Chapter 15: Amortized Analysis

Chapter Outline

- The Basic Idea
- Three techniques
 - Aggregate analysis
 - Accounting method
 - Potential method
- Illustrating the techniques using 3 examples
 - stack with multipop operation
 - binary counter
 - dynamic table

Amortized Analysis

- Amortized analysis is a cost analysis technique.
- It computes the average time required to perform a sequence of n operations on a data structure.
- *Goal:* Show that although some individual operations may be expensive, on average the cost per operation is small.
- Often worst case analysis is not tight and the amortized cost of an operation is less than its worst case.
- Average in this context is not based on averaging over a distribution of inputs.
 - No probability is involved.
- It is about average cost in the worst case for a sequence of n operations.

Methods

- Aggregate analysis the total amount of time needed for the *n* operations is computed and divided by *n*.
- Accounting operations are assigned an amortized cost.
 Items of the data structure are assigned a credit.
- Potential the prepaid work (money in the "bank") is represented as "potential" energy that can be released to pay for future operations.

Aggregate Analysis

Basic idea:

• If *n* operations together take T(n) time, then the amortized cost of an operation on average is T(n)/n.

A Stack Example

- A stack S with the following three operations:
 - push(S, x): O(1) each $\rightarrow O(n)$ for any sequence of n operations.
 - pop(S): O(1) each $\rightarrow O(n)$ for any sequence of n operations.
 - multipop(S, k): Pop the stack k times.

while not empty(S) and k > 0

Pop(S)

$$k = k - 1$$

- Running time of multipop(S, k):
 - Linear in # of pop operations with each pop costs O(1).
 - # of iterations of while loop is $min\{n, k\}$, where n = # of objects on stack.
 - Therefore, total cost = $min\{n, k\}$.

Stack: Regular Cost Analysis

- Consider a sequence of n push(S, x), pop(S) and multipop(S, k) operations on a stack having as many as n items.
- The following is what a regular worst-case cost analysis would do:
 - Worst-case cost of multipop() is O(n).
 - Have n operations.
 - \rightarrow The worst-case cost of the sequence is $O(n^2)$.
- Question: Notice anything problematic with the analysis?
- Answer: It's impossible to pop n items n times for a stack with n items!

Stack – Aggregate Analysis

- Each item can be popped only once for each time it is pushed.
- So the total number of times *pop()* can be called, either directly or from *multipop*, is bounded by the number of pushes.
- Assume that the stack is initially empty. Then the number of pushes in a sequence of n operations is $\leq n$.
- Thus, the number of all pops (including those from multipop) is O(n).
- So the total cost of the sequence of n operations is O(n).
- \rightarrow O(1) per operation on average.

A Binary Counter Example

- A k-bit binary counter A[0...k-1] of bits, where A[0] is the least significant bit and A[k-1] is the most significant bit.
- Counts upward from 0.
- Value of the counter is $\sum_{i=0}^{k-1} A[i] \cdot 2^i$
- Initially, counter value is 0, so A[0..k-1] = 0.
- To increment, add 1:
 - Flip all 1's from right to 0 until encountering the first 0.
 - Change this 0 to 1 and stop.

INCREMENT(A, k)

$$i = 0$$

while $i < k$ and $A[i] == 1$
 $A[i] = 0$
 $i = i + 1$
if $i < k$
 $A[i] = 1$

Binary Counter: An Example

Counter value	MINGHENANASHONINO	Total cost
0	$0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$	0
1	$0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1$	1
2	0 0 0 0 0 0 1 0	3
3	$0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 1$	4
4	0 0 0 0 0 1 0 0	7
5	0 0 0 0 0 1 0 1	8
6	0 0 0 0 0 1 1 0	10
7	$0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1$	11
8	0 0 0 0 1 0 0 0	15
9	0 0 0 0 1 0 0 1	16
10	0 0 0 0 1 0 1 0	18
11	0 0 0 0 1 0 1 1	19
12	0 0 0 0 1 1 0 0	22
13	0 0 0 0 1 1 0 1	23
14	$0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0$	25
15	$0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1$	26
16	0 0 0 1 0 0 0 0	31

- It shows a 8-bit binary counter as its value goes from 0 to 16 by a sequence of 16 Increment operations.
- The average cost per operation is 31/16 < 2.

Binary Counter: Regular Analysis

- With a k-bit binary counter, a single execution of Increment may need to flip $\Theta(k)$ bits in the worst case.
- So the total cost for executing a sequence of n Increment operations is O(nk) in the worst case.
 - The average per operation cost is O(k).
- This bound is correct but not tight.
- We can obtain a better bound of O(n) using aggregate analysis.

Binary Counter: Aggregate Analysis

- Some observations about Increment():
 - Not all bits are flipped for each call.
 - A[0] flips each time, A[1] flips only every other time, and A[2] flips only every 4^{th} time.
 - In general, A[i] flips only every 2^{i} -th time.
- Thus, A[i] flips only $\lfloor n/2^i \rfloor$ times in a sequence of n Increment operations on an initially 0 counter.
- So the total number of flips in the sequence is:

$$T(n) = \sum_{i=0}^{k-1} \left\lfloor \frac{n}{2^i} \right\rfloor < n \sum_{i=0}^{\infty} \frac{1}{2^i} = 2n.$$

- $\rightarrow T(n) = O(n)$
- \rightarrow The amortized cost per operation is O(n)/n = O(1).

Accounting Method: Basic Idea

- Assign different charges to different operations.
 - Some are charged more than actual cost.
 - Some are charged less than actual cost.
- Amortized cost = amount we charge.
- Need to be careful with choosing the right amount to charge to each operation (see later).
- When amortized cost > actual cost, store the difference on specific items in the data structure as credit.
- Use credit later to pay for operations whose actual cost > amortized cost.

Accounting Method: Credit

- Need credit to never go negative.
 - Otherwise, have a sequence of operations for which the amortized cost is not an upper bound on actual cost.
 - Amortized cost would tell us nothing.
- Let c_i = actual cost of *i*-th operation, \hat{c}_i = amortized cost of *i*-th operation.
- For all sequences of *n* operations, require:

$$\sum_{i=1}^{n} \hat{c}_i \ge \sum_{i=1}^{n} c_i$$

■ Total credit stored =
$$\sum_{i=1}^{n} \hat{C}_i - \sum_{i=1}^{n} C_i$$

Accounting Method: Stack Example

Operation	Actual Cost	Amortized Cost	
push	1	2	
pop	1	0	
multipop	$\min\{n,k\}$	0	

- Intuition: When pushing an item, pay \$2.
 - \$1 pays for the *push*.
 - \$1 is prepayment for it being popped by either *pop* or *multipop*.
 - Since each item on the stack has \$1 credit, the credit can never go negative.
 - The total amortized cost in the worst case is: $2n \in O(n)$
 - It is an upper bound on total actual cost.

Accounting Method: Binary Counter Example

- Charge \$2 to set a bit to 1.
 - \$1 pays for setting a bit to 1.
 - \$1 is prepayment for flipping it back to 0.
 - Have \$1 of credit for every 1 in the counter.
 - Therefore, credit ≥ 0 .
- Amortized cost of Increment:
 - Cost of resetting bits to 0 is paid by credit.
 - At most 1 bit is set to 1 in each increment operation.
 - Therefore, amortized $cost \le 2 .
 - For *n* operations, the total amortized cost in the worst case is $2n \in O(n)$.

Potential Method: Basic Idea

- Like the accounting method, but think of the credit as potential stored with the entire data structure.
 - Accounting method stores credit with specific items.
 - Potential method stores potential in the data structure as a whole.
 - Can release potential to pay for future operations.
 - It is the most flexible among the amortized analysis methods.

Potential Method: Credit

- Let D_0 = initial data structure $D_i = \text{data structure after } i\text{-th operation}$ $c_i = \text{actual cost of } i\text{-th operation}$ $\hat{C}_i = \text{amortized cost of } i\text{-th operation}$
- Potential function Φ maps each data structure to a real number, i.e., the potential of the data structure.
 - $\Phi(D_i)$ is the *potential* associated with data structure D_i .
- Define $\hat{c}_i = c_i + \Phi(D_i) \Phi(D_{i-1}) = c_i + \Delta \Phi(D_i)$.
- The total amortized cost for a sequence of n operations is

$$\sum_{i=1}^{n} \hat{c}_{i} = \sum_{i=1}^{n} (c_{i} + \Phi(D_{i}) - \Phi(D_{i-1})) = \sum_{i=1}^{n} c_{i} + \Phi(D_{n}) - \Phi(D_{0})$$

■ In practice, $\Phi(D_0) = 0$, $\Phi(D_i) \ge 0$ for all $i \rightarrow$ the amortized cost is always an upper bound on actual cost.

Potential Method: Stack Example

- Define potential function Φ on a stack = number of items on the stack.
- $D_0 = \text{empty} \rightarrow \Phi(D_0) = 0$
- Since the number of items on a stack is always ≥ 0 , $\Phi(D_i) \geq \Phi(D_0) = 0$

operation	actual cost	$\Delta\Phi$	amortized cost
PUSH	1	(s+1)-s=1	1 + 1 = 2
		where $s = \#$ of objects initially	
Pop	1	(s-1) - s = -1	1 - 1 = 0
MULTIPOP	$k' = \min(k, s)$	(s-k')-s=-k'	k' - k' = 0

 \rightarrow The total amortized cost of a sequence of n operations in the worst case is 2n = O(n).

Potential Method: Binary Counter (1)

- Define potential function $\Phi = b_i$ = number of 1's in the counter *after* the *i*-th **Increment**.
- Suppose the i-th operation resets t_i bits to 0.
- Then the actual cost $c_i \le t_i + 1$: reset t_i bits plus set at most one bit to 1.
- If $b_i = 0$, the *i*-th operation resets all *k* bits to 0 but no bit is set to 1, so $b_{i-1} = t_i = k \implies b_i = b_{i-1} t_i = 0$.
 - This happens only when all k bits are 1 before i-th operation.
- If $b_i > 0$, the *i*-th operation resets t_i bits to 0 and sets one bit to 1, so $b_i = b_{i-1} t_i + 1$.
- Either way, $b_i \le b_{i-1} t_i + 1$.

Potential Method: Binary Counter (2)

- Since $b_i \le b_{i-1} t_i + 1$, $\Delta(D_i) = \Phi(D_i) - \Phi(D_{i-1}) = b_i - b_{i-1} \le (b_{i-1} - t_i + 1) - b_{i-1} = 1 - t_i$
- Thus, $\hat{c}_i = c_i + \Delta(D_i) \le (t_i + 1) + (1 t_i) = 2$
- If counter starts at 0, $\Phi(D_0) = 0$.
 - \rightarrow amortized cost of a sequence of *n* operations =

$$\sum_{i=1}^{n} \hat{c}_{i} \leq \sum_{i=1}^{n} 2 = 2n = O(n)$$

Dynamic Table

- A table is a *dynamic table* if its content can change and we can't predict its maximum size.
- Examples: object tables and hash tables.
- We consider in-memory tables here.
- When the table fills up and needs more space (table overflow), create a new table with a larger space, copying all contents into the new table.
- Question: Why create the new table?
- Answer: In-memory tables are usually implemented using arrays, which need contiguous space.
- When it gets sufficiently small, might want to reallocate with a smaller size.

Dynamic Table: Table Expansion

 When a new insert causes a table overflow, create a new table with double the size of the old table.

```
TABLE-INSERT (T, x)

if T.size == 0

allocate T.table with 1 slot

T.size = 1

if T.num == T.size

allocate new-table with 2 \cdot T.size slots

insert all items in T.table into new-table

free T.table

T.table = new-table

T.size = 2 \cdot T.size

insert x into T.table

T.num = T.num + 1

// 1 elem insertion
```

Dynamic Table: Cost Analysis (1)

- Question: What is the worst-case cost of an insert?
- There are two types of inserts:
 - Type 1: It simply inserts a single object into an existing table.
 - *Type 2*: It causes the creation of a new table, copying of the old table contents to the new table, and removing the old table.
 - We assume that allocating memory for a new table and freeing the space for an old table takes constant time.
- Clearly Type 2 is the worst-case scenario and the cost can be very high due to the copying of the old table.
 - We assume the cost is the number of objects to be inserted.
- But how about the total cost for a sequence of n inserts?

Dynamic Table: Cost Analysis (2)

• Let $c_i = \cos t$ of the *i*-th insert. We have

$$c_i = \begin{cases} i & \text{if } i - 1 \text{ is an exact power of 2} \\ 1 & \text{otherwise} \end{cases}$$

Example:	Operation	Table Size	Cost
	Insert(1)	1	1
	Insert(2)	2	1 + 1
	<pre>Insert(3)</pre>	4	1 + 2
	Insert(4)	4	1
	Insert(5)	8	1 + 4
	Insert(6)	8	1
	Insert(7)	8	1
	Insert(8)	8	1
	Insert(9)	16	1 + 8

Dynamic Table: Aggregate Analysis

■ In general, the total cost of a sequence of *n* insert operations is

$$T(n) = \sum_{i=1}^{n} c_i \le n + \sum_{j=0}^{\lfloor \lg n \rfloor} 2^j = n + \frac{2^{\lfloor \lg n \rfloor + 1} - 1}{2 - 1}$$

$$\le n + (2n - 1) < 3n$$

- Per operation average cost of operation is T(n) / n = O(1).
- → a dynamic table has the same asymptotic cost as a fixed-size table
 - **Both** O(1) per insert operation.

Dynamic Table: Accounting Method

- For each new object x inserted, charge \$3 amortized cost.
 - \$1 for inserting x into the current table T_1 of starting size m.
 - \$1 for moving x to new table T_2 of size 2m after expanding T_1 .
 - \$1 for moving another object that has been moved once to T_2 .
 - Suppose there was no credit left after T_1 was created.
 - T_1 will expand again after another m insertions.
 - Each insertion (allocate \$3, use \$1 for itself) will put \$1 credit on each of the m items that were in T_1 when T_1 was created and will put \$1 credit on each new object inserted.
 - Will have \$2m\$ of credit by the time T_1 expands to T_2 , when there will be 2m objects to move.
- **→** Dynamic table has constant (amortized) cost per operation.