, on obtient que ϕ envoie les inverses sur les inverses. $\phi(-P) = \phi(x, -y) = -\phi(x, y) = -\phi(P)$. Si nous supposons que $P_1 + P_2 + P_3 = \mathcal{O}$ $(P_1, P_2, P_3 \neq T)$ et en réalisant l'intersection de la droite passant par ces trois points et la courbe, on peut alors montrer que $\phi(P_1) + \phi(P_2) + \phi(P_3) = \overline{\mathcal{O}}$. Ce qui montre que $\phi(P_1 + P_2) = \phi(P_1) + \phi(P_2)$ et donc que ϕ est un homomorphisme En posant $\overline{\overline{C}}: y^2 = x^3 + 4ax^2 + 16bx$, il est clair que $\overline{\overline{C}} \simeq C$. Nous pouvons alors associer $\overline{\phi}: \overline{C} \to \overline{\overline{C}}$ à ψ d'où ψ est un homomorphisme.

2. Le point 2P est donnée par la formule de duplication vu dans la section précédente. Les calculs de $\psi \circ \phi(P)$ sont laissés au lecteur.

Proposition 4. 1. $\overline{\mathcal{O}} \in \phi(\Gamma)$

2. $\overline{T} = (0,0) \in \phi(\Gamma)$ ssi $\overline{b} = a^2 - 4b$ est un carré parfait.

3. $\overline{P} \in \phi(\Gamma)$ ssi \overline{x} est le carré d'un rationnel.

 $D\acute{e}monstration.$ 1) Trivial par $\phi(\mathcal{O}) = \overline{\mathcal{O}}.$

2) $\overline{T} = (0,0) \in \phi(\Gamma)$ ssi $x(x^2 + ax + b) = 0$ et $x^2 + ax + b$ n'admet qu'une racine rationnelle ssi le discriminant $a^2 - 4b$ est un carré parfait.

3) Si $\overline{P} = (\overline{x}, \overline{y}) \in \phi(\Gamma)$, par la définition de phi, $\overline{x} = y^2/x^2$ qui est le carré d'un rationnel. Supposons maintenant que $\overline{x} = \omega^2$ avec $\omega \in \mathbb{Q}$. Comme le noyau de ϕ contient deux éléments, deux points de Γ correspondent au point $\overline{P} = (\overline{x}, \overline{y}) \in \phi(\Gamma)$. Les points $P_i = (x_i, y_i)$ avec $i \in \{1, 2\}$ données par :

$$\begin{cases} x_1 &= \frac{1}{2} \left(\omega^2 - a + \frac{\overline{y}}{\omega} \right) \\ y_1 &= x_1 \omega \end{cases} \qquad \begin{cases} x_2 &= \frac{1}{2} \left(\omega^2 - a - \frac{\overline{y}}{\omega} \right) \\ y_2 &= -x_2 \omega \end{cases}$$
 sont sur C et $\phi(P_i) = (\overline{x}, \overline{y})$, ce qui conclut la démonstration.

Proposition 5. Soit $\mathbb{Q}^{*2} = \{p^2; p \in \mathbb{Q}^*\}$

1. $\alpha: \Gamma \to \mathbb{Q}^*/\mathbb{Q}^{*2}$ donnée par

$$\alpha(\mathcal{O}) = [1]$$
 $\alpha(T) = [b]$ $\alpha(x, y) = [x]$

est un homomorphisme et $\ker(\alpha) = \Psi(\overline{\Gamma})$

2. Soient $p_1, p_2, ..., p_t$ les premiers divisant b. Alors :

$$\Gamma/\psi(\overline{\Gamma}) \simeq \alpha(\Gamma) \subset \{p_1^{\epsilon_1} p_2^{\epsilon_2} ... p_t^{\epsilon_t}, \epsilon_i = 0, 1\}$$

3. $|\Gamma:\psi(\bar{\Gamma})| \leq 2^{t+1}$

4. $|\Gamma:2\Gamma| \leq |\Gamma:\psi(\overline{\Gamma})||\overline{\Gamma}:\phi(\Gamma)|$

Démonstration. 1) Comme $\alpha(-P) = \alpha(x, -y)$, nous avons que :

$$\alpha(-P) = x = \frac{1}{x}x^2 \equiv \frac{1}{x} = \frac{1}{\alpha(P)}[\mathbb{Q}^{*2}]$$

lpha envoie les inverses sur les inverses. Nous allons procédé de la même manière que la proposition 2. Supposons que $P_1 + P_2 + P_3 = \mathcal{O}$. En intersectant C avec une droite et en utilisant la formule de Viète, nous obtenons :

$$\alpha(P_1)\alpha(P_2)\alpha(P_3) = \nu^2 \equiv [\mathbb{Q}^{*2}]$$

ce qui montre le résultat si P_1, P_2, P_3 sont différents de \mathcal{O} . Les autres cas sont laissés au lecteur. $\ker(\alpha) = \Psi(\overline{\Gamma})$ n'est qu'une conséquence de la proposition 3.

2) L'isomorphisme est dû au théorème de l'isomorphie. Nous avons vus dans lemme 2 que les points rationnels peuvent être mis sous la forme $x=m/e^2$ et $y=n/e^3$. En substituant dans C, nous obtenons

$$n^2 = m(m^2 + ame^2 + be^4)$$

Comme m et e sont premiers entre eux, $pgcd(m, m^2 + ame^2 + be^4)$ divise b. Alors m est de la forme $m = \pm (entier)^2 p_1^{\epsilon_1} p_2^{\epsilon_2} ... p_t^{\epsilon_t}$ avec $\epsilon_i = 0$ ou 1. Et :

$$\alpha(P) = x = \frac{m}{e^2} \equiv \pm p_1^{\epsilon_1} p_2^{\epsilon_2} ... p_t^{\epsilon_t} [\mathbb{Q}^{*2}]$$

ce qui nous montre bien le résultat.

3) C'est une conséquence directe de 2) : $|\Gamma:\psi(\overline{\Gamma})| \leqslant \#\{\pm p_1^{\epsilon_1}p_2^{\epsilon_2}...p_t^{\epsilon_t}\} = 2^{t+1}$ 4) Soit $\gamma \in \Gamma$. Soient $\gamma_1,...,\gamma_n$ des représentants des classes de $\psi(\overline{\Gamma})$ dans Γ . Il existe des γ_i tels que $\gamma - \gamma_i = \psi(\bar{\gamma})$. Soient $\bar{\gamma}_1, ..., \bar{\gamma}_n$ des représentants des classes de $\phi(\Gamma)$ dans $\overline{\Gamma}$. Il existe des $\overline{\gamma}_j$ tels que $\overline{\gamma} - \overline{\gamma}_j = \phi(\gamma')$. On a : $\gamma = \gamma_i + \psi(\overline{\gamma}_j + \phi(\gamma'))$ En utilisant la proposition 1), on a :

$$\gamma = \gamma_i + \psi(\bar{\gamma_j}) + 2\gamma'$$

d'où le résultat.

De même, $|\overline{\Gamma}:\phi(\Gamma)|<\infty$ et donc par 4), $|\Gamma:2\Gamma|<\infty$.

III Cryptographie

```
Data: n
Result: p tel que p divise n
a := 2 ou un nombre compris entre 2 et n - 2.
k une borne
for d from 2 to k do
   b := a^d \mod n
   p := pgcd(b-1, n)
   if p > 1 then
    | return p
   \quad \mathbf{end} \quad
\mathbf{end}
                   Algorithm 1: Algorithme p-1 de Pollard
Data: n
Result: p tel que p divise n
a := 2 ou un nombre compris entre 2 et n - 2.
k une borne
\mathbf{for}\ d\ \mathit{from}\ 2\ \mathit{to}\ k\ \mathbf{do}
   b:=a^d \!\!\mod n
   p := pgcd(b-1, n)
   if p > 1 then
    | return p
   \mathbf{end}
\mathbf{end}
         Algorithm 2: ECM (Elliptic Curve factorization Method)
[?]
```

Conclusion

A Bibliographie

Références

- [Lutz, 1937] Lutz, E. (1937). Sur l'équation $y^2 = x^3 ax b$ dans les corps p-adic. J.Reine Angew. Math.177, pages 237–247.
- [Mazur, 1977] Mazur, B. (1977). Modular curves and the einsenstein ideal. *IHES Publ. Math.* 47, pages 33–186.
- [Mazur, 1978] Mazur, B. (1978). Rational isogenies of prime degree. *Invent. Math.* 44, pages 129–162.
- [Mordell, 1922] Mordell, L. (1922). On the rational solutions of the indetermine equations of the third and fourth degrees. *Proc. Camb. Philos. Soc. 21*, pages 179–192.
- [Nagell, 1935] Nagell, T. (1935). Solutions de quelques problèmes dans la théorie arithmétique des cubiques planes du premier genre. Wid. Acad. Skrifter Oslo I.
- [Silverman, 2009] Silverman, J. H. (2009). The Arithmetic of Elliptic Curves. Springer.
- [Silverman, 2013] Silverman, J. H. (2013). Advanced Topics in the Arithmetic of Elliptic Curves. Springer.
- [Tate and Silverman, 2015] Tate, J. T. and Silverman, J. H. (2015). Rational Points on Elliptic Curves. Springer.

Sites Internet:

math.lsa.umich.edu/wfulton/CurveBook.pdf culturemath.ens.fr/maths/pdf/nombres/gaertner-2008.pdf