CSCI2100C 2019-20: Solution 4 Part 1 V1

The assignment 4 part 1 is for mock exam.

■ Q1. [10 marks] Demonstrate what happens when we insert the keys 7, 26, 18, 13, 25, 32, 12, 14, 11 into a hash table in order with collisions resolved by chaining step by step. Let the table have 9 slots, and let the hash function be h(k) = k%9. (Refer to CSCI2100C-Lecture19-21 Pages 12-13)

- Q2. [12 marks] Assume that we have a hash table with size m=11 and the hash function h(k)=k%11 using linear probing to address collisions. Answer the following questions. (Refer to CSCI2100C-Lecture19-21 Pages 18-19)
 - (i). [10 marks] Given an empty hash table, show the hash table when inserting 12, 22, 35, 4, 17, 23, 13, 87, 59 in order step by step.

	0		3			7			10			
Insertir	ng 12.		12									
Inserting 22.		22	12									
Inserting 35.		22	12	35								
Inserting 4.		22	12	35		4						
Insertir	ng 17.	22	12	35		4		17				
Insertir	ng 23.	22	12	35	23	4		17				
Insertir	ng 13.	22	12	35	23	4	13	17				
Insertir	ng 87.	22	12	35	23	4	13	17				87
Insertir	ıg 59.	22	12	35	23	4	13	17	59			87

- (ii). [2 marks] Given the following hash table, show the records examined when searching for 19.

0		3			7			10
33	34	14	25	15	18	8	31	10

When searching for 19, the records 8, 31, 10, 33, 34 are examined in order.

- Q3. [14 marks] Assume that we have a hash table with size m=11 and the hash function h(k)=k%11 and h'(k)=1+k%5 using double hashing to address collisions. Answer the following questions. (Refer to CSCI2100C-Lecture19-21 Pages 21-22)
 - (i). [9 marks] Given the following hash table, show the hash table when inserting 18, 24 and 26 in order step by step.

0		3			7		10
	12		15	29	7	20	

Inserting 18. $h(18,0) = 18\%11 = 7 \rightarrow$ not empty. Try $h(18,1) = (7+1+18\%5)\%11 = 0 \rightarrow$ empty, insert here.

0		3			7		10	
18	12		15	29	7	20		

Inserting 24. $h(24, 0) = 24\%11 = 2 \rightarrow \text{empty}$, insert here.

0			3			7		10
18	12	24		15	29	7	20	

0			3			7			10
18	12	24		15	29	7	26	20	

Inserting 26. $h(26,0) = 26\%11 = 4 \rightarrow \text{not empty.}$ Try $h(26,1) = (4+1+26\%5)\%11 = 6 \rightarrow \text{not empty.}$ Try $h(26,1) = (4+2\cdot(1+26\%5))\%11 = 8 \rightarrow \text{empty.}$ insert here.

– (ii). [1 marks] After inserting 18, 24 and 26 in Part (i), calculate the load factor α of the hash table.

Load factor α : $\alpha = \frac{8}{11} = 0.73$

- (iii). [4 marks] After inserting 18, 24 and 26 in Part (i), show the records examined when searching for 13.

 $h(13,0)=13\%11=2 \to \text{not empty. Try } h(13,1)=(2+1+13\%5)\%11=6 \to \text{not empty. Try } h(13,2)=(2+2\cdot(1+13\%5))\%11=10 \to \text{empty.}$

When searching for 13, the records 24, 29 are examined in order.