

Mitokondria

Mitokondria merupakan organel yang tersebar dalam sitosol organisme eukariot.

STRUKTUR MITOKONDRIA

- Ukuran:
 - diameter 0.2 1.0 μ m
 - panjang 1- 4 μm
- ∑ mitokondria dalam → bervariasi sesuai dengan fungsi dari sel tersebut Contoh:
 - Sel hati → mitokondria 15 20% volume sel
- Pada sel tumbuhan → mitokondria sumber ATP untuk sel yang tidak fotosintesis

STRUKTUR MITOKONDRIA

- Memiliki membran 'lipid bilayer' ganda ->
 - membran luar
 - sistem membran dalam yang kompleks → invaginasi → krista
 - Diantara kedua membran terdapat ruang antar/inter membran
- Matriks → berisi protein terlarut, berbentuk seperti gel
- Matriks mitokondria
 - Mengandung ribosom, enzim, DNA sirkular
 - Mengandung enzim untuk pengubahan piruvat → asetil CoA

Membran mitokondria

1. Membran luar

- mengelilingi struktur mitokondria secara keseluruhan
- memiliki protein integral pada membran, yang membentuk saluran untuk memfasilitasi berbagai macam molekul keluar masuk mitokondria

2. Membran dalam,

- mengelilingi matriks yang berisi cairan
- membentuk suatu lekukan ke dalam matriks → krista.
- Mengandung 5 kelompok protein integral membran

5 kelompok protein integral membran pada membran dalam mitokondria:

- o NADH dehidrogenase,
- o suksinat dehidrogenase,
- o sitokrom c reduktase (juga dikenal sebagai kompleks sitokrom b-c₁),
- o sitokrom c oksidase,
- o ATP sintase

- Memiliki DNA sirkular yang mengkode enzim dan beberapa protein yang diperlukan mitokondria untuk menjunang aktivitas pada mitokondria
 - →beberapa protein yang diperlukan mitokondria dikode oleh inti

- Mitokondria → dinamis :
 - Berpindah tempat dalam sitosol
 - Struktur dapat berubah
 - Fusi dan fisi

Berperan dalam respirasi sel, menghasilkan
 ATP → energi untuk metabolisme

Mitokondria diperkirakan berasal dari organisme eukariot yang bersimbiosis dengan sel eukariot

Fungsi Mitokondria

- pengubahan energi potensial dalam bentuk makanan menjadi ATP
- ❖ Tempat terjadinya metabolisme oksidatif → respirasi seluler

Pemecahan molekul makanan

- 3 langkah pemecahan molekul makanan :
 - a) Stadium 1:
 - makromolekul subunit sederhana oleh enzim-enzim pencernaan :
 - Protein → asam amino
 - Polisakarida → gula
 - Lemak → asam lemak & gliserol
 - b) Stadium 2:
 - subunit sederhana → asetil CoA
 - Subunit sederhana → piruvat → sitoplasma sel
 - Piruvat→ asetil CoA → mitokondria
 - → hasilkan sejumlah kecil ATP dan NADH
 - c) Stadium 3:
 - Oksidasi asetil CoA menjadi H₂O dan CO₂ → mitokondria
 - Menghasilkan sejumlah besar ATP
 → fosforilasi oksidatif

RESPIRASI SELULER

Respirasi seluler merupakan proses oksidasi molekul makanan, mis. glukosa, menjadi CO2 dan H2O → E dalam bentuk ATP → menunjang aktivitas sel yang memerlukan energi

Respirasi berlangsung dalam dua tahap

- ➢ glikolisis, pemecahan glukosa → asam piruvat → berlangsung di dalam sitosol
- ➤ oksidasi asam piruvat → CO2 + H2O
 - → berlangsung di dalam mitokondria
 - → siklus Krebs

Persamaan umum respirasi

$$C_6H_2O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + E$$

Glikolisis

Glikolisis merupakan proses katabolisme glukosa terjadi pada setiap jenis sel

- → Berlangsung di dalam sitosol
- → Degradasi 1 molekul gula menjadi 2 molekul piruvat
 - melalui suatu urutan reaksi & menggunakan enzim-enzim

Persamaan reaksi:

$$C_6H_{12}O_6 + 2NAD^+ \rightarrow 2C_3H_4O_3 + 2 NADH + 2H^+$$

Pada glikolisis terdapat 9 reaksi, masing-masing dibantu oleh enzim yang spesifik.

- → Pada tahap 1 dan 3 ATP diubah menjadi ADP dan terjadi proses fosforilasi
- → Pada tahap 5 NAD diubah menjadi NADH + H⁺
- → Pada tahap 6 dan 9 ADP diubah menjadi meolekul berenergi tinggi → ATP
- → Pada tahap 4, gula 6 C dipecah menjadi 2 senyawa 3 C, yaitu :
 - Fosfogliseraldehid (PGAL)
 - Dihidroksiaseton → dapat diubah menjadi PGAL dengan bantuan enzim isomerase

Akhir dari proses glikolisis

- → dua molekul asam piruvat (3 C),
- → dihasilkan 2 ATP dan 2 NADH per molekul glukosa

Pada kondisi anaerob (tanpa kehadiran oksigen), asam piruvat dapat masuk ke jalur :

- Fermentasi alcohol
- Fermentasi asam laktat

Jalur Respirasi Aerobik dan Anaerobik

Aerobic and Anaerobic Respiration Pathways

Fermentasi alkohol → pada ragi

- → asam piruvat didekarboksilasi dan direduksi oleh NADH membentuk CO₂ dan ethanol
- → Persamaan reaksi $C_3H_4O_3 + NADH + H^+ \rightarrow CO_2 + C_2H_5OH + NAD^+$
- → Proses dinamakan fermentasi alkoholik

Pada otot yang sedang berkontraksi

- → Asam piruvat direduksi oleh NADH membentuk molekul asam laktat
- → Persamaan reaksi $C_3H_4O_3 + NADH + H^+ \rightarrow C_3H_6O_3 + NAD^+$
- → Proses dinamakan fermentasi asam laktat

(a) Glycolysis and cellular respiration

(b) Glycolysis and fermentation

7.5 Energy-Producing
Metabolic Pathways
Energy-producing reactions can be grouped
into five metabolic pathways:
glycolysis, pyruvate oxidation,
the citric acid cycle, the respiratory chain, and fermentation.
The three middle pathways
occur only in the presence of O₂
and are collectively referred to
as cellular respiration (a). When
O₂ is unavailable, glycolysis is
followed by fermentation (b).

Siklus Krebs/Siklus asam sitrat

Oksidasi asetil CoA → CO₂

Siklus Krebs & transfer elektron

- menghasilkan 3 NADH & FADH₂ → ATP ?
- elektron dari NADH & FADH₂ ditransfer ke electron carrier – berlangsung pada membran dalam mitokondria
- Akseptor elektron : O₂ yang akan direduksi dan membentuk H₂O
- Pergerakan proton kembali melewati membran oleh ATP-synthase

Transport elektron

- Dari molekul NADH dan FADH2
- Perlu oksigen

Transfer elektron

 Memanfaatkan kompleks enzim respirasi pada membran dalam mitokondria

Transport elektron

- Menyebabkan terjadinya gradien proton
 - perbedaan pH di matriks dengan ruang intermembran mitokondria
 - Terjadi perbedaan potensial membran
 - Kedua akibat ini menimbulkan energi untuk mengembalikan proton H+ kembali ke matriks
- Gradien proton → digunakan untuk sintesis ATP oleh ATP sintase

Ringkasan

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Senyawa penghambat aktivitas respirasi seluler

