國立	. 中	興大	と 學	附	屬高	級中	卢學	110	學年	度第	2	學期	第	1	次期中考	高三	自然組	數甲	試題卷
																命題	:吳老師	審題:	黄老師
班級	: =	三年 _		_ 班	座	號:_			姓名	3:							試題共4	頁,答	案卡1張

*蛙丛焚安上(坐) L	妻(官)上正姓自入容姒。	* 女因去劃記畫實身公資料	, 武田劃幻妻官继诏,	从一上动组编出结后八

一、 單 撰 題 (占 20 5	(伝	١
-------------------	-----	---

說明:第1題至第5題	, 每題有5個選項:	,其中只有一個是	是正確或最適當	的選項,請	畫記在答案卡之「	選擇(填)	題答案區」。
各題答對者,得	4分;答錯、未作名	答或畫記多於一個	固選項者,該題	[以零分計算	Ļ o		

-)1. 重複執行伯努力試驗n次,已知成功次數的期望值為150次,成功次數的標準差為10次,則這個伯努力試驗 應最有可能為下列哪一個選項?
 - (1) 擲一公正骰子,以1或6點為成功,其他點數為失敗
 - (2) 擲一公正骰子,以1或6點為失敗,其他點數為成功
 - (3) 擲一公正骰子,以奇數點為成功,偶數點為失敗
 - (4) 擲一公正骰子,以1點為成功,其他點數為失敗
 - (5) 擲一公正骰子,以1點為失敗,其他點數為成功
-)2. 若方程式 $x^2 + ax + 3 i = 0$ 的兩根為1 i與 β ,試問a的值為下列哪一個選項? (
 - (1) 3+3i (2) 3-3i (3) 3

- (4) -3
- (5) -3i
-)3. 設函數 $f(x) = a(x-1)^4 + k$, 其中 a,k 為實數且 $a \neq 0$ 。已知函數值 f(x) 的正負情形如附表,則方程式 f(x) = 0(有多少個正實根?
 - (1)1個 (2)2個 (3)3個 (4)4個 (5)無法判斷

X	1	2	<i>x</i> > 2
f(x)	負數	正數	正數

-)4. 甲、乙、丙三人進行「黑白黑白我勝利」的猜拳遊戲,每人每次出拳為手心或手背。現在規定甲與另外兩人 不同者則甲獲勝且遊戲終止,否則繼續下一局比賽。已知每次出拳都為獨立事件,隨機出拳,直到甲第一次 勝利為止。舉例:第一次出拳三人都出手背,則繼續第二次出拳;第二次出拳為乙、丙兩人出手背,甲出手 心,則甲獲勝並停止遊戲。求停止遊戲所需次數的標準差為下列哪一個選項?
 - $(1)\sqrt{6}$
- $(2)2\sqrt{2}$ $(3)2\sqrt{3}$ $(4)2\sqrt{6}$
- (5)3

- ()5. 已知兩複數z與z+i皆為方程式 $x^n=1$ 的複數根,求滿足此條件的最小正整數n為何?
 - (1)4
- (2)6
- (3)8
- (4)10
- (5)12

頁

二、多重選題(占32分)

說明:第6題至第9題,每題有5個選項,其中至少有一個是正確的選項,請將正確選項畫記在答案卡之「選擇(填)題答案 區」。各題之選項獨立判定,所有選項均答對者,得8分;答錯1個選項者,得4.8分;答錯2個選項者,得1.6分;答 錯多於2個選項或所有選項均未作答者,該題以零分計算。

()6. 在複數平面上有 A,B 兩點,其所代表的複數分別為 z_1 與 z_2 , O 為原點,若 $|z_1| = \sqrt{3}$, $\frac{z_2}{z_1} = 1 + \sqrt{3}i$ 。請選出正確的選項。

(1)
$$|z_2| = 2\sqrt{3}$$
 (2) $\angle AOB = \frac{\pi}{6}$ (3) $\triangle OAB$ 的面積為 $3\sqrt{3}$ (4) $|z_1 + z_2| = \sqrt{21}$ (5) $|z_1 - z_2| = \sqrt{3}$

- ()7. 某科系宣稱該系新生男女錄取的比例相等。今檢定男女錄取的比例,並列出前三個步驟如下:
 - ①假設「男女錄取的比例相等」;
 - ②確立檢定統計量為「隨機抽取 11 名新生中女生的人數」;
 - ③設定顯著水準為 0.05。

已知隨機變數X表示女生的人數,根據附表,試選出隨機變數X的拒絕域。

k	p(X=k)	$P(X \le k)$	P(X > k)	k	p(X=k)	$P(X \le k)$	P(X > k)
0	0.0004882813	0.0004882813	0.9995117188	6	0.2255859375	0.7255859375	0.2744140625
1	0.0053710938	0.0058593750	0.9941406250	7	0.1611328125	0.8867187500	0.1132812500
2	0.0268554688	0.0327148438	0.9672851563	8	0.0805664063	0.9672851563	0.0327148438
3	0.0805664063	0.1132812500	0.8867187500	9	0.0268554688	0.9941406250	0.0058593750
4	0.1611328125	0.2744140625	0.7255859375	10	0.0053710938	0.9995117188	0.0004882813
5	0.2255859375	0.5000000000	0.5000000000	11	0.0004882813	1.0000000000	0.0000000000

(1) 0 (2) 1 (3) 2 (4) 10 (5) 11

()8. 已知 $f(x) = 2x^4 - 11x^3 + 16x^2 + 10x - 31$,若 f(2+i) = a + bi,其中 a,b 皆為實數。請選出正確的選項。

- (1) a = -1
- (2)b = 1
- (3) f(-2-i) = a-bi
- (4)已知 f(2) < 0、 f(3) > 0, 以初始值 $a_1 = 3$,則利用牛頓法求出 a_2 為 2.68
- (5)已知 f(x) = 0恰有一負根,且 f(-1.5) > 0,則此負根最接近的整數為 -2

()9. 設
$$\omega = \cos \frac{2\pi}{5} + i \sin \frac{2\pi}{5}$$
,請選出正確的選項。

(1)
$$\overline{\omega^{10}} = 1$$

(2)
$$(1-\omega)(1-\omega^2)(1-\omega^3)(1-\omega^4)=5$$

(3)
$$\frac{1}{1-\omega} + \frac{1}{1-\omega^2} + \frac{1}{1-\omega^3} + \frac{1}{1-\omega^4} = 2$$

(4)
$$1 + \omega + \omega^2 + \omega^3 + \dots + \omega^{2022} = 1 + \omega + \omega^2 + \omega^3$$

$$(5)\cos\frac{2\pi}{5} + \cos\frac{4\pi}{5} + \cos\frac{6\pi}{5} + \cos\frac{8\pi}{5} = 1$$

三、 選 填 題 (占 48 分)

說明:1.第A至H題,將答案畫記在答案卡之「選擇(填)題答案區」所標示的列號(10-23)。 2.每題完全答對給6分,答錯不倒扣,未完全答對不給分。

A.
$$z$$
是複數,且 $2z+2 \mid \overline{z} \mid = 3+2i$,則 $z = \frac{10+11}{13} \frac{1}{14}$ 。(化為最簡)

B. 某工廠有 5 台機器在運作,設隨機變數
$$X$$
 表示正在使用的台數,其機率函數為 $f(x) = \begin{cases} k(\frac{1}{2})^x , 0 \le x \le 5 \\ 2 & , x \ge 6 \end{cases}$, k 為實數,求至少有 2 台在使用的機率為 $\frac{(5)}{(6)(17)}$ 。 (化為最簡分數)

C. 化簡
$$\frac{(\sin 86^{\circ} + i\cos 86^{\circ})^{10}(\cos 32^{\circ} - i\sin 32^{\circ})^{4}}{(\cos 242^{\circ} + i\sin 242^{\circ})} = \frac{\sqrt{18}}{19} + \frac{20}{21} i \circ (化為最簡)$$

 \mathbf{D} . 設隨機變數 X 的機率分布如表。已知 X 的期望值為 4 ,則 2X 的標準差為

為	$\frac{22\sqrt{23}}{2}$	0	(化為最簡根式)
	(24)		

X	1	5	8
機率	$\frac{1}{3}$	b	2 <i>b</i> -1

E. 設方程式 $z^5+z^4+z^3+z^2+z+1=0$ 的五個根在複數平面上依序對應到 P_1 , P_2 , P_3 , P_4 , P_5 五點,求五邊形 $P_1P_2P_3P_4P_5$ 的

F. 假設 $-4 \le k \le -2$ 且已知 α, β 為方程式 $x^2 - (k-2)x + (k^2 + 3k + 5) = 0$ 的兩個實數根,則 $\alpha^2 + \beta^2$ 的最大值為 <u>②</u> <u>③</u> <u>。</u>

G. 甲、乙兩人參加籃球比賽,每場比賽不得和局,若每局甲獲勝的機率為 $\frac{3}{5}$ 。規定先勝三局者可獲得獎金5000元。進行至甲勝2局、乙勝1局時,因故中止比賽,則甲應分配得獎金 $\boxed{30}$ $\boxed{31}$ $\boxed{32}$ $\boxed{33}$ 元才合理。

H. 已知兩複數 z_1 與 z_2 ,滿足 $|z_1-(3+2i)|=3$, $|iz_2-2|=1$,求 $|z_1-z_2|$ 的最大值為 <u>34</u> 。

國立中興大學附屬高級中學 110 學年度第1 學期 第2 次期中考 高三 自然組 數甲 試題卷

命題: 審題:

解答

- 一、單選題 1.(1) 2.(4) 3.(2) 4.(3) 5.(5)
- 二、多重選題 6.(1)(4) 7.(1)(2)(4)(5) 8.(2)(4) 9. (1)(2)(3)
- 三、選填題 $\mathbf{A} \cdot \frac{5+12i}{12}$ $\mathbf{B} \cdot \frac{5}{21}$ $\mathbf{C} \cdot \frac{\sqrt{3}}{2} + \frac{1}{2}i$ $\mathbf{D} \cdot \frac{8\sqrt{3}}{3}$ $\mathbf{E} \cdot \frac{5\sqrt{3}}{4}$ $\mathbf{F} \cdot 18$ $\mathbf{G} \cdot 4200$ $\mathbf{H} \cdot 9$

已知兩複數 z_1 與 z_2 ,滿足 $|z_1-(3+2i)|=3$, $|iz_2-2|=1$,求 $|z_1-z_2|$ 的最大值? 9

已知兩複數z與z+i皆為方程式 $x^n=1$ 的複數根,求滿足此條件的最小正整數n為何? 12

圓形跑道上有A,B兩障礙區,跑車在A,B處發生故障(完全靜止不動)的機率分別為 $\frac{1}{10}$, $\frac{1}{6}$ 。現在一輛跑車自起點出發,經過A再經過B環繞跑道,未故障前可以一圈接一圈繼續跑,直到跑車故障為止,求此輛跑車環繞跑道(需完整跑完一圈)圈數的期望值為何? 3

已知 α, β 為方程式 $x^2-(k-2)x+(k^2+3k+5)=0$ 的兩個實數根,則 $\alpha^2+\beta^2$ 的最大值是多少? $(-4 \le k \le -\frac{4}{3})$ 18

某工廠有 5 台機器在運作,設隨機變數 X 表示正在使用的台數,其機率函數 f(x) 為 $f(x) = \begin{cases} k(\frac{1}{2})^x & 0 \le x \le 5 \\ 0 & x \ge 6 \end{cases}$,求至少有 2 台在使用的機率為何?

設隨機變數X的機率分布如表。已知X的期望值為4,則X的標準差為何?

X	1	5	а
機率	$\frac{1}{3}$	b	2 <i>b</i> –1

七筒
$$\frac{(\sin 86^{\circ} + i\cos 86^{\circ})^{10}(\cos 32^{\circ} - i\sin 32^{\circ})^{4}}{(\cos 242^{\circ} + i\sin 242^{\circ})} = \frac{\sqrt{3}}{2} + \frac{1}{2}i$$

設方程式 $z^5+z^4+z^3+z^2+z+1=0$ 的五個根在複數平面上依序對應到 P_1 , P_2 , P_3 , P_4 , P_5 五點 ,求五邊形 $P_1P_2P_3P_4P_5$ 的面積為何 ? $\frac{5\sqrt{3}}{4}$