

深度学习导论 实验 1

姓名徐海阳 学号 PB20000326 院系 少年班学院

摘要

本实验使用 PyTorch 用于近似函数: $y=sin(x)+cos(x)+sin(x)cos(x), x\in[0,2\pi)$, 完成数据生成、模型搭建、模型训练、调参分析及测试性能。特别地,调参分析中重点研究了以下设置对模型性能的影响:

网络模型参数:是否使用 norm 层、初始化权重选择、深度、宽度、激活函数等;

优化器及学习率: 优化器类型、优化器超参数、学习率选择及调整等。

经过充分调优,本实验得到了最优的模型。同时,通过详细充分的消融实验、可视化图表和实验分析验证了模型的性能,在测试集上达到 MSE=0.00103。

目录

1	数据生成	2			
2	模型搭建 模型训练				
3					
	调参分析 4.1 网络模型参数	3 3 4			
5	测试性能	5			
6	实验总结	6			

1 数据生成

如图 1所示,数据生成 $y = sin(x) + cos(x) + sin(x)cos(x), x \in [0, 2\pi)$ 由 build_dataset 函数完成。具体 Args 及 Returns 见图。模型生成过程会先随机采样 num_samples 个 x 值,接着得到相应的 y; 然后 shuffle 数据后根据 split_ratio 进行 train/val/test 数据集的划分。

注意,Returns 中的 mean 和 std 是所有 sample x 的均值和标准差,是属于数据集本身的标准 化参数。当给定 x 值,想要预测 y 值时,需要先用 mean 和 std 对 x 做标准化,然后通过神经网络 forward 来得到预测的 \hat{y} 。

```
def build_dataset(num_samples, split_ratio=(0.6, 0.2), seed=0, device="cuda"):
... """ Build the dataset following the lab requirements below:
... 在 [0, 2PI) 范围内随机sample x, 并计算 y = sin(x) + cos(x) + sin(x)cos(x) 作为 y 值。
... Args:
... num_samples (int): sample number in the total dataset
... split_ratio (tuple): train, val split ratio
... seed (int): random seed
... device: "cuda" or "cpu". Defaults to "cuda".
... Returns:
... x_train, y_train, x_val, y_val, x_test, y_test, mean, var
```

图 1: 数据生成

2 模型搭建

如图 2所示, MLP 被选择为本实验的模型。选择 MLP 的理由是:首先,数据不是图像格式,不宜使用 CNN 等卷积神经网络模型;其次,数据没有时间关联,不宜使用 RNN 等循环神经网络模型;事实上,输入 x,输出 y,自然想到可以在中间搭建隐藏层,也就是使用 MLP 模型。

模型的 Args 如图所示。注意,与最简单的线性层 + 激活函数组成的 MLP 不同,本实验使用的模型有 3 点区别:

- 1. 原始输入是 x, 但是真实使用的输入是 $[x, x^2, ..., x^{in_chans}]$ 。即人为增加非线性,希望能更好的拟合三角函数(因为由数学知识可知,泰勒展开后都是这样的多项式项,因此本身提供幂次项后让模型更容易学习);
 - 2. 使用了可选择的 nn.BatchNorm1d 对数据进行批标准化;
 - 3. 对 layer 的 weights 使用了初始化, 具体来说是 xavier 初始化。

```
class net(nn.Module):

... def __init__(self, in_chans: int, depth: int, embed_dims: list, act: nn.Module, norm: bool = True, device="cuda"):

... ... """ Build the neural network, which could manually modify its:

... ... in_chans, depth, embed_dims, activation functions and whether has norm layer

... ... ... args:

... ... in_chans (int): e.g. 1 ([x]); 2 ([x, x^2]); 3 ([x, x^2, x^3]), ...

... depth (int): e.g. 5

... ... embed_dims (list): e.g. [1, 10, 50, 10, 1]

... act (nn.Module): e.g. nn.ReLU

... norm (bool, optional): whether has norm layer. Defaults to True.

... device: "cuda" or "cpu". Defaults to "cuda".
```

图 2: 模型搭建

3 模型训练

如图 3所示,即为模型训练过程。

定义好 optimizer 和学习率 scheduler 之后,首先,optimizer 清空上一 iteration 的梯度;接着,前向传播、计算 loss、反向传播;然后优化器根据反向传播的梯度及定义的学习率进行参数更新;最后进入下一个 iteration。具体地,本实验使用的 optmizer 为 SGD,初始学习率为 0.1,动量为 0.9。

每个 epoch 结束,在验证集上得到 val_loss,学习率 scheduler 据此判断是否更新学习率。具体地,本实验使用的 scheduler 是: 若 val_loss 连续 10 个 epoch 不下降,则 lr 调整为原先 lr 的 1/10。

每 10 个 epoch 进行一次信息的打印,当学习率过小时停止训练。具体地,本实验在 lr<1e-4 时停止训练(事实上调低停止阈值可以获得更好的性能,这是非常容易的事情)。

图 3: 模型训练

4 调参分析

4.1 网络模型参数

首先,我们探究 Norm 和 Init Weight 对模型性能的影响。

如表 1所示,我们可以看到 Norm 和 Init Weight 对于模型性能的提升都是很明显的。特别地,这 2 个方法都不使用, Val MSE Loss 为 1.07809;都使用,并且使用 xavier_normal,可以立刻让 Val MSE Loss 变为 0.00273。这说明 Norm 和 Init Weight 可以让模型更好更快地收敛。

然后, 我们探究网络宽度、网络深度和激活函数对于模型性能的影响。

从表 2可以看出:

1. 第一组 ablation,人为减小学习非线性函数的难度,将 input 从 x 增广为 $[x, x^2]$,对性能的提升最大;

Norm	Init Weight	Val MSE Loss ↓
X	×	1.07809
1	×	0.30706
1	$kaiming_normal$	0.15392
✓	$xavier_normal$	0.00273

表 1: Ablation of Norm and Init Weight

- 2. 第二组 abaltion, 网络深度并不是越深越好, 在 depth>5 后性能反而略有下降, 猜测可能是因为梯度消失, 即网络太深, 传到前面的 grad 太小, 导致浅层网络学习得一般;
 - 3. 第三组 ablation, 网络宽度并不是越宽越好, 参数太多可能过拟合。最优宽度为 [2, 10, 100, 10, 1];
 - 4. 第四组 ablation,最优的激活函数是 ReLU 函数。

Depth	Width	Activation	Val MSE Loss ↓
5	1, 10, 100, 10, 1	ReLU	0.00316
5	2, 10, 100, 10, 1	ReLU	0.00273
5	3, 10, 100, 10, 1	ReLU	0.00324
5	4, 10, 100, 10, 1	ReLU	0.00288
3	2, 10, 1	ReLU	0.00470
5	2, 10, 100, 10, 1	ReLU	0.00273
7	2, 10, 100, 200, 100, 10, 1	ReLU	0.00313
9	2, 10, 100, 200, 800, 200, 100, 10, 1	ReLU	0.00330
5	2, 10, 50, 10, 1	ReLU	0.00303
5	2, 10, 100, 10, 1	ReLU	0.00273
5	2, 50, 100, 50, 1	ReLU	0.00324
5	2, 50, 500, 50, 1	ReLU	0.00325
5	2, 10, 100, 10, 1	Sigmoid	0.00297
5	2, 10, 100, 10, 1	Tanh	0.01236
5	2, 10, 100, 10, 1	ReLU	0.00273

表 2: Ablation of width, depth and activation

4.2 优化器及学习率

我们探究 optimizer, learning rate 以及它的 scheduler 对模型性能的影响。 从表 3中可以看出:

- 1. SGD 优化器比 Adam 优化器效果略好;
- 2. SGD 优化器在 momentum=0.9 时效果最优, momentum=0 时容易陷入局部极小值点, momentum=0.99 又容易冲出全局最小值点;
 - 3. 学习率初始化为 0.01 效果最优;
- 4. 若学习率一直不改变,则模型不收敛;若学习率每 10 个 epoch 衰减到原先的 1/10,则收敛不充分;实际实验中采用若连续 10 个 epoch 模型性能都不提升(落入 plateau),则将学习率衰减

到原先的 1/10,这样可以保证在每次衰减前,在较大的尺度上已经接近最优,衰减后可以更细致地调整、逼近最优点。

Optimizer	LR&Scheduler	Val MSE Loss ↓
Adam	init 0.1, x 0.1 if plateau	0.00287
$\underline{\text{SGD(m=0.9)}}$	init 0.1, x 0.1 if plateau	0.00273
SGD(m=0)	init 0.1, x 0.1 if plateau	0.00337
SGD(m=0.9)	init 0.1, x 0.1 if plateau	0.00273
SGD(m=0.99)	init 0.1, x 0.1 if plateau	0.00331
SGD(m=0.9)	init 1, x 0.1 if plateau	0.00351
SGD(m=0.9)	init 0.1, x 0.1 if plateau	0.00273
SGD(m=0.9)	init 0.01, x 0.1 if plateau	0.00372
SGD(m=0.9)	always 0.1	_
SGD(m=0.9)	≥ 0.1 every 10 epochs	0.19203
SGD(m=0.9)	init 0.1, x 0.1 if plateau	0.00273

表 3: Ablation of optimizer and scheduler

5 测试性能

运行以下指令, pip install -r requirements.txt python main.py

然后会得到如图 4输出, 在测试集上的 MSE loss 为 0.00103。

图 4: Screen Output of main.py

同时,得到 train 和 val 的 loss curve(图 5) 和在 $[0,2\pi)$ 上等间距取的 10000 个点的 log MSE loss(图 6)。从中可以看出 train 和 val 的 loss 一开始都大幅振荡,val loss 大于 train loss,100 个 epoch 后趋于稳定,模型收敛。同时,模型可以很好地 generalize 到 $[0,2\pi]$ 上,Log MSE Loss 几乎全部小于-5。

图 5: Log loss curve of training set and validation set

图 6: 10000 samples $\in [0, 2\pi)$ Log MSE Loss

6 实验总结

本实验通过大量充分的实验来拟合函数 $y=sin(x)+cos(x)+sin(x)cos(x), x\in [0,2\pi)$ 。通过对网络模型参数和优化器及学习率的调优,在测试集上达到了较好的效果;并且有较强的 generalize 能力。