IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of

HANMER

Serial No.

09/517,089

Filed:

March 6, 2000

For:

VACUUM PACKAGING OF ARTICLES

* * * * * * * *

May 25, 2000

Atty. Ref.:

Examiner:

Group:

540-190

Unknown

3721

Assistant Commissioner for Patents Washington, DC 20231

SUBMISSION OF PRIORITY DOCUMENTS

Sir:

It is respectfully requested that this application be given the benefit of the foreign filing date under the provisions of 35 U.S.C. §119 of the following, a certified copy of which is submitted herewith:

Application No.

Country of Origin

Filed

9905214.4

Great Briatin

8 March 1999

Respectfully submitted,

NIXON & VANDERHYE P.C.

By:

Stanley C. Spooner

Reg. No. 27,393

SCS:kmm

1100 North Glebe Road, 8th Floor

Arlington, VA 22201-4714

Telephone: (703) 816-4000 Facsimile: (703) 816-4100

RECEIVED MAY 30 2000 TC 3700 MAIL ROOM (OTPE BLANK (USPTO)

The Patent Office Concept House Cardiff Road Newport South Wales NP10 8QQ

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed Adres George Dated 9 March 2000 RECEIVED
HAY 30 2000
TC 3700 MAIL ROOM

THIS PAGE BLANK (US

P.02

Patents Act 1977 (Rule 16)

F-8 MAR 1999 ECENED BY FA

bearing 08MAR99 E430835 P01/7700 0.0∳:- 9905214.4

The Patent Office

Cardiff Road Newport Gwent NP9 IRH

Request for grant of a paterl (See the notes on the back of this form. You can also an explanatory leaflet from the Patent Office to belp you fill in this form)

Your reference

XA1143

Patent application number (The Patent Office will fill in this part)

9905214.4

-8 MAR 1999

Full name, address and postcode of the or of each applicant (underline all surnames)

Patents ADP number (if you know it)

if the applicant is a corporate body, give the country/state of its incorporation

BRITISH AEROSPACE PLC WARWICK HOUSE PO BOX 87 FARNBOROUGH AEROSPACE CENTRE

FARNBOROUGH, HANTS. GUL4 6YU 5116092

GREAT BRITAIN

Title of the invention

VACUUM PACKAGING OF ARTICLES

Name of your agent (if you have one)

"Address for service" in the United Kingdom to which all correspondence should be sent (including the postcode)

BRITISH AEROSPACE PLC LANCASTER HOUSE PO BOX 87 FARNBOROUGH HANTS. GU14 6YU

Patents ADP number (if you know it)

5116006

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (If you know it) the or cach application number

Country

Priority application number (If you know it)

Date of filing (day / month / year)

If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application

Date of filing (day / month / year)

N/A

N/A

Is a statement of inventorship and of right to grant of a patent required in support of this request? (Answer Yes' if:

YES

a) any applicant named in part 3 is not an inventor, or

b) there is an inventor who is not named as an applicant, or

c) any named applicant is a corporate body.

See note (d))

P. 03

Patents Form 1/77

 Enter the number of sheets for any of the following items you are filing with this form.
 Do not count copies of the same document

Continuation sheets of this form

Description 1

Claim(s)

6

Abstract

Drawing(s)

July :

10. If you are also filing any of the following, state how many against each item.

Priority documents

Translations of priority documents 0

Statement of inventorship and right to grant of a patent (Patents Form 7/77)

Request for preliminary examination and search (Patents Form 9/77)

Request for substantive examination (Patents Form 10/77)

Any other documents (please specify)

I/We request the grant of a patent on the basis of this application.

Signature D. L

Date 8.3.99.

D.L. LEWIS

 Name and daytime telephone number of person to contact in the United Kingdom

MRS. D.L. LEWIS 01252 384633

Warning

11.

After an application for a patent bas been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first yetting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 0645 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be altached to this form.
- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- f) For details of the fee and ways to pay please contact the Patent Office.

DUPLICATE

- 1 -

VACUUM PACKAGING OF ARTICLES

P.06

This invention relates to the general field of vacuum packaging and particularly but not exclusively to the vacuum packaging of components for use in assemblies.

It is known in various industries, and in particular those light industries involving small consumer goods, to vacuum package articles. These articles are generally of a small, relatively light nature and may be vacuum packaged to help protect them from scratches, cracks or other damage during transit or to prevent oxidisation. Examples of such goods are small screwdrivers, drill bits and batteries. These goods are generally packaged so that they are situated in a viewable position between a transparent plastics film and a thin cardboard backing part. The goods may be removed relatively easily from the packaging by pressing the goods through the thin cardboard backing part.

In heavy industries involving the packaging of larger heavier articles, such as components for assembly, it has been traditional to pack the components into boxes, cases or crates filled with a soft packaging material to prevent damage in transit when the components are moved from one workshop or factory to another for assembly. In industries, for example the aerospace industry, where it is important that certain components are not subjected to even small scratches, the packaging of components has traditionally been a labour intensive and time consuming task, the packaged components also taking up relatively large amounts of space. To counter these problems associated with traditional packaging methods, some heavy industries have attempted to use the vacuum packaging methods employed by light industry. However it was found that the thin cardboard backing parts used for vacuum packaging light consumer goods were not suitable for packaging the heavier components for transporting them to assembly lines.

When vacuum packaged using the thin cardboard backing, heavier components caused the backing part to bend and distort, making it extremely difficult to transport the packaged components. Also the backing part was prone to split or rupture due to those distortions, resulting in damaged components.

06'-03-99

16:51

INTELLECTUAL DEPT

-2-

To prevent damage to the components, attempts were then made to use thicker backing parts in the vacuum packaging process, but these attempts have generally failed as conventional vacuum packaging machines do not generate enough suction to allow a relatively thick backing plate to be positioned between the vacuum packaging machine and the component to be vacuum packaged.

Consequently heavy industry has had either to rely on traditional methods of packaging as described above, or to vacuum package components using a thin cardboard backing part and then glue the thin backing part on to a rigid backing board so that the components may be transported. This latter method of packaging is not a significant improvement over the traditional methods as the process is still time consuming due to the necessity of having to glue two backing parts together and wait for the glue to fix. Furthermore it is difficult to remove components packaged in this way as a component generally cannot be pushed through the backing part due to the rigid backing board. It is usually necessary to cut the component out via the transparent plastics cover, which has the disadvantages of risks to personnel involved in cutting out the component, and also the risk of scratching the component as it is being cut out. The risk of scratching the component is considerable as the transparent plastics cover has been tightly wrapped around the components, due to the vacuum packaging technique. In applications such as the aerospace industry, it is highly undesirable to use this method as any slight scratches may result in a structural weakness and render a component unusable.

The present invention seeks to provide an improved method for the vacuum packaging of articles, particularly but not exclusively for packaging a plurality of components to be used in the assembly or part assembly of a larger article.

According to the present invention there is provided a method for the vacuum packaging of articles including at least the steps of:

creating a plurality of recesses in a backing board;

positioning at least one article on the backing board;

placing a film substantially over said at least one article; and

08-03-99

16:51

- 3 -

using a vacuum packaging machine to substantially package said at least one article, said at least one article being situated between the backing board and the film, wherein the thickness of the backing board is at least 2mm.

The backing board is advantageously made from cardboard. The cardboard may be formed from layers of paper and the layers may comprise flat and corrugated sheets of paper respectively. Preferably the backing board comprises an odd number of layers of paper, of which an odd number of layers may be flat sheets of paper and an even number of layers may be corrugated sheets of paper. The layers may be arranged alternately to create the backing board. The thickness of the backing board is advantageously at least 5mm. The thickness of the backing board is preferably in the range of 7.5mm to 10.5mm.

Preferably the method further comprises the step of applying a bonding agent to the backing board. The bonding agent is advantageously applied to one face of the backing board and is preferably air dried. The bonding agent is adapted to cause the film to bond with the backing board. The bonding agent is applied to a face of the backing board which is closest to the film, when the film is placed over said at least one article. The bonding agent may be adapted to cause the film to bond with the backing board upon the bonding agent or the film being heated. Said at least one article may comprise one or more components. Preferably the film, when placed, extends substantially around each of said components to touch the backing board at substantially a circuit of points around each of said components. Advantageously on substantially simultaneously heating the film and applying suction to a face of the backing board opposite to said component, the bonding agent causes the film to bond with the backing board around each of said components to substantially seal in each of said components.

Preferably the method comprises the step of preventing the film from bonding with the backing board in a region adjacent to and extending around each of said components, to facilitate removal of the component from the packaging. This prevention step may be achieved by applying the bonding agent to only part of said one face of the backing board. Advantageously, the bonding agent is not applied to a region where a component is to be positioned, said region being greater than a corresponding cross section of said component. Alternatively, this prevention step

- 4 –

P.09

may be achieved by masking the bonding agent in those regions where it is undesirable that the film bond with the backing board.

Preferably the method further comprises the step of applying an ink to the backing board. The ink is advantageously applied to the said one face of the backing board to which the bonding agent has been applied. The bonding agent is preferably applied and is preferably allowed to dry before the ink is applied. The ink is preferably applied to the areas of the backing board on which components are intended to be placed. The ink is preferably applied to said areas by printing means. Said printing means preferably are adapted to provide said areas of the backing board with the shape of each of said components superimposed in ink thereupon. Said printing means may be silk screen printing.

Advantageously said shape of each of said components is greater in area than a corresponding cross-section of each of said components.

The method may further comprise the step of positioning each of said components on the shape corresponding to those components. This has the advantage of allowing an operator to quickly and accurately position components, using the pre-printed shapes on the backing board.

The method may further comprise the step of taking digital photographs of each of said components. The digital photographs may be adapted to be used to arrange the layout of components on the backing board. Said digital photographs may further be adapted to be used in any printing of shapes of the component on the backing board.

Said plurality of recesses may be created on said backing board by punching holes at least part way into said backing board. Substantially each recess of said plurality of recesses preferably extends into at least one-fifth of the thickness of said backing board. Substantially each recess extends into no further than four-fifths of the thickness of said backing board.

Advantageously said backing board comprises two layers of corrugated sheets of paper and three layers of flat sheets of paper, arranged in alternate layers. In this configuration, said plurality of recesses substantially extend just into a second layer of corrugated paper.

Said plurality of recesses are preferably created on the face of said backing board on which said at least one article is to be positioned. Said plurality of recesses are preferably created after the application of said bonding agent.

Substantially each of said recesses may have a diameter of at least 2mm. Preferably substantially each of said recesses has a diameter in the range 2.5mm to 6.0mm. Alternatively substantially each of said recesses may have a surface area of at least 3mm². Preferably each of said recesses has a surface area in the range 5mm² to 20mm².

Said plurality of recesses are advantageously arranged in a regular pattern on said backing board to have a pitch between recesses in the range 5mm to 75mm. Preferably said pitch is in the range 15mm to 50mm.

According to the present invention there is further provided a packaged article, the article being packaged between a backing board and a film, wherein the backing board has a thickness of at least 2mm and the backing board further has a plurality of recesses therein.

Advantageously, the film is not bonded with the backing board in a region substantially adjacent to and extending around the article, to facilitate removal of the article from the packaging.

Preferably, the backing board further comprises an enlarged shape of the article superimposed thereon

It will be recognised that several articles may be packaged on to the same backing board as individual components.

The backing board is preferably as described earlier with respect to the method.

An embodiment of the invention will now be described, by way of example only, and with reference to the following drawings:

Figure 1 shows a flow chart of a method in accordance with the present invention:

Figure 2a shows a plan view of a backing board comprising a plurality of recesses in accordance with the present invention;

08-03-99

16:51

INTELLECTÜAL DEPT

P.11

Figure 2b shows a cross-sectional view of a section of the backing board of Figure 2a;

Figure 2c shows a side view of the backing board of Figure 2a in accordance with one aspect of the present invention;

Figure 2d shows the view of Figure 2c when a component has been sealed on to the backing board;

Figure 3a shows a plan view of a backing board according to another aspect of the present invention comprising shapes superimposed in ink thereupon;

Figure 3b shows a plan view of the backing board of Figure 3a further comprising components positioned on the backing board.

Figure 1 shows the sequential steps in a method for vacuum packaging aircraft components. The packaged components may be needed at predetermined times in the assembly of an aircraft or a re-assembly of an aircraft after a major service or update. The parts to be packaged are divided into various assembly kits and each kit is photographed by a digital camera, either as individual components or as a set of components. The components for each kit are laid out on a white board (step 2), the board being of a similar size to a backing board for use with the vacuum packaging machine, and the components are arranged as desired before being photographed (step 4).

The part numbers, aircraft number and other relevant information are written next to the component before the photograph is taken. In this way the digital photograph contains all the information about the size, shape, part number, aircraft number and other important features of each component.

The digital photographs are then downloaded into a computer, where the images may be manipulated. The digital images of the components are blown up to a size of approximately 20% larger than the actual component size (step 6). The enlarged images of the components are then arranged as efficiently as possible on a digital image of a backing board. The backing boards are all the same size and are dimensioned to fit the vacuum packaging machine. The written information relating to each component is also positioned on the digital backing board image. A full size negative print of the arrangement is then printed out, on photographic film.

-7-

If any components in the kit are to be changed, that component can simply be taken out of the digital image showing the components arranged on the backing board and a new component may be positioned there.

A layered cardboard backing board, dimensioned to fit a commercially available vacuum packaging machine, is taken and a bonding agent applied over one face (step 8). The bonding agent is preferably glue, such as Adcote 37R929. The bonding agent should be applied evenly over the face, and is preferably applied with a sponge so that not too much bonding agent is applied, as this seals the backing board and prevents the vacuum process from working. The face to which the glue is applied is dependent upon the arrangement of the layers in the backing board. The backing board should then be allowed to air dry, as artificial drying can affect the porosity of the cardboard based backing board, which in turn will impair the vacuum process.

Once dry, the board is ready for the printing process, using silk screen printing (step 10). Emulsion is applied to a silk screen mesh and the negative print of the arrangement of the components is placed over the mesh. The negative print is then exposed to ultra violet radiation, which passes through certain areas of the negative only and hardens the emulsion in these areas. The non-hardened areas of emulsion can be washed away leaving hardened emulsion areas on the mesh in the areas where no component was positioned. The backing board is then held in a standard silk screen frame with the mesh, and regular silk screen printing is then performed using standard silk screen printing ink. The ink is applied to the same face of the backing board as that face to which the bonding agent was applied, to produce a black profile, or mask, of enlarged images of the components as shown in Figure 3a. This allows the components of the kit to be arranged quickly and consistently prior to vacuum packing and allows easy checking that all parts are present, as shown in Figure 3b. The bonding agent should be applied to the backing board before the silk screen printing process, as the application of the ink on top of the bonding agent prevents the bonding agent in those inked areas from substantially causing the film to bond to the backing board.

Recesses are then punched into the backing board, the recesses being in the same face of the backing board as that face to which the glue and ink was applied

P.13

Although the bonding agent should be applied before the ink, it will be recognised that the recesses may be created before or after any of these operations. It is usually preferable to apply the bonding agent before creating the recesses as the bonding agent may fill any recesses when it is applied, and this is undesirable as it reduces the suction effect of the vacuum packaging machine.

When the backing board has had the bonding agent and ink applied to it, and recesses punched into it, the backing board is then placed on the vacuum packaging machine and the components are arranged on their corresponding ink profiles (step 14). A thin plastic film is lowered over the component (step 16), and the machine applies heat to the film and applies a vacuum through the backing board to cause the film to stick to the bonding agent on the backing board at those uninked areas, thus sealing each component between the film and the board (step 18).

The film does not stick to those areas of the backing board to which ink has been applied, and so there is an inked area around each component where the film has not bonded to the backing board. These inked areas assist in the easy removal of components from the vacuum packaging as the film may be cut within these areas without the risk of damaging the component.

Removing one component from the backing board does not affect the integrity of the seal around the remaining components on the backing board, and there is complete visibility of the components removed, and the remaining parts of the kit.

Figure 2a shows a backing board 1 having plurality of recesses 3 punched in a regular rectolinear pattern therein. Each of the recesses 3 has a diameter of 3mm and the horizontal and vertical pitch between each of the recesses is 30mm.

Figure 2b shows a partial cross-section through the backing board 1. The thickness of the backing board 1 is approximately 8mm and the recesses 3 are punched to a depth of approximately 5.5mm. The backing board 1 is made up from layers of flat paper sheets 5, 7, 9 and of layers of corrugated paper sheets 11, 13 arranged alternately as shown.

08-03-99 16:51 INTELLECTÜAL DEPT

a +01252383091

- 9 -

Figure 2c shows part of the backing board 1 having recesses 3 punched into it, and also having a bonding agent 21 applied to part of one face of the backing board 1. The bonding agent 21 was applied before the recesses 3 were punched into the backing board 1.

A component 19 has been placed on to the backing board 1 on a region 23 of the backing board 1 to which no bonding agent 21 has been applied. It will be noted that the region 23 is greater than the cross sectional area of the component 19 and the component 19 is positioned within the region 23 in a manner which enables the component to be surrounded by an area where no bonding agent 21 has been applied. A transparent plastics film 25 is positioned over the component 19 as shown.

Figure 2d shows part of the backing board 1 after the vacuum packaging machine has been used to seal the component 19 on to the backing board 1. As a vacuum packaging machine (not shown) applies heat to the film 25 and suction to the face of the backing board 1 opposite to layer 5, the film 25 adheres to the backing board 1 in those areas where the bonding agent 21 has been applied. In region 23, where no bonding agent 21 has been applied, the film 25 does not adhere to the backing board. This leaves a volume 27 around the component 19 into which a knife or other sharp object may be inserted through the film 25 in order to cut out the component 19. Ideally the volume 27 is large enough to allow the component 19 to be cut out without a substantial risk of scratching the component 19.

The recesses 3 permit a vacuum packaging machine (not shown) to operate effectively when thicker backing boards (such as those in the range 5mm to 12mm) are used.

Figure 3a shows an alternative backing board 15 having shape 17 superimposed in ink thereupon, following the silk screen printing process. Before this printing process, a bonding agent was applied to this same face of the backing board and was allowed to air dry. The recesses 3 of Figure 2a may be punched either before or after the printing process and in this example have not yet been punched into the backing board 15.

- 10 -

P.15

Figure 3b shows the backing board 15 of Figure 3a having recesses 3 punched in it. Components 19 have also been placed on to the backing board 15, the components 19 being positioned on the corresponding shape 17. The components 19 are now ready to be vacuum packed on a vacuum packaging machine (not shown). The shapes 17 are larger than the corresponding components 19, to facilitate easy removal of the components, as the film used in the vacuum packaging process will not readily bond to those inked areas 17.

It will be recognised that the inked areas may alternatively be produced by hand, or may be produced as a standard shape which does not correspond to the profile of each component.

INTELLECTÜAL DEPT

P.16

CLAIMS

- 1. A method for the vacuum packaging of articles including at least the steps of: creating a plurality of recesses in a backing board; positioning at least one article on said backing board; placing a film substantially over said at least one article; and using a vacuum packaging machine to substantially package at least one article, said at least one article being situated between the backing board and the film, wherein the thickness of the backing board is at least 2mm.
- A method for the vacuum packaging of articles as claimed in claim 1 wherein said method further comprises the step of applying a bonding agent to said backing board.
- A method for the vacuum packaging of articles as claimed in claim 2 wherein said bonding agent is applied to one face of said backing board.
- A method for the vacuum packaging of articles as claimed in claim 2 or claim
 wherein said bonding agent is air dried.
- A method for the vacuum packaging of articles as claimed in any one of claims 2 to 4 wherein said bonding agent is adapted to cause said film to bond with said backing board.
- 6. A method for the vacuum packaging of articles as claimed in any one of claims 2 to 5 wherein said bonding agent is applied to a face of said backing board which is closest to the film, when said film is placed over said at least one article.
- 7. A method for the vacuum packaging of articles as claimed in any one of claims 2 to 6 wherein said bonding agent is adapted to cause said film to bond with said backing board upon said film being heated.
- A method for the vacuum packaging of articles as claimed in any one of claims 2 to 6 wherein the bonding agent is adapted to cause said film to bond with said backing board upon said bonding agent being heated.

- 12 -

- A method for the vacuum packaging of articles as claimed in any one of claims 2 to 8 wherein said at least one article comprises one or more components.
- 10. A method for the vacuum packaging of articles as claimed in claim 9 wherein the film, when placed, extends substantially around each of said components to touch said backing board at substantially a circuit of points around each of said components.
- 11. A method for the vacuum packaging of articles as claimed in claim 9 or claim 10 wherein on substantially simultaneously heating the film and applying suction to a face of said backing board opposite to said component, the bonding agent causes the film to bond with the backing board around each of said components to substantially seal in each of said components.
- 12. A method for the vacuum packaging of articles as claimed in any one of claims 9 to 11 wherein the method comprises the step of preventing the film from bonding with the backing board in a region adjacent to and extending around each of said components.
- 13. A method for the vacuum packaging of articles as claimed in claim 12 wherein said step of preventing the film from bonding with the backing board in said region is achieved by applying the bonding agent to only part of said one face of the backing board.
- 14. A method for the vacuum packaging of articles as claimed in claim 13 wherein the bonding agent is not applied to a region where a component is to be positioned, said region being greater than a corresponding cross section of said component.
- 15. A method for the vacuum packaging of articles as claimed in claim 12 wherein the step of preventing the film from bonding with the backing board in said region is achieved by masking the bonding agent in those regions where it is undesirable that the film bond with the backing board.
- 16. A method for the vacuum packaging of articles as claimed in any one of claims 2 to 15 wherein said method further comprises the step of applying an ink to said backing board.

P.18

- 13 -

- A method for the vacuum packaging of articles as claimed in claim 16 wherein 17. said ink is applied to the said one face of said backing board to which said bonding agent has been applied.
- A method for the vacuum packaging of articles as claimed in claim 17 wherein 18. said bonding agent is applied and is allowed to dry before said ink is applied.
- A method for the vacuum packaging of articles as claimed in any one of 19. claims 16 to 18 wherein said ink is applied to the areas of said backing board on which components are intended to be placed.
- A method for the vacuum packaging of articles as claimed in any one of 20. claims 16 to 19 wherein said ink is applied to said areas of said backing board by printing means.
- 21. A method for the vacuum packaging of articles as claimed in claim 20 wherein said printing means are adapted to provide said areas of said backing board with the shape of each of said components superimposed in ink thereupon.
- A method for the vacuum packaging of articles as claimed in claim 21 wherein 22. said shape of each of said components is greater in area than a corresponding cross-section of each of said components.
- A method for the vacuum packaging of articles as claimed in any one of 23. claims 20 to 22 wherein said printing means are silk screen printing.
- A method for the vacuum packaging of articles as claimed in any one of 24. claims 21 to 23 wherein the method further comprises the step of positioning each of said components on said shape corresponding to those components.
- A method for the vacuum packaging of articles as claimed in any one **25**. preceding claim wherein said method further comprises the step of taking digital photographs of each of said components.
- A method for the vacuum packaging of articles as claimed in claim 25 wherein **26**. said digital photographs are adapted to be used in any printing of shapes of the component on said backing board.
- A method for the vacuum packaging of articles as claimed in any one **27**. preceding claim wherein said backing board is made from cardboard.

08-03-99

16:51

INTELLECTÜAL DEPT

- 28. A method for the vacuum packaging of articles as claimed in claim 27 wherein said cardboard is formed from layers of paper, said layers comprising flat and corrugated sheets of paper respectively, said layers being arranged alternately to create said backing board.
- 29. A method for the vacuum packaging of articles as claimed in claim 28 wherein said backing board comprises an odd number of layers of paper, of which an odd number of layers comprise flat sheets of paper and an even number of layers comprise corrugated sheets of paper, said layers being arranged alternately.
- 30. A method for the vacuum packaging of articles as claimed in any one preceding claim wherein the thickness of said backing board is at least 5mm.
- 31. A method for the vacuum packaging of articles as claimed in any one preceding claim wherein the thickness of said backing board is in the range of 7.5mm to 10.5mm.
- 32. A method for the vacuum packaging of articles as claimed in any one preceding claim wherein said plurality of recesses are created on said backing board by punching holes at least part way into said backing board.
- 33. A method for the vacuum packaging of articles as claimed in any one preceding claim wherein substantially each recess of said plurality of recesses extends into at least one-fifth of the thickness of the backing board and further wherein substantially each recess of said plurality of recesses extends into no further than four-fifths of the thickness of said backing board.
- 34. A method for the vacuum packaging of articles as claimed in any one preceding claim wherein said backing board comprises two layers of corrugated sheets of paper and three layers of flat sheets of paper, arranged in alternate layers, said plurality of recesses substantially extending just into a second layer of said corrugated paper.
- 35. A method for the vacuum packaging of articles as claimed in any one preceding claim wherein said plurality of recesses are created on the face of said backing board on which said at least one article is to be positioned.

- 37. A method for the vacuum packaging of articles as claimed in any one preceding claim wherein substantially each of said recesses has a diameter of at least 2mm.
- 38. A method for the vacuum packaging of articles as claimed in any one preceding claim wherein substantially each of said recesses has a diameter in the range 2.5mm to 6mm.
- 39. A method for the vacuum packaging of articles as claimed in any one of claims 1 to 31 wherein substantially each of said recesses has a surface area of at least 3mm².
- 40. A method for the vacuum packaging of articles as claimed in any one of claims 1 to 31 wherein each of said recesses has a surface area in the range 5mm² to 20mm².
- 41. A method for the vacuum packaging of articles as claimed in any one preceding claim wherein said plurality of recesses are arranged in a regular pattern on said backing board and to have a pitch between recesses in the range 5mm to 75mm.
- 42. A method for the vacuum packaging of articles as claimed in any one preceding claim wherein said plurality of recesses are arranged on said backing board to have a pitch in the range 15mm to 50mm.
- 43. A method for the vacuum packaging of articles as hereinbefore described and with reference to the accompanying drawings.
- 44. A packaged article, the article being packaged between a backing board and a film, wherein the backing board has a thickness of at least 2mm and the backing board further has a plurality of recesses therein.
- 45. A packaged article, as claimed in claim 44, wherein the film is not bonded with the backing board in a region substantially adjacent to and extending around the article.

- 16 -

- 46. A packaged article, as claimed in claim 44 or claim 45 wherein the backing board further comprises an enlarged shape of the article superimposed thereon.
- 47. A packaged article as hereinbefore described and with reference to the accompanying drawings.

ABSTRACT

A method for the vacuum packaging of articles including at least the steps of:

creating a plurality of recesses in a backing board;

positioning at least one article on said backing board;

placing a film substantially over said at least one article; and

using a vacuum packaging machine to substantially package said at least one article, said at least one article being situated between the backing board and the film, wherein the thickness of the backing board is at least 2mm.

Also a packaged article, the article being packaged between a backing board and a film, wherein the backing board has a thickness of at least 2mm and the backing board further has a plurality of recesses therein.

THIS PAGE BLANK (USPTO)

Take digital photographs of components on the white board and download photographs into a computer

Increase the size of the images of the components by approximately 20% and awange enlarged images out an image of a backing board of the required size using computer

Apply bonding agent to one face of backing board and allow to air dry

Print shapes of the enlarged images on the same face of the backing board to which bonding agent was applied

- 10

-12

_ | *Li*

funch a plurality of recesses into the same face of the backing board

Position components on their corresponding Shapes on the backing board and place the backing board on the vacuum packaging machine

Lower film over the components

use vacuum packaging machine to seal the components between the film and the backing board by applying heat and suction

THIS PAGE BLANK (USPTO)

+01252383091 08-03-99 16:51 Intellectüal dept P.24 R-652 Job-044 ***** +012523830<u>9</u>1 /03 י99 17:44 🗗:24

Figure 2a

THIS PAGE BLANK (USPTO)

+01252<u>38</u>3091

P.25

R-652 Job-044

03 '99 17:44 🗗:25

Figur 2b

THIS PAGE BLANK (USPTO)

+01252383091 +01252383091

Á

P.26

R-652 Job-044 03 '99 17:44 🔁:26

Figure 2c

Figure 2d

THIS PAGE BLANK (USPTO)

. 08-03-99 16:51 INTELLECTÜAL DEPT +0125<u>238</u>3091

<u>+01</u>252383091

P.27

Job-044 R-652

/03 י99 17:44 🔁 :27

Figure 3a

Figure 36

09/517,089

THIS PAGE BLANK (USPTO)