The
$$\alpha \times 1_n + (1-\alpha)_{\tau_{n-1}}$$
; $\alpha = 0.5$
Given, $\tau_0 = 120$ (Lest 3 digits of ID)
 $\tau_1 = 0.5 \times 6 + (1-0.5) \times 120 = [63] = 63$
 $\tau_2 = 0.5 \times 4 + (1-0.5) \times 63 = [733.57 = 323.4]$
 $\tau_3 = 0.5 \times 5 + (1-0.5) \times 34 = [193] = 10.20$
 $\tau_4 = 0.5 \times 3 + (1-0.5) \times 36 = [113 = 10.12]$
 $\tau_5 = 0.5 \times 3 + (1-0.5) \times 112 = [7.5] = 10.8$

2 (a) Strontest Job First

	Annival	Burst	
	- fine	Time	
Ρ,	0	63	P/(8) P/(20)
P2	0	9 34	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P3	0	均20	$P_{5}^{(8)}$ $P_{4}^{(12)}$ $P_{3}^{(20)}$ $P_{4}^{(34)}$ $P_{5}^{(63)}$
P4	0	012	1 1 1 1 1 1 1 1 1
Ps	0	9 8	0 8 20 40 74 137

$$P_{1} = (74-0)=74$$

$$P_{2} = (40-0)=40$$

$$P_{3} = (20-0)=20$$

$$P_{4} = (8-0)=8$$

$$P_{5} = (0-0)=0$$

<u>(b)</u>		Annival	Bunst
	P,	0	63
	P	1	34
	P	4	20
	Pa	6	12
	PE	7	8

 $P_2 - 1 (34)$

$$P_{1} = (6-0) + (75-1) = 74$$

$$P_{2} = (1-1) + (44-4) = 40$$

$$P_{3} = (4-4) + (26-6) = 20$$

$$P_{4} = (6-6) + (15-7) = 8$$

$$P_{5} = (7-7) = 0$$

Average =
$$\frac{74+40+20+8+0}{5}$$

= 28.4 (Ans.)

Average Waiting Time,

$$P_1 = (0-0) + (43-1) = 42$$

 $P_2 = (1-1) = 0$
 $P_3 = (105-4) = 101$
 $P_4 = (125-6) = 119$
 $P_5 = (35-7) = 28$

(d)
$$Q = 0.5 \times 63 + 0.5 \times 6 = \Gamma 34.57 = 35$$

P₁ Annived Burest

P₂ 0 34

P₃ 0 20

P₄ 0 12

P₅ 0 8

Average Waiting Time,

$$P_{1} = (6-0) + (109-0) = 100$$

$$P_{2} = (35-0) = 35$$

$$P_{3} = (69-0) = 69$$

$$P_{4} = (89-0) = 89$$

$$P_{5} = (101-0) = 101$$