Συστήματα Ελέγχου **Αναφορά 1^{ης} εργαστηριακής άσκησης**

Ομάδα εργαστηρίου	25
Σιώτος Μόδεστος	2016030030
Μελάκης Αντώνης	2019030016
Σαΐνη Γεωργία	Δεν εργάστηκε

Μέθοδος ΖΝ

Βηματική απόκριση ανοικτού συστήματος χωρίς ανάδραση

Υπολογισμός συνάρτησης μεταφοράς :

Για $\mathbf{K_s} = \mathbf{1.0}$, $\mathbf{T_1} = \mathbf{2.0}$ sec , $\mathbf{T_2} = \mathbf{2.0}$ sec και $\mathbf{T_3} = \mathbf{2.0}$ sec η συνάρτηση μεταφοράς είναι : $G(s) = \frac{1}{(2s+1)^3} = \frac{1}{8s^3+12s^2+6s+1}$

Κλειστό σύστημα, με ανάδραση

• Kp = 1.0

$\bullet \quad \mathtt{Kp} = 8.0$

Πήραμε **Kpcrit = 8.0** Υπολογίσαμε απο τη διαφορά του χρόνου μεταξύ δύο κορυφών ότι **Tcrit = 5.7**

Ελεγκτής	K	Ti	$\mathbf{T}_{ ext{d}}$
P	4		
PI	3.6	4.845	
PID	4.8	2.85	0.684

Ρ ελεγκτής

Συνάρτηση μεταφοράς Ρ ελεγκτή:

$$K_p(s) = K_p = 4$$

Συνάρτηση μεταφοράς συστήματος υπό έλεγχο:

$$F_p(s) = K_p(s) \cdot G(s) = \frac{4}{8s^3 + 12s^2 + 6s + 1}$$

Συνολική συνάρτηση μεταφοράς:

$$H_p(s) = \frac{F_p(s)}{1 + F_p(s)} = \frac{4}{8s^3 + 12s^2 + 6s + 5}$$

Χρόνος Ανόδου:

$$T_r \cong 4.5 - 2.5 = 2.0 sec$$

$$T_s \cong 25.5 - 2.0 = 23.5 sec$$

$$T_p = 6.5 - 2.0 = 4.0 sec$$

ΡΙ ελεγκτής

Συνάρτηση μεταφοράς ΡΙ ελεγκτή:

$$K_{PI}(s) = K_p * (1 + \frac{1}{Ti} * \frac{1}{s}) = 3.6 + 0.74 * \frac{1}{s}$$

Συνάρτηση μεταφοράς συστήματος υπό έλεγχο:

$$F_{pI}(s) = K_{pI}(s) \bullet G(s) = \frac{3.6s + 0.74}{8s^4 + 12s^3 + 6s^2 + s}$$

Συνολική συνάρτηση μεταφοράς:

$$H_{pl}(s) = \frac{F_{pl}(s)}{1 + F_{pl}(s)} = \frac{3.6s + 0.74}{8s^4 + 12s^3 + 6s^2 + 4.6s + 0.74}$$

Χρόνος Ανόδου:

$$T_r \cong 5.5 - 3.0 = 2.5 sec$$

$$T_s \cong 40 - 2.2 = 27.8 sec$$

$$T_p = 6.7 - 2.2 = 4.5 \text{ sec}$$

PID ελεγκτής

Συνάρτηση μεταφοράς PID ελεγκτή:

$$K_{PID}(s) = K_p$$
 * (1 + $\frac{1}{Ti}$ * $\frac{1}{s}$ + T_d * s) = 4.8 + 1.68 * $\frac{1}{s}$ + 3.3 * s
Συνάρτηση μεταφοράς συστήματος υπό έλεγχο:

$$F_{PID}(s) = K_{PID}(s) \bullet G(s) = \frac{3.3s^2 + 4.8s + 1.68}{8s^4 + 12s^3 + 6s^2 + s}$$

Συνολική συνάρτηση μεταφοράς:

$$H_{PID}(s) = \frac{F_{PID}(s)}{1 + F_{PID}(s)} = \frac{3.3s^2 + 4.8s + 1.68}{8s^4 + 12s^3 + 9.3s^2 + 5.8s + 1.68}$$

Χρόνος Ανόδου:

$$T_r \cong 5.0 - 2.5 = 2.5 sec$$

$$T_s \cong 8.0 - 1.1 = 6.9 sec$$

$$T_p = 7.5 - 1.1 = 6.4 \text{ sec}$$

Ο PID είναι ο καταλληλότερος ελεγκτής, καθώς έχει το χαμηλότερο χρόνο αποκατάστασης. Επιπλέον, ο PID δεν προλαβαίνει να ταλαντωθεί, σε αντίθεση με τους υπόλοιπους ελεγκτές.

Μέθοδος CHR

Για $\mathbf{T}_u\text{=}$ 1.7 sec και $\mathbf{T}_g\text{=}$ 6.7 sec υπολογίζουμε:

Η τάξη του συστήματος θα είναι n = $\frac{Tu}{Tg}$ * 10 + 1 \approx 3

Overshoot	0%			20%		
Ελεγκτής	к	Ti	T _d	к	Ti	T _d
P	1.18			2.75		
PI	1.38	8.04		2.36	6.70	
PID	2.36	6.70	0.85	3.74	9.38	0.80

Για 0% υπερύψωση - Ρ ελεγκτή

Συνάρτηση μεταφοράς ελεγκτή:

$$K_p(s) = K_p = 1.18$$

Συνάρτηση μεταφοράς συστήματος υπό έλεγχο:

$$F_p(s) = K_p(s) \cdot G(s) = \frac{1.18}{8s^3 + 12s^2 + 6s + 1}$$

Συνολική συνάρτηση μεταφοράς:

$$H_p(s) = \frac{F_p(s)}{1 + F_p(s)} = \frac{1.18}{8s^3 + 12s^2 + 6s + 2.18}$$

Χρόνος Ανόδου:

$$T_r \cong 5.5 - 3.0 = 2.5 sec$$

Χρόνος Αποκατάστασης:

$$T_s \cong 10.0 - 2.0 = 8 sec$$

Χρόνος αιχμής:

$$T_p = 7.5 - 2.0 = 5.5 \text{ sec}$$

Συνάρτηση μεταφοράς ελεγκτή:

$$K_{pl}(s) = K_p * (1 + \frac{1}{Ti} * \frac{1}{s}) = 1.38 + 0.17 \cdot \frac{1}{s}$$

Συνάρτηση μεταφοράς συστήματος υπό έλεγχο:

$$F_{PI}(s) = K_{PI}(s) \cdot G(s) = \frac{1.38s + 0.17}{8s^4 + 12s^3 + 6s^2 + s}$$

Συνολική συνάρτηση μεταφοράς:

$$H_{PI}(s) = \frac{F_{PI}(s)}{1 + F_{PI}(s)} = \frac{1.38s + 0.17}{8s^4 + 12s^3 + 6s^2 + 2.38s + 0.17}$$

Χρόνος Ανόδου:

$$T_r \cong 6.5 - 3.0 = 3.5 sec$$

Χρόνος Αποκατάστασης:

$$T_s \cong 17.0 - 2.0 = 15.0 sec$$

Χρόνος αιχμής:

$$T_p = 7.5 - 2.0 = 5.5 \text{ sec}$$

$$K_{PID}(s) = K_p^* (1 + \frac{1}{Ti} * \frac{1}{s} + T_d * s) = 2.36 + 0.35 \cdot \frac{1}{s} + 2 \cdot s$$
 Συνάρτηση μεταφοράς συστήματος υπό έλεγχο:

$$F_{PID}(s) = K_{PID}(s) \cdot G(s) = \frac{2s^2 + 2.36s + 0.35}{8s^4 + 12s^3 + 6s^2 + s}$$

Συνολική συνάρτηση μεταφοράς:

$$H_{PID}(s) = \frac{F_{PID}(s)}{1 + F_{PID}(s)} = \frac{2s^2 + 2.36s + 0.35}{8s^4 + 12s^3 + 8s^2 + 3.36s + 0.35}$$

Χρόνος Ανόδου:

$$T_r \cong 6.8 - 3.5 = 3.3 sec$$

Χρόνος Αποκατάστασης:

$$T_s \cong 14 - 2.5 = 11.5 sec$$

Χρόνος αιχμής:

$$T_p = 8 - 2.5 = 5.5 \text{ sec}$$

Ο καταλληλότερος ελεγκτής φαίνεται πως είναι ο PID καθώς δεν προλαβαίνει να κάνει ταλάντωση σε σχέση με τους άλλους δύο.

Για 20% υπερύψωση - Ρ ελεγκτή

Συνάρτηση μεταφοράς ελεγκτή:

$$K_p(s) = K_p = 2.75$$

Συνάρτηση μεταφοράς συστήματος υπό έλεγχο:

$$F_p(s) = K_p(s) \cdot G(s) = \frac{2.75}{8s^3 + 12s^2 + 6s + 1}$$

Συνολική συνάρτηση μεταφοράς:

$$H_p(s) = \frac{F_p(s)}{1 + F_p(s)} = \frac{2.75}{8s^3 + 12s^2 + 6s + 3.75}$$

Χρόνος Ανόδου:

$$T_r \cong 5.5 - 4.0 = 1.5 sec$$

$$T_s \cong 21.0 - 3.0 = 18 sec$$

$$T_p = 7.5 - 3.0 = 4.5 \text{ sec}$$

Για 20% υπερύψωση - ΡΙ ελεγκτή

Συνάρτηση μεταφοράς ελεγκτή:

$$K_{pl}(s) = K_p^* (1 + \frac{1}{Ti} * \frac{1}{s}) = 2.36 + 0.35 \cdot \frac{1}{s}$$

Συνάρτηση μεταφοράς συστήματος υπό έλεγχο:

$$F_{pl}(s) = K_{pl}(s) \cdot G(s) = \frac{2.36s + 0.35}{8s^4 + 12s^3 + 6s^2 + s}$$

Συνολική συνάρτηση μεταφοράς:

$$H_{p_I}(s) = \frac{F_{p_I}(s)}{1 + F_{p_I}(s)} = \frac{2.36s + 0.35}{8s^4 + 12s^3 + 6s^2 + 3.36s + 0.35}$$

Χρόνος Ανόδου:

$$T_r \cong 4.8 - 2.5 = 2.3 sec$$

$$T_{s} \cong 20.0 - 2.0 = 18.0 sec$$

$$T_p = 6.2 - 2.0 = 4.2 sec$$

Για 20% υπερύψωση - PID ελεγκτή

Συνάρτηση μεταφοράς ελεγκτή:

$$K_{PID}(s) = K_p^* (1 + \frac{1}{Ti} * \frac{1}{s} + T_d^* s) = 3.74 + 0.4 \cdot \frac{1}{s} + 3 \cdot s$$
 Συνάρτηση μεταφοράς συστήματος υπό έλεγχο:

$$F_{PID}(s) = K_{PID}(s) \cdot G(s) = \frac{3s^2 + 3.74s + 0.4}{8s^4 + 12s^3 + 6s^2 + s}$$

Συνολική συνάρτηση μεταφοράς:

$$H_{PID}(s) = \frac{F_{PID}(s)}{1 + F_{PID}(s)} = \frac{3s^2 + 3.74s + 0.4}{8s^4 + 12s^3 + 9s^2 + 4.74s + 0.4}$$

Χρόνος Ανόδου:

$$T_r \cong 6.5 - 3.5 = 3.0 sec$$

$$T_s \cong 15 - 2.0 = 13 \, sec$$

$$T_p = 7.2 - 2.0 = 5.2 \text{ sec}$$

Ο καταλληλότερος ελεγκτής και σε αυτή την περίπτωση είναι ο PID καθώς δεν προλαβαίνει να κάνει ταλάντωση σε σχέση με τους άλλους δύο και έχει τον μικρότερο χρόνο αποκατάστασης.

Αξιολόγηση των αποτελεσμάτων εξομοίωσης.

ΜΕΘΟΔΟΣ ΖΝ

Στην πειραματική εύρεση του Kcritical μέσω της αυξησης του Kp, οι κυματομορφές συμπίπτουν με τις αντίστοιχες θεωρητικές που φτιάξαμε στο matlab. Και στις 2 περιπτώσεις καταλήξαμε ότι το Kcrit = 8, ενώ το Tcrit έχει απόκλιση (Πειραματικά βρήκαμε 5.7 και θεωρητικά 7.3)

Για τους ελεγκτές P,PI,PID παρατηρούμε ότι οι πειραματικές μετρήσεις ταυτίζονται αρκετά με τις θεωρητικές στο Matlab. Η βασική διαφορά εντοπίζεται στα ποσοστά υπερύψωσης που εμφανίζουν οι πειραματικές μετρήσεις (χαμηλότερες) σε σχέση με τις θεωρητικές.

ΜΕΘΟΔΟΣ CHR

0% Υπερύψωση

Για τους ελεγκτές P,PI,PID παρατηρούμε ότι όλες οι πειραματικές μετρήσεις ταυτίζονται με τις θεωρητικές.

20% Υπερύψωση

Για τους ελεγκτές παρατηρούμε ότι ταυτίζονται οι θεωρητικές με τις πειραματικές τιμές, αλλά στις τιμές που πήραμε εργαστηριακά παρατηρούμε μεγαλύτερο ποσοστό υπερύψωσης.