1. Consider a complete undirected graph with vertex set $V = \{0, 1, 2, 3, 4\}$. Entry W[i][j] in the matrix W below is the weight of the edge (i, j) What is the minimum possible weight of a spanning tree T in this graph such that vertex 0 is a leaf node in the tree T. Briefly explain your answer. (3p)

b. 7

$$W = \begin{pmatrix} 0 & 1 & 8 & 1 & 4 \\ 1 & 0 & 12 & 4 & 9 \\ 8 & 12 & 0 & 7 & 3 \\ 1 & 4 & 7 & 0 & 2 \\ 4 & 9 & 3 & 2 & 0 \end{pmatrix}$$

2. If a graph has 92 vertices, how many edges are in the minimum spanning tree? Briefly explain your answer. (1p)

b. 91

c. 92

d. 9

e. Cannot be determined with the given information.

3. Given the weights and values of the items below, put these items in a knapsack of capacity W = 30 to get the maximum total value in the knapsack. Which is the maximum value obtained? Illustrate the steps in Knapsack Problem algorithm to answer. (2p)

4. Simulate Dijkstra's algorithm on the edge-weighted graph below, starting from vertex 0. (2p)

