Fiscal stimulus, credit frictions and the amplification effects of small firms

Pedro Juarros

Georgetown University

September 25th, 2020

Motivation

▶ We care about *output* (Y) after a fiscal stimulus (G)

Fiscal Multiplier
$$(FM) = \frac{\Delta Y}{\Delta G}$$

- ► Empirical evidence: multipliers can go from as low as 0.5 to larger than 2 (Ramey, 2011; Auerbach & Gorodnichenko, 2012)
- No such a thing as a unique fiscal multiplier, it depends on the characteristics of the economy

Motivation

- ightharpoonup Firm dynamics facts: small firms \neq large firms
 - 1. Contribute disproportionately to output growth (Haltiwanger et al, 2014)
 - 2. Cyclically more sensitive than large firms (Fort et al, 2013)
 - 3. Different investment, revenues and financing dynamics along the business cycle (Dinlersoz et al, 2019)

Research question

Given these empirical facts about heterogeneity across small and large firms,

► How does firm size heterogeneity affect the fiscal multiplier?

► Are fiscal spillover effects heterogeneous by firm size?

Main Contributions

- 1. Novel determinant: the local FM increases with the share of small firms
 - ▶ Neoclassical and NK theories: representative firm (Ramey19'; Nakamura & Steisson14')
- 2. Positive spillovers for small firms and neutral for large firms
 - Small firms increase operating revenues, investment and financing relative to large firms → challenge the established view that ↑ G crowd-out investment and credit (Auerbach et al, 2020; Murphy & Walsh, 2018)
- 3. Heterogeneous firms' credit frictions and fiscal stimulus
- 4. National fiscal multiplier and the share of small firms

Proposed mechanism: Financial Accelerator

Outline

1. Macro evidence: output responses to G shocks at MSA level, (γ^{macro})

2. Micro evidence: firm level responses to local fiscal stimulus, (γ^{micro})

3. Model to quantitatively assess the proposed mechanism and provide a link between national fiscal multipliers and small firms (γ^{nat})

MSA level responses

1. Macro evidence:

How does firm size heterogeneity affect the local fiscal multiplier?

$$\frac{Y_{m,t+1} - Y_{m,t-1}}{Y_{m,t-1}} = \beta \frac{G_{m,t+1} - G_{m,t-1}}{Y_{m,t-1}} + \gamma \frac{G_{m,t+1} - G_{m,t-1}}{Y_{m,t-1}} \times (S_{m,t-1} - \bar{S}) + \eta S_{m,t-1} + \delta_m + \delta_t + \epsilon_{m,t}$$

- $ightharpoonup Y_{m,t}$: real GDP of MSA m (BEA),
- $ightharpoonup G_{m,t}$: federal DOD contracts allocated to MSA m, (Demyanyk et al, 2019)
 - ▶ 50% of discretionary G and 18% of G
- ▶ $S_{m,t-1}$ log-employment share of small firms, and $\bar{S} = \sum_{m}^{M} \sum_{t}^{T} \frac{S_{m,t}}{n_{M}n_{T}}$, (< 250 employees Business Dynamic Statistics)
- Interpretation: $\beta + \gamma$ is the local FM of increasing the employment share of small firms by 1% above the average

Identification assumptions

▶ IV: heterogeneous sensitivity across MSA's to variation in federal (aggregate) military spending (s_m) :

$$s_m \frac{G_{t+1}^{agg} - G_{t-1}^{agg}}{Y_{m,t-1}}$$

$$s_m = \sum_t^T (G_{m,t}/G_t)/n_T$$

▶ IV: 20-year lagged firm entry $(S_{m,t-20}^{new})$ (Gourio et al, 2016)

Exclusion restriction: correlation between s_m and $S_{m,t-20}^{new}$ is -0.005 (p-value = 0.72) First stage coeff: 0.08**

How does firm size heterogeneity affect the local fiscal multiplier?

$$\frac{Y_{m,t+l} - Y_{m,t-1}}{Y_{m,t-1}} = \beta \frac{G_{m,t+l} - G_{m,t-1}}{Y_{m,t-1}} + \gamma \frac{G_{m,t+l} - G_{m,t-1}}{Y_{m,t-1}} \times (S_{m,t-1} - \bar{S}) + \eta S_{m,t-1} + \delta_m + \delta_t + \epsilon_{m,t}$$

Output response at	1-year	2-years
	(1)	(2)
Military contracts (eta)	1.573***	1.442***
	(0.369)	(0.380)
Military contracts $ imes$ Emp share of Small (γ)	0.068**	0.077**
	(0.028)	(0.038)
Emp share of Small (η)	0.101**	0.077
	(0.040)	(0.062)
Obs.	3,784	3,440
MSA and Time FE	Yes	Yes
Cluster SE	MSA	MSA
1st Stage F-stat	18.41	22.78

Robustness

Adding Controls

Others definitions

Impact on other outcomes

How does firm size heterogeneity affect the local fiscal multiplier?

Does fiscal stimulus ease small firms' constraints?

$$\frac{Y_{m,t+1} - Y_{m,t-1}}{Y_{m,t-1}} = \beta \frac{G_{m,t+1} - G_{m,t-1}}{Y_{m,t-1}} + \delta_m + \delta_t + \epsilon_{m,t}$$

	Fi	rm's Exit ra	te
Dependent variable	All	Small	Large
	(1)	(2)	(3)
Military contracts (β)	-0.936*	-1.006**	0.727
	(0.495)	(0.441)	(1.720)
Obs.	3,784	3,784	3,784
MSA and Time FE	Yes	Yes	Yes
SD Cluster	MSA	MSA	MSA
1st Stage F-stat	6.742	6.742	6.742

Note: ***: p<0.01;**: p<0.05;*: p<0.1

Does fiscal stimulus ease small firms' constraints?

$$\frac{Y_{m,t+1} - Y_{m,t-1}}{Y_{m,t-1}} = \beta \frac{G_{m,t+1} - G_{m,t-1}}{Y_{m,t-1}} + \delta_m + \delta_t + \epsilon_{m,t}$$

	Fir	House		
Dependent variable	All	Small	Large	Prices
	(1)	(2)	(3)	(4)
Military contracts (β)	-0.936*	-1.006**	0.727	1.251*
	(0.495)	(0.441)	(1.720)	(0.681)
Obs.	3,784	3,784	3,784	3,652
MSA and Time FE	Yes	Yes	Yes	Yes
SD Cluster	MSA	MSA	MSA	MSA
1st Stage F-stat	6.742	6.742	6.742	7.791

Note: ***: p<0.01;**: p<0.05;*: p<0.1

2. Micro evidence:

Firm level responses

Are spillover effects heterogeneous by firm size?

- ► Firm panel data from ORBIS with both, **small and large**, unlisted and listed firms for 1997-2016
- Spillovers: firms that did not receive a military contract
 - Match contract level data from USAspending.org with ORBIS
- ► G shock: federal military contracts aggregated at state level
- Firm *i* in state *s* headquartered on the state where the fiscal stimulus takes place (Cohen et al, 2011; Kim & Nguyen, 2020)

Small firms are different from large firms and military contractors

Small	Large	Contractors
43	1,836	1,965
15.32	19.33	19.41
11.28	10.75	8.51
-0.02	0.08	0.07
0.52	0.57	0.50
0.20	0.28	0.22
4.82	3.30	2.73
	43 15.32 11.28 -0.02 0.52 0.20	43 1,836 15.32 19.33 11.28 10.75 -0.02 0.08 0.52 0.57 0.20 0.28

Are spillover effects heterogeneous by firm size?

$$\Delta y_{i,s,t} = \alpha_i + \alpha_{s,t} + \gamma \frac{G_{s,t} - G_{s,t-2}}{Y_{s,t-2}} \times Small_{i,s,t-2} + \theta X_{i,s,t-2} + \epsilon_{i,s,t}$$

- $ightharpoonup \Delta y_{i,s,t}$ is a two year log-change in Operating Revenues, Investment and Financing; SE clustered at state level
- ▶ IV: heterogeneous sensitivity (s_s)

$$\frac{G_{s,t} - G_{s,t-2}}{Y_{s,t-2}} = s_s \times \frac{G_t - G_{t-2}}{Y_{t-2}}$$

- $ightharpoonup lpha_i$: firm fixed effects (i.e. industry) and $lpha_{s,t}$: state-year fixed effects; $X_{i,s,t-2}$: firm level controls (Log total assets, EBIT)
- $ightharpoonup Small_{i,s,t-2}$: dummy equal to 1 if firms have less than 250 employees before shock

Are spillover effects heterogeneous by firm size?

	Op. Revenues	Investment	Total Financing	
	growth	$(\Delta \text{ Fixed Assets})$	growth	
	(1)	(2)	(3)	
$\Delta G imes Small \ (\gamma)$	11.168**	4.978**	7.550***	
	(4.552)	(2.173)	(2.624)	
Small	0.046***	0.016	0.010	
	(0.013) (0.025)		(0.017)	
Log Total Assets	otal Assets -0.173***		-0.203***	
	(0.007)	(0.007)	(0.009)	
Profitability	Profitability -0.021		0.060***	
	(0.013)		(800.0)	
Firm FE	Yes	Yes	Yes	
$State \times Year \; FE$	Yes	Yes	Yes	
Obs	59,411	61,010	62,054	
Cluster SE	State	State	State	
Kleibergen-Paap rk Wald F	45.64	41.88	43.15	

Taking stock of the evidence

▶ Macro: the local fiscal multiplier increases with the share of small firms,

$$\gamma^{macro} > 0$$

▶ Micro: small firms increase operating revenues, investment and financing relative to large firms,

$$\gamma^{micro} > 0$$

Proposed mechanism

Stimulus improve small firms' balance sheet and the value of the collateral, reducing credit spreads that leads to an increase in borrowing and investment

3. Model

 $\gamma^{macro} > 0$? $\gamma^{micro} > 0$? $\gamma^{nat} > 0$?

Model: Financial accelerator (BGG99) + Open economy New Keynesian model (NS14)

- 1. Two regions, i = H, F (a small home region, H, (n) and a larger "rest of the union", F, (1 n))
- 2. Credit friction $(R^K \ge R)$, R risk-free interest rate;
- 3. Two types of firms: Small and Large, which differ in the riskiness of investment projects, leverage and credit spreads
- 4. Households (HHs): consume ($C = (C_H, C_F)$), supply labor (H) and deposit savings in financial intermediary (D);
- 5. Financial intermediary: are competitive, take deposits from HHs and lend to firms;
- 6. (Federal) Government: lump-sum taxes (T), spending in each region (G_i) and Monetary policy rule;

Model - Credit friction

- Firm's finance investment with internal (N) and external funds (B): $B_{jt+1} = P_{jkt}K_{jt+1} N_{jt+1}$, with j = s, l
- ▶ Idiosyncratic shock: $F(\omega_j)$ with j = s, l and $\sigma_{\omega,s}^2 > \sigma_{\omega,l}^2$
- $ightharpoonup \omega$ is private information, Lender must pay μ to observe ω
- ▶ Optimal contract is $\bar{\omega}$ such that:

$$\bar{\omega}_{jt}R_{jt}^K P_{k,jt-1}K_{jt} = Z_{jt}B_{jt}$$

Model - Credit friction

Firm's problem (E1):

$$\underset{\{K_{jt},E_{t-1}\bar{\omega}_{jt}\}}{\mathsf{Max}} E_{t-1} \int_{\bar{\omega}_{jt}}^{\infty} \left[\omega_{j} R_{jt}^{K} P_{kjt} K_{jt-1} - Z_{jt} B_{jt} \right] dF(\omega_{j})$$

subject to,

$$R_{t}(P_{k,jt-1}K_{jt}-N_{jt}) = \left[\bar{\omega}_{jt}\int_{\bar{\omega}_{jt}}^{\infty} f(\omega_{j})d\omega_{j} + (1-\mu_{j})\int_{0}^{\bar{\omega}_{jt}} \omega_{j}f(\omega_{j})d\omega_{j}\right]R_{jt}^{K}P_{kjt-1}K_{jt}$$

► Let

$$\left[ar{\omega}_{jt}\int_{ar{\omega}_{jt}}^{\infty}f(\omega_{j})d\omega_{j}+(1-\mu_{j})\int_{0}^{ar{\omega}_{jt}}\omega_{j}f(\omega_{j})d\omega_{j}
ight]=\left[rac{1}{\Gamma(ar{\omega}_{jt+1})-\mu_{j}A(ar{\omega}_{jt+1})}
ight]$$

► Capital expenditures are proportional to firm's net worth

$$E_t \left[\frac{R_{jt+1}^K}{R_t} \right] = E_t \left[\frac{1}{\Gamma(\bar{\omega}_{it+1}) - \mu_i A(\bar{\omega}_{it+1})} \left(1 - \left(\frac{P_{kjt} K_{jt+1}}{N_{it+1}} \right)^{-1} \right) \right]$$

Definition of equilibrium

- Given $F(\omega_j)$, a competitive equilibrium is a sequence of allocation and price functions, $\{C_{it}, C_{it}^e, H_{ijt}, D_{it}, W_{it}, Y_{ijt}, K_{ij,t+1}, B_{ijt}, P_{kijt}, R_{ij,t+1}^K, R_{t+1}, G_{it}, T_t, \bar{\omega}_{ijt}\}_{t=0}^{\infty}$, for i = H, F and j = s, I; such that:
- 1. Household solve $\max_{\{C_{t+j}, H_{t+j}, D_{t+j}\}} E_t \sum_{j=0}^{\infty} \beta^j U(C_{t+j}, H_{t+j})$ s.t, $P_t C_t + D_{t+1} = W_t H_t + R_t D_t T_t + \Pi_t$
- 2. Entrepreneur *i* solves *E*1;
- 3. Capital producers solve $\frac{\textit{Max}}{\{\textit{K}_{jt+1},\textit{I}_{jt}\}} \textit{E}_0 \sum_{t=0}^{\infty} \beta^t [\textit{P}_{jkt} \textit{K}_{jt} \textit{I}_{jt} \tilde{\textit{P}}_{jkt} \textit{K}_{jt}] \text{ s.t.}$ $\textit{K}_{jt+1} = \phi_j \left(\frac{\textit{I}_{jt}}{\textit{K}_{it}}\right) \textit{K}_{jt} + (1-\delta) \textit{K}_{jt}$

4. Government budget:
$$nP_{Ht}G_{Ht} + (1-n)P_{Ft}G_{Ft} = T_t$$

- 5. $Y_t = nY_{Ht} + (1-n)Y_{Ft};$ $Y_{it} = C_{it} + I_{it} + G_{it} + \sum_j \mu_j \int_0^{\bar{\omega}_{jt}} \omega_j dF(\omega_j) R_{jt}^K P_{jk,t-1} K_{jt};$ $C_t = [n(C_{it} + C_{it}^e) + (1-n)(C_{it}^* + C_{it}^{e*}); I_t = [nI_{it} + (1-n)I_{it}^*]$
- 6. $\sum_{i} (Q_{ijt} K_{ij,t+1} N_{ij,t+1}) = \sum_{i} B_{ij,t+1} = D_{it+1}$

Parametrization

		Target/Source	A	All	
Discount factor	β	2% i ⁿ	0.9	995	_
Labor share	α		0.	65	
Substituibility home and foreign goods	η	NS14'		2	
Substituibility varieties	$\dot{ heta}$	NS14'		7	
Depreciation	δ		0.	02	
Relative size of avg. MSA	n	BEA	0.	01	
Home bias	ϕ_H	Dupor et al, 19'	0.	66	
Taylor rule, Calvo parameter	$(\phi_\pi,\phi_Y,\epsilon)$	lacovello, 05'	(1.27,0.	13,0.75)	
Gov. Spending, Shock persistence	$(G/Y,\delta)$	Basso&Rachedi, 20'	(0.20	,0.95)	
Financial Accelerator & Firm size		Target/Source	Small	Large	
Emp. share		BDS	46%	54%	
Steady-state risk spread $(annual)(m)$	R^K/R	ORBIS	3%	1%	
Business failure (annual) (m)	$F(\bar{\omega})$	BDS	7%	1%	
Leverage ratio (m)	B/N	ORBIS	0.52	0.57	
Entrepreneurial Labor share $\binom{m}{}$	Ω	BGG99'	0.01	0.01	
Capital Adjustment Cost	ϕ	Match (σ_s^I/σ_I^I)	0.1	0.5	
Standard error of idiosyncratic shock*	σ_{ω}		0.300	0.197	
Threshold value of idiosyncratic shock*	$ar{\omega}$		0.457	0.568	
Monitoring cost*	μ		0.091	0.134	
Survival rate of entrepreneurs*	γ_s		0.979	0.988	
Elast. of risk premium wrt leverage	ν	Deduced at SS	0.045	0.025	

Model vs Data: Investment response (γ^{micro})

Investment: Ratio of Model-Data explained	64.	.3%
Difference in Investment response (γ^{micro})	4.978	3.202
	Data	Model

Model vs Data: γ^{macro}

$$\frac{Y_{m,t+1} - Y_{m,t-1}}{Y_{m,t-1}} = \beta \frac{G_{m,t+1} - G_{m,t-1}}{Y_{m,t-1}} + \gamma \frac{G_{m,t+1} - G_{m,t-1}}{Y_{m,t-1}} \times (S_{m,t-1} - \bar{S}) + \eta S_{m,t-1} + \delta_m + \delta_t + \epsilon_{m,t}$$

Create model simulated data changing two parameters:

1.
$$G_m = [G_{min}, G_{max}]$$
 and 2. $S_m = [S_{min}, S_{max}]$

		Data	Model
Average Local Output Fiscal Multiplier	β	1.573	1.707
Sensitivity wrt Small firms	$\gamma^{ extit{macro}}$	0.068	0.010
Δ Local Multiplier of 1% increase in Share of Small	γ/eta	4.32%	0.56%
Local Fiscal Multiplier: Ratio of Model-Data explained		13.	.1%
[Min; Max]		[10.2%;	17.0%]

National multiplier and Small firms - $\gamma_{\it nat}$

Policymakers care about the national fiscal multiplier

$$Y_t^{nat} = nY_{Ht} + (1-n)Y_{Ft}$$
 & $G_t^{nat} = nG_{Ht} + (1-n)G_{Ft}$ $S_t^{nat} = nS_{Ht} + (1-n)S_{Ft}$

- National policies come into play now ...
- ▶ Does a higher share of small firms also increase the national aggregate multiplier? $\gamma_{nat} > 0$?

National multiplier and Small firms - $\gamma_{\it nat}$

▶ Does a higher share of small firms also increase the national aggregate multiplier? $\gamma_{nat} > 0$?

$$\frac{Y_{t+1}^{nat} - Y_{t-1}^{nat}}{Y_{t-1}^{nat}} = \beta_{nat} \frac{G_{t+1}^{nat} - G_{t-1}^{nat}}{Y_{t-1}^{nat}} + \gamma_{nat} \frac{G_{t+1}^{nat} - G_{t-1}^{nat}}{Y_{t-1}^{nat}} \times \left(S_{t-1}^{nat} - \bar{S}^{nat}\right) + \eta S_{t-1}^{nat} + \epsilon_t$$

National multiplier and Small firms - $\gamma_{\it nat}$

▶ Does a higher share of small firms also increase the national aggregate multiplier? $\gamma_{nat} > 0$?

$$\frac{Y_{t+1}^{nat} - Y_{t-1}^{nat}}{Y_{t-1}^{nat}} = \beta_{nat} \frac{G_{t+1}^{nat} - G_{t-1}^{nat}}{Y_{t-1}^{nat}} + \gamma_{nat} \frac{G_{t+1}^{nat} - G_{t-1}^{nat}}{Y_{t-1}^{nat}} \times \left(S_{t-1}^{nat} - \bar{S}^{nat}\right) + \eta S_{t-1}^{nat} + \epsilon_t$$

▶ Answer: $\gamma^{nat} = f(\phi_{\pi})$

$$\hat{R}_t = (1 - \rho_R)\phi_\pi \hat{\pi}_t + \rho_R \hat{R}_{t-1}$$

The larger the stabilization, the smaller the role of the financial accelerator

National multiplier and Small firms - γ_{nat}

National multiplier and Small firms - $\gamma_{\it nat}/\beta_{\it nat}$

Conclusions

- 1. Local fiscal multiplier increases with the share of small firms, implying multipliers of 0.95-2.15 in the interquantile range ($\gamma^{macro} > 0$)
- 2. Positive spillovers for small firms and neutral for large firms:
 - ▶ Small firms increase operating revenues, investment and financing by 5%-10% relative to large firms ($\gamma^{micro} > 0$)
- 3. Heterogeneity in firms' credit frictions shape the effectiveness of fiscal stimulus
- 4. Financial accelerator mechanism can account for 2/3 of the heterogeneous response in investment and 10-20% of the sensitivity of the local fiscal multiplier to the share of small firms
- 5. National fiscal multiplier increases with the share of small firms iff monetary policy does not respond much: $\gamma^{nat} < 0$ in Volcker-Greenspan era and $\gamma^{nat} > 0$ at ZLB

Robustness

Output response	OLS	$(S_{m,t-1}-\bar{S}_t)$	No IV Share Small	MSA specific Cyclicality	National specific Cyclicality
	(1)	(2)	(3)	(4)	(5)
Military contracts (eta)	0.213*** (0.079)	1.689*** (0.425)	1.476*** (0.405)	1.334*** (0.263)	1.640*** (0.359)
Military contracts $ imes$ Emp share of Small (γ)	0.007 (0.004)	0.076** (0.035)	0.048** (0.024)	0.046** (0.022)	0.073*** (0.025)
Emp share of Small (η)	0.123*** (0.037)	0.010** (0.040)	0.106*** (0.039)	0.027 (0.040)	0.081 (0.054)
Lag GDP growth	, ,	, ,	, ,	0.432** (0.184)	. ,
Lag GDP growth \times Emp share of Small				0.000 (0.001)	0.003 (0.008)
Obs.	3,748	3,748	3,748	3,440	3,440
MSA and Time FE	Yes	Yes	Yes	Yes	Yes
Cluster SE	MSA	MSA	MSA	MSA	MSA
1st Stage F-stat		15.88	20.70	17.58	17.49

Back

Robustness: Adding time-variant controls

Output response	Lagged	Control	Control	Control	Control
	GDP growth	Unemp. rate	Share Manuf.	Share Constr.	House Prices
	(1)	(2)	(3)	(4)	(5)
Military contracts (eta)	0.002 (0.195)	1.463*** (0.333)	1.446*** (0.315)	1.404*** (0.321)	1.506*** (0.378)
Military contracts $ imes$ Emp share of Small (γ)	0.020 (0.021)	0.078*** (0.024)	0.063** (0.027)	0.071*** (0.026)	0.070** (0.028)
Emp share of Small (η)	0.074*** (0.025)	0.108** (0.042)	0.099** (0.040)	0.106** (0.043)	0.103** (0.040)
Control $(X_{m,t-1})$. , ,	-0.001 (0.002)	-0.016 (0.019)	0.017 (0.017)	-0.002* (0.014)
Obs.	3,440	3,608	3,734	3,327	3,674
MSA and Time FE	Yes	Yes	Yes	Yes	Yes
Cluster SE	MSA	MSA	MSA	MSA	MSA
1st Stage F-stat	17.18	22.26	38.20	31.09	17.07

Robustness: Other definitions of Small

Output response	Small < 50	Small < 100	Young < 5	Large > 1000
	(1)	(2)	(3)	(4)
Military contracts (β)	1.460***	1.519***	1.201***	1.065***
	(0.379)	(0.364)	(0.257)	(0.388)
Military contracts $ imes$ Emp share of Small (γ)	0.042**	0.053**	0.029***	-0.052†
	(0.019)	(0.022)	(0.009)	(0.032)
Emp share of Small ₅₀	0.125***			
·	(0.041)			
Emp share of $Small_{100}$		0.102**		
		(0.043)		
Emp share of Young₅			-0.017	
			(0.013)	
Emp share of $Large_{1000}$				-0.009
				(0.041)
Obs.	3,748	3,748	3,748	3,748
MSA and Time FE	Yes	Yes	Yes	Yes
Cluster SE	MSA	MSA	MSA	MSA
1st Stage F-stat	15.78	17.10	7.89	6.46
13t Stage 1-Stat	13.70	17.10	1.09	0.40

Impact on other outcomes

	Earnings	Wages	Personal	Unempl	Dividends,
Response of			Income	rate	Int. & rent
	(1)	(2)	(3)	(4)	(5)
Military contracts (eta)	2.154*** (0.440)	1.934*** (0.404)	1.058*** (0.258)	-2.113** (0.834)	0.691** (0.321)
Military contracts \times Emp share of Small (γ)	0.078** (0.033)	0.096*** (0.025)	0.036* (0.020)	-0.019 (0.076)	0.044 (0.033)
Emp share of Small (η)	0.105** (0.040)	0.075** (0.038)	0.045 (0.028)	0.179 (0.160)	-0.078 (0.048)
Obs.	3,748	3,748	3,748	3,608	3,748
MSA and Time FE	Yes	Yes	Yes	Yes	Yes
Cluster SE	MSA	MSA	MSA	MSA	MSA
1st Stage F-stat	18.41	18.41	18.41	21.83	18.41

Are spillover effects heterogeneous by firm size?

Response of Small relative to Large firms: γ

Adding Contractors

	Op. Revenues	Investment	Total Financing
	growth	$(\Delta \text{ Fixed Assets})$	growth
	(1)	(2)	(3)
$\Delta G imes Small \; (\gamma)$	11.230***	3.809	8.044***
	(2.924)	(2.722)	(2.615)
Small	0.047***	0.015	0.003
	(0.012)	(0.022)	(0.016)
Log Total Assets	-0.172***	-0.321***	-0.200***
	(0.007)	(0.007)	(0.010)
Profitability	-0.010	0.140***	0.074***
	(0.014)	(0.018)	(800.0)
Firm FE	Yes	Yes	Yes
$State \times Year \; FE$	Yes	Yes	Yes
Obs	70,708	72,343	73,556
Cluster SE	State	State	State
Kleibergen-Paap rk Wald F	42.94	42.50	44.02

Sample selection

Firms that were in the sample for more than 5 years

	Op. Revenues	Investment	Total Financing
	growth	$(\Delta \text{ Fixed Assets})$	growth
	(1)	(2)	(3)
$\Delta G imes Small \; (\gamma)$	11.311**	6.520**	9.009**
	(4.487)	(2.525)	(3.404)
Small	0.043***	0.006	-0.005
	(0.012)	(0.031)	(0.019)
Log Total Assets	-0.162***	-0.305***	-0.194***
	(0.005)	(0.008)	(0.010)
Profitability	-0.033	0.163***	0.086***
	(0.020)	(0.023)	(0.011)
Firm FE	Yes	Yes	Yes
$State \times Year FE$	Yes	Yes	Yes
Obs	49,270	50,185	50,687
Cluster SE	State	State	State
Kleibergen-Paap rk Wald F	38.84	38.64	39.75

Robustness: Small & Medium firms (Back)

	Operating Revenues	Investment	Total Financing
	growth	$(\Delta \text{ Fixed Assets})$	growth
$\Delta G imes Small_{100}(\gamma_1)$	11.773**	1.727	9.198**
	(4.474)	(3.949)	(3.694)
$\Delta G imes Medium_{100-250}(\gamma_2)$	12.847***	12.461***	8.721**
	(3.883)	(3.310)	(3.241)
$Small_{100}$	0.104***	0.024	0.014
	(0.027)	(0.046)	(0.036)
$Medium_{100-250}$	0.090***	0.028	0.003
	(0.014)	(0.022)	(0.021)
Total Assets	-0.166***	-0.325***	-0.203***
	(0.007)	(800.0)	(0.011)
Profitability	-0.022	0.096***	0.060***
-	(0.013)	(0.019)	(800.0)
Firm FE	Yes	Yes	Yes
$State \times Year \; FE$	Yes	Yes	Yes
Obs	59,411	61,010	62,054
Cluster SE	State	State	State
Kleibergen-Paap rk Wald F	22.89	23.05	23.80

Effects for the Average firm Back

	Op. Revenues	Investment	Total Financing
	growth	$(\Delta \text{ Fixed Assets})$	growth
ΔG	1.804	-1.205	0.758
	(2.384)	(2.675)	(2.550)
ΔGDP	0.092	0.138	-0.011
	(0.185)	(0.129)	(0.116)
Δ Taxes	-0.128**	-0.087	-0.068
	(0.058)	(0.059)	(0.051)
Small	0.055***	0.019	0.017
	(0.012)	(0.025)	(0.015)
Log Total Assets	-0.177***	-0.327***	-0.204***
3	(0.007)	(0.008)	(0.009)
Profitability	-0.020	0.097***	0.061***
,	(0.013)	(0.019)	(800.0)
Firm FE	Yes	Yes	Yes
State FE	Yes	Yes	Yes
Obs	59,412	61,011	62,054
Cluster SE	State	State	State
Kleibergen-Paap rk Wald F	4.882	9.338	9.265

National multiplier and Small firms

