GESTÃO DE REDES / NETWORK MANAGEMENT *Notas complementares / Complementary notes*

User-based Security Model View-based Access Control Model

SNMP v1/v2 Security

v1 / v2c

- "Community" String sent in all protocol messages
- Actually acts as a "password"
- The agent only responds if the password is correct

Pros and cons:

- Simple, very simple, to implement
- It is not encrypted!
- Very weak security
- requires secure "channel"
- There is no concept of "user" but rather of "community" of managers (dilute responsibilities)

SNMP v1/v2 Security

v1 / v2c: community-based access model

SNMP v3 Security Model

V3

- No use of "community strings" ...!
- Users authentication (agents can verify user identity)
- One <u>"Shared secret"</u> for each user (used in <u>authentication</u>)
- Messages are sent with a calculated hash of the message with the shared secret ... the hash can be validated at the destination
- Message content (payload) can optionally be encrypted with a <u>second "Shared secret"</u> (used for confidentiality)
- Properties: authentication, integrity, confidentiality
- Two models and a clear separation between: Authentication (User-Based Security Model) and Access Control (View-Based Access Control Model)

USM – User-Based Security Model

Principal Threats:

- Modification of Information: The modification threat is the danger that some unauthorized entity may alter in-transit SNMP messages (...)
- Masquerade: The masquerade threat is the danger that management operations

 (...) may be attempted by assuming the identity of another user

Secondary Threats:

- <u>Disclosure</u>: The disclosure threat is the danger of eavesdropping on the exchanges between managed agents and a management station.
- Message Stream Modification: The message stream modification threat is the danger that messages may be maliciously re-ordered, delayed or replayed (...)
 SNMP protocol is typically based upon a connection-less transport service

Threats not considered:

- Denial of Service
- Traffic Analysis: (...) traffic patterns are predictable ...

USM – User-Based Security Model

Security requirements:

- <u>Data Integrity</u>: provision of the property that data has not been altered or destroyed in network
- <u>Data Origin Authentication</u>: the claimed identity of the origin is corroborated
- <u>Data Confidentiality</u>: information is not available to unanthorized entities
- <u>Limited stream integrity</u>: message whose generation time is outside of a specified time window is not accepted

and constraints:

- If management network stress is inconsistent with security, give preference to the former (!)
- No dependency on other services (ex: NTP, key manag. Like PKI)
- security mechanism should entail no changes to the basic SNMP network management philosophy....

USM: HMAC - RFC2104

$$\operatorname{HMAC}(K,m) = \operatorname{H}\left(\left(K' \oplus opad\right) \parallel \operatorname{H}\left(\left(K' \oplus ipad\right) \parallel m\right)\right)$$
 $K' = egin{cases} \operatorname{H}(K) & K \text{ is larger than block size} \\ K & \text{otherwise} \end{cases}$

where

H is a cryptographic hash function,

m I s the message to be authenticated,

K is the secret key,

K' is a block-sized key derived from the secret key, K; either by padding to the right with 0s, up to the block size, or by hashing down to the block size.

denotes <u>concatenation</u>,

denotes bitwise exclusive or (XOR),

opad is the outer padding, consisting of repeated bytes, valued 0x5c, up to the block size, and

Ipad Is the inner padding, consisting of repeated bytes, valued 0x36, up to the block size.

(images from Wikipedia: https://en.wikipedia.org/wiki/HMAC)

USM: CBC-DES and Others

- RFC 3414 defines DES as the only required method of message encryption for SNMP Version 3 authPriv mode
 - The data is encrypted in Cipher Block Chaining mode.
 - The plaintext is divided into 64-bit blocks.

RFC 3826

- provides support for the 128-bit key in the Advanced Encryption Standard (AES).
- included in the SNMP-USM-AES-MIB

And CISCO extensions:

 The extended options of AES with 192- or 256-bit keys and 3-DES are supported as extensions in the Cisco-specific MIB—CISCO-SNMP-USM-EXT-MIB.

USM: Security Level

Confidentiality & Authentication services

→ **noAuthPriv** doesn't make sense and is not used! Why??

VACM – View-Based Access Control Model

RFC3414 (https://tools.ietf.org/html/rfc3415)

Abstract primitive for Access Control:

```
statusInformation = -- success or errorIndication isAccessAllowed(
securityModel -- Security Model in use
securityName -- principal who wants access
securityLevel -- Level of Security

viewType -- read, write, or notify view
contextName -- context containing variableName
variableName -- OID for the managed object )
```

Results:

```
accessAllowed
notInView
noSuchView, noSuchContext, noGroupName, noAccessEntry
otherError
```

VACM MIB (RFC3415)

vacmContextTable OBJECT-TYPE

SYNTAX SEQUENCE OF VacmContextEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION "The table of locally available contexts.

vacmSecurityToGroupTable OBJECT-TYPE

SYNTAX SEQUENCE OF VacmSecurityToGroupEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION "This table maps a combination of securityModel and

securityName into a groupName which is used to define an

access control policy for a group

of principals."

VACM MIB (RFC3415)

vacmAccessTable OBJECT-TYPE

SYNTAX SEQUENCE OF VacmAccessEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION "The table of access rights for groups.

Each entry is indexed by a

groupName, a contextPrefix, whether access is allowed, one entry from this table entry must be used for access control checking.

a securityModel and a securityLevel. To determine

needs to be selected and the proper viewName from that

VACM MIB (RFC3415)

vacmViewTreeFamilyTable OBJECT-TYPE

SYNTAX SEQUENCE OF VacmViewTreeFamilyEntry

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION "Locally held information about families of subtrees

within MIB views.

SNMP CISCO Config.: example 1

snmp-server contact Maria Admin <maria@uminho.pt>
snmp-server location Azurém, Guimarães

snmp-server view mib2 mib-2 included snmp-server community public ro snmp-server community comaccess rw 4

snmp-server host 172.16.1.27 **informs** version 2c public alarms

. . .

access-list 4 permit 192.168.100.0 0.0.0.255

SNMP CISCO Configuration

Passos:

- 1. enable
- 2. configure terminal
- 3. snmp-server group [group-name {v1 | v2c | v3 [auth | noauth | priv]}] [read read-view] [write write-view] [notify notify-view] [access access-list]
- **4. snmp-server engineID** {local engine-id | remote ip-address [udp-port udp-port number] [vrf vrf-name] engine-id-string}
- 5. **snmp-server user** user-name group-name [remote ip-address [udp-port port]] {v1 | v2c | v3 [encrypted] [auth {md5 | sha} auth-password]} [access accesslist]
- **6.** end

SNMP CISCO Config: example 2

snmp-server view *vista-ro* internet included snmp-server group *ReadGroup* v3 auth read *vista-ro* snmp-server user admin *ReadGroup* v3 auth md5 *zy22zy56* snmp-server user maria *ReadGroup* v3 auth md5 *ola12345* priv des56 *DXPT##23*

See manual:

https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/snmp/configuration/xe-3se/3850/snmp-xe-3se-3850-book/nm-snmp-snmpv3.html

NET-SNMP Config

Ver: http://net-snmp.sourceforge.net/wiki/index.php/Vacm

```
community
      sec.name source
com2sec local
               localhost
                             secret42
com2sec custom_sec 192.168.1.0/24 public
            sec.model sec.name
group custom_grp v1
                          custom_sec
group custom_grp v2c
                          custom sec
group incremental usm
                          myuser
                                    # SNMPv3 username == sec.name
         incl/excl subtree
                                              mask
view all included .1
view custom_v excluded .1
view custom_v included sysUpTime.0
view custom_v included interfaces.ifTable
             context sec.model sec.level match read
access MyRWGroup ""
                                                       all none
                                 noauth exact all
access custom_grp ""
                               noauth exact custom v none none
                       any
access incremental ""
                              noauth exact custom_v none none
```