A Unifying Generative Model for Graph Learning Algorithms

Authors: Junteng Jia and Austin R. Benson

Presenter: Sudhanshu Chanpuriya

Graph	G = (V, E)
Weighted adjacency matrix	$oldsymbol{W} \in \mathbb{R}^{n imes n}$
Degree matrix	$\mathbf{D} = \operatorname{diag}(\mathbf{W1}) \in \mathbb{R}^{n \times n}$
Symmetric normed adj. matrix	$S = D^{-1/2}WD^{-1/2} \in \mathbb{R}^{n \times n}$
Normalized Laplacian	$N = I - S \in \mathbb{R}^{n \times n}$

Graph	G = (V, E)
Weighted adjacency matrix	$oldsymbol{W} \in \mathbb{R}^{n imes n}$
Degree matrix	$\mathbf{D} = \operatorname{diag}(\mathbf{W1}) \in \mathbb{R}^{n \times n}$
Symmetric normed adj. matrix	$S = D^{-1/2}WD^{-1/2} \in \mathbb{R}^{n \times n}$
Normalized Laplacian	$N = I - S \in \mathbb{R}^{n \times n}$
Feature matrix	$\pmb{X} \in \mathbb{R}^{n \times p}$
Label vector	$y \in \mathbb{R}^n$
Attribute matrix	$A = [X y] \in \mathbb{R}^{n \times (p+1)}$
Labeled nodes	$L \in V$
Unlabeled nodes	$U = V \setminus L \in V$

Graph	G = (V, E)
Adjacency	$W \in \mathbb{R}^{n \times n}$
Degree	$\mathbf{D} = \operatorname{diag}(\mathbf{W1}) \in \mathbb{R}^{n \times n}$
Normed adj.	$S = D^{-1/2}WD^{-1/2} \in \mathbb{R}^{n \times n}$
Laplacian	$N = I - S \in \mathbb{R}^{n \times n}$
Feature	$\pmb{X} \in \mathbb{R}^{n imes p}$
Label	$oldsymbol{y} \in \mathbb{R}^n$
Attribute	$A = [X y] \in \mathbb{R}^{n \times (p+1)}$
Labeled	$L \in V$
Unlabeled	$U = V \setminus L \in V$

• other attributes

Graph	G = (V, E)
Weighted adjacency matrix	$oldsymbol{W} \in \mathbb{R}^{n imes n}$
Degree matrix	$\mathbf{D} = \operatorname{diag}(\mathbf{W1}) \in \mathbb{R}^{n \times n}$
Symmetric normed adj. matrix	$S = D^{-1/2}WD^{-1/2} \in \mathbb{R}^{n \times n}$
Normalized Laplacian	$N = I - S \in \mathbb{R}^{n \times n}$
Feature matrix (zero-centered)	$\pmb{X} \in \mathbb{R}^{n \times p}$
Label vector (zero-centered)	$oldsymbol{y} \in \mathbb{R}^n$
Attribute matrix (zero-centered)	$A = [X y] \in \mathbb{R}^{n \times (p+1)}$
Labeled nodes	$L \in V$
Unlabeled nodes	$U = V \setminus L \in V$

Data Type

Corresponding Gaussian MRF

Learning Algorithm

Outline

- 1. Prerequisites
 - a. Normal distributions
 - b. Marginalizing and conditioning normals
- 2. Unifying model
- 3. Deriving learning algorithms
 - a. Linear regression
 - b. Label propagation
 - c. Graph convolution

Normal Distribution

$$\phi(x) = \gamma x^2 = x \gamma x$$
$$\gamma > 0$$

$$\rho(x) \propto e^{-\phi(x)} = e^{-x\gamma x}$$

$$\gamma = 1/\sigma^2$$

Normal Distribution

$$\phi(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathbf{\Gamma} \mathbf{x}$$
$$\mathbf{\Gamma} \ge 0$$

$$\rho(\mathbf{x}) \propto e^{-\phi(\mathbf{x})} = e^{-\mathbf{x}^{\mathsf{T}} \mathbf{\Gamma} \mathbf{x}}$$
$$\mathbf{\Gamma} = \mathbf{\Sigma}^{-1}$$

Marginalizing and Conditioning Normals

$$\begin{pmatrix} \mathbf{z}_P \\ \mathbf{z}_Q \end{pmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \overline{\mathbf{z}}_P \\ \overline{\mathbf{z}}_Q \end{bmatrix}, \begin{bmatrix} \mathbf{\Sigma}_{PP} \mathbf{\Sigma}_{PQ} \\ \mathbf{\Sigma}_{QP} \mathbf{\Sigma}_{QQ} \end{bmatrix} \right)$$

Marginalizing

Conditioning

Marginalizing and Conditioning Normals

$$\begin{pmatrix} \mathbf{z}_P \\ \mathbf{z}_Q \end{pmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \overline{\mathbf{z}}_P \\ \overline{\mathbf{z}}_Q \end{bmatrix}, \begin{bmatrix} \mathbf{\Sigma}_{PP} \mathbf{\Sigma}_{PQ} \\ \mathbf{\Sigma}_{QP} \mathbf{\Sigma}_{QQ} \end{bmatrix} \right)$$

Marginalizing $\mathbf{z}_P \sim \mathcal{N}(\mathbf{\bar{z}}_P, \mathbf{\Sigma}_{PP})$

Conditioning $\mathbf{z}_P | \mathbf{z}_Q \sim \mathcal{N}(\overline{\mathbf{z}}_P + \mathbf{\Sigma}_{PQ} \mathbf{\Sigma}_{QQ}^{-1} (\mathbf{z}_Q - \overline{\mathbf{z}}_Q), \\ \mathbf{\Sigma}_{PP} - \mathbf{\Sigma}_{PO} \mathbf{\Sigma}_{OO}^{-1} \mathbf{\Sigma}_{OP})$

Marginalizing and Conditioning Normals

$$\begin{pmatrix} \mathbf{z}_P \\ \mathbf{z}_Q \end{pmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \overline{\mathbf{z}}_P \\ \overline{\mathbf{z}}_Q \end{bmatrix}, \begin{bmatrix} \mathbf{\Gamma}_{PP} \mathbf{\Gamma}_{PQ} \\ \mathbf{\Gamma}_{QP} \mathbf{\Gamma}_{QQ} \end{bmatrix}^{-1} \right)$$

Marginalizing $oldsymbol{z}_P{\sim}\mathcal{N}\left(ar{oldsymbol{z}}_P$, $\left(oldsymbol{\Gamma}_{PP}-oldsymbol{\Gamma}_{PQ}oldsymbol{\Gamma}_{QQ}^{-1}oldsymbol{\Gamma}_{QP}
ight)^{-1}
ight)$

Conditioning $\mathbf{z}_P | \mathbf{z}_Q \sim \mathcal{N} \left(\overline{\mathbf{z}}_P - \mathbf{\Gamma}_{PP}^{-1} \mathbf{\Gamma}_{PQ} \left(\mathbf{z}_Q - \overline{\mathbf{z}}_Q \right), \mathbf{\Gamma}_{PP}^{-1} \right)$

Unifying Model

Distribution over attribute matrix:

$$\rho(\mathbf{A} = \mathbf{A}|\mathbf{H}, \mathbf{h}) \propto e^{-\phi(\mathbf{A}|\mathbf{H}, \mathbf{h})}$$

- $H \in \mathbb{R}^{(p+1)\times (p+1)}$ is positive definite
- $h \in \mathbb{R}^{(p+1)}$ is entrywise positive

$$\phi(\mathbf{A}|\mathbf{H},\mathbf{h}) = \frac{1}{2} \sum_{u=1}^{n} \mathbf{a}_{u}^{\mathsf{T}} \mathbf{H} \mathbf{a}_{u} + \frac{1}{2} \sum_{i=1}^{p+1} h_{i} \mathbf{A}_{i}^{\mathsf{T}} \mathbf{N} \mathbf{A}_{i}$$

Unifying Model

Distribution over attribute matrix:

$$\rho(\mathbf{A} = \mathbf{A}|\mathbf{H}, \mathbf{h}) \propto e^{-\phi(\mathbf{A}|\mathbf{H}, \mathbf{h})}$$

- $H \in \mathbb{R}^{(p+1)\times (p+1)}$ is positive definite
- $h \in \mathbb{R}^{(p+1)}$ is entrywise positive

$$\phi(A|H,h) = \underbrace{\frac{1}{2} \sum_{u=1}^{n} \boldsymbol{a}_{u}^{\mathsf{T}} H \boldsymbol{a}_{u}}_{1} + \underbrace{\frac{1}{2} \sum_{i=1}^{p+1} h_{i} \boldsymbol{A}_{i}^{\mathsf{T}} N \boldsymbol{A}_{i}}_{1}$$

Correlations among attributes in each node

Unifying Model

Distribution over attribute matrix:

$$\rho(\mathbf{A} = \mathbf{A}|\mathbf{H}, \mathbf{h}) \propto e^{-\phi(\mathbf{A}|\mathbf{H}, \mathbf{h})}$$

- $H \in \mathbb{R}^{(p+1)\times(p+1)}$ is positive definite
- $h \in \mathbb{R}^{(p+1)}$ is entrywise positive

$$\phi(A|\mathbf{H},\mathbf{h}) = \underbrace{\frac{1}{2} \sum_{u=1}^{n} \mathbf{a}_{u}^{\mathsf{T}} \mathbf{H} \mathbf{a}_{u}}_{1} + \underbrace{\frac{1}{2} \sum_{i=1}^{p+1} h_{i} \mathbf{A}_{i}^{\mathsf{T}} \mathbf{N} \mathbf{A}_{i}}_{1}$$

Correlations among attributes in each node

Discourage roughness of each attribute over graph

$$\boldsymbol{A}_i^{\top} \boldsymbol{N} \boldsymbol{A}_i = \sum_{(u,v) \in E} \left(\frac{A_{ui}}{\sqrt{d_u}} - \frac{A_{vi}}{\sqrt{d_v}} \right)^2$$

Data Type

Corresponding Gaussian MRF

Learning Algorithm

condition on
$$X$$
 $e.g. L=\{1,3\}, U=\{2\}$

linear regression

$$E[\mathbf{y}_U|\mathbf{X}] = \mathbf{X}_U \boldsymbol{\beta} \qquad \quad \boldsymbol{\beta} = (\mathbf{X}_L^{\mathsf{T}} \mathbf{X}_L)^{-1} \mathbf{X}_L^{\mathsf{T}} \mathbf{y}_L$$

condition on \mathbf{y}_L

label propagation $E[\mathbf{y}_{U}|\mathbf{y}_{L}] = -(\mathbf{I} + \omega \mathbf{N})_{UU}^{-1}(\mathbf{I} + \omega \mathbf{N})_{UL}\mathbf{y}_{L}$

condition on **X** →

linear GC

further condition on \mathbf{y}_L residual propagation $E[\mathbf{y}_U|\mathbf{X}] = [(\mathbf{I} + \omega \mathbf{N})^{-1}\mathbf{X}\boldsymbol{\beta}]_U$ | change filter

Further condition on \mathbf{y}_L $E[\mathbf{y}_U|\mathbf{X}, \mathbf{y}_L] = \cdots$

SGC (simple graph convolution)

+nonlinearity

GCN (graph convolution network)

Edgeless Case

$$\phi(A|H,h) = \frac{1}{2} \sum_{u=1}^{n} \boldsymbol{a}_{u}^{\mathsf{T}} H \boldsymbol{a}_{u} + \frac{1}{2} \sum_{i=1}^{p+1} \boldsymbol{h}_{i} \boldsymbol{A}_{i}^{\mathsf{T}} N \boldsymbol{A}_{i}$$

Edgeless Case

$$\phi(A|H,h) = \frac{1}{2} \sum_{u=1}^{n} a_u^{\mathsf{T}} H a_u + \frac{1}{2} \sum_{i=1}^{p+1} h_i A_i^{\mathsf{T}} N A_i$$

$$\rho(\mathbf{A} = \mathbf{A}|\mathbf{H}, \mathbf{h}) = \frac{e^{-\frac{1}{2}\sum_{u=1}^{n} \mathbf{a}_{u}^{\mathsf{T}} \mathbf{H} \mathbf{a}_{u}}}{\int d\mathbf{A}' e^{-\frac{1}{2}\sum_{u=1}^{n} \mathbf{a}'_{u}^{\mathsf{T}} \mathbf{H} \mathbf{a}'_{u}}}$$

$$= \prod_{u=1}^{n} \frac{e^{-\frac{1}{2}\mathbf{a}_{u}^{\mathsf{T}} \mathbf{H} \mathbf{a}_{u}}}{\int d\mathbf{a}' e^{-\frac{1}{2}\mathbf{a}'_{u}^{\mathsf{T}} \mathbf{H} \mathbf{a}'_{u}}}$$

$$\propto \prod_{u=1}^{n} \frac{e^{-\frac{1}{2}\mathbf{a}_{u}^{\mathsf{T}} \mathbf{H} \mathbf{a}_{u}}}{e^{-\frac{1}{2}\mathbf{a}'_{u}^{\mathsf{T}} \mathbf{H} \mathbf{a}_{u}}}.$$

Edgeless Case

$$\phi(A|H,h) = \frac{1}{2} \sum_{u=1}^{n} \boldsymbol{a}_{u}^{\mathsf{T}} H \boldsymbol{a}_{u} + \frac{1}{2} \sum_{i=1}^{p+1} \boldsymbol{h}_{i} \boldsymbol{A}_{i}^{\mathsf{T}} N \boldsymbol{A}_{i}$$

$$\rho(\mathbf{A} = \mathbf{A}|\mathbf{H}, \mathbf{h}) = \frac{e^{-\frac{1}{2}\sum_{u=1}^{n} \mathbf{a}_{u}^{\mathsf{T}} \mathbf{H} \mathbf{a}_{u}}}{\int d\mathbf{A}' e^{-\frac{1}{2}\sum_{u=1}^{n} \mathbf{a'}_{u}^{\mathsf{T}} \mathbf{H} \mathbf{a}'_{u}}}$$

$$= \prod_{u=1}^{n} \frac{e^{-\frac{1}{2}\boldsymbol{a}_{u}^{\mathsf{T}}\boldsymbol{H}\boldsymbol{a}_{u}}}{\int d\boldsymbol{a}' e^{-\frac{1}{2}\boldsymbol{a}'_{u}^{\mathsf{T}}\boldsymbol{H}\boldsymbol{a}'_{u}}}$$

$$\propto \prod_{u=1}^n e^{-\frac{1}{2}a_u^{\mathsf{T}} H a_u}$$
.

 ρ decomposes into a product of n IID normals, one for each node, with mean 0 and precision H.

Edgeless Case: Conditioning

The rows $\{a_u\}_{u=1}^n$ of the attribute matrix are IID normals with mean 0, precision H.

Now condition on the features X to find the expectation of the labels y:

For each node
$$u \in V$$
, $\mathbb{E}[y_u|\mathbf{X}=\mathbf{X}] = \underbrace{\mathbb{E}[y_u|\mathbf{x}_u=\mathbf{x}_u]}$ Condition on p out of $p+1$ attributes

Edgeless Case: Conditioning

The rows $\{a_u\}_{u=1}^n$ of the attribute matrix are IID normals with mean 0, precision H.

Now condition on the features X to find the expectation of the labels y:

For each node
$$u \in V$$
, $\mathbb{E}[y_u|X=X] = \mathbb{E}[y_u|x_u=x_u] = x_u^{\mathsf{T}}\left(\frac{-H_{1:p,p+1}}{H_{p+1,p+1}}\right)$.

$$\mathbb{E}[\boldsymbol{y}|\boldsymbol{X}=\boldsymbol{X}]=\boldsymbol{X}\boldsymbol{\beta} \text{ for } \boldsymbol{\beta}=\frac{-H_{1:p,p+1}}{H_{p+1,p+1}}\in\mathbb{R}^p.$$

Algorithm: Rather than finding H, fit β directly via linear regression on known labels (X_L, y_L) .

Data Type

Corresponding Gaussian MRF

Learning Algorithm

$$x_{31}$$
 x_{32}
 y_3

linear regression

$$E[\mathbf{y}_U|\mathbf{X}] = \mathbf{X}_U\beta \qquad \beta = (\mathbf{X}_L^{\mathsf{T}}\mathbf{X}_L)^{-1}\mathbf{X}_L^{\mathsf{T}}\mathbf{y}_L$$

$$\beta = (\mathbf{X}_{L}^{\mathsf{T}}\mathbf{X}_{L})^{-1}\mathbf{X}_{L}^{\mathsf{T}}\mathbf{y}_{L}$$

label propagation

$$E[\mathbf{y}_{U}|\mathbf{y}_{L}] = -(\mathbf{I} + \omega \mathbf{N})_{UU}^{-1}(\mathbf{I} + \omega \mathbf{N})_{UL}\mathbf{y}_{L}$$

condition on \boldsymbol{X}

linear GC $\xrightarrow{\text{further condition on } \mathbf{y}_L}$ residual propagation $E[\mathbf{y}_{U}|\mathbf{X}] = [(\mathbf{I} + \omega \mathbf{N})^{-1}\mathbf{X}\boldsymbol{\beta}]_{U} \qquad E[\mathbf{y}_{U}|\mathbf{X}, \mathbf{y}_{L}] = \cdots$ change filter

SGC (simple graph convolution)

+nonlinearity

GCN (graph convolution network)

Featureless Case

General model:

$$\phi(A|H,h) = \frac{1}{2} \sum_{u=1}^{n} \boldsymbol{a}_{u}^{\mathsf{T}} H \boldsymbol{a}_{u} + \frac{1}{2} \sum_{i=1}^{p+1} h_{i} \boldsymbol{A}_{i}^{\mathsf{T}} N \boldsymbol{A}_{i}$$

Without features (p = 0):

$$\phi(\mathbf{y}|H,h) = \frac{1}{2} \sum_{u=1}^{n} y_u H y_u + \frac{1}{2} h \mathbf{y}^{\mathsf{T}} \mathbf{N} \mathbf{y}$$

Featureless Case

General model:

$$\phi(A|H,h) = \frac{1}{2} \sum_{u=1}^{n} \boldsymbol{a}_{u}^{\mathsf{T}} H \boldsymbol{a}_{u} + \frac{1}{2} \sum_{i=1}^{p+1} h_{i} \boldsymbol{A}_{i}^{\mathsf{T}} N \boldsymbol{A}_{i}$$

Without features (p = 0):

$$\phi(\mathbf{y}|H,h) = \frac{1}{2} \sum_{u=1}^{n} y_{u} H y_{u} + \frac{1}{2} h \mathbf{y}^{\mathsf{T}} \mathbf{N} \mathbf{y}$$

$$= \frac{1}{2} H \mathbf{y}^{\mathsf{T}} \mathbf{I}_{n} \mathbf{y} + \frac{1}{2} h \mathbf{y}^{\mathsf{T}} \mathbf{N} \mathbf{y}$$

$$= \frac{1}{2} \mathbf{y}^{\mathsf{T}} (H \mathbf{I}_{n} + h \mathbf{N}) \mathbf{y} = \frac{1}{2} \mathbf{y}^{\mathsf{T}} \mathbf{\Gamma} \mathbf{y}, \text{ where } \mathbf{\Gamma} = H \mathbf{I}_{n} + h \mathbf{N}.$$

$$\rho(\mathbf{y}=\mathbf{y}|H,h)=e^{-\frac{1}{2}\mathbf{y}^{\mathsf{T}}\mathbf{\Gamma}\mathbf{y}}$$
, where $\mathbf{\Gamma}=H\mathbf{I}_n+h\mathbf{N}$.

Now condition on known labels y_L to find unknown labels y_U :

$$\rho(\mathbf{y}=\mathbf{y}|H,h)=e^{-\frac{1}{2}\mathbf{y}^{\mathsf{T}}\mathbf{\Gamma}\mathbf{y}}$$
, where $\mathbf{\Gamma}=H\mathbf{I}_n+h\mathbf{N}$.

Now condition on known labels y_L to find unknown labels y_U :

$$\begin{split} \mathbb{E}[\boldsymbol{y}_{U}|\boldsymbol{y}_{L} &= \boldsymbol{y}_{L}] = -\boldsymbol{\Gamma}_{UU}^{-1}\boldsymbol{\Gamma}_{UL}\boldsymbol{y}_{L} \\ &= -(H\boldsymbol{I}_{n} + h\boldsymbol{N})_{UU}^{-1}(H\boldsymbol{I}_{n} + h\boldsymbol{N})_{UL}\boldsymbol{y}_{L} \\ &= -(\boldsymbol{I}_{n} + \omega\boldsymbol{N})_{UU}^{-1}(\boldsymbol{I}_{n} + \omega\boldsymbol{N})_{UL}\boldsymbol{y}_{L}, \text{ where } \omega = h/H. \end{split}$$

$$\rho(\mathbf{y} = \mathbf{y}|H,h) = e^{-\frac{1}{2}\mathbf{y}^{\mathsf{T}}\mathbf{\Gamma}\mathbf{y}}$$
, where $\mathbf{\Gamma} = H\mathbf{I}_n + h\mathbf{N}$.

Now condition on known labels y_L to find unknown labels y_U :

$$\mathbb{E}[\mathbf{y}_{U}|\mathbf{y}_{L}=\mathbf{y}_{L}]=-(\mathbf{I}_{n}+\omega\mathbf{N})_{UU}^{-1}(\mathbf{I}_{n}+\omega\mathbf{N})_{UL}\mathbf{y}_{L}, \text{ where } \omega=h/H.$$

$$\rho(\mathbf{y}=\mathbf{y}|H,h)=e^{-\frac{1}{2}\mathbf{y}^{\mathsf{T}}\mathbf{\Gamma}\mathbf{y}}$$
, where $\mathbf{\Gamma}=H\mathbf{I}_n+h\mathbf{N}$.

Now condition on known labels y_L to find unknown labels y_U :

$$\mathbb{E}[\mathbf{y}_{U}|\mathbf{y}_{L}=\mathbf{y}_{L}]=-(\mathbf{I}_{n}+\omega\mathbf{N})_{UU}^{-1}(\mathbf{I}_{n}+\omega\mathbf{N})_{UL}\mathbf{y}_{L}, \text{ where } \omega=h/H.$$

Algorithm: Label propagation.

$$\forall u \in L, y_u^{(0)} = y_u \text{ and } y_u^{(t+1)} = y_u^{(t)},$$

$$\forall u \in \mathit{U}, y_u^{(0)} = 0 \text{ and } y_u^{(t+1)} = (1-\alpha)y_u^{(0)} + \alpha d_u^{-1/2} \sum_{v \in \mathit{N}_1(u)} d_v^{-1/2} y_v^{(t)} \text{,}$$

where $\alpha = \frac{\omega}{1+\omega} \in (0,1)$ and $N_1(u)$ are the neighbors of u.

$$\rho(\mathbf{y}=\mathbf{y}|H,h)=e^{-\frac{1}{2}\mathbf{y}^{\mathsf{T}}\mathbf{\Gamma}\mathbf{y}}$$
, where $\mathbf{\Gamma}=H\mathbf{I}_n+h\mathbf{N}$.

Now condition on known labels y_L to find unknown labels y_U :

$$\mathbb{E}[\mathbf{y}_{U}|\mathbf{y}_{L}=\mathbf{y}_{L}]=-(\mathbf{I}_{n}+\omega\mathbf{N})_{UU}^{-1}(\mathbf{I}_{n}+\omega\mathbf{N})_{UL}\mathbf{y}_{L}, \text{ where } \omega=h/H.$$

Algorithm: Label propagation.

$$\forall u \in L, y_u^{(0)} = y_u \text{ and } y_u^{(t+1)} = y_u^{(t)},$$

$$\forall u \in \mathit{U}, y_u^{(0)} = 0 \text{ and } y_u^{(t+1)} = (1-\alpha)y_u^{(0)} + \alpha d_u^{-1/2} \sum_{v \in \mathit{N}_1(u)} d_v^{-1/2} y_v^{(t)},$$

where $\alpha = \frac{\omega}{1+\omega} \in (0,1)$ and $N_1(u)$ are the neighbors of u.

Equivalent?

Featureless Case: Label Prop Proof

Vectorized form of iteration

$$\begin{split} \forall u \in L, y_u^{(0)} &= y_u \text{ and } y_u^{(t+1)} = y_u^{(t)} \\ \forall u \in U, y_u^{(0)} &= 0 \text{ and } y_u^{(t+1)} = (1-\alpha)y_u^{(0)} + \alpha d_u^{-1/2} \sum_{v \in N_1(u)} d_v^{-1/2} y_v^{(t)}. \end{split}$$

$$\mathbf{y}_{U}^{(t+1)} = (1 - \alpha)\mathbf{y}_{U}^{(0)} + \alpha \mathbf{S}_{U,U \cup L}\mathbf{y}^{(t)}$$

$$= (1 - \alpha)\mathbf{y}_{U}^{(0)} + \alpha (\mathbf{S}_{UU}\mathbf{y}_{U}^{(t)} + \mathbf{S}_{UL}\mathbf{y}_{L}^{(t)})$$

$$= \alpha \mathbf{S}_{UU}\mathbf{y}_{U}^{(t)} + \alpha \mathbf{S}_{UL}\mathbf{y}_{L}.$$

Featureless Case: Label Prop Proof

Fixed point of iteration $\mathbf{y}_{U}^{(t+1)} = \alpha \mathbf{S}_{UU} \mathbf{y}_{U}^{(t)} + \alpha \mathbf{S}_{UL} \mathbf{y}_{L}$.

$$\mathbf{y}_{U}^{(\infty)} = \alpha \mathbf{S}_{UU} \mathbf{y}_{U}^{(\infty)} + \alpha \mathbf{S}_{UL} \mathbf{y}_{L}.$$

$$= (\mathbf{I} - \alpha \mathbf{S})_{UU}^{-1} (\alpha \mathbf{S}_{UL}) \mathbf{y}_{L}$$

$$= -(\mathbf{I} - \alpha \mathbf{S})_{UU}^{-1} (-\alpha \mathbf{S}_{UL}) \mathbf{y}_{L}$$

$$= -(\mathbf{I} - \alpha \mathbf{S})_{UU}^{-1} (\mathbf{I} - \alpha \mathbf{S})_{UL} \mathbf{y}_{L}$$

$$= -((1 - \alpha)\mathbf{I} + \alpha \mathbf{I} - \alpha \mathbf{S})_{UU}^{-1} ((1 - \alpha)\mathbf{I} + \alpha \mathbf{I} - \alpha \mathbf{S})_{UL} \mathbf{y}_{L}$$

$$= -(\mathbf{I} + \frac{\alpha}{1 - \alpha} (\mathbf{I} - \mathbf{S}))_{UU}^{-1} (\mathbf{I} + \frac{\alpha}{1 - \alpha} (\mathbf{I} - \mathbf{S}))_{UL} \mathbf{y}_{L}$$

$$= -(\mathbf{I} + \omega \mathbf{N})_{UU}^{-1} (\mathbf{I} + \omega \mathbf{N})_{UU} \mathbf{y}_{L}.$$

Data Type

Corresponding Gaussian MRF

Learning Algorithm

condition on
$$\mathbf{X}$$
 $e.g. L=\{1,3\}, U=\{2\}$

linear regression

$$E[\mathbf{y}_U|\mathbf{X}] = \mathbf{X}_U \boldsymbol{\beta} \qquad \quad \boldsymbol{\beta} = (\mathbf{X}_L^{\mathsf{T}} \mathbf{X}_L)^{-1} \mathbf{X}_L^{\mathsf{T}} \mathbf{y}_L$$

label propagation

$$E[\mathbf{y}_{U}|\mathbf{y}_{L}] = -(\mathbf{I} + \omega \mathbf{N})_{UU}^{-1}(\mathbf{I} + \omega \mathbf{N})_{UL}\mathbf{y}_{L}$$

condition on X

 $E[\mathbf{y}_{U}|\mathbf{X}] = [(\mathbf{I} + \omega \mathbf{N})^{-1}\mathbf{X}\boldsymbol{\beta}]_{U} \qquad E[\mathbf{y}_{U}|\mathbf{X}, \mathbf{y}_{L}] = \cdots$

linear GC $\xrightarrow{\text{further condition on } \mathbf{y}_{L}}$ residual propagation

change filter

SGC (simple graph convolution)

+nonlinearity

GCN (graph convolution network)

$$\phi(A|H,h) = \frac{1}{2} \sum_{u=1}^{n} \boldsymbol{a}_{u}^{\mathsf{T}} H \boldsymbol{a}_{u} + \frac{1}{2} \sum_{i=1}^{p+1} h_{i} \boldsymbol{A}_{i}^{\mathsf{T}} N \boldsymbol{A}_{i}$$

$$\rho(A=A|H,h)=e^{-\frac{1}{2}\left(\operatorname{vec}(A)\right)^{\mathsf{T}}\mathbf{\Gamma}\left(\operatorname{vec}(A)\right)}, \text{ where } \mathbf{\Gamma}=H\otimes \mathbf{I}_n + \operatorname{diag}(h)\otimes \mathbf{N}.$$

Now condition on features \mathbf{X} to find labels \mathbf{y} :

$$\phi(A|H,h) = \frac{1}{2} \sum_{u=1}^{n} a_u^\mathsf{T} H a_u + \frac{1}{2} \sum_{i=1}^{p+1} h_i A_i^\mathsf{T} N A_i$$

$$\rho(A=A|H,h) = e^{-\frac{1}{2} \left(\operatorname{vec}(A) \right)^\mathsf{T} \Gamma \left(\operatorname{vec}(A) \right)}, \text{ where } \Gamma = H \otimes I_n + \operatorname{diag}(h) \otimes N.$$
 Now condition on features **X** to find labels **y**:

$$\begin{split} \mathbb{E}[\boldsymbol{y}|\boldsymbol{X} &= \boldsymbol{X}] = -\boldsymbol{\Gamma}_{UU}^{-1}\boldsymbol{\Gamma}_{UL}\text{vec}(\boldsymbol{X}) \\ &= \left(H_{p+1,p+1}\boldsymbol{I}_n + h_{p+1}\boldsymbol{N}\right)^{-1} \left(-\boldsymbol{H}_{1:p,p+1}^{\top} \otimes \boldsymbol{I}_n\right)\text{vec}(\boldsymbol{X}) \\ &= (\boldsymbol{I}_n + \omega \boldsymbol{N})^{-1}\boldsymbol{X}\boldsymbol{\beta}, \text{ where } \omega = \frac{h_{p+1}}{H_{p+1,p+1}} \text{ and } \boldsymbol{\beta} = \frac{-\boldsymbol{H}_{1:p,p+1}}{H_{p+1,p+1}}. \end{split}$$

$$\phi(A|H,h) = \frac{1}{2} \sum_{u=1}^{n} \boldsymbol{a}_{u}^{\mathsf{T}} H \boldsymbol{a}_{u} + \frac{1}{2} \sum_{i=1}^{p+1} h_{i} \boldsymbol{A}_{i}^{\mathsf{T}} N \boldsymbol{A}_{i}$$

$$\rho(A=A|H,h)=e^{-\frac{1}{2}\left(\operatorname{vec}(A)\right)^{\mathsf{T}}\Gamma\left(\operatorname{vec}(A)\right)}, \text{ where } \Gamma=H\otimes I_n+\operatorname{diag}(h)\otimes N.$$

Now condition on features \mathbf{X} to find labels \mathbf{y} :

$$\mathbb{E}[y|X = X] = (I_n + \omega N)^{-1} X \beta$$
, where $\omega = \frac{h_{p+1}}{H_{p+1,p+1}}$ and $\beta = \frac{-H_{1:p,p+1}}{H_{p+1,p+1}}$.

$$\phi(A|H,h) = \frac{1}{2} \sum_{u=1}^{n} \boldsymbol{a}_{u}^{\mathsf{T}} H \boldsymbol{a}_{u} + \frac{1}{2} \sum_{i=1}^{p+1} h_{i} \boldsymbol{A}_{i}^{\mathsf{T}} N \boldsymbol{A}_{i}$$

$$\rho(A = A | H, h) = e^{-\frac{1}{2}(\text{vec}(A))^{\mathsf{T}} \Gamma(\text{vec}(A))}$$
, where $\Gamma = H \otimes I_n + \text{diag}(h) \otimes N$.

Now condition on features \mathbf{X} to find labels \mathbf{y} :

$$\mathbb{E}[\boldsymbol{y}|\boldsymbol{X}=\boldsymbol{X}] = \underbrace{(\boldsymbol{I}_n + \omega \boldsymbol{N})^{-1}\boldsymbol{X}}_{H_{p+1,p+1}}\boldsymbol{\beta}, \text{ where } \omega = \frac{h_{p+1}}{H_{p+1,p+1}} \text{ and } \boldsymbol{\beta} = \frac{-\boldsymbol{H}_{1:p,p+1}}{H_{p+1,p+1}}.$$

Feature Propagation:

$$\forall u \in V, x_u^{(0)} = x_u \text{ and } x_u^{(t+1)} = (1-\alpha)x_u^{(0)} + \alpha d_u^{-1/2} \sum_{v \in N_1(u)} d_v^{-1/2} x_v^{(t)}.$$

$$\phi(A|H,h) = \frac{1}{2} \sum_{u=1}^{n} \boldsymbol{a}_{u}^{\mathsf{T}} H \boldsymbol{a}_{u} + \frac{1}{2} \sum_{i=1}^{p+1} h_{i} \boldsymbol{A}_{i}^{\mathsf{T}} N \boldsymbol{A}_{i}$$

$$\rho(A=A|H,h)=e^{-\frac{1}{2}\left(\operatorname{vec}(A)\right)^{\mathsf{T}}\Gamma\left(\operatorname{vec}(A)\right)}, \text{ where } \Gamma=H\otimes I_n+\operatorname{diag}(h)\otimes N.$$

Now condition on features \mathbf{X} to find labels \mathbf{y} :

$$\mathbb{E}[y|X = X] = (I_n + \omega N)^{-1} X \beta$$
, where $\omega = \frac{h_{p+1}}{H_{p+1,p+1}}$ and $\beta = \frac{-H_{1:p,p+1}}{H_{p+1,p+1}}$.

Algorithm (Linear Graph Convolution / LGC):

- 1) Do feature propagation to compute $\overline{X} = (I_n + \omega N)^{-1} X$.
- 2) Fit $\boldsymbol{\beta}$ directly via linear regression on $(\overline{\boldsymbol{X}}_L, \boldsymbol{y}_L)$.

Graph + Features + Known Labels Case

Condition on both features X and known labels y_L to find unknown labels y_U .

$$\mathbb{E}[\mathbf{y}_U|\mathbf{X}=\mathbf{X},\mathbf{y}_L=\mathbf{y}_L]=\cdots$$

Algorithm (LGC with Residual Propagation):

Graph + Features + Known Labels Case

Condition on both features X and known labels y_L to find unknown labels y_U .

$$\mathbb{E}[\mathbf{y}_U|\mathbf{X}=\mathbf{X},\mathbf{y}_L=\mathbf{y}_L]=\cdots$$

Algorithm (LGC with Residual Propagation):

- 1) Do feature propagation to compute $\overline{X} = (I_n + \omega N)^{-1} X$.
- 2) Fit $\boldsymbol{\beta}$ directly via linear regression on $(\overline{\boldsymbol{X}}_L, \boldsymbol{y}_L)$.

Graph + Features + Known Labels Case

Condition on both features X and known labels y_L to find unknown labels y_U .

$$\mathbb{E}[\mathbf{y}_U|\mathbf{X}=\mathbf{X},\mathbf{y}_L=\mathbf{y}_L]=\cdots$$

Algorithm (LGC with Residual Propagation):

- 1) Do feature propagation to compute $\overline{X} = (I_n + \omega N)^{-1} X$.
- 2) Fit $\boldsymbol{\beta}$ directly via linear regression on $(\overline{\boldsymbol{X}}_L, \boldsymbol{y}_L)$.
- 3) Compute the regression residuals on known labels: $\bar{r}_L = y_L \bar{X}_L \beta$.
- 3) Do "residual propagation" of $ar{m{r}}_L$ to estimate $ar{m{r}}_U$.
- 4) Modify the LGC predictions: return $\overline{X}_U \boldsymbol{\beta} + \overline{r}_U$.

Connections to Other Graph Convolution

Linear Graph Convolution (LGC):

$$\mathbf{y}_{LGC} = (\mathbf{I}_n + \omega \mathbf{N})^{-1} \mathbf{X} \boldsymbol{\beta} = (1 - \alpha)(\mathbf{I} + \alpha \mathbf{S} + \alpha^2 \mathbf{S}^2 + \cdots) \mathbf{X} \boldsymbol{\beta}.$$

Simplified Graph Convolution (SGC):

$$\mathbf{y}_{SGC} = \widetilde{\mathbf{S}}^K \mathbf{X} \boldsymbol{\beta}.$$

Graph Convolutional Networks (GCN):

$$\mathbf{y}_{GCN} = \sigma(\widetilde{\mathbf{S}} \dots \sigma(\widetilde{\mathbf{S}} \mathbf{X} \mathbf{\Theta}^{(1)}) \dots \mathbf{\Theta}^{(K)}) \boldsymbol{\beta}$$
$$= \widetilde{\mathbf{S}}^K \mathbf{X} \boldsymbol{\beta}' \text{ if } \sigma(x) = x.$$

A Unifying Generative Model for Graph Learning Algorithms

