Last time we introduced mixed FEM spaces for Stokes flow √n - √p = f V-n = 0 This is an example of the general class of saddle-point problems a(u,v) + b(p,v) = L(v)+ (V, g) € Vh&Mh $b(z,u) = L_2(z)$ Assuming a satisfies Lax-Milgram conditions, lets report the

unigneness proof from last lecture

Let
$$L_1, L_2 = 0$$
, $g = P$, $v = n$

$$a(n, n) + b(P, n) = 0$$

$$b(P, n) = 0$$

$$A ||n||_{V} \leq a(n, n) = 0$$

$$\Rightarrow n = 0$$

$$Egn \mid \text{ reduces to}$$

$$b(P, v) = 0$$
If V_h , M_h satisfy inf-sup compatibility
$$i.e. \text{ for all } P \in M_h, \exists \tilde{v} \in V_h \text{ s.t.}$$

$$\frac{b(P, \tilde{v})}{||\tilde{v}||_{V}} \geq \beta ||P||_{M}$$
Then
$$||P||_{M} \leq 0$$

P = 0

ML Back to So far we've learned models like An + EN(n) = 5 we have the equipment to consider conservation laws V. F = 5 F = L(u) + EN(n)
linear satisfy, for f=0 There 0 = Sfax= Sp. Fdx= St.dA Similarly, one can define timiting DXF= S F= L(n) + EN(n)

conservation of circulations (e.g. magnetic fields vorticity:

Lets that by designing a good space in the linear setting ($\varepsilon=0$) in 1D F' = \$ F + L(u) The first equation gives all (3, F') = all - (3', F) = (5, 2) b(8, F) = Lo(8) obtain a saddle point problem (and an automntice stability, can choose L(u) = u' (F, V) + (u', V) = 0 a(F,v) + b(u,v)= 0 $\alpha(u,v)=(u,v)$ - Can earily check a satisfier Lax-Milgan need to choose an int-sy stable Uh, Mh

And Invite = E Striver dx $= \sum_{e_j} \int_{x_j}^{x_{j+1}} \rho^2 dx$ = 11 12 2 b(P, v) = 11/1/2 = 11/1/2 = 11/1/2 = 11/1/2 Now that we've worked a pair of inf-rup stable spaces out, notice

(1) that for any bigger choice of Vh = Vhis, we Vh, and so Mh and Vho are also inf-s-p competible The key property was that V_h is chosen by enough that $\tilde{v}' = p$ or the desirative operator is onto (furjective) 录从 ⊇Mh

higher dimensions, for D= div/grad/curl D= grad/dir/corl $(D^*S,g)=(F,Dg)$ the saddle point problem (F, v) - (Du, v) = 0 (8,0 F) = (5,2) is infrop stable if DVn = Mh Vh DVh
I Mh Now we have FEM spaces nailed down What about discrete conservation properties?

Consider higher -dim non $-(\nabla z, F) + \langle z, F \rangle_{BC} = (z, z)$

Global conservation

Let
$$3=1$$

$$-(\nabla x)F + \langle x,F \rangle = \langle x,x \rangle$$

$$\int_{SR} F dA = \int_{SR} f dx$$

$$\int_{SR} f dx = \int_{SR} f$$

equal and opposite local

Denote
$$W^{\circ} = span(\phi_i)$$
 $W' = span(\psi_i)$

Thun $grad(W^{\circ}) \subseteq W'$

Of let $f \in W^{\circ}$
 $S = \Sigma S : \phi_i(x)$
 $S = \Sigma S : \phi_i$

= 2 2 (\$ \phi_1 \phi_2 \phi_3 \phi_4 + \$ \phi_1 \phi_2 \phi_4 \phi_5 \phi_4 \phi_4 \phi_5 \phi_4 \phi_6 \phi_6 \phi_8 \phi_6 \phi_8 \ph Vijk

Kardi-symmetric wrt

to index swap. W= span (4) curl(W') \(\mathbb{W}^2\) Car now boild a de Rham complex WO - good > W' - curl > W2 Preserving exactly cutlograd = 0 Wo find W' Court W by parts $(\nabla f, g) = -(f, \nabla \cdot g)$ gives integrating divocuil = 0

Return to nonlinearity Ln + EN(n) = fa(u,v) + E(N(u)v) = (5,v)We introduce a new condition Marotanicity (N(n), n) \geq \alpha_N ||n||_V^2 To prove stability