Insper

Ciência dos Dados

Modelos Probabilísticos Contínuos

Distribuição Uniforme*
Distribuição Exponencial*
Distribuição Normal

*Ver detalhes no livro

Magalhães e Lima, 7ª edição. Seção 6.2

Objetivos de Aprendizagem

Os alunos devem ser capazes de:

- Descrever as propriedades de modelos probabilísticos já bem definidos na literatura, em particular, da distribuição exponencial e da normal.
- Utilizar modelos normais para resolução de problemas seja com ou sem uso do Python.
- Contrastar resultados teóricos e empíricos.

Insper

Distribuição Exponencial

$$X \sim \exp(\beta)$$

Usada para modelagem de tempos de espera; grande aplicabilidade em estudos de sobrevivência e teoria das filas.

Função densidade de probabilidades

$$f(x) = \frac{1}{\beta} e^{\frac{-x}{\beta}} \quad \text{para } x \ge 0, \beta > 0$$

$$X \sim \exp(\beta)$$

Função densidade de probabilidades:

$$f(x) = \frac{1}{\beta} e^{\frac{-x}{\beta}} \text{ para } x \ge 0, \beta > 0$$

Média e Variância de uma v.a. X com distribuição exponencial de parâmetro β:

$$E(X) = \beta$$
 e $Var(X) = \beta^2$

Função densidade de probabilidade de uma exponencial com média 1

Função distribuição acumulada (f.d.a.) da exponencial:

$$F(x) = P(X \le x) = 1 - e^{-\frac{x}{\beta}}$$

Admita que o tempo até que uma venda seja realizada em uma loja siga um modelo (distribuição) exponencial com média de 0,2 horas (12 minutos).

Qual é a probabilidade de uma venda demorar mais de meia hora para ser feita?

Qual é a probabilidade de uma venda demorar mais de meia hora para ser feita?

$$P(X > 0.5) = e^{-0.5/0.2} = 0.0821 = 8.21\%$$

Insper

Distribuição Normal (ou Gaussiana)

Modelo Normal

Modelo fundamental em Probabilidade e Inferência Estatística.

"Em 12 de novembro de 1733, Abraham de Moivre publicou um artigo em latim contendo a dedução da distribuição normal como uma aproximação da distribuição binomial."

Fonte: lista da ABE

O uso dessa distribuição remonta a Gauss em seus trabalhos sobre erros de observações astronômicas, por volta de 1810, dando o nome de distribuição gaussiana para tal modelo.

Johann Carl Friedrich Gauss

Alemanha 1777-1855

http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Gauss.html

Modelo Normal

a) Função Densidade de Probabilidade

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty$$

b) Notação: $X \sim N(\mu, \sigma^2)$

c) Parâmetros: $-\infty < \mu < \infty$ e $\sigma^2 > 0$.

Modelo Normal

Insper

Distribuição Normal

$$Med(X) = \mu$$

$$Moda(X) = \mu$$

$$E(X) = \mu$$

$$Var(X) = \sigma^2$$

Insper

Distribuição Normal

Médias diferentes e desvio padrões iguais

Médias iguais e desvio padrões diferentes

Distribuição Normal

Conhecido como Regra: 68-95-99

Uma loja de produtos automotivos vende um certo lubrificante. Sempre que o estoque chega a 21 litros um novo pedido de compra é feito.

O gerente da loja acha que a quantidade deixada em estoque até que o pedido do lubrificante seja entregue pode estar prejudicando suas vendas. Verificou-se que durante o período entre o pedido de compra e a entrega se consomem, em média, 15 litros de lubrificante, com desvio padrão de 6 litros. Verificou-se também que a distribuição de consumo neste período é bem aproximada por uma normal.

O valor deixado em estoque no momento do pedido é adequado?

Insper

Distribuição do consumo de lubrificantes no período entre o pedido de compra e a entrega (X):

$$X\sim N(\mu;\sigma^2)$$
: com $\mu=15$ litros e $\sigma=6$ litros

O estoque acaba quando a demanda durante o tempo de espera (entre o pedido de compra e a entrega) é maior que 21 litros. Qual a probabilidade de que isto aconteça?

Distribuição do consumo de lubrificantes no período entre o pedido de compra e a entrega (X):

 $X \sim N(\mu; \sigma^2)$: com $\mu = 15$ litros e $\sigma = 6$ litros

A probabilidade do estoque acabar durante o tempo de espera é, aproximadamente, de 16%.

Usando a Regra: 68-95-99

_sper

Exemplo 1 (continuação)

O gerente pretende demorar mais tempo até fazer novos pedidos de compra.

Logo, decide que um novo pedido de compra será feito sempre que o estoque chegar a 20 litros.

Calcule agora a probabilidade de que o estoque acabe antes de que o pedido chegue a loja?

Distribuição do consumo de lubrificantes no período entre o pedido de compra e a entrega (X):

$$X \sim N(\mu; \sigma^2)$$
: com $\mu = 15$ litros e $\sigma = 6$ litros

O estoque acaba quando a demanda durante o tempo de espera é maior que 20 litros.

Distribuição Normal - Padronização

Muitas vezes estamos interessados em valores de probabilidade que a regra 68-95-99 não pode nos fornecer.

Como calcular a área abaixo da curva (probabilidade) nestes casos?

Cálculo DA Integral

OU

Uso de algum software para obter probabilidade **OU**

Padronização da curva Normal

Tabela z

Distribuição Normal - Padronização

Se X ~ $N(\mu, \sigma^2)$, então a v.a. definida por

$$Z = \frac{X - \mu}{\sigma}$$

terá média zero e variância 1.

Ainda, prova-se que

$$Z = \frac{X - \mu}{\sigma} \sim N(0;1)$$

pois toda combinação linear de uma v.a. com distribuição normal também é uma normal. Insper

Distribuição Normal - Padronização

Vimos que se X ~ $N(\mu, \sigma^2)$, então

$$Z = \frac{X - \mu}{\sigma} \sim N(0;1)$$

Logo, para calcular áreas sob curvas normais que não a padrão, primeiro converta X em Z e depois procure o valor numa tabela apropriada ou no Excel ou no Python.

Python

 $X \sim N(15; 36)$

$$Z = \frac{X - 15}{6} \sim N(0; 1)$$

Insper

$X \sim N(\mu; \sigma^2)$: com $\mu = 15$ litros e $\sigma = 6$ litros

$$z = \frac{x - \mu}{\sigma} = \frac{20 - 15}{6} = 0.83$$

$$P(X > 20) = P(Z > 0.83)$$

Insper

Distribuição Normal -Tabela z

No corpo da tabela apresenta a probabilidade acumulada: $P(Z \le z)$.

Unidade e primeira	Segunda decimal de z									
decimal de z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	5000	5040	5080	51 <u>2</u> 0	5160	5199	5239	5279	5319	5359
0,1	5398	5438	5478	55 <mark>1</mark> 7	5557	5596	5636	5675	5714	5753
0,2	5793	5832	5871	59 <mark>1</mark> 0	5948	5987	6026	6064	6103	6141
0,3	6179	6217	6255	6293	6331	6368	6406	6443	6480	6517
0,4	6554	6591	6628	66 64	6700	6736	6772	6808	6844	6879
0,5	6915	6950	6985	7019	7054	7088	7123	7157	7190	7224
0,6	7257	7291	7324	7357	7389	7422	7454	7486	7517	7549
0,7	7580	7611	7642	7673	7704	7734	7764	7794	7823	7852
0,8	7001	7910	7939	7967	7995	8023	8051	8078	8106	8133
0,9	8159	8186	8212	8238	8264	8289	8315	8340	8365	8389
1,0	8413	8438	8461	8485	8508	8531	8554	8577	8599	8621
1,1	8643	8665	8686	8708	8729	8749	8770	8790	8810	8830
1,2	8849	8869	8888	8907	8925	8944	8962	8980	8997	9015
1,3	9032	9049	9066	9082	9099	9115	9131	9147	9162	9177
1,4	9192	9207	9222	9236	9251	9265	9279	9292	9306	9319
1,5	9332	9345	9357	9370	9382	9394	9406	9418	9429	9441
1,6	9452	9463	9474	9484	9495	9505	9515	9525	9535	9545
1,7	9554	9564	9573	9582	9591	9599	9608	9616	9625	9633
1,8	9641	9649	9656	9664	9671	9678	9686	9693	9699	9706
1,9	9713	9719	9726	9732	9738	9744	9750	9756	9761	9767
2,0	9772	9778	9783	9788	9793	9798	9803	9808	9812	9817
2,1	9821	9826	9830	9834	9838	9842	9846	9850	9854	9857
2,2	9861	9864	9868	9871	9875	9878	9881	9884	9887	9890
2.3	9893	9896	9898	9901	9904	9906	9909	9911	9913	9916

Exemplo 1 (continuação)

Controlar a probabilidade de acabar o estoque

Com quantos litros de lubrificante no estoque a loja de produtos automotivos deve fazer o pedido de compra de modo a ter no máximo 5% de probabilidade de ficar sem lubrificante?

$X \sim N(\mu; \sigma^2)$: com $\mu = 15$ litros e $\sigma = 6$ litros

Processo inverso: desejamos descobrir x_c de maneira

que
$$P(X > x_c) = 0.05$$
 \rightarrow $P(Z > z_{0.05}) = 0.05$

Distribuição Normal -Tabela z

No corpo da tabela apresenta a probabilidade acumulada: $P(Z \le z)$.

Unidade e primeira	Segunda de cimal de z									
decimal de z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	5000	5040	5080	5120	5160	5109	5239	5279	5319	5359
0,1	5398	5438	5478	5517	5557	5596	5636	5675	5714	5753
0,2	5793	5832	5871	5910	5948	59 <mark>8</mark> 7	6026	6064	6103	6141
0,3	6179	6217	6255	6293	6331	6368	6406	6443	6480	6517
0,4	6554	6591	6628	6664	6700	67 <mark>3</mark> 6	6772	6808	6844	6879
0,5	6915	6950	6985	7019	7054	70 <mark>3</mark> 8	7123	7157	7190	7224
0,6	7257	7291	7324	7357	7389	7422	7454	7486	7517	7549
0,7	7580	7611	7642	7673	7704	7734	7764	7794	7823	7852
0,8	7881	7910	7939	7967	7995	8023	8051	8078	8106	8133
0,9	8159	8186	8212	8238	8264	8239	8315	8340	8365	8389
1,0	8413	8438	8461	8485	8508	8531	8554	8577	8599	8621
1,1	8643	8665	8686	8708	8729	87 <mark>-</mark> 19	8770	8790	8810	8830
1,2	8849	8869	8888	8907	8925	89 <mark>4</mark> 4	8962	8980	8997	9015
1,3	9032	9049	9066	9082	9099	91 5	9131	9147	9162	9177
1,4	9192	9207	9222	9236	9251	9265	9279	9292	9306	9319
1,5	9332	9345	9357	9370	9382	934	9406	9418	9429	9441
1,6	9452	9463	9474	9484	9495	9505	9515	9525	9535	9545
1,7	9554	9564	9573	9582	9591	9599	9608	9616	9625	9633
1,8	9641	9649	9656	9664	9671	9678	9686	9693	9699	9706
1,9	9713	9719	9726	9732	9738	9744	9750	9756	9761	9767
2,0	9772	9778	9783	9788	9793	9798	9803	9808	9812	9817
2,1	9821	9826	9830	9834	9838	9842	9846	9850	9854	9857
2,2	9861	9864	9868	9871	9875	9878	9881	9884	9887	9890
2.3	9893	9896	9898	9901	9904	9906	9909	9911	9913	9916

per

Solução

Controlar a probabilidade de acabar o estoque

$$z = \frac{x - \mu}{\sigma} \Rightarrow x = \mu + z * \sigma$$

$$x = 15 + z_{0.05} * 6 = 15 + 1,65 * 6 = 24,90$$

Logo, se o novo pedido de compra for feito quando restar 24,90 litros de lubrificante, a probabilidade da loja ficar sem lubrificante em seu estoque até a entrega do pedido é de 5%.

Insper

Uma empresa automotiva diz que um determinado caminhão por ela produzido apresenta algum tipo de problema no motor após, em média, rodar 100 mil quilômetros, com um desvio padrão de 35 mil quilômetros.

Além disso, acredita-se que a distribuição da distância percorrida antes de apresentar algum tipo de problema no motor (X) é bem aproximada por uma normal.

Insper

Exemplo 2

Sabendo que a garantia de um caminhão é dada apenas até completar 90 mil km, qual a probabilidade de algum tipo de problema no motor acontecer após perder a garantia de fábrica?

Exemplo 2

Logo,
$$P(X > 90) = P(Z > -0.29) = 0.6141$$
 Ins

Distribuição Normal -Tabela z

No corpo da tabela apresenta a probabilidade acumulada: $P(Z \le z)$.

Unidade e primeira	Segunda decimal de z									
decimal de z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	5000	5040	5080	5120	5160	5199	5239	5279	5319	5 <mark>3</mark> 59
0.1	5398	5438	5478	5517	5557	5596	5636	5675	5714	5753
0,2	5793	5032	5071	5910	594 8	5907	6026	6064	6103	6141
0,3	6179	6217	6255	6293	6331	6368	6406	6443	6480	6517
0,4	6554	6591	6628	6664	6700	6736	6772	6808	6844	6879
0,5	6915	6950	6985	7019	7054	7088	7123	7157	7190	7224
0,6	7257	7291	7324	7357	7389	7422	7454	7486	7517	7549
0,7	7580	7611	7642	7673	7704	7734	7764	7794	7823	7852
0,8	7881	7910	7939	7967	7995	8023	8051	8078	8106	8133
0,9	8159	8186	8212	8238	8264	8289	8315	8340	8365	8389
1,0	8413	8438	8461	8485	8508	8531	8554	8577	8599	8621
1,1	8643	8665	8686	8708	8729	8749	8770	8790	8810	8830
1,2	8849	8869	8888	8907	8925	8944	8962	8980	8997	9015
1,3	9032	9049	9066	9082	9099	9115	9131	9147	9162	9177
1,4	9192	9207	9222	9236	9251	9265	9279	9292	9306	9319
1,5	9332	9345	9357	9370	9382	9394	9406	9418	9429	9441
1,6	9452	9463	9474	9484	9495	9505	9515	9525	9535	9545
1,7	9554	9564	9573	9582	9591	9599	9608	9616	9625	9633
1,8	9641	9649	9656	9664	9671	9678	9686	9693	9699	9706
1,9	9713	9719	9726	9732	9738	9744	9750	9756	9761	9767
2,0	9772	9778	9783	9788	9793	9798	9803	9808	9812	9817
2,1	9821	9826	9830	9834	9838	9842	9846	9850	9854	9857
2,2	9861	9864	9868	9871	9875	9878	9881	9884	9887	9890
2.3	9893	9896	9898	9901	9904	9906	9909	9911	9913	9916

oer

Exemplo 2

Qual deve ser a garantia de um caminhão, se a probabilidade de apresentar algum tipo de problema no motor após perder a garantia de fábrica for, no máximo, 15%?

$$z = \frac{x - \mu}{\sigma} \Rightarrow x = \mu + z_{0,15} * \sigma$$
$$x = 100 + z_{0,15} * 35 = 100 + 1,04 * 35 = 136,40$$

Logo, a garantia de fábrica do caminhão deve ser de 136,40 mil km para que esse apresente algum problema após perder a garantia com apenas 15% de probabilidade.

Distribuição Normal -Tabela z

No corpo da tabela apresenta a probabilidade acumulada: $P(Z \le z)$.

Unidade e primeira	Segunda decimal de z									
decimal de z	0,00	0,01	0,02	0,0	0,04	0,05	0,06	0,07	0,08	0,09
0,0	5000	5040	5080	5120	5 <mark>1</mark> 60	5199	5239	5279	5319	5359
0,1	5398	5438	5478	5517	55 <mark>5</mark> 7	5596	5636	5675	5714	5753
0,2	5793	5832	5871	5910	59 <mark>48</mark>	5987	6026	6064	6103	6141
0,3	6179	6217	6255	6293	63 <mark>31</mark>	6368	6406	6443	6480	6517
0,4	6554	6591	6628	6664	67 <mark>00</mark>	6736	6772	6808	6844	6879
0,5	6915	6950	6985	7019	70 <mark>54</mark>	7088	7123	7157	7190	7224
0,6	7257	7291	7324	7357	73 <mark>89</mark>	7422	7454	7486	7517	7549
0,7	7580	7611	7642	7673	7704	7734	7764	7794	7823	7852
0,8	7881	7910	7939	7967	79 <mark>95</mark>	8023	8051	8078	8106	8133
0,9	8159	8186	8212	8238	82 <mark>64</mark>	8289	8315	8340	8365	8389
1,0	8413	8438	8461	8485	8508	8531	8554	8577	8599	8621
1,1	8643	8665	8686	8708	8729	8749	8770	8790	8810	8830
1,2	8849	8869	8888	8907	8925	8944	8962	8980	8997	9015
1,3	9032	9049	9066	9082	9099	9115	9131	9147	9162	9177
1,4	9192	9207	9222	9236	9251	9265	9279	9292	9306	9319
1,5	9332	9345	9357	9370	9382	9394	9406	9418	9429	9441
1,6	9452	9463	9474	9484	9495	9505	9515	9525	9535	9545
1,7	9554	9564	9573	9582	9591	9599	9608	9616	9625	9633
1,8	9641	9649	9656	9664	9671	9678	9686	9693	9699	9706
1,9	9713	9719	9726	9732	9738	9744	9750	9756	9761	9767
2,0	9772	9778	9783	9788	9793	9798	9803	9808	9812	9817
2,1	9821	9826	9830	9834	9838	9842	9846	9850	9854	9857
2,2	9861	9864	9868	9871	9875	9878	9881	9884	9887	9890
2.3	9893	9896	9898	9901	9904	9906	9909	9911	9913	9916

Para $X \sim N(90, 100)$, calcular:

- a) $P(X \le 115)$.
- b) $P(X \ge 80 \mid X < 100)$.
- c) O valor de a tal que P(90 $a \le X \le 90 + a$) = 0,99.
- d) O número d tal que P(X < d) = 0.975.
- e) O número e tal que P(X > e) = 0.95.

Seja X ~ $N(\mu, \sigma^2)$, encontre:

- a) $P(X \ge \mu + 2\sigma)$.
- b) $P(|X \mu| \le \sigma)$.
- c) O número a tal que P(μ $a\sigma \le X \le \mu + a\sigma$) = 0,99.
- d) O número d tal que P(X > d) = 0.90.

As notas no quiz final de Ciência dos Dados distribuem-se segundo uma variável aleatória normal com média 6,5 e desvio padrão 1,6. O professor deseja dividir a classe em 3 categorias, da seguinte forma: os 30% que tiveram as melhores notas serão aprovados, os 50% com notas intermediárias ficarão de exame e os 20% que tiveram as piores notas serão reprovados.

- a. Quais os limites de nota entre cada uma das categorias?5,156 e 7,332
- b. Caso a nota para aprovação (sem ir para exame) fosse igual a 7,0 e uma turma tivesse 50 alunos, quantos desses seriam aprovados sem ir para o exame? 37,83% => 19 alunos

Em um processo industrial, o diâmetro de um rolamento é uma parte importante do processo.

Sabe-se que a probabilidade de um rolamento ter diâmetro maior do 2,98 cm é de 80%.

Sabe-se, também que a probabilidade de que um rolamento tenha diâmetro abaixo de 2,97 cm é de 10%.

Admitindo que o diâmetro de um rolamento segue uma distribuição normal, determine a média e o desvio-padrão dos diâmetros dos rolamentos que saem da linha de produção.

2,9993 e 0,0227

Determine a especificação que represente a maior distância da média, para mais ou para menos, contendo 95% dos rolamentos produzidos. 1,96*0,0227=0,04449

Uma promotora de eventos está preparando um show. Este show será realizado no próximo mês e o local já foi escolhido, mas, como se trata de um espaço aberto, as condições do tempo devem ser consideradas. Ela sabe que em dias de chuva este tipo de show gera um lucro com distribuição Normal (média=100 mil Reais; desvio padrão = 20 mil Reais) e em dias ensolarados o lucro tem distribuição Normal (média = 110 mil Reais; desvio padrão = 30 mil Reais). A probabilidade de chuva no próximo mês é 0,60.

- a) Em um dia de sol, qual é a probabilidade do lucro ser superior a 120 mil Reais?
- b) Em um show que o lucro foi superior a 98 mil Reais, qual é a probabilidade de ter chovido?
- c) Uma outra promotora também está interessada neste local e está oferecendo 105 mil Reais para poder utilizá-lo. Qual deveria ser a probabilidade de chuva para que o lucro esperado com a realização do show seja igual à quantia oferecida pela outra promotora?

a) 37,07%

b) 55,3%

c) 50%

- Um determinado calçado é vendido em lojas populares e em lojas sofisticadas. De todas as lojas, 70% são populares e 30% são sofisticadas. Nas lojas populares seu preço segue uma distribuição normal com média 8 e desvio-padrão 1,2. Já em lojas sofisticadas, o preço também segue uma distribuição normal de média 16 e desvio-padrão 3.
- a) Determine o primeiro quartil da distribuição de preços de uma loja popular. 7,196
- b) Gastou-se mais de \$10,00 para comprar o calçado. Qual é a probabilidade da compra ter sido feita numa loja popular? 10,2%

7
Φ
8
ਰ
\equiv
<u>≓</u> .
<u>ळ</u>
Ö
$\boldsymbol{\sigma}$
. <u>≒</u>
9
.⊆
9
<u>6</u>
更
\neq
=
بە
arte
<u> </u>
_

	Segunda decimal de z											
	O	1	2	3	4	5	6	7	8	9		
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359		
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753		
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141		
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517		
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879		
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224		
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549		
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852		
8.0	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133		
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389		
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621		
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830		
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015		
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177		
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319		
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441		
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545		
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633		
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706		
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767		
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817		
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857		
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890		
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916		
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936		
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952		
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964		
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974		
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981		
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986		
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990		
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993		
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995		
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997		
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998		
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998		
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999		
3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999		
3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999		
3.9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.000d v		