

BABEŞ-BOLYAI UNIVERSITY

Faculty of Mathematics and Computer Science

Inteligență Artificială

Camelia Chira

camelia.chira@ubbcluj.ro

Objective

- Rezolvarea problemelor reale cu metode inteligente
 - Intelegerea si modelarea problemei
 - Utilizarea / adaptarea unei metode inteligente pentru rezolvarea problemei
- Dezvoltarea de algoritmi si aplicatii pentru rezolvarea unor probleme complexe
 - Orice limbaj de programare
- Modele din sfera IA
 - Cautare locala
 - Simulated Annealing, Tabu search
 - Algoritmi Evolutivi
 - Algoritmi de tip Swarm Intelligence

Curs Inteligenta Artificiala (IA): Scop

- A intelege in ce consta IA
 - Scop
 - Abilitati
 - Metodologie
 - Algoritmi
 - Aplicativitate
- A acumula informatii despre metode noi de rezolvare a problemelor prin:
 - Dezvoltarea de aplicatii inteligente
 - Introducerea conceptelor si tehnicilor de baza din IA
 - Intelegerea problemelor si dificultatilor intalnite in rezolvarea lor
 - Cunoasterea avantajelor si dezavantajelor unei anumite tehnici de rezolvare a problemelor
 - Exprimarea unei opinii critice asupra a ceea ce poate IA sa faca

Bibliografie

- Z. Michalewicz, D. B. Fogel, How to solve it: Modern Heuristics, 2nd edition, Springer, 2004.
- S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 1995.
- C. Groşan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011.
- El-Ghazali Talbi, Metaheuristics From Design to Implementation, Wiley 2009.
- M. Mitchell, An introduction to genetic algorithms, MIT Press, 1996.
- Back T, Fogel D.B, Michalewicz Z.; *Evolutionary Computation I. Basic Algorithms and Operators*, IOP Publ., 2000
- Back T, Fogel D.B, Michalewicz Z.; Evolutionary Computation II. Advanced Algorithms and Operators, IOP Publ., 2000
- A. E. Eiben, J.E. Smith, Introduction to Evolutionary Computing. Springer, 2003.
- D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, 1989.
- K. A. De Jong, Evolutionary Computation: A Unified Approach. MIT Press, Cambridge, MA, 2006.

Organizare

• Structura

- 12 cursuri
- 6 laboratoare
- 6 seminarii

Evaluare

- Teme laborator
- Examen

http://www.cs.ubbcluj.ro/~cchira

MS Teams

Evaluare

- Punctaj total posibil 1100 puncte
- Teme Laborator 50%

P1 = max. 550 puncte 4 teme laborator

• Examen - 50%

P2 = max. 550 puncte

Examen scris: intrebari grila si deschise

sau

Proiect

• Nota finala se calculeaza in functie de punctajul total P = P1+P2

Punctaj P	Nota
< 500	Nepromovat
[500, 599]	5
[600, 699]	6
[700, 799]	7
[800, 899]	8
[900, 999]	9
>= 1000	10

Continut curs

- Scurta introducere in IA
- Modelarea si rezolvarea problemelor, optimizare
- Algoritmi de cautare locala
 - Hill-climbing
- Algoritmi de tip single-point
 - Simulated Annealing
 - Tabu Search
- Algoritmi bazati pe populatii
 - Algoritmi Evolutivi
 - Algoritmi bazati pe inteligenta de grup (Swarm Intelligence)
- Modele hibride

Ce este IA?

- Intrebare dificila
- AI is a branch of science which deals with helping machines find solutions to complex problems in a more human-like fashion.
- Pe scurt: determinarea mașinilor de a efectua lucruri inteligente
- Minsky si McCarthy, 1950s:

"any task performed by a program or a machine that, if a human carried out the same activity, we would say the human had to apply intelligence to accomplish the task"

Strong AI

• Calculatoarele pot fi programate să gândească la un nivel cel puțin egal cu cel uman și chiar să fie conștiente de acțiunile lor

Weak AI

 Calculatoarele pot efectua anumite sarcini de gândire – ceea ce deja se întâmplă

De ce avem nevoie de IA?

- Optimizare si planificare
- Sisteme de recomandare
- Ordonarea paginilor web
- Recunoașterea/analiza vocii
- Recunoașterea imaginilor, scrisului de mână
- Traducerea automată
- Diagnosticare medicală
- Planificarea sarcinilor
- Manipularea roboţilor în medii neprietenoase
- Filtrarea spam-urilor
- etc.

Tipuri de IA

amazon

Narrow IA

- Ceea ce vedem deja in calculatoare azi: sisteme inteligente care au fost invatate sa efectueze sarcini
- Exemple: optimizare in industrie, recunoastere voce (personal assistants), recunoastere imagini in self-driving cars, interpretare videos (drones), recomandare online pe baza unor preferinte, etc.

General IA

• O forma flexibila de inteligenta capabila sa efectueze orice

sarcina

• Survey (V. Muller, N. Bostrom, 2013):

- 50% sanse sa fie dezvoltata in 2040-2050
- \rightarrow 90% in 2075
- Ceea ce vedem in filme

Scurt istoric IA: etape majore

- Nașterea IA (1943-1956)
- Epoca de aur (1956-1974)
- Prima iarnă (1974-1980)
- Boom (1980-1987)
- A doua iarnă (1987-1993)
- IA meta-modernă (după 1993)

Nasterea IA (1943-1956)

- Care sunt originile IA?
 - Matematică, logică, informatică, filozofie, psihologie, științe cognitive, biologie
- Primele noțiuni de IA
 - 1943 Walter Pitts şi Warren McCulloch propun neuronul artificial
 - 1950 Alan Turing -> testul Turing
 - Maşinile pot gândi? Putem să ne dăm seama într-o conversație dacă interlocutorul este o maşină sau nu?
 - Demo ALICE http://www.alicebot.org
 - 1951 primele programe pentru jocuri (dame și șah)
 - 1955 Allen Newell și Herbert Simon -> primul program pentru demonstrara automată a teoremelor

Nasterea IA (1943-1956)

- Conceptul de IA
 - 1956 John McCarthy, școala de vară de la Dartmouth, SUA, propune termenul de IA
 - 1956 John McCarthy face prima demonstrație cu rularea unui program de IA la CMU (Carnegie Mellon University)

Epoca de aur (1956-1974)

- Calculatoarele pot executa o anumită sarcină X
 - X = rezolvarea puzzle-urilor, demonstrarea teoremelor geometrice, jucarea jocului de dame
 - Multe dintre aceste probleme toy problems
 - 1958 John McCarthy propune limbajul LISP la MIT (Massachusetts Institute of Technology)
 - 1965 ELIZA (MIT, J. Weizenbaum)
 - 1969 robotul Shakey combină locomoția, percepția și rezolvarea problemelor (Stanford Research Institute)
 - 1970 "nașterea" algoritmilor evolutivi

Example: conversation with Eliza

```
Welcome to
                   EEEEEE LL
                                  IIII ZZZZZZZ
                                                AAAAA
                   EE
                                   II
                                            ZZ
                                                 AA AA
                   EFFEE LL
                                          ZZZ
                                                 АААААА
                                   II
                                         ZZ
                                                 AA
                                                      AA
                   EEEEEE LLLLLL IIII ZZZZZZZ AA AA
 Eliza is a mock Rogerian psychotherapist.
 The original program was described by Joseph Weizenbaum in 1966.
 This implementation by Norbert Landsteiner 2005.
ELIZA: Is something troubling you ?
YOU: Men are all alike.
ELIZA: What is the connection, do you suppose ?
      They're always bugging us about something or other.
ELIZA: Can you think of a specific example ?
      Well, my boyfriend made me come here.
ELIZA: Is it important to you that your boyfriend made you come here ?
YOU: He says I'm depressed much of the time.
ELIZA: I am sorry to hear that you are depressed.
YOU: It's true. I am unhappy.
ELIZA: Can you explain what made you unhappy ?
YOU:
```

Epoca de aur (1956-1974)

- 1966 1973 -> o doză de realism
 - Necesitatea cunoștințelor din domeniul problemei
 - Abordarea sintactică nu este suficientă -> translatorul automat rusă- engleză (US suspendă finanțarea)
 - Control dificil -> complexitate exponenţială
 - Guvernul britanic suspendă finanțarea IA -> raportul lui Lighthill -> opinie pesimistă asupra cercetării în domeniul IA
 - Limite teoretice -> perceptronul nu poate rezolva problema XOR-ului
 - cercetarea rețelelor neuronale este suspendată

Epoca de aur (1956-1974)

• 1969 – 1988 -> sisteme bazate pe cunoștințe • Ghidarea căutării pe baza cunoștințelor specifice domeniului problemei • Cyc -> o bază de cunoștințe- http://cyc.com • Sisteme expert dezvoltate de majoritatea companiilor Domain-Specific Knowledge (e.g., Healthcare, Computer Security, Command and Control, Mortgage Banking, ...) "AI" **Domain-Specific Facts and Data** 2000 1950 1990 1960 1970 1980 Testul sisteme expert entuziasm realism Turing 22.02.2022 Camelia Chira 17

Prima iarnă (1974-1980)

Probleme

- Puterea limitată a calculatoarelor
- Creșterea exponențială a timpului necesar rezolvării unei probleme cu tehnici IA
- Necesitatea unei baze de cunoştinţe specifice domeniului problemei
- Sistarea finanţării

Boom (1980-1987)

- Se dezvoltă puternic sistemele expert
 - MYCIN Standford University -> diagnosticul bolilor infecțioase de sânge
 - XCON (eXpert CONfigurer) Carnegie Mellon University -> Selectarea componentelor unui calculator în funcție de opțiunile utilizatorului
- 1986 rețele neuronale artificiale
 - Perceptronul multistrat
 - Redescoperirea algoritmului de antrenare backpropagation
 - Noi dezvoltări:
 - Modelele simbolice (Newell, Simon)
 - Modelele logistice (McMarthy)

22.02.2022

A doua iarnă (1987-1993)

- Puterea de calcul limitată
- Suspiciunea companiilor
 - Banii au fost dirijați spre alte domenii de cercetare (diferite de IA)

IA meta-modernă (1993 – prezent)

- 1997 Deep Blue
- 1998 programarea genetică
- 2000 roboți pe post de animale de companie

Inteligența Artificială

- Artificial Intelligence (sometimes Computational Intelligence sau Soft Computing)
- Calcul evolutiv algoritmi evolutivi
- Calcul neuronal retele neuronale
- Calcul fuzzy sisteme fuzzy
- Inteligența de grup **swarm intelligence**
- Invăţare automată machine learning

Calcul Natural

Paradigma IA folosita cu succes:

- Impact social si economic
- Exemple
 - Folosirea motoarelor de cautare online
 - Sistemul bancar: citirea cecurilor prin coduri zip sau citirea cecurilor scrise de mana
 - Obtinerea directiilor de condus pe o anumita ruta
 - Algoritmi de detectare a fraudelor
 - Filtru spam
- Boeing, NASA algoritmi genetici pentru optimizari
- 2011: Google self-driving cars
 - https://www.youtube.com/watch?v=eXeUu Y6W0w

Aplicatii in jocuri

- IBM Deep Blue
 - A castigat in partida de sah cu Garry Kasparov, 1997

- Blondie 24
 - A castigat un turneu de dame
 - A jucat impotriva a 165 oameni cu o rata mai buna decat ~99%
- Multe jocuri comerciale folosesc tehnici AI

Aplicatii in jocuri

- **2011**: IBM's Watson a invins 2 castigatori anteriori ai jocului televizat Jeopardy
 - Sistemul a fost dezvoltat pentru a raspunde intrebarilor in limbaj natural

- **2015**: Al system called Claudico was 4th on a poker game
 - Poker: informatii lipsa!

Aplicatii in Logistica

- Itinerarii de drum
 - Directii de drum de la o locatie data la destinatie
 - Exemplu: MapQuest
- Analiza dinamica si replanificare
 - DART (Dynamic Analysis and Replanning Tool)
 - 1991 Razboiul din Golf, admin peste 50000 oameni, vehicule si echipamente cargo
- Planificarea traficului aerian
 - Mai ales in cazul intarzierilor sau re-rutarilor
 - Replanificare plecari/sosiri

Aplicatii in procesarea de text

- Traducerea automata dintr-o limba in alta
- Descoperirea informatiilor
- Clasificarea si organizarea textului
- Prezentarea unor informatii sumarizate

Alte Aplicatii

- Recunoasterea vorbirii
 - Sisteme de rezervari
 - Transcrierea automata monitorizarea continutului in programele live de radio si televiziune
- Recunoasterea formelor
 - · Recunoasterea scrisului de mana
 - Recunoasterea fetei
- Biologie si medicina
 - Diagnoza automata
 - Analiza genomului

Probleme

• O **problema** este descrisa de mai multi *parametri* si *cerinte* pe care o solutie a problemei trebuie sa le satisfaca

- O **instanta a problemei** este obtinuta prin specificarea unor valori particulare pentru parametrii problemei
- Un algoritm este o procedura de rezolvare a problemei.
- Un algoritm rezolva o problema P daca poate fi aplicat oricarei instante I a lui P si garanteaza intotdeauna obtinerea unei solutii pentru instanta I

Problema comis-voiajorului

Comis-voiajorul trebuie sa viziteze fiecare oras si sa se intoarca acasa pe drumul cel mai scurt.

Fie G = (V, E) un graf neorientat în care oricare două vârfuri diferite ale grafului sunt unite printr-o latură căreia ii este asociat un cost pozitiv. Cerința este de a determina un ciclu care începe de la un nod, trece exact o dată prin toate celelalte noduri și se întoarce la nodul inițial, cu condiția ca ciclul sa aiba un cost minim.

$$A-B-D-C-E-A = 1+4+1+2+5=13$$

Problema rucsacului (0/1 knapsack problem)

- Fiecare item are o valoare (*v*) si o greutate (*w*).
- Puneti in rucsac valoarea maxima fara a depasi greutatea maxima admisa.

maximize
$$\sum_{i=1}^n v_i x_i$$
 subject to $\sum_{i=1}^n w_i x_i \leq W$ and $x_i \in \{0,1\}$.

Exemplu: Burgler's dilemma

• Greutatea maxima a rucsacului : 20 kg

Greedy approach

- Selecteaza cel mai bun item daca adaugarea lui in rucsac nu conduce la depasirea limitei de 20 kg
- Cel mai bun?
- 0 metrica:
 - Max. valoare
 - Min. greutate
 - Max. valoare/greutate
- Repeta pana cand rucsacul este plin
- Care metrica este cea mai buna?

Cursul urmator

- Complexitate
- Probleme de optimizare
- Cautare locala