# **RADIX SORT**

Apresentado por

Wallan Melo, Clebson Pereira

#### Introdução

- Algoritmo de tempo linear para ordenar <u>números inteiros e strings</u>
- O Primeiro algoritmo computacional para o radix sort foi inventado em 1954 no MIT por Harold H. Seward.
- A ideia original de Harold era de ordenar pelo dígito mais significativo, mas atualmente é muito usado a ordenação pelo dígito menos significativo e utilizando um algoritmo de ordenação estável(ou seja, a ordem dos elementos em que há empate é preservada) auxiliar.

| 123 | 142 | 87 | 263 | 233 | 14 | 132 |
|-----|-----|----|-----|-----|----|-----|
|     |     |    |     |     |    |     |
|     |     |    |     |     |    |     |
|     |     |    |     |     |    |     |

| 123 | 14 <mark>2</mark> | 87 | 26 <mark>3</mark> | 23 <mark>3</mark> | 14 | 13 <mark>2</mark> |
|-----|-------------------|----|-------------------|-------------------|----|-------------------|
|     |                   |    |                   |                   |    |                   |
|     |                   |    |                   |                   |    |                   |
|     |                   |    |                   |                   |    |                   |

Comece pelo **DÍGITO MENOS SIGNIFICATIVO**, que é o dígito mais a <u>direita</u> em cada número, ou seja, o dígito das **UNIDADES**.

| DÍGITO | CONTADOR | POSIÇÃO |
|--------|----------|---------|
| 0      | 0        | 0       |
| 1      | 0        | 0       |
| 2      | 2        | 0       |
| 3      | 3        | 0       |
| 4      | 1        | 0       |
| 5      | 0        | 0       |
| 6      | 0        | 0       |
| 7      | 1        | 0       |
| 8      | 0        | 0       |
| 9      | 0        | 0       |

| 123 | 142 | 87  | 263 | 233 | 14 | 132 |
|-----|-----|-----|-----|-----|----|-----|
| 142 | 132 | 123 | 263 | 233 | 14 | 87  |
|     |     |     |     |     |    |     |
|     |     |     |     |     |    |     |

| DÍGITO | CONTADOR | POSIÇÃO |
|--------|----------|---------|
| 0      | 0        | 0       |
| 1      | 0        | 0       |
| 2      | 2        | 0       |
| 3      | 3        | 2       |
| 4      | 1        | 5       |
| 5      | 0        | 0       |
| 6      | 0        | 0       |
| 7      | 1        | 6       |
| 8      | 0        | 0       |
| 9      | 0        | 0       |

| 123 | 142 | 87                 | 263 | 233 | 14 | 132 |
|-----|-----|--------------------|-----|-----|----|-----|
| 142 | 132 | 1 <mark>2</mark> 3 | 263 | 233 | 14 | 87  |
|     |     |                    |     |     |    |     |
|     |     |                    |     |     |    |     |

Agora passe para o próximo dígito, lembrando que sempre será da **direita para a esquerda**. Então, agora será o dígito que representa as **DEZENAS**.

| DÍGITO | CONTADOR | POSIÇÃO |
|--------|----------|---------|
| 0      | 0        | 0       |
| 1      | 1        | 0       |
| 2      | 1        | 0       |
| 3      | 2        | 0       |
| 4      | 1        | 0       |
| 5      | 0        | 0       |
| 6      | 1        | 0       |
| 7      | 0        | 0       |
| 8      | 1        | 0       |
| 9      | 0        | 0       |

| 123 | 142 | 87  | 263 | 233 | 14  | 132 |
|-----|-----|-----|-----|-----|-----|-----|
| 142 | 132 | 123 | 263 | 233 | 14  | 87  |
| 14  | 123 | 132 | 233 | 142 | 263 | 87  |
|     |     |     |     |     |     |     |

| DÍGITO | CONTADOR | POSIÇÃO |
|--------|----------|---------|
| 0      | 0        | 0       |
| 1      | 1        | 0       |
| 2      | 1        | 1       |
| 3      | 2        | 2       |
| 4      | 1        | 4       |
| 5      | 0        | 0       |
| 6      | 1        | 5       |
| 7      | 0        | 0       |
| 8      | 1        | 6       |
| 9      | 0        | 0       |

| 123 | 142 | 87  | 263         | 233 | 14         | 132 |
|-----|-----|-----|-------------|-----|------------|-----|
| 142 | 132 | 123 | 263         | 233 | 14         | 87  |
| 014 | 123 | 132 | <b>2</b> 33 | 142 | <b>263</b> | 087 |
|     |     |     |             |     |            |     |

Agora vá para o último dígito, sempre da direita para a esquerda, que agora será a casa das **CENTENAS**.

Nesse exemplo, há números que não têm centena, logo será atribuído o valor 0 para esses números.

| DÍGITO | CONTADOR | POSIÇÃO |
|--------|----------|---------|
| 0      | 2        | 0       |
| 1      | 3        | 0       |
| 2      | 2        | 0       |
| 3      | 0        | 0       |
| 4      | 0        | 0       |
| 5      | 0        | 0       |
| 6      | 0        | 0       |
| 7      | 0        | 0       |
| 8      | 0        | 0       |
| 9      | 0        | 0       |

| 123 | 142 | 087 | 263 | 233 | 014 | 132 |
|-----|-----|-----|-----|-----|-----|-----|
| 142 | 132 | 123 | 263 | 233 | 014 | 087 |
| 14  | 123 | 132 | 233 | 142 | 263 | 87  |
| 14  | 87  | 123 | 132 | 142 | 233 | 263 |

| DÍGITO | CONTADOR | POSIÇÃO |  |
|--------|----------|---------|--|
| 0      | 2        | 0       |  |
| 1      | 3        | 2       |  |
| 2      | 2        | 5       |  |
| 3      | 0        | 0       |  |
| 4      | 0        | 0       |  |
| 5      | 0        | 0       |  |
| 6      | 0        | 0       |  |
| 7      | 0        | 0       |  |
| 8      | 0        | 0       |  |
| 9      | 0        | 0       |  |

| 123 | 142 | 087 | 263 | 233 | 014 | 132 |
|-----|-----|-----|-----|-----|-----|-----|
| 142 | 132 | 123 | 263 | 233 | 014 | 087 |
| 014 | 123 | 132 | 233 | 142 | 263 | 087 |
| 14  | 87  | 123 | 132 | 142 | 233 | 263 |

**PRONTO!** Agora nosso vetor de números inteiros está devidamente ordenado em ordem crescente, utilizando a lógica por trás do algoritmo **Radix Sort**.

#### **Complexidade Assintótica**

A complexidade do algoritmo Radix Sort pode alterar em relação ao algoritmo estável que será utilizado(no caso em questão, o Counting Sort). Utilizando-se o Counting Sort como ordenador auxiliar, teremos um algoritmo de ordenação que não utiliza comparações e sim contagem.

Neste caso, o consumo de tempo é  $\Theta(d(n + k))$ . Se d é limitado por uma constante (ou seja, se d == O(1)) e k == O(n), então o consumo de tempo é O(n).

- d = Número de dígitos ou caracteres do maior número/string
- k = Valor máximo de um dígito(ou bit ou caractere), ou seja, 10 valores possíveis (no caso de string, 2 ou 256)
- n = Número de itens a serem ordenados, ou seja, tamanho do vetor.
- Complexidade de pior caso: Θ(d(n + k))
- Complexidade de melhor caso: ⊖(d(n + k))
- Complexidade de caso médio: ⊖(d(n + k))

#### **Complexidade Assintótica**

Para o vetor dado [123, 142, 87, 263, 233, 14, 132], temos:

$$d == 3$$

Portanto, nesse vetor de exemplo, temos a notação:

$$\Theta(3(7 + 10))$$

Isso tanto para o pior, médio e melhor caso.

# Agora, um código em C

