Deep Learning for Computer Vision

Homework 1

R06922072 黃宇謙

Problem 1: Bayes Decision Rule

推導:

$$P_e = \int_{T}^{\infty} p(x|\omega_1) \times P(\omega_1) dx = \frac{1}{5} \times \frac{3}{4} x|_{T}^{\infty} = \frac{3}{20} \times (5 - T)$$

最小值為 T=3, $P_e = \frac{3}{10}$

T: 3~5

$$P_{e} = P_{FA} + P_{FR} = \int_{T}^{\infty} p(x|\omega_{1}) \times P(\omega_{1}) dx + \int_{-\infty}^{T} p(x|\omega_{2}) \times P(\omega_{2}) dx$$

$$= \frac{1}{5} \times \frac{3}{4} x|_{T}^{\infty} + \frac{1}{4} \times \frac{1}{3} x|_{-\infty}^{T} = \frac{3}{20} \times (5-T) + \frac{1}{12} \times (T-3)$$

$$= \frac{1}{2} - \frac{1}{15} \times T$$

由上面最後推導出的式子可以得知,T越大,error的機率越小,因此T為5,帶入之後可以得到

$$P_e = \frac{1}{6}$$
 °

T: 5~6

$$P_e = \int_{-\infty}^{T} p(x|\omega_2) \times P(\omega_2) dx = \frac{1}{4} \times \frac{1}{3} x|_{-\infty}^{T} = \frac{1}{12} \times (T-3)$$

最小值在 T=5, $P_e = \frac{1}{6}$

答案: $P_e = \frac{1}{6}$

Problem 2: Principal Component Analysis and k-Nearest Neighbors Classification

(a)

Eigen-face 可能因為正負號的關係,顏色跟其他人的相反。

N = 100 N = 239

Reconstructed face image MSE=81.952

(c)

經過 3-fold cross-validation 後,得到以下結果:

Accuracy	N = 3	N = 50	N = 159
K = 1	0.6667	0.9292	0.9333
K = 3	0.5833	0.8375	0.8458
K = 5	0.5292	0.7792	0.775

根據上述結果可得,我們選 N = 159, K = 1 時,有最好的結果。

帶入 Test set 中·得到 Accuracy = 0.94375