1. Algorithm Development Task: Inventory Reordering System

Objective: Develop an efficient reordering strategy to ensure no items go out of stock while minimizing total reordering costs.

- Start
- Initalize inputs :- item_id, current_stock, forecasted_demand, reorder_cost_per_unit, batch_size(fixed size in which items can be reordered).
- Calculate shortfall,

$$shortfall = forecasted_demand - current_stock$$

• If shortfall > 0,

Compute minimum reorder quantity,

$$units_order = \left[\frac{shortfall}{batch\ size}\right] * batch_size$$

• Compute total cost of reorder,

$$total_cost = units_order * reorder_cost_per_unit$$

- Add (item_id,units_order) to the reordering list.
- Return the final reordering plan.
- Stop
- For Example,

item_id	current_stock	forecasted_demand	reorder_cost_per_unit	batch_size
1	50	80	5	10
2	200	150	3	20
3	30	60	4	15

=>item_id=1,
shortfall = 80-50=30
units_order=
$$\left[\frac{30}{10}\right]$$
 * 10 =30
=>item_id=2,
shortfall = 150-200=-50
units_order=0
=>item_id=3,
shortfall = 60-30=30
units_order= $\left[\frac{30}{10}\right]$ * 10 =30

 Output Rerordering plan, [(1,30) , (3,30)]