Appl. No.: 10/724,453

Art Unit: 3734

Reply to Office Action of 12/10/2007

Patent 19 53233-00007

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the

application:

Listing of Claims:

1. (CURRENTLY AMENDED) An endolumenal stent system, comprising:

an endolumenal stent;

a porous surface on the endolumenal stent comprising a first material and having

a plurality of pores; and

a second composite material that is different than the first material and that is

located within each of the pores and comprising a bioerodable material in combination

with a bioactive agent wherein the second composite material comprises a plurality of

particles.

2. (CANCELED)

3. (CURRENTLY AMENDED) The system of claim 1 2, wherein the particles comprise

an outer diameter that is less than about 5 microns.

4. (CURRENTLY AMENDED) The system of claim 12, wherein the particles comprise

an outer diameter that is less than about 2 microns.

5. (CURRENTLY AMENDED) The system of claim 1 2, wherein the particles comprise

an outer diameter that is less than about 1 micron.

6. (CURRENTLY AMENDED) The system of claim 1.2, wherein the particles comprise a

bioerodable polymer in combination with the bioactive agent.

2

Reply to Office Action of 12/10/2007

7. (CURRENTLY AMENDED) The system of claim 1 2, wherein:

the particles comprise an outer diameter;

the pores comprise an inner diameter; and

the inner diameter is substantially equivalent to the outer diameter.

8. (ORIGINAL) The system of claim 1, wherein the pores comprise an inner diameter that is less than about 5 microns.

- 9. (ORIGINAL) The system of claim 1, wherein the pores comprise an inner diameter that is less than about 2 microns.
- 10. (ORIGINAL) The system of claim 1, wherein the pores comprise an inner diameter that is less than about 1 micron.
- 11. (PREVIOUSLY PRESENTED) The system of claim 1, wherein the first material is inherently porous.
- 12. (Previously Presented) The system of claim 1, wherein:

the first material is not inherently porous; and

the pores are formed at discrete locations within the first material along the surface.

- 13. (PREVIOUSLY PRESENTED) The system of claim 12, wherein the pores are laser cut into the first material.
- 14. (PREVIOUSLY PRESENTED) The system of claim 12, wherein the plurality of pores are photochemically etched into the first material.
- 15. (PREVIOUSLY PRESENTED) The system of claim 12, wherein the plurality of pores are chemically etched into the first material.

Reply to Office Action of 12/10/2007

16. (PREVIOUSLY PRESENTED) The system of claim 1, wherein the first material comprises a sintered material.

- 17. (PREVIOUSLY PRESENTED) The system of claim 1, wherein:
 the endolumenal stent comprises a scaffold constructed from a third material;
 the first material comprises a coating located on the third material; and
 the pores are located within the first coating material.
- 18. (PREVIOUSLY PRESENTED) The system of claim 17, wherein the first coating material comprises a non-polymeric material.
- 19. (ORIGINAL) The system of claim 18, wherein:the non-polymeric material comprises an electrochemically deposited material.
- 20. (ORIGINAL) The system of claim 19, wherein the electrochemically deposited material comprises an electrolessly electrochemically deposited material.
- 21. (PREVIOUSLY PRESENTED) The system of claim 20, wherein the electrolessly electrochemically deposited material comprises a composite with a metal and a reducing agent of the metal.
- 22. (ORIGINAL) The system of claim 21, wherein the metal comprises nickel.
- 23. (ORIGINAL) The system of claim 22, wherein the reducing agent comprises phosphorous.
- 24. (PREVIOUSLY PRESENTED) The system of claim 22, wherein the third material comprises a stainless steel alloy.
- 25. (PREVIOUSLY PRESENTED) The system of claim 22, wherein the third material comprises a nickel-titanium alloy.
- 26. (ORIGINAL) The system of claim 21, wherein the metal comprises cobalt.

Reply to Office Action of 12/10/2007

27. (ORIGINAL) The system of claim 26, wherein the reducing agent comprises phosphorous.

- 28. (PREVIOUSLY PRESENTED) The system of claim 26, wherein the third material comprises a cobalt-chromium alloy.
- 29. (PREVIOUSLY PRESENTED) The system of claim 17, further comprising a fourth material between the first material and the third material.
- 30. (PREVIOUSLY PRESENTED) The system of claim 29, wherein the fourth material comprises an electroplated metal.
- 31. (ORIGINAL) The system of claim 30, wherein the electroplated metal comprises electroplated nickel.
- 32. (PREVIOUSLY PRESENTED) The system of claim 29, further comprising a fifth material between the fourth material and the first coating material.
- 33. (PREVIOUSLY PRESENTED) The system of claim 32, wherein: the fourth material comprises electroplated metal;

the fifth material comprises a first layer of an electrolessly electrochemically deposited composite material with a metal and a reducing agent of the metal; the first coating material comprises a second layer of an electrolessly electrochemically deposited composite material with a metal and a reducing agent of the metal; and

the second composite material is located within the pores of the first coating material.

34. (ORIGINAL) The system of claim 1, wherein the bioactive agent comprises an anti-restenosis agent.

Reply to Office Action of 12/10/2007

35. (ORIGINAL) The system of claim 1, wherein the bioactive agent comprises an anti-inflammatory agent.

- 36. (ORIGINAL) The system of claim 1, wherein the bioactive agent comprises an anti-proliferative agent.
- 37. (ORIGINAL) The system of claim 1, wherein the bioactive agent comprises an anti-proliferative agent in combination with an anti-inflammatory agent.
- 38. (ORIGINAL) The system of claim 1, wherein the bioactive agent comprises desaspartate angiotensin 1.
- 39. (ORIGINAL) The system of claim 1, wherein the bioactive agent comprises at least one of sirolimus, tacrolimus, everolimus, paclitaxel, a steroid, exochelin, dexamethasone, nitric oxide, apocynin, gamma-tocopherol, an antibody, a growth factor, a combination or blend thereof, or an analog, precursor or derivative thereof.
- 40. (ORIGINAL) The system of claim 1, wherein the ratio of the bioactive material to the bioerodable material in the composite material is at least about .5:1.
- 41. (ORIGINAL) The system of claim 1, wherein the ratio of the bioactive material to the bioerodable material in the composite material is at least about 1:1.
- 42. (ORIGINAL) The system of claim 1, wherein the ratio of the bioactive material to the bioerodable material in the composite material is at least about 1.5:1.
- 43. (ORIGINAL) The system of claim 1, wherein the bioerodable material comprises a bioerodable polymer material.
- 44. (PREVIOUSLY PRESENTED) An endolumenal stent system, comprising:
 an endolumenal stent with a substrate with an outer surface;
 a coating material coupled to the outer surface;

Appl. No.: 10/724,453

Art Unit: 3734

Reply to Office Action of 12/10/2007

a plurality of composite particles located within the coating material;

wherein the composite particles comprise a bioerodable material in combination

Patent

19 53233-00007

with a bioactive agent; and

wherein the composite particles are adapted to release the bioactive agent and

the bioerodable material is adapted to erode from the coating material when the

endolumenal stent is implanted within a body of a patient.

45. (PREVIOUSLY PRESENTED) A system for depositing a bioactive coating onto a

surface of an endolumenal stent, comprising:

a coating environment;

a plurality of metal ions within the coating environment;

a plurality of composite particles located within the coating environment and that

each comprises a composite material that comprises a bioactive agent in combination

with a bioerodable carrier material; and

wherein the coating environment is adapted to co-deposit the metal ions with the

composite particles onto the endolumenal stent surface to form a composite surface

coating when the endolumenal stent is exposed to the coating environment and such

that the co-deposited composite surface coating is adapted to elute the bioactive agent

therefrom and the bioerodable carrier material is adapted to erode therefrom when the

surface is exposed to a body of a patient.

46. (Previously Presented) A system for depositing a bioactive coating onto a

surface of an endolumenal stent, comprising:

a coating environment with a coating material;

7

K:\1953233\00007 - POROUS SURFACE BIOERODABLE BIOACTIVE COMPOSITES\00007 US\RESPONSE TO FINAL OA

DATED 12-10-07.DOC

Appl. No.: 10/724,453 Art Unit: 3734

Reply to Office Action of 12/10/2007

19 53233-00007

Patent

a plurality of composite particles located within the coating environment and that

comprise a composite material that comprises a bioerodable material in combination

with a bioactive agent;

wherein the coating environment is adapted to co-deposit the coating material

with the composite particles onto the surface so as to form a composite surface coating

that is adapted to release the bioactive agent and erode the bioerodable material from

the surface when the surfaced is exposed to a body of a patient.

47. (New) The system of claim 1, wherein the particles comprise an outer dimater

that is greater than about 1 micron and less than about 5 microns.

8