## Devoir maison n°6: Nombres Heureux

Jules Charlier, Thomas Diot, Pierre Gallois, Jim Garnier 1E1

## Problème A - Description de l'algorithme

- 1) En éxécutant l'algorithme pour n=12 345, on trouve que son image est de 55. En l'éxécutant encore, on confirme bien que  $157 \rightarrow 75 \rightarrow 74 \rightarrow 65$ .
- **2)** A chaque itération, l'algorithme calcule le dernier chiffre r en base 10 du nombre d, ajoute à la somme p le carré de r et pose d comme le d précédant, sans son dernier chiffre en base 10.

L'algorithme calcule donc la somme des carrés des chiffres en base 10 du nombre n.

- **3)** a) Les nombres 157, 175, 517, 571, 715 et 751 ont les mêmes chiffres en base 10 : leurs images par la fonction karma sont donc identiques.
- **b)** Soit  $p \in \mathbb{N}^*$ . Alors le nombre  $n_0 = \overline{1...1}$  avec p chiffres 1 est un antécédant de p par la fonction karma. De plus, si  $k \in \mathbb{N}^*$ , alors le nombre  $10^k n_0$  a p chiffres 1 et k chiffres 0 : c'est donc aussi un antécédant de p par karma.

Donc p a une infinité d'antécédants par la fonction karma.

c) Montrons par l'absurde que 157 n'a pas d'antécédant à 3 chiffres par la fonction karma, en supposant que  $\overline{abc}$  soit un antécédant de 157.

Donc 157 n'a pas d'antécédant à 3 chiffres. Cependant, 8852 est un antécédant à 4 chiffres de 157.

## Problème B - Trajectoire des nombres inférieurs à 100

1) Réimplémentation de la fonction karma en python et en typst.

```
def karma(n):
    """Calcule la somme des carrés
des chiffres de n"""
    d = n
    p = 0
    while d != 0:
        r = d%10
        d //= 10
        p += r**2
    return p
```

```
#let karma(n) = {
  let d = n
  let p = 0
  while d != 0 {
   let r = calc.rem-euclid(d, 10)
      d = calc.div-euclid(d, 10)
      p += calc.pow(r, 2)
  }
  p
}
```

Création de la fonction heureux permettant de déterminer si un nombre n est heureux ou non :

```
def heureux(n):
    """
    Renvoie True si le nombre converge
dans le puit 1,
    sinon False
    """
    image = karma(n)
    while image != 1:
        # Teste si le nombre est arrivé
dans la boucle
        if image == 89:
            return False
        image = karma(image)
    return True
```

```
#let heureux(n) = {
  let image = karma(n)
  while image != 1 {
    if image == 89 {
      return false
    }
    image = karma(image)
  }
  true
}
```

Seul un nombre de la boucle (89) est testé pour simplifier le programme, la perte de vitesse engendrée est négligeable.

Pour obtenir la liste des nombreux heureux strictement inférieurs à 100, il suffit d'éxecuter le code python [n for n in range(1, 101) if heureux(n)].

On récapitule le résultat dans le tableau suivant :

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | X | Н | m | m | m | m | m | Н | m | m |
| 1 | Н | m | m | Н | m | m | m | m | m | Н |
| 2 | m | m | m | Н | m | m | m | m | Н | m |
| 3 | m | Н | Н | m | m | m | m | m | m | m |
| 4 | m | m | m | m | Н | m | m | m | m | Н |
| 5 | m | m | m | m | m | m | m | m | m | m |
| 6 | m | m | m | m | m | m | m | m | Н | m |
| 7 | Н | m | m | m | m | m | m | m | m | Н |
| 8 | m | m | Н | m | m | m | Н | m | m | m |
| 9 | m | Н | m | m | Н | m | m | Н | m | m |

Il n'existe pas de nombre strictement inférieur à 100 qui soit ni heureux ni malheureux.

**2)** On utilise l'algorithme suivant pour calculer la probabilité qu'un nombre choisit au hasard entre 1 et 100 soit heureux :

```
def probabilite(Nmax):
    """
    Calcule la probabilite qu'un nombre inferieur à Nmax soit heureux
    """
    return (
        [
            heureux(n) for n in range(1, Nmax+1)
        ].count(True)
        / Nmax
)
```

On obtient une probabilité de 20%.

## Problème C - Trajectoires des nombres de chiffres

1)

2)

3)