MPO Datasets, Our Recent Work, and Future Directions

Jing Zhang
jzh@bu.edu, http://people.bu.edu/jzh/
https://github.com/jingzbu

Division of Systems Engineering, and Center for Information and Systems Engineering Boston University

May 5, 2017

Road Map of Eastern Massachusetts

Road map of Eastern Massachusetts (EMA), over which we have access to a vast amount of actual traffic data

Figure: All available road segments in the road map of EMA

Datasets

- spatial average speeds for more than 13,000 road segments in EMA; covers every minute of the year 2012; 50+ GB csv files
- flow capacity (# of vehicles per hour) for more than 100,000 road segments in EMA
- Confidential! raw data available within the CODES/NOC labs only
- See Github repository InverseVIsTraffic for some of the processed data

Data Processing

- Preprocessing
 - Select road segments (QGIS)
 - Extract speeds from raw data (Python)
 - Filter capacity data (Python)
 - Handle missing data (Python)
 - set missing speeds as 0.1 mph and travel times as 0.01 hrs
 - set missing flow capacities as 2000 vehicles/hr
 - Convert speeds to flows (Python)
- OD demand estimation
 - GLS method QP & QCP (Gurobi; Python)
- Cost function estimation
 - QP (Gurobi; Julia)
- PoA evaluation
 - NLP (IPOPT, JuMP; Julia)
- Data sharing among different programming languages: JSON

Our Recent Work

- Evaluate/reduce Price of Anarchy induced by selfish driving
 - CDC16 (8 nodes, 24 links, 56 OD pairs)
 - arXiv:1606.02194
 - slides url: http://people.bu.edu/jzh/cdc16_slides.pdf
 - IFAC17 (22 nodes, 74 links, 462 OD pairs)
 - arXiv:1610.09580
 - IEEE18 (74 nodes, 34 zones, 258 links, 1122 valid OD pairs)
 - EMA highway benchmark network released (Github/Kaggle)
- Estimate cost functions in multi-class transportation networks
 - CDC17 (use other benchmark networks)
 - arXiv:1703.04010

Inferring User Flows — Converting Speeds to Flows

(from Google images)

Greenshield's model (Mathew (2014)):

$$x_a = 4m_a \left[\frac{v_a}{v_a^0} - \left(\frac{v_a}{v_a^0} \right)^2 \right],$$

where m_a is the flow capacity, v_a the current average speed, and v_a^0 the free-flow speed

 Assume these inferred flow observations. form an equilibrium (Wardrop (1952)) under a "user-centric" routing policy; x_a^{user}

Estimating OD Demand Matrix

- Define A as link-route incidence matrix, P route choice probability matrix, S sample covariance matrix, and λ vectorized OD demand matrix
- Let \mathcal{R}_i be the set of all feasible routes connecting OD pair i
- Estimate λ by using a Generalized Least Squares (GLS) method (Hazelton (2000)):

$$\begin{aligned} \min_{\mathbf{P} \geq 0, \, \boldsymbol{\lambda} \geq 0} \quad & \sum_{k=1}^{K} \left(\mathbf{x}^{(k)} - \mathbf{A} \mathbf{P}' \boldsymbol{\lambda} \right)' \mathbf{S}^{-1} \left(\mathbf{x}^{(k)} - \mathbf{A} \mathbf{P}' \boldsymbol{\lambda} \right) \\ \text{s.t.} \quad & p_{ir} = 0 \quad \forall (i, r) \in \{(i, r) : r \notin \mathscr{R}_i\}, \\ & \mathbf{P} \mathbf{1} = \mathbf{1}. \end{aligned}$$

- Could be dependent on time-intervals (AM/MD/PM/NT) of day and days of week (weekday/weekend)
- Estimate λ using data with different time stamps accordingly

Estimating Cost Functions

- $\bullet \ t_a\left(x_a\right) = t_a^0 g\left(\frac{x_a}{m_a}\right)$
- Seek to find a cost function $g(\cdot)$ under which the observed user flows x_a^{user} and the estimated OD demand λ are as consistent as possible (good data reconciling)
 - Could be dependent on time-intervals (AM/MD/PM/NT) of day and days of week (weekday/weekend)
 - Estimate $q(\cdot)$ using data with different time stamps accordingly
- Seek to find $q(\cdot)$ having strong predictive power (good generalization properties)
- Achieve these by solving an inverse optimization problem, which is reduced to a Quadratic Programming (QP) problem

Estimating Cost Functions (cont.)

Given user flows $\{(x_a^k; a \in \mathscr{A}_k); k = 1, \ldots, K\}$. Let \mathscr{H} be a Reproducing Kernel Hilbert Space (RKHS). Solve the following inverse optimization problem (role of $\gamma > 0$, regularization) (Bertsimas et al. (2014)):

$$\min_{\mathbf{g}, \mathbf{y}, \boldsymbol{\epsilon}} \quad \|\boldsymbol{\epsilon}\| + \gamma \|\mathbf{g}\|_{\mathscr{H}}^2$$

s.t.
$$\mathbf{e}_{a}' \mathbf{N}_{k}' \mathbf{y}^{\mathbf{w}} \leq t_{a}^{0} g\left(\frac{x_{a}}{m_{a}}\right), \quad \forall \mathbf{w} \in \mathscr{W}_{k}, \ a \in \mathscr{A}_{k}, \ k = 1, \dots, K,$$

$$\sum_{a \in \mathscr{A}_{k}} t_{a}^{0} x_{a} g\left(\frac{x_{a}}{m_{a}}\right) - \sum_{\mathbf{w} \in \mathscr{W}_{k}} (\mathbf{d}^{\mathbf{w}})' \mathbf{y}^{\mathbf{w}} \leq \epsilon_{k}, \quad \forall k = 1, \dots, K,$$

$$\epsilon \geq 0, \quad \mathbf{g} \in \mathcal{H},$$

$$\frac{\mathbf{g}}{\mathbf{g}}\left(\frac{x_a}{m_a}\right) \leq \frac{\mathbf{g}}{\mathbf{g}}\left(\frac{x_{\tilde{a}}}{m_{\tilde{a}}}\right), \quad \forall a, \ \tilde{a} \in \bigcup\nolimits_{k=1}^{K} \mathscr{A}_k \ \text{s.t.} \ \frac{x_a}{m_a} \leq \frac{x_{\tilde{a}}}{m_{\tilde{a}}},$$

$$g(0) = 1.$$

Estimating Cost Functions (cont.)

Take polynomial kernel $\phi(x,y)=(c+xy)^n.$ Reformulate the inverse optimization problem as the following QP:

$$\begin{aligned} & \underset{\boldsymbol{\beta},\mathbf{y},\boldsymbol{\epsilon}}{\min} & \|\boldsymbol{\epsilon}\| + \gamma \sum_{i=0}^{n} \frac{\beta_{i}^{2}}{\binom{n}{i} c^{n-i}} \\ & \text{s.t. } \mathbf{e}_{a}' \mathbf{N}_{k}' \mathbf{y}^{\mathbf{w}} \leq t_{a}^{0} \sum_{i=0}^{n} \beta_{i} \left(\frac{x_{a}}{m_{a}}\right)^{i}, \ \forall \mathbf{w} \in \mathscr{W}_{k}, \ a \in \mathscr{A}_{k}, \ k = 1, \dots, K, \\ & \sum_{a \in \mathscr{A}_{k}} t_{a}^{0} x_{a} \sum_{i=0}^{n} \beta_{i} \left(\frac{x_{a}}{m_{a}}\right)^{i} - \sum_{\mathbf{w} \in \mathscr{W}_{k}} (\mathbf{d}^{\mathbf{w}})' \mathbf{y}^{\mathbf{w}} \leq \epsilon_{k}, \ \forall k = 1, \dots, K, \\ & \epsilon_{k} \geq 0, \ \forall k = 1, \dots, K, \\ & \sum_{i=0}^{n} \beta_{i} \left(\frac{x_{a}}{m_{a}}\right)^{i} \leq \sum_{i=0}^{n} \beta_{i} \left(\frac{x_{\tilde{a}}}{m_{\tilde{a}}}\right)^{i}, \ \forall a, \ \tilde{a} \in \bigcup_{k=1}^{K} \mathscr{A}_{k} \text{ s.t. } \frac{x_{a}}{m_{a}} \leq \frac{x_{\tilde{a}}}{m_{\tilde{a}}}, \\ & \beta_{0} = 1. \end{aligned}$$

Estimating Cost Functions (cont.)

Solving the QP gives an estimator $\hat{q}(\cdot)$ of $q(\cdot)$:

$$\hat{g}(x) = \sum_{i=0}^{n} \beta_i^* x^i = 1 + \sum_{i=1}^{n} \beta_i^* x^i.$$

Finding Social Flows

$$\begin{split} \mathsf{PoA} &= \frac{\sum_{a \in \mathscr{A}} x_a^{\mathsf{user}} t_a(x_a^{\mathsf{user}})}{\sum_{a \in \mathscr{A}} x_a^{\mathsf{social}} t_a(x_a^{\mathsf{social}})} \\ &\geq 1 \end{split}$$

- Now ready to calculate the social flows
- Find the social flows x_a^{social} by solving the following NLP (Patriksson (1994)):

(socialOpt)
$$\min_{\mathbf{x} \in \mathscr{F}} \sum_{a \in \mathscr{A}} x_a t_a(x_a)$$

A Sub-Map of EMA

- 8 nodes
- 24 links
- $8 \times (8-1) = 56$ **OD** pairs

Figure: (a) An interstate highway sub-network; (b) The topology of the sub-network.

Results for Cost Function Estimation

Figure: Estimated $g(\cdot)$ for different time periods (Apr. 2012).

Results for PoA

Average PoA \approx 1.5, meaning we can improve the road network by about 50%; some PoA > 2, meaning we can gain more than 100% improvement!

Ongoing/Future Directions

- Extend single-class model to multi-class model
 - cf. CDC17; estimate cost functions only
- Do the following jointly (finished):
 - estimate cost functions and adjust OD demands (assuming an initial "rough" OD demand matrix is at hand)
- Use more complicated model to convert speeds to flows
- Take all roads into account rather than highway roads only
- Evaluate PoA for special dates; July 4, Dec. 25, Jan. 1, etc.
- Develop alternative methods to estimate OD demand matrices
- Inverse problem (cost function estimation): consider flow observations with noises or missing data
 - other people have done some work in this regard
- Consider stochastic user equilibrium problem and its inverse etc.

Thank You!

Questions: jzh@bu.edu

Further References:

http://people.bu.edu/jzh/

 $https://github.com/jingzbu/InverseVIsTraffic\ (contains$

Github/Kaggle links to EMA highway benchmark network)

