MECA 482 Project

```
clc
clear
% State Space Representation
Jp=.8;Mp=.127;Lr=.216;Jr=.8;Lp=.337;g=9.81;Br=37.3;Bp=2;Kg=.9;kt=0.00768;km=.03;...
    Rm=2.6;Mr=.125; %Random Parameters
Jt=Jp*Mp*Lr^2+Jr*Jp+(1/4)*Jr*Mp*Lp^2;
A=[0\ 0\ 1\ 0;0\ 0\ 0\ 1;0\ (1/(4*Jt))*Mp^2*Lp^2*Lr*q\ (-1/Jt)*Br*(Jp
+1/4*Mp*Lp^2) (-1/(2*Jt))*Bp*Mp*Lp*Lr;0 .5*Mp*Lp*g*(Jr+Mp*Lr^2)/Jt (1/
(2*Jt))*Mp*Lp*Lr*Br (-1/Jt)*Bp*(Jr+Mp*Lp^2)];
B=[0;0;(1/Jt)*(Jp+.25*Mp*Lp^2);(1/(2*Jt))*Mp*Lp*Lr];
C = eye(2,4);
D=zeros(2,1);
% Actuator Dynamics
B=Kg*kt*B/Rm;
A(3,3)=A(3,3)-Kg^2*kt*km/Rm*B(3);
A(4,3)=A(4,4)-Kg^2*kt*km/Rm*B(4);
states={'theta' 'theta_dot' 'alpha' 'alpha_dot'};
inputs={'u'};
outputs={ 'theta'; 'alpha' };
sys_Pendulum =
 ss(A,B,C,D,'statename',states,'inputname',inputs,'outputname',outputs) %
 Open loop system model
sys_tf=tf(sys_Pendulum) % System transfer function
% The requirements of the system
zeta = 0.7;
wn = 4;
p3 = -30; % Desired pole location
p4 = -40; % Desired pole location
% Location of dominant poles along real-axis
sigma = zeta * wn;
% Location of dominant poles along img axis (damped natural freq
wn*(1-zeta)^0.5
wd=wn*(1-zeta)^0.5
% Desired poles (-30 and -40 are given)
poles = [-sigma+j*wd, -sigma-j*wd, p3, p4];
% Find control gain using MATLAB pole-placement command (acker or
place)
K = acker(A, B, poles)
mu = 2.3;
Ep=Mp*g*Lp; %Potential Energy
Er=Ep;
eta_m=0.90;
eta_g=0.70;
K amp=2.5; %Amplifier gain
sys Pendulum =
```

A =	theta	theta_dot	alpha	alpha_dot			
theta theta_do alpha alpha_do	0 0 0	0 0 0.001498 0.2612	1 0 -46.28	0 1 -0.01427			
B =							
_	0.003299 ot 1.897e-05						
C =	theta the	ota dot	alpha alp	aha dat			
theta alpha	1 0	0 1	0 0	0 0			
theta (1))						
Continuous-	-time state-sp	pace model.					
sys_tf =							
From input "u" to output 0.003299 s^2 + 0.008296 s - 0.0008617							
theta:	s^4 + 48.8 s^	`3 + 116.1 s	s^2 - 12.09	s			
alpha:	1.897e-05 s - 0.007419						
атрпа.	s^3 + 48.8 s^2 + 116.1 s - 12.09						
Continuous-	-time transfer	function.					
wd =							
2.1909							
K =							
1.0e+07	*						
-1.7601	-2.0718	0.0054 -0	0.8020				

Pub	lished with M	'ATLAB® R2	2020a			