Math 1510 Tutorial #4

I. Find the derivative of the function (you don't need to simplify your answer):

(a)
$$y(x) = x^5 - 7x^2 + 10x + 9$$
,

(b)
$$f(t) = \sqrt[4]{t} + \sqrt[3]{t}$$

(b)
$$f(t) = \sqrt[4]{t} + \sqrt[3]{t}$$
,
(c) $f(x) = \frac{5x^3 - 3\sqrt{x} + 1}{2x\sqrt{x}}$,
(d) $g(x) = \frac{3x - 1}{1 + x^2}$,

(d)
$$g(x) = \frac{3x-1}{1+x^2}$$

(e)
$$h(s) = (s^5 - 3s^{\pi})(s^2 - 2s - 1).$$

II. Calculate the derivatives indicated:

(a)
$$g''(1)$$
 for $g(x) = \frac{x}{x+1}$,
(b) y''' for $y = x^{-9/5}$.

(b)
$$y'''$$
 for $y = x^{-9/5}$.

III. A particle is moving along the x-axis so that its position at time $t \geq 0$ seconds is $x(t) = 10t - 5t^2$ meters.

- (a) What are the velocity and the acceleration of the particle at any time?
- (b) What is the largest x coordinate the particle ever reaches? At what time?

IV. Find $\frac{dy}{dx}$ (you don't need to simplify your answer):

(a)
$$y = \sqrt{x^2 + \sqrt{x}}$$
,

(b)
$$y = (\frac{2x-1}{\sqrt{1-x}} + x)^{30}$$
.