Les tableaux

Gilles Trombettoni

IUT MPL-Sète, département info

Octobre 2019

Rappel sur les tableaux

2 Parcours partiel d'un tableau

3 Tableaux à plusieurs dimensions

Définition de tableau

Définition (wikipedia)

Un tableau est une séquence finie d'éléments auxquels on peut accéder efficacement par leur position, ou **indice**, dans la séquence. Un tableau « de base » contient des valeurs qui sont toutes du même type.

3.14	2.72	1.62	-1.655	-10.54
0	1	2	3	4

Les tableaux dans le langage maison

Déclaration (dans la partie Variables)

- <nom de tableau> : tableau de <taille> <type des éléments>
 - ⇒ définit un tableau de <taille> éléments de type <type des éléments> indicés de 0 à <taille>−1.
- Exemple de déclaration d'un tableau de 10 caractères (dans un algo machin):

```
tab : tableau de 10 caractères
```

 Exemple de déclaration, dans une fonction truc, d'un tableau de caractères, de taille quelconque :

```
fonction truc (t : tableau de taille caractères)...

Si l'algo machin appelle la fonction truc(tab), cela copie :
```

- les éléments (valeurs) de tab dans le tableau t en paramètre de truc et
- la valeur 10 dans le paramètre taille.

Accès aux cases d'un tableau

- Accès à une case :
 <nom de tableau>[<indice>]
 Exemple : t[2]
- Accès en écriture (affectation) :
 <nom de tableau>[<indice>] ← <valeur>
 Exemple : t[2] ← 'z'
- Accès en lecture (dans un test) : Exemple : si t[2] mod 2 == 0 alors ...

Les tableaux en mémoire

• Un tableau est stocké en mémoire vive dans une zone contiguë.

 Un tableau est du coup déterminé par l'adresse de sa première case.

 L'accès à chaque case prend le même temps de calcul (premier élément ou 1000^e élément), très rapide : une multiplication, une addition, un accès à une adresse mémoire!

Principe de parcours partiel

Définition

- Définition : parcours sur quelques éléments du tableau.
- But : savoir s'il existe au moins un élément vérifiant une condition.
- Deux conditions d'arrêt : vérification de la condition ou parcours de tout le tableau (sans vérifier la condition).

Pseudo-code générique

Exemple de parcours partiel

retourne trouve

Fin contient

Une fonction contient qui recherche un élément réel donné elt dans un tableau t. contient retourne vrai ssi l'élément est trouvé.

```
Fonction contient
fonction contient (elt : reel, t : tableau de taille reels)
                  retourne booleen
Variables
   i : entier ; trouve : booleen
Debut.
   i <- 0; trouve <- faux
   tantQue i < taille ET non trouve faire
      si t[i] == elt alors // elt trouvé
         trouve <- vrai
      sinon
         i <- i+1
      finSi
   finTantQue
```

Tableaux de tableaux

- Pour un tableau donné, chaque case peut contenir un autre tableau! On parle de tableau multi-dimensionnel.
- Si les tableaux dans chaque case sont tous du même type et de même taille, on décrit une matrice.
- Déclaration: mat : tableau de n (tableaux de m entiers)
- Convention: mat est un tableau de n « lignes » contenant chacune m « colonnes ».
- Sémantique : allocations de n * m éléments entiers.
- On peut généraliser, en dimension 3 par exemple : mat3d : tableau de n (tableaux de m (tableaux de p entiers))
- Représentation mémoire ?

Parcours total d'une matrice (2D)

Parcours des $n \times m$ éléments d'une matrice mat avec deux boucles imbriquées

Parcours des $n \times m$ éléments avec une seule boucle

```
i <-0; j <- 0
tantQue i < n faire
   afficher mat[i][j]
   si j < (m-1) alors
        j <- j+1 // colonne suivante
   sinon // j == m-1
        sautLigne()
        i <- i+1 // ligne suivante
        j <- 0 // on revient à la première colonne
   finSi
fin TantQue</pre>
```

Parcours partiel d'une matrice (2D)

Exemple : recherche d'un élément donné dans une matrice

```
fonction contient (elt : reel, mat : tableau de n tableaux de m reels)
                  retourne booleen
Variables
  i, j : entier ; trouve : booleen
Debut.
 i <- 0; trouve <- faux
 tantQue i < n et non trouve faire // parcours des lignes
     i <- 0
     tantQue j < m et non trouve faire // parcours des colonnes d'1 ligne
        si mat[i][j] == elt alors
           trouve <- vrai
        finSi
        j <- j+1
     fin tantQue
     i <- i+1
 fin tantQue
 retourne trouve
Fin contient
```

Parcours partiel dans une matrice (2D) : carré magique

Exemple : vérification qu'un carré est magique

```
fonction estMagique (mat : tableau de n tableaux de n entiers)
                     retourne booleen
Variables
  magique
                        : booleen
  i, j, sommeReference : entier
Début
  sommeReference <- sommeLigne(mat, 0) // somme premiere ligne</pre>
  i <- 1; magique <- vrai
  tantQue i < n et magique faire // les lignes sont magiques ?
     magique <- sommeReference == sommeLigne(mat, i)</pre>
     si magique alors i <- i+1 finSi
  fin tantQue
  i <- 0
  tantQue j < n et magique faire // les colonnes sont magiques ?
     magique <- sommeReference == sommeColonne(mat, j)</pre>
     si magique alors j <- j+1 finSi
  fin tantQue
  retourne magique et alors verifDiagonales(mat, sommeReference)
                   et alors verifPremiersEntiers(mat)
Fin estMagique
```

Parcours partiel dans une matrice : carré magique

Fonction sommeLigne

```
fonction sommeLigne (matr : tableau de n tableaux de m entiers,
                      ligne : entier) retourne entier
Variables
  j, somme : entier
Début
  somme <-0
  pour j dans 0..(m-1) faire
    somme <- somme + matr[ligne][j]</pre>
  fin Pour
  retourne somme
Fin sommeLigne
```

Tableaux à plusieurs dimensions

Fonction sommeColonne

Rappel sur les tableaux

```
fonction sommeColonne (matr: tableau de n tableaux de m entiers,
                        col: entier) retourne entier
Variables
  i, somme : entier
Début
  somme <-0
  pour i dans 0..(n-1) faire
    somme <- somme + matr[i][col]</pre>
  fin Pour
  retourne somme
Fin sommeLigne
```