Organic Chemistry Concepts LOKT.09.051

σ-bond reactivity III

Elimination reactions

Elimination reaction E2

Synchroneous transition

$$c = c$$

Elimination E2 vs substitution S_N2

I-, Br-, HS-, RS-, NH₃, PH₃

Good nuclephile, weak base: S_N^2

HO⁻, RO⁻, H₂N⁻

Good nucleophile, strong base: S_{N}^{2} & E2

tertBuO-

Weak nucleophile, strong base: E2

$S_N 2$ or E2

$$V = k_{SN2}[RY][Y^*] + k_{E2}[RY][B]$$

S_N^2 and E2 are parallel reactions

10

Elimination E1

E1

Elimination E1 vs substitution S_N1

SUBSTITUTION

OR

ELIMINATION?

tertiary substrate poor nucleophile polar solvent low temp tertiary substrate poor/bulky nucleophile polar solvent high temp

primary substrate strong nucleophile aprotic/nonpolar solvent low temp hindered/tertiary substrate hindered+/basic nucleophile aprotic/nonpolar solvent high temp

Summary

Radical mechanism, substitution reactions

Ionic mechanims, SN1, SN2, E1 and E2

See text in Chapter7