CRC 编码检错性能考察

赵启满

College of Electronic and Information Engineering (CEIE), Tongji University 同济大学 电子与信息工程学院

2024年5月16日

需关注

- 信息传输、数据存储过程中,使用 CRC 校验码保障完整性,出错而未被检测到的概率 P_{lie} 。
- CRC 的极限性能,即多少位的错误可以保证 100% 的检出。
- 误码率、数据长的最差情况下,CRC 的未检出率 P_{ue} 是否有下限值,即最低检测性能。

背景知识

- Cyclical Redundancy Check (CRC) 校验码是一种广泛应用的错误检测码。
- 数据 i 与校验码 r 相连,生成 codeword 码字 c。c = [i, r].
- 数据 i、校验码 r 视作多项式, 采取模 2 运算。

$$\begin{split} r(x) &= i(x) \cdot x^m \mod g(x) \\ i(x) &= i_0 + i_1 x + i_2 x^2 + \dots + i_{k-1} x^{k-1} \\ r(x) &= r_0 + r_1 x + r_2 x^2 + \dots + r_{m-1} x^{m-1} \\ g(x) &= x^m + g_{m-1} x^{m-1} + \dots + g_1 x + g_0 \end{split}$$

重要性质

 $c_1 \oplus c_2 \in C$,故原码 c 异或错误图案 $c \oplus c_e \in C$ $c = [i, r], c_e = [e, r_e]$ $c' = [i \oplus e, r \oplus r_e]$ 给定数据的错误图样,前后校验码的汉明距离与数据内容无关。例: $c_e = [e, r_e] = [0110, 1011]$

data	checksum	flipped by 0110	checksum'	codeword dist
0100	0101	0010	1110	5
0110	1011	0000	0000	5
1100	1111	1010	0100	5

表: CRC-4 校验码对比

给定三个原始数据,按 0110 翻转。三者前后的检验码都满足 1011 翻转。

イロトイ団トイミト きょうくで

检错指标

指定码字长度 n, CRC 多项式 g(x), 数据长度 k, 校验码长度 m, 此 (n,k) 码共有 2^k 种码字,可用如下指标衡量此 (n,k) 码的性能:

最小汉明距离 d_{min}

数据 i 与其校验码 r 组成码字 c ,对于任意的码字对 c_1 和 c_2 ,都满足汉明距离大于最小值 d_{\min} 。 (n,k) 码具有最小汉明距离 d_{\min} ,可以检测出所有不大于 d_{\min} – 1 位的错误。

未检出率 P_{ue}

未检出率 P_{ue} 是指在传输过程中,出错而未被检测到的概率,即错码同样为 (n,k) 的有效码字。计算公式如下,其中 A_j 是汉明距离为 j 的码字数量(码重), B_j 为对偶码面。 $P_{ue}(C,p) = \sum_{i=d_{min}}^{n} A_i p^i (1-p)^{n-j} = 2^{-m} \sum_{i=0}^{n} B_i (1-2p)^i - (1-p)^n$

Depends on

生成多项式 g(x)

生成多项式的选择最重要,也最可控。g(x) 是 CRC 算法的核心,决定了 CRC 算法的性能。

- 生成多项式的次数 m 决定了校验码的长度。
- 同次的不同生成多项式,其间性能差异巨大。

码字长度 n

给定生成多项式 g(x),数据越长,则最小汉明距离 d_{min} 越小。可人为控制码字长度,保证 CRC 算法在较好性能的长度区间内。

信道参数

误码率、二元对称...

zhaogiman

To Compute d_{\min}

 d_{\min} 及汉明距离分布是衡量 CRC 码性能的重要指标,其计算没有通用的方法,只能穷举所有出错可能。

k 位数据中发生 t 位错误,可能的图样有 C_h^t 种,是复杂度约 $O(k^t)$ 的问题。

示例: 4 字节数据,发生 4 bits 翻转错误,出错后重新计算 CRC-32 校验码。考虑所有可能错误,比较与原校验码的汉明距离,统计结果如下:

9dc937f5e94b664a 25ac7bdd3ebad8e8 e89e756e5c7ed8b9

[0, 0, 0, 0, 0, 0, 30, 32, 106, 166, 562, 1044, 1896, 2921, 4003, 4784, 4907, 4756, 3853, 2869, 2013, 1102, 505, 268, 101, 33, 8, 1, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 0, 30, 32, 106, 166, 562, 1044, 1896, 2921, 4003, 4784, 4907, 4756, 3853, 2869, 2013, 1102, 505, 268, 101, 33, 8, 1, 0, 0, 0, 0, 0]

可以看出,4 位错误时校验码最小距离为 6,码字最小距离为 10。若寻找 d_{min} ,无需计算 9 位以上错误。

◆□▶◆□▶◆壹▶◆壹▶ 壹 めQ♡

To Compute P_{ue}

$$P_{ue}(C,p) = \sum_{j=d_{\min}}^{n} A_{j} p^{j} (1-p)^{n-j} = 2^{-m} \sum_{j=0}^{n} B_{j} (1-2p)^{j} - (1-p)^{n}$$

 A_j 的计算获得与 d_{min} 原理相同,获得精确的 P_{ue} 需要考虑所有的 A_j ,复杂度为 $O(2^k)$. 计算极其困难。

CRC 适用误码率 p 较小的信道,通常 $n >> d_{\min}$,纳入所有项意义不大且计算困难,数据较短且 p 很小时可只计算 d_{\min} 及后几项近似。

或者借由构建对偶码 C^{\perp} ,对偶码字空间仅有 2^{n-k} ,利用对偶码的码重 B_j 计算 P_{ue} 。

◆□▶◆□▶◆壹▶◆壹 り◆○

IEEE 802.3 CRC-32

以太网标准 IEEE 802.3 CRC-32 不同码字长度下的的最小汉明距离。

code length n	d _{min} (n)
3007,,12144	4
301,,3006	5
204,,300	6
124,,203	7
90,,123	8
67,,89	9
54,,66	10
45,,53	11
43,,44	12
33,,42	15

不同误码率下的 P_{ue}

以 IEEE 802.3 CRC-32 为例,对于误码率 $p = 10^{-3}$ 和 $p = 10^{-6}$ 的二元对称信道

Pue 最差极限

以 IEEE 802.3 CRC-32 为例,不论误码率、不论码字长度, P_{ue} 最终都有一个最差极限值,约为 2^{-32} 。

总结

对 CRC 多项式的性能评估在计算上非常困难,没有特别便捷的数学工具。

CRC 校验保证 100% 的检出错误位数 d_{min} - 1 的计算是可行。

错误未检出率 Pue 可以使用对偶码的码重分布进行精确计算。

错误未检出率 P_{ue} 存在**最差极限**,可以在恶劣条件下保证检出率的下限值,m 位校验码可以实现的极限约为 2^{-m} ,即增加校验码位数可以极大提高检出率。

参考文献

- G. Castagnoli, S. Bräuer and M. Herrmann. "Optimization of Cyclic Redundancy-Check Codes with 24 and 32 Parity Bits". IEEE Transactions on Communications, vol. 41, no. 6, pp. 883-892, June 1993.
- T. Fujiwara, T. Kasami and S. Lin. "Error Detecting Capabilities of the Shortened Hamming Codes Adopted for Error Detection in IEEE Standard 802.3". IEEE Transactions on Communications, vol. 37, no. 9, pp. 986-989, September 1989.
- P. Koopman. "32-Bit Cyclic Redundancy Codes for Internet Applications". International Conference on Dependable Systems and Networks (DSN), pp. 459-468, July 2002.

