RECURSIVE FORMULATION f(k) = f(k, 1) + (1-6) k depresental et. f(kt) > k ++1 > 0 VALUE FUNCTION: -

	BELLMAN EQUATION VALUE F" ITERATION:-
<u>D</u>	Guess $V_0(k)$ / k is given (?) (what do we juess? The form of v_1^n). (terate. / update guess. $V_{j+1}(k) = \max_{0 \le k' \le f(k)} \left[u(f(k)-k') + \beta v_j(k') \right]$
	of $ v_{j+1}(k) - v_j(k) < \epsilon_1$ then $ v_{j+1}(k) $ in the solution.

Example:	$u = \log CC$ $S = 1$ $y_t = 0 k t$ This is the guess!
	$y_t = 0 k x $
	VE = max [log (c) + p. V(t')]
	s.t. $ctk' = \theta k^{\alpha}$ ko ûs given
	$d = \log(CC) + \beta(a_0 + a_1 \log k) + \beta[\theta k^{\alpha} - c - k^{\dagger}]$
	C = Bay
	$\frac{1}{0k^{\alpha}-k!}=\frac{\beta\alpha_{1}}{k_{1}}$
	t'= za, Dka - za, k
	$k' = \frac{\beta a_1}{1 + \beta a_1} \cdot \theta k^{\infty}$
	$c = \theta k^{\alpha} \left(\frac{1}{1 + \beta \alpha_1} \right)$

This is not recursion bellerant iteration
This is not recursive bellevan iteration