Física Básica

Um resumo de Física Baseada baseado no programa do EUF.

Ugo de Lima Pozo

Sumário

Re	Resumo								
T.	Med	cânica Clássica							1
	1	Leis de Newton							1
	2	Movimento unidimensional							1
	3	Oscilações lineares							1
	4	Movimento em duas e três dimensões	•		•		•	•	1
	5	Gravitação newtoniana							1
	6	Cálculo variacional							1
	7	Equações de Lagrange e de Hamilton							2
	8	Forças centrais							2
	9	Sistemas de partículas	•		•		•	•	2
	10	Referenciais não inerciais							2
	11	Dinâmica de corpos rígidos							2
	12	Oscilações acopladas	•		•	• •	•	•	2
	12	Oschações acopiadas	•		•		•	•	
II.	Elet	romagnetismo							3
	1	Campos eletrostáticos no vácuo e nos materiais dielétricos							3
	2	Resolução das equações de Poisson e Laplace							3
	3	Campos magnéticos, correntes estacionárias e materiais não magnéticos .							3
	4	Força eletromotriz induzida e energia magnética							3
	5	Materiais magnéticos							3
	6	Equações de Maxwell							3
	7	Propagação de ondas eletromagnéticas							3
	8	Reflexão e Refração							3
	9	Radiação							3
	10	Eletromagnetismo e Relatividade							3
		0							
III	.Físi	ca Moderna							5
	1	Fundamentos da relatividade restrita							5
	2	Mecânica relativística das partículas							5
	3	Propagação da luz e a relatividade newtoniana							5
	4	Experimento de Michelson e Morley							5
	5	Postulados da teoria da relatividade restrita							5
	6	As transformações de Lorentz							5
	7	Causalidade e simultaneidade							5
	8	Energia e momento relativísticos							5
	9	Radiação térmica, o problema do corpo negro e o postulado de Planck							5
	10	Fótons e as propriedades corpusculares da radiação							5
	11	O modelo de Rutherford e o problema da estabilidade dos átomos							5
	12	O modelo de Bohr							5
	13	Distribuição de Boltzmann da energia							5
	14	Átomos, Moléculas e Sólidos							5
**									_
IV	_	cânica Quântica							7
	1	Introdução às ideias fundamentais da teoria quântica							7
	2	O aparato matemático da mecânica quântica de Schrödinger							7
	3	Formalização da Mecânica Quântica. Postulados. Descrição de Heisenberg							7
	4	O oscilador harmônico unidimensional							7
	5	Potenciais Unidimensionais							7
	6	A equação de Schrödinger em três dimensões. Momento angular							7
	7	Forças centrais e o átomo de Hidrogênio							7
	8	Spinores na teoria quântica não-relativística							7
	9	Adição de momentos angulares							7
	10	Teoria de perturbação independente do tempo							7
	11	Partículas idênticas							7

V.	Teri	modinâmica e Física Estatística									
	1	Sistemas termodinâmicos									
	2	Variáveis e equações de estado, diagramas PVT									
	3	Trabalho e primeira lei da termodinâmica									
	4	Equivalente mecânico do calor 9									
	5	Energia interna, entalpia, ciclo de Carnot									
	6	Mudanças de fase									
	7	Segunda lei da termodinâmica e entropia 9									
	8	Funções termodinâmicas									
	9	Aplicações práticas de termodinâmica									
	10	Teoria cinética dos gases									
	11	Descrição Estatística de um Sistema Físico									
	12	Ensemble Microcanônico									
	13	Ensemble Canônico									
	14	Gás Clássico no Formalismo Canônico									
	15	Ensemble Grande Canônico									
	16	Gás Ideal Quântico									
	17	Gás Ideal de Fermi									
	18	Condensação de Bose-Einstein									
Re	Referências 11										

Resumo

Esta apostila tem como objetivo servir como guia de estudos para o EUF. Ela não tem como objetivo ensinar o conteúdo de que trata, e sim servir como revisão e referência para consulta durante estudos para o EUF.

I. Mecânica Clássica

- 1. Leis de Newton
- 2. Movimento unidimensional
- 3. Oscilações lineares
- 4. Movimento em duas e três dimensões
- 5. Gravitação newtoniana
- 6. Cálculo variacional

Seja $\mathcal{F}(q_1(t),\ldots,q_n(t),\dot{q}_1(t),\ldots,\dot{q}_n(t)):=\int_{t_0}^{t_1}\mathrm{d}t\ f(t,q_1(t),\ldots,q_n(t),\dot{q}_1(t),\ldots,\dot{q}_n(t))$ um funcional que possua mínimos locais nas funções $\mathcal{Q}:=\left\{\chi_1(t),\ldots,\chi_n(t)\right\}$. Então, $\forall i\in\{1,\ldots,n\},\ \mathcal{Q}$ é a solução do sistema de equações diferenciais:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial f}{\partial \dot{q}_i} \right) = \frac{\partial f}{\partial q_i} \tag{1}$$

Exemplo 6.1 (Princípio de Fermat). O princípio de Fermat diz que a luz andando num meio percorre o caminho que minimiza o **tempo** de percurso. Isto é, dado um meio bidimensional cujo índice de refração depende da posição (n = n(x, y)), temos:

$$T = \int_{t_0}^{t_1} dt =$$

$$= \frac{1}{c} \int_{t_0}^{t_1} dt \, \frac{c}{v} \, \frac{ds}{dt} =$$

$$= \frac{1}{c} \int_{A}^{B} ds \, n(x, y) =$$

$$= \frac{1}{c} \int_{A}^{B} \sqrt{dx^2 + dy^2} \, n(x, y) =$$

$$= \frac{1}{c} \int_{x_0}^{x_1} dx \sqrt{1 + \dot{y}^2} \, n(x, y)$$
(2)

Onde $\dot{y}:=rac{\mathrm{d}y}{\mathrm{d}x}$. Desse modo, se definirmos o funcional $\mathcal{T}(y,\dot{y}):=\int_{x_0}^{x_1}\mathrm{d}x\sqrt{1+\dot{y}^2}\;n(x,y)$, sabemos que o caminho y(x) é solução da Equação 1 para $f(x,y,\dot{y})=\sqrt{1+\dot{y}^2}\;n(x,y)$.

Exemplo 6.2 (Catenária). A catenária é a curva que minimiza a energia potencial gravitacional de uma corda inelástica presa pelas suas duas extremidades, e cujo corpo é livre e não encosta no chão.

A energia potencial gravitacional de uma partícula puntiforme é dada por $E_g = mgy$, e, considerando uma corda com densidade linear de massa ρ , podemos fazer:

$$E_g = \int_M dm \ gy =$$

$$= \int_A^B ds \ \rho gy =$$

$$= \rho g \int_A^B \sqrt{dx^2 + dy^2} \ y =$$

$$= \rho g \int_{x_0}^{x_1} dx \ y \sqrt{1 + \dot{y}^2}$$
(3)

Novamente, $\dot{y}:=\frac{\mathrm{d}y}{\mathrm{d}x}$. Também de forma análoga ao Exemplo 6.1, definindo o funcional $\mathcal{E}(y,\dot{y}):=\int_{x_0}^{x_1}\mathrm{d}x\;y\sqrt{1+\dot{y}^2}$, teremos que a curva y(x) será a catenária, e será solução da Equação 1 para $f(y,\dot{y})=y\sqrt{1+\dot{y}^2}$.

Entre outros exemplos úteis, temos:

Nome	Definição	Equação
Braquistócrona	Superfície que minimiza o tempo que uma par- tícula demora para deslizar sob influência de um	$f(y, \dot{y}) = y^{\frac{1}{2}} \sqrt{1 + \dot{y}^2}$
Geodésica hiperbólica	campo gravitacional Menor caminho entre dois pontos em um semi- plano hiperbólico	$f(y, \dot{y}) = y^{-1} \sqrt{1 + \dot{y}^2}$

Tabela 1: Resultados comuns de cálculos variacionais

Essas equações podem ser derivadas de maneira extremamente similar à do Exemplo 6.1 e do Exemplo 6.2.

De maneira geral, se um funcional tem um lagrangiano (i.e. $\mathcal{F} = \int \mathrm{d}t \ L$) independente do tempo (no caso, a variável de integração), pode-se usar a Identidade de Beltrami para encontrar grandezas constantes que auxiliam a resolução das equações de Euler-Lagrange:

Equação 4 - Identidade de Beltrami.

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(L - \dot{q}_i \, \frac{\partial L}{\partial \dot{q}_i} \right) = 0$$

- 7. Equações de Lagrange e de Hamilton
- 8. Forças centrais
- 9. Sistemas de partículas
- 10. Referenciais não inerciais
- 11. Dinâmica de corpos rígidos
- 12. Oscilações acopladas

II. Eletromagnetismo

- 1. Campos eletrostáticos no vácuo e nos materiais dielétricos
- 2. Resolução das equações de Poisson e Laplace
- 3. Campos magnéticos, correntes estacionárias e materiais não magnéticos
- 4. Força eletromotriz induzida e energia magnética
- 5. Materiais magnéticos
- 6. Equações de Maxwell
- 7. Propagação de ondas eletromagnéticas
- 8. Reflexão e Refração
- 9. Radiação
- 10. Eletromagnetismo e Relatividade

III. Física Moderna

- 1. Fundamentos da relatividade restrita
- 2. Mecânica relativística das partículas
- 3. Propagação da luz e a relatividade newtoniana
- 4. Experimento de Michelson e Morley
- 5. Postulados da teoria da relatividade restrita
- 6. As transformações de Lorentz
- 7. Causalidade e simultaneidade
- 8. Energia e momento relativísticos
- 9. Radiação térmica, o problema do corpo negro e o postulado de Planck
- 10. Fótons e as propriedades corpusculares da radiação
- 11. O modelo de Rutherford e o problema da estabilidade dos átomos
- 12. O modelo de Bohr
- 13. Distribuição de Boltzmann da energia
- 14. Átomos, Moléculas e Sólidos

IV. Mecânica Quântica

- 1. Introdução às ideias fundamentais da teoria quântica
- 2. O aparato matemático da mecânica quântica de Schrödinger
- 3. Formalização da Mecânica Quântica. Postulados. Descrição de Heisenberg
- 4. O oscilador harmônico unidimensional
- 5. Potenciais Unidimensionais
- 6. A equação de Schrödinger em três dimensões. Momento angular
- 7. Forças centrais e o átomo de Hidrogênio
- 8. Spinores na teoria quântica não-relativística
- 9. Adição de momentos angulares
- 10. Teoria de perturbação independente do tempo
- 11. Partículas idênticas

V. Termodinâmica e Física Estatística

- 1. Sistemas termodinâmicos
- 2. Variáveis e equações de estado, diagramas PVT
- 3. Trabalho e primeira lei da termodinâmica
- 4. Equivalente mecânico do calor
- 5. Energia interna, entalpia, ciclo de Carnot
- 6. Mudanças de fase
- 7. Segunda lei da termodinâmica e entropia
- 8. Funções termodinâmicas
- 9. Aplicações práticas de termodinâmica
- 10. Teoria cinética dos gases
- 11. Descrição Estatística de um Sistema Físico
- 12. Ensemble Microcanônico
- 13. Ensemble Canônico
- 14. Gás Clássico no Formalismo Canônico
- 15. Ensemble Grande Canônico
- 16. Gás Ideal Quântico
- 17. Gás Ideal de Fermi
- 18. Condensação de Bose-Einstein

Referências

INSTITUTO DE FÍSICA - USP, INSTITUTO DE FÍSICA DE SÃO CARLOS - USP, INSTITUTO DE FÍSICA "GLEB WATAGHIN" - UNICAMP, INSTITUTO DE FÍSICA TEÓRICA - UNESP, UFABC, UFSCAR, UFRGS, UFMG, UFPE, UFRN. **Edital**: Exame Unificado de Pós-Graduações em Física - EUF 2018-2. São Paulo: [s.n.], 2018. Disponível em:

<http://143.54.179.227/Eventos/Temp/edital_euf_2018-25058724.pdf>. Acesso em: 2 abr.
2018.