Esercitazioni 1–6 - Analisi di Rete

Esercizio 1

1. Che tipo di protocollo di livello Data-link è utilizzato? Come fa Wireshark a capirlo?

Utilizza il protocollo Ethernet. Wireshark lo capisce perché nel pacchetto è presente il campo *EtherType*.

2. Disegnare la PDU di livello Data-link indicando il valore dei vari campi.

Figure 1: PDU Data-link

3. Qual è il MAC sorgente? Di che tipo è: unicast o broadcast? Il MAC sorgente è 00:e0:81:24:dd:64 ed è di tipo unicast.

4. Qual è il MAC destinazione? Di che tipo è: unicast o broadcast?

Il MAC destinazione è ff:ff:ff:ff:ff ed è di tipo broadcast.

5. Che tipo di protocollo di livello Network è utilizzato? Come fa Wireshark a capirlo?

Viene utilizzato il protocollo IPv4. Wireshark lo capisce leggendo il campo *Type* nell'header Data-link.

6. Qual è la lunghezza dell'header IP?

La lunghezza dell'header IP è di 20 byte.

7. Quali sono gli indirizzi IP sorgente e destinazione?

IP sorgente: 157.27.252.223 IP destinazione: 157.27.252.255

8. Che tipo di protocollo di livello trasporto è contenuto in IP? Come fa Wireshark a capirlo?

Viene usato il protocollo UDP. Wireshark lo capisce leggendo il campo *Protocol* nell'header IP.

9. Quali sono le porte sorgente e destinazione a livello trasporto?

Porta sorgente: 631 Porta destinazione: 631

10. Creare un filtro per visualizzare solo i pacchetti che hanno ARP come protocollo.

arp

(a) arp									
No.	Time	Source	Destination		Length Info				
	1 0.000000	Dell_c7:2b:ee	Broadcast	ARP	68 Who has 157.27.252.18? Tell 157.27.252.239				
	2 0.195050	Dell_22:6f:50	Broadcast	ARP	60 Who has 157.27.241.1? Tell 157.27.241.20				
	3 0.306017	Dell_28:21:29	Broadcast	ARP	60 Who has 157.27.252.10? Tell 157.27.252.209				
	4 0.324945	3Con_c1:ca:6a	Broadcast	ARP	68 Who has 157.27.252.18? Tell 157.27.252.34				
	5 0.769556	CameoCommuni_5d:88:	Broadcast	ARP	60 Who has 157.27.252.10? Tell 157.27.252.206				
	6 0.836614	Cisco_7b:b7:cb	Broadcast	ARP	68 Who has 157.27.252.18? Tell 157.27.252.1				
	7 0.938386	Dell_c3:81:29	Broadcast	ARP	60 Who has 157.27.252.10? Tell 157.27.252.82				
	18 1.029559	Dell_c7:2b:ee	Broadcast	ARP	68 Who has 157.27.252.18? Tell 157.27.252.239				
	11 1.195038	Dell_22:6f:50	Broadcast	ARP	60 Who has 157.27.241.1? Tell 157.27.241.20				
	13 1.806000	Dell_28:21:29	Broadcast	ARP	68 Who has 157.27.252.18? Tell 157.27.252.209				
	16 2.105988	Dell_c7:2b:ee	Broadcast	ARP	60 Who has 157.27.252.10? Tell 157.27.252.239				
	17 2.194939	Dell_22:6f:50	Broadcast	ARP	68 Who has 157.27.241.1? Tell 157.27.241.20				
	18 2.269268	CameoCommuni_5d:88:	Broadcast	ARP	68 Who has 157.27.252.18? Tell 157.27.252.206				
	19 2.438413	Dell_c3:81:29	Broadcast	ARP	68 Who has 157.27.252.18? Tell 157.27.252.82				
	28 2.573963	Dell_c7:2b:ee	Broadcast	ARP	60 Who has 157.27.252.10? Tell 157.27.252.239				
	21 3.195004	Dell_22:6f:50	Broadcast	ARP	68 Who has 157.27.241.1? Tell 157.27.241.20				
	24 3.306335	Dell_28:21:29	Broadcast	ARP	60 Who has 157.27.252.10? Tell 157.27.252.209				
	25 3.603589	Dell_c7:2b:ee	Broadcast	ARP	68 Who has 157.27.252.18? Tell 157.27.252.239				
	26 3.776870	CameoCommuni_5d:88:	Broadcast	ARP	68 Who has 157.27.252.18? Tell 157.27.252.206				
	27 3.938447	Dell_c3:81:29	Broadcast	ARP	68 Who has 157.27.252.18? Tell 157.27.252.82				
	29 4.557898	Cisco_7b:b7:cb	Broadcast	ARP	60 Who has 157.27.252.10? Tell 157.27.252.1				
	31 4.805988	Dell_28:21:29	Broadcast	ARP	68 Who has 157.27.252.18? Tell 157.27.252.209				
	32 5.132466	Dell_c7:2b:ee	Broadcast	ARP	60 Who has 157.27.252.10? Tell 157.27.252.239				
	33 5.274603	CameoCommuni_5d:88:	Broadcast	ARP	68 Who has 157.27.252.18? Tell 157.27.252.206				
	34 5.662998	Dell_c7:2b:ee	Broadcast	ARP	68 Who has 157.27.252.18? Tell 157.27.252.239				
	35 6.306044	Dell_28:21:29	Broadcast	ARP	68 Who has 157.27.252.18? Tell 157.27.252.209				
	36 6.692454	Dell_c7:2b:ee	Broadcast	ARP	68 Who has 157.27.252.18? Tell 157.27.252.239				
	37 6.778876	CameoCommuni_5d:88:	Broadcast	ARP	68 Who has 157.27.252.18? Tell 157.27.252.206				

Figure 2: Filtro ARP

11. Dopo aver applicato il filtro precedente qual è la percentuale di pacchetti che rimangono visualizzati rispetto al totale? 63% (173 pacchetti su 272)

12. Creare un filtro per visualizzare solo i pacchetti che hanno destinazione MAC 00:01:e6:57:4b:e0.

eth.dst == 00:01:e6:57:4b:e0

Figure 3: Filtro destinazione MAC specifico

- 13. Dopo aver applicato il filtro precedente qual è la percentuale di pacchetti che rimangono visualizzati rispetto al totale? 0.4% (1 pacchetto su 272)
- 14. Creare un filtro per visualizzare solo i pacchetti che hanno destinazione MAC broadcast.

eth.dst == ff:ff:ff:ff:ff

Figure 4: Filtro MAC broadcast

15. Dopo aver applicato il filtro precedente qual è la percentuale di pacchetti che rimangono visualizzati rispetto al totale? Sono molti? Perché?

83.8% (228 pacchetti su 272). Sono molti perché ci sono state molte assegnazioni IP tramite protocollo ARP.

Esercizio 2

1. Colorare di rosso tutti i pacchetti che contengono UDP e di verde tutti i pacchetti che contengono TCP.

	1 0.000000	157,27,252,202	157,27,10,10	DNS	73 Standard guery 0xb697 A www.polito.it
т.	2 8.884021	157.27.252.202	157.27.10.10	DNS	73 Standard query 0xx0097 A www.puito.it 254 Standard query 0xx0097 A www.puito.it CNAME web01.polito.it A 130.192.73.1 NS legs
· Ann	3 0.004021	157,27,252,282	130.192.73.1	TCP	74 36986 - 80 [SYN] Seq=0 Win=5840 Len=0 MSS=1460 SACK PERM TSval=2764385 TSecr=0 WS=64
		130.192.73.1	157.27.252.202	TCP	
	4 0.023124		157.27.252.202	TCP	62 80 - 36986 [SYN, ACK] Seq=0 Ack=1 Win=5840 Len=0 MSS=1460 SACK_PERM
	5 0.023144	157.27.252.202			54 36986 80 [ACK] Seq=1 Ack=1 Win=5840 Len=0
	6 0.023202	157.27.252.202	130.192.73.1	HTTP	434 GET / HTTP/1.1
	7 0.025423	130.192.73.1	157.27.252.202	TCP	60 80 - 36986 [ACK] Seq=1 Ack=381 Win=65155 Len=0
	8 0.025430	130.192.73.1	157.27.252.202	TCP	60 [TCP ZeroWindow] 80 36986 [ACK] Seq=1 Ack=381 Win=0 Len=0
	9 0.066185	130.192.73.1	157.27.252.202	TCP	60 [TCP Window Update] 80 - 36986 [ACK] Seq=1 Ack=381 Win=65535 Len=0
	10 0.092188	130.192.73.1	157.27.252.202	TCP	1514 88 - 36986 [PSH, ACK] Seq=1 Ack=381 Win=65535 Len=1460 [TCP PDU reassembled in 84]
	11 0.092242	157.27.252.202	130.192.73.1	TCP	54 36986 - 80 [ACK] Seq=381 Ack=1461 Win=8760 Len=0
	12 0.094297	130.192.73.1	157.27.252.202	TCP	1514 80 - 36986 [PSH, ACK] Seq=1461 Ack=381 Win=65535 Len=1460 [TCP PDU reassembled in 84]
	13 0.094327	157.27.252.202	130.192.73.1	TCP	54 36986 - 80 [ACK] Seq=381 Ack=2921 Win=11680 Len=0
	14 0.107330	157.27.252.202	130.192.73.1	TCP	74 36987 - 80 [SYN] Seq=0 Win=5840 Len=0 MSS=1460 SACK_PERM TSval=2764411 TSecr=0 WS=64
	15 0.109655	130.192.73.1	157.27.252.202	TCP	1514 80 - 36986 [PSH, ACK] Seq=2921 Ack=381 Win=65535 Len=1460 [TCP PDU reassembled in 84]
	16 0.109667	157.27.252.202	130.192.73.1	TCP	54 36986 - 80 [ACK] Seq=381 Ack=4381 Win=14600 Len=0
	17 0.109673	130.192.73.1	157.27.252.202	TCP	1514 80 - 36986 [PSH, ACK] Seq=4381 Ack=381 Win=65535 Len=1460 [TCP PDU reassembled in 84]
	18 0.109677	157.27.252.282	130.192.73.1	TCP	54 36986 80 [ACK] Seq=381 Ack=5841 Win=17520 Len=0
	19 0.109874	130.192.73.1	157.27.252.202	TCP	1514 80 - 36986 [PSH, ACK] Seg=5841 Ack=381 Win=65535 Len=1460 [TCP PDU reassembled in 84]
	20 0.109884	157,27,252,202	130.192.73.1	TCP	54 36986 - 80 [ACK] Seg=381 Ack=7301 Win=20440 Len=0
	21 8.111989	130.192.73.1	157.27.252.202	TCP	1514 80 - 36986 PSH, ACKI Seg=7301 Ack=381 Win=65535 Len=1460 PCP PDU reassembled in 841
	22 8.111919	157.27.252.282	130.192.73.1	TCP	54 36986 80 [ACK] Seq=381 Ack=8761 Win=23360 Len=0
	23 0.120149	157,27,252,202	130,192,73,1	TCP	74 36988 - 80 [SYN] Seg=0 Win=5840 Len=0 MSS=1460 SACK PERM TSval=2764414 TSecr=0 WS=64
	24 0.128804	130,192,73,1	157,27,252,202	TCP	1514 88 - 36986 [PSH, ACK] Seg=8761 Ack=381 Win=65535 Len=1468 [TCP PDU reassembled in 84]
	25 8.128816	157.27.252.282	130.192.73.1	TCP	54 36986 - 80 [ACK] Seq=381 Ack=10221 Win=26280 Len=0
	26 8.129852	130.192.73.1	157.27.252.202	TCP	1514 88 36986 [PSH, ACK] Seg=19221 Ack=381 Win=65535 Len=1469 [TCP PDU reassembled in 84]
	27 0.129061	157,27,252,202	130.192.73.1	TCP	54 36986 - 80 [ACK] Seg=381 Ack=11681 Win=29200 Len=0
	28 0.129067	130,192,73,1	157,27,252,202	TCP	1514 80 - 36986 [PSH, ACK] Seq=11681 Ack=381 Win=65535 Len=1460 [TCP PDU reassembled in 84]
					1514 00 4 50500 [151, Ack] 544-1101 Ack-051 M21-05050 Ech-1400 [161 150 1625560000 211 04]

Figure 5: Regole di colorazione UDP/TCP

2. Cosa contengono i primi due pacchetti della sessione di cattura?

Pacchetto 1:

• IP sorgente: 157.27.252.202

• IP destinazione: 157.27.10.10

• Trasporto: UDP

• Applicazione: DNS (www.polito.it)

Pacchetto 2:

• IP sorgente: 157.27.10.10

• IP destinazione: 157.27.252.202

• Trasporto: UDP

• Applicatione: DNS (web01.polito.it \rightarrow 130.192.73.1)

3. Prendere in considerazione il pacchetto n. 3.

• IP sorgente: 157.27.252.202

• IP destinazione: 130.192.73.1

• Trasporto: TCP

• Applicazione: risposta alla ricerca DNS

4. Prendere in considerazione il pacchetto n. 6.

• IP sorgente: 157.27.252.202

• IP destinazione: 130.192.73.1

• Trasporto: TCP

• Applicazione: HTTP

- I tre pacchetti precedenti sono il Three Way Handshake (flag SEQ e ACK).
- 5. Filtro per pacchetti TCP (inclusi HTTP), numero pacchetti: $807~\mathrm{su}~823$
- 6. Filtro per pacchetti TCP (esclusi HTTP), numero pacchetti e percentuale:

673 su 823 (81,8%). Sono i pacchetti TCP di handshake; se DNS usasse TCP, sarebbero stati generati 6 pacchetti in più, rallentando.

7. Seguire lo stream TCP: cosa si può leggere? Si possono leggere le varie richieste HTTP GET.

Esercizio 3

1. Protocolli di livello Applicazione per trasporto:

UDP: DNS

TCP: HTTP, FTP, SSH

2. Analisi di diversi stream TCP:

```
GET /icons/bac
HTTP/1.1 200 O
GET /pub/gento
HTTP/1.1 200 Of=
HTTP/1.1 200
```

Figure 6: Esempio di stream TCP

3. Differenza FTP vs SSH:

Sì, la differenza è che SSH è criptato.

Esercizio 4

1. Numero richieste ping e risposte:

 $22 \ \mathrm{su} \ 3215$

2. IP sorgente e destinazione delle richieste ICMP e intestatari:

IP sorgente: 157.27.143.46

IP destinazione: 216.58.211.196 (www.google.com)

3. RTT medio e variazione (google vs gateway):

RTT gateway: 0.028 ms RTT Google: 5.75 ms

Il gateway mostra RTT minore essendo interno alla rete locale.

Esercizio 5

1. Interfacce dei router attraversati:

Figure 7: Output del traceroute

2. Organizzazioni intestatarie degli IP:

Vedi annotazioni nel tracciato (fig. traceroute).

Esercizio 6

1. Interfacce attive, IP e netmask:

Figure 8: Interfacce attive sul PC

2. IP di www.univr.it:

Ricavato tramite nslookup o comando equivalente (vedi fig. interfaccie).