

Provas de ingresso específicas para avaliar a capacidade para a frequência do ciclo de estudos de licenciatura, pelos titulares de um diploma de especialização tecnológica,

Decreto-Lei n.º 113/2014, de 16 de julho

AVALIAÇÃO DA CAPACIDADE PARA A FREQUÊNCIA DO CURSO DE LICENCIATURA EM

ENGENHARIA MECÂNICA

DO INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

SOLUÇÃO PROVA 2016

Apenas são apresentadas as soluções. Respostas que exijam demonstrações ou desenvolvimento não são apresentadas.

Grupo 1

- 1. (E)
- 2. (D)
- 3. (D)

Grupo 2

a)
$$g'(x) = \frac{(e^{x^2+x})'(2x+1)-e^{x^2+x}(2x+1)'}{(2x+1)^2} = \frac{(2x+1)e^{x^2+x}(2x+1)-2e^{x^2+x}}{(2x+1)^2} = \frac{[(2x+1)^2-2]e^{x^2+x}}{(2x+1)^2}$$

b)
$$x = -\frac{1+\sqrt{2}}{2} e x = \frac{\sqrt{2}-1}{2}$$

Grupo 3

- 1. (C)
- 2. (A)
- 3. (A)

Grupo 4

- a) 100 J
- b) 0 J
- c) 10 J

Grupo 5

- 1. (B) O trabalho a realizar será de 95850 N.m
- 2. (A) V = 5 m/s; e = 400 m
- 3. (C) A rigidez desse material. O seu valor é calculado através da relação entre a tensão aplicada e a deformação elástica provocada. Quanto maior fôr o valor do módulo de elasticidade menor será a deformação elástica provocada por uma dada tensão.
- 4. (D) Peso de um corpo é a força que atrai o corpo para a Terra e que aumenta quando nos deslocamos do equador para os pólos. A massa de um corpo é a quantidade de matéria que o corpo contém.
- 5. (B) 7.8 gf/cm^3
- 6. (D) 9,42 kg

Grupo 6

(Desenvolvimento)