

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA

Facultad de Economía y Planificación Departamento de Estadística e Informática

NOTA

Modelos de optimización Práctica Calificada Nº 1

Apellidos y Nombres:	Ciclo: 2020-II
Duración: 90 minutos	

Parte 1: Marque la alternativa correcta

(0.5 cada una)

- 1. Una función f que satisface: f(0.7x+0.4y) >= f(0.7x)+0.4f(y), para que x y que pertenezca a cierto subconjunto S₁ de un conjunto convexo S y satisface que f(0.7x+0.4y) <= f(0.7x)+0.4f(y), entonces el complemento de S₁.
 - a) Es convexa sobre S
 - b) Es cóncava sobre S
 - c) Es cóncava y convexa sobre S
 - d) No es ni cóncava ni convexa sobre S.
- 2. Una función es convexa si y sólo si:
 - a) -f es cóncava
 - b) -f es convexa
 - c) f⁻¹ es convexa
 - d) f⁻¹ es convexa
- 3. Es cierto que:
 - a) Si x* es un mínimo local de un problema de programación convexo, entonces x* es un mínimo global
 - b) Si x* es un mínimo local de un problema de programación lineal, entonces x* es un mínimo local
 - c) Si x* es mínimo local estricto de un problema de programación convexo, entonces x* es un máximo global
 - d) Son verdaderas a, b, y c
 - e) Ninguna de las anteriores es verdadera
- 4. En una restricción de desigualdad, un punto \bar{x} que está en la frontera es:
 - a) Un punto interior
- b) Un punto activo
- c) El único punto activo

- d) un punto óptimo
- e) Uno de los puntos óptimos

Parte 2: Resuelva los siguientes ejercicios (COLOCAR EL PROCEDIMIENTO)

1. En una economía lineal para producir 3 unidades de trigo se requieren 6 unidades de tierra, \$8 en semilla y 3 trabajadores. Para producir 4 unidades de centeno se requieren 5 unidades de tierra, \$10 de semilla y 6 trabajadores. El precio por unidad de trigo y centeno es \$15 y \$20.5 respectivamente, siendo las cantidades disponibles de tierra y de trabajo de 100 y 130 unidades respectivamente. Si el

empresario desea optimizar el resultado de su explotación, formule un modelo de programación lineal. Objetivo: maximizar beneficio. (3.0 puntos)

2. Considerar el problema:

Minimizar: x₁-x₂

Sujeto a:

$$x_1^2 + x_2^2 \le 9$$

Grafique la región factible. Use el gráfico para encontrar todos los mínimos locales para el problema, y determine cual o cuales de ellos son también mínimos globales.

(3.0 puntos)

Mínimo global = (0,-3)

Mínimo local {x1, x2/ $-\sqrt{5} \le x1 \le \sqrt{5}$, X2=2} U (0,-3)

3. Para la siguiente función, determine si es convexa o cóncava (3.0 puntos)

$$f(x) = \begin{cases} 3 - (x - 1)^3, para \ 0 \le x < 3\\ -2 + (x - 4)^2, para \ 3 \le x < 6 \end{cases}$$

$$f'(x) = -3(x-1)^2$$

 $f''(x) = -6(x-1) \le 0$ para $x = (2,3)$ en $0 \le x < 3$, concava

f`(x)= 2(x-4)
f``(x)=2 ≥0 para
$$0 \le x < 3$$
, convexa

La funcion es concava

4. Expresar $(\frac{7}{2}, \frac{5}{2})^T$ como una combinación convexa en los puntos $(2,1)^T$, $(1,3)^T$ y $(1,1)^T$ (2.5 puntos)

$$\begin{split} y &= \sum \alpha_i \, x_i \quad \sum \alpha_i = 1 \\ \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 = \left(\frac{7}{2} \quad \frac{5}{2}\right)^T \\ \alpha_1 + \alpha_2 + \alpha_3 &= 1 \\ \alpha_1 * (2,1) + \alpha_2 * (1,3) + \alpha_2 * (1,1) = \left(\frac{7}{2} \quad \frac{5}{2}\right)^T \\ &\stackrel{\text{a <- rbind(c(2, 1, 1), c(1, 3, 1), c(1, 1, 1))}}{\text{c(1, 3, 1), c(1, 1, 1))}} \\ &\stackrel{\text{b <- c(7/2,5/2, 1)}}{\text{fractions(solve(a, b))}} \\ & \stackrel{\text{l] 5/2 } 3/4 - 9/4} \end{split}$$

No se puede expresar como una combinación convexa. Los valores de alfa deben ser positivos.

5. Sea $f(x_1, x_2) = 2x_1^2 - 4x_1x_2 + 4x_2^2 - 2x_1 + 6x_2$ determinar la convexidad (3.0 puntos)

6. Sea $S_1 = \{x: x_1 + x_2 \le 1, x_1 \ge 0\}$ y $S_2 = \{x: x_1 - x_2 \ge 1, x_1 \le 1\}$ y sea $S = S_1 \cup S_2$ Pruebe que S_1 y S_2 son ambos conjuntos convexos pero que S no es un conjunto convexo. (3.5 puntos)

 $S_1 = \{x: x_1 + x_2 \le 1, x_1 \ge 0\}$ existe solo dos cortes (es convexa)

 $S_2 = \{x: x_1 - x_2 \ge 1, x_1 \le 1\}$ existe solo dos cortes (es convexa)

 $S = S_1 \cup S_2$ existe tres puntos de corte (no es convexa)

