ale-cci

Modelli Algoritmi per il Supporto alle Decisioni

Introduction

TODO

Minimum Spanning Tree

Algoritmo di Kruskal (Greedy)


```
from utils import num_vertices
def kruskal(edges: list, N: int) -> list:
    connected = set()
    mst = []
    edges = sorted(graph)
    for edge in edges:
        weight, lhs, rhs = edge
        # Two nodes already connected
        if lhs in connected and rhs in connected:
            continue
        mst.append(edge)
        connected.update({lhs, rhs})
        if len(mst) == N:
            break
    return mst
if __name__ == '__main__':
    graph = [(10, 'A', 'C'), (8, 'A', 'D'),
             (7, 'D', 'E'), (4, 'A', 'E'),
             (3, 'B', 'A'), (9, 'B', 'D'), (5, 'B', 'E')]
    N = num_vertices(edges=graph)
   print(kruskal(graph, N))
```

Correttezza algoritmo di Kruskal

Supponiamo per assurdo che esista un' diverso MST $T'=(V,E_{T'})$ di peso inferiore a $T=(V,E_T)$, quello restituito dall'algoritmo greedy.

Siccome i due alberi hanno costo diverso, differiscono di almeno un' arco. Indichiamo con e_h l'arco a peso minore appartenente a $\{E_T-E_{T'}\}$. Dato che T' è un MST, esiste un ciclo C in $\{e_h\}\cup E_{T'}$ contenente l'arco e_h . Siccome anche T è un albero, quindi non ha cicli, allora $C\cap E_T\neq\emptyset$. Chiamiamo e_r l'arco a peso minore appartenente a $C\cap \{E_T-E_{T'}\}$. Necessariamente $w_{e_r}\leq w_{e_h}$,

altrimenti l'algoritmo greedy applicato a T avrebbe selezionato prima e_h al posto di e_r . Sostituendo in T' l'arco e_r con e_h ottengo un nuovo albero di peso inferiore.

Questo va contro l'ipotesi T^\prime è l'albero di supporto a peso minore.

Analisi complessità

 $O(E \cdot \log(E))$, dovuta all'ordinamento degli archi in ordine di peso. Il controllo dell'esistenza di cicli è effettuato in O(1).

Foresta di supporto

Viene chiamata foresta di supporto di un grafo G un grafo parziale $F=(V,E_F)$ privo di cicli. In particolare, un albero di supporto è una foresta con una sola componente connessa.

Teorema

Indichiamo con $(V_1, E_1), \ldots, (V_k, E_k)$ le componenti connesse di una foresta di supporto $F = (V, E_F)$ del grafo G. Sia inoltre (u, v) un arco a peso minimo tra quelli con un unico estremo in V_1 . Allora esiste almeno un albero di supporto a peso minimo appartenente a $\bigcup_{i=1}^k E_i$, che contiene (v, v).

Dimostrazione

Per assurdo, l'albero a peso minimo non contiene (u,v). Ma aggiungendo (u,v) a tale albero si forma un ciclo contenente un altro arco (u',v') con un solo estremo in V_1 . Se si toglie questo arco e si lascia (u,v) si ottiene un albero di peso minore, contraddicendo l'ipotesi.

Algoritmo MST-1


```
def mst_1(w: list) -> list:
    V = set(range(len(w))) # {0, 1, 2, 3, 4}
    c = [0] * len(V) # [0, 0, 0, 0, 0]
    U = {0}
    mst = []

while U != V:
    weight, u = min((w[v][c[v]], v) for v in V - U)
    U.add(u)
    mst.append((u, c[u]))

    for v in V - U:
        if w[v][u] < w[v][c[v]]:
            c[v] = u

return mst</pre>
```

```
if __name__ == '__main__':
    w = [[ 0,  3,  5,  9,  20],
        [ 3,  0,  4,  8,  10],
        [ 5,  4,  0,  7,  11],
        [ 9,  8,  7,  0,  12],
        [20,  10,  11,  12,  0]]

print(mst_1(w))
```

Correttezza MST-1

Inizialmente abbiamo la foresta con $V_1 \equiv U = \{v_1\}, V_i = \{v_i\}$ $i = 2 \dots n$, con tutti gli $E_i = \emptyset$.

Alla prima iterazione si inserisce l'arco (V_i, v_{j_1}) , $j_1 \neq 1$, a peso minimo tra quelli con un solo estremo in $U \equiv V_1$ e quindi, per il teorema visto al paragrafo della foresta di supporto, tale arco farà parte dell'albero di supporto a peso minimo tra tutti i possibili alberi di supporto.

Con l'aggiunta di questo arco, le due componenti connesse (V_1,E_1) e (V_{j_1},E_{j_1}) si fondono in un'unica componente connessa con nodi $U=\{v_i,v_{j_1}\}$ e l'insieme di archi $E_T=\{(v_1,v_{j_1})\}$, mentre le altre componenti connesse non cambiano. Abbiamo cioè che le componenti connesse

$$(U, E_T), (V_i, \emptyset)i \in \{2, \dots n\} - \{j_1\}$$

Alla seconda iterazione andiamo a selezionare il nodo v_{j_2} e il relativo arco $(v_{j_2},c(v_{j_2}))$ con il peso minimo tra tutti quelli con un solo estremo in U. In base al teorema, l'arco $(v_{j_2},c(v_{j_2}))$ farà parte di un albero di supporto a peso minimo tra tutti quelli che contengono l'unione di tutti gli archi delle componenti connesse, che si riduce ad E_T .

Effettuiamo lo stesso ragionamento per tutti gli n ottenendo l'albero di supporto a peso minimo.

Complessità dell'algoritmo

Il numero di operazioni richiesto è pari a $O(V^2)$ dovuta al ciclo eseguito V volte $\left(O(V)\right)$ e la ricerca del minimo in tempo lineare.

Confronto con algoritmo di Kruskal

Anche se risulta essere peggiore rispetto all'algoritmo di greedy Kruskal, è possibile dimostrare che, in caso di grafi densi ha una complessità ottima. Infatti per tali grafi non possiamo aspettarci di fare meglio di $O(V^2)$: la sola operazione di lettura dei pesi degli archi richiede $O(V^2)$.

Algoritmo MST-2

```
import utils

def mst_2(edges, N):
    shortest = [None] * N
    minimum = [None] * N
    # connected = set(range(N))

for weight, u, v in edges:
    if minimum[u] == None or weight < minimum[u]:
        shortest[u] = (u, v)
        minimum[u] = weight

if minimum[v] == None or weight < minimum[v]:
        shortest[v] = (u, v)
        minimum[v] = weight

return set(shortest)</pre>
```

Dimostrazione correttezza

Lasciata per esercizio, si basa sul teorema della foresta. "Tutti gli archi shortest aggiunti ad una certa iterazione, sono tutti archi che fanno parte ad un albero di supporto ottimo, tra tutti i possibili alberi di supporto."

Complessità algoritmo

 $O(E \cdot \log_2(V))$ derivato dal costo dell'iterazione su tutti gli archi O(E), eseguita un numero massimo di $\log(|V|)$ volte.

Inizialmente il numero di componenti connesse è pari al numero di nodi. Sicuramente ad ogni iterazione, il numero di componenti connesse viene almeno dimezzato. Per cui, il primo ciclo viene eseguito al più $\log(|V|)$ volte.

Per grafi densi con $|E| = O(|V|^2)$ questa complessità è peggiore di quella di MST-1, ma se il numero di archi scende sotto l'ordine $O(|V|^2/log(|V|))$ l'algoritmo MST-2 ha prestazioni migliori.

Note

Questi tre algoritmi appena visti sono tutti e tre algoritmi costruttivi, senza revisione delle decisioni passate.

Contents

Introduction	
Minimum Spanning Tree	
Algoritmo di Kruskal (Greedy)	
Foresta di supporto	
Algoritmo MST-1	
Algoritmo MST-2	
Note	