

Capstone project - 4

Book Recommendation System

Individual project

Name:ramji seth

Email:ramjiseth9755@gmail.com

Content

- Problem statement
- Data Summary
- Analysis of different datasets
- Data Cleaning
- Outlier treatment
- Imputing missing values
- Different Recommendation Model
- Challenges
- Conclusion
- Future Scope

Problem Statement

During the last few decades, with the rise of Youtube, Amazon, Netflix, and many other such web services, recommender systems have become much more important in our lives in terms of providing highly personalized and relevant content.

The main objective is to create a recommendation system to recommend relevant books to users based on popularity and user interests.

Data Summary

Al

1. The dataset is comprised of three csv files:: 1) users 2) books 3) ratings

Users_dataset

- User-ID(unique for each user)
- Location (contains city, state and country separated by commas)
- Age
- Shape of Dataset- (278858,3)

Ratings_dataset

- User_ID
- ISBN
- Book-Rating
- ➤ Shape of Dataset -(1149780,3)

Books_dataset

- ISBN (unique for each book)
- Book-Title
- Book-Author
- Year-Of-Publication
- Publisher
- Image-URL-S
- Image-URL-M
- Image-URL-L
- ➤ Shape of Dataset (271360,8)

Al

Observations from "Users" dataset(Age)

- The Age range given here is from 0 to 250.
- Outliers are in the Age column.

sns.distplot(users.Age) plt.title('Age Distribution Plot')

Text(0.5, 1.0, 'Age Distribution Plot')

Here is the AGE DISTRIBUTION graph and we found that-

Al

- The Age range distribution is right skewed
- Most active readers lie in age group 20-40

Here we are Splitting Location column and analyzing country and found that-

• The most active readers are from USA.

Observations from "books" dataset(Authors)

• Agatha Christie wrote highest number of books in our given dataset

Al

Observations from "books" dataset(Publishers)

• Harlequin published highest number of books in our given dataset.

Observations from "Ratings" dataset

- Higher ratings are more common amongst usersRating 8 has been rated the highest number of times

Data Cleaning from "users" dataset

1. Null Value Imputation

Age column has 40% of missing values

	index	Missing Values	% of Total Values	Data_type
0	Age	110762	39.72	float64
1	User-ID	0	0.00	int64
2	Location	0	0.00	object

Imputing missing values

Al

As we know that the outliers are in Age column and

Age has positive Skewness (right tail) so we can use median to fill Nan values

Al

Data Cleaning from "books" dataset

1. Null Value Imputation:

```
books_df.isnull().sum()
ISBN
                        0
Book-Title
                        0
Book-Author
                        1
Year-Of-Publication
                        0
Publisher
                        2
Image-URL-S
                        0
Image-URL-M
Image-URL-L
                        3
dtype: int64
```

Replacing *strings* by *int* values

	ISBN	Book- Title	Book- Author	Year-Of- Publication	
209538	078946697X	DK Readers: Creating the X- Men, How It All Beg	2000	DK Publishing Inc	hi
221678	0789466953	DK Readers: Creating the X- Men, How Comic Book	2000	DK Publishing Inc	h

1) Popularity Based Recommendation

Book weighted average formula:

Weighted Rating(WR) = [vR/(v+m)]+[mC/(v+m)]

Where,

V is the number of votes for the books; m is the minimum votes required to be listed in the chart R is the average rating of the book and C is the mean vote across the whole report.

	Book-Title	Total_No_Of_Users_Rated	Avg_Rating	Score
0	Harry Potter and the Goblet of Fire (Book 4)	137	9.262774	8.741835
1	Harry Potter and the Sorcerer's Stone (Harry Potter (Paperback))	313	8.939297	8.716469
2	Harry Potter and the Order of the Phoenix (Book 5)	206	9.033981	8.700403
3	To Kill a Mockingbird	214	8.943925	8.640679
4	Harry Potter and the Prisoner of Azkaban (Book 3)	133	9.082707	8.609690
5	The Return of the King (The Lord of the Rings, Part 3)	77	9.402597	8.596517
6	Harry Potter and the Prisoner of Azkaban (Book 3)	141	9.035461	8.595653
7	Harry Potter and the Sorcerer's Stone (Book 1)	119	8.983193	8.508791
8	Harry Potter and the Chamber of Secrets (Book 2)	189	8.783069	8.490549
9	Harry Potter and the Chamber of Secrets (Book 2)	126	8.920635	8.484783
10	The Two Towers (The Lord of the Rings, Part 2)	83	9.120482	8.470128
11	Harry Potter and the Goblet of Fire (Book 4)	110	8.954545	8.466143
12	The Fellowship of the Ring (The Lord of the Rings, Part 1)	131	8.839695	8.441584
13	The Hobbit : The Enchanting Prelude to The Lord of the Rings	161	8.739130	8.422706
14	Ender's Game (Ender Wiggins Saga (Paperback))	117	8.837607	8.409441
15	Tuesdays with Morrie: An Old Man, a Young Man, and Life's Greatest Lesson	200	8.615000	8.375412
16	Charlotte's Web (Trophy Newbery)	68	9.073529	8.372037
17	Dune (Remembering Tomorrow)	75	8.973333	8.353301
18	A Prayer for Owen Meany	181	8.607735	8.351465
19	Fahrenheit 451	164	8.628049	8.346969

2) Model based collaborative filtering

SVD NMF

test_rmse 1.602006 test_mae 1.239913 fit_time 2.518859 test_time 0.697736 dtype: float64 test_rmse 2.621385 test_mae 2.238251 fit_time 6.553807 test_time 0.452583 dtype: float64

SVD Model Results

	user_id	isbn	actual_rating	pred_rating	impossible	pred_rating_round	abs_err
31844	121470	0743230213	4.0	7.378298	False	7.0	3.378298
12681	120908	0452281903	8.0	8.261429	False	8.0	0.261429
30945	16488	0671724738	7.0	7.769623	False	8.0	0.769623
30892	163570	0394571029	9.0	8.730977	False	9.0	0.269023
2199	243930	1401301061	10.0	7.306892	False	7.0	2.693108

Al

SVD Model Results

ΑI

Different Models

SVD Model Results

Al

Collaborative Filtering-(Item-Item based)

- 3.) Collaborative Filtering-(Item-Item based)
- Cosine Similarity
- Nearest Neighbour

```
Recommendations for Valhalla Rising (Dirk Pitt Adventures (Paperback)):
```

- 1: The President's Daughter, with distance of 0.8941085151275194:
- 2: Cybernation (Tom Clancy's Net Force, No. 6), with distance of 0.916775927165431:
- 3: Open Season, with distance of 0.9194460840751736:
- 4: Blackout, with distance of 0.9226373674880946:
- 5: Tom Clancy's Op-Center: Line of Control (Tom Clancy's Op Center (Paperback)), with distance of 0.9267344495560187:

Al

SVD & Correlation

Recommendations for Harry Potter and the Sorcerer's Stone(Book 1)

Αl

Different Models

4) Collaborative Filtering-(User-Item-based)

Enter User ID from above list for book recommendation 69078 Recommendation for User-ID = 69078

recStrength	Book-Title	ISBN	
0.843	To Kill a Mockingbird	0446310786	0
0.798	Jurassic Park	0345370775	1
0.703	A Prayer for Owen Meany	0345361792	2
0.657	The Catcher in the Rye	0316769487	3
0.646	The Pelican Brief	0440214041	4
0.641	Four To Score (A Stephanie Plum Novel)	0312966970	5
0.622	A Time to Kill	0440211727	6
0.615	The Firm	044021145X	7
0.598	Divine Secrets of the Ya-Ya Sisterhood: A Novel	0060928336	8
0.586	The Alienist	0553572997	9

Αl

Conclusion

- In EDA, the Top-10 most rated books were essentially novels. Books like 'The Lovely Bone' and 'The Secret Life of Bees' were very well perceived.
- Majority of the readers were of the age bracket 20-35 and most of them came from North American and European countries namely USA, Canada, UK, Germany and Spain.
- If we look at the ratings distribution, most of the books have high ratings with maximum books being rated 8. Ratings below 5 are few in number.
- Author with the most books was Agatha Christie, William Shakespeare and Stephen King.
- For modelling, it was observed that for model based collaborative filtering SVD technique worked way better than NMF with lower Mean Absolute Error (MAE).

Conclusion

A recommendation system helps an organization to create loyal customers. The recommendation system today are very powerful that they can handle the new customer too who has visited the site for the first time. They recommend the products which are currently trending or highly rated and they can also recommend the products which bring maximum profit to the company.

Challenges

- Handling of sparsity was a major challenge as well since the user interactions were Not present for the majority of the books.
- Understanding the metric for evaluation was a challenge as well.
- Since the data consisted of text data, data cleaning was a major challenge in features like Location etc..
- Decision making on missing value imputations and outlier treatment was quite challenging as well.

Future Scope

- Given more information regarding the books dataset, namely features like Genre, Description etc, we could implement a content-filtering based recommendation system and compare the results with the existing collaborative-filtering based system.
- We would like to explore various clustering approaches for clustering the users based on Age, Location etc., and then implement voting algorithms to recommend items to the user depending on the cluster into which it belongs.

Al

Thank you