Математический анализ. Подготовка к экзамену

1 Определения

Определение 1 (Множество натуральных чисел). \mathbb{N} – множество натуральных чисел. Состоит из чисел, возникающих при счёте.

Определение 2 (Множество целых чисел). \mathbb{Z} – множество целых чисел. Состоит из натуральных чисел, нуля и чисел, противоположных натуральным.

Определение 3 (Множество рациональных чисел). \mathbb{Q} – множество рациональных чисел. Состоит из чисел, представимых в виде $\frac{z}{n}, z \in \mathbb{Z}, n \in \mathbb{N}$.

Определение 4 (Множество иррациональных чисел). \mathbb{I} – множество иррациональных чисел. Состоит из чисел, которые не представимы в виде $\frac{\pi}{n}, z \in \mathbb{Z}, n \in \mathbb{N}$.

Определение 5 (Множество действительных чисел). \mathbb{R} – множество действительных чисел. Состоит из рациональных и иррациональных чисел.

Определение 6 (Окрестность точки). Окрестностью S(x) точки x называется любой интервал, содержащий эту точку.

Определение 7 (ε -окрестность точки). ε -окрестностью точки x называется интервал с центром в точке x и длиной 2ε .

$$S(x,\varepsilon) = (x - \varepsilon, x + \varepsilon)$$

Определение 8 (δ -окрестность точки). δ -окрестностью точки x называется интервал с центром в точке x и длиной 2δ .

$$S(x, \delta) = (x - \delta, x + \delta)$$

Определение 9 (Окрестность $+\infty$). Окрестностью $+\infty$ называется любой интервал вида:

$$S(+\infty) = (a, +\infty), \quad a \in \mathbb{R}, \quad a > 0$$

Определение 10 (Окрестность $-\infty$). Окрестностью $-\infty$ называется любой интервал вида:

$$S(-\infty) = (-\infty, -a), \quad a \in \mathbb{R}, \quad a > 0$$

Определение 11 (Окрестность ∞). Окрестностью ∞ называется любой интервал вида:

$$S(\infty) = (-\infty, -a) \cup (a, +\infty), \quad a \in \mathbb{R}, \quad a > 0$$

Определение 12 (Числовая последовательность). Числовой последовательностью называется бесконечное множество числовых значений, которое можно упорядочить (перенумеровать)

Определение 13 (Ограниченная последовательность сверху). Последовательность $\{x_n\}$ называется *ограниченной сверху*, если $\exists M \in \mathbb{R}$, что для всех $\forall n \in \mathbb{N}$ выполнено неравенство $x_n \leq M$

Определение 14 (Ограниченная последовательность снизу). Последовательность $\{x_n\}$ называется *ограниченной снизу*, если $\exists M \in \mathbb{R}$, что для всех $\forall n \in \mathbb{N}$ выполнено неравенство $x_n \geq M$

Определение 15 (Ограниченная последовательность). Последовательность x_n называется *ограниченной*, если она ограничена и сверху, и снизу, т.е.

$$\forall n \in \mathbb{N}, m \leq x_n \leq M$$
 или $|x_n| \leq M$

Определение 16 (Предел последовательности). Число a называется пределом последовательности $\{x_n\}$, если для любого положительного числа ε найдется натуральное число $N\left(\varepsilon\right)$, такое, что если порядковый номер n члена последовательности станет больше $N(\varepsilon)$, то имеет место неравенство $|x_n-a|<\varepsilon$.

$$\lim_{x \to \infty} x_n = a \iff (\forall \varepsilon > 0)(\exists N(\varepsilon) \in \mathbb{N}) : (\forall n > N(\varepsilon)) \implies |x_n - a| < \varepsilon$$

Определение 17 (Сходящаяся последовательность). Числовая последовательность называется сходящейся, если существует предел это последовательности, и он конечен.

Определение 18 (Предел функции по Коши). Число a называется пределом функции $y=f\left(x\right)$ в точке x_{0} , если $\forall \varepsilon>0$ найдется δ , зависящее от ε такое что $\forall x\in \mathring{S}(x_{0};\delta)$ будет верно неравенство $|f\left(x\right)-a|<\varepsilon$.

$$\lim_{x \to x_0} f(x) = a \iff (\forall \varepsilon > 0)(\exists \delta(\varepsilon) > 0)(\forall x \in \mathring{S}(x_0; \delta) \implies |f(x) - a| < \varepsilon)$$

Определение 19 (Предел функции по Гейне). Число a называется пределом y=f(x) в точке x_0 , если эта функция определена в окрестности точки a и \forall последовательнсти x_n из области определения этой функции, сходящейся к x_0 соответствующая последовательность функций $\{f(x_n)\}$ сходится к a.

$$\lim_{x \to x_0} = a \iff (\forall x_n \in D_f)(\lim_{n \to \infty} x_n = x_0 \implies \lim_{n \to \infty} f(x_n) = a)$$

Определение 20 (Локальная ограниченность функции). Функция называется локально ограниченной при $x \to x_0$, если существует проколотая окрестность с центром в точке x_0 , в которой данная функция ограничена.

Определение 21 (Бесконечно малые функции). Функция называется бесконечно малой при $x \to x_0$, если предел функции в этой точке равен 0.

$$\lim_{x \to x_0} f(x) = 0 \iff (\forall \varepsilon > 0) (\exists \delta(\varepsilon)) (\forall x \in \mathring{S}(x_0, \delta) \implies |f(x)| < \varepsilon)$$

Определение 22 (Бесконечно большие функции). Функция называется бесконечно большой при $x \to x_0$, если предел функции в этой точке равен ∞ .

Определение 23 (Бесконечно малые более высокого порядка). Функцию $\alpha(x)$ называют бесконечно малой более высокого порядка малости по сравнению с $\beta(x)$ при $x \to x_0$ и записывают $\alpha(x) = o(\beta(x))$, если существует и равен нулю предел отношения $\alpha(x)/\beta(x)$, при $x \to x_0$.

$$\alpha(x) = o(\beta(x))$$
 $x \to x_0 \iff \exists \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 0$

Определение 24 (Эквивалентные бесконечно малые функции). Функции $\alpha(x)$ и $\beta(x)$ называют эквивалентными бесконечно малыми при

 $x \to x_0$, если предел их отношения при $x \to x_0$ равен 1.

$$\alpha(x) \sim \beta(x)x \to x_0 \iff \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 1$$

Определение 25 ((опр. 1) Непрерывность функции в точке). Функция f(x), определённая в некоторой окрестности точки x_0 , называется непрерывной в этой точке если:

$$\exists \lim_{x \to x_0} f(x) = f(x_0)$$

Определение 26 ((опр. 2) Непрерывность функции в точке). Функция y=f(x) называется непрерывной в точке x_0 , если бесконечно малому приращению аргумента $\Delta x=x_0-x$ соответствует бесконечно малое приращение функции $\Delta y=f(x_0+\Delta x)-f(x_0)$.

$$\lim_{\Delta x \to 0} \Delta y = 0$$

Определение 27 (Непрерывность функции на интервале). Функция y = f(x) называется непрерывной на интервале (a,b), если она непрерывна в каждой точке этого интервала.

Определение 28 (Непрерывность функции в точке справа). Функция y=f(x) определённая в правосторонней окрестности точки x_0 (интервал $[x_0,x_0+\delta)$) называется непрерывной справа в этой точке, если:

$$\exists \lim_{x \to x_0 +} = f(x_0)$$

Определение 29 (Непрерывность функции в точке слева). Функция y=f(x) определённая в левосторонней окрестности точки x_0 (интервал $(x_0-\delta,x_0]$) называется непрерывной слева в этой точке, если:

$$\exists \lim_{x \to x_0 -} = f(x_0)$$

Определение 30 (Непрерывность функции на отрезке). Функция y = f(x) называется непрерывной на отрезке [a, b], если:

- 1. Непрерывна на интервале (a, b)
- 2. Непрерывна в точке a справа
- 3. Непрерывна в точке b слева

Определение 31 (Точка разрыва функции). Пусть функция y=f(x) определена в некоторой проколотой окрестности точки x_0 и непрерывна в любой точке этой окрестности (за исключением самой точки x_0). Тогда точка x_0 называется точкой разрыва функции.

Определение 32 (Производная функции). Производной функции y=f(x) в точке x_0 называется предел отношения приращения функции $\Delta y=f(x_0+\Delta x)-f(x_0)$ и предел приращения аргумента $\Delta x=x_0-x$ при стремлении последнего к нулю.

$$y'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

Определение 33 (Правосторонняя производная функции). Производной функции y=f(x) в точке x_0 справа или правосторонней производной называется предел отношения приращения функции к приращению аргумента при стремлении к нулю справа.

$$y'_{+}(x_0) = \lim_{\Delta x \to 0+} \frac{\Delta y}{\Delta x}$$

Определение 34 (Левосторонняя производная функции). Производной функции y=f(x) в точке x_0 слева или левосторонней производной называется предел отношения приращения функции к приращению аргумента при стремлении к нулю слева.

$$y'_{-}(x_0) = \lim_{\Delta x \to 0-} \frac{\Delta y}{\Delta x}$$

Определение 35 (Дифференцируемость функции в точке). Функция y = f(x) называется дифференцируемой в точке x_0 , если существует константа A такая, что приращение функции в этой точке представимо в виде:

$$\Delta y = A \cdot \Delta x + \alpha(\Delta x) \Delta x$$

где $\alpha(x)$ – бесконечно малая функция при $\Delta x \to 0, \, \Delta x > 0.$

Определение 36 (Дифференциал функции в точке). Дифференциалом функции $y=f(x_0)$ называется главная часть приращения функции Δy .

$$dy = f'(x_0)\Delta x$$

Определение 37 (Невозрастающая функция на интервале). Функция y=f(x), определённая на интервале (a,b) не возрастает на этом интервале, если для любых $x_1,x_2\in(a,b)$ таких что $x_2>x_1 \Longrightarrow f(x_2)\leq f(x_1)$.

Определение 38 (Неубывающая функция на интервале). Функция y = f(x), определённая на интервале (a,b) не убывает на этом интервале, если для любых $x_1, x_2 \in (a,b)$ таких что $x_2 > x_1 \implies f(x_2) \ge f(x_1)$.

Определение 39 (Точка строгого локального минимума). Точка x_0 называется точкой строгого локального минимума функции f(x), если $\exists S(x_0, \delta)$, такая что $\forall x \in S(x_0, \delta) : f(x_0) < f(x)$.

Определение 40 (Точка строгого локального максимума). Точка x_0 называется точкой строгого локального максимума функции f(x), если $\exists S(x_0, \delta)$, такая что $\forall x \in S(x_0, \delta) : f(x_0) > f(x)$.

Определение 41 (Точка локального минимума). Точка x_0 называется точкой локального минимума функции f(x), если $\exists S(x_0, \delta)$, такая что $\forall x \in S(x_0, \delta) : f(x_0) \leq f(x)$.

Определение 42 (Точка локального максимума). Точка x_0 называется точкой локального максимума функции f(x), если $\exists S(x_0, \delta)$, такая что $\forall x \in S(x_0, \delta) : f(x_0) \geq f(x)$.

Определение 43 (Критические точки первого порядка). Точки, в которых производная функции обращается в ноль или не существует, называются κ ритическими точками первого порядка.

Определение 44 (Стационарные точки). Точки, в которых производная функции обращается в ноль называются *стационарными*.

Определение 45 (Наклонная асимптота). Прямая y=kx+b называется наклонной ассимптотой графика функции y=f(x) при $x\to\pm\infty$, если сама функция представима в виде $f(x)=kx+b+\alpha(x)$, где $\alpha(x)$ – б.м.ф при $x\to\pm\infty$.

Определение 46 (Выпуклость вверх). Говорят, что график функции y=f(x) на интервале (a,b) выпуклый вверх на этом интервале, если касательная к нему в любой точке этого интервала (кроме точки касания) лежит выше графика функции.

Определение 47 (Выпуклость вниз). Говорят, что график функции y=f(x) на интервале (a,b) выпуклый вниз на этом интервале, если касательная к нему в любой точке этого интервала (кроме точки касания) лежит ниже графика функции.

Определение 48 (Точка перегиба функции). Точка $x_0 \in (a,b)$ называется точкой перегиба функции f(x), если эта функция непрерывна в точке x_0 и если $\exists \delta > 0$ такое, что направления выпуклостей функции f(x) на интервалах $(x_0 - \delta; x_0)$ и $(x_0; x_0 + \delta)$ различны.

2 Теория

Вопрос 1. Сформулируйте и докажите теорему о единственности предела сходящейся последовательности.

Ссылки. Используются определения №12, №16, №17.

Теорема (О существовании единственности предела последовательности). Любая сходящаяся последовательность имеет единственный предел.

Доказательство. Пусть $\{x_n\}$ – сходящаяся последовательность. Рассуждаем методом от противного. Пусть последовательность $\{x_n\}$ более одного предела.

$$\lim_{n \to \infty} = a \quad \lim_{n \to \infty} = b \quad a \neq b$$

$$\lim_{n \to \infty} = a \iff (\forall \varepsilon_1 > 0)(\exists N_1(\varepsilon_1) \in N)(\forall n > N_1(\varepsilon_1) \implies |x_n - a| < \varepsilon_1)$$
(1)

$$\lim_{n \to \infty} = b \iff (\forall \varepsilon_2 > 0)(\exists N_2(\varepsilon_2) \in N)(\forall n > N_2(\varepsilon_2) \implies |x_n - b| < \varepsilon_2)$$
(2)

Выберем $N = max\{N_1(\varepsilon_1), N_2(\varepsilon_2)\}.$

Пусть

$$\varepsilon_1 = \varepsilon_2 = \varepsilon = \frac{|b-a|}{3}$$

Тогда:

$$3\varepsilon = |b - a| = |b - a + x_n - x_n| =$$

$$= |(x_n - a) - (x_n - b)| \le |x_n - a| + |x_n - b| < \varepsilon_1 + \varepsilon_2 = 2\varepsilon$$

$$3\varepsilon < 2\varepsilon$$

Противоречие. Значит, предоположение не является верным \implies последовательность x_n имеет единственный предел.

Вопрос 2. Сформулируйте и докажите теорему об ограниченности сходящейся последовательности.

Ссылки. Используются определения №12, №15, №16, №17.

Теорема. Об ограниченности сходящейся последовательности. Любая сходящаяся последовательность ограничена.

Доказательство. По определению сходящейся последовательности

$$\implies \lim_{n \to \infty} = a \iff (\forall \varepsilon > 0)(\exists N(\varepsilon) \in \mathbb{N})(\forall n > N(\varepsilon) \implies |x_n - a| < \varepsilon).$$

Выберем в качестве $M=\max\{|x_1|,|x_2|,\dots|x_n|,|a-\varepsilon|,|a+\varepsilon|\}.$ Тогда для $\forall n\in\mathbb{N}$ будет верно $|x_n|\leq M$ – это и означает, что последовательность x_n – ограниченная.

Вопрос 3. Сформулируйте и докажите теорему о локальной ограниченности функции, имеющей конечный предел.

Ссылки. Используются определения №18, №20.

Теорема (О локальной ограниченности функции, имеющей конечный предел). Функция, имеющая конечный предел, локально ограничена.

Доказательство.

$$\lim_{x \to x_0} f(x) = a$$
 $\iff (\forall \varepsilon > 0)(\exists \delta(\varepsilon) > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies |f(x) - a| < \varepsilon)$

Распишем:

$$-\varepsilon < f(x) - a < \varepsilon$$

$$a - \varepsilon < f(x) < a + \varepsilon$$

$$\forall x \in \mathring{S}(x_0, \delta)$$

Выберем $M=\max\{|a-\varepsilon|,|a+\varepsilon|\}$ $|f(x)|\leq M,\quad \forall x\in \mathring{S}(x_0,a)$

$$|f(x)| \le M, \quad \forall x \in \mathring{S}(x_0, a)$$

Что и требовалось доказать.

Вопрос 4. Сформулируйте и докажите теорему о сохранении функцией знака своего предела.

Ссылки. Используются определения №18.

Теорема (О сохранении функцией знака своего предела). Если $\lim_{x\to x_0}=a\neq 0$, то $\exists \mathring{S}(x_0,\delta)$ такая, что функция в ней сохраняет знак своего предела.

$$\lim_{x\to x_0} f(x) = a \neq 0 \to \begin{cases} a>0 \\ a<0 \end{cases} \Longrightarrow \begin{cases} f(x)>0 \\ f(x)<0 \end{cases} \quad \forall x \in \mathring{S}(x_0,\delta)$$

Доказательство. Пусть a > 0. Выберем $\varepsilon = a > 0$.

$$\lim_{x \to x_0} = a \iff (\forall \varepsilon = a)(\exists \delta(x) > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies |f(x) - a| < \varepsilon = a)$$

Распишем:

$$-a < f(x) - a < a$$
$$0 < f(x) < 2a$$

Знак у функции f(x) и числа a - одинаковые.

Пусть a < 0. Выберем $\varepsilon = -a$.

$$\lim_{x \to x_0} f(x) = a \iff (\forall \varepsilon = -a)(\exists \delta(x) > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies |f(x) - a| < \varepsilon = -a)$$

Распишем:

$$-a < f(x) - a < a$$

$$-2a < f(x) < 0$$

Знак у функции f(x) и числа a - одинаковые. Значит, f(x) сохраняет знак своего предела $\forall x \in \mathring{S}(x_0, \delta)$

Вопрос 5. Сформулируйте и докажите теорему о предельном переходе в неравенстве.

Ссылки. Используются определения №18, "О сохранении функцией знака своего предела".

Теорема (О предельном переходе в неравенстве). Пусть существуют конечные пределы функций f(x) и g(x) в точке x_0 и $\forall x \in \mathring{S}(x_0, \delta)$ верно:

Тогда $\forall x \in \mathring{S}(x_0, \delta)$ имеет место неравенство:

$$\lim_{x \to x_0} f(x) \le \lim_{x \to x_0} g(x)$$

Доказательство. По условию $f(x) < g(x), \forall x \in \mathring{S}(x_0, \delta)$. Введём функцию $F(x) = f(x) - g(x) < 0, \forall x \in \mathring{S}(x_0, \delta)$. Т.к. f(x) и g(x) имеют конечные пределы в точке x_0 , соответственно и функция F(X) имеет конечный предел в точке x_0 (как разность f(x) и g(x)).

По следствию из теорема "О сохранении функцией знака своего предела" $\Longrightarrow \lim_{x\to x_0} F(x) \le 0$

Подставим F(x) = f(x) - g(x):

$$\lim_{x \to x_0} (f(x) - g(x)) \le 0 \implies \lim_{x \to x_0} f(x) - \lim_{x \to x_0} g(x) \le 0 \implies \lim_{x \to x_0} f(x) \le \lim_{x \to x_0} g(x)$$

Вопрос 6. Сформулируйте и докажите теорему о пределе промежуточной функции.

Ссылки. Используются определения №18.

Теорема (О пределе промежуточной функции). Пусть существуют конечные пределы функций f(x) и g(x) в точке x_0 и $\lim_{x \to x_0} f(x) = a$ и $\lim_{x \to x_0} g(x) = a, \ \forall x \in \mathring{S}(x_0, \delta)$ верно неравенство $f(x) \le h(x) \le g(x)$. Тогда $\lim_{x \to x_0} h(x) = a$.

Доказательство. По условию:

$$\lim_{x \to x_0} f(x) = a \iff (\forall \varepsilon > 0)(\exists \delta_1(\varepsilon) > 0)(\forall x \in \mathring{S}(x_0, \delta_1) \implies |f(x) - a| < \varepsilon)$$
(1)

$$\lim_{x \to x_0} g(x) = a \iff (\forall \varepsilon > 0)(\exists \delta_2(\varepsilon) > 0)(\forall x \in \mathring{S}(x_0, \delta_2) \implies |g(x) - a| < \varepsilon)$$
(2)

Выберем $\delta_0 = min\{\delta_1, \delta_2\}$, тогда (1), (2) и $f(x) \leq h(x) \leq g(x)$ верны одновременно $\forall x \in \mathring{S}(x_0, \delta_0)$.

(1)
$$a - \varepsilon < f(x) < a + \varepsilon$$

(2)
$$a - \varepsilon < g(x) < a + \varepsilon$$

$$\begin{split} f(x) & \leq h(x) \leq g(x) \\ \implies a - \varepsilon < f(x) \leq h(x) \leq g(x) < a + \varepsilon \\ \implies \forall x \in \mathring{S}(x_0, \delta_0) \qquad a - \varepsilon < h(x) < a + \varepsilon \end{split}$$

В итоге:

$$(\forall \varepsilon > 0)(\exists \delta_0(\varepsilon) > 0)(\forall x \in \mathring{S}(x_0, \delta_0) \implies |h(x) - a| < \varepsilon)$$
 \implies по определению предела $\lim_{x \to x_0} h(x) = a$

Вопрос 7. Сформулируйте и докажите теорему о пределе произведения функций.

Ссылки. Используются определения №18, №21, теорема "О произведении бесконечно малой функций на локально ограниченную", теорема "О свящи функции, её предела и бесконечно малой функции", теорема "О сумме конечного числа с бесконечно малой функцией".

Теорема (О пределе произведения функций). О пределе произведения функций.

Предел произведения функций равен произведению пределов.

$$\lim_{x \to x_0} (f(x) \cdot g(x)) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$$

Доказательство. Пусть:

$$\lim_{x \to x_0} f(x) = a \tag{1}$$

$$\lim_{x \to x_0} f(x) = a \tag{1}$$

$$\lim_{x \to x_0} f(x) = b \tag{2}$$

По теореме о связи функции, её предела и бесконечно малой функции:

(1)
$$\implies f(x) = a + \alpha(x)$$
, где $\alpha(x)$ - б.м.ф.
(2) $\implies f(x) = b + \beta(x)$, где $\beta(x)$ - б.м.ф.

Рассмотрим:

$$f(x) \cdot g(x) = (a + \alpha(x))(b + \beta(x))$$

$$= ab + \underbrace{a \cdot \beta(x) + b\alpha(x) + \alpha(x) \cdot \beta(x)}_{\gamma(x)}$$

$$= ab + \gamma(x)$$

По следствию из теоремы "О произведении бесконечно малой функций на локально ограниченную":

$$a\cdot eta(x)=$$
 б.м.ф. при $x\to 0$ $b\cdot lpha(x)=$ б.м.ф. при $x\to 0$ $lpha(x)\cdot eta(x)=$ б.м.ф. при $x\to 0$

По теореме о сумме конечного числа с б.м.ф.:

$$\gamma(x) =$$
 б.м.ф. при $x \to 0$

Далее расписываем предел:

$$\lim_{x \to x_0} f(x) \cdot g(x) = \lim_{x \to x_0} (f(x) \cdot g(x))$$

$$= \lim_{x \to x_0} ab + \lim_{x \to x_0} \gamma(x)$$

$$= ab + 0 = ab$$

$$\lim_{x \to x_0} f(x) \cdot g(x) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$$

Вопрос 8. Сформулируйте и докажите теорему о пределе сложной функции.

Ссылки. Используются определения №16.

Теорема (О пределе сложной функции). Если функция y=f(x) имеет предел в точке x_0 равный a, то функция $\varphi(y)$ имеет предел в точке a, равный C, тода сложная функция $\varphi(f(x))$ имеет предел в точке x_0 , равный C.

$$y = f(x)$$

$$\lim_{x \to x_0} f(x) = a$$

$$\lim_{y \to a} \varphi(y) = C$$

$$\implies \lim_{x \to x_0} \varphi(f(x)) = C$$

Доказательство.

$$\lim_{y \to a} \varphi(y) \iff (\forall \varepsilon > 0)(\exists \delta_1 > 0)(\forall y \in \mathring{S}(a, \delta_1) \implies |\varphi(y) - a| < \varepsilon) \quad (1)$$

Выберем в качестве ε в пределе найденное δ_1 :

$$\lim_{x \to x_0} f(x) = a$$

$$\iff (\forall \delta_1 > 0)(\exists \delta_2 > 0)(\forall x : 0 < |x - x_0| < \delta_2 \implies |f(x) - a| < \delta_1)$$
(2)

В итоге:

$$(\forall \varepsilon > 0)(\exists \delta_2 > 0)(\forall x : 0 < |x - x_0| < \delta_2 \implies |\varphi(f(x)) - c| < \varepsilon)$$

Что равносильно:

$$\lim_{x \to x_0} \varphi(f(x)) = c$$

Вопрос 9. Докажите, что:

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 0$$

Ссылки. Используется теорема о промежуточной функции.

Доказательство. Пусть $0 < x < \frac{\pi}{2}$. Рассмотрим окружность радиуса R с центром в начале координат, пересекающую ось абцисс в точке A, и пусть угол $\angle AOB$ равен x. Пусть, далее, CA — перпендикуляр к этой оси, C точка пересечения с этим перпендикуляром продолжения отрезка OB за точку B. Тогда

$$\begin{split} S_{\triangle AOB} &< S_{secOAB} < S_{\triangle OAC} \\ \frac{1}{2}R^2\sin(x) &< \frac{1}{2}R^2x < \frac{1}{2}R^2\operatorname{tg}(x) \\ \sin(x) &< x < \operatorname{tg}(x) \\ 1 &< \frac{x}{\sin(x)} < \frac{1}{\cos(x)} \\ 1 &> \frac{x}{\sin(x)} > \cos(x), \text{ при } x \in \left(0, \frac{\pi}{2}\right) \end{split}$$

Рассмотрим $x \in \left(-\frac{\pi}{2}, 0\right)$. Сделаем замену $\beta = -x$, таким образом $\beta \in \left(0, \frac{\pi}{2}\right)$, а значит, справедливо следующее неравенство:

$$1 > \frac{\sin(\beta)}{\beta} > \cos(\beta)$$

Вернёмся к замене $\beta = -x$:

$$1>\frac{\sin(-x)}{-x}>\cos(-x)$$

$$1>\frac{-\sin(x)}{-x}>\cos(x),\ \text{при }x\in\left(0,\frac{\pi}{2}\right)$$

Таким образом, полученное неравенство справедливо для $x \in \left(-\frac{\pi}{2},0\right) \cup$

$$\left(0,\frac{\pi}{2}\right)$$
. Перейдём к пределу при $x\to 0$:
$$\lim_{x\to 0}\cos(x)=1\\ \lim_{x\to 0}1=1 \qquad \Rightarrow \lim_{x\to 0}\frac{\sin(x)}{x}=1$$
 по теореме "О пределе промежуточной функции".

Вопрос 10. Сформулируйте и докажите теорему о связи функции, ее предела и бесконечно малой.

Ссылки. Используются определения №18, №21.

Теорема (О связи функции, её предела и бесконечно малой). Функция y=f(x) имеет конечный предел в точке x_0 тогда и только тогда, когда её можно представить в виде суммы предела и некоторой бесконечно малой функции.

$$\lim_{x \to x_0} f(x) = a \iff f(x) = a + \alpha(x),$$
где $\alpha(x) -$ б.м.ф при $x \to x_0$

Необходимость. Дано:

$$\lim_{x \to x_0} f(x) = a$$

Доказать:

$$f(x)=a+lpha(x),$$
где $lpha(x)$ - б.м.ф. при $x o x_0$

Распишем:

$$\lim_{x \to x_0} f(x) = a \iff (\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies |f(x) - a| < \varepsilon)$$

Обозначим $f(x) - a = \alpha(x)$, тогда:

$$\lim_{x\to x_0} f(x) = a \iff (\forall \varepsilon > 0) (\exists \delta > 0) (\forall x \in \mathring{S}(x_0, \delta) \implies |\alpha(x)| < \varepsilon)$$

По определению бесконечно малой функции $\alpha(x)$ - бесконечно малая функция. Из обозначения следует, что:

$$f(x) = a + \alpha(x)$$

где $\alpha(x)$ - бесконечно малая функция при $x \to x_0$.

Достаточность. Дано:

$$f(x) = a + \alpha(x)$$
, где $\alpha(x)$ - б.м.ф. при $x \to x_0$

Доказать:

$$\lim_{x \to x_0} f(x) = a$$

По определению б.м.ф.:

$$\lim_{x \to x_0} \alpha(x) = 0 \iff (\forall \varepsilon > 0) (\exists \delta > 0) (\mathring{S}(x_0, \delta) \implies |\alpha(x)| < \varepsilon)$$

С учётом введённого обозначения:

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\mathring{S}(x_0, \delta) \implies |f(x) - a| < \varepsilon) \iff \lim_{x \to x_0} f(x) = a$$

Вопрос 11. Сформулируйте и докажите теорему о произведении бесконечно малой функции на ограниченную.

Ссылки. Используются определения №20, №21.

Теорема (О произведении бесконечно малой функции на ограниченную). Произведение бесконечно малой функции на локальной ограниченную есть величина бесконечно малая.

Доказательство. Пусть $\alpha(x)$ - бесконечно малая функция при $x \to x_0$, а функция f(x) при $x \to x_0$ является локально ограниченной. Доказываем, что:

$$\alpha(x) \cdot f(x) = 0$$

Распишем:

$$\lim_{x \to x_0} \alpha(x) = 0$$

$$\iff (\forall \varepsilon_1 = \frac{\varepsilon}{M} > 0)(\exists \delta_1 > 0)(\forall x \in \mathring{S}(x_0, \delta_1) \implies |\alpha(x)| < \varepsilon_1 = \frac{\varepsilon}{M})$$

$$M \in \mathbb{R}, M > 0$$

$$\forall x \in \mathring{S}(x_0, \delta_2) \implies |f(x)| < M$$
(2)

Выберем $\delta = min\{\delta_1, \delta_2\}$, тогда (1) и (2) верны одновременно. В итоге получаем:

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies$$

$$|\alpha(x) \cdot f(x)| = |\alpha(x)| \cdot |f(x)| < \frac{\varepsilon}{M} \cdot M = \varepsilon)$$

Тогда по определению бесконечно малой функции:

$$\lim_{x \to x_0} \alpha(x) \cdot f(x) = 0$$

Вопрос 12. Сформулируйте и докажите теорему о связи между бесконечно большой и бесконечно малой.

Ссылки. Используются определения №18, №21, №22.

Теорема (О связи между бесконечно большой и бесконечно малой). Если $\alpha(x)$ - бесконечно большая функция при $x \to x_0$, то $\frac{1}{\alpha(x)}$ - бесконечно малая функция при $x \to x_0$.

Доказательство. По условию $\alpha(x)$ - б.б.ф при $x \to x_0$. По определению:

$$\lim_{x \to x_0} \alpha(x) = \infty \iff$$

$$(\forall M > 0)(\exists \delta(M) > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies |f(x)| > M)$$

Рассмотрим неравенство:

$$|\alpha(x)| > M, \forall x \in \mathring{S}(x_0, \delta)$$

Обозначим $\varepsilon = \frac{1}{M}$.

$$|\alpha(x) > M| \implies \frac{1}{|\alpha(x)|} < \frac{1}{M}$$

$$\implies \left| \frac{1}{\alpha(x)} \right| < \frac{1}{M} < \varepsilon$$

В итоге получаем:

$$\forall x \in \mathring{s}(x_0, \delta) \implies \left| \frac{1}{\alpha(x)} \right| < \varepsilon$$

Что по определению является бесконечно малой функцией.

Вопрос 13. Сформулируйте и докажите теорему о замене бесконечно малой на эквивалентную под знаком предела.

Ссылки. Используются определения №21, №24.

Теорема (О замене бесконечно малой на эквивалентную под знаком предела). Предел **отношения** двух б.м.ф. не изменится, если заменить эти функции на эквивалентные.

$$\left.\begin{array}{l} \alpha(x),\beta(x)\text{ - б.м.ф. при }x\to x_0\\ \alpha(x)\sim\alpha_0(x)\\ \beta(x)\sim\beta_0(x) \end{array}\right\} \implies \lim_{x\to x_0}\frac{\alpha(x)}{\beta(x)}=\lim_{x\to x_0}\frac{\alpha_0(x)}{\beta_0(x)}$$

Доказательство. Рассмотрим предел:

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to x_0} \frac{\alpha(x) \cdot \alpha_0(x) \cdot \beta_0(x)}{\beta(x) \cdot \alpha_0(x) \cdot \beta_0(x)}$$

$$= \lim_{x \to x_0} \frac{\alpha(x)}{\alpha_0(x)} \cdot \lim_{x \to x_0} \frac{\beta_0(x)}{\beta(x)} \cdot \lim_{x \to x_0} \frac{\alpha_0(x)}{\beta_0(x)}$$

$$= 1 \cdot 1 \cdot \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)}$$

Вопрос 14. Сформулируйте и докажите теорему о необходимом и достаточном условии эквивалентности бесконечно малых.

Ссылки. Используются определения №21, №23, №24.

Теорема (Необходимое и достаточное условие эквивалентности бесконечно малых). Две функции $\alpha(x)$ и $\beta(x)$ эквивалентны тогда и только тогда, когда их разность имеет более высокий порядок малости по сравнению с каждой из них.

$$\alpha(x),\beta(x)$$
 - б.м.ф при $x\to x_0$
$$\alpha(x)\sim\beta(x)\iff \alpha(x)-\beta(x)=o(\alpha(x)) \\ \alpha(x)-\beta(x)=o(\beta(x))$$
при $x\to x_0$

Необходимость. Дано:

$$\alpha(x), \beta(x)$$
 - б.м.ф при $x \to x_0$

Доказать:

$$\alpha(x) - \beta(x) = o(\alpha(x))$$
, при $x \to x_0$

Доказательство:

Рассмотрим отношение разности функций к $\alpha(x)$:

$$\lim_{x \to x_0} \frac{\alpha(x) - \beta(x)}{\alpha(x)} = \lim_{x \to x_0} \left(1 - \frac{\beta(x)}{\alpha(x)} \right)$$
$$= 1 - \lim_{x \to x_0} \frac{\beta(x)}{\alpha(x)} = 1 - \frac{1}{1} = 0$$

По определению получаем, что разность б.м.ф. большего порядка, чем $\alpha(x)$.

Достаточность. Дано:

$$\alpha(x) - \beta(x) = o(\beta(x))$$
, при $x \to x_0$

Доказать:

$$\alpha(x) \sim \beta(x)$$
, при $x \to x_0$

Доказательство:

Рассмотрим отношение разности функций к $\alpha(x)$:

$$\lim_{x \to x_0} \frac{\alpha(x) - \beta(x)}{\beta(x)} = \lim_{x \to x_0} \left(\frac{\alpha(x)}{\beta(x)} - 1 \right) = \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} - 1 = 0$$

$$\implies \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 1 \implies \alpha(x) \sim \beta(x), \text{ при } x \to x_0$$

Вопрос 15. Сформулируйте и докажите теорему о сумме конечного числа бесконечно малых разных порядков.

Ссылки. Используются определения №21, №24.

Теорема (О сумме конечного числа бесконечно малых разных порядков). Сумма бесконечно малых функций разных порядком малости эквивалентно слагаемому низшего порядка малости.

$$\left. \begin{array}{l} \alpha(x),\beta(x) \text{ - б.м.ф при } x \to x_0 \\ \alpha(x) = o(\beta(x)), \text{ при } x \to x_0 \end{array} \right\} \implies \alpha(x) + \beta(x) \sim \beta(x), \text{ при } x \to x_0$$

Доказательство. Рассмотрим предел:

$$\lim_{x \to x_0} \frac{\alpha(x) + \beta(x)}{\beta(x)} = \lim_{x \to x_0} \left(\frac{\alpha(x)}{\beta(x)} + 1 \right)$$
$$= \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} + 1$$
$$= 0 + 1 = 1$$

Вопрос 16. Сформулируйте и докажите теорему о непрерывности суммы, произведения и частного непрерывных функций.

Ссылки. Используются определения №25.

Теорема (О непрерывности суммы, произведения и частного непрерывных функций). Если функции f(x) и g(x) непрерывны в точке x_0 , то функции (последняя с учётом $g(x) \neq 0$):

$$f(x) + g(x)$$
$$f(x) \cdot g(x)$$
$$\frac{f(x)}{g(x)}$$

также непрерывны в точке x_0 .

Доказательство. По определению непрерывной функции:

$$\lim_{x \to x_0} f(x) = f(x_0)$$
$$\lim_{x \to x_0} g(x) = g(x_0)$$

Рассмотрим:

$$\lim_{x \to x_0} (f(x) + g(x)) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x) = f(x_0) + g(x_0)$$

$$\implies f(x) + g(x) \in C(x_0)$$

$$\lim_{x \to x_0} f(x) \cdot g(x) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x) = f(x_0) \cdot g(x_0)$$

$$\implies f(x) \cdot g(x) \in C(x_0)$$

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} = \frac{f(x_0)}{g(x_0)}$$

$$\implies \frac{f(x)}{g(x)} \in C(x_0)$$

Вопрос 17. Сформулируйте и докажите теорему о непрерывности сложной функции.

Ссылки. Используются определения N26, теорема "О пределе сложной функции".

Теорема (О непрерывности сложной функции). Если функция y = f(x) непрерывна в точке x_0 , а функция g(y) непрерывна в соответствующей точке $y_0 = f(x_0)$, то сложная функция g(f(x)) непрерывна в точке x_0 .

Доказательство. По условию функция y = f(x) непрерывна в точке x_0 , а функция g(y) непрерывна в точке $y_0 = f(x_0)$. Тогда по определению:

$$\exists \lim_{x \to x_0} f(x) = f(x_0) = b$$
$$\exists \lim_{x \to x_0} g(y) = g(y_0)$$

Тогда:

$$\lim_{x \to x_0} g(f(x)) = \lim_{y \to y_0} g(y) = g(y_0) = g(f(x_0))$$

Следовательно, по определению функция g(f(x)) непрерывна в точке x=a. Теорема доказана. \square

Вопрос 18. Сформулируйте и докажите теорему о сохранении знака непрерывной функции в окрестности точки.

Ссылки. Используются определения \mathbb{N}^2 5, теорема "О сохранении функции знака своего предела".

Теорема (О сохранении знака непрерывной функции в окрестности точки). Если функция $f(x) \in C(x_0)$ и $f(x_0) \neq 0$, то $\exists S(x_0)$, в которой знак значения функции совпадает со знаком $f(x_0)$.

Доказательство. Т.к. функция $y = f(x) \in C(x_0)$, то $\lim_{x \to x_0} f(x) = f(x_0)$. По теореме о сохранении функции знака своего предела $\Longrightarrow \exists S(x_0)$, в которой знак значений функции совпадает со знаком $f(x_0)$.

Вопрос 19. Дайте определение функции, непрерывной в точке. Сформулируйте теорему о непрерывности элементарных функций. Докажите непрерывность функций $y = \sin x$, $y = \cos x$

Ссылки. Используются определения №25, теорема "Об произведении ограниченной функции на бесконечно малую".

Теорема (О непрерывности элементарных функций). Основные элементарные функции непрерывны в области определения.

Доказательство (Для y = sin(x)).

$$y=\sin(x), D_y=\mathbb{R}$$
 $x_0=0, \quad \lim_{x\to x_0}\sin(x)=\sin(0) \implies y=\sin(x)\in C(0)$ $\forall x\in D_y=\mathbb{R}, \quad \Delta x$ — приращение функции
$$x=x_0+\Delta x, \quad x\in D_y=\mathbb{R}$$
 $\Delta y=y(x)-y(x_0)=y(x_0+\Delta x)-y(x_0)$
$$=\sin(x_0+\Delta x)-\sin(x_0)=2\sin\left(\frac{x_0+\Delta x-x_0}{2}\right)\cos\left(\frac{x_0+\Delta x+x_0}{2}\right)$$

$$=2\sin\left(\frac{\Delta x}{2}\right)\cos\left(x_0+\frac{\Delta x}{2}\right)$$

$$\lim_{\Delta x\to 0}\Delta y=\lim_{\Delta x\to 0}2\sin\left(\frac{\Delta x}{2}\right)\cos\left(x_0+\frac{\Delta x}{2}\right)=0$$
 — по т. об произв. огр. на б.м.ф.

Т.к. $\lim_{\Delta x \to 0} \Delta y = 0$ по опр. непр. функции $\Longrightarrow y = \sin(x)$ непрерывна в точке x_0 . Т.к. x_0 – произвольная точка из области определения, то $y = \sin(x)$ непрерывна на всей области произведения.

Доказательство (Для y = cos(x)). Аналогично для cos(x).

Вопрос 20. Сформулируйте свойства функций, непрерывных на отрезке.

Ссылки. Используются определения №30.

Теорема (Первая теорема Вейерштрасса). Если функция y=f(x) непрерывна на отрезке [a,b], то она на этом отрезке ограниченна.

$$f(x) \in C[a,b] \implies \exists M \in \mathbb{R}, M > 0, \forall x \in [a,b] : |f(x)| \le M$$

Теорема (Вторая теорема Вейерштрасса). Если функция $y = f(x) \in C[a,b]$, то она достигает на этом отрезке своего наибольшего и наименьшего значения.

$$f(x) \in C[a, b]$$

$$\Longrightarrow$$

$$\exists x_*, x^* \in [a, b] \implies m = f(x_*) \le f(x) \le f(x^*) = M$$

Теорема (Первая теорема Больцано-Коши). Если функция $y=f(x)\in C[a,b]$, и на концах отрезка принимает значения разных знаков, то $\exists c\in (a,b): f(c)=0.$

$$f(x) \in S[a,b] \land f(a) \cdot f(b) < 0 \implies \exists c \in (a,b) : f(c) = 0$$

Теорема (Вторая теорема Больцано-Коши). Если функция $y = f(x) \in C[a,b]$ и принимает на границах отрезка различные значения $f(a) = A \neq f(b) = B$, то $\forall C \in [a,b] \quad \exists c \in (a,b)$, в которой f(c) = C.

$$f(x) \in C[a,b] \land f(a) = A \neq f(b) = B$$

$$\Longrightarrow$$

$$\exists C \in (A,B) \implies \exists c \in (a,b) : f(c) = C$$

Теорема (Теорема о непрерывности обратной функции). Пусть $y=f(x)\in C(a,b)$ и строго монотонна на этом интервале. Тогда в соответствующем (a,b) интервале значений функции существует обратная функция $x=f^{-1}(y)$, которая так же строго монотонна и непрерывна.

Вопрос 21. Сформулируйте определение точки разрыва функции и дайте классификацию точек разрыва. На каждый случай приведите примеры.

Ссылки. Используются определения №31.

Ответ. Классификация точек разрыва:

- Первого рода
 - Устранимого разрыва

$$\lim_{x \to x_0 +} = \lim_{x \to x_0 -} \neq f(x_0)$$

– Неустранимого разрыва

$$\lim_{x o x_0+}
eq \lim_{x o x_0-}$$
 или $ot
ot = f(x_0)$

• Второго рода

$$\exists \lim_{x \to x_0 \pm}$$

Примеры точек разрыва:

• Устранимого разрыва (x = 0):

$$y = \frac{\sin(x)}{x}$$

• Неустранимого разрыва (x = 0):

$$\begin{cases} y = x, x > 0 \\ y = x - 1, x < 0 \end{cases}$$

• Второго рода (x=0):

$$y = \frac{1}{x}$$

Вопрос 22. Сформулируйте и докажите необходимое и достаточное условие существования наклонной асимптоты.

Ссылки. Используются определения №21, №45.

Теорема (Необходимое и достаточное условие существования наклонной асимптоты). График функции y=f(x) имеет при $x\to\pm\infty$ наклонную ассимптоту тогда и только тогда, когда существуют два конечных предела:

$$\begin{cases} \lim_{x \to \pm \infty} \frac{f(x)}{x} \\ \lim_{x \to \pm \infty} (f(x) - kx) \end{cases}$$
 (*)

Необходимость. Дано y = kx + b наклонная ассимптота.

Доказать ∃ пределов.

По условию y=kx+b — наклонная ассимптота \implies по определению $f(x)=kx+b+\alpha(x),$ где $\alpha(x)$ — б.м.ф. при $x\to\pm\infty$. Рассмотрим:

$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{kx + b + \alpha(x)}{x} =$$

$$= \lim_{x \to \pm \infty} (k + b \cdot \frac{1}{x} + \frac{1}{x}\alpha(x))$$

$$= k + b \lim_{x \to \pm \infty} \frac{1}{x} + \lim_{x \to \pm \infty} \frac{1}{x}\alpha(x)$$

$$= k + b \cdot 0 + 0 = k$$

Рассмотрим выражение:

$$f(x) - kx = kx + b + \alpha(x) - kx = b + \alpha(x)$$
$$\lim_{x \to \pm \infty} (f(x) - kx) = \lim_{x \to \pm \infty} (b + \alpha(x)) = b$$

Достаточность. Дано \exists конечные пределы (*). Доказать y = kx + b – наклонная ассимптота.

 \exists конечный предел $\lim_{x\to\pm\infty}(f(x)-kx)=b$ По теореме о связи функции, её предела и б.м.ф. \Longrightarrow

$$f(x) - kx = b + \alpha(x)$$

при $x \to \pm \infty$. Выразим f(x):

$$f(x) = kx + b + \alpha(x)$$

где $\alpha(x)$ б.м.ф при $x\to\pm\infty$. По определению $\implies y=kx+b-$ наклонная ассимптота к графику функции y=f(x)

Вопрос 23. Сформулируйте и докажите необходимое и достаточное условие дифференцируемости функции в точке.

Ссылки. Используются определения №32, №35, теорема "О связи функции, её предела и некоторой бесконечно малой функции".

Теорема (Необходимое и достаточное условие дифференцируемости функции в точке). Функция y=f(x) в точке x_0 тогда и только тогда, когда она имеет в этой точке конечную производную.

Необходимость. Дано: y = f(x) – дифференцируема в точке x_0 .

Доказать: $\exists y'(x)$ – конечное число

Т.к. y=f(x), то $\Delta y=A\cdot\Delta x+\alpha(\Delta x)\cdot\Delta x$, где $\alpha(\Delta x)$ – бесконечно малая функция при $\Delta x \to 0$.

Вычислим предел:

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{A \Delta x + \alpha(\Delta x) \cdot \Delta x}{\Delta x} = \lim_{\Delta x \to 0} \left(A + \alpha(\Delta x) \right) =$$

$$A + \lim_{\Delta x \to 0} \alpha(\Delta x) = A + 0 = A$$

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = y'(x_0) - \text{по определению}$$

$$\implies y'(x_0) = A = const \implies \exists y'(x_0) - \text{конечное число.}$$

Достаточность. Дано: $\exists y'(x_0)$ – конечное число.

Доказать: y = f(x) – дифференцируема в этой точке.

Доказательство:

Т.к. $\exists y'(x)$, то по определению производной

$$y'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

По теореме "О связи функции, её предела и некоторой бесконечно малой функции":

$$\frac{\Delta y}{\Delta x} = y'(x_0) + \alpha(\Delta x)$$

где $\alpha(x)$ – бесконечно малая функция при $\Delta x \to 0$.

$$\Delta y = y'(x_0)\Delta x + \alpha(\Delta x)\Delta x$$

 $\Delta y=y'(x_0)\Delta x+\alpha(\Delta x)\Delta x$ где $A=y'(x_0)\implies y=f(x)$ дифференцируема в данной точке.

Вопрос 24. Сформулируйте и докажите теорему о связи дифференцируемости и непрерывности функции.

Ссылки. Используются определения №26, №35.

Теорема (О связи дифференцируемости и непрерывности функции). Если функция дифференцируема в точке x_0 , то она в этой точке непрерывна.

Доказательство. Т.к. y=f(x) дифференцируема в точке x_0 , то $\Delta y=y'(x_0)\Delta x+\alpha(\Delta x)\Delta x$, где $y'(x_0)=const,\ \alpha(\Delta x)$ – бесконечно малая функция при $\Delta x\to 0$. Вычислим:

$$\lim_{\Delta x \to 0} \Delta y = \lim_{\Delta x \to 0} (y'(x)\Delta x + \alpha(\Delta x)\Delta x)$$

$$= y'(x_0) \lim_{\Delta x \to 0} \Delta x + \lim_{\Delta x \to 0} \alpha(\Delta x) \lim_{\Delta x \to 0} \Delta x$$

$$= y'(x_0) \cdot 0 + 0 \cdot 0 = 0$$

По определению непрерывной функции y=f(x) является непрерывной в точке x_0 .

Вопрос 25. Сформулируйте и докажите теорему о производной произведения двух дифференцируемых функций.

Ссылки. Используются определения №32, №35, теорема "О связи дифференцируемости и непрерывности функции".

Теорема (О производной произведения двух дифференцируемых функций). Если функции u(x) и v(x) дифференцируемы в точке x_0 , то функция $u(x) \cdot v(x)$ также дифференцируема в точке x_0 :

$$(u(x) \cdot v(x))' = u'(x) \cdot v(x) + u(x) \cdot v'(x)$$

Доказательство. Пусть y = uv, тогда:

$$\Delta y = y(x + \Delta x) - y(x) = u(x + \Delta x)v(x + \Delta x) - u(x)v(x) - y(x) =$$

$$= (\Delta u + u(x))(\Delta v + v(x)) - u(x)v(x) - y(x) = \Delta u \Delta v + \Delta u v(x) +$$

$$+ \Delta v u(x) + y(x) - y(x) =$$

$$\Delta u \Delta v + \Delta u v(x) + \Delta v u(x).$$

Вычислим предел:

$$y'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta u \Delta v + \Delta u v(x) + \Delta v u(x)}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \left(\Delta u \frac{\Delta v}{\Delta x} + v(x) \frac{\Delta u}{\Delta x} + u(x) \frac{\Delta v}{\Delta x} \right) =$$

$$= \lim_{\Delta x \to 0} \Delta u \lim_{\Delta x \to 0} \frac{\Delta v}{\Delta x} + v(x) \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} + u(x) \lim_{\Delta x \to 0} \frac{\Delta v}{\Delta x} =$$

$$= v(x)u'(x) + v'(x)u(x) + v'(x) \cdot 0 =$$

$$= \left[u'(x)v(x) + u(x)v'(x) \right]$$

Т.к. функции $u=u(x),\ v=v(x)$ дифференцируемы в точке x, то по теореме о связи дифференцируемости и непрерывности функции $\Longrightarrow u=u(x)$ и v=v(x) непрерывны в точке $x\Longrightarrow$ по определению непрерывности функции:

$$\begin{cases} \lim_{\Delta x \to 0} \Delta u = 0 \\ \lim_{\Delta x \to 0} \Delta v = 0 \end{cases}$$

Вопрос 26. Сформулируйте и докажите теорему о производной частного двух дифференцируемых функций.

Ссылки. Используются определения №32, №35.

Теорема (О производной частного двух дифференцируемых функций). Если функции u(x) и v(x) дифференцируемы в точке x_0 и $v(x_0) \neq 0$, то функция $\frac{u(x)}{v(x)}$ также дифференцируема в точке x_0 :

$$\left(\frac{u(x)}{v(x)}\right)' = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{v^2(x)}$$

Доказательство. Пусть $y = \frac{u}{v}$, тогда:

$$\begin{split} \Delta y &= y(x + \Delta x) - y(x) = \\ &= \frac{u(x + \Delta x)}{v(x + \Delta x)} - \frac{u(x)}{v(x)} = \\ &= \frac{u(x + \Delta x)v(x) - u(x)v(x + \Delta x)}{v(x + \Delta x)v(x)} = \\ &= \frac{(u(x) + \Delta u)v(x) - u(x)(v(x) + \Delta v)}{(\Delta v + v(x))v(x)} = \\ &= \frac{u(x) + \Delta uv(x) - u(x)v(x) - u(x)\Delta v}{v^2(x) + v(x)\Delta v} = \\ &= \frac{\Delta uv(x) - \Delta vu(x)}{v^2(x) + v(x)\Delta v} \end{split}$$

Вычислим предел:

$$y'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \frac{\frac{\Delta uv(x) - \Delta vu(x)}{v^2(x) + v(x)\Delta v}}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \frac{\frac{v(x)\frac{\Delta u}{\Delta x} - v(x_0)\frac{\Delta v}{\Delta x}}{v^2(x) + v(x)\Delta v} =$$

$$= \frac{v(x)\lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} - u(x)\lim_{\Delta x \to 0} \frac{\Delta v}{\Delta x}}{v^2(x) - v(x)\lim_{\Delta x \to 0} \Delta v} =$$

$$= \frac{u'(x)v(x) - u(x)v'(x)}{v^2(x)}$$

Вопрос 27. Сформулируйте и докажите теорему о производной сложной функции.

Ссылки. Используются определения №26 №32, №35.

Теорема (О производной сложной функции). Пусть функция u=g(x) дифференцируема в точке x=a, а функция y=f(u) дифференцируема в соответствующей точке b=g(a). Тогда сложная функция F(x)=f(g(x)) дифференцируема в точке x=a.

$$F'(x)|_{x=a} = (f(g(x))')_{x=a} = f'_u(b) \cdot g'_x(a)$$

Доказательство. Т.к. функция u=g(x) дифференцируема в точке x=a, то по определению \Longrightarrow

$$\Delta u = g'(a) \cdot \Delta x + \alpha(\Delta x) \cdot \Delta \tag{1}$$

где $\alpha(\Delta x)$ – б.м.ф при $\Delta x \to 0$. Т.к. функция y = f(x) дифференцируема в точке b, то по определению дифференцируемости \Longrightarrow

$$\Delta y = f'(b) \cdot \Delta u + \beta(\Delta u) \cdot \Delta u \tag{2}$$

где $\beta(\Delta x)$ – б.м.ф при $\Delta x \to 0$. Подставим (1) в (2). Тогда:

$$\Delta y = f'(b) \cdot (g'(a)\Delta x + \alpha(\Delta x)\Delta x) + \beta(\Delta u) (g'(a)\Delta x + \alpha(\Delta x)\Delta x) =$$

$$= f'(b) \cdot g'(a)\Delta x + \Delta x (f'(b)\alpha(\Delta x) + g'(a)\beta(\Delta u) + \beta(\Delta u)\alpha(\Delta x)) = \Delta F$$

Обозначим:

$$\gamma(\Delta x) = f'(b)\alpha(\Delta x) + g'(a)\beta(\Delta u) + \beta(\Delta u)\alpha(x)$$

В итоге получаем:

$$\Delta F = f'(b)g'(a)\Delta x + \gamma(\Delta x)\Delta x$$

 $f(b)\alpha(\Delta x)$ – б.м.ф при $\Delta x \to 0$ (как производная постоянной на б.м.ф.). Т.к. u=g(x) дифференцируема в точке x=a, то по теореме о связи дифференцируемости и непрерывности функции u=g(x) непрерывна в точке $x=a \Longrightarrow$ по определению непрерывности $\lim_{\Delta x \to 0} \Delta u = 0$ или при $\Delta x \to 0$, $\Delta u \to 0$. $g'(a)\beta(\Delta u)$ – б.м.ф при $\Delta x \to 0$ как производная на б.м.ф. $\beta(\Delta u)\alpha(\Delta x)$ – б.м.ф при $\Delta x \to 0$ (как производная двую б.м.ф). Следовательно, $\gamma(x)$ – б.м.ф при $x \to 0$ как сумма конечного числа б.м.ф.

Вычислим предел:

$$\lim_{\Delta x \to 0} \frac{\Delta F}{\Delta x} = \lim_{\Delta x \to 0} \left(f'(b) \cdot g'(a) + \gamma(\Delta x) \right) = f'(b) \cdot g'(a) + 0 = f'(b) \cdot g'(a).$$

Вопрос 28. Сформулируйте и докажите теорему о производной обратной функции.

Ссылки. Используются определения №26, №32.

Теорема (О производной обратной функции). Пусть функция y=f(x) в точке x=0 имеет конечную и отличную от нуля производную f'(a) и пусть для неё существует однозначная обратная функция x=g(y), непрерывная в соответствующей точке b=f(a). Тогда существует производная обратной функции и она равна:

$$g'(b) = \frac{1}{f'(a)}$$

Доказательство. Т.к. функция x=g(y) однозначно определена, то соответственно при $\Delta y \neq 0, \, \Delta x \neq 0$. Т.к. функция x=g(y) непрерывна в соответствующей точке b, то $\lim_{\Delta y \to 0} \Delta x = 0$ или $\Delta x \to 0$ при $\Delta y \to 0$.

$$g'(b) = \lim_{\Delta y \to 0} \frac{\Delta x}{\Delta y} = \lim_{\Delta y \to 0} \frac{1}{\frac{\Delta y}{\Delta x}} = \frac{1}{\lim_{\Delta y \to 0} \frac{\Delta y}{\Delta x}} = \frac{1}{\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}} = \frac{1}{f'(a)}$$

Вопрос 29. Сформулируйте и докажите свойство инвариантности формы записи дифференциала первого порядка.

Ссылки. Используются определения №36.

Теорема (Инвариантность формы записи дифференциала первого порядка). Форма записи первого дифференциала не зависит от того, является ли x независимой переменной или функцией другого аргумента.

Доказательство. Пусть $y=f(x),\, x=\varphi(t).$ Тогда можно задать сложную функцию:

$$F(t) = y = f(\varphi(t))$$

По определению дифференциала функции:

$$dy = F'(t)dt (1)$$

По теореме о производной сложной функции:

$$F'(t) = f'(x) \cdot \varphi'(t) \tag{2}$$

Подставим (2) в (1):

$$dy = f'(x)\varphi'(t)dt \tag{3}$$

По определению дифференциала функции $dx=\varphi'(t)dt$ (4). Подставим (4) в (3):

$$dy = f'(x)dx$$

Вопрос 30. Сформулируйте и докажите теорему Ферма.

Ссылки. Используются определения №32, №33, №34, №35, №39 №40, теорема "О существовании производной функции в точке".

Теорема (Теорема Ферма о нулях производной функции). Пусть функция y=f(x) определена на промежутке X и во внутренней точке C этого промежутка достигает наибольшего или наименьшего значения. Если в этой точке существует f'(c), то f'(c)=0.

Доказательство. Пусть функция y=f(x) в точке x=c принимает наибольшее значение на промежутке X. Тогда $\forall x \in X \implies f(x) \leq f(c)$. Дадим приращение Δx точке x=c. Тогда $f(c+\Delta x) \leq f(c)$. Пусть

$$\exists f'(c) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{y(c + \Delta x) - y(c)}{\Delta x}$$

Рассмоотрим два случая:

$$\begin{split} 1)\Delta x &> 0, \Delta x \to 0+, x \to c+ \\ f'_+(c) &= \lim_{\Delta x \to 0+} \frac{y(c+\Delta x) - y(c)}{\Delta x} = \left(\frac{-}{+}\right) \leq 0 \\ 2)\Delta x &< 0, \Delta x \to 0-, x \to c- \\ f'_-(c) &= \lim_{\Delta x \to 0-} \frac{y(c+\Delta x) - y(c)}{\Delta x} = \left(\frac{-}{-}\right) \geq 0 \end{split}$$

По теореме о существовании производной функции в точке:

$$f'_{+}(c) = -f'_{-}(c)$$

Это возможно только в том случае, когда оно равняется 0. Теорема доказана.

Вопрос 31. Сформулируйте и докажите теорему Ролля.

Ссылки. Используются определения №30, №35, №39, №40, теорема Ферма.

Теорема (Теорема Ролля). Пусть функция y = f(x):

- 1. Непрерывна на отрезке (a, b)
- 2. Дифференцируема на интервале (a,b)
- 3. f(a) = f(b)

Тогда $\exists c \in (a,b) : f'(c) = 0$

Доказательство. Т.к. функция y = f(x) непрерывна на отрезке (a, b), то по теореме Вейерштрасса она достигает на этом отрезке своего наибольшего и наименьшего значения. Возможны два случая:

- 1. Наибольше и наименьшее значение достигаются на границе, т.е. в точке a и в точке b. Это означает, что m=M, где m наименьшее значение, а M наибольшее. Из этого следует, что функция y=f(x)=const на (a,b). Соответственно $\forall x\in (a,b), f'(x)=0$
- 2. Когда наибольшее или наименьшее значение достигаются во внутренней точке (a,b). Тогда для функции y=f(x) справедлива теорема Ферма, согласно которой $\exists c \in (a,b), f'(c)=0$.

Вопрос 32. Сформулируйте и докажите теорему Лагранжа.

Ссылки. Используются определения №30, №35, теорема Ролля, "Необходимое и достаточное условие дифференцируемости функции".

Теорема (Теорема Лагранжа). Пусть функция y = f(x):

- 1. Непрерывна на отрезке [a, b]
- 2. Дифференцируема на интервале (a,b)

Тогда $\exists c \in (a, b)$, в которой выполняется равенство:

$$f(b) - f(a) = f'(c)(b - a)$$

Доказательство. Рассмотрим вспомогательную функция $F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a} \cdot (x - a)$. F(x) непрерывна на отрезке [a, b] как сумма непрерывных функций. Существует конечная проивзодная функции F(x):

$$F'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$$

следовательно по необходимому и достаточному условию дифференцируемости будет верно F(x) – дифференцируема на (a,b). Покажем, что F(a) = F(b):

$$F(a) = f(a) - f(a) - \frac{f(b) - f(a)}{b - a}(a - a) = 0$$

$$F(b) = f(b) - f(a) - \frac{f(b) - f(a)}{b - a}(b - a)$$

$$= f(b) - f(b) + f(a) - f(a) = 0$$

Значит функция F(x) удовлетворяет условиям теоремы Ролля. Тогда по теореме Ролля $\exists c \in (a,b), F'(c) = 0.$

$$F'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$$

$$F'(c) = f'(c) - \frac{f(b) - f(a)}{b - a} = 0$$

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

$$f(b) - f(a) = f'(c)(b - a)$$

Вопрос 33. Сформулируйте и докажите теорему Коши.

Ссылки. Используются определения №30, №35, теорема Ролля

Теорема (Теорема Коши). Пусть функции f(x) и $\varphi(x)$ удовлетворяют условиям:

- 1. Непрерывны на отрезке [a, b]
- 2. Дифференцируемы на интервале (a, b)
- 3. $\forall x \in (a, b) f'(x) \neq 0$

Тогда $\exists c \in (a,b)$, такое что:

$$\frac{f(b) - f(a)}{\varphi(b) - \varphi(a)} = \frac{f'(c)}{\varphi'(c)}$$

Доказательство. Рассмотрим вспомогательную функцию:

$$F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{\varphi(a) - \varphi(b)} (\varphi(x) - \varphi(a))$$

Докажем применимость Теоремы Ролля:

- 1. F(x) непрервына на [a,b] как линейная комбинация непрерывных функций.
- 2. F(x) дифференцируема на [a,b] как линейная комбинация дифференцируемых функций.
- 3. F(a) = F(b):

$$F(a) = f(a) - f(a) - \frac{f(b) - f(a)}{\varphi(b) - \varphi(a)} (\varphi(a) - \varphi(a)) = 0$$

$$F(b) = f(b) - f(a) - \frac{f(b) - f(a)}{\varphi(b) - \varphi(a)} (\varphi(b) - \varphi(a)) = 0$$

Значит, функция F(x) удовлетворяет условию теоремы Ролля, $\Longrightarrow \exists c \in (a,b): F'(c) = 0.$ Вычислим:

$$F'(x) = f'(x) - \frac{f(b) - f(a)}{\varphi(b) - \varphi(a)} \varphi'(x)$$

$$F'(c) = f'(c) - \frac{f(b) - f(a)}{\varphi(b) - \varphi(a)} \varphi'(c) = 0$$

$$\frac{f(b) - f(a)}{\varphi(b) - \varphi(a)} \varphi'(c) = f'(c) \quad \boxed{\frac{f(b) - f(a)}{\varphi(b) - \varphi(a)} = \frac{f'(c)}{\varphi'(c)}}$$

Вопрос 34. Сформулируйте и докажите теорему Лопиталя-Бернулли для предела отношения двух бесконечно малых функций.

Ссылки. Используются определения №21, №35, теорема "О связи дифференцируемости и непрерывности", теорема Коши.

Теорема (Теорема Лопиталя-Бернулли). Пусть f(x) и $\varphi(x)$ удовлетворяют условиям:

- Определены и дифференцируемы в $\mathring{S}(x_0)$
- $\lim_{x\to x_0} f(x) = 0$, $\lim_{x\to x_0} \varphi(x) = 0$
- $\forall x \in \mathring{S}(x_0) \quad \varphi'(x) \neq 0$
- $\exists \lim_{x \to x_0} \frac{f'(x)}{\varphi'(x)} = A$

Тогда $\exists \lim_{x \to x_0} \frac{f(x)}{\varphi(x)} = \lim_{x \to x_0} \frac{f'(x)}{\varphi'(x)} = A.$

Доказательство. Доопределим функции f(x) и $\varphi(x)$ в точке x_0 нулём:

$$f(x_0) = 0 \quad \varphi(x_0) = 0$$

По условию:

$$\lim_{x \to x_0} f(x) = 0 = f(x_0) \qquad \qquad \lim_{x \to x_0} \varphi(x) = 0 = \varphi(x_0)$$

f(x) и $\varphi(x)$ непрерывны в точке x_0 .

По условию функция f(x) и $\varphi(x)$ дифференцируемы в точке $\mathring{S}(x_0) \Longrightarrow$ по теореме о связи дифференцируемости и непрерывности $\Longrightarrow f(x)$ и $\varphi(x)$ непрерывны в $\mathring{s}(x_0)$. Таким образом f(x) и $\varphi(x)$ непрерывны в $S(x_0)$.

Функции f(x) и $\varphi(x)$ удовлетворяют условию т.Коши на $[x_0,x]$. Тогда по теореме Коши \Longrightarrow

$$\exists c \in [x_0, x] : \frac{f(x) - f(x_0)}{\varphi(x) - \varphi(x_0)} = \frac{f'(c)}{\varphi'(c)} \tag{*}$$

Т.к. $f(x_0) = 0$ и $\varphi(x_0) = 0 \implies$

(*)
$$\frac{f(x)}{\varphi(x)} = \frac{f'(c)}{\varphi(c)}$$

Т.к. $\exists \lim_{x \to x_0} \frac{f'(x)}{\varphi'(x)} = A \implies$ правая часть (*):

$$\lim_{c \to x_0} \frac{f'(c)}{\varphi'(c)} = A$$

Левая часть (*):

$$\lim_{x \to x_0} \frac{f(x)}{\varphi(x)} = \lim_{x \to x_0} \frac{f'(c)}{\varphi'(c)} = A$$

Получаем:

$$\lim_{x \to x_0} \frac{f(x)}{\varphi(x)} = \lim_{x \to x_0} \frac{f'(x)}{\varphi'(x)} = A$$

2 ТЕОРИЯ

Вопрос 35. Сравните рост показательной, степенной и логарифмической функций на бесконечности.

Ссылки. Используются определения №22.

Ответ. Пусть:

$$f(x) = x^n$$
$$g(x) = a^x$$
$$h(x) = \ln x$$

Найдём предел при стремлении к бесконечности:

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{x^n}{a^x} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to +\infty} \frac{n \cdot x^{n-1}}{a^x \ln a}$$

$$= \left(\frac{\infty}{\infty}\right) = \dots = \lim_{x \to +\infty} \frac{n(n-1)(n-2)\dots \cdot 1}{a^x(\ln a)^n} =$$

$$= \frac{n!}{\ln^n a} \lim_{x \to +\infty} \frac{1}{a^x} = \frac{n!}{\ln^n a} = 0.$$

Значит a^x растёт быстрее, чем x^n при $x \to \infty$ или $x^n = o(a^x)$ при

Найдём предел при стремлении к бесконечности:

$$\lim_{x \to +\infty} \frac{h(x)}{f(x)} = \lim_{x \to +\infty} \frac{\ln x}{x^n} = \left(\frac{\infty}{\infty}\right)$$
$$= \lim_{x \to +\infty} \frac{\frac{1}{x}}{n \cdot x^{n-1}} = \frac{1}{n} \lim_{x \to +\infty} \frac{1}{x^n} = \frac{1}{n} \cdot 0 = 0$$

Значит, x^n растёт быстрее, чем $\ln x$ при $x \to +\infty$ $\ln x = o(x^n)$ при

Вывод: на бесконечности функции расположены в таком порядке:

- 1. $g(x) = a^x$ самая быстрорастущая функция $2. \ f(x) = x^n$
- $3. \ h(x) = \ln x$

Вопрос 36. Выведите формулу Тейлора с остаточным членом в форме Лагранжа.

Теорема (Остаточный член формулы Тейлора в форме Лагранжа). Пусть функция y=f(x) (n+1) дифференцируема в $\mathring{S}(x_0), \ \forall x \in \mathring{S}(x_0)$ $f^{(n+1)}(x_0) \neq 0$. Тогда: $R_n(c) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-x_0)^{n+1}$ где $c \in \mathring{S}(x_0)$.

$$R_n(c) = \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}$$

Вопрос 37. Выведите формулу Тейлора с остаточным членом в форме Пеано.

Теорема (Остаточный член формулы Тейлора в форме Пеано). Пусть функция y=f(x) дифференцируема n раз в точке x_0 , тогда $x\to x_0$:

$$R_n(x) = o((x - x_0)^n)$$

Вопрос 38. Выведите формулу Маклорена для функции $y=e^x$ с остаточным членом в форме Лагранжа.

Ответ. Найдём производные для функции $y=e^x$ до n-ого порядка:

$$f'(x) = f''(x) = \dots = f^{(n)} = e^x$$

Подставим
$$x=0$$
:
$$f(0)=f'(0)=f''(0)=\ldots=f^{(n)}=e^0=1$$
 Получаем:

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + \frac{e^{\theta x}}{(n+1)!}x^{n+1}$$

Вопрос 39. Выведите формулу Маклорена для функции $y = \sin(x)$ с остаточным членом в форме Лагранжа.

Ответ. Найдём производные для функции $y=\sin(x)$ до 2n+2-ого

$$f'(x) = \cos(x) = \sin(x + \frac{\pi}{2})$$

$$f''(x) = -\sin(x) = \sin(x + 2 \cdot \frac{\pi}{2})$$

$$f'''(x) = -\cos(x) = \sin(x + 3 \cdot \frac{\pi}{2})$$

$$f''''(x) = \sin(x) = \sin(x + 4 \cdot \frac{\pi}{2})$$
...
$$f^{(2n+1)}(x) = (-1)^n \cos(x)$$

$$f^{(2n+2)}(x) = (-1)^{n+1} \sin(x)$$

Подставим x = 0:

$$f(0) = 0$$

$$f'(0) = 0$$

$$f''(0) = -1$$

$$f'''(0) = 0$$

$$f''''(0) = 1$$
...
$$f^{(2n+1)} = (-1)^n$$

$$f^{(2n+2)} = 0$$

Получаем:
$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \ldots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \frac{\sin\left(\theta x + (2n+2)\frac{\pi}{2}\right)}{(2n+2)!} x^{2n+2}$$
$$\theta \in (0,1)$$

Вопрос 40. Выведите формулу Маклорена для функции $y = \cos(x)$ с остаточным членом в форме Лагранжа.

Ответ. Найдём производные для функции $y=\cos(x)$ до 2n+1-ого

$$f'(x) = -\sin(x) = \cos(x + 1 \cdot \frac{\pi}{2})$$

$$f''(x) = -\cos(x) = \cos(x + 2 \cdot \frac{\pi}{2})$$

$$f'''(x) = \sin(x) = \cos(x + 3 \cdot \frac{\pi}{2})$$

$$f''''(x) = \cos(x) = \cos(x + 4 \cdot \frac{\pi}{2})$$
...
$$f^{(2n)}(x) = (-1)^n \cos(x)$$

$$f^{(2n+1)}(x) = (-1)^{n+1} \sin(x)$$

Подставим x = 0:

$$f(0) = 1$$

$$f'(0) = 0$$

$$f''(0) = -1$$

$$f'''(0) = 0$$

$$f''''(0) = 1$$
...
$$f^{(2n)} = (-1)^n$$

$$f^{(2n+1)} = 0$$

Получаем:
$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \ldots + (-1)^n \frac{x^{2n}}{(2n)!} + \frac{\cos\left(\theta x + (2n+1)\frac{\pi}{2}\right)}{(2n+1)!} x^{2n+1}$$

$$\theta \in (0,1)$$

Вопрос 41. Выведите формулу Маклорена для функции $y = \ln(1+x)$ с остаточным членом в форме Лагранжа.

Ответ. Найдём производные для функции $y = \ln(1+x)$ до n+1-ого порядка:

$$f'(x) = \frac{1}{1+x}$$

$$f''(x) = -\frac{1}{(1+x)^2}$$

$$f'''(x) = \frac{2}{(1+x)^3}$$

$$f''''(x) = -\frac{6}{(1+x)^4}$$
...
$$f^{(n)}(x) = (-1)^{n-1} \frac{(n-1)!}{(1+x)^n}$$

$$f^{(n+1)}(x) = (-1)^n \frac{n!}{(1+x)^{n+1}}$$

Подставим x = 0:

$$f(0) = 0$$

$$f'(0) = 1 = 1!$$

$$f''(0) = -1 = -1!$$

$$f'''(0) = 2 = 2!$$

$$f''''(0) = -3 \cdot 2 = -6!$$
...
$$f^{(n)}(x) = (-1)^{n-1}(n-1)!$$

$$f^{(n+1)}(x) = (-1)^n n!$$

Получаем

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{(-1)^{n-1}x^n}{n} + (-1)^n \frac{x^{n+1}}{(n+1)(1+\theta x)^{n+1}}$$
$$\theta \in (0,1)$$

Вопрос 42. Выведите формулу Маклорена для функции $y = (1+x)^{\alpha}$ с остаточным членом в форме Лагранжа.

Ответ. Найдём производные для функции $y = (1+x)^{\alpha}$ до n-ого порядка:

$$f'(x) = \alpha(1+x)^{\alpha-1}$$

$$f''(x) = \alpha(\alpha-1)(1+x)^{\alpha-2}$$

$$f'''(x) = \alpha(\alpha-1)(\alpha-2)(1+x)^{\alpha-3}$$
...
$$f^{(n)}(x) = \alpha(\alpha-1)\dots(\alpha-n+1)(1+x)^{\alpha-n}$$

Подставим x = 0:

$$f(0) = 1$$

$$f'(0) = \alpha$$

$$f''(0) = \alpha(\alpha - 1)$$

$$f'''(0) = \alpha(\alpha - 1)(\alpha - 2)$$
...
$$f^{(n)}(x) = \alpha(\alpha - 1) \dots (\alpha - n + 1)$$

Получаем:

$$(1+x)^{\alpha} = 1 + \frac{\alpha}{1!}x + \frac{\alpha(\alpha-1)}{2!}x^2 + \dots + \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!} + \frac{\alpha(\alpha-1)\dots(\alpha-n)}{(n+1)!} \cdot (1+\theta x)^{\alpha-n-1} \cdot x^{n+1}$$
$$\theta \in (0,1)$$

Вопрос 43. Сформулируйте и докажите необходимое и достаточное условие неубывания дифференцируемой функции.

Ссылки. Используются определения №35, №38, теорема "О связи дифференцируемости и непрерывности функции", теорема Лагранжа.

Теорема (Необходимое и достаточное условие неубывания дифференцируемой функции). Дифференцируемая на интервале (a,b) не убывает на этом интервале тогда и только тогда, когда $f'(x) \ge 0 \ \forall x \in (a,b)$.

Необходимость. Дано: y = f(x) не убывает на (a, b). Доказать:

$$\forall x \in (a, b) \quad f'(x) \ge 0$$

В точке $x \in (a, b)$, в которой функция f(x) дифференцируема, имеем:

$$\Delta x > 0 \implies f(x + \Delta x) \ge f(x)$$

$$\implies f'(x) = f_{+}(x) = \lim_{\Delta x \to 0+} \frac{f(x + \Delta x) - f(x)}{\Delta x} \ge 0$$

$$\Delta x < 0 \implies f(x) \ge f(x + \Delta x)$$

$$\implies f'(x) = f_{-}(x) = \lim_{\Delta x \to 0^{-}} \frac{f(x + \Delta x) - f(x)}{\Delta x} \ge 0$$

Таким образом, $\forall x \in (a,b) \implies f'(x) \ge 0$

Достаточность. Дано: $\forall x \in (a,b) \quad f'(x) \ge 0$. Доказать: y = f(x) не убывает на a,b.

$$\forall x_1, x_2 \in (a, b) : x_2 > x_1$$

Рассмотрим $[x_1, x_2]$. Функция на отрезке $[x_1, x_2]$ удовлетворяет условиям теоремы Лагранжа:

- 1. Непрерывность на $[x_1, x_2]$. По условию y = f(x) дифференцируема на интервале (a, b). По теореме о связи дифференцируемости и непрерывности функции $\implies y = f(x)$ непрерывна на $[x_1, x_2]$.
- 2. дифференцируемость на (x_1, x_2) т.к. функция по условию дифференцируема на отрезке $[x_1, x_2]$.

По теореме Лагранжа $\exists c \in (x_1, x_2)$:

$$f(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Т.к. $x_2>x_1\implies x_2-x_1>0.$ По условию $f'(x)\geq 0, \forall x\in(a,b)\implies f'(c)\geq 0.$

Тогда:

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \le 0$$

$$\implies f(x_2) - f(x_1) \ge 0 \text{ при } x_2 > x_1$$

$$f(x_2) \ge f(x_1) \text{ при } x_2 > x_1$$

 \implies по определению функция y=f(x) не убывает на (a,b). $\hfill\Box$

Вопрос 44. Сформулируйте и докажите необходимое и достаточное условие невозрастания дифференцируемой функции.

Ссылки. Используются определения №35, №37.

Теорема (Необходимое и достаточное условие невозрастания дифференцируемой функции). Дифференцируемая на интервале (a,b) не возрастает на этом интервале тогда и только тогда, когда $f'(x) \leq 0 \ \forall x \in (a,b)$.

Необходимость. Дано: y = f(x) не возрастает на (a,b). Доказать:

$$\forall x \in (a, b) \quad f'(x) \le 0$$

В точке $x \in (a, b)$, в которой функция f(x) дифференцируема, имеем:

$$\Delta x > 0 \implies f(x + \Delta x) \le f(x)$$

$$\implies f'(x) = f_{+}(x) = \lim_{\Delta x \to 0+} \frac{f(x + \Delta x) - f(x)}{\Delta x} \le 0$$

$$\Delta x < 0 \implies f(x) \le f(x + \Delta x)$$

$$\implies f'(x) = f_{-}(x) = \lim_{\Delta x \to 0^{-}} \frac{f(x + \Delta x) - f(x)}{\Delta x} \le 0$$

Таким образом, $\forall x \in (a,b) \implies f'(x) \leq 0$

Достаточность. Дано: $\forall x \in (a,b) \quad f'(x) \leq 0$. Доказать: y = f(x) не возрастает на a,b.

$$\forall x_1, x_2 \in (a, b) : x_2 > x_1$$

Рассмотрим $[x_1, x_2]$. Функция на отрезке $[x_1, x_2]$ удовлетворяет условиям теоремы Лагранжа:

- 1. Непрерывность на $[x_1, x_2]$. По условию y = f(x) дифференцируема на интервале (a, b). По теореме о связи дифференцируемости и непрерывности функции $\implies y = f(x)$ непрерывна на $[x_1, x_2]$.
- 2. дифференцируемость на (x_1, x_2) т.к. функция по условию дифференцируема на отрезке $[x_1, x_2]$.

По теореме Лагранжа $\exists c \in (x_1, x_2)$:

$$f(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Т.к. $x_2>x_1\implies x_2-x_1>0.$ По условию $f'(x)\leq 0, \forall x\in(a,b)\implies f'(c)\leq 0.$

Тогда:

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \le 0$$

$$\implies f(x_2) - f(x_1) \le 0 \text{ при } x_2 > x_1$$

$$f(x_2) \le f(x_1) \text{ при } x_2 > x_1$$

 \implies по определению функция y=f(x) не возрастает на (a,b).

Вопрос 45. Сформулируйте и докажите первое достаточное условие экстремума (по первой производной).

Ссылки. Используются определения №27, №35, №41, №42, №43, теорема Лагранжа.

Теорема (Первое достаточное условие экстремума). Пусть функция y = f(x) непрерывна в $S(x_0)$, где x_0 – критическая точка первого порядка; функция дифференцируема в $\mathring{S}(x_0)$. Тогда если производная функции меняет свой знак при переходе черех точку x_0 , то эта точка x_0 – точка экстремума. Причём:

- 1. Если при $x < x_0$ f'(x) > 0, а при $x > x_0$ f'(x) < 0, то x_0 точка максимума.
- 2. Если при $x < x_0$ f'(x) < 0, а при $x > x_0$ f'(x) > 0, то x_0 точка минимума.

Достаточность. $\forall x \in S(x_0)$. Пусть $x > x_0$, тогда рассматриваем отрезок $[x_0, x]$. Тогда функция y = f(x) удовлетворяет условиям теоремы Лагранжа:

- 1. Непрерывна на $[x_0, x]$, т.к. по условию функция непрерывна в $S(x_0)$, а следовательно y = f(x) будет непрерывна и на меньшем промежутке $[x_0, x]$.
- 2. Дифференцируема на (x_0, x) , т.к. по условию функция непрерывна в $\mathring{S}(x_0) \implies y = f(x)$ дифференцируема на (x_0, x)

По теореме Лагранжа $\exists c \in (x_0, x)$

$$f'(c) = \frac{f(x) - f(x_0)}{x - x_0}$$

При $x > x_0 \ x - x_0 > 0$. По условию

1) при $x>x_0$ f'(x)<0 \Longrightarrow $f'(c)=\frac{f(x)-f(x_0)}{x-x_0}<0$ \Longrightarrow $f(x)< f(x_0)$ по определению строгого x_0 — точка локального максимума. 2) при $x< x_0$ f'(x)>0 \Longrightarrow $f'(c)=\frac{f(x)-f(x_0)}{x-x_0}>0$ \Longrightarrow $f(x)>f(x_0)$ по определению строгого x_0 — точка локального минимума.

По теореме Лагранжа $\exists c \in (x, x_0)$:

$$f'(c) = \frac{f(x_0) - f(x)}{x_0 - x}$$

Т.к. $x < x_0$, то $x - x_0 < 0 \implies x_0 - x > 0$. По условию 1) при $x < x_0$ $f'(x) > 0 \implies f'(c) = \frac{f(x_0) - f(x)}{x_0 - x} > 0 \implies f(x_0) > f(x)$ по определению строгого x_0 — точка локального максимума. 2) при $x > x_0$ $f'(x) > 0 \implies f'(c) = \frac{f(x_0) - f(x)}{x_0 - x} < 0 \implies f(x) < f(x_0)$ по определению строгого x_0 — точка локального минимума.

Вопрос 46. Сформулируйте и докажите второе достаточное условие экстремума (по второй производной).

Ссылки. Используются определения №35, №39, №40, №44.

Теорема (Второе достаточное условие экстремума). Пусть функция y = f(x) дважды дифференцируема в точке x_0 , и $f'(x_0) = 0$. Тогда:

- 1. Если $f''(x_0) < 0$, то x_0 точка строгого максимума.
- 2. Если $f''(x_0) > 0$, то x_0 точка строгого минимума.

Достаточность. Разложим функцию y = f(x) в окрестности точки x_0 по формуле Тейлора:

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + o((x - x_0)^2)$$

Т.к. $f'(x_0) = 0$, то

$$f(x) = f(x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + o((x - x_0)^2)$$
$$f(x) - f(x_0) = \frac{f''(x_0)}{2!}(x - x_0)^2 + o((x - x_0)^2)$$

Знак $f(x) - f(x_0)$ определяет $f''(x_0)$, т.к. $o((x-x_0)^2)$ – б.м.ф. при $x \to x_0$.

Если $f(x) - f(x_0) < 0$ то $f(x) < f(x_0), \forall x \in S(x_0)$. По определению x_0 — точка локального максимума.

Если $f(x)-f(x_0)>0$ то $f(x)>f(x_0), \forall x\in S(x_0).$ По определению x_0 – точка локального минимума.

Вопрос 47. Сформулируйте и докажите достаточное условие выпуклости функции.

Ссылки. Используются определения №35, №46, №47.

Теорема (Достаточное условие выпуклости функции). Пусть функция y = f(x) дважды дифференцируема на интервале (a, b). Тогда:

- 1. Если $f''(x) < 0 \forall x \in (a,b)$, то график функции выпуклый вверх на этом интервале
- 2. Если $f''(x) > 0 \forall x \in (a,b)$, то график функции *выпуклый вниз* на этом интервале

Достаточность.

$$x_0 \in (a,b), y_0 = f(x_0) \implies M_0(x_0, y_0)$$

Построим в точке M_0 касательную к графику функции y = f(x). Запишем уравнение касательной:

$$y = y_0 = y'(x_0)(x - x_0)$$

Преобразуем:

$$y_k = f(x_0) + f'(x_0)(x - x_0) \tag{1}$$

Представим функцию y=f(x) по формуле Тейлора с остаточным членом в форме Лагранжа.

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}x + \frac{f''(c)}{2!}(x - x_0)^2, \quad c \in S(x_0)$$
 (2)

Вычтем (1) из (2):

$$f(x) - y_k = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(c)}{2!}(x - x_0)$$
$$-f(x_0) - f'(x_0)(x - x_0)^2$$
$$f(x) - y_k = \frac{f''(c)}{2!}(x - x_0)^2$$

По условию $f''(x) < 0 \ \forall x \in (a,b),$ то $f''(c) < 0 \implies f(x) - y_0 < 0 \implies f(x) < y_k,$ а значит по определению выпуклой функции \implies график функции y = f(x) выпуклый вверх.

2. По условию $f''(x) > 0 \ \forall x \in (a,b)$, то $f''(c) > 0 \implies f(x) - y_0 > 0 \implies f(x) > y_k$, а значит по определению выпуклой функции \implies график функции y = f(x) выпуклый вниз.

Вопрос 48. Сформулируйте и докажите необходимое условие точки перегиба.

Ссылки. Используются определения №35, №48.

Теорема (необходимое условие точки перегиба). Пусть функция y = f(x) в точке x_0 имеет непрерывную вторую производную и $M(x_0, y_0)$ – точка перегиба графика функции y = f(x). Тогда $f''(x_0) = 0$.

Необходимость. Докажем методом от противного. Предположим, что $f''(x_0) > 0$. В силу непрерывности второй производной функции $y = f(x) \, \exists S(x_0) \, \forall x \in S(x_0) : f''(x) > 0$. Это противоречит тому, что $M_0(x_0,y_0)$ – точка перегиба. Предположим, что $f''(x_0) < 0$. В силу непрерывности второй производной функции $y = f(x) \, \exists S(x_0) \, \forall x \in S(x_0) : f''(x) < 0$. Это противоречит тому, что $M_0(x_0,y_0)$ – точка перегиба.

Вопрос 49. Сформулируйте и докажите достаточное условие точки перегиба.

Ссылки. Используются определения №25, №48.

Теорема (Достаточное условие точки перегиба). Если функция y=f(x) непрерывна в точке x_0 , дважды дифференцируема в $S(x_0)$ и вторая производная меняет знак при переходе аргумента x через точку x_0 . Тогда $M_0(x_0,f(x_0))$ является точкой перегиба графика функции y=f(x).

Достаточность. По условию $\exists S(x_0)$ в которой вторая производная функции y=f(x) меняет знак при переходе аргумента x через точку x_0 (даёт достаточное условие выпуклости функции). Это означает, что график функции y=f(x) имеет различные направление выпуклости по разные стороны от точки x_0 . По определению точки перегиба $M(x_0,f(x_0))$ является точкой перегиба графика функции y=f(x). \square