CHO

Cocaine

WIN 35,428

2ß-Carbomethoxy-3β-(3,4-dichlorophenyl)-bicyclo[3.2.1]octane

2B-Carbomethoxy-3β-(3,4-dichlorophenyl)-6B-hydroxy-8-methyl-8-azabicyclo[3.2.1]octane

2β-Carbomethoxy-3β-(3,4-dichlorophenyl)-8-oxabicyclo[3.2.1]octane

2B-Carbomethoxy-3B-(3,4-dichlorophenyl)-7B-hydroxy-8-methyl-8-azabicyclo{3.2.1}octane

Figure 1. Structures of Lead Bicyclo[3.2.1] octanes

Figure 2. Absolute Configurations of (1*R*)-8a, (1*R*)-18a, (1*S*)-18a

Figure 3

Scheme 1. Synthetic Route to 2,3-Unsaturated Tropanes*

Ar: a = 3,4-Cl₂ phenyl b = 2-Naphthyl c = 4-F-phenyl d =Phenyl

^a Reagents: (i) H₂NCH₃; (ii) CH₂(OCH₃)₂, pTSA; (iii) NaN(TMS)₂, PhNTf₂; (iv) Pd₂(dba)₃, ArB(OH)₂; (v) TMSBr.

3 a. 6-MOM b. 7-MOM

Scheme 2. Synthetic Route to Bridge Oxygenated Tropanes^a

 a Reagents: (i) SmI₂; (ii) TMSBr, CH₂Cl₂; (iii) N·CH₃-morpholine-N·oxide, tetra-n-propylammoniumperruthenate.

19

ಜ

Scheme 3. Synthetic Route to Bridge Oxygenated 2-Keto Tropanes^a

12a

CON(CH₃)OOH₃ COC2H5 **5**6 25 **(E)** CH3 N € CHan MOMO SE SE MOMO CON(CH3)OCH3 COC2H₅ \equiv € 22 11a \equiv 72 SE HO CH3 N MOMO MOMO

⁸Reagents: (i) HN(CH₃)OCH₃ A1(CH₃)₃; (ii) ETMgBR; (iii) TMSBR, CH₂Cl₂.

Scheme 4. Resolution of 8A, 15A, and 18Aª

Figure 7

Scheme 5. Inversion at C6 and C7a

30a: 6-OH (30b: 7-OH)

^a Reagents: (i) C₆H₅COOH, Ph₃P, DEAD; (ii) LiOH, THF.

Figure 8

Scheme 6. Synthesis of Diarylmethoxy Tropanes^a

^a Reagents: (i) NaBH₄; (ii) 4,4'-difluorobenzhydrol, pTSA.