Chapter 1

Introduction

Mixed notes from the book Convex Optimization [1]. Some parts will be supplemented by the book of Dattoro [2]. The book of Dattoro is extremely useful for concretely illustrating most of the concepts.

Quotes

• "We study convex geometry because it is the easiest of geometries. For that reason, much of a practitioners energy is expended seeking invertible transformation of problematic sets to convex ones". Dattoro [2].

Chapter 2

Convex Sets

2.1 Affine and convex sets and cones.

- Affine set. A set $C \subseteq \mathbf{R}^n$ is affine if the line through any two points in C lines in C, i.e. if $x_1, x_2 \in C$ and $\theta \in \mathbf{R}$ implies $\theta x_1 + (1-\theta)x_2 \in C$. More generally, an affine set is a set that contains all affine combination (see def. below) of two or more of its points.
 - * Any affine set is convex [2].
 - * The intersection of an arbitrary collection of affine sets remains affine [2].
 - * Any affine set is open in the sense that it contains no boundary, e.g. the empty set \emptyset , point, line, plane, hyperplane, subspace etc [2]. Converse not necessarily true (e.g. see point just below about subspace.)
 - * If C is an affine set and $x_0 \in C$, then the set $V = C x_0 = \{x x_0 | x \in C\}$ is a subspace.
 - Affine combination. A combination of points $\sum_{i=1}^k \theta_i x_i$ where $\sum_{i=1}^k \theta_i = 1$ is an affine combination.
 - Ambient space. The space where a given set lives in, e.g. a plane can live in \mathbb{R}^2 , \mathbb{R}^3 . The choice of ambient space has implications on, for example, the interior of a set ([2], p34)
 - Affine hull, denoted $\mathbf{aff} C$ is the smallest set that makes C affine.
 - Affine dimension of a set C is the dimension of **aff** C. In fact dimension of a set is synonymous with affine dimension [2].
 - Relative interior. The interior of, for example, a plane in \mathbb{R}^3 is empty. To "fix" this issue, we define the relative interior of C as: relint $C = \{x \in C | B(x, r) \cup \text{aff } C \subseteq C \text{ for some } r > 0\}$
- Convex sets. A set C is convex if the line segment between any two points in C lies in C, i.e. $\theta x_1 + (1 \theta)x_2 \in C$ for any $x_1, x_2 \in C$ and $0 \le \theta \le 1$.
 - Convex combination. A combination of points $\sum_{i=1}^k \theta_i x_i$ where $\sum_{i=1}^k \theta_i = 1$ and $\theta_i \ge 0$ is a convex combination.
 - Convex hull $\operatorname{conv} C$ of a set C is the smallest set that makes C convex.
- Cones. A set C is called a cone if for every $x \in C$ and $\theta \ge 0$ we have $\theta x \in C$.
 - Convex cone is a set that is cone and also convex, i.e. $\theta_1 x_1 + \theta_2 x_2 \in C$ for any $x_1, x_2 \in C$ and for $\theta_1, \theta_2 \geq 0$. Some differences between a convex set and a convex cone: (i) A convex set doesn't have to include the origin, a convex cone does; (ii) a convex set can be bounded but a convex cone cannot.

Some important examples and notes ([1] p27):

- Any subspace is affine and a convex cone
- A line segment is convex but not affine
- A ray (i.e. $\{\theta v + x_0 : x \ge 0\}$) is convex but not affine. It is convex cone if its base x_0 is 0.
- Any line is affine.
- The empty set, any single point and the whole space are affine (hence convex) subsets of \mathbb{R}^n
- Halfspaces (see below) are convex but not affine.

2.2 Hyperplanes and halfspaces

 \bullet **Hyperplane** is a set of the form

$$\{x|a^Tx = b\}$$

This set has several intuitive interpretations.

- 1. It is the hyperplane with a normal vector a and an offset b from the origin.
- 2. Let b be $a^Tx = b$. Then, $\{x|a^Tx = b\} = \{x|a^T(x-x_0)\} = x_0 + a^{\perp}$ where a^{\perp} is the orthogonal complement of a.
- 3. More interpretations on p27-28.
- \bullet Halfspace. Each hyperplane divides \mathbb{R}^n into two halfspaces. A (closed) halfspace is of the form

$$\{x|a^Tx \leq b\},$$

where $a \neq 0$.

Bibliography

- [1] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.
- [2] J. Dattorro, Convex optimization & Euclidean distance geometry. Lulu. com, 2010.