

🥇 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE190704301

FCC REPORT (BLE)

Applicant: PAX Technology Limited

Address of Applicant: Room 2416, 24/F., Sun Hung Kai Centre, 30 Harbour Road,

Wanchai, Hong Kong

Equipment Under Test (EUT)

Product Name: POS Terminal

Model No.: IM30

Trade mark: PAX

FCC ID: V5PIM30BW

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 11 Jul., 2019

Date of Test: 12 Jul., to 16 Aug., 2019

Date of report issued: 19 Aug., 2019

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	19 Aug., 2019	Original

Tested by: Mike DU Date: 19 Aug., 2019

Test Engineer

Reviewed by: 19 Aug., 2019

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	NTENTS	3
4	TES	T SUMMARY	4
5		VERAL INFORMATION	
•			
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF E.U.T	
	5.3 5.4	TEST ENVIRONMENT AND TEST MODE	
	5.4 5.5	MEASUREMENT UNCERTAINTY	
	5.6	LABORATORY FACILITY	
	5.7	LABORATORY LOCATION	
	5.8	TEST INSTRUMENTS LIST	
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT:	8
	6.2	CONDUCTED EMISSION	
	6.3	CONDUCTED OUTPUT POWER	12
	6.4	OCCUPY BANDWIDTH	14
	6.5	Power Spectral Density	16
	6.6	BAND EDGE	18
	6.6.		
	6.6.2		
	6.7	Spurious Emission	
	6.7.		
	6.7.2		
7	TES	T SETUP PHOTO	32
0	ELIT	CONSTRUCTIONAL DETAILS	24

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass

All measurement data were performed in accordance with ANSI C63.10: 2013 and KDB 558074 D01 15.247 Meas Guidance v05r02 of test method.

Remark

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.

5 General Information

5.1 Client Information

Applicant:	PAX Technology Limited
Address:	Room 2416, 24/F., Sun Hung Kai Centre, 30 Harbour Road, Wanchai, Hong Kong
Manufacturer:	PAX Computer Technology(Shenzhen) Co. Ltd.
Address:	401-402 No.3 Building, Software Park, Nanshan district, Shenzhen, Guangdong, P.R.C.

5.2 General Description of E.U.T.

Product Name:	POS Terminal
Model No.:	IM30
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.5 dBi
Power supply:	DC 12V-48V
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

Report No: CCISE190704301

5.3 Test environment and test mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Transmitting mode Keep the EUT in continuous transmitting with modulation				

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
HONOR	AC Adapter	ADS-65HI-19A-2 24065E	N/A	N/A

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.38 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

● ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.8 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due date
				(mm-dd-yy)	(mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2019	03-17-2020
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919	b
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	·

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-18-2019	03-17-2020	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-18-2019	03-17-2020	
LISN	CHASE	MN2050D	1447	03-18-2019	03-17-2020	
LION	Dahda 9 Cahuara	E0110 75	0.400004.40.40	07-21-2018	07-20-2021	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2019	07-20-2020	
Cable	HP	10503A	N/A	03-18-2019	03-17-2020	
EMI Test Software	AUDIX	E3	Version: 6.110919b		b	

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is 1.5 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207			
Test Frequency Range:	150 kHz to 30 MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9kHz, VBW=30kHz			
Limit:		Limit (dBu\/)		
2	Prequency range (MHZ) Quasi-peak Average			
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logar	•		
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 			
Test setup:	LISN 40cm		— AC power	
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

Product name:	POS Terminal	Product model:	IM30
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	₫BuV	<u>dB</u>	———ā≣	dBu₹	dBu₹	<u>dB</u>	
1 2 3	0.170 0.389	33.93 27.91	-0.43 -0.37	10.77 10.72	44.27 38.26		-20.67 -19.82	
	0.389 0.608	21.11	-0.37 -0.38	10.72	31.46 33.80	48.08		Average
4 5 6 7 8 9	0.627 0.697	15. 02 15. 33	-0.38 -0.38	10.77	25.41 25.72	46.00	-20.59	Average Average
7	1.043	23. 20 13. 68	-0.38 -0.38	10.88	33.70 24.18	56.00	-22.30	
9 10	1.619	18.00 10.23	-0.40 -0.40	10.93	28.53	56.00	-27.47	
11 12	2. 678 2. 678	19. 87 13. 85	-0.43 -0.43	10.93	30.37 24.35	56.00	-25.63	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	POS Terminal	Product model:	IM30
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	<u>dB</u>	₫B	dBu₹	dBu∜	<u>d</u> B	
1	0.162	28.19	-0.68	10.77	38.28	65.34	-27.06	QP
2	0.289	22.61	-0.64	10.74	32.71	60.54	-27.83	QP
	0.461	14.50	-0.65	10.74	24.59	46.67	-22.08	Average
4	0.614	23.29	-0.64	10.77	33.42	56.00	-22.58	QP
4 5 6 7 8 9	0.614	16.46	-0.64	10.77	26.59	46.00	-19.41	Average
6	0.739	12.92	-0.64	10.79	23.07	46.00	-22.93	Average
7	1.000	12.16	-0.63	10.87	22.40	46.00	-23.60	Average
8	1.032	22.93	-0.63	10.87	33.17	56.00	-22.83	QP
9	1.610	18.57	-0.66	10.93	28.84	56.00	-27.16	QP
10	1.645	11.31	-0.66	10.93	21.58	46.00	-24.42	Average
11	2.500	22.87	-0.67	10.94	33.14	56.00	-22.86	QP
12	2.869	15.18	-0.67	10.92	25.43	46.00	-20.57	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Measurement Data:

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	3.36		
Middle	3.45	30.00	Pass
Highest	2.86		

Test plot as follows:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)
Test Method:	ANSI C63.10:2013 and KDB 558074
Limit:	>500kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	0.732		
Middle	0.726	>500	Pass
Highest	0.726		
Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	1.062		
Middle	1.062	N/A	N/A
Highest	1.062		

Test plot as follows:

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)
Limit:	8 dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

mode di cirio i i batai			
Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	2.42		
Middle	2.50	8.00	Pass
Highest	1.97		

Test plots as follow:

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Test plots as follow:

6.6.2 Radiated Emission Method

Test Distance: Receiver setup: Frequency Detector RBW VBW Remark	nark
Receiver setup: Frequency Detector RBW VBW Remark	nark
Above 1GHz Peak 1MHz 3MHz Peak Val RMS 1MHz 3MHz Average V Limit: Frequency Limit (dBuV/m @3m) Remark Above 1GHz 54.00 Average Value Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters about the ground at a 3 meter camber. The table was rotated 360 degree to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height ante tower.	nark
Above 1GHz Peak 1MHz 3MHz Peak Val	Hank
Limit: Frequency Limit (dBuV/m @3m) Remark	Value
Above 1GHz Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters about the ground at a 3 meter camber. The table was rotated 360 degree to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height ante tower.	
Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters about the ground at a 3 meter camber. The table was rotated 360 degree to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height ante tower.	
Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters about the ground at a 3 meter camber. The table was rotated 360 degree to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height ante tower.	
the ground at a 3 meter camber. The table was rotated 360 degree to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height ante tower.	
 The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower the limit specified, then testing could be stopped and the peak vator of the EUT would be reported. Otherwise the emissions that did repeak or average method as specified and then reported in a data sheet. 	egrees ng intenna cove gth. et to orst to 4 egrees d er than a values lid not i, quasi-
Test setup: Horn Antenna Tower AE EUT Horn Antenna Tower Ground Reference Plane Test Receiver Test Receiver Test Receiver	
Test Instruments: Refer to section 5.8 for details	
Test mode: Refer to section 5.3 for details	
Test results: Passed	

Product Name:	POS Terminal		Product Model:	IM30		
est By:	Mike	Mike		BLE Tx mode	BLE Tx mode	
est Channel:	Lowest channe	el	Polarization:	Vertical	Vertical	
est Voltage:	AC 120/60Hz	AC 120/60Hz Environment: Temp: 2		Temp: 24°C	Huni: 57%	
Lovel (dPuV	/mal					
110 Level (dBuV	ли)					
100	-					
					Control of the Contro	
80				FCC PART	15 (10)	
				TCC PAR	13 (41)	
60				500 010	45 1010	
~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	man	manne man	FCC PAR	JO.(AV)	
40						
40						
20						
0 <mark>2310 232</mark>	20	2350			2404	
		Frequen	cy (MHz)			
				SAPATRATIONS.		
	KeadAn Fred Level F	tenna Cable Pre actor Loss Fac	amp Limit tor Level Line	Over Limit Remark		
	riod povor.		101 20101 2110			

0.00 54.61 74.00 -19.39 Peak 0.00 46.60 54.00 -7.40 Average

#### Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

2390.000 21.17 27.07 4.69 2390.000 13.16 27.07 4.69

2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Product Name:	POS Terminal	Product Model:	IM30
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



Freq		Antenna Factor						
MHz	dBu∇	<u>dB</u> /m	dB	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Product Name:	POS Terminal	Product Model:	IM30
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%



	Freq		Antenna Factor						Remark
	MHz	dBu₹	dB/m	dB	−−−dB	$\overline{dBuV/m}$	dBu√/m	dB	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Product Name:	POS Terminal	Product Model:	IM30
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%



	Freq		Antenna Factor					
	MHz	dBu∇	dB/π	 <u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2483,500 2483,500							

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



# 6.7 Spurious Emission

## 6.7.1 Conducted Emission Method

Tost Poquiroment:	ECC Part 15 C Section 15 247 (d)					
Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane					
Took la strome outon	Defeate coetion 5.0 for details					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					



#### Test plot as follows:





#### 6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.205 and 15.209							
Test Frequency Range:	9kHz to 25GHz							
Test Distance:	3m							
Receiver setup:	Frequency	Detector	RBW	VB	BW	Remark		
receiver detap.	30MHz-1GHz	Quasi-peak	120KHz	3001		Quasi-peak Value		
	A h a v a 4 C L I=	Peak	1MHz	3M	Hz	Peak Value		
	Above 1GHz	RMS	1MHz	3M	Hz	Average Value		
Limit:	Frequency	/ L	imit (dBuV/m @	3m)		Remark		
	30MHz-88M		40.0		1	Quasi-peak Value		
	88MHz-216M		43.5			Quasi-peak Value		
	216MHz-960N		46.0			Quasi-peak Value		
	960MHz-1G	HZ	54.0			Quasi-peak Value		
	Above 1GH	lz —	54.0 74.0			Average Value Peak Value		
Test Procedure:	<ol> <li>The EUT was placed on the top of a rotating table 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.</li> <li>The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.</li> <li>The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.</li> <li>For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.</li> <li>The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.</li> <li>If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data</li> </ol>							
Test setup:	Below 1GHz  Turn Table  Ground Plane Above 1GHz	3m 4m 4m 0.8m 1m			Antenna  Search Antenn  Test eiver —	1		







#### Measurement Data (worst case):

#### Below 1GHz:

Product Name:	POS Terminal	Product Model:	IM30
Test By:	Mike	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%



	Freq		Antenna Factor				Limit evel Line	imit Over Line Limit	Remark
-	MHz	dBu∜	dB/m	₫B	dB	dBuV/m	dBuV/m	<u>dB</u>	
1	40.559	43.97	12.39	1.22	29.90	27.68	40.00	-12.32	QP
2	122.834	46.71	10.66	2.20	29.37	30.20			
2 3 4 5 6	140.835	53.82	9.46	2.41	29.27	36.42	43.50	-7.08	QP
4	164.330	45.26	9.44	2.62	29.10	28.22	43.50	-15.28	QP
5	237.476	41.90	12.22	2.83	28.61	28.34	46.00	-17.66	QP
6	283.979	35.50	13.33	2.90	28.48	23.25	46.00	-22.75	QP

#### Remark

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.



Product Name:	POS Terminal	Product Model:	IM30
Test By:	Mike	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



	Freq		Antenna Factor						
	MHz	dBu∜	dB/m	d₿	dB	dBuV/m	dBuV/m	<u>dB</u>	
1	140.835		9.46			33.65			
3	250.301	46.17	12.22 12.70	2.81	28.60 28.54	33.14	46.00	-12.86	QP
2 3 4 5 6			12.99 14.55		28. 51 28. 55				
6	524.554	37.07	18.30			30.09			

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.



#### **Above 1GHz**

Above IGHZ								
Test channel: Lowest channel								
Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	47.48	30.85	6.80	41.81	43.32	74.00	-30.68	Vertical
4804.00	47.73	30.85	6.80	41.81	43.57	74.00	-30.43	Horizontal
Detector: Average Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	39.47	30.85	6.80	41.81	35.31	54.00	-18.69	Vertical
4804.00	39.52	30.85	6.80	41.81	35.36	54.00	-18.64	Horizontal
Test channel: Middle channel								
Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	47.51	31.20	6.86	41.84	43.73	74.00	-30.27	Vertical
4884.00	47.13	31.20	6.86	41.84	43.35	74.00	-30.65	Horizontal
Detector: Average Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	39.52	31.20	6.86	41.84	35.74	54.00	-18.26	Vertical
4884.00	39.47	31.20	6.86	41.84	35.69	54.00	-18.31	Horizontal
Test channel: Highest channel								
Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	47.54	31.63	6.91	41.87	44.21	74.00	-29.79	Vertical
4960.00	47.16	31.63	6.91	41.87	43.83	74.00	-30.17	Horizontal
Detector: Average Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	39.54	31.63	6.91	41.87	36.21	54.00	-17.79	Vertical

#### Remark:

4960.00

39.10

6.91

41.87

35.77

54.00

-18.23

31.63

Project No.: CCISE1907043

Horizontal

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.