Discovering new ways of attacking AES when trying to do something else

Martin Grenouilloux martin.grenouilloux@lse.epita.fr

What is algebraic cryptanalysis?

Cryptography, Cryptanalysis ...

Lorem ipsum dolor sit amet consectetur adipiscing elit scelerisque efficitur lacus porta quis donec tempor ipsum

cryptanalysis

cryptography

fhvsyarsfdonpjgmryypjqzwgte lyuqkkipicuzeotgwazffznmbxw avvtpsoghagjvlwfcmokstsocns jjlotkddidlrbcvdowvazoigemr

Cryptography, Cryptanalysis ...

cryptanalysis + cryptography
cryptology

Algebraic cryptanalysis?

 Breaking codes by solving polynomial systems of equations

$$\begin{cases} aX^7 + bX^4 + cX^2 + d = 0 \\ cX^6 + dX^2 + aX + b = 0 \\ aX^4 + cX^3 + dX + e = 0 \end{cases}$$

What is AES?

Advanced Encryption Standard

- Symmetric encryption
 - key size: 128, 192 or 256*
- Provides confusion and diffusion
 - bits of plaintext depend on different bits of the key
 - avalanche effect

AES seen differently

We use this property to study encryption as a system of polynomials

```
w010203 + k000203 + (a^3)
w010300 + k000300 + (a^3 + a)
w010301 + k000301 + (a^3)
w010302 + k000302 + (a^3 + a^2)
w010303 + k000303 + (a^3 + a^2 + a + 1)
w010400 + k000400 + (a^2)
w010401 + k000401 + (a + 1)
w010402 + k000402 + (a^2 + 1)
w010403 + k000403 + a
```

What are Gröbner basis?

About bases

A cool way to deal with polynomial rings

A basis that generates for all polynomials of its ring's ideal

Change from the study of polynomials to the study of monomials

Computing a Groebner basis of AES is almost the same as retrieving the key and plaintext

A slow way to deal with polynomial rings

Computing such a basis is hard

Hence our will to optimize it;

- Gaussian elimination & matrix triangulation
- Degree order?
- Separation into independent systems

A graphical way to deal with polynomial rings

Verify it mathematically (lame)

Transform the system into a graph (stylish)

$$\begin{cases} aX^7+bX^4+cX^2+d=0\\ cX^6+dX^2+aX+b=0\\ aX^4+cX^3+dX+e=0 \end{cases}$$
 e depends on a, c and depends on b, c, d and e

A graphical way to deal with polynomial rings

Verify it mathematically (lame)

Transform the system into a graph (stylish)

Only one system of equations

A graphical way to deal with polynomial rings

Verify it mathematically (lame)

Transform the system into a graph (stylish)

Cool bro, now what?

AES graphs in a nutshell

They present distinct communities Each community is bound to another by a few nodes

This trend goes chaotic with the number of rounds in AES

Chordal graphs

Chordal graphs

A graph in which all cycles of size 4+ have a chord

AES confusion property only create chordal graphs!

Proven resistant to sub-graph separation

2^140 complexity for AES128 – 10 rounds

Proven resistant to sub-graph separation

Minimum bitguessing for each round of AES128

Totally not what was planned

That's part of research!

Any questions?

Martin Grenouilloux <martin.grenouilloux@lse.epita.fr>

Algebraic Cryptanalysis (Gregory V. Bard)

Algorithmic algebraic techniques and their application to block cipher cryptanalysis (Martin Albrecht)