# Giải tích hàm nhiều biến Chương: TÍCH PHÂN ĐƯỜNG

Đậu Thế Phiệt

Ngày 24 tháng 4 năm 2014

## Nội dung

- 🕕 Tích phân đường loại một
- Tích phân đường loại hai
- Một số tính chất của tích phân đường
- 4 Dịnh lý Green

# Tích phân đường loại một

# Dịnh nghĩa

Tương tự tích phân hàm một biến trên đoạn [a,b], ta xây dựng tích phân trên đường cong C, tích phân đó được gọi là tích phân đường. Xét đường cong C cho bởi phương trình tham số

$$x = x(t), \quad y = y(t) \quad a \le t \le b$$

hay trong không gian  $\mathbb{R}^2$ , ta có vector r(t) = x(t)i + y(t)j = (x(t), y(t)). Ta giả sử C là một đường cong trơn (đạo hàm r' liên tục và  $r'(t) \neq 0$ ). Ta chia đoạn [a,b] thành n đoạn nhỏ đều nhau  $[t_{i-1},t_i]$ , tương ứng các điểm  $P_i(x(t_i),y(t_i))$  chia đường cong C thành n đường cong con. Ta gọi chiều dài của các đường cong con này tương ứng là  $\Delta s_1,\ldots,\Delta s_n$ .



Trên mỗi đường cong con ta chọn điểm  $P_i^*(x_i^*, y_i^*)$  bất kỳ (tương ứng với điểm  $t_i^*$  trên đoạn [a, b]).

Cho f là hàm theo hai biến (x, y) xác định trên miền chứa đường cong C, ta tính tổng

$$\sum_{i=1}^n f(x_i^*, y_i^*) \Delta s_i$$

Ta thấy tổng trên có dạng tương tự tống Riemann, lấy giới hạn khi n tiến tới vô cùng, ta có tích phân đường tương tự tích phân một biến

#### Định nghĩa

Nếu f được định nghĩa trên đường cong trơn C cho bởi phương trình tham số (x(t),y(t)) với  $a\leq t\leq b$ , thì tích phân đường của f theo C cho bởi

$$\int_C f(x,y)ds = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*, y_i^*) \Delta s_i$$

nếu giới hạn trên tồn tại.

Ta đã biết, độ dài đường cong C cho bởi

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$

Do đó, nếu f là hàm số liên tục thì giới hạn trong Định nghĩa trên luôn tồn tại, đồng thời ta có thể tính tích phân trên bởi công thức

$$\int_{C} f(x,y)ds = \int_{a}^{b} f(x(t),y(t)) \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$



#### Ví dụ

Tính tích phân  $\int_C (2+x^2y)ds$  với C là nửa trên của vòng tròn đơn vị  $x^2+y^2=1$ .

Ta viết phương trình tham số cho đường cong C

$$x = \cos t$$
  $y = \sin t$ 

Do C là nửa trên của vòng tròn đơn vị,  $0 \le t \le \pi$ .



$$\int_{C} (2+x^{2}y)ds = \int_{0}^{\pi} (2+\cos^{2}t\sin t)\sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}}dt$$

$$= \int_{0}^{\pi} (2\cos^{2}t\sin t)\sqrt{\sin^{2}t + \cos^{2}t}dt$$

$$= \int_{0}^{\pi} (2+\cos^{2}t\sin t)dt$$

$$= \left[2t - \frac{\cos^{3}t}{3}\right]_{0}^{\pi}$$

$$= 2\pi + \frac{2}{3}$$

Ta chú ý rằng đường cong C được giả thiết là trơn. Xét trường hợp C là đường cong trơn từng khúc (C là hợp hữu hạn các đoạn đường cong trơn  $C_1, \ldots, C_n$ ), ta có thể định nghĩa tích phân đường của f trên đường cong C là tống các tích phân đường của f trên các đường cong  $C_i$ 

$$\int_C f(x,y)ds = \int_{C_i} f(x,y)ds + \ldots + \int_{C_i} f(x,y)ds$$



#### Ví du

Tính tích phân  $\int_C 2xds$  với C là đường cong chứa parabol  $y = x^2$  từ (0,0)tới (1,1), và đoan thẳng  $C_2$  từ (1,1) tới (1,2).

Đường cong  $C_1$  là đồ thị của hàm số theo biến x, ta có thể chọn x là tham số,  $C_1$  biểu diễn bởi

$$x = x \quad y = x^2 \quad 0 \le x \le 1$$

Trên đoan thẳng  $C_2$  ta chon y là tham số,  $C_2$  cho bởi

$$x = 1$$
  $y = y$   $1 \le y \le 2$ 



$$\int_{C_1} 2x ds = \int_0^1 2x \sqrt{\left(\frac{dx}{dx}\right)^2 + \left(\frac{dy}{dx}\right)^2} dx$$

$$= \int_0^1 2x \sqrt{1 + 4x^2} dx$$

$$= \frac{1}{4} \frac{2}{3} (1 + 4x^2)^{\frac{3}{2}} \Big]_0^1 = \frac{5\sqrt{5} - 1}{6}$$

$$\int_{C_2} 2x ds = \int_1^2 2\sqrt{\left(\frac{dx}{dy}\right)^2 + \left(\frac{dy}{dy}\right)^2} dy$$

$$= \int_1^2 2dy = 2$$

Vậy ta có

$$\int_{C} 2xds = \int_{C_1} 2xds + \int_{C_2} 2xds = \frac{5\sqrt{5} - 1}{6} + 2$$

# Tích phân đường loại một trong không gian

Tương tự, ta định nghĩa tích phân đường trong không gian. Xét f(x, y, z) xác định trên đường cong tron C trong không gian Oxyz. Với C cho bởi phương trình tham số

$$\begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases} \quad a \le t \le b$$

Khi đó tích phân đường của f trên C cho bởi công thức

$$\int_{C} f(x, y, z) ds = \int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} + \left(\frac{dz}{dt}\right)^{2}} dt$$

#### Ví du

Tính tích phân 
$$\int_C (x+y)ds$$
 với  $C$  là đường tròn  $x^2+y^2+z^2=4$ ,  $x=y$ 

Phương trình tham số của đường cong C.

Ta thấy  $2x^2 + z^2 = 4$ , (hình ellipse). Đặt

$$\begin{cases} x = y = \sqrt{2}r\cos\theta \\ z = 2r\sin\theta \end{cases}$$

Vì  $x^2 + y^2 + z^2 = 4$  nên r = 1. Phương trình tham số của C

$$\begin{cases} x = y = \sqrt{2}\cos\theta \\ z = 2\sin\theta \end{cases} \quad 0 \le \theta \le 2\pi$$





# Tích phân đường loại hai

Nếu ta thay vi phân  $\Delta s_i$  bằng  $\Delta x_i = x_i - x_{i-1}$  và  $\Delta y_i = y_i - y_{i-1}$  trong tích phân đường loại một, ta thu được hai tích phân đường. Các tích phân trên là tích phân đường của f trên đường cong C tương ứng với x và y

$$\int_{C} f(x,y)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}, y_{i}^{*}) \Delta x_{i}$$

$$\int_{C} f(x,y)dy = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}, y_{i}^{*}) \Delta y_{i}$$

Tích phân đường tương ứng với x và y có thể được biểu diễn dưới dạng tham số t như sau

$$\int_{C} f(x,y)dx = \int_{a}^{b} f(x(t),y(t))x'(t)dt$$

$$\int_{C} f(x,y)dy = \int_{a}^{b} f(x(t),y(t))y'(t)dt$$

# Định nghĩa tích phân đường loại hai

#### Định nghĩa

Giả sử trên đường C xác định hai hàm số P(x,y) và Q(x,y). Tích phân đường loại hai của P(x,y) và Q(x,y) trên cung C xác định bởi công thức

$$I = \int_C P(x, y) dx + Q(x, y) dy$$

Nếu đường cong C xác định theo phương trình tham số t trên đoạn [a,b] thì tích phân đường loại hai được tính theo công thức

$$I = \int_{C} P(x,y)dx + Q(x,y)dy$$
$$= \int_{a}^{b} \left( P(x(t), y(t))x'(t) + Q(x(t), y(t))y'(t) \right) dt$$

# Tính chất

 Tích phân đường loại hai phụ thuộc chiều lấy tích phân trên đường cong C

$$\int_{\widehat{AB}} Pdx + Qdy = -\int_{\widehat{BA}} Pdx + Qdy$$

② Nếu đường cong  $\stackrel{\frown}{AB}$  được chia thành  $\stackrel{\frown}{AC}$  và  $\stackrel{\frown}{CB}$  và  $\stackrel{\frown}{P}$ ,  $\stackrel{\frown}{Q}$  khả tích trên  $\stackrel{\frown}{AB}$  thì ta có

$$\int_{\widehat{AB}} Pdx + Qdy = \int_{\widehat{AC}} Pdx + Qdy + \int_{\widehat{CB}} Pdx + Qdy$$

#### Ví du 1.

Tính  $I = \int_C (x^2 + 3y) dx + 2y dy$  trong đó C là cạnh tam giác OAB với O(0,0), A(1,1), B(0,2) theo chiều ngược chiều kim đồng hồ.

Ta có 
$$I = \int\limits_C = \int\limits_{OA} + \int\limits_{AB} + \int\limits_{BO}$$
.  
Phương trình đoạn  $OA$ :  $x = t, y = t \quad 0 \le t \le 1$ 

$$\int_{OA} = \int_{0}^{1} (t^{2} + 3t) \cdot 1 \cdot dt + 2t \cdot 1 \cdot dt$$
$$= \int_{0}^{1} (t^{2} + 5t) dt = \frac{17}{6}$$



## Ví dụ 1. (cont)

Phương trình đoan AB: x = 1 - t, y = 1 + t  $0 \le t \le 1$ 

$$\int_{AB} = \int_{0}^{1} ((1-t)^{2} + 3(1+t)) \cdot (-1) \cdot dt + 2(t+1) \cdot 1 \cdot dt$$
$$= \int_{0}^{1} (-t^{2} + t - 2) dt = -\frac{11}{6}$$

Phương trình đoạn *BO*: x = 0, y = 2 - t  $0 \le t \le 2$ 

$$\int_{BO} \int_{0}^{2} ((0)^{2} + 3(2-t)) \cdot 0 \cdot dt + 2(2-t) \cdot (-1) \cdot dt = \int_{0}^{2} 2(t-2) dt = -4$$

Vậy 
$$I = \frac{17}{6} - \frac{11}{6} - 4 = -3$$

# Ví dụ 1.(cách 2)

Tính  $I = \int\limits_C (x^2 + 3y) dx + 2y dy$  trong đó C là cạnh tam giác OAB với O(0,0), A(1,1), B(0,2) theo chiều ngược chiều kim đồng hồ.

Ta có 
$$I = \int\limits_C = \int\limits_{OA} + \int\limits_{AB} + \int\limits_{B} O.$$

Phương trình đoạn  $\mathit{OA}$ :  $y = x \ x$  từ 0 đến 1

$$\int_{OA} = \int_{0}^{1} (x^{2} + 3x) \cdot 1 \cdot dx + 2x \cdot 1 \cdot dx$$
$$= \int_{0}^{1} (x^{2} + 5x) dx = \frac{17}{6}$$



# Ví dụ 1. (cách 2)

Phương trình đoạn AB: y = 2 - x + x từ 1 đến 0

$$\int_{AB} \int_{1}^{0} (x^2 + 3(2 - x))dx + 2(2 - x).(-1).dx = -\frac{11}{6}$$

Phương trình đoạn BO: x = 0.y y từ 2 đến 0

$$\int_{BO} = \int_{0}^{2} ((0)^{2} + 3y).0.dy + 2ydy = -4$$

Vậy 
$$I = \frac{17}{6} - \frac{11}{6} - 4 = -3$$



#### Ví dụ 2.

Tính  $I=\int\limits_C ydx+xdy$  trong đó C là cung  $x^2+y^2=2x$  từ O(0,0) đến A(1,1) theo chiều kim đồng hồ.

#### Cung C có phương trình tham số

$$\begin{cases} x = 1 + \cos t \\ y = \sin t \end{cases} t \text{ tù } \pi \text{ tới } \frac{\pi}{2}$$

$$I = \int\limits_{\pi}^{\pi/2} (\sin t)(-\sin t)dt + (1+\cos t)\cos tdt$$



# Bài tập

Tính tích phân đường loại 1.

- ②  $\int_C xyds$ ,  $C: x = t^2, y = 2t, 0 \le t \le 1$ .
- $\int_C x \sin y ds$ , C là đoạn thẳng nối (0,3) tới (4,6).

# Bài tập

Tính tích phân đường loại hai

- ②  $\int_C xydx + (x-y)dy$  với C là chứa các đường thẳng từ (0,0) đến (2,0) và từ (2,0) đến (3,2).
- $\int_C y dx (x+y)^2 dy$  với C là cung parabol  $y = 2x x^2$  nằm phía  $y \ge 0$  và theo chiều ngược kim đồng hồ.



# Một số tính chất của tích phân đường

# Liên hệ giữa tích phân đường loại một và loại hai

Xét đường cong AB có phương trình tham số

$$r(t) = (x(t), y(t), z(t))$$
  $a \le t \le b$ 

Khi đó vector  $\vec{r}'(t) = x'(t)\vec{i} + y'(t)\vec{i} + z'(t)\vec{k}$  là vector tiếp tuyến với đường cong  $\overrightarrow{AB}$  và  $\overrightarrow{T}(t) = \frac{r'(t)}{|r'(t)|}$  là vector tiếp tuyến đơn vị.

Gọi  $F = (P, Q, R) = P(x, y, z)\vec{i} + Q(x, y, z)\vec{j} + R(x, y, z)\vec{k}$  là trường vector xác định trên đường cong C

$$\int_{C} Pdx + Qdy + Rdz = \int_{a}^{b} \left( P(r(t))x'(t) + Q(r(t))y'(t) + R(r(t))z'(t) \right) dt$$

$$= \int_{a}^{b} \left( P(r(t))\frac{x'(t)}{|r'(t)|} + Q(r(t))\frac{y'(t)}{|r'(t)|} + R(r(t))\frac{z'(t)}{|r'(t)|} \right) |r'(t)| dt$$

$$= \int_{a}^{b} F \cdot T(t) ds$$

# Định lý căn bản

Trong tích phân hàm một biến, ta có tính chất

$$\int_{a}^{b} F'(x)dx = F(b) - F(a)$$

với F' liên tục trên [a,b]. Trong không gian hữu hạn chiều, ta dùng vector gradient  $\nabla f$  thay cho F' và có định lý sau

#### Định lý

Cho C là đường cong trơn cho bởi hàm vector r(t),  $a \le t \le b$ . Cho f là hàm khả vi với vector gradient  $\nabla f$  liên tục trên C. Khi đó

$$\int_{C} \nabla f \cdot dr = f(r(b)) - f(r(a))$$

Từ đinh lý trên, ta có thể tính tích phân đường loại 2 của  $\nabla f$ , ta chỉ quan tâm đến giá tri của f tại điểm đầu và điểm cuối của đường cong C.

#### Chứng minh.

Từ định nghĩa ta có

$$\int_{C} \nabla f \cdot dr = \int_{a}^{b} \nabla f(r(t)) \cdot r'(t) dt$$

$$= \int_{a}^{b} \left( \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt} + \frac{\partial f}{\partial z} \frac{dz}{dt} \right) dt$$

$$= \int_{a}^{b} \frac{d}{dt} f(r(t)) dt = f(r(b)) - f(r(a))$$



#### Ví du

Tính 
$$\int_C y^2 dx + x dy$$
 với

- a)  $C = C_1$  là đoạn thẳng từ (-5, -3) đến (0, 2)
- b)  $C = C_2$  là đường cong parabol  $x = 4 y^2$  từ (-5, -3) đến (0, 2).
- a) Phương trình tham số của đoan thẳng

$$x = -5 + 5t, y = -3 + 5t, 0 \le t \le 1$$

$$\int_{C_1} y^2 dx + x dy = \int_0^1 (5t - 3)^2 (5dt) + (5t - 5)(5dt)$$

$$= 5 \int_0^1 (25t^2 - 25t + 4) dt$$

$$= 5 \left[ \frac{25t^3}{3} - \frac{25t^2}{2} + 4t \right] = -\frac{5}{6}$$



b) Parabol  $C_2$  là hàm theo biến y, ta xem y là tham số

$$x = 4 - y^2, y = y, -3 \le y \le 2$$

$$\int_{C_2} y^2 dx + x dy = \int_{-3}^2 y^2 (-2y dy) + (4 - y^2) dy$$
$$= \int_{-3}^2 (-2y^3 - y^2 + 4) dy$$
$$= \left[ -\frac{y^4}{2} - \frac{y^3}{3} + 4y \right] = 40 \frac{5}{6}$$



# Không phụ thuộc vào đường đi

Giả sử  $C_1$  và  $C_2$  là hai đường cong trơn từng khúc với điểm đầu là A và điểm cuối là B.

Tổng quát, (như ví dụ trên) ta thấy  $\int_{C_1} F.dr \neq \int_{C_2} F.dr$ . Tuy nhiên

$$\int_{C_1} \nabla f \cdot dr = \int_{C_2} \nabla f \cdot dr$$

với  $\nabla f$  là trường vector liên tục.

Cho F là trường vector liên tục trên miền D, ta nói tích phân đường  $\int_C F \cdot dr$  không phụ thuộc vào đường đi nếu  $\int_{C_1} F \cdot dr = \int_{C_2} F \cdot dr$  với mọi đường cong  $C_1$ ,  $C_2$  bất kỳ trong D có cùng điểm đầu và điểm cuối.

Một đường cong được gọi là **kín** nếu điểm đầu và điểm cuối của nó trùng nhau (r(b) = r(a)).



Nếu  $\int_C F \cdot dr$  không phụ thuộc đường đi trong D thì với mỗi đường cong kín C trong D, chon hai điểm bất kỳ A, B trên C và chia C thành hai đường cong  $C_1$  từ A đến B và  $C_2$  từ B đến A. Ta có

$$\int_C F \cdot dr = \int_{C_1} F \cdot dr + \int_{C_2} F \cdot dr = \int_{C_1} F \cdot dr - \int_{-C_2} F \cdot dr = 0$$

Nếu  $\int_C F \cdot dr = 0$  với C là đường cong kín thì

$$0 = \int_C F \cdot dr = \int_{C_1} F \cdot dr + int_{-C_2} F \cdot dr = \int_{C_1} F \cdot dr - \int_{C_2} F \cdot dr$$

#### Định lý

Tích phân  $\int_C F\cdot dr$  không phụ thuộc vào đường đi trong D nếu và chỉ nếu  $\int_C F\cdot dr=0$  với mọi đường cong kín C trong D

Ta sẽ chỉ ra rằng

#### Định lý

Giả sử F là trường vector liên tục trên miền D. Nếu tích  $\int_C F \cdot dr$  không phụ thuộc vào đường đi thì tồn tại hàm số f sao cho  $\nabla f = F$ .

# Chứng minh

Cho A(a,b) là điểm cố định trong D. Ta xây dựng hàm f bởi

$$f(x,y) = \int_{(a,b)}^{(x,y)} F \cdot dr.$$

Do  $\int_C F \cdot dr$  không phụ thuộc đường đi, ta có thể chọn đường C chứa:  $C_1$  từ (a,b) đến  $(x_1,y)$  với  $x_1 < x$  và  $C_2$  là đoạn thẳng nối nối (x,y). Khi đó

$$f(x,y) = \int_{C_1} F \cdot dr + \int_{C_2} F \cdot dr$$
$$= \int_{(a,b)}^{(x_1,y)} F \cdot dr + \int_{C_2} F \cdot dr$$



$$\frac{\partial}{\partial x}f(x,y) = 0 + \frac{\partial}{\partial x}\int_{C_2} F \cdot dr$$

Nếu  $F = P\vec{i} + Q\vec{j}$  thì  $\int_{C_2} F \cdot dr = \int_{C_2} P dx + Q dy$ .

Trên  $C_2$ , y là hằng số do đó dy=0, xét tham số t với  $x_1 \leq t \leq x$ 

$$\frac{\partial}{\partial x}f(x,y) = \frac{\partial}{\partial x}\int_{C_2}Pdx + Qdy = \frac{\partial}{\partial x}\int_{x_1}^x P(t,y) = P(x,y)$$

Tương tự ta chứng minh được

$$\frac{\partial}{\partial y}f(x,y)=Q(x,y)$$



Vậy 
$$F = P\vec{i} + Q\vec{j} = \frac{\partial f}{\partial x}\vec{i} + \frac{\partial f}{\partial y}\vec{j} = \nabla f$$
.

Ta thấy: Nếu tích phân  $\int_{\mathcal{C}} P dx + Q dy$  không phụ thuộc vào đường đi, và giả sử P, Q liên tục và có các đạo hàm riêng bậc nhất. Khi đó, tồn tại hàm f sao cho  $(P,Q) = \nabla f$ 

$$P = \frac{\partial f}{\partial x} \quad Q = \frac{\partial f}{\partial y}.$$

Ngoài ra ta có

$$\frac{\partial P}{\partial y} = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial Q}{\partial x}$$

#### Dinh lý

Cho  $F = P\vec{i} + Q\vec{i}$  là trường vector trên miền liên thông đơn D. Giả sử P, Q có các đao hàm riêng cấp một liên tục và

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \quad \text{trên } D$$

thì tích phân  $\int_C Pdx + Qdy$  không phụ thuộc vào đường đi trên D.

### Ví dụ

Tính tích phân  $I = \int_C y dx + x dy$ .

Ta thấy 
$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} = 1$$
, tích phân trên

không phụ thuộc vào đường đi.

#### Cách 1.

Ta chọn đường đi khác từ O đến B là đường gấp khúc OAB. Khi đó

$$I = \int_{OA} + \int_{AB} = \int_0^1 0 \, dy + \int_0^3 1 \, dx = 3$$



Ta thấy 
$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} = 1$$
, tích phân trên

không phụ thuộc vào đường đi.

#### Cách 2.

Tồn tại hàm khả vi U(x, y) sao cho vi phân dU = Pdx + Qdy

$$\begin{cases} U'_x = P \\ U'_y = Q \end{cases} \Rightarrow U(x, y) = xy$$

$$I = \int_{0.0}^{(1,3)} y dx + x dy = \left. U(x,y) \right|_{(0,0)}^{(1,3)} = 3$$



## Ví dụ

Tính 
$$I = \int_C \frac{xdx + ydy}{x^2 + y^2}$$
 với  $C$  là một đường cong tuỳ ý từ  $A(1,0)$  đến  $B(2,0)$ .

- a) Không bao quanh gốc toa độ;
- b) Bao quanh gốc toạ độ.
- a) Ta kiểm tra rằng  $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$ , do đó tích phân không phụ thuộc đường đi từ A đến B. Ta chọn đó là đoạn thẳng nối AB.

$$I = \int_{1}^{2} \frac{dx}{x} = \ln|x||_{1}^{2} = \ln 2$$



b) Tích phân không phụ thuộc vào đường đi, tuy nhiên ta không thể tính tích phân theo đường từ A đến B. Ta thấy không tồn tại miền D chứa các đường cong kín bao quanh gốc O sao cho P và Q là các đạo hàm riêng cấp 1 liên tục trên D

Ta tìm hàm U(x,y) sao cho vi phân dU(x,y) = Pdx + Qdy

$$\begin{cases} U_x' = P = \frac{x}{x^2 + y^2} \Rightarrow U(x, y) = \frac{\ln(x^2 + y^2)}{2} + g(y) \\ U_y' = Q = \frac{y}{x^2 + y^2} \Rightarrow g(y) = C \end{cases}$$

$$U(x, y) = \frac{\ln(x^2 + y^2)}{2} + C$$

$$I = U(x, y)|_{(1, 0)}^{(2, 0)} = \frac{\ln 4 - \ln 1}{2} = \ln 2$$

# Định lý Green



Cho miền D được giới hạn bởi đường cong đơn liên C



Ta định nghĩa chiều dương của đường cong là chiều ngược chiều kim đồng hồ. Do đó nếu C cho bởi phương trình tham số  $r(t), a \leq t \leq b$  thì miền Dluôn nằm bên trái của điểm r(t) khi chạy trên C. Tương tự ta có chiều âm





# Định lý Green

#### Định lý

Cho là đường cong đóng C đơn liên theo hướng dương, trơn từng khúc. Nếu P,Q là các hàm số có các đạo hàm riêng liên tục trên miền D thì

$$\int_{C} Pdx + Qdy = \iint_{D} \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$

### Chứng minh

Ta chứng minh

$$\int_{C} P dx = -\iint_{D} \frac{\partial P}{\partial y} dA \quad \text{và} \quad \int_{C} Q dy = \iint_{D} \frac{\partial Q}{\partial x} dA$$

Ta biểu diễn miền D dưới dạng

$$D = \{(x, y) | a \le x \le b, g_1(x) \le y \le g_2(x)\}$$



Ta tính tích phân trên các đường cong  $C_1$ ,  $C_2$ ,  $C_3$ ,  $C_4$ . Trên  $C_1$ , ta xem x là tham số:  $x = x, y = g_1(x)$ ,  $a \le x \le b$ .

$$\int_{C_1} P(x,y) = \int_a^b P(x,g_1(x)) dx$$

Trên  $C_3$ , x là tham số và đi từ b đến a, do đó

$$\int_{C_3} P(x,y) = -\int_a^b P(x,g_2(x)) dx$$

Trên  $C_2$ ,  $C_4$ , x là hằng số do đó dx = 0, ta có

$$\int_{C_2} P(x, y) dx = 0 = \int_{C_4} P(x, y) dx = 0$$



Vậy

$$\int_{C} P(x,y)dx = \int_{C_{1}} + \int_{C_{2}} + \int_{C_{3}} \int_{C_{4}} P(x,y)dx$$
$$= \int_{a}^{b} P(x,g_{1}(x))dx - \int_{a}^{b} P(x,g_{2}(x))dx$$

Ta lai có

$$\iint\limits_{D} \frac{\partial P}{\partial y} dA = \int_{a}^{b} dx \int_{g_1(x)}^{g_2(x)} dy = \int_{a}^{b} [P(x, g_2(x)) - P(x, g_1(x))] dx$$

Do đó

$$\int_{C} P(x, y) dx = -\iint_{D} \frac{\partial P}{\partial y} dA$$

Tương tự ta có

$$\int_{C} P(x, y) dy = \iint_{D} \frac{\partial Q}{\partial x} dA$$







### Ví du

Tính tích phân  $\int_C x^4 dx + xydy$  với C là các cạnh tam giác với các đỉnh (0,0), (1,0), (0,1) theo chiều dương.

Ap dung định lý Green ta có

$$\int_{C} x^{4} dx + xy dy = \iint_{D} \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$

$$= \int_{0}^{1} \int_{0}^{1-x} (y - 0) dy dx$$

$$= \int_{0}^{1} \frac{y^{2}}{2} \Big|_{y=0}^{y=1-x} dx$$

$$= \frac{1}{2} \int_{0}^{1} (1 - x^{2})^{2} dx = \frac{1}{6}$$



### Ví du

Tính 
$$I = \int_C (x-y)^2 dx + (x+y)^2 dy$$
 trong đó  $C$  là nửa trên đường tròn  $x^2 + y^2 = 2x$  theo hướng cùng chiều kim đồng hồ.

Cung C không kín, ta thêm vào đoan AO để được miền D là nửa hình tròn.

$$I = \int_{C} = \int_{C \cup AO} - \int_{AO}$$

$$\int_{C \cup AO} = -\iint_{D} \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dxdy$$

$$= -\iint_{D} 2 \left( (x + y) + 2(x - y) \right) dxdy$$

$$= -\int_{0}^{\pi/2} d\varphi \int_{0}^{2\cos\varphi} 4r\cos\varphi rdr = -2\pi$$



Trên cung AO ta có phương trình tham số

$$x = 2 - t$$
  $y = 0$  với  $0 \le t \le 2$ 

$$\int_{AO} = -\int_{0}^{2} (2-t)^{2} dt = \left. \frac{(2-t)^{3}}{3} \right|_{0}^{2} = -\frac{8}{3}$$

Vậy ta có

$$I = \int_{C \cup AO} - \int_{AO} = -2\pi + \frac{8}{3}$$



# Bài tập 1.

Tính tích phân  $\int_C F \cdot dr$  trên đường cong C với

- $F(x,y) = x^2 \vec{i} + y^2 \vec{j}$ , C là đường parabol  $y = 2x^2$  từ (-1,2) đến (2,8).
- ②  $F = xy^2\vec{i} + x^2y\vec{j}$  với  $C: r(t) = \left\langle t + \sin\frac{1}{2}\pi t, t + \cos\frac{1}{2}\pi t \right\rangle 0 \le t \le 1.$
- **3**  $F(x,y) = \frac{y^2}{1+x^2}\vec{i} + 2y \arctan x\vec{j} \text{ v\'oi } C: r(t) = t^2\vec{i} + 2t\vec{j}, 0 \le t \le 1.$
- **③** Tính  $\int_C (1 ye^{-x}) dx + e^{-x} dy$  với C là đường cong từ (0,1) đến (1,2).
- Tính công sinh ra khi tác dụng trường lực F khi di chuyển vật từ P đến Q với
  - a)  $F(x,y) = 2y^{3/2}\vec{i} + 3x\sqrt{y}\vec{j}$ ; P(1,1) và Q(2,4);
  - b)  $F(x,y) = e^{-y}\vec{i} xe^{-y}\vec{j}$ ; P(0,1) và Q(2,0).



# Bài tập 2.

- **①** Tính  $\oint_C (x-y)dx + (x+y)dy$  với C là đường tròn tâm tại gốc toạ độ và bán kính 2 theo chiều âm.
- ② Tính  $\oint_C xydx + x^2y^3dy$  với C là tam giác với đỉnh (0,0), (1,0), (1,2) theo chiều dương.
- Tính  $\int_C xy^2 dx + 2x^2 y dy$  với C là tam giác với các đỉnh (0,0), (2,2) và (2,4) theo chiều dương.
- $\int_C (y + e^{\sqrt{x}}) dx + (2x + \cos y^2) dy$  với C là biên của miền giới hạn với hai parabol  $y = x^2$  và  $x = y^2$  ngược chiều kim đồng hồ.

