University of Toronto Scarborough Department of Computer & Mathematical Sciences

MAT B41H 2011/2012

Term Test Solutions

1. (a) From the lecture notes we have

Let $f: U \subset \mathbb{R}^n \to \mathbb{R}^k$ be a given function. We say that f is differentiable at $a \in U$ if the partial derivatives of f exist at a and if

$$\lim_{\boldsymbol{x} \to \boldsymbol{a}} \ \frac{\|f(\boldsymbol{x}) - f(\boldsymbol{a}) - Df(\boldsymbol{a}) \left(\boldsymbol{x} - \boldsymbol{a}\right)\|}{\|\boldsymbol{x} - \boldsymbol{a}\|} = 0 \,,$$

where $Df(\boldsymbol{a})$ is the $k \times n$ matrix $\left(\frac{\partial f_i}{\partial x_j}\right)$ evaluated at \boldsymbol{a} .

 $Df(\mathbf{a})$ is called the derivative of f at \mathbf{a} .

(b) From the lecture notes we have

Chain Rule. Let $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$ and $g: V \subset \mathbb{R}^m \to \mathbb{R}^k$ be given functions such that $f[U] \subset V$ so that $g \circ f$ is defined. Let $\mathbf{a} \in \mathbb{R}^n$ and $\mathbf{b} = f(\mathbf{a}) \in \mathbb{R}^m$. If f is differentiable at \mathbf{a} and g is differentiable at \mathbf{b} , then $g \circ f$ is differentiable at \mathbf{a} and

$$D(g \circ f)(\mathbf{a}) = [Dg(\mathbf{b})][Df(\mathbf{a})].$$

2. Clearly, the suitable function would be $f(x,y) = \sqrt{x^2 + y^2}$ and we wish to approximate f(4.01, 2.98).

 $f(4,3) = \sqrt{4^2 + 3^2} = 5$; $f_x = \frac{x}{\sqrt{x^2 + y^2}}$, $f_x(4,3) = \frac{4}{5}$; $f_y = \frac{y}{\sqrt{x^2 + y^2}}$, $f_y(4,3) = \frac{3}{5}$ and the linear approximation is $T_1(x,y) = f(4,3) + f_x(4,3)(x-4) + f_y(4,3)(y-3)$. Hence $\sqrt{(4.01)^2 + (2.98)^2}$ is approximated by $5 + \frac{4}{5}(4.01 - 4) + \frac{3}{5}(2.98 - 3) = 5 + 0.008 - 0.012 = 4.996$.

3. (a) (i) $\lim_{(x,y)\to(0,0)} \frac{1-\cos 2x+\sin 2y}{x^2+2y}$. Evaluating along the line x=0, the limit reduces to $\lim_{y\to 0} \frac{\sin 2y}{2y} = 1$. On the other hand, evaluating along y=0, the limit becomes $\lim_{x\to 0} \frac{1-\cos 2x}{x^2} \stackrel{\text{l'Hôpital's}}{=} \lim_{x\to 0} \frac{2\sin 2x}{2x} = (2)(1) = 2$. Hence the limit

(ii) $\lim_{(x,y)\to(0,0)} \frac{3xy^2}{x^2+y^2}$. We note that $\left|\frac{3xy^2}{x^2+y^2}\right| = 3|x|\frac{y^2}{x^2+y^2} \le 3|x| \longrightarrow 0$ as $x \longrightarrow 0$. Since $\lim_{(x,y)\to(0,0)} \left|\frac{3xy^2}{x^2+y^2}\right| = 0$, we also have $\lim_{(x,y)\to(0,0)} \frac{3xy^2}{x^2+y^2} = 0$.

MATB41H Term Test Solutions page 2

$$\text{(b)} \ \, f(x,y) = \begin{cases} \frac{xy+2x}{x^2+(y+2)^2} &, \ \text{if} \ \, (x,y) \neq (0,-2) \\ 0 &, \ \, \text{if} \ \, (x,y) = (0,-2) \end{cases} \\ \text{we need } \lim_{(x,y)\to(0,-2)} f(x,y) = 0 = f(0,-2). \ \, \text{Evaluating the limit along the line} \\ x = y+2, \ \, \text{we have } \lim_{y\to -2} \frac{(y+2)^2}{2\,(y+2)^2} = \frac{1}{2}. \ \, \text{Since } f(0,-2) = 0 \neq \frac{1}{2}, \ \, \text{we can conclude that } f \text{ is not continuous at } (0,-2). \end{cases}$$

- 4. (a) $\det A = \det \begin{pmatrix} 1 & 0 & x \\ y & 1 & 2 \\ 0 & 2 & z \end{pmatrix} = (1) \det \begin{pmatrix} 1 & 2 \\ 2 & z \end{pmatrix} + (x) \det \begin{pmatrix} y & 1 \\ 0 & 2 \end{pmatrix} = z 4 + 2xy.$
 - (b) $f(x, y, z) = \det A = z 4 + 2xy$, so $\nabla f = (2y, 2x, 1)$.
 - (c) ℓ_1 has direction vector $\boldsymbol{v} = \boldsymbol{\nabla} f(2,1,0) = (2,4,1)$ and ℓ_2 has direction vector $\boldsymbol{w} = (0,1,2) (2,1,0) = (-2,0,2)$. The angle θ between ℓ_1 and ℓ_2 is the angle between their direction vectors. Therefore, $\theta = \cos^{-1}\left(\frac{\boldsymbol{v} \cdot \boldsymbol{w}}{\|\boldsymbol{v}\| \|\boldsymbol{w}\|}\right) = \cos^{-1}\left(\frac{(2,4,1)\cdot(-2,0,2)}{\|(2,4,1)\| \|(-2,0,2)\|}\right) = \cos^{-1}\left(\frac{-2}{\sqrt{21}\sqrt{8}}\right) = \cos^{-1}\left(\frac{-1}{\sqrt{42}}\right)$.
- 5. (a) For a function $f: \mathbb{R}^2 \to \mathbb{R}$ the equation of the tangent plane at (a,b) is $z=f(a,b)+\frac{\partial f}{\partial x}(a,b)\,(x-a)+\frac{\partial f}{\partial y}(a,b)\,(y-b)$. Here we have $f_x=-2\sin(2x+y),$ $f_x\left(\frac{\pi}{2},\frac{\pi}{4}\right)=\frac{2}{\sqrt{2}},\ f_y=-\sin(2x+y),\ f_y\left(\frac{\pi}{2},\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}\ \text{and}\ f\left(\frac{\pi}{2},\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}.$ Hence the equation of the tangent plane is $z=-\frac{1}{\sqrt{2}}+\sqrt{2}\left(x-\frac{\pi}{2}\right)+\frac{1}{\sqrt{2}}\left(y-\frac{\pi}{4}\right)=\sqrt{2}\,x+\frac{1}{\sqrt{2}}\,y-\frac{1}{\sqrt{2}}-\frac{5\,\pi}{4\sqrt{2}},$ which can be rewritten as $2x+y-\sqrt{2}\,z=\frac{4+5\,\pi}{4}.$
 - (b) To find an equation for the tangent plane to the graph of the function z = f(x,y) defined implicitly by $xz + 2x^2y + y^2z^3 = 11$ at the point (2,1,1), we put $g(x,y,z) = xz + 2x^2y + y^2z^3 11$. A normal to the level surface g(x,y,z) = 0 is $\nabla g = (z + 4xy, 2x^2 + 2yz^3, x + 3y^2z^2)$. Hence a normal at (2,1,1) is $\nabla g(2,1,1) = (9,10,5)$. Therefore, the tangent plane has normal (9,10,5) and its equation is 9x + 10y + 5z = d. Since (2,1,1) is point on the tangent plane, we have 9(2) + 10(1) + 5(1) = 33. Hence the equation of the tangent plane is 9x + 10y + 5z = 33.
 - (c) Let (a,b,c) be a point on the surface $z^2=x^2+y^2$. To find a tangent plane to this surface at (a,b,c), we put $g(x,y,z)=x^2+y^2-z^2$. A normal to the level surface g(x,y,z)=0 is $\nabla g=(2x,2y,-2z)$. Hence a normal at (a,b,c) is $\nabla g(a,b,c)=(2a,2b,-2c)$ Therefore, the tangent plane can be given by 2a(x-a)+2b(y-b)-2c(z-c)=0 and, because (a,b,c) is a point on the surface, rewritten as $ax+by-cz=a^2+b^2-c^2=0$, which is a plane through the origin.

- 6. (a) We know that the value of a function is constant on level sets. Here, to stay at the same temperature, the bug must stay on the level set which passes through (1,1,1); i.e., on the surface $x^2 + yz + xz^2 = 1^2 + (1)(1) + (1)(1^2) = 3$.
 - (b) The direction of the maximum rate of increase is the direction of the gradient of T at (1,1,1). Now $\nabla T = (2x+z^2, z, y+2xz)$, so the temperature would increase fastest in direction $\nabla T(1,1,1) = (3,1,3)$.

The maximum rate of increase is the magnitude of the gradient. Hence the maximum rate is $\|\nabla T(1,1,1)\| = \|(3,1,3)\| = \sqrt{9+1+9} = \sqrt{19}$.

- (c) To reach the food, the bug would travel in direction (3, -2, 1) (1, 1, 1) = (2, -3, 0). The rate of change in temperature in this direction is given by the directional derivative, $D_{(2,-3,0)}T(1,1,1) = \nabla T(1,1,1) \cdot \frac{(2,-3,0)}{\|(2,-3,0)\|} = \frac{(3,1,3)\cdot(2,-3,0)}{\sqrt{4+9}} = \frac{3}{\sqrt{13}}.$
- 7. $f(x,y,z) = x^2 3y^2 + 2z^2$, so $\frac{\partial f}{\partial x} = 2x$, $\frac{\partial f}{\partial y} = -6y$ and $\frac{\partial f}{\partial z} = 4z$. Now $\frac{\partial^2 f}{\partial x^2} = 2$, $\frac{\partial^2 f}{\partial y^2} = -6$ and $\frac{\partial^2 f}{\partial z^2} = 4$. Since the 2nd partials are continuous and $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 2 + (-1)6 + 4 = 0$, we conclude that f(x,y,z) is harmonic.
- 8. $f: \mathbb{R}^4 \to \mathbb{R}^4$ is given by f(x, y, z, w) = (xw, yz, xy, zw) so $Df = \begin{pmatrix} w & 0 & 0 & x \\ 0 & z & y & 0 \\ y & x & 0 & 0 \\ 0 & 0 & w & z \end{pmatrix}$. $g: \mathbb{R}^4 \to \mathbb{R}^2$ is given by $g(x, y, z, w) = (wx^2, wyz)$ so $Dg = \begin{pmatrix} 2xw & 0 & 0 & x^2 \\ 0 & wz & wy & yz \end{pmatrix}$. and $Dg(f(x, y, z, w)) = \begin{pmatrix} 2xzw^2 & 0 & 0 & x^2w^2 \\ 0 & xyzw & yz^2w & xy^2z \end{pmatrix}$.

Now $D(g \circ f)(x, y, z, w) = [D g(f(x, y, z, w))] [D f(x, y, z, w)]$

$$= \begin{pmatrix} 2xzw^2 & 0 & 0 & x^2w^2 \\ 0 & xyzw & yz^2w & xy^2z \end{pmatrix} \begin{pmatrix} w & 0 & 0 & x \\ 0 & z & y & 0 \\ y & x & 0 & 0 \\ 0 & 0 & w & z \end{pmatrix}$$

$$= \left(\begin{array}{cccc} 2xzw^3 & 0 & x^2w^3 & 3x^2zw^2 \\ y^2z^2w & 2xyz^2w & 2xy^2zw & xy^2z^2 \end{array} \right).$$

MATB41H Term Test Solutions page 4

$$9. \ \frac{\partial^{2} f}{\partial v \, \partial u} = \frac{\partial}{\partial v} \left(\frac{\partial f}{\partial u} \right) \overset{Chain}{\underset{Rule}{\overset{}{=}}} \frac{\partial}{\partial v} \left[\frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u} \right] = \frac{\partial}{\partial v} \left[\frac{\partial f}{\partial x} (1) + \frac{\partial f}{\partial y} (-3) \right] = \frac{\partial}{\partial v} \left(\frac{\partial f}{\partial x} \right) - 3 \frac{\partial}{\partial v} \left(\frac{\partial f}{\partial y} \right) \overset{Chain}{\underset{Rule}{\overset{}{=}}} \frac{\partial^{2} f}{\partial x^{2}} \frac{\partial x}{\partial v} + \frac{\partial^{2} f}{\partial y \, \partial x} \frac{\partial y}{\partial v} - 3 \left[\frac{\partial^{2} f}{\partial x \, \partial y} \frac{\partial x}{\partial v} + \frac{\partial^{2} f}{\partial y^{2}} \frac{\partial y}{\partial v} \right] = \frac{\partial^{2} f}{\partial x^{2}} (-1) + \frac{\partial^{2} f}{\partial y \, \partial x} (2) - 3 \left[\frac{\partial^{2} f}{\partial x \, \partial y} (-1) + \frac{\partial^{2} f}{\partial y^{2}} (2) \right] = -\frac{\partial^{2} f}{\partial x^{2}} + 2 \frac{\partial^{2} f}{\partial y \, \partial x} + 3 \frac{\partial^{2} f}{\partial x \, \partial y} - 6 \frac{\partial^{2} f}{\partial y^{2}} \overset{f}{\underset{class}{\overset{}{=}}} \overset{sof}{\underset{C}{\overset{}{=}}} - \frac{\partial^{2} f}{\partial x^{2}} + 5 \frac{\partial^{2} f}{\partial x \, \partial y} - 6 \frac{\partial^{2} f}{\partial y^{2}}$$

10. Recall
$$e^t = \sum_{k=0}^{\infty} \frac{t^k}{k!}$$
, $|t| < \infty$, so $e^{2x} = 1 + 2x + \frac{1}{2}(2x)^2 + \frac{1}{3!}(2x)^3 + \frac{1}{4!}(2x)^4 + \cdots$, $|2x| < \infty$ (by replacement). We also recall $\ln(1+t) = \sum_{k=0}^{\infty} (-1)^k \frac{t^{k+1}}{k+1}$, $|t| < 1$, so $\ln(1+xy) = xy - \frac{(xy)^2}{2} + \frac{(xy)^3}{3} - \cdots$, $|xy| < 1$ (by replacement). We now obtain a Taylor series for $f(x,y) = e^{2x} \ln(1+xy)$, $T = \left(1+2x+\frac{1}{2}(2x)^2+\frac{1}{3!}(2x)^3+\cdots\right)\left(xy-\frac{(xy)^2}{2}+\frac{(xy)^3}{3}-\cdots\right)$,

using multiplication of series. Hence the $4^{\rm th}$ degree Taylor polynomial for f about the origin is

$$T_4 = xy + 2x^2y + 2x^3y - \frac{1}{2}x^2y^2.$$