Índice general

1.	Pre	liminares
	1.1.	Metodo del segundo momento
		Resultados sobre Galton-Watson Tree
	1.3.	Teorema de la Eleccion
2.		ultado sobre el branching process
	2.1.	Resultado sobre la última generación
		2.1.1. Cota superior
		2.1.2. Cota inferior
	2.2.	Resultado sobre todo el arbol

Capítulo 1

Preliminares

- 1.1. Metodo del segundo momento
- 1.2. Resultados sobre Galton-Watson Tree
- 1.3. Teorema de la Eleccion

Capítulo 2

Resultado sobre el branching process

2.1. Resultado sobre la última generación

Durante esta sección, para no sobrecargar la notación, dado un árbol de Galton-Watson T que no se extingue, vamos a considerar $P(\cdot \mid T) = P(\cdot)$, de forma análoga con la esperanza.

Teorema 1. Dado un GFF $\eta = (\eta_v)_{v \in T_n}$, construido como antes, se tiene que

$$E\left[\max_{v\in L_n} \eta_v\right] = n\sqrt{2\log m} \left(1 + o(1)\right). \tag{2.1}$$

2.1.1. Cota superior

Sea $\bar{Z}_n = \sum_{v \in L_n} \mathbf{1}_{S_v > (1+\epsilon)x^*n}$, que cuenta la cantidad de vértices, en la generación n-ésima, que se encuentran por encima de $nx^*(1+\epsilon)$. Aplicando el método del primer momento, tenemos, para todo $v \in L_n$:

$$E[\bar{Z}_n] = |L_n| P(S_v > n(1+\epsilon)x^*) \le CWk^n e^{-nI((1+\epsilon)x^*)}$$

donde aplicamos la desigualdad de Chebyshev en la última desigualdad y la definición de I. Además, por la monotonía estricta de I, tenemos que $E[\bar{Z}_n] \leq e^{-nc(\epsilon)}$, para algún $c(\epsilon) > 0$. Por lo tanto,

$$P(M_n > (1+\epsilon)nx^*) \le E[\bar{Z}_n] \le CWe^{-c(\epsilon)n}. \tag{2.2}$$

Por otro lado,

$$\begin{split} E[M_n] &\leq E[M_n \mathbf{1}_{M_n \geq 0}] = \int_0^\infty P(M_n > t) \, dt \\ &= \int_0^{(1+\epsilon)nx^*} P(M_n > t) \, dt + \int_{(1+\epsilon)nx^*}^\infty P(M_n > t) \, dt. \end{split}$$

Luego, usando la cota de (4.2) en el segundo integrando de (4.3) e integrando, llegamos a que

$$E[M_n] \le nx^*(1+\epsilon) + nx^* \frac{CWe^{-2nI(x^*)\epsilon}}{2nI(x^*)}.$$
(2.3)

Para todo $\epsilon > 0$. Haciendo $\epsilon \to 0$, obtenemos la cota superior.

2.1.2. Cota inferior

Sea y > 0 independiente de n y definamos

$$a_n = a_n(y) = x^*n - \frac{3}{2I'(x^*)}\log n.$$

Dado $v \in L_n$, definimos el evento

$$A_v = \left\{ S_v \in [y + a_n - 1, y + a_n], \ S_v(t) \le \frac{a_n t}{n} + y, \ t = 1, \dots, n \right\}$$

y sea

$$Z_n = \sum_{v \in I_m} \mathbf{1}_{A_v}.$$

Para derivar una cota inferior de $E[M_n]$, primero necesitamos una cota inferior en la cola derecha de la distribución de M_n , la cual vamos a obtener utilizando el método del segundo momento. Para esto, primero calculamos $P(A_v)$. Recordemos que $I(x^*) = \log k$, con $\lambda^* = I'(x^*)$. Introducimos un nuevo parámetro λ_n^* tal que

$$\lambda_n^* \frac{a_n}{n} - \Lambda(\lambda_n^*) = I(a_n/n).$$

Como $I'(a_n/n) = \lambda_n^*$, es fácil verificar que

$$\lambda_n^* = \lambda^* - \frac{3I''(x^*)\log n}{2nI'(x^*)} + O\left(\frac{1}{n}\right).$$

(En el caso gaussiano, $\lambda_n^* = a_n/n$).

Definimos una nueva medida de probabilidad Q en \mathbb{R} por

$$\frac{d\mu}{dQ}(x) = e^{-\lambda_n^* x + \Lambda(\lambda_n^*)},$$

y, con un abuso de notación, continuamos usando Q cuando hablemos sobre un paseo aleatorio cuyos incrementos sean i.i.d. y distribuidos de acuerdo a Q. Notar que, en el caso gaussiano, Q solamente modifica la media de P.

Ahora podemos escribir:

$$P(A_v) = E_Q \left(e^{-\lambda_n^* S_v + n\Lambda(\lambda_n^*)} \mathbf{1}_{A_v} \right)$$

$$\geq e^{-n[\lambda_n^* a_n / n - \Lambda(\lambda_n^*)]} E_Q(A_v)$$

$$= e^{-nI(a_n/n)} P_Q \left(\tilde{S}_v \in [0, 1], \ \tilde{S}_v(t) \geq 0, \ t = 1, \dots, n \right),$$

$$(2.4)$$

donde $S_v(t) = a_n t/n - S_v(t)$ es un paseo aleatorio con incrementos i.i.d. de media cero bajo Q. Además, en el caso gaussiano, los incrementos son gaussianos y no dependen de n.

Aplicando el Teorema de la Elección, obtenemos que

$$P(A_v) \ge c_0 \frac{y+1}{n^{3/2}} e^{-nI((a_n+y)/n)}.$$
(2.5)

¿Agregar detalles sobre esto?

Como

$$I\left(\frac{a_n + y}{n}\right) = I(x^*) - I'(x^*) \left(\frac{3\log n}{2nI'(x^*)} - \frac{y}{n}\right) + O\left(\left(\frac{\log n}{n}\right)^2\right),$$

podemos concluir que

$$P(A_v) \ge c_0(y+1)k^{-n}e^{-I'(x^*)y}$$

y por lo tanto

$$E[Z_n] = |L_n|P(A_v) \ge \frac{W_T}{C_T}c_0(y+1)e^{-I'(x^*)y}.$$
(2.6)

Resaltamos la dependencia de las constantes en el árbol, ya que jugarán un papel principal en justificar por qué pedimos que la distribución tenga grado acotado.

A continuación, necesitamos probar una cota superior sobre

$$E[Z_n^2] = |L_n|P(A_v) + \sum_{v \neq w \in L_n} P(A_v \cap A_w)$$

$$= E[Z_n] + \sum_{v \in L_n} \sum_{s=1}^n |D_s^v| P(A_v \cap A_{v_s}), \tag{2.7}$$

donde $D_s^v=\{w\in L_n\mid d(v,w)=2s\}$ y $v_s\in L_n$ tal que $d(v,v_s)=2s$. Necesitamos ver que $|D_s^v|=O(k^s)$. Es fácil ver que

$$|D_s^v| \le |L_s(T_{v_s})| \le C(T_{v_s})Kk^s.$$
 (2.8)

Faltaría acotar esta constante C universalmente para todo $v_s \in L_{n-s}$. Para esto, podemos hacer una especie de argumento de probabilidad total, condicionando a que todos estos subárboles, a partir de la generación l, estén a lo sumo a distancia β de su W. Elegimos l y β de forma que este evento tenga alta probabilidad. Por lo tanto, podemos tomar $C = \max\{k^l, \beta\}$.

Ahora veamos cómo acotar $P(A_v \cap A_{v_s})$. Para esto, condicionamos al valor de $S_v(n-s)$. Con un pequeño abuso de notación, definimos $I_{j,s} = a_n(n-s)/n + [-j, -j+1] + y$. Entonces:

$$P(A_v \cap A_{v_s}) \le \sum_{j=1}^{\infty} P\left(S_v(t) \le \frac{a_n t}{n} + y, \ t = 1, \dots, n - s, \ S_v(n - s) \in I_{j,s}\right)$$

$$\times \max_{z \in I_{j,s}} \left(P\left(S_v(s) \in [y + a_n - 1, y + a_n], \ S_v(t) \le \frac{a_n(n - s + t)}{n} + y, \ 1 \le t \le s \mid S_v(0) = 1\right)$$

¿Agregar detalles?

Usando la cota superior del Teorema de la Elección, concluimos que

$$P(A_v \cap A_{v_s}) \le \sum_{j=1}^{\infty} \frac{j^5 (y+1)^2}{s^3 (n-s)^{3/2}} e^{-j\lambda^*} n^{\frac{3(n+s)}{2n}} k^{-(n+s)} e^{-(n+s)\frac{I'(x^*)y}{n}}.$$
 (2.9)

¿Agregar detalles?

Juntando todo:

$$E[Z_n^2] \le E[Z_n] + \sum_{v \in L_n} \sum_{s=1}^n |D_s^v| \sum_{j=1}^\infty \frac{j^5 (y+1)^2}{s^3 (n-s)^{3/2}} e^{-j\lambda^*} n^{\frac{3(n+s)}{2n}} k^{-(n+s)} e^{-(n+s)\frac{I'(x^*)y}{n}}$$

$$\le E[Z_n] + H(y+1)^2 CW \sum_{s=1}^n \left(\frac{K}{k}\right)^s \frac{n^{\frac{3(n+s)}{2n}} e^{-s\frac{I'(x^*)y}{n}}}{s^3 (n-s)^{3/2}}.$$

Por lo tanto,

$$P(M_n \ge a_n - 1) \ge P(Z_n \ge 1) \ge \frac{(E[Z_n])^2}{E[Z_n^2]}$$

$$\ge \frac{E[Z_n]}{1 + H(y+1)CW \sum_{s=1}^n \frac{\left(\frac{K}{k}\right)^s n^{\frac{3(n+s)}{2n}} e^{-\frac{sI'(x^*)y}{n}}}{s^3(n-s)^{3/2}}}$$

$$\ge \frac{\frac{W_T}{C_T} c_0(y+1) e^{-I'(x^*)y}}{1 + H(y+1)CW n^{3/2} \sum_{s=1}^n \left(\frac{K}{k}\right)^s e^{-\frac{sI'(x^*)y}{n}}}.$$

Por otro lado, para cada $v \in L_r$, sea $w(v) \in L_r$ el ancestro de v en la generación r. Entonces, por independencia:

$$P\left(M_n \le -cs + (n-r)x^* - \frac{3}{2I'(x^*)}\log(n-r)\right) \le \left(1 - \frac{c_0}{1 + HC_T^2(n-r)^{3/2} \sum_{s=1}^{n-r} \left(\frac{K}{k}\right)^s}\right)^{|L_r|} + e^{-c'r}$$

$$\le \left(1 - \frac{c_0}{1 + HC_T^2(n-r)^{3/2} \left(\frac{K}{k}\right)^{n-r+1}}\right)^{\frac{W}{C}k^r} + e^{-c'r}.$$

Con esto podemos ver que, en principio, la expresión anterior **no tiende a 0**. Sospechamos que debemos pedir más restricciones al árbol.

A partir de (2.9) en el original, se concluye que

$$E[Z_n^2] \le c(y+1)E[Z_n],$$

y por lo tanto, usando nuevamente el método del segundo momento,

$$P(M_n \ge a_n - 1) \ge P(Z_n \ge 1) \ge c \frac{E[Z_n]}{n+1} \ge c_0 e^{-I'(x^*)y}. \tag{2.10}$$

Esto completa la evaluación de una cota inferior para la cola derecha de la ley de M_n . Para obtener una cota inferior para $E[M_n]$, solo necesitamos mostrar que

$$\lim_{y \to \infty} \limsup_{n \to \infty} \int_{-\infty}^{y} P(M_n \le a_n(y)) \, dy = 0. \tag{2.11}$$

Por otro lado, para cada $v \in L_n$, sea $w(v) \in L_s$ el ancestro de v en la generación s. Entonces, por independencia,

$$P\left(M_n \le -cs + (n-s)x^* - \frac{3}{2I'(x^*)}\log(n-s)\right) \le (1-c_0)^{k^s} + e^{-c's},\tag{2.12}$$

donde c_0 es como en (2.5.11). Esto implica (2.5.21). Junto con (2.5.20), se completa la demostración del Teorema 1.

2.2. Resultado sobre todo el arbol