

Project Path Planning Team1

Milestone:

Milestone	Date	Status
Run first successful PythonRobotics Path Planning Algorithm with CoppeliaSim	08.11.2023	<u> </u>
Run first successful PythonRobotics Path Tracking Algorithm with CoppeliaSims (Open Loop)	15.11.2023	<u> </u>
Raspberry Pi Software Deployment	15.11.2023	<u></u>
Run first successful PythonRobotics Path Tracking Algorithm with CoppeliaSims (Closed Loop)	22.11.2023	<mark>⊕</mark>
Simulation: Path Planning - Car Model Adaption	29.11.2023	©
Simulation: Path Tracking - Car Model Adaption	29.11.2023	<u>©</u>
SW Integration for real RVR	13.12.2023	<u> </u>
Path Planning/Tracking Runtime Optimization	03.01.2024	<u> </u>
Complete Documentation	31.01.2024	<u> </u>
		⊚

Results in the report period

Results (achi	eved, not achieved, planned)
Results achieved	Software Tasks (assigned to Laurens): • Implementation of closed loop Path Tracking Algorithm
	Deployment Tasks (assigned to Laurens):
	Deploy Path Planning SW to RaspberryPi
	Environment Modeling Tasks (assigned to Roman):
	CoppeliaSim: Model car/robot (Model decision by Car Hardware Team)
	CoppeliaSim: Model common parking scenes (Parallel Parking, Perpendicular Parking)
	Modify the car model with different caterpillars that have a script for movement.
	Make a model with the dimensions of a real car.
	Documentation Tasks (assigned to Roman):
	Documentation of Issues and Solvings
	Deployment Tasks:
	Runtime and PathLength Profiling SW for RaspberryPi (assigned to Lam)

2020-10-19	C:\Daten\HDA\Templates\VorlagenLV\Statusbericht_Vorla ge.doc	Version:	Page: 1 / 6
	96.000		

Project Path Planning Team1

Report Period:

CW 47

h_da HOCHSCHULE DARMSTADT UNIVERSITY OF APPLIED SCIENCES fbi FACHBEREICH INFORMATIK

Results not achieved	
Planned results fort he next period	POSTPONED TOPICS: Build OMPL Python binding for C++ (Windows & MacOS) Use OMPL Path-Planning-Algorithms in CoppeliaSim

Problems, Risks, Measures in Report Period

a) Which problems have been occured?

Path Tracking / Path Planning:

- Use Coppelia "simulation time" instead of "system time" to compute time delta in Stanley Controller
- Use CoppeliaSim Real-Time Mode:

- API sim.setJointTargetVelocity(handleID, velocity=1.0) doesn't set velocity to 1 [deg/s] Instead the velocity of robot joints is multiplied by factor 57.29578
- Increase robot radius in Path Planning Dijkstra / AStar to avoid collisions with rectangular obstacles
 - \rightarrow Path Planning Algorithm for Autonomous Parking needed which can handle rectangular obstacles
- b) Which (new) risks can lead to problems?
 - Runtime of Motion Planning algorithms
- c) So far undertaken countermeasures? Who? Until when?
 - Runtime Analysis on Raspberry Pi (assigned to Lam)
 - Runtime Optimization Planning/Tracking (assigned to tbd)
- d) Necessary decisions to take? By whom? Until when?
 - •

Project Path Planning Team1

Issues

Issues	Name Model parking scenes	Category Environment Modeling Tasks
Issues appeared	The script is not working, all videos and c	documentations are too old for this version of CoppeliaSim
What we tried	 03: Path Planning with a Differential D this video is too old and there is no Path 2) Watched CoppeliaSim: Differential Drive CoppeliaSim: Differential Drive Car, C (maybe because of 4 wheels instead of 2 3) Watched CoppeliaSim: Line Follower (company) 	ve Car, Control (2 of 3) (control (2 of 3)) - the script is not working on our model
Solutions	Choose other caterpillars that have a scri propulsion).	ipt (model browser -> components -> locomotion and

Issues	Name Car collision	Category Environment Modeling Tasks
Issues appeared	The caterpillars have some invisible dynacar collides with air and rides in the air.	amic cuboids that are used for moving. Because of them, the
What we	Make cuboids smaller (Decreases speed	of the car);
tried	Move them to the center of the car (But the	ney start rotating with bigger radius);
	Remove them (The car just stops moving));

2020-10-19	C:\Daten\HDA\Templates\VorlagenLV\Statusbericht_Vorla ge.doc	Version:	Page: 3 / 6
1			

Report Period:

Project Path Planning Team1 CW 47

Solutions	Moved the joints inside the car. Make these cuboids smaller, so now the car can ride on the floor properly, but the speed of the car decreases.

Issues	Name	Category
Issues appeared		
What we tried		
Solutions		

C:\Daten\HDA\Templates\VorlagenLV\Statusbericht_Vorla Version: Page: 4 / 6	2020-10-19	C:\Daten\HDA\Templates\VorlagenLV\Statusbericht_Vorla ge.doc	Version:	Page: 4 / 6
--	------------	--	----------	----------------

Project Path Planning Team1

Stanley Controller (Stanford University - DARPA Grand Challenge)

Figure 14: Stanley method geometry

- = Nonlinear feedback function of the cross track error.
- = Controller continuously computes error to path to adjust the steering angle accordingly, aiming to minimize the deviation and keep the vehicle on track
- = Has exponential convergence

Variable	Description
(c_x, c_y)	Nearest path point
v	Vehicle velocity
e_fa	Cross track error (lateral deviation of the vehicle from the desired path) measured from the center of the front axle to the nearest path point
δ	Front axle steering angle
θ	Heading of the vehicle
θ_p	Heading of the path at closest point (c_x, c_y)
k	Gain parameter

Steering error θ_e between Heading of vehicle and Heading of path:

$$\theta_e = \theta - \theta_p,$$

Term 1: Steering error to get parallel to path heading

Term 2: Steering error to converge toward the path

2020-10-19	C:\Daten\HDA\Templates\VorlagenLV\Statusbericht_Vorla	Version:	Page:
	ge.doc		5/6

Project Path Planning Team1

$\delta(t) = \theta_e(t) + \tan^{-1} \left(\frac{k e_{fa}(t)}{v_x(t)} \right)$

If e_fa is non-zero \rightarrow Steering angle delta is adjusted so that the intended trajectory intersects the path tangent from (c_x, c_y) at kv(t) until from the front axle. As e_fa increases, the wheels are steered further toward the path.

```
def stanley_control(state, cx, cy, cyaw, last_target_idx):
         Stanley steering control.
         :param state: (State object)
         :param cx: ([float])
         :param cy: ([float])
83
         :param cyaw: ([float])
         :param last_target_idx: (int)
         :return: (float, int)
         current_target_idx, error_front_axle = calc_target_index(state, cx, cy)
         if last target idx >= current target idx:
             current_target_idx = last_target_idx
         # theta_e corrects the heading error
         theta_e = normalize_angle(cyaw[current_target_idx] - state.yaw)
         # theta d corrects the cross track error
         theta d = np.arctan2(k * error_front_axle, state.v)
         # Steering control
         delta = theta e + theta d
         return delta, current target idx
```

C:\Daten\HDA\Templates\VorlagenLV\Statusbericht_Vorlage.doc	Version:	Page: 6 / 6