Particle spectrograph

Wave operator and propagator

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$-\frac{i\sqrt{2}k(2k^2r_5-t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{-4k^4r_5+2k^2t_1}{(t_1+2k^2t_1)^2}$	
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0	
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{-2k^2r_5+t_1}{(t_1+2k^2t_1)^2}$	0	$\frac{i\sqrt{2}k(2k^2r_5-t_1)}{(t_1+2k^2t_1)^2}$	
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	0 $\frac{\sqrt{2}}{t_1 + 2k^2t_1}$		0	$-\frac{2ik}{t_1+2k^2t_1}$	
${\mathfrak l}_1^{\#1}{}_{\!$	$\frac{i\sqrt{2}k(t_1-2t_2)}{(1+k^2)(3t_1t_2+2k^2t_5(t_1+t_2))}$	$\frac{ik(6k^2r_5+t_1+4t_2)}{(1+k^2)^2(3t_1t_2+2k^2r_5(t_1+t_2))}$	$\frac{k^2 \left(6 k^2 r_5 + t_1 + 4 t_2\right)}{\left(1 + k^2\right)^2 \left(3 t_1 t_2 + 2 k^2 r_5 \left(t_1 + t_2\right)\right)}$	0	0	0	0	
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{(1 + k^2) (3t_1 t_2 + 2k^2 r_5 (t_1 + t_2))}$	$\frac{6 k^2 r_5 + t_1 + 4 t_2}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 r_5 (t_1 + t_2))}$	$-\frac{i k (6 k^2 r_5 + t_1 + 4 t_2)}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 r_5 (t_1 + t_2))}$	0	0	0	0	
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	3t1t;	$\frac{\sqrt{2} (t_1 - 2t_2)}{(1 + k^2) (3t_1t_2 + 2k^2t_5(t_1 + t_2))}$	$i \sqrt{2} k(t_1-2t_2) + k^2)(3t_1t_2 + 2k^2r_5(t_1+t_2))$	0	0	0	0	
	$r_1^{\#1} + \alpha \beta$	$r_1^{#2} + \alpha \beta$	$\begin{bmatrix} r_1^{*1} + \alpha \beta \end{bmatrix} - \frac{1}{(1-\alpha)^2}$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$t_{1}^{#2} + \alpha$	

$\omega_{1+}^{\#1} + \alpha^{\beta} \left[\frac{1}{6} \left(6 k^{2} r_{5} + t_{1} + 4 t_{2} \right) \right] - \frac{t_{1} - 2 t_{2}}{3 \sqrt{2}} - \frac{i k (t_{1} - 2 t_{2})}{3 \sqrt{2}} $		
6 $3\sqrt{2}$ $3\sqrt{2}$	0 0	0
$\omega_{1}^{\#2} + \alpha^{\beta}$	0 0	0
$f_{1}^{\#1} + \alpha \beta = \frac{i k (t_{1} - 2 t_{2})}{3 \sqrt{2}} - \frac{1}{3} i k (t_{1} + t_{2}) \frac{1}{3} k^{2} (t_{1} + t_{2}) = 0$	0 0	0
$\omega_{1}^{\#1} + {}^{\alpha}$ 0 0 $k^2 r_5 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$ C	$\bar{l} k t_1$
$\omega_{1}^{\#2} \uparrow^{\alpha}$ 0 0 $\frac{t_{1}}{\sqrt{2}}$	0 0	0
$f_{1}^{#1} \uparrow^{\alpha}$ 0 0 0	0 0	0
$f_{1}^{\#2} \uparrow^{\alpha}$ 0 0 -ikt ₁	0 0	0

 $12r_5\,\partial_\theta\omega_\lambda^{\ \alpha}\partial_\kappa\omega^{\kappa\lambda\theta}-2\,t_1\,\partial^\alpha f_{\,\theta\kappa}\,\partial^\kappa f_{\,\alpha}^{\ \theta}+t_2\,\partial^\alpha f_{\,\theta\kappa}\,\partial^\kappa f_{\,\alpha}^{\ \theta}-4\,t_1\,\partial^\alpha f_{\,\kappa\theta}\,\partial^\kappa f_{\,\alpha}^{\ \theta}-$

 $6r_5\partial_\alpha\omega_\lambda^{\alpha}_{\theta}\partial_\kappa\omega^{\theta\kappa\lambda} + 6r_5\partial_\theta\omega_\lambda^{\alpha}_{\alpha}\partial_\kappa\omega^{\theta\kappa\lambda} - 6r_5\partial_\alpha\omega_\lambda^{\alpha}_{\theta}\partial_\kappa\omega^{\kappa\lambda\theta} +$

 $S_{F} == \iiint (\frac{1}{6} (-6t_{1} \omega_{\kappa \alpha}^{\alpha \prime} + 2(t_{1} - 2t_{2}) \omega_{\kappa \lambda}^{\kappa \lambda} + 2t_{1} \omega_{\kappa \lambda}^{\prime \prime})$

Quadratic (free) action

 $2t_2 \ \omega_{\kappa\lambda}^{\prime} \ \omega^{\kappa\lambda}^{\prime} + 6 \ f^{\alpha\beta} \ \tau_{\alpha\beta} + 6 \ \omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} - 6 \ r_5 \ \partial_{\kappa}^{\prime} \ \partial^{\prime}\omega_{\alpha}^{\alpha} \ .$

 $6t_1\ \omega_{\kappa\lambda}^{\ \lambda}\ \partial^{\kappa}f'_{\ \prime} + 12t_1\,\partial^{\alpha}f_{\ \kappa\alpha}\,\partial^{\kappa}f'_{\ \prime} - 6t_1\,\partial_{\kappa}f^{\lambda}_{\ \lambda}\,\partial^{\kappa}f'_{\ \prime} + 2t_1\ \omega_{\ell\theta\kappa}\ \partial^{\kappa}f^{\ell\theta} +$

 $2t_2 \, \omega_{\theta_{IK}} \, \partial^{\kappa} f^{I\theta} + 4t_1 \, \omega_{\theta_{KI}} \, \partial^{\kappa} f^{I\theta} + 4t_2 \, \omega_{\theta_{KI}} \, \partial^{\kappa} f^{I\theta} - 6t_1 \, \omega_{I\alpha}^{\quad \alpha} \, \partial^{\kappa} f^{I}_{\kappa}$

 $\int_{\kappa} -6r_5 \, \partial_{\theta} \omega_{\lambda}^{\alpha} \, \partial^{\lambda} \omega^{\theta \kappa}_{\kappa}) [t, x, y, z] dz dy dx dt$

 $2t_2\;\omega_{_{I}\theta_{K}}\,\partial^{K}f^{^{I}\theta}+8t_1\;\omega_{_{IK}\theta}\;\partial^{K}f^{^{I}\theta}-4t_2\;\omega_{_{IK}\theta}\;\partial^{K}f^{^{I}\theta}-2t_1\;\omega_{\theta_{IK}}\;\partial^{K}f^{^{I}\theta}-$

 $t_2 \partial^{\alpha} f_{\kappa\theta} \partial^{\kappa} f_{\alpha}^{\ \theta} - 2 t_1 \partial^{\alpha} f^{\lambda}_{\ \kappa} \partial^{\kappa} f_{\alpha\lambda} + t_2 \partial^{\alpha} f^{\lambda}_{\ \kappa} \partial^{\kappa} f_{\alpha\lambda} + 6 t_1 \omega_{\kappa\alpha}^{\ \alpha} \partial^{\kappa} f'_{\ \gamma} +$

(No massless particles)

$\sigma_{0}^{\#1}$	0	0	0	$\frac{1}{t_2}$					
•				7	$\omega_{0}^{\#1}$	0	0	0	t_2
$\tau_{0}^{\#2}$	0	0	0	0	•				1
	- 1	<u>t</u> 1			$f_{0}^{\#2}$	0	0	0	0
$\tau_{0}^{\#1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0	$f_0^{\#1}$	$i\sqrt{2}kt_1$	$-2 k^2 t_1$	0	0
$\sigma_{0^+}^{\#1}$	$-\frac{1}{(1+2k^2)^2t_1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0	$\omega_{0}^{\#1}$	-t ₁	$-i\sqrt{2} kt_1$	0	0
	$\sigma_{0}^{\#1}$ †	$\tau_{0}^{\#1}$ †	$\tau_{0}^{\#2}$ †	$\sigma_{0^-}^{\#1}$ †		$\omega_0^{\#1}\dagger$	$f_{0}^{\#1}$ †	$f_{0}^{\#2}$ †	$\omega_{0}^{\#1}$ \dagger

0

 $\tau_2^{\#1} + \alpha\beta$

Source constraints/gauge generators				
SO(3) irreps	Multiplicities			
$\tau_{0+}^{\#2} == 0$	1			
$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	1			
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3			
$\tau_{1}^{\#1\alpha} == 0$	3			
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3			
$\tau_{2+}^{\#1}{}^{\alpha\beta} - 2 i k \sigma_{2+}^{\#1}{}^{\alpha\beta} == 0$	5			
Total constraints:	16			

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2}^{\#1}{}_{lphaeta}$	$\omega_2^{\#1}{}_{lphaeta_{\lambda}}$
$\omega_2^{\sharp 1} \dagger^{lpha eta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_2^{#1} \dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\nu_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	<u>t</u> 1 2

Massive and massless spectra

Unitarity conditions

 $r_5 > 0 \&\& (t_1 < 0 \&\& (t_2 < 0 || t_2 > -t_1)) || (t_1 > 0 \&\& -t_1 < t_2 < 0)$