Mapping class groups

Curves

(Study linear transf by action on water as Mod (S) by action on homotopy clane of simple closed curves

Clarification of surfaces
Closed connected oriented = connect sum of 52 l g toni
unal without boundary

closed $\xrightarrow{\text{remove } b}$ coupt b = na. I boundary composing t = na and t = na

So, outage is detamined by (g,b,n)

 $\chi(s) = 2 - 2g - (b + n) \qquad \frac{dz \, dz}{|m(z)|^2} \qquad \text{open disk in } C$ Hyperbolic plane IH² (IH², $\frac{dz^2 + dy^2}{y^2}$) on $(D, 4 \frac{dz^2 + dy^2}{(1-y^2)^2})$

Riemannian metric on 41-upper half plane

• 9 H, (α, η) $(\nu, \omega) = \frac{\nu'\omega' + \nu'\omega'}{\gamma^2} = \frac{1}{2} \langle \nu, \omega \rangle$, $\nu, \omega \in T_{(\alpha, \eta)}$ H?

• $\|\nu\|_{H^2} = (\langle \nu, \nu \rangle_{H^2}) = \frac{1}{2} \sqrt{\langle \nu, \nu \rangle}$ • $\|\nu\|_{H^2} = (\langle \nu, \nu \rangle_{H^2}) = \frac{1}{2} \sqrt{\langle \nu, \nu \rangle}$ • $\|\nu\|_{H^2} = (\langle \nu, \nu \rangle_{H^2}) = \frac{1}{2} \sqrt{\langle \nu, \nu \rangle}$ • $\|\nu\|_{H^2} = (\langle \nu, \nu \rangle_{H^2}) = \frac{1}{2} \sqrt{\langle \nu, \nu \rangle}$ • $\|\nu\|_{H^2} = (\langle \nu, \nu \rangle_{H^2}) = \frac{1}{2} \sqrt{\langle \nu, \nu \rangle}$ • $\|\nu\|_{H^2} = (\langle \nu, \nu \rangle_{H^2}) = \frac{1}{2} \sqrt{\langle \nu, \nu \rangle}$ • $\|\nu\|_{H^2} = (\langle \nu, \nu \rangle_{H^2}) = \frac{1}{2} \sqrt{\langle \nu, \nu \rangle}$ • $\|\nu\|_{H^2} = (\langle \nu, \nu \rangle_{H^2}) = \frac{1}{2} \sqrt{\langle \nu, \nu \rangle}$ • $\|\nu\|_{H^2} = (\langle \nu, \nu \rangle_{H^2}) = \frac{1}{2} \sqrt{\langle \nu, \nu \rangle}$ • $\|\nu\|_{H^2} = (\langle \nu, \nu \rangle_{H^2}) = \frac{1}{2} \sqrt{\langle \nu, \nu \rangle}$ • $\|\nu\|_{H^2} = (\langle \nu, \nu \rangle_{H^2}) = \frac{1}{2} \sqrt{\langle \nu, \nu \rangle}$ • $\|\nu\|_{H^2} = (\langle \nu, \nu \rangle_{H^2}) = \frac{1}{2} \sqrt{\langle \nu, \nu \rangle}$ • $\|\nu\|_{H^2} = (\langle \nu, \nu \rangle_{H^2}) = \frac{1}{2} \sqrt{\langle \nu, \nu \rangle}$ • $\|\nu\|_{H^2} = (\langle \nu, \nu \rangle_{H^2}) = \frac{1}{2} \sqrt{\langle \nu, \nu \rangle}$ • $\|\nu\|_{H^2} = (\langle \nu, \nu \rangle_{H^2}) = \frac{1}{2} \sqrt{\langle \nu, \nu \rangle}$ • $\|\nu\|_{H^2} = (\langle \nu, \nu \rangle_{H^2}) = \frac{1}{2} \sqrt{\langle \nu, \nu \rangle}$ • $\|\nu\|_{H^2} = (\langle \nu, \nu \rangle_{H^2}) = \frac{1}{2} \sqrt{\langle \nu, \nu \rangle}$ • $\|\nu\|_{H^2} = (\langle \nu, \nu \rangle_{H^2}) = \frac{1}{2} \sqrt{\langle \nu, \nu \rangle}$ • $\|\nu\|_{H^2} = (\langle \nu, \nu \rangle_{H^2}) = \frac{1}{2} \sqrt{\langle \nu, \nu \rangle}$ • $\|\nu\|_{H^2} = (\langle \nu, \nu \rangle_{H^2}) = \frac{1}{2} \sqrt{\langle \nu, \nu \rangle}$ • $\|\nu\|_{H^2} = (\langle \nu, \nu \rangle_{H^2}) = \frac{1}{2} \sqrt{\langle \nu, \nu \rangle}$ • $\|\nu\|_{H^2} = (\langle \nu, \nu \rangle_{H^2}) = \frac{1}{2} \sqrt{\langle \nu, \nu \rangle}$ • $\|\nu\|_{H^2} = (\langle \nu, \nu \rangle_{H^2}) = \frac{1}{2} \sqrt{\langle \nu, \nu \rangle}$ • $\|\nu\|_{H^2} = (\langle \nu, \nu \rangle_{H^2}) = \frac{1}{2} \sqrt{\langle \nu, \nu \rangle}$ • $\|\nu\|_{H^2} = (\langle \nu, \nu \rangle_{H^2}) = \frac{1}{2} \sqrt{\langle \nu, \nu \rangle}$ • $\|\nu\|_{H^2} = (\langle \nu, \nu \rangle_{H^2}) = \frac{1}{2} \sqrt{\langle \nu, \nu \rangle}$ • $\|\nu\|_{H^2} = (\langle \nu, \nu \rangle_{H^2}) = \frac{1}{2} \sqrt{\langle \nu, \nu \rangle}$ • $\|\nu\|_{H^2} = (\langle \nu, \nu \rangle_{H^2}) = \frac{1}{2} \sqrt{\langle \nu, \nu \rangle}$ • $\|\nu\|_{H^2} = (\langle \nu, \nu \rangle_{H^2}) = \frac{1}{2} \sqrt{\langle \nu, \nu \rangle}$ • $\|\nu\|_{H^2} = (\langle \nu, \nu \rangle_{H^2}) = \frac{1}{2} \sqrt{\langle \nu, \nu \rangle}$ • $\|\nu\|_{H^2} = (\langle \nu, \nu \rangle_{H^2}) = \frac{1}{2} \sqrt{\langle \nu, \nu \rangle}$ • $\|\nu\|_{H^2} = (\langle \nu, \nu \rangle_{H^2}) = \frac{1}{2} \sqrt{\langle \nu, \nu \rangle}$ • $\|\nu\|_{H^2} = (\langle \nu, \nu \rangle_{H^2}) = \frac{1}{2} \sqrt{\langle \nu, \nu \rangle}$ • $\|\nu\|_{H^2} = (\langle \nu, \nu \rangle_{H^2}) = \frac{1}{2} \sqrt{\langle \nu, \nu \rangle}$ • $\|\nu\|_{H^2} = (\langle \nu, \nu \rangle_{H^2}) = \frac{1}{2} \sqrt{\langle \nu, \nu$

The loom (IH) = PSL(2, IR) Lemma All mobius transf are isometries of IH2

The X(S) < 0, then S admits a hyperbolic metric, ie, I a complete, finite-area Riemannian metric of constant currecture -1, 2S is totally geodesic (geodesics in 2S are geodesics in S) X(S)=0, then S admits an Euclidean or flat metric, ie, I a complete, finite-area Riemannian metric of constant curvature of and totally

Closed curse cont map S' -> S Simple if injective Essential if not homotopic to a pt, punction on boundary component

Geodesic representative S-hyperbolic surface, α -closed curse in S not homotopic to a while of a puncture, then α is homotopic to a unique geodesic closed curse γ from it α is simple then γ is simple

luteraction number Algebraic : (a,b) = Geometric : (a,b) =

Bigon criterion 2 transverse simple closed curves one in minimal position it and only it they do not form a bigon Corollary distinct simple closed geodesics in hyperbolic surface on in minimal post

lastopy bet "SC curve α , β is a homotopy from α to β such that $H_{\xi}: S' \to S$ is SC curve $\forall \xi \in CO, IJ$

Theorem of & - essential SC curve in S, a is isotopic to & if homotopic

lastopy of surface homotopy H: S x I -> I at H: S -> S is a homeo

Extension of isotopy $F: S' \times I \rightarrow S$ - smooth isotopy of SC curves, $F: S \times I \rightarrow S$ at $F: S \rightarrow S$

Change of coordinate principle (\leftrightarrow change of boois)

Cut surface of α $S_{\alpha} = S \cdot N_{\alpha}$, N_{α} - annular whole of α Topology - type of α is the homeomorphism - type of cut surface S_{α} Theorem 3 orientation - preserving homes of a surface taking SC curve to another iff their cut surfaces are homes

Theorem S - crupt. f, g - homotopic homeomorphisms of S, then they are isotopic (except or reversing homeo on D and or reversing fixing S' on A = S' x I - closed annulus)

Theorem S-crypt, homeo of S are isotopic to differ of S

Mapping Class Groups

Mod (S) = Homes
$$^+$$
 (S, 2S) / Homes (S, 2S)

O-P homes on S

cleatify on 2S

on, the group of isotopy classes of Homes $^+$ (S, 2S), with isotopia fixing boundary pointwise (isotopia relative to boundary)

Mod (S) = Homes $^+$ (S, 2S) / isotopy

= Homes $^+$ (S, 2S) / hometapy

= Diff $^+$ (S, 2S) / hometapy

one consider maps that leave the set of marked points invariant $^-$ (S)

Cramples

Mod (D) = O (Alexander Comma) [$^-$

lemma: cas simple ares with same endpt one isotopie So, a l p(a) are isotopic l p can be extended to a map that fine a pointwise (kd come from a) Cut along a to get a disk with IMP, P here is homotopic to identify (from eg 2) which give a homotopy on So,3

Mod (S_{0,2}) = Z₂ [similarly as above] Mod (5) = 0 [similarly as above]

Mod (A) = Z $f: Mod(A) \rightarrow \mathbb{Z}$ [P] = Mad (A) [P] -> P, (O), P is the lift of P to LR'X [O, I] and P, is the restriction to IR x [13, so P, being the lift of id on s'x[13] is an integer translation sury: M= (1) is equivariant with group of deck tramf, so descends

to a home
$$\varphi$$
 of A [$\widehat{\varphi}(x,y) = \begin{pmatrix} 1 & N \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$]
$$\widehat{\varphi}_{o}(x,1) = \begin{pmatrix} x + N \\ 1 \end{pmatrix} \implies f(\varphi) = N$$

inj: f(9)=0, at-line homotopy from $\tilde{\varphi}$ to id, being equivariant, descends, and equivariant because (?) $\tilde{\varphi}(z,x)=9_{\#}(z).\tilde{\varphi}(z)$

Mod (T) = SL(2, \mathbb{Z}) P induces P_* on $H_1(T)$ = \mathbb{Z}^2 , P_* is an arts => P_* \in Aut (\mathbb{Z}^2) = GL(2, \mathbb{Z})

Alexander method

Comma $Q \in Homes^{+}(S, \partial S)$, $\alpha_{1}, ... \alpha_{N}$ and $\beta_{1}, ... \beta_{N}$ of ESC curve

and arc satisfying γ_{i} are pairwise (1) in minimal position and (2) non-isotopic

(3) for distinct i, j, k, at least one of $\alpha_{i}, n\alpha_{j}, \alpha_{i}, n\alpha_{k}, \alpha_{k}, n$; = ϕ , for β_{i} .

U α_{i} is iso to β_{i} ; 4i, then there is a relative isotopy of S that takes $U\alpha_{i}$ to $U\beta_{i}$:

Structure graph Frais is the graph with vertices at intersection pto

Alexander method { a; 3 fill 8 long-maked disks

P induce outo P* of T ii. if P* is trivial then P* is ies to id

Dehn Twists

Properties

1.
$$\alpha, \rho$$
 - ESC curve, $k \in \mathbb{Z}$
 $i(T_a^k(b), b) = |k| i(a, b)^2$

2.
$$T_a = T_b \iff a = b$$

(=>) $a \neq b$, $\exists c \land d : (a,c) = 0$, $i(b,c) \neq 0$
 $i(T_a(c),c) = i(a,c)^2 = 0 \neq i(b,c)^2 = i(T_b(c),c)$

4.
$$fT_a = T_a f \iff f(a) = a$$

 $fT_a = T_a f \iff fT_a f^{-1} = T_a = T_{f(a)} \iff a = f(a)$