CS57300 PURDUE UNIVERSITY OCTOBER 18, 2021

DATA MINING

EMPOWERING SVM

- Project data into a higher-dimensional space
- Find a hyperplane in the higher-dimensional space that can almost linearly separate the training examples
- Project the hyperplane back to the original lower-dimensional space to get the non-linear decision boundary!
- Which higher-dimensional space should I project the data into?

THE KERNEL TRICK

- You only need to know the dot products between data points to learn SVM and make prediction with SVM (related to primal-dual of optimization problems)
 - Given a training dataset, you only need to know $\mathbf{x_i}^T \mathbf{x_j}$ for any two data points $\mathbf{x_i}$ and $\mathbf{x_j}$ in the training example to learn the linear SVM
 - After a linear SVM is learned, given a test data point \mathbf{x} , you only need to know $\mathbf{x}^{\mathsf{T}}\mathbf{x}_{\mathsf{i}}$ for all the data points \mathbf{x}_{i} in the training example to make predictions
- Given a projection function $x \to \phi(x)$
 - The linear SVM in the higher-dimensional space can be learned and used as long as we know $\phi(\mathbf{x})^T\phi(\mathbf{y})$

THE KERNEL TRICK

- Use **kernel function** to compute dot products in higher-dimensional space in the original lower-dimensional space: $k(x, y) = \phi(x)^T \phi(y)$
- Example: $\mathbf{x} = (x_1, x_2); \phi(\mathbf{x}) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)$
 - $k(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^{T}\mathbf{y})^{2}$ $= (x_{1}y_{1} + x_{2}y_{2})^{2}$ $= x_{1}^{2}y_{1}^{2} + x_{2}^{2}y_{2}^{2} + 2x_{1}x_{2}y_{1}y_{2}$ $= \phi(\mathbf{x})\phi(\mathbf{y})$

KERNEL SVM

Different kernel functions:

name	$k(\mathbf{x}, \mathbf{v})$
Linear	$\mathbf{x}\cdot\mathbf{v}$
Polynomial	$(r + \mathbf{x} \cdot \mathbf{v})^d$, for some $r \ge 0, d > 0$
Radial Basis Function	$\exp(-\gamma \mathbf{x}-\mathbf{v} ^2), \gamma > 0$
Gaussian	$\exp(-\gamma \mathbf{x} - \mathbf{v} ^2), \gamma > 0$ $\exp(-\frac{1}{2\sigma^2} \mathbf{x} - \mathbf{v} ^2)$

- Kernel SVM
 - ightharpoonup Decide upon a kernel function $k(\mathbf{x}, \mathbf{v})$
 - Use this kernel function to compute $k(\mathbf{x_i}, \mathbf{x_j})$ for all $\mathbf{x_i}$ and $\mathbf{x_j}$ in the training example and learn the linear SVM in the high-dimensional space
 - Given the learned linear SVM and a new data point \mathbf{x} , compute $k(\mathbf{x}, \mathbf{x_i})$ for all the data points $\mathbf{x_i}$ in the training example to make predictions

NEURAL NETWORK

NEURAL NETWORKS

- Analogous to biological systems
- Build artificial neurons to transfer inputs to outputs
- Outputs of a neuron can be "transmitted" and serve as inputs for other neurons

NEURON

SIMPLEST NEURON NETWORK: PERCEPTRON

First introduced in late 1950s by Minsky and Papert

Model:
$$f(x) = \sum_{i=1}^{m} w_i x_i + b_{\text{Offset}}$$

$$y = sign[f(x)]$$
 Activation function

y > 0 \mathcal{R}_1

Model space: All possible weights w and b

Figure: C. Bishop

PERCEPTRON COMPONENTS

Model space

Set of weights w and b (hyperplane boundary)

Score function

Minimize misclassification rate

Search algorithm

lterative refinement of **w** and b

PERCEPTRON LEARNING

Model:
$$f(x) = \sum_{i=1}^{m} w_i x_i + b$$
 $y = sign[f(x)]$

Learning: if
$$y(j)(\sum_{i=1}^{m} w_i x_i(j) + b) \le 0$$

then $w \leftarrow w + \eta y(j) x(j)$ (0 < $\eta \ll 1$)

Iterate over training examples for fixed number of iterations or until error is below a pre-specified threshold

Figure: C. Bishop

```
procedure LearnPerceptron(data,numIters,learnRate)
    \mathbf{w} \leftarrow 0 \text{ (for } p = 1...numAttrs)
     b \leftarrow 0
    \eta \leftarrow learnRate
     for iter \leq numIters do
          for i = (\mathbf{x}_i, y_i) \in data \ \mathbf{do}
               \hat{y}_i = sign(\mathbf{w} \cdot \mathbf{x}_i + b)
               if y_i \hat{y}_i \leq 0 then
                    e=\eta y_i
                    \mathbf{w} \leftarrow \mathbf{w}^{old} + e \mathbf{x}_i
                    b \leftarrow b + e
               end if
          end for
     end for
     return \mathbf{w}, b
end procedure
```

LIMITATION OF PERCEPTRON

Perceptron is suitable for classifying a set of linearly separable data

FROM PERCEPTRON TO MULTI-LAYER NEURAL NETWORKS

FROM PERCEPTRON TO MULTI-LAYER NEURAL NETWORKS

MULTI-LAYER NEURAL NETWORK

- Increase expressive power by combining multiple perceptrons into ensemble
- Two-layer neural network: each perceptron output is a hidden unit, which are then aggregated into a final output

Output
$$O_i = g(\sum_j W_{j,i} a_j)$$
 Hidden $a_j = g(\sum_k W_{k,j} I_k)$ units

LEARNING MULTI-LAYER NEURAL NETWORKS

Does the algorithm used for learning perceptron still work?

- Randomly set an initial set of weight
- Compute the outputs for each hidden unit and output unit
- Compare outputs from output unit and true labels, and update $W_{j,i}$
- Wait...what about weights associated with hidden units, $W_{k,j}$?

DIFFERENTIABLE SCORING FUNCTIONS AND ACTIVATION FUNCTIONS

The scoring function S will take as inputs \mathbf{x} (attributes), \mathbf{y} (true label), $\mathbf{W}_{k,j}$ (weights associated with hidden units), $\mathbf{W}_{j,i}$ (weights associated with output units)

