Introduction to CMOS VLSI Design

Lecture 5: Circuits & Layout

CMOS Gate Design

- ☐ Activity:
 - Sketch a 4-input CMOS NAND gate

CMOS Gate Design

- ☐ Activity:
 - Sketch a 4-input CMOS NOR gate

Complementary CMOS

- □ Complementary CMOS logic gates
 - nMOS pull-down network
 - pMOS pull-up network
 - a.k.a. static CMOS

	Pull-up OFF	Pull-up ON
Pull-down OFF	Z (float)	1
Pull-down ON	0	X (crowbar)

Series and Parallel

- nMOS: 1 = ON
- \square pMOS: 0 = ON
- ☐ Series: both must be ON
- ☐ Parallel: either can be ON

Conduction Complement

- Complementary CMOS gates always produce 0 or 1
- □ Ex: NAND gate
 - Series nMOS: Y=0 when both inputs are 1
 - Thus Y=1 when either input is 0
 - Requires parallel pMOS

- ☐ Rule of Conduction Complements
 - Pull-up network is complement of pull-down
 - Parallel -> series, series -> parallel

Compound Gates

- ☐ Compound gates can do any inverting function
- \square Ex: $Y = A\square B + C\square D$ (AND-AND-OR-INVERT, AOI22)

$$\Box Y = \overline{(A+B+C)\Box D}$$

$$\Box Y = \overline{(A+B+C)\Box D}$$

Signal Strength

- ☐ Strength of signal
 - How close it approximates ideal voltage source
- V_{DD} and GND rails are strongest 1 and 0
- nMOS pass strong 0
 - But degraded or weak 1
- pMOS pass strong 1
 - But degraded or weak 0
- □ Thus nMOS are best for pull-down network

Pass Transistors

☐ Transistors can be used as switches

Pass Transistors

☐ Transistors can be used as switches

$$g = 0$$

 $s - \sigma d$

$$g = 1$$

 $s \rightarrow d$

$$g = 0$$

$$s \rightarrow d$$

$$g = 1$$
 $s - d$

Input
$$g = 1$$
 Output $0 \rightarrow -strong 0$

Input
$$g = 0$$
 Output $0 \rightarrow -$ degraded 0

$$g = 0$$
 \rightarrow strong 1

Gate Layout

- ☐ Layout can be very time consuming
 - Design gates to fit together nicely
 - Build a library of standard cells
- □ Standard cell design methodology
 - V_{DD} and GND should abut (standard height)
 - Adjacent gates should satisfy design rules
 - nMOS at bottom and pMOS at top
 - All gates include well and substrate contacts

Example: Inverter

Example: NAND3

- ☐ Horizontal N-diffusion and p-diffusion strips
- Vertical polysilicon gates
- ☐ Metal1 V_{DD} rail at top
- Metal1 GND rail at bottom
- \Box 32 λ by 40 λ

Stick Diagrams

- ☐ Stick diagrams help plan layout quickly
 - Need not be to scale
 - Draw with color pencils or dry-erase markers

Wiring Tracks

- ☐ A wiring track is the space required for a wire
 - -4λ width, 4λ spacing from neighbor $= 8 \lambda$ pitch
- Transistors also consume one wiring track

Well spacing

- lacktriangle Wells must surround transistors by 6 λ
 - Implies 12 λ between opposite transistor flavors
 - Leaves room for one wire track

Area Estimation

- ☐ Estimate area by counting wiring tracks
 - Multiply by 8 to express in λ

☐ Sketch a stick diagram for O3AI and estimate area

$$- Y = \overline{(A+B+C)\Box D}$$

☐ Sketch a stick diagram for O3AI and estimate area

$$- Y = \overline{(A+B+C)\Box D}$$

☐ Sketch a stick diagram for O3AI and estimate area

$$- Y = \overline{(A+B+C)\Box D}$$

