Una Reformulación de la Mecánica Clásica

Alfonso A. Blato

Licencia Creative Commons Atribución 3.0 (2019) Buenos Aires ${\rm Argentina}$

Este trabajo presenta una reformulación de la mecánica clásica que es invariante bajo transformaciones entre sistemas de referencia inerciales y no inerciales y que puede ser aplicada en cualquier sistema de referencia sin necesidad de introducir fuerzas ficticias.

Introducción

La reformulación de la mecánica clásica que este trabajo presenta se desarrolla a partir de una fuerza auxiliar de interacción (denominada fuerza cinética, puesto que esta fuerza auxiliar de interacción está directamente relacionada con la energía cinética)

La fuerza cinética \mathbf{K}_{ij} ejercida sobre una partícula i de masa m_i por otra partícula j de masa m_j , causada por la interacción entre la partícula i y la partícula j, está dada por:

$$\mathbf{K}_{ij} \; = \; - \; \frac{m_i \, m_j}{M} \left[\left(\vec{a}_i - \vec{a}_j \right) - 2 \; \vec{\omega} \times \left(\vec{v}_i - \vec{v}_j \right) + \vec{\omega} \times \left[\; \vec{\omega} \times \left(\vec{r}_i - \vec{r}_j \right) \; \right] - \vec{\alpha} \times \left(\vec{r}_i - \vec{r}_j \right) \; \right]$$

donde $\vec{a}_i, \vec{v}_i, \vec{r}_i$ son la aceleración, la velocidad y la posición de la partícula $i, \vec{a}_j, \vec{v}_j, \vec{r}_j$ son la aceleración, la velocidad y la posición de la partícula j (que pertenece a un sistema auxiliar de N partículas, denominado Systema) y $M, \vec{\omega}, \vec{\alpha}$ son la masa, la velocidad angular y la aceleración angular del Systema (ver Anexo I)

Desde la ecuación anterior se deduce que la fuerza cinética neta \mathbf{K}_i (= $\sum_{j}^{N} \mathbf{K}_{ij}$) que actúa sobre una partícula i de masa m_i , está dada por:

$$\mathbf{K}_i \; = \; - \; m_i \left[\; (\vec{a}_i - \vec{A}) - 2 \; \vec{\omega} \times (\vec{v}_i - \vec{V}) + \vec{\omega} \times \left[\; \vec{\omega} \times (\vec{r}_i - \vec{R}) \; \right] - \vec{\alpha} \times (\vec{r}_i - \vec{R}) \; \right] \; \left[\; \mathrm{Ec.} \; 2 \; \right] \label{eq:Ki}$$

donde $\vec{R}, \ \vec{V}$ y \vec{A} son la posición, la velocidad y la aceleración del centro de masa del Systema.

Las magnitudes [m_i , m_j , M, \mathbf{K}_{ij} , \mathbf{K}_i] son invariantes bajo transformaciones entre sistemas de referencia inerciales y no inerciales.

Cualquier sistema de referencia S es un sistema de referencia inercial cuando la velocidad angular $\vec{\omega}$ del Systema y la aceleración \vec{A} del centro de masa del Systema son iguales a cero ($\vec{\omega}=0$ y $\vec{A}=0$) con respecto a S. Por lo tanto, el sistema de referencia S es un sistema de referencia no inercial cuando la velocidad angular $\vec{\omega}$ del Systema y/o la aceleración \vec{A} del centro de masa del Systema no son iguales a cero ($\vec{\omega}\neq 0$ y/o $\vec{A}\neq 0$) con respecto a S.

Ecuación de Movimiento

La fuerza total \mathbf{T}_i que actúa sobre una partícula i es siempre cero.

$$\mathbf{T}_i = 0$$

Si la fuerza total \mathbf{T}_i es dividida en las siguientes dos partes: la fuerza cinética neta \mathbf{K}_i y la fuerza dinámica neta \mathbf{F}_i (\sum de fuerzas gravitatorias, fuerzas electrostáticas, etc.) entonces:

$$\mathbf{K}_i + \mathbf{F}_i = 0$$

Ahora, sustituyendo \mathbf{K}_i por [Ec. 2] dividiendo por m_i y reordenando, se obtiene:

$$\vec{a}_i = \mathbf{F}_i/m_i + \vec{A} + 2 \vec{\omega} \times (\vec{v}_i - \vec{V}) - \vec{\omega} \times [\vec{\omega} \times (\vec{r}_i - \vec{R})] + \vec{\alpha} \times (\vec{r}_i - \vec{R})$$

Desde la ecuación anterior se deduce que la partícula i puede estar acelerada incluso si sobre la partícula i no actúa fuerza dinámica alguna y también que la partícula i puede no estar acelerada (estado de reposo o de movimiento rectilíneo uniforme) incluso si sobre la partícula i actúa una fuerza dinámica neta no equilibrada.

Sin embargo, desde la ecuación anterior también se deduce que la primera y segunda ley de Newton son válidas en cualquier sistema de referencia inercial, puesto que la velocidad angular $\vec{\omega}$ del Systema y la aceleración \vec{A} del centro de masa del Systema son iguales a cero con respecto a cualquier sistema de referencia inercial.

Observaciones Generales

Todas las ecuaciones presentadas en este trabajo pueden ser aplicadas en cualquier sistema de referencia inercial o no inercial.

Los observadores inerciales y no inerciales no deben introducir fuerzas ficticias sobre \mathbf{F}_i .

En este trabajo, las siguientes magnitudes $[m, \mathbf{r}, \mathbf{v}, \mathbf{a}, M, K, \mathbf{T}, \mathbf{K}, \mathbf{F}]$ son invariantes bajo transformaciones entre sistemas de referencia inerciales y no inerciales.

Las fuerzas cinéticas son causadas por las interacciones entre las partículas y la fuerza cinética neta es la fuerza que equilibra a la fuerza dinámica neta en cada partícula del Universo.

Además, las fuerzas cinéticas permanecen invariantes bajo transformaciones entre sistemas de referencia inerciales y no inerciales (como lo hacen todas las fuerzas dinámicas)

En este trabajo, las fuerzas cinéticas y las fuerzas dinámicas pueden obedecer o desobedecer la tercera ley de Newton en su forma débil y/o en su forma fuerte (éste es uno de los objetivos principales de este trabajo)

Por otro lado, este trabajo no contradice la primera y segunda ley de Newton puesto que estas dos leyes son válidas en cualquier sistema de referencia inercial (en la mecánica newtoniana las fuerzas cinéticas son completamente excluidas)

Finalmente, la reformulación de la mecánica clásica presentada en este trabajo y la mecánica newtoniana son observacionalmente equivalentes. Sin embargo, los observadores no inerciales solamente pueden utilizar la mecánica newtoniana si introducen fuerzas ficticias sobre \mathbf{F}_i .

Anexos

Systema Relacional

En mecánica clásica, el Systema es un sistema auxiliar de N partículas que está siempre libre de fuerzas dinámicas externas e internas, que es tridimensional y que las distancias relativas entre las N partículas permanecen siempre constantes.

La posición \vec{R} , la velocidad \vec{V} y la aceleración \vec{A} del centro de masa del Systema con respecto a un sistema de referencia S, la velocidad angular $\vec{\omega}$ y la aceleración angular $\vec{\alpha}$ del Systema con respecto al sistema de referencia S, están dadas por:

$$\begin{split} M &\doteq \sum_{i}^{\mathrm{N}} m_{i} \\ \vec{R} &\doteq M^{-1} \sum_{i}^{\mathrm{N}} m_{i} \vec{r}_{i} \\ \vec{V} &\doteq M^{-1} \sum_{i}^{\mathrm{N}} m_{i} \vec{v}_{i} \\ \vec{A} &\doteq M^{-1} \sum_{i}^{\mathrm{N}} m_{i} \vec{a}_{i} \\ \vec{\omega} &\doteq \vec{I}^{-1} \cdot \vec{L} \\ \vec{\alpha} &\doteq d(\vec{\omega})/dt \\ \vec{I} &\doteq \sum_{i}^{\mathrm{N}} m_{i} [|\vec{r}_{i} - \vec{R}|^{2} \stackrel{\leftrightarrow}{\mathbf{1}} - (\vec{r}_{i} - \vec{R}) \otimes (\vec{r}_{i} - \vec{R})] \end{split}$$

 $\vec{L} \doteq \sum_{i=1}^{N} m_i (\vec{r}_i - \vec{R}) \times (\vec{v}_i - \vec{V})$

donde M es la masa del Systema, \vec{I} es el tensor de inercia del Systema (con respecto a \vec{R}) y \vec{L} es el momento angular del Systema con respecto al sistema de referencia S.

Magnitudes Invariantes

$$\begin{split} (\vec{r}_i - \vec{R}) &\doteq \mathbf{r}_i = \mathbf{r}_i' \\ (\vec{r}_i' - \vec{R}') &\doteq \mathbf{r}_i' = \mathbf{r}_i \\ (\vec{v}_i - \vec{V}) - \vec{\omega} \times (\vec{r}_i - \vec{R}) &\doteq \mathbf{v}_i = \mathbf{v}_i' \\ (\vec{v}_i' - \vec{V}') - \vec{\omega}' \times (\vec{r}_i' - \vec{R}') &\doteq \mathbf{v}_i' = \mathbf{v}_i \\ (\vec{a}_i - \vec{A}) - 2 \vec{\omega} \times (\vec{v}_i - \vec{V}) + \vec{\omega} \times [\vec{\omega} \times (\vec{r}_i - \vec{R})] - \vec{\alpha} \times (\vec{r}_i - \vec{R}) &\doteq \mathbf{a}_i = \mathbf{a}_i' \\ (\vec{a}_i' - \vec{A}') - 2 \vec{\omega}' \times (\vec{v}_i' - \vec{V}') + \vec{\omega}' \times [\vec{\omega}' \times (\vec{r}_i' - \vec{R}')] - \vec{\alpha}' \times (\vec{r}_i' - \vec{R}') &\doteq \mathbf{a}_i' = \mathbf{a}_i \end{split}$$

Apéndice A

Campos y Potenciales I

La fuerza cinética neta \mathbf{K}_i que actúa sobre una partícula i de masa m_i puede ser también expresada como sigue:

$$\begin{split} \mathbf{K}_i &= + m_i \left[\mathbf{E} + (\vec{v}_i - \vec{V}) \times \mathbf{B} \right] \\ \mathbf{K}_i &= + m_i \left[- \nabla \phi - \frac{\partial \mathbf{A}}{\partial t} + (\vec{v}_i - \vec{V}) \times (\nabla \times \mathbf{A}) \right] \\ \mathbf{K}_i &= + m_i \left[- (\vec{a}_i - \vec{A}) + 2 \vec{\omega} \times (\vec{v}_i - \vec{V}) - \vec{\omega} \times [\vec{\omega} \times (\vec{r}_i - \vec{R})] + \vec{\alpha} \times (\vec{r}_i - \vec{R}) \right] \end{split}$$

donde:

$$\begin{split} \mathbf{E} &= -\nabla \phi - \frac{\partial \mathbf{A}}{\partial t} \\ \mathbf{B} &= \nabla \times \mathbf{A} \\ \phi &= -\frac{1}{2} \left[\vec{\omega} \times (\vec{r}_i - \vec{R}) \right]^2 + \frac{1}{2} (\vec{v}_i - \vec{V})^2 \\ \mathbf{A} &= -\left[\vec{\omega} \times (\vec{r}_i - \vec{R}) \right] + (\vec{v}_i - \vec{V}) \\ \frac{\partial \mathbf{A}}{\partial t} &= -\vec{\alpha} \times (\vec{r}_i - \vec{R}) + (\vec{a}_i - \vec{A}) \\ \nabla \phi &= \vec{\omega} \times \left[\vec{\omega} \times (\vec{r}_i - \vec{R}) \right] \end{split}$$

La fuerza cinética neta \mathbf{K}_i que actúa sobre una partícula i de masa m_i puede ser también obtenida a partir de la siguiente energía cinética:

$$\begin{split} K_i &= - \, m_i \left[\, \phi \, - (\vec{v}_i - \vec{V}) \cdot \mathbf{A} \, \right] \\ K_i &= \frac{1}{2} \, m_i \left[\, (\vec{v}_i - \vec{V}) - \vec{\omega} \times (\vec{r}_i - \vec{R}) \, \right]^2 \\ K_i &= \frac{1}{2} \, m_i \left[\, \mathbf{v}_i \, \right]^2 \end{split}$$

 $\nabla \times \mathbf{A} = -2 \vec{\omega}$

Dado que la energía cinética K_i debe ser positiva, entonces aplicando la siguiente ecuación Euler-Lagrange, se obtiene:

$$\mathbf{K}_{i} = -\frac{d}{dt} \left[\frac{\partial \sqrt{2} m_{i} \left[\mathbf{v}_{i} \right]^{2}}{\partial \mathbf{v}_{i}} \right] + \frac{\partial \sqrt{2} m_{i} \left[\mathbf{v}_{i} \right]^{2}}{\partial \mathbf{r}_{i}} = -m_{i} \mathbf{a}_{i}$$

donde $\mathbf{r}_i, \mathbf{v}_i$ y \mathbf{a}_i son la posición invariante, la velocidad invariante y la aceleración invariante de la partícula i (ver Anexo II)

Apéndice B

Campos y Potenciales II

La fuerza cinética neta \mathbf{K}_i que actúa sobre una partícula i de masa m_i (con respecto a un sistema de referencia S fijo a una partícula s ($\vec{r}_s = \vec{v}_s = \vec{a}_s = 0$) de masa m_s , con velocidad invariante \mathbf{v}_s y aceleración invariante \mathbf{a}_s) puede ser también expresada como sigue:

$$\begin{split} \mathbf{K}_i &= + m_i \left[\, \mathbf{E} + \vec{v}_i \times \mathbf{B} \, \right] \\ \mathbf{K}_i &= + m_i \left[- \nabla \phi \, - \frac{\partial \mathbf{A}}{\partial t} + \vec{v}_i \times (\nabla \times \mathbf{A}) \, \right] \\ \mathbf{K}_i &= + m_i \left[- \left(\vec{a}_i + \mathbf{a}_s \right) + 2 \, \vec{\omega} \times \vec{v}_i - \vec{\omega} \times \left(\vec{\omega} \times \vec{r}_i \right) + \vec{\alpha} \times \vec{r}_i \, \right] \end{split}$$

donde:

$$\mathbf{E} = -\nabla\phi - \frac{\partial\mathbf{A}}{\partial t}$$

$$\mathbf{B} = \nabla \times \mathbf{A}$$

$$\phi = -\frac{1}{2}(\vec{\omega} \times \vec{r}_i)^2 + \frac{1}{2}(\vec{v}_i + \mathbf{v}_s)^2$$

$$\mathbf{A} = -(\vec{\omega} \times \vec{r}_i) + (\vec{v}_i + \mathbf{v}_s)$$

$$\frac{\partial\mathbf{A}}{\partial t} = -\vec{\alpha} \times \vec{r}_i + (\vec{a}_i + \mathbf{a}_s)$$

$$\nabla\phi = \vec{\omega} \times (\vec{\omega} \times \vec{r}_i)$$

$$\nabla \times \mathbf{A} = -2\vec{\omega}$$

La fuerza cinética neta \mathbf{K}_i que actúa sobre una partícula i de masa m_i puede ser también obtenida a partir de la siguiente energía cinética:

$$K_{i} = -m_{i} \left[\phi - (\vec{v}_{i} + \mathbf{v}_{s}) \cdot \mathbf{A} \right]$$

$$K_{i} = \frac{1}{2} m_{i} \left[(\vec{v}_{i} + \mathbf{v}_{s}) - (\vec{\omega} \times \vec{r}_{i}) \right]^{2}$$

$$K_{i} = \frac{1}{2} m_{i} \left[\mathbf{v}_{i} \right]^{2}$$

Dado que la energía cinética K_i debe ser positiva, entonces aplicando la siguiente ecuación Euler-Lagrange, se obtiene:

$$\mathbf{K}_{i} = -\frac{d}{dt} \left[\frac{\partial \sqrt{2} m_{i} \left[\mathbf{v}_{i} \right]^{2}}{\partial \mathbf{v}_{i}} \right] + \frac{\partial \sqrt{2} m_{i} \left[\mathbf{v}_{i} \right]^{2}}{\partial \mathbf{r}_{i}} = -m_{i} \mathbf{a}_{i}$$

donde $\mathbf{r}_i, \mathbf{v}_i$ y \mathbf{a}_i son la posición invariante, la velocidad invariante y la aceleración invariante de la partícula i (ver Anexo II)

Apéndice C

Campos y Potenciales III

La fuerza cinética \mathbf{K}_{ij} ejercida sobre una partícula i de masa m_i por otra partícula j de masa m_j puede ser también expresada como sigue:

$$\begin{split} \mathbf{K}_{ij} \; &= \; + \; m_i \; m_j \; M^{-1} \left[\; \mathbf{E} \; + (\vec{v}_i - \vec{v}_j) \times \mathbf{B} \; \right] \\ \\ \mathbf{K}_{ij} \; &= \; + \; m_i \; m_j \; M^{-1} \left[\; - \; \nabla \phi \; - \; \frac{\partial \mathbf{A}}{\partial t} \; + (\vec{v}_i - \vec{v}_j) \times (\nabla \times \mathbf{A}) \; \right] \\ \\ \mathbf{K}_{ij} \; &= \; + \; m_i \; m_j \; M^{-1} \left[\; - \; (\vec{a}_i - \vec{a}_j) \; + \; 2 \; \vec{\omega} \times (\vec{v}_i - \vec{v}_j) \; - \; \vec{\omega} \times [\; \vec{\omega} \times (\vec{r}_i - \vec{r}_j) \;] \; + \; \vec{\alpha} \times (\vec{r}_i - \vec{r}_j) \; \right] \end{split}$$

donde:

$$\begin{split} \mathbf{E} &= -\nabla \phi - \frac{\partial \mathbf{A}}{\partial t} \\ \mathbf{B} &= \nabla \times \mathbf{A} \\ \phi &= -\frac{1}{2} \left[\vec{\omega} \times (\vec{r}_i - \vec{r}_j) \right]^2 + \frac{1}{2} (\vec{v}_i - \vec{v}_j)^2 \\ \mathbf{A} &= -\left[\vec{\omega} \times (\vec{r}_i - \vec{r}_j) \right] + (\vec{v}_i - \vec{v}_j) \\ \frac{\partial \mathbf{A}}{\partial t} &= -\vec{\alpha} \times (\vec{r}_i - \vec{r}_j) + (\vec{a}_i - \vec{a}_j) \\ \nabla \phi &= \vec{\omega} \times \left[\vec{\omega} \times (\vec{r}_i - \vec{r}_j) \right] \\ \nabla \times \mathbf{A} &= -2 \vec{\omega} \end{split}$$

La fuerza cinética \mathbf{K}_{ij} ejercida sobre una partícula i de masa m_i por otra partícula j de masa m_j puede ser también obtenida a partir de la siguiente energía cinética:

$$\begin{split} K_{ij} \; &=\; -\, m_i \, \, m_j \, \, M^{-1} \, \left[\, \phi \, - (\vec{v}_i - \vec{v}_j) \cdot \mathbf{A} \, \right] \\ K_{ij} \; &=\; 1 \! \! /_2 \, m_i \, m_j \, M^{-1} \, \left[\, (\vec{v}_i - \vec{v}_j) - \vec{\omega} \times (\vec{r}_i - \vec{r}_j) \, \right]^2 \\ K_{ij} \; &=\; 1 \! \! /_2 \, m_i \, m_j \, M^{-1} \, \left[\, \mathbf{v}_i - \mathbf{v}_j \, \right]^2 \end{split}$$

Dado que la energía cinética K_{ij} debe ser positiva, entonces aplicando la siguiente ecuación Euler-Lagrange, se obtiene:

$$\mathbf{K}_{ij} = -\frac{d}{dt} \left[\frac{\partial \frac{1}{2} \frac{m_i m_j}{M} \left[\mathbf{v}_i - \mathbf{v}_j \right]^2}{\partial \left[\mathbf{v}_i - \mathbf{v}_j \right]} \right] + \frac{\partial \frac{1}{2} \frac{m_i m_j}{M} \left[\mathbf{v}_i - \mathbf{v}_j \right]^2}{\partial \left[\mathbf{r}_i - \mathbf{r}_j \right]} = -\frac{m_i m_j}{M} \left[\mathbf{a}_i - \mathbf{a}_j \right]$$

donde $\mathbf{r}_i, \mathbf{v}_i, \mathbf{a}_i, \mathbf{r}_j, \mathbf{v}_j$ y \mathbf{a}_j son las posiciones invariantes, las velocidades invariantes y las aceleraciones invariantes de la partícula i y de la partícula j (ver Anexo II)