reg.no-1074 name-Siri Nandini date-11/10/2022

import pandas as pd
import numpy as np

data =pd.read\_csv("/content/Enrollments\_28092022.csv")
data

|     | StudentNo | DEGREE | INTERMEDIATE | SSC  | INTERNSHIP                     |
|-----|-----------|--------|--------------|------|--------------------------------|
| 0   | 1001      | 8.10   | 76.0         | 92.0 | Data Science                   |
| 1   | 1002      | 8.10   | 76.0         | 92.0 | MEAN Stack Web Development     |
| 2   | 1003      | 7.80   | 94.6         | 92.0 | MEAN Stack Web Development     |
| 3   | 1004      | 9.03   | 89.5         | 89.0 | Data Science                   |
| 4   | 1005      | 8.38   | 87.0         | 90.0 | MEAN Stack Web Development     |
|     |           |        |              |      |                                |
| 292 | 2188      | 8.70   | 94.1         | 93.0 | Data Science                   |
| 293 | 2189      | 8.45   | 90.0         | 93.0 | Data Science                   |
| 294 | 2190      | 8.40   | 94.9         | 98.0 | Data Science                   |
| 295 | 2191      | 7.06   | 90.6         | 0.88 | Cloud Computing Services (AWS) |
| 296 | 2192      | 7.50   | 95.5         | 95.0 | Cloud Computing Services (AWS) |

297 rows × 5 columns

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 297 entries, 0 to 296
Data columns (total 5 columns):

| # | Column       | Non-Null Count | Dtype   |
|---|--------------|----------------|---------|
|   |              |                |         |
| 0 | StudentNo    | 297 non-null   | int64   |
| 1 | DEGREE       | 297 non-null   | float64 |
| 2 | INTERMEDIATE | 297 non-null   | float64 |
| 3 | SSC          | 297 non-null   | float64 |
| 4 | INTERNSHIP   | 297 non-null   | object  |
|   |              |                |         |

dtypes: float64(3), int64(1), object(1)

memory usage: 11.7+ KB

rows=len(data)

```
cols=len(data.axes[1])
print("Number of rows:",str(rows))
print("Number of columns:",str(cols))

Number of rows: 297
Number of columns: 5
```

import matplotlib.pyplot as plt
import statistics as stat

plt.hist(data["DEGREE"])
plt.show()



plt.hist(data["INTERMEDIATE"])
plt.show()



plt.hist(data["SSC"])
plt.show()

```
interndatalab.ipynb - Colaboratory
      100
       80
       60
       40
       20
cv = lambda x: np.std(x, ddof=1) / np.mean(x)*100
print("Degree-")
print("Mean=",np.mean(data["DEGREE"]))
print("Median=",np.median(data["DEGREE"]))
print("Mode=",stat.mode(data["DEGREE"]))
print("Range=",max(data["DEGREE"])-min(data["DEGREE"]))
print("co-efficient of variation=",cv(data["DEGREE"]))
data["DEGREE"].describe()
     Degree-
     Mean= 7.928080808080809
     Median= 8.0
     Mode= 7.0
     Range= 3.72999999999995
     co-efficient of variation= 9.90881225818308
               297.000000
     count
     mean
                 7.928081
                 0.785579
     std
     min
                 5.800000
     25%
                 7.400000
     50%
                 8.000000
```

75% 8.560000 9.530000 max Name: DEGREE, dtype: float64

```
print("intermediate-")
print("Mean=",np.mean(data["INTERMEDIATE"]))
print("Median=",np.median(data["INTERMEDIATE"]))
print("Mode=",stat.mode(data["INTERMEDIATE"]))
print("Range=",max(data["INTERMEDIATE"])-min(data["INTERMEDIATE"]))
print("Co-efficient ofVariations",cv(data["INTERMEDIATE"]))
data["INTERMEDIATE"].describe()
     intermediate-
    Mean= 88.662626262626
```

Mode= 95.0 Range= 34.400000000000006

Median= 90.8

```
Co-efficient of Variations 8.29631726338337
     count
              297.000000
               88.662626
     mean
     std
                7,355733
     min
               65.000000
     25%
               83.000000
     50%
               90.800000
     75%
               94.600000
     max
               99.400000
     Name: INTERMEDIATE, dtype: float64
print("10th class-")
print("Mean=",np.mean(data["SSC"]))
print("Median=",np.median(data["SSC"]))
print("Mode=",stat.mode(data["SSC"]))
print("Range=",max(data["SSC"])-min(data["SSC"]))
print("Co-efficient ofVariations",cv(data["SSC"]))
data["SSC"].describe()
     10th class-
     Mean= 88.10673400673402
     Median= 90.0
     Mode= 95.0
     Range= 60.6
     Co-efficient of Variations 10.24664491920062
     count
              297.000000
               88.106734
     mean
     std
                9.027984
     min
               38.400000
     25%
               85.000000
     50%
               90.000000
     75%
               95.000000
               99.000000
     max
     Name: SSC, dtype: float64
data["INTERNSHIP"].value counts()
     Data Science
                                        156
     Cloud Computing Services (AWS)
                                         90
     MEAN Stack Web Development
                                         51
     Name: INTERNSHIP, dtype: int64
courses=["Data Science", "Cloud Computing Services(AWS)", "Mean Stack Web Development"]
students=[156,90,51]
plt.pie(students, labels=courses, autopct="%1.2f%%")
plt.show()
```



plt.boxplot(data["DEGREE"])
plt.show()



plt.boxplot(data["INTERMEDIATE"])
plt.show()



plt.boxplot(data["SSC"])
plt.show()

#SSC

```
100
       90
       80
       70
       60
       50
#Outilers function
def outlier(a):
  q1 = np.quantile(a, 0.25)
  q3 = np.quantile(a, 0.75)
  med = np.median(a)
  iqr = q3-q1
  upper bound = q3+(1.5*iqr)
  lower bound = q1-(1.5*iqr)
  print(iqr,upper_bound,lower_bound)
  print("Inter-Quartile Range:",iqr)
  outliers = a[(a \le lower bound)](a \ge upper bound)]
  print("The following are the outliers in the boxplot:\n{}".format(outliers))
#Degree
outlier(data["DEGREE"])
     1.1600000000000001 10.3 5.66
     Inter-Quartile Range: 1.1600000000000001
     The following are the outliers in the boxplot:
     Series([], Name: DEGREE, dtype: float64)
#Intermediate
outlier(data["INTERMEDIATE"])
     11.599999999999 111.9999999999 65.60000000000001
     Inter-Quartile Range: 11.59999999999994
     The following are the outliers in the boxplot:
     271
            65.0
     Name: INTERMEDIATE, dtype: float64
outlier(data['SSC'])
     10.0 110.0 70.0
```

Inter-Quartile Range: 10.0

```
The following are the outliers in the boxplot:
     5
            64.0
     7
            70.0
     31
            60.0
     51
            68.0
     69
            60.0
     82
            65.6
     86
            50.0
     107
            64.0
     236
            38.4
            67.0
     237
            40.2
     243
     270
            65.0
     288
            65.0
     Name: SSC, dtype: float64
import scipy.stats as stats
print("Standard Scores of Degree:")
print(stats.zscore(data["DEGREE"]))
     Standard Scores of Degree:
            0.219213
     1
            0.219213
     2
           -0.163315
     3
            1.405052
     4
            0.576240
              . . .
     292
            0.984271
     293
            0.665497
     294
            0.601742
     295
           -1.106886
           -0.545844
     296
     Name: DEGREE, Length: 297, dtype: float64
print("Standard Scores of Intermediate:")
print(stats.zscore(data["INTERMEDIATE"]))
     Standard Scores of Intermediate:
           -1.724369
     1
           -1.724369
     2
            0.808539
     3
            0.114032
           -0.226413
              . . .
     292
            0.740450
     293
            0.182121
     294
            0.849392
     295
            0.263827
     296
            0.931099
     Name: INTERMEDIATE, Length: 297, dtype: float64
```

```
print("Standard Scores of 10th class:")
print(stats.zscore(data["SSC"]))
     Standard Scores of 10th class:
            0.431972
     1
            0.431972
     2
            0.431972
     3
            0.099111
            0.210065
              . . .
            0.542926
     292
          0.542926
     293
     294
            1.097694
     295
         -0.011843
     296
            0.764833
     Name: SSC, Length: 297, dtype: float64
def func(b):
  q9 = np.quantile(b, 0.9)
  li=b[b==q9]
  print("No.of students with 90% percentile:",li.count())
#Degree
func(data['DEGREE'])
     No.of students with 90% percentile: 3
#Intermediate
func(data["INTERMEDIATE"])
     No.of students with 90% percentile: 3
#10TH Class
func(data["SSC"])
     No.of students with 90% percentile: 19
```

Colab paid products - Cancel contracts here

✓ 0s completed at 18:27

×