Pontifícia Universidade Católica de Minas Gerais

Arquitetura de Computadores I – ACI Guia 04 Teoremas Booleanos

Luana Campos Takeishi

712171

Para a parte T1 apresentar uma foto das montagens, a equação e a tabela verdade de cada caso. Para as partes T2, T3 e T4 apresentar um printscreen do simulador, as equações e tabela verdade de cada exercício.

T1: Analisar os circuitos abaixo, preencher a tabela verdade e verificar através de montagem.

$$A + 0 = A$$

Equação: A + 0 = A

Logisim:

Tabela verdade:

Α	A + 0
0	0
1	1

A+1=1

Α	a+1
0	
1	

Equação: A + 1 = 1

Logisim:

A	A + 1
0	1
1	1

a	a+a
0	
1	

Equação: A + A = A

Logisim:

Tabela verdade:

A	A + A
0	0
1	1

$\overline{A} + A = 1$

Equação: $\overline{A} + A = 1$

Logisim:

Α	$^{-}A + A$
0	1
1	1

A + AB = A

a	b	a+ab
0	0	
0	1	
1	0	
1	1	

Equação: A + AB = A

Logisim:

Tabela verdade:

Α	В	A + AB
0	0	0
0	1	0
1	0	1
1	1	1

$AB + A\overline{B} = A$

Equação: $AB + A\overline{B} = A$

Tabela verdade:

A	В	$AB + A\overline{B}$
0	0	0
0	1	0
1	0	1
1	1	1

$$A + \overline{A}B = A?B \rightarrow A + B$$

Equação: $A + \overline{A}B = A + B$

Tabela verdade:

A	В	A + AB
0	0	0
0	1	1
1	0	1
1	1	1

а	b	С	a+bc	(a?b)?(a?c)
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Equação: A + BC = (A+B)*(A+C)

Logisim:

Α	В	C	A + BC	(A+B)*(A+C)
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	1	1
1	0	0	1	1
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

T2: Para os circuitos a seguir, você deverá efetuar as montagens no logisim.

$$AB + \overline{A}C = (A ? C) ? (\overline{A} ? B) \Rightarrow (A + C) * (\overline{A} + B)$$

a	b	С	ab+ac	(a?c)?(a?b)
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Equação:
$$AB + \overline{A}C = (A + C)*(\overline{A} + B)$$

Logisim:

a	b	С	x
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

► $AB + \overline{A}C + BC = AB ? \overline{A}C \rightarrow AB + \overline{A}C$

Equação: $AB + \overline{A}C + BC = AB + \overline{A}C$

Tabela verdade:

a	b	С	x
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

T3: Projetar um circuito com duas entradas (habilita e dado) e uma única saída "S" de tal forma que quando habilita = 0, S = 0 e quando habilita = 1, S =dado. Montar o circuito e verificar seu funcionamento.

Conectar a entrada "dado" a um sinal de frequência conhecida e verificar o comportamento da saída "S" em função da entrada habilita. → Acredito que no Logisim não é possível conectar a entrada à um gerador de frequência.

Tabela verdade:

Dado	Habilita	Saída S
0	0	0
0	1	0
1	0	0
1	1	1

Logisim:

T4: Repetir o item anterior utilizando portas NAND.

Equação: $S = \overline{(Dado * Habilita)}$