Recurrent Neural Network (RNN)

1-of-N encoding

How to represent each word as a vector?

1-of-N Encoding lexicon = {apple, bag, cat, dog, elephant}

The vector is lexicon size.

Each dimension corresponds

to a word in the lexicon

The dimension for the word

is 1, and others are 0

apple =
$$[1 \ 0 \ 0 \ 0]$$

bag =
$$[0 \ 1 \ 0 \ 0]$$

cat =
$$[0 \ 0 \ 1 \ 0 \ 0]$$

$$dog = [0 \ 0 \ 0 \ 1 \ 0]$$

elephant =
$$[0 \ 0 \ 0 \ 0 \ 1]$$

Dimension for "Other"

Word hashing

5

Recurrent Neural Network (RNN)

RNN

The same network is used again and again.

Elman Network & Jordan Network

Bidirectional RNN

Long Short-term Memory (LSTM)

4 times of parameters

LSTM

Learning

• RNN-based network is not always easy to learn Real experiments on Language modeling

The error surface is rough.

Helpful Techniques

Long Short-term Memory (LSTM)

Can deal with gradient vanishing (not gradient explode)

Memory and input are added

➤ The influence never disappears unless forget gate is closed

No Gradient vanishing (If forget gate is opened.)

Gated Recurrent Unit (GRU): simpler than LSTM

Helpful Techniques

Clockwise RNN

[Jan Koutnik, JMLR'14]

Structurally Constrained Recurrent Network (SCRN)

[Tomas Mikolov, ICLR'15]

Vanilla RNN Initialized with Identity matrix + ReLU activation function [Quoc V. Le, arXiv'15]

Outperform or be comparable with LSTM in 4 different tasks

Many to Many (Output is shorter)

- Both input and output are both sequences, <u>but the output</u> is shorter.
- Connectionist Temporal Classification (CTC) [Alex Graves, ICML'06][Alex Graves, ICML'14][Haşim Sak, Interspeech'15][Jie Li, Interspeech'15][Andrew Senior, ASRU'15]

Many to Many (Output is shorter)

• CTC: Training

Acoustic Features:

Label: 好棒

All possible alignments are considered as correct.

Many to Many (No Limitation)

- Both input and output are both sequences <u>with different</u> lengths. → Sequence to sequence learning
 - E.g. *Machine Translation* (machine learning→機器學習)

Sequence-to-sequence Auto-encoder - Text

 To understand the meaning of a word sequence, the order of the words can not be ignored.

white blood cells destroying an infection

exactly the same bag-of-word

an infection destroying white blood cells

negative

Sequence-to-sequence Auto-encoder - Speech

Reading Comprehension

Deep & Structured

RNN v.s. Structured Learning

- RNN, LSTM
 - Unidirectional RNN does NOT consider the whole sequence
 - Cost and error not always related
 - Deep 👑

- HMM, CRF, Structured Perceptron/SVM
 - Using Viterbi, so consider the whole sequence
 - How about Bidirectional RNN?
 - Can explicitly consider the label dependency
 - Cost is the upper bound of error

Integrated together

Speech Recognition: CNN/LSTM/DNN + HMM

Integrated together

 Semantic Tagging: Bi-directional LSTM + CRF/Structured SVM

Is structured learning practical?

