Viola & Jones **Object Detection Framework**

261499 & 261753 Computer Vision

#8

3

Haar-like Feature

Considering all possible filter parameters: position, scale, and type:

180,000+ possible features associated with each 24 x 24 window

Use AdaBoost both to select the informative features and to form the classifier

Overview

Rapid Object Detection using a Boosted Cascade of Simple Features Viola & Jones, 2001

Feature Extraction

- Haar wavelet response (Haar-like Feature)
- Integral Image

Classification

- Weak Classifier
- Adaboost Learning
- Feature Selection
- Optimal Threshold
- Cascade Classifier

261499 & 261753 Computer Vision

Integral Image

3 6 5 6 2 6 3 2 9 4 1 4 0 5 8 8 9 1 5 0 7 2 0

> **Original Image** I(x, y)

If we want to calculate the summation in red area, we need 14 operations

$$5+7+0+2+0+0+1+4+4+$$

 $2+0+0+0+2+5 = 32$

We can reduce this computation by using integral image

Summation

				. /				
1	2	3	4	3	0	6	7	9
4	5	6	2	1	5	4	5	2
1	4	8	6	3	2	9	0	0
2	1	4	5	7	0	2	0	2
1	1	1	0	1	4	4	2	5
1	2	4	0	0	0	2	5	1
9	8	2	5	7	8	9	1	0
1	2	7	5	0	2	1	0	0

Original Image

1	3	6	10	13	13	19	26	35
5	12	21	27	31	36	46	58	69
6	17	34	46	53	60	79	91	102
8	20	41	58	72	79	100	112	125
9	22	44	61	76	87	112	126	144
10	25	51	68	83	94	121	140	159
19	42	70	92	114	133	169	189	208
20	45	80	107	129	150	187	207	226

Integral Image

$$S(x, y) = \sum_{p \le x, q \le y} I(p, q)$$

261458 & 261753 Computer Vision

#8

7

Adaboost [Adaptive Boosting]

Consider a 2-d feature space with positive and negative examples.

Each weak classifier splits the training examples with at least 50% accuracy.

Examples misclassified by a previous weak learner are given more emphasis at future rounds.

Figure adapted from Freund and Schapire

Integral Image

1	2	3	4	3	0	6	7	9
4	5	6	2	1	5	4	5	2
1	4	8	6	3	2	9	0	0
2	1	4	5	7	0	2	0	2
1	1	1	0	1	4	4	2	5
1	2	4	0	0	0	2	5	1
9	8	2	5	7	8	9	1	0
1	2	7	5	0	2	1	0	0

Original Image

1	3	6	10	13	13	19	26	35
5	12	21	27	31	36	46	58	69
6	17	34	46	53	60	79	91	102
8	20	41	58	72	79	100	112	125
9	22	44	61	76	87	112	126	144
10	25	51	68	83	94	121	140	159
19	42	70	92	114	133	169	189	208
20	45	80	107	129	150	187	207	226

Integral Image

= 140-91-51+34 = 32

Can be compute using 3 operators

261458 & 261753 Computer Vision

#8

Adaboost [Adaptive Boosting]

Figure adapted from Freund and Schapire

* Want to select the single rectangle feature and threshold that best separates positive (faces) and negative (non-faces) training examples, in terms of *weighted* error.

Resulting weak classifier:

 $h_{t}(x) = \begin{cases} +1 & \text{if } f_{t}(x) > \theta_{t} \\ -1 & \text{otherwise} \end{cases}$

For next round, reweight the examples according to errors, choose another filter/threshold combo.

261499 & 261753 Computer Vision

faces and non-faces.

#8

11

Start with uniform weights

on training examples

error they had.

Evaluate weighted error

for each feature, pick best.

Incorrectly classified -> more weight

Correctly classified -> less weight

Final classifier is combination of the

weak ones, weighted according to

261499 & 261753 Computer Vision

tively, where m and l are the number of negatives and positives respectively.
 For t = 1,..., T:

1. Normalize the weights.

$$w_{t,i} \leftarrow \frac{w_{t,i}}{\sum_{j=1}^{n} w_{t,j}}$$

Given example images (x1, y1),..., (xn, yn) where yi = 0,1 for negative and positive examples respectively.
 Initialize weights w1,i = 1/2m ⋅ 1/2f for yi = 0,1 respectively.

so that w_t is a probability distribution

For each feature, j, train a classifier h_j which
is restricted to using a single feature. The
error is evaluated with respect to w_t, ε_j =
 ∑_i w_i |h_i(x_i) - y_i|.

3. Choose the classifier, h_t , with the lowest error ϵ_t .

Update the weight

$$w_{t+1,i} = w_{t,i}\beta_t^{1-\epsilon_i}$$

where $e_i = 0$ if example x_i is classified correctly, $e_i = 1$ otherwise, and $\beta_t = \frac{c_t}{c_t}$.

· The final strong classifier is:

$$h(x) = \begin{cases} 1 & \sum_{t=1}^{T} \alpha_t h_t(x) \ge \frac{1}{2} \sum_{t=1}^{T} \alpha_t \\ 0 & \text{otherwise} \end{cases}$$

where $\alpha_t = \log \frac{1}{\beta_t}$

Cascade Classifier

Reducing Computation Time
 Each stage trained by Adaboost by

adjusting the threshold to minimize false negatives

- t by nize T T T Further Processing F F Reject Sub-window
 - Each stage is trained by adding features until the target detection and false positives rates are met
 - Stages are added until the overall target for false positive and detection rate is met.

Summary

Target Image

- Train with 5K positives, 350M negatives
- Real-time detector using 38 layer cascade
- × 6061 features in final layer
- Implementation available in OpenCV

K. Grauman, B. Leibe

#8

261499 & 261753 Computer Vision

261499 & 261753 Computer Vision

#8

12