Section 2,3: Schuduling to minimize makespan

Makespan Schiduling on Parallel Machines Input: m machines n jobs with processing times $\rho_1, \rho_2, ..., \rho_n \in \mathbb{Z}^+$ Output: Assignment of jobs to machines s.t. the makespan is minimized

time when last job finishes

Ex:

How could this schedule be improved?

Local Search Alg:

Repeat

job l ← job that finishes last

If there is any machine i where job l would

finish earlier

More job l to machine i

Until job l is not mared

Theorem 2.5

The local search alg. is a (2-th)-approx, alg.

Proof:

Lower bounds on OPT:

C* = max = max p;,

because the machine i with the largest job j has $C_i \ge \rho_j$.

 $C_{max}^* \ge \frac{\rho}{m}$, where $P = \sum_{j=1}^{n} P_j$

Since this is the average completion time of the machines.

Upper bound on alg.'s makespon:

 $P \ge m \cdot S_2 + \rho_2$, Since all machines are busy until S_2 $S_2 \le \frac{P - \rho_2}{mP}$ $P_1 \le \rho_{max}$

$$C_{max} = S_{\ell} + \rho_{\ell}$$

$$\leq \frac{\rho - \rho_{\ell}}{m} + \rho_{\ell}$$

$$= \frac{\rho}{m} + (1 - \frac{1}{m}) \rho_{\ell}$$

$$\leq C_{max}^{t} + (1 - \frac{1}{m}) C_{max}^{t}$$

$$= (2 - \frac{1}{m}) C_{max}^{t}$$

What would be a natural greedy alg.?

List Schiduling (LS)

For j←1 to n Schedule job j on currently least loaded machine

What is the approx. ratio of LS?
What proporties of the local search alg. did
we use to prove 2-th?
We used only the fact that all machines are
buy at lest until Se.
Is this also true for LS?
Yes:

LS would not have placed job I on machine 3.

Theorem 2.6: LS is a (2-tn)-approx. alg.

Note that $\frac{Cl}{C_{max}}$ < 2-tm, unless $p_l = p_{max}$ Thus, it seems advantageous to schedule Short jobs last.

Longest Processing Time (LPT)

For each job j, in order of decreasing processing times Schedule job j on currently least loaded Machine

Theorem 2.7: LPT is a (4/3-3m)-approx. alg.

Proof:

Number the jobs s.t. $\rho_1 \geqslant \rho_2 \geqslant \ldots \geqslant \rho_n$.

Then the indices indicate the order in which the jobs are scheduled.

Let job l be a job to finish last:

We can assume that l=n:

Let $T = \{\rho_1, \rho_2, ..., \rho_n\}$ and $T' = \{\rho_1, \rho_2, ..., \rho_n\}$. Then, LPT(T) = LPT(T'), since jobs l+1, ..., nfinish no later than job l.

Mareover, OPT (I') = OPT (I).

Thus, if we prove $LPT(I')/OPT(I') \leq \frac{4}{3}$, we have prove $LPT(I)/OPT(I) \leq \frac{4}{3}$.

(Or said in a different way, we can ignore the jobs 1+1,..., n.)

Thus, we can assume that no job is shorter than job l.

Case 1: $\rho_{1} \leq \frac{1}{3} \cdot OPT$ By the proof of Thm 2.5,

LPT $\leq OPT + \frac{m-1}{m} \rho_{2} \leq OPT + \frac{m-1}{m} \cdot \frac{1}{3} \cdot OPT$ $= \left(\frac{4}{3} - \frac{1}{3m}\right) \cdot OPT$

Case 2: $\rho_{\ell} > \frac{1}{3} \cdot OPT$

In this case, all jobs are longer than $\frac{1}{3} \cdot 0PT$. Hence, in OPT's schedule, each machine has ≤ 2 jobs, i.e., $1 \leq 2m$. In this case, 1PT = 0PT:

ρι	
ρι	
P3	PE
рч	ρ_7
P5	P6

Proof of this claim: Exercise 22 From the proof of Thm 2.7 we leaved:

If job l is longer than 1/3.0PT, then LPT=OPT.

Otherwise, LPT = OPT+P1 = 4/3.0PT.

(Recall that job l is the job to finish last.)

Could we balance the two cases boths?

Could we modify the alg. S.t. the makespan is at most (1+ ϵ) OPT, ϵ < $\frac{1}{3}$, no math whether job l is a "lang" or a "short job"?

What if we first scholule all jobs of length > 4.00T Optimally, and then use LPT for the remaining jobs? What would the approximation ratio be? Does the schedule of the long jobs have to be optimal?