Х18-Т8. Комета Чурюмова-Герасименко (9 баллов)

Комета 67Р/Чурюмова-Герасименко была открыта 23 октября 1969 года советским астрономом Климом Чурюмовым в Киеве на фотопластинках другой кометы, снятых Светланой Герасименко в сентябре в Алма-Атинской обсерватории. Вначале ее посчитали за фрагмент 32Р/Комас Сола, но затем выяснилось, что объект движется по совершенно другой орбите.

Часть А. Настоящее

Одним из возможных способов точного исследования орбиты является спектральный анализ. Эмиссионный спектр кометы смещен относительно эталонных линий атомов и радикалов изза эффекта Доплера. По этому смещению можно рассчитать проекцию скорости кометы на луч зрения (луч, соединяющий наблюдателя и комету) – лучевую скорость.

На графике представлена зависимость $v_r(r)$ лучевой скорости объекта 67P от его гелиоцентрического расстояния r (наблюдатель помещен в центр Солнца). Масса Солнца M_S , гравитационная постоянная G, 1 а.е. = расстояние от Земли до Солнца (но численные значения этих величин не заданы).

A1	Для эллипса можно определить параметр эксцентриситет $e = \sqrt{1 - b^2/a^2}$, где a и b – большая и малая полуоси эллипса соответственно. Найдите эксцентриситет e орбиты кометы Чурюмова-Герасименко.	0.5
A2	Полная энергия тела, которое движется по эллиптической орбите, не зависит от ее эксцентриситета, а зависит только от длины большой полуоси a . Найдите скорость v кометы в зависимости от расстояния r . Ответ выразите через a , r и физические постоянные.	1.0
A3	Найдите лучевую скорость v_r в зависимости от расстояния r . Ответ выразите через a, r, e и физические постоянные.	1.0

Road to IPhO

A4 0.5 Используя график, найдите значение длины большой полуоси a орбиты кометы.

Часть В. Будущее

10 февраля 2015 года Солнце оказалось точно между кометой Чурюмова-Герасименко и Землей, причем расстояние между последними составило $d_0 = 3,70$ а. е. Всего через полгода, 13 августа было зафиксировано прохождение кометой перигелия своей орбиты.

B1	Когда комета пройдет перигелий в следующий раз?	0.4	
B2	Оцените, когда можно ожидать ближайшее тесное сближение кометы с Землей (расстояние при тесном сближении не превышает минимально возможное более, чем на 15%). Плоскости орбит Земли и кометы совпадают, как и направления угловых скоростей. Орбиту Земли считать круговой.	2.5	

Часть С. Прошлое

Гравитационное воздействие больших планет Солнечной системы может существенно изменять орбиты других тел. Компьютерное моделирование показало, что до 1959 года перигелий кометы 67Р/Чурюмова-Герасименко находился на расстоянии $q_1 = 2,70$ a. e. от Солнца. В результате взаимодействия с Юпитером это расстояние сократилось, при этом эксцентриситет практически не изменился. С тех пор орбита более не возмущалась.

C1	Запишите текущее перигелийное расстояние q кометы.	0.1
C2	Найдите изменение $\Delta(v^2)$ квадрата модуля скорости кометы при взаимодействии с Юпитером. Ответ выразите через q, q_l, v_{rmax}, e . Получите также численное значение $\Delta(v^2)$.	2.0
С3	Найдите угол $\Delta \psi$, на который повернулся вектор скорости кометы в результате описанного взаимодействия, если известно, что он не превышает 30°. Считайте, что Юпитер движется по круговой орбите радиуса $R=5,20$ а. е.	1.0