| Total No                                 | o. of Questions : 6]                                | SEAT No. :                                 |
|------------------------------------------|-----------------------------------------------------|--------------------------------------------|
| P34                                      | Oct./TE/Insem148                                    | [Total No. of Pages : 2                    |
|                                          |                                                     | •                                          |
| T.E. (Electronics and Telecommunication) |                                                     |                                            |
| ELECTROMAGNETICS                         |                                                     |                                            |
|                                          | (2015 Pattern) (Semester - I)                       | (304183)                                   |
| Time: 1                                  | Hour]                                               | [Max. Marks : 30                           |
| Instruct                                 | ions to the candidates:                             |                                            |
| 1)                                       | Answer Q. No. 1 or 2, Q. No. 3 or 4, Q. No. 5 or 6. |                                            |
| 2)                                       | Neat diagrams must be drawn wherever necessary.     |                                            |
| 3)                                       | Figures to the right indicate full marks.           | 200                                        |
| 4)                                       | Use of electronic pocket calculator is allowed.     |                                            |
| 5)                                       | Assume suitable data, if necessary.                 |                                            |
|                                          |                                                     |                                            |
|                                          |                                                     | .×°                                        |
| <b>Q1</b> ) a)                           | State Gauss Law. Derive an expression for           | electric field intensity $\overline{E}$ at |
|                                          | point P due to point charge using Gauss Da          | w. [6]                                     |
|                                          | 22                                                  |                                            |
| b)                                       | OR                                                  |                                            |
| <b>Q2</b> ) a)                           |                                                     |                                            |
|                                          | distributions present in free space.                |                                            |
|                                          | i) Point charge of 12 nc at (-2, 0, 6).             |                                            |
|                                          | ii) Uniform surface charge density 0.3 no           | $y/m^2$ at $z = 2$ .                       |
| b)                                       | State physical significance of gradient, dive       | rgance and curl. [4]                       |
| <b>Q3</b> ) a)                           | Derive the expression for energy density in         | static electric field. [6]                 |
| b)                                       | Explain the concept at polarization in dielection   | trics. [4]                                 |
|                                          | OR P. P.                                            | P.T.O.                                     |

- Derive the boundary conditions for static electric field at the interface of **Q4**) a) dielectric and conductor.
  - Determine the capacitance of capacitor as shown in figure, if  $E_{r_i} = 4$ , b)  $E_{r_2} = 6 d = 5 mm, S = 30 cm^2$ [4]



- A current element Idi is located in xy plane in the form of circular ring. **Q5**) a) Determine the magnetic field intensity  $\overline{4}$  at point (0, 0, h). Consider centre at ring at origin. **[5]** 
  - A current distribution gives rise to the vector magnetic potential  $\overline{A} = x^2 y$  $\hat{a}_x + y^2 x \hat{a}y - 4xyz \hat{a}_z$  ub/m². Calculate **[5]** 
    - $\bar{B}$  at (-1, 2, 5)i)
    - The flux through the surface defined by z = 1,  $0 \le x \le 1$ ,  $-1 \le y \le 1$ ii)

State and explain Ampere's circuit law. **Q6**) a)

> The region x < 0 is medium 1 with  $\mu_{r_1} = 4.5$  and  $\overline{H_1} = 4\hat{a}_x + 3\hat{a}_y$ b) The region x > 0 is medium 2 with  $\mu_{r_2} = 6$ . Find  $\overline{H}_2$  in medium 2 and angle made by  $\overline{H}_2$  with normal to interface. [6]