NN Jax PDE7

June 15, 2022

1 Solving PDEs with Jax

This file contains our first approach to solve PDEs with neural networks on Jax Library.

```
We will try to solve the PDE: \Delta\psi(x,y) + \psi(x,y) \cdot \frac{\partial\psi(x,y)}{\partial y} = f(x,y) \text{ on } \Omega = [0,1]^2 (Problem 7 of the article https://ieeexplore.ieee.org/document/712178) With mixeds boundary conditions: \psi(0,y) = \psi(1,y) = \psi(x,0) = 0 \text{ and } \frac{\partial\psi}{\partial y}(x,1) = 2\sin(\pi x) f(x,y) = \sin(\pi x) \cdot (2 - \pi^2 y^2 + 2y^3 \sin(\pi x)) The loss to minimize here is \mathcal{L} = ||\Delta\psi(x,y) + \psi(x,y) \cdot \frac{\partial\psi(x,y)}{\partial y} - f(x)||_2 The true function \psi should be \psi(x,y) = y^2 \sin(\pi x) We want find a solution \psi(x,y) = A(x,y) + F(x,y)N(x,y) \text{ s.t: } A = y\sin(\pi x) F(x,y) = \sin(x-1)\sin(y-1)\sin(x)\sin(y)
```

2 Importing libraries

```
[14]: # Jax libraries
    from jax import value_and_grad,vmap,jit,jacfwd
    from functools import partial
    from jax import random as jran
    from jax.example_libraries import optimizers as jax_opt
    from jax.nn import tanh
    from jax.lib import xla_bridge
    import jax.numpy as jnp

# Others libraries
    from time import time
    import matplotlib.pyplot as plt
    import numpy as np
    import os
    import pickle
    #print(xla_bridge.get_backend().platform)
```

3 Multilayer Perceptron

```
[15]: class MLP:
          11 11 11
              Create a multilayer perceptron and initialize the neural network
          Inputs:
              A SEED number and the layers structure
          # Class initialization
          def __init__(self,SEED,layers):
              self.key=jran.PRNGKey(SEED)
              self.keys = jran.split(self.key,len(layers))
              self.layers=layers
              self.params = []
          # Initialize the MLP weigths and bias
          def MLP_create(self):
              for layer in range(0, len(self.layers)-1):
                  in_size,out_size=self.layers[layer], self.layers[layer+1]
                  std_dev = jnp.sqrt(2/(in_size + out_size ))
                  weights=jran.truncated_normal(self.keys[layer], -2, 2, __
       →shape=(out_size, in_size), dtype=np.float32)*std_dev
                  bias=jran.truncated_normal(self.keys[layer], -1, 1, shape=(out_size,__
       →1), dtype=np.float32).reshape((out_size,))
                  self.params.append((weights,bias))
              return self.params
          # Evaluate a position XY using the neural network
          Opartial(jit, static_argnums=(0,))
          def NN_evaluation(self,new_params, inputs):
              for layer in range(0, len(new_params)-1):
                  weights, bias = new_params[layer]
                  inputs = tanh(jnp.add(jnp.dot(inputs, weights.T), bias))
              weights, bias = new_params[-1]
              output = jnp.dot(inputs, weights.T)+bias
              return output
          # Get the key associated with the neural network
          def get_key(self):
              return self.key
```

4 PDE operators

```
[16]: class PDE_operators:
          HHHH
              Class with the most common operators used to solve PDEs
              A function that we want to compute the respective operator
          # Class initialization
          def __init__(self,function):
              self.function=function
          # Compute the two dimensional laplacian
          def laplacian_2d(self,params,inputs):
              fun = lambda params,x,y: self.function(params, x,y)
              @partial(jit)
              def action(params,x,y):
                  u_xx = jacfwd(jacfwd(fun, 1), 1)(params,x,y)
                  u_yy = jacfwd(jacfwd(fun, 2), 2)(params,x,y)
                  return u_xx + u_yy
              vec_fun = vmap(action, in_axes = (None, 0, 0))
              laplacian = vec_fun(params, inputs[:,0], inputs[:,1])
              return laplacian
          # Compute the derivative in x
          Opartial(jit, static_argnums=(0,))
          def du_dx(self,params,inputs):
              fun = lambda params,x,y: self.function(params, x,y)
              @partial(jit)
              def action(params,x,y):
                  u_x = jacfwd(fun, 1)(params,x,y)
                  return u_x
              vec_fun = vmap(action, in_axes = (None, 0, 0))
              return vec_fun(params, inputs[:,0], inputs[:,1])
          # Compute the derivative in y
          @partial(jit, static_argnums=(0,))
          def du_dy(self,params,inputs):
              fun = lambda params,x,y: self.function(params, x,y)
              @partial(jit)
              def action(params,x,y):
                  u_y = jacfwd(fun, 2)(params,x,y)
                  return u_y
              vec_fun = vmap(action, in_axes = (None, 0, 0))
              return vec_fun(params, inputs[:,0], inputs[:,1])
```

5 Physics Informed Neural Networks

```
[17]: class PINN:
          n n n
          Solve a PDE using Physics Informed Neural Networks
               The evaluation function of the neural network
          11 11 11
          # Class initialization
          def __init__(self,NN_evaluation):
              self.operators=PDE_operators(self.solution)
              self.laplacian=self.operators.laplacian_2d
              self.NN_evaluation=NN_evaluation
              self.dsol_dy=self.operators.du_dy
          \# Definition of the function A(x,y) mentioned above
          Opartial(jit, static_argnums=(0,))
          def A_function(self,inputX,inputY):
              return jnp.multiply(inputY, jnp.sin(jnp.pi*inputX)).reshape(-1,1)
          # Definition of the function F(x,y) mentioned above
          Opartial(jit, static_argnums=(0,))
          def F_function(self,inputX,inputY):
              F1=jnp.multiply(jnp.sin(inputX),jnp.sin(inputX-jnp.ones_like(inputX))).
       \rightarrowreshape((-1,1))
              F2=jnp.multiply(jnp.sin(inputY),jnp.sin(inputY-jnp.ones_like(inputY))).
       \hookrightarrowreshape((-1,1))
              return jnp.multiply(F1,F2).reshape((-1,1))
          # Definition of the function f(x,y) mentioned above
          Opartial(jit, static_argnums=(0,))
          def target_function(self,inputs):
              return jnp.multiply(jnp.sin(jnp.pi*inputs[:,0]),2-jnp.pi**2*inputs[:
       \rightarrow,1]**2+2*inputs[:,1]**3*jnp.sin(jnp.pi*inputs[:,0])).reshape(-1,1)
          # Compute the solution of the PDE on the points (x,y)
          Opartial(jit, static_argnums=(0,))
          def solution(self,params,inputX,inputY):
              inputs=jnp.column_stack((inputX,inputY))
              NN = vmap(partial(jit(self.NN_evaluation), params))(inputs)
              F=self.F_function(inputX,inputY)
              A=self.A_function(inputX,inputY)
              return jnp.add(jnp.multiply(F,NN),A)
          # Compute the loss function
          Opartial(jit, static_argnums=(0,))
```

6 Initialize neural network

```
[18]: # Neural network parameters
SEED = 351
n_features, n_targets = 2, 1  # Input and output dimension
layers = [n_features,30,30,n_targets]  # Layers structure

# Initialization
NN_MLP=MLP(SEED,layers)
params = NN_MLP.MLP_create()  # Create the MLP
NN_eval=NN_MLP.NN_evaluation  # Evaluate function
solver=PINN(NN_eval)
key=NN_MLP.get_key()
```

7 Train parameters

```
[19]: batch_size = 10000
num_batches = 5000
report_steps=100
loss_history = []
```

8 Adam optimizer

It's possible to continue the last training if we use options=1

9 Solving PDE

Epoch n°100: 51.43021774291992 Epoch n°200: 46.608707427978516 Epoch n°300: 42.7242546081543 Epoch n°400: 33.08360290527344 Epoch n°500: 26.27277183532715 Epoch n°600: 25.79522705078125 Epoch n°700: 25.579057693481445 Epoch n°800: 25.45096778869629 Epoch n°900: 25.371774673461914 Epoch n°1000: 25.321613311767578 Epoch n°1100: 25.28913116455078 Epoch n°1200: 25.267547607421875 Epoch n°1300: 25.252656936645508 Epoch n°1400: 25.241756439208984 Epoch n°1500: 25.232988357543945 Epoch n°1600: 25.224929809570312 Epoch n°1700: 25.21621322631836 Epoch n°1800: 25.205018997192383 Epoch n°1900: 25.188005447387695 Epoch n°2000: 25.1571102142334

```
Epoch n°2100: 25.086633682250977
Epoch n°2200: 24.853960037231445
Epoch n°2300: 23.273897171020508
Epoch n°2400: 4.551088333129883
Epoch n°2500: 2.347841739654541
Epoch n°2600: 2.106163740158081
Epoch n°2700: 1.8725926876068115
Epoch n°2800: 1.6912328004837036
Epoch n°2900: 1.5889019966125488
Epoch n°3000: 1.5024032592773438
Epoch n°3100: 1.4266735315322876
Epoch n°3200: 1.3593132495880127
Epoch n°3300: 1.301129937171936
Epoch n°3400: 1.250550627708435
Epoch n°3500: 1.2060681581497192
Epoch n°3600: 1.1661580801010132
Epoch n°3700: 1.1299446821212769
Epoch n°3800: 1.0965420007705688
Epoch n°3900: 1.0653166770935059
Epoch n°4000: 1.0356481075286865
Epoch n°4100: 1.007233738899231
Epoch n°4200: 0.9798058271408081
Epoch n°4300: 0.9529896378517151
Epoch n°4400: 0.9269103407859802
Epoch n°4500: 0.901094913482666
Epoch n°4600: 0.875564694404602
Epoch n°4700: 0.8502098321914673
Epoch n°4800: 0.8249480724334717
Epoch n°4900: 0.7997944951057434
Epoch n°5000:
              0.774591863155365
```

10 Plot loss function

```
[22]: fig, ax = plt.subplots(1, 1)
   __=ax.plot(np.log10(loss_history))
   xlabel = ax.set_xlabel(r'${\rm Step}$')
   ylabel = ax.set_ylabel(r'$\log_{10}{\rm (loss_function)}$')
   title = ax.set_title(r'${\rm Training}$')
   plt.show
```

[22]: <function matplotlib.pyplot.show(close=None, block=None)>

11 Approximated solution

We plot the solution obtained with our NN

12 True solution

We plot the true solution, its form was mentioned above

13 Absolut error

We plot the absolut error, it's |true solution - neural network output|

14 Save NN parameters

```
[26]: trained_params = jax_opt.unpack_optimizer_state(opt_state)
pickle.dump(trained_params, open("./NN_saves/NN_jax_params.pkl", "wb"))
```