Foundations of Software Fall 2022

Week 14

Sébastien Doeraene

Elements of the Scala.js IR type system

.

Scala.js compilation pipeline scala source code compiler sjsir optimizer optimized IR output JS output JS

Why formally study an IR

Why formally study an IR

- Optimizations may only be applicable if the type tystem is sound
- ▶ Prove that certain optimizations are correct
- Prove that the translation from source and to the target language are correct
- etc.

Mixing primitives and objects

4

Motivation

Featherweight Java only has objects. How do we model primitives, for example, int and bool?

Motivation

Featherweight Java only has objects. How do we model primitives, for example, int and bool?

Moreover, in Scala, primitive types are "object-like". We can use them in arbitrary type parameters, and they should behave like objects.

On the JVM, this is implemented with *boxing*. In Scala.js, however, boxing would be detrimental to *interoperability* with JavaScript. How do we make primitives object-like without boxing?

Motivation

Featherweight Java only has objects. How do we model primitives, for example, int and bool?

Moreover, in Scala, primitive types are "object-like". We can use them in arbitrary type parameters, and they should behave like objects.

On the JVM, this is implemented with *boxing*. In Scala.js, however, boxing would be detrimental to *interoperability* with JavaScript. How do we make primitives object-like without boxing?

Idea: make primitive types $\mathit{subtypes}$ of their "representative classes".

6

```
Types and subtyping
   \mathbf{T} ::=
                                              types
           C
                                               class
                                               primitive int
           int
           bool
                                               primitive bool
                 CT(C) = class C extends D {...}
                                C <: D
                                T <: T
                           S <: W W <: T
                                S <: T
            int <: Integer</pre>
                                          bool <: Boolean
```

Representative classes

```
tpcls(C) = C
tpcls(int) = Integer
tpcls(bool) = Boolean
```

T <: tpcls(T)

Syntax (terms)

```
t ::=
                                                    terms
                                                      variable
         t.f
                                                      field access
         t.m(\overline{t})
                                                      method invocation
         \texttt{new} \ \texttt{C}(\overline{\texttt{t}})
                                                      object creation
         (T) t
                                                      cast
         false
         true
         if t then t else t
         0
         succ t
         pred t
         iszero t
```

9

```
Syntax (values)
    v ::=
                                                     values
             \texttt{new C}(\overline{\mathtt{v}})
                                                       object creation
                                                       numeric value
             nv
                                                       boolean value
                                                     numeric values
             0
                                                       zero
             succ nv
                                                       non-zero
                                                     boolean values
                                                       false
             false
             true
                                                       true
                                                                               10
```

```
Example
   class Boolean extends Object { Boolean() { super(); } }
   class Integer extends Object {
     Integer() { super(); }
     int plus(int that) {
       return if (iszero that) then ((int) this)
              else (succ this.plus(pred that)); }
   class Pair extends Object {
     Object fst;
     Object snd;
     Pair(Object fst, Object snd) {
       super(); this.fst=fst; this.snd=snd; }
     int sum() {
       return ((int) this.fst).plus((int) this.snd); }
   new Pair(5, 11).sum()
                                                          12
```

Typing rules: fields

Adapting from Featherweight Java:

$$\frac{\Gamma \vdash t_0 : C_0 \quad \textit{fields}(C_0) = \overline{T} \ \overline{f}}{\Gamma \vdash t_0 . f_i : T_i} \qquad \text{(T-Field)}$$

What if t_0 is a primitive?

Typing rules: fields

Adapting from Featherweight Java:

$$\frac{\Gamma \vdash t_0 : C_0 \quad \textit{fields}(C_0) = \overline{T} \ \overline{f}}{\Gamma \vdash t_0 . f_i : T_i} \qquad \text{(T-Field)}$$

What if t_0 is a primitive?

We can't have that!

13

Typing rules: fields

Adapting from Featherweight Java:

$$\frac{\Gamma \vdash t_0 : C_0 \quad \textit{fields}(C_0) = \overline{T} \ \overline{f}}{\Gamma \vdash t_0 . f_i : T_i} \quad \text{(T-Field)}$$

What if t_0 is a primitive?

We can't have that!

Add additional well-formedness conditions for representative

$$\frac{\textit{fields}(\texttt{Integer}) = \emptyset \qquad \textit{fields}(\texttt{Boolean}) = \emptyset}{\texttt{repr classes 0K}}$$

Typing rules: casts

Straightforward generalization to all types.

$$\frac{\Gamma \vdash t_0 : S \quad S \mathrel{<:} T}{\Gamma \vdash (T)t_0 : T} \qquad \qquad \text{(T-UCAST)}$$

$$\frac{\Gamma \vdash t_0 : S \qquad T <: S \qquad T \neq S}{\Gamma \vdash (T)t_0 : T} \qquad \text{(T-DCAST)}$$

$$\frac{\Gamma \vdash t_0 : S \quad T \not : S \quad S \not : T}{\substack{\textit{stupid warning} \\ \hline \Gamma \vdash (T)t_0 : T}} \qquad \text{(T-SCAST)}$$

14

13

Typing rules: casts

Since it is an Intermediate Representation, warnings are not relevant anymore. Therefore, we keep only one typing rule for casts.

$$\frac{\Gamma \vdash t_0 : S}{\Gamma \vdash (T)t_0 : T} \tag{T-CAST}$$

Typing rules: casts

Since it is an Intermediate Representation, warnings are not relevant anymore. Therefore, we keep only one typing rule for casts.

$$\frac{\Gamma \vdash t_0 : S}{\Gamma \vdash (T)t_0 : T} \tag{T-CAST}$$

Question: can we remove the premise of that rule?

15

Evaluation rules

$$\frac{\textit{fields}(\texttt{C}) = \overline{\texttt{T}} \ \overline{\texttt{f}}}{(\texttt{new C}(\overline{\texttt{v}})) \cdot \texttt{f}_i \longrightarrow \texttt{v}_i} \qquad \text{(E-ProjNew)}$$

15

16

$$\frac{\textit{mbody}(\mathtt{m},\textit{tpcls}(\textit{vtpe}(\mathtt{v}))) = (\overline{\mathtt{x}},\mathtt{t}_0)}{\mathtt{v}.\mathtt{m}(\overline{\mathtt{u}}) \longrightarrow [\overline{\mathtt{x}} \mapsto \overline{\mathtt{u}},\texttt{this} \mapsto \mathtt{v}]\mathtt{t}_0} \ \ \text{(E-InvkVal)}$$

$$\frac{vtpe(v) <: T}{(T) v \longrightarrow v}$$
 (E-CastVal)

$$vtpe(new C(\overline{v})) = C$$
 $vtpe(nv) = int$ $vtpe(bv) = bool$

plus congruence rules and rules for ${\tt if}$, ${\tt pred}$, ${\tt succ}$ and ${\tt iszero}$ (omitted)

Labeled blocks

Presentation

```
In JavaScript, we have labeled statements with breaks:
```

```
label: {
    ...
    if (x)
        break label;
    ...
}
```

If execution reaches break label, it jumps to after the block.

18

Presentation

We generalize the concept to *expressions*. A return to a label jumps out of the block, resulting in the specified value as the value of the block.

```
val y: T = label[T]: {
    ...
    if (x)
      return@label someT;
    ...
    someOtherT
}
```

19

Use cases: modeling return

```
Traditional return:

def foo(x: int): int = {
    if (x < 0) {
        return -x
    }
    x
}

Modeled as:

def foo(x: int): int = {
    ret[int]: {
        if (x < 0) {
            return@ret -x
        }
        x
}</pre>
```

Use cases: modeling break and continue

```
def foo(x: int): unit = {
  var i: int = x
  while (i > 0) {
    if (i % 3 == 0)
      continue
  if (i % 10 == 0)
      break
  println(i)
```

Traditional break and continue:

i = i + 1 }

```
Use cases: modeling break and continue
   Modeled as two nested labels:
   def foo(x: int): unit = {
     var i: int = x
     breakLoop[unit]: {
       while (i > 0) {
         continueLoop[unit]: {
           if (i % 3 == 0)
            return@continueLoop unit
           if (i % 10 == 0)
             return@breakLoop unit
           println(i)
           i = i + 1
         }
       }
     }
                                                          22
```

```
Use cases: encoding of tail recursion

Tail recursive function in source code:

def fact(n: int, acc: int): int = {
   if (n == 0) acc
   else fact(n - 1, n * acc)
}
```

```
Use cases: encoding of tail recursion
   Encoding with a creative use of labeled blocks:
   def fact(var n: int, var acc: int): int = {
     ret[int]: {
       while (true) {
         tailcall[unit]: {
           return@ret {
             if (n == 0) acc
             else {
               val n' = n - 1
               val acc' = n * acc
               n = n'
               acc = acc'
               return@tailcall unit
           }
         }
       }
                                                           24
```

```
Use cases: encoding of tail recursion
   Encoding with a creative use of labeled blocks and loop:
   def fact(var n: int, var acc: int): int = {
     ret[int]: {
       loop {
         tailcall[unit]: {
           return@ret {
             if (n == 0) acc
             else {
               val n' = n - 1
               val acc' = n * acc
               n = n'
               acc = acc'
               return@tailcall unit
           }
         }
                                                           25
```

Formalization

On the board

Typing rules

$$\begin{split} &\frac{\Gamma \mid \Delta \mid \Sigma \vdash \mathbf{t}_1 : T_1}{\Gamma \mid \Delta \mid \Sigma \vdash \mathbf{loop} \ \mathbf{t}_1 : \mathbf{nothing}} & \qquad \text{(T-Loop)} \\ &\frac{\Gamma \mid \Delta, \alpha : T \mid \Sigma \vdash \mathbf{t} : T}{\Gamma \mid \Delta \mid \Sigma \vdash \alpha [T] \ \{\mathbf{t}\} : T} & \qquad \text{(T-Labeled)} \end{split}$$

$$\frac{\alpha\!:\!T_1\in\Delta\quad \Gamma\mid\Delta\mid\Sigma\vdash t_1:T_1}{\Gamma\mid\Delta\mid\Sigma\vdash return@\alpha\ t_1:nothing}\ \text{(T-Return)}$$

27

Evaluation rules

```
loop t | \mu \longrightarrow t; loop t | \mu (E-LOOP) \alpha \texttt{[T]} \  \{ v_1 \} \  | \  \mu \longrightarrow v_1 \  | \  \mu \texttt{(E-LABELEDVALUE)} \alpha \texttt{[T]} \  \{ \texttt{return@} \alpha \  v_1 \} \  | \  \mu \longrightarrow v_1 \  | \  \mu \texttt{(E-LABELEDRETMATCH)} \frac{\beta \neq \alpha}{\alpha \texttt{[T]} \  \{ \texttt{return@} \beta \  v_1 \} \  | \  \mu \longrightarrow \texttt{return@} \beta \  v_1 \  | \  \mu}  (E-LABELEDRETDIFF)
```

Plus congruence rules and propagation rules for ${\tt return},$ for example:

```
\begin{split} & \text{(return@$\alpha$ $v_1$) $t_2 \mid \mu \longrightarrow \text{return@$\alpha$ $v_1 \mid \mu$ (E-APPRET1)} } \\ & \text{(return@$\alpha$ $v_1$); $t_2 \mid \mu \longrightarrow \text{return@$\alpha$ $v_1 \mid \mu$ (E-SEQRET)} \end{split}
```

Proofs

26

28

On the board

Typing rules, fixed

$$\frac{\Gamma \mid \Delta \mid \Sigma \vdash t_1 : T_1}{\Gamma \mid \Delta \mid \Sigma \vdash loop \ t_1 : nothing} \qquad \text{(T-Loop)}$$

$$\frac{\Gamma \mid \Delta, \alpha : T \mid \Sigma \vdash t : T}{\Gamma \mid \Delta \mid \Sigma \vdash \alpha [T] \ \{t\} : T} \qquad \text{(T-Labeled)}$$

$$\frac{\alpha : T_1 \in \Delta \qquad \Gamma \mid \Delta \mid \Sigma \vdash t_1 : T_1}{\Gamma \mid \Delta \mid \Sigma \vdash return@\alpha \ t_1 : nothing} \qquad \text{(T-Return)}$$

$$\frac{\Gamma, x : T_1 \mid \emptyset \mid \Sigma \vdash t_2 : T_2}{\Gamma \mid \Delta \mid \Sigma \vdash \lambda x : T_1 . t_2 : T_1 \to T_2} \qquad \text{(T-Abs)}$$