Adaptive Mesh Refinement 1D Hyperbolic Problems

S. Sinha¹ K. J. Roche^{1,2}

¹Department of Applied Mathematics University of Washington

²High Performance Computing Pacific Northwest National Laboratory

Presentation to AM574, Prof. R. J. Leveque presiding

Main References for this Talk I

M. Berger

Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations

PhD Thesis, Department of Computer Science, Stanford University, Stanford, CA 94305, 1982.

Talk Outline

- Overview of Berger and Leveque AMR paper
- wave propagation formulation
- etc.

Figure Example

The question is how does beamerclass place this ???

$\overline{N_x N_y N_z}$	N_{wf}	Mem	CPU	CPU	GPU	GPU	of GPUs	speedup
			comp.+	comp.	comp.+	comp.		
			comm.		comm.			
48^{3}	110592	10 TB	3.9s	2.4s	0.39s	0.23s	6912	10
64^{3}	262144	$56~\mathrm{TB}$	20s	9.1s	0.80s	0.48s	16384	25

Example of columns 1

Contents of the first column

Contents split into two lines

This is the second slide

A bit more information about this

Source code

```
[caption=First C example] int main() printf("Hello World!"); return 0;
```