CS 205 Final Question 3: Linear Recurrences

16:198:205

Let a sequence X_0, X_1, X_2, \ldots be defined in the following way:

$$X_0 = 1$$

 $X_1 = 2$ (1)
 $X_n = 3X_{n-1} + 2X_{n-2}$.

- 1) Compute the first 10 terms of this sequence. (2 points)
- 2) Prove that this sequence is strictly increasing, i.e., $\forall n \geq 0 : X_{n+1} > X_n$. (2 points)
- 3) Prove that $\forall n \geq 0 : X_n \leq 4^n$. What are the base cases? What is the inductive step? (5 points)
- 4) The above result suggests that this sequence grows in the worst case exponentially, i.e., $X_n = O(4^n)$. Consider trying to tighten this bound in the following way: what are the smallest values α and β such that the above proof still works for $\forall n \geq 0 : X_n \leq \alpha * \beta^n$? Give the tightest bounds on X_n you can. (10 points)
- 5) What is the tightest *lower* bound on X_n you can achieve in this way? Characterize the long term / asymptotic behavior of X_n as best you can. (5 points)

Consider the following sequence Y_0, Y_1, \ldots defined in the following way:

$$Y_{0} = 1$$

$$Y_{1} = 2$$

$$Y_{n} = \frac{1}{4}Y_{n-1} + \frac{3}{4}Y_{n-2}.$$
(2)

- 6) Compute the first 10 terms of this sequence (out to ten decimal places). (3 points)
- 7) Prove that this sequence satisfies $\forall n \geq 0 : 1 \leq Y_n \leq 2$. (3 points)
- 8) Prove that the following holds for all $n \geq 0$:

$$Y_{n+1} - Y_n = \left(-\frac{3}{4}\right)^n. \tag{3}$$

What is your base case? What is your inductive step? (10 points)

9) Argue that

$$Y_n = 1 + \sum_{k=0}^{n-1} \left(-\frac{3}{4} \right)^k. \tag{4}$$

Hint: What does the previous problem say about Y_1 ? What does it say about Y_2, Y_3 ? (7 points)

10) What is the limit of Y_n as $n \to \infty$? (3 points)

Bonus: Show that regardless of the initial value of Y_0 and Y_1 , that Y_n converges to a constant in the limit. What is the limit? What part of the above results generalize, and which do not?

Bonus 2: Generalize the above results to arbitrary $Y_0, Y_1, \text{ and } Y_n = pY_{n-1} + (1-p)Y_{n-2} \text{ for } 0$