

X-Class HiPerFET™ **Power MOSFET**

IXFA18N60X IXFP18N60X IXFH18N60X

600V 18A I_{D25} $230 m\Omega$ $\mathbf{R}_{\mathrm{DS(on)}}$ \leq

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

TO-220AB (IXFP)

D (Tab)

TO-247 (IXFH)

G = Gate	D	= Drain
S = Source	Tab	= Drain

Features

- International Standard Packages
- Low $R_{DS(ON)}$ and Q_G Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits
- · AC and DC Motor Drives
- Robotics and Servo Controls

T_J = 25°C to 150°C T_J = 25°C to 150°C, R_{GS} = 1M Ω Continuous Transient T_C = 25°C T_C = 25°C, Pulse Width Limited by T_{JM} T_C = 25°C T_C = 25°C	600 600 ±30 ±40 18 36	V V V V A A
Continuous Transient $T_{\rm c} = 25^{\circ}{\rm C}$ $T_{\rm c} = 25^{\circ}{\rm C}, \ {\rm Pulse\ Width\ Limited\ by\ T_{\rm JM}}$ $T_{\rm c} = 25^{\circ}{\rm C}$	±30 ±40 18 36 5	V V A A
Transient $T_{\rm C} = 25 ^{\circ} {\rm C}$ $T_{\rm C} = 25 ^{\circ} {\rm C}, {\rm Pulse \ Width \ Limited \ by \ T_{\rm JM}}$ $T_{\rm C} = 25 ^{\circ} {\rm C}$	±40 18 36 5	V A A
$T_{\rm c} = 25^{\circ}{\rm C}$ $T_{\rm c} = 25^{\circ}{\rm C}$, Pulse Width Limited by $T_{\rm JM}$ $T_{\rm c} = 25^{\circ}{\rm C}$	18 36 5	A A
T_{c}° = 25°C, Pulse Width Limited by T_{JM}° T_{c}° = 25°C	36	Α
T _C = 25°C	5	
3	_	A
$T_{c} = 25^{\circ}C$	F00	
C	500	mJ
$I_{_{S}} \le I_{_{DM}}, V_{_{DD}} \le V_{_{DSS}}, T_{_{J}} \le 150^{\circ}C$	50	V/ns
T _C = 25°C	320	W
	-55 +150	°C
	150	°C
	-55 +150	°C
Maximum Lead Temperature for Solderin	ng 300	°C
1.6 mm (0.062in.) from Case for 10s	260	°C
Mounting Force (TO-263)	1065 / 2.214.6	N/lb
Mounting Torque (TO-247 & TO-220)	1.13 / 10	Nm/lb.in
TO-263	2.5	g
		g g
	$\begin{split} & _{S} \leq _{DM}, V_{DD} \leq V_{DSS}, T_{J} \leq 150^{\circ}\text{C} \\ & _{C} = 25^{\circ}\text{C} \\ \end{split}$ Maximum Lead Temperature for Solderi 1.6 mm (0.062in.) from Case for 10s Mounting Force (TO-263) Mounting Torque (TO-247 & TO-220)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Symbol (T. = 25°C.	rmbol Test Conditions Character		cteristic Values Typ. Max.		
		600	.,,,,	V	
BV _{DSS}	$V_{GS} = 0V, I_D = 250\mu A$	000			
$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 1.5 \text{mA}$	2.5		4.5 V	
I _{gss}	$V_{GS} = \pm 30V, V_{DS} = 0V$			±100 nA	
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$			10 μΑ	
	$T_{J} = 125^{\circ}C$			500 μΑ	
R _{DS(on)}	V _{GS} = 10V, I _D = 0.5 • I _{D25} , Note 1			230 mΩ	

Symbol	mbol Test Conditions Character = 25°C, Unless Otherwise Specified) Min.		cteristic Typ.	Values Max
	$V_{DS} = 10V$, $I_D = 0.5 \cdot I_{D25}$, Note 1	6	10	S
g _{fs}	20 2 220			
R _{Gi}	Gate Input Resistance		3.3	Ω
C _{iss}			1440	pF
C _{oss}	$V_{GS} = 0V$, $V_{DS} = 25V$, $f = 1MHz$		1110	pF
C _{rss}			14	pF
	Effective Output Capacitance			
$C_{o(er)}$	Energy related $\int_{GS} V_{GS} = 0V$		84	pF
C _{o(tr)}	Time related $V_{DS}^{GS} = 0.8 \cdot V_{DSS}$		255	pF
t _{d(on)}	Resistive Switching Times		20	ns
t, ($V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		30	ns
t _{d(off)}			63	ns
t _f	$\int R_{\rm G} = 10\Omega \text{ (External)}$		24	ns
$Q_{g(on)}$			35	nC
Q _{gs}	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 0.5 \cdot I_{D25}$		8	nC
\mathbf{Q}_{gd}			18	nC
R _{thJC}				0.39 °C/W
R _{thCS}	TO-220		0.50	°C/W
	TO-247		0.21	°C/W

Source-Drain Diode

Symbol	Test Conditions	Characteristic Values			
$(T_J = 25^{\circ}C, T_J = 25^{\circ}C, T_J$	Unless Otherwise Specified)	Min.	Тур.	Max	
I _s	$V_{GS} = 0V$			18	Α
SM	Repetitive, pulse Width Limited by $\mathrm{T_{_{JM}}}$			72	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.4	V
$\left. egin{array}{ll} \mathbf{t}_{rr} & \\ \mathbf{Q}_{RM} & \\ \mathbf{I}_{RM} & \end{array} ight. ight.$	$I_F = 9A$, -di/dt = 100A/ μ s $V_R = 100V$		127 705 11		ns nC A

Note 1. Pulse test, $t \le 300 \mu s$, duty cycle, $d \le 2\%$.

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ T_J = 125°C

Fig. 4. $R_{DS(on)}$ Normalized to $I_D = 9A$ Value vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to I_D = 9A Value vs.

Fig. 6. Normalized Breakdown & Threshold Voltages

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 15. Maximum Transient Thermal Impedance

IXFA18N60X IXFP18N60X IXFH18N60X

L1

L3 L4 1.02

1.27

1.40

1.78

0.13

.040

.050

0 .005

.055

.070

