CSC578: Neural Networks and Deep Learning

Tianxiang (Adam) Gao

January 9, 2025

Course Information

- Sections: 801 (Loop; in-class), 841 (Online; Flex)
- Lectures:
 - Meeting Time: Thursdays 5:45 PM 9:00 PM
 - Location: CDM Center 224 or Live Lectures
- Instructor: Tianxiang (Adam) Gao
 - Research: Deep learning theory, generative AI, graph representation learning
 - Office: CDM 712
 - Zoom: https://depaul.zoom.us/my/gaotx
 - Email: t.gao@depaul.edu
 - Office Hours: Mondays 9:00 AM 10:00 AM by Zoom or by Appointments
- Course Website & Materials:
 - D2L: https://d2l.depaul.edu/
 - Github: https://gaotx-cs.github.io/teaching/csc578/

Prerequisites

• Prerequisites Courses:

- CSC 412: Tools and Techniques for Computational Analysis
- CSC 480 (or DSC 478): Artificial Intelligence I

Required Knowledge:

- Calculus: derivatives of multivariate functions, chain rules
- Linear Algebra: vectors, matrices, matrix-vector computations,
- Probability: mean, variance, Gaussian distribution, conditional probability, Bayes' rule
- Programming (Python): list, loops, functions, Numpy, Matplotlib, Jupyter

Textbooks:

- Neural Networks and Deep Learning, by Michael Nielsen.
- Deep Learning Book, by Goodfellow, Bengio, and Courville.
- The course is self-contained and complemented with research papers.

Additional Materials: D2L or Github

- Lecture slices
- Research papers and blogs
- Additional readings and reviews
- This will be useful for course projects.

Course Overview

The course provides an essential introduction to neural networks and deep learning

- Foundation of Deep Learning: Multilayer perceptions, backpropagation, SGD
- Advanced Optimization: Momentum, RMSprop, Adam.
- Generalization & Regularization: overparameterization, double descent, weight decay.
- Neural Network Architectures: CNNs, RNNs, transformers (e.g., GPT and BERT)
- Applications: CV, NLP, and Bio such as Face recognition, language models, and drug side effects.

Course Outline

Week	Date	Торіс	
Week 1	Thu, 01/09	Introduction to Neural Networks	
Week 2	Thu, 01/16	Training Neural Networks	
Week 3	Thu, 01/23	Advanced Optimization Methods	
Week 4	Thu, 01/30	Generalization and Regularization	
Week 5	Thu, 02/06	Convolutional Neural Networks (CNNs)	
Week 6	Thu, 02/13	Learning in CNNs	
Week 7	Thu, 02/20	Recurrent Neural Networks (RNNs)	
Week 8	Thu, 02/27	Sequence-to-Sequence Models	
Week 9	Thu, 03/06	Large Language Models (LLM)	
Week 10	Thu, 03/13	Graph Neural Networks (GNNs)	
Week 11	Thu, 03/20	Final Project Due (No meeting)	

Course Objective

By the end of this course, you should be able to:

- Understand the fundamentals of deep neural networks
- Explore advanced topics such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and transformer architectures.
- Gain practical experience through assignments and projects implementing deep learning models in Python using popular frameworks (e.g., PyTorch).
- Learn how to apply deep learning techniques to real-world problems such as computer vision, natural language processing, and biomedical data science.

Coursework

• Quiz (25%):

- Quizzes will generally be released on Thursdays and will be due on the next lecture.
- We will count your best 5 out of the 10 guizzes.
- Each quiz will consist of around 10 multiple-choice questions (\sim 0.5-1h).

• Assignments (35%)

- These assignments are usually released on Thursdays and are due on the next lecture.
- Students should fill in the correct code for implementation rather than starting from scratch (\sim 1-2h).
- Download the Jupyter Notebook from D2L and fill in only the designated code sections.
- Submit the notebook in its original format (.ipynb); do not change other parts of the file.
- Any violation, such as altering the notebook or submitting a different format, will result in a zero.
- We will count your best 5 out of the 10 assignments.

• Midterm (20%)

- Take-home, open-book, individual work, no internet, honor code, timed
- Released at 5 PM on Wednesday, February 2, available until 5 PM on Friday, Febrary 4.
- Once you open it, you will have 120 minutes to complete the exam.
- Content will be like quizzes and homework: multiple-choice questions and coding parts.
- More details to announce.

Coursework

- Final Project (20%): Includes Proposal (0-8%) and Final Report (12-20%).
 - Individual Project: Team size is one. Larger teams require instructor approval.
 - Research-Oriented:
 - Motivation for the project
 - Limitations of existing methods
 - New methods/models/analyses proposed
 - New applications identified
 - Experimental support and discussion
 - Example Projects: Stanford CS231n
 - LaTeX (Overleaf Tutorial): A Latex template will be provided; other templates are not allowed.
- Extra Credit (5%):
 - Course feedback, bonus assignments or problems, participation in class discussions, etc.
 - Used if you are on the boundary between grades.

Project Proposal Overview

Key Points:

- Main paper: 2-page limit (excluding references and appendix).
- Sections:
 - Introduction: Clearly define the machine learning problem, its significance, and key challenges.
 - Related Work: Summarize key papers and highlight your proposed improvements.
 - Methodology: Describe your approach, including architecture and planned innovations.
 - Experimental Evaluation: Specify datasets, evaluation metrics, and analysis methods.
 - Work Plan: Provide a timeline with major milestones and deadlines.
- Appendix: Unlimited supplementary material, such as code or detailed data explanations.

Submission: Submit as a single PDF file.

Final Project Report Guidelines

Submission Details:

- Total Points: 20 (or 12).
- Submit two files: Final Project Report (.pdf) and Jupyter Notebook (.ipynb).

Report Requirements:

- Length: 5-page limit for the main paper (unlimited references and appendix).
- Sections: Abstract, Introduction, Related Work, Background, Methodology, Numerical Experiments, Conclusion.

Notebook Requirements:

- Include well-annotated code, detailed explanations, and test cases.
- Sections: Libraries, Model Design, Training, Evaluation Results.

Submission Guidelines:

- Both .pdf and .ipynb files are required; missing either result in a zero score.
- No late submissions will be accepted.

Assessments Schedule and Due Dates

Week	Assessments	Release on (00:01 AM)	Due on (11:59 PM)
Week 1	Quiz 1, HW1	Thu, 01/09	Thu, 01/16
Week 2	Quiz 2, HW2	Thu, 01/16	Thu, 01/23
Week 3	Quiz 3, HW3	Thu, 01/23	Thu, 01/30
Week 4	Quiz 4, HW4	Thu, 01/30	Thu, 02/06
Week 5	Quiz 5, HW5	Thu, 02/06	Thu, 02/13
Week 5	Midterm Exam	Wed, 02/12 5 PM	Fri, 02/14 5 PM
Week 6	Project Proposal	Thu, 01/09	Thu, 02/20
Week 6	Quiz 6, HW6	Thu, 02/13	Thu, 02/20
Week 7	Quiz 7, HW7	Thu, 02/20	Thu, 02/27
Week 8	Quiz 8, HW8	Thu, 02/27	Thu, 03/06
Week 9	Quiz 9, HW9	Thu, 03/06	Thu, 03/13
Week 10	Quiz 10, HW10	Thu, 03/13	Thu, 03/20
Week 11	Final Project	Thu, 01/09	Thu, 03/20

Late Submissions

- Generally, submissions are due at 11:59 pm of the respective due date.
- Late submissions for quizzes are not allowed.
- Assignments and Proposal allow late submissions, up to 3 days late, where a penalty of 10 percent will be imposed for each day.
- No late submissions are accepted for the Final Project.

Grading Scale

Grade	Range
А	93-100
A-	90-92
B+	87-89
В	83-86
B-	80-82
C+	77-79
C	73-76
C-	70-72
D+	67-69
D	63-66
D-	60-62
F	0-59

University and Course Policies

Academic Integrity

- Cheating, plagiarism, and other forms of academic dishonesty are strictly prohibited.
- Violations may result in failing the assignment, the course, or referral to the academic conduct committee.
- Please ensure that all work submitted is your own and properly cited.
- For detailed guidelines, refer to the university's academic integrity policy.

Other Policies

- We adhere to all university and course policies, including those on attendance, accommodations, and student conduct.
- Detailed information on these policies can be found on the university policies website, or on the Teaching Commons page.

Note: For a comprehensive list of policies, please refer to the course syllabus.

Introduce Yourself (Extra Credit 1%)

Please introduce yourself by sharing your responses to the following prompts and post your introduction in the online discussion so we can all get to know each other better:

- Name (and Preferred Pronouns)
- Major and Year
- Background (and Previous Experience)
- Research Interests
- Why You're Taking the Course
- Expectations for the Course
- Fun Fact or Hobby

Discussion Questions

Questions to Discuss:

- What is Artificial Intelligence (AI)?
- What is Machine Learning (ML)?
- What is Deep Learning (DL)?
- What are the pros and cons of DL compared to conventional machine learning?

Instructions: Discuss these questions in small groups of 2-3 members.