ทำนายการเสียชีวิตของผู้ติดเชื้อโควิดในประเทศเกาหลีใต้ด้วย

เทคนิค Data mining

นำเสนอโดย

นางสาวอนุศรา คำงาม รหัส 645020062-0

วัตถุประสงค์

- 1. เพื่อศึกษาการเสียชีวิตของผู้ติดเชื้อโควิด 19 ในประเทศเกาหลีใต้
- 2. เพื่อทำนายการเสียชีวิตของผู้ติดเชื้อโควิดในประเทศเกาหลีใต้ ด้วย วิธี Classification

- Classification
 - Decision Tree
 - K Nearest Neighbor (KNN)

ประโยชน์ที่คาดว่าจะได้รับ

- ■ได้สารสนเทศเกี่ยวกับผู้ที่เสียชีวิตจากการติดเชื้อโควิด 19 ในประเทศเกาหลี ใต้
- นำผลการศึกษาไปปรับใช้ในวางแผนงานด้านสาธารณสุข ในการ
 รักษาพยาบาลผู้ป่วยที่ติดเชื้อโควิด 19

ข้อมูลการติดเชื้อโควิด 19 ในประเทศเกาหลีใต้ ปี 2020 ระหว่าง เดือน กุมภาพันธ์ - พฤษภาคม

1						-:								
	patient_id	sex	age	country	province	city	intection_case	intected_by	contact_number	symptom_onset_date	confirmed_date	released_date	deceased_date	state
0	1000000001	male	50s	Korea	Seoul	Gangseo- gu	overseas inflow	NaN	75	2020-01-22	2020-01-23	2020-02-05	NaN	released
1	1000000002	male	30s	Korea	Seoul	Jungnang- gu	overseas inflow	NaN	31	NaN	2020-01-30	2020-03-02	NaN	released
2	100000003	male	50s	Korea	Seoul	Jongno-gu	contact with patient	2002000001	17	NaN	2020-01-30	2020-02-19	NaN	released
3	1000000004	male	20s	Korea	Seoul	Mapo-gu	overseas inflow	NaN	9	2020-01-26	2020-01-30	2020-02-15	NaN	released
4	1000000005	female	20s	Korea	Seoul	Seongbuk- gu	contact with patient	1000000002	2	NaN	2020-01-31	2020-02-24	NaN	released
				:										
5160	700000015	female	30s	Korea	Jeju-do	Jeju-do	overseas inflow	NaN	25	NaN	2020-05-30	2020-06-13	NaN	released
5161	700000016	NaN	NaN	Korea	Jeju-do	Jeju-do	overseas inflow	NaN	NaN	NaN	2020-06-16	2020-06-24	NaN	released
5162	700000017	NaN	NaN	Bangladesh	Jeju-do	Jeju-do	overseas inflow	NaN	72	NaN	2020-06-18	NaN	NaN	isolated
5163	700000018	NaN	NaN	Bangladesh	Jeju-do	Jeju-do	overseas inflow	NaN	NaN	NaN	2020-06-18	NaN	NaN	isolated
5164	700000019	NaN	NaN	Bangladesh	Jeju-do	Jeju-do	overseas inflow	NaN	NaN	NaN	2020-06-18	NaN	NaN	isolated

5165 rows × 14 columns

วิธีดำเนินการ

🗖 ขั้นตอนที่ 1 เตรียม ข้อมูล

นำข้อมูลทำการตรวจหาค่า Missing ของข้อมูล

ตรวจสอบค่า mising จากตาราง PatientInfo

```
In [34]: Patient.isnull().any()
Out[34]: patient id
                               False
                                True
         sex
                                True
         age
                               False
         country
         province
                               False
         city
                                True
         infection case
                                True
         infected by
                                True
         contact number
                                True
         symptom onset date
                                True
         confirmed date
                                True
         released date
                                True
         deceased_date
                                True
                               False
         state
         dtype: bool
```

จัดการค่า Missing ด้วยค่า Mode เนื่องจากเป็นตัวแปรเชิงคุณภาพ

ขั้นตอนที่ 2 ทำการ Visualization

จำนวนผู้เสียชีวิตของผู้ติดเชื้อโควิด 19 ในประเทศเกาหลีใต้ จำแนกดังนี้

- 1.กลุ่มอายุ
- 2.เพศ
- 3.สาเหตุการติดเชื้อ
- 4.เมือง

ข้อมูลที่ใช้ทำ Visualization

	patient_id	sex	age	city	infection_case	deceased_date	
0	1000000001	male	50s	Gangseo-gu	overseas inflow	NaN	
1	1000000002	male	30s	Jungnang-gu	overseas inflow	NaN	
2	1000000003	male	50s	Jongno-gu	contact with patient	NaN	
3	1000000004	male	20s	Mapo-gu	overseas inflow	NaN	
4	1000000005	female	20s	Seongbuk-gu	contact with patient	NaN	
5160	7000000015	female	30s	Jeju-do	overseas inflow	NaN	
5161	7000000016	female	20s	Jeju-do	overseas inflow	NaN	
5162	700000017	female	20s	Jeju-do	overseas inflow	NaN	
5163	700000018	female	20s	Jeju-do	overseas inflow	NaN	
5164	700000019	female	20s	Jeju-do	overseas inflow	NaN	

1.เพศ

2.อายุ

3.เมืองที่อาศัย 4.สาเหตุของการติดเชื้อ

สถานะของการเสียชีวิต

5165 rows × 6 columns

ตารางแสดงจำนวนผู้ที่ติดเชื้อแยกตามสถานการณ์ โดยมีผู้ป่วยติดเชื้อโควิด 19 ทั้งหมด 5165 คน

	patient_id	sex	age	city	infection_case
deceased_date					
0.0	5099	5099	5099	5099	5099
1.0	66	66	66	66	66

- 🗕 เสียชีวิตทั้งหมด 66 คน
- ไม่เสียชีวิต ทั้งหมด 5099 คน
- โดยกำหนด
 - 0 คือ จำนวนผู้ติดเชื้อโควิดที่ไม่เสียชีวิด มีจำนวน 5099 คน
 - 1 คือ จำนวนผู้ติดเชื้อคิดที่เสียชีวิต มีจำนวน 66 คน

ผู้ติดเชื้อโควิดที่มี อายุ 80-89 ปี มีจำนวนผู้เสียชีวิตมากที่สุด

จำนวนผู้ติดเชื้อโควิด 19 ที่เสียชีวิตจำแนกตามเพศ

ผู้ติดเชื้อโควิด เพศชาย มีผู้เสียชีวิด มากกว่าเพศหญิง

จำนวนผู้ติดเชื้อโควิด เสียชีวิตจำแนกตามสาเหตุการติดเชื้อ

Gyeo**GgeonghizogworNajteograg Goeoghkaizog an** அசெத்தவரை இகையின் வ

ผู้ติดเชื้อโควิดส่วนใหญ่อยู่ที่เมือง

Gyeongsan-si

	city	deceased_date
0	Gyeongsan-si	47
1	Cheongdo- gun	7
2	Cheorwon- gun	2
3	Nam-gu	2
4	Yeongcheon- si	2
5	Bonghwa-gun	1
6	Namyangju-si	1
7	Seo-gu	1
8	Seongju-gun	1
9	Taebaek-si	1
10	Yecheon-gun	1

Data mining

Classification

- -Deecision Tree
- -K Nearest Neighbor (KNN)

กำหนดการทำนาย

0 คือ ไม่เสียชีวิต

1 คือ เสียชีวิต

Patient_Total = pd.merge(Patient_Casedata,city_id,on='city')# เชื่อมดาราง ด้วย .merge Patient Total

	patient_id	sex	age	city	infection_case	deceased_date	infection_case_id	city_id
0	1000000001	0	5	Gangseo-gu	overseas inflow	0.0	51	40
1	1000000027	0	5	Gangseo-gu	overseas inflow	0.0	51	40
2	1000000317	1	3	Gangseo-gu	overseas inflow	0.0	51	40
3	1000000327	1	2 Gangseo-gu		overseas inflow	0.0	51	40
4	1000000335	0	3	Gangseo-gu	overseas inflow	0.0	51	40
5160	6014000005	0	6	Yeongju-si	etc	0.0	48	153
5161	6100000089	0	6	Haman-gun	etc	0.0	48	74
5162	6100000104	1	7	Sancheong-gun	etc	0.0	48	117
5163	6100000013	1	7	Goseong-gun	Shincheonji Church	0.0	39	54
5164	6100000063	1	2	Goseong-gun	Shincheonji Church	0.0	39	54

5165 rows × 8 columns

Decision Tree

```
In [101]: from sklearn.model selection import cross val score
          model1 = DecisionTreeClassifier(criterion='entropy',min samples leaf=4)
          csv = cross_val_score(model1,X,Y, cv=3) #แบ่งข้อมูลเป็น 3 ส่วน
           print(csv.round(3)) #ทศนิยม 3 ตำแหน่ง
           csv.mean().round(3) # ค่าเฉลีย
          [0.987 0.888 0.986]
Out[101]: 0.954
In [103]: model2 = DecisionTreeClassifier(criterion='entropy',max leaf nodes=5)
          csv = cross val score(model2,X,Y, cv=3) #แบ่งข้อมูลเป็น 3 ส่วน
           print(csv.round(3)) #ทศนิยม 3 ตำแหน่ง
           csv.mean().round(3) # ค่าเฉลี่ย
          [0.987 0.987 0.987]
Out[103]: 0.987
In [104]: model3 = DecisionTreeClassifier(criterion='entropy', max depth=7)
          csv = cross val score(model3,X,Y, cv=3) #แบ่งข้อมูลเป็น 3 ส่วน
           print(csv.round(3)) #ทศนิยม 3 ตำแหน่ง
           csv.mean().round(3) # ค่าเฉลีย
          [0.987 0.882 0.987]
Out[104]: 0.952
```

แบ่งข้อมูล โดย Crosvalidation แบ่งข้อมูลออกเป็น 3 ส่วน นำไปใช้กับทุก Model ทั้งหมดจำนน 3 Model

KNN

```
In [106]: model4 = KNeighborsClassifier(n_neighbors=1)
           csv = cross val score(model4,X,Y, cv=3) #แบ่งข้อมูลเป็น 3 ส่วน
           print(csv.round(3)) #ทศนิยม 3 ตำแหน่ง
           csv.mean().round(3) # ค่าเฉลี่ย
          [0.99 0.894 0.986]
Out[106]: 0.956
In [107]: model5 = KNeighborsClassifier(n neighbors=11, weights='distance') #เชื่อทุกคนเท่ากัน
           csv = cross_val_score(model5,X,Y, cv=3) #แบ่งข้อมูลเป็น 3 ส่วน
           print(csv.round(3)) #ทศนิยม 3 ตำแหน่ง
           csv.mean().round(3) # ค่าเฉลีย
          [0.988 0.934 0.986]
Out[107]: 0.969
In [108]: model6 = KNeighborsClassifier(n neighbors=5, weights='distance') #เชื่อคนใกล้มากว่าคนไกล
           csv = cross val score(model6,X,Y, cv=3) #แบ่งข้อมูลเป็น 3 ส่วน
           print(csv.round(3)) #ทศนิยม 3 ตำแหน่ง
           csv.mean().round(3) # ค่าเฉลี่ย
          [0.987 0.923 0.985]
Out[108]: 0.965
```

```
model2 = DecisionTreeClassifier(criterion='entropy',max_leaf_nodes=5)

csv = cross_val_score(model2,X,Y, cv=3) #แบ่งข้อมูลเป็น 3 ส่วน
print(csv.round(3)) #ทศนิยม 3 ตำแหน่ง
csv.mean().round(3) # ค่าเฉลี่ย

[0.987 0.987 0.987]
```

เลือก Model 2 เพื่อทำการ Train เนื่องจากให้ค่าความถูกต้องมากที่สุด 98.7 %

```
In [117]: from sklearn.metrics import accuracy_score
    final_resule = model2Full.predict(X_test)
    accuracy_score(y_test,final_resule)
```

Out[117]: 0.9856755710414247

วัดค่าความถูกต้องใด้ 98.56%

สรุปผล

Evaluation

```
In [118]: from sklearn.metrics import classification report, confusion matrix
In [119]: cm1 = confusion matrix(y test,model2Full.predict(X test))
          cm1
Out[119]: array([[2546,
                           0],
                           0]])
                 [ 37,
In [120]: cr1 = classification report(y test,model2Full.predict(X test))
          print(cr1)
                                                                             Model ทำนายถูก 99% โดยทำนายว่าผู้ติดเชื้อที่ไม่เสียชีวิต เป็น 100%
                        precision
                                     recall f1-score
                                                        support
                                                                             เนื่องจากข้อมูลใน Class มีจำนวนที่ต่างกันมาก โปรแกรมจึงทำนาย
                   0.0
                             0.99
                                       1.00
                                                 0.99
                                                           2546
                   1.0
                             0.00
                                       0.00
                                                                             เฉพาะค่าผู้ที่ไม่เสียชีวิต
                                                 0.00
                                                             37
                                                 0.99
                                                           2583
              accuracy
                             0.49
             macro avg
                                       0.50
                                                 0.50
                                                           2583
          weighted avg
                             0.97
                                                           2583
                                       0.99
                                                 0.98
```

/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1272: UndefinedMetricWarning: Precision and F-score are ill-def ined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

warn prf(average, modifier, msg start, len(result))

```
In [ ]:
```

การแก้ไข

- 1. แบ่ง Class ของข้อมูลออกเป็น 2 ชุด คือ
 - Class 0 คือ ข้อมูลของผู้ติดเชื้อที่ไม่เสียชีวิต จำนวน 3569 คน
 - Class 1 ข้อมูลของผู้ติดเชื้อที่เสียชีวิต จำนวน 46 คน
- 2. แบ่งข้อมูลเพื่อใช้เป็นข้อมูล Train : Test ทั้ง 2 Class ดังนี้
 - ข้อมูล Train 70%
 - ข้อมูล Test 30%
- 3.นำข้อมูล Class 1 คือ ผู้ติดเชื้อที่เสียชีวิต มา Random ให้เท่ากับข้อมูล Train และ Test ใน Class 0
- 4. รวมข้อมูลให้เป็นตารางเดียวกันและนำไปทำ Classification

จบการนำเสนอ