$11a_{139} (K11a_{139})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -1330328u^{36} - 337157u^{35} + \dots + 3064546b - 5423429,$$

$$2108869u^{36} - 5518964u^{35} + \dots + 1532273a + 24842943, \ u^{37} - 2u^{36} + \dots + 13u + 1 \rangle$$

$$I_2^u = \langle u^2 + b, \ a - 1, \ u^{15} - 5u^{13} - u^{12} + 10u^{11} + 4u^{10} - 8u^9 - 6u^8 - u^7 + 3u^6 + 5u^5 + u^4 - u^3 - u^2 - u - 1 \rangle$$

$$I_3^u = \langle b^2 + 2b - 1, \ a - 1, \ u + 1 \rangle$$

$$I_4^u = \langle b + 1, \ a - 1, \ u - 1 \rangle$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 55 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \\ I_1^u = \langle -1.33 \times 10^6 u^{36} - 3.37 \times 10^5 u^{35} + \dots + 3.06 \times 10^6 b - 5.42 \times 10^6, \ 2.11 \times 10^6 u^{36} - 5.52 \times 10^6 u^{35} + \dots + 1.53 \times 10^6 a + 2.48 \times 10^7, \ u^{37} - 2u^{36} + \dots + 13u + 1 \rangle$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{3} + 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -1.37630u^{36} + 3.60182u^{35} + \dots - 53.4414u - 16.2131 \\ 0.434103u^{36} + 0.110019u^{35} + \dots + 4.77936u + 1.76973 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -1.61129u^{36} + 4.21702u^{35} + \dots - 52.0448u - 17.2627 \\ -1.20630u^{36} + 0.913862u^{35} + \dots + 17.4922u + 2.71463 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -1.84921u^{36} + 3.03426u^{35} + \dots + 4.55239u + 1.81040 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -1.03926u^{36} + 2.83241u^{35} + \dots + 4.55239u + 1.81040 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1.03926u^{36} + 2.83241u^{35} + \dots + 4.55239u + 1.81040 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1.35408u^{36} - 3.76576u^{35} + \dots + 14.2739u + 2.65174 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1.35408u^{36} - 3.76576u^{35} + \dots + 69.5409u + 23.2930 \\ 0.656314u^{36} + 0.203071u^{35} + \dots - 15.2619u - 3.27106 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1.35408u^{36} - 3.76576u^{35} + \dots + 69.5409u + 23.2930 \\ 0.656314u^{36} + 0.203071u^{35} + \dots - 15.2619u - 3.27106 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{5839087}{1532273}u^{36} + \frac{3620132}{1532273}u^{35} + \dots + \frac{36237593}{1532273}u - \frac{19224398}{1532273}u^{36} + \dots$$

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^{37} + 2u^{36} + \dots + u + 1$
c_2	$u^{37} + 18u^{36} + \dots + 5u + 1$
c_3, c_8, c_9	$u^{37} + 2u^{36} + \dots + 2u^2 - 2$
C_4	$u^{37} - 6u^{36} + \dots + 288u - 128$
c_6, c_{10}, c_{11}	$u^{37} - 2u^{36} + \dots + 13u + 1$
c_7	$u^{37} + 6u^{36} + \dots - 224u - 16$

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{37} - 18y^{36} + \dots + 5y - 1$
c_2	$y^{37} + 6y^{36} + \dots + 21y - 1$
c_3, c_8, c_9	$y^{37} - 34y^{36} + \dots + 8y - 4$
C_4	$y^{37} - 10y^{36} + \dots + 156672y - 16384$
c_6, c_{10}, c_{11}	$y^{37} - 34y^{36} + \dots + 117y - 1$
<i>C</i> ₇	$y^{37} + 18y^{36} + \dots + 32256y - 256$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.013380 + 0.311874I		
a = -0.007083 + 0.507321I	-3.23840 + 0.33679I	-3.19033 + 0.85162I
b = -0.911372 + 0.339991I		
u = -1.013380 - 0.311874I		
a = -0.007083 - 0.507321I	-3.23840 - 0.33679I	-3.19033 - 0.85162I
b = -0.911372 - 0.339991I		
u = -0.148500 + 0.878352I		
a = -0.35212 + 1.40071I	-8.84281 - 9.20717I	-9.51764 + 6.62975I
b = -0.17334 + 2.13411I		
u = -0.148500 - 0.878352I		
a = -0.35212 - 1.40071I	-8.84281 + 9.20717I	-9.51764 - 6.62975I
b = -0.17334 - 2.13411I		
u = -1.15117		
a = -0.432099	-3.47854	-0.910990
b = -1.94913		
u = 0.165281 + 0.808869I		
a = -0.30320 - 1.46229I	-3.03568 + 5.84417I	-5.83954 - 7.10655I
b = -0.11222 - 1.95034I		
u = 0.165281 - 0.808869I		
a = -0.30320 + 1.46229I	-3.03568 - 5.84417I	-5.83954 + 7.10655I
b = -0.11222 + 1.95034I		
u = -0.471583 + 0.599168I		
a = 0.162338 + 1.262080I	-2.94289 - 4.00123I	-5.31382 + 7.13651I
b = -0.480709 + 1.121580I		
u = -0.471583 - 0.599168I		
a = 0.162338 - 1.262080I	-2.94289 + 4.00123I	-5.31382 - 7.13651I
b = -0.480709 - 1.121580I		
u = -0.022041 + 0.744033I		
a = -0.53343 - 1.59774I	-9.93818 - 0.58603I	-11.65035 - 0.12880I
b = 0.42055 - 2.05462I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.022041 - 0.744033I		
a = -0.53343 + 1.59774I	-9.93818 + 0.58603I	-11.65035 + 0.12880I
b = 0.42055 + 2.05462I		
u = -0.099912 + 0.709675I		
a = -0.33485 + 1.62744I	-3.65380 - 1.92705I	-8.13048 + 0.55620I
b = 0.17353 + 1.80893I		
u = -0.099912 - 0.709675I		
a = -0.33485 - 1.62744I	-3.65380 + 1.92705I	-8.13048 - 0.55620I
b = 0.17353 - 1.80893I		
u = -1.253160 + 0.303469I		
a = -0.759003 - 0.531242I	-6.13830 - 3.19514I	-6.64446 + 4.28023I
b = 1.10971 - 2.91416I		
u = -1.253160 - 0.303469I		
a = -0.759003 + 0.531242I	-6.13830 + 3.19514I	-6.64446 - 4.28023I
b = 1.10971 + 2.91416I		
u = 1.296560 + 0.177192I		
a = -0.331390 - 0.464636I	3.08964 + 0.95760I	-60.10 + 1.305195I
b = -0.683956 - 0.483013I		
u = 1.296560 - 0.177192I		
a = -0.331390 + 0.464636I	3.08964 - 0.95760I	-60.10 - 1.305195I
b = -0.683956 + 0.483013I		
u = 0.568431 + 0.375314I		
a = 0.520054 - 0.971540I	0.89372 + 1.45212I	2.19487 - 5.36999I
b = -0.443456 - 0.641882I		
u = 0.568431 - 0.375314I		
a = 0.520054 + 0.971540I	0.89372 - 1.45212I	2.19487 + 5.36999I
b = -0.443456 + 0.641882I		
u = 1.332640 + 0.298347I		
a = -0.706159 + 0.554504I	0.86122 + 5.58916I	-3.00000 - 3.15563I
b = 1.13989 + 2.44217I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.332640 - 0.298347I		
a = -0.706159 - 0.554504I	0.86122 - 5.58916I	-3.00000 + 3.15563I
b = 1.13989 - 2.44217I		
u = -1.350860 + 0.271610I		
a = -0.313821 + 0.546709I	4.43467 - 4.86040I	0. + 4.57417I
b = -0.634567 + 0.232909I		
u = -1.350860 - 0.271610I		
a = -0.313821 - 0.546709I	4.43467 + 4.86040I	0 4.57417I
b = -0.634567 - 0.232909I		
u = 1.361180 + 0.332115I		
a = -0.298381 - 0.581807I	-1.06880 + 8.43099I	0 5.07593I
b = -0.695184 - 0.117059I		
u = 1.361180 - 0.332115I		
a = -0.298381 + 0.581807I	-1.06880 - 8.43099I	0. + 5.07593I
b = -0.695184 + 0.117059I		
u = 1.400590 + 0.045310I		
a = -0.466611 - 0.492889I	3.96621 + 1.16950I	0
b = -0.170732 - 0.843883I		
u = 1.400590 - 0.045310I		
a = -0.466611 + 0.492889I	3.96621 - 1.16950I	0
b = -0.170732 + 0.843883I		
u = -1.366970 + 0.343185I		
a = -0.701831 - 0.589074I	1.80064 - 9.99903I	0. + 8.15131I
b = 1.41347 - 2.32983I		
u = -1.366970 - 0.343185I		
a = -0.701831 + 0.589074I	1.80064 + 9.99903I	0 8.15131I
b = 1.41347 + 2.32983I		
u = -1.411670 + 0.052360I		
a = -0.537001 - 0.501630I	7.20025 - 2.58398I	4.12642 + 3.46228I
b = 0.155713 - 1.234020I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.411670 - 0.052360I		
a = -0.537001 + 0.501630I	7.20025 + 2.58398I	4.12642 - 3.46228I
b = 0.155713 + 1.234020I		
u = 1.37052 + 0.38186I		
a = -0.709680 + 0.609188I	-4.0535 + 13.7305I	0 8.23789I
b = 1.59214 + 2.36282I		
u = 1.37052 - 0.38186I		
a = -0.709680 - 0.609188I	-4.0535 - 13.7305I	0. + 8.23789I
b = 1.59214 - 2.36282I		
u = 1.41824 + 0.13440I		
a = -0.588434 + 0.523307I	3.18948 + 6.36871I	0 6.27419I
b = 0.51535 + 1.54249I		
u = 1.41824 - 0.13440I		
a = -0.588434 - 0.523307I	3.18948 - 6.36871I	0. + 6.27419I
b = 0.51535 - 1.54249I		
u = -0.302230		
a = 2.69339	-1.08012	-10.9510
b = 0.212469		
u = -0.0973082		
a = -10.7401	-6.54639	-13.9600
b = 1.30703		

II.
$$I_2^u = \langle u^2 + b, a - 1, u^{15} - 5u^{13} + \dots - u - 1 \rangle$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{3} + 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} (-u^{2} + 1) \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ -u^{6} + 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{9} + 4u^{7} - 5u^{5} + 2u^{3} + u \\ -u^{9} + 3u^{7} - 3u^{5} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{13} - 4u^{11} + 7u^{9} - 6u^{7} + 2u^{5} + u \\ -u^{12} + 4u^{10} + u^{9} - 6u^{8} - 3u^{7} + 3u^{6} + 3u^{5} + u^{4} - u^{3} - u^{2} - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{13} - 4u^{11} + 7u^{9} - 6u^{7} + 2u^{5} + u \\ -u^{12} + 4u^{10} + u^{9} - 6u^{8} - 3u^{7} + 3u^{6} + 3u^{5} + u^{4} - u^{3} - u^{2} - 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^9 12u^7 4u^6 + 12u^5 + 8u^4 4u^2 4u 6u^4 + 12u^5 + 8u^4 4u^4 4u^4 + 12u^5 + 8u^4 4u^4 4u^4 4u^4 + 12u^5 + 8u^4 4u^4 4u^4 + 12u^5 + 8u^4 4u^4 4u^4 4u^4 + 12u^5 + 8u^4 4u^4 + 12u^5 + 8u^4 4u^4 + 12u^5 + 8u^4 + 12u^5 + 8u^5 +$

Crossings	u-Polynomials at each crossing
c_1, c_5, c_6 c_{10}, c_{11}	$u^{15} - 5u^{13} + \dots - u - 1$
c_2	$u^{15} + 10u^{14} + \dots - u + 1$
c_3, c_8, c_9	$(u^5 - u^4 - 2u^3 + u^2 + u + 1)^3$
C_4	$(u^5 + 3u^4 + 4u^3 + u^2 - u - 1)^3$
	$(u^5 + u^4 + 2u^3 + u^2 + u + 1)^3$

Crossings	Riley Polynomials at each crossing
$c_1, c_5, c_6 \\ c_{10}, c_{11}$	$y^{15} - 10y^{14} + \dots - y - 1$
c_2	$y^{15} - 10y^{14} + \dots + 7y - 1$
c_3, c_8, c_9	$(y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1)^3$
c_4	$(y^5 - y^4 + 8y^3 - 3y^2 + 3y - 1)^3$
c ₇	$(y^5 + 3y^4 + 4y^3 + y^2 - y - 1)^3$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.051760 + 0.377982I		
a = 1.00000	-0.32910 - 1.53058I	-2.51511 + 4.43065I
b = -0.963319 - 0.795090I		
u = 1.051760 - 0.377982I		
a = 1.00000	-0.32910 + 1.53058I	-2.51511 - 4.43065I
b = -0.963319 + 0.795090I		
u = -0.162112 + 0.782578I		
a = 1.00000	-5.87256 - 4.40083I	-6.74431 + 3.49859I
b = 0.586148 + 0.253730I		
u = -0.162112 - 0.782578I		
a = 1.00000	-5.87256 + 4.40083I	-6.74431 - 3.49859I
b = 0.586148 - 0.253730I		
u = -1.121390 + 0.470419I		
a = 1.00000	-5.87256 + 4.40083I	-6.74431 - 3.49859I
b = -1.03622 + 1.05504I		
u = -1.121390 - 0.470419I		
a = 1.00000	-5.87256 - 4.40083I	-6.74431 + 3.49859I
b = -1.03622 - 1.05504I		
u = -0.633490 + 0.451585I		
a = 1.00000	-2.40108	-3.48114 + 0.I
b = -0.197381 + 0.572150I		
u = -0.633490 - 0.451585I		
a = 1.00000	-2.40108	-3.48114 + 0.I
b = -0.197381 - 0.572150I		
u = -1.209710 + 0.247023I		
a = 1.00000	-0.32910 - 1.53058I	-2.51511 + 4.43065I
b = -1.40237 + 0.59765I		
u = -1.209710 - 0.247023I		
a = 1.00000	-0.32910 + 1.53058I	-2.51511 - 4.43065I
b = -1.40237 - 0.59765I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.26698		
a = 1.00000	-2.40108	-3.48110
b = -1.60524		
u = 1.283500 + 0.312159I		
a = 1.00000	-5.87256 + 4.40083I	-6.74431 - 3.49859I
b = -1.54993 - 0.80131I		
u = 1.283500 - 0.312159I		
a = 1.00000	-5.87256 - 4.40083I	-6.74431 + 3.49859I
b = -1.54993 + 0.80131I		
u = 0.157950 + 0.625006I		
a = 1.00000	-0.32910 + 1.53058I	-2.51511 - 4.43065I
b = 0.365684 - 0.197439I		
u = 0.157950 - 0.625006I		
a = 1.00000	-0.32910 - 1.53058I	-2.51511 + 4.43065I
b = 0.365684 + 0.197439I		

III.
$$I_3^u = \langle b^2 + 2b - 1, \ a - 1, \ u + 1 \rangle$$

$$a_6 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$
$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ b \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ b+1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -1 \\ -b - 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -b - 2 \\ -b - 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -b - 2 \\ -2 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -b-2 \\ -2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -8

Crossings	u-Polynomials at each crossing
c_1, c_2, c_{10} c_{11}	$(u+1)^2$
c_3, c_4, c_8 c_9	u^2-2
c_5, c_6	$(u-1)^2$
c_7	u^2

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_5 \\ c_6, c_{10}, c_{11}$	$(y-1)^2$
c_3, c_4, c_8 c_9	$(y-2)^2$
<i>C</i> ₇	y^2

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 1.00000	-4.93480	-8.00000
b = 0.414214		
u = -1.00000		
a = 1.00000	-4.93480	-8.00000
b = -2.41421		

IV.
$$I_4^u = \langle b+1, a-1, u-1 \rangle$$

$$a_6 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
c_1, c_{10}, c_{11}	u-1
c_2, c_5, c_6	u+1
c_3, c_4, c_7 c_8, c_9	u

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_5 \\ c_6, c_{10}, c_{11}$	y-1
c_3, c_4, c_7 c_8, c_9	y

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 1.00000	0	0
b = -1.00000		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u-1)(u+1)^{2}(u^{15}-5u^{13}+\cdots-u-1)(u^{37}+2u^{36}+\cdots+u+1)$
c_2	$((u+1)^3)(u^{15}+10u^{14}+\cdots-u+1)(u^{37}+18u^{36}+\cdots+5u+1)$
c_3, c_8, c_9	$u(u^2-2)(u^5-u^4+\cdots+u+1)^3(u^{37}+2u^{36}+\cdots+2u^2-2)$
c_4	$u(u^{2}-2)(u^{5}+3u^{4}+\cdots-u-1)^{3}(u^{37}-6u^{36}+\cdots+288u-128)$
<i>C</i> 5	$((u-1)^2)(u+1)(u^{15}-5u^{13}+\cdots-u-1)(u^{37}+2u^{36}+\cdots+u+1)$
c_6	$((u-1)^2)(u+1)(u^{15}-5u^{13}+\cdots-u-1)(u^{37}-2u^{36}+\cdots+13u+1)$
c_7	$u^{3}(u^{5} + u^{4} + \dots + u + 1)^{3}(u^{37} + 6u^{36} + \dots - 224u - 16)$
c_{10}, c_{11}	$(u-1)(u+1)^{2}(u^{15}-5u^{13}+\cdots-u-1)(u^{37}-2u^{36}+\cdots+13u+1)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1,c_5	$((y-1)^3)(y^{15}-10y^{14}+\cdots-y-1)(y^{37}-18y^{36}+\cdots+5y-1)$
c_2	$((y-1)^3)(y^{15}-10y^{14}+\cdots+7y-1)(y^{37}+6y^{36}+\cdots+21y-1)$
c_3, c_8, c_9	$y(y-2)^2(y^5-5y^4+\cdots-y-1)^3(y^{37}-34y^{36}+\cdots+8y-4)$
c_4	$y(y-2)^{2}(y^{5} - y^{4} + 8y^{3} - 3y^{2} + 3y - 1)^{3}$ $\cdot (y^{37} - 10y^{36} + \dots + 156672y - 16384)$
c_6, c_{10}, c_{11}	$((y-1)^3)(y^{15}-10y^{14}+\cdots-y-1)(y^{37}-34y^{36}+\cdots+117y-1)$
c_7	$y^{3}(y^{5} + 3y^{4} + \dots - y - 1)^{3}(y^{37} + 18y^{36} + \dots + 32256y - 256)$