Bases de Dados

Normalização - Parte 2

Profa. Elaine Parros Machado de Sousa

- Formas Normais baseadas em dependências funcionais
 - baseadas em chave primária
 - 1^a FN
 - 2a FN
 - 3a FN
 - baseadas em chaves candidatas
 - definições genéricas de 2ª FN e 3ª FN
 - FN de Boyce-Codd (BCNF)
- Forma Normal baseada em dependências multivaloradas
 - 4^a FN

- Formas Normais baseadas em dependências funcionais
 - baseadas em chave primária
 - 1^a FN
 - 2a FN
 - 3a FN
 - baseadas em chaves candidatas
 - definições genéricas de 2ª FN e 3ª FN
 - FN de Boyce-Codd (BCNF)
- Forma Normal baseada em dependências multivaloradas
 - 4^a FN

- Definições genéricas ⇒levam todas as chaves candidatas em consideração
 - 2ª FN genérica ⇒ todos os atributos não primários possuem dependência total, transitiva ou não, de todas as chaves (primária, secundária, ...)
 - 3º FN genérica ⇒ todos os atributos não primários possuem dependência total, não transitiva, de todas as chaves (primária, secundária, ...)

Matrícula → Municipio, NroLote, Área, Preço Municipio, NroLote → Área, Matrícula, Preço Área → Preço

Lotes = {Matricula, Municipio, NroLote, Área, Preço }

- Analise a relação **Lotes** considerando as definições genéricas de 2ª FN e 3ª FN
 - 2ª FN genérica? OK!!
 - 3ª FN genérica? NÃO!!

```
Matrícula → Municipio, NroLote, Área, Preço
Municipio, NroLote → Área, Matrícula, Preço
Área → Preço
```

Lotes = {Matricula, Municipio, NroLote, Área, Preço }

▶ Normalizando para 3ª FN Genérica

Lotes = {Matricula, Municipio, NroLote, Área}

Área = $\{Area, Preço\}$

Aluno, Curso → Instrutor
Instrutor → Curso

Treinamento = {Aluno, Curso, Instrutor}

- > Analisando a relação **Treinamento** considerando as definições genéricas de 2ª FN e 3ª FN...
 - 2ª FN genérica? OK!!
 - 3ª FN genérica? OK!!

Mas... e a DF Instrutor → Curso?

Forma Normal de Boyce - Codd (BCNF)

- BCNF ⇒ extensão da 3ª FN genérica
- uma relação R está na BCNF se:
 - estiver na 3ª FN genérica
 - para toda DF não-trivial X → A válida para a relação R, X é uma chave em R

Forma Normal de Boyce - Codd (BCNF)

- Na prática:
 - maioria das relações em 3FN genérica também está na BCNF
 - Exceção:
 - quando $X \rightarrow A$ e:
 - · X não é chave
 - A é atributo primário

Aluno, Curso → Instrutor Instrutor → Curso

Treinamento = {Aluno, Curso, Instrutor}

- > A relação **Treinamento** está na BCNF?
- > Alternativas de normalização por decomposição?

Aluno, Curso → Instrutor Instrutor → Curso

Treinamento = {Aluno, Curso, Instrutor}

- > Alternativas de decomposição:
 - 1) {Aluno, Instrutor} e {Aluno, Curso}
 - 2) {Curso, <u>Instrutor</u>} e {<u>Curso</u>, <u>Aluno</u>}
 - 3) {Instrutor, Aluno} e {Instrutor, Curso}

Quais os problemas de cada alternativa? Qual a melhor opção? Por que?

Aluno, Curso → Instrutor Instrutor → Curso

Treinamento = {Instrutor, Aluno}

Instrutor = {Instrutor, Curso}

Mas essa solução está realmente boa? Garantindo consistência dos dados (considerando as DFs)?

 OBS: Na melhor solução anterior ainda pode acontecer aluno (Zé) fazer mesmo curso com instrutores diferentes:

- > Ana, Zé Ana, C++
- > João, Zé João, C++

Solução alternativa: João Marcos Della Torre Divino (Eng Comp 2017)

- Formas Normais baseadas em dependências funcionais
 - baseadas em chave primária
 - 1^a FN
 - 2^a FN
 - 3a FN
 - baseadas em chaves candidatas
 - definições genéricas de 2ª FN e 3ª FN
 - FN de Boyce-Codd (BCNF)
- Forma Normal baseada em dependências multivaloradas
 - 4^a FN

Exemplo (simplificado...)

- Dados sobre empregados na base de dados de uma empresa:
 - nome e função do empregado
 - nomes dos projetos em que trabalha
 - nomes de seus dependentes
- dependências funcionais???
 - Nome → Função
 - Projeto e Dependente?

```
Empregado = {Nome, Função}

Empregado_PD = {Nome, Projeto, Dependente}
```


Exemplo (cont.)

```
Empregado = {Nome, Função}

Empregado_PD = {Nome, Projeto, Dependente}
```

- semanticamente:
 - um conjunto de valores de Projeto é determinado por um valor de Nome de empregado, e somente por Nome
 - idem para Dependente
 - Projeto e Dependente não têm relação de dependência...

Exemplo de Cenário de Dependência Multivalorada

 Dependência Multivalorada (DM): restrição entre dois conjuntos de atributos

 A multidetermina B (ou B é multidependente de A) ⇒ o conjunto de valores de B é determinado pelo valor de A, e somente pelo valor de A

- DM são semânticas (assim como as DF)
- Simetria na definição de DM:

$$X - X = R - (X \cup Y)$$

Empregado_PD = {Nome, Projeto, Dependente}

Nome -» Projeto

Nome -» Dependente

- Dada uma DM X -» Y em R
 - se:
 - (a) Y ⊆ X ou
 - **(b)** X U Y = R

Dependência

Multivalorada Trivial

• caso contrário

Dependência Multivalorada Não-Trivial

DM Trivial (DMT)

Nome -» Projeto

Empregado={Nome, Projeto}

DM Não-Trivial (DMNT)

Nome -» Projeto

Nome -» Dependente

Empregado={Nome, Projeto, Dependente}

Empregado_PD = {Nome, Projeto, Dependente}

Nome ->> Projeto

Nome ->> Dependente

- Dados:
 - Ana trabalha nos projetos Museu Virtual e Cidadania, e tem 2 dependentes: Paulo e Sônia;
- Como armazenar os dados na tabela Empregado PD?

Exemplo (cont.)

 Ana trabalha nos projetos Museu Virtual e Cidadania, e tem 2 dependentes: Paulo e Sônia;

Para evitar anomalias de remoção e perda de dados...combinação????

Empregado_PD = {Nome, Projeto, Dependente}

{<Ana, Cidadania, Paulo>,
<Ana, Museu Virtual, Sônia>,
< Ana, Cidadania, Sônia>,
<Ana, Museu Virtual, Paulo> }

Ruim!!!! Redundância!!!

- Dependência Multivalorada Não Trivial
 X-»Y definida para uma relação R:
 - se existe t₁[X] = t₂[X], então também existem:

•
$$t_3[X] = t_4[X] = t_1[X] = t_2[X]$$

•
$$t_3[Y] = t_1[Y] e t_4[Y] = t_2[Y]$$

•
$$t_3[Z] = t_2[Z] e t_4[Z] = t_1[Z],$$

```
• Z = R - (X \cup Y)
```

```
X Y Z
{Nome, Projeto, Dependente}
t<sub>1</sub> {<Ana, Cidadania, Paulo>,
t<sub>2</sub> <Ana, Museu Virtual, Sônia>,
t<sub>3</sub> < Ana, Cidadania, Sônia>,
t<sub>4</sub> <Ana, Museu Virtual, Paulo> }
```

Nome ->> Projeto

Nome ->> Dependente

Empregado = {Nome, Projeto, Dependente}

```
{<Ana, Cidadania, Paulo>,
```

- <Ana, Museu Virtual, Sônia>,
- < Ana, Cidadania, Sônia>,
- <Ana, Museu Virtual, Paulo> }

- ⇒ Dados ok em relação às DMs....
- ⇒ Mas... muita redundância!!!

- Problema da DM Não-Trivial:
 - requer redundância nas tuplas
 - Exemplo:
 - Empregado={Nome, Projeto, Dependente}
 - está na BCNF, mas ainda há redundância de dados

Solução
 4a FN!

- Relação R está na 4ª Forma Normal se:
 - > todas as dependências multivaloradas são **triviais** ou
 - para cada dependência multivalorada não-trivial A -» B, A é uma chave (completa) em R

Exemplos...

Empregado_D={Nome, Dependente}
Nome -» Dependente

Empregado_PD={Nome, Projeto, Dependente}

Nome -» Projeto

Nome -» Dependente

Intuição:

Nome -» Projeto

Nome -» Dependente

Empregado_PD={Nome, Projeto, Dependente}

Dependentes ={Nome, Dependente}

Projetos = {Nome, Projeto}

- Normalizando a relação para a 4ª FN....
 - dada uma DMNT A -» B na relação R, substitui-se R por:
 - **A** ∪ **B** e
 - R B

- Evita redundância de tuplas ⇒ evita anomalias de inclusão/remoção/alteração
- Cenários típicos de normalização para 4ªFN (ocorrências de DMNT):
 - > atributos multivalorados independentes misturados em uma única tabela
 - Ex: Empregado_PD={Nome, Projeto, Dependente}
 - > atributos multivalorados ou CR N:N armazenados de maneira incorreta em múltiplas linhas
 - Ex: Pessoa={CPF, telefone, nome, data-nasc, ...}

Observação

- Lembrando o mapeamento ME-R → Modelo Relacional
 - atributos multivalorados definem novas relações
 - sem redundância e sem anomalias

Considerações Finais (cont.)...

- Normalização:
 - ✓ uma relação por vez
 - análise de 1^aFN, 2^a FN, 3^a FN, BCNF e 4^a FN
 - ✓ forma normal de uma relação ⇒ forma normal mais restrita atendida
 - ✓ forma normal da base de dados ⇒ forma normal mais restrita atendida por todas as relações

Considerações Finais (cont.)...

- Lembrando...
 - Propriedades desejáveis:
 - 1) decomposição **sem perda de junção** (sem geração de tuplas ilegítimas)
 - 2) decomposição com preservação de dependências (possibilidade de avaliar a DF ⇒ atributos na mesma tabela)

Sugestão de Leitura

- **ELMASRI, R; NAVATHE, S.B.** *Sistemas de Banco de Dados,* Addison Wesley
 - 4ª Edição
 - · Capítulos 10 e 11
 - 6ª Edição
 - Capítulo 15

EXERCÍCIO

Considere as seguintes relações e suas dependências funcionais.

1) Lotes = {<u>ID-propriedade</u>, <u>municipio, nro_lote</u>, regiao, area, preço, imposto}

ID-propriedade → municipio, nro_lote, regiao, area, preço, imposto municipio, nro_lote → ID-propriedade, regiao, area, preço, imposto municipio → imposto area → preço regiao → municipio

2) Carros_Vendidos = {carro, data-venda, vendedor, %comissão, desconto-do-dia}

carro → data-venda;

data-venda → desconto-do-dia;

vendedor → %comissão

carro -» vendedor

EXERCÍCIO

2) Carros_Vendidos = {carro, data-venda, <u>vendedor</u>, %comissão, desconto-do-dia}

```
carro → data-venda;
data-venda → desconto-do-dia;
vendedor → %comissão
carro -» vendedor
```

EXERCÍCIO

- a) Indique se as formas normais 1FN, 2FN (baseada em PK e genérica), 3NF (baseada em PK e genérica), BCNF e 4FN são atendidas.
- b) Normalize as relações para atender a cada uma dessas formas (faça todos os passos). Explique quais propriedades de decomposição são atendidas ou não, e o porquê.
- c) Discuta a influência dessa normalização no desempenho e dê exemplos.