User: Grant Aarons Project: Assignment 3

name: Grant Aarons Assignment 3

log: C:\Users\gaarons\Git\Notes\Stata\2016F\Metrics\logs\stata_3.smcl
log type: smcl
opened on: 12 Jan 2017, 12:42:50

- 1 . * Use s or t to get smcl or text log file
- > Grant Aarons
- > gaarons@london.edu
- > Econometrics 1, London Business School
- 3 . global programdir C:\Users\gaarons\Git\Notes\Stata\2016F\Metrics\programs
- 4 . global datadir C:\Users\gaarons\Git\Notes\Stata\2016F\Metrics\data
- 5 . global outputdir C:\Users\gaarons\Git\Notes\Stata\2016F\Metrics\output
- 6 . /*
 - > Program: stata_31.do > Description: Introduction to econometrics in stata
- 7. . ******************** START QUESTION 4 ********************
- 10 . *************
- 11 . do \$programdir/stata_31.do
- 12 . /*
 - > Grant Aarons
 - > gaarons@london.edu
 - > Econometrics 1, London Business School
 - > Assignment 3
- 13 . * Load the data 14 . import excel "\$datadir/schaller.xls", sheet("Sheet1") firstrow clear
- 15 . *pause Dataset has been loaded
- 16 .
- 17 .
- 18 . *** Part A
- 19 . * Tabulate the variables we were given as standard practice 20 . tabstat inv q, stat(min max mean sd)

stats	inv	q
min	0	-1.966133
max	.7142991	45.44712
mean	.1686158	1.601154
sd	.0899994	3.803969

21 . tabstat inv q, by(year) stat(min max mean sd)

Summary statistics: min, max, mean, sd by categories of: year (year)

year	inv	đ
1	.6704475	-1.748583 6.588722 .5728584 1.648371
2	.5325488	-1.405087 6.588691 .597845 1.577901
3	.4278665 .1607248	-1.508873 6.862064 .6349403 1.647415
4	.5146071	-1.917622 9.03307 .4967591 1.78078
5	.0169944	-1.636174

		2
	.4385091	
	.1687614 .0985533	2.936246
6	.0140286	-1.316996
	.5664171	19.55134
	.2085197 .1088841	2.143651 3.536015
7		
′	.0214348	-1.514729 15.757
	.1891974	1.982852
	.097126	3.214572
8	.0210933 .5523365	-1.966133 14.29717
	.1445815	1.188414
	.0933408	2.806896
9	.0088241	-1.738319
	.6472303 .1469142	25.06137 2.615832
	.0936516	4.240391
10	.011097	-1.219954
	.6800648	41.90479
	.1684816 .104496	3.291839 5.477325
11	0	-1.477367
	.7142991	30.18523
	.1494652	2.990903
	.0990541	5.405804
12	.0182395 .5982081	-1.211948 45.44712
	.1608216	3.946245
	.0958416	6.795034
13		-1.499547
	.5844074 .170258	36.9486 2.496707
	.092345	4.696228
14	.0159083	-1.326542
	.6414233 .1872097	33.9775 2.878355
	.0944825	5.152764
15	.0456929	-1.344155
	.5690441	30.4778
	.2180801 .0922757	2.873494 4.62583
16	.0360537	8103173
10	.655834	34.83765
	.2338404	3.488654
	.1016048	5.38048
17	.0221875	-1.069489 26.40782
	.2184982	2.396935
	.1053458	4.369127
18	.0287359	-1.00933
	.4589968 .1938358	32.06573 3.517091
	.0837783	5.388207
19	.0264943	7960994
	.6606368	27.86442
	.1970291 .0883814	3.4057 4.786166
20	.0167316 .4899229	-1.255464 28.40281
	.1765477	2.31209
	.073611	4.739304
21	.005226	-1.066554

	.4338658 .1469716 .0706017	
22	.0145928 .4037121 .1444561 .0679987	-1.131676 23.90062 2.179387 4.141808
23	.0329763 .4842557 .179273 .0853335	-1.542628 27.49858 2.346174 4.718412
24	.027034 .4426112 .1931256 .0856918	-1.610933 20.43754 1.318847 3.528182
25	.0077582 .4441033 .151674 .0673722	-1.955251 13.70439 .2314248 1.925192
26	.0190473 .3261356 .1382109 .0570254	-1.428982 11.73812 .4759651 1.95111
27	.0209634 .3595692 .1506596 .0608719	-1.275176 10.10888 .618547 1.754108
28	.0438521 .4033135 .1579665 .0649604	-1.347831 7.400327 .2473247 1.413838
29	.0144415 .6127569 .1717787 .0799605	-1.547875 9.157542 .1102235 1.391528
30	.0184241 .361407 .1628513 .0678179	-1.279086 9.488826 .1234602 1.305088
31	.0212685 .361128 .1569981 .0689526	.2477085
32		
33	.0092279 .6422654 .1219511 .0767863	8.459704
34	.0138137 .5336629 .1385301 .0793025	
35		-1.870826 6.277641 .292498 1.263107
Total	0 .7142991 .1686158 .0899994	

- 22 . * Too long a printout by firm, but could be used 23 . *tabstat inv q, by(firm) stat(min max mean sd)
- 24 . 25 . * Run the required regression of inv = alpha + beta_1*q
- 26 . reg inv q

Source	SS	df	MS	Number	of obs		5,740 791.81
Model Residual	5.63683287 40.8484783	1 5,738	5.63683287 .00711894	Prob : R-squa	> F ared	= = = =	0.0000 0.1213
Total	46.4853111	5,739	.008099897		Adj R-squared Root MSE		0.1211 .08437
inv	Coef.	Std. Err.	t	P> t	[95% C	Conf.	Interval]
q _cons	.0082388	.0002928	28.14 128.63	0.000	.00766		.0088127

27 .

28 . *pause Part A completed

- 30 .
 31 . *** Part B
 32 . * Create dummy variables corresponding to each firm using ``xi'' command
 33 . xi firm
- 34 . reg inv q i.firm

Source	SS	df	MS		er of obs = = = = = = = = = = = = = = = = = = =	5,740 21.55
Model	18.0371613	164	.109982691	•		0.0000
Residual	28.4481498	5,575	.005102807			0.3880
Residual	20.1101190	3,373	.005102007	_	-squared =	0.3700
Total	46.4853111	5,739	.008099897		-	.07143
iocai	40.4033111	3,733	.000005005	ROOC	-	.07143
inv	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
đ	.007249	.0003543	20.46	0.000	.0065544	.0079437
firm						
2	0110881	.0171628	-0.65	0.518	0447339	.0225577
3	.1144593	.0171091	6.69	0.000	.0809188	.1479999
4	0299033	.0171512	-1.74	0.081	0635263	.0037196
5	0131718	.017159	-0.77	0.443	0468102	.0204666
6	.0295458	.0171438	1.72	0.085	0040628	.0631544
7	0179783	.0171701	-1.05	0.295	0516385	.0156819
8	0288828	.017146	-1.68	0.092	0624955	.0047299
9	0102863	.0171597	-0.60	0.549	043926	.0233535
10	.0012063	.0171321	0.07	0.944	0323793	.0347918
11	0333366	.017152	-1.94	0.052	0669612	.0002879
12	.0018204	.0171088	0.11	0.915	0317196	.0353604
13	0626703	.0172465	-3.63	0.000	0964802	0288605
14	.0299757	.017154	1.75	0.081	0036528	.0636042
15	.0299541	.0171049	1.75	0.080	0035781	.0634864
16	0105629	.017164	-0.62	0.538	0442109	.0230852
17	.0073799	.0171342	0.43	0.667	0262099	.0409697
18	0479316	.0171712	-2.79	0.005	0815939	0142694
19	.0637984	.0171457	3.72	0.000	.0301863	.0974106
20	.037534	.0171446	2.19	0.029	.003924	.071144
21	.0033487	.0171188	0.20	0.845	0302108	.0369082
22	.0302641	.017113	1.77	0.077	0032841	.0638123
23	0303263	.0171771	-1.77	0.078	064	.0033474
24	.0416049	.0170807	2.44	0.015	.00812	.0750897
25	.0983835	.0171279	5.74	0.000	.0648062	.1319608
26	0093883	.0171363	-0.55	0.584	0429821	.0242056
27	.0475203	.0171412	2.77	0.006	.0139168	.0811237
28	0567045	.0170798	-3.32	0.001	0901876	0232214
29	0106659	.0171139	-0.62	0.533	0442157	.022884
30	.0435252	.0171216	2.54	0.011	.0099602	.0770903
31	.0755715	.0171089	4.42	0.000	.0420314	.1091115
32	.0205752	.0171604	1.20	0.231	0130659	.0542164
33	.0620965	.017091	3.63	0.000	.0285915	.0956015
34	.0030676	.0171605	0.18	0.858	0305736	.0367088
35	.0632206	.0171094	3.70	0.000	.0296795	.0967617
36	.0552266	.0171313	3.22	0.001	.0216426	.0888107
37	0210293	.0171333	-1.23	0.220	0546173	.0125587
38	.0675202	.0171455	3.94	0.000	.0339083	.1011321

39	.0023553	.0171479	0.14	0.891	0312612	.0359719
40	.0053389	.0171174	0.31	0.755	028218	.0388957
41	0111797	.0170966	-0.65	0.513	0446957	.0223363
42	.003941	.0171214	0.23	0.818	0296235	.0375056
43	.009515	.0171506	0.55	0.579	0241068	.0431369
44	.0487956	.0171345	2.85	0.004	.0152054	.0823859
45	.0431771	.0171268	2.52	0.012	.009602	.0767523
46	.0745948	.0171477	4.35	0.000	.0409785	.1082111
47	0113431		-0.66	0.509		.0222943
		.0171585			0449804	
48	.0060311	.017105	0.35	0.724	0275013	.0395635
49	0075513	.0171799	-0.44	0.660	0412306	.026128
50	0351712	.0171655	-2.05	0.041	0688223	00152
51	014578	.0171518	-0.85	0.395	0482021	.0190461
52	0170216	.0171304	-0.99	0.320	0506038	.0165606
53	0350846	.0171745	-2.04	0.041	0687533	0014159
54	.021855	.0171225	1.28	0.202	0117117	.0554218
55	.0219519	.0171542	1.28	0.201	011677	.0555808
56	.0318367	.0171471	1.86	0.063	0017783	.0654517
57	.0461108	.0171369	2.69	0.007	.0125157	.0797059
58	0164856	.0170781	-0.97	0.334	0499654	.0169941
59	.0258278	.0171496	1.51	0.132	007792	.0594476
60	.0461384	.0170906	2.70	0.007	.0126342	.0796425
61	.0948239	.0171271	5.54	0.000	.061248	.1283997
62	.0181437	.0170817	1.06	0.288	0153432	.0516306
63	0138999	.0171558	-0.81	0.418	047532	.0197321
64	0218311	.0171141	-1.28	0.202	0553815	.0117193
65	.0429222	.0171283	2.51	0.012	.009344	.0765003
66				0.012		
	.0747595	.017076	4.38		.0412839	.1082351
67	.0701564	.0171259	4.10	0.000	.0365831	.1037298
68	.0002675	.0171323	0.02	0.988	0333185	.0338534
69	.0460002	.0171216	2.69	0.007	.0124352	.0795652
70						
	.0683109	.0171055	3.99	0.000	.0347775	.1018444
71	.0279947	.0171355	1.63	0.102	0055975	.061587
72	.0685164	.017128	4.00	0.000	.0349388	.102094
73	.0334759	.017076	1.96	0.050	2.71e-07	.0669515
74	.1187479	.0171123	6.94	0.000	.0852011	.1522947
75	.000034	.0171192	0.00	0.998	0335264	.0335943
76	0218521	.017176	-1.27	0.203	0555238	.0118196
77	.0353268	.0171035	2.07	0.039	.0017974	.0688563
78	.0150356	.0170872	0.88	0.379	0184619	.048533
79	.0102299	.0171945	0.59	0.552	023478	.0439379
80	.0039382	.0171484	0.23	0.818	0296793	.0375558
81	.0184951	.0171391	1.08	0.281	0151041	.0520943
82	0116276	.01716	-0.68	0.498	0452678	.0220127
83	.0826889	.0171298	4.83	0.000	.0491079	.1162699
84	.0102795	.017157	0.60	0.549	0233549	.043914
85	0076072	.0171474	-0.44	0.657	0412227	.0260084
86	.0313087	.0170968	1.83	0.067	0022077	.0648251
87	0275372	.017099	-1.61	0.107	0610578	.0059834
88		.0171762		0.000		
	0599936		-3.49		0936656	0263217
89	.1633283	.017079	9.56	0.000	.1298468	.1968097
90	.0081582	.0171509	0.48	0.634	0254643	.0417807
91	030904	.0171306	-1.80	0.071	0644867	.0026787
92			-1.06			
	0180802	.0171059		0.291	0516145	.0154541
93	.061324	.0170765	3.59	0.000	.0278473	.0948006
94	000042	.0171425	-0.00	0.998	0336479	.0335639
95	0093794	.0171398	-0.55	0.584	0429802	.0242213
96	0172457	.0171775	-1.00	0.315	0509202	.0164288
97	.133017	.0171655	7.75	0.000	.0993659	.166668
98	0031429	.0171327	-0.18	0.854	0367296	.0304438
99	.0409969	.0171073	2.40	0.017	.0074599	.0745338
100	.0317446	.0171282	1.85	0.064	0018333	.0653225
101	0117057	.0171386	-0.68	0.495	0453041	.0218927
102	0047098	.0170769	-0.28	0.783	0381872	.0287675
103	.0809494	.0171046	4.73	0.000	.0474178	.1144811
104	04242	.0171655	-2.47	0.013	0760711	0087689
105	0092774	.0171033	-0.54	0.588	0428487	.0242939
106	.0096833	.0171703	0.56	0.573	0239773	.0433439
107	.0668296	.0171257	3.90	0.000	.0332566	.1004026
108	0319637	.0171538	-1.86	0.062	0655919	.0016645
109	0208587	.0171625	-1.22	0.224	054504	.0127865
110	.0406201	.0171572	2.37	0.018	.0069853	.0742549
111	.0033588	.0171546	0.20	0.845	0302708	.0369884
112	0346632	.0172433	-2.01	0.044	0684668	0008596
113	.0231535	.0171585	1.35	0.177	0104839	.056791
114	.0125792	.0172291			0211966	.0463549
			0.73	0.465		
115	0169208	.0171619	-0.99	0.324	0505649	.0167232
116	.0422971	.0171135	2.47	0.013	.0087479	.0758463
117	.118987	.0170846	6.96	0.000	.0854945	.1524796
118	0081228	.017153	-0.47	0.636	0417494	.0255038
	.0001220	•01/133	0.1	0.050	•041/494	.0233030

119	0221458	.0170959	-1.30	0.195	0556604	.0113688
120	.0237715	.0171219	1.39	0.165	0097942	.0573371
121	0102183	.0171641	-0.60	0.552	0438667	.0234301
122	0261932	.017147	-1.53	0.127	0598079	.0074216
123	.114001	.0171271	6.66	0.000	.0804252	.1475767
124	.0278888	.0171065	1.63	0.103	0056467	.0614242
125	0029403	.0171321	-0.17	0.864	0365259	.0306453
126	0069179	.0171391	-0.40	0.686	0405172	.0266814
127	.0136327	.0171308	0.80	0.426	0199503	.0472158
128	.0681524	.017084	3.99	0.000	.0346612	.1016436
129	.0146445	.017076	0.86	0.391	0188312	.0481202
130	0654175	.0171515	-3.81	0.000	0990411	0317938
131	.0228469	.0171368	1.33	0.183	0107479	.0564417
132	0359411	.0171453	-2.10	0.036	0695527	0023296
133	.0962414	.0171039	5.63	0.000	.0627111	.1297718
134	.154328	.0171078	9.02	0.000	.1207901	.1878659
135	0470046	.0171615	-2.74	0.006	0806477	0133614
136	.0097354	.01714	0.57	0.570	0238656	.0433364
137	021706	.0171425	-1.27	0.205	055312	.0118999
138	.0481099	.0171423	2.81	0.005	.0144915	.0817282
139	.1480501	.0171195	8.65	0.000	.1144893	.181611
140	.034904	.0171193	2.04	0.041	.001411	.068397
141	.0460388	.0171494	2.68	0.041	.0124193	.0796582
142	.0125785	.0170974	0.74	0.462	020939	.046096
143	0526768	.0174231	-3.02	0.402	0868328	0185207
144	.0085849	.0170765	0.50	0.615	0248917	.0420615
145	.026235	.017142	1.53	0.126	0248917	.0598401
145	.0101592	.017142	0.59	0.126	0073701	.0398401
140	0571875	.0171455	-3.35	0.001	0234527	0236968
148	0134221	.0171724	-0.78	0.434	0470867	.0202426
149	0134221	.0171724	-0.78	0.434	0470867	.0202426
150	.0948328	.0171313	5.54	0.000	.0612658	.1283997
151	.0718996	.0171127	4.20	0.000	.0383402	.105459
151	.0511302	.0171187	2.99	0.000	.0383402	.0846106
153	.0311302	.0171189	0.80	0.422	0198274	.0472919
153						
155	.0102959	.0171328	0.60 0.47	0.548	023291	.0438828
156	.0079635	.0171219		0.642	0256021	.0415292
	0071696	.0171092	-0.42	0.675	0407102	.026371
157 158	0306744	.0171116 .0171537	-1.79 -0.01	0.073	0642197 0337252	.0028709 .0335306
	0000973			0.995		
159	.0100507	.0171292	0.59	0.557	0235291	.0436306
160	003881	.0171547	-0.23	0.821	0375109	.0297488
161	0054513	.0170979	-0.32	0.750	0389697	.0280672
162	0424006	.0171917	-2.47	0.014	076103	0086983
163	0316199	.0170922	-1.85	0.064	0651272	.0018874
164	.2038804	.0172066	11.85	0.000	.1701489	.237612
gong	1204105	0121000	11 /F	0 000	1155212	1622000
_cons	.1394105	.0121809	11.45	0.000	.1155313	.1632898

35 .
36 . *pause Part B completed

37 .
38 . *** Part C
39 . * regress inv on firm dummies alone and obtain the residual
40 . reg inv i.firm

Number of c

Source	SS	df	MS		er of obs 3, 5576)	=	5,740 17.79
Model Residual	15.9015861 30.583725	163 5,576	.097555743 .005484886	Prob R-sq		= =	0.0000 0.3421 0.3228
Total	46.4853111	5,739	.008099897	_		=	.07406
inv	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
firm							
2	0463644	.0177037	-2.62	0.009	081070	6	0116582
3	.0926863	.0177037	5.24	0.000	.057980	1	.1273925
4	0627225	.0177037	-3.54	0.000	097428	7	0280163
5	0476682	.0177037	-2.69	0.007	082374	4	012962
6	0016269	.0177037	-0.09	0.927	036333	1	.0330794
7	0547145	.0177037	-3.09	0.002	089420	7	0200083
8	0605399	.0177037	-3.42	0.001	095246	1	0258337
9	0449276	.0177037	-2.54	0.011	079633	8	0102214
10	0271394	.0177037	-1.53	0.125	061845		.0075668
11	0663346	.0177037	-3.75	0.000	101040		0316284
12	0198649	.0177037	-1.12	0.262	054571		.0148413
13	0131799	.0177037	-0.74	0.457	047886	1	.0215264

14	0034511	.0177037	-0.19	0.845	0381573	.0312551
15	.0096168	.0177037	0.54	0.587	0250894	.044323
16	0460741	.0177037	-2.60	0.009	0807804	0113679
17	0215037	.0177037	-1.21	0.225	0562099	.0132025
18	0848731	.0177037	-4.79	0.000	1195793	0501669
19	.0322069	.0177037	1.82	0.069	0024993	.0669131
20	.0061922	.0177037	0.35	0.727	028514	.0408984
21	0214032	.0177037	-1.21	0.227	0561095	.013303
22	.0072421	.0177037	0.41	0.683	0274641	.0419484
23	0683914	.0177037	-3.86	0.000	1030976	0336852
24	.0333578	.0177037	1.88	0.060	0013484	.068064
25	.0711326	.0177037	4.02	0.000	.0364264	.1058388
26		.0177037	-2.19	0.029	0734871	0040746
	0387809					
27	.0169559	.0177037	0.96	0.338	0177503	.0516621
28	0492857	.0177037	-2.78	0.005	0839919	0145795
29	0339525	.0177037	-1.92	0.055	0686587	.0007537
30	.0179631	.0177037	1.01	0.310	0167431	.0526693
31	.0538777	.0177037	3.04	0.002	.0191715	.0885839
32	0142134	.0177037	-0.80	0.422	0489196	.0204928
33	.0474473	.0177037	2.68	0.007	.012741	.0821535
34	0317294	.0177037	-1.79	0.073	0664357	.0029768
35	.0413572	.0177037	2.34	0.020	.006651	.0760634
36	.0270809	.0177037	1.53	0.126	0076253	.0617871
37	049687	.0177037	-2.81	0.005	0843932	0149808
38	.0359605	.0177037	2.03	0.042	.0012543	.0706667
39	0297369					
		.0177037	-1.68	0.093	0644431	.0049694
40	0190212	.0177037	-1.07	0.283	0537274	.015685
41	.0059927	.0177037	0.34	0.735	0287135	.0406989
42	0215471	.0177037	-1.22	0.224	0562533	.0131591
43	0231805	.0177037	-1.31	0.190	0578867	.0115257
44	.0198575	.0177037	1.12	0.262	0148487	.0545637
45	.0162103	.0177037	0.92	0.360	0184959	.0509165
46	.0425333	.0177037	2.40	0.016	.0078271	.0772395
47	0457316	.0177037	-2.58	0.010	0804378	0110254
48	.0263947	.0177037	1.49	0.136	0083115	.0611009
49	0461492	.0177037	-2.61	0.009	0808554	011443
50	0709933	.0177037	-4.01	0.000	1056995	0362871
51	047524	.0177037	-2.68	0.007	0822302	0128178
52	0449302	.0177037	-2.54	0.011	0796364	0102239
53	0726629	.0177037	-4.10	0.000	1073691	0379566
54	0039451	.0177037	-0.22	0.824	0386513	.0307611
55	0115221	.0177037	-0.65	0.515	0462283	.0231841
56	0000788	.0177037	-0.00	0.996	034785	.0346274
57	.0165654	.0177037	0.94	0.349	0181408	.0512716
58	0220309	.0177037	-1.24	0.213	0567371	.0126753
59	0066356	.0177037	-0.37	0.708	0413418	.0280706
60	.0316898	.0177037	1.79	0.074	0030165	.066396
61			3.83	0.000	.0330596	
	.0677658	.0177037				.102472
62	.0272186	.0177037	1.54	0.124	0074876	.0619248
63	0477142	.0177037	-2.70	0.007	0824204	013008
64	.0015401	.0177037	0.09	0.931	0331661	.0362463
65	.0155501	.0177037	0.88	0.380	0191561	.0502563
66	.0752376	.0177037	4.25	0.000	.0405314	.1099438
67	.0434331	.0177037	2.45	0.014	.0087269	.0781393
68	0281283	.0177037	-1.59	0.112	0628345	.006578
69	.0204488	.0177037	1.16	0.248	0142574	.055155
70	.0477585	.0177037	2.70	0.007	.0130522	.0824647
71	0011984	.0177037	-0.07	0.946	0359046	.0335078
72	.0412188	.0177037	2.33	0.020	.0065126	.075925
73	.0328962	.0177037	1.86	0.063	00181	.0676024
74	.0959444	.0177037	5.42	0.000	.0612382	.1306506
	l					
75	0248425	.0177037	-1.40	0.161	0595487	.0098637
76	0597242	.0177037	-3.37	0.001	0944304	025018
77	.0155004	.0177037	0.88	0.381	0192058	.0502066
78	.0023913	.0177037	0.14	0.893	0323149	.0370975
79	.051463	.0177037	2.91	0.004	.0167568	.0861692
80	0282713	.0177037	-1.60	0.110	0629775	.0064349
81	0115589	.0177037	-0.65	0.514	0462651	.0231473
82	0463194	.0177037	-2.62	0.009	0810256	0116132
83	.0549381	.0177037	3.10	0.002	.0202319	.0896443
84	0237981	.0177037	-1.34	0.179	0585043	.0109081
85	0395869	.0177037	-2.24	0.025	0742931	0048807
86	.0140537	.0177037	0.79	0.427	0206525	.0487599
87	0456679	.0177037	-2.58	0.010	0803741	0109617
88	0978886	.0177037	-5.53	0.000	1325948	0631824
	1					
89	.1567992	.0177037	8.86	0.000	.122093	.1915054
90	0246092	.0177037	-1.39	0.165	0593154	.010097
91	0588708	.0177037	-3.33	0.001	093577	0241646
92	0387872	.0177037	-2.19	0.028	0734934	004081
93	.0641024	.0177037	3.62	0.000	.0293962	.0988086
	•					

94	0308961	.0177037	-1.75	0.081	0656023	.0038101
95	0396196	.0177037	-2.24	0.025	0743258	0049134
96	055389	.0177037	-3.13	0.002	0900952	0206828
97	.168835	.0177037	9.54	0.000	.1341288	.2035412
98	031635	.0177037	-1.79	0.074	0663412	.0030712
99	.0621631	.0177037	3.51			.0968693
				0.000	.0274569	
100	.0044086	.0177037	0.25	0.803	0302976	.0391148
101	0416618	.0177037	-2.35	0.019	076368	0069556
102	001127	.0177037	-0.06	0.949	0358332	.0335792
103	.060717	.0177037	3.43	0.001	.0260108	.0954232
104	0782415	.0177037	-4.42	0.000	1129477	0435352
105	0357128	.0177037	-2.02	0.044	070419	0010066
106	0270939	.0177037	-1.53	0.126	0618001	.0076123
107	.0401573	.0177037	2.27	0.023	.0054511	.0748635
108	0653616	.0177037	-3.69	0.000	1000678	0306554
109	1					
	0560756	.0177037	-3.17	0.002	0907818	0213694
110	.0065055	.0177037	0.37	0.713	0282007	.0412117
111	0301916	.0177037	-1.71	0.088	0648978	.0045146
112	.0143614	.0177037	0.81	0.417	0203448	.0490677
113	0112408	.0177037	-0.63	0.525	045947	.0234654
114	.0594683	.0177037	3.36	0.001	.0247621	.0941745
115	0520106	.0177037	-2.94	0.003	0867168	0173044
116	.0191136	.0177037	1.08	0.280	0155926	.0538198
117	.1078621	.0177037	6.09	0.000	.0731559	.1425683
118	0413463	.0177037	-2.34	0.020	0760525	0066401
119	0390276	.0177037	-2.20	0.028	0737338	0043214
120	.0494182	.0177037	2.79	0.025	.014712	.0841244
121				0.003	080467	0110546
	0457608	.0177037	-2.58			
122	0580835	.0177037	-3.28	0.001	0927897	0233773
123	.0869552	.0177037	4.91	0.000	.052249	.1216614
124	.006985	.0177037	0.39	0.693	0277212	.0416912
125	0312861	.0177037	-1.77	0.077	0659923	.0034201
126	0369805	.0177037	-2.09	0.037	0716867	0022743
127	0143831	.0177037	-0.81	0.417	0490894	.0203231
128	.0574712	.0177037	3.25	0.001	.022765	.0921774
129	.013773	.0177037	0.78	0.437	0209332	.0484792
130	0983107	.0177037	-5.55	0.000	1330169	0636044
131	0066625	.0177037	-0.38	0.707	0413687	.0280437
132	0674566	.0177037	-3.81	0.000	1021628	0327504
133	.0762481	.0177037	4.31	0.000	.0415419	.1109543
134	.1330009	.0177037	7.51	0.000	.0982946	.1677071
135	082001	.0177037	-4.63	0.000	1167072	0472948
136	0205373	.0177037	-1.16	0.246	0552435	.0141689
137	0525667	.0177037	-2.97	0.003	0872729	0178605
138	.0158057	.0177037	0.89	0.372	0189005	.0505119
139	.1230968	.0177037	6.95	0.000	.0883906	.157803
140	.023623	.0177037	1.33	0.182	0110832	.0583292
141	.0136152	.0177037	0.77	0.442	021091	.0483214
142	0049101	.0177037	-0.28	0.782	0396163	.0297961
143	.0181167	.0177037	1.02	0.306	0165895	.0528229
144	.0112982	.0177037	0.64	0.523	023408	.0460044
145	0045251	.0177037	-0.26	0.798	0392313	.0301811
146	0214016	.0177037	-1.21	0.227	0561078	.0133046
147	0467027	.0177037	-2.64	0.008	0814089	0119965
148	0506048		-2.86	0.008	085311	
		.0177037				0158986
149	0600311	.0177037	-3.39	0.001	0947373	0253249
150	.069006	.0177037	3.90	0.000	.0342998	.1037122
151	.0471642	.0177037	2.66	0.008	.012458	.0818705
152	.0452041	.0177037	2.55	0.011	.0104979	.0799103
153	0110455	.0177037	-0.62	0.533	0457517	.0236608
154	0182215	.0177037	-1.03	0.303	0529277	.0164847
155	0176781	.0177037	-1.00	0.318	0523843	.0170281
156	0289575	.0177037	-1.64	0.102	0636637	.0057487
157	0532392	.0177037	-3.01	0.003	0879454	018533
158	0334624	.0177037	-1.89	0.059	0681686	.0012438
159	017543	.0177037	-0.99	0.322	0522492	.0171632
160	037459	.0177037	-2.12	0.322	0721652	0027528
161	1			0.034		
	0231408	.0177037	-1.31		0578471	.0115654
162	0831324	.0177037	-4.70	0.000	1178386	0484262
163	0468346	.0177037	-2.65	0.008	0815408	0121284
164	.2471651	.0177037	13.96	0.000	.2124589	.2818713
_cons	.1722653	.0125184	13.76	0.000	.1477243	.1968063
	L					

41 . predict einv, residuals

42 . 43 . * regress q on firm dummies alone and obtain the residual 44 . reg q i.firm

Source	SS	df	MS		of obs = , 5576) =	5,740 35.69
Model Residual	42404.191 40640.1674	163 5,576	260.148411 7.28840879	Prob >	> F =	0.0000
				Adj R-	-squared =	0.4963
Total	83044.3584	5,739	14.4701792	Root N	MSE =	2.6997
đ	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
firm						
2	-4.866352	.645353		0.000	-6.131495	-3.601208
3 4	-3.003586 -4.527385	.645353 .645353		0.000	-4.268729 -5.792528	-1.738443 -3.262242
5	-4.758758	.645353		0.000	-6.023901	-3.493615
6	-4.300253	.645353		0.000	-5.565397	-3.03511
7	-5.067738	.645353		0.000	-6.332881	-3.802595
8	-4.367086	.645353	-6.77	0.000	-5.632229	-3.101943
9	-4.778749	.645353		0.000	-6.043893	-3.513606
10	-3.910269	.645353		0.000	-5.175412	-2.645126
11 12	-4.552061 -2.99148	.645353 .645353		0.000	-5.817204 -4.256624	-3.286918 -1.726337
13	6.827187	.645353		0.000	5.562044	8.092331
14	-4.61121	.645353		0.000	-5.876354	-3.346067
15	-2.805525	.645353		0.000	-4.070668	-1.540381
16	-4.898768	.645353		0.000	-6.163911	-3.633625
17	-3.984481	.645353		0.000	-5.249625	-2.719338
18	-5.096064	.645353		0.000	-6.361207	-3.83092
19	-4.358045	.645353		0.000	-5.623189	-3.092902
20 21	-4.323588	.645353		0.000	-5.588732	-3.058445
22	-3.414516 -3.175872	.645353 .645353		0.000	-4.67966 -4.441016	-2.149373 -1.910729
23	-5.251062	.645353		0.000	-6.516205	-3.985919
24	-1.137682	.645353		0.078	-2.402825	.1274617
25	-3.759242	.645353		0.000	-5.024385	-2.494099
26	-4.054692	.645353		0.000	-5.319835	-2.789549
27	-4.216341	.645353		0.000	-5.481485	-2.951198
28 29	1.023417	.645353		0.113	2417258	2.288561
30	-3.212386 -3.526282	.645353 .645353		0.000	-4.47753 -4.791425	-1.947243 -2.261138
31	-2.992644	.645353		0.000	-4.257788	-1.727501
32	-4.799077	.645353		0.000	-6.06422	-3.533934
33	-2.02086	.645353	-3.13	0.002	-3.286003	7557163
34	-4.800237	.645353		0.000	-6.065381	-3.535094
35	-3.016051	.645353		0.000	-4.281194	-1.750908
36 37	-3.882698 -3.95331	.645353		0.000 0.000	-5.147841 -5.218453	-2.617554
38	-4.353644	.645353 .645353		0.000	-5.618787	-2.688167 -3.088501
39	-4.427102	.645353		0.000	-5.692245	-3.161959
40	-3.360462	.645353	-5.21	0.000	-4.625605	-2.095318
41	2.368921	.645353		0.000	1.103778	3.634065
42	-3.516076	.645353		0.000	-4.781219	-2.250933
43 44	-4.510337	.645353		0.000	-5.77548	-3.245193
45	-3.992002 -3.720063	.645353 .645353		0.000	-5.257146 -4.985206	-2.726859 -2.45492
46	-4.422873	.645353		0.000	-5.688017	-3.15773
47	-4.743883	.645353		0.000	-6.009026	-3.47874
48	2.809145	.645353		0.000	1.544001	4.074288
49	-5.324561	.645353		0.000	-6.589704	-4.059418
50	-4.941651	.645353		0.000	-6.206794	-3.676507
51 52	-4.544886	.645353		0.000	-5.81003	-3.279743
53	-3.849973 -5.183904	.645353 .645353		0.000	-5.115116 -6.449047	-2.58483 -3.918761
54	-3.559118	.645353		0.000	-4.824262	-2.293975
55	-4.617728	.645353	-7.16	0.000	-5.882871	-3.352585
56	-4.402726	.645353		0.000	-5.667869	-3.137582
57	-4.075778	.645353	-6.32	0.000	-5.340921	-2.810635
58	7649613	.645353		0.236	-2.030105	.500182
59 60	-4.478312	.645353		0.000	-5.743455	-3.213169
61	-1.993179 -3.732652	.645353 .645353		0.002 0.000	-3.258322 -4.997795	7280354 -2.467508
62	1.251882	.645353		0.052	0132611	2.517025
63	-4.664669	.645353		0.000	-5.929812	-3.399526
0.5	1.001002					

65	-3.775961	.645353	-5.85	0.000	-5.041104	-2.510818
66	.0659443	.645353	0.10	0.919	-1.199199	1.331088
67	-3.686471	.645353	-5.71	0.000	-4.951614	-2.421327
68	-3.917178	.645353	-6.07	0.000	-5.182321	-2.652034
69	-3.524795	.645353	-5.46	0.000	-4.789938	-2.259652
70	-2.835203	.645353	-4.39	0.000	-4.100346	-1.57006
71	-4.027183	.645353	-6.24	0.000	-5.292326	-2.762039
72	-3.765691	.645353	-5.84	0.000	-5.030834	-2.500547
73	0799685	.645353	-0.12	0.901	-1.345112	1.185175
74	-3.145733	.645353	-4.87	0.000	-4.410876	-1.88059
75	-3.431694	.645353	-5.32	0.000	-4.696837	-2.16655
76	-5.224431	.645353	-8.10	0.000	-6.489575	-3.959288
77	-2.735045	.645353	-4.24	0.000	-4.000188	-1.469901
78	-1.744269	.645353	-2.70	0.007	-3.009412	4791253
79	5.688083	.645353	8.81	0.000	4.422939	6.953226
80	-4.443287	.645353	-6.89	0.000	-5.708431	-3.178144
81	-4.14593	.645353	-6.42	0.000	-5.411073	-2.880786
82	-4.785723	.645353	-7.42	0.000	-6.050866	-3.520579
83	-3.828204	.645353	-5.93	0.000	-5.093348	-2.563061
84	-4.700998	.645353	-7.28	0.000	-5.966141	-3.435854
85	-4.411584		-6.84			
		.645353		0.000	-5.676728	-3.146441
86	-2.380325	.645353	-3.69	0.000	-3.645468	-1.115181
87	-2.501125	.645353	-3.88	0.000	-3.766268	-1.235982
88	-5.227596	.645353	-8.10	0.000	-6.49274	-3.962453
89					-2.165824	
	900681	.645353	-1.40	0.163		.3644622
90	-4.520257	.645353	-7.00	0.000	-5.785401	-3.255114
91	-3.858013	.645353	-5.98	0.000	-5.123156	-2.592869
92	-2.856521	.645353	-4.43	0.000	-4.121664	-1.591377
93	.3832855	.645353	0.59	0.553	8818578	1.648429
94	-4.256308	.645353	-6.60	0.000	-5.521452	-2.991165
95	-4.171619	.645353	-6.46	0.000	-5.436762	-2.906476
96	-5.261856	.645353	-8.15	0.000	-6.526999	-3.996713
97	4.941089	.645353	7.66	0.000		6.206233
					3.675946	
98	-3.930475	.645353	-6.09	0.000	-5.195618	-2.665331
99	2.91987	.645353	4.52	0.000	1.654727	4.185013
100	-3.770992	.645353	-5.84	0.000	-5.036135	-2.505848
101	-4.13243	.645353	-6.40	0.000	-5.397574	-2.867287
102			0.77			
	.4942529	.645353		0.444	7708903	1.759396
103	-2.791056	.645353	-4.32	0.000	-4.056199	-1.525912
104	-4.941557	.645353	-7.66	0.000	-6.2067	-3.676414
105	-3.646751	.645353	-5.65	0.000	-4.911895	-2.381608
106	-5.073405	.645353	-7.86	0.000	-6.338548	-3.808262
107	-3.679438	.645353	-5.70	0.000	-4.944582	-2.414295
108	-4.607226	.645353	-7.14	0.000	-5.872369	-3.342082
109	-4.858157	.645353	-7.53	0.000	-6.1233	-3.593014
110	-4.706094	.645353	-7.29	0.000	-5.971237	-3.440951
111	-4.628273	.645353	-7.17	0.000	-5.893416	-3.36313
112	6.76293	.645353	10.48	0.000	5.497787	8.028073
113	-4.744689	.645353	-7.35	0.000	-6.009832	-3.479546
114	6.468334	.645353	10.02	0.000	5.203191	7.733478
115	-4.840617	.645353	-7.50	0.000	-6.10576	-3.575474
116	-3.198145	.645353	-4.96	0.000	-4.463288	-1.933002
117	-1.53468	.645353	-2.38	0.017	-2.799824	269537
118	-4.583168	.645353	-7.10	0.000	-5.848311	-3.318024
119	-2.328837	.645353	-3.61	0.000	-3.59398	-1.063694
120	3.537956	.645353	5.48	0.000	2.272813	4.803099
121	-4.903066	.645353	-7.60	0.000	-6.168209	-3.637923
122	-4.399257	.645353	-6.82	0.000	-5.664401	-3.134114
123	-3.730955	.645353	-5.78	0.000	-4.996098	-2.465812
124	-2.883669	.645353	-4.47	0.000	-4.148812	-1.618525
125	-3.91029	.645353	-6.06	0.000	-5.175434	-2.645147
126		.645353	-6.43			
	-4.147117			0.000	-5.41226	-2.881973
127	-3.864778	.645353	-5.99	0.000	-5.129921	-2.599635
128	-1.473463	.645353	-2.28	0.022	-2.738606	2083193
129	1202265	.645353	-0.19	0.852	-1.38537	1.144917
130	-4.537601	.645353	-7.03	0.000	-5.802744	-3.272458
131	-4.070799	.645353	-6.31	0.000	-5.335942	-2.805656
132	-4.347549	.645353	-6.74	0.000	-5.612693	-3.082406
133	-2.758069	.645353	-4.27	0.000	-4.023212	-1.492926
134	-2.942074	.645353	-4.56	0.000	-4.207217	-1.67693
135	-4.827747	.645353	-7.48	0.000	-6.09289	-3.562603
136	-4.176109	.645353	-6.47	0.000	-5.441253	-2.910966
137	-4.257219	.645353	-6.60	0.000	-5.522362	-2.992075
138	-4.456349	.645353	-6.91	0.000	-5.721493	-3.191206
139	-3.442303	.645353	-5.33	0.000	-4.707446	-2.17716
140	-1.556216	.645353	-2.41	0.016	-2.821359	2910723
141	-4.472818	.645353	-6.93	0.000	-5.737962	-3.207675
142	-2.412541	.645353	-3.74	0.000	-3.677684	-1.147398
143	9.765928	.645353	15.13	0.000	8.500785	11.03107
144	.3742963	.645353	0.58	0.562	890847	1.63944
						_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

145	-4.243346	.645353	-6.58	0.000	-5.508489	-2.978203
146	-4.353792	.645353	-6.75	0.000	-5.618935	-3.088649
147	1.446372	.645353	2.24	0.025	.1812283	2.711515
148	-5.129339	.645353	-7.95	0.000	-6.394483	-3.864196
149	-3.880535	.645353	-6.01	0.000	-5.145679	-2.615392
150	-3.562787	.645353	-5.52	0.000	-4.827931	-2.297644
151	-3.412235	.645353	-5.29	0.000	-4.677378	-2.147092
152	8175055	.645353	-1.27	0.205	-2.082649	.4476378
153	-3.418071	.645353	-5.30	0.000	-4.683214	-2.152928
154	-3.933964	.645353	-6.10	0.000	-5.199108	-2.668821
155	-3.53725	.645353	-5.48	0.000	-4.802393	-2.272106
156	-3.005625	.645353	-4.66	0.000	-4.270768	-1.740481
157	-3.112807	.645353	-4.82	0.000	-4.37795	-1.847663
158	-4.602697	.645353	-7.13	0.000	-5.867841	-3.337554
159	-3.806547	.645353	-5.90	0.000	-5.071691	-2.541404
160	-4.632064	.645353	-7.18	0.000	-5.897208	-3.366921
161	-2.440271	.645353	-3.78	0.000	-3.705414	-1.175128
162	-5.618929	.645353	-8.71	0.000	-6.884072	-4.353786
163	-2.098864	.645353	-3.25	0.001	-3.364007	8337206
164	5.9711	.645353	9.25	0.000	4.705957	7.236243
_cons	4.532296	.4563335	9.93	0.000	3.637705	5.426888

45 . predict eq, residuals

46 . 47 . * regress einv on eq, the partitioned regression, partialing out result 48 . reg einv eq

Source	SS	df	MS		er of obs	=	5,740
Model Residual	2.13557517 28.4481498	1 5,738	2.13557517 .004957851	7 Prob L R-sq	F(1, 5738) Prob > F R-squared Adj R-squared		430.75 0.0000 0.0698
Total	30.583725	5,739	.005329104	-	_	=	0.0697 .07041
einv	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
eq _cons	.007249 1.59e-12	.0003493	20.75	0.000 1.000	.00656		.0079337

```
49 . 
 50 . 
 * Follow up questions addressed in the LaTex write-up
```

50 . * FOITOW OF 1.
51 .
52 . *pause Part C completed
53 .
54 .
55 . *** Part D
56 . * Purely analytical and addressed in the LaTex write-up
57 . * Not asked to compute anything in Stata
58 .

50 . 59 . 60 . *** Part E 61 . * Regress inv on eq 62 . reg inv eq

Source	SS	df	MS		r of obs	s = =	5,740 276.30
Model Residual	2.13557518 44.349736	1 5,738	2.13557518	3 Prob 3 R-squ	F(1, 5738) Prob > F R-squared Adj R-squared Root MSE		0.0000 0.0459
Total	46.4853111	5,739	.00809989	-			0.0458 .08792
inv	Coef.	Std. Err.	t	P> t	[95% C	Conf.	Interval]
eq _cons	.007249 .1686158	.0004361 .0011604	16.62 145.31	0.000 0.000	.00639		.0081039 .1708906

```
Econometrics 1 Thursday January 12 12:49:19 2017 Page 12
63 .
64 . * Follow up questions addressed in the LaTex write-up
65 .
66 . *pause Part E completed
  end of do-file
68 .
69 .
73 . do $programdir/stata_32.do
74 . /*
  > Grant Aarons
  > gaarons@london.edu
  > Econometrics 1, London Business School
  > Assignment 3
75 . * Load the data
76 . import excel "$datadir/ps3.xls", sheet("Sheet1") firstrow clear
77 . *pause Dataset has been loaded
78 . 79 . * Need to identify panelists/firms \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = n
81 .
82 . * Reshape the data from wide to long
83 . reshape long w ed a, i(individual) j(year)
  (note: j = 0 \ 1 \ 2)
                                  wide ->
                                            long
  Data
  Number of obs.
                                  1500
                                       ->
                                              4500
  Number of variables
                                        ->
                                   10
  j variable (3 values)
                                             year
  xij variables:
                              w0 w1 w2
                            ed0 ed1 ed2
                                        ->
                                             ed
                                       ->
                              a0 a1 a2
                                             а
84 . replace w = log(w)
  variable w was long now double
  (4,500 real changes made)
85 . gen xp = a-ed-6
86 . gen xp_p2 = xp^2
88 . * Create necessary variables
89 . by individual: egen luwe=mean(w)
90 . by individual: egen educ=mean(ed)
91 . by individual: egen exp=mean(xp)
92 . by individual: egen exp_p2=mean(xp_p2)
94 . *pause Check the means calculated above by individual
95 .
96 . *** Part A
97 . * For the 1990 portion of the data, regress log(wage) on constant, educ, exp, exp2
98 . * NOT SURE THAT THE PSET is written correctly, want the means of the individual over each variable..
```

99 .

100 . \star should we regress the average over all individuals or just 1990

100 . * Should we regress the average over all individual of July 101 . * (average by individual used later) NOT THIS: reg luwe educ exp exp_p2 102 . reg w ed xp xp_p2 if year==0

Source	SS	df	MS	Number of obs F(3, 1496)	=	1,500 46.28
Model Residual	91.6141861 987.209592	3 1,496	30.538062 .65989946	Prob > F R-squared	= =	0.0000 0.0849
Total	1078.82378	1,499	.719695649	Adj R-squared Root MSE	=	0.0831 .81234

w	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ed	.1440517	.0131358	10.97	0.000	.1182852	.1698182
xp	.026499	.0284373	0.93	0.352	0292823	.0822802
xp_p2	.0009687	.0013386	0.72	0.469	0016571	.0035945
_cons	7.384689	.2795876	26.41	0.000	6.836263	7.933114

103 .

104 . * Pooled Regression (1990-1992) 105 . reg w ed xp xp_p2

Source	SS	df	MS	Number o		1,500
Model Residual	318.441207 2895.83354	3 4,496	106.147069	R-square	' =	0.0000 0.0991
Total	3214.27475	4,499	.714442043	- Adj R-sq B Root MSE	•	
W	Coef.	Std. Err.	t	P> t [95% Conf.	Interval]
ed xp xp_p2	.1479199 .0273553 .0005749	.0072281 .0165968 .0007205	20.46 1.65 0.80	0.099	1337493 0051826 0008377	.1620905 .0598931 .0019874

45.52 0.000

7.703164

7.067067

106 .

107 . *pause Part A completed

_cons

108 . 109 .

110 . *** Part B

111 . * Discussed in the LaTex write-up 112 . * Not asked to compute anything in Stata, but helpful to do so

7.385116 .1622288

113 . 114 . *Combined for all IV

115 . rvfplot

116 . graph export "..\output\fittedResid_hettest.pdf", replace (file ..\output\fittedResid_hettest.pdf written in PDF format)

117 . estat hettest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity

Ho: Constant variance

 ${\tt Variables:} \ {\tt fitted} \ {\tt values} \ {\tt of} \ {\tt w}$

chi2(1) = 114.87 Prob > chi2 = 0.0000

118 . 119 . *For individual IV 120 . rvpplot ed

```
Econometrics 1 Thursday January 12 12:49:19 2017 Page 14
```

121 . graph export "..\output\edResid_hettest.pdf", replace
 (file ..\output\edResid_hettest.pdf written in PDF format)

122 . rvpplot xp

123 . graph export "..\output\xpResid_hettest.pdf", replace
 (file ..\output\xpResid_hettest.pdf written in PDF format)

124 . rvpplot xp_p2

126 .

127 . estat hettest ed

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance

Variables: ed

chi2(1) = 76.42Prob > chi2 = 0.0000

128 . estat hettest xp

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance

Variables: xp

chi2(1) = 1.19Prob > chi2 = 0.2760

129 . estat hettest xp_p2

> chi2(1) = 0.00Prob > chi2 = 0.9587

130 .

131 . *** Part C

132 . * Purely analytical and addressed in the LaTex write-up

133 . * Not asked to compute anything in Stata

134 . * The problem set should have asked us to compute the FE estimated coefficients

135 . xi year

136 . reg w ed xp xp_p2 i.year

Source	SS	df	MS	Number of obs F(5, 4494)		=	4,500 99.14
Model Residual	319.315949 2894.9588	5 4,494	63.8631898 .644183089	Prob R-sq	,	=	0.0000 0.0993 0.0983
Total	3214.27475	4,499	.714442043	-	_	=	.80261
W	Coef.	Std. Err.	t	P> t	[95% Co	onf.	Interval]
ed xp xp_p2	.1464139 .0253395 .0006004	.0074734 .0167407 .0007209	19.59 1.51 0.83	0.000 0.130 0.405	.131762 007480 000812)5	.1610655 .0581595 .0020136
year 1 2	.0340731 .0247063	.0298066	1.14 0.79	0.253 0.429	024362 036484		.0925086 .0858968
_cons	7.403881	.1652676	44.80	0.000	7.07987	75	7.727887

137 .
138 . * To show the effect of different years on the coefficient estimates
130 \times ed vp xp p2 if vear==0

1,500		ber of ob		MS	df	SS	Source
46.28 0.0000 0.0849	= =	F(3, 1496) Prob > F R-squared Adj R-squared		30.53806 .6598994	3 1,496	91.6141861 987.209592	Model Residual
0.0831 .81234	ed = =	R-square t MSE	_	.71969564	1,499	1078.82378	Total
Interval]	Conf.	[95%	P> t	t	Std. Err.	Coef.	W
.1698182 .0822802 .0035945 7.933114	2823 5571	.1182 0292 0016 6.836	0.000 0.352 0.469 0.000	10.97 0.93 0.72 26.41	.0131358 .0284373 .0013386 .2795876	.1440517 .026499 .0009687 7.384689	ed xp xp_p2 _cons

140 . reg w ed xp xp_p2 if year==1

							-
1,500	s =	ber of obs	Nun	MS	df	SS	Source
54.27	=	, 1496)	— F(3				
0.0000	=	b > F	41 Pro	34.879434	3	104.638302	Model
0.0981	=	guared	49 R-s	.64269404	1,496	961.470297	Residual
0.0963	d =	R-squared					
.80168	=	t MSE	-	.71121320	1,499	1066.1086	Total
.00100		0 1102	1.00	• / 11111010	1,100	1000.1000	10001
Intervall	Conf	[95% (P> t	t	Std. Err.	Coef.	W
					Dea. Ell.		
.1693814	179	.11871	0.000	11.15	.0129141	.1440497	ed
.0742267		04364	0.611	0.51	.0300446	.0152927	
							xp
.0034464	529	00165	0.490	0.69	.0012998	.0008968	xp_p2
8.119826	071	6.9600	0.000	25.51	.2956219	7.539949	_cons

141 . reg w ed xp xp_p2 if year==2

Source	SS	df	MS	Number of obs F(3, 1496)	=	1,500 61.41
Model Residual	116.20869 943.702983	3 1,496	38.7362301 .630817502	Prob > F R-squared	= =	0.0000 0.1096
Total	1059.91167	1,499	.707079168	Adj R-squared Root MSE	=	0.1079 .79424

w	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ed	.1501405	.012801	11.73	0.000	.1250307	.1752503
xp	.0057006	.0322058	0.18	0.860	0574728	.0688741
xp_p2	.0012123	.0012884	0.94	0.347	0013151	.0037397
_cons	7.519055	.3162754	23.77	0.000	6.898665	8.139446

^{142 .} 143 . *** Part D 144 . * Only MATLAB

^{145 .} 146 . *** Part E

^{147 . *} Estimate the within estimator $\tilde{\Delta}_W$ for the wage equation

^{149 .} preserve

```
152 . replace ed = ed - educ
   variable ed was byte now float
    (4,500 real changes made)
153 . replace xp = xp - exp
   (4,500 real changes made)
154 . replace xp_p2 = xp_p2 - exp_p2
    (4,500 real changes made)
155 . * Need to do this to get the same coefficient names for Hausman test
157 . * Pooled Regression (1990-1992) but after demeaned/Within/FixedEffects
158 . *reg w_dm ed_dm xp_dm xp_p2_dm
159 . reg w ed xp xp_p2
                                   df
                      SS
                                                     Number of obs
         Source
                                           MS
                                                                    =
                                                                           4,500
                                                     F(3, 4496)
                                                                     =
                                                                           23.26
                                   3 3.50018743
          Model
                   10.5005623
                                                     Prob > F
                                                                     =
                                                                         0.0000
                                                     R-squared
       Residual
                     676.6235
                                 4,496 .150494551
                                                                    =
                                                                          0.0153
                                                     Adj R-squared =
                                                                          0.0146
          Total
                   687.124063
                                 4,499 .152728176
                                                    Root MSE
                                                                     =
                                                                          .38794
          W
                     Coef. Std. Err. t  P>|t|  [95\% Conf. Interval]
                                                                        .1155929
            ed
                    .0637628
                               .0264373
                                        2.41 0.016 .0119326
                    .1301495
                               .0250195
                                           5.20
                                                  0.000
                                                             .081099
                                                                        .1791999
             хр
                   -.0035098
                               .0011127
                                           -3.15
                                                  0.002
                                                           -.0056913
                                                                       -.0013284
          xp_p2
          _cons
                                                 1.000
                   -1.05e-08
                               .005783
                                        -0.00
                                                           -.0113376
                                                                       .0113375
160 . estimates store fixedEffects
161 . restore
162 . * Firm fixed effect
163 . * FOR within each individual demean the average over time, firm fixed effect
165 . * Follow up questions addressed in the LaTex write-up
166 .
167 . *pause Part E completed
168 .
169 . *** Part F
170 . * Only MATLAB
171 .
172 . *** Part G
173 . * Only Stata - WE CANNOT DO THIS PROBLEM WITH THE STATA IC license that we are
174 . * given. Max matsize=800 on IC and we need 1500.
175 .
176 . * Check if the results match with Stata by using the command xtgls on the
177 . * variable from the original wage equation.
178 .
179 . /* xtset individual year
   > set matsize 2000
   > xtgls w ed xp xp_p2
   > estimates store gls
180 .
181 . xtset individual year
          panel variable: individual (strongly balanced)
           time variable: year, 0 to 2
                   delta: 1 unit
182 . xtreg w ed xp xp_p2, re
   Random-effects GLS regression
                                                  Number of obs
                                                                           4,500
                                                                  =
                                                  Number of groups =
   Group variable: individual
                                                                           1,500
   R-sq:
                                                  Obs per group:
        within = 0.0111
                                                                min =
        between = 0.1216
                                                                avg =
                                                                             3.0
        overall = 0.0979
                                                                max =
                                                  Wald chi2(3)
                                                                          240.24
```

Prob > chi2

0.0000

 $corr(u_i, X) = 0 (assumed)$

W	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]	
ed xp xp_p2 _cons	.1480811 .0646342 0009324 7.172555	.0096409 .0200796 .0008798 .2005449	15.36 3.22 -1.06 35.77	0.000 0.001 0.289 0.000	.1291853 .0252789 0026567 6.779494	.166977 .1039895 .000792 7.565616	
sigma_u sigma_e rho	.64661827 .47514938 .64936605	(fraction of variance due to u_i)					

```
183 . estimates store gls
```

184 .

185 . * Follow up questions addressed in the LaTex write-up

186 .

187 . *pause Part G completed

188 .

189 . 190 . *** Part H

191 . * Are the FGLS results different than the FE ones? Perform a Hausman test.

192 . 193 . hausman fixedEffects gls

—— Coeffic	ients ——		
(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))
fixedEffects	gls	Difference	S.E.
.0637628	.1480811	0843184	.0246168
.1301495	.0646342	.0655153	.0149259
0035098	0009324	0025775	.0006813
	(b) fixedEffects .0637628 .1301495	fixedEffects gls .0637628 .1480811 .1301495 .0646342	(b) (B) (b-B) Difference .0637628 .14808110843184 .1301495 .0646342 .0655153

b = consistent under Ho and Ha; obtained from regress B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

194 . 195 . * Follow up questions addressed in the LaTex write-up

196 .

197 . *pause Part H completed

199 . end of do-file

200 .

201 . log close $_$ all

name: Grant Aarons Assignment 3
log: C:\Users\gaarons\Git\Notes\Stata\2016F\Metrics\logs\stata_3.smcl
log type: smcl
closed on: 12 Jan 2017, 12:42:52