Dataflow analysis (ctd.)

Liveness: live variables

- Determine whether a given variable is used along a path from a given point to the exit.
- A variable x is *live at point p* if there is a path from p to the exit along which the value of x is used before it is redefined.
- Otherwise, the variable is dead at that point.
- Used in :
 - register allocation
 - dead code elimination

Example

```
a = 0;
do{
  b= a+1;
  c+=b;
  a=b*2;
}
while (a<N);
return c;</pre>
```


- Statement 4 makes use of variable b, then b is live in in(4) and in out(3)
- Block 3 dos not define b, then b is live also in in(3), and so in out(2)
- Block 2 defines b. Therefore the b is not live anymore in(2).
- The "live range" of variable b is: $\{2 \rightarrow 3, 3 \rightarrow 4\}$

- a is live on $4 \rightarrow 5$ e $5 \rightarrow 2$
- a è live on $1 \rightarrow 2$
- It is dead on $2 \rightarrow 3 \rightarrow 4$

- c is live starting from the beginning of the program:
- c is live in all points
- liveness analysis tells us that if there are no other program lines above, c is used without being initialized (and a warning message can be generated).

 Two registers are sufficient to store the three variables, as a and b are never alive at the same moment.

Live variables

What is safe?

- To assume that a variable is live at some point even if it may not be.
- The computed set of live variables at point p will be a superset of the actual set of live variables at p
- The computed set of dead variables at point p will be a subset of the actual set of dead variables at p
- Goal : make the set of live variables as small as possible (i.e. as close to the actual set as possible)

Live variables

- How are the **def** and **use** sets defined?
 - def[B] = {variables defined in B before being used}
 /* kill */
 - use[B] = {variables used in B before being defined}
 /* gen */
- What is the direction of the analysis?
 - backward
 - $in[B] = use[B] \cup (out[B] def[B])$

Live variables

- What is the confluence operator?
 - union
 - **out**[B] = \cup **in**[S], over the successors S of B

- How do we initialize?
 - start small
 - for each block B initialize in[B] = Ø or in[B] =
 use[B]

Liveness Analysis: the equations

```
\sigma gen<sub>LV</sub>(p)= use[p]
```

 \sim kill_{LV}(p) = def[n]

$$LV_{\texttt{exit}}(p) = \begin{cases} \emptyset & \text{if p is a final point} \\ \\ U & \text{LV}_{\texttt{entry}}(q) \mid q \text{ follows p in the CFG} \end{cases}$$

$$LV_{entry}(p) = gen_{LV}(p) U (LV_{exit}(p) \setminus kill_{LV}(p))$$

Liveness Analysis: the algorithm

```
for each n
   in[n]:={ }; out[n]:={ }
repeat
   for each n
         in'[n]:=in[n]; out'[n]:=out[n]
         in[n] := use[n] U (out[n] - def[n])
         out[n]:= U \{ in[m] \mid m \in succ[n] \}
until (for each n: in'[n]=in[n] && out'[n]=out[n])
```

```
for each n
    in[n]:={}; out[n]:={}

repeat
    for each n
        in'[n]:=in[n]; out'[n]:=out[n]
        in[n] := use[n] U (out[n] - def[n])
        out[n]:= U { in[m] | m ∈ succ[n]}

until ( per ogni n: in'[n]=in[n] && out'[n]=out[n])
```

			1		2		3	
	use	def	in	out	in	out	in	out
1		a				a		a
2	a	b	a		a	bс	a c	bс
3	b c	С	bс		bс	b	bс	b
4	b	a	b		b	a	b	a
5	a		a	а	a	a c	a c	a c
6	С		С		С		С	


```
for each n
    in[n]:={}; out[n]:={}

repeat
    for each n
        in'[n]:=in[n]; out'[n]:=out[n]
        in[n] := use[n] U (out[n] - def[n])
        out[n]:= U { in[m] | m ∈ succ[n]}

until ( per ogni n: in'[n]=in[n] && out'[n]=out[n])
```

			3		4		5	
	use	def	in	out	in	out	in	out
1		a		a		a c	С	a c
2	a	b	a c	bс	a c	bс	a c	bс
3	bс	С	bс	b	bс	b	bс	b
4	b	a	b	a	b	a c	b c	a c
5	a		a c	a c	a c	a c	a c	a c
6	С		С		С		С	


```
for each n
    in[n]:={}; out[n]:={}

repeat
    for each n
        in'[n]:=in[n]; out'[n]:=out[n]
        in[n] := use[n] U (out[n] - def[n])
        out[n]:= U { in[m] | m ∈ succ[n]}

until ( per ogni n: in'[n]=in[n] && out'[n]=out[n])
```

			5		6		7	
	use	def	in	out	in	out	in	out
1		a	С	a c	С	a c	С	a c
2	a	b	a c	bс	a c	bс	a c	bс
3	bс	С	bс	b	bс	b c	bс	bс
4	b	a	bс	a c	bс	a c	bс	a c
5	a		a c	a c	a c	a c	a c	a c
6	С		С		С		С	

 But reordering the nodes, i.e. starting from the bottom instead of from the top, we get much faster:

			1		2		3	
	use	def	in	out	in	out	in	out
6	С			С		С		С
5	a		С	ас	a c	a c	ас	a c
4	b	a	ас	bс	ас	bс	ас	bс
3	b c	С	bс	bс	bс	bс	bс	bс
2	a	b	bс	ас	bс	a c	bс	a c
1		a	ac	С	ac	С	ac	С

```
for each n
    in[n]:={}; out[n]:={}

repeat
    for each n
        in'[n]:=in[n]; out'[n]:=out[n]
        in[n] := use[n] U (out[n] - def[n])
        out[n]:= U { in[m] | m ∈ succ[n]}

until ( per ogni n: in'[n]=in[n] && out'[n]=out[n])
```

Time-Complexity

- A program has dimension N if the number of nodes in its CFD is N and it has at most N variables.
- Each set live-in (or live-out) has at most N elements
- Each union operation has complexity O(N)
- The for cycle computes a fixed number of union operators for each node in the graph. As the number of nodes in O(N) the for cycle has complexity O(N²)

```
for each n
    in[n]:={}; out[n]:={}

repeat
    for each n
        in'[n]:=in[n]; out'[n]:=out[n]
        in[n] := use[n] U (out[n] - def[n])
        out[n]:= U { in[m] | m ∈ succ[n]}

until ( per ogni n: in'[n]=in[n] && out'[n]=out[n])
```

Time Complexity

- Each iteration of the repeat cycle may just add new elements to the sets live-in and live-out (it's monotonic), and the sets cannot grow indefinitely, as their size is at most N. These sets are at most 2N. Therefore there are at most 2N² iterations.
- The worst overall complexity of the algorithm is O(N⁴).
- By reordering the nodes of the CFG, and because of the sparsity of live-in and live-out, in the practice the complexity is between O(N) and O(N²).

The analysis is conservative

- 1. in[n] = use[n] U (out[n] def[n])
- 2. $out[n] = U \{ in[m] \mid m \in succ[n] \}$
- If d is another variable unused in this code fragment, both X and Y are solutions of the two equations, while Z does not.

			Χ		Υ		Z	
	use	def	in	out	in	out	in	out
1		a	С	ас	cd	acd	С	a c
2	a	b	ас	bс	acd	bcd	ас	b
3	bс	С	bс	bс	bcd	bcd	b	b
4	b	a	bс	ас	bcd	acd	b	a c
5	a		ас	ас	acd	acd	ас	a c
6	С		С		С		С	

- Determine which expressions have already been evaluated at each point.
- A expression x+y is available at point p if every path from the entry to p evaluates x+y and after the last such evaluation prior to reaching p, there are no assignments to x or y
- Used in :
 - global common subexpression elimination

Example

What is safe?

- To assume that an expression is **not** available at some point even if it may be.
- The computed set of available expressions at point p will be a subset of the actual set of available expressions at p
- The computed set of unavailable expressions at point p will be a superset of the actual set of unavailable expressions at p
- Goal : make the set of available expressions as large as possible (i.e. as close to the actual set as possible)

- How are the gen and kill sets defined?
 - gen[B] = {expressions evaluated in B without subsequently redefining its operands}
 - kill[B] = {expressions whose operands are redefined in B without reevaluating the expression afterwards}
- What is the direction of the analysis?
 - forward
 - out[B] = gen[B] \cup (in[B] kill[B])

- What is the confluence operator?
 - intersection
 - $in[B] = \cap out[P]$, over the predecessors P of B

- How do we initialize?
 - start large
 - for the first block B_1 initialize **out**[B_1] = **gen**[B_1]
 - for each block B initialize out[B] = U-kill[B]

Avaliable Expressions: equations

$$AE_{entry}(p) = \begin{cases} \emptyset & \text{for inititial point p} \\ \\ \\ \cap \{AE_{exit}(q) \mid (q,p) \text{ in the CFD} \} \end{cases}$$

$$AE_{exit}(p) = gen_{AF}(p) U (AE_{entry}(p) \setminus kill_{AF}(p))$$

Equations

n	kill _{AE} (n)	gen _{AE} (n)
1	Ø	{a+b}
2	Ø	{a*b}
3	Ø	{a+b}
4	{a+b, a*b,a+1}	Ø
5	Ø	{a+b}

$$AE_{entry}(p) = \begin{cases} \emptyset & \text{for iniitial point p} \\ \\ \bigcap \left\{ AE_{exit}(q) \mid (q,p) \text{ in CFD} \right\} \end{cases}$$

$$AE_{exit}(p) = (AE_{entry}(p) \setminus kill_{AE}(p)) \quad U \quad gen_{AE}(p)$$

$$AE_{entry}(1) = \emptyset$$

$$AE_{entry}(2) = AE_{exit}(1)$$

$$AE_{entry}(3) = AE_{exit}(2) \cap AE_{exit}(5)$$

$$AE_{entry}(4) = AE_{exit}(3)$$

$$AE_{entry}(5) = AE_{exit}(4)$$

$$AE_{exit}(1) = AE_{entry}(1) \cup \{a+b\}$$

 $AE_{exit}(4) = AE_{entry}(4) - \{a+b, a*b, a+1\}$

 $AE_{exit}(2) = AE_{entry}(2) U \{a*b\}$

 $AE_{exit}(3) = AE_{entry}(3) U \{a+b\}$

 $AE_{exit}(5) = AE_{entry}(5) U \{a+b\}$

Solution

$$\begin{split} &\mathsf{AE}_{\mathtt{entry}}(1) = \varnothing \\ &\mathsf{AE}_{\mathtt{entry}}(2) \!=\! \mathsf{AE}_{\mathtt{exit}}(1) \\ &\mathsf{AE}_{\mathtt{entry}}(3) \!=\! \mathsf{AE}_{\mathtt{exit}}(2) \, \cap \, \mathsf{AE}_{\mathtt{exit}}(5) \\ &\mathsf{AE}_{\mathtt{entry}}(4) \!=\! \mathsf{AE}_{\mathtt{exit}}(3) \\ &\mathsf{AE}_{\mathtt{entry}}(5) \!=\! \mathsf{AE}_{\mathtt{exit}}(4) \end{split}$$

$AE_{exit}(1) = AE_{entry}(1) U \{a+b\}$
$AE_{exit}(2) = AE_{entry}(2) U \{a*b\}$
$AE_{exit}(3) = AE_{entry}(3) U \{a+b\}$
$AE_{exit}(4) = AE_{entry}(4) - \{a+b, a*b, a+1\}$
$AF(5) = AF(5) U \{a+b\}$

n	AE _{entry} (n)	AE _{exit} (n)
1	Ø	{a+b}
2	{a+b}	{a+b, a*b}
3	{a+b}	{a+b}
4	{a+b}	Ø
5	Ø	{a+b}

Result

• $[x:=a+b]^1$; $[y:=a*b]^2$; while $[y>a+b]^3$ do $\{[a:=a+1]^4$; $[x:=a+b]^5\}$

n	AE _{entry} (n)	AE _{exit} (n)
1	Ø	{a+b}
2	{a+b}	{a+b, a*b}
3	{a+b}	{a+b}
4	{a+b}	Ø
5	Ø	{a+b}

- Even though the expression a is redefined in the cycle (in 4), the expression a+b is always available ai the entry of the cycle (in 3).
- Viceversa, a*b is available at the first entry of the cycle but it is killed before the next iteration (in 4).

Very Busy Expressions

- Determine whether an expression is evaluated in all paths from a point to the exit.
- An expression e is very busy at point p if no matter what path is taken from p, e will be evaluated before any of its operands are defined.
- Used in:
 - Code hoisting
 - If e is very busy at point p, we can move its evaluation at p.

Example

```
if [a>b]^1 then ([x:=b-a]^2; [y:=a-b]^3) else ([y:=b-a]^4; [x:=a-b]^5)
```

The two expressions a-b and b-a are both very busy in program point 1.

Very Busy Expressions

What is safe?

- To assume that an expression is not very busy at some point even if it may be.
- The computed set of very busy expressions at point p will be a subset of the actual set of available expressions at p
- Goal: make the set of very busy expressions as large as possible (i.e. as close to the actual set as possible)