

基于Flink ML搭建的智能运维算法服务及应用

张颖莹 | 阿里云算法专家

● 1 阿里云大数据平台的智能运维

- 02 智能运维算法服务应用场景
- 03 传统算法工程链路的局限性

04 使用Flink ML搭建智能运维算法服务

01 阿里云大数据平台的智能运维

阿里云大数据平台

典型业务场景

大数据平台

大数据计算服务 MaxCompute

快速、完全托管的 TB/PB级数据仓库 实时计算 Flink版

企业级、高性能 实时大数据处理系统 实时数仓 Hologres

交互式分析产品 一站式实时数据仓库引擎

阿里云ABM 运维中台

大数据平台智能运维

Trace

日志

自愈

指标

算法需求

多源异构 数据

海量数据

实时分析

02 智能运维算法服务应用场景

稳定性: 集群核心指标监控

核心指标监控大盘

时序异常检测

缩短MTTD 保障SLA(Service Level Agreement)

成本:基于负载的资源自动扩缩容

精准预测 自动扩缩容

低峰时段资源浪费 高峰时段需求无法满足

资源节省 需求得到充分保障

效率:基于日志的作业智能诊断

03 传统算法工程链路的局限性

传统算法工程链路

04 使用Flink ML搭建智能运维算法服务

面向运维场景的算法设计

典型

算法

稳定性——时序异常检测

成本——时序预测

效率——日志聚类

模型训练速度快/增量训练

特点

模型需要及时更新

传统机器学习模型

Flink ML特性

实时性

流批一体

CDC 增量读取 Flink ML API Flink ML 基础设施

日志聚类业务背景和挑战

特点和挑战

- 海量且信息密度低
- 非结构化数据
- 包含的变量多
- 一定的格式规范+语义性
- 实时生成

聚类目标

- 自动实时地聚合为有限的日志类别
- 考虑日志的语义性
- 能应对新的日志类型的出现

日志聚类示例

日志原文

- ① Table meta.shop can not be found
- ② Table meta.merchant can not be found
- ③ Table meta.customer can not be found
- ④ Can't find table meta.cluster
- ⑤ Can't find table meta.project
- 6 Can't find table meta.machine

预处理和编码 (日志模板)

① Table * can not be found '895ca77eb163456b4bb4cf17f ce8a81b'

② Can't find table *
'1526796e4dc4afd42d93b8d7
59b05457'

分词和特征表示

日志 模板	table	can	not	be	find
'895c a77e b163 456b 4bb4 cf17f ce8a 81b'	1	1	1	1	1
'1526 796e 4dc4 afd42 d93b 8d75 9b05 457'	1	1	1	0	1

聚**类和标注** (日志类别和解决方案)

日志模板	日志类别	关键词	解决方案
'895ca77 eb16345 6b4bb4c f17fce8a 81b'	类别A	table, can,no t,find	请检查相 关的表是 否存在
'1526796 e4dc4af d42d93b 8d759b0 5457'	大 かられ		

日志聚类算法流程

使用Flink ML构建流式日志聚类

SLS

算子的可复用性

#数据读入

- 数据库FlinkCDC增量读取
- SLS流式读取 inputTable = ...

#预处理相关UDF

#特征工程 UDF

- 分词、日志文本向量化 (CountVectorizer)
- 特征选择 (TF-IDF)
- 特征标准化 (StandardScaler)

```
# 创建Flink ML层次聚类算子实例,并配置所需参数。
agglomerative_clustering =
AgglomerativeClustering()\
.set_features_col('features')\
.set_prediction_col('prediction')\
.set_linkage('average')\
.set_distance_measure('euclidean')\
.set_windows(EventTimeTumblingWindows.of(Time.minutes(1)))\
.set_compute_full_tree(True)
```

输出每个向量的类别 outputTable = agglomerative_clustering.transform(inputTable)[0]

无限数据流上的实时聚类

- 多种窗口可供选择
 - GlobalWindows
 - CountTumblingWindows
 - EventTimeTumblingWindows
 - ProcessingTimeTumblingWindows
 - EventTimeSessionWindows
 - ProcessingTimeSessionWindows
- 根据实时性需求,灵活调节窗口大小

日志聚类算法链路升级的收益

日志聚类算法链路升级的收益

收益

链路延迟降低 (5min ——> 30s)

运维成本降低 (只需维护一个Flink作业)

分析成本降低 (减少了RDS和SLS的联合分析)

> 算法性能提升 (单机——>Flink 算子)

总结和开源计划

效率

稳定性 成本

时序异常检测

时序预测

日志聚类

0

实时 性

流批 一体

CDC 增量 读取

Flink ML API

Flink ML 基础 设施 收益

链路延迟降低

运维成本降低

分析成本降低

算法性能提升

展望:基于Flink ML的算法服务开源计划

https://github.com/alibaba/SREWorks

部分基于Flink ML构建的算法服务及框架在未来将通过SREWorks输出,欢迎关注!

THANK YOU

谢 谢 观 看