DESCRIPTION

The PT6891 is a single-chip CMOS OLED driver for O/PLED (organic/polymer light emitting diode) passive dot matrix graphic display systems. The PT6891 consists of 96 cathodes (commons) and 128 anodes (segments).

The PT6891 displays data directly from its internal 128x32x3x6 (128x32 RGB dots) GD-RAM (Graphic Data RAM) or 128x96x6 (128x32 Mono dots) GD-RAM (Graphic Data RAM). Data/Commands are sent from the general MCU through parallel interface or serial interface.

The PT6891 reduces the number of external components by including a brightness control function and an on-chip oscillator.

FEATURES

- Supports max. 128 x 32 RGB dot matrix panel
- Supports max. 128 x 96 Mono dot matrix panel
- Power supply to logic system: 1.65V~3.6V
- Power supply to OLED system: 8.0V~18V
- Segment output typical current : 250µA;maximum current: 300µA
- Brightness control
- Program gamma table
- Programmable frame rate
- Crosstalk compensation
- Interface

Parallel interface: 8080-series command (8 bits) / data (8 bits)

Serial interface: 3 wire SPI interface / 4 wire SPI interface / I2C interface

- Embedded 128x32x3x6 (128x32 RGB dots) SRAM for image buffer
- COG or Gold Bump dice are available

BLOCK DIAGRAM

APPLICATION EXAMPLE

Note:

- 1. In serial interface, D[7:3], WR# and RD# are connected to ground or VDD.
- 2. Capacitance 0.1uF ~ 10uF

V1.4 2 March 2016

CONTENTS

	ORDER INFORMATION	
	PIN CONFIGURATION	
3.	PIN DESCRIPTIONFUNCTION BLOCK DESCRIPTION	t
4.	4.1 COMMAND DECODER AND COMMAND INTERFACE	
	4.1 COMMAND DECODER AND COMMAND INTERPACE	
	4.3 OSCILLATOR CIRCUIT	
	4.4 VOLTAGE / CURRENT CONTROL BLOCK	
	4.5 GRAPHIC DATA RAM	
	4.6 SEG(SEGMENT) CURRENT SOURCE	
_	4.7 COM(COMMON) DRIVER	9
5. 6	COMMAND TABLE	10 13
0.	6.1 SOFT RESET COMMAND	
	6.2 STANDBY COMMAND	
	6.3 WAKE-UP COMMAND	
	6.4 INT PIN ENABLE COMMAND (DEFAULT VALUE=0H)	
	6.5 CLOCK DIVIDER COMMAND (DEFAULT VALUE=0H)	
	6.6 OSC TRIMMING COMMAND (DEFAULT VALUE=8H)	
	6.7 COLOR MODE COMMAND (DEFAULT VALUE=0H)	
	6.8 GAMMA TABLE COMMAND	
	6.9 ROW ADDRESS SETTING CMMAND (DEFAULT VALUE=00H)	
	6.10 COLUMN ADDRESS SETTING COMMAND (DEFAULT VALUE=00H)	
	6.11 RETURN LENGTH SETTING COMMAND (DEFAULT VALUE=7FH)	
	6.12 DISPLAY DATA WRITE/READ COMMAND	
	6.13 DISPLAY ON/OFF COMMAND (DEFAULT VALUE=0H)	
	6.14 VERTICAL AND HORIZONTAL MIRROR COMMAND (DEFAULT VALUE=0H)	
	6.15 GRAPHIC ACCELERATION ENABLE COMMAND (DEFAULT VALUE=0H)	
	6.16 GRAPHIC ACCELERATION MODE COMMAND (DEFAULT VALUE=0H)	24
	6.17 ACCELERATION FRAME SETTING COMMAND (DEFAULT VALUE=0H)	26
	6.18 ACCELERATION START/END ROW SETTING COMMAND (DEFAULT VALUE GA_SR=0H / GA_ER=1FH)	
	6.19 BLACK-WHITE INVERSION COMMAND (DEFAULT VALUE=0H)	27
	6.20 OVERLAP MODE COMMAND (DEFAULT VALUE = 0H)	
	6.21 SEGMENT OUTPUT TYPE COMMAND (DEFAULT VALUE=0H)	27
	6.22 SEG EVEN/ODD SWAP COMMAND (DEFAULT VALUE=0H)	28
	6.23 VOLTAGE/ CURRENT CONTROL COMMAND (DEFAULT VALUE CE= 0H, IRE=0H, DAC=5H)	
	6.24 SET BRIGHTNESS DECREASE COMMAND (DEFAULT VALUE=00H)	
	6.25 BRIGHTNESS COMMAND (DEFAULT VALUE=7FH)	
	6.26 COMPENSATION THRESHOLD COMMAND	
	6.27 COMPENSATION PULSE THRESHOLD COMMAND (DEFAULT VALUE = 42H)	
	6.28 PWM DECREASE ENABLE COMMAND (DEFAULT PE3, PE2, PE1, PE0 =0H)	
	6.29 PWM DECREASE TABLE COMMAND	
	6.30 CATHODE SCAN DIRECTION COMMAND (DEFAULT VALUE = 0H)	
	6.31 ANODE TRIMMING COMMAND (DEFAULT VALUE = 8H)	
	6.32 PRE-CHARGE PERIOD COMMAND (DEFAULT=AH)	
	6.33 PRE-CHARGE CURRENT COMMAND (DEFAULT VALUE=3H)	
	6.34 ALL-ZERO BLANK MODE COMMAND (DEFAULT VALUE = 0H)	
	6.35 COM PULSE WIDTH COMMAND (DEFAULT VALUE=06H)	
	6.36 COM NUMBER COMMAND (DEFAULT VALUE=1FH)	
	6.37 DISPLAY ROW START COMMAND (DEFAULT VALUE=00H)	
	6.38 DISPLAY COLUMN START COMMAND (DEFAULT VALUE=00H)	
	6.39 COM OUTPUT DELAY MODE COMMAND (DEFAULT VALUE = 0H)	
	6.40 BLACK / BLANK PERIOD COMMAND (DEFAULT VALUE=AH)	
	6.41 DUMMY SCAN COMMAND (DEFAULT VALUE=0H)	38

6.42 TESTMOD ENABLE COMMAND	38
6.43 DRIVER OUTPUT TEST MODE COMMAND (DEFAULT VALUE=0H)	39
6.44 TEST RGB DATA (DEFAULT VALUE=0H)	40
6.45 CLOCK OUTPUT TEST MODE (DEFAULT VALUE=0H)	41
6.46 PARAMETER READ TEST MODE	
6.47 READ SCAN COM ORDER	43
7. ABSOLUTE MAXIMUM RATING	
B. DC CHARACTERISTICS	
9. AC CHARACTERISTICS	
9.1 WRITE CHARACTERISTICS FOR THE 8080 SERIES MPU	
9.2 READ CHARACTERISTICS FOR THE 8080 SERIES MPU	
9.3 WRITE COMMAND TIMING WHEN RS=0, PARAMETER/WRITE DATA TIMING WHEN RS=1 FOR THE 8080 SERI	
9.4 READ COMMAND TIMING WHEN RS=0, READ DATA TIMING WHEN RS=1 FOR THE 8080 SERIES MPU	
9.5 SERIAL PERIPHERAL INTERFACE (SPI-3WIRE) CHARACTERISTICS	49
9.6 SERIAL PERIPHERAL INTERFACE(SPI-4WIRE) CHARACTERISTICS	
9.7 SERIAL PERIPHERAL INTERFACE	
9.8 I ² C WAVEFORM	
9.9 SEG / COM WAVEFORM	53
9.10 VDD AND VHA POWER SEQUENCE TIMING	54
9.11 POWER-ON AND RESET TIMING	54
9.12 MINIMUM LOW-ACTIVE PULSE WIDTH REQUIRED FOR RES# PIN	54
9.13 STANDBY ABOUT DISABLE-MODE ON ANALOG BLOCKS	54
10. PAD CONFIGURATION	
11. PAD LOCATION	
MPORTANT NOTICE	65

1.ORDER INFORMATION

Valid Part Number	Package Type	Top Code
PT6891	COG	-

2. PIN CONFIGURATION

V1.4 5 March 2016

3. PIN DESCRIPTION

I=Input, O=Output, IO=Bi-directional (input/output), P=Power pin, A=Analog pin

Pin Name	Pin Type	lirectional (input/output), P=Power pin, A=Analog pin Description
I III ITAIIIC	i iii i ype	When internal oscillator is disabled (LOW in CKSEL pin), the pin is the input pin for
		external clock source.
CLK_EXT	I	When internal oscillator is enabled (HIGH in CKSEL pin), this pin is not used and should
		, , , ,
		be connected to ground.
CKCEL		This pin is internal clock enable.
CKSEL	l I	When this pin is pulled HIGH, the internal oscillator is enabled.
15.17		When this pin is pulled LOW, the internal oscillator is disabled
INT	0	INT signal that is used to synchronize MCU.
		This pin is low-active reset input.
RES#	l 1	When the pin is LOW, the chip is reset.
112011		When chip is reset, oscillator is enabled, anode driver outputs are LOW and all control
		registers are set to default values, and the memory content would not be reset.
		This pin is MCU interface selection input.
		When BS[1:0] is "00", SPI (4-wire) interface be selected.
BS[1:0]	I	When BS[1:0] is "01", SPI (3-wire) interface be selected.
		When BS[1:0] is "10", I ² C interface be selected.
		When BS[1:0] is "11", Parallel(8080) interface be selected.
00"		This pin is the chip select input. The chip is enabled for MCU communication only when
CS#	I	CS# is pulled LOW.
		This pin is Data/Command control pin.
		When the pin is pulled LOW, the data at D[7:0] will be treated as a command.
RS		When the pin is pulled HIGH, the data at D[7:0] will be treated as a command. When the pin is pulled HIGH, the data at D[7:0] is treated as a parameter. For detail
No	'	
		relationship of MCU interface signals, please refer to the Timing Characteristics
		Diagrams. This pip is write control of MCLL interface. Data write operation is performed when this
WD#		This pin is write control of MCU interface. Data write operation is performed when this
WR#	l I	pin is pulled LOW and the CS# is LOW.
		When SPI mode is used, WR# must be connected to VDD or GND.
DD#		This pin is read control of MCU interface.
RD#	I	When this pin is pulled LOW and the CS# is LOW, Data read operation is performed.
		When SPI mode is used, RD# must be connected to VDD or GND.
		These pins are 8-bit bi-directional data bus to be connected to the microprocessor's data
		bus.
		When SPI mode is selected, D[2] will be the serial data output (SDO), D[1] will be the
D[7:0]	10	serial data input (SDI) and D[0] will be the serial clock input (SCK). When SPI mode is
5[0]		used, D[7] ~ D[3] must be connected to VDD or GND.
		When I2C mode is selected, D[2] will be the serial data output (SDAOUT), D[1] will be
		the serial data input (SDAIN) and D[0] will be the serial clock input (SCK). When serial
		mode is used, D[7] ~ D[3] must be connected to VDD or GND.
SEG[127:0]	0	These pins are anode outputs.
COM[95:0]	0	These pins are cathode outputs.
		When this pin is LOW, the chip would function normally.
TEST_EN	I(PL)	When this pin is HIGH, the chip is in test mode for scan-chain test and MBIST. In normal
		mode. This pin could be left open.
TOOAN EN	I/DL)	When this pin is LOW, the chip would function normally.
TSCAN_EN	I(PL)	This pin is used in scan-test mode. In normal mode, it can be left open.
	I(PL)	When this pin is connected to GND, the embedded regulator (3.3V to 1.8V) is enabled.
LDO_DIS	-()	When this pin is connected to VDD, the regulator is disabled.
VRO	Р	This pin is regulator voltage output pin. When LDO_DIS is GND, VRO output 1.8V.
		This is reference current pin. A resistor (typical 100KΩ) connected between this pin and
IREF	Α	ground determines the reference current for anode driver. When register "IRE"=1, IREF
		ground determines the reference current for anode driver, when register like =1, IREF

V1.4 6 March 2016

Pin Name	Pin Type	Description
		pin will be used.
V18	Р	This is 1.8V power input pin for core logic circuit. If regulator is enabled (GND in LDO_DIS pin), this pin connected to VRO pin. If regulator is disabled (VDD in LDO_DIS pin), this pin is connected to external 1.8V power.
VDD	Р	This is Logic power input.
GND	Р	This is ground pin for power domain (VDD, V18).
VHA	Р	This is the most positive voltage supply pin of the chip to drive anode. It is supplied externally.
VHC	Р	This is the most positive voltage supply pin of the chip to drive cathode. It is supplied externally.
PGNDA	Р	It is ground pin for power domain (VHA, VHC).

V1.4 7 March 2016

4. FUNCTION BLOCK DESCRIPTION

4.1 COMMAND DECODER AND COMMAND INTERFACE

The command decoder decodes the command/data sent by MPU. Data is interpreted based upon the input of the RS pin. Whenever RS been pulled to logic "LOW", the input D[7:0] would be interpreted as a command.

4.2 MPU INTERFACE

Function PIN	BS[1:0]	CS#	RS	WR#	RD#	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
SPI(4wire)	00	CS#	RS				-	Tie VD	D / Tie	GND	SDO(OUT)	SDI(IN)	SCK
SPI(3wire)	01	CS#					•	Tie VD	D / Tie	GND	SDO(OUT)	SDI(IN)	SCK
I ² C	10	Tie VDD / Tie GND	SA0	SA1	SA2		-	Tie VD	D / Tie	GND	SDA(OUT)	SDA(IN)	SCK
Parallel(8080)/Write	11	CS#	RS	WR#	VDD					D[7:	:0]		
Parallel(8080)/Read	11	CS#	RS	VDD RD# D[7:0]									

MPU PARALLEL 8080-SERIES INTERFACE

The Parallel interface consists of 8 bi-directional data pins (D[7:0]), RD#, WR#, RS and CS#. A rising edge of RD# serves as a data read signal. A rising edge of WR# serves as a data write signal.

When RS is LOW, D[7:0] should be treated as a command. When RS is HIGH, the D[7:0] should be treated as data.

MPU SERIAL PERIPHERAL INTERFACE(SPI-4wire)

The serial peripheral interface consists of serial clock (SCK), serial input data SDI(IN), serial output data SDO(OUT), RS and CS#. SDI is shifted into an 8-bit shift register on every rising edge of SCL in the order of b7, b6, ..., b0. When RS is LOW, "b7~b0" should be treated as a command. When RS is HIGH, "b7~b0" should be treated as data.

MPU SERIAL PERIPHERAL INTERFACE(SPI-3wire)

The serial peripheral interface consists of serial clock (SCK), serial input data SDI(IN), serial output data SDO(OUT), and CS#. SDI is shifted into an 9-bit shift register on every rising edge of SCL in the order of b8, b7, b6, ..., b0. When "b8" is LOW, "b7~b0" should be treated as a command. When "b8" is HIGH, "b7~b0" should be treated as data.

MPU I2C INTERFACE

The I²C interface consists of serial clock (SCK), serial input data (SDAIN), and serial output data (SDAOUT). SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of b7, b6, ..., b0. "RD#,WR#,RS" is I²C slave address A2.A1.A0.So I²C slave address is (60h~67h).

4.3 OSCILLATOR CIRCUIT

The below is an On-Chip LOW power RC oscillator circuitry. The oscillator generates the system clock for the chip.

The oscillator is not affected by RES# pin or software reset command. "OSC TRIMING COMMAND" can be adjusted OSC frequency.

4.4 VOLTAGE / CURRENT CONTROL BLOCK

This block is used to divide the incoming power sources into the different levels of internal use voltage and current. VHA, VHC, and VDD are external power supplies.

V1.4 8 March 2016

4.5 GRAPHIC DATA RAM

The Graphic Data RAM (128x3x32x6/ 128x96x6, 15.48KB) is used as a graphic buffer that could be loaded 128x32 mono-dots image.

4.6 SEG(SEGMENT) CURRENT SOURCE

SEGMENT(anode) current source drives deliver 128 current sources to drive OLED panel. It uses current source to drive the anode Cell where the driving current can be adjusted by brightness controller.

4.7 COM(COMMON) DRIVER

COMMON(cathode) gate drives deliver 96 channels to drive OLED panel.

The common voltage is generated by embedded high-voltage regulator whose output level is controlled by 3-bit control register (DAC[2:0]). If the high-voltage regulator is disabled, an external power supply is needed.

V1.4 9 March 2016

5.COMMAND TABLE

												Response		
Command	Byte	D7	D6	D5	D4	D3	D2	D1	D0	Description	Default	Scan	No	
Software Reset	1 st	1	0	1	0	0	1	0	1	Reset chip to initial condition	-	Real	scan -time	
Standby	1 st	0	1	0	0	1	0	0	1	Enter Standby mode.	-	Next Frame	Next HSYNC	
Wake-up	1 st	1	0	1	0	1	0	1	0	Exit Standby mode.	0	-		
INT Setting	1 st	0	1	0	0	0	0	1	INT	INT=1 Enable	0h	Next Frame	Next HSYNC	
Clock Divider	1 st	0	1	0	0	0	1	DIV	[1:0]	TPWMCLK = 1 X TOSC(DIV=00) TPWMCLK = 2 X TOSC(DIV=01) TPWMCLK = 4 X TOSC(DIV=10) TPWMCLK = 8 X TOSC(DIV=11)	0h	Real	-time	
OSC Trimming	1 st 2 nd	0	1 *	0	0	1	1	0	0	OSC trimming	8h	Real	-time	
Color Mode	1 st	0	0	1	1	0	0	1[3:0] CM	[1:0]	CM=00 (RGB: 666; 262K colors) CM=01 (RGB: 565; 65K colors) CM=10 (Mono; 64 gray) CM=11 (Mono; 2 gray)	0h	Next frame	Next HSYNC	
Green Gamma	1 st	0	0	1	0	1	0	0	0	G Gamma table setting		Next	Next	
Table	2 nd		1	ı	D[7:	0] ^{Note}	ı	ı	1	- Canning table conting		frame	HSYNC	
Blue Gamma Table	1 st 2 nd	0	0	1	0 D[7:	1 0] ^{Note}	0	0	1	B Gamma table setting		Next frame	Next HSYNC	
Red	1 st	0	0	1	0	1	0	1	0	D. Common table actions		Next	Next	
Gamma Table	2 nd				D[7:	0] ^{Note}				R Gamma table setting		frame	HSYNC	
Gamma Table Update	1 st	0	0	1	0	1	0	1	1	Gamma table update		Next frame	Next HSYNC	
Row Address	1 st	1	0	0	0	0	0	0	0	Start of row address for 128x32-	00h	Real	-time	
Setting	2 nd	*		l	F	RA[6:0	0]	l	1	dot image				
Column Address Setting	1 st 2 nd	1	0	0	0	0 :A[6:0	0	0	1	Start of column address for 128x32-dot image	00h	Real-time		
Return Length	1 st	1	0	0	0	0	0	1	0			_		
Setting	2 nd	*			F	RL[6:0)]			Length of pixels to Return	7Fh	Real	-time	
Display Data Write	1 st	1	0	0	0	0	0	1	1	To Write graphic data	-	Real-time		
Display Data Write	2 nd		1	Wri	te Da	ita D[7:0]	T	1	Write Data	-	Real-time		
Display Data Read	1 st	1	0	0	0	0	1	0	0	To Read graphic data	-	Real-time		
Display Data Read	2 nd			Rea	ad Da	ıta D[7:0]			Read Data	-	Real	-time	
Display ON/OFF	1 st	0	1	0	1	1	0	B1	В0	Display ON/OFF setting	B0=0 B1=0	Next frame	Next HSYNC	
Vertical and Horizontal Mirror	1 st	0	1	1	0	1	0	Н	V	Rotate display image V=1, Vertical mirroring H=1, Horizontal mirroring	H=0 V=0	Next frame	Next HSYNC	
Graphic Acceleration Enable	1 st	0	1	1	1	0	0	0	GE	Graphic Acceleration enable	0h	Next frame	Next HSYNC	

V1.4 10 March 2016

												Resp	onse
Command	Byte	D7	D6	D5	D4	D3	D2	D1	D0	Description	Default	Scan	No
	4 et		4	4	4	_	_	4					scan
Graphic Acceleration Mode	1 st	*	*	*	GH	GV	O	GA[2:0]		Graphic Acceleration Setting GA[2:0] = 000: Horizontal Scroll 001: Vertical Scroll 010: Horizontal and Vertical Scroll 011: Fade Out 100: Blinking 101: Zoom In 110~111: No active GH=0, Left- Horizontal Scroll GH=1, Right- Horizontal Scroll GV=0, Top- Vertical Scroll GV=1, Bottom- Vertical Scroll	Oh	Next frame	Next HSYNC
Acceleration	1 st	0	1	1	1	0	0	1	1	Set time interval for each step	0h	Next	Next
Frame Setting	2 nd				GA_F		Γ			GA_FN[7:0] : N frames	_	frame	HSYNC
Acceleration	1 st 2 nd	0	1	1	1	0	6.01	0	0		GA_SR =0h	Novt	Novt
Acceleration Start/End Row	3 rd	*				_SR[_ER[Graphic Acceleration Setting	GA_ER =1Fh	Next frame	Next HSYNC
Black-White Inversion	1 st	0	1	1	1	1	0	0	BW	Black-white inverse	0h	Next frame	Next HSYNC
Overlap Mode	1 st	1	0	1	1	0	0	0	ОМ	OM=0, low-overlap mode OM=1, high-overlap mode	0h	Next frame	Next HSYNC
SEG Output Type	1 st	1	0	1	1	0	0	1	SQ	SEG0~SEG159 output type SQ=0: (COM _{3n} , COM _{3n+1} , COM _{3n+2}) is RGB SQ=1: (COM _{3n} , COM _{3n+1} , COM _{3n+2}) is BGR	0h	Next frame	Next HSYNC
SEG EVEN/ODD	1 st	1	0	1	1	0	1	0	0	SEG EVEN/ODD swap	0h	Next	Next
Swap	2 nd	*	*	*	*	*	*	*	SE	SEG EVEN/ODD swap	Un	frame	HSYNC
Voltage/ Current Control	1 st		IRE	*	*	*		0 AC[2:	- I	"if CE = 0; COM voltage by pin""VHC"" if CE = 1; COM voltage by DAC setting. COM voltage= 0.72 ~ 0.86 (VHA)" if IRE=1, to use external referenct current.	CE=0 IRE=0 DAC =5h	Real	-time
COMP_BRI	1 st	1	0	1	1	0	1	1	1	Set Brightness decrease table		Real	-time
_	2 nd					0] ^{Note}		I	1				
	1 st	1	0	1	1	1	0	0	0		7Fh	Next	Next
	2 nd	*			В	RR[6:	:0]			Control segment output current		frame	HSYNC
Brightness	3 rd	*			ВІ	RG[6	:0]			BRR[6:0]: R-Brightness BRG[6:0]: G-Brightness BRB[6:0]: B-Brightness	7Fh	7Fh Next N	
	4 th	*			В	RB[6:	_	П	1	Driversia Dispraises	7Fh	Next frame	Next HSYNC
Compensation Threshold	1 st 2 nd	1	0	1	1 TH[7:0]	0	1	0	Set threshold of compensation	-	Next Frame	Next HSYNC
Compensation	1 st	1	0	1	1	1	0	1	1	Set pulse threshold of	42h	Next	Next

V1.4 11 March 2016

												Response	
Command	Byte	D7	D6	D5	D4	D3	D2	D1	D0	Description	Default	Scan	No
· · · ·	and				ODT	· 1							scan
Pulse Threshold	2 nd 1 st	4	_		CPT			۱ ،		compensation		Frame	HSYNC
PWD Enable	2 nd	1 *	0 *	1 *	1 *	0 DE4	1 PE3	1 DE2	0 PE1	Set PWM decrease enable	0h	Next Frame	Next HSYNC
	1st	1	0	1	1	1	0	0	1			Next	Next
PWD_Table	2 nd	'	U	-	PWC	•	U		<u>'</u>	Set PWM decrease table	-	Frame	HSYNC
Cathode Scan Direction	1 st	1	0	1	1	1	1	0	CD	CD: COM Scan direction	0h	Next Frame	Next HSYNC
2.1.00.1.01	1st	1	0	1	1	1	1	1	0				1
Anode Trimming	2 nd	*	*	*	*		AT[3.01		Anode Current Trimming	8h	Real	-time
- O	1st	1	1	0	0	1	0	0	0	Pre-charge period		N	
Pre-Charge Period	2 nd	*	*	*	*			3:0]		PR[3:0]: pre-charge	Ah	Next frame	Next HSYNC
Due Obsesses	1 st	1	1	0	1	0	0	0	0	Pre-charge Current		Marit	Maria
Pre-Charge Current	2 nd	*	*	*	*	*	*	PC[l	PC[1:0]: pre-charge current	3h	Next frame	Next HSYNC
All-zero Blank Mode	1 st	1	1	0	0	1	1	0	ZB	ZB=1, enable	0	Next frame	Next HSYNC
	1 st	1	1	0	1	1	0	0	0				
COM Pulse	2 nd			С	OM_	W[7:	0]			COM pulse period	06h	Next	Next
Width	3 rd	*	*	*	*	*	*	*	[8]			Frame	HSYNC
COM Number	1 st	1	1	1	0	0	0	0	0	Number of Common	1Fh	Next	Next
	2 nd	*				M_N		ı	ı	Namber of Common		frame	HSYNC
Display Row	1 st 2 nd	1	1	1	0	0	0	0	1	Display row address	00h	Next	Next
Setting	1 st		4	4	0	R[6:	_	1				frame	HSYNC
Display Column Setting	2 nd	1	1	1	_	0 C[6:0	0	1	0	Display column address	00h	Next frame	Next HSYNC
· ·	1st	1	1	1	0	0	0	1	1	To set odd Common driver output		Hame	HOTING
Common Delay Mode	2 nd	*	*	*	*	*	*	D1	D0	delay time when low-overlap mode is selected	00h	Next frame	Next HSYNC
	1 st	1	1	1	0	0	1	0	1			Next	Next
Blank Period	2 nd	Bla	ack[2	:01		Bla	ank[4	:01	I	Black / Blank period	Ah	frame	HSYNC
Dummy Scan	1 st	1	1	1	0	0	1	1	DS	Dummy scan enable	0h	Next frame	Next HSYNC
	1st	1	1	0	0	0	1	0	0			Hame	111011110
TESTMOD	2 nd	0	1	0	1	0	1	0	1	TSTMOD enable			
Enable	3 rd	1	0	1	0	1	0	1	0	TM=0 disable	0h	Real	-time
	4 th	0	0	0	0	0	0	0	TM	TM=1 enable			
Driver Output	1 st	1	1	0	0	0	0	0	0	To control driver output for testing	00h	Real	timo
Test Mode	2 nd	T7	T6	T5	T4	Т3	T2	T1	T0	To control driver output for testing	OON	Kear	-ume
Test RGB data	1 st	1	1	0	0	0	0	0	1	Reserved for testing	00h	Real-time	
	2 nd	4			_	7:0]			· ·	<u> </u>			
Clock Output	1 st 2 nd	1	1	0	0	0	1	0	1	Reserved for testing	00h	Real-time	
Test Mode	1st	0 1	0	0	0	0	1	0	0 0	CO: Enable output			
Parameter Read	2nd	1	ı		Read	 Data			U	Parameter read	-	Real	-time
Read Scan Com	1st	1	1	0	0	1	1	1	1			_	
Order	2nd				Read	Data	a			Parameter scan com order	-	Real	-time

Notes

V1.4 12 March 2016

^{1. *=}Don't Care

^{2 &}quot;Regulator OFF"

6. COMMAND DESCRIPTION

6.1 SOFT RESET COMMAND

Byte informa	tion	RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
Software Reset	1 st	1	0	0	1	0	1	0	0	1	0	1	Soft Reset

This command reset all logic circuit. Memory content would not be changed.

6.2 STANDBY COMMAND

Byte informa	tion	RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
Standby	1 st	1	0	0	0	1	0	0	1	0	0	1	Enter standby mode

6.3 WAKE-UP COMMAND

Byte informa	ation	RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
Wake-up	1 st	1	0	0	1	0	1	0	1	0	1	0	Exit standby mode

The sequence of actions after entering standby mode is: SEG=ALL Low, COM=ALL High → Oscillator disabled.

After MCU issued Standby command, the Standby command will take effect in the next frame. Before the chip enter standby mode, the chip would not accept any other command.

When entering standby mode, the chip will be switched to display off mode (Type_1 OFF) automatically. After wake-up, display state would stay at "Type_1 OFF" mode.

The content of graphic RAM and control registers remain.

In standby mode, only the wake-up command is acceptable. When the chip exits standby mode, it take about 30µs for the internal oscillator to produce stable clock signal. The MCU must wait 50µs to send another command otherwise the command would be decoded with error.

In standby mode, low of RES# cannot reset the chip.

The following figure illustrates the standby and wakeup.

V1.4 13 March 2016

6.4 INT PIN ENABLE COMMAND (DEFAULT VALUE=0H)

Byte Informa	Byte Information		WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
INT Setting	1 st	1	0	0	0	1	0	0	0	0	1		INT=1 Enable INT=0, INT pin output stuck at LOW

This command enables or disables the INT pin. When INT pin is disabled, the pin output is stuck at low. The INT is a frame synchronized signal, and appears at the first line of every frame.

The duty of INT is one line time set by "COM Pulse Width".

6.5 CLOCK DIVIDER COMMAND (DEFAULT VALUE=0H)

Byte Information		RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
INT Setting	1 st	1	0	0	0	1	0	0	0	1	DIV	[1:0]	TPWMCLK = 1 X Tosc(DIV=00) TPWMCLK = 2 X Tosc(DIV=01) TPWMCLK = 4 X Tosc(DIV=10) TPWMCLK = 8 X Tosc(DIV=11)

This command is setting PWMCLK frequency. PWMCLK period (T_{PWMCLK}) is selected by DIV[1:0]. Exmaple: When command is setting(DIV=00), the Clock (PWMCLK) period is 1 X T_{OSC} , T_{OSC} =1/ F_{OSC} .

V1.4 14 March 2016

6.6 OSC TRIMMING COMMAND (DEFAULT VALUE=8H)

Byte Informa	ation	RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
OSC	1st	1	0	0	0	1	0	0	1	1	0	0	
Trimming	2nd	1	0	1	*	*	*	*	-	TRIN	1[3:0]	

This command can be adjusted OSC frequency.

6.7 COLOR MODE COMMAND (DEFAULT VALUE=0H)

Byte Informat	tion	RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
Color Mode	1 st	1	0	0	0	0	1	1	0	0	CM[[1:0]	Display Color mode CM=00 (RGB: 666; 262K colors) CM=01 (RGB:565; 65K colors) CM=10 (Mono; 64 gray) CM=11 (Mono; 2 gray)

This command set the Color mode.

For CM=00 (RGB: 666; 262K colors) mode is selected, and 1 pixel consists of 18 bits. To support max. 128 x 32 RGB dot matrix panel.

For CM=01 (RGB: 565; 65K colors) mode is selected, and 1 pixel consists of 16 bits. To support max. 128 x 32 RGB dot matrix panel.

For CM=10, (Mono mode; 64 Gray) mode is selected, and 1 pixel consists of 6 bits. To support max. 128 x 96 Mono dot matrix panel.

For CM=11, (Mono mode; 2 Gray) mode is selected, and 1 pixel consists of 1 bits. To support max. 128 x 96 Mono dot matrix panel.

If "Color mode command" be change, the parameters will be set to default value, "COM_N[6:0]", "DR[6:0]", "GA_SR[6:0]", "GA_ER[6:0]".

V1.4 15 March 2016

6.8 GAMMA TABLE COMMAND

Byte Informatio	n	RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function	
	1 st	1	0	0	0	0	1	0	1	0	0	0		
Green Gamma Table	2 nd	1	0	1				D[7	7:0] ^{Note}				G Gamma table setting	
	N^{th}	1	0	1				D[7	7:0] ^{Note}					
	1 st	1	0	0	0	0	1	0	1	0	0	1		
Blue Gamma Table	ble 2 nd 1 0 1 D[7:0] ^{Note} E					B Gamma table setting								
	N^{th}	1	0	1				D[7	7:0] ^{Note}					
	1st	1	0	0	0	0	1	0	1	0	1	0		
Red Gamma Table	2 nd	1	0	1	D[7:0] ^{Note} R G						R Gamma table setting			
	N^{th}	1	0 1 D[7:0] ^{Note}											
Gamma Table Update	1 st	1	0	0	0 0 1 0 1 0 1 Gamma table update					Gamma table update				

Note: D[7:0]=to access data by MCU Bus Mode.

When the Color mode is "10" (Mono; 64 gray) or "11" (Mono; 2 gray), the chip only used R Gamma table setting.

DEFAULT VALUES OF GAMMA LEVELS

For G Gamma table (colors mode-RGB666), B Gamma table (colors mode-RGB666), R Gamma table (colors mode-

RGB666), G Gamma table (colors mode-RGB565), Mono mode (64 Gray)

Gamma Table No.	Default Value	Gamma Table No.	Default Value
Level_1	0X01	Level_33	0X21
Level_2	0X02	Level_34	0X22
Level_3	0X03	Level_35	0X23
Level_4	0X04	Level_36	0X24
Level_5	0X05	Level_37	0X25
Level_6	0X06	Level_38	0X26
Level_7	0X07	Level_39	0X27
Level_8	0X08	Level_40	0X28
Level_9	0X09	Level_41	0X29
Level_10	0X0A	Level_42	0X2A
Level_11	0X0B	Level_43	0X2B
Level_12	0X0C	Level_44	0X2C
Level_13	0X0D	Level_45	0X2D
Level_14	0X0E	Level_46	0X2E
Level_15	0X0F	Level_47	0X2F
Level_16	0X10	Level_48	0X30
Level_17	0X11	Level_49	0X31
Level_18	0X12	Level_50	0X32
Level_19	0X13	Level_51	0X33
Level_20	0X14	Level_52	0X34
Level_21	0X15	Level_53	0X35
Level_22	0X16	Level_54	0X36
Level_23	0X17	Level_55	0X37
Level_24	0X18	Level_56	0X38
Level_25	0X19	Level_57	0X39
Level_26	0X1A	Level_58	0X3A
Level_27	0X1B	Level_59	0X3B
Level_28	0X1C	Level_60	0X3C
Level_29	0X1D	Level_61	0X3D
Level_30	0X1E	Level_62	0X3E
Level_31	0X1F	Level_63	0X3F
Level_32	0X20		

V1.4 16 March 2016

For B Gamma table (colors mode-RGB565) as same as B Gamma table (colors mode-RGB666), R Gamma table (colors mode-RGB565) as same as R Gamma table (colors mode-RGB666)

Gamma Table No.	Default Value
Level_2	0X02
Level_4	0X04
Level_6	0X06
Level_8	0X08
Level_10	0X0A
Level_12	0X0C
Level_14	0X0E
Level_16	0X10
Level_18	0X12
Level_20	0X14
Level_22	0X16
Level_24	0X18
Level_26	0X1A
Level_28	0X1C
Level_30	0X1E
Level_32	0X20
Level_34	0X22
Level_36	0X24
Level_38	0X26
Level_40	0X28
Level_42	0X2A
Level_44	0X2C
Level_46	0X2E
Level_48	0X30
Level_50	0X32
Level_52	0X34
Level_54	0X36
Level_56	0X38
Level_58	0X3A
Level_60	0X3C
Level_62	0X3E

For Mono mode -- R Gamma table (2 Gray):

1 01 1110110 111040 11 00	41111111 (2 O 1 a) / .
Gamma Level No.	Default Value
Level_1	0X01

V1.4 17 March 2016

This command is used to configure the Gamma table. By this table, the pixel data are mapped to corresponding width pulses of segment drivers' output. The range of pulse width is 1 to 256 PWMCLK. The written Gamma table data must be monotonically increased. If the written Gamma table values do not increase monotonically, the setting is not valid and discarded.

The new set table takes effect at the start of next frame.

The "Common Pulse Width" has higher priority than "Gamma-level". If Gamma-level ≥ com_pulse_width, the segment PWM output width (of Gamma-level) would be equal to "COM Pulse Width − Blank Period".

The required number of bytes following the command is 2, for mono mode(2 gray).

The required number of bytes following the command is 63, for G Gamma table (colors mode-RGB666), B Gamma table (colors mode-RGB666), R Gamma table (colors mode-RGB666), G Gamma table (colors mode-RGB565), Mono mode (64 Gray), B Gamma table (colors mode-RGB565), R Gamma table (colors mode-RGB565).

Before next "CS#=L", "RS=H", and "rising WR#" appear, if the sent number of bytes exceeds the range of requirement, the excess data is discarded.

When "CS#=L", "RS=H", and "rising WR#" appear, if the number of bytes is less than the required number then the data is not accepted.

After right number of data is received, the new table data would be loaded on next frame.

D7	D6	D5	D4	D3	D2	D1	D0	Function
		Gam	nma	data	a[7:0	1		8 bits bus / gamma data
			_	_	-	•		Serial interface(D7~D0)

There are 256 levels for segment driver's output pulse (1~256 PWMCLK):

L7	L6	L5	L4	L3	L2	L1	L0	Segment Pulse Duration
0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	1	2
0	0	0	0	0	0	1	0	3
0	0	0	0	0	0	1	1	4
:	:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:	:
1	1	1	1	1	1	1	0	127
1	1	1	1	1	1	1	1	256

Please refer to "SEG /COM waveform".

While MCU configuring Gamma table, the CS# can either go high after command-writing or parameter-writing (Figure a), or stay low during all the command time (Figure b).

While MCU configuring Gamma table, if the number of parameter bytes sent by the MCU are not enough, the all data are discarded, Figure c.

V1.4 18 March 2016

Example for Mono mode(2 Gray) table and MCU bus mode is '11' is as the following figures:

Figure a. CS# can go high after a command-writing/parameter-writing.

Data is dropped because the data bytes (2 bytes for non-gray mode) is not enough.

c. Failure example of Mono (2Gray) Gamma-level

The chip responds to new settings at the beginning of a new frame after "Gamma Table update" command are sent. The behavior is illustrated by the following figure:

V1.4 19 March 2016

6.9 ROW ADDRESS SETTING CMMAND (DEFAULT VALUE=00H)

Byte Informat	ion	RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
Row Address	1 st	1	0	0	1	0	0	0	0	0	0	0	Set the Dew address start of the image
Setting	2 nd	1	0	1	*			R	:A[6:0	0]			Set the Row address start of the image.

[&]quot;Row address" can be the value of 0 to 31 for color mode.

6.10 COLUMN ADDRESS SETTING COMMAND (DEFAULT VALUE=00H)

Byte Information		RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
Column Address	1 st	1	0	0	1	0	0	0	0	0	0	1	Set the column address of the
Setting	2 nd	1	0	1	*			C	A[6:0)]			image.

[&]quot;Column address" can be the value of 0 to 127 for color mode and mono mode(64-Gray).

6.11 RETURN LENGTH SETTING COMMAND (DEFAULT VALUE=7FH)

Byte Informat	tion	RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
Return Length	1 st	1	0	0	1	0	0	0	0	0	1	0	D
Setting	2 nd	1	0	1	*			F	RL[6:0)]			Return Length setting

These commands are for MCU to read/write image to graphic data RAM (GDRAM).

The image that MCU can write/read is a 128x32 RGB-pixel image. The "row address" and "column address" define the start pixel position of image where the MCU would read/write image data. The "return length" defines the number of pixels in a line that MCU could read/write.

6.12 DISPLAY DATA WRITE/READ COMMAND

Byte Informati	on	RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
Display Data Write	1 st	1	0	0	1	0	0	0	0	0	1	1	Display Data Write
Display Data Write	2 nd	1	0	1			Wri	te Da	ta D[7:0]			Write graphic data to RAM
Display Data Read	1 st	1	0	0	1	0	0	0	0	1	0	0	Display Data Read
Display Data Read	2 nd	0	1	1	1 Read Data D[7:0] Read graphic data from the RAM.								

Graphic RAM has 128x32 pixels (18 bits/1 pixel) for color mode(RGB666).

Graphic RAM has 128x32 pixels (16 bits/1 pixel) for color mode(RGB565).

Graphic RAM has 128x96 pixels (6 bits/1 pixel) for mono mode(64 gray).

Graphic RAM has 128x96 pixels (1 bit/1 pixel) for mono mode(2 gray).

V1.4 20 March 2016

[&]quot;Row address" can be the value of 0 to 95 for mono mode.

[&]quot;Column address" can be the value of 0, 8, 16..., 120 for mono mode(2-Gray).

[&]quot;Return Length" can be the value of 0 to 127 for color mode and mono mode(64-Gray).

[&]quot;Return Length" can be the value of 0, 8, 16..., 120 for mono mode(2-Gray).

When MCU reads or writes pixel(color mode(RGB666)=3 bytes) in normal mode, the address pointer would increase 1 automatically.

When MCU reads or writes pixel(color mode(RGB565)=2 bytes) in normal mode, the address pointer would increase 1 automatically.

When MCU reads or writes pixel(mono mode(64 gray)= 1 byte) in normal mode, the address pointer would increase 1 automatically.

When MCU reads or writes pixel(mono mode(2 gray)= 1 byte) in normal mode, the address pointer would increase 8 automatically.

This RAM data Read/Write in RGB / Mono mode.

vi data		.,							
	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]/SDA	D[0]/SCK	Function
1 st	*	*				R[5	5:0]		8 bits bus/color mode(RGB666)
2 nd	*	*				G[5	5:0]		Serial interface(D7~D0)/color
3 rd	*	*				B[5	5:0]		mode(262k colors)
1 st			R[4:0]				G[5:3]		8 bits bus/color mode(RGB565)
2 nd	,	⊃[].O.O.					D[4.O]		Serial interface(D7~D0)/color mode
2110	١ '	G[2:0]	l				B[4:0]		(262k colors)
1 st	*	*				DATA	A[5:0]	•	8 bits bus/mono mode(64 Gray)
1 st	P7	P6	P5	P4	P3	P2	P1	P0	8 bits bus/mono mode(2 Gray)

If the pixels of a line travel across the line boundary, the pixel position return to the beginning of the line and continue to traverse the line till the number of pixels satisfy. Then, the pixel position goes to the "column start" of the next line. The following 3 figures illustrate the behavior.

Example: for color mode(RGB666), write data: 00h, 01h, ..., 0Bh

CMD 83) (DAT 00) (DAT 01) (DAT 02) (DAT 03) (DAT 04) (DAT 05) (DAT 06) (DAT 07) (DAT 08) (DAT 09) (DAT 0A) (DAT 0B)

V1.4 21 March 2016

Example: for color mode(RGB565), write data: D0_A, D0_B, ..., D4_A, D4_Bh RGB565(R[4:0], G[5:0], B[4:0]) be transferred to RGB666(R[4:0],1'b0, G[5:0], B[4:0], 1'b0).

Example: mono mode(64 gray), write data: 00h, 01h, ..., 0Bh

V1.4 22 March 2016

Example: mono mode(2 gray), write data: D1, D2

D1[2] D1[1] D1[0] D2[7] D2[6] D2[5] D2[4] D2[3] D2[2] D2[1] D2[0]		D1[0]	D1[1]	D1[2]	D1[3]	D1[4]	D1[5]	D1[6]	D1[7]
---	--	-------	-------	-------	-------	-------	-------	-------	-------

V1.4 23 March 2016

6.13 DISPLAY ON/OFF COMMAND (DEFAULT VALUE=0H)

Byte informa	Byte information		WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
Display ON/OFF	1 st	1	0	0	0	1	0	1	1	0	B1	ВО	(B1, B0)= 00: Type_1 OFF 01: Type_2 OFF 10: All ON 11: Normally display

This command sets the display ON/OFF behavior.

(B1, B0)	Function
"00" (Type 1 OFF)	All segment outputs are low,
"00" (Type_1 OFF)	All common outputs are high.
"01" (Type 2 OFF)	All segment outputs are low
"01" (Type_2 OFF)	All common scan normally.
"40" (ALL ON)	All segment outputs are high
"10" (ALL ON),	All common scan normally.
"11" (Normally Display)	The chip scans normally.

6.14 VERTICAL AND HORIZONTAL MIRROR COMMAND (DEFAULT VALUE=0H)

Byte Information		RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
Vertical and Horizontal Mirror	1 st	1	0	0	0	1	1	0	1	0	Н	V	Rotate display image V=1, Vertical mirroring
													H=1, Horizontal mirroring

This command is vertical / horizontal mirroring for display image data.

6.15 GRAPHIC ACCELERATION ENABLE COMMAND (DEFAULT VALUE=0H)

Byte Information		RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
Graphic Acceleration Enable	1 st	1	0	0	0	1	1	1	0	0	0	GE	GE=1, Graphic Acceleration enable

6.16 GRAPHIC ACCELERATION MODE COMMAND (DEFAULT VALUE=0H)

Byte Informa	ation	RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
	1 st	1	0	0	0	1	1	1	0	0	1	0	Graphic Acceleration Setting
													GA[2:0] =
													000: Horizontal Scroll
Graphic													001: Vertical Scroll
Acceleration	2 nd	1	0	1	*	*	*	GH	CV		A[2:0	1 1	010: Horizontal and Vertical Scroll
Mode		'	U	1				ВΠ	G۷	٦	A[2.0	[ر	011: Fade Out
													100: Blinking
													101: Zoom In
													110~111: No active

GA[2:0]=000 : Horizontal Scroll. For the continuous horizontal scroll function, the display scroll one column at each GA_FN frames.

V1.4 24 March 2016

GA[2:0]=001 : Vertical Scroll. For the continuous Vertical scroll function, the display scroll one row at each GA_FN frames.

GA[2:0]=010: Horizontal and Vertical Scroll. For the continuous Horizontal and Vertical scroll function, the display scroll one row and column at each GA_FN frames.

GH=0, Left - Horizontal Scroll. GH=1, Right - Horizontal Scroll.

GV=0, Top - Vertical Scroll. GV=1, Bottom - Vertical Scroll.

V1.4 25 March 2016

Under Zoom in mode, one row of display contents is expanded into two rows on the display.

6.17 ACCELERATION FRAME SETTING COMMAND (DEFAULT VALUE=0H)

Byte Informa	tion	RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
Acceleration	1 st	1	0	0	0	1	1	1	0	0	1	1	Set time interval for each step
Frame setting	2 nd	1	0	1			G	A_F	N[7:	0]			GA_FN[7:0] : N+1 frames

V1.4 26 March 2016

6.18 ACCELERATION START/END ROW SETTING COMMAND (DEFAULT VALUE GA_SR=0H / GA_ER=1FH)

Byte Informat	ion	RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
	1 st	1	0	0	0	1	1	1	0	1	0	0	Set start/end row for graphic acceleration
Acceleration Start / End Row	2 nd	1	0	1	*			GA_	_SR[6:0]			mode GA_SR[6:0] : Start row
Start / End Row	3 rd	1	0	1	*			GA_	_ER[6:0]			GA_SR[6:0] : Start Tow GA_ER[6:0] : End row

The command be must condition, "GA_SR[6:0] <= GA_ER[6:0]".

6.19 BLACK-WHITE INVERSION COMMAND (DEFAULT VALUE=0H)

Byte Informat	ion	RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
Black-White	1 st	1	0	0	0	1	1	1	1	0	0	_	Y=0, Normal
Inversion	1	1	U	U	0	!	'	1	1	0	0	I	Y=1, black-white inversion

When this command sets Y=1, the pixel will be black-white inverted. The inverted pixel data is 1's complement of original pixel data.

6.20 OVERLAP MODE COMMAND (DEFAULT VALUE = 0H)

Byte Informa	ation	RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
Overlap	1 st	1	0	0	1	0	1	1	0	0	0	МО	

This command sets the type of cathode output.

Setting	Туре
M=1	High-overlap
M=0	Low-overlap

Please refer to "SEG / COM waveform" for timing diagram.

6.21 SEGMENT OUTPUT TYPE COMMAND (DEFAULT VALUE=0H)

Byte Information	n	RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
SEG Output Type	st	1	0	0	1	0	1	1	0	0	1	ა (SEG0~SEG127 output type SQ=0: (COM _{3n} , COM _{3n+1} , COM _{3n+2}) is RGB SQ=1: (COM _{3n} , COM _{3n+1} , COM _{3n+2}) is BGR

This command sets the type of Segment output.

For SQ=0, the color type of (COM_{3n}, COM_{3n+1}, COM_{3n+2}) is "RGB"

For SQ=1, the color type of (COM_{3n}, COM_{3n+1}, COM_{3n+2}) is "BGR".

For Mono_mode, SEG Output Type is invalid.

V1.4 27 March 2016

6.22 SEG EVEN/ODD SWAP COMMAND (DEFAULT VALUE=0H)

Byte Informat	ion	RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
SEG	1 st	1	0	0	1	0	1	1	0	1	0	0	OF 4 5)/5N / ODD -:
EVEN/ODD Swap	2 nd	1	0	1	*	*	*	*	*	*	*	SE	SE=1, EVEN / ODD pin swap.

When SE=0,

V1.4 28 March 2016

6.23 VOLTAGE/ CURRENT CONTROL COMMAND (DEFAULT VALUE CE= 0H, IRE=0H, DAC=5H)

Byte Informa	ation	RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
Voltage/	1 st	1	0	0	1	0	1	1	0	1	0		If CE = 0; COM voltage by pin "VHC" If CE = 1; COM voltage by DAC setting.
Current Control	2 nd	1	0	1	CE	IRE	*	*	*	DA	AC[2:		COM voltage= 0.72 ~ 0.86 (VHA)"

The common voltage is generated by embedded high-voltage regulator (DAC) whose output level is controlled by 3-bit control register (DAC[2:0]).

During blank period, the output voltage of anode and cathode are the same. If register CE = 0, the voltage is provided by external supplier; If CE = 1, the voltage provided by embedded high-voltage regulator whose voltage is controlled by this register.

DAC[2:0]	Common Voltage
0	0.72 x VHA
1	0.74 x VHA
:	
5	0.82 x VHA
6	0.84 x VHA
7	0.86 x VHA

If IRE = 1, the current of anodes provided by external current source pin(IREF) whose reference current is controlled by this register.

6.24 SET BRIGHTNESS DECREASE COMMAND (DEFAULT VALUE=00H)

Byte Informa	ation	RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
	1 st	1	0	0	1	0	1	1	0	1	1	1	
COMP DDI	2 nd	1	0	1	*	BF	R1[2	:0]	*	BF	R0[2:	0]	Set Brightness decrease table
COMP_BRI	3 rd	1	0	1	*	BF	R3[2	:0]	*	BF	R2[2:	0]	PE4 is enable
	N th	1	0	1	*				*				

This command set brightness decrease table for compensation, When PE4 is enable. BR0 is brightness decrease of com0. BR1 is brightness decrease of com1, ... and BR95 is brightness decrease of com95.

6.25 BRIGHTNESS COMMAND (DEFAULT VALUE=7FH)

Byte Informa	ation	RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
	1 st	1	0	0	1	0	1	1	1	0	0	0	set segment output current
Driahtass	2 nd	1	0	1	*			BF	RR[6	:0]			BRR[6:0]: R-Brightness
Brightness	3 rd	1	0	1	*			BF	RG[6	:0]			BRG[6:0]: G-Brightness
	4 th	1	0	1	*			BF	RB[6	:0]			BRB[6:0]: B-Brightness

This command set the segment output current. The larger current makes higher brightness of panel. In mono-mode, The brightness is only using BRR[6:0].

V1.4 29 March 2016

6.26 COMPENSATION THRESHOLD COMMAND

Byte Informati	ion	RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
	1 st	1	0	0	1	0	1	1	1	0	1	0	
	2 nd	1	0	1				TH	[7:0]				
Compensation	3 rd	1	0	1				TH2	[7:0]				Set threshold of compensation
Threshold	4 th	1	0	1				TH	3[7:0]				·
	5 th	1	0	1				TH4	[7:0]				

Default Values of Threshold of compensation:

Threshold No.	Default Value
TH1[7:0]	50
TH2[7:0]	100
TH3[7:0]	125
TH4[7:0]	128

TH1~TH4 value be must condition, "0 < TH1 < TH2 < TH3 < TH4 <= 128".

6.27 COMPENSATION PULSE THRESHOLD COMMAND (DEFAULT VALUE = 42H)

Byte Information	on	RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
	1 st	1	0	0	1	0	1	1	1	0	1	1	
Compensation Pulse Threshold	2 nd	1	0	1				CP	Γ[7:0]				Set pulse threshold of compensation

The command is setting pulse threshold for compensation. If PWM pulse is smaller than this threshold, the PWM pulse will be not compensation of "PWM decrease table" when the PE3 of "PWM Decrease Enable" is enable.

6.28 PWM DECREASE ENABLE COMMAND (DEFAULT PE3, PE2, PE1, PE0 =0H)

Byte Information	on	RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
Compensation	1 st	1	0	0	1	0	1	1	0	1	1	0	Cat DWM degrades anable
Enable	1	0	1	1	*	*	*	*	PE4	PE3	PE2	PE1	Set PWM decrease enable

The command is setting PWM decrease enable for crosstalk issue. The case1 pattern is black-bar on the line. The case2 pattern is gray-bar on the line. The line B will be compensation.

PE1 is "1", this is enable case1 compensation by PWD_table.

PE2 is "1", this is enable case2 compensation by PWD table.

PE3 is "1", this is enable of pulse threshold compensation.

PE4 is "1", this is enable of brightness compensation.

V1.4 30 March 2016

6.29 PWM DECREASE TABLE COMMAND

Byte Informa	ation	RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
	1 st	1	0	0	1	0	1	1	1	0	0	1	
DWD Table	2 nd	0	1	1	F	WD_1	[3:0]		ı	PWD.	_0[3:0]	O at DIMAN Is a second at the
PWD_Table	3 rd	0	1	1	F	WD_3	3[3:0]		ı	PWD.	_2[3:0]	Set PWM decrease table
	4 th	0	1	1		*			ı	PWD.	_4[3:0]	

Default Values of PWD table:

Gray Level Counter	Threshold No.	Default Value	Decrease Pulse Width
0~H1	PWD_0[3:0]	0000	0 PWMCLK
(TH1+1)~H2	PWD_1[3:0]	0001	1 PWMCLK
(TH2+1)~H3	PWD_2[3:0]	0010	2 PWMCLK
(TH3+1)~H4	PWD_3[3:0]	0011	3 PWMCLK
(TH4+1)~28	PWD_4[3:0]	0100	4 PWMCLK

PWD table decrease pulse width= PWD_N x PWMCLK.

6.30 CATHODE SCAN DIRECTION COMMAND (DEFAULT VALUE = 0H)

Byte Information		RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
Cathode Scan Direction	1 st	1	0	0	1	0	1	1	1	1	0	CD	CD: COM Scan direction

This command set the cathode scan mode.

CD (Scan Direction)	Description
0	From the COM0 to COMn
1	From the COMn to COM0

V1.4 31 March 2016

IN MONO_MODE:

CD = 0, V = 1, H = 0

CD = 1, V = 1, H = 0

V1.4 32 March 2016

IN COLOR_MODE:

CD = 0, V = 0, H = 0

CD = 0, V = 1, H = 0

CD = 1, V = 0, H = 0

CD = 1, V = 1, H = 0

V1.4 33 March 2016

6.31 ANODE TRIMMING COMMAND (DEFAULT VALUE = 8H)

Byte Informa	tion	RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
Anode	1 st	1	0	0	1	0	1	1	1	1	1	0	Anode Current Trimming
Trimming	2 nd	1	0	1	*	*	*	*		ΑT	[3:0]		Anode Current Trimming

This command set trimming current of anode.

6.32 PRE-CHARGE PERIOD COMMAND (DEFAULT=AH)

Byte Information	n	RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
Pre-charge	1 st	1	0	0	1	1	0	0	1	0	0	0	Dro charge period
Period	2 nd	1	0	1	*	*	*	*		PR[3:0]		Pre-charge period

This command sets the duration of pre-charge time (0~15 x 4 PWMCLK). PR[3:0]: pre-charge time, default "Ah". Please refer to "SEG /COM waveform".

6.33 PRE-CHARGE CURRENT COMMAND (DEFAULT VALUE=3H)

Byte Information	n	RDB	WRB	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
Pre-charge	1 st	1	0	0	1	1	0	1	0	0	0	0	Pre-charge current select
Current	2 nd	1	0	1	*	*	*	*	*	*	PC[1:0]	

This command set the pre-charge current to be below table.

PC	Pre-Charge Current	$I_{\text{seg7F}} = 250 \mu A$
"11"	(I _{seg7F} X 2) (µA)	$(250 X 2) = 500 (\mu A)$
"10"	(I _{seg3F} Χ 2) (μΑ)	$(125 X 2) = 250 (\mu A)$
"01"	(I _{seg1F} Χ 2) (μΑ)	$(62.5 \times 2) = 125 (\mu A)$
"00"	(I _{seg0F} X 2) (μA)	(31.25 X 2) =62.5 (µA)

V1.4 34 March 2016

6.34 ALL-ZERO BLANK MODE COMMAND (DEFAULT VALUE = 0H)

Byte Informat	tion	RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
All-zero Blank Mode	1 st	1	0	0	1	1	0	0	1	1	0	ZB	ZB=1, enable

While enabling this mode (ZB = 1), there is no scan (blank) for the line with all-zero data.

V1.4 35 March 2016

6.35 COM PULSE WIDTH COMMAND (DEFAULT VALUE=06H)

Byte Informa	tion	RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
COM Dulas	1 st	1	0	0	1	1	0	1	1	0	0	0	
COM Pulse	2 nd	1	0	1			С	OM_	W[7	:0]			Determine COM pulse width
Width	3 rd	1	0	1	*	*	*	*	*	*	*	[8]	

This command sets the low-active duration of all common driver outputs. The minimum pulse duration is 65 PWMCLK and the maximum duration is 576 PWMCLK.

If Gray-level ≥ com_pulse_width, the segment PWM output width (of Gamma-level) would be equal to "COM Pulse Width – Blank Period".

			СО	M_W[8:0]				COM pulse width period
0	0	0	0	0	0	0	0	0	65 PWMCLK
0	0	0	0	0	0	0	0	1	66 PWMCLK
0	0	0	0	0	0	0	1	0	67 PWMCLK
0	0	0	0	0	0	0	1	1	68 PWMCLK
:	:	:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:	:	:
1	1	1	1	1	1	1	1	0	575 PWMCLK
1	1	1	1	1	1	1	1	1	576 PWMCLK

Please refer to "SEG /COM waveform".

6.36 COM NUMBER COMMAND (DEFAULT VALUE=1FH)

Byte Informa	tion	RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
СОМ	1 st	1	0	0	1	1	1	0	0	0	0	0	2 5
Number	2 nd	1	0	1	*			CO	M_N	[6:0]			Setting Row numbers

The "COM Number" set the lines number to be displayed.

The "COM number" value of 0 to 31 map to 1 ~ 32 rows that is displayed to panel for color-mode

The "COM number" value of 0 to 95 map to 1 ~ 96 rows that is displayed to panel for Mono-mode.

6.37 DISPLAY ROW START COMMAND (DEFAULT VALUE=00H)

Byte Information		RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
Display Row Start	1 st	1	0	0	1	1	1	0	0	0	0	1	Chart of any address for display
	2 nd	1	0	1	*	DR[6:0]							Start of row address for display

[&]quot;Display Row start" can be the value of 0 to 31 for color mode.

V1.4 36 March 2016

[&]quot;Display Row start" can be the value of 0 to 95 for mono mode.

6.38 DISPLAY COLUMN START COMMAND (DEFAULT VALUE=00H)

Byte Information		RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
Display Column	1 st	1	0	0	1	1	1	0	0	0	1	0	Stort of column address for display
Start	2 nd 1 0 1 * DC[6:0]							Start of column address for display					

The "Display Row Start" and "Display Column Start" set the start position of pixel to be displayed.

160x43 RGB-Dots Image Area

6.39 COM OUTPUT DELAY MODE COMMAND (DEFAULT VALUE = 0H)

Byte Information	n	RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
COM Output	1 st	1	0	0	1	1	1	0	0	0	1	1	To set delay between odd and even bits of
Delay Mode	2 nd	1	0	1	*	*	*	*	*	*	D1	D0	cathode driver

When Low-overlap mode is selected, this command could set the delay time of even common output relative to odd common outputs.

(D1, D0)	Delay Time (T _{PWMCLK} X 4)
'00'	0
'01'	1
'10'	2
'11'	3

V1.4 37 March 2016

[&]quot;Display Column start" can be the value of 0 to 127.

6.40 BLACK / BLANK PERIOD COMMAND (DEFAULT VALUE=AH)

Byte Informa	tion	RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
Dlank Dariad	1 st	1	0	0	1	1	1	0	0	1	0	1	Dlook / Dlook period
Blank Period	2 nd		0	1	Bla	ack[2	2:0]		Bla	ınk[4:0]			Black / Blank period

This command sets the black (Black) duration (0~7 x 4 PWMCLK) of all segment driver outputs.

This command sets the blank (Blank) duration (4~31 x 4 PWMCLK) of all common driver outputs. When "Blank" is setting less than 4, it is invalid command.

Please refer to "SEG /COM waveform".

6.41 DUMMY SCAN COMMAND (DEFAULT VALUE=0H)

Byte Information	n	RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
Dummy Scan	1 st	1	0	0	1	1	1	0	0	1	1	DS	DS=1, dummy scan be enable

There is an additional dummy scan followed by a frame of display scan. In the period of dummy scanning, all commons output HIGH and all anodes output LOW.

6.42 TESTMOD ENABLE COMMAND

Byte Informa	tion	RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
	1 st	1	0	0	1	1	0	0	0	1	0	0	
TESTMOD	2 nd	1	0	1	0	1	0	1	0	1	0	1	TSTMOD enable
Enable	3 rd	1	0	1	1	0	1	0	1	0	1	0	TM=0 disable TM=1 enable
	4 th	1	0	1	0	0	0	0	0	0	0	ТМ	

If "TM" be setting from "1" to "0", the parameters will be set to default value, "T[7:0]", "TEST_RGB[7:0]", "CO".

V1.4 38 March 2016

6.43 DRIVER OUTPUT TEST MODE COMMAND (DEFAULT VALUE=0H)

Byte Informa	tion	RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
Driver Output	1 st	1	0	0	1	1	0	0	0	0	0	0	
Test Mode		-	U	U	ı	-	0	U	U	0	0	U	
Mode	2 nd	1	0	1	T7	T6	T5	T4	Т3	T2	T1	ТО	TSTMOD(TM=1) must be enable

This command configures the segment drivers' outputs and common drivers' outputs for test purpose. For (T2, T1, T0)="000", Normal mode.

For (T2, T1, T0)="001", all segment outputs and common outputs are LOW.

For (T2, T1, T0)="010", all segment outputs and common outputs are HIGH. Please PR[3:0] be set to "0h", before this command be setting.

For (T2, T1, T0)="011", all segment drivers are High-impedance, and common drivers scan normally for cathode testing.

For (T2, T1, T0)="100", all segment drivers are High-impedance, and common drivers are controlled by MCU via serial interface. In '100' mode, the MCU interface is switched to serial mode automatically.

For (T2, T1, T0)="101", segment drivers and common drivers are controlled by MCU via serial interface. In '101' mode, the MCU interface is switched to serial mode automatically.

For (T2, T1, T0)="110", segment drivers and common drivers are controlled by MCU via serial interface; the segments always output pre-charge current. In '110' mode, the MCU interface is switched to serial mode automatically.

For (T2, T1, T0)="111", segment drivers, and the bias circuit are disabled; common drivers is all High (H-overlap) or Low(L-overlap).

The following table is summary of (T2, T1, T0):

(T2, T1, T0)	Segment Driver	Common Driver	Bias Circuit
"000"	Normally scan	Normally scan	Enabled
"001"	All Low	All Low	Enabled
"010"	All High	All High	Enabled
"011"	High-Impedance	Normally scan	Disabled
"100"	High-Impedance	MCU serial input	Enabled
"101"	MCU serial input	MCU serial input	Enabled
"110"	MCU serial input	MCU serial input	Enabled
"111"	High-Impedance	all High(H-overlap) or all Low(L-overlap)	Disabled

If T7=1, all segment drivers are disabled.

T7	Segment Driver
0	Normal
1	High-impedance

If T6=1, all common drivers are disabled.

Т6	Common Driver
0	Normal
1	all High(H-overlap) or all Low(L-overlap)

V1.4 39 March 2016

If T5=1, the bias circuit is disabled.

T5	Bias Circuit
0	Enabled
1	Disabled

The input timing for Mode='100', '101' and '110' are specified by following figures(D[1] will force SDIN, D[0] will force to SCK):

If T3=1, Graphic Data RAM out will be "TESTRGB data" replace.

If T4=1, D7-D0, INT will be setting to output mode and value is bit0 of "TESTRGB data".

6.44 TEST RGB DATA (DEFAULT VALUE=0H)

Byte Information	n	RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
Test RGB	1 st	1	0	0	1	1	0	0	0	0	0	1	TSTMOD(TM=1) must be enable.
data	2 nd	1	0	1		D[7:0]							Reserved for testing

If T4=1, D[7:0], INT is value for test output pads.

V1.4 40 March 2016

6.45 CLOCK OUTPUT TEST MODE (DEFAULT VALUE=0H)

Byte Informat	ion	RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function		
Clock Output	1 st	1	0	0	1	1	0	0	0	1	0	1	TSTMOD(TM=1) must be enable.		
Test Mode	2 nd	1	0	1	0	0	0	0	0	0	0	СО	Reserved for testing		

If CO=1, the INT pin could output clock signal.

When CO=1, the output clock signal could be OSC clock signal Divide 2 (If Fosc =3.3MHz, measure F_{INT} = 3.3MHz / 2 = 1.65MHz).

6.46 PARAMETER READ TEST MODE

Byte Informa	Byte Information		WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function	
Parameter	1 st	1	0	0	1	1	0	0	1	1	1	0		
Read	2 nd	0	1	1		Read Data				a			Deed representation date	
	Nrd	0	1	1			Read Data						Read parameter data.	

This command configures the parameter data outputs for test purpose.

Read Byte	Register
0	INT
1	DIV[1:0]
2	TRIM[3:0]
3	СМ
4	RA[7:0]
5	CA[7:0]
6	RL[7:0]
7	B1,B0
8	H,V
9	GE
10	GA[2:0]
11	GA_FN[7:0]
12	GA_SR[7:0]
13	GA_ER[7:0]
14	BW
15	ОМ
16	SQ
17	SE
18	CE, IRE,3'b0,DAC[2:0]
19	BRR[6:0]
20	BRG[6:0]
21	BRB[6:0]
22	TH1[7:0]
23	TH2[7:0]
24	TH3[7:0]
25	TH4[7:0]
26	CPT[7:0]
27	PE4,PE3, PE2, PE1
28	PWD_1[3:0],PWD0[3:0]

V1.4 41 March 2016

Read Byte	Register
29	PWD_3[3:0],PWD2[3:0]
30	4'b0,PWD4[3:0]
31	CD
32	AT[3:0]
33	PR[3:0]
34	PC[1:0]
35	ZB
36	COM_W[7:0]
37	COM_W[8]
38	COM_N[7:0]
39	DR[7:0]
40	DC[7:0]
41	D1,D0
42	Black[2:0],Blank[4:0]
43	DS
44	TM
45	TD[7:0]
46	TEST_RGB[7:0]
47	СО
48	1'b0,BR1[2:0],1'b0,BR0[2:0]
:	1'b0,BR3[2:0],1'b0,BR2[2:0]
94	:
95	1'b0,BR95[2:0],1'b0,BR94[2:0]
96	Green_LEVEL1[7:0]
:	Green_LEVEL2[7:0]
156	:
157	Green_LEVEL62[7:0]
158	Green_LEVEL63[7:0]
159	Blue_LEVEL1[7:0]
:	Blue_LEVEL2[7:0]
219	:
220	Blue_LEVEL62[7:0]
221	Blue_LEVEL63[7:0]
222	Red_LEVEL1[7:0]
:	Red_LEVEL2[7:0]
282	:
283	Red_LEVEL62[7:0]
284	Red_LEVEL63[7:0]

V1.4 42 March 2016

6.47 READ SCAN COM ORDER

Byte informa	tion	RD#	WR#	RS	D7	D6	D5	D4	D3	D2	D1	D0	Function
Read Scan	1 st	1	0	0	1	1	0	0	1	1	1	1	
Com Order	2 nd	0	1	1			F	Read	Dat	а			

This command is reading scan com order number. The read data is 0~95, when color mode (COM_N=31) or mono mode (COM_N=95).

SEG

V1.4 43 March 2016

7. ABSOLUTE MAXIMUM RATING

(Unless otherwise stated, Ta=25°C)

Parameter	Symbol	Min.	Max.	Unit
Supply voltage	V _{HA}	-0.3	+24	V
Supply voltage	V_{DD}	-0.3	+6.0	V
I/O pin voltage	V _X	-0.3	V _{DD} +0.3	V
Junction temperature	Tj	-40	+85	°C
Storage temperature	Tstg	-40	+150	°C
		See note 2	-2000 ~ +2000	V
Electrostatic discharge	V _{ESD}	See note 3	-200 ~ + 200	V
		See note 4	100	mA

Notes

the Electrical Characteristics tables and Pin Description. Unless further specified, Voltage Referenced to V_{SS} , V_{DD} =3 to 3.6V, T_A =25 $^{\circ}$ C)

- 2. Human Body Model: According to the standard of EIA/JESD22-A114-B
- 3. Machine Model: According to the standard of EIA/JESD22-A115-A
- 4. According to the standard of EIA/JESD78

V1.4 44 March 2016

^{1.} Voltage or temperature beyond the maximum ratings might cause damages to the device. Functional operation should be restricted within the limits

8. DC CHARACTERISTICS

(Unless further specified, Voltage Referenced to Vss, VdD=1.65 to 3.6V, Tj= -40~85 $^{\circ}\text{C}$)

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Operating voltage	V _{HA}		8	-	18	V
Logic supply voltage	V_{DD}		1.65	3.3	3.6	V
HIGH logic output level	Vон	lout=-1mA, (see note 1)	0.9xV _{DD}	-	-	V
LOW logic output level	VoL	Iout=1mA, (see note 1)	-	-	0.1xV _{DD}	V
HIGH logic input level	V _{IH}	(see note 2)	0.8xV _{DD}	-	V_{DD}	V
LOW logic input level	VıL	(see note 2)	0	-	0.2xV _{DD}	V
Input leakage current of logic input (@3.3V)	Іін	(see note 3)	-	-	1	μΑ
Input leakage current of logic input (@0V)	lι∟	(see note 3)	-	-	1	μΑ
Input leakage current of logic input (@3.3V)	I _{IH_PD}	TEST_EN, TSCAN_EN, LDO_DIS	-	-	50	μΑ
Regulator output voltage	V_{RO}	V _{DD} =2.4~3.6V , Force VRO, I _L =-5mA (current loading)	1.65	1.8	2.22	V
V18 Input voltage	V18	VRO to V18 no connect. Force V18, check Logical function	1.62	1.8	2.22	V
Oscillation frequency	Fosc	V ₁₈ =1.8V; VDD=3.3V, test mode, Tj=25°C Fosc = F _{INT} x 2 measure "INT"	2.7	3.0	3.3	MHz
VHA-Standby current (DAC disable, LDO enable)	IHA0_LDO-STBY	VDD=3.3V, VHA=14V, VHC= 14V; HV-DAC off (CE =0) V18= LV-LDO; LDO_DIS=0V CKSEL=3.3V, CLK_EXT=0V; No Loading; At standby mode and Tj=25℃,measure VHA	-	1	5	μΑ
VHA-Standby current (DAC, LDO enable)	IHA1_LDO-STBY	VDD=3.3V, VHA=14V, VHC= HV-DAC; HV-DAC on (CE =1) V18= LV-LDO; LDO_DIS=0V CKSEL=3.3V, CLK_EXT=0V; No Loading; At standby mode and Tj=25°C, measure VHA	-	1	70	μА
VDD-Standby current (DAC, LDO enable)	Idd_ldo-stby	VDD=3.3V, VHA=14V, VHC= HV-DAC; HV-DAC on (CE =1), DAC = 5h V18= LV-LDO; LDO_DIS=0V CKSEL=3.3V, CLK_EXT=0V; No Loading; At standby mode and Tj=25°C, measure VDD	-	34	60	uA
VDD-Standby current (LDO disable)	I _{DD_LDODIS} -STBY	VDD=1.8V, VHA=14V, V18= 1.8V; LDO_DIS=pull-hi(MCU) CKSEL=1.8V, CLK_EXT=0V; No Loading; At standby mode and Tj=25°C,measure VDD	-	-	3	uA
V18-Standby current (LDO disable)	I _{18_LDODIS} -STBY	VDD=1.8V; VHA=14V, V18= 1.8V; LDO_DIS=pull-hi(MCU) CKSEL=1.8V, CLK_EXT=0V; No Loading; At standby mode and Tj=25°C, measure V18	-	-	12	uA

V1.4 45 March 2016

Parameter	Symbol	Test Con	ditions	Min.	Тур.	Max.	Unit
VHA-Operating current	IHA	VDD=3.3V, V18=1.8V, V DISPLAY ON/OFF (B1= Brightness, No Loading		-	-	560	μA
VHA-Operating current (HV-DAC enable)	IHA1	VDD=3.3V, V18=1.8V, V DISPLAY ON/OFF (B1= Maximum Brightness, No	1,B0=0)	-	-	850	μA
VDD-Operating current (VRO to V18 is no connecting)	IDD	VDD=3.3V, V18=1.8V, V No Loading	/HA=14V;	-	28	38	μA
V18-Operating current (VRO to V18 is no connecting)	l18	VDD =3.3V, V18=1.8V, VNo Loading	VHA =14V ;	-	1.5	2	mA
			BR[6:0]=7Fh	-	250	300	-
		V _{DD} =3.3V	BR[6:0]=3Fh	-	-		-
Segment current	I _{SEG1}	V _{HA} =14V, Vo=11V	BR[6:0]=2Fh	-	-	-	μA
		V0=11V Tj= 25 °C	BR[6:0]=1Fh BR[6:0]=0Fh	-	-		-
		1,1-20 0	BR[6:0]=00h		_		-
Pre_charge current	I _{PRE}	V _{DD} =3.3V, V _{HA} =14V,V _O = PC=0, BR[6:0]=7Fh, PC Measure SEG0, SEG1,	-	-	-	μA	
Segment current uniformity	Dev	VHA=14V, VO=11V BR[6:0]=7Fh Measure SEG[0:127], IMAX=MAX(ISEG[0:127]) IMIN =Min(ISEG[0:127]) IAVG=AVG(ISEG[0:127]) Dev=(IMAX-IMIN)/IAVG		-	-	5	%
Adjacent pin output current uniformity	Adj _{DEV}	V _{HA} =14V, Vo=11V BR[6:0]=7Fh Measure SEG[0:127] SEG_EVEN[0:63]=SEG[SEG[2],,SEG[126] SEG_ODD[0:63]=SEG[1 SEG[3],,SEG[127] AdjDEV_EVEN=Abs(ISEG_EVEN[ISEG_EVEN [IN]+ISEG_EVEN [IN]], EN[n]- SEG_EVEN [n+1]) / F1])/2] [n]- SEG_ODD [n+1]) /	-	-	2	%
Segment current variation dependence with Vo	Ivar	V _{HA} =14V, BR[6:0]=7Fh force SEG, Vo=(6V~11V	')	-	-	0.4	%/V
Segment low-level output voltage	Vosl	V _{HA} =16V, Force lout= 1r		-	-	0.5	V
Common low-level sink voltage	V_{COML}	VHA=16V, Force lout= 3	0mA, Tj=25 °C	-	1.05	1.8	V

V1.4 46 March 2016

Notes:

1. Application to the following pins: INT, D0~D7

2. Application to the following pins: CLK_EXT, CKSEL, BS[1:0], WR#, RD#, CS#, RS, D0~D7, RES#, LDO_DIS, TEST_EN, TSCAN_EN,

^{3.} Application to the following pins: CLK_EXT, BS[1:0], WR#, RD#, CS#, RS, D0~D7, RES#

9.AC CHARACTERISTICS

9.1 WRITE CHARACTERISTICS FOR THE 8080 SERIES MPU

(Unless further specified, Voltage Referenced to Vss, VDD=1.65 to 3.6V, Tj= -40~85 °C)

Item	Description	Min.	Тур.	Max.	Units
Twr_cycle	-	500	-	-	ns
Twr_rise / Twr_fall	-	-	1	15/15	ns
Twr_low	-	100	-	-	ns
Trs_s / Trs_h	RS setup & hold time	100/5	-	-	ns
Tcs_s / Tcs_h	CS# setup & hold time	100/0	1	-	ns
Tdata_s / Tdata_h	Data setup & hold time	100/5	-	-	ns

V1.4 47 March 2016

9.2 READ CHARACTERISTICS FOR THE 8080 SERIES MPU

(Unless further specified, Voltage Referenced to Vss, VDD=1.65 to 3.6V, Tj= -40~85 °C)

(Ornobo rararor opcomoa,	Voltago Mororonoda to Voo, VDD-1.00		10 00 07						
Item	Description	Min.	Тур.	Max.	Units				
Trd_cycle	-	500	-	-	ns				
Trd_rise / Trd_fall	-	-	-	15/15	ns				
Trd_low	-	230	-	-	ns				
Trs_s / Trs_h	RS setup & hold time	100/5	-	-	ns				
Tcs_s / Tcs_h	CS# setup & hold time	100/0	-	-	ns				
Trddata_out	Data out from RD# falling edge	-	-	220	ns				
Trddata_hiz	Data Hiz from RD# rising edge	3	-	100	ns				

9.3 WRITE COMMAND TIMING WHEN RS=0, PARAMETER/WRITE DATA TIMING WHEN RS=1 FOR THE 8080 SERIES MPU

Note: D[7:0]: to access data by MCU Bus Mode.

V1.4 48 March 2016

9.4 READ COMMAND TIMING WHEN RS=0, READ DATA TIMING WHEN RS=1 FOR THE 8080 SERIES MPU

Note: D[7:0]: to access data by MCU Bus Mode.

9.5 SERIAL PERIPHERAL INTERFACE (SPI-3WIRE) CHARACTERISTICS

RS=0, D7~D0 should be treated as a command. RS=1, D7~D0 should be treated as data.

V1.4 49 March 2016

9.6 SERIAL PERIPHERAL INTERFACE (SPI-4WIRE) CHARACTERISTICS

9.7 SERIAL PERIPHERAL INTERFACE

Item	Description	Min.	Тур.	Max.	Units
Tsck	Clock cycle time	40	50	-	ns
Trs_s / Trs_h	RS setup & hold time	20/20	-	-	ns
Tcs_s / Tcs_h	CS# setup & hold time	20/20	-	-	ns
Tdata_s / Tdata_h	Data setup & hold time	20/20	-	-	ns
Tsck_low / Tsck_high	-	20/20	-	-	ns
Tsck_rsie / Tsck_fall	-	-	-	15/15	ns
Tsdo_z	SDO output hi-Z	-	-	20	ns

V1.4 50 March 2016

9.8 I²C WAVEFORM

Item	Description	Min.	Тур.	Max.	Units
tscl	Clock cycle time	2.5	-	-	us
t _{low}	High pulse width for SCK	0.6			us
thigh	Low pulse width for SCK	0.6			us
t STAhd	Start condition Hold Time	0.6	-	-	us
t Dhd	Data Hold Time (for the "SDAout" pin)	0	-	-	ns
	Data Hold Time (for "SDA _{IN} " pin)	300			ns
t _{Dsu}	Data Setup Time	100	-	-	ns
t STAsu	Start condition Setup Time (Only relevant for a repeated Start condition)	0.6	-	-	us
tstosu	Stop condition Setup Time	0.6	-	-	us
t _r / t _f	Rise/fall Time for data and clock pin	-	-	40/40	ns
tbuf	Idle Time before a new transmission can start	1.3			us

DEFINITION OF THE ACKNOWLEDGEMENT CONDITION

WRITE MODE SEQUENCE FOR DISPLAY RAM DATA

V1.4 51 March 2016

WRITE MODE ONE BYTE COMMAND

WRITE MODE TWO BYTE COMMAND

READ MODE SEQUENCE FOR DISPLAY RAM DATA / PARAMETER-READ

V1.4 52 March 2016

9.9 SEG / COM WAVEFORM

H-OVERLAP WAVEFORM

L-OVERLAP WAVEFORM

Item	Description	Min.	Тур.	Max.	Units
T _{COM_W}	One COM Pulse Period	64	-	575	PWMCLK
T _{Blank}	Blank Period	4		31	PWMCLK X 4
T _{Black}	Black Period	0		7	PWMCLK X 4
T _{PR}	Pre-Charge Period	0	-	15	PWMCLK X 4
Трwм	PWM Active Period for Gamma Table	1	-	256	PWMCLK
T _{FRAME} (color mode)	COM Number by One Color Frame	1	-	43	Тсом_w Х 3
T _{FRAME} (Mono mode)	COM Number by One Mono Frame	1	-	96	Тсом_w
T _{FRAME+DUMMY}	One Frame with Dummy Scan	T _{FRAME} + T _{COM_W}			

V1.4 53 March 2016

9.10 VDD AND VHA POWER SEQUENCE TIMING

9.11 POWER-ON AND RESET TIMING

Item	Unit (µs)		
t1	600		
t2	100		

9.12 MINIMUM LOW-ACTIVE PULSE WIDTH REQUIRED FOR RES# PIN

Minimum Pulse Width for RES# Pin	Min.	Description
t _{RES#}	Tosc * 40	t _{RES#} → Valid RES# signal

Note: In standby mode, low of RES# cannot reset the chip.

9.13 STANDBY ABOUT DISABLE-MODE ON ANALOG BLOCKS

Description	LDO_DIS pin	Standby command	osc	POR	VRO	BIAS	HV DAC	Condition
Normal 1 (VRO ON)	GND	Disabled	ON	ON	ON	ON	ON	VDD =2.4~3.6V V18 = VRO
Standby 1 (VRO ON)	GND	Enabled	OFF	ON	ON	OFF	OFF	VDD =2.4~3.6V V18 = VRO
Normal 2 (VRO OFF)	VDD	Disabled	ON	ON	OFF	ON	ON	VDD =1.65~3.6V V18 = 1.65~1.98V
Standby 2 (VRO OFF)	VDD	Enabled	OFF	ON	OFF	OFF	OFF	VDD=1.65~3.6V V18 = 1.65~1.98V

Note: "VRO" shows 1.8V regulator output

V1.4 54 March 2016

10. PAD CONFIGURATION

Die size: 7015.5 $\mu m\ x\ 1161\ \mu m$ (excluding scribe line

width: 80um)

Chip thickness: 250 \pm 15 μm

Bump height = $9 \pm 3 \mu m$; Bump hardness = 65 ± 15

Alignment Size:

125um

V1.4 55 March 2016

11. PAD LOCATION

No.	Side	Nama	Loca	Rumn Tyne	
NO.	Side	Name	X[µm]	X[µm]	Bump Type
1	Bottom	VHA	18	36.9	TYPE B
2		VHA	63	36.9	TYPE B
3		VHA	108	36.9	TYPE B
4		VHA	153	36.9	TYPE B
5		VHC	198	36.9	TYPE B
6		VHC	243	36.9	TYPE B
7		PGNDA	288	36.9	TYPE B
8		PGNDA	333	36.9	TYPE B
9		PGNDA	378	36.9	TYPE B
10		PGNDA	423	36.9	TYPE B
11		DUMMY	468	36.9	TYPE B
12		DUMMY	513	36.9	TYPE B
13		DUMMY	558	36.9	TYPE B
14		DUMMY	603	36.9	TYPE B
15		DUMMY	648	36.9	TYPE B
16		DUMMY	693	36.9	TYPE B
17		DUMMY	738	36.9	TYPE B
18		DUMMY	783	36.9	TYPE B
19		DUMMY	828	36.9	TYPE B
20		DUMMY	873	36.9	TYPE B
21		DUMMY	918	36.9	TYPE B
22		DUMMY	963	36.9	TYPE B
23		DUMMY	1008	36.9	TYPE B
24		DUMMY	1053	36.9	TYPE B
25		DUMMY	1098	36.9	TYPE B
26		DUMMY	1143	36.9	TYPE B
27		DUMMY	1188	36.9	TYPE B
28		DUMMY	1233	36.9	TYPE B
29		DUMMY	1278	36.9	TYPE B
30		DUMMY	1323	36.9	TYPE B
31		DUMMY	1368	36.9	TYPE B
32		DUMMY	1413	36.9	TYPE B
33		DUMMY	1458	36.9	TYPE B
34		DUMMY	1503	36.9	TYPE B
35		DUMMY	1548	36.9	TYPE B
36		DUMMY	1593	36.9	TYPE B
37		DUMMY	1638	36.9	TYPE B
38		DUMMY	1683	36.9	TYPE B
39		DUMMY	1728	36.9	TYPE B
40		DUMMY	1773	36.9	TYPE B
41		DUMMY	1818	36.9	TYPE B
42		DUMMY	1863	36.9	TYPE B
43		DUMMY	1908	36.9	TYPE B
44		DUMMY	1953	36.9	TYPE B
45		DUMMY	1998	36.9	TYPE B
46		DUMMY	2043	36.9	TYPE B
47		DUMMY	2088	36.9	TYPE B
48		DUMMY	2133	36.9	TYPE B

V1.4 56 March 2016

			Location		
No.	Side	Name	X[µm]	X[µm]	Bump Type
49		DUMMY	2178	36.9	TYPE B
50		DUMMY	2223	36.9	TYPE B
51		DUMMY	2268	36.9	TYPE B
52		DUMMY	2313	36.9	TYPE B
53		DUMMY	2358	36.9	TYPE B
54		DUMMY	2403	36.9	TYPE B
55		DUMMY	2448	36.9	TYPE B
56		DUMMY	2493	36.9	TYPE B
57		DUMMY	2538	36.9	TYPE B
58		DUMMY	2583	36.9	TYPE B
59		DUMMY	2628	36.9	TYPE B
60		DUMMY	2673	36.9	TYPE B
61		DUMMY	2718	36.9	TYPE B
62		DUMMY	2763	36.9	TYPE B
63		DUMMY	2808	36.9	TYPE B
64		DUMMY	2853	36.9	TYPE B
65		DUMMY	2898	36.9	TYPE B
66		DUMMY	2943	36.9	TYPE B
67		DUMMY	2988	36.9	TYPE B
68		DUMMY	3033	36.9	TYPE B
69		DUMMY	3078	36.9	TYPE B
70		DUMMY	3123	36.9	TYPE B
71		DUMMY	3168	36.9	TYPE B
72		DUMMY	3213	36.9	TYPE B
73		DUMMY	3258	36.9	TYPE B
74		DUMMY	3303	36.9	TYPE B
75		DUMMY	3348	36.9	TYPE B
76		DUMMY	3393	36.9	TYPE B
77		DUMMY	3438	36.9	TYPE B
78		DUMMY	3483	36.9	TYPE B
		DUMMY	3528	36.9	TYPE B
79		DUMMY			TYPE B
80 81		DUMMY	3573 3618	36.9	TYPE B
				36.9	1
82		DUMMY	3663	36.9	TYPE B
83		DUMMY	3708	36.9	TYPE B
84		DUMMY	3753	36.9	TYPE B
85		DUMMY	3798	36.9	TYPE B
86		DUMMY	3843	36.9	TYPE B
87		DUMMY	3888	36.9	TYPE B
88		DUMMY	3933	36.9	TYPE B
89		DUMMY	3978	36.9	TYPE B
90		DUMMY	4023	36.9	TYPE B
91		DUMMY	4068	36.9	TYPE B
92		DUMMY	4113	36.9	TYPE B
93	1	DUMMY	4158	36.9	TYPE B
94		DUMMY	4203	36.9	TYPE B
95		DUMMY	4248	36.9	TYPE B
96		DUMMY	4293	36.9	TYPE B
97		GND	4338	36.9	TYPE B
98		GND	4383	36.9	TYPE B
99		GND	4428	36.9	TYPE B

V1.4 57 March 2016

No. Side Name Location 100 INT 4486.5 101 DUMMY 4531.5	Χ[μm] 36.9	Bump Type
100 INT 4486.5		
101 DUMMY 4531.5	50.5	TYPE B
	36.9	TYPE B
102 CS# 4576.5	36.9	TYPE B
103 RES# 4621.5	36.9	TYPE B
104 VDD 4666.5	36.9	TYPE B
105 RS 4711.5	36.9	TYPE B
106 GND 4756.5	36.9	TYPE B
107 WR# 4801.5	36.9	TYPE B
108 RD# 4846.5	36.9	TYPE B
109 D[0] 4891.5	36.9	TYPE B
110 D[1] 4936.5	36.9	TYPE B
111 D[2] 4981.5	36.9	TYPE B
112 D[3] 5026.5	36.9	TYPE B
113 GND 5071.5	36.9	TYPE B
114 D[4] 5116.5	36.9	TYPE B
115 D[5] 5161.5	36.9	TYPE B
116 D[6] 5206.5	36.9	TYPE B
117 D[7] 5251.5	36.9	TYPE B
118 EXT_CLK 5296.5	36.9	TYPE B
119 GND 5341.5	36.9	TYPE B
120 CKSEL 5386.5	36.9	TYPE B
121 VDD 5431.5	36.9	TYPE B
122 BS[0] 5476.5	36.9	TYPE B
123 GND 5521.5	36.9	TYPE B
124 BS[1] 5566.5	36.9	TYPE B
125 VDD 5611.5	36.9	TYPE B
126 GND 5656.5	36.9	TYPE B
127 TEST_EN 5701.5	36.9	TYPE B
128 TSCAN_EN 5746.5	36.9	TYPE B
129 TJ 5791.5	36.9	TYPE B
130 DUMMY 5836.5	36.9	TYPE B
131 DUMMY 5881.5	36.9	TYPE B
132 LDO_DIS 5926.5	36.9	TYPE B
133 GND 5971.5	36.9	TYPE B
	36.9	TYPE B
134 GND 6016.5 135 GND 6061.5	36.9	TYPE B
136 VDD 6106.5	36.9	TYPE B
137 VDD 6106.5 VDD 6151.5	36.9	TYPE B
137 VDD 6131.3 138 VDD 6196.5	36.9	TYPE B
139 V18 6241.5	36.9	TYPE B
140 V18 6286.5	36.9	TYPE B
141 V18 6331.5	36.9	TYPE B
142 VRO 6376.5	36.9	TYPE B
143 VRO 6421.5	36.9	TYPE B
144 VRO 6466.5	36.9	TYPE B
145 IREF 6511.5	36.9	TYPE B
146 PGNDA 6556.5	36.9	TYPE B
147 PGNDA 6601.5	36.9	TYPE B
148 PGNDA 6646.5	36.9	TYPE B
149 PGNDA 6691.5	36.9	TYPE B

V1.4 58 March 2016

			Location		
No.	Side	Name	X[µm]	X[µm]	Bump Type
150		VHC	6736.5	36.9	TYPE B
151		VHC	6781.5	36.9	TYPE B
152		VHA	6826.5	36.9	TYPE B
153		VHA	6871.5	36.9	TYPE B
154		VHA	6916.5	36.9	TYPE B
155		VHA	6961.5	36.9	TYPE B
156	Right	DUMMY	6970.5	216.9	TYPE A
157	•	DUMMY	6970.5	357.3	TYPE A
158		DUMMY	6970.5	497.7	TYPE A
159		DUMMY	6970.5	638.1	TYPE A
160		DUMMY	6970.5	778.5	TYPE A
161		DUMMY	6970.5	918.9	TYPE A
162	Тор	DUMMY	6970.5	1059.3	TYPE A
		Alignmark_B	6896.7	1099.8	
163		DUMMY	6784.2	1116	TYPE C
164		DUMMY	6643.8	1116	TYPE C
165		DUMMY	6547.5	1059.3	TYPE A
166		SEG[126]	6520.5	1059.3	TYPE A
167		SEG[124]	6493.5	1059.3	TYPE A
168		SEG[122]	6466.5	1059.3	TYPE A
169		SEG[120]	6439.5	1059.3	TYPE A
170		SEG[118]	6412.5	1059.3	TYPE A
171		SEG[116]	6385.5	1059.3	TYPE A
172		SEG[114]	6358.5	1059.3	TYPE A
173		SEG[112]	6331.5	1059.3	TYPE A
174		SEG[110]	6304.5	1059.3	TYPE A
175		SEG[108]	6277.5	1059.3	TYPE A
176		SEG[106]	6250.5	1059.3	TYPE A
177		SEG[104]	6223.5	1059.3	TYPE A
178		SEG[102]	6196.5	1059.3	TYPE A
179		SEG[100]	6169.5	1059.3	TYPE A
180		SEG[98]	6142.5	1059.3	TYPE A
181		SEG[96]	6115.5	1059.3	TYPE A
182		SEG[94]	6088.5	1059.3	TYPE A
183		SEG[92]	6061.5	1059.3	TYPE A
184		SEG[90]	6034.5	1059.3	TYPE A
185		SEG[88]	6007.5	1059.3	TYPE A
186		SEG[86]	5980.5	1059.3	TYPE A
187		SEG[84]	5953.5	1059.3	TYPE A
188		SEG[82]	5926.5	1059.3	TYPE A
189		SEG[80]	5899.5	1059.3	TYPE A
190		SEG[78]	5872.5	1059.3	TYPE A
191		SEG[76]	5845.5	1059.3	TYPE A
192		SEG[74]	5818.5	1059.3	TYPE A
193		SEG[72]	5791.5	1059.3	TYPE A
194		SEG[70]	5764.5	1059.3	TYPE A
195		SEG[68]	5737.5	1059.3	TYPE A
196		SEG[66]	5710.5	1059.3	TYPE A
197		SEG[64]	5683.5	1059.3	TYPE A
198		SEG[62]	5656.5	1059.3	TYPE A
199		SEG[60]	5629.5	1059.3	TYPE A

V1.4 59 March 2016

	0:1		Loca	Location	
No.	Side	Name	X[µm]	X[µm]	Bump Type
200		SEG[58]	5602.5	1059.3	TYPE A
201		SEG[56]	5575.5	1059.3	TYPE A
202		SEG[54]	5548.5	1059.3	TYPE A
203		SEG[52]	5521.5	1059.3	TYPE A
204		SEG[50]	5494.5	1059.3	TYPE A
205		SEG[48]	5467.5	1059.3	TYPE A
206		SEG[46]	5440.5	1059.3	TYPE A
207		SEG[44]	5413.5	1059.3	TYPE A
208		SEG[42]	5386.5	1059.3	TYPE A
209		SEG[40]	5359.5	1059.3	TYPE A
210		SEG[38]	5332.5	1059.3	TYPE A
211		SEG[36]	5305.5	1059.3	TYPE A
212		SEG[34]	5278.5	1059.3	TYPE A
213		SEG[32]	5251.5	1059.3	TYPE A
214		SEG[30]	5224.5	1059.3	TYPE A
215		SEG[28]	5197.5	1059.3	TYPE A
216		SEG[26]	5170.5	1059.3	TYPE A
217		SEG[24]	5143.5	1059.3	TYPE A
218		SEG[22]	5116.5	1059.3	TYPE A
219		SEG[20]	5089.5	1059.3	TYPE A
220		SEG[18]	5062.5	1059.3	TYPE A
221		SEG[16]	5035.5	1059.3	TYPE A
222		SEG[14]	5008.5	1059.3	TYPE A
223		SEG[12]	4981.5	1059.3	TYPE A
224		SEG[10]	4954.5	1059.3	TYPE A
225		SEG[8]	4927.5	1059.3	TYPE A
226		SEG[6]	4900.5	1059.3	TYPE A
227		SEG[4]	4873.5	10 59.3	TYPE A
228		SEG[2]	4846.5	1059.3	TYPE A
229		SEG[0]	4819.5	1059.3	TYPE A
230		DUMMY	4792.5	1059.3	TYPE A
231		DUMMY	4765.5	1059.3	TYPE A
232		DUMMY	4738.5	1059.3	TYPE A
233		DUMMY	4711.5	1059.3	TYPE A
234		DUMMY	4684.5	1059.3	TYPE A
235		DUMMY	4657.5	1059.3	TYPE A
236		COM[72]	4630.5	1059.3	TYPE A
237		COM[73]	4603.5	1059.3	TYPE A
238		COM[74]	4576.5	1059.3	TYPE A
239		COM[75]	4549.5	1059.3	TYPE A
240		COM[76]	4522.5	1059.3	TYPE A
241		COM[77]	4495.5	1059.3	TYPE A
242		COM[78]	4468.5	1059.3	TYPE A
243		COM[79]	4441.5	1059.3	TYPE A
244		COM[80]	4414.5	1059.3	TYPE A
245		COM[81]	4387.5	1059.3	TYPE A
246		COM[82]	4360.5	1059.3	TYPE A
247		COM[83]	4333.5	1059.3	TYPE A
248		COM[84]	4306.5	1059.3	TYPE A
249		COM[85]	4279.5	1059.3	TYPE A
250		COM[86]	4252.5	1059.3	TYPE A

V1.4 60 March 2016

NI.	0.1	NI	Loca	Location	
No.	Side	Name	X[µm]	X[µm]	Bump Type
251		COM[87]	4225.5	1059.3	TYPE A
252		COM[88]	4198.5	1059.3	TYPE A
253		COM[89]	4171.5	1059.3	TYPE A
254		COM[90]	4144.5	1059.3	TYPE A
255		COM[92]	4117.5	1059.3	TYPE A
256		COM[91]	4090.5	1059.3	TYPE A
257		COM[93]	4063.5	1059.3	TYPE A
258		COM[94]	4036.5	1059.3	TYPE A
259		COM[95]	4009.5	1059.3	TYPE A
260		COM[0]	3982.5	1059.3	TYPE A
261		COM[1]	3955.5	1059.3	TYPE A
262		COM[2]	3928.5	1059.3	TYPE A
263		COM[3]	3901.5	1059.3	TYPE A
264		COM[4]	3874.5	1059.3	TYPE A
265		COM[5]	3847.5	1059.3	TYPE A
266		COM[6]	3820.5	1059.3	TYPE A
267		COM[7]	3793.5	1059.3	TYPE A
268		COM[8]	3766.5	1059.3	TYPE A
269		COM[9]	3739.5	1059.3	TYPE A
270		COM[10]	3712.5	1059.3	TYPE A
271		COM[11]	3685.5	1059.3	TYPE A
272		COM[12]	3658.5	1059.3	TYPE A
273		COM[13]	3631.5	1059.3	TYPE A
274		COM[14]	3604.5	1059.3	TYPE A
275		COM[15]	3577.5	1059.3	TYPE A
276		COM[16]	3550.5	1059.3	TYPE A
277		COM[17]	3523.5	1059.3	TYPE A
278		COM[18]	3496.5	1059.3	TYPE A
279		COM[19]	3469.5	1059.3	TYPE A
280		COM[20]	3442.5	1059.3	TYPE A
281		COM[21]	3415.5	1059.3	TYPE A
282		COM[22]	3388.5	1059.3	TYPE A
283		COM[23]	3361.5	1059.3	TYPE A
284		COM[24]	3334.5	1059.3	TYPE A
285		COM[25]	3307.5	1059.3	TYPE A
286		COM[26]	3280.5	1059.3	TYPE A
287		COM[27]	3253.5	1059.3	TYPE A
288		COM[28]	3226.5	1059.3	TYPE A
289		COM[29]	3199.5	1059.3	TYPE A
290		COM[30]	3172.5	1059.3	TYPE A
291		COM[31]	3145.5	1059.3	TYPE A
292		COM[32]	3118.5	1059.3	TYPE A
293		COM[33]	3091.5	1059.3	TYPE A
294		COM[34]	3064.5	1059.3	TYPE A
295		COM[35]	3037.5	1059.3	TYPE A
296		COM[36]	3010.5	1059.3	TYPE A
297		COM[37]	2983.5	1059.3	TYPE A
298		COM[38]	2956.5	1059.3	TYPE A
299		COM[39]	2929.5	1059.3	TYPE A
300		COM[40]	2902.5	1059.3	TYPE A
301		COM[41]	2875.5	1059.3	TYPE A

V1.4 61 March 2016

No. Side Name X[µm] X[µm] Sign Jype		211		Loca	Location	
302 COM[42] 2848.5 1059.3 TYPE A	No.	Side	Name			Bump Type
303 COM[43] 2821.5 1059.3 TYPE A	302		COM[42]			TYPE A
304	303			2821.5	1059.3	TYPE A
306	304			2794.5	1059.3	TYPE A
307	305			2767.5	1059.3	TYPE A
307	306		COM[46]	2740.5	1059.3	TYPE A
309				2713.5		
310	308		COM[48]	2686.5	1059.3	TYPE A
311	309		COM[49]	2659.5	1059.3	TYPE A
312	310		COM[50]	2632.5	1059.3	TYPE A
313	311		COM[51]	2605.5	1059.3	TYPE A
314	312			2578.5	1059.3	TYPE A
314	313		COM[53]	2551.5	1059.3	TYPE A
315	314				1	TYPE A
316					1	
317 COM[57] 2443.5 1059.3 TYPE A 318 COM[58] 2416.5 1059.3 TYPE A 319 COM[59] 2389.5 1059.3 TYPE A 320 COM[60] 2362.5 1059.3 TYPE A 321 COM[61] 2335.5 1059.3 TYPE A 322 COM[62] 2308.5 1059.3 TYPE A 323 COM[63] 2281.5 1059.3 TYPE A 324 COM[64] 2254.5 1059.3 TYPE A 325 COM[66] 2220.5 1059.3 TYPE A 326 COM[66] 2200.5 1059.3 TYPE A 327 COM[66] 2200.5 1059.3 TYPE A 328 COM[68] 2173.5 1059.3 TYPE A 329 COM[69] 2119.5 1059.3 TYPE A 330 COM[71] 2065.5 1059.3 TYPE A 331 COM[71] 2065.5 1059.3 TYPE A						TYPE A
318	317			2443.5		TYPE A
COM[59] 2389.5 1059.3 TYPE A	318				1059.3	
320 COM[60] 2362.5 1059.3 TYPE A 321 COM[61] 2335.5 1059.3 TYPE A 322 COM[62] 2308.5 1059.3 TYPE A 323 COM[63] 2281.5 1059.3 TYPE A 324 COM[64] 2254.5 1059.3 TYPE A 325 COM[65] 2227.5 1059.3 TYPE A 326 COM[66] 2200.5 1059.3 TYPE A 327 COM[67] 2146.5 1059.3 TYPE A 328 COM[68] 2173.5 1059.3 TYPE A 329 COM[69] 2119.5 1059.3 TYPE A 330 COM[70] 2092.5 1059.3 TYPE A 331 COM[71] 2065.5 1059.3 TYPE A 332 DUMMY 2038.5 1059.3 TYPE A 334 DUMMY 2011.5 1059.3 TYPE A 335 DUMMY 1984.5 1059.3 TYPE A <						
321 COM[61] 2335.5 1059.3 TYPE A 322 COM[62] 2308.5 1059.3 TYPE A 323 COM[63] 2281.5 1059.3 TYPE A 324 COM[64] 2254.5 1059.3 TYPE A 325 COM[65] 2227.5 1059.3 TYPE A 326 COM[66] 2200.5 1059.3 TYPE A 327 COM[66] 2200.5 1059.3 TYPE A 328 COM[68] 2173.5 1059.3 TYPE A 329 COM[69] 2119.5 1059.3 TYPE A 330 COM[70] 2092.5 1059.3 TYPE A 331 COM[71] 2065.5 1059.3 TYPE A 332 DUMMY 2038.5 1059.3 TYPE A 333 DUMMY 2038.5 1059.3 TYPE A 334 DUMMY 1984.5 1059.3 TYPE A 335 DUMMY 1987.5 1059.3 TYPE A <td>320</td> <td></td> <td></td> <td></td> <td>1</td> <td>TYPE A</td>	320				1	TYPE A
322 COM[62] 2308.5 1059.3 TYPE A 323 COM[63] 2281.5 1059.3 TYPE A 324 COM[64] 2254.5 1059.3 TYPE A 325 COM[65] 2227.5 1059.3 TYPE A 326 COM[66] 2200.5 1059.3 TYPE A 327 COM[67] 2146.5 1059.3 TYPE A 328 COM[68] 2173.5 1059.3 TYPE A 329 COM[69] 2119.5 1059.3 TYPE A 330 COM[70] 2092.5 1059.3 TYPE A 331 COM[71] 2065.5 1059.3 TYPE A 332 DUMMY 2038.5 1059.3 TYPE A 333 DUMMY 2038.5 1059.3 TYPE A 334 DUMMY 1984.5 1059.3 TYPE A 335 DUMMY 1930.5 1059.3 TYPE A 336 DUMMY 1930.5 1059.3 TYPE A	321			2335.5	1059.3	TYPE A
323 COM[63] 2281.5 1059.3 TYPE A 324 COM[64] 2254.5 1059.3 TYPE A 325 COM[65] 2227.5 1059.3 TYPE A 326 COM[66] 2200.5 1059.3 TYPE A 327 COM[67] 2146.5 1059.3 TYPE A 328 COM[68] 2173.5 1059.3 TYPE A 329 COM[69] 2119.5 1059.3 TYPE A 330 COM[70] 2092.5 1059.3 TYPE A 331 COM[71] 2065.5 1059.3 TYPE A 332 DUMMY 2038.5 1059.3 TYPE A 333 DUMMY 2038.5 1059.3 TYPE A 334 DUMMY 2011.5 1059.3 TYPE A 335 DUMMY 1987.5 1059.3 TYPE A 336 DUMMY 1903.5 1059.3 TYPE A 337 DUMMY 1903.5 1059.3 TYPE A	322					TYPE A
324 COM[64] 2254.5 1059.3 TYPE A 325 COM[65] 2227.5 1059.3 TYPE A 326 COM[66] 2200.5 1059.3 TYPE A 327 COM[67] 2146.5 1059.3 TYPE A 328 COM[68] 2173.5 1059.3 TYPE A 329 COM[69] 2119.5 1059.3 TYPE A 330 COM[70] 2092.5 1059.3 TYPE A 331 COM[71] 2065.5 1059.3 TYPE A 332 DUMMY 2038.5 1059.3 TYPE A 333 DUMMY 2011.5 1059.3 TYPE A 334 DUMMY 1984.5 1059.3 TYPE A 335 DUMMY 1987.5 1059.3 TYPE A 336 DUMMY 1990.5 1059.3 TYPE A 337 DUMMY 1903.5 1059.3 TYPE A 338 SEG[1] 1876.5 1059.3 TYPE A	323			+	1	
325 COM[65] 2227.5 1059.3 TYPE A 326 COM[66] 2200.5 1059.3 TYPE A 327 COM[67] 2146.5 1059.3 TYPE A 328 COM[68] 2173.5 1059.3 TYPE A 329 COM[69] 2119.5 1059.3 TYPE A 330 COM[70] 2092.5 1059.3 TYPE A 331 COM[71] 2065.5 1059.3 TYPE A 332 DUMMY 2038.5 1059.3 TYPE A 333 DUMMY 2038.5 1059.3 TYPE A 334 DUMMY 2038.5 1059.3 TYPE A 335 DUMMY 1984.5 1059.3 TYPE A 336 DUMMY 1990.5 1059.3 TYPE A 337 DUMMY 1903.5 1059.3 TYPE A 338 SEG[1] 1876.5 1059.3 TYPE A 340 SEG[5] 1822.5 1059.3 TYPE A					1	
327 COM[67] 2146.5 1059.3 TYPE A 328 COM[68] 2173.5 1059.3 TYPE A 329 COM[69] 2119.5 1059.3 TYPE A 330 COM[70] 2092.5 1059.3 TYPE A 331 COM[71] 2065.5 1059.3 TYPE A 332 DUMMY 2038.5 1059.3 TYPE A 333 DUMMY 2011.5 1059.3 TYPE A 334 DUMMY 1984.5 1059.3 TYPE A 335 DUMMY 1997.5 1059.3 TYPE A 336 DUMMY 1930.5 1059.3 TYPE A 337 DUMMY 1903.5 1059.3 TYPE A 338 SEG[1] 1876.5 1059.3 TYPE A 339 SEG[3] 1849.5 1059.3 TYPE A 340 SEG[5] 1822.5 1059.3 TYPE A 341 SEG[7] 1795.5 1059.3 TYPE A <	325			2227.5		
327 COM[67] 2146.5 1059.3 TYPE A 328 COM[68] 2173.5 1059.3 TYPE A 329 COM[69] 2119.5 1059.3 TYPE A 330 COM[70] 2092.5 1059.3 TYPE A 331 COM[71] 2065.5 1059.3 TYPE A 332 DUMMY 2038.5 1059.3 TYPE A 333 DUMMY 2011.5 1059.3 TYPE A 334 DUMMY 1984.5 1059.3 TYPE A 335 DUMMY 1997.5 1059.3 TYPE A 336 DUMMY 1930.5 1059.3 TYPE A 337 DUMMY 1903.5 1059.3 TYPE A 338 SEG[1] 1876.5 1059.3 TYPE A 339 SEG[3] 1849.5 1059.3 TYPE A 340 SEG[5] 1822.5 1059.3 TYPE A 341 SEG[7] 1795.5 1059.3 TYPE A <	326		COM[66]	2200.5	1059.3	TYPE A
329 COM[69] 2119.5 1059.3 TYPE A 330 COM[70] 2092.5 1059.3 TYPE A 331 COM[71] 2065.5 1059.3 TYPE A 332 DUMMY 2038.5 1059.3 TYPE A 333 DUMMY 2011.5 1059.3 TYPE A 334 DUMMY 1984.5 1059.3 TYPE A 335 DUMMY 1957.5 1059.3 TYPE A 336 DUMMY 1930.5 1059.3 TYPE A 337 DUMMY 1903.5 1059.3 TYPE A 338 SEG[1] 1876.5 1059.3 TYPE A 339 SEG[3] 1849.5 1059.3 TYPE A 340 SEG[5] 1822.5 1059.3 TYPE A 341 SEG[7] 1795.5 1059.3 TYPE A 342 SEG[9] 1768.5 1059.3 TYPE A 343 SEG[11] 1741.5 1059.3 TYPE A <t< td=""><td>327</td><td></td><td></td><td>2146.5</td><td>1059.3</td><td>TYPE A</td></t<>	327			2146.5	1059.3	TYPE A
330 COM[70] 2092.5 1059.3 TYPE A 331 COM[71] 2065.5 1059.3 TYPE A 332 DUMMY 2038.5 1059.3 TYPE A 333 DUMMY 2011.5 1059.3 TYPE A 334 DUMMY 1984.5 1059.3 TYPE A 335 DUMMY 1957.5 1059.3 TYPE A 336 DUMMY 1930.5 1059.3 TYPE A 337 DUMMY 1903.5 1059.3 TYPE A 338 SEG[1] 1876.5 1059.3 TYPE A 339 SEG[3] 1849.5 1059.3 TYPE A 340 SEG[5] 1822.5 1059.3 TYPE A 341 SEG[7] 1795.5 1059.3 TYPE A 342 SEG[9] 1768.5 1059.3 TYPE A 343 SEG[11] 1741.5 1059.3 TYPE A 344 SEG[13] 1714.5 1059.3 TYPE A <t< td=""><td>328</td><td></td><td></td><td>2173.5</td><td>1059.3</td><td>TYPE A</td></t<>	328			2173.5	1059.3	TYPE A
330 COM[70] 2092.5 1059.3 TYPE A 331 COM[71] 2065.5 1059.3 TYPE A 332 DUMMY 2038.5 1059.3 TYPE A 333 DUMMY 2011.5 1059.3 TYPE A 334 DUMMY 1984.5 1059.3 TYPE A 335 DUMMY 1957.5 1059.3 TYPE A 336 DUMMY 1930.5 1059.3 TYPE A 337 DUMMY 1903.5 1059.3 TYPE A 338 SEG[1] 1876.5 1059.3 TYPE A 339 SEG[3] 1849.5 1059.3 TYPE A 340 SEG[5] 1822.5 1059.3 TYPE A 341 SEG[7] 1795.5 1059.3 TYPE A 342 SEG[9] 1768.5 1059.3 TYPE A 343 SEG[11] 1741.5 1059.3 TYPE A 344 SEG[13] 1714.5 1059.3 TYPE A <t< td=""><td>329</td><td></td><td>COM[69]</td><td>2119.5</td><td>1059.3</td><td>TYPE A</td></t<>	329		COM[69]	2119.5	1059.3	TYPE A
332 DUMMY 2038.5 1059.3 TYPE A 333 DUMMY 2011.5 1059.3 TYPE A 334 DUMMY 1984.5 1059.3 TYPE A 335 DUMMY 1957.5 1059.3 TYPE A 336 DUMMY 1930.5 1059.3 TYPE A 337 DUMMY 1903.5 1059.3 TYPE A 338 SEG[1] 1876.5 1059.3 TYPE A 339 SEG[3] 1849.5 1059.3 TYPE A 340 SEG[5] 1822.5 1059.3 TYPE A 341 SEG[7] 1795.5 1059.3 TYPE A 342 SEG[9] 1768.5 1059.3 TYPE A 343 SEG[11] 1741.5 1059.3 TYPE A 344 SEG[13] 1714.5 1059.3 TYPE A 345 SEG[15] 1687.5 1059.3 TYPE A 346 SEG[17] 1660.5 1059.3 TYPE A <t< td=""><td>330</td><td></td><td></td><td></td><td>1059.3</td><td>TYPE A</td></t<>	330				1059.3	TYPE A
333 DUMMY 2011.5 1059.3 TYPE A 334 DUMMY 1984.5 1059.3 TYPE A 335 DUMMY 1957.5 1059.3 TYPE A 336 DUMMY 1930.5 1059.3 TYPE A 337 DUMMY 1903.5 1059.3 TYPE A 338 SEG[1] 1876.5 1059.3 TYPE A 339 SEG[3] 1849.5 1059.3 TYPE A 340 SEG[5] 1822.5 1059.3 TYPE A 341 SEG[7] 1795.5 1059.3 TYPE A 342 SEG[9] 1768.5 1059.3 TYPE A 343 SEG[11] 1741.5 1059.3 TYPE A 344 SEG[13] 1714.5 1059.3 TYPE A 345 SEG[15] 1687.5 1059.3 TYPE A 346 SEG[17] 1660.5 1059.3 TYPE A 348 SEG[21] 1606.5 1059.3 TYPE A	331		COM[71]	2065.5	1059.3	TYPE A
334 DUMMY 1984.5 1059.3 TYPE A 335 DUMMY 1957.5 1059.3 TYPE A 336 DUMMY 1930.5 1059.3 TYPE A 337 DUMMY 1903.5 1059.3 TYPE A 338 SEG[1] 1876.5 1059.3 TYPE A 339 SEG[3] 1849.5 1059.3 TYPE A 340 SEG[5] 1822.5 1059.3 TYPE A 341 SEG[7] 1795.5 1059.3 TYPE A 342 SEG[9] 1768.5 1059.3 TYPE A 343 SEG[11] 1741.5 1059.3 TYPE A 344 SEG[13] 1714.5 1059.3 TYPE A 345 SEG[15] 1687.5 1059.3 TYPE A 346 SEG[17] 1660.5 1059.3 TYPE A 347 SEG[19] 1633.5 1059.3 TYPE A 348 SEG[21] 1606.5 1059.3 TYPE A	332		DUMMY	2038.5	1059.3	TYPE A
335 DUMMY 1957.5 1059.3 TYPE A 336 DUMMY 1930.5 1059.3 TYPE A 337 DUMMY 1903.5 1059.3 TYPE A 338 SEG[1] 1876.5 1059.3 TYPE A 339 SEG[3] 1849.5 1059.3 TYPE A 340 SEG[5] 1822.5 1059.3 TYPE A 341 SEG[7] 1795.5 1059.3 TYPE A 342 SEG[9] 1768.5 1059.3 TYPE A 343 SEG[11] 1741.5 1059.3 TYPE A 344 SEG[13] 1714.5 1059.3 TYPE A 345 SEG[15] 1687.5 1059.3 TYPE A 346 SEG[17] 1660.5 1059.3 TYPE A 347 SEG[19] 1633.5 1059.3 TYPE A 348 SEG[21] 1606.5 1059.3 TYPE A 349 SEG[23] 1579.5 1059.3 TYPE A	333		DUMMY	2011.5	1059.3	TYPE A
336 DUMMY 1930.5 1059.3 TYPE A 337 DUMMY 1903.5 1059.3 TYPE A 338 SEG[1] 1876.5 1059.3 TYPE A 339 SEG[3] 1849.5 1059.3 TYPE A 340 SEG[5] 1822.5 1059.3 TYPE A 341 SEG[7] 1795.5 1059.3 TYPE A 342 SEG[9] 1768.5 1059.3 TYPE A 343 SEG[11] 1741.5 1059.3 TYPE A 344 SEG[13] 1714.5 1059.3 TYPE A 345 SEG[15] 1687.5 1059.3 TYPE A 346 SEG[17] 1660.5 1059.3 TYPE A 347 SEG[19] 1633.5 1059.3 TYPE A 348 SEG[21] 1606.5 1059.3 TYPE A 349 SEG[23] 1579.5 1059.3 TYPE A 350 SEG[25] 1552.5 1059.3 TYPE A <td>334</td> <td></td> <td>DUMMY</td> <td>1984.5</td> <td>1059.3</td> <td>TYPE A</td>	334		DUMMY	1984.5	1059.3	TYPE A
337 DUMMY 1903.5 1059.3 TYPE A 338 SEG[1] 1876.5 1059.3 TYPE A 339 SEG[3] 1849.5 1059.3 TYPE A 340 SEG[5] 1822.5 1059.3 TYPE A 341 SEG[7] 1795.5 1059.3 TYPE A 342 SEG[9] 1768.5 1059.3 TYPE A 343 SEG[11] 1741.5 1059.3 TYPE A 344 SEG[13] 1714.5 1059.3 TYPE A 345 SEG[15] 1687.5 1059.3 TYPE A 346 SEG[17] 1660.5 1059.3 TYPE A 347 SEG[19] 1633.5 1059.3 TYPE A 348 SEG[21] 1606.5 1059.3 TYPE A 349 SEG[23] 1579.5 1059.3 TYPE A 350 SEG[25] 1552.5 1059.3 TYPE A 351 SEG[27] 1525.5 1059.3 TYPE A </td <td>335</td> <td></td> <td>DUMMY</td> <td>1957.5</td> <td>1059.3</td> <td>TYPE A</td>	335		DUMMY	1957.5	1059.3	TYPE A
338 SEG[1] 1876.5 1059.3 TYPE A 339 SEG[3] 1849.5 1059.3 TYPE A 340 SEG[5] 1822.5 1059.3 TYPE A 341 SEG[7] 1795.5 1059.3 TYPE A 342 SEG[9] 1768.5 1059.3 TYPE A 343 SEG[11] 1741.5 1059.3 TYPE A 344 SEG[13] 1714.5 1059.3 TYPE A 345 SEG[15] 1687.5 1059.3 TYPE A 346 SEG[17] 1660.5 1059.3 TYPE A 347 SEG[19] 1633.5 1059.3 TYPE A 348 SEG[21] 1606.5 1059.3 TYPE A 349 SEG[23] 1579.5 1059.3 TYPE A 350 SEG[25] 1552.5 1059.3 TYPE A 351 SEG[27] 1525.5 1059.3 TYPE A	336		DUMMY	1930.5	1059.3	TYPE A
339 SEG[3] 1849.5 1059.3 TYPE A 340 SEG[5] 1822.5 1059.3 TYPE A 341 SEG[7] 1795.5 1059.3 TYPE A 342 SEG[9] 1768.5 1059.3 TYPE A 343 SEG[11] 1741.5 1059.3 TYPE A 344 SEG[13] 1714.5 1059.3 TYPE A 345 SEG[15] 1687.5 1059.3 TYPE A 346 SEG[17] 1660.5 1059.3 TYPE A 347 SEG[19] 1633.5 1059.3 TYPE A 348 SEG[21] 1606.5 1059.3 TYPE A 349 SEG[23] 1579.5 1059.3 TYPE A 350 SEG[25] 1552.5 1059.3 TYPE A 351 SEG[27] 1525.5 1059.3 TYPE A	337		DUMMY	1903.5	1059.3	TYPE A
340 SEG[5] 1822.5 1059.3 TYPE A 341 SEG[7] 1795.5 1059.3 TYPE A 342 SEG[9] 1768.5 1059.3 TYPE A 343 SEG[11] 1741.5 1059.3 TYPE A 344 SEG[13] 1714.5 1059.3 TYPE A 345 SEG[15] 1687.5 1059.3 TYPE A 346 SEG[17] 1660.5 1059.3 TYPE A 347 SEG[19] 1633.5 1059.3 TYPE A 348 SEG[21] 1606.5 1059.3 TYPE A 349 SEG[23] 1579.5 1059.3 TYPE A 350 SEG[25] 1552.5 1059.3 TYPE A 351 SEG[27] 1525.5 1059.3 TYPE A	338		SEG[1]	1876.5	1059.3	TYPE A
341 SEG[7] 1795.5 1059.3 TYPE A 342 SEG[9] 1768.5 1059.3 TYPE A 343 SEG[11] 1741.5 1059.3 TYPE A 344 SEG[13] 1714.5 1059.3 TYPE A 345 SEG[15] 1687.5 1059.3 TYPE A 346 SEG[17] 1660.5 1059.3 TYPE A 347 SEG[19] 1633.5 1059.3 TYPE A 348 SEG[21] 1606.5 1059.3 TYPE A 349 SEG[23] 1579.5 1059.3 TYPE A 350 SEG[25] 1552.5 1059.3 TYPE A 351 SEG[27] 1525.5 1059.3 TYPE A	339		SEG[3]	1849.5	1059.3	TYPE A
342 SEG[9] 1768.5 1059.3 TYPE A 343 SEG[11] 1741.5 1059.3 TYPE A 344 SEG[13] 1714.5 1059.3 TYPE A 345 SEG[15] 1687.5 1059.3 TYPE A 346 SEG[17] 1660.5 1059.3 TYPE A 347 SEG[19] 1633.5 1059.3 TYPE A 348 SEG[21] 1606.5 1059.3 TYPE A 349 SEG[23] 1579.5 1059.3 TYPE A 350 SEG[25] 1552.5 1059.3 TYPE A 351 SEG[27] 1525.5 1059.3 TYPE A	340		SEG[5]	1822.5	1059.3	TYPE A
342 SEG[9] 1768.5 1059.3 TYPE A 343 SEG[11] 1741.5 1059.3 TYPE A 344 SEG[13] 1714.5 1059.3 TYPE A 345 SEG[15] 1687.5 1059.3 TYPE A 346 SEG[17] 1660.5 1059.3 TYPE A 347 SEG[19] 1633.5 1059.3 TYPE A 348 SEG[21] 1606.5 1059.3 TYPE A 349 SEG[23] 1579.5 1059.3 TYPE A 350 SEG[25] 1552.5 1059.3 TYPE A 351 SEG[27] 1525.5 1059.3 TYPE A	341		SEG[7]	1795.5	1059.3	TYPE A
343 SEG[11] 1741.5 1059.3 TYPE A 344 SEG[13] 1714.5 1059.3 TYPE A 345 SEG[15] 1687.5 1059.3 TYPE A 346 SEG[17] 1660.5 1059.3 TYPE A 347 SEG[19] 1633.5 1059.3 TYPE A 348 SEG[21] 1606.5 1059.3 TYPE A 349 SEG[23] 1579.5 1059.3 TYPE A 350 SEG[25] 1552.5 1059.3 TYPE A 351 SEG[27] 1525.5 1059.3 TYPE A	342					TYPE A
344 SEG[13] 1714.5 1059.3 TYPE A 345 SEG[15] 1687.5 1059.3 TYPE A 346 SEG[17] 1660.5 1059.3 TYPE A 347 SEG[19] 1633.5 1059.3 TYPE A 348 SEG[21] 1606.5 1059.3 TYPE A 349 SEG[23] 1579.5 1059.3 TYPE A 350 SEG[25] 1552.5 1059.3 TYPE A 351 SEG[27] 1525.5 1059.3 TYPE A	343					
345 SEG[15] 1687.5 1059.3 TYPE A 346 SEG[17] 1660.5 1059.3 TYPE A 347 SEG[19] 1633.5 1059.3 TYPE A 348 SEG[21] 1606.5 1059.3 TYPE A 349 SEG[23] 1579.5 1059.3 TYPE A 350 SEG[25] 1552.5 1059.3 TYPE A 351 SEG[27] 1525.5 1059.3 TYPE A						
346 SEG[17] 1660.5 1059.3 TYPE A 347 SEG[19] 1633.5 1059.3 TYPE A 348 SEG[21] 1606.5 1059.3 TYPE A 349 SEG[23] 1579.5 1059.3 TYPE A 350 SEG[25] 1552.5 1059.3 TYPE A 351 SEG[27] 1525.5 1059.3 TYPE A	345			1687.5		
347 SEG[19] 1633.5 1059.3 TYPE A 348 SEG[21] 1606.5 1059.3 TYPE A 349 SEG[23] 1579.5 1059.3 TYPE A 350 SEG[25] 1552.5 1059.3 TYPE A 351 SEG[27] 1525.5 1059.3 TYPE A	346					TYPE A
348 SEG[21] 1606.5 1059.3 TYPE A 349 SEG[23] 1579.5 1059.3 TYPE A 350 SEG[25] 1552.5 1059.3 TYPE A 351 SEG[27] 1525.5 1059.3 TYPE A	347				1	TYPE A
349 SEG[23] 1579.5 1059.3 TYPE A 350 SEG[25] 1552.5 1059.3 TYPE A 351 SEG[27] 1525.5 1059.3 TYPE A	348					
350 SEG[25] 1552.5 1059.3 TYPE A 351 SEG[27] 1525.5 1059.3 TYPE A	349					
351 SEG[27] 1525.5 1059.3 TYPE A				_		
	352					TYPE A

V1.4 62 March 2016

			Location		
No.	Side	Name	X[µm]	X[µm]	Bump Type
353		SEG[31]	1471.5	1059.3	TYPE A
354		SEG[33]	1444.5	1059.3	TYPE A
355		SEG[35]	1417.5	1059.3	TYPE A
356		SEG[37]	1390.5	1059.3	TYPE A
357		SEG[39]	1363.5	1059.3	TYPE A
358		SEG[41]	1336.5	1059.3	TYPE A
359		SEG[43]	1309.5	1059.3	TYPE A
360		SEG[45]	1282.5	1059.3	TYPE A
361		SEG[47]	1255.5	1059.3	TYPE A
362		SEG[49]	1228.5	1059.3	TYPE A
363		SEG[51]	1201.5	1059.3	TYPE A
364		SEG[53]	1174.5	1059.3	TYPE A
365		SEG[55]	1147.5	1059.3	TYPE A
366		SEG[57]	1120.5	1059.3	TYPE A
367		SEG[59]	1093.5	1059.3	TYPE A
368		SEG[61]	1066.5	1059.3	TYPE A
369		SEG[63]	1039.5	1059.3	TYPE A
370		SEG[65]	1012.5	1059.3	TYPE A
371		SEG[67]	985.5	1059.3	TYPE A
372		SEG[69]	958.5	1059.3	TYPE A
373		SEG[71]	931.5	1059.3	TYPE A
374		SEG[73]	904.5	1059.3	TYPE A
375		SEG[75]	877.5	1059.3	TYPE A
376		SEG[77]	850.5	1059.3	TYPE A
377		SEG[79]	823.5	1059.3	TYPE A
378		SEG[81]	796.5	1059.3	TYPE A
379		SEG[83]	769.5	1059.3	TYPE A
380		SEG[85]	742.5	1059.3	TYPE A
381		SEG[87]	715.5	1059.3	TYPE A
382		SEG[89]	688.5	1059.3	TYPE A
383		SEG[91]	661.5	1059.3	TYPE A
384		SEG[93]	634.5	1059.3	TYPE A
385		SEG[95]	607.5	1059.3	TYPE A
386		SEG[97]	580.5	1059.3	TYPE A
387		SEG[99]	553.5	1059.3	TYPE A
388		SEG[101]	526.5	1059.3	TYPE A
389		SEG[103]	499.5	1059.3	TYPE A
390		SEG[105]	472.5	1059.3	TYPE A
391		SEG[107]	445.5	1059.3	TYPE A
392		SEG[109]	418.5	1059.3	TYPE A
393		SEG[111]	391.5	1059.3	TYPE A
394		SEG[113]	364.5	1059.3	TYPE A
395		SEG[115]	337.5	1059.3	TYPE A
396		SEG[117]	310.5	1059.3	TYPE A
397		SEG[119]	283.5	1059.3	TYPE A
398		SEG[121]	256.5	1059.3	TYPE A
399		SEG[123]	229.5	1059.3	TYPE A
400		SEG[125]	202.5	1059.3	TYPE A
401		SEG[127]	175.5	1059.3	TYPE A
402		DUMMY	148.5	1059.3	TYPE A
		Alignmark_A	82.8	1099.8	

V1.4 63 March 2016

No.	Side	Name	Location		Bump Tune
			X[µm]	X[µm]	Bump Type
403		DUMMY	9	1059.3	TYPE A
404		DUMMY	9	918.9	TYPE A
405		DUMMY	9	778.5	TYPE A
406		DUMMY	9	638.1	TYPE A
407		DUMMY	9	497.7	TYPE A
408		DUMMY	9	357.3	TYPE A
409		DUMMY	9	216.9	TYPE A

V1.4 64 March 2016

IMPORTANT NOTICE

Princeton Technology Corporation (PTC) reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and to discontinue any product without notice at any time. PTC cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a PTC product. No circuit patent licenses are implied.

Princeton Technology Corp. 2F, 233-1, Baociao Road, Sindian Dist., New Taipei City 23145, Taiwan

Tel: 886-2-66296288 Fax: 886-2-29174598 http://www.princeton.com.tw

V1.4 65 March 2016