

深梁振动分析

本例研究深梁的自由振动和强迫振动。随着截面积与梁长度的比率增大, 剪切变形和 转动惯量不再像欧拉 - 伯努利理论中那样可以忽略不计。

本例使用铁木辛柯梁计算特征频率、频率响应和瞬态分析的解,并将这些解与解析结 果进行比较。

模型定义

本例中研究的模型由一个正方形截面简支梁组成,梁的一端固定,梁轴上具有约束旋 转。在梁的另一端,梁横截面的位移受到约束。

在强迫振动情况下,沿梁在 v 方向施加载荷。

几何形状

- 梁的长度 L = 10 m
- 梁横截面尺寸 l=2 m

材料

- 杨氏模量 E = 200 GPa
- 泊松比 v = 0.3
- 质量密度 $\rho = 8000 \text{ kg/m}^3$
- 瑞利阻尼系数: $\alpha = 5.36 \text{ s}^{-1}$, $\beta = 7.46 \text{e-} 5 \text{ m/s}$

阻尼

瑞利阻尼系数为 $\alpha = 5.36 \text{ s}^{-1}$, $\beta = 7.46 \cdot 10^{-5} \text{ m/s}$ 。阻尼比曲线如图 1 所示。

图1: 阻尼比曲线。

约束

在 x=0 处,位移为 u=v=w=0,绕 x 轴的旋转固定在 $\theta_x=0$

在 x = 10 处, v = w = 0

载荷工况

施加大小为 $F0 = 10^6$ N/m 的载荷,方向为局部正y方向。本例研究以下强迫振动情况:

- 频率为 20 Hz 时的谐波响应
- 力分布 $F = F_0(\sin(2\pi f t) \sin(6\pi f t))$ 时的周期性响应,其中f = 20 Hz
- 使用突然施加的阶跃载荷后的瞬态响应

网格

为了满足基准模型规格,这里使用五个边单元对几何结构进行网格划分。

自由振动

表格 1 将自由振动情况下的计算结果与解析结果进行比较,二者非常一致。使用相对 粗化的网格描述这种振型存在局限性,求解精度会随着振型的复杂程度增大而降低。

表格 1: 固有频率的解析值与计算值之间的比较。

模数	解析频率 (Hz)	COMSOL 结果 (Hz)	误差 (%)	类型
1, 2	42.65	42.67	4.7e-2	弯曲
3	71.2	71.51	0.4	扭转
4	125	125.5	0.4	拉伸
5, 6	148.15	150.4	1.5	弯曲
7	213.61	221.6	3.7	扭转
8, 9	283.47	300.1	5.9	弯曲

谐波强迫振动

表格 2 将谐波强迫振动情况下的计算结果与解析结果进行比较,二者非常一致。

表格 2: 谐波响应的解析值与计算值之间的比较。

	参考值	COMSOL 值	误差 (%)
峰值位移 (MM)	13.45	13.42	0.2
峰值应力 (MPA)	241.9	238.6	1.4
频率 (HZ)	42.65	42.65	0

图 2 显示梁中点处的位移与频率的关系。

图2: 谐波响应中位移与频率的关系。

图 3 显示梁中点处的弯曲应力与频率的关系。

图3: 谐波响应中弯曲应力与频率的关系。

周期性强迫振动

表格 3 将计算结果与解析结果进行比较,二者非常一致。使用相对粗化的网格描述这 种振型存在局限性,精度随着振型复杂程度的增大而降低。

表格 3: 周期性响应的解析值与计算值之间的比较。

	参考值	COMSOL 值	误差 (%)
峰值位移 (MM)	0.951	0.948	0.3
峰值应力 (MPA)	17.1	16.95	0.8

图 4 显示梁中点处的位移与时间的关系。

图 4: 周期性响应中位移与时间的关系。

图 5 显示梁中点处的弯曲应力与时间的关系。

图5: 周期性响应中弯曲应力与时间的关系。

瞬态强迫响应

表格 4 将计算结果与解析结果进行比较,二者非常一致。使用相对粗化的网格描述这 种振型存在局限性,精度随着振型复杂程度的增大而降低。

表格 4: 瞬态响应的解析值与计算值之间的比较。

	参考值	COMSOL 值	误差 (%)
峰值位移 (MM)	1.043	1.037	0.6
峰值应力 (MPA)	18.76	18.14	3.3
峰值时间 (S)	0.0117	0.0117	0
静态位移	0.538	0.534	0.7

图 6 显示梁中点处的位移与时间的关系。

图6: 瞬态响应中位移与时间的关系。

COMSOL 软件功能实现说明

阻尼设置栏提供了两个操作按钮,用于显示阻尼比与频率的关系。第一个按钮显示阻尼比的动态预览图,第二个按钮在**结果**节点下生成一个绘图。

参考资料

1. J. Maguire, D.J. Dawswell, and L. Gould, "Selected Benchmarks for Forced Vibration", *NAFEMS R0016*, 1989.

案例库路径: Structural_Mechanics_Module/Verification_Examples/vibrating_deep_beam

建模操作说明

从**文件**菜单中选择**新建**。

新建

在**新建**窗口中,单击 🔷 **模型向导**。

模型向导

- 1 在模型向导窗口中,单击 间 三维。
- 2 在选择物理场树中选择结构力学>梁 (beam)。
- 3 单击添加。
- 4 单击 🖨 研究。
- 5 在选择研究树中选择一般研究 > 特征频率。
- 6 单击 ☑ 完成。

全局定义

参数1

- 1 在模型开发器窗口的全局定义节点下,单击参数 1。
- 2 在参数的设置窗口中,定位到参数栏。
- 3 在表中输入以下设置:

名称	表达式	值
L	10[m]	10 m
F0	1e6[N/m]	1E6 N/m

几何 1

多边形 1 (pol1)

- 1 在几何工具栏中单击 → 更多体素, 然后选择多边形。
- 2 在多边形的设置窗口中,定位到坐标栏。
- 3 在表中输入以下设置:

x (m)	y (m)	z (m)
0	0	0
L	0	0

形成联合体(fin)

- 1 在模型开发器窗口中,单击形成联合体 (fin)。
- 2 在形成联合体/装配的设置窗口中,单击 🖺 构建选定对象。

材料

材料 1 (mat1)

- 1 在模型开发器窗口的组件 1 (comp1) 节点下,右键单击材料并选择空材料。
- 2 在材料的设置窗口中,定位到材料属性明细栏。
- 3 在表中输入以下设置:

属性	变量	值	单位	属性组
杨氏模量	E	2e11	Pa	杨氏模量和泊松比
泊松比	nu	0.3	1	杨氏模量和泊松比
密度	rho	8000	kg/m³	基本

梁 (BEAM)

- 1 在模型开发器窗口的组件 1 (comp1) 节点下,单击梁 (beam)。
- 2 在梁的设置窗口中,定位到梁公式栏。
- 3 从列表中选择铁木辛柯。

横截面数据1

- 1 在模型开发器窗口的组件 1 (comp1)>梁 (beam) 节点下,单击横截面数据 1。
- 2 在横截面数据的设置窗口中,定位到横截面定义栏。
- 3 从列表中选择常用截面。
- 4 在 h, 文本框中键入 "2"。
- 5 在 hz 文本框中键入 "2"。

截面方向1

- 1 在模型开发器窗口中展开横截面数据 1 节点,然后单击截面方向 1。
- 2 在截面方向的设置窗口中,定位到截面方向栏。
- 3 从定向方法列表中选择定向矢量。
- 4 将 V 矢量指定为

0 X 0 Y 1 Z

指定位移/旋转1

- 1 在**物理场**工具栏中单击 ₩ 点,然后选择**指定位移/旋转**。
- 2 选择"点"1。

- 3 在指定位移/旋转的设置窗口中,定位到指定位移栏。
- 4 从 x 方向的位移列表中选择指定。
- 5 从 y 方向的位移列表中选择指定。
- 6 从 z 方向的位移列表中选择指定。
- 7 定位到指定旋转栏。从列表中选择旋转。
- 8 选中 v 向自由旋转复选框。
- 9 选中 z 向自由旋转复选框。

指定位移/旋转2

- 1 在物理场工具栏中单击 ── 点,然后选择指定位移/旋转。
- 2 选择"点"2。
- 3 在指定位移 / 旋转的设置窗口中, 定位到指定位移栏。
- 4 从 v 方向的位移列表中选择指定。
- 5 从 z 方向的位移列表中选择指定。

网格 1

边1

- 在网格工具栏中单击 △ 边界,然后选择边。
- 2 在边的设置窗口中,定位到边选择栏。
- 3 从几何实体层列表中选择整个几何。

分布1

- 1 右键单击边 1 并选择分布。
- 2 右键单击分布 1 并选择全部构建。

自由振动

- 1 在模型开发器窗口中,单击研究 1。
- 2 在研究的设置窗口中,在标签文本框中键入"自由振动"。

步骤1: 特征频率

- 1 在模型开发器窗口的自由振动节点下,单击步骤 1: 特征频率。
- 2 在特征频率的设置窗口中,定位到研究设置栏。
- 3 选中所需特征频率数复选框。在关联文本框中键入"10"。

4 在特征频率搜索基准值文本框中键入 "40"。

要获得所有特征频率,包括频率较高时的重复频率,请按照以下步骤在求解器序列中设置更严格的容差。

解 1 (sol1)

- 1 在研究工具栏中单击 显示默认求解器。
- 2 在模型开发器窗口中展开解 1 (sol1) 节点, 然后单击特征值求解器 1。
- 3 在特征值求解器的设置窗口中,定位到常规栏。
- 4 在相对容差文本框中键入 "1.0E-15"。
- 5 单击 📜 计算到选定项。

将半径比例因子改为 0.1, 可获得更好的可视化效果。

结果

线1

- 1 在模型开发器窗口中展开振型 (beam) 节点, 然后单击线 1。
- 2 在线的设置窗口中,定位到着色和样式栏。
- 3 在半径比例因子文本框中键入 "0.1"。

梁 (BEAM)

边载荷1

- 1 在**物理场**工具栏中单击 边,然后选择边载荷。
- 2 在边载荷的设置窗口中,定位到边选择栏。
- 3 从选择列表中选择所有边。
- 4 定位到力栏。将 F_r 矢量指定为

5 右键单击**边载荷 1** 并选择**谐波扰动**。

线弹性材料1

在模型开发器窗口中,单击线弹性材料 1。

阻尼1

1 在**物理场**工具栏中单击 🦳 属性,然后选择阻尼。

- 2 在阻尼的设置窗口中,定位到阻尼设置栏。
- **3** 在 α_{dM} 文本框中键入 "5.36"。
- **4** 在 β_{dK} 文本框中键入 "7.46e-5"。 为了显示阻尼比曲线,通过**阻尼设置**栏的活化按钮创建**阻尼比**绘图。
- 5 单击阻尼设置栏右上角的阻尼比预览。从菜单中选择创建阻尼比图。

结果

阴尼比图

- 1 在模型开发器窗口的结果节点下,单击阻尼比图。
- 2 在阻尼比图工具栏中单击 ፴ 绘制。

添加研究

- 1 在**主屏幕**工具栏中,单击[→]**添加研究**以打开**添加研究**窗口。
- 2 转到添加研究窗口。
- 3 找到**研究**子栏。在**选择研究**树中选择**所选物理场接口的预设研究 > 频域,模态**。
- 4 单击窗口工具栏中的添加研究。
- **5** 在**主屏幕**工具栏中,单击[™]添加研究以关闭添加研究窗口。

谐波强迫振动

- 1 在模型开发器窗口中,单击研究 2。
- 2 在研究的设置窗口中,在标签文本框中键入"谐波强迫振动"。
- 3 定位到研究设置栏。清除生成默认绘图复选框。

步骤 2: 频域,模态

- 1 在模型开发器窗口的谐波强迫振动节点下,单击步骤 2: 频域,模态。
- 2 在频域,模态的设置窗口中,定位到研究设置栏。
- 3 在频率文本框中键入 "range(0,2,38) range(40,5e-2,45) range(46,2,60)"。
- 4 在主屏幕工具栏中单击 ≡ 计算。

结果

三维截点1

- 1 在结果工具栏中单击 三维截点。
- 2 在三维截点的设置窗口中,定位到数据栏。
- 3 从数据集列表中选择谐波强迫振动 / 解 2 (sol2)。

- 4 定位到点数据栏。在 X 文本框中键入 "L/2"。
- 5 在 Y 文本框中键入 "0"。
- 6 在 Z 文本框中键入 "0"。

谐波峰值位移

- 1 在结果工具栏中单击 ~ 一维绘图组。
- 2 在一维绘图组的设置窗口中,在标签文本框中键入"谐波峰值位移"。
- 3 定位到**数据**栏。从**数据集**列表中选择**三维截点 1**。
- 4 单击以展开标题栏。从标题类型列表中选择标签。

点结果图1

- 1 右键单击谐波峰值位移并选择点结果图。
- 2 在点结果图的设置窗口中,定位到 y 轴数据栏。
- 3 在表达式文本框中键入 "beam.uAmpZ"。
- 4 从单位列表中选择 mm。
- 5 在谐波峰值位移工具栏中单击 ፴ 绘制。

谐波峰值应力

- 1 在模型开发器窗口中,右键单击谐波峰值位移并选择复制粘贴。
- 2 在一维绘图组的设置窗口中,在标签文本框中键入"谐波峰值应力"。

占结果图1

- 1 在模型开发器窗口中展开谐波峰值应力节点,然后单击点结果图 1。
- 2 在点结果图的设置窗口中,定位到 y 轴数据栏。
- **3** 在表达式文本框中键入 "abs(beam.sb1)"。
- 4 从单位列表中选择 MPa。
- 5 在谐波峰值应力工具栏中单击 ◎ 绘制。

谐波峰值位移

- 1 在结果工具栏中单击 3.85 更多派生值, 然后选择最大值 > 线最大值。
- 2 在线最大值的设置窗口中,在标签文本框中键入"谐波峰值位移"。
- 3 定位到数据栏。从数据集列表中选择谐波强迫振动 / 解 2 (sol2)。
- 4 从参数选择 (frea) 列表中选择来自列表。
- 5 从参数值 (freq (Hz)) 列表中选择 42.65。
- 6 选择"边"1。

7 定位到表达式栏。在表中输入以下设置:

表达式	单位	描述
beam.uAmpZ	mm	位移大小,Z 分量

8 单击 = 计算。

谐波峰值应力

- 1 右键单击谐波峰值位移并选择复制粘贴。
- 2 在线最大值的设置窗口中,在标签文本框中键入"谐波峰值应力"。
- 3 定位到表达式栏。在表中输入以下设置:

表达式	单位
abs(beam.sb1)	MPa

4 单击 〓 计算旁边的 ▼ , 然后选择新表格。

定义

插值 1 (int1)

- 1 在**主屏幕**工具栏中单击 f ⋈ 函数, 然后选择全局 > 插值。
- 2 在插值的设置窗口中,定位到定义栏。
- 3 在函数名称文本框中键入 "phase"。
- 4 在表中输入以下设置:

t	f(t)
20	-pi/2
60	pi/2

- 5 定位到内插和外推栏。从插值列表中选择最近邻插值。
- 6 定位到单位栏。在变元表中,输入以下设置:

变元	单位
t	Hz

7 在函数表中,输入以下设置:

函数	単位
phase	rad

梁 (BEAM)

边载荷2

- 1 在**物理场**工具栏中单击 边,然后选择边载荷。
- 2 选择"边"1。
- 3 在**边载荷**的**设置**窗口中,定位到力栏。
- 4 将 F_L 矢量指定为

0	X
0	Y
F0	Z

相位1

- 1 在**物理场**工具栏中单击 🦳 属性,然后选择相位。
- 2 在相位的设置窗口中,定位到载荷相位栏。
- 3 将 ♦ 矢量指定为

0	X
0	Y
phase(freq)	Z

添加研究

- 1 在**主屏幕**工具栏中,单击[→]添加研究以打开添加研究窗口。
- 2 转到添加研究窗口。
- 3 找到**研究**子栏。在**选择研究**树中选择一般研究 > 频域。
- 4 右键单击并选择添加研究。
- **5** 在**主屏幕**工具栏中,单击[→]**添加研究**以关闭**添加研究**窗口。

研究 3

步骤1:频域

- 1 在频域的设置窗口中,定位到研究设置栏。
- **2** 在频率文本框中键入 "20 60"。
- **3** 定位到**物理场和变量选择**栏。选中**修改研究步骤的模型配置**复选框。
- 4 在模型树中选择组件 1 (comp1)> 梁 (beam)> 边载荷 1。
- 5 右键单击并选择禁用。

频域到时域 FFT

- 1 在研究工具栏中单击 / 研究步骤,然后选择瞬态 > 频域到时域 FFT。
- 2 在频域到时域 FFT 的设置窗口中,定位到研究设置栏。
- 3 在时步文本框中键入 "range(0.0,1/(200*20),1/20)"。
- 4 从缩放列表中选择离散傅里叶变换。
- 5 定位到物理场和变量选择栏。选中修改研究步骤的模型配置复选框。
- 6 在模型树中选择组件 1 (comp1)> 梁 (beam)> 边载荷 1。

解 4 (sol4)

- 1 在研究工具栏中单击 显示默认求解器。
- 2 在模型开发器窗口中展开解 4 (sol4) 节点, 然后单击 FFT 求解器 1。
- 3 在 FFT 求解器的设置窗口中, 定位到常规栏。
- 4 从由研究步骤定义列表中选择用户定义。
- 5 在模型开发器窗口中,单击研究 3。
- 6 在研究的设置窗口中,在标签文本框中键入 "周期性强迫振动"。
- 7 定位到研究设置栏。清除生成默认绘图复选框。
- 8 在研究工具栏中单击 ■ 计算。

结果

三维截点2

- 1 在结果工具栏中单击 三维截点。
- 2 在三维截点的设置窗口中,定位到数据栏。
- 3 从数据集列表中选择周期性强迫振动/解 4 (sol4)。
- 4 定位到点数据栏。在 X 文本框中键入 "L/2"。
- 5 在 Y 文本框中键入 "0"。
- 6 在 Z 文本框中键入 "0"。

周期性峰值位移

- 1 在**结果**工具栏中单击 \sim 一维绘图组。
- 2 在一维绘图组的设置窗口中,在标签文本框中键入 "周期性峰值位移"。
- 3 定位到数据栏。从数据集列表中选择三维截点 2。
- 4 定位到标题栏。从标题类型列表中选择标签。

点结果图1

1 右键单击周期性峰值位移并选择点结果图。

- 2 在点结果图的设置窗口中,定位到 y 轴数据栏。
- 3 在表达式文本框中键入"w"。
- 4 从单位列表中选择 mm。
- 5 在周期性峰值位移工具栏中单击 ፴ 绘制。

周期性峰值应力

- 1 在模型开发器窗口中,右键单击周期性峰值位移并选择复制粘贴。
- 2 在一维绘图组的设置窗口中,在标签文本框中键入 "周期性峰值应力"。

点结果图1

- 1 在模型开发器窗口中展开周期性峰值应力节点,然后单击点结果图 1。
- 2 在点结果图的设置窗口中,定位到 y 轴数据栏。
- 3 在表达式文本框中键入 "beam.sb1"。
- 4 从单位列表中选择 MPa。
- 5 在周期性峰值应力工具栏中单击 ፴ 绘制。

周期性峰值位移

- 1 在结果工具栏中单击 3.85 更多派生值, 然后选择最大值 > 线最大值。
- 2 在线最大值的设置窗口中,在标签文本框中键入 "周期性峰值位移"。
- 3 定位到数据栏。从数据集列表中选择周期性强迫振动/解 4 (sol4)。
- 4 选择"边"1。
- 5 定位到表达式栏。在表中输入以下设置:

表达式	单位
abs(w)	mm

- **6** 定位到**数据系列运算**栏。从**变换**列表中选择**最大值**。
- 7 单击 = 计算。

周期性峰值应力

- 1 右键单击周期性峰值位移并选择复制粘贴。
- 2 在线最大值的设置窗口中,在标签文本框中键入 "周期性峰值应力"。
- 3 定位到表达式栏。在表中输入以下设置:

表达式	单位
abs(beam.sb1)	MPa

4 单击 = 计算旁边的 ▼ , 然后选择新表格。

梁 (BEAM)

边载荷3

- 1 在**物理场**工具栏中单击 边,然后选择边载荷。
- 2 在边载荷的设置窗口中,定位到边选择栏。
- 3 从选择列表中选择所有边。
- 4 定位到力栏。将 F_L 矢量指定为

添加研究

- 1 在**主屏幕**工具栏中,单击[™]添加研究以打开添加研究窗口。
- 2 转到添加研究窗口。
- 3 找到研究子栏。在选择研究树中选择一般研究 > 瞬态。
- 4 单击窗口工具栏中的添加研究。
- **5** 在**主屏幕**工具栏中,单击[™]添加研究以关闭添加研究窗口。

研究 4

步骤1: 瞬态

- 1 在瞬态的设置窗口中,定位到研究设置栏。
- 2 在输出时步文本框中键入 "range(0,1e-4,1.2e-2) range(1.3e-2,1e-3,1.2)"。
- 3 定位到物理场和变量选择栏。选中修改研究步骤的模型配置复选框。
- 4 在模型树中选择组件 1 (comp1)> 梁 (beam)> 边载荷 1。
- 5 单击 禁用。
- 6 在模型树中选择组件 1 (comp1)> 梁 (beam)> 边载荷 2。
- 7 单击 🕢 禁用。
- 8 在模型开发器窗口中,单击研究 4。
- 9 在研究的设置窗口中,在标签文本框中键入 "瞬态强迫振动"。
- 10 定位到研究设置栏。清除生成默认绘图复选框。

解 6 (sol6)

- 1 在研究工具栏中单击 显示默认求解器。
- 2 在模型开发器窗口中展开解 6 (sol6) 节点。

- 3 在模型开发器窗口中展开瞬态强迫振动>求解器配置>解 6 (sol6)>因变量 1节点,然后单击位移场 (comp1.u)。
- 4 在场的设置窗口中,定位到缩放栏。
- 5 在比例因子文本框中键入 "1e-4"。
- 6 在模型开发器窗口的瞬态强迫振动>求解器配置>解 6 (sol6)节点下,单击瞬态求解器 1。
- 7 在瞬态求解器的设置窗口中,单击以展开时间步进栏。
- 8 从求解器采用的步长列表中选择中级。
- 9 单击 = 计算。

结果

三维截点3

- 1 在结果工具栏中单击 三维截点。
- 2 在三维截点的设置窗口中,定位到数据栏。
- 3 从数据集列表中选择瞬态强迫振动/解 6 (sol6)。
- 4 定位到点数据栏。在 X 文本框中键入 "L/2"。
- 5 在 Y 文本框中键入 "0"。
- 6 在 Z 文本框中键入 "0"。

瞬态峰值位移

- 1 在结果工具栏中单击 ~一维绘图组。
- 2 在一维绘图组的设置窗口中,在标签文本框中键入"瞬态峰值位移"。
- 3 定位到数据栏。从数据集列表中选择三维截点 3。
- 4 定位到标题栏。从标题类型列表中选择标签。
- 5 定位到绘图设置栏。
- 6 选中 x 轴标签复选框。在关联文本框中键入 "时间 (s)"。
- 7 选中 v 轴标签复选框。在关联文本框中键入 "位移 (mm)"。
- 8 定位到轴栏。选中手动轴限制复选框。
- 9 在 x 最小值文本框中键入 "-1e-2"。
- **10** 在 **x 最大值**文本框中键入 "0.5"。
- 在 v 最小值文本框中键入 "-1e-2"。
- 12 在 y 最大值文本框中键入 "1.1"。

点结果图1

1 右键单击瞬态峰值位移并选择点结果图。

- 2 在点结果图的设置窗口中,定位到 y 轴数据栏。
- 3 在表达式文本框中键入 "w"。
- 4 从单位列表中选择 mm。
- 5 在瞬态峰值位移工具栏中单击 ፴ 绘制。
- 6 単击 **3 绘制**。

瞬态强迫振动-最大位移

- 1 在结果工具栏中单击 3.85 更多派生值,然后选择最大值>线最大值。
- 2 在线最大值的设置窗口中,在标签文本框中键入"瞬态强迫振动 最大位移"。
- 3 定位到数据栏。从数据集列表中选择瞬态强迫振动/解 6 (sol6)。
- 4 从时间选择列表中选择来自列表。
- 5 从时步 (s) 列表中选择 0.0117。
- 6 选择"边"1。
- 7 定位到表达式栏。在表中输入以下设置:

表达式	单位	描述
W	mm	位移场,Z 分量

- 8 定位到数据系列运算栏。从变换列表中选择最大值。
- 9 单击 = 计算。

瞬态强迫振动-最大应力

- 1 右键单击瞬态强迫振动 最大位移并选择复制粘贴。
- **2** 在**线最大值**的**设置**窗口中,在**标签**文本框中键入 "瞬态强迫振动 最大应力"。
- 3 定位到表达式栏。在表中输入以下设置:

表达式	单位
abs(beam.sb1)	MPa

4 单击 〓 计算旁边的 ▼ , 然后选择新表格。

瞬态强迫振动-静态位移

- 1 在模型开发器窗口中,右键单击瞬态强迫振动 最大位移并选择复制粘贴。
- 2 在线最大值的设置窗口中,在标签文本框中键入"瞬态强迫振动 静态位移"。
- 3 定位到数据栏。从时间选择列表中选择内插。
- 4 在时步 (s) 文本框中键入 "range(1.1,1e-3,1.2)"。

5 定位到表达式栏。在表中输入以下设置:

表达式	单位	描述
W	mm	位移场, Z 分量

- 6 定位到数据系列运算栏。从变换列表中选择平均值。

表格

1 转到表格窗口。

振动分析现已完成。如果要保存模型并使用前面步骤中设置的配置运行研究,则需要禁用在运行特定研究后添加的部分节点。如果不想保存模型,则无需执行以下步骤。

自由振动

步骤1: 特征频率

- 1 在模型开发器窗口的自由振动节点下,单击步骤 1: 特征频率。
- 2 在特征频率的设置窗口中,定位到物理场和变量选择栏。
- 3 选中修改研究步骤的模型配置复选框。
- 4 在模型树中选择组件 1 (comp1)> 梁 (beam)> 线弹性材料 1> 阻尼 1。
- 5 右键单击并选择禁用。

谐波强迫振动

步骤 2: 频域,模态

- 1 在模型开发器窗口的谐波强迫振动节点下,单击步骤 2: 频域,模态。
- 2 在频域,模态的设置窗口中,定位到物理场和变量选择栏。
- 3 选中修改研究步骤的模型配置复选框。
- 4 在模型树中选择组件 1 (comp1)> 梁 (beam)> 边载荷 2。
- 5 单击 禁用。
- 6 在模型树中选择组件 1 (comp1)> 梁 (beam)> 边载荷 3。
- 7 单击 📿 禁用。

周期性强迫振动

步骤1: 频域

1 在模型开发器窗口的周期性强迫振动节点下,单击步骤 1: 频域。

- **2** 在**频域**的**设置**窗口中,定位到**物理场和变量选择**栏。
- 3 在模型树中选择组件 1 (comp1)> 梁 (beam)> 边载荷 3。
- 4 单击 🕢 禁用。

步骤 2: 频域到时域 FFT

- 1 在模型开发器窗口中,单击步骤 2: 频域到时域 FFT。
- 2 在频域到时域 FFT 的设置窗口中,定位到物理场和变量选择栏。
- 3 在模型树中选择组件 1 (comp1)> 梁 (beam)> 边载荷 3。
- 4 单击 🕢 禁用。