Лабораторная работа №7

Дискретное логарифмирование в конечном поле

Доборщук Владимир Владимирович, НФИмд-02-22

Содержание

1	Цель и задачи работы	5
2	Теоретическая информация	6
3	Выполнение лабораторной работы 3.1 Реалиазация и тестирование	7 7
4	Выводы	12
Сп	исок литературы	13

Список иллюстраций

Список таблиц

1 Цель и задачи работы

Цель — Изучить алгоритмы для задач дискретного логарифмирования.

Задачи:

• Реализовать алгоритм для задач дискретного логарифмирования через р-метод Полларда

2 Теоретическая информация

Все теоретическое описание дано в описании лабораторной работы.

3 Выполнение лабораторной работы

При выполнении лабораторной работы мы строго следовали алгоритмике, представленной в описании.

3.1 Реалиазация и тестирование

Программный код выглядит следующим образом:

```
# Laboratory Work
# Theme: Discrete logarthmification
# Author: Vladimir Doborschuk

# --- Modules ---
import numpy as np

# --- Functions ---
# --- mod(a, b) ---
def mod(a, b):
    return a % b

# --- find mod order ---
```

```
def order(a, p):
   x = 1
   while mod(a**x - 1, p) != 0:
       x += 1
   return x
# --- Pollard's P-method for Log ---
1.1.1
а - основание
b - значение остатка
р - простое число
1000
def po_method(a: int, b: int, p: int):
   print(f"\n{a}^{(x)} = \{b\} \mod \{p\}")
    ⇔ print("------
    \hookrightarrow ")
   print('|\tc\t|\tlog c\t|\td\t|\tlog d\t|')
    □ ")
   u = np.random.randint(4)
   v = np.random.randint(4)
   r = order(a, p)
```

```
c = mod(np.power(a, u) * np.power(b, v), p)
d = c
u_c, u_d = u, u
v_c, v_d = v, v
print(f'|\t\{c\}\t|\t\{u\_c\}+\{v\_c\}\x\t|\t\{d\}\t|\t\{u\_d\}+\{v\_d\}\x\t|')
def f(x, u_x, v_x):
    if x < r:
         return mod(a*x, p), u_x + 1, v_x
    else:
         return mod(b*x, p), u_x, v_x + 1
c, u_c, v_c = f(c, u_c, v_c)
tmp_d = f(d, u_d, v_d)
d, u_d, v_d = f(tmp_d[0], tmp_d[1], tmp_d[2])
while mod(c, p) != mod(d, p):
     \rightarrow print(f'\\t{c}\t\\t{u_c}+\{v_c}x\t\\\t{d}\t\\\t{u_d}+\{v_d}x\t\')
    c, u_c, v_c = f(c, u_c, v_c)
    tmp_d = f(d, u_d, v_d)
    d, u_d, v_d = f(tmp_d[0], tmp_d[1], tmp_d[2])
print(f' | t\{c\} t | t\{u_c\} + \{v_c\} x t | t\{d\} t | t\{u_d\} + \{v_d\} x t | t\}
 \hookrightarrow ")
```

```
x = 1
   # print(v_c - v_d, u_d - u_c)
   while mod((v_c - v_d)*x, r) != mod(u_d - u_c, r):
       x += 1
   print(f"x = \{x\}")
   print(f'' \setminus n\{a\}^{(x\})} = \{b\} \mod \{p\}''\}
    □ ")
   return x
# --- Main ---
def main():
   po_method(10, 64, 107)
   po_method(2, 1, 15)
if __name__ == "__main__":
   main()
 При запуске получаем следующие результаты:
10^{(x)} = 64 \mod 107
   С
                     log c d |
                                                    log d
    101 | 0+3x | 101 | 0+3x
```

44	0+4x	12	1+4x
12	1+4x	23	3+4x
13	2+4x	53	5+4x
23	3+4x	92	5+6x
16	4+4x	30	6+7x
53	5+4x	47	7+8x
75	5+5x	99	9+8x
92	5+6x	16	10+9x
3	5+7x	75	11+10x
30	6+7x	3	11+12x
86	7+7x	86	13+12x

x = 20

 $10^{(20)} = 64 \mod 107$

 $2^{(x)} = 1 \mod 15$

	С	l	log c		d	1	log d	
	1	1	0+2x		1		0+2x	
	2		1+2x		4		2+2x	
	4		2+2x		4		2+4x	

x = 2

 $2^{(2)} = 1 \mod 15$

4 Выводы

В рамках выполненной лабораторной работы мы изучили и реализовали рметод Полларда для задач дискретного логарифмирования.

Список литературы