1. Ideal gaz molekulyar-kinetik teoriyasınıń tiykarğı teńlemesi:

$$p = \frac{1}{3}m_0n\overline{\upsilon}^2$$

$$p = \frac{1}{3}m_0n^2\overline{\upsilon}^2$$

$$p = \frac{2}{3}m_0n\overline{\upsilon}$$

$$p = \frac{1}{3}m_0\overline{\upsilon}^2$$

$$p = \frac{1}{3}m_0\overline{\upsilon}^2$$

$$D.$$

2. Mendeleev-Klapeyron teńlemesi:

*A.
$$pV = \frac{m}{M}RT$$

$$B. \qquad p = \frac{m}{M}RTV$$

$$PV = \frac{m}{M}\kappa T$$

$$D. pV = \frac{M}{m}RT$$

3. Bolcman turaqlısı mánisin kórsetiń

A.
$$6,02 \cdot 10^{-3} \frac{1}{mol}$$
B. $6,02 \cdot 10^{23} \frac{1}{mol}$
C. $8,31 \frac{j}{K \cdot mol}$
 $*D.$ $1,38 \cdot 10^{-23} \frac{J}{K}$

4. Universal gaz turaqlısı mánisin kórsetiń

1,38 · 10⁻²³
$$\frac{J}{K}$$

B.

6,02 · 10²³ $\frac{1}{mol}$

*C.

8,31 $\frac{J}{K \cdot mol}$

D. 22,4 · 10⁻³ M^3

5. Avogadro sanın kórsetiń

6. Bolcman turaqlısınıń birligi:

*A. J/K B. J/mol•K C. mol•K/J D. mol •K.

7.-17 ⁰ C temperatura Kelvin shkalasında qanday temperaturaga tuwrı keledi

*A. 256 K B.-256 K C. 290 K D.-280 K

8. Úsh mol zattaģi molekulalar sanın esaplań ($N_A=6\cdot 10^{23} \text{ mol}^{-1}$). *A. $1.8\cdot 10^{24}$ B. $2\cdot 10^{23}$ C. $0.5\cdot 10^{24}$ D. $9.0\cdot 10^{24}$

9. Birdey temperaturadağı birdey ballonlarda vodorod hám kisloroddıń teń massaları bar. Gazlardan qaysı-biri ıdıs diywalına neshe ret kúshlilew basım kórsetedi?

- A. kislorod 16 ret. B. vodorod 8 ret.
- C. kislorod 8 ret. D. vodorod 16 ret.
- 10. 0, 036 kg suwda neshe molekula bar? N_A =6·10²³ mol⁻¹.

- A. $3 \cdot 10^{23}$. *B. $12 \cdot 10^{23}$ C. $6 \cdot 10^{20}$. D. $6 \cdot 10^{23}$.

- 12. 1, 8·1024 molekuladan ibarat bolgan element mugdarı tapilsin (NA=6·1023 mol-1).
- A. 3 mol B. 5 mol C. 2 mol D. 1 mol E. 4 mol
- 13. Eger basım 4 ret kemeytirilse ideal gaz kólemi: (T-const, m-const)
- A. 2 ret asadı B. 2 ret azayadı C. 4 ret asadı
- D. 4 ret azayadı E. ózgermeydi
- 14. Eger kólem4 ret kemeytirilse ideal gaz basımı : (T-const, m-const)
- A. 4 ret asadı B. 4 ret azayadı C. 16 ret asadı
- D. 16 ret azayadı E. ózgermeydi
- 15 Eger basım 2 ret asırılsa ideal gaz kólemi: (T-const, m-const)
- A. 4 ret asadı B. 4 ret azayadı C. 16 ret asadı
- D. 16 ret azayadı E. ózgermeydi
- 16. Eger izotermik processda ideal gazdıń berilgen massasında kólem 3 ret asırılsa, basım :
- A. 3 ret asadı B. 3 ret azayadı C. 9 ret asadı
- D. 9 ret azayadı E. ózgermeydi
- 17. Eger izotermik processda ideal gazdıń berilgen massasında kólem 3 ret kemeytirilse, basım :
- A. 3 ret asadı B. 3 ret azayadı C. 9 ret asadı

- D. 9 ret azayadı E. ózgermeydi
- 18. Eger izobarik túrde, ideal gazdıń berilgen massasında, absolyut temperaturanı 4 ret asırılsa, kólem:
- A. 4 ret asadı B. 4 ret azayadı C. 16 ret asadı
- D. 16 ret azayadı E. ózgermaydi
- 19. Eger izobarik túrde, ideal gazdıń berilgen massasında, absolyut temperaturanı 4 ret kemeytirilse, kólem:
- A. 4 ret asadı B. 4 ret azayadı C. 16 ret asadı
- D. 16 ret azayadı E. ózgermeydi
- 20. Eger izoxorik túrde, ideal gazdıń berilgen massasında, absolyut temperaturanı 4 ret asırılsa, basım :
- A. 4 ret asadı B. 4 ret azayadı C. 16 ret asadı
- D. 16 ret azayadı E. ózgermeydi