QUIC-FL: Quick Unblased Compression for Federated Learning

Ran Ben Basat, Shay Vargaftik, Amit Portnoy, Gil Einziger, Yaniv Ben-Itzhak, Michael Mitzenmacher

Gautam Singh

Indian Institute of Technology Hyderabad

November 22, 2023

Introduction

Preliminaries

Bounded Support Quantization (BSQ)

The DME Problem

Figure 1: Illustration of the DME Problem. Here, $\hat{\mathbf{X_i}}$ denotes the server estimate for $\mathbf{X_i}$.

2/8

vNMSE and NMSE

Definition (vNMSE)

The vector Normalized Mean Square Error of \mathbf{x} is defined as

$$vNMSE(\mathbf{x}) \triangleq \frac{\mathbb{E}\left[\|\hat{\mathbf{x}} - \mathbf{x}\|_{2}^{2}\right]}{\|\mathbf{x}\|_{2}^{2}}.$$
 (1)

Definition (NMSE)

The Normalized Mean Square Error in the case of the DME problem is defined as

$$NMSE \triangleq \frac{\mathbb{E}\left[\|\hat{\boldsymbol{\mu}} - \boldsymbol{\mu}\|_{2}^{2}\right]}{\frac{1}{n}\sum_{i=1}^{n}\|\mathbf{x}_{i}\|_{2}^{2}} = \frac{\mathbb{E}\left[\|\hat{\boldsymbol{\mu}} - \frac{1}{n}\sum_{i=1}^{n}\mathbf{x}_{i}\|_{2}^{2}\right]}{\frac{1}{n}\sum_{i=1}^{n}\|\mathbf{x}_{i}\|_{2}^{2}}.$$
 (2)

3/8

Gautam Singh QUIC-FL November 22, 2023

Randomized Hadamard Transform

Definition (Walsh-Hadamard Matrix)

The Walsh-Hadamard matrix \mathbf{H}_{2^k} with $\mathbf{H}_1=(1)$ is recursively defined as

$$\mathbf{H}_{2^k} = \begin{pmatrix} \mathbf{H}_{2^{k-1}} & \mathbf{H}_{2^{k-1}} \\ \mathbf{H}_{2^{k-1}} & \mathbf{H}_{2^{k-1}} \end{pmatrix}. \tag{3}$$

Definition (Randomized Hadamard Transform)

Let $\mathbf{H} \in \{-1, +1\}^{d \times d}$ be a Walsh-Hadamard Matrix and \mathbf{D} be a diagonal matrix with uniform iid Rademacher entries *i.e.*, entries that are ± 1 with equal probability. Then, the *randomized Hadamard transform* (RHT) of $\mathbf{x} \in \mathbb{R}^d$ is given by

$$\mathcal{R}_{\mathsf{H}}(\mathsf{x}) \triangleq \mathcal{R}_{\mathsf{H}}(\mathsf{x}) = \left(\frac{1}{\sqrt{d}}\mathsf{HD}\right)\mathsf{x}.$$
 (4)

Properties of RHT

Definition

Inverse RHT The inverse randomized Hadamard transform of \mathbf{x} is given by

$$\mathcal{R}_{\mathbf{H}}^{-1}(\mathbf{x}) \triangleq \mathcal{R}_{\mathbf{H}}^{-1}\mathbf{x} = \mathcal{R}_{\mathbf{H}}^{\top}\mathbf{x} = \left(\frac{1}{\sqrt{d}}\mathbf{D}\mathbf{H}\right)\mathbf{x}.$$
 (5)

Lemma

Define $F_{i,d}(x)$ to be the CDF of $\frac{1}{\sigma}\mathcal{R}_{\mathbf{H}}(\mathbf{x})_i$ and $\Phi(x)$ the CDF of the standard normal distribution. Then, as $d \to \infty$, $\forall \ 1 \le j \le d$,

$$F_{i,d}(x_j) \xrightarrow{d} \Phi(x_j).$$
 (6)

Gautam Singh QUIC-FL

5/8

Design Goals of QUIC-FL

- Less computational complexity compared to other methods, at both client and server.
- Lesser amount of shared global as well as private randomness.
- **3** Same (asymptotic) NMSE as other methods: $\mathcal{O}\left(\frac{1}{n}\right)$.

BSQ Algorithm

- Uses a parameter $p \in (0,1]$, based on which a threshold $[-t_p, t_p]$ is chosen such that at most dp values lie outside this interval.
- ② x separated into two parts: *large* values that lie outside this interval and *small* values that lie inside this interval.
- To encode x,
 - Large values are sent exactly, along with their indices. Costs $\log\binom{d}{dp} \approx dp \log\left(\frac{1}{p}\right)$ bits. Can use delta encoding or no encoding at cost of $dp \lceil \log d \rceil$ bits (Authors assume $p \log d << 1$).
 - Small values are stochastically quantized and sent using b bits per value.
- **①** To decode and compute $\hat{\mathbf{x}}$, decode the *large* values along with their indices. Then, estimate the quantized values.

Gautam Singh QUIC-FL November 22, 2023 7/8

Main Result of BSQ

Theorem

BSQ, without further assumptions, admits a worst-case NMSE of $\frac{1}{np(2^b-1)^2}$ with $\mathcal{O}(d)$ and $\mathcal{O}(nd)$ complexity for encoding and decoding respectively.

Arbitrarily Large NMSE

Notice that the constant in the NMSE can be made arbitrarily large. For example, $p=2^{-10},\ b=1.$

8/8