

STP16NS25 STP16NS25FP

N-CHANNEL 250V - 0.23Ω - 16A TO-220 / TO-220FP MESH OVERLAY™ MOSFET

TYPE	V _{DSS}	R _{DS(on)}	I _D
STP16NS25	250 V	< 0.28 Ω	16 A
STP16NS25FP	250 V	< 0.28 Ω	16 A

- TYPICAL $R_{DS}(on) = 0.23 \Omega$
- EXTREMELY HIGH dv/dt CAPABILITY
- 100% AVALANCHE TESTED

Using the latest high voltage MESH OVERLAYTM process, STMicroelectronics has designed an advanced family of power MOSFETs with outstanding performance. The new patented STrip layout coupled with the Company's proprietary edge termination structure, makes it suitable in coverters for lighting applications.

- HIGH CURRENT, HIGH SPEED SWITCHING
- SWITH MODE POWER SUPPLIES (SMPS)
- DC-DC CONVERTERS FOR TELECOM, INDUSTRIAL, AND LIGHTING EQUIPMENT
- IDEAL FOR MONITOR'S B+ FUNCTION

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Valu	ie	Unit
		STP16NS25	STP16NS25FP	
V _{DS}	Drain-source Voltage (V _{GS} = 0)	250)	V
V_{DGR}	Drain-gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	250)	V
V_{GS}	Gate- source Voltage	± 2	0	V
I _D	Drain Current (continuos) at T _C = 25°C	16	16(*)	Α
I _D	Drain Current (continuos) at T _C = 100°C	11	11(*)	Α
I _{DM} (•)	Drain Current (pulsed)	64	64(*)	Α
Ртот	Total Dissipation at T _C = 25°C	140	40	W
	Derating Factor	1	0.33	W/°C
dv/dt (1)	Peak Diode Recovery voltage slope	5		V/ns
V _{ISO}	Insulation Withstand Voltage (DC)	-	2500	V
T _{stg}	Storage Temperature		150	°C
Tj	Max. Operating Junction Temperature	-02 10	100	

 (\bullet) Pulse width limited by safe operating area

(1) $I_{SD} \le 16A$, $di/dt \le 300 A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $Tj \le T_{jMAX}$

(*) Limited only by maximum temperature allowed

May 2002

STP16NS25 - STP16NS25FP

THERMAL DATA

		TO-220	TO-220FP	°C/W
Rthj-case	Thermal Resistance Junction-case Max	0.9	3	°C/W
Rthj-amb	Thermal Resistance Junction-ambient Max	62.5		°C/W
T _I	Maximum Lead Temperature For Soldering Purpose	300		°C

AVALANCHE CHARACTERISTICS

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T _j max)	16	А
E _{AS}	Single Pulse Avalanche Energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	600	mJ

ELECTRICAL CHARACTERISTICS (TCASE = 25 °C UNLESS OTHERWISE SPECIFIED) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0$	250			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating, T_{C} = 125 °C			1 10	μA μA
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 20 V			±100	nA

ON (1)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250\mu A$	2	3	4	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10V, I _D = 8 A		0.23	0.28	Ω

DYNAMIC

Symbol	Parameter Test Conditions		Min.	Тур.	Max.	Unit
g _{fs} (1)	Forward Transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max},$ $I_{D} = 8 \text{ A}$		15		S
C _{iss}	Input Capacitance	$V_{DS} = 25V, f = 1 \text{ MHz}, V_{GS} = 0$		1270		pF
Coss	Output Capacitance			190		pF
C _{rss}	Reverse Transfer Capacitance			74		pF

ELECTRICAL CHARACTERISTICS (CONTINUED)

SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on Delay Time	V _{DD} = 125 V, I _D = 8 A		14.5		ns
t _r	Rise Time	$R_G = 4.7\Omega V_{GS} = 10 V$ (see test circuit, Figure 3)		26		ns
Qg	Total Gate Charge	$V_{DD} = 200V, I_D = 16 A,$		59	83	nC
Q_{gs}	Gate-Source Charge	$V_{GS} = 10V$		7.9		nC
Q_{gd}	Gate-Drain Charge			22.3		nC

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(Voff)} t _f	Turn-off- Delay Time Fall Time	V_{DD} = 125V, I_{D} = 8 A, R_{G} = 4.7 Ω , V_{GS} = 10V (see test circuit, Figure 3)		72 32		ns ns
$egin{array}{c} t_{r(extsf{Voff})} \ t_{f} \ t_{c} \end{array}$	Off-voltage Rise Time Fall Time Cross-over Time	V_{clamp} = 200V, I_D = 16 A, R_G = 4.7 Ω , V_{GS} = 10V (see test circuit, Figure 5)		24 28 56		ns ns ns

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain Current				16	Α
I _{SDM} (2)	Source-drain Current (pulsed)				64	Α
V _{SD} (1)	Forward On Voltage	I _{SD} = 16 A, V _{GS} = 0			1.5	V
t _{rr}	Reverse Recovery Time	I _{SD} = 16 A, di/dt = 100A/μs		270		ns
Q_{rr}	Reverse Recovery Charge	$V_{DD} = 30V$, $T_j = 150$ °C (see test circuit, Figure 5)		1.5		μC
I_{RRM}	Reverse Recovery Current	(See test circuit, 1 igure 5)		11.4		Α

Note: 1. Pulsed: Pulse duration = $300 \mu s$, duty cycle 1.5 %.

Pulse width limited by safe operating area.

Safe Operating Area for TO-220

Safe Operating Area for TO-220FP

477

Thermal Impedance for TO-220

Thermal Impedance for TO-220FP

Output Characteristics

Transfer Characteristics

Transconductance

Static Drain-source On Resistance

Gate Charge vs Gate-source Voltage

Capacitance Variations

Normalized On Resistance vs Temperature

Source-drain Diode Forward Characteristics

Fig. 1: Unclamped Inductive Load Test Circuit

Fig. 3: Switching Times Test Circuit For Resistive Load

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

Fig. 2: Unclamped Inductive Waveform

Fig. 4: Gate Charge test Circuit

TO-220 MECHANICAL DATA

DIM.		mm			inch	
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	4.40		4.60	0.173		0.181
С	1.23		1.32	0.048		0.051
D	2.40		2.72	0.094		0.107
D1		1.27			0.050	
E	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.203
G1	2.4		2.7	0.094		0.106
H2	10.0		10.40	0.393		0.409
L2		16.4			0.645	
L4	13.0		14.0	0.511		0.551
L5	2.65		2.95	0.104		0.116
L6	15.25		15.75	0.600		0.620
L7	6.2		6.6	0.244		0.260
L9	3.5		3.93	0.137		0.154
DIA.	3.75		3.85	0.147		0.151

TO-220FP MECHANICAL DATA

DIM.		mm			inch	
DIN.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	4.4		4.6	0.173		0.181
В	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
Е	0.45		0.7	0.017		0.027
F	0.75		1	0.030		0.039
F1	1.15		1.7	0.045		0.067
F2	1.15		1.7	0.045		0.067
G	4.95		5.2	0.195		0.204
G1	2.4		2.7	0.094		0.106
Н	10		10.4	0.393		0.409
L2		16			0.630	
L3	28.6		30.6	1.126		1.204
L4	9.8		10.6	0.385		0.417
L6	15.9		16.4	0.626		0.645
L7	9		9.3	0.354		0.366
Ø	3		3.2	0.118		0.126

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco
Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.
© http://www.st.com