Palindrome Pairs

Time Limit 2 seconds Memory Limit 256 megabytes

After learning a lot about space exploration, a little girl named Ana wants to change the subject.

Ana is a girl who loves palindromes (string that can be read the same backwards as forward). She has learned how to check for a given string whether it's a palindrome or not, but soon she grew tired of this problem, so she came up with a more interesting one and she needs your help to solve it:

You are given an array of strings which consist of only small letters of the alphabet. Your task is to find **how many** palindrome pairs are there in the array. A palindrome pair is a pair of strings such that the following condition holds: **at least one** permutation of the concatenation of the two strings is a palindrome. In other words, if you have two strings, let's say "aab" and "abcac", and you concatenate them into "aababcac", we have to check if there exists a permutation of this new string such that it is a palindrome (in this case there exists the permutation "aabccbaa").

Input

The first line contains a positive integer N ($1 \le N \le 100000$), representing the length of the input array.

Eacg of the next N lines contains a string (consisting of lowercase English letters from 'a' to 'z') — an element of the input array.

The total number of characters in the input array will be less than 1000000.

Output

Output one number, representing **how many palindrome pairs** there are in the array.

Sample Input 1	Sample Output 1
3	1
aa	
bb	
cd	

Sample Input 2	Sample Output 2
6	6
aab	
abcac	
dffe	
ed	
aa	
aade	

Note

The first example:

1. $aa ++ bb \longrightarrow abba$.

The second example:

- 1. $aab ++ abcac == aababcac \longrightarrow aabccbaa$
- 2. aab ++ aa == aabaa
- 3. $abcac ++ aa == abcacaa \longrightarrow aacbcaa$
- 4. $dffe ++ ed == dffeed \longrightarrow fdeedf$
- 5. $dffe ++ aade == dffeaade \rightarrow \rightarrow adfaafde$
- 6. $ed ++ aade == edaade \longrightarrow aeddea$