SOMETHING HARMONIC FUNCTION

HUNG LE TRAN

ABSTRACT. This is the abstract

Contents

1. Harmonic Function	1
Acknowledgments	3
2. Bibliography	3
References	3

1. Harmonic Function

Definition 1.1 (Harmonic Function). Recall that a function f on \mathbb{Z}^d is harmonic at x if f(x) equals the average of f on its nearest neighbors. If U is an open subset of \mathbb{R}^d , we will say that f is **harmonic** in U if and only if it is continuous and satisfies the following **mean value property**: for every $x \in U$, and every $0 < \epsilon < dist(x, \partial U)$,

(1.2)
$$f(x) = MV(f; x, \epsilon) = \int_{|y-x|=\epsilon} f(y)ds(y)$$

Remark 1.3. Value at x equals to average of ball radius ϵ around x for all ϵ

Definition 1.4 (Laplacian).

$$\Delta f(x) = \lim_{\epsilon \to 0} \frac{1}{\epsilon^2} \sum_{u \in \mathbb{Z}^d, |u|=1} [f(x+\epsilon y) - f(x)]$$

Remark 1.5. Just taking in each direction, not the whole ball!

Proposition 1.6 (Representing Laplacian in partial derivatives). Suppose f is C^2 in a neighborhood of x in \mathbb{R}^d . Then $\Delta f(x)$ exists at x and

$$\Delta f(x) = \sum_{j=1}^{d} \partial_{jj} f(x)$$

Proof. This comes naturally from the above definition of $\Delta f(x)$, as well as the approximation one can make from the C^2 smoothness of f(x).

Proposition 1.7. If f is C^2 in a neighborhood of x, then

$$\frac{1}{2d}\Delta f(x) = \lim_{\epsilon \to 0} \frac{MV(f; x, \epsilon) - f(x)}{\epsilon^2}$$

Date: Summer 2023.

Theorem 1.9. BIG THEOREM! Stating the equivalence of a harmonic function with its Laplacian operator

function with its Laplacian operator
A function in a domain U is harmonic if and only if f is C^2 with $\Delta f(x) = 0 \ \forall \ x \in U$

ACKNOWLEDGMENTS

You should thank anyone who deserves thanks, and for sure you should thank your mentor. "It is a pleasure to thank my mentor, his/her name, for". Or add anyone else, for example "I thank [another participant] for helping me understand [something or other]"

2. Bibliography

References

- $[1] \ http://www.ams.org/publications/authors/tex/amslatex$
- [2] Michael Downes. Short Math Guide for LATEX. http://tex.loria.fr/general/downes-short-math-guide.pdf
- [3] J. P. May. A Concise Course in Algebraic Topology. University of Chicago Press. 1999.
- [4] Tobias Oekiter, Hubert Partl, Irene Hyna and Elisabeth Schlegl. The Not So Short Introduction to IATEX2e. https://tobi.oetiker.ch/lshort/lshort.pdf