Séries - Teoremas

1 Teorema 1.

Se $\sum a_n$ e $\sum b_n$ são séries convergentes, então as séries $\sum c a_n$ (sendo c uma constante) e $\sum (a_n \pm b_n)$ também são convergentes

a.
$$\sum c a_n = c \sum a_n$$

b.
$$\sum (a_n \pm b_n) = \sum a_n \pm \sum b_n$$
,

2 Testes de convergência:

2.1 Teorema 2 (Teste da divergência)

Se $\lim_{n\to+\infty} a_n$ não existe ou se $\lim_{n\to+\infty} a_n \neq 0$, então a série $\sum a_n$ é divergente.

2.2 Teorema 3 (Teste da integral)

Seja $\sum a_n$ uma série com termos positivos e seja f(x) a função que resulta quando k for substituído por x no termo geral da série. Se f é decrescente e contínua no intervalo $[a, +\infty)$, então

a. Se
$$\int_a^{+\infty} f(x)dx$$
 é convergente, $\sum a_n$ é convergente

b. Se
$$\int_a^{+\infty} f(x)dx$$
 é divergente, $\sum a_n$ é divergente

2.2.1 Estimativa do erro para o teste da integral

Se $f(n)=a_n$ uma função contínua, positiva e decrescente para $x\geq n$ e $\sum a_n$ é convergente. O erro de truncamento R_n satisfaz

$$\int_{n+1}^{\infty} f(x)dx \le R_n \le \int_{n}^{\infty} f(x)dx \tag{1}$$

2.2.2 p-séries

A série $\sum_{n=1}^{\infty} \frac{1}{n^p}$ é convergente se p > 1 e divergente se $p \le 1$

2.3 Teorema 3 (Teste da comparação)

Sejam $\sum a_n$ e $\sum b_n$ séries com termos positivos,

a. Se $\sum b_n$ é convergente e $a_n \leq b_n$ para todo $n > N_o$, então $\sum a_n$ é convergente

b. Se $\sum b_n$ é divergente e $a_n \geq b_n$ para todo $n > N_o$, então $\sum a_n$ é divergente

2.3.1 Teorema 4 (Teste da comparação dos limites)

Sejam $\sum a_n$ e $\sum b_n$ séries com termos positivos, se

$$\lim_{n \to \infty} \frac{a_n}{b_n} = c \tag{2}$$

onde c é um número finito e c > 0, então ambas as séries convergem ou ambas as séries divergem.

2.3.2 Estimativa do erro para o teste de comparação

Sejam $\sum a_n$ com erro R_n e $\sum b_n$ com erro T_n , séries convergentes com termos positivos e $a_n \leq b_n$ para todo $n > N_o$, então $S_n \leq T_n$

2.4 Teorema 5 (Teste de séries alternadas)

Se a série alternada

$$\sum_{n=1}^{\infty} (-1)^n a_n = a_1 - a_2 + a_3 - a_4 + \dots (a_n > 0)$$
(3)

satisfaz

a. $a_{n+1} \leq a_n$, para todo n

b. $\lim_{x \to \infty} a_n = 0$,

a série é convergente.

2.4.1 Estimativa do erro para o teste de séries alternadas

Se a série alternada $\sum_{n=1}^{\infty} (-1)^n a_n$ satisfaz

a. $a_{n+1} \leq a_n$, para todo n

b. $\lim_{x \to \infty} a_n = 0$,

então $|R_n| \le a_{n+1}$

2.5 Teorema 6 (Teste da razão)

2.5.1 Definição

uma série $\sum a_n$ é chamada de absolutamente convergente se a série de valores absolutos $\sum |a_n|$ é convergente.

2.5.2 Teorema

seja a série $\sum a_n$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L \,, \tag{4}$$

a. Se L < 1, então a série é absolutamente convergente (e portanto convergente)

b. Se L > 1 ou $L = \infty$, então a série é divergente

c. Se L=1 o teste da razão é inconclusivo.

2.6 Teorema 7 (Teste da raiz)

seja a série $\sum a_n$

$$\lim_{n \to \infty} |a_n|^{1/n} = L, \tag{5}$$

a. Se L < 1, então a série é absolutamente convergente (e portanto convergente)

b. Se L>1 ou $L=\infty,$ então a série é divergente

c. Se L=1 o teste da razão é inconclusivo.

3 Séries de potências

3.1 Definição

Seja x_0 uma constante, uma série da forma

$$\sum_{k=0}^{\infty} c_k (x - x_0)^k = c_0 + c_1 (x - x_0) + c_2 (x - x_0)^2 + c_3 (x - x_0)^3 + \dots$$
 (6)

é chamada de séries de potências em $x-x_0$. Em particular se $x_0=0$

$$\sum_{k=0}^{\infty} c_k x^k = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \dots$$
 (7)

é chamada apenas de série de potências. Se ela for convergente, $f(x) = \sum_{k=0}^{\infty} c_k (x - x_0)^k$ na região $|x - x_0| < R$, sendo R o raio de convergência.

3.2 Teorema 6

Para uma série de potências $\sum_{n=0}^{\infty} c_k (x-x_0)^k$, exatamente uma das seguintes afirmativas é verdadeira:

- a. A série converge somente em $x = x_0$.
- b. A série converge absolutamente para todo x.
- c. Existe um número positivo R, chamado de raio de convergência tal que a série converge para $|x x_0| < R$ e diverge para $|x x_0| > R$.

3.3 Definição

O intervalo de convergência é o conjunto de todos os valores de x para o qual a série de potências converge.

3.4 Teorema 7

Se a série de potências $\sum c_n(x-x_0)^n$ tem raio de convergência R>0 então a função f definida por $f(x)=\sum_{n=0}^{\infty}c_n(x-x_0)^n$ é diferenciável no intervalo (x_0-R,x_0+R) e

$$f'(x) = \sum_{n=1}^{\infty} nc_n (x - x_0)^{n-1}$$

$$\int f(x)dx = C + \sum_{n=0}^{\infty} c_n \frac{(x - x_0)^{n+1}}{n+1}$$
(8)

os raios de convergência em ambos dos casos é R.

4 Séries de Taylor y Maclaurin

4.1 Definição

Se uma função f tiver derivadas de todas as ordens em x_0 , então chamamos a série

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k \tag{9}$$

se série de Taylor para f em torno de $x=x_0$. No caso especial em que x=0

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k \tag{10}$$

é chamada de série de Maclaurin para f.

4.2 Definição

Se função f puder ser diferenciada n vezes em x_0 , define-se o n-énesimo polinômio de Taylor para f em torno de $x = x_0$, como sendo

$$T_n = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k \tag{11}$$

se série de Taylor para f em torno de $x=x_0$. No caso especial em que x=0

$$T_n = \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} x^k \tag{12}$$

é chamada de polinômio de Maclaurin para f.

4.3 Teorema de Taylor

Se uma função f for diferenciável até a ordem n+1 em um intervalo aberto I contendo x_0 , então para cada x em I existe um número c entre x e a tal que

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + R_n(x)$$
(13)

onde $R_n(x) = \frac{f^{(n+1)}(c)(x-x_0)^{n+1}}{n+1}$

4.4 Teorema

Se $R_n(x) = f(x) - T_n(x)$, a igualdade

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$
 (14)

é verdadeira num ponto x se e somente se $\lim_{n \to \infty} R_n(x) = 0$ (R_n é chamado de resto)

4.5 Teorema (teorema da estimativa do resto)

Se a função f pode ser diferenciada n+1 vezes num intervalo I contendo o ponto x_0 e se $|f^{(n+1)}(x)| \leq M$ para todo x em I, então

$$|R_n(x)| \le \frac{M}{(n+1)!} |x - x_0|^{n+1} \tag{15}$$

para todo x em I.