

Pertemuan 3

Unsupervised Learning Clustering

Supervised vs Unsupervised

Supervised

- Memiliki target
- Temukan fungsi yang dapat memetakan data pada targetnya
- Menemukan pola yang menghubungkan atribut dengan targetnya

Supervised Learning Algorithms

Unsupervised

- Tidak memiliki target
- Menemukan struktur data yang mendasarinya
- Tidak memprediksikan secara spesifik, hanya mengelompokan saja

Unsupervised Learning Algorithms

Clustering

- Clustering merupakan proses mengelompokan kumpulan objek menjadi beberapa kelas tertentu berdasarkan kemiripan antara objek-objek tersebut
 - Data pada sebuah kelas (cluster) harus berhubungan/mirip
 - Data antar kelas yang berbeda harus tidak saling berhubungan
- Cluster: Kelompok yang berisi data yang mirip
- Analisa Cluster: menemukan kemiripan antara data berdasarkan karakteristik lalu mengelompokkanya kedalam sebuah kelas

Masalah Clustering

- Berapa banyak kelas/cluster yang akan dihasilkan?
- Berapa jumlah data pada masing-masing cluster?
- Apakah data pada sebuah cluster memiliki kemiripan?
- Apakah data pada sebuah cluster tidak memiliki kemiripan dengan data pada cluster lain?

Masalah Clustering

Dapat menjadi berapa cluster?

Apakah cluster yang dihasilkan berkualitas?

Bagaimana cara mengelompokan data tesebut?

Jenis Clustering

- Hirarkikal (Hierarchical)
 - Objek menjadi lebih terkait dengan objek di dekatnya daripada objek yang lebih jauh
- Partisional (Partitional)
 - Setiap cluster diwakili oleh centroid
 - Ditentukan oleh pengukuran kedekatan objek dengan centroid pada cluster tertentu

Hirarchical Clustering

Objek menjadi lebih terkait dengan objek di dekatnya daripada objek yang lebih jauh

berdekatan satu sama lain.

Partitional Clustering

Setiap cluster diwakili oleh centroid dan diukur berdasarkan pengukuran jarak

ditentukan sebelumnya/

Algoritma Clustering

- K-Means
- 2. Fuzzy C Means
- 3. Agglomerative
- 4. K-D Trees
- 5. EM Clustering
- 6. Quality Threshold

Kegunaan Clustering

- Menemukan kelas pada dataset yang tidak memiliki target
- 2. Dimensionality reduction
- 3. Color-based image segmentation
- 4. Analisa jejaring media social
- Segmentasi pasar

Algoritma K-Means

- Algoritma paling sederhana dan paling sering digunakan untuk kasus clustering
- Data dipartisi/dikelompokan menjadi k cluster (k merupakan jumlah cluster yang diinginkan)
- Setiap data pada sebuah cluster mirip dengan centroidnya

Contoh Kasus K-Means

Jumlah Cluster (k) = 2
Inisialisasi 2 buah centroid secara acak

Contoh Kasus K-Means

Setiap data point o, temukan centroid c yang paling dekat

Contoh Kasus K-Means

Kalkulasikan rata-rata data dari setiap cluster Lalu update centroid nya

Masalah k-Means

Data point ini termasuk pada cluster yang mana?

Masalah k-Means

Apakah hasil clustering ini berkualitas? Apakah centroid ini tepat? Apakah akurat?

Masalah k-Means

Dimana harus meletakan centroidnya?

Kelebihan dan Kekurangan K-Means

- Kelebihan:
 - Relatif sederhana untuk diimplementasikan
 - Lebih efisien dari segi waktu dan biaya komputasi
 - Cocok untuk data yang rapih dan terstruktur
- Kekurangan:
 - Sulit menentukan k
 - Sensitif terhadap penentuan centroid awal
 - Tidak cocok untuk data yang sebarannya terlalu bervariasi