u^{b}

UNIVERSITÄT BERN

Statistical Inference for Data Science

Dr. Anja Mühlemann

31. August 2021

Question on Day 2

Day 3 Hypothesis Testing

Today's Topics

- Hypotheses
- p-values
- Error type
- Frequently used tests

Inferential Statistics

Inferential Statistics

With a certain degree of certainty, one would like to draw conclusions from empirical data, even if the data are subject to error or incomplete.

3 main techniques

- Parameter estimates: Calculation estimate for unknown parameter of underlying probability distribution
- Confidence intervals: Calculation of a region within which unknown parameter should lie with certain degree of certainty
- Tests: Tests are intended to prove that a certain effect,
 e.g. the effect of a vaccine, is indeed present.

Tests

- Method for deciding on the correctness of hypotheses under uncertainty
 - e.g., new medication is better than the old one

2 Hypotheses:

- Working hypothesis (H1): Motivation of the study
 e.g., the new medication is better than the old one
- Null hypothesis (H0): Opposite of H1
 e.g. the new medication is not better than the old one

Goal: reject the null hypothesis with some degree of certainty

Tests II

- Statistical test rely on a test statistic, for which distribution under the test assumptions and H0 is known.
- We calculate the value of the test statistic for the sample at hand (\hat{T})
- And check whether this value is probable for the distribution under H0.
- To this end the p-value is calculated
- If the p-value < 1 desired degree of certainty, we reject
 H0
- Otherwise, we cannot reject H0, which does not necessarily imply that H1 holds

Tests III

- Type 1: Wrongly reject the null hypothesis due to a fluctuation (false positive)
- Type 2: Wrongly keep the null hypothesis by interpreting a real effect as a fluctuation (false negative)

Errors

Prison example

Innocent person set free	Innocent person jailed
Guilty person set free	Guilty person jailed

Types of Tests

- One group: the mean monthly income is larger than 5000.-
- Two groups: the mean income of men is larger than that of women
- ≥ Three groups: effect of tea on weight loss (green, black, none)

≥ Two groups:

- Paired: dependent, repeated measurements on same individual, e.g. blood pressure before and after surgery
- Unpaired: independent, from separate individuals, e.g. blood pressure after medication 1 vs. blood pressure after medication 2

Normality

- Many test assume that the sample comes from a normal distribution
- Thus, we need to check whether this is fulfilled before performing such a test
- Shapiro-Wilk test, Shapiro-Francia test, Q-Q-Plot, ...

		_	
EX	10		
\square			

3 Slides to be	uploaded	to	ILIAS
by 5pm today			

- 1 slide: Question that the test tries to answer, assumptions on data, other details
- 1 slide: example from "real live" (inkl. reference)
- 1 slide: your conclusion from the Notebook on this test
- 1 question to another group
- Wil be presented at tomorrow's discussion session

Nr	Test	Question to
1	One-sample t-test	6
2	One-sample Wilcoxon SR test	1
3	Paired t-test	2
4	Paired Wilcoxon SR test	8
5	Unpaired t-test	5
6	Unpaired t-test with Welsch's correction	4
7	Mann-Withney U test	3
8	One-way ANOVA	7

Exercise II

Nr	Test	Team
1	One-sample t-test	
2	One-sample Wilcoxon SR test	
3	Paired t-test	
4	Paired Wilcoxon SR test	
5	Unpaired t-test	
6	Unpaired t-test with Welsch's correction	
7	Mann-Withney U test	
8	One-way ANOVA	

Summary

- Hypotheses
- p-values
- Error type
- Frequently used tests