

FRA532 : Mobile Robot Lecture 4 State Estimator

Kitti Thamrongaphichartkul

Institute of Field Robotics King Mongkut's University of Technology Thonburi Bangkok, Thailand

แผนการสอน

					LAB / HW			
Week	Date	Lecture	Topic	Module	Assign	Due	Instructor	หมายเหตุ
1	16-Jan-2025	1	Introduction to Mobile Robot (Motivation)		•	•	Aj.Nook	
2	23-Jan-2025	2	Kinematics of Mobile Robot		LAB 1	•	Aj.Nook	
3	30-Jan-2025	3	Mobile Robot Control		•	•	Aj.Nook	
4	6-Feb-2025	4	30 ปี ฟิโบ้		•	•	Aj.Nook	
5	13-Feb-2025	5	State Estimator		•	•	Aj.Nook	
6	20-Feb-2025		EXAM 1		•	•		
7	27-Feb-2025	6	MAP (Slam, Localization)		LAB 2	LAB 1 ▼	Aj.Nook	
8	4-March-2025	7	EXAM 1 / Hackathon Exam (24 Hour)		•	•	Aj.Nook	Project : Proposal
9	13-March-2025	8	Introduction to motion planning and discrete planning		•	•	Aj.Tee	
10	20-March-2025	9	Configuration space and sampling-based motion planning		•	LAB 2	Aj.Tee	
11	27-March-2025	10	Motion plannings used in self driving cars		•	•	Aj.Tee	
12	3-April-2025		EXAM 2		•	•		
13	10-April-2025	11	Project : Update 1		•	•	Aj.Nook	
14	18-April 2025	12	Special Topic I		•	•	Aj.Nook / Dummy	
15	24-April 2025	13	EXAM 2 / CBS + Nav2		•	•	Aj.Nook / Dummy	
16	1 May 2025	14	Special Topic III		•	•	Aj.Nook / Dummy	
17	8 May 2025	15	Project : Update 2		•	•	Aj.Nook	
18	15 May 2025	•	-		•	•		
19	22 May 2025	•	-		•	•		
20	29 May 2025	16	Project : Demo		•	•	Aj.Nook	

Link: https://github.com/kittinook/MobileRobotics2025/tree/main

Agenda

- Review Kalman Filter (FRA233)
- Investigation of EKF in "robot_localization"
- Code "ekf_v4.ipynb"
- robot_localization package

Review Kalman Filter (FRA233)

Kalman Filter VS Extended Kalman Filter

linear Kalman filter	EKF			
	$oxed{\mathbf{F} = rac{\partial f(\mathbf{x}_t, \mathbf{u}_t)}{\partial \mathbf{x}}igg _{\mathbf{x}_t, \mathbf{u}_t}}$			
$\mathbf{ar{x}} = \mathbf{F}\mathbf{x} + \mathbf{B}\mathbf{u}$	$oxed{ar{\mathbf{x}}=f(\mathbf{x},\mathbf{u})}$			
$\mathbf{\bar{P}} = \mathbf{F}\mathbf{P}\mathbf{F}^T + \mathbf{Q}$	$egin{aligned} ar{ar{\mathbf{x}}} &= f(\mathbf{x}, \mathbf{u}) \ ar{ar{\mathbf{P}}} &= \mathbf{F} \mathbf{P} \mathbf{F}^T + \mathbf{Q} \end{aligned}$			
	$egin{equation} \mathbf{H} = rac{\partial h(ar{\mathbf{x}}_t)}{\partial ar{\mathbf{x}}}igg _{ar{\mathbf{x}}_t} \end{aligned}$			
$\mathbf{y} = \mathbf{z} - \mathbf{H}\mathbf{ar{x}}$	$egin{aligned} \mathbf{y} &= \mathbf{z} - oxedsymbol{h}(ar{x}) \ \mathbf{K} &= ar{\mathbf{P}} \mathbf{H}^T (\mathbf{H} ar{\mathbf{P}} \mathbf{H}^T + \mathbf{R})^{-1} \ \mathbf{x} &= ar{\mathbf{x}} + \mathbf{K} \mathbf{y} \ \mathbf{P} &= (\mathbf{I} - \mathbf{K} \mathbf{H}) ar{\mathbf{P}} \end{aligned}$			
$\mathbf{K} = \mathbf{ar{P}H}^T (\mathbf{H}\mathbf{ar{P}H}^T + \mathbf{R})^{-1}$	$\mathbf{K} = \mathbf{ar{P}H}^T (\mathbf{H}\mathbf{ar{P}H}^T + \mathbf{R})^{-1}$			
$\mathbf{x} = \mathbf{\bar{x}} + \mathbf{K}\mathbf{y}$	$\mathbf{x} = \mathbf{\bar{x}} + \mathbf{K}\mathbf{y}$			
$\mathbf{P} = (\mathbf{I} - \mathbf{K}\mathbf{H})\mathbf{ar{P}}$	$oldsymbol{\mathbf{P}} = (\mathbf{I} - \mathbf{K}\mathbf{H})\mathbf{ar{P}}$			

How to Design Extended Kalman Filter

- Design State Transition Function
- Design the Process Noise Matrix
- Design the Control Function
- Design the Measurement Function
- Design the Measurement Noise Matrix
- Initial Conditions

Investigation of EKF in "robot_localization"

Code "ekf_v4.ipynb"

Implementation

1. กำหนดศาความไม่แนนอน (Noise) ใหกับระบบ

กำหนด Q สำหรับความไม่แน่นอนของการคำนวณ (process noise) กำหนด R สำหรับเซ็นเซอร์ odometry และ IMU (measurement noise)

2. สรางฟงกชั้นช่วยคำนวณ

ฟังก์ชันคำนวณ Rotation Matrix จากค่า roll, pitch, yaw ฟังก์ชันคำนวณ Jacobian Matrix สำหรับแปลงความเร็วเชิงมุมให้เป็นการเปลี่ยนแปลงของมุม ฟังก์ชันคำนวณอนุพันธ์ของ Rotation Matrix และ Jacobian (สำหรับการหา linearization)

3. สรางแบบจำลองการเคลื่อนที่ (Dynamic Model)

รับค่า state ปัจจุบันที่ประกอบด้วย ตำแหน่ง, ทิศทาง, ความเร็ว, ความเร็วเชิงมุม และความเร่ง คำนวณตำแหน่งใหม่โดยใช้การหมุน (Rotation Matrix) บวกกับระยะทางที่เดินทาง (จากความเร็วและความเร่ง) คำนวณทิศทางใหม่โดยใช Jacobian คูณกับความเร็วเชิงมุม อัป

Implementation

4. คำนวณ Jacobian ของแบบจำลอง (F Matrix)

หาอนุพันธ์ของแบบจำลอง เพื่อประมาณค่าการเปลี่ยนแปลง state ใช้อนุพันธ์ของ Rotation Matrix และ Jacobian ที่ได้จากขั้นตอนที่ 2

5. ขั้นตอน Prediction (คาดการณ state ใหม)

ใช้แบบจำลองการเคลื่อนที่ (dynamic model) ในการคำนวณ state ที่คาดวาจะเกิดขึ้น (xPred) คำนวณ covariance ใหม่ (PPred) โดยใช้ Jacobian (F) และเพิ่ม process noise Q

6. ขั้นตอน Update (ปรับปรุง state ดวยขอมูลเซ็นเซอร์)

สำหรับ odometry:

รับข้อมูลตำแหน่งและความเร็วจากเซ็นเซอร์ คำนวณความคลาดเคลื่อนระหวางข้อมูลวัดกับค่าที่คาดการณ์ได้ คำนวณ Kalman Gain แล้วปรับปรุงค่า state และ covariance

สำหรับ IMU:

รับข้อมูลมุม (roll, pitch, yaw), ความเร็วเชิงมุม และความเร่ง คำนวณความคลาดเคลื่อน (innovation) และปรับมุมให้ถูกต้อง (normalize) คำนวณ Kalman Gain แล้วปรับปรุงค่า state และ covariance

Implementation

7. ROS Node

```
สราง Node:

ตั้งค่า state เริ่มต้นและ covariance
สร้าง subscriber รับข้อมูล odometry และ IMU

ตั้ง timer ให้ทำงานเป็นช่วง ๆ (เช่น ทุก 0.1 วิ นาที )

สราง Timer Callback:

คำนวณเวลาที่ผ่านไป (dt)

ทำขั้นตอน prediction ด้วย EKF

ตรวจสอบว่ามีข้อมูลใหม่จากเซ็นเซอร์หรือไม่ ถ้ามีก็ทำ update
ส่งออก (publish) ค่าประมาณตำแหน่งและทิศทาง (PoseStamped) ไปยัง topic ที่กำหนด
```


robot_localization package

https://github.com/cra-ros-pkg/robot_localization

A Cradle of Future Leaders in Robotics