UNIVERSITY NAME

DOCTORAL THESIS

Thesis Title

Author:
John SMITH

Supervisor: Dr. James SMITH

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

in the

Research Group Name Department or School Name

August 24, 2017

Contents

1	Intr	introduction 1				
	1.1	Introd	luction to Cryptography	1		
		1.1.1	Secret-Key Cryptography	1		
		1.1.2	Public-Key Cryptography	1		
	1.2	Secur	e Hardware and Embedded Cryptography	1		
		1.2.1	The Example of the Smart Card	1		
		1.2.2	Certification of a Secure Hardware	1		
		1.2.3	Modern More Complex Devices to Certify	1		
		1.2.4	Embedded Cryptography Vulnerabilities	1		
2	Intr		on to Side-Channel Attacks	3		
	2.1	Introd	luction to Side-Channel Attacks	4		
		2.1.1	Historical Overview	4		
		2.1.2	Terminology and Generalities	4		
			Target and Leakage Model	4		
			Points of Interest	4		
			Simple vs Advanced SCAs	4		
			Vertical vs Horizontal SCAs	4		
			Profiled vs Non-Profiled SCAs	4		
			Side-Channel Algebraic Attacks	4		
			Distinguishers	4		
			SCA Metrics	4		
		2.1.3	Side-Channel Attacks vs Machine Learning	4		
			Distinguishers vs Classifiers	4		
	2.2	Main	Side-Channel Countermeasures	4		
		2.2.1	Masking	4		
		2.2.2	Shuffling	4		
		2.2.3	Random Delays and Jitter	4		
	2.3	Highe	er-Order Attacks	4		
		2.3.1	Higher-Order Moments Analysis and Combining Functions	4		
		2.3.2	Profiling Higher-Order Attacks	4		
			Profiling with Masks Knowledge	4		
			Profiling without Masks Knowledge	4		
	2.4	Thesis	s Contribution and Organization	4		
		2.4.1	Foreword of this Thesis: Research of Points of Interest	4		
		2.4.2	Dimensionality Reduction Approach	4		
			Linear Methods for First-Order Attacks	4		
			Kernel Methods for Higher-Order Attacks	4		
		2.4.3	Neural Network Approach	4		
			Toward Getting Rid of Information-Loosing Preprocessing	4		

3	Poir	Points of Interest and Dimensionality Reduction					
	3.1	Motivations	5				
		3.1.1 The Curse of Dimensionality	5				
	3.2	Selection on Points of Interest: Classical Statistics	5				
	3.3	Related Issues: Leakage Detection and Leakage Assessment	5				
	3.4	Observations Leading to Take a Dimensionality Reduction Approach .	5				
4 Linear Dimensionality Reduction							
	4.1		7				
		4.1.1 Principal Component Analysis	7				
		4.1.2 Linear Discriminant Analysis	7				
		4.1.3 Projection Pursuits	7				
	4.2	Principal Component Analysis	7				
		4.2.1 Statistical Point of View	7				
		4.2.2 Geometrical Point of View	7				
	4.3	Application of PCA in SCAs	7				
		4.3.1 Original vs Class-Oriented PCA	7				
		4.3.2 The Choice of the Principal Components	7				
	4.4	Linear Discriminant Analysis	7				
		4.4.1 Statistical Point of View	7				
		4.4.2 Geometrical Point of View	7				
	4.5	Application of LDA in SCAs	7				
		4.5.1 The Small Sample Size problem	7				
5	Ker	nel Dimensionality Reduction	9				
	5.1		9				
		5.1.1 Higher-Order Attacks	9				
		Higher-Order Version of Projection Pursuits	9				
	5.2	Kernel Function and Kernel Trick	9				
		5.2.1 Local Kernel Functions as Similarity Metrics	9				
	5.3	Kernel Discriminant Analysis	9				
	5.4	Experiments over Atmega328P	9				
		5.4.1 The Regularization Problem	9				
		5.4.2 The Multi-Class Trade-Off	9				
		5.4.3 Multi-Class vs 2-class Approach	9				
		5.4.4 Asymmetric Preprocessing/Attack Approach	9				
		Comparison with Projection Pursuits	9				
6	Mac	chine Learning Approach	11				
	6.1	Motivation	11				
	6.2	Introduction to Machine Learning	11				
		6.2.1 The Task, the Experience and the Performance	11				
		6.2.2 Supervised, Semi-Supervised, Unsupervised Learning	11				
		0,	11				
		6.2.4 Underfitting, Overfitting and Regularization	11				
			11				
		6.2.6 No Free Lunch Theorem	11				
	6.3	Machine Learning Applications in Side-Channel Context	11				
		9 11	11				
		Support Vector Machine	11				
		• •	11				

	6.4	Artificial Neural Networks	11
		6.4.2 The Multi-Layer Perceptron	11
	6.5	Simulated Experiment for Profiled HO-Attacks	11
		6.5.1 The Simulations	11
		6.5.2 Comparison between KDA and MLP	11
	6.6	Real-Case Experiments over ARM Cortex-M4	11
7	Cor	volutional Neural Networks against Jitter-Based Countermeasures	13
	7.1	Misalignment of Side-Channel Traces	13
		7.1.1 The Necessity and the Risks of Applying Realignment Tech-	
		niques	13
		7.1.2 Analogy with Image Recognition Issues	13
	7.2	Convolutional Layers to Impose Shift-Invariance	13
	7.3	Data Augmentation for Misaligned Side-Channel Traces	13
	7.4	Experiments against Software Countermeasures	13
	7.5	Experiments against Artificial Hardware Countermeasures	13
	7.6	Experiments against Real-Case Hardware Countermeasures	13
8	Neu	aral Networks: Back to Dimensionality Reduction	15
	8.1	Motivation	15
	8.2	Stacked Auto-Encoders	
	J	8.2.1 The Same Issues of Classic PCA	15
	8.3	Siamese Neural Networks	15
	0.0	8.3.1 Distances and Loss Functions	15
		8.3.2 Relation with Kernel Machines	15
	8.4	A Experimental comparison between KDA and Siamese NNs	15
	8.5	Collision Attacks with Siamese NNs	15
		8.5.1 Experimental Results	
9	Cor	aclusions and Perspectives	17
	9.1	Summary	17
			_,
	9.2	Strengthen Embedded Security: the Main Challenge for Machine Learn-	

List of Figures

List of Tables

List of Abbreviations

SCA Side Channel Attack

List of Symbols

Introduction

- 1.1 Introduction to Cryptography
- 1.1.1 Secret-Key Cryptography
- 1.1.2 Public-Key Cryptography
- 1.2 Secure Hardware and Embedded Cryptography
- 1.2.1 The Example of the Smart Card
- 1.2.2 Certification of a Secure Hardware
- 1.2.3 Modern More Complex Devices to Certify
- 1.2.4 Embedded Cryptography Vulnerabilities

Introduction to Side-Channel Attacks

2	1	Introdu	ction to	Sida	Channal	Attacks
Z .		- 1111110011	(() ()	.71CIE-1	l name	AHACKS

- 2.1.1 Historical Overview
- 2.1.2 Terminology and Generalities

Target and Leakage Model

Points of Interest

Simple vs Advanced SCAs

Vertical vs Horizontal SCAs

Profiled vs Non-Profiled SCAs

Side-Channel Algebraic Attacks

Distinguishers

SCA Metrics

2.1.3 Side-Channel Attacks vs Machine Learning

Distinguishers vs Classifiers

2.2 Main Side-Channel Countermeasures

- 2.2.1 Masking
- 2.2.2 Shuffling
- 2.2.3 Random Delays and Jitter

2.3 Higher-Order Attacks

- 2.3.1 Higher-Order Moments Analysis and Combining Functions
- 2.3.2 Profiling Higher-Order Attacks

Profiling with Masks Knowledge

Profiling without Masks Knowledge

2.4 Thesis Contribution and Organization

- 2.4.1 Foreword of this Thesis: Research of Points of Interest
- 2.4.2 Dimensionality Reduction Approach

Linear Methods for First-Order Attacks

Points of Interest and Dimensionality Reduction

- 3.1 Motivations
- 3.1.1 The Curse of Dimensionality
- 3.2 Selection on Points of Interest: Classical Statistics
- 3.3 Related Issues: Leakage Detection and Leakage Assessment
- 3.4 Observations Leading to Take a Dimensionality Reduction Approach

Linear Dimensionality Reduction

4 -4	T 4 1	
4.1	Introd	luction
T• L	HILLIUM	ucuon

- 4.1.1 Principal Component Analysis
- 4.1.2 Linear Discriminant Analysis
- **4.1.3** Projection Pursuits
- 4.2 Principal Component Analysis
- 4.2.1 Statistical Point of View
- 4.2.2 Geometrical Point of View
- 4.3 Application of PCA in SCAs
- 4.3.1 Original vs Class-Oriented PCA
- 4.3.2 The Choice of the Principal Components
- 4.4 Linear Discriminant Analysis
- 4.4.1 Statistical Point of View
- 4.4.2 Geometrical Point of View
- 4.5 Application of LDA in SCAs
- 4.5.1 The Small Sample Size problem

Kernel Dimensionality Reduction

	An
5.1 Motivati	()

- 5.1.1 Higher-Order Attacks
- **Higher-Order Version of Projection Pursuits**
- 5.2 Kernel Function and Kernel Trick
- 5.2.1 Local Kernel Functions as Similarity Metrics
- 5.3 Kernel Discriminant Analysis
- 5.4 Experiments over Atmega328P
- 5.4.1 The Regularization Problem
- 5.4.2 The Multi-Class Trade-Off
- 5.4.3 Multi-Class vs 2-class Approach
- 5.4.4 Asymmetric Preprocessing/Attack Approach

Comparison with Projection Pursuits

Machine Learning Approach

6.1	Motivation				
6.2	Introduction to Machine Learning				
6.2.1	The Task, the Experience and the Performance				
6.2.2	Supervised, Semi-Supervised, Unsupervised Learning				
6.2.3	Training, Validation and Test Sets				
6.2.4	Underfitting, Overfitting and Regularization				
6.2.5	Data Augmentation				
6.2.6	No Free Lunch Theorem				
6.3	Machine Learning Applications in Side-Channel Context				
6.3.1	.3.1 Profiled Attack as a Classification Problem				
Supp	ort Vector Machine				
Rand	om Forest				
6.4	Artificial Neural Networks				
6.4.1	Motivations Leading from Kernel Machines to Deep Learning				
6.4.2	The Multi-Layer Perceptron				
6.5	Simulated Experiment for Profiled HO-Attacks				
6.5.1	The Simulations				
6.5.2	Comparison between KDA and MLP				

6.6 Real-Case Experiments over ARM Cortex-M4

Convolutional Neural Networks against Jitter-Based Countermeasures

- 7.1 Misalignment of Side-Channel Traces
- 7.1.1 The Necessity and the Risks of Applying Realignment Techniques
- 7.1.2 Analogy with Image Recognition Issues
- 7.2 Convolutional Layers to Impose Shift-Invariance
- 7.3 Data Augmentation for Misaligned Side-Channel Traces
- 7.4 Experiments against Software Countermeasures
- 7.5 Experiments against Artificial Hardware Countermeasures
- 7.6 Experiments against Real-Case Hardware Countermeasures

Neural Networks: Back to Dimensionality Reduction

- 8.1 Motivation
- 8.2 Stacked Auto-Encoders
- 8.2.1 The Same Issues of Classic PCA
- 8.3 Siamese Neural Networks
- 8.3.1 Distances and Loss Functions
- 8.3.2 Relation with Kernel Machines
- 8.4 A Experimental comparison between KDA and Siamese NNs
- 8.5 Collision Attacks with Siamese NNs
- 8.5.1 Experimental Results

Conclusions and Perspectives

- 9.1 Summary
- 9.2 Strengthen Embedded Security: the Main Challenge for Machine Learning Applications