Decision and Regression Trees

What is a Decision Tree?

- An inductive learning task
 - Use particular facts to make more generalized conclusions
- A predictive model based on a branching series of Boolean tests
 - These smaller Boolean tests are less complex than a one-stage classifier
- Let's look at a sample decision tree...

Predicting Commute Time

If we leave at 10 AM and there are no cars stalled on the road, what will our commute time be?

Decision trees

Internal nodes are attributes

Branches are attribute values

Leaves are target function values

When to consider Decision Trees

- Instances describable by attribute-value pairs
- Target function is discrete valued
- Disjunctive hypothesis may be required
- Possibly noisy training data
- Missing attribute values
- Examples:
 - Medical diagnosis
 - Credit risk analysis
 - Object classification

Top-Down Induction of Decision Trees - ID3

ID3(X,y)

- 1. If X is empty, return leaf node with most common class in original training set as the class
- 2. If all values in **y** are equal, return leaf node with **y[0]** as the class
- 3. Let A be the **best** attribute in **X** to predict **y**
- 4. Create a node **node** containing attribute **A**
- 5. For each possible value **v** of **A**:
 - a. Let X_v be the subset of X for which A=v
 - b. Let $\mathbf{y}_{\mathbf{v}}$ be the target values of examples in $\mathbf{X}_{\mathbf{v}}$
 - c. Remove A from X_v
 - d. child = ID3(X_v, y_v)
 - e. Create branch from **node** to **child** with value **v**
- 6. Return **node**

Which attribute is best?

Entropy for binary classification

- S is a sample of training examples
- p₊ is the proportion of positive examples
- p_{_} is the proportion of negative examples
- Entropy measures the impurity of S
 Entropy(S) = -p₊ log₂ p₊ p₋ log₂ p₋

Entropy

 Entropy(S)= expected number of bits needed to encode class (+ or -) of randomly drawn members of S (under the optimal, shortest length-code)

Why?

- Information theory optimal length code assign
 - -log₂ p bits to messages having probability p.
- So the expected number of bits to encode

```
(+ or -) of random member of S:
-p<sub>+</sub> log<sub>2</sub> p<sub>+</sub> - p<sub>-</sub> log<sub>2</sub> p<sub>-</sub>
```

Information Gain (S=E)

Gain(S,A): expected reduction in entropy due to sorting S on attribute A

$$Gain(S, A) \equiv Entropy(S) - \sum_{v \in D_A} \frac{|S_v|}{|S|} Entropy(S_v)$$

Entropy(
$$[29+,35-]$$
) = -29/64 log2 29/64 - 35/64 log2 35/64
= 0.99

Information Gain

```
Entropy([21+,5-]) = 0.71

Entropy([8+,30-]) = 0.74

Gain(S,A<sub>1</sub>)=Entropy(S)

-26/64*Entropy([21+,5-])

-38/64*Entropy([8+,30-])

=0.27
```

```
Entropy([18+,33-]) = 0.94
Entropy([11+,2-]) = 0.62
Gain(S,A2)=Entropy(S)
-51/64*Entropy([18+,33-])
-13/64*Entropy([11+,2-])
=0.12
```


Training Examples

Day	Outlook	Temp.	Humidity	Wind	Play Tennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Weak	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cold	Normal	Weak	Yes
D10	Rain	Mild	Normal	Strong	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Selecting the Next Attribute

13

Selecting the Next Attribute

Selecting the Next Attribute

The information gain values for the 4 attributes are:

- Gain(S,Outlook) = 0.247
- Gain(S, Humidity) = 0.151
- Gain(S,Wind) =0.048
- Gain(S,Temperature) = 0.029

where S denotes the collection of training examples

ID3 Algorithm

ID3 Algorithm

Occam's Razor

"If two theories explain the facts equally weel, then the simpler theory is to be preferred"

Arguments in favor:

- Fewer short hypotheses than long hypotheses
- A short hypothesis that fits the data is unlikely to be a coincidence
- A long hypothesis that fits the data might be a coincidence

Arguments opposed:

There are many ways to define small sets of hypotheses

Overfitting

One of the biggest problems with decision trees is **Overfitting**

- You can build a decision tree to classify training data perfectly, but it will usually perform poorly on test data
- It takes log(n) binary decisions to split a training set of size n such that each leaf classifies exactly one example a binary tree of height 20 has over 1,000,000 leaves

Avoid Overfitting

- Stop growing when most examples associated to the node belong to the same class
- Limit maximum depth
- Limit number of nodes
- Grow full tree, then post-prune

- For every real-valued attibute A(x)
 - Generate a binary attribute A_t(x) which is true if x>=t for a threshold t
 - Choose threshold t that maximizes information gain

- For every real-valued attibute A(x)
 - Generate a binary attribute A_t(x) which is true if x>=t for a threshold t
 - Choose threshold t that maximizes information gain

Temperature	15°C	18ºC	19ºC	22ºC	24ºC	27ºC
PlayTennis	No	No	Yes	Yes	Yes	No

- For every real-valued attibute A(x)
 - Generate a binary attribute A_t(x) which is true if x>=t for a threshold t
 - Choose threshold t that maximizes information gain

Temperature	15ºC	18ºC	19ºC	22ºC	24ºC	27ºC	← Sort by value
PlayTennis	No	No	Yes	Yes	Yes	No	

- For every real-valued attibute A(x)
 - Generate a binary attribute A_t(x) which is true if x>=t for a threshold t
 - Choose threshold t that maximizes information gain

Temperature	15ºC	18ºC	19ºC	22ºC	24ºC	27ºC	← Sort by value
PlayTennis	No	No	Yes	Yes	Yes	No	

Find neighbors that belong to different classes:

InfoGain(Temp_{18.5}) = entropy(3+,3-) -
$$\frac{2}{6}$$
 entropy(0+,2-) - $\frac{4}{6}$ entropy(3+,1-) = 1 - $\frac{2}{6}$ (0) - $\frac{4}{6}$ (0.8113) = 0.4591
InfoGain(Temp_{25.5}) = entropy(3+,3-) - $\frac{1}{6}$ entropy(0+,1-) - $\frac{5}{6}$ entropy(3+,2-) = 1 - $\frac{1}{6}$ (0) - $\frac{5}{6}$ (0.971) = 0.1909

Temperature	15ºC	18ºC	19ºC	22ºC	24ºC	27ºC	
PlayTennis	No	No	Yes	Yes	Yes	No	
	ate +19)/2 =18.	.5	Candio t = (24	† date +27)/2 =25.5			

InfoGain(Temp_{18.5}) = entropy(3+,3-) -
$$\frac{2}{6}$$
 entropy(0+,2-) - $\frac{4}{6}$ entropy(3+,1-) = 1 - $\frac{2}{6}$ (0) - $\frac{4}{6}$ (0.8113) = 0.4591 Best split

InfoGain(Temp_{25.5}) = entropy(3+,3-) - $\frac{1}{6}$ entropy(0+,1-) - $\frac{5}{6}$ entropy(3+,2-) = 1 - $\frac{1}{6}$ (0) - $\frac{5}{6}$ (0.971) = 0.1909

Temperature	15ºC	18ºC	19ºC	22ºC	24ºC	27ºC
PlayTennis	No	No	Yes	Yes	Yes	No
	Candio t = (24	date +27)/2 =25.5				

Dealing with real-valued target function

Called regression trees

Only change to ID3:

Selection criterion for best attribute:

Choose the attribute that results in the largest MSE reduction assuming the prediction in each node is mean(y)

Leaves are real values – the mean y of the examples assigned to the leaf during training

Top-Down Induction of Regression Trees - ID3

ID3(X,y)

- 1. If X is empty, return leaf node with mean target value in original training set as the label
- 2. If all values in **y** are equal, return leaf node with **y[0]** as the class
- Let A_t be the **best** attribute in X to predict y
- 4. Create a node **node** containing attribute **A** and threshold **t**
- 5. For **v** in {false, true}:
 - a. Let X_v be the subset of X for which A > t = v
 - b. Let $\mathbf{y}_{\mathbf{v}}$ be the target values of examples in $\mathbf{X}_{\mathbf{v}}$
 - c. child = $ID3(X_v, y_v)$
 - d. Create branch from **node** to **child** with value **v**
- 6. Return **node**

```
Best_Attribute(X,y) for i in range(X.shape[1]): find threshold \mathbf{t_i} that results in minimum MSE for (X[:,i], y) Create binary attribute \mathbf{t_i} < \mathbf{X}[:,i] and store mse Return (\mathbf{i, t_i}) that corresponds to minimum mse
```

Α	0	1	2	3	4	5	6	7	8	9	← Attribute
V	0.8	0.3	0.5	0.2	0.7	0.1	1.1	0.4	0.9	0.6	← Target function

Original data

Mean = 0.5600, Variance = 0.0924

Thresholds = [0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5]

Threshold= 0.5000

Left: [0.8] Mean = 0.8000, Variance = 0.0000

Right [0.3 0.5 0.2 0.7 0.1 1.1 0.4 0.9 0.6] Mean = 0.5333, Variance = 0.0956

mse = (1/10)*0.0000 + (9/10)*0.0956 = 0.0860

Threshold = 1.5000

Left: [0.8 0.3] Mean = 0.5500, Variance = 0.0625

Right [0.5 0.2 0.7 0.1 1.1 0.4 0.9 0.6] Mean = 0.5625, Variance = 0.0998

mse = (2/10)*0.0625 + (8/10)*0.0998 = 0.0924

Α	0	1	2	3	4	5	6	7	8	9
У	0.8	0.3	0.5	0.2	0.7	0.1	1.1	0.4	0.9	0.6

Threshold = 2.5000

Left: [0.8 0.3 0.5] Mean = 0.5333, Variance = 0.0422

Right [0.2 0.7 0.1 1.1 0.4 0.9 0.6] Mean = 0.5714, Variance = 0.1135

mse = (3/10)*0.0422 + (7/10)*0.1135 = 0.0921

Threshold = 3.5000

Left: [0.8 0.3 0.5 0.2] Mean = 0.4500, Variance = 0.0525

Right [0.7 0.1 1.1 0.4 0.9 0.6] Mean = 0.6333, Variance = 0.1056

mse = (4/10)*0.0525 + (6/10)*0.1056 = 0.0843

Threshold = 4.5000

Left: [0.8 0.3 0.5 0.2 0.7] Mean = 0.5000, Variance = 0.0520

Right [0.1 1.1 0.4 0.9 0.6] Mean = 0.6200, Variance = 0.1256

mse = (5/10)*0.0520 + (5/10)*0.1256 = 0.0888

Α	0	1	2	3	4	5	6	7	8	9
У	0.8	0.3	0.5	0.2	0.7	0.1	1.1	0.4	0.9	0.6

Threshold = 5.5000

Left: [0.8 0.3 0.5 0.2 0.7 0.1] Mean = 0.4333, Variance = 0.0656

Right [1.1 0.4 0.9 0.6] Mean = 0.7500, Variance = 0.0725

mse = (6/10)*0.0656 + (4/10)*0.0725 = 0.0683

Threshold = 6.5000

Left: [0.8 0.3 0.5 0.2 0.7 0.1 1.1] Mean = 0.5286, Variance = 0.1106

Right $[0.4 \ 0.9 \ 0.6]$ Mean = 0.6333, Variance = 0.0422

mse = (7/10)*0.1106 + (3/10)*0.0422 = 0.0901

Threshold = 7.5000

Left: [0.8 0.3 0.5 0.2 0.7 0.1 1.1 0.4] Mean = 0.5125, Variance = 0.0986

Right: $[0.9 \ 0.6]$ Mean = 0.7500, Variance = 0.0225

mse = (8/10)*0.0986 + (2/10)*0.0225 = 0.0834

Α	0	1	2	3	4	5	6	7	8	9
У	0.8	0.3	0.5	0.2	0.7	0.1	1.1	0.4	0.9	0.6

Threshold = 8.5000

Left: [0.8 0.3 0.5 0.2 0.7 0.1 1.1 0.4 0.9] Mean = 0.5556, Variance = 0.1025

Right: [0.6] Mean = 0.6000, Variance = 0.0000 mse = (9/10)*0.1025 + (1/10)*0.0000 = 0.0922

Lowest mse is 0.0683, corresponding to threshold = 5.5