Simplicité de \mathfrak{A}_n pour n=3 et $n\geq 5$:

I Le développement

Le but de ce développement est de démontrer que le groupe \mathfrak{A}_n est simple pour n=3 et $n\geq 5$ (c'est-à-dire qu'il ne possède aucun sous-groupe distingué non-trivial). Pour cela, nous allons d'abord utiliser le fait que \mathfrak{A}_n est engendré par les 3-cycles et que ceux-ci sont tous conjugués dans \mathfrak{A}_n puis ensuite utiliser ce résultat central pour démontrer que \mathfrak{A}_n est un groupe simple.

Lemme 1 : [Rombaldi, p.49]

Le produit de deux transpositions de [1; n] est un produit de 3-cycles. Plus précisément, pour tous $x, y, z, t \in [1; n]$ deux à deux distincts, on a :

$$(x y)(x z) = (x z y)$$
 et $(x y)(z t) = (x y z)(y z t)$

Preuve:

Soient τ_1 et τ_2 deux transpositions de [1; n].

On raisonne par disjonction de cas sur le support des deux transpositions :

- * Si $\tau_1 = \tau_2$, alors $\tau_1 \tau_2 = \operatorname{Id}_{\lceil 1:n \rceil} = \gamma^3$ pour n'importe quel 3-cycle γ .
- * Si $\tau_1 \neq \tau_2$, on a alors deux sous-cas à envisager :
- Si Supp $(\tau_1) \cap$ Supp (τ_2) est réduit à un singleton (on peut par exemple prendre $\{x\}$ sans perte de généralités), alors $\tau_1 = (x \ y)$ et $\tau_2 = (x \ z)$ avec x, y, z trois éléments distincts de [1; n]. On a alors en examinant chacun des éléments des supports :

$$\tau_1 \tau_2 = (x \ y)(x \ z) = (y \ x)(x \ z) = (y \ x \ z) = (x \ z \ y)$$

- Si $\operatorname{Supp}(\tau_1) \cap \operatorname{Supp}(\tau_2) = \emptyset$, on a alors $\tau_1 = (x\ y)$ et $\tau_2 = (z\ t)$ avec x,y,z,t quatre éléments deux à deux distincts de [1;n]. Ainsi en examinant chacun des éléments des supports :

$$\tau_1 \tau_2 = (x \ y)(z \ t) = (x \ y)(y \ z)(y \ z)(z \ t) = (x \ y \ z)(y \ z \ t)$$

Finalement, on a bien le résultat voulu.

Proposition 2: [Rombaldi, p.49]

Pour n > 5, \mathfrak{A}_n est engendré par les 3-cycles.

Preuve:

Soit n > 5.

Comme \mathfrak{S}_n est engendré par les transpositions, il en est de même pour \mathfrak{A}_n . Si l'on considère $\sigma \in \mathfrak{A}_n \setminus \left\{ \mathrm{Id}_{\llbracket 1;n \rrbracket} \right\}$, il existe alors $r \in \mathbb{N}^*$ et $(\tau_i)_{i \in \llbracket 1;r \rrbracket}$ un r-uplet de

transpositions tel que : $\sigma = \prod_{i=1}^r \tau_i$ (*).

De plus, puisque la signature de chaque τ_i vaut -1 et celle de σ vaut 1 (car $\sigma \in \mathfrak{A}_n$), on en déduit de (*) que $(-1)^r = 1$ et donc que r est un nombre pair non nul.

En regroupant ainsi deux à deux les transpositions dans (*), on obtient par le lemme précédent que σ s'écrit comme un produit de 3-cycles.

Proposition 3: [Rombaldi, p.65]

Pour $n \geq 5$, les 3-cycles sont tous conjugués dans \mathfrak{A}_n

Preuve :

Soient $n \geq 5$ et $\gamma = (x_1 \ x_2 \ x_3)$ et $\gamma' = (x_1' \ x_2' \ x_3')$ deux 3-cycles.

On sait déjà que deux 3-cycles sont conjugués dans \mathfrak{S}_n . On se donne donc une permutation $\sigma \in \mathfrak{S}_n$ telle que pour tout $k \in [1;3]$, $\sigma(x_k) = x'_k$ et on a alors $\gamma' = \sigma \gamma \sigma^{-1}$.

On raisonne par disjonction de cas:

- * Si $\sigma \in \mathfrak{A}_n$, alors on a bien le résultat voulu.
- * Si $\sigma \notin \mathfrak{A}_n$, alors en prenant x_4, x_5 dans $[1; n] \setminus \{x_1; x_2; x_2\}$, la permutation $\sigma' = (x_4 \ x_5)\sigma$ est dans \mathfrak{A}_n (car de signature égale à 1) et vérifie bien, pour tout $k \in [1; 3]$, $\sigma'(x_k) = x'_k$. On est donc ramené au cas précédent et on a ainsi le résultat voulu.

Finalement, les 3-cycles sont tous conjugués dans \mathfrak{A}_n .

Théorème 4: [Rombaldi, p.50 + 51]

Pour n = 3 ou $n \ge 5$, le groupe \mathfrak{A}_n est simple.

Preuve:

* Traitons tout d'abord du cas où n = 3:

 \mathfrak{A}_n est alors un groupe d'ordre 3, il est donc isomorphe à $\mathbb{Z}/3\mathbb{Z}$ d'après la structure des "petits" groupes et ainsi il est simple.

* Traitons désormais du cas général où n > 5:

Soit \overline{H} un sous-groupe distingué de \mathfrak{A}_n différent de $\{\mathrm{Id}_{\llbracket 1;n\rrbracket}\}$.

Puisque les 3-cycles sont tous conjugués dans \mathfrak{A}_n et engendrent \mathfrak{A}_n , il suffit de montrer que H contient un 3-cycle (car H les contiendra tous puisqu'il est stable par conjugaison en tant que sous-groupe distingué et il sera ainsi égal à \mathfrak{A}_n).

Soient $\sigma \in H \setminus \{\operatorname{Id}_{\mathbb{I}_1;n}\}$ et $\gamma = (x \ z \ y) \in \mathfrak{A}_n$ un 3-cycle (avec $y = \sigma(x)$ et $z \notin \{x; y; \sigma^{-1}(x)\}$) qui ne commute pas avec σ (car $\gamma \sigma(x) = x$ et $\sigma \gamma(x) = \sigma(z) \neq x$).

Comme H est un sous-groupe distingué de \mathfrak{A}_n , on en déduit alors que l'élément $\sigma' = \sigma \gamma \sigma^{-1} \gamma^{-1} = \sigma \left(\gamma \sigma^{-1} \gamma^{-1} \right)$ appartient à H. De plus, en écrivant que :

$$\sigma' = \left(\sigma(x\ z\ y)\sigma^{-1}\right)\left(y\ z\ x\right) = \left(\sigma(x)\ \sigma(z)\ \sigma(y)\right)\left(y\ z\ x\right) = \left(y\ \sigma(z)\ \sigma(y)\right)\left(y\ z\ x\right)$$

On voit alors que σ' est le produit de deux 3-cycles (car y, $\sigma(y)$ et $\sigma(z)$ sont deux à deux distincts par bijectivité de σ) qui agissent sur $F = \{x, y, z, \sigma(y), \sigma(z)\}$ formé d'au plus 5 éléments (tous les points de $[1; n] \setminus F$ sont fixes).

De plus, l'égalité $\sigma' = \operatorname{Id}_{\llbracket 1;n \rrbracket}$ n'a lieu que lorsque $\sigma \gamma \sigma^{-1} \gamma^{-1} = \operatorname{Id}_{\llbracket 1;n \rrbracket}$, c'est-à-dire $\sigma \gamma = \gamma \sigma$. Ce qui n'est pas possible d'après la définition de γ .

Ainsi, dans \mathfrak{S}_F , σ' s'écrit donc comme produit de cycles à supports disjoints. Or, cette décomposition étant également celle de \mathfrak{S}_n et comme $\sigma' \in \mathfrak{A}_n$, il n'y a donc que trois possibilités : σ' est soit un 3-cycles, soit un produit de deux transpositions à supports disjoints, soit un 5-cycle.

- Si σ' est un 3-cycle, alors puisque $\sigma' \in H$, on a le résultat voulu.

- Si σ' est un produit de deux transpositions à supports disjoints, alors on écrit $\sigma' = (x_1 \ x_2)(x_3 \ x_4)$ et, en choisissant $x_5 \in [\![1;n]\!] \setminus \{x_1;x_2;x_3;x_4\}$ et en notant $\rho = (x_1 \ x_2 \ x_5) \in \mathfrak{A}_n$, on vérifie que le commutateur définit par $\sigma'' = [\sigma',\rho] = \sigma' \left(\rho(\sigma')^{-1} \rho^{-1}\right)$ (qui est dans H par le même argument que précédemment) est un 3-cycle et on obtient le résultat voulu.

En effet:

$$\sigma'' = \left(\sigma'\rho\left(\sigma'\right)^{-1}\right)\rho^{-1} = \left(\sigma'(x_1)\ \sigma'(x_2)\ \sigma'(x_5)\right)(x_5\ x_2\ x_1)$$
$$= (x_2\ x_1\ x_5)(x_5\ x_2\ x_1) = (x_1\ x_2\ x_5)$$

- Dans le troisième cas, on a $\sigma'=(x_1\ x_2\ x_3\ x_4\ x_5)$ et, en notant le 3-cycle $\rho=(x_1\ x_2\ x_3)\in\mathfrak{A}_n$, on vérifie de même que le commutateur $\sigma''=[\sigma',\rho]$ (qui est dans H) est un 3-cycle et on obtient le résultat voulu. En effet :

$$\sigma'' = \left(\sigma'\rho\left(\sigma'\right)^{-1}\right)\rho^{-1} = \left(\sigma'(x_1)\ \sigma'(x_2)\ \sigma'(x_3)\right)(x_3\ x_2\ x_1)$$
$$= (x_2\ x_3\ x_4)(x_3\ x_2\ x_1) = (x_1\ x_4\ x_2)$$

Ainsi, dans tous les cas H contient un 3-cycle, donc par la remarque préliminaire de la démonstration, on en déduit que $H = \mathfrak{A}_n$ et donc que \mathfrak{A}_n est simple.

II Remarques sur le développement

II.1 Résultat(s) utilisé(s)

Remarque 5:

En fait, les groupes \mathfrak{A}_3 et \mathfrak{A}_4 sont également engendrés par les 3-cycles mais ce résultat n'est pas utile dans la preuve du théorème.

II.2 Pour aller plus loin...

II.2.1 Centre de \mathfrak{A}_n

Proposition 6: [Rombaldi, p.64]:

Pour $n \geq 4$, le centre de \mathfrak{A}_n est réduit à $\{ \mathrm{Id}_{\mathbb{I}_1:n\mathbb{I}} \}$.

Preuve:

Soient $n \geq 4$ et $\sigma \in \mathfrak{A}_n \setminus \{ \mathrm{Id}_{\llbracket 1,n \rrbracket} \}$.

Il existe alors $x \in [1; n]$ tel que $y = \sigma(x) \neq x$.

On se donne $z \in \llbracket 1; n \rrbracket \setminus \{x; y; \sigma^{-1}(x)\}$ (possible car $n \geq 4$) et $\gamma = (x \ z \ y) \in \mathfrak{A}_n$. On a alors $\gamma \sigma(x) = \gamma(y) = x$ et $\sigma \gamma(x) = \sigma(z) \neq x$, donc $\sigma \gamma \neq \gamma \sigma$ et ainsi $\sigma \notin Z(\mathfrak{A}_n)$.

Le centre de \mathfrak{A}_n est donc réduit à $\{\mathrm{Id}_{\lceil 1;n\rceil}\}$.

Remarque 7:

 $\overline{* \text{ Pour } n \in \{1; 2\}}$, \mathfrak{A}_n est le groupe trivial donc $Z(\mathfrak{A}_n) = \{\text{Id}_{\llbracket 1; n \rrbracket}\}$ et pour n = 3, \mathfrak{A}_n est isomorphe à $\mathbb{Z}/3\mathbb{Z}$ et il est donc abélien et égal à son centre.

* Le centre de \mathfrak{A}_n est en réalité le même que \mathfrak{S}_n .

II.2.2 Application de la simplicité de \mathfrak{A}_n

La simplicité de \mathfrak{A}_n trouve tout son intérêt dans la théorie de Galois. En effet, il est possible de montrer que \mathfrak{S}_n est le groupe de Galois de l'équation polynomiale générale de degré n et que ce n'est pas un groupe résoluble pour $n \geq 5$. Cela permet de justifier que pour $n \geq 5$, les solutions des équations polynomiales générales de degré n ne peuvent pas s'exprimer simplement en fonction des coefficients (théorème d'Abel-Ruffini).

De plus, on peut en déduire le groupe dérivé de \mathfrak{A}_n :

Corollaire 8 : [Perrin, p.28]
Pour
$$n \ge 5$$
, on a $D(\mathfrak{A}_n) = \mathfrak{A}_n$.

Preuve:

Soit $n \geq 5$.

On sait que le groupe dérivé est un sous-groupe distingué, donc ici $D(\mathfrak{A}_n)$ est un sous-groupe distingué de \mathfrak{A}_n . De plus, par le développement, \mathfrak{A}_n est un groupe simple, donc $D(\mathfrak{A}_n) = \mathfrak{A}_n$ ou $D(\mathfrak{A}_n) = \mathrm{Id}_{\mathbb{I}_1:n\mathbb{I}}$.

Or, on sait également que le quotient $\mathfrak{A}_n/D(\mathfrak{A}_n)$ est abélien et que le groupe \mathfrak{A}_n n'est pas abélien (car sinon il serait égal à son centre), on a donc $D(\mathfrak{A}_n) = \mathfrak{A}_n$.

Corollaire 9: [Perrin, p.30]

Pour $n \geq 5$, le seul sous-groupe distingué de \mathfrak{S}_n non trivial est \mathfrak{A}_n .

Preuve:

Soit n > 5.

- * On sait que \mathfrak{A}_n est un sous-groupe distingué de \mathfrak{S}_n car il est d'indice 2 dans \mathfrak{S}_n (et c'est même le seul!).
- * Soit H un sous-groupe distingué de \mathfrak{S}_n non trivial.

On a alors $H \cap \mathfrak{A}_n$ qui est un sous-groupe distingué de \mathfrak{A}_n . Or, par le développement, on sait que \mathfrak{A}_n est simple et donc $H \cap \mathfrak{A}_n$ est égal à \mathfrak{A}_n ou à $\{\mathrm{Id}_{\mathbb{I}:n\mathbb{I}}\}$.

- Si $H \cap \mathfrak{A}_n = \mathfrak{A}_n$, alors H contient \mathfrak{A}_n et donc son cardinal divise n! et est un multiple de $\frac{n!}{2}$. Ainsi, on a $H = \mathfrak{S}_n$ ou $H = \mathfrak{A}_n$.
- Si $H \cap \mathfrak{A}_n = \{ \operatorname{Id}_{\llbracket 1;n \rrbracket} \}$, alors la signature induit un isomorphisme de H sur $\varepsilon(H) \subseteq \{-1;1\}$, de telle sorte que $\operatorname{Card}(H) \leq 2$.

Or, si $\operatorname{Card}(H) = 2$ alors on a $H = \{1; \sigma\}$. Mais en considérant un élément $\rho \in \mathfrak{S}_n$, on a $\rho \sigma \rho^{-1} \in H$ (car H est un sous-groupe distingué de \mathfrak{S}_n par hypothèse) et $\rho \sigma \rho^{-1} \neq \operatorname{Id}_{\llbracket 1;n \rrbracket}$ (car l'élément neutre est seul dans sa classe de conjugaison) et donc $\rho \sigma \rho^{-1} = \sigma$ et ainsi σ appartient au centre de \mathfrak{S}_n . Or ce centre est égal au groupe trivial et on aboutit donc a une contradiction. On en déduit que H est de cardinal 1 et donc égal au groupe trivial.

Ainsi, le seul sous-groupe distingué non trivial de \mathfrak{S}_n est \mathfrak{A}_n .

Remarque 10:

On démontre de même que le groupe dérivé de \mathfrak{S}_n est égal à \mathfrak{A}_n .

II.3 Recasages

Recasages: 103 - 104 - 105 - 108.

III Bibliographie

- Jean-Étienne Rombaldi, Mathématiques pour l'agrégation, Algèbre et géométrie.
- Daniel Perrin, Cours d'algèbre.