Journal Report 7 10/14/19-10/28/19 Michael Huang Computer Systems Research Lab Period 1, White

Daily Log

Tuesday October 15

Looked into Greedy Algorithm for MIS. Found nothing very impressive, the error ratio is too large.

Thursday October 17

Looked to see if Greedy was better under any special conditions

Monday October 21

Found that Greedy Algorithm was better for maximum hyperplanar graphs and studied those.

Tuesday October 22

Tried it out and tested it, however, was not accurate enough. The data was off by several factors, and we're playing in a space where every single one matters.

Thursday October 24

Looked into finalizing a proof for -1,0,1 in 26 variables rather than from a basis cubed. Played around with the large equation, but couldn't find anything.

Timeline

Date	Goal	Met
10/7	Find an answer for asymmetric	Yes, the answer is intuitively the same
	amounts of 1s and -1s.	as above, and I found a proof show-
		ing that.
10/14	Find the correlation coefficient be-	Yes, however the data was not great.
	tween the density of the graph and	
	the maximum independent vertex set	
	for different sets using $\{-1,0,1\}$	
10/28	Find an effective approximation algo-	No, I found algorithms but their er-
	rithm for MIS	ror was way too large to be efficient
		in our case.
11/4	Verify if 100/316 is beatable when the	
	26 variables are not linked to a basis	
	cubed.	
11/11	Prove a lower bound for the result for	
	the 26 variable inequality	

Reflection

My goal over these two weeks was to find some effective approximation algorithm. In my search, I only really found the greedy algorithm. The greedy algorithm has an error ratio of d+1 where d is the max degree. This was simply WAY too large when we're dealing with a range of between 0.293 and 0.316. Moving forward, I'm going to see if specifying on Mathematica will solve my problems of not having a good MIS set.

I hope to finish -1,0,1 as well. I will try to prove this, not only for non-symmetric basis sets but also for asymmetry over all 26 variables.