Equivalence Relations, Equivalence Classes, and Partial Orders

With Hasse Diagrams and Poset Elements

Prepared for 2nd-Year Students

August 28, 2025

Contents

1	Relations: A Quick Recall	1
2	Equivalence Relations 2.1 Equivalence Classes and Partitions	1 2
3	Partial Order Relations and Posets	2
4	Hasse Diagrams4.1 Example: Divisibility on $\{1, 2, 4, 8\}$	2 3 3 3
5	Extremal Elements and Bounds in Posets	3
6	Concept Map and Takeaways	4

1 Relations: A Quick Recall

A binary relation R on a set A is any subset $R \subseteq A \times A$. We write a R b when $(a, b) \in R$.

2 Equivalence Relations

Definition 1 (Equivalence Relation). A relation R on a set A is an equivalence relation if it is

- (i) reflexive: $\forall a \in A, aRa,$
- (ii) symmetric: $\forall a, b \in A, aRb \Rightarrow bRa,$
- (iii) transitive: $\forall a, b, c \in A, (aRb \land bRc) \Rightarrow aRc.$

Example 1 (Same Parity on \mathbb{Z}). Let $a \sim b$ if a and b have the same parity (both even or both odd). Then \sim is an equivalence relation.

Example 2 (Congruence Modulo 3 on \mathbb{Z}). Define $a \equiv b \pmod{3}$ if $3 \mid (a - b)$. This is an equivalence relation with three equivalence classes

$$[0] = \{\ldots, -6, -3, 0, 3, 6, \ldots\}, \quad [1] = \{\ldots, -5, -2, 1, 4, 7, \ldots\}, \quad [2] = \{\ldots, -4, -1, 2, 5, 8, \ldots\}.$$

2.1 Equivalence Classes and Partitions

Definition 2 (Equivalence Class). Given an equivalence relation R on A and $a \in A$, its equivalence class is

$$[a] = \{x \in A \mid xRa\}.$$

The set A is partitioned into pairwise disjoint classes $\{[a] \mid a \in A\}$ whose union is A.

3 Partial Order Relations and Posets

Definition 3 (Partial Order and Poset). A relation \leq on a set P is a partial order if it is

- (i) reflexive: $a \leq a$,
- (ii) antisymmetric: $(a \le b \land b \le a) \Rightarrow a = b$,
- (iii) transitive: $(a \le b \land b \le c) \Rightarrow a \le c$.

Then (P, \leq) is called a partially ordered set (poset).

Remark 1 (Important Correction About Antisymmetry). In a previous class, the antisymmetric property was misstated as " $a \neq b$ ". The correct statement is:

If
$$a \leq b$$
 and $b \leq a$, then necessarily $a = b$.

Equivalently, for two distinct elements $a \neq b$, it cannot happen that both $a \leq b$ and $b \leq a$ hold.

Example 3 (Divisibility on Positive Integers). On \mathbb{N} , define $a \leq b$ iff a divides b (written $a \mid b$). Then \leq is a partial order.

Example 4 (Subset Inclusion on Power Set). For any set S, $(\mathcal{P}(S), \subseteq)$ is a poset.

4 Hasse Diagrams

A *Hasse diagram* is a streamlined drawing of a finite poset that shows only the *covering* relations.

Construction Rules

- **R1.** Omit reflexive loops $(a \le a)$.
- **R2.** Omit transitive edges: draw an edge a-b only if a < b and there is no c with a < c < b; then b covers a.
- **R3.** Draw edges vertically upward: place b above a if a < b.

4.1 Example: Divisibility on $\{1, 2, 4, 8\}$

Here 1 is the least element and 8 is the greatest element of this poset.

4.2 Example: Subsets of $\{a, b\}$ ordered by \subseteq

This is a lattice: LUB of $\{a\}$ and $\{b\}$ is $\{a,b\}$; GLB is \varnothing .

4.3 Example: Divisibility on $\{2, 3, 4, 6\}$ (No least or greatest)

Here 2 and 3 are minimal; 4 and 6 are maximal; there is no single least or greatest element.

5 Extremal Elements and Bounds in Posets

Let (P, \leq) be a poset.

Definition 4 (Minimal and Maximal Elements). An element $m \in P$ is minimal if there is no $x \in P$ with x < m. Dually, $M \in P$ is maximal if there is no $y \in P$ with M < y.

Definition 5 (Least and Greatest Elements). The least element (also called the zero element, denoted 0) is an element $0 \in P$ such that

$$0 \le x$$
 for all $x \in P$.

3

The greatest element (also called the unit element, denoted 1) is an element $1 \in P$ such that

$$x \le 1$$
 for all $x \in P$.

If they exist, the least and greatest elements are unique.

Definition 6 (Bounds, Infimum and Supremum). For a subset $S \subseteq P$:

- u is an upper bound of S if $s \le u$ for all $s \in S$.
- ℓ is a lower bound of S if $\ell \leq s$ for all $s \in S$.

The least upper bound (LUB), also called the supremum $(\sup S)$, is the smallest upper bound of S. The greatest lower bound (GLB), also called the infimum $(\inf S)$, is the largest lower bound of S.

Summary of Different Types of Elements in a Poset (Hasse Diagram Context)

- Minimal element: No element strictly below it.
- Maximal element: No element strictly above it.
- Least element (0, zero element): Below every other element.
- Greatest element (1, unit element): Above every other element.
- Greatest Lower Bound (GLB, Infimum): Largest element below all in a subset.
- Least Upper Bound (LUB, Supremum): Smallest element above all in a subset.

Example 5 (Bounds in a Chain). In $P = \{1, 2, 3, 4, 5, 6\}$ with the usual \leq , for $S = \{2, 3, 5\}$, lower bounds are $\{1, 2\}$ so inf S = 2; upper bounds are $\{5, 6\}$ so $\sup S = 5$.

Example 6 (Bounds in Divisibility Poset). In $P = \{1, 2, 3, 4, 6, 12\}$ with |, for $S = \{4, 6\}$, GLB is 2 (their gcd in P) and LUB is 12 (their lcm in P).

6 Concept Map and Takeaways

- Equivalence relations group elements into equivalence classes (partitions).
- Partial orders organize elements into a **hierarchy** (posets), visualized by **Hasse** diagrams.
- Know the difference: symmetric (equivalence) vs. antisymmetric (partial order).
- Extremal elements: minimal, maximal, least, greatest; bounds: upper/lower, LUB/GLB.

Instructor's note (correction): In an earlier session, antisymmetry was mistakenly stated as " $a \neq b$ ". The correct definition is:

If $a \leq b$ and $b \leq a$ then a = b. Distinct elements cannot be mutually related in both directions in a partial order.