Introduction

Boston University CS 506 - Lance Galletti

Data Science

- Collection of methods and tools that allow for extracting knowledge from data
- Cross-disciplinary:
 - Math
 - Statistics
 - Computer Science
 - Domain Expertise
- Know what you don't know!

In a class just like this one, imagine playing the following game...

I announce "(2, 4, 6) follows the rule".

Here are the examples submitted by one of the participants:

- (2, 4, 3) -> NO
- (6, 8, 10) -> YES
- (1, 3, 5) -> YES

After which, they proceed to write down their hypothesized rule. Would you have wanted to try more examples? If so, which and for what reason?

Let's take a poll:

```
A. (100, 102, 104)
```

- B. (5, 7, 9)
- C. (1, 2, 3)

Challenges of Data Science:

- A set of examples may not always be representative of the underlying rule
- There may be infinitely many rules that match the examples provided
- Rules and/or examples may change over time

So Data Science is VERY DIFFICULT!!! All models are wrong but some are useful

Positive Examples VS Negative Examples

assuming the hypothesis h is (x, x+2, x+4) which type of examples are the following:

- (2, 4, 3)
- (6, 8, 10)
- **•** (1, 3, 5)

- Both positive and negative examples can falsify a hypothesis
- Tendency to choose positive ones over negative ones

Let's take a poll:

```
A. (100, 102, 104)
```

- B. (5, 7, 9)
- C. (1, 2, 3)

The rule was (a < b < c).

If you only tried positive examples of either (x, x + 2, x+4) or (x, 2x 3x) you would only get confirmation.

For reference, this exercise was first introduced by Wason P.C in 1960 as part of a journal in experimental psychology.

i've heard the rhetoric from both sides... time to do my own research on the real truth

Data Science Workflow (simplified)

Types of Data

Types of Data - Records

m-dimensional points / vectors

Example: (name, age, balance) -> ("John", 20, 100)

Types of Data - Records

m-dimensional points / vectors

Example: (name, age, balance) -> ("John", 20, 100)

age

Types of Data - Graphs

Nodes connected by edges

Example:

Types of Data - Images

Types of Data - Images

Types of Data - Images

Types of Data - Text

Types of Data - Corpus of Documents

	w ₁	W_2	 W _m
D ₁	1	0	 1
D ₂	0	0	 0
D _n	1	1	1

Types of Learning

- Unsupervised Learning
- Supervised Learning

Goal: Find interesting structure in the data

Goal: Find interesting structure in the data

This type of unsupervised learning is referred to as clustering

What are some linear algebraic properties of the matrix of data? What does that tell me about the data?

 $\begin{cases} \begin{pmatrix} x_{11} & \dots & x_{1j} & \dots & x_{1m} \\ \vdots & \ddots & \vdots & & \vdots \\ x_{i1} & \dots & x_{ij} & \dots & x_{im} \\ \vdots & & \vdots & \ddots & \vdots \\ x_{n1} & \dots & x_{nj} & \dots & x_{nm} \end{pmatrix}$ **m** features

Dataset: Collection of Articles

Question: Are these articles covering the same topics?

Unsupervised Learning

Goals:

- Better understand / describe the data
 - a. Data exploration / visualization step
 - b. Find anomalies
 - Recommender Systems (similar users might be recommended the same things, emails similar to those marked as spam could be spam etc.)
- Extract Features
- 3. Fill in gaps in data
 - a. Data preprocessing step
- 4. Make learning algorithms faster
 - a. Get rid of noise

cricket chirps / min	temperature
10	40
5	37
17	53
55	103
40	78

cricket chirps / min	temperature
10	40
5	37
17	53
55	103
40	78

cricket chirps / min	temperature
10	40
5	37
17	53
55	103
40	78

cricket chirps / min	temperature
10	40
5	37
17	53
55	103
40	78

cricket chirps / min	temperature
10	40
5	37
17	53
55	103
40	78

cricket chirps / min	temperature
10	40
5	37
17	53
55	103
40	78

cricket chirps / min	temperature
10	40
5	37
17	53
55	103
40	78

This type of supervised learning is referred to as regression

age	tumor size	malignant
20	12	0
22	15	1
47	20	1
59	2	1

age	tumor size	malignant
20	12	0
22	15	1
47	20	1
59	2	1

age	tumor size	malignant
20	12	0
22	15	1
47	20	1
59	2	1

age	tumor size	malignant
20	12	0
22	15	1
47	20	1
59	2	1

This type of supervised learning is referred to as classification