INF102 Algorithms and Data Structures

Marc Bezem¹

¹Department of Informatics University of Bergen

Fall 2015

INF102

- ► Lecturer: Marc Bezem, teaching assistants: NN
- ► Homepage: INF102 (hyperlinks in red)
- ► Textbook: Algorithms, 4th edition, R. Sedgewick and K. Wayne, Pearson, 2011
- ▶ Prerequisites: INF100 + 101 (\approx Ch. 1.1 + 1.2)
- Syllabus (pensum): Ch. 1.3–1.5, Ch. 2, Ch. 3, Ch. 4
- Exam: two or three compulsory exercises and a written exam
- Old exams: 2004–2013, 2014
- Contents of these slides here

Didactical stuff

- ► Good textbook from USA: many pages, exercises etc.
- Average speed must be ca 50 pages p/w
- Lectures focus on the essentials
- Prepare yourself by reading in advance
- Workshops about selected exercises
- ► Test yourself by trying some exercises in advance
- ▶ If you can do the exercises (incl. compulsory), you are fine

Generic Bags, Queues and Stacks

- Generic programming in Java, example: PolyPair
- Bag, Queue and Stack are generic, iterable collections
- Queue and Stack: Ch. 9 in textbook INF100/1
- ► APIs include: boolean isEmpty() and int size()
- ▶ All three support adding an element
- Queue and Stack support removing an element (if any)
- FIFO Queue, LIFO Stack
- Dijkstra's Two-Stack Expression Evaluation Movie

Implementations

- ResizingArray_Stack.java
- Resizing takes time and space proportional to size
- LinkedList_Stack.java
- Pointers take space and dereferencing takes time
- Programming with pointers: make a picture
- LinkedList_Queue.java

Computation time and memory space

- Two central questions:
 - ► How long will my program take?
 - Will there be enough memory?
- Example: TheeSum
- Inner loop is important

Methods of Analysis

Empirical:

- ▶ Run program with randomized inputs, measuring time & space
- Run program repeatedly, doubling the input size
- Measuring time: StopWatch
- Plot, or log-log plot and linear regression

Theoretical:

- Define a cost model by abstraction (e.g., array accesses, comparisons, operations)
- Try to count/estimate/average this cost as function of the input (size)
- ▶ Use O(f(n)) and $f(n) \sim g(n)$

ThreeSum, empirically

- ▶ Input sizes 1K, 2K, 4K, 8K take time 0.1, 0.8, 6.4 ,51.1 sec
- ► The log's are 3, 3.3, 3.6, 3.9 and -1, -0.1, 0.8, 1.71
- ▶ Linear regression gives $y \approx 3x 10$
- ▶ $\lg(f(n)) = 3\lg(n) 10$ iff

$$f(n) = 10^{\lg(f(n))} = 10^{3\lg(n)-10} = n^3 * 10^{-10}$$

- ▶ Conclusion: cubic in the input size, with constant $\approx 10^{-10}$
- Strong dependence on input can be a problem
- ightharpoonup Constant 10^{-10} depends on computer, exponent 3 does not

ThreeSum, theoretically

- Number of different picks of triples: g(n) = n(n-1)(n-2)/6
- ▶ Inner loop executed g(n) times
- $g(n) = n^3/6 n^2/2 + n/3$
- ► Cubic term $n^3/6$ wins for large n
- ► Computational model # array accesses: n³/2
- ▶ Cost array access t sec: time $t * n^3/2$ sec

Big Oh, and \sim

- ▶ Q: 'wins for large *n*' uhh???
- ightharpoonup A: Big Oh, and \sim will clear this up
- ▶ Costs are positive quantities, so $f, g, ... : \mathbb{N} \to \mathbb{R}^+$
- ▶ MNF130: f(n) is O(g(n)) if there exist c, N such that $f(n) \le cg(n)$ for all $n \ge N$
- ► Example: n^2 and even $99n^3$ are $O(n^3)$, but n^3 is not $O(n^{2.9})$
- ▶ INF102: $f(n) \sim g(n)$ if $1 = \lim_{n \to \infty} f(n)/g(n)$
- ▶ If $f(n) \sim g(n)$, then f(n) is O(g(n)) and g(n) is O(f(n))
- ▶ Big Og and ~ aim to capture 'order of growth'
- ightharpoonup Big Oh abstracts from constant factors, \sim does not
- Large constant factors are important!

Important orders of growth

- ▶ constant: c(f(n) = c for all n)
- ▶ linear: n (compare all for n = 20 sec)
- ▶ linearithmetic: n lg n
- ▶ quadratic: n²
- ightharpoonup cubic: n^3
- exponential: 2ⁿ
- general form: $an^b(\lg n)^c$

Examples

- Worst case: guaranteed, independent of input
- ► Average case: not guaranteed, dependent of input distribution
- Linked list implementations of Stack, Queue and Bag: all operations take constant time in the worst case
- Resizing array implementations of Stack, Queue and Bag: adding and deleting take linear time in the worst case (easy)
- Resizing array implementations of Stack, Queue and Bag: adding and deleting take on average constant time in the worst case (difficult)
- Special case of resizing array that is only growing: $1(2)2(4)34(8)5678(16)9 \dots 16(32) \dots$, with (n) the new size. Risizing to (n) costs 2n array accesses, so in total $(1+4)+(1+8)+(2+16)+(4+32)+(8+64) \dots$, 9 per push.

Staying Connected

- ▶ MNF130: relation $R \subseteq V \times V$ is an *equivalence* if
 - ▶ R is reflexive: $\forall x \in V$. R(x,x)
 - ▶ *R* is *symmetic*: $\forall x, y \in V$. $R(x, y) \rightarrow R(y, x)$
 - ▶ R is transitive: $\forall x, y, z \in V$. $R(x, y) \land R(y, z) \rightarrow R(x, z)$
- We assume connectedness to be an equivalence
- Dynamic connectivity means that R can grow and shrink
- Example: if the 'Bergensbanen' is broken, Oslo and Bergen are no longer connected by rail
- We want efficient algorithms and datastructures for testing whether to objects are connected
- Clear relationship with paths in graphs, more in Ch. 4
- ▶ Here we take $V = \{0, ..., N 1\}$

ToC and topics of general interest

- ► Table of Contents on next slide (all items clickable)
- ► Practical stuff: slide 2

Introduction

Ch.1.3 Bags, Queues and Stacks

Ch.1.4 Analysis of Algorithms

Ch.1.5 Case Study: Union-Find

Table of Contents