- ▶19. The following ordinary difference table is for $f(x) = x + \sin(x)/3$. Use it to find
 - a. f'(0.72) from a cubic polynomial.
 - b. f'(1.33) from a quadratic.
 - c. f'(0.50) from a fourth-degree polynomial.

In each part, choose the best starting *i*-value.

i	x_i	f_i	Δf_i	$\Delta^2 f_i$	$\Delta^3 f_i$	$\Delta^4 f_i$
0	0.30	0.3985	0.2613	-0.0064	-0.0022	0.0003
1	0.50	0.6598	0.2549	-0.0086	-0.0018	0.0004
2	0.70	0.9147	0.2464	-0.0104	-0.0014	0.0005
3	0.90	1.1611	0.2360	-0.0118	0.0010	
4	1.10	1.3971	0.2241	-0.0128		
5	1.30	1.6212	0.2113			
6	1.50	1.8325				

- 43. Simpson's 3/8 rule cannot be applied directly to Exercise 41 because the number of panels is not divisible by three. Still, you can use it in combination with the 1/3 rule over two panels. There are several choices of where to use the 1/3 rule. Which of these choices gives the most accurate answer?
- ▶41. Repeat Exercise 35, but now use Simpson's 1/3 rule.
- ▶35. Use the data in the table to find the integral between x = 1.0 and 1.8, using the trapezoidal rule:
 - a. With h = 0.1.
 - b. With h = 0.2.
 - c. With h = 0.4.
- **36.** The function tabulated in Exercise 35 is $\cos h(x)$. What are the errors in parts (a), (b), and (c)? How closely are these proportional to h^2 ? What errors are present besides the truncation error?
- **42.** Use the error term for Simpson's 1/3 rule to bound the errors in Exercise 41 for each application of the rule. What are the values for ξ for each value of h?

x	f(x)		
1.0	1 5 4 2		
1.0 1.1	1.543 1.669		
1.2	1.811		
1.3	1.971		
1.4	2.151		
1.5	2.352		
1.6	2.577 2.828		
1.7 1.8	3.107		
	21201		

- 51. Compute the integral of f(x) = sin(x)/x between x = 0 and x = 1 using Simpson's ¹/₃ rule with h = 0.5 and then with h = 0.25. (Remember that the limit of sin(x)/x at x = 0 is 1.) From these two results, extrapolate to get a better result. What is the order of the error after the extrapolation? Compare your answer with the true answer.
- **64.** Repeat Example 5.10, but use the trapezoidal rule. At what value for *h* do the computations terminate? How many function evaluations are required compared to Simpson's 1/3 rule?
- **EXAMPLE 5.10** Integrate $f(x) = 1/x^2$ over the interval [0.2, 1] using Simpson's $\frac{1}{3}$ rule. Use a tolerance value of 0.02 to terminate the halving of $h = \Delta x$. From calculus, we know that the exact answer is 4.0.

We introduce a special notation that will be used throughout this section:

 $S_n[a, b] =$ the computed value using Simpson's $\frac{1}{3}$ rule with $\Delta x = h_n$ over [a, b].

If we use this notation, the composite Simpson rule becomes

$$I(f) = S_n[a, b] - \frac{(b-a)}{180} h_n^4 f^{(4)}(\xi), \quad a < \xi < b.$$

Using this with $h_1=(1.0-0.2)/2=0.4$, we compute S_1 [0.2, 1.0]. We continue halving $h,\,h_{n+1}=h_n/2$, computing its corresponding $S_{n+1}[a,\,b]$ until $|S_{n+1}-S_n|<0.02$, the

tolerance value. The following table shows the results:

n	h_n	S_n	$ S_{n+1} - S_n $
1	0.4	4.948148	
2	0.2	4.187037	0.761111
3	0.1	4.024218	0.162819
4	0.05	4.002164	0.022054
5	0.025	4.000154	0.002010
5	0.023	4.000134	

From the table we see that, at n = 5, we have met the tolerance criterion, because $|S_5 - S_4| < 0.02$. A Romberg extrapolation gives

$$RS[a, b] = S_5 + \frac{S_5 - S_4}{15} = 4.00002.$$

(We use RS[a, b] to represent the Romberg extrapolation from Simpson's rule.)

73. What is the error if the integral of sin(x)/x over x = [0, 2] is evaluated with a four-term Gaussian formula? How many intervals would be needed with Simpson's 1/3 rule to get the value with the same accuracy?

Ch4

21. Find Padé approximations for these functions, with numerators and denominators each of the third degree:

$$\cos^2(x)$$
, $\sin(x^4 - x)$, xe^x .