Stable matching with non transferrable utility

Alfred Galichon - NYU, Yu-Wei Hsieh - Amazon, Maxime Sylvestre - Paris Dauphine

March 2, 2025

Two sided population with types $x \in \mathcal{X}$ and $y \in \mathcal{Y}$. The number of agent is infinite and n_x , m_y represent the proportion of a type in their respective side. We look for a matching outcome $(\mu, u, v) \in \mathbb{R}_+^{X \times Y} \times \mathbb{R}^X \times \mathbb{R}^X$ that satisfies

Two sided population with types $x \in \mathcal{X}$ and $y \in \mathcal{Y}$. The number of agent is infinite and n_x , m_y represent the proportion of a type in their respective side. We look for a matching outcome $(\mu, u, v) \in \mathbb{R}_+^{X \times Y} \times \mathbb{R}^X \times \mathbb{R}^X$ that satisfies

Feasibility :
$$\sum_y \mu_{xy} = n_x$$
 and $\sum_x \mu_{xy} = m_y$

Stability :
$$u_x + v_y \ge \phi_{xy}$$

No slackness : If
$$\mu_{xy}>0$$
 then $u_x+v_y=\phi_{xy}$

Following [GS15] we will rephrase this problem in terms of generalized equilibrium matchings.

Introduce U and V the endogeneous utilities. Then it is the equivalent to find (μ, U, V) such that

Feasibility :
$$\sum_{\mathsf{y}} \mu_{\mathsf{x}\mathsf{y}} = \mathit{n}_{\mathsf{x}}$$
 and $\sum_{\mathsf{x}} \mu_{\mathsf{x}\mathsf{y}} = \mathit{m}_{\mathsf{y}}$

Stability :
$$U_{xy} + V_{xy} = \phi_{xy}$$

and you recover u, v by setting $u_x = \sup_y U_{xy}, v_y = \sup_x V_{xy}$

Introduce U and V the endogeneous utilities. Then it is the equivalent to find (μ, U, V) such that

Feasibility:
$$\sum_{y} \mu_{xy} = n_x$$
 and $\sum_{x} \mu_{xy} = m_y$

Stability : $U_{xy} + V_{xy} = \phi_{xy}$

and you recover u,v by setting $u_x=\sup_y U_{xy}, v_y=\sup_x V_{xy}$ Introducing $G_X^*(\mu)=1_{\sum_y \mu_{xy}=n_x}+1_{\mu\geq 0}$ (and symmetrically for Y) allows you to rewrite the feasability condition.

We search for (μ, U, V) satisfying:

Feasibility :
$$\mu \in \partial G_X(U) \cap \partial G_Y(V)$$

Stability :
$$U_{xy} + V_{xy} = \phi_{xy}$$

Where

$$G_X(U) = \sum_x n_x \sup_y U_{xy}$$

is the aggregated welfare function. Thus feasibility reinterprets as matching demand and offer under endogeneous utilities (U, V).

Note that you recover μ the solution of the OT problem.

$$\sup_{\mu \in \Pi(\textit{n,m})} \sum_{\textit{xy}} \phi_{\textit{xy}} \mu_{\textit{xy}}$$

We search for (μ, U, V) satisfying:

Feasibility :
$$\mu \in \partial G_X(U) \cap \partial G_Y(V)$$

Stability : $U_{xy} + V_{xy} = \phi_{xy}$

If you set $G_X^*(\mu) = 1_{\sum_y \mu_{xy} = n_x} + 1_{\mu \ge 0} + \sum_{xy} \mu_{xy} \log(\mu_{xy})$ you get the entropy regularised optimal transport:

$$\sup_{\mu \in \Pi(\textit{n,m})} \sum_{\textit{xy}} \phi_{\textit{xy}} \mu_{\textit{xy}} - \sum_{\textit{xy}} \mu_{\textit{xy}} \log(\mu_{\textit{xy}})$$

Stable Matching Problem : NTU

Given two convex functions G_X , G_Y and two preferences vectors α , γ . We search for an equilibrium matching, that is a triplet (μ, U, V) satisfying:

Feasibility :
$$\mu \in \partial G_X(U) \cap \partial G_Y(V)$$

Stability :
$$min(\alpha_{xy} - U_{xy}, \gamma_{xy} - V_{xy}) = 0$$

The two quantities $\tau_{xy}^X = \alpha_{xy} - U_{xy}$, $\tau_{xy}^Y = \gamma_{xy} - V_{xy}$ represent the waiting times on each side of the market.

When does such an equilibrium matching exist?

In the discrete setting (i.e. $\mu_{xy} \in \{0,1\}$) [GS62] proved existence and gave an algorithm to find the stable matching.

Structure of the feasible matchings

When $G_X(U) = \sum_x n_x \sup_v U_{xy}$ (i.e. OT) then G_X is submodular that is

$$G_X(U \wedge U') + G_X(U \vee U') \leq G_X(U) + G_X(U')$$

In economics this submodular property of the aggregated welfare function is gross substituability [Pae17, GSV22].

Structure of the feasible matchings

When $G_X(U) = \sum_x n_x \sup_y U_{xy}$ (i.e. OT) then G_X is submodular that is

$$G_X(U \wedge U') + G_X(U \vee U') \leq G_X(U) + G_X(U')$$

In economics this submodular property of the aggregated welfare function is gross substituability [Pae17, GSV22].

What can we say about the subdifferential

$$\partial G_X(U) = rg \max_{\mu} \sum_{xy} \mu_{xy} U_{xy} - G_X^*(\mu)$$

of submodular functions?

Monotone comparative statics exist in the discrete case [Vei89, HM05] or for supermodular functions [Top98, MS94, Ech02, QS09].

Orders on functions/sets - P order

For any functions f, g we introduce the P-order and the Q-order.

P-order

We say that f is smaller than g in the P-order, $f \leq_{P-order} g$, if for any U,U' we have

$$f(U \wedge U') + g(U \vee U') \leq f(U) + g(U')$$

f is submodular if $f \leq_{P-order} f$

When f, g are indicator functions of sets the P-order is Veinott's strong set order.

Orders on functions/sets - Q order

Q-order

We say that f is smaller than g in the Q-order, $f \leq_{Q-order} g$, if if for any $\mu, \mu' \in \mathbb{R}^{X \times Y}$ and any $\delta_1 \in [0, (\mu - \mu')^+]$ there is $\delta_2 \in [0, (\mu - \mu')^-]$ such that

$$f(\mu-(\delta_1-\delta_2))+g(\mu'+(\delta_1-\delta_2))\leq f(\mu)+g(\mu')$$

we say that f is exchangeable if $f \leq_{Q-order} f$.

Exchangeability extends M^{\dagger} -convexity [Mur98] to non polyhedral functions. The Q-order extends the notion of S-convexity [CL23].

Monotone comparative statics

Theorem

Let f a convex (closed, proper, lsc) function. Then the following assertions are equivalent.

- f is submodular
- f^* is exchangeable
- For $U \leq U'$, $\pi_{U=U'}\partial f(U') \leq_{Q-order} \pi_{U=U'}\partial f(U)$

If any one them is satsified then

$$ar{\mu} - rg \max_{\mu \leq ar{\mu}} \sum_{xy} \mu_{xy} U_{xy} - f^*(\mu)$$

is increasing in the Q-order in \bar{q} .

Remarks

ullet If f is differentiable the Q-order property simply reads as

$$(\nabla f(U'))_{xy} \leq (\nabla f(U))_{xy}$$

if $U' \geq U$ and $U_{xy} = U'_{xy}$.

• If f is twice differentiable then we recover the C^2 characterisation of submodularity of f

$$\frac{\partial^2 f}{\partial U_{xy} \partial U_{x'y'}} \le 0$$

Continuous time Gale & Shapley algorithm

At step 0, we set $\mu^{A,0}=+\infty$ and $\mu^{T,-1}=0$.

Proposal phase: The x's make proposals to the y's subject to availability constraint:

$$\mu^{P,k} \in \underset{\mu^{T,k-1} \leq \mu \leq \mu^{A,k}}{\operatorname{arg\,max}} \mu^{\top} \alpha - G^*(\mu),$$

Disposal phase: The the *y*'s pick their best offers among the proposals:

$$\mu^{T,k} \in \arg\max_{\mu \leq \mu^{P,k}} \mu^{\top} \gamma - H^*(\mu)$$

<u>Update phase</u>: The number of available offers is decreased by the number of rejected ones:

$$\mu^{A,k+1} = \mu^{A,k} - (\mu^{P,k} - \mu^{T,k}).$$

Existence of equilibrium matching

Definition

 $G: \mathbb{R}^{X \times Y} \to \mathbb{R}$ is a welfare function if G is convex (closed proper lsc), $dom G^*$ is compact and $0 = min(dom G^*)$.

Theorem

Assume G_X , G_Y are submodular welfare functions then for any initial preferences α , γ there exists an equilibrium matching (μ, U, V) :

- $\mu \in \partial G_X(U) \cap \partial G_Y(V)$
- $min(\alpha_{xy} U_{xy}, \gamma_{xy} V_{xy}) = 0$

Application to the random utility model [McF77]

For any collection (\mathbf{P}_x) of probability measures on \mathbb{R}^Y the random utility welfare function

$$G_X(U) = \sum_{x \in X} n_x \mathbb{E}_{\mathbf{P}_x} \left[\max_{y \in Y} \left\{ U_{xy} + \varepsilon_y, \varepsilon_0 \right\} \right]$$

is a submodular welfare function. Thus an equilibrium matching exists.

If P_x is a the law of |Y| i.i.d. Gumbel distributions then

$$G_X(U) = \sum_{x \in X} n_x \log(1 + \sum_{y \in Y} \exp U_{xy})$$

Ending remarks

Conclusion

- Introduced a dual version of submodularity which is exchangeability.
- Derived monotone comparative statics for submodular functions.
- Extended Gale & Shapley algorithm to set valued choice function for divisible goods with an application to random utility models.

Ending remarks

Conclusion

- Introduced a dual version of submodularity which is exchangeability.
- Derived monotone comparative statics for submodular functions.
- Extended Gale & Shapley algorithm to set valued choice function for divisible goods with an application to random utility models.

Perspectives

- Can we replace subdifferentials by correspondences ?
- From NTU to more general conditions

$$\min(\alpha - U, \gamma - V) = 0 \rightarrow \omega U + V = \Phi?, F(U, V)?$$

Ending remarks

Conclusion

- Introduced a dual version of submodularity which is exchangeability.
- Derived monotone comparative statics for submodular functions.
- Extended Gale & Shapley algorithm to set valued choice function for divisible goods with an application to random utility models.

Perspectives

- Can we replace subdifferentials by correspondences?
- From NTU to more general conditions

$$\min(\alpha - U, \gamma - V) = 0 \rightarrow \omega U + V = \Phi?, F(U, V)?$$

Thank you for your attention!

References

Xin Chen and Menglong Li.

S-convexity and gross substitutes.

2023.

Federico Echenique.

Comparative statics by adaptive dynamics and the correspondence principle.

Econometrica, 70(2):833-844, 2002.

D. Gale and L. S. Shapley.

College admissions and the stability of marriage.

The American Mathematical Monthly, 69:9-15, 1962.

A. Galichon and B. Salanié.

Cupid's invisible hand: Social surplus and identification in matching models. working paper, 2015.