ETLTC-ICETM-ICES2025 Aizu-Wakamatsu, Japan

Neuromorphic Computing: A Paradigm for Green and Sustainable Intelligent Systems

Khanh N. Dang

University of Aizu

January 21, 2025

Table of Contents

- 1 Introduction
- Neuromorphic Computing Platforms
- Our Neuromorphic Computing Systems
 - Neuromorphic Design
 - Off-set carbon emissions in training and inference
 - Sustainability in Computing
- 4 Conclusion

Environmental Impact of AI computing

Al (Artificial Intelligence) applications (e.g., deep learning, data analysis, large language models) require high-end devices, massive computational power, resulting in high energy consumption:

- Embodied carbon emission * and operational carbon emission is challenging for the environment. Al's carbon footprint is projected to range from 2.1% to 3.9% of the total share of greenhouse gas (GHG) emissions[1].
- Llama 3.1 [2] has 405 billion parameters, and requires approximately 3.8×10^25 floating-point operations to train which translates into energy consumption of around hundreds of MWh.
- NVIDIA and Amazon estimate that over 80% of their energy consumption is for AI inference [3], while Google estimates that inference accounts for around 60%[4].

A solution for green and sustainable AI is needed.

^{*}raw material extraction, manufacturing, transportation, installation, maintenance and end-of-life

Complexity of AI models

Figure 1: Rapid power hungry of training for deep learnings. Source: Intel Labs[5].

Nature-Inspiration Design

Brain Power: 50mW Weight: 2.2 grams

Can learn to

Navigates and learns unknown environments at 35km/h

Can learn to manipulate cups to drink Autonomous Drone

CPU/GPU Power: 18,000mW Weight: 40 grams

Cannot learn anything online

Pretrained to flight between known gates at walking pace

Figure 2: A brief comparison of Neuromorphic System and Conventional AI. Source: Intel Labs[5].

Neuromorphic Computing as a Solution

- Neuromorphic computing mimics the structure and functionality of biological neural systems.
- Neuromorphic hardware uses event-driven processing, activating components only when necessary, unlike traditional systems which are always running.

Figure 3: Biological Brain and Neuromorphic System.

Neuromorphic vs von Neumann

- von Neumann architectures require back-and-forth data transferring between memory and CPU/GPU: high latency and energy consumption
- Neuromorphic architectures integrate memory and processing units: minimal latency and energy.

Figure 4: von Neumann vs Neuromorphic.

Table of Contents

- Introduction
- Neuromorphic Computing Platforms
- Our Neuromorphic Computing Systems
 - Neuromorphic Design
 - Off-set carbon emissions in training and inference
 - Sustainability in Computing
- 4 Conclusion

Key Concepts of Neuromorphic Computing

- Input and output: events (or spikes).
- Communication: address event representation.
- Computation:
 - $oldsymbol{1}$ incoming spikes are multiplied with synaptic weights ightarrow weighted inputs
 - 2 weighted inputs are accumulated to the membrane potential
 - 3 once the membrane potential crosses the threshold, the neuron issues outgoing spikes and reset the membrane potential.

Figure 5: Spiking Neuron Model.

Neuromorphic Computing Platforms (1/2)

- **Software Platform:** compute neuromorphic system in von Neumann machine using Machine Learning frameworks.
 - Examples: BindsNet[6], NEST[7], Brian[8].
 - Main objectives: neuroscience study and fast development of neuromorphic algorithms.
- Hardware Platform: Compute neuromorphic system with application-specific chips for neuromorphic.
 - Examples: IBM TrueNorth[9], Intel Loihi[10], SpiNNaker[9] (SpiNNaker use ARM processors), BrainScaleS[11], FPGA-based[12].
 - Main objectives: low-power & low-latency inferences.

Neuromorphic Computing Platforms (2/2)

	Human Brain	SpiNNaker[9]	HiCANN/BrainScaleS[11]	TrueNorth[9]	Loihi[10]
Neurons	100 billion	1 billion	pprox 4 million	1 million	131,072
- using	1.4 kg	10 racks	20 wafers	1 chip	1 chip
Mean synapses per neuron	7,000	Prog.	224	256	1,000
Max synapses per neuron	\approx 15,000	Prog.	14,336	256	1,000
Energy per spike	8 fJ	4 nJ	0.1-10 nJ	26 pJ	>23.6 p.
- compared to brain	1	500,000	12,500-1,250,000	3,250	>2,950
Speed up	1	1	$10^3 - 10^5$	1	1
Run time plasticity	Yes	Prog.	STDP	No	STDP
Neuron model	Diverse	Prog.	Adaptive exponential	LIF	LIF

Table 1: Comparison of Neuromorphic Architectures

- The Human Brain has a massive scale in terms of neurons and synapses.
- The Human Brain has exceptional energy consumption.

Table of Contents

- Introduction
- Neuromorphic Computing Platforms
- 3 Our Neuromorphic Computing Systems
 - Neuromorphic Design
 - Off-set carbon emissions in training and inference
 - Sustainability in Computing
- 4 Conclusion

Challenges and Research Directions

Although neuromorphic computing can offer low-power solutions, there are some existing challenges to be addressed

- Training for Neuromorphic Systems: Designing effective training algorithms for neuromorphic systems is challenging due to their non-differentiable nature and reliance on event-driven spiking activity.
- Reaching Carbon-Neutrality or Net-Zero Computing: Achieving carbon-neutrality in computing requires minimizing energy consumption and adopting sustainable practices throughout the hardware lifecycle, from design to operation and recycling.

Toward Net-Zero Neuromorphic Design (1/2)

3D Stacking Memory

Mth Memory Die - m_M.

Figure 6: Overview of our system: (a) 3D stacking memory with M layers; (b) Approximate Stack Memory; (c) Computing Core; (d) LIF neuron.

(a)

Synaptic Weight Transformation W₁[0:n-1] = 110001 ... 1101

Toward Net-Zero Neuromorphic Design (2/2)

Our Neuromorphic Design[†]

- 3D-Integrated Circuit-based Stacking Memory: support weight decomposition for approximation.
- Approximation Circuits for Neuron: support inaccurate adders with low-power consumption.
- On-Chip Learning: Spike-timing-dependent plasticity.
- Neural Searching Platform: Evolutionary Algorithm to search for approximate adders and approximation level in memory.

T"Energy-Efficient Spiking Neural Networks Using Approximate Neuron Circuits and 3D Stacking Memory", https://ieeexplore.ieee.org/document/10819545

[&]quot;Power-aware Neuromorphic Architecture with Partial Voltage Scaling 3D Stacking Synaptic Memory" https://ieeexplore.ieee.org/document/10269541

Evaluation Results

Model	MNIST Acc.(%)	Arch.	Tech.	Energy per SOP (pJ)	Energy per SOP (pJ) (in 14nm)
TrueNorth [13]	91.94	2D	28nm	26 (0.775V)	4.902
Loihi [10]	96	2D	14nm FinFET	23.6 (0.75V)	23.6
ODIN [14]	84.5	2D	28nm FD-SOI	8.4	1.078
NASH [15]	79.4	3D	45nm	11.3 (1.1V)	0.648
[16]	95.35 94.84 88.77	3D	45nm	244.28 191.46 81.16	14.02 10.98 4.65
[17]	94.8 93.9 77.6	3D	45nm	20.33 13.28 8.374	1.167 0.762 0.48
Ours	97.74 ¹ 97.11 ² 94.57 ³ 90.30 ⁴ 86.38 ⁵	3D	45nm	8.797 ¹ 5.163 ² 3.057 ³ 5.900 ⁴ 3.898 ⁵	0.504^{1} 0.296^{2} 0.175^{3} 0.338^{4} 0.223^{5}

¹ Case 1: Accurate implementation (four-layer model).

² Case 2: $V_{DD} = 0.8V$ in UV3 mode using the configuration X_1 .

 $^{^3}$ Case 3: $V_{DD} = 0.8V$ in UV-PG3 mode using the configuration X_1 . 4 Case 4: $V_{DD} = 0.7V$ in UV-PG1 mode using the configuration Y_3 .

⁵ Case 5: $V_{DD} = 0.8V$ in UV-PG3 mode using the configuration Y_3 .

case 5. VDD = 0.0V III OV-1 G5 III ode using the configuration

Evaluation Results

Model	MNIST Acc.(%)	Arch.	Tech.	Energy per SOP (pJ)	Energy per SOF (pJ) (in 14nm)
TrueNorth [13]	91.94	2D	28nm	26 (0.775V)	4.902
Loihi [10]	96	2D	14nm FinFET	23.6 (0.75V)	23.6
ODIN [14]	84.5	2D	28nm FD-SOI	8.4	1.078
NASH [15]	79.4	3D	45nm	11.3 (1.1V)	0.648
[16] 6 !		3D	45nm	similar accuracy l	10.98
[17]	94.8 93.9 77.6	3D	45nm	20.33 13.28 8.374	0.762 0.48
Ours	97.74 ¹ 97.11 ² 94.57 ³ 90.30 ⁴ 86.38 ⁵	3D	45nm	8.797 ¹ 5.163 ² 3.057 ³ 5.900 ⁴ 3.898 ⁵	0.504^{1} 0.296^{2} 0.175^{3} 0.338^{4} 0.223^{5}

¹ Case 1: Accurate implementation (four-layer model).

² Case 2: $V_{DD} = 0.8V$ in UV3 mode using the configuration X_1 .

 $^{^{3}}$ Case 3: $V_{DD}=0.8V$ in UV-PG3 mode using the configuration X_{1} .

⁴ Case 4: $V_{DD} = 0.7V$ in UV-PG1 mode using the configuration Y_3 .

 $^{^{5}}$ Case 5: $V_{DD}=0.8\,V$ in UV-PG3 mode using the configuration Y_{3} .

Distributed On-Chip Learning

THE UNIVERSITY OF AIZU

- Train on-chip learning in remote devices.
- Upload and synthesize the sub-models into a single models.

Figure 7: Ensemble STDP learning.^c

Table 2: 300 neurons model and merging 5×100 neurons sub-models.

Model	[18]	Ours	
#neurons	300	300 (5×100-200)	
Training Time (minutes)	53.13	10.58	
Classification Accuracy	88.87%	85.42%	

Table 3: 300 neurons model and merging 2×250 neurons sub-models.

[18]	Ours	
300 300 (2×250-2		
53.13	26.8	
88.87%	89.28%	
	300 53.13	

c"EnsembleSTDP: Distributed in-situ Spike Timing Dependent Plasticity Learning in Spiking Neural Networks", https://ieeexplore.ieee.org/document/10819516

- Train with 60K images, 1000 neurons.
- Local Node: Low-power Intel Chip. 10 Nodes.
- Server Node: GPU 4070 GPU + Ryzen 7.

Table 4: Energy Consumption for Distributed STDP learning.

Model	[18] on Server	Ours: Local Node + Server	
#neurons	1000	1000 (2×100)	
Training Energy (Jules)	111,320	85,410	
Data Transfer Energy (Jules)	17.82	2.4552	
Merging Energy (Jules)	0	52.52	
Total Energy (Jules)	111337.82	85464.97 (-23.24%)	

- Local Node with an average power consumption of 2.19 Watt
- Can be offset by power harvesting (solar power). Estimate with Quartz Solar Forecast → Carbon-neutrality in computing (training and inferencing).

Sustainable AI computing (1/2)

Besides the energy challenges, one of the critical issues is the hardware lifecycle.

- Defective devices after manufacturing lead to wasted energy and carbon emissions. According to Apple[19], 75% of carbon emissions belong to manufacturing while 19% belong to operation.
- Aging and wear-out are also major concerns on environmental impact.
 e-waste is a huge problem for the environement.

Our solutions:

- Reducing the embodied carbon footprint in manufacturing with yield improvement.
- Extending lifetime expectancy with reliability improvement approaches.

Sustainable AI computing (2/2)

Figure 8: (a) Original neuron allocation. (b) Faults occurrence. (c) Recovery solution.

Junkyard Computing (compute with inferior hardware)§:

- Study Al models to find critical and non-critical neurons and memory blocks.
- Reallocate faulty neurons/memory blocks for non-critical ones.

^{§ &}quot;NOMA: A Novel Reliability Improvement Methodology for 3-D IC-based Neuromorphic Systems", IEEE Transactions on Components, Packaging and Manufacturing Technology, 2024. https://ieeexplore.ieee.org/document/10738829/

Results

Table 5: Comparison Results to Existing Works.

	Our work	ReSpawn [20]	SoftSNN [21]
Network Size	784:256:256:10	784:400	784:400
Hardware Architecture	3-D SNN	2-D SNN	2-D SNN
Benchmark	MNIST	MNIST	MNIST
Tolerance Technique	Swapping Weights	Fault-Aware Mapping	Bound-and- Protect
Bit Error Rate	0.10	0.10	0.10
Baseline Accuracy	97.78%	$\sim 86\%^1$	$\sim 86\%^1$
Accuracy Loss	0.01-0.24%	$\sim 10\%^1$	$\sim 12\%^1$

¹ We calculated the accuracy loss based on the provided images.

Table 5: Comparison Results to Existing Works.

	Our work	ReSpawn [20]	SoftSNN [21]
Network Size	784:256:256:10	784:400	784:400
Hardware Architecture	3-D SNN	2-D SNN	2-D SNN
Maintain at r	nost 0.24% acc	uracy loss at 10%	error rate.
Tolerance Technique	Swapping Weights	Fault-Aware Mapping	Bound-and- Protect
Bit Error Rate	0.10	0.10	0.10
Baseline Accuracy	97.78%	$\sim 86\%^1$	$\sim 86\%^1$
Accuracy Loss	0.01-0.24%	$\sim 10\%^1$	$\sim 12\%^1$

¹ We calculated the accuracy loss based on the provided images.

Table of Contents

- Introduction
- Neuromorphic Computing Platforms
- 3 Our Neuromorphic Computing Systems
 - Neuromorphic Design
 - Off-set carbon emissions in training and inference
 - Sustainability in Computing
- 4 Conclusion

Conclusion and Future Outlook

Conclusion:

- Neuromorphic computing provides a **low-power**, **efficient solution** to the increasing energy demands of AI.
- Innovative designs, such as event-driven spiking neural networks and approximate 3D-stacked memory, promise significant energy savings.
- Towarding sustainable Al computing not just including energy consumption but also managing device lifecycle.

Future Directions:

- Integrate sustainability goals into hardware lifecycle management.
- Tailor the approach on scheduling to efficiently off-set the carbon emission.

References (1/2)

- K. Kirkpatrick, "The carbon footprint of artificial intelligence," Commun. ACM, vol. 66, p. 17–19, July 2023.
- [2] A. . M. Llama Team, "The llama 3 herd of models," arXiv preprint arXiv:2407.21783, 2024.
- [3] J. McDonald et al., "Great power, great responsibility: Recommendations for reducing energy for training language models," arXiv preprint arXiv:2205.09646, 2022.
- [4] D. Patterson, "Good news about the carbon footprint of machine learning training." https://blog.research.google/2022/02/goodnews-about-carbon-footprint-of.html, 2022. Accessed: 2025-01-14.
- [5] Intel Corporation, "Neuromorphic computing." https://www.intel.com/content/www/us/en/research/neuromorphic-computing.html, 2025. Accessed: 2025-01-14.
- [6] H. Hazan, D. J. Saunders, H. Khan, D. Patel, D. T. Sanghavi, H. T. Siegelmann, and R. Kozma, "Bindsnet: A machine learning-oriented spiking neural networks library in python," Frontiers in neuroinformatics, vol. 12, p. 89, 2018.
- [7] J. M. Eppler, M. Helias, E. Muller, M. Diesmann, and M.-O. Gewaltig, "Pynest: a convenient interface to the nest simulator," Frontiers in neuroinformatics, vol. 2, p. 363, 2009.
- [8] D. F. Goodman and R. Brette, "The brian simulator," Frontiers in neuroscience, vol. 3, p. 643, 2009.
- [9] E. Painkras, L. A. Plana, J. Garside, S. Temple, F. Galluppi, C. Patterson, D. R. Lester, A. D. Brown, and S. B. Furber, "Spinnaker: A 1-w 18-core system-on-chip for massively-parallel neural network simulation," *IEEE Journal of Solid-State Circuits*, vol. 48, no. 8, pp. 1943–1953, 2013.
- [10] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou, P. Joshi, N. Imam, S. Jain, et al., "Loihi: A neuromorphic manycore processor with on-chip learning," *Ieee Micro*, vol. 38, no. 1, pp. 82–99, 2018.
- [11] C. Pehle, S. Billaudelle, B. Cramer, J. Kaiser, K. Schreiber, Y. Stradmann, J. Weis, A. Leibfried, E. Müller, and J. Schemmel, "The brainscales-2 accelerated neuromorphic system with hybrid plasticity," Frontiers in Neuroscience, vol. 16, p. 795876, 2022.

References (2/2)

- [12] Y. Liu, Y. Chen, W. Ye, and Y. Gui, "Fpga-nhap: A general fpga-based neuromorphic hardware acceleration platform with high speed and low power," *IEEE Transactions on Circuits and Systems I: Regular Papers*, vol. 69, no. 6, pp. 2553–2566, 2022.
- [13] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam, et al., "Truenorth: Design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip," *IEEE transactions on computer-aided design of integrated circuits and systems*, vol. 34, no. 10, pp. 1537–1557, 2015.
- [14] C. Frenkel et al., "A 0.086-mm² 12.7-pJ/SOP 64k-Synapse 256-Neuron Online-Learning Digital Spiking Neuromorphic Processor in 28-nm CMOS," vol. 13, no. 1, pp. 145–158, 2018.
- [15] O. M. Ikechukwu et al., "On the Design of a Fault-Tolerant Scalable Three Dimensional NoC-Based Digital Neuromorphic System With On-Chip Learning," IEEE Access, vol. 9, pp. 64331–64345, 2021.
- [16] N.-D. Nguyen et al., "Power-Aware Neuromorphic Architecture With Partial Voltage Scaling 3-D Stacking Synaptic Memory," vol. 31, no. 12, pp. 2016–2029, 2023.
- [17] R. Kobayashi et al., "Energy-Efficient Spiking Neural Networks Using Approximate Neuron Circuits and 3D Stacking Memory," in 17th International Symposium on Embedded Multicore/Many-core Systems-on-Chip, IEEE, 2024.
- [18] P. U. Diehl and M. Cook, "Unsupervised learning of digit recognition using spike-timing-dependent plasticity," Frontiers in computational neuroscience, vol. 9, p. 99, 2015.
- [19] A. Inc., "Environment apple," 2024. Accessed: 2024-01-15.
- [20] R. V. W. Putra et al., "ReSpawn: Energy-Efficient Fault-Tolerance for Spiking Neural Networks considering Unreliable Memories," in 2021 IEEE/ACM ICCAD, pp. 1–9, 2021.
- [21] R. V. W. Putra et al., "SoftSNN: low-cost fault tolerance for spiking neural network accelerators under soft errors," in Proceedings of the 59th ACM/IEEE DAC, (New York, USA), p. 151–156, 2022.

Thank you for your attention!