#### Projektgruppe FastSense

# Meilenstein 2 TSDF SLAM mit FPGA

17. Juni 2020

#### Inhalt

Recap

Hauptspeise

7iele für MS2

Algorithmus

```
Prototyping
   Hardware Implementierung
   FastSense Prototyp
   Kommunikation
Evaluation
   Strom
   Zeit
Fazit
   Bisherige Verbesserungen
   Verbesserungspotenzial
Ausblick / MS3
```

# Recap

#### Ziele für MS2- Funktionale Anforderungen

- Lokale TSDF-Map ausgeben
- Aktuelle 6D-Pose ausgeben
- Map auf Basis der IMU und Velodyne-Daten
- Trjektorie und TDSF-Map f
  ür jede Pose speichern
- Parameter zur Laufzeit anpassbar

#### Ziele für MS2- Nicht-Funktionale Anforderungen

- HW-Plattform: Trenz-Board, SW-Plattform: Vitis
- FPGA-Beschleunigung d. Algorithmen
- Sensoren direkt am Board
- Unit-Tests
- Testbench (Integration, Strommessung, Zeitmessung, Visualisierung)
- Logging

## Hauptspeise

## Algorithmus

## Prototyping

### Hardware Implementierung

#### FastSense Prototyp



#### FastSense Prototyp



#### Kommunikation

## **Evaluation**

#### Strom



#### Zeit

| Zeitmessung   |              |     |     |
|---------------|--------------|-----|-----|
| Abschnitt     | Durchschnitt | Min | Max |
| Registrierung | 800ms        | ??? | ??? |
| TSDF          | ???          | ??? | ??? |
| Global Map    | ???          | ??? | ??? |
| Local Map     | ???          | ??? | ??? |

# Fazit

#### Bisherige Verbesserungen

- Registrierung
  - Auslagerung von Point to TSDF auf Hardware
  - Auslagerung von Pointcloud Transformation auf Hardware
- TSDF

#### Verbesserungspotenzial

- Registrierug
  - Drift entfernen (aktuell noch leichter Drift (1cm/s) in alle 3 Richtungen)

#### Ausblick / MS3

- Aufbau einer SLAM-Box mittels CAD
  - Nutzung als Sensor
  - Einfache Portierung zwischen Drohne, Roboter, Rucksack etc.
  - Festes Interface, einfache Bedienung, Kapselung
- Verbesserung und Optimierung des Algorithmus
- Mesh-Generierung auf Basis der TSDF Werte
- ..
- TODO: Mehr Ideen für MS3?