

Aufbau einer GDI mit Open Source Software

Axel Schaefer

agit2017 💢

- Where Group, Bonn
- Projektleitung und -umsetzung im Bereich WebGIS
- Projekte mit PostgreSQL/PostGIS, MapServer, GeoServer, QGIS, Mapbender, OpenLayers
- Projektleiter des Projekts Mapbender

- Was ist eine Geodateninfrastruktur (GDI)?
- Komponenten einer GDI
- Daten und Datenformate
- Dienste & OGC Standards
- Server & Clients
- Schnittstellen
- Vorstellung von OSGeo Software

OSGeo-Live

- OSGeo-Live 11
 - QGIS
 - MapServer
 - PostGIS
 - Mapbender

OSGeo-Live http://live.osgeo.org

 Download Daten und Präsentation http://trac.osgeo.org/osgeo/wiki/Live_GIS_Workshop_Install

- OSGEO Live
- http://live.osgeo.org
- GIS Software Kollektion
- 60 Open Source GIS Anwendungen
- Beispieldaten
- Dokumentation
- Basiert auf Ubuntu/Lubuntu
- Bootfähige DVD, USB-Stick oder virtuelle Maschine
- ISO zum Download unter: http://live.osgeo.org/de/download.html

Was ist eine GDI?

Kommunikation zum Client

Abbildung nach Geodatendienste im Internet (3. Auflage, KSt. GDI-DE)

http://www.geoportal.de/SharedDocs/Downloads/DE/GDI-DE/Flyer-Broschueren/Leitfaden-Geodi enste-im%20Internet.pdf?__blob=publicationFile

- Geodaten
 - Vektoren, Raster, Tabellen, Adressen, Routing-Netzwerke, ...
- Dienste
 - Kartendienste, Datendienste, Analyse-Dienste, Suchdienste, Routing-Dienste...
- Anwendungen
 - Desktop-Anwendungen, Web-Anwednungen, mobile Anwendungen

GDI-Komponenten: Daten und Dienste

- Geodatendienste und die dazugehörigen Geodaten mit Metadaten
 - Datenbanken, Rasterdaten, eventuell noch Shapefiles
 - WMS-Dienste, WFS-Dienste
 - Metadaten als XML (ISO/INSPIRE) oder als "Exceltabelle" ;-)
- Zentrale Datenhaltung in Datenbanken (siehe auch nächste Folie)
 - Einheitliche Basis für alle Nutzer
- gesteuerter Zugriff auf die Daten (siehe auch nächste Folie)
 - Berechtigungen
 - Vermeidung von Redundanzen
- Strukturierung und Koordination
 - Verantwortlichkeiten
 - Workflows

Probleme einer verteilten Datenverwaltung

- "Shapefile hier, Shapefile da…"
- Redundanzen
 - Nutzer arbeiten mit unterschiedlichen Daten
 - Unterschiedliche Versionen und Stände
- Erfassung über verschiedene Werkzeugen in unterschiedliche Formate
 - Projektionsdatei des Shapefiles fehlt. Uneinheitliche EPSG-Codes.
- Verteilte Daten
 - "Wo liegt nochmal der Datensatz XY?"
- Daten mit verschiedenen Ständen
 - "Ist das jetzt der Stand von 2013 oder 2018"?

Ziele der Zentralen Datenhaltung

- Alle Daten in einer (oder mehr) Datenbank
- Erfassung und Weiterführung im zentralen Datentopf
 - Nicht zwangsläufig. Geht auch über Export/Import Mechanismen
- Schnittstellen zum Import und Export von Daten
 - z.B. QGIS DB Manager
- Datenbank mit Zugriffsteuerung und Mehrbenutzerfähigkeit
 - Rechteverwaltung über PostgreSQL

Übung 1 (Praktisch an der Tafel)

Ordnen Sie die Software-Bausteine zu:

Geodaten halten Geodienste Daten ansehen Dateisystem Geodienste Datenbanken im Browser **Datenbereitstellung OGC-Dienste** WMS, WFS, WMC etc. Geodaten bearbeiten grafische Frontends

Übung: Bitte ordnen Sie die Komponenten der GDI den Feldern zu.

Kommandozeile

Ordnen Sie die Software-Bausteine zu:

Geodaten halten Dateisystem Datenbanken

ESRI Shape OGC GeoPackage PostgreSQL/PostGIS...

Geodaten bearbeiten

grafische Frontends SQL-Kommandozeile

QGIS

Geodienste Datenbereitstellung

OGC-Dienste WMS, WFS, WMC etc.

QGIS

Geodienste Daten ansehen

im Browser:

Mapbender

Desktop Anwendungen: QGIS, gvSIG, OpenJump, GRASS, Saga,...

QGIS

Daten und Desktop

Datenbank:

PostgreSQL

+

PostGIS

https://live.osgeo.org/de/overview/overview.htm

Arbeiten mit PostgreSQL + PostGIS

Datenbank anlegen in PostgreSQL

pgAdmin III öffnen

- pgAdmin PostgreSQL Tools
- Mit PostgreSQL Server verbinden (localhost:5432)
- Neue Datenbank anlegen
 - Kontextmenü auf Datenbanken
 - → neue Datenbank
 - → Datenbankname agit angeben
- PostGIS Erweiterung laden
 - Kontextmenü auf Datenbank agit
 - → Neues Objekt
 - → Neue Extension
 - → Reiter Properties (Eigenschaften)
 - → Feld Name: postgis auswählen

Lösung

Arbeiten mit QGIS: Shapefile anschauen

Daten im DesktopGIS QGIS

QGIS öffnen

- Lokale Vektordaten einladen: /home/user/data/natural_earth2/ne_10m_admin_1_states_provinces_shp.shp
- Filter setzen: "admin" = 'Austria'
- Beschriften mit [name]

Lösung (1)

Lösung (2)

Lösung (3)

Laden der Dateien in die PostgreSQL/PostGIS Datenbank

Laden des Shapes in die DB

- QGIS DB-Manager öffnen
- Layer / Shapefile importieren
- In QGIS anschauen.

QGIS neue PostGIS Verbindung

QGIS DB Manager

- Einfacher Import / Export
- Visualisierung der Daten
- Geodatenanzeige
- Anzeige & Bearbeitung der Tabellenstruktur
- Index Erstellung
- Wartung

QGIS DB Manager Import

Lösung (1)

Dienste

Datenbereitstellung über Dienste

Ziele

- Daten im Netz bereitstellen Intra- oder Internet
- Standardisierte Bereitstellung als Dienst
- OGC WMS Web Map Service Kartendienst
- OGC WFS Web Feature Service Datendienst
- INSPIRE konformer Aufbau der Dienste
- weitere Dienste (OGC WPS, WMC, CSW...)
- https://live.osgeo.org/de/standards/standards.html

agit2017 OSGeo Software mit OGC WMS /WFS Support

- MapServer
- GeoServer
- QGIS Server
- Deegree

OGC WMS – Kartendienst

OGC WFS – Datendienst, Datenausgabe als GML

WMS am Beispiel QGIS Server

Menü → Projekt → Projekteigenschaften → OWS Server

- Name und Titel, Extent, Layerfreigabe
- http://localhost/cgi-bin/qgis_mapserv?
 SERVICE=WMS&VERSION=1.3.0&REQUEST=GetCapabilities&map=/home/user/service_wms.qgs

WMS Capabilities Dokument

Kartendienst im Web bereitstellen

Vorteile des Kartendienstes

- GetCapabilities-Url verbreiten
- GetCapabilities und Metadaten in Metadatenkatalog eintragen
- WMS in WebGIS Client einbinden
- OpenLayers, Leaflet, Mapbender, Geomoose, ...

Unterschied Daten gegenüber Dienste

- Dienste haben Symbolisierung und Labels (sind schon designt, geht auch bei Daten)
- Dienste haben Maßstabseinschränkungen
- Dienste können die unterschiedlichsten Daten und Formate einbinden (Vektor und Raster, Shapes und Datenbanken, etc.)

Dienst anlegen

Dienst mit QGIS / QGIS Server anlegen

- Richtigen Layer auswählen
 - Shapefile: Nein.
 - Zentrale Datenbank: Ja.
- Eigenschaften des Projektes ausfüllen
 - OWS server
 - Service Capabilities
- Projekt speichern
 - Die URL ist für den Capabilities Aufruf wichtig
 - Gespeichert unter / home/ user / qgis.qgs
 - Capabilities Aufruf: http://localhost/cgi-bin/qgis_mapserv?
 SERVICE=WMS&VERSION=1.3.0&REQUEST=GetCapabilities&map=/home/user/qgis.qgs

Lösung (1)

Lösung (2)

WebGIS und Daten ansehen

WMS in Mapbender laden

- Menü → Sources → Add source
- GetCapabilities URL laden

WMS Beispiele

OSM:

 http://osm-demo.wheregroup.com/service?REQUEST=GetCapabilities&Service=WM S&Version=1.3.0

Salzburg WMS:

- https://data.stadt-salzburg.at/geodaten/wms?service=WMS&version=1.3.0&request= GetCapabilities&layers=ogdsbg:stadtteil
- https://service.salzburg.gv.at/arcgis/services/Extern/Geoland_Viewer_WMS_Land_S alzburg/MapServer/WMSServer?Service=WMS& Request=GetCapabilities&Version= 1.3.0

GDI-DE:

- http://www.geoportal.de/DE/GDI-DE/gdi-de.html?lang=de
- http://www.geoportal.de/DE/Geoportal/geoportal.html?lang=de

Mapbender Anwendung erzeugen

- Anwendung mapbender_user kopieren
 - Umbenennen in AGIT
- Map-Element anpassen
 - Max. EXTENT Österreich:
 - min x: -275634 min y: 4962374
 - max x: 1067675 max y: 5562977
 - Start EXTENT Salzburg:
 - min x: 351657 min y: 5294886
 - max x: 355683 max y: 5296688

WMS in Anwendung FOSSGIS einbinden

• Anwendung auswählen \rightarrow Reiter Layout \rightarrow + \rightarrow WMS auswählen

agit2017 💢

Metadaten zu Daten und Diensten

- Metadaten sollten erstellt werden und aktuell gehalten werden
- GeoNetwork, GeoNode, pycsw, MetaDor
- OGC Catalogue Service Web (CSW)

Vielen Dank

Vielen Dank für Ihre Aufmerksamkeit! Für Rückfragen stehe ich Ihnen gerne zur Verfügung.

Axel.Schaefer@WhereGroup.com

Mit freundlicher Unterstützung

Creative Commons Share Alike License 3.0

Autoren 2018: Astrid Emde, Charlotte Toma, Axel Schaefer