The Apriori algorithm

[Agrawal et al., 93]

- Levelwise search
 - Discover frequent 1-itemsets, 2-itemsets,...

Apriori property:

If an itemset is not frequent, then all its supersets are not frequent

- Ex: If {vine, pencil} is not frequent, then of course {vine, pencil, chocolate} will not be frequent
- Downward closure property
- Anti-monotonicity property

Apriori algorithm

```
Input: T, minsup
F<sub>1</sub> = {Frequent 1-itemsets};
for (k=2 ; F_{k-1} \neq \emptyset ; k++) do begin
  C_k = apriori-gen(F_{k-1}); // Candidates generation
  foreach transaction t ∈ T do begin
        C_t = subset(C_k, t); // all elements of C_k subset of t
        foreach candidate c \in C_t do
             c.count++ :
  end
  F_k = \{ c \in C_k \mid c.count \ge minsup \} ;
end
return \cup_k F_k:
```

Candidate generation

- apriori-gen: generates candidates k-itemsets from frequent (k-1)itemsets
- c (size k) = merge of p, $q \in F_{k-1}$ (both have size k-1)
 - \Rightarrow p and q have exactly k-2 items in common
- How many combinations of such p,q to build c?

•
$$C_k^2 = \frac{k!}{(k-2)! \cdot 2!} = \frac{k \cdot (k-1)}{2}$$
 ways (at most) to derive c from F_{k-1}

- This is redundant work: we want a unique (p,q) for c
- Solution: ordering of the items in itemsets
 - Usually items are represented by integers : classical order of \aleph
 - k-2 prefixes of p and q must match

apriori-gen

```
Input: F_{k-1}
// Join step
insert into C<sub>k</sub>
select p.item<sub>1</sub>,p.item<sub>2</sub>,...,p.item<sub>k-1</sub>,q.item<sub>k-1</sub>
from p,q \in F<sub>k-1</sub>
where p.item<sub>1</sub> = q.item<sub>1</sub>,...,p.item<sub>k-2</sub>=q.item<sub>k-2</sub>,
                                          p.item_{k-1} < q.item_{k-1}
// Prune step
foreach itemset c \in C_k do
   foreach (k-1)-subset s of c do
                                                               Here use of anti-monotony
           if (s \notin F_{k-1}) then
                delete c from C_k;
return C<sub>k</sub>
```

The Eclat algorithm

[Zaki et al., 97]

- Apriori : DB is in horizontal format
- Eclat introduces the vertical format
 - Itemset $x \rightarrow tid-list(x)$

							A	В	C	D	
	Α	В	С	D	Е		1	1	1	1	
1	Х	Х	Х	X	Х		-	_	2		
2	Х	Х	Х		Х					5	
3			Х				5	4	3		
1		Х	Х			,	6	5	4		
-				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				6	5		
5	X	Х	Х	X					6		
6	Х	Х	Х						J		

Horizontal format

Vertical format

Vertical format

- Support counting can be done with tid-list intersections
 - $\forall I,J \text{ itemsets} : tidlist(I \cup J) = tidlist(I) \cap tidlist(J)$
 - No need for costly subset tests, hash tree generation...
- Problem
 - If database is big, tidlists of the many candidates created will be big also, and will not hold in memory
- Solution
 - Partition the lattice into equivalence classes
 - In Eclat : equivalence relation = sharing the same prefix

Equivalence classes inside [A] class

10

1:
$$\{a, d, e\}$$

2: $\{b, c, d\}$
3: $\{a, c, e\}$
4: $\{a, c, d, e\}$
5: $\{a, e\}$
6: $\{a, c, d\}$

a:7 *b*:3 *c*:7 *d*:6 *e*:7

- 7: $\{b, c\}$ 8: $\{a, c, d, e\}$
- 9: $\{b, c, e\}$
- 10: $\{a, d, e\}$
- Form a transaction list for each item. Here: bit vector representation.
 - o grey: item is contained in transaction
 - white: item is not contained in transaction
- Transaction database is needed only once (for the single item transaction lists).


```
    a:7
    b:3
    c:7
    d:6
    e:7

    b:0
    c:4
    d:5
    e:6
```

- Intersect the transaction list for item a with the transaction lists of all other items (conditional database for item a).
- Count the number of bits that are set (number of containing transactions). This yields the support of all item sets with the prefix a.

```
1: \{a, d, e\}

2: \{b, c, d\}

3: \{a, c, e\}

4: \{a, c, d, e\}

5: \{a, e\}

6: \{a, c, d\}

7: \{b, c\}

8: \{a, c, d, e\}

9: \{b, c, e\}

10: \{a, d, e\}
```


- The item set $\{a, b\}$ is infrequent and can be pruned.
- All other item sets with the prefix a are frequent and are therefore kept and processed recursively.

- Intersect the transaction list for the item set $\{a, c\}$ with the transaction lists of the item sets $\{a, x\}$, $x \in \{d, e\}$.
- Result: Transaction lists for the item sets $\{a, c, d\}$ and $\{a, c, e\}$.
- Count the number of bits that are set (number of containing transactions). This yields the support of all item sets with the prefix ac.

```
1: \{a, d, e\}
                                                             a:7 \mid b:3 \mid c:7 \mid d:6 \mid e:7
 2: \{b, c, d\}
                                                  a
 3: \{a, c, e\}
                                      c:4 \mid d:\overline{5}
 4: \{a, c, d, e\}
 5: \{a, e\}
                                          c
 6: \{a, c, d\}
                                   d:3 \mid e:3
 7: \{b, c\}
 8: \{a, c, d, e\}
 9: \{b, c, e\}
                                   e:2
10: \{a, d, e\}
```

- Intersect the transaction lists for the item sets $\{a, c, d\}$ and $\{a, c, e\}$.
- Result: Transaction list for the item set $\{a, c, d, e\}$.
- With Apriori this item set could be pruned before counting, because it was known that $\{c, d, e\}$ is infrequent.

```
1: \{a, d, e\}

2: \{b, c, d\}

3: \{a, c, e\}

4: \{a, c, d, e\}

5: \{a, e\}

6: \{a, c, d\}

7: \{b, c\}

8: \{a, c, d, e\}

9: \{b, c, e\}

10: \{a, d, e\}
```

- The item set $\{a, c, d, e\}$ is not frequent (support 2/20%) and therefore pruned.
- Since there is no transaction list left (and thus no intersection possible), the recursion is terminated and the search backtracks.

```
1: \{a, d, e\}

2: \{b, c, d\}

3: \{a, c, e\}

4: \{a, c, d, e\}

5: \{a, e\}

6: \{a, c, d\}

7: \{b, c\}

8: \{a, c, d, e\}

9: \{b, c, e\}

10: \{a, d, e\}
```

- The search backtracks to the second level of the search tree and intersect the transaction list for the item sets $\{a, d\}$ and $\{a, e\}$.
- Result: Transaction list for the item set $\{a, d, e\}$.
- Since there is only one transaction list left (and thus no intersection possible), the recursion is terminated and the search backtracks again.

```
1: \{a, d, e\}

2: \{b, c, d\}

3: \{a, c, e\}

4: \{a, c, d, e\}

5: \{a, e\}

6: \{a, c, d\}

7: \{b, c\}

8: \{a, c, d, e\}

9: \{b, c, e\}

10: \{a, d, e\}
```

- The search backtracks to the first level of the search tree and intersect the transaction list for b with the transaction lists for c, d, and e.
- Result: Transaction lists for the item sets $\{b,c\}$, $\{b,d\}$, and $\{b,e\}$.

- Only one item set has sufficient support \rightarrow prune all subtrees.
- Since there is only one transaction list left (and thus no intersection possible), the recursion is terminated and the search backtracks again.

- Backtrack to the first level of the search tree and intersect the transaction list for c with the transaction lists for d and e.
- Result: Transaction lists for the item sets $\{c, d\}$ and $\{c, e\}$.

- Intersect the transaction list for the item sets $\{c, d\}$ and $\{c, e\}$.
- Result: Transaction list for the item set $\{c, d, e\}$.

- The item set $\{c, d, e\}$ is not frequent (support 2/20%) and therefore pruned.
- Since there is no transaction list left (and thus no intersection possible), the recursion is terminated and the search backtracks.

- The search backtracks to the first level of the search tree and intersect the transaction list for d with the transaction list for e.
- Result: Transaction list for the item set $\{d, e\}$.
- With this step the search is finished.

- The found frequent item sets coincide, of course, with those found by the Apriori algorithm.
- However, a fundamental difference is that
 Eclat usually only writes found frequent item sets to an output file,
 while Apriori keeps the whole search tree in main memory.

- Note that the item set $\{a, c, d, e\}$ could be pruned by Apriori without computing its support, because the item set $\{c, d, e\}$ is infrequent.
- The same can be achieved with Eclat if the depth-first traversal of the prefix tree is carried out from right to left and computed support values are stored. It is debatable whether the expected gains justify the memory requirement.

Eclat algorithm

```
Input: T, minsup
compute L_1 and L_2 // like apriori
Transform T in vertical representation
CE_2 = Decompose L_2 in equivalence classes
forall E_2 \in CE_2 do
  compute_frequent(E<sub>2</sub>)
end forall
return \cup_k F_k;
```

compute_frequent(E_{k-1})

```
forall itemsets I_1 and I_2 in E_{k-1} do 
 if |\text{tidlist}(I_1) \cap \text{tidlist}(I_2)| \ge \text{minsup then} 
 L_k \leftarrow L_k \cup \{I_1 \cup I_2\} 
 end if 
end forall 
 CE_k = \text{Decompose } L_k \text{ in equivalence classes} 
 forall E_k \in CE_k do 
 compute_frequent(E_k) 
end forall
```

The FP-growth approach

- FP-Growth : Frequent Pattern Growth
- No candidate generation
- Compress transaction database into FP-tree (Frequent Pattern Tree)
 - Extended prefix-tree
- Recursive processing of conditional databases
- Can be one order of magnitude faster than Apriori

FP-tree

- Compact structure for representing DB and frequent itemsets
- 1. Composed of:
 - root
 - item-prefix subtrees
 - frequent-item-header array
- 2. Node =
 - item-name
 - count // number of transactions containing path reaching this node
 - node-link // next node having same item-name
- 3. Entry in frequent-item-header array =
 - item-name
 - head of node-link // pointer to first node having item-name
- Both an horizontal (prefix-tree) and a vertical (node links) structure

FP-tree example (1/2)

FP-tree example (2/2)

Transactions sorted lexicographically

Alexandre Termier

Exercise

• Draw the FP-tree for the following DB: (minsup = 3)

ADF

ACDE

BD

BCD

BC

ABD

BDE

BCEG

CDF

ABD

FP-Growth: Preprocessing the Transaction Database

- Original transaction database.
- 2. Frequency of individual items.
- 3. Items in transactions sorted descendingly w.r.t. their frequency and infrequent items removed.
- Transactions sorted lexicographically in ascending order (comparison of items is the same as in preceding step).
- Data structure used by the algorithm (details on next slide).

Transaction Representation: FP-Tree

- Build a **frequent pattern tree** (**FP-tree**) from the transactions (basically a prefix tree with links between branches for items).
- Frequent single item sets can be read directly from the FP-tree.

Simple Example Database

FP-tree

FP-Growth

```
FP-growth(FP, prefix)
foreach frequent item x in increasing order of frequency do
  prefix = prefix \cup x
  Dx = \emptyset
  count_x = 0
  foreach node-link nl<sub>x</sub> of x do
           D_x = D_x \cup \{\text{transaction of path reaching } x, \text{ with }
                          count for each item = nl<sub>x</sub>.count, without x}
            count_x += nl_x.count
  end
  if count_x \ge minsup then
            output (prefix \cup x)
            FP_x = FP-tree constructed from D_x
            FP-growth(FP<sub>x</sub>, prefix)
  end if
end
```

FP-Growth example

FP-Growth example (cont.)

Loop on AE, BE, CE

The rest is left as exercise...

For AE:

Conditional FP-tree for AE:

For BAE:

Alexandre Termier

Conditional FP-tree for BAE:

C:2

For CBAE: $count_{CBAE} = 2$

⇒ CBAE is frequent

 \Rightarrow Output CBA $\frac{1}{37}$

Experiments: Execution Times

Decimal logarithm of execution time in seconds over absolute minimum support.

LCM's pseudo code

```
Algorithm 1: LCM
    Data: dataset D, minimum support threshold \varepsilon
    Result: Outputs all frequent closed itemsets in \mathcal{D}
 1 begin
        \perp_{closed} \leftarrow \bigcap_{T \in \mathcal{D}} T
        output \perp_{closed}
 3
        foreach i \in \mathcal{I} \mid i \not\in \perp_{closed} do
 4
              expand(\perp_{closed}, i, \mathcal{D}, \varepsilon)
 6 Function expand(I, i, \mathcal{D}_I, \varepsilon)
         Data: Closed frequent itemset I, extension item i, reduced dataset D_I,
                   minimum support threshold \varepsilon
         Result: Outputs all closed itemsets containing \{i\} \cup I
         begin
 7
              if support_{\mathcal{D}_r}(\{i\}) \geq \varepsilon then
                                                                                   // Frequency test
                   I_{ext} \leftarrow \bigcap_{T \in \mathcal{D}_I[\{i\}]} T
                                                                           // Closure computation
 9
                                                                                   // 1^{st} parent test
                   if maxItem(I_{ext}) = i then
10
                        J \leftarrow I \cup I_{ext}
11
                       output (J, support_{\mathcal{D}_r}(\{i\}))
12
                        D_J = \{T \setminus J \mid T \in \mathcal{D}_I[\{i\}]\}
13
                        foreach j \in \mathcal{I} \setminus J \mid j < i do
                                                                                     // Augmentations
14
                             expand(J, j, \mathcal{D}_J, \varepsilon)
15
```