Let's get parsing!

- SpaCy default model includes tagger, parser and entity recognizer
 - nlp = spacy.load('en') tells spaCy to use "en" with ["tagger", "parser", "ner"]
- Each component processes the Doc object, then passes it on
- doc.is_parsed attribute checks whether a Doc object has been parsed

NAME	COMPONENT	CREATES	DESCRIPTION
tokenizer	Tokenizer ≡	Doc	Segment text into tokens.
tagger	Tagger ≡	Doc[i].tag	Assign part- of-speech tags.
parser	DependencyParser ≡	Doc[i].head, Doc[i].dep, Doc.sents, Doc.noun_chunks	Assign dependency labels.

```
SpaCy First Parse.py X
        import spacy
        import pandas as pd
        import itertools as it
 3
        import codecs
       import sys
 5
 7
        nlp = spacy.load('en core web sm')
 8
      # To load a file, change the below path to your actual path:
        #doc = unicode (open ('sample review.txt').read().decode ('utf8'))
10
11
       #To parse that file, replace the below line with doc = nlp(doc).
12
        doc = nlp(u'spaCy is designed to help you do real work. It will help you build real products and gather real insights.')
13
14
        print('DOCUMENT IS PARSED?')
15
        print(doc.is parsed) #Checks whether the file is parsed. Will throw an exception if false.
16
17
       #optionally print doc tokens
18
        #for token in doc:
19
            #print(token.text)
20
        #optionally print tokens to a document
        #token list = [token.text for token in doc]
23
        #df1 = pd.DataFrame(zip(token list),
24
                           #columns=['token'])
25
       #df1.to html('Parsed Token List.html')
26
27
```

Noun Chunks

TEXT	ROOT.TEXT	ROOT.DEP_	ROOT.HEAD.TEXT
Autonomous cars	cars	nsubj	shift
insurance liability	liability	dobj	shift
manufacturers	manufacturers	pobj	toward

Example parse: "Autonomous cars shift insurance liability toward manufacturers."

Text: The original noun chunk text.

Root text: The original text of the word connecting the noun chunk to the rest of the

parse.

Root dep: Dependency relation connecting the

root to its head.

Root head text: The text of the root token's

head.

```
SpaCy DP Chunks.py X
1
       import spacy
       import pandas as pd
3
       nlp = spacy.load('en core web sm')
4
5
       doc = nlp(u'spaCy is designed to help you do real work. It will help you build real products and gather real insights.')
6
7
       #print noun chunks to console
8
       print('CHUNKS')
9
        for chunk in doc. noun chunks:
10
           print(chunk.text, chunk.root.text, chunk.root.dep ,
11
12
           chunk.root.head.text)
13
       #alternatively, print in a table, to a document
14
       chunk text = [chunk.text for chunk in doc.noun chunks]
15
       chunk root = [chunk.root.text for chunk in doc.noun chunks]
16
       chunk root dep = [chunk.root.dep for chunk in doc.noun chunks]
17
       chunk root head = [chunk.root.head.text for chunk in doc.noun chunks]
18
19
       df3 = pd.DataFrame(zip(chunk text, chunk root, chunk root dep, chunk root head),
20
21
                           columns=['Chunk Text', 'Chunk Root', 'Chunk Root Dep', 'Chunk Root Head'])
       df3.to html('Chunker.html')
```

Dependency Relations

TEXT	DEP	HEAD TEXT	HEAD POS	CHILDREN
Autonomous	amod	cars	NOUN	
cars	nsubj	shift	VERB	Autonomous
shift	ROOT	shift	VERB	cars, liability
insurance	compound	liability	NOUN	
liability	dobj	shift	VERB	insurance, toward
toward	prep	liability	NOUN	manufacturers
manufacturers	pobj	toward	ADP	

Text: The original token text.

Dep: The syntactic relation connecting child to head.

Head text: The original text of the token head. **Head POS**: The part-of-speech tag of the token head.

Children: The immediate syntactic dependents of the token.

Example parse: "Autonomous cars shift insurance liability toward manufacturers."

```
SpaCy DP Dependency Relations.py X
       import spacy
1
        import pandas as pd
 3
       nlp = spacy.load('en core web sm')
 4
 5
       doc = nlp(u'spaCy is designed to help you do real work. It will help you build real products and gather real insights.')
 6
 7
       print('DEPENDENCY RELATIONS')
8
       print('Key:')
9
       print('TEXT, DEP, HEAD TEXT, HEAD POS, CHILDREN')
10
        for token in doc: #prints dependencies
11
           print(token.text, token.dep , token.head.text, token.head.pos ,
12
                  [child for child in token.children])
13
14
        #alternatively, print in a table, to a document
15
        token text = [token.text for token in doc]
16
        token dep = [token.dep for token in doc]
17
        token head text = [token.head.text for token in doc]
18
        token head pos = [token.head.pos for token in doc]
19
        token_child = ([child for child in token.children] for token in doc)
20
21
        dfl = pd.DataFrame(zip(token text, token dep, token head text, token head pos, token child),
                            columns=['Token Text', 'Token Dep', 'Token Head Text', 'Token Head Pos', 'Token Child'])
23
        dfl.to html('Dependencies.html')
24
```

Matching Arcs of Interest

- You can iterate over the arcs by iterating over the words in the sentence.
- Best method to match an arc of interest from below and moving back up the tree
- Matching from above and down the tree requires two iterations
- Notice the different order of results

```
SpaCy DP Finding Arcs of Interest.py X
        import spacy
 1
        nlp = spacy.load('en core web sm')
 3
        doc = nlp(u'spaCy is designed to help you do real work. It will help you build real products and gather real insights.')
 5
 8
        #finding a verb with a subject from below - preferred direction
 7
        print('FINDING A VERB WITH SUBJECT FROM BELOW - GOOD')
8
        from spacy.symbols import nsubj, VERB
9
        verbs = set()
10
        for possible subject in doc:
11
            if possible subject.dep == nsubj and possible subject.head.pos == VERB:
12
                verbs.add(possible subject.head)
13
        print('VERBS:')
14
        print (verbs)
15
16
        #finding a verb with a subject from above - dispreferred direction
17
        print('\n')
18
        print('FINDING A VERB WITH SUBJECT FROM ABOVE - NOT GOOD')
19
        verbs = []
20
21
        for possible verb in doc:
            if possible verb.pos == VERB:
                for possible subject in possible verb.children:
23
                    if possible subject.dep == nsubj:
24
                        verbs.append(possible verb)
25
                        break
26
27
        print('VERBS')
        print (verbs)
28
```

Working with Syntactic Phrases

- Token.lefts and Token.rights provide sequences of syntactic children before/after the token.
- Token.n_rights and Token.n_lefts give the number of left and right children.
- Token.subtree returns an ordered sequence of tokens
 - Note: guaranteed to be contiguous, as English model is projective
 - Cf. German model, which is non-projective
 - See example #Get phrases by syntactic head

Working with Syntactic Phrases (continued)

- Token.ancestors allows you to walk up the tree: returns a sequence of ancestor tokens such that ancestor.is_ancestor(self).
- Token.is_ancestor() checks whether the token is dominant.
 - See example #Get phrases by syntactic head

Working with Syntactic Phrases (continued)

- .left_edge and .right_edge* return the first/last token of the subtree.
 - See example #Create a Span object for a syntactic phrase.
- Note: Syntactic parse tree also calculates sentence boundaries

^{*.}right_edge gives a token within the subtree, so if using as the end-point of a range, remember to +1

```
SpaCy DP Working With Phrases.py X
       import spacy
1
       nlp = spacy.load('en core web sm')
3
        #Get a phrase by its syntactic head
 5
       doc = nlp(u'Credit and mortgage account holders must submit their requests')
6
       root = [token for token in doc if token.head == token][0]#finds the root token, here = submit
7
       print('ROOT:')
8
       print (root)
9
       subject = list(root.lefts)[0] #provide sequences of syntactic children before the token.
10
        for descendant in subject.subtree: #iterates through descendents
11
            if subject.is ancestor(descendant):
12
                print('\n DESCENDENT TEXT, DESCENDENT DEP, NO. LEFT CHILDREN, NO. RIGHT CHILDREN, ANCESTORS')
13
           print(descendant.text, descendant.dep , descendant.n lefts, descendant.n rights,
14
                  [ancestor.text for ancestor in descendant.ancestors])
15
16
        #Create a Span object for a syntactic phrase
17
       doc = nlp(u'Credit and mortgage account holders must submit their requests')
18
        span = doc[doc[4].left edge.i : doc[4].right edge.i+1]
19
        span.merge()
20
        for token in doc:
21
           print(token.text, token.pos , token.dep , token.head.text)
```

Visualizing Dependencies

- displacy.serve runs the web server
- displacy.render generates the raw markup
 - eg. html = displacy.render([doc1, doc2], style='dep', page=True).
- Dependency Visualizer options: https://spacy.io/api/top-level#displacy_options

```
SpaCy DP Visualizer.py ×
       import spacy
       from spacy import displacy
3
4
       nlp = spacy.load('en core web sm')
5
       doc = nlp(u'The quick brown fox jumped over the lazy dog')
6
7
8
       options = {'compact': True, 'bg': '#09a3d5',
                  'color': 'white', 'font': 'Source Sans Pro'}
9
       displacy.serve(doc, style='dep', options=options)
10
       #displacy.serve(doc, style='dep') #default visualization
11
12
       #to view result, open a browser and type localhost:5000
13
```


True Dependencies?

SpaCy website say this feature can be used for viewing dependencies, but notice these aren't true dependencies.

Parsing in SpaCy

- Development of the SpaCy parsing method:
 - (Background) Basic, transition-based dependency parsing
 - Arc-eager parsing
 - Non-monotonic parsing
 - "Unshift" method
 - SpaCy: non-monotonic actions and Unshift

Basic, transition-based parsing

- 1. Shift word from buffer onto the stack
- 2. Takes w_j (right) as head to create left arc. Adds this to set of arcs $\{r(w_j, w_i)\} = \{amod(children, happy)\}$. 'happy' depends on 'children'
- 3. Takes wi (left) as root and adds to stack, leaves wj (its dependent) on buffer.

Finish: once buffer is exhausted

Problem

 Have to construct low level dependencies first, even when you can already see a higher one:

- Inefficient! Means shifting through every word before assigning the first dependency.
- Requiremed solution: that a head can take a right dependent, before its dependents are found

Solution: Arc-eager Dependency Parsing

```
Start: \sigma = [ROOT], \beta = w_1, ..., w_n, A = \emptyset

1. Left-Arc<sub>r</sub> \sigma | w_i, w_j | \beta, A \rightarrow \sigma, w_j | \beta, A \cup \{r(w_i, w_i)\}
Precondition: (w_k, r', w_i) \notin A, w_i \neq ROOT

2. Right-Arc<sub>r</sub> \sigma | w_i, w_j | \beta, A \rightarrow \sigma | w_i | w_j, \beta, A \cup \{r(w_i, w_j)\}

3. Reduce \sigma | w_i, \beta, A \rightarrow \sigma, \beta, A
Precondition: (w_k, r', w_i) \in A

4. Shift \sigma, w_i | \beta, A \rightarrow \sigma | w_i, \beta, A
Finish: \beta = \emptyset
```

- Nivre (2003)
- Add preconditions to the Left-Arc and Reduce actions (thus system is monotonic)
 - candidate word can't already be a dependent (1.)
 - words can be left on the stack to get dependents later (2.)

```
    Start: σ = [ROOT], β = w₁, ..., wₙ, A = Ø
    Left-Arc, σ|wᵢ, wᵢ|β, A → σ, wᵢ|β, A ∪ {r(wᵢ, wᵢ)} Precondition: (wᵢ, r', wᵢ) ∉ A, wᵢ ≠ ROOT
    Right-Arc, σ|wᵢ, wᵢ|β, A → σ|wᵢ|wᵢ, β, A ∪ {r(wᵢ, wᵢ)}
    Reduce σ|wᵢ, β, A → σ, β, A Precondition: (wᵢ, r', wᵢ) ∈ A
    Shift σ, wᵢ|β, A → σ|wᵢ, β, A
    Finish: β = Ø
```

- Necessitates the reduce operation to remove words from the stack that have been assigned an arc.
 - Precondition: only permitted if word has been made a dependent

Improvement 1: Non-monotonic Parsing

- Edit preconditions, making actions more flexible
 - Left-Arc may delete existing arc
 - Reduce action may insert 'missing' arc

Improvement 2: "Unshift"

- Nivre & Fernandez-Gonzalez (2014): "Unshift" operation
 - Can repair false sequences
 - Designed for use only when buffer is empty but stack contains words without governors

Improvement 3: Combination

- Honnibal and Johnson (2015) combine these. Reasoning:
 - Shift and Right-arc pushes word from buffer to stack, right-arc adds an arc
 - Previously: presence or absence of arc determines whether Reduce or Left-arc is possible
 - Unnecessary when parser is trained on a dynamic oracle (See next slide)
 - Can thus use Unshift more broadly

Dynamic vs Static Oracles

- Normally train transition-based dependency parsers on static oracle
 - Predicts optimal transition sequence and gold tree
- Dynamic oracle provides set of optimal transitions for every possible parser configuration
- If gold tree isn't reachable, will provide transitions leading to the best tree possible, also from non-optimal sequences
- Model can thus learn to recover from previous errors
- Example Goldberg and Nivre (2012): outperformed greedy parsers

Improved Transition System

- A word pushed onto stack with Shift won't have an arc
- Unshift then possible; pops word back onto buffer
 - Note: Sets a bit in a Boolean vector which will prevent a word being pushed and popped more than twice

Initial	$([],[1n],\mathbf{A}(1)=1)$			
Terminal	$([i],[],\mathbf{A})$			
Shift	$(\sigma, b \beta, \mathbf{A}, \mathbf{S}(b) = 0)$	\Rightarrow	$(\sigma b, \beta, \mathbf{A}, \mathbf{S}(b) = 1)$	
Right-Arc	$(\sigma s,b \beta,\mathbf{A},\mathbf{S})$	\Rightarrow	$(\sigma s b, \beta, \mathbf{A}(b) = s, \mathbf{S})$	
Reduce	$(\sigma s, \beta, \mathbf{A}(s) \neq 0, \mathbf{S})$	\Rightarrow	$(\sigma, \beta, \mathbf{A}, \mathbf{S})$	
Unshift	$(\sigma s, \beta, \mathbf{A}(s) = 0, \mathbf{S})$	\Rightarrow	$(\sigma, s \beta, \mathbf{A}, \mathbf{S})$	
Left-Arc	$(\sigma s,b eta,\mathbf{A},\mathbf{S})$	\Rightarrow	$(\sigma, s \beta, \mathbf{A}(s) = b, \mathbf{S}$	

 $(\sigma, \beta, \mathbf{A}, \mathbf{S})$ = configuration where $\sigma | s$ = stack with topmost element s $b | \beta$ = buffer with first element b \mathbf{A} = vector of head indices $\mathbf{A}(i) = j$ = arc $wj \longrightarrow wi$ \mathbf{S} = bit-vector used to prevent Shift/Unshift cycles

Practical Implications

- Actions allowed by monotonic arc-eager systems:
 - Arcs from stack words to buffer words
 - Arcs from buffer words to headless stack words
 - Arcs between words in a buffer
- Honnibal at al (2013) extra non-monotonic actions:
 - Left-arc can "clobber" existing heads
 - A word i on the stack can reach an arc to or from a word j ahead on the stack
 if j has no head

Experiment

- Trained parser on OntoNotes corpus, converted into dependencies using ClearNLP 3.1 converter
- OntoNotes corpus:
 - Telephone conversations, broadcast news, weblogs and more
 - English, Chinese, Mandarin Chinese, Arabic
 - Uses Penn Treebank for syntax and Penn PropBank for predicate-argument stka4cture

Value of the control of the control

katherine amabel; 09.12.2017

- Compared three arc-eager transition systems to theirs
 - Original Arc Eager (Nivre, 2003)
 - Previous Non-Monotic (Honnibal et al., 2013)
 - Tree Constrained (Unshift) (Nivre and Fernandez-Gonzalez, 2014)
 - Combination (Honnibal and Johnson 2015)
 - Plus four state-of-the-art systems for context

Transition System	Search	UAS	LAS
Orig. Arc Eager	Greedy	91.25	89.40
Tree Constrained	Greedy	91.40	89.50
Prev. Non-Monotonic	Greedy	91.36	89.52
This work	Greedy	91.85	89.91
Chen and Manning (2014)	Greedy	89.59	87.63
Goldberg and Nivre (2012)	Greedy	90.54	88.75
Choi and Mccallum (2013)	Branch	92.26	90.84
Zhang and Nivre (2011)	Beam ₃₂	92.24	90.50
Bohnet (2010)	Graph	92.50	90.70

Hannibal and Johnson (2015)

Results

- Improved Unlabelled Accuracy Score (UAS) by 0.6%
- Improved Labelled Accuracy Score (LAS) by 0.51%
- Outperformed greedy- and non-greedy transition parsers

SpaCy Now - v2.0

- Neural network models (based on Kiperwasser & Goldberg 2016):
 - "Each sentence token is associated with a BiLSTM vector representing the token in its sentential context, and feature vectors are constructed by concatenating a few BiLSTM vectors. The BiLSTM is trained jointly with the parser objective, resulting in very effective feature extractors for parsing (Kiperwasser and Goldberg 2016)."
- Tokenization: OntoNotes5 ka5
- Lemmatization: WordNet
- POS Tagging: Google Universal POS tag set, plus:
 - English: OntoNotes5 version of Penn Treebank tag set
 - German: TIGER Treebank + Google Universal POS tag set.
- Syntactic Dependency Parsing:
 - English: CLEAR Style (Clear NLP)
 - German: TIGER Treebank annotation

ka5

WordNet: WordNet® is a large lexical database of English. Nouns, verbs, adjectives and adverbs are grouped into sets of cognitive synonyms (synsets), each expressing a distinct concept. Synsets are interlinked by means of conceptual-semantic and lexical relations. The resulting network of meaningfully related words and concepts can be navigated with the browser. katherine amabel; 09.12.2017