Relations, representation and composition

2.5. Let $A = \{1, 2, 3\}$, $B = \{a, b, c\}$, and $C = \{x, y, z\}$. Consider the following relations R and S from A to B and from B to C, respectively.

$$R = \{(1, b), (2, a), (2, c)\}$$
 and $S = \{(a, y), (b, x), (c, y), (c, z)\}$

- (a) Find the composition relation $R \circ S$.
- (b) Find the matrices M_R , M_S , and $M_{R \circ S}$ of the respective relations R, S, and $R \circ S$, and compare $M_{R \circ S}$ to the product $M_R M_S$.
- (a) Draw the arrow diagram of the relations R and S as in Fig. 2-7(a). Observe that 1 in A is "connected" to x in C by the path $1 \to b \to x$; hence (1, x) belongs to $R \circ S$. Similarly, (2, y) and (2, z) belong to $R \circ S$. We have

$$R \circ S = \{(1, x), (2, y), (2, z)\}$$

Fig. 2-7

(b) The matrices of M_R , M_S , and $M_{R \circ S}$ follow:

Multiplying M_R and M_S we obtain

$$M_R M_S = \left[\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \end{array} \right]$$

Observe that $M_{R \circ S}$ and $M_R M_S$ have the same zero entries.

Types of relations

2.9. Consider the following five relations on the set $A = \{1, 2, 3\}$:

$$R = \{(1, 1), (1, 2), (1, 3), (3, 3)\},$$
 $\emptyset = \text{empty relation}$
 $S = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)\},$ $A \times A = \text{universal relation}$
 $T = \{(1, 1), (1, 2), (2, 2), (2, 3)\}$

Determine whether or not each of the above relations on A is: (a) reflexive; (b) symmetric; (c) transitive; (d) antisymmetric.

- **2.28.** Let R and S be relations on a set A. Assuming A has at least three elements, state whether each of the following statements is true or false. If it is false, give a counterexample on the set $A = \{1, 2, 3\}$:
 - (a) If R and S are symmetric then $R \cap S$ is symmetric.
 - (b) If R and S are symmetric then $R \cup S$ is symmetric.
 - (c) If R and S are reflexive then $R \cap S$ is reflexive.

- (d) If R and S are reflexive then $R \cup S$ is reflexive.
- (e) If R and S are transitive then $R \cup S$ is transitive.
- (f) If R and S are antisymmetric then $R \cup S$ is antisymmetric.
- (g) If R is antisymmetric, then R^{-1} is antisymmetric.
- (h) If *R* is reflexive then $R \cap R^{-1}$ is not empty.
- (i) If R is symmetric then $R \cap R^{-1}$ is not empty. Wrong answer in the text book

(a) T (e) f (b) T $R = \{ (1, 2) \}$	
(L) T $Q - [(L)]$	
(b) T $R = \{(1, 2)\}$	
$(c) T S = \{(2,1)\}$	
(d) T	
(f) F	
$R = \{ (1,2) \}$ $S = \{ (2,1) \}$	
roll	
$I \cap I \cap$	
(9) T (h) T (i) F $R = \emptyset$	

Equivalence relations and partition

2.14. Consider the **Z** of integers and an integer m > 1. We say that x is congruent to y modulo m, written

$$x \equiv y \pmod{m}$$

if x - y is divisible by m. Show that this defines an equivalence relation on **Z**.

We must show that the relation is reflexive, symmetric, and transitive.

- (i) For any x in Z we have $x \equiv x \pmod{m}$ because x x = 0 is divisible by m. Hence the relation is reflexive.
- (ii) Suppose $x \equiv y \pmod{m}$, so x y is divisible by m. Then -(x y) = y x is also divisible by m, so $y \equiv x \pmod{m}$. Thus the relation is symmetric.
- (iii) Now suppose $x \equiv y \pmod{m}$ and $y \equiv z \pmod{m}$, so x y and y z are each divisible by m. Then the sum

$$(x - y) + (y - z) = x - z$$

is also divisible by m; hence $x \equiv z \pmod{m}$. Thus the relation is transitive.

Accordingly, the relation of congruence modulo m on \mathbf{Z} is an equivalence relation.

2.16. Let R be the following equivalence relation on the set $A = \{1, 2, 3, 4, 5, 6\}$:

$$R = \{(1, 1), (1, 5), (2, 2), (2, 3), (2, 6), (3, 2), (3, 3), (3, 6), (4, 4), (5, 1), (5, 5), (6, 2), (6, 3), (6, 6)\}$$

Find the partition of A induced by R, i.e., find the equivalence classes of R.

Those elements related to 1 are 1 and 5 hence

$$[1] = \{1, 5\}$$

We pick an element which does not belong to [1], say 2. Those elements related to 2 are 2, 3, and 6, hence

$$[2] = \{2, 3, 6\}$$

The only element which does not belong to [1] or [2] is 4. The only element related to 4 is 4. Thus

$$[4] = \{4\}$$

Accordingly, the following is the partition of A induced by R:

$$[{1, 5}, {2, 3, 6}, {4}]$$