Design and Analysis of Algorithms

Presented by Dr. Li Ning

Shenzhen Institutes of Advanced Technology, Chinese Academy of Science Shenzhen, China

Algorithms on Directed Graphs

- 1 Directed Graph
- 2 Strongly Connected Component
- 3 Directed Cycle
- 4 Topological Sort

Directed Graph

Directed Graph

Directed Graph: a set of **nodes** connected by the **directed edges**.

$$G = (V, E)$$

- *V*: the set of nodes
 - A, B, and C
- *E*: the set of edges
 - (A, B), (B, C), and (A, C)

Neighbors

Given a graph G = (V, E), for node $v \in V$

- in-neighbors: $u \in V$, s.t. $(u, v) \in E$
- out-neighbors: $u \in V$, s.t. $(v, u) \in E$

Neighbors

Given a graph G = (V, E), for node $v \in V$

- in-neighbors: $u \in V$, s.t. $(u, v) \in E$
- out-neighbors: $u \in V$, s.t. $(v, u) \in E$

Neighbors

Given a graph G = (V, E), for node $v \in V$

- in-neighbors: $u \in V$, s.t. $(u, v) \in E$
- out-neighbors: $u \in V$, s.t. $(v, u) \in E$

Traversal on Directed Graphs

DFS: Visit node *v*

- For every **out-neighbor** *u* of *v*
 - If u is not visited
 - DFS on u

BFS: pop node *v* from the queue

- For every **out-neighbor** *u* of *v*
 - If u is not visited
 - Visit u
 - add u to the queue

Connected: two nodes u and v are connected, iff.

- there is a path from u to v;
- there is a path from v to u.

Strongly Connected: all pairs of nodes are connected, i.e. for any pair of nodes u and v, there is a directed path from u to v.

Connected: two nodes u and v are connected, iff.

- there is a path from u to v;
- there is a path from v to u.

Strongly Connected: all pairs of nodes are connected, i.e. for any pair of nodes u and v, there is a directed path from u to v.

"Connected" is an equivalence relation.

- Reflexive: v is connected to v, for all $v \in V$.
- Symmetric: v is connected to $u \Rightarrow u$ is connected to v
- Transitive: if
 - v is connected to u
 - u is connected to w

then v is connected to w

With an equivalence relation, the set can be divided into disjoint parts: in each part, the elements are related.

Strongly connected components: V is divided into several disjoint parts V_0, V_1, \ldots , such that

- \bullet all nodes in V_i are connected
- for any pair of nodes $u \in V_i$ and $v \in V_j$ with $i \neq j$, u is not connected to v.

Strongly Connected Component

Strongly Connected Component

problem: given a directed graph g = (v, e), find the strongly connected components, i.e. dividing v into v_0, v_1, \ldots , such that

- all nodes in v_i are connected
- for any pair of nodes $u \in v_i$ and $v \in v_j$ with $i \neq j$, u is not connected to v.

Component Graph: given a directed graph G = (V, E), the components graph is defined as $G^* = (V^*, E^*)$ where

- V^* : one node for each strongly connected component
- E^* : there is an edge from node V_i to node V_j iff. there exists $u \in V_i$ and $v \in V_j$ with $(u, v) \in E$

Component Graph: given a directed graph G = (V, E), the components graph is defined as $G^* = (V^*, E^*)$ where

- V^* : one node for each strongly connected component
- E^* : there is an edge from node V_i to node V_j iff. there exists $u \in V_i$ and $v \in V_j$ with $(u, v) \in E$

• The component graph has no cycles.

- The component graph has no cycles.
- For a node u in the sink component, all nodes v connected from u are all in the sink component.

- The component graph has no cycles.
- For a node u in the sink component, all nodes v connected from u are all in the sink component.
- Then we consider the component previous to the sink component.

Sink: the component that has no outgoing edge.

```
Algorithm: Components(G)
S = []:
while \bigcup_{C \in S} C \neq V do
     let s be any node in the sink component;
     run BFS from s:
     let C be the set of visited nodes;
     append C to S;
     remove nodes and edges adjacent to C from G;
end
Return S;
```

clock = 0

- Visit node v
 - pre(v) = clock
 - clock + = 1
 - For every out-neighbor u of v
 - If u is not visited:
 Modified DFS on u
 - post(v) = clock
 - clock + = 1

clock = 0

clock: 0

- Visit node *v*
 - pre(v) = clock
 - clock + = 1
 - For every out-neighbor u of v
 - If u is not visited:
 Modified DFS on u
 - post(v) = clock
 - clock + = 1

clock = 0

clock: 0

- Visit node *v*
 - pre(v) = clock
 - clock + = 1
 - For every out-neighbor u of v
 - If u is not visited:
 Modified DFS on u
 - post(v) = clock
 - clock + = 1

clock = 0

clock: 1

- Visit node *v*
 - pre(v) = clock
 - clock + = 1
 - For every out-neighbor u of v
 - If u is not visited:
 Modified DFS on u
 - post(v) = clock
 - clock + = 1

clock = 0

clock: 1

- Visit node v
 - pre(v) = clock
 - clock + = 1
 - For every out-neighbor u of v
 - If u is not visited:
 Modified DFS on u
 - post(v) = clock
 - clock + = 1

clock = 0

clock: 2

- Visit node *v*
 - pre(v) = clock
 - clock + = 1
 - For every out-neighbor u of v
 - If u is not visited:
 Modified DFS on u
 - post(v) = clock
 - clock + = 1

clock = 0

clock: 2

- Visit node *v*
 - pre(v) = clock
 - clock + = 1
 - For every out-neighbor u of v
 - If u is not visited:
 Modified DFS on u
 - post(v) = clock
 - clock + = 1

clock = 0

clock: 3

- Visit node *v*
 - pre(v) = clock
 - clock + = 1
 - For every out-neighbor u of v
 - If u is not visited:
 Modified DFS on u
 - post(v) = clock
 - clock + = 1

clock = 0

clock: 3

- Visit node v
 - pre(v) = clock
 - clock + = 1
 - For every out-neighbor u of v
 - If u is not visited:
 Modified DFS on u
 - post(v) = clock
 - clock + = 1

clock = 0

clock: 4

- Visit node v
 - pre(v) = clock
 - clock + = 1
 - For every out-neighbor u of v
 - If u is not visited:
 Modified DFS on u
 - post(v) = clock
 - clock + = 1

clock = 0

clock: 4

- Visit node v
 - pre(v) = clock
 - clock + = 1
 - For every out-neighbor u of v
 - If u is not visited:
 Modified DFS on u
 - post(v) = clock
 - clock + = 1

clock = 0

clock: 5

- Visit node v
 - pre(v) = clock
 - clock + = 1
 - For every out-neighbor u of v
 - If u is not visited:
 Modified DFS on u
 - post(v) = clock
 - clock + = 1

clock = 0

clock: 5

- Visit node v
 - pre(v) = clock
 - clock + = 1
 - For every out-neighbor u of v
 - If u is not visited:
 Modified DFS on u
 - post(v) = clock
 - clock + = 1

clock = 0

clock: 6

- Visit node v
 - pre(v) = clock
 - clock + = 1
 - For every out-neighbor u of v
 - If u is not visited:
 Modified DFS on u
 - post(v) = clock
 - clock + = 1

clock = 0

clock: 6

- Visit node v
 - pre(v) = clock
 - clock + = 1
 - For every out-neighbor u of v
 - If u is not visited:
 Modified DFS on u
 - post(v) = clock
 - clock + = 1

clock = 0

clock: 7

- Visit node v
 - pre(v) = clock
 - clock + = 1
 - For every out-neighbor u of v
 - If u is not visited:
 Modified DFS on u
 - post(v) = clock
 - clock + = 1

clock = 0

clock: 7

- Visit node v
 - pre(v) = clock
 - clock + = 1
 - For every out-neighbor u of v
 - If u is not visited:
 Modified DFS on u
 - post(v) = clock
 - clock + = 1

clock = 0

clock: 8

- Visit node v
 - pre(v) = clock
 - clock + = 1
 - For every out-neighbor u of v
 - If u is not visited:
 Modified DFS on u
 - post(v) = clock
 - clock + = 1

clock = 0

clock: 8

- Visit node v
 - pre(v) = clock
 - clock + = 1
 - For every out-neighbor u of v
 - If u is not visited:
 Modified DFS on u
 - post(v) = clock
 - clock + = 1

clock = 0

clock: 9

- Visit node v
 - pre(v) = clock
 - clock + = 1
 - For every out-neighbor u of v
 - If u is not visited:
 Modified DFS on u
 - post(v) = clock
 - clock + = 1

clock = 0

clock: 9

- Visit node v
 - pre(v) = clock
 - clock + = 1
 - For every out-neighbor u of v
 - If u is not visited:
 Modified DFS on u
 - post(v) = clock
 - clock + = 1

clock = 0

Modified DFS

- Visit node v
 - pre(v) = clock
 - clock + = 1
 - For every out-neighbor u of v
 - If u is not visited:
 Modified DFS on u
 - post(v) = clock
 - clock + = 1

clock: 10

clock = 0

clock: 10

- Visit node v
 - pre(v) = clock
 - clock + = 1
 - For every out-neighbor u of v
 - If u is not visited:
 Modified DFS on u
 - post(v) = clock
 - clock + = 1

clock = 0

clock: 11

- Visit node v
 - pre(v) = clock
 - clock + = 1
 - For every out-neighbor u of v
 - If u is not visited:
 Modified DFS on u
 - post(v) = clock
 - clock + = 1

clock = 0

clock: 11

- Visit node v
 - pre(v) = clock
 - clock + = 1
 - For every out-neighbor u of v
 - If u is not visited:
 Modified DFS on u
 - post(v) = clock
 - clock + = 1

clock = 0

clock: 12

- Visit node v
 - pre(v) = clock
 - clock + = 1
 - For every out-neighbor u of v
 - If u is not visited:
 Modified DFS on u
 - post(v) = clock
 - clock + = 1

clock = 0

clock: 12

- Visit node v
 - pre(v) = clock
 - clock + = 1
 - For every out-neighbor u of v
 - If u is not visited:
 Modified DFS on u
 - post(v) = clock
 - clock += 1

clock = 0

clock: 13

- Visit node v
 - pre(v) = clock
 - clock + = 1
 - For every out-neighbor u of v
 - If u is not visited:
 Modified DFS on u
 - post(v) = clock
 - clock + = 1

clock = 0

clock: 13

- Visit node v
 - pre(v) = clock
 - clock + = 1
 - For every out-neighbor u of v
 - If u is not visited:
 Modified DFS on u
 - post(v) = clock
 - clock += 1

Largest *post*: node in a source component

• pre(source)

- pre(source)
- visit other components

- pre(source)
- visit other components
- post(source)

- pre(source)
- visit other components
- post(source)

Largest *post*: node in a G^R : reverse all edges of G source component

- pre(source)
- visit other components
- post(source)

- pre(source)
- visit other components
- post(source)

- \bullet G^R : reverse all edges of G
- **2** Modified DFS on G^R

- pre(source)
- visit other components
- post(source)

- \bullet G^R : reverse all edges of G
- **2** Modified DFS on G^R
- 3 v : node of largest post

- pre(source)
- visit other components
- post(source)

- \bullet G^R : reverse all edges of G
- **2** Modified DFS on G^R
- 3 v : node of largest post
- \bullet v in the sink component of G

- pre(source)
- visit other components
- post(source)

- \bullet G^R : reverse all edges of G
- **2** Modified DFS on G^R
- 3 v : node of largest post
- v in the sink component of G
- remove all nodes connected from v

- pre(source)
- visit other components
- post(source)

- \bullet G^R : reverse all edges of G
- **2** Modified DFS on G^R
- 3 v : node of largest post
- \bullet v in the sink component of G
- remove all nodes connected from v
- **6** next? repeat 1-5 on the remaining graph

- pre(source)
- visit other components
- post(source)

- \bullet G^R : reverse all edges of G
- **2** Modified DFS on G^R
- 3 v : node of largest post
- \bullet v in the sink component of G
- remove all nodes connected from *v*
- **6** next? repeat 1-5 on the remaining graph
- **or**, largest *post* among the remaining nodes

Directed Cycle

Directed Cycle

Directed Cycle: a closed path consisting of directed edges.

$$\bullet$$
 $B-C-D-B$

- (B, C) is in E
- (C, D) is in E
- (D, B) is in E

Directed Cycle

Directed Cycle: a closed path consisting of directed edges.

- Directed: A B C A
 - (A, B) is in E
 - (B, C) is in E
 - (C, A) is **not** in E

Problem: check if the given undirected graph contains a cycle.

- explore the children after visiting a node
- cycle ⇔ visited child

Problem: check if the given undirected graph contains a cycle.

- explore the children after visiting a node
- cycle ⇔ visited child

Problem: check if the given undirected graph contains a cycle.

- explore the children after visiting a node
- cycle ⇔ visited child

Problem: check if the given undirected graph contains a cycle.

- explore the children after visiting a node
- cycle ⇔ visited child

Problem: check if the given undirected graph contains a cycle.

DFS

- explore the children after visiting a node
- cycle ⇔ visited child

Problem: check if the given undirected graph contains a cycle.

DFS

- explore the children after visiting a node
- cycle ⇔ visited child

Problem: check if the given undirected graph contains a cycle.

DFS

- explore the children after visiting a node
- cycle ⇔ visited child

Problem: check if the given directed graph contains a cycle.

- Visit node v
 - pre(v) = clock
 - clock + = 1
 - For every out-neighbor u of v
 - If u is not visited:
 Modified DFS on u
 - post(r) = clock
 - clock + = 1

Problem: check if the given directed graph contains a cycle.

- Visit node v
 - pre(v) = clock
 - clock + = 1
 - For every out-neighbor u of v
 - If u is not visited:
 Modified DFS on u
 - post(r) = clock
 - clock + = 1

Problem: check if the given directed graph contains a cycle.

- Visit node v
 - pre(v) = clock
 - clock + = 1
 - For every out-neighbor u of v
 - If u is not visited:
 Modified DFS on u
 - post(r) = clock
 - clock + = 1

Problem: check if the given directed graph contains a cycle.

- Visit node v
 - pre(v) = clock
 - clock + = 1
 - For every out-neighbor u of v
 - If u is not visited:
 Modified DFS on u
 - post(r) = clock
 - clock + = 1

Problem: check if the given directed graph contains a cycle.

- Visit node v
 - pre(v) = clock
 - clock + = 1
 - For every out-neighbor u of v
 - If u is not visited:
 Modified DFS on u
 - post(r) = clock
 - clock + = 1

Problem: check if the given directed graph contains a cycle.

- Visit node v
 - pre(v) = clock
 - clock + = 1
 - For every out-neighbor u of v
 - If u is not visited:
 Modified DFS on u
 - post(r) = clock
 - clock + = 1

Problem: check if the given directed graph contains a cycle.

Modified DFS

- Visit node v
 - pre(v) = clock
 - clock + = 1
 - For every out-neighbor u of v
 - If u is not visited: Modified DFS on u
 - post(r) = clock
 - clock + = 1

cross edge; not a cycle

Problem: check if the given directed graph contains a cycle.

Modified DFS

- Visit node v
 - pre(v) = clock
 - clock + = 1
 - For every out-neighbor u of v
 - If u is not visited:
 Modified DFS on u
 - post(r) = clock
 - clock + = 1

back edge; found a cycle

DAG: Directed Acyclic Graph

Conclusion: A directed graph has a cycle if and only if the DFS reveals a **back edge**.

Directed Acyclic Graph: a directed graph contains no cycles.

$$u \prec v, \forall (u, v) \in E$$

• Find the node of the largest post time.

- Find the node of the largest post time.
- Remove adjacent nodes and edges?

- Find the node of the largest post time.
- Remove adjacent nodes and edges?
 - Not necessary!

- Find the node of the largest post time.
- Remove adjacent nodes and edges?
 - Not necessary!
- Find the node of the largest post time in the remaining ones.

DFS: Start at node *r*

- Visit node *r*
- For every out-neighbor v of r
 - If v is not visited
 - DFS on v

S = [], the sorted the sequence

TopologicalSort: Start at node *r*

- Visit node r
- For every **out-neighbor** *v* of *r*
 - If v is not visited
 - TopologicalSort on v
- put r at the front of S

DFS: Start at node *r*

- Visit node *r*
- For every **out-neighbor** *v* of *r*
 - If v is not visited
 - DFS on v

S = [], the sorted the sequence

TopologicalSort: Start at node *r*

- Visit node r
- For every **out-neighbor** *v* of *r*
 - If v is not visited
 - TopologicalSort on v
- put r at the front of S

DFS: Start at node *r*

- Visit node *r*
- For every **out-neighbor** *v* of *r*
 - If v is not visited
 - DFS on v

S = [], the sorted the sequence

TopologicalSort: Start at node *r*

- Visit node r
- For every **out-neighbor** *v* of *r*
 - If v is not visited
 - TopologicalSort on v
- put r at the front of S

Visit A

Visit B

DFS: Start at node *r*

- Visit node *r*
- For every **out-neighbor** *v* of *r*
 - If v is not visited
 - DFS on v

S = [], the sorted the sequence

TopologicalSort: Start at node *r*

- Visit node r
- For every **out-neighbor** *v* of *r*
 - If v is not visited
 - TopologicalSort on v
- put r at the front of S

- Visit B
 - Visit D

DFS: Start at node *r*

- Visit node *r*
- For every **out-neighbor** *v* of *r*
 - If v is not visited
 - DFS on v

S = [], the sorted the sequence

TopologicalSort: Start at node *r*

- Visit node r
- For every **out-neighbor** *v* of *r*
 - If v is not visited
 - TopologicalSort on v
- put r at the front of S

- Visit B
 - Visit D
 - Visit C

DFS: Start at node *r*

- Visit node *r*
- For every **out-neighbor** *v* of *r*
 - If v is not visited
 - DFS on *v*

S = [], the sorted the sequence

TopologicalSort: Start at node *r*

- Visit node r
- For every **out-neighbor** *v* of *r*
 - If v is not visited
 - TopologicalSort on v
- put *r* at the front of *S*

$$S = [C]$$

- Visit B
 - Visit D

DFS: Start at node *r*

- Visit node r
- For every **out-neighbor** *v* of *r*
 - If v is not visited
 - DFS on v

 $S = [\]$, the sorted the sequence

TopologicalSort: Start at node *r*

- Visit node r
- For every **out-neighbor** *v* of *r*
 - If v is not visited
 - TopologicalSort on v
- put r at the front of S

$$S = [D, C]$$

Visit A

Visit B

DFS: Start at node *r*

- Visit node *r*
- For every **out-neighbor** *v* of *r*
 - If v is not visited
 - DFS on v

S = [], the sorted the sequence

TopologicalSort: Start at node *r*

- Visit node r
- For every **out-neighbor** *v* of *r*
 - If v is not visited
 - TopologicalSort on v
- put *r* at the front of *S*

$$S = [B, D, C]$$

DFS: Start at node *r*

- Visit node *r*
- For every **out-neighbor** *v* of *r*
 - If v is not visited
 - DFS on v

 $\mathcal{S} = [$], the sorted the sequence

TopologicalSort: Start at node *r*

- Visit node r
- For every out-neighbor v of r
 - If v is not visited
 - TopologicalSort on v
- put r at the front of S

THANK YOU

