REPRESENTATION ALIGNMENT FOR GENERATION: TRAINING DIFFUSION TRANSFORMERS IS EASIER THAN YOU THINK

Sihyun Yu¹ Sangkyung Kwak¹ Huiwon Jang¹ Jongheon Jeong² Jonathan Huang³ Jinwoo Shin¹* Saining Xie⁴*

¹KAIST ²Korea University ³Scaled Foundations ⁴New York University

2024.10.16 Jaihoon Kim

KAIST Visual AI Group

Self-Supervised Learning Visual Models

SotA self-supervised model such as DINOv2 show rich feature representations, showing its general applicability.

Motivation

(a): Representations of DMs exhibit a significant semantic gap compared to SotA self-supervised models (e.g., DINOv2) that show rich representations.

(a) Semantic gap: Linear probing

(b) Alignment to DINOv2-g

(b): The representations of the two models are weakly aligned.

Key Ideas

(c) While additional training slightly improves the alignment, it is not an efficient way.

 \rightarrow The reconstruction task may not be ideal for learning effective representations as it does not incentivize the model for removing unnecessary details in \mathbf{x} .

(c) Alignment progression

Meaningful representations can lead to efficient training of a diffusion model.

Method - REPresentation Alignment (REPA)

REPA aligns patch-wise projections of the diffusion model hidden states (noisy images) with pre-trained self-supervised visual representations (clean images).

$$\mathcal{L}_{\text{REPA}}(\theta, \phi) \coloneqq -\mathbb{E}_{\mathbf{x}_*, \boldsymbol{\epsilon}, t} \left[\frac{1}{N} \sum_{n=1}^{N} \text{sim}(\mathbf{y}_*^{[n]}, h_{\phi}(\mathbf{h}_t^{([n]})) \right]$$

$$\mathcal{L} \coloneqq \mathcal{L}_{\text{velocity}} + \lambda \mathcal{L}_{\text{REPA}}$$

Experiments

REPA accelerates the trainig process: reaching the performance of 7M steps in less than 400K steps.

(a) Semantic gap: Linear probing

(b) Alignment to DINOv2-g

Experiments

Table 3: FID comparisons with vanilla DiTs and SiTs on ImageNet 256×256. We do not use classifier-free guidance (CFG). ↓ denotes lower values are better. Iter. indicates the training iteration.

Model	#Params	Iter.	FID↓
DiT-L/2	458M	400K	23.3
+ REPA (ours)	458M	400K	15.6
DiT-XL/2	675M	400K	19.5
+ REPA (ours)	675M	400K	12.3
DiT-XL/2	675M	7M	9.6
+ REPA (ours)	675M	850K	9.6
SiT-B/2	130M	400K	33.0
+ REPA (ours)	130M	400K	24.4
SiT-L/2	458M	400K	18.8
+ REPA (ours)	458M	400K	9.7
+ REPA (ours)	458M	700K	8.4
SiT-XL/2	675M	400K	17.2
+ REPA (ours)	675M	150K	13.6
SiT-XL/2	675M	7M	8.3
+ REPA (ours)	675M	400K	7.9
+ REPA (ours)	675M	1M	6.4
+ REPA (ours)	675M	4M	5.9