UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE INFORMÁTICA

PROJETO FINAL DE CURSO

BIBLIOTECA PARA MATEMÁTICA SIMBÓLICA EM C++

Arthur Gonçalves do Carmo

Graduando em Ciência da Computação

Luiz Carlos de Abreu Albuquerque (Orientador)

VIÇOSA – MINAS GERAIS JUNHO – 2018

RESUMO

BIBLIOTECA PARA MATEMÁTICA SIMBÓLICA EM C++

Luiz Carlos de Abreu Albuquerque (Orientador)
Arthur Gonçalves do Carmo (Estudante)

RESUMO

Matemática simbólica é a área da computação que se preocupa com representar e manipular equações e expressões matemáticas de forma simbólica, em oposição aos métodos de manipulação por aproximação numérica. O objetivo do projeto é criar uma biblioteca para C++ contendo classes que representam simbolicamente alguns dos principais objetos matemáticos, como números inteiros e racionais, aritmética modular, polinômios e expressões.

PALAVRAS-CHAVE

matemática simbólica; aritmética de precisão múltipla; expressões matemáticas

ÁREA DE CONHECIMENTO

1.03.02.01-8 - Matemática Simbólica

LINHA DE PESQUISA

DPI-040 – Algoritmos e Otimização Combinatória

1 – Introdução

A matemática simbólica é um campo já muito bem estudado na computação. A dificuldade de se criarem métodos mais eficientes do que os já existentes levam a uma relativa ausência de opções para bibliotecas para aritmética de precisão múltipla e representação simbólica. O mesmo não pode ser dito, entretanto, sobre sistemas de manipulação algébrica simbólica, chamados CAS (*Computer Algebra System*), que são produtos de software completos para o mesmo fim e possuem grande variedade, muitas vezes diferenciando-se um do outro por trabalharem com campos bem distintos de aplicação da matemática.

É fácil notar que a matemática simbólica é mais interessante do ponto de vista teórico do que do prático. Para a maioria das aplicações, as aproximações em ponto flutuante são suficientemente precisas e, quando não são, é mais interessante a aritmética de precisão múltipla do que resultados simbólicos. As aplicações que se beneficiam da matemática simbólica são, em sua maior parte, da área de matemática e de física teórica. Além disso, a matemática simbólica pode ser considerada uma área pertinente aos limites da computação, e também uma forma de analisar a própria abordagem humana em relação à matemática.

1.2 – Objetivos

O objetivo geral do trabalho será desenvolver uma biblioteca para matemática simbólica em C++, com classes para representar números inteiros, modulares e racionais, polinômios e expressões matemáticas, derivação e integração simbólicas.

Os objetivos específicos deste trabalho são:

- Estudar técnicas e algoritmos usados em computação simbólica
- Aprimorar e aplicar conhencimentos sobre a linguagem C++
- Utilizar padrões de desenvolvimento para software livre

2 - Referencial Teórico

2.1 - Números de precisão múltipla

Os computadores modernos representam números inteiros como cadeias de bits, mais comumente 32 ou 64 bits, interpretadas como números inteiros em base 2. Essa abordagem tem a limitação de poder representar, em 64 bits, apenas números entre 0 e 2^{64} (sem usar bit de sinal) ou entre -2^{63} e $2^{63}-1$ (com bit de sinal). A ideia da aritmética de precisão múltipla é representar números inteiros cujo tamanho será limitado apenas pela memória disponível no computador [1, 2, 3, 4, 5].

Uma excelente alternativa para trabalhar com números de precisão múltipla é a GNU Multiple-Precision Library – GMP, uma biblioteca escrita na linguagem C, altamente otimizada e que trabalha com números inteiros, racionais e ponto flutuante de precisão arbitrária.

É pertinente ao escopo do trabalho a criação de classes para representar números inteiros e racionais de precisão múltipla.

2.2 - Expressões algébricas

2.2.1 – Monômios

Monômios são expressões algébricas que consistem apenas da multiplicação entre constantes e variáveis (chamadas literais). Um monômio possui a forma:

$$q*\prod_{i=0}^{\infty} x_i^{k_i}$$

Onde q é um número real, x_i é uma variável única no monômio e k_i é o expoente ou grau da variável x_i . O produtório $\prod_{i=0}^{\infty} x_i^{k_i}$ é chamado a parte literal do monômio.

Um monômio M_1 é semelhante a um monômio M_2 se M_1 e M_2 possuem a mesma parte literal. Nesse caso, a soma entre M_1 e M_2 é também um monômio.

O grau de um monômio é o valor da soma dos expoentes k_i de sua parte literal.

2.2.2 - Polinômios

Polinômios são expressões que consistem em variáveis e coeficientes, envolvendo apenas as operações de adição, subtração, multiplicação e expoentes inteiros não negativos. Um polinômio de grau *N* pode ser representado da forma:

$$\sum_{i=0}^{N} a_i x^i$$

Onde cada coeficiente a_i é um número real, mas é interessante que, para fins de representação, podemos considerar que a_i possa ser também um polinômio, o que nos leva a uma representação recursiva de polinômios [2, 3] com mais de uma variável:

$$\sum_{i=0}^{N} \sum_{j=0}^{M} a_{ij} x^{i} y^{j} = \sum_{i=0}^{N} c_{i} x^{i} \text{ onde } c_{i} = \sum_{j=0}^{M} a_{ij} y^{j}$$

Outra forma de representar um polinômio é como uma soma de monômios:

$$\sum_{i=0}^{\infty} M_i$$

Nesse caso, o grau do polinômio é grau do monômio M_i de maior grau.

2.3 - GNU Build System

O GNU Build System é uma convenção para organização, construção (build) e instalação de pacotes de forma padronizada. Idealmente a instalação de um pacote que segue o GNU Build System em qualquer ambiente necessita apenas dos comandos: ./configure, make, e make install. Usaremos esta convenção para o desenvolvimento do software.

3 - Metodologia

3.1 - Representação

3.1.1 - Números inteiros

Um número inteiro é representado como uma dupla $\left(\sum_{i=0}^{N-1} d_i b^i, S\right)$, onde b é a base de representação, N é o número de dígitos do número, $0 \le d_i < b$ é o (i+1)-ésimo dígito menos significatívo e S é sinal do número.

A transcrição dessa representação para uma linguagem de programação consiste em um arranjo onde cada posição armazena um dígito na base escolhida, e um valor booleano para armazenar o sinal. Nesse projeto, os números são representados em *little endian*, isto é, os dígitos mais significativos possuem índices maiores.

A base de representação escolhida para o projeto é a base 10^9 porque bases que são potência de 10 facilitam a leitura e escrita dos números em base 10, e alguns dos algoritmos necessitam que o valor do quadrado da base (b^2) seja representável por um tipo básico da linguagem. Utilizando um sistema de 64 bits, temos $(10^9)^2 = 10^{18} < 2^{64} < 10^{20} = (10^{10})^2$.

Além disso, a classe ainda guarda a quantidade de dígitos (em base 10^9) do número. O nome da classe será num_z .

3.1.2 - Números racionais

Os números racionais são representados como uma tripla (N_1,N_2,S) , onde N_1 é um número inteiro não negativo, N_2 é um número inteiro positivo e S é o sinal do número.

No projeto, a classe dos números racionais utiliza a classe dos números inteiros para representar N_1 e N_2 e um byte para representar S. Os números são representados em sua forma irredutível. O nome da classe será $\textit{num}_\textit{q}$.

3.1.3 – Aritmética modular

Os números usados para a aritmética modular são representados como uma dupla (N,B), onde N é um número inteiro e B é a base da aritmética. Um número $x \mod B$ é o resto da divisão de x por B .

No projeto, a classe dos números modulares é uma classe *template* que recebe a base como o *tipo* do *template* e possui um membro que é um número inteiro para armazenar N. O nome da classe será $num_zm < B >$.

3.1.4 - Tuplas de divisão inteira

O resultado da divisão inteira de um inteiro M por um inteiro N, resulta em um quociente q e um resto r de forma que M=q*N+r.

A forma usada para representar a dupla (q,r), é por meio de duas estruturas de duplas, chamadas div_tuple (usada para a divisão) e mod_tuple (usada para a operação de resto da divisão).

A estrutura div_tuple armazena o quociente e resto da divisão inteira de M por N de forma que o resto da divisão é sempre não negativo, enquanto a estrutura mod_tuple armazena o quociente e resto da divisão inteira de M por N de forma que o resto da divisão é zero ou possui o mesmo sinal de N.

4 - Produto a ser obtido

Como resultado final, obteremos uma biblioteca de classes que implementam as operações matemáticas simbólicas para números inteiros, racionais, modulares, polinômios, expressões algébricas, derivação e integração simbólicas.

5 – Cronograma

Ações	Ago 2018	Set 2018	Out 2018	Nov 2018	Dez 2018
Especificações	X	Х	X		
de Requisitos					
Implementação	X				
de Números					
Implementação		X	X		
de Polinômios					
Implementação			X	X	
de Expressões				^	
Implementação				X	
de Derivadas					
Implementação				X	Х
de Integrais				^	^
Elaboração da			Х	Х	X
Monografia					

Referências

- [1] KNUTH, D. **The Art of Computer Programming: Seminumerical Algorithms**. 2. ed. Reading, Massachusetts: Addison-Wesley, 1998.
- [2] LISKA, R. et al. **Computer Algebra, Algorithms, Systems and Applications**. Disponível em: http://www-troja.fjfi.cvut.cz/~liska/ca/ Acesso em: 17 de setembro de 2018
- [3] COHEN, J. S. Computer Algebra and Symbolic Computation: Elementary Algorithms. Natick, Massachusetts: A K Peters, 2002.
- [4] COHEN, J. S. Computer Algebra and Symbolic Computation: Mathematical **Methods**. Natick, Massachusetts: A K Peters, 2003.
- [5] SHI, T. K., STEEB, W. H., HARDY, Y. **SymbolicC++: An Introduction to Computer Algebra Using Object-Oriented Programming.** 2. ed. Londres: Springer-Verlag, 2000.