Applied Anal

Example: The rate of bacteria growth is proportional to the number of bacteria N(x)

Present. We know that N(a) = 1000, and

N(i) = 5/4N(o). Find the time & at which

the number of bacteria is doubled.

Solution: dN = KN, N(0) = 1000, N(1) = 5/4 N(0)

(1) drdt - KN = 0, es-ndt = e-nt

 $d/dz (e^{-H} \cdot N) = e^{-nt} \cdot 0 = 0$ $e^{-kt} \cdot N = \int odt = C, N(t) = ce^{-tt}$

(2) To Find C and H: N(0) = 1000 $Ce^{H\cdot 0} = 1000$, C = 1000, $N(t) = 1000e^{Ht}$ $N(1) = \frac{5}{4}(1000) \Rightarrow 10000e^{H\cdot 1} = \frac{5}{4} \times 1000$ $e^{H} = \frac{5}{4}$, $he^{H} = \ln(\frac{5}{4})$, $H = \ln^{5}{4}$ $N(t) = 1000 e^{5} \ln(5/4)$

(3) Find the time t such that N(t) = 2000 $1000 e^{\frac{1}{2}h(5/4)} = 2000$ $e^{\frac{1}{2}h(5/4)} = 2$ $e^{\frac{1}{2}h(5/4)} = \ln 2$

$$t = \frac{\ln 2}{\ln (5/4)}$$

Example:

X(t) - radioactive Substance: substance at time t, and X(0) = Yo. After 2 hours, X(t) decreased by 2%. If the rate of decay is proportional to X(t), find the half-life of the radioactive substance.

Solution: $\frac{dx}{dt} = Hx$, $X(v) = X_0$, $X(z) = X_0 - X_0 \cdot 2\%$

Find the time t (hair-life) at which $X(t) = \frac{1}{2} X_0$

- (1) $\frac{dx}{dt} = Rx$, $\frac{dx}{dt} Rx = 0$ $\frac{d}{dt} \left(e^{sndt} \cdot x \right) = e^{sndt} \cdot 0 = 0$ $e^{-4t} \cdot x = c$; $x(t) = ce^{4t}$
- (2) Determine C and H: $X(0) = X_0 \implies Ce^{H \cdot 0} = X_0 \qquad C = X_0$ $X(t) = X_0e^{Ht}$ $X(2) = 0.98 X_0 \implies X_0e^{K2} = 0.98 X_0$ $e^{2K} = 0.98, he^{2K} = h 0.98, 2K = h 0.98$ $H = \frac{1}{2} h (0.98); x(t) = x_0e^{\frac{t}{2}(0.98)}$
- (3) Find the half-life th; i.e. $\chi(t_n) = \frac{1}{2} \chi_0$ $\chi_0 \in \frac{4n}{2} \ln(0.98) = \frac{1}{2} \chi_0$; $e^{\frac{1}{4n}} \cdot \frac{1}{2} \ln(0.98) = \frac{1}{2} \chi_0$; $\ln e^{\frac{1}{4n} \cdot \frac{1}{2} \ln 0.98} = \ln (\frac{1}{2})$ $\frac{1}{4n} \cdot \frac{1}{2} \ln(0.98) = \ln(\frac{1}{2})$; $\ln e^{\frac{1}{2} \ln(0.98)} = \ln(\frac{1}{2})$

Carbon dating: to determine the age of a fossil.

Known: haif-life of Cin = 5600 years

Example

A Foss: 1: zed bone is Found to Contain 1:000 the Original amount of Ciu. Determine the age of the Foss:1.

Solution $A(\ell)$ - amount of C_{14} in the bone $\frac{dA}{d\ell} = kA$, $A(5600) = \frac{1}{2}A_0$; $A(0) = A_0$

Find the time t at which $A(t) = \frac{1}{1000} A_0$ (1) $\frac{dA}{dt} = KA$, $\frac{d}{dt} \left(e^{SKdt} \cdot A\right) = e^{S\cdot Kdt} \cdot \emptyset$ $e^{-Ht} \cdot A = C$; $A = Ce^{Ht}$ = \emptyset

(2) Determine C and K $A(o) = A_o \Rightarrow Ce^{M \cdot o} = A_o \Rightarrow C = A_o$ $A(k) = A_o e^{Mk}$

 $A(5600) = \frac{1}{2}A_0 = A_0e^{4.5600} = \frac{1}{2}A_0$ $e^{5600K} = \frac{1}{2}, he^{5600K} = h\frac{1}{2}, 5600K = h\frac{1}{2}$ $H = \frac{1}{5600}h(\frac{1}{2})$ $A(\xi) = A_0e^{\frac{1}{2}(\frac{1}{2})}$

(3) age t: A(t) = \frac{1}{1000} A0

A0 et (1/5000) la 1/2 = 1/1000 A0

et (1/5000) la 1/2 = 1/1000 => la et (1/5000) la 1/2 = la 1/1000

t. 1/5600 la (1/2) = la (1/1000)

la (1/2)

Newton's Law of Cooling:

T(t) - temperature of body

Tm - Surrounding medium

dT/dt = K(T-Tm).

Example: A thermometer of reading 70°F is removed to outside where temperature is 10°F. After 1/2 minutes the temperature of the thermometer reads 50°F what is the reading at t=1? How long will it take to read 10°F?

Solution dT/dt = K(T-Tm) $T_m = 10$, T(0) = 70, T(1/2) = 50Find T(1) = ? Find the time t such that T(t) = 10 $(1) \frac{dT}{dt} = K(T-10)$, dT/dt - KT = -10K $d/dt (e^{SP(A)dA}, T) = e^{SP(T)dA}, f(t)$ $d/dt (e^{S-NdA}, T) = e^{S-KdA}, (-10K)$ $e^{Nt} \cdot (e^{-Nt}, T) = \int_{-10}^{-10} Ke^{-Kt} dt$ $= (10e^{-Kt} + C) \cdot e^{Kt}$

(1)

Sept. 27/17

Applied Aray

From previous example:

Solution: (1) dT/dt = H(T-10), dT/dt + (-H)T = -10H $d/dt (e^{S-ndt}.T) = e^{-Sndt}$ (see previous)

(2) Find c and $K: T(t) = 10 + ce^{Ht}$ $T(0) = 70 \Rightarrow 10 + ce^{H\cdot 0} = 70$ 10 + c = 70 C = 60 $T(1/2) = 50 \Rightarrow 10 + 60 e^{H\cdot 1/2} = 50$ $60e^{H/2} = 40$ $e^{H/2} = 40/60 = 2/3$ $\ln e^{H/2} = \ln(2/3)$, $\ln(2/3)$, $\ln(2/3)$

 $T(t) = 10 + 60e^{2t \ln(2/3)}$

(3) $T(1) = 10 + 60 e^{2h(2/3)} = 10 + 60 (e^{h(2/3)})^{2}$ = $10 + 60 (2/3)^{2}$ When T(t) = 10? $10 + 60 e^{2th(2/3)} = 10$ $60 e^{2th(2/3)} = 0$, $e^{2th(2/3)} = 0$

 $\ln(2/3) \le 0 \implies e^{2t \ln(2/3)}$, decreases to 0os $t \to \infty$ $t \to \infty$

Series Circuits

K: rehhoff's Law: L(di/dt) + Ri = E(t)

i(k) = current

A 12 v battery connected to series circuit.
Inductance is 1/2 henry, tesistance 100 ohms.
Determine the current i if the initial current is 0

Solution:
$$E = 12$$
, $L = \frac{1}{2}$, $R = 10$, $i(0) = 0$
 $\begin{cases}
\frac{1}{2} & \frac{1}{$

(2)
$$i(0) = 6 = 6/5 + C \cdot e^{-20(0)} = 0$$

 $6/5 + C = 0$; $C = -6/5$

3. Higher-order DE's

Example Solve $X^2y'' + Xy' + y = \emptyset$ How to Find all of the solutions?

3.1 Linear DE's: Basic Theory

(1) Initial - Value Problem $(x) Y^{(n)} + (x) Y^{(n-1)} + \cdots + (x) Y^{(n-1)} + (x) Y^{(n-1)} + \cdots + (x) Y^{(n-1)} Y$

Where yo, y.,... y n... are constants.

Does the given IUP have a solution?

Thm. 3.1 If $O_n(x)$, $O_{n-1}(x)$, ..., $O_0(x)$ and $O_0(x)$ are continuous, and $O_0(x) \neq O_0$, for every $O_0(x)$ in an interval $O_0(x)$, then the $O_0(x)$ is a unique Solution.

Ex. Soive the IVP

9" + xy" - 9' + 2y = 0

9(1) = 0; 9'(1) = 0; 9"(1) = 0

Solution: 3rd-order linear equation

from thm 3.1, this IUP has a unique solution.

By inspection, y = 0 is the solution

Boundary - Value problem

Second - order

Solve $Q_2(x)y'' + Q_1(x)y' + Q_0(x)y' = g(x)$ Subject to $y(a) = y_0$; $y(b) = y_0$

Ex. Some the boundary (6,5.)

Value Problem:

(a, y.)

y" = 2x, y(1) = -1, y(2) = 3

Solutions: (9')' = 2x, $g' = \int 2x dx$ $g' = x^2 + C$, $g = \int x^2 + C$, dx $g = y_3 x_3 + C$, $x + C_2$ Family of Solutions g(i) = -1 and g(z) = 3 $\begin{cases} y_3 + C$, $y = \int x^2 + C$, $y = \int x dx$ y(i) = -1 = 1 and y(z) = 3

```
\begin{cases} C_1 + C_2 = -1 - \frac{1}{3} = -\frac{4}{3} = -\frac{1}{3} \\ 2C_1 + C_2 = 3 - \frac{8}{3} = \frac{1}{3} = \frac{1}{3} \end{cases} = -\frac{1}{3}
(2) - (1) \Rightarrow C_1 = \frac{1}{3} - (-\frac{4}{3}) = \frac{5}{3}
     From (1), C2 = -4/3 - C1 = -4/3 - 5/8
                                                               = -9/3 = -3
      9 = \frac{1}{3}x^3 + \frac{5}{3}x - 3
```

Sept. 29/17 Applied AM

3.1 Linear Equations: Basic Theory $A_n(x)y^n + A_{n-1}(x)y^{(n-1)} + ... + A_i(x)y^i + A_o(x)y = 0$ is called the associated homogeneous egin of $A_n(x)y^n + A_{n-1}(xy^n) + ... + A_i(x)y^i + A_o(x)y = g(x)$

Ex. $\chi^2 y^n + \chi y^1 + y = S: nx + \chi^2$ The associated homogeneous egin: $\chi^2 y^n + \chi y^1 + y = \emptyset$

Thm. 3.2 (Superposition Principle - homo.)

Let $y_1, y_2, \dots y_K$ be solutions of the homo. egin: $Q_n(x)y^{(n)} + \dots + Q_0(x)y = \emptyset$ Then any linear combination $y = C, y_1 + C_2 y_2 + \dots + C_N y_K$ is also a solution to the homo egin.

Goal: Find the least number of solutions to represent all of the solutions in term of linear combinations. (C. 9. + ... + Ckyk)

Def Functions f(x), $f_2(x)$, ... $f_n(x)$ are said to be linearly dependent if there exist constants, not all zero such that: $C_1 f_1(x) + C_2 f_2(x) + ... + C_n f_n(x) \neq \emptyset$ for all x.

(one of the Functions can be written as a linear combination of the others)

Say $C_1 \neq \emptyset$, $C_1 f_2(x) + ... + (-C_n) f_n(x)$ $f_1(x) = (-\frac{C_2}{C_1}) f_2(x) + ... + (-\frac{C_n}{C_1}) f_n(x)$

Ex. Let $f_1(x) = 2 \sin^2 x$, $f_2(x) = -3 \cos^2 x$, $f_3(x) = 5$ Show that $f_1(x)$, $f_2(x)$, and $f_3(x)$ are linearly dependent.

$$\frac{1}{2} \int_{3}^{2} (x) + (\frac{1}{3}) \int_{2}^{2} (x) + (\frac{1}{5}) \int_{3}^{2} (x) = 0$$

 $\frac{1}{2} \int_{3}^{2} (x) = (\frac{1}{3}) \int_{2}^{2} (x) + (\frac{1}{5}) \int_{3}^{2} (x)$
 $\int_{3}^{2} (x) = (\frac{2}{3}) \int_{2}^{2} (x) + (\frac{2}{5}) \int_{3}^{2} (x)$

Thm. 3.3 Criterion for linearly independent Solutions

Let y., yz, ..., yn be solutions of a homo. egin over an interval I. Then

Y., yz, ... yn are linearly independent.

W(Y., Yz, ... Yn) *0 for all EEI

where W(Y., yz, ... Yn)

=
$$y_1, y_2, \dots y_n$$
 (determ:nant)
 $y_1, y_2, \dots y_n$ (determ:nant)
 $y_1, y_2, \dots y_n$ (wronsw:an of the Functions

Ex Show that {ex, exx} is linearly independent.

Solution By thm. 3.3 W(ex, exx)

$$|\alpha_{11} \alpha_{12}| = \alpha_{11} \alpha_{22} - \alpha_{21} \alpha_{12} = |e^{x} e^{2x}|$$
 $|\alpha_{21} \alpha_{22}| = |e^{x} \alpha_{21} \alpha_{22}|$

 $= e^{x} \cdot \lambda e^{2x} - e^{x} e^{2x}$ $\therefore W(e^{x}, e^{2x}) \text{ is } = \lambda e^{3x} - e^{3x}$ $\text{linearly independent.} = e^{3x} \neq 0$

 $\{y_1, y_2, \dots y_n\}$ is called a Fundamental set of Solutions OF $(x_1, y_n) + \dots + (x_n)y_n = 0$ if it is linearly independent.

Thm. 3.4 (Existence of a fundamental set)

There exists a fundamental set of solutions.

Thm. 3.5 (General Solution For homo.)

Set y., yz, ..., yn be a fundamental set of Solutions. The general solution

y = C, y, + Czyz + ... + Cnyn

Ex. Solve y'' - 3y' + 2y = 0 given that $y_1 = e^x$ and $y_2 = e^{2x}$ are two solutions.

Solution Since $W(e^{x}, e^{2x}) \neq \emptyset$. As above, $\{e^{x}, e^{2x}\}$ is a Fundamental set of solutions. The general sol. $y = C_{1}e^{x} + C_{2}e^{2x}$

Ex. Given that $y_i = e^2$, $y_2 = e^{2\epsilon}$, $y_3 = e^{4\epsilon}$ are solutions of y'' - 5y'' + 2y' + 8y = 0Find the general Solution.

Solution Verify that y_1, y_2, y_3 are linearly independent.

6

W(9., 92, 93) =	(e-x)	6 3 %	e	+		A DESCRIPTION OF THE PROPERTY	
	·e·x	le ^{zx}	46 4		······································	500 MB 400 MB 1000 A AMERICA	
	e-x'	4622	16042		***************************************		
=	1(e-x)	e,x	e ux	1			
	0	3e2x	5e 4x		The second section of the sect	or the college of the second or some college	
	e-x	462x	16e42				
=	e-x	e 28	e ux	=) e-z	3e2k	5e ^{ux}	1
	0	3e**	5e"E		3e 2x	15e42	ľ
	0	3e2x	15e"				
#	e-x (45e «×	- 15e°	*)	The second section of the		
			= 30(e et de la	0		
A 11	are	1:near		lependen			
y = c	, 6, x +		+ C3 E		-		