Permutazioni

Andrea Canale

December 14, 2024

Contents

1	\mathbf{Per}	mutazioni	2
	1.1	Rappresentare permutazioni	2
2	Cor	nposizione di permutazioni	2
	2.1	Proprietà della composizione	2
3	Per	mutazioni inverse	2
4	Cicli		
	4.1	Inverso di un ciclo	3
5	Cicli disgiunti		
	5.1	Prodotto di cicli disgiunti	3
	5.2	Tipo di una composizione di cicli disgiunti	4
6	Pro	odotto di scambi	4
7	Par	ità di permutazioni	4
	7.1	Parità di cicli	4
	7.2	Parità di una composizione di cicli disgiunti	5
8	Per	iodo di una permutazione	5
	8.1	Periodi noti	5
		8.1.1 Periodo di un k-ciclo	5
		8.1.2 Periodo di una trasposizione	5
		8.1.3 Periodo di un prodotto di cicli disgiunti	5
		8.1.4 Periodo di una composizione di trasposizioni	5
	8.2	Calcolo di potenze n-esime	5

1 Permutazioni

Dato un insieme A, la sua permutazione è una funzione biettiva che cambia l'ordine degli elementi all'interno dell'insieme.

L'insieme delle permutazioni su n elementi è denotato come:

$$S_n = \{\text{permutazioni su S}\}\$$

Dove S è l'insieme che prende tutti i numeri da 0 a n.

1.1 Rappresentare permutazioni

Per rappresentare le funzioni usiamo una notazione matriciale di questo tipo:

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

Dove nella prima riga abbiamo l'insieme originale e nella seconda riga la sua permutazione.

2 Composizione di permutazioni

L'insieme delle permutazioni S_n ha un operazione di composizione definita come la composizione di funzioni, in quanto la permutazione è una funzione.

$$\sigma \cdot \tau = a \to \sigma(\tau(a))$$

2.1 Proprietà della composizione

- è associativa: $o\sigma o (\tau o \nu) = (\sigma o \tau) o \nu$
- $\bullet\,$ Ha un elemento neutro tale che $\sigma\cdot id=\sigma$
- Esiste un inverso (in quanto le permutazioni sono biettive) tale che $b \cdot b^{-1} = b^{-1} \cdot b = 1$
- Non vale la proprietà commutativa (come nella composizione di funzioni)

Le permutazioni formano un gruppo non commutativo.

3 Permutazioni inverse

Data la permutazione

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 4 & 2 & 5 \end{pmatrix}$$

Il suo inverso sarà:

$$\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 1 & 3 & 5 \end{pmatrix}$$

Da questo ne deduciamo che per calcolare l'inverso di una permutazione basta invertire le righe della permutazione di partenza e riordinarle.

4 Cicli

Una permutazione viene chiamata cicli se le immagini e le controimmagini della permutazioni combaciano. Cioè quanto ha una struttura del tipo:

$$\begin{pmatrix} 1 & 2 & i_1 & k & i_2 & n \\ 1 & 2 & i_2 & k & i_1 & n \end{pmatrix}$$

Ad esempio in S_9 :

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 5 & 7 & 8 & 3 & 6 & 4 & 2 & 9 \end{pmatrix}$$

4.1 Inverso di un ciclo

L'inverso di un ciclo è il ciclo letto da destra verso sinistra. Ad esempio:

$$\sigma = (3\ 5\ 2)$$
 diventa $\sigma^{-1} = (2\ 5\ 3)$

5 Cicli disgiunti

Due cicli sono disgiunti se la loro intersezione forma un insieme vuoto, o più semplicemente non hanno elementi in comune.

5.1 Prodotto di cicli disgiunti

La composizione di cicli disgiunti commuta.

Ogni permutazione diversa dall'identità può essere scritta come composizione di cicli disgiunti. Esempio:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 4 & 5 & 1 & 6 & 2 & 3 & 9 & 8 & 7 \end{pmatrix}$$

Può essere scritta come (1 4 6 3) (2 5) (7 9)

Da questo ne deduciamo che per scrivere una composizione come prodotto di cicli disgiunti "percorriamo" tutta la permutazione e quando troviamo che un elemento manda al primo chiudiamo il ciclo e riprendiamo il procedimento dal primo numero che manca.

5.2 Tipo di una composizione di cicli disgiunti

Data una composizione di k cicli disgiunti, il suo tipo è la k-upla che contiene la lunghezza di ogni cicli.

Esempio:

 $(1\ 3\ 4\ 7)$ $(2\ 5)$ ha tipo (4,2) oppure (2,4)(forse)

6 Prodotto di scambi

Ogni permutazione si può scrivere come composizione di scambi. Questo deriva dal fatto che ogni ciclo di lunghezza l è composizione di l-1 composizioni.

Esempio:

$$c = (2\ 3\ 1\ 5\ 4) = (2\ 4)(2\ 5)(2\ 1)(2\ 3)$$

Inoltre questa scrittura non è univoca perchè aggiungendo un'identità, ad esempio (2 3) otteniamo lo stesso risultato.

Notiamo che le trasposizioni che intervengono non sono disgiunte e questo comporta che la commutatività non vale.

Questa notazione viene usata per risparmiare spazio, infatti le permutazioni di S_n sono n! mentre il prodotto di scambi è $\binom{n}{2}$

7 Parità di permutazioni

Le permutazioni sono classificate in base al numero di scambi che la compongono.

- Le permutazioni pari si scrivono con un numero pari di trasposizioni
- Le permutazioni dispari si scrivono con un numero dispari di disposizioni

La cardinalità dell'insieme delle permutazioni pari e dispari è $\frac{n!}{2}$

7.1 Parità di cicli

- Un l-ciclo è pari se l è dispari
- Un l-ciclo è dispari se l è pari

Questo viene dal teorema precedente dove imponevamo che un ciclo si può scrivere come prodotto di l-1 trasposizioni.

7.2 Parità di una composizione di cicli disgiunti

La parità di una composizione di cicli disgiunti è data dalla somma di tutte le lunghezze dei singoli cicli. Se questa somma è pari allora la permutazione è pari, altrimenti è dispari.

8 Periodo di una permutazione

Data una permutazione σ , il periodo è il minimo numero intero n > 0 tale che $\sigma^n = (1)$ Questo numero è scritto come $per(\sigma)$

8.1 Periodi noti

8.1.1 Periodo di un k-ciclo

Il periodo di un k-ciclo è k.

8.1.2 Periodo di una trasposizione

Il periodo di una trasposizione è sempre uguale al numero di componenti che la compongono. Ad esempio $per((1\ 2))=2$

8.1.3 Periodo di un prodotto di cicli disgiunti

Il periodo di un prodotto di cicli disgiunti è dato dal minimo comune multiplo delle lunghezze dei cicli.

Ad esempio: σ ha tipo $(l_1 \dots l_k)$ allora $per(\sigma) = mcm(l_1 \dots l_k)$

8.1.4 Periodo di una composizione di trasposizioni

Questo non si può calcolare direttamente ma bisogna sempre riscrivere la composizione come prodotto di cicli disgiunti.

8.2 Calcolo di potenze n-esime

Data una permutazione σ , se vogliamo calcolare σ^n possiamo procedere seguendo questi passi:

- Trovare $per(\sigma) = p$
- Calcolare $\frac{n}{n}$ (compreso il resto r)
- Scrivere $\sigma^n = \sigma^{q \cdot p + r} = (\sigma^p)^q \cdot \sigma^r$

- $\bullet\,$ Ora possiamo semplificare $(\sigma^p)^q$ perchè sappiamo che è uguale all'identità (1)
- Calcoliamo solo σ^r