EXERCISE 1 (A) – PIPELINE BASIC (ASSIGNMENT)

Given the following loop expressed in a high level language:

```
for (i =0; i < N; i ++)
vectA[i] = vectA[i] + vectB[i];</pre>
```

The program has been compiled in MIPS assembly code assuming that registers \$t6 and \$t7have been initialized with values 0 and 4 N respectively. The symbols VECTA, VECTB and VECTC are 16-bit constant. The processor clock frequency is **1 GHz**.

INSTRUCTION	Comment
FOR1:beq \$t6,\$t7, END	# if (\$t6 == \$t7) goto END
lw \$t2,VECTA(\$t6)	# \$t2 <- VECTA [\$t6];
lw \$t3,VECTB(\$t6)	# \$t3 <- VECTB [\$t6];
add \$t2,\$t2,\$t3	# \$t2 <- \$t2 + \$t3;
sw \$t2,VECTA(\$t6)	# VECTA[\$t6] <- \$t2;
addi \$t6,\$t6,4	# \$t6 <- \$t6 + 4;
j FOR1	# goto FOR1;
END:	

Let us consider a single iteration of the loop executed by 5-stage pipelined MIPS processor without any optimization in the pipeline.

- Identify the RAW (Read After Write) data hazards by marking in RED and control hazards in BLUE
- Identify the number of stalls to be inserted before each instruction (or between the stage IF and ID of each instruction) necessary to solve the hazards.

Num. Stalls	INSTRUCTION	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	Hazard Type
	FOR1:beq \$t6,\$t7, END	IF	ID	EX	ME	WB							
	lw \$t2,VECTA(\$t6)		IF	ID	EX	ME	WB						
	lw \$t3,VECTB(\$t6)			IF	ID	EX	ME	WB					
	add \$t2,\$t2,\$t3				IF	ID	EX	ME	WB				
	sw \$t2,VECTA(\$t6)					IF	ID	EX	ME	WB			
	addi \$t6,\$t6,4						IF	ID	EX	ME	WB		
	j FOR1							IF	ID	EX	ME	WB	

EXERCISE 1 (A) – PIPELINE BASIC (SOLUTION)

Let us consider a **single iteration** of the loop executed by 5-stage pipelined MIPS processor **without** any optimization in the pipeline.

- Identify the RAW (Read After Write) data hazards by marking in RED and control hazards in BLUE
- Identify the number of stalls to be inserted **before each instruction (or between the stage IF and ID of each instruction)** necessary to solve the hazards.

SOLUTION (not including inter-iteration dependencies)

1	511101 110101 011	<u> </u>			<u>/</u>								
Num. Stalls	INSTRUCTION	C1	C2	С3	C4	C5	C6	C7	C8	С9	C10	C11	Hazard Type
3	FOR1:beq \$t6,\$t7, END	H	ID	EX	ME	₩B							CNTR
3	lw \$t2,VECTA(\$t6)		ΠE	ID	EX	ME	WB	^					CNTR
	lw \$t3,VECTB(\$t6)			IF	ID	EX	ME	WB					
3	add \$t2,\$t2,\$t3				IF	ID	EX	ME	WB				RAW \$t3 (RAW \$t2)
3	sw \$t2,VECTA(\$t6)					IF (Θ	ΕX	ME	WB			RAW \$t2
	addi \$t6,\$t6,4						IF	ID	EX	ME	WB		
	j FOR1							IF	ID	EX	ME	WB	

More detailed solution (more detailed scheme with also inter-iteration dependencies)

Num. Stalls	INSTRUCTION	C1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	Hazard Type
3	FOR1:beq \$t6,\$t7, END			IF S	Ē		EΧ	ME	WB																CNTR (RAW \$t6 inter-iteration)
3	lw \$t2,VECTA(\$t6)							IF S		ID	EX	ME	WB	^											CNTR
	lw \$t3,VECTB(\$t6)									IF	ID	EX	ME	WB											
3	add \$t2,\$t2,\$t3											ID- S	ID- S	ID- (Θ	ΣX	ME	WB							RAW \$t3 (RAW \$t2)
3	sw \$t2,VECTA(\$t6)												_	F s	IF	_	ID- S	ID-C	(e)	EX	ME	WB			RAW \$t2
	addi \$t6,\$t6,4															F-S	IF- S	IF- S	IF	ID	EX	ME	WB		
	j FOR1																			IF	ID	EX (ME	WB	

Express the formulas, then calculate the following metrics:

- Instruction Count (IC) = 7
- Number of stalls per iteration = 12
- CPI per iteration: CPI = # cycles / IC = (IC+ # stalls + 4) /IC = 23 / 7 = 3,29
- Throughput (expressed in MIPS) per iteration: MIPS = f_{CLOCK} / (CPI * 10⁶) = (10⁹) / (3,29 * 10⁶) = 303,95
- Asymptotic CPI (N cycles): CPI $_{AS}$ = (IC + # stalls) / IC = (7 + 12) / 7 = 2,71
- Asymptotic Throughput (expressed in MIPS) (N cycles): MIPS_{AS} = f_{CLOCK} / (CPI_{AS} * 10⁶) = (10⁹) / (2,71 * 10⁶) = 369

EXERCISE 1(B) – PIPELINE OPTIMIZATIONS

Assuming there are the following optimisations in the pipeline

- In the Register File it is possible the read and write at the same address in the same clock cycle;
- Forwarding
- Computation of PC and TARGET ADDRESS for branch & jump instructions anticipated in the ID stage
- 1. Identify the RAW (Read After Write) data hazards and the control hazards in the pipeline scheme
- 2. Identify the number of stalls to be inserted before each instruction (or between the stage IF and ID of each instruction) necessary to solve the hazards.
- 3. Identify in the last columns the hazard type and the forwarding path used:

SOLUTION:

Num. Stalls	INSTRUCTION	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	Hazard Type	Forwarding Path
1	FOR1:beq \$t6,\$t7, END	IF.	Œ	ΣX	ME	WB							CNTR	
1	lw \$t2,VECTA(\$t6)		TF	ID	EX	ME	WB						CNTR	
	lw \$t3,VECTB(\$t6)			IF	ID	EX	MF	WB						
1	add \$t2,\$t2,\$t3				IF	ID	EX	ME	WB				LD-USE \$t3	MEM-EX \$t2
	sw \$t2,VECTA(\$t6)					IF	ID	ĒΧ	ME	WB				EX-EX \$t2
	addi \$t6,\$t6,4						IF	ID	EX	ME	WB			
	j FOR1							IF (ID	EX	ME	WB		

More detailed solution (more detailed scheme and inter-iteration dependencies)

Num. Stalls	INSTRUCTION	C1				C5		C7	C8	C9	C10	C11	C12	C13	C14	Hazard Type	Forwarding Path
1	FOR1:beq \$t6,\$t7, END	IF- S	IF (Ð	EX	ME	WB									CNTR	
1	lw \$t2,VECTA(\$t6)			IF-	Ē	ID	EX	ME	WB							CNTR	
	lw \$t3,VECTB(\$t6)					IF	ID	EX	ME •	WB							
1	add \$t2,\$t2,\$t3						IF	ID- S	ID	ΕX	ME	WB				LD-USE \$t3	MEM-EX \$t3
	sw \$t2,VECTA(\$t6)							F S	IF	ID	ĒΧ	ME	WB				EX-EX \$t2
	addi \$t6,\$t6,4									IF	ID	EX	ME	WB			
	j FOR1										IF	0	EX	ME	WB		
1*	FOR1:beq \$t6,\$t7, END											IF-S	E	ID	EX		(read \$t6 inter-iteration)

(*) next iteration of the loop

Calculate the following metrics:

- Instruction Count (IC) = 7
- Number of stalls per iteration = 3
- CPI per iteration: CPI = # cycles / IC = (IC+ # stalls + 4) /IC = 14 / 7 = 2
- Throughput (expressed in MIPS) per iteration: MIPS = f_{CLOCK} / (CPI * 10⁶) = (10⁹) / (2 * 10⁶) = 500
- Asymptotic CPI (N cycles): CPI $_{AS}$ = (IC + # stalls) / IC = (7 + 3) / 7 = 1,43
- Asymptotic Throughput (expressed in MIPS) (N cycles): MIPS_{AS} = f_{CLOCK} / (CPI_{AS} * 10⁶) = (10⁹) / (1,43 * 10⁶) = 699,3

Calculate the speedup with respect to the previous case (EX. 1A):

• Speedup = $CPI_{AS1A}/CPI_{AS1B} = 2.71/1.43 = 1.9$

EXERCISE 1 (C) - BRANCH PREDICTION

Assuming there are the previous optimisations in the pipeline with static branch prediction BTFNT (BACKWARD TAKEN FORWARD NOT TAKEN) with BRANCH TARGET BUFFER.

- 1. Identify the RAW (Read After Write) data hazards and control hazards.
- 2. Identify the **number of stalls** to be inserted before each instruction (or between the stage IF and ID of each instruction) necessary to solve the hazards.
- 3. Identify the Static Branch Prediction (Taken/Not Taken)
- 4. Identify in the last columns the hazard type and the forwarding path used:

SOLUTION:

Num. Stalls	INSTRUCTION	PRED T/NT	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	Hazard Type	Forwarding Path
	FOR1:beq \$t6,\$t7, END	NT	IF	ID	EX	ME	WB								
	lw \$t2,VECTA(\$t6)	-		IF	ID	EX	ME	WB							
	lw \$t3,VECTB(\$t6)	-			IF	ID	EX	ME	WB						
1	add \$t2,\$t2,\$t3	-				IF	ID (FX	ME	WB				LD-USE \$t3	MEM-EX \$t2
	sw \$t2,VECTA(\$t6)	-					IF	ID	ĒΧ	ME	WB				EX-EX \$t2
	addi \$t6,\$t6,4	-						IF	ID	EX	ME	WB			
	j FOR1	Т							IF	ID	EX	ME	WB		

More detailed solution (more detailed scheme and inter-iteration dependencies)

Num.	INSTRUCTION	T/NT	C1	C2	C3	C4	C5	C6	C7	C8	С9	C10	C11	C12	Hazard	Forwarding
Stalls															Туре	Path
	FOR1:beq \$t6,\$t7, END	NT	IF	ID	EX	ME	WB									
	lw \$t2,VECTA(\$t6)			IF	ID	EX	ME	WB								
	lw \$t3,VECTB(\$t6)				IF	ID	EX	ME	WB							
1	add \$t2,\$t2,\$t3					IF	ID- S	ID	ĽΧ	ME	WB				LD-USE \$t3	MEM-EX \$t3
	sw \$t2,VECTA(\$t6)						IF-S	IF	ID	ΕX	ME	WB				EX-EX \$t2
	addi \$t6,\$t6,4								IF	ID	EX 🐧	ME	WB			
	j FOR1	T								IF	ID	EX	ME	WB		
(*)	FOR1:beq \$t6,\$t7, END	NT									IF	ID	EX	ME		EX-ID \$t6 (inter-iteration)

(*) next iteration of the loop

Calculate the following metrics:

- Instruction Count (IC) = 7
- Number of stalls per iteration = 1
- CPI per iteration: CPI = # cycles / IC = (IC+# stalls + 4) /IC = 12 / 7 = 1.71
- Throughput (expressed in MIPS) per iteration: MIPS = f_{CLOCK} / (CPI * 10⁶) = (10⁹) / (1.71 * 10⁶) = 584,8
- Asymptotic CPI (N cycles): CPI $_{AS}$ = (IC + # stalls) / IC = (7 + 1) / 7 = 1,14
- Asymptotic Throughput (expressed in MIPS) (N cycles): MIPS_{AS} = f_{CLOCK} / (CPI_{AS} * 10⁶) = (10⁹) / (1,14 * 10⁶) = 877,2

Calculate the speedup with respect to the previous case (EX. 1B):

• Speedup = $CPI_{AS1B}/CPI_{AS1C} = 1.43 / 1.14 = 1.25$