工科数学分析(上)期末试题(A卷)

座号	E级	学号	姓名
(24米井 / 五 上 人 土 陌	网络丽沙酒士汁和	试券后面空白纸撕下做苜稿纸	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

题号	_	1 1	[1]	四	五	六	4	八	九	+	总分
得分											
签名											

得分	

一、填空(每小题4分,共20分)

1.
$$\lim_{x \to \infty} \left(\frac{x}{1+x} \right)^{-2x+1} = \underline{\hspace{1cm}}$$

2. 设
$$y = y(x)$$
 由
$$\begin{cases} x = \ln(1+t^2) \\ y = \arctan t \end{cases}$$
 确定,则
$$\frac{d^2y}{dx^2} = \underline{\qquad}$$

3. 曲线
$$y = (ax - b)^3$$
 在点 $(1,(a - b)^3)$ 处有拐点,则 a,b 应满足______.

4.
$$\int_0^8 e^{\sqrt[3]{x}} dx = \underline{\qquad}$$

得分

二、计算题(每小题5分,共20分)

1. 求极限
$$\lim_{x\to 0} \frac{\sqrt{1+x} + \sqrt{1-x} - 2}{x^2}$$
.

2. 设函数 y = y(x) 由方程 $2^{xy} = x + y$ 所确定, 求 $dy|_{x=0}$.

3. 求函数 $f(x) = (2x-5) \cdot \sqrt[3]{x^2}$ 的单调区间与极值.

4. 求方程 $yy'' - y'^2 = 0$ 的通解.

得分

三、(8分) 计算不定积分 $\int \frac{\arctan x}{x^2(1+x^2)} dx$.

得分

四、(8分) 已知曲线 $y = \frac{x^3}{1+x^2} + \arctan(1+x^2)$,求该曲线的渐近线.

得分

五、(6分) 设数列 $\{x_n\}$ 满足 $0 < x_1 < \pi, x_{n+1} = \sin x_n (n = 1, 2, ...)$.

(1) 证明数列 $\{x_n\}$ 有极限,并求出极限值;

(2) 计算
$$\lim_{n\to\infty} \left(\frac{x_{n+1}}{x_n}\right)^{\frac{1}{x_n^2}}$$
.

得分

六、(8 分) 设曲线 $y = x^2$ 与直线 y = x 围成一平面图形 D.

- (1) 求平面图形 D的面积;
- (2) 求平面图形D绕y轴旋转所得旋转体的体积.

/日 八	
得分	
	l

七、(8分)某物体的一个侧面为等腰梯形,上底长 10m,下底长 6m,高为 20m,铅直立于水中,在下列条件下分别计算这个侧面所受到的水压力.

- (1) 上底与水面相齐;
- (2)上底位于水深 2m 处. (重力加速度 $g(m/s^2)$,水的密度 $\mu(kg/m^3)$).

得分

八、(8分)已知函数 f(x) 在 x = 0 处可导,且 $\lim_{x \to 0} (\frac{f(x)}{x} + \frac{\sin x}{x^2}) = 1$, 试求 f'(0).

得分

九、(8分) 设函数 f(x) 连续, 且满足 $\int_0^x f(x-t)dt = \int_0^x (x-t)f(t)dt + e^{-x} - 1, \, 求 \, f(x) \,$ 的表达式.

得分

十、 $(6 \, \text{分})$ 设奇函数 f(x) 在[-1,1]上具有 2 阶导数,且 f(1) = 1.

证明:

- (1) 存在 $\xi \in (0,1)$, 使得 $f'(\xi) = 1$;
- (2) 存在 $\eta \in (-1,1)$, 使得 $f''(\eta) + f'(\eta) = 1$.