LINEAR ALGEBRA -II

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

► To begin with we have simultaneous upper triangularization.

- ► To begin with we have simultaneous upper triangularization.
- ▶ Theorem 36.1: Let A_1 , A_2 be two commuting $n \times n$ complex matrices. Then there exists a unitary U and two upper triangular matrices T_1 , T_2 such that

$$A_j = UT_jU^*, \quad j = 1, 2.$$

- ► To begin with we have simultaneous upper triangularization.
- ▶ Theorem 36.1: Let A_1 , A_2 be two commuting $n \times n$ complex matrices. Then there exists a unitary U and two upper triangular matrices T_1 , T_2 such that

$$A_j = UT_jU^*, \quad j = 1, 2.$$

▶ Here we are considering the standard inner product on \mathbb{C}^n .

- ► To begin with we have simultaneous upper triangularization.
- ▶ Theorem 36.1: Let A_1 , A_2 be two commuting $n \times n$ complex matrices. Then there exists a unitary U and two upper triangular matrices T_1 , T_2 such that

$$A_j = UT_jU^*, \ \ j = 1, 2.$$

- ▶ Here we are considering the standard inner product on \mathbb{C}^n .
- ▶ The point is that when A_1 , A_2 commute, we can find a single unitary U such that both U^*A_1U and U^*A_2U are upper triangular.

▶ Proof: The proof is by induction. For n = 1, there is nothing to show.

- ▶ Proof: The proof is by induction. For n = 1, there is nothing to show.
- ▶ Consider $n \ge 2$. Fix some eigenvalue a_1 of A_1 .
- ► Suppose $A_1v = a_1v$.

- Proof: The proof is by induction. For n = 1, there is nothing to show.
- ▶ Consider $n \ge 2$. Fix some eigenvalue a_1 of A_1 .
- ▶ Suppose $A_1v = a_1v$.
- ▶ By commutativity, $A_1A_2v = A_2A_1v = A_2(a_1v) = a_1(A_2v)$.

- Proof: The proof is by induction. For n = 1, there is nothing to show.
- ▶ Consider $n \ge 2$. Fix some eigenvalue a_1 of A_1 .
- ► Suppose $A_1v = a_1v$.
- ▶ By commutativity, $A_1A_2v = A_2A_1v = A_2(a_1v) = a_1(A_2v)$.
- ▶ In other words, the eigenspace $E_1 = \{v \in \mathbb{C}^n : Av = a_1v\}$ is left invariant by A_2 .

Note that the dimension of E_1 is the geometric multiplicity of a_1 for the matrix A_1 , and it is at least 1.

- Note that the dimension of E_1 is the geometric multiplicity of a_1 for the matrix A_1 , and it is at least 1.
- ▶ Let $\{v_1, v_2, ..., v_k\}$ be an orthonormal basis for E_1 .

- Note that the dimension of E_1 is the geometric multiplicity of a_1 for the matrix A_1 , and it is at least 1.
- ▶ Let $\{v_1, v_2, ..., v_k\}$ be an orthonormal basis for E_1 .
- ightharpoonup Extend it to an orthonormal basis $\mathcal{B} := \{v_1, \dots, v_n\}$ of \mathbb{C}^n .

- Note that the dimension of E_1 is the geometric multiplicity of a_1 for the matrix A_1 , and it is at least 1.
- ▶ Let $\{v_1, v_2, ..., v_k\}$ be an orthonormal basis for E_1 .
- ▶ Extend it to an orthonormal basis $\mathcal{B} := \{v_1, \dots, v_n\}$ of \mathbb{C}^n .
- ▶ Let U_0 be the unitary whose columns are $\{v_1, \ldots, v_n\}$.

▶ We have $A_1v_j = a_1v_j$ for $1 \le j \le k$.

- ▶ We have $A_1v_i = a_1v_i$ for $1 \le j \le k$.
- ▶ This means that the linear map $x \mapsto A_1x$, on the basis \mathcal{B} has a block matrix form:

$$R = \left[\begin{array}{cc} a_1 I_k & R_{12} \\ 0 & R_{22} \end{array} \right].$$

- ▶ We have $A_1v_i = a_1v_i$ for $1 \le j \le k$.
- ▶ This means that the linear map $x \mapsto A_1x$, on the basis \mathcal{B} has a block matrix form:

$$R = \left[\begin{array}{cc} a_1 I_k & R_{12} \\ 0 & R_{22} \end{array} \right].$$

▶ for some $k \times (n-k)$ matrix R_{12} and $(n-k) \times (n-k)$ matrix R_{22} or equivalently,

$$A_1 U_0 = U_0 R \qquad (1)$$

▶ We also know that A_2 leaves $E_1 = \text{span}\{v_1, ..., v_k\}$ invariant.

- ▶ We also know that A_2 leaves $E_1 = \text{span}\{v_1, ..., v_k\}$ invariant.
- ▶ This means that the linear map $x \mapsto A_2x$ has in the basis \mathcal{B} has a block matrix form:

$$S = \left[\begin{array}{cc} S_{11} & S_{12} \\ 0 & S_{22} \end{array} \right],$$

- ▶ We also know that A_2 leaves $E_1 = \text{span}\{v_1, ..., v_k\}$ invariant.
- ▶ This means that the linear map $x \mapsto A_2x$ has in the basis \mathcal{B} has a block matrix form:

$$S = \left[\begin{array}{cc} S_{11} & S_{12} \\ 0 & S_{22} \end{array} \right],$$

or equivalently,

$$A_2 U_0 = U_0 S$$
 (2).

- ▶ We also know that A_2 leaves $E_1 = \text{span}\{v_1, ..., v_k\}$ invariant.
- ▶ This means that the linear map $x \mapsto A_2x$ has in the basis \mathcal{B} has a block matrix form:

$$S = \left[\begin{array}{cc} S_{11} & S_{12} \\ 0 & S_{22} \end{array} \right],$$

or equivalently,

$$A_2 U_0 = U_0 S$$
 (2).

From equations (1) and (2), we have

$$A_1 = U_0 R U_0^*, \quad A_2 = U_0 S U_0^*.$$

Now as A_1, A_2 , commute, R, S also commute and we get:

Now as A_1, A_2 , commute, R, S also commute and we get:

$$\begin{bmatrix} a_1 I_k & R_{12} \\ 0 & R_{22} \end{bmatrix} \cdot \begin{bmatrix} S_{11} & S_{12} \\ 0 & S_{22} \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} \\ 0 & S_{22} \end{bmatrix} \cdot \begin{bmatrix} a_1 I_k & R_{12} \\ 0 & R_{22} \end{bmatrix}.$$

Now as A_1, A_2 , commute, R, S also commute and we get:

$$\begin{bmatrix} a_1 I_k & R_{12} \\ 0 & R_{22} \end{bmatrix} \cdot \begin{bmatrix} S_{11} & S_{12} \\ 0 & S_{22} \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} \\ 0 & S_{22} \end{bmatrix} \cdot \begin{bmatrix} a_1 I_k & R_{12} \\ 0 & R_{22} \end{bmatrix}.$$

▶ By block matrix computations,

$$\begin{bmatrix} a_1S_{11} & a_1S_{12} + R_{12}S_{22} \\ 0 & R_{22}S_{22} \end{bmatrix} = \begin{bmatrix} a_1S_{11} & S_{11}R_{12} + S_{12}R_{22} \\ 0 & S_{22}R_{22} \end{bmatrix}.$$

Now as A_1, A_2 , commute, R, S also commute and we get:

$$\begin{bmatrix} a_1 I_k & R_{12} \\ 0 & R_{22} \end{bmatrix} \cdot \begin{bmatrix} S_{11} & S_{12} \\ 0 & S_{22} \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} \\ 0 & S_{22} \end{bmatrix} \cdot \begin{bmatrix} a_1 I_k & R_{12} \\ 0 & R_{22} \end{bmatrix}.$$

By block matrix computations,

$$\begin{bmatrix} a_1S_{11} & a_1S_{12} + R_{12}S_{22} \\ 0 & R_{22}S_{22} \end{bmatrix} = \begin{bmatrix} a_1S_{11} & S_{11}R_{12} + S_{12}R_{22} \\ 0 & S_{22}R_{22} \end{bmatrix}.$$

▶ In particular, R_{22} and S_{22} commute. Note that they have order $(n-k) \times (n-k)$ with $k \ge 1$. Hence the induction hypothesis is applicable.

▶ Therefore, there exist a unitary W, two upper triangular matrices M_1, M_2 (all of order $(n-k) \times (n-k)$), such that

$$R_{22} = WM_1W^*, \quad S_{22} = WM_2W^*.$$

▶ Therefore, there exist a unitary W, two upper triangular matrices M_1, M_2 (all of order $(n - k) \times (n - k)$), such that

$$R_{22} = WM_1W^*, S_{22} = WM_2W^*.$$

▶ Further, by Schur's upper triangularization result, there exists a unitary Z and an upper triangular matrix X (all of order $(k \times k)$ such that $S_{11} = ZXZ^*$.

▶ Therefore, there exist a unitary W, two upper triangular matrices M_1 , M_2 (all of order $(n - k) \times (n - k)$), such that

$$R_{22} = WM_1W^*, \quad S_{22} = WM_2W^*.$$

- Further, by Schur's upper triangularization result, there exists a unitary Z and an upper triangular matrix X (all of order $(k \times k)$ such that $S_{11} = ZXZ^*$.
- ▶ We observe that,

$$A_{1} = U_{0} \begin{bmatrix} Z & 0 \\ 0 & W \end{bmatrix} \cdot \begin{bmatrix} a_{1}I_{k} & Z^{*}R_{12}W \\ 0 & M_{1} \end{bmatrix} \begin{bmatrix} Z^{*} & 0 \\ 0 & W^{*} \end{bmatrix} U_{0}^{*}$$

$$= U \begin{bmatrix} a_{1}I_{k} & Z^{*}R_{12}W \\ 0 & M_{1} \end{bmatrix} U^{*},$$

 \triangleright Therefore, there exist a unitary W, two upper triangular matrices M_1, M_2 (all of order $(n-k) \times (n-k)$), such that

$$R_{22} = WM_1W^*, \quad S_{22} = WM_2W^*.$$

- Further, by Schur's upper triangularization result, there exists a unitary Z and an upper triangular matrix X (all of order $(k \times k)$ such that $S_{11} = ZXZ^*$.
- We observe that.

$$A_{1} = U_{0} \begin{bmatrix} Z & 0 \\ 0 & W \end{bmatrix} \cdot \begin{bmatrix} a_{1}I_{k} & Z^{*}R_{12}W \\ 0 & M_{1} \end{bmatrix} \begin{bmatrix} Z^{*} & 0 \\ 0 & W^{*} \end{bmatrix} U_{0}^{*}$$

$$= U \begin{bmatrix} a_{1}I_{k} & Z^{*}R_{12}W \\ 0 & M_{1} \end{bmatrix} U^{*},$$

where

$$U = U_0 \left[\begin{array}{cc} Z & 0 \\ 0 & W \end{array} \right]$$

being a product of two unitaries is a unitary.

► Similarly,

$$A_{2} = U_{0} \begin{bmatrix} Z & 0 \\ 0 & W \end{bmatrix} \cdot \begin{bmatrix} X & Z^{*}S_{12}W \\ 0 & M_{2} \end{bmatrix} \begin{bmatrix} Z^{*} & 0 \\ 0 & W^{*} \end{bmatrix} U_{0}^{*}$$
$$= U \begin{bmatrix} X & Z^{*}S_{12}W \\ 0 & M_{2} \end{bmatrix} U^{*},$$

► Similarly,

$$A_{2} = U_{0} \begin{bmatrix} Z & 0 \\ 0 & W \end{bmatrix} \cdot \begin{bmatrix} X & Z^{*}S_{12}W \\ 0 & M_{2} \end{bmatrix} \begin{bmatrix} Z^{*} & 0 \\ 0 & W^{*} \end{bmatrix} U_{0}^{*}$$
$$= U \begin{bmatrix} X & Z^{*}S_{12}W \\ 0 & M_{2} \end{bmatrix} U^{*},$$

Similarly,

$$A_{2} = U_{0} \begin{bmatrix} Z & 0 \\ 0 & W \end{bmatrix} \cdot \begin{bmatrix} X & Z^{*}S_{12}W \\ 0 & M_{2} \end{bmatrix} \begin{bmatrix} Z^{*} & 0 \\ 0 & W^{*} \end{bmatrix} U_{0}^{*}$$
$$= U \begin{bmatrix} X & Z^{*}S_{12}W \\ 0 & M_{2} \end{bmatrix} U^{*},$$

where

$$U = U_0 \left[\begin{array}{cc} Z & 0 \\ 0 & W \end{array} \right]$$

is a unitary.

Similarly,

$$A_{2} = U_{0} \begin{bmatrix} Z & 0 \\ 0 & W \end{bmatrix} \cdot \begin{bmatrix} X & Z^{*}S_{12}W \\ 0 & M_{2} \end{bmatrix} \begin{bmatrix} Z^{*} & 0 \\ 0 & W^{*} \end{bmatrix} U_{0}^{*}$$
$$= U \begin{bmatrix} X & Z^{*}S_{12}W \\ 0 & M_{2} \end{bmatrix} U^{*},$$

where

$$U = U_0 \left[\begin{array}{cc} Z & 0 \\ 0 & W \end{array} \right]$$

is a unitary.

$$T_1 := \left[\begin{array}{cc} a_1 I_k & R_{12} \\ 0 & M_1 \end{array} \right]$$

is upper triangular as M_1 is upper triangular.

Similarly,

$$A_{2} = U_{0} \begin{bmatrix} Z & 0 \\ 0 & W \end{bmatrix} \cdot \begin{bmatrix} X & Z^{*}S_{12}W \\ 0 & M_{2} \end{bmatrix} \begin{bmatrix} Z^{*} & 0 \\ 0 & W^{*} \end{bmatrix} U_{0}^{*}$$
$$= U \begin{bmatrix} X & Z^{*}S_{12}W \\ 0 & M_{2} \end{bmatrix} U^{*},$$

where

$$U=U_0\left[\begin{array}{cc} Z & 0 \\ 0 & W \end{array}\right]$$

is a unitary.

$$T_1 := \left[\begin{array}{cc} a_1 I_k & R_{12} \\ 0 & M_1 \end{array} \right]$$

is upper triangular as M_1 is upper triangular.

$$T_2 := \left[\begin{array}{cc} X & Z^* S_{12} W \\ 0 & M_2 \end{array} \right]$$

is upper triangular as X Ma are upper triangular = > 4 = > = > 900

Simultaneous diagonalization

► Theorem 36.2: Suppose A_1 , A_2 are commuting normal matrices. Then there exists a unitary U with two diagonal matrices D_1 , D_2 such that $A_1 = UD_1U^*$, $A_2 = UD_2U^*$.

Simultaneous diagonalization

- ▶ Theorem 36.2: Suppose A_1 , A_2 are commuting normal matrices. Then there exists a unitary U with two diagonal matrices D_1 , D_2 such that $A_1 = UD_1U^*$, $A_2 = UD_2U^*$.
- ▶ Proof: This is clear from the previous theorem, as T_1 , T_2 are upper triangular normal matrices they must be diagonal.

Simultaneous diagonalization

- ▶ Theorem 36.2: Suppose A_1 , A_2 are commuting normal matrices. Then there exists a unitary U with two diagonal matrices D_1 , D_2 such that $A_1 = UD_1U^*$, $A_2 = UD_2U^*$.
- ▶ Proof: This is clear from the previous theorem, as T_1 , T_2 are upper triangular normal matrices they must be diagonal.
- ▶ Hence take $D_1 = T_1$ and $D_2 = T_2$.

Simultaneous diagonalization

- ▶ Theorem 36.2: Suppose A_1 , A_2 are commuting normal matrices. Then there exists a unitary U with two diagonal matrices D_1 , D_2 such that $A_1 = UD_1U^*$, $A_2 = UD_2U^*$.
- ▶ Proof: This is clear from the previous theorem, as T_1 , T_2 are upper triangular normal matrices they must be diagonal.
- ▶ Hence take $D_1 = T_1$ and $D_2 = T_2$.
- Corollary 36.3: Suppose A_1 , A_2 are normal matrices. Then A_1 , A_2 are commuting if and only if there exists a normal matrix A with polynomials p_1 , p_2 such that $A_1 = p_1(A)$, $A_2 = p_2(A)$.

Simultaneous diagonalization

- ► Theorem 36.2: Suppose A_1 , A_2 are commuting normal matrices. Then there exists a unitary U with two diagonal matrices D_1 , D_2 such that $A_1 = UD_1U^*$, $A_2 = UD_2U^*$.
- ▶ Proof: This is clear from the previous theorem, as T_1 , T_2 are upper triangular normal matrices they must be diagonal.
- ▶ Hence take $D_1 = T_1$ and $D_2 = T_2$.
- Corollary 36.3: Suppose A_1 , A_2 are normal matrices. Then A_1 , A_2 are commuting if and only if there exists a normal matrix A with polynomials p_1 , p_2 such that $A_1 = p_1(A)$, $A_2 = p_2(A)$.
- ▶ Proof: If A_1 , A_2 are commuting, by the previous theorem, we may assume that both A_1 , A_2 are diagonal. Now take A as the diagonal matrix with j-th diagonal entry as j. It is easy to get polynomials p_1 , p_2 so that $p_1(j) = (A_1)_{jj}$, $p_2(j) = (A_2)_{jj}$. Hence $p_1(A) = A_1$, $p_2(A) = A_2$.

Simultaneous diagonalization

- ▶ Theorem 36.2: Suppose A_1 , A_2 are commuting normal matrices. Then there exists a unitary U with two diagonal matrices D_1 , D_2 such that $A_1 = UD_1U^*$, $A_2 = UD_2U^*$.
- ▶ Proof: This is clear from the previous theorem, as T_1 , T_2 are upper triangular normal matrices they must be diagonal.
- ▶ Hence take $D_1 = T_1$ and $D_2 = T_2$.
- Corollary 36.3: Suppose A_1 , A_2 are normal matrices. Then A_1 , A_2 are commuting if and only if there exists a normal matrix A with polynomials p_1 , p_2 such that $A_1 = p_1(A)$, $A_2 = p_2(A)$.
- Proof: If A_1 , A_2 are commuting, by the previous theorem, we may assume that both A_1 , A_2 are diagonal. Now take A as the diagonal matrix with j-th diagonal entry as j. It is easy to get polynomials p_1 , p_2 so that $p_1(j) = (A_1)_{jj}$, $p_2(j) = (A_2)_{jj}$. Hence $p_1(A) = A_1$, $p_2(A) = A_2$.
- The converse is to show that for any normal matrix A, $p_1(A)$, $p_2(A)$ commute for any two polynomials and is easy.

▶ Theorem 36.4: Fix $k \ge 1$. Suppose A_1, A_2, \ldots, A_k are commuting matrices. Then there exists a unitary U with upper triangular matrices T_1, \ldots, T_k such that

$$A_j = UT_jU^*, \quad 1 \le j \le k.$$

▶ Theorem 36.4: Fix $k \ge 1$. Suppose A_1, A_2, \ldots, A_k are commuting matrices. Then there exists a unitary U with upper triangular matrices T_1, \ldots, T_k such that

$$A_j = UT_jU^*, \quad 1 \le j \le k.$$

Proof: Exercise.

▶ Theorem 36.4: Fix $k \ge 1$. Suppose A_1, A_2, \ldots, A_k are commuting matrices. Then there exists a unitary U with upper triangular matrices T_1, \ldots, T_k such that

$$A_j = UT_jU^*, \quad 1 \le j \le k.$$

- Proof: Exercise.
- ▶ Theorem 36.5: Fix $k \ge 1$. Suppose $A_1, A_2, ..., A_k$ are commuting normal matrices. Then there exists a unitary U with diagonal matrices $D_1, ..., D_k$ such that

$$A_j = UD_jU^*, \quad 1 \le j \le k.$$

▶ Theorem 36.4: Fix $k \ge 1$. Suppose A_1, A_2, \ldots, A_k are commuting matrices. Then there exists a unitary U with upper triangular matrices T_1, \ldots, T_k such that

$$A_j = UT_jU^*, \quad 1 \le j \le k.$$

- Proof: Exercise.
- ▶ Theorem 36.5: Fix $k \ge 1$. Suppose $A_1, A_2, ..., A_k$ are commuting normal matrices. Then there exists a unitary U with diagonal matrices $D_1, ..., D_k$ such that

$$A_j = UD_jU^*, \quad 1 \le j \le k.$$

Proof: Clear from the previous theorem.

► Example 36.6: For $n \ge 3$, take $A_1 = J_0(n)$ and $A_2 = J_0(n)^2$.

- **Example 36.6**: For $n \ge 3$, take $A_1 = J_0(n)$ and $A_2 = J_0(n)^2$.
- ▶ Then A_1 and A_2 are commuting.

- ► Example 36.6: For $n \ge 3$, take $A_1 = J_0(n)$ and $A_2 = J_0(n)^2$.
- ▶ Then A_1 and A_2 are commuting.
- ▶ A_1 is already in Jordan form. By the uniqueness of Jordan form, if $S^{-1}A_1S$ is in Jordan form, then $S^{-1}A_1S = A_1$.

- ► Example 36.6: For $n \ge 3$, take $A_1 = J_0(n)$ and $A_2 = J_0(n)^2$.
- ▶ Then A_1 and A_2 are commuting.
- ▶ A_1 is already in Jordan form. By the uniqueness of Jordan form, if $S^{-1}A_1S$ is in Jordan form, then $S^{-1}A_1S = A_1$.
- ▶ That is, $A_1S = SA_1$.

- ► Example 36.6: For $n \ge 3$, take $A_1 = J_0(n)$ and $A_2 = J_0(n)^2$.
- ▶ Then A_1 and A_2 are commuting.
- ▶ A_1 is already in Jordan form. By the uniqueness of Jordan form, if $S^{-1}A_1S$ is in Jordan form, then $S^{-1}A_1S = A_1$.
- ▶ That is, $A_1S = SA_1$.
- ▶ This implies $A_1^2S = SA_1^2$. Hence $S^{-1}A_2S = A_2$. But A_2 is not in Jordan form.

- ► Example 36.6: For $n \ge 3$, take $A_1 = J_0(n)$ and $A_2 = J_0(n)^2$.
- ▶ Then A_1 and A_2 are commuting.
- ▶ A_1 is already in Jordan form. By the uniqueness of Jordan form, if $S^{-1}A_1S$ is in Jordan form, then $S^{-1}A_1S = A_1$.
- ▶ That is, $A_1S = SA_1$.
- ▶ This implies $A_1^2S = SA_1^2$. Hence $S^{-1}A_2S = A_2$. But A_2 is not in Jordan form.
- ▶ Therefore simultaneous Jordan form is not possible for A_1 and A_2 .

- ► Example 36.6: For $n \ge 3$, take $A_1 = J_0(n)$ and $A_2 = J_0(n)^2$.
- ▶ Then A_1 and A_2 are commuting.
- ▶ A_1 is already in Jordan form. By the uniqueness of Jordan form, if $S^{-1}A_1S$ is in Jordan form, then $S^{-1}A_1S = A_1$.
- ▶ That is, $A_1S = SA_1$.
- ▶ This implies $A_1^2S = SA_1^2$. Hence $S^{-1}A_2S = A_2$. But A_2 is not in Jordan form.
- ▶ Therefore simultaneous Jordan form is not possible for A_1 and A_2 .
- ► END OF LECTURE 36.