
Sequence Listing was accepted.

See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866)

217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: Fri Sep 14 16:21:40 EDT 2007

Validated By CRFValidator v 1.0.3

Application No: 10583301 Version No: 1.0

Input Set:

Output Set:

Started: 2007-09-04 13:49:57.358 **Finished:** 2007-09-04 13:49:58.247

Elapsed: 0 hr(s) 0 min(s) 0 sec(s) 889 ms

Total Warnings: 12
Total Errors: 2

No. of SeqIDs Defined: 12

Actual SeqID Count: 12

Error code	Error Description
W 402	Undefined organism found in <213> in SEQ ID (1)
W 402	Undefined organism found in <213> in SEQ ID (2)
W 213	Artificial or Unknown found in <213> in SEQ ID (3)
E 257	Invalid sequence data feature in <221> in SEQ ID (3)
W 213	Artificial or Unknown found in <213> in SEQ ID (4)
W 213	Artificial or Unknown found in <213> in SEQ ID (5)
W 213	Artificial or Unknown found in <213> in SEQ ID (6)
W 213	Artificial or Unknown found in <213> in SEQ ID (7)
W 213	Artificial or Unknown found in <213> in SEQ ID (8)
W 213	Artificial or Unknown found in <213> in SEQ ID (9)
W 213	Artificial or Unknown found in <213> in SEQ ID (10)
W 213	Artificial or Unknown found in <213> in SEQ ID (11)
W 213	Artificial or Unknown found in <213> in SEQ ID (12)
E 257	Invalid sequence data feature in <221> in SEQ ID (12)

SEQUENCE LISTING

<110>	Shah, Salehuzzaman Weselake, Randall Alberta Research Council Inc.									
<120>	Transgenic Plants With Reduced Level of Saturated Fatty Acid and Methods for Making Them									
<130>	080426-000000US									
	10583301 2007-09-04									
	CA 2,450,000 2003-12-18									
<150> <151>	WO PCT/CA04/02156 2004-12-17									
<160>	12									
<170>	PatentIn version 3.3									
	1 837 DNA Synechococcus elongatus ATCC #33912, deposited as Anacystis nidulans									
<220> <223>	delta-9 desaturase (des9, DSG), fatty acyl-CoA desaturase, fatty acid desaturase									
<400> atgacco	1 cttg	ctatccgacc	caagcttgcc	ttcaactggc	cgaccgccct	gttcatggtc	60			
gccatto	caca	ttggagcact	gttagcgttc	ctgccggcca	actttaactg	gcccgctgtg	120			
ggcgtga	atgg	ttgcgctgta	ttacattacc	ggttgttttg	gcatcaccct	aggctggcac	180			
cggctaa	attt	cgcaccgtag	ctttgaagtt	cccaaatggc	tggaatacgt	gctggtgttc	240			
tgtggca	acct	tggccatgca	gcacggcccg	atcgaatgga	tcggtctgca	ccgccaccat	300			
cacctco	cact	ctgaccaaga	tgtcgatcac	cacgactcca	acaagggttt	cctctggagt	360			
cacttco	ctgt	ggatgatcta	cgaaattccg	gcccgtacgg	aagtagacaa	gttcacgcgc	420			
gatatco	gctg	gcgaccctgt	ctatcgcttc	tttaacaaat	atttcttcgg	tgtccaagtc	480			
ctactgo	adad	tacttttgta	cgcctggggc	gaggettggg	ttggcaatgg	ctggtctttc	540			
gtcgttt	ggg	ggatcttcgc	ccgcttggtg	gtggtctacc	acgtcacttg	gctggtgaac	600			

agtgctaccc acaagtttgg ctaccgctcc catgagtctg gcgaccagtc caccaactgc 660

tggtgggttg ccc	ettetgge ett	ttggtgaa ggo	ctggcaca acaa	iccacca cgcc	taccag 720					
tactcggcac gto	atggeet ge	agtggtgg gaa	atttgact tgac	ttggtt gate	atctgc 780					
ggcctgaaga aggtgggtct ggctcgcaag atcaaagtgg cgtctccaaa caactaa 837										
	ococcus elon is nidulan:		#33912, depo	osited as						
<220> <223> delta-9 desaturase (des9, DSG), fatty acyl-CoA desaturase, fatty acid desaturase										
<400> 2										
Met Thr Leu Al	la Ile Arg I 5	Pro Lys Leu	Ala Phe Asn 10	Trp Pro Thr 15	Ala					
Leu Phe Met Va		His Ile Gly 25	Ala Leu Leu	Ala Phe Leu 30	Pro					
Ala Asn Phe As	sn Trp Pro i	Ala Val Gly 40	Val Met Val	Ala Leu Tyr 45	Tyr					
Ile Thr Gly Cy	·	Ile Thr Leu 55	Gly Trp His	Arg Leu Ile	Ser					
His Arg Ser Ph	ne Glu Val I 70	Pro Lys Trp	Leu Glu Tyr 75	Val Leu Val	Phe 80					
Cys Gly Thr Le	eu Ala Met (85	Gln His Gly	Pro Ile Glu 90	Trp Ile Gly 95	Leu					
His Arg His Hi		His Ser Asp 105	Gln Asp Val	Asp His His	Asp					
Ser Asn Lys Gl 115	y Phe Leu 1	Trp Ser His 120	Phe Leu Trp	Met Ile Tyr 125	Glu					
Ile Pro Ala An	_	Val Asp Lys 135	Phe Thr Arg	Asp Ile Ala	Gly					

Asp Pro Val Tyr Arg Phe Phe Asn Lys Tyr Phe Phe Gly Val Gln Val

145 150 155 160

Leu Leu Gly Val Leu Leu Tyr Ala Trp Gly Glu Ala Trp Val Gly Asn 165 170 175

Gly Trp Ser Phe Val Val Trp Gly Ile Phe Ala Arg Leu Val Val Val 180 185 190

Tyr His Val Thr Trp Leu Val Asn Ser Ala Thr His Lys Phe Gly Tyr 195 200 205

Arg Ser His Glu Ser Gly Asp Gln Ser Thr Asn Cys Trp Trp Val Ala 210 215 220

Leu Leu Ala Phe Gly Glu Gly Trp His Asn Asn His His Ala Tyr Gln 225 230 235 240

Tyr Ser Ala Arg His Gly Leu Gln Trp Trp Glu Phe Asp Leu Thr Trp 245 250 255

Leu Ile Ile Cys Gly Leu Lys Lys Val Gly Leu Ala Arg Lys Ile Lys 260 265 270

Val Ala Ser Pro Asn Asn 275

<210> 3

<211> 4

<212> PRT

<213> artificial

<220>

<223> endoplasmic reticulum retention and retrieval signal sequence

<220>

<221> MOD_RES

<222> (3)..(4)

<223> Xaa is any amino acid

<400> 3

Lys Lys Xaa Xaa

<210> 4

<211> 4

<212> PRT

```
<213> artificial
<220>
<223> endoplasmic reticulum retention and retrieval signal sequence
<400> 4
Lys Asp Glu Leu
<210> 5
<211> 4
<212> PRT
<213> artificial
<220>
<223> endoplasmic reticulum retention and retrieval signal sequence
<400> 5
Lys Lys Ser Ser
<210> 6
<211> 4
<212> PRT
<213> artificial
<220>
<223> endoplasmic reticulum retention and retrieval signal sequence
<400> 6
His Asp Glu Phe
<210> 7
<211> 4
<212> PRT
<213> artificial
<220>
<223> endoplasmic reticulum retention and retrieval signal sequence
<400> 7
Lys Glu Glu Leu
<210> 8
<211> 4
<212> PRT
<213> artificial
```

```
<220>
<223> endoplasmic reticulum retention and retrieval signal sequence
<400> 8
Lys Asp Gln Leu
<210> 9
<211> 35
<212> DNA
<213> artificial
<220>
<223> amplification primer DSG-XhoI-5'
<400> 9
                                                                     35
ccccctcga gatgaccctt gctatccgac ccaag
<210> 10
<211> 36
<212> DNA
<213> artificial
<220>
<223> amplification primer DSG-XhoI-3'
<400> 10
                                                                     36
ccccctcga gttagttgtt tggagacgcc actttg
<210> 11
<211> 45
<212> DNA
<213> artificial
<220>
<223> amplification primer des9-3'-ER
<400> 11
                                                                    45
cccccctcg agttaagaag actttttgtt gtttggagac gccac
<210> 12
<211> 4
<212> PRT
<213> artificial
<220>
<223> endoplasmic reticulum retention and retrieval signal sequence
<220>
<221> MOD_RES
```

```
<222> (3)..(4)
<223> Xaa is any amino acid other than Ser
<400> 12
Lys Lys Xaa Xaa
```