# Quantum Volume Circuit with Noise and QGAN Training

Abdullah Kazi

June 12, 2024

## Methodology

#### **Quantum Volume Circuit with Noise:**

- **Setup**: 4 qubits, depth 3, noise strength 0.3.
- Transformation: Apply Haar transformation.
- ▶ Unitary Application: Haar-random unitaries and interleaved two-qubit gates (CNOT, CY, CZ).
- ► Measurement: Pauli observables (X, Y, Z).

#### **QGAN Training:**

- ▶ Real Data Circuit: Hadamard gate and rotation gates.
- Generator Circuit: Sequence of RX, RY, RZ gates and a CNOT gate.
- Discriminator Circuit: Similar structure with a different arrangement.
- ➤ **Training**: Adam optimizer, learning rate 0.01, 100 steps for both discriminator and generator.



## Results: Quantum Volume Circuit

- Data Distribution Visualization: Histograms for each qubit.
- ➤ **Synthetic Data Generation**: Noisy measurements from the quantum circuit.

## Results: QGAN Training

#### Training Metrics:

- Prob(real classified as real): 0.9133
- Prob(fake classified as real): 0.9729
- ▶ Discriminator cost: 0.0596

#### **Bloch Vectors:**

- Real Bloch vector: [-0.2169, 0.4505, -0.8660]
- ► Generator Bloch vector: [0.0593, 0.0501, -0.9952]
- Absolute differences: [0.3205, 0.1513, 0.0801]
- Average absolute difference: 0.1839

### Results: Classifier Performance

- ► Accuracy on Generated Data: 0.42
- ► Classification Report:

| Class        | Precision | Recall | F1-Score |
|--------------|-----------|--------|----------|
| 0            | 0.29      | 0.24   | 0.26     |
| 1            | 0.50      | 0.57   | 0.53     |
| Accuracy     |           | 0.42   |          |
| Macro avg    | 0.39      | 0.40   | 0.39     |
| Weighted avg | 0.41      | 0.42   | 0.41     |
|              |           |        |          |