CHAPTER 3 SUMMARY

(Page 218)

Evolution of Atomic Theories		
Atomic theory	Key experimental work	Contribution to theory
Rutherford	-alpha particle scattering through gold foil	-nucleus
Bohr	-hydrogen spectral lines	-quantized energy levels (principal quantum number)
Quantum Mechanics	-hydrogen spectral lines made up of closely spaced lines	-secondary quantum number
	-splitting of spectral lines caused by a magnetic field	-magnetic quantum number
	-magnetism	-spin quantum number
	-wave and particle properties of light and electrons	-wave nature of electrons -wave mechanics

Planck: first suggestion of a quantum of energy

Bohr: first use of quantum idea in an atomic model

Sommerfeld: idea of subshells or sublevels leading to shapes of orbitals

de Broglie: idea of wave nature of electrons

Einstein: photon theory to explain photoelectric effect using quantum idea; integral to the development of the Bohr theory

Schrödinger: extended de Broglie's idea to develop a mathematical model of an atom based on wave mechanics Heisenberg: developed probability interpretation of quantum mechanics

• (a)

1s		18
2s		2 <i>p</i>
3s		3 <i>p</i>
48	3 <i>d</i>	4 <i>p</i>
5 <i>s</i>	4 <i>d</i>	5 <i>p</i>
6 <i>s</i>	5 <i>d</i>	6 <i>p</i>
7 <i>s</i>	6 <i>d</i>	

4 <i>f</i>
5 <i>f</i>

- (b) Most of the empirical justification comes from the study of atomic spectra but other evidence also comes from physical and chemical properties of elements.
- (c) Quantum mechanics theory of electron energies in orbitals.

106 Chapter 3 Copyright © 2003 Nelson