

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI

INSTRUCTION DIVISION Second SEMESTER 2015-2016

Course Handout (Part II)

Date: 05.01.2016

In addition to Part I (General Handout for all courses appended to the time table) this portion gives further specific details regarding this course.

Course No. : CHEM F244

Course Title : Physical Chemistry III
Instructor-in-charge : SHAMIK CHAKRABORTY
Team of Instructors : Prashant Uday Manohar

Scope and objective of the course: This course is designed in continuation to the Physical chemistry courses I and II which are already been offered to the students. Physical Chemistry III course is composed of two parts. The first part provides a comprehensive survey of various approximation methods in quantum chemistry. In addition, basic concepts of molecular mechanics approach would be introduced as well. In the second portion, students would be exposed to the symmetry, principles of group theory, and its application in molecular spectroscopy.

Course Description: Symmetry: symmetry operations, point groups, reducible and irreducible representations, character tables, SALC, degeneracy, vibrational modes IR-Raman activity identification; stationary state perturbation theory; time dependent perturbation theory; virial and Hellmann-Feynmann theorems; polyatomic molecules: SCF MO treatment, basis sets, population analysis, molecular electrostatic potentials, configuration interaction, Moller Plesset perturbation theory; semi empirical methods-all valence electron methods: CNDO, INDO, NDDO; Density Functional Theory: Hohenberg-Kohn theorems, Kohn-Sham self consistent field approach, exchange correlation functional; molecular mechanics.

Text Book (TB): TB-1:"Quantum Chemistry", Ira N. Levine, PHI Learning Private Limited, Sixth Edition, 2012. **TB-2**: "Chemical Applications of Group Theory", F. Albert Cotton, Wiley Student Edition, Third Edition.

Reference Books (RB): Quantum Chemistry, Donald A McQuarrie, University Science Books (First Indian Edition 2003, Viva Books Private Limited)

Course Plan:

Lecture	Topic	Learning objectives	Reference	
no.			to Text	
	Electronic structure polyatomic molecules: (a) Theorems			
01-04	Theorems of molecular	Virial theorem and Chemical Bonding, Hellmann-	TB-1 14.1 –	
	quantum mechanics	Feynman theorem, Electrostatic theorem	14.7	
	Electronic structure polyatomic molecules: (b) Molecular Orbital treatment			
SELF	Approximation Theorem	The Hartree SCF Method and Hartree-Fock SCF	RB 1	
STUDY	of Many Electron Atoms	Method for many electron atoms		

05-08	Molecular electronic	SCF-MO treatment, basis functions, population	TB-1 13.15,	
03-00	structure calculations	analysis, molecular electrostatic potential, localized	15.1 – 15.5,	
	Structure calculations	MOs, SCF-MO treatment of H ₂ O	15.1 – 15.5, 15.6 – 15.9	
09-11	Configuration	Configuration state functions, occupied and virtual	TB-1 11.3,	
09-11	Interaction		· ·	
	Interaction	molecular orbitals, excitation energy calculation.	16.1, class	
10 14	C4-4:	D-st-sl-ti-s-ts-s-ts-s-t-f	notes TB-1 9.1 –	
12-14	Stationary state	Perturbation treatment of non-degenerate and		
15.15	perturbation theory	degenerate states.	9.7	
15-17	Møller– Plesset	Many body perturbation theory, electron correlation	TB-1 16.2	
	Perturbation theory	effects, Møller– Plesset perturbation of 2 nd , 3 rd , and 4 th		
		order		
		yatomic molecules: (c) Alternate approaches		
SELF	Valence-Bond approach	Coupling of electrons, bond eigenfunction, application	TB-1 16.8	
STUDY		of Valence-Bond treatment to different polyatomic		
		molecules		
18-22	Density Functional	Hohenberg-Kohn Theorem, Kohn-Sham method,	TB-1 16.4,	
	Theory	exchange correlation functional, hybrid functional	class notes	
	Non-stationary states			
23-25	Time-dependent	Spectroscopy - interaction of electromagnetic radiation	TB-1 9.9-	
	perturbation theory	and matter	9.10	
			Class Notes	
	Molecular Symmetry an	d symmetry group		
26	Definitions and	Properties of a group, examples of groups, subgroups,	TB-2 2.1-	
	Theorems of Group	classes	2.4	
	Theory			
27 - 28	Symmetry elements and	Plane, center of inversion, proper axis, and improper	TB-2 3.1 –	
	operations	axis, product of symmetry operations, point groups	3.9	
29	Application of	Dipole moments, optical activity	TB-2 3.10	
	symmetry operations		Class notes	
30-31	Group Theory	Symmetry Point Group, Symmetry classification of	TB-2 3.11 –	
		molecules	3.14	
	Representation of Groups			
32-33	Equivalent and	Unitary representation, reducible representation,	TB-2 4.2 –	
	reducible representation	transformation operators.	4.5	
	<u>.</u>	•	Class notes	
34-36	Irreducible	The "Great Orthogonality Theorem", characters,	TB-2 4.2 –	
	representation	criterion for irreducibility, character tables and their	4.5	
	1			
37-38	1	construction Invariance of Hamiltonian operator under	Class notes TB-2 5.1 –	

	quantum mechanics	transformation, direct product representation,	5.3
		vanishing integrals	
39-40	Symmetry adapted	Projection operators, construction of SALCs using	TB-2 6.1 –
	linear combination	projection operators.	6.3
	(SALC)		
41-42	Molecular vibrations	Normal coordinates, vibrational levels, IR spectra,	TB-2 10.1 –
		Raman spectra, selection rules.	10.8

Evaluation Scheme: (Total 300 Marks)

Component	Duration (minutes)	Weightage (%)	Date and Time	Remarks
Continuous Evaluation ^{\$}	-	35		Closed Book + Open book
Mid-semester	90	25	15/3 9:00 - 10:30 AM	Closed Book
Comprehensive Examination	180	40	5/5 FN	Closed Book + Open Book

^{\$} Assignment, Project, Class Test, Presentation

<u>Chamber Consultation Hours</u>: To be announced in class.

Notices: Notices, if any, concerning the course will be displayed on the Chemistry Department Notice Board.

Make up policy: Make up would be considered only for genuine cases.

Instructor in charge

CHEM F244

