Định lý Weierstrass và Lyusternik trong Tối ưu Phi tuyến

Bài tập môn Tối ưu Phi tuyến - Hà Thị Ninh Giang (mssv: 24C24013)

1 Định lý Weierstrass và mở rộng

1.1 Phát biểu định lý

Định lý 1 (Weierstrass). Cho hàm f(x) liên tục trên tập compact $K \subset \mathbb{R}^n$. Khi đó f(x) đạt giá trị cực đại và cực tiểu trên K.

1.2 Tập compact và tính chất

Định nghĩa 1 (Tập compact). Tập $K \subset \mathbb{R}^n$ được gọi là compact khi thỏa mãn hai điều kiện:

- 1. Tính đóng: K chứa tất cả điểm giới hạn của nó
- 2. Tính bị chặn: $\exists M > 0$ sao cho $||x|| \leq M$ với mọi $x \in K$

Ví dụ 1. 1. [0,1] là tập compact vì nó đóng và bị chặn

- 2. (0,1) không compact vì không đóng
- 3. $[0,\infty)$ không compact vì không bị chặn

Tính chất 1. Các tính chất quan trọng của tập compact:

- 1. Tính compact tuần tự: Mọi dãy trong tập compact đều có dãy con hội tụ
- 2. Tính giao của họ tập đóng: Mọi họ tập đóng có giao không rỗng có giao compact
- 3. Ánh của tập compact qua hàm liên tục là compact

1.3 Chứng minh định lý

Ta sẽ chúng minh cho trường hợp tìm giá trị cực đại (cực tiểu tương tự):

Chứng minh. 1. Vì K compact nên f(K) bị chặn trên. Đặt $M = \sup\{f(x) : x \in K\}$

- 2. Lấy dãy $\{x_n\} \subset K$ sao cho $f(x_n) \to M$ khi $n \to \infty$ (dãy này tồn tại vì M là cận trên nhỏ nhất)
- 3. Vì K compact nên $\{x_n\}$ có dãy con $\{x_{n_k}\}$ hội tụ về $x^* \in K$
- 4. Do f liên tục nên: $f(x^*) = \lim f(x_{n_k}) = M$
- 5. Vậy f đạt giá trị cực đại M tại $x^* \in K$

1.4 Mở rộng của định lý

- 1. Mở rộng cho không gian Banach:
 - \bullet Định lý vẫn đúng khi K là tập compact trong không gian Banach

- $\bullet\,$ Điều kiện liên tục của f vẫn cần thiết
- 2. Mở rộng cho hàm nửa liên tục dưới:
 - Nếu f là hàm nửa liên tục dưới trên tập compact K
 - $\bullet\,$ Thì fđạt giá trị cực tiểu trên K
- 3. Mở rộng cho họ hàm:
 - Cho họ hàm liên tục $\{f_{\alpha}\}_{{\alpha}\in A}$ trên tập compact K
 - Nếu họ hàm đều liên tục thì $\sup_{\alpha \in A} f_{\alpha}(x)$ đạt cực tiểu trên K

2 Định lý Lyusternik và ứng dụng

2.1 Phát biểu đinh lý

Định lý 2 (Lyusternik). Cho M là đa tạp trong không gian Banach X và $x_0 \in M$. Khi đó:

- 1. Không gian tiếp tuyến $T(M, x_0)$ tồn tại
- 2. Tồn tại ánh xạ liên tục $\alpha(t,u)$ định nghĩa trên lân cận của (0,0) trong $\mathbb{R} \times T(M,x_0)$ thỏa mãn:
 - $\alpha(0,0) = x_0$
 - $\alpha(t,u) \in M$ với mọi t,u
 - $\|\alpha(t,u) (x_0 + tu)\| = o(|t|)$ khi $t \to 0$

2.2 Không gian Banach

Định nghĩa 2 (Không gian Banach). *Không gian vector X được gọi là không gian Banach nếu:*

- 1. X là không gian vector với norm $\|\cdot\|$
- 2. X đầy đủ: mọi dãy Cauchy trong X đều hội tụ trong X

Tính chất 2. Lý do xét trên không gian Banach:

- 1. Đảm bảo sự tồn tại của giới hạn
- 2. Có đủ cấu trúc để chứng minh các tính chất hội tụ
- 3. Tổng quát hóa được nhiều không gian thực tế

2.3 Da tạp và cấu trúc

Định nghĩa 3 (Ánh xạ vi phân). Cho $f: U \subset X \to Y$ là ánh xạ giữa hai không gian Banach. Ta nói f vi phân tại $x_0 \in U$ nếu tồn tại toán tử tuyến tính liên tục $A: X \to Y$ sao cho:

$$\lim_{h \to 0} \frac{\|f(x_0 + h) - f(x_0) - Ah\|}{\|h\|} = 0$$

Khi đó A được gọi là đạo hàm của f tại x_0 , ký hiệu $f'(x_0)$.

Định nghĩa 4 (Ánh xạ vi phân được). Ánh xạ $f:U\subset X\to Y$ được gọi là vi phân được trên U nếu:

- 1. f vi phân tại mọi điểm của U
- 2. Ánh xạ $x\mapsto f'(x)$ liên tục từ U vào không gian các toán tử tuyến tính liên tục

Định nghĩa 5 (Ánh xạ vi phân đồng phôi). Ánh xạ vi phân được $f: U \subset X \to Y$ gọi là vi phân đồng phôi tại x_0 nếu:

- 1. $f'(x_0)$ là một song ánh tuyến tính liên tục
- 2. $(f'(x_0))^{-1}$ cũng liên tục

Ví dụ 2. 1. Hàm $f(x) = e^x$ là ánh xạ vi phân được với $f'(x) = e^x$

- 2. Ánh xạ tuyến tính khả nghịch giữa các không gian Banach hữu hạn chiều là ánh xạ vi phân đồng phôi
- 3. Ánh xạ $f(x,y) = (x^2 + y^2, 2xy)$ không phải là vi phân đồng phôi tại (0,0)

Định nghĩa 6 (Đa tạp). Một tập M được gọi là đa tạp nếu mỗi điểm $p \in M$ có lân cận "giống" với không gian Euclid thông qua các ánh xạ vi phân đồng phôi.

Định nghĩa 7 (Đa tạp trong không gian Banach). *Đa tạp trong không gian Banach là tập M thỏa mãn:*

- 1. $M = \{x \in X | h(x) = 0\}$ với $h: X \to Y$ là ánh xạ vi phân được
- 2. h'(x) có hạng đủ lớn tại mọi điểm $x \in M$

2.4 Không gian tích và ý nghĩa

Định nghĩa 8 (Không gian tích). Không gian tích $\mathbb{R} \times T(M, x_0)$ là:

- 1. Tích Descartes của \mathbb{R} và không gian tiếp tuyến $T(M, x_0)$
- 2. Mỗi phần tử có dạng (t, u) với:
 - $t \in \mathbb{R}$: tham số thời gian
 - $u \in T(M, x_0)$: vector $ti\hat{e}p \ tuy\hat{e}n$

Tính chất 3. Ý nghĩa của các điều kiện trong định lý:

- 1. $\alpha(0,0) = x_0$: Điểm xuất phát là x_0
- 2. $\alpha(t,u) \in M$: Chuyển động luôn nằm trên đa tạp
- 3. $\|\alpha(t,u) (x_0 + tu)\| = o(|t|)$: $X\hat{a}p$ x^i tuyến tính cục bộ

2.5 Bài toán tính (ω, \bar{X})

Định nghĩa 9 (Khoảng cách đến tập). Cho $\omega = \{x \in \mathbb{R}^n | h(x) = 0\}$ và điểm \bar{X} . Khoảng cách từ \bar{X} đến ω được định nghĩa:

$$(\omega,\bar{X}) = \inf_{x \in \omega} \|x - \bar{X}\|$$

2.5.1 Cấu trúc cục bộ của đa tạp

Định nghĩa 10 (Cấu trúc cục bộ). *Cấu trúc cục bộ của đa tạp \omega tại điểm* $x_0 \in \omega$ bao gồm:

- 1. Không gian tiếp tuyến $T(\omega, x_0)$
- 2. Các đường cong vi phân trên ω đi qua x_0
- 3. Lân cận vi phân của x_0 trên ω

Tính chất 4 (Tính chất cục bộ). *Tại điểm* $x_0 \in \omega$:

- 1. ω có thể được xấp xỉ cục bộ bởi $T(\omega, x_0)$
- 2. Sai số xấp xỉ là $o(||x-x_0||)$ khi $x \to x_0$
- 3. Mọi vector tiếp tuyến đều là giới hạn của một đường cong vi phân