FIRST NAME	LAST NAME	
STI IDENT NI IMPED		

UNIVERSITY OF TORONTO

FINAL EXAMINATION, DECEMBER 1995

SECOND YEAR - PROGRAM 6

CHE 221F - CALCULUS AND NUMERICAL METHODS

EXAMINER - D.C.S. KUHN

- 1. Attempt all 6 problems; they are of equal value.
- 2. Calculator Type 2 All non-programmable calculators are allowed. No programmable calculators are allowed.
- 3. Paper Type C Each candidate may use both sides of a single authorized aid sheet.
- 4. **ALL WORK IS TO BE DONE ON THESE SHEETS!** Use the back of the page if you need more space. Be sure to indicate clearly if your work continues elsewhere. **DO NOT SEPARATE THE SHEETS.**

Useful Integral:
$$\int \frac{1}{\sin u} du = \ln \left| \tan \frac{u}{2} \right| + C;$$
$$\int \cos^2 u du = \frac{u}{2} + \frac{\sin 2u}{4} + C$$

Question	Mark
1	
2	
3	
4	
5	
6	
Total	

(a) Find a particular solution to $\sin x \frac{dy}{dx} = x - y \cos x$ where $y(\frac{\pi}{2}) = 1$.

Problem 1 [cont'd]

(b) The length of a curve $\bar{f}(t)$ between t_0 and t_1 is:

$$s = \int_{t_0}^{t_1} |\bar{f}'(t)| dt.$$

Calculate the length of the part of the circle $x^2 + y^2 = 4$ above the x-axis using the above formula. Recall $|\bar{f}'(t)|$ is the magnitude of the vector $\bar{f}'(t)$.

A lamina lies inside the circle $x^2 + y^2 = 4$, above the line y=1, to the left of the line y = x and to the right of the line y = -x. Its density is $\rho = (x^2 + y^2)^{-3/2}$. Find the polar moment of inertia, I_O ; that is the moment of interia with respect to the z-axis.

Find
$$\iint_R y \ dA$$
, where R is the region bounded by $2x+3y=1$, $2x+3y=3$, $x-2y=5$, and the x-axis, by introducing the change of variables $u=2x+3y$ and $v=x-2y$.

Find the mass of the solid bounded by the cones $x^2 = y^2 + z^2$ and $x^2 = 3y^2 + 3z^2$, and by the planes x = 1 and x = 2. The density is $\delta = (x^2 + y^2 + z^2)^{1/2}$.

Problem 4 [cont'd]

Health inspectors are interested in the molar flux of CO_2 out through the open section of the Skydome roof during baseball games. The open section may be described by the surface $z=(4-x^2-y^2)^{1/2}$ within the cylinder $x^2+y^2=1$. If the CO_2 concentration during a game is the $CO_2=12-x^2-y^2-z^2$ [mol/volume] and the velocity field distribution is $\bar{v}=(x,y,z)$; determine the molar flux through the open roof, i.e.

$$\iint_{S} C_{CO2} \overline{v} \bullet \overline{n} \ dS$$

Problem 5 [cont'd]

Let S be the part of the surface of the paraboloid $z = x^2 + 4y^2$ above the plane z = 1 and below the plane z = 4 oriented with upward pointing normal vector. Let C be the intersection of these planes and the cones, oriented as in Stokes' Theorem. Let

$$\overline{F} = z\overline{i} + x\overline{j} + y\overline{k}$$

Verify Stokes' Theorem for this case by computing

$$\oint_C \overline{F} \bullet \overline{T} ds \text{ and } \iint_S (\nabla \times \overline{F}) \bullet \overline{n} dS$$

separately and showing that they are equal.

Problem 6 [cont'd]