National Institute of Technology Calicut

Department of Mathematics

Second Semester B.Tech., End Semester Examination, Winter Semester 2016-2017

MA 1002 - MATHEMATICS II

Max. Marks: 50 **Duration: 3 Hours**

- 1. The trajectory of a particle is given by $\vec{r}(t) = \cos(\pi t)\hat{i} + \sin(\pi t)\hat{j} + t\hat{k}$.
 - (a) Determine the velocity, $\vec{v}(t)$, and acceleration, $\vec{a}(t)$, of the particle at t=1.
 - (b) Determine the tangential and normal components of $\vec{a}(t)$ at t=1.
- 2. If $\vec{F} = x^2y\hat{i} 2xz\hat{j} + 2yz\hat{k}$, find (a) $\nabla \cdot \vec{F}$ (b) $\nabla \times \vec{F}$ (c) $\nabla (\nabla \cdot \vec{F})$ (d) $\nabla \cdot (\nabla \times \vec{F})$.
- 3. Verify Green's Theorem in plane for $\int_C y^2 dx + x^2 dy$ where C is the boundary of the triangle with vertices (0,0), (1,0) and (1,1) oriented in the anticlockwise direction.
- 4. Find the general flow pattern of the network shown in the figure given below. Assuming that all flows are nonnegative, what is the largest possible value for x_3 ?.

- 5. Let the concentration of an air pollutant at a point (x, y, z) is given by $f(x, y, z) = xy^2z$ particles/ m^3 . Find the total amount of pollutant in a region R where $x, y, z \geq 0$ and $x^2+y^2+z^2 \leq 25.$ 3
- 6. Determine whether the following statements are true or false and justify your answer.
 - (a) If S_1 and S_2 are linearly independent subsets of a vector space so is their union $S_1 \cup S_2$.

(Page 1 of 2)

3

- (b) The set of all $n \times n$ matrices such that $A^T = A^{-1}$ is a subspace of the set of all $n \times n$ matrices $M_{n \times n}(R)$.
- (c) If U is a subspace of a vector space V and v_1, v_2 are vectors in V such that $v_1 + v_2 \in U$ then $v_1, v_2 \in U$.
- (d) Let A be an $m \times n$ matrix with rank m. Then the column vectors of A span R^m .
- (e) Sum of any two eigenvectors of A is also an eigenvector of A.
- (f) Similar matrices have same eigenvectors.
- 7. Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be a linear transformation defined by T(x,y,z,t) = (x-y+z+t,x+2z-t,x+y+3z-3t). Find basis and dimension of null space (Ker(T)) and range space (Im(T)) and verify Rank-Nullity Theorem.
- 8. Let V and W be real vector spaces with respective bases $v_1 = (1, 2, 3), v_2 = (2, 1, 0), v_3 = (1, -1, 2)$ and $w_1 = (1, 0, 0), w_2 = (0, 1, 0), w_3 = (1, 1, 1)$. Find a linear transformation $T: V \to W$ such that $T(v_i) = w_i, i = 1, 2, 3$. Is T invertible? If so find T^{-1} .
- 9. Find a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$, in each case, such that, (a) $Ker(T) = \{(x, y, z) | x + y = 0\}$. (b) $Im(T) = \{(x, y, z) | x 2y + z = 0\}$.
- 10. Define an inner product space. Let V be an inner product space of set of all real polynomials of degree at most 2 with inner product $\langle p,q \rangle = p(0)q(0) + p(1)q(1) + p(2)q(2), \forall p,q \in V$. Using Gram-Schmidt orthogonalization process, construct an orthonormal basis of V from the basis $\{1,x,x^2\}$.
- 11. Given the matrix $A=\begin{bmatrix}1&0&1\\0&2&0\\0&0&2\end{bmatrix}$. Using Cayley Hamilton Theorem, evaluate A^{-1} and $A^4+A^3-A^2+4A+6I$.
- 12. (a) Show that $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector of $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ if $a+b=c+d; a,b,c,d \in \mathbb{R}$. Determine the eigenvalues of A.
 - (b) Identify the conic section represented by the quadratic form $7x_1^2 + 6x_1x_2 + 7x_2^2 = 200$ and obtain the principal axes.
- 13. Determine the nature of the quadratic form $Q = X^T A X = \frac{3}{2} x_1^2 + 3 x_2^2 + \frac{3}{2} x_3^2 + x_1 x_3$ by reducing it to the form $Y^T D Y$ where X = P Y and D is a diagonal matrix. Write down the matrix P. Also, find the rank, index and signature of the quadratic form.

6