2 コーシーの積分定理・リウヴィユの定理・留数計算

岩井雅崇 2023/04/11

以下断りがなければ, Ω は $\mathbb C$ の領域 (連結開集合) とする. また |z|=a となる円周の向きは反時計回りで入れるものとする.

コーシーの積分定理に関する問題

- 問 2.1 \bullet f(z) を $\mathbb{D}=\{z\in\mathbb{C}||z|<1\}$ 上の正則関数とする. 0< r<1 とし, M を |z|=r における |f(z)| の最大値とするとき, $|f'(0)|\leq \frac{M}{r}$ であることを示せ.
- 問 2.2 \bullet $|\alpha| \neq 1$ となる複素数 α について、線積分 $\int_{|z|=1} \frac{1}{z-\alpha} dz$ を計算せよ.
- 問 2.3 線積分 $\int_{|z|=2}^{\infty} \frac{1}{z^2+1} dz$ を計算せよ.
- 問 2.4 線積分 $\int_{|z-1|=1}^{\infty} \frac{e^z}{z^4+1} dz$ を計算せよ.
- 問 2.5~n を整数とする. 線積分 $\int_{|z|=2}^\infty \frac{z^n}{1-z} dz$ を計算せよ.
- 問 2.6 P(z) を z に関する複素係数多項式とする. 線積分 $\int_{|z|=2}\overline{P(z)}dz$ を計算せよ.

リウヴィユの定理に関する問題

- 問 2.7 (代数学の基本定理) リウヴィユの定理を用いて「定数でない複素係数多項式は複素数体上で解を持つ」ことを示せ.
- 問 2.8 \bullet f(z) を $\mathbb C$ 上の正則関数とする. ある M>0 があって $\mathbb C$ 上で $|f(z)| \leq Me^{\mathrm{Re}z}$ となるならば $f(z)=ae^z$ となる $a\in \mathbb C$ が存在することを示せ.
- 問 $2.9 \mathbb{C}$ 上の正則関数 f について, Re(f) が下に有界であるならば, 定数関数であることを示せ.
- 問 2.10 f を \mathbb{C} 上の定数でない正則関数とするとき, $f(\mathbb{C})$ は \mathbb{C} 上稠密であることを示せ.

計算問題 (標準的な積分経路をするもの)

- 問 2.11 広義積分 $\int_{-\infty}^{\infty} \frac{1}{x^4+1} dx$ は収束することを示し、その値を求めよ.
- 問 2.12 ullet 広義積分 $\int_{-\infty}^{\infty} \frac{1}{(x^2+1)^2} dx$ は収束することを示し、その値を求めよ.
- 問 2.13 $a\in\mathbb{R}$ について $\int_{-\infty}^{\infty} \frac{e^{-iax}}{x^2+1} dx$ の値を求めよ. また $\int_{0}^{\infty} \frac{\cos x}{x^2+1} dx$ の値を求めよ.
- 問 2.14 $\int_0^\infty \frac{\log x}{(x^2+1)^2} dx$ の値を求めよ. $(\log z$ の扱いに注意せよ.)
- 問 2.15 $a\in\mathbb{R}$ について $\int_{-\infty}^{\infty}e^{-2\pi iax}e^{-\pi x^2}dx$ の値を求めよ.
- 問 $2.16\,*\,rac{e^{iz}}{z}$ を考えることにより, $\int_0^\infty rac{\sin x}{x} dx$ の値を求めよ.

計算問題 (積分経路が特殊なもの)

問 2.17 $\int_0^\infty \frac{1}{x^3+1} dx$ の値を求めよ. (ヒント: 120 度の扇形を考える.)

問 $2.18 \, \int_0^\infty \cos x^2 dx$ の値を求めよ. (ヒント: 45 度の扇形を考える.)

問 $2.19 * \log (1-e^{2iz})$ と $\{z\in\mathbb{C}|0\leq \mathrm{Re}(z)\leq\pi,\mathrm{Im}(z)\geq 0\}$ を考えることにより、 $\int_0^\pi \log(\sin x)dx$ の値を求めよ.

演習の問題は授業ページ (https://masataka123.github.io/2023_summer_complex/) にもあります.右下の QR コードからを読み込んでも構いません.

