Homework 3

Walker Bagley

September 20, 2024

Section 2.2

2.2.5

Let $\{I_n\}$ be a nested family of finite closed intervals $(I_1 \supseteq I_2 \supseteq \ldots \supseteq I_n)$. Prove that there is a point p contained in all the intervals.

Proof. Let the interval $I_1=[a_1,b_1]$. Then we consider the interval $I_2=[a_2,b_2]$. We know $a_2\geq a_1$ and $b_2\leq b_1$, so we can divide all points $p\in I_1$ into two subsets. If we consider the set $IN_1=p|p\in I_1$, then we can formulate $OUT_2=\{p|p\in IN_1\wedge p\not\in I_2\}$ and $IN_2=\{p|p\in IN_1\wedge p\in I_2\}$. We can do the same thing with $I_3=[a_3,b_3]$ and so on and so forth, until we have that $IN_n=\{p|p\in IN_1\wedge p\in IN_2\wedge\ldots\wedge p\in IN_{n-1}\}$. Thus, we have some $p\in IN_n$ that is contained in all the intervals.

2.2.6

Let $a, b \in \mathbb{R}_+$ and define $a_1 = \frac{a+b}{2}$ and $b_1 = \sqrt{ab}$. Then define $a_{n+1} = \frac{a_n + b_n}{2}$ and $b_{n+1} = \sqrt{a_n b_n}$. Prove that a_n and b_n converge to the same limit.

Proof. WLOG we can assume a > b since a_1, b_1 do not change depending on whether a or b is larger. Let's first show that $a_n \ge b_n$ by induction:

Base case: n = 1. $a_1 = \frac{a+b}{2}$ and $b_1 = \sqrt{ab}$. Then

$$a_1 \ge b_1 \Leftrightarrow a_1 = \frac{a+b}{2} \ge \sqrt{ab}$$
$$\Leftrightarrow a+b \ge 2\sqrt{ab}$$
$$\Leftrightarrow a-2\sqrt{ab}+b \ge 0$$
$$\Leftrightarrow (\sqrt{a}-\sqrt{b})^2 \ge 0$$
$$\Leftrightarrow \sqrt{a}-\sqrt{b} \ge 0$$

Since a > b, then we know that $\sqrt{a} - \sqrt{b} \ge 0$ and thus $a_1 \ge b_1$. Inductive step: n = k + 1. Assume $a_k \ge b_k$. We have that $a_{k+1} = \frac{a_k + b_k}{2}$ and $b_{k+1} = \sqrt{a_k b_k}$. Following the same algebra as the base case and using our inductive hypothesis, we can easily see that $a_{k+1} \ge b_{k+1}$.

From here we can show a_n is decreasing and b_n is increasing:

Since
$$a_{n+1} = \frac{a_n + b_n}{2}$$
 and $a_n \ge b_n$, $a_{n+1} \le \frac{a_n + a_n}{2} = a_n$. So a_n is decreasing. Since $b_{n+1} = \sqrt{a_n b_n}$ and $a_n \ge b_n$, $b_{n+1} \ge \sqrt{b_n b_n} = b_n$. So b_n is increasing.

Using these facts, we know $b < b_1 \le b_2 \le \dots b_k \le a_k \dots \le a_2 \le a_1 < a$. By MCT, a_n and b_n must both converge to the same limit.

1

2.2.7

Let $a, b \in \mathbb{Z}_+$ and define $a_1 = \frac{a+b}{2}$ and $b_1 = \frac{2ab}{a+b}$. Then define $a_{n+1} = \frac{a_n+b_n}{2}$ and $b_{n+1} = \frac{2a_nb_n}{a_n+b_n}$. Prove that a_n and b_n converge to \sqrt{ab} .

Proof. Very similar to above. WLOG we can assume a > b since a_1, b_1 do not change depending on whether a or b is larger. Let's first show that $a_n \ge b_n$ by induction:

Base case: n = 1. $a_1 = \frac{a+b}{2}$ and $b_1 = \frac{2ab}{a+b}$. Then

$$a_1 \ge b_1 \Leftrightarrow \frac{a+b}{2} \ge \frac{2ab}{a+b}$$

$$\Leftrightarrow (a+b)^2 \ge 4ab$$

$$\Leftrightarrow a^2 + 2ab + b^2 - 4ab \ge 0$$

$$\Leftrightarrow a^2 - 2ab + b^2 \ge 0$$

$$\Leftrightarrow (a-b)^2 \ge 0$$

$$\Leftrightarrow a-b > 0$$

Since a > b, then we know that $a - b \ge 0$ and thus $a_1 \ge b_1$.

Inductive step: n = k + 1. Assume $a_k \ge b_k$. We have that $a_{k+1} = \frac{a_k + b_k}{2}$ and $b_{k+1} = \frac{2a_k b_k}{a_k + b_k}$. Following the same algebra as the base case and using our inductive hypothesis, we can easily see that $a_{k+1} \ge b_{k+1}$.

From here we can show a_n is decreasing and b_n is increasing:

Since
$$a_{n+1} = \frac{a_n + b_n}{2}$$
 and $a_n \ge b_n$, $a_{n+1} \le \frac{a_n + a_n}{2} = a_n$. So a_n is decreasing. Since $b_{n+1} = \frac{2a_n b_n}{a_n + b_n}$ and $a_n \ge b_n$, $b_{n+1} \ge \frac{2a_n b_n}{a_n + a_n} = b_n$. So b_n is increasing.

Using these facts, we know $b < b_1 \le b_2 \le \dots b_k \le a_k \dots \le a_2 \le a_1 < a$. By MCT, a_n and b_n must both converge to the same limit. So, let's take $\epsilon > 0$ and consider

$$\begin{aligned} |a_n - \sqrt{ab}| &< \epsilon \Leftrightarrow \frac{a_{n-1} + b_{n-1}}{2} - \sqrt{ab} < \epsilon \\ b_n &\le a_n \Leftrightarrow \frac{a_{n-1} + b_{n-1}}{2} - \sqrt{ab} \le \frac{a_{n-1} + a_{n-1}}{2} - \sqrt{ab} \\ &\Leftrightarrow \frac{a_{n-1} + a_{n-1}}{2} - \sqrt{ab} = a_{n-1} - \sqrt{ab} \\ a_{n-1} - \sqrt{ab} &< \epsilon \Leftrightarrow a_{n-1} < \epsilon + \sqrt{ab} \end{aligned}$$

So if we choose N s.t. $a_{N-1} < \epsilon + \sqrt{ab}$ then we have that $|a_n - \sqrt{ab}| < \epsilon$ for n > N.

Section 2.4

2.4.1

Let S be a set of real numbers that is bounded above and $\{a_n\}$ be a sequence of real numbers such that each a_n is an upper bound of S. Assume $a_n \to a$. Prove that a is an upper bound of S.

Proof. Since $a_n \to a$, take $\epsilon > 0$ s.t. $a_n - \epsilon < a < a_n + \epsilon$ for n > N. Also, a_n is an upper bound, so $\forall s \in S$, $a_n \ge s$. Then we have that $a - \epsilon \le a_n - \epsilon < a$, so as $\epsilon \to 0$, we have $\forall s \in S$ that s < a, so a is an upper bound.

2.4.2

Find the supremum and infimum of each of the following sets and discuss whether they are elements of the sets.

(a)

 $S = \{1/n : n \text{ is a positive integer}\}$

$$\sup S = \frac{1}{1} = 1$$

$$\inf S = \frac{1}{\infty} = 0$$

The supremum is in S since $1 = \frac{1}{1} = \frac{1}{n}$ when n = 1. The infimum is not in S since $\frac{1}{n} \neq 0$ for any n.

(b)

$$S = \{2^n : n \text{ is an integer}\}$$

$$\sup S = 2^{\infty} = \infty$$

$$\inf S = 2^{-\infty} = 0$$

The supremum is not in S since $\infty \neq 2^n$ for any n. The infimum is not in S since $0 \neq 2^n$ for any n.

(c)

$$S = \{x^2 : -1 < x < 1\}$$

$$\sup S = 1^2 = 1$$

$$\inf S = 0^2 = 0$$

The supremum is not in S since $1 = (\pm 1)^2$ but $1 \notin S$. The infimum is in S since $0 = x^2$ when x = 0.

2.4.3

Let S be a set that is bounded above and a be an upper bound of S. Prove that the following statements are equivalent.

- (a) Any upper bound a' of S satisfies a' > a.
- (b) For every $\epsilon > 0$, there exists an $x \in S$ such that $x > a \epsilon$.
- (c) There exists a sequence $\{x_n\} \subset S$ such that $x_n \to a$.

Proof. First by proving (a) \Leftrightarrow (b):

 \Rightarrow : Suppose (a) holds. Then take some $\epsilon > 0$ and suppose (b) is false. Then there is no $x \in S$ so that $x > a - \epsilon$, so $\forall x \in S$, $x \le a - \epsilon$, making it an upper bound. Then $a' = a - \epsilon < a$, contradicting (a). \Leftarrow : Suppose (b) holds. Then suppose (a) is false so that \exists upper bound a' s.t. a' < a. Letting $a' = a - \epsilon$

 \Leftarrow : Suppose (b) holds. Then suppose (a) is false so that \exists upper bound a' s.t. a' < a. Letting $a' = a - \epsilon$ with $\epsilon > 0$ and since a' is an upper bound, $\forall x \in S, x \le a' = a - \epsilon$. So there is no $x \in S$ where $x > a - \epsilon$, contradicting (b).

Second by proving (b) \Leftrightarrow (c):

 \Rightarrow : Suppose (b) holds. Then suppose (c) is false so that there is no sequence of S which converges to a. Then there must be some $\epsilon > 0$ s.t. there is no $x \in S$ where $x > a - \epsilon$, contradicting (b).

 \Leftarrow : Suppose (c) holds. Then take some $\epsilon > 0$ and suppose (b) is false. Then there is no $x \in S$ so that $x > a - \epsilon$, so $\forall x \in S$, $x \le a - \epsilon$, making it an upper bound. Then it is impossible for a sequence of S to converge to a, contradicting (c).

By transitivity, (a) \Leftrightarrow (c) and (a), (b), (c) are equivalent.

2.4.7

Let S be a set of real numbers and α be a real number. Define $\alpha S = \{\alpha x : x \in S\}$.

(a)

If α is positive, prove $\sup(\alpha S) = \alpha \sup S$ and $\inf(\alpha S) = \alpha \inf S$.

Proof. Suppose $\alpha > 0$, then we know that $\forall x \in S$, $\sup S \geq x$. Then it follows that $\alpha \sup S \geq \alpha x$ for all $x \in S$. So this matches the definition of supremum and thus $\sup(\alpha S) = \alpha \sup S$. We also know that $\forall x \in S$ inf $S \leq x$. Then it follows that $\alpha \inf S \leq \alpha x$ for all $x \in S$. So this matches the definition of infimum and thus $\inf(\alpha S) = \alpha \inf S$.

(b)

If α is negative, prove $\sup(\alpha S) = \alpha \inf S$ and $\inf(\alpha S) = \alpha \sup S$.

Proof. Suppose $\alpha < 0$, then we know that $\forall x \in S$, $\inf S \leq x$. Then it follows that $\alpha \inf S \geq \alpha x$ for all $x \in S$. So this matches the definition of supremum and thus $\sup(\alpha S) = \alpha \inf S$. We also know that $\forall x \in S$ $\sup S \geq x$. Then it follows that $\alpha \sup S \leq \alpha x$ for all $x \in S$. So this matches the definition of infimum and thus $\inf(\alpha S) = \alpha \sup S$.

2.4.9

Let $\{a_n\}$ and $\{b_n\}$ be bounded sequences and define sets A, B, and C by $A = \{a_n\}$, $B = \{b_n\}$, and $C = \{a_n + b_n\}$. Prove $\inf A + \inf B \leq \inf C$, $\sup C \leq \sup A + \sup B$. Construct an example to show that strict inequalities may hold.

Proof. For infimum:

$$\inf A \le a_n$$

$$\inf A + b_n \le a_n + b_n$$

$$\inf(\inf A + b_n) \le \inf(a_n + b_n)$$

$$\inf A + \inf B \le \inf C$$

For supremum:

$$a_n \le \sup A$$

$$a_n + b_n \le \sup A + b_n$$

$$\sup(a_n + b_n) \le \sup(\sup A + b_n)$$

$$\sup C \le \sup A + \sup B$$

Example: $a_n = n$ and $b_n = \frac{1}{n}$. We can clearly see that inf A = 1, inf B = 0 and inf C = 2 so inf $A + \inf B < \inf C$. A similar example can be shown for supremum by multiplying a_n, b_n by -1.

4