Kvadratická funkcia

Učili sme sa riešiť kvadratickú rovnicu a nerovnicu. Pri riešení týchto úloh sme najčastejšie používali:

diskriminant

$$D = b^2 - 4 \cdot a \cdot c$$

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2 \cdot a}$$

Koeficienty a, b, c sme určovali z trojčlena

$$ax^2 + bx + c$$

Kvadratická funkcia obsahuje taký istý **trojčlen** ako kvadratická rovnica a nerovnica.

Kvadratická funkcia f s premennou x je funkcia daná rovnicou:

$$f: y = ax^2 + bx + c, \ a \neq 0$$

ax² kvadratický členbx lineárny člen

..... absolútny člen

Grafom kvadratickej funkcie je vzhľadom na jej definičný obor parabola alebo jej časti.

Z grafu funkcie sme určovali definičný obor, obor hodnôt, monotónnosť, paritu, ohraničenosť; zisťovali sme, či je funkcia prostá alebo nie je prostá. Napríklad:

Poznámka:

Do definičného oboru patria hodnoty argumentu x.

Do oboru hodnôt patria funkčné hodnoty y.

D(f)	H(f)	Ohr. dolné		Rastúca pre x	Klesajúca pre x	Párna	Nepárna	Prostá
R	$\langle -1; \infty \rangle$	-1	Nemá.	⟨1;∞)	$(-\infty;1)$	Nie je.	Nie je.	Nie je.

Poznámka:

Funkcia **je párna**, ak je jej graf symetrický podľa osi y.

Funkcia **je nepárna**, ak je jej graf symetrický podľa začiatku sústavy súradníc – **bodu** 0[0;0].

Funkcia je prostá vtedy, ak je na celom definičnom obore len rastúca, alebo len klesajúca.

Príklad 1 Uveďte, ktorá z daných funkcií je kvadratickou funkciou.

$$f_1: y = x \cdot (x-4)$$
 $f_2: y = 2x-4$ $f_3: y = (x-3)^2 - 5$ $f_4: y = x \cdot (x+1) - x^2$

Riešenie:

Pri zisťovaní, či funkcia je funkciou kvadratickou, **upravujeme výraz s premennou** x vo funkcii na **trojčlen** $ax^2 + bx + c$.

Ak sa výraz upraviť na tento trojčlen dá, tak funkcia je funkciou kvadratickou.

$$f_1: y = x \cdot (x-4) = x^2 - 4x$$
Získaný dvojčlen $x^2 - 4x$
upravíme na trojčlen $1 \cdot x^2 - 4 \cdot x + 0$
v ktorom $a = 1; b = -4; c = 0$.

 $f_1: y = x \cdot (x-4)$ je kvadratickou funkciou.

$$f_2: y = 2x - 4$$

Táto funkcia sa nedá upraviť na trojčlen, je to funkcia **typu** y = ax + b.

To znamená, že funkcia $f_2: y = 2x - 4$ je funkcia lineárna.

$$f_3: y = (x-3)^2 - 5 = (x-3) \cdot (x-3) - 5 = x^2 - 6x + 9 - 5 = x^2 - 6x + 4$$

Úpravou výrazu $(x-3)^2 - 5$ sme získali **trojčlen** $x^2 - 6x + 4$, v ktorom $a = 1; b = -6; c = 4$.

Preto $f_3: y = (x-3)^2 - 5$ je kvadratickou funkciou.

$$f_A: v = x \cdot (x+1) - x^2 = x^2 + x - x^2 = x$$

Úpravou výrazu $x \cdot (x+1) - x^2$ sme získali funkciu $f_4 : y = x$, funkciu typu y = kx.

To znamená, že funkcia $f_4: y = x \cdot (x+1) - x^2$ je funkcia priamej úmernosti.

Príklad 2

Narysujte grafy kvadratických funkcií. Určte ich obory, ohraničenosť, monotónnosť, paritu. Uveďte, či je funkcia prostá. Funkcie sú definované pre $x \in R$.

$$g_1: y = x^2 - 2x - 3$$
 $g_2: y = x^2 + 2x$ $g_3: y = -x^2 - 1$ $g_4: y = -\frac{x^2}{4}$

Riešenie 2:

Grafy daných kvadratických funkcií budeme zostrojovať pomocou troch hodnôt daných funkcií:

- pomocou nulových bodov funkcie (sú spravidla dva a sú to zvyčajne korene • kvadratickej rovnice $x_{1,2} = \frac{-b \pm \sqrt{D}}{2a}$)
- pomocou vrcholu paraboly (vrchol tvorí "akoby stred symetrie", preto je jeho x ová súradnica v strede medzi x_1 a x_2 ; platí pre ňu vzťah $x_0 = \frac{-b}{2\pi}$)

Body pre graf si zvyčajne dávame do tabuľky.

x	$x_2 = \frac{-b - \sqrt{D}}{2a}$	$x_0 = \frac{-b}{2a}$	$x_1 = \frac{-b + \sqrt{D}}{2a}$
y = f(x)	$y_2 = f(x_2)$	$y_0 = f(x_0)$	$y_1 = f(x_1)$

Zostrojíme si graf prvej funkcie g_1 : $y = x^2 - 2x - 3$.

Určíme si postupne:

nulové body funkcie

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a} = \frac{2 \pm \sqrt{16}}{2 \cdot 1} = \frac{2 \pm 4}{2}$$
 $x_1 = 3$
 $x_2 = -1$

vrchol paraboly

 $x_1 = 3$
 $x_2 = -1$

Výpočet diskriminantu:

 $x_1 = 3$
 $x_2 = -1$
 $x_1 = 3$
 $x_2 = -1$
 $x_1 = 3$
 $x_2 = -1$
 $x_2 = -1$
 $x_1 = 3$
 $x_2 = -1$
 $x_2 = -1$
 $x_3 = -1$
 $x_3 = -1$
 $x_4 = -1$
 $x_4 = -1$
 $x_5 = -1$
 $x_5 = -1$

$$x_1 = 3$$

$$x_2 = -1$$

$$a = 1; b = -2; c = -3$$

$$D = b^2 - 4 \cdot a \cdot c$$

$$D = (-2)^2 - 4 \cdot 1 \cdot (-3)$$

$$D = 4 + 12 = 16$$

vrchol paraboly

vrchol paraboly
$$x_0 = \frac{-b}{2a} = \frac{-(-2)}{2 \cdot 1} = 1 \qquad y_0 = 1^2 - 2 \cdot 1 - 3 = -4 \qquad V[1; -4]$$

Poznámka: Tieto dve hodnoty nebolo treba počítať, hovoríme o nulových bodoch funkcie.

$D(g_1)$	$H(g_1)$	Ohr. d	Ohr. h	Rastúca pre x	Klesajúca pre x	Párna	Nepárna	Prostá
R	⟨-4;∞)	-4	Nemá.	⟨1;∞)	$(-\infty;1)$	Nie je.	Nie je.	Nie je.

Poznámka:

Rovnicu funkcie $g_1: y = x^2 - 2x - 3$ vieme pomocou **vrcholu paraboly** zapísať aj v tvare $g_1: y = (x-1)^2 - 4$.

Pre kvadratickú funkciu platí: $y = ax^2 + bx + c = a \cdot (x - m)^2 + n$, kde V[m; n].

$$g_2: y = x^2 + 2x$$

Potrebné výpočty:

- **diskriminant**: $y = 1 \cdot x^2 + 2 \cdot x + 0 \implies a = 1$; b = 2; c = 0 $D = b^2 - 4 \cdot a \cdot c = 2^2 - 4 \cdot 1 \cdot 0 = 4$
- nulové body funkcie

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a} = \frac{-2 \pm \sqrt{4}}{2 \cdot 1} = \frac{-2 \pm 2}{2}$$
$$x_1 = 0$$
$$x_2 = -2$$

• vrchol paraboly

$$x_0 = \frac{-b}{2a} = \frac{-2}{2 \cdot 1} = -1$$
 $y_0 = (-1)^2 + 2 \cdot (-1) = 1 - 2 = -1$ $V[-1;-1]$

x	$x_2 = -2$	$x_0 = -1$	$x_1 = 0$
$g_2: y = x^2 + 2x$	0	-1	0

$D(g_2)$	$H(g_2)$	Ohr. d	Ohr. h	Rastúca pre x	Klesajúca pre x	Párna	Nepárna	Prostá
R	$\langle -1;\infty \rangle$	-1	Nemá.	$\langle -1; \infty \rangle$	(-∞;-1)	Nie je.	Nie je.	Nie je.

Poznámka: Rovnicu funkcie $g_2: y = x^2 + 2x$ vieme pomocou **vrcholu paraboly** zapísať aj v tvare $g_2: y = (x+1)^2 - 1$.

$$g_3: y = -x^2 - 1$$

Potrebné výpočty:

- **diskriminant**: $y = -1 \cdot x^2 + 0 \cdot x 1 \rightarrow a = -1$; b = 0; c = -1 $D = b^2 - 4 \cdot a \cdot c = 0^2 - 4 \cdot (-1) \cdot (-1) = -4$
- nulové body funkcie
 - funkcia nulové body priesečníky s osou x nemá (diskriminant je záporný)
 - do tabuľky si vyberieme 2 *body symetrické* s *x*-ovou súradnicou vrcholu paraboly
- vrchol paraboly

$$x_0 = \frac{-b}{2a} = \frac{-0}{2 \cdot (-1)} = 0$$
 $y_0 = -0^2 - 1 = -1$ $V[0; -1]$

symetricky rozložené k 0

	4		•
x	$x_2 = -2$	$x_0 = 0$	$x_1 = +2$
$g_3: y = -x^2 - 1$	$y_2 = -(-2)^2 - 1$ $y_2 = -4 - 1 = -5$	-1	$y_1 = -(+2)^2 - 1$ $y_1 = -4 - 1 = -5$

$D(g_3)$	$H(g_3)$	Ohr. d	Ohr. h	Rastúca pre x	Klesajúca pre x	Párna	Nepárna	Prostá
R	$\left \left(-\infty;-1\right\rangle \right $	Nemá.	-1	$(-\infty;1)$	$\langle 1; \infty)$	Je.	Nie je.	Nie je.

Poznámka: Rovnicu funkcie $g_3: y = -x^2 - 1$ vieme pomocou **vrcholu paraboly** zapísať aj v tvare $g_3: y = -1 \cdot (x - 0)^2 - 1$.

$$g_4: y = -\frac{x^2}{4}$$

Potrebné výpočty:

• **diskriminant**:
$$y = -\frac{1}{4} \cdot x^2 + 0 \cdot x + 0 \longrightarrow a = -\frac{1}{4}$$
; $b = 0$; $c = 0$

$$D = b^2 - 4 \cdot a \cdot c = 0^2 - 4 \cdot \left(-\frac{1}{4}\right) \cdot 0 = 0$$

- nulové body funkcie
 - funkcia má jeden nulový bod priesečník s osou x (diskriminant je 0)

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a} = \frac{-0 \pm \sqrt{0}}{2 \cdot (-0.25)} = 0$$

- do tabuľky si vyberieme 2 *body symetrické* s *x*-ovou súradnicou vrcholu paraboly
- vrchol paraboly

$$x_0 = \frac{-b}{2a} = \frac{-0}{2 \cdot (-0.25)} = 0$$
 $y_0 = -0^2 = 0$ $V[0;0]$

symetricky rozložené k 0

	•		\
x	$x_2 = -2$	$x_0 = 0$	$x_1 = +2$
$g_4: y = -\frac{x^2}{4}$	$y_2 = -\frac{\left(-2\right)^2}{4}$ $y_2 = -1$	0	$y_1 = -\frac{\left(+2\right)^2}{4}$ $y_1 = -1$

$D(g_4)$	$H(g_4)$	Ohr. d	Ohr. h	Rastúca pre x	Klesajúca pre x	Párna	Nepárna	Prostá
R	$\Big \left(-\infty;0 ight)$	Nemá.	0	$(-\infty;0)$	$igl(0;\inftyigr)$	Je.	Nie je.	Nie je.

Poznámka: Rovnicu funkcie $g_4: y = -\frac{x^2}{4}$ vieme pomocou vrcholu paraboly zapísať aj

Cvičenie 2

Narysujte grafy kvadratických funkcií. Určte ich obory, ohraničenosť, monotónnosť, paritu. Uved'te, či je funkcia prostá. Funkcie sú definované pre $x \in R$.

$$h_1: y = x^2 + 4x - 3$$

$$h_2: y = x^2 - 6x$$

$$h_3: y = -3x^2$$

$$h_1: y = x^2 + 4x - 5$$
 $h_2: y = x^2 - 6x$ $h_3: y = -3x^2$ $h_4: y = -2x^2 + 4x$

Príklad 3

Určte, pre aké hodnoty x má funkcia $y = x^2 + 4x - 5$ hodnotu y = 0.

Riešenie:

Určiť, pre aké hodnoty argumentu x má funkcia hodnotu y = 0, je to isté, ako počítať nulové body pre graf funkcie alebo priesečníky grafu funkcie s osou x.

To znamená, že riešime rovnicu $0 = x^2 + 4x - 5$. Jej riešením je $x_1 = 1$ a $x_2 = -5$.

Príklad 4

Určte **priesečníky** grafu funkcie $y = 2x - 3x^2$ s **osou** x.

Riešenie:

Určiť **priesečníky grafu funkcie s osou x** sústavy súradníc, znamená určiť **nulové body** danej funkcie.

Potrebné výpočty:

• **diskriminant**:
$$y = 2x - 3x^2 = -3x^2 + 2x$$
 $\Rightarrow a = -3; b = 2; c = 0$
 $D = b^2 - 4 \cdot a \cdot c = 2^2 - 4 \cdot (-3) \cdot 0 = 4$

• nulové body funkcie – priesečníky s osou x:

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a} = \frac{-2 \pm \sqrt{4}}{2 \cdot (-3)} = \frac{-2 \pm 2}{2 \cdot (-3)}$$

$$x_1 = 0 \qquad y_1 = 2 \cdot 0 - 3 \cdot 0^2 = 0; \quad \boxed{P_1[0;0]}$$

$$x_2 = \frac{-4}{-6} = \frac{2}{3} \qquad y_2 = 2 \cdot \frac{2}{3} - 3 \cdot \left(\frac{2}{3}\right)^2 = \frac{4}{3} - \frac{12}{9} = \frac{4}{3} - \frac{4}{3} = 0 \quad \boxed{P_2\left[\frac{2}{3};0\right]}$$

Priesečníky grafu funkcie $y = 2x - 3x^2$ s osou x sú $P_1[0;0], P_2\left[\frac{2}{3};0\right]$.

Poznámka:

 $y_{1,2}$ nie je potrebné počítať, ale výpočet môžeme brať ako skúšku správnosti riešenia úlohy.

Príklad 5

Určte priesečník grafu funkcie $y = -3x^2 + 12$ s osou y.

Riešenie:

Určiť priesečník grafu funkcie s osou y sústavy súradníc, znamená zistiť hodnotu funkcie pre x = 0.

Potrebné výpočty:

$$y = -3x^2 + 12 = -3 \cdot 0^2 + 12 = 12$$

Priesečník grafu funkcie $y = -3x^2 + 12$ s **osou** y je $P_y[0;12]$.

Príklad 6

Zistite, či usporiadaná dvojica [-3;-1] patrí funkcii $f: y = -3x^2 + 12$.

Riešenie:

Tak ako pri riešení úloh v lineárnej funkcii a konštantnej funkcii, do rovnice funkcie dosadíme hodnotu *x*, vypočítame hodnotu *y*, ktorú porovnáme s hodnotou *y* v danej dvojici.

Ak sa vypočítaná hodnota y, rovná hodnote y v dvojici, tak dvojica funkcii patrí.

$$\begin{bmatrix} x & y \\ -3;-1 \end{bmatrix}$$
 ... premenná $x = -3$, $y = -1$

Premennú x dosadíme do rovnice funkcie $f: y = -3x^2 + 12$.

$$y = -3(-3)^2 + 12$$
$$y = -3 \cdot 9 + 12$$

$$v = -27 + 12$$

$$v = -15 \qquad -15 \neq -1$$

Keďže vypočítaná hodnota y sa nerovná hodnote y z dvojice, dvojica [-3;-1] nepatrí funkcii $f: y = -3x^2 + 12$.

Vyriešte úlohy v testíku.

Ak chcete vedieť správne riešenia, napíšte mi. Ďalšie úlohy nájdete v zbierke č. 1, od str. 223.

Testík

1. Hodnota kvadratickej funkcie $y = x^2 - 6x + 5$ pre $x = -\frac{1}{2}$ je:

$$\mathbf{A} \frac{7}{4}$$

B
$$\frac{59}{12}$$

$$C \frac{9}{4}$$

$${\bf D} - \frac{7}{4}$$

2. Funkcia $y = x^2 + 4x - 5 \text{ má } y = 0 \text{ pre:}$

A
$$x_1 = -5$$
, $x_2 = 1$

B
$$x_1 = 5$$
, $x_2 = -1$

$$\mathbf{C} \ x_1 = 4 \ , \ x_2 = -5$$

D
$$x_1 = x_2 = 2$$

3. Jeden z priesečníkov funkcie $y = 2x - 3x^2$ s osou x je:

$$\mathbf{A} P_x \left[0; \frac{2}{3} \right]$$

$$\mathbf{B} \ P_x \left[\frac{2}{3}; 0 \right]$$

A
$$P_x \left[0; \frac{2}{3} \right]$$
 B $P_x \left[\frac{2}{3}; 0 \right]$ **C** $P_x \left[\frac{3}{2}; 0 \right]$ **D** $P_x \left[-1; 0 \right]$

D
$$P_x[-1;0]$$

4. Priesečník funkcie $y = \frac{x^2 - 4}{5}$ s osou y je:

$$\mathbf{A} \ P_y \bigg[0; \frac{4}{5} \bigg]$$

B
$$P_y \left[-\frac{4}{5}; 0 \right]$$

$$\mathbb{C} P_y \left[\frac{4}{5}; 0 \right]$$

A
$$P_y \left[0; \frac{4}{5} \right]$$
 B $P_y \left[-\frac{4}{5}; 0 \right]$ **C** $P_y \left[\frac{4}{5}; 0 \right]$ **D** $P_y \left[0; -\frac{4}{5} \right]$

5. Funkcii $y = (x-4) \cdot (x+3)$ patrí usporiadaná dvojica:

$$\mathbf{A}\left[-1;10\right]$$

6. Usporiadaná dvojica [-2;-1] patrí funkcii:

$$\mathbf{A} \ \ v = 3x^2$$

B
$$v = 3 - x^2$$

B
$$y = 3 - x^2$$
 C $y = x^2 - 3x$

D
$$y = x - 3x^2$$

7. Funkcia $y = ax^2 + 4x - 1$ je kvadratická, ak:

$$\mathbf{A} \ a = 0$$

B
$$a \neq 0$$

C
$$a \in \{0\}$$

$$\mathbf{D} \ a \in \emptyset$$

8. Kvadratická závislosť je:

A závislosť obsahu štvorca S od dĺžky jeho strany

B závislosť dráhy auta od rýchlosti

C závislosť obvodu kruhu od dĺžky priemeru

D závislosť hmotnosti telesa od jeho objemu

9. Vrchol grafu kvadratickej funkcie $f: y = x^2 - 2x$ má súradnice:

A
$$[1;-1]$$

$$\mathbf{C}\left[-2;0\right]$$

$$\mathbf{D}\left[-1;1\right]$$

10. Vrchol grafu kvadratickej funkcie $f: y = 4 - x^2 - 2x$ má súradnice:

A
$$[4;-2]$$

B
$$[-1;5]$$

D
$$[-2;4]$$

11. O kvadratickej funkcii $f: y = 9 - x^2$ platí:

A je klesajúca na intervale $\left(-\infty;0\right)$ **B** vrchol grafu má súradnice $\left[0;9\right]$

C je rastúca na intervale $\langle -3;3 \rangle$

D jej lineárny člen je -x

12. Kvadratická funkcia $f: y = x^2 + 16$ je rastúca na intervale:

$$\mathbf{A}\left(-\infty;0\right)$$

$$\mathbf{B}\left(0;\infty\right)$$

$$\mathbf{B} \langle 0; \infty \rangle$$
 $\mathbf{C} \langle -4;4 \rangle$

13. Kvadratická funkcia $f: y = 2x^2 + 4x + 2$ je klesajúca na intervale:

$$\mathbf{A} \left(-\infty; -1 \right)$$

$$\mathbf{B} \left\langle -1; \infty \right)$$

$$\mathbb{C} R$$

$$\mathbf{D} \left\langle -2; \infty \right)$$

14. Kvadratická funkcia $f: y = -x^2 + 4x$ je rastúca pre:

A x väčšie ako 2

B x menšie ako 2

 $\mathbf{C} \ x \in R$

D x väčšie ako 4