Julia Tutorial Series - II Matrix Factorization Applications

Abhijith Chandraprabhu

February 1, 2014

Overview

Introduction

Matrix Applications

What is a matrix?

A matrix is simple a 2-dimensional array of scalar real valued data.

$$A = \begin{array}{cccc} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{array}$$

where $a_{m,n}$, are the elements of the matrix A with m rows and n columns.

Applications of Matrix Methods

- Cryptography
- Mechanical problems
- Physics problems
- ► Text mining, Recommender systems
- GPS
- Circuit theory
- Imaging science

Properties of Matrix

How could a simple 2-D array of numbers solve such diverse problems?

- Matrix provides vector-space modeling of the system under study.
- We can perform linear transformations through matrices.
- Matrices help in solving linear system of equations.
- Infinite matrices can be used to represent derivative operator in *Taylor series*.
- Determinant of a matrix gives the area or the volume or parallelogram or the parallelopiped.

Electrical Circuit

How can a matrix solve this?

KCL to nodes 1 and 3:

$$I_1 + I_2 - I_3 = 0 (1)$$

KVL to loops 1-2-3-1 and 1-3-4-1

$$2I_1 + I_3 = 12 (2)$$

$$2I_2 + I_3 = 8 (3)$$

Electrical Circuit contd.

from Eq. 1, 2 and 3

$$1I_1 + 1I_2 - 1I_3 = 0$$

 $2I_1 + 0I_2 + 1I_3 = 12$
 $0I_1 + 2I_2 + 1I_3 = 8$

Ax=b notation,

$$\begin{bmatrix} 1 & 1 & -1 \\ 2 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix} \quad \begin{bmatrix} l_1 \\ l_2 \\ l_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 12 \\ 8 \end{bmatrix}$$

We have 3 unknowns and 3 equations: Determined System.

¹Refer section 1 of JuliaTutorial.jl

Regression Analysis

- Trying to formulate an equation or model which connects response(dependent) variable, Y to set of predictor(independent) variables, X₁, X₂...X_p.
- Usually data collected from observations or lab experiments have some error in them.
- ▶ Data Fitting : Given m datapoints (t_i, y_i) , we try to find a function $f(t, \mathbf{x})$ which best fits the data in a *least squares* sense:

$$\min_{\mathbf{x}} \sum_{i=1}^{m} (y_i - f(t_i, \mathbf{x}))^2$$

Polynomial regression

- $f(t,\mathbf{x}) = x_1 + x_2t + x_3t^2 + \dots + x_nt^n 1$
- ▶ Is a non-linear model in t, but linear in x.
- ▶ $f(t, \mathbf{x}) = e_1^{\mathbf{x}} + \ln(x_2)t + x_3^2t^2 + ... + \sqrt{x_n}t^n 1$, this would be an example for non-linear model in the coefficients \mathbf{x} and non linear in independent variable t.
- Consider a general linear model :

$$f(t,\mathbf{x}) = x_1g_1(t) + x_2g_2(t) + x_3g_3(t) + \dots + x_ng_n(t).$$

Let a matrix **A** represent the $g_j(t_i)$, where i is the observation index and let **b** represent the i observation values y_i . If **x**, is the vector of independent variables, then the above system can be represented as,

$$\mathbf{A}_{m,n}\mathbf{x}_{n,1}=\mathbf{b}_{m,1}$$

Quadratic Regression

Given 20 observations:

$$\begin{bmatrix} 1 & t_1 & t_1^2 \\ 1 & t_2 & t_2^2 \\ 1 & t_3 & t_3^2 \\ \vdots & \vdots & \vdots \\ 1 & t_{20} & t_{20}^2 \end{bmatrix} \quad \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_{20} \end{bmatrix}$$

Text Mining

- Type of Information retrieval, where we try to extract relevant information from huge collection of textual data(documents).
- Documents: web pages, biomedical literature, movie reviews, research articles etc.
- Preprocess the documents to for a corpus.
- Identify the *lexicon* from the corpus.
- Form the Term-Document matrix (Numericized Text).
- Based on vector-space model.

¹Refer section 3.1 of JuliaTutorial.jl

Document1

It's also important to point out that even though these arrays are generic, they're not boxed: an Int8 array will take up much less memory than an Int64 array, and both will be laid out as continuous blocks of memory; Julia can deal seamlessly and generically with these different immediate types as well as pointer types like String.

Document2

To celebrate some of the <u>amazing</u> work that's already been done to make <u>Julia</u> usable for day-to-day <u>data analysis</u>, I'd like to give a brief overview of the state of <u>statistical programming</u> in <u>Julia</u>. There are now several packages that, taken as a whole, suggest that <u>Julia</u> may really live up to its potential and become the next generation language for data analysis.

Document3

Only later did I realize what makes <u>Julia</u> different from all the others. <u>Julia</u> breaks down the second wall — the wall between your <u>high-level</u> code and native assembly. Not only can you write code with the performance of C in <u>Julia</u>, you can take <u>a</u> peek behind the curtain of any function into its <u>LLVM</u> Intermediate Representation as well as its generated assembly code — all within the REPL. Check it out.

Document4

Homoiconicity — the code can be operated on by other parts of the code. Again, \underline{R} kind of has this too! Kind of, because I'm unaware of a good explanation for how to use it productively, and \underline{R} 's syntax and scoping rules make it tricky to pull off. But I'm still excited to see it in <u>Julia</u>, because I've heard good things about <u>macros</u> and I'd like to appreciate them.

Document5

Graphics. One of the big advantages of \underline{R} over similar languages is the sophisticated graphics available in ggplot2 or lattice. Work is underway on graphics models for Julia but, again, it is early days still.

Term-Document Matrix

	Doc 1	Doc 2	Doc 3	Doc 4	Doc 5	Query 1	Query 2
Array	1	0	0	0	0	0	0
continous block	1	0	0	0	0	0	0
Julia	1	3	3	1	1	0	0
types	1	0	0	0	0	0	0
string	1	0	0	0	0	0	0
amazing	0	1	0	0	0	0	0
data analysis	0	2	0	0	0	0	0
statistical computing	0	1	0	0	0	0	0
high-level	0	0	1	0	0	0	0
performance	0	0	1	0	0	0	0
LLVM	0	0	1	0	0	0	0
homoiconicity	0	0	0	1	0	0	0
R	0	0	0	2	0	0	0
syntax	0	0	0	4	0	0	0
macros	0	0	0	1	0	0	0
graphics	0	0	0	0	3	0	0
advantages	0	0	0	0	1	0	0

What is Recommender System?

Recommender system is a subclass of Information Filtering, where it predicts how the constituent members of 2 different groups, unfamiliar with each other interact.

	Group A		GroupB
NETFLIX :	[Users]	\longrightarrow	[Movies]
Linkedin:	[Users]	\longrightarrow	[Connections], [Groups]
Amazon :	[Customers]	\longrightarrow	[Products]
Newspaper :	[Readers]	\longrightarrow	[Articles]
Coursera :	[Students]	\longrightarrow	[Courses]

Types of Recommender Systems

Explicit			Implicit				
	NET	FLIX			Ama	azon	
	M1	M2	M3		P1	P2	P3
U1	5	?	2	U1	Yes	?	No
U2	?	?	4	U2	?	?	Yes
U3	4	1	?	U3	Yes	No	?
Ratings: 5, 4, 3, 2, 1			Purcha	seHist	ory:	Yes, No	

NETFLIX

- Netflix, Inc is a company based in USA, which provides internet streaming media on-demand.
- 33 million members view over 1 billion hours of TV shows and movies through NETFLIX per month.
- Personalized service through recommendations based on previous ratings.
- ▶ In October 2006, NETFLIX announced a prize of 1 Million USD to beat *Cinematch* by 10%
- ► ACM conference RecSys started from 2007.

Example: Let us consider a simple toy example of 4 users and 4 movies.

	Titanic	Braveheart	The Lion King	Dreamcatcher
John	5	5	2	2
Dave	2	?	3	4
Alice	4	5	?	3
Bob	3	4	2	5

where ? denotes the *user-movie* combinations which has to be predicted.

The End