Boundary conditions for molecular dynamics

Xiantao Li

Institute for Math and its Applications

joint work with
Weinan E
Princeton University

Motivation

Holian and Ravelo PRB 1994

Outline

- Exact boundary conditions
- Phonon reflection
- Variational formulation
- Examples
- Application to fracture simulation

Problem setup

$$m\ddot{\mathbf{u}}_i = -\frac{\partial V}{\partial \mathbf{x}_i}.$$

MD boundary condition: a 1D example

Exact boundary condition can be obtained by solving the half space problem:

$$\begin{cases} \ddot{u}_{j} = u_{j+1} - 2u_{j} + u_{j-1}, & j \leq 0 \\ u_{j}(0) = 0, & v_{j}(0) = 0, & j \leq 0 \\ u_{b}(t) = u_{1}(t). \end{cases}$$

Computational domain

Boundary condition

Exact boundary condition (Adelman et. al. 1974, 1976):

$$u_0(t)=\int_0^t eta(t-s)u_1(s)ds, j\leq 0$$
 $eta(t)=rac{J_2(2t)}{t}.$

Faster decay by using more atoms

$$u_0 = \sum_{i=1}^J \int_0^t \alpha_j(t-s)u_j(s)ds$$

$$\alpha(t) \sim \frac{C}{t^J}, t \to +\infty.$$

J=3

General lattice

Linearized equation of motion,

$$M\ddot{\mathbf{u}}_{i,j,k} = \sum_{l,m,n} D_{i-l,j-m,k-n} \mathbf{u}_{l,m,n},$$

Fourier transform in the j and k direction,

$$M\ddot{\mathbf{U}}_{i}(\eta,\zeta) = \sum_{l} \mathcal{D}_{i-l}(\eta,\zeta)\mathbf{U}_{l}(\eta,\zeta).$$

$$U = \mathcal{F}_{j \to \eta, k \to \zeta}[u], \mathcal{D} = \mathcal{F}_{j \to \eta, k \to \zeta}[D].$$

Exact boundary condition:

$$\mathbf{u}_{0,j,k}(t) = \sum_{m} \sum_{n} \int_{0}^{t} \theta_{l,j-m,k-n}(t-\tau) \mathbf{u}_{l,m,n}(\tau) d\tau.$$

Existing work

- ▶ W. Cai, M. de Koning, V. V. Bulatov and S. Yip 2000,
- ► G.J. Wagner, G.K. Eduard and W.K. Liu 2004,
- ► H.S. Park, E.G.Karpov, W.K. Liu and P.A. Klein 2004.

Exact boundary conditions:

- nonlocal in both space and time
- premature truncation leads to large reflection
- not feasible in a multiscale method

- local boundary conditions
- given stencil, find the BC with minimal phonon reflection
- ► take into account of external loading

Exact boundary conditions:

- nonlocal in both space and time
- premature truncation leads to large reflection
- not feasible in a multiscale method

- local boundary conditions
- given stencil, find the BC with minimal phonon reflection
- take into account of external loading

Exact boundary conditions:

- nonlocal in both space and time
- premature truncation leads to large reflection
- ▶ not feasible in a multiscale method

- ► **local** boundary conditions
- ▶ given stencil, find the BC with minimal phonon reflection
- take into account of external loading

Exact boundary conditions:

- nonlocal in both space and time
- premature truncation leads to large reflection
- not feasible in a multiscale method

- ► **local** boundary conditions
- given stencil, find the BC with minimal phonon reflection
- take into account of external loading

Exact boundary conditions:

- nonlocal in both space and time
- premature truncation leads to large reflection
- not feasible in a multiscale method

Objectives:

- local boundary conditions
- given stencil, find the BC with minimal phonon reflection
- take into account of external loading

An analogy: boundary condition for the wave equation: ABC (Engquist and Majda 1979), and many other methods.

Phonon spectrum

Harmonic approximation:

$$m_i\ddot{\mathbf{u}}_i=-\sum_j D_{i-j}\mathbf{u}_j.$$

Dynamic matrix:

$$M\mathcal{D}(\mathbf{k}) = \sum_{j} D_{j} e^{-i\mathbf{r}_{j}\cdot\mathbf{k}},$$

Phonon spectrum

$$\mathcal{D}(\mathbf{k})\varepsilon_s(\mathbf{k}) = \lambda_s \varepsilon_s(\mathbf{k}).$$

Brillouin zone: triangular lattice

the first Brillouin zone

Phonon spectrum

Brillouin zone

BZ for BCC lattice

Xiantao Li and Weinan E

BZ for BCC lattice

Symmetry of the spectrum:

$$\omega(\mathbf{k}) = \omega(P\mathbf{k}), \quad \varepsilon(P\mathbf{k}) = P\varepsilon(\mathbf{k}).$$

Brillouin zone

BZ for BCC lattice

Integration over the BZ: K point method (Monkhorst and Pack 1976).

$$u_i = (2i - nq - 1)/(2nq)$$

 $\mathbf{k}_{ijl} = u_i \mathbf{b}_i + u_j \mathbf{b}_j + u_l \mathbf{b}_l.$

The symmetry of the grid points substantially reduces the computation.

Phonon reflection

Taborek and Goodstein 1979

Incident and reflected waves

Phonon reflection:

$$\mathbf{k}^{I} - (\mathbf{k}^{I} \cdot \mathbf{n}) \mathbf{n} = k^{R} - (\mathbf{k}^{R} \cdot \mathbf{n}) \mathbf{n}$$

 $\omega_{s}(\mathbf{k}^{I}) = \omega_{s'}(\mathbf{k}^{R}).$

Let $\lambda = e^{i(\mathbf{k}^R \cdot \mathbf{n})a_n}$

$$\det\left(\mathcal{D}(\mathbf{k}^R) - \omega(\mathbf{k}^I)I\right) = 0,$$

leads to a polynomial for λ . The roots of the polynomial come in pairs $(\lambda, 1/\lambda^*)$. The degree of the polynomial: $Nd \times Ne \times Na$. The wavenumber:

$$\mathbf{k}_{s,s'}^R \cdot \mathbf{n} = k_r + ik_i.$$

Boundary condition:

$$\mathbf{u_0}(t) = \sum_j \int_0^{t_0} \alpha_j(\tau) \mathbf{u}_j(t-\tau) d\tau.$$

Phonon reflection: reflection coefficients

Boundary condition:

$$\mathbf{u_0}(t) = \sum_j \int_0^{t_0} \alpha_j(\tau) \mathbf{u}_j(t-\tau) d\tau.$$

Incident and reflected waves:

$$\mathbf{u}_{j}(t) = c_{s}^{I} e^{i(\mathbf{r}_{j} \cdot \mathbf{k} - \omega_{s} t)} \varepsilon_{s}(\mathbf{k})$$

Phonon reflection: reflection coefficients

Boundary condition:

$$\mathbf{u_0}(t) = \sum_j \int_0^{t_0} \alpha_j(\tau) \mathbf{u}_j(t-\tau) d\tau.$$

Incident and reflected waves:

$$\mathbf{u}_{j}(t) = c_{s}^{I} e^{i(\mathbf{r}_{j} \cdot \mathbf{k} - \omega_{s} t)} \varepsilon_{s}(\mathbf{k})$$

$$+ c_{ss'}^R e^{i(\mathbf{r}_j \cdot \mathbf{k}_{ss'}^R - \omega_{s'}t)} \varepsilon_{s'}(\mathbf{k}_{ss'}^R)$$

Phonon reflection: reflection coefficients

Boundary condition:

$$\mathbf{u_0}(t) = \sum_j \int_0^{t_0} \alpha_j(\tau) \mathbf{u}_j(t-\tau) d\tau.$$

Incident and reflected waves:

$$\mathbf{u}_{j}(t) = c_{s}^{I} e^{i(\mathbf{r}_{j} \cdot \mathbf{k} - \omega_{s} t)} \varepsilon_{s}(\mathbf{k})$$

$$+ \quad c_{ss'}^R e^{i(\mathbf{r}_j \cdot \mathbf{k}_{ss'}^R - \omega_{s'}t)} \varepsilon_{s'}(\mathbf{k}_{ss'}^R)$$

$$\mathbf{c}^R = R\mathbf{c}^I$$
,

Linear system:

$$(I - \mathcal{A}(\mathbf{k}))\varepsilon_s(\mathbf{k}) + \sum R_{ss'}(I - \mathcal{A}(\mathbf{k}_{ss'}^R))\varepsilon_{s'}(\mathbf{k}).$$

Thermal flux

Energy flux at the atomic scale:

$$J = \frac{1}{2} \sum (\dot{\mathbf{u}}_i + \dot{\mathbf{u}}_j) D_{i-j} (\mathbf{u}_i - \mathbf{u}_j) \mathbf{r}_{ij}.$$

Convert to Fourier space:

$$J=J^I+J^R.$$

$$J^{R} = \int |c_{ss'}^{R}|^{2} \omega_{s'} \nabla \lambda_{s'}(\mathbf{k}) d\mathbf{k},$$

$$J_{n}^{R} = 2 \sum_{s} \int_{\mathbf{k} \in BZ, \, \mathbf{k} \cdot \mathbf{n} \leq 0} |\sum_{s'} c_{s'}^{I} R_{ss'}|^{2} \omega_{s}^{2} (\nabla \omega_{s} \cdot \mathbf{n}) d\mathbf{k}.$$

This is the thermal flux due to the applied boundary condition.

Variational boundary conditions

Discrete boundary condition:

$$\mathbf{u}_0^{n+1} = \sum_{j=1}^J \sum_{m=1}^M \alpha_j^m \mathbf{u}_j^{n-m} \Delta t,$$

Variational formulation:

$$\min_{\{\alpha_j^m\}} \sum_{s} \int_{\mathbf{k} \in BZ, \ \mathbf{k} \cdot \mathbf{n} \le 0} \sum_{s'} |R_{ss'}|^2 |(\nabla \omega_s \cdot \mathbf{n})| d\mathbf{k}$$

subject to certain constraints.

Symmetry properties

$$\tilde{\boldsymbol{\alpha}}_{i'} = P\boldsymbol{\alpha}_i P^T,$$

Reflection matrices:

$$R(\mathbf{k}; \{\alpha_{j'}\}) = R(P^T\mathbf{k}; \{\alpha_j\}).$$

Example: 1D chain

Reflection (E and Huang 2001, 2002)

$$R(k) = \frac{1 - \sum_{j} e^{ijk} \int_{0}^{t_0} \alpha_j(\tau) e^{i\omega\tau} d\tau}{1 - \sum_{j} e^{-ijk} \int_{0}^{t_0} \alpha_j(\tau) e^{i\omega\tau} d\tau}.$$

exact kernel

Example: 1D chain

Premature truncation vs variational BC

Example: 2D triangular lattice

the triangular lattice

the first Brillouin zone

Example: 2D triangular lattice

neighbor atoms

phonon reflection for J = 26, M = 2

Example: 2D triangular lattice

size of the stencil

phonon reflection along $\theta = 2\pi/3$

Application to fracture simulations

Fixed BC

Application to fracture simulations

Local BC

More practical issues: external loading

stress free?

The reflection coefficient $|R(k)| \equiv 1!$

More practical issues: external loading

External loading

Applied deformation:

$$\mathbf{W} = \mathbf{F}\mathbf{n} - \mathbf{n} = \frac{\partial \mathbf{u}}{\partial \mathbf{n}},$$

Boundary condition:

$$\mathbf{w}_0 = \sum_j \int_0^{t_0} \alpha_j(s) \mathbf{w}_j(t-s) ds.$$

In Fourier space:

$$\hat{w}(k) = \hat{u}(k)(1 - e^{ia\mathbf{k}\cdot\mathbf{n}}).$$

Summary

- 1. analysis of phonon reflection
- 2. variational formulation to minimize phonon reflection
- 3. **local** boundary condition
- 4. implementation issues
- 5. application to fracture simulations