TEMA 11.

Индексирование атрибутов отношения базы данных осуществляется для того, чтобы

- уменьшить время поиска и выборки кортежей отношения

Индексный файл строится

- для конкретных атрибутов (групп атрибутов) отношения

На уровне диспетчера дисков данные, хранимые в базе данных, выглядят как

- набор страниц данных, размещенных в определенных местах на дисковом носителе (цилиндрах, дорожках, секторах)

На уровне диспетчера файлов операционной системы данные, хранимые в базе данных, выглядят как

- набор страниц файлов

На уровне концептуальной схемы реляционной модели данные, хранимые в базе данных, выглядят как

- набор отношений, состоящих из заголовка, кортежей и атрибутов

На уровне системы управления базой данных (СУБД) данные, хранимые в базе данных, выглядят как

- набор записей файлов (файлы соответствуют отношениям, записи файлов — кортежам отношений и поля записей — атрибутам)

При индексировании данных

- не производится физического упорядочения записей данных на устройстве хранения

При индексировании данных

- производится логическое упорядочение записей данных

При использовании для индексирования данных структур типа В-дерева

- обеспечивается автоматическая балансировка В-дерева

При использовании для индексирования данных структур типа В-дерева количество считываемых в оперативную память страниц для поиска в файле данных нужной записи

- равно количеству уровней В-дерева

При использовании для индексирования данных структуры типа В-дерева количество считываемых в оперативную память страниц индексного файла

- не зависит от того, где расположена искомая запись данных (в начале, в середине, в конце файла)

При использовании для индексирования структур типа В-дерева время поиска в файле данных нужной записи

- зависит от количества уровней В-дерева

При использовании для индексирования структуры типа В-дерева

- время поиска данных не зависит от того в начале или в конце файла находится искомая запись

При построении индексного файла

- не производится физического упорядочения записей данных на устройстве хранения

С увеличением размеров файла данных время, затрачиваемое на поиск, увеличивается в большей степени при использовании для индексирования структуры типа

- инвертированного списка

С увеличением размеров файла данных время, затрачиваемое на поиск, увеличивается медленнее при использовании для индексирования структуры типа

- В-дерева

С увеличением размеров файла данных количество считываемых в оперативную память страниц индексного файла увеличивается в большей степени при использовании для индексирования структуры типа

- инвертированного списка

TEMA 12.

Буферизация в оперативной памяти страниц базы данных и страниц журнала транзакций

- Увеличивает скорость выполнения операций над данными в базе данных
- Усложняет возможность восстановления данных после мягкого сбоя

Восстановление согласованного состояния базы данных после сбоев подразумевает, что

- результаты всех транзакций, не выполненных до конца из-за произошедшего сбоя, должны отсутствовать в восстановленном состоянии БД
- результаты всех зафиксированных командой COMMIT транзакций должны присутствовать в восстановленном состоянии БД

Для того, чтобы было возможным восстановить согласованное состояние базы данных при сбоях, необходимо обеспечить выполнение следующих условий

- Информация обо всех изменения объектов базы данных должна записываться в журнал транзакций
- Запись в журнал транзакций производится перед изменением объекта базы данных
- Записи журнала каждой успешно завершенной транзакции должны быть реально зафиксированы во внешней памяти (на диске)
- При принятии контрольной точки происходит выталкивание во внешнюю память содержимого буфера данных
- При принятии контрольной точки происходит выталкивание во внешнюю память содержимого буфера журнала транзакций

Для чего используется буферизация в оперативной памяти страниц базы данных и страниц журнала транзакций

- Для повышения скорости выполнения операций над данными базы данных

Какие из нижеприведенных утверждений Вы считаете правильными

- Данные в базе данных могут не всегда находиться в согласованном состоянии

Какие из нижеприведенных утверждений Вы считаете правильными

- Данные в базе данных могут не всегда находиться в целостном состоянии

Команда COMMIT

- завершает текущую транзакцию и сохраняет записи журнала этой транзакции во внешней памяти

Команла ROLLBACK

- завершает неудачную транзакцию, аннулируя ее результаты

Команда	_ завершает неудачную транзакцию, полностью аннулируя ее результаты
Ответ: ROLLB	АСК
	_ завершает текущую транзакцию, при этом гарантируется, что
результаты ра	боты транзакции сохраняются в базе данных.
Ответ: СОММІ	Т

Команда зафиксировать транзакцию

- COMMIT

Команда откатить транзакцию

- ROLLBACK

Логическая единица работы СУБД, представляющая собой последовательность операторов манипулирования данными, выполняющаяся как единое целое и переводящая базу данных из одного согласованного состояния в другое называется

Ответ: транзакция

Любые действия по модификации данных в базе данных

- могут в какие-то моменты времени нарушать целостность данных
- должны переводить базу данных из одного целостного состояния в другое целостное состояние

Основной принцип транзакции

- все или ничего

Отметьте свойства, которыми должна обладать транзакция

- изолированность
- согласованность
- атомарность
- долговечность

Принципы согласованной политики выталкивания буфера журнала транзакций и буферов страниц базы данных

- При выполнении команды COMMIT во внешнюю память журнала должны быть вытолкнуты все записи буфера журнала, относящиеся к изменениям данных, совершенных этой транзакцией

Принципы согласованной политики выталкивания буфера журнала транзакций и буферов страниц базы данных

- Принятие контрольной точки означает выталкивание во внешнюю память содержимого буферов журнала транзакций
- Принятие контрольной точки означает выталкивание во внешнюю память содержимого буферов базы данных

Свойство транзакции Атомарность состоит в том, что

- транзакция выполняется как неделимая операция
- операции, составляющие транзакцию, либо выполняются все целиком, либо не выполняется ни одна из них

Свойство транзакции Долговечность состоит в том, что

- если транзакция выполнена, то результаты ее работы должны сохраниться в базе данных, даже если в следующий момент произойдет сбой системы

Свойство транзакции Изолированность состоит в том, что

- транзакции не должны влиять друг на друга

Свойство транзакции Согласованность состоит в том, что

- транзакция переводит базу данных из одного согласованного состояния в другое согласованное состояние, без обязательной поддержки согласованности данных во все промежуточные моменты времени

<u> </u>	стоит в том, что, если транзакция выполнена, то сохраниться в базе данных, даже если в следующий
момент произойдет сбой систем	•
Ответ: долговечность	
Свойство транзакции сос друга.	стоит в том, что транзакции не должны влиять друг на
Ответ: изолированность	
Свойство транзакции сос	стоит в том, что транзакция выполняется только вся
целиком, как неделимая операц	ция.
Ответ: атомарность	
<u>=</u>	стоит в том, что транзакция переводит базу данных из ия в другое также согласованное состояние, без
обязательной поддержки соглас	сованности данных во все промежуточные моменты
времени.	• •
Ответ: согласованность	

Транзакция — это

- последовательность операторов манипулирования данными БД, переводящая базу данных из одного согласованного состояния в другое
- последовательность операторов манипулирования данными БД, обладающая определенными свойствами
- последовательность операторов манипулирования данными БД, выполняющаяся как единое пелое

Укажите ситуации, которые относят к жесткому сбою системы

- нарушение работоспособности системы из-за отказа устройств долговременной памяти (дисков)

Укажите ситуации, которые относят к жесткому сбою системы

- разрушаются данные на устройстве долговременной памяти диске
- содержимое оперативной памяти сохраняется

TEMA 13.

Укажите правильные ответы, относящиеся к транзакции Т1

- никаких операций по восстановлению не требуется

Укажите правильные ответы, относящиеся к транзакции Т1

- успешно завершена до принятия контрольной точки
- начата до принятия контрольной точки
- все записи об изменениях данных в этой транзакции сохранены в долговременной памяти
- все записи журнала этой транзакции сохранены в долговременной памяти
- успешно завершена до наступления сбоя

Укажите правильные ответы, относящиеся к транзакции Т2

- данные, измененные транзакцией до контрольной точки, сохранены в долговременной памяти
- все записи журнала этой транзакции сохранены во внешней памяти
- данные, измененные транзакцией после контрольной точки, отсутствуют в долговременной памяти

Укажите правильные ответы, относящиеся к транзакции Т2

- не все данные, измененные в ходе этой транзакции сохранены в долговременной памяти
- начата до принятия контрольной точки
- данные, измененные транзакцией до контрольной точки, сохранены в долговременной памяти
- не успела завершиться до принятия контрольной точки
- все записи журнала этой транзакции сохранены в долговременной памяти
- успешно завершена до наступления сбоя

Укажите правильные ответы, относящиеся к транзакции Т2

- для транзакции необходимо повторить заново операции, которые были выполнены после принятия контрольной точки

Укажите правильные ответы, относящиеся к транзакции ТЗ

- не завершена в результате сбоя
- начата до принятия контрольной точки
- изменения данных, внесенные транзакцией после контрольной точки во внешней памяти отсутствуют
- страницы данных, измененные транзакцией до принятия контрольной точки, содержатся во внешней памяти
- записи журнала этой транзакции до контрольной очки находятся во внешней памяти

Укажите правильные ответы, относящиеся к транзакции Т3

- транзакцию необходимо откатить

Укажите правильные ответы, относящиеся к транзакции Т4

- все записи журнала этой транзакции сохранены в долговременной памяти
- начата после принятия контрольной точки
- измененные в ходе этой транзакции данные отсутствуют в долговременной памяти
- успешно завершена до сбоя системы

Укажите правильные ответы, относящиеся к транзакции Т4

- транзакцию необходимо выполнить заново целиком

Укажите правильные ответы, относящиеся к транзакции Т5

- никаких действий предпринимать не нужно

Укажите правильные ответы, относящиеся к транзакции Т5

- записей журнала этой транзакции нет во внешней памяти
- не завершена в результате сбоя
- начата после принятия контрольной точки
- данные, измененныех в ходе этой транзакции отсутствуют в долговременной памяти

TEMA 14.

Х-блокировка, наложенная транзакцией А

- сохраняется до окончания транзакции А и не может быть отменена или изменена никакой другой транзакцией

Граф ожидания транзакций — это ориентированный граф, в котором существует два типа вершин — вершины, соответствующие <u>транзакциям</u>, и вершины, соответствующие <u>объектам</u>. В этом графе существует дуга, ведущая из вершины-<u>транзакции</u> к вершине-<u>объекту</u>, если для <u>транзакции</u> существует удовлетворенная блокировка объекта, и дуга из вершины-<u>объекта</u> к вершине-<u>транзакции</u>, если транзакция ожидает удовлетворения захвата объекта.

График запуска набора транзакций называется правильным или сериальным, если

- он эквивалентен последовательному выполнению транзакций

Если блокируется более крупный объект базы данных, то

- вероятность конфликта транзакций выше
- накладные расходы на установку блокировок ниже

Если вместо группы кортежей отношения заблокировать всё отношение, то

- вероятность конфликта транзакций будет выше
- накладные расходы на установку блокировок будут ниже
- проблема фиктивных элементов (фантомов) будет решена

Если попытка блокировки объекта транзакцией В отвергается оттого, что этот объект уже заблокирован транзакцией А, то

- транзакция В переходит в состояние ожидания до тех пор, пока транзакция А не снимет блокировку объекта

Если транзакция уже заблокировала некоторый объект S-блокировкой, то перед обновлением этого объекта

- она должна заменить S-блокировку на X-блокировку

Задача обеспечения сериализации транзакций состоит

- в построении механизма одновременного, параллельного выполнения транзакций, который был бы эквивалентен их последовательному выполнению

Каждой транзакции Т приписывается временная метка t, соответствующая моменту ее *начала*.

Транзакция В перед выполнением операции над объектом R выполняет следующие действия. Проверяет, помечен ли и кем помечен этот объект другой транзакцией.

Если объект <u>не помечен</u>, то транзакция помечает его своей временной меткой и типом операции чтение или изменение.

Если объект <u>помечен</u>, то транзакция \underline{B} проверяет, не закончилась ли транзакция \underline{A} , пометившая этот объект.

Если транзакция \underline{A} завершилась, транзакция \underline{B} помечает объект R своей временной меткой и выполняет операцию.

Если транзакция \underline{A} <u>ещё не завершилась</u>, то транзакция \underline{B} проверяет конфликтность операций. Если операции *неконфликтны*, то при объекте R остается или проставляется временная метка с *меньшим* значением, и транзакция \underline{B} выполняет свою операцию.

Если операции транзакций А и В конфликтны, то,

если t(A) больше t(B) (т. е. транзакция A является более "молодой", чем B), то транзакция \underline{A} откатывается и, получив новую временную метку, начинается заново. Транзакция \underline{B} продолжает работу.

Если же t(A) меньше t(B) (т. е. транзакция A является более "старой", чем B), то транзакция \underline{B} откатывается и, получив новую временную метку, начинается заново. Транзакция \underline{A} продолжает работу.

В итоге система обеспечивает такую работу, при которой при возникновении конфликтов всегда откатывается более "*молодая*" транзакция (начавшаяся *позже*).

Какие из приведенных ниже утверждений соответствуют протоколу двухфазной блокировки

- После снятия блокировки с какого-либо объекта транзакция не должна накладывать блокировок на другие объекты
- Перед выполнением каких-либо операций с некоторым объектом базы данных транзакция должна заблокировать этот объект

Какой способ обнаружения ситуации тупика эффективней

- с помощью построения графа ожидания транзакций

Метод временных меток.

- При использовании метода временных меток журнал транзакций используется
- Временная метка соответствует моменту начала транзакции
- Метод временных меток используется для обеспечения сериализации транзакций

Метод выделения версий данных

Для каждой транзакции формируется и запоминается ее текущий системный номер (SCN). Чем позже начата транзакция, тем $\underline{\textit{больше}}$ ее SCN.

При выполнении операции <u>записи</u> страниц данных на диск фиксируется SCN транзакции, производящей эту операцию. Этот SCN становится текущим системным номером страницы данных. Транзакции, только читающие данные, <u>не блокируюм</u> объекты в базе данных. Если транзакция А читает страницу данных, то SCN транзакции А сравнивается с SCN читаемой страницы данных.

Если SCN страницы данных <u>меньше</u> или равен SCN транзакции A, то транзакция A читает эту страницу.

Если SCN страницы данных <u>больше</u> SCN транзакции A, то это означает, что некоторая транзакция B, начавшаяся <u>позже</u> транзакции A, <u>успела</u> изменить данные страницы. В этом случае транзакция A просматривает <u>журнал транзакций назад</u> в поиске <u>первой</u> записи об изменении нужной страницы данных с SCN <u>меньшим</u>, чем SCN транзакции A. Найдя такую запись, транзакция A использует *старый* вариант данных страницы.

Метод предикатных синхронизационных блокировок:

- устраняет появление кортежей-фантомов
- реализуется сложнее, чем метод, использующий блокировки по намерению
- уменьшает вероятность возникновения конфликтов транзакций по сравнению с использованием блокировок по намерению

Методом разрешения ситуации тупика является

- после разрешения тупика, транзакция, для которой был произведен откат, повторяется заново
- откат одной из транзакций, находящихся в состоянии тупика

При блокировании более мелкого объекта базы данных

- вероятность конфликта транзакций становится ниже
- накладные расходы на установку блокировок становятся выше

При использовании метода выделения версий данных транзакция <u>не накладывает</u> блокировки на читаемые данные и <u>не блокирует</u> другие транзакции, изменяющие данные. При использовании метода выделения версий данных откаты транзакций будут происходить <u>реже</u>, чем при использовании обычного метода блокировок.

При использовании метода выделения версий данных эффективность распараллеливания транзакций будет *выше*, чем при использовании обычного метода блокировок.

Совместимость S и X блокировок

Если транзакция A заблокировала кортеж S-блокировкой,

то транзакция В может наложить свою S-блокировку

то транзакция В не может наложить свою Х-блокировку

то транзакция А может наложить свою Х-блокировку

то транзакция В не может разблокировать кортеж и наложить свою S-блокировку

то транзакция В не может разблокировать кортеж и наложить свою Х-блокировку.

Совместимость S и X блокировок

Если транзакция А заблокировала кортеж Х-блокировкой,

то транзакция В не может наложить свою S-блокировку

то транзакция В не может наложить свою Х-блокировку

то транзакция А не может наложить свою S-блокировку

то транзакция В не может разблокировать кортеж и наложить свою S-блокировку

то транзакция В *не может* разблокировать кортеж и наложить свою X-блокировку.

Сравнение метода временных меток и метода блокировок

- При использовании метода временных меток эффективность распараллеливания транзакций будет ниже, чем при использовании метода блокировок.
- При использовании метода временных меток неизвестно, какая транзакция будет откатана более дорогая или более дешевая.
- При использовании метода временных меток откаты транзакций будут чаще, чем при использовании метода блокировок.
- Метод временных меток реализуется проще, чем метод, основанный на блокировках

Средствами стандартного языка SQL можно управлять

- уровнями изоляции транзакций

Транзакции называются конкурирующими, если

- выполнение одной транзакции влияет на выполнение другой транзакции

Что блокируется при использовании предикатных синхронизационных блокировок

- Условие выборки кортежей, заданное в выполняемом запросе

Какие проблемы возникают при параллельном выполнении представленных на рисунке транзакций?

Транзакция А	Время	Транзакция <i>В</i>
Выборка кортежей, удовлетворяющих условию a . (Отобрано n строк)	t ₁	8 <u>22</u>
<u> </u>	t 2	Вставка нового кортежа, удовлетворяющего условию a
88	t ₃	Фиксация транзакции
Выборка кортежей, удовлетворяющих условию a . (Отобрано уже $n\!+\!1$ строк)	t 4	<u> </u>
Фиксация транзакции	t _s	NAME.

⁻ проблема несовместимого анализа - фиктивные элементы (фантомы)

Какие проблемы возникают при параллельном выполнении представленных на рисунке транзакций?

Транзакция А	Время	Транзакция <i>В</i>
Чтение кортежа <i>Р</i>	t_1	15770
Seen.	t ₂	Чтение кортежа <i>Р</i>
Запись значения Р₁ в кортеж Р	t_3	
<u> 200</u> 2	t ₄	Запись значения P_2 в кортеж P
Фиксация транзакции	t ₅	255501
S -11	t's	Фиксация транзакции

⁻ Проблема потери результатов обновления

Какие проблемы возникают при параллельном выполнении представленных на рисунке транзакций?

Время	Транзакция <i>В</i>
† t ₁	
<i>t</i> ₂	Снятие денег со счета P_3 . (на счете P_3 вместо \$100 уже \$50)
t 3	Помещение денег на счет <i>Р</i> ₁ . (на счете <i>Р</i> ₁ вместо \$100 уже \$150)
t 4	Фиксация транзакции
1 t ₅	
t _s	9 50 5
t ₇	(
	t ₁ t ₂ t ₃ t ₄ t ₅ t ₆

⁻ Проблема несовместимого анализа - собственно несовместимый анализ

Какие проблемы возникают при параллельном выполнении представленных на рисунке транзакций?

Транзакция А	Время	Транзакция <i>В</i>
	t,	Чтение значения <i>Р</i> ₀ из кортежа <i>Р</i>
	1,2	Запись значения Р₁ в кортеж Р
Чтение значения P_1 из кортежа P	t ₃	
Работа с прочитанными данными Р1	t _a	
	t _s	Откат транзакции (восстановление значения Р₀ кортежа Р)
Фиксация транзакции	ℓ ₆ ↓	

⁻ Проблема незафиксированной зависимости (чтение "грязных данных", неаккуратное считывание)

Какая ситуация имеет место в приведенном ниже примере?

Транзакция <i>А</i>	Время	Транзакция <i>В</i>
Блокирует счет P₁ S-блокировкой	t,	
Чтение счета <i>Р</i> ₁=100 и суммирование. <i>SUM</i> =100	t ₂	
\$1740 Hotel Co. (1970)	t'3	Блокирует счет <i>Р</i> ₃ <i>X</i> -блокировкой (<i>разрешено</i>)
<u> </u>	t'4	Снятие денег со счета P_3 . (на счете P_3 вместо \$100 уже \$50)
<u>888</u>	t'5	Попытка X-блокировки счета P ₁ для его обновления отвергается
220	t's	Ожидание
20.05	t ₇	Ожидание
Чтение счета <i>P</i> ₂ =100 и суммирование. <i>SUM</i> =200	t 8	Ожидание
Попытка S-блокировки счета Р₁ для его чтения <i>отвергается</i>	t' ₉	Ожидание
Ожидание	t 10	Ожидание
	↓ ↓	

⁻ возникновение проблемы - ситуация тупика,

Какая ситуация имеет место в приведенном ниже примере?

⁻ решение проблемы собственно несовместимого анализа

Транзакция А	Время	Транзакция <i>В</i>
Блокирует кортеж <i>Р. S</i> -блокировкой	t ₁	7000
Чтение значения $P_{m{0}}$ из кортежа P	t 2	
	t ₃	Блокирует кортеж <i>Р</i> S-блокировкой (<i>разрешена</i>)
	t 4	Чтение значения <i>Р</i> ₀ из кортежа <i>Р</i>
Попытка X-блокировки кортежа Р для его обновления <i>отвергается</i>	t 5	
Ожидание снятия блокировки с	t s	Попытка <i>X</i> -блокировка кортежа <i>Р</i>
кортежа Р	L _E	для его обновления отвергается
Ожидание	t ₅	Ожидание снятия блокировки с кортежа <i>Р</i>
Ожидание	t o	Ожидание
	1	

- решение проблемы потери результатов обновления,
- возникновение проблемы ситуация тупика

Какая ситуация имеет место в приведенном ниже примере?

Транзакция А	Время	Транзакция <i>В</i>
Блокирует кортеж <i>Р</i> S-блокировкой	t ₁	6555
Чтение значения $P_{m{0}}$ из кортежа P	t ₂	0.
	t ₃	Попытка X-блокировки кортежа Р отвергается
	t 4	Ожидание
Повторное чтение значения Р₀ из кортежа Р	t _s	Ожидание
Фиксация транзакции (Блокировка объекта снимается)	t's	Ожидание
	t _z	Блокирует кортеж Р Х-блокировкой (теперь разрешена)
<u> </u>	t ₈	Запись значения <i>P</i> ₁ в кортеж <i>P</i>
	t 9	Фиксация транзакции и снятие блокировки

⁻ решение проблемы несовместимого анализа - неповторяемое считывание

Какая ситуация имеет место в приведенном ниже примере?

	Транзакция <i>В</i>
t,	Блокирует кортеж <i>Р S</i> -блокировкой
t ₂	Чтение значения Р₀ из кортежа Р
t ₃	Блокирует кортеж Р <i>Х</i> -блокировкой (<i>разрешена</i>)
t ₄	Запись значения <i>Р</i> ₁ в кортеж <i>Р</i>
t ₅	8 ,000 0
t 6	Откат транзакции, т.е. восстановление значения P_0 кортежа P
t 7	(Блокировка объекта снимается)
t ₈	
t ₉	1955-50
t 10	8 4000 0
t 11	S===6
	t ₂ t ₃ t ₄ t ₅ t ₆ t ₇ t ₈ t ₁₀ t ₁₀

⁻ решение проблемы незафиксированной зависимости (чтение "грязных данных", неаккуратное считывание)

Удовлетворяет ли приведенная на рисунке транзакция требованиям протокола двухфазной блокировки?

- да

Удовлетворяет ли приведенная на рисунке транзакция требованиям протокола двухфазной блокировки?

Укажите, какие из представленных на рисунках последовательностей блокирования, работы и освобождения объектов БД соответствуют протоколу 2-х фазной блокировки.

Какие проблемы имеют место при параллельном выполнении представленных на рисунке транзакций?

Транзакция А	Время	Транзакция <i>В</i>
Чтение из кортежа <i>Р</i> значения <i>Р</i> ₀	t,	-4-
	t ₂	Чтение из кортежа <i>Р</i> значения <i>Р</i> ₀
3 44 5	t ₃	Запись в кортеж Р значения Р₁
	t ₄	Фиксация транзакции
Повторное чтение кортежа P (уже значения P_{θ})	ts	
Фиксация транзакции	te	

- Проблема несовместимого анализа - неповторяемое считывание

Какая ситуация имеет место в приведенном ниже примере?

Транзакция <i>А</i>	Время	Транзакция <i>В</i>
Блокирует S-блокировкой кортежи, удовлетворяющие условию $lpha$ (заблокировано n строк)	t ₁	S
Выборка кортежей, удовлетворяющих условию α (выбрано п строк)	t ₂	0 755 0
2 8 8 200 10 10 10 10 10 10 10 10 10 10 10 10 1	t ₃	Вставка нового кортежа, удовлетворяющего условию α
	t a	Фиксация транзакции
Блокирует S-блокировкой кортежи, удовлетворяющие условию $lpha$ (заблокировано $n\!+\!1$ строка)	t ₅	S
Выборка кортежей, удовлетворяющих условию α (выбрано n+1 строк)	t s	9
Фиксация транзакции и снятие блокировок	f ₇	8

- не решенная проблема несовместимого анализа - фиктивные элементы (фантомы)

TEMA 15.

В сетевой информационной системе с базой данных наиболее высокая нагрузка сети (сетевой траффик) имеет место при использовании

- архитектуры с файловым сервером базы данных

В сетевой информационной системе с базой данных наиболее высокие требования к мощности клиентских рабочих станций предъявляются при использовании

- архитектуры с файловым сервером базы данных

В сетевой информационной системе с базой данных наиболее слабые требования к мощности клиентских компьютеров рабочих станций предъявляются при использовании

- двухзвенной клиент-серверной архитектуры с активным сервером БД
- трехзвенной клиент-серверной архитектуры с сервером БД и сервером приложений

К бизнес-логике информационной системы с БД относят функции

- по обработке и интерпретации данных в соответствие с алгоритмами решения конкретных пользовательских задач

К логике базы данных относят функции

- по реализации механизма управления транзакциями
- по проверке и обеспечению ограничений целостности данных
- по интерпретации и выполнению SQL-запросов

К презентационной логике информационной системы с БД относят функции:

- по формированию экранных форм для отображения и ввода данных, по обработке манипуляций мыши и клавиатуры

Какие из приведенных пунктов в наибольшей степени соответствует архитектуре сетевой информационной системы с БД с толстым клиентом

- классическая двухзвенная клиент-серверная архитектура

Операционная система и ее файловая подсистема осуществляют реализацию функций

- по управлению файлами данных и устройствами их хранения

При построении информационной системы по трехзвенной клиент-серверной архитектуре с сервером базы данных и сервером приложений бизнес-логика пользовательских задач реализуется

- на компьютере - сервере приложений

При построении информационной системы по трехзвенной клиент-серверной архитектуре с сервером базы данных и сервером приложений функции управления данными на уровне концептуальной схемы БД и обеспечения целостности данных реализуются

- на компьютере - сервере базы данных

При построении распределенной сетевой информационной системы с базой данных по клиент-серверной архитектуре с активным сервером базы данных презентационная логика реализуется

-на компьютере - клиентской рабочей станции

При построении информационной системы на основе архитектуры с компьютером, называемым мэйнфреймом, функции управления файлами с данными и устройствами их хранения реализуются

- на самом компьютере - мэйнфрейме

При построении информационной системы по трехзвенной клиент-серверной архитектуре с сервером базы данных и сервером приложений функции управления файлами данных и устройствами их хранения реализуются

- на компьютере — сервере базы данных

При построении компьютерной информационной системы с базой данных на основе компьютера-мэйнфрейма бизнес-логика пользовательских задач реализуется

на самом компьютере — мэйнфрейме

При построении компьютерной информационной системы с базой данных на основе компьютера-мэйнфрейма функции логики базы данных реализуются

- на самом компьютере — мэйнфрейме

При построении компьютерной информационной системы с базой данных на основе мэйнфреймовой архитектуры презентационная логика реализуется

на компьютере — мэйнфрейме

При построении распределенной информационной системы по клиент-серверной архитектуре с активным сервером базы данных функции управления данными на уровне концептуальной схемы БД и обеспечения целостности данных реализуются

- на компьютере - сервере базы данных

При построении распределенной информационной системы с базой данных по архитектуре с толстым клиентом бизнес-логика пользовательских задач реализуется

- на компьютере — клиентской рабочей станции

При построении распределенной информационной системы с базой данных по двухзвенной архитектуре клиент-сервер с активным сервером базы данных функции управления файлами с данными и устройствами их хранения реализуются

- на компьютере — сервере базы данных

При построении распределенной информационной системы с базой данных по классической двухзвенной клиент-серверной архитектуре с толстым клиентом бизнес-логика пользовательских задач реализуется

- на компьютере — клиентской рабочей станции

При построении распределенной информационной системы с базой данных по классической

двухзвенной клиент-серверной архитектуре функции управления файлами с данными и устройствами их хранения реализуются

- на компьютере — сервере базы данных

При построении распределенной информационной системы с базой данных по клиентсерверной архитектуре с активным сервером базы данных бизнес-логика конкретных пользовательских задач реализуется

- на компьютере — сервере базы данных

При построении распределенной информационной системы с базой данных, построенной по архитектуре файлового сервера, функции управления данными на уровне концептуальной схемы БД и обеспечения целостности данных реализуются

- на компьютере — клиентской рабочей станции

При построении распределенной информационной системы с сервером базы данных по двухзвенной клиент-серверной архитектуре функции управления данными на уровне концептуальной схемы БД и обеспечения целостности данных реализуются

- на компьютере — сервере базы данных

При построении распределенной сетевой информационной системы с базой данных на основе файлового сервера презентационная логика реализуется

- на компьютере — клиентской рабочей станции

При построении распределенной сетевой информационной системы с базой данных, построенной по классической двухзвенной клиент-серверной архитектуре, презентационная логика реализуется

- на компьютере — клиентской рабочей станции

Укажите пункты в наибольшей степени соответствующие сетевым информационным системам с тонким клиентом

- двухзвенная клиент-серверная архитектура с активным сервером БД
- трехзвенная клиент-серверная архитектура с сервером БД и сервером приложений

Управление файлами, составляющими базу данных, относят

- к функциям операционной системы

Функции по обработке и интерпретации данных в соответствие с алгоритмами решения конкретных пользовательских задач относят

- к бизнес-логике информационной системы с базой данных

Функции по управлению информационными ресурсами базы данных на уровне их концептуальной схемы относятся

- к логике базы данных информационной системы

Функции формирования экранных форм для ввода и отображения данных, обработки манипуляций мыши и клавиатуры относят

- к презентационной логике информационной системы с базой данных

На рисунке

представлена информационная система с базой данных, построенная на:

- на основе двухзвенной клиент-серверной архитектуры с сервером БД и "толстым" клиентом

На рисунке

представлена информационная система с базой данных, построенная:

- на основе двухзвенной клиент-серверной архитектуры с активным сервером <u>БД</u>

На рисунке

представлена информационная система с базой данных, построенная:

- трехзвенной клиент-серверной архитектуре с сервером базы данных и сервером приложений

На рисунке

представлена информационная система с базой данных, построенная

- на основе сетевой архитектуры с файловым сервером

Укажите соответствие представленных рисунков предложенным вариантам организации сетевых информационных систем с $\underline{\mathsf{Б}}\underline{\mathsf{Д}}$

- клиент-сервер с «толстым» клиентом

- файловый сервер БД

- клиент-сервер с сервером приложений

- клиент-сервер с активным сервером

