Memoria provisional

September 17, 2022

1 Introducción

1.1 Curvas de Bézier

Qué son, breve resumen de su historia y para qué son utilizadas.

1.2 Motivación y objetivos

Qué son las curvas fraccionarias generalizadas, ventajas, mencionar posibles usos. Objetivo: Aplicarlas al Data Fitting en Superficies de Riemann. Plan de trabajo.

2 Curvas de Bézier fraccionarias generalizadas

2.1 Parámetros de forma

Sea la curva de Bézier original definida por los n+1 puntos de control $P_i \in \mathbb{R}^m$:

$$\alpha(t) = \sum_{i=0}^{n} B_{i,n}(t) P_i$$

donde

$$B_{i,n}(t) = \binom{n}{i} (1-t)^{n-i} t^i, \qquad t \in [0,1]$$

Definimos la Base de funciones Bernstein de grado n con n parámetros de forma como:

$$\hat{B}_{i,n}(t) = B_{i,n}(t)\left(1 + \frac{a_i}{n-i+1}(1-t) - \frac{a_{i+1}}{i+1}t\right), \qquad t \in [0,1]$$

$$a_0 = a_{n+1} = 0 \qquad -(n-i+1) < a_i < i, \qquad i = 0, 1, ..., n$$

donde $a_1, ..., a_n$ son los parámetros de forma.

La base de funciones $\hat{B}_{i,n}(t)$ tiene las siguientes propiedades:

1.
$$\hat{B}_{i,n}(t) \ge 0, \quad t \in [0,1]$$

- 2. $\hat{B}_{i,n}(t) = \hat{B}_{n-i,n}(1-t)$, cuando $a_i = -a_{n-i+1}$
- 3. $\hat{B}_{i,n}(t) = B_{i,n}(t)$ cuando $a_i = 0, \quad i = 1, ..., n$.
- 4. $\sum_{i=0}^{n} \hat{B}_{i,n}(t) = 1$

NOTA: ¿LO DEMUESTRO O MENCIONO EL ARTÍCULO DONDE SE DEMUESTRA? LA DEMOSTRACIÓN ES MECÁNICA

 ${\it Definimos\ la\ Curvas\ de\ B\'ezier\ de\ grado\ n\ con\ n\ par\'ametros\ de\ forma}$ ${\it como}$

$$\hat{\alpha}(t) = \sum_{i=0}^{n} \hat{B}_{i,n}(t) P_i, \qquad t \in [0,1]$$
 (1)

Por las propiedades de la base de funciones $\hat{B}_{i,n}$ se sigue que la nueva curva de Bézier cumple la propiedad del casco convexo.

Veamos el efecto que tiene en las curvas al variar los valores de los parámetros de forma: