Сравнение расчетов простейших моделей в Comsol и Elmer

Пек Борис

Введение

- Прошлый мой доклад был посвещен обзору свободных программ для численных расчетов.
- Здесь приводится сравнение результатов моделирования в пакетах Elmer (свободный) и Comsol (проприетарный).
- В пакете Elmer есть возможность импорта конечноэлементной сетки в формате mphtxt.
- Поскольку встроенные средства постпроцессора Elmer сильно ограничены, для обработки результатов использовался пакет ParaView.
- Сравнивались результаты расчета для некоторых простейших задач, на одинаковой расчетной сетке и с одинаковыми критериями сходимости.
- Система: Intel Pentium M 1.73 GHz, 768 RAM, 1272 SWAP, Debian GNU/Linux Lenny

Содержание

- Краткое описание.
- Некоторые возможные мультифизические комбинации в Elmer.
- Решатели.
- Теплопроводящий уголок.
- Нить над плоскостью + область с однородным электрическим зарядом. Электростатика.
- Течение несжимаемой жидкости в щели под действием объемной силы.
- Свободная конвекция от вертикальной пластины.
- Обтекание шара в трубе. Модель 3D.

Краткое описание

Elmer

Пакет Elmer содержит в себе набор программ:

- Построитель геометрии и генератор 2D и 3D сеток.
- Решатель с возможностью распараллеливания на многопроцессорных и кластерных системах
- Постпроцессор

Сетка может быть сгенерирована встроенными средствами или импортирована из файлов посторонних приложений:

1) .ansys : Ansys input format

2) .inp : Abaqus input format by Ideas

3) .fil : Abaqus output format4) .FDNEUT: Gambit (Fidap) neutral file

5) .unv : Universal mesh file format

6) .mphtxt : Comsol Multiphysics mesh format

7) .dat : Fieldview format

8) .node,.ele: Triangle 2D mesh format

9) .mesh : Medit mesh format 10) .msh : GID mesh format 11) .msh : Gmsh mesh format

Платформы:

Linux, Windows, Mac OS X

Краткое описание

Elmer

Rayleigh-Benard convection Temperature and velocity fields at 400 s.

Физические модели в Elmer:

- Теплоперенос: уравнение теплопроводности, модели для электропроводности, излучения, конвекции и фазовых переходов (газ, жидкость, кристалл)
- Гидродинамика: уравнения Навье-Стокса, Стокса и Рейнольдса, к-є и другие приближения турбулентности
- Многофазные жидкости (смеси): общее конвекционно-диффузионное уравнение
- Свободная поверхность: метод Лангранджиана, многоуровневый метод
- Структурная механика: общие уравнения упругости (анизотропические, линейные и нелинейные модели), пространственно-приведенные модели для плат и оболочек
- Акустика: уравнения Гельмгольца, линеаризованное время-гармоническое приближение
- Электромагнетизм: электростатика, магнитостатика, индукция
- Электрокинетика: условия скольжения, уравнение Пуассона-Больцмана, уравнение Пуассона-Нернста-Планка
- Квантовая механика: теория функционалов плотности (DTF, Kohn-Sham)
- Перемещение сетки: вытянивание и сдвиг в совместных задачах, ALE формулировка

Платформы:

Linux, Windows, Mac OS X

Некоторые возможные мультифизические комбинации в Elmer

Уравнения	Поле	Т	V	E, B	С	u
Энергии	Температуры, Т	-				
Навье-Стокса	Скорости, у	1	_			
Максвелла	Электрическое и Магнитное, Е, В	2	3	-		
Диффузии, Химических Реакций	Концентрации, с		5	6	-	
Упругости	Смещения, и	7	8	9	10	-

- 1. Тепловое течение: естественная конвекция
- 2. Термо-электрическая комбинация: индукционный нагрев
- 3. Магнитогидродинамическая, Электрокинетическая
- 4. Температурная зависимость химических реакция и диффузии
- 5. Реактивное течение: CFD, горение
- 6. Электрохимия: баттареи, электроды, поверхностная обработка
- 7. Термоупругость и термопластичность
- 8. Гидро-структурное взаимодействие: хемодинамика
- 9. Электро-механическая: MEMS, пьезоэлектричество
- 10. Явления расширения

Решатели

#	Решатель	Тип	Comsol v3.4	Elmer	Полное название
1	UMFPACK	Direct	+	+	Sparse Matrix Solver
2	PARDISO	Direct	+	-	Parallel Sparse Direct Linear Solver
3	SPOOLES	Direct	+	-	
4	TAUCS	Direct	+	-	
5	BANDED	Direct	-	+	Band Matrix Solver
6	GMRES	Iterative	+	+	Generalized Minimum Residual
7	FGMRES	Iterative	+	-	Flexible Generalized Minimum Residual
8	CG	Iterative	+	+	Conjugate Gradients
9	CGS	Iterative	-	+	Conjugate Gradient Squared
10	BiCGStab	Iterative	-	+	Biconjugate Gradient Stabilized
11	Geometric multigrid	Iterative	+	-	Geometric Multigrid
12	TFQMR	Iterative	-	+	Transpose-Free Quasi-Minimal Residual

- 1) Высоко эффективный прямой решатель для несимметричных систем.
- 2) Высоко эффективный прямой решатель для несимметричных систем. Часто использует меньше памяти, чем UMFPACK.
- 3) Эффективный прямой решатель для симметричных и несимметричных систем. Использует меньше памяти, чем UMFPACK.
- 4) Эффективный прямой решатель для симметричных, положительно определённых систем.
- 6) Итеративный решатель для несимметричных задач.
- 7) Итеративный решатель для несимметричных задач.
- 8) Итеративный решатель для симметричных положетельно-определённых задач.
- 9) Итеративный решатель для симметричных положетельно определённых задач.
- 11)Итеративный решатель для эллиптических и параболических задач.

Теплопроводящий уголок

Нить над плоскостью + область с однородным электрическим зарядом. Электростатика

Течение несжимаемой жидкости в щели под

Течение несжимаемой жидкости в щели под действием объемной силы

16

Обтекание шара в трубе. Модель 3D

Обтекание шара в трубе. Модель 3D

Обтекание шара в трубе. Модель 3D

Выводы

- Встроенный построитель геометрии в Elmer не имеет графического интерфейса. Поэтому имеет смысл импортировать готовую геометрию и сетку, построенные в специализированных программных пакетах.
- Кроме того, расчетную сетку можно легко изменять в программе, используя плагины netgen и tetgen, или импортировать другую сетку, не изменяя остальных параметров модели: ГУ, НУ, свойств материалов...
- Имеется удобный графический интерфейс препроцессора, минимальный интерфейс решателя (мониторы сходимости, текстовый лог), минимальный постпроцессор.
- В программе реализовано несколько основных алгоритмов решения ДУ в частных производных методом КЭ.
- Имеется возможность экспорта результатов расчета во внешние приложения. В этом обзоре построцессинг производился в программе ParaView.
- Произведено сравнение результатов расчета некоторых простейших моделей в Elmer и Comsol на одинаковых расчетных сетках и с одинаковыми критериями сходимости.
- Решатель Elmer менее требователен к ресурсам компьютера и решает задачи быстрее, даже если использовать Comsol Script (без графического интерфейса).
- Представленную выше 3D-модель в Comsol решить не удалось ни с одним типом решателя из-за недостатка памяти (типичная ошибка: «Out of memory»)

PS:

- В следующем релизе Elmer появится новый более функциональный постпроцессор.
- Исходные же коды проекта доступны в процессе разработки, поэтому можно скомпилировать свежайшую версию в любой момент.
- Для сравнения приведен внешний вид постпроцессоров:

