EE230-02 RFIC II Fall 2018

Lecture 1: RFIC Introduction

Prof. Sang-Soo Lee sang-soo.lee@sjsu.edu ENG-259

Why RFIC? Where do we use RF circuits? How big is the market?

Semiconductor Market

Largest IC Product Categories, 2018F

Rank	Market	\$B
1	DRAM	\$101,620
2	NAND Flash	\$62,604
3	Std PC, Server MPU	\$50,782
4	Computer and Periph—Spcl Purp Logic	\$27,619
5	Wireless Comm—Spcl Purp Logic	\$25,998
Rank	Shipments	Units, M
1	Power Management Analog	71,192
2	Wireless Comm—App Specific Analog	23,376
3	General Purpose Logic	21,675
4	Industrial—App Specific Analog	18,924

Source: IC Insights

Semiconductor Sales Leaders

1H18 Top-15 Semiconductor Sales Leaders (\$M, Including Foundries)

1H18	2017			1Q18	1Q18	1Q18	2Q18	2Q18	2Q18	2Q18/1Q18	1H18	1H17	1H18/1H17
Rank	Rank	Company	Headquarters	Tot IC	Tot O-S-D	Tot Semi	Tot IC	Tot O-S-D	Tot Semi	% Change	Tot Semi	Tot Semi	% Change
1	1	Samsung	South Korea	18,491	910	19,401	19,434	950	20,384	5%	39,785	29,181	36%
2	2	Intel	U.S.	15,832	0	15,832	16,753	0	16,753	6%	32,585	28,839	13%
3	4	SK Hynix	South Korea	8,016	125	8,141	9,421	192	9,613	18%	17,754	11,393	56%
4	3	TSMC (1)	Taiwan	8,473	0	8,473	7,839	0	7,839	-7%	16,312	14,601	12%
5	5	Micron	U.S.	7,486	0	7,486	7,920	0	7,920	6%	15,406	10,653	45%
6	6	Broadcom Ltd. (2)	U.S.	4,125	434	4,559	4,150	435	4,585	1%	9,144	8,404	9%
7	7	Qualcomm (2)	U.S.	3,897	0	3,897	4,087	0	4,087	5%	7,984	7,728	3%
8	9	Toshiba/Toshiba Memory	Japan	3,517	310	3,827	3,575	315	3,890	2%	7,717	6,159	25%
9	8	TI	U.S.	3,339	227	3,566	3,535	245	3,780	6%	7,346	6,595	11%
10	10	Nvidia (2)	U.S.	3,108	0	3,108	3,135	0	3,135	1%	6,243	4,083	53%
11	15	WD/SanDisk	U.S.	2,350	0	2,350	2,375	0	2,375	1%	4,725	3,715	27%
12	13	Infineon	Europe	1,360	907	2,267	1,388	926	2,314	2%	4,581	3,896	18%
13	11	NXP	Europe	2,017	252	2,269	2,035	255	2,290	1%	4,559	4,413	3%
14	12	ST	Europe	1,696	518	2,214	1,724	526	2,250	2%	4,464	3,732	20%
15	16	MediaTek (2)	Taiwan	1,696	0	1,696	2,032	0	2,032	20%	3,728	3,726	0%
— — Top-15 Total			85,403	3,683	89,086	89,403	3,844	93,247	4.7%	182,333	147,118	24%	

(1) Foundry (2) Fabless

Source: Company reports, IC Insights' Strategic Reviews database

^{*}Custom devices for internal use.

Wireless World Everywhere

Smartphones

Smartphone Block Diagram

Course Information

Instructor: Sang-Soo Lee, PhD Carnegie Mellon University

Time: Class: Tuesday, Thursday 4:30 – 5:45 pm

Office Hour: Tuesday, Thursday 5:50 - 6:50 pm

Other time by appointment

Lab ISA: TBD user@sjsu.edu

Lab Time: TBD TBD

Analog Course Sequence at SJSU

Prerequisite

- Familiarity with basic electrical engineering concepts
 - ☐ Ohm's Law : V = I x R, Power, KCL & KVL
 - Trigonometric functions, sine, cosine, etc.
 - ☐ Time-domain and Frequency-domain
 - □ Familiar with Filtering
 - □ A/D Converter and D/A Converter
 - Semiconductor Physics
- EE220 or equivalent

Course References

- 1. Lecture Notes
- 2. B. Razavi, RF Microelectronics, 2nd Edition, Upper Saddle River, New Jersey, Prentice Hall, 2012
- T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge, U.K., Cambridge University Press, 2004.
- 4. Selected publications from
 - Journal of Solid-State Circuits (JSSC)
 - Transactions on Microwave Theory and Techniques (MTT)
 - International Solid-State Circuits Conference (ISSCC)
 - Custom Integrated Circuits Conference (CICC)

Papers can be downloaded from IEEE Xplore website.

Topics to be covered

Focus on learning key building blocks used in every RF Transceiver.

Quiz on RF Basic

Calculate the peak-to-peak voltage swing for 0 dBm signal in 50-ohm system.

$$0 dBm \leftrightarrow 1mW$$

$$Power = \frac{V_{rms}^{2}}{R} = \frac{V_{rms}^{2}}{50} = 0.001$$

$$V_{rms} = \sqrt{0.05} = 0.224$$

$$V_{pk-pk} = 2(0.224 \cdot \sqrt{2}) = 0.632V$$

Quiz on RF Basic

The RF amplifier shown below produces Vs = 1 Vrms signal with a source resistance of Rs. We want to deliver 1 Watt of average power to an antenna with 50-ohm load for GSM 1.8GHz application.

- 1. What should be the value of Rs when a matching network is inserted to ensure Rin = Rs for maximum power transfer at the frequency of interest?
- 2. Suggest a circuit you have to put in the matching network shown below.

Quiz Solution

The RF amplifier shown below produces Vs = 1 Vrms signal with a source resistance of Rs. We want to deliver 1 Watt of average power to an antenna with 50-ohm load for GSM 1.8GHz application.

- 1. What should be the value of Rs when a matching network is inserted to ensure Rin = Rs for maximum power transfer at the frequency of interest?
- 2. Suggest a circuit you have to put in the matching network shown below.

$$Power = \frac{V_{rms}^2}{R_s} = \frac{0.5^2}{R_s} = 1 \implies R_s = 0.5^2 = 0.25$$

Technology to be used in the course

RF CMOS process

Design Tools to be used in the course

Cadence Virtuoso SpectreRF

ADS vs. Virtuoso

Cadence Spectre

- Homework and project will use Cadence Spectre simulation.
- Device models are from g045pdk.
- For Cadence related information,
 See the files in the following link

https://drive.google.com/open?id=1Jr0l9xn0Q2XQ9hzQKrLPH1l0xZhwuTg1 You have to use sjsu email address to access the files.

- TA Lab hours: TBD
- Additional Cadence Spectre Tutorials
 - If you have no experience in Cadence, please check Youtube videos such as
 - https://www.youtube.com/watch?v=u0WgSMa1hrc&list=PLK2eyR1C9gjr7j-YoL -JwJmjU6INZGTO

Grading Policy

Grading Basis

•	Homework	30%
•	Project	20%
•	Midterm	25%
•	Final Exam	25%

- Exams will be closed book
- No make-up exam

Grading Percentage

•	90% and above	Α
•	89% - 85%	A-
•	84% - 82%	B+
•	81% - 79%	В
•	78% - 75%	B-
•	74% - 72%	C+
•	71% - 69%	C
•	68% - 65%	C-
•	64% - 62%	D+
•	61% - 59%	D
•	58% - 55%	D
•	below 55%	F

Homework Problems

All homework problems should be done individually and submitted by 4 PM on the due date.

Submission: Email to sang-soo.lee@sjsu.edu

File name convention: EE230HW#1_your_name

You will design the following circuits using Cadence Spectre or write a report on the summary of the paper for each block.

- HW#1 (10%) LNA
- HW#2 (10%) Mixer
- HW#3 (10%) Oscillator

Course Project

PLL (20%)

Group (maximum 2 students) project

Detailed project description will be posted after Midterm exam.

Schedule subject to change with advanced notice

	,	
Lecture #	Topics	Book reading
1	RFIC Introduction I	Chapter 1, 2.2
2	RFIC Introduction II	Chapter 2.3-2.5
3	Wireless Receiver Architecture - I	Chapter 4.2.1
4	Wireless Receiver Architecture - II	Chapter 4.2.3
5	LNA General Considerations and Input Matching	Chapter 5.1-5.2
6	Common-Source LNA	Chapter 5.3.1-2
7	Common-Gate LNA (HW#1 handout, 10% grade)	Chapter 5.3.3
8	Cascode Common-Source LNA with Inductive Degeneration	Chapter 5.3.4
9	Variants of Common-Gate LNA	Chapter 5.3.5
10	Wireless Transmitter Architecture - I	Chapter 4.3
11	Wireless Transmitter Architecture - II	Chapter 4.4
12	Mixer – General Considerations	Chapter 6.1
13	Passive Down Conversion Mixers	Chapter 6.2
14	Active Down Conversion Mixers (HW#2 handout, 10% grade)	Chapter 6.3
15	Active Mixers with High IP2	Chapter 6.4
16	Active Up Conversion Mixers	Chapter 6.5
17	Midterm Exam, 75 minutes, 25% grade	1
18	Oscillators – Basic Principles	Chapter 8.1-8.2
19	Cross coupled Oscillators	Chapter 8.3
20	Voltage Controlled Oscillators	Chapter 8.5
21	Low-noise VCOs (HW#3 handout, 10% grade)	Chapter 8.6
22	Phase-locked loops (PLL) basic concepts	Chapter 9.1
23	Type-I PLLs	Chapter 9.2
24	Type-II PLLs	Chapter 9.3
25	PFD and Charge Pump Nonidealities	Chapter 9.4
26	PLL modeling and stability	Lecture Note
27	Project Presentation - Group 1-5	
28	Project Presentation - Group 6-10	
29	Project Presentation - Group 11-15	
30	Review for Final Exam	
		•

Dec. 14, Friday, from 2:45PM — 5:00PM, 25% grade

Midterm Around 10/16

Final **12/14**

Final Exam

Lecture Style

- Class room lecture most of the time
- Online lecture when I am traveling
 Use Zoom Online Meeting
- Guest lectureIf I can make find one
- Reading materialsIf I cannot make it any of the above

Challenges of RFIC Design 1

> Require understanding multitude disciplines

Challenges of RFIC Design 2

Require numerous Trade-offs

Big Picture of RF Communications

TX: Drive antenna with high power level

RX: Sense small signal (amplify with low noise)

Block Diagram Representation

Signals are upconverted/downconverted at TX/RX, by an oscillator controlled by a Frequency Synthesizer

How to send data without wire?