# Ćwiczenia 1 SI

## Maurycy Borkowski 24.03.2020

#### 4



b) b = 5

będziemy się poruszać na wszystkie możliwe pola możliwe dla agenta. Gdy spotka się on z wrogem 'wyrzucamy' z kolejki'. W stanie trzymamy pole naszego agenta oraz czas po to by liczyć później pozycje wrogów.

### 2,3

Liczę wszystkie możliwe kombinacje poszczególnych figur u blotkarza i figuran-

Wymnażam układy u blotkarza razy wszystkie gorsze układy figuranta. Te iloczyny sumuję i dzielę przez iloczyn wszystkich rąk. 8.452879986493432

#### 5

Przestrzenie stanów:

- a)  $db^K$ gdzie dto najdłuższa ścieżka w grafie b)  $d(b+1)^K$

Efektywniejsze rozwiązanie do b)

Tworzymy graf silnie spójnych składowych. W nim sprawdzamy czy dla każdych SSS, w których są przyjaciele czy LCA tych dwóch wierzchołków jest jednym z nich. Jeżeli istnieje para wierzchołków nie spełniająca tego warunku nie istnieje rozwiazanie.

Teraz wszystkich przyjaciół kierujemy do najniższej (w sensie drzewa) niepustej SSS.

#### 6

 $h = max(odl_{Man}(king_b, king_c), 0) + banda_{uciekajacy} + max(banda_{goniacy} - 3, 0)$ gdzie banda to odległość do najbliższej krawędzi.

W drugim przypadku minimum z h gdy biały goni a czarny ucieka i odwrotnie.

#### 7

Z warunku spójności mamy:

$$h(s_2) + cost(s_1, s_2) \geqslant h(s_1)$$

$$cost(s_1, s_2) \ge h(s_1) - h(s_2)$$

Koszt dojścia z  $s_1$  to stanu końcowego możemy zapisać jako sumę:

$$C = \sum_{i=1}^{n} cost(s_{i-1}, s_i) \geqslant \sum_{i=2}^{n} h(s_{i-1}) - h(s_i) = h(s_1) - h(s_n) = h(s_1) - 0 = h(s_1)$$



h(1) = 10, h(2) = 1 Łatwo zauważyć, że heurystyka jest optymistyczna, ale h(2) + cost(1, 2) = 2 < 10 = h(1)

#### 8

Oznaczmy, przez  $v_1$ i  $v_2$ punkty stany docelowe w naszym drzewie.  $v_1$ stan, który zwrócił  $A^{\ast}.$ 

Pokażę, że  $g(v_1) \leq g(v_2)$ :

Niech v będzie  $LCA(v_1, v_2)$  a v' pierwszym nierozwiniętym wierzchołkiem na ścieżce do  $v_2$ .

Dowód. Z definicji  $A^*$  (bo go nie rozwinęliśmy):

$$f(v_1) \leqslant f(v')$$

$$g(v_1) + h(v_1) \leqslant g(v') + h(v')$$

$$g(v_1) + 0 \leqslant g(v') + h(v')$$

C(w)koszt dotarcia do najbliższego stanu doc<br/>leowego z w. Z optymalności horaz jedyności ścieżki

$$g(v') + h(v') \le g(v') + C(v') = g(v_2)$$