

HYDROGEN

MULTIPLE CHOICE QUESTIONS

- 1. Which of the following is formed by the action of water on sodium peroxide?
 - (A) H₂

(B) N_2

(C) o,

(D) co,

Sol. C

$$Na_2O_2 + H_2O \longrightarrow 2NaOH + 1/2O_2$$

- 2. The melting points of most of the solid substances increase with an increase of pressure acting on them. However, ice melts at a temperature lower than its usual melting point when the pressure is increased. This is because
 - (A) pressure generates heat
 - (B) the chemical bonds break under pressure
 - (C) ice is less denser than water
 - (D) ice is not a true solid

Sol. C

On increasing pressure, coordination number of ions in solids increases thus thereby increasing their melting point but in ice pressure does not increase the coordination number of oxygen & melting point does not increase but decrease under pressure.

- 3. Activated hydrogen is obtained by
 - (A) electrolysis of heavy water
 - (B) reaction of water with heavy metals
 - (C) thermal decomposition of water
 - (D) passing silent electric discharge through hydrogen gas at low pressure

Sol. D

$$H_2 \xrightarrow{\text{electric disch arg e}} 2H$$
Low pressure Activated hydrogen

Hence, (D) is correct answer.

- 4. The metal which gives hydrogen on treatment with acid as well as sodium hydroxide is
 - (A) Fe

(B) Zn

(C) Cu

(D) none of these

Sol. B

$$Zn + H_2SO_4 \longrightarrow ZnSO_4 + Na_2ZnO_2 + H_2$$

 $Zn + 2NaOH \longrightarrow Na_2ZnO_2 + H_2$

Hence (B)

- 5. The decay product of tritium is
 - $(A)_1H^1$

 $(B)_{1}H^{2}$

 $(C)_2He^3$

 $(D)_2He^4$

$$_{1}H^{3}\longrightarrow_{2}He^{3}+_{-1}e^{0}$$

- 6. Polyphosphates are used as water softening agents because they
 - (a) Form soluble complexes with anionic species
 - (b) Precipitate anionic species
 - (c) Forms soluble complexes with cationic species
 - (d) Precipitate cationic species
- **Sol.** (c)

Polyphosphates (sodium hexametaphosphates, sodium tripolyphosphate or STPP) from soluble complexes with Ca⁺², Mg⁺² present in hard water.

- 7. When the same amount of zinc is treated separately with excess of sulphuric acid and excess of sodium hydroxide, the ratio of volumes of hydrogen evolved is
 - (A) 1: 1

(B) 1: 2

(C) 2: 1

(D) 9: 4

Sol. A

$$Zn + H_2SO_4 \longrightarrow ZnSO_4 + H_2$$

$$Zn + 2NaOH \longrightarrow Na_2ZnO_2 + H_2$$

The ratio of volumes of H₂ evolved in both the cases is 1: 1.

∴ (A)

- 8. The critical temperature of water is higher than that of O₂ because H₂O molecule has
 - (a) Fewer electrons than oxygen (b) Two covalent bonds
 - (c) V-shape

(d) Dipole moment

Sol. (d)

Critical temperature of water is more than o_2 due to its dipole moment (Dipole moment of water = 1.84 D; Dipole moment of $o_2 = zero D$).

9. The reaction:

 $Ag_2O + H_2O_2 \longrightarrow 2Ag + H_2O + O_2$ takes place in

- (A) basic medium
- (B) bleaching agent
- (C) neutral medium
- (D) both in acidic and basic medium

Sol. A

H₂O₂ on oxidation gives O₂ only in basic medium

∴ (A)

- 10. One mole of calcium phosphide on reaction with excess water gives
 - (a) One mole of phosphine
 - (b) Two moles of phosphoric acid
 - (c) Two moles of phosphine
 - (d) One mole of phosphorus pentaoxide

Sol. (c)

$$\begin{array}{c} Ca_{3}P_{2} + 6H_{2}O \rightarrow 2PH_{3} + 3Ca(OH)_{2} \\ \text{(Cal. phosphide)} \\ \text{1 mole} \\ \end{array}$$

- 11. Which of the following compounds turns white on treatment with H_2O_2 ?
 - (A) HgS

(B) PbS

(C)NiS

(D) CuS

Sol. A

$$\begin{array}{ccc}
PbS + 4H_2O_2 & \longrightarrow PbSO_4 + 4H_2O \\
& \text{white}
\end{array}$$

- ∴ (B)
- 12. When zeolite, which is hydrated sodium aluminium silicate, is treated with hard water the sodium ions are exchanged with
 - (a) Hions

(b) Ca²⁺ ions

(c) Mg²⁺ions

(d) Both Ca2+ and Mg2+

Sol. (d)

Zeolite when treated with hard water exchange Cu⁺² and Mg⁺² ions (present in hard water) with Na⁺ ions.

- 13. Hard water does not contains
 - (A) Ca²⁺

(B) F⁻

 $(C) Mg^{2+}$

(D) Ba²⁺

Sol. A

14. Pick the odd one out

- (a) Sodium borohydride reacts very slowly with cold water.
- (b) Sodium borohydride reacts very violently with cold water to produce H₂.
- (c) Solubility of sodium borohydride in water at 25°C is 10.05 g/mL.
- (d) Melting point of sodium borohydride is 500°C.

Sol. (b)

Reaction of NaBH₄ with cold water is very slow. All other statements except (b) are correct.

15. Which of the following is the true structure of H_2O_2 ?

Sol. B

Oxygen atom is sp³ hybridized having two large pair of electrons. Therefore the structure of hydrogen

∴ (B)

16.	Hydrogen will not reduce	
	(a) Heated cupric oxide	(b) Heated ferric oxide
	(c) Heated stannic oxide	(d) Heated aluminium
	oxide	
Sol.	(d)	
	H ₂ will not reduce heated Al ₂ C) ₃ .
17.	A hydride of nitrogen which is acidic is	
	(A) NH ₃	(B) N_2H_4
	$(\mathbf{C}) \mathbf{N}_2 \mathbf{H}_2$	(D) N ₃ H
Sol.	D	
	N ₃ H (hydrazoic acid) is the acidic hydride of nitrogen	
	∴ (D)	
18.	HCl is added to following oxides. Which one would give	
H_2O_2		
	(a) MnO ₂	(b) PbO ₂
	(c) BaO	(d) None of these
Sol.	(d)	
	MnO ₂ , PbO ₂ and BaO will not give H ₂ O ₂ with HCl.MnO ₂ and PbO ₂ will give Cl ₂ and BaO will react with HCl to give BaCl ₂ and	
	water.	

- 19. When electric current is passed through an ionic hydride in the molten state
 - (A) hydrogen is liberated at the anode
 - (B) hydrogen is liberated at the cathode
 - (C) no reaction takes place
 - (D) hydride ion migrates towards cathode

Sol. A

Ionic hydride contains H^- ion which liberates H_2 at the anode.

∴ (A)

- 20. Heavy water is a compound of
 - (A) hydrogen& heavier isotope of oxygen
 - (B) heavier isotope of hydrogen & heavier isotope of oxygen
 - (C) oxygen& heavier isotope of hydrogen
 - (D) none of the above

Sol. C

D₂O is heavy water.

- 21. D₂0 is preferred to H₂0, as a moderator, in nuclear reactors because
 - (a) D₂O slows down fast neutrons better
 - (b) D₂O has high specific heat
 - (c) Do is cheaper

(d) None of these

Sol. (d)

 H_2O absorbs neutrons more than D_2O and this decreases the number of neutrons for the fission process.

22. Which of the following can not be oxidized by H₂O₂?

(A) KI + HC1

(B) O₃

(C) PbS

(D) Na,SO,

Sol. B

o₃ is more powerful oxidizing agent than H₂O₂. So H₂O₂ reduces O₃ toO₂.

$$O_3 + H_2O_2 \longrightarrow H_2O + 2O_2$$

∴ (B)

23. Saline hydrides react explosively with water, such fires can be extinguished by

(a) Water

(b) Carbon dioxide

(c) Sand

(d) None of these

Sol. (c)

Fire due to action of water on saline hydrides cannot be extinguished with water or co_2 . These hydrides can reduce co_2 at high temperature to produce o_2 .

- 24. When temporary hard water containing Mg(HCO₃)₂ is boiled the ppt. formed is of
 - (a) $MgCO_3$

(b) MgO

(c) $Mg(OH)_2$

(d) None of these

Sol. (c)

 $Mg(OH)_2$ is less soluble than $MgCO_3$. On boiling temporary hard water containing Mg^{+2} ions, the ppt. obtained is of $Mg(OH)_2$ are not that of $MgCO_3$.

INTEGER TYPE QUESTIONS

- 25. A commercial sample of hydrogen peroxide is labelled as 10 volume. Its percentage strength is nearly
- **Sol.** (1%)

10 volume solution of H_2O_2 is 3.035% solution i.e., 3.035 g of H_2O_2 is present in 100ml of the solution.

26. The amount of H_2O_2 present in 1 L of 1.5 NH_2O_2 solution is **Sol.** (25.5)

Strength = Normality × Eq. mass =1.5×17 (eq. mass of H_2O_2) = 25.5 gL⁻¹

27. The nuclei of tritium (H³) atom would contain neutrons

Sol. (2)

Number of neutrons = Mass number – Atomic number = 3 - 1 = 2

28. The sum of protons, electrons and neutrons in the heaviest isotope of hydrogen is

Sol. (4)

 $_{1}$ H 3 has 3 nucleons (1 proton + 2 neutrons) and one electron so sum of these is 3 + 1 = 4.

29. Number of nucleons in D₂ molecule is

Sol. (4)

 $_{1}^{2}D_{2} = (2 \text{ neutrons} + 2 \text{ protons}) = 4 \text{ nucleons}.$

30. Hydrogen has three isotopes, the number of possible diatomic molecules will be

Sol. (6)

 H^1H^1 , H^1H^2 , H^2H^2 , H^3H^3 , H^2H^3