TU Hamburg-Harburg – Institut für Zuverlässiges Rechnen Prof. Dr. S.M. Rump und Mitarbeiter, Wintersemester 2016/2017

Prozedurale Programmierung – IEEE 754 Erläuterungen

Eine 4-Byte-Gleitkommazahl (binary32 oder der C-Datentyp float) wird nach dem IEEE 754 Standard im Speicher folgendermaßen dargestellt:

sign	exponent			significant			
s	e_1		e_8	m_1	m_2		m_{23}

Gespeichert werden folgende drei Komponenten:

- ullet sign: Vorzeichenbit s
- exponent: "biased" (um B = 127 geshifteter) Exponent

$$e := \sum_{i=1}^{8} 2^{8-i}e_i = 128e_1 + 64e_2 + \dots + 2e_7 + e_8$$

• fraction (gespeicherte Anteil vom significant)

$$f := \sum_{i=1}^{23} 2^{-i} m_i = \frac{m_1}{2} + \frac{m_2}{4} + \frac{m_3}{8} \dots + \frac{m_{23}}{2^{23}}$$

Die **normalisierte** (Fall 3) Gleitkommazahl x ergibt sich aus den gespeicherten Komponenten:

$$x = \underbrace{(-1)^s}_{sign} \cdot \underbrace{(1+f)}_{significant} \cdot \underbrace{2^{e-B}}_{exponent}$$
 (1)

Die **denormalisierte** (Fall 4) Gleitkommazahl x ergibt sich aus den gespeicherten Komponenten (ohne die **implizite Eins**):

$$x = \underbrace{(-1)^s}_{sign} \cdot \underbrace{(0+f)}_{significant} \cdot \underbrace{2^{e-B}}_{exponent}$$
 (2)

Für die Interpretation der dargestellten Gleitkommazahl x unterscheidet man folgende 5 Fälle:

Fall	exponent	fraction	Resultierende Gleichpunktzahl
1	$e = 255 \; (E = 128)$	$f \neq 0$	$x = nan (\underline{not} \ \underline{a} \ \underline{number})$
2	$e = 255 \ (E = 128)$	f = 0	$x = (-1)^s \cdot inf (\underline{\inf} \in \infty)$
3	$0 < e < 255 \ (-127 < E < 128)$	$f \neq 0$	Gleichung (1)
4	$e = 0 \ (E = -127)$	$f \neq 0$	Gleichung (2)
5	$e = 0 \ (E = -127)$	f = 0	x = 0