Lesson 4 - Concavity and Points of Inflection

PARTA: Concavity

Concave up: the graph of a function f(x) is concave up on the interval $a \le x \le b$ if all the tangents are below the curve. The graph curves upward. Slope of tangent is increasing (f'(x)) is \uparrow).

Concave down: the graph of a function f(x) is concave down on the interval $a \le x \le b$ if all the tangents on the interval are above the curve. The graph curves downward. Slope of tangent is decreasing (f'(x)) is \downarrow).

Lesson 4 Concavity and Points of Inflection.notebook

Point of Inflection: a point at which the graph changes from being concave up to concave down, or vice versa.

Example 1: Identify the intervals over which the graph is concave up and the intervals over which it is concave down.

Con cave Up (-1,0.8)

Lesson 4 Concavity and Points of Inflection.notebook

PART B: The Second Derivative Test

Intervals of concavity can be found using the second derivative test or by examining the graph of f''(x).

- A graph is concave up on an interval if the second derivative is positive on that interval. If f'(c) = 0 and f''(c) > 0, there is a local minimum at [c, f(c)]
- A graph is concave down on an interval if the second derivative is negative on that interval. If f'(c) = 0 and f''(c) < 0, there is a local maximum at [c, f(c)]
- If f''(c) = 0 and f''(c) changes sign at x = c there is a point of inflection at [c, f(c)]

Example 2: Find the intervals of concavity and the coordinates of any points of inflection for the function $g(x) = x^4 - 4x^3$.

$$g'(x) = 4x^3 - 12x^2$$

 $g''(x) = 12x^2 - 24x$
 $0 = 12x(x - 2)$
 $x = 0$ or $x = 2$

	x<0	<u>χ=</u> 0	0 <x<2< th=""><th>x = 2</th><th>x>2</th></x<2<>	x = 2	x>2
Test Value	-	0	1	2	M
f"(x)	+	Ö		0	+
f(x)	C. U.	P.O.I.	C. D.	P.O.I.	C. U.
concavily.	\bigcup	(0,0)		(2,-16)	

Lesson 4 Concavity and Points of Inflection.notebook

Example 3: Sketch the graph of the function $f(x) = x^{1/3}$.

Example 3: Sketch the graph of the function
$$f(x) = x^{1/3}$$
.

$$f'(x) = \frac{1}{3}x^{-3/3}$$

$$f''(x) = -\frac{2}{3}x + \frac{1}{3}x$$

$$O = \frac{-2}{9x^{5/3}}$$

$$\chi < O \quad x = O \quad x > O$$

$$T.V. \quad -1 \quad O \quad 1$$

$$f''(x) \quad + \quad DNE \quad -$$

$$f(x) \quad C.U. \quad P.O.I. \quad C.D. \quad (0,0)$$

$$\chi = DNE$$

$$y-int$$
 (set x=0) $x-int$ (set y=0)
 $f(0) = 0$ $0 = x^{1/3}$
 $(0,0)$

