Sztuczna Inteligencja i Systemy Ekspertowe 2019/2020 Prowadzący: dr inż. Krzysztof Lichy wt., 12:15

	Data oddania	<i>:</i>	Ocena:
--	--------------	----------	--------

Mateusz Walczak 216911 Konrad Kajszczak 216790

Zadanie 2: Sieć neuronowa służąca do korygowania pomiaru systemu lokalizacji

Wprowadzenie

Celem zadania było zaprojektowanie i zaimplementowanie sieci neuronowej, która pozwoli na korygowanie błędów uzyskanych z systemu pomiarowego. Projektując sieć neuronową należało odpowiednio dobrać [1]:

- liczbę warstw,
- liczebność neuronów w poszczególnych warstwach,
- funkcje aktywacji,
- liczbę próbek z poprzednich chwil czasowych.

1. Opis architektury sieci neuronowej

W tym rozdziale rozpoczniemy od opisu działania naszego programu oraz drogi jaką przebyliśmy, aby znaleźć taką sieć neuronową, która pozwoli na skuteczne korygowanie błędów uzyskanych z systemu pomiarowego. Nastepnie skoncetrujemy się na opisie architektury tej sieci neuronowej, która okazała się najskutecznniejsza.

1.1. Historia wyboru odpowiedniej architektury sieci neuronowej

Nasz program został napisany w języku Java, bez wykorzystania wysokopoziomowych bibliotek do tworzenia sieci neuronowych. Program został napisany w taki sposób, aby w zależności od ustawień, tworzyć, inicjować a

następnie przeprowadzać proces nauki dla sieci neuronowych o różnych liczbach nauronów w poszczególnych warstwach a także różnych liczbach próbek z poprzednich chwil czasowych.

Po wielu nieudanych próbach poprawy błędów uzyskanych z systemu pomiarowego, z wykorzystaniem sieci 2-warstwowych (n neuronów w 1 warstwie i 2 neurony w warstwie wyjściowej), zdecydowano się na implementcję 3-warstowej sieci nueronowej.

Nasza aplikacja buduje 3-warstową sieć neuronową na podstawie trzech parametrów, które na potrzeby tego sprawozdania będziemy nazywać n_1 , n_2 oraz p. Kolejno, stanowią one:

- n_1 liczba neuronów w pierwszej warstwie sieci,
- \bullet n_2 liczba neuronów w drugiej warstwie sieci,
- $\bullet\,$ p liczbę próbek z poprzednich chwil czasowych wykorzystywanych przez sieć neuronową.

W tym miejscu warto wspomnieć o tym, że trzecia warstwa za każdym razem składała się z 2 neuronów, ponieważ nasza sieć musi mieć 2 wyjścia, aby spełniała warunki zadania (powinna zwracać współrzędną x-ową i y-ową dla danej próbki pomiarowej).

Warstwa trzecia (wyjściowa) posiadała identycznościową funkcję aktywacji. Warstwy pierwsza i druga zaś funkcję hiperboliczną (tangens hiperboliczny), określoną wzorem:

$$tgh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}.$$
 (1)

Wszystkie wagi, dla każdego z neuronów we wszystkich 3 warstwach, inicializowano wartościa losowa, należącą do przedziału $\langle -1; 1 \rangle$.

Program uruchamiano dla różnych kombinacji parametrów n_1 , n_2 oraz p. W każdej z kombinacji powtarzano eksperymenty kilkukrotnie, w poszukiwaniu najbardziej optymalnego rozwiązania. Wartości osiągane przez poszczególne parametry każdorazowo należały do zbiorów liczb całkowitych spełniających warunki, odpowiednio:

$$2 \le n_1 \le 20,\tag{2}$$

$$2 \le n_2 \le 20,\tag{3}$$

$$1 (4)$$

Na podstawie tysięcy iteracji programu, przeprowadzonych na przestrzeni klikudziesięciu godzin, wyciągnięto wnioski dotyczące tego, jakie wartości

parametrów n_1, n_2 oraz p są optymalne dla zadanego problemu. Okazało się, że:

 najbardziej optymalne liczby neuronów zarówno w warstwie pierwszej jak i drugiej to te, należące do przedziału

$$n_1, n_2 \in \langle 6; 9 \rangle. \tag{5}$$

• liczby próbek z poprzednich chwil czasowych, dających najlepsze rezultaty są następujące:

$$p = 3 \lor p = 4 \lor p = 5 \tag{6}$$

W ten sposób bardzo zawęzliliśmy różnorodność sieci neuronowych, wykorzystywanych do naszych eksperymentów. W następnym etapie badań, wykorzystywano już tylko takie sieci neuronowe, które stosowały się do powyższych wniosków. Program ponownie uruchomiono wiele razy. Tym razem jednak, regularnie udawało się osiągnąć zamierzony cel - nauczona sieć neuronowa znacząco korygowała błędy uzyskane z systemu pomiarowego.

Architektura sieci neuronowej, z wykorzystaniem której uzyskano najlepsze rezultaty została omówiona w następnym podrozdziale.

1.2. Najskuteczniejsza sieć neuronowa - szczegóły architektury

W wielu iteracjach, z wykorzystaniem różnych konfiguracji sieci (spełniajacych warunki (5) oraz (6)), udawało się nam korygować błędy uzyskane z systemu pomiarowego, a co za tym idzie poprawić dystrybuantę błędu pomiarowego, a także zmniejszyć średni błąd pomiaru dla zbioru testowego.

Najepsze wyniki zarówno dystrybuanty jak i średniego błędu pomiarowego uzyskano dla 3-warstowej sieci neuronowej, której parametry prezentują się następująco:

- liczebność neuronów w poszczególnych warstwach: $n_1 = 6$ i $n_2 = 7$,
- liczba próbek z poprzednich chwil czasowych p=3
- funkcje aktywacji: 1 i 2 warstwa funkcja hiperboliczna, 3 warstwa funkcja identycznościowa.

Omawiana sieć neuronowa posiada 8 wejść do każdego neuronu - przyjmuje 4 próbki - aktualną oraz 3 poprzednie (każda próbka składa się z dwóch wartości - x-owej i y-owej). Sieć nie posiada biasu, a co za tym idzie w pierwszej warstwie każdy neuron ma dokładnie 8 wag. Na podstawie powższych rozważań należy zauważyć, że funkcja realizowana przez omawianą sieć jest funkcją 8 zmiennych, zwracającą w wyniku 2 wartości.

Zestaw wag nauczonej sieci neuronowej zestawiono w trzech poniższych tabelach (Skrót "Nn" oznacza neuron).

Waga	Nn 1	Nn 2	Nn 3	Nn 4	Nn 5	Nn 6
1	-0,8345	0,5208	0,5247	0,6965	-0,9008	0,8152
2	0,2971	-0,2796	0,0606	0,8703	-0,1564	0,7358
3	0,2577	$0,\!4535$	0,2143	-0,5176	0,2342	$0,\!2574$
4	-1,5628	$0,\!5740$	-1,2067	$0,\!4588$	-0,6185	-1,2189
5	0,3751	$0,\!2277$	-0,7225	0,6301	-0,6720	0,5789
6	0,8277	-0,3251	1,0052	-0,2776	-0,3657	0,4929
7	-1,1181	$0,\!1962$	0,9500	-0,1792	-1,1461	-0,5759
8	0,7334	-0,6795	-0,2298	-0,3676	0,8913	-0,8044

Tabela 1. Wagi dla neuronów warstwy 1

Waga	Nn 1	Nn 2	Nn 3	Nn 4	Nn 5	Nn 6	Nn 7
1	-0,6660	0,7435	-0,3241	0,4283	0,9674	-0,3338	-0,7312
2	-0,4454	-1,1011	$0,\!4355$	0,7745	0,9237	$0,\!1524$	$0,\!1921$
3	$0,\!4469$	-0,0431	$0,\!1553$	0,6801	$0,\!5595$	$0,\!2300$	0,0051
4	0,2453	-0,2336	-0,8740	0,7704	0,9656	$0,\!1251$	-0,1752
5	0,9365	-0,2782	-0,7875	-0,0719	$0,\!4287$	0,9144	-0,1206
6	1,0438	0,9676	$0,\!4185$	-0,4862	-0,5366	0,8669	-0,0850

Tabela 2. Wagi dla neuronów warstwy 2

Waga	Nn 1	Nn 2
1	-0,2437	0,0113
2	-0,5656	-0,1620
3	-0,1151	-0,0018
4	1,2181	0,3675
5	0,1185	0,7748
6	0,7158	-0,5857
7	-0,6539	-0,2363

Tabela 3. Wagi dla neuronów warstwy 3

2. Opis algorytmu uczenia sieci neuronowej

Metodą wykorzystywaną do nauki sieci neuronowej w naszym programie jest algorytm wstecznej propagacji błędów. Ogólny wzór na zmianę wag (Δw) , czyli wartość o jaką modyfikowane będą wagi po całej epoce nauki (prezentacji wszystkich danych treningowych - nauczamy w trybie off-line) prezentuje się następująco:

$$\Delta w = q \cdot d \cdot z,\tag{7}$$

gdzie q to współczynnik nauki, z - sygnał wchodzący do neuronu danym wejściem a d - pomocniczy współczynnik błędu.

Aby obliczyć pomocniczy współczynnik błędu d dla ostatniej warstwy (wyjściowej) należy skorzystać z poniższego wzoru:

$$d = f'(s) \cdot (t - e), \tag{8}$$

gdzie f'(s) stanowi pochodną funkcji aktywacji od wartości wzbudzenia $s,\,t$ to poprawna odpowiedź dla danego neuronu - ponieważ mamy dwa neurony w warstwie wyjściowej będzie to odpowiednio wartość x-owa lub y-owa punktu treningowego, e - obliczona odpowiedź dla tego neuronu.

W celu obliczenia współczynnika d dla pozostałych warstw należy wykorzystać obliczony współczynnik dla warstwy wyjściowej, propagując w ten sposób błąd wgłąb sieci neuronowej, aż do warstwy pierwszej:

$$d = f'(s) \cdot \sum_{i=1}^{n} w_i d_i. \tag{9}$$

Na podstawie wzoru (9) łatwo zauważyć, że neuron w warstwie ukrytej dodaje do siebie błędy d_i z neuronów, z którymi jest połączony. Waga w_i to waga wejścia neuronu, do której "podłączony" jest neuron dla którego aktualnie liczymy współczynnik d.

3. Porównanie dystrybuant błędu pomiaru

Na poniższym wykresie porównano dystrybuantę błędu pomiaru dla danych ze zbioru testowego oraz dla danych uzyskanych w wyniku filtracji przy użyciu sieci neuronowej.

Rysunek 1. Porównanie dystrybuant błędu pomiaru

4. Kod źródłowy programu

Program został napisany w języku Java z wykorzystaniem narzędzia Maven [2], służącego do automatyzacji budowy oprogramowania. Import danych oraz generowanie raportów w formacie xlsx zaimplementowano z wykorzystaniem biblioteki poi-ooxml [3].

Kod źródłowy programu dostępny w repozytorium GitHub [4].

Literatura

- [1] Treść zadania drugiego https://ftims.edu.p.lodz.pl/mod/page/view.php?id=73137.
- [2] Narzędzie Maven https://maven.apache.org/.
- [3] Biblioteka poi-ooxml https://mvnrepository.com/artifact/org.apache.poi/poi-ooxml.
- [4] Kod źródłowy programu https://github.com/Walducha1908/sise2.