Al Quizbook

2020 | Issue 2

Founded by Harvard Professors to bring you the world's best AI/ML training

Rahul Dave
Chief Scientist,
Univ.Al
Former Lecturer,
Harvard University

Pavlos Protopapas Scientific Program Director, IACS, Harvard University

Achuta Kadambi Asst. Prof. UCLA PhD, MIT Media Lab

All Programs
Live! Online

Elite Faculty from Top Universities

Cutting-Edge Curriculum

Live! Hands-On Mentorship Learning by Lots of Doing!

Train to be among the best

Univ.Al offers you a 3-step path to a GUARANTEED high-end job in Machine Learning & Artificial Intelligence, Data Science, or Programming (Coming Soon)

- Learn LIVE-online with Harvard faculty
- Gain expertise in 3 sequential, standalone certifications of 10-12 weeks each
- Get job-ready outcomes and certifications at each level
- The beginner programs are offered at very low costs
- Advance to the Master Certification, risk your investment with a state-of-the-art employment guarantee

Which of the following functions can be used as an activation function in the output layer if we wish to predict the probabilities of n classes (p1, p2..pk) such that sum of p over all n equals to 1?

Softmax
ReLU
Sigmoid
Tanh

Answer on the next page

Which of the following statements is the best description of early stopping?

The number of nodes in the input layer is 15 and the hidden layer is 4. The maximum number of connections from the input layer to the hidden layer are

60
Less than 60
More than 60
It is an arbitrary value

Previous Answer
Form of regularization used to avoid overfitting.
Stops training when the generalization error starts
to increase

Which of the following is/are (an) important step(s) to pre-process the text in NLP (Natural Language Processing) based projects?

Stemming	
Stop word rem	oval
Object Standard	dization
All of the above	

What would you do in PCA (Principal Component Analysis) to get the same projection as SVD (Singular Value Decomposition)?

Transform data to zero mean
Transform data to zero median
Not possible
None of the above

Which of the following is an example of feature extraction?

Constructing a word vector from an email

Applying PCA projects to a large high-dimensional data

Using Independent Component Analysis to differentiate speakers in an audio recording

All of the above

Which of the following statements is true when you use 1×1 convolutions in a CNN?

It can help in dimensionality reduction
It can be used for feature pooling
It suffers less overfitting due to small kernel size
All of the above

Which of the following statements is true about output of a dropout layer with 0.8 as keep probability and n as the input size of the dropout layer (and thus the output size of the previous layer)?

Each	point in	hierarchical	clustering	is	part
of	•				-

Single cluster
Many clusters
None of the above

Previous Answer
Output size of dropout layer will be n with roughly
0.2*n output activations from the previous layer
randomly set to 0 in the training phase

What are the steps for using a gradient descent algorithm?

- a. Calculate error between the actual and predicted value
- b. Reiterate until you find the best weights of the network
- Pass an input through the network and get values from the output layer
- d. Initialize random weights and biases
- e. Change the weights of each neuron to reduce the error

d, c, e, a, b
e, d, b, c, a
a, c, b, e, d
d, c, a, e, b

Given spam emails are the positive class, how many of the actual spam emails are correctly predicted as spam?

- (True Positives)/(True Positives + False Negatives)
 - (True Positives)/(True Positives + True Negatives)
 - (True Positives)/(False Positives + True Negatives)
 - (True Positives)/(False Positives + False Negatives)

Which of the following is a disadvantage of decision trees?

- Training time is relatively high as complexity is low
 - Decision trees are robust to outliers
 - Decision trees are prone to be overfit

None of the above

Which of the following components make a neural network nonlinear in nature?

Hidden Layers
Activation functions
Weights and Biases
Regularization

How many input nodes are required to process a grayscale image of 28X28?

28
784
2354
56

Exploding/vanishing gradients are problematic to a greater extent (due to a large network size obtained by unrolling the network through time) in the case of X Neural Networks. What is X?

What is/are true about ridge regression?

- 1. When lambda is 0, model resembles a linear regression model
- 2. When lambda is 0, model doesn't resemble a linear regression model
- 3. When lambda goes to infinity, we get very small coefficients approaching 0
- 4. When lambda goes to infinity, we get very large coefficients approaching infinity

1 and 3
1 and 4
2 and 3
2 and 4

X is used for summarizing the performance of a classification algorithm and contains cells indicating some errors such as "true positives" and "false negatives." What is X?

Which of the following is a widely used and effective machine learning algorithm based on the idea of bagging?

Decision Tree
Regression
Classification
Random Forest

The statement "L1 corresponds to setting a Laplacian prior on the terms, while L2 corresponds to a Gaussian prior" about L1 and L2 regularization is true or false?

True		
False)	

What cross-validation technique would be best suited for a time series dataset?

Standard k-folds cross-validation	
Cross-validation in which the test set is always later in time than the training and validation sets	
Time series datasets do not require cross validation as the data is not randomly distributed	
None of the above	

To learn more, drop us a note at hello@univ.ai

Previous Answer
Cross-validation in which the test set is always
later in time than the training and validation sets