CONTROL Y OPERACIÓN DE UN PROTOTIPO DE UNA PRÓTESIS DE MANO BIOMECÁNICA POR MEDIO DE SEÑALES DE ELECTROMIOGRAFÍA

Contreras Ordoñez Estefania- lcontreraso@unbosque.edu.co Garzón Salamanca Heidy- hgarzons@unbosque.edu.co Hincapié Riaño Tatiana- thincapie@unbosque.edu.co Tinoco Gomez Nataly- jtinoco@unbosque.edu.co Universidad el Bosque- Bioingeniería- VI semestre

Abstract- The present document evidences the design and construction of a mechanical hand which performs the flexion and extension movements of the phalanges of the fingers of the articulated mechanical hand by means of the transduction of the movement of 3 servomotors and the signal of electromyography using the signals of 4 articular movements pronation, supination, flexion and extension, in addition to taking measures of the force exerted by the fingers of the hand

Resumen- En el presente documento se evidencia el diseño v construcción de una mecánica la cual realiza movimientos de flexión y de extensión de las falanges de los dedos de la mano mecánica articulada por medio de la transducción del movimiento de 3 servomotores y de la señal de la electromiografía usando la señales de 4 movimientos articulares pronación. supinación, flexión y extensión , además de tomar medidas de la fuerza ejercida por los dedos de la mano.

Palabras clave- Mano, articulaciones, fuerzas, movimiento.

1. Evidencia de la mano ya construida.

Figura 1 Mano agarre circular con tres dedos

Figura 2 Mano agarre de pinza

<u>2. Caracterización de los sensores y</u> transductores.

I. INTRODUCCIÓN

Movimiento de la mano por Servomotores:

Con el objetivo de darle movimiento libre a la mano, el diseño de la misma se desarrollo para que cada uno de los dedos de la mano contará con un servomotor para su movimiento, de tal manera que en conjunto se

• Caracterización del servomotor.

MICRO SERVO SG90

Figura 3 MICRO SERVO SEG 90

Tabla I Características del Servomotor [1]

Tabla I Caracteristicas dei Servomotor [1]				
Peso	9g			
Dimension	22,2x11,8x31mm aprox			
Par torsión	1.8 kgf *cm			
Velocidad de Funcionamiento	0.1s/60°			
Voltaje de Funcionamiento	4.8V (~5V)			
Rango de temperatura	0°C- 55°C			
Ángulo de rotación	180°			

Para la caracterización del servomotor se hallaron los valores de lectura del PWM de la posición en grados para el motor, con el fin de ubicar la posición correcta para cada uno de los ángulos de giro (Tabla II).

Posición del servomotor	0°	30°	45°	60°	90°	135°	180°
Lectura de posición	540	820	970	1060	1370	1820	2260

Tabla II. Relación de posiciones para los ángulos del servomotor.

Posteriormente, se observaron los ángulos para cada una de las articulaciones del dedo índice y pulgar, a diferentes posiciones del servomotor (Tablas III y IV), con el fin de encontrar la posición adecuada para los movimientos requeridos.

Posiciones dedo índice					
Posición	Articulación	Articulación	Articulación		
servomotor	Proximal	Medial	Distal		
0°	90°	90°	90°		
30°	90°	110°	90°		
45°	90°	135°	90°		
60°	90°	100°	90°		
90°	90°	180°	90°		
135°	90°	180°	135°		
180°	90°	180°	180°		

Tabla III. Ángulos de las articulaciones con respecto a una posición establecida en el servomotor. Dedo índice.

Posiciones dedo Pulgar				
Posición	Articulación	Articulación		
servomotor	Proximal	Distal		
0°	90°	90°		
30°	110°	110°		
45°	135°	135°		
60°	100°	100°		
90°	90° 180°			
135°	180°	180°		
180°	180°	180°		

Tabla IV. Ángulos de las articulaciones con respecto a una posición establecida en el servomotor. Dedo pulgar.

De acuerdo a los resultados anteriores, se esperan unos ángulos de posición especificos para cada una de las articulaciones involucradas en los movimientos a realizar. Las posiciones son las siguientes:

Movimiento de Pinza bidigital					
	Posición Articulación Articulación Articula				
	servomotor	Proximal	Medial	Distal	
Dedo índice	90°	90°	100°	180°	
Dedo pulgar	120°	90°	x	120°	

Tabla V. Ángulos del motor y las falanges involucradas en el movimiento de pinza bidigital.

Movimiento de Presa palmar					
	Posición	Articulación	Articulación	Articulación	
	servomotor	Proximal	Medial	Distal	
Dedo índice	60°	120°	130°	150°	
Dedo nular	60°	120°	130°	150°	
Dedo pulgar	110°	100°	x	130°	

Tabla VI. Ángulos del motor y las falanges involucradas en el movimiento de presa palmar.

• Caracterización de la galga

SENSOR FSR 402

Este dispositivo es un sensor de fuerza resistivo, conformado por una película gruesa de polímero (PTF) robusto que presenta una disminución en la resistencia con el aumento de la fuerza aplicada. [2]

Figura 4 SENSOR FSR 402

Tabla VII Características del sensor FSR402 [2]

_	
Rango de Sensibilidad de Fuerza *	0,2N -20N
Histéresis	+ 10% Promedio (RF + - RF -) / RF +
Tiempo de subida del dispositivo	< 3 microsegundos
Área activa	Ø 12.70mm
Espesor nominal	0.46mm
Cambio de recorrido	0.15mm
Temperatura de f	funcionamiento
Frío: -40°C después de 1 hora	5% de cambio de resistencia promedio
Caliente: + 85°C después de 1 hora	-15% de cambio de resistencia promedio
Caliente Húmedo: + 85°C 95RH después de 1 hora	+ 10% de cambio de resistencia promedio

Figura 5 Curva de calibración ideal. [2]

para caracterizar la galga y de acuerdo a la curva de calibración del sensor se utilizó una resistencia de medición de 3K para el acondicionamiento del sensor , la cual tiene un comportamiento lineal entre 0 y 250g qué es el rango que vamos a medir. La galga fue ubicada en la palma de la mano de tal manera que al flexionar el dedo índice este hiciera presión sobre ellas.

los datos obtenidos se pueden observar en la tabla VIII, donde a través de arduino se obtiene el peso sobre la galga, la fuerza en Newton y el voltaje de salida. posterior a esto se grafica voltaje de salida con respecto a peso como se puede ver en la Figura 6. se calculó la línea de tendencia logarítmica obteniendo el Vout teórico. Finalmente se obtuvo un error relativo porcentual de 5%

NEWTON	PESO (g)	Vout (mV)	Vout teorico (mV)
0,0981	10	0	9
0,25506	26	300	318
0,31392	32	453	385
0,56898	58	605	577
0,81423	83	667	693
0,95157	97	726	743
1,21644	124	785	823
1,34397	137	824	855
1,52055	155	862	895
1,68732	172	895	929
1,88352	192	927	964
2,01105	205	998	985
2,13858	218	1053	1005
2,2563	230	1109	1023

Tabla VIII. Datos obtenidos de arduino de la lectura de la galga

Figura 6 Gráfica de linealización de la galga.

 Caracterización del sensor de electromiografía

MyoWare MUSCLE SENSOR

Este sensor mide, filtra, rectifica y amplifica la actividad eléctrica de los músculos los cuales producen una señal analogica la cual es facilmente leida posteriormente por un microcontrolador [3].

Figura 7 MyoWare MUSCLE SENSOR.

Tabla IX Características del sensor MyoWare [3] [4]

Dimensiones	2.1" x 0,8"
Voltaje de operación	2.9 V - 5.7 V
Voltaje análogo	0 V - +Vs
Potenciómetro de ganancia ajustable	0,01 Ω - 100kΩ

Vs señal EMG	0 V - Vs 0 V - Vs
Impedancia de entrada	110 GΩ
Corriente suplementaria	9mA - 14mA
CMRR	110
Voltaje de polarización	1pA

3. Adquisición de las señales biológicas (o EMG o voz)

Se adquirió la señal de EMG mediante el sensor de músculo MyoWare ubicado en el bíceps (figura 8), esta se presenta en una interfaz gráfica en matlab (GUI) como se ve en la figura 9, en esta se puede observar el plano donde se va a graficar la señal de EMG (eje x, tiempo y eje y, Voltaje), también cuenta con 4 botones: *START*, para comenzar la comunicación serial con Arduino y graficar la adquisición de la señal de electromiografía; *SAVE*, para guardar los datos de la señal adquirida en un txt; *CLEAN*, para que se borre del plano la gráfica de la adquisición y *CLOSE*, para cerrar la interfaz gráfica y terminar la comunicación serial con Arduino.

Figura 8. Ubicación del sensor de músculo [4]

Figura 9. Interfaz gráfica de la adquisición de la señal (GUI).

Se adquirieron señales de dos tipos de movimiento, el primero es el movimiento de flexión y extensión del codo y el segundo de supinación y pronación.

Movimiento flexión-extensión del codo

Este movimiento se realiza como se ve en la figura 10, en la flexión participan los músculos agonistas: bíceps braquial, braquial anterior y supinador largo; en la extensión, participa el músculo agonista: tríceps braquial.[5]

Figura 10. Movimiento de flexión y extensión [6]

Se tomaron varias señales, en este caso la figura 11 muestra la señal adquirida tras realizar varias repeticiones del movimiento anteriormente descrito, cabe resaltar que se hizo el mismo movimiento, algunas veces más rápido, otras más lento, más fuerte, etc.

Figura 11 Señal adquirida tras realizar el primer movimiento

Movimiento supinación-pronación

Este movimiento se realiza como se muestra en la figura 12, en este tipo de movimiento intervienen los músculos supinadores y pronadores dentro de los cuales se encuentran: bíceps braquial, supinador corto, pronador cuadrado y pronador redondo. [5]

Figura 12 Movimiento de pronación y supinación [7]

Se tomaron varias señales, en este caso la figura 13 muestra la señal adquirida tras realizar varias repeticiones del movimiento anteriormente descrito.

Figura 13. Señal adquirida tras realizar el segundo movimiento

4. Analizar componentes frecuenciales y correlaciones en las señales

Para poder analizar los componentes frecuenciales de la señal EMG y de correlaciones en las señales, se optó por realizar 4 adquisiciones, dos para el primer movimiento y otras dos para el segundo. Tras obtener el txt de la señal. se realizó un programa capaz de identificar el pico más alto y el más pequeño, para así saber los rangos en los que se hizo el movimiento más fuerte y el menos. Además se encontró la transformada de Fourier de cada una, identificando la frecuencia en la que se encontró la potencial más grande (ver figura 14).

Figura 14. Transformada de fourier de la primera señal del movimiento de flexión y extensión.

Tabla X. Características de las señales del primer movimiento

Primer movimiento (flexión-extensión)					
	Señal 1				
Voltaje maximo Voltaje minimo Potencia maxima Frecuencia de las potencia (Hz)					
4,7654	0,4741	0,4768	47		
	Señal 2				
Voltaje maximo	Voltaje minimo	Potencia maxima	Frecuencia de las potencia (Hz)		
4,7762	0,6364	0,3381	66		

Tabla XI. Características de las señales del segundo movimiento

Segundo movimiento (Supinación-pronación)			
Señal 1			
Voltaje maximo	Voltaje minimo	Potencia maxima	Frecuencia de las potencia (Hz)
1,7479	0,8504	0,0284	22
Señal 2			
Voltaje maximo	Voltaje minimo	Potencia maxima	Frecuencia de las potencia (Hz)
3,7439	1,6667	0,1556	73

REFERENCIAS

- [1] SG90 9 g Micro Servo Data Sheet, [En línea], obtenido de:
- http://akizukidenshi.com/download/ds/towerpro/SG90.pdf
- [2] FSR ® 400 Series Data Sheet, [En línea], obtenido de:
- http://interlinkelectronics.com/datasheets/ Datasheet_FSR.pdf
- [3]P. Company, "Pololu MyoWare Muscle Sensor", *Pololu.com*, 2017.
- [Online]. Available:
- https://www.pololu.com/product/2732.
- [4]A. Technologies, "3-lead Muscle /
- Electromyography Sensor for
- Microcontroller Applications",
- MyoWare™ Muscle Sensor (AT-04-001) DATASHEET, 2015.
- [5]Centro Nacional de Información de
- Ciencias Médicas, «Infomed
- Especialidades,» © 1999-2017 -
- Webmaster Infomed , [En línea]. Available:
- http://www.sld.cu/sitios/rehabilitacion-
- bio/temas.php?idv=18660. [Último
- acceso: 04 10 2017].
- [6]Bacteria-Nutritiva, [En línea].
- Available:
- http://www.bacterianutritiva.es/biomecan
- ica-principiantes/. [Último acceso: 04 10
- 2017].

ANEXO 1. Diagrama de flujo de la adquisición de la señal

