Краткий конспект лекций по курсу «Игры среднего поля» Шапошников С.В.

ЛЕКЦИЯ 1 (13.02.2024)

Равновесие Нэша

Рассмотрим игру, в которой участвуют N игроков. Игрок с номером k выбирает стратегию a_k из множества A. Затем вычисляется функция «штрафа» $J_k(a_1,\ldots,a_N)$. Задача игрока минимизировать эту функцию. Набор стратегий $(\widehat{a}_1,\ldots,\widehat{a}_N)$ называется paвновесием H
ightarrow ua, если для каждого k точка \widehat{a}_k является точкой минимума функции $a_k \to J_k(\widehat{a}_1, \dots, a_k, \dots, \widehat{a}_N)$.

Теорема 1. Предположим, что A — непустое компактное и выпуклое множество в нормированном пространстве, функции J_k непрерывны и по каждой переменной выпуклы. Тогда существует равновесие Нэша.

Доказательство использует теорему Какутани о неподвижной точке:

 Π усть K — выпуклый компакт в нормированном пространстве, и задано отображение $\Phi \colon K \to 2^K$. Если для каждого x множество $\Phi(x)$ непусто и выпукло, а график Φ (то есть множество $\{(x,y)\colon y\in\Phi(x)\}$) замкнут в $K\times K$, то существует такая точка $x \in K$, что $x \in \Phi(x)$.

Доказательство. Положим $K=A^N$. Рассмотрим отображение $\Phi\colon K\to 2^K$, которое сопоставляет набору (a_1, \ldots, a_N) множество таких наборов (b_1, \ldots, b_N) , что для каждого k точка b_k является точкой минимума функции $x_k \to J_k(a_1, \dots, x_k, \dots, a_N)$. В силу непрерывности функции J_k по теореме Вейерштрасса точка минимума существует, то есть множество $\Phi(a_1, ..., a_N)$ непусто. Покажем, что это множество выпукло. Пусть (b_1,\ldots,b_N) и (c_1,\ldots,c_N) принадлежат $\Phi(a_1,\ldots,a_N)$ и $t\in[0,1]$. Имеем

$$J_k(a_1, \dots, (tb_k + (1-t)c_k), \dots, a_N) \le$$

$$\le tJ_k(a_1, \dots, b_k, \dots, a_N) + (1-t)J_k(a_1, \dots, c_k, \dots, a_N) =$$

$$= \min_{x_k} J_k(a_1, \dots, x_k, \dots, a_N).$$

Следовательно, набор $(tb_1 + (1-t)c_k, \dots, tb_N + (1-t)c_k)$ принадлежит $\Phi(a_1, \dots, a_N)$. Остается проверить замкнутость графика. Пусть последовательность (a_1^m, \dots, a_N^m) стремится к (a_1, \ldots, a_N) , а последовательность $(b_1^m, \ldots, b_N^m) \in \Phi(a_1^m, \ldots, a_N^m)$ сходится к (b_1,\ldots,b_N) . Для каждого $x_k\in A$ справедливо неравенство

$$J_k(a_1^m,\ldots,b_k^m,\ldots,a_N^m) \le J_k(a_1^m,\ldots,x_k,\ldots,a_N^m).$$

Используя непрерывность J_k , перейдем к пределу:

$$J_k(a_1,\ldots,b_k,\ldots,a_N) \leq J_k(a_1,\ldots,x_k,\ldots,a_N).$$

Следовательно, $(b_1, \ldots, b_N) \in \Phi(a_1, \ldots, a_N)$. Итак, все условия теорему Какутани выполняются и существует такой набор $(\widehat{a}_1,\ldots,\widehat{a}_N) \in \Phi(\widehat{a}_1,\ldots,\widehat{a}_N)$, то есть существует равновесие Нэша.

От условий выпуклости отказаться нельзя и уже для N=2 несложно привести пример игры, в которой отсутствует равновесие Нэша. Чтобы обеспечить существование равновесия Нэша переходят к смешанным стратегиям, то есть ищут равновесие в пространстве мер. Вместо равновесия Нэша также рассматривают ε — равновесие Нэша, когда для всех a_k выполнено неравенство

$$J_k(\widehat{a}_1,\ldots,\widehat{a}_k,\ldots,\widehat{a}_N) \leq J_k(\widehat{a}_1,\ldots,a_k,\ldots,\widehat{a}_N) + \varepsilon.$$

Однако нас интересует описание равновесия Нэша при **очень больших** N. Это трудная задача, так как стратегии \widehat{a}_k сложным образом взаимосвязаны. Рассмотрим хорошо известную в математической физике задачу описания большой системы взаимосвязанных частиц.

Среднее поле

Система дифференциальных уравнений

$$\dot{x}_i = \frac{1}{N} \sum_{j=1}^{N} K(x_i, x_j), \quad i = 1, 2, \dots, N,$$

описывает взаимодействие N частиц $x_1(t), \ldots, x_N(t)$, где $x_i(t) \in \mathbb{R}^d$. Рассмотрим простой пример

$$\dot{x}_i = \lambda(\overline{x} - x_i),$$

где $\lambda>0$ и $\overline{x}=\frac{x_1+\ldots+x_N}{N}$. Система уравнений такого вида появляется в моделях, описывающих стаю птиц. В этом случае x_i — скорость i-й птицы.

Сложим уравнения и поделим результат на N. Получаем

$$\dot{\overline{x}} = \lambda(\overline{x} - \overline{x}) = 0.$$

Следовательно, $\overline{x}(t) = \overline{x}(0)$. Сдвигая начало координат, можно считать, что $\overline{x}(0) = 0$. Тогда уравнение для x_i существенно упрощается: $\dot{x}_i = -\lambda x_i$, а решение имеет вид $x_i(t) = x_i(0)e^{-\lambda t}$. Из формулы видно, что при $t \to \infty$ решение стремится к нулю. Но нас интересует поведение решения при $N \to \infty$.

Меру

$$\mu_t^N = \frac{1}{N} \sum_{k=1}^N \delta_{x_k(t)}$$

называют **средним полем**. Эта мера описывает распределение частиц в целом. Пусть $\nu^N = \mu_0^N$. Тогда

$$\mu_t^N(B) = \nu^N(e^{\lambda t}B).$$

Предположим, что последовательность мер ν^N приближается к мере ν при $N \to \infty$. Тогда μ^N_t приближается к мере μ , определяемой равенством

$$\mu(B) = \nu(e^{\lambda t}B).$$

Мера μ описывает распределение частиц при $N \to \infty$ и называется **пределом среднего поля**.

Применим этот подход к описанию равновесия Нэша для большого числа игроков.

Игры среднего поля

Рассмотрим игру, в которой участвуют N игроков. Игрок с номером k выбирает стратегию a_k из множества A. Затем вычисляется функция «штрафа»

$$J_k(a_1, \dots, a_N) = g(a_k) + \frac{1}{N} \sum_{j=1}^N f(a_k, a_j).$$

С помощью меры

$$\mu^N = \frac{1}{N} \sum_{k=1}^N \delta_{a_k}$$

функцию J_k можно переписать в виде

$$J_k(a_1, \dots, a_N) = g(a_k) + \int f(a_k, a) d\mu_t^N = F(a_k, \mu^N).$$

В этом случае равновесию Нэша соответствует такая мера

$$\widehat{\mu}^N = \frac{1}{N} \sum_{k=1}^N \delta_{\widehat{a}_k},$$

что функция

$$a_k \to F\left(a_k, \widehat{\mu}^N + \frac{1}{N}(\delta_{a_k} - \delta_{\widehat{a}_k})\right)$$

в точке \widehat{a}_k достигает своего минимального значения. Поскольку нас интересует предельный случай, когда $N \to \infty$, то слагаемым $\frac{1}{N}(\delta_{a_k} - \delta_{\widehat{a}_k})$ можно пренебречь. Кроме того, можно (особенно в случае компактного множества A) считать, что μ^N приближаются к некоторой вероятностной мере μ . Принимая во внимание эти замечания получаем следующую задачу **игр среднего поля:**

найти такую вероятностную меру μ на A, что μ сосредоточена на точках минимума функции $a \to F(a, \mu)$.

В качестве множества A может рассматривать не только подмножества \mathbb{R}^d , но и подмножества $C([0,T],\mathbb{R}^d)$, что и происходит при изучении равновесия Нэша в дифференциальных играх.

Вероятностные меры

Пусть X — полное сепарабельное метрическое пространство.

Вероятностной мерой μ на борелевской сигма-алгебре $\mathcal{B} = \mathcal{B}(X)$ называется отображение $\mu \colon \mathcal{B} \to [0,1]$, удовлетворяющее двум условиям: 1) $\mu(X) = 1$ и 2) μ — сигма аддитивно, т.е. $\mu(\sqcup_i B_i) = \sum_i \mu(B_i)$, где $\sqcup_i B_i$ — объединение попарно непересекающихся множеств.

Сигма-аддитивность μ равносильна непрерывности относительно объединений и пересечений вложенных множеств: если $B_n \subset B_{n+1}$, то $\lim_{n\to\infty} \mu(B_n) = \mu(\cup_i B_i)$, а если $B_{n+1} \subset B_n$, то $\lim_{n\to\infty} \mu(B_n) = \mu(\cap_i B_i)$.

Теорема 2. Пусть μ — вероятностная мера на X. Для всякого борелевского множества B и всякого $\varepsilon > 0$ найдутся замкнутое множество F и открытое множество U, для которых выполняются условия:

$$F \subset B \subset U$$
, $\mu(U \setminus F) < \varepsilon$.

Доказательство. Если B — замкнутое множество, то F = B и

$$U = B^{1/n} = \{x : dist d(x, B) < 1/n\}$$

для достаточно большого n. Рассмотрим теперь семейство E всех борелевских множеств B, для которых для всякого $\varepsilon > 0$ существуют замкнутое множество F и открытое множество U, удовлетворяющие условиям $F \subset B \subset U$, $\mu(U \setminus F) < \varepsilon$. Семейство E является сигма-алгеброй и содержит все замкнутые множества. Следовательно, оно совпадает с борелевской сигма-алгеброй.

Следствие 1. Если две вероятностные меры μ и σ совпадают на всех замкнутых (открытых) множествах, то они совпадают на всех борелевских.

Следствие 2. Пусть μ и σ — вероятностные меры. Если для всякой функции $\varphi \in C_b(X)$ верно равенство

$$\int \varphi \, d\mu = \int \varphi \, d\sigma,$$

то $\mu = \sigma$ на \mathcal{B} .

Доказательство. Пусть F — замкнутое множество. Покажем, что $\mu(F) = \sigma(F)$. Пусть $\delta > 0$ и I_F — индикатор множества F. Положим $\psi_{\delta}(t) = 1$ при $t \leq 0$,

$$\psi_\delta(t)=1-rac{t}{\delta}$$
 при $0\leq t\leq \delta$ и $\psi_\delta(t)=0$ при $t\geq \delta$. Ясно, что
$$\lim_{\delta\to 0}\psi_\delta(\mathrm{dist}(x,F))=I_F(x).$$

По теореме Лебега о мажорируемой сходимости

$$\int \psi_{\delta}(\operatorname{dist}(x,F)) d\mu = \int I_F(x) d\mu = \mu(F).$$

Аналогичные равенства верны для σ . Остается заметить, что функция $\psi_{\delta}(\mathrm{dist}(x,F))$ ограничена и непрерывна. На самом деле это липшицева функция.