A Concise Review of Reinforcement Learning Methods: Foundations, Deep RL, & LLM-centric Approaches

Anjan Goswami

February 17, 2025

Contents

1	Introduction and Historical Context	1
2		2
	2.2 Value-Based: Q-Learning	
	2.3 Actor-Critic Methods	2
3	Deep RL Approaches	2
	3.1 Deep Q-Network (DQN)	2
	3.2 Actor-Critic Extensions	
4	Monte Carlo Tree Search (MCTS) and AlphaZero	2
5	RL in Large Language Models (LLMs)	3
	5.1 Importance of RL for Improving LLM Efficacy	3
	5.2 PPO & FRPO: Why They Brought "Magical" Improvements	3
	5.3 Reward Functions for RLHF and NDCG Maximization	
	5.4 Inference-Time Computation as an RL Problem	4
c	Challen was in DI The initial Contains	1
6	Challenges in RL Training Systems	4

1 Introduction and Historical Context

Reinforcement Learning (RL) focuses on training agents to maximize a reward signal by interacting with an environment via sequential actions. Its modern foundations derive from Dynamic Programming [Bellman, 1957], Stochastic Approximation [Robbins and Monro, 1951], and Markov Decision Processes [Puterman, 1994]. Early successes such as Samuel's checkers program [Samuel, 1959] and TD-Gammon [Tesauro, 1995] confirmed RL's promise in game domains. Subsequently, *Deep RL* integrated neural networks [e.g., Mnih et al., 2015, Silver et al., 2017], unlocking rich, high-dimensional applications. Recently, RL has also found important roles in *Large Language Models* (LLMs), where single-step or short-horizon tasks still benefit from careful reward engineering and policy optimization.

2 Classical RL Foundations

2.1 Blocks World, Maze Problems, and Game-Theoretic Views

Consider a discrete Markov Decision Process (MDP) with states $s \in \mathcal{S}$, actions $a \in \mathcal{A}$, transition probabilities P(s'|s, a), and reward r(s, a). Examples:

- Blocks World: Re-stack blocks to a goal arrangement.
- Maze Navigation: Move on a grid to reach a terminal cell.

These tasks illustrate how iterative updates (e.g., Q-learning) converge to optimal policies. In multi-agent or adversarial contexts, RL intersects with *game theory* [Shoham and Leyton-Brown, 2008], replacing a single reward with utility or payoffs in multi-player settings.

2.2 Value-Based: Q-Learning

Q-learning [Watkins and Dayan, 1992] is a key value-based method:

$$Q(s, a) \leftarrow Q(s, a) + \alpha \left[r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right].$$

In a small maze or blocks puzzle, Q can be stored in a table. In large state spaces, function approximation becomes necessary.

2.3 Actor-Critic Methods

Alternatively, actor-critic separates the policy (actor) from the value function (critic). It updates parameters θ of $\pi_{\theta}(a \mid s)$ and ψ of $V_{\psi}(s)$ in tandem, reducing variance in policy gradient estimates. The temporal-difference error $\delta_t = r_t + \gamma V_{\psi}(s_{t+1}) - V_{\psi}(s_t)$ guides both the critic update and the actor update.

3 Deep RL Approaches

3.1 Deep Q-Network (DQN)

Mnih et al. [2015] introduced DQN for Atari games, where a CNN approximates $Q_{\psi}(\text{pixels}, a)$. Replay buffers and target networks stabilized training. This showed the feasibility of neural function approximators in RL.

3.2 Actor-Critic Extensions

DDPG [Lillicrap et al., 2015], TD3 [Fujimoto et al., 2018], and SAC [Haarnoja et al., 2018] extend actor-critic to continuous action spaces, widely used in robotic control. Model-based RL attempts to learn a transition model $\hat{P}(s'|s,a)$, allowing planning or forward search, sometimes via matrix computations of approximate Bellman operators [Puterman, 1994].

4 Monte Carlo Tree Search (MCTS) and AlphaZero

MCTS is a *model-based* search technique for discrete, perfect-information settings (e.g., board games). Silver et al. [2017] combined MCTS with deep policy/value networks in self-play, yielding *AlphaZero* that achieved superhuman play in Chess, Go, Shogi. MCTS:

- 1. Selects a path using an Upper Confidence Bound-like criterion,
- 2. Expands a leaf,
- 3. Simulates or uses a value network for a terminal estimate,
- 4. Backpropagates the result, updating action statistics.

5 RL in Large Language Models (LLMs)

While many RL applications revolve around multi-step environments, LLMs typically see *single* or short-turn interactions (prompt \rightarrow text output). Nevertheless, RL can dramatically enhance language model alignment, correctness, and user satisfaction.

5.1 Importance of RL for Improving LLM Efficacy

LLMs often generate text purely by next-token prediction from pretraining corpora. However, certain desired properties (factuality, conciseness, non-toxicity) are not guaranteed by raw likelihood objectives. Reinforcement Learning from Human Feedback (RLHF) [Ouyang et al., 2022] addresses this gap by defining a reward function that captures user or human-annotated preferences, then tuning the model's policy to optimize that reward.

- Quality / Efficacy: RL optimization for correctness or relevance can drastically reduce hallucinations and incoherent text.
- Safety / Alignment: RL-based constraints can penalize harmful or policy-violating outputs.
- User-specific Goals: Personalized reward signals can tailor the model for domain-specific tasks or user preferences.

5.2 PPO & FRPO: Why They Brought "Magical" Improvements

PPO (**Proximal Policy Optimization**) Schulman et al. [2017] introduced a clipping objective to keep new policies from diverging too far from the old policy. For LLMs, Ouyang et al. [2022] adapted PPO with a **KL penalty**, ensuring the updated policy remains close to a reference (SFT) model. This stabilizes training while still letting the model move towards answers that yield higher reward (quality or preference scores).

FRPO (Fine-tuning with Rejection or Relative Policy Optimization) While not always labeled "FRPO" in the literature, certain variants (like Rejection Sampling Fine-tuning or Group Relative Policy Optimization, a.k.a. GRPO) filter out or relatively score multiple outputs at once. They reduce the memory footprint by skipping a large critic network, use group baselines, or filter out suboptimal responses. The upshot is ease of training with consistent improvements in final model quality.

5.3 Reward Functions for RLHF and NDCG Maximization

In typical RLHF setups, a learned reward model $r_{\phi}(q, o)$ is trained from human preference data (ranking pairs of outputs). One might prefer to optimize metrics like *NDCG* (Normalized Discounted Cumulative Gain), often used in information retrieval:

NDCG(o) =
$$\frac{1}{Z} \sum_{k=1}^{|o|} \frac{2^{\text{rel}(o_k)} - 1}{\log_2(k+1)}$$
,

where $rel(o_k)$ is a relevance or correctness label for token o_k , and Z is a normalization. However, mapping such IR-style metrics to a single scalar reward can be tricky if the text is long. In practice, RLHF often collapses to a simpler single scalar measure (e.g., overall preference) due to annotation or modeling constraints. But if we do partial scoring (token-level or segment-level), we could approximate an NDCG-like objective.

5.4 Inference-Time Computation as an RL Problem

A thought-provoking view is to treat the entire LLM inference process—generating tokens, possibly with user follow-up prompts—as multi-step RL:

- State: The partial conversation or partial sequence of tokens, i.e., the hidden Transformer state.
- Action: Generating the next token from the model's distribution over the vocabulary.
- **Reward**: May be derived from an external correctness function, user satisfaction, or a known ground truth if it exists.
- Goal: Provide a final textual solution that matches or outperforms a known standard (like an answer key).

In principle, one could do on-the-fly RL-like updates if partial answers could be tested, but the typical cost of large-scale Transformers and the difficulty of repeated partial evaluations hamper direct MCTS or Q-learning. Instead, we rely on **policy gradients** (PPO-like updates) that adjust the generation distributions from a reference baseline.

During inference, the model's distribution $p_{\theta}(o_t \mid o_{< t})$ can be seen as a *stochastic policy*, but full environment loops are rarely done due to high computational expense. Nevertheless, in *interactive chat or multi-turn QA*, one can conceptualize each user query \rightarrow response cycle as a single environment step, so multi-step RL could in principle refine the model over repeated user interactions.

6 Challenges in RL Training Systems

Even though RL in LLMs has advanced rapidly, fundamental challenges persist:

- **Reward Design**: Mapping complex objectives (factual correctness, style, policy constraints) to a single scalar remains hard. This is why RLHF invests heavily in preference data collection and reward modeling.
- Sample Efficiency: Large-scale RL can require extensive sampling from the current policy. For LLMs, each sample is expensive to generate (many tokens, large batch).
- Stability & Hyperparameters: PPO/GRPO rely on careful tuning of learning rates, batch sizes, KL coefficients, or group sizes.
- Scaling / Distributed Compute: Some frameworks (e.g., Anyscale) claim more efficient distributed RL. The complexities lie in handling large models, large replay or sample buffers, and stable synchronization of updates.

7 Conclusions and Future Directions

Reinforcement Learning has evolved from simple tabular MDPs to complex deep RL solutions that master games (AlphaZero) and real-world tasks (continuous robotics). **LLM-based RL** typically focuses on aligning or improving final text outputs with human preferences, using single-step or short-horizon policy gradient (PPO-like) methods. Despite the difficulties (high dimensionality, expensive sampling, reward design), RL can significantly boost LLM *efficacy* (accuracy, relevance, safety). Future work may explore multi-step approaches, advanced reward shaping (NDCG or partial token-level feedback), and real-time interaction loops to refine language model responses online.

References

- R. E. Bellman. Dynamic Programming. Princeton University Press, 1957.
- Scott Fujimoto, Herke Van Hoof, and David Meger. Addressing function approximation error in actor-critic methods. In *International Conference on Machine Learning*, 2018.
- Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, et al. Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor. In *International Conference on Machine Learning*, 2018.
- Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, et al. Continuous control with deep reinforcement learning. arXiv:1509.02971, 2015.
- Volodymyr Mnih, Koray Kavukcuoglu, David Silver, et al. Human-level control through deep reinforcement learning. *Nature*, 518(7540):529–533, 2015.
- X. Ouyang et al. Training language models to follow instructions with human feedback. arXiv:2203.02155, 2022.
- Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley & Sons, 1994.
- H. Robbins and S. Monro. A stochastic approximation method. The Annals of Mathematical Statistics, 22(3):400–407, 1951.
- Arthur L. Samuel. Some studies in machine learning using the game of checkers. *IBM Journal of Research and Development*, 3(3):210–229, 1959.
- John Schulman, Filip Wolski, Prafulla Dhariwal, et al. Proximal policy optimization algorithms. arXiv:1707.06347, 2017.
- Yoav Shoham and Kevin Leyton-Brown. Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations. Cambridge University Press, 2008.
- David Silver, Julian Schrittwieser, Karen Simonyan, et al. Mastering the game of go without human knowledge. *Nature*, 550(7676):354–359, 2017.
- Gerald Tesauro. Temporal difference learning and td-gammon. Communications of the ACM, 38(3):58–68, 1995.
- C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3-4):279–292, 1992.