MH1820 Introduction to Probability and Statistical Methods Tutorial 7 (Week 8)

Problem 1 (Joint PMF, Marginal PMF, Conditional PMF)

Let W equal the weight of laundry soap in a 1-kilogram box that is distributed in Southeast Asia. Suppose that $\mathbb{P}(W < 1) = 0.02$ and $\mathbb{P}(W > 1.072) = 0.08$. Call a box of soap light, good, or heavy depending on whether W < 1, $1 \le W \le 1.072$, or W > 1.072, respectively. In n = 50 independent observations of these boxes, let X equal the number of light boxes and Y the number of good boxes.

- (a) What is the joint PMF of X and Y?
- (b) Give the name of the distribution of Y along with the values of the parameters of this distribution.
- (c) Given that X = 3, how is Y distributed conditionally?
- (d) Determine $\mathbb{E}[Y|X=3]$

Problem 2 (Joint PMF, Marginal PMF, Conditional PMF)

An insurance company sells both homeowners' insurance and automobile deductible insurance. Let X be the deductible on the homeowners' insurance and Y the deductible on automobile insurance. Among those who take both types of insurance with this company, we find the following probabilities:

	x = 100	x = 500	x = 1000
y = 1000	0.05	0.10	0.15
y = 500	0.10	0.20	0.05
y = 100	0.20	0.10	0.05

- (a) Compute the probabilities $\mathbb{P}(Y = 500|X = 500)$, $\mathbb{P}(Y = 100|X = 500)$.
- (b) Compute the conditional means $\mathbb{E}[X|Y=100]$, $\mathbb{E}[Y|X=500]$.

Problem 3 (Joint PMF, Marginal PMF, Conditional PMF)

Let X and Y have a uniform distribution on the set of points with **integer** coordinates in $S = \{(x,y) : 0 \le x \le 7, x \le y \le x+2\}$. That is, p(x,y) = 1/24, $(x,y) \in S$, and both x and y are integers. Find

- (a) the marginal PMF $p_X(x)$ and $p_Y(y)$.
- (b) the conditional PMF h(y|x) of Y given X = x.

(c)
$$\mathbb{E}[Y|X=x]$$
.

(d)
$$\sigma_{Y|x}^2$$
.

Problem 4 (Joint PMF, Marginal PMF, Conditional PMF)

Let $p_X(x) = 1/10$, x = 0, 1, 2, ..., 9, and let the conditional PMF of Y given X = x be h(y|x) = 1/(10-x), y = x, x+1, ..., 9. Find

- (a) p(x,y).
- (b) $p_Y(3)$.
- (c) $\mathbb{E}[Y|X=7]$.

Problem 5 (Joint PMF, Marginal PMF, Conditional PMF)

From a standard poker deck of 52 cards, 3 cards are drawn. Let X be number of clubs among the 3 cards and let Y be the number of hearts among the 3.

- (a) Find the joint PMF of X and Y.
- (b) Find the marginal PMFs of X and Y.
- (c) Compute P(X = 1|Y = 1).
- (d) Let F be the joint CDF of X and Y. Compute F(1,1).

Answer Keys. 1(a). $\frac{50!}{x!y!(50-x-y)!}(0.02)^x(0.9)^y(0.08)^{50-x-y}$ 1(b). Binomial(50,0.9) 1(c). Binomial(47,0.9/0.98) 1(d). 43.1633 2(a). 0.5, 0.25 2(b). $\frac{2400}{7}, 525$ 3(a). $p_X(x) = \frac{1}{8}$ 3(b). $h(y|x) = \frac{1}{3}$ 3(c). 1+x 3(d). $\frac{2}{3}$ 4(a). $\frac{1}{10(10-x)}$ 4(b). 0.0479 4(c). 8 5(a). $\frac{\binom{13}{3}\binom{39}{9}\binom{26}{3-x-y}}{\binom{52}{3}}$ 5(b). $p_X(x) = \frac{\binom{13}{3}\binom{39}{3-x}}{\binom{52}{3}}, p_Y(y) = \frac{\binom{13}{3}\binom{39}{3-y}}{\binom{52}{3}}$ 5(c). $\frac{338}{741}$ 5(d). $\frac{1188}{1700}$