Redes de Computadores I

Prof. Luís Henrique Maciel Kosmalski Costa

http://www.gta.ufrj.br/ensino/ee1878

luish@gta.ufrj.br

Parte III

Camada de Rede e seus Protocolos

- · Responsável por:
 - Determinar o melhor caminho para o envio dos pacotes
 - · É função dos protocolos de roteamento
 - Encaminhar os pacotes até o destino
 - · É função do protocolo IP
 - Interconectar redes de diferentes tecnologias
 - · É função do protocolo IP

- Protocolos da camada de rede
 - Executados nos sistemas finais e nos roteadores

- Protocolos da camada de rede
 - Executados nos sistemas finais e nos roteadores

Transporta segmentos da estação remetente à receptora

- · Protocolos da camada de rede
 - Executados nos sistemas finais e nos roteadores

Transmissor encapsula segmentos dentro de datagramas

- Protocolos da camada de rede
 - Executados nos sistemas finais e nos roteadores

Receptor entrega os segmentos para a camada de transporte

- Protocolos da camada de rede
 - Executados nos sistemas finais e nos roteadores

Roteadores examinam campos de cabeçalho de todos os datagramas IP que passam por eles

- · Protocolos da camada de rede
 - Executados nos sistemas finais e nos roteadores

Transparência

- · Transparência sintática
 - Pacotes são transferidos da origem ao destino sem que a rede modifique os dados
 - · Apenas erros de transmissão modificam os dados

Encaminhamento X Roteamento

- Encaminhamento (repasse)
 - "Mover" pacotes de uma entrada do roteador para a saída apropriada
 - · É função do protocolo IP
- Roteamento
 - Determinar a rota a ser seguida pelos pacotes da fonte até o destino
 - · É função dos protocolos de roteamento

Encaminhamento X Roteamento

Responsável por construir a tabela de encaminhamento

Modelos de Serviço

- Tipos de serviços que poderiam ser oferecidos pela camada de rede
 - Definem as características do transporte de pacotes fim-a-fim entre transmissor e receptor
- Para pacotes individuais
 - Entrega garantida
 - Pacote irá chegar ao destino "mais cedo ou mais tarde"
 - Entrega garantida com atraso limitado
 - · Pacote irá chegar com atraso menor que 100 ms

Modelos de Serviço

- Para fluxos de pacotes
 - Entrega ordenada de pacotes
 - Largura de banda mínima garantida
 - Jitter máximo garantido
 - Serviços de segurança
 - Usando uma chave secreta de sessão o transmissor poderia cifrar o conteúdo de todos os pacotes enviados para o destinatário
- Na Internet
 - Apenas um protocolo: o IP
 - Apenas um serviço oferecido → Melhor esforço

Melhor Esforço

- Roteadores se esforçam ao máximo para entregar os pacotes
 - Da melhor maneira possível e sem distinção
- Nós simples e de baixo custo sem estados na rede
 - Encaminhamento de pacote independente um dos outros
 - Sem reserva de recursos, recuperação de erros, garantia de acesso
 - Atraso dependente do tamanho da fila
 - Sem garantia de entrega do pacote ao destino
 - · Pacote é descartado no roteador se a fila estiver cheia

Serviços da Camada de Rede

- · Orientado à conexão
 - Redes de circuitos virtuais
- · Não-orientado à conexão
 - Redes de datagramas
- · Análogos aos serviços da camada de transporte, porém...
 - É um serviço estação-a-estação
 - E não processo-a-processo...
 - É orientado à conexão ou não orientado à conexão
 - E não com escolha (p.ex. a camada de transporte que oferece escolha: TCP ou UDP)
 - É implementado no núcleo da rede
 - · E não somente nas bordas

Circuitos Virtuais

- Emular uma rede de comutação de circuitos utilizando comutação de pacotes
 - Caminho da origem ao destino "se comporta" como um circuito telefônico
 - Em termos de desempenho
 - · Em ações da rede ao longo do caminho

Circuitos Virtuais

Funcionamento

- Estabelecimento de uma chamada antes do envio dos dados
- Cada pacote carrega a identificação do circuito virtual (CV)
 - · Ao invés de endereços de origem e destino
- Cada roteador no caminho origem-destino mantém estado para cada conexão que o atravessa
 - Cada conexão está associada a um CV
- Recursos de enlace, roteador (banda, buffers) podem ser alocados ao CV

Circuitos Virtuais

- Um CV consiste de:
 - Caminho da origem para o destino
 - Números (identificadores) de CV
 - Um número para cada enlace ao longo do caminho
 - Entradas nas tabelas de encaminhamento dos roteadores ao longo do caminho
- · Pacotes de um dado CV carregam o número desse CV
 - Número do CV deve ser trocado a cada enlace
 - Novo número do CV vem da tabela de encaminhamento

Circuitos Virtuais: Encaminhamento

Número do CV

R₁

22

número da

interface

Tabela de encaminhamento no roteador R₁

#CV de entrada	Interf. de saída	#CV de saída
12	3	22
63	1	18
7	2	17
97	3	87
	12 63 7 97	63 7 2 97

Circuitos Virtuais: Encaminhamento

Roteadores mantêm informação sobre o estado da conexão!

no roteador R_1

#CV de entrada	Interf. de saída	#CV de saída
1.2	3	22
63	1	18
7	2	17
97	3	87
		•••
	12 63 7 97	63 7 2 97

Circuitos Virtuais: Protocolos de Sinalização

- Responsáveis por estabelecer, manter e destruir um
 - Usados em ATM, frame-relay, X.25
 - Não usados na Internet convencional

Circuitos Virtuais: Protocolos de Sinalização

- Responsáveis por estabelecer, manter e destruir um
 - Usados em ATM, frame-relay, X.25
 - Não usados na Internet convencional

Circuitos Virtuais: Protocolos de Sinalização

- Responsáveis por estabelecer, manter e destruir um
 - Usados em ATM, frame-relay, X.25
 - Não usados na Internet convencional

Rede de Datagramas

- · Serviço não confiável
- · Sem estabelecimento prévio de conexão
- · Roteadores não guardam estado sobre conexões
- Pacotes são encaminhados
 - Com base no endereço de destino
 - De acordo com o modelo de melhor esforço
- Dois pacotes entre o mesmo par origem-destino podem seguir caminhos diferentes

Rede de Datagramas

Datagramas: Encaminhamento

- Endereço IP: 32 bits
 - 4 bilhões de endereços → 4 bilhões de entradas!
 - Agregação de endereços

Como resumir a tabela?

Faixa de endereços de destino	Interface de saída
11001000.00010111.00010000.00000000	
α	0
11001000.00010111.00010111.11111111	
11001000.00010111.00011000.0000000	
α	1
11001000.00010111.00011000.11111111	
11001000.00010111.00011001.0000000	
α	2
11001000.00010111.00011111.11111111	
Caso contrário	3

Faixa de endereços de destino	Interface de saída
11001000.00010111.00010000.00000000	
α	0
11001000.00010111 00010111.11111111	
11001000.00010111.00011000.00000000	
α	1
11001000.00010111.00011000.11111111	
11001000.00010111.00011001.0000000	
α	2
11001000.00010111.00011111.11111111	
Caso contrário	3

Faixa de endereços de destino	Interface de saída
11001000.00010111.00010000.00000000	
α	0
11001000.00010111 <mark>.00010</mark> 111.1111111	
11001000.00010111 00011000.0000000	
α	1
11001000.00010111 00011000 11111111	
11001000.00010111.00011001.00000000	
α	2
11001000.00010111 00011111.11111111	
Caso contrário	3

Faixa de endereços de destino	Interface de saída
11001000.00010111.00010	0
11001000.00010111.00011000	1
11001000.00010111.00011 2	
Caso contrário	3

Faixa de endereços de destino	Interface de saída
11001000.00010111.00010	0
11001000.00010111.00011000	1
11001000.00010111.00011	2
Caso contrário	3

Exemplos

ED: 11001000 00010111 00010110 10100001 Qual interface?

ED: 11001000 00010111 00011000 10101010 Qual interface?

Faixa de endereços de destino	Interface de saída
11001000.00010111.00010	0
11001000.00010111.00011000	1
11001000.00010111.00011 2	
Caso contrário	3

Exemplos

ED: 11001000 00010111 00010110 10100001 Interface 0

ED: 11001000 00010111 00011000 10101010 Interface 1

Circuitos Virtuais X Datagramas

Características	Circuito Virtual	Datagrama
Estabelecimento de conexão	É necessário	Não é necessário
Endereçamento	Identificador do CV	Endereços da fonte e do destino
Estados	Por conexão	Sem estado
Roteamento	Rota escolhida na conexão e seguida posteriormente	Cada pacote é "independente"
Falha de roteadores	Todos os circuitos fechados	Perda de pacotes durante a falha
Qualidade de serviço	Mais fácil	Difícil
Controle de congestionamento	Mais fácil	Difícil

Arquitetura de Roteadores

Roteador

- · Elemento responsável por...
 - Determinar o caminho entre um par origem-destino
 - · Ação distribuída
 - Encaminhar pacotes
 - Interconectar redes distintas

Roteador

- Cada pacote ao chegar a um roteador...
 - Tem seu endereço de destino analisado (*best-prefix match*)
 - Se o endereço for igual ao de uma das interfaces do roteador
 - Pacote é enviado para camada de transporte
 - · Caso contrário
 - Pacote é encaminhado a outro roteador pela interface mais indicada

Roteador

Funções das Portas de Entrada

Camada de enlace: p.ex., Ethernet em cada porta de entrada):

- dado o dest. do datagrama, procura porta de saída usando tab. de rotas na memória da porta de entrada
- meta: completar processamento da porta de entrada na "velocidade da linha"
- filas: se datagramas chegam mais rápido que taxa de reenvio para matriz de comutação

Três Técnicas de Comutação

Legenda:

Porta de entrada Porta de saída

Comutação por Memória

- · Roteadores da primeira geração
- Pacote copiado pelo processador (único) do sistema para a memória compartilhada
 - Velocidade limitada pela largura de banda da memória
 - Duas travessias do barramento por datagrama

Comutação por Barramento

- Datagrama da memória da porta de entrada é transferido para a memória da porta de saída via um barramento compartilhado
 - Não há intervenção do processador de roteamento
- Disputa (contenção) pelo barramento
 - Taxa de comutação limitada pela largura de banda do barramento
- · Caso o barramento esteja ocupado
 - Pacotes são enfileirados na porta de entrada

Comutação por Rede de Interconexão (Crossbar)

- Reduz a disputa pelo acesso ao barramento
 - Disputa passa a ser "por porta de saída"
- Define uma rede de interconexões com 2N barramentos
 - Interconecta N portas de entrada a N portas de saída
- Caso um barramento esteja ocupado
 - Pacotes são enfileirados na porta de entrada

Funções das Portas de Saída

- Filas
 - Necessárias quando datagramas chegam do elemento de comutação mais rapidamente do que a taxa de transmissão
- Escalonador de pacotes escolhe um dos datagramas enfileirados para transmissão

- · Portas de saída
 - Usam buffers
 quando taxa de
 chegada através do
 comutador excede
 taxa de transmissão
 de saída
 - enfileiramento (retardo) e perdas devido ao transbordo do buffer da porta de saída!

Um tempo de pacote mais tarde

- Portas de entrada
 - Se o elemento de comutação for mais lento do que a soma das portas de entrada juntas
 - Pode haver filas nas portas de entrada
 - Se um datagrama na cabeça da fila impede outros na mesma fila de avançarem
 - Há bloqueio de cabeça de fila

Como consequência, pode haver retardo de enfileiramento e perdas devido ao transbordo do buffer de entrada!

Contenção na porta de saída no instante t: somente um pacote vermelho pode ser transferido...

Pacote verde fica bloqueado na cabeceira da fila...

Internet Protocol (IP)

Internet Protocol

- · Definido pela RFC 791
- · É o responsável pelo:
 - Encaminhamento de pacotes
 - · Não pelo roteamento!
 - Endereçamento e identificação de estações e roteadores
 - Semântica sobrecarregada

Operação do IP

Transmissão de um Pacote IP

A1 → C1, IP A → B, TCP cabeçalho TCP + dados

Cabeçalho Ethernet cabeçalho IP

C2 → B2, IP A → B, TCP cabeçalho TCP + dados

Cabeçalho IP Ethernet

IPv4

O Cabeçalho IP

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Version	IHL	Type of service	Total Length						
	Identif	ication	Flags	Fragment Offset					
Time to	o Live	Protocol	Header Checksum						
Source Address									
Destination Address									
	Options Padding								

O Cabeçalho IP

Version	IHL	Type of service	Total Length						
	Identif	ication	Flags	Flags Fragment Offset					
Time t	o Live	Protocol	Header Checksum						
	Source Address								
Destination Address									
	Options Padding								

Todos os campos possuem tamanho fixo, exceto o campo de opções

0 0 1 2 3	4567	1 8 9 0	1 2	3 4	1 5	6	7	8	9	2 0	1	2	3	4	5	6	7	8	9	3 0	1
Version	IHL	Туре	of se	ervic	е	Total Length															
Identification					FI	lag	ıs				Fr	ag	me	ent	t O	ffs	et				
Time to Live Protocol				Header Checksum																	
Source Address																					
Destination Address																					
Options															Pa	ad	dir	ıg			

- Versão (4bits)
 - Versão atual = 4
 - Versão 5 = Protocolo ST-2 (Internet Stream Protocol)
 - · Versão do IP orientado à conexão para tráfego de voz
 - Versão 6 = "A próxima geração"
 - Versões 7 e 8

- IHL (Internet header's length) (4 bits)
 - Comprimento do cabeçalho, em palavras de 32 bits
 - Varia de 5 palavras (quando não há opções) a 15 palavras
 - · Ou seja, podem haver 40 bytes de opções, no máximo

- Tipo de serviço (Type of Service) (8 bits)
 - Define a precedência e o tipo de roteamento desejado para o pacote
 - Utilizado para qualidade de serviço (QoS)

- Comprimento total (Total Length) (16 bits)
 - Comprimento total do pacote, incluindo o cabeçalho
 - Limita o tamanho do pacote a 65.535 bytes
 - Entretanto, os pacotes raramente são maiores que 1.500 bytes

- · Identification, Flags e Fragment Offset
 - Utilizados no processo de fragmentação e remontagem
 - · Identification: identificação do pacote
 - Flag: Indica se o segmento é o último da série
 - Offset: Indica a posição do fragmento no datagrama

- Tempo de Vida (Time to Live -TTL) (8 bits)
 - Tempo de vida máximo do pacote na rede em segundos
 - Um dos objetivos era saber que depois do TTL máximo, nenhum outro pacote daquela comunicação estaria em trânsito
 - Evita-se misturar pacotes de fluxos de dados diferentes

O 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Version IHL Type of service Total Length

Identification Flags Fragment Offset

Time to Live Protocol Header Checksum

Source Address

Destination Address

Options Padding

- Tempo de Vida (Time to Live -TTL) (8 bits)
 - RFC-791: Um roteador deve sempre decrementar o TTL antes de retransmitir um pacote
 - O TTL deve ser decrementado de 1, se o tempo gasto nas filas e na transmissão ao próximo nó for menor que 1 segundo
 - · Ou do número de segundos estimado

- Tempo de Vida (Time to Live -TTL) (8 bits)
 - Na prática, estimar este tempo é difícil e o tempo de transmissão nos enlaces dificilmente ultrapassa 1s
 - Maioria dos roteadores decrementa o TTL de 1
 - Se o TTL atinge o valor 0, o pacote deve ser descartado
 - Sinal que o pacote já trafegou por mais tempo que devia...

Valor padrão: TTL = 64

- · Source Address e Destination Address (32 bits cada)
 - Identificam a fonte e o destino do pacote, respectivamente

- Protocol (8 bits)
 - Determina o programa para o qual o pacote é passado, no destino

Diferentes protocolos

Decimal	Sigla	Protocolo
0		Reservado
1	ICMP	Internet Control Message
2	IGMP	Internet Group Management
4	IP	IP em IP (encapsulação)
6	TCP	Transmission Control

Decimal	Sigla	Protocolo
17	UDP	User Datagram
29	ISO-TP4	ISO Transport Prot Class 4
80	ISO-IP	ISO Internet Protocol (CLNP)
89	OSPF	Open Shortest Path First
255		Reservado

- Header Checksum (16 bits)
 - Proteção do cabeçalho contra erros
 - Muda a cada salto já que o TTL é decrementado e campo de opções pode ser alterado

- Header Checksum
 - Calculado como:
 - Complemento a 1 da soma de todas as palavras de 16 bits do cabeçalho
 - Considera os bits do checksum em 0
 - Considera o campo de opção

- Compromisso

- Não protege contra inserção de palavras em zero (16 bits iguais a zero) ou inversão de palavras...
- Mas é de simples implementação

- Calculado a cada salto

- Caso a verificação falhe, a mensagem é descartada
- · Se não falhar, o *checksum* é recalculado
 - Campo TTL é decrementado a cada salto

Precedência e Tipo de Serviço

- Precedence (3 bits)
 - Indica a prioridade de transmissão do pacote em fila
 - Valores maiores, maior prioridade
 - RFC791 diz que a precedência é válida apenas dentro de uma rede
 - · Evita usuários mal-intencionados

Precedência e Tipo de Serviço

- Type of Service (5 bits)
 - Útil quando existem múltiplas rotas
 - Indicação para o roteamento
 - · Nunca são utilizados mais de um campo
 - Combinação ilegal

Fragmentação e Remontagem

- · A fragmentação é necessária
 - Roteador conecta duas tecnologias de rede diferentes
 - · Cada uma possui um tamanho máximo de pacote
 - Ex.: Rede com alta perda → pacotes devem ser pequenos
 Rede com baixa perda → pacotes podem ser grandes
 - · Menor MTU do caminho não é conhecida
 - Comumente se utiliza a MTU da rede da fonte

0 0 1 2 3	4 5 6 7	1 8 9 0 1 2 3 4 5	6 7 8	2 9 0 1 2 3	3 4 5 6 7 8 9 0 1				
Version	IHL	Type of service	Total Length						
Identification			Flags	Frag	ment Offset				
Time t	Time to Live Protocol			Header Checksum					
	Source Address								
	Destination Address								
		Options			Padding				

- Cada enlace de rede tem MTU (max.transmission unit) - maior tamanho possível de quadro neste enlace
 - Tipos diferentes de enlace têm MTUs diferentes

- Datagrama IP muito grande dividido ("fragmentado") dentro da rede
 - Um datagrama vira vários datagramas
 - "Remontado" apenas no destino final
 - Bits do cabeçalho IP usados para identificar, ordenar fragmentos relacionados

- Identification (16 bits)
 - Junto ao campo endereço de origem, identifica a qual pacote pertence o fragmento
- Fragment Offset (13 bits)
 - Identifica a posição do fragmento no pacote
 - Palavras de 8 bytes

0 0 1 2 3	4 5 6 7	1 8 9 0 1 2 3 4 5	6 7 8	2 9 0 1 2 3	3 4 5 6 7 8 9 0 1				
Version	IHL	Type of service		Total	Length				
	ldentif	ication	Flags	Frag	ment Offset				
Time t	o Live	Protocol	Header Checksum						
	Source Address								
Destination Address									
	Options Padding								

- Flags (3 bits)
 - Informa se o pacote pode ser fragmentado (DF) e se ainda existem mais fragmentos a serem recebidos (MF)
 - Bit 0 reservado
 - Bit 1 don't fragment (DF)
 - Bit 2 more fragments (MF)

- Cada fragmento possui um cabeçalho completo
 - Igual ao do pacote original, exceto pelos campos de comprimento, offset e o bit MF

- Cada fragmento possui um cabeçalho completo
 - Igual ao do pacote original, exceto pelos campos de comprimento, *offset* e o bit MF

- Cada fragmento possui um cabeçalho completo
 - Igual ao do pacote original, exceto pelos campos de comprimento, *offset* e o bit MF

- Cada fragmento possui um cabeçalho completo
 - Igual ao do pacote original, exceto pelos campos de comprimento, *offset* e o bit MF

- · Cada fragmento possui um cabeçalho completo
 - Igual ao do pacote original, exceto pelos campos de comprimento, offset e o bit MF

O bit MF é sempre 1, exceto no último fragmento

- Em caso de nova fragmentação
 - MF e offset são calculados com relação ao pacote original

	Campos do Cabeçalho						
Fragmento 2	Id = X	L = 1500	DF=0, MF=1	Offset = 185			
Fragmento 2a	ld = X	L = 500	DF=0, MF=1	Offset = 185			
Fragmento 2b	ld = X	L = 500	DF=0, MF=1	Offset = 245			
Fragmento 2c	ld = X	L = 500	DF=0, MF=1	Offset = 305			
Fragmento 2d	ld = X	L = 60	DF=0, MF=1	Offset = 310			

- O campo identificação (16 bits) associado ao endereço de origem identifica a qual pacote pertence o fragmento
- Pacotes são remontados no destino
 - O receptor deve "expirar" pacotes parcialmente remontados, após um certo período de espera
 - Ex.: decrementando o campo TTL a cada segundo
 - O emissor só pode reutilizar um identificador após o período igual ao TTL utilizado

- · A fragmentação é ineficiente combinada com o TCP
 - Perda de um fragmento implica retransmissão do pacote inteiro
- · A memória dos roteadores pode ser desperdiçada
 - Os fragmentos de um determinado pacote ficam armazenados em buffers antes de serem encaminhados

Como Evitar a Fragmentação?

- O TCP implementa um mecanismo de descoberta da MTU (Maximum Transmission Unit) do caminho
 - Tentativas com diferentes tamanhos de pacote e com o campo DF (Don't Fragment) em 1
 - O TCP utiliza como MTU o maior tamanho entregue

- Definido para criação de funcionalidades especiais, através do roteamento específico de alguns pacotes
- Options
 - Pode transportar vários parâmetros
 - Cada opção começa por um byte de "tipo de opção"
 - O segundo byte normalmente indica o comprimento da opção

										1					
0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5
option-type									len	gth					

- Flag C (Copied)
 - Indica que a opção deve ser copiada em todos os fragmentos ou apenas no primeiro
- Class
 - 0: opções de controle e 2: opções de debug e medidas
- Number
 - Identifica uma opção dentro de cada classe

Classe	Número	Compr.	Significado		
0	0	-	End of Option list. Indica o fim da lista de opções, possui apenas 1 byte. Não há byte de comprimento.		
0	1	-	No Operation. Possui apenas 1 byte. Não há byte de comprimento.		
0	2	11	Security. Utilizada para carregar parâmetros de segurança definidos pelo dep. de defesa americano.		
0	3	var.	Loose Source Routing. Utilizada para rotear o pacote IP de acordo com a informação fornecida pela fonte.		
0	7	var.	Record Route. Utilizada para registrar a rota atravessada pelo pacote IP.		
0	8	4	Stream ID. Utilizada para carregar o identificador do stream.		
0	9	var.	Strict Source Routing. Utilizada para rotear o pacote IP de acordo com a informação fornecida pela fonte.		
2	4	var.	Internet Timestamp.		

Classe	Número	Compr.	Significado	
0	0	-	End of Option list. Indica o fim da lista de opções, possui apenas 1 byte. Não há byte de comprimento.	
0	1	-	No Operation. Possui apenas 1 byte. Não há byte de comprimento.	
0	2	11	Security. Utilizada para carregar parâmetros de segurança definidos pelo dep. de defesa americano.	
0	3	var.	Loose Source Routing. Utilizada para rotear o pacote IP de acordo com a informação fornecida pela fonte.	
0	7	var.	Record Route. Utilizada para registrar a rota atravessada pelo pacote IP.	
0	8	4	Stream ID. Utilizada para carregar o identificador do stream.	
0	9	var.	Strict Source Routing. Utilizada para rotear o pacote IP de acordo com a informação fornecida pela fonte.	
2	4	var.	Internet Timestamp.	

No operation

- Utilizada para enchimento entre opções, de forma que o início da opção esteja alinhado em 32 bits

End of option

- Indica o ponto onde a opção termina, mesmo se o campo IHL indicar mais espaço alocado para opções
- · A maioria das opções não é usada
 - Stream ID foi usada apenas no experimento Satnet
 - Security codifica necessidades militares dos anos 70
 - Timestamp e route record visavam serviços que o programa traceroute implementa

Roteamento pela Fonte

- · Caminho do pacote é definido no nó de origem
- Duas possibilidades
 - Strict Routing
 - · Define o caminho completo
 - Loose Routing
 - · Define alguns nós do caminho

Roteamento pela Fonte

Campo de opções

Route data

 Contém a lista de endereços pelos quais o pacote deve passar

· Pointer

- Aponta para o próximo endereço da lista a ser utilizado

Roteamento pela Fonte

Funcionamento

- O campo Destination Address do cabeçalho possui o endereço IP do próximo nó pelo qual o pacote deve passar
- Quando este destino é atingido, a opção é examinada
- O campo *pointer* indica um número de octetos a partir do início da opção, de onde deve ser lido o próximo endereço
- Se pointer maior que o comprimento da opção
 - O destino final foi atingido

- Como enviar um pacote de A para B, passando pelos roteadores D e E
 - Encapsulamento IP sobre IP → tunelamento

- Como enviar um pacote de A para B, passando pelos roteadores D e E
 - Encapsulamento IP sobre IP → tunelamento

 $A \rightarrow D, IP$

 $A \rightarrow E, IP$

 $A \rightarrow B$, TCP

cabeçalho TCP + dados

Cabeçalho IP(1) Cabeçalho IP(2) Cabeçalho IP(3)

- Como enviar um pacote de A para B, passando pelos roteadores D e E
 - Encapsulamento IP sobre IP → tunelamento

Cabeçalho IP(1) Cabeçalho IP(2)

- Como enviar um pacote de A para B, passando pelos roteadores D e E
 - Encapsulamento IP sobre IP → tunelamento

 $A \rightarrow B$, TCP

cabeçalho TCP + dados

Cabeçalho IP

- Como enviar um pacote de A para B, passando pelos roteadores D e E
 - Encapsulamento IP sobre IP → tunelamento

Túnel

Tunelamento é usado para realizar encapsulamento de dados de "mesma camada"

Processamento do Cabeçalho IP

- · Operações para encaminhar um pacote
 - 1. Verificação da versão, do *checksum*, tamanho do pacote, e leitura das opções (se houver)
 - 2. Consultar a tabela de roteamento para o destino e tipo de serviço do pacote
 - 3. Obter a interface e endereço no meio físico

Processamento do Cabeçalho IP

- Operações para encaminhar um pacote
 - 1. Verificação da versão, do *checksum*, tamanho do pacote, e leitura das opções (se houver)
 - 2. Consultar a tabela de roteamento para o destino e tipo de serviço do pacote
 - 3. Obter a interface e endereço no meio físico

Número grande de operações!

Como encaminhar pacotes a taxas da ordem de Gb/s?

Processamento do Cabeçalho IP

- Roteadores otimizam as operações mais comuns (fastpath)
 - Ex.: caches com rotas mais utilizadas, processamento em paralelo de múltiplos campos
- Pacotes sem opções
 - Possuem cabeçalho de tamanho fixo
 - Passam pelo fast-path
- Pacotes com opções
 - Seguem o caminho "normal"
 - Além disso, em alguns roteadores, pacotes com opções possuem menos prioridade para aumentar o desempenho global

Endereçamento IP

Cada interface de rede é identificada por um endereço
 IP de 32 bits

$$223.1.1.1 = 11011111 00000001 00000001 00000001$$

Endereçamento IP

- Formato do endereço IP
 - Dividido em duas partes:
 - · "identificador de rede" e "identificador de estação"
- · 3 classes de "números de rede": A, B e C
- · Mais tarde, classe D definida para endereços multicast
- A classe E possui endereços reservados para utilização experimental

Classes de Endereços IP

Classe	Bits mais significativos	Formato			
A	0	7 bits de redes	24 bits de estações		
В	10	14 bits de redes	16 bits de estações		
С	110	21 bits de redes	8 bits de estações		
D	1110	28 bits de endereços de grupo multicast			
Ε	1111	reservados para testes			

Classes A, B e C

 2^{21} = 2.097.152 prefixos de classe C (192.x.x.x a 223.x.x.x) (28 - 2) = 254 estações em cada rede

Estrutura de Endereçamento

· Quando o IP foi padronizado, em 1981

- Números de rede (netid)
 - Alocados pela autoridade de numeração da Internet
- Números de estação (hostid)
 - Alocados pelo gerente de rede

Estrutura de Endereçamento

· Quando o IP foi padronizado, em 1981

- Números de rede (netid)
 - Alocados pela autoridade de numeração da Internet
- Números de estação (hostid)
 - Alocados pelo gerente de rede

Unicidade do número de rede + unicidade do número da estação

→ Garantem a UNICIDADE GLOBAL do endereço IP

Problema das Classes de Endereço

- · Número fixo de redes e estações por rede
 - Classe A
 - Número pequeno de redes
 - · Número excessivo de estações por rede
 - Classe C
 - · Número pequeno de estações por rede
 - · Número excessivo de redes
- · Resultado

Esgotamento da classe B!

Classless Inter-Domain Routing architecture (CIDR)

- Acaba com as classes
 - Introduz o conceito de máscara de rede
- Permite
 - Agregação de rotas
 - · Aumenta a escalabilidade
 - Reduz o tamanho das tabelas de roteamento
 - Distribuição mais adequada dos endereços IP
 - Resolve o esgotamento dos endereços da classe B
 - · Permite melhor planejamento de endereços
 - Número de máquinas vs. número de endereços IP

Estrutura de Endereçamento CIDR

· Número de rede de comprimento variável

a.b.c.d/x

- Os x bits mais significativos do endereço são o número de rede → prefixo
- · Os 32-x bits são o número de estação

200.23.16.0/23

Máscaras de Sub-rede

- Uma máscara de sub-rede pode ser representada através da notação:
 - Endereço da rede+sub-rede/<número de bits em 1 da máscara>
 - Ex1.: 192.168.0.0/16
 - Notação equivalente a dizer que a máscara é 255.255.0.0
 - Ex2.: 192.168.3.0/26
 - Notação equivalente a dizer que a máscara é
 255,255,255,192

Estrutura de Endereçamento CIDR

 Como obter o número de rede/prefixo a partir do endereço IP?

```
Prefixo = (Endereço IP) AND (Máscara)
```

200.23.16.1/255.255.254.0

Estrutura de Endereçamento CIDR

P: Como uma sub-rede obtém a parte de rede do endereço IP?

Recebe uma porção do espaço de endereços do seu ISP (provedor)

Bloco do provedor	<u>11001000</u>	00010111	<u>0001</u> 0000	00000000	200.23.16.0/20
<u>-</u>	11001000	00010111	00010000	00000000	200.23.16.0/23
Organização 1	11001000	00010111	00010010	00000000	200.23.18.0/23
Organização 2	11001000	00010111	00010100	00000000	200.23.20.0/23
•••		••••		••••	• • • •
Organização 7	11001000	00010111	<u>0001111</u> 0	00000000	200.23.30.0/23

Endereçamento Hierárquico

Endereçamento hierárquico permite anunciar eficientemente informação sobre rotas

Endereçamento Hierárquico

Provedor B tem uma rota mais específica para a Organização 1

- · Endereços IP identificam interfaces de rede
 - NÃO identificam estações
 - · Uma única estação pode ter várias interfaces de rede
- Uma estação com várias interfaces de rede possui vários endereços IP
 - Estação multihomed
 - Exs. roteadores, estações que balanceiam o tráfego entre diversas redes
- Cada endereço pertence a uma sub-rede, que geralmente corresponde a uma "rede física"

Sub-redes

- O que é uma sub-rede IP?
 - Interfaces de dispositivos com a mesma parte de rede nos seus endereços IP
 - Podem alcançar um ao outro sem passar por um roteador

Esta rede consiste de 3 sub-redes IP

Sub-redes

- O que é uma sub-rede
 IP?
 - Interfaces de dispositivos com a mesma parte de rede nos seus endereços IP
 - Podem alcançar um ao outro sem passar por um roteador

Esta rede consiste de 3 sub-redes IP

- Entradas na tabela de roteamento dos roteadores
 - Normalmente apontam para sub-redes
 - Entretanto, podem eventualmente apontar para endereços de máquinas

```
[user@exemplo ~]$ route -n
Tabela de Roteamento IP do Kernel

Destino Roteador MáscaraGen. Opções Métrica Ref Uso Iface
200.20.10.64 0.0.0.0 255.255.255.224 U 0 0 0 eth0
169.254.0.0 0.0.0.0 255.255.0.0 U 0 0 0 eth0
0.0.0.0 200.20.10.65 0.0.0.0 UG 0 0 eth0
```

- · Por que não um endereço por estação?
 - Um endereço por interface permite *escolher o* caminho utilizado para chegar a uma estação
 - · Busca do melhor caminho e balanceamento de carga
 - Endereços por interface permitem a *agregação de endereços* nas tabelas de roteamento
 - Se os endereços não fossem ligados à topologia, seria necessária uma entrada na tabela de roteamento para cada estação
 - Cada interface pertence a uma sub-rede
 - Um endereço por interface permite manter conectividade em caso de falha de uma interface
 - Tolerância a falhas

Desvantagens

- Todos os endereços de uma estação devem ser incluídos no servidor de nomes
 - Para se comunicar com um determinado nó, deve-se saber todos os possíveis endereços desse nó
- O "melhor endereço" deve ser escolhido para uma conexão
 - Melhor depende de diversos fatores como caminho, requisitos da aplicação etc.
- O endereço fonte deve ser cuidadosamente escolhido pela aplicação
 - Determina o caminho seguido pelos pacotes de resposta

- · Endereço de rede
 - Usado para identificar uma rede
 - Geralmente, o primeiro endereço IP da faixa de endereços
 - Ex.: 146.164.0.0
- O "0" pode ser utilizado como endereço fonte, quando o número de rede é desconhecido, portanto:
 - 0.0.0.0 significa "esta estação nesta rede"
 - O.X.Y.Z significa "a estação X.Y.Z nesta rede"
 - · Utilizado por ex. quando uma estação está iniciando

- · Difusão limitada (limited broadcast)
 - Formado por todos os bits em "1" 255.255.255.255
 - Só pode ser utilizado como endereço destino
 - Pacote é enviado a todas as estações da sub-rede
 - Não é retransmitido por um roteador

- · Difusão direcionada (directed broadcast)
 - Todos os bits da "parte estação" do endereço são colocados em "1"
 - Ex. "A.255.255.255", "C.C.C.255"
 - Com sub-redes a mesma regra é válida
 - todos os bits do complemento da máscara são colocados em "1"

- · Consequências
 - Não existe sub-rede identificada apenas por 0's
 - Assim como não existe sub-rede identificada apenas por 1's
 - O tamanho da sub-rede é maior ou igual a 2 bits
 - Sub-rede com apenas um bit:
 - O "1" seria usado para broadcast
 - O "O" para a própria rede
 - E não sobrariam bits para estações...

- Endereço de loopback
 - Na verdade, existe um número de rede de loopback.
 - Rede Classe A: "127.0.0.0\8"
- · Qualquer endereço da forma "127.x.y.z" é:
 - Local e não é transmitido para fora da estação

· Atualmente

- ICANN (The Internet Corporation for Assigned Names and Numbers)
 - · Organização sem fins lucrativos responsável pela
 - Alocação do espaço de endereçamento IP
 - Atribuição de parâmetros de protocolos
 - Gerenciamento do sistema de nomes de domínios
 - Gerenciamento dos servidores raiz

Anteriormente

- IANA (*Internet Assigned Numbers Authority*) e outras entidades através de contratos com o governo americano

- Os endereços IP são alocados através de delegações de acordo com uma estrutura hierárquica
 - 1. Usuários recebem endereços IP de um provedor de serviço (ISP *Internet Service Provider*)
 - ISPs obtêm faixas de endereços IP de uma autoridade de registro local (LIR - Local Internet Registry), nacional (NIR - National Internet Registry), ou regional (RIR - Regional Internet Registry)
- O papel do ICANN é alocar faixas de endereços aos RIRs, de acordo com suas necessidades e a partir das faixas de endereços livres

- RIR Regional Internet Registry
 - APNIC (Asia Pacific Network Information Centre)
 - Região Ásia/Pacífico
 - ARIN (American Registry for Internet Numbers)
 - · América do Norte e África ao Sul do Saara
 - LACNIC (Regional Latin-American and Caribbean IP Address Registry)
 - · América Latina e algumas Ilhas Caribenhas
 - RIPE NCC (Réseaux IP Européens)
 - · Europa, Oriente Médio, Ásia Central e África do Norte

LACNIC é a instituição responsável para a América Latina e o Caribe

No Brasil, estas funções foram delegadas ao NIC.br pelo Comitê Gestor da Internet BR (CGI.br)

Regras disponíveis em:

http://registro.br/provedor/numeracao/regras.html

Internet Control Message Protocol (ICMP)

- · Objetivo
 - Diagnóstico de condições de erro da rede
 - · Simplicidade do IP dificulta diagnóstico de falhas
- Executado em cima do IP
 - Protocol type = 1
- Todo sistema que roda IP deve rodar o ICMP
- Não provê confiabilidade
 - Apenas informação sobre problemas na rede

Internet Control Message Protocol (ICMP)

- Erros de transmissão de pacotes IP geram mensagens
 ICMP
 - Exceto erros nas próprias mensagens ICMP
 - Se as mensagens ICMP também gerassem mensagens de erro
 - Poderia haver recursividade e avalanche de mensagens de controle
 - Ex.: Problemas ligados a congestionamentos na rede

Mensagens ICMP

Cabeçalho

Toda mensagem ICMP possui uma parte do cabeçalho em comum

0	1	2	3
0 1 2 3 4 5 6 7	8 9 0 1 2 3 4 5	6 7 8 9 0 1 2 3 4 5	6 7 8 9 0 1
Туре	Code	Checksum	ı

Про	Significado		
0	Echo Reply		
3	Destination Unreachable		
4	Source Quench		
5	Redirect		
8	Echo		
9	Router Advertisement		

0:---:6:---1-

10	Router Solicitation	
11	Time Exceeded	
12	Parameter Problem	
13	Timestamp	
14	Timestamp Reply	
15	Information Request	
16	Information Reply	

Diagnóstico com o ICMP

- Problemas operacionais → Mais comuns
 - Destination Unreachable
 - Time Exceeded
 - Source Quench

Formato comum

Cabeçalho básico do ICMP + 32 bits de enchimento + Primeiros bytes do pacote que causou o envio do ICMP

Diagnóstico com ICMP

- · ICMP envia
 - Cabeçalho IP completo e os 8 primeiros bytes do datagrama
 - Esses dados representam informação suficiente para o nó de origem do pacote IP entender o motivo do erro

Diagnóstico com o ICMP

- Destination Unreachable
 - Roteador não consegue encaminhar um pacote
 - Código:
 - 0 = net unreachable
 - 1 = host unreachable
 - 2 = protocol unreachable
 - 4 = fragmentaion needed but DF set
 - 5 = source route failed

Diagnóstico com ICMP

- Time Exceeded
 - TTL expirado
 - Código
 - 0 = em trânsito
 - 1 = durante remontagem
- Source Quench
 - Enviado pelo roteador para sinalizar congestionamento
 - Não utiliza código (code = 0)

Ping

- · Testa se uma estação está "viva"
 - Ou se a conectividade da rede está funcionando
- · Utiliza a função echo do ICMP
 - Tipo:
 - 8 = Echo
 - 0 = Echo Reply

0	1	2	3
0 1 2 3 4 5	6 7 8 9 0 1 2 3 4	5 6 7 8 9 0 1 2 3 4 5	5 6 7 8 9 0 1

Type = 8 (0)	Code = 0	Checksum
Identifier		Sequence Number

Data

Ping

- Resposta (Echo Reply)
 - Endereços fonte e destino são trocados
 - Troca do valor do tipo da mensagem
 - Checksums IP e ICMP recalculados
 - Dados inalterados

0	1	2	3
0 1 2 3 4 5 6 7	8 9 0 1 2 3 4 5	6 7 8 9 0 1 2 3	4 5 6 7 8 9 0 1

Type = 8 (0)	Code = 0	Checksum
ldentifier		Sequence Number
Data		

Ping

- Campos identificação e número de sequência possibilitam estatísticas
- Outras mensagens ICMP com funcionalidade semelhante
 - Type = 15 Information Request
 - Type = 16 Information Reply

Exemplo de Ping

```
PING angra (146.164.69.1) from 146.164.69.2 : 56(84) bytes of data.
recreio::user [ 31 ] ping angra
64 bytes from angra (146.164.69.1): icmp seg=1 ttl=64 time=0.471 ms
64 bytes from angra (146.164.69.1): icmp seg=2 ttl=64 time=0.404 ms
64 bytes from angra (146.164.69.1): icmp seg=3 ttl=64 time=0.544 ms
64 bytes from angra (146.164.69.1): icmp_seq=4 ttl=64 time=0.388 ms
64 bytes from angra (146.164.69.1): icmp_seq=5 ttl=64 time=0.398 ms
64 bytes from angra (146.164.69.1): icmp_seq=6 ttl=64 time=0.398 ms
64 bytes from angra (146.164.69.1): icmp seg=7 ttl=64 time=0.495 ms
64 bytes from angra (146.164.69.1): icmp_seq=8 ttl=64 time=0.436 ms
64 bytes from angra (146.164.69.1): icmp seg=9 ttl=64 time=0.413 ms
64 bytes from angra (146.164.69.1): icmp_seq=10 ttl=64 time=0.407 ms
64 bytes from angra (146.164.69.1): icmp_seq=11 ttl=64 time=0.393 ms
64 bytes from angra (146.164.69.1): icmp_seq=12 ttl=64 time=0.391 ms
--- angra ping statistics ---
12 packets transmitted, 12 received, 0% loss, time 11109ms
```

rtt min/avg/max/mdev = 0.388/0.428/0.544/0.049 ms

Traceroute

- · Identifica os roteadores entre uma fonte e um destino
- Funcionamento:
 - Envio sucessivo de pacotes para o destino, variando o TTL
 - · UDP em uma porta não utilizada
 - TTL inicial igual a 1
 - Primeiro roteador decrementa o TTL, descarta o pacote, e envia uma mensagem ICMP TTL Exceeded
 - Roteador identificado através do Source Address da mensagem

Traceroute

- · Identifica os roteadores entre uma fonte e um destino
- Funcionamento:
 - A fonte continua o processo incrementando o TTL de 1 até chegar ao destino ou alcançar um enlace com problema
 - O destino é identificado, pois ele envia uma mensagem
 ICMP Port unreachable

Exemplo de Traceroute

```
recreio::user [ 38 ] traceroute sphinx.lip6.fr
traceroute to sphinx.lip6.fr (132.227.74.253), 30 hops max, 38 byte packets
   angra (146.164.69.1) 0.596 ms 0.349 ms 0.341 ms
 2 rt-ct-bloco-H.ufrj.br (146.164.5.193) 175.723 ms 203.553 ms 30.226 ms
   rt-nce2.ufrj.br (146.164.1.5) 51.432 ms 3.994 ms 4.137 ms
   rederio2-atm-cbpf.rederio.br (200.20.94.58) 3.495 ms 4.421 ms 4.664 ms
 5 200.143.254.66 (200.143.254.66) 4.184 ms 12.224 ms 200.143.254.78
   (200.143.254.78) 13.372 ms
  rj7507-fast6_1.bb3.rnp.br (200.143.254.93) 4.473 ms 4.135 ms 4.550 ms
   ds3-rnp.ampath.net (198.32.252.237) 110.658 ms 106.239 ms 107.241 ms
   abilene.ampath.net (198.32.252.254) 125.393 ms 135.971 ms 127.111 ms
   washng-atla.abilene.ucaid.edu (198.32.8.66) 143.388 ms 154.348 ms 144.619 ms
10
   abilene.de2.de.geant.net (62.40.103.253) 234.914 ms 235.300 ms 239.316 ms
   de2-1.de1.de.geant.net (62.40.96.129) 234.644 ms 238.821 ms 236.147 ms
11
   de.fr1.fr.geant.net (62.40.96.50) 231.422 ms 232.743 ms 232.437 ms
12.
   renater-gw.fr1.fr.geant.net (62.40.103.54) 234.984 ms 234.233 ms 231.723 ms
13
    jussieu-al-1-580.cssi.renater.fr (193.51.179.154) 230.906 ms 231.090 ms
   233.714 ms
   rap-jussieu.cssi.renater.fr (193.51.182.201) 232.602 ms 232.125 ms 238.066 ms
15
   cr-jussieu.rap.prd.fr (195.221.126.77) 235.182 ms 239.903 ms 276.221 ms
16
   jussieu-rap.rap.prd.fr (195.221.127.182) 234.955 ms 237.264 ms 234.210 ms
17
   r-scott.reseau.jussieu.fr (134.157.254.10) 233.992 ms 238.306 ms 239.047 ms
18
   olympe-qw.lip6.fr (132.227.109.1) 236.396 ms !N 235.261 ms !N 234.322 ms !N
19
```

Exemplo de Ping -R

```
recreio::user [ 35 ] ping -R sphinx.lip6.fr
PING sphinx.lip6.fr (132.227.74.253) from 146.164.69.2 : 56(124) bytes of data.
64 bytes from sphinx.lip6.fr (132.227.74.253): icmp_seq=1 ttl=237 time=252 ms
RR:
        recreio (146.164.69.2)
        gtagw (146.164.5.210)
        rt-ct2.ufrj.br (146.164.1.3)
        ufrj-atm.rederio.br (200.20.94.9)
        200.143.254.65
        rj-fast4 1.bb3.rnp.br (200.143.254.94)
        rnp.ampath.net (198.32.252.238)
        abilene-oc3.ampath.net (198.32.252.253)
        atla-washnq.abilene.ucaid.edu (198.32.8.65)
64 bytes from sphinx.lip6.fr (132.227.74.253): icmp_seq=2 ttl=237 time=289 ms
        recreio (146.164.69.2)
RR:
        . . .
64 bytes from sphinx.lip6.fr (132.227.74.253): icmp seg=3 ttl=237 time=247 ms
RR:
        recreio (146.164.69.2)
--- sphinx.lip6.fr ping statistics ---
3 packets transmitted, 3 received, 0% loss, time 2021ms
rtt min/avg/max/mdev = 247.821/263.167/289.150/18.477 ms
```

Exemplo de Ping -R

```
recreio::user [ 35 ] ping -R sphinx.lip6.fr
          net do Record Route do TP!

"opção Record Campo "opções"

Limitado ao tamanto (11)

Limitado (12)

"132 ^ (12)
PING sphinx.lip6.fr (132.227.74.253) from 146.164.69.2 : 56(124) bytes_
64 bytes from sphinx.lip6.fr (132.227.74.253): icmp_seq=1 ttl=237
                                                                                ms
        recreio (146.164.69.2)
RR:
        gtagw (146.164.5.210)
        rt-ct2.ufrj.br (146.164.1.3)
        ufrj-atm.rederio.br (200.20.94.9)
        200.143.254.65
        rj-fast4 1.bb3.rnp.b
        rnp.ampath.net
                                132.227.74.253): icmp_seq=2 ttl=237 time=289 ms
64 bytes fr
RR:
64 bytes from sphinx.lip6.fr (132.227.74.253): icmp_seq=3 ttl=237 time=247 ms
        recreio (146.164.69.2)
RR:
--- sphinx.lip6.fr ping statistics ---
3 packets transmitted, 3 received, 0% loss, time 2021ms
rtt min/avg/max/mdev = 247.821/263.167/289.150/18.477 ms
```

Gerenciamento de Tempo

Mensagens

- Type = 13 Timestamp
- Type = 14 Timestamp reply

Type = 8 (0)	Code = 0	Checksum										
Identifier Sequence Number												
Originate Timestamp												
Receive Timestamp												
Transmit Timestamp												

Tempos expressos em ms desde 0:00 h GMT

Cálculo da Defasagem entre Duas Estações

Funcionamento

- Estação A preenche o tempo de origem (To) pouco antes de enviar a mensagem
- Na recepção, a estação B preenche o tempo de recepção (Tr)
 - Assim que a mensagem chega
 - Em seguida, a estação B prepara a resposta
- Antes do envio da resposta, B preenche o tempo de transmissão (Tt)
- Ao receber a resposta, A armazena o tempo de chegada (Tc)
 - · Assim que a mensagem chega

Cálculo da Defasagem entre Duas Estações

Envio de Pacotes IP

Roteadores

- Executam um protocolo de roteamento

Estações

- Não, necessariamente, executam um protocolo de roteamento

Porque...

- Complexidade e variedade dos protocolos de roteamento modernos
- Poderia-se apenas "ouvir" as mensagens de roteamento
 - · Algumas vezes este processo pode não ser fácil
 - Ex. mecanismos de segurança (autenticação, criptografia)

Envio de Pacotes IP

- · Roteadores
 - Executam um protocolo de roteamento
- Estações
- O que é necessário para uma estação enviar um pacote?
 - amplexidade e variedade dos protocolos de roteamento modernos
 - Poderia-se apenas "ouvir" as mensagens de roteamento
 - Algumas vezes este processo pode não ser fácil
 - Ex. mecanismos de segurança (autenticação, criptografia)

Envio de Pacotes IP

- · Roteadores
 - Executam um protocolo de roteamento
- Estações
- O que é necessário para uma estação enviar um pacote? Descobrir um roteador de saída
 - Poderia-se apenas "ouvir" as mensagens de roteamento
 - Algumas vezes este processo pode não ser fácil
 - Ex. mecanismos de segurança (autenticação, criptografia)

Descoberta do Próximo Salto

- · Dado um pacote IP a transmitir, a quem enviar?
 - Estação destino na rede
 - Envio direto
 - Estação destino distante
 - · Envio a um roteador que encaminhará o pacote
- Para descobrir se a estação de destino está na subrede
 - Testa-se a mascara de rede do endereço IP do destino

Descoberta do Próximo Salto

- Dado um pacote IP a transmitir, a quem enviar?
 - Estação destino na rede
 - Envio direto
 - Estação destino distante
 - · Envio a um roteador, que encaminhará o pacote
- Para descobrir se a estação de destino está na subrede...
 - Testa-se a mascara de rede do endereço IP do destino

Independente se está na sub-rede, o próximo passo é descobrir o endereço físico (MAC) do próximo salto

Descoberta do Roteador

- Por configuração ou
- Usando o ICMP
 - Roteadores enviam mensagens ICMP router advertisement (type = 10) periodicamente
 - Estações podem enviar mensagens ICMP router solicitation (type = 9) para requisitar anúncios de rotas
 - O objetivo do procedimento é descobrir um roteador de saída, não necessariamente o melhor roteador de saída...
 - Mensagens ICMP redirect podem ser utilizadas para informar as estações de rotas melhores

Anúncios (Router Advertisements)

- · Podem conter diversos endereços para o mesmo roteador
 - Várias interfaces conectadas à mesma rede
 - Uma interface de rede com dois endereços IP
 - Sub-redes IP na mesma rede física (ex. segmento Ethernet)
 - Preference prioridade de escolha entre vários roteadores
 - · Configurado pelo administrador da rede

0	1	2	3
0 1 2 3 4 5 6 7	8 9 0 1 2 3 4 5	6 7 8 9 0 1 2 3 4 5	6 7 8 9 0 1

Type = 9	Code = 0	Checksum
Num. Addrs	Addr. Entry Size	Lifetime
	Router A	ddress[1]
	Preferenc	e Level[1]
	Router A	ddress[2]
	Preferenc	e Level[2]
		••

Anúncios (Router Advertisements)

- São enviados ao endereço 224.0.0.1 (todas as máquinas)
 ou a 255.255.255
- · Informação sobre o roteador de saída
 - Deve ser volátil para evitar uso de rotas em desuso
 - Tempo de vida (Lifetime)
 - 30 min.
- · Anúncios (router advertisements) enviados a cada 7 min.
 - Evitar congestionamento da rede
 - Como o período é longo, estações podem enviar solicitações

	Reserved													
Type = 10	Code = 0	Checksum												
0 1 2 3 4 5 6	7 8 9 0 1 2 3 4 5	6 7 8 9 0 1 2 3 4 5 6	5 7 8 9 0 1											
0	1	2	3											

Escolha do Roteador

- Router solicitation
 - Enviadas a 224.0.0.2 ("todos os roteadores") ou 255.255.255.255
- O roteador envia a resposta
 - À estação, ou
 - A todas as estações, se o momento do anúncio estiver próximo
- Estações podem receber várias respostas
 - Devem considerar apenas os roteadores na sua sub-rede
 - Devem selecionar o de maior valor de preferência
 - Devem enviar todo o tráfego para este roteador

Redirecionamento ICMP

Evita rotas ineficientes para outras redes

Como evitar que o tráfego destinado a Estação B passe por R1? (duas vezes no segmento Ethernet 1)

Redirecionamento ICMP

· São utilizadas mensagens ICMP redirect

ICMP: Redir., Prox. Salto = R2, Dest. = B

IP: R1→A

Redirecionamento ICMP

- Ao receber o ICMP redirect, a estação A deve mudar sua tabela de roteamento
 - Para o endereço contido no campo Internet Header, o próximo salto é dado por Internet Address
- · O redirecionamento pode ser para uma rede
 - Indicado no campo código
 - Mas não existe espaço para uma máscara, portanto não é possível redirecionar o tráfego para uma sub-rede

0 0 1 2 3	4 5	6	7	8	9	1	1	2	3	4	5	6	7	8	9	2	1	2	3	4	5	6	7	8	9	3	1
Туре	Type = 5 Code						Checksum																				
	Internet Address																										
	Internet Header + 64 bits of Original Data Datagram																										

Code:

- 0: redirectionar pacotes para a Rede
- 1: redirecionar pacotes para a Estação
- 2: Rede e ToS
- 3: Estação e ToS

Dynamic Host Configuration Protocol (DHCP)

- A premissa até o momento é que cada estação conhece o seu próprio endereço IP
 - Endereço pré-configurado
- Entretanto, isso pode nem sempre ser verdade...
 - Nesses casos, é necessário obter um endereço IP
- · Alguns protocolos com essa finalidade são
 - RARP: Reverse Address Resolution Protocol
 - BOOTP: Bootstrap Protocol
 - DHCP
 - Mais utilizado atualmente

Dynamic Host Configuration Protocol (DHCP)

- Aloca automaticamente endereços IP para estações em uma sub-rede
 - Os endereços podem ser reusados
- Passa outras informações adicionais
 - Ex. Rota default, máscara de sub-rede, servidor DNS
- · Utiliza uma arquitetura cliente-servidor
 - Cliente DHCP
 - · Estação que solicita parâmetros de configuração de rede
 - Servidor DHCP
 - Estação que responde as solicitações por parâmetros de configuração das estações clientes

Dynamic Host Configuration Protocol (DHCP)

Processo realizado em 4 etapas:

- DHCP discovery
 - Cliente envia mensagem em broadcast para descobrir os servidores disponíveis
- DHCP offer.
 - Servidores DHCP disponíveis respondem com um endereço IP disponível e outras configurações de rede
- DHCP request
 - Cliente escolhe uma das ofertas recebidas e solicita individualmente a um servidor as suas configurações
- DHCP acknowledge
 - Servidor envia endereço IP e as outras configurações de rede

- Recurso utilizado inicialmente para contornar a possível escassez de endereços IP
 - Usado por mais da metade dos usuários domésticos nos EUA
- · Endereço IP público X Endereço IP privado
 - Endereço IP público
 - Definido em escopo global → Internet
 - Endereço roteável
 - Endereço IP privado
 - Definido em escopo local → rede local
 - Endereço não roteável
 - » Blocos de endereços definidos pelo IANA: Rede 10.0.0.0/8, 192.168.0.0/16 e 172.16.0.0/12

- IP masquerading
 - Processo de tradução dos endereços de uma rede local com endereços privados para endereços públicos
 - Consiste em "mascarar" um espaço de endereços privados para Internet
 - Roteador mantém estado dos fluxos que possuem pacotes traduzidos
 - · Necessário para encaminhar respostas para a origem
 - Roteador é responsável pela tradução pode converter...
 - · Endereço IP da origem para endereço IP próprio
 - Porta de origem para uma porta conhecida

Estrutura

Funcionamento

Fonte: 146.164.69.1, 80

Destino: 10.0 1.3345 Fonte: 10.0.6.1, 3345

Fonte: 146.164.69.1, 80 Destino: 1980.76.1293.450.01.

Destino:138.76.29.7, 5001

- · Quebra do requisito fim-a-fim da Internet
 - Nós na Internet não conseguem se comunicar com nós "atrás" de dispositivos NAT
 - Prejudicam as aplicações par-a-par
- Soluções
 - Mapeamento de portas
 - NAT estático
 - UPnP (Universal Plug-and-Play)
 - Padrão que utiliza protocolos para realizar mapeamento automático de portas

Material Utilizado

 Notas de aula do Prof. Igor Monteiro Moraes, disponíveis em http://www2.ic.uff.br/~igor/cursos/redespg

Leitura Recomendada

- Capítulo 4 do Livro "Computer Networking: A Top Down Approach", 5a. Ed., Jim Kurose and Keith Ross, Pearson, 2010
- Capítulo 5 do Livro "Computer Networks", Andrew S.
 Tanenbaum e David J. Wetherall, 5a. Ed., Pearson,
 2011
- Capítulo 3 do Livro do "Routing in the Internet",
 Christian Huitema, 2^a. Ed., Prentice-Hall, 1999