Senior Design Project I 2025 Spring Midterm

Matrix Multiplication Module for a Neural Processing Unit

Anastasia Frattarole Computer Engineering

Introduction

- Neural Processing Unit (NPU) aka Al Accelerator
- Specialized processors made specifically for neural network computing
- Each layer uses data from the previous layer to calculate data for the next layer
- Advantages: Power efficient, allows for more parallel processing and hardware acceleration
- Not very well known but becoming more prevalent
- There are several different NPUs out there but they are (usually) not separate from other components

GOOGLE TENSOR PROCESSING UNIT

QUALCOMM HEXAGON NPU

Proposed Solution

- The part of the NPU that a neural network uses to calculate the data needed to make decisions
- Inspired by Google's TPU
- How it works:
 - Takes two 2x2 16-bit floating point matrices as inputs from memory:
 a bias matrix and a weight matrix
 - Multiplies these matrices together and produces the sums of a 2x2
 16-bit floating point output matrix
 - These sums are put into an activation function module that scales them down to a reasonable size
 - The output matrix is then stored into memory

Proposed Solution

Advantages

- Uses 16-bit values which allows it to calculate faster
- Performs multiplication in parallel
- It is simple, which speeds up computation

Disadvantages

- Using 16-bit instead of 32-bit or 64-bit may result in a loss of precision
- Not a complete NPU
- It is simple, so it cannot perform anything beyond matrix multiplication

Design Overview

Tools and Standards Used

- Hardware:
 - Altera DE2 FPGA
- Software:
 - Quartus II 13.0sp1
 - ModelSim Intel FPGA Starter
 Edition 10.5b

- Programming Languages:
 - Verilog
 - SystemVerilog
- Standards:
 - IEEE 754 (Floating Point Format)
 - IEEE 1364 (Verilog)
 - IEEE 1800 (SystemVerilog)

Systolic Array

- Inputs:
 - Weight matrix
 - Bias matrix
- Outputs:
 - Output matrix

Systolic Array

- Systolic: Pertaining to a systole or heart contraction
- Weight Stationary
- 16x128 bit memory
- Bias and weight matrices are loaded into the processing elements
- The sums are outputted to the activation functions, which scale the values
- After scaling, the values are stored into memory

Processing Element (PE)

• Inputs:

- Bias
- Weight or partial sum
- Write enable (WE) for weight register
- Control for multiplexer
- Outputs:
 - Bias (not for PEs in the last column)
 - Updated partial sum or final sum

Processing Element (PE)

- Weight is loaded into PE before calculations begin
- Multiplies the weight and bias, then adds the product and the partial sum from the PE above it
- Outputs depend on what stage the module is in the calculation
- Can process positive and negative numbers
- Has some exception handling

Simulation Results

Adder Simulation Results

Multiplier Simulation Results

Team Member Responsibilties

Team Member	Contributions and Implemented Functions
Anastasia	 Systolic array design Processing element design
Anastasia	 Programmed all modules using Verilog or SystemVerilog Debugged and tested modules
Anastasia	 Made presentation Researched and verified project information

Conclusions

- Progress so far:
 - Adder and multiplier that perform matrix addition and multiplication with 16-bit positive and negative floating point numbers
- Next steps:
 - Complete PE and Systolic Array modules
 - Implement sigmoid function modules
 - Exception handling (overflow, underflow, etc)
 - Expand to a 4x4 systolic array
- If there is time:
 - Change the adder and multiplier to an ALU that can perform matrix addition, subtraction, multiplication, and division

Acknowledgements

- Dr. Zhu helped me come up with the idea for the project
- Sam helped me with Canva to make the Systolic Array and PE visual designs
- My family and friends

[1] "NPU vs. GPU: What's the Difference?," Micro Center, Oct. 16, 2024. https://www.microcenter.com/site/mc-news/article/npu-vs-gpu.aspx

- [2] IEEE SA, "IEEE Standards Association," IEEE Standards Association. https://standards.ieee.org/ieee/754/6210/
- [3] J.-Y. Kim, "Hardware accelerator systems for artificial intelligence and machine learning," in FPGA based neural network accelerators, S. Kim and G. C. Deka, Eds. Elsevier, 2021.
- [4] N. Kung, "Why systolic architectures?," Computer, vol. 15, no. 1, pp. 37–46, Jan. 1982, doi: 10.1109/mc.1982.1653825.
- [5] A. Mohan, "Understanding matrix multiplication on a Weight-Stationary Systolic architecture | Telesens," Telesens, Feb. 19, 2019. https://www.telesens.co/2018/07/30/systolic-architectures/
- [6] T. Raja, "Systolic Array Data Flows for Efficient Matrix Multiplication in Deep Neural Networks," arXiv, Art. no. arXiv:2410.22595, [Online]. Available: https://arxiv.org/abs/2410.22595
- [7] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, "Efficient Processing of deep Neural Networks: A tutorial and survey," Proceedings of the IEEE, vol. 105, no. 12, pp. 2295 2329, Nov. 2017, doi: 10.1109/jproc.2017.2761740.

References

Images:

https://medium.com/@decoded_cipher/tensor-processing-units-both-history-and-applications-b3479d92a61d

https://www.notebookcheck.net/Qualcomm-releases-official-Snapdragon-X-Plus-and-Snapdragon-X-Elite-benchmarks-for-45-TOPS-Hexagon-NPU.841811.0.html

https://www.marktechpost.com/2022/09/23/top-neural-network-architectures-for-machine-learning-researchers/

Thank you!