Міністерство освіти і науки України

Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»

Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 4 з дисципліни

«Алгоритми та структури даних-1.

Основи алгоритмізації»

«Дослідження ітераційних циклічних алгоритмів»

Варіант <u>25</u>

Виконав	III-15, Плугатирьов Дмитро Валерійович
студент	(шифр, прізвище, ім'я, по батькові)
Перевірив	
	(прізвише, ім'я, по батькові)

Лабораторна робота № 4

Дослідження арифметичних циклічних алгоритмів

Мета – дослідити особливості роботи арифметичних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Варіант 25

Завдання

25. Нехай
$$\upsilon_1=\upsilon_2=0,\ \upsilon_3=1.5,\ \upsilon_i=\frac{i+1}{i^2+1}\upsilon_{i-1}-\upsilon_{i-2}\upsilon_{i-3},\ i=4,\ 5,\ \dots$$
. Для заданого натурального числа $n\ (n\ge 4)$ знайти υ_n .

1. Постановка задачі

Знайти член послідовності з необхідним індексом, величину якого користувач вводить самостійно. Знаходження цього члену відбувається завдяки циклічному розрахунку кожного з членів послідовності до останнього включно. Присвоєння отриманого значення на ітерації циклу до змінної та переприсвоєння вже існуючих відбувається почергово: таким чином, щоб кожне нове розраховане значення на кожній ітерації циклу було присвоєне до змінної-поточного члена, та до найстарішого члена - значення члену більшого на одиницю за індексом.

Результатом виконання програми ϵ значення шуканого члена послідовності зі встановленим заздалегідь індексом.

2. Побудова математичної моделі

Змінна	Tun	Ім'я	Призначення
Кінцевий індекс	Цілочисельний	n	Початкові дані
Член, індекс	Дійсний	v1	Початкові дані
якого менший на			
1 за поточний			
Член, індекс	Дійсний	v2	Початкові дані
якого менший на			
2 за поточний			
Член, індекс	Дійсний	v3	Початкові дані
якого менший на			
3 за поточний			
Шуканий член	Дійсний	vn	Результат
Поточний член	Дійсний	V	Проміжні дані
Лічильник в	Цілочисельний	i	Початкові дані
циклі			

Дія pow(x, n) означає піднесення числа x до степеня n.

3. Розв'язання

Програмні специфікації записати у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначити основні дії

Крок 2. Перевірити введений користувачем індекс на достовірність умовам задачі.

Крок 3. Знайти потрібний член послідовності за допомогою арифметичного циклу.

Крок 4. Перевірити належність значення результату до обраного типу даних: вивести останній член послідовності, якщо належить, інакше ні.

4. Псевдокод

Крок 1

початок

перевірити введений користувачем індекс на достовірність умовам задачі

знайти потрібний член послідовності за допомогою арифметичного циклу

перевірити належність значення результату до обраного типу даних: вивести останній член послідовності, якщо належить, інакше ні

кінець

Крок 2

початок

введення п

повторити

введення п

поки n < 4

все повторити

знайти потрібний член послідовності за допомогою арифметичного циклу

перевірити належність значення результату до обраного типу даних: вивести останній член послідовності, якщо належить, інакше ні

кінець

Крок 3

початок

введення п

повторити

введення п

поки n < 4

все повторити

v3 = 0

v2 = 0

v1 = 1.5

повторити n – 3 раз

$$v = ((i + 1) / (pow(i, 2) + 1)) * v1 - v2 * v3$$

$$v3 = v2$$

$$v2 = v1$$

$$v1 = v$$

кінець_циклу

перевірити належність значення результату до обраного типу даних: вивести останній член послідовності, якщо належить, інакше ні

кінець

Крок 4

початок

введення п

повторити

введення п

поки n < 4

все повторити

v3 = 0

$$v2 = 0$$

$$v1 := 1.5$$

повторити n – 3 раз

$$v = ((i + 1) / (pow(i, 2) + 1)) * v1 - v2 * v3$$

$$v3 = v2$$

$$v2 = v1$$

$$v1 = v$$

кінець_циклу

якщо vn != 0

T0

вивести vn

все якщо

кінець

Блок-схема

Крок 1

5. Тестування

Блок	Дія 1	Дія 2
Дія	Початок	Початок
1	$n \coloneqq 3$	n := 123
2	n := 369	-
3	$v3 \coloneqq 0, v2 \coloneqq 0, v1 \coloneqq 1.5,$	$v3 \coloneqq 0, v2 \coloneqq 0, v1 \coloneqq 1.5,$
	$\mathbf{v} \coloneqq 0$	v := 5.60175e-200
4	-	vn := 5.60175e-200
	Кінець	Кінець

6. Висновок

В даній лабораторній роботі я дослідив особливості роботи арифметичних циклів та набув практичних навичок їх використання під час складання програмних специфікацій. Під час виконання даного завдання мені довелося скористатися арифметичним циклом, що закріпило мої знання з цієї теми.