

## **■ MCDA Module Framework (English Version)**

## **Module 3.1: Road Greening Priority Analysis**

#### **Factor Definition Table**

| Factor<br>ID | Factor<br>Name        | Calculation<br>Method                                        | Data<br>Source                  | Zonal<br>Statistics<br>Method                 | Interpretation                                        |
|--------------|-----------------------|--------------------------------------------------------------|---------------------------------|-----------------------------------------------|-------------------------------------------------------|
| F1           | Thermal<br>Stress     | UTFVI<br>Normalized Value                                    | Landsat<br>8/9 (30m)<br>→ UTFVI | Mean UTFVI within statistical area            | Heat island intensity relative to regional average    |
| F2           | Greening<br>Potential | 1 - NDVI                                                     | Sentinel-<br>2 (10m)            | Mean<br>NDVI<br>within<br>statistical<br>area | Available space for vegetation expansion              |
| F3           | Population<br>Benefit | 0.5×Population Density (normalized) + 0.5×VIIRS (normalized) | Census Data + VIIRS DNB (500m)  | Direct<br>mapping +<br>Zonal <b>mean</b>      | Beneficiary<br>population<br>(registered +<br>active) |

## **Weight Scenario Table**

| Policy Scenario                          | Department<br>Perspective             | F1<br>Thermal<br>Stress | F2<br>Greening<br>Potential | F3<br>Population<br>Benefit | Decision<br>Logic                                         |
|------------------------------------------|---------------------------------------|-------------------------|-----------------------------|-----------------------------|-----------------------------------------------------------|
| Scenario A:<br>Environmental<br>Priority | Environmental<br>Protection<br>Bureau | 0.50                    | 0.30                        | 0.20                        | Prioritize<br>areas with<br>most<br>severe heat<br>island |
| Scenario B:<br>Social Equity             | Social Affairs<br>Bureau              | 0.20                    | 0.30                        | 0.50                        | Prioritize high population density areas                  |

| Policy Scenario                         | Department<br>Perspective      | F1<br>Thermal<br>Stress | F2<br>Greening<br>Potential | F3<br>Population<br>Benefit | Decision<br>Logic                                                |
|-----------------------------------------|--------------------------------|-------------------------|-----------------------------|-----------------------------|------------------------------------------------------------------|
| Scenario C:<br>Investment<br>Efficiency | Urban<br>Development<br>Bureau | 0.30                    | 0.40                        | 0.30                        | Balance<br>greening<br>potential<br>and heat<br>island<br>issues |
| Scenario D:<br>Balanced<br>Development  | Municipal<br>Integration       | 0.33                    | 0.33                        | 0.34                        | Equal weight for all three dimensions                            |

## **Module 3.2: Building Seismic Retrofit Urgency Assessment**

#### **Factor Definition Table**

| Factor<br>ID | Factor Name                     | Calculation<br>Method                                        | Data<br>Source                  | Zonal<br>Statistics<br>Method        | Interpretation                                            |
|--------------|---------------------------------|--------------------------------------------------------------|---------------------------------|--------------------------------------|-----------------------------------------------------------|
| F1           | Building<br>Vulnerability       | Building<br>Collapse<br>Probability                          | Building<br>Registry<br>Data    | Area-<br>weighted<br>average         | Overall structural vulnerability of buildings in the area |
| F2           | Site<br>Amplification<br>Effect | Soil Liquefaction<br>Potential Rating<br>Score               | Central<br>Geological<br>Survey | Area proportion weighted             | Amplification of seismic force by soil conditions         |
| F3           | Population<br>Exposure          | 0.5×Population Density (normalized) + 0.5×VIIRS (normalized) | Census<br>Data +<br>VIIRS DNB   | Direct<br>mapping +<br>Zonal<br>mean | Potential casualties during earthquake                    |

## Weight Scenario Table

| Policy Scenario                         | Department<br>Perspective                  | F1 Building<br>Vulnerability | F2 Site<br>Amplification | F3<br>Population<br>Exposure | Decisior<br>Logic                                          |
|-----------------------------------------|--------------------------------------------|------------------------------|--------------------------|------------------------------|------------------------------------------------------------|
| Scenario A:<br>Structural<br>Priority   | Public<br>Works<br>Bureau                  | 0.50                         | 0.30                     | 0.20                         | Prioritize<br>retrofittin<br>most<br>vulnerab<br>buildings |
| Scenario B:<br>Life Safety<br>Priority  | Civil Affairs<br>Bureau/Fire<br>Department | 0.25                         | 0.15                     | 0.60                         | Protect<br>areas with<br>highest<br>population             |
| Scenario C:<br>Comprehensive<br>Risk    | Disaster<br>Prevention<br>Office           | 0.35                         | 0.35                     | 0.30                         | Balance<br>structura<br>and site<br>risks                  |
| Scenario D:<br>Scientific<br>Assessment | Academic<br>Institution                    | 0.33                         | 0.33                     | 0.34                         | Equal weight fc all three factors                          |

## **Module 4.1: Park Site Suitability Analysis**

#### **Factor Definition Table**

| Factor<br>ID | Factor Name                | Calculation<br>Method                                        | Data<br>Source                   | Zonal<br>Statistics<br>Method        | Interpretation                                           |
|--------------|----------------------------|--------------------------------------------------------------|----------------------------------|--------------------------------------|----------------------------------------------------------|
| F1           | Green Space<br>Service Gap | 1 - (Park area<br>within 300m /<br>Statistical area<br>size) | Park<br>Layer GIS                | Buffer<br>analysis                   | Degree of lacking park service in the area               |
| F2           | Population<br>Demand       | 0.5×Population Density (normalized) + 0.5×VIIRS (normalized) | Census<br>Data +<br>VIIRS<br>DNB | Direct<br>mapping +<br>Zonal<br>mean | Demand scale<br>for green<br>space facilities            |
| F3           | Environmental<br>Stress    | 0.5×UTFVI<br>(normalized) +<br>0.5×(1-NDVI)                  | Landsat  → UTFVI + Sentinel-2    | Zonal<br>mean                        | Relative heat island intensity and vegetation deficiency |

| Factor<br>ID | Factor Name   | Calculation<br>Method                 | Data<br>Source                          | Zonal<br>Statistics<br>Method | Interpretation                  |
|--------------|---------------|---------------------------------------|-----------------------------------------|-------------------------------|---------------------------------|
| F4           | Social Equity | 0.5×Elderly% +<br>0.5×Low-<br>income% | Census Data + Social Welfare Statistics | Direct<br>mapping             | Proportion of vulnerable groups |

## Weight Scenario Table

| Policy<br>Scenario                     | Department<br>Perspective             | F1<br>Service<br>Gap | F2<br>Population<br>Demand | F3<br>Environmental<br>Stress | F4<br>Social<br>Equity | De:                              |
|----------------------------------------|---------------------------------------|----------------------|----------------------------|-------------------------------|------------------------|----------------------------------|
| Scenario A:<br>Fill Service<br>Gap     | Public Works<br>Bureau                | 0.50                 | 0.25                       | 0.15                          | 0.10                   | Pric<br>are<br>lacl<br>par       |
| Scenario B:<br>Climate<br>Adaptation   | Environmental<br>Protection<br>Bureau | 0.20                 | 0.20                       | 0.50                          | 0.10                   | Price hear and veg are           |
| Scenario C:<br>Social<br>Justice       | Social Affairs<br>Bureau              | 0.20                 | 0.20                       | 0.10                          | 0.50                   | Pric<br>vuli<br>por              |
| Scenario D:<br>Demand-<br>Driven       | Urban<br>Development<br>Bureau        | 0.25                 | 0.40                       | 0.20                          | 0.15                   | Allc<br>reso<br>by<br>por<br>der |
| Scenario E:<br>Balanced<br>Development | Municipal<br>Integration              | 0.25                 | 0.25                       | 0.25                          | 0.25                   | Equ<br>wei<br>all f              |

# Module 4.2: Urban Renewal Priority Assessment Factor Definition Table

| Factor<br>ID | Factor Name               | Calculation<br>Method                                        | Data<br>Source                   | Zonal<br>Statistics<br>Method        | Interpretation                                            |
|--------------|---------------------------|--------------------------------------------------------------|----------------------------------|--------------------------------------|-----------------------------------------------------------|
| F1           | Building<br>Vulnerability | Building<br>Collapse<br>Probability                          | Building<br>Registry<br>Data     | Area-<br>weighted<br>average         | Overall structural vulnerability of buildings in the area |
| F2           | Environmental<br>Quality  | 0.5×UTFVI<br>(normalized) +<br>0.5×(1-NDVI)                  | Landsat  →  UTFVI +  Sentinel- 2 | Zonal<br>mean                        | Relative heat island intensity and vegetation deficiency  |
| F3           | Population<br>Exposure    | 0.5×Population Density (normalized) + 0.5×VIIRS (normalized) | Census<br>Data +<br>VIIRS<br>DNB | Direct<br>mapping +<br>Zonal<br>mean | Potential casualties during earthquake                    |

## **Weight Scenario Table**

| Policy Scenario                            | Department Perspective           | F1 Building<br>Vulnerability | F2<br>Environmental<br>Quality | F3<br>Population<br>Exposure | Decis<br>Logic                      |
|--------------------------------------------|----------------------------------|------------------------------|--------------------------------|------------------------------|-------------------------------------|
| Scenario A: Disaster Prevention            | Disaster<br>Prevention<br>Office | 0.50                         | 0.20                           | 0.30                         | Priorit<br>seism<br>reduct          |
| Scenario B:<br>Quality of Life             | Urban<br>Development<br>Bureau   | 0.25                         | 0.50                           | 0.25                         | Focus<br>improv<br>living<br>enviro |
| Scenario C:<br>Comprehensive<br>Assessment | Municipal<br>Integration         | 0.33                         | 0.33                           | 0.34                         | Equal<br>weigh<br>all thre<br>dimen |

## ■ 整合 UTFVI 後的模組架構總表(更新版)

模組 3.1: 道路綠化優先級評估

因子定義表

| 因子<br>編號 | 因子名<br>稱   | 計算方法                          | 資料來源                          | 分區統計方<br>法              | 意義詮釋                  |
|----------|------------|-------------------------------|-------------------------------|-------------------------|-----------------------|
| F1       | 熱環境<br>壓力  | UTFVI 標準化值                    | Landsat 8/9<br>(30m) → UTFVI  | 統計區內<br>UTFVI <b>均值</b> | 相對於區域<br>平均的熱島<br>強度  |
| F2       | 綠化改<br>善潛力 | 1 - NDVI                      | Sentinel-2 (10m)              | 統計區內<br>NDVI <b>均值</b>  | 可增加綠覆<br>蓋的空間大<br>小   |
| F3       | 人口效<br>益   | 0.5×人口密度標準化<br>+ 0.5×VIIRS標準化 | 戶政統計 +<br>VIIRS DNB<br>(500m) | 直接對應 +<br>分區 <b>均值</b>  | 受益人數<br>(戶籍+活動<br>人口) |

## 權重情境表

| 政策情境         | 局處觀<br>點 | F1 熱環境壓力 | F2 綠化潛<br>力 | F3 人口效<br>益 | 決策邏輯             |
|--------------|----------|----------|-------------|-------------|------------------|
| 情境A:環保<br>優先 | 環保局      | 0.50     | 0.30        | 0.20        | 優先處理熱島最嚴重<br>的地區 |
| 情境B:社會<br>公平 | 社會局      | 0.20     | 0.30        | 0.50        | 優先服務高密度人口<br>區域  |
| 情境C:投資<br>效益 | 都發局      | 0.30     | 0.40        | 0.30        | 平衡綠化潛力與熱島<br>問題  |
| 情境D:平衡<br>發展 | 市府整合     | 0.33     | 0.33        | 0.34        | 三個面向等權重考量        |

## 模組 3.2:建築耐震改善急迫性評估

## 因子定義表

| 因子<br>編號 | 因子名<br>稱   | 計算方法     | 資料來源        | 分區統計方<br>法 | 意義詮釋                  |
|----------|------------|----------|-------------|------------|-----------------------|
| F1       | 建築脆<br>弱度  | 建築倒塌機率   | 建物登記資料      | 面積加權平<br>均 | 該區建築整體<br>的結構脆弱程<br>度 |
| F2       | 場址放<br>大效應 | 液化潛勢分級分數 | 中央地質調<br>查所 | 面積佔比加<br>權 | 土壤條件對地<br>震力的放大效<br>應 |

| 因子<br>編號 | 因子名<br>稱 | 計算方法           | 資料來源      | 分區統計方<br>法 | 意義詮釋   |
|----------|----------|----------------|-----------|------------|--------|
| F3       | 人口暴      | 0.5×人口密度標準化    | 戶政統計 +    | 直接對應       | 地震發生時的 |
|          | 露度       | + 0.5×VIIRS標準化 | VIIRS DNB | + 分區均值     | 潛在傷亡規模 |

## 權重情境表

| 政策情境         | 局處觀點        | F1 建築脆弱 | F2 場址放<br>大 | F3 人口暴<br>露 | 決策邏輯           |
|--------------|-------------|---------|-------------|-------------|----------------|
| 情境A:結構<br>優先 | 工務局         | 0.50    | 0.30        | 0.20        | 優先補強最脆弱的<br>建築 |
| 情境B:人命<br>優先 | 民政局/消防<br>局 | 0.25    | 0.15        | 0.60        | 保護最多人口的區<br>域  |
| 情境C:綜合<br>風險 | 災防辦         | 0.35    | 0.35        | 0.30        | 結構與場址風險並<br>重  |
| 情境D:科學<br>評估 | 學術單位        | 0.33    | 0.33        | 0.34        | 三因子等權重         |

## 模組 4.1:公園選址適宜性評估

## 因子定義表

| 因子<br>編號 | 因子名<br>稱   | 計算方法                           | 資料來源                               | 分區統計<br>方法         | 意義詮釋                  |
|----------|------------|--------------------------------|------------------------------------|--------------------|-----------------------|
| F1       | 綠地服<br>務缺口 | 1 - (300m內公園面積<br>/ 統計區面積)     | 公園圖層 GIS                           | 緩衝區分<br>析          | 該區缺乏公園<br>服務的程度       |
| F2       | 人口需<br>求度  | 0.5×人口密度標準化<br>+ 0.5×VIIRS標準化  | 戶政統計 +<br>VIIRS DNB                | 直接對應<br>+ 分區均<br>值 | 對綠地設施的<br>需求規模        |
| F3       | 環境壓<br>力   | 0.5×UTFVI標準化 +<br>0.5×(1-NDVI) | Landsat →<br>UTFVI +<br>Sentinel-2 | 分區均值               | 相對熱島強度<br>與綠覆不足程<br>度 |
| F4       | 社會公<br>平性  | 0.5×老年% + 0.5×低<br>收入%         | 戶政統計 + 社福<br>統計                    | 直接對應               | 弱勢族群的比<br>例           |

## 權重情境表

| 政策情境         | 局處觀<br>點 | F1 服務<br>缺口 | F2 人口<br>需求 | F3 環境<br>壓力 | F4 社會<br>公平 | 決策邏輯             |
|--------------|----------|-------------|-------------|-------------|-------------|------------------|
| 情境A:填<br>補缺口 | 工務局      | 0.50        | 0.25        | 0.15        | 0.10        | 優先補足公園數量<br>不足區域 |
| 情境B:氣<br>候調適 | 環保局      | 0.20        | 0.20        | 0.50        | 0.10        | 優先改善熱島與低<br>綠覆區  |
| 情境C:社<br>會正義 | 社會局      | 0.20        | 0.20        | 0.10        | 0.50        | 優先服務弱勢族群         |
| 情境D:需<br>求導向 | 都發局      | 0.25        | 0.40        | 0.20        | 0.15        | 依人口需求分配資<br>源    |
| 情境E:平<br>衡發展 | 市府整合     | 0.25        | 0.25        | 0.25        | 0.25        | 四面向等權重           |

## 模組 4.2:都市更新優先序評估

## 因子定義表

| 因子<br>編號 | 因子名<br>稱  | 計算方法                           | 資料來源                               | 分區統計<br>方法         | 意義詮釋                  |
|----------|-----------|--------------------------------|------------------------------------|--------------------|-----------------------|
| F1       | 建築脆<br>弱度 | 建築倒塌機率                         | 建物登記資料                             | 面積加權<br>平均         | 該區建築整體<br>的結構脆弱程<br>度 |
| F2       | 環境品<br>質  | 0.5×UTFVI標準化 +<br>0.5×(1-NDVI) | Landsat →<br>UTFVI +<br>Sentinel-2 | 分區均值               | 相對熱島強度<br>與綠覆不足程<br>度 |
| F3       | 人口暴<br>露度 | 0.5×人口密度標準化<br>+ 0.5×VIIRS標準化  | 戶政統計 +<br>VIIRS DNB                | 直接對應<br>+ 分區均<br>值 | 地震發生時的<br>潛在傷亡規模      |

#### 權重情境表

| 政策情境         | 局處觀<br>點 | F1 結構<br>老化 | F2 環境<br>品質 | F3 地震<br>脆弱 | F4 發展<br>潛力 | 決策邏輯         |
|--------------|----------|-------------|-------------|-------------|-------------|--------------|
| 情境A:防災<br>導向 | 災防辦      | 0.25        | 0.15        | 0.50        | 0.10        | 優先降低地震<br>風險 |
| 情境B:生活<br>品質 | 都發局      | 0.25        | 0.40        | 0.20        | 0.15        | 改善居住環境<br>為主 |

| 政策情境         | 局處觀<br>點 | F1 結構<br>老化 | F2 環境<br>品質 | F3 地震<br>脆弱 | F4 發展<br>潛力 | 決策邏輯          |
|--------------|----------|-------------|-------------|-------------|-------------|---------------|
| 情境C:經濟<br>活化 | 財政局      | 0.20        | 0.10        | 0.20        | 0.50        | 投資高發展潛<br>力區  |
| 情境D:老舊<br>優先 | 工務局      | 0.50        | 0.20        | 0.20        | 0.10        | 優先處理最老<br>舊區域 |
| 情境E:綜合<br>評估 | 市府整合     | 0.25        | 0.25        | 0.25        | 0.25        | 四面向平衡考<br>量   |