Apuntes: Funciones L de Artin

ROCÍO BELÉN SEPÚLVEDA MANZO

RESUMEN. En esta charla nos enfocaremos en las funciones L de Artin, analizando ejemplos y su convergencia, aplicando lo aprendido de la charla anterior de funciones L de Dirichlet para el Seminario de representaciones de Galois.

1. Introducción

Sea F/\mathbb{Q} una extensión de Galois y algebraica. Considere p un primo racional y el ideal primo tales que $p\mathcal{O}_F \subseteq \mathfrak{p}$, sea $D_{\mathfrak{p}}$ el grupo de descomposición y $I_{\mathfrak{p}}$ el grupo de inercia. Luego, se tiene la siguiente secuencia exacta

$$1 \to I_{\mathfrak{p}} \to D_{\mathfrak{p}} \to \operatorname{Gal}((\mathcal{O}_F/\mathfrak{p})/\mathbb{F}_p) \to 1.$$

El grupo $Gal((\mathcal{O}_F/\mathfrak{p})/\mathbb{F}_{\mathfrak{p}})$ es cíclico con generador $x \mapsto x^{\mathbf{N}(p)}$ donde $\mathbf{N}(p) = |N_{F/\mathbb{Q}}(p)|$. Podemos escoger un elemento $\sigma \mathfrak{p} \in D_{\mathfrak{p}}$ cuya imagen en $Gal((\mathcal{O}_F/\mathfrak{p})/\mathbb{F}_p)$ es el generador, a éste lo llamaremos Frobenius y sus propiedades fueron vistas en la charla 4 de Elementos de Frobenius (ver página del seminario).

Proposición 1. Considere el polinomio característico $\det(\operatorname{Id}-\operatorname{Frob}_{\mathfrak{p}} t; V^{I_{\mathfrak{p}}})$. Luego éste sólo depende del primo racional p y no del ideal \mathfrak{p}

Demostración. Se deduce del hecho de que el polinomio característico es independiende de la conjugación.

Definición 2. Sea F/\mathbb{Q} una extensión finita de Galois con $G = \operatorname{Gal}(F/\mathbb{Q})$. Sea $\rho: G \to \operatorname{GL}(V)$ una representación de G sobre el \mathbb{C} -espacio vectorial V y $\chi: G \to \operatorname{GL}(V)$ su caracter. Luego, se define la $función\ L$ de Artin como

$$L(F/\mathbb{Q}, \chi, s) = \prod_{p} \frac{1}{\det(Id - \chi(\operatorname{Frob}_{\mathfrak{p}})\mathbf{N}_{\mathfrak{p}}^{-s}; V^{I_{\mathfrak{p}}})},$$

donde p recorre todos los primos en \mathbb{Q} .

Ejemplo. Sea $F = \mathbb{Q}(i)$, donde $i = \sqrt{-1}$, y sea $\chi : \operatorname{Gal}(F/\mathbb{Q}) = \langle \sigma \rangle \to \operatorname{GL}_1(V)$, el único caracter no trivial, el cual está dado por $\chi(\sigma) = -1$. Como un primo racional p impar es completamente ramificado en $\mathbb{Q}(i)$ syss -1 es un residuo cuadrático módulo p, y 2 es el único primo ramificado, entonces

$$L(F/\mathbb{Q}, \chi_{\cdot}, s) = \prod_{p \neq 2} \frac{1}{1 - \left(\frac{-1}{p}\right) p^{-s}}.$$

Fecha: 31 de octubre de 2023.

Como

$$\left(\frac{-1}{p}\right) = \left(-1\right)^{\frac{p-1}{2}},$$

por reciprocidad cuadrática (o criterio de Euler), éste es exactamente a la función L de Dirichlet

$$\frac{1}{1+3^{-s}} \frac{1}{1+5^{-s}} \frac{1}{1+7^{-s}} \frac{1}{1+11^{-s}} \dots = 1 - \frac{1}{3^s} + \frac{1}{5^s} - \frac{1}{7^s} + \frac{1}{9^s} - \frac{1}{11^s} + \frac{1}{13^s} + \dots$$

$$= L^{Dirichlet}(\chi', s), \tag{2}$$

donde $\chi': (\mathbb{Z}/4\mathbb{Z})^{\times} \to \operatorname{GL}_1(V)$ es el único caracter no trivial de Dirichlet, el cual está definida por $(-1 \mod 4) \mapsto -1$.

Ejemplo. Si $F = \mathbb{Q}(\sqrt{d})$ donde $d \in \mathbb{Z}$ libre de cuadrados, sea $\chi : \operatorname{Gal}(F/\mathbb{Q}) \to \operatorname{GL}_1(\mathbb{C})$ el único caracter no trivial tal que $\sigma \mapsto -1$. Sea Δ_d el discriminante de F/\mathbb{Q} , es decir,

$$\Delta_d = \begin{cases} d, & d \equiv 1 & \text{m\'od } 4, \\ 4d, & d \equiv 2, 3 & \text{m\'od } 4. \end{cases}$$

Luego, $Gal(F/\mathbb{Q}) \stackrel{\varphi}{\cong} \{\pm 1\}$. Como la extensión es abeliana, existe un único frobenius Frob_p y, por lo anterior, $\varphi(\operatorname{Frob}_p) = \left(\frac{d}{p}\right)$ para p primo y ocupando con la notación del *símbolo de Kronecker*. Luego, tenemos la siguiente función L de Artin:

$$L(F/\mathbb{Q},\chi,s) = \prod_{p\nmid \Delta_d} \frac{1}{1 - \left(\frac{d}{p}\right)p^{-s}} = \sum_{(n,\Delta_d)=1} \left(\frac{d}{p}\right)n^{-s} = \sum_{n=1}^{\infty} \left(\frac{\Delta_d}{n}\right)n^{-s} = L^{Dirichlet}(\chi',s).$$

Donde χ' es el caracter de Dirichlet $\chi: n \mapsto \left(\frac{\Delta_d}{n}\right)$ (véase Cox [1, pág. 14] lemma 1.14, donde se muestra que χ' efectivamente es un caracter de Dirichlet).

Ejemplo. Si $F = \mathbb{Q}(\zeta_N)$, con $N \geq 1$. Luego $\operatorname{Gal}(\mathbb{Q}(\zeta_N/\mathbb{Q})) \stackrel{\varphi}{\cong} (Z/N\mathbb{Z})^{\times}$. Considere unn caracter primitivo arbitrario $\chi' : (Z/N\mathbb{Z})^{\times} \to \operatorname{GL}_1(\mathbb{C})$ tal que establece a $\chi : \operatorname{Gal}(\mathbb{Q}(\zeta_N/\mathbb{Q})) \to \operatorname{GL}_1(\mathbb{C})$ como $\chi := \chi' \circ \varphi$. Como la extensión es abeliana, existe un único frobenius Frob_p , luego $\varphi(\operatorname{Frob}_p) = p \mod N$. Así que la función L de Artin es:

$$L(F/\mathbb{Q}, \chi, s) = \prod_{p \nmid N} \frac{1}{1 - \chi'(p \mod Np^{-s})} = L^{Dirichlet}(\chi', s)$$

Lema 3. Sea F un campo de números Galois y algebraica y sea $\chi: \operatorname{Gal}(F/\mathbb{Q}) \to GL_1(\mathbb{C})$. Luego, la función L de Artin converge a una función analítica en $\Re(s) \geq 1 + \varepsilon$.

Demostración. Basta demostrarlo para el producto

$$\prod_{p \nmid \Delta_{F/\mathbb{Q}}} (1 - \chi(\operatorname{Frob}_{\mathfrak{p}}) \mathbf{N}(\mathfrak{p})^{-s})$$

Fijemos s con $\Re(s) \ge 1 + \varepsilon$. Entonces

$$c_{\mathfrak{p}} := \left| \mathbf{N}^{-\Re(s)} \right| \le p^{-f(1+\varepsilon)}.$$

Usando el hecho de que hay a lo más $[F:\mathbb{Q}]$ primos \mathfrak{p} distintos de F tales que $\mathfrak{p}\mid p$, tenemos

$$\sum_{\mathfrak{p}} c_{\mathfrak{p}} \leq [F : \mathbb{Q}] \sum_{p} p^{-(1+\varepsilon)},$$

donde la segunda suma es sobre todos los primos racionales p, ésta suma converge cuando $\varepsilon > 0$ (está acotado por $\zeta_{\mathbb{Q}}(1+\varepsilon)$), y como $|\text{Frob}_{\mathfrak{p}}| = 1$ para cada primo \mathfrak{p} no ramificado en F, podemos concluir la convergencia uniforme a la función analítica por [STEIN y SHAKAR-CHI [2, pág. 141] prop. 5.3.2]

Referencias

- 1. Cox, D. A. Primes of the form $x^2 + ny^2$: Fermat, Class Field Theory, and Complex Multiplication (AMS Chelsea Publishing, 2022).
- 2. Stein, E. M. y Shakarchi, R. Complex Analysis (Princeton University Press, 2003). Correo electrónico: rseplveda@uc.cl