Linear Algebra Q.36

Piyush and Neil

IIT Hyderabad

February 14, 2019

Question 31

Find the equation of the tangent to the circle at the point $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ whose centre is point of intersection of straight lines $\begin{bmatrix} 2 & 1 \end{bmatrix} x = 3$ and $\begin{bmatrix} 1 & -1 \end{bmatrix} x = 1$

Solution

- Let $A=\begin{bmatrix} 2\\1 \end{bmatrix}$ and $B=\begin{bmatrix} 1\\-1 \end{bmatrix}$
- Let O be the solution of Ax=3 and Bx=1 This can be written as $\begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix}$ x = $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$
- Therefore, $O = \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix}^{-1} \begin{bmatrix} 3 \\ 1 \end{bmatrix}$
- O = $\begin{bmatrix} \frac{4}{3} \\ \frac{1}{3} \end{bmatrix}$

Solution

- Given a point P on circle as $P=\begin{bmatrix} 1\\ -1 \end{bmatrix}$ and we have $O=\begin{bmatrix} \frac{4}{3}\\ \frac{1}{2} \end{bmatrix}$
- Let us define matrix T=[O P] = $\begin{bmatrix} \frac{4}{3} & 1 \\ \frac{1}{3} & -1 \end{bmatrix}$
- The direction vector OP is given by D = P-O = $[T][\begin{array}{cc} -1 \\ 1 \end{array}] = [\begin{array}{cc} \frac{4}{3} & 1 \\ \frac{1}{3} & -1 \end{array}][\begin{array}{cc} -1 \\ 1 \end{array}] = [\begin{array}{cc} -\frac{1}{3} \\ -\frac{4}{3} \end{array}] \text{ which is a radial vector.}$

Solution

- The direction vector for tangent line will be the normal vector to radial vector. Let normal vector = N
- By definition, $N^TD = 0$
- Therefore, $N = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} [D] = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{3} \\ -\frac{4}{3} \end{bmatrix} = \begin{bmatrix} -\frac{4}{3} \\ \frac{1}{3} \end{bmatrix}$
- Tangent line : x = P + (t)N
- $x = \begin{bmatrix} 1 \\ -1 \end{bmatrix} + (t) \begin{bmatrix} -\frac{4}{3} \\ \frac{1}{3} \end{bmatrix}$

Figure

