Graph Theory Capstone

N. Purkey

Applications to Chemistry

Submechanism Graph Summary

Applications to Astronomy

Constellation Graph Relative Neighborhood Graph

Graph Theory Capstone

Applications of Graph Theory to the Physical Sciences

N. Purkey

Department of Mathematics and Computer Science Goucher College

December 10th, 2015

Outline

Graph Theory Capstone

N. Purkey

Applications to Chemistry

Kinetic Graph
Submechanism Graph
Summary

Applications to Astronomy

The CDM Model Constellation Graph Relative Neighborhood Graph

Applications to Chemistry Kinetic Graph

Submechanism Graph

Applications to Astronomy
The CDM Model
Constellation Graph
Relative Neighborhood Graph

Kinetic Graph

- ► Mechanisms of chemical reactions were first "graphed" in 1950s, by Christiansen.
- ► A modified version of his procedure creates the kinetic graph.

Graph Theory Capstone

N. Purkey

Applications to Chemistry

Kinetic Graph
Submechanism Graph

Applications to Astronomy

Kinetic Graph

Graph Theory Capstone

N. Purkey

Applications to Chemistry

Kinetic Graph Submechanism Graph Summary

Applications to Astronomy

- ► Edges represent reaction steps.
- Vertices represent intermediates.

Reaction steps:

$$C + H_2O + Z_1 \rightleftharpoons H_2 + COZ_1 \tag{1}$$

$$COZ_1 \rightleftharpoons CO + Z_1$$
 (2)

$$COZ_1 + CO \rightleftharpoons CO_2 + C + Z_1 \tag{3}$$

For Z_1 , COZ_1 intermediates; C, H_2O , CO, CO_2 , and H_2 terminal species.

Example Kinetic Graph

Figure: A kinetic graph for the reaction steps.

Graph Theory Capstone

N. Purkey

Applications to Chemistry

Kinetic Graph Submechanism Graph

Applications to Astronomy

Astronomy
The CDM Model
Constellation Graph

- ► From kinetic graph, reaction routes can be realized.
- ▶ "Stoichiometric number," v_s , can be determined.
- Not unique in case of example reaction, here are some example sets of v_s :

$$v_s^I = (1, 1, 0)$$
 $v_s^{II} = (1, 0, 1)$
 $v_s^{III} = v_s^I - v_s^{II} = (0, 1, -1)$
 $v_s^{IV} = v_s^I + v_s^{II} = (2, 1, 1)$

Reaction Routes

$$C + H_2O \rightleftharpoons H_2 + CO \tag{I}$$

$$H_2O + CO \rightleftharpoons H_2 + CO_2 \tag{II}$$

$$CO_2 + C \rightleftharpoons 2CO$$
 (III)

$$C + 2H_2O \rightleftharpoons 2H_2 + CO_2 \tag{IV}$$

Graph Theory Capstone

N. Purkey

Applications to Chemistry

Kinetic Graph Submechanism Graph Summary

Applications to Astronomy

Reaction Routes

Reaction Routes

Kinetic Graph

$$C + H_2O \rightleftharpoons H_2 + CO \qquad (I)$$

$$H_2O + CO \rightleftharpoons H_2 + CO_2$$
 (II)

$$CO_2 + C \rightleftharpoons 2CO$$
 (III)

$$C + 2H_2O \rightleftharpoons 2H_2 + CO_2$$
 (IV)

Graph Theory Capstone

N. Purkey

Applications to Chemistry

Kinetic Graph Submechanism Graph

Applications to Astronomy

Kinetic Graph Submechanism Graph Summary

Astronomy
The CDM Model
Constallation Craph

- ▶ The number of linearly independent reaction routes, P, is determined by P = S I, where S is the number of reaction steps and I is the number of linearly independent intermediates.
- ▶ *I* is determined based on the stoichiometric numbers.
- For example reaction, P = 3 1 = 2. Then, combinations of reaction routes (each from a set of v_s) are able to completely describe the reaction.

Example Reaction

Graph Theory Capstone

N. Purkey

Applications to Chemistry

Kinetic Graph Submechanism Graph Summary

Applications to Astronomy

$$C + 2H_2O + CO \Rightarrow 2H_2 + CO + CO_2$$
 (I)+(II)
 $2C + 2H_2O + CO_2 \Rightarrow 2H_2 + CO_2 + 2CO$ (III)+(IV)

Outline

Graph Theory Capstone

N. Purkey

Applications to Chemistry

Submechanism Graph Summary

Applications to Astronomy

The CDM Model Constellation Graph Relative Neighborhood Graph

Applications to Chemistry
Kinetic Graph

Submechanism Graph

Applications to Astronomy
The CDM Model
Constellation Graph
Relative Neighborhood Graph

Submechanism Graph

Applications to

- ► A reaction network is a graph with 3 partite sets (intermediates, reaction steps, terminal species).
- ▶ Direction is assigned to edges to show whether a species is consumed or created by a reaction step.

Example Reaction Steps

$$H_{2} + O_{2} \rightarrow 2HO^{\bullet}$$

$$H_{2} + M \rightarrow 2H^{\bullet} + M^{*}$$

$$H_{2} + HO^{\bullet} \rightarrow H^{\bullet} + H_{2}O$$

$$H^{\bullet} + O_{2} \rightarrow HO^{\bullet} + {}^{\bullet}O^{\bullet}$$

$$H_{2} + {}^{\bullet}O^{\bullet} \rightarrow H^{\bullet} + HO^{\bullet}$$

$$H^{\bullet} + W \rightarrow HW(W= wall)$$

$$H^{\bullet} + O_{2} + M \rightarrow HO_{2}^{\bullet} + M^{*}$$

$$HO_{2}^{\bullet} + H_{2} \rightarrow H^{\bullet} + H_{2}O_{2}$$

Where HO^{\bullet} , H^{\bullet} , $^{\bullet}O^{\bullet}$, and HO_2^{\bullet} are intermediates and H_2O , M, M^* , H_2 , HW, W, O_2 , and H_2O_2 are terminal species.

N. Purkey

Chemistry
Kinetic Graph
Submechanism Graph

Applications to

Example Reaction Network

Graph Theory Capstone

N. Purkey

Applications to Chemistry

Submechanism Graph

Applications to

- ► Each reaction network contains submechanisms which can be independent of one another or interdependent.
- ▶ They are labeled two types, C and N.
- ► The types of submechanisms involved in a reaction mechanism determine whether the reaction is catalytic (C type only), noncatalytic conjugated (N type only), or a chain reaction (both C and N types).
- In example case, both types are present.

Submechanisms for Example

Graph Theory Capstone

N. Purkey

Applications to Chemistry

Submechanism Graph

Applications to Astronomy

- Vertices represent submechanisms (open circle denotes C type, close denotes N type).
- Edges connect two vertices if they share either a step or intermediate - meaning they are strongly related and require one another.
- In example case, K₄ is obtained, since all submechanisms are related to one another directly.

Example Submechanism Graph

Graph Theory Capstone

N. Purkey

Applications to Chemistry

Submechanism Graph

Applications to Astronomy

Constellation Graph Relative Neighborhood Graph Summary

Figure: The submechanism graph for the example reaction steps, where the vertices are associated submechanisms.

Submechanism Graph Summary

Applications to Astronomy

- ► The kinetic graph helps realize reaction routes.
- The submechanism graph, which is an extension of the kinetic graph, gives more detailed information about submechanisms in a reaction.
- ► The submechanism graph also helps categorize a reaction by type (catalytic, noncatalytic, chain).

Outline

Graph Theory Capstone

N. Purkey

Applications to Chemistry

Submechanism Graph
Summary

Applications to

The CDM Model Constellation Graph Relative Neighborhood Graph

Applications to Chemistry Kinetic Graph Submechanism Graph

Applications to Astronomy
The CDM Model

Cold Dark Matter

Graph Theory Capstone

N. Purkey

Applications to Chemistry

Submechanism Graph Summary

Applications to Astronomy

- CDM does not produce visible radiation, so it cannot be viewed directly by traditional methods.
- \blacktriangleright This model of universe provides density parameter, Ω .

Where ρ_{avg} is the average density of the universe, and ρ_{ced} is the critical energy density, or the density required for a universe to be flat. Ω_0 is the density parameter today, since it is not necessarily constant.

Graph Theory Capstone

N. Purkey

Applications to Chemistry

Submechanism Graph Summary

Applications to Astronomy

Graph Theory Capstone

N. Purkey

Applications to Chemistry

Submechanism Graph Summary

Applications to Astronomy

Outline

Graph Theory Capstone

N. Purkey

Applications to Chemistry
Kinetic Graph

Applications to Chemistry

Submechanism Graph Summary

Applications to Astronomy

Constellation Graph Relative Neighborhood Graph

Applications to Astronomy

The CDM Model

Constellation Graph

Relative Neighborhood Graph

Example Constellation Graph

Figure: An example dataset and its constellation graph.

Graph Theory Capstone

N. Purkey

Applications to Chemistry

Submechanism Graph Summary

Applications to Astronomy

Constellation Graph

- Graph Theory Capstone
 - N. Purkey
- Applications to Chemistry
- Submechanism Graph Summary
- Applications to Astronomy
- Constellation Graph
 Relative
 Neighborhood Graph

- Vertices represent galaxies (or stars/ other data).
- Edges are added by connecting each vertex to its nearest neighbor, in no specific order.
- Some vertices have one edge, some have many edges.
- For large data sets, the constellation graph is disconnected.

Example Constellation Graph

Figure: An example dataset and its constellation graph.

Graph Theory Capstone

N. Purkey

Applications to Chemistry

Submechanism Graph Summary

Applications to Astronomy

Edge Angle

► To give weight to edges, and "edge angle" is assigned, based on the arc length between two vertices.

Figure: Determining x for v_p and v_q .

Graph Theory Capstone

N. Purkey

Applications to Chemistry

Submechanism Graph Summary

Applications to Astronomy

Adjacency Matrix of Constellation Graph

$$a_{pq} = \begin{cases} x^j & \text{if galaxy } v_p \text{ is adjacent to } v_q \\ 0 & \text{otherwise} \end{cases}$$

Graph Theory Capstone

N. Purkey

Applications to Chemistry

Submechanism Graph Summary

Applications to Astronomy

Example Adjacency Matrix for Constellation Graph

Adjacency Matrix

$$A = \begin{bmatrix} 0 & 0 & x_1^j & 0 \\ 0 & 0 & x_2^j & 0 \\ x_1^j & x_2^j & 0 & x_3^j \\ 0 & 0 & x_3^j & 0 \end{bmatrix}$$

Constellation Graph

Graph Theory Capstone

N. Purkey

Applications to Chemistry

Submechanism Graph Summary

Applications to Astronomy

Submechanism Graph Summary

Applications to Astronomy

Constellation Graph Relative Neighborhood Graph

$$e = 0, 0, -\sqrt{x_1^{2j} + x_2^{2j} + \dots + x_n^{2j}}, \sqrt{x_1^{2j} + x_2^{2j} + \dots + x_n^{2j}}$$

Where n is the number of edges.

Mean Deviation of Eigenvalues

$$D(j) = \frac{1}{N_e} \sum_{i=1}^{N_e} |e_i - \bar{e}|$$

Where N_e is the number of eigenvalues and \bar{e} is the mean of the eigenvalues.

Graph Theory Capstone

N. Purkey

Applications to Chemistry

Submechanism Graph Summary

Applications to Astronomy

LEDA2d Subsample and CDM Models

- Graph Theory
 Capstone
 N. Purkey
- Applications to Chemistry
- Submechanism Graph Summary
- Astronomy
 The CDM Model
- Constellation Graph Relative Neighborhood Graph Summary

- The Lyon-Meudon Extragalactic Database (LEDA) provides images of galaxies distant and nearby.
- Images taken from LEDA (LEDA2d subsample far universe) were compared to CDM simulations.
- ► The models chosen were LCDM, MCDM, and HCDM, which differ in their definition of Ω:

•

LCDM = 0.1	(5)	

$$MCDM = 0.5 \tag{6}$$

$$HCDM = 1.0 \tag{7}$$

CDM Models vs. LEDA Data

Graph Theory Capstone

N. Purkey

Applications to Chemistry

Submechanism Graph Summary

Applications to Astronomy

Constellation Graph Relative Neighborhood Graph

Figure: Comparison of CDM models and LEDA2d subsample.

Applications to Astronomy

- \triangleright A restriction is given instead of a concrete value for Ω_0 .
- $0.1 < \Omega_0 < 1.0$

Outline

Graph Theory Capstone

N. Purkey

Applications to Chemistry

Submechanism Graph
Summary

Applications to Astronomy

Constellation Graph
Relative

Relative Neighborhood Graph Summary

Applications to Chemistry Kinetic Graph Submechanism Graph

Applications to Astronomy

The CDM Model Constellation Graph

Relative Neighborhood Graph

Delaunay Graph

Graph Theory Capstone

N. Purkey

Applications to Chemistry

Submechanism Graph Summary

Astronomy

The CDM Model Constellation Graph

Relative Neighborhood Graph Summary

Relative Neighborhood Graph

Graph Theory Capstone

N. Purkey

Applications to Chemistry

Submechanism Graph Summary

Astronomy
The CDM Model

Constellation Graph Relative

Neighborhood Graph Summary

Relative Neighborhood Graph

- ▶ This time, the nearby structure of universe, not large-scale structure of universe was investigated.
- Only data for nearby galaxies was chosen.
- $0.1 < \Omega_0 < 0.5$

Submechanism Graph Summary

Applications to Astronomy

- Analysis of the constellation graph gives bound $0.1 < \Omega_0 < 1.0$ for large-scale structure of the universe.
- Analysis of the nearest neighbor graph gives bound $0.1 < \Omega_0 < 0.5$ for structure of nearby universe.