Organizatorzy: Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki Oddział Kujawsko-Pomorski Polskiego Towarzystwa Informatycznego Centrum Kształcenia Ustawicznego TODMiDN w Toruniu

PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI STYCZEŃ 2018

	Arkusz I
Czas pracy: 60 minut	Liczba punktów do uzyskania: 15

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 10 stron (zadania 1-3). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.
- 6. Wpisz poniżej zadeklarowane (wybrane) przez Ciebie na egzamin środowisko komputerowe, kompilator języka programowania oraz program użytkowy.
- 7. Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w wybranej przez siebie notacji: listy kroków, pseudokodu lub języka programowania, który wybrałaś/eś na egzamin.

Dane uzupełnia	uczei	í:									
WYBRANE:			(środowisko)								
				••••••	(ko	mpila		•••••			
				•••••	(pro	ogram	ı użyt	kowy	 y)		
PESEL:											
Klasa:											

Zadanie 1. Test

Oceń, czy poniższe zdania są prawdziwe. Zaznacz **P**, jeśli zdanie jest prawdziwe, albo **F**, jeśli zdanie jest fałszywe. W każdym zadaniu uzyskasz punkt, jeśli poprawnie odpowiesz na wszystkie jego części.

Zadanie 1.1. (0–1)

Dana jest funkcja fun z jednym parametrem n będącym liczbą naturalną, którą można zapisać:

```
fun(n)
if n = 0 then return 1
else return 2*fun(n-1)
```

1.	fun jest funkcją rekurencyjną	P	F
2.	Dla $n = 2$ funkcja zwraca 4.	P	F
3.	Dla $n = 3$ funkcja zwraca 4.	P	F
4.	Funkcja fun oblicza wartość 2 ⁿ .	P	F

Zadanie 1.2. (0–1)

W systemie szesnastkowym, dla dwóch liczb C8 i B0

1.	suma tych liczb jest równa DC.	P	F
2.	iloczyn tych liczb jest równy F00.	P	F
3.	różnica C8 – B0 jest równa B4.	P	F
4.	iloraz C8/B0 jest równy 10.	P	F

Zadanie 1.3. (0–1)

1.	Liczba 150.22.33.1 to adres zapisany zgodnie z protokołem IPv4.	P	F
2.	Host o adresie 192.168.0.1 z maską 255.255.255.0 należy do podsieci 192.168.10.0	P	F
3.	Adres IPv4 jest liczbą 64 bitową.	P	F
4.	Adres IPv4 jest liczbą 128 bitową.	P	F

Zadanie 1.4. (0–1)

W pliku ilustracja.html zapisano następujący kod:

widok

Po wyświetleniu pliku ilustracja.html w przeglądarce internetowej, na otrzymanej stronie www:

1.	słowo widok jest hiperłączem do pliku krajobraz.jpg zapisanego w folderze rysunki	P	F
2.	jest wyświetlony rysunek z pliku krajobraz.jpg	P	F
3.	jako tło strony wyświetli się rysunek z pliku krajobraz.jpg	P	F
4.	po kliknięciu na słowo widok wyświetli się rysunek z pliku krajobraz.jpg	P	F

	Nr zadania	1.1	1.2	1.3	1.4	Suma
Wypełnia egzaminator	Maksymalna liczba punktów	1	1	1	1	4
9	Uzyskana liczba punktów					

Zadanie 2.

Palindromem nazywamy słowo, które składa się kolejno z tych samych znaków przy czytaniu go od lewej i od prawej strony. Przykładem palindromu jest słowo kajak.

Zadanie 2.1 (0-2)

W wybranym języku programowania napisz funkcję realizującą algorytm dla podanej poniżej specyfikacji.

Dane:

liczba naturalna n > 0 (długość słowa), słowo w o n znakach (słowo do sprawdzenia).

Wynik:

wartość logiczna true, jeśli słowo jest palindromem, wartość logiczna false, w przeciwnym wypadku.

Miejsce na wpisanie funkcji:

Zadanie 2.2 (0-1)

Przesunięciem cyklicznym słowa w prawo o *k* znaków nazywamy przesunięcie, w którym *k* ostatnich znaków danego słowa przesuwanych jest kolejno na jego początek.

W tabeli poniżej wpisz najmniejsze k takie, że po przesunięciu cyklicznym danego słowa w w prawo o k będzie ono palindromem. Zapisz także słowo powstałe po tym przesunięciu. Jeżeli takie przesunięcie nie istnieje, wpisz wartość -1.

Słowo w	K	w po przesunięciu cyklicznym w prawo o k znaków
akkaj	3	kajak
dabccba		
oowocow		
kajak		
ninaanil		

Miejsce na obliczenia:

Zadanie 2.3 (0–3)

W wybranym języku programowania napisz funkcję realizującą algorytm dla podanej poniżej specyfikacji.

Dane:

liczba naturalna n > 0 (długość słowa),

słowo w o n znakach (słowo do sprawdzenia),

liczba naturalna k taka, że $0 \le k < n$ (liczb znaków przesunięcia cyklicznego w prawo).

Wyniki:

wartość logiczna true, jeśli słowo *w* przesunięte o *k* liter w prawo jest palindromem, wartość logiczna false w przeciwnym wypadku.

Miejsce na wpisanie funkcji:

	Nr zadania	2.1	2.2	2.3	Suma
Wypełnia egzaminator	Maksymalna liczba punktów	2	1	3	6
J	Uzyskana liczba punktów				

Zadanie 3. Zliczanie (0-5)

Zadanie 3.1 (0-1)

Przeanalizuj działanie podanego poniżej algorytmu. Przyjmij, że tablica T zawiera n liczb całkowitych z przedziału [0,k].

Krok 1: Dla
$$i = 0, 1, 2, ... k$$
 wykonaj $Z[i] = 0$.

Krok 2: Dla
$$i = 0, 1, 2, ..., n-1$$
 wykonaj $Z[T[i]] = Z[T[i]] + 1$.

Uzupełnij specyfikację dla przedstawionego powyżej algorytmu:

Dane:

liczba naturalna n > 0 (liczba elementów tablicy T), liczba całkowita $k \ge 0$, n elementowa tablica T zawierająca liczby całkowite z przedziału [0, k].

TT 7	• 1
WW	nık:
* * · y	11117.

 . eleme	ntowa	tablica	Z zaw	ierająca	a	• • • • • • • •	 •	• • • • • • • • • • • • • • • • • • • •	

Wypełnij tabelę zgodnie z podanym powyżej algorytmem:

n	k	T	Z
5	5	1, 3, 5, 4, 0	1, 1, 0, 1, 1, 1
8	10	0, 0, 9, 9, 3, 4, 1, 1	
7	8	3, 3, 3, 3, 3, 3	

Miejsce na obliczenia:

Zadanie 3.2 (0–1)

W tablicy liczb *T* szukamy wartości występujących najczęściej i wartości występujących najrzadziej. Jeżeli takich wartości jest w tablicy więcej niż jedna, to powinny być wypisane wszystkie takie liczby.

Przykłady

Dla ciągu (5, 4, 4, 8, 0, 1, 2, 4, 6, 5, 0) liczbą występującą najczęściej jest 4, natomiast liczbami występującymi najrzadziej są 8, 2, 6 i 1.

Dla ciągu (4, 8, 4, 7, 8, 8, 5, 5) liczbą występującą najczęściej jest 8, natomiast najrzadziej pojawia się wartość 7.

W ciągu (2, 2, 2, 2, 2, 2, 2, 2) liczba 2 jest wartością występującą najczęściej i najrzadziej.

Uzupełnij poniższą tabelę, podając wyniki, jakie powinny pojawić się dla podanych ciągów.

Ciąg	Liczba występująca najczęściej	Liczba występująca najrzadziej
(4, 5, 6, 6, 3, 4, 4, 9, 2, 7, 9, 1)		
(0, 0, 0, 0, 3, 0, 0, 0)		
(4, 5, 6, 7, 8, 7, 6, 5, 4, 8)		
(1, 1, 1, 3, 5, 3, 5, 3, 5, 3, 1)		

Miejsce na obliczenia:

Zadanie 3.3. (0-3)

W wybranej przez siebie notacji (lista kroków lub wybrany przez Ciebie język programowania) zapisz algorytm dla podanej niżej specyfikacji.

Dane:

liczba naturalna: n > 0 (liczba elementów w tablicy T).

liczba całkowita: $k \ge 0$

n elementowa tablica T zawierająca liczby całkowite z przedziału [0, k].

Wyniki:

wszystkie liczby całkowite występujące najczęściej w tablicy T,

wszystkie liczby całkowite występujące najrzadziej w tablicy T.

Wskazówka: W rozwiązaniu możesz wykorzystać algorytm z zadania 3.1.

Miejsce na wpisanie algorytmu:

Wypełnia egzaminator	Nr zadania	3.1	3.2	3.3	Suma
	Maksymalna liczba punktów	1	1	3	5
	Uzyskana liczba punktów				

BRUDNOPIS (nie podlega ocenie)