Універсальна властивість вільної групи

Євгенія Кочубінська

Київський національний університет імені Тараса Шевченка

26 жовтня 2022

FACULTY OF MECHANICS AND MATHEMATICS

Універсальна властивість вільної групи

Теорема

Нехай група G породжується множиною елементів $S = \{s_1, \ldots, s_n\}$. Тоді для вільної групи F(X) з системою твірних $X = \{x_1, \ldots, x_n\}$ існує єдиний гомоморфізм

$$\varphi: F(X) \to G$$

при якому

$$\varphi(x_i) = s_i$$
, для всіх $i = 1, \ldots, n$.

Універсальна властивість вільної групи: доведення

Нехай $\varphi: F(X) \to G$ — такий гомоморфізм, що $\varphi(x_i) = s_i$ для всіх $i = 1, \ldots, n$.

F(X) — вільна група над алфавітом X, тому кожний елемент $w \in F(X)$ визначаєтеся єдиним нескоротним словом

$$w=x_{i_1}^{\varepsilon_1}\ldots x_{i_r}^{\varepsilon_r}$$
, де $x_{i_j}\in X$, $\varepsilon_j\in\{1,-1\}$.

Оскільки ϕ — гомоморфізм, то

$$\varphi(x_{i_1}^{\varepsilon_1} \dots x_{i_r}^{\varepsilon_r}) = \varphi(x_{i_1}^{\varepsilon_1} \dots x_{i_{r-1}}^{\varepsilon_{r-1}} \cdot x_{i_r}^{\varepsilon_r}) = \varphi(x_{i_1}^{\varepsilon_1} \dots x_{i_{r-1}}^{\varepsilon_{r-1}}) \varphi(x_{i_r}^{\varepsilon_r}) =$$

$$= \varphi(x_{i_1}^{\varepsilon_1} \dots x_{i_{r-1}}^{\varepsilon_{r-1}}) \varphi(x_{i_r})^{\varepsilon_r} = \varphi(x_{i_1}^{\varepsilon_1} \dots x_{i_{r-1}}^{\varepsilon_{r-1}}) s_{i_r}^{\varepsilon_r} = \dots =$$

$$= \varphi(x_{i_1})^{\varepsilon_1} s_{i_2}^{\varepsilon_2} \dots s_{i_r}^{\varepsilon_r} = s_{i_1}^{\varepsilon_1} s_{i_2}^{\varepsilon_2} \dots s_{i_r}^{\varepsilon_r}.$$

Отже, якщо існує такий гомоморфізм, то він єдиний.

Універсальна властивість вільної групи: доведення

Відображення $\varphi: F(X) \to G$, $\varphi(x_{i_1}^{\varepsilon_1} \dots x_{i_r}^{\varepsilon_r}) = s_{i_1}^{\varepsilon_1} \dots s_{i_r}^{\varepsilon_r}$ задане коректно. Нехай $u, v \in F(X)$ та

$$u = x_{i_1}^{\varepsilon_1} \dots x_{i_n}^{\varepsilon_n} x_{j_1}^{\varepsilon'_1} \dots x_{j_m}^{\varepsilon'_m}, \quad v = x_{j_m}^{-\varepsilon'_m} \dots x_{j_1}^{-\varepsilon'_1} x_{i_{n+1}}^{\varepsilon_{n+1}} \dots x_{i_k}^{\varepsilon_k}$$

— відповідні нескоротні слова в алфавіті $X^{\{\pm 1\}}$, $x_{i_s}, x_{j_t} \in X$, $\varepsilon_s, \varepsilon_t' \in \{1, -1\}$, $x_{i_n} \neq x_{i_{n+1}}$. Тоді

$$u \cdot v = \overline{uv} = x_{i_1}^{\varepsilon_1} \dots x_{i_n}^{\varepsilon_n} x_{i_{n+1}}^{\varepsilon_{n+1}} \dots x_{i_k}^{\varepsilon_k}.$$

Звідси

$$\varphi(u \cdot v) = s_{i_1}^{\varepsilon_1} \dots s_{i_n}^{\varepsilon_n} s_{i_{n+1}}^{\varepsilon_{n+1}} \dots s_{i_k}^{\varepsilon_k} =$$

$$= s_{i_1}^{\varepsilon_1} \dots s_{i_n}^{\varepsilon_n} s_{j_1}^{\varepsilon'_1} \dots s_{j_m}^{\varepsilon'_m} \cdot s_{j_m}^{-\varepsilon'_m} \dots s_{j_1}^{-\varepsilon'_1} s_{i_{n+1}}^{\varepsilon_{n+1}} \dots s_{i_k}^{\varepsilon_k} = \varphi(u)\varphi(v).$$

Універсальна властивість вільної групи

Теорема

Для довільного відображення $\varphi: X \to G$ існує єдиний такий гомомофізм $\varphi^*: F(X) \to G$, який продовжує відображення φ та робить наступну діаграму комутативною:

Що дає універсальна властивість?

S — скінченна система твірних групи $G \Rightarrow \varphi : F(X) \to G$ — епіморфізм. Отже, за основною теоремою про гомоморфізм

$$G \simeq F(X) / \operatorname{Ker} \varphi$$
.

Теорема

Кожна скінченно породжена група G ізоморфна факторгрупі деякої вільної групи скінченного рангу.