Power Consumption Attacks in Wireless Sensor Networks

Micah Thornton Ryan Sligh Bobby Santoski

Computer Science & Engineering, Southern Methodist University, USA, mathornton@smu.edu rsligh@smu.edu rsantoski@smu.edu

CSE 4344: Networks and Distributed Systems
Dallas, Texas
April 29, 2014

Outline of today's talk

- Introduction
 - Topics
 - Motivation
- 2 Methodology
 - Overview
 - Battery Behavior
 - Attack Simulations
- Results and Analysis
 - Simulation Results
 - Mitigation Strategies
- 4 Conclusion
 - Future Work

Outline

- Introduction
 - Topics
 - Motivation
- 2 Methodology
 - Overview
 - Battery Behavior
 - Attack Simulations
- Results and Analysis
 - Simulation Results
 - Mitigation Strategies
- 4 Conclusion
 - Future Work

Wireless Sensor Networks(WSNs)

- A wireless sensor network(WSN) is a network of Sensor Nodes
- Sensor Nodes send and receive wide varieties of data.
- Sensor Nodes generally operate in one of two states:
 - Sleep Mode less power draw, but can't receive and transmit
 - Active Mode more power draw, and can receive and transmit

WSN examples (1) - p.H. and flow

WSN examples (2) - fire detection and prevention

WSN examples (3) - security systems

Attacks on WSN power supplies

- Sensor Nodes are developed in bulk for mass deployment
- Bulk production has robbed WSNs of more robust battery lives
- limited battery lives make sensor nodes easy targets for Power Consumption Attacks
- A Power Consumption Attack drains the battery power of sensor nodes by forcing meaningless active mode time.
- Attackers hope to gain something by compromising nodes:
 - Protocol information for other attacks
 - temporary system downing
 - permanent system downing
 - competitive advantage
- Here we show some of our attack models

Attack Models (1) - standard denial of sleep

Attack Models (2) - inverse denial of sleep

Attack Models (3) - routing power draw

Time Attack Model 3 Attacker Packet flow to and From Arbitrary Network Node Targeted Sensor Node

Problem

How do we defend against a wide range of Power Consumption Attacks?

Outline

- Introduction
 - Topics
 - Motivation
- 2 Methodology
 - Overview
 - Battery Behavior
 - Attack Simulations
- Results and Analysis
 - Simulation Results
 - Mitigation Strategies
- 4 Conclusion
 - Future Work

Overview

- we simulated standard denial of sleep attacks and routing power draw attacks on WSNs
- we first examined different batteries
- we then simply examined the time to compromise a node under various different assumptions

Battery Tests

- The logical conclusion to mitigate the risks of Power
 Consumption Attacks is to use more powerful batteries
- The batteries tested were:
 - Lead-Acid Batteries
 - Alkaline Long-Life Batteries
 - Carbon-Zinc Batteries
 - NiMH Batteries
 - NiCad Batteries
 - Lithium Ion Batteries
- With weights varying from 0.1 mg to 1 mg
- And Packet sizes varying from 2 bits to 1 kb
- We got approximately 700 simulation results from NS3
- packets were sent every 10 ms in this simulation

Attack Simulation

- The attacks were simulated in an environment that allowed user defined:
 - Packet Size (bits)
 - Initial Node Energy (joules)
 - Power To Transmit Messages (Watts)
 - Power To Receive Messages (Watts)
 - speed of Transmission radios (bps)
- Each of these were variate for **55,000** simulations

Outline

- Introduction
 - Topics
 - Motivation
- 2 Methodology
 - Overview
 - Battery Behavior
 - Attack Simulations
- Results and Analysis
 - Simulation Results
 - Mitigation Strategies
- 4 Conclusion
 - Future Work

Battery Analysis(1) - Compromise Statistics

B-Type	TTC(Min)	MTTC	TTC(Max)
Lead Acid	0.2789 s	9.8798 s	27.0307 s
Alkaline Long Life	0.7589 s	27.1017 s	74.1107 s
Carbon-Zinc	0.2489 s	8.7950 s	24.0700 s
NiMH	0.6489 s	23.0336 s	62.9907 s
Nickle-Cadmium	0.2689 s	9.4734 s	25.9207 s
Lithium-lon	0.8689 s	31.1701 s	85.2400 s

- **B-Type** = Battery Acid Type
- TTC(Min) = Minimum Time to Compromise w/ std attack
- MTTC = Mean Time to Compromise w/ std attack
- TTC(Max) = Maximum Time to Compromise w/ std attack
- as expected Lithium Ion Battery is most effective

Battery Analysis(2) - Varied Weights

Lithium Ion Batteries

Comparing Attacks(1) - Compromise Statistics

A-Type	TTC(Min)	MTTC	TTC(Max)
Denial of Sleep	0.02558 s	14.49850 s	208.50587 s
Routing Power Draw	0.02558 s	3.16868 s	104.55439 s

 So a WSN distributor would be wise to fear the routing attack more so than a standard denial of sleep

Comparing Attacks(2) - Linear Regressions

Time to Compromise for certain attacks

Previous Strategies

- Some risk mitigation strategies have already been adopted for use in WSNs:
 - Predefined Transfer Windows
 - Node Reception Memory
 - Jamming Detection Protocols
 - Low Power Wake-up Radio
 - Defined Maximum Path Length
- Many strategies are developed with specific attacks in mind
- Even our proposed strategies have already been deployed

Proposed Strategies

- Because the Routing attack we examined is much more potent examination of routing procedures should be carfully examined
- the possibility of placing nodes so they do not have to route should be considered for small crucial WSNs
- Targeted the root problem of all Power Consumption attacks:
 pre-defined battery life
- Installation of solar panels and other similar power regeneration devices.
- Attacks can still be mounted on the network, but would have to fight a endlessly renewing power source
- This addition could be costly, and distributors would need to shrink the size of their network
- But it is up to the distributor to examine there expected net benefit

Outline

- Introduction
 - Topics
 - Motivation
- 2 Methodology
 - Overview
 - Battery Behavior
 - Attack Simulations
- Results and Analysis
 - Simulation Results
 - Mitigation Strategies
- 4 Conclusion
 - Future Work

Future Work

- Model and test additional attack types
- Do a cost benefit analysis of different types of batteries and alternative power sources
- compare cost benefits of other mitigation strategies

Thanks

Thanks for Listening! Questions?

