Graph Clustering Algorithms

Report

on

Algorithms

by

Kishore Kumar Kalathur Chenchu (M21CS058) Prabhala Sandhya Gayatri (M21CS060) Tejaswee A (M21CS064)

Course Instructor

Dr. Anand Mishra
Assistant Professor
Department of Computer Science & Engineering
Indian Institute of Technology Jodhpur

1 K-Means

Algorithm 1: K-Means

Input:

 $D = d_{-1}, d_{-2}, d_{-3}, ..., d_{-n}$ //n-data points

k //desired number of clusters

Output:

k-clusters

Time Complexity:

O(k*n*t)

where,

n is the number of samples

t is the number of iterations

k is the number of clusters

Steps:

- 1. Initialize k cluster centroids randomly from D which are the initial centroids.
- 2.while convergence is not met do

For every i, set $c^{(i)} := \underset{j}{\operatorname{argmin}} ||x^{(i)} - \mu_{-}j||^{2}$ For each j, set $\mu_{-}j := \frac{\sum_{i=1}^{m} 1\{c^{(i)}=j\}x^{(i)}}{\sum_{i=1}^{m} 1\{c^{(i)}=j\}}$

end

Figure 1: K-Means Example

2 K-Center

Algorithm 2: Greedy K-center Approximation

Input:

Undirected Complete Graph G(V,E) with distance $d_i_j>=0$ between each pair of vertices $i,j\in V$

k //number of centers

Output:

k-clusters

Steps:

Greedy-Algorithm(G, k)

- 1. Choosing the first center randomly.
- 2. Choose remaining (k-1) centers using the criteria:

Let $c_-1, c_-2, c_-3, \ldots, c_-i$ be the already chosen centers. Choose $(i+1)^{th}$ center by picking the node which is farthest from the already selected centers which means that node p has the value as maximum

 $\min[dist(p, c_-1), dist(p, c_-2), dist(p, c_-3),dist(p, c_-n)]$

Example

Let us consider a hostel block where the rooms are distance (in meters) apart as shown in the graph below. The authorities decide to establish Wi-Fi connection with routers placed at specific distances so that every occupant is equally benefited. Our aim is to find minimum numbers of routers to be installed.

Given k = 2, the most optimal solution is to place the routers near rooms C and D where the maximum distance becomes 6.

Figure 2: K-Center Example

3 K-Medians

Algorithm 3: K-Medians

Input:

 $D = d_1, d_2, d_3, ..., d_n //n$ -data points

k //desired number of clusters

Output:

k-clusters

Time Complexity:

 $O(k*n^2*t)$

where,

n is the number of samples

t is the number of iterations

k is the number of clusters

Steps:

- 1. Convergence condition is $\sum k = 1^k \sum d_i \in C_k |d_i = median_k |d_i|$
- 2. Select k points as the initial k medians
- 3. while convergence is not met do
 - a) Assign every point to its nearest median.
 - b)Recompute the median using the median of each individual point.

end

Example

Randomly choosing c_1 as (3,5) and c_2 as (6,6)

Figure 3: K-Medians Example

4 Greedy Agglomeration

Algorithm 4: Greedy Agglomeration

Input:

Let $X = x_1, x_2, x_3, ..., x_n$ be set of data points. //n-data points

Output:

k-clusters

Time Complexity:

 $O(k*n^2)$

where,

n is the number of samples or elements to be clustered

k is the number of clusters

Steps:

- 1. Begin with the disjoint clustering having level L(0) = 0 and sequence number m = 0.
- 2. Find the least distance pair of clusters, d[(r), (s)] = minimum(d[(i), (j)])
- 3. Increment the sequence number: m = m + 1. Merge clusters (r) and (s) into a single cluster to form the next clustering m. Set the level of this clustering to L(m) = d[(r), (s)].
- 4. Update the distance matrix D.

New cluster = (r, s)

Old cluster(k) = d[(k), (r, s)] = min(d[(k), (r)], d[(k), (s)]).

5. Stop when a single cluster containing all the data points is obtained, else repeat from step 2.

Figure 4: Greedy Agglomeration Example

5 Markov clustering Algorithm

Algorithm 5: Markov clustering Algorithm

Input : Undirected graph, power parameter e, and inflation parameter r.

Output: number of clusters

Time Complexity:

 $O(n*k^2)$

where,

n is the number of nodes in the graph

k is the number of clusters

Steps:

- 1. A := A + I //Add self-loops to the graph where I is identity matrix
- 2. $M := AD^{-1}$ //Initialize M as the canonical transition matrix i.e. Normalizing the matrix

repeat

 $M:=M_exp:=Expand(M)$ //Expand the matrix by taking e^{th} power of the matrix $M:=M_inf:=Inflate(M,r)$ //Inflation parameter r controls the extent of strengthening or weakening.

M := Prune(M) //Rounding the values

until M converges;

Here interpreting resulting Matrix M to discover clusters.

Figure 5: MCL Example

6 Multilevel Clustering

Algorithm 6: Multilevel Clustering Algorithm **Input:** graph, coarsener, refiner, reduction factor Output: clustering Steps: // coarsening phase level[1] \leftarrow graph; repeat clustering \leftarrow vertices of level[l]; clustering \leftarrow coarsener(level[l],clustering,reduction factor); if cluster count reduced then level $[l+1] \leftarrow$ contract each cluster of clustering into a single vertex; end until cluster count not reduced; // refinement phase clustering \leftarrow vertices of level[l_max]; **for** l**_rom** l_max -1 to 1 **do** clustering \leftarrow project clustering from level[l + 1] to level[l]; clustering \leftarrow refiner(level[l], clustering); end

7 Clique Percolation Method

```
Algorithm 7: Clique Percolation Method
 Input : Complex Graph G
  Output : Candidate community set C_{-}L
  Steps:
  1. UF ← Union Find data structure
  2. Dict \leftarrow Empty Dictionary
 for each k clique c_-k \in G do
     S \leftarrow \phi
     for each (k-1)clique c\_k-1 \subset c\_k do
         if c_{-}k - 1 \in Dict.keys() then
          P \leftarrow UF.Find(Dict[c_k-1])
          end
          else
              P \leftarrow UF.MakeSet()
              Dict[c_k-1] \leftarrow p
         end
         S \leftarrow S \cup \{p\}
       end
       UF.Union(S)
   end
```


Figure 6: Clique Percolation Method Example