Containerizing Neural Network Apps for Medical Compute

Sprint 5

Mentors: Rudolph Pienaar, Sandip Samal

Group Members: Ken Krebs, Brian Mahabir, Tingyi Zhang, Cagri Yoruk, Xiaoyu An

Burn down chart

Total Project Deliverables: Where we are

- 2 working pipelines for two different types of classifiers.
- 2 phases of each pipeline
- Training :
 - Train models using two different types of classifiers (one classifier to identify multiple parts of the brain, the other to utilize multiple classifiers to identify specific parts of the brain)
- Infererence :
 - Use models to infer data about brain structure volume and output text report.
- MOC Deployment

This Sprint Goals

- Finish workflows with text report plugin for our inference pipeline
- Fix authentication and most importantly persistent volume error with pfioh and pman on MOC
- Testing our workflow on the UI

Our Training Pipeline: Done!

multiple labels Training .mgz **Images** Patient Directory Plugin Plugin mask aparc. mgz pl-mgz2labels pl-mriunet_ser train Explored two types of classifiers: The whole brain Trained A specific region of the brain Model

An automation tool for training

Training Result

Heatmap Result

Prediction Ground Truth Heatmap

Low

Our Inference Pipeline

This sprint

Our plugin: convert images to text report

Segmented images 256 images with size of (256, 256)

Numpy array (256, 256)

Volume text report

Brain Segmentation Report		
Index	Label Name	Volume (in cc)
1	Unknown	15251.0
2	Left-Cerebral-White-Matter	286.7
3	Left-Lateral-Ventricle	6.1
4	Left-Inf-Lat-Vent	0.3
5	Left-Cerebellum-White-Matter	16.7
6	Left-Cerebellum-Cortex	71.2
7	Left-Thalamus-Proper*	9.4

Each pixel value is corresponding to the index of a label

MOC issues for Sprint 5

Upon testing using some lightweight plugins pman gave a persistent volume error

Due to the docker image pull limit established on Nov 20 we only had a few shots to debug our problem

Apparently MOC doesn't support 5Gi persistent storage. They only have 2Gi, 10Gi, 20Gi storage options.

MOC Demonstration

Demo

a

Testing the Workflow on ChRIS UI

Goals:

- Make sure all inputs and outputs of each plugin in the workflow work seamlessly together
- Fix issues if any with inputs and outputs of the plugin

Progress

Test Training Pipeline #1 (One classifier for every part of the brain)

• Test Training Pipeline #2 (Many classifiers for different parts of the brain)

Test Inference Pipeline #1

Test Inference Pipeline #2

Testing on the UI

- Process
 - Instantiate an image of the ChRIS backend
 - Deploy an image of the ChRIS UI
- Hurdles:
 - File upload of patient data methods:
 - Direct upload option to Feed Synthesis
 - Pushing files to swift storage, creating a feed from the UI
 - Pushing files to swift container directly, running instance of pl-dircopy from the backend

Current Project Status

COMPLETE

- 2 working pipelines for two different types of classifiers (MVP)
 - Designed plugins for separating brain region labels, training multiple regions, text reports of volumes of regions, tools to differentiate
- Deployment of Pfioh and Pman and tested with a lightweight plugin

Extra TO-DO

- Test the entirety of the workflow on the UI
- Test inference workflow on MOC

Questions?