Programming Abstractions

Week 3-2: Combinators and combinatory logic

An early 20th century crisis in mathematics

Russell's Paradox

Define S to be the set of all sets that are *not* elements of themselves

$$S = \{x \mid x \notin x\}$$

Is S an element of S?

- ► Assume so: $S \in S \implies S \notin S$ by the definition of S, a contradiction
- Assume not: $S \notin S \implies S \in S$ by the definition of S, another contradiction!

This led to a hunt for a non-set-theoretic foundation for mathematics

- Combinatory logic (Moses Schönfinkel and rediscovered by Haskell Curry)
- Lambda calculous (Alonzo Church and others)
 - This forms the basis for functional programming!

Combinatory term

One of three things

A variable (from an infinite list of possible variables)

I'll use lowercase, upright letters: e.g., f, g, h, x, y, z

A combinator (a function that operates on functions)

- One of the three primitive functions
 - Identity: (I x) = x
 - Constant: (K x y) = x
 - Substitution: (S f g x) = (f x (g x))
- ► A new combinator C = E where E is a combinatory term, e.g.,
 - J = (S K K)
 - B = (S (K S) K)

($E_1 E_2$) An application of a combinatory term E_1 to term E_2

► Application is left-associative so $(E_1 E_2 E_3 E_4)$ is $((E_1 E_2) E_3) E_4$

The primitive combinators

The identity combinator (I x) = x

Given any combinatory term x, it returns x

The constant combinator (K x y) = x

I.e., ((K x) y) = x which you can think of as (K x) returns a function that given any argument y returns x

The substitution combinator (S f g x) = (f x (g x))

- You can think of S as taking two functions f and g and some term x. f is applied to x which returns a function and that function is applied to the result of (g x)
- ► But really, f, g, and x are all just combinatory terms

What is the result of applying the constant combinator in the combinatory term (K z I)

- A. The variable z
- B. The combinator I
- C. The combinatory term (z l)
- D. It's an error because I takes an argument but none is provided
- E. None of the above

What is the result of applying the substitution combinator in the combinatory term (S (f x) h y z)

- A. The variable f
- B. The combinator S
- C. The combinatory term ((f x) y (h y) z)
- D. The combinatory term (f x (h x) y z)
- E. It's an error because S takes 3 arguments but is given four

Expressing S, K, and I in Racket

```
(define (I x)
  X)
(define (K x)
  (\lambda (y) x)
(define (S f)
  (\lambda (g)
    (\lambda (x)
       ((f x) (g x)))
```

Using the combinators (in Racket)

```
((K 25) 37); returns 25
; ((curry-* x) y) is just (* x y)
(define (curry-* x)
  (\lambda (y)
   (* x y)))
(define (square x)
  (((S curry-*) I) x))
As combinators we get (S * I x) = (* x (I x)) = (* x x)
```

Equivalence between Scheme and combinatory logic

We can represent combinators in Scheme as procedures with no free variables (i.e., every variable used in the body of the procedure is a parameter)

There are no \(\lambda\)s in combinatory logic so no way to make new functions

However, combinatory logic does have a way to get the same effect as λ expressions

- We won't cover this, but we can convert every expression in λ calculus into combinatory logic
- λ calculus is Turing-complete (it can perform any computation) so combinatory logic is as well!

L = (S K)

- (I x) = x
 (K x y) = x
 (S f g x) = (f x (g x))

L = (S K)

Apply the rules to the left-most combinator in each step, starting with (L x y)

$$\vdash$$
 (I X) = X

$$(K \times y) = x$$

L = (S K)

Apply the rules to the left-most combinator in each step, starting with (L x y)

$$(L \times y) = ((S \times K) \times y)$$

[Definition of L]

$$\vdash (I x) = x$$

$$\vdash$$
 (K x y) = x

L = (S K)

Apply the rules to the left-most combinator in each step, starting with (L x y)

$$(L x y) = ((S K) x y)$$

= $(S K x y)$

[Definition of L] [Constant]

L = (S K)

Apply the rules to the left-most combinator in each step, starting with (L x y)

$$(L x y) = ((S K) x y)$$

= $(S K x y)$
= $(K y (x y))$

[Definition of L]
[Constant]
[Substitution]

L = (S K)

Apply the rules to the left-most combinator in each step, starting with (L x y)

$$(L x y) = ((S K) x y)$$

= $(S K x y)$
= $(K y (x y))$
= y

[Definition of L][Constant][Substitution][Constant]

W = (S S L)

- $\vdash (I \times) = X$
- \vdash (K x y) = x
- (S f g x) = (f x (g x))• (L x y) = y

W = (S S L)

Apply the rules to the left-most combinator in each step, starting with (W f x)

$$\vdash$$
 (I X) = X

$$(K \times y) = x$$

$$(L \times y) = y$$

W = (S S L)

Apply the rules to the left-most combinator in each step, starting with (W f x)

$$(W f x) = ((S S L) f x)$$

[Definition of W]

$$\vdash$$
 (I X) = X

$$(K \times y) = x$$

$$| \cdot (S f g x) = (f x (g x))$$

$$\vdash (L \times y) = y$$

W = (S S L)

Apply the rules to the left-most combinator in each step, starting with (W f x)

$$(W f x) = ((S S L) f x)$$

= $(S S L f x)$

[Definition of W] [Associativity]

W = (S S L)

Apply the rules to the left-most combinator in each step, starting with (W f x)

$$(W f x) = ((S S L) f x)$$

= $(S S L f x)$
= $(S f (L f) x)$

[Definition of W]
[Associativity]
[Substitution]

W = (S S L)

Apply the rules to the left-most combinator in each step, starting with (W f x)

$$(W f x) = ((S S L) f x)$$

= $(S S L f x)$
= $(S f (L f) x)$
= $(f x ((L f) x))$

[Definition of W][Associativity][Substitution][Substitution]

W = (S S L)

Apply the rules to the left-most combinator in each step, starting with (W f x)

```
(W f x) = ((S S L) f x)
= (S S L f x)
= (S f (L f) x)
= (f x ((L f) x))
= (f x (L f x))
```

[Definition of W]
[Associativity]
[Substitution]
[Substitution]
[Associativity]

```
    (I x) = x
    (K x y) = x
    (S f g x) = (f x (g x))
    (L x y) = y
```

W = (S S L)

Apply the rules to the left-most combinator in each step, starting with (W f x)

```
(W f x) = ((S S L) f x)
= (S S L f x)
= (S f (L f) x)
= (f x ((L f) x))
= (f x (L f x))
= (f x x)
```

[Definition of W] [Associativity]

[Substitution]

[Substitution]

[Associativity]

[Applying L]

$$| \cdot (| x) = x$$

•
$$(K \times y) = x$$

•
$$(S f g x) = (f x (g x))$$

$$(L \times y) = y$$

Example: Composition combinator

B = (S (K S) K)

```
(B f g x) = ((S (K S) K) f g x)

= (S (K S) K f g x)

= ((K S) f (K f) g x)

= (K S f (K f) g x)

= (S (K f) g x)

= ((K f) x (g x))

= (K f x (g x))

= (f (g x))
```

[Definition of B]
[Associativity]
[Substitution]
[Associativity]
[Constant]
[Substitution]
[Associativity]
[Constant]

Work out what J = (S K K) does in (J x)

Apply the rules of the left most combinator in each step, starting with (J x)

$$\vdash$$
 $(| x) = x$

I is unnecessary

Since (S K K x) is always x, (S K K) and I are functionally equivalent

We can replace I in any combinatory term with (S K K)

Since we can model all computation using S, K, and I and I can be built from S and K, S and K are sufficient for any computation!

Unlambda is a programming language built out of S, K, function application, and functions for printing and reading a character

- Hello world! in Unlambda: """.H.e.I.I.o.,. .w.o.r.I.d.!i
- Echo user input: "sii"si'k'ci'@

The Y-combinator

How do we write a recursive function?

How do we write a recursive function?

(without using define)

Recall, this binds len to our function (λ (lst) ...) in the body of the letrec

This expression returns the procedure bound to len which computes the length of its argument

How do we write a recursive function?

(just using anonymous functions created via λs)

Less easy, but let's give it a go!

```
(λ (lst)
  (cond [(empty? lst) 0]
      [else (add1 (??? (rest lst)))]))
```

We need to put something in the recursive case in place of the ??? but what?

```
If we replace the \ref{thm:list:equation} with (\lambda (lst) (error "List too long!")) we'll get a function that correctly computes the length of empty lists, but fails with nonempty lists
```

Put the function itself there?

Not a terrible attempt, we still have ???, but now we can compute lengths of the empty list and a single element list.

Maybe we can abstract out the function

This isn't a function that operates on lists!

It's a function that takes a function len as a parameter and returns a closure that takes a list lst as a parameter and computes a sort of length function using the passed in len function

make-length

This is the same function as before but bound to the identifier make-length

- The orange text is the body of make-length
- The purple text is the body of the closure returned by (make-length len)

```
(define L0 (make-length (\lambda (lst) (error "too long"))))
```

► L0 correctly computes the length of the empty list but fails on longer lists

make-length

```
(define make-length
  (\lambda (len))
    (\lambda (lst))
       (cond [(empty? lst) 0]
              [else (add1 (len (rest lst)))])))
(define L0 (make-length (\lambda (lst) (error "too long")))
(define L1 (make-length L0))
(define L2 (make-length L1))
(define L3 (make-length L2))
Ln correctly computes the length of lists of size at most n
We need an L∞ in order to work for all lists
 (make-length length) would work correctly, but that's cheating!
```

Enter the Y combinator

```
Y is a "fixed-point combinator"
Y = (S(K(SII))(S(S(KS)K)(K(SII))))
If f is a function of one argument, then (Y f) = (f (Y f))
(Y make-length)
=> (make-length (Y make-length))
=> (\lambda (lst)
      (cond [(empty? lst) 0]
             [else (add1 ((Y make-length) (rest lst)))])
This is precisely the length function: (define length (Y make-length))
```

How is this length?

Let's step through applying our length function to '(1 2 3)

```
Let's step through applying our length function to '(1 2 3) (length '(1 2 3)); so lst is bound to '(1 2 3)
```

```
Let's step through applying our length function to '(1 2 3)

(length '(1 2 3)); so lst is bound to '(1 2 3)

=> (cond [(empty? lst) 0]

[else (add1 ((Y make-length) (rest lst)))])
```

```
Let's step through applying our length function to '(1 2 3)

(length '(1 2 3)); so lst is bound to '(1 2 3)

=> (cond [(empty? lst) 0]

[else (add1 ((Y make-length) (rest lst)))])

=> (add1 (length '(2 3))); lst is bound to '(2 3)
```

```
Let's step through applying our length function to '(1 2 3)
(length '(1 2 3)); so 1st is bound to '(1 2 3)
=> (cond [(empty? lst) 0]
         [else (add1 ((Y make-length) (rest lst)))])
=> (add1 (length '(2 3))); lst is bound to '(2 3)
=> (add1 (cond [(empty? lst) 0]
               [else (add1 ((Y make-length) (rest lst)))]))
=> (add1 (add1 (length '(3)))); lst is bound to '(3)
=> (add1 (add1 (cond [...][else (add1 ...)])))
=> (add1 (add1 (length '()))); lst is bound to '()
```

```
Let's step through applying our length function to '(1 2 3)
(length '(1 2 3)); so 1st is bound to '(1 2 3)
=> (cond [(empty? lst) 0]
         [else (add1 ((Y make-length) (rest lst)))])
=> (add1 (length '(2 3))); lst is bound to '(2 3)
=> (add1 (cond [(empty? lst) 0]
               [else (add1 ((Y make-length) (rest lst)))])
=> (add1 (add1 (length '(3)))); lst is bound to '(3)
=> (add1 (add1 (cond [...][else (add1 ...)])))
=> (add1 (add1 (length '()))); lst is bound to '()
=> (add1 (add1 (cond [(empty? lst) 0][...]))))
```

```
Let's step through applying our length function to '(1 2 3)
(length '(1 2 3)); so 1st is bound to '(1 2 3)
=> (cond [(empty? lst) 0]
         [else (add1 ((Y make-length) (rest lst)))])
=> (add1 (length '(2 3))); lst is bound to '(2 3)
=> (add1 (cond [(empty? lst) 0]
               [else (add1 ((Y make-length) (rest lst)))])
=> (add1 (add1 (length '(3)))); lst is bound to '(3)
=> (add1 (add1 (cond [...][else (add1 ...)])))
=> (add1 (add1 (length '()))); lst is bound to '()
=> (add1 (add1 (cond [(empty? lst) 0][...]))))
=> (add1 (add1 (add1 0)))
```

```
Let's step through applying our length function to '(1 2 3)
(length '(1 2 3)); so 1st is bound to '(1 2 3)
=> (cond [(empty? lst) 0]
         [else (add1 ((Y make-length) (rest lst)))])
=> (add1 (length '(2 3))); lst is bound to '(2 3)
=> (add1 (cond [(empty? lst) 0]
               [else (add1 ((Y make-length) (rest lst)))])
=> (add1 (add1 (length '(3)))); lst is bound to '(3)
=> (add1 (add1 (cond [...][else (add1 ...)])))
=> (add1 (add1 (length '()))); lst is bound to '()
=> (add1 (add1 (cond [(empty? lst) 0][...]))))
=> (add1 (add1 (add1 0)))
=> 3
```

```
Let's step through applying our length function to '(1 2 3)
(length '(1 2 3)); so 1st is bound to '(1 2 3)
=> (cond [(empty? lst) 0]
         [else (add1 ((Y make-length) (rest lst)))])
=> (add1 (length '(2 3))); lst is bound to '(2 3)
=> (add1 (cond [(empty? lst) 0]
               [else (add1 ((Y make-length) (rest lst)))])
=> (add1 (add1 (length '(3)))); lst is bound to '(3)
=> (add1 (add1 (cond [...][else (add1 ...)])))
=> (add1 (add1 (length '()))); lst is bound to '()
=> (add1 (add1 (cond [(empty? lst) 0][...]))))
=> (add1 (add1 (add1 0)))
=> 3
```

But wait, how can that work?

Two problems:

- We defined Y in terms of Y! It's recursive and the whole point was to write recursive anonymous functions
 - Not quite, Y = (S (K (S I I)) (S (S (K S) K) (K (S I I)))), but we still need to write this in Racket
- (Y f) = (f (Y f)) but then
 (f (Y f)) = (f (Y f)) = (f (f (Y f))) = ...
 and this will never end

Defining Y

It's tricky to see what's going on but Y is a function of f and its body is applying the anonymous function $(\lambda (g) (f (g g)))$ to the argument $(\lambda (g) (f (g g)))$ and returning the result.

Never ending computation

This form of the Y-combinator doesn't work in Scheme because the computation would never end

We can fix this by using the related Z-combinator

```
(define Z  (\lambda \text{ (f)} )   (\lambda \text{ (g) (f ($\lambda$ ($v$) ((g g) $v$))))}   (\lambda \text{ (g) (f ($\lambda$ ($v$) ((g g) $v$))))))
```

With this definition, we can create a length function (define length (Z make-length))

We can use Z to make recursive functions

```
Given a recursive function of one variable
(define foo
  (λ (x) ... (foo ...) ...)
we can construct this only using anonymous functions by way of Z
(Z (\lambda (foo) (\lambda (x) ... (foo ...)))
Factorial
(Z (\lambda (fact))
      (\lambda (n))
         (if (zero? n)
              (* n (fact (sub1 n))))))
```

What about multi-argument functions?

We can use apply!

```
(define Z*  (\lambda \text{ (f)} )   (\lambda \text{ (g) (f ($\lambda$ args (apply (g g) args))))}   (\lambda \text{ (g) (f ($\lambda$ args (apply (g g) args))))}
```