Fonctions convexes

24 août 2016

1

Soit f une fonction concave positive sur \mathbb{R}^+ , telle que f(0) = 0. Montrer que f est sous-additive.

2

Soit f une fonction convexe C^1 de \mathbb{R} vers \mathbb{R} . Montrer que f(x)/x possède une limite l (éventuellement infinie) lorsque x tend vers $+\infty$, puis que, si l est finie, f(x) - lx possède une limite en $+\infty$.

3

Soient I un intervalle ouvert réel et f une application réelle définie sur I. Pour tout réel μ , on note P_{μ} la propriété : "pour tout segment [a,b] inclus dans I, $f + \mu Id$ atteint son maximum en a ou en b".

- a) Montrer que f est convexe ssi elle vérifie P_{μ} pour tout μ réel.
- b) On suppose désormais f continue. Montrer que f est convexe ssi, pour tout x et tout h>0 tels que x-h et x+h sont dans I, on a :

$$f(x) \le \frac{1}{2h} \int_{x-h}^{x+h} f.$$

4

Soit f une fonction convexe C^2 de R vers R. On suppose que f tend vers 0 en $+\infty$. Etudier en $+\infty$ le comportement de f'(x), xf'(x), f''(x).

5 Transformée de Fenchel

La droite numérique achevée $\overline{\mathbf{R}}$ est munic des opérations usuelles, on pose en particulier $0 \times +\infty = 0 \times -\infty = 0$.

Lorsque f est une application convexe d'un intervalle non vide I de \mathbb{R} dans \mathbb{R} , on prolonge f en posant $f(x) = +\infty$ si $x \in \mathbb{R} \setminus I$. La fonction ainsi obtenue est alors convexe moyennant l'extension des opérations donnée ci-dessus.

Soit $f: I \to \mathbf{R}$ une fonction convexe.

a) Montrer que, si f est continue, f est borne supérieure d'une famille de fonctions affines.

On définit une fonction de R dans $\overline{\mathbf{R}}$ par

$$f^*(x) = \sup_{t \in \mathbf{R}} (xt - f(t))$$

- b) Montrer que f^* est convexe. Déterminer f^* puis f^{**} lorsque f est affine.
- c) On suppose ici f de classe C^2 sur \mathbb{R} , avec f" > 0. Déterminer f*.
- d) On suppose f continue. Montrer que $f = f^{**}$.