Policy evaluation

Convergence and Spectral Radius

Ahmed Touati

Reinforcement Learning class

Policy evaluation Algorithm

```
Input \pi, the policy to be evaluated
Initialize an array V(s) = 0, for all s \in \mathbb{S}^+
Repeat
    \Lambda \leftarrow 0
    For each s \in S:
         v \leftarrow V(s)
         V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]
         \Delta \leftarrow \max(\Delta, |v - V(s)|)
until \Delta < \theta (a small positive number)
Output V \approx v_{\pi}
```

Convergence and contraction mappings

Banach Fixed-Point Theorem

Suppose U is a Banach Space and $T:U\to U$ is a contraction mapping. Then:

- there exists a unique v^* in U such that $Tv^* = v^*$; and
- for arbitrary v^0 in U. The sequence $\{v^n\}$ defined by

$$v^{n+1} = Tv^n = T^{n+1}v^0$$

converges to v^* .

Spectral Radius

Definition

Let $A \in \mathbb{R}^{dxd}$ a matrix and (λ_i) are his eigenvalues, we define the **Spectral Radius** of A denoted $\rho(A)$ as $\rho(A) = \max_i \{\lambda_i\}$

Gelfand's Formula

$$\rho(A) = \lim_{n \to \infty} ||A^n||^{\frac{1}{n}}$$

Neuman expansion of inverses

If $\rho(A) < 1$ than $(I - A)^{-1}$ exists and satisfies:

$$(I-A)^{-1} = \lim_{N \to \infty} \sum_{n=0}^{N} A^n$$

proof

On blackboard

• Vectorized form of Bellman equation: if d is the number of state, we have $V_{\pi} \in \mathbb{R}^d$

$$V_{\pi} = R_{\pi} + \gamma P_{\pi} V_{\pi}$$

where

- $\cdot R_{\pi} \in \mathbb{R}^d, R_{\pi}(s) = \mathbb{E}[R_t|S_t = s, A_{t:\infty} \sim \pi].$
- $P_{\pi} \in \mathbb{R}^{dxd}$ transition matrix: $(P_{\pi})_{i,j} = \mathbb{P}[s_j|s_i]$

• Vectorized form of Bellman equation: if d is the number of state, we have $V_{\pi} \in \mathbb{R}^d$

$$V_{\pi} = R_{\pi} + \gamma P_{\pi} V_{\pi}$$

where

- $R_{\pi} \in \mathbb{R}^d$, $R_{\pi}(s) = \mathbb{E}[R_t|S_t = s, A_{t:\infty} \sim \pi]$.
- $P_{\pi} \in \mathbb{R}^{d\times d}$ transition matrix: $(P_{\pi})_{i,j} = \mathbb{P}[s_i|s_i]$
- The solution of Bellman equation is:

$$V_{\pi} = (I - \gamma P_{\pi})^{-1} R_{\pi}$$

• Vectorized form of Bellman equation: if d is the number of state, we have $V_{\pi} \in \mathbb{R}^d$

$$V_{\pi} = R_{\pi} + \gamma P_{\pi} V_{\pi}$$

where

- $R_{\pi} \in \mathbb{R}^d$, $R_{\pi}(s) = \mathbb{E}[R_t|S_t = s, A_{t:\infty} \sim \pi]$.
- $P_{\pi} \in \mathbb{R}^{dxd}$ transition matrix: $(P_{\pi})_{i,j} = \mathbb{P}[s_j|s_i]$
- The solution of Bellman equation is:

$$V_{\pi} = (I - \gamma P_{\pi})^{-1} R_{\pi}$$

· Policy iteration rewritten: For each k:

$$V_{\pi}^{k+1} = R_{\pi} + \gamma P_{\pi} V_{\pi}^{k}$$

• Vectorized form of Bellman equation: if d is the number of state, we have $V_{\pi} \in \mathbb{R}^d$

$$V_{\pi} = R_{\pi} + \gamma P_{\pi} V_{\pi}$$

where

- $R_{\pi} \in \mathbb{R}^d$, $R_{\pi}(s) = \mathbb{E}[R_t|S_t = s, A_{t:\infty} \sim \pi]$.
- $P_{\pi} \in \mathbb{R}^{dxd}$ transition matrix: $(P_{\pi})_{i,j} = \mathbb{P}[s_j|s_i]$
- · The solution of Bellman equation is:

$$V_{\pi} = (I - \gamma P_{\pi})^{-1} R_{\pi}$$

· Policy iteration rewritten: For each k:

$$V_{\pi}^{k+1} = R_{\pi} + \gamma P_{\pi} V_{\pi}^{k}$$

By recursion:

$$V^{K} = (\gamma P)^{K} V^{0} + \sum_{k=0}^{K-1} (\gamma P)^{k} R$$

Convergence proof: final step

• P is a right stochastic matrix then $\rho(P) = 1$. So, $\rho(\gamma P) = \gamma < 1$.

proof

On blackboard

Convergence proof: final step

- P is a right stochastic matrix then $\rho(P)=1$. So, $\rho(\gamma P)=\gamma<1$.
- We can apply the Neuman expansion theorem:

$$\lim_{K \to \infty} \sum_{k=0}^{K} (\gamma P)^k = (I - \gamma P)^{-1}$$

.

- We have also that the term $(\gamma P)^K V^0$ vanishes to zero.
- · As result, we show that

$$\lim_{K\to\infty} V^K = (I - \gamma P)^{-1} R$$

.

