CORRIGÉ DM N°7: COMMUTANT D'UN ENDOMORPHISME. E3A MP 2002

Partie 0. Un exemple.

1. Solution matricielle:

M a pour terme général $m_{i,j} = i \, \delta_{i,j}$. Soit $A \in \mathbb{M}_n(\mathbb{C})$ de terme général $a_{i,j}$.

$$\begin{split} \underline{\mathbf{A}} \in \mathscr{C}(\underline{\mathbf{M}}) &\iff \mathbf{A}\,\mathbf{M} = \mathbf{M}\,\mathbf{A} \iff \forall\, (i,k) \in [[1,n]]^2, \; \sum_{j=1}^n a_{i,j}\,m_{j,k} = \sum_{j=1}^n m_{i,j}\,a_{j,k} \\ &\iff \forall\, (i,k) \in [[1,n]]^2, \; \sum_{j=1}^n j\,a_{i,j}\,\delta_{j,k} = \sum_{j=1}^n i\,\delta_{i,j}\,a_{j,k} \iff \forall\, (i,k) \in [[1,n]]^2, \; k\,a_{i,k} = i\,a_{i,k} \\ &\iff \forall\, (i,k) \in [[1,n]]^2, \; (i \neq k \implies a_{i,k} = 0) \iff \underline{\mathbf{A}} \; \text{est diagonale}. \end{split}$$

Autre solution:

Soit $\mathscr{B} = (e_1, e_2, \dots, e_n)$ la base canonique de \mathbb{C}^n , u l'endomorphisme de \mathbb{C}^n tel que $M = Mat(u, \mathscr{B})$, $N \in \mathscr{C}(M)$ et v l'endomorphisme de \mathbb{C}^n tel que $M = Mat(v, \mathscr{B})$.

On a alors $u \circ v = v \circ u$, d'où, pour tout $i \in [1, n]$, $u(v(e_i)) = v(u(e_i)) = v(ie_i) = iv(e_i)$.

Ainsi, $v(e_i)$ appartient au sous-espace propre de u associé à la valeur propre i; ce sous-espace propre étant exactement la droite engendrée par e_i , il existe $(\alpha_1, \ldots, \alpha_n) \in \mathbb{C}^n$ tel que $v(e_i) = \alpha_i e_i$ pour tout $i \in [\![1, n]\!]$, c'est-à-dire que $\mathrm{Mat}(v, \mathcal{B}) = \mathrm{diag}(\alpha_1, \ldots, \alpha_n)$ est diagonale.

La réciproque est immédiate.

Rem : Les deux démonstrations ci-dessus, ainsi que le résultat obtenu, sont valables pour toute matrice diagonale à éléments diagonaux distincts.

2. En notant $(E_{i,j})_{1 \le i,j \le n}$ la base canonique de $\mathbb{M}_n(\mathbb{C})$, on a :

$$A \in \mathscr{C}(M) \iff \exists (\alpha_1, \dots, \alpha_n) \in \mathbb{C}^n / A = \sum_{i=1}^n \alpha_i E_{i,i}.$$

Une base de $\mathscr{C}(M)$ est donc : $(E_{1,1}, E_{2,2}, \dots, E_{n,n})$, donc dim $\mathscr{C}(M) = n$.

Partie I. Commutant d'un endomorphisme diagonalisable.

1. Soit $v \in \mathcal{C}(u)$ et $x \in E_{\lambda_i}(u)$. Ainsi $u(x) = \lambda_i . x$.

D'une part, $v(u(x)) = v(\lambda_i \cdot x) = \lambda_i \cdot v(x)$, d'autre part, v(u(x)) = u(v(x)).

Donc $u(v(x)) = \lambda_i \cdot v(x)$, ce qui montre que $v(x) \in E_{\lambda_i}(u)$.

Donc tous les sous-espaces propres $E_{\lambda_i}(u)$ sont stables par ν .

C'est d'ailleurs un résultat du cours!

- **2.** On sait d'autre part que chaque $E_{\lambda_i}(u)$ est stable par u, ce qui autorise à considérer l'endomorphisme u_i induit par u sur $E_{\lambda_i}(u)$. u_i n'est autre que l'homothétie de rapport λ_i de $E_{\lambda_i}(u)$.
- 3. Soit \mathscr{B} une base adaptée à la somme directe $E = \bigoplus_{i=1}^{p} E_{\lambda_i}(u)$.
 - Si $v \in \mathcal{C}(u)$, comme chaque $E_{\lambda}(u)$ est stable par v, on sait que $B = Mat(v, \mathcal{B})$ est diagonale par blocs de la forme

$$\mathbf{B} = \begin{pmatrix} \mathbf{V}_1 & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{V}_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \mathbf{0} \\ \mathbf{0} & \dots & \mathbf{0} & \mathbf{V}_p \end{pmatrix} \text{ avec } \mathbf{V}_i \in \mathcal{M}_{n_i}(\mathbb{C}) \ .$$

• Réciproquement, supposons que $B = Mat(v, \mathcal{B})$ soit de la forme ci-dessus.

 ${\mathcal B}$ étant en particulier une base de vecteurs propres de u, alors $A = Mat(u,{\mathcal B})$ est diagonale et on peut la

décomposer en blocs sous la forme $A = \begin{pmatrix} D_1 & 0 & \dots & 0 \\ 0 & D_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & D_p \end{pmatrix}$ avec $D_i = \lambda_i . I_{n_i}$ (puisque u_i est une homothétie).

Comme $\forall i \in [[1, p]], D_i V_i = (\lambda_i . I_{n_i}) V_i = V_i (\lambda_i . I_{n_i}) = V_i D_i$, alors AB = BA, donc $u \circ v = v \circ u$, d'où $v \in \mathcal{C}(u)$.

4. Par l'isomorphisme $v \mapsto \operatorname{Mat}(v, \mathcal{B})$ de $\mathcal{L}(E)$ dans $\mathbb{M}_n(\mathbb{C})$, on obtient que $\mathbb{C}(v)$ a la même dimension que le sous-espace vectoriel de $\mathbb{M}_n(\mathbb{C})$ constitué des matrices ayant la forme de B.

Ces matrices dépendent de $\sum_{i=1}^{p} (n_i)^2$ coefficients arbitraires, donc peuvent s'écrire comme combinaison linéaire de

$$\sum_{i=1}^p (n_i)^2 \text{ matrices } \mathbf{E}_{j,k} \text{ de la base canonique de } \mathbb{M}_n(\mathbb{C}). \text{ Donc } \boxed{\dim \mathscr{C}(u) = \sum_{i=1}^p (n_i)^2.}$$

- **5.** Comme $\forall i \in [[1,p]], (n_i)^2 \ge n_i$, alors $\dim \mathscr{C}(u) \ge \sum_{i=1}^p n_i = \dim E = n$ (en effet u étant diagonalisable, n est égal à la somme des dimensions des sous-espaces propres de u).
- **6.** Soit \mathcal{B} une base quelconque de E. L'endomorphisme u de E représenté dans la base \mathcal{B} par la matrice M de la partie **0** est tel que $\dim \mathcal{C}(u) = \dim \mathcal{C}(M) = n$.

Partie II. Commutant d'un endomorphisme nilpotent d'indice 2.

1. Supposons que $u \circ u = 0$. Soit $y \in \text{Im } u$. Alors $\exists x \in E \ / \ y = u(x)$. Donc $u(y) = u(u(x)) = u^2(x) = 0$, d'où $y \in \text{Ker } u$.

Ainsi $\underline{\operatorname{Im} u \subset \operatorname{Ker} u}$. De plus, $\operatorname{rg} u = \dim(\operatorname{Im} u) \leqslant \dim(\operatorname{Ker} u) = n - \operatorname{rg} u$, donc $2 \operatorname{rg} u \leq n$, d'où $r \leqslant \frac{n}{2}$.

- 2. On remarque d'abord que puisque G est un supplémentaire de $\operatorname{Ker} u$, alors $\dim G = n \dim(\operatorname{Ker} u) = \operatorname{rg} u = r$, donc il est légitime de noter (e'_1, \dots, e'_r) une base de G. On sait que u induit un isomorphisme \tilde{u} de G sur $\operatorname{Im} u$. Ainsi l'image de la base (e'_1, \dots, e'_r) de G est une base de $\operatorname{Im} u$.
- 3. $E = \operatorname{Ker} u \oplus G = \operatorname{Im} u \oplus H \oplus G$. On a donc $\dim(\operatorname{Im} u) = \dim G = r$ et $\dim H = n 2r = s$. Soit $(e'_{r+1}, \dots, e'_{r+s})$ une base de H. Considérons la famille $\mathscr{B}' = (u(e'_1), \dots, u(e'_r), e'_{r+1}, \dots, e'_{r+s}, e'_1, \dots, e'_r)$. Il s'agit d'une base de E adaptée à la somme directe $E = \operatorname{Im} u \oplus H \oplus G$.

Alors $u(\mathcal{B}') = (0, \dots, 0, u(e'_1), \dots, u(e'_r))$, donc $Mat(u, \mathcal{B}') = \begin{pmatrix} 0 & 0 & I_r \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \updownarrow r$ $\underset{r}{\updownarrow} r \longleftrightarrow \underset{s}{\longleftrightarrow} r$

$$\textbf{4.} \ \ \nu \in \mathscr{C}(u) \iff \begin{pmatrix} 0 & 0 & \mathrm{I}_r \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \mathrm{A}_1 & \mathrm{A}_2 & \mathrm{A}_3 \\ \mathrm{A}_4 & \mathrm{A}_5 & \mathrm{A}_6 \\ \mathrm{A}_7 & \mathrm{A}_8 & \mathrm{A}_9 \end{pmatrix} = \begin{pmatrix} \mathrm{A}_1 & \mathrm{A}_2 & \mathrm{A}_3 \\ \mathrm{A}_4 & \mathrm{A}_5 & \mathrm{A}_6 \\ \mathrm{A}_7 & \mathrm{A}_8 & \mathrm{A}_9 \end{pmatrix} \begin{pmatrix} 0 & 0 & \mathrm{I}_r \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$v \in \mathcal{C}(u) \iff \begin{pmatrix} 0 & 0 & A_1 \\ 0 & 0 & A_4 \\ 0 & 0 & A_7 \end{pmatrix} = \begin{pmatrix} A_7 & A_8 & A_9 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \iff \begin{cases} A_4 = 0_{s,r} \\ A_7 = 0_{r,r} \\ A_8 = 0_{r,s} \\ A_9 = A_1 \end{cases}.$$

Ainsi $v \in \mathcal{C}(u)$ si et seulement si $Mat(v, \mathcal{B}')$ de la forme $\begin{pmatrix} A_1 & A_2 & A_3 \\ 0 & A_5 & A_6 \\ 0 & 0 & A_1 \end{pmatrix}.$

5. Le nombre de coefficient arbitraires de cette matrice est égal à $r n + s(s+r) = n r + (n-2r)(n-r) = n^2 + 2r^2 - 2r n$. Ainsi dim $\mathscr{C}(u) = (n-r)^2 + r^2$.

En posant $f_n(x) = 2x^2 - 2nx + n^2$, alors $f_n'(x) = 2(2x - n)$, donc f_n admet un minimum pour $x = \frac{n}{2}$ égal à $\frac{n^2}{2}$. Ainsi dim $\mathscr{C}(u) \geqslant \frac{n^2}{2}$.

Partie III. Commutant d'un endomorphisme vérifiant la relation (1).

1. Les polynômes $P_1 = X - 1$ et $P_2 = (X - 2)^2$ sont premiers entre eux.

De plus
$$(P_1P_2)(u) = P_1(u) \circ P_2(u) = (u - Id) \circ (u - 2Id)^2 = 0$$
.

Le théorème de décomposition des noyaux donne : $\operatorname{Ker}((P_1 P_2)(u)) = \operatorname{Ker}(P_1(u)) \oplus \operatorname{Ker}(P_2(u))$, c'est à dire :

$$E = Ker(u - Id) \oplus Ker(u - 2Id)^2 = E_1 \oplus E_2$$

Rem: E_1 et E_2 étant des noyaux de polynômes en u sont stables par u.

2. La décomposition en éléments simples dans $\mathbb{C}(X)$ de F(X) est de la forme :

$$F(X) = \frac{a}{X-1} + \frac{b}{(X-2)^2} + \frac{c}{X-2}.$$

. On multiplie par X - 1, puis on remplace X par 1, ce qui donne : $\frac{1}{(1-2)^2} = a + b \times 0 + c \times 0$, donc $\underline{a=1}$.

. On multiplie par $(X-2)^2$, puis on remplace X par 2, ce qui donne : $\frac{1}{2-1} = a \times 0 + b + c \times 0$, donc $\underline{b=1}$.

. Pour X := 0, on trouve que c = -1.

Donc
$$F(X) = \frac{1}{X-1} + \frac{1}{(X-2)^2} - \frac{1}{X-2} = \frac{1}{X-1} + \frac{3-X}{(X-2)^2}$$
.

Ainsi
$$1 = (X-1)(X-2)^2 F(X) = (X-2)^2 + (X-1)(3-X)$$
, donc $V(X) = 1$ et $U(X) = 3-X$.

3. On en déduit que : $Id = U(u) \circ (u - Id) + V(u) \circ (u - 2Id)^2$.

Donc
$$\forall x \in E, x = \lceil U(u) \circ (u - Id) \rceil (x) + \lceil V(u) \circ (u - 2Id)^2 \rceil (x)$$
.

Posons
$$x_1 = [V(u) \circ (u - 2\operatorname{Id})^2](x)$$
 et $x_2 = [U(u) \circ (u - \operatorname{Id})](x)$. Ainsi $x = x_1 + x_2$.

Vérifions par exemple que $x_1 \in E_1 = \text{Ker}(P_1(u)) = \text{Ker}(u - \text{Id})$. On rappelle que des polynômes en u commutent.

On a:
$$(u - Id)(x_1) = [(u - Id) \circ V(u) \circ (u - 2Id)^2](x) = V(u)((u - Id) \circ (u - 2Id)^2)(x)) = V(u)(0) = 0.$$

On montre de même que $x_2 \in E_2$.

On a donc décomposé x en $x_1 + x_2$ avec $x_1 \in E_1$ et $x_2 \in E_2$. On en déduit que $x_1 = p_1(x)$ et $x_2 = p_2(x)$.

Ainsi
$$\forall x \in E$$
, $p_1(x) = [V(u) \circ (u - 2Id)^2](x)$, donc $p_1 = V(u) \circ (u - 2Id)^2 = (u - 2Id)^2 = u^2 - 4u + 4Id$.

De même
$$p_2 = U(u) \circ (u - Id) = (3 Id - u) \circ (u - Id) = -u^2 + 4u - 3 Id$$
.

La démonstration ci-dessus est exactement celle du théorème de décomposition des noyaux.

L'intérêt de ces égalités est que p_1 et p_2 s'expriment comme des polynômes en u.

4. Montrons que $d = p_1 + 2p_2$ est diagonalisable.

Solution matricielle:

Dans une base \mathscr{B} adaptée à la somme directe $E=E_1\oplus E_2$; $Mat(d,\mathscr{B})=\begin{pmatrix} I_{n_1} & 0 \\ 0 & 2I_{n_2} \end{pmatrix}$ ce qui montre que $d = p_1 + 2 p_2$ est diagonalisable.

Autre solution:

 p_1 et p_2 sont des projecteurs associés, donc $p_1 \circ p_2 = p_2 \circ p_1 = 0$.

On a:
$$Id = p_1 + p_2$$
, $d = p_1 + 2p_2$ et $d^2 = p_1^2 + 2p_1 \circ p_2 + 2p_2 \circ p_1 + 4p_2^2 = p_1 + 4p_2$.

On tire
$$p_1 = 2d - d^2$$
 et $p_2 = \frac{d^2 - d}{2}$, donc $Id = p_1 + p_2 = -\frac{d^2}{2} + \frac{3d}{2}$, d'où $d^2 - 3d + 2Id = 0$.

Ainsi d annule le polynôme $X^2 - 3X + 2 = (X - 1)(X - 2)$ scindé à racines simples, donc d est diagonalisable.

5. w = u - d avec $d = p_1 + 2p_2 = (u^2 - 4u + 4Id) + 2(-u^2 + 4u - 3Id) = -u^2 + 4u - 2Id$.

Donc
$$w = u^2 - 3u + 2 \text{Id} = (u - \text{Id}) \circ (u - 2 \text{Id}).$$

On en déduit que
$$w^2 = (u - \operatorname{Id}) \circ (u - \operatorname{Id}) \circ (u - 2\operatorname{Id})^2 = (u - \operatorname{Id}) \circ 0 = 0$$
.

Ainsi, ou bien w = 0, ou bien $w \neq 0$ et $w^2 = 0$, c'est à dire w est nilpotent d'indice 2.

6. Détermination de $\mathscr{C}(u)$.

- a) * Si $v \in \mathcal{C}(u)$, alors v commute avec tout polynôme en u, donc en particulier avec $d = -u^2 + 4u 2\operatorname{Id}$ et $w = u^2 3u + 2\operatorname{Id}$.
 - * Si ν commute avec d et avec w, alors ν commute avec u = d + w.

Ainsi : $v \in \mathscr{C}(u) \iff v \in \mathbb{C}(d)$ et $v \in \mathbb{C}(w)$.

b) w est un polynôme en u, donc $E_1 = \text{Ker}(u - \text{Id})$ et $E_2 = \text{Ker}(u - 2 \text{Id})$ sont stables par w.

De plus $w = (u - 2\operatorname{Id}) \circ (u - \operatorname{Id})$, d'où $E_1 = \operatorname{Ker}(u - \operatorname{Id}) \subset \operatorname{Ker} w$, donc la restriction de w à E_1 est nulle.

En outre, $\forall x \in E_2 = \text{Ker}(u^2 - 4u + 4\text{Id}), w(x) = (u^2 - 3u + 2\text{Id})(x) = (u^2 - 4u + 4\text{Id})(x) + (u - 2\text{Id})(x) = (u - 2\text{Id})(x),$ donc w et u - 2Id coïncident sur E_2 .

En se plaçant dans une base $\mathcal{B}=\mathcal{B}_1\cup\mathcal{B}_2$ adaptée à la somme directe $E=E_1\oplus E_2$, alors w admet dans cette

base une représentation matricielle diagonale par blocs de la forme $W = \begin{pmatrix} 0 & 0 \\ 0 & N \end{pmatrix} \updownarrow n_1$ où l'on sait que N

est la matrice dans la base \mathcal{B}_2 de l'endomorphisme w_2 induit sur E_2 par w, donc aussi par u-2 Id.

Puisque u=d+w, il en résulte que $\mathrm{Mat}(u,\mathcal{B})=\begin{pmatrix} \mathrm{I}_{n_1} & 0 \\ 0 & \mathrm{I}_{n_2}+\mathrm{N} \end{pmatrix}$.

Remarque : puisque $w^2 = 0$, on a $\underline{N^2 = 0}$.

- c) On a $\operatorname{Ker} w_2 = \operatorname{E}_2 \cap \operatorname{Ker} (u 2\operatorname{Id}) = \operatorname{Ker} (u 2\operatorname{Id})$ car $\operatorname{Ker} (u 2\operatorname{Id}) \subset \operatorname{Ker} (u 2\operatorname{Id})^2 = \operatorname{E}_2$. Donc $\operatorname{rg} N = \operatorname{rg} w_2 = \dim \operatorname{E}_2 - \dim(\operatorname{Ker} w_2) = n_2 - \dim(\operatorname{Ker} (u - 2\operatorname{Id}))$.
- d) * Si ν commute avec u, alors ν stabilise $E_1 = \mathrm{Ker}(u \mathrm{Id})$ et $E_2 = \mathrm{Ker}(u 2\mathrm{Id})$, alors $\mathrm{Mat}(\nu, \mathcal{B})$ est diagonale par blocs de la forme $\begin{pmatrix} V_1 & 0 \\ 0 & V_2 \end{pmatrix}$. En traduisant que $\mathrm{Mat}(u, \mathcal{B})$ et $\mathrm{Mat}(\nu, \mathcal{B})$ commutent, on trouve que $\mathrm{V_2}\,\mathrm{N} = \mathrm{N}\,\mathrm{V_2}$.
 - * Réciproquement si $Mat(u,\mathcal{B})$ est de la forme $\begin{pmatrix} V_1 & 0 \\ 0 & V_2 \end{pmatrix}$ avec $V_2 N = NV_2$, on constate immédiatement que $Mat(u,\mathcal{B})$ et $Mat(v,\mathcal{B})$ commutent, donc u et v commutent, d'où $v \in \mathcal{C}(u)$.
- e) * Si u est diagonalisable, alors u-2Id l'est aussi et on sait l'endomorphisme w_2 induit sur E_2 par u-2Id est diagonalisable. Donc $N=Mat(w_2,\mathcal{B}_2)$ est diagonalisable. Or N est nilpotente, donc ses valeurs propres sont toutes nulles (car si $NX = \lambda . X$ et $X \neq 0$, alors $0 = N^2 . X = \lambda^2 . X$, donc $\lambda = 0$).

Ainsi N est semblable à la matrice diagonale nulle, donc N = 0.

- * Si N = 0, alors w = 0, donc u = d est diagonalisable.
- f) On suppose u non diagonalisable, donc $N \neq 0$, donc N est nilpotente d'indice égal à 2.

Posons $p = \dim (\text{Ker}(u - 2 \text{Id}))$. Ainsi le rang de N est $r_2 = n_2 - p$.

Puisque N est nilpotente d'indice 2, d'après le **II.5**, le commutant de N a pour dimension $(n_2-r_2)^2+r_2^2=p^2+(n_2-p)^2$.

De la caractérisation obtenue au (d), on déduit que $\dim \mathscr{C}(u) = n_1^2 + p^2 + (n_2 - p)^2$.

* * * * * * * * * *