Зміст

2	Лен	сичний аналіз та скінченні автомати	1
	2.1	Лексичний аналіз в мовних процесорах	1
	2.2	Скінчені автомати	1
		2.2.1 Мова яку розпізнає скінченний автомат	2
		2.2.2 Способи визначення функції переходів	2
		2.2.3 Детерміновані скінченні автомати	3
	2.3	Контрольні запитання	4

2 Лексичний аналіз та скінченні автомати

2.1 Лексичний аналіз в мовних процесорах

Призначення: перетворення вхідного тексту програми з формату зовнішнього представлення в машинно-орієнтований формат — послідовність лексем.

Нагадаємо, що *лексема* — це ланцюжок літер елементарний об'єкт програми, що несе певний семантичний зміст. В подальшому кожну лексему будемо представляти як пару (клас лексеми, ім'я лексеми).

В більшості мов програмування для визначення класів лексем достатью скінчених автоматів.

2.2 Скінчені автомати

 $He de me p мінований скінчений автомат — це п'ятірка <math>M = \langle Q, \Sigma, \delta, q_0, F \rangle,$ де

- $Q = \{q_0, q_1, \dots, q_{n-1}\}$ скінчена множина станів автомата;
- $\Sigma = \{a_1, a_2, \dots, a_m\}$ скінчена множина вхідних символів (вхідний алфавіт);
- $q_0 \in Q$ *початковий* стан автомата;
- δ відображення множини $Q \times \Sigma$ в множину 2^Q . Відображення δ як правило називають ϕy нкцією переходів;
- $F \subset Q$ множина заключних станів. Елементи з F називають заключними або фінальними станами.

Якщо M — скінчений автомат, то пара $(q, w) \in Q \times \Sigma^*$ називається конфігурацією автомата M. Оскільки скінчений автомат — це дискретний пристрій, він працює по тактам. Takm скінченого автомата M задається бінарним відношенням \models , яке визначається на конфігураціях:

$$(q_1, aw) \models (q_2, w)$$
 if $q_2 \in \delta(q_1, a)$, $\forall w \in \Sigma^*$.

2.2.1 Мова яку розпізнає скінченний автомат

Скінченний автомат M розпізнає (donyckae) ланцюжок w, якщо

$$\exists q \in F : (q_0, w) \models^* (q, \varepsilon),$$

де \models^{\star} — рефлексивно-транзитивне замикання бінарного відношення \models .

Мова, яку допускає автомат M (розпізнає автомат M)

$$L(M) = \{ w \mid w \in \Sigma^*, \exists q \in F : (q_0, w) \models^* (q, \varepsilon) \}.$$

2.2.2 Способи визначення функції переходів

На практиці, при визначенні скінченого автомата M, використовують декілька способів визначення функції δ , наприклад:

- це табличне визначення δ ;
- діаграма проходів скінченого автомата.

Tабличне визначення функції δ — це таблиця $M(q_i,a_j),$ де $a_j\in \Sigma, q_i\in Q,$ тобто

$$M(q_i, a_j) = \{q_k \mid q_k \in \delta(q_i, a_j)\}.$$

Діаграма переходів скінченого автомата M — це невпорядкований граф G(V,P), де V — множина вершин графа, а P — множина орієнтованих дуг, причому з вершини q_i у вершину q_j веде дуга позначена a_k , коли $q_j \in \delta(q_i, a_k)$. На діаграмі переходів скінченого автомата це позначається так:

В подальшому, на діаграмі переходів скінченого автомата M елементи з множини заключних станів будемо позначити так:

Приклад. Побудуємо діаграму переходів скінченого автомата M, який розпізнає множину цілочислових констант мови ${\bf C}.$

Зауваження. Цей автомат неповний, на два нижні праві вузли потрібно довісити "UL"-частину яка висить на вузлі "1..9".

З побудованого прикладу видно, що приведений автомат не повністю визначений.

2.2.3 Детерміновані скінченні автомати

Скінчений автомат M називається ∂ етермінованим, якщо $\delta(a_i, a_k)$ містить не більше одного стану для любого $q_i \in Q$ та $a_k \in \Sigma$.

Теорема. Для довільного недетермінованого скінченого автомата M можна побудувати еквівалентний йому детермінований скінчений автомат M', такий що L(M) = L(M').

Доведення: Нехай M — недетермінований скінчений автомат

$$M = \langle Q, \Sigma, \delta, q_0, F \rangle.$$

Детермінований автомат $M' = \langle Q', \Sigma, \delta', q'_0, F \rangle$ побудуємо таким чином:

- 1. $Q' = 2^Q$, тобто імена станів автомата M' це підмножини множини Q.
- 2. $q_0' = \{q_0\} \in 2^Q = Q'$.
- 3. F' складається з усіх таких підмножин $S \in 2^Q = Q'$, що $S \cap F \neq \emptyset$.
- 4. $\delta'(S, a) \models \{q \mid q \in \delta(q_i, a), q_i \in S\}.$

Доводимо індукцією по i, що $(S,w) \models^i (S',\varepsilon)$, тоді і тільки тоді, коли $S' = \{q \mid \exists q_i \in S : (q_i,w) \models^i (q,\varepsilon)\}.$

Зокрема, $(\{q_0\}, w) \models^* (S', \varepsilon)$, для деякого $S' \in F'$, тоді і тільки тоді, коли $\exists q \in F : (q_0, w) \models^* (q, \varepsilon)$.

Таким чином, L(M) = L(M').

Побудований нами автомат M має дві властивості: він детермінований та повністю визначений. До того ж кількість станів цього автомата 2^n-1 .

2.3 Контрольні запитання

- 1. У чому призначення лексичного аналізу?
- 2. Що таке недетермінований скінчений автомат?
- 3. Яку мову розпізнає скінченний автомат?
- 4. Які два способи визначення функції переходів ви знаєте?
- 5. Спробуйте "зламати" вищенаведений автомат для цілочислових констант мови С (зверніть увагу на зауваження).
- 6. Що таке детермінований скінчений автомат?
- 7. Сформулюйте і доведіть теорему про детермінізацію скінченного автомата.
- 8. Нехай функція переходів δ не однозначна, але у той же час набуває не багато різних значень на одному наборі аргументів, наприклад не більше двох, тобто $|M(q,a)| \leq 2$ для довільних $q \in Q$ і $a \in \Sigma$. Чи можна тоді отримати кращу оцінку зверху на кількість станів еквівалентного детермінованого автомату ніж $2^n 1$?