

Monthly Report for

12-Bit High Dynamic Range ADC

Reporting Period: 15 August 1997 to 15 September 1997

NRL Contract No. N00014-97-C-2033

TRW Sales No. 67219

Prepared for:

Gregory M. Nichols
Naval Research Lab
Code: 5725
4555 Overlook Ave., S.W.
Washington, D.C. 20375-5320

Submitted by:

Bert K. Oyama TRW Space & Electronics Group Electronic Systems & Technology Division One Space Park Redondo Beach, CA 90728 19970923 032

DTIC QUALITY INSPECTED &

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

1.0 Technical Progress

During this reporting period, detailed preliminary analysis of the maximum ADC sample rate was completed. The results were discussed during a teleconference held on September 4, 1997 (attendees were: G. Nichols, B. Oyama, S. Nelson, M. Englekirk, and B. Wong). Summaries of the analysis results are shown in Figures 1-1 and 1-2. The primary result of the analysis is a change in three design goals for the 12-bit ADC: (1) increased sample rate (213 Msps); (2) increased input frequency range (130 Mhz to 190 Mhz); (3) relaxed SNR/SFDR for near-full scale inputs (50 dB at Pclip). These changes are reflected in Figure 1-3. In addition, a preliminary chip specification (shown in Figure 1-4) was generated to communicate the detailed ADC requirements versus capabilites.

The following is a summary of additional technical notes recorded during the 9/4/97 telecon:

- 1. ADC Calibration may cause occasional (i.e., infrequent), temporary disruption of the output data; this is acceptable to the system assuming the duration of the disruption is less than 1 msec.
- 2. There may be a favorable system noise tradeoff if the RF box (which precedes the ADC) can supply a full scale signal power of +4 to +8 dBm; this would allow the ADC to eliminate its internal wideband amplifier (WBA) -- resulting in lower ADC noise and reduced dc power. G. Nichols will investigate the RF output power capability.
- 3. The ADC spec will be changed to reflect an increased input frequency range of 130 MHz to 190 MHz (60 MHz bandwidth).
- 4. Overload voltage and recovery time requirements were discussed. G. Nichols will investigate the max RF output under fault conditions; the level of overload will determine whether external clamp diodes are required to protect the ADC IC from damage.
- 5. Based on the new specification, the ADC will provide 42 dB of dynamic range when maintaining a minimum SNR of ≥20 dB.
- 6. Gain flatness: we will adapt a 1 dBpp requirement and a 0.5 dBpp goal over the input frequency band of interest.
- 7. TRW will provide a recommendation for a manufacturer that can provide the required low jitter ADC master clock (aprox. 1500 to 2000 MHz range).
- 8. TRW will add an over/under-range flag output bit (as a design goal).
- 9. The baseline digital output interface will be LVDS-compatible. TRW will FAX selected portions of the IEEE 1596.3 spec for LVDS to G. Nichols.
- 10. G. NIchols will confirm the LVDS I/O capability of the companion CMOS processor ASIC.

12 BIT ADC SIMULATION SUMMARY (75 Degrees Celsius)

Input Power dBm	Sample Rate Msps	DAC/Resamp Parasitics (ff)	Cell /Folder Parasitics (ff)	Theoretical SNR	SNR dB
0	142.8	0/0	0	74	72.4
0	285.7	0/0	0	74	71.9
0	285.7	100/100	0	74	70.3
0	285.7	200/100	0	74	71.6
0	285.7	100/100	50/20	74	68.8
0	285.7	100/100	50/5	74	70.3
-12	285.7	100/100	50/20	62	63.0
-24	285.7	100/100	50/20	50	52.1
-36	285.7	100/100	50/20	38	37.7

Notes:

- 1. Input is sampled sine wave F=19/21 times sample rate
- 2. OdB is full scale (2V pp)
- 3. No WBA or S/H Resamp is driven from voltage source
- 4. Parasitics on DAC and Resamp are capacitors tied to outputs.
- 5. Parasitics on Cell/Folder are capacitors tied to outputs and inputs of most cells and same on inputs to folder
- 6. Results come from a 21 point DFT with the signal bin nulled and replaced with average bin power for noise calculation.

Conclusions:

- 1. Dynamic level errors caused by operating the ADC near the speed limit imposed by settling time constraints do not immediately lead to large level errors
- 2. Dynamic errors tend to disappear as the input signal level drops.

Figure 1-1. Simulation Results for ADC Maximum Speed.

NRL ADC Noise Budget (Fs = 213 Msps)

Noise Source	dB below full scale	Comment
Level Errors		
0 dBm input, Static 0 dBm input, Dynamic	-65 -65	Loading = Pclip Loading = Pclip
-12 dBm input, Static -12 dBm input, Dynamic	-65 -	53 dBc, Loading = Pclip-12 dE Loading = Pclip-12 dB
Thermal Noise 400 MHz NBW	-65	High Power WBA
Distortion 0 dBm input -12 dBm input	-60 ⁻ -74	60 dB SFDR 62 dB SFDR
Total 0 dBm input -12 dBm input	-57 -62	57 dB SNR 50 dB SNR

Notes:

1. Worst case noise sources

Conclusions

- 7X or 8X master clock enables optimized internal timing allocation to maximize ADC speed
- High speed sacrifices S/H acquisition time and generates some dynamic level errors (near full scale)
- 213 Msps achievable with relaxed SNR requirements for inputs near Pclip.
- ADC can be clocked slower to achieve >70 dB SFDR and >10 effective bits

Figure 1-2. ADC Error Budget and Analysis Conclusions

Parameter	Goal		
Resolution	12 bits		
Sample Rate	213 Msps		
Analog Input Frequency Range	130 MHz to 190 MHz (BW=60 MHz)		
SNR, Pclip - 0.5dB	57 dB		
Pclip - 12dB	50 dB		
Pclip - >12dB	SNR rolls off at 1dB/dB rate		
SFDR, Pclip - 0.5dB	60 dB		
Pclip - 12 dB	62 dB		
ADC Full Scale Input Power	0 dBm (= Polip)		
Output Data Coding	Offset Binary		
Input Clock Interface	ac-coupled sinewave (0 +/- 2 dBm)		
Output Clock, Data Interface	LVDS-compatible (diff. CMOS)		
Power Supply Voltages	+5.5V, -7.5V		
Power Dissipation	< 6 watts		

Figure 1-3. Revised ADC Performance Goals.

Figure 1-4. 12-Bit ADC Requirements versus Capabilities.

Parameter	Requirement	Capability	Units	Comment
General	- Logan oment	Cupunity		
Sample Rate	213	250	Msps	
Resolution	12	12	Bits	
	Offset Binary	Offset Binary	Offset	
Coding	Offset Billary	Offset Billary	1	
Clock	1491	1750	Binary MHz	7X (TBD)
Calibration Cal Update Duration	1.0	0.1	msec	Factory Cal Performance is degraded temporarily when cal logic senses temp change
Analog Input Clip Level Gain Initial Gain Tolerance Gain Variation		0 154 TBD TBD	dBm μV/Q dB dB	(= Pclip) Input referred Q-step
Signal Frequency				
min	130	5	MHz	BW=60 MHz IFc=160 MHz
max	190	250	MHz	
mex	170			
Input Offset		20	+/-	
mpar onser			LSBs	
Input Resistance		50	Ohms	Internal Termination
input itesisumee				
Input Capacitance		<5	pF	
Overload Voltage	TBD	TBD	dBm	
Recovery Time	100	20	nsec	
Recovery Time	100	20	lisec	
AC Performance SNR P clip - 0.5dB P clip - 12dB	50 50	57 50	dB dB	SNR rolls off classically at 1dB/dB of input power
SFDR				
P clip - 0.5dB	50	60	dΒ	
	50	62	dB	
P clip - 12dB	50	02	ub	
Gain Flatness	1.0	0.5	dB pp	fin=130 to 190 MHz
Inputs				
Conversion Clock	Single Ended	Single End		AC-coupled
COUNCISION CLOCK	sine wave	sine wave		110 coupled
Frequency	1491	1750	MHz	7X (TBD)
Duty cycle	1771	1730	141117	
min		40	%	
max		60	%	
III WA			,,,	

Figure 1-4, continued.

Parameter	Requirement	Capability	Units	Comment
Conversion Clock	1,1			
(cont'd.)				
Input Power	1	0 +/- 2	dBm	
Termination		50	Ohm	
Data				
Data Interface	LVDS	LVDS		(Diff. CMOS)
	-compatible	-compatible		
				·
Data Rate	213	250	Msps	
Output Clock	same	same		
Overrange Bit	same	same		Electrically identical to data and
	İ			clock. Indicates input has exceeded
				range
Data to Clock skew		100		Maniation in along to date delega-
min	TBD	-100	psec	Variation in clock-to-data delay
max	TBD	100	psec	
V swing	250	250	mV	Into 100 Ohm load
min	250 400	400	mV	Into 100 Onin load
max V common mode	400	400	1 111 V	
min	0	1000	mV	Nominal Vcm = 1.2V
max	2400	1400	mV	11011111111 7 0111 — 1.27
Power	2-00	1400	*** *	
Vee		-7.5	v	
Iee		520	mA	(TBD)
		520		()
Vœ		5.5	v	
Icc		200	mA	(TBD)
Supply Tolerance		+/- 5	%	
Power	6	5	W	
		_		
Max Ripple		5	mVrms	
				n
Temperature (ambient)		1.5		Performance Range
min	0	-15	C	
max	+70	+85	С	

2. Plans for Next Reporting Period

During the next reporting period, detailed electrical design of the ADC chip will continue. In addition, conceptual design of the ADC subsystem will also continue.

3. Financial Status

The attached table shows the forecasted versus actual expenditures for the Phase 1 program. At month-end August, 1997 we are showing an underrun of \$17.8K.

Table 1. Program Expenditures Forecast

Month	Monthly Total (\$K)	Cumulative Total (\$K)	Cumulative Actuals (\$K)	Delta (Forecast - Actuals)
Jun-97	5.3	5.3	2.3	3.0
Jul-97	35.7	41.0	26.4	14.6
Aug-97	42.4	. 83.4	65.6	17.8
Sep-97	40.7	124.1		
Oct-97	81.1	205.2		
Nov-97	58.4	263.6		
Dec-97	55.2	318.8		
Jan-98	89.1	407.9		
Feb-98	73.0	480.9		
Mar-98	75.7	556.6		
Apr-98	121.8	678.4		
May-98	64.6	743.0		
Jun-98	73.7	816.7		
Jul-98	103.4	920.1		
Aug-98	77.8	997.9		
Sep-98	64.9	1062.8		
Oct-98	72.2	1135.0		
Nov-98	54.0	1189.0		