LV5

Single Variable Visualisation

Michael Scheidl

06 10 2021

Contents

Libraries		2	
1	Ove	erview	2
2	Plots fr a single Variable - bar plot		
	2.1	Classic Bar Chart	2
	2.2	Stacked Bar Chart	3
	2.3	Pie Chart	3
	2.4	Graphs with two categorial variables	4
	2.5	Stacked pie Charts - two categorial variables	5
	2.6	Grouped bar charts	7
3	Exe	ercise	8
4	Once continous variable		9
	4.1	Histogram	9
	4.2	Boxplot	9
	4.3	Erklärende Variable sollten eig PS sein	11
	4.4	Scatter plot using labels	12
5	Usi	sing ggrepel package	
6	One categorial and one numeric variable		
	6.1	Boxplot	13
	6.2	Violin plot	14
	6.3	Facetted Plot	14
	6.4	Exercise 2	15

Libraries

library(tidyverse)

1 Overview

- Single Variable Visualisation
- Pie Charts
- Bar Charts
- Stacked Bar Charts
- Density Plot
- Boxplot
- Vilin Plot
- Mosaic Plot

2 Plots fr a single Variable - bar plot

Create Dataset

```
mtcars %>%
  mutate(
    am = ifelse(am == 1, "manual", "automatic"),
    vs = ifelse(vs == 1, "straight", "v-shaped")
) -> data
```

2.1 Classic Bar Chart

```
data %>% ggplot(aes(x = am, fill= am)) + geom_bar()
```


<u>Interpretation</u>: - shows the number (count) of cars with automatic and manual shifting - data set contains more cars with automatic shifting than with manual shifting of gears

2.2 Stacked Bar Chart

```
data %>% ggplot(aes(x = "", fill = am)) +
  geom_bar(position = "fill", width = 0.5) +
  xlab("") +
  ylab("Proportion") +
  scale_x_discrete(breaks = NULL)
```


${\bf Interpretation:}$

• the graph shows the proportion of automatic to manual gear shifting in the car data set

2.3 Pie Chart

Proportion

Interpretation:

- Different form of previous plot
- shows that 58.1% of the cars in the dataset are automatic transmission

2.4 Graphs with two categorial variables

```
data %>% ggplot(aes(x = am, fill=vs)) +
  geom_bar() +
  ggtitle("automatic/manual and straight/vshaped engine", subtitle="Number of cars")
```


Interpretation:

- Number of cars with automatic gear shifting is higher than cars with manual gear shifting
- For automatic cars the v-shaped engines dominate (around 2/3)
- Manual transmission has approximately equal straight and vshaped engines

2.4.1 Alternativ Switch variables

```
data %>% ggplot(aes(x = vs, fill=am)) +
  geom_bar() +
  ggtitle("automatic/manual and straight/vshaped engine", subtitle="Number of cars")
```


Interpretation:

• Doesnt change much for interpretation

2.5 Stacked pie Charts - two categorial variables

```
data %>% ggplot(aes(x = am, fill=vs)) +
  geom_bar(position = "fill") +
  ggtitle("automatic/manual and straight/vshaped engine", subtitle="Proportion of cars") +
  ylab("") +
  scale_fill_brewer(type = "qual", palette = 8)
```


Interpretation:

- Share of straight engines is lower with automatic gearbox than with manual gear boxes
- That more cars are automatic is no longer visible in the graph

2.5.1 Alternative - switch variables

```
data %>% ggplot(aes(x = vs, fill=am)) +
  geom_bar(position = "fill") +
  ggtitle("automatic/manual and straight/vshaped engine", subtitle="Proportion of cars") +
  ylab("") +
  scale_fill_brewer(type = "qual", palette = 8)
```


2.6 Grouped bar charts

```
data %>% ggplot(aes(x = am , fill= vs)) +
  geom_bar(position = "dodge")
```


Interpretation:

- Two groups are compares (automatic vs manual)
- In the group automatic the number of straight engines is lower the the number of v-shaped engines. In the group if manual shifting gear cars the opposite is the case.
- The number of straight engines appears to be equal in the group of automatic and manual cars

###Check number of cars via data manipulation

```
data %>% group_by(am, vs) %>% summarise(n=n())
```

'summarise()' has grouped output by 'am'. You can override using the '.groups' argument.

```
## # A tibble: 4 x 3
## # Groups:
                am [2]
                ٧s
                              n
##
     <chr>>
                <chr>>
                          <int>
## 1 automatic straight
                              7
                             12
## 2 automatic v-shaped
## 3 manual
                              7
                straight
                              6
## 4 manual
                v-shaped
```

Interpretation:

• Indeed the number of cars with straight engines is equal in the group of automatic and manual cars.

3 Exercise

Visualize the proportion of manufacturers among the shelves

```
data(UScereal, package = "MASS")
head(UScereal)
```

```
##
                             mfr calories
                                            protein
                                                         fat
                                                               sodium
                                                                          fibre
## 100% Bran
                               {\tt N}\ 212.1212\ 12.121212\ 3.030303\ 393.9394\ 30.303030
## All-Bran
                               K 212.1212 12.121212 3.030303 787.8788 27.272727
## All-Bran with Extra Fiber
                              K 100.0000 8.000000 0.000000 280.0000 28.000000
## Apple Cinnamon Cheerios
                               G 146.6667 2.666667 2.666667 240.0000 2.000000
                               K 110.0000 2.000000 0.000000 125.0000 1.000000
## Apple Jacks
## Basic 4
                               G 173.3333 4.000000 2.666667 280.0000 2.666667
##
                                carbo
                                        sugars shelf potassium vitamins
## 100% Bran
                             15.15152 18.18182
                                                   3 848.48485 enriched
## All-Bran
                             21.21212 15.15151
                                                   3 969.69697 enriched
## All-Bran with Extra Fiber 16.00000 0.00000
                                                   3 660.00000 enriched
## Apple Cinnamon Cheerios 14.00000 13.33333
                                                   1 93.33333 enriched
                             11.00000 14.00000
## Apple Jacks
                                                   2 30.00000 enriched
## Basic 4
                             24.00000 10.66667
                                                   3 133.33333 enriched
```

UScereal %>% mutate(shelf = as.factor(shelf)) %>% ggplot(aes(x = shelf, fill=mfr)) + geom_bar(position

 $\#UScereal \%>\% \ mutate(shelf = as.factor(shelf)) \%>\% \ ggplot(aes(x = mfr, fill=shelf)) + geom_bar(position)$

4 Once continous variable

4.1 Histogram

```
data %>% ggplot(aes(x = mpg, y = stat(density))) + geom_histogram(aes(fill = stat(density)), binwidth =
    scale_fill_distiller(type = "seq", direction = 1) +
    geom_density(col = "brown", size = 1)
```


4.2 Boxplot

```
ggplot(data, aes(1,mpg)) +
  geom_boxplot() +
  coord_flip() +
  xlab("")
```


4.3 Erklärende Variable sollten eig PS sein

```
ggplot(data, aes(x = hp, y = qsec)) +
  geom_smooth(method = "lm") +
  geom_point() +
  annotate("label", 200, 20, label="qsec=20,55 635 - 0.01846 hp")
```

'geom_smooth()' using formula 'y ~ x'

4.4 Scatter plot using labels

```
data %>% rownames_to_column(var="name") %>%
ggplot(aes(hp, qsec)) +
  geom_smooth(method = "lm") +
  geom_text(aes(label = name))
```

'geom_smooth()' using formula 'y ~ x'

5 Using ggrepel package

```
library(ggrepel)
data %>% rownames_to_column(var="name") %>% ggplot(aes(hp, qsec)) +
    geom_point() +
    geom_text_repel(aes(label = name)) +
    geom_smooth(method = "lm")

## 'geom_smooth()' using formula 'y ~ x'

## Warning: ggrepel: 2 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps
```


6 One categorial and one numeric variable

6.1 Boxplot

```
ggplot(data, aes(factor(cyl), hp)) +
  geom_boxplot() +
  xlab("Cylinder")
```


6.2 Violin plot

```
ggplot(data, aes(factor(cyl), hp)) +
  xlab("Cylinder") +
  geom_violin()
```


${\bf Interpretation:}$

- $\bullet~$ hp increases with number of cylinders
- very high horse power cars have all 8 cylinders

6.3 Facetted Plot

```
ggplot(data, aes(x = hp)) +
  geom_density() +
  facet_wrap(~cyl)
```


6.4 Exercise 2

Visualize calories, given manufacturer

```
head(UScereal, 1)
```

```
## mfr calories protein fat sodium fibre carbo sugars
## 100% Bran N 212.1212 12.12121 3.030303 393.9394 30.30303 15.15152 18.18182
## shelf potassium vitamins
## 100% Bran 3 848.4849 enriched
```

UScereal %>% ggplot(aes(x = calories, fill=mfr)) + geom_boxplot()

