Amendments to the Claims

This Listing of Claims will replace all prior versions, and listings, of claims in the specification:

Listing of Claims:

1. (original) A compound according to the formula

$$\begin{array}{c|c}
R_1 & O & R_4 \\
\hline
 & V & X & R_3
\end{array}$$
(I)

wherein

R₁ and R₂ are independently hydrogen, cyano, halo, nitro, trifluoromethyl, optionally substituted amino, alkyl, alkoxy, aryl, aralkyl, heteroaryl or heteroaralkyl; or

R₁ and R₂ combined together with the carbon atoms they are attached to form an optionally substituted 5- to 7-membered aromatic or heteroaromatic ring;

R₃ is optionally substituted lower alkyl; or

R₃ and R₂ combined together with the amide group to which R₃ is attached and the carbon atoms to which R₂ and the amide are attached form an optionally substituted 5- to 7-membered carbocyclic or heterocyclic ring;

R₄ is optionally substituted alkyl, cycloalkyl, heterocyclyl, aryl, aralkyl or heteroaralkyl; or

R₄ and R₃ taken together with the nitrogen atom to which they are attached form a 5- to 8membered ring which may be optionally substituted or may contain another heteroatom selected from oxygen, nitrogen and sulfur; or

R₄ and R₃ taken together with the nitrogen atom to which they are attached form a 8- to 12-membered fused bicyclic ring, which may be optionally substituted or may contain another heteroatom selected from oxygen, nitrogen and sulfur;

W is -NR₅C(O)R₆, -NR₅C(O)OR₆, -NR₅C(O)NR₆R₇, -NR₅C(S)NR₆R₇, -NR₅S(O)₂R₆, -NR₅R₈, -C(O)NR₆R₇, -OR₉ or -OC(O)NR₆R₇ in which

R₅ and R₇ are independently hydrogen, optionally substituted alkyl or aralkyl; or

 R_5 and R_1 are optionally substituted alkylene which combined together with the nitrogen atom to which R_5 is attached and the carbon atoms to which W and R_1 are attached form a 5- or 6-membered ring;

R₆ is optionally substituted alkyl, cycloalkyl, heterocyclyl, aryl, aralkyl or heteroaralkyl;

R₈ is optionally substituted alkyl, aralkyl or heteroaralkyl;

R₉ is hydrogen, optionally substituted alkyl, cycloalkyl, heterocyclyl, heterocycloalkyl, aralkyl, heteroaralkyl, alkanoyl, aroyl or heteroaroyl; or

W is aryl or heteroaryl; or

W is hydrogen provided that R_1 is-NR₅Z in which Z is -C(O)R₆, -C(O)OR₆, -C(O)NR₆R₇, -C(S)NR₆R₇, -S(O)₂R₆, or -R₈; or

W and R₁ combined together with the carbon atoms to which they are attached form a 6-membered aromatic or heteroaromatic ring optionally substituted with alkyl, alkoxy, aryl, heteroaryl, halo, -NR₅Z, -C(O)NR₆R₇, -OR₉ or -OC(O)NR₆R₇;

X and Y are independently CH or nitrogen; or

-X=Y- if -CH₂-, oxygen, sulfur or -NR₁₀- in which R_{10} is hydrogen or lower alkyl; or a pharmaceutically acceptable salt thereof.

2. (original) A compound according to claim 1 wherein

R₁ and R₂ are independently hydrogen, halo, optionally substituted amino, lower alkyl or lower alkoxy; or

R₁ and R₂ combined together with the carbon atoms they are attached to form an optionally substituted 6-membered aromatic ring;

R₃ is lower alkyl; or

 R_3 and R_2 combined together with the amide group to which R_3 is attached and the carbon atoms to which R_2 and the amide are attached form an optionally substituted 5- to 7-membered carbocyclic or heterocyclic ring;

R₄ is optionally substituted alkyl, cycloalkyl, heterocyclyl, aryl, aralkyl or heteroaralkyl; or

R₄ and R₃ taken together with the nitrogen atom to which they are attached form a fully saturated optionally substituted 6-membered ring; or

R₄ and R₃ taken together with the nitrogen atom to which they are attached form a fully saturated 10-membered fused bicyclic ring, which may be optionally substituted or may contain another heteroatom selected from oxygen, nitrogen and sulfur;

 $W is -NR_5C(O)R_6, -NR_5C(O)OR_6, -NR_5C(O)NR_6R_7, -NR_5C(S)NR_6R_7, -NR_5S(O)_2R_6, -NR_5R, -C(O)NR_6R_7, -OR_9 or -OC(O)NR_6R_7 in which$

R₅ and R₇ are independently hydrogen or lower alkyl; or

 R_5 and R_1 are optionally substituted alkylene which combined together with the nitrogen atom to which R_5 is attached and the carbon atoms to which W and R_1 are attached form a 5-membered ring;

R₆ is optionally substituted alkyl, cycloalkyl, aryl, heteroaryl, aralkyl or heteroaralkyl;

R₈ is optionally substituted alkyl, aralkyl or heteroaralkyl;

R₉ is hydrogen, optionally substituted alkyl, aralkyl, heteroaralkyl or alkanoyl; or

W is aryl or heteroaryl; or

W is hydrogen provided that R_1 is -NR₅Z in which Z is -C(O)R₆, -C(O)OR₆, -C(O)NR₆R₇, -C(S)NR₆R₇, -S(O)₂R₆, or -R₈; or

W and R₁ combined together with the carbon atoms to which they are attached form a 6-membered aromatic ring optionally substituted with alkyl, alkoxy, aryl, heteroaryl, halo, -NR₅Z, -C(O)NR₆R٫, -OR₆ or-OC(O)NR₆R٫;

X and Y are independently CH or nitrogen; or

-X=Y- is -CH₂-, oxygen, sulfur or -NR₁₀- in which R₁₀ is hydrogen or lower alkyl; or a pharmaceutically acceptable salt thereof.

3. (original) A compound according to claim 2 wherein

R₁ and R₂ are independently hydrogen, halo, optionally substituted amino, lower alkyl or lower alkoxy; or

R₁ and R₂ combined together with the carbon atoms they are attached to form an optionally substituted 6-membered aromatic ring;

R₃ is methyl or ethyl; or

 R_3 and R_2 combined together with the amide group to which R_3 is attached and the carbon atoms to which R_2 and the amide are attached form a 5- to 7-membered carbocyclic ring;

 R_4 is -(CHR₁₁)_nR₁₂ in which

n is zero or an integer from 1 to 3;

R₁₁ is hydrogen, hydroxy or optionally substituted lower alkyl;

R₁₂ is aryl, heterocyclyl or cycloalkyl; or

R₄ and R₃ taken together with the nitrogen atom to which they are attached form an optionally substituted decahydroquinoline or decahydroisoquinoline which may contain another heteroatom selected from oxygen, nitrogen and sulfur;

 $W is -NR_5C(O)R_6, -NR_5C(O)OR_6, -NR_5C(O)NR_6R_7, -NR_5C(S)NR_6R_7, -NR_5S(O)_2R_6, -NR_5R_8, -C(O)NR_6R_7, -OR_9 \ or -OC(O)NR_6R_7 \ in \ which$

R₅ and R₇ are independently hydrogen or methyl; or

 R_5 and R_1 are alkylene which combined together with the nitrogen atom to which R_5 is attached and the carbon atoms to which W and R_1 are attached form a 5-membered ring;

R₆ is optionally substituted alkyl, aryl, hetroaryl, cycloalkyl, aralkyl or heteroaralkyl;

R₈ is optionally substituted alkyl, aralkyl or heteroaralkyl;

R₉ is hydrogen, optionally substituted alkyl, aralkyl, heteroaralkyl or alkanoyl; or

W is optionally substituted aryl or heteroaryl; or

W is hydrogen provided that R_1 is -NR₅Z in which Z is -C(O)R₆, -C(O)OR₆, -C(O)NR₆R₇, -C(S)NR₆R₇, -S(O)₂R₆, or -R₈; or

W and R₁ combined together with the carbon atoms to which they are attached form a 6-membered aromatic ring optionally substituted with alkyl, alkoxy, aryl, heteroaryl, halo, -NR₅Z, -C(O)NR₀R₀, -OR₃ or-OC(O)NR₀R₀;

X is CH;

Y is CH or nitrogen; or

-X=Y- is -CH₂-, oxygen, sulfur or -NR₁₀- in which R_{10} is hydrogen or methyl; or a pharmaceutically acceptable salt thereof.

4. (original) A compound according to claim 3 wherein

R₁ and R₂ are independently hydrogen, halo, lower alkyl or lower alkoxy; or

R₁ and R₂ combined together with the carbon atoms they are attached to form an optionally substituted 6-membered aromatic ring;

R₃ is methyl or ethyl;

 R_4 is -(CHR₁₁)_nR₁₂ in which

n is zero or an integer of 1;

R₁₁ is hydrogen;

 R_{12} is optionally substituted cyclohexyl; or R_{12} is optionally substituted 1-adamantyl providing that n is an integer of 1;

W is -NR₅C(O)R₆, -NR₅C(O)OR₆, -NR₅C(O)NR₆R₇, -NR₅C(S)NR₆R₇, -NR₅S(O)₂R₆, -NR₅R₈, -C(O)NR₆R₇, -OR₉ or -OC(O)NR₆R₇ in which

R₅ and R₇ are independently hydrogen or methyl;

R₆ is optionally substituted alkyl, aryl, hetroaryl, cycloalkyl, aralkyl or heteroaralkyl;

R₈ is optionally substituted alkyl, aralkyl or heteroaralkyl;

R₉ is hydrogen, optionally substituted alkyl, aralkyl, heteroaralkyl or alkanoyl; or

W is aryl or heteroaryl; or

W and R_1 combined together with the carbon atoms to which they are attached form a 6-membered aromatic ring optionally substituted with alkyl, alkoxy, aryl, heteroaryl, halo, -NR₅Z, -C(O)NR₆R₇, -OR₉ or -OC(O)NR₆R₇;

X is CH;

Y is CH or nitrogen; or

-X=Y- is -CH₂-, oxygen, sulfur or $-NR_{10}$ - in which R_{10} is hydrogen or methyl;

or a pharmaceutically acceptable salt thereof.

5. (original) A compound according to claim 4 wherein

R₁ is hydrogen;

R₂ is hydrogen, chloro or methoxy;

 R_3 is methyl; R_4 is -(CHR₁₁)_nR₁₂ in which

n is zero or an integer of 1;

R₁₁ is hydrogen;

 R_{12} is optionally substituted cyclohexyl; or R_{12} is optionally substituted 1-adamantyl providing that n is an integer of 1;

W is -NR₅C(O)R₆, -NR₅C(O)OR₆, -NR₅C(O)NR₆R₇, - NR₅C(S)NR₆R₇, -NR₅S(O)₂R₆, -NR₅R₈, - C(O)NR₆R₇, -OR₉ or -OC(O)NR₆R₇ in which

R₅ and R₇ are independently hydrogen or methyl;

R₆ is optionally substituted alkyl, aryl, hetroaryl, cycloalkyl, aralkyl or heteroaralkyl;

R₈ is optionally substituted alkyl, aralkyl or heteroaralkyl;

R₉ is hydrogen, optionally substituted alkyl, aralkyl, heteroaralkyl or alkanoyl;

X is CH;

Y is CH;

or a pharmaceutically acceptable salt thereof.

6. (original) A compound according to claim 4 wherein

R₁ is hydrogen;

R₂ is hydrogen or methyl;

R₃ is methyl;

 R_4 is -(CHR₁₁)_nR₁₂ in which

n is an integer of 1;

R₁₁ is hydrogen;

R₁₂ is optionally substituted 1-adamantyl;

W is optionally substituted aryl or heteroaryl; or

W and R_1 combined together with the carbon atoms to which they are attached form a 6-membered aromatic ring optionally substituted with alkyl, alkoxy, aryl, heteroaryl, halo, -NR₅Z, -C(O)NR₆R₇, -OR₉ or -OC(O)NR₆R₇ in which

R₅ and R₇ are independently hydrogen or methyl;

R₆ is optionally substituted alkyl, aryl, hetroaryl, cycloalkyl, aralkyl or heteroaralkyl;

R₉ is hydrogen, optionally substituted alkyl, aralkyl, heteroaralkyl or alkanoyl;

Z is $-C(O)R_6$, $-C(O)OR_6$, $-C(O)NR_6R_7$, $-C(S)NR_6R_7$, $-S(O)_2R_6$, or $-R_8$ in which

R₈ is optionally substituted alkyl, aralkyl or heteroaralkyl;

-X=Y- is -CH₂-, oxygen or -NR₁₀- in which R_{10} is hydrogen or methyl; or a pharmaceutically acceptable salt thereof.

7. (original) A compound according to claim 3 of the formula

$$R_1 \longrightarrow R_{14}$$

$$R_1 \longrightarrow R_{14}$$

$$(Ia)$$

wherein

R₁ and R₂ are independently hydrogen, halo, optionally substituted amino, lower alkyl or lower alkoxy; or

R₁ and R₂ combined together with the carbon atoms to which they are attached form an optionally substituted 6-membered aromatic ring;

W is -NR₅C(O)R₆, -NR₅C(O)OR₆, -NR₅C(O)NR₆R₇, -NR₅C(S)NR₆R₇, -NR₅S(O)₂R₆, -NR₅R₈, -C(O)NR₆R₇, -OR₉ or -OC(O)NR₆R₇ in which

R₅ and R₇ are independently hydrogen or methyl; or

 R_5 and R_1 are alkylene which combined together with the nitrogen atom to which R_5 is attached and the carbon atoms to which W and R_1 are attached form a 5-membered ring;

R₆ is optionally substituted alkyl, aryl, hetroaryl, cycloalkyl, aralkyl or heteroaralkyl;

R₈ is optionally substituted alkyl, aralkyl or heteroaralkyl;

R₉ is hydrogen, optionally substituted alkyl, aralkyl, heteroaralkyl or alkanoyl; or

W is aryl or heteroaryl; or

W is hydrogen provided that R_1 is -NR₅Z in which Z is -C(O)R₆, -C(O)OR₆, -C(O)NR₆R₇, -C(S)NR₆R₇, -S(O)₂R₆, or -R₈; or

W and R_1 combined together with the carbon atoms they are attached to form a 6-membered aromatic ring optionally substituted with alkyl, alkoxy, aryl, heteroaryl, halo, -NR₅Z, -C(O)NR₆R₇, -OR₉ or-OC(O)NR₆R₇;

X is CH;

Y is CH or nitrogen; or

-X=Y- is -CH₂-, oxygen, sulfur or -NR₁₀- in which R₁₀ is hydrogen or methyl;

 R_{13} and R_{14} are independently hydrogen, hydroxy or optionally substituted lower alkyl; or a pharmaceutically acceptable salt thereof.

8. (original) A compound according to claim 7 wherein

R₁ is hydrogen;

R₂ is hydrogen, chloro, methoxy, ethoxy, propoxy or optionally substituted amino;

W is - NR₅C(O)R₆, -NR₅C(O)OR₆, -NR₅C(O)NR₆R₇, -NR₅C(S)NR₆R₇, -NR₅S(O)₂R₆, -NR₅R, -C(O)NR₆R₇, -OR₉ or -OC(O)NR₆R₇ in which

R₅ and R₇ are independently hydrogen or methyl;

R₆ is optionally substituted alkyl, aryl, hetroaryl, cycloalkyl, aralkyl or heteroaralkyl;

R₈ is optionally substituted alkyl, aralkyl or heteroaralkyl;

Re is hydrogen, optionally substituted alkyl, aralkyl, heteroaralkyl or alkanoyl;

X is CH;

Y is CH;

R₁₃ and R₁₄ are independently hydrogen, hydroxy or optionally substituted lower alkyl; or a pharmaceutically acceptable salt thereof.

9. (original) A compound according to claim 7 wherein

R₁ is methyl, methoxy or optionally substituted amino;

R₂ is hydrogen;

W is -NR₅C(O)R₆, -NR₅C(O)OR₆, -NR₅C(O)NR₆R₇, -NR₅C(S)NR₆R₇, -NR₅S(O)₂R₆, -NR₅R₈, -C(O)NR₆R₇, -OR₉ or -OC(O)NR₆R₇ in which

R₅ and R₇ are independently hydrogen or methyl;

R₆ is optionally substituted alkyl, aryl, hetroaryl, cycloalkyl, aralkyl or heteroaralkyl;

R₈ is optionally substituted alkyl, aralkyl or heteroaralkyl;

R₉ is hydrogen, optionally substituted alkyl, aralkyl, heteroaralkyl or alkanoyl;

X is CH;

Y is CH:

R₁₃ and R₁₄ are independently hydrogen, hydroxy or optionally substituted lower alkyl; or a pharmaceutically acceptable salt thereof.

10. (original) A compound according to claim 7 wherein

R₁ and R₂ are hydrogen;

W is -NR₅C(O)R₆, -NR₅C(O)OR6; -NR₅C(O)NR₆R₇, -NR₅C(S)NR₆R₇, -NR₅S(O)₂R₆, -NR₅R₈, -C(O)NR₆R₇, -OR₉ or -OC(O)NR₆R₇ in which

R₅ and R₇ are independently hydrogen or methyl; or

R₆ is optionally substituted alkyl, aryl, hetroaryl, cycloalkyl, aralkyl or heteroaralkyl;

R₈ is optionally substituted alkyl, aralkyl or heteroaralkyl;

R₉ is hydrogen, optionally substituted alkyl, aralkyl, heteroaralkyl or alkanoyl;

X is CH;

Y is nitrogen;

 R_{13} and R_{14} are independently hydrogen, hydroxy or optionally substituted lower alkyl; or a pharmaceutically acceptable salt thereof.

11. (original) A compound according to claim 7 wherein

W is hydrogen;

R₂ is hydrogen;

 R_1 is -NR₅Z in which Z is -C(O)R₆, -C(O)OR₆, -C(O)NR₆R₇, -C(S)NR₆R₇, -S(O)₂R₆ or -R₈ in which

R₅ and R₇ are independently hydrogen or methyl;

R₆ is optionally substituted alkyd, aryl, hetroaryl, cycloalkyl, aralkyl or heteroaralkyl;

R₈ is optionally substituted alkyl, aralkyl or heteroaralkyl;

X is CH;

Y is CH;

 R_{13} and R_{14} are independently hydrogen, hydroxy or optionally substituted lower alkyl; or a pharmaceutically acceptable salt thereof.

12. (original) A compound according to claim 7 of the formula

$$R_{13}$$
 (lb)

wherein

 $W is -NR_5C(O)R_6, -NR_5C(O)OR_6, -NR_5C(O)NR_6R_7, -NR_5C(S)NR_6R_7, -NR_5S(O)_2R_6, -NR_5R_8, -NR_5R_8$

 R_5 and R_7 are independently hydrogen or methyl;

R₆ is optionally substituted alkyl, aryl, hetroaryl, cycloalkyl, aralkyl or heteroaralkyl;

R₈ is optionally substituted alkyl, aralkyl or heteroaralkyl;

R₉ is hydrogen, optionally substituted alkyl, aralkyl, heteroaralkyl or alkanoyl;

Y is CH;

 R_{13} and R_{14} are independently hydrogen, hydroxy or optionally substituted lower alkyl; or a pharmaceutically acceptable salt thereof.

13. (original) A compound according to claim 7 of the formula

$$R_{15}$$

$$R_{14}$$

$$R_{15}$$

$$R_{16}$$

$$R_{16}$$

$$R_{16}$$

wherein

R₂ is hydrogen, halo or alkoxy;

Y is CH or nitrogen;

 R_{13} and R_{14} are independently hydrogen, hydroxy or optionally substituted lower alkyl;

 $R_{15} \text{ is hydrogen, -NR}_5C(O)R_6, -NR}_5C(O)OR_6, -NR}_5C(O)NR_6R_7, -NR}_5C(S)NR_6R_7, -NR}_5C(O)R_6, -NR}_5C(O)NR_6R_7, -OR}_9 \text{ or -OC}_9(O)NR}_6R_7, in which \\$

R₅ and R₇ are independently hydrogen or methyl;

R₆ is optionally substituted alkyl, aryl, hetroaryl, cycloalkyl, aralkyl or heteroaralkyl;

R₈ is optionally substituted alkyl, aralkyl or heteroaralkyl;

R₉ is hydrogen, optionally substituted alkyl, aralkyl, heteroaralkyl or alkanoyl; or a pharmaceutically acceptable salt thereof.

14. (original) A compound according to claim 7 of the formula

$$\begin{array}{c|c}
R_2 & O \\
N & & \\
Z & & \\
\end{array}$$

$$\begin{array}{c|c}
R_{13} \\
R_{14} \\
\end{array}$$
(Id)

wherein

R₂ is hydrogen;

Z is $-C(O)R_6$, $-C(O)OR_6$, $-C(O)NR_6R_7$, $-C(S)NR_6R_7$, $-S(O)_2R_6$, or $-R_8$ in which

R₆ is optionally substituted alkyl, aryl, hetroaryl, cycloalkyl, aralkyl or heteroaralkyl;

R₇ is hydrogen or methyl;

R₈ is hydrogen, optionally substituted alkyl, aralkyl or heteroaralkyl;

Y is CH;

 R_{13} and R_{14} are independently hydrogen, hydroxy or optionally substituted lower alkyl; or a pharmaceutically acceptable salt thereof.

15. (original) A compound according to claim 7 of the formula

$$R_1$$
 R_{14} R_{14} R_{14} R_{14} R_{14} R_{14} R_{14} R_{14} R_{14}

wherein

R₁ and R₂ are independently hydrogen, halo or lower alkyl;

W is aryl or heteroaryl; or

W and R_1 combined together with the carbon atoms to which they are attached form a 6-membered aromatic ring optionally substituted with alkyl, alkoxy, aryl, heteroaryl, halo, -NR₅Z, -C(O)NR₆R₇, -OR₉ or -OC(O)NR₆R₇ in which

Z is $-C(O)R_{6}$, $-C(O)OR_{6}$, $-C(O)NR_{6}R_{7}$, $-C(S)NR_{6}R_{7}$, $-S(O)_{2}R_{6}$, or $-R_{8}$;

R₅ and R₇ are independently hydrogen or methyl;

R₆ is optionally substituted alkyl, aryl, hetroaryl, cycloalkyl, aralkyl or heteroaralkyl;

R₈ is optionally substituted alkyl, aralkyl or heteroaralkyl;

R₉ is hydrogen, optionally substituted alkyl, aralkyl, heteroaralkyl or alkanoyl;

 R_{13} and R_{14} are independently hydrogen, hydroxy or optionally substituted lower alkyl; or a pharmaceutically acceptable salt thereof.

16. (original) A compound according to claim 7 of the formula

$$R_{16}$$

$$R_{17}$$

$$R_{18}$$

$$R_{19}$$

wherein

R₂ is hydrogen, halo or lower alkyl;

R₁₃ and R₁₄ are independently hydrogen, hydroxy or optionally substituted lower alkyl;

R₁₆ is hydrogen, halo, alkyl, aryl, heteroaryl or -NR₅Z in which

Z is $-C(O)R_6$, $-C(O)OR_6$, $-C(O)NR_6R_7$, $-C(S)NR_6R_7$, $-S(O)_2R_6$, or $-R_8$;

R₅ and R₇ are independently hydrogen or methyl;

R₆ is optionally substituted alkyl, aryl, hetroaryl, cycloalkyl, aralkyl or heteroaralkyl;

 R_{8} is optionally substituted alkyl, aralkyl or heteroaralkyl; or a pharmaceutically acceptable salt thereof.

17. (original) A compound according to claim 7 of the formula

$$R_{16}$$

$$R_{10}$$

$$R_{16}$$

$$R_{10}$$

$$R_{10}$$

$$R_{13}$$

$$R_{14}$$

$$R_{19}$$

wherein

R₂ is hydrogen, halo or lower alkyl;

R₁₀ is hydrogen or methyl;

 R_{13} and R_{14} are independently hydrogen, hydroxy or optionally substituted lower alkyl;

R₁₆ is hydrogen, halo, alkyl, aryl, heteroaryl or -NR₅Z in which

Z is
$$-C(O)R_{6}$$
, $-C(O)OR_{6}$, $-C(O)NR_{6}R_{7}$, $-C(S)NR_{6}R_{7}$, $-S(O)_{2}R_{6}$, or $-R_{8}$;

R₅ and R₇ are independently hydrogen or methyl;

R₆ is optionally substituted alkyl, aryl, hetroaryl, cycloalkyl, aralkyl or heteroaralkyl;

R₈ is optionally substituted alkyl, aralkyl or heteroaralkyl;

or a pharmaceutically acceptable salt thereof.

18. (original) A compound according to claim 3 of the formula

wherein

 R_1 and R_2 are independently hydrogen, halo, optionally substituted amino, lower alkyl or lower alkoxy; or

R₁ and R₂ combined together form an optionally substituted 6-membered aromatic ring;

W is -NR₅C(O)R₆, NR₅C(O)OR₆, -NR₅C(O)NR₆R₇, -NR₅C(S)NR₆R₇, -NR₅S(O)₂R₆, -NR₅R₈, -C(O)NR₆R₇, -OR₉ or -OC(O)NR₆R₇ in which

R₅ and R₇ are independently hydrogen or methyl; or

R₅ and R₁ are alkylene which combined together with the nitrogen atom to which R₅ is attached and the carbon atoms to which W and R₁ are attached form a 5-membered ring;

R₆ is optionally substituted alkyl, aryl, hetroaryl, cycloalkyl, aralkyl or heteroaralkyl;

R₈ is optionally substituted alkyl, aralkyl or heteroaralkyl;

R₉ is hydrogen, optionally substituted alkyl, aralkyl, heteroaralkyl or alkanoyl; or

W is aryl or heteroaryl; or

W and R_1 combined together with the carbon atoms to which they are attached form a 6-membered aromatic ring optionally substituted with alkyl, alkoxy, aryl, heteroaryl, halo, -NR₅Z, -C(O)NR₆R₇, -OR₉ or -OC(O)NR₆R₇ in which

Z is $-C(O)R_6$, $-C(O)OR_6$, $-C(O)NR_6R_7$, $-C(S)NR_6R_7$, $-S(O)_2R_6$, or $-R_8$;

R₁₃ and R₁₄ are independently hydrogen, hydroxy or optionally substituted lower alkyl;

X is CH;

Y is CH or nitrogen; or

-X=Y- is -CH₂-, oxygen, sulfur or –NR₁₀- in which R₁₀ is hydrogen or methyl; or a pharmaceutically acceptable salt thereof.

19. (original) A compound according to claim 18 wherein

R₁ is hydrogen;

R₂ is hydrogen, chloro, methoxy, ethoxy, propoxy or optionally substituted amino;

W is -NR₅C(O)R₆, -NR₅C(O)OR₆, -NR₅C(O)NR₆R₇, -NR₅C(S)NR₆R₇, -NR₅S(O)₂R₆, -NR₅R₈, -C(O)NR₆R₇, -OR₉ or -OC(C)NR₆R₇ in which

R₅ and R₇ are independently hydrogen or methyl;

R₆ is optionally substituted alkyl, aryl, hetroaryl, cycloalkyl, aralkyl or heteroaralkyl;

R₈ is optionally substituted alkyl, aralkyl or heteroaralkyl;

R_a is hydrogen, optionally substituted alkyl, aralkyl, heteroaralkyl or alkanoyl;

X is CH;

Y is CH:

 R_{13} and R_{14} are independently hydrogen, hydroxy or optionally substituted lower alkyl; or a pharmaceutically acceptable salt thereof.

20. (original) A compound according to claim 18 wherein

R₁ is methyl, methoxy or optionally substituted amino;

R₂ is hydrogen;

W is -NR₅C(O)R₆, -NR₅C(O)OR₆, -NR₅C(O)NR₆R₇, -NR₅C(S)NR₆R₇, -NR₅S(O)₂R₆, -NR₅R₈, -C(O)NR₆R₇, -OR₉ or -OC(O)NR₆R₇ in which

R₅ and R₇ are independently hydrogen or methyl;

R₆ is optionally substituted alkyl, aryl, hetroaryl, cycloalkyl, aralkyl or heteroaralkyl;

R₈ is optionally substituted alkyl, aralkyl or heteroaralkyl;

R₉ is hydrogen, optionally substituted alkyl, aralkyl, heteroaralkyl or alkanoyl;

X is CH;

Y is CH;

R₁₃ and R₁₄ are independently hydrogen, hydroxy or optionally substituted lower alkyl; or a pharmaceutically acceptable salt thereof.

21. (original) A compound according to claim 18 wherein

R₁ and R₂ are hydrogen;

W is -NR₅C(O)R₆, -NR₅C(O)OR₆, -NR₅C(O)NR₆R₇, -NR₅C(S)NR₆R₇, -NR₅S(O)₂R₆, -NR₅R₈, -C(O)NR₆R₇, -OR₉ or -OC(O)NR₆R₇ in which

R₅ and R₇ are independently hydrogen or methyl;

R₆ is optionally substituted alkyl, aryl, hetroaryl, cycloalkyl, aralkyl or heteroaralkyl;

R₈ is optionally substituted alkyl, aralkyl or heteroaralkyl;

R₉ is hydrogen, optionally substituted alkyl, aralkyl, heteroaralkyl or alkanoyl;

X is CH;

Y is nitrogen;

 R_{13} and R_{14} are independently hydrogen, hydroxy or optionally substituted lower alkyl; or a pharmaceutically acceptable salt thereof.

22. (original) A compound according to claim 18 of the formula

wherein

W is -NR₅C(O)R₆, -NR₅C(O)OR₆, -NR₅C(O)NR₆R₇, -NR₅C(S)NR₆R₇, -NR₅S(O)₂R₆, -NR₅R₈, -C(O)NR₆R₇, -OR₉ or -OC(O)NR₆R₇ in which

R₅ and R₇ are independently hydrogen or methyl;

R₆ is optionally substituted alkyl, aryl, hetroaryl, cycloalkyl, aralkyl or heteroaralkyl;

R₈ is optionally substituted alkyl, aralkyl or heteroaralkyl;

R₉ is hydrogen, optionally substituted alkyl, aralkyl, heteroaralkyl or alkanoyl;

Y is CH;

 R_{13} and R_{14} are independently hydrogen, hydroxy or optionally substituted lower alkyl; or a pharmaceutically acceptable salt thereof.

23. (original) A compound according to claim 18 of the formula

wherein

R₂ is hydrogen;

Z is $-C(O)R_6$, $-C(O)OR_6$, $-C(O)NR_6R_7$, $-C(S)NR_6R_7$, $-S(O)_2R_6$, or $-R_8$ in which

R₆ is optionally substituted-alkyl, aryl, hetroaryl, cycloalkyl, aralkyl or heteroaralkyl;

R₇ is hydrogen or methyl;

R₈ is hydrogen, optionally substituted alkyl, aralkyl or heteroaralkyl;

Y is CH;

 R_{13} and R_{14} are independently hydrogen, hydroxy or optionally substituted lower alkyl; or a pharmaceutically acceptable salt thereof.

24. (original) A compound according to claim 3 of the formula

$$\begin{array}{cccc}
& & & & \\
& & & \\
V & & & \\
W & & & \\
R_1 & & & \\
\end{array} (Ik)$$

wherein

R₁ is hydrogen;

 R_4 is -(CHR₁₁)_nR₁₂ in which

n is zero or an integer from 1 to 2;

R₁₁ is hydrogen;

R₁₂ is aryl, heteroaryl, heterocyclyl or cycloalkyl;

W is -NR₅C(O)R₆, -NR₅C(O)OR₆, -NR₅C(O)NR₆R₇, -NR₅C(S)NR₆R₇, -NR₅S(O)₂R₆, -NR₅R₈, -C(O)NR₆R₇, -OR₉ or -OC(O)NR₆R₇ in which

R₅ and R₇ are independently hydrogen or methyl;

R₆ is optionally substituted alkyl, aryl, hetroaryl, cycloalkyl, aralkyl or heteroaralkyl;

R₈ is optionally substituted alkyl, aralkyl or heteroaralkyl;

R₉ is (C₁₋₆)alkyl substituted by cycloalkyl, alkoxy, cycloalkoxy, alkylthio, aryloxy, heterocyclooxy, arylthio, aryl or heteroaryl;

Y is CH;

m is zero or an integer from 1 to 2;

or a pharmaceutically acceptable salt thereof.

- 25. (original) A method for the inhibition of 11β -hydroxysteroid dehydrogenase type 1 (11β -HSD1) oxoreductase activity in mammals, which method comprises administering to a mammal in need thereof a therapeutically effective amount of a compound of claim 1.
- 26. (original) A method to control glucocorticoid concentration in mammals which method comprises administering to a mammal in need thereof a therapeutically effective amount of a compound of claim 1.
- 27. (original) A method according to claim 26, which comprises lowering intracellular and hepatic glucocorticoid concentrations, increasing insulin sensitivity in the adipose tissue and in the muscle, reducing lipolysis and free fatty acid production in the adipose tissue, and inhibiting hepatic gluconeogenesis.
- 28. (original) A method for the treatment of conditions associated with 11β-HSD1 oxoreductase activity in mammals which comprises administering to a mammal in need thereof a therapeutically effective amount of a compound of claim 1.
- 29. (original) A method for the treatment of glucocorticoid associated disorders in mammals which method comprises administering to a mammal in need thereof a therapeutivally effective amount of a compound of claim 1.

- 30. (original) A method according to claim 29, which comprises administering a compound of claim 1 in combination with a therapeutically effective amount of insulin, insulin derivative or mimetic, insulin secretagogue, insulinotropic sulfonylurea receptor ligand, insulin sensitizer, biguanide, alpha-glucosidase inhibitor, GLP-1, GLP-1 analog or mimetic, DPP-IV inhibitor, hypolipidemic agent, anti-obesity agent, cholestyramine, fibrate, nicotinic acid, or aspirin.
- 31. (original) A method for the treatment of impaired glucose tolerance in Type 2 diabetes which method comprises administering to a mammal in need thereof a therapeutically effective amount of a compound of claim 1.
- 32. (original) A method for the treatment of Syndrome-X, dyslipidemia, hypertension and central obesity which method comprises administering to a mammal in need thereof a therapeutically effective amount of a compound of claim 1.
- 33. (original) A pharmaceutical composition comprising a compound of claim 1 preferably in a therapeutically effective amount, in combination with one or more pharmaceutically acceptable carriers.
- 34. (currently amended) A pharmaceutical composition comprising a compound according to any one of claims 1 to 24 preferably in a therapeutically effective amount, in combination with insulin, insulin derivative or mimetic, insulin secretagogue, insulinotropic sulfonylurea receptor ligand, insulin sensitizer, biguanide, alpha-glucosidase inhibitor, GLP-1, GLP-1 analog or mimetic, DPP-IV inhibitor, hypolipidemic agent, anti-obesity agent, cholestyramine, fibrate, nicotinic acid, or aspirin, preferably in a therapeutically effective amount.
- 35. (currently amended) A pharmaceutical composition according to claim 33 or 34, for the treatment of impaired glucose tolerance, Type 2 diabetes and central obesity.
- 36. (currently amended) Use of a pharmaceutical composition according to claim 33 er 34, for the preparation of a medicament for the treatment of conditions associated with 11β -HSD1 oxoreductase activity.
- 37. (currently amended) A compound according to any one of claims 1 to 24, for use as a medicament.
- 38. (currently amended) Use of a compound according to any one of claims 1 to 24, for the preparation of a pharmaceutical composition for the treatment of conditions associated with 11β-HSD1 oxoreductase activity.

39. (currently amended) Use according to any one of claims 36 or 38, wherein the condition associated with 11 β -HSD1 oxoreductase activity is selected from impaired glucose tolerance, Type 2 diabetes, insulin resistance, dyslipidemia, metabolic Syndrome X and central obesity.