Probabilités

Chapitre 5 : Constructions de suites de variables aléatoires

Lucie Le Briquer

23 novembre 2017

Objectif. Si on se donne $\mu_1, \mu_2, ...$ une suite de probabilités sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Peut on trouver sur $(\Omega, \mathcal{A}, \mathbb{P})$ une suite de v.a. $X_1, X_2, ...$ indépendantes telles que $X_i \sim \mu_i$?

Moralement. $X = (X_1, X_2, ...) \sim \mu_1 \otimes \mu_2 \otimes ...$

1 Cas 1 : Construction de X_1 de loi μ_1

Réalisation canonique :

$$X_1: \left\{ \begin{array}{ccc} (\mathbb{R}, \mathcal{B}(\mathbb{R}), \mu_1) & \longrightarrow & (\mathbb{R}, \mathcal{B}(\mathbb{R})) \\ x & \longmapsto & x \end{array} \right.$$

On veut quelque chose de plus constructif avec comme espace de départ $(\Omega, \mathcal{A}, \mathbb{P}) = ([0, 1], \mathcal{B}([0, 1]), \text{Leb}).$

- **Définition 1** (fonction de répartition) —

Si X est une v.a. à valeur dans $(\mathbb{R},\mathcal{B}(\mathbb{R}))$, on définit :

$$F_X: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & [0,1] \\ t & \longmapsto & \mathbb{P}(X \leqslant t) \end{array} \right. = \mu_X(]-\infty,t])$$

Remarque. F_X ne dépend que de la loi de X, on définit pour une probabilité $F_{\mu}(t) = \mu(]-\infty,t]$).

- Propriété 1 -

$$F_{\mu} = F_{\nu} \implies \mu = \nu$$

Preuve.

 F_{μ} caractérise μ sur $C = \{]-\infty,t]|t \in \mathbb{R}\}$ qui est une classe stable par intersection finie qui engendre la tribu.

- Propriété 2 —

La fonction de répartition vérifie :

- fonction croissante
- continue à droite
- $\bullet \lim_{-\infty} F_X = 0$
- $\bullet \lim_{+\infty} F_X = 1$

Preuve.

- soit $s < t, |-\infty, s| \subset |-\infty, t| \Rightarrow \mathbb{P}(X \leqslant s) \leqslant \mathbb{P}(X \leqslant t)$
- Si $x_n \to 0$, $\cap]-\infty, t+x_n] =]-\infty, t]$ donc $\mathbb{P}(X \leqslant t) \leqslant \mathbb{P}(X \leqslant t+x_n) \to \mathbb{P}(X \leqslant t)$
- $\bullet \ \cup]-\infty,n]=\mathbb{R}$
- $\bullet \ \cap]-\infty,-n]=\emptyset$

- Propriété 3 (une sorte de réciproque) -

Si $F: \mathbb{R} \to [0,1]$ telle que F croissante, continue à droite, de limite 0 en $-\infty$ et 1 en $+\infty$, et $U \sim \mathcal{U}([0,1])$. Alors, en posant $F^{<-1>}(u) = \inf\{t \in \mathbb{R} | F(t) \geqslant u\}$ pour 0 < u < 1, on a $F^{<-1>}(U)$ qui a pour fonction de répartition F.

Application. $F_{\mu}^{<-1>}(U) \sim \mu$. $\left(F_{\mu}^{<-1>}([0,1],\mathcal{B}([0,1]), \text{Leb}) \to \mathbb{R} \text{ est une v.a. de loi } \mu\right)$.

Exemple. $\mu = \mathcal{E}(\lambda)$,

$$F_{\mu}(t) = (1 - e^{-\lambda t}) \mathbb{1}_{t \geqslant 0}$$

$$F_{\mu}^{<-1>}(u) = \frac{\ln(1-u)}{\lambda}$$

Alors $\frac{\ln(1-U)}{\lambda} \sim \mathcal{E}(\lambda)$ si $U \sim \mathcal{U}([0,1])$.

Preuve.

Si 0 < u < 1, on pose $A_u = \{t | \Gamma(t) \ge u\}$

- $\lim_{n \to \infty} F = 1 > u \text{ donc } A_u \neq \emptyset$
- F croissante, donc si $t \in A_u$ on a $[t, +\infty[\subset A_u \text{ donc } A_u = [a, +\infty[\text{ ou }]a, +\infty[$
- $\lim_{-\infty} F = 0$ donc $A_u \neq \mathbb{R}$
- $a + \frac{1}{n} \in A_u \forall n \Rightarrow F(a + \frac{1}{n}) \geqslant u \underset{\text{cont à droite}}{\Rightarrow} F(a) \geqslant u \Rightarrow a \in A_u$

Donc A_u est de la forme $[a, +\infty[= [F^{<-1>}(u), +\infty[$.

$$\begin{split} F_{F^{<-1}>(U)}(t) &= \mathbb{P}(F^{<-1}>(U) \leqslant t \cap 0 < U < 1) \\ &= \mathbb{P}(t \in A_u) \\ &= \mathbb{P}(F(t) \geqslant U) \\ &= \int_0^1 \mathbb{1}_{u \leqslant F(t)} du = F(t) \end{split}$$

Remarque. Ceci caractérise les fonctions de répartitions.

Cas 2 : Construire X_1, X_2, \dots v.a.i.i.d. de loi $\mathcal{B}(\frac{1}{2})$

Soient Z et $X_1, ..., X_n, ...$ des v.a. telles que :

- $Z \in [0, 1]$ p.s.
- $X_i \in \{0, 1\}$ p.s.

• $Z = \sum_{i=1}^n \frac{X^i}{2^i}$ p.s. Alors $Z \sim \mathcal{U}([0,1]) \Leftrightarrow X_1, X_2, \dots$ est une suite de v.a. indépendantes de loi $\mathcal{B}(\frac{1}{2})$.

Remarque. Cela résout le problème car on se donne $Z \sim \mathcal{U}([0,1])$ et on pose X_i le i-ème indice du développement diadique de Z, $X_i = \lfloor 2^i Z \rfloor - 2 \lfloor 2^{i-1} Z \rfloor$. Alors, $Z = \sum_{i \geqslant 1} \frac{X_i}{2^i}$ p.s. et donc les X_i ont la loi voulue.

Preuve.

Soit A= "le développement est propre" = { $\not\exists n$ tel qu $\forall i\geqslant n, X_i=1$ }. Faisons comme si A p.s.

$$X_1,...,X_n$$
 v.a. indépendantes de loi $\mathcal{B}\left(\frac{1}{2}\right)$ $\Leftrightarrow \ \forall (x_1,...,x_n) \in \{0,1\}^n \ \mathbb{P}((X_1,...,X_n)=x_1,...x_n)=\frac{1}{2^n}$

Or

$$\mathbb{P}(X_1, ..., X_n = x_1, ..., x_n) = \mathbb{P}\left((X_1, ..., X_n) = x_1, ... x_n, Z = \sum_{i \ge 1} \frac{X_i}{2^i}, A\right)$$

$$= \mathbb{P}\left(Z = \sum_{i=1}^n \frac{x_i}{2^i} + \sum_{i=n+1}^{+\infty} \frac{X_i}{2^i}, Z = \sum_{i=1}^{+\infty}, A\right)$$

$$= \mathbb{P}\left(Z \in \left[\sum_{i=1}^n \frac{x_i}{2^i}, \sum_{i=1}^n \frac{x_i}{2^i} \frac{1}{2^n}\right]\right)$$

Donc,

$$\Leftrightarrow \forall n \forall x_1, ..., x_n \in \{0, 1\}^n \quad \mathbb{P}\left(Z \in \left[\sum_{i=1}^n \frac{x_i}{2^i}, \sum_{i=1}^n \frac{x_i}{2^i} \frac{1}{2^n}\right[\right) = \frac{1}{2^n}$$
$$\Leftrightarrow Z \sim \mathcal{U}([0, 1])$$

On a bien A p.s. quelle que soit le côté de l'équivalence dont on part. En effet, si les X_i sont des v.a.i.i.d. $\mathcal{B}(\frac{1}{2})$,

$$\mathbb{P}(\overline{A}) = \mathbb{P}\left(\bigcup_{n}\bigcap_{i\geqslant n}X_i = 1\right) \leqslant \sum_{n}\mathbb{P}\left(\bigcap_{i\geqslant n}X_i = 1\right) = \sum_{n}\mathbb{P}\left(\bigcap_{n\leqslant i\leqslant n+k-1}X_i = 1\right) = \sum_{n}0 = 0$$

Si $Z \sim U([0, 1])$,

$$\mathbb{P}\left(\overline{A}\cap Z = \sum_{i\geqslant 1}\frac{X_i}{2^i}\right) = \mathbb{P}\bigg(\bigcup_n Z = \sum_{i=1}^n\frac{X_i}{2^i} + \underbrace{\sum_{i=n+1}^{+\infty}\frac{1}{2^i}}\bigg) \leqslant \mathbb{P}(Z\in\mathbb{Q}) = 0$$

Théorème 1 (généralisation) —

Soit
$$Z \in [0,1]$$
 p.s., si X_i dans $\{0,...,b-1\}$ p.s. $Z = \sum_{i\geqslant 1} \frac{X_i}{b^i}$
$$Z \sim \mathcal{U}([0,1]) \iff (X_i)_{i\geqslant 1} \text{ vaiid } \sim \mathcal{U}(\{0,...,b-1\})$$

3 Construction de $U_1, U_2, ...$ v.a. indépendantes de loi $\mathcal{U}([0, 1])$

Soit $(X_i)_{i\geqslant 1}$ une suite de v.a. indépendantes de loi $\sim \mathcal{B}(\frac{1}{2})$. $((i,j)\to 2^{i-1}(2j+1)$ est une bijection de $(\mathbb{N}^*)^2\to \mathbb{N}$)

On pose $Y_{i,j} = X_{2^i(2j+1)}$, alors $(Y_{i,j})_{i,j\geqslant 1}$ est une famille de v.a. indépendantes. Par le lemme de regroupement $\mathcal{B}_j = \sigma(Y_{i,j}|i\geqslant 1)$ est une famille de tribus indépendantes et donc on pose $U_j = \sum_{i\geqslant 1} Y_{i,j}/2$ qui est \mathcal{B}_j -mesurable. Les U_j sont indépendants donc d'après le théorème précédent, $U_j \sim \mathcal{U}([0,1])$.