Public Debt and Firm Performance: A Love-Hate Relationship?

Andrea Rouchon* Supervised by Marin Ferry[†]

* M2 DEIPM, Université Gustave Eiffel, Marne-la-Vallée, France. andrea.rouchon@edu.univ-eiffel.fr

† ERUDITE [EA 437], Université Gustave Eiffel, Marne-la-Vallée, France.

May 26, 2025

Table of Contents

- 1 Introduction
- 2 Literature review
- 3 Model & Data
- 4 Identification strategy
- 5 Baseline results
- 6 Mechanisms
- 7 Conclusion

Motivations

- ⇒ An important public policy question.
 - Public debt levels are on the rise, and this is part of an upward drift that has been ongoing for more than ten years.
 - Climate adaptation, the green transition, and demographic changes will imply additional spending pressures.
 - Past shocks have shown that debt can rise rapidly and on a large scale.
- ⇒ Uncertainty in the empirical literature.
 - The mean result is unlikely to represent a causal effect.
 - After correcting for a substantial publication bias in favor of negative effects, one cannot reject a zero average effect.
 - Theoretical mechanisms remain unproven.

Research question

Does public debt accumulation undermine firm performance in developing economies?

The demand-side mechanism

- Conventional view: in the short run, a debt-financed fiscal expansion may increase the disposable income of households, thereby boosting consumption and overall demand for goods and services.
- ⇒ Ricardian equivalence: in the long run, rational economic agents may anticipate future tax increases and save more in response to a debt-financed fiscal expansion.

The supply-side mechanism

- ⇒ Real debt burden: as public debt raises concerns among lenders and increases borrowing costs, public revenues may be absorbed by debt service, thereby reducing the fiscal space available for essential development spending/public goods provision.
- ⇒ Private investment may be crowded out if fiscal expansions drive up interest rates.

Empirical model

Growth_{i,k,j,(t,t-2)} =
$$\alpha + \beta X_{i,k,j,t} + \gamma Y_{j,(t-3,t-5)} + \tau_{k,t} + \mu_j + \epsilon_{i,k,j,t}$$
(1)

- Growth_{i,k,j,(t,t-2)} is the average annual growth rate of the sales of firm i, in industry k, and country j.
- Debt_{j,(t-3,t-5)} is the public-debt-to-GDP ratio of country j, lagged one period.
- $\tau_{k,t}$ are industry \times year dummies.
- μ_i are country fixed effects.
- \Rightarrow Standard errors are clustered at the country-year level, which corresponds to the level of aggregation of $Debt_{i,(t-3,t-5)}$.
- ⇒ Sampling probability weights, defined as the inverse of the probability of selection, are applied to correct for the varying selection probabilities across strata.

Firm-level survey data from the World Bank Enterprise Surveys (WBES)

- ⇒ WBES collect data on firm characteristics and performance, and on a broad range of business environment topics.^a
- ⇒ They cover a representative sample of an economy's private sector.
 - All formal private sector businesses (> 1% private ownership) with more than five employees.
 - All manufacturing businesses, and a subset of services businesses are included.
- ⇒ The unit of analysis is the establishment—a business entity associated with a physical location and its own set of financial statements.
- ⇒ The data produced is comparable across time and countries, through a uniform methodology applied globally.
 - A standardized questionnaire administered through face-to-face interviews with business owners and senior managers.
 - A stratified random sampling strategy where the three strata are size, sector, and sub-national location.
 - A specific substitution strategy by cell of stratification to correct for non-response.

^aWorld Bank Enterprise Surveys, www.enterprisesurveys.org.

Final dataset

- ⇒ 79,746 firms, located in 72 developing economies.
- ⇒ Within each country, the surveys follow a repeated cross-section design.
- ⇒ Surveys were conducted between 2006 and 2023, yielding variation in the number of firms and countries covered each year.^a
- ⇒ We did not consider firms when the responses to questions regarding opinions, perceptions, and numbers, were deemed to be untruthful, arbitrary, or unreliable.
- ⇒ Surveys for Angola (2006, 2010) and the Democratic Republic of Congo (2006) were excluded, since these two countries experienced violent events and benefited from higher than normal growth rates.

^aTaking into account the lag structure, the effective coverage period for our analysis spans from 2003 to 2020.

Table 1
Summary statistics.

· · · · · · · · · · · · · · · · · · ·								
Variables	N	Mean	S.D.	Min.	Q1	Q2	Q3	Max.
Firm characteristics								
$Growth_{i,k,j,(t,t-2)}$	79,746	4.833	46.763	-74.045	-14.200	-3.369	9.983	533.472
$Sales_{i,k,j,(t-2)}$	79,746	7.960	7.161	-7.161	6.274	7.865	9.545	21.937
$State_{i,k,j,(t)}$	79,746	0.012	0.108	0.000	0.000	0.000	0.000	1.000
$Foreign_{i,k,j,(t)}$	79,746	0.096	0.295	0.000	0.000	0.000	0.000	1.000
$Export_{i,k,j,(t)}$	79,746	0.225	0.418	0.000	0.000	0.000	0.000	1.000
$Size_{i,k,j,(t)}$	79,746	2.545	0.751	1.000	2.000	3.000	3.000	3.000
Firm $age_{i,k,j,(t)}$	79,746	19.272	14.861	0.000	9.000	16.000	25.000	210.000
Managerial experience $_{i,k,j,(t)}$	79,746	18.727	11.123	0.000	10.000	17.000	25.000	72.000

- ⇒ Most firms in the dataset are not only large but also well-rooted and managed by experienced individuals.
- \Rightarrow The average annual growth rate of firm sales is 4.83%, but displays substantial variation across firms with values ranging from -74.05% to 533.47%.

Table 1
Summary statistics.

Variables	N	Mean	S.D.	Min.	Q1	Q2	Q3	Max.
Country variables								
$Debt_{j,(t-3,t-5)}$	79,746	50.205	24.162	0.000	33.956	49.031	69.668	183.315
GDP growth _{$j,(t-3,t-5)$}	79,746	12.664	6.200	0.906	8.493	11.532	15.739	34.228
Primary balance $_{j,(t-3,t-5)}$	79,746	-3.536	3.811	-40.553	-5.832	-2.884	-1.267	8.463
$Income_{j,(t-3,t-5)}$	79,746	6.411	2.404	1.384	4.649	6.133	7.563	12.248
$Inflation_{j,(t-3,t-5)}$	79,746	7.170	5.357	-0.100	3.772	5.083	10.407	31.884
Population $_{j,(t-3,t-5)}$	79,746	17.616	1.967	12.144	16.168	17.484	18.680	21.026
Corruption control _{$j,(t-3,t-5)$}	79,746	-0.539	0.444	-1.482	-0.859	-0.553	-0.286	1.397
Government effectiveness $_{j,(t-3,t-5)}$	79,746	-0.342	0.493	-1.676	-0.685	-0.321	0.029	1.019
Rule of $law_{j,(t-3,t-5)}$	79,746	-0.463	0.471	-1.775	-0.788	-0.504	-0.029	1.252
Regulatory quality _{$j,(t-3,t-5)$}	79,746	-0.300	0.464	-1.517	-0.597	-0.265	-0.051	1.037
Political stability _{$j,(t-3,t-5)$}	79,746	-0.778	0.746	-2.762	-1.257	-0.855	-0.252	1.171

 \Rightarrow $Debt_{j,(t-3,t-5)}$ averages 50.2% of GDP, but varies substantially across countries. Values range from 0% in Timor-Leste (2009, 2015), to 183.3% in Zambia (2007).

Endogeneity concerns

$$Growth_{i,k,j,(t,t-2)} = \alpha + \beta X_{i,k,j,t} + \gamma Y_{j,(t-3,t-5)} + \tau_{k,t} + \mu_j + \epsilon_{i,k,j,t}$$
(1)

- ⇒ Time-invariant heterogeneity at the firm-level.
- ⇒ Time-varying unobservable heterogeneity, potentially correlated with both firm performance and public debt.
- ⇒ Reverse causality (biasing the estimated effect downward).

Conventional instrumental variable

$$VE_{j,(t-3,t-5)} = Foreign \ Debt_{j,(t-4,t-6)} \times Exchange \ Rate_{j,(t-3,t-5)}$$
 (2)

- Foreign Debt_{j,(t-4,t-6)} is the average share of public debt issued by country j and denominated in U.S. dollars.
- Exchange Rate_{j,(t-3,t-5)} denotes the variation in the bilateral exchange rate (log).
- Developing economies carry substantial dollar-denominated debt and experience significant exchange rate volatility.
- \Rightarrow Relevance is supported by the mechanical relationship between $VE_{i,(t-3,t-5)}$ and $Debt_{i,(t-3,t-5)}$.
- ⇒ But is the exclusion restriction plausible?
 - Could valuation effects be correlated with omitted variables that also influence firm performance?
 - Could exchange rate fluctuations directly affect firm outcomes (e.g., through trade competitiveness or input costs)?

Heteroscedasticity-based instruments

- ⇒ We implement the method developed by Lewbel (2012), which allows for identification using heteroskedasticity as a source of exogenous variation.^a
- ⇒ The idea is to build internal instruments from the model's own data, based on the assumption that the variance of the error term varies systematically with some observed exogenous variables.
- ⇒ Key assumptions:
 - Error term is heteroskedastic—i.e., its variance depends on firm-level characteristics such as size, age, or export status.
 - Exogenous variables used to generate the instruments are uncorrelated with the product of the structural error terms.
- ⇒ Identification is achieved using the TSLS estimator and a set of instruments:

$$Z_i = (X_i - \bar{X}) \cdot \hat{\epsilon}_i$$

where X includes exogenous firm-level variables and $\hat{\epsilon}_i$ is the residual from the first-stage regression.

^aWe use the ivreg2h command in Stata.

Heteroscedasticity-based instruments

- ⇒ Assumption 1: variance of the error term varies systematically with some exogenous firm-level variables.
 - Some firms naturally experience more volatile growth than others.
 - Ex: younger firms tend to have more erratic growth rates.
- ⇒ **Assumption 2:** exogenous variables used to build instruments must be uncorrelated with the product of the structural error terms.
 - Firm-level variables that explain differences in how volatile firm growth is must not be related to hidden factors that simultaneously affect public debt and firm performance.
 - Ex: firm age can't be used if young firms are systematically located in highly indebted countries, implementing specific policies that also affect growth.
 - We assume firm-level controls are not proxies for unobserved shocks jointly driving debt and growth.

Table 2

Dep. var.: $Growth_{i,k,j,(t,t-2)}$	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
				OL	.S					TSLS	
$Debt_{j,(t-3,t-5)}$	-0.119	0.363**	0.340**	0.573***	0.146	0.179*	0.217**	0.185**	0.231**	0.127	0.464**
	(0.090)	(0.145)	(0.141)	(0.124)	(0.091)	(0.095)	(0.098)	(0.091)	(0.099)	(0.304)	(0.149)
First-step results:											
$VE_{j,(r-3,r-5)}$	-	-	-	-	-	-	-	-	-	0.252***	0.125***
	-	-	-	-	-	-	-	-	-	(0.062)	(0.043)
Firm-level controls	No	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes
Country-level controls	No	No	No	Yes	No	No	Yes	Yes	Yes	Yes	Yes
Country FE	No	Yes	Yes	Yes	No	No	No	Yes	Yes	Yes	Yes
Ind. x Year FE	No	No	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes
#	79746	79746	79746	79746	79746	79746	79746	79746	79746	79746	79746
R-squared	0.004	0.065	0.113	0.125	0.077	0.121	0.137	0.158	0.158	0.158	0.161
Kleibergen-Paap LM stat (p-value)	-	-	-	-	-	-	-	-	-	0.013	0.001
Kleibergen-Paap F-stat	-	-	-	-	-	-	-	-	-	16.741	15.291
Stock-Yogo critical value	-	-	-	-	-	-	-	-	-	16.38	11.46

Note: Columns (1) to (8) display OLS estimates. Columns (9) to (11) display TSLS estimates, using heteroskediaticly-based instruments, and both at the time respectively. Robust standard-error clustered at the country x year level are shown in parentheses. WBES sampling probability sear runs (or enterthing times the summarization) of the country x year level are shown in parentheses. WBES sampling probability of the country x year level are shown in the white parentheses. WBES sampling probability of the country x year level are shown in the country x year level are shown in the country x year level are shown in the country x years and years are shown in the country x years are shown

- ⇒ A one percentage point increase in the public-debt-to-GDP ratio is associated with a 0.19 percentage point increase in firm sales growth (OLS).
- ⇒ The coefficient is slightly higher and reaches 0.23–0.24 percentage points when public debt is instrumented following Lewbel (2012).

Does public debt accumulation benefits more (or less) firms facing particular constraints?

$$Growth_{i,k,j,(t,t-2)} = \alpha + \beta \ Debt_{j,(t-3,t-5)} + \gamma \ Debt_{j,(t-3,t-5)} \times X_{i,k,j,(t)}$$
$$+ \delta \ X_{i,k,j,(t)} + Y_{j,(t-3,t-5)} + \tau_{k,(t)} + \mu_j + \epsilon_{i,k,j,(t)}$$
(2)

- where $X_{i,k,j,(t)}$ is a set of binary indicators for binding constraints.
- \Rightarrow $X_{i,k,j,(t)} = 1$ when business owners or senior managers report a moderate, major, or very severe obstacle to business operations.
- Subjective assessments may be biased due to strategic answers or perception differences.
- ⇒ Hard data to construct objective measures, and mitigate the potential biases inherent in subjective perceptions.
- ⇒ Guiding principle: use of the best available information, while maintaining a concern for objectivity.

Table 4

Impact of public debt for different kinds of firms.										
Dep. var.: Growth _{i,k,j,(t,t-2)}	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
$Var_{i,k,j,(t)} = 1$	Electricity	Telecom-	Transport	Informal	Courts	Tax	Political	Corruption	Finance	Education
		munications		sector		rates	instability			
					(DLS				
$Debt_{j,(t-3,t-5)}$	0.243**	0.162*	0.210**	0.224**	0.181*	0.219**	0.194**	0.195**	0.207**	0.202**
	(0.097)	(0.098)	(0.094)	(0.097)	(0.092)	(0.094)	(0.093)	(0.095)	(0.094)	(0.094)
$Variable_{j,(t-3,t-5)}$	5.861**	-2.044	2.364	1.548	-1.835	1.774	-0.425	-0.214	1.294	1.799
	(2.741)	(3.615)	(2.130)	(2.744)	(1.968)	(2.063)	(2.225)	(2.231)	(1.896)	(2.351)
$Debt_{j,(t-3,t-5)} \times Variable_{j,(t-3,t-5)}$	-0.104**	0.038	-0.064	-0.077	-0.014	-0.058*	-0.024	-0.024	-0.050	-0.042
	(0.044)	(0.058)	(0.041)	(0.053)	(0.048)	(0.031)	(0.033)	(0.036)	(0.039)	(0.041)
#	79746	79746	79746	79746	79746	79746	79746	79746	79746	79746

Note: Columns (1) to (10) display O.S estimates. All regressions include country—and firm-level control variables, a well as country and industry x year fixed effects. Robust standard-errors clustered at the country x year level are shown in parentheses. WellSES sampling probability weights are used for estimation. ***, *** and **, \$1, \$5, \$1, and 10% | levels.**

Table 5

Impact of public debt for different kinds of firms.										
Dep. var.: $Growth_{i,k,j,(t,t-2)}$	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
$Var_{.i,k,j,(t)} = 1$	Electricity	Water	Transport	Telecom-	Corruption	Public	Tax admin-	Courts	Credit	High
				munications		contracts	istrations			school
					OLS					
$Debt_{j,(t-3,t-5)}$	0.094**	0.143**	0.107**	0.061*	0.193**	0.236**	0.200**	0.210**	0.119*	0.136**
	(0.039)	(0.068)	(0.050)	(0.029)	(0.092)	(0.105)	(0.094)	(0.101)	(0.068)	(0.060)
$Variable_{j,(t-3,t-5)}$	-4.101**	0.023	-4.406*	2.827	-1.609	8.648***	2.146	-6.237**	0.641	6.070*
	(1.952)	(3.695)	(2.239)	(3.307)	(2.963)	(2.933)	(2.452)	(2.613)	(5.935)	(3.340)
$Debt_{j,(t-3,t-5)} \times Variable_{j,(t-3,t-5)}$	0.046	0.001	0.100**	0.139**	0.003	-0.143**	0.002	0.086**	0.029	-0.087*
	(0.036)	(0.057)	(0.039)	(0.058)	(0.043)	(0.063)	(0.035)	(0.040)	(0.080)	(0.050)
#	75776	37832	79746	53363	79746	72594	79303	63577	68430	41727

Note: Columns (1) to (10) display OLS estimates. All regressions include country and firm-level control variables, as well as country and industry x year fixed effects. Robust standard-errors clustered at the country X year level are shown in parentheses. WellSE sampling probability weights are used for estimation. ***, *** and **i, 5, 5, in and 10% levels."

Does public debt accumulation benefits more (or less) firms operating in particular industries?

Growth_{i,k,j,(t,t-2)} =
$$\alpha + \beta X_{i,k,j,(t)} + \delta Debt_{j,(t-3,t-5)} \times Intensity_k + \tau_{k,(t)} + \gamma_{j,(t)} + \epsilon_{i,k,j,(t)}$$
 (3)

- $\gamma_{i,(t)}$, replace country-level control variables from Equation (1).
- $Intensity_k$ is a vector of sector-specific intensities, capturing structural dependence on infrastructures, finance, and institutions.
- ⇒ To build infrastructure-related intensities:
 - We compute, for each industry, the average share of selected inputs in total intermediate consumption over 2000–2014.^a
 - We define binary variables equal to 1 when the corresponding share exceeds the 75th percentile across industries.

^aWe use the U.S. input-output matrix (2000–2014) from the World Input-Output Dataset (WIOD) (Timmer et al. (2015a)).

Does public debt accumulation benefit more (or less) firms operating in particular industries?

- ⇒ For finance, we rely on the indicator developed by Kroszner et al. (2007), which measures the share of capital expenditures not financed through internal cash flow.
 - We define a binary variable equal to one if this share exceeds the 75th percentile across industries.
- ⇒ For institutions, we build a measure of product complexity.
 - We use the Herfindhal index of intermediate input use, based on the U.S. input-output matrix (2000–2014).^a
 - Firms that rely on a diverse and balanced set of inputs are more exposed to institutional quality.
 - We multiply the index by -1 so that our institutional intensity measure increases with input diversity and institutional dependence.

^aThe Herfindhal index has been used to proxy for institutional dependence in the literature (Blanchard and Kremer (1997), Cowan and Neut (2007)).

Table 6

Dep. var.: Growth _{i,k,j,(t,t-2)}	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
$Intensity_k = 1$	Electricity	Water	Transport	Telecomm-	Education	Health	Public admin-	External	Institutions
				unications			istrations	dependence	
					OLS				
$Debt_{j,(t-3,t-5)}$	0.686***	0.688***	0.706***	0.688***	0.692***	0.690***	0.696***	1.947***	0.687***
	(0.074)	(0.074)	(0.077)	(0.073)	(0.074)	(0.073)	(0.074)	(0.053)	(0.074)
Intensity _k	0.093	-2.690	1.584	5.658*	4.418	7.207*	11.158**	5.298	2.523
	(5.631)	(7.071)	(2.365)	(3.175)	(3.274)	(3.721)	(4.766)	(5.386)	(3.125)
$Debt_{j,(t-3,t-5)} \times Intensity_k$	-0.044	-0.036	-0.004	-0.087*	-0.054	-0.130**	-0.200***	-0.064	-0.039
	(0.064)	(0.080)	(0.034)	(0.050)	(0.050)	(0.055)	(0.070)	(0.079)	(0.047)
#	79746	79746	79746	79746	79746	79746	79746	40,968	79746

Note: Columns (1) to (10) display OLS estimates. All regressions include country- and firm-level control variables, as well as country and industry × year fixed effects. Robust standard-errors clustered at the country × year level are shown in parentheses. WBES sampling probability weights are used for estimation. ***, ** and * denote significance at 1%, 5% and 10% levels."

- ⇒ We implement the method developed by Lewbel (2012) to address endogeneity concerns using heteroscedasticity-based instruments.
- ⇒ We explore whether public debt benefits firms [a] facing particular constraints, and [b] operating in specific industries.
- ⇒ To identify binding constraints, we combine opinion-based survey questions with objective, hard-data indicators.
- ⇒ To capture structural dependence on infrastructure, finance, and institutions, we construct exogenous, sector-specific input intensities using the U.S. input-output matrix (2000–2014).
- ⇒ While limitations remain, this study contributes to the literature by:
 - Showing how heteroscedasticity-based instruments offer a credible alternative when conventional IVs fail to convince:
 - Investigating the mechanisms through which public debt affects firm growth, answering recent calls for more granular analysis.

Public Debt and Firm Performance: A Love-Hate Relationship?

Thank you for your time and attention! (And for your support throughout the year...)

References I

- Afonso, A. and Alves, J. (2014). The role of government debt in economic growth. *ISEG-UTL Economics Department Working Paper*, (16).
- Afonso, A. and Jalles, J. T. (2013). Growth and productivity: The role of government debt. *International Review of Economics & Finance*, 25:384–407.
- Aghion, P., Akcigit, U., Cagé, J., and Kerr, W. R. (2016). Taxation, corruption, and growth. *European Economic Review*, 86:24–51.
- Aizenman, J., Kletzer, K., and Pinto, B. (2007). Economic growth with constraints on tax revenues and public debt: implications for fiscal policy and cross-country differences.
- Alesina, A., De Broeck, M., Prati, A., and Tabellini, G. (1992). Default risk on government debt in oecd countries. *Economic Policy*, 7(15):427–463.
- Arslanalp, S., Eichengreen, B., and Simpson-Bell, C. (2023). Gold as international reserves: A barbarous relic no more? *Journal of International Economics*, 145:103822.
- Ash, M., Basu, D., and Dube, A. (2017). Public debt and growth: an assessment of key findings on causality and thresholds. Technical report, Working Paper.
- Barro, R. J. (1990). Government spending in a simple model of endogeneous growth. *Journal of Political Economy*, 98(5, Part 2):S103–S125.

References II

- Barzin, S., D'Costa, S., and Graham, D. J. (2018). A pseudo-panel approach to estimating dynamic effects of road infrastructure on firm performance in a developing country context. Regional Science and Urban Economics, 70:20–34.
- Bas, M. and Berthou, A. (2012). The decision to import capital goods in india: firms' financial factors matter. *The World Bank Economic Review*, 26(3):486–513.
- Baum, A., Checherita-Westphal, C., and Rother, P. (2013). Debt and growth: New evidence for the euro area. *Journal of International Money and Finance*, 32:809–821.
- Baum, C. and Schaffer, M. (2024). Ivreg2h: Stata module to perform instrumental variables estimation using heteroskedasticity-based instruments.
- Baum, C. F. and Lewbel, A. (2019). Advice on using heteroskedasticity-based identification. *The Stata Journal*, 19(4):757–767.
- Beck, T., Demirgüç-Kunt, A., and Maksimovic, V. (2005). Financial and legal constraints to growth: does firm size matter? The Journal of Finance, 60(1):137–177.
- Bell, A., Johnston, R., and Jones, K. (2015). Stylised fact or situated messiness? the diverse effects of increasing debt on national economic growth. *Journal of Economic Geography*, 15(2):449–472.

References III

- Bentour, E. M. (2021). On the public debt and growth threshold: one size does not necessarily fit all. *Applied Economics*, 53(11):1280–1299.
- Berman, N. and Héricourt, J. (2010). Financial factors and the margins of trade: Evidence from cross-country firm-level data. *Journal of Development Economics*, 93(2):206–217.
- Blanchard, O. and Kremer, M. (1997). Disorganization. *The Quarterly Journal of Economics*, 112(4):1091–1126.
- Calderón, C. and Servén, L. (2010). Infrastructure and economic development in sub-saharan africa. *Journal of African Economies*, 19(suppl_1):i13–i87.
- Caner, M., Grennes, T. J., and Köhler-Geib, F. F. N. (2010). Finding the tipping point-when sovereign debt turns bad. *Available at SSRN 1612407*.
- Cecchetti, S. G., Mohanty, M. S., and Zampolli, F. (2011). The real effects of debt.
- Chauvet, L. and Ehrhart, H. (2018). Aid and growth: evidence from firm-level data. *Journal of Development Economics*, 135:461–477.
- Chauvet, L. and Ferry, M. (2021). Taxation, infrastructure, and firm performance in developing countries. *Public Choice*, 187:455–480.

References IV

- Checherita-Westphal, C., Hughes Hallett, A., and Rother, P. (2014). Fiscal sustainability using growth-maximizing debt targets. *Applied Economics*, 46(6):638–647.
- Checherita-Westphal, C. and Rother, P. (2012). The impact of high government debt on economic growth and its channels: An empirical investigation for the euro area. *European Economic Review*, 56(7):1392–1405.
- Chong, A. and Gradstein, M. (2009). Volatility and firm growth. *Journal of Economic Growth*, 14:1–25.
- Chudik, A., Mohaddes, K., Pesaran, M. H., and Raissi, M. (2017). Is there a debt-threshold effect on output growth? *Review of Economics and Statistics*, 99(1):135–150.
- Cinelli, C., Forney, A., and Pearl, J. (2024). A crash course in good and bad controls. *Sociological Methods & Research*, 53(3):1071–1104.
- Cochran, W. G. (1977). Sampling techniques. Johan Wiley & Sons Inc.
- Cole, M. A., Elliott, R. J., Occhiali, G., and Strobl, E. (2018). Power outages and firm performance in sub-saharan africa. *Journal of Development Economics*, 134:150–159.

References V

- Cooray, A., Dzhumashev, R., and Schneider, F. (2017). How does corruption affect public debt? an empirical analysis. *World Development*, 90:115–127.
- Cowan, K. and Neut, A. (2007). Intermediate goods, institutions and output per worker. *Documentos de Trabajo (Banco Central de Chile*), (420):1.
- DeLong, J. B., Summers, L. H., Feldstein, M., and Ramey, V. A. (2012). Fiscal policy in a depressed economy [with comments and discussion]. *Brookings Papers on Economic Activity*, pages 233–297.
- Di Giovanni, J., Levchenko, A. A., and Mejean, I. (2014). Firms, destinations, and aggregate fluctuations. *Econometrica*, 82(4):1303–1340.
- Dollar, D., Hallward-Driemeier, M., and Mengistae, T. (2005). Investment climate and firm performance in developing economies. *Economic Development and Cultural Change*, 54(1):1–31.
- Eberhardt, M. (2019). Nonlinearities in the relationship between debt and growth:(no) evidence from over two centuries. *Macroeconomic Dynamics*, 23(4):1563–1585.
- Eberhardt, M. and Presbitero, A. F. (2015). Public debt and growth: Heterogeneity and non-linearity. *Journal of International Economics*, 97(1):45–58.

References VI

- Égert, B. (2015a). The 90% public debt threshold: the rise and fall of a stylized fact. *Applied Economics*, 47(34-35):3756–3770.
- Égert, B. (2015b). Public debt, economic growth and nonlinear effects: Myth or reality? *Journal of Macroeconomics*, 43:226–238.
- Eichengreen, B., Hausmann, R., and Panizza, U. (2005). The pain of original sin. Other people's money: Debt denomination and financial instability in emerging market economies, pages 13–47.
- Elmendorf, D. W. and Mankiw, N. G. (1999). Government debt. *Handbook of Macroeconomics*, 1:1615–1669.
- Escolano (2010). A practical guide to public debt dynamics, fiscal sustainability, and cyclical adjustment of budgetary aggregates, volume 2. International Monetary Fund Washington, DC.
- Fazzari, S. M., Ferri, P., and Variato, A. M. (2020). Demand-led growth and accommodating supply. *Cambridge Journal of Economics*, 44(3):583–605.
- Fisman, R. and Svensson, J. (2007). Are corruption and taxation really harmful to growth? firm level evidence. *Journal of Development Economics*, 83(1):63–75.

References VII

- Gabaix, X. (2011). The granular origins of aggregate fluctuations. *Econometrica*, 79(3):733–772.
- Ghosh, A. R., Kim, J. I., Mendoza, E. G., Ostry, J. D., and Qureshi, M. S. (2013). Fiscal fatigue, fiscal space and debt sustainability in advanced economies. *The Economic Journal*, 123(566):F4–F30.
- Goyette, J. (2015). Firms growth, corruption, taxation and financial underdevelopment in developing countries. *Department of Economics University of Sherbrooke*, 3(1):3–8.
- Greiner, A. (2012). Debt and growth: Is there a non-monotonic relation?
- Harrison, A. E., Lin, J. Y., and Xu, L. C. (2014). Explaining africa's (dis) advantage. *World Development*, 63:59–77.
- Hausmann, R. and Panizza, U. (2011). Redemption or abstinence? original sin, currency mismatches and counter cyclical policies in the new millennium. Journal of Globalization and Development, 2(1).
- Hausmann, R., Panizza, U., and Rigobon, R. (2006). The long-run volatility puzzle of the real exchange rate. *Journal of International Money and Finance*, 25(1):93–124.

- Heimberger, P. (2023). Do higher public debt levels reduce economic growth? *Journal of Economic Surveys*, 37(4):1061–1089.
- Herndon, T., Ash, M., and Pollin, R. (2014). Does high public debt consistently stifle economic growth? a critique of reinhart and rogoff. *Cambridge Journal of Economics*, 38(2):257–279.
- Jedwab, R. and Moradi, A. (2016). The permanent effects of transportation revolutions in poor countries: evidence from africa. Review of Economics and Statistics, 98(2):268–284.
- Kaufmann, D. and Kraay, A. (2008). Governance indicators: where are we, where should we be going? *The World Bank Research Observer*, 23(1):1–30.
- Kaufmann, D., Kraay, A., and Mastruzzi, M. (2011). The worldwide governance indicators: Methodology and analytical issues1. Hague Journal on the Rule of Law, 3(2):220–246.
- Khalil, M. and Strobel, F. (2024). Us trade policy and the us dollar. *Journal of International Economics*, 151:103970.
- Kroszner, R. S., Laeven, L., and Klingebiel, D. (2007). Banking crises, financial dependence, and growth. *Journal of Financial Economics*, 84(1):187–228.

References IX

- Krugman, P. (1988). Financing vs. forgiving a debt overhang. *Journal of Development Economics*, 29(3):253–268.
- Kumar, M. and Woo, J. (2010). Public debt and growth.
- Lee, S., Park, H., Seo, M. H., and Shin, Y. (2017). Testing for a debt-threshold effect on output growth. *Fiscal Studies*, 38(4):701–717.
- Levchenko, A. A. (2007). Institutional quality and international trade. *The Review of Economic Studies*, 74(3):791–819.
- Lewbel, A. (2012). Using heteroscedasticity to identify and estimate mismeasured and endogenous regressor models. *Journal of Business & Economic Statistics*, 30(1):67–80.
- Limao, N. and Venables, A. J. (2001). Infrastructure, geographical disadvantage, transport costs, and trade. *The World Bank Economic Review*, 15(3):451–479.
- Marmullaku, B., Avdimetaj, K., Haziri, A., et al. (2022). The impact of public debt on private consumption in developing european countries. *Journal Transition Studies Review*, 29(2):3–18.
- Mitchener, K. J. and Trebesch, C. (2023). Sovereign debt in the twenty-first century. *Journal of Economic Literature*, 61(2):565–623.

References X

- Moreno Badia, M., Arbelaez, J. G., and Xiang, Y. (2023). Debt dynamics in emerging and developing economies: Is r- g a red herring? *Journal of Globalization and Development*, 13(2):269–304.
- Moulton, B. R. (1990). An illustration of a pitfall in estimating the effects of aggregate variables on micro units. The Review of Economics and Statistics, pages 334–338.
- Nichter, S. and Goldmark, L. (2009). Small firm growth in developing countries. *World Development*, 37(9):1453–1464.
- Nunn, N. (2007). Relationship-specificity, incomplete contracts, and the pattern of trade. *The Quarterly Journal of Economics*, 122(2):569–600.
- Panizza, U. and Presbitero, A. F. (2014). Public debt and economic growth: is there a causal effect? *Journal of Macroeconomics*, 41:21–41.
- Pescatori, M. A., Sandri, M. D., and Simon, J. (2014). Debt and growth: is there a magic threshold? International Monetary Fund.
- Presbitero, A. F. (2009). Debt-relief effectiveness and institution-building. *Development Policy Review*, 27(5):529–559.

References XI

- Proaño, C. R., Schoder, C., and Semmler, W. (2014). Financial stress, sovereign debt and economic activity in industrialized countries: Evidence from dynamic threshold regressions. *Journal of International Money and Finance*, 45:17–37.
- Rajan, R. and Subramanian, A. (2007). Does aid affect governance. *American Economic Review*, 97(2):322–327.
- Rajan, R. and Zingales, L. (1998). Financial development and growth. *American Economic Review*, 88(3):559–586.
- Rajan, R. G. and Subramanian, A. (2011). Aid, dutch disease, and manufacturing growth. *Journal of Development Economics*, 94(1):106–118.
- Reinhart, C. M. and Rogoff, K. S. (2010). Growth in a time of debt. *American Economic Review*, 100(2):573–578.
- Rodrik, D. (2008). The real exchange rate and economic growth. *Brookings Papers on Economic Activity*, 2008(2):365–412.
- Rud, J. P. (2012). Electricity provision and industrial development: Evidence from india. *Journal of Development Economics*, 97(2):352–367.
- Sachs, J. (1988). Conditionality, debt relief, and the developing country debt crisis.

References XII

- Sosvilla, S. and Gómez-Puig, M. (2019). New empirical evidence on the impact of public debt on economic growth in emu countries. *Revista de Economía Mundial*, (51).
- Straub, S. (2008). *Infrastructure and growth in developing countries*, volume 4460. World Bank Publications.
- Timmer, M. P., Dietzenbacher, E., Los, B., Stehrer, R., and De Vries, G. J. (2015a). An illustrated user guide to the world input–output database: the case of global automotive production. *Review of International Economics*, 23(3):575–605.
- Timmer, M. P., Dietzenbacher, E., Los, B., Stehrer, R., and De Vries, G. J. (2015b). An illustrated user guide to the world input-output database: the case of global automotive production. *Review of International Economics*, 23(3):575–605.
- Tybout, J. R. (2000). Manufacturing firms in developing countries: How well do they do, and why? *Journal of Economic literature*, 38(1):11–44.
- Verhoogen, E. (2023). Firm-level upgrading in developing countries. *Journal of Economic Literature*, 61(4):1410–1464.
- Woo, J. and Kumar, M. S. (2015). Public debt and growth. *Economica*, 82(328):705–739.

References XIII

Wright, P. G. (1928). The tariff on animal and vegetable oils. Number 26. Macmillan.

Yang, L. and Su, J.-J. (2018). Debt and growth: Is there a constant tipping point? *Journal of International Money and Finance*, 87:133–143.