Završni ispit

(maks 36 bodova, prag 12 bodova)

IME I PREZIME:	JMBAG:
1. (2 boda) Pretvorite propozicijsku logičko pojednostavljenje (napisati cijeli postupak).	u formulu u CNF-oblik uz maksimalno
$(Q \Rightarrow P) \land ((R \Rightarrow P) \lor (P \Rightarrow Q)) \land ((Q \Rightarrow P) \land (Q \Rightarrow Q)) \land (Q \Rightarrow Q)$	$R) \vee (R \Rightarrow P))$

2. (2 boda) Navedite teorem o dedukciji i njegov korolar koji omogućuje dokazivanje logičkih tvrdnji opovrgavanjem.

- 3. (3 boda) Preslikajte rečenice prirodnog jezika u formule logike CTL:
 - a) "Od početnog stanja postoji put na kojem p ne vrijedi dok ne počne vrijediti q."
 - b) "U početnom stanju vrijede p i q, a p uvijek vrijedi još i u sljedeća dva stanja."
 - c) "Uvijek vrijedi da ako vrijedi p, da će uvijek nakon nekog vremena trajno vrijediti q."

- 4. (3 boda) Za zadani kod u jeziku NuSMV potrebno je:
 - a) Nacrtati odgovarajuću Kripkeovu strukturu (samo dosezljiva stanja).
 - b) Utvrditi je li zadana CTL specifikacija istinita ili lažna.

```
MODULE cleaner
VAR
      ready : boolean;
      move: boolean;
      clean: boolean;
ASSIGN
      init (ready) := TRUE;
     init (move) := FALSE;
init (clean) := FALSE;
     next (ready) :=
           case
                 (move & clean) : FALSE;
                 (!ready & !move & clean) : FALSE;
                 TRUE: TRUE;
           esac
     next (move) :=
           case
                 (ready & !clean) : TRUE;
                 (ready & clean) : FALSE;
                 TRUE: move;
           esac
     next (clean) :=
           case
                 (ready & move & !clean) : {FALSE,TRUE};
                 (!ready & !move & clean) : {FALSE, TRUE};
                 TRUE: clean;
           esac
CTLSPEC AX EF (ready & !move & !clean)
```

5. (3 boda) Na slici su prikazana dva FSA (A_1 i A_2) za koje treba:

a) napisati pripadne naredbe za *Promela* procese (varijabla x neka je globalna varijabla tipa byte početne vrijednosti x = 12):

b) nacrtati asinkroni produkt automata A_1 i A_2 ($C_{FSA} = A_1 \times A_2$) te odrediti njegove komponente (bez skupa prijelaza) $C_{FSA} = (C.S, C.S_0, C.L, C.T, C.F)$:

C.	.S =			
<i>C</i> .	$C. s_0 = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$			
C.	F =			
Pos	ostoji li sekvenca ekspandiranog produkta koja je beskonačne duljine? Što se pri ton šava s vrijednostima varijable x ? Obrazložite!			
 (2 h	ooda) Detaljno opišite funkcioniran	ie svake od navedenih <i>Promela</i> naredhi		
(2 0	, ,	Jo Brake ou havedonn's rometa haredon		
	mtype i chan:			
	<pre>mtype i chan: mtype = {START, STOP, A chan b2a = [0] of {bit,</pre>	ACK, REQ}		
a)	<pre>mtype i chan: mtype = {START, STOP, A chan b2a = [0] of {bit,</pre>	ACK, REQ} . byte, bit, int}		
a)	<pre>mtype i chan: mtype = {START, STOP, A chan b2a = [0] of {bit, init i active: init { run procA(); run procB(); run procC(); run procC(); run procC();</pre>	ACK, REQ} , byte, bit, int} active [2] procD () { if :: x == 3 -> x++; fi		
a)	<pre>mtype i chan: mtype = {START, STOP, A chan b2a = [0] of {bit, init i active: init { run procA(); run procB(); }</pre>	<pre>active [2] procD () { if :: x == 3 -> x++;</pre>		
a)	<pre>mtype i chan: mtype = {START, STOP, A chan b2a = [0] of {bit, init i active: init { run procA(); run procB(); run procC(); run procC(); run procC();</pre>	ACK, REQ} , byte, bit, int} active [2] procD () { if :: x == 3 -> x++; fi		

- d) if i do:
- 7. (1 bod) Na slici je prikazan ekspandirani asinkroni produkt (σ^{ω}) s vrijednostima varijabli. Odredite (zaokružite odgovor) da li su LTL formule istinite (T) ili neistinite (N):


```
T N \Diamond p ako je p \equiv (x > 5)
```

T N
$$\Box p$$
 ako je $p \equiv (x < 9)$

T N
$$\Box \Diamond p$$
 ako je $p \equiv (x == 3)$

T N
$$\Diamond \Box p$$
 ako je $p \equiv (x \ge 1)$

Obrazložite postupak određivanja istinitosti za jednu po volji odabranu LTL formulu.

8. (6 bodova) Zadani su Promela procesi ThreadA i ThreadB.

a) Nacrtajte konačne automate za sve Promela procese.

	Opisati postupak kako bez primjene LIL formule odrediti istinitost sljedeće tvrdnje: "Tijekom izvođenja varijabla x ne može poprimiti vrijednost $x \ge 128$ ".		
c)	Opisati postupak kako primjenom <i>LTL</i> formule odrediti istinitost sljedeće tvrdnje postupak pronalaženja protuprimjera (eng. <i>counterexample</i>): "Tijekom izvođenja varijabla x ne može poprimiti vrijednost x > 42".		
i)	Za tako dobivenu <i>LTL</i> formulu nacrtati Büchi automat i skicirati <i>never claim</i> strukturu.		
	R A never 1		

9. (3 boda) Zadana su dosezljiva stanja sustava S = {S0, S1, S2, S4–S7, S16–S21}. Potrebno je odrediti njihovu karakterističnu Booleovu funkciju i zatim nacrtati njezin ROBDD, uz proizvoljno uređenje varijabli.

Napomena: zadatak riješiti u košuljicu ili na dodatnim papirima.

10. (2 boda) Objasnite što sadržavaju i koja je svrha jedinstvene (engl. *unique*) i izračunske (engl. *computed*) tablice kod ITE-algoritma.

11. (1 bod) Odredite vrijednost ITE-operatora za logičke funkcije dviju Booleovih varijabli:

a)
$$NAND(f, g) = ITE(?, ?, ?) =$$

b)
$$XOR(f, g) = ITE(?, ?, ?) =$$

12. (3 boda) Na zadanoj bazi klauzula potrebno je provesti osnovni DPLL-algoritam za SAT-problem i dobiti odgovor na pitanje je li baza klauzula zadovoljiva (SAT) ili ne (UNSAT). Ako je SAT, onda treba i ispisati konačno rješenje do kojeg se došlo. Ako je potrebno granati, izbor varijable po kojoj se grana provedite proizvoljno.

Napomene: Cjelokupni postupak treba biti jasno napisan, tako da se zna u kojem koraku se što događa. Zadatak riješiti u košuljicu ili na dodatnim papirima.

K1:
$$\neg x1 \lor \neg x2 \lor \neg x3$$

$$K2: \neg x2 \lor \neg x5$$

K3:
$$\neg x3 \lor x4 \lor \neg x6$$

K4:
$$x1 \lor \neg x2 \lor x3 \lor \neg x5$$

K5:
$$\neg x2 \lor \neg x4 \lor x6$$

K6:
$$x1 \lor x3 \lor \neg x5$$

K7:
$$x2 \lor x4 \lor \neg x5$$

K8:
$$x1 \lor \neg x4$$

K9:
$$\neg x1 \lor x3 \lor \neg x4 \lor x6$$

K1:
$$x1 + x2 + x5 + x4$$

K2: $x1 + x2 + \neg x5 + x4$
K3: $\neg x3 + x6$
K4: $\neg x4 + x7 + x1$
K5: $\neg x4 + \neg x7 + x2$

provedene tri odluke o grananju: x1 = 0@1, x2 = 0@2 i x4 = 0@3.

- a) Nacrtajte graf implikacija na razini 3 gdje dolazi do konflikta i napišite naučenu klauzulu proizašlu iz konflikta.
- b) Provedite alternativno forsirano pridruživanje vrijednosti varijabli na razini 3 i nacrtajte pripadni graf implikacija. Ako je ponovno došlo do konflikta, odredite novu naučenu konfliktnu klauzulu i razinu odluke na koju se postupak vraća.

Napomena: zadatak riješiti u košuljicu ili na dodatnim papirima.

14. (2 boda) Na primjeru skupa klauzula iz zadatka 13, objasnite heuristiku VSIDS koju koristi SAT-rješavač Chaff za grananje. Po kojoj varijabli i kojem njenom literalu bi se najprije provelo grananje? Također pojasnite čemu služi VSIDS-ov parametar raspada (decay).