Proposal and Investigation of a framework for Cross App Poisoning attacks detection in Software Defined Networks

Edoardo Ottavianelli, Supervisor Prof. Marco Polverini A.Y. 22/23

SDN Paradigm (using ONOS)

Pros:

- Programmability
- Monitoring
- Flexibility

Cons:

- Security
- Complexity
- Maintenance

Security-Mode ONOS

CAP attack in ONOS

MalHostTracking:

HOST_WRITE

fwd:

- HOST READ
- FLOW_WRITE

ProvSDN (and vIFC)

- Based on Integrity Label Model
- Potentially malicious apps deployed in production environment
- Hooks on NorthBound API
- Based on IFC provenance graph

Limitations of existing solutions

- The integrity labels model severely limits network capabilities
- An attacker could implement a "self-revocation" attack
- High Latency due to runtime checks

Changing detection approach

Offline detection:

- a. Replicate prod. environment
- b. Extensive logging
- c. Log data mining

Application key store

Log mining + graph construction

Timestamp	App1	API1	Parameters
Timestamp	App2	API6	Parameters
Timestamp	App2	API2	Parameters
Timestamp	App3	API5	Parameters
Timestamp	App2	API3	Parameters

. . .

Search for potential CAP attacks

CAP Attack vector set:

$$Cv(G) = \{app0, obj1, app2, obj3, ..., appN-1, objN\} \mid N \ge 3; N is odd$$

Search potential CAP attacks using a time section:

```
Timestamp
                   API1
                           Parameters
            App1
                   API6
Timestamp
            App2
                           Parameters
Timestamp
            App2
                   API2
                          Parameters
                                        1s
            App3
                   API5
Timestamp
                          Parameters
Timestamp
            App2
                   API3
                           Parameters
Timestamp
                   API3
                          Parameters
            App2
```

. . .

. . .

Tests and results 1

- Exploited 240 CAP attacks
- Virtualized 4 hosts and 4 switches using Mininet
- No one of the hosts can receive packets

Tests and results 2

N#	Time section (milliseconds)	potential CAP attacks found	Exec. time
1	10000	26572	5.263378 sec.
2	5000	9211	2.749676 sec.
3	2000	2900	1.213360 sec.
4	1000	1340	76 ms
5	500	584	45 ms
6	200	200	$< 2 \mathrm{\ ms}$
7	100	200	$< 2 \mathrm{\ ms}$
8	50	200	$< 1 \mathrm{\ ms}$
9	10	152	< 1 ms
10	1	43	< 1 ms

- Less than 1ms of overhead
- Secure defense mechanism
- Complete control over the test environment
- Network capabilities not limited

CAP Attack targeting Web app

Paper + CVEs

Cross App Poisoning Attacks Detection in Software Defined Networks

Edoardo Ottavianelli, Marco Polverini

Department of Information engineering, Electronics and Telecommunications (DIET)
University of Roma "Sapienza" - Via Eudossiana 18, 00184 Roma, Italy
Telephone: +39 0644585371, e-mail: name.surname@uniromal.it

CVE-ID	
CVE-2023-24279	Learn more at National Vulnerability Database (NVD) • CVSS Severity Rating • Fix Information • Vulnerable Software Versions • SCAP Mappings • CPE Information
Description	
A cross-site scripting (XSS) vulnerability in Open Networking Foundation ONOS from version

Learn more at National Vulnerability Database (NVD)

CVSS Severity Rating • Fix Information • Vulnerable Software Versions

Description

CVE-2023-30093

CVE-ID

A cross-site scripting (XSS) vulnerability in Open Networking Foundation ONOS from version v1.9.0 to v2.7.0 allows attackers to execute arbitrary web scripts or HTML via a crafted payload injected into the url parameter of the API documentation dashboard.

SCAP Mappings • CPE Information

References

Note: References are provided for the convenience of the reader to help distinguish between vulnerabilities. The list is not intended to be complete.

- MISC:https://www.edoardoottavianelli.it/CVE-2023-30093/
- MISC:https://www.youtube.com/watch?v=jZr2JhDd_S8

Assigning CNA

MITRE Corporation

Future work

- Add auth support for all ONOS API
- Improve Log data mining
- Continue vulnerability research