Часть первая

ГАЗОДИНАМИЧЕСКИЙ РАСЧЕТ ОСЕВОГО КОМПРЕССОРА ПРИ КУРСОВОМ ПРОЕКТИРОВАНИИ

Курсовым проектом по дисциплине "Теория, конструкция и расчет турбомащин" предусматривается выполнение сокращенного газопинамического расчета осевото компрессора.

Глава I. СОКРАЩЕННЫЙ ГАЗОДИНАМИЧЕСКИЙ РАСЧЕТ ОСЕВОГО КОМІРЕССОРА ОДНОВАЛЬНОГО ТРД

§ I.I. Вибор основних исхопных данных первой ступени компрессора

<u>Задание</u>. Выполнить газодинамический расчет осевого компрессора одновального ТРД с постоянным средним диаметром ($\mathcal{D}_{co} = const$) для следующих исходных условий:

вноота полета $\mathcal{H}=0$; скорость полета $V_{\mathcal{H}}=\mathcal{O}(M_{\mathcal{H}}=\frac{V_{\mathcal{H}}}{cZ_{\mathcal{H}}}=\mathcal{O})$; стандартные земные условия: $\mathcal{T}_{\mathcal{H}}^*=288$ K; $\mathcal{P}_{\mathcal{H}}^*=I$,014·10⁵ Па; расхед воздуха $\mathcal{G}_{\mathcal{B}}=100$ кг/с; степень повышения давления $\mathcal{T}_{\mathcal{K}}^*=4$,95; адиабатный КПД компрессора $\mathcal{T}_{\mathcal{K}}^*=0$,855 ($\mathcal{T}_{\mathcal{K}}^*=0$,84:0,86); коэффициент сохранения полного давления во вхолном устройстве $\mathcal{G}_{\mathcal{B}}=0$,97.

Схема и обозначения расчетных сечений одновального ТРД показаны на рис. I.I.

Выбор данных проводится в следуваем порядке:

I. Степень реактивности первой ступени выбирается обично близкой к оптимальной $\rho_{\kappa}=0.5$. Иногда для уменьшения величины предварительной закрутки на входе в колесо первой ступени степень реактивности доводят до $\rho_{\kappa}=0.55\div0.6$, но это

вызывает некоторое снижение КПД. В нашем расчете принимаем $P_{\kappa} = 0,5$.

Рис. І. І. Схема и расчетние сечения ТРД: \mathcal{H} — вход в пвигатель; \mathcal{B} . \mathcal{H} — вход и выход из компрессора; \mathcal{F} , \mathcal{F} — вход и выход из турбины

- 2. Относительний пиаметр втулки первой ступени компрессора существующих ТРД составляет $\overline{\mathcal{A}}_{\mathcal{E}_{T_i}} = 0.35\div0.6$. С уменьшением $\overline{\mathcal{A}}_{\mathcal{E}_{T_i}}$ увеличивается производительность компрессора, но снижается работа, передаваемая воздуху в первых ступенях. В нашем случае вноираем $\overline{\mathcal{A}}_{\mathcal{E}_{T_i}} = 0.4$.
- 3. Окружная скорость \mathcal{U}_{κ_s} на внешнем диаметре первой дозвуковой ступени находится обычно в пределах 330 \div 360 м/с. Чтобы иметь не слишком малый напор ступени в нашем случае выбираем $\mathcal{U}_{\kappa_s} = 360$ м/с.
- 4. Окружная скорость на среднем диаметре первой ступени находится по формуле

$$U_{CP_4} = U_{K_1} \sqrt{\frac{1 + \bar{d}_{67_1}^2}{2}} = 360 \frac{1 + 0.4}{2} = 252 \text{ M/c}.$$

5. Коэффициент теоретического напора \mathcal{H}_{th} , на среднем диаметре первой ступени дозвуковых компрессоров ТРД выбирается в пределах \mathcal{H}_{th} , = 0,25 ÷ 0,4. Правильность выбора величин \mathcal{H}_{th} , , \mathcal{U}_{κ_1} , $\mathcal{\bar{U}}_{\ell_{\ell_1}}$, контролируют по величине теоретического напора первой ступени. Должно быть \mathcal{H}_{th} , = 18÷22 кДж/кг. В нашем случае выбираем \mathcal{H}_{th} , = 0,315 и убеждаемся, что

лежит в указанных пределах.

6. Осевая скорость C_{IG} , коэффициент расхода $\overline{C}_{IG} = \frac{C_{IG}}{U_{CP}}$ и угол ∞ , входа воздуха в колесо первой ступени на среднем радмусе связани между собою выражением

$$ctg \propto = \frac{2(1-\beta_K)-\overline{H}_{th_i}}{2\overline{C}_{ia}},$$

позволяющим совместно с газодинамической функцией [I] расхода $Q(\lambda_t)$ обеспечить выбранные значения величин H_{th_t} , ρ_κ , $\mathcal{Q}_{g_{t_k}}$ и \mathcal{Q}_{κ_t} .

Коэффициент расхода на среднем диаметре первой ступени лежит в пределах $\vec{C}_{IG} = 0,7 \div 0,9$. Вноираем $\vec{C}_{IG} = 0,726$ и опрепеляем $\vec{C}_{IG} = \vec{C}_{IG} \cdot U_{IR} = 0,726 \cdot 252 = 183$ м/с.

Правильность выбора \overline{C}_{IZ} при уже выбранной окружной скорости \mathcal{C}_{IZ} , контролируется по величине осевой скорости \mathcal{C}_{IZ} , которая в первой ступени дозвукового компрессора должна быть в пределах I70 \div I80 м/с.

Тогда получим угол входа в колесо первой ступени на среднем радиусе

$$ctg\alpha_{i} = \frac{2(1-\rho_{K1})-\bar{H}_{thi}}{2\bar{C}_{10}} = \frac{2(1-0.5)-0.315}{2\cdot0.726} = 0.4718 ;$$

$$\alpha_{i} = 64^{\circ}45^{\circ}.$$

7. Коэффициент производительности первой ступени компрессора

$$\bar{G}_{\kappa} = (1 - \bar{d}_{G_{\tau}}^2) q(\lambda_{\tau}) \sin \alpha_{\tau}$$

где газоцинамическая функция расхода $q(\Lambda_i)$ находится по значению Λ_i с использованием ГДФ:

$$\lambda_{i} = \frac{\lambda_{i\alpha}}{\sin \alpha_{i}} = \frac{C_{i\alpha}}{\alpha_{i\kappa\rho} \sin \alpha_{i}}$$

$$a_{180} = 18.3 \sqrt{7'^*} = 18.3 \sqrt{288'} = 310.6 \text{ M/C}.$$

Следовательно,

$$\delta \lambda = \frac{c}{c^*} = \frac{c}{\sqrt{2 \frac{K}{KH} RT}}$$

В дозвуковых компрессорах авиационных ГТД для первых ступеней коэфициент производительности G_{κ} должен онть олизким к максимальному значению $G_{\kappa} = 0.65$. Значения $G_{\kappa} < 0.6$ привент к необоснованному увеличению диаметральных размеров компрессора. Поэтому, если окажется $G_{\kappa} < 0.6$, следует внорать новые сочетания исходных данных и повторить расчет по пп. 3-7. При этом следует иметь в виду, что при вноранном (или заданном) относительном циаметре втулки $G_{\kappa_{\kappa}}$ величина G_{κ} увеличивается с уменьшением $G_{\kappa_{\kappa}}$ и ростом $G_{\kappa_{\kappa}}$.

8. Число Маха на входе в рабочее колесо первой ступени

$$M_{W_t} = \frac{\alpha_{t,KP}}{\alpha_t} \sqrt{\lambda_t^2 + \lambda_u^2 - 2\lambda_t \lambda_u \cos \alpha_t} =$$

$$= 0.947 \sqrt{0.6515^2 + 0.811^2 - 2.0.6515 \cdot 0.811 \cdot 0.4266} = 0.7525,$$

где приведенная окружная скорость

$$\lambda_u = \frac{u_{cp_1}}{\alpha_{1K0}} = \frac{252}{310.6} = 0.811$$
;

$$\frac{\alpha_{1KP}}{\alpha_{1}} = \frac{1}{\sqrt{\frac{K+1}{2} T(\lambda_{1})}} = \frac{1}{\sqrt{\frac{14+1}{2} \cdot 0.9293}} = 0.947.$$

Иля первых ступеней дозвуковых компрессоров на среднем диаметре $M_{W_i} = 0.75 \div 0.8$.

9. Проверяем окружную скорость $\mathcal{U}_{\mathcal{CQ}_i}$ на среднем диаметре колеса первой ступени.

Из параметрического соотношения [I] число Маха по окружной скорости колеса

$$M_{cr} = \frac{M_{W1}}{\sqrt{\bar{C}_{102}^2 + \left(\beta_{c}^2 + \frac{\bar{H}_{Lhr}}{2}\right)^2}} = \frac{Q,7525}{\sqrt{0,726^2 + \left(0.5 + \frac{Q315}{2}\right)^2}} = 0,7683;$$

скорость звука на входе в колесо

$$a_1 = \frac{a_{1\kappa\rho}}{a_{1\kappa\rho}} = \frac{310.6}{0.947} = 328 \,\mathrm{m/c};$$

$$\frac{T}{T^{*}} = \mathcal{C}(\lambda) = 1 - \frac{K-1}{K+1} \lambda^{2}$$

$$\frac{P}{P^{*}} = \mathcal{E}(\lambda) = \left(1 - \frac{K-1}{K+1} \lambda^{2}\right)^{\frac{1}{k-1}} = \frac{g}{g^{*}} = T(\lambda)^{\frac{1}{2}}$$

$$\frac{g_{C}}{dk} = g(\lambda) = \left(\frac{K+1}{2}\right)^{\frac{1}{k-1}} \cdot \lambda_{c} \left(1 - \frac{K-1}{K+1} \lambda^{2}\right)^{\frac{1}{k-1}}$$

окружная скорость

$$U_{CP_1} = \alpha_1 \cdot M_U = 328 \cdot 0,7683 = 252 \text{ m/c},$$

что совпадает с выбранной ранее величиной.

10. Густота решетки рабочего колеса первой ступени на среднем диаметре назначается на основе обобщенных опитных данных, полученных при продувке плоских решеток. Рассчитываются безразмерные величины

$$\frac{\vec{H}_{th}}{\vec{G}_{1a}} = \frac{0.315}{0.726} = 0.434 \; ; \quad \frac{f_{x}}{\vec{C}_{1a}} = \frac{0.5}{0.726} = 0.689 \; .$$

По формуле

$$\left(\frac{\overline{H}_{th}}{\overline{C}_{\alpha}}\right)_{\xi=1,0} = 0.7 - 0.27 \frac{\rho_{\kappa}}{\overline{C}_{\alpha}} + 0.16 \left(\frac{\rho_{\kappa}}{\overline{C}_{\alpha}}\right)^{2} \tag{I.I.}$$

или по графику (рис.I.2) определяется $H_{th}/ar{\mathcal{C}}_{lpha}$ при густоте

$$B/t = 1,0$$

$$\left(\frac{\bar{H}_{th}}{\bar{C}_{a}}\right)_{\frac{\mathcal{E}}{t}=1,0} = 0.586$$

и далее параметр

$$\mathcal{J} = \frac{\bar{H}_{th} / \bar{C}_{1a}}{(\bar{H}_{th} / \bar{C}_{a})_{\ell \mid t=10}} = \frac{0.434}{0.586} = 0.74.$$

Рис. I.2. Экспериментальная зависимость $\overline{H}_{th}/\bar{C}_{a}$ от $\rho_{\kappa}/\bar{C}_{a}$ при $\ell/t=1.0$

Наконец, по формуле

$$\frac{\mathcal{B}}{\mathcal{E}} = 0.225 + 0.275J + 0.5J^2 \tag{I.2}$$

или по графику (рис. I.3) находим густоту решетки первой ступени $\delta/t=0.68$. Густота рабочей решетки первой дозвуковой ступени обычно составляет $0.6 \div 1.0$.

Рис.І.З.Экспериментальная зависимость густоти решетки от параметра ${\mathcal J}$

II. Затраченная работа в первой ступени

$$\mathcal{H}_{KI} = \frac{\mathcal{H}_{bh_{I}} \, \mathcal{Q}}{\mathcal{V}_{3} \cdot \mathcal{V}_{4}} \,. \tag{I.3}$$

Для первой ступени можно принимать $73 \cdot 7 = 0.97 \div 0.98$ и $\Omega = 0.98 \div 1.0$. В нашем случае принято $73 \cdot 7 = \Omega = 0.98$, по-

$$H_{K_1} = 20 \cdot \frac{0.98}{0.98} = 20 \text{ K.J.W.}/\text{KT.}$$

12. Диаметр колеса первой ступени компрессора определяется по параметрам на входе в компрессор (сеч. В, см. рис. І. І)

$$\mathcal{D}_{K_{I}} = \sqrt{\frac{4G_{B} \sqrt{T_{B}^{2}}}{\pi S_{B} P_{B}^{2} \hat{C}_{K} K_{G}}}, \qquad (I.4)$$

The
$$T_B^* = T_H^*$$
;

 $P_B^* = P_H^* \delta_{E_X} = 1,014 \cdot 10^5 \cdot 0,97 = 0,984 \cdot 10^4 \text{ Ha};$

ж – коэффициент сохранения полного давления входного устройства;

$$S_{\mathcal{B}} = \sqrt{K \left(\frac{2}{K+1}\right)^{\frac{K+1}{K-1}} \cdot \frac{1}{R}}$$

(now K = I.4 m R = 287.3 Jm/kr.K $S_{\theta} = 0.0404$).

Во ехопных устройствах ТРД при $M_H \le 1.0$ $G_{Ex} = 0.96 \div 0.98$, а при $M_H \le 1.5$ $G_{Ex} = 0.92 \div 0.96$. В нашем случае по заданию $G_{Ex} = 0.97$.

Коэффициент $\mathcal{N}_{\mathcal{E}}$ учитивает неравномерность поля скоростей по высоте лопатки на входе в первую ступень и влияние пограничного слоя у наружной и внутренней стенок корпуса. Для лопаток с постоянной степенью реактивности по радмусу $\mathcal{N}_{\mathcal{E}} = 0.93 \div 0.95$; если в первой ступени предполагается применить закрутку по закону постоянства циркуляции, то $\mathcal{N}_{\mathcal{E}} = 0.97 \div 0.98$; при промежуточных законах профилирования лопаток $\mathcal{N}_{\mathcal{E}} = 0.95 \div 0.97$. В нашем примере используем промежуточный закон закрутки лопаток, поэтому для первой и всех послепующих ступеней принимаем $\mathcal{N}_{\mathcal{E}} = 0.96$. Следовательно,

$$D_{K_1} = \sqrt{\frac{4 \cdot 100 \sqrt{288}}{3,14 \cdot 0,0404 \cdot 0,984 \cdot 10^{5} \cdot 0,65 \cdot 0,96}} = 0,934 \text{ m}.$$

Выбранные параметры позволяют провести предварительный расчет компрессора.

§ 1.2. Предварительный расчет компрессора

Вначале вноирается тип проточной части. При $D_{\kappa}=const$ во всех ступенях реализуются максимальные значения окружных скоростей, что способствует получению высокой напорности во всех ступенях и ведет к уменьшению их числа. Однако при высоких степенях повышения давления в компрессоре и небольших расходах воздуха высоти лопаток последних ступеней могут получиться меньше $15\div 20$ мм, что отрицательно сказывается на КПД этих ступеней и всего компрессора в целом. В этом случае следует выбирать проточную часть с $D_{cp}=const$ или $D_{br}=const$.

В данном примере по условию задания принят тип проточной части с \mathcal{D}_{co} = const .

Особенности расчета компрессора с D_{fr} =const в D_{κ} =const рассматриваются в § 1.6; 3,4 - 3,7.

Предварительный расчет компрессора вильчает определение следущих параметров (см. $\S I.2 - I.4$):

I. Средний напор ступеней в дознуковом компрессоре с $D_{cp} = const$ $H_{\kappa,co} = (1.3 \div 1.5) H_{\kappa_I}$.

В нашем случае $H_{K,cp} = I, 4^{\circ} H_{K_f} = I, 4^{\circ} 20 = 28$ кДж/кг. Обычно $H_{K,cp} = 28 \div 35$ кДж/кг.

2. Напор компрессора

$$H_{K} = \frac{K}{K-1} R T_{H}^{*} \left(T_{K}^{*} \right) \frac{1}{T_{K}^{*}} = \frac{1.4}{14-1} \cdot 287.3 \cdot 288 \left(4.95^{0.266} \right) \frac{1}{0.855} =$$

$$= 1005 \ 288 \cdot 0.5794 \frac{1}{0.855} = 196,135 \ \text{KBM/KF}.$$

3. Число ступеней компрессора

$$Z = \frac{H_K}{H_{K,ep}} = \frac{196, 135}{28} = 7,01.$$

Принимаем Z=7 и уточняем $H_{K,CO}=28$ 019,3 IIm/kr.

4. Мошность, потребляемая компрессором

$$N_{\kappa} = G_{\delta} \cdot H_{\kappa} = 100 \cdot 196, 135 = 19613, 5 \text{ KBT.}$$

5. Частота вращения ротора компрессора

$$n = \frac{\mathcal{U}_{K_1}}{\pi \, \widehat{D}_{K_1}} = \frac{360}{3.14 \cdot 0.934} = 122,75 \, o \overline{o} / C.$$

6. Напор по ступеням компрессора обычно распределяется так, что в двух-трех средних ступенях он максимальный (на $10 \div 20\%$ больше \mathcal{H}_{KCD}), а в последних примерно равен \mathcal{H}_{KCD} .

В качестве средней ступени вноирают $Z_{cp}=\frac{Z}{2}$ при четном числе ступеней, а при нечетном $Z_{cp}=\frac{Z+1}{2}$. Для ступеней от

 Z_{CP} до $Z_{CP}^{+}(1:2)$ можно принимать $H_{Ki} = H_{Kimor} = (1,1:1,2) H_{KCP}$ в нашем случае

$$Z_{cp} = \frac{Z+1}{2} = \frac{Z+1}{2} = 4$$
.

На основе известных величин $H_{\kappa,}=20$ кДж/кг, $H_{\kappa,co}=28019$, 3 Дж/кг и с учетом указанных рекомендаций строим в первом приближении график (рис.І.4). Далее суммаруются напори по ступеням и корректируются значения для отдельных ступеней с тем, чтобы обеспечить равенство

$$\sum_{i}^{z} \mathcal{H}_{\kappa_{i}} = \mathcal{H}_{\kappa} .$$

Рис. І. 4. Распределение напора по ступеням компрессора

на рис. I. 4 помечени значком о скорректированние значения \mathcal{H}_{κ_i} , а в табл. I. I приведени их численние значения и суммарный напор

7. Осевне скорости потока по ступеням компрессора посте-

Величина C_{IOI} на входе в первую ступень определяется при выборе основных исходных данных первой ступени компрессора.

В нескольких последующих ступенях желательно сохранить величину \mathcal{C}_{122} неизменной, равной \mathcal{C}_{122} (рис. I.5), что позволяет получить в этих ступенях повышенные напоры при заданной густоте решеток \mathcal{E}/t . Желательно, чтобы градмент уменьшения \mathcal{C}_{122} при переходе от ступени к ступени не превыщал $10\div15$ м/с.

Пепеметон	Pas-				Ступе	N		-	
	HOĈTB	I	П	a	Ħ	Ā	Ħ	Ħ	×
HR	KUK/KE	20	25	83	32	8	8	28, 135	196,135
C _{ia} ;	M/c	I83	E8I	183	661	170	E91	156	150
Pri	ı	0,5	79*0	0,54	95,0	0,58	09*0	0,62	
<i>''</i> ''	1	0,98	96.0	96,0	0,935	26'0	0,905	0,89	
(2.2)	-	96,0	926'0	246'0	896'0	3 9640	96'0	0,956	•
Hehi	Jk/kr	20 000	25 285	29 672	33 IZ9	33 530	31 823	30 22I	ı
$ ilde{H}_{th_i}$	ı	0,315	966,0	495,0	0,522	0,528	109'0	0,476	
$ ilde{C}_{ilpha_l}$		0,726	0,726	0,726	0,702	0,675	0,647	619'0	
(x.		698'0	0,865	0,89	468'0	468'0	0,872	0,865	•
Hr. 7.	Ja/kr	081 41	2I 625	25 810	F04 82	704	091 92	24 337	172 520
70 = 70 = 7 * (2.1)	×	307,9	332,8	361,7	3,588	425,3	21997	483,2	_
Z_{a}	Я	288	307,9	332,8	361,7	393,5	425,3	455,2	483,2
£',	ì	1,221	1,27	1,3	E'I	82°I	EZ*I	Z*I	4,95
P. = P.	БĪ	0,984.10	i, zoi•10 ⁵	0,984.10 ⁵ 1,201.10 ⁵ 1,525.10 ⁵ 1,983.10 ⁵ 2,578.10 ⁵ 3,3.10 ⁵	I,983•10 ⁵	2,578•10 ⁵	₉ 01•ε'ε	4,059.IO ⁵	4,871.10 ⁵

При правильном выборе величины осевой скорости на енхопе из компрессора $C_{\alpha\kappa} \ge 0.45 \div 0.5$; $\lambda_{\kappa} = 0.35 \div 0.45$; $\lambda_{CAK} \ge 0.015 \div 0.02$ м ($\lambda_{CAK} = 0.000$). Висота лопаток спрямляющего аппарата последней ступени).

Рис. I. 5. Распределение осевых скоростей по ступеням компрессора

8. Определяем параметры на выходе из компрессора. Скорость воздуха \mathcal{C}_{κ} в современных авиационных ГТД составляет I40 ÷ I70 м/с. Выбираем \mathcal{C}_{κ} = I50 м/с, тогда при осевом выходе воздуха из компрессора (\propto_{κ} = 90°)

$$\bar{C}_{\alpha\kappa} = \frac{C_{\kappa}}{U_{CR}} = \frac{150}{252} = 0,595$$
;

$$\hat{A}_{K} = \frac{C_{K}}{C_{K0}} = \frac{150}{18,3\sqrt{T_{K}^{*}}} = \frac{150}{18.3\sqrt{483.2'}} = 0.3729,$$

где

$$T_{\kappa}^{*} = T_{H}^{*} + \frac{H_{K}}{\frac{K}{K-1}R} = 288 + \frac{196135}{1005} = 483,2 K.$$

По \mathcal{J}_{κ} из таблиц ГДФ находим $\mathcal{G}\left(\mathcal{J}_{\kappa}\right)=0,5546$. Павление

$$P_{K}^{*} = \delta_{K} \cdot P_{N}^{*} \cdot \mathcal{I}_{K}^{*} = 0.97 \cdot 1.014 \cdot 10^{5} \cdot 4.95 = 4.871 \cdot 10^{5} \, \text{Na}.$$

Площаль проходного сечения

$$F_{K} = \frac{G_{B} \sqrt{T_{K}^{*}}}{P_{K}^{*} q(\lambda_{K}) \sin \alpha_{K} \cdot S_{B} \cdot K_{B}} = \frac{100 \sqrt{483.2}}{4.871 \cdot 10^{5} \cdot 0.5546 \cdot 10 \cdot 0.0404 \cdot 0.96} = 0.21 \text{ m}^{2}.$$

Средний диаметр

$$D_{cp} = D_{\kappa_1} \frac{1 + d\epsilon_1}{2} = 0.934 \cdot \frac{1 + 0.4}{2} = 0.654 \text{ m.}$$

Висота лопатки спрямлиршего аппарата последней ступени

$$h_{CAX} = \frac{F_K}{\pi} \frac{0.21}{D_{CD}} = \frac{0.21}{3,14 \cdot 0.654} = 0.102 \text{ m.}$$

Таким образом, в нашем примере все величины ($\bar{\mathcal{C}}_{a\kappa}$, \mathcal{J}_{κ} и $\mathcal{H}_{\mathcal{C},A,\kappa}$) лехат в полкных пределах.

9. Степень реактивности ρ_{κ_i} обично увеличивают с увеличением номера ступени на $I\div 3\%$. Это позволяет получить большие значения коэффициента напора \vec{H}_{th} при незначительном снижении КПП. Результаты распределения ρ_{κ_i} по ступеням показаны в табл. I.I.

Теоретический (эйлеровский) напор в ступенях компрессора внчисляется по формуле

$$H_{th_i} = H_{\kappa_i} \frac{(\gamma_3 \cdot \gamma_4)_i}{\Omega_i}$$

где Q_i - коэффициент, отражающий неравномерность скоростей, линейно изменяется по длине проточной части компрессора от 0.98 ± 1.0 в первой ступени до 0.86 ± 0.9 в последней.

Потери в зазорах 7_3 и потери от трения лиска 7_4 обычно учитываются величиною 7_3 7_4 . Произвецение 7_5 7_6 уменьшается линейно от 0,97 ÷ 0,98 в первой ступени до 0,95 ÷ 0,96 в последней.

Результати расчетов величини \mathcal{H}_{th_1} приведени в табл.І.І. II. Коэффициенти напора $\overline{\mathcal{H}}_{th}$ и расхода $\overline{\mathcal{L}}_{\alpha}$ по ступеням компрессора рассчитани по формулам

$$H_{th_i} = \frac{H_{th_i}}{U_{co}^2}$$
, $\bar{C}_{ai} = \frac{C_{ai}}{U_{co}}$.

12. Густоти решеток рабочего колеса $(6/t)_{\rho,\kappa}$ и спрямляющего аппарата $(6/t)_{C,\Lambda}$ в средних, наиболее нагруженных ступених дозвукового компрессора не полжны превышать $1,5\div 1,6$. Поэтому прежде чем продолжить дальнейший расчет компрессора не-

обходимо проверить эти густоты в той ступени компрессора, где отношение $\frac{H_{ch}}{C_a}$ максимальное. В нашем примере $\frac{H_{ch}}{C_a}$ достигает максимального значения в \overline{I} ступени (см. табл. I. I). Пля этой ступени

$$\bar{H}_{th}/\bar{C}_a = \frac{0.528}{0.675} = 0.782$$
; $f_{\kappa}/\bar{C}_a = \frac{0.58}{0.675} = 0.859$.

По графику (рис.I.2) или по формуле (I.I) находим $(\vec{H}_{th}/\vec{C}_a)_{6|t=0}=0,58$, а затем определяем параметр

$$\mathcal{J} = \frac{\overline{H}_{th} / \overline{C}_{\alpha}}{(\overline{H}_{th} / \overline{C}_{\alpha})_{b/t=10}} = \frac{0.782}{0.58} = 1.348.$$

далее по графику (рис. I.3) или по формуле (I.2) находим (\mathcal{E}/\mathcal{E}) $\rho_{.K} = I.5$, что можно допустить.

Тустота решетки спрямляющего анцарата у ступени определяется в такой последовательности:

а) осевая скорость за рабочим колесом

$$C_{2\alpha \bar{q}} = \frac{C_{1\alpha \bar{q}} + C_{1\alpha \bar{q}}}{2} = \frac{170 + 163}{2} = 166,5 \text{ m/c};$$

 б) окружная составляющая скорости воздуха на выходе из колеса

$$C_{2U\overline{p}} = U_{CD} \left[(1 - P_K) + \frac{H_{th}}{2} \right] = 252 \left[(1 - 0.58) + \frac{0.528}{2} \right] = 172.4 \text{ m/c};$$

в) угол потока на выходе

$$\mathcal{L}_{2\overline{z}} = \operatorname{arctg} \frac{C_{2a\overline{z}}}{C_{2v\overline{z}}} = \operatorname{arctg} \frac{166,5}{172,4} = 44^{\circ}.$$

Принимая во внимание, что $\propto_{3i} = \propto_{f(i+i)}$, находим угол выхода потока из спрямляющего аппарата

$$\mathcal{L}_{3\overline{y}} = \mathcal{L}_{1\overline{U}} = \operatorname{arctg} \frac{C_{1a\overline{U}}}{C_{1u\overline{U}}} = \operatorname{arctg} \frac{163}{57.7} = 76^{\circ}59',$$

здесь $C_{NU_{\overline{H}}} = U_{CP} \left[(1-f_K) - \frac{\bar{H}_{th}}{2} \right] = 252 \left[(1-0.6) - \frac{0.501}{2} \right] = 37.7 \, \text{m/c};$

г) поворот потока в решетке спрямляющего аппарата $\Delta \alpha = \alpha_{37} - \alpha_{27} = 76^{\circ}59' - 44^{\circ} = 32^{\circ}59';$

д) по графику (рис.І.6) или по формуле $\left(\triangle \mathbf{X} \right)_{\delta/t=1} = 0.037 + 0.1 \mathbf{Z}_3 + 0.262 \mathbf{Z}_3^2 = 0.037 + 0.1 \cdot 0.7698 + 0.262 \cdot 0.7698^2 = 0.27, \tag{I.5}$

где $\Delta \alpha = \frac{\Delta \alpha}{100}$ и $\alpha_3 = \frac{\alpha_3}{100}$, тогда параметр

$$E = \frac{\Delta \propto}{(\Delta \propto)_{6k=1}} = \frac{0.3298}{0.27} = 1.22$$
;

е) далее по графику (рис.1.7) или по формуле

$$\left(\frac{b}{t}\right)_{CA} = 10(0.981 - 1.788 E + 0.912 E^2) =$$

$$= 10(0.981 - 1.788 \cdot 1.22 + 0.912 \cdot 1.22^2) = 1.57, \qquad (I.6)$$

что можно допустить.

Рис. I. 6. Экспериментальная зависимость относительного номинального угла отклонения потока в рещетках от относительного угла выхода потока при ф =I

Если окажется, что густота в какой-либс из решеток ныше цопустимой, то следует перераспределить напоры по ступеням, уменьшие их в наиболее нагруженных средних ступенях.

Рис. I. 7. Экспериментальная зависимость густоти решетки от параметра Е

ТЗ. КПП в отдельных ступених, как правило, неодинаковы. В первых ступенях $7_{\kappa,cr}^* = 0.84 \div 0.86$, в средних $7_{\kappa,cr}^* = 0.89 \div 0.9$ и в последних $7_{\kappa,cr}^* = 0.86 \div 0.87$.

КПД отцельных ступеней можно согласовать с КПД всего компрессора методом эквивалентной политропн [I]. Для этих целей несоходимо иметь напор (\mathcal{H}_{KZ}) и КПД (\mathcal{H}_{KZ}) последней ступени. Внопрая \mathcal{H}_{KZ} = 0,865, а \mathcal{H}_{KZ} = 28 I35 Дж/кг, вычисляем отномение

$$\frac{7_{V}}{7_{020}^{*}} = 1 - \frac{H_{KZ}}{H_{K}} \left(1 - 7_{KZ}^{*}\right) = 1 - \frac{28135}{196135} \left(1 - 0.865\right) = 0.9806$$

и по нему определяем КПД условного эквивалентного политропного процесса

КПД 7, соответствующий равенству напоров в действительном и эквивалентном политропном процессах сжатия, определяется

Палее находим

Напори отпельных ступеней берутся из табл.І.І. Величини $Z_{\kappa_i}^*$ в остальных (Z-I) ступенях вноираются с учетом изложенных ранее рекомендаций так, чтобн $\sum_{i}^{K} \mathcal{H}_{\kappa_i}$ $Z_{\kappa_i}^* = \mathcal{H}_{\kappa_i} Z_{\kappa_i}^*$. Величини $Z_{\kappa_i}^*$, вноранные в нашем случае, и значения \mathcal{H}_{κ_i} $Z_{\kappa_i}^*$ указаны в табл.І.І.

14. Температура адиабатно заторможенного потока возпуха $T_{j,\ell}^*$ на выходе из спрямляющего аппарата данной ступени равна соответственно температуре торможения в абсолютном движении на выходе из рабочего колеса $T_{2\ell}^*$ и на входе в последующую ступень $T_{\ell(k\ell)}^*$

$$T_{t(i+1)}^* = T_{3i}^* = T_{2i}^* = T_{1i}^* + \frac{H_{Ki}}{\frac{K}{K-1}R} = T_{1i}^* + \frac{H_{Ki}}{1005}$$

Для первой ступени $I_{II}^* = I_{II}^* = I_{II}^* = 288$ К. Результаты остальных расчетов сведены в табл. І. І.

15. Степень повышения давления в отдельных ступених

$$\widetilde{\mathcal{R}}_{\kappa_{i}}^{*} = \left(\frac{H_{\kappa_{i}} \ 7_{\kappa_{i}}^{*}}{\frac{K}{K-I} R T_{ii}^{*}} + 1\right)^{\frac{K}{K-I}} = \left(\frac{H_{\kappa_{i}} \ 7_{\kappa_{i}}^{*}}{1005 T_{ii}^{*}} + 1\right)^{3.5}$$

Іля проверки правильности этих расчетов необходимо вичислить общую ступень повышения давления \mathcal{L}_{κ}^{*} , которая должна совпадать с заданной (см. табл. I. I):

$$\mathcal{T}_{K}^{*} = \mathcal{T}_{K\bar{I}}^{*} \mathcal{T}_{K\bar{I}}^{*} \dots \mathcal{T}_{K\bar{Z}}^{*} = 1,221 \cdot 1,27 \dots 1,2 = 4,95.$$

Во всех ступенях, кроме первой, степень повышения давления является отношением полного давления на выходе из спряммякщего аппарата к полному давлению перед колесом, т.е.

$$\overline{\mathcal{K}}_{\kappa i}^* = \frac{\rho_{3i}^*}{\rho_{ij}^*} .$$

Для первой ступени под начальным давлением понимается давление перед направляющим аппаратом и поэтому

$$\widetilde{\mathcal{H}}_{K\bar{I}}^* = \frac{\rho_{3\bar{I}}^*}{\rho_{B}^*} ,$$

THE $P_{\mu}^* = P_{\mu}^* \cdot \hat{\mathcal{O}}_{\mathcal{E}_{X}}$.

В частном случае, когда направляющий аппарат отсутствует, павление P_8^* будет являться одновременно и давлением перед колесом P_I^* .

I6. Полное давление на входе в / -ю ступень равно полному давлению на выходе из (/-/)-й ступени, т.е.

$$P_{ii}^* = P_{3(i-1)}^* = P_{1(i-1)}^* \cdot \mathcal{T}_{\kappa(i-1)}^*$$

Результати расчетов, выполненных в данном параграфе, сведены в табл. I. I.

§ 1.3. Расчет проходных сечений компрессора

Целью расчета является определение высот лопаток, диаметров $\mathcal{D}_{\kappa i}$ и $\mathcal{D}_{\ell r \, i}$ для всех ступеней компрессора. Порядок расчета следующий:

I. Окружная составляющая абсолютной скорости на входе в рабочее колесо ступени

$$C_{rui} = U_{cpri} \left[(1 - \rho_{\kappa i}) - \frac{\overline{H}_{th_i}}{2} \right]$$
.

2. Абсолютная и приведенная скорость на входе в колесо

$$C_{1i} = \sqrt{C_{10i}^2 + C_{10i}^2}$$
; $\lambda_{1i} = \frac{C_{1i}}{\alpha_{1\kappa\rho i}}$,

где

$$\alpha_{1KP_{i}} = \sqrt{\frac{2K}{K+1}} R T_{ii}^{*} = 18,3 \sqrt{T_{ii}^{*}}$$

По λ_{ii} и таблицам ГДФ нахолятся $q(\lambda_i)_i$.

3. Угол входа в ступень по абсолютной скорости

Подчеркнем, что угол на входе $\alpha_{\ell\ell}$ является одновременно и углом выхода потока из спрямляющего аппарата предыдущей ступени, т.е.

4. Плошаль сечения на входе в ступень

$$F_{ii} = \frac{G_B \sqrt{T_{ii}^*}}{P_{ii}^* Q(\lambda_i)_i \sin \alpha_{ii} \cdot S_B \cdot K_G}$$

5. Высота рабочей лопатки на входе в колесо и диаметры $\mathcal{D}_{\kappa ii}$ и $\mathcal{D}_{\delta rii}$

$$h_{ni} = \frac{F_{ni}}{\sqrt{n}}$$
; $D_{\kappa ni} = D_{\epsilon \rho} + h_{ni}$; $D_{\epsilon mi} = D_{\epsilon \rho} - h_{ni}$

Расчет проходных сечений проводится с использованием численных значений величин, полученных в предыдущих параграфах, а результати расчета сведены в табл. I.2.

§ I.4. Схема мериционального сечения проточной части компрессора

Схема проточной части вичерчивается для того, чтоби убедиться в ее плавности, назначить долевие размери рабочих и направляющих (спрямляющих) лопаток, а также вибрать осевие зазори между решетками рабочих колес и спрямляющих аппаратов. Угол скоса V_c внутренней и наружной поверхностей (при схеме $\mathcal{D}_{c\rho}=const$) не должен превишать $8\div 12^{0}$ на сторону (рис.1.8).

При вычерчивании схемы используются расчетные величины диаметров $D_{\kappa \kappa i}$ и $D_{\delta \kappa \kappa i}$; числа ступеней Z, а также следующие статистические соотношения:

- удлинение лопаток $\bar{R} = \frac{R}{g} = 3,5 + 4,5$ в первых ступенях и $\bar{R} = 2 + 2,5$ в последних;

		٠.										<u> </u>							
		×	0	150	402,3	0,3729	0,5546	006	0,1	0,2I	0,102	0,756	0,552	ı	B	5	5	,	
		III.	35,8	IeO,I	390,4	0,4IOI	0,6026	244	0,9744	0,231	0,112	0,766	0,542	2,2	0,32	0,050	0,045	0,0IE	
		ΝΊ	37,7	167,3	377,4	0,4433	0,6433	76 ⁰ 58 /	0,9743	0,257	0,125	0,779	0,529	2,5	0,30	0,050	0.045	0,015	
	e H	, V	39,3	174,5	363	0,4807	0,6872	,49 ₀ 94	0,9742	0,296	0,144	0,798	0,510	2,8	0,28	0,051	0,046	0,014	
7.77	CTV	II	45,I	182,7	348	0,5250	0,7363	75 ⁰ 39	0,9688	0,347	0,169	0,823	0,485	3,1	0,26	0,055	0,050	0,014	
		⊟	57,1	7,191	333,8	0,5743	0,7865	720401	0,9546	0,4II	002*0	0,854	0,454	3,4	0,24	0,059	0,053	0.014	
		П	70,8	196,2	321,1	0.6110	0,8207	,25 ₀ 89	0.9327	0,492	0,240	0,894	0,414	3,7	0,22	0,065	0,059	0,014	
		1	86,3	202,3	310,6	0,6515	0,8554	64045	0,9045	0,575	0,280	0,934	0,374	4,0	0,20	0,070	0,063	0,014	The second secon
- 1	Pa3-	HOCTE	M/c	M/C	M/c	1	,	гред	4	ZΣ	æ	æ	×			æ	Z	æ	
		IIapawetos	Cuui	<i>C</i> ₁	Q, rqsi	7.,	9Q, II	Q', = Q's (1-1)	sina,	7	h, = h, (1-1)	Drii	Dani	h,	Š.	ÿ	75	Sai,	

- относительная пирина лопаток рабочих колес и спрямляющих аппаратов $\frac{3}{2}$ = 0,85 + 0,9 на среднем радиусе;
- относительная величина осевых зазоров между решетками рабочих колес и спрямляющих (направляющих)аппаратов $\vec{\delta_{\alpha}} = \frac{\vec{\delta_{\alpha}}}{\vec{\delta}} = 0.15 \div 0.2$ на первых и $\vec{\delta_{\alpha}} = 0.3 \div 0.4$ на последних ступенях (здесь $\vec{\delta}$ хорда рабочей лопатки на среднем диаметре).

Рис. І. 8. Схема проточной части компрессора

В нашем примере выбран линейный закон изменения по ступеням удлинения рабочих и направляющих (спрямляющих) лопаток \bar{h} от 4 на первой ступени до 2,2 на последней; относительного осевого зазора $\bar{\partial}_{\bar{a}}$ от 0,2 на первой ступени до 0,32 на последней.

Относительная ширина решеток $\frac{S}{6} = 0.9$. Результаты расчета приведены в табл. 1.2.

Меридиональный профиль проточной части компрессора показан на рис. I.8. Как видно из рисунка, для схеми \mathcal{D}_{co} =const угол скоса \mathcal{L}_c значительно меньше $8\div 12^{0}$.

Далее можно приступить к детальному расчету всех ступеней по среднему диаметру, что показано на примере расчета первой ступени компрессора.