Consecuencias observables del equilibrio competitivo

Marcelo Gallardo

2024 - 1

Pontificia Universidad Católica del Perú

marcelo.gallardo@pucp.edu.pe

Basado en las notas de clase del profesor Federico Echenique https://eml.berkeley.edu/~fechenique/lecture_notes/echenique_GE.pdf

1. Digresión sobre el teorema de Afriat

Consideramos a continuación un «data set» $(x^k,p^k)_{k=1,...,K}$ con $x^k\in\mathbb{R}_+^L$ y $p^k\in\mathbb{R}_+^L$, para todo k=1,...,K.

Definición 1. Un «data set» $(x^k, p^k)_{k=1,...,K}$ es «racionalizable» por $u : \mathbb{R}_+^L \to \mathbb{R}$ si para todo $y \in \mathbb{R}_{++}^L$,

$$p^k y \le p^k x^k \implies u(y) \le u(x^k), \ \forall \ k = 1, ..., K.$$

Observación. La definición anterior nos dice que, si y estaba disponible a la hora de comprar x^k , necesariamente $u(y) \leq u(x)$, lo cual sería consistente con el hecho que el «data set» corresponde a las canastas de consumo asociadas a la maximización de la utilidad.

Definición 2. Preferencia revelada. Dado un «data set» $(x^k, p^k)_{k=1,...,K}$, defina una relación binaria \succeq^R sobre \mathbb{R}_+^L por

$$x \succeq^R y \Leftrightarrow \exists k : x = x^k, p^k \cdot x^k \ge p^k \cdot y$$

 $x \succeq^R y \Leftrightarrow \exists k : x = x^k, p^k \cdot x^k > p^k \cdot y$

Observación. Relación binaria \succeq^R : Esta relación indica que un conjunto de bienes x es al menos tan preferido como otro conjunto y bajo la condición de que exista al menos un k donde x sea igual al conjunto elegido x^k y el valor total gastado en x^k sea mayor o igual al valor que se habría gastado en y bajo los mismos precios p^k . Esto muestra que el consumidor, enfrentando los precios p^k , eligió x^k sobre y o gastó al menos tanto en x^k como habría gastado en y. Relación binaria \succ^R : Similar a \succeq^R , pero con una diferencia clave en que el valor total gastado en x^k es estrictamente mayor que el que se habría gastado en y. Esto refleja una preferencia estricta, indicando que x^k fue definitivamente preferido sobre y cuando x fue la elección realizada.

Definición 3. Axioma débil de la preferencia revelada (WARP). Un «data set» satisface el WARP si no existen k, ℓ tales que $x^k \succeq^R x^\ell$ y $x^\ell \succ^R x^k$.

Observación. WARP asegura que si un conjunto de bienes es preferido o visto como igual a otro en una ocasión, entonces no debe haber otra ocasión donde el segundo conjunto sea estrictamente preferido al primero. Este axioma ayuda a mantener una consistencia lógica en la interpretación de las preferencias reveladas a partir de las elecciones observadas.

Definición 4. Un «data set» satisface el Axioma Generalizado de la Preferencia Revelada (GARP) si no existe una secuencia $x^{k_1}, x^{k_2}, ..., x^{k_n}$ tal que

$$x^{k_1} \succeq^R x^{k_2} \succeq^R \cdots \succeq^R x^{k_n} \wedge x^{k_n} \succ^R x^{k_1}.$$

Observación. Si $L \leq 2$, el WARP y el GARP son equivalentes. Si $L \geq 3$, $GARP \implies WARP$ pero no al revés.

Teorema 5. Teorema de Afriat. Considere el set de datos $(x^k, p^k)_{k=1,...,K}$. Los siguientes enunciados son equivalentes:

- El data set es racionalizable por una función de utilidad localmente no saciable.
- 2. La data satisface el GARP.
- 3. Existen números $U^k, \lambda^k > 0$ para k = 1, ..., K tales que

$$U^k \le U^\ell + \lambda^\ell p^\ell (x^k - x^\ell)$$

4. El data set es racionalizable por una función de utilidad estrictamente monótona y cóncava.

Observación. Las CPO proveen en un problema de maximización de la utilidad

$$\Delta u(x)|_{x^{\ell}} = \lambda^{\ell} p^{\ell}.$$

Si la utilidad es cóncava,

$$u(y) - u(x) \le \nabla u(x)(y - x).$$

Así,

$$\underbrace{u(x^k) - u(x^\ell)}_{U^k - U^\ell} \le \nabla \underbrace{u(x^\ell)}_{\lambda^\ell p^\ell} (x^k - x^\ell).$$