Intelligenza Artificiale

Agire Razionale - Agenti

Corsi di Laurea in Informatica, Ing. Gestionale, Ing. Informatica, Ing. di Internet

(a.a. 2025-2026)

Roberto Basili

Intelligenza Artificiale

L'intelligenza artificiale si occupa della

- osservazione e comprensione
- per la riproduzione

del comportamento intelligente.

Overview (AIMA cap. 2)

- Agenti Intelligenti
- Razionalità
 - Modello PEAS
- · L'ambiente di un agente:
 - Definizione
 - · Proprietà e Tipi di Ambiente
- Tipi e Struttura degli Agenti:
 - Agenti reattivi semplici
 - · Agenti basati su un modello
 - Agenti con obiettivo
 - · Agenti opportunistici, cioè con funzione di utilità
 - Agenti che apprendono

Agenti intelligenti: la prospettiva di AIMA

Agenti Intelligenti: la visione "moderna" (dal 1995)

- · Gli agenti sono situati
 - · ricevono percezioni da un ambiente
 - · agiscono sull'ambiente mediante azioni
- · Gli agenti hanno capacità di interazione sociale
 - · sono capaci di comunicare
 - sono capaci di collaborare
 - · sono capaci di difendersi da altri agenti
- · Gli agenti hanno credenze, obiettivi, intenzioni ...
- · Gli agenti hanno un corpo e provano emozioni

Percezioni e azioni

- Percezione: input da sensori
- Sequenza percettiva: storia completa delle percezioni
- La scelta dell'azione è funzione unicamente della sequenza percettiva
- Funzione agente: definisce l'azione da compiere per ogni seguenza percettiva.
- Implementata da un programma agente (o agente software)

Agente e ambiente

Agenti razionali

- Un agente razionale interagisce con il suo ambiente in maniera "efficace"
 - fa la cosa giusta;
 - la sequenza di stati ha un qualche aspetto auspicabile
 - Mostra una preferenza selettiva verso certi comportamenti
- Serve un criterio di valutazione oggettivo dell'effetto delle azioni dell'agente (della sequenza di stati dell'ambiente)

Valutazione della prestazione

- Misura della prestazione
 - Esterna (come vogliamo che il mondo evolva?)
 - Scelta dal progettista a seconda del problema considerando una evoluzione desiderabile del mondo
 - Applicabile ad ambienti diversi
- ESEMPI: Classificazione del Sentiment in X
 - Qualità generale:
 - Accuracy (percentuale di twitter classificati correttamente)
 - Error Rate (complementare all'Accuracy, percentuale di errori)
 - Misure di Accuracy dedicate alle diverse (POSITIVE/NEGATIVE/NEUTRAL):
 - · Recall/Precision/F-Measure

Agente razionale: definizione

- · La razionalità è relativa a:
 - la misura di prestazioni (che hanno successo)
 - le conoscenze pregressa dell'ambiente
 - · le percezioni presenti e passate
 - · le capacità dell'agente
- Agente razionale: per ogni sequenza di percezioni compie l'azione che *massimizza il* valore atteso della misura delle prestazioni, considerando le sue percezioni passate e la sua conoscenza pregressa.

Razionalità non onniscienza

- Non si pretendono perfezione e capacità predittive, basta massimizzare il risultato atteso
- Ma potrebbe essere necessarie azioni di acquisizione di informazioni o esplorative
- Esempio di 💟
 - · Quanti tweet sbagliamo in genere noi "Twitter" umani?

Razionalità non onnipotenza

- Le capacità dell'agente possono essere limitate
- Esempio di 🏏
 - Quante <u>parole</u> possiamo conoscere?
 - E con quali relazioni con i *Topic* di discussione?

Razionalità e apprendimento

- Raramente tutta la conoscenza sull'ambiente può essere fornita "a priori".
- L'agente razionale deve essere in grado di modificare il proprio comportamento con l'esperienza (le percezioni passate).

• Come apprendere la relazione tra parole e Topic (cioè la tematica legata ad un hashtag, e.g. #totti)?

Agenti autonomi

- Agente autonomo: un agente è autonomo nella misura in cui il suo comportamento dipende dalla sua esperienza
 - · del mondo
 - delle operazioni a lui richieste
- Un agente il cui comportamento fosse determinato solo dalla sua conoscenza *built-in*, sarebbe:
 - non completamente autonomo e
 - certamente poco flessibile

Ambienti e codifica PEAS

PRESTAZIONE	AMBIENTE	ATTUATORI	SENSORI
Rispondere in modo naturale ed efficace (preciso ma anche veloce) alle domande dell'interlocutore	La descrizione della domanda in input, La lingua in cui tali interazioni avvengono	Emissione di parole in sequenza, in corrispondenza di uno stimolo detto prompt	Il prompt testuale osservabile in input Tutta la produzione linguistica che l'agente può osservare prima di iniziare a dialogare

Ambienti

- Definire un problema P per un agente significa caratterizzare l'ambiente in cui l'agente opera (ambiente operativo).
- La progettazione dell'agente corrisponde ad una soluzioni per P, cioè

 $Agente\ razionale = soluzione$

- La descrizione **PEAS** dei problem è sistematica e caratterizza:
 - Performance (prestazione richiesta all'agente)
 - Environment (l'ambiente dove si muove l'agente)
 - Actuators (gli attuatori, che determinano le azioni possibili)
 - Sensors (i sensori che consentonola poercezione)

Analisi: chatGPT come agente PEAS

Prestazione	Ambiente	Attuatori	Sensori
Rispondere in modo naturale ed efficace (preciso ma anche veloce) alle domande dell'interlocutore	La descrizione della domanda in input, La lingua in cui tali interazioni avvengono	Emissione di parole in sequenza, in corrispondenza di uno stimolo detto prompt	Il prompt testuale osservabile in input Tutta la produzione linguistica che l'agente può osservare prima di iniziare a dialogare

Agente guidatore di taxi

Prestazione	Ambiente	Attuatori	Sensori
Arrivare alla destinazione,	Strada, altri veicoli, pedoni, clienti	Sterzo, acceleratore, freni, frecce, clacson, schermo di interfaccia o sintesi vocale	Telecamere, sensori a infrarossi e sonar, tachimetro, GPS, contachilometri, acelerometro, sensori sullo stato del motore, tastiera o microfono

Agente guidatore di taxi

Prestazione	Ambiente	Attuatori	Sensori
Arrivare alla destinazione, sicuro, veloce, ligio alla legge, viaggio confortevole, minimo consumo di benzina, profitti massimi	Strada, altri veicoli, pedoni, clienti	Sterzo, acceleratore, freni, frecce, clacson, schermo di interfaccia o sintesi vocale	Telecamere, sensori a infrarossi e sonar, tachimetro, GPS, contachilometri, acelerometro, sensori sullo stato del motore, tastiera o microfono

Formulazione PEAS dei problemi

Problema	P	E	A	S
Diagnosi medica	Diagnosi corretta, cura del paziente	Pazienti, ospedale	Domande, suggerimenti test, diagnosi	Sintomi, Test clinici, risposte paziente
Robot "selezionatore"	% delle parti correttamente classificate	Nastro trasportatore	Raccogliere le parti e metterle nei cestini	lmmagini (pixel di varia intensità)
Giocatore di calcio	Fare più goal dell'avversario	Altri giocatori, campo di calcio, porte	Dare calci al pallone, correre	Locazione pallone altri giocatori, porte
Bibliotecario				
Information broker (Web search engine)	Suggerimenti, utilità, rilevanza, tempo di risposta, completamento interr.	Web ed i suoi documenti, utente, (ambiente circ.)	Accedere a rete, quindi ai documenti, alle query, comunicare risposta	Accedere alla rete, "lettura" dei documenti, "lettura" della query, localizz. dell'utente
Google Assistant / Alexa				

Proprietà dell'ambiente e del problema

I diversi ambienti posseggono caratteristiche comuni lungo alcune dimensioni:

- COMPLETAMENTE VS. PARZIALMENTE OSSERVABILE
- AGENTE (SINGOLO) VS. MULTI-AGENTE
- Deterministico, Stocastico o Non Deterministico
- EPISODICO VS. SEQUENZIALE
- STATICO VS. DINAMICO
- DISCRETO VS. CONTINUO

Osservabilità

- · Ambiente completamente osservabile
 - L'apparato percettivo è in grado di dare una conoscenza completa dell'ambiente o almeno tutto quello che serve a decidere l'azione
 - Non c'è bisogno di mantenere uno stato del mondo
- Ambiente parzialmente osservabile
 - Sono presenti limiti o inaccuratezze dell'apparato sensoriale.

Osservabilità dell'Ambiente: esempi

- Completamente osservabile
 - Scacchi
 - Go
 - Parole Crociate (?)
- Parzialmente osservabile
 - Labirinto
 - Interpretazione linguistica
 - Guida Autonoma
 - Web Search
 - Dialogo nella AI Generativa (chatGPT)

Ambiente singolo/multiagente

- Distinzione agente/non agente
 - Il mondo può anche cambiare per eventi, non necessariamente per azioni di agenti.

- Ambiente multi-agente competitivo
 - Comportamento randomizzato

- Ambiente multi-agente cooperativo
 - Comunicazione

Predicibilità

Deterministico

• Se lo stato successivo è completamente determinato dallo stato corrente e dall'azione. Esempio: scacchi

Stocastico

• Esistono elementi di incertezza con una probabilità associata.

Esempi: guida, tiro in porta

Non deterministico

 Se gli stati possibili non corrispondono ad una specifica distribuzione di probabilità, ad es. sono equiprobabili

Esempio: traduzione automatica

Determinismo

Agenti Deterministici

• I cambiamenti dell'ambiente dipendono solo dallo stato dell'ambiente in un certo istante e dalla azione dell'agente

Agenti non deterministici

• Tali cambiamenti non seguono questa legge in modo rigido, ma sono diversi gli stati che costituiscono l'esito di una azione

• Il ruolo della probabilità:

• Agenti stocastici in genere sono legati a forme di non determinismo descritte da distribuzioni di probabiltà in insiemi di stati possibili

Episodico/sequenziale

- Episodico
 - · L'esperienza dell'agente è divisa in episodi atomici indipendenti.
 - In ambienti episodici non c'è bisogno di pianificare.
- Sequenziale
 - · Ogni decisione influenza le successive

Statico/dinamico

Statico

• il mondo non cambia mentre l'agente decide l'azione

Dinamico

- I cambiamenti del mondo possono avvenire durante la decisone dell'agente
- Ritardare una decisione equivale a non agire

· Semi-dinamico

- L'ambiente non cambia ma la valutazione dell'agente sì.
- Esempio: Scacchi con timer.

Discreto/continuo

- Possono assumere valori discreti o continui
 - · lo stato: solo un numero finito di stati
 - il tempo
 - · le percezioni, ad es. gradi di illuminazione
 - le azioni, ad es. le azioni possibili con parametri

• La guida del taxi è un problema i cui stati e tempi variano nel continuo

Noto/ignoto

- Distinzione riferita allo stato di conoscenza dell'agente
- L'agente conosce l'ambiente oppure deve compiere azioni esplorative?
- OSS. Noto è diverso da osservabile

• Gli ambienti reali son in genere: parzialmente osservabili, stocastici, sequenziali, dinamici, continui, multi-agente, ignoti

Tipi di Agenti e Ambienti

Task Environment	Observable	Agents	Deterministic	Episodic	Static	Discrete
Crossword puzzle	Fully	Single	Deterministic		Static	Discrete
Chess with a clock	Fully	Multi	Deterministic		Semi	Discrete
Poker	Partially	Multi	Stochastic	Sequential	Static	Discrete
Backgammon	Fully	Multi	Stochastic	Sequential	Static	Discrete
Taxi driving Medical diagnosis	Partially Partially	Multi Single	Stochastic Stochastic		•	Continuous Continuous
Image analysis Part-picking robot	Fully	Single	Deterministic	Episodic	Semi	Continuous
	Partially	Single	Stochastic	Episodic	Dynamic	Continuous
Refinery controller	Partially	Single	Stochastic	Sequential	•	Continuous
Interactive English tutor	Partially	Multi	Stochastic	Sequential		Discrete

Figure 2.6 Examples of task environments and their characteristics.

Tipologie di ambiente

	Osservabile?	Deterministi co/ stocastico	Episodico/ sequenziale	Statico/ dinamico	Discreto/ continuo	Mono/ multiagente?
Gioco 15	SI	Det	Seq	Stat	Disc	Mono
Briscola						
Scacchi						
Scacchi con timer						
Sudoku						
Guida Autonoma						
Information Broker (SE)						
Diagnostica per immagini						
Alexa						

Ambiente: automazione

L'ambiente richiede la simulazione attraverso uno strumento software che si occupa di:

- generare gli stimoli per gli agenti
- raccogliere le azioni in risposta
- aggiornare il proprio stato
- [attivare altri processi implicati da tale cambiamento che influenzano a loro volta l'ambiente]
- valutare le prestazioni degli agenti

Ambiente, agente e processi

• L'ambiente ed i singoli (potenzialmente multipli) agenti sono indipendenti, analogamente a processi e threads del SO

Simulatore

```
function Run-Eval-Environment (state,
                                 Update-Fn, agents,
                     Performance-Fn)
returns scores
local variables: scores %(vector of size = #agents, all 0)
 repeat
   for each agent in agents do
      Percept[agent] ← Get-Percept(agent, state)
   end
   for each agent in agents do
      Action[agent] \leftarrow Program[agent] (Percept[agent])
   end
   state \leftarrow Update-Fn(actions, agents, state)
   scores ← Performance-Fn(scores, agents, state)
until termination(state)
return scores
```

Simulatore - Prolog

```
init (InitState), %inizializzazione unico agente e ambiente, ...
start :-
              run env(InitState, 0, Score).
run env(State, Score, FinScore) :-
  get percept (Perception), %acquisizione percezioni ag.
  selectAct(State, Perception, Action), %selezione azione, ...
  update env(State, Action, NewState), %attuazione
  evaluatePerf(NewState, Score, CurrScore),
  check term (NewState, CurrScore, FinScore).
                                              %check\ GOAL....
check term(State, CS, CS) :- satgoal(State).
check term(State, CS, 0) :- unsecure(State),
                              writeln('LOST!\n Done!!'),
check term(State, CS, FS) :-
    run env(State, CS, FS). %next step
```

La Nozione di agente

Ciclo di vita e Struttura interna

Il programma agente

Tipi di Agenti

Struttura di un agente

Agente = Architettura + Programma

 $\begin{array}{cccc} \textit{Agent:} & P & \rightarrow & \textit{Azioni} \\ & \text{percezioni} & \text{azioni} \end{array}$

Il programma dell'agente implementa la funzione *Agent()*

Programma agente

function Skeleton-Agent (percept) returns action

static: memory %the agent's memory of the world

 $memory \leftarrow \text{UpdateMemory}(memory, percept)$

 $action \leftarrow \text{CHOOSE-BEST-ACTION}(memory)$

 $memory \leftarrow \text{UpdateMemory}(memory, action)$

return action

Un esempio

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A, Clean], [A, Clean]	Right
[A, Clean], [A, Dirty]	Suck
<u>:</u>	:
[A, Clean], [A, Clean], [A, Clean]	Right
[A, Clean], [A, Clean], [A, Dirty]	Suck
:	:

Figure 2.3 Partial tabulation of a simple agent function for the vacuum-cleaner world shown in Figure 2.2.

Agente basato su tabella

La scelta di una azione (per volta) è un accesso a una tabella che associa un'azione ad ogni possibile sequenza di percezioni.

Problemi:

- 1. Per giocare a scacchi tabella con righe per tutte le configurazioni individuali e tutte le sequenze!
- 2. Difficile da costruire
- 3. Nessuna autonomia
- 4. Di difficile aggiornamento, apprendimento complesso.

Agenti reattivi semplici

Agenti reattivi - programma

function AGENTE-REATTIVO-SEMPLICE (percezione)

returns azione

persistent: regole %un insieme di regole condizione-azione

 $stato \leftarrow Interpreta-Input(percezione)$

 $regola \leftarrow \text{REGOLA-CORRISPONDENTE}(stato, regole)$

 $azione \leftarrow regola.$ AZIONE()

return azione

Un esempio ... di agente con antagonista

Breeze \$5555 \$Stench\$ **PIT** /Breeze 50 Breeze **PIT** Gold Breeze \$5555 \$Stench\$ Breeze Breeze **PIT START**

Wumpus: Simulatore Prolog

```
init, %inizializzazione agente, ambiente, ...
start :-
              take steps([[1,1]], AgL, WuLoc, GoLoc).
take steps(VisitedList, AgL, WuL, GoL) :-
  make percept sentence (Perception), %acquisizione percezioni
  update KB (Perception), %aggiornamento credenze sul mondo, ...
  ask KB (VisitedList, Action), %selezione azione, ...
  update env(VisitedList, Action, NewVisitedList), %attuazione
  updatePos(NewAgentLocation, WumpusL, GoldL),
  check term (NewVisitedList, NewAgentLocation, WumpusL, GoldL).
                                                 %check GOAL, ...
check term(VisitedList, A GLoc, , A GLoc) :- writeln('Won!').
check term(VisitedList, AL, AL, ) :-
                     writeln('The Wumpus eats you!\n Lost!!'),
check term(VisitedList, AgL, WuL, GoL) :-
    take steps (VisitedList, AgL, WuL, GoL). %next step
```

Agenti basati su modello

Agenti basati su modello

function Agente-Basato-su-Modello (percezione)
returns azione

persistent: stato, %una descrizione dello stato corrente

modello, %conoscenza del mondo

regole, %un insieme di regole condizione-azione

azione, %l'azione più recente

 $stato \leftarrow Aggiorna-Stato(stato, azione, percezione, modello)$

 $regola \leftarrow \text{REGOLA-CORRISPONDENTE}(stato, regole)$ $azione \leftarrow regola. \text{AZIONE}()$

return azione

Agenti con obiettivo

Agenti con obiettivo

- Sono guidati da un obiettivo nella scelta dell'azione
 - A volte l'azione migliore dipende da qual è l'obiettivo da raggiungere (es. da che parte devo girare?).
 - Devono pianificare una sequenza di azioni per raggiungere l'obiettivo.
 - Meno efficienti ma più flessibili di un agente reattivo

Agenti con valutazione di utilità

Agenti con valutazione di utilità

- Obiettivi alternativi
 - l'agente deve decidere verso quali di questi muoversi.
 - necessaria una funzione di utilità (che associa ad uno stato obiettivo un numero reale).
- Obiettivi più facilmente raggiungibili di altri
 - la funzione di utilità tiene conto anche della probabilità di successo: utilità attesa

Agenti che apprendono

Agenti che apprendono

- Componente di apprendimento
 - Produce cambiamenti al programma agente (Apprendimento del modello)
- Elemento esecutivo
 - Il programma agente
- Elemento critico
 - Osserva e da feedback sul comportamento (feedback di rinforzo o esempi di successo)
- Generatore di problemi
 - Suggerisce nuove situazioni da esplorare (generatore di nuovi dati per l'apprendimento)

Implicazioni computazionali

Rappresentazioni

Funzioni principali dell'agente

Desiderata di modelli accurati di AI

Tipi di rappresentazione

- Rappresentazione atomica
- Rappresentazione fattorizzata
- Rappresentazione strutturata

Espressività

- (a) Stati finiti, Transizioni semplici, possibili estensioni probabilistiche
- (b) Fattori come dimensioni in uno spazio vettoriale
- (c) Rappresentazioni complesse come le relazioni della RA o le espressioni ricorsive della logica

Rappresentazione di Pattern Linguistici via Machine Learning: Encoder-decoders for NL

Semantic Embedding from domain Corpora: WORDSPACE

Monte Paschi Siena

Agenti: Desiderata

• I sistemi di AI, gli agenti, sono sistemi complessi la cui progettazione e rilascio in ambiente operativo costituiscono fasi costose e a forte impatto sui processi tradizionali vigenti nelle organizzazioni

• Sfide principali:

- Accuratezza (prestazioni vicine a quelle degli esperti)
- Generalità (come *portabilità* a domini e task diversi)
- Sostenibilità nel tempo (limitati costi di manutenzione ed evoluzione)
- Modularità (quali componenti sono adatte per il *riuso*)
- Trasparenza (perché il sistema decide in un certo modo)
- · Scalabilità (rispetto ai dati ed al numero di utenti)

Conclusioni

- Agenti e programmi agente
- Misure di prestazioni
- Classificazione degli ambienti operativi
- Diverse architetture di complessità crescente per i programmi agente
- Tutti gli agenti possono migliorarsi con l'apprendimento

SummarAIzing (AIMA Cap. 2)

- Perche il programma basato sulla nozione di agenti è un buon obbiettivo per il concetto generale di IA
- · Cos'è un agente
- Come modelliamo l'ambiente
- Cosa sono gli stati, la conoscenza, i sensori, le regole e gli scopi di un agente
- Quali tipi di agente conosciamo:
 - · Agenti basati su riflessi semplici
 - Agenti basati su Regole (statiche)
 - · Agenti basati su un modello del mondo
 - · Agenti basati su un modello del task (opportunistici)
 - · Agenti basati su una nozione quantitative del task (utility)
 - Agenti che Apprendono

AI making

• Si spieghi **perché** la formulazione del problema deve seguire quella dell'obbiettivo

- Si determinino lo stato iniziale, il test obbiettivo, gli operatori e la funzione costo di un cammino per i segg. problemi:
 - Si deve colorare una mappa planare complessa usando solo quattro colori senza che nessuna regione confinante abbia lo stesso colore
 - Ci si è persi nella giungla dell'Amazzonia e si deve tornare al mare. C'e' un ruscello nelle vicinanze.

Ai making

- Si consideri il task di raggiungere l'uscita di un labirinto. Un robot parte dal centro del labirinto, e può muoversi a Nord, Est, Sud o Ovest. Puoi coordinare il robot a muoversi in avanti e ad una certa distanza, sebbene il robot si fermi prima di scotrarsi con un muro:
 - · Formulare il problema e lo spazio degli stati.
 - Nella navigazione, i soli punti in cui intervengono delle decisioni sono le **intersezioni** tra due o più corridoi. Riformulare il problema in modo che tali decisioni corrispondano alle azioni. Come cambia lo spazio degli stati?
 - Da ogni punto del labirinto possiamo muovere il robot nelle 4 direzioni fino a raggiungere un punto di svolta. Riformulare il problema. E' necessario ora tenere traccia dell'orientazione del robot?

• Discutere le diverse **semplificazioni e astrazioni** corrispondenti alle formulazioni ottenute