Homework4

Qi'ao Chen 21210160025

October 18, 2021

Exercise 1. Let $\mathcal{L} = \{P\}$, a language with only one unary relation symbol. Classify complete theories with \mathcal{L} , i.e. determine all complete theories with only one unary symbol

Proof. Suppose $\mathfrak{M} = (M, R)$ and $\mathfrak{N} = (N, S)$.

1. If the universe of $\mathfrak M$ is finite. Then $|\mathfrak M|=a$ and $|P(\mathfrak M)|=b$ for some $a,b\in\mathbb N$ and $b\leq a$.

For $n \in \mathbb{N}$, let

$$\begin{split} \varphi_n &= \exists x_1 \dots x_n (\bigwedge_{1 \leq i < j \leq n} x_i \neq x_j \wedge \forall x (\bigwedge_{i=1}^n x = x_i)) \\ \varphi_{n,P} &= \exists x_1 \dots x_n (\bigwedge_{1 \leq i < j \leq n} x_i \neq x_j \wedge \forall x (\bigwedge_{i=1}^n x = x_i) \wedge \bigwedge_{i=1}^n P(x_i)) \end{split}$$

Then φ_n says there are exactly n elements and $\varphi_{n,P}$ says there are exactly n elements satisfying P. Let $\theta_{a,b} = \varphi_a \wedge \varphi_{b,P}$, then $\mathfrak{M} \models \theta_{a,b}$.

Claim
$$\mathfrak{M}\cong\mathfrak{N}\Leftrightarrow\mathfrak{M}\vDash\theta_{a,b}$$
 and $\mathfrak{N}\vDash\theta_{a,b}$

Left to right is obvious. Now suppose both $\mathfrak M$ and $\mathfrak N$ both satisfy $\theta_{a,b}$. Then they have same number of elements and have same number of elements satisfying P. Let $f:P(\mathfrak M)\to P(\mathfrak N)$ be a bijection as they have same cardinality and let $f':\mathfrak M\to\mathfrak N$ be the bijection such that $f'\supseteq f$. Thus for any $a\in M$, $Ra\Leftrightarrow Sf'(a)$ and f' is an isomorphism.

Thus $\mathfrak{M}\equiv\mathfrak{N}$ and any complete theory consisting of $\theta_{a,b}$ is unique.

2. If the universe of \mathfrak{M} is infinite.

For each $n \in \mathbb{N}$, let

$$\psi_n = \exists x_1 \dots x_n (\bigwedge_{1 \leq i < j \leq n} x_i \neq x_j)$$

and $S = \{\psi_i : i \in \mathbb{N}\}.$

(a) If $|P(\mathfrak{M})| = a$.

Let $\Gamma_a = S \cup \{\varphi_{a,P}\}$. For any $p \in \mathbb{N}$, we show that Duplicator wins $\mathrm{EF}_p(R,S)$: if Spoiler chooses an element from $M \setminus P(\mathfrak{M})(N \setminus P(\mathfrak{M}))$, then Duplicator chooses a new element from $N \setminus P(\mathfrak{M})(M \setminus P(\mathfrak{M}))$; if Spoiler chooses an element from $P(\mathfrak{M})(P(\mathfrak{M}))$, then Duplicator chooses a element from $P(\mathfrak{M})(P(\mathfrak{M}))$. Then we get a map s and $Ra \Leftrightarrow Ss(a)$ for $a \in \mathrm{dom}(s)$. Thus s is a local isomorphism and $\mathfrak{M} \equiv \mathfrak{N}$. Hence any complete theory that contains Γ_a is unique

(b) if $|P(\mathfrak{M})|$ is infinite. Let $\Gamma_{\omega} = S \cup \{\varphi_{n,P} : n \in \mathbb{N}\}$. Similarly we can that prove any complete theory containing Γ_{ω} is unique

Thus we prove that there is three kinds of complete theory

- 1. For each $n\in\omega$ and $m\le n$, there is a unique complete theory containing $\theta_{m,n}$
- 2. For each $n \in \omega$ there is a unique complete theory containing Γ_n
- 3. Unique complete theory containing Γ_{ω}

Exercise 2. Show that there is a structure $(M,+,\cdot,<,0,1)$ elementarily equivalent to $(\mathbb{R},+,\cdot,<,0,1)$ s.t. the order on M is not complete: there is a bounded set with no supremum

Proof. Take $\mathbb{Q} \subseteq \mathbb{R}$, then by Löwenheim's theorem, we can find an elementarily restriction \mathfrak{Q} of $(\mathbb{R},+,\cdot,<,0,1)$ whose domain Q contains \mathbb{Q} and $|\mathfrak{Q}|=\aleph_0$. Thus by Theorem 1.7 \mathfrak{Q} is also a dense linear order. As every countable dense linear set is isomorphic to \mathbb{Q} , $\mathfrak{Q} \cong \mathbb{Q}$. Since \mathbb{Q} is not complete, \mathfrak{Q} is also not complete.

Exercise 3. Show that the open interval ((0,1) <) is an elementary substructure of $(\mathbb{R}, <)$

Proof. First $(\mathbb{R}, <) \cong ((0,1), <)$ as we have the isomorphic function $f(x) = \arctan(x)$.

We first show that $((0,1),<)\sim_{\omega}(\mathbb{R},<).$ For any $p\in\mathbb{N}$ and game $\mathrm{EF}_p(((0,1),<),(\mathbb{R},<))$

- If Spoiler chooses $x \in \mathbb{R}$, then Duplicator chooses $y = f(x) \in (0,1)$
- If Spoiler chooses $y \in (0,1)$, then Duplicator chooses $x = f^{-1}(y)$

The induced map s is a local isomorphism as $s \subset f$. Thus Duplicator wins. Thus ((0,1),<) is an elementary substructure of $(\mathbb{R},<)$

Exercise 4. Show that every formula is equivalent to a "nice" formula.

Proof. We prove this by induction on the complexity of φ

- 1. If φ is atomic formula
 - (a) If φ is of the form $t_1(\bar{x})=t_2(\bar{x})$ If both of t_1 and t_2 are not good, then we replace φ with $\exists y(t_1(\bar{x})=y \land t_2(\bar{x})=y)$. Obviously $\vDash \varphi(\bar{x}) \leftrightarrow \exists y(t_1(\bar{x})=y \land t_2(\bar{x})=y)$
 - (b) If φ is of the form $R(t_1(\overline{x}),\ldots,t_m(\overline{x}))$ If among $t_1(\overline{x}),\ldots,t_m(\overline{x}),t_{r_1},\ldots,t_{r_n}$ where $n\leq m$ are not good. Then we replace φ with

$$\psi = \exists y_1 \dots y_n \left(\left(R(t_1(\bar{x}), \dots, t_m(\bar{x})) \right)_{y_1, \dots, y_n}^{t_{r_1}(\bar{x}), \dots, t_{r_n}(\bar{x})} \wedge \bigwedge_{i=1}^n t_{r_i}(\bar{x}) = y_i \right)$$

and we have $\vDash \varphi(\bar{x}) \leftrightarrow \psi(\bar{x})$

2. If φ is of the form $\neg \psi$, $\psi \land \theta$, $\psi \lor \theta$ or $\exists x \psi$. As we can transform ψ and θ into nice formulas, φ is equivalent to a "nice" formula

Exercise 5. Let T be the set of $\mathcal{L}_{\text{ring}}$ -sentences true in $(\mathbb{R},+,\cdot,0,1)$. Show that T is finitely satisfiable and complete, but does not have the witness property

Proof. Let $\mathfrak{M}=(\mathbb{R},+,\cdot,0,1)$. Then $T=\operatorname{Th}(\mathfrak{M})$. As for every $\mathcal{L}_{\operatorname{ring}}$ -sentence φ , either $\mathfrak{M}\models\varphi$ or $\mathfrak{M}\models\neg\varphi$, thus either $\varphi\in T$ or $\neg\varphi\in T$. Hence T is complete.

For every finite subset S of $\operatorname{Th}(\mathfrak{M})$, we can enumerate them as $\varphi_1,\dots,\varphi_n$. Let $\psi=\bigwedge_{i=1}^n\varphi_i$. As $\mathfrak{M}\models\psi$, S is satisfiable and thus $\operatorname{Th}(\mathfrak{M})$ is finitely satisfiable.

Sentence $\varphi = \exists x (x \cdot x = 1 + 1)$ doesn't have the witness property. \Box