MAS Workshop

Department of Statistics - USJ

2024-04-02

Descriptive Statistics

Load the data

```
data_descriptive <- read_xlsx("Descriptive Statistics Data.xlsx")
```

Glimpse on the dataset

```
glimpse(data_descriptive)
```

```
Rows: 12,947
Columns: 9
$ 'Shipping Type' <chr> "Courier", "Courier", "Courier", "Courier", "Courier"~
$ SMV
                                                                           <dbl> 4.880, 4.880, 4.734, 4.734, 4.734, 4.734, 4.880, 4.88~
$ Plant
                                                                           <chr> "D051", 
                                                                          <dbl> 200, 200, 200, 200, 200, 200, 3, 197, 3, 197, 3, 197,~
$ 'Order Qty'
$ Earnings
                                                                          <dbl> 509.2671800, 836.6231200, 812.6663206, 812.6663206, 8~
                                                                          <chr> "2023-06-01", "2023-06-01", "2023-06-01", "2023-06-01"
$ Date
$ 'Customer Group' <chr> "Abercrombie & Fitch", "Abercrombie & Fitch", "Abercr-
                                                                         <dbl> 219.814988, 235.986348, 332.006986, 332.006986, 311.5~
$ Earn
$ EPH
                                                                          <dbl> 45.12728, 48.44721, 25.15586, 25.15586, 38.25048, 38.~
```

one way frequency table

```
table(data_descriptive$`Shipping Type`)
```

Air Collect Courier Sea Collect 87 86 937

barchart

Composition of the sample by Shipping Type

pie chart

```
data.frame(Shipping_Type = c("Air Collect", "Courier", "Sea Collect"),
           Frequency = c(87, 86, 937)) \%\%
 ggplot(aes(x = "", y = Frequency,
            fill = Shipping_Type)) +
  geom_bar(stat="identity", width=1) +
  coord_polar("y", start=0) +
  geom_text(aes(label = paste0(
   round((Frequency/sum(Frequency))*100), "%")),
   position = position_stack(vjust = 0.5)) +
  theme_bw() +
  scale_fill_manual(values=c("brown3", "salmon2", "peachpuff3")) +
  labs(x = NULL, y = NULL,
      fill = "Shipping Type",
      title = "Composition of the sample by Shipping Type") +
  theme(axis.line = element_blank(),
       axis.text = element_blank(),
        axis.ticks = element_blank(),
       plot.title = element_text(hjust = 0.5)) +
  theme(legend.position = "bottom")
```

Composition of the sample by Shipping Type

Courier

Sea Collect

Air Collect

Shipping Type

summary measures

histogram - symmetric

Distribution of EPH values for Lands'End Customer Group

histogram - positively skewed

Distribution of EPH values for SPEEDO Customer Group

histogram - negatively skewed

Distribution of EPH values for PELEG NIL LTD Customer Group

boxplot

Distribution of SMV

dot plot

two way frequency table

 D051
 D052
 D053
 D100

 Air Collect
 40
 0
 24
 23

 Courier
 86
 0
 0
 0

 Sea Collect
 422
 126
 235
 154

stacked bar chart

Composition of the sample by Shipping Type and Plant

cluster bar chart

Composition of the sample by Shipping Type and Plant

scatterplot - positive linear

Scatterplot of Order Quantity and Earnings

scatterplot - no linear

Scatterplot of SMV and Earnings

slide number: 59

boxplot with groups

```
data_descriptive %>%
  select(SMV,
```

Distribution of SMV by Shipping Type

slide number: 61

line chart

```
# preparing data
line_data <- data_descriptive %>% group_by(Date) %>%
summarise(Mean.Earnings = mean(Earn)) %>% drop_na()
```

Line chart of mean earning values

Correlation Analysis

slide number: 65

Scatterplot of Order Quantity and Earnings


```
# positive linear relationship

# correlation value

cor(x = data_descriptive$^Order Qty^,
    y = data_descriptive$Earnings)
```

[1] NA

Scatterplot of SMV and Earnings

[1] 0.1142413

Hypothesis Testing

One sample test for mean - Slide no 73

Example: Suppose we want to test whether the mean earnings per hour for Outer Known customer group is less than 50 at 5% significance level.

```
# loading dataset
Hypothesis.data <- read_excel("Hypothesis Data.xlsx")</pre>
```

Step 1: Check whether Earnings per hour values are normally distributed

Normal probability plot

```
ggplot(Hypothesis.data, aes(sample = Earnings.per.hour)) + stat_qq() +
   stat_qq_line() +
   labs(x = "Theoretical Quantiles", y = "Sample Quantiles")
```


Normality test

shapiro.test(Hypothesis.data\$Earnings.per.hour)

Shapiro-Wilk normality test

```
data: Hypothesis.data$Earnings.per.hour
W = 0.97508, p-value = 0.3806
```

Hypothesis to be tested:

H0: Data are normally distributed.

H1: Data are not normally distributed.

According to the Shapiro-Wilk normality test p-value = 0.3806 > 0.05.

Hence, We can conclude that Earnings per hour values are normally distributed.

Step 2: Perform the t-test

```
t.test(Hypothesis.data$Earnings.per.hour, alternative = "less", mu = 50)
```

```
One Sample t-test

data: Hypothesis.data$Earnings.per.hour

t = -6.5365, df = 48, p-value = 1.89e-08

alternative hypothesis: true mean is less than 50

95 percent confidence interval:

-Inf 43.84388

sample estimates:

mean of x

41.71904
```

Since p-value = 1.89e-08 < 0.05, we reject null hypothesis.

Hence, there is sufficient evidence to suggest that the mean earnings per hour for the Outer Known customer group is less than 50.

Two sample test for comparison between means - Slide no 75

Example: Suppose we want test whether there is a significant difference in earnings per hour between Hoody products and T-shirt products of Outer Known customer group at 5% significance level.

```
# Loading relevant data
two.sample.data <- Hypothesis.data %>% filter(Product.name %in% c("Hoody", "T-shirt"))
```

Step 1: Check whether Earnings per hour values are normally distributed

Normal probability plot

```
ggplot(two.sample.data, aes(sample = Earnings.per.hour)) + stat_qq() +
stat_qq_line() + facet_grid(.~Product.name) +
labs(x = "Theoretical Quantiles", y = "Sample Quantiles")
```


Normality test

```
test1 <- two.sample.data %>% filter(Product.name == "Hoody")
shapiro.test(test1$Earnings.per.hour)
```

Shapiro-Wilk normality test

```
data: test1$Earnings.per.hour
W = 0.98413, p-value = 0.9771
```

```
test2 <- two.sample.data %>% filter(Product.name == "T-shirt")
shapiro.test(test2$Earnings.per.hour)
```

Shapiro-Wilk normality test

```
data: test2$Earnings.per.hour
W = 0.94884, p-value = 0.4384
```

Hypothesis to be tested:

 ${
m H0:}$ Data are normally distributed.

H1: Data are not normally distributed.

According to the Shapiro-Wilk normality test both p-values > 0.05.

Hence, We can conclude that Earnings per hour values of the two categories are normally distributed.

Step 2: Check for equality of variance

F test to compare two variances

```
data: Earnings.per.hour by Product.name
F = 0.61833, num df = 6, denom df = 16, p-value = 0.5739
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
    0.1850935 3.2424317
sample estimates:
ratio of variances
    0.6183291
```

Hypothesis to be tested:

H0: Two population variances are equal.

H1: Two population variances are not equal.

According to the F test both p-values = 0.5739 > 0.05.

Hence, We can conclude that Two population variances are equal.

Step 3: Perform the t-test

```
Two Sample t-test
```

data: Earnings.per.hour by Product.name

```
t = -1.1755, df = 22, p-value = 0.2524
alternative hypothesis: true difference in means between group Hoody and group T-shirt is not equal to 95 percent confidence interval:
-11.672730    3.227215
sample estimates:
mean in group Hoody mean in group T-shirt
43.35860    47.58136
```

Since p-value = 0.2524 > 0.05, we do not reject null hypothesis.

Hence, there is sufficient evidence to conclude that there is a significant difference in earnings per hour between the two product types.

Multiple linear regression analysis - Slide no 83