Trig Final (SLTN v672)

• You should have a calculator (like Desmos) and a unit-circle reference sheet.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The arc length is 16 meters. The radius is 10 meters. What is the angle measure in radians?

$$\theta = \frac{L}{r}$$
 $r = \frac{L}{\theta}$ $L = r\theta$

 $\theta = 1.6$ radians.

Question 2

Consider angles $\frac{11\pi}{4}$ and $\frac{-8\pi}{3}$. For each angle, use a spiral with an arrow head to **mark** the angle on a circle below in standard position. Then, find **exact** expressions for $\sin\left(\frac{11\pi}{4}\right)$ and $\cos\left(\frac{-8\pi}{3}\right)$ by using a unit circle (provided separately).

Find $sin(11\pi/4)$

$$\sin(11\pi/4) = \frac{\sqrt{2}}{2}$$

Find $cos(-8\pi/3)$

$$\cos(-8\pi/3) = \frac{-1}{2}$$

Question 3

If $\cos(\theta) = \frac{-28}{53}$, and θ is in quadrant III, determine an exact value for $\sin(\theta)$.

Ignore any negatives and the quadrant, and draw a right triangle (based on SOHCAHTOA) in standard (quadrant I) orientation.

Solve the Pythagorean Equation

$$28^{2} + B^{2} = 53^{2}$$

$$B = \sqrt{53^{2} - 28^{2}}$$

$$B = 45$$

Rescale the triangle so the hypotenuse is 1. Reflect the triangle into Quadrant III in a unit circle.

$$\sin(\theta) = \frac{-45}{53}$$

Question 4

A mass-spring system oscillates vertically with an amplitude of 6.55 meters, a midline at y = -4.23 meters, and a frequency of 3.2 Hz. At t = 0, the mass is at the minimum height. Write an equation to model the height (y in meters) as a function of time (t in seconds).

Any of these equations would get full credit.

$$y = -6.55\cos(2\pi 3.2t) - 4.23$$

or

$$y = -6.55\cos(6.4\pi t) - 4.23$$

or

$$y = -6.55\cos(20.11t) - 4.23$$