5. Duality

Xinfu Liu

Outline

- Lagrange dual problem
- weak and strong duality
- geometric interpretation
- optimality conditions
- perturbation and sensitivity analysis
- examples
- generalized inequalities

Lagrangian

standard form problem (not necessarily convex)

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i=1,...,m$
 $h_i(x)=0, \quad i=1,...,p$

variable $x \in \mathbb{R}^n$, domain \mathcal{D} , optimal value p^*

Lagrangian:
$$L: \mathbf{R}^n \times \mathbf{R}^m \times \mathbf{R}^p \to \mathbf{R}$$
, with $\operatorname{dom} L = \mathcal{D} \times \mathbf{R}^m \times \mathbf{R}^p$, $L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$

- weighted sum of objective and constraint functions
- λ_i is Lagrange multiplier associated with $f_i(x) \leq 0$
- v_i is Lagrange multiplier associated with $h_i(x) = 0$

Lagrange dual function

Lagrange dual function: $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$,

$$g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu)$$
$$= \inf_{x \in \mathcal{D}} (f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x))$$

g is **concave**, can be $-\infty$ for some λ, ν

lower bound property: if $\lambda \geq 0$, then $g(\lambda, \nu) \leq p^*$

proof: if \tilde{x} is feasible and $\lambda \geq 0$, then

$$f_0(\tilde{x}) \ge L(\tilde{x}, \lambda, \nu) \ge \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) = g(\lambda, \nu)$$

minimizing over all feasible \tilde{x} gives $p^* \geq g(\lambda, \nu)$

Least-norm solution of linear equations

minimize $x^T x$ subject to Ax = b

dual function

- Lagrangian is $L(x, v) = x^T x + v^T (Ax b)$
- to minimize L over x, set gradient equal to zero:

$$\nabla_{x}L(x,\nu) = 2x + A^{T}\nu = 0$$
 \Rightarrow $x = -(1/2)A^{T}\nu$

• plug in *L* to obtain *g*:

$$g(\nu) = L((-1/2)A^T\nu, \nu) = -\frac{1}{4}\nu^T A A^T \nu - b^T \nu$$

a concave function of ν

lower bound property: $p^* \ge -\frac{1}{4} v^T A A^T v - b^T v$ for all v

Standard form LP

minimize $c^T x$ subject to $Ax = b, x \ge 0$

dual function

• Lagrangian is

$$L(x, \lambda, \nu) = c^T x + \nu^T (Ax - b) - \lambda^T x$$
$$= -b^T \nu + (c + A^T \nu - \lambda)^T x$$

• L is affine in x, hence

$$g(\lambda, \nu) = \inf_{x} L(x, \lambda, \nu) = \begin{cases} -b^{T} \nu & A^{T} \nu - \lambda + c = 0 \\ -\infty & otherwise \end{cases}$$

g is linear on affine domain $\{(\lambda, \nu) \mid A^T \nu - \lambda + c = 0\}$, hence **concave** lower bound property: $p^* \ge -b^T \nu$ if $A^T \nu + c \ge 0$

Equality constrained norm minimization

minimize
$$||x||$$
 subject to $Ax = b$

dual function

$$g(\nu) = \inf_{x} (\|x\| - \nu^T A x + b^T \nu) = \begin{cases} b^T \nu & \|A^T \nu\|_* \le 1 \\ -\infty & \text{otherwise} \end{cases}$$

where $||v||_* = \sup\{u^T v \mid ||\mathbf{u}|| \le 1\}$ is dual norm of $||\cdot||$

proof: follows from $\inf_{x}(\|x\|-y^Tx)=0$ if $\|y\|_* \le 1, -\infty$ otherwise

- If $||y||_* \le 1$, then $||x|| y^T x \ge 0$ for all x, with equality if x = 0
- If $||y||_* > 1$, choose x = tu where $||u|| \le 1$, $\sup_{u} u^T y = ||y||_* > 1$:

$$||x|| - y^T x = t(||u|| - ||y||_*) \to -\infty$$
 as $t \to \infty$

lower bound property: $p^* \ge b^T \nu$ if $||A^T \nu||_* \le 1$

Two-way partitioning

Minimize
$$x^T W x$$

Subject to $x_i^2 = 1$, $i = 1, ..., n$

• a nonconvex problem; feasible set contains 2^n discrete points

Dual function

$$g(v) = \inf_{x} \left(x^{T} W x + \sum_{i} v_{i} (x_{i}^{2} - 1) \right) = \inf_{x} x^{T} (W + \operatorname{diag}(v)) x - \mathbf{1}^{T} v$$
$$= \begin{cases} -\mathbf{1}^{T} v & W + \operatorname{diag}(v) \geq 0 \\ -\infty & \text{otherwise} \end{cases}$$

Lower bound property: $p^* \ge -\mathbf{1}^T v$ if $W + diag(v) \ge 0$

Example: $\nu = -\lambda_{min}(W)\mathbf{1}$ gives bound $p^* \ge n\lambda_{min}(W)$

Lagrange dual function and conjugate function

minimize
$$f_0(x)$$

subject to $Ax \le b$, $Cx = d$

dual function

$$g(\lambda, \nu) = \inf_{x \in \mathbf{dom} \ f_0} (f_0(x) + (A^T \lambda + C^T \nu)^T x - b^T \lambda - d^T \nu)$$
$$= -f_0^* (-A^T \lambda - C^T \nu) - b^T \lambda - d^T \nu$$

- recall definition of conjugate $f^*(y) = \sup_{x \in dom \ f} (y^T x f(x))$
- simplifies derivation of dual if conjugate of f_0 is known

example: entropy maximization

$$\min f_0(x) = \sum_{i=1}^n x_i \log x_i$$

s.t. $Ax \le b$
 $1^T x = 1$

conjugate function of f_0 : $f_0^*(y) = \sum_{i=1}^n e^{y_i-1}$ dual function

$$g(\lambda, \nu) = -\sum_{i=1}^{n} e^{-a_i^T \lambda - \nu - 1} - b^T \lambda - \nu = -e^{-\nu - 1} \sum_{i=1}^{n} e^{-a_i^T \lambda} - b^T \lambda - \nu$$

The dual problem

Lagrange dual problem

maximize
$$g(\lambda, \nu)$$

Subject to $\lambda \ge 0$

- ullet finds best lower bound on p^* , obtained from Lagrange dual function
- ullet a **convex optimization problem**; optimal value denoted d^*
- λ , ν with $\lambda \geq 0$ and $(\lambda, \nu) \in dom\ g$ are dual feasible
- often simplified by making implicit constraint $(\lambda, \nu) \in dom \ g$ explicit

example: standard form LP and its dual problem

minimize
$$c^Tx$$
 maximize $-b^Tv$ maximize $-b^Tv$ subject to $Ax = b$ subject to $A^Tv - \lambda + c = 0$ subject to $A^Tv + c \ge 0$ $\lambda \ge 0$

Weak and strong duality

weak duality: $d^* \leq p^*$

- always holds (for convex and nonconvex problems)
- can be used to find nontrivial lower bounds for difficult problems for example, solving the SDP

maximize
$$-\mathbf{1}^T \nu$$

subject to $W + diag(\nu) \ge 0$

gives a lower bound for the two-way partitioning problem

strong duality: $d^* = p^*$

- does not hold in general
- (usually) holds for convex problems
- conditions that guarantee strong duality in convex problems are called constraint qualifications

Slater's condition

strong duality holds for a convex problem

maximize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

if it is **strictly feasible**, i.e.,

$$\exists x \in int \mathcal{D}: \quad f_i(x) < 0, \quad i = 1, ..., m, \quad Ax = b$$

- also guarantees that the dual optimum is attained (if $p^* > -\infty$)
- can be refined: e.g., linear inequalities do not need to hold with strict inequality,...
- there exist many other types of constraint qualifications

Inequality form LP

primal problem

minimize
$$c^T x$$

subject to $Ax \leq b$

dual function

$$g(\lambda) = \inf_{x} \left((c + A^{T} \lambda)^{T} x - b^{T} \lambda \right) = \begin{cases} -b^{T} \lambda & A^{T} \lambda + c = 0 \\ -\infty & \text{otherwise} \end{cases}$$

dual problem

maximize
$$-b^T \lambda$$

subject to $A^T \lambda + c = 0$
 $\lambda \ge 0$

- from Slater's condition: $p^* = d^*$ if $A\tilde{x} \leq b$ for some \tilde{x}
- in fact, $p^* = d^*$ except when both the primal and dual are infeasible

Quadratic program

primal problem (assume $P \in \mathcal{S}_{++}^n$)

minimize $x^T P x$ subject to $Ax \le b$

dual function

$$g(\lambda) = \inf_{x} (x^T P x + \lambda^T (A x - b)) = -\frac{1}{4} \lambda^T A P^{-1} A^T \lambda - b^T \lambda$$

dual problem

maximize
$$-(1/4)\lambda^T A P^{-1} A^T \lambda - b^T \lambda$$

subject to $\lambda \ge 0$

- from Slater's condition: $p^* = d^*$ if $A\tilde{x} \leq b$ for some \tilde{x}
- in fact, $p^*=d^*$ except when both the primal and dual are infeasible

A nonconvex problem with strong duality

minimize
$$x^T A x + 2b^T x$$

subject to $x^T x \le 1$

 $A \in S^n$ and $A \ngeq 0$, hence nonconvex

dual function:
$$g(\lambda) = \inf_{x} (x^{T}(A + \lambda I)x + 2b^{T}x - \lambda)$$

- unbounded below if $A + \lambda I \geq 0$ or if $A + \lambda I \geq 0$ and $b \notin \mathcal{R}(A + \lambda I)$
- minimized by $x=-(A+\lambda I)^\dagger b$ otherwise and $g(\lambda)=-b^T(A+\lambda I)^\dagger b-\lambda$, where $(A+\lambda I)^\dagger$ is the pseudo-inverse

dual problem and equivalent SDP:

maximize
$$-b^T(A+\lambda I)^\dagger b - \lambda$$
 maximize $-t - \lambda$ subject to $A+\lambda I\geqslant 0$ subject to $\begin{bmatrix} A+\lambda I & b \\ b^T & t \end{bmatrix}\geqslant 0$

strong duality holds although primal problem is not convex (not easy to show)

Geometric interpretation

for simplicity, consider a problem with one inequality constraint $f_1(x) \leq 0$

minimize $f_0(x)$ subject to $f_1(x) \le 0$

interpretation of dual function:

$$g(\lambda) = \inf_{(u,t)\in\mathcal{G}} (t + \lambda u), \text{ where } \mathcal{G} = \{(f_1(x), f_0(x)) | x \in \mathcal{D}\}$$

- $\lambda u + t = g(\lambda)$ is (non-vertical) supporting hyperplane to \mathcal{G}
- hyperplane intersects t-axis at $t = g(\lambda)$

epigraph variation: same interpretation if \mathcal{G} is replaced with $\mathcal{A} = \{(u,t)|f_1(x) \leq u, f_0(x) \leq t \text{ for some } x \in \mathcal{D}\}$

strong duality

- holds if there is a non-vertical supporting hyperplane to $\mathcal A$ at $(0,p^*)$
- for convex problem, \mathcal{A} is convex, hence has supp. Hyperplane at $(0, p^*)$

Complementary slackness

assume strong duality holds, x^* is primal optimal, (λ^*, ν^*) is dual optimal

$$f_0(x^*) = g(\lambda^*, \nu^*)$$

$$= \inf_{x} (f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{i=1}^p \nu_i^* h_i(x))$$

$$\leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{i=1}^p \nu_i^* h_i(x^*)$$

$$\leq f_0(x^*)$$

hence, the two inequalities hold with equality

- x^* minimizes $L(x, \lambda^*, \nu^*)$
- $\lambda_i^* f_i(x^*) = 0$ for i = 1, ..., m (known as **complementary slackness**):

$$\lambda_i^* > 0 \Longrightarrow f_i(x^*) = 0, \quad f_i(x^*) < 0 \Longrightarrow \lambda_i^* = 0$$

Karush-Kuhn-Tucker (KKT) conditions

The following four conditions are called KKT conditions (for a problem with differentiable f_i , h_i):

- 1. primal constraints: $f_i(x) \le 0, i = 1, ..., m, h_i(x) = 0, i = 1, ..., p$
- 2. dual constraints: $\lambda \geq 0$
- 3. complementary slackness: $\lambda_i f_i(x) = 0$, i = 1, ..., m
- 4. gradient of Lagrangian with respect to x vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p \nu_i \nabla h_i(x) = 0$$

For any optimization problem with differentiable f_i , h_i , if strong duality holds and x, λ , ν are optimal, then they must satisfy the KKT conditions

KKT conditions for convex problem

For a convex problem, if \tilde{x} , $\tilde{\lambda}$, \tilde{v} satisfy the KKT conditions, then they are optimal (KKT are also sufficient conditions):

- from complementary slackness: $f_0(\tilde{x}) = L(\tilde{x}, \tilde{\lambda}, \tilde{v})$
- from 4th condition (and **convexity**): $g(\tilde{\lambda}, \tilde{v}) = L(\tilde{x}, \tilde{\lambda}, \tilde{v})$

hence, $f_0(\tilde{x}) = g(\tilde{\lambda}, \tilde{v}) \rightarrow \text{zero duality gap} \rightarrow \text{primal and dual optimal}$

Necessary and sufficient conditions for optimality:

If a convex optimization problem satisfies **Slater's condition**, then x is optimal **if and only** if there exist λ , ν , that together with x, satisfy the KKT conditions

- Recall that Slater's condition implies strong duality, and dual optimum is attained
- Generalizes optimality condition $\nabla f_0(x) = 0$ for unconstrained problem

Example: water-filling (assume $\alpha_i > 0$)

minimize
$$-\sum_{i=1}^{n} \log(x_i + \alpha_i)$$

subject to $x \ge 0$, $\mathbf{1}^T x = 1$

x is optimal iff $x \ge 0$, $\mathbf{1}^T x = 1$, and there exist $\lambda \in \mathbf{R}^n$, $\nu \in \mathbf{R}$ such that

$$\lambda \geqslant 0$$
, $\lambda_i x_i = 0$, $\frac{1}{x_i + \alpha_i} + \lambda_i = \nu$

- If $\nu < 1/\alpha_i$: $\lambda_i = 0$ and $x_i = 1/\nu \alpha_i$
- If $\nu \geq 1/\alpha_i$: $\lambda_i = \nu 1/\alpha_i$ and $x_i = 0$

that is
$$x_i^* = \begin{cases} 1/\nu - \alpha_i & \nu < 1/\alpha_i \\ 0 & \nu \ge 1/\alpha_i \end{cases}$$

• Determine ν from $\mathbf{1}^T x = \sum_{i=1}^n \max\{0, 1/\nu - \alpha_i\} = 1$

Interpretation (why called water-filling)

- n patches; level of patch i is at height α_i
- Flood area with unit amount of water
- Resulting level is $1/\nu^*$

Perturbation and sensitivity analysis

(unperturbed) optimization problem and its dual

minimize
$$f_0(x)$$
 maximize $g(\lambda, \nu)$ subject to $f_i(x) \leq 0, i = 1, ..., m$ Subject to $\lambda \geq 0$ $h_i(x) = 0, i = 1, ..., p$

perturbed problem and its dual

min.
$$f_0(x)$$
 maximize $g(\lambda, \nu) - \lambda^T u - \nu^T v$ s.t. $f_i(x) \leq u_i, i = 1, ..., m$ Subject to $\lambda \geq 0$ $h_i(x) = v_i, i = 1, ..., p$

- x is primal variable; u, v are parameters
- $p^*(u,v)$ is optimal value as a function of u,v
- We are interested in information about $p^*(u,v)$ that we can obtain from the solution of the unperturbed problem and its dual

global sensitivity result

assume strong duality holds for unperturbed problem, and that λ^* , ν^* are dual optimal for unperturbed problem

apply weak duality to perturbed problem:

$$p^{*}(u,v) \geq g(\lambda^{*}, \nu^{*}) - \lambda^{*T}u - \nu^{*T}v$$

= $p^{*}(0,0) - \lambda^{*T}u - \nu^{*T}v$

sensitivity interpretation

- if λ_i^* large: p^* increases greatly if we tighten constraint i ($u_i < 0$)
- if λ_i^* small: p^* does not decrease much if we loosen constraint i ($u_i > 0$)
- if ν_i^* large and positive: p^* increases greatly if we take $v_i < 0$ if ν_i^* large and negative: p^* increases greatly if we take $v_i > 0$
- if ν_i^* small and positive: p^* does not decrease much if we take $v_i>0$ if ν_i^* small and negative: p^* does not decrease much if we take $v_i<0$

local sensitivity

if (in addition) $p^*(u, v)$ is differentiable at (0,0), then

$$\lambda_i^* = -rac{\partial p^*(0,0)}{\partial u_i}$$
 , $v_i^* = -rac{\partial p^*(0,0)}{\partial v_i}$

proof (for λ_i^*): from global sensitivity result,

$$\frac{\partial p^{*}(0,0)}{\partial u_{i}} = \lim_{t \to 0} \frac{p^{*}(te_{i},0) - p^{*}(0,0)}{t} \ge -\lambda_{i}^{*}$$
$$\frac{\partial p^{*}(0,0)}{\partial u_{i}} = \lim_{t \to 0} \frac{p^{*}(te_{i},0) - p^{*}(0,0)}{t} \le -\lambda_{i}^{*}$$

hence, equality holds

method can be used to establish

The same
$$\frac{\partial p^*(0,0)}{\partial v_i} = -v_i^*$$

 $p^*(u)$ for a convex problem with one (inequality constraint is shown in the right figure

Duality and problem reformulations

- equivalent formulations of a problem can lead to very different duals
- reformulating the primal problem can be useful when the dual is difficult to derive, or uninteresting

common reformulations

- introduce new variables and associated equality constraints
- make explicit constraints implicit or vice-versa
- transform objective or constraint functions
 - e.g., replace $f_0(x)$ by $\phi(f_0(x))$ with ϕ convex and increasing

Introducing new variables and equality constraints

minimize
$$f_0(Ax + b)$$

- dual function is constraint: $g = \inf_{x} L(x) = \inf_{x} f_0(Ax + b) = p^*$
- we have strong duality, but dual is quite useless

reformulated problem and its dual

minimize
$$f_0(y)$$
 maximize $b^T v - f_0^*(v)$
subject to $Ax + b - y = 0$ subject to $A^T v = 0$

dual function follows from

$$g(\nu) = \inf_{x,y} (f_0(y) - \nu^T y + \nu^T A x + b^T \nu)$$
$$= \begin{cases} -f_0^*(\nu) + b^T \nu & A^T \nu = 0\\ -\infty & \text{otherwise} \end{cases}$$

norm approximation problem: minimize ||Ax - b||

minimize
$$||y||$$

subject to $y = Ax - b$

can look up conjugate of $||\cdot||$, or derive dual directly

$$g(\nu) = \inf_{x,y} (\|y\| + \nu^T y - \nu^T A x + b^T \nu)$$

$$= \begin{cases} b^T \nu + \inf_{y} (\|y\| + \nu^T y) & A^T \nu = 0 \\ -\infty & \text{otherwise} \end{cases}$$

$$= \begin{cases} b^T \nu & A^T \nu = 0, \|\nu\|_* \le 1 \\ -\infty & \text{otherwise} \end{cases}$$

(recall $||v||_* = \sup_{\|\mathbf{u}\| \le 1} u^T v$ is dual norm of $\|\cdot\|$)

dual of norm approximation problem

maximize
$$b^T v$$

subject to $A^T v = 0$, $||v||_* \le 1$

Implicit constraints

LP with box constraints: primal and dual problem

minimize
$$c^T x$$
 maximize $-b^T v - \mathbf{1}^T \lambda_1 - \mathbf{1}^T \lambda_2$ subject to $Ax = b$ subject to $c + A^T v + \lambda_1 - \lambda_2 = 0$ $-\mathbf{1} \leqslant x \leqslant \mathbf{1}$ $\lambda_1 \geqslant 0, \lambda_2 \geqslant 0$

reformulation with box constraints made implicit

minimize
$$f_0(x) = \begin{cases} c^T x & \mathbf{1} \leq x \leq \mathbf{1} \\ \infty & \text{otherwise} \end{cases}$$
 subject to $Ax = b$

dual function

$$g(\nu) = \inf_{-\mathbf{1} \le x \le \mathbf{1}} (c^T x + \nu^T (Ax - b))$$
$$= -b^T \nu - ||A^T \nu + c||_1$$

dual problem: maximize $-b^T v - ||A^T v + c||_1$

Problems with generalized inequalities

minimize
$$f_0(x)$$

subject to $f_i(x) \leq_{K_i} 0, i = 1, ..., m$
 $h_i(x) = 0, i = 1, ..., p$

 \leq_{K_i} is generalized inequality on \mathbf{R}^{k_i}

definitions are parallel to scalar case:

- Lagrangian multiplier for $f_i(x) \leq_{K_i} 0$ is vector $\lambda_i \in \mathbf{R}^{k_i}$
- Lagrangian $L: \mathbb{R}^n \times \mathbb{R}^{k_1} \times \cdots \times \mathbb{R}^{k_m} \times \mathbb{R}^p \to \mathbb{R}$, is defined as

$$L(x, \lambda_1, ..., \lambda_m, \nu) = f_0(x) + \sum_{i=1}^m \lambda_i^T f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$$

• dual function $g: \mathbf{R}^{k_1} \times \cdots \times \mathbf{R}^{k_m} \times \mathbf{R}^p \to \mathbf{R}$, is defined as $g(\lambda_1, \dots, \lambda_m, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda_1, \dots, \lambda_m, \nu)$

lower bound property: if $\lambda_i \geq_{K_i^*} 0$, then $g(\lambda_1, ..., \lambda_m, \nu) \leq p^*$

proof: if \tilde{x} is feasible and $\lambda \geqslant_{K_i^*} 0$, then

$$f_{0}(\tilde{x}) \geq f_{0}(\tilde{x}) + \sum_{i=1}^{m} \lambda_{i}^{T} f_{i}(\tilde{x}) + \sum_{i=1}^{p} \nu_{i} h_{i}(\tilde{x})$$

$$\geq \inf_{x \in \mathcal{D}} L(x, \lambda_{1}, \dots, \lambda_{m}, \nu)$$

$$= g(\lambda_{1}, \dots, \lambda_{m}, \nu)$$

minimizing over all feasible \tilde{x} gives $p^* \geq g(\lambda_1, ..., \lambda_m, \nu)$

dual problem

maximize
$$g(\lambda_1, ..., \lambda_m, \nu)$$

subject to $\lambda_i \geqslant_{K_i^*} 0, i = 1, ..., m$

- weak duality: $p^* \ge d^*$ always
- strong duality: $p^* = d^*$ for convex problem with constraint qualification (for example, Slater's: primal problem is strictly feasible)

Semidefinite program

primal SDP $(F_i, G \in S^k)$

minimize
$$c^T x$$

subject to $x_1 F_1 + \dots + x_n F_n \leq G$

- Lagrange multiplier is matrix $Z \in S^k$
- Lagrangian $L(x,Z) = c^T x + tr(Z(x_1F_1 + \cdots + x_nF_n G))$
- dual function

$$g(Z) = \inf_{x} L(x, Z) = \begin{cases} -tr(GZ) & tr(F_iZ) + c_i = 0, i = 1, ..., n \\ -\infty & \text{otherwise} \end{cases}$$

dual SDP

maximize
$$-tr(GZ)$$

subject to $Z \ge 0, tr(F_iZ) + c_i = 0, i = 1, ..., n$

 $p^* = d^*$ if primal SDP is strictly feasible ($\exists x \text{ with } x_1F_1 + \cdots + x_nF_n < G$)