RTSM PROJECT:

Pratham Kadam 22IE3FP35

Sushant Jha 22CH3FP09

Mayank Sony 22CH3FP28

Manish Vaghmashi 22CH3FP04

Mayur Tank 22MT3FP26

Harshit Pathak 22IE10026

AMERICAN EXPRESS STOCK PRICE PREDUTION

Objective

Employ Autoregressive Integrated Moving Average (ARIMA) to analyze 4 years of AMEX daily closing price data. This can help us more accurately predict the AMEX stock price for the next 12 months. This information can be valuable for making smart investment decisions.

Outline of the Notebook

- About the Dataset
- Exploratory Data Analysis
- Data preprocessing
- Model Building
- Forecasting
- Result Analysis and Conclusion

About the data

The AMEX Bank dataset contains daily Open, High, Low, Close, Adjusted Close, and Volume data for the past 4 years. The dataset was obtained from the Yahoo finance website.

The data ranges from 1st January 2020 upto 9th April 2024

df.shape (1059, 6)

The data frame contains 1059 rows and 6 columns

```
df.info()
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 1059 entries, 2020-01-01 to 2024-04-09
Data columns (total 6 columns):
               Non-Null Count
#
    Column
                                Dtype
0
    0pen
               1059 non-null
                                float64
 1
    High
               1059 non-null
                               float64
                               float64
    Low
               1059 non-null
    Close
               1059 non-null
                                float64
4
    Adj Close 1059 non-null
                               float64
    Volume
               1059 non-null
                               int64
dtypes: float64(5), int64(1)
memory usage: 57.9 KB
```

All the columns are numerical and non-null, as there as 1059 non-null values.

df.describe()						
	0pen	High	Low	Close	Adj Close	Volume
count	1059.000000	1059.000000	1059.000000	1059.000000	1059.000000	1.059000e+03
mean	1430.502030	1444.242869	1415.737585	1430.071202	1407.335192	1.229766e+07
std	204.900963	203.603692	207.292238	205.420139	209.626972	9.189217e+06
min	770.450012	810.000000	738.750000	767.700012	747.039307	5.484040e+05
25%	1363.125000	1379.000000	1350.775024	1366.599976	1337.882019	6.207358e+06
50%	1484.000000	1495.000000	1467.550049	1482.650024	1454.269897	9.774854e+06
75%	1585.450012	1598.000000	1567.650024	1582.100036	1558.975036	1.594037e+07
max	1723.449951	1757.500000	1713.800049	1728.199951	1728.199951	8.670560e+07

The above image shows us the mean, min, max count, and percentile statistics

Exploratory Data Analysis

Plotted the daily closing price and daily trading volume data

The above plot clearly shows that the data is non-stationary, as both the mean and variance appear to be dependent on time. To confirm our observations, we went on to

perform the Augmented DickeyFuller Test, from which we found that the p values were 0.69 > 0.05; therefore, the series was nonstationary.

p-value: 0.6956054153750227

ADF Statistic: -1.1478799284910495

Critical Values:

1%: -3.5778480370438146 5%: -2.925338105429433 10%: -2.6007735310095064

Data Preprocessing

We have decomposed the original data into Trend and Seasonal parts; we can see a clear upward trend here.

To make the data stationary, we perform the first difference (wherein we subtract the current value from its first lag value).

$$\nabla x_t = x_t - x_{t-1}.$$

Now, we again performed the ADF Test

p-value: 0.03043570226763305

ADF Statistic: -3.0505512414001186

Critical Values:

1%: -3.6155091011809297 5%: -2.941262357486514 10%: -2.6091995013850418

The p-value is 0.03, and the critical value is 5%; hence, we can consider the data stationary.

We have resampled the data with the sampling interval taken to be a month, as it's better to predict the monthly closing price as we don't exactly know which day is working and which isn't.

Model Building

We broke down the ARIMA Model into simple steps:

Making the data stationary by differencing. (I)
 This was already performed in the Data preprocessing part.

2. Fitting an AR model. (AR)

From the PACF plot, we can see a significant spike at lag 1 because of the significant PACF value. In contrast, we don't have evidence that everything within the blue band is different from zero.

p=1, hence we chose AR(1)

3. Fitting an MA model on the residuals. (MA)

We generated residuals by the difference of predictions from AR(1) and the original data.

q=5, hence we chose MA(5)

Forecasting

We have used 3 years of data to train the model(2020-22) and predicted closing prices for 12 months. The graph below gives an idea of future predictions.

Result & Analysis

To analyze our model, we can plot the residual distribution. If the residual distribution is normal and equivalent to white noise, the model is a good fit. Also, the ACF and PACF should not have significant terms. Ensuring that the residual is iid

The plot appears to be an approximate normal distribution.

We can clearly see that all the following values of ACF and PACF lie within the confidence interval hence, our model provides a good prediction.

