Examen - Fondamentaux théoriques en Machine Learning

Nicolas Bourgeois

SCIA, S9, 2018-2019

L'examen dure 1 heure. Les documents papier sont autorisés. Toute forme de support électronique (téléphone, etc) est interdite.

Exercice 1

a) Produisez les matrices de confusion respectives associées aux deux estimateurs figurés par les droites suivantes (NB : il y a 50 points dans chaque classe, les triangles correspondent à Y=1, les ronds à Y=-1)

b) On considère la fonction de perte asymétrique suivante :

$$y' > y \Rightarrow LF(y, y') = 2, y' < y \Rightarrow LF(y, y') = 1$$

Calculez l'ERM des deux estimateurs.

c) Supposez que EST $_1$ soit un SVM. Que peut-on affirmer à coup sûr concernant son coefficient de pénalisation?

Exercice 2

A partir des tableaux de données ci-dessous, produisez l'estimateur bayesien naïf associé à l'obervation $X=(TRUE,\,TRUE)$.

Y=True	X=True	X=False
X1	17	43
X2	31	29
X3	11	49

Y=False	$\mid X=True$	\mid X=False
X1	1	24
X2	20	5
X3	11	14

Exercice 3

Prouvez que la dimension de Vapnik-Chervonenkis du preceptron monocouche sur les sommets d'une pyramide à base carrée est exactement 4.

Exercice 4

A partir du tableau de données ci-dessous, produisez un arbre de décision de profondeur 2 de risque minimal.

X1	X2	Х3	Y
Т	F	Т	F
Τ	F	F	F
Τ	T	T	Γ
Γ	Γ	F	F
F	Γ	Γ	Γ
F	T	F	F
F	F	T	Γ
F	F	F	Т