# Contents

| 1        |     | ear Equations in Linear Algebra          |
|----------|-----|------------------------------------------|
|          | 1.1 | Systems of Linear Equations              |
|          | 1.2 | Row Reduction and Echelon Forms          |
|          | 1.3 | Vector Equations                         |
|          | 1.4 | The Matrix Equation $A\vec{x} = \vec{b}$ |
|          | 1.5 | Section 1.5                              |
|          | 1.6 | Section 1.6                              |
|          | 1.7 | Section 1.7                              |
|          | 1.8 | Introduction to Linear Transformations   |
|          | 1.9 | Solution Sets of Linear Systems          |
| <b>2</b> | Ma  | trix Algebra                             |
|          | 2.1 | Matrix Operations                        |

## Chapter 1

## Linear Equations in Linear Algebra

## 1.1 Systems of Linear Equations

**Definition 1.1.1.** A Linear Equations is the variables  $x_1, x_2...x_n$  is an equation that can be written in the form  $a_1x_1 + a_2x_2 + ... + a_nx_n = b$  where  $a_1, a_2, ..., a_n$  are real coefficient and b is a real number (and known)

m number of equations, n number of unknowns (standard form) (first index row number, second index col number)

**Definition 1.1.3.** A solution of the system is a list  $(s_1, s_2, ..., s_n)$  of numbers that makes each equation a true statement when the values are substituted for  $x_1, x_2, ..., x_n$ 

**Definition 1.1.4.** Solution Set is the set of all possible solutions

Geometric Interpretations Example) Find the Solution set of the system

(a) 
$$\begin{cases} x_1 - x_2 = 5 \\ 2x_1 + x_2 = 7 \end{cases}$$
(b) 
$$\begin{cases} x_1 - 2x_2 = 4 \\ -2x_1 + 4x_2 = -8 \end{cases}$$
(c) 
$$\begin{cases} x_1 + 3x_2 = 1 \\ 2x_1 + 6x_2 = 5 \end{cases}$$

**Definition 1.1.5.** A linear system is consistant if it has either one solution or infinitely many solutions

**Definition 1.1.6.** Matrix of Coefficients 
$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

**Definition 1.1.7.** Augmented Matrix of the System 
$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{bmatrix}$$

#### 1.2 Row Reduction and Echelon Forms

**Definition 1.2.1.** A leading of a row in a matrix is the left most non-zero entry

Example) 
$$\begin{bmatrix} 0 & 0 & 7 & 3 & 4 & 1 \\ 2 & 4 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -2 & 0 \end{bmatrix}$$

**Definition 1.2.2.** A rectangular matrix is in echelon form if it has the following three properties:

- 1. All non-zero rows are above any zero rows.
- 2. Each leading entry of a row is in a column to the right of the leading entry above it.
- 3. All entries in a column below a leading entry are zero.

#### Vector Equations 1.3

**Definition 1.3.1.** Vectors

In 
$$R^2$$
,  $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ , in  $R^3$ ,  $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$ , in  $R^n$ ,  $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ 

**Definition 1.3.2.** Alebraic Operations of Vectors.

$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} \vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$
Addition:  $\vec{u} + \vec{v} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ \vdots \\ u_n + v_n \end{bmatrix}$ 
Multipy by Scaler:  $c \in R$   $c\vec{v} = \begin{bmatrix} cv_1 \\ cv_2 \\ \vdots \\ cv_n \end{bmatrix}$ 

Multipy by Scaler: 
$$c \in R$$
  $c\vec{v} = \begin{bmatrix} cv_1 \\ cv_2 \\ \vdots \\ cv_n \end{bmatrix}$ 

#### **Definition 1.3.3.** Linear Combination of Vectors

 $\vec{v_1}, \vec{v_2}, ..., \vec{v_p}$  vectors in  $\mathbb{R}^n$ 

 $c_1, c_2, ..., c_n$  scalers

Linear Combination:  $c_1\vec{v_1} + c_2\vec{v_2} + ... + c_n\vec{v_n}$ 

#### **Definition 1.3.4.** Vector Form of a System of Linear Equations

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$
  
 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$   
 $\vdots$   $\vdots$ 

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$
  
 $\vec{a_1} \qquad \vec{a_2} \qquad \vec{a_n} \qquad \vec{b_n}$ 

### Example 1.3.1.

Example 1.3.1.

Standard Form: 
$$\begin{cases} 2x_1 + 3x_2 - 4x_3 = 5 \\ x_1 + 2x_3 = 1 \\ x_2 - x_3 = 4 \end{cases}$$
Augmented Matrix: 
$$\begin{bmatrix} 2 & 3 & -4 & 5 \\ 1 & 0 & 2 & 1 \\ 0 & 1 & -1 & 4 \end{bmatrix}$$

Augmented Matrix: 
$$\begin{bmatrix} 2 & 3 & -4 & 5 \\ 1 & 0 & 2 & 1 \\ 0 & 1 & -1 & 4 \end{bmatrix}$$

Vector Form: 
$$\begin{bmatrix} 2\\1\\0 \end{bmatrix} x_1 + \begin{bmatrix} 3\\0\\1 \end{bmatrix} x_2 + \begin{bmatrix} -4\\2\\-1 \end{bmatrix} x_3 = \begin{bmatrix} 5\\1\\4 \end{bmatrix}$$

#### Definition 1.3.5.

If  $\vec{v_1}, \vec{v_2}, ..., \vec{v_p}$  are vectors in  $R^N$  then the set of all linear combonations of  $\vec{v_1}, \vec{v_2}, ..., \vec{v_p}$  is denoted by  $\mathrm{Span}\{\vec{v_1},\vec{v_2},...,\vec{v_p}\}$  and is called a subset of  $R^N$  spanned (or generated) by  $\vec{v_1}, \vec{v_2}, ..., \vec{v_p}$ .

### Example 1.3.2.

for 
$$R^3$$
, describe  $\operatorname{Span}\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$ 

All Linear Combontations we get the  $x_1x_3$ -plane

Remark: A system of linear equations is consistant if  $\vec{b}$  is in Span $\{\vec{a_1}, \vec{a_2}, ..., \vec{a_n}\}$ 

Example 1.3.3.

Determine if 
$$\vec{b} = \begin{bmatrix} 11 \\ -5 \\ 9 \end{bmatrix}$$
 is in the Span $\left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -6 \\ 7 \\ 5 \end{bmatrix} \right\}$ 

$$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} x_1 + \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix} x_2 + \begin{bmatrix} -6 \\ 7 \\ 5 \end{bmatrix} x_3 = \begin{bmatrix} 11 \\ -5 \\ 9 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 & -6 & | & 11 \\ 0 & 1 & 7 & | & -5 \\ 1 & 2 & 5 & | & 9 \end{bmatrix} RowOperations \rightarrow \begin{bmatrix} 1 & -2 & -6 & | & 11 \\ 0 & 1 & 7 & | & -5 \\ 0 & 0 & -17 & | & -18 \end{bmatrix}$$
Ves it is in Span because it is consistent!

#### Remark:

- 1) If the question is determine wheter the system is consistent or not. Then usually it is enought to get Echelon Form of the Augmented Matrix.
- 2) If the question is to solve the system, then we need Reduced Echelon Form of the Augmented Matrix

#### Example 1.3.4.

Example 1.3.4.

$$x_1 + x_2 - 2x_3 = 5$$
 $x_1 - x_2 + x_3 = 7 = \begin{bmatrix} 1 & 1 & -2 & 5 \\ 1 & -1 & 1 & 7 \\ 5 & -1 & -1 & 31 \end{bmatrix}$ 
 $RowOperations \rightarrow 5$ 
 $\begin{bmatrix} 1 & 1 & -2 & 5 \\ 0 & 1 & -\frac{3}{2} & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ 
 $x_1 = -x_2 + 2x_3 + 5$ 
 $\Rightarrow x_2 = \frac{3}{2}x_3 - 1$ 
 $x_3 = Parameter$ 

Wrong Because  $-x_2$  is not a parameter. If it's a pivot column, it can't be a parameter.

 $\begin{bmatrix} 1 & 0 & -\frac{1}{2} & 6 & 1 & x_1 & = -\frac{1}{2}x_2 + 6 \end{bmatrix}$ 

$$RowOperations \to \begin{bmatrix} 1 & 0 & -\frac{1}{2} & 6 \\ 0 & 1 & -\frac{3}{2} & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{array}{c} x_1 & = & \frac{1}{2}x_3 + 6 \\ \Rightarrow & x_2 & = & \frac{3}{2}x_3 - 1 \\ x_3 & = & Parameter \end{array}$$

Remember: Echelon Form of a matrix is not unique. Reduced Echelon Form IS unique.

#### The Matrix Equation $A\vec{x} = \vec{b}$ 1.4

Standard Form: 
$$\begin{bmatrix} a_{11}x_1 & + & a_{12}x_2 & + & \dots & + & a_{1n}x_n & = & b_1 \\ a_{21}x_1 & + & a_{22}x_2 & + & \dots & + & a_{2n}x_n & = & b_2 \\ \vdots & & \vdots & & & \vdots & & \vdots & & \vdots \\ a_{m1}x_1 & + & a_{m2}x_2 & + & \dots & + & a_{mn}x_n & = & b_m \\ \end{bmatrix}$$
Matrix Form: 
$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Theorem: The system  $A\vec{x} = \vec{b}$  has a solution Iff  $\vec{b}$  is a linear combination of  $A, \vec{b} \in$  $Span\{column vectors of A\}$ 

Example 1.4.1. 
$$A = \begin{bmatrix} 3 & 5 & -1 \\ 2 & 0 & 4 \\ 0 & 1 & 2 \end{bmatrix} \vec{b} = \begin{bmatrix} 4 \\ 2 \\ -1 \end{bmatrix}$$
Standard Form: 
$$\begin{cases} 3x_1 + 5x_2 - 1x_3 = 4 \\ 2x_1 + 4x_3 = 2 \\ 1x_2 + 2x_3 = -1 \end{cases}$$

Matrix Form: 
$$\begin{bmatrix} 3 & 4 & -1 \\ 2 & 0 & 4 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \\ -1 \end{bmatrix}$$
Vector Form: 
$$\begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix} x_1 + \begin{bmatrix} 5 \\ 0 \\ 1 \end{bmatrix} x_2 + \begin{bmatrix} -1 \\ 4 \\ 2 \end{bmatrix} x_3 = \begin{bmatrix} 4 \\ 2 \\ -1 \end{bmatrix}$$

Example 1.4.2. How many rows have pivot positions?

$$A = \begin{bmatrix} 1 & 3 & -2 & -2 \\ 0 & 1 & -1 & 5 \\ -1 & -2 & 1 & 7 \\ 1 & 1 & 0 & -6 \end{bmatrix} RowOperations \rightarrow \begin{bmatrix} 1 & 3 & -2 & -2 \\ 0 & 1 & -1 & 5 \\ 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

A as above

 $A\vec{x} = \vec{b}$  Assume system is consistent

 $Q_1$ : On how many parameters does the solution depend?

Answer: One  $(x_3)$ 

 $Q_2$ : Is it true that  $A\vec{x} = \vec{b}$  has a solution for any  $\vec{b} \in \mathbb{R}^4$ ?

Answer: Only if there is a pivot position in each row. - So it's False.

Example 1.4.3. Do the vectors 
$$\vec{v_1} = \begin{bmatrix} 1 \\ 3 \\ 4 \\ -1 \end{bmatrix} \vec{v_2} = \begin{bmatrix} 0 \\ 7 \\ 5 \\ -1 \end{bmatrix} \vec{v_3} = \begin{bmatrix} -1 \\ 4 \\ 2 \\ 1 \end{bmatrix}$$
 Span  $\mathbb{R}^4$ ?

Only 3 vectors, need at least 4 vectors to span  $\mathbb{R}^4$  (Still it is not enough, in general)

Theorem: Let A be an m row by n column matrix then the following statements are equivilent.

- a) For each  $\vec{b}$  in  $R^m$ , the system  $A\vec{x_1} = \vec{b}$  has a solution.
- b) The columns of A span  $\mathbb{R}^m$ .
- c) A has a pivot position in every row.

**Example 1.4.4.** Do the columns of 
$$A = \begin{bmatrix} 1 & -1 & 5 & 0 \\ 2 & 0 & 4 & 2 \\ 4 & 1 & 5 & 5 \end{bmatrix}$$
 span  $R^3$ ?

$$A \quad \widetilde{R_{3}-2R_{1}} \quad \begin{bmatrix} 1 & -1 & 5 & 0 \\ 0 & 2 & -6 & 2 \\ 0 & 5 & -15 & 5 \end{bmatrix} \widetilde{R_{3}-\frac{5}{2}R_{2}} \begin{bmatrix} \widehat{1} & -1 & 5 & 0 \\ 0 & \widehat{2} & -6 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

NO, the columns of A do NOT span  $\mathbb{R}^3$  because all the vectors lie in a plane(no z component)

Notation of Matricies

- 1.5 Section 1.5
- 1.6 Section 1.6
- 1.7 Section 1.7

### 1.8 Introduction to Linear Transformations

Example 1.8.1.

$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$T(\vec{x}) = A\vec{x} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ -x_2 \end{bmatrix}$$

#### **Definition 1.8.1.** Transformation

A transformation (or function or mapping) T from  $R^n to R^m$  is a rule that assigns to each vector  $\vec{x}$  in  $R^n$  a vector  $T(\vec{x})$  in  $R^m$ .

The set  $\mathbb{R}^n$  is called the <u>Domain of T</u>

The set  $\mathbb{R}^m$  is called the <u>Co-Domain of T</u>

 $T(\vec{x})$  is called the image of  $\vec{x}$  (under T)

 $\{T(\vec{x}), \vec{x} \in \mathbb{R}^n\}$  is called the range of T (the set of all images)

#### **Definition 1.8.2.** Linear Transformation

A transformation  $T: \mathbb{R}^n \to \mathbb{R}^m$  is linear if:

- (i)  $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$  for any  $\vec{u}, \vec{v}$  from the domain of T
- (ii)  $T(c\vec{u}) = cT(\vec{u})$  for any  $\vec{u}$  and any scaler  $c \in R$

Example 1.8.2. .

## 1.9 Solution Sets of Linear Systems

# Chapter 2

# Matrix Algebra

## 2.1 Matrix Operations