BRAC UNIVERSITY Department of Computer Science and Engineering

Semester: Spring 2023 **Examination: Semester Final** Full Marks: 50 Duration: 2 hours

CSE 320/EEE361/ECE361: Data Communications

Answer the following questions. Figures in the right margin indicate marks.

SET A

Name:		ID: Section:								
1. [CO5]	,	Assume a packet is made only of four 16-bit words (3046) ₁₆ , (ABDC) ₁₆ , (2B5) ₁₆ , and (E30) ₁₆ . I. Show the checksum at the sender. II. If the first data item is changed to (3047) ₁₆ and the third data item is changed to (2B4) ₁₆ during transmission, check if the receiver can detect any error in this case? III. Explain the reasons of the receiver's error detection state in (II) (Hint: The given words are in hexa-decimal value, that means, each digit can be represented by 4 bits. Remember hexadecimal values range from 0000 – FFFF).								
	b)	Channelization protocols do not require any central controller to ensure multiple access resolution - True/False? Justify. How can you calculate the vulnerable time of CSMA?								
2. [CO3]	a)	Consider, Five channels, two with a bit rate of 240 kbps and three with a bit rate of 180 kbps, are to be multiplexed with one synchronization bit. Write the following answers: I. What is the size of a frame in bits? II. What is the frame rate? III. What is the duration of a frame? IV. What is the output data rate? V. What is the output bit duration? VI. How many input channels are there after doing multiplexing?	6							

	b)	In CSMA/CD, what happens when two nodes sense the carrier at the same time? How can we stop the nodes from sensing the channel at the same time?								
	c)	The 2 bit datawords are converted to the following 5 bit codewords. For how many bits can we successfully detect and correct errors using this scheme?								
				Dataword		Codeword				
				00	00					
				01 10		01011 10101				
				11		11110				
5. [CO3]	a)	What is the minimum number of bits in a PN sequence if we use FHSS with a channel bandwidth of B = 5Hz and bandwidth of spread spectrum Bss = 250 KHz?								
	b)	Suppose, you are given with the k-bit pattern and Carrier Frequency as follows:								
		k-bit pa	k-bit pattern							
		11 00 01 10								
		k-bit	Carrier	Frequency						
		00 100 kHz 01 300 kHz 10 400 kHz								
		11	20	00 kHz						
		Draw FHSS cycle 2 times using the above pseudo random generated k-bit pattern and given frequency table. (** Hint: Draw the Carrier frequency graph against hop period)								
	c)	Suppose you have two channels among which 1 channel has a bandwidth of 1500 kbps and one with 1200 kbps. What is the smartest way to multiplex these channels without involving too many extra bits? Draw and validate with visual representation to aid your reasoning.								