Math 571 - Homework 2 (05.22)

Richard Ketchersid

Problem 0.1 (R:2:2*). A complex number γ is **algebraic** iff γ is a root to a polynomial with integer coefficients. Prove that there are complex numbers that are not algebraic.

The following are two fun facts (not related to the question, but just for intellectual curiosity):

Let $\mathbb{A} \subset \mathbb{C}$ be the set of algebraic numbers.

- 1. \mathbb{A} is a field.
- 2. A is algebraically closed, that is, if α is a root of a polynomial in $\mathbb{A}[x]$, then $\alpha \in \mathbb{A}$. So in the definition of algebraic numbers you can use any ring of coefficients $R, \mathbb{Z} \subseteq R \subseteq \mathbb{A}$.

Here is a write-up of the proofs, you should have the background to read this, but it is not an easy read.

Definition 1. A set $S \subseteq X$ is **discrete** iff every point in S is isolated.

Problem 0.2 (R:2:5*). Prove the following for discrete $S \subset \mathbb{R}$:

- a) $Lim(S) \cap S = \emptyset$ and S is countable.
- b) There is countable set $A \subset \mathbb{R}$ so that Lim(A) = Cl(S).
- c) Give an example of a discrete set S where there is no set A such that Lim(A) = S.

For the following use the definition that I provided for Cl(E), namely, $Cl(E) = \bigcap \{F \mid F \text{ is closed and } E \subseteq F\}.$

Problem 0.3 (R:2:6). For X a metric space and $E \subseteq X$, show that

- a) $Cl(E) = E \cup Lim(E)$.
- b) Lim(E) is closed.

Either show or give a counterexample to Lim(E) = Lim(Cl(E)).

 $\operatorname{Lim}(E) \subseteq \operatorname{Lim}(\operatorname{Cl}(E))$ simply because $A \subseteq B \Longrightarrow \operatorname{Lim}(A) \subseteq \operatorname{Lim}(B)$. Let $x \in \operatorname{Lim}(\operatorname{Cl}(E))$ and let O be an open nbhd of x, then $O \cap (E \cup \operatorname{Lim}(E)) \neq \emptyset$. If $O \cap E \neq \emptyset$ then we are done. Else $O \cap \operatorname{Lim}(E) \neq \emptyset$. In this case we argue as we did above. Let $y \in \operatorname{Lim}(E) \cap O$. Let $U \subset O$ be nbhd of y, then $U \cap E \neq \emptyset$, so $O \cap E \neq \emptyset$.

Problem 0.4 (R:2:9*). Let X be a metric space, or just any topological space. Are the following true for all $E \subseteq X$?

- a) $\operatorname{Int}(E)^c = \operatorname{Cl}(E^c)$.
- b) $Cl(E) = Int(E^c)^c$?
- c) Cl(E) = Cl(Int(E))?
- d) Int(E) = Int(Cl(E))

For each either prove the statement true or give a counterexample. For a counterexample you must provide both X and E.

Definition 2. A metric space X is **separable** iff there is a countable $E \subseteq X$ with E dense in X.

Problem 0.5 (R:2:22). Show the \mathbb{R}^k is separable.

Definition 3. A set \mathcal{B} of open sets is called a **base** for X iff for all $x \in X$ and open set U with $x \in U$, there is $V \in \mathcal{B}$ so that $x \in V \subset U$.

Problem 0.6 (R:2:23*). Prove that a metric space is separable iff it has a countable base.

Problem 0.7 (R:2:24). Prove that if X is a metric space and every infinite sequence has a limit point, then X is separable. (See the hint in the text.)