Table 4. Steelhead sampled at the beach seine sites and dip net site during the steelhead tagging program conducted at Moricetown Canyon from 1999 to 2012.

	(Campground Site Tag Application ¹	S	Canyon Site Resampling				
Year	# of steelhead	Ranking	% of Highest (i.e. 2010)	# of steelhead	Ranking	% of Highest (i.e. 2010)		
1999	164	14 th	5.6%	1555	11 th	24.6%		
2000	225	12 th	7.6%	1010	14 th	16.0%		
2001	322	10 th	10.9%	1183	12 th	18.7%		
2002	846	5 th	28.7%	1933	6 th	30.6%		
2003	670	7 ^h	22.7%	1864	7 th	29.5%		
2004	319	11 th	10.8%	1615	10 th	25.5%		
2005	523	9 th	17.7%	1697	9 ^h	26.8%		
2006	595	8 th	20.2%	1777	8 ^h	28.1%		
2007	224	13 th	7.6%	1101	13 th	17.4%		
2008	799	6 th	25.7%	1988	5 th	31.4%		
2009	1316	2 nd	47.1%	2263	4 th	35.8%		
2010	3510	1 st	100 %	6323	1 st	100%		
2011	1131	4 th	32.2%	2896	2 nd	45.8%		
2012	1196	3 rd	34.1%	2890	3 rd	45.7%		

Note 1 Number of steelhead includes all recaptures

3.2.1 Inter-Annual Variability of Catch Efficiency

Catch efficiency by both the beach seine and dip net methods have shown inter-annual variability since the start of the Moricetown steelhead tagging program due to crew experience, the development of technical aspects of the sampling methods and the partially selective fishery for different species in previous years. In addition, abundance of other species in the system (e.g. some years with high abundance of coho or pink salmon), and targeted effort to various species at different times of the year, as well as environmental variables (e.g. water level) can affect catch efficiency for individual species. The number of steelhead tagged at the campground locations for the different years divided by the corresponding Petersen estimates was 5.3% in 2012 which indicates that the catch efficiency by beach seine was fourth highest within the range from 0.5 % (i.e. 2000) to 7.2% (i.e. 2010) of the total estimated return of steelhead to Moricetown Canyon since the initiation of this project (Table 5). Total catch at the canyon sites divided by the corresponding Petersen estimates was 10.5% in 2011 and indicates that the catch efficiency by dip net was only the sixth highest within the range from 1.8 % (i.e. 2000) to 15.4% (2010) of the total estimated return (Table 5). The total number of recaptures at the canyon divided by the total number of steelhead marked at the campground locations is also displayed in Table 5, since it may be useful for estimating abundance in-season if an adjustment for the delay of steelhead migration from the campground locations to the canyon can be derived (i.e. temporal stratification). As mentioned in previous reports (SKR 2011, 2012), no correlations between Petersen estimates and cumulative catch adjusted by catch efficiencies are obvious; thus cumulative catch of steelhead by beach seine or dip net still requires further investigation of other factors (e.g. river conditions, sampling effort units) that may influence the correlation of cumulative catch to abundance. It is worth noting that the estimated proportion of steelhead arriving at Moricetown and sampled by beach seine or dip net has continued to be a considerable proportion of the population in 2012 (i.e. [M]+[C]-[R]/[N] = 14.4%), although significantly less than recent years (i.e. estimates of 19.3% in 2011 and 21.4% in 2010). It is still important to reiterate the importance of minimizing the impacts of handling on steelhead health if sampling is to continue at this intensity.

Table 6. Distribution of the time delay (days) and the median delay (red) for steelhead marked at the campground/beach seine location were recaptured at the canyon/dip net sampling location.

	Adjusted Number of Steelhead Recaptured (R) *1								Pooled Results						
Days to Recapture	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	Pooled Total	Proportion of Recaptures	Cumulative Proportion
1	1.0	1.7	0.5	0.6	0.5	0.2	0.0	1.2	1.1	9.5	2.1	10.2	28.6	0.038	0.03
2	2.7	0.7	1.4	0.4	3.6	0.7	0.0	0.0	1.8	12.2	3.2	5.8	32.4	0.042	0.072
3	0.7	1.8	2.9	1.1	4.0	1.0	0.0	2.5	3.1	14.2	5.2	5.1	41.7	0.055	0.127
4	1.3	1.9	4.5	0.3	2.8	0.8	0.5	2.1	4.8	26.2	6.8	5.1	57.1	0.075	0.202
5	2.7	2.0	3.0	1.9	2.5	0.7	0.0	1.3	6.5	27.5	4.6	3.3	55.9	0.073	0.275
6	0.5	2.2	2.9	0.3	2.6	0.6	0.0	3.7	5.4	35.2	5.4	8.7	67.6	0.089	0.364
7	1.0	2.1	6.0	1.0	3.8	1.4	0.6	3.3	4.1	29.7	4.6	11.2	69.0	0.091	0.455
8	1.2	1.6	2.7	0.4	1.1	2.0	0.0	3.4	6.2	22.2	5.2	10.8	56.6	0.074	0.529
9	0.8	1.7	4.9	1.0	0.7	0.8	0.0	1.1	3.0	18.8	3.9	8.0	44.7	0.059	0.588
10	0.9	0.9	3.9	0.4	3.1	0.4	0.0	0.0	4.6	15.9	1.2	3.7	35.1	0.046	0.634
11	0.0	1.9	2.5	0.8	0.0	0.9	0.0	0.0	2.0	9.6	0.7	1.8	20.1	0.026	0.660
12	0.0	0.5	6.2	0.0	1.6	1.8	0.0	2.0	2.7	12.7	1.0	1.5	29.9	0.039	0.699
13	0.0	0.4	5.6	0.9	0.0	0.8	0.0	1.1	1.7	10.1	2.3	1.1	23.9	0.031	0.731
14	0.0	0.7	2.6	0.0	2.3	1.1	0.0	0.4	1.9	9.3	1.4	2.1	21.8	0.029	0.759
15	0.0	1.3	3.6	1.0	1.9	0.3	0.0	0.0	0.6	10.3	1.0	3.4	23.3	0.031	0.790
16	0.0	1.3	0.8	0.0	1.7	0.5	0.0	2.1	2.2	4.9	0.9	0.0	14.5	0.019	0.809
17	0.0	0.5	1.0	0.0	0.0	0.0	0.5	0.0	3.2	4.9	1.4	0.0	11.4	0.015	0.824
18	0.0	0.0	0.0	0.0	0.9	1.1	0.0	0.0	0.8	3.7	1.0	0.6	8.1	0.011	0.834
19	0.0	0.0	0.0	0.7	0.0	0.8	0.0	0.0	2.3	3.5	1.4	1.4	10.1	0.013	0.848
20	0.0	0.5	2.8	0.0	0.0	0.4	0.0	0.0	0.7	5.2	0.5	0.0	10.1	0.013	0.861
21	0.0	0.8	2.7	0.0	0.0	0.4	0.0	0.0	0.7	4.3	0.0	1.5	10.4	0.014	0.874
22	0.8	0.5	0.6	0.6	0.0	0.0	0.0	0.6	0.7	4.5	0.0	0.0	8.4	0.011	0.885
23	0.0	0.0	1.7	0.0	0.0	0.0	0.9	1.5	2.7	0.9	0.0	0.0	7.8	0.010	0.896
24	0.0	0.0	1.0	0.6	0.9	1.0	0.0	0.0	1.0	3.0	0.0	0.0	7.6	0.010	0.906
25	0.0	0.0	1.0	1.4	0.0	2.2	0.0	0.0	3.9	2.1	0.0	0.6	11.2	0.015	0.920
26	0.0	0.0	0.0	0.0	0.0	1.2	0.0	0.0	1.0	2.9	0.9	0.5	6.5	0.009	0.929
27	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.5	0.7	0.0	0.0	3.2	0.004	0.933
28	0.0	0.0	0.7	0.0	0.0	0.8	0.0	0.7	0.8	2.2	0.4	0.0	5.6	0.007	0.940
29	0.0	0.7	0.8	0.0	0.0	0.0	0.0	0.0	1.0	2.7	0.0	0.4	5.7	0.007	0.948
>29	0.0	0.0	1.0	0.0	2.0	2.0	0.0	2.0	3.0	17.0	5.0	2.0	34.0	0.045	1.000
		.,,						,,,		,,,,					
Adjusted Total *1	13.4	25.6	67.2	13.3	36.0	23.8	2.5	29.0	76.3	326.0	59.9	88.9	761.9 Adjusted Total Recaptures*1		
Median	4.4	7.2	10.4	8.8	6.5	12.8		7.1	9.5	7.4	6.6	6.6	7.5	7.5 Median Days to Recapture	
Total	21	65	101	32	57	69	7	54	107	451	138	123	1225	Total Recaptures	

^{*1} Number of recaptures are corrected for due to the lack of sampling on consecutive days throughout the study and because the tag application and canyon sampling ended on approximately the same dates of each year. The number of recaptures (R) for each length of delay (i.e. 1-29 days) are corrected down by multiplying each R by a correction factor (i.e. minimum number of marked steelhead sampled for any given time delay of each year/number of marked steelhead sampled for each lag time of the same year) to account for the different number of tagged steelhead that were sampled for the different time lags in the same year.

Figure 10. Correlation and regression analysis for the dates in 2012 when steelhead tags were applied at the Moricetown campground sites and time delay (days) to their recapture at the canyon.

3.4.1 Petersen Estimates

Historically, pooled Petersen estimates have been used to estimate steelhead returns to Moricetown Canyon due to the acquisition of only small numbers of recaptures and variable periods of sampling at the start of this study. A precautionary note when comparing Moricetown steelhead abundance estimates is to acknowledge the very small numbers of recaptures that occurred in 1999, 2000, and 2007 which resulted in estimates with very poor precision for those years. In 2012, the Petersen estimate for steelhead arriving at the Moricetown campground was 27,645 (95% C.I. = 23,709 – 33,167) which is within the historical range of estimates, but significantly lower than highest estimate of steelhead arriving at Moricetown in 2010 (41,140 with 95% C.I.: 38,058 – 44,934). In addition, the Petersen estimates for five of the 14 years sampled prior to 2012 were significantly lower than the estimate for 2012, although two of those years (i.e. 2003 and 2004) had relatively early end dates of sampling (Table 7).

Table 7.	Petersen abundance estimates calculated for sto	eelhead arriv	ring at Moricetown Car	nyon.
Year of	Number of Steelhead	Petersen	95% Confidence	Canyo

Year of Study		Number of Steelhe	ad	Petersen Estimate	_	onfidence erval	Canyon Sampling
Study	Marked (M)	Examined (C)	Recaptured (R)	Estimate	Lower	Upper	End Date
1999	164	1555	8	28,527	16,250	58,350	Oct. 25 th
2000	225	734	3	41,428	18,876	103,819	Oct. 18 th
2001	322	1184	23	15,948	10,920	24,040	Oct. 17 th
2002	846	2068	68	25,398	20,890	33,481	Sept. 30 th
2003	670	1864	102	12,150	10,388	14,908	Sept. 19 th
2004	319	1615	32	15,670	11,425	23,126	Sept. 13 th
2005	523	1697	57	15,341	12,459	20,753	Sept. 27 th
2006	595	1777	69	15,138	12,511	19,767	Sept. 26 th
2007	224	1101	12	19,073	11,621	32,258	Sept. 28 th
2008	759	1988	54	27,484	22,097	37,856	Oct. 9 th
2009	1390	2297	127	24,973	21,578	30,112	Oct.1st
2010	2946	6323	452	41,140	38,058	44,934	Oct. 22 nd
2011	931	2896	140	19,149	16,709	22,725	Oct. 13 th
2012	1196	2890	125	27,465	23,709	33,167	Oct. 18 th

Note: Some minor corrections from previous reports included: inclusion of recaptures at canyon re-sample site, and exclusion of tags applied after the last day sampled at the Canyon.

3.4.2 Stratified Abundance Estimates

From 2003 to 2012, a stratified population analysis tool (SPAS)(Arnason et al 1996) using a Schaefer estimate (Schaefer 1951) and a Maximum Likelihood Darroch estimate (ML Darroch) with arbitrary pooling to reduce the redundancy of temporal strata (Darroch 1961, Chapman and Junge 1956, Plante 1990) have been used to incorporate temporal stratification into the estimate and account for heterogeneity of catchability among the designated release groups (Appendix 4). For 2012, both capture (i.e. tags applied) and recapture strata (i.e. canyon sample) were grouped by 7 day intervals (i.e. week) and strata were pooled for Schaefer and ML Darroch estimates (Appendix 4). A summary of the end of season abundance estimates for steelhead comparing pooled Petersen (Table 7). Schaefer and ML Darroch results are presented in table 8 and figure 9. In 2012, tags were applied to 1196 steelhead at the campground sites, 2,890 steelhead were sampled at the canyon including 125 recaptures of tagged steelhead (note: two fewer recaptures than used for Petersen estimate due field data error). Based on results from previous years (SKR 2012) a 2.5% tag loss correction is used for the applied numbers of tags over each stratum. Somewhat different from past years, both the Schaefer (i.e. 22 931, see Appendix 4) and the ML Darroch (i.e. 21,926, see Appendix 4) estimates were notably lower than the pooled Petersen estimate for 2012 (i.e. 27,465, Table 7), with the ML Darroch also having slightly less precision (Table 8).

Table 8. Annual Comparisons of Steelhead Abundance Estimates using pooled Petersen, and stratified Schaefer and Darroch Maximum Likelihood (ML Darroch) Methods.

Study	Petersen	Schaefer	ML	95% C	onfidence	Canyon
	Estimate*1	Estimate	Darroch	Int	terval	Sampling
			Estimate	Lower	Upper	End Date
Moricetown tagging 1999	28,527					Oct. 25 th
Angling estimate spring 2000*2	27,005					N.A.
Moricetown tagging 2000	41,428					Oct. 18 th
Sport fish estimate fall 2000*3	22,627					N.A.
Moricetown tagging 2001	15,948					Oct. 17 th
Moricetown tagging 2002	25,398	22,883				Sept. 30 th
Moricetown tagging 2003	12,150	13,589	13,800	9,928	17,673	Sept. 19 th
Moricetown tagging 2004	15,670	12,033	11,647	2,398	20,897	Sept. 13 th
Moricetown tagging 2005	15,341	15,567	18,126	5,969	30,284	Sept. 27 th
Moricetown tagging 2006	15,138	13,734	14,283	8,795	19,771	Sept. 26 th
Moricetown tagging 2007	19,073					Sept. 28 th
Moricetown tagging 2008	27,484	19,039	27,474	15,487	39,461	Oct. 9 th
Moricetown tagging 2009	24,973	23,986	23,986	14,639	33,136	Oct.1st
Moricetown tagging 2010	41,140	38,064	33,047	29,599	36,495	Oct. 22 nd
Moricetown tagging 2011	19,149	18,770	18,199	13,692	22,707	Oct. 13 th
Moricetown tagging 2012	27,465	22,931	21,926	16,456	27,395	Oct. 18 th

^{*1} for details on the Petersen estimates see Section 2.3 for methods and Table 7 for data summary and confidence intervals.

^{*3 (}Mitchell 2001)

Note: Error bars indicate 95% confidence intervals with Poisson (<50 recaptures) or Normal approximation for Pooled Petersen Estimates (end date) in red and for Maximum Likelihood Darroch Estimates in blue.

Figure 12. Estimates of the number of Bulkley/Morice steelhead arriving at Moricetown Canyon from 1999 to 2012.

^{*2 (}Mitchell 2000)

3.4.3 Corrections for Fallback and Mortality Based on Acoustic Telemetry

In order to estimate steelhead abundance upstream of Moricetown Canyon, a correction to the abundance estimates for steelhead arriving at the campground is required to account for the fallback and mortality of steelhead that arrive at the campground, but do not reach the re-sampling location. The Bulkley River sonic tagging studies have estimated the fallback of steelhead handled at the Moricetown campground (i.e. tagged steelhead not available for recapture) to approximately 34% in 2009 (Welch et al. 2009, 2010, Peard and Beere 2010). Accounting for the potential difference between fallback and mortality of tagged steelhead and untagged steelhead is a key factor for any abundance estimates, however there is currently no information available for the fallback or mortality of untagged steelhead from Moricetown Canyon. In addition, it is unknown if the behaviour of steelhead tagged with anchor tags and caudal punches differs from those tagged additionally with a sonic tag used in the sonic tagging studies. Based on the annual variability of fallback and unknown difference of mortality between tagged steelhead and untagged steelhead between the two years assessed, a range of corrections for the pooled Petersen estimates are presented in table 9, making the assumptions of a maximum expected difference in fallback and mortality (e.g. 40% of tagged steelhead will never reach the re-sampling location) through a range considering smaller differences in fallback that assumes bias and inter-annual variability (i.e. 20%, and 10% corrections to the abundance estimate) are also presented. Based on these correction factors, the corrected pooled Petersen estimates for steelhead upstream of Moricetown canyon as opposed to simply reaching Moricetown on October 18th in 2012 are from 16,479 (i.e. 40% fallback) to 24,178 (i.e. 10% fallback) (Table 9). To put this estimate into perspective, the lowest range of estimates on record for steelhead migrating upstream of Moricetown Falls has been as low as 7,297 to 10,935 as of September 19th in 2003 and as high as 24,684 to 37,026 as of October 22nd in 2010 (Table 9).

Table 9. Corrected pooled-Petersen Abundance Estimates with examples of adjustments to convert estimates of steelhead arriving at Moricetown campground to estimates of steelhead migrating upstream of Moricetown Canyon as of the end of sampling.

		Petersen Abundance Estimates									
Year	End of sampling	No Correction	10% Fallback	20% Fallback	40% Fallback						
2001	Oct. 17 th	15,948	14,353	12,758	9,589						
2002	Sept. 30 th	25,398	22,858	20,318	15,251						
2003	Sept. 19 th	12,150	10,935	9,720	7,297						
2004	Sept. 13 th	15,670	14,103	12,536	9,422						
2005	Sept. 27 th	15,341	13,807	12,273	9,216						
2006	Sept. 26 th	15,138	13,624	12,110	9,083						
2007	Sept. 28 th	19,073	17,166	15,258	11,478						
2008	Oct. 9 th	27,484	24,736	21,987	16,505						
2009	Oct. 1 st	24,046	21,641	19,237	14,435						
2010	Oct. 22 nd	41,140	37,026	32,912	24,684						
2011	Oct. 13 th	19,149	17,234	15,319	13,804						
2012	Oct. 18 th	27,465	24,178	21,431	16,479						
Range	Variable end dates	12,150 - 41,140	10,935 – 37,026	9,720 - 32,912	7,297 – 24,684						