Computational Manybody Physics

Problem Set #1

Due: Oct 25, in class

In this problem set, we will implement a Monte Carlo simulation of a 2D-Ising model

$$H = -\sum_{\langle ij \rangle} \sigma_i \sigma_j - h \sum_i \sigma_i$$

on a square lattice with dimensions $L \times L$.

- 1. Write a code to perform simulations using the Metropolis algorithm.
- 2. Use the program to plot m vs T, |m| vs T, E vs T, C_v vs T, χ vs T, and U_2 vs T for system sizes of L=8,16,32,64. Determine T_c .
- 3. Implement the Wolff cluster update with improved estimator χ . Compare with the result you obtained previously.
- 4. Measure the autocorrelation time of E and |m| for the Metropolis and Wolff updates.
- 5. Using the simulation data, determine the critical exponents α, β, γ and ν . Plot the data collapse for |m|, χ , and C_v