

Recent Advances in Fully Homomorphic Encryption

Hyeongmin Choe

Seoul National University

@Ruhr University Bochum Jan. 21st, 2025

Table of Contents

- Introduction to FHE
 - Motivation
 - What is FHE?

- Some numbers
- More details

Introduction to FHE

Motivation

Privacy Issues

- Personalized services
- Cloud computing services
- Data abuse

Data Policies and Regulations

HIPPA (US), GDPR (EU), Data Three Rules (Korea), ...

→ Privacy Enhancing Technologies (PETs)

MPC, FHE, DP, Confidential Computing, ...

- Allow computation delegation
 - Secure Outsourced Computation

^{*} Figure adapted from Elias Suvanto, CryptoLab Inc.

- Computations as exact as in plaintext
 - Not like Differential Privacy (DP)

- Round optimality & Ciphertext reusability
 - Not like MPC

- Security proven under hardness assumptions
 - Not like Confidential Computing

^{*} Figure adapted from Prof. Miran Kim, Hanyang University.

SotA FHE schemes

- BGV, BFV: Integer (finite field) arithmetic (+, x)
- DM, CGGI: Boolean (AND, OR, NAND, XOR, ...)
- **CKKS**: Real/Complex numbers $(\mathbb{R}, +, \times)$ or $(\mathbb{C}, +, \times)$

→ Arbitrary circuits by composing the unit operations

SotA FHE schemes

- BGV, BFV, CKKS: RLWE-based
 - Ciphertext:

$$(a, b = -as + \Delta m + e) \in R_Q^2$$

for $R = \mathbb{Z}[x]/(x^N + 1)$,

- $Q \approx 400 \sim 2900$ -bit integer
- $N \approx 2^{13 \sim 17}$ sized integer
- Plaintext space = vectors:
 - Add/Mult in parallel ($\approx 2^{12\sim 16}$)
 - Coordinate-wise rotation

- DM, CGGI: LWE-based
 - Ciphertext:

$$(a, b = -as + \Delta m + e) \in \mathbb{Z}_Q^2$$

- $Q \approx 32 \sim 64$ -bit integer
- $N \approx 2^{9 \sim 11}$ sized integer
- Plaintext space = bits:
 - Boolean Gates

SotA FHE schemes

- BGV, BFV, CKKS: RLWE-based
 - Level-based:
 - Mult consumes 1 level
 - Add/Rot consume 0 level
 - Bootstrapping regains level

- DM, CGGI: LWE-based
 - No levels:
 - Bootstrapping required after every (or several) gate operations

Moderate, one-core CPU	CKKS Bootstrapping	TFHE Bootstrapping
(Amortized) Time	\sim 7s/ 2^{16} real numbers of 22-bit fixed-point \approx 0.1ms/ real number	~10ms/ bit

^{*} Timings borrowed from Dr. Damien Stehlé, CryptoLab Inc.

Introduction: RLWE-based FHEs

- Homomorphic Evaluations via (+, x)
 - Linear Algebra
 - Matrix, vector multiplications
 - Polynomials
 - Minimax, Remez, Chebyshev approximations
 - Depth $\lfloor \log_2 d \rfloor$ for degree d polynomial

* Figure adapted from Dr. Damien Stehlé, CryptoLab Inc.

Recent Advances in FHE

Recent Advances in FHE: Topics under the spotlight

Applications

- SVM, PCA [EP:CCJ+23]
- CNN, DNN [BMC:HPCCC22]
- LM, **LMM**
- Linear Algebra
- Protocols using FHE

Security

- **IND-CPA**^{*D*} [CCS:CCP+24]
- IND-CVA
- Func-CVA
- IND-CPA^C

New Functionalities

- Bit/Integer-CKKS
- High-precision
- Ring switching

Acceleration

- CPU
 - New KeySwitchings
 - New Arithmetic [EP:CCK+24]
- GPU/FPGA
 - NTT, BTS workloads

Threshold

- Threshold security [CCS:CCP+24]
- Distributed KeyGen
- Distributed Dec
 - Smaller modulus
 - New definitions [CCSDS:Choe24]

Recent Advances in FHE: Acceleration: GPU

- Some numbers for CKKS [HEaaN]
 - 22-bit Bootstrapping, 2¹⁶ real numbers
 - [CPU] 6.9s in Intel Xeon Gold 6342 ≈ 0.1ms/ real number
 - [GPU] 61ms in NVIDIA GeForce RTX 4090 ≈ 0.9μs/ real number
 - GPUs 100x~, FPGAs 1,300x~
 - 22-bit Multiplication takes 73.6ns/ real number in GPU

Recent Advances in FHE: Application: LMM [RKP+24]

Some numbers for Language Model

BERT fine-tuning

- 5-17 hours in 8 GPUs for most of the downstream tasks
- some accuracy degradation

- L	.LA	M	A2	-7B
-----	-----	---	-----------	-----

Task	Plaintext	under HE
Task	Full+SM	Full+GK
CoLA (Matthews corr. ↑)	0.2688	0.1575
$\mathop{\mathbf{MRPC}}_{(F1 \uparrow)}$	0.8304	0.8147
RTE (Accuracy ↑)	0.5884	0.5993
STSB (Pearson ↑)	0.8164	0.7997
SST-2 (Accuracy ↑)	0.8991	0.8188
QNLI (Accuracy ↑)	0.8375	0.7827
Average	0.7068	0.6621

181.5 seconds for one token generation in 8 GPUs

Recent Advances in FHE: Security: IND-CPA^D Attack [CCS:CCP+24]

^{*} Figure adapted from Elias Suvanto, CryptoLab Inc.

IND-CPA security:

The [*] do not leak any information

about msg, 🗐 and 👄

IND-CPAD security:

Even if is shared, the [*] do not leak any additional information

Recent Advances in FHE: Security: IND-CPA^D Attack [CCS:CCP+24]

Secure outsourced computation

Secure outsourced computation with feedback

 \triangle This scenario is not captured by **IND-CPA** security

* Figure adapted from Elias Suvanto, CryptoLab Inc.

Recent Advances in FHE: Security: IND-CPA^D Attack [CCS:CCP+24]

Bootstrapping (BTS) in CKKS

- BTS is basically ModSwitch from Q to $Q' \gg Q$, and evaluating "Mod Q" function
- $b + as = \Delta m + e \mod Q$ → $b + as = \Delta m + e + QI$ for some I.

$$\rightarrow b + as = \Delta m + e + QI \mod Q'$$
.

- 1. The integer **I** comes from $\langle ct, s \rangle$
- 2. EvalMod is correct iff -K < I < K
- 3. Incorrectness means
- 1. Hint: highly likely that
- $|I| \ge K$ ct // s

^{*} Figure adapted from Elias Suvanto, CryptoLab Inc.

Recent Advances in FHE: Security: IND-CPA^D Attack [CCS:CCP+24]

	Plaintext space	IND-CPA ^D st atus belief	In many libraries	Reasons
BFV/BGV (2012)		✓	×	Incorrect noise upper bound
DM/CGGI (2015)	small integers	✓	×	High failure probability
discrete-CKKS (2024)	small integers	✓	×	High failure probability
CKKS (2017)		×	×	High failure probability
CKKS (+ noise flooding)		✓	×	High failure probability

^{*} Table adapted from Elias Suvanto, CryptoLab Inc.

Recent Advances in FHE: New Functionalities: Bit/Integer-CKKS

Problem

- Operation type highly affects performance
 - Bits, small integers → DM/CGGI
 - Large integers, finite field → BGV/BFV

 Hard to go back and forth between different types of operations.

Recent Advances in FHE: New Functionalities: Bit/Integer-CKKS

- Binary gate operations using CKKS
 - Encode $b \in \{0,1\}$ into $b + \varepsilon \in \mathbb{R}$
 - Cleaning $b + \varepsilon$ into $b + \varepsilon^*$, where $\varepsilon^* \ll \varepsilon$ using low-degree polynomial

^{*} Figure adapted from Dr. Damien Stehlé, CryptoLab Inc.

Recent Advances in FHE: New Functionalities: Bit/Integer-CKKS

How to?

Bootstrapping (BTS) in CKKS

- BTS is basically evaluating "Mod Q" function
 - $b + as = \Delta m + e \mod Q \rightarrow b + as = \Delta m + e + QI$ for some I.

* Figure adapted from Elias Suvanto, CryptoLab Inc.

Recent Advances in FHE: New Functionalities: Bit/Integer-CKKS

- Cleaning + Bootstrapping
 - [EC:BCKS24] Bits: For $b \in \{0,1\}, \frac{b}{2} + \varepsilon + I \rightarrow b + O(\varepsilon^2)$:
 - $\frac{1}{2}\left(1+\sin\left(2\pi x-\frac{\pi}{2}\right)\right)=b+O(\varepsilon^2) \text{ for } x=\frac{b}{2}+\varepsilon+I \text{ and } b\in\{0,1\}.$
 - [Integers] For $m \in \mathbb{Z}_t$,
 - $\frac{1}{t} \cdot m + \varepsilon + I \rightarrow e^{2\pi \left(\frac{1}{t} \cdot m + \varepsilon + I\right)i} = e^{2\pi \left(\frac{1}{t} \cdot m + \varepsilon\right)i} \rightarrow \text{Imag part} \approx \frac{2\pi}{t} \cdot m + \varepsilon^*$

	CGGI	[DMPS24]	[BCKS24]	[BKSS24]
Amortized Binary gate time	~10ms	27.7μs	17.6μs	7.39µs

Problem

- RLWE-based schemes use modulus of 700~2900 bits
- \rightarrow Need efficient polynomial operations in R_Q for $Q = q_0 q_1 \cdots q_{\ell-1}$ $(q_i \approx \Delta)$.

Residue Number System (RNS)

- Relatively prime $q_i \rightarrow R_Q \cong R_{q_0} \times \cdots \times R_{q_\ell}$ based on CRT
 - $\mathcal{O}(\log^2 Q) \rightarrow \mathcal{O}(\sum_i \log^2 q_i) \approx \mathcal{O}(\ell \cdot \log^2 Q^{1/\ell}) \approx \mathcal{O}\left(\frac{1}{\ell} \cdot \log^2 Q\right)$

Number Theoretic Transform (NTT)

- For NTT prime $q_i \equiv 1 \mod 2N \rightarrow$ efficient polynomial mult.
 - $\mathcal{O}(N^2) \to \mathcal{O}(N \log N)$

Problem

 Use NTT primes as RNS moduli, 40~60 bit in 64-bit CPU.

- Reserved, special-sized moduli for BTS
 - CtS, EvalMod: e.g., $q_i \approx \Delta \approx 2^{45}$
 - StC: e.g., $q_i \approx \Delta \approx 2^{35}$
- → **Optimized** modulus consumption & performance for target precision
 - e.g., for 20-bit BTS:

Problem

- #RNS moduli matters the performance & memory
 - Costs O(#RNS moduli) or O (#RNS moduli)²

■ But due to $q_i \approx \Delta$, we cannot have optimal,

#RNS moduli
$$\approx \frac{\log_2 PQ_{\text{max}}}{\text{word-size}}$$

How to?

 Fill the moduli chain with mostly the word-sizes, but also allow prior optimizations.

- Rational Rescale
 - $Q \rightarrow lcm(Q, Q') \rightarrow Q'$

- Key Switching (part of Mult and Rotate)
 - We need a modulus for key (PQ_{max}) that is divisible by any possible Q.

How to?

Sprout, a flexible part in Q

- E.g. sprout of $r=2^{62}$, for where q_i are 62-bit RNS primes,
 - $Q = q_0 \cdot q_1 \cdots q_{\ell-1} \cdot 2^{\alpha}$
 - $Q_{max} = q_0 \cdot q_1 \cdots q_{L-1} \cdot 2^{62}$

But, not so great for computing 262 part

- Embedded NTT [CHK+21] & Composite NTT
 - 2^{15} , $q_1 = 2^{16} + 1$, $q_2 = 30$ -bit prime
 - $\mathbb{Z}_{q_1} \times \mathbb{Z}_{q_2} \cong \mathbb{Z}_{q_1q_2}$ as $q_1q_2 \approx 2^{46} \Rightarrow$ NTT for q_1q_2
 - Embed $\mathbb{Z}_{2^{15}}$ into \mathbb{Z}_{q^*} for a 62-bit NTT prime q^* .
- Overall, we can achieve near-optimal,

#RNS moduli
$$\approx \left[\frac{\log_2 PQ_{\text{max}}}{\text{word-size}} \right] + 1$$

$N = 2^{15}$		logn	#	dnum				
$\log PQ_{\rm max} = 777$	Base	StC	Mult	EvalMod	CtS	$\log p_i$	π	dilaiii
simple (FTa)	38	$32 + 28 \times 2$	28×5	38 × 8	41×3	42×2	22	10
grafted	$61 \times 10 + 45$					61 × 2	13	6

Operations	0.	Mult. (ms) Relin. Rescale Total			Bootstrap. (ms)			
Operations	Tensor	Relin.	Rescale	Total	StC	CtS	EvalMod	Total
simple		310.09					3,940.44	
grafted	5.17	109.93	24.74	139.84	741.36	2,990.17	1,649.86	6,814
Measured gain	1.89×	2.82×	1.56×	2.56×	0.88×	2.55×	2.39×	2.44×
Expected gain	1.82×	2.54×	$1.82 \times$		1×	$2.54 \times$	1.82×	2.07×

^{*} Table borrowed from [EP:CCK+24]

Sizes	Ciphertext (KiB)	Switching key (KiB)
simple grafted	10,240 6,144	112,640 43,008
Measured gain Expected gain	↓ 40.0 % ↓ 40.0 %	↓ 61.8 % ↓ 61.8 %

^{*} Table borrowed from [EP:CCK+24]

Thank You!

References

- [EP:CCJ+23] Cheon, J. H., Choe, H., Jung, S., Kim, D., Lee, D. H., & Park, J. H. (2023). Arithmetic PCA for Encrypted Data. Cryptology ePrint Archive.
- [BMC:HPCCC22] Hong, S., Park, J. H., Cho, W., Choe, H., & Cheon, J. H. (2022). Secure tumor classification by shallow neural network using homomorphic encryption. BMC genomics, 23(1), 284.
- [CCS:CCP+24] Cheon, J. H., Choe, H., Passelèque, A., Stehlé, D., & Suvanto, E. (2024, December). Attacks against the IND-CPAD security of exact FHE schemes. In Proceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications Security (pp. 2505-2519).
- [EP:CCK+24] Cheon, J. H., Choe, H., Kang, M., & Kim, J. (2024). Grafting: Complementing rns in ckks. Cryptology ePrint Archive.
- [CCSDS:Choe24] Choe, H. (2024, December). Toward Practical Threshold FHE: Low Communication, Computation and Interaction. In Proceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications Security (pp. 5107-5109).
- [HEaaN] CryptoLab Inc, HEaaN Library, 2022. Available at https://heaan.it/.
- [RKP+24] Rho, D., Kim, T., Park, M., Kim, J. W., Chae, H., Cheon, J. H., & Ryu, E. K. (2024). Encryption-friendly LLM architecture. arXiv preprint arXiv:2410.02486.
- [EC:BCKS24] Bae, Y., Cheon, J. H., Kim, J., & Stehlé, D. (2024, May). Bootstrapping Bits with CKKS. In Annual International Conference on the Theory and Applications of Cryptographic Techniques (pp. 94-123). Cham: Springer Nature Switzerland.
- [AC:BKSS24] Bae, Y., Kim, J., Stehlé, D., & Suvanto, E. (2025). Bootstrapping small integers with CKKS. In International Conference on the Theory and Application of Cryptology and Information Security (pp. 330-360). Springer, Singapore.