

VARISCITE LTD.

VAR-SOM-AM35 Datasheet

Texas Instruments AM 35xx based System-On-Module

VARISCITE LTD.

VAR-SOM-AM35Data Sheet

© 2010 Variscite Ltd.

All Rights Reserved. No part of this document may be photocopied, reproduced, stored in a retrieval system, or transmitted, in any form or by any means whether, electronic, Mechanical, or otherwise without the prior written permission of Variscite Ltd. No warranty of accuracy is given concerning the contents of the information contained in this publication. To the extent permitted by law no liability (including liability to any person by reason of negligence) will be accepted by Variscite Ltd., its subsidiaries or employees for any direct or indirect loss or damage caused by omissions from or inaccuracies in this document.

Variscite Ltd. reserves the right to change details in this publication without notice. Product and company names herein may be the trademarks of their respective owners.

Variscite Ltd.
60 Medinat Hayudim st.
Hertzelia Pituach
P.O.B 12598
46722, Israel
Phone +972 (9) 9562910 • Fax +972 (9) 9589477

Revision History

Revision	Date	Notes
1.0	01/07/2010	Initial
1.1	01/11/2010	Revised block diagram
1.11	01/2/2011	Section 4.8: Added SPI options
1.12	01/3/2011	Section 4.7: McBSP signals clarification
		Industrial temperature support added for VAR-SOM-AM35
1.13	05/3/2011	TV-out support added
1.14	21/3/2011	Extended SOM connector signal list
1.15	2/5/2011	Power consumption specifications
		MMC1_DAT6 typo fix
1.16	28/5/2011	Section 8: MTBF Clarifications
		Section 7: VIO digital lines output voltage clarifications
1.2	6/6/2011	Section 3: GPIO 157 (pin185), type fixed from GPIO 127
1.21	20/6/2011	Section 4.6.1: USB Host signals typo fixed.
		CustomBoard v2.2 schematics are correct.
1.22	2/8/2011	Section 3:
		I2C2 pins are as listed previously, and as shown in reference schematics.
		Sitara pins (W1,W2) definitions were in-correct.
1.23	9/9/2011	Revised SOM drawing
		JTAG connection note.
4.04	0.10.10010	
1.24	3/3/2012	Section 4.8
		Pin numbering typos revised.
1.3	16/3/2012	Section 6
		VBAT power-on / power-off requirements

Table of Contents

	Revis	on Historyii
1	Ove	view1
	1.1	General Information1
	1.2	Feature Summary2
	1.3	Block Diagram3
2	HW	Components 4
	2.1	Texas Instruments AM35xx4
		2.1.1 Overview
		2.1.2 AM3517 block diagram
		2.1.3 MPU Subsystem
		2.1.4 On-Chip Memory
		2.1.5 External Memory Interfaces
		2.1.6 DMA Controllers
		2.1.7 Multimedia
		2.1.8 Peripherals
	2.2	TPS65023 PMIC
	2.3	Memory
		2.3.1 DDR2 SDRAM
		2.3.2 Non-volatile storage memory11

	2.4	Micrel™ KSZ8041RNL Ethernet phy11	
3	SOM	Connectors 13	
4	Inter	faces27	
	4.1	Display interface27	
	4.2	Analog Audio	
	4.3	Camera Interface	
	4.4	Ethernet30	
	4.5	UARTs31	
	4.6	USB 2.032	
		4.6.1 USB 2.0 Host	
		4.6.2 USB 2.0 On-The-Go	
	4.7	McBSP	
	4.8	SPI	
	4.9	I2C36	
	4.10	HDQ/1-Wire36	
	4.11	SD / MMC	
	4.12	PWM38	
	4.13	Local Bus	
	4.14	Touch Screen41	
	4.15	JTAG42	
	4.16	Can Bus cotroller43	
	4.17	Boot Option44	
	4.18	General Purpose IOs45	

	4.19	General System signals45	
	4.20	RTC45	
	4.21	TV-OUT46	
	4.22	Power supply pins46	
5	Abs	olute maximum Characteristics47	
6	Ope	rational Characteristics47	
	6.1	Supply voltages	
	6.2	VBAT power-on / power-off sequence47	
	6.3	Typical power consumption47	
7	DC e	electrical characteristics48	
8	Envi	ironmental specifications48	
9	Mec	hanical drawings49	
10	Lega	al notice50	
11	War	ranty terms51	
12	Con	tact information52	

1 Overview

This chapter gives a short overview of the VAR-SOM-AM35

1.1 General Information

The VAR-SOM-AM35 is a low-power; high performance System-on-module which serves as a building block and easily integrates into any embedded solution. It includes all vital peripherals / interfaces and is ready to run any embedded operating system such as Linux and WinCE.

Supporting products:

- Windows Embedded CE 6.0 R3 BSP
- Linux BSP based on kernel 2.6.32
- VAR-3xxCustomBoard evaluation board
 - ✓ Base-Board, compatible with VAR-SOM-AM35
 - ✓ Windows CE 6.0 run-time image
 - ✓ Linux Kernel 2.6.32 sources files
 - √ Schematics

Contact support for further information: mailto:support@variscite.com.

1.2 Feature Summary

- Texas Instruments AM3517/05 CPU
 - Up to 600-MHz ARM Cortex[™]-A8 Core
 - NEON™ SIMD Coprocessor
- 128-512MB 400MHz DDR2 SDRAM.
- 256-512Mbytes Flash Disk
- LCD interface. Up to 2048x2048 maximum Resolution
- NTSC / PAL TV-OUT
- 2 SD card/SDIO/MMC card interface
- Power
 - Single 3.3-6V DC-IN power supply.(One lithium-ion cell battery)
 - Typical power consumption: 1W
- RAW image-sensor module interface
- 4 UART ports
- 100Mbit Ethernet controller
- Audio
 - 16-bit linear audio stereo DAC (96, 48, 44.1, and 32 kHz and derivatives)
 - 16-bit linear audio stereo ADC (48, 44.1, and 32 kHz and derivatives)
 - Microphone input
 - Line In and Out
- USB
 - 2xUSB 2.0 Host interface.
 - USB 2.0 OTG interface.
- Touch Screen interface
- Can Bus controller
- Serial controllers
 - TDM interface (over McBSP1)
 - 3 x SPI interface
 - 2 x I2C interface
 - 1 Wire/ HDQ

1.3 Block Diagram

2 HW Components

This chapter shortly describes the VAR-SOM-AM35 HW components.

2.1 Texas Instruments AM35xx

2.1.1 Overview

AM3517/05 high-performance, industrial applications processors with video, image, and graphics processors.

The device supports high-level operating systems (OSs), such as:

- Linux
- Windows CE

The following subsystems are part of the device:

- Microprocessor unit (MPU) subsystem based on the ARM Cortex-A8 microprocessor
- POWERVR SGX[™] Graphics Accelerator (AM3517 Device only) Subsystem for 3D graphics acceleration to support display and gaming effects (3517 only)
- Display subsystem with several features for multiple concurrent image manipulation, and a programmable interface supporting a wide variety of displays.
- High performance interconnects provide high-bandwidth data transfers for multiple initiators to the internal and external memory controllers and to on-chip peripherals.
 The device also offers a
- Comprehensive clock-management scheme.

2.1.2 AM3517 block diagram

Figure 1-1. AM3517/05 Functional Block Diagram

2.1.3 MPU Subsystem

The MPU subsystem integrates the following modules

- ARM subchip
 - ARM® Cortex™-A8 core
 - ARM Version 7[™] ISA: Standard ARM instruction set + Thumb®-2, Jazelle® RCT Java accelerator, and media extensions
- NEON™ SIMD coprocessor (VFP lite + media streaming instructions)
- Cache memories . 16KB instruction and 16KB data—4-way set associative cache, 64 bytes/line

2.1.4 On-Chip Memory

On-chip memory configuration offers memory resources for program and data storage:

- 112KB ROM
- 64KB single-access static random access memory (SRAM)

2.1.5 External Memory Interfaces

The device includes two external memory interfaces:

- General-purpose memory controller (GPMC)
 - NOR flash, NAND flash (with ECC Hamming code calculation), SRAM and Pseudo-SRAM asynchronous and synchronous protocols
 - Flexible asynchronous protocol control for external ASIC or peripheral interfacing
 - 16-bit data, up to 8 chip-selects (CSs)
 - 128M-byte addressable per chip-select, 1G-byte total address space
 - Nonmultiplexed device with limited address (2K bytes)
 - SDRAM controller (SDRC)
 - Double data rate (DDR2) SDRAM
 - 16-bit or 32-bit data, 2 chip-selects, configurations for a maximum of 1 G-byte address space per chip-select

2.1.6 DMA Controllers

- The device embeds one generic DMA controller, the system DMA (sDMA) controller, used for memory-to-memory, memory-to-peripheral, and peripheral-to-memory transfers:
- One read port, one write port
- 32 prioritizable logical channels
- 96 hardware requests
- 256 x 32-bit FIFO dynamically allocable between active channels

2.1.7 Multimedia

The device uses the following multimedia accelerators for display and gaming effects as well as high-end imaging and video applications:

- 2D and 3D graphics accelerator (SGX)
 - 2D and 3D graphics and video codecs supported on common hardware
 - Tile-based architecture
 - Universal scalable shader engine (USSE™) multithreaded engine incorporating pixel and vertex shader functionality reducing die area
 - Advanced shader feature set in excess of Microsoft VS3.0, PS3.0, and OGL2.0
 - Industry standard API support Direct3D mobile, OGL-ES 1.1 and 2.0, OpenVG 1.0, OpenMax
 - Fine-grained task switching, load balancing, and power management
 - Programmable high-quality image anti-aliasing
 - Advanced geometry DMA driven operation for minimum CPU interaction
 - Fully virtualized memory addressing for OS operation in a unified memory architecture
 - Advanced and standard 2D operations (that is, vector graphics, BLTs, ROPs, etc.)
- Camera interface
 - Supports most of the raw image sensors available in the market
 - Includes video processing hardware
 - 12-bit parallel interface supported
 - Pixel clock up to 83 MHz
- Display interface
 - Display controller
 - Color and monochrome displays up to 2048 x 2048 x 24-bpp resolution
 - 256 x 24-bit entries palette in red, green, blue (RGB)
 - 3,375 colors, 15 grayscales
 - Picture-in-picture (overlay), color-space conversion, rotation, color-phase rotation, and resizing support
 - Remote frame buffer interface
 - Liquid-crystal display (LCD) pixel interfaces (MIPI DPI 1.0) and LCD bus interfaces (MIPI DBI 1.0) supported

- NTSC/PAL video encoder outputs with integrated digital-to-analog converters (DACs) output are supported on CVBS and S-video TV analog output signals
- Serial display interface implements high-speed differential output buffers to support FlatLink3G™, Mobile CMADS and MIPI DSI 1.0 formats
- Embedded DMA controller

2.1.8 Peripherals

The device supports a comprehensive set of peripherals to provide flexible and high-speed interfacing and on-chip programming resources. The following table provides a list and description of the peripherals available on the VAR-SOM-AM35device.

Туре	Name	Description
	Multi-channel Buffered	The McBSPs provide a full-duplex direct serial interface between Serial Ports (McBSPs) the device and other devices in a system such as audio and voice codecs and other application chips. McBSP1, McBSP2, and McBSP3 serve as general purpose serial ports while McBSP2 and McBSP3 include additional audio-loopback capability.
	Multi-channel Serial Port	The McSPIs provide a master/slave interface to SPI devices. Interface (McSPI)
	High-speed USB OTG	High-speed USB2.0 OTG controller that offers high-speed data Controller
_	HDQ/1-Wire	The HDQ/1-Wire interface supports the Benchmark HDQ protocol and the Dallas Semiconductor 1-Wire protocol.
Serial Communication	Universal Asynchronous	Serial communication interfaces compatible to the industry Receiver/Transmitter standard TL16C550 asynchronous communications element. (UART) UART1 and UART 2 are general serial communication interfaces. UART3 provides additional support for infrared data association (IrDA) and consumer infrared (CIR) communications
Serial	High-speed (HS) I2C	Master/slave I2C high-speed standard interfaces with support for Interintegrated Circuit standard mode (up to 100K bits/s), fast mode (up to 400K (I2C) Controllers bits/s), and high-speed mode (up to 3.4M bits/s).
Removabl e Media	Multimedia Card/Secure Digital/Secure Digital IO (MMC/SDIO) Card Interface	MMC memory card, SD memory card, or SDIO cards interface.
	GP timers Watchdog timers	Twelve general-purpose timers Three watchdog timers
	watchdog timers	(WDTs)
Miscellaneous	32-kHz synchronization timer	32-kHz clock timer
Niscell	General-purpose input/output (GPIO)	General-purpose input/output pins controlled by six GPIO controllers.
	Control module	I/O multiplexing and chip-configuration control.

Security Modules		RNG, Fast PKA, 2xDES/3DES, SHA1/MD5, SHA2/MD5, 2xAES, Secure Watchdog Timer, and universal subscriber identity module (USIM).
---------------------	--	---

2.2 TPS65023 PMIC

The VAR-SOM-AM35 uses the TI TPS65023 companion chip.

The TPS65023 is a power-management IC dedicated for the DaVinci / AM Platforms and provides all required power sources to power the VAR-SOM-AM35.

2.3 Memory

2.3.1 DDR2 SDRAM

The VAR-SOM-AM35 is assembled with up to 512MB of DDR2 SDRAM. 32-bit bus.

2.3.2 Non-volatile storage memory

The VAR-SOM-AM35 supports up to 512MB of SLC NAND flash.

The NAND flash is used for Flash Disk purposes, O.S. run-time-image and the Bootloader (Boot from NAND).

2.4 Micrel™ KSZ8041RNL Ethernet phy

Operating at 1.8 volts to meet low voltage and low -power requirements, the KSZ8041NL is a 10BASET/100BASE-TX Physical Layer Transceiver with MII / RMII interfaces to transmit and receive data. A unique mixed signal design extends signaling distance while reducing power consumption.

HP Auto MDI/MDI-X provides the most robust solution for eliminating the need to differentiate between crossover and straight-through cables.

The KSZ8041NL represents a new level of features and performance and is an ideal choice of physical layer transactions.

Qualified and Suggested Magnetics:

Magnetics listed under "Qualified" title have been tested in order to verify the proper operation with the KSZ8041RNL device. Magnetics in "Suggested" category was evaluated on the vendor-supplied datasheet level, but have not been tested.

Qualified Magnetics:

Vendor	Part Number	Package	Cores	Temp	Configuration
Pulse	H1102	16-pin SOIC	4	0 -+70o C	HP Auto-MDX
Halo	TG110-RP55N5	16-pin SOIC	4	0 -+70o C	HP Auto-MDX
Halo	HFJ11-RP26E- L12RL	Integrated RJ45	4	0 -+70o C	HP Auto-MDX POE
Delta	RJSE1R5310A	Integrated RJ45	4	0 -+70o C	HP Auto-MDX

Suggested Magnetics:

Vendor	Part Number	Package	Cores	Temp	Configuration
Pulse	J0011D01B	Integrated RJ45	4	0 -+70o C	HP Auto-MDX
Midcom	TG110-RP55N5	Cardbus	4	0 -+70o C	HP Auto-MDX
Bothhand	HFJ11-RP26E- L12RL	16-pin SOIC	4	0 -+70o C	HP Auto-MDX
Bothhand	RJSE1R5310A	Integrated RJ45	4	0 -+70o C	HP Auto-MDX

3 SOM Connectors

The VAR-SOM-AM35 exposes an SO-DIMM 200 pin mechanical standard interface. The recommended mating connector for base board interfacing is FCI 10033853-052FSLF or equivalent.

SOM connector signal list:

Pin	Pin Name	Mode	Dir	Туре	Description	Ball
1	CAN_RX UART3_RTS GPIO_131 SAFE_MODE	0 2 4 7	 0 /0	Digital	CAN Bus RX	V3
2	CAN_TX UART3_RX GPIO_130 SAFE_MODE	0 2 4 7	O /O	Digital	CAN Bus TX	V2
3	DSS_DATA3 GPIO_73 SAFE_MODE	0 4 7	O I/O	Digital	LCD Data	AC24
4	DSS_DATA2 GPIO_72 SAFE_MODE	0 4 7	O I/O	Digital	LCD Data	AC23
5	DSS_DATA5 UART3_TX GPIO_75 SAFE_MODE	0 2 4 7	0 0 I/O	Digital	LCD Data	AB24
6	DSS_DATA4 UART3_RX GPIO_74 SAFE_MODE	0 2 4 7	O /O	Digital	LCD Data	AC25
7	DSS_DATA7 UART1_RX GPIO_77 HW_DBG15 SAFE_MODE	0 2 4 5 7	0 /0 0	Digital	LCD Data	AA23
8	DSS_DATA6 UART1_RX GPIO_76 HW_DBG14 SAFE_MODE	0 2 4 5 7	0 0 1/0 0	Digital	LCD Data	AB25
9	GND	N/A		Power		

VAR-SOM-AM35 SYSTEM ON MODULE

10	GND	N/A		Power		
11	DSS_DATA11 GPIO_81 SAFE_MODE	0 4 7	O I/O	Digital	LCD Data	Y23
12	DSS_DATA10 GPIO_80 SAFE_MODE	0 4 7	O I/O	Digital	LCD Data	Y22
13	DSS_DATA13 GPIO_83 SAFE_MODE	0 4 7	O I/O	Digital	LCD Data	Y25
14	DSS_DATA12 GPIO_82 SAFE_MODE	0 4 7	0 I/O	Digital	LCD Data	Y24
15	DSS_DATA15 GPIO_85 SAFE_MODE	0 4 7	O I/O	Digital	LCD Data	W22
16	DSS_DATA14 GPIO_84 SAFE_MODE	0 4 7	0 I/O	Digital	LCD Data	W21
17	DSS_DATA17 GPIO_87 SAFE_MODE	0 4 7	O I/O	Digital	LCD Data	W24
18	CAM_D5 GPIO_104 HW_DBG7 SAFE_MODE	0 4 5 7	 /O 	Digital	ISP Data	Y6
19	DSS_DATA19 McSPI3_SIMO DSS_DATA3 GPIO_89 SAFE_MODE	0 2 3 4 7	O I/O O I/O	Digital	LCD Data	V24
20	DSS_DATA18 McSPI3_CLK DSS_DATA4 GPIO_88 SAFE_MODE	0 2 3 4 7	0 I/O 0 I/O	Digital	LCD Data	W25
21	DSS_DATA21 McSPI3_CS0 DSS_DATA1 GPIO_91 SAFE_MODE	0 2 3 4 7	0 I/O 0 I/O	Digital	LCD Data	U21

22	DSS_DATA20 McSPI3_SOMI DSS_DATA2 GPIO_90 SAFE_MODE	0 2 3 4 7	0 I/O 0 I/O	Digital	LCD Data	V25
23	DSS_DATA23 DSS_DATA5 GPIO_93 SAFE_MODE	0 3 4 7	0 0 I/O	Digital	LCD Data	U23
24	DSS_DATA22 McSPI3_CS1 DSS_DATA0 GPIO_92 SAFE_MODE	0 2 3 4 7	0 0 0 1/0	Digital	LCD Data	U22
25	GND	N/A		Power		
26	DSS_HSYNC GPIO_67 HW_DBG13 SAFE_MODE	0 4 5 7	0 I/O 0	Digital	LCD Horizontal Sync	AD22
27	MMC1_DAT4 GPIO_126 SAFE_MODE	0 4 7	I/O I/O	Digital		AB10
28	DSS_PCLK GPIO_66 HW_DBG12 SAFE_MODE	0 4 5 7	0 I/O 0	Digital	LCD Pixel Clock	AE23
29	UART3_CTS GPIO_163 SAFE_MODE	0 4 7	I/O I/O	Digital	UART3 CTS	N2
30	MMC1_DAT7 GPIO129 SAFE_MODE	0 4 7	I/O I/O	Digital		AE10
31	UART3_RTS GPIO_164 SAFE_MODE	0 4 7	O I/O	Digital	UART3 RTS	N3
32	MMC1_CLK GPIO_120 SAFE_MODE	0 4 7	0	Digital	MMC1 Clock	AA9
33	UART3_RX GPIO_165 SAFE_MODE	0 4 7	I I/O	Digital	UART3 RX	P1

34	MMC1_DAT6 GPIO_128 SAFE_MODE	0 4 7	I/O I/O	Digital		AD10
35	UART3_TX GPIO_166 SAFE_MODE	0 4 7	O I/O	Digital	UART3 TX	P2
36	MMC1_DAT0 McSPI2_CLK GPIO_122 SAFE_MODE	0 1 4 7	I/O I/O I/O	Digital	MMC1 Data 0	AC9
37	GND	N/A		Power		
38	MMC1_DAT1 McSPI2_SIMO GPIO_123 SAFE_MODE	0 1 4 7	I/O I/O I/O	Digital	MMC1 Data 1	AD9
39	GND	N/A				
40	MMC1_DAT2 McSPI2_SOMI GPIO_124 SAFE_MODE	0 1 4 7	I/O I/O I/O	Digital	MMC1 Data 2	AE9
	_					
41	GND	N/A		Power		
41		N/A 0 1 4 7	I/O O I/O	Power Digital	MMC#1 Data 3	AA10
	GND MMC1_DAT3 McSPI2_CS0 GPIO_125	0 1 4	0		MMC#1 Data 3 MMC#1 Command	AA10 AB9
42	GND MMC1_DAT3 McSPI2_CS0 GPIO_125 SAFE_MODE MMC1_CMD GPIO_121	0 1 4 7	0 I/O	Digital		
42	GND MMC1_DAT3 McSPI2_CS0 GPIO_125 SAFE_MODE MMC1_CMD GPIO_121 SAFE_MODE CAM_D6 GPIO_105	0 1 4 7 0 4 7	O /O /O /O	Digital Digital	MMC#1 Command	AB9
43	GND MMC1_DAT3 McSPI2_CS0 GPIO_125 SAFE_MODE MMC1_CMD GPIO_121 SAFE_MODE CAM_D6 GPIO_105 SAFE_MODE DSS_DATA16 GPIO_86	0 1 4 7 0 4 7 0 4 7	O I/O I/O I/O I/O O	Digital Digital	MMC#1 Command ISP Data	AB9
42 43 44 45	GND MMC1_DAT3 McSPI2_CS0 GPIO_125 SAFE_MODE MMC1_CMD GPIO_121 SAFE_MODE CAM_D6 GPIO_105 SAFE_MODE DSS_DATA16 GPIO_86 SAFE_MODE DSS_VSYNC GPIO_68	0 1 4 7 0 4 7 0 4 7	O I/O I/O I/O O I/O O O	Digital Digital Digital	MMC#1 Command ISP Data LCD Data	AB9 AB6 W23

49	SYS_CLKOUT1 GPIO_10 SAFE_MODE	0 4 7	O I/O	Digital	General Purpose Clock-out 1	N25
50	CAM_D4 GPIO_103 HW_DBG6 SAFE_MODE	0 4 5 7	 /O 	Digital	ISP Data	AE5
51	GND	N/A		Power		
52	LB_nCS1 GPIO_52	0 4	O I/O	Digital	Local bus Chip Select 1	L1
53	CAM_D7 GPIO_106 SAFE_MODE	0 4 7	I I/O	Digital	ISP Data	AC6
54	TV-OUT		0	Analog		
55	CAM_D3 GPIO_102 HW_DBG5 SAFE_MODE	0 4 5 7	 /O 	Digital	ISP Data	AD5
56	CAM_D2 GPIO_101 HW_DBG4 SAFE_MODE	0 4 5 7	 /O 	Digital	ISP Data	AC5
57	CAM_WEN CAMD9 UART4_RX GPIO_98 HW_DBG3 SAFE_MODE	0 1 2 4 5 7	I/O /O 	Digital	ISP write-enable signal ISP Data	AE3
58	GND	N/A		Power		
59	CAM_PCLK GPIO_94 HW_DBG0 SAFE_MODE	0 4 5 7	I/O I/O O	Digital	ISP Parallel interface pixel clock	AD2
60	GND	N/A		Power		
61	I2C3_SDA GPIO_185 SAFE_MODE	0 4 7	I/OD I/O	Digital	I2C#3 SDA (data)	W5
62	DSS_D9 GPIO_79 HW_DBG17 SAFE_MODE	0 4 5 7	0 1/0	Digital	LCD data	AA25

63	I2C3_SCL GPIO_184 SAFE_MODE	0 4 7	I/OD I/O	Digital	I2C#3 SCL (clock)	W4
64	DSS_ACBIAS GPIO_69 SAFE_MODE	0 4 7	O I/O	Digital	LCD AC bias/Data enable	AE24
65	UART2_CTS McBSP3_DX GPT9_PWM_EVT GPIO_144 SAFE_MODE	0 1 2 4 7	 /O /O /O	Digital	UART#2 CTS McBSP3 data out	F20
66	DSS_D0 UART1_CTS GPIO_70 SAFE_MODE	0 2 4 7	O /O	Digital	LCD data	AD24
67	UART2_RTS McBSP3_DR GPT10_PWM_EVT GPIO_145 SAFE_MODE	0 1 2 4 7	0 /0 /0	Digital	UART#2 RTS McBSP3 data in	F19
68	DSS_D1 UART1_RTS GPIO_71 SAFE_MODE	0 2 4 7	0 0 I/O	Digital	LCD Data	AD25
69	UART2_TX McBSP3_CLKX GPT11_PWM_EVT GPIO_146 SAFE_MODE	0 1 2 4 7	0 I/O I/O I/O	Digital	UART#2 TX McBSP3 clock	E24
70	DSS_DATA8 GPIO_78 HW_DBG16 SAFE_MODE	0 4 5 7	0 I/O 0	Digital	LCD Data	AA24
71	UART2_RX McBSP3_FSX GPT8_PWM_EVT GPIO_147 SAFE_MODE	0 1 2 4 7	 /O /O /O	Digital	UART#2 RX McBSP3 frame sync	E23
72	NC	N/A				
73	TSPX	N/A	I	Analog	Touch Screen X Plus	N/A
74	GND	N/A		Power		
75	TSPY	N/A	I	Analog	Touch Screen Y Plus	N/A

76	CAM_VS UART4_CTS GPIO_97 HW_DBG2 SAFE_MODE	0 2 4 5 7	IO I I/O O	Digital	ISP Frame trigger signal	AD3
77	TSMX	N/A	I	Analog	Touch Screen X Minus	N/A
78	CAM_HS UART4_RTS GPIO_96 SAFE_MODE	0 2 4 7	10 0 1/0	Digital	ISP Line trigger signal	AE2
79	TSMY	N/A	I	Analog	Touch Screen Y Minus	N/A
80	CAM_FLD CAM_D8 UART4_TX I2C3_SCL GPIO_95 HW_DBG1 SAFE_MODE	0 1 2 3 4 5 7	I/O I O I/OD IO O	Digital	ISP Field ID signal	AD1
81	GND	N/A		Power		
82	HDQ SYS_ALTCLK I2C2_SCCBE I2C3_SCCBE GPIO_170 SAFE_MODE	0 1 2 3 4 7	I/O I O O I/O	Digital	HDQ / 1-Wire Line	L25
83	GND	N/A		Power		
84	UART1_TX GPIO_148 SAFE_MODE	0 4 7	O I/O	Digital	UART#1 TX	AA19
85	LB_WAIT3 SYS_nDMAREQ1 UART3_CTS GPIO_65 SAFE_MODE	0 1 2 4 7	 /O	Digital	Local Bus Wait for CS3 Local Bus SDMA Request 1	U1
86	UART1_RTS GPIO_149 SAFE_MODE	0 4 7	O I/O	Digital	UART#1 RTS	Y19
87	LB_CLK GPIO_59	0 4	0 I/O	Digital	Local Bus clock	N1
88	UART1_CTS GPIO_150 SAFE_MODE	0 4 7	I I/O	Digital	UART#1 CTS	Y20

89	LB_nCS3 SYS_nDMAREQ0 GPT10_PWM_EVT GPIO_54 SAFE_MODE	0 1 2 4 7	0 /0 /0	Digital	Local bus Chip Select 3	M3
90	UART1_RX McBSP1_CLKR GPIO_151 SAFE_MODE	0 2 4 7	I I I/O	Digital	UART#1 RX	W20
91	LB_NBE1 GPIO_61 SAFE_MODE	0 4 7	O I/O	Digital		T1
92	SYS_BOOT5 MMC2_DIR_DAT3 GPIO_7	0 1 4	I O I/O	Digital	Flash burning switch	AB2
93	CAM_D1 GPIO_100 SAFE_MODE	0 4 7	l I	Digital	ISP Data	AE4
94	GND	N/A		Power		
95	CAM_D0 I2C3_SDA GPIO_99 SAFE_MODE	0 3 4 7	I I/OD I	Digital	ISP Data	AD4
96	GND	N/A		Power		
97	RESET_OUT_N		0	Digital	Reset signal to base-board peripherals	N/A
98	McBSP2_CLKX GPIO_117 SAFE_MODE	0 4 7	I/O I/O	Digital	McBSP#2 Transmit clock	C25
99	I2C2_SDA GPIO_168 SAFE_MODE	0 4 7	I/OD I/O	Digital	I2C#2 SDA (data)	W2
100	GND	N/A		Power		
101	I2C2_SCL GPIO_183 SAFE_MODE	0 4 7	I/OD I/O	Digital	I2C#2 SCL (clock)	W1
102	McBSP2_DR GPIO_118 SAFE_MODE	0 4 7	I I/O	Digital	McBSP#2 Receive data	B25
103	USBHOST1_DP	N/A	Ю	Diff	USB Host #1 Data Positive	N/A

	McBSP2_DX	0	I/O		McBSP#2 Transmit data	
104	GPIO_119 SAFE_MODE	4 7	I/O	Digital		D24
105	USBHOST1_DM	N/A	I/O	Diff	USB Host #1 Data Negative	N/A
106	McBSP2_FSX GPIO_116 SAFE_MODE	0 4 7	I/O I/O	Digital	McBSP#2 Receive Frame	D25
107	USBHOST1_VBUS	N/A	I	Analog	USB Host #1VBUS 5v indicator	N/A
108	GND	N/A		Power		
109	SYS_CLKOU2 GPIO186 SAFE_MODE	0 4 7	O I/O	Digital	General purpose clkout 2	M25
110	VBAT	N/A	I	Power	VAR-SOM-AM35 single DC- IN supply voltage. Voltage range: 3.3 – 6V	N/A
111	USBHOST2_VBUS	N/A	I	Analog	USB Host #2 VBUS 5v indicator	N/A
112	VBAT	N/A	I	Power	VAR-SOM-AM35 single DC- IN supply voltage. Voltage range: 3.3 – 6V	
113	GND	N/A		Power		
114	VBAT	N/A	I	Power	VAR-SOM-AM35 single DC- IN supply voltage. Voltage range: 3.3 – 6V	
115	GND	N/A		Power		
116	VBAT	N/A	I	Power	VAR-SOM-AM35 single DC- IN supply voltage. Voltage range: 3.3 – 6V	
117	VIO	N/A	0	Power	Digital IO Output Voltage. Up to 200ma	
118	USB_OTG_VBUS	N/A	I	Analog	USB 2.0 OTG VBUS indicator	
119	LB_IO_A10 SYS_nDMAREQ3 GPIO_43 SAFE_MODE	0 1 4 7	O /O	Digital	Local bus address 10	G6
120	USB_OTG_DP	N/A	Ю	Diff	USB 2.0 OTG Data Positive	
121	USBHOST2_DM	N/A	Ю	Diff	USB Host #2 Data Negative	
122	USB_OTG_DN	N/A	Ю	Diff	USB 2.0 OTG Data Negative	

123	USBHOST2_DP	N/A	Ю	Diff	USB Host #2 Data Positive	
124	USB_OTG_ID	N/A	I	Analog	USB OTG Host/Device ID	
125	LB_RE_OE_N	0	0	Digital		R2
126	RTC_BACKUP	N/A	I	Power	RTC backup-battery power supply	
127	RESET_IN_N	N/A	I	Digital	Hardware Reset	N/A
128	LB_IO_A9 SYS_nDMAREQ2 GPIO_42 SAFE_MODE	0 1 4 7	O /O	Digital	Local bus address 9	F1
129	LB_IO_10 GPIO_46	0 4	I/O I/O	Digital	Local bus data 10	J2
130	LB_IO_A8 GPIO_41 SAFE_MODE	0 4 7	O I/O	Digital	Local bus address 8	F2
131	LB_IO_9 GPIO_45	0 4	I/O I/O	Digital	Local bus data	J3
132	LB_IO_11 GPIO_47	0 4	I/O I/O	Digital	Local bus data	J1
133	LB_IO_8 GPIO_44	0 4	I/O I/O	Digital	Local bus data	J4
134	LB_IO_14 GPIO_50	0 4	I/O I/O	Digital	Local bus data	K2
135	LB_IO_7	0	I/O	Digital	Local bus data	J5
136	LB_IO_15 GPIO_51	0 4	I/O I/O	Digital	Local bus data	K1
137	LB_IO_6	0	I/O	Digital	Local bus data	H1
138	LB_IO_12 GPIO_48	0 4	I/O I/O	Digital	Local bus data	K4
139	LB_IO_5	0	I/O	Digital	Local bus data	H2
140	LB_IO_13 GPIO_49	0 4	I/O	Digital	Local bus data	K3
141	LB_IO_4	0	I/O	Digital	Local bus data	G1
142	LB_IO_A1 GPIO_34 SAFE_MODE	0 4 7	O I/O	Digital	Local bus address 1	E3
143	LB_IO_3	0	I/O	Digital	Local bus data	G2

144	LB_IO_A2 GPIO_35 SAFE MODE	0 4 7	0 I/O	Digital	Local bus address 2	E2
145	LB_IO_2	0	I/O	Digital	Local bus data	G3
146	LB_IO_A3 GPIO_36 SAFE_MODE	0 4 7	O I/O	Digital	Local bus address 3	E1
147	LB_IO_1	0	I/O	Digital	Local bus data	G4
148	LB_WAIT1 UART4_TX GPIO_63 SAFE_MODE	0 1 4 7	 0 /O	Digital	Local bus wait signal	T4
149	LB_IO_0	0	I/O	Digital	Local bus data	G5
150	LB_IO_A4 GPIO_37 SAFE_MODE	0 4 7	O I/O	Digital	Local bus address 4	F7
151	GND	N/A		Power		
152	LB_nBE0_CLE GPIO_60	0 4	0 I/O	Digital	Local bus Output enable for static memory, muxed with CLE	R4
153	LB_IO_A5 GPIO_38 SAFE_MODE	0 4 7	O I/O	Digital	Local bus address 5	F6
154	LB_nADV_ALE	0	0	Digital	Local bus Address Latch Enable, muxed with Address Valid	R1
155	LB_IO_A6 GPIO_39 SAFE_MODE	0 4 7	0 1/0	Digital	Local bus address 6	F4
156	GND	N/A		Power		
157	LB_IO_A7 GPIO_40 SAFE_MODE	0 4 7	O I/O	Digital	Local bus address 7	F3
158	GPMC_WAIT2 GPIO_64 SAFE_MODE	0 4 7	I/O	Digital	Local bus Wait 2	
159	GND	N/A		Power		
160	LB_WE_N	0	0	Digital	Local bus Write enable (active low)	R3

161	LINK_LED	N/A	0	Analog	Ethernet Link LED	
162	GND	N/A		Power		
163	SPEED_LED	N/A	0	Analog	Ethernet Speed LED	
164	MMC2_CLK McSPI3_CLK UART4_CTS GPIO_130 SAFE_MODE	0 1 2 4 7	O I/O I I/O	Digital	MMC2 Clock	AD11
165	ETH_TXN	N/A	0	Diff	Ethernet TX Negative	
166	MMC2_CMD McSPI3_SIMO UART4_RTS GPIO_131 SAFE_MODE	0 1 2 4 7	I/O I/O O I/O	Digital	MMC2 CMD	AE11
167	ETH_TXP	N/A	0	Diff	Ethernet TX Positive	
168	MMC2_DAT0 McSPI3_SOMI UART4_TX GPIO_132 SAFE_MODE	0 1 2 4 7	I/O I/O O I/O	Digital	MMC2 Data 0	AB12
169	VCC33A		0	Power	3.3V Output to Ethernet Magnetics	
170	MMC2_DAT1 UART4_RX GPIO_133 SAFE_MODE	0 2 4 7	I/O I I/O	Digital	MMC2 Data 1	AC12
171	ETH_RXN		I	Diff	Ethernet RX Negative	
172	MMC2_DAT2 McSPI3_CS1 GPIO_134 SAFE_MODE	0 1 4 7	I/O O I/O	Digital	MMC2 Data 2	AD12
173	ETH_RXP		I	Diff	Ethernet RX Positive	
174	MMC2_DAT3 McSPI3_CS0 GPIO_135 SAFE_MODE	0 1 4 7	I/O I/O I/O	Digital	MMC2 Data 3	AE12
175	McBSP3_FSX UART2_RX GPIO_143 SAFE_MODE	0 1 4 7	I/O I I/O	Digital		C23

176	McBSP4_DR GPIO_153 MM_FS_USB3_RXRCV SAFE_MODE	0 4 6 7	 /O /O	Digital		A23
177	McBSP3_CLKX UART2_TX GPIO_142 SAFE_MODE	0 1 4 7	I/O O I/O	Digital		A24
178	GND	N/A		Power		
179	GND	N/A		Power		
180	GND	N/A		Power		
181	GND	N/A		Power		
182	GND	N/A		Power		
183	McBSP1_CLKR GPIO_156 SAFE_MODE	0 4 7	I/O I/O	Digital		R25
184	GND	N/A		Power		
185	McBSP1_FSR GPIO157 SAFE_MODE	0 4 7	I/O I/O	Digital		P21
186	AUDIO_IN_L	N/A	ı	Analog	Audio Line in left	
187	McBSP1_CLKS GPIO160 UART1_CTS SAFE_MODE	0 4 5 7	I I/O I	Digital		P25
188	AUDIO_IN_R	N/A	ı	Analog	Audio line in Right	
189	LB_nCS4 SYS_nDMAREQ1 GPT9_PWM_EVT GPIO_55 SAFE_MODE	0 1 3 4 7	O /O /O	Digital	PWM signal	M2
190	HP_LOUT	N/A	0	Analog	Headphones Left	
191	MMC2_DAT4 MMC2_DIR_DAT0 MMC3_DAT0 GPIO_136 SAFE_MODE	0 1 3 4 7	I/O O I/O I/O	Digital	MMC2 Data 4	AB13
192	HP_ROUT	N/A	0	Analog	Headphones right	

193	MMC2_DAT5 MMC2_DIR_DAT1 MMC3_DAT1 GPIO_137 MM_FSUSB3_RXDP SAFE_MODE	0 1 3 4 6 7	I/O O I/O I/O I/O	Digital	MMC2 Data 5	AC13
194	GND	N/A		Power		
195	MMC2_DAT6 MMC2_DIR_CMD MMC3_DAT2 GPIO_138 SAFE_MODE	0 1 3 4 7	I/O O I/O I/O	Digital	MMC2 Data 6	AD13
196	MIC_BIAS	N/A	0	Analog	Microphone Bias voltage	
197	MIC_IN	N/A	I	Analog	Microphone in	
198	GND	N/A		Power		
199	MMC2_DAT7 MMC2_CLKIN MMC3_DAT3 GPIO_139 MM_FSUSB_RXDM SAFE_MODE	0 1 3 4 6 7	I/O I I/O I/O I/O	Digital	MMC2 Data 7	AE13
200	GND	N/A		Power		

4 Interfaces

4.1 Display interface

Supported display modes:

- Color and monochrome displays up to 2048 x 2048 x 24-bpp resolution
- 256 x 24-bit entries palette in red, green, blue (RGB)

LCD interface signals:

Signal	Pin#	Type	Description
DSS_D0/GPIO_70	66	0	LCD data
DSS_D1/GPIO_71	68	0	LCD data
DSS_D10/GPIO_80	12	0	LCD Data
DSS_D11/GPIO_81	11	0	LCD Data
DSS_D12/GPIO_82	14	0	LCD Data
DSS_D13/GPIO_83	13	0	LCD Data
DSS_D14/GPIO_84	16	0	LCD Data
DSS_D15/GPIO_85	15	0	LCD Data
DSS_D16/GPIO_86	45	0	LCD Data
DSS_D17/GPIO_87	17	0	LCD Data
DSS_D18/GPIO_88	20	0	LCD Data
DSS_D19/GPIO_89	19	0	LCD Data
DSS_D2/GPIO_72	4	0	LCD Data
DSS_D20/GPIO_90	22	0	LCD Data
DSS_D21/GPIO_91	21	0	LCD Data
DSS_D22/GPIO_92	24	0	LCD Data
DSS_D23/GPIO_93	23	0	LCD Data
DSS_D3/GPIO_73	3	0	LCD Data
DSS_D4/GPIO_74	6	0	LCD Data
DSS_D5/GPIO_75	5	0	LCD Data
DSS_D6/GPIO_76	8	0	LCD Data
DSS_D7/GPIO_77	7	0	LCD Data
DSS_D8/GPIO_78	70	0	LCD data
DSS_D9/GPIO_79	62	0	LCD data
DSS_HSYNC/GPIO_67	26	0	LCD Horizontal Sync
DSS_PCLK/GPIO_66	28	0	LCD Pixel Clock
DSS_VSYNC/GPIO_68	46	0	LCD Vertical Sync
DSS_ACBIAS/GPIO_69	64	0	LCD AC bias/Data enable

4.2 Analog Audio

The VAR-SOM-AM35 uses Wolfson WM8731 Audio codec

VAR-SOM-AM35 Audio signals:

Signal	Pin #	Туре	Description
HP_LOUT	190	0	Headphones Left
HP_ROUT	192	0	Headphones right
AUDIO_IN_L	186	1	Audio Line in left
AUDIO_IN_R	188	1	Audio line in Right
MIC_BIAS	196	0	Microphone Bias voltage
MIC_IN	197	I	Microphone in

4.3 Camera Interface

Image sensor:

- Interface with various image sensors:
 - R, G, B primary colors
 - Ye, Cy, Mg, G complementary colors
- Support for electronic rolling shutter (ERS) and global-release reset shutters
- · Parallel interface: The parallel interface supports two modes:
 - **SYNC mode:** In this mode, the image-sensor module provides horizontal and vertical synchronization signals to the parallel interface, along with the pixel clock. This mode works with 8 or 10 12-bit data .SYNC mode supports progressive and interlaced imagesensor modules.
 - ITU mode: In this mode, the image-sensor module provides an ITU-R BT 656-compatible data stream. The horizontal and vertical synchronization signals are not provided to the interface. Instead, the data stream embeds start-of-active (SAV) and end-of-active video (EAV) synchronization code. This mode works in 8- and 10-bit configurations. It supports only progressive image-sensor modules.

Note:

- Up to 8-bit data at 130 MHz can be transferred to memory.
- Up to 10-bit data at 75 MHz can be processed by the image pipeline or transferred to memory.

• Up to 12-bit data at 75 MHz can be transferred to memory as is, or after processing inside the CCDC. It can also be internally converted to 10-bit data for full processing.

VAR-SOM-AM35 ISP signals:

Signal	Pin #	Ty pe	Description
CAM_D0/GPIO_99	95	I	ISP Data
CAM_D1/GPIO_100	93	I	ISP Data
CAM_D2/GPIO_101	56	1	ISP Data
CAM_D3/GPIO_102	55	1	ISP Data
CAM_D4/GPIO_103	50	1	ISP Data
CAM_D5/GPIO_104	18	I	ISP Data
CAM_D6/GPIO_105	44	1	ISP Data
CAM_D7/GPIO_106	53	1	ISP Data
CAM_FLD/CAMD8/GPIO_95	80	Ю	ISP Field identification input/output signal
CAM_HS/GPIO_96	78	Ю	ISP Line trigger input/output signal
CAM_PCLK/GPIO_94	59	1	ISP Parallel interface pixel clock
CAM_VS/GPIO_97	76	Ю	ISP Frame trigger input/output signal
CAM_WEN/CAMD9/GPIO_98	57	I	ISP External write-enable signal / Data

Note: UART4 signals are multiplexed with Camera interface

4.4 Ethernet

The VAR-SOM-AM35 provides one full-featured 10/100 Mbit Ethernet port using the on-chip MAC controller, and Micrel™ KSZ8041RNL Ethernet phy

Features:

- Fully compliant with IEEE 802.3/802.3u standards
- Integrated Ethernet MAC and PHY
- 10BASE-T and 100BASE-TX support
- Full- and Half-duplex support
- Full-duplex flow control
- Backpressure for half-duplex flow control
- Preamble generation and removal
- Automatic 32-bit CRC generation and checking
- Automatic payload padding and pad removal
- Auto-negotiation
- Automatic polarity detection and correction

VAR-SOM-AM35 Ethernet Controller signals:

Signal	Pin#	Type	Description	
ETH_RXN	171	1	Ethernet RX Negative	
ETH_RXP	173	I	Ethernet RX Positive	
ETH_TXN	165	0	Ethernet TX Negative	
ETH_TXP	167	0	Ethernet TX Positive	
SPEED_LED	163	0	Ethernet Speed LED, active low	
LINK_LED	161	0	Ethernet Link LED, , active low	
VCC33A	169	0	3.3V Output to Ethernet Magnetics	

4.5 UARTs

The VAR-SOM-AM35 has 4 UART ports.

Each UART includes a programmable baud-rate generator. Each port supports baud rates up to 3.6Mbits.

Receive and transmit FIFO fill and drain operations can be done using programmed IO or DMA transfers. To minimize CPU overhead for UART communications, device driver software can setup interrupts and DMA for data transfers to/from memory.

VAR-SOM-AM35 UART1 signals:

Signal	Pin#	Type	Description
UART1_CTS/GPIO_150	88	1	UART#1 CTS
UART1_RTS/GPIO_149	86	0	UART#1 RTS
UART1_RX/GPIO_151	90	1	UART#1 RX
UART1_TX/GPIO_148	84	0	UART#1 TX

VAR-SOM-AM35 UART2 signals:

Signal	Pin#	Type	Description
UART2_CTS/GPIO_144	65	1	UART#2 CTS
UART2_RTS/GPIO_145	67	0	UART#2 RTS
UART2_RX/GPIO_147	71	1	UART#2 RX
UART2_TX/GPIO_146	69	0	UART#2 TX

VAR-SOM-AM35 UART3 signals:

Signal	Pin#	Type	Description
UART3_CTS/GPIO_163	29	1	UART#3 CTS
UART3_RTS/GPIO_164	31	0	UART#3 RTS
UART3_RX/GPIO_165	33	1	UART#3 RX
UART3_TX/GPIO_166	35	0	UART#3 TX

VAR-SOM-AM35 UART4 signals:

Signal	Pin#	Type	Description
UART4_CTS/CAM_VS/GPIO_97	76	1	UART#4 CTS
UART4_TX/CAMD8/GPIO_95	80	0	UART#4 TX
UART4_RTS/CAM_HS/GPIO_96	78	0	UART#4 RTS
UART4_RX/CAMD9/GPIO_98	57	I	UART#4 RX

Note: UART4 signals are multiplexed with Camera interface

4.6 USB 2.0

4.6.1 USB 2.0 Host

The VAR-SOM-AM35 uses AM53xx USB 2.0 Host controller and exposes 2 USB host ports.

 The EHCl controller, based on the Enhanced Host Controller Interface (EHCl) specification for USB Release 1.0, is in-charge of high-speed traffic (480M bit/s), over the ULPI/UTMI interface

Note:

- USB1.1 devices can be connected to the USB2.0 host port only through a USB2.0 Hub.
- USB 1.1 devices can be connected directly to the USB OTG port.

VAR-SOM-AM35USB 2.0 Host signals:

Signal	Pin#	Туре	Description
USBHOST1_DM	105	Ю	USB Host #1 Data Negative
USBHOST1_DP	103	Ю	USB Host #1 Data Positive
USBHOST1_VBUS	107	1	USB Host #1VBUS 5v indicator
USBHOST2_DM	121	Ю	USB Host #2 Data Negative
USBHOST2_DP	123	Ю	USB Host #2 Data Positive
USBHOST2_VBUS	111	I	USB Host #2 VBUS 5v indicator

4.6.2 USB 2.0 On-The-Go

The VAR-SOM-AM35 uses the AM35xx USB 2.0 OTG controller

Features:

- Supports USB 2.0 peripheral at High Speed (480 Mbps) and Full Speed (12 Mbps)
- Supports USB 2.0 host at High Speed (480 Mbps), Full Speed (12 Mbps), and Low Speed (1.5 Mbps)
- Operates either as the function controller of a high-/full-speed USB peripheral or as the host/peripheral in point-to-point or multipoint communications with other USB functions
- Complies the USB 2.0 standard for high-speed (480 Mbps) functions and with the on-the-go (OTG) supplement (Revision 1.0a)
- Each endpoint can support all transfer types (control, bulk, interrupt, and isochronous)
- Supports USB extensions for Session Request (SRP) and Host Negotiation (HNP)
- Supports suspend/resume and remote wakeup
- Supports high-bandwidth Isochronous and Interrupt Transfers
- Supports 15 Transmit and 15 Receive endpoints in addition to control endpoint 0
- Each endpoint has its own FIFO, with the following properties:
 - Implemented within a single, 16K-byte internal RAM
 - Can be dynamically sized by software
 - Can be configured to hold multiple packets (up to 8192 bytes per FIFO)

- can be accessed either by direct access of by DMA controller
- Software connect/disconnect option for peripheral
- Performs all transaction scheduling in hardware

VAR-SOM-AM35 USB 2.0 OTG signals:

Signal	Pin #	Туре	Description
USB_OTG_DN	122	Ю	USB 2.0 OTG Data Negative
USB_OTG_DP	120	Ю	USB 2.0 OTG Data Positive
USB_OTG_ID	124	1	USB OTG Host/Client ID
USB_OTG_VBUS	118	1	USB 2.0 OTG VBUS indicator

Note: external LDO is required in host mode, see reference schematics

• USB_OTG_VBUS functionality:

Client mode: used as an indication of host presence.

Host mode: not used.

4.7 McBSP

The multi-channel buffered serial port (McBSP) provides a full-duplex direct serial interface between the device and other devices in a system such as audio and voice codecs.

McBSP signals:

Signal	Pin #	Туре	Description
McBSP2_CLKX/GPIO_117	98	Ю	McBSP#2 Tx/Rx clock
McBSP2_DR/GPIO_118	102	1	McBSP#2 Receive serial data
McBSP2_DX/GPIO_119	104	Ю	McBSP#2 Transmit serial data
McBSP2_FSX/GPIO_116	106	Ю	McBSP#2 Rx/Tx Frame

4.8 SPI

The VAR-SOM-AM35 supports up to 3 SPI ports.

The McSPI ports supports the following main features:

- Serial clock with programmable frequency, polarity, and phase for each channel
- Wide selection of SPI word lengths ranging from 4 bits to 32 bits
- Up to four master channels or single channel in slave mode
- Master multichannel mode:
 - Full duplex/half duplex
 - Transmit-only/receive-only/transmit-and-receive modes
 - Flexible I/O port controls per channel
 - Two direct memory access (DMA) requests (read/write) per channel
- Single interrupt line for multiple interrupt source events
- Power management through wake-up capabilities
- Enable the addition of a programmable start-bit for SPI transfer per channel (start-bit mode)
- Support start-bit write command
- Support start-bit pause and break sequence
- 64 bytes built-in FIFO available for a single channel

VAR-SOM-AM35 MsSPI signals:

Note: SPI2 and SPI3 signals are multiplexed with MMC1, MMC2, or DSS_Data18 – DSS_Data

signals

SPI2:

Signal	Pin#	Type	Description
MCSPI2_CLK/MMC1_DAT0/GPIO_122	36	Ю	MsSPI2 Clock
MCSPI2_SIMO/MMC1_DAT1/GPIO_123	38	Ю	MsSPI2 SIMO Signal
MCSPI2_SOMI/MMC1_DAT2/GPIO_124	40	Ю	MsSPI2 SOMI Signal
MCSPI2_CS0/MMC1_DAT3/GPIO_125	42	Ю	MsSPI2 Chip-select 0 Signal

SPI3:

Signal	Pin#	Туре	Description
MCSPI3_SOMI/MMC2_DAT0/GPIO_132	168	Ю	MsSPI3 SOMI Signal
MCSPI3_SIMO/MMC2_CMD/GPIO_131	166	Ю	MsSPI3 SIMO Signal
MCSPI3_CS0/MMC2_DAT3/GPIO_135	174	Ю	MsSPI3 Chip-select 0 Signal
MCSPI3_CS1/MMC2_DAT2/GPIO_134	172	Ю	MsSPI3 Chip-select 1 Signal
MCSPI3_CLK/MMC2_CLK/GPIO_130	164	Ю	MsSPI3 Clock
LCD_D18/McSPI3_CLK/LCD_D4/GPIO88	20	Ю	MsSPI3 Clock
LCD_D19/McSPI3_SIMO/LCD_D3/GPIO89	19	Ю	MsSPI3 SIMO Signal
LCD_D20/McSPI3_SOMI/LCD_D2/GPIO90	22	Ю	MsSPI3 SOMI Signal
LCD_D21/McSPI3_CS0/LCD_D1/GPIO91	21	Ю	MsSPI3 Chip-select 0 Signal
LCD_D22/McSPI3_CS1/LCD_D0/GPIO92	24	Ю	MsSPI3 Chip-select 1 Signal

4.9 I2C

The VAR-SOM-AM35 exposes 2 I2C ports:

VAR-SOM-AM35 I2C signals:

Signal	Pin #	Туре	Description
I2C2_SDA/GPIO_168	99	Ю	I2C#2 SDA (data) internally pulled up to 3.3v
I2C2_SCL/GPIO_183	101	0	I2C#2 SCL (clock) internally pulled up to 3.3v
I2C3_SDA/GPIO_185	61	Ю	I2C#3 SDA (data) requires external pull-up to 3.3v
I2C3_SCL/GPIO_184	63	0	I2C#3 SCL (clock) requires external pull-up to 3.3v

4.10 HDQ/1-Wire

The HDQ/1-Wire module implements the hardware protocol of the master functions of the Benchmark HDQ and the Dallas Semiconductor 1-Wire® protocols. These protocols use a single wire for communication between the master (HDQ/1-Wire controller) and the slave (HDQ/1-Wire external compliant device).

VAR-SOM-AM35 1-Wire / HDQ signals:

Signal	Pin#	Type	Description
HDQ/GPIO_170	82	Ю	HDQ / 1-Wire Line

4.11 SD / MMC

The VAR-SOM-AM35 has two SD / MMC interfaces

The MMC/SD/SDIO host controllers deal with MMC/SD/SDIO protocol at transmission level, data packing, adding cyclic redundancy checks (CRC), start/end bit, and checking for syntactical correctness.

The application interface can send every MMC/SD/SDIO command and either poll for the status of the adapter or wait for an interrupt request, which is sent back in case of exceptions or to warn of end of operation.

The application interface can read card responses or flag registers. It can also mask individual interrupt sources. All these operations can be performed by reading and writing control registers. The MMC/SD/SDIO host controller also supports two DMA channels.

Note: SPI signals are multiplexed with MMC1 / MMC2 signals

MMC1 signals:

Signal	Pin #	Туре	Description
MMC1_DAT0/GPIO_122	36	Ю	MMC#1 Data 0
MMC1_DAT1/GPIO_123	38	Ю	MMC#1 Data 1
MMC1_DAT2/GPIO_124	40	Ю	MMC#1 Data 2
MMC1_DAT3/GPIO_125	42	Ю	MMC#1 Data 3
MMC1_CLKO/GPIO_120	32	0	MMC#1 Clock
MMC1_CMD/GPIO_121	43	Ю	MMC#1 Command

MMC2 signals:

Automatic Card detection not included in BSP

Signal	Pin #	Туре	Description
MMC2_DAT0/GPIO_132	168	Ю	MMC2 Data 0
MMC2_DAT1/GPIO_133	170	Ю	MMC2 Data 1
MMC2_DAT2/GPIO_134	172	Ю	MMC2 Data 2
MMC2_DAT3/GPIO_135	174	Ю	MMC2 Data 3
MMC2_DAT4/GPIO_136	191	Ю	MMC2 Data 4
MMC2_DAT5/GPIO_137	193	Ю	MMC2 Data 5
MMC2_DAT6/GPIO_138	195	Ю	MMC2 Data 6
MMC2_DAT7/GPIO_139	199	Ю	MMC2 Data 7
MMC2_CLK/GPIO_130	164	Ю	MMC2 Clock
MMC2_CMD/GPIO_131	166	Ю	MMC2 CMD

4.12 PWM

The VAR-SOM-AM35 provides a PWM signal:

Signal	Pin#	Type	Description
GPT9_PWM_EVT/GPIO_55	189	0	pulse width modulation

PWM outputs from the OMAP processor (Not Supported by default BSP):

Signal	Pin#	Type	Description
LB_nCS3/GPIO_54	89	Ю	Local bus Chip select 3
UART2_CTS/GPIO_144	65	T	UART#2 CTS
UART2_RTS/GPIO_145	67	0	UART#2 RTS
UART2_RX/GPIO_147	71	1	UART#2 RX
UART2_TX/GPIO_146	69	0	UART#2 TX

4.13 Local Bus

The general-purpose memory controller (GPMC) is used to interface external memory devices:

- SRAMs
- Asynchronous, synchronous, and page mode (only available in non-muxed mode) burst NOR flash devices
- NAND flashes
- Pseudo-SRAM devices

VAR-SOM-AM35 Local bus signals:

Signal	Pin #	Туре	Description
LB_IO_0	149	Ю	Local bus data
LB_IO_1	147	Ю	Local bus data
LB_IO_2	145	Ю	Local bus data
LB_IO_3	143	Ю	Local bus data
LB_IO_4	141	Ю	Local bus data
LB_IO_5	139	Ю	Local bus data
LB_IO_6	137	Ю	Local bus data
LB_IO_7	135	Ю	Local bus data
LB_IO_8	133	Ю	Local bus data
LB_IO_9	131	Ю	Local bus data
LB_IO_10	129	Ю	Local bus data
LB_IO_11	132	Ю	Local bus data
LB_IO_12	138	Ю	Local bus data
LB_IO_13	140	Ю	Local bus data
LB_IO_14	134	Ю	Local bus data
LB_IO_15	136	Ю	Local bus data
LB_IO_A1/GPIO34	142	0	Local bus address 1
LB_IO_A2/GPIO35	144	0	Local bus address 2
LB_IO_A3/GPIO36	146	0	Local bus address 3
LB_IO_A4/GPIO37	150	0	Local bus address 4
LB_IO_A5/GPIO38	153	0	Local bus address 5
LB_IO_A6/GPIO39	155	0	Local bus address 6
LB_IO_A7/GPIO40	157	0	Local bus address 7
LB_IO_A8/GPIO41	130	0	Local bus address 8
LB_IO_A9/GPIO42	128	0	Local bus address 9
LB_IO_A10/GPIO43	119	0	Local bus address 10
			Local bus Output enable for static
LB_CLE	152	0	memory, muxed with CLE
LB_CLK/GPIO_59	87	0	Local Bus clock
			Local bus Address Latch Enable,
LB_nADV_ALE	154	0	muxed with Address Valid
LB_nCS1/GPIO_52	52	0	Local bus Chip Select 1

LB_nCS3/GPIO_54	89	0	Local bus Chip Select 3
LB_RE_OE_N	125	0	Output enable (active low). Also used as read enable (active low) for NAND protocol memories.
			Local bus Write enable (active
LB_WE_N	160	0	low)
SYS_nDMAREQ1/GPIO_65	85	1	Local Bus SDMA Request 1
LB_WAIT1/GPIO63	148	I	Local bus wait signal

• Do not use Local bus IO signals as GPIOs, as those are internally used by on-board Nand flash

4.14 Touch Screen

- Compatible with 4-wire resistive Touch Screens
- Pen-detection and nIRQ generation
- Supports several schemes of measurement averaging to filter noise
- Maximum X & Y sample rate (without averaging): 100 Hz

The VAR-SOM-AM35 Touch-screen controller signals:

Signal	Pin#	Туре	Description
TSMX	77	T	Touch Screen X Minus
TSMY	79	1	Touch Screen Y Minus
TSPX	73	T	Touch Screen X Plus
TSPY	75	I	Touch Screen Y Plus

4.15 JTAG

The VAR-SOM-AM35 has a dedicated JTAG connector.

Signal	Pin#
JTAG_TDO	1
JTAG_EMU1	2
JTAG_nTRST	3
JTAG_EMU0	4
JTAG_TMS	5
JTAG_RTCK	6
JTAG_TDI	7
NC	8
JTAG_TCK	9
GND	10

• Refer to CB105 extension board for required pull-up / pull-down resistors.

4.16 Can Bus cotroller

The VAR-SOM-AM35 supports one CAN-Bus port.

The CAN controller is available in two different implementations that are both fully compliant with the CAN protocol, version 2.0B. The two different CAN controller versions use the same CAN protocol kernel module to perform the basic CAN protocol tasks. Only the message controller differs between the two CAN controller versions.

Key features of the CAN module include:

- Common CAN protocol kernel (CPK) to perform protocol tasks
- Standard CAN controller (SCC) for standard CAN applications
 - Sixteen message-object acceptance-filtering
- High-end CAN controller (HECC) for complex applications
 - Thirty-two message objects full-mask acceptance-filtering

Refer to TI's AM3517 documentation for further information.

VAR-SOM-AM35 Can-Bus signals:

Signal	Pin#	Type	Description
CAN_RX/GPIO_131	1	T	CAN Bus RX
CAN_TX/GPIO_130	2	0	CAN Bus TX

4.17 Boot Option

The Boot option signal configures the boot sequence of the AM35xx processor. Use this signal to burn the Bootloader on NAND Flash.

VAR-SOM-AM35 boot signal:

Signal	Pin#	Туре	Description
SYS_BOOT5	92	1	System Boot Option 5 [High – Burn flash]

SYS_BOOT pin configuration of SOM:

SYS_BOOT_PIN	LOGIC STATE
SYS_BOOT_0	1
SYS_BOOT_1	1
SYS_BOOT_2	1
SYS_BOOT_3	1
SYS_BOOT_4	0
SYS_BOOT_5	Boot Select
SYS_BOOT_6	1

4.18 General Purpose IOs

Most of the SOM' IO pins can be used as GPIOs.

See Chapter 3 for a complete SOM connector signal list and GPIO multiplexing.

The following pins can be used as GPIOs only.

Signal	Pin#	Type	Description
GPIO_153	176	Ю	GPIO_153
GPIO_157	185	Ю	GPIO_157
GPIO_128	34	Ю	GPIO_128
GPIO_129	30	Ю	GPIO_129
GPIO_142	177	Ю	GPIO_142
GPIO_143	175	Ю	GPIO_143
GPIO_156	183	Ю	GPIO_156
GPIO_160	187	Ю	GPIO_160
GPIO_61	91	Ю	GPIO_61
GPIO_126	27	Ю	GPIO_126

4.19 General System signals

Signal	Pin	Type	Description
	#		
RESET_IN_N	127	1	Hardware Reset
RESET_OUT_N	97	0	Reset Signal to Base-Board Peripherals
SYS_CLKOUT1/GPIO_10	49	0	General Purpose Clock-out 1
SYS_CLKOUT2/GPIO186	109	Ю	General purpose Clock-out 2

4.20 RTC

VAR-SOM-AM35 uses Intersil ISL12057 RTC IC, which keeps running as long as RTC_BACKUP is above 2.5v.

4.21 TV-OUT

Composite NTSC/PAL Video output.

Signal	Pin #	Type	Description	
TV-OUT	54	0	TV-OUT Analog signal out	

4.22 Power supply pins

VAR-SOM-AM35 power supply pins:

Signal	Pin #	Type	Description
VBAT	110,112,114,116	I	VAR-SOM-AM35 single DC-IN supply voltage. Voltage range: 3.3 – 6V
VCC33A	169	0	3.3 V Output to Ethernet Magnetics
VIO	117	0	3.3v Output, up to 200ma
RTC_BACKUP	126	T	RTC backup-battery power supply

VAR-SOM-AM35 Ground pins:

Signal	Pin#	Type	Description
GND	9,10,25,37,39,41,47,48,51,58,60,74,81,83, 94,96,100,108,113,115,151,156,159,162,1 78,179,180,181,182,184,194,198,200		

5 Absolute maximum Characteristics

Power supplies	Min	Max	Unit
Main Power supply, DC-IN (VBAT)	-0.3	6.5	V
VCC33A output supply	3.21	3.41	V
VCC33A output supply		200	ma
VIO 3.3v power output	3.23	3.41	V
VIO 3.3v power output		200	ma

6 Operational Characteristics

6.1 Supply voltages

Power supplies	Min	Max	Unit
Main Power supply, DC-IN (VBAT)	3.3	6	V
RTC Backup battery voltage	2.5	3.2	V

6.2 VBAT power-on / power-off sequence

- 1. VBAT rise time should be lower than 3ms
- 2. If VBAT drops below 3.2v, VBAT should be powered off, and reach below 0.4v before power-on again.

6.3 Typical power consumption

Power consumption:

Scenario	Typical
3. CPU Load 30%	1.2Watt
Ethernet controller operational	
Power for Ethernet magnetics from	
external source	
Audio codec operational	
7. One USB host phy	
8. CPU Load 80%	1.8Watt
Ethernet controller operational	
Power for Ethernet magnetics from	
SOM	
11. Audio codec operational	
12. Two USB host phys	

7 DC electrical characteristics

Parameter	Operating Conditions	Min	Тур	Max	Unit
3.3v Digital IO (UARTs, LCD, MMC2,MMC1, ISP, SPI, McBSP, I2C,Local Bus, JTAG)					
V_{IH}		2.1		3.4	V
V_IL		-0.2		0.8	V
V_{OH}		3.0	3.3		V
V _{OL}			0.2	0.4	V

• When main power supply (VIN) is 3.3v. 3.3v Digital IO outputs are VIN-50mV

8 Environmental specifications

	Min	Max
Commercial operating temperature range	0°C	+70°C
Extended operating temperature range	-25°C	+70°C
Industrial operating temperature range	-40°C	+85°C
Variscite uses MIL-HDBK-217F-2 Parts count		
reliability prediction method		
Model:		
50Deg Celsius, Class B-1, GM	121 Khrs >	
50Deg Celsius, Class B-1, GB	1400 Khrs >	
Shock resistance	50G / 20 ms	
Vibration	20G / 0 - 600 Hz	

9 Mechanical drawings

- Board size: 67.7x35.5 mm
- Request Mechanical DXF at support@variscite.com

10 Legal notice

Variscite LTD ("Variscite") products and services are sold subject to Variscite's terms and conditions of sale, delivery and payment supplied at the time of order acknowledgement.

Variscite warrants performance of its products to the specifications in effect at the date of shipment. Variscite reserves the right to make changes to its products and specifications or to discontinue any product or service without notice. Customers should therefore obtain the latest version of relevant information from Variscite to verify that the information is current.

Testing and other quality control techniques are utilized to the extent Variscite deems necessary to support its warranty.

Specific testing of all parameters of each device is not necessarily performed unless required by law or regulation.

In order to minimize risks associated with customer applications, the customer must use adequate design and operating safeguards to minimize inherent or procedural hazards. Variscite is not liable for applications assistance or customer product design. The customer is solely responsible for its selection and use of Variscite products. Variscite is not liable for such selection or use nor for use of any circuitry other than circuitry entirely embodied in a Variscite product.

Variscite products are not intended for use in life support systems, appliances, nuclear systems or systems where malfunction can reasonably be expected to result in personal injury, death or severe property or environmental damage. Any use of products by the customer for such purposes is at the customer's own risk.

Variscite does not grant any license (express or implied) under any patent right, copyright, mask work right or other intellectual property right of Variscite covering or relating to any combination, machine, or process in which its products or services might be or are used. Any provision or publication of any third party's products or services does not constitute Variscite's approval, license, warranty or endorsement thereof. Any third party trademarks contained in this document belong to the respective third party owner.

Reproduction of information from Variscite datasheets is permissible only if reproduction is without alteration and is accompanied by all associated copyright, proprietary and other notices (including this notice) and conditions. Variscite is not liable for any un-authorized alteration of such information or for any reliance placed thereon.

Any representations made, warranties given, and/or liabilities accepted by any person which differ from those contained in this datasheet or in Variscite's standard terms and conditions of sale, delivery and payment are made, given and/or accepted at that person's own risk. Variscite is not liable for any such representations, warranties or liabilities or for any reliance placed thereon by any person.

11 Warranty terms

Variscite guarantees hardware products against defects in workmanship and material for a period of one (1) year from the date of shipment. Your sole remedy and Variscite's sole liability shall be for Variscite, at its sole discretion, to either repair or replace the defective hardware product at no charge or to refund the purchase price. Shipment costs in both directions are the responsibility of the customer. This warranty is void if the hardware product has been altered or damaged by accident, misuse or abuse.

Disclaimer of Warranty

THIS WARRANTY IS MADE IN LIEU OF ANY OTHER WARRANTY, WHETHER EXPRESSED, OR IMPLIED, OF MERCHANTABILITY, FITNESS FOR A SPECIFIC PURPOSE, NON-INFRINGEMENT OR THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION, EXCEPT THE WARRANTY EXPRESSLY STATED HEREIN. THE REMEDIES SET FORTH HEREIN SHALL BE THE SOLE AND EXCLUSIVE REMEDIES OF ANY PURCHASER WITH RESPECT TO ANY DEFECTIVE PRODUCT.

Limitation on Liability

UNDER NO CIRCUMSTANCES SHALL VARISCITE BE LIABLE FOR ANY LOSS, DAMAGE OR EXPENSE SUFFERED OR INCURRED WITH RESPECT TO ANY DEFECTIVE PRODUCT. IN NO EVENT SHALL VARISCITE BE LIABLE FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES THAT YOU MAY SUFFER DIRECTLY OR INDIRECTLY FROM USE OF ANY PRODUCT.

12 Contact information

Headquarters:

Variscite LTD

60 Medinat Hayehudim st. P.O.B 12598 46722, Israel

Tel: +972 (9) 9562910 Fax: +972 (9) 9589477

Sales: sales@variscite.com

Technical support: support@variscite.com

Website: www.variscite.com

