Разработка базы данных для хранения и обработки данных фитнес-клуба

Выполнила:

студент 3 курса

группы ИУ7-64Б

Цховребова Яна Роландовна

Научный руководитель: Гаврилова Ю.М.

Цель и задачи

Цель работы: разработать базу данных для хранения и обработки данных фитнес-клуба

Задачи:

- Проанализировать предметную область и формализовать задачу
- Проанализировать модели данных и выбрать наиболее подходящую
- Спроектировать требуемую базу данных
- Спроектировать триггеры для автоматического обновления данных
- Выбрать средства реализации базы данных
- Реализовать спроектированную базу данных и обеспечить её функциональность согласно проектным решениям;
- Реализовать интерфейс доступа к базе данных
- Исследовать производительность базы данных при увеличения объема данных, количества одновременных запросов, а также с использованием кеширование и без него

Анализ предметной области

Фитнес-клуб — учреждение, предоставляющее услуги в области физической активности и здоровья, оснащённое тренажёрами и другим оборудованием

Основные функции:

- Проведение тренировок и предоставление возможности активного отдыха;
- Продажа абонементов с разными условиями доступа;
- Управление расписанием тренировок
- Учёт посещений и прогресса клиентов.

Анализ существующих решений

Функциональность для админи-	1С:Фитнес Клуб	fitness365
стратора		
Управление расписанием, залами и пер-	+	+
соналом		
Работа с абонементами и услугами	+	+
Ведение клиентской базы и CRM	+	+
Функциональность для клиента	1С:Фитнес Клуб	fitness365
Наличие личного кабинета	+	+
Покупка абонементов онлайн	+	+
Самостоятельная запись на тренировки	+	+
Функциональность для тренера	1С:Фитнес Клуб	fitness 365
Доступ к информации о клиентах	_	+
Просмотр и управление своим расписа-	_	_
нием		
Мобильный доступ к системе	_	_

Формализация данных

Ключевые сущности:

- Пользователь
- Тренер
- Специализация
- Тип абонемента
- Абонемент
- Платеж
- Зал для тренировок
- Тренировка
- Посещение

Формализация пользователей и их прав доступа

Пользователи:

Гость — доступ к регистрации и входу

Клиент — доступ к собственным данным: абонементы, тренировки, посещения

Тренер — права клиента + доступ к данным тренировок

Администратор — полный доступ ко всем данным

Роли пользователей определяют уровень доступа к функциям и данным базы.

Модели данных

Реляционная модель данных

данные представлены в виде отношений (таблиц), каждая строка которых является кортежем, а столбцы — атрибутами с определёнными доменами; между отношениями устанавливаются связи с помощью ключей (первичных и внешних); схема данных строго фиксирована

Модель «ключ-значение»

данные представлены в виде пар «ключ — значение»; значения не имеют внутренней структуры; основные операции — получение и запись по ключу

Документная модель данных

данные хранятся в документах; которые могут содержать вложенные структуры и списки; нет фиксированной схемы; структура документа определяется динамически

Диаграмма «сущность-связь»

Алгоритм работы триггера для обновления данных после изменения статуса посещения тренировки

Конец

Выбор СУБД

Критерий	PostgreSQL	MySQL	MSSQL	Oracle
Поддержка надежности и ACID-свойств		+/-	+	+
Совокупная стоимость владения	-	-	+/ -	

^{*}СУБД - система управления базами данных

Технологический стек

СУБД	PostgreSQL	
Кэширование данных	Redis	
Язык программирования	Swift	
Среды разработки	Xcode, pgAdmin 4	

Структура ПО

Технические характеристики

- Операционная система macOS 14.6.1
- Оперативная память (RAM) 16 ГБ
- Процессор (CPU) 2 ГГц 4-ядерный Intel Core і5 (8 логических ядер)

*во время проведения исследования устройство было подключено к сети электропитания и не было нагружено сторонними приложениями, за исключением встроенных приложений окружения

Зависимость времени выполнения операций от объема данных

- Среднее время выполнения запросов INSERT/SELECT/ UPDATE/DELETE при объёмах таблицы от 100 до 99100 строк (шаг 1 000)
- Для каждой операции выполнено по 10 повторов


```
INSERT INTO "User" (
   id,
   email, phone number, password,
   first name, last name,
   gender, birth date, role
   VALUES (
   u id,
   'test'||i||'@example.com',
    \+79001234567',
    'pass',
    'Имя', 'Фамилия', 'мужской',
   CURRENT_DATE - INTERVAL '30 years',
   'клиент'
UPDATE "User"
SET first name = 'Обновлено'
WHERE id = u id ;
DELETE FROM "User" WHERE id = u id;
SELECT id INTO u id
FROM "User"
ORDER BY random()
LIMIT 1;
```

Зависимость времени отклика от количества пользователей базы данных

- Измерено время отклика при различном количестве клиентов
- Каждый замер длился 10 секунд
- Сравнение проводилось на одинаковых данных


```
SELECT *
FROM "User"
WHERE gender = 'мужской';
```

Сравнение времени выполнения запросов к кэшу и базе данных

- •Оценка времени выборки данных из БД и кэша
- Выполнено 3О запросов с интервалом в 5 секунд
- Время жизни кэша в Redis 10 секунд
- •Сравнение проводилось на одинаковых данных

```
SELECT * FROM "User" u

JOIN "Membership" m

ON m.user_id = u.id

JOIN "Order" o

ON o.id = m.order_id

WHERE birth_date > '2003-01-01'

AND gender = 'женский'

ORDER BY birth_date DESC;
```

Заключение

Цель курсовой работы успешно достигнута

Выполненные следующие задачи:

- Проведен анализ предметной области и определены требования к базе данных
- Спроектирована структура базы данных с ролями пользователей и выбран тип модели данных
- Реализованы сущности, связи, ограничения целостности и триггеры для автоматического обновления данных
- Создан интерфейс для взаимодействия с базой данных
- Проведено исследование производительности:
 - о Время выполнения операций SELECT, UPDATE и DELETE увеличивается в большей степени относительно времени выполнения операции INSERT при увеличении объема данных
 - о Рост числа одновременных запросов увеличивает время отклика системы
 - о Кэширование с Redis снижает время обработки запросов по сравнению с прямыми запросами к PostgreSQL