Part 3: ARMA Process

Instructor: Ma, Jun

School of Economics, Renmin University of China

April 3, 2018

The Lag Operator

- ▶ Given any time series process $\{X_t\}_{t\in\mathbb{Z}}$, denote $LX_t = X_{t-1}$ for all $t\in\mathbb{Z}$. Note that L is a linear operator.
- ► Applying *n* times:

$$\underbrace{\mathbf{L}\cdots\mathbf{L}}_{n \text{ times}}X_t = \mathbf{L}^n X_t = X_{t-n}.$$

- ▶ The inverse of the lag operator is the "forward" operator: $L^{-1}X_t = X_{t+1}$. Note that $L^{-1}LX_t = X_t$.
- ▶ For any real numbers $a, b \in \mathbb{R}$, $m, n \in \mathbb{Z}$, any time series processes $\{X_t\}_{t \in \mathbb{Z}}$, $\{Y_t\}_{t \in \mathbb{Z}}$,

$$(aL^{m} + bL^{n})(X_{t} + Y_{t}) = aX_{t-m} + bX_{t-n} + aY_{t-m} + bY_{t-n}.$$

- We define a "lag polynomial": $A(L) := a_0 + a_1 L + \cdots + a_p L^p$.
- ▶ Usual calculations apply: e.g., A(L) := 1 0.5L, $B(L) := 1 + 4L^2$ and
 - $C(L) := A(L) B(L) = 1 0.5L + 4L^2 2L^3$. Then $A(L) B(L) X_t = C(L) X_t$.

Definition 1

Let $\{Z_t\}_{t\in\mathbb{Z}}$ be any time series process and consider the time series given by

$$X_t := \sum_{k=-\infty}^{\infty} \psi_k Z_{t-k} = \dots + \psi_{-1} Z_{t+1} + \psi_0 Z_t + \psi_1 Z_{t-1} + \dots$$

with some sequence of real numbers $\{\psi_k\}_{k=-\infty}^{\infty}$ such that $\left\{\sum_{k=-n}^{n}\psi_kZ_{t-k}\right\}_{n=1}^{\infty}$ converges to some random variable in $\mathcal{L}^2\left(\Omega,\mathcal{F},\mathrm{P}\right)$ for all $t\in\mathbb{Z}$. This process is called a linear process with innovations $\{Z_t\}_{t\in\mathbb{Z}}$.

Remark 2

We will study linear processes with $\left\{Z_{t}\right\}_{t\in\mathbb{Z}}\sim WN\left(0,\sigma^{2}\right)$ or $\left\{Z_{t}\right\}_{t\in\mathbb{Z}}\sim IID\left(0,\sigma^{2}\right)$.

Remark 3

Let
$$\psi(z) \coloneqq \sum_{k=-\infty}^{\infty} \psi_k z^k$$
 (an infinite order polynomial), then $\sum_{k=-\infty}^{\infty} \psi_k Z_{t-k} = \psi(L) Z_t$.

Remark 4

We need to know under what conditions, the convergence of $\sum_{k=-\infty}^{\infty} \psi_k X_{t-k}$ is guaranteed, for some given process $\{X_t\}_{t\in\mathbb{Z}}$.

Proposition 5

Let $\{X_t\}_{t\in\mathbb{Z}}$ be a time series process (not necessarily stationary). Let $\{\psi_k\}_{k=-\infty}^{\infty}$ be a real sequence satisfying $\sum_{k=-\infty}^{\infty} |\psi_k| < \infty$ and define $\psi(z) \coloneqq \sum_{k=-\infty}^{\infty} \psi_k z^k$. Suppose that $\{\operatorname{E}\left[X_n^2\right]\}_{n=-\infty}^{\infty}$ is bounded, i.e., there exists some M>0 such that $\operatorname{E}\left[X_n^2\right] < M$ for all $n\in\mathbb{Z}$. Then, the series $\psi(\operatorname{L})X_t = \sum_{k=-\infty}^{\infty} \psi_k X_{t-k}$ converges to some random variable in $\mathcal{L}^2(\Omega, \mathscr{F}, \operatorname{P})$.

Remark 6

If we assume $\{Z_t\}_{t\in\mathbb{Z}}\sim WN\left(0,\sigma^2\right)$, then we can relax the condition $\sum_{k=-\infty}^{\infty}|\psi_k|<\infty$ to $\sum_{k=-\infty}^{\infty}\psi_k^2<\infty$.

Proposition 7

Assume that $\{Z_t\}_{t\in\mathbb{Z}}$ is stationary with $\mathrm{E}\left[Z_t\right]=\mu$ and ACF $\gamma_Z(\cdot)$. Let $\{\psi_k\}_{k=-\infty}^\infty$ be a real sequence satisfying $\sum_{k=-\infty}^\infty |\psi_k| < \infty$. Then $X_t \coloneqq \sum_{k=-\infty}^\infty \psi_k Z_{t-k}$ is again stationary with (1). $\mathrm{E}\left[X_t\right] = \mu\left(\sum_{k=-\infty}^\infty \psi_k\right)$ and (2).

$$\gamma_{X}(h) = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} \psi_{j} \psi_{i} \gamma_{Z}(h-i+j), h \in \mathbb{Z}.$$

Remark 8

If, in addition, we assume $\{Z_t\}_{t\in\mathbb{Z}}\sim WN\left(0,\sigma^2\right)$, then, (1).

 $\mathrm{E}\left[X_{t}\right]=0$, for all $t\in\mathbb{Z}$. (2). Since

$$\gamma_{Z}(h-i+j) = \begin{cases} \sigma^{2} & \text{if } h-i+j=0\\ 0 & \text{otherwise,} \end{cases}$$

we have $\gamma_X(h) = \sigma^2 \sum_{k=-\infty}^{\infty} \psi_k \psi_{k+h}$.

Definition 9 (Autoregressive Moving Average (ARMA) Process)

A stationary process $\{X_t\}_{t\in\mathbb{Z}}$ is called ARMA (p,q) if it satisfies the equation

$$X_{t} - \phi_{1}X_{t-1} - \phi_{2}X_{t-2} - \dots - \phi_{p}X_{t-p} = Z_{t} + \theta_{1}Z_{t-1} + \dots + \theta_{q}Z_{t-q},$$

where $\{Z_t\}_{t\in\mathbb{Z}}\sim WN\left(0,\sigma^2\right)$, $\phi_1,...,\phi_p$ and $\theta_1,...,\theta_q$ are real numbers. If $\{X_t-\mu\}_{t\in\mathbb{Z}}$ is an ARMA (p,q) process, then $\{X_t\}_{t\in\mathbb{Z}}$ is called ARMA (p,q) with mean μ .

Remark 10
The equation

$$X_{t} - \phi_{1}X_{t-1} - \phi_{2}X_{t-2} - \dots - \phi_{p}X_{t-p} = Z_{t} + \theta_{1}Z_{t-1} + \dots + \theta_{q}Z_{t-q}$$

is called ARMA equation. Let $\{X_t\}_{t\in\mathbb{Z}}$ be a stationary solution with $\mathrm{E}\left[X_t\right]=\mu$. Taking expectations on both sides, we have

$$\mu \left(1 - \phi_1 - \cdots - \phi_p \right) = 0.$$

We will see that when $1 - \phi_1 - \cdots - \phi_p = 0$, there is no stationary solution. Hence, stationary solutions must have zero mean.

Remark 11

We will show that if the "ARMA equation" has a stationary solution, it must be a linear process.

Remark 12

Define the autoregressive polynomial,

$$\phi\left(z\right)=1-\phi_{1}z-\phi_{2}z^{2}-\cdots-\phi_{p}z^{p}$$
 and the moving average polynomial, $\theta\left(z\right)=1+\theta_{1}z+\theta_{2}z^{2}+\cdots+\theta_{q}z^{q}$. The ARMA equation can be written as $\phi\left(\mathcal{L}\right)X_{t}=\theta\left(\mathcal{L}\right)Z_{t}$.

MA (q) Process. Assume $\phi(z) = 1$ and $\theta(z) = 1 + \theta_1 z + \cdots + \theta_q z^q$. Then the equation becomes

$$X_t = \theta(L) Z_t = Z_t + \theta_1 Z_{t-1} + \cdots + \theta_q Z_{t-q}.$$

 $(\theta_0 = 1)$ In this case, existence of a solution is obvious. We have to check if the process is stationary. (1). $\operatorname{Var}[X_t] < \infty$, since Z_t 's have a finite variance. (2). $\operatorname{E}[X_t] = 0$ for all t. (3).

$$\operatorname{Cov}\left[X_{t}, X_{t+h}\right] = \begin{cases} \sigma^{2} \sum_{j=0}^{q-|h|} \theta_{j} \theta_{j+|h|} & \text{if } |h| \leq q \\ 0 & \text{if } |h| > q, \end{cases}$$

which does not depend on t. (Homework Question)

► AR(p) ProcessLet $\theta(z) = 1$, $\phi(z) = 1 - \phi_1 z - \cdots - \phi_p z^p$. The equation becomes:

$$X_t - \phi_1 X_{t-1} - \cdots - \phi_p X_{t-p} = Z_t.$$

A special case: AR(1) $X_t = \phi X_{t-1} + Z_t$.

- If $|\phi| < 1$, then we show the following three claims sequentially (1). A stationary solution to the ARMA equation $X_t = \phi X_{t-1} + Z_t$, if exists, must have the form $X_t = \lim_{n \to \infty} X_t^{(n)}$ for some fixed $\left\{X_t^{(n)}\right\}_{n=1}^{\infty}$ for each $t \in \mathbb{Z}$. Therefore, if the stationary solution exists, if must be unique. (2). The limit $X_t = \lim_{n \to \infty} X_t^{(n)}$ (as a vector in the \mathcal{L}^2 space) exists and is a solution of the ARMA equation. (3). $\left\{X_t\right\}_{t \in \mathbb{Z}}$ is weakly stationary.
- ▶ What happens if $|\phi| > 1$?
- ▶ What happens if $|\phi| = 1$?

Causality

Definition 13 (Causal Process)

Let $\{X_t\}_{t\in\mathbb{Z}}$ be a time series process. It is causal with respect to another time series $\{Z_t\}_{t\in\mathbb{Z}}$ if

$$X_t = f(\cdots, Z_{t-1}, Z_t),$$

i.e., X_t depends only on the past.

Remark 14

Causality is a relation between two processes: $\{X_t\}_{t\in\mathbb{Z}}$ is called the state process and $\{Z_t\}_{t\in\mathbb{Z}}$ is called the impulse process. If X_t can be represented as a function of the outcomes of current and past impulses, $Z_t, Z_{t-1}, ...$, we say that X_t is caused by past impulses.

Proposition 15

Assume that $\{Z_t\}_{t\in\mathbb{Z}}$ is stationary, $\{\alpha_j\}_{j\in\mathbb{Z}}$ and $\{\beta_j\}_{j\in\mathbb{Z}}$ are absolutely summable: $\sum_{j=-\infty}^{\infty} |\alpha_j| < \infty$ and $\sum_{j=-\infty}^{\infty} |\beta_j| < \infty$. Denote $\alpha(z) \coloneqq \sum_{j=-\infty}^{\infty} \alpha_j z^j$ and $\beta(z) \coloneqq \sum_{j=-\infty}^{\infty} \beta_j z^j$, then $(\alpha\beta)(z) \coloneqq \alpha(z)\beta(z) = \sum_{j=-\infty}^{\infty} \psi_j z^j$ with $\psi_j = \sum_{i=-\infty}^{\infty} \alpha_i \beta_{j-i}$, $X_t = \alpha(L)(\beta(L)Z_t)$ is well-defined (the series converges in \mathcal{L}^2), $\{X_t\}_{t\in\mathbb{Z}}$ is stationary and

$$\alpha(L)(\beta(L)Z_t) = (\alpha\beta)(L)Z_t = \beta(L)(\alpha(L)Z_t).$$

Causal Solution of ARMA(p, q)

Theorem 16 Assume $\{Z_t\}_{t\in\mathbb{Z}} \sim WN\left(0,\sigma^2\right)$ and let $\phi\left(z\right) = 1 - \phi_1 z - \cdots - \phi_p z^p$ and $\theta\left(z\right) = 1 + \theta_1 z + \cdots + \theta_q z^q$ be two complex polynomials $(\phi_1,...,\phi_p,\theta_1,...,\theta_q\in\mathbb{C})$ which have no common root. (1). Let $\mathbb{U}:=\{z\in\mathbb{C}:|z|\leq 1\}$ be the unit circle. If $\phi\left(z\right) \neq 0$ for all $z\in\mathbb{U}$ (i.e., all of the p roots of $\phi\left(z\right) = 0$ are outside of \mathbb{U}), the ARMA equation

$$\phi(L) X_t = \theta(L) Z_t$$

has a unique stationary and causal (with respect to $\{Z_t\}_{t\in\mathbb{Z}}$) solution. Let $\psi(z) := \frac{\theta(z)}{\phi(z)} = \sum_{j=0}^{\infty} \psi_j z^j$ with $\sum_{j=1}^{\infty} |\psi_j| < \infty$ for all $z \in \mathbb{U}$. This solution can be represented as $\psi(L) Z_t$. (2). If a stationary and causal solution exists, then $\phi(z) \neq 0$ for all $z \in \mathbb{U}$.

Causal Solution of ARMA(p, q)

Remark 17

If $\phi(z) = 0$ for some $z \in \mathbb{U}$, then no stationary solution exists.

Remark 18

If $\phi(z)=0$ has roots in the interior of $\mathbb U$ (i.e., int $(\mathbb U):=\{z\in\mathbb C:|z|<1\}$) and $\mathbb U^c$, but no root on the circle, then a unique stationary of the form $X_t=\sum_{k\in\mathbb Z}\psi_kZ_{t-k}$ exists but $\{X_t\}_{t\in\mathbb Z}$ is not causal with respect to the impulses $\{Z_t\}_{t\in\mathbb Z}$.

Calculate the ACF of ARMA(p, q)

Assume that we have an ARMA process defined by

$$\phi\left(\mathrm{L}\right)X_{t}=\theta\left(\mathrm{L}\right)Z_{t}, \text{ with } \left\{Z_{t}\right\}\sim WN\left(0,\sigma^{2}\right)$$

and ϕ,θ satisfy the conditions of Theorem 16 (so that there exists a unique causal stationary solution). How can we calculate its ACF?

Partial ACF

Definition 19 (Span)

Let \mathcal{H} be a Hilbert space. Let $\{x_t : t \in T\} \subseteq \mathcal{H}$ be a subset of \mathcal{H} . Then the span of $\{x_t : t \in T\}$, denoted by $\mathrm{sp}(\{x_t : t \in T\})$, is defined to be the set of all finite linear combinations of the form

$$\alpha_1 \mathbf{x}_{t_1} + \cdots + \alpha_n \mathbf{x}_{t_n},$$

for $(t_1,...,t_n) \in T^n$, $(\alpha_1,...,\alpha_n) \in \mathbb{R}^n$, $n \in \mathbb{N}$. $\overline{\mathrm{sp}}(\{x_t : t \in T\})$ is the smallest closed subset of \mathcal{H} that contains $\mathrm{sp}(\{x_t : t \in T\})$.

Remark 20

If $\{x_t : t \in T\}$ has finitely many vectors, then $\operatorname{sp}(\{x_t : t \in T\})$ is closed and hence $\operatorname{\overline{sp}}(\{x_t : t \in T\}) = \operatorname{sp}(\{x_t : t \in T\})$.

Partial ACF

Definition 21 (Partial autocorrelation function)

Let $\{X_t\}_{t\in\mathbb{Z}}$ be a stationary process. The PACF $\alpha:\mathbb{Z}\to\mathbb{R}$ is defined as:

$$\alpha(1) = \text{Corr}(X_2, X_1) = \rho(1), ...,$$

$$\alpha\left(h\right) = \operatorname{Corr}\left(X_{h+1} - \Pi_{\operatorname{sp}\left\{1, X_{2}, \dots, X_{h}\right\}} X_{h+1}, X_{1} - \Pi_{\operatorname{sp}\left\{1, X_{2}, \dots, X_{h}\right\}} X_{1}\right).$$

 $\Pi_{\mathrm{sp}\{1,X_2,...,X_h\}}X_{h+1}$ is the projection of X_{h+1} (as a vector in \mathcal{L}^2) to the subspace $\mathrm{sp}\{1,X_2,...,X_h\}$ of \mathcal{L}^2 .

PACF for AR(p)

▶ Suppose $\{X_t\}_{t\in\mathbb{Z}}$ is the unique stationary and causal solution to the AR(p) equation

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \dots + \phi_p X_{t-p} + Z_t,$$

where $\{Z_t\}_{t\in\mathbb{Z}}\sim WN$ and $\{\phi_1,...,\phi_p\}$ satisfy the condition of Theorem 16.

- ▶ We can show: $\alpha_X(h) = 0$, if h > p.
- ▶ We can determine the order (p) of an AR (p) process using $\widehat{\alpha}_X$, an estimate of α_X .
- ▶ We know that if $\{X_t\}_{t\in\mathbb{Z}}$ is MA (q), then $\gamma_X(h) = 0$, if h > q. We can determine the order using $\widehat{\gamma}_X$, an estimate of γ_X .

More on Projections

Proposition 22

Let \mathcal{H} be a Hilbert space. Let $\mathcal{S}_1 \subseteq \mathcal{S}_2 \subseteq \mathcal{H}$ be linear subspaces. Then for any \mathbf{x} , $\mathbf{x}_1, \mathbf{x}_2, ... \in \mathcal{H}$, (1). $\Pi_{S_1} \mathbf{x} = \Pi_{S_1} \Pi_{S_2} \mathbf{x}$; (2). $\|\Pi_{S_1}x\| \leq \|x\|$; (3). If $x \in \overline{sp}\{x_1, x_2, ...\}$, then $\lim_{n\to\infty} \Pi_{\operatorname{sp}\{x_1,\dots,x_n\}} x = x \text{ (or equivalently,}$

 $\lim_{n\to\infty} \|\Pi_{\mathrm{sp}\{x_1,\ldots,x_n\}} x - x\| = 0).$

The ARMA Identification Theorem

Proposition 23

If $\{X_t\}_{t\in\mathbb{Z}}$ is a stationary process with $\mathrm{E}\left[X_1\right]=0$ and $\gamma\left(h\right)=0$ if |h|>q, then $\{X_t\}_{t\in\mathbb{Z}}$ is an $\mathrm{MA}\left(q\right)$ process.

The ARMA Identification Theorem

Theorem 24 Suppose that $\{Y_t\}_{t\in\mathbb{Z}}$ is an $\operatorname{ARMA}(p,q)$ process with ACF γ_Y . Let $\{X_t\}_{t\in\mathbb{Z}}$ be a stationary process with $\operatorname{E}[X_1]=0$ and ACF γ_X . If $\gamma_X=\gamma_Y$, then $\{X_t\}_{t\in\mathbb{Z}}$ is also an $\operatorname{ARMA}(p,q)$ process. (I.e., no other stationary process could have the same covariance structure as ARMA.)

Invertiblity of ARMA

Definition 25 (Invertibility)

Let $\{X_t\}_{t\in\mathbb{Z}}$ be a linear process with respect to $\{Z_t\}_{t\in\mathbb{Z}}$. It is invertible if there are coefficients $\{\pi_k\}_{k=0}^\infty$ such that $Z_t = \sum_{k=0}^\infty \pi_k X_{t-k}$, with $\sum_{k=0}^\infty |\pi_k| < \infty$, i.e., we can recover innovations from the observations.

Invertiblity of ARMA

Theorem 26 $Assume \ \{Z_t\}_{t \in \mathbb{Z}} \sim WN\left(0,\sigma^2\right) \ and \ let \\ \phi\left(z\right) = 1 - \phi_1 z - \dots - \phi_p z^p \ and \ \theta\left(z\right) = 1 + \theta_1 z + \dots + \theta_q z^q \ be \\ two \ complex \ polynomials \ (\phi_1,...,\phi_p,\theta_1,...,\theta_q \in \mathbb{C}) \ which \ have \ no \\ common \ root. \ Let \ the \ ARMA \ process \ \{X_t\}_{t \in \mathbb{Z}} \ be \ defined \ by \ the \\ ARMA \ equation$

$$\phi(\mathbf{L}) X_t = \theta(\mathbf{L}) Z_t.$$

Let $\mathbb{U}:=\{z\in\mathbb{C}:|z|\leq 1\}$ be the unit circle. If $\theta(z)\neq 0$ for all $z\in\mathbb{U}$ (i.e., all of the p roots of $\theta(z)=0$ are outside of \mathbb{U}), then $\{X_t\}_{t\in\mathbb{Z}}$ is invertible.

Invertiblity of ARMA

▶ The AR(p) process

$$X_t = \phi_1 X_{t-1} + \dots + \phi_p X_{t-p} + Z_t$$

is trivially invertible.

► The MA(1) process

$$X_t = Z_t + \theta Z_{t-1}$$

is invertible if $|\theta| < 1$ and $Z_t = \sum_{k=0}^{\infty} (-\theta)^k X_{t-k}$.

Invertibility of ARMA

Remark 27 Consider two MA (1) processes with $|\theta| < 1$, $\left\{ Z_{t} \right\}_{t \in \mathbb{Z}} \sim \textit{WN}\left(0, \sigma^{2}\right)$,

$$Y_t = Z_t + \theta Z_{t-1}$$

and

$$W_t = Z_t + \frac{1}{\rho} Z_{t-1}.$$

 $\{Y_t\}_{t\in\mathbb{Z}} \text{ and } \{W_t\}_{t\in\mathbb{Z}} \text{ have the same ACF. } \{Y_t\}_{t\in\mathbb{Z}} \text{ is invertible but } \{W_t\}_{t\in\mathbb{Z}} \text{ is not. In fact, every invertible MA process has a non-invertible representation that gives the same ACF.}$

The CLT for Linear Process

Theorem 28 (CLT for Linear Processes)

Let $\{X_t\}_{t\in\mathbb{Z}}$ be a linear process defined by

$$X_t = \mu + \sum_{j=-\infty}^{\infty} \psi_j Z_{t-j}$$
 with $\{Z_t\}_{t \in \mathbb{Z}} \sim IID(0, \sigma^2)$,

$$\sum_{j=-\infty}^{\infty} |\psi_j| < \infty$$
. Denote $\overline{X}_n = n^{-1} \sum_{j=1}^n X_j$. Then

$$\sqrt{n}\left(\overline{X}_n-\mu\right)\to_d N\left(0,\tau^2\right),$$

where
$$\tau^2 = \sum_{h=-\infty}^{\infty} \gamma_X(h)$$
 and γ_X is the ACF of $\{X_t\}_{t\in\mathbb{Z}}$. Notice that $\gamma_X(h) = \sigma^2 \sum_{j=-\infty}^{\infty} \psi_j \psi_{j+h}$ so that

$$\sum_{h=-\infty}^{\infty} \gamma_X(h) = \sigma^2 \left(\sum_{j=-\infty}^{\infty} \psi_j \right)^2.$$

The CLT for Linear Process

Lemma 29

For m=1,2,..., let $\{X_{n,m}\}_{n=1}^{\infty}$ be a sequence of random variables such that $X_{n,m} \to_d X_m$ as $n \to \infty$ and $X_m \to_d X$ as $m \to \infty$. Then there exists a sequence $m_n \to \infty$ as $n \to \infty$ such that $X_{n,m_n} \to_d X$. Suppose $\{Z_n\}_{n=1}^{\infty}$ is another sequence of random variables such that

$$\limsup_{m\to\infty} \limsup_{n\to\infty} P[|X_{n,m} - Z_n| > \epsilon] = 0$$

for every $\epsilon > 0$. Then $Z_n \to_d X$.

The CLT for Linear Process

Definition 30

A strictly stationary process $\{X_t\}_{t\in\mathbb{Z}}$ is called *m*-dependent (m>0) is a fixed integer), if the two sets of random variables $\{X_s\}_{s\leq t}$ and $\{X_s\}_{s\geq t+m+1}$ are independent for all t.

Remark 31

An MA (q) process is q-dependent if $\{Z_t\}_{t\in\mathbb{Z}}\sim IID\ (0,\sigma^2)$.

Theorem 32 (CLT for *m*-dependent Process)

Let $\{X_t\}_{t\in\mathbb{Z}}$ be a strictly stationary m-dependent process with mean zero. Then

$$\sqrt{n}\cdot\overline{X}_{n}\rightarrow_{d} N\left(0,\sum_{h=-m}^{m}\gamma_{X}\left(h\right)\right).$$