Exercises: Overdetermined Linear Systems

Problems marked with \nearrow are to be done by hand; those marked with \square are to be solved using a computer.

1. (More fitting exercise; **FNC** 3.1.4) Define the following data in MATLAB:

$$t = (0:.5:10)'; y = tanh(t);$$

- (a) Fit the data to a cubic polynomial and plot the data together with the polynomial fit.
- (b) Fit the data to the function $c_1 + c_2 z + c_3 z^2 + c_4 z^3$, where $z = t^2/(1+t^2)$. Plot the data together with the fit. What feature of z makes this fit much better than the original cubic?
- 2. (Normal equation; Sp20 final) \nearrow The following set of data points is to be fitted to a straight line $p(x) = c_1 + c_2 x$ via linear least square approximation:

$$\begin{array}{c|cccc} x_j & -1 & 2 & 5 \\ \hline y_i & 3 & 6 & 9 \\ \end{array}$$

- (a) Write out the conditions y_j "=" $p(x_j)$, for $1 \le j \le 3$, and turn them into a matrix equation of the form \mathbf{y} "=" $X\mathbf{c}$.
- (b) Write out the squared 2-norm of the residual $\|\mathbf{r}\|_2^2$ where $\mathbf{r} = X\mathbf{c} \mathbf{y}$; call it $g(c_1, c_2)$. Do not simplify your answer.
- (c) The function g is minimized at \mathbf{c} where $\nabla g = \mathbf{0}$. Turn this condition into a single matrix equation for \mathbf{c} .
- (d) Verify that the result of the previous part agrees with the normal equation $X^T X \mathbf{c} = X^T \mathbf{y}$.
- 3. (LLS via QR factorization; Au20 midterm)
 Suppose you have the following functions available in your working directory:

```
function [Q,R] = gs(A)
%GS Computes thin QR using Gram-Schmidt
   [m,n] = size(A);
Q = A;
R = zeros(n);
for j = 1:n
    if j > 1
        R(1:j-1,j) = Q(:,1:j-1)'*Q(:,j);
        Q(:,j) = Q(:,j) - Q(:,1:j-1)*R(1:j-1,j);
end
   R(j,j) = norm(Q(:,j));
Q(:,j) = Q(:,j)/R(j,j);
end
end
```

```
function x = backsub(U,b)
%BACKSUB Solves an upper triangular system
    n = length(U);
    x = zeros(n,1);
    for i = n:-1:1
        x(i) = ( b(i) - U(i,i+1:n)*x(i+1:n) ) / U(i,i);
    end
end
```

Using the functions provided, complete the following program which solves the linear least square problem $A\mathbf{x}$ "=" \mathbf{b} using the thin QR factorization.

```
function x = lls_qr(A, b)
%LLS_QR Solves linear least squares by (thin) QR factorization.
% Input:
% A (m x n) coefficient matrix with m >= n
% b (m x 1) right-hand side
% Output:
% x minimizer of the 2-norm of residual Ax - b
```

4. (Orthogonal decomposition; LM 12.6–11) \square Let the matrix $A \in \mathbb{R}^{10\times 4}$ be defined by

```
A = reshape(1:40, 10, 4);
```

Write the vector $\mathbf{x} = (1, 4, 9, 16, \dots, 100)^{\mathrm{T}}$ as $\mathbf{u} + \mathbf{z}$ where $\mathbf{u} \in \mathcal{R}(A)$ and $\mathbf{z} \perp \mathcal{R}(A)$ using the orthogonal projection matrix.

Note. Let $A = [\mathbf{a}_1 \mid \mathbf{a}_2 \mid \cdots \mid \mathbf{a}_n] \in \mathbb{R}^{m \times n}$ where $\mathbf{a}_j \in \mathbb{R}^m$ is the j-th column vector of A. Recall that $\mathcal{R}(A)$ denotes the range of A or the column space of A, that is,

$$\mathcal{R}(A) = \operatorname{span}(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n),$$

the subspace consisting of all linear combinations of the columns of A.

Note. See also **FNC** 3.3.8; part (c) of the problem may be useful.

5. (Improving myqr.m) Modify myqr.m (see Lecture 22) by following the instructions found in LM 12.6-8(b).

- 6. (Projection and reflection) Let P be the plane 2x + y z = 0 in \mathbb{R}^3 .
 - (a) Compute the orthogonal projection of the vector $\mathbf{u} = [1, 1, 1]^{\mathrm{T}}$ onto the plane P. (**Hint**. Begin by finding a vector \mathbf{v} that is normal to the plane P.)
 - (b) Compute the matrix representation (in the standard basis) of the reflection operator through the plane P.
 - (c) Compute the reflection of \mathbf{u} through the plane P.
 - (d) Add **v** to the result of (c). How does this compare to the result of (a)? Explain.
- 7. (Orthogonal triangularization by hand) Find the two reflections H_1 and H_2 that put the matrix

$$A = \begin{bmatrix} 1 & 3 & 1 \\ 1 & 3 & 7 \\ 1 & -1 & -4 \end{bmatrix}$$

in upper-triangular form; that is, write $H_2H_1A=R$, where R is upper triangular.