プロジェクト実習 III パターン認識 - 第4週目-

担当:崔恩瀞

パターン認識テーマ 4週間の計画

週	提出物	実験内容	テキスト
1		特徴抽出	1章
2		特徴の評価	2章
3	レポート(1,2週分)	数字識別	3章
4		識別性能の評価	4章
	レポート(3,4週分)		

- 提出期限:締切日の12:50
- コーディングはすべて Google Colaboratory で行う

第4週の実験

識別部の実装(第3週の実験結果)

- 識別部が正しく実装されていることの確認
 - ・高い性能を示した
 - おそらく識別率は95%前後となったはず
- この性能を信用して良いのか
 - 実運用では学習データとは異なるデータが入力される
 - ・学習データを使って評価してよいなら、識別率100%の識別器が容易に 作れる

識別部の評価(第4週の実験内容)

- ・実装した識別部の評価
 - 未知データに対する性能を見積もりたい
- 評価法
 - 分割学習法
 - 交差確認法

分割学習法

- 手順
 - 全学習データ χ を学習用データ集合 χ_T と評価用データ集合 χ_E に分割する
 - χ_T を用いて識別機を設計し, χ_E を用いて識別率を推定する

分割学習法

- 利点
 - 評価が容易
- 欠点
 - 学習に用いるデータ数が減るので、識別性能が劣化する
 - 評価に用いるデータ数が少ない場合、識別率の推定精度は良くない

交差確認法

- 手順
- 1. χ をm個のグループ $\chi_1,...,\chi_m$ に分割する
- 2. $\chi_{\rm i}$ を除いた(m-1)個のグループで学習し, $\chi_{\rm i}$ を用いて識別率を算出する
- 3. この手順をすべてのiについて行い,m個の識別率の平均を識別率の推定値とする

交差確認法

交差確認法

- 利点
 - 分割学習法に比べ、識別率の推定精度は高い
- 欠点
 - 評価に時間がかかる
 - 分割数が少ない場合, 分割法が異なると評価値が大きくぶれる

第4週の実験

- ・識別部の評価
 - 第3週に作成した識別器について分割学習法,交差確認法(10分割)のそれぞれで評価を行うコードをGoogle Colaboratoryで作成せよ
 - 分割学習法, 交差確認法それぞれの評価結果を比較し, 得失を論ぜよ
 - (発展課題)最近傍決定則の発展として,近傍k個のデータが属するクラスの多数決を識別結果とするk-NN法を実装し,異なるkについて交差確認法で性能を評価せよ
 - (発展課題) 交差確認法においてデータ分割の方法を乱数を用いて変化させ、複数回実行して平均値を求める方法を実装せよ