ARE FOUR TYPES OF IMPROPER INTECRALS:

DEFINIT ION

(i) IF
$$f(x)$$
 II CONTINUOLUJ ON $[a, \infty)$, THEN
$$\int_{a}^{\infty} f(x) dx = \lim_{L \to \infty} \int_{a}^{L} f(x) dx.$$

(ii) IF
$$f(x)$$
 IS CONTINUOUS ON $(a,b]$ THEN
$$\begin{vmatrix} b & f(x) & dx & = lim \\ a & c \rightarrow a & c \end{vmatrix} c$$

(iii) IF
$$f(x)$$
 II CONTINUOUS ON $f(a,b)$ THEN
$$\begin{vmatrix}
b \\
q
\end{vmatrix}$$

$$f(x) dx = \lim_{x \to b^{-}} \int_{a}^{c} f(x) dx.$$

(iv) IF
$$f(x)$$
 II continuous on $[a, c)$ LI $(c, b]$ THEN
$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{b}^{c} f(x) dx$$
TREATED THEN A) IN (ii) AND (iii) BY LIMITS —

WEY REJULT 1 CONJUER I:
$$\int_{1}^{\infty} \frac{1}{x^{p}} dx$$
 THEN I II FINITE IFF $p > 1$.

PROOF DEFINE
$$I_L = \int_{-L}^{L} x^{-\rho} dx$$
. WE CALCULATE $I_L = \int_{-L}^{L} \frac{x^{1-\rho}}{1-\rho} \int_{-L}^{L} \rho \neq 1$.

THU GIVE)
$$I_{L} = \begin{cases} \frac{1-P}{1-P} & \frac{1}{1-P} \\ \frac{1}{1-P} & \frac{1}{1-P} \end{cases}, \text{ if } P = 1$$

NOW LET $L \to \omega$. WE HAVE $I_L \to FINITE VALUE IFF P>1 FOR THEN$ $L^{1-p} \rightarrow 0$. $P \to 0$. THU, IF P > 1, $I : \lim_{L \to \infty} I_L : \frac{1}{P^{-1}}$. QUALITATIVELY, A LIMIT EXIJTY IFF $F(X) : X^{-P}$ DECAY FAJT ENDUGH

(+e. p>1) A1 X -+ + 0.

NEY REJULT 2 CONJUER AN EXAMPLE OF (ii) WHERE $I = \int_{-\sqrt{P}}^{1} dx$. THEN I 11 FINITE IFF P<1, I.E. IF X-P BLOWS UP " JLOW ENOUGH" As $X \to 0^+$. WE DEFINE $I_c = \int_0^1 \frac{1}{xP} dx$, AND ARE INTERESTED IN $\lim_{x \to \infty} I_c$ WE CALCULATE $I_c = \frac{1}{1-p} x^{1-p} \Big|_{c} = \frac{1}{1-p} (1-c^{1-p})$ IF $p \neq 1$ $\lim_{n \to \infty} |x|^{1-p} = -\ln c$ If p = 1.

N OADER FOR IIM IC TO EXILT WHEN P = 1 WE NEED IIM C = 0.

HU ONLY OCCUR IF PY !. THUS INTECRAL CONVERCES IFF PY ! AND IN THIS $I = \lim_{c \to 0} I_c = \frac{1}{1-p}$ for p < 1. AJ E

WITH THESE TWO BASIC NEY RESULTS WE CAN WIE THEM IN ONJUNCTION WITH A STANDARD COMPARISON TEST TO PROVE CONVERCENCE DIVERGENCE OF INTECRALS.

THEOREM (COMPARISON TEST)

SUPPOJE FIX/ AND GIX/ ARE CONTINUOUS ON [a, o)

WITH $0 \le f(x) \le g(x)$ FOR $X \ge a$. THEN

(I) IF $\int_a^{b0} g(x) dx < \emptyset \implies \int_a^{\infty} f(x) dx < \emptyset$.

(I) IF | FIX) dx diverges THEN SO DOES | GIX) dx.

INCE OF F(X) & G(X) + OR X & Q WE HAVE $\int_{a}^{L} f(x) dx \leq \int_{a}^{L} g(x) dx \quad \text{for any } L > a.$

ON IF | g(x) dx IS FINITE WE HAVE SINCE g(X) > O THAT $\int_{a}^{L} f(x) dx \leq \int_{a}^{L} g(x) dx \leq \int_{a}^{\infty} g(x) dx < \infty.$

LETTING L -> & GIVEN THE REJULT. (II) IN PROVED THE JAMI WAY.

NEXT, WE DO JOME EXAMPLE, WITH THE COMPARISON TEST AND TWO MEY REJULTS 1 AND 2.) LIA

 $(\widehat{\mathbf{3}})$

EXAMPLE 1 LET $f(x) = \frac{S(n^2 x)}{x^2}$ for $x \ge 1$.

DOES $\int_{1}^{\infty} \frac{\sin^{2} x}{x^{2}} dx$ CONVERCE? IF 10, GIVE A PROOF.

SOLUTION WE MUIT FIND A COMPARISON FUNCTION, WE OBSERVE THAT

LET $g(X) = \frac{1}{X^2}$. THEN $\int_1^{\infty} \frac{1}{X^2} dX < \theta$ JINCE P: 2>1 (NEY REJULT 1).

WIRDLY ON CONFARINO THEOREM | FIX) dx (I) PB, WHT

 $\frac{1}{1} \frac{1}{1} \frac{1}$

NE FIRST GET JOME INTUITION: FOR X LARCE $\frac{1}{\sqrt{\chi^2-.5}} \cong \frac{1}{X}$ And $\int_1^{\infty} \frac{dx}{x}$

) IN ERCEL SO WE EXPECT DIVERGENCE. WE TRY TO IMPLEMENT (II) OF

OMPARIJON TEJT.

NOTICE THAT $\sqrt{\chi^2-.5} < \sqrt{\chi^2}$, $\forall \chi > 1$

тии),

 $\frac{1}{\sqrt{x^2+5}} > \frac{1}{\sqrt{x^2}} = \frac{1}{x}.$

DEFINE $g(x) = \frac{1}{x}$ AND $f(x) = \frac{1}{\sqrt{x^2-5}}$. WE HAVE $\int_{x}^{\infty} f(x) dx > \int_{x}^{\infty} g(x) dx$

AND I g(x) dx DIVERCE). BY (II) OF COMPARISON TEST I FIX) dx DIVERCE).

 $\frac{1}{2}$ CONJIDER $\int_{2}^{\infty} \frac{x \, dx}{x^3 + x^2 + 1}$ DOE THE INTEGRAL CONVERCE OR

DIVERCE ? JUSTIFY YOUR ANSWER. INTUITION: X3+X3 EX FOR X LARGE, JO THAT

 $\frac{\chi^{2}}{\chi^{2}+\chi^{2}+1} = \frac{\chi}{\chi^{2}} = \frac{1}{\chi^{2}} \quad \text{And} \quad \int_{2}^{\infty} \frac{1}{\chi^{2}} d\chi \quad (\text{ONVERCE}), \quad \text{JOWE EXPECT (ONVERGENCE)}.$

NE NOW MAKE A PROOF, WING (I) OF COMPARISON TEST.

WE OBJERUS $X^{3} + X^{1}_{+1} > X^{3}$ ON $X \ge 2$. THU $\frac{1}{X^{3} + X^{1}_{+1}} \le \frac{1}{X^{3}}$ ON $X \ge 2$,

AND SO $\int_{2}^{\infty} \frac{x}{x^{\frac{3}{4}} x^{\frac{3}{4}}} dx \le \int_{2}^{\infty} \frac{x}{x^{\frac{3}{4}}} dx = \int_{1}^{\infty} \frac{1}{x^{\frac{1}{4}}} dx$. LET $f(x) = \frac{x}{x^{\frac{3}{4}}} \int_{2}^{2} \frac{1}{x^{\frac{3}{4}}} dx = \int_{2}^{\infty} \frac{1}{x^{\frac{3}{4}}} dx$.

SINCE
$$\int_{2}^{\omega} g(x) dx < \omega \qquad (p=2>1)$$
THEN
$$\int_{2}^{\omega} f(x) dx < \omega$$

NOW CONSIDER IMPROPER INTEGRALS WITH AN INTERIOR SINGULARITY

EXAMPLE I = $\int_{-1}^{1} \frac{1}{x^2} dx$. NOW $f(x) = \frac{1}{\sqrt{2}} \mu$ NOT (ONTINUOU) AT X=0 A=0 so

WE CAN'T SIMPLY FIND ANTI-DERIVATIVE: I.e. $\int_{-1}^{1} \frac{1}{x^2} dx \neq -\frac{1}{x} \int_{-1}^{1} = -2$.

I =
$$\lim_{A \to 0^+} \int_{a}^{1} \frac{1}{x^2} dx + \lim_{A \to 0^+} \int_{a}^{1} \frac{1}{x^2} dx$$

ONE ALL SINCE $p:2>1$

O $\int_{a}^{1} \frac{1}{x^2} dx$ II DIVERCENT.

XAMPLE 2 LET $I = \int_{0}^{3} \frac{1}{(x_{-1})^{2}/3} dx$. SINCE $f(x) = (x_{-1})^{-2/3}$ II NOT CONTINUOU AT X = 1

NE MLUT WRITE

$$\vec{J} = \lim_{\substack{q \to 1^{-} \\ q \to 1^{-}}} \int_{0}^{q} \frac{1}{(x-1)^{2}/3} \, dx + \lim_{\substack{q \to 1^{+} \\ q \to 1^{-}}} \int_{0}^{3} \frac{1}{(x-1)^{2}/3} \, dx$$

$$= \lim_{\substack{q \to 1^{-} \\ q \to 1^{-}}} 3(x-1)^{1/3} \int_{0}^{q} + \lim_{\substack{q \to 1^{+} \\ q \to 1^{+}}} 3(x-1)^{1/3} \int_{a}^{3} \frac{1}{(x-1)^{1/3}} \int$$

 $\frac{X \text{ AMPLE 3}}{\sqrt{\chi^2-1}}$ $J : \int \frac{X}{\sqrt{\chi^2-1}} dX$. IJ IT CONVERCENT OR DIVER CENT.

SOLUTION WE WRITE $I = \int_{1}^{2} \frac{\chi}{\sqrt{(\chi_{-1})(\chi_{+1})}} d\chi$. LET $f(\chi) = \frac{\chi}{\sqrt{(\chi_{-1})(\chi_{-1})}}$

NEAR X=1, $f(x) \approx \frac{1}{2\sqrt{X-1}}$ AND $\int_{-2\sqrt{1-x}}^{b} \frac{dx}{2\sqrt{1-x}} = EXIIT \int IN(E-p) \frac{1}{2} \left(\frac{1}{2} \right) dx$

INTEGRAL CONVERCES!

WE KNOW THAT $\lim_{L\to\infty} \frac{1}{2} dx$ is infinite. WHAT HAPPENI IF WE CHOOSE AN FIX) THAT DECAM SLIGHTLY MORE RAPIDLY AS $X\to \infty$. LET p>0 AND CONSIDER $f(x)=\frac{1}{\chi\lceil \ln x\rceil}p$

WE CONCLUDE THAT $\lim_{L\to\infty} I_L$ IS FINITE ONLY IF P>1.

SIMILARLY WE KNOW THAT IF $f(x) = \frac{1}{x}$ THAT $I_{\varepsilon} = \int_{\varepsilon}^{1/2} \frac{1}{x} dx$

DIVERCE, AT $E o 0^+$ SINCE $\frac{1}{X}$ 8LOWS UP TOO FAST A, $X o 0^+$

WHAT IF WE MODIFY FIX) SLIGHTLY TO $f(x) = \frac{1}{X[10x]}p$, FOR p > 0.

WE STILL HAVE $|f(x)| \rightarrow \emptyset$ As $X \rightarrow 0^{\dagger}$ (SINCE $\lim_{X \rightarrow 0^{\dagger}} X [\ln X]^{P} = 0$)

BUT NOW IF WE DEFINE

 $I_{\varepsilon} = \int_{\varepsilon}^{1/2} \frac{1}{x \lceil \ln x \rceil^{p}} dx \qquad \text{WE} \quad CALCULATE} \quad A) \quad ABOVE \quad THAT$ $I_{\varepsilon} = \int_{\varepsilon} \frac{(\ln x)^{1-p}}{1-p} \Big|_{\varepsilon}^{1-p} \Big|_{\varepsilon}^{1/2} \qquad \text{If} \quad p \neq 1$ $\exists n (\exists n x) \Big|_{\varepsilon}^{1/2} \qquad \text{If} \quad p = 1$

SINCE $(408)^{1-p} \rightarrow 0$ A) $8 \rightarrow 0^+$ IFF p > 1 WE HAVE THAT

IM IE 11 FINITE IFF P>1.

2)

WE LET
$$f(x)$$
: $\frac{1}{x}$ AND WE KNOW THAT $\int_{1}^{\infty} \frac{1}{x} dx$ is infinite.

NOW JUPPOJE WE CALCULATED THE VOLUME OF REVOLUTION

$$\frac{f(x) = \frac{1}{x}}{f(x)} \qquad \text{we cet} \qquad V = \frac{1}{x} \left| \left(\frac{f(x)}{x} \right)^2 dx = \frac{1}{x} \right| \left(\frac{x}{x} \right)^2 dx$$

$$\frac{f(x) = \frac{1}{x}}{f(x)} \qquad \text{which in eighth.}$$

THE WE EXPECT THAT IF FIX) -> O AI X -> O MORE Slowly than 1/X CAN GET A FINITE INTEGRALFOR THE VOLUME.

SUPPOSE
$$f(x) = 1/\chi P$$
 FOR $P > 0$.

THEN $V(x) = 1/\chi P$ FOR $P > 0$.

$$V(x) = 1/\chi P$$

$$V(x) = 1$$

WE CONCLUDE THAT IFF P > 1/2 WE HAVE A FINITE INTECRAL.

HENCE WE GET A FINITE VOLUME IF $f(x) \approx \frac{1}{\sqrt{p}}$ with p > 1/2 4/ $X \rightarrow \infty$ Islower de cay is allowed than with calculating areas).

ONE MIGHT AJK whether WE CAN get A FINITE integral through "AREA cancellaton".

A FAMOLI SPECIAL FUNCTION IS

$$f(x) = \int_0^x \frac{\sin t}{t} dt$$

 $f(x) = \begin{cases} \frac{\sin t}{t} & \text{if } \frac{\sin t}{t} \\ \frac{\sin t}{t} & \text{if } \frac{\sin t}{t} \end{cases}$ NOTICE to up fine since $t \to 0$ t

HOWEVEL, DO WE GET A FINITE LIMIT AT X -> DO (IF NO SINT TERM THEN $\int_{-\pi}^{x} \frac{1}{t} dt = \ln x \longrightarrow + \infty.$

THU U A DIFFICULT QUESTION (M300) TO EVALUATE Im 7(x) BUT WOLFRAM ALPHA CIVES IM 7(x) = SINT dt: 1

of (x)? $\int_{1}^{x} \frac{Sin(1nt)}{t}$

THEN SIN (Int): 0 WHEN Int: $\eta ii \rightarrow t_{D}^{2}e^{-\eta ii}$ and so we still cet some area cancellation, but sin (Int) varies really slowly in t.

WE NOW CALCULATE WING $U = \int_{0}^{x} \int_{0}^{x$

NOTICE THEN THAT & IXJE 1- COJ (TOX).

A) $X \rightarrow \emptyset$ $\widehat{T}(x)$ OSCILLATES BETWEEN O AND 2

AND DOEJ NOT APPROACH A LIMITING VALUE.

HEN CE IMPROPER INTECRALL CAN BE FINITE, INFINITE, OR OSCILLATORY DEPENDING ON SPECIFICS OF THE PROBLEM.

4) REMARK CONSIDER $I = \int_{a}^{b} \frac{g(x)}{f(x)} dx$.

IF f(c) = 0 for a < c < b with $f(c) \neq 0$ And $g(c) \neq 0$ THE INTECRAL DIVERCES SINCE BY TANGENT LINE APPROXIMATION $\frac{g(x)}{f(x)} \simeq \frac{g(c)}{f'(c)(x-c)}$ NEAR X = C.

$$I = \int_{1}^{L} \left(\frac{1}{\sqrt{\chi^{2}+1}} - \frac{1}{\chi} \right) d\chi.$$

WE KNOW THAT SEPARATELY
$$\int_{1}^{\infty} \frac{1}{X}$$
 AND $\int_{1}^{\infty} \frac{1}{\sqrt{X^{\frac{1}{2}}}}$ ARE INFINITE,

CAN WE GET A FINITE INTEGRAL THROUGH CANCELLATION. RUT

$$\frac{1}{\sqrt{|x^{2}+1|}} - \frac{1}{|x|} = \frac{1}{|x|} \frac{1}{(|x|)} \frac{1}{|x|} \frac{1}{|x|}$$

SO WE EXPECT THAT
$$\lim_{L\to\infty} I_L$$
 IJ FINITE.

EXPECT THAT
$$\lim_{L\to\infty} I_L$$
 I) FINITE.

CALCULATE: $X = IRNQ$ $dx : Jec^2q dq$ so

$$\int \frac{1}{\sqrt{x^2 k L}} dx : \int \frac{Jec^2q}{Jecq} dq : \int JEcq : log[Jecq + TANq] + C$$

so
$$\int \frac{1}{\sqrt{\chi^2 k l}} d\chi = \log \left[\sqrt{\chi^2 k l} + \chi \right] + C.$$

$$I_{L} = \int_{1}^{L} \left(\frac{1}{\sqrt{\chi^{2}_{k}}} - \frac{1}{\chi} \right) d\chi = \left(\frac{\log \left(\sqrt{\chi^{2}_{k}} + \chi \right) - \log \chi \right) \Big|_{1}^{L}$$

$$= \log \left(\frac{\chi + \sqrt{\chi^{2}_{k}}}{\chi} \right) \Big|_{1}^{L} = \log \left(1 + \sqrt{1 + \frac{1}{\chi^{2}}} \right) \Big|_{1}^{L}$$

$$I_{L} = \log\left(1 + \sqrt{1 + \frac{1}{L^{2}}}\right) - \log\left(1 + \sqrt{2}\right)$$

Now let
$$L \to \emptyset$$
 so $\overline{I}_L \to \log\left(\frac{2}{1+\sqrt{2}}\right) = \int_1^{\sqrt{2}} \left(\frac{1}{\sqrt{\chi^2+1}} - \frac{1}{\chi}\right) d\chi$.

SINCE
$$\sqrt{\chi^{\gamma}_{+1}} > \chi$$
 of $1 < \chi \rightarrow \frac{1}{\sqrt{\chi^{\gamma}_{+1}}} - \frac{1}{\chi} < 0$ of $\chi > 1$ so $T_{L} < 0$.

IND ELD
$$\frac{2}{1+\sqrt{2}} < 1$$
 Jo $\log \left(\frac{2}{1+\sqrt{2}}\right) < 0$.

180 1 - T 1 dx

6) CONJIDER AN IMPROPER INTECTAL BUT ONE FOR WHICH

GET A FINITE VALUE; I.C.

$$I = \int_{0}^{1} \frac{f(x)}{\sqrt{x}} dx \qquad \text{where} \qquad f(x) = \int_{0}^{1} \frac{f(x)}{\sqrt{x}} dx \qquad \text{with} \qquad f(0) \neq 0.$$

THE INTECRAND BLOWN LIP AT $X \rightarrow 0^+ \rightarrow S$ TANGARD RIEMANN SHMJ SIN(8

NOT SO 600D. ARE

LET
$$U: X^{1/2}$$
 $du: \frac{L}{2} X^{-1/2} dX = \frac{1}{2 U} dX$

$$\frac{dx}{\sqrt{x}} = \frac{2u}{u} du$$
.

$$\frac{dx}{\sqrt{x}} : \frac{2u}{u} du . \qquad x : 0 \rightarrow u : 0$$

$$I = 2 \int_0^1 f(u^2) d\mu$$

Îl equivalent integral BUT better FOR numerical quadrature.