Examples of Hypothesis Testing

Dr Tom Ilvento

Department of Food and Resource Economics

Example: Test for Humerus Bones

- Humerus bones from the same species have the same length to width ratio, so they are often used as a means to identify bones by archeologists
- It is known that a Species A exhibits a mean ratio of 8.5
- Suppose 41 fossils of humerus bones were unearthed in East Africa
- Test whether the mean ratio from this sample differs from Species A (μ = 8.5).
- Use α = .01

Overview

- Let's continue with some examples of hypothesis tests
 - introduce computer output
 - compare hypothesis test to confidence intervals
 - see what happens if we use a t versus a z for the Critical Value
 - See what happens with an outlier
 - Introduce hypothesis tests for proportions

2

Humerus Bones Example

- The length to width ratio was calculated for the sample and resulted in the following univariate statistics
 - n= 41
 - Mean = 9.26
 - s= 1.20
 - Min value = 6.23
 - Max value=12.00

3

Humerus Bones Hypothesis Test

• Set up the Null Hypothesis

• Ho: μ = ???

• Ho: $\mu = 8.5$

- Set up the Alternative Hypothesis
 - It takes up one of three forms
 - The problem asked to "Test whether the mean ratio from this sample differs from Species A"
 - Ha: μ ≠ 8.5 Two-tailed
- Assumptions?
 - If large sample, > 30, use s as estimate of sigma and use a t-value

5

The Components of a Hypothesis Test

Ho:

• Ho: $\mu = 8.5$

Ha:

Ha: μ ≠ 8.5 2-tailed

Assumptions

• n= 41, σ unknown, use t

Test Statistic

• $t^* = (9.258 - 8.5)/.188$

• Rejection Region

• $\alpha = .01, .01/2, 40 \text{ d.f.}, t = \pm 2.704$

Calculation:

• $t^* = 4.032$

Conclusion:

• $t^* > t_{.01/2, 40 df}$

4.032 > 2.704

• Reject Ho: μ = 8.5

6

Here's how it Looks in Pictures

- Our critical values were -2.704 and 2.704
- Our test statistic was 4.032
- the test statistic is in the rejection region on the right hand side
- I can also see it from the output from JMP

What would have happened if I used a z-test in place of the t-test?

Ho:

• Ho: $\mu = 8.5$

Ha:

Ha: μ ≠ 8.5 2-tailed

Assumptions

• n= 41, σ unknown, large sample use z

Test Statistic

• $z^* = (9.258 - 8.5)/.188$

Rejection Region

 $\alpha = .01, .01/2, z = \pm 2.575$

Calculation:

• $z^* = 4.032$

• Conclusion:

• $z^* > z_{.01/2}$

 \bullet 4.032 > 2.575

• Reject Ho: μ = 8.5

8

7

Peanut Package Problem

- A peanut company sells a package product of 16 oz of salted peanuts through an automated process
- Not all packages contain exactly 16 oz of peanuts

 they shoot for an average of 16 oz with a standard deviation of .8 oz.
- They routinely take random samples of 40 packages and weigh them
- They want to see if each sample is different from the package claim at α=.1

9

П

Peanut Package Problem

- If the manufacturing process overfills the packages, even by a little, they lose profit
- If the manufacturing process under-fills the packages they risk angry customers and fines from government
- They are interested in a twotailed test, a priori

- Let's say they take a sample of 40 packages and get a mean value of 16.42
- Does this sample result warrant checking the manufacturing process?
- Note: this is a problem where we can view σ as being known:
 - \bullet $\sigma = .8$
 - SE= .8/40.5 = .1265
 - Use the z-distribution

10

The Components of a Hypothesis Test

- Ha: μ ≠ 16.0 2-tailed
- Assumptions
 n= 40, σ = .8, use z
- Test Statistic
 z* = (16.42 16.00)/.1265
- Rejection Region $\alpha = .10, .10/2, z = \pm 1.645$
- Calculation: z* = 3.32
- Conclusion:
 z* > z_{.10/2}
 - 3.32 > 1.645
 - Reject Ho: μ = 16.0

90% Confidence Interval

- Calculate the 90% confidence interval for this problem
 - 16.42 ± 1.645[.8/(40)^{.5}]
 - 16.42 ± .208
 - 16.21 to 16.63
- Note that 16 is NOT in the 90% C.I.
- A similar (1- α) C.I. will generate the same result as a two-tailed hypothesis test
 - If the the Null value is in the C.I.
 - You cannot reject Ho

Another way to approach this problem using C.I.

- Another way to use a confidence interval:
 - Calculate the C.I. Around 16 oz
 - 16 ± 1.645[.8/(40).5]
 - 16 ± .208
 - 15.792 to 16.208
- Any sample that falls outside of this interval will cause them to reject the null hypothesis (based on two-tailed test and $\alpha = .1$)
- Note: Type I Error = .1 They can expect to wrongly reject Ho: 10 of 100 times

13

Systolic Blood Pressure for patients with BMI >30

- Here are the results from JMP
- You take the relevant information

Quantiles		Moments		Stem and Leaf		
100.0% maximum 99.5% 97.5% 90.0% quartile 50.0% mediar 50.0% quartile 10.0% minimum	181.00 181.00 170.60 132.00 125.00 113.50 108.20 107.00	Mean Std Err Mean upper 95% Mean lower 95% Mean N Sum Wgt Sum Variance Skewness KurtoSis CV N Missing	127.615 20.304 5.631 139.885 115.346 13.000 13.000 412.256 1.780 3.424 15.910 0.000	Stem 18 17 17 16 16 15 15 14 14 13 13 12 12 11 10	1 5 13 556 3 6 034	Count 1 1 2 3 1 1 1 3 1 1

10|7 represents 107

15

Let's try a problem together

- The Body mass index (BMI) is a measure of body fat based on height and weight that applies to both adult men and women.
- A BMI > than 30 is considered obese.
- A random sample of adults participated in a health study, and 13 of them had a BMI > 30.
- We will look at the systolic blood pressure reading, which represents the maximum pressure exerted when the heart contracts.
- Assume the systolic blood pressure follows something like a normal distribution and an unhealthy reading is greater than 120.
- We want to test to see if people with BMI > 30 tend to have a systolic blood pressure reading greater than 120.
- Use α = .10

14

Hypothesis Test for Sys BP

- Ho:
- Ha:
- Assumptions
- Test Statistic
- Rejection Region
- Calculation:
- Conclusion:

16

Hypothesis Test for Sys BP

Ho:

Ha:

• Ha: μ > 120 1-tailed upper

Assumptions

• n= 13, σ unknown, use t

Test Statistic

• $t^* = (127.615 - 120)/5.631$

Rejection Region

• $\alpha = .10, 12 \text{ d.f.}, t = 1.356$

Calculation:

• $t^* = 1.352$

Conclusion:

• t* < t.10, 12 df

1.352 < 1.356

• Cannot Reject Ho: $\mu = 120$

JMP output for the Hypothesis Test

- JMP shows the same output, but not the t-value for the Critical Value
- Instead it gives a p-value
- This is the probability of finding a value greater than the test statistic into the tail
- as either a one-tail or two-tail test
- We would compare the p-value for the appropriate test to α

18

One value was Extreme, 181, what happens if we remove it?

The data are better

 the mean is lower, but so is the standard

freedom

behaved. The changes:

the standard error:

deviation and ultimately

- Ho: u = 120
- Ha: μ > 120 1-tailed upper
- n= 12, σ unknown, use t
- $t^* = (123.167 120)/3.753$
- $\alpha = .10$, 11 d.f., t = 1.363

19

- t* = .8439
- t* < t_{.10, 11 df}
- .8439 < 1.363
- we lose a degree of • Cannot Reject Ho: μ = 120

Hypothesis Tests for Proportions

- The Pepsi Challenge asked soda drinkers to compare Diet Coke and Diet Pepsi in a blind taste test.
- Pepsi claimed that more than ½ of Diet Coke drinkers said they preferred Diet Pepsi (P=.5)
- Suppose we take a random sample of 100 Diet Coke Drinkers and we found that 56 preferred Diet Pepsi.
- Use $\alpha = .05$ level to test if we have enough evidence to conclude that more than half of Diet Coke Drinkers will prefer Pepsi.

Hypothesis Test for a Proportion

- Hypothesis test for proportions is the same
- It must be based on a large sample
- We have an estimate of the population parameter,
 P, from a sample p
- We use the same strategy of comparing our sample estimate to the theoretical sampling distribution
- And the same formulas
- But, with one slight twist!

21

23

Pepsi Challenge Hypothesis Test

- Ho:
- Ho: P = .5

Ha:

- Ha: P > .5 1-tailed, upper
- Assumptions
- n= 100, σ =.25, binomial = normal
- Test Statistic
- $z^* = (.56 .5)/.05$
- Rejection Region
- $\alpha = .05$, z = 1.645
- Calculation:
- $z^* = 1.20$
- Conclusion:
- z* < z_{.05}
- 1.20 < 1.645
- Cannot Reject Ho: P = .5

Remember, if we have additional information we should use it

- With proportions we have a slightly different approach to the standard error
- Remember, the variance, std dev, and standard error of a proportion is tied to P or p
- $\sigma^2 = PQ$

$$\sigma_P = \sqrt{(.5 \cdot .5)/100}$$

• $\sigma = (PQ/n)^{.5}$

$$\sigma_P = \sqrt{.25/100} = .05$$

- If we hypothesize that P = .5 under a null hypothesis
- Then we ought to use the hypothesized P and Q as the components for the standard error of the sampling distribution

22

Here's how it Looks in Pictures

- Our critical value was
 1.645
- Our test statistic was 1.20
- the test statistic is not in the rejection region on the right hand side

Summary

- I hope you are getting more comfortable with the mechanics of a hypothesis test
- Take it step by step
- Determine if the problem is dealing with a proportion or a mean
- And if a mean,
 - do we know sigma?
 - Is the sample size large?
 - Can we reasonable assume the population variable follows a normal distribution?