Компьютерная графика

Алгоритмы сжатия видео

MPEG

Сжатие последовательности изображений (видео) и звука:

- Несимметричный сжатие гораздо сложнее, чем разжатие.
- Сжимает примерно в 100 раз (реально 30).
- Использует похожесть соседних кадров друг на друга.

• I-frame (intra) – аналогичен JPEG

I

- I-frame (intra) аналогичен JPEG
- P-frame (predicted) один опорный кадр (из прошлого)

- I-frame (intra) аналогичен JPEG
- P-frame (predicted) один опорный кадр (из прошлого)
- B-frame (bidirectional) два опорных кадра (из прошлого и из будущего)

- Порядок на входе:
 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, ...
- Порядок на выходе:
 1, 4, 2, 3, 7, 5, 6, 10, 8, 9, 11, 14, 12, 13, ...

GOP = Group Of Pictures

- Порядок на входе:
 - 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, ...
- Порядок на выходе:
 - 1, 4, 2, 3, 7, 5, 6, 10, 8, 9, 11, 14, 12, 13, ...

«Открытый» GOP — В-кадры в конце группы ссылаются на первый кадр следующей группы.

Кодирование кадра

Шаг 1. Матрицирование (попиксельно)

$$Y = 0.299*R + 0.587*G + 0.114*B$$

$$Cr = R - Y$$

$$Cb = B - Y$$

Шаг 2. Децимация (прореживание) компонент Cr и Cb (в 4 раза)

Далее данные разбиваются на макроблоки 16х16:

- четыре блока 8х8 Ү
- одним блок 8х8 Ст
- одним блок 8x8 Cb

Кодирование с опорой

Шаг 3. Поиск вектора смещения

Для каждого макроблока сжимаемого кадра в опорном кадре ищется максимально похожий на него квадрат 16х16 (с точностью до долей пиксела)

Опорный кадр

Шаг 4. Кодируется попиксельное отличие

Поскольку абсолютная разность меньше, то данные сжимаются сильнее. Если отличия равны нулю, то весь макроблок сжимается до одного слова.

Компенсация фона

Компенсация фона

Текущий кадр (3 блока)

Все вектора смещения

Вектора смещения 3 блоков

Кадр с компенсацией

Версии MPEG

- MPEG 1 (1993) сжатие 360х240, 15 к/с на компакт диск (~1 Mb/s) со звуком.
- MPEG2 (1995) поддержка цифрового ТВ (стандартное разрешение и ТВЧ). MPTS как протокол передачи данных !!!
- MP3 = MPEG1 Layer 3 сжатие звука
- MPEG4 (1998) сжатие в узкие каналы (сеть, телефон)
 AVC = MPEG4 Layer 10 = H.264
- Современный кодер HEVC = H.265

MPEG-2

- Разрешения:
 - SD 4:3 (720x576 25κ/c, 720x480 30κ/c)
 - SD 16:9 (1024x576 25к/с)
 - HD Ready (1280x720 50/60 κ/c)
 - True HD (1920x1080 25/30 κ/c)
- Несколько потоков с разным разрешением

Особенности AVC

- Внутрикадровое предсказание (опора)
- Много опорных кадров (32 ссылки)
- Вектор смещения до ¼ пикселя
- Арифметическое кодирование
- Макроблоки разных размеров
 - 16/8/4x16/8/4
- Deblockingфильтры

Восстановленный кадр без фильтрации

Восстановленный кадр с фильтрацией

Особенности HEVC

- Для высоких разрешений (4K, HD)
- Образцовый декодер с точностью до бита
- Блоки до 64х64
- Вектор смещения до ½ пикселя

- Адаптивный выбор матрицы квантования
- Кодирование параметров с предсказанием (например, величина вектора смещения)

Кодирование контента

- «Голливудский фильм»
- «Говорящая голова»
- «Футбол»

Кодирование контента

- «Голливудский фильм»
- «Говорящая голова»
- «Футбол»

Кодирование контента

- «Голливудский фильм»
- «Говорящая голова»
- «Футбол»

Задержка в цифровом ТВ

Один кадр кодируется в среднем за время одного кадра

Кодер должен сначала сжать Р-кадр, и только затем сжимать В-кадры

Входной буфер (на 5 кадров)

Разница в размере сжатых данных

• Для GOP из 25 кадров:

- Объем входных данных $V_{inTotal} = 25*V_{in}$ (1)
- Объем выходных данных
 V_{outTotal} = 1*V_{outI} + 8*V_{outP} + 16*V_{outB} (2)
- Сжатие видео в 100 раз = V_{inTotal}/V_{outTotal} (3)
- Сжатие JPEG(I-frame) в 10 раз = V_{in}/V_{outl} (4)
- Пусть $V_{outP} = K*V_{outB}$ (5)

Разница в размере сжатых данных

- $100*V_{outTotal} = V_{inTotal} = 25*V_{in}$ (us 1 u 3)
- $V_{\text{outTotal}} = 0.25 * V_{\text{in}} = 1 * V_{\text{outI}} + 8 * V_{\text{outP}} + 16 * V_{\text{outB}} (+2)$
- $V_{outl} = V_{in}/10 = 0.1*V_{in}$ (us 4)
- $0.25*V_{in} = 0.1*V_{in} + 8*V_{outP} + 16*V_{outB}$
- $0.15*V_{in} = 8*V_{outP} + 16*V_{outB}$
- $V_{outP} = K*V_{outB}$ (u3 5)
- $0.15*V_{in} = 8*K*V_{outB} + 16*V_{outB} = (8*K+16)*V_{outB}$
- Сжатие В-кадра = V_{in}/V_{outB} = (8*K+16)/0.15 для K=3 сжатие = 267 раз

Задержка в цифровом ТВ

• CBR (Constant Bit Rate) – передача данных с фиксированной скоростью

• VBR (Variable Bit Rate) — передача данных с переменной скоростью

Задержка в цифровом ТВ

Для GOP=25 и K=3:

- Объем І-кадра = 40%
- Объем Р-кадров = 36%
- Объем В-кадров = 24% то есть 40% времени GOP-а передается первый кадр в режиме CBR (например, через спутник)
- Плюс задержки в декодере на буфферизацию, сглаживание разного времени доставки пакетов и другие проблемы (синхронизация времени, проверка наличия следующих данных и т.д.)

Задержка в интернет ТВ

Форматы DASH или HLS работают с файлами:

- Плеер постоянно скачивает текущий плейлист
- Плейлист содержит несколько файлов (до 10)
- Длительность одного файла = несколько GOP (обычно 5-10 секунд)

• Для «живого» потока время начала определено с точностью до одного файла