سؤالِ اونشب

سید سجاد کاهانی بامدادِ دوازدهمِ اسفندِ ۱۳۹۸

در ادامهٔ داستانِ تقارن، این سؤال را حل کنید. (اینیکی واقعاً درست است)

- a سلعم و طولِ ضلعم σ پر شده و طولِ ضلعم ۱. یک مربع را در نظر بگیرید که با بارِ سطحی σ
- ۲. فرض کنید پتانسیل در هر گوشهٔ این مربع ϕ_0 است. اگر این مربع را به شکلی معجزه آسا به مربعی با ضلع $\frac{a}{2}$ تبدیل کنیم، پتانسیل در هر گوشه از این مربع ϕ_1 برحسب ϕ_2 چقدر میشود؟ اثبات کنید. حرفِ روی هوا نزنید. حالا اگر اضلاع مربع تبدیل به $\frac{a}{k}$ بشوند چه؟

پاسخ: برای پتانسیلِ یک مربع با ضلع a داریم که اگر آن را به اجزای کوچکی هرکدام به مساحتِ $\mathrm{d} S$ تقسیم کنیم، با اصلِ برهمنهی داریم که

$$\phi_0 = \int_{\text{(وی مربع بزرگ)}} rac{\sigma \mathrm{d}S}{4\pi\epsilon_0 r}$$

حالا برای مربع k برابر کوچکشده هم انتگرال به این شکل عوض میشود

$$\phi_1 = \int_{\text{QQD QLUB}} \frac{\sigma \mathrm{d}S'}{4\pi\epsilon_0 r'}$$

میتوان یک تناظرِ یکبهیک بینِ نقطههای این دو مربع ایجاد کرد، آنوقت یک جزء دیفرانسیلی به اندازهٔ dS برروی مربعِ کوچکتر یک دیفرانسیل به اندازهٔ $dS'=\frac{dS}{k^2}$ پس در کل برای مربع کوچک میتوان نوشت

$$\begin{split} \phi_1 &= \int_{\mathbb{Z}_p} \frac{\sigma \mathrm{d}S'}{4\pi\epsilon_0 r'} \\ &= \int_{\mathbb{Z}_p} \frac{\sigma \frac{\mathrm{d}S}{k^2}}{4\pi\epsilon_0 \frac{r}{k}} \\ &= \frac{1}{k} \int_{\mathbb{Z}_p} \frac{\sigma \mathrm{d}S}{4\pi\epsilon_0 \frac{r}{k}} \\ &= \frac{1}{k} \int_{\mathbb{Z}_p} \frac{\sigma \mathrm{d}S}{4\pi\epsilon_0 r} \\ &= \frac{1}{k} \phi_0 \end{split}$$

۳. حالا با اصلِ برهمنهی و شکستن بگویید پتانسیلِ وسطِ یک مربع ϕ_C چه رابطهای با پتانسیل گوشههای آن ϕ_P دارد؟

 ϕ_c اکر مربع را به چهار قسمت تقسیم کنیم، طبق اصل برهمنهی میدان برابرِ با جمعِ چهار میدانِ گوشهٔ مربعهای نصفشده میباشد. برای هر مربعِ نصفشده، میدانِ گوشه برابرِ $\frac{\Phi_p}{2}$ است (با توجه به نتایجِ قسمتِ قبل) پس داریم که

$$\phi_C=4\phi_P$$
 مربع کوچک $=4rac{\phi_P}{2}=2\phi_P$