EX-09--Thresholding of Images

[']Aim

To segment the image using global thresholding, adaptive thresholding and Otsu's thresholding using python and OpenCV.

[']Software Required

- 1. Anaconda Python 3.7
- 2. OpenCV

² Algorithm

Step1:

Load the necessary packages.

Step2:

Read the Image and convert to grayscale.

Step3:

Use Global thresholding to segment the image.

Step4:

Use Adaptive thresholding to segment the image.

Step5:

Use Otsu's method to segment the image.

Step 6:

Display the results.

Program

```
Developed By: Kersoan P
Register No : 212221230050
# Load the necessary packages
import cv2
import numpy as np
import matplotlib.pyplot as plt
# Read the Image and convert to grayscale
image=cv2.imread("image.jpg",1)
image=cv2.cvtColor(image,cv2.COLOR_BGR2RGB)
image_gray=cv2.imread("image.jpg",0)
# Use Global thresholding to segment the image
ret,thresh_img1=cv2.threshold(image_gray,86,255,cv2.THRESH_BINARY)
ret,thresh_img2=cv2.threshold(image_gray,86,255,cv2.THRESH_BINARY_INV)
ret,thresh_img3=cv2.threshold(image_gray,86,255,cv2.THRESH_TOZERO)
ret,thresh_img4=cv2.threshold(image_gray,86,255,cv2.THRESH_TOZERO_INV)
ret,thresh_img5=cv2.threshold(image_gray,100,255,cv2.THRESH_TRUNC)
# Use Adaptive thresholding to segment the image
thresh_img7=cv2.adaptiveThreshold(image_gray,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,1
thresh img8=cv2.adaptiveThreshold(image gray,255,cv2.ADAPTIVE THRESH GAUSSIAN C,cv2.THRESH BINA
# Use Otsu's method to segment the image
ret,thresh img6=cv2.threshold(image gray,0,255,cv2.THRESH BINARY+cv2.THRESH OTSU)
# Display the results
titles=["Gray Image","Threshold Image (Binary)","Threshold Image (Binary Inverse)","Threshold I
       ,"Threshold Image (To Zero-Inverse)", "Threshold Image (Truncate)", "Otsu", "Adaptive Thres
images=[image_gray,thresh_img1,thresh_img2,thresh_img3,thresh_img4,thresh_img5,thresh_img6,thre
for i in range(0,9):
    plt.figure(figsize=(10,10))
```

```
plt.subplot(1,2,1)
plt.title("Original Image")
plt.imshow(image)
plt.axis("off")
plt.subplot(1,2,2)
plt.title(titles[i])
plt.imshow(cv2.cvtColor(images[i],cv2.COLOR_BGR2RGB))
plt.axis("off")
plt.show()
```

[']Output

[']Original Image

'Global Thresholding

Original Image

Original Image

Threshold Image (Binary)

Threshold Image (Binary Inverse)

Original Image

Original Image

Threshold Image (To Zero)

Threshold Image (To Zero-Inverse)

Original Image

Threshold Image (Truncate)

[']Adaptive Thresholding

Original Image

Otsu

Adaptive Threshold (Mean)

'Optimum Global Thesholding using Otsu's Method

Result

Thus the images are segmented using global thresholding, adaptive thresholding and optimum global thresholding using python and OpenCV.