时序分析(6) -- ARIMA(p,d,q)模型 ¶

如无特殊说明,本系列文章中的数据将使用2012~2017年,分别代表国内股票、香港股票、国内债卷和国内货币的四个指数数据。

上一篇文章我们探讨了ARIMA模型时序数据进行建模,这一节我们主要讨论ARMA模型的一个非常重要的扩展模型ARIMA。

首先我们介绍ARIMA模型的基本概念:

Autoregressive Integrated Moving Average Models - ARIMA(p, d, q)

我们以前提到过金融时序大多数都不是平稳时序,也就是说其统计特性随着时间的推移而变化,但是通过差分我们有时可以将其变成平稳时序。在前面文章中我们看到了把指数数据变换成收益率后就是平稳过程了;把随机步行序列进行一阶差分以后就变成了白噪声。

ARIMA模型中的参数d就代表我们对原始序列进行差分的次数。

In [1]:

import warnings
warnings.simplefilter('ignore')

1. 导入python包

In [2]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from fintechtools.backtest import *
from fintechtools.datasource import *
#from fintechtools. SimuMultiTest import *
#from lib.portfolio import DailySimulator
#from lib. experiment import Experiment
import statsmodels. formula. api as smf
import statsmodels.tsa.api as smt
import statsmodels.api as sm
import scipy. stats as scs
from arch import arch model
#sns. set context ("talk")
import matplotlib
import matplotlib as mpl
from matplotlib. ticker import FuncFormatter
mpl. style. use ('classic')
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['font.serif'] = ['SimHei']
plt.rcParams['axes.unicode minus'] = False
import seaborn as sns
sns. set_style("whitegrid", {"font. sans-serif":['simhei', 'Arial']})
sns. set context ("talk")
#zhfont1 = matplotlib.font_manager.FontProperties(fname='C:\Users\ktwc37\Documents\ZNTG\notebooks\S\
%load_ext autoreload
%autoreload 2
```

The autoreload extension is already loaded. To reload it, use: %reload ext autoreload

2. 读入数据

```
In [3]:
```

```
start = '2012-01-01'
end = '2017-02-05'
```

```
In [4]:
```

```
indexs = pd.read_excel('./data/华夏指数.xlsx')
indexs_pv = indexs.pivot_table(index='日期', columns='简称', values='收盘价(元)')
indexs_pv.index = pd.to_datetime(indexs_pv.index, unit='d')
```

In [5]:

```
indexs_pv.columns = ['国内债券', '国内股票', '香港股票', '国内货币']
indexs_pv = indexs_pv[['国内债券', '国内股票', '国内货币', '香港股票']]
indexs_pv.fillna(axis=0, method='bfill', inplace=True)
indexs_sub = indexs_pv.loc[start:end,]
```

国内债卷:中债综合财富(总值)指数

国内股票:中证全指 香港股票:恒生指数 国内货币:货币基金

In [6]:

indexs_sub. head()

Out[6]:

	国内债券	国内股票	国内货币	香港股票
日期				
2012-01-04	141.5160	2571.951	1166.7726	18727.31
2012-01-05	141.5501	2513.699	1166.9696	18813.41
2012-01-06	141.7277	2527.247	1167.1185	18593.06
2012-01-09	141.8669	2619.638	1167.5058	18865.72
2012-01-10	142.0118	2713.529	1167.6330	19004.28

In [7]:

```
indexs_logret = indexs_sub.apply(log_return).dropna()
```

In [8]:

indexs_logret.head()

Out[8]:

	国内债券	国内股票	国内货币	香港股票
日期				
2012-01-05	0.000241	-0.022909	0.000169	0.004587
2012-01-06	0.001254	0.005375	0.000128	-0.011782
2012-01-09	0.000982	0.035906	0.000332	0.014558
2012-01-10	0.001021	0.035214	0.000109	0.007318
2012-01-11	0.000188	-0.002115	0.000113	0.007740

In [9]:

```
def tsplot(y, lags=None, figsize=(16, 10), style='bmh'):
    if not isinstance(y, pd. Series):
        y = pd. Series(y)
    with plt. style. context(style):
        fig = plt. figure (figsize=figsize)
        #mpl. rcParams['font. family'] = 'Ubuntu Mono'
        1ayout = (3, 2)
        ts_ax = plt.subplot2grid(layout, (0, 0), colspan=2)
        acf_ax = plt.subplot2grid(layout, (1, 0))
        pacf ax = plt. subplot2grid(layout, (1, 1))
        qq_ax = plt. subplot2grid(layout, (2, 0))
        pp_ax = plt. subplot2grid(layout, (2, 1))
        y. plot (ax=ts ax)
        ts_ax.set_title('Time Series Analysis Plots')
        smt.graphics.plot_acf(y, lags=lags, ax=acf_ax, alpha=0.5)
        smt.graphics.plot_pacf(y, lags=lags, ax=pacf_ax, alpha=0.5)
        sm. qqplot(y, line='s', ax=qq_ax)
        qq_ax.set_title('QQ Plot')
        scs.probplot(y, sparams=(y.mean(), y.std()), plot=pp_ax)
        plt. tight_layout()
    return
```

下面我们将对四个指数数据进行ARIMA建模,注意:不是对收益率数据建模。

• 国内股票 以ARIMA建模,模型比较准则为AIC,得到阶数为(3,1,2)

```
In [26]:
```

```
best_aic = np.inf
best_order = None
best_mdl_gg = None
Y = indexs sub['国内股票']
pq_r = range(5) \# [0, 1, 2, 3, 4]
d_rng = range(2) # [0, 1]
for i in pq_rng:
    for d in d_rng:
        for j in pq_rng:
            try:
                tmp_mdl = smt. ARIMA(Y, order=(i, d, j)).fit(method='mle', trend='nc')
                tmp aic = tmp mdl.aic
                if tmp_aic < best_aic:</pre>
                    best_aic = tmp_aic
                    best_order = (i, d, j)
                    best_mdl_gg = tmp_mdl
            except: continue
print('aic: {:6.5f} | order: {}'.format(best_aic, best_order))
d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma
ximum Likelihood optimization failed to converge. Check mle_retvals
  "Check mle_retvals", ConvergenceWarning)
d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma
ximum Likelihood optimization failed to converge. Check mle_retvals
  "Check mle_retvals", ConvergenceWarning)
d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma
ximum Likelihood optimization failed to converge. Check mle_retvals
  "Check mle_retvals", ConvergenceWarning)
```

aic: 14191.66013 | order: (3, 1, 2)

d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma ximum Likelihood optimization failed to converge. Check mle_retvals "Check mle_retvals", ConvergenceWarning)

得到p,d,q分别为3,1,2,这是符合我们的预期的。

In [27]:

print(best_mdl_gg.summary())

ARIMA Model Results						
Dep. Variable: Model: Method: Date: Time: Sample:	Model: ARIMA(3, 1, 2) Log Likelihood Method: mle S.D. of innovations Date: Thu, 12 Jul 2018 AIC Fime: 20:48:31 BIC					1234 19. 830 15. 642 11. 660 12. 368 13. 212
coef std err z $P> z $				[0. 025	0.975]	
ar. L1. D. 国内股票 ar. L2. D. 国内股票 ar. L3. D. 国内股票 ma. L1. D. 国内股票 ma. L2. D. 国内股票	0. 3577 -0. 9978 0. 1832 -0. 2333 0. 9558	0.029	11. 910 -85. 108 6. 390 -18. 782 58. 997	0. 000 0. 000 0. 000 0. 000 0. 000	0. 299 -1. 021 0. 127 -0. 258 0. 924	0. 417 -0. 975 0. 239 -0. 209 0. 988
Real Imaginar			ry	Modulus	Frequ	ency
AR. 1 0. 0870 AR. 2 0. 0870 AR. 3 5. 2732 MA. 1 0. 1220 MA. 2 0. 1220		-1. 013 +1. 013 -0. 000 -1. 015 +1. 015	8j 0j 6j	1. 0175 1. 0175 5. 2732 1. 0229 1. 0229	0. -0. -0.	2364 2364 0000 2310 2310

残差Plot

In [28]:

= tsplot(best_mdl_gg.resid, lags=30)

从QQ-plot上看,残差并非正态分布。

• 香港股票 以ARIMA建模 比较准则为AIC,拟合参数为(3,1,2)

```
In [18]:
```

```
best_aic = np.inf
best_order = None
best_mdl = None
Y = indexs_sub['香港股票']
pq_rng = range(5) # [0, 1, 2, 3, 4]
d_rng = range(2) # [0, 1]
for i in pq_rng:
    for d in d_rng:
        for j in pq_rng:
            try:
                tmp_md1 = smt. ARIMA(Y, order=(i, d, j)).fit(method='mle', trend='nc')
                tmp_aic = tmp_mdl.aic
                if tmp_aic < best_aic:</pre>
                    best_aic = tmp_aic
                    best_order = (i, d, j)
                    best_md1 = tmp_md1
            except: continue
print('aic: {:6.5f} | order: {}'.format(best_aic, best_order))
```

d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma ximum Likelihood optimization failed to converge. Check mle_retvals "Check mle_retvals", ConvergenceWarning)

```
aic: 17054.58001 | order: (3, 1, 2)
```

d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma ximum Likelihood optimization failed to converge. Check mle_retvals "Check mle_retvals", ConvergenceWarning)

In [19]:

print(best_mdl.summary())

ARIMA Model Results							
Dep. Variable:	-852	1234 21. 290					
Method:		mle	S.D. of in	novations	24	1.361	
Date:	Thu, 12 J	ul 2018	AIC		1705	4. 580	
Time:	2	0:26:31	BIC		1708	5. 288	
Sample:	01-	-05-2012	HQIC		1706	6. 132	
	- 02-	03-2017					
coef std err z P> z [0.025 0.975]							
ar. L1. D. 香港股票	1. 2614	0.032	38. 914	0.000	1. 198	1. 325	
ar. L2. D. 香港股票	-1.0232	0.037	-27.868	0.000	-1.095	-0.951	
ar. L3. D. 香港股票	0.0264	0.029	0.895	0.371	-0.031	0.084	
ma. L1. D. 香港股票	-1.2381	0.015	− 79. 963	0.000	-1.268	-1.208	
ma. L2. D. 香港股票	0.9824	0.011	91.504	0.000	0.961	1.003	
		Roo	ts				
Real Imaginary Modulus Frequency						ency	
AR. 1 0. 6234		-0. 788	 1j	1. 0049	-0.	1435	
AR. 2			1j	1.0049	0.	1435	
AR. 3 37	. 5841	-0.0000	Oj	37. 5841	-0.0000		
MA. 1	0. 6301	-0.7879	9j	1.0089	-0.1426		
MA. 2	1.0089	0.	1426				

残差Plot

In [20]:

= tsplot(best_mdl.resid, lags=30)

• 国内债券 以ARIMA建模 比较准则AIC,得到(3,0,1).

```
In [21]:
```

```
Y = indexs logret['国内债券']
best_aic = np.inf
best_order = None
best mdl = None
pq_rng = range(5) # [0, 1, 2, 3, 4]
d_rng = range(2) # [0, 1]
for i in pq_rng:
    for d in d_rng:
        for j in pq_rng:
            try:
                tmp_md1 = smt. ARIMA(Y, order=(i, d, j)).fit(method='mle', trend='nc')
                tmp_aic = tmp_mdl.aic
                if tmp_aic < best_aic:</pre>
                    best_aic = tmp_aic
                    best_order = (i, d, j)
                    best_md1 = tmp_md1
            except: continue
print('aic: {:6.5f} | order: {}'.format(best_aic, best_order))
d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma
ximum Likelihood optimization failed to converge. Check mle_retvals
  "Check mle_retvals", ConvergenceWarning)
d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma
```

ximum Likelihood optimization failed to converge. Check mle_retvals

"Check mle_retvals", ConvergenceWarning)

d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma ximum Likelihood optimization failed to converge. Check mle_retvals

"Check mle_retvals", ConvergenceWarning)

```
aic: -14105.28291 | order: (3, 0, 1)
```

In [22]:

print(best_mdl.summary())

ARMA Model Results							
Dep. Variable: 国内债券 No. Observations: 1							1234
Model:	1: ARMA(3, 1) Log Likelihood					7057.641	
Method:		mle	S.D. of	innovations		0.001	
Date:	Thu, 1	12 Jul 2018	AIC			-14105 . 283	
Time:		20:30:50	BIC			-14079.693	
Sample:		01-05-2012	HQIC			-14095.657	
	_	02-03-2017					
	coef st	td err	Z	P> z	[0.025	0. 975]	
ar. L1. 国内债券	1. 3945	0.031	44. 862	0.000	1. 3	34 1	. 455
ar. L2. 国内债券	-0.3340	0.048	-6.961	0.000	-0.4	28 -0	. 240
ar. L3. 国内债券	-0.0629	0.029	-2 . 138	0.033	-0.1	21 -0	. 005
ma. L1. 国内债券	-0.9845	0.012	-79. 206	0.000	-1.0	09 -0	. 960
		Roc	ots				
	Rea1	Imagina	ary	Modulus		Frequency	
AR. 1 1. 0045		+0.000	00j	1.0045		0.0000	
AR. 2	1.9219	+0.000	00j	1. 9219		0.0000	
AR. 3	-8.2389	+0.000	00j	8. 2389		0.5000	
MA. 1	1.0157	+0.000	00j	1.0157		0.0000	

国内货币 以ARIMA建模 比较准则AIC,得到(4,1,4).

```
In [23]:
```

```
Y = indexs logret['国内货币']
best_aic = np.inf
best_order = None
best mdl = None
pq_rng = range(5) # [0, 1, 2, 3, 4]
d_rng = range(2) # [0, 1]
for i in pq_rng:
    for d in d_rng:
        for j in pq_rng:
            try:
                tmp_md1 = smt. ARIMA(Y, order=(i, d, j)).fit(method='mle', trend='nc')
                tmp_aic = tmp_mdl.aic
                if tmp_aic < best_aic:</pre>
                    best_aic = tmp_aic
                    best_order = (i, d, j)
                    best_md1 = tmp_md1
            except: continue
print('aic: {:6.5f} | order: {}'.format(best_aic, best_order))
d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma
ximum Likelihood optimization failed to converge. Check mle_retvals
  "Check mle_retvals", ConvergenceWarning)
d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma
```

ximum Likelihood optimization failed to converge. Check mle_retvals

"Check mle_retvals", ConvergenceWarning)

d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma ximum Likelihood optimization failed to converge. Check mle_retvals

"Check mle_retvals", ConvergenceWarning)

```
aic: -19130.92496 | order: (4, 1, 4)
```

In [24]:

print(best_mdl.summary())

ARIMA Model Results							
Dep. Varia Model: Method: Date: Time: Sample:	able:	01-	mle ul 2018 0:32:52	Ti No. Ob Log Likeli S.D. of in AIC BIC HQIC		-1913 -1908	1233 4. 462 0. 000 0. 925 4. 870 3. 600
		coef std	err	Z	P> z	[0. 025	0.975]
ar. L1. D. Bar. L2. D. Bar. L3. D. Bar. L4. D. Bma. L1. D. Bma. L2. D. Bma. L3. D. Bma. L4. D. Bma. L4	国内货币 国内货币 国内货币 国内货币 国内货币	-0. 7151 -0. 7725 -0. 8323 -0. 4458 -0. 4655 0. 0386 0. 0556 -0. 4890	0. 054 0. 036 0. 038 0. 030 0. 060 0. 057 0. 064 0. 049 Root	-13. 153 -21. 445 -21. 788 -14. 637 -7. 815 0. 675 0. 863 -9. 916	0. 000 0. 000 0. 000 0. 000 0. 000 0. 500 0. 388 0. 000	-0. 822 -0. 843 -0. 907 -0. 505 -0. 582 -0. 073 -0. 071 -0. 586	-0. 609 -0. 702 -0. 757 -0. 386 -0. 349 0. 151 0. 182 -0. 392
		Rea1	Imaginar	сy	Modulus	Frequ	ency
AR. 1 AR. 2 AR. 3 AR. 4 MA. 1 MA. 2 MA. 3 MA. 4	0 -1 -1 1 0	0. 2846 0. 2846 0. 2181 0. 2181 0. 0595 0. 1951 0. 1951 0. 3361	-1. 0215 +1. 0215 -0. 7150 +0. 7150 -0. 0000 -1. 1860 -0. 0000	5.j);););););	1. 0604 1. 0604 1. 4124 1. 4124 1. 0595 1. 2019 1. 2019 1. 3361	0. -0. 0. -0. -0.	2068 2068 4155 4155 0000 2240 2240 5000

最后,我们尝试对国内股票收益率用ARIMA模型建模。

In [10]:

```
best_aic = np.inf
best_order = None
best_mdl_gg = None
Y = indexs logret['国内股票']
pq_r = range(5) \# [0, 1, 2, 3, 4]
d_rng = range(2) # [0, 1]
for i in pq_rng:
    for d in d_rng:
        for j in pq_rng:
            try:
                tmp_mdl = smt. ARIMA(Y, order=(i, d, j)).fit(method='mle', trend='nc')
                tmp aic = tmp mdl.aic
                if tmp_aic < best_aic:</pre>
                    best_aic = tmp_aic
                    best_order = (i, d, j)
                    best_mdl_gg = tmp_mdl
            except: continue
print('aic: {:6.5f} | order: {}'.format(best_aic, best_order))
d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma
ximum Likelihood optimization failed to converge. Check mle_retvals
  "Check mle_retvals", ConvergenceWarning)
d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma
ximum Likelihood optimization failed to converge. Check mle_retvals
  "Check mle_retvals", ConvergenceWarning)
d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma
ximum Likelihood optimization failed to converge. Check mle_retvals
  "Check mle retvals", ConvergenceWarning)
d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma
ximum Likelihood optimization failed to converge. Check mle_retvals
  "Check mle_retvals", ConvergenceWarning)
d:\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Ma
ximum Likelihood optimization failed to converge. Check mle_retvals
  "Check mle_retvals", ConvergenceWarning)
```

aic: -6601.86081 | order: (3, 0, 2)

如我们所料,得到了参数(3,0,2)

其实,我们采用了如此多的模型来为时序数据进行建模,最主要的目的是为了能够预测。下面,我们需要评估一下采用ARIMA模型预测数据的效果。

预测国内股票收益率21天数据,并分别估算其95%和99%置信水平。

In [12]:

Out[12]:

	forecast	lower_ci_95	lower_ci_99	upper_ci_95	upper_ci_99
2017-02-19	-0.000601	-0.033384	-0.043686	0.032182	0.042483
2017-02-20	-0.001168	-0.033953	-0.044255	0.031617	0.041919
2017-02-21	0.000365	-0.032434	-0.042741	0.033164	0.043470
2017-02-22	0.001195	-0.031608	-0.041916	0.033999	0.044306
2017-02-23	-0.000131	-0.032945	-0.043256	0.032682	0.042993

In [13]:

```
plt.style.use('bmh')
fig = plt.figure(figsize=(9,7))
ax = plt.gca()

ts = indexs_logret[['国内股票']].iloc[-500:].copy()
ts.plot(ax=ax, label='GG Returns')
# in sample prediction
pred = best_mdl_gg.predict(ts.index[0], ts.index[-1])
pred.plot(ax=ax, style='r-', label='In-sample prediction')

styles = ['b-', '0.2', '0.75', '0.2', '0.75']
fc_all.plot(ax=ax, style=styles)
plt.fill_between(fc_all.index, fc_all.lower_ci_95, fc_all.upper_ci_95, color='gray', alpha=0.7)
plt.fill_between(fc_all.index, fc_all.lower_ci_99, fc_all.upper_ci_99, color='gray', alpha=0.2)
plt.title('{} Day Return Forecast\nARIMA{}'.format(n_steps, best_order))
plt.legend(loc='best', fontsize=10)
```

Out[13]:

<matplotlib.legend.Legend at 0x22a738e1780>

总结

本文展示了采用Python语言为四个指数时序数据进行ARIMA建模,介绍了ARIMA模型的基本概念,并使用ARIMA模型对四指数数据进行建模其对国内股票收益率的预测进行了评估。