Trees

CS 240 Spring 19

Binary Search Trees

Problems with Sequences

- What are some limitations of sequences?
 - searching
 - *O(n)*:
 - length of the list
 - sorting
 - best case: n logn

A Better ADT

- Vectors make working with arrays easier, but no real performance improvements
- Linked list improves the array
 - using nodes gives us memory flexibility, but sacrifices random access
- How can we improve?
 - What if we add additional node pointers to each node
 - we can divide the problem in half

A Tree is a Linked List

- If we add 1 additional 'next' pointer, we have a logarithmic traversal time
 - CRUD is much faster, but the data structure is more complex
- Problem: we now need to know what 'path' to take
 - Different kinds of trees are all solving this problem of what 'path' to take to find your data

The Tree ADT

Definition:

A finite set of nodes such that one node is designated as the root. All other nodes are partitioned into sets, each of which is a tree.

Terminology

- Root node
 - The 'top'-most node in the tree
- Branch
 - o the connection to a child node that may or may not contain a subtree
- Subtree
 - subnode that contains subnodes

Properties of a Tree

- max # of leaves
 - all nodes that do not have branches
- max # of nodes
 - all nodes in the tree
- Height for a tree
 - path depth
 - The number of branches between the current node and the farthest leaf
 - max depth
 - The number of branches between the root node and and the farthest leaf

A Binary Node

Parents and Children

- Parent Node
 - The immediate predecessor node in the tree structure
- Child Node
 - the immediate following node in the tree structure

A D F H Child Node to I

Parent Node to A

Height

- A tree's depth is the number of 'steps' to get to a leaf
 - Only count branches, not nodes
 - O What is the depth of A? H?
- A tree's height is based on its maximum depth
 - O What is the tree's height?

Binary Search Tree

Binary Search Tree

- Binary Search tree is one of many different kinds of Tree Data Structures
 - Each node has two branches
 - Branches may point to another node, or NULL
 - o all data in every node of the left subtree are less than the data in the node
 - o all data in every node of the right subtree are greater than the data in the node
 - All data in a BST is unique

Implementation

- Array
 - You can use an array to implement your tree
 - o left child index = 2*(Parent Index)+1
 - o right child index = 2*(*Parent Index*)+2
 - o parent index = (Child Index-1)/2 (truncate)
- Pros:
 - Constant time Access
- Cons:
 - Complexity
 - Array Max Size must be known

- Linked
 - a linked list using structs and pointers
 - a data field
 - o a left child field with a pointer to a node
 - o a right child field with a pointer to a node
- a parent field with a pointer to the parent node
- Pros:
 - Dynamic Memory size
- Cons:
 - Complexity
 - Linked Traversal

The BST ADT

Made up of two structs:

- Tree
 - Node * root
- Node
 - Node * left
 - Node * right
 - Data * data
 - Node * parent (optional, but recommended)

Nested Classes

- A nested class is declared inside another enclosing class.
 - A nested class is a member object and has the same access rights as any other member.
- Member objects of an enclosing class don't have any special access to member object of a nested class
 - the usual access rules (public, private) are enforced

Nested Class Example

```
class Enclosing {
  private:
    int x;

    class Nested {
        int y;
        void nestedFun(Enclosing *e) {
            std::cout<<e->x; // works fine: nested class can access
        }
        }; // declaration Nested class ends here
}; // declaration Enclosing class ends here
```

BST's use recursion

- Recursion is the process of a function calling itself to perform iteration
 - Basically, using the stack as your loop
- Why use recursion
 - Simplifies code greatly
- Why not use recursion?
 - Uses more memory
 - Can be very slow

Recursion has two parts

- Recursion requires two parts within the recursive function:
 - A base case that defines an atomic object
 - an end to the recursion.
 - A recursive step that defines how objects can be modified, reduced, or combined to produce another object closer to the atomic object

Recursion Rules

- Every recursive method must have a base case -- a condition under which no recursive call is made -- to prevent infinite recursion.
- Every recursive method must make progress toward the base case to prevent infinite recursions

Tree Traversal

- Traversal, whether for insertion, deletion, or read, is much simpler with recursion
- A method is recursive if it can call itself directly or indirectly
 - A function, foo(), is indirectly recursive if it calls, bar() which in turn calls foo()

Recursive Insert

Recursive insert

- Check if value is greater than or less than the value in the current node
 - If greater, go right, check again
 - o If less, go left, check again
 - o If null, add a leaf to the tree
 - if equal, NOOP

Inserting a node into an existing tree

- Operations:
 - Use recursion to traverse through the tree
 - Insert node as a leaf
- What information do you need?
 - Data inserted
 - current node visited
 - with access to child nodes

Insert (pseudocode)

```
insert(node, data){
      if (data < node.data)
            if(node.left == NULL)
                  addLeaf(node, data);
            else
                  insert(node.left, data)
      else if (data > node.data)
            if(node.right == NULL)
                  addLeaf(node, data);
            else
                  insert (node.right, data)
```


^{*}must handle special case where tree is empty

Problems

- How to choose the root node?
 - What happens if you choose a bad root node?
 - Becomes a linked list
- Insertion (with a well chosen root)
 - Best Case?
 - *O(1)*
 - O Worst Case?
 - **■** *O*(*logn*)

Recursive Read

- Almost identical to insert
 - Requires a return statement
 - Reference or pointer
- Check if value is greater than or less than the value in the current node
 - If greater, go right, check again
 - If less, go left, check again
 - If equal, return data
 - If null, error message

Read (pseudocode)

```
read(node, data){
      if(data == node.data)
            return node.data
      else if (data < node.data)
            if(node.left == NULL)
                  print("value not found");
            else
                  return read(node.left, data)
      else if (data > node.data)
            if(node.right == NULL)
                  print("value not found");
            else
                  return read (node.right, data)
```


^{*}must handle special case where tree is empty

Classwork

Trees

Delete

- Basic Deletion process
 - Remove the pointer(s) to the node
 - Non-leaf nodes will need to update their children's parent pointers as well
 - delete node
- Operations required
 - Tree Traversal to find the node
 - Must always keep track of the parent node
 - This is where maintaining a parent pointer in the node is helpful

Delete - 3 Scenarios

- What are the primary cases for deleting a node?
 - Delete a leaf node
 - set parent node pointer to null
 - delete node
 - Delete a 1 branch parent node
 - Can't just delete the node, because then our tree would "fall apart."
 - Delete a 2 branch parent node
 - We must promote one of the children to become the new parent.

Delete Algorithm

```
remove(7)
node = findNode(data);
if ( node not in BST )
     return;
else if ( node has no subtrees ){
      deleteLeaf(node);
}else if ( node has 1 tree ) {
      shortCircuit(node);
                                                                                       before deletion
                                                                                                           after deletion
}else if(node has 2 subtrees){
      promotion(node);
                                                                                                        remove(2)
```

Deleting Leaf Nodes

DeleteLeaf Pseudocode

```
void removeLeaf(Node * leaf)
     if leaf->parent->right == leaf
          leaf->parent->right = NULL
     else
          leaf->parent->left = NULL
     delete leaf
What if the leaf is the root?
     Delete root
     Set root to null to signify an empty tree
```

Short Circuit Algorithm

- The Short Circuit Algorithm sets the child node's child to be the child of the parent, then deletes the extra leaf node
- When deleting a parent node in a BST, you must ensure that the new parent is:
 - o bigger than all the other children in the left tree
 - smaller than all the other children in the right tree

You must maintain the BST structure

Deleting Single Branch Nodes

Short Circuit Pseudocode

```
void shortCircuit(Node * node)
      if( node->parent->right == node)
            if node->right == NULL
                  parent->right = node->left
                  node->left->parent = node->parent
            else
                  parent->right = node->right
                  node->right->parent = node->parent
      else
      delete node
```

What if the node to be delete is the root?

We have to promote the child node to become the root

Deleting 2 Child Nodes

Promotion

- We must promote a node to a higher space in the tree
- There are at most two possible candidates:
 - the rightmost child of the left subtree
 - Traverse left once, then right as far as possible
 - the leftmost child of the right subtree
 - Traverse right once, then left as far as possible
- It doesn't matter which one we pick,
 - both choices will maintain the BST structure
 - Successor node
 - the node in the right subtree that is min value -or-
 - the node in the left subtree that is max value

Promote Successor

Promotion Selection

- functions needed
 - Node * getMaxNode(Node * node)
 - Node * getMinNode(Node * node)
- What if the min or max is not a leaf node?
 - We call our short circuit algorithm
 - o min value has right subtree?
 - Run single subtree (short-circuit) algorithm
- What if the delete node is the root node?
 - Special case: must promote leftmost max or rightmost min to root node

Promotion Algorithm

```
void promotion(Node * n){
     d_node = searchMin(n->right);
     n->data = d_node->data;
     //Leaf
     if(d_node>left==NULL && d_node->right==NULL){
           removeLeaf(d_node);
     //one branch
     }else{
           shortCircuit(d_node);
```


Depth First Traverse

- Depth First travels down the tree structure to find a value
- Basic Algorithm:
 - Start at the root node,
 - traverse down the left until finding a leaf
 - traverse back up until finding a right branch
 - repeat until no right branch

PreOrder

- Process each node as you reach it in traversal order
- Algorithm:
 - preorderTraversal(node):process(node)preorderTraversal(node->left)
 - preorderTraversal(node->right)

InOrder

- Visit each node in ascending order
- Algorithm:
 - inorderTraversal(node):
 inorderTraversal(node->left)
 process(node)
 inorderTraversal(node->right)

PostOrder

- Visit each node as you reach it in final traversal order
- Algorithm:
 - postorderTraversal(node):
 postorderTraversal(node->left)
 postorderTraversal(node->right)
 process(node)

Classwork: Tree Traversal

Use Cases

- Basic required Tree operations:
 - Deep Copy Tree
 - Delete Tree
 - Sorted Print
- Depth First Search
 - Traverse as far as possible down a single path
- Determine use case for each DFS Operation
 - PreOrder: copy of the tree
 - InOrder: gives nodes in non-decreasing order
 - PostOrder: used to delete the tree

Breadth First Search

- So far we have looked at depth first search
 - We traverse deep into the tree along a single path until we cannot go farther
- What is we want to traverse by level
 - Breadth First Traversal
 - Also called Level order
- Visit every node on a particular level before going to the next level

Breadth First Helper ADT

- How to Implement?
 - Not really a recursive algorithm
 - Can still implement recursively, but not traditionally done with recursion
 - Use a helper Data Structure to store the next level
- Which data structure would work best?
 - A Queue
 - Enforces first in first out

Breadth First Search Algorithm

 Assume a tree where each node has an unknown number of children

Balancing a BST

- Binary Search Trees use strict ordering
 - There is only one place an inserted value can go
- In order to balance the tree, we will have to restructure it
 - There are many different variations of BST that ensures a balanced tree (AVL, Red/Black, Splay, etc)
- We are going to look at the simplest method of keeping a BST balanced

Creating a Balanced BST

- We first need to pull everything out of our tree so we can rebuild it
 - Use inorder traversal to sort the tree
 - Store in an array
- Divide our sorted array to insert in the optimal order
 - Remove the middle element of the array and insert into a new tree
 - Divide remaining array into two parts, left and right
 - Repeat on both left and right array until the array is empty
 - Return the new tree

Creating a Balanced BST

10

