Stima puntuale: metodi generali per la costruzione di stimatori

Esistono diversi metodi generali per la costruzione di stimatori, ma in questo corso ci occuperemo solo dei più rilevanti.

Stima di Massima Verosimiglianza

Sia $X \sim \varphi_X(x;\theta)$, $\theta \in \Theta$, la variabile aleatoria che identifichi la popolazione statistica di riferimento e (X_1,\ldots,X_n) un campione casuale a componenti i.i.d. a X; sia inoltre (x_1,\ldots,x_n) la realizzazione campionaria osservata.

La funzione di verosimiglianza

La funzione $L: \Theta \to \mathbb{R}^+ \cup \{0\}$ tale che $\forall \theta \in \Theta$:

$$L(\theta) = L(\theta; (x_1, \dots, x_n)) = \prod_{i=1}^n \varphi_{X_i}(x_i; \theta)$$

è detta funzione di verosimiglianza del campione $(x_1, \ldots, x_n)^*$.

Ad esempio, nel 1898 il Barone Bortkiewicz pubblicò uno studio sui decessi di soldati dell'esercito prussiano in seguito a calcio di cavallo. La seguente tabella mostra la distribuzione di frequenza del numero di decessi dovuti a calcio di cavallo:

Questi dati possono essere pensati come la realizzazione delle v.c. X_1, \ldots, X_{200} , indipendenti e identicamente distribuite a $X \sim \text{Poisson}(\lambda)$, $\lambda > 0$. La funzione di verosimiglianza è pari a:

$$L(\theta) = \prod_{i=1}^{n} \varphi_{X_i}(x_i; \lambda) = \frac{1}{\prod_{i=1}^{n} x_i!} e^{-n\lambda} \lambda^{\sum_{i=1}^{n} x_i} = \frac{1}{4.6 \cdot 10^{11}} e^{-200\lambda} \lambda^{122}$$

ed è massima per

$$\hat{\lambda} = \bar{x} = \frac{122}{200} = 0.61$$

Naturalmente, anche se ogni valore di $L(\theta)$ è determinato essenzialmente da una funzione di probabilità, e a dispetto dell'apparenza grafica della Figura, la funzione di verosimiglianza non è una funzione di probabilità.

Stima di Massima Verosimiglianza

Il valore $\hat{\theta} \in \Theta$ che rende massima la funzione $L(\theta)$ sullo spazio parametrico Θ , cioè tale per cui :

$$L(\hat{\theta}) = \sup_{\theta \in \Theta} L(\theta)$$

è detto stima di massima verosimiglianza di θ .

In molti casi, $\hat{\theta}$ può essere determinata per via analitica notando che, essendo il logaritmo in base e funzione monotona strettamente crescente, massimizzare rispetto a θ la funzione di verosimiglianza è del tutto equivalente a massimizzare rispetto a θ la funzione di log-verosimiglianza

$$l(\theta) = \ln L(\theta);$$

la stima di massima verosimiglianza di θ può dunque essere individuata risolvendo rispetto a θ l'equazione di verosimiglianza:

$$l'(\theta) = 0$$

ed assicurandosi che la soluzione trovata sia punto di massimo globale per $l(\theta)$. A tal proposito, si ricordi che:

$$l''(\theta)|_{\theta=\hat{\theta}}<0$$

è condizione sufficiente affinché la soluzione trovata sia punto di massimo assoluto per $l(\theta)$.

Nei casi in cui la presente procedura non sia applicabile, $\hat{\theta}$ deve essere necessariamente ricercata attraverso lo studio diretto della funzione $L(\theta)$.

In ogni caso:

- non è detto che la stima di massima verosimiglianza esista;
- se vi sono diversi valori di θ che rendono massima $L(\theta)$, allora la stima di massima verosimiglianza non è unica;

• può succedere che la stima di massima verosimiglianza $\hat{\theta}$ non è esprimibile esplicitamente come funzione dei dati campionari, ovvero che lo stimatore non è rappresentabile esplicitamente (ovvero non è rappresentabile come ad esempio $\hat{\theta} = \bar{X}_n$). In questo caso è necessario ottenere la stima di massima verosimiglianza per via numerica, per il valore osservato di x_1, \ldots, x_n .

Esercizio 1

Siano X_1, \ldots, X_n i.i.d. a $X \sim \text{Geom}(\theta), \theta \in (0,1)$. Si determini la stima di massima verosimiglianza di θ .

Soluzione

Sia $X \sim \text{Geom}(\theta)$, $\theta \in (0,1)$ ignoto; siano inoltre X_1, \ldots, X_n i.i.d. a X. Trattasi di un problema di stima puntuale per θ .

Le funzioni di verosimiglianza e di log-verosimiglianza del campione (x_1, \ldots, x_n) hanno rispettivamente espressioni:

$$L(\theta) = \prod_{i=1}^{n} \varphi_{X_i}(x_i; \theta) = \prod_{i=1}^{n} \theta (1 - \theta)^{x_i} = \theta^n (1 - \theta)^{\sum_{i=1}^{n} x_i},$$

$$l(\theta) = \log L(\theta) = n \log \theta + \left(\sum_{i=1}^{n} x_i\right) \log(1-\theta), \quad \theta \in (0,1).$$

L'equazione di verosimiglianza risulta dunque:

$$l'(\theta) = \frac{n}{\theta} - \frac{\sum_{i=1}^{n} x_i}{1 - \theta} = 0;$$

essa ammette come unica soluzione:

$$\hat{\theta} = \frac{n}{n + \sum_{i=1}^{n} x_i} = \frac{1}{1 + \bar{x}}.$$

Poiché:

$$l''(\theta) = -\frac{n}{\theta^2} - \frac{\sum_{i=1}^n x_i}{(1-\theta)^2} < 0, \quad \forall \theta \in (0,1),$$

â

è punto di massimo assoluto di $l(\theta)$, dunque è stima di massima verosimiglianza di θ .

Esercizio 2

Siano X_1, \ldots, X_n i.i.d. a $X \sim N(\mu, \sigma^2)$ con $\mu \in \mathbb{R}$ nota. Si determini la stima di massima verosimiglianza di $\sigma^2 \in \mathbb{R}^+$. Si concluda in merito all'efficienza dello stimatore ottenuto.

Soluzione

Sia $X \sim N(\mu, \sigma^2)$, $\mu \in \mathbb{R}$ nota, $\sigma^2 \in \mathbb{R}^+$ ignota; siano inoltre X_1, \dots, X_n i.i.d. a X. Trattasi di un problema di stima puntuale per σ^2 .

Si ponga per semplicità $\sigma^2 = \theta$; la funzione di densità di probabilità di X risulta dunque come segue:

$$\varphi_X(x;\theta) = \frac{1}{\sqrt{2\pi\theta}} \exp\left\{-\frac{(x-\mu)^2}{2\theta}\right\}, \quad x \in \mathbb{R}, \theta > 0.$$

Le funzioni di verosimiglianza e di log-verosimiglianza del campione (x_1, \ldots, x_n) hanno rispettivamente espressioni:

$$L(\theta) = \prod_{i=1}^{n} \varphi_{X_i}(x_i; \theta) = (2\pi)^{-\frac{n}{2}} \theta^{-\frac{n}{2}} \exp\left\{-\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2\theta}\right\},\,$$

$$l(\theta) = \log L(\theta) = -\frac{n}{2} \log 2\pi - \frac{n}{2} \log \theta - \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2\theta},$$

 $\theta > 0$. L'equazione di verosimiglianza risulta dunque:

$$l'(\theta) = -\frac{n}{2\theta} + \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2\theta^2} = 0;$$

essa ammette come unica soluzione:

$$\hat{\theta} = \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n}.$$

Poichè:

$$l''(\theta) = \frac{n}{2\theta^2} - \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{\theta^3},$$

si ha che:

$$|l''(\theta)|_{\theta=\hat{\theta}} = -\frac{n^3}{2\left[\sum_{i=1}^n (x_i - \mu)^2\right]^2} < 0;$$

pertanto, $\hat{\theta}$ è punto di massimo assoluto di $l(\theta)$, dunque è stima di massima verosimiglianza di θ . Lo stimatore

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2 \sim \frac{\theta}{n} \chi_n^2$$

è non distorto per θ ed inoltre

$$\operatorname{Var}(\hat{\theta}) = \frac{2\theta^2}{n}.$$

L'informazione attesa di Fisher per una singola osservazione è

$$\mathcal{I}(\theta) = E\left\{ \left[\frac{n}{2\theta^2} \left(\frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2 - \theta \right) \right]^2 \right\} = \frac{1}{2\theta^2}$$

quindi il limite inferiore di Cramér-Rao è $(2\theta^2)/n$. Segue che $\hat{\theta}$ è stimatore efficiente per θ .

Esercizio 3

Si conduca una prova nella variabile aleatoria discreta X a valori in $\{0,1,2,3,4\}$ e con funzione di probabilità $\varphi_X(x;\theta)$ indicizzata da $\theta \in \{1,2,3\}$ tale che:

\boldsymbol{x}	$\varphi_X(x;1)$	$\varphi_X(x;2)$	$\varphi_X(x;3)$
0	1/3	1/4	0
1	1/3	1/4	0
2	0	1/4	1/4
3	1/6	1/4	1/2
4	1/6	0	1/4

Si determini la stima di massima verosimiglianza di θ .

Soluzione

Sia $X \sim \varphi_X(x;\theta)$ proposta in tabella $\forall \theta \in \{1,2,3\}$ ignoto. Trattasi di un problema di stima puntuale per θ .

Per ogni valore x di X osservato, la stima di massima verosimiglianza di θ è data dal valore di θ che massimizzi $\varphi_X(x;\theta)$, ovvero:

Si noti che se x=2 la stima di massima verosimiglianza di θ non è unica.

Esercizio 4

Siano X_1, \ldots, X_n i.i.d. a $X \sim N(\theta, 1)$. Si determini la stima di verosimiglianza di θ , supponendo che:

- 1. $\Theta \equiv R$;
- 2. $\Theta \equiv [0, \infty)$.

Soluzione

Sia $X \sim N(\theta, 1), \theta \in \Theta$ ignoto; siano inoltre X_1, \dots, X_n i.i.d. a X. Trattasi di un problema di stima puntuale

1. La funzione di verosimiglianza di un campione casuale semplice (x_1, \ldots, x_n) in $X \sim N(\theta, 1)$ ha espressione:

$$L(\theta) = \underbrace{\left(\frac{1}{2\pi}\right)^{\frac{n}{2}}}_{2} \exp\left\{-\frac{1}{2}\sum_{i=1}^{n}(x_{i}-\theta)^{2}\right\}, \quad \theta \in \mathbb{R}.$$

Essendo c>0 non dipendente da θ , dunque ininfluente ai fini della risoluzione del problema di massimizzazione di $L(\theta)$ rispetto a θ e la funzione esponenziale monotona strettamente crescente, il punto di massimo di $L(\theta)$ può essere ottenuto massimizzando rispetto $\theta \in \mathbb{R}$:

$$-\frac{1}{2}\sum_{i=1}^{n}(x_{i}-\theta)^{2}=-\frac{n}{2}(m_{2}-2\theta\bar{x}+\theta^{2}),$$

o, equivalentemente, minimizzando rispetto $\theta \in \mathbb{R}$:

$$f(\theta) = m_2 - 2\theta \bar{x} + \theta^2,$$

ove $m_2 = \frac{1}{n} \sum_{i=1}^n x_i^2$ sia il momento secondo campionario di X. Si noti che $f(\theta) = a\theta^2 + b\theta + c$ con a = 1, $b = -2\bar{x}$ e $c = m_2$ è l'equazione di una parabola avente concavità rivolta verso l'alto e asse di equazione:

$$\theta = -\frac{b}{2a} = -\frac{(-2\bar{x})}{2\cdot 1} = \bar{x};$$

pertanto, $f(\theta)$ è minima per $\hat{\theta} = \bar{x}$, che identifica la stima di massima verosimiglianza di θ .

2. Supponendo $\Theta \equiv [0, \infty)$, si rende necessario minimizzare la parabola $f(\theta)$ sull'insieme dei reali non negativi. Qualora $\bar{x} \geq 0$, la stima di massima verosimiglianza di θ rimane immutata rispetto al caso precedente, mentre, qualora negativa, \bar{x} non è un valore ammissibile per θ e il minimo di $f(\theta)$ si ha in corrispondenza di $\theta = 0$ (come risulta evidente in Figura).

In definitiva:

$$\hat{\theta} = \left\{ \begin{array}{ll} \bar{x} & \text{se } \bar{x} \ge 0 \\ 0 & \text{se } \bar{x} < 0 \end{array} \right..$$

Esercizio 5

Sia $X \sim \text{Bernoulli}\left(\frac{1}{1+e^{\theta}}\right), \quad x \in \{0,1\}, \theta \in \mathbb{R}.$ Si determini la stima di massima verosimiglianza per x = 1.

Soluzione

La funzione di verosimiglianza per θ risulta

$$L(\theta) = L(\theta; x) = \left(\frac{1}{1 + e^{\theta}}\right)^{x} \left(1 - \frac{1}{1 + e^{\theta}}\right)^{1 - x}$$

quindi per x = 1 abbiamo

$$L(\theta;1) = \frac{1}{1 + e^{\theta}}$$

La funzione di verosimiglianza è in questo caso funzione strettamente decrescente, ovvero se $\theta_1 < \theta_2$, allora $L(\theta_1;1) > L(\theta_2;1)$. Infatti, sia $\theta_2 = \theta_1 + c$, c > 0:

$$\frac{1}{1 + e^{\theta_1}} > \frac{1}{e^{\theta_1} \underbrace{e^c}_{>1}}$$

Segue che la stima di massima verosimiglianza non esiste, ovvero $\hat{\theta}=-\infty$, come evidenziato in figura:

Esercizio 6

Siano Y_1, \ldots, Y_n v.c. mutualmente indipendenti con $Y_i \sim N(\theta x_i, 1)$, con x_i costanti note, $i = 1, \ldots, n$. Si determini lo stimatore di massima verosimiglianza per θ .

Soluzione

La funzione di verosimiglianza è data da

$$L(\theta) = L(\theta; x_1, \dots, x_n) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2}(y_i - \theta x_i)^2\right\}$$
$$= (2\pi)^{-n/2} \exp\left\{-\frac{1}{2}\sum_{i=1}^n (y_i - \theta x_i)^2\right\}$$
$$= (2\pi)^{-n/2} \exp\left\{-\frac{1}{2}\left(\sum_{i=1}^n y_i^2 + \theta^2\sum_{i=1}^n x_i^2 - 2\theta\sum_{i=1}^n y_i x_i\right)\right\}$$

quindi la funzione di log-verosimiglianza è pari a

$$l(\theta) = -\frac{n}{2}\log 2\pi - \frac{1}{2}\sum_{i=1}^{n}y_i^2 - \frac{\theta^2}{2}\sum_{i=1}^{n}x_i^2 + \theta\sum_{i=1}^{n}y_ix_i.$$

L'equazione di verosimiglianza risulta

$$l'(\theta) = -2\theta \frac{1}{2} \sum_{i=1}^{n} x_i^2 + \sum_{i=1}^{n} y_i x_i = 0;$$

essa ammette come unica soluzione:

$$\hat{\theta} = \frac{\sum_{i=1}^{n} y_i x_i}{\sum_{i=1}^{n} x_i^2}$$

Poichè

$$l''(\theta) = -\sum_{i=1}^{n} x_i^2 < 0$$

è punto di massimo assoluto di $l(\theta)$, dunque $\hat{\theta}$ è stima di massima verosimiglianza per θ .

Esercizio 7

Sia (X_1, \ldots, X_n) un campione casuale semplice in $X \sim N(\mu, \sigma^2)$.

- 1. Si determini la stima di massima verosimiglianza di (μ, σ^2) ;
- 2. si confronti lo stimatore di σ^2 determinato al punto 1 con S^2 in termini di efficienza relativa.

Soluzione

Sia $X \sim N(\mu, \sigma^2)$, $(\mu, \sigma^2) \in (\mathbf{R}, \mathbf{R}^+)$ ignoto; siano inoltre X_1, \dots, X_n i.i.d. a X. Trattasi di un problema di stima puntuale per (μ, σ^2) .

In generale e in analogia al caso unidimensionale, la stima di massima verosimiglianza di un vettore di parametri $\underline{\theta} = (\theta_1, \dots, \theta_r) \in \Theta \subseteq \mathbb{R}^r$ è in molti casi ottenibile tramite la risoluzione del sistema di r equazioni di verosimiglianza:

$$\frac{\partial}{\partial \theta_j} \log L(\underline{\theta}) = 0, \quad \forall j = 1, \dots, r$$

e la verifica del fatto che la matrice hessiana della funzione di log-verosimiglianza valutata in corrispondenza della soluzione ottenuta,

$$H(\hat{\theta}) = \left[\frac{\partial^2 \log L(\underline{\theta})}{\partial \theta_j \partial \theta_p}\right]_{\theta = \hat{\theta}}, \quad j, p = 1, \dots, r$$

sia definita negativa, ossia tale che i relativi autovalori siano negativi.

1. Ciò premesso, le funzioni di verosimiglianza e di log-verosimiglianza del campione (x_1, \ldots, x_n) hanno rispettivamente espressioni:

$$L(\mu, \sigma^2) = \prod_{i=1}^n \varphi_{X_i}(x_i; \mu, \sigma^2) = (2\pi\sigma^2)^{-\frac{n}{2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2},$$

$$\ln L(\mu, \sigma^2) = -\frac{n}{2} \ln 2\pi \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 =$$

$$= -\frac{n}{2} \ln 2\pi \sigma^2 - \frac{1}{2\sigma^2} \left(\sum_{i=1}^n x_i^2 - 2\mu \sum_{i=1}^n x_i + n\mu^2 \right) =$$

$$= -\frac{n}{2} \ln 2\pi - \frac{n}{2} \ln \sigma^2 - \frac{n}{2\sigma^2} (m_2 - 2\mu \bar{x} + \mu^2),$$

 $(\mu, \sigma^2) \in (\mathbf{R}, \mathbf{R}^+)$, ove $m_2 = \frac{1}{n} \sum_{i=1}^n x_i^2$ sia il momento secondo campionario di X. Il sistema di equazioni di verosimiglianza risulta dunque:

$$\begin{cases} \frac{\partial}{\partial \mu} \ln L(\mu, \sigma^2) = -\frac{n}{\sigma^2} (-\bar{x} + \mu) = 0 \\ \frac{\partial}{\partial \sigma^2} \ln L(\mu, \sigma^2) = -\frac{n}{2\sigma^2} + \frac{n}{2\sigma^4} (m_2 - 2\mu \bar{x} + \mu^2) = 0 \end{cases} ;$$

dalla prima equazione si ottiene l'unica soluzione per μ :

$$\hat{\mu} = \bar{x}$$

che, sostituita nella seconda equazione, porta all'ottenimento dell'unica soluzione per σ^2 :

$$\hat{\sigma}^2 = m_2 - \bar{x}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2.$$

A questo punto, per verificare che la coppia $(\hat{\mu}, \hat{\sigma}^2)$ sia punto di massimo globale per la funzione di verosimiglianza, ossia stima di massima verosimiglianza di (μ, σ^2) , si noti che, essendo la media aritmetica il centro di ordine 2, se $\mu \neq \bar{x}$:

$$\sum_{i=1}^{n} (x_i - \mu)^2 > \sum_{i=1}^{n} (x_i - \bar{x})^2;$$

pertanto, essendo la funzione esponenziale monotona strettamente crescente, risulta, $\forall \sigma^2 \in \mathbb{R}^+$:

$$L(\bar{x}, \sigma^2) \ge L(\mu, \sigma^2).$$

La risoluzione del problema in oggetto si riduce quindi nella verifica del fatto che $l(\hat{\mu}, \sigma^2)$ raggiunga il proprio massimo globale in $\sigma^2 = \hat{\sigma}^2$, ossia $\frac{\partial^2}{\partial (\sigma^2)^2} l(\hat{\mu}, \sigma^2)|_{\sigma^2 = \hat{\sigma}^2} < 0$.

Alternativamente, si rende necessario verificare che la matrice hessiana della funzione di log-verosimiglianza valutata in corrispondenza della soluzione ottenuta sia definita negativa. A tal proposito, le derivate seconde e le derivate seconde miste della funzione di log-verosimiglianza valutate nella soluzione ottenuta per (μ, σ^2) risultano:

$$\frac{\partial^2}{\partial \mu^2} \ln L(\mu, \sigma^2) \Big|_{(\mu, \sigma^2) = (\hat{\mu}, \hat{\sigma}^2)} = -\frac{n}{\hat{\sigma}^2},$$

$$\frac{\partial^2}{\partial (\sigma^2)^2} \ln L(\mu, \sigma^2) \Big|_{(\mu, \sigma^2) = (\hat{\mu}, \hat{\sigma}^2)} = \frac{n}{2\hat{\sigma}^4} - \frac{n}{\hat{\sigma}^6} (m_2 - 2\bar{x}\hat{\mu} + \hat{\mu}^2) =$$

$$= \frac{n}{2\hat{\sigma}^4} - \frac{n}{\hat{\sigma}^6} \hat{\sigma}^2 =$$

$$= -\frac{n}{2\hat{\sigma}^4},$$

$$\frac{\partial^2}{\partial \mu \partial \sigma^2} \ln L(\mu, \sigma^2) \Big|_{(\mu, \sigma^2) = (\hat{\mu}, \hat{\sigma}^2)} = \frac{\partial^2}{\partial \sigma^2 \partial \mu} \ln L(\mu, \sigma^2) \Big|_{(\mu, \sigma^2) = (\hat{\mu}, \hat{\sigma}^2)} =$$

 $\frac{\partial^2}{\partial \mu \partial \sigma^2} \ln L(\mu, \sigma^2) \Big|_{(\mu, \sigma^2) = (\hat{\mu}, \hat{\sigma}^2)} = \frac{\partial^2}{\partial \sigma^2 \partial \mu} \ln L(\mu, \sigma^2) \Big|_{(\mu, \sigma^2) = (\hat{\mu}, \hat{\sigma}^2)} = \frac{n(\hat{\mu} - \bar{x})}{\hat{\sigma}^4} = 0$

e la matrice hessiana in questione risulta:

$$\begin{split} H(\hat{\mu}, \hat{\sigma}^2) &= \begin{bmatrix} \frac{\partial^2}{\partial \mu^2} \ln L(\mu, \sigma^2) & \frac{\partial^2}{\partial \mu \partial \sigma^2} \ln L(\mu, \sigma^2) \\ \frac{\partial^2}{\partial \sigma^2 \partial \mu} \ln L(\mu, \sigma^2) & \frac{\partial^2}{\partial (\sigma^2)^2} \ln L(\mu, \sigma^2) \end{bmatrix}_{(\mu, \sigma^2) = (\hat{\mu}, \hat{\sigma}^2)} = \\ &= \begin{bmatrix} -\frac{n}{\hat{\sigma}^2} & 0 \\ 0 & -\frac{n}{2\hat{\sigma}^4} \end{bmatrix}; \end{split}$$

essendo matrice di tipo diagonale, $H(\hat{\mu}, \hat{\sigma}^2)$ presenta autovalori coincidenti con i relativi elementi diagonali, che sono negativi: ciò ne garantisce la definita negatività. In definitiva:

$$(\hat{\mu}, \hat{\sigma}^2) = \left(\bar{x}, \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2\right)$$

è stima di massima verosimiglianza di (μ, σ^2) .

2. Lo stimatore di massima verosimiglianza di σ^2 è distorto per σ^2 ; infatti, essendo:

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2 = \frac{n-1}{n} \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2 = \frac{n-1}{n} S^2,$$

si ha che:

$$E(\hat{\sigma}^2) = \frac{n-1}{n}E(S^2) = \frac{n-1}{n}\sigma^2 \neq \sigma^2, \quad \forall \sigma^2 \in \mathbb{R}^+.$$

Inoltre, essendo $S^2=\sigma^2\frac{\chi^2_{n-1}}{n-1},$ dunque $\hat{\sigma}^2=\frac{n-1}{n}S^2=\sigma^2\frac{\chi^2_{n-1}}{n},$ risultano:

MSE
$$(\hat{\sigma}^2)$$
 = Var $(\hat{\sigma}^2)$ + [B $(\hat{\sigma}^2)$]² = $\frac{2(n-1)}{n^2}\sigma^4 + \left(-\frac{\sigma^2}{n}\right)^2 = \frac{2n-1}{n^2}\sigma^4$,
MSE (S^2) = Var (S^2) = $\frac{2}{n-1}\sigma^4$;

pertanto, si ha che:

$$\frac{\text{MSE}\left(\hat{\sigma}^{2}\right)}{\text{MSE}\left(S^{2}\right)} < 1, \qquad \forall n \in \mathbb{N}, \forall \sigma^{2} \in \mathbb{R}^{+},$$

ossia, nonostante distorto per σ^2 , $\hat{\sigma}^2$ è da preferirsi a S^2 in termini di errore quadratico medio.

Esercizio 8

Sia X con supporto in (0,1) e legge di distribuzione $\varphi_X(x;\theta)$ indicizzata da $\theta \in \{0,1\}$ tale che:

$$X \sim \begin{cases} U(0,1) & \text{se } \theta = 0 \\ \varphi_X(x;1) = \frac{1}{2\sqrt{x}} & \text{se } \theta = 1 \end{cases}$$

Si supponga di aver osservato x = 0.2. Si determini la stima di massima verosimiglianza di θ . Infine, siano X_1, \ldots, X_n i.i.d. a X; si determini la stima di massima verosimiglianza di θ .

Soluzione

Sia $X \sim \varphi_X(x;\theta)$ sopra esplicitata, $x \in (0,1)$, $\theta \in \{0,1\}$ ignoto; siano inoltre X_1, \ldots, X_n i.i.d. a X. Trattasi di un problema di stima puntuale per θ .

La funzione di verosimiglianza di (x_1, \ldots, x_n) ha espressione:

$$L(\theta) = L(\theta; x) = \begin{cases} 1 & \text{se } \theta = 0 \\ \frac{1}{2\sqrt{x}} & \text{se } \theta = 1 \end{cases}$$
.

Dall'andamento di $\varphi_X(x;\theta)$ proposto $\forall \theta \in \{0,1\}$ in Figura, risulta evidente che $\varphi_X(x;0) \geq \varphi_X(x;1) \ \forall x \in \left[\frac{1}{4},1\right)$. Quindi per $x = 0.2, \ \hat{\theta} = 1$.

La funzione di verosimiglianza di (x_1, \ldots, x_n) ha espressione:

$$L(\theta) = L(\theta; x_1, \dots, x_n) = \begin{cases} 1 & \text{se } \theta = 0 \\ \prod_{i=1}^n \frac{1}{2\sqrt{x_i}} & \text{se } \theta = 1 \end{cases}.$$

Pertanto, la stima di massima verosimiglianza di θ risulta:

$$\hat{\theta} = \left\{ \begin{array}{ll} 0 & \text{se } \prod_{i=1}^{n} \frac{1}{2\sqrt{x_i}} \le 1 \\ 1 & \text{altrimenti} \end{array} \right..$$

Esercizio 9

Siano X_1, \ldots, X_n i.i.d. a $X \sim U(\theta, 2\theta), \theta > 0$. Si determini lo stimatore di massima verosimiglianza di θ .

Soluzione

Sia $X \sim U(\theta, 2\theta)$, $\theta > 0$ ignoto; siano inoltre X_1, \dots, X_n i.i.d. a X. Trattasi di un problema di stima puntuale per θ .

La variabile casuale X presenta funzione di densità di probabilità :

$$\varphi_X(x;\theta) = \frac{1}{\theta} I_{(\theta,2\theta)}(x),$$

ove:

$$I_{(\theta,2\theta)}(x) = \left\{ \begin{array}{ll} 1 & \text{se } x \in (\theta,2\theta) \\ 0 & \text{altrimenti} \end{array} \right.$$

sia la funzione indicatrice dell'intervallo reale $(\theta, 2\theta)$, $\theta > 0$; a tal proposito, si noti che:

$$\theta < x < 2\theta \Leftrightarrow \frac{x}{2} < \theta < x,$$

quindi:

$$I_{(\theta,2\theta)}(x) = 1 \Leftrightarrow I_{\left(\frac{x}{2},x\right)}(\theta) = 1.$$

La funzione di verosimiglianza del campione (x_1, \ldots, x_n) ha dunque espressione:

$$L(\theta) = \left(\frac{1}{\theta}\right)^n \prod_{i=1}^n I_{(\theta,2\theta)}(x_i) = \left(\frac{1}{\theta}\right)^n \prod_{i=1}^n I_{\left(\frac{x_i}{2},x_i\right)}(\theta),$$

ove:

$$\begin{split} \prod_{i=1}^{n} I_{\left(\frac{x_{i}}{2}, x_{i}\right)}(\theta) &= 1 \quad \Leftrightarrow \quad I_{\left(\frac{x_{i}}{2}, x_{i}\right)}(\theta) = 1, \forall i = 1, \dots, n \Leftrightarrow \\ & \Leftrightarrow \quad \left\{ \begin{array}{l} \theta > \frac{x_{i}}{2} & \forall i = 1, \dots, n \\ \theta < x_{i} & \forall i = 1, \dots, n \end{array} \right. \Leftrightarrow \\ & \Leftrightarrow \quad \left\{ \begin{array}{l} \theta > \frac{1}{2} \max\{x_{1}, \dots, x_{n}\} = \frac{x_{(n)}}{2} \\ \theta < \min\{x_{1}, \dots, x_{n}\} = x_{(1)} \end{array} \right. \Leftrightarrow \\ & \Leftrightarrow \quad \frac{x_{(n)}}{2} < \theta < x_{(1)}, \end{split}$$

quindi:

$$L(\theta) = \left(\frac{1}{\theta}\right)^n I_{\left(\frac{x_{(n)}}{2}, x_{(1)}\right)}(\theta).$$

Come risulta evidente dalla Figura, θ^{-n} è funzione monotona strettamente decrescente in $\theta \in \left(\frac{x_{(n)}}{2}, x_{(1)}\right)$:

dunque:

$$\hat{\Theta} = \frac{X_{(n)}}{2}$$

è stimatore di massima verosimiglianza di $\theta.$

Esercizio 10

Si supponga di aver effettuato n=3 prove indipendenti nella variabile casuale $X \sim \text{Bernoulli}(\theta)$ e di essere pervenuti alla terna campionaria $(x_1, x_2, x_3) = (0, 1, 0)$. Si determini la stima di massima verosimiglianza di θ supponendo che:

1.
$$\Theta = \left\{ \frac{1}{4}, \frac{1}{3}, \frac{1}{2} \right\};$$

2.
$$\Theta \equiv (0,1)$$
.

Soluzione

Sia $X \sim \text{Bernoulli}(\theta)$, $\theta \in \Theta$ ignoto; siano inoltre X_1, X_2, X_3 i.i.d. a X. Trattasi di un problema di stima puntuale per θ .

La funzione di verosimiglianza del generico campione casuale semplice (x_1, x_2, x_3) di ampiezza n = 3 in X presenta espressione:

$$L(\theta; (x_1, x_2, x_3)) = \theta^{\sum_{i=1}^{3} x_i} (1 - \theta)^{3 - \sum_{i=1}^{3} x_i};$$

qualora $(x_1, x_2, x_3) = (0, 1, 0)$, essa si particolarizza dunque in:

$$L(\theta; (0, 1, 0)) = \theta(1 - \theta)^{2}$$
.

1. Nel caso in cui $\Theta = \left\{\frac{1}{4}, \frac{1}{3}, \frac{1}{2}\right\}$, la stima di massima verosimiglianza di θ si identifica nel valore che tra i tre costituenti Θ massimizzi $L(\theta)$; risulta:

$$\begin{array}{c|c} \theta & L(\theta;(0,1,0)) = \theta(1-\theta)^2 \\ \hline 1/4 & 0.141 \\ 1/3 & 0.148 \\ 1/2 & 0.125 \end{array}$$

Pertanto $\hat{\theta} = \frac{1}{3}$ è stima di massima verosimiglianza di θ .

2. Nel caso in cui $\Theta \equiv (0,1)$, la stima di massima verosimiglianza di θ può essere ottenuta ricercando per via analitica il punto di massimo di $L(\theta)$, dunque di $l(\theta)$, avente espressione:

$$l(\theta) = \ln \theta + 2\ln(1-\theta).$$

L'equazione di verosimiglianza risulta dunque:

$$l'(\theta) = \frac{1}{\theta} - \frac{2}{1-\theta} = 0;$$

essa ammette come unica soluzione:

$$\hat{\theta} = \frac{1}{3}.$$

Poichè:

$$l''(\theta) = -\frac{1}{\theta^2} - \frac{2}{(1-\theta)^2} < 0, \quad \forall \theta \in (0,1),$$

 $\hat{\theta} = \frac{1}{3}$ è punto di massimo assoluto di $l(\theta)$, dunque è stima di massima verosimiglianza di θ .

Esercizio 11

Siano X_1, \ldots, X_n i.i.d. a X avente funzione di densità di probabilità :

$$\varphi_X(x;\mu,\sigma) = \frac{1}{x\sigma\sqrt{2\pi}}e^{-\frac{1}{2\sigma^2}(\ln x - \mu)^2}, \quad x \in \mathbb{R}^+, \mu \in \mathbb{R}$$

 $e \ \sigma > 0$ nota. Si determini la stima di massima verosimiglianza di μ .

Soluzione

Sia $X \sim \varphi_X(x; \mu, \sigma) = \frac{1}{x\sigma\sqrt{2\pi}}e^{-\frac{1}{2\sigma^2}(\ln x - \mu)^2}$, x > 0, $\sigma > 0$ nota, $\mu \in \mathbb{R}$ ignota; siano inoltre X_1, \ldots, X_n i.i.d. a X. Trattasi di un problema di stima puntuale per μ .

Le funzioni di verosimiglianza e di log-verosimiglianza di (x_1, \ldots, x_n) hanno rispettivamente espressioni:

$$L(\mu) = \prod_{i=1}^{n} \varphi_{X_{i}}(x_{i}; \mu, \sigma) = \prod_{i=1}^{n} \frac{1}{x_{i}\sigma\sqrt{2\pi}} e^{-\frac{1}{2\sigma^{2}}(\ln x_{i} - \mu)^{2}} =$$

$$= \frac{1}{(\prod_{i=1}^{n} x_{i}) \sigma^{n} (2\pi)^{\frac{n}{2}}} e^{-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (\ln x_{i} - \mu)^{2}},$$

$$l(\mu) = \log L(\mu) = -\log \left(\prod_{i=1}^{n} x_i \right) - n \log \sigma - \frac{n}{2} \log 2\pi - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (\ln x_i - \mu)^2,$$

 $\mu \in \mathbf{R}.$ L'equazione di verosimiglianza risulta dunque:

$$l'(\mu) = \frac{1}{\sigma^2} \sum_{i=1}^{n} (\ln x_i - \mu) = \frac{1}{\sigma^2} \left(\sum_{i=1}^{n} \ln x_i - n\mu \right) = 0;$$

essa ammette come unica soluzione:

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} \ln x_i.$$

Poichè:

$$l''(\mu) = -\frac{n}{\sigma^2} < 0, \quad \forall \mu \in \mathbf{R},$$

 $\hat{\mu}$ è punto di massimo assoluto di $l(\mu)$, dunque è stima di massima verosimiglianza di μ .