Comparison of Machine
Learning Models to Predict
COVID-19 Outcomes using
Food Consumption Data

By: Alexis Payton, Eileen Yang, Zhitong Yu May 4, 2021

2 in 5 American adults fully vaccinated as daily average of new Covid cases falls below 50,000

PUBLISHED MON, MAY 3 2021-9:37 AM EDT

The latest on Covid-19 and India's worsening crisis

By Joshua Berlinger, Adam Renton and Aditi Sangal, CNN

Updated 10:12 a.m. ET, May 3, 2021

Does the American diet make us more vulnerable to Covid-19?

by Sam Bloch 10.15.2020, 5:31pm

Dataset Information & Preprocessing

- Kaggle dataset with information on the average food intake breakdowns by food category and COVID-19 cases and deaths of 170 countries for the week of February 6, 2021
 - COVID-19 data JHU COVID dashboard
 - Food intake data Food and Agriculture Organization of the United Nations
- **Predictors:** Percentages for 22 different food categories (Animal Products, Animal Fats, Cereals, Stimulants, Vegetal Products, etc.)
 - *Spices, miscellaneous removed due to ambiguity
- Outcomes: Cases per capita, Deaths per capita, Cases vs. Median, Deaths vs.
 Median
 - Calculated using case counts and population size numbers provided in original dataset
- Preprocessing: Spearman's Correlation Coefficients showed Vegetal Products and Animal Products had high correlations with other variables
 - Removed from dataset before fitting/running most models

Summary Statistics

Characteristic	N	Above, N = 821	Below, N = 821	p-value ²
Alcoholic Beverages	164	1.81 (1.11)	0.87 (0.78)	<0.001
Animal Products	164	11.7 (3.9)	6.9 (4.3)	<0.001
Animal fats	164	1.73 (1.44)	0.82 (0.96)	<0.001
Aquatic Products, Other	164			0.12
0		82 (100%)	78 (95%)	
0.0185		0 (0%)	1 (1.2%)	
0.0209		0 (0%)	1 (1.2%)	
0.0336		0 (0%)	1 (1.2%)	
0.4007		0 (0%)	1 (1.2%)	
Cereals - Excluding Beer	164	18 (5)	23 (7)	<0.001
Eggs	164	0.52 (0.26)	0.34 (0.33)	<0.001
Fish, Seafood	164	0.65 (0.61)	0.57 (0.49)	0.4
Fruits - Excluding Wine	164	2.27 (1.45)	1.79 (1.39)	0.031
Meat	164	4.66 (1.81)	3.03 (2.26)	<0.001
Milk - Excluding Butter	164	3.95 (1.80)	1.96 (1.73)	<0.001
Offals	164	0.15 (0.09)	0.14 (0.13)	0.6
Oilcrops	164	0.68 (0.81)	1.40 (1.81)	0.001
Pulses	164	0.78 (0.71)	1.45 (1.49)	<0.001
Starchy Roots	164	2.1 (2.3)	4.1 (4.9)	0.001
Stimulants	164	0.46 (0.35)	0.15 (0.16)	<0.001
Sugar Crops	164	0.00 (0.01)	0.03 (0.10)	0.004
Sugar & Sweeteners	164	5.73 (1.66)	4.01 (2.19)	<0.001
Treenuts	164	0.30 (0.29)	0.23 (0.29)	0.084
Vegetal Products	164	38.3 (3.9)	43.1 (4.3)	<0.001
Vegetable Oils	164	5.00 (2.15)	4.80 (2.23)	0.6
Vegetables	164	1.20 (0.62)	0.97 (0.67)	0.024
Cases_per_capita	164	173 (279)	2 (2)	<0.001

¹Mean (SD); n (%)

²One-way ANOVA; Fisher's exact test

Methods

Supervised Machine Learning Continuous Categorical

- KNN
- Linear regression
- Lasso
- Ridge
- Decision tree
- Random forest
- SVM
 - Linear
 - Radial
 - polynomial

- KNN
- Logistic regression
- Lasso
- Ridge
- QDA
- Random forest
- SVM
 - Linear
 - Radial
 - polynomial

Unsupervised Machine Learning

Continuous / Categorical

- PCA + KNN
- K-means

Supervised ML Results Overview

Supervised Machine Learning								
Regression				Classification				
Outcome	Method	CV Error	Std Error	Outcome	Method	CV Error	Std Error	
	KNN	3.65E+04	4.48E+04		KNN	0.24	0.08	
	Linear Regression	3.21E+04	2.94E+04		Logistic Regression	0.21	0.12	
	Lasso	3.18E+04	3.11E+04		Lasso	0.20	0.09	
Confirmed cases	Ridge	3.19E+04	3.28E+04	Confirmed cases	QDA	0.26	0.12	
per capita	Decision Tree	4.14E+04	3.93E+04	vs. median	Random Forest	0.20	0.10	
	Random Forest	6.27E+04	2.17E+04		Ridge	0.23	0.11	
	Linear SVR	3.50E+04	4.01E+04		Linear SVM	0.24	0.14	
	Radial SVR	3.84E+04	4.60E+04		Radial SVM	0.25	0.10	
	Polynomial SVR	3.59E+04	5.33E+04		Polynomial SVM	0.25	0.13	
Deaths per capita	KNN	7.23	8.12		KNN	0.25	0.09	
	Linear Regression	7.04	6.88		Logistic Regression	0.23	0.11	
	Lasso	6.66	7.14		Lasso	0.20	0.09	
	Ridge	6.81	7.48	D	QDA	0.23	0.10	
	Decision Tree	9.38	9.90	Deaths vs. median	Random Forest	0.18	0.13	
	Random Forest	7.22	6.10		Ridge	0.21	0.09	
	Linear SVR	6.77	8.13		Linear SVM	0.23	0.10	
	Radial SVR	7.91	9.31		Radial SVM	0.24	0.12	
	Polynomial SVR	7.07	7.99		Polynomial SVM	0.29	0.12	

Top 3 Models for Cases per Capita outcome:

- Lasso Penalized Regression
- Ridge Penalized Regression
- Linear Regression

Full Lasso Model Results:

- 12 variables kept in model
- Stimulants, Offals were most important predictors

21 x 1 sparse Matrix of class "dgCMatrix"

	1
(Intercept)	24.425406
Alcoholic Beverages	
Animal Products	
Animal fats	-9.383192
Cereals - Excluding Beer	•
Eggs	-5.330560
Fish, Seafood	10.335366
Fruits - Excluding Wine	11.806396
Meat	7.416575
Milk - Excluding Butter	
Offals	-239.493382
Oilcrops	•
Pulses	2.196089
Starchy Roots	-1.835039
Stimulants	389.774437
Sugar Crops	•
Sugar & Sweeteners	3.691359
Treenuts	
Vegetal Products	
Vegetable Oils	-14.104946
Vegetables	-11.087194

Results - Supervised Continuous

Top 3 Models for Deaths per Capita outcome:

- Lasso Penalized Regression
- Ridge Penalized Regression
- Linear SVR

Full Lasso Model Results:

- 12 variables kept in model
- Stimulants, Offals were most important predictors

21 x 1 sparse Matrix of	class '	"dgCMatrix"
		1
(Intercept)	0.240	047060
Alcoholic Beverages	0.15	593949
Animal Products		
Animal fats		
Cereals - Excluding Beer		
Eggs	-0.552	115069
Fish, Seafood	-0.024	415531
Fruits - Excluding Wine	0.163	398568
Meat	0.003	368985
Milk - Excluding Butter		
Offals	-2.302	234093
Oilcrops		
Pulses		
Starchy Roots	-0.042	274633
Stimulants	4.750	033976
Sugar Crops	-0.168	882224
Sugar & Sweeteners	0.103	392832
Treenuts	-0.368	849688
Vegetal Products		
Vegetable Oils	-0.145	564583
Vegetables		

Results - Supervised Classification

Lasso - Predicting Cases vs Median

Random forest - Variable Importance Ranking

21 x 1 sparse Matrix of o	class "dgCMatrix" 1
(Intercept)	1.01933817
Alcoholic.Beverages	0.04015531
Animal.fats	•
Aquatic.ProductsOther	
CerealsExcluding.Beer	-0.00113986
Eggs	
FishSeafood	
FruitsExcluding.Wine	0.01518515
Meat	
MilkExcluding.Butter	0.04491741
Offals	•
Oilcrops	
Pulses	
Spices	
Starchy.Roots	•
Stimulants	0.30721984
Sugar.Crops	-0.09814204
SugarSweeteners	0.04135097
Treenuts	5 POST (TOTAL DESIGNATION)
Vegetable.Oils	•
Vegetables	

Stimulants
Milk...Excluding.Butter
Sugar...Sweeteners
Eggs
Cereals...Excluding.Beer
Animal.fats
Meat
Alcoholic.Beverages
Oilcrops
Offals
Fruits...Excluding.Wine
Starchy.Roots
Pulses
Treenuts
Fish..Seafood
Vegetable.Oils
Vegetables
Spices
Sugar.Crops
Aquatic.Products..Other

MeanDecreaseGini

Results - Supervised Classification

Lasso - Predicting Deaths vs Median

Random forest - Variable Importance Ranking

21 x 1 sparse Matrix of	class "dgCMatrix"	1
	1	
(Intercept)	1.00001254	
Alcoholic.Beverages	0.03734360	
Animal.fats	•	
Aquatic.ProductsOther	•	
CerealsExcluding.Beer		
Eggs		
FishSeafood	•	
FruitsExcluding.Wine		
Meat		
MilkExcluding.Butter	0.04566933	
Offals	•	
0ilcrops	•	
Pulses		
Spices		
Starchy.Roots	•	
Stimulants	0.28175172	
Sugar.Crops	-0.12147170	
SugarSweeteners	0.04890909	
Treenuts		
Vegetable.Oils	•	
Vegetables		

Stimulants Milk...Excluding.Butter Sugar...Sweeteners Eggs Cereals...Excluding.Beer Meat Starchy.Roots Alcoholic.Beverages Oilcrops Pulses Animal.fats Offals Fruits...Excluding.Wine Treenuts Fish Seafood Vegetables Vegetable.Oils Spices Sugar.Crops Aquatic.Products..Other

Results - Supervised Classification

Lasso - Predicting Cases vs Median

```
21 x 1 sparse Matrix of class "dgCMatrix"
(Intercept)
                          1.01933817
Alcoholic.Beverages
                          0.04015531
Animal fats
Aquatic.Products..Other
Cereals...Excluding.Beer
                         -0.00113986
Eggs
Fish. Seafood
Fruits...Excluding.Wine
                          0.01518515
Meat
Milk...Excluding.Butter
                          0.04491741
Offals
0ilcrops
Pulses
Spices
Starchy.Roots
Stimulants
                          0.30721984
Sugar.Crops
                         -0.09814204
Sugar...Sweeteners
                          0.04135097
Treenuts
Vegetable.Oils
Vegetables
```

Lasso - Predicting Deaths vs Median

```
21 x 1 sparse Matrix of class "daCMatrix"
(Intercept)
                          1.00001254
Alcoholic.Beverages
                          0.03734360
Animal.fats
Aquatic.Products..Other
Cereals...Excluding.Beer
Eggs
Fish..Seafood
Fruits...Excluding.Wine
Meat
Milk...Excluding.Butter
                          0.04566933
Offals.
0ilcrops
Pulses
Spices
Starchy.Roots
Stimulants
                          0.28175172
Sugar, Crops
                         -0.12147170
Sugar...Sweeteners
                          0.04890909
Treenuts
Veaetable.Oils
Veaetables
```

Results - Unsupervised

- First 3 eigenvectors captured
 45.8% of the variance
- Top contributors to principal components
 - 1. Eggs
 - 2. Meat
 - 3. Milk
 - 4. Animal Fats
 - 5. Stimulants (ie. Coffee & Tea)

Results - Unsupervised

- K-means predicted 7 clusters (outcomes)
- High degree of overlap between clusters indicates that food consumption data are poor predictors of COVID-19 outcomes

- Overall, unsupervised KNN models had higher biases and variances than all supervised machine learning models, including KNN
 - Contributors: non-linear associations, high variability in original dataset, substantial overlap between dichotomous outcomes

Unsupervised Machine Learning							
Regression			Classification				
Outcome	Method	CV Error	Std Error	Outcome	Method	CV Error	Std Error
Confirmed cases per capita	KNN	4.14E+04	5.93E+04	Confirmed cases vs. median	KNN	0.77	0.15
Deaths per capita	KNN	8.24	10.04	Deaths vs. median	KNN	0.74	0.15

Final Conclusions

Significance of Findings:

- Diet is not a strong standalone predictor of COVID-19 cases/deaths at the country level, though it does have some impact
- Stimulants and Sugars/Sweeteners consistently were most strongly associated with higher COVID cases/deaths
 - Supported by previous studies link between obesity and COVID-19 severity

Limitations:

- Left out other potentially important factors like availability of healthcare, GDP, messaging from government public health organizations, health system infrastructure
- Higher calorie foods were weighted more heavily made models unable to completely characterize the impact of food intake patterns on health
- Lacked data on macronutrients, vitamins, minerals, etc.

Further Analyses:

- Incorporate other potential factors related to COVID-19 prevalence/mortality
- Examining how diet influences COVID-19 risk at the individual level

Works Cited

https://builtin.com/data-science/step-step-explanation-principal-component-analysis

https://cran.ism.ac.jp/

https://coronavirus.jhu.edu/map.html

https://www.ncbi.nlm.nih.gov/books/NBK554776/

https://www.health.harvard.edu/diseases-and-conditions/if-youve-been-exposed-to-the-coronavirus

https://pubmed.ncbi.nlm.nih.gov/?term=covid+AND+machine+learning&size=100

https://pubmed.ncbi.nlm.nih.gov/33070540/

https://pubmed.ncbi.nlm.nih.gov/33027032/

https://pubmed.ncbi.nlm.nih.gov/32311498/

https://www.kaggle.com/mariaren/covid19-healthy-diet-dataset?select=Food_Supply_Quantity_kg_Data.csv

