airline model(Kalman filter)

LinyiGuo 2019/8/8

Import Data

```
library(KFAS)
library(ggfortify)
## Loading required package: ggplot2
## Registered S3 methods overwritten by 'ggplot2':
##
    method
                    from
##
     [.quosures
                   rlang
##
     c.quosures
                   rlang
##
    print.quosures rlang
library(forecast)
## Registered S3 method overwritten by 'xts':
##
    method
                from
##
     as.zoo.xts zoo
## Registered S3 method overwritten by 'quantmod':
##
    as.zoo.data.frame zoo
## Registered S3 methods overwritten by 'forecast':
##
    method
                           from
    autoplot.Arima
##
                            ggfortify
##
    autoplot.acf
                          ggfortify
                        ggfortify
##
    autoplot.ar
##
     autoplot.bats
                           ggfortify
    autoplot.decomposed.ts ggfortify
##
                     ggfortify
##
    autoplot.ets
    autoplot.forecast ggfortify autoplot.stl ggfortify
##
##
##
    autoplot.ts
                          ggfortify
##
    fitted.ar
                           ggfortify
    fitted.fracdiff
##
                           fracdiff
##
    fortify.ts
                            ggfortify
    residuals.ar
##
                            ggfortify
     residuals.fracdiff
                            fracdiff
data("AirPassengers")
data_ap_log <- log(AirPassengers)</pre>
autoplot(AirPassengers)+labs(x = "year", y = "# of Passengers",
                             title = "Monthly Air Passengers from 1949 to 1961")
```

Monthly Air Passengers from 1949 to 1961

Again, since the difference is larger as time goes on, we take log first.

Results from ARIMA

```
decompose_ap1 <- decompose(data_ap_log, "additive")
autoplot(decompose_ap1)</pre>
```


Build SSModel and Apply Kalman Filter

According to paper 3.5, KFAS follows closely Durbin and Koopman's book and papers.

```
# create one SSModel object
mod_ap <- SSModel(data_ap_log~ SSMtrend(1, Q=list(1)) +</pre>
                    SSMseasonal(period = 12, sea.type = "dummy"),
                    H = 1) # dummy here means we don't use trigonometric expression
print(mod_ap)
## Call:
## SSModel(formula = data_ap_log ~ SSMtrend(1, Q = list(1)) + SSMseasonal(period = 12,
       sea.type = "dummy"), H = 1)
##
##
## State space model object of class SSModel
##
## Dimensions:
## [1] Number of time points: 144
## [1] Number of time series: 1
## [1] Number of disturbances: 1
## [1] Number of states: 12
## Names of the states:
   [1] level
                     sea_dummy1
                                   sea_dummy2
                                                sea_dummy3
                                                              sea_dummy4
   [6] sea_dummy5 sea_dummy6
                                  sea_dummy7
                                                sea_dummy8
                                                              sea_dummy9
##
```

```
## [11] sea_dummy10 sea_dummy11
## Distributions of the time series:
## [1]
       gaussian
##
## Object is a valid object of class SSModel.
# apply kalman filter
out_ap <- KFS(mod_ap, filtering = "state")</pre>
print(out_ap)
## Smoothed values of states and standard errors at time n = 144:
##
                Estimate Std. Error
## level
                 6.17782
                           0.83878
                -0.10274
                           0.40329
## sea_dummy1
## sea_dummy2
                -0.21733
                           0.40185
## sea_dummy3
                -0.07434
                           0.40070
## sea_dummy4
                 0.06309
                           0.39983
## sea_dummy5
                 0.20700
                           0.39925
## sea_dummy6
                 0.21557
                           0.39896
## sea_dummy7
                 0.11091
                           0.39896
                -0.01196
## sea dummy8
                           0.39925
## sea dummy9
                -0.01031
                           0.39983
## sea_dummy10
                0.02023
                           0.40070
## sea dummy11 -0.11072
                           0.40185
# get estimates of conditional means of states
coef(out_ap, states = "trend")
##
                      Feb
                                                                    Jul
             Jan
                               Mar
                                         Apr
                                                  May
                                                           Jun
## 1949 4.832206 4.856522 4.855955 4.848772 4.820233 4.804174 4.797922
## 1950 4.871068 4.910769 4.914237 4.903411 4.880407 4.897534 4.919155
## 1951 5.068616 5.106366 5.129127 5.119460 5.125189 5.096650 5.093885
## 1952 5.235669 5.261210 5.244282 5.229175 5.234433 5.252675 5.250005
## 1953 5.377370 5.398059 5.427971 5.442253 5.428888 5.398726 5.385137
## 1954 5.401213 5.390407 5.422845 5.438772 5.458206 5.468562 5.482440
## 1955 5.562748 5.567558 5.578168 5.599926 5.616585 5.639444 5.660083
## 1956 5.731809 5.737237 5.745164 5.759584 5.777070 5.797611 5.802414
## 1957 5.834317 5.834919 5.852610 5.868210 5.889502 5.916217 5.925050
## 1958 5.908226 5.887565 5.881697 5.886112 5.914122 5.949889 5.971106
## 1959 5.961656 5.964032 5.984909 6.004571 6.037076 6.054439 6.080169
## 1960 6.104473 6.086859 6.076676 6.125529 6.156198 6.174123 6.194812
##
                               Oct
                                        Nov
                                                  Dec
             Aug
                      Sep
## 1949 4.807954 4.835731 4.849678 4.859838 4.868112
## 1950 4.939708 4.971173 4.974310 4.987066 5.033356
## 1951 5.107276 5.141640 5.165802 5.193829 5.214744
## 1952 5.274834 5.292563 5.323613 5.351662 5.366545
## 1953 5.396309 5.404991 5.413698 5.409904 5.405722
## 1954 5.483905 5.496105 5.510675 5.527858 5.542358
## 1955 5.659225 5.675272 5.686680 5.697300 5.719825
## 1956 5.801759 5.805979 5.807155 5.817559 5.826069
## 1957 5.932471 5.933036 5.928316 5.928246 5.918776
```

1958 5.982560 5.959019 5.956174 5.951841 5.945442 ## 1959 6.095367 6.086787 6.090360 6.101140 6.104082 ## 1960 6.192947 6.184152 6.192122 6.184475 6.177823

```
head(coef(out_ap, states = "seasonal"))
##
            sea_dummy1 sea_dummy2 sea_dummy3 sea_dummy4 sea_dummy5
## Jan 1949 -0.08939058 -0.10274498 -0.21733422 -0.07434075 0.06309325
## Feb 1949 -0.11072116 -0.08939058 -0.10274498 -0.21733422 -0.07434075
## Mar 1949 0.02023021 -0.11072116 -0.08939058 -0.10274498 -0.21733422
## Apr 1949 -0.01031441 0.02023021 -0.11072116 -0.08939058 -0.10274498
## May 1949 -0.01196281 -0.01031441 0.02023021 -0.11072116 -0.08939058
## Jun 1949 0.11090764 -0.01196281 -0.01031441 0.02023021 -0.11072116
            sea_dummy6 sea_dummy7 sea_dummy8 sea_dummy9 sea_dummy10
##
## Jan 1949 0.20700361 0.21557420 0.11090764 -0.01196281 -0.01031441
## Feb 1949 0.06309325 0.20700361 0.21557420 0.11090764 -0.01196281
## Mar 1949 -0.07434075 0.06309325 0.20700361 0.21557420 0.11090764
## Apr 1949 -0.21733422 -0.07434075 0.06309325 0.20700361 0.21557420
## May 1949 -0.10274498 -0.21733422 -0.07434075 0.06309325 0.20700361
## Jun 1949 -0.08939058 -0.10274498 -0.21733422 -0.07434075 0.06309325
##
           sea_dummy11
## Jan 1949 0.02023021
## Feb 1949 -0.01031441
## Mar 1949 -0.01196281
## Apr 1949 0.11090764
## May 1949 0.21557420
## Jun 1949 0.20700361
# compare seasonal components
par(mfcol=c(2,1))
plot.ts(coef(out_ap, states = "seasonal")[,1], ylab = "",
        main = "kalman filter $ season")
```

plot.ts(decompose_ap1\$seasonal, ylab = '', main = "Arima\$season")

kalman filter \$ season

Arima\$season


```
par(mfcol=c(1,1))
```

Use trigonometric expression

HINT: the seasonal component is the sum of column 1,3,5,7,9,11, when we use trigonometric seasonal.

Smoothed values of states and standard errors at time n = 144: ## Estimate Std. Error ## level 6.173755 1.130397 -0.141154 0.522885 ## sea_trig1 ## sea_trig*1 -0.051794 0.527186 ## sea_trig2 -0.022160 0.289280 ## sea_trig*2 0.077549 0.290485 ## sea_trig3 0.027945 0.221270 ## sea_trig*3 -0.009383 0.221270 ## sea_trig4 0.022800 0.193356 ## sea_trig*4 0.025234 0.192752 ## sea_trig5 0.006168 0.181234


```
par(mfcol=c(1,1))

plot.ts(coef(out_ap_tri, states = "seasonal")[,-1]) # maximum is 10 ts
```

coef(out_ap_tri, states = "seasonal")[, -1]

compare the seasonal components from Arima and Kalman

seasonal component

compare the trend components from Arima and Kalman

It shows that the *trend* from Kalman filter includes noise.

trend component

Two curves fit almost perfectly after adding noise to arima's trend.

trend component

Seasonal Adjustment

Since the results of seasonal components are the same, the deseasoned seires should be the same as well.

arima

autoplot(data_ap_log-decompose_ap1\$seasonal)+labs(x="date", y="log of deseasoned series", title = " log

log of original series after deseasoning (Arima)

original series after deseasoning (Arima)

kalman filter

log of original series after deseasoning (Kalman Filter)

original series after deseasoning (Kalman Filter)

Some improvement

the variance of trend is 0.5

```
mod_ap_tri2 <- SSModel(data_ap_log ~ SSMtrend(1, Q=list(0.5)) +</pre>
                    SSMseasonal(period = 12, sea.type = "trigonometric"),
                  H = 1
out_ap_tri2 <- KFS(mod_ap_tri2, filtering = "state")</pre>
print(out_ap_tri2)
## Smoothed values of states and standard errors at time n = 144:
##
               Estimate
                           Std. Error
## level
                6.179837
                            0.736846
## sea_trig1
               -0.141064
                            0.199707
               -0.052128
## sea_trig*1
                            0.202190
## sea_trig2
               -0.022071
                            0.144605
## sea_trig*2
               0.077395
                            0.145137
                0.028034
                            0.132054
## sea_trig3
## sea_trig*3 -0.009473
                            0.132054
## sea_trig4
                0.022889
                            0.127597
## sea_trig*4
                0.025183
                            0.127395
## sea_trig5
                0.006257
                            0.125805
## sea_trig*5
                0.021170
                            0.125520
## sea_trig6
                0.003307
                            0.088497
```

```
plot(coef(out_ap_tri2, states = "trend"), ylim=c(4.5,6.5),ylab='',col=2)
par(new=TRUE)
plot(decompose_ap1$trend,ylim=c(4.5,6.5),ylab='', lty=2)
title(main='Trend comparison')
legend('topleft', c('Kalman(0.5)', 'Arima'), col=c(2,1), lty = c(1,2), cex = 0.8)
```

Trend comparison

the variance of trend is 0.1

```
## Smoothed values of states and standard errors at time n = 144:
##
                          Std. Error
              Estimate
## level
                6.176531
                           0.527956
## sea_trig1
               -0.141022
                           0.138219
## sea_trig*1 -0.052287
                           0.139720
## sea_trig2
               -0.022028
                           0.123734
## sea_trig*2
              0.077321
                           0.123994
## sea_trig3
               0.028077
                           0.120895
## sea_trig*3 -0.009515
                           0.120895
## sea_trig4
               0.022932
                           0.119934
## sea_trig*4
               0.025158
                           0.119844
```

```
## sea_trig5   0.006300   0.119555
## sea_trig*5   0.021159   0.119429
## sea_trig6   0.003329   0.084416

# compare trend
plot(coef(out_ap_tri3, states = "trend"), ylim=c(4.5,6.5),ylab='',col=2)
par(new=TRUE)
plot(decompose_ap1$trend,ylim=c(4.5,6.5),ylab='', lty=2)
title(main='trend comparison')
legend('topleft', c('Kalman(0.1)', 'Arima'), col=c(2,1), lty = c(1,2), cex = 0.8)
```

trend comparison

seasonal component

Until here, we still don't reproduce the results from statcan, where the seasonal adjustment curve is smooth. (SOLVED IN KALMAN FILTER DOCUMENT)