

Problem Statement

TABLE 117									
Normal									
1	2	3	1	2	3	Beam			
16	12	8	20	12	6	1			
12	10	6	18	15	8	2			
9	8	13	13	10	17	3			
4	12	12	6	18	16	4			
9	4	11	13	5	14	5			
8	7	7	10	10	10	6			

Q) In treating a brain tumor with radiation, physicians want the maximum amount of radiation possible to bombard the tissue containing the tumors. The constraint is, however, that there is a maximum amount of radiation that normal tissue can handle without suffering tissue damage. Physicians must therefore decide how to aim the radiation so as to maximize the radiation that hits the tumor tissue subject to the constraint of not damaging the normal tissue. As a simple example of this situation, suppose six types of radiation beams (beams differ in for they are aimed and their intensity) can be aimed at a tumor. The region containing the tumor has been divided into six regions: three regions contain tumors and three contain normal tissue. The amount of radiation delivered to each region by each type of beam is shown in Table 117.

If each region of normal tissue can handle at most 40 units of radiation, then for beams should be used to maximize the total amount of radiation received by the tumors?

Verbal Formulation

Decision variables:

- Bi: 1 if Beam i is used for transmitting radiation, 0 otherwise; for i=1,2,3,4,5,6
- RBi: Total amount of radiation radiated by beam i ;for i=1,2,3,4,5,6
- Ni: Amount of radiation falling on region i of normal tissue ;for i=1,2,3
- Ti: Amount of radiation falling on region i of Tumor; for i=1,2,3
- Nbi: Amount of radiation falling on normal tissue from beam i ;for i=1,2,3,4,5,6
- Tbi: Amount of radiation falling on tumor from beam i ;for i= 1,2,3,4,5,6

Constraints:

- Normal tissue radiated by each beam constraint
- Normal tissue region constraint
- Radiation supply constraint by each beam

Objective function:

• Maximize the total radiation by beams

Mathematical Model

Decision variables:

- Bi: 1 if Beam i is used for transmitting radiation, 0 otherwise; for i=1,2,3,4,5,6
- RBi: Total amount of radiation radiated by beam i ;for i=1,2,3,4,5,6
- Ni: Amount of radiation falling on region i of normal tissue; for i=1,2,3
- Ti: Amount of radiation falling on region i of Tumor; for i=1,2,3
- Nbi: Amount of radiation falling on normal tissue from beam i ;for i=1,2,3,4,5,6
- Tbi: Amount of radiation falling on tumor from beam i ;for i= 1,2,3,4,5,6

Constraints:

• Normal tissue radiated by each beam constraint :

```
N1= 16B1 + 12B2 + 9B3 + 4B4 + 9B5 + 8B6
N2= 12B1 + 10B2 + 8B3 + 12B4 + 4B5 + 7B6
N3= 8B1 + 6B2 + 13B3 + 12B4 + 11B5 + 7B6
```

- Normal tissue region constraint: Ni <=40 for i=1,2,3
- Radiation supply constraint by each beam: RB1= 74B1; RB2= 69B2; RB3= 70B3; RB4= 68B4; RB5= 56B5; RB6= 52B6;

Objective function:

Maximize the total radiation by beams

Maximize 74B1+69B2+70B3+68B4+56B5+52B6

LINGO Code

```
TITLE "Treating Brain Tumor";
!Decision Variables:
@BIN(B1): ! 1 if beam 1 is used:
@BIN(B2); ! 1 if beam 2 is used;
@BIN(B3); ! 1 if beam 3 is used;
@BIN(B4): ! 1 if beam 4 is used:
@BIN(B5); ! 1 if beam 5 is used;
@BIN(B6); ! 1 if beam 6 is used:
@FREE(RB1): ! Amount of Radiation from beam 1:
@FREE(RB2); ! Amount of Radiation from beam 2;
@FREE(RB3); ! Amount of Radiation from beam 3;
@FREE(RB4): ! Amount of Radiation from beam 4:
@FREE(RB5); ! Amount of Radiation from beam 5;
@FREE(RB6); ! Amount of Radiation from beam 6;
@FREE(N1); ! Amount of radiation falling on region 1 of normal tissue;
@FREE(N2): ! Amount of radiation falling on region 2 of normal tissue;
@FREE(N3); ! Amount of radiation falling on region 3 of normal tissue;
@FREE (NB1); ! Amount of radiation falling on normal tissue from beam 1;
@FREE (NB2); ! Amount of radiation falling on normal tissue from beam 2;
@FREE (NB3); ! Amount of radiation falling on normal tissue from beam 3;
@FREE (NB4); ! Amount of radiation falling on normal tissue from beam 4;
@FREE (NB5); ! Amount of radiation falling on normal tissue from beam 5;
@FREE (NB6): ! Amount of radiation falling on normal tissue from beam 6;
@FREE(TB1); ! Amount of radiation falling on tumor from beam 1;
@FREE(TB2): ! Amount of radiation falling on tumor from beam 2:
@FREE(TB3); ! Amount of radiation falling on tumor from beam 3;
@FREE(TB4); ! Amount of radiation falling on tumor from beam 4;
@FREE (TB5); ! Amount of radiation falling on tumor from beam 5;
@FREE(TB6): ! Amount of radiation falling on tumor from beam 6;
@FREE(T1); ! Amount of radiation falling on region 1 of tumor;
@FREE (T2); ! Amount of radiation falling on region 2 of tumor;
@FREE(T3): ! Amount of radiation falling on region 3 of tumor;
!OBJECTIVE FUNCTION:
max = 74*B1 + 69*B2 + 70*B3 + 68*B4 + 56*B5 + 52*B6;
```

```
! CONSTRAINTS;
N1 = 16*B1 + 12*B2 + 9*B3 + 4*B4 + 9*B5 + 8*B6;
N2 = 12 \times B1 + 10 \times B2 + 8 \times B3 + 12 \times B4 + 4 \times B5 + 7 \times B6:
N3 = 8*B1 + 6*B2 + 13*B3 + 12*B4 + 11*B5 + 7*B6;
T1= 20*B1 + 18*B2 + 13*B3 + 6*B4 + 13*B5 + 10*B6;
T2= 12*B1 + 15*B2 + 10*B3 + 18*B4 + 5*B5 + 10*B6;
T3 = 6*B1 + 8*B2 + 17*B3 + 16*B4 + 14*B5 + 10*B6;
N1 <= 40:
N2 <= 40:
N3 <= 40;
RB1= 74*B1:
NB1= 36*B1:
TB1= 38*B1:
RB2= 69*B2;
NB2= 28*B2:
TB2= 41*B2:
RB3= 70*B3:
NB3= 30*B3:
TB3= 40*B3;
RB4= 68*B4:
NB4= 28*B4:
TB4= 40*B4:
RB5= 56*B5;
NB5= 24*B5:
TB5= 32*B5;
RB6= 52*B6:
NB6= 22*B6;
TB6= 30*B6:
N1>=0:
N2>=0:
N3>=0:
T1>=0:
T2>=0:
T3>=0:
NB1>=0:
NB2>=0:
NB3>=0;
NB4>=0:
NB5>=0;
NB6>=0:
```

LINGO Output

			Variable	Value	Reduced Cost
			B1	1.000000	-74.00000
Global optimal solution found.			B2	0.000000	-69.00000
Objective value:		264.0000	B3	1.000000	-70.00000
Objective bound:		264.0000	B4	1.000000	-68.00000
			B5	0.000000	-56.00000
Infeasibilities:		0.000000	B6	1.000000	-52.00000
Extended solver steps:		0	RB1	74.00000	0.000000
Total solver iterations:		0	RB2	0.000000	0.000000
Elapsed runtime seconds:		0.10	RB3	70.00000	0.000000
Elapsed luncime seconds.		0.10	RB4	68.00000	0.000000
			RB5	0.000000	0.000000
Model Class:		MILP	RB6	52.00000	0.000000
			N1	37.00000	0.000000
T	20		N2	39.00000	0.000000
Total variables:	30		N3	40.00000	0.000000
Nonlinear variables:	0		NB1	36.00000	0.000000
Integer variables:	6		NB2	0.000000	0.000000
			NB3	30.00000	0.000000
122 4 10 1021 10 10 10 10 10 10 10 10 10 10 10 10 10	222		NB4	28.00000	0.000000
Total constraints:	52		NB5	0.000000	0.000000
Nonlinear constraints:	0		NB6	22.00000	0.000000
			TB1	38.00000	0.000000
- Dati-To Managaritina	221		TB2	0.000000	0.000000
Total nonzeros:	111		TB3	40.00000	0.000000
Nonlinear nonzeros:	0		TB4	40.00000	0.000000
			TB5	0.000000	0.000000
			TB6	30.00000	0.000000
			Tl	49.00000	0.000000
			T2	50.00000	0.000000
			Т3	49.00000	0.000000

Managerial Report

BEAM	NORMAL TISSUE				TUMOR				
	1	2	3	TOTAL NORMAL	1	2	3	TOTAL TUMOR	TOTAL RADIATION
1	16	12	8	36	20	12	6	38	74
2	0	0	0	0	0	0	0	0	0
3	9	8	13	30	13	10	17	40	70
4	4	12	12	28	6	18	16	40	68
5	0	0	0	0	0	0	0	0	0
6	8	7	7	22	10	10	10	30	52
TOTAL	37	39	40	116	49	50	49	148	264

According to the optimal solution obtained, total amount of radiation is **264** units out of which **116** units fall on Normal tissues and **148** units fall on Tumors.

Beams used to achieve this: Beam 1,Beam 3,Beam 4 and Beam 6

