Prove that the following languages are undecidable.

1. ACCEPTILLINI := $\{\langle M \rangle \mid M \text{ accepts the string } \mathbf{ILLINI} \}$

Solution: For the sake of argument, suppose there is an algorithm DecideAcceptIllini that correctly decides the language AcceptIllini. Then we can solve the halting problem as follows:

```
\frac{\text{DecideHalt}(\langle M, w \rangle):}{\text{Encode the following Turing machine } M':}
\frac{M'(x):}{\text{run } M \text{ on input } w}
\text{return True}
\text{if DecideAcceptIllini}(\langle M' \rangle)
\text{return True}
\text{else}
\text{return False}
```

We prove this reduction correct as follows:

 \implies Suppose M halts on input w.

Then M' accepts every input string x.

In particular, M' accepts the string **ILLINI**.

So DecideAcceptIllini accepts the encoding $\langle M' \rangle$.

So DecideHalt correctly accepts the encoding $\langle M, w \rangle$.

 \iff Suppose M does not halt on input w.

Then M' diverges on every input string x.

In particular, M' does not accept the string **ILLINI**.

So DecideAcceptIllini rejects the encoding $\langle M' \rangle$.

So DecideHalt correctly rejects the encoding $\langle M, w \rangle$.

In both cases, DecideHalt is correct. But that's impossible, because Halt is undecidable. We conclude that the algorithm DecideAcceptIllini does not exist.

As usual for undecidablility proofs, this proof invokes *four* distinct Turing machines:

- The hypothetical algorithm DecideAcceptIllini.
- The new algorithm DecideHalt that we construct in the solution.
- The arbitrary machine *M* whose encoding is part of the input to DecideHalt.
- The special machine M' whose encoding DecideHalt constructs (from the encoding of M and w) and then passes to DecideAcceptIllini.

2. AcceptThree := $\{\langle M \rangle \mid M \text{ accepts exactly three strings}\}$

Solution: For the sake of argument, suppose there is an algorithm DecideAcceptThree that correctly decides the language AcceptThree. Then we can solve the halting problem as follows:

```
DECIDEHALT(\langle M, w \rangle):

Encode the following Turing machine M':

\frac{M'(x):}{\text{run } M \text{ on input } w}

if x = \varepsilon or x = \mathbf{0} or x = \mathbf{1}
return True
else
return False

if DecideAcceptThree(\langle M' \rangle)
return True
else
return False
```

We prove this reduction correct as follows:

 \implies Suppose *M* halts on input *w*.

Then M' accepts exactly three strings: ε , 0, and 1.

So DecideAcceptThree accepts the encoding $\langle M' \rangle$.

So DecideHalt correctly accepts the encoding $\langle M, w \rangle$.

 \iff Suppose M does not halt on input w.

Then M' diverges on *every* input string x.

In particular, M' does not accept exactly three strings (because $0 \neq 3$).

So DecideAcceptThree rejects the encoding $\langle M' \rangle$.

So DecideHalt correctly rejects the encoding $\langle M, w \rangle$.

In both cases, DecideHalt is correct. But that's impossible, because Halt is undecidable. We conclude that the algorithm DecideAcceptThree does not exist.

3. AcceptPalindrome := $\{\langle M \rangle \mid M \text{ accepts at least one palindrome}\}$

Solution: For the sake of argument, suppose there is an algorithm DecideAcceptPalindrome that correctly decides the language AcceptPalindrome. Then we can solve the halting problem as follows:

```
DECIDEHALT(\langle M, w \rangle):
Encode the following Turing machine M':

\underline{M'(x)}:
run M on input w
return True

if DecideAcceptPalindrome(\langle M' \rangle)
return True
else
return False
```

We prove this reduction correct as follows:

 \implies Suppose *M* halts on input *w*.

Then M' accepts every input string x.

In particular, M' accepts the palindrome **RACECAR**.

So DecideAcceptPalindrome accepts the encoding $\langle M' \rangle$.

So DecideHalt correctly accepts the encoding $\langle M, w \rangle$.

 \iff Suppose *M* does not halt on input *w*.

Then M' diverges on every input string x.

In particular, M' does not accept any palindromes.

So DecideAcceptPalindrome rejects the encoding $\langle M' \rangle$.

So DecideHalt correctly rejects the encoding $\langle M, w \rangle$.

In both cases, DecideHalt is correct. But that's impossible, because Halt is undecidable. We conclude that the algorithm DecideAcceptPalindrome does not exist.

Yes, this is *exactly* the same proof as for problem 1.