Álgebra Linear Avançada Operadores Autoadjuntos

Adriano Moura

Unicamp

2020

Adjunta de uma Transformação Linear

Sejam $\phi \in B(V), \psi \in B(W)$ e $T \in \text{Hom}_{\mathbb{F}}(V, W)$. Uma função $S: W \to V$ é dita uma adjunta de T à direita com respeito a (ϕ, ψ) se

$$\phi(v,S(w)) = \psi(T(v),w) \ \forall \ v \in V, \ w \in W.$$

Se $\phi \in B_s(V)$ e $\psi \in B_s(W)$, esta condição é equivalente a

$$\phi(S(w), v) = \psi(w, T(v)) \quad \forall \quad v \in V, \ w \in W$$

e o mesmo ocorre se $\phi \in B_a(V)$ e $\psi \in B_a(W)$. Em geral estas condições são distintas e uma função S satisfazendo a segunda condição é dita uma adjunta de T à esquerda com respeito a (ϕ, ψ) .

Lema 9.6.2

Suponha que ϕ é não degenerada à direita.

- \bullet Se S é adjunta à direita de T, então S é linear.
- \bullet Se S_1 e S_2 forem adjuntas à direita de T, então $S_1 = S_2$.

Denotaremos por T_{ψ}^{ϕ} a adjunta à direita de T com respeito a (ϕ, ψ) quando ela existir e ϕ for não degenerada à direita.

Demonstração do Lema 9.6.2

Como ϕ é não degenerada à direita, (a) segue se mostrarmos que

$$S(w_1+\lambda w_2)-S(w_1)-\lambda S(w_2)\in \mathcal{N}(D_\phi) \ \forall \ w_1,w_2\in W, \lambda\in \mathbb{F},$$
 ou, equivalentemente,

$$\phi(v, S(w_1 + \lambda w_2) - S(w_1) - \lambda S(w_2)) = 0 \quad \forall \quad v \in V, w_1, w_2 \in W, \lambda \in \mathbb{F}.$$

De fato,

$$\phi(v, S(w_1 + \lambda w_2)) = \psi(T(v), w_1 + \lambda w_2) = \psi(T(v), w_1) + \lambda \psi(T(v), w_2)$$

= $\phi(v, S(w_1)) + \lambda \phi(v, S(w_2)) = \phi(v, S(w_1) + \lambda S(w_2)).$

Para mostrar (b), mostremos que $S_1(w) - S_2(w) \in \mathcal{N}(D_{\phi}) \ \forall \ w \in W$:

$$\phi(v, S_1(w) - S_2(w)) = \phi(v, S_1(w)) - \phi(v, S_2(w))$$

= $\psi(T(v), w) - \psi(T(v), w) = 0 \quad \forall \quad v \in V, w \in W.$

Exercício: Se α for base de V e β de W, $[T_{\psi}^{\phi}]_{\alpha}^{\beta} = [\phi]_{\alpha}^{-1} ([T]_{\beta}^{\alpha})^{t} [\psi]_{\beta}$.

Existência

Proposição 9.6.3

Se $\dim(V) < \infty$ e ϕ é não degenerada, existe adjunta à direita de T.

Dem.: As hipóteses garantem que D_{ϕ} é bijetora. Assim, podemos considerar $W \xrightarrow{S} V$

Por definição de D_{ϕ} , dada $f \in V^*$, temos

$$u = D_{\phi}^{-1}(f)$$
 \Leftrightarrow $f(v) = \phi(v, u) \ \forall \ v \in V.$

Ou seja,

$$f(v) = \phi(v, D_{\phi}^{-1}(f)) \quad \forall v \in V, f \in V^*.$$

Assim, $\phi(v, S(w)) = \phi\left(v, D_{\phi}^{-1}(T^{t}(D_{\psi}(w)))\right) = \left(T^{t}(D_{\psi}(w))\right)(v)$ = $(D_{\psi}(w))(T(v)) = \psi(T(v), w) \quad \forall \quad v \in V, \ w \in W.$

Algumas Propriedades

Exercício: Sejam $\phi \in B(V), \psi \in B(W), \xi \in B(U)$ e suponha que V e W têm dimensão finita e ϕ e ψ sejam não degeneradas. Mostre que:

- Se $T \in \operatorname{Hom}_{\mathbb{F}}(V, W)$ é invertível, então $(T^{-1})^{\psi}_{\phi} = (T^{\phi}_{\psi})^{-1}$.
- Se $T \in \operatorname{Hom}_{\mathbb{F}}(V, W)$, vale $(T_{\psi}^{\phi})_{\phi}^{\psi} = T$.

Suponha, $\dim(V) < \infty, \phi \in B_{as}(V)$ é ϕ não degenerada e $\psi \in B_{as}(W)$.

Lema 9.6.5

- Se ψ é não degenerada, $\mathcal{N}(T) = Im(T_{\psi}^{\phi})^{\perp_{\phi}}$. Em particular, T é injetora se, e só se, T_{ψ}^{ϕ} for sobrejetora. Além disso, se $\mathcal{N}(T)$ for não degenerado, $V = \mathcal{N}(T) \oplus Im(T_{\psi}^{\phi})$.
- $\mathcal{N}(T_{\psi}^{\phi}) = Im(T)^{\perp_{\psi}}$. Assim, se ψ é não degenerada, T_{ψ}^{ϕ} é injetora se, e só se, T for sobrejetora. Além disso, se $\dim(W) < \infty$ e ambos W e $\mathcal{N}(T_{\psi}^{\phi})$ forem não degenerados, $W = \mathcal{N}(T_{\psi}^{\phi}) \oplus Im(T)$.

Demonstração do Lema 9.6.5

Sendo ψ não degenerada,

$$v \in \mathcal{N}(T)$$
 \Leftrightarrow $\psi(T(v), w) = 0 \ \forall \ w \in W.$

Logo,

$$v \in \mathcal{N}(T)$$
 \Leftrightarrow $\phi(v, T_{\psi}^{\phi}(w)) = 0 \ \forall \ w \in W,$

demonstrando a primeira afirmação em (a). A segunda afirmação segue da primeira observando que, como ϕ é não degenerada, para um subespaço U de V vale: $U^{\perp_{\phi}} = \{0\} \Leftrightarrow U = V$. Para a última afirmação, sendo $\mathcal{N}(T)$ não degenerado, segue que $V = \mathcal{N}(T) \oplus \mathcal{N}(T)^{\perp_{\phi}}$ pela Proposição 9.4.3. Assim, pela primeira afirmação

$$V = \mathcal{N}(T) \oplus (Im(T_{\psi}^{\phi})^{\perp_{\phi}})^{\perp_{\phi}} \stackrel{*}{=} \mathcal{N}(T) \oplus Im(T_{\psi}^{\phi}),$$

onde * segue da Proposição 9.4.1(c). Isso demonstra a parte (a).

A demonstração da parte (b) é idêntica e fica de exercício.

O último objetivo é obter uma versão dos teoremas espectrais estudados na Seção 7.5 no contexto de formas bilineares simétricas.

Operadores Auto-Adjuntos

Suponha então que $\phi \in B_s(V)$ e $T \in \operatorname{End}_{\mathbb{F}}(V)$. Denotaremos a adjunta de T com respeito a (ϕ, ϕ) simplesmente por T^{ϕ} . T é dito auto-adjunto (com respeito a ϕ) se $T^{\phi} = T$, i.e., $\phi(T(v), w) = \phi(v, T(w)) \ \forall \ v, w \in V$.

Teorema Espectral

Suponha que \mathbb{F} é algebricamente fechado, $\operatorname{car}(\mathbb{F}) \neq 2$ e que V é anisotrópico com respeito a ϕ . Existe base ortogonal de V com repeito a ϕ formada por autovetores de T se, e somente se, T for auto-adjunto.

Suponha que α seja base ortogonal de V com repeito a ϕ formada por autovetores de T, de modo que

$$[T]^{\alpha}_{\alpha} = \operatorname{diag}(\lambda_1, \dots, \lambda_n) \quad e \quad [\phi]_{\alpha} = \operatorname{diag}(\mu_1, \dots, \mu_n).$$

$$\text{Como } [T^\phi]^\alpha_\alpha = [\phi]^{-1}_\alpha \ ([T]^\alpha_\alpha)^t \ [\phi]_\alpha, \text{ segue que } [T^\phi]^\alpha_\alpha = [T]^\alpha_\alpha, \text{ i.e., } T^\phi = T.$$

Lema 9.6.6

Suponha que T seja autoadjunto com respeito a ϕ .

- \odot Os auto-espaços de T são mutuamente ortogonais.
- Se $v \in V_{\lambda}$, então $\{v\}^{\perp_{\phi}}$ é T-invariante.

Demonstração do Teorema Espectral

Suponha que T é auto-adjunto. Como $\mathbb F$ é algebricamente fechado, existe um autovetor w para T. Seja W=[w]. Como V é anisotrópico, W é não degenerado e, portanto, $V=W\oplus W^{\perp_\phi}$. Como ϕ é não degenerada, W^{\perp_ϕ} é não degenerado e, pela parte (b) do lema anterior, W^{\perp_ϕ} é T-invariante.

Assim, procedendo por indução na dimensão de V (que obviamente se inicia), existe base α de $W^{\perp_{\phi}}$ ortogonal com respeito a ϕ e formada por autovetores de T. Logo, $\beta = \alpha \cup \{w\}$ é uma base ortogonal de V com repeito a ϕ formada por autovetores de T.

Se $\mathbb{F} = \mathbb{R}$ e ϕ é um p.i. o teorema continua válido. Precisamos garantir existência de autovetor. Para isso, precisamos das teorias de produto interno e adjunta hermitiana em espaços complexos. Se V é \mathbb{C} -espaço vetorial, $\phi: V \times V \to \mathbb{C}$ é dita um p.i. em V se for linear na 1^a entrada,

$$\phi(u,v) = \overline{\phi(v,u)} \quad \forall \quad u,v \in V \quad \text{e} \quad \phi(v,v) \in \mathbb{R}_{>0} \quad \text{se} \quad v \neq 0.$$

Se $\alpha = v_1, \ldots, v_n$ é base de V e $[\phi]_{\alpha} = (\phi(v_j, v_i))_{(i,j)}$, temos $\phi(u, v) = [v]_{\alpha}^* [\psi]_{\alpha} [u]_{\alpha}$. Note que $[\phi]_{\alpha} = ([\phi]_{\alpha})^*$ e $[\phi]_{\beta} = ([I]_{\alpha}^{\beta})^* [\phi]_{\alpha} [I]_{\alpha}^{\beta}$.

Operadores Normais

A definição de adjunta de uma transformação linear com respeito a produtos internos dados é a mesma. A verificação de unicidade requer pouca modificação e a de existência requer um pouco mais de atenção. Alternativamente, ver Proposição 7.4.9.Além disso,

$$[T^{\phi}]^{\alpha}_{\alpha} = [\phi]^{-1}_{\alpha} ([T]^{\alpha}_{\alpha})^* [\phi]_{\alpha}$$

Se α é base ortonormal de V com repeito a ϕ formada por autovetores de T, temos $[T]^{\alpha}_{\alpha} = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ e $[\phi]_{\alpha} = I$. Com isso, segue que

$$[T]^{\alpha}_{\alpha}[T^{\phi}]^{\alpha}_{\alpha} = [T^{\phi}]^{\alpha}_{\alpha}[T]^{\alpha}_{\alpha}.$$

Té dito normal se $T\circ T^\phi=T^\phi\circ T.$ Operadores auto-adjuntos são normais.

Teorema Espectral

Se V é um \mathbb{C} -espaço vetorial e ϕ é produto interno em V, existe base ortogonal de V com respeito a ϕ formada por autovetores de T se, e somente se, T for normal.

Demonstração do T. Espectral para Produtos Internos

Lema 7.5.3

Suponha que T seja normal.

- \odot Os auto-espaços de T são mutuamente ortogonais.
- \circ Se $v \in V_{\lambda}$, então $\{v\}^{\perp}$ é T-invariante.

Dem.: Escrevendo $\phi(v, w) = \langle v, w \rangle$ e $||v||^2 = \phi(v, v)$, temos

$$\begin{split} \|T^{\phi}(v) - \overline{\lambda}v\|^2 &= \langle T^{\phi}(v), T^{\phi}(v) \rangle - \lambda \langle T^{\phi}(v), v \rangle - \overline{\lambda} \langle v, T^{\phi}(v) \rangle + |\lambda|^2 \ \|v\|^2 \\ &= \langle v, (T \circ T^{\phi})(v) \rangle - \lambda \langle v, T(v) \rangle - \overline{\lambda} \langle T(v), v \rangle + |\lambda|^2 \ \|v\|^2 \\ &= \langle v, (T^{\phi} \circ T)(v) \rangle - \lambda \langle v, \lambda v \rangle - \overline{\lambda} \langle \lambda v, v \rangle + |\lambda|^2 \ \|v\|^2 \\ &= \langle T(v), T(v) \rangle - |\lambda|^2 \ \langle v, v \rangle = 0. \end{split}$$

Suponha agora que $v \in V_{\lambda}, w \in V_{\mu}$ e $\lambda \neq \mu$ e mostremos que $v \perp w$:

$$\lambda \langle v, w \rangle = \langle T(v), w \rangle = \langle v, T^{\phi}(w) \rangle = \langle v, \overline{\mu}w \rangle = \mu \langle v, w \rangle.$$

Segue que $(\lambda - \mu)\langle v, w \rangle = 0$ e, portanto, $\langle v, w \rangle = 0$.

Finalmente, se $w \perp v$: $\langle T(w), v \rangle = \langle w, T^{\phi}(v) \rangle = \lambda \langle w, v \rangle = 0 \Rightarrow T(w) \perp v$.

Corolário 7.5.4

Se $\mathbb{F} = \mathbb{R}$, T é normal e c_T fatora em produto de termos de grau 1, existe base ortogonal de V formada por autovetores de T.

Lema 7.5.5

Se T é auto-adjunto, todas as raízes de seu polinômio característico, visto como elemento de $\mathcal{P}(\mathbb{C})$, são números reais.

Dem.: Visto como elemento de $\mathcal{P}(\mathbb{C})$, temos $c_T(t) = \prod_{j=1}^n (t - \lambda_j)$ com $\lambda_j \in \mathbb{C}$. Porém, λ_j é autovalor de T se, e somente se, $\lambda_j \in \mathbb{F}$.

Seja α uma base ortonormal de V. Considere $W=\mathbb{C}^n$ e seja ψ o produto interno usual em W. Considere também o único operador linear S em W que satisfaz $[S]^{\beta}_{\beta}=[T]^{\alpha}_{\alpha}$, sendo β a base canônica.

Como T é auto-adjunto e α é ortonormal, vale $([T]^{\alpha}_{\alpha})^* = [T]^{\alpha}_{\alpha}$. Então, por definição de S e ψ , segue que $([S]^{\beta}_{\beta})^* = [S]^{\beta}_{\beta}$. Logo, S é auto-adjunto. Como $c_T = c_S$, segue que λ_j é autovalor de S para todo $1 \leq j \leq n$.

Seja λ um autovalor de S e $w \in W_{(S-\lambda I_W)} \setminus \{0\}$. Sendo S auto-adjunto, temos $\lambda \langle w, w \rangle = \langle S(w), w \rangle = \langle w, S(w) \rangle = \overline{\lambda} \langle w, w \rangle.$

Assim, $\lambda = \overline{\lambda}$, mostrando que $\lambda \in \mathbb{R}$.

