Input rank	Count	Neighbors
0	3	1, 1, 3
1	2	0, 0
2	1	3
3	3	0, 2, 2

Example 7.6 Suppose that comm is a communicator with a shuffle-exchange topology. The group has 2^n members. Each process is labeled by a_1, \ldots, a_n with $a_i \in \{0, 1\}$, and has three neighbors: exchange $(a_1, \ldots, a_n) = a_1, \ldots, a_{n-1}, \bar{a}_n$ ($\bar{a} = 1 - a$), shuffle $(a_1, \ldots, a_n) = a_2, \ldots, a_n, a_1$, and unshuffle $(a_1, \ldots, a_n) = a_n, a_1, \ldots, a_{n-1}$. The graph adjacency list is illustrated below for n = 3.

1	node	exchange	shuffle	unshuffle
		neighbors(1)	neighbors(2)	neighbors(3)
0	(000)	1	0	0
1	(001)	0	2	4
2	(010)	3	4	1
3	(011)	2	6	5
4	(100)	5	1	2
5	(101)	4	3	6
6	(110)	7	5	3
7	(111)	6	7	7

Suppose that the communicator **comm** has this topology associated with it. The following code fragment cycles through the three types of neighbors and performs an appropriate permutation for each.

MPI_DIST_GRAPH_NEIGHBORS_COUNT and MPI_DIST_GRAPH_NEIGHBORS provide adjacency information for a distributed graph topology.

 42 ticket33.