X24 — Нецентральные движения шара

A1^{0.40} Выразите компоненту скорости \vec{u}_A точки A через компоненту скорости \vec{u}_C центра шара, его угловую скорость $\vec{\omega}$, а также радиус-вектор \vec{r} в произвольный момент. Получите также производную по времени \vec{u}_A вектора \vec{u}_A . Ответ выразите через \vec{u}_C , $\vec{\omega}$ и \vec{r} .

0.10 Записано выражение для полной скорости точки *A*:

$$\vec{v}_A = \vec{v}_C + \left[\vec{\omega} \times \vec{r}\right].$$

oxedows Получен правильный ответ для $ec{u}_A$:

$$\vec{u}_A = \vec{u}_C + \left[\vec{\omega} \times \vec{r} \right].$$

- $oldsymbol{0.10}$ Указано или используется, что вектор $ec{r}$ остаётся постоянным в процессе всего соударения.
- **0.10** Получен правильный ответ для $\vec{u}_{\mathcal{C}}$:

$$\dot{\vec{u}}_A = \dot{\vec{u}}_C + \left[\dot{\vec{\omega}} \times \vec{r}\right].$$

A2 $^{0.60}$ Определите силу трения \vec{F}_0 , действующую на шар в начальный момент контакта со стеной. Ответ выразите через \vec{e}_x , \vec{e}_z , α , μ и силу нормальной реакции стены N_0 в начальный момент.

0.10 Правильно применён закон Кулона-Амонтона:

$$\vec{F} = -\mu N \frac{\vec{u}_A}{u_A}.$$

- 2 ×
- **0.10** Записаны выражения для компонент скорости $u_{Ax(0)}$ и $u_{Az(0)}$ точки A:

$$u_{Ax(0)} = u_{Cx(0)}$$
 $u_{Az(0)} = -\omega_{y(0)}r$.

- 2 ×
- **0.10** Определены компоненты скорости $u_{Ax(0)}$ и $u_{Az(0)}$ точки A в начальный момент:

$$u_{Ax(0)} = v \sin \alpha$$
 $u_{Az(0)} = -v \cos \alpha$.

0.10 Получено выражение для силы трения \vec{F} :

$$\vec{F}_0 = \mu N_0 \left(\vec{e}_z \cos \alpha - \vec{e}_x \sin \alpha \right).$$

АЗ^{1.00} Докажите, что производная по времени $\dot{\vec{u}}_A$ компоненты скорости \vec{u}_A связана с силой трения \vec{F} соотношением:

$$\dot{\vec{u}}_A = \frac{7\vec{F}}{2m}.$$

Данный факт можно использовать далее, даже если вы не смогли его доказать.

0.10 Записана теорема о движении центра масс для шара:

$$m\vec{u}_C = \vec{F}$$
.

0.20 Указано, что вектор момента импульса шара относительно его центра определяется выражением:

$$\vec{L}_C = I_C \vec{\omega}$$
.

с Страница 1 из 8 < ∞</p>

Пункт оценивается, даже если $I_C \neq 2mr^2/5$.

0.20 Записано уравнение динамики вращательного движения относительно центра шара:

$$I_C \dot{\vec{\omega}} = [\vec{r} \times \vec{F}].$$

Пункт оценивается, даже если $I_C \neq 2mr^2/5$.

0.30 Получено выражение для силы трения \vec{F} :

$$\vec{F} = \frac{I_C \left[\dot{\vec{\omega}} \times \vec{r} \right]}{r^2}.$$

Альтернативно: Выражения для $\dot{ec{u}}_{\it C}$ и $\dot{ec{\omega}}$ подставлены в уравнение, полученное для $\dot{ec{u}}_{\it A}$:

$$\dot{\vec{u}}_A = \frac{\vec{F}}{m} + \frac{\left[\left[\vec{r} \times \vec{F} \right] \times \vec{r} \right]}{I_C}.$$

Пункт оценивается, даже если $I_C \neq 2mr^2/5$.

0.20 Выражение приведено к правильному виду:

$$\dot{\vec{u}}_A = \frac{\vec{F}}{m} \left(1 + \frac{mr^2}{I_C} \right) = \frac{7\vec{F}}{2m}.$$

А4^{0.50} Определите компоненту скорости $\vec{u}_{A\mathrm{K}}$ сразу после соударения, считая, что шар проскальзывает по стенке в течение всего времени соударения. Ответ выразите через v, α , μ , \vec{e}_x и \vec{e}_z . При каком максимальном значении коэффициента трения μ_{max} проскальзывание не прекращается в течение всего времени соударения? Ответ выразите через α .

0.10 Сделан вывод, что в процессе соударения направление компоненты скорости \vec{u}_A остаётся постоянным.

0.10 Записано выражение для компоненты скорости u_A при условии постоянного проскальзывания:

$$u_A = u_{A(0)} - \frac{7\mu}{2} \int_0^t Ndt.$$

0.10 Определено значение импульса силы реакции *N*:

$$\int_{0}^{t} Ndt = 2mv \cos \alpha.$$

0.10 Получено выражение для конечной скорости точки A при условии постоянного проскальзывания:

$$u_A = u_{A(0)} - 7\mu v \cos \alpha$$
.

0.10 Получено выражение для μ_{max} :

$$\mu_{max} = \frac{1}{7\cos\alpha}.$$

Пункт оценивается только при наличии полного балла за пункт А2.

A5^{0.60} При $\mu < \mu_{max}$ определите скорость центра шара \vec{v}_{Ck} , а также под каким углом β к горизонту она направлена сразу после соударения. Ответы выразите через v, α , μ , \vec{e}_x , \vec{e}_y и \vec{e}_z .

0.20 Записано выражение для угла β :

$$\beta = \arctan \frac{v_{Cz}}{\sqrt{v_{Cx}^2 + v_{Cy}^2}}.$$

0.20 Записано выражение для конечной компоненты скорости $\vec{u}_{\mathcal{C}}$:

$$\vec{u}_C = v \sin \alpha \vec{e}_x + \frac{2(\vec{u}_A - \vec{u}_A(0))}{7}$$

0.10 Получено выражение для конечной компоненты скорости центра шара \vec{u}_{c} :

$$\vec{u}_C = v \sin \alpha (1 - 2\mu \cos \alpha) \vec{e}_x + v \cos \alpha \vec{e}_y + 2\mu v \cos^2 \alpha \vec{e}_z.$$

0.10 Получен правильный ответ для β :

$$\beta = \arctan \frac{2\mu \cos^2 \alpha}{\sqrt{\cos^2 \alpha + \sin^2 \alpha (1 - 2\mu \cos \alpha)^2}}.$$

А6^{0.40} При $\mu < \mu_{max}$ определите координаты x_C , y_C центра шара в момент его падения на стол. Ответы выразите через v, g, μ и α .

- 2 ×
- **0.10** Записаны выражения для координат точки падения шара (по 0.1 балла за каждое):

$$x_C = \frac{2v_{Cx}v_{Cz}}{g} \qquad y_C = \frac{2v_{Cy}v_{Cz}}{g}.$$

0.10 Определена координата x_C точки падения шара:

$$x_C = \frac{4\mu v^2 \cos^2 \alpha \sin \alpha (1 - 2\mu \cos \alpha)}{g}.$$

0.10 Определена координата y_C точки падения шара:

$$y_C = \frac{4\mu v^2 \cos^3 \alpha}{\sigma}.$$

А7^{1.00} При произвольных значениях μ определите количество теплоты Q, выделившееся в процессе соударения шара со стенкой. Ответ выразите через m, v, μ и α .
Примечание: явное вычисление работы силы трения существенно упростит решение задачи.

0.10 Записано выражение для мощности силы трения:

$$P_{\rm Tp} = \vec{F} \cdot \vec{u}_A.$$

0.10 Получено выражение для количества выделившейся теплоты:

$$Q = -\int_{0}^{t} P_{\rm Tp} dt.$$

0.20 Записано выражение для элементарного импульса силы трения:

$$\vec{F}dt = \frac{2md\vec{u}_A}{7}.$$

страница 3 из 8 ≈ ∞

0.20 Выражение для количества выделившейся теплоты *Q* приведено к виду:

$$Q = \int_{\vec{u}_A}^{\vec{u}_A(0)} \frac{2m\vec{u}_A \cdot d\vec{u}_A}{7}.$$

0.20 Получено выражение для количества выделившейся теплоты *Q*:

$$Q = \frac{m(u_A^2(0) - u_A^2)}{7}.$$

2 × 0.10 Получен ответ для количества выделившейся теплоты Q (по 0.1 балла за каждый случай):

$$Q = \begin{cases} m v^2 (2 \mu \cos \alpha - 7 \mu^2 \cos^2 \alpha) & \text{при} \quad \mu \leq \frac{1}{7 \cos \alpha} \\ \frac{m v^2}{7} & \text{при} \quad \mu \geq \frac{1}{7 \cos \alpha} \end{cases}$$

B1^{0.20} Определите компоненты вектора скорости центра шара v_{φ} и v_z в цилиндрической системе координат. Ответы выразите через r, $\dot{\varphi}$ и \dot{z} .

0.10 Получен ответ для v_{φ} :

$$v_{\varphi} = r\dot{\varphi}$$
.

0.10 Получен ответ для v_z :

$$v_z = \dot{z}$$
.

B2^{0.30} Определите компоненты вектора ускорения центра шара a_r , a_{φ} и a_z в цилиндрической системе координат. Ответы выразите через r, v_{φ} , \dot{v}_{φ} и \dot{v}_z .

0.10 Получен ответ для a_{φ} :

$$a_{\varphi} = \dot{v}_{\varphi}.$$

0.10 Получен ответ для a_z :

$$a_z = \dot{v}_z$$
.

0.10 Получен ответ для a_r :

$$a_r = -\frac{v_{\varphi}^2}{r}.$$

B3^{0.40} Из условия отсутствия проскальзывания определите компоненты угловой скорости шара ω_{φ} и ω_{z} в цилиндрической системе координат. Ответы выразите через r, v_{φ} и v_{z} .

 $oldsymbol{0.20}$ Получен ответ для ω_z :

$$\omega_z = \frac{v_{\varphi}}{r}.$$

0.20 Получен ответ для ω_{φ} :

$$\omega_{\varphi} = -\frac{v_z}{r}.$$

C1^{0.80} Определите компоненту силу трения $F_{\varphi}(\varphi)$, действующую на шар, а также компоненту ускорения $a_{\varphi}(\varphi)$ его центра. Ответы выразите через массу шара m, g и φ .

Применимость уравнения моментов относительно оси, проходящей вдоль края стола, треб дополнительного обоснования. Если обоснование отсутствует, все ответы данного пункта, полученные с помощью данного уравнения, оцениваются в 0 баллов

0.10 Записана теорема о движении центра масс в проекции на ось φ :

$$ma_{\varphi} = mg \sin \varphi + F_{\varphi}.$$

0.30 Записано уравнение динамики вращательного движения шара относительно оси *z*:

$$I\dot{\omega}_z = -F_{\omega}r.$$

0.20 Для силы трения F_{ϕ} получено:

$$F_{\varphi} = -\frac{2mg\sin\varphi}{7}.$$

0.20 Для компоненты ускорения a_{o} центра шара получено:

$$a_{\varphi} = \frac{5g\sin\varphi}{7}.$$

С2^{0.50} Получите зависимость $v_{\varphi}(\varphi)$. Ответ выразите через v, g, r, α и φ .

0.30 Получено выражение:

$$a_{\varphi}v_{\varphi} = \frac{5gr\sin\varphi\dot{\varphi}}{7}.$$

0.20 Получена зависимость $v_{\varphi}(\varphi)$:

$$v_{\varphi} = \sqrt{v^2 \cos^2 \alpha + \frac{10gr(1 - \cos \varphi)}{7}}.$$

С3 $^{0.20}$ При каком условии шар не отрывается от стола в момент, когда нижняя точка шара достигает его края? Запишите это условие через v, g, r и α . Во всех дальнейших пунктах считайте, что это условие выполняется.

0.10 Записано выражение для силы нормальной реакции в начальный момент:

$$N = mg - \frac{mv^2\cos^2\alpha}{r}.$$

0.10 Получено ограничение для *v*:

$$v\cos\alpha \leq \sqrt{gr}$$
.

 ${f C4^{0.50}}$ Определите угол $arphi_1$ в момент отрыва шара от стола. Ответ выразите через v,g,r и lpha.

0.30 Определена сила реакции *N* в произвольный момент:

$$N = mg\cos\varphi - \frac{mv_\varphi^2}{r}.$$

0.20 Получен ответ для φ_1 :

$$\varphi_1 = \arccos\left(\frac{10}{17} + \frac{7v^2\cos^2\alpha}{17gr}\right).$$

с Страница 5 из 8 ≈ ∞

D1^{0.50} Выразите кинетическую энергию шара E_k через $m, v_{\varphi}, v_z, \omega_r$ и r.

0.20 Записана теорема Кёнига:

$$E_k = \frac{mv_C^2}{2} + \frac{I\omega^2}{2}.$$

0.30 Получен ответ для E_k :

$$E_k = \frac{7m(v_{\varphi}^2 + v_z^2)}{10} + \frac{m\omega_r^2 r^2}{5}.$$

 $\mathbf{D2^{0.60}}$ Запишите для шара закон сохранения механической энергии. Комбинируя его с результатом пункта C2, покажите, что величины ω_r и v_z связаны соотношением:

$$1 = \frac{\omega_r^2}{A^2} + \frac{v_z^2}{B^2},$$

где A,B>0 - постоянные коэффициенты. Определите A и B. Ответы выразите через v,r и α .

0.10 Записан закон сохранения механической энергии:

$$E_k = E_{k(0)} + mgr(1 - \cos \varphi).$$

0.10 Правильное выражение для начальной кинетической энергии шара:

$$E_{k(0)}=\frac{7mv^2}{10}.$$

0.20 Получено соотношение, эквивалентное написанному ниже:

$$v^2 \sin^2 \alpha = v_z^2 + \frac{2\omega_r^2 r^2}{7}.$$

2 ×

0.10 Получены ответы для *A* и *B* (по 0.1 балла за каждый):

$$A = \sqrt{\frac{7}{2}} \frac{v \sin \alpha}{r} \qquad B = v \sin \alpha$$

 $extbf{D3}^{0.50}$ Вектор углового ускорения $ec{arepsilon}$ шара может быть представлен в виде:

$$\vec{\varepsilon} = \varepsilon_r \vec{e}_r + \varepsilon_{\varphi} \vec{e}_{\varphi} + \varepsilon_z \vec{e}_z.$$

Используя уравнение динамики вращательного движения относительно центра шара, покажите, что $\varepsilon_r = 0$. Используя полученное равенство, выразите $\dot{\omega}_r$ через $\dot{\varphi}$, v_z и r.

0.20 Записано уравнение динамики вращательного движения относительно центра шара:

$$I\vec{\varepsilon} = [\vec{r} \times \vec{F}].$$

0.10 Указано, что $\varepsilon_r=0$, поскольку $\vec{\varepsilon}\perp\vec{r}$.

0.10 Использовано выражение для компоненты производной $(\vec{\omega})_r$ в цилиндрической системе координат и получено:

$$(\dot{\vec{\omega}})_r = \dot{\omega}_r - \dot{\varphi}\omega_{\varphi}.$$

с Страница 6 из 8 ≈ ∞

0.10 Выражение приведено к нужному виду:

$$\dot{\omega}_r = -\frac{\dot{\varphi} v_z}{r}.$$

D4^{1.20} Комбинируя результаты пунктов D2 и D3, получите зависимости $\omega_r(\varphi)$ и $v_z(\varphi)$. Ответы выразите через v, α, r и φ .

0.20 Комбинация пунктов D2 и D3 приведена к виду:

$$1 = \frac{\omega_r^2}{A^2} + \frac{r^2 \dot{\omega}_r^2}{B^2 \dot{\omega}^2}.$$

0.20 Проведено разделение переменных:

$$d\varphi = -\frac{r}{B} \frac{d\omega_r}{\sqrt{1 - \frac{\omega_r^2}{A^2}}}.$$

Балл ставится даже при неправильном знаке.

0.40 Правильно проведено интегрирование и получено:

$$\omega_r(\varphi) = -A \sin\left(\frac{B\varphi}{Ar}\right)$$

2 ×

0.10 Получен ответ для $\omega_r(\varphi)$ (по 0.1 балла за знак и верные коэффициенты):

$$\omega_r = -\sqrt{\frac{7}{2}} \frac{v \sin \alpha}{r} \sin \left(\sqrt{\frac{2}{7}} \varphi \right).$$

0.20 Получен ответ для $v_z(\varphi)$:

$$v_z(\varphi) = v \sin \alpha \cos \left(\sqrt{\frac{2}{7}} \varphi \right).$$

D5^{0.80} Рассмотрим предельный переход, когда угол $\alpha \to \pi/2$, т.е движение шара до контакта с краем стола происходит практически параллельно ему. Определите проекцию скорости v_z центра шара, а также проекцию его угловой скорости ω_y на ось y, направленную вертикально вниз, в момент отрыва шара от стола. Ответы выразите через v и r. Все численные коэффициенты в ответе должны быть аналитическими, а не приближёнными!

0.10 Определено значение угла φ_1 для указанных начальных условий:

$$\varphi_1 = \arccos\left(\frac{10}{17}\right).$$

0.10 Получен ответ для $v_z(\varphi_1)$:

$$v_z = v \cos\left(\sqrt{\frac{2}{7}}\arccos\left(\frac{10}{17}\right)\right).$$

с Страница 7 из 8 ≈ ∞

0.20 Для проекции угловой скорости ω_y записано:

$$\omega_y = -\omega_r \cos \varphi_1 + \omega_\varphi \sin \varphi_1.$$

0.20 После подстановки ω_r и ω_{φ} получено:

$$\omega_y = \frac{v_0}{r} \left(\sqrt{\frac{7}{2}} \cos \varphi_1 \sin \left(\sqrt{\frac{2}{7}} \varphi_1 \right) - \sin \varphi_1 \cos \left(\sqrt{\frac{2}{7}} \varphi_1 \right) \right).$$

0.20 Получен ответ для ω_{y} :

$$\omega_y = \frac{v_0}{r} \left(\sqrt{\frac{7}{2}} \frac{10}{17} \sin \left(\sqrt{\frac{2}{7}} \arccos \left(\frac{10}{17} \right) \right) - \frac{\sqrt{189}}{17} \cos \left(\sqrt{\frac{2}{7}} \arccos \left(\frac{10}{17} \right) \right) \right).$$