Semaine du 23/09 - Colle MP2I v.hanecart@orange.fr

Questions de cours

1 - Énoncer et démontrer la caractérisation d'une partie bornée à l'aide de la valeur absolue.

- 2 Énoncer et démontrer la formule donnant $\sum_{i=1}^{n} k$ et $\sum_{i=1}^{n} k^2$ en fonction de n.
- 3 Montrer que $\left(\sum_{i=1}^{n} a_k\right)^2 = \sum_{k=1}^{n} a_k^2 + 2 \sum_{1 \le i \le n} a_i a_j$.

Exercices sur le calcul algébrique

Exercice 1:

Soient $x \in \mathbb{R}$ et $n \in \mathbb{N}$. On pose :

$$S_n(x) = \sum_{k=0}^n x^k \text{ et } T_n(x) = \sum_{k=1}^n k x^{k-1}$$

- 1 Rappeler les valeurs de $S_n(1)$ et $T_n(1)$.
- 2 Pour $x \neq 1$, rappeler la valeur de $S_n(x)$, calculer $(1-x)T_n(x)$ et en déduire $T_n(x)$.
- 3 Pour $x \neq 1$, retrouver $T_n(x)$ en remarquant que $T_n(x) = S'_n(x)$.

Exercice 2:

Pour $n \in \mathbb{N}$, calculer les sommes suivantes :

$$A_n = \sum_{i=0}^n \left(\sum_{j=0}^n (i+j) \right), \ B_n = \sum_{i=0}^n \left(\sum_{j=0}^i ij \right) \text{ et } C_n = \sum_{i=0}^n \left(\sum_{j=0}^n \max(i,j) \right)$$

Exercice 3:

Soient $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ deux suites de nombres réels.

On définit deux suites $(A_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ par :

$$A_n = \sum_{k=0}^{n} a_k$$
 et $b_n = B_{n+1} - B_n$

- 1 Démontrer que $\sum_{k=0}^{n} a_k B_k = A_n B_n \sum_{k=0}^{n-1} A_k b_k.$
- 2 En déduire la valeur de $\sum 2^k k.$

IIIMinoration et majorations

Exercice 4:

Soient $x, y \in \mathbb{R}^*_+$. On pose :

$$m = \frac{x+y}{2}, \ g = \sqrt{xy} \text{ et } h = \frac{2}{\frac{1}{x} + \frac{1}{y}}$$

Montrer que $\min(x, y) \le h \le g \le m \le \max(x, y)$.

Exercice 5:

- Soient m et n deux entiers naturels non nuls. 1 Montrer que $\frac{m}{n}$ et $\frac{m+2n}{m+n}$ encadrent $\sqrt{2}$.
- 2 Montrer que $\frac{m+2n}{m+n}$ est plus proche de $\sqrt{2}$ que $\frac{m}{n}$.
- 3 Donner un encadrement de $\sqrt{2}$ entre deux rationnels d'amplitude inférieure à 10^{-2} .

Soient A et B deux parties de \mathbb{R} non vides. On note $AB = \{ab, a \in A \text{ et } b \in B\}$.

- 1 On suppose que A et B sont des parties de \mathbb{R}^+ .
- Si A et B sont majorées, AB est-elle aussi majorée? La réciproque est-elle vraie?
- 2 Mêmes questions en supposant que A et B sont des parties de \mathbb{R}_+^* .

IVAutres

Montrer que pour tout $n \in \mathbb{N}^*$, on a :

$$\sum_{i=1}^{n} \left(\sum_{j=1}^{n} \frac{i}{i+j} \right) = \frac{n^2}{2}$$

Indication : On pourra remarquer que $\frac{i}{i+j} = \frac{i+j-j}{i+j}$.

Exercice 8:

Combien de solutions l'équation $x^2 - |x| = 3$ admet-elle de solution?

Indication : On pourra représenter les fonctions $x \mapsto x^2 - 3$ et $x \mapsto |x|$.

Exercice 9:

Pour toutes parties A et B de \mathbb{R} , on définit $A \leq B$ par :

$$A \leq B \iff (A \cap \mathbb{R}^+ \subseteq B \cap \mathbb{R}^+) \text{ et } (B \cap \mathbb{R}^*_- \subseteq A \cap \mathbb{R}^*_-)$$

- 1 Montrer que \leq est une relation d'ordre sur $\mathcal{P}(\mathbb{R})$.
- 2 Pour toute partie de \mathbb{R} , montrer que :

$$\emptyset \leq B \iff B \subseteq \mathbb{R}^+$$

- 3 Donner une condition nécessaire et suffisante sur A pour que $A \leq \mathbb{R}$.
- 4 Pour toute partie A de \mathbb{R} , montrer que $A \leq \mathbb{R}_+$.
- 5 Existe-t-il un plus petit élément au sens de \preceq dans $\mathcal{P}(\mathbb{R})$?