Optimization in code generation to reduce energy consumption

David Branco

Mestrado em Engenharia Informática

Supervisor: Pedro Rangel Henriques

University of Minho November 2018

Problem and Motivation

The rapid development & high demands in computer technology, the fast growth of the Internet & massification widespread of advanced wireless and mobile devices, produce:

- Increasing energy costs;
- Increasing cooling requirements;
- Increasing equipment power density;
- Restrictions on energy supply and access;
- Growing awareness of IT impact on the environment.

Measures and Solutions

Our Project

Main objectives:

- 1. Study the Green Computing paradigm;
- 2. Investigate IT elements from the energy efficiency perspective;
 - 2.1. Hardware;
 - 2.2. Software;
- 3. Develop an experimental study related to the triplet hardware-software-energy;
- 4. Produce suitable elements for other green oriented research.

Why Microprocessors?

• They are everywhere!

High energy consumption

Why Compilers?

- Importance, robustness and maturity;
- Optimal properties of generated code:
 - Correctness;Small Size;
 - High Speed;
 Low Energy Consumption;
- Potential to achieve significant improvements through optimizations:
 - Execution Time;
 - ✓ Code Size:
 - (?) Energy Consumption;

Study 1 | Objectives

Impact of GCC optimization levels in energy consumption during program execution

Main Objectives:

- Impact of optimized code on CPU energy consumption;
- Ascertain the strategy adopted by GCC regarding energy efficiency.

Study 1 | Experimental Elements

Main Elements:

- Execution time and energy consumption;
- 3 hardware components: CPU, RAM e GPU;
- 12 benchmarks in 4 programming languages: C, C++, Objective-C and Go;
- GCC optimization levels: O0, O1, O2, O3, Ofast and Os.

Measurement Elements:

- Target Machine with Intel CPU (Haswell Family);
- Measurement Tool using RAPL.

Study 1 | Methodology

Measurement Process:

- 1. Select a program;
- 2. Select an optimization level;
- 3. Apply the measurement tool 100 times for the selected components;
- 4. Process the output generated:
 - 4.1. Exclude the 20 extreme cases;
 - 4.2. Calculate the intended average values;
- 5. Repeat the process for all the remaining programs and compilation profiles;
- 6. Output process to charts, tables and HTML pages.

Study 1 | Results

Pbrt (C++)

Flags	-00	-01	-02	-03	-Ofast	-Os
Time (s)	47.008	12.614	12.761	12.413	12.175	19.547
GPU (J)	0.028	0.006	0.005	0.096	0.220	0.009
Memory (J)	34.017	9.143	9.250	9.010	8.852	14.158
CPU (J)	522.205	132.318	133.565	127.830	125.526	195.006

Study 1 | Conclusions

Some of Study Conclusions:

- Optimization levels allow achieve considerable improvements;
- Correlation between execution time and energy consumption;
- Ofast > O2, O3 > O1, Os;
- Optimization results transverse to the different languages;
- It is not possible to conclude with certainty GCC's strategies on the matter.

Study 2 | Objectives

Impact of compilation by IDEs in energy consumption during program execution

Main Objectives:

- Deepen research on the compilation parameters;
- Study and evaluate software development tools;
- Perform measurements on more demanding benchmarks.

Study 2 | Tools, Profiles and Parameters

Software Development Tools:

- Provide 2 profiles: Debug and Release;
- Little diversity and quantity:
 - 51 profiles: 29 distinct (43% repeated);
 - 144 parameters: 28 distinct (81% repeated).

Compilation Parameters:

- Configuration of the compilation process (31%);
- Management of diagnostic messages (26%);
- Produce debugging/profiling information (17%);
- Optimization of generated code (26%).

Study 2 | Experimental Elements

Main Elements:

- 12 C benchmarks;
- 18 Software Development Tools (15 IDEs e 3 BATs);
- 51 compilation profiles consisting of 144 compilation parameters;
- Execution time, CPU and RAM energy consumption, Energy/Time ratio.

Measurement Elements:

- Target Machine with Intel CPU (Haswell Family);
- Measurement Tool using RAPL.

Study 2 | Methodology

Measurement Process:

- 1. Select a program;
- 2. Select a compilation profile;
- 3. Apply the measurement tool *50* times for the selected components;
- 4. Process the output generated:
 - 4.1. Exclude the 20 extreme cases;
 - 4.2. Calculate the intended average values;
- 5. Repeat the process for all the remaining programs and compilation profiles;
- 6. Output process to charts, tables, rankings and HTML pages;

Study 2 | Profiles and Parameters Results

Total Profiles - Binary-trees

Optimization Level	Time (s)	Energy (J)	CPU (J)	Memory (J)	Energy/Time (J/s)
Oo	16.862	181.611	169.872	11.739	10.582
O ₁	8.689	85.511	79.195	6.316	10.212
01	48.5%	52.9%	53.4	46.2%	3.5%
O ₂	8.415	82.182	76.063	6.119	10.032
02	50.1%	54.7%	55.2	47.9%	5.2%
О3	7.644	74.058	68.485	5.573	9.872
03	54.7%	59.2%	59.7	52.5%	6.7%
Os	9.408	93.879	87.061	6.818	10.315
	44.2%	48.3%	48.7	41.9%	2.5%

Comparison between optimization levels

Study 2 | Tools Results

Consumption Values 25 300 250 20 200 150 10 100 5 50 2 3 4 5 9 10 11 12 13 14 15 16 17 18 6 8 Tools CPU MEMORY TIME

Default Profiles - K-nucleotide

Total Tools - N-body

Study 2 | Tools Results

Tool ID	Tool Name	Execution Time (s)	Total Energy (J)	CPU Energy (J)	Memory Energy (J)	Energy/Time (J/s)
1	CMake	3	3	3	3	3
2	qmake	8	4	4	6	4
3	Qbs	11	9	9	11	7
4	NetBeans IDE	10	11	9	10	7
5	Code::Blocks	15	15	14	15	11
6	CLion	3	3	3	3	3
7	CodeLite	6	7	7	7	8
8	Eclipse CDT	5	6	6	5	6
9	KDevelop	3	3	3	3	3
10	Geany	14	13	12	14	12
11	Anjuta DevStudio	12	12	11	12	9
12	Qt Creator	7	5	5	8	5
13	DialogBlocks	9	10	10	9	9
14	ZinjaI	4	8	8	4	10
15	GPS	2	2	2	2	2
16	Oracle Developer Studio	10	11	9	10	7
17	Sphere Engine	1	1	1	1	1
18	AWS Cloud9	13	14	13	13	13

Tools ranked with 1 decimal point

Study 2 | Conclusions

- Some tools have good solutions for developers;
- Measured Strands:
 - Great impact of the compiler (86% for the best case);
 - CPU is responsible for 90% of energy consumption.
 - Correlations Observed:
 - Execution time and total energy consumption;
 - Total and CPU energy consumption;
 - Execution time and memory energy consumption.
- Maximum energy efficiency achieved:
 - CPU(53%) > Total energy(52%) > Execution time(47%) > RAM(46%).

Our Contribution

Some of project contributions:

- 1. Green oriented research of IT components;
- 2. Definition of experimental studies and methodologies;
- 3. Relevant results and conclusions;
- 4. Measurement Tool;
- 5. Green oriented workbench.

All this material is available at:

http://www4.di.uminho.pt/~gepl/OCGREC/

Optimization in code generation to reduce energy consumption

David Branco

Mestrado em Engenharia Informática

Supervisor: Pedro Rangel Henriques

University of Minho November 2018