Question 1. Let $(z_n)_n$ be a sequence of complex numbers and $0 < \alpha < 1$ such that $z_n \neq 0$ and $\left| \frac{z_{n+1}}{z_n} \right| \leq \alpha$ for all $n \in \mathbb{N}$. Prove that $(z_n) \to 0$.

Question 2. Let $\sum_{n=1}^{\infty} z_n$ be a series of complex numbers.

- (a) Suppose that there exists an $N \in \mathbb{N}$, k > 0 and a convergent series of real numbers $\sum_{n=1}^{\infty} w_n$ such that $w_n \geq 0$ and $|z_n| \leq kw_n$ for all $n \geq N$. Prove that $\sum_{n=1}^{\infty} z_n$ is absolutely convergent.
- (b) Suppose that there exists $0 < \alpha < 1$ and $N \in \mathbb{N}$ such that $\sqrt[n]{|z_n|} \le \alpha$ for $n \ge N$. Prove that $\sum_{n=1}^{\infty} z_n$ is absolutely convergent.
- (c) Suppose that there exists $0 < \alpha < 1$ and $N \in \mathbb{N}$ such that $\left| \frac{z_{n+1}}{z_n} \right| \leq \alpha$ for all $n \geq N$. Prove that $\sum_{n=1}^{\infty} z_n$ is absolutely convergent.

Question 3. Let $\sum_{n=1}^{\infty} z_n$ be a series of real numbers ushc that the sequence of partial sums $(S_n)_{n\in\mathbb{N}}$ (where $S_n = z_1 + z_2 + \cdots + z_n$, $n \in \mathbb{N}$) is bounded. Let $(w_n)_n$ be a decreasing sequence of real numbers such that $(w_n) \to 0$.

- (a) First, prove that $\sum_{k=1}^{n} z_k w_k = S_n w_{n+1} S_0 w_1 + \sum_{k=1}^{n} S_k (w_k w_{k+1})$.
- (b) For $n \to \infty$, show that as $n \to \infty$, $S_n w_{n+1} \to 0$ and that $\sum_{n=1}^{\infty} S_n(w_n w_{n+1})$ converges absolutely.

Question 4. Determine whether the following mathematical statements are true or false. Prove your answers.

- (a) If $\sum_{n=1}^{\infty} z_n$ is a convergent series of real numbers, then $\lim_{n\to\infty} nz_n = 0$.
- (b) If $\sum_{n=1}^{\infty}$ is an absolutely convergent series, then $\sum_{n=1}^{\infty} z_n^2$.
- (c) If $\sum_{n=1}^{\infty} z_n$ and $\sum_{n=1}^{\infty} w_n$ are convergent series of real numbers, then $\sum_{n=1}^{\infty} z_n w_n$ converges.
- (d) If $\sum_{n=1}^{\infty} z_n^2$ and $\sum_{n=1}^{\infty} w_n^2$ are convergent series of real numbers, then $\sum_{n=1}^{\infty} z_n w_n$ converges.

Question 5. Determine whether the each of the following series converges or diverges. Prove your answers.

- (a) $\sum_{n=1}^{\infty} \left(\frac{\ln n}{n}\right)^n$
- (b) $\sum_{n=1}^{\infty} \frac{\sin n}{n}$
- (c) $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$

Question 6. For each of the following sequences $(f_n)_n$ of real-valued functions, find (with proof) the pointwise limit function f of $(f_n)_n$ and determine $(f_n)_n$ (with proof) whether $(f_n)_n$ converges uniformly to f on E.

- (a) $U = [0, \infty)$ and $f_n(x) = \frac{x^n}{1+x^n}$ for $n \in \mathbb{N}$.
- (b) U = [-1, 1] and $f_n(x) = x^n (1 x^2)^n$ for $n \in \mathbb{N}$.
- (c) $U = [-\pi, \pi]$ and $f_n(x) = n \sin\left(\frac{x}{n}\right)$ for $n \in \mathbb{N}$.
- (d) $U = \mathbb{R}$ and $f_n(x) = n \sin\left(\frac{x}{n}\right)$ for $n \in \mathbb{N}$.

Question 7. Let $U \subset \mathbb{C}$ and $(f_n)_n$ be a sequence of functions such that

(i) $f_n: U \to \mathbb{R} \text{ for } n \in \mathbb{N}.$

- (ii) $f_{n+1}(x) \leq f_n(x)$ for all $x \in U$ and $n \in \mathbb{N}$.
- (iii) $(f_n)_n$ converges uniformly to the constant function f(x) = 0 on U.

Prove that the series $\sum_{n=1}^{\infty} (-1)^n f_n$ converges uniformly on E.

Question 8. Let $f: \mathbb{R} \to \mathbb{R}$. Prove that $\lim_{n\to\infty} f(x) = a$ if and only if the sequence of functions $(f_n)_n$ defined by $f_n(x) = f(x+n)$ converges uniformly to the constant function f(x) = a on $U = [0, \infty)$.

Question 9. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function such that $\lim_{n \to -\infty} f(x) = \lim_{n \to \infty} f(x) = 0$. Prove that f is uniformly continuous on \mathbb{R} .

Question 10. Let $U, V \subset \mathbb{C}$, $(f_n)_n$ be a sequence of complex-valued functions defined on U, $(g_n)_n$ be a sequence of complex-valued functions defined in V, $f \in \mathbb{C}^U$ and $g \in \mathbb{C}^V$ such that g is uniformly continuous in V, $f(U) \subset V$ and $f_n(U) \subset V$ for $n \in \mathbb{N}$.

- (a) If $(f_n)_n \to f$ uniformly, prove that $g \circ f_n \to g \circ f$ uniformly.
- (b) If $(f_n)_n \to f$ uniformly and $(g_n) \to g$ uniformly, prove that $g_n \circ f_n \to g \circ f$ uniformly.
- (c) If $(g_n) \to g$ uniformly, is it necessary to assume some condition on f to obtain $g_n \circ f \to g \circ f$? Explain by providing a proof.