Lösungen zur schriftlichen Prüfung aus VO Energieversorgung am 23.01.2017

<u>Hinweis:</u> Bei den Berechnungen wurden alle Zwischenergebnisse in der technischen Notation¹ (Format ENG) dargestellt und auf drei Nachkommastellen gerundet. Für die weitere Rechnung wurde das gerundete Ergebnis verwendet.

Abhängig vom Rechenweg kann es aber dennoch zu leicht abweichenden Ergebnissen kommen!

1. Formelabschnitt 1Ein- und zweipoliger Kurzschluss

Zeichnen Sie das Ersatzschaltbild dieses Fehlerfalls im Komponentensystem (Spannungen, Ströme, alle Impedanzen).

b. Wie groß ist der Kurzschlussstrom (c = 1,1)?

$$\left| \underline{I''_{k1p}} \right| = 32,878 \text{ A}$$
 (1.1)

c. Welchen Induktivitätswert muss die Petersenspule bei idealer Kompensation aufweisen?

$$L_{P} = 7,272 \text{ H}$$
 (1.2)

1

¹ http://de.wikipedia.org/wiki/Wissenschaftliche Notation

Prüfung vom 23.01.2017 **EV - 2017**

d. Zeichnen Sie das **Ersatzschaltbild** dieses Fehlerfalls im Komponentensystem (Spannungen, Ströme, Impedanzen).

e. Wie groß ist der zweipolige Kurzschlussstrom (c = 1,1)?

$$I_{k2p}^{"} = 432,706 \text{ A}$$
 (1.3)

Prüfung vom 23.01.2017 **EV - 2017**

2. LeitungsgleichungenFormelabschnitt 2

a. Berechnen Sie die **Ausbreitungskonstanten**, den **Wellenwiderstand** und die **natürliche Leistung** der Leitung.

$$P_{nat} = 34,197 \text{ MW}$$
 (2.1)

b. Berechnen Sie die angeschlossene **Resistanz** am Ende der Leitung. Wird die Leitung mit dieser Belastung **oberhalb oder unterhalb** der **natürlichen Leistung** betrieben?

$$R = 53 \Omega \tag{2.2}$$

c. Berechnen Sie die **Scheinleistung** (komplex) am Leitungsanfang wenn die Eingangs-impedanz $\underline{Z}_1 = (76,88 + j73,21) \Omega$ beträgt.

$$S_1 = 82,82 \text{ MW} + j79,541 \text{ MVAr}$$
 (2.3)

d. Berechnen Sie für die **Spannung** am Leitungsende **Betrag** und **Winkel**. Wird eine **Kompensation benötigt** (mit Begründung)?

$$\underline{U}_2 = 68,967^{\frac{-39,852^{\circ}}{2}} \text{ kV}$$
 (2.4)

Die Spannung beträgt nur 62% der Nennspannung und der Winkel ist unter 45°
→ Gegenmaßnahmen müssen getroffen werden!

e. Welchen Wert müsste die **Impedanz** (komplex) des **Verbrauchers** am Leitungsende aufweisen, damit die Spannung am Leitungsende nicht mehr als -10% vom Nennwert abweicht?

$$\underline{Z}_2 = (74,45 + j306,723) \Omega$$
 (2.5)

f. Begründen Sie, welche **Betriebsmittel** im Falle einer Leitungskompensation des oberen Lastzustandes verwendet werden müssten, damit die Spannung am Leitungsende genau der Nennspannung entspricht? Gehen Sie auch auf die **Verschaltung** der Betriebsmittel im Netz ein!

Zuschalten von Kapazität in Serie um Induktivität der Leitung zu verkleinern oder Kapazität parallel um Kapazität der Leitung zu erhöhen.

Prüfung vom 23.01.2017 **EV - 2017**

3. Formelabschnitt (nächster) Wirtschaftlichkeitsbetrachtung eines Solarkraftwerks

Wie hoch sind die Volllaststunden für dieses Kraftwerk?

$$T_m = 2862,07 \frac{h}{a}$$
 (3.1)

Wie hoch sind die **jährlich fälligen Zahlungen** (Rückzahlung Förderkredit + laufende Kosten)?

$$K = 121,723 \text{ Mio.}$$
 (3.2)

Wie hoch ist der Barwert der Aufwendungen am Ende der Laufzeit? Die Anzahlung (Rest der Investitionskosten) wird zum Zeitpunkt der Errichtung getätigt, der Restwert nach Laufzeitende soll vernachlässigt werden.

$$B_{25} = 11.615,976 \text{ Mio.}$$
 (3.3)

a. Wie hoch muss der **Energiepreis** (in \$/kWh) der gelieferten Energie mindestens sein, damit der erwartete Gewinn am Ende der Laufzeit erwirtschaftet wird?

$$p = 0.197 \frac{\$}{\text{kWh}} \tag{3.4}$$

4. Fünf Sicherheitsregeln

Siehe Skriptum

5. Formelabschnitt 5heoriefragen

1a, 2c, 3c, 4a, 5a, 6a, 7b, 8c, 9b, 10a, 11c, 12b, 13b, 14b, 15b, 16b, 17a, 18c-c-a, 19a, 20b, 21c, 22a