Alzheimer's Data Analysis

Babak Shahbaba and Sam Behseta UC Irvine and California State University Fullerton

July and August, 2022

Bivariate Data Summarization and Inference

In this lesson, we review the effective ways of summarizing and analyzing data associated with two variables.

Bivariate Data Summarization and Inference

- In this lesson, we review the effective ways of summarizing and analyzing data associated with two variables.
- There are multiple scenarios: both variables are categorical, one is categorical while the other is continuous, and both are numerical (and continuous).

Bivariate Data Summarization and Inference

- In this lesson, we review the effective ways of summarizing and analyzing data associated with two variables.
- There are multiple scenarios: both variables are categorical, one is categorical while the other is continuous, and both are numerical (and continuous).
- In principle, we can have a third kind of variable, called discrete, which is somewhat broader than categorical. We can have features that refer to number of incidence or counts of a random phenomenon. Think of *size of a family*, as a feature. This variable is not categorical per se, but the good news is historically, the methods for categorical variables mostly co-incides with the theory and methods for expressing and understanding discrete variables. We'll get to discuss that concept soon!

Summarizing and Visualizing Two Categorical Variables

Historically, the main them here revolve around what is known as a contingency table. This is a table that reflects the frequency (or relative frequency) of the joint categories of each variable.

Summarizing and Visualizing Two Categorical Variables

- Historically, the main them here revolve around what is known as a contingency table. This is a table that reflects the frequency (or relative frequency) of the joint categories of each variable.
- We can summarize the information through marginal and total sums or proportions of the table.

Let's recall the information we have from these variables:

```
diag=as.factor(diagnosis)
summary(diag)

female=as.factor(female)
summary(female)
```

Let's recall the information we have from these variables:

```
diag=as.factor(diagnosis)
summary(diag)

female=as.factor(female)
summary(female)
```

► We would like to be able to cross-correlate them into a table. The command is not surprisingly called *table*!

► This is a so-called 3 by 2 contingency table. Before fully immersing ourselves to it, let us first extract more information from this table!

```
tab_sum <- addmargins(t, FUN = sum)
tab_sum</pre>
```

► This is a so-called 3 by 2 contingency table. Before fully immersing ourselves to it, let us first extract more information from this table!

```
tab_sum <- addmargins(t, FUN = sum)
tab_sum</pre>
```

► Tell me what I did in the code below, and why that is important in the context of our analysis?

```
t.rate=t/sum(t)
t.rate
tab_rate <- addmargins(t.rate, FUN = sum)
tab_rate</pre>
```

Visualizing diagnosis and female Jointly

► Let's proceed with a familiar way of representing this data. Make sure to analyze the code carefully!

```
counts<-c(529,1005,327,286,295,258)
diagnosis<-c("normal", "mild", "severe")</pre>
female<-c("no","yes")</pre>
new.data<-data.frame(counts, diagnosis, female)</pre>
> new.data
  counts diagnosis female
     529
             normal
                          no
    1005
               mild
                        yes
3
     327
             severe
                          no
4
     286
             normal
                        yes
5
     295
               mild
                          nο
6
     258
             severe
                        ves
```

Visualizing *diagnosis* and *female* Jointly

ggplot2 allows us to make the visualization elaborate!

Visualizing diagnosis and female Jointly

▶ And eventually, below is what would emerge from the code:

Testing the Independence of diagnosis and female

▶ The R command is *chisq.test*. Let's apply it on this data, and also verify its values with simple calculations. Remember that

$$\chi^{2} = \sum_{i=1}^{nrow} \sum_{j=1}^{ncol} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$

Testing the Independence of diagnosis and female

► The R command is chisq.test. Let's apply it on this data, and also verify its values with simple calculations. Remember that

$$\chi^{2} = \sum_{i=1}^{nrow} \sum_{j=1}^{ncol} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$

Now let's run the χ^2 test for these two variables:

```
c<-chisq.test(t)
c
c$observed
c$expected</pre>
```

Testing the Independence of diagnosis and female

► The R command is *chisq.test*. Let's apply it on this data, and also verify its values with simple calculations. Remember that

$$\chi^{2} = \sum_{i=1}^{nrow} \sum_{j=1}^{ncol} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$

Now let's run the χ^2 test for these two variables:

```
c<-chisq.test(t)
c
c$observed
c$expected</pre>
```

Let's further check the output of the χ^2 test:

```
my.chisq=sum((c$observed-c$expected)^2/c$expected)
my.chisq
1-pchisq(my.chisq,2)
```


Class Activity 1 – Group Work

- Collapse the variable educ into three groups: 0-12, 12-17, 17-25 years of education. Called the newly created variable educ.cat!
- Perform a full analysis of cross-correlation between female and educ.cat.

Hint:Below are two ways to accomplish the disrectization task. I like to refer to first approach as the *puzzle-solving* approach! The second one utilizes the important package *deplyr*:

► Method 1:

```
educ.cat=numeric(2700)
educ.cat[educ>=0 & educ <=12]<-1
educ.cat[educ>12 & educ <=17]<-2
educ.cat[educ>17 & educ <=25]<-3
educ.cat<-as.factor(educ.cat)
head(educ.cat)</pre>
```

► Method 2:

```
educ1.cat <- educ %>%
    mutate(category=cut(educ, breaks=c(0,12,17,25), labels=c("1","2","3")))
educ1.cat
```

Summarizing and Visualizing a Categorical Versus a Continuous Variable

➤ This is somewhat straightforward, as the task would revolve around summarizing, and thereby contrasting, the continuous vairable across the levels of the categorical one.

Summarizing and Visualizing a Categorical Versus a Continuous Variable

- ➤ This is somewhat straightforward, as the task would revolve around summarizing, and thereby contrasting, the continuous vairable across the levels of the categorical one.
- We can summarize the data, say with its mean or the median, for each level of the categorical variable, taking into account the variation in each level.

Summarizing and Visualizing a Categorical Versus a Continuous Variable

- ➤ This is somewhat straightforward, as the task would revolve around summarizing, and thereby contrasting, the continuous vairable across the levels of the categorical one.
- We can summarize the data, say with its mean or the median, for each level of the categorical variable, taking into account the variation in each level.
- ► The easiest way to see this is to use the familiar variables diagnosis and vol (please see the previous lecture for the full description of vol.)

Summarizing vol By diagnosis

We can begin by summarizing the brain volume associated with each category of diagnosis:

```
summary(vol[diag==0])
summary(vol[diag==1])
summary(vol[diag==2])
```

Visualizing vol By diagnosis

► Let us quickly complement that with a *side-by-side boxplot*:

boxplot(vol~diag1,col="blue",pch=16,xlab="diagnosis",
ylab="intracarnial volume")

Two-Sample Hypothesis Test with R

Below, we will test the hypothesis that whether the mean of the variable naccicv or vol is the same among the female and others groups:

```
vol.f<-vol[female=="yes"]</pre>
vol.o<-vol[female=="no"]</pre>
summary(vol.f)
summary(vol.o)
> t.test(vol.f,vol.o)
Welch Two Sample t-test
data: vol.f and vol.o
t = 0.47365, df = 2697.3, p-value = 0.6358
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -7.717054 12.632580
sample estimates:
mean of x mean of y
 1378,147 1375,689
```

Relationship Among Two Continuous Variables

Let's consider the correlation between the right hippocampus volume of the subjects versus their right hippocampus volume. There should be a significantly high correlation among the two.

```
plot(lhippo,rhippo,pch=16,xlab="left hippocampus volume",
ylab="right hippocampus volume")
cor(lhippo,rhippo)
cor.test(lhippo,rhippo)
```

