Constant delay enumeration for FO queries and nowhere dense graphs PART 2

Alexandre Vigny¹

Join work with: Nicole Schweikardt² and Luc Segoufin³

¹Université Paris Diderot, Paris

²Humboldt-Universität zu Berlin

³ENS Ulm, Paris

March 15, 2018

Outline

1 Part 1: On nowhere dense graphs

Part 2: Sketch of proof

Definitions nowhere dense

There are many equivalent definitions:

Winning strategies, asymptotic ratio edges/vertices, good ordering...

Definition: nowhere dense

 $\mathscr C$ is nowhere dense if and only if for all $\varepsilon > 0$, there is a $N_{\varepsilon} \in \mathbb N$, such that for all $G \in \mathscr C$, G with $|G| > N_{\varepsilon}$ admit a k-tree width colouring using $|G|^{\varepsilon}$ colors.

tree-width colouring

Definition : k-tree width colouring with M colors

G is *k*-tree width coloured if and only if it is coloured (with less than *M* colors) and for all $H \subseteq G$, if *H* use less than *k* colours, then tree-width $(H) \le k$

4-tree widh colouring with 5 colors

tree-width colouring

Definition : *k*-tree width colouring with *M* colors

G is k-tree width coloured if and only if it is coloured (with less than M colors) and for all $H \subseteq G$, if H use less than k colours, then tree-width $(H) \le k$

Neighborhood cover

A neighborhood cover is a set of "representative" neighborhoods.

 $\mathscr{X} := X_1, \dots, X_n$ is a (r, 2r) neighborhood cover if it has the following properties:

- $\forall a \in G$, $\exists X \in \mathcal{X}$, $N_r(a) \subseteq X$
- $\forall X \in \mathcal{X}$, $\exists a \in G$, $X \subseteq N_{2r}(a)$
- $\forall a \in G$, $|\{i \mid a \in X_i\}|$ is pseudo-constant (smaller than $|G|^{\epsilon}$)

Examples

Over trees, (r,2r)-neighborhood cover with constant degree can easily be computed.

Over graphs with bounded degree, (r,2r)-neighborhood cover with constant degree can easily be computed.

The game characterization

Definition : (ℓ, r) -Splitter game

A graph G and two players, Splitter and Connector.

Each turn:

- Connector picks a node c
- Splitter picks a node s
- $G' = N_r^G(c) \setminus s$

If in less than ℓ rounds the graph is empty, Splitter wins.

The game characterization

Definition : (ℓ, r) -Splitter game

A graph *G* and two players, Splitter and Connector.

Each turn:

- Connector picks a node c
- Splitter picks a node s
- $G' = N_r^G(c) \setminus s$

If in less than ℓ rounds the graph is empty, Splitter wins.

Theorem

 $\mathscr C$ is nowhere dense if and only if there is a function $f_\mathscr C$ such that for every $G\in\mathscr C$ and every $r\in\mathbb N$:

Splitter has a wining strategy for the $(f_{\mathscr{C}}(r), r)$ -splitter game on G.

How to play the (ℓ, r) -Splitter game on a graph G?

- If G is a star, Splitter wins in 2 rounds.
- If G is a path, Splitter wins in log(r) rounds.
- If G is a tree, Splitter wins in r rounds.
- If G has degree d, splitter wins in d^r rounds.

• If G is a clique of size $> \ell$, Splitter looses the (ℓ, r) -splitter game.

Outline

1 Part 1: On nowhere dense graphs

2 Part 2: Sketch of proof

The examples queries

- $q_1(x,y) := \exists z \ E(x,z) \land E(z,y)$ (The distance two query)
- $q_2(x,y) := \neg q_1(x,y)$ (Nodes that are far apart)

How to use the game 1/2

G is now fixed

Goal : Given a node a we want to enumerate all b such that $q_1(a,b)$. (Here r=2)

• Base case: If Splitter wins the (1, r)-Splitter game on G.

Then G is edgeless and there is no solution!

• By induction: assume that there is an algorithm for every G' such that Splitter wins the (ℓ, r) -Splitter game on G'.

How to use the game 2/2

Here, Splitter wins the $(\ell+1,r)$ -game on G.

Idea:

- **①** Compute some new graphs on which Splitter wins the (ℓ, r) game.
- Apply the induce algorithm for a particular query.
- Enumerate those solutions.

How to use the game 2/2

Here, Splitter wins the $(\ell+1,r)$ -game on G.

Idea:

- **①** Compute some new graphs on which Splitter wins the (ℓ, r) game.
- Apply the induce algorithm for a particular query.
- 3 Enumerate those solutions.

For every bags X of the (2,4)-neighborhood cover, $X' := X \setminus \{s\}$.

For every $(a, b) \in G^2$ we have:

$$G \models q_1(a,b) \iff \bigvee_{X \in \mathcal{X}} X \models q_1(a,b) \iff \mathcal{X}(a) \models q_1(a,b)$$

How to use the game 2/2

Here, Splitter wins the $(\ell+1,r)$ -game on G.

Idea:

- **①** Compute some new graphs on which Splitter wins the (ℓ, r) game.
- Apply the induce algorithm for a particular query.
- Enumerate those solutions.

For every bags X of the (2,4)-neighborhood cover, $X' := X \setminus \{s\}$.

For every $(a, b) \in G^2$ we have:

$$G \models q_1(a,b) \iff \bigvee_{X \in \mathscr{X}} X \models q_1(a,b) \iff \mathscr{X}(a) \models q_1(a,b)$$

$$X = \mathcal{X}(a) \models q_1(a,b)$$
 iff:

•
$$X' \models q_1(a,b)$$

•
$$b = s$$
 and $X \models q_1(a, s)$

•
$$E(a,s) \wedge E(s,b)$$

•
$$a = s$$
 and $X \models q_1(s, b)$

The second query

$$q_2(x,y) := \operatorname{dist}(x,y) > 2$$

Two kinds of solutions:

- $b \in \mathcal{X}(a)$ (similar to the previous example)
- $b \notin \mathcal{X}(a)$ We need something else!

The second query

$$q_2(x,y) := \operatorname{dist}(x,y) > 2$$

Two kinds of solutions:

- $b \in \mathcal{X}(a)$ (similar to the previous example)
- $b \notin \mathcal{X}(a)$ We need something else!

Goal: given a bag X, enumerate all $b \notin X$

Given X we want to enumerate all b such that $b \notin X$.

Given X we want to enumerate all b such that $b \notin X$.

$$NEXT(b,X) := \min\{b' \in G \mid b' \ge b \land b' \not\in X\}$$

Given X we want to enumerate all b such that $b \notin X$.

$$NEXT(b,X) := \min\{b' \in G \mid b' \ge b \land b' \not\in X\}$$

For all $X \in \mathcal{X}$ with $b_{max} \in X$, we have $NEXT(b_{max}, X) = NULL$

Given X we want to enumerate all b such that $b \notin X$.

$$NEXT(b,X) := \min\{b' \in G \mid b' \ge b \land b' \notin X\}$$

$$b \in X$$

For all
$$X \in \mathcal{X}$$
 with $b_{max} \in X$, we have $NEXT(b_{max}, X) = NULL$
 $NEXT(b, X) \in \{b+1, NEXT(b+1, X)\}$

Given X we want to enumerate all b such that $b \notin X$.

$$NEXT(b,X) := \min\{b' \in G \mid b' \ge b \land b' \not\in X\}$$

For all $X \in \mathcal{X}$ with $b_{max} \in X$, we have $NEXT(b_{max}, X) = NULL$ $NEXT(b, X) \in \{b+1, NEXT(b+1, X)\}$

$$G$$
 b_1 b_2 b_3 \cdots b_j b_{j+1} \cdots b_{n-1} b_n $NULL$ \vdots Y b_1 b_2 b_3 \cdots b_j b_{j+1} \cdots b_{n-1} b_n $NULL$

Recap

We use:

- A new "Hanf like" normal form for FO queries. 1
- The algorithm for the model checking.²
- Neighbourhood cover.²
- Game characterization of Nowhere-Dense classes.²
- Short-cut pointers dedicated to the enumeration.³

We can:

- Enumerate with constant delay after pseudo-linear preprocessing.
- Test in constant time after pseudo-linear preprocessing.

¹Grohe, Schweikardt '17

²Grohe, Kreutzer, Siebertz '14

³Segoufin, V. '17

Future work

- Classes of graphs that are not closed under subgraphs
- Enumeration with update:
 What happens if a small change occurs after the preprocessing?

 Existing results for: words, graphs with bounded tree-width or bounded degree.

Future work

- Classes of graphs that are not closed under subgraphs
- Enumeration with update:
 What happens if a small change occurs after the preprocessing?

 Existing results for: words, graphs with bounded tree-width or bounded degree.

Thank you!

Questions?