Distributed Query Processing

How to Make Big Data Small?

- **Input**: A class *Q* of queries
- Question: Can we effectively find, given queries $Q \in Q$ and any (possibly big) data D, a small D_Q such that $Q(D) = Q(D_Q)$?

- Data synopsis
- Boundedly evaluable queries
- Query answering using views
- Incremental evaluation
- Distributed Query Processing

Parallel DBMS

- Why parallel DBMS?
- Architectures
- Parallelism
 - Intra-query Parallelism
 - Inter-query Parallelism
 - Intra-operation Parallelism
 - Inter-operation Parallelism

Performance of a DBMS

- Throughput:
 - The number of tasks finished in a given time interval
- Response Time (Latency):
 - The amount of time to finish a single task from the time it is submitted
- Can we do better given more resources (CPU, disk, memory, ...)?
- Parallel DBMS: exploring parallelism
 - Divide a big problem into many smaller ones to be solved in parallel

query answer ↓ ↑ DBMS ↓ ↑ DB

Traditional DBMS

Parallel DBMS

Degree of Parallelism: Speedup

- Speedup: *TS/TL*, for a given task
 - *TS*: time taken by a traditional DBMS
 - *TL*: time taken by a parallel DBMS with more resources
 - TS/TL: Ideally, more resources mean proportionally less time for a task
- Linear speedup:
 - The speedup is N while the parallel system has N times resources of the traditional system
 - Can we do better?

Speed: throughput response time

Degree of Parallelism: Scaleup

- Scaleup: *TS/TL*
 - Factor that expresses how much more work can be done in the same time period by a larger system
 - A task Q and a task Q_N , which is N times bigger than Q
 - A DBMS M_S and a parallel DBMS M_L , N times more resources
 - TS: time taken by a traditional DBMS
 - *TL*: time taken by a parallel DBMS with more resources
 - Linear scaleup if $\frac{TS}{TL} = 1$
 - The time is constant if the resource increases in proportion to increase in problem size

Why can't it be better than linear scaleup/speedup?

- Startup costs: initializing each process
- Interference: competing for shared resources (network, disk, memory or locks)
- Skew:
 - It is difficult to divide a task into exactly equal-sized parts
 - The response time (latency) is determined by the largest part

Amdahl's law:

$$Speedup = \frac{1}{f + \frac{1 - f}{s}}$$

f: "sequential fraction" of the program

s: Amount of parallel resources

Why Parallel DBMS

- Improve Performance
- Almost died 25 years ago, but with renewed interests
 - Big Data: Data collected from the web
 - Decision Support Queries: Costly on large data
 - Hardware has become much cheaper
- Improve reliability and availability
- MapReduce

Architecture: Shared Memory

- Efficient Communication
 - Via data in memory, accessible by all
- Not Scalable:
 - Shared memory and network become bottleneck interference
 - Not scalable beyond 32/64 processors
 - Adding memory cache to each processor?
 - Cache coherence problem when data is updated

Shared Disk

- Fault tolerance:
 - If a processor fails, the other can take over, since the database is resident on disk
- Scalability:
 - Better than shared memory: memory is no longer a bottleneck
 - But disk subsystem is a bottleneck
- Interference:
 - All I/O to go through a single network
 - Not scalable beyond a couple of hundred processors

Oracle RDB (170 nodes)

Shared Nothing

- Scalable:
 - Only queries and result relations pass through the network
- Communication costs and access to non-local disks
 - Sending data involves software interaction at both ends

Teradata: 400 nodes

IBM SP2/DB2:128 nodes

Informix SP2: 48 nodes

Architecture Summary

Shared Memory (SMP)

Easy to program Expensive to build Difficult to scaleup

Informix, RedBrick Sequent, SGI, Sun scale: 9 nodes

Shared Disk

Better scalability Fault tolerance

VMScluster, Oracle (170 nodes) DEC Rdb (24 nodes)

Shared Nothing (network)

Hard to program Cheap to build Easy to scaleup

Teradata: 400 nodes Tandem: 110 nodes IBM/SP2/DB2: 128 nodes Informix/SP2 48 nodes

Architectures of Parallel DBMS

- Tradeoffs
 - Scalability
 - Communication Speed
 - Cache Coherence

Pipelined

- The output of operation A is consumed by another operation B, before A has produced the entire output
 - Many machines, each doing one step in a multi-step process
 - May lead to increase in response time
- Does not scale up well when
 - The computation does not provide sufficiently long chain to provide a high degree of parallelism
 - Relational operators do not produce output until all inputs have been accessed (blocking)
 - A's computation cost is much higher than that of B

Pipelined Parallelism: Compress a File

Data partitioned Parallelism

 Many machines performing the same operation on different pieces of data (similar to SIMD)

Partitioning in RDMS

- Partition a relation and distribute it to different processors
 - Maximize processing at each individual processor
 - Minimize data shipping
- Query types
 - Scan a relation
 - Point access r.A = v
 - Range Queries v < r.A < v'

Partitioning Strategy

- Assume N disks, a relation R
- Round Robin
 - Send the j-th tuple of R to disk number j mod N
 - Even distribution: Good for scanning
 - Not good for equal joins (point queries) and range queries (all disk have to be involved for the search)
- Range Partitioning:
 - Partitioning attribute A, vector $[v_1, ..., v_{n-1}]$
 - Send tuple t to disk j if t[A] in $[v_{j-1}, v_j]$
 - Good for point and range queries on partitioning attributes (using only a few disks, while leaving the others free)
 - Execution skew: distribution may not be even, and all operations occur in one or few partitions (scanning)

Partitioning Strategies (Cont'd)

- Assume N disks, a relation R
- Hash Partitioning:
 - Hash function f(t) in the range of integer [0, N-1]
 - Send tuple t to disk f(t)
 - Good for point queries on partitioning attributes, and sequential scanning if the hash function is even
 - No good for point queries on non-partitioning attributes and range queries

Question: how to partition R1(A, B): {(i, i + 1)}, with 5 processors?

- Round-robin
- Range partitioning: partitioning attribute A
- Hash partitioning

Automatic Data Partitioning

Partitioning a table

Good for group-by, range queries, and also equip-join

Good for equijoins

Good to spread load; Most flexible Not good for equi-join and range

Shared-disk and -memory less sensitive to partitioning, Shared nothing benefits from "good" partitioning

Inter-query Vs. Intra-query Parallelism

Inter-query:

- Different queries or transactions execute in parallel
- Improve transaction throughput
- Easy on shared-memory: Traditional DBMS tricks will do
- Shared-nothing/Disk: Cache coherence problem
 - Ensure that each processor has the latest version of the data in its buffer pool
 - Flush updated pages to shared disk before releasing the lock

Intra-Query

- A single query in parallel on multiple processors
- Speed up single complex long running queries
- Interoperation: operator tree
- Intraoperation: parallelize the same operation on different sets of the same relations: Parallel sorting,
 Parallel join; Selection; Projection; Aggregation

Parallel Query Answering

- Given data D, and n processors $S_1, S_2, ..., S_n$
 - D is partitioned into fragments $(D_1, D_2, ..., D_n)$
 - D is distributed to n processors: D_i is stored at S_i
- Each processor S_i processes operations for a query on its local fragment D_i , in parallel

Relational Operators

- Projection $\pi_A R$
- Selection $\sigma_C R$
- Join $R_1 \bowtie_C R_2$
- Union $R_1 \cup R_2$
- Set Difference $R_1 R_2$
- Group by and Aggregation
 - Max, min, count, average, ...

Intra-operation Parallelism: Projection

- Projection $\pi_A R$, where R is partitioned across n processors
 - Read tuples of R at all processors involved, in parallel
 - Conduct projection on tuples
 - Merge local results to eliminate duplicate elimination (via sorting?)

Intra-Operation Parallelism: Selection

- Selection $\sigma_C R$, where R is partitioned across n processors
- If *A* is the partitioning attribute
 - Point query C: r. A = v
 A single processor that holds r. A = v is involved
 - Range query $C: v \le r. A \le v'$ Only processors whose partition overlaps with the range are involved
- If *A* is not the partitioning attribute
 - Compute selection at each individual processor
 - Merge local result

Intra-Operation Parallelism: Sort

- Sort R on attribute A, where R is partitioned across n processors
- If A is the partitioning attribute: Range-partitioning
 - Sort each partition
 - Concatenate the result
- If A is not the partitioning attribute: Range-partitioning sort
 - Range partitioning R based on A, redistributed the tuples in R
 - Every processor works in parallel: read tuples and send them to corresponding processors
 - Each processor sorts its new partition locally when the tuple come in
 - Merge local results
- Issue: skew
- Solution: sample the data to determine the partitioning vector

Example: Parallel Sort

Intra-Operation Parallelism: Join

- Partitioned join: for equi-joins and natural joins
- Fragment-and replication join: inequality
- Partitioned parallel hash-join: equal or natural join
 - where R1, R2 are too large to fit in memory
 - Almost always the winner for equi-joins

Partitioned Join

- \blacksquare $R_1 \bowtie_{R_1.A=R_2.B} R_2$
 - Partition R_1 and R_2 into n partitions, by the same partitioning function in R_1 . A and R_2 . B, via either
 - range partitioning, or
 - hash partitioning
 - Compute $R_1^i \bowtie_{R_1.A=R_2.B} R_2^i$ locally at processor i
 - Merge the local results
- Question: how to perform partitioned join on the following, with 2 processors?
 - R1(A, B): {(1, 2), (3, 4), (5, 6)}
 - R2(B, C): {(2, 3), {3, 4)}

Fragment and Replicate join

- \blacksquare $R_1 \bowtie_{R_1.A < R_2.B} R_2$
 - Partition R_1 into n partitions, by any partitioning method, and distribute it across n processors
 - Replicate the other relation R_2 across all processors
 - Compute $R_1^j \bowtie_{R_1.A < R_2.B} R_2$ locally at processor j
 - Merge the local results
- Question: how to perform fragment and replicate join on the following, with 2 processors?
 - R1(A, B): {(1, 2), (3, 4), (5, 6)}
 - R2(B, C): {(2, 3), {3, 4)}

Partitioned Parallel Hash Join

- \blacksquare $R_1 \bowtie_{R_1.A=R_2.B} R_2$
 - Hash partitioning R_1 and R_2 using hash function h on partitioning attributes R_1 . A and R_2 . B, respectively
 - For $i \in [1, k]$, process the join of i-th partition $R_1^i \bowtie R_2^i$, with hash join

Intra-Operation Parallelism: Aggregation

- Aggregate on the Attribute B of R, grouping on A
- Decomposition:
 - $count(S) = \sum count(S_i)$; similar for sum
 - avg(S) = sum(S)/count(S)
- Strategy 1:
 - Range partitioning R based on A: redistribute the tuples in R
 - Each processor computes sub-aggregate (data parallelism)
 - Merge local results as above
- Strategy 2:
 - Each processor computes sub-aggregate (data parallelism)
 - Range partitioning local results based on A, redistribute partial results
 - Compose the local results

Example: Aggregation

- Describe a good processing strategy to parallelize the following query
- SELECT branch-name, avg(balance)
 FROM account
 GROUP BY branch-name
- The schema for the account is

account(account-id, branch-name, balance)

- Strategy:
 - Range or hash partition account by using branch-name as the partitioning attribute. This creates table $account_i$ at each site j.
 - At each site j, compute $\frac{sum(account_j)}{count(account_j)}$;
 - output $\frac{sum(account_j)}{count(account_i)}$: the union of these partial results is the final query answer

Inter-Operation Parallelism

- Consider $R_1 \bowtie R_2 \bowtie R_3 \bowtie R_4$
- Pipelined:
 - $Temp1 \leftarrow R_1 \bowtie R_2$
 - $Temp2 \leftarrow R_3 \bowtie Temp1$
 - $Result \leftarrow R_4 \bowtie Temp2$
- Independent
 - $Temp1 \leftarrow R_1 \bowtie R_2$
 - $Temp2 \leftarrow R_3 \bowtie R_4$
 - $Result \leftarrow Temp1 \bowtie Temp2$ (Pipelined Stage)

Cost Model

- Cost model: partitioning, skew, resource contention, scheduling
 - Partitioning: Tpart
 - Cost of assembling local answers: Tasm
 - Skew: max(T0, ..., Tn)
 - Estimation: Tpart + Tasm + max(T0, ..., Tn)

May also include startup costs and contention for resources (in each Tj)

- Query optimization: find the "best" parallel query plan
 - Heuristic 1: parallelize all operations across all processors -- partitioning, cost estimation (Teradata)
 - Heuristic 2: best sequential plan, and parallelize operations -- partition, skew, ... (Volcano parallel machine)

Practice: Validation of Functional Dependencies

- Develop a parallel algorithm that given a relation D and an Functional dependency FD, computes all the violations
 - Partitioned Join
 - Partitioned and replication Join
- Question: what can we do if we are given a set of FDs to validate?

Practice: Implement Set Difference

- Develop a parallel algorithm that R1 and R2, compute R1-R2, by using:
 - partitioned join
 - partitioned and replicated
- Questions: what can we do if the relations are too large to fit in memory?