Matemática Discreta

2020/2021 Grafos: Conexidade

Professores João Araújo, Júlia Vaz Carvalho, Manuel Silva *Departamento de Matemática* FCT/UNL

Programa

- Parte 1 Conjuntos e Relações e Funções
 - Conjuntos, representações e operações básicas; conjunto das partes; cardinalidade.
 - Relações binárias: equivalências e ordens parciais.
 - 3 Funções: bijecções; inversão e composição.
- Parte 2 Indução
 - Definições indutivas
 - Indução nos naturais e estrutural
 - O Primeiro e segundo princípios de indução
 - Funções recursivas e provas por indução
- Parte 3 Grafos e Aplicações
 - Generalidades
 - Conexidade
 - Arvores
 - Grafos Eulerianos
 - 6 Matrizes e grafos

3.2.1. Noção de cadeia. Componentes conexas

Muitas das aplicações da teoria de grafos falam "ir de um vértice para outro" num grafo. Por exemplo, qual o caminho mais curto entre Lisboa e Porto? Começamos por precisar este conceito através de definições.

Definição

Num multigrafo não orientado (respectivamente, multigrafo orientado) $G = (X, \mathcal{U})$ chama-se cadeia a uma sequência alternada de vértices e arcos de G, iniciada e terminada num vértice, tal que cada arco tem uma extremidade no vértice que imediatamente o precede na sequência e a outra extremidade no vértice que imediatamente o sucede na sequência.

Trata-se, pois, de uma sequência da forma

$$L: x_0, u_1, x_1, u_2, \ldots, u_r, x_r$$

com $u_i \in \mathcal{U}$, $i \in \{1, ..., r\}$, $x_j \in X$, $j \in \{0, 1, ..., r\}$ e em que $u_i = \{x_{i-1}, x_i\}$ (respectivamente, $u_i = (x_{i-1}, x_i)$ ou $u_i = (x_i, x_{i-1})$), $i \in \{1, ..., r\}$.

O vértice x_0 diz-se o vértice inicial da cadeia L e o vértice x_r o seu vértice final. Diz-se que x_0 e x_r são as **extremidades** da cadeia L.

Designamos, frequentemente, por cadeia $x_0 - x_r$ uma cadeia cujo vértice inicial é x_0 e o vértice final é x_r .

Definição

Uma cadeia cujas extremidades são iguais diz-se uma cadeia fechada, caso contrário, diz-se uma cadeia aberta. O número de arcos de uma cadeia, contabilizando as repetições, diz-se o seu comprimento.

A sequência que apenas tem um vértice x é uma cadeia (degenerada) de comprimento zero. As cadeias de comprimento zero designam-se por cadeias triviais e as de comprimento não nulo por cadeias não triviais.

Definição

Uma cadeia diz-se cadeia simples se todos os arcos da cadeia são distintos e diz-se cadeia elementar se todos os vértices da cadeia são distintos, à excepção das extremidades que podem coincidir no caso da cadeia ser fechada.

Definição

Uma cadeia simples, fechada e não trivial diz-se um ciclo

Um grafo simples com n vértices, formado por uma única cadeia elementar aberta, que contenha todos os seus vértices, diz-se um grafo cadeia e denota-se por P_n .

Um grafo simples com n vértices, regular de grau 2, formado por um único ciclo diz-se um grafo ciclo e denota-se por C_n .

Exemplo:

No grafo orientado

G

 x_2 , (x_2, x_2) , x_2 é um **ciclo** de comprimento 1. x_1 , (x_1, x_2) , x_2 , (x_1, x_2) , x_1 é uma cadeia não trivial, fechada que é elementar mas não é simples.

Observação: Num grafo simples, uma cadeia fica completamente determinada se indicarmos a subsequência dos seus vértices.

Num multigrafo e mesmo num grafo orientado tal não sucede. Por exemplo no grafo orientado

Definição

Um multigrafo $G = (X, \mathcal{U})$ (orientado ou não) diz-se conexo se, para quaisquer vértices x_i e x_j existe, em G, uma cadeia $x_i - x_j$. Caso contrário diz-se desconexo.

Seja $G=(X,\ \mathcal{U})$ um multigrafo e R a relação binária, definida em X, por x_iRx_j se, e só se, existe em G uma cadeia x_i-x_j .

Proposição

R é uma relação de equivalência.

A relação de equivalência R origina uma partição de X em classes X_1, \ldots, X_p cujo número p se designa por número de conexidade de G.

Os subgrafos de G, gerados respectivamente por X_1, \ldots, X_p dizem-se as componentes conexas de G e representam-se por R_1, \ldots, R_p .

Exemplo: Consideremos o grafo orientado G = (X, U)

A relação de equivalência R origina uma partição de X em 3 classes $X_1=\{x_1,\ x_2\},\quad X_2=\{x_3,\ x_4,\ x_5\}$ e $X_3=\{x_6\}.$

As componentes conexas de G são os grafos

 R_3

e o número de conexidade de G é 3.

3.3.2. Resultados sobre conexidade

Restringindo-nos aos grafos simples, existem como veremos propriedades dos grafos que se tornam mais fáceis de demonstrar quando os mesmos são conexos. Se o grafo inicial não for conexo, basta pensarmos em cada uma das suas componentes conexas.

Proposição

Num grafo simples $G = (X, \mathcal{U})$ existe uma cadeia $x_0 - x_r$ se, e só se, existe uma cadeia $x_0 - x_r$ elementar.

Prova \Leftarrow é trivial. \Rightarrow (Indução no número de vértices repetidos): se houver só um vértice repetido (x_i) , então

 $x_0 - \ldots - x_i - u_i - \ldots u_j - x_i - \ldots - x_r$ e basta retirar a subcadeia $u_i - \ldots u_j - x_i$ para ter o resultado. Depois, hipótese: o resultado vale para n vértices repetidos; tese: vale para n+1 vértices repetidos (recorrendo ao mesmo argumento usado em n-1)

Proposição

Seja $G=(X,\ \mathcal{U})$ um grafo simples e $x_0,\ x_r$ vértices distintos de G. Se em G existem duas cadeias x_0-x_r elementares distintas, então em G, existe um ciclo.

Proposição

Seja $G=(X,\ \mathcal{U})$ um grafo simples, sem ciclos. Se $u\in (X\otimes X)\setminus \mathcal{U}$ então G+u tem, no máximo, um ciclo.

Proposição

Seja $G=(X,\ \mathcal{U})$ um grafo simples, sem ciclos. Se $u\in (X\otimes X)\setminus \mathcal{U}$ então G+u tem, no máximo, um ciclo.

Teorema

Um grafo simples, com $n \ge 2$ vértices, é bipartido se, e só se, não tem ciclos de comprimento ímpar.

Definição

Seja $G=(X,\ \mathcal{U})$ um grafo simples. Diz-se que $u\in\mathcal{U}$ é uma ponte de G se o número de conexidade de G-u é superior ao número de conexidade de G.

Observação: Se G = (X, U) é um grafo simples com número de conexidade p e $u \in U$ é uma ponte, então G - u tem número de conexidade p + 1.

Exemplo: Consideremos o grafo simples conexo *G*

o arco $u = \{x_2, x_4\}$ é uma ponte pois o grafo G - u tem duas componentes conexas

Proposição

Seja $G=(X,\ \mathcal{U})$ um grafo simples. Tem-se, $u\in\mathcal{U}$ é uma ponte se, e só se, u não faz parte de nenhum ciclo.

Proposição

Um grafo simples G e o seu complementar \overline{G} não podem ser ambos desconexos.

3.2.3. Noção de caminho. Componentes fortemente conexas

Muitos dos problemas que são resolvidos através da teoria dos grafos, só se podem colocar com grafos orientados. Por exemplo, o caminho mais curto entre duas ruas de uma determinada cidade (neste problema temos de ter em linha de conta que nem todas as ruas têm os dois sentidos).

Definição

Num multigrafo orientado $G=(X,\ \mathcal{U})$ chama-se caminho a uma sequência alternada de vértices e arcos de G, iniciada e terminada num vértice, tal que cada arco tem uma extremidade inicial no vértice que imediatamente o precede na sequência e extremidade final no vértice que imediatamente lhe sucede na sequência.

Trata-se de uma sequência da forma

$$L: x_0, u_1, x_1, u_2, \ldots, u_r, x_r$$

em que $u_i = (x_{i-1}, x_i) \in \mathcal{U}, i = 1, ..., r \in x_i \in X, i = 0, ..., r.$

Definição

Diz-se que x_0 (respectivamente, x_r) é o vértice inicial (respectivamente, vértice final) do caminho L e que L é caminho $x_0 - x_r$.

As definições de caminho fechado/aberto, comprimento de um caminho, caminho simples, caminho elementar, ..., obtêm-se substituindo, nas correspondentes definições para cadeias, "cadeia" por "caminho".

Um caminho simples, fechado e não trivial diz-se um circuito.

Observação:

- Se L é um caminho $x_0 x_r$ num multigrafo orientado G então L é também uma cadeia $x_0 x_r$.
- ② Num grafo orientado pode existir um caminho $x_0 x_r$ e não existir nenhum caminho $x_r x_0$. Por exemplo

G x_0 x_r

Num digrafo, um caminho fica completamente determinado se indicarmos apenas a subsequência dos seus vértices.

Definição

Um multigrafo orientado $G = (X, \mathcal{U})$ diz-se fortemente conexo se, para quaisquer vértices x_i , x_j , existe em G um caminho $x_i - x_j$ e um caminho $x_j - x_i$.

Seja $G=(X,\ \mathcal{U})$ um multigrafo orientado e S a relação binária, definida em X, por:

 $x_i S x_j$ se, e só se, existe em G um caminho $x_i - x_j$ e um caminho $x_j - x_i$.

S é uma relação de equivalência. Sejam X_1',\ldots,X_q' as suas classes de equivalência. Ao número q chama-se **número de conexidade forte** de G. Os subgrafos gerados por X_1',\ldots,X_q' dizem-se as **componentes fortemente conexas** de G e representam-se, respectivamente, por S_1,\ldots,S_q .

Exemplo:

Seja
$$G = (X, \mathcal{U})$$

A relação de equivalência S, origina uma partição de X em três classes

$$X_1'=\{x_1\}$$

$$X_2' = \{x_2, x_4, x_5, x_6\}$$

$$X_3^7 = \{x_3\}$$

e as componentes fortemente conexas de G são:

Proposição

Seja G = (X, U) um multigrafo orientado. Então:

- (i) Um arco de G pode não pertencer a nenhuma componente fortemente conexa.
- (ii) Um arco de G não pode pertencer a mais do que uma componente fortemente conexa.
- (iii) Um arco de G pertence a uma componente fortemente conexa se, e só se, faz parte de um circuito.

Proposição

Seja G um digrafo. Se G é desconexo então o seu digrafo complementar \overline{G} é fortemente conexo.