

Mechanics of Materials I: Fundamentals of Stress & Strain and Axial Loading

Dr. Wayne Whiteman Senior Academic Professional and Director of the Office of Student Services Woodruff School of Mechanical Engineering

Module 4 Learning Outcome

 Determine the maximum normal and shear stresses on inclined planes for the case of uniaxial loading

Maximum Normal and Shear Stresses on Inclined Planes for Uniaxial Loading

(For uniaxial loading, the structural member is subjected to simple tension or compression)

By Similar Triangles:

Maximum Normal and Shear Stresses on Inclined Planes for Uniaxial Loading

$$A = \frac{A_t}{\cos \theta}$$

$$\tau = \frac{V}{A}$$

$$V = \tau A = \frac{\tau A_t}{\cos \theta}$$

Maximum Normal and Shear Stresses on Inclined Planes for

$$P \sin \theta - V = 0$$

$$P\sin \theta = V = \frac{\tau A_t}{\cos \theta}$$

$$\tau = \frac{P}{A_t} \left(\sin \frac{\frac{1}{2} \sin 2\theta}{\theta} \cos \theta \right)$$

$$\tau = \frac{P}{2A_t} \sin 2\theta$$

Maximum Normal and Shear Stresses on Inclined Planes for Uniaxial Loading

$$\tau_{_{MAX}}$$
 occurs if $\theta = 45\,^{\circ}$, $135\,^{\circ}$

(Note: The sign of Shear Stress changes for $\theta > 90$ degrees and the Shear Force vector changes direction.)

Worksheet:

For the simple model of the engineering structure shown, the bar BE is a 50 mm diameter round steel bar. You may neglect the weight of the individual members and the wheel in your analysis.

- a) For a transverse cut of the bar, find the normal stress in member BE
- For a non-transverse cut of the bar at an angle of 30 degrees, find the normal stress and the shear stress in member BE

Worksheet: For the simple model of the engineering structure shown, the bar BE is a 50 mm diameter round steel bar. You may neglect the weight of the individual members and the wheel in your analysis. Georgia SOLUTIONS For a transverse cut of the bar, find the normal stress in member BE 0.2 m 0.2 m 0.2 m For a non-transverse cut of the bar at an angle of 30 degrees, find the normal stress and the MEMBER BE shear stress in member BE TRANSUERSE AREA TRANSUERSE CUT IS A 2 FORCE MEMBER A = Tr2 0.3 m Used with permission from "Engineering Mechanics: Statics," McGill/King, 4th Ed, 2003 = 77 (25)2 P=167N FBD $\sigma = \frac{N}{A} = \frac{167}{1963} = 0.085 \frac{KN}{mm^2} (7)$ A+= 1963 mm2 = 85 MPa (T) 50 kN NON- TRANSUERSE CUT 50 KN T= P sin 20 (1) EM = 0 P=167N $-50(0.4) + (\frac{4}{5}) F_{BE}(0.3) - (\frac{3}{5}) F_{BE}(0.2) = 0$ $\sigma = \frac{\rho}{A_4} \cos^2 \theta = \frac{167}{1963} \cos^2 30^\circ$ T= 167 2(1963) Sin[2(30)] FBE = 167 $\sigma = 0.0637 \frac{kN}{T} (T) = 63.7 MPa(T)$ T=0,0368 KN/mm2 $\vec{F}_{BF} = 167 \text{ kN (T)}$ = 36.8 MPa