AXI4-Lite Hardware Timer: An RTL Implementation | Github

Project Overview

This project presents the design and implementation of a hardware timer using an AXI4-Lite interface. The hardware timer is designed for FPGAbased applications requiring precise timing control and registerbased configuration via an AXI4-Lite bus.

Key Features:

- AXI4-Lite Interface: Provides a simple yet effective memory-mapped communication between the timer and an external processor.
- Configurable Timer: Users can load a custom timer value and start/stop the timer through AXI transactions.
- Interrupt Support: The timer generates an expired signal when it reaches zero, enabling interruptbased processing.
- Testbench & Verification: Includes comprehensive testbenches to verify AXI transactions, timer logic, and overall system functionality.

✓ Implementation Details:

The **AXI4-Lite slave** interface allows **memory-mapped** access to control registers, enabling the software to configure and interact with the timer. The timer logic **decrements the loaded value and asserts an expired signal upon completion**. The design is modeled and verified using **QuestaSim**.

Project Files:

- "axi4_lite_if.v" AXI4-Lite slave interface handling register accesses.
- "timer_logic.v" Core logic of the hardware timer.
- "axi_stream_data_mover.v" Optional AXI Stream module for data movement.
- Multiple testbenches ("tb_axi4_lite_interface.v", "tb_axi_timer.v") to validate functionality.
- Previous versions: ("axi4_lite_interface.v", "tb_ axi4_lite_interface.v") more simple implementations for practice.

✓ AXI4-Lite Interface Signals (Core Set)

Signal	Description	Direction	Width
awaddr	Write address	Input	32
awvalid	Write address valid	Input	1
awready	Write address ready	Output	1
wdata	Write data	Input	32
wvalid	Write valid	Input	1
wready	Write ready	Output	1
bvalid	Write response valid	Output	1
bready	Write response ready	Input	1
araddr	Read address	Input	32
arvalid	Read address valid	Input	1
arready	Read address ready	Output	1
rdata	Read data	Output	32
rvalid	Read valid	Output	1
rready	Read ready	Input	1

✓ Timer Signals (Core set)

Signal	Notes	Width
clk	input; clock signal	1
reset_n	input; negative edge triggered reset	1
start	input; start the timer control bit	1
stop	input; stop the timer control bit	1
load_value	input; the value to start countdown from	32
expired	output; the timer has reached zero	1

Wave forms:

AXI Read Waveform:

AXI Write Waveform:

✓ Future Enhancements:

- Adding an AXI4Stream interface for highspeed timer event streaming.
- Implementing lowpower optimizations for ASIC deployment.
- Extending functionality to support multiple timer instances.

✓ Conclusion:

This project showcases an efficient and modular AXI4-Lite hardware timer implementation, suitable for FPGAbased embedded systems and ASICs. The experience gained in AXI protocol handling, hardware design, and verification is a strong foundation for more advanced SoC designs.