

MapReduce Algorithms

© 2009 Cloudera, Inc.

Algorithms for MapReduce

- Sorting

- Searching
 Indexing
 Classification
- Joining

MapReduce Jobs

- Tend to be very short, code-wise
 - IdentityReducer is very common
- "Utility" jobs can be composed
- Represent a data flow, more so than a procedure

Sort: Inputs

- A set of files, one value per line.
- Mapper key is file name, line number Mapper value is the contents of the line

Sort Algorithm

- Takes advantage of reducer properties: (key, value) pairs are processed in order by key; reducers are themselves ordered
- Mapper: Identity function for value (k, v) → (v, _)
- Reducer: Identity function (k', _) -> (k', "")

Sort: The Trick

- (key, value) pairs from mappers are sent to a particular reducer based on hash(key)
- Must pick the hash function for your data such that k₁ < k₂ => hash(k₁) < hash(k₂)

Final Thoughts on Sort

- Used as a test of Hadoop's raw speed Essentially "IO drag race"
 Highlights utility of GFS

Search: Inputs

- A set of files containing lines of text A search pattern to find
- Mapper key is file name, line number
- Mapper value is the contents of the line
- Search pattern sent as special parameter

Search Algorithm

Mapper:

- Given (filename, some text) and "pattern", if "text" matches "pattern" output (filename, __)
- Reducer:
 - Identity function

Search: An Optimization

- Once a file is found to be interesting, we only need to mark it that way once
- Use Combiner function to fold redundant (filename, _) pairs into a single one
 - Reduces network I/O

Indexing: Inputs

A set of files containing lines of text

- Mapper key is file name, line number Mapper value is the contents of the line

Inverted Index Algorithm

 Mapper: For each word in (file, words), map to (word, file)

• Reducer: Identity function

Index: MapReduce

```
map(pageName, pageText):
  foreach word w in pageText:
   emitIntermediate(w, pageName);
  done
reduce(word, values):
  foreach pageName in values:
   AddToOutputList(pageName);
  done
  emitFinal(FormattedPageListForWord);
```

Index: Data Flow

An Aside: Word Count

- Word count was described in module I
- Mapper for Word Count is (word, 1) for each word in input line
 - Strikingly similar to inverted index
 - Common theme: reuse/modify existing mappers

Bayesian Classification

- Files containing classification instances are sent to mappers
- Map (filename, instance) → (instance, class)
- Identity Reducer

Bayesian Classification

- Existing toolsets exist to perform Bayes classification on instance
 - E.g., WEKA, already in Java!
- Another example of discarding input key

Joining

 Common problem: Have two data types, one includes references to elements of the other; would like to incorporate data by value, not by reference

Solution: MapReduce Join Pass

Join Mapper

- Read in all values of joiner, joinee classes
- Emit to reducer based on primary key of joinee (i.e., the reference in the joiner, or the joinee's identity)

Join Reducer

- Joinee objects are emitted as-is
- Joiner objects have additional fields populated by Joinee which comes to the same reducer as them.
 - Must do a secondary sort in the reducer to read the joinee before emitting any objects which join on to it

TF-IDF

- Term Frequency Inverse Document Frequency
 - Relevant to text processing
 - Common web analysis algorithm

The Algorithm, Formally

$$tf_i = \frac{n_i}{\sum_k n_k}$$

$$idf_i = \log \frac{|D|}{|\{d : t_i \in d\}|}$$

$$tfidf = tf \cdot idf$$

- •| D | : total number of documents in the corpus $|\{d:t_i\in d\}|$: number of documents where the term t_i appears (that is $n_i\neq 0$).

Information We Need

- Number of times term X appears in a given document
- Number of terms in each document
- Number of documents X appears in
- Total number of documents

Job 1: Word Frequency in Doc

- Mapper
 - Input: (docname, contents)
 - Output: ((word, docname), 1)
- Reducer
 - Sums counts for word in document
 - Outputs ((word, docname), n)
- Combiner is same as Reducer

Job 2: Word Counts For Docs

Mapper

- Input: ((word, docname), n)
- Output: (docname, (word, n))

Reducer

- Sums frequency of individual n's in same doc
- Feeds original data through
- Outputs ((word, docname), (n, N))

Job 3: Word Frequency In Corpus

Mapper

- Input: ((word, docname), (n, N))
- Output: (word, (docname, n, N, 1))
- Reducer
 - Sums counts for word in corpus
 - Outputs ((word, docname), (n, N, m))

Job 4: Calculate TF-IDF

- Mapper
 - Input: ((word, docname), (n, N, m))
 - Assume D is known (or, easy MR to find it)
 - Output ((word, docname), TF*IDF)
- Reducer
 - Just the identity function

Working At Scale

- Buffering (doc, n, N) counts while summing 1's into m may not fit in memory
 - How many documents does the word "the" occur in?
- Possible solutions
 - Ignore very-high-frequency words
 - Write out intermediate data to a file
 - Use another MR pass

Final Thoughts on TF-IDF

- Several small jobs add up to full algorithm
- Lots of code reuse possible
 - Stock classes exist for aggregation, identity
- Jobs 3 and 4 can really be done at once in same reducer, saving a write/read cycle
- Very easy to handle medium-large scale, but must take care to ensure flat memory usage for largest scale

Conclusions

- Lots of high level algorithms
- Lots of deep connections to low-level systems

