Introduction Memory Organization

Embedded Software Essentials
C1M3V1

Memories

- Bit Building Block of Memory
 - Stores 1 piece of Boolean information (0 or 1)
- Byte 8 Bits
 - Usually minimum unit for access

Memory Scale Examples:

- Data Centers → PetaBytes
- Personal Computers → MegaBytes TeraBytes
- Embedded Systems → KiloBytes MegaBytes

Memory Hierarchy

Computer Systems contain a mixture of memories

Memory considerations
 Technology

- Capacity
- Power
- Speed/Latency
- Price

Memory Sizes

- Manufacturers release multiple chips from a family with varying features and memory sizes
 - Flash & SRAM

 Accommodates different applications with a different chip cost

Different KL2x Chips have:

- SRAM Ranges from 4 KB 32 KB
- FLASH Ranges from 32 KB 256 KB

	Part Number	CPU (MHz)	Mem	Features														
Sub- Family			Flash (KB)	SRAM (KB)	DMA	Low-Power UART	UART	ISO7 816-3	SPI	1 ² C	TSI	125	Flex IO	RTC	12-bit DAC	16-bit ADC w/DP Ch.	12-bit ADC	Total I/Os
KL24	MKL24Z32xxx4	48 MHz	32	4	J	1	2		2	2				√			1	23~66
	MKL24Z64xxx4	48 MHz	64	8	J	1	2		2	2				√			1	23~66
KL25	MKL25Z32xxx4	48 MHz	32	4	J	1	2		2	2	1			1	1	√		23~66
	MKL25Z64xxx4	48 MHz	64	8	J	1	2		2	2	1			1	1	√		23~66
	MKL25Z128xxx4	48 MHz	128	16	J	1	2		2	2	√			1	√	√		23~66
KL26	MKL26Z32xxx4	4° 14z	32	4	J	1	2		2	2	√	√		1	√	√		23~50
	MKL26Z64xx	48 MHz	64	8	J	1	2		2	2	√	√		√	√	√		23~50
	MK ¹ _6Z128xxx4	48 MHz	128	16	V	1	2		2	2	√	√		√	√	√		23~80
	MKL26Z256xxx4	48 MHz	256	32	V	1	2		2	2	√	√		√	√	√		50~80
KL27	MKL27Z128xxx4	48 MHz	128	32	J	2	1	1	2x 16b	2		√	1	1	1	1		23~50
	MKL27Z256xxx4	48 MHz	256	32	J	2	1	1	2x 16b	2		1	1	1	1	1		23~50
	MKL27Z32xxx4	48 MHz	32	8	J	2	1	1	2x 16b	2			1	1		√		23~50
	MKL27Z64xxx4	48 MHz	64	16	J	2	1	1	2x 16b	2			1	1		√		23~50

Choosing a Platform

 Executable Program consists of program code and program data compiled for a particular architecture and platform

Choosing a Platform

 Executable Program consists of program code and program data compiled for a particular architecture and platform

- Three types of stoage needed for a program
 - Code Memory
 - Data Memory
 - Runtime State of Program

- Three types of stoage needed for a program
 - Code Memory
 - Data Memory
 - Runtime State of Program
- Compilation tracks and maps memory from program code and program data into segments
 - Code Segment (Flash)
 - Data Segment (SRAM)

- Flash and SRAM memory require a controller to manage interface to CPU
- Internal Bus also has a controller

- External memory can be added if more memory is needed
 - EEPROM

- Flash and SRAM memory require a controller to manage interface to CPU
- Internal Bus also has a controller

- Additional external memory can be connected through a I/O pins if more memory is needed
 - EEPROM

- Three types of stoage needed for a program
 - Code Memory
 - Data Memory
 - Runtime State of Program
- The CPU and peripherals contain register memory
 - CPU Registers
 - General Purpose
 - Special Purpose
 - Peripheral Registers

Tradeoffs

- Want memory with:
 - High Capacity
 - Low Latency
 - Low Power
 - High Reliability

...but

Usually cannot get all of these without high cost!!!

Outcomes

• At the end of this module, students will be able to...

- Understand an embedded system memory organization
- Write C-programs to define code and data in different memory regions
- Analyze the memory space of a program

