第四次作业

第一题:图像去畸变

代码

结果图

2.1 鱼眼相机与普通相机相比在SLAM方面的优势

能看的视野范围更广泛,对于提取图像特征以及追踪场景变化有更好性能。

2.2 描述鱼眼畸变模型和针孔相机的畸变模型的区别

3. it
$$r^2 = a^2 + b^2$$
. $\theta = \operatorname{dretan}(V)$

5. distarted paint are lx', y')
$$x' = \frac{rd}{r}a = \frac{\theta d}{r} \cdot a$$

$$y' = \frac{rd}{r}b = \frac{\theta d}{r} \cdot b$$

$$\frac{u - lx}{bx} = x'$$

$$\frac{v - by}{by} = y'$$

$$\frac{v - by}{by} = y'$$

2.3 图片矫正

```
double x=(u-cx)/fx;
double y=(v-cy)/fy;
double ang_d= atan(sqrt(x*x+y*y));
double ang=
ang_d/(1+k1*ang_d*ang_d+k2*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*ang_d*a
```


2.4 畸变参数为零去畸变的原理

鱼眼相机的畸变模型为多阶泰勒展开, $K_1 \dots K_4$ 取零相当于只取了第一项,只会影响精度不会影响功能。

2.5 图片损失

鱼眼图一般为圆形,边缘的信息被压缩的很密,经过去除畸变后原图中间的部分会被保留的很好,而边缘位置一般都会被拉伸的很严重、视觉效果差,所以通常会进行切除,因此肯定会带来图像内容的损失。可以通过增大去畸变时图像的尺寸,或者使用单目相机和鱼眼相机图像进行融合,补全丢失的信息。

第三题:双目视差的使用

3.1 视差原理的证明

3.2 代码实现

```
double depth = fx * d / (disparity.at<char>(v,u));
double x = (u - cx)/fx * depth;
double y = (v - cy)/fy * depth;
point[0] = x;
point[1] = y;
point[2] = z;
```

//pangolin 一生之敌了,属于是 目前猜测是因为ros的原因 准备找台电脑 从零开始。。。

第四题:矩阵运算微分

4.1 矩阵 $A \in R^{N imes N}$,那么 $d(A_X)/d_x$ 是什么?

4.2 矩阵 $A \in R^{N imes N}$,那么 $d(X^T A_X)/d_x$ 是什么?

2). SEPERAGE RANN, APAROLLIT AN)/
$$dx$$
 Zero.
$$\frac{d U(Ax)}{dx} = \frac{(dx)^T Ax + X^T A}{dx} = \frac{dx (Ax + t d)^T A^T A^T x}{dx} = (A + A^T) x$$

4.3 证明

3).
$$X^{T}Ax = tr(Axx^{T})$$

3. $X^{T}Ax = tr(Axx^{T})$

3. $X^{T}Ax = tr(Axx^{T})$

3. $X^{T}Ax = tr(Axx^{T})$

4. $X^{T}Ax = tr(Axx^{T})$

4. $X^{T}Ax = tr(Axx^{T})$

5. $X^{T}Ax = tr(Axx^{T})$

6. $X^{T}Ax = tr(Axx^{T})$

7. $X^{T}Ax = tr(Axx^{T})$

8. $X^{T}Ax = tr(Axx^{T})$

9. $X^{T}Ax = tr(Axx^{T})$

9. $X^{T}Ax = tr(Axx^{T})$

10. $X^{T}Ax = tr(Axx^{T})$

11. $X^{T}Ax = tr(Axx^{T})$

12. $X^{T}Ax = tr(Axx^{T})$

12. $X^{T}Ax = tr(Axx^{T})$

13. $X^{T}Ax = tr(Axx^{T})$

14. $X^{T}Ax = tr(Axx^{T})$

15. $X^{T}Ax = tr(Axx^{T})$

16. $X^{T}Ax = tr(Axx^{T})$

17. $X^{T}Ax = tr(Axx^{T})$

18. $X^{T}Ax = tr(Axx^{T})$

19. $X^{T}Ax = tr(Axx^{T})$

19. $X^{T}Ax = tr(Axx^{T})$

10. $X^{T}Ax = tr(Axx^{T})$

10. $X^{T}Ax = tr(Axx^{T})$

11. $X^{T}Ax = tr(Axx^{T})$

11. $X^{T}Ax = tr(Axx^{T})$

12. $X^{T}Ax = tr(Axx^{T})$

13. $X^{T}Ax = tr(Axx^{T})$

14. $X^{T}Ax = tr(Axx^{T})$

15. X^{T

第五题: 高斯牛顿法的曲线拟合实验

```
double error = 0;  // 第i个数据点的计算误差

Vector3d J;  // 雅可比矩阵

J[0] = -xi*xi*exp(ae * xi * xi + be*xi + ce);  // de/da

J[1] = -xi* exp(ae * xi * xi + be*xi + ce);  // de/db

J[2] = -exp(ae * xi * xi + be*xi + ce);  // de/dc

H += J * J.transpose();  // GN近似的H

b += -error * J;
```

第六题:批量最大似然估计

$$e = 2 - Hx$$

$$x = (x_0, x_1, x_2, x_3)^T$$

$$y_k = x_k + y_k$$

$$y_k = x_k + y_k$$

$$y_k = x_k - x_{k+1} - w_k$$

$$y_k = x_k - x_k - x_k$$

$$y_k =$$

参考链接

https://blog.csdn.net/u011852872/article/details/117340713?spm=1001.2101.3001.6650.5&utm_medium=distribute.pc relevant.none-task-blog-2%7Edefault%7EOPENSEARCH%7ERate-6-1173407_13-blog-122014468.pc relevant multi_platform whitelistv4&depth_1-utm_source=distribute.pc re_levant.none-task-blog-2%7Edefault%7EOPENSEARCH%7ERate-6-117340713-blog-122014468.pc re_levant_multi_platform_whitelistv4&utm_relevant_index=10_

3.1

https://blog.csdn.net/qq_40918859/article/details/123984329

