Worksheet 20 Solution

Hyungmo Gu

April 14, 2020

Question 1

a. Pseudoproof:

Let $V = \{1, 2, 3, 4, 5, 6\}, E = \{(1, 2), (1, 6), (2, 3), (3, 4), (4, 5), (5, 6)\}.$

We need to prove the graph G = (V, E) is bipartite by proving the following properties:

- 1. There exists subsets $V_1, V_2 \subset V$ such that $V_1 \neq \emptyset, V_2 \neq \emptyset$, and V_1 and V_2 form a partition of V.
- 2. Every edge in E has exactly one endpoint in V_1 and one in V_2 .

We will prove the properties in parts.

1. Show there exists subsets $V_1, V_2 \subset V$ such that $V_1 \neq \emptyset, V_2 \neq \emptyset$, and V_1 and V_2 form a partition of V

Let
$$V_1 = \{1, 3, 5\}$$
 and $V_2 = \{2, 4, 6\}$.

We need to prove $V_1 \neq \emptyset$, $V_2 \neq \emptyset$, and V_1 and V_2 form a partition of V, i.e $V_1 \cup V_2 = V \wedge V_1 \cap V_2 = \emptyset$.

1. Show $V_1 \neq \emptyset$, $V_2 \neq \emptyset$ First, we need to show the subsets V_1 and V_2 are non-empty.

The header tells us both subsets V_1 and V_2 have more than 1 elements.

Then, using these facts, we can conclude $V_1 \neq \emptyset$ and $V_2 \neq \emptyset$.

2. Show $V_1 \cup V_2 = V \wedge V_1 \cap V_2 = \emptyset$

Second, we need to show $V_1 \cup V_2 = V$ and $V_1 \cap V_2 = \emptyset$.

The header tells us $V_1 = \{1, 3, 5\}$ and $V_2 = \{2, 4, 6\}$.

Then, we can calculate

$$V_1 \cup V_2 = \{1, 2, 3, 4, 5, 6\} = V \tag{1}$$

$$V_1 \cap V_2 = \emptyset \tag{2}$$

Part 1:

Let $V_1 = \{1, 3, 5\}$ and $V_2 = \{2, 4, 6\}$.

We need to prove $V_1 \neq \emptyset$, $V_2 \neq \emptyset$, and V_1 and V_2 form a partition of V, i.e $V_1 \cup V_2 = V \wedge V_1 \cap V_2 = \emptyset$.

First, we need to show the subsets V_1 and V_2 are non-empty.

The header tells us both subsets V_1 and V_2 have more than 1 elements.

Then, using these facts, we can conclude $V_1 \neq \emptyset$ and $V_2 \neq \emptyset$.

Finally, we need to show $V_1 \cup V_2 = V$ and $V_1 \cap V_2 = \emptyset$.

The header tells us $V_1 = \{1, 3, 5\}$ and $V_2 = \{2, 4, 6\}$.

Then, we can calculate

$$V_1 \cup V_2 = \{1, 2, 3, 4, 5, 6\} = V$$
 (3)

$$V_1 \cap V_2 = \emptyset \tag{4}$$

2. Show every edge in E has exactly one endpoint in V_1 and one in V_2 .

Let $V_1 = \{1, 3, 5\}$ and $V_2 = \{2, 4, 6\}$.

We need to show every edge in E has exactly one endpoint in V_1 and one in V_2 .

The header tells us $V_1 = \{1, 3, 5\}$, $V_2 = \{2, 4, 6\}$, and $E = \{(1, 2), (1, 6), (2, 3), (3, 4), (4, 5), (5, 6)\}$).

Using these facts, we can generate the following table.

Edge (1,2)	- 1 is in V_1	Edge (3,4)	- 3 is in V_1
	- 2 is in V_2		- 4 is in V_2
Edge (1,6)	- 1 is in V_1	Edge $(4,5)$	- 4 is in V_2
	- 6 is in V_2		- 6 is in V_1
Edge $(2,3)$	- 2 is in V_2	Edge $(5,6)$	- 5 is in V_1
	- 3 is in V_1		- 6 is in V_2

Then, it follows from observation that every edge in E has one endpoint in V_1 and one in V_2 .

<u>Part 2:</u>

Let $V_1 = \{1, 3, 5\}$ and $V_2 = \{2, 4, 6\}$.

We need to show every edge in E has exactly one endpoint in V_1 and one in V_2 .

The header tells us $V_1 = \{1, 3, 5\}$, $V_2 = \{2, 4, 6\}$, and $E = \{(1, 2), (1, 6), (2, 3), (3, 4), (4, 5), (5, 6)\}$).

Using these facts, we can generate the following table.

Edge $(1,2)$	- 1 is in V_1	Edge (3,4)	- 3 is in V_1
	- 2 is in V_2		- 4 is in V_2
Edge (1,6)	- 1 is in V_1	Edge $(4,5)$	- 4 is in V_2
	- 6 is in V_2		- 6 is in V_1
Edge (2,3)	- 2 is in V_2	Edge $(5,6)$	- 5 is in V_1
	- 3 is in V_1		- 6 is in V_2

Then, it follows from observation that every edge in E has one endpoint in V_1 and one in V_2 .