

LABORATORIO di Reti di Calcolatori

Configurazione indirizzi di rete, subnetting

Elena Pagan

LABORATORIO di Reti di Calcolatori - A.A. 2022/2023

1/44

IP addressing (IPv4)

- ❖ indirizzo proprio di Network L.: 32 bit unsigned long
 - □ dotted notation: trascrizione del valore di ogni ottetto
 - es: 159.149.134.9
- indirizzo deve essere globalmente unico
 - □ assegnazione da IANA (Internet Assigned Numbers Authority) ai RIR (Regional Internet Registries)
 - ☐ IANA è dipartimento di ICANN Internet Corporation for Assigned Names and Numbers
- 5 schemi assegnazione indirizzi:
 - □ class-based addressing vs. classless addressing (CIDR)
 - subnetting
 - □ network address translation (NAT)
 - □ ... e poi c'è IPv6

Elena Pagan

LABORATORIO di Reti di Calcolatori – A.A. 2022/2023

Class-based addressing

- ❖ indirizzo IP contiene network ID + host ID
 - \square hostID = 0 \rightarrow la rete stessa
 - \square netID = 0 \rightarrow l'host indicato sulla stessa rete della source
 - □ tutti '1' → broadcast sulla rete della sorgente
 - □ hostID tutti '1' → broadcast sulla rete destinataria
- ❖ 5 classi di indirizzi
 - □ classe A: 127 reti (7 bit) da 2²⁴-1 host (16777215)
 - □ classe B: 2¹⁴-1 reti da 2¹⁶-1 host (65535)
 - □ classe C: 2²¹-1 reti da 255 host
 - □ classe D per multicast (2²⁸-1 gruppi)
 - permanent address da ICANN (e.g. ALL_ROUTERS)
 - □ classe E per usi futuri

Elena Pagan

LABORATORIO di Reti di Calcolatori – A.A. 2022/2023

3 / 44

Classi di indirizzi

···quindi in notazione puntata ogni componente è tra 0 e 255, vero?!

Elena Pagan

LABORATORIO di Reti di Calcolatori - A.A. 2022/2023

Indirizzi particolari

- $0.0.0.0 \rightarrow$ this network
- ♦ 255.255.255.255 \rightarrow broadcast on this network (TTL=1)
- ♦ <netID>.<000···000> → indirizzo base della rete
- ♦ <netID>.<111.111> → broadcast sulla rete target
- i valori intermedi possono essere usati per gli apparati
- ❖ se usiamo x bit per netID e y=32-x bit per hostID, allora netmask composta da x bit 1 seguiti da y bit 0
 - □ routing table entry: <dest, netmask, oif, metric, flags>
 - □ AND bit a bit tra pkt.dest & netmask → dest
 - □ altrimenti 2³² linee nelle routing table...
- * facciamo un po' di esercizio!

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2022/2023

5 / 44

Indirizzamento a Livello 3

128 64 32 16 8 4 2 1

Elena Pagan

LABORATORIO di Reti di Calcolatori - A.A. 2022/2023

Indirizzamento a Livello 3

128 64 32 16 8 4 2 1

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2022/2023

7/44

Classless Inter-Domain Routing

- ❖ PROBLEMA: gli indirizzi in IPv4 sono esauriti
- ❖ amministratori evitano indirizzi di classe C (fino a 256 host) a favore della classe B (fino a 65535 host)
- molte delle esistenti reti di classe B hanno meno di 256 host...
- * meccanismo per utilizzo più efficiente degli indirizzi e per controllare dimensioni routing table
- * aumentare livelli in indirizzamento gerarchico? peggio!

Elena Pagan

LABORATORIO di Reti di Calcolatori – A.A. 2022/2023

CIDR

- ❖ indirizzo base di rete x.y.w.z / n
 - □ *n* indica #bit usati per netID, indipendentemente da classe
 - □ in indirizzo base gli ultimi 32-n bit devono essere 0
- IDEA; raggruppare classi C in insiemi da usare come spazio contiguo di indirizzi
 - □ ES: 32 reti C ospitano 32 x 256 = 8192 apparati per gruppo
- * 194.0.0.0 195.255.255 Europa
- ❖ 198.0.0.0 199.255.255.255 Nord America
- * 200.0.0.0 201.255.255.255 Centro-Sud America
- ❖ 202.0.0.0 203.255.255.255 Asia, Australia

Elena Pagai

LABORATORIO di Reti di Calcolatori - A.A. 2022/2023

9 / 44

CIDR

- * reti di classe C: ultimo ottetto per host ID
- * 194.0.0.0 194.255.255.255 195.0.0.0 195.255.255.255

- ❖ sulle 4 regioni 131072 x 4 = 524288 classi C
- per ogni regione 131072 x 256 = 33.554.432 indirizzi di host
- avanzano 204.0.0 223.255.255 ovvero 256 x 256 x (223 203) = 1.310.720 reti di classe C

Elena Pagan

LABORATORIO di Reti di Calcolatori – A.A. 2022/2023

CIDR e routing

- se mi capita pkt con indirizzo 194._ o 195._ so che devo inoltrarlo verso l'Europa
 - □ analogamente per gli altri raggruppamenti
 - □ 2 entry in routing table per >33M indirizzi
- indirizzamento con maschere nelle routing table
- ❖ ES: 1! entry per rete da 194.24.8.0 a 194.24.11.255 indirizzo base 11000010.00011000.00001000.00000000

mask calcolata come (256 - #reti assegnate)

- □ mask deve estrarre indirizzo di base, nascondendo bit aggiuntivi delle altre reti del gruppo
- □ 4 reti quindi netmask = 255.255.252.0? Verifichiamo! →

Elena Pagan

LABORATORIO di Reti di Calcolatori – A.A. 2022/2023

11 / 44

252

CIDR e routing

- **SES:** Univ. Edimburgo ha da 194.24.8.0 a 194.24.11.255 (mask 111111111111111111111111100.000000000)
 - .8. 11000010.00011000.000010 00.
 - **_**_.9. 11000010.00011000.000010 01._
 - **1**0.10. 11000010.00011000.000010 10._
 - □ .11. 11000010.00011000.000010 11.
- in tutti e 4 i casi lo AND con mask produce
 11000010.00011000.00001000.00000000 che è l'indirizzo ricordato nella routing table come *indirizzo base*
- la cardinalità dei gruppi è una potenza di 2

Elena Pagan

LABORATORIO di Reti di Calcolatori – A.A. 2022/2023

maschere CIDR

- Edimburgo: 194.24.8._ a 194.24.11._ ovvero 4 reti per (256 x 4=) 1024 indirizzi, da 11000010.00011000.00001000._ a 11000010.00011000.00001011.
 - □ mask: 255.255.252.0 = [1].[1].111111100.[0]
- Cambridge: 194.24.0._ a 194.24.7._ ovvero da 11000010.00011000.00000000._ a 11000010.00011000.00000111._
 - \square sono 256 x 8 = 2048 indirizzi su 8 reti -> 256-8=248
 - \square mask: 255.255.248.0 = [1].[1].11111000.[0]
- Oxford: 194.24.16._ a 194.24.31._ ovvero 16 reti per (256 x 16=) 4096 indirizzi, da 11000010.00011000.00010000._ a 11000010.00011000.00011111.
 - \square mask: 255.255.240.0 = [1].[1].11110000.[0]

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2022/2023

13 / 44

CIDR e routing

- calcolo (pkt dest address AND mask)
- * confronto risultato con indirizzi base
- * indirizzo base che corrisponde è usato per decidere routing
- NB: stesso principio adattato a tutti gli indirizzi. Perciò si può allocare spazio indirizzamento indipendentemente da classi
 - e la notazione dice tutto sull'allocazione
- 🌣 facciamo un po' di esercizio!

Elena Pagan

LABORATORIO di Reti di Calcolatori - A.A. 2022/2023

Indirizzamento a Livello 3

128 64 32 16 8 4 2 1

LABORATORIO di Reti di Calcolatori – A.A. 2022/2023

Procedura configurazione in PT

- 1. calcolare i parametri delle sottoreti
 - per ogni subnet, scegliere potenza di 2 minima per indirizzare *tutti* i dispositivi (end systems + gateway + broadcast + base)
- 2. in PT assegnare opportuni indirizzi a interfacce router
 - e ricordarsi di mettere a ON l'interfaccia
 - □ le interfacce di un router devono essere tutte su reti diverse!
- 3. per ogni host:
 - 1. assegnare opportuno indirizzo all'interfaccia di rete
 - indicare come indirizzo gateway l'indirizzo del router associato all'interfaccia appartenente alla stessa subnet dello host // tab Config → Settings
- 4. test di connettività tra host in stessa o diversa subnet

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2022/2023

17 / 44

Reti e aritmetica binaria...

- * virtualmente solo 30 dimensioni possibili di rete
 - □ escludendo gli indirizzi di tutti bit 0 e tutti bit 1...
 - □ ho 30 punti di taglio da x.y.w.z/1 a x.y.w.z/30
 - perché non anche x.y.w.z/31? Quanti apparati ci stanno?
- per ogni ottetto ci sono solo 9 valori possibili che può assumere nella maschera:

 $10000000 \rightarrow 128$ $11000000 \rightarrow 192$ $111000000 \rightarrow 224$ $11110000 \rightarrow 240$ $11111000 \rightarrow 248$ $11111110 \rightarrow 252$ $11111111 \rightarrow 255$

 $00000000 \rightarrow 0$ MEMO: tutti 1 a sinistra e tutti 0 a destra...

Elena Pagan

LABORATORIO di Reti di Calcolatori - A.A. 2022/2023

Tabella progettazione reti

128 64 32 16 8 4 2 1

- 2 host connessi da cavo cross
- rete 10.0.0.0/29
 - □ netID: 3 ottetti + 5 bit del 4°
- netmask ha nel 4°ottetto il binario 11111|000 → 248
 - □ netmask: 255.255.255.248
- broadcast ha nel 4°ottetto il valore 00000|111 → 7
 - □ broadcast: 10.0.0.7

2 PC
10.0.0.0/29
10.0.0.7
(*)
10.0.0.1
10.0.0.6
255.255.255.248
3 bit → 6 indirizzi

(*) in questo caso non vi è alcun gateway, altrimenti...

<u>Best practice:</u> il gateway ha sempre il primo oppure sempre l'ultimo indirizzo usabile

Elena Pagan

LABORATORIO di Reti di Calcolatori - A.A. 2022/2023

19 / 4

Tabella progettazione reti

128 64 32 16 8 4 2 1

- ❖ 4 host + 1 hub
 - es.3.5 della dispensa
- * rete 192.168.90.0/27
 - □ netID:
- ♦ netmask ha
 - netmask:
- ♦ broadcast ha →
 - □ broadcast:

INFO	
IND. BASE	
IND.BROADCAST	
IND.GATEWAY	
PRIMO IP	
ULTIMO IP	
NETMASK	
WILDCARD	
NOTE	

Elena Pagan

LABORATORIO di Reti di Calcolatori - A.A. 2022/2023

Tabella progettazione reti 128 64 32 16 4 ❖ 4 host + 2 hub + 1 bridge INFO □ es.3.6 della dispensa IND. BASE * rete 130.192.0.0/16 IND.BROADCAST □ netID: IND.GATEWAY ♦ netmask ha PRIMO IP netmask: **ULTIMO IP** broadcast ha → NETMASK WILDCARD broadcast: NOTE LABORATORIO di Reti di Calcolatori – A.A. 2022/2023

Tabella progettazione reti

- 4 host + 2 hub + 1 bridge
 □ es.3.6 della dispensa
- rete 130.192.0.0/16
 - □ netID:
- * netmask
 - □ netmask:
- broadcast
 - □ broadcast:

INFO	6
IND. BASE	
IND.BROADCAST	
IND.GATEWAY	
PRIMO IP	
ULTIMO IP	
NETMASK	
WILDCARD	
NOTE	

(*) in questo caso non vi è alcun gateway

Elena Pagar

LABORATORIO di Reti di Calcolatori - A.A. 2022/2023

23 / 44

Tabella progettazione reti

128 64 32 16 8 4 2 1

- ❖ 4 host + 4 bridge + 1 hub
 □ es.3.7 della dispensa
- rete 87.194.96.0/20netID:
- ♦ broadcast ha →
 - □ broadcast:

INFO	
IND. BASE	
IND.BROADCAST	
IND.GATEWAY	
PRIMO IP	
ULTIMO IP	
NETMASK	
WILDCARD	
NOTE	

Elena Pagan

LABORATORIO di Reti di Calcolatori - A.A. 2022/2023

Tabella progettazione reti 128 64 32 16 4 2 ❖ 5 host + 1 switch INFO □ es.3.8 della dispensa IND. BASE * rete 215.151.59.0/24 IND.BROADCAST □ netID: IND.GATEWAY ♦ netmask ha PRIMO IP netmask: **ULTIMO IP** broadcast ha → NETMASK WILDCARD broadcast: NOTE LABORATORIO di Reti di Calcolatori - A.A. 2022/2023

Tabella progettazione reti

- ❖ 5 host + 1 switch
 - □ es.3.8 della dispensa
- * rete 215.151.59.0/24
 - □ netID:
- * netmask
 - □ netmask:
- broadcast
 - broadcast:

IND. BASE		
	INFO	
	IND. BASE	
IND.BROADCAST	IND.BROADCAST	
IND.GATEWAY	IND.GATEWAY	
PRIMO IP	PRIMO IP	
ULTIMO IP	ULTIMO IP	
NETMASK	NETMASK	
WILDCARD	WILDCARD	
NOTE	NOTE	

(*) in questo caso non vi è alcun gateway

Elena Pagar

LABORATORIO di Reti di Calcolatori - A.A. 2022/2023

27 / 44

Subnetting (RFC 950)

- * suddivisione logica di reti grandi
 - per ridurre dimensioni tabelle instradamento *interne a organizzazione*
 - il resto del mondo non conosce nulla
 - es: rete classe B (14 bit netw ID, 16 bit host ID)
 - voglio non più di 64 sotto-reti con non più di 1022 apparati
 - subnet ID tra 0 e 63 \rightarrow 6 bit

Elena Pagan

LABORATORIO di Reti di Calcolatori - A.A. 2022/2023

Subnetting

- subnet mask: tutti bit 1 in corrispondenza di network e subnet addr; tutti bit 0 per host addr
- entry routing table:
 - \square < network addr, 0 > per rete remota
 - \square < 0, host addr > per host locali
 - \square < 0, subnet addr, 0 > per host locali ma in altre subnet
 - \square < 0, 0, host addr > per host in subnet locale
- router calcola AND tra indirizzo IP destinazione in header pkt e subnet mask
 - □ isola indirizzo rete e confronta con entry in tabella

Elena Pagan

LABORATORIO di Reti di Calcolatori – A.A. 2022/2023

29 / 44

esempio subnetting

- ❖ rete di classe B: 162.148.0.0/16 → 65534 host
- voglio suddividere in sotto-reti ognuna comprendente massimo 100 host
- quanti bit ho bisogno per host ID?
 - □ 7 bit (128 host circa)
- quanti bit restano per netID?
 - \Box 16 7 = 9 bit e quindi 512 sottoreti
- oppure a rovescio: quante subnet ho bisogno ...

Dimensionamento sottoreti

rete 192.168.20.96/27

quanti apparati in subnet verde? e in quella arancio?

- ❖ verde: 4 host + 1 router + broadcast + base = 7 indirizzi → 3 bit
 - □ netmask: , base: // calcolare in binario!
 - □ broadcast: , range indirizzi:
- - □ netmask: , base: // calcolare in binario!
 - □ broadcast: , range indirizzi:

Elena Pagan

LABORATORIO di Reti di Calcolatori - A.A. 2022/2023

31 / 4

Dimensionamento sottoreti

rete 192.168.20.96/27

quanti apparati in subnet verde? e in quella arancio?

- ❖ verde: 4 host + 1 router + broadcast + base = 7 indirizzi → 3 bit
 - netmask:, base: // calcolare in binario!
 - broadcast:, range:
- arancio: 2 host + router + broadcast + base = 5 indirizzi → 3 bit
 - □ netmask:, base: // calcolare in binario!
 - □ broadcast:, range:

Elena Pagar

LABORATORIO di Reti di Calcolatori - A.A. 2022/2023

Dimensionamento sottoreti (es.)

128 64 32 16 8 4 2 1

- * Acme Inc: 192.168.20.96/27
- $96 \rightarrow 011|00000$ ultimo ottetto indirizzo base
- **•** Verde (7):
 - □ Indirizzo base; netmask
 - Broadcast;
 - **□** −
- ***** Arancio (5):
 - □ Indirizzo base; netmask
 - □ Broadcast
 - \Box -

Elena Pagan

LABORATORIO di Reti di Calcolatori - A.A. 2022/2023

33 / 44

Processing nei router

- ❖ if (I'm NOT a router in Acme Inc) then
 - \Box if (pkt.dest & netmask/27 == 192.168.20.96) then
 - use oif towards Acme Inc.
- elseif (I'm a router in Acme Inc)
 - \Box if (pkt.dest & netmask/29 == 192.168.20.96) then
 - use oif towards Acme_Inc.verde
 - \Box elseif (pkt.dest & netmask/29 == 192.168.20.104) then
 - use oif towards Acme Inc.arancio
- si noti che resta ancora un po' di spazio usabile, infatti da 192.168.20.96/27 → broadcast 011|1111= 192.168.20.127

Elena Pagan

LABORATORIO di Reti di Calcolatori - A.A. 2022/2023

Indirizzamento a Livello 3

128 64 32 16 8 4 2 1

- indirizzo base rete 192.168.20.96/27
- subnet S1 con 5 apparati; subnet S2 con 14 apparati (inclusi router)
- ❖ S1: 5 apparati + broadcast + base = 7 indirizzi → 3 bit
 - □ netmask:, base:
 - □ broadcast:, range: (GW)
- ❖ S2: 14 apparati + broadcast + base = 16 indirizzi → 4 bit
 - □ netmask:, base:
 - □ broadcast:, range: (GW)
- può essere saggio controllare gli indirizzi host più basso e più alto per ogni rete...

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2022/2023

35 / 44

Allineamento

- rete 192.168.20.96/27; S1 con 5 apparati; S2 con 14 apparati
- * ma è corretto? vediamo un po'...

h1 in S2: 192.168.20.105 \rightarrow 11000000 10101000 00010100 0110|1001 h2 in S2: 192.168.20.118 \rightarrow 11000000 10101000 00010100 0111|0110 netmask: 255.255.255.240 \rightarrow 11111111 11111111 11111111 11110000

- i due host «in S2» risultano in realtà stare in reti diverse!
- in effetti: da 192.168.20.105 a 192.168.20.111 sono ancora in S1
- * realizzare la rete in PT t.c. i 4 host a sinistra (S1) hanno indirizzi da . 97 a .100, e i due host di destra (S2) hanno indirizzi .105 e .106
 - ping tra uno host di S1 e uno di S2 che risultato dà?
 - □ *Simulation* (solo ICMP nel filtro): il pkt ICMP arriva al router che non trova la rotta e rende messaggio di errore

Elena Pagan

LABORATORIO di Reti di Calcolatori - A.A. 2022/2023

Sovrapposizione reti

...e durante la costruzione della rete e la configurazione di host e router, PT non ha segnalato alcun problema...

Elena Pagan

LABORATORIO di Reti di Calcolatori – A.A. 2022/2023

37 / 44

Allineamento

- * REGOLA: Tutte le sottoreti devono essere allineate in modo tale che gli estremi siano potenze di 2. Inoltre, una rete di dimensione 2ⁿ (ovvero che contenga 2ⁿ indirizzi) può iniziare solo a intervalli regolari multipli di 2ⁿ (a posizioni pari a k × 2ⁿ per k≥0); ovvero il primo indirizzo disponibile nello host address range deve essere composto da tutti 0 negli ultimi n bit per qualsiasi sottorete.
- esempi
 - **u** taglia 64 può iniziare a 0, 64, 128, 192
 - □ taglia 32 può iniziare a 0, 32, 64, 96, 128, 160, 192, 224
 - ataglia 128 può iniziare a 0 e 128
- esempio precedente: rete di taglia 16 è stata fatta iniziare a 104, ma i valori ammissibili sono
 - **1** 0, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240

Elena Pagai

LABORATORIO di Reti di Calcolatori - A.A. 2022/2023

Esempio soluzione secondo regola

- rete 192.168.20.96/27; S1 con 5 apparati; S2 con 14 apparati
- ❖ S1: 5 apparati + broadcast + base = 7 indirizzi → 3 bit $(2^3 = 8)$
 - □ 96 è multiplo di 2³=8, quindi è un buon punto di partenza
 - netmask: 255.255.255.248 (111|11|000), base: 192.168.20.96/29
 - □ $96 = 011|00|000 \rightarrow \text{broadcast } 011|00|111 = 103 \text{ in } 4^{\circ}\text{ottetto}$
 - □ broadcast: 192.168.20.103, range: 192.168.20.97 192.168.20.102
 - \square verifica: 97 = 01100|001; 102 = 01100|110
- ❖ S2: 14 apparati + broadcast + base = 16 indirizzi \rightarrow 4 bit (2⁴ = 16)
 - □ 1°multiplo di 2⁴=16 successivo a 103 è 112 (= 16×7)
 - ☐ Ind. base: 192.168.20.112/28; netmask: 255.255.255.240 (4°11110000)
 - □ $112 = 011|1|0000 \rightarrow \text{broadcast } 011|1|1111 = 127 \rightarrow 192.168.20.127$
 - □ Range 192.168.20.113 (011|1|0001) 192.168.20.126 (011|1|1110)
- ❖ mask S1 (01100---) e S2 (0111----) differiscono nel 4°bit

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2022/2023

39 / 44

alternativa: Euristica

- * è come fare una valigia: si inizia dalla subnet più grande e via via procedendo in ordine decrescente
- ❖ S2: 14 apparati + broadcast + base = 16 indirizzi → 4 bit
 - netmask: 255.255.255.240, base: 192.168.20.96/28 (011|0|1111)
 - □ broadcast: 192.168.20.111, range: 192.168.20.97 192.168.20.110
- ❖ S1: 5 apparati + broadcast + base = 7 indirizzi → 3 bit
 - netmask: 255.255.255.248, base: 192.168.20.112/29 (011|10|111)
 - broadcast: 192.168.20.119, range: 192.168.20.113 192.168.20.118
- * è corretto ora? vediamo un po'...
 - h1 in S2: 192.168.20.97 → 11000000 10101000 00010100 0110 0001
 - h2 in S2: 192.168.20.110 \rightarrow 11000000 10101000 00010100 0110 1110
 - h1 in S1: 192.168.20.113 → 11000000 10101000 00010100 01110|001
 - h2 in S1: 192.168.20.118 \rightarrow 11000000 10101000 00010100 01110|110

Elena Pagan

LABORATORIO di Reti di Calcolatori - A.A. 2022/2023

Alcune proprietà

- ❖ la parte hostID dell'indirizzo base deve sempre essere a tutti bit 0
- il primo indirizzo usabile è sempre dispari; l'ultimo indirizzo usabile è sempre pari
- l'indirizzo broadcast è sempre dispari
- i netID delle diverse sottoreti, espressi in binario, sono sempre tutti differenti e non sovrapponibili in almeno un bit
 - □ es. precedente:
 - $\begin{array}{c} 192.168.20.96/28 \Rightarrow 11000000\ 10101000\ 00010100\ 0110 | 0000 \\ 192.168.20.112/29 \Rightarrow 11000000\ 10101000\ 00010100\ 01110 | 0000 \\ \end{array}$
 - □ il 4°bit è differente nei due casi, quindi non c'è ambiguità
 - \bigcirc 01110--- (ind S1) & 11110000 (netmaskS2) = 0111 \neq base S2
 - quindi non si rischia di usare la riga sbagliata in routing table
- * facciamo un po' di esercizio!

Elena Pagani

LABORATORIO di Reti di Calcolatori - A.A. 2022/2023

41 / 44

10.11.160.0/24 rete di PMI

- ❖ A amministrazione 25 host
- ❖ G gestione ordini 14 host
- * K marketing 28 host
- ❖ M magazzino 9 host
- * R reparto produzione 58 host

Elena Pagan

LABORATORIO di Reti di Calcolatori - A.A. 2022/2023

10.11.160.0/24 PMI (con euristica)

- ❖ R reparto produzione 58 host (+gw,bcast,base) = 61 → 64 (6 bit)
 - Base:; netmask:
 - Bcast:; range
- ❖ K marketing 28 host (+3) = 31 → 32 (5 bit)
 - Base:; netmask:
 - □ Bcast:; range
- ❖ A amministrazione 25 host (+3) = 28 → 32 (5 bit)
 - □ Base:; netmask:
 - □ Bcast: ; range
- ❖ G gestione ordine 14 host (+3) = $17 \rightarrow 32$ (5 bit)
 - Base:; netmask:
 - Bcast: ; range
- * M magazzino 9 host (+3) = $12 \rightarrow 16$ (4 bit)
 - Base:; netmask:
 - □ Bcast:; range

Elena Pagan

LABORATORIO di Reti di Calcolatori – A.A. 2022/2023

43 / 44

10.11.160.0/24 PMI (con regola)

- ❖ A amministrazione 25 host (+ gw,bcast,base) = $28 \rightarrow 32$ (5 bit)
 - Base:; netmask:
 - □ Bcast:; range (GW)
- ❖ G gestione ordine 14 host (+3) = 17 \rightarrow 32 (5 bit) 32 è multiplo di 32, OK!
 - Base:; netmask:
 - □ Bcast:; range (GW)
- ❖ K marketing 28 host (+3) = 31 → 32 (5 bit) 64 è multiplo di 32, OK!
 - □ Base:; netmask:
 - □ Bcast:; range (GW)
- M magazzino 9 host (+3) = 12 → 16 (4 bit) 96 è multiplo di 16, OK!
 - Base:; netmask:
 - Bcast:; range (GW)
- R reparto produzione 58 host (+3) = $61 \rightarrow 64$ (6 bit) 128 è multiplo di 64!
 - □ Base:; netmask:
 - □ Bcast:; range (GW)

Elena Pagan

LABORATORIO di Reti di Calcolatori - A.A. 2022/2023

