Comparison tables: BBOB 2009 function testbed in 10-D

The BBOBies

November 20, 2009

Abstract

This document provides tabular results of the workshop for Black-Box Optimization Benchmarking at GECCO 2009, see http://coco.gforge.inria.fr/doku.php?id=bbob-2009. More than 30 algorithms have been tested on 24 benchmark functions in dimensions between 2 and 40. A description of the used objective functions can be found in [14, 9]. The experimental set-up is described in [13].

The performance measure provided in the following tables is the expected number of objective function evaluations to reach a given target function value (ERT, expected running time), divided by the respective value for the best algorithm. Consequently, the best (smallest) value is 1 and the value 1 appears in each column at least once. See [13] for details on how ERT is obtained. All numbers are computed with no more than two digits of precision.

Table 1: 10-D, running time excess ERT/ERT_{best} on f_1 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

Table 2: 10-D, running time excess ERT/ERT_{best} on f_2 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

$\begin{array}{ccc} \Delta \mathrm{frarget} & 1\mathrm{e}{+03} \\ \mathrm{ERT}_\mathrm{best}/\mathrm{D} & 14.6 \end{array}$
58 80

Table 3: 10-D, running time excess ERT/ERT_{best} on f_3 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	${ m ERT}_{ m best}/{ m D}$	ALPS [17]	AMaLGaM İDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	365	81	3.8e4					5900		20						3900		2300		П	79						84	1800	92				290
	1e-05	365	29	3.8e4					5900	-	19						830	٠	2300		-	79		-				79	1800	20				260
	1e-04	364	64	3.8e4					2900		19						610		2300		П	42						75	1800	55				230
	1e-03	364	61	3.8e4		٠			2900	-	19						460		2300		П	42		-				73	1800	54				230
able	1e-02	364	29	3.9e4		٠			5900	-	19						140		2300		П	79		-				89	1800	22				210
igin separable	١	361		3.9e4		•		٠	5900		19	٠		20e-1/1e5			73	•	2300		П	42	٠					99	1800	51			20e-1/1e4	190
3 Rastrig	1e+00	360	40	1300	·			15e+0/5e4	310	17e+0/1e4	11	19e+0/2e3	26e+0/1e4	1800			23	34e+0/2e3	270	11e+0/5e3	П	43	40e-1/4e3	90e-1/1e5	11e+0/2e4		90e-1/1e6	59	1800	44			62	24
	1e+01	174	11	4.6	21e+0/7e3	22e+0/2e3	70e+0/5e3	4100	3.6	390	1	170	87	18	17e+0/1e4	20e+0/5e4	26	140	4.4	47	2.1	3.9	11	320	180	23e+0/6e3	6400	6.7	150	20	63e+0/1e6	53e+0/8e3	3.1	3.2
	1e+02	6.9	30	6.7	16	18	370	69	3.4	14	7.2	œ	5.6	34	14	71	150	8.9	3.6	2.5	46	5.6	П	31	1.1	20	74	42	6.4	11	2900	330	2.7	5.6
	1e + 03	0.1	2.6	3.7	11	2.1	30	160	4.5	4.3	17	1.5	-	2.6	9.3	1.7	2.6	2.3	2.7	22	1300	1.9	1	5.1	4.4	5.1	5.9	470	3.9	7	2.4	18	2.2	7
	Δ ftarget	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 4: 10-D, running time excess ERT/ERT_{best} on f_4 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension f_4 from f_5 and f_6 from $f_$

	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [17]	AMaLGaM İDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES $[2]$	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	2880	30			٠				٠	8.9			٠							-1	260						13		30				4600
	1e-05	374	190			•	٠			•	51	•		-	-	•	٠			•	П	2e3		•		•		97		210		-	٠	2.7e4
le	1e-04	374	180								51						84e-4/1e5				1	2e3						94		200				2.7e4
eparab	1e-03	371	170			٠				٠	51						1800				1	2e3						91		200				2.7e4
eche s	1e-02	370	170								21						310				П	2e3						86		200		-		2.5e4
in-Bu	1e-01	366	170								22						79				-	2e3						82		200				2.5e4
4 Skew Rastrigin-Bueche separable	1e+00	363	100	50e-1/1e6				٠	50e-1/3e5	•	16	18e + 0/2e3	19e+0/1e4	50e-1/1e5			26	-	50e-1/1e6		П	290	12e+0/4e3	17e+0/1e5			15e+0/1e6	43	80e-1/1e5	190			60e-1/1e4	2900
4 SK	1e + 01	223	14	41	27e+0/1e4	18e + 0/2e3	10e+1/5e3	31e+0/5e4	6.5	33e+0/1e4	П	99	180	20	27e+0/1e4	35e+0/5e4	22	57e+0/2e3	29	21e+0/6e3	1.6	5.1	27	3300	20e+0/2e4	55e+0/7e3	6.3e4	6.4	120	37	86e+0/1e6	70e+0/1e4	9.9	7.2
	1e + 02	9.85	39	8.9	42	28	820	100	2.8	20	7.8	9.4	4.2	83	13	200	140	33	5.2	1.6	31	6.1	П	46	2.8	110	120	35	8. 5.	28	2e4	780	2.7	5
	1e + 03	0.1	2.4	5.6	13	2.1	88	190	5.8	3.3	130	3.1	1	2.5	35	2.9	2.7	2.2	3.5	26	029	2.8	1	5.1	3.1	11	9.2	220	3.3	3.5	2.3	32	6.5	3.2
	Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 5: 10-D, running time excess ERT/ERT_{best} on f_5 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

			5 Linear slo	5 Lir	near sl	ope					
Δ ftarget	1e + 03	1e+02	1e+01	1e+00	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	$\Delta { m ftarget}$
${ m ERT_{best}/D}$	0.1	1.64	2.02	2.02	2.03	2.02	2.02	2.03	2.02	2.02	${ m ERT_{best}/D}$
ALPS	П	7.4	130	190	220	240	250	250	250	260	ALPS [17]
AMaLGaM IDEA	П	4.6	39	45	46	46	46	46	46	46	AMaLGaM IDEA [4]
avg NEWUOA	П	1.9	7	2.3	2.3	2.3	2.3	2.3	2.3	2.3	avg NEWUOA [31]
$\operatorname{BayEDAcG}$	1	5.9	91	120	140	140	140	140	140	140	BayEDAcG [10]
BFGS	П	1.3	2.2	2.8	8.8	8.8	2.8	8.8	8.8	8.8	BFGS [30]
Cauchy EDA	Т	24	89	20	72	7.5	72	7.5	72	72	Cauchy EDA [24]
BIPOP-CMA-ES	1	2.5	4.8	9	6.1	6.1	6.1	6.1	6.1	6.1	BIPOP-CMA-ES [15]
(1+1)-CMA-ES	1	1.1	3.2	3.9	3.9	3.9	3.9	3.9	3.9	3.9	(1+1)-CMA-ES $[2]$
DASA	П	13	23	31	36	40	43	47	20	28	DASA [19]
DEPSO	П	-	33	47	20	20	20	20	20	20	DEPSO [12]
DIRECT	Н	9	36	52	53	53	53	53	53	53	DIRECT [25]
EDA-PSO	Н	2.9	11	17	20	20	21	21	21	21	EDA-PSO [6]
full NEWUOA	П	8.7	3.6	4	4	4	4	4	4	4	full NEWUOA [31]
G3-PCX	П	8.9	17	56	27	28	28	28	28	28	G3-PCX [26]
simple GA	Н	5.8	1400	3100	5400	8200	1.1e4	1.5e4	1.9e4	3e4	simple GA [22]
GLOBAL	П	5.2	17	18	18	18	18	18	18	18	GLOBAL [23]
iAMaLGaM IDEA	П	2.4	8.8	11	12	12	12	12	12	12	iAMaLGaM IDEA [4]
LSfminbnd	П	8.3	14	15	15	15	15	15	15	15	LSfminbnd [28]
LSstep	1	83	170	180	180	180	180	180	180	180	LSstep [28]
MA-LS-Chain	П	4.7	41	45	49	49	49	49	49	49	MA-LS-Chain [21]
MCS (Neum)	П	п	1	П	П	П	П	П	П	П	MCS (Neum) [18]
NELDER (Han)	н	1.6	3.4	4.2	4.3	4.3	4.3	4.3	4.3	4.3	NELDER (Han) [16]
NELDER (Doe)	П	1.2	3.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	NELDER (Doe) [5]
NEWUOA	Н	1.3	1.2	1.3	1.4	1.4	1.4	1.4	1.4	1.4	NEWUOA [31]
(1+1)-ES	П	1.1	2.1	2.6	2.8	8.8	2.8	2.8	2.8	2.8	(1+1)-ES [1]
POEMS	1	130	190	230	260	270	270	270	270	270	POEMS [20]
PSO	Н	2.9	13	17	19	19	20	20	20	20	PSO [7]
PSO_Bounds	Н	3.1	10	14	15	15	16	16	16	16	PSO_Bounds [8]
Monte Carlo	П	11	27e+0/1e6								Monte Carlo [3]
Rosenbrock	П	3.7	4.1	4.3	4.4	4.4	4.4	4.4	4.4	4.4	Rosenbrock [27]
IPOP-SEP-CMA-ES	Н	2.5	5.4	7.1	7.2	7.3	7.3	7.3	7.3	7.3	IPOP-SEP-CMA-ES [29]
VNS (Garcia)	1	5.6	9.6	10	11	11	11	11	11	11	VNS (Garcia) [11]

Table 6: 10-D, running time excess ERT/ERT_{best} on f_6 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	$\text{ERT}_{\text{best}}/ ext{D}$	ALPS [17]	AMaLGaM İDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	237	87	11	1.1		99	66	1.7		200			71	1	5.4		83	4.9	40e-1/1e4		6.4	-	6	14e-6/2e4	6.2	2.6	45	130	160		29	2.1	1.8
	1e-05	184	89	11	1.1		4.5	100	1.7		029			71	-	4.5		4	ಬ	790		7.3		6.3	260	5.9	2.4	44	160	130		31	2.5	1.9
	1e-04	157	29	11	1.1		4.4	110	1.8	21e-4/1e4	620	50e-4/2e3		71	1	4.1		3.3	5.1	920		7.8		6.1	28	5.9	2.4	45	180	130		33	2.3	71
ır		129																					Į											
e secto	1e-02	104	59	12	П	٠	4.6	130	1.9	69	490	24		73	-1	3.8		3.4	5.1	089		9.2	280	5.8	18	4.9	2.2	46	260	150		37	2.4	2.2
3 Attractiv	1e-01	82.6	51	11	1		4.5	140	61	20	350	14		89	П	3.6	28e-1/1e5	3.5	4.8	300	24e+0/1e4	9.7	170	5.5	15	4	2.1	44	320	140		41	2.4	2.3
,	1e+00	61.5	43	8.6	1	25e+0/2e3	4.2	150	2.1	2.6	150	11	34e-1/1e4	62	П	2.4	4700	3.3	4.2	370	2400	9.1	180	5.3	10	3.3	1.9	40	420	120		38	2.3	2.4
	1e+01	39.9	32	7.9	1	360	3.9	190	2.1	1.1	75	8.9	86	49	П	1.7	140	3.2	3.2	220	009	9.9	19	4.2	3.8	2.1	1.8	30	400	45	25e+0/1e6	10	2.5	2.6
	1e + 02	10.2	24	6.1	1.6	20	3.7	550	3.6	1.4	6.6	5.5	3.1	14	2.1	2.5	80	4.6	3.8	82	160	4.9	3.6	4.6	1.1	1.1	2.8	36	4.7	2.6	1500	П	4.2	6.1
	1e+03	2.79	30	∞	1.5	23	2.9	069	2.5	1.7	15	11	4.9	5.7	2.4	ಬ	160	9.3	3.8	8.2	120	10	1.8	1.8	1.3	П	7	92	4.9	4.8	1300	2.2	က	9
	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 7: 10-D, running time excess ERT/ERT_{best} on f_7 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension.

	Δ ftarget	$\text{ERT}_{ ext{hest}}/ ext{D}$	ALPS [17]	AMaLGaM İDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO[12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS [20]	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	539	56	2.5				4.9	1.2	19				100			48e-2/1e5		7			110						92					П	33
	1e-05	514	29	2.6				4.9	1.3	20		•		110		•	2800	•	2.1			120		•				80		•			П	34
	1e-04	514	59	2.6				4.9	1.3	20				110			2800	٠	2.1			120						80		-			П	34
	1e-03	514	59	5.6				4.9	1.3	20				110			2800	٠	2.1			120						80		-			-	34
lipsoid	1e-02	510	22	2.6				4.7	1.3	20		14e-1/2e3		110	51e-2/1e4		2900		2.1			120						80		13e-1/1e5			П	31
Step-ellip	1e-01	420	25	2.3	73e-2/1e4			4.4	1.3	ಸು	13e-1/6e5	32	70e-2/1e4	130	110	19e-1/2e4	089	45e-1/500	-	40e-1/1e4		110		11e-1/1e5	19e-1/2e4	24e-1/1e4	85e-2/1e6	74	11e-1/1e5	3300			1.1	19
7	1e+00	161						7.2	1.2	5.9	8800	21	89	17	7.6	520	270	20	П	270	93e-1/1e4	15	50e-1/4e3	940	400	1e3	7e3	12	220	730	94e-1/1e6		1.5	4.1
	1e+01	17.2	25	3.9	16	23	13e+1/100	31	2.3	7.4	280	9.2	16	22	-	21	140	11	က	92	720	7.7	53	69	59	27	190	40	10	19	6e4	67e+0/3e3	2.2	3.2
	1e + 02	3.29	15	4.9	1.4	13	150	20	2.8	2.1	33	9.9	1.7	5.6	2.1	3.7	23	6.1	4	12	160	4.8	1.3	1.4	1.1	П	2.7	88	3.4	4.2	32	400	2.5	8.3
	1e + 03	0.1	1.6	1.5	က	2.4	14	93	3.2	2.5	37	2.1	Н	1.7	3.7	2.1	2.7	1.8	1.8	16	110	2.7	Н	က	4.5	4.1	6.3	1100	2.5	1.9	2.5	150	2.4	1.4
	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 8: 10-D, running time excess ERT/ERT_{best} on f_8 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES $[1]$	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	110	3300	16	1		1.5	120	5.6	6.7	1900			46e-8/1e5	1.2	7		1.5	10			15	1.6	5.2	4.4	1.6	340		0029	93e-5/1e5		1300	7.7	6
	1e-05	108	220	15	-		1.5	120	5.4	9.9	1400			260	1.2	8.9		1.5	9.6	40e-1/1e4		15	1.6	5.1	4	1.6	270		1500	1.4e4		430	7.5	8.9
	1e-04	106	450	15	1		1.5	110	5.3	9.9	1200			640	1.2	6.7		1.5	9.3	1400		15	1.6	5.1	3.8	1.6	240		790	1.4e4		320	7.5	8.
al	1e-03	104	330	15	1		1.5	110	5.2	6.5											П											170	7.5	8.8
ock origin	1e-02	101	250	14	1		1.5	110	5.1	6.5	630			410	1.2	6.7		1.5	8.9	440	1500	14	1.6	ಬ	3.5	1.6	170	45e-3/1e5	470	820		110	7.4	8.6
8 Rosenbrock original	1e-01	93.4	170	14	1		1.6	110	ಬ	6.7	420		64e-1/1e4	300	1.2	8.9		1.6	∞. ∞.	180	470	14	1.5	5.1	3.3	1.6	150	840	350	750		81	7.5	8.7
	1e+00	9.08	120	13	П	93e-1/2e3	1.7	120	4.7	8.9	200	54e-1/2e3	550	220	1.1	6.9	53e-1/1e5	1.7	8.4	190	180	13	1.6	5.4	2.2	1.7	160	470	270	069		59	7.5	8.4
	1e + 01	32.2	43	7.4	1	75	1.7	99	1.9	1.9	22	12	32	140	1.3	2.9	210	2.1	4	19	63	7.3	1	7	1.4	1	22	64	13	99		12	2.9	3.5
	1e+02	13.2	43	7.4	1.2	22	2.3	82	2.4	2.9	21	6	7.7	130	7	3.5	230	3.2	4.7	7.3	80	6.7	1	2.5	1.3	1.4	13	59	10	44	36e+1/1e6	3.6	2.4	5.6
	1e+03	4.23	53	10	1.2	29	1.9	110	4	3.1	18	11	9.1	65	2.8	4.6	280	7.7	6.5	7.2	140	6.7	1.6	1.6	2.5	1	3.7	80	9.1	17	5400	2.1	3.2	10
	Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbad	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 9: 10-D, running time excess ERT/ERT_{best} on f_9 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta \mathrm{ftarget}$	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock $[27]$	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	119	6.1e4	16	1.2	•	1.3	120	5.5	5.8 8.0	5800	-		•	1.4	6.6		1.4	9.3	٠		22	1	3.3	9	1.2	330						7.7	
	1e-05	114	4400	15	1.2		1.3	110	5.5	5.8	4300				1.5	10		1.5	9.1			26	-1	3.2	9	1.2	280					12e-5/1e4	7.7	12
	1e-04	111	3e3	15	1.3	٠	1.3	110	5.4	5.8 8.5	3700	-			1.5	10		1.5	6.8			26	П	3.2	5.9	1.2	240					180	7.7	12
	1e-03	107	1900	15	1.3	٠	1.4	110	5.4	5.9	2900	٠		85e-4/1e5	1.5	10		1.5	8.9	•		27	н	3.2	9	1.2	220					130	7.8	13
ck rotated	1e-02	99.3	730	15	1.4		1.4	120	5.5	6.1	2400			1500	1.6	11		1.6	6	14e-2/1e4		28	1	3.1	6.1	1.3	190	18e-2/1e5	11e-2/1e5	78e-3/1e5		87	8.1	13
Rosenbro	1e-01	85.7	470	15	1.5		1.6	130	5.9	9.9	2e3		17e-1/1e4	540	1.7	12		1.8	9.6	098		31	-1	3.4	6.5	1.4	190	1.7e4	1900	1600		20	8.9	12
	1e+00	64.8	320	17	1.8	88e-1/2e3	1.9	150	6.3	7.7	2200	70e-1/2e3	350	340	7	15	79e-1/1e5	2.2	10	120	90e-1/1e4	36	1	3.7	7.1	1.7	230	220	840	1100		2.2	10	8.6
	1e + 01	20	99	9.3	1.3	56	2.1	100	3.4	3.3	160	15	9.4	220	1.6	4.7	370	2.9	6.3	51	420	12	1	2.4	2.7	1.7	9.2	110	24	450		27	6.9	4.6
	1e+02	0.1	5e3	200	150	2500	230	1e4	350	350	1.6e4	1100	-	1.7e4	250	470	2.8e4	450	260	1200	3.3e4	870	1	240	150	140	1600	6200	1700	4.3e4	33e+1/1e6	200	780	580
	1e+03	0.1	1700	350	69	860	88	4400	130	100	750	420	-	3200	140	190	9e3	330	250	230	5800	290	1	45	49	39	100	3100	320	770	3.7e5	42	130	340
	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 10: 10-D, running time excess ERT/ERT_{best} on f_{10} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	ERT_{best}/D	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA $[19]$	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS [20]	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	474	-	1.9	10		920	11	1.2	1		-				38		29e-7/1e3	1.1			5.6		27e-5/1e5		12	43e-5/1e6	•					7	1.5
	1e-05	454	-	1.6	8.1	٠	1.3	10	1.2	П		-		•	79e-4/1e4			1.6				5.7		1600	31e-4/2e4	9.5	1.1e4	٠		•			7	1.5
	1e-04	308		2.5	6.6		1	13	1.7	1.4					240	40		1.2	1.4			8.3		850				٠					2.9	2.2
	1e-03	280		2.2	6		1	13	1.8	1.5					260	37		1.2	1.4			6		240	330	10	3700						3.2	2.3
	1e-02	273	-	7	9.9	٠	П	12	1.8	1.6	76e-1/1e6			٠	54	30		1.2	1.3	•		6		100	57	7.4	2400	•		٠			3.2	2.3
10 Ellipsoid	$1e-\hat{0}1$	245	30e-1/5e5	7	5.4					1.7					33	26	-	1.3	1.3		-	8.6		43	34	9	1700		-		-	22e+0/1e4	3.4	2.5
		217					П	11	2.1	1.8	2.2e4	•		٠	20			1.2		•	٠	11		16	25	3.8	1100	٠	74e+0/1e5	٠	٠	230	3.7	2.7
6.	1e+01	184	820	1.8	1.9		1	10	2.3	1.7	7200			56e+0/1e5	10	10	12e + 2/1e5	1.2	1.2			11		4.1	9.5	2.1	530	10e+1/1e5	3900	12e+1/1e5		120	4	2.8
	1e+02	104	180	2.2	1.3	٠	1.3	14	2.7	2.1	1500	19e + 2/2e3	37e+1/1e4	830	5.3	6.9	1.4e4	1.6	1.5	14e + 2/1e4	88e + 2/1e4	· &	11e+2/4e3	2.2	3.7	П	170	1300	1e3	2200		80	5.6	3.7
	1e+03	46.3	59	2.9	1.3	16e + 3/2e3	1.8	22	3.8	2.8	320	310	88	300	1.9	6.1	3500	2.6	2.1	440	1600	10	170	1.8	2.7	П	43	300	110	640	72e+2/1e6	57	9.3	9
	$\Delta \mathrm{ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	$iAMaLGaM\ IDEA$	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 11: 10-D, running time excess ERT/ERT_{best} on f_{11} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	$ m ERT_{best}/D$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES $[1]$	POEMS [20]	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	484		1.5	15			∞. ∞.	1.2	1.5	3500					21			1			3.8		24e-6/1e5	32e-6/2e4	4.6	3e3	1500	200	12e-2/1e5		300	2.1	1.3
	1e-05	409		1.4	15			8.3	1.3	1.7	2e3					19		٠	-			4.3		440	93	4.3	1900	320	190	3600		360	2.4	1.5
	1e-04	375	14e-4/5e5	1.4	14	٠	12e-4/8e3	8.1	1.4	1.8	1600					18			1			4.6		82	34	4.1	1800	270	170	3900		390	2.6	1.6
	1e-03	334	4300	1.3	14		56	7.8	1.5	1.9	1400					17		11e-3/2e3	П	-		5.1	-	37	17	4	1700	210	160	1400		440	2.9	1.7
Discus	1e-02	295	066	1.2	12		9	7.5	1.6	7	1100			57e-2/1e5	-	16		8.1	1			5.6		13	9.7	3.4	1500	160	130	1200		200	3.2	1.9
11	1e-01	260	490	1.1	9.2		1.7	-1	1.7	1.9	750					14		1.5	-			9		6.9	5.4	3.1	1300	140	100	029		220	3.5	7
	1e+00						1	13	3.8	3.8	1e3		-	066	31e-1/1e4	22	17e+0/1e5	1.7	7			14		∞. ∞.	7.8	5.5	2400	200	150	920	12e+0/1e6	1400	8.4	4.7
	1e+01	26.6	370	4.4	36	62e+0/2e3	1	36	13	6.6	1300	47e+0/2e3	20e+0/1e4	550	290	40	1.6e4	2.5	5.7	13e+1/1e4	14e+1/1e4	39	30e+0/4e3	15	13	11	5300	220	220	1400	5.3e5	5500	29	17
	1e + 02	2.3	83	14	220	28	7.1	200	82	42	850	140	6.7	200	820	65	100	17	22	9400	6.1e4	31	1	17	17	41	2.1e4	200	240	029	120	1e3	260	160
	1e+03	1.98	6.3	5.5	10	4	2.2	37	9	2.2	5.9	7.1	1.8	6.7	15	2.2	5.3	ಬ	ಬ	2.5	4.3	7	П	3.8	5.2	1.4	840	98	6.7	6.5	6.7	2.3	5.3	5.9
	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 12: 10-D, running time excess ERT/ERT_{best} on f_{12} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	515	13e-4/5e5	5.3	10		23	34	2.5	3.5					4.7	77		2.9	က			12	110	2.3	6.5	-							2.7	5.2
	1e-05	366	1.9e4	5.9	6.9		2.6	42	3.1	3.8					4.4	2.5		1	3.4			16	92	2.8	4.3	1.2							3.4	6.9
	1e-04	197	1.1e4	9.2	12	٠	2.2	89	5.2	6.4		•		٠	6.2	4.1		1	5.5	51e-1/1e4		29	27	4.8	6.9	2.1		٠					5.7	12
	1e-03	157	5400	9.1	12		1.3	74	5.6	7.2			64e-2/1e4	66e-3/1e5	9.9	4.6		1	5.7	890		22	13	5.4	7.7	2.3							6.3	15
Bent cigar	1e-02	139	1100	7.9	12		1.3	71	5.6	7.4	39e-1/1e6	55e-1/2e3	340	4800	6.2	4.4	18e-1/1e5	1	5.4	1e3		16	11	5.3	7.6	2.3		25e-1/1e5	41e-1/1e5	27e-1/1e5		14e-1/1e4	6.3	16
12 B	1e-01	124	210	9.9	10	71e-1/2e3	1.4	89	5.3	6.1	1.1e5	110	170	810	4.6	4	1.1e4	1	4.9	1100	63e-1/1e4	9.7	7	5.3	7.2	2.1	56e-1/1e6	3300	5200	3300		1200	5.6	17
>	1e+00	9.68	120	9.9	∞	59	1.4	69	4.6	5.5	4.5e4	42	130	300	4.1	3.7	1900	1	4.8	170	730	7.2	3.9	4.7	9	7	4.8e4	2300	1700	1800		340	4.5	5.6
	1e + 01	51.5	22	8.5	4.7	48	1.3	84	3.7	4.2	7100	19	59	490	2.9	2.8	1300	1	22	86	170	∞	3.2	က	က	1.9	1.5e4	1100	310	280		38	3	4.9
	1e + 02	27.5	84	13	1.7	72	1.3	110	3.3	2.3	10	19	31	290	1.4	2.3	490	1.4	7.2	2.4	29	11	1	1.8	1.6	1	1600	160	20	160		27	2.9	5.1
	1e+03	21.2	98	14	1.1	73	1.5	100	3.7	7	12	19	35	300	1.2	2.5	460	1.8	7.7	2.6	74	12	1.2	1.6	1.8	1.1	1.9	160	19	160	20e+5/1e6	-	က	4.4
	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 13: 10-D, running time excess ERT/ERT_{best} on f_{13} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA $[19]$	DEPSO [12]			full		simple GA [22]		iΑλ	Ä		MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]		IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	778		1.8	39e-5/1e4			11	1.8	6.9	14e-5/1e6					26e-5/3e4			1			43		13	11e-4/2e4		1.9e4					31e-5/1e4	7	20
	1e-05	621	54e-5/5e5	1.8	280	٠		11	1.5	4.4	1.1e4	·							н	•		43		6	480	20e-4 /8e3	940	٠				110	1.8	14
	1e-04	534	3e3	1.8	20	٠	14e-4/1e4	11	1.3	3.7	2900			22e-3/1e5	130	290		23e-4 /600	П	•		43										42	1.9	14
		459					98	11	1.3	3.5	1800	•						5.3	н	53e-3/1e4	12e+0/1e4	20	86e-3/4e3	5.9	64	59	130	•	44e-1/1e5	86e-1/1e5		15	2.1	9.4
Sharp ridge	1e-02	101	830	8.9	92	•	П	41	4.8	2.6	3600	٠	28e-2/1e4	2900	99	160		1.2	3.8	460	1500	160	280	21	92	42	66	31e-1/1e5	1.4e4	1.4e4		33	8.4	17
13 SI	1e-01	7.67	480	2	30		1	42	5.6	6.9	1200		580	066	25	96	33e-1/1e5	1.3	3.9	180	1800	140	59	15	40	20	44	5100	1.8e4	1.8e4		15	9.5	20
9	1e+00	59.6	110	6.9	13	26e+0/2e3	1	43	4.2	5.7	380	73e-1/2e3	160	150	12	50	1.1e4	1.4	3.8	20	750	33	44	9.1	16	6	21	2e3	1.1e4	0089		11	10	16
	1e + 01	38.7	53	8.9	က	230	1	46	3.6	4.7	220	28	62	140	1.8	13	480	1.7	3.9	28	470	16	37	4.4	7.2	7	11	270	950	2300		3.4	8.7	4.9
	1e+02	7.75	93	15	1.4	66	1.5	130	5.3	3.3	20	19	22	300	2.1	4.9	490	4.9	9.6	16	300	19	4.2	3.8	2.4	1	8.1	130	25	86	28e+1/1e6	7	5.2	7.7
	1e+03	1.18	22	12	3.6	17	2.8	160	4.5	3.9	24	8. 8.	2.9	5.9	6.2	8.6	22	11	4.7	6	250	9.9	П	7	7	2.3	4.4	190	9	5.2	25	5.2	4.2	13
	$\Delta { m ftarget}$	${ m ERT}_{ m best}/{ m D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	$iAMaLGaM\ IDEA$	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 14: 10-D, running time excess ERT/ERT_{best} on f_{14} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

AMaLGaM IDEA avg NEWUOA BayEDAcG BFGS Cauchy EDA BIPOP-CMA-ES (1+1)-CMA-ES DASA DEPSO DIRECT EDA-PSO full NEWUOA G3-PCX simple GA		2.7 2.7 2.5 2.5 2.3 2.3 2.3 2.5 2.5 2.5 2.5 2.5 2.5 3.2 3.3 3.1 3.1 4.9 4.9 4.9 2.7 4.9 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	2.6 2.6 3.69 1.6 2.6 2.6 2.6 3.1 3.9 1.8 3.9 3.9 1.8 3.9 1.8 3.9 1.8 3.9 1.8 3.9 1.8 3.9 1.8 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9	9.5.3 1.3 1.3 1.3 1.9 1.9 1.9 1.9 1.1 1.1 1.3 2.8 2.8	74 74 1133 110 110 116 94 94 94 94 14 15 50 240 240 240 33 33 33 34 35 36 37 37 37	76 76 77 76 11.2 210 11.4 88 88 88 88 88 88 15 110 110 250 250 400 400	11-03 39.2 85 8.5 1.1 11-3/283 11-3/283 4.3 2.5 80 33 500 170 1.4 2.9	10e-04 50.5 320 8.4 2.2 1 1 57 4.9 3.7 600 35e-5/2e3 23e-4/1e4 190 2.8 5.5	68.7 1400 7.5 7.1 7.1 1 1 5.2 4.4 3600 	430 288-7/565 1.6 64 11 11 1.4 1.1 18e-7/1e6 37e-8/1e4	Antanger, ERThest/D ALPS [17] AMALGAM IDEA [4] avg NEWUOA [31] BayeDAcG [10] BFGS [30] Cauchy EDA [24] BIPOP-CMA-ES [15] (1+1)-CMA-ES [2] DASA [19] DEPSO [12] DIRECT [25] EDA-PSO [6] full NEWUOA [31] G3-PCX [26] simple GA [22]
GLÓBAL iAMaLGaM IDEA LSfaininbad LSstep MA-LS-Chain MCS (Neum) NELDER (Han) NELDER (Han) NELDER (Doe) NEWUOA (1+1)-ES POEMS PSO PSO PSO PSO PSO PSO PSO-Bounds Monte Carlo Rosenbrock IPOPSEP-CMA-ES VNS (Garcia)	<u> </u>	3.1. 3.4. 3.4. 3.4. 3.7.	8 22 7.2 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	3.7 5.5 5.5 120 8.3 2.4 2.4 2.4 1 2.6 50 8.6 29 1.3 1.3	3.1 7.2 5.6 5.6 110 12 2.9 2.9 2.9 2.9 110 17 17 93 1.4 1.4 3.7 5.6	2.3 8.1 170 170 170 170 180 2.9 3.5 2.9 3.5 140 2.2 180 1.7 1.7 1.7 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	1.4 5 52 52 2.6 2.8 2.6 3.7 1 4.6 120 28 28 3.7 1 6.3 6.3 6.3	1.3 30e-5/1e4 1.5 1.5 1.5 6.9 3.2 4.5 4.5 4.4 170 140 560 6 9 9 7.6	1.1 4.5 	238-7/300 1 3.6 8.8 43 570 82e-8/1e6 12e-6/1e5 83e-7/1e4 2 1.8	GLÓBAL [23] iAMaLGaM IDEA [4] LSfminbud [28] LSstep [28] MA-LS-Chain [21] MCS (Neum) [18] NELDER (Han) [16] NELDER (Han) [16] NELDER (Han) [16] NEVUOA [31] (1+1)-ES [1] POGMS [20] PSO [7] PSO [7] PSO [7] PSO [7] PSO [7] PSO [7] PSO [7] PSO [7] PSO [7] PSO [7] VOS (Garcia) [11]

Table 15: 10-D, running time excess ERT/ERT $_{\text{Dest}}$ on f_{15} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

Afternot	10+03	10+03	10±01	$15~\mathrm{Rs}^{-1.5}$	$15~\mathrm{Rastrigin}_{100}$	10.09	10-03	10.01	75	10.07	A ft smeet
$\mathbf{ERT}_{\mathbf{L}_{CC}}/\mathbf{D}$	0.1	18.6	477	3920	7360		7580	7670	7780	7980	ERT _{heat} /D
ALPS	1.9	12	15	30e-1/5e5							ALPS [17]
AMaLGaM IDEA	1.9	2.2	1	3.5	3.7	3.7	3.7	3.7	3.7	3.6	AMaLGaM İDÉA [4]
avg NEWUOA	5.5	4.3	230	25e+0/7e3							avg NEWUOA [31]
$\operatorname{BayEDAcG}$	1.8	9.7	28e+0/2e3		٠	٠	•		•		BayEDAcG [10]
BFGS	59	110	70e+0/4e3								BFGS [30]
Cauchy EDA	80	22	16e+0/5e4				•		•		Cauchy EDA [24]
BIPOP-CMA-ES	1.9	П	1	1.7	1.3	1.3	1.3	1.3	1.3	1.3	BIPOP-CMA-ES [15]
(1+1)-CMA-ES	1.2	5.9	150	18e+0/1e4	٠	٠	•		•		(1+1)-CMA-ES [2]
DASA	29	270	2.9e4	19e+0/1e6							DASA [19]
DEPSO	1.6	3.4	37e+0/2e3				•		•		DEPSO [12]
DIRECT	1	2.5	84	17e+0/1e4							DIRECT [25]
EDA-PSO	2.2	23	7	170	190	190	190	180	180	180	EDA-PSO [6]
full NEWUOA	5.4	5.6	300	21e+0/1e4							full NEWUOA [31]
G3-PCX	1.7	100	1500	24e+0/5e4			•		•		G3-PCX [26]
simple GA	1.7	26	27	41e-1/1e5							simple GA [22]
GLOBAL	1.4	13	67e+0/900		٠		•				GLOBAL [23]
iAMaLGaM IDEA	1.7	1.6	2.6	9.4	10	10	10	10	10	6.6	iAMaLGaM IDEA [4]
LSfminbnd	14	14	29e+0/1e4	-					•		LSfminbnd [28]
LSstep	450	310	74e+0/1e4								LSstep [28]
MA-LS-Chain	1.8	2.3	3.6	23	86	96	92	94	92	06	MA-LS-Chain [21]
MCS (Neum)	1	1.7	24e+0/4e3								MCS (Neum) [18]
NELDER (Han)	3.3	8.1	240	99e-1/1e5					•		NELDER (Han) [16]
NELDER (Doe)	2.9	3.7	47	90e-1/2e4							NELDER (Doe) [5]
NEWUOA	5.1	4.5	170	22e+0/6e3	•		٠		٠		NEWUOA [31]
(1+1)-ES	5.4	17	2100	99e-1/1e6							(1+1)-ES [1]
POEMS	240	19	320	11e+0/1e5			•		-	-	POEMS [20]
PSO	1.6	2.1	840	23e+0/1e5							PSO [7]
PSO_Bounds	1.7	5.7	360	11e+0/1e5							PSO_Bounds [8]
Monte Carlo	1.3	1e3	991/0 + 989								Monte Carlo [3]
Rosenbrock	13	710	89e+0/1e4								Rosenbrock $[27]$
IPOP-SEP-CMA-ES	2.3	Н	1.2	1	1	1	Н	П	Н	П	IPOP-SEP-CMA-ES [29]
VNS (Garcia)	1.6	1.8	6.5	4300	6200	6100	6e3	5900	5900	7700	VNS (Garcia) [11]

Table 16: 10-D, running time excess ERT/ERT_{best} on f_{16} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta \mathrm{ftarget}$	$\text{ERT}_{\text{best}}/\text{D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IĎEÁ [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	7160		3.9					П	•		•		92					œ					•		•		92		•		•	1.2	1600
	1e-05	6580	-	4.2					П					100					9.8									62					1.3	670
	1e-04	6510		4.2					-			-		100					8.6			٠		-				62					1.3	370
	1e-03	5120	23e-3/5e5	5.1	·	٠		•	П		٠	•	21e-3/1e4	130		•		•	8.6	•				•	٠	٠		79			٠	٠	1.3	180
rass	1e-02	4570	470	4.5		٠		-	Н				6.6	92	99e-2/1e4		91e-2/1e5	•	8.2	-	·	30e-2/5e4				•		61		89e-2/1e5			1.2	37
16 Weierstrass	1e-01	1580	26	5.8	13e-1/1e4				П	12e-1/1e4	11e-1/1e6		2.4	190	06	75e-2/5e4	910	11e-1/800	6.5			460	33e-1/4e3	75e-2/1e5	69e-2/2e4		12e-1/1e6	28	92e-2/1e5	260			1.6	28
		703	က	4.9	41	95e-1/2e3		76e-1/5e4		49	3e3	11e+0/2e3	1.6	130	16	69	130	1.7	1.8	28e-1/1e4	47e-1/1e4	16	98	100	23	25e-1/9e3	3700	4.4	130	140	31e-1/1e6	12e+0/1e4	1.2	3.7
	1e+01	42.5	8.2	8.5	3.3	41	18e+0/1e4	400	33	5.4	190	170	2.5	55	3.6	4.7	28	1	3.3	6.7	51	7	17	17	1.4	4.7	65	12	5.2	42	43	220	2.9	4.1
	1e + 02	0.1	1.5	1.4	1.5	1.3	190	4.3	1.1	1.3	1.7	1.2	2.5	1.5	1.1	1.3	1.5	1.3	1.2	1.4	2.1	1.2	2.4	1.5	1.3	2.3	1.6	Н	1.4	1.5	1.6	5.9	1.5	1.4
	1e + 03	0.1	1	1	П	1	1	1	П	П	П	П	П	1	1	1	1	1	П	1	1	1	П	П	н	П	П	1	П	Н	Н	П	н	-
	$\Delta { m ftarget}$	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 17: 10-D, running time excess ERT/ERT_{best} on f_{17} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$1e+03 \\ 0.1$	$ 1e+02 1e+01 \\ 0.1 2.64 $	1, 1e+00 42.9	7 Schaffer 1e-01 220	7,	ion 10 1e-03 985	1e-04 1530	1e-05 2020	1e-07 2650	$\Delta { m ftarget} \ { m ERT}_{ m best}/{ m D}$
1.5 1.7 2.3 3.2 4.1 4 $10e-1/3e4$ 7.3 $18e-3/2e3$ 6.4 7.3 $18e-3/2e3$ 27 12 9.4 6.9 6.2 6.6 1.7 1 1 1 1 1 $15e-1/1e4$ 4.9 15 $28e-3/2e3$ 4.9 15 $28e-3/2e3$ 4.9 15 $28e-3/2e3$ 4.9 15 $28e-3/2e3$ 4.9 15 $28e-3/2e3$ <td< td=""><td>1.2 3.5</td><td>1</td><td>18</td><td>19</td><td>_</td><td>1100</td><td>14e-4/5e5</td><td></td><td></td><td>ALPS[17]</td></td<>	1.2 3.5	1	18	19	_	1100	14e-4/5e5			ALPS[17]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2.8		3.8	1.5		2.3	3.2	4.1	4	AMaLGaM IDEA [4]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.5		066	10e-1/3e4						avg NEWUOA [31]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			11	6.4		18e-3/2e3				BayEDAcG~[10]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		36e	-1/8e3							BFGS [30]
1.7 1 1 1 1 1 1 $83e-1/1e4$ <	29		35	27	12	9.4	6.9	6.2	9.9	Cauchy EDA [24]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.6		1.1	1.7	-	-	-	П	Н	BIPOP-CMA-ES [15]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		9	620	15e-1/1e4			•			(1+1)-CMA-ES [2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	2e4	83e-2/1e6						DASA [19]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		9	.7	4.9	15	28e-3/2e3	•			DEPSO [12]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1.3 3	က	7.	7.2	23	44e-4/1e4				DIRECT [25]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.4	4	₹	22	13	11	9.4	8.8	9.4	EDA-PSO [6]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.1	29	0	95e-2/1e4						full NEWUOA [31]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	က	540	0	15e-1/5e4			·		•	G3-PCX [26]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		77		45	210	1500	11e-3/1e5			simple GA [22]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.9	27e-1/2	2e3					-		GLOBAL [23]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.6	1.8		3.3	2.5	3.6	2	8.6	12	$iAMaLGaM\ IDEA\ [4]$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35	26e-1/1	64							LSfminbnd [28]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	096	73e-1/1	e4							LSstep [28]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.2 2.8 5	2		8.9	15	21	21	56	53	MA-LS-Chain [21]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1400		18e-1/4e3			٠			MCS (Neum) [18]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	4200		0099	11e-1/1e5					NELDER (Han) [16]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.2	450		77e-2/2e4						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2100		14e-1/2e4			٠		•	NEWUOA [31]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3200	32e-1/1	99							(1+1)-ES [1]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	91	23		15	33	28	63	140	250	POEMS $[20]$
320 le3 1400 $71e-3/1e5$	1.6	ಬ		230	1e3	52e-3/1e5				PSO [7]
1.1 1.3 1.3 1 1 1 1.1 1 1.1 1 1.1 1 1.1 1 1.1 1 1.1 1 1.1 1 1 2.2 7.7 28 330 $\mathbf{39e-8/7e6}$	1.2 1.5 29	53		320	1e3	1400	71e-3/1e5	•	•	PSO_Bounds [8]
1.1 1.3 1.3 1 1 1 1.1 1 1 2.2 7.7 28 330 39e-8/7e6	3.2	21e-1/	991							Monte Carlo [3]
1.1 1.3 1.3 1 1.1 1 1 2.2 7.7 28 330 39e-8/7e6		12e+0/	/1e4	٠			٠		٠	Rosenbrock [27]
1 2.2 7.7 28 330 39e-8/7e6	1 1.6 1	1		1.1	1.3	1.3	н	1	1.1	IPOP-SEP-CMA-ES [29]
		1,1	#	1	2.5	7.7	28	330	39e-8/7e6	VNS (Garcia) [11]

Table 18: 10-D, running time excess ERT/ERT_{best} on f_{18} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

THINGING CAMINGGIOTES TO LOGGE THIS ASSETS TAYING TO		A STITE ITO	arac arriaco		Schaffer F	18 Schaffer F7, condition 1000	on 1000				
$\Delta { m ftarget}$	1e+03	1e + 02	1e+01	1e+00	1e-01	$^{'}_{1e-02}$	1e-03	1e-04	1e-05	1e-07	$\Delta ext{ftarget}$
$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	0.1	0.193	23.8	83.6	701	1590	2750	3160	3720	4270	ERT_{hest}/D
ALPS	1	3.2	13	20	09	4700	19e-3/5e5				ALPS [17]
AMaLGaM IDEA	1.2	1.8	2.9	2.8	1.4	1.5	2.2	2.3	2.7	2.4	AMaLGaM İDÉA [4]
avg NEWUOA	П	10	73	32e-1/9e4							avg NEWUOA [31]
$_{ m BayEDAcG}$	1	2.3	8.8 8.8	13	6.4	19	17e-2/2e3		٠		BayEDAcG [10]
BFGS	1.7	160	5e3	16e+0/8e3							BFGS [30]
Cauchy EDA	1.1	110	31	24	5.2	3.6	2.8	က	3.1	4.1	Cauchy EDA [24]
BIPOP-CMA-ES	П	3.1	1		1	П	1.2	1.1	1.1	1.2	BIPOP-CMA-ES [15]
(1+1)-CMA-ES		4	110	40e-1/1e4					٠		(1+1)-CMA-ES [2]
DASA	1.4	17	1400	8.1e4	19e-1/1e6						DASA [19]
DEPSO	П	4.4	4.3	10	13	19e-2/2e3			•		DEPSO [12]
DIRECT		н	2.3	8.1	4.2	28	38e-3/1e4				DIRECT [25]
EDA-PSO	1	2.1	28	42	9.5	9	7.5	21	79	43e-6/1e5	EDA-PSO [6]
full NEWUOA	1.1	13	120	1700	39e-1/1e4						full NEWUOA [31]
G3-PCX	1.1	1.6	800	51e-1/5e4		-		-	•		G3-PCX [26]
simple GA	п	П	57	85	120	88e-3/1e5					simple $GA[22]$
GLOBAL	1	1.9	84	90e-1/2e3							GLOBAL [23]
iAMaLGaM IDEA	1.1	2.1	1.6	3.3	1.4	2.9	3.1	4.8	6.5	9.1	iAMaLGaM IDEA [4]
LSfminbnd		15	210	66e-1/1e4					·		LSfminbnd [28]
LSstep	1.1	230	19e+0/1e4								LSstep [28]
MA-LS-Chain	1.1	3.4	2.5	6.1	12	49	260	13e-3/5e4	•		MA-LS-Chain [21]
MCS (Neum)	1	П	57	51e-1/4e3							MCS (Neum) [18]
NELDER (Han)		3.2	510	8400	32e-1/1e5				·		NELDER (Han) [16]
NELDER (Doe)	1.1	8.8	72	3500	34e-1/2e4						NELDER (Doe) [5]
NEWUOA	1.1	66	260	51e-1/4e4					٠		NEWUOA [31]
(1+1)-ES	7	10	2.8e5	14e+0/1e6							(1+1)-ES [1]
POEMS	2.1	530	19	28	42	130	240	450	24e-3/1e5		POEMS $[20]$
PSO	-	1.7	3.5	2400	2e3	11e-1/1e5					PSO [7]
PSO_Bounds	1.1	2.5	10	140	580	880	38e-2/1e5		•		PSO_Bounds [8]
Monte Carlo	П	1.4	3300	72e-1/1e6					٠		Monte Carlo [3]
Rosenbrock		8700	40e+0/1e4						٠		Rosenbrock [27]
IPOP-SEP-CMA-ES	П	3.3	4.4	2.8	1.2	1.1	-	-		-	IPOP-SEP-CMA-ES [29]
VNS (Garcia)	1	2.7	1.7	1.1	1.8	22	93	1500	85e-6/6e6		VNS (Garcia) [11]

Table 19: 10-D, running time excess ERT/ERT_{best} on f_{19} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [17]	AMaLGaM İDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	1.39e5		8.6				•	Н	•		•		•					110	•		•						•		•				
	1e-05	1.38e5		8.4					1										110															-
	1e-04	1.37e5		8.7		•			-			•						•	110															•
F2	1e-03	1.37e5		8.8					-										110															
19 Griewank-Rosenbrock F8F2	1e-02	98400	74e-3/5e5	7.7		·	٠	ē	н				11e-2/1e4	73e-2/1e5	•	·	14e-2/1e5	•	73		•	13e-2/5e4	16e-3/4e3	·	•	•	·	57e-2/1e5		•			10e-2/1e4	60e-3/5e6
wank-Rose	1e-01	1060	550	83	83e-2/1e5	•		14e-1/5e4	8.6	55e-2/1e4	13e-1/1e6		16	1300	11e-1/1e4	16e-1/5e4	290	15e-1/2e3	370	18e-1/1e4		87	П	24e-2/1e5	26e-2/2e4	63e-2/1e5	18e-1/1e6	1400	51e-2/1e5	57e-2/1e5			17	1900
19 Grie	1e+00	0.1	7.7e4	7300	7.1e5	20e-1/2e3	51e-1/8e3	3.4e6	9400	8.7e4	1.5e7	29e-1/2e3	1	3.7e5	1.4e5	1.5e6	1.7e5	1.2e5	2.5e5	1.4e6	17e-1/1e4	8600	1	2.8e4	1.2e4	3.2e5	2.8e7	2.1e5	3.7e5	9.2e5	31e-1/1e6	24e+0/1e4	1.6e4	3.1e4
	1e + 01	0.1	410	160	48	210	1.9e4	1400	52	63	7100	210	-	130	150	3.6e4	1e3	370	78	200	2700	120	-	28	24	27	6500	2500	110	120	200	6.5e5	54	220
	1e+02	0.1	Т	1.1	Н	1.3	1.7	8.9	1	Н	1.1	П	1	1.1	1.4	1.1	1.1	1.2	1	3.1	55	1.1	П	П	1.1	2.1	1.5	380	1.3	1.1	1.1	2.2	П	1.4
	1e + 03	0.1	1	1	1	1	1	1	1	П	1	-	1	-	1	П	1	1	1	н	1	-	1	П	1	-	1	П	1	-	н	П	1	П
	Δ ftarget	${ m ERT}_{ m best}/{ m D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 20: 10-D, running time excess ERT/ERT_{best} on f_{20} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

inction evaluations to reach this value divided by difficiality.	ICACII 6.	iiis vaiu	anivide	u by united	$20~{ m Schmofol}~{ m v*ein}({ m v})$, 4:0*2	_				
Aftarget	16+03	10+09	10+01	16+00	16-01	7 2011(7 16-02	^, 1e-03	16-04	16-05	16-07	Aftarget
$ERT_{b,cet}/D$	2.58	3 2	3.19	1540	55000	56700	57300	57600	58100	58900	${ m ERT}_{ m bost}/{ m D}$
ALPS	31	52	61	1.5	10	9.7	9.6	9.6	9.6	9.7	ALPS [17]
AMaLGaM IDEA	8.1	9.6	11	18	270	260	260	260	260	250	AMaLGaM İDÉA [4]
avg NEWUOA	1.5	1.3	1.2	37	12e-1/8e3						avg NEWUOA [31]
BayEDAcG	16	22	30	27e-1/2e3							BayEDAcG [10]
BFGS	1.6	1.9	2.4	1.1	65e-2/1e4						BFGS [30]
Cauchy EDA	110	140	140	21e-1/5e4					-		Cauchy EDA [24]
BIPOP-CMA-ES	4.4	5.1	5.5	3.6	П	Н	1	Н		П	BIPOP-CMA-ES [15]
(1+1)-CMA-ES	2.9	3.2	3.3	3.3	83e-2/1e4						(1+1)-CMA-ES [2]
DASA	27	29	30	1.9	270	260	260	260	250	250	DASA [19]
DEPSO	11	14	15	1.1	68e-2/2e3					•	DEPSO[12]
DIRECT	7.2	17	16	14e-1/1e4							DIRECT [25]
EDA-PSO	15	44	92	7.8	3.8	3.7	3.7	3.7	3.7	3.7	EDA-PSO [6]
full NEWUOA	2.6	2.2	2.1	10	10e-1/1e4						full NEWUOA [31]
G3-PCX	5.8	9	6.1	12	85e-2/5e4						G3-PCX [26]
simple GA	130	310	360	3.2	1.8	7	2.6	25	18e-4/1e5		simple GA [22]
GLOBAL	12	11	11	2.6	11e-1/1e3						GLOBAL [23]
iAMaLGaM IDEA	4.8	5.8	6.2	38	24e-2/1e6				-		iAMaLGaM IDEA [4]
LSfminbnd	9.6	11	13	3.5	81e-2/1e4						LSfminbnd [28]
LSstep	200	250	300	8.3	98e-2/1e4						LSstep [28]
MA-LS-Chain	7.4	8.5	9.3	2.2	1.1	1.1	1.1	1.1	1.1	1.1	MA-LS-Chain [21]
MCS (Neum)	4.8	4.6	4.4	1	77e-2/4e3				-		MCS (Neum) [18]
NELDER (Han)	1.5	1.9	2.3	16	75e-2/1e5	-		-		•	NELDER (Han) [16]
NELDER (Doe)	1.7	2.1	2.3	5.7	81e-2/2e4						NELDER (Doe) [5]
NEWUOA	П	П	П	1.9	69e-2/1e4				-	٠	NEWUOA [31]
(1+1)-ES	2.7	က	3.1	7.2	47e-2/1e6						(1+1)-ES [1]
POEMS	92	92	26	1.1	12	12	12	12	12	12	POEMS $[20]$
PSO	8.9	8.9	10	1.5	57e-2/1e5						PSO [7]
PSO_Bounds	9.4	59	38	7	5.1	7.1	7.1	7.1	7	7.4	PSO_Bounds [8]
Monte Carlo	210	2400	8200	29e-1/1e6							Monte Carlo [3]
Rosenbrock	က	3.1	3.1	1.7	67e-2/1e4						Rosenbrock [27]
IPOP-SEP-CMA-ES	3.4	4.6	4.8	3.1	55e-2/1e4						IPOP-SEP-CMA-ES [29]
VNS (Garcia)	11	11	11	1.2	52	20	20	49	49	51	VNS (Garcia) [11]

Table 21: 10-D, running time excess ERT/ERT_{best} on f_{21} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

21 Gallagher 101 peaks

5	Aftarget	1e+03	$\frac{1e+02}{6}$	1e+01	1e+00	I Gallaghe 1e-01	r 101 pea 1e-02	. ks 1e-03	1e-04	1e-05	1e-07	$\Delta ext{ftarget}$
4.5 5 5.8 6.6 7.3 8 4.6 140 120 120 110 100 48 8.2 4.7 4.7 4.5 4.6 4.6 8.2 4.7 4.7 4.3 4.1 1.0 2.9 2.8 2.7 2.7 2.5 2.5 2.9 2.8 3.0 2.0 2.5 2.5 340 320 310 300 280 120 28 16 5.1 4.9 4.6 4.5 2 500 430 420 410 390 370 170 26 19 19 18 18 17 7.8 27 4.4 4.3 4.2 4 3.8 1.7 28 95 97 130 120 170 160 180 3.8 1.7 85 95 97 14 41 41		0.1	0.1	13	224	439	449	462	486	202	1130	${ m ERT_{best}/D}$
140 120 120 110 110 100 48 8.2 4.7 4.7 4.5 4.3 4.1 1.9 2.9 2.8 2.7 2.7 2.6 2.5 2.5 2.9 2.8 320 310 300 290 280 1.0 2.8 360 310 300 370 120 2.5 2.5 2.9 430 420 410 300 370 120 2.0 430 420 410 300 370 370 370 2.0 430 44 4.3 4.3 4.3 4.7		-	Н	21	4.5	ಬ	то ∞.	9.9	7.3	∞	4.6	ALPS [17]
8.2 4.7 4.7 4.5 4.3 4.1 1.9 2.4 2.5 2.8 $10e-1/2eg$ 2.9 2.8 2.7 2.7 2.6 2.5 2.5 340 32.8 310 300 290 280 120 2.8 16 15 14 14 6.3 2.5 501 430 450 4.6 4.5 4.5 2.5 501 430 190 18 18 17 7.8 7.5 17 36 35 33 34 17 7.5 17 36 35 33 34 17 1.20 95 97 130 120 120 120 1.30 1.30 1.20 1.20 1.7 1.7 1.20 1.20 1.20 1.20 1.7 <		-	Н	27	140	120	120	110	110	100	48	$AMaLGaM\ IDEA\ [4]$
27 32 $19e-1/2e3$ 2.9 2.8 2.7 2.7 2.6 2.5 2.5 340 320 310 300 290 280 120 28 16 4.9 4.6 4.5 2. 2. 50 430 420 410 390 370 170 50 430 420 410 420 4.5 2. 50 430 420 410 390 370 170 7.3 4.4 4.3 4.2 4 3.8 1.7 7.3 4.4 4.3 4.2 4 3.8 1.7 13 9 8.8 8.8 8.2 7.8 1.7 49 4.4 4.1 4.1 4.0 1.7 49 8.8 8.8 8.2 7.8 1.7 40 4.4 4.4 4.4 4.1 4.0 1.7 <td></td> <td>-</td> <td>н</td> <td>3.2</td> <td>8.2</td> <td>4.7</td> <td>4.7</td> <td>4.5</td> <td>4.3</td> <td>4.1</td> <td>1.9</td> <td>avg NEWUOA [31]</td>		-	н	3.2	8.2	4.7	4.7	4.5	4.3	4.1	1.9	avg NEWUOA [31]
2.9 2.8 2.7 2.7 2.6 2.5 2 340 320 310 300 290 280 120 6.1 5.1 5 4.9 4.6 4.5 2 6.1 5.1 5 4.9 4.6 4.5 2 6.1 5.1 5 4.9 4.6 4.5 2 500 430 420 410 390 370 170 7.5 17 36 35 34 17 7.8 1200 920 970 870 880 300 360 7.3 4.4 4.3 4.2 4 3.8 1.7 85 95 97 130 120 1.7 7 85 95 97 130 140 4.3 1.7 49 44 44 44 44 4.2 4.2 4.2 4.2 4.2 4.2 <t< td=""><td></td><td>1</td><td>П</td><td>48</td><td>27</td><td>32</td><td>19e-1/2e3</td><td></td><td></td><td></td><td></td><td>BayEDAcG [10]</td></t<>		1	П	48	27	32	19e-1/2e3					BayEDAcG [10]
340 320 310 300 290 280 120 28 16 15 15 14 14 6.3 B 6.1 5.1 5.1 15 15 14 14 6.3 B 500 430 420 410 390 370 170 7.8 26 19 19 18 18 17 7.8 7.8 170 920 900 85 33 34 17 7.8 130 920 900 8.8 8.6 8.2 7.8 1.7 130 95 97 130 120 1.7 7.8 1.7 85 95 97 130 120 120 260 1.7 1.4 1.4 4.1 4.0 1.8 1.7 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6		п	П	4.6	2.9	2.8	2.7	2.7	5.6	2.2	7	BFGS [30]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		П	1	79	340	320	310	300	290	280	120	Cauchy EDA [24]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1	1	5.9	28	16	15	15	14	14	6.3	BIPOP-CMA-ES [15]
500 430 420 410 390 370 170 7.5 19 19 18 18 17 7.8 7.5 17 36 19 18 18 17 7.8 7.5 17 17 36 18 17 7.8 17 7.8 1200 920 90 870 880 800 360		1	1	9.7	6.1	5.1	ಬ	4.9	4.6	4.5	7	(1+1)-CMA-ES [2]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		п	П	170	200	430	420	410	390	370	170	DASA [19]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-	Н	11	26	19	19	18	18	17	7.8	DEPSO [12]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1	1	2.5	7.5	17	36	35	33	34	17	DIRECT [25]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1	1	53	1200	920	006	870	830	800	360	EDA-PSO [6]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		П	1	4.4	7.3	4.4	4.3	4.2	4	3.8	1.7	full NEWUOA [31]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		П	1	ಸ	13	6	∞. ∞.	8.6	8.2	2.8	3.5	G3-PCX [26]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		п	1	91	85	95	26	130	120	120	260	simple GA [22]
1 1 3.2 49 44 44 43 41 40 18 1 1 39 100 170 160 160 150 140 65 1 1 69 630 330 320 320 390 290 91 $-1/1e4$ 1 1 7.5 66 43 42 41 39 38 17 1 1 20 16 16 16 15 14 14 6.2 1 20 16 16 16 15 14 14 6.2 1 20 16 16 16 15 14 14 6.2 1 21 24 4.8 4.7 4.6 4.4 4.2 1.9 1 1 29 20 1800 1500 1500 140 1300 1300 130 1 1 20 150 </td <td></td> <td>-</td> <td>П</td> <td>3.6</td> <td>П</td> <td>1</td> <td>П</td> <td></td> <td>-</td> <td>-</td> <td>1</td> <td>GLOBAL [23]</td>		-	П	3.6	П	1	П		-	-	1	GLOBAL [23]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-	1	3.2	49	44	44	43	41	40	18	iAMaLGaM IDEA [4]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	Н	66	100	170	160	160	150	140	65	LSfminbnd [28]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1	П	069	630	330	320	320	300	290	91e-1/1e4	LSstep [28]
1 1 1 20 10 10 10 9.5 9.1 4.9 1 1 20 16 16 15 14 14 4.9 4.9 1 1 2.1 7.4 4.8 4.7 4.6 4.4 3.3 1.6 1 1 2.1 7.4 4.8 4.7 4.6 4.4 4.2 1.9 1 1 2.0 180 1500 1500 1400 1300 130 580 1 1 250 180 1500 1500 1400 1300 130 580 1 1 56 1.20 1500 1500 1400 1300 130 580 1 1 1.6 1.8 $20e^{-1}/1e6$ 1 1 1.6 1.8 1.2 1.2 1.2 1.3 4.1 1		П	Н	7.5	99	43	42	41	39	38	17	MA-LS-Chain [21]
1 1 20 16 16 16 15 14 14 6.2 1 1 8.4 6 3.7 3.6 3.5 3.4 3.3 1.6 1 1 2.1 7.4 4.8 4.7 4.6 4.4 4.2 1.9 1 1 2.0 1800 1500 1500 1400 1300 130 580 1 1 1.200 510 1500 1500 1400 1300 130 580 1 1 56 1200 1500 1500 1400 1300 130 580 1 1 1.6 1.8 1.2 1.2 1. 1 1 1.6 1.8 1.0 1.0 9.9 9.5 9.1 4.1 1. 1 1 2.0 1.4 0 0 9.9 9.5 9.1 4.8		-	П	П	20	10	10	10	9.2	9.1	4.9	MCS (Neum) [18]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	н	20	16	16	16	15	14	14	6.2	NELDER (Han) [16]
		-	1	8.4	9	3.7	3.6	3.5 5.	3.4	3.3	1.6	NELDER (Doe) [5]
1 1 9.8 20 18 18 17 17 16 7.1 1 1 290 1800 1500 1500 1400 1300 1580 1 1 1 1 260 1200 1500 1500 1400 1300 130 580 1 1 1 570 6.3e4 $20e-1/1e6$. . <t< td=""><td></td><td>-</td><td>П</td><td>2.1</td><td>7.4</td><td>4.8</td><td>4.7</td><td>4.6</td><td>4.4</td><td>4.2</td><td>1.9</td><td>NEWUOA [31]</td></t<>		-	П	2.1	7.4	4.8	4.7	4.6	4.4	4.2	1.9	NEWUOA [31]
1 1 290 1800 1500 1500 1400 1300 580 1 1 1200 510 340 330 330 330 130 580 1 1 560 1200 1500 1500 1400 1300 580 1 1 6.3e4 $20e-1/1e6$ 1 1 16 18 12 12 12 11 4.8 1 1 5.9 14 10 10 9.9 9.5 9.1 4.1 1 1 1 2 3 46 66 68 68 32		-	Н	8.6	20	18	18	17	17	16	7.1	(1+1)-ES [1]
		1	н	290	1800	1500	1500	1400	1300	1300	580	POEMS $[20]$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-1	Н	1200	510	340	330	330	310	300	130	PSO [7]
		-	П	260	1200	1500	1500	1400	1300	1300	580	PSO_Bounds [8]
1 1 16 18 12 12 12 11 11 4.8 1 1 5.9 14 10 10 9.9 9.5 9.1 4.1 I 1 1 10 22 30 46 66 68 68 83		-	Н	570	6.3e4	20e-1/1e6						Monte Carlo [3]
1 1 5.9 14 10 10 9.9 9.5 9.1 4.1 I 1 1 10 22 30 46 66 68 68 83		1	н	16	18	12	12	12	11	11	4.8	Rosenbrock [27]
22 30 46 66 68 68 32		п	1	5.9	14	10	10	6.6	9.2	9.1	4.1	IPOP-SEP-CMA-ES [29]
		-	П	10	22	30	46	99	89	89	32	VNS (Garcia) [11]

Table 22: 10-D, running time excess ERT/ERT $_{\text{best}}$ on f_{22} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension f_{22} and f_{22} a

Table 23: 10-D, running time excess ERT/ERT_{best} on f_{23} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	21400		-				٠	1.2					٠					-	٠														650
	1e-05	20900	-	1					1.2										-1															029
	1e-04	20600	-	1				-	1.2										П	-		44e-3/5e4						63e-3/1e5					•	089
	1e-03	20400	-	П		٠		-	1.2	٠				٠		•			П	-		35		59e-3/1e5				69						420
23 Katsuuras	1e-02	18400	14e-2/5e5	1		•		-	1.3	•	15e-2/1e6				19e-2/1e4	19e-2/4e4			1.1	-		38		80	97e-3/2e4	•	14e-2/1e6	36					11e-2/1e4	140
$23~\mathrm{Ke}$	1e-01	1640	1e3	1	21e-2/1e4		11e-1/5e3	11e-1/5e4	2.7	22e-2/1e4	4300		65e-2/1e4	87e-2/1e5	44	86	85e-2/1e5	32e-2/700	3.6	66e-2/1e4	51e-2/1e4	17	56e-2/4e3	40	11	34e-2/7e3	2900	19	42e-2/1e5	67e-2/1e5	61e-2/1e6	32e-2/5e3	12	34
•	1e+00	91.5	42	10	2.6	16e-1/2e3	130	1700	21	2.9	28	18e-1/2e3	2.1	290	2.9	4.9	390	-	5.7	26	31	2.3	15	5.7	1.4	3.6	9.2	31	91	130	530	2.5	17	18
	1e + 01	0.28	1.7	1.6	11	1.3	17	2.3	7	3.4	2	1.7	2.1	1.7	13	1.8	1.4	2.1	1.8	2.1	1.2	7	3.4	Н	1.7	7.5	4.4	15	1.7	1.5	1.6	2.1	2.4	2.6
	1e + 02	0.1	1	1	-	-	1	П	-	-	1	1	1	1	-	П	1	-	1	П	-	1	1	-	-	1	1	-	-	-	-	1	П	1
	1e+03	0.1	1	1	1	1	П	1	1	1	1	1	1	1	1	Н	П	Н	П	1	1	1	П	1	н	1	П	П	-	1	П	1	П	1
	Δ ftarget	$\text{ERT}_{\text{best}}/\text{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 24: 10-D, running time excess ERT/ERT_{best} on f_{24} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	7.48e6				•			Н									•		•								•						
	1e-05	7.48e6		•		•		•	1			•		•		•		•		•		•				•		•		•		•		
	1e-04	7.48e6							-									•		•								•						
	1e-03	7.48e6				•			1									•		•														
strigin	1e-02	7.48e6							-																									
24 Lunacek bi-Rastrigin	1e-01	7.47e6	•	78e-2/1e6					н		•			•					66e - 2/1e6	•		•				•				•		•		
24 Luna	1e+00	1.04e5	44e-1/5e5	8.3					1	20e+0/1e4									4.2					11e+0/1e5	96e-1/2e4		17e+0/1e6	19e+0/1e5	20e+0/1e5	22e+0/1e5			91e-1/1e4	21e-1/8e6
	1e + 01	0886	10	18	21e+0/8e3	37e+0/2e3	81e+0/4e3	27e+0/5e4	2.7	14	31e+0/1e6	38e+0/2e3	19e+0/1e4	23e+0/1e5	16e+0/1e4	31e+0/5e4	14e+0/1e5	62e+0/1e3	4.2	33e+0/1e4	49e+0/1e4	11e+0/5e4	30e+0/4e3	22	2.6	26e+0/7e3	740	140	140	140	991/0+909	12e+1/1e4	1	3.7
	1e+02	6.64	24	5.5	1.4	19	350	51	2.5	8.6	1300	8.9	5.9	56	2.6	16	120	7.2	4.2	20	170	5.7	15	8.2	4.7	Н	140	48	8.1	22	820	1e4	2.5	4.8
	1e + 03	0.1	1	1	1	1	1	П	П	П	1	П	П	П	1	П	1	1	1	1	က	П	1	-	П	П	П	П	П	П	1	П	1	1
	$\Delta \mathrm{ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

References

- [1] Anne Auger. Benchmarking the (1+1) evolution strategy with one-fifth success rule on the BBOB-2009 function testbed. In Rothlauf [32], pages 2447–2452.
- [2] Anne Auger and Nikolaus Hansen. Benchmarking the (1+1)-CMA-ES on the BBOB-2009 function testbed. In Rothlauf [32], pages 2459–2466.
- [3] Anne Auger and Raymond Ros. Benchmarking the pure random search on the BBOB-2009 testbed. In Rothlauf [32], pages 2479–2484.
- [4] Peter A. N. Bosman, Jörn Grahl, and Dirk Thierens. AMaLGaM IDEAs in noiseless black-box optimization benchmarking. In Rothlauf [32], pages 2247–2254.
- [5] Benjamin Doerr, Mahmoud Fouz, Martin Schmidt, and Magnus Wahlström. BBOB: Nelder-mead with resize and halfruns. In Rothlauf [32], pages 2239–2246.
- [6] Mohammed El-Abd and Mohamed S. Kamel. Black-box optimization benchmarking for noiseless function testbed using an EDA and PSO hybrid. In Rothlauf [32], pages 2263–2268.
- [7] Mohammed El-Abd and Mohamed S. Kamel. Black-box optimization benchmarking for noiseless function testbed using particle swarm optimization. In Rothlauf [32], pages 2269–2274.
- [8] Mohammed El-Abd and Mohamed S. Kamel. Black-box optimization benchmarking for noiseless function testbed using PSO_Bounds. In Roth-lauf [32], pages 2275–2280.
- [9] S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Presentation of the noiseless functions. Technical Report 2009/20, Research Center PPE, 2009.
- [10] Marcus Gallagher. Black-box optimization benchmarking: results for the BayEDAcG algorithm on the noiseless function testbed. In Rothlauf [32], pages 2281–2286.
- [11] Carlos García-Martínez and Manuel Lozano. A continuous variable neighbourhood search based on specialised EAs: application to the noiseless BBO-benchmark 2009. In Rothlauf [32], pages 2287–2294.
- [12] José García-Nieto, Enrique Alba, and Javier Apolloni. Noiseless functions black-box optimization: evaluation of a hybrid particle swarm with differential operators. In Rothlauf [32], pages 2231–2238.
- [13] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization benchmarking 2009: Experimental setup. Technical Report RR-6828, INRIA, 2009.
- [14] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Noiseless functions definitions. Technical Report RR-6829, INRIA, 2009.

- [15] Nikolaus Hansen. Benchmarking a bi-population CMA-ES on the BBOB-2009 function testbed. In Rothlauf [32], pages 2389–2396.
- [16] Nikolaus Hansen. Benchmarking the nelder-mead downhill simplex algorithm with many local restarts. In Rothlauf [32], pages 2403–2408.
- [17] Gregory S. Hornby. The Age-Layered Population Structure (ALPS) evolutionary algorithm, July 2009. Noiseless testbed.
- [18] Waltraud Huyer and Arnold Neumaier. Benchmarking of MCS on the noiseless function testbed. http://www.mat.univie.ac.at/~neum/papers.html, 2009. P. 989.
- [19] Peter Korosec and Jurij Silc. A stigmergy-based algorithm for black-box optimization: noiseless function testbed. In Rothlauf [32], pages 2295–2302.
- [20] Jirí Kubalik. Black-box optimization benchmarking of prototype optimization with evolved improvement steps for noiseless function testbed. In Rothlauf [32], pages 2303–2308.
- [21] Daniel Molina, Manuel Lozano, and Francisco Herrera. A memetic algorithm using local search chaining for black-box optimization benchmarking 2009 for noise free functions. In Rothlauf [32], pages 2255–2262.
- [22] Miguel Nicolau. Application of a simple binary genetic algorithm to a noiseless testbed benchmark. In Rothlauf [32], pages 2473–2478.
- [23] László Pál, Tibor Csendes, Mihály Csaba Markót, and Arnold Neumaier. BBO-benchmarking of the GLOBAL method for the noiseless function testbed. http://www.mat.univie.ac.at/~neum/papers.html, 2009. P. 986.
- [24] Petr Posik. BBOB-benchmarking a simple estimation of distribution algorithm with Cauchy distribution. In Rothlauf [32], pages 2309–2314.
- [25] Petr Posik. BBOB-benchmarking the DIRECT global optimization algorithm. In Rothlauf [32], pages 2315–2320.
- [26] Petr Posik. BBOB-benchmarking the generalized generation gap model with parent centric crossover. In Rothlauf [32], pages 2321–2328.
- [27] Petr Posik. BBOB-benchmarking the Rosenbrock's local search algorithm. In Rothlauf [32], pages 2337–2342.
- [28] Petr Posik. BBOB-benchmarking two variants of the line-search algorithm. In Rothlauf [32], pages 2329–2336.
- [29] Raymond Ros. Benchmarking sep-CMA-ES on the BBOB-2009 function testbed. In Rothlauf [32], pages 2435–2440.
- [30] Raymond Ros. Benchmarking the BFGS algorithm on the BBOB-2009 function testbed. In Rothlauf [32], pages 2409–2414.
- [31] Raymond Ros. Benchmarking the NEWUOA on the BBOB-2009 function testbed. In Rothlauf [32], pages 2421–2428.

[32] Franz Rothlauf, editor. Genetic and Evolutionary Computation Conference, GECCO 2009, Proceedings, Montreal, Québec, Canada, July 8-12, 2009, Companion Material. ACM, 2009.