

Prof. Anis Koubaa

TF Package in ROS

LEARNING OUTCOMES

- In this section, you will:
 - Understand the importance of the TF package
 - Manipulate frames in ROS
 - Perform transformations using tf package

WHAT IS TF?

- ▶ TF stands for transformation library in ROS
- It performs computation for transformations between frames.
- It allows to find the pose of any object in any frame using transformations
- A robot is a collection of frames attached to its different joints

HOW A ROBOT LOOKS LIKE?

HOW A ROBOT LOOKS LIKE?

URDF: ROBOT DESCRIPTION LANGUAGE.


```
<?xml version="1.0" ?>
    <robot name="turtlebot3_burger" xmlns:xacro="http://ros.org/wiki/xacro">
       <xacro:include filename="$(find turtlebot3_description)/urdf/common_properties.xacro"/>
       <xacro:include filename="$(find turtlebot3_description)/urdf/turtlebot3_burger.gazebo.xacro"/>
       <link name="base_footprint"/>
       <joint name="base_joint" type="fixed">
         <parent link="base_footprint"/>
         <child link="base link"/>
         <origin xyz="0.0 0.0 0.010" rpy="0 0 0"/>
       </joint>
14
       k name="base link">
         <visual>
           <origin xyz="-0.032 0 0.0" rpy="0 0 0"/>
            <mesh filename="package://turtlebot3_description/meshes/bases/burger_base.stl" scale="0.001 0.001 0.001"/>
           </geometry>
           <material name="light black"/>
         </visual>
         <collision>
           <origin xyz="-0.032 0 0.070" rpy="0 0 0"/>
           <geometry>
            <box size="0.140 0.140 0.143"/>
           </geometry>
         </collision>
29
         <inertial>
          <origin xyz="0 0 0" rpy="0 0 0"/>
           <mass value="8.2573504e-01"/>
           <inertia ixx="2.2124416e-03" ixy="-1.2294101e-05" ixz="3.4938785e-05"</pre>
                   iyy="2.1193702e-03" iyz="-5.0120904e-06"
                    izz="2.0064271e-03" />
         </inertial>
       </link>
```

WHY TF?

BENEFITS OF TF?

- Performs transformation easily
- The user does not need to worry about frames
- Provides built-in functions to publish and listen to frames in ROS

TF PACKAGE NODES

- ▶ The TF Package has several ROS nodes that provide utilities to manipulate frames and transformations in ROS
 - view_frames: visualizes the full tree of coordinate transforms.
 - tf_monitor: monitors transforms between frames.
 - tf_echo: prints specified transform to screen
 - roswtf: with the tfwtf plugin, helps you track down problems with tf.
 - static_transform_publisher is a command line tool for sending static transforms

VIEW FRAMES (VALID BEFORE ROS NOETIC)

view frames is a graphical debugging tool that creates a PDF graph of your current transform tree.

```
$ rosrun tf view_frames
```

You probably want to view the graph when you are done, so a typical usage on Ubuntu systems is:

```
$ rosrun tf view_frames
$ evince frames.pdf
```

Therefore an helpful shortcut to add in your .bashrc is:

```
alias tf='cd /var/tmp && rosrun tf view_frames && evince frames.pdf &'
```

NOTE: See also rqt_tf_tree that allows dynamic introspection of the frames.

VIEW FRAMES (FOR ROS NOETIC)

1.1 How to use

view_frames is a graphical debugging tool that creates a PDF graph of your current transform tree.

```
$ rosrun tf2_tools view_frames.py
```

You probably want to view the graph when you are done, so a typical usage on Ubuntu systems is:

```
$ rosrun tf2_tools view_frames.py
$ evince frames.pdf
```

Therefore an helpful shortcut to add in your .bashrc is:

```
alias tf2='cd /var/tmp && rosrun tf2_tools view_frames.py && evince frames.pdf &'
```

VIEW FRAMES

TF MONITOR

TF ECHO

```
ros@ubuntu:~$ rosrun tf tf echo odom base footprint
Failure at 1174.960000000
Exception thrown: "odom" passed to lookupTransform argument target frame does not exist.
The current list of frames is:
Failure at 1174.960000000
Exception thrown: "odom" passed to lookupTransform argument target frame does not exist.
The current list of frames is:
At time 1175.934
- Translation: [-2.000, -0.499, -0.001]
- Rotation: in Quaternion [-0.000, 0.002, 0.002, 1.000]
                                                                      view frames Result
             in RPY (radian) [-0.000, 0.003, 0.004]
             in RPY (degree) [-0.000, 0.182, 0.244]
                                                                     Recorded at time: 68.297
At time 1176.934
- Translation: [-2.000, -0.499, -0.001]
  Rotation: in Quaternion [-0.000, 0.002, 0.002, 1.000]
                                                                         odom
             in RPY (radian) [-0.000, 0.003, 0.004]
             in RPY (degree) [-0.000, 0.182, 0.244]
                                                                                Broadcaster: /gazebo
                                                                                Average rate: 30.215 Hz
At time 1177.934
                                                                          Most recent transform: 68.267 ( 0.030 sec old)
                                                                                Buffer length: 4.799 sec
- Translation: [-2.000, -0.499, -0.001]
  Rotation: in Quaternion [-0.000, 0.002, 0.002, 1.000]
                                                                       base footprint
             in RPY (radian) [-0.000, 0.003, 0.004]
             in RPY (degree) [-0.000, 0.182, 0.244]
```

TF PACKAGE NODES

- In TF, the frames can be either:
 - Published by a broadcaster node
 - Subscribed by a ROS node that listen to the frames.

Prof. Anis Koubaa

Conversion of Orientations with ROS tf package

CONVERSION OF ORIENTATION

Code Explaining Orientation Conversion

Prof. Anis Koubaa

Reading the Orientation of a Robot from its Pose

TURTLEBOT3 ROTATION

- Start Turtlebot3 Waffle
- List all topics

- Check info of /odom topic and amcl_pose topic
- Understand how position and orientation are presented
- Write a script that print the x,y coordinate and yaw angle of the Turtlebot3 robot.

ODOM POSITION MESSAGE FORMAT

nav_msgs/Odometry Message

```
Header header
  uint32 seq
  time stamp
  string frame_id
string child_frame_id
geometry_msgs/PoseWithCovariance pose
  geometry_msgs/Pose pose
    geometry_msgs/Point position
      float64 x
      float64 y
      float64 z
    geometry_msgs/Quaternion orientation
      float64 x
      float64 v
      float64 z
      float64 w
  float64[36] covariance
geometry_msgs/TwistWithCovariance twist
  geometry_msgs/Twist twist
    geometry_msgs/Vector3 linear
      float64 x
      float64 y
      float64 z
    geometry_msgs/Vector3 angular
      float64 x
      float64 y
      float64 z
  float64[36] covariance
```

AMCL_POSE Position Message Format

geometry_msgs/PoseWithCovarianceStamped Message

```
Header header
  uint32 seq
  time stamp
  string frame_id
PoseWithCovariance pose
  geometry_msgs/Pose pose
    geometry_msgs/Point position
      float64 x
      float64 v
      float64 z
    geometry_msgs/Quaternion orientation
      float64 x
      float64 y
      float64 z
      float64 w
  float64[36] covariance
```


Prof. Anis Koubaa

The tf package command line and utilities

TURTLEBOT3 ROTATION

- Start Turtlebot3 Waffle
 - roslaunch turtlebot3_gazebo turtle
- open rviz
 - roslaunch turtlebot3_gazebo turtlebot3_gazebo_rviz.launch
- show all frames
- Monitor frames
- ▶ Echo the frames

Prof. Anis Koubaa

Broadcast a transformation in a ROS Node

Prof. Anis Koubaa

Listen to a transformation in a ROS Node

STATIC TRANSFORM PUBLISHER

```
static_transform_publisher x y z yaw pitch roll
frame_id child_frame_id period_in_ms
```

- ▶ Publish a static coordinate transform to tf using an x/y/z offset in meters and yaw/pitch/roll in radians. (yaw is rotation about Z, pitch is rotation about Y, and roll is rotation about X).
- ▶ The period, in milliseconds, specifies how often to send a transform. 100ms (10hz) is a good value.

```
rosrun tf static transform publisher 1.0 2.1 3.2 0.1 0.11 0.23 odom map 10
```

STATIC TRANSFORM PUBLISHER: LAUNCH FINE

```
<launch>
```

```
<node pkg="tf" type="static_transform_publisher"
name="odom_to_map"
args="1.0 0 -2 0.1 0.2 0.3 odom map 10" />
```


Prof. Anis Koubaa

Publishing and Subscribing to Transforms in ROS Nodes

INTRODUCTION TO TF

distance (translation) + rotation between the two robots

UDEMY COURSE ROBOT OPERATING SYSTEM BASICS, MOTION, AND OPENCY

Prof. Anis Koubaa

Control of Mobile Robots