

SEQUENCE LISTING

	-	W 8 18	ADEN			بطد	20 EIA	-11		.10						
<110)>	Dixit	., et	t al	•											
<120)>	Inte	rleul	kin-	l Bet	ta Co	onve	rting	g En:	zyme	Like	e Ap	opto	tic	Protease-6	5
<130)>	PF335	5D2													
<140 <141		US 09 2001-			1											
<150 <151		US 09		-	8											
<150 <151		US 08 1997-			5											
<150 <151		US 60 1996-		-	1											
<150 <151		US 60 1996-		-	4											
<150> US 60/017,949 <151> 1996-05-20																
<160)>	11														
<170)>	Pater	ntIn	vers	sion	3.1										
<210 <211 <212 <213	.> ?>	1 416 PRT Homo	sap	iens												
<400)>	1														
Met 1	Asp	Glu	Ala	Asp 5	Arg	Arg	Leu	Leu	Arg 10	Arg	Cys	Arg	Leu	Arg 15	Leu	
Val	Glu	Glu	Leu 20	Gln	Val	Asp	Gln	Leu 25	Trp	Asp	Val	Leu	Leu 30	Ser	Arg	
Glu	Leu	Phe 35	Arg	Pro	His	Met	Ile 40	Glu	Asp	Ile	Gln	Arg 45	Ala	Gly	Ser	
Gly	Ser 50	Arg	Arg	Asp	Gln	Ala 55	Arg	Gln	Leu	Ile	Ile 60	Asp	Leu	Glu	Thr	
Arg 65	Gly	ser Ser	Gln	Ala	Leu 70	Pro	Leu	Phe	Ile	Ser 75	Cys	Leu	Glu	Asp	Thr 80	
Gly	Glr	a Asp	Met	Leu 85	Ala	Ser	Phe	Leu	Arg 90	Thr	Asn	Arg	Gln	Ala 95	Gly	
Lys	Leu	ı Ser	Lys 100	Pro	Thr	Leu	Glu	Asn 105	Leu	Thr	Pro	Val	Val 110	Leu	Arg	
Pro	Glu	Ile 115	Arg	Lys	Pro	Glu	Val 120	Leu	Arg	Pro	Glu	Thr 125	Pro	Arg	Pro	

Val Asp Ile Gly Ser Gly Gly Phe Gly Asp Val Gly Ala Leu Glu Ser Leu Arg Gly Asn Ala Asp Leu Ala Tyr Ile Leu Ser Met Glu Pro Cys Gly His Cys Leu Ile Ile Asn Asn Val Asn Phe Cys Arg Glu Ser Gly 165 Leu Arg Thr Arg Thr Gly Ser Asn Ile Asp Cys Glu Lys Leu Arg Arg Arg Phe Ser Ser Leu His Phe Met Val Glu Val Lys Gly Asp Leu Thr 200 Ala Lys Lys Met Val Leu Ala Leu Leu Glu Leu Ala Arg Gln Asp His Gly Ala Leu Asp Cys Cys Val Val Val Ile Leu Ser His Gly Cys Gln 235 Ala Ser His Leu Gln Phe Pro Gly Ala Val Tyr Gly Thr Asp Gly Cys Pro Val Ser Val Glu Lys Ile Val Asn Ile Phe Asn Gly Thr Ser Cys 265 Pro Ser Leu Gly Gly Lys Pro Lys Leu Phe Phe Ile Gln Ala Cys Gly Gly Glu Gln Lys Asp His Gly Phe Glu Val Ala Ser Thr Ser Pro Glu 300 Asp Glu Ser Pro Gly Ser Asn Pro Glu Pro Asp Ala Thr Pro Phe Gln 315 Glu Gly Leu Arg Thr Phe Asp Gln Leu Asp Ala Ile Ser Ser Leu Pro 330 Thr Pro Ser Asp Ile Phe Val Ser Tyr Ser Thr Phe Pro Gly Phe Val Ser Trp Arg Asp Pro Lys Ser Gly Ser Trp Tyr Val Glu Thr Leu Asp 360 Asp Ile Phe Glu Gln Trp Ala His Ser Glu Asp Leu Gln Ser Leu Leu Leu Arg Val Ala Asn Ala Val Ser Val Lys Gly Ile Tyr Lys Gln Met 385 Pro Gly Cys Phe Asn Phe Leu Arg Lys Lys Leu Phe Phe Lys Thr Ser 405 410 415

```
<210>
       2
       1578
<211>
<212>
       DNA
       Homo sapiens
<213>
<220>
      misc_feature
<221>
       (1357)..(1357)
<222>
<223> n = a, c, g, or t
<220>
<221>
       misc_feature
       (1481)..(1481)
<222>
       n = a, c, g, or t
<223>
```

<400> gccatggacg aagcggatcg gcggctcctg cggcggtgcc ggctgcggct ggtggaagag 60 ctgcaggtgg accagctctg ggacgtcctg ctgagccgcg agctgttcag gccccatatg 120 atcgaggaca tccagcgggc aggctctgga tctcggcggg atcaggccag gcagctgatc 180 atagatetgg agactegagg gagteagget etteetttgt teateteetg ettagaggae 240 acaggccagg acatgctggc ttcgtttctg cgaactaaca ggcaagcagg aaagttgtcg 300 aagccaaccc tagaaaacct taccccagtg gtgctcagac cagagattcg caaaccagag 360 gttctcagac cggaaacacc cagaccagtg gacattggtt ctggaggatt cggtgatgtc 420 ggtgctcttg agagtttgag gggaaatgca gatttggctt acatcctgag catggagccc 480 tgtggccact gcctcattat caacaatgtg aacttctgcc gtgagtccgg gctccgcacc 540 cgcactggct ccaacatcga ctgtgagaag ttgcggcgtc gcttctcctc gctgcatttc 600 atggtggagg tgaagggcga cctgactgcc aagaaaatgg tgctggcttt gctggagctg 660 gegeggeagg accaeggtge tetggaetge tgegtggtgg teattetete teaeggetgt 720 caggccagcc acctgcagtt cccaggggct gtctacggca cagatggatg ccctgtgtcg 780 gtcgagaaga ttgtgaacat cttcaatggg accagctgcc ccagcctggg agggaagccc 840 aagctctttt tcatccaggc ctgtggtggg gagcagaaag accatgggtt tgaggtggcc 900 tecaetteee etgaagaega gteeeetgge agtaaceeeg ageeagatge eaceeegtte 960 1020 caggaaggtt tgaggacctt cgaccagctg gacgccatat ctagtttgcc cacacccagt gacatetttg tgteetaete taettteeca ggttttgttt eetggaggga eeceaagagt 1080 ggctcctggt acgttgagac cctggacgac atctttgagc agtgggctca ctctgaagac 1140 ctgcagtccc tcctgcttag ggtcgctaat gctgtttcgg tgaaagggat ttataaacag 1200 atgcctggtt gctttaattt cctccggaaa aaacttttct ttaaaacatc ataaggccag 1260 ggcccctcac cctgccttat cttgcacccc aaagctttcc tgccccaggc ctgaaagagg 1320 ctgaggcctg gactttcctg caactcaagg actttgnagc cggcacaggg tctgctcttt 1380 ctctgccagt gacagacagg ctcttagcag cttccagatt gacgacaagt gctgaacagt 1440

ggaggaagag ggacagatga atgccgtgga ttgcacgtgg nctcttgagc agtggctggt	1500
ccagggctag tgacttggtg tcccatgatc cctgtgttgg tctctaggag cagggattaa	1560
cctctgcact actgacat	1578
<210> 3 <211> 639	
<212> DNA	
<213> Homo sapiens	
<400> 3 ctgactgcca agaaaatggt gctggctttg ctggagctgg cgcggcagga ccacggtgct	60
ctggactgct gcgtggtggt cattctctct cacggctgtc aggccagcca cctgcagttc	120
ccaggggctg tctacggcac agatggatgc cctgtgtcgg tcgaaaagat tgtgaacatc	180
ttcaatggga ccagctgccc cagcctggga gggaagccca agctcttttt catccaggcc	240
tgtggtgggg agcagaaaga ccatgggttt gaggtggcct ccacttcccc tgaagacgag	300
tcccctggca gtaaccccga gccagatgcc accccgttcc aggaaggttt gaggaccttc	360
gaccagetgg aegecatate tagtttgeee acacecagtg acatetttgt gteetaetet	420
actttcccag gttttgtttc ctggagggac cccaagagtg gctcctggta cgttgagacc	480
ctggacgaca tetttgagca gtgggeteae tetgaagace tgeagteeet eetgettagg	540
gtcgctaatg ctgtttcggt gaaagggatt tataaacaga tgcctggttg ctttaatttc	600
ctccggaaaa aacttttctt ttaaaacatc ataaggcag	639
<210> 4 <211> 203	
<212> PRT	
<213> Homo sapiens	
<400> 4	
Met Val Leu Ala Leu Leu Glu Leu Ala Arg Gln Asp His Gly Ala Leu 1 5 10 15	
1 5 10 23	
Asp Cys Cys Val Val Val Ile Leu Ser His Gly Cys Gln Ala Ser His	
20 25 30	
Leu Gln Phe Pro Gly Ala Val Tyr Gly Thr Asp Gly Cys Pro Val Ser	
35 40 45	
Val Glu Lys Ile Val Asn Ile Phe Asn Gly Thr Ser Cys Pro Ser Leu	
Val Glu Lys Tie val Ash Tie Fhe Ash Gly Thi Sci Gy Tie Sci Go 60	
Gly Gly Lys Pro Lys Leu Phe Phe Ile Gln Ala Cys Gly Gly Glu Gln 65 70 75 80	
Lys Asp His Gly Phe Glu Val Ala Ser Thr Ser Pro Glu Asp Glu Ser 85 90 95	
Pro Gly Ser Asn Pro Glu Pro Asp Ala Thr Pro Phe Gln Glu Gly Leu 100 105 110	
100 105 110	

Arg Thr Phe Asp Gln Leu Asp Ala Ile Ser Ser Leu Pro Thr Pro Ser 115 120 125	
Asp Ile Phe Val Ser Tyr Ser Thr Phe Pro Gly Phe Val Ser Trp Arg 130 135 140	
Asp Pro Lys Ser Gly Ser Trp Tyr Val Glu Thr Leu Asp Asp Ile Phe 145 150 155 160	
Glu Gln Trp Ala His Ser Glu Asp Leu Gln Ser Leu Leu Leu Arg Val 165 170 175	
Ala Asn Ala Val Ser Val Lys Gly Ile Tyr Lys Gln Met Pro Gly Cys 180 185 190	
Phe Asn Phe Leu Arg Lys Lys Leu Phe Phe Met 195 200	
<210> 5 <211> 34 <212> DNA <213> Artificial	
<220> <223> 5' PCR primer	
<400> 5 gaacggggta ccgccatgga cgaagcggat cggc	34
<210> 6 <211> 60 <212> DNA <213> Artificial	
<220> <223> 3' PCR primer	
<400> 6 tgctctagat tagtggtggt ggtggtggtg tgatgtttta aagaaaagtt ttttccggag	60
<210> 7 <211> 41 <212> DNA <213> Artificial	
<220> <223> PCR primer	
<400> 7 aagctctttt tcatccaggc cgcgggtggg gagcagaaga c	41
<210> 8 <211> 39 <212> DNA <213> Artificial	
<220> <223> PCR primer	

<400> 8 gtctttctgc tccccacccg cggcctggat gaaaaaagc	39
<210> 9 <211> 66 <212> DNA <213> Artificial	
<220> <223> 3' PCR primer	
<400> 9 tgctctagat tacttgtcat cgtcgtcctt gtagtctgat gttttaaagt taagttttt	60
ccggag	66
<210> 10 <211> 5 <212> PRT <213> Homo sapiens	
<400> 10	
Gln Ala Cys Arg Gly 1 5	
<210> 11 <211> 5 <212> PRT <213> Homo sapiens <400> 11	
Gln Ala Cys Gly Gly	