1 Comentario preliminar

Usamos φ para denotar un elemento arbitrario del alfabeto $\{\#, *\}$. Usamos la notación $f \sim (n, m, \varphi)$ para decir "f es de tipo (n, m, φ) ".

2 Guia 2: Infinituplas

Problem 1 Demostrá por inducción: Para todo $x \in \mathbb{N}$ hay una infinitupla única $\overrightarrow{s} \in \omega^{[\mathbb{N}]}$ tal que

$$x = \prod_{i=1}^{\infty} pr(i)^{s_i}$$

El caso base es trivial. Supongamos que la afirmación se cumple para todo $n \le k$. El teorema fundamental de la aritmética asegura que $k+1=p_1 \cdot \dots \cdot p_m$, donde p_i es primo. Supongamos que la factorización anterior está ordenada (es decir, $p_{j+1} > p_j$ para todo $j \in [1, m]$). Entonces $k+1 = p_m \cdot q$ con $q = p_1 \cdot \dots \cdot p_{m-1}$.

Subdemostración. Demostraremos $k+1=p_m\cdot q\Rightarrow q\leq k$. Supongamos que la premisa se cumple y la consecuencia no. Dado que q>k, tenemos $q\cdot x>k+1$ para todo x>1. Entonces $q\cdot x>k+1$ para todo x que sea primo. Entonces $q\cdot p_m\neq k+1$, lo cual es una contradicción. Entonces, si $k+1=q\cdot p_m$, tenemos $q\leq k$.

Dado que $q \le k$, mediante la hipótesis inductiva, q toma la forma productoria del teorema anterior. Entonces $k+1 = q \cdot pr(j)$ donde $pr(j) = p_m$. Entonces el teorema se cumple para todo $n \in \mathbb{N}$.

Problem 2 Prove that $S = \{(x, @^x) : x \equiv 0 \mod 2\}$ is $\{@\}$ -effectively enumerable.

Prueba corta. Se hace demostrando que S es Σ -efectivamente computable. Esto es fácil: se da un procedimiento que verifica, dado un input (x, α) , si x es par y si $\alpha = @^x$. Demostrando que es Σ -efectivamente computable, demostramos que es Σ -enumerable.

Prueba larga. Damos explícitamente el programa que enumera a S.

Lo hacemos notando que $*^{\leq}$ es Σ -efectivamente computable bajo cualquier orden \leq de Σ , ya que la función es bastante algorítmica por naturaleza. (Si no se convence, escriba el procedimiento efectivo de esta función.) Sea $\mathbb{P}_{\text{número a palabra}}$ el procedimiento que, dado un valor $x \in \omega$, calcula $*^{\leq}(x)$. Entonces definimos \mathbb{P} como el procedimiento que tomando un valor $x \in \omega$ hace lo siguiente:

- (0) Computa $(x)_1, (x)_2$.
- (1) Usa $\mathbb{P}_{\text{número a palabra}}$ para calcular $* \le (x_2)$ y lo guarda en α .
- (2) Comprueba si $(x)_1$ es par; si lo es continúa, si no lo es va a (5)
- (3) Comprueba si $\alpha = \mathbb{Q}^{(x)_1}$. Si lo es, continúa, si no lo es va a (5)
- (4) Devuelve (x_1, α) y termina.
- (5) Devuelve $(0, \varepsilon)$ y termina.

Ejemplo. Considera $\mathbb{P}(6)$. En (0), esto asigna $x_1 = 1$, $x_2 = 1$. La primera palabra en Σ es @. El programa encuentra la tupla (1, @. Como 1 es impar va a (5) y devuelve $(0, \epsilon)$.

Considera la tupla (2, @@@@). Sabemos que existe algún $x \in \omega$ tal que $\mathbb{P}(x) = (2, @@@@)$ (aquí uso la notación matemática de manera flexible). Dado que @@@@ es la cuarta palabra en Σ , x es tal que $x = \langle 2, 4, (x)_3, (x)_4, \ldots \rangle$. Por ejemplo, $2^2 + 3^4 = 85$ o $2^2 + 3^4 + 5^{17} = 762939453210$ satisfarán esto.

3 Guia 4

Problem 3 Si M es una máquina de Turing, entonces δ es una función Σ -mixta.

Se dice que una función es una función Σ -mixta si $\mathcal{D}_f \subseteq \omega^n \times \Sigma^m$ para algunos $n, m \geq 0$ y $I_f \subseteq \omega$ o $I_f \subseteq \Sigma$. La función δ no satisface ninguna de estas propiedades; por ejemplo, su dominio es un conjunto de estados $Q \times \Gamma \not\subseteq \Sigma^{*m}$.

4 **Guías 5 y 6**

Problem 4 Encuentre funciones que definan recursivamente a $R = \lambda t \ [2^t]$.

Seamos claros con los tipos. Pues $R \sim (1,0,\#)$ y la recursión se hará claramente sobre una variable numérica, debemos encontrar $f \sim (0,0,\#)$, $g \sim (2,0,\#)$ tales que R(0)=f y R(t+1)=g(R(t),t). Evidentemente $R(0)=1 \Rightarrow f=C_1^{0,0}$. Puesto que $R(t+1)=2^{t+1}=2^t\times 2$ tenemos que $g=\lambda x \ [2\cdot x] \circ \left[p_1^{2,0}\right]$.

Observación. Aunque g involucra, a fines prácticos, una sola variable numérica, la definimos de modo tal que su dominio es ω^2 . Esto es para respetar los tipos exigidos por la recursión primitiva.

Problem 5 *Lo mismo para R* = λt [t!].

Los tipos de f y g serán igual que en el ejercicio anterior. Pero como esta recursión sí involucra al factor t, el segundo argumento de g ya no será superfluo. Es fácil ver que $f = C_1^{0,0}$. Dado que R(t+1) = t!(t+1) tenemos que

$$g = \lambda xy \left[x \cdot y \right] \circ \left[p_1^{2,0}, Suc \circ p_2^{2,0} \right]$$

(Recuerde que para recursión de función numérica sobre variable numérica, requerimos $R(t+1, \vec{x}, \vec{\alpha}) = g(R(t), t, \vec{x}, \vec{\alpha})$).

Problem 6 Lo mismo para $R = \lambda t x_1 \alpha_1 \alpha_2 [t \cdot x_1]$.

Seamos rigurosos con los dominios y observemos que la f y la g buscadas son tal que $f \sim (1, 2, \#), g \sim (3, 2, \#)$. Es evidente entonces que $f = C_0^{1,2}$. Pues $R(t+1, x, \alpha, \beta) = t \cdot x_1$ tenemos simplemente que

$$g = \lambda x y z \alpha \beta \left[x \cdot y \right] \circ \left[p_2^{3,2}, p_3^{3,2} \right]$$

Problem 7 Sea $\Sigma = \{@, !, ?\}$. Encuentre f, g tales que $R(f, g) = \lambda t x_1 \left[!@!!!!?^t\right]$.

Pues hacemos recursión sobre una variable numérica de $R(f,g) \sim (2,0,*)$, requerimos que $f \sim (1,0,*), g \sim (2,1,*)$. Observe que $R(f,g)(0,x_1) = !@!!!!\varepsilon$. Luego $f = C^{1,0}_{!@!!!!}$. Observe que $R(t+1,x) = !@!!!!?^t?^{t+1} = R(t)?^{t+1}$. Luego

$$g = \lambda \alpha \beta \left[\alpha \beta\right] \circ \left[p_3^{2,1}, \lambda \left[\alpha^x\right] \circ \left[C_{\gamma}^{2,1}, p_1^{2,1}\right]\right]$$

Es fácil observar, reemplazando las variables, que

$$\lambda\alpha\beta\left[\alpha\beta\right]\circ\left[p_{3}^{2,1},\lambda x\alpha\left[\alpha^{x}\right]\circ\left[Suc\circ p_{1}^{2,1},C_{?}^{2,1},\right]\right](t,x,R(t))=R(t)?^{t+1}$$

Problem 8 Si $\Sigma = \{@, !, ?\}$, encuentre f, \mathcal{G} tales que $R(f, \mathcal{G}) = \lambda \alpha_1 \alpha [|\alpha|_1 + |\alpha|_@]$

Otra vez seamos explícitos con los dominios. Pues $R(f,g) \sim (0,2,\#)$ tenemos $f \sim (0,1,\#), g \sim (1,2,\#)$.

Es evidente que $R(f, \mathcal{G}), \alpha_1, \epsilon) = |\alpha|$. Luego $f = \lambda \alpha [|\alpha|]$. Veamos que

$$R(\alpha_1, \alpha a) = \begin{cases} R(\alpha_1, \alpha) & a \neq @ \\ R(\alpha_1, \alpha) + 1 & a = @ \end{cases}$$

Tomando la familia indexada de funciones $\mathcal{G} = \left\{ (!, p_1^{1,2}), (?, p_1^{1,2}), (@, Suc \circ p_1^{1,2}) \right\}$, obtenemos efectivamente que $R(f, \mathcal{G})$.

Problem 9 Encuentre f, G tales que $R(f, G) = \lambda \alpha_1 \alpha [\alpha_1 \alpha]$

Evidentemente, $f = \lambda \alpha [\alpha]$. Pues $R(f, \mathcal{G})(\alpha_1, \alpha a) = \alpha_1 \alpha a$, observamos que $\mathcal{G} = \{a \in \Sigma : (a, d_a \circ p_3^{0,3})\}$. Entonces, es evidente que

$$R(f,\mathcal{G})(\alpha_1,\alpha_2) = \mathcal{G}_a(\alpha_1,\alpha,R(f,\mathcal{G})(\alpha_1,\alpha))$$
$$= (d_a \circ p_3^{3,0})(\alpha_1,\alpha,R(f,\mathcal{G})(\alpha_1,\alpha))$$
$$= R(f,\mathcal{G})(\alpha_1,\alpha)a$$

Por ejemplo, $R(f, \mathcal{G})(!?!, ?@) = R(f, \mathcal{G})(!?!, ?)@ = (R(f, \mathcal{G})(!?!, \varepsilon)?)@ = ((!?!)?)@ = !?!?@.$

tal como deseábamos.

Problem 10 Demuestre que $\mathcal{F} = \lambda x y \alpha \beta \left[\alpha^x = \beta \right]$ es Σ -p.r.

Cuidado con los dominios: $\mathcal{D}_{\mathcal{F}} = \omega^2 \times \Sigma^{*2}$, aunque la variable y de la expresión lambda no sea utilizada. Es fácil ver que

$$\mathcal{F} = \lambda \alpha \beta \left[\alpha = \beta \right] \circ \left[\lambda x \alpha \left[\alpha^x \right] \circ \left[p_1^{2,2}, p_3^{2,2} \right], p_4^{2,2} \right]$$

Problem 11 Demuestre que el conjunto $S = [(x, y, \alpha, \beta, \gamma) \in \omega^2 \times \Sigma^{*3} : x \leq |\gamma|]$ es Σ -p.r.

Observe que

$$\chi_S^{\omega^2 \times \Sigma^{*3}} = \lambda xy \left[x \le y \right] \circ \left[p_1^{2,3}, \lambda \alpha \left[|\alpha| \right] \circ p_5^{2,3} \right]$$

Puesto que λxy $[x \le y]$ es Σ -p.r. y $\lambda \alpha$ $[|\alpha|]$ también, $\chi_S^{\omega^2 \times \Sigma^{*3}}$ es Σ -p.r.

 \therefore S es Σ -p.r.

Problem 12 Sea $\Sigma = [@,?]$. Demuestre que

$$f: \{(x, y, \alpha) : x \le y\} \mapsto \omega$$
$$(x, y, \alpha) \mapsto \begin{cases} x^2 & |\alpha| \le y \\ 0 & |\alpha| > y \end{cases}$$

es Σ -p.r.

Sean

$$S_1 = \{(x, y, \alpha) \in \omega^2 \times \Sigma^* : x \le y \land |\alpha| \le y\}$$

$$S_2 = \{(x, y, \alpha) \in \omega^2 \times \Sigma^* : x \le y \land |\alpha| > y\}$$

Evidentemente, $S_1 \cap S_2 = \emptyset$. Es claro que cada conjunto corresponde a uno de los casos de f, y que $S_1 \cup S_2 = \mathcal{D}_f$.

Ahora bien, la función $f_1:=\lambda xy\alpha\left[x^2\right]$ es evidentemente Σ -p.r. Lo mismo aplica a la función $f_2:=C_0^{2,1}$. Más aún, es fácil probar que S_1,S_2 son Σ -p.r. (esto lo dejamos). Luego, puesto que la restricción de una función Σ -p.r. a un dominio Σ -p.r. es a su vez una función Σ -p.r., tenemos que $f_{1|S_1},f_{2|S_2}$ son Σ -p.r. Luego $f=f_{1|S_1}\cup f_{2|S_2}$ es Σ -p.r.

Problem 13 Pruebe que la función $\lambda x x_1 \left[\sum_{t=1}^{t=x} Pred(x_1)^t \right]$ es Σ -p.r.

- (1) Evidentemente, $\lambda xy \left[Pred(x)^y\right] = \lambda xy \left[x^y\right] \circ \left[Pred \circ p_1^{2,0}, p_2^{2,0}\right]$ es Σ -p.r.
- (2) Considere la función $G := \lambda xyx_1 \left[\sum_{t=x}^{t=y} Pred(x_1)^t \right]$. Pues $Pred(x_1)^t$ es Σ -p.r. sabemos que G es Σ -p.r. Evidentemente, la función del ejercicio es

$$G \circ \left[C_1^{2,0}, p_1^{2,0}, p_2^{2,0}\right]$$

Luego es Σ -p.r.

Problem 14 Lo mismo para $\mathcal{F} := \lambda xyz\alpha\beta \left[\subset_{t=3}^{t=z+5} \alpha^{Pred(z)\cdot t} \beta^{Pred(Pred(|\alpha|))} \right]$

Observe que $\mathcal{D}_{\mathcal{F}} = \{(x, y, z, \alpha, \beta) \in \omega^3 \times \Sigma^{*2} : z \ge 1 \land |\alpha| \ge 2\}$, pues la función Pred no está definida para el valor cero.

(1) Observe que

$$f_{1} := \lambda x y \alpha \beta \left[\alpha^{Pred(x)y}\right] = \lambda x \alpha \left[\alpha^{x}\right] \circ \left[\lambda x y \left[Pred(x).y\right] \circ \left[p_{1}^{2,2}, p_{2}\right], p_{3}^{2,2}\right]$$

$$f_{2} := \lambda x y \alpha \beta \left[\beta^{Pred(Pred(|\alpha|))}\right] = \lambda x \alpha \left[\alpha^{x}\right] \circ \left[Pred \circ \left[Pred \circ \left[\lambda \alpha \left[|\alpha|\right] \circ p_{3}^{2,2}\right]\right], p_{4}^{2,2}\right]$$

Luego

$$f := \lambda x y \alpha \beta [f_1(x, y, \alpha, \beta) f_2(x, y, \alpha, \beta)] = \lambda \alpha \beta [\alpha \beta] \circ [f_1, f_2]$$

es Σ -p.r. Esta es la función que está dentro de la concatenación.

(2) Sea $G := \lambda x y z \alpha \beta \left[\subset_{t=x}^{t=y} f(z,t,\alpha,\beta) \right]$. Sabemos que, dado que f es Σ -p.r., G es Σ -p.r. Ahora bien,

$$\mathcal{F} = G \circ \left[C_3^{3,2}, \lambda x \left[x + 5 \right] \circ p_3^{3,2}, p_3^{3,2}, p_4^{3,2}, p_5^{3,2} \right]$$

Luego \mathcal{F} es Σ -p.r.

Problem 15 Use que $x \in \mathbb{N}$ es primo si y solo si $x > 1 \land ((\forall t \in \omega)_{t \le x} \ t = x \lor \neg (t \mid x))$ para demostrar que $\lambda x [x \text{ es primo }]$ es Σ -p.r.

Definamos $P_1 = \lambda [x > 1]$, $P_2 = \lambda x [(\forall t \in \omega)_{t \le x} t = x \vee \neg (t \mid x)]$. Observe que el predicado $P' = \lambda t x [t = x \vee \neg (t \mid x)]$ es Σ -p.r. (se deja al lector). Pues P' es Σ -p.r. tenemos que $P_2 = \lambda x [(\forall t \in \omega)_{t \le x} P'(t, x)]$ es Σ -p.r. Dado que $\mathcal{D}_{P_1} = \mathcal{D}_{P_2}$ podemos tomar $P = P_1 \wedge P_2$ y P es Σ -p.r. Es evidente que $P = \lambda x [x$ es primo].

Problem 16 Pruebe que $L = \{(x, \alpha, \beta) \in \omega \times \Sigma^{*2} : (\exists t \in \omega) \ \alpha^x = \beta^t \} \ es \ \Sigma - p.r.$

El predicado siendo cuantificado es trivialmente Σ -p.r. y así lo es a su vez ω (pues $\chi_{\omega}^{\omega} = C_1^{1,0}$). Fijemos un elemento arbitrario $(x,\alpha,\beta) \in L$. Pues $\alpha^x = \beta^t$, tenemos dos casos a considerar:

- (1) Si $|\alpha| \le |\beta|$ es necesario que $t \le x$. En este caso la cota de la cuantificación aparece naturalmente. Observe que esto implica que $t \le xk$ para cualquier $k \in \mathbb{N}$ (esto junto con (2) justifica nuestra conclusión).
- (2) Si $|\alpha| > |\beta|$ es necesario que t > x. Operemos bajo este supuesto. Pues $\alpha^x = \beta^t$, tenemos que $|\alpha|x = |\beta|t$. Si $|\beta| \mid |\alpha|$ tenemos $t = (|\alpha|/|\beta|)x$ (siempre que $|\beta| \neq 0$) y esta cantidad es una cota. Si $|\beta| \nmid |\alpha|$, entonces sabemos que $(|\alpha|/|\beta|)x \leq t$ (siempre que $|\beta| \neq 0$). La división entera es o bien positiva o nula.

Si $|\alpha|/|\beta| = 0$ resulta que $0 \le t$, pero la hipótesis $\alpha^x = \beta^t$ inmediatamente implica que t = 0 también. Y si t = 0 entonces no sucede t > x, una contradicción.

Si $|\alpha|/|\beta| > 0$ el hecho de que $(|\alpha|/|\beta|)x \le t$ contradice la hipótesis de que t > x.

Por último, el caso $|\beta| = 0$ junto con $|\alpha| > |\beta|$ y t > x implica x = 0. Pero tenemos que $|\alpha|^0 = 0t \Rightarrow t = 0$, lo cual contradice t > x.

De todo lo anterior se sigue que el único caso válido es aquel donde $|\beta|$ | $|\alpha|$.

 $\therefore t \le (|\alpha|/|\beta|) x$ es una cota para t.

Ahora que dimos con una cota para t, observe que $f = \lambda x \alpha \beta \left[(|\alpha|/|\beta|)x \right]$ es Σ -p.r. (se deja al lector). Luego

$$\chi_L^{\omega \times \Sigma^{*2}} = \lambda x x_0 \alpha \beta \left[(\exists t \in \omega)_{t \leq x} \, \alpha^{x_0} = \beta^t \right] \circ \left[f \,, p_1^{1,2}, p_2^{1,2}, p_3^{1,2} \right]$$

que es Σ -p.r.

Problem 17 Sea $\Sigma = \{@,?\}$. Demuestre que

$$L = \left\{ (x, \alpha, \beta) \in \mathbb{N} \times \Sigma^* \times \Sigma^+ : (\exists \gamma \in \Sigma^*) @\beta@ = \gamma?\alpha?\gamma^R \right\}$$

es Σ -p.r.

- (1) Sea $P_0 = \lambda \alpha \beta \gamma \left[@\beta @ = \gamma ? \alpha ? \gamma^R \right]$. Para demostrar que es Σ -p.r. observe que $\lambda \alpha \left[\alpha^R \right] = R \left(C_{\varepsilon}^{0,2}, \left\{ a \in \Sigma : \left(a, \lambda \alpha \beta \left[\alpha \beta \right] \circ \left[p_3^{0,4}, p_4^{0,4} \right] \right) \right\} \right)$. Pues tomar la recíproca de una palabra es una función Σ -p.r. se sigue fácilmente que P_0 es Σ -p.r.
- (2) Sea $(x, \alpha, \beta) \in L$ un elemento arbitrario. Considere $\gamma \in \Sigma^*$ t.q. $@\beta@ = \gamma?\alpha?\gamma^R$. Evidentemente,

$$|@\beta@| = \gamma?\alpha?\gamma^R \Rightarrow |\beta| + 2 = 2 + 2|\gamma| + |\alpha|$$
$$\Rightarrow |\beta| - |\alpha| = 2|\gamma|$$

Si $|\beta| - |\alpha|$ es par obtenemos que $(|\beta| - |\alpha|)/2$ es una cota. Si es impar entonces $(|\beta| - |\alpha| + 1)/2$ es una cota. Como este último valor es superior a $|\gamma|$ en ambos casos, lo tomamos como la cota de t. Es trivial observar que $\lambda \alpha \beta \left[(|\alpha| - |\beta| + 1)/2 \right]$ es Σ -p.r.

(3) Tenemos entonces que

$$\chi_L^{\omega \times \Sigma^{*2}} = \lambda x \alpha \beta \left[(\exists \gamma \in \Sigma^*)_{|\gamma| \le (|\alpha| - |\beta| + 1)/2} @\beta @ = \gamma? \alpha? \gamma^R \right] \wedge \lambda x \alpha \beta \left[x \ne 0 \land \beta \ne \varepsilon \right]$$

El segundo predicado asegura que respetemos que los elementos de L son de $\mathbb{N} \times \Sigma^* \times \Sigma^+$. Es muy fácil mostrar que el primer predicado en la cojunción es una composición de la cuantificación acotada por un x general (se deja al lector). Esto, combinado con el hecho de que Σ^* (el conjunto sobre el que se hace la cuantificación) y P_0 (el predicado sobre el que se hace la cuantificación) son Σ -p.r., es suficiente para probar que L es Σ -p.r.

Problem 18 Pruebe que

$$L = \left\{ (x, \alpha, \beta) \in \omega \times \Sigma^{*2} : (\exists t \in Im(pr)) \ \alpha^{Pred(Pred(x)) \cdot Pred(|\alpha|)} = \beta^t \right\}$$
 es Σ -p.r.

- (1) Sea $P_0 = \lambda x_0 x_1 \alpha \beta \left[\alpha^{Pred(Pred(x_0)) \cdot Pred(|\alpha|)} = \beta^{x_1} \right]$. Salteamos la prueba de que P_0 es Σ -p.r. porque es mecánica.
- (2) Sabemos que $\chi_L^{\omega \times \Sigma^{*2}}$ es el predicado $P = \lambda x_0 \alpha \beta$ [$(\exists t \in Im(pr)) P_0(x_0, t, \alpha, \beta)$]. Sea $(x_0, \alpha, \beta) \in L$ un elemento arbitrario y $t \in Im(pr)$.

$$\alpha^{(x_0-2)(|\alpha|-1)} = \beta^t \Rightarrow |\alpha|(x_0-2)(|\alpha|-1) = |\beta|t$$

Sea $u = (x_0 - 2)(|\alpha| - 1)$. Si $|\alpha| \le |\beta|$ tenemos que $t \le u$ necesariamente—de otro modo no se satisface $\alpha^u = \beta^t$ — y la cota surge naturalmente.

Veamos el caso $|\alpha| > |\beta|$. Si $|\beta|$ divide a $|\alpha|u$ la cota surge naturalmente. Si $|\beta|$ no divide a $|\alpha|$, $|\alpha| = |\beta|q + r$ con $0 < r < |\beta|$. Luego $|\beta|q + r = |\beta|t$, lo cual es absurdo dado que $r < |\beta|$. Luego el caso $|\beta|$ no divide a $|\alpha|$ es inválido y ni siquiera lo consideramos.

Tomando el caso $|\alpha| > |\beta|$ y $|\beta|$ divide a $|\alpha|$, por ser el que da la cota mayor, obtenemos

$$t \leq (|\alpha| / |\beta|) u$$

(3) Es fácil demostrar que $\lambda x_0 \alpha \beta \left[(x_0 - 2)(|\alpha| - 1) \right]$ es Σ -p.r. En el espíritu de los ejercicios anteriores, ahora sola queda expresar $\chi_L^{\omega \times \Sigma^{*2}}$, con esta cota, como una composición del predicado de cuantificación general (es decir el que tiene como cota una x arbitraria). Se deja esto al lector.