The Lognormal Distribution

Kurt M. Anstreicher

The lognormal distribution is a commonly used probability distribution in finance and engineering. A random variable Y is said to be lognormally distributed if the logarithm of Y has a normal distribution. In other words, if a new random variable X is defined by $X = \ln(Y)$, then Y is lognormally distributed exactly when X has a normal distribution. Here \lim denotes the natural logarithm. Equivalently, one can think of starting with a normally distributed random variable X, and then defining Y by exponentiating X; $Y = \exp(X) = e^X$, where e is about 2.7182818. The distribution of Y is approximately normal if σ_Y is small relative to μ_Y , but becomes more and more skewed as σ_Y increases. The chart below shows the densities of three lognormal distributions, with $\mu_Y = 10$ and $\sigma_Y = 2, 5, 10$.

Let Y be a lognormal random variable, and let X be the normal random variable $X = \ln(Y)$. Let μ_X , σ_X denote the mean and standard deviation of X. The quantities μ_X , σ_X , μ_Y and σ_Y are related by relatively simple formulas which are very useful in practice. In one typical application one is given μ_Y and σ_Y , and it is desired to generate observations of

the random variable Y. Typically this is done by generating observations X_1, X_2, \ldots, X_n of the normal random variable X, and then letting $Y_i = e^{X_i}$. To generate the observations of X one obviously needs μ_X and σ_X . These are given in terms of μ_Y and σ_Y by the formulas:

$$\mu_X = 2 \ln(\mu_Y) - \frac{1}{2} \ln(\mu_Y^2 + \sigma_Y^2),$$

 $\sigma_X^2 = \ln\left(\frac{\sigma_Y^2}{\mu_Y^2} + 1\right).$

For example, suppose that you want to generate observations of a lognormal random variable Y having mean 10, and standard deviation 5. Using the formulas, one gets

$$\mu_X = 2 \ln(10) - .5 \ln(125) = 2.1910133,$$

 $\sigma_X^2 = \ln((25/100) + 1) = 0.2231436,$

so $\mu_X = 2.1910133$, $\sigma_X = \sqrt{0.2231436} = 0.4723808$. (Because of the use of exponentiation to generate Y from X, the distribution of Y is very sensitive to the values of μ_X and σ_X .) As a result, it is a good idea to keep lots of digits in the computed values of μ_X and σ_X .)

In other applications one is given μ_X and σ_X , and needs μ_Y and σ_Y . This situation arises, for example, when making forecasts using a regression where the dependent variable is "logged." The formulas giving μ_Y and σ_Y in terms of μ_X and σ_X are:

$$\begin{array}{rcl} \mu_Y & = & e^{(\mu_X + \sigma_X^2/2)}, \\ \sigma_Y^2 & = & e^{(2\mu_X + \sigma_X^2)} [e^{\sigma_X^2} - 1]. \end{array}$$

For example, suppose that $\mu_X = 2.1910133$, $\sigma_X = 0.4723808$. Using the formulas one gets

$$\mu_Y = e^{(2.1910137 + .1115718)} = 10,$$

 $\sigma_Y^2 = e^{(4.3820274 + .2231436)} [e^{.2231436} - 1] = 25,$

so $\mu_Y = 10$, $\sigma_Y = \sqrt{25} = 5$, as expected.