Understanding the $K\pi$ spectrum of $B^0 \to K^{*0} \mu^+ \mu^-$ at LHCb

Alex Shires

High Energy Physics Blackett Laboratory Imperial College London

Contents

1	Introduction		
2	The standard model of particle physics		
3	The LHCb detector 3.1 Intro 3.2 subdetectors 3.3 Trigger		
4	Theoretical formulism of $B^0 \to K^{*0} \mu^+ \mu^-$ 4.1 Angular distribution		
5	The acceptance correction for $B^0 \to K^{*0} \mu^+ \mu^-$ at LHCb 5.1 acceptance correction intro		
6	5.4.1 algorithm		
U	6.1 The effect of an S-wave on the nagular analysis of $B^0 \to K^{*0} \mu^+ \mu^-$ 6.1.1 theory		
	6.2 Measuring the S-wave in $B^0 \to K^+\pi^-\mu^+\mu^-$		

Contents 3

7	Mea	asuring the D-wave in $B^0 o K^{*0} \mu^+ \mu^-$	10
	7.1	angular distribution	10
	7.2	angular observables	10
	7.3	acceptance correction	10
	7.4	Angular fits	10
		7.4.1 no $m_{K\pi}$	10
		7.4.2 with $m_{K\pi}$	10
	7.5	Results	10
	7.6	conclusion	10
Bi	bliog	graphy	11

Introduction

Processes which contain a $b \to s$ transition are popular FCNC decays for tests of contributions from new physics [1]

The standard model of particle physics

The LHCb detector

- 3.1 Intro
- 3.2 subdetectors
- 3.3 Trigger

Theoretical formulism of $B^0 \to K^{*0} \mu^+ \mu^-$

- 4.1 Angular distribution
- 4.2 Matrix elements
- 4.3 Angular observables
- 4.4 higher K_J^{*0} states

The acceptance correction for $B^0 \to K^{*0} \mu^+ \mu^-$ at LHCb

- 5.1 acceptance correction intro
- 5.2 Monte CArlo simulations
- 5.2.1 Data-Simulation corrections
- 5.3 A full 4D acceptance correction
- 5.3.1 algorithm
- 5.3.2 validation
- 5.3.3 results
- 5.4 A factorised acceptance correction
- 5.4.1 algorithm
- 5.4.2 validation
- 5.4.3 results

The S-wave in $B^0 \rightarrow K^+\pi^-\mu^+\mu^-$

- 6.1 The effect of an S-wave on the nagular analysis of $B^0 \to K^{*0} \mu^+ \mu^-$
- 6.1.1 theory
- 6.1.2 effect from toy simulations
- 6.1.3 effect on data
- 6.2 Measuring the S-wave in $B^0 \rightarrow K^+\pi^-\mu^+\mu^-$
- 6.2.1 theory
- 6.2.2 measurement expected from toy simulations
- 6.2.3 measurement on data

Measuring the D-wave in $B^0 \to K^{*0} \mu^+ \mu^-$

- 7.1 angular distribution
- 7.2 angular observables
- 7.3 acceptance correction
- 7.4 Angular fits
- 7.4.1 no $m_{K\pi}$
- 7.4.2 with $m_{K\pi}$
- 7.5 Results
- 7.6 conclusion

Bibliography

[1] D. Melikhov, N. Nikitin, and S. Simula, *Probing right-handed currents in* $B^0 \to K^*$ $\ell^+\ell^-$ transitions, Phys.Lett. **B442** (1998) 381, arXiv:hep-ph/9807464.