Week 3 – Data Link Layer

Assignment Project Exam Help

https://powcoder.com COMP90007 Internet Technologies Add WeChat powcoder

Lecturer: Ling Luo

Semester 2, 2021

The Data Link Layer in OSI and TCP/IP

- Reliable, efficient communication of "frames" between two adjacent machines.
- Handles transmission errors and flow control.

Typical Implementation

Functions of the Data Link Layer

- Functions of the data link layer:
 - 1. Provide a well-defined service interface to networks and Project Exam Help
 - 2. Handling transmission errors https://powcoder.com
- 3. Data flow regulation Primary process:
 Add WeChat powcoder
- - Take packets from network layer, and encapsulate them into frames

Relation Between Packets and Frames

- Each frame contains a header, a payload and a trailer
- Link layer accepts packets from the network layer, and encapsulates them into frames that it sends using the physical layer; Projection is the physical layer; Projection is the process

Type of Services

- Connection-Oriented vs Connectionless: Whether a connection is setup before sending As in the Setup before
- Acknowledged vs Unacknowledged: Whether the receiver gives the sender an acknowledgement upon receiving the message

Services Provided to Network Layer

Transferring data from the network layer on source host to the network layer on destination host Project Exam Help

https://powcoder.com

- Services provided:
 Add WeChat powcoder
 Unacknowledged connectionless service
 - Acknowledged connectionless service
 - Acknowledged connection-oriented service

Unacknowledged Connectionless Service

- Source host transmits independent frames to recipient host with no acknowledgement
- No logical connection establishment or Assignment Project Exam Help release
- No lost frame recevery rhechanism (or left to higher levels) eChat powcoder
- Applications:
 - Ethernet LANs
 - Real-time traffic, e.g. voice

Acknowledged Connectionless Service

- Source host transmits independent frames to recipient host with acknowledgement
- No logicaticompetition de le logicaticom le logicatic
- Each frame is individually acknowledged, and retransmitted if lost or errors
- Application: Wireless IEEE 802.11 WiFi

Acknowledged Connection-Oriented Service

- Source host transmits independent frames to recipient host after connection Assignment Project Exam Help establishment and with acknowledgement
- Connection established and released (communicated rate Candodetailler of message)
- Frames are numbered, counted, acknowledged with logical order enforced
- Application: Unreliable links such as satellite channel

Framing (1)

- Framing: breaks raw bit stream into discrete units
- Physical layer provides no guarantee a raw stream of bits is error free near Project Exam Help
- The primary purpose of framing iscton provide some level of reliability over the unreliable physical layer Add WeChat powcoder
- Checksums can be computed and embedded at the source, then computed and compared at the destination checksum = f(payload)

Framing (2)

- Methods:
 - Character (Byte) count
 - □ Flag bxtesgwithhrbytesptetffingm Help
 - Start and end flags with bit stuffing https://powcoder.com
- Most data link protocols use a combination of character count and one other method

Character Count

 Uses a field in the frame header to specify the number of characters in a frame

Flag Bytes with Byte Stuffing

Each frame starts and ends with a special byte -"flag byte"

Start and End Flags with Bit Stuffing

- Frames contain an arbitrary number of bits
- Each frame begins and ends with a special bit pattern01111110

Assignment Project Exam Help

(a) 011011 https://powcoder.com

The original data

(b) 011011 Add WeChat poweoder 10
Stuffed bits

Sent data

(c) 011011111111111111110010

Destuffing at receiver

Insert 0 after five ones (11111)

Error Control

- Adding check bits to ensure that a garbled message by the physical layer is not considered as the original message by the receiver
- https://powcoder.com
 Error Control deals with
 - Detecting the error, Chat Petransmitting
 - Correcting the error

Error Detection and Correction (1)

- Physical media may be subject to errors
- Errors may occur randomly or in bursts

 - Single-bit error
 Assignment Project Exam Help
 Burst error: two or more bits have changed

Bursts of errors are easier to detect but harder to resolve

Error Detection and Correction (2)

Resolution needs to occur before handing data to network layer

- Key issues
 - Fast mechanism and low computational overhead
 - Minimum amount of extra bits sent with the data
 - Detection of different kinds of error

Example

- Repeat the bits, if a copy is different than the other, there is an error
 - 0 -> 000 and 1 -> 111
- What is the Acceptance of the Project Exam Help
- Given the 3 bits received,
 - How many errors can receiver detect?
 - How many errors can receiver correct?
 - What is the minimum number of errors that can fail the algorithm?

Error Bounds – Hamming Distance

- A code turns data of n bits into codewords of n+k bits
- Hamming distance is the **minimum bit flips** to turn one
 - valid codeword into any other valid one.

 Example with 42 one of the project Example in the project of the proj
 - 0000000000 https://powcoder.com
 - 0000011111 Hamming distance is 5
 - 1111100000 Add WeChat powcoder
- A code with Hamming distance:
 - $d+1 \rightarrow$ can detect up to d errors (e.g., 4 errors above)
 - $2d+1 \rightarrow$ can correct up to d errors (e.g., 2 errors above)

Error Bounds – Detection

Q: Why can a code with distance *d*+1 **detect** up to *d* errors?

- Errors are detected by receiving an invalid codeword, e.g. 00001 11111.
- If there are more than dereies, then the leevel codeword may become another valid codeword. https://powcoder.com
- Can receiver detect extent phint phinology 11?
 The receiver cannot detect all 5-bit errors.

Error Bounds – Correction

Q: Why can a code with distance 2d+1 **correct** up to d errors?

- Errors are corrected by mapping a received invalid codeword tosthermeanestroptid codewbledpi.e., the one that can be reached with the fewest bit flips
- If there are more than a bit flips, then the received codeword may keldloser than another valid codeword than the codeword that was sent

Example: Sending 000000000 with 2 flips might give 1100000000 which is closest to 000000000, correcting the error.

But with 3 flips 1110000000 might be received, which is closest to 1111100000, which is still an error