

REPORTE DE PRÁCTICA NO. 2

Práctica 2. AFD y AFND

ALUMNA: SULEIDY OROPEZA ANTUNEZ

Dr. Eduardo Cornejo-Velázquez

Introducción

Un Autómata Finito Determinista (AFD) es un modelo matemático utilizado para reconocer un conjunto específico de cadenas dentro de un lenguaje formal. Su estructura se define mediante la siguiente tupla:

$$AFD = (\Sigma, Q, f, q_0, F) \tag{1}$$

donde:

- Σ: Alfabeto del autómata (símbolos permitidos).
- Q: Conjunto finito de estados.
- f: Función de transición que indica cómo se mueve el autómata entre estados según el símbolo leído.
- q_0 : Estado inicial $(q_0 \in Q)$.
- F: Conjunto de estados de aceptación ($F \subseteq Q$).

Instrucciones

Para cada ejercicio, se deben completar las siguientes tareas:

- Tupla del AFD AFD = (, Q, F, q0, F).
- Diagrama de transiciones
- tabla de transición
- Implementar el AFD en el simulador https://automatonsimulator.com/ y capturar una imagen de la simulación.
- Palabrascinco palabras aceptadas y cinco palabras rechazadas .

Ejercicios

• Ejercicio 1 Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma = \{0, 1\}$, que acepte el conjunto de palabras que inician en "0".

Alfabeto:

$$\Sigma = \{0, 1\}$$

Conjunto de estados:

$$Q = \{q_0, q_1, q_{rej}\}$$

Estado inicial:

Estados de aceptación:

$$F = \{q_1\}$$

Función de transición:

Tabla de transiciones:

Estado	0	1
q_0	q_1	q_{rej}
q_1	q_1	q_1
q_{rej}	q_{rej}	q_{rej}

Palabras aceptadas:

0, 01, 001, 0110, 0001

Palabras rechazadas:

1, 10, 110, 101, 111

Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma = \{0,1\}$, que acepte el conjunto de palabras que terminan en "1".

Alfabeto:

$$\Sigma = \{0, 1\}$$

Conjunto de estados:

$$Q = \{q_0, q_1\}$$

Estado inicial:

 q_0

Estados de aceptación:

$$F = \{q_1\}$$

Función de transición:

$$\delta:Q\times\Sigma\to Q$$

Tabla de transiciones:

$$\begin{array}{c|cccc}
Estado & 0 & 1 \\
\hline
q_0 & q_0 & q_1 \\
q_1 & q_0 & q_1
\end{array}$$

Diagrama:

Palabras aceptadas:

1, 11, 101, 001, 0001

Palabras rechazadas:

0, 10, 100, 000, 1100

Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma = \{0,1\}$, que acepte el conjunto de palabras que contienen la subcadena "01". AFD = $(\Sigma,Q,f,q_0,F)\Sigma = \{0,1\}Q = \{q_0,q_1,q_2\}q_0 : EstadoinicialF = \{q_2\}$

Función de transición f:

$$f(q_0,0) = q_1, \quad f(q_0,1) = q_0, \quad f(q_1,0) = q_1, \quad f(q_1,1) = q_2, \quad f(q_2,0) = q_2, \quad f(q_2,1) = q_2$$

Diagrama

Tabla de transiciones:

Estado	0	1
q_0	q_1	q_0
q_1	q_1	q_2
q_2	q_2	q_2

Palabras aceptadas:

Palabras rechazadas:

Ejercicio 4

Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma = \{0,1\}$, que acepte el conjunto de palabras que no contienen la subcadena "01".

$$AFD = (\Sigma, Q, f, q_0, F)$$

$$\Sigma = \{0, 1\}$$

$$Q = \{q_0, q_1, q_{rej}\}$$

$$q_0 : Estadoinicial$$

$$F = \{q_0, q_1\}$$

Función de transición f:

$$f(q_0,0) = q_1, \quad f(q_0,1) = q_0, \quad f(q_1,0) = q_1, \quad f(q_1,1) = q_{rej}, \quad f(q_{rej},0) = q_{rej}, \quad f(q_{rej},1) = q_{rej}$$

Diagrama

Tabla de transiciones:

Palabras aceptadas:

Palabras rechazadas:

Ejercicio 5

Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma = \{a, b, c\}$, que acepte el conjunto de palabras que inician con la subcadena "ac" o terminan con la subcadena "ab".

$$AFD = (\Sigma, Q, f, q_0, F)$$

 $\Sigma = \{a, b, c\}$
 $Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6\}$
 $q_0 : Estadoinicial$
 $F = \{q_2, q_6\}$

Función de transición f:

$$f(q_0, a) = q_1, \quad f(q_1, c) = q_2, \quad f(q_0, a) = q_3, \quad f(q_3, b) = q_4, \quad f(q_4, a) = q_5, \quad f(q_5, b) = q_6$$

Diagrama

Tabla de transiciones:

Estado	a	b	c
q_0	q_1	q_{rej}	q_{rej}
q_1	q_{rej}	q_{rej}	q_2
q_2	q_2	q_2	q_2
q_3	q_5	q_4	q_{rej}
q_4	q_5	q_{rej}	q_{rej}
q_5	q_5	q_6	q_{rej}
q_6	q_6	q_6	q_6

Palabras aceptadas:

ac, ab, acab, acabab, acac

Palabras rechazadas:

Ejercicio 6

Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma = \{a, b, c\}$, que acepte el conjunto de palabras que inician con la subcadena "ac" y no terminan con la subcadena "ab".

$$AFD = (\Sigma, Q, f, q_0, F)$$

$$\Sigma = \{a, b, c\}$$

$$Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6\}$$

$$q_0 : Estadoinicial$$

$$F = \{q_2\}$$

Función de transición f:

$$f(q_0, a) = q_1, \quad f(q_1, c) = q_2, \quad f(q_2, a) = q_3, \quad f(q_3, b) = q_4, \quad f(q_4, a) = q_5, \quad f(q_5, b) = q_6$$

Diagrama:

Tabla de transiciones:

Estado	a	b	c
q_0	q_1	q_{rej}	q_{rej}
q_1	q_{rej}	q_{rej}	q_2
q_2	q_3	q_2	q_2
q_3	q_5	q_4	q_{rej}
q_4	q_5	q_{rej}	q_{rej}
q_5	q_5	q_6	q_{rej}
q_6	q_6	q_6	q_6

Palabras aceptadas:

 $ac, \quad acc, \quad aca, \quad acac, \quad acb$

Palabras rechazadas:

 $acab, \quad ab, \quad abc, \quad bca, \quad acaba$

Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma = \{a, b, c\}$, que acepte el conjunto de palabras que inician con la subcadena "ac" o no terminan con la subcadena "ab".

$$AFD = (\Sigma, Q, f, q_0, F)$$

 $\Sigma = \{a, b, c\}$
 $Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6\}$
 $q_0 : Estadoinicial$
 $F = \{q_2, q_6\}$

Función de transición f:

$$f(q_0, a) = q_1, \quad f(q_1, c) = q_2, \quad f(q_0, a) = q_3, \quad f(q_3, b) = q_4, \quad f(q_4, a) = q_5, \quad f(q_5, b) = q_6$$

Diagrama

Tabla de transiciones:

Estado	a	b	c
q_0	q_1	q_{rej}	q_{rej}
q_1	q_{rej}	q_{rej}	q_2
q_2	q_3	q_2	q_2
q_3	q_5	q_4	q_{rej}
q_4	q_5	q_{rej}	q_{rej}
q_5	q_5	q_6	q_{rej}
q_6	q_6	q_6	q_6

Palabras aceptadas:

ac, acc, aca, acac, acb

Palabras rechazadas:

ab, abc, bca, acab, acaba

Ejercicio 8

Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma = \{a, b, c\}$, que acepte el conjunto de palabras que no inician con la subcadena "ac" y no terminan con la subcadena "ab".

$$AFD = (\Sigma, Q, f, q_0, F)$$

$$\Sigma = \{a, b, c\}$$

$$Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6\}$$

$$q_0 : Estadoinicial$$

$$F = \{q_0, q_1, q_3, q_5\}$$

Función de transición f:

$$f(q_0, a) = q_1, \quad f(q_1, c) = q_2, \quad f(q_0, a) = q_3, \quad f(q_3, b) = q_4, \quad f(q_4, a) = q_5, \quad f(q_5, b) = q_6$$

Diagramaf:

Tabla de transiciones:

Estado	Entrada "a"	Entrada "b"	Entrada "c"	Estado de aceptación
start	<i>s</i> 8	s2	<i>s</i> 7	No
s2	s3	s2	s3	Sí
s3	s3	s5	s3	Sí
s5	<i>s</i> 8	s6	_	No
s6	_	_	s6	Sí
s7	_	_	_	No
s8	<i>s</i> 8	s5	_	No

Palabras aceptadas:

b, cba, aaac, bbccab, aa

Palabras rechazadas:

 $acb,\quad ac,\quad bbaab,\quad ab,\quad acabb$

Obtenga un Autómata Finito No Determinista (AFND) dado el lenguaje definido en el alfabeto $\Sigma = \{0, 1\}$, que acepte el conjunto de palabras que no contienen a la subcadena "01".

Tupla

$$Alfabeto : \Sigma = \{0, 1\}.$$

 $Conjunto de estados: Q = \{start, q_1, q_2\}.$

 $Estadoinicial: q_0 = start.$

 $Estado(s) deaceptaci\'on: F = \{q_1\} (los estados deaceptaci\'on tienen la marca decheck).$

Diagrama

Tabla de transacciones

Estado	0	1
start	q_1	start
q_1	q_1	q_2
q_2	q_2	q_2

Simulación

Palabras aceptadas

0, 1, 00, 111, 10

Palabras rechazadas

01, 001, 101, 0101, 0010

Ejercicio 10

Obtenga un Autómata Finito No Determinista (AFND) dado el lenguaje definido en el alfabeto $\Sigma = \{a, b, c\}$, que acepte el conjunto de palabras que inician en la subcadena "ac" y terminan en la subcadena "ab".

Tupla

$$\Sigma = \{0,1\}, \quad Q = \{start, q_1, q_2, q_4\}, \quad q_0 = start, \quad F = \{q_1\}.$$

Diagrama

Tabla de transiciones

Estado	Entrada0	Entrada1
start	q_1	q_2
q_1	q_4	q_2
q_2	q_2	q_4
q_4	q_4	q_4

Simulación

Palabras aceptadas

accab, acab, acaabcab, accbab, acbcabbab

Palabras rechazadas

ba, ab, ca, bac, ac

Conclusiones

En esta práctica diseñamos y analizamos automatas para comprender mejor los distintos patrones en un lenguaje. Vimos cómo se construyen y validan usando diagramas y tablas de transición, además de probarlos en el simulador. Esto nos ayudó a entender mejor cómo funcionan los autómatas y su aplicación en el procesamiento de cadenas.

Referencias Bibliográficas

References

- [1] . Hopcroft, J. E., Motwani, R., Ullman, J. D. (2007). Introduction to Automata Theory, Languages, and Computation. Pearson Education.
 - 2. Sipser, M. (2012). Introduction to the Theory of Computation. Cengage Learning.
 - 3. Linz, P.(2011). An Introduction to Formal Languages and Automata. Jones Bartlett Learning.