Exam Simulation

1. Estimate $sin(\pi/3)$ using Maclaurin series for n = 10 then calculate the error between exact value and the estimation.

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots$$
 for all x

2. Plot the absolute error of the $\sin(\pi/3)$ estimation for different values of n e.g. n = 5, 10, 20, 50, 100 where absolute error = $|\text{exact_value} - \text{estimated_value}|$

3. Use sympy to calculate

$$\int_0^{\pi/2} \frac{\sin x}{1+x^2} dx$$

4. Estimate the integration of the problem number 3 using Simpson's 1/3 rule for different number of intervals then calculate the error in % where error(%) = 100 * |exact_value - estimated_value|/exact_value. Print the output as follow:

n	estimation	error(%)
=====	========	======
2		
5		
10		
100		
=====	=========	=======