Exercício de Solução de Problemas por meio de Algoritmos

Fase

Em diversas competições acadêmicas, como a Olimpíada Brasileira de Informática (OBI), uma certa quantidade de competidores se classifica de uma fase para a fase seguinte, garantindo uma das vagas disponíveis. Entretanto, normalmente essa quantidade é variável, pois dada uma certa quantidade mínima de classificados, é frequente que haja empate na última vaga de classificação. Neste caso, é comum que todos os competidores empatados na última colocação se classifiquem.

Sua tarefa é ajuda a calcular o número de competidores classificados para a próxima fase. Você receberá uma lista de pontuações obtidas pelos competidores e o número mínimo de vagas para a fase seguinte e você deve decidir quantos competidores de fato vão se classificar.

Entrada

A primeira linha da entrada contém um número inteiro N, $1 \le N \le 1000$, representando o número de competidores. A segunda linha conterá um inteiro K, $1 \le K \le N$, indicando o número mínimo de competidores que devem se classificar para a próxima fase. Em seguida, N linhas conterão, cada uma um número entre 1 e 1000, inclusive, correspondente à pontuação de um competidor.

Saída

Seu programa deve imprimir uma linha, contendo o número de classificados para a próxima fase.

Exemplo de entrada 1	Exemplo de saída 1
10	4
3	
1	
2	
3	
4	
5	
5	
4	
3	
2	
1	

Exemplo de entrada 2	Exemplo de saída 2
5	5
2	
500	
500	
500	
500	
500	