Обратное распространение ошибки

Виктор Китов victorkitov.github.io

Настройка весов сети

Итерация градиентной оптимизации:

$$w := w - \varepsilon \nabla \mathcal{L}(w)$$

$$\nabla \mathcal{L}(w) = \left[\frac{\partial \mathcal{L}(w)}{\partial w_1}; \frac{\partial \mathcal{L}(w)}{\partial w_2}; \dots \frac{\partial \mathcal{L}(w)}{\partial w_K} \right]$$

- ullet $\mathcal{L}(w)$ по минибатчу объектов.
- ullet $w = [w_1, w_2, ... w_K]$ обновляются все синхронно.
- ullet Как эффективно вичислить $abla \mathcal{L}(w)$?

Численная аппроксимация

• Вычисление $\nabla \mathcal{L}(w)$ через разностную аппроксимацию $(\delta_i = [0,...0,\delta,0,...0])$

$$\frac{\partial \mathcal{L}}{\partial w_i} \approx \frac{\mathcal{L}(w + \delta_i) - \mathcal{L}(w)}{\delta}$$

Численная аппроксимация

• Вычисление $\nabla \mathcal{L}(w)$ через разностную аппроксимацию $(\delta_i = [0,...0,\delta,0,...0])$

$$\frac{\partial \mathcal{L}}{\partial w_i} \approx \frac{\mathcal{L}(w + \delta_i) - \mathcal{L}(w)}{\delta}$$

⊕ : автоматический метод, нет риска ошибки

⊖ : приближённая. а не точная оценка

 \ominus : имеет вычислительную сложность $O(K^2)$

- ullet нужно посчитать K производных
- ullet сложность вычисления каждой: O(K)

Вычисление напрямую

• Вычисление напрямую

 \oplus : точная производная

 \ominus : громоздкие вычисления, риск ошибки

Вычисление напрямую

• Вычисление напрямую

 \oplus : точная производная

⊖ : громоздкие вычисления, риск ошибки

• Библиотеки символьного дифференцирования

 \oplus : точная производная

⊕ : автоматический метод, нет риска ошибки

Вычисление напрямую

• Вычисление напрямую

⊕: точная производная

⊖ : громоздкие вычисления, риск ошибки

• Библиотеки символьного дифференцирования

 \oplus : точная производная

 \oplus : автоматический метод, нет риска ошибки

 Оба метода вычислительно неэффективны - повторное вычисление одинаковых слагаемых:

$$[A(w)B(w)C(w)]'$$

= $A'(w)B(w)C(w) + A(w)B'(w)C(w) + A(w)B(w)C'(w)$

Автоматическое дифференцирование

- Библиотеки автоматического дифференцирования вычисляют значение градиента в точке
 - ⊕ : автоматически, без риска ошибки
 - ⊕: вычисляют точное значение
 - \oplus : эффективно за O(K)
- Используют метод обратного распространения ошибки (backpropagation).
- Основные библиотеки: PyTorch, Tensorflow, JAX.

$$\mathcal{L}(w) = A(B(w))$$

$$\mathcal{L}(w) = A(B(w))$$

$$\frac{\partial \mathcal{L}(w)}{\partial w} = \frac{\partial A(B)}{\partial B} \frac{\partial B}{\partial w}$$

$$\mathcal{L}(w) = \mathcal{L}(A_1(w), A_2(w), A_3(w))$$

$$\mathcal{L}(w) = A(B(w))$$

$$\frac{\partial \mathcal{L}(w)}{\partial w} = \frac{\partial A(B)}{\partial B} \frac{\partial B}{\partial w}$$

$$\mathcal{L}(w) = \mathcal{L}(A_1(w), A_2(w), A_3(w))$$

$$\frac{\partial \mathcal{L}(w)}{\partial w} = \frac{\partial \mathcal{L}}{\partial A_1} \frac{\partial A_1}{\partial w} + \frac{\partial \mathcal{L}}{\partial A_2} \frac{\partial A_2}{\partial w} + \frac{\partial \mathcal{L}}{\partial A_3} \frac{\partial A_3}{\partial w}$$

$$\mathcal{L}(w) = \mathcal{L}(A(B(C(w))))$$

$$\mathcal{L}(w) = A(B(w))$$

$$\frac{\partial \mathcal{L}(w)}{\partial w} = \frac{\partial A(B)}{\partial B} \frac{\partial B}{\partial w}$$

$$\mathcal{L}(w) = \mathcal{L}(A_1(w), A_2(w), A_3(w))$$

$$\frac{\partial \mathcal{L}(w)}{\partial w} = \frac{\partial \mathcal{L}}{\partial A_1} \frac{\partial A_1}{\partial w} + \frac{\partial \mathcal{L}}{\partial A_2} \frac{\partial A_2}{\partial w} + \frac{\partial \mathcal{L}}{\partial A_3} \frac{\partial A_3}{\partial w}$$

$$\mathcal{L}(w) = \mathcal{L}(A(B(C(w))))$$

$$\frac{\partial \mathcal{L}(w)}{\partial w} = \frac{\partial \mathcal{L}}{\partial A} \frac{\partial A}{\partial B} \frac{\partial B}{\partial C} \frac{\partial C}{\partial w}$$

Обратное распространение ошибки

- Вычисление функции потерь $\mathcal{L}(w)$ декомпозируется в вычислительный граф из элементарных преобразований
 - по которым мы можем посчитать производную.
 - +, -, *, : , exp, log, sin, cos, ...
- Пример: $\hat{y} = \mathbf{w}^T \mathbf{x}$, $\mathcal{L}(\mathbf{w}) = (\mathbf{w}^T \mathbf{x} y)^2 + \lambda \mathbf{w}^T \mathbf{w}$

Проходы вперёд и назад

- Вычисление $\nabla \mathcal{L}(w)$: 1) проход вперёд 2) проход назад.
- Проход вперёд (forward pass): итеративно слева-направо
 - вычисляются все промежуточные переменные
 - запоминаются промежуточные переменные и их функциональные преобразования.
- Проход назад (backward pass): итеративно справа-налево
 - вычисляются производные итога от предыдущих переменных графа как функции.
 - подстановкой переменных получаем численные значения производных.
 - после получения чисел функции уже не нужны.

$$y = 0$$
, $\mathbf{x} = [1, 2]$, $\mathbf{w} = [3, 4]$, $\lambda = 5$. $\nabla \mathcal{L}(w) - ?$
 $a = 1 \cdot 3 + 2 \cdot 4 = 3 + 8 = 11$; $b = a - y = 11$
 $c = b^2 = 11^2 = 121$; $d = 3 \cdot 3 + 4 \cdot 4 = 9 + 16 = 25$
 $e = \lambda d = 125$; $\mathcal{L} = c + e = 121 + 125 = 246$

$$a=11;$$
 $b=11;$ $c=121;$ $d=25;$ $e=125$
$$\frac{\partial \mathcal{L}}{\partial c}=1,$$

$$\frac{\partial \mathcal{L}}{\partial e}=1$$

$$a = 11; \quad b = 11; \quad c = 121; \quad d = 25; \quad e = 125$$

$$\frac{\partial \mathcal{L}}{\partial b} = \frac{\partial \mathcal{L}(c)}{\partial b} = \frac{\partial \mathcal{L}}{\partial c} \frac{\partial c}{\partial b} = 1 \cdot 2b = 22; \quad \frac{\partial \mathcal{L}}{\partial d} = \frac{\partial \mathcal{L}(e)}{\partial d} = \frac{\partial \mathcal{L}}{\partial e} \frac{\partial e}{\partial d} = 1 \cdot \lambda = 5$$

$$a=11;$$
 $b=11;$ $c=121;$ $d=25;$ $e=125$
$$\frac{\partial \mathcal{L}}{\partial a} = \frac{\partial \mathcal{L}(b)}{\partial a} = \frac{\partial \mathcal{L}}{\partial b} \frac{\partial b}{\partial a} = 22 \cdot 1 = 22$$

$$a = 11; \quad b = 11; \quad c = 121; \quad d = 25; \quad e = 125$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{w}} = \frac{\partial \mathcal{L}(a, d)}{\partial \mathbf{w}} = \frac{\partial \mathcal{L}}{\partial a} \frac{\partial a}{\partial \mathbf{w}} + \frac{\partial \mathcal{L}}{\partial d} \frac{\partial d}{\partial \mathbf{w}} = 22 \cdot \mathbf{x} + 5 \cdot 2\mathbf{w}$$

$$= 22 \cdot [1, 2] + 10 \cdot [3, 4] = [22, 44] + [30, 40] = [52, 84]$$

Эффективенее backward mode (backpropagation)

Эффективенее forward mode¹

 $^{^1\}mathsf{Cm}.$ https://deepmachinelearning.ru/docs/Neural-networks/Training/Backpropagation

Эффективнее комбинация

$$\frac{\partial \widehat{\mathbf{x}}}{\partial \mathbf{x}} = \frac{\partial \widehat{\mathbf{x}}(\mathbf{e})}{\partial \mathbf{x}} = \frac{\partial \widehat{\mathbf{x}}}{\partial \mathbf{e}} \frac{\partial \mathbf{e}}{\partial \mathbf{x}}$$

Эффективнее посчитать $\frac{\partial \widehat{\mathbf{x}}}{\partial \mathbf{e}}$ через backward mode, a $\frac{\partial \mathbf{e}}{\partial \mathbf{x}}$ - через forward mode.

Заключение

- Метод обратного распространение ошибки эффективный метод расчёта $\nabla \mathcal{L}(w)$
 - ullet именно он используется на практике, т.к. $\mathcal{L}(w)$ скаляр.
 - ullet вычисляет $abla \mathcal{L}(w)$ за O(K).
- Использование метода на практике:
 - при проходе вперёд запоминаются производные, а не сами преобразования.
 - при проходе назад после использования переменных (справа) их можно удалить.
- PyTorch: requires_grad=True/False, grad_fn.