

Curso Técnico de Desenvolvimento de Sistemas

UC: Hardware e Redes (HARE) – Primeiro Termo Aula 7 – Topologia de redes

Prof. Douglas Gaspar

Contextualização com o plano de aula

Nessa aula será(ão) abordado(s) o(s) seguinte(s) assunto(s) - (Conhecimento(s)):

- Definição
- Aplicabilidade
- Tipos

Relacionados a(os) seguinte(s) Fundamento(s) Técnico(s) e Científico(s):

• Identificar as topologias físicas empregadas nas redes de computadores.

O que é topologia de redes?

- Uma topologia está relacionado ao modo como os computadores estão interligados em uma rede, ou seja, indica como está colocados ou distribuídos os diversos equipamentos
- De acordo com cada topologia/formato há vantagens e desvantagens

Tipos de topologia de redes

- As topologias mais utilizadas são:
 - Topologia em Barramento
 - Topologia em Anel
 - Topologia em Estrela

Topologia em barramento

- Nesse modelo de ligação os dispositivos são interligados através de uma único cabo na forma de uma barra, por isso o seu nome de "barramento"
- O cabo utilizado neste tipo de topologia e o cabo coaxial e, para cada conexão, é utilizado um divisor de sinal

Topologia de barramento

VANTAGENS	DESVANTAGENS
Custo Baixo de Implantação (requer menos cabo)	Falha do Cabo interrompe toda rede
Sem Necessidade de Dispositivo central (hub)	Difícil Manutenção
Fácil Expansão	Para se Conectar um novo dispositivo e necessário parar toda rede
	O Aumento de dispositivos diminui o desempenho da rede (O aumento de Host faz Gerar Mais Colisões Na rede)

Topologia em anel

- Nesse modelo de ligação os dispositivos compartilham de um mesmo cabo porém os pontos externos se conectam entre si formando um anel (ou círculo)
- Foi criada pela IBM e é conhecida como Token Ring

Topologia em anel

VANTAGENS	DESVANTAGENS
Não possui Colisões	O aumento de dispositivos Diminui o desempenho da rede
Desempenho melhor que a topologia em barramento	A Falha no cabo prejudica toda rede
Topologia menos sujeita a interferência do ambiente	Para se conectar um novo dispositivo e necessário parar a rede
	Instalação é mais complexa que outros tipos.

Topologia em estrela

 Nesse modelo de ligação os dispositivos estão interligados por um equipamento central que distribui o sinal. É o modelo mais utilizado hoje em dia para criação de redes.

Topologia em estrela

VANTAGENS	DESVANTAGENS
Fácil Expansão	
A falha de um cabo não prejudica toda rede	A falha do dispositivo central Prejudica toda rede
O aumento de dispositivo não Diminui o desempenho da rede	Maior custo de instalação (Exige mais cabo e o dispositivo central)
Fácil Manutenção	

Topologia hibrida

 Dependendo o modelo da rede e sua topologia vimos que existem vantagens e desvantagens mas, caso seja necessário interligar essas redes é possível.

Nesse caso utilizamos o conceito de topologia hibrida ou

mista.

Como é realizada a comunicação?

Imagine a seguinte situação:

 Você está usando o seu PC baixando um arquivo, ouvindo música e enviando ou recebendo e-mail ao mesmo tempo. Quando esses dados (pacotes) são recebidos na placa de rede como o computador sabe se este pacote pertence ao jogo, arquivo ou e-mail?

Portas de comunicação

- A portas de comunicação são as entradas e saídas que os softwares e o protocolo da camada de aplicação utilizam para saber que caminho tomar.
- Quando você está utilizando o navegador para fazer um Download ao mesmo tempo que está jogando, é a porta de comunicação que direciona os pacotes para o aplicativo certo.
- Podemos ter até o limite de 65535 portas.

Principais portas de comunicação

- FTP File Transfer Protocol usado para transferência de arquivos. Trabalha na porta 21
- TELNET permite a criação de um terminal remoto.
 Trabalha com TCP porta 23.
- **SNMP** usado para gerenciar a rede, trabalha sobre UDP na porta 161.
- HTTP protocolo usado para páginas Web, trabalha sobre TCP porta 80.
- DNS Protocolo usado na resolução de nomes, trabalha
- Sobre o UDP porta 53.

Protocolos de comunicação

- A especificação do protocolo de rede e da porta são necessárias para definir o fim da linha de uma comunicação entre dois hosts
- No caso de acesso por navegador temos:

Protocolo://IP:porta http://100.0.0.100:80

Modelo TCP/IP

- O modelo TCP/IP é um conjunto de protocolos com a finalidade de realizar a comunicação entre computadores.
- Estes protocolos são representados por um modelo com diversas camadas, chamado modelo OSI, onde cada uma é responsável por uma determinada tarefa.
- As camadas mais altas se relacionam mais diretamente com o usuário enquanto as camadas mais baixas representam os dispositivos físicos (hardware)

Modelo OSI

7	Aplicação	→ Processos de rede para aplicações
6	Apresentação	-> Representação de dados
5	Sessão	-> Comunicação entre hosts
4	Transporte	-> Conexões ponto a ponto
3	Rede	→ Endereço e melhor caminho
2	Enlace	->- Acesso aos meios
1	Física	→ Transmissão binária

Pesquisa

• De acordo com o conteúdo visto sobre os protocolos e camadas de comunicação, pesquise sobre o Modelo OSI e identifique qual a finalidade de cada camada.