

Exame de Dirigente Associativo de **Introdução aos Sistemas Electromagnéticos**Eng. Biomédica 2ºAno/1ºSemestre

26/11/2012		
Duração:	1h	

Nome:	N	Aluno:	

Parte I

- Para cada questão há uma única hipótese correcta.
- Cotação: Resposta correcta = 2; Resposta errada = -0,66
- Responda no máximo a 5 questões e indique neste rectângulo as respostas efectivamente respondidas.

1. Duas pequenas esferas, de massa m=10~g e carga Q, estão penduradas por fios de comprimento L=50~cm, presos num ponto comum, como se representa na figura. O ângulo que cada fio faz com a direção vertical é $\theta=20~^\circ$.

1.1 A intensidade da força eléctrica sentida por cada carga é de:

A: $F = 46 \ mN$	B: $F = 98 \ mN$
C: $F = 67 \ mN$	D: $F = 36 \ mN$

€ €	
A: $Q = 0.24 \ \mu C$	B: $Q = 1,65 \mu C$
C: $Q = 0.68 \ \mu C$	D: $Q = 0.82 \ \mu C$

2. A figura representa um espectrómetro de massa usado para determinar a relação $\frac{q}{m}$ de partículas. Um feixe de partículas de carga positiva é acelerado, a partir do repouso, através de uma diferença de potencial ΔV para de seguida entrar numa região onde existe um campo magnético \vec{B} onde descreve uma trajectória circular de raio r. A relação $\frac{q}{m}$ é dada por:

A: $\frac{q}{m} = \frac{\Delta V}{rB}$	B: $\frac{q}{m} = \frac{2\Delta V}{r^2 B^2}$
C: $\frac{q}{m} = \frac{B^2}{r \Delta V}$	D: $\frac{q}{m} = \frac{\Delta V^2}{2 r^2 B}$

3. Uma bobina rectangular, com 50 espiras e lados de 6,0 cm e de 8,0 cm, é percorrida por uma corrente de 1,75 A e encontra-se na posição indicada na figura, onde $\theta=37^{\circ}$. Na região é aplicado um campo de indução magnética uniforme $\vec{B}=1,5~\hat{y}~T$.

3.1 A intensidade do fluxo magnético sobre a bobina é:

A: $\phi = 0 Wb$	B: $\phi = 0,288 Wb$
C: $\phi = 0.360 Wb$	D: $\phi = 0,217 Wb$

3.2 A força magnética sobre a porção da bobina que se encontra sobre o eixo dos ZZ é:

A: $\overrightarrow{F_m} = 10,5 \ \hat{x} \ N$	B: $\overrightarrow{F_m} = -8.39 \ \hat{x} \ N$
C: $\overrightarrow{F_m} = -10.5 \ \hat{y} \ N$	D: $\overrightarrow{F_m} = 8,39 \ \hat{y} \ N$

3.3 O torque sobre a bobina é:

A: $\vec{\tau} = -2.52 \ \hat{y} \ Nm$	$B: \vec{\tau} = 31,5 \hat{x} Nm$
C: $\vec{\tau} = 0.50 \hat{z} N m$	D: $\vec{\tau} = \vec{0} N m$

Soluções:

1.1 D

1.2 C

2 B

3.1 D 3.2 A 3.3 C