Richard Haburcak

Joint with Asher Auel and Andreas Leopold Knutsen

The Ohio State University

Georgia Algebraic Geometry Symposium March 2025

Classical Brill-Noether theory

Let C be a smooth algebraic curve. Brill–Noether theory studies the maps $C\to \mathbb{P}^r.$

Such a map is given by a $g_d^r\!\!:$ a pair (A,V) of

- a line bundle $A \in \operatorname{Pic}^d(C)$ with $h^0(C,A) \ge r+1$, and
- a subspace $V \subseteq H^0(C,A)$ of dimension r+1.

Question (Brill-Noether Theory)

What g_d^r 's does C have?

Classical Brill-Noether theory

Let C be a smooth algebraic curve. Brill–Noether theory studies the maps $C\to \mathbb{P}^r.$

Such a map is given by a g_d^r : a pair (A,V) of

- a line bundle $A \in \operatorname{Pic}^d(C)$ with $h^0(C,A) \ge r+1$, and
- a subspace $V \subseteq H^0(C,A)$ of dimension r+1.

Question (Brill-Noether Theory)

What g_d^r 's does C have?

Brill-Noether loci

Theorem (Gieseker, Griffiths-Harris, Lazarsfeld)

A general curve $C \in \mathcal{M}_g$ admits a g^r_d if and only if

$$\rho(g, r, d) := g - (r+1)(g - d + r) \ge 0$$

Thus when $\rho(g,r,d) < 0$, the Brill–Noether locus

 $\mathcal{M}_{g,d}^r := \{C \in \mathcal{M}_g \text{ admitting a } g_d^r\}$ is a subvariety of \mathcal{M}_g .

Question (Refined Brill-Noether theory)

For a "general" curve in $\mathcal{M}_{g,d}^r$, what g_e^s 's does it have?

Brill-Noether loci

Theorem (Gieseker, Griffiths-Harris, Lazarsfeld)

A general curve $C \in \mathcal{M}_g$ admits a g^r_d if and only if

$$\rho(g, r, d) := g - (r+1)(g - d + r) \ge 0$$

Thus when $\rho(g,r,d) < 0$, the Brill–Noether locus

 $\mathcal{M}^r_{g,d} \coloneqq \{C \in \mathcal{M}_g \text{ admitting a } g^r_d\} \text{ is a subvariety of } \mathcal{M}_g.$

Question (Refined Brill-Noether theory)

For a "general" curve in $\mathcal{M}^r_{q,d}$, what g^s_e 's does it have?

Refined Brill–Noether theory

Question (Refined Brill-Noether theory)

What g_e^s 's does a "general" curve in $\mathcal{M}_{a.d}^r$ admit?

When r=1, $\mathcal{M}_{a,d}^1$ is irreducible. For $r\geq 2$, $\mathcal{M}_{a,d}^r$ can have multiple components!

- $\mathcal{M}_{q,d}^r \subset \mathcal{M}_{q,d+1}^r$ by adding a basepoint
- $\mathcal{M}_{a,d}^r \subset \mathcal{M}_{a,d-1}^{r-1}$ by subtracting a non-basepoint

Refined Brill-Noether theory

Question (Refined Brill–Noether theory)

What g_e^s 's does a "general" curve in $\mathcal{M}_{a.d}^r$ admit?

When r=1, $\mathcal{M}_{a,d}^1$ is irreducible. For $r\geq 2$, $\mathcal{M}_{a,d}^r$ can have multiple components!

We can get a coarse picture of a refined Brill-Noether theory by understanding the relative positions of Brill-Noether loci.

- $\mathcal{M}_{ad}^r \subset \mathcal{M}_{ad+1}^r$ by adding a basepoint
- $\mathcal{M}_{a,d}^r \subset \mathcal{M}_{a,d-1}^{r-1}$ by subtracting a non-basepoint

GAGS 2025

Refined Brill-Noether theory

Question (Refined Brill-Noether theory)

What g_e^s 's does a "general" curve in $\mathcal{M}_{a.d}^r$ admit?

When r=1, $\mathcal{M}_{a,d}^1$ is irreducible. For $r\geq 2$, $\mathcal{M}_{a,d}^r$ can have multiple components!

We can get a coarse picture of a refined Brill-Noether theory by understanding the relative positions of Brill-Noether loci.

We have trivial containments

- $\mathcal{M}_{a,d}^r \subset \mathcal{M}_{a,d+1}^r$ by adding a basepoint
- $\mathcal{M}_{a,d}^r \subset \mathcal{M}_{a,d-1}^{r-1}$ by subtracting a non-basepoint

In genus 7, 8, 9, there are non-trivial containments: $\mathcal{M}^2_{7.6} \subset \mathcal{M}^1_{7.4}$, $\mathcal{M}^1_{8.4} \subset \mathcal{M}^2_{8.7}$, $\mathcal{M}^2_{9.7} \subset \mathcal{M}^1_{9.5}$. [Larson, Mukai]

- $g \le 20, 22, 23$ [Farkas, Lelli-Chiesa, Auel-H., Auel-H.-Larson]
- g+1 or $g+2 \in \{\operatorname{lcm}(1,\ldots,n) \mid n \geq 4\}$ (all expected maximal BN

In genus 7,8,9, there are non-trivial containments: $\mathcal{M}^2_{7,6} \subset \mathcal{M}^1_{7,4}$, $\mathcal{M}^1_{8,4} \subset \mathcal{M}^2_{8,7}$, $\mathcal{M}^2_{9,7} \subset \mathcal{M}^1_{9,5}$. [Larson, Mukai]

Conjecture (Auel-H.)

For $g \ge 3$, except g = 7, 8, 9, the expected maximal Brill–Noether loci are maximal.

That is, for every pair of expected maximal loci there is some curve $C\in\mathcal{M}^r_{g,d}$ but $C\notin\mathcal{M}^s_{g,e}$.

The conjecture was known in many cases:

- $g \le 20$, 22, 23 [Farkas, Lelli-Chiesa, Auel-H., Auel-H.-Larson]
- g+1 or $g+2 \in \{\operatorname{lcm}(1,\ldots,n) \mid n \geq 4\}$ (all expected maximal BN loci have same $\rho \in \{-1,-2\}$) [Eisenbud–Harris, Choi–Kim–Kim]

In genus 7, 8, 9, there are non-trivial containments:

$$\mathcal{M}^2_{7,6}\subset\mathcal{M}^1_{7,4},\ \mathcal{M}^1_{8,4}\subset\mathcal{M}^2_{8,7},\ \mathcal{M}^2_{9,7}\subset\mathcal{M}^1_{9,5}.\ [\mathsf{Larson},\ \mathsf{Mukai}]$$

Conjecture (Auel–H.)

For q > 3, except q = 7, 8, 9, the expected maximal Brill-Noether loci are maximal.

That is, for every pair of expected maximal loci there is some curve $C \in \mathcal{M}_{a,d}^r$ but $C \notin \mathcal{M}_{a,e}^s$.

The conjecture was known in many cases:

- $g \le 20, 22, 23$ [Farkas, Lelli-Chiesa, Auel-H., Auel-H.-Larson]
- ullet q+1 or $g+2 \in \{\operatorname{lcm}(1,\ldots,n) \mid n \geq 4\}$ (all expected maximal BN loci have same $\rho \in \{-1, -2\}$) [Eisenbud–Harris, Choi–Kim–Kim]

Want to show a non-containment $\mathcal{M}_{g,d}^r \nsubseteq \mathcal{M}_{g,e}^s$.

Let S be a K3 surface with $\mathrm{Pic}(S)=\mathbb{Z}H\oplus\mathbb{Z}L$, where $H^2=2g-2$, H.L=d, $L^2=2r-2$. Then for smooth irreducible $C\in |H|$, $L|_C$ is a g^r_d .

If $C \in |H|$ has a g_e^s , (A,V), consider the bundle $E_{C,A}$

$$0 \to E_{C,A}^{\vee} \to V \otimes \mathcal{O}_S \stackrel{ev}{\to} A \to 0.$$

The Lazarsfeld–Mukai bundle $E_{C,A}$ is closely related to the g_e^s .

- $c_1(E_{C,A}) = H$, $c_2(E_{C,A}) = e$, $rank(E_{C,A}) = s + 1$
- If $\rho(g, s, e) < 0$, there is $\varphi \in \operatorname{End}(E_{C,A})$ that drops rank everywhere, giving

$$0 \to \operatorname{im} \varphi \to E_{C,A} \to \operatorname{coker} \varphi \to 0$$

Want to show a non-containment $\mathcal{M}^r_{g,d} \nsubseteq \mathcal{M}^s_{g,e}.$

Let S be a K3 surface with $\mathrm{Pic}(S)=\mathbb{Z}H\oplus\mathbb{Z}L$, where $H^2=2g-2$, H.L=d, $L^2=2r-2$. Then for smooth irreducible $C\in|H|$, $L|_C$ is a g^r_d .

If $C \in |H|$ has a g_e^s , (A, V), consider the bundle $E_{C,A}$:

$$0 \to E_{C,A}^{\vee} \to V \otimes \mathcal{O}_S \stackrel{ev}{\to} A \to 0.$$

The Lazarsfeld–Mukai bundle $E_{C,A}$ is closely related to the g_e^s .

- $c_1(E_{C,A}) = H$, $c_2(E_{C,A}) = e$, $rank(E_{C,A}) = s + 1$
- If $\rho(g,s,e)<0$, there is $\varphi\in\mathrm{End}(E_{C,A})$ that drops rank everywhere, giving

$$0 \to \operatorname{im} \varphi \to E_{C,A} \to \operatorname{coker} \varphi \to 0$$

Want to show a non-containment $\mathcal{M}^r_{g,d} \nsubseteq \mathcal{M}^s_{g,e}$.

Let S be a K3 surface with $\mathrm{Pic}(S)=\mathbb{Z}H\oplus\mathbb{Z}L$, where $H^2=2g-2$, H.L=d, $L^2=2r-2$. Then for smooth irreducible $C\in|H|$, $L|_C$ is a g^r_d .

If $C \in |H|$ has a g_e^s , (A, V), consider the bundle $E_{C,A}$:

$$0 \to E_{C,A}^{\vee} \to V \otimes \mathcal{O}_S \stackrel{ev}{\to} A \to 0.$$

The Lazarsfeld–Mukai bundle $E_{C,A}$ is closely related to the g_e^s .

- $c_1(E_{C,A}) = H$, $c_2(E_{C,A}) = e$, $rank(E_{C,A}) = s + 1$
- If $\rho(g,s,e)<0$, there is $\varphi\in \mathrm{End}(E_{C,A})$ that drops rank everywhere, giving

$$0 \to \operatorname{im} \varphi \to E_{C,A} \to \operatorname{coker} \varphi \to 0$$

When $\mathcal{M}_{g,d}^r$ is expected maximal,

$$0 \to \operatorname{im} \varphi \to E_{C,A} \to \operatorname{coker} \varphi \to 0$$

is very constrained:

$$c_1(E_{C,A}) = H = c_1(\operatorname{im}\varphi) + c_1(\operatorname{coker}\varphi) = (H - L) + L$$

Lemma (Slogan: g^r_d on H gives $g^{r_1}_{d_1}$ on L and $g^{r_2}_{d_2}$ on H-L)

For $\mathcal{M}^r_{g,d}$ expected maximal, and S a K3 as before, $C \in |H|$ carries a g^s_e with $\rho(g,s,e)<0$ if and only if there are integers r_1 , r_2 , d_1 , d_2 such that

- $r_1 + r_2 = s 1$
- $d_1 + d_2 \le e d + 2r 2$
- $0 \le \rho(r, r_1, d_1) < r$
- $0 \le \rho(g-d+r-1, r_2, d_2) < g-d+r-1$

When $\mathcal{M}^s_{g,e}$ is expected maximal, these constraints cannot be satisfied.

When $\mathcal{M}_{g,d}^r$ is expected maximal,

$$0 \to \operatorname{im} \varphi \to E_{C,A} \to \operatorname{coker} \varphi \to 0$$

is very constrained:

$$c_1(E_{C,A}) = H = c_1(\operatorname{im}\varphi) + c_1(\operatorname{coker}\varphi) = (H - L) + L$$

Lemma (Slogan: g^r_d on H gives $g^{r_1}_{d_1}$ on L and $g^{r_2}_{d_2}$ on H-L)

For $\mathcal{M}^r_{g,d}$ expected maximal, and S a K3 as before, $C \in |H|$ carries a g^s_e with $\rho(g,s,e)<0$ if and only if there are integers r_1 , r_2 , d_1 , d_2 such that

- $r_1 + r_2 = s 1$
- $d_1 + d_2 \le e d + 2r 2$
- $0 \le \rho(r, r_1, d_1) < r$
- $0 \le \rho(g-d+r-1, r_2, d_2) < g-d+r-1$

When $\mathcal{M}^s_{g,e}$ is expected maximal, these constraints cannot be satisfied.

When $\mathcal{M}^r_{g,d}$ is expected maximal,

$$0 \to \operatorname{im} \varphi \to E_{C,A} \to \operatorname{coker} \varphi \to 0$$

is very constrained:

$$c_1(E_{C,A}) = H = c_1(\operatorname{im}\varphi) + c_1(\operatorname{coker}\varphi) = (H - L) + L$$

Lemma (Slogan: g^r_d on H gives $g^{r_1}_{d_1}$ on L and $g^{r_2}_{d_2}$ on H-L)

For $\mathcal{M}^r_{g,d}$ expected maximal, and S a K3 as before, $C \in |H|$ carries a g^s_e with $\rho(g,s,e)<0$ if and only if there are integers r_1 , r_2 , d_1 , d_2 such that

- $r_1 + r_2 = s 1$
- $d_1 + d_2 \le e d + 2r 2$
- $0 \le \rho(r, r_1, d_1) < r$
- $0 \le \rho(g-d+r-1, r_2, d_2) < g-d+r-1$

When $\mathcal{M}^s_{g,e}$ is expected maximal, these constraints cannot be satisfied.

Theorem (Auel-H.-Knutsen)

For $g \geq 3$ and $g \neq 7, 8, 9$, the expected maximal Brill–Noether loci have a component where a general curve admits no further Brill–Noether special divisors.

Questions

- What are the relative positions of Brill-Noether loci in general?
- What is the geometry of curves in given components of Brill-Noether loci?

Thank You!

Questions?