Universidade Federal do Ceará Instituto de Tecnologia Departamento de Engenharia Elétrica

Circuitos Elétricos

Capítulo 6 B – Indutância, Capacitância e Indutância Mútua

Indutância, Capacitância e Indutância Mútua

Capacitor

*Capacitância (C) é o parâmetro de circuito utilizado para descrever o capacitor.

$$C = \frac{\in A}{d}$$

 ϵ = constante dielétrica;

A = área da superfície das placas;

d = distância entre as placas.

₱ Unidade de capacitância: Farads (F);

Normalmente na faixa entre pF a μF.

Indutância, Capacitância e Indutância Mútua

Capacitor

Simbologia:

Indutância, Capacitância e Indutância Mútua

Capacitor

- *A carga armazenada é proporcional à tensão: q(t) = Cv(t)
- *A variação de carga com respeito ao tempo: $i(t) = \frac{d}{dt}q(t)$
- *Corrente (convenção passiva): Tensão:

$$i(t) = C \frac{d}{dt} v(t) \qquad v(t) = \frac{1}{C} \int_{t}^{t} i d\tau + v(t_{o})$$

- 7 Tensão não varia instantaneamente nos terminais de um capacitor.
- *Se a tensão nos terminais for constante, a corrente no capacitor é zero.
- Na presença de uma tensão constante, o capacitor se comporta como um circuito aberto.

Indutância, Capacitância e Indutância Mútua

Capacitor

*Potência (convenção passiva):

$$p = vi = Cv \frac{dv}{dt}$$

• Ou

$$p = i \left[\frac{1}{C} \int_{t_o}^{t} i d\tau + v(t_o) \right]$$

Fenergia:

$$w = \frac{1}{2}Cv^2$$

Indutância, Capacitância e Indutância Mútua

Capacitor - Exemplo

*O pulso de tensão descrito pelas equações (1) é aplicado nos terminais de um capacitor de 0,5μF.

a) Determine as expressões para corrente, potência e energia no capacitor.

$$i = \begin{cases} (0.5 \times 10^{-6})(0) = 0 & ,t \le 0 s \\ (0.5 \times 10^{-6})(4) = 2 \mu A & ,0 s \le t \le 1 s \\ (0.5 \times 10^{-6})(-4e^{-(t-1)}) = -2e^{-(t-1)}\mu A & ,t \ge 1 s \end{cases}$$

$$p = \begin{cases} (0) = 0 & ,t \le 0s \\ (4t)(2) = 8t \ \mu W & ,0s \le t \le 1s \\ (4e^{-(t-1)})(-2e^{-(t-1)}) = -8e^{-2(t-1)}\mu W & ,t \ge 1s \end{cases}$$

$$w = \begin{cases} (0) = 0 & ,t \le 0 s \\ 0.5(0.5)16t^2 = 4t^2 \mu J & ,0 s \le t \le 1 s \\ 0.5(0.5)(16e^{-2(t-1)}) = 4e^{-2(t-1)}\mu J & ,t \ge 1 s \end{cases}$$

Indutância, Capacitância e Indutância Mútua

Capacitor - Exemplo

- *O pulso de tensão descrito pelas equações (1) é aplicado nos terminais de um capacitor de 0,5μF.
- b) Em qual intervalo de tempo a energia está sendo armazenada no capacitor?

A energia é armazenada no capacitor sempre que a potência for positiva, portanto de 0 a 1 s.

Indutância, Capacitância e Indutância Mútua

Capacitor - Exemplo

- * O pulso de tensão descrito pelas equações (1) é aplicado nos terminais de um capacitor de 0,5 μ F.
- c) Em qual intervalo de tempo o capacitor fornece energia?

O capacitor fornece energia sempre que a potência for negativa, portanto quando *t* for maior que 1 s.

Indutância, Capacitância e Indutância Mútua

Capacitor - Exemplo

d) Avalie as integrais:

$$\int_{0}^{1} pdt \quad e \quad \int_{1}^{\infty} pdt$$

A integral de *p dt* é a energia associada ao intervalo de tempo correspondente aos limites da integral:

$$\int_{0}^{1} pdt$$

Energia acumulada no capacitor entre 0 e 1 s.

$$\int_{1}^{\infty} p dt$$

Energia fornecida pelo capacitor de 1 s a infinito.

$$\int_{0}^{1} pdt = \int_{0}^{1} 8tdt = 4t^{2} \Big|_{0}^{1} = 4 \mu J$$

$$\int_{1}^{\infty} p dt = \int_{1}^{\infty} \left(-8e^{-2(t-1)} \right) dt = \left(-8 \right) \frac{e^{-2(t-1)}}{-2} \Big|_{1}^{\infty} = \frac{1}{4} - 4 \mu J$$

Indutância, Capacitância e Indutância Mútua

Indutores e Capacitores em Série e Paralelo

F Indutores em série:

$$v_1 = L_1 \frac{di}{dt}, \quad v_2 = L_2 \frac{di}{dt}, \quad v_3 = L_3 \frac{di}{dt},$$

$$v = v_1 + v_2 + v_3 = (L_1 + L_2 + L_3) \frac{di}{dt}$$

$$L_{eq} = L_1 + L_2 + L_3$$

Indutância, Capacitância e Indutância Mútua

Indutores e Capacitores em Série e Paralelo

Indutores em paralelo:

Corrente em cada indutor é função da tensão terminal e da corrente inicial no indutor:

$$i_{1} = \frac{1}{L_{1}} \int_{t_{0}}^{t} v d\tau + i_{1}(t_{0}) \qquad \qquad i_{2} = \frac{1}{L_{2}} \int_{t_{0}}^{t} v d\tau + i_{2}(t_{0}) \qquad \qquad i_{3} = \frac{1}{L_{3}} \int_{t_{0}}^{t} v d\tau + i_{3}(t_{0})$$

A corrente nos terminais dos três indutores e paralelo é igual a soma das correntes:

$$i = \left(\frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3}\right) \int_{t_0}^{t} v d\tau + i_1(t_0) + i_2(t_0) + i_3(t_0)$$

$$i = \frac{1}{L} \int_{t_0}^{t} v d\tau + i(t_0)$$

 $i = i_1 + i_2 + i_3$

$$\frac{1}{L_{eq}} = \left(\frac{1}{L_1} + \frac{1}{L_2} + \dots + \frac{1}{L_n}\right)$$

$$i(t_0) = i_1(t_0) + i_2(t_0) + \ldots + i_n(t_0)$$

Indutância, Capacitância e Indutância Mútua

Indutores e Capacitores em Série e Paralelo

7 Capacitores em série:

$$v_{1} = \frac{1}{C_{1}} \int_{t_{0}}^{t} i d\tau + v_{1}(t_{0}) \qquad v_{2} = \frac{1}{C_{2}} \int_{t_{0}}^{t} i d\tau + v_{2}(t_{0}) \qquad v_{3} = \frac{1}{C_{3}} \int_{t_{0}}^{t} i d\tau + v_{3}(t_{0})$$

$$v = v_{1} + v_{2} + v_{3}$$

$$v = \left(\frac{1}{C_{1}} + \frac{1}{C_{2}} + \frac{1}{C_{3}}\right) \int_{t_{0}}^{t} i d\tau + v_{1}(t_{0}) + v_{2}(t_{0}) + v_{3}(t_{0})$$

$$v = \frac{1}{C_{eq}} \int_{t_{0}}^{t} i d\tau + v(t_{0})$$

$$\frac{1}{C_{eq}} = \left(\frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_n}\right)$$

$$v(t_0) = v_1(t_0) + v_2(t_0) + \dots + v_n(t_0)$$

Indutância, Capacitância e Indutância Mútua

Indutores e Capacitores em Série e Paralelo

F Capacitores em paralelo:

$$i_1 = C_1 \frac{dv}{dt}$$
, $i_2 = C_2 \frac{dv}{dt}$, $i_3 = C_3 \frac{dv}{dt}$,

$$i = i_1 + i_2 + i_3 = (C_1 + C_2 + C_3) \frac{dv}{dt}$$

$$C_{eq} = C_1 + C_2 + C_3$$

Indutância, Capacitância e Indutância Mútua

Indutância Mútua

- *Anteriormente, o campo magnético que consideramos no estudo de indutores estava restrito a apenas um circuito.
- *Indutância (Auto-indutância): parâmetro que relaciona uma tensão a uma corrente que varia com o tempo no mesmo circuito.
- *Considerando dois circuitos imersos em um campo magnético:
- *Indutância mútua: relaciona a tensão induzida no segundo circuito devido a corrente variável com o tempo no primeiro circuito.

Dois enrolamentos acoplados magneticamente

Autoindutâncias: L1 e L2

Indutância mútua: M

Indutância, Capacitância e Indutância Mútua

Indutância Mútua – Análise de Circuitos

- Método das correntes de malha:
- * Escolher a direção de referência da corrente de cada enrolamento. Ex: i_1 e i_2

- \digamma Após escolher as direções de referência para i_1 e i_2 , some as tensões nas malhas.
- *Por causa da indutância mútua M, haverá duas tensões em cada enrolamento:
- a) Tensão auto-induzida: (autoindutância) x (derivada da corrente no enrolamento).
- **b) Tensão mutuamente induzida:** (indutância mútua dos enrolamentos) x (derivada da corrente no outro enrolamento).

Ex: Para o enrolamento da esquerda: Auto-indutância = L1

a) Tensão auto-induzida = $L_1(di_1/dt)$ b) Tensão mutuamente induzida = $M(di_2/dt)$

Indutância, Capacitância e Indutância Mútua

Indutância Mútua – Análise de Circuitos

FE a polaridade das tensões?

F Convenção do ponto:

Convenção do ponto para enrolamentos mutuamente acoplados: Quando a direção de referência para uma corrente entra no terminal de um enrolamento identificado por um ponto, a polaridade de referência da tensão que ela induz no outro enrolamento é positiva no terminal identificado pelo ponto.

Convenção do ponto para enrolamentos mutuamente acoplados (alternativa): Quando a direção de referência para uma corrente sair do terminal de um enrolamento identificado por um ponto, a polaridade de referência da tensão que ela induz no outro enrolamento é negativa no terminal identificado pelo ponto.

Figura 6.22 ▲ Tensões auto-induzidas e mutuamente induzidas que aparecem nos enrolamentos mostrados na Figura 6.21.

Indutância, Capacitância e Indutância Mútua

Indutância Mútua – Análise de Circuitos

*Exemplo. Pela regra do ponto:

Enrolamento 1:

Figura 6.22 ▲ Tensões auto-induzidas e mutuamente induzidas que aparecem nos enrolamentos mostrados na Figura 6.21.

$$-v_{g} + i_{1}R_{1} + L_{1}\frac{di_{1}}{dt} - M\frac{di_{2}}{dt} = 0 \qquad i_{2}R_{2} + L_{2}\frac{di_{2}}{dt} - M\frac{di_{1}}{dt} = 0$$

Indutância, Capacitância e Indutância Mútua

Indutância Mútua - Análise de Circuitos

- * Procedimentos para marcação de pontos.
- I) Conhecendo o arranjo físico dos dois enrolamentos:
- 1) Escolha um terminal e marque com um ponto.
- 2) Designe uma corrente entrando nesse terminal.
- 3) Use a regra da mão direita para determinar o sentido do campo magnético criado por i_d no interior dos enrolamentos acoplados e denomine esse campo (Φ_D) .

4) Mesmo procedimento para o outro enrolamento (corrente i_a e campo Φ_A)

Figura 6.23 ▲ Conjunto de enrolamentos para demonstrar o método que determina um conjunto de marcações de pontos.

Indutância, Capacitância e Indutância Mútua

Indutância Mútua - Análise de Circuitos

- *Procedimentos para marcação de pontos.
- I) Conhecendo o arranjo físico dos dois enrolamentos:
- 5) Compare as direções dos dois fluxos ($\Phi_{\rm D}$ e $\Phi_{\rm A}$):
- -Se os campos tiverem a mesma direção de referência, coloque um ponto no terminal do segundo enrolamento onde a corrente i_a entra.
- Se as direções de referência dos fluxos forem diferentes, coloque um ponto no terminal do segundo enrolamento onde a corrente auxiliar sai.

Figura 6.23 ▲ Conjunto de enrolamentos para demonstrar o método que determina um conjunto de marcações de pontos.

Indutância, Capacitância e Indutância Mútua

Indutância Mútua - Análise de Circuitos

*Exemplo: a) escreva um conjunto de equações de malha que descreva o circuito em termos das correntes i_1 e i_2 .

$$4\frac{di_1}{dt} + 8\frac{d}{dt}(i_g - i_2) + 20(i_1 - i_2) + 5(i_1 - i_g) = 0$$

$$20(i_2 - i_1) + 60i_2 + 16\frac{d}{dt}(i_2 - i_g) - 8\frac{di_1}{dt} = 0$$

Referências Bibliográficas:

Nilsson, J.W. e Riedel, S.A., Circuitos Elétricos, 8^a Edição, Pearson Prentice Hall, São Paulo, 2009.

Svodoba, J.A. and Dorf, R.C., Introduction to Electric Circuits, 9th edition, Wiley, 2011.