Keyrener Korendremen M 3104

Homework NG Automata theory

1. For each given regular expression P, construct a DFA (Deterministic Finite Automaton), and find the number of accepted word of length at most 5, i.e. the size of the set $L' = \{w \in L(P) \mid |w| \le 5\}$. For "any" (.) and "negative" ([7.]) matches, assume that the alphabet is $E = \{a, b, c, d\}$.

(a) $P_1 = ab*$ (c) $P_3 = [cd] + c\{3\}$ (e) $P_3 = d(a|bc)*$ (b) $P_2 = a+b$?c (d) $P_4 = [ca](.|ddd)$? (f) $P_6 = ((a|ab)[cd])$ {2}

(a) $P_4 = [ca](.|ddd)$? (f) $P_6 = ((a|ab)[cd])$ {2}

(b) $P_6 = (a|ab)[cd]$ {3}

(c) $P_6 = (a|ab)[cd]$ {4}

(d) $P_6 = (a|ab)[cd]$ {5}

(e) $P_6 = (a|ab)[cd]$ {6}

(f) $P_6 = (a|ab)[cd]$ {7}

(g) $P_6 = (a|ab)[cd]$ {7}

(g) $P_6 = (a|ab)[cd]$ {1}

(g) $P_6 = (a|ab)[cd]$ {2}

(g) $P_6 = (a|ab)[cd]$ {3}

(g) $P_6 = (a|ab)[cd]$ {4}

(g) $P_6 = (a|ab)[cd]$ {5}

(g) $P_6 = (a|ab)[cd]$ {6}

(g) $P_6 = (a|ab)[cd]$ {7}

(g) $P_6 = (a|ab)[cd]$ {1}

(g) $P_6 = (a|ab)[cd]$ {2}

(g) $P_6 = (a|ab)[cd]$ {2}

(g) $P_6 = (a|ab)[cd]$ {2}

(g) $P_6 = (a|ab)[cd]$ {3}

(g) $P_6 = (a|ab)[cd]$ {4}

(g) $P_6 = (a|ab)[cd]$ {4}

(g) $P_6 = (a|ab)[cd]$ {5}

(g) $P_6 = (a|ab)[cd]$ {6}

(g) $P_6 = (a|ab)[cd]$ {7}

(g) $P_6 = (a|ab)[cd]$ {9}

(g) $P_6 = (a|ab)[cd]$ {1}

(g) $P_6 = (a|ab)[cd]$ {1}

(g) $P_6 = (a|ab)[cd]$ {2}

(g) $P_6 = (a|ab)[cd]$ {2}

(g) $P_6 = (a|ab)[cd]$ {3}

(g) $P_6 = (a|ab)[cd]$ {4}

(g) $P_6 = (a|ab)[cd]$ {4}

(g) $P_6 = (a|ab)[cd]$ {4}

(g) $P_6 = (a|ab)[cd]$ {5}

(g) $P_6 = (a|ab)[cd]$ {6}

(g) $P_6 = (a|ab)[cd]$ {7}

(g) $P_6 = (a|ab)[cd]$ {7}

(g) $P_6 = (a|ab)[cd]$ {7}

(g) $P_6 = (a|ab)$

12 WOVDS

2. Describe the set of strings defined by each of these sets of productions in EBNF[©] (extended Backus-Naur form). (a) $\langle string \rangle ::= \langle L \rangle + \langle D \rangle ? \langle L \rangle +$ (c) $\langle string \rangle ::= \langle L \rangle^* (\langle D \rangle +)? \langle L \rangle^*$ $:= a \mid b \mid c$::= x | y $\langle D \rangle$::=0 | 1 $\langle D \rangle$::=0 | 1 (b) $\langle string \rangle ::= \langle sign \rangle ? \langle N \rangle$ (d) $\langle string \rangle ::= \langle C \rangle \langle R \rangle^*$::= '+' | '-' $\langle sign \rangle$ $:= a \mid \ldots \mid z \mid A \mid \ldots \mid Z$ $:=\langle D\rangle (\langle D\rangle \mid 0)^*$ $\langle N \rangle$ $\langle D \rangle$::=0 | ... | 9

- 9, Karaa-mo kondinayna nz 9,6,c, zamen 0 nm 1 un moro, zamen cpoba
- 6) Insuoralement znak, a zaneu udaz zugep ne narmenenjaines c 0
- c) Inster kandungent x,y (game nyanal), zamen madet kandungen 0,1,
-), flermaemes e mosoù syklu ammiemoro drepalama (u emponere u zonneleme) quel mosne syrlu ammiemoro drepalama mu guppur un "-» (nogrepulame

- 9) $S \to 15 \to 115 \to 1115 \to 11100A \to 111000$
- b) III.k. I konge 11001 egumen, d 2 akong much Chobo Mr monen works A, konopar heoryayench moneko B 0 => 11001 does not belong to the language generated by G.
- c) 1* 00 0* 0

^{3.} Let $G = \langle V, T, S, P \rangle$ be the phrase-structure grammar with vocabulary $V = \{A, S\}$, terminal symbols $T = \{0, 1\}$, start symbol S = S, and set of productions $P: S \to 1S$, $S \to 00A$, $A \to 0A$, $A \to 0$.

⁽a) Show that 111000 belongs to the language generated by G.

⁽b) Show that 11001 does not belong to the language generated by \mathcal{G} .

⁽c) What is the language generated by G?

4. Find the output generated from the input string 01110 for each of the following Mealy machines. 0/1

10101

0 0 0 0 0

00000

- 5. Construct a Moore machine for each of the following descriptions.
 - (a) Determine the residue modulo 3 of the input treated as a binary number. For example, for input ε (which corresponds to "value" 0) the residue is 0; 101 (5 in decimal) has residue 2; and 1010 (value 10) has residue 1.
 - (b) Output the residue modulo 5 of the input from $\{0, 1, 2\}^*$ treated as a ternary (base 3) number.
 - (c) Output *A* if the binary input ends with 101; output *B* if it ends with 110; otherwise output *C*.

- 6. Show that regular languages are *closed* under the following operations.
 - (a) Union, that is, if L_1 and L_2 are regular languages, then $L_1 \cup L_2$ is also regular.
 - (b) Concatenation, that is, if L_1 and L_2 are regular languages, then $L_1 \cdot L_2$ is also regular.
 - (c) Kleene star, that is, if L is a regular language, then L^* is also regular.
 - (d) Complement, that is, if *L* is a regular language, then $\overline{L} = \Sigma^* L$ is also regular.
 - (e) Intersection, that is, if L_1 and L_2 are regular languages, then $L_1 \cap L_2$ is also regular.

9. Consider the finite-state automaton $M = (\Sigma, Q, q_0, F, \delta)$ depicted below.

- (a) Find the k-equivalence classes of M for k = 0, 1, 2, 3.
- (b) Find the *-equivalence classes of M.
- (c) Construct the quotient automaton \overline{M} of M.

▶ The quotient automaton \overline{M} of the deterministic finite-state automaton $M = (\Sigma, S, s_0, F, \delta)$ is the finite state automaton $\overline{M} = (\Sigma, \overline{S}, [s_0]_{R^*}, \overline{F}, \overline{\delta})$, where the set of states \overline{S} is the set of R^* -equivalence classes of S; the transition function $\overline{\delta}$ is defined by $\overline{\delta}([s]_{R^*}, a) = [\delta(s, a)]_{R^*}$ for all states $[s]_{R^*}$ of \overline{M} and input symbols $a \in \Sigma$; and \overline{F} is the set consiting of R^* -equivalence classes of final states of M.

$$a) k = 0$$

$$[S_3]_R = \{S_0, S_1, S_2, S_4, S_5\}$$

$$[S_3]_R = \{S_3, S_6\}$$

$$K=2$$

$$k=3$$

C/

Consider a finite-state automaton $M = (\Sigma, Q, q_0, F, \delta)$ and a non-negative integer k. Let R_k be the relation on the set of states of M such that $s R_k t$ if and only if for every input string $w \in \Sigma^*$ with $|w| \le k$, $\delta(s, w)$ and $\delta(t, w)$ are both final states or both not final states. Furthermore, let R^* be the relation on the set of states of M such that $s R^* t$ if and only if for every input string $w \in \Sigma^*$, regardless of length, $\delta(s, w)$ and $\delta(t, w)$ are both final states or both not final states. (a) Show that for every nonnegative integer k, R_k is an equivalence relation on S. Two states s and t are called k-equivalent if s R_k t. (b) Show that R^* is an equivalence relation on S. Two states s and t are called *-equivalent if s R* t. (c) Show that if two states s and t are k-equivalent (k > 0), then they are also (k - 1)-equivalent. (d) Show that the equivalence classes of R_k are a *refinement* of the equivalence classes of R_{k-1} . (e) Show that if two states s and t are k-equivalent for every non-negative integer k, then they are *-equivalent. (f) Show that all states in a given R^* -equivalence class are final or all are not final. (g) Show that if two states s and t are *-equivalent, then $\delta(s, a)$ and $\delta(t, a)$ are also *-equivalent for all $a \in \Sigma$. a) Reflexivity: YSES SRKS, M.K. YWIWILK almourum acmarlemen B coerraqueur S Symmetry: γ W IWISK δ(5,W) y δ(t, W) - konervere cocmoshura, melance u gogramme Trdhsitivity: V W IWISK S (5,W) 4 S (t, W) - konerviewe cocmosnus => SIE, WI U SIU, W)- KONEMENTE COCHOSMUS (doctorució gils) => equivalence relation b) III. k. kovernoemo cocurarmite aproznarence (m.x. anjegendremen no uexagreany cocurarnino 4 heperosour no croby w) voneno geramo borberg, uno a bepro que upotoù gunna agrok c) Eur sRx+, mo V w 1415 k S(s, w) n S(t, w) - we konorque morga V w IWI < K-1 $\delta(s, w)$ u $\delta(t, w)$ -acti revenue, m.k. IWI < K-1 mu ne revenue, m.k. IWI < K-1 IWI < K d, Tro c, eem skrt, mo skr-1t, hosman kx is refinement of kx-1 e) Eam sut k-equivalen'mure y k E N, mo y w IWISK 515, W) y 514, w) f) Earn 5R*++, mo V w IWISK 515, W) y SI+, w) sole renembre mu ne renembre

9/ f) Document L E E:

Typens s'= S(s,2) u t'= (t,2)

znarum dis'w) u d(t', w) monce

=>s'R*t' => &(s,2) R*&&(4,2)

 $\forall w \delta(s', w) = \delta(\delta(s, \lambda), w) u \delta(t', w) = \delta(\delta(t, \lambda), w)$

Jil. r. sR*+, vegyen, uno S(s, Lw) 4 S(t, Lw) ach renembre