Correction de la feuille 2 : suites

Exercice 1.

- (a) Puisque $\left| \frac{e^{in^2}}{n+3} \right| = \frac{1}{n+3} \to 0$ quand n tend vers $+\infty$, la suite $(a_n 1)$ tend vers 0, donc la suite (a_n) tend vers 1.
- (b) La suite (b_n) est géométrique de raison 1+i. Or $|1+i|=\sqrt{2}>1$. Donc la suite (b_n) diverge.
- (c) Pour $n \in \mathbb{N}$, $c_n = \frac{3n-3}{2n+3} = \frac{3n}{2n} \frac{1-\frac{1}{n}}{1+\frac{3}{2n}} = \frac{3}{2} \frac{1-\frac{1}{n}}{1+\frac{3}{2n}}$. La fraction à droite tend vers 1 quand $n \to +\infty$. Donc (c_n) converge vers 3/2.
- (d) Pour $n \in \mathbb{N}$, en factorisant par n numérateur et dénominateur, on trouve

$$d_n = \frac{1 + \sqrt{1 + \frac{1}{n^2}}}{1 - \sqrt{1 + \frac{1}{n^2}}}$$

Le numérateur tend vers 2, le dénominateur vers 0^- , donc (d_n) tend vers $-\infty$. C'est une suite divergente.

(e) Pour $n \in \mathbb{N}^*$, $e_n = e^{2n\ln\left(1+\frac{1}{n}\right)}$. Quand $x \to 0$, on a le développement limité $\ln(1+x) = x + o(x)$. Quand $n \to +\infty$, (1/n) tend vers 0, donc

$$e_n = e^{2n(\frac{1}{n} + o(\frac{1}{n}))} = e^{2+o(1)}.$$

Par continuité de l'exponentielle, (e_n) converge vers e^2 .

Exercice 2.

- (a) (u_n) admet une limite réelle : $\exists \ell \in \mathbb{R}, \forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, |u_n \ell| < \epsilon$.
- (b) (u_n) n'est pas bornée : $\forall M \in \mathbb{R}_+, \exists n \in \mathbb{N}, |u_n| > M$.
- (c) (u_n) n'est pas convergente : $\forall \ell \in \mathbb{C}, \exists \epsilon > 0, \forall N \in \mathbb{N}, \exists n \geq N, |u_n \ell| \geq \epsilon$.
- (d) (u_n) est constante à partir d'un certain rang : $\exists c \in \mathbb{C}, \exists N \in \mathbb{N}, \forall n \geq N, u_n = c$.

Exercice 3.

(a) Soit $m = |\ell|/2$. C'est un nombre strictement positif, puisque ℓ n'est pas nul. Par convergence de (u_n) vers ℓ , il existe $N \in \mathbb{N}$ tel que, pour tout $n \geq N$, $|u_n - \ell| < m$ et donc, par inégalité triangulaire à l'envers,

$$|u_n| = |\ell + u_n - \ell| \ge |\ell| - |u_n - \ell| \ge |\ell| - m = m.$$

(b) Pour $n \geq N$,

$$\left| \frac{1}{u_n} - \frac{1}{\ell} \right| = \frac{|u_n - \ell|}{|u_n||\ell|} \le \frac{1}{m|\ell|} |u_n - \ell|$$

1

Comme (u_n) converge vers ℓ , le membre de droite tend vers 0 quand $n \to +\infty$, de sorte que le membre de gauche (positif) aussi. Donc $(1/u_n)$ converge vers $1/\ell$.

Exercice 4. Soit (u_n) une suite de nombres entiers convergeant vers ℓ . Il existe donc $N \in \mathbb{N}$ tel que pour tout $n \geq N$, $|u_n - \ell| < \frac{1}{4}$. Soit $n \geq N$. Par inégalité triangulaire,

$$|u_n - u_N| = |(u_n - \ell) - (u_N - \ell)| \le |u_n - \ell| + |u_N - \ell| < \frac{1}{4} + \frac{1}{4} = \frac{1}{2}.$$

Comme $u_n - u_N$ est un entier, cela veut dire qu'il est nul. On a donc prouvé que la suite (u_n) est constante à partir du rang N.

Exercice 5.

(a) Pour tout $n \in \mathbb{N}^*$, par inégalité triangulaire,

$$|4(n+1)^3 - 2n^2 + n\cos n| \le \underbrace{4(n+1)^3}_{\le 4(2n)^3} + \underbrace{2n^2}_{\le 2n^3} + \underbrace{n|\cos(n)|}_{\le n\le n^3} \le 35n^3$$

donc $4(n+1)^3 - 2n^2 + n\cos n = O(n^3)$.

(b) Pour tout entier $n \geq 4$,

$$\frac{7n^2 - 15n}{n - 3} = \frac{7n^2}{n} \frac{1 - \frac{15}{7n}}{1 - \frac{3}{2}} = 7n \frac{1 - \frac{15}{7n}}{1 - \frac{3}{2}}.$$

La fraction à droite tend vers 1 quand $n \to +\infty$, donc $\frac{7n^2 - 15n}{n-3} \sim 7n$.

- (c) Le développement limité $\sin x = x + o(x)$, quand $x \to 0$, donne $\sin(1/n) = 1/n + o(1/n)$ quand $n \to +\infty$. Cela signifie exactement : $\sin(1/n) \sim 1/n$.
- (d) Pour $n \in \mathbb{N}^*$,

$$\ln(n+1) - \ln(n) = \ln\left(\frac{n+1}{n}\right) = \ln\left(1 + \frac{1}{n}\right).$$

On utilise le développement limité

$$\ln(1+x) = x - \frac{x^2}{2} + o(x^2)$$

quand $x \to 0$. Il entraı̂ne, quand $n \to +\infty$:

$$\ln(n+1) - \ln(n) - \frac{1}{n} = \ln\left(1 + \frac{1}{n}\right) - \frac{1}{n} = -\frac{1}{2n^2} + o\left(\frac{1}{n^2}\right).$$

Le membre de droite est équivalent à $-\frac{1}{2n^2}$, donc en particulier

$$\ln(n+1) - \ln(n) - \frac{1}{n} = O(1/n^2).$$

(e) Pour $n \in \mathbb{N}^*$,

$$\frac{n^a}{r^n} = e^{a \ln(n) - n \ln(r)} = e^{-n[\ln(r) - a \ln(n)/n]}.$$

La suite $(\ln(n)/n)$ tend vers 0 par croissance comparée. On suppose r > 1, donc $\ln(r) > 0$. Quand $n \to +\infty$, l'exposant tend donc vers $-\infty$, de sorte que la suite (n^a/r^n) tend vers 0. Donc $n^a = o(r^n)$.

(f) Soit $z \in \mathbb{C}$. Fixons un entier N > |z| et prenons n > N. Ecrivons

$$\left|\frac{z^n}{n!}\right| = \left(\frac{|z|}{1} \frac{|z|}{2} \dots \frac{|z|}{N-1}\right) \left(\frac{|z|}{N} \dots \frac{|z|}{n-1}\right) \frac{|z|}{n}$$

La première parenthèse ne dépend pas de n, c'est une constante C. Chacun des facteurs de la seconde parenthèse est majoré par $|z|/N \le 1$. Donc

$$\left| \frac{z^n}{n!} \right| \le C \frac{|z|}{n}$$

Le membre de droite tend vers 0 quand n tend vers l'infini, donc le membre de gauche aussi. Cela assure $z^n = o(n!)$.

(g) Pour $n \in \mathbb{N}^*$,

$$\left|\frac{n!}{n^n}\right| = \frac{1}{n} \frac{2}{n} \frac{3}{n} \dots \frac{n}{n}.$$

Chacune des fractions est de la forme k/n, avec $1 \le k \le n$, donc $k/n \le 1$. On utilise ces majorations, sauf pour le premier terme (k = 1), pour trouver

$$\left| \frac{n!}{n^n} \right| \le \frac{1}{n} \times 1 \times \dots \times 1 = \frac{1}{n}.$$

Ceci tend vers 0 quand $n \to +\infty$, donc $n! = o(n^n)$.

Exercice 6.

- $A = \{1, -1\}$. Il n'a qu'un nombre fini d'éléments, donc sup A est le plus grand élément, 1. Et de même, inf A = -1. Ces bornes sont donc atteintes.
- $B = \{(-1)^n n \mid n \in \mathbb{N}\}$ contient les nombres 2p et -2p+1 pour tout $p \in \mathbb{N}$: il n'est ni majoré, ni minoré. Donc sup $B = +\infty$ et inf $B = -\infty$.
- Pour $C = \{\cos x \mid 2\pi/3 < x < 4\pi/3\}$, on regarde les variations de la fonction cosinus : elle est continue, strictement décroissante sur $]2\pi/3,\pi]$ puis strictement croissante sur $[\pi,4\pi/3[$. Puisque $\cos \pi = -1$ et $\cos 2\pi/3 = \cos 4\pi/3 = -1/2$, on en déduit que sur l'intervalle $]2\pi/3, 4\pi/3[$, l'ensemble des valeurs qu'elle prend est [-1,-1/2[. On a donc $\sup C = -1/2$, non atteint, et inf C = -1, atteint.
- $D = \left\{ \frac{n}{n+1} \mid n \in \mathbb{N} \right\}$. En fait, D est l'ensemble des valeurs prises par la suite $(u_n) = \left(1 \frac{1}{n+1}\right)$, qui est strictement croissante. Ainsi, inf $D = u_0 = 0$ est atteint. Et $(u_n) \to 1$, donc sup D = 1. Aucun u_n ne vaut 1: ce sup n'est pas atteint.
- $-E = \left\{ \frac{2p}{2pq+3} \mid p,q \in \mathbb{N}^* \right\}. \text{ Pour } p,q \in \mathbb{N}^*, \ 0 < \frac{2p}{2pq+3} < \frac{2p}{2pq} \leq \frac{2p}{2p} = 1.$ Ainsi, 0 est un minorant et 1 est un majorant. De plus, si on fixe p=1, on voit que $\frac{2}{2q+3}$ tend vers 0 quand q tend vers $+\infty$. Donc inf E=0. Et si on fixe q=1, on voit que $\frac{2p}{2p+3}$ tend vers 1 quand p tend vers $+\infty$. Donc sup E=1. Les inégalités strictes ci-dessus montrent que ce ne sont pas des valeurs atteintes.

Exercice 7.

- (a) A est une partie de \mathbb{R} majorée par 1 contenant 0 (puisque f(0) est dans [0,1]). Ainsi, A possède une borne supérieure finie σ vérifiant $\sigma \geq 0$ ($0 \in A$) et $\sigma \leq 1$ (1 est un majorant de A).
- (b) σ est bien dans [0,1]. Prouvons que $\sigma \leq f(\sigma)$. Soit $x \in A$. Alors $x \leq f(x)$ et aussi $x \leq \sup A = \sigma$, donc par croissance de f, $f(x) \leq f(\sigma)$. Donc $x \leq f(x) \leq f(\sigma)$. Cela prouve que $f(\sigma)$ est un majorant de A. Puisque σ est le plus petit des majorants, on en déduit $\sigma \leq f(\sigma)$.
- (c) Soit $x \in A$. Alors $f(x) \in [0,1]$ et $x \le f(x)$. Par croissance de f, cette inégalité implique $f(x) \le f(f(x))$. Donc f(x) est dans A.
- (d) Par (b), σ est dans A. Par (c), $f(\sigma)$ est donc dans A, donc $f(\sigma) \leq \sup A = \sigma$. Puisque $\sigma \leq f(\sigma)$ par (b), on en déduit : $f(\sigma) = \sigma$.

Exercice 8.

- (a) Pour $n \in \mathbb{N}^*$, $S_{n+1} S_n = 1/(n+1)^2 \ge 0$. Donc la suite (S_n) est croissante.
- (b) Pour $n \in \mathbb{N}^*$.

$$T_n = \sum_{k=2}^n \frac{1}{k(k-1)} = \sum_{k=2}^n \left(\frac{1}{k-1} - \frac{1}{k}\right)$$
$$= \frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{n-2} - \frac{1}{n-1} + \frac{1}{n-1} - \frac{1}{n}.$$

Dans cette somme, tous les termes se simplifient deux par deux, à l'exception du premier et du dernier :

$$T_n = 1 - \frac{1}{n}.$$

On en déduit que (T_n) converge vers 1.

(c) Pour $n \in \mathbb{N}^*$,

$$S_n = 1 + \sum_{k=2}^n \frac{1}{k^2} \le 1 + \sum_{k=2}^n \frac{1}{k(k-1)} = 1 + T_n.$$

La suite (T_n) est convergente donc majorée (en fait, on a vu qu'elle était majorée par 1). Donc la suite (S_n) aussi. Elle est croissante et majorée, donc convergente.

Exercice 9.

(a) Pour $n \in \mathbb{N}^*$, $u_{n+1} - u_n = \frac{1}{(n+1)!} > 0$, donc (u_n) est (strictement) croissante. Pour $n \in \mathbb{N}^*$,

$$v_{n+1} - v_n = \frac{1}{(n+1)!} + \frac{1}{(n+1)(n+1)!} - \frac{1}{nn!}$$

$$= \frac{1}{(n+1)!} \left(1 + \frac{1}{n+1} - \frac{n+1}{n} \right)$$

$$= \frac{1}{(n+1)!} \left(\frac{1}{n+1} - \frac{1}{n} \right) < 0,$$

donc (v_n) est (strictement) décroissante. Et $(v_n - u_n) = (1/(nn!))$ est une suite tendant vers 0. Ceci prouve que les suites (u_n) et (v_n) sont adjacentes.

(b) Le théorème des suites adjacentes assure que les suites (u_n) et (v_n) convergent, vers la même limite, qu'on appelle e. De plus, par stricte monotonie des suites, on dispose des encadrements suivants

$$\forall n \in \mathbb{N}^*, \quad u_n < e < v_n.$$

Pour n = 1, cela donne $e \in]2, 3[$.

(c) Supposons e rationnel : e = p/q, avec $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$. En particulier, q!e est un entier. Et par construction, $a = q!u_q$ est aussi un entier. Or on dispose de l'encadrement

$$a = q!u_q < q!e < q!v_q = a + \frac{1}{q}.$$

Donc q!e est censé être un entier situé dans l'intervalle]a, a+1[. Puisque a est entier, cet intervalle ne contient pas d'entier : contradiction! On vient de prouver par l'absurde que e est un nombre irrationnel.

Exercice 10.

- (a) $(u_{8n}) = (8n)$ est une sous-suite tendant vers $+\infty$.
- (b) (u_{2+8n}) est une sous-suite et elle est nulle, donc convergente.

Exercice 11.

(a) Supposons par l'absurde que la suite $(\sin n)$ converge vers ℓ . Pour $n \in \mathbb{N}$, on dispose des formules de trigonométrie :

$$\sin(n+1) = \sin n \cos 1 + \cos n \sin 1,$$

$$\sin(n-1) = \sin n \cos 1 - \cos n \sin 1.$$

On somme et on fait $n \to +\infty$ pour trouver : $2\ell = 2\ell \cos 1$. Comme $\cos 1 \neq 1$, on en tire $\ell = 0$. Alors quand $n \to \infty$:

$$|\cos n| = \sqrt{1 - (\sin n)^2} \to \sqrt{1 - \ell^2} = 1.$$

La première formule de trigonométrie ci-dessus donne

$$|\sin(n+1) - \sin n \cos 1| = |\cos n| |\sin 1|$$

et donc quand $n \to +\infty$: $0 = |\sin 1|$. C'est absurde, donc $(\sin n)$ diverge.

(b) La suite $(\sin n)$ est bornée par 1. Le théorème de Bolzano-Weierstrass assure l'existence d'une extractrice ϕ telle que $(\sin \phi(n))$ converge. La suite $(a_n) = (\phi(n))$ convient donc.

Exercice 12. Si (u_n) converge vers ℓ , toutes ses sous-suites aussi : en particulier, (u_{2n}) et (u_{2n+1}) convergent vers ℓ .

Supposons maintenant que (u_{2n}) et (u_{2n+1}) convergent vers la même limite ℓ . Soit $\epsilon > 0$. Il existe des indices N_1 et N_2 tels que

$$\forall n \ge N_1, \qquad |u_{2n} - \ell| \le \epsilon$$

 $\forall n \ge N_2, \qquad |u_{2n+1} - \ell| \le \epsilon.$

Soit $K = \max(2N_1, 2N_2 + 1)$. Soit $k \ge K$. Si k est pair, k = 2n pour un entier $n \ge K/2 \ge N_1$. Si k est impair, k = 2n + 1 pour un entier n vérifiant $2n + 1 \ge 2N_2 + 1$, soit $n \ge N_2$. Dans les deux cas, on a donc $|u_n - \ell| \le \epsilon$. Ceci prouve que (u_n) converge vers ℓ .

Exercice 13.

- (a) (u_n) est bornée : le théorème de Bolzano-Weierstrass assure qu'elle possède une sous-suite $(u_{\theta(n)})$ convergeant vers un nombre complexe ℓ .
- (b) (u_n) est divergente donc ne converge pas vers ℓ : en niant la convergence vers ℓ , on voit qu'il existe $\epsilon > 0$ tel que

$$\forall N \in \mathbb{N}, \ \exists n \ge N, |u_n - \ell| \ge \epsilon.$$

L'ensemble $A = \{n \in \mathbb{N}/|u_n - \ell| \geq \epsilon\}$ contient donc une infinité d'entiers naturels. Numérotons-les dans l'ordre croissant : $A = \{n_0 < n_1 < n_2 < \ldots\}$.

$$\forall k \in \mathbb{N}, \quad |u_{n_k} - \ell| \ge \epsilon.$$

L'application $\phi: k \mapsto n_k$ est bien une extractrice par construction. Et elle convient.

(c) La suite $(u_{\phi(n)})$ est bornée donc, par le théorème de Bolzano-Weierstrass, on peut en extraire une sous-suite (v_n) convergeant vers $\ell' \in \mathbb{C}$. Comme sous-suite d'une sous-suite, c'est une sous-suite de (u_n) . Et par (b), ses termes vérifient

$$\forall n \in \mathbb{N}, \quad |v_n - \ell| \ge \epsilon.$$

En faisant $n \to +\infty$, on trouve $|\ell' - \ell| \ge \epsilon$, donc $\ell' \ne \ell$.

Exercice 14.

(a) Comme (u_n) converge vers ℓ , il existe $N \in \mathbb{N}^*$ tel que

$$\forall k \geq N, \quad |u_k - \ell| \leq \epsilon.$$

En sommant, on en déduit pour tout indice n > N:

$$\frac{1}{n} \sum_{k=N+1}^{n} |u_k - \ell| \le \frac{n-N}{n} \epsilon \le \epsilon.$$

(b) On fixe N comme dans (a). Alors $\frac{1}{n} \sum_{k=1}^{N} |u_k - \ell|$ tend vers 0 quand n tend vers

 $+\infty$ (la somme ne dépend pas de n). On peut donc trouver un indice N'>N tel que

$$\forall n \ge N', \quad \frac{1}{n} \sum_{k=1}^{N} |u_k - \ell| \le \epsilon.$$

Soit un entier n > N'. On écrit

$$\mu_n - \ell = \left(\frac{1}{n} \sum_{k=1}^n u_k\right) - \ell$$

$$= \frac{1}{n} \sum_{k=1}^n (u_k - \ell)$$

$$= \frac{1}{n} \sum_{k=1}^N (u_k - \ell) + \frac{1}{n} \sum_{k=N+1}^n (u_k - \ell).$$

Par inégalité triangulaire :

$$|\mu_n - \ell| \le \frac{1}{n} \sum_{k=1}^N |u_k - \ell| + \frac{1}{n} \sum_{k=N+1}^n |u_k - \ell|.$$

Le second terme est majoré par ϵ par (a) (puisque $n \geq N' \geq N$). Et le premier aussi grâce au choix de N'. On a donc prouvé que, pour tout $n \geq N'$, $|\mu_n - \ell| \leq 2\epsilon$.

(c) Ceci prouve que (μ_n) converge vers ℓ .

Exercice 15.

(a) Soit (u_n) une suite convergeant vers $\ell \in \mathbb{C}$. Soit $\epsilon > 0$. Il existe $N \in \mathbb{N}$ tel que

$$\forall n \ge N, \quad |u_n - \ell| \le \frac{\epsilon}{2}.$$

Soient $p, q \geq N$. Par inégalité triangulaire :

$$|u_p - u_q| = |(u_p - \ell) - (u_q - \ell)| \le |u_p - \ell| + |u_q - \ell| \le \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Donc (u_n) est de Cauchy.

(b) Si (u_n) est de Cauchy, il existe $N \in \mathbb{N}$ tel que

$$\forall p, q \ge N, |u_p - u_q| \le 1.$$

Pour $p \geq N$, on a donc

$$|u_p| = |u_p - u_N + u_N| \le |u_p - u_N| + |u_N| \le 1 + |u_N|.$$

La suite (u_n) est donc bornée par

$$M = \max(|u_0|, \dots, |u_{N-1}|, 1 + |u_N|).$$

- (c) Avec (b), le théorème de Bolzano-Weierstrass assure que toute suite de Cauchy (u_n) admet une sous-suite $(u_{\phi(n)})$ convergeant vers ℓ .
- (d) On reprend les notations du (c). Soit $\epsilon > 0$. Puisque $(u_{\phi(n)})$ converge vers ℓ , il existe $N_1 \in \mathbb{N}$ tel que

$$\forall n \geq N_1, \quad |u_{\phi(n)} - \ell| \leq \epsilon.$$

La suite étant de Cauchy, il existe $N_2 \in \mathbb{N}$ tel que

$$\forall p, q \geq N_2, \quad |u_p - u_q| \leq \epsilon.$$

Posons $N = \max(N_1, N_2)$. Pour $n \ge N$, on a aussi $\phi(n) \ge n \ge N$. On peut donc utiliser les deux estimées ci-dessus pour voir que

$$|u_n - \ell| = |u_{\phi(n)} - \ell + u_n - u_{\phi(n)}| \le |u_{\phi(n)} - \ell| + |u_n - u_{\phi(n)}|$$

 $\le \epsilon + \epsilon = 2\epsilon.$

Donc (u_n) converge vers ℓ .

Exercice 16.

(a) Pour $N \in \mathbb{N}$, notons $Q_N = \{u_k \mid k \geq N\}$. Il s'agit de parties non vides et bornées de \mathbb{R} donc leurs bornes supérieure et inférieure sont des réels bien définis. En outre, pour tout indice N, $Q_{N+1} \subset Q_N$, donc $s_{N+1} \leq s_N$ (puisque s_N majore Q_N donc Q_{N+1}) et $i_N \leq i_{N+1}$ (puisque i_N minore Q_N donc Q_{N+1}). Ceci montre que (s_N) est décroissante, tandis que (i_N) est croissante. Et puisque (u_n) est bornée, ces deux suites le sont aussi. Donc elles convergent.

- (b) Pour $n \in \mathbb{N}$, on pose $u_n = (-1)^n e^{1/n}$. Pour tout $k \in \mathbb{N}$, $u_{2k} = e^{\frac{1}{2k}}$ (positif et décroissant en k) et $u_{2k+1} = -e^{\frac{1}{2k+1}}$ (négatif et croissant en k). Pour N pair, on a donc $s_N = e^{\frac{1}{N}}$ et $i_N = -e^{\frac{1}{N+1}}$. Et pour N impair, on a $s_N = e^{\frac{1}{N+1}}$ et $i_N = -e^{\frac{1}{N}}$. Donc (s_N) converge vers 1: c'est $\limsup (u_n)$. Et (i_N) converge vers -1, qui est donc $\liminf (u_n)$.
- (c) Supposons que $\limsup (u_n) = \liminf (u_n) = \ell$. Puisque

$$\forall n \in \mathbb{N}, \quad i_n \le u_n \le s_n,$$

on peut utiliser le théorème des gendarmes pour voir que (u_n) converge vers la limite commune de (s_n) et (i_n) , qui est ℓ .

Supposons maintenant que la suite (u_n) converge vers ℓ . Soit $\epsilon > 0$. Il existe N tel que

$$\forall k \ge N, \quad \ell - \epsilon \le u_k \le \ell + \epsilon.$$

En particulier, pour $n \geq N$, tous les éléments u_k de Q_n vérifient l'encadrement ci-dessus, de sorte que

$$\ell - \epsilon \le i_n \le s_n \le \ell + \epsilon$$
.

Cela prouve que (i_n) et (s_n) convergent vers ℓ , i.e.

$$\lim \sup(u_n) = \lim \inf(u_n) = \ell.$$