Crash Course in Matrix Algebra

Sven Otto

September 9, 2023

Table of contents

W	elcon		4		
	Acc	ompanying R scripts	4		
	Con	nments	4		
1	Basic definitions				
	1.1	Scalar, vector, and matrix	5		
	1.2	Some specific matrices	6		
	1.3	Transposition	7		
	1.4	Matrices in R	7		
2	Sums and Products				
	2.1	Matrix summation	9		
	2.2	Scalar-matrix multiplication	9		
	2.3	Element-by-element operations in R	10		
	2.4	Vector-vector multiplication	11		
		2.4.1 Inner product	11		
		2.4.2 Outer product	11		
		2.4.3 Vector multiplication in R	12		
	2.5	Matrix-matrix multiplication	12		
3	Rank and inverse				
	3.1	Linear combination	15		
	3.2	Column rank	15		
	3.3	Nonsingular matrix	17		
	3.4	Determinant	17		
	3.5	Inverse matrix	18		
4	Adv	vanced concepts 2	20		
	4.1	Trace	20		
	4.2	Idempotent matrx	21		
	4.3	Eigendecomposition	21		
		4.3.1 Eigenvalues	21		
		4.3.2 Eigenvectors	22		
			22		
			22		
	4 4		23		

	4.5	Cholesky decomposition
	4.6	Vectorization
	4.7	Kronecker product
	4.8	Vector and matrix norm
5	Mat	rix calculus 27
	5.1	Gradient
	5.2	Hessian
	5.3	Optimization
6	Pro	blems 29
		Problem 1
		Problem 2
		Problem 3
		Problem 4
		Problem 5
		Problem 6
	6.1	Solutions

Welcome

Due to the multivariate character of many econometric topics, matrix algebra is a commonly used tool in modern econometrics. It provides a powerful and efficient framework for representing and manipulating systems of linear equations. This short lecture note series provides a brief introduction to the most relevant matrix algebra concepts for econometricians and their implementation in R.

To learn R or refresh your skills, please check out my tutorial Getting Started With R.

Accompanying R scripts

All R codes of the different sections can be found here:

- matrix-sec1.R
- matrix-sec2.R
- matrix-sec3.R
- matrix-sec4.R

Comments

Feedback is welcome. If you notice any typos or issues, please report them on GitHub or email me at sven.otto@uni-koeln.de.

1 Basic definitions

Let's start with some basic definitions and specific examples.

1.1 Scalar, vector, and matrix

A scalar a is a single real number. We write $a \in \mathbb{R}$.

A vector \boldsymbol{a} of length k is a $k \times 1$ list of real numbers

$$\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_k \end{pmatrix}.$$

By default, when we refer to a vector, we always mean a column vector. We write $\mathbf{a} \in \mathbb{R}^k$. The value a_i is called *i*-th entry or *i*-th component of \mathbf{a} . A scalar is a vector of length 1. A row vector of length k is written as $\mathbf{b} = (b_1, \dots, b_k)$.

A matrix \boldsymbol{A} of order $k \times m$ is a rectangular array of real numbers

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{km} \end{pmatrix}$$

with k rows and m columns. We write $\mathbf{A} \in \mathbb{R}^{k \times m}$. The value a_{ij} is called (i,j)-th entry or (i,j)-th component of \mathbf{A} . We also use the notation $(\mathbf{A})_{i,j}$ to denote the (i,j)-th entry. A vector of length k is a $k \times 1$ matrix. A row vector of length k is a $1 \times k$ matrix. A scalar is a matrix of order 1×1 .

We may describe a matrix A by its column or row vectors as

$$m{A} = egin{pmatrix} m{a}_1 & m{a}_2 & ... & m{a}_m \end{pmatrix} = egin{pmatrix} m{lpha}_1 \ dots \ m{lpha}_k \end{pmatrix},$$

where

$$\mathbf{a}_i = \begin{pmatrix} a_{1i} \\ \vdots \\ a_{ki} \end{pmatrix}$$

is the *i*-th column of \pmb{A} and $\pmb{\alpha}_i = (a_{i1}, \dots, a_{im})$ is the *i*-th row.

1.2 Some specific matrices

A matrix is called **square matrix** if the numbers of rows and columns coincide (i.e., k = m).

$$\mathbf{B} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

is a square matrix. A square matrix is called **diagonal matrix** if all off-diagonal elements are zero.

$$C = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}$$

is a diagonal matrix. We also write C = diag(1,4). A square matrix is called **upper triangular** if all elements below the main diagonal are zero, and **lower triangular** if all elements above the main diagonal are zero. Examples of an upper triangular matrix D and a lower triangular matrix E are

$$D = \begin{pmatrix} 1 & 2 \\ 0 & 4 \end{pmatrix}, \quad E = \begin{pmatrix} 1 & 0 \\ 3 & 4 \end{pmatrix}.$$

The $k \times k$ diagonal matrix

$$\boldsymbol{I}_k = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} = \operatorname{diag}(1, \dots, 1)$$

is called **identity matrix** of order k. The $k \times m$ matrix

$$\mathbf{0}_{k \times m} = \begin{pmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix}$$

is called **zero matrix**. The **zero vector** of length k is

$$\mathbf{0}_k = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$
 .

If the order becomes clear from the context, we omit the indices and write I for the identity matrix and 0 for the zero matrix or zero vector.

1.3 Transposition

The **transpose** A' of the matrix A is obtained by flipping rows and columns on the main diagonal:

$$m{A}' = egin{pmatrix} a_{11} & a_{21} & \cdots & a_{k1} \\ a_{12} & a_{22} & \cdots & a_{k2} \\ dots & dots & dots \\ a_{1m} & a_{2m} & \cdots & a_{km} \end{pmatrix}.$$

If **A** is a matrix of order $k \times m$, then **A**' is a matrix of order $m \times k$. Example:

$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 4 & 5 \\ 7 & 8 \end{pmatrix} \quad \Rightarrow \quad \mathbf{A}' = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \end{pmatrix}$$

The definition implies that transposing twice produces the original matrix:

$$(\mathbf{A}')' = \mathbf{A}.$$

The transpose of a (column) vector is a row vector:

$$\mathbf{a}' = (a_1, \dots, a_k)$$

A symmetric matrix is a square matrix A with A' = A. An example of a symmetric matrix is

$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}.$$

1.4 Matrices in R

Let's define some matrices in R:

A =
$$matrix(c(1,4,7,2,5,8), nrow = 3, ncol = 2)$$

A

t(A) #transpose of A

```
[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2
         5 8
 A[3,2] #the (3,2)-entry of A
[1] 8
 B = matrix(c(1,2,2,4), nrow = 2, ncol = 2) # another matrix
 all(B == t(B)) #check whether B is symmetric
[1] TRUE
 diag(c(1,4)) #diagonal matrix
    [,1] [,2]
[1,] 1 0
[2,] 0 4
 diag(1, nrow = 3) #identity matrix
   [,1] [,2] [,3]
[1,]
    1
           0
[2,]
      0
           1
               0
[3,]
           0
      0
               1
 matrix(0, nrow=2, ncol=5) #matrix of zeros
    [,1] [,2] [,3] [,4] [,5]
[1,] 0
           0 0 0 0
[2,] 0 0
             0
                 0
                        0
 dim(A) #number of rows and columns
[1] 3 2
```

2 Sums and Products

2.1 Matrix summation

Let **A** and **B** both be matrices of order $k \times m$. Their sum is defined componentwise:

$$\boldsymbol{A} + \boldsymbol{B} = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1m} + b_{1m} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2m} + b_{2m} \\ \vdots & \vdots & & \vdots \\ a_{k1} + b_{k1} & a_{k2} + b_{k2} & \cdots & a_{km} + b_{km} \end{pmatrix}.$$

Only two matrices of the same order can be added. Example:

$$A = \begin{pmatrix} 2 & 0 \\ 1 & 5 \\ 3 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 1 \\ 7 & 1 \\ -5 & 2 \end{pmatrix}, \quad A + B = \begin{pmatrix} 1 & 1 \\ 8 & 6 \\ -2 & 4 \end{pmatrix}.$$

The matrix summation satisfies the following rules:

$$\begin{array}{ll} \text{(i)} & \boldsymbol{A}+\boldsymbol{B}=\boldsymbol{B}+\boldsymbol{A} & \text{(commutativity)} \\ \text{(ii)} & (\boldsymbol{A}+\boldsymbol{B})+\boldsymbol{C}=\boldsymbol{A}+(\boldsymbol{B}+\boldsymbol{C}) & \text{(associativity)} \\ \text{(iii)} & \boldsymbol{A}+\boldsymbol{0}=\boldsymbol{A} & \text{(identity element)} \\ \text{(iv)} & (\boldsymbol{A}+\boldsymbol{B})'=\boldsymbol{A}'+\boldsymbol{B}' & \text{(transposition)} \end{array}$$

(iii)
$$A + 0 = A$$
 (identity element)

(iv)
$$(A+B)' = A' + B'$$
 (transposition)

2.2 Scalar-matrix multiplication

The product of a $k \times m$ matrix \boldsymbol{A} with a scalar $\lambda \in \mathbb{R}$ is defined componentwise:

$$\lambda \pmb{A} = \begin{pmatrix} \lambda a_{11} & \lambda a_{12} & \cdots & \lambda a_{1n} \\ \lambda a_{21} & \lambda a_{22} & \cdots & \lambda a_{2n} \\ \vdots & \vdots & & \vdots \\ \lambda a_{m1} & \lambda a_{m2} & \cdots & \lambda a_{mn} \end{pmatrix}.$$

Example:

$$\lambda = 2, \quad \boldsymbol{A} = \begin{pmatrix} 2 & 0 \\ 1 & 5 \\ 3 & 2 \end{pmatrix}, \quad \lambda \boldsymbol{A} = \begin{pmatrix} 4 & 0 \\ 2 & 10 \\ 6 & 4 \end{pmatrix}.$$

Scalar-matrix multiplication satisfies the distributivity law:

(i)
$$\lambda(\mathbf{A} + \mathbf{B}) = \lambda \mathbf{A} + \lambda \mathbf{B}$$

(ii)
$$(\lambda + \mu)\mathbf{A} = \lambda \mathbf{A} + \mu \mathbf{A}$$

2.3 Element-by-element operations in R

Basic arithmetic operations work on an element-by-element basis in R:

```
A = matrix(c(2,1,3,0,5,2), ncol=2)
B = matrix(c(-1,7,-5,1,1,2), ncol=2)
A+B #matrix summation
```

- [,1] [,2]
- [1,] 1 1
- [2,] 8 6
- [3,] -2 4

A-B #matrix subtraction

- [1,] 3 -1
- [2,] -6 4
- [3,] 8 0

2*A #scalar-matrix product

- [1,] 4 0
- [2,] 2 10
- [3,] 6 4

A/2 #division of entries by 2

- [1,] 1.0 0.0
- [2,] 0.5 2.5
- [3,] 1.5 1.0

A*B #element-wise multiplication

2.4 Vector-vector multiplication

2.4.1 Inner product

The inner product (also known as dot product) of two vectors $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^k$ is

$$\pmb{a}'\pmb{b} = a_1b_1 + a_2b_2 + ... + a_kb_k = \sum_{i=1}^k a_ib_i \in \mathbb{R}.$$

Example:

$$a = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad b = \begin{pmatrix} -2 \\ 0 \\ 2 \end{pmatrix}, \quad a'b = 1 \cdot (-2) + 2 \cdot 0 + 3 \cdot 2 = 4.$$

The inner product is commutative:

$$a'b = b'a$$

Two vectors \mathbf{a} and \mathbf{b} are called **orthogonal** if $\mathbf{a}'\mathbf{b} = 0$. The vectors \mathbf{a} and \mathbf{b} are called **orthonormal** if, in addition to $\mathbf{a}'\mathbf{b}$, we have $\mathbf{a}'\mathbf{a} = 1$ and $\mathbf{b}'\mathbf{b} = 1$.

2.4.2 Outer product

The outer product (also known as dyadic product) of two vectors $\boldsymbol{x} \in \mathbb{R}^k$ and $\boldsymbol{y} \in \mathbb{R}^m$ is

$$m{xy}' = egin{pmatrix} x_1y_1 & x_1y_2 & \dots & x_1y_m \ x_2y_1 & x_2y_2 & \dots & x_2y_m \ dots & dots & dots \ x_ky_1 & x_ky_2 & \dots & x_ky_m \end{pmatrix} \in \mathbb{R}^{k imes m}.$$

Example:

$$m{x} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \quad m{y} = \begin{pmatrix} -2 \\ 0 \\ 2 \end{pmatrix}, \quad m{xy'} = \begin{pmatrix} -2 & 0 & 2 \\ -4 & 0 & 4 \end{pmatrix}.$$

2.4.3 Vector multiplication in R

For vector multiplication in R, we use the operator %*% (recall that * is already reserved for element-wise multiplication). Let's implement some multiplications.

```
y = c(2,7,4,1) #y is treated as a column vector t(y) %*% y #the inner product of y with itself
```

y %*% t(y) #the outer product of y with itself

$$c(1,2)$$
 %*% $t(c(-2,0,2))$ #the example from above

2.5 Matrix-matrix multiplication

The **matrix product** of a $k \times m$ matrix \boldsymbol{A} and a $m \times n$ matrix \boldsymbol{B} is the $k \times n$ matrix $\boldsymbol{C} = \boldsymbol{A}\boldsymbol{B}$ with the components

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{im}b_{mj} = \sum_{l=1}^{m} a_{il}b_{lj} = \mathbf{a}_{i}'\mathbf{b}_{j},$$

where $\mathbf{a}_i = (a_{i1}, \dots, a_{im})'$ is the *i*-th row of \mathbf{A} written as a column vector, and $\mathbf{b}_j = (b_{1j}, \dots, b_{mj})'$ is the *j*-th column of \mathbf{B} . The full matrix product can be written as

$$egin{aligned} m{A}m{B} = egin{pmatrix} m{a}_1' \ dots \ m{a}_k' \end{pmatrix} egin{pmatrix} m{b}_1 & \dots & m{b}_n \end{pmatrix} = egin{pmatrix} m{a}_1'm{b}_1 & \dots & m{a}_1'm{b}_n \ dots & & dots \ m{a}_k'm{b}_1 & \dots & m{a}_k'm{b}_n \end{pmatrix}. \end{aligned}$$

The matrix product is only defined if the number of columns of the first matrix equals the number of rows of the second matrix. Therefore, we say that the $k \times m$ matrix A and the $m \times n$ matrix B are conformable for matrix multiplication.

Example: Let

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 2 \\ -3 & 0 \end{pmatrix}.$$

Their matrix product is

$$\begin{split} \mathbf{AB} &= \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} -1 & 2 \\ -3 & 0 \end{pmatrix} \\ &= \begin{pmatrix} 1 \cdot (-1) + 0 \cdot (-3) & 1 \cdot 2 + 0 \cdot 0 \\ 0 \cdot (-1) + 1 \cdot (-3) & 0 \cdot 2 + 1 \cdot 0 \\ 2 \cdot (-1) + 1 \cdot (-3) & 2 \cdot 2 + 1 \cdot 0 \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ -3 & 0 \\ -5 & 4 \end{pmatrix}. \end{split}$$

The %*% operator is used in R for matrix-matrix multiplications:

Matrix multiplication is **not commutative**. In general, we have $AB \neq BA$. Example:

$$\mathbf{AB} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 5 \\ 7 & 11 \end{pmatrix} ,$$
$$\mathbf{BA} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 4 & 6 \\ 7 & 10 \end{pmatrix} .$$

Even if neither of the two matrices contains zeros, the matrix product can give the zero matrix:

$$AB = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} 2 & -4 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \mathbf{0}.$$

The following rules of calculation apply (provided the matrices are conformable):

```
A(BC) = (AB)C
  (i)
                                             (associativity)
  (ii)
       A(B+D)
                       AB + AD
                                             (distributivity)
       (B+D)C = BC+DC
 (iii)
                                            (distributivity)
 (iv)
           \boldsymbol{A}(\lambda \boldsymbol{B}) = \lambda(\boldsymbol{A}\boldsymbol{B})
                                    (scalar commutativity)
             AI_n = A
 (v)
                                         (identity element)
             I_m A = A
                                         (identity element)
 (vi)
           (AB)'
                    = B'A'
(vii)
                                   (product transposition)
         (ABC)' = C'B'A'
                                   (product transposition)
(viii)
```

3 Rank and inverse

3.1 Linear combination

Let $\pmb{x}_1,\dots,\pmb{x}_n$ be vectors of the same order, and let $\lambda_1,\dots,\lambda_n$ be scalars. The vector

$$\lambda_1 \boldsymbol{x}_1 + \lambda_2 \boldsymbol{x}_2 + \ldots + \lambda_n \boldsymbol{x}_n$$

is called **linear combination** of $\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n$. A linear combination can also be written as a matrix-vector product. Let $\boldsymbol{X}=\begin{pmatrix} \boldsymbol{x}_1 & \dots & \boldsymbol{x}_n \end{pmatrix}$ be the matrix with columns $\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n$, and let $\boldsymbol{\lambda}=(\lambda_1,\ldots,\lambda_n)'$. Then,

$$\lambda_1 \boldsymbol{x}_1 + \lambda_2 \boldsymbol{x}_2 + \ldots + \lambda_n \boldsymbol{x}_n = \boldsymbol{X} \boldsymbol{\lambda}.$$

The vectors $\mathbf{x}_1, \dots, \mathbf{x}_n$ are called **linearly dependent** if at least one can be written as a linear combination of the others. That is, there exists a nonzero vector λ with

$$\boldsymbol{X}\boldsymbol{\lambda} = \lambda_1\boldsymbol{x}_1 + \ldots + \lambda_n\boldsymbol{x}_n = \boldsymbol{0}.$$

The vectors $\pmb{x}_1,\dots,\pmb{x}_n$ are called linearly independent if

$$X\lambda = \lambda_1 x_1 + ... + \lambda_n x_n \neq 0$$

for all nonzero vectors λ .

To check whether the vectors are linearly independent, we can solve the system of equations $X\lambda = 0$ by Gaussian elimination. If $\lambda = 0$ is the only solution, then the columns of X are linearly independent. If there is a solution λ with $\lambda \neq 0$, then the columns of X are linearly dependent.

3.2 Column rank

The rank of a $k \times m$ matrix $\mathbf{A} = (\mathbf{a}_1 \dots \mathbf{a}_m)$, written as rank (\mathbf{A}) , is the number of linearly independent columns \mathbf{a}_i . We say that \mathbf{A} has full column rank if rank $(\mathbf{X}) = m$.

The identity matrix I_k has full column rank (i.e., rank(I_n) = k). As another example, consider

$$\boldsymbol{X} = \begin{pmatrix} 2 & 1 & 4 \\ 0 & 1 & 2 \end{pmatrix},$$

which has linearly dependent columns since the third column is a linear combination of the first two columns:

$$\begin{pmatrix} 4 \\ 2 \end{pmatrix} = 1 \begin{pmatrix} 2 \\ 0 \end{pmatrix} + 2 \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

The first two columns are linearly independent since $\lambda_1=0$ and $\lambda_2=0$ are the only solutions to the equation

$$\lambda_1 \begin{pmatrix} 2 \\ 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Therefore, we have rank(X) = 2, i.e., X does not have a full column rank.

Some useful properties are

- i) $rank(\mathbf{A}) \leq min(k, m)$
- ii) $rank(\mathbf{A}) = rank(\mathbf{A}')$
- iii) $rank(\mathbf{AB}) = min(rank(\mathbf{A}), rank(\mathbf{B}))$
- iv) $rank(\mathbf{A}) = rank(\mathbf{A}'\mathbf{A}) = rank(\mathbf{A}\mathbf{A}')$.

We can use the qr() function to extract the rank in R. Let's compute the rank of the matrices

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 9 & 1 \\ 0 & 11 & 5 \end{pmatrix},$$

 $\boldsymbol{B} = \boldsymbol{I}_3$, and \boldsymbol{X} from the example above:

```
A = matrix(c(1,3,0,2,9,11,3,1,5), nrow=3)
qr(A)$rank
```

[1] 3

```
B = matrix(c(1,1,1,1,1,1,1,1,1), nrow=3)
qr(B)$rank
```

[1] 1

```
X = matrix(c(2,0,1,1,4,2), ncol=3)
qr(X)$rank
```

[1] 2

3.3 Nonsingular matrix

A square $k \times k$ matrix \boldsymbol{A} is called **nonsingular** if it has full rank, i.e., rank(\boldsymbol{A}) = k. Conversely, \boldsymbol{A} is called **singular** if it does not have full rank, i.e., rank(\boldsymbol{A}) < k.

3.4 Determinant

Consider a square $k \times k$ matrix \boldsymbol{A} . The determinant $\det(\boldsymbol{A})$ is a measure of the volume of the geometric object formed by the columns of \boldsymbol{A} (a parallelogram for k=2, a parallelepiped for k=3, a hyper-parallelepiped for k>3). For 2×2 matrices, the determinant is easy to calculate:

$$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad \det(\mathbf{A}) = ad - bc.$$

If A is triangular (upper or lower), the determinant is the product of the diagonal entries, i.e., $\det(A) = \prod_{i=1}^k a_{ii}$. Hence, Gaussian elimination can be used to compute the determinant by transforming the matrix to a triangular one. The exact definition of the determinant is technical and of little importance to us. A useful relation is the following:

$$det(\mathbf{A}) = 0 \Leftrightarrow \mathbf{A}$$
 is singular $det(\mathbf{A}) \neq 0 \Leftrightarrow \mathbf{A}$ is nonsingular.

In R, we have the det() function to compute the determinant:

[1] 103

det(B)

[1] 0

Since $det(\mathbf{A}) \neq 0$ and $det(\mathbf{B}) = 0$, we conclude that \mathbf{A} is nonsingular and \mathbf{B} is singular.

3.5 Inverse matrix

The **inverse** A^{-1} of a square $k \times k$ matrix A is defined by the property

$$AA^{-1} = A^{-1}A = I_k$$
.

When multiplied from the left or the right, the inverse matrix produces the identity matrix. The inverse exists if and only if \mathbf{A} is nonsingular, i.e., $\det(\mathbf{A}) \neq 0$. Therefore, a nonsingular matrix is also called **invertible matrix**. Note that only square matrices can be inverted.

For 2×2 matrices, there exists a simple formula:

$$m{A}^{-1} = rac{1}{\det(m{A})} egin{pmatrix} d & -b \ -c & a \end{pmatrix} \,,$$

where $\det(\mathbf{A}) = ad - bc$. We swap the main diagonal elements, reverse the sign of the off-diagonal elements, and divide all entries by the determinant. Example:

$$\mathbf{A} = \begin{pmatrix} 5 & 6 \\ 1 & 2 \end{pmatrix}$$

We have $det(\mathbf{A}) = ad - bc = 5 \cdot 2 - 6 \cdot 1 = 4$, and

$$\mathbf{A}^{-1} = \frac{1}{4} \cdot \begin{pmatrix} 2 & -6 \\ -1 & 5 \end{pmatrix}.$$

Indeed, A^{-1} is the inverse of A since

$$\boldsymbol{A}\boldsymbol{A}^{-1} = \begin{pmatrix} 5 & 6 \\ 1 & 2 \end{pmatrix} \cdot \frac{1}{4} \cdot \begin{pmatrix} 2 & -6 \\ -1 & 5 \end{pmatrix} = \frac{1}{4} \cdot \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \boldsymbol{I}_2.$$

One way to calculate the inverse of higher order square matrices is to solve equation $AA^{-1} = I$ with Gaussian elimination. R can compute the inverse matrix quickly using the function solve():

solve(A) #inverse if A

- [1,] 0.3300971 0.22330097 -0.24271845
- [2,] -0.1456311 0.04854369 0.07766990
- [3,] 0.3203883 -0.10679612 0.02912621

We have the following relationship between invertibility, rank, and determinant of a square matrix \boldsymbol{A} :

 \boldsymbol{A} is nonsingular

- all columns of \boldsymbol{A} are linearly independent
- \Leftrightarrow **A** has full column rank
- \Leftrightarrow the determinant is nonzero $(\det(\mathbf{A}) \neq 0)$.

Similarly,

 \boldsymbol{A} is singular

- \Leftrightarrow **A** has linearly dependent columns
- \Leftrightarrow **A** does not have full rank
- \Leftrightarrow the determinant is zero $(\det(\mathbf{A}) = 0)$.

Below you will find some important properties for nonsingular matrices:

- i) $(A^{-1})^{-1} = A$ ii) $(A')^{-1} = (A^{-1})'$
- ii) $(\mathbf{A}) = (\mathbf{A})$ iii) $(\lambda \mathbf{A})^{-1} = \frac{1}{\lambda} \mathbf{A}^{-1}$ for any $\lambda \neq 0$ iv) $\det(\mathbf{A}^{-1}) = \frac{1}{\det(\mathbf{A})}$ v) $(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$

- vi) $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$
- vii) If \mathbf{A} is symmetric, then \mathbf{A}^{-1} is symmetric.

4 Advanced concepts

4.1 Trace

The **trace** of a $k \times k$ square matrix **A** is the sum of the diagonal entries:

$$\operatorname{tr}(\boldsymbol{A}) = \sum_{i=1}^{n} a_{ii}$$

Example:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 9 & 1 \\ 0 & 11 & 5 \end{pmatrix} \Rightarrow tr(A) = 1 + 9 + 5 = 15$$

In Rwe have

```
A = matrix(c(1,3,0,2,9,11,3,1,5), nrow=3)

sum(diag(A)) #trace = sum of diagonal entries
```

[1] 15

The following properties hold for square matrices \boldsymbol{A} and \boldsymbol{B} and scalars λ :

- i) $\operatorname{tr}(\lambda \boldsymbol{A}) = \lambda \operatorname{tr}(\boldsymbol{A})$
- ii) $\operatorname{tr}(\boldsymbol{A} + \boldsymbol{B}) = \operatorname{tr}(\boldsymbol{A}) + \operatorname{tr}(\boldsymbol{B})$
- iii) $\operatorname{tr}(\boldsymbol{A}') = \operatorname{tr}(\boldsymbol{A})$
- iv) $\operatorname{tr}(\boldsymbol{I}_k) = k$

For $\boldsymbol{A} \in \mathbb{R}^{k \times m}$ and $\boldsymbol{B} \in \mathbb{R}^{m \times k}$ we have

$$tr(\mathbf{AB}) = tr(\mathbf{BA}).$$

4.2 Idempotent matrx

The square matrix A is called **idempotent** if AA = A. The identity matrix is idempotent: $I_nI_n = I_n$. Another example is the matrix

$$\mathbf{A} = \begin{pmatrix} 4 & -1 \\ 12 & -3 \end{pmatrix}.$$

We have

$$\mathbf{AA} = \begin{pmatrix} 4 & -1 \\ 12 & -3 \end{pmatrix} \begin{pmatrix} 4 & -1 \\ 12 & -3 \end{pmatrix} \\
= \begin{pmatrix} 16 - 12 & -4 + 3 \\ 48 - 36 & -12 + 9 \end{pmatrix} \\
= \begin{pmatrix} 4 & -1 \\ 12 & -3 \end{pmatrix} = \mathbf{A}.$$

4.3 Eigendecomposition

4.3.1 Eigenvalues

An eigenvalue λ of a $k \times k$ square matrix is a solution to the equation

$$\det(\lambda \pmb{I}_k - \pmb{A}) = 0.$$

The function $f(\lambda) = \det(\lambda \boldsymbol{I}_k - \boldsymbol{A})$ has exactly k roots so that $\det(\lambda \boldsymbol{I}_k - \boldsymbol{A}) = 0$ has exactly k solutions. The solutions $\lambda_1, \dots, \lambda_k$ are the k eigenvalues of \boldsymbol{A} .

Most applications of eigenvalues in econometrics concern symmetric matrices. In this case, all eigenvalues are real-valued. In the case of non-symmetric matrices, some eigenvalues may be complex-valued.

Useful properties of the eigenvalues of a symmetric $k \times k$ matrix are:

- i) $\det(\mathbf{A}) = \lambda_1 \cdot \dots \cdot \lambda_k$
- ii) $tr(\mathbf{A}) = \lambda_1 + \dots + \lambda_k$
- iii) \boldsymbol{A} is nonsingular if and only if all eigenvalues are nonzero
- iv) AB and BA have the same eigenvalues.

4.3.2 Eigenvectors

If λ_i is an eigenvalue of \boldsymbol{A} , then $\lambda_i \boldsymbol{I}_k - \boldsymbol{A}$ is singular, which implies that there exists a linear combination vector \boldsymbol{v}_i with $(\lambda_i \boldsymbol{I}_k - \boldsymbol{A}) \boldsymbol{v}_i = \boldsymbol{0}$. Equivalently,

$$Av_i = \lambda_i v_i$$

which can be solved by Gaussian elimination. It is convenient to normalize any solution such that $\boldsymbol{v}_i'\boldsymbol{v}_i=1$. The solutions $\boldsymbol{v}_1,\ldots,\boldsymbol{v}_k$ are called eigenvectors of \boldsymbol{A} to corresponding eigenvalues $\lambda_1,\ldots,\lambda_k$.

4.3.3 Spectral decomposition

If \boldsymbol{A} is symmetric, then $\boldsymbol{v}_1,\ldots,\boldsymbol{v}_k$ are pairwise orthogonal (i.e., $\boldsymbol{v}_i'\boldsymbol{v}_j=0$ for $i\neq j$). Let $\boldsymbol{V}=\begin{pmatrix}\boldsymbol{v}_1&\ldots&\boldsymbol{v}_k\end{pmatrix}$ be the $k\times k$ matrix of eigenvectors and let $\boldsymbol{\Lambda}=\mathrm{diag}(\lambda_1,\ldots,\lambda_k)$ be the $k\times k$ diagonal matrix with the eigenvalues on the main diagonal. Then, we can write

$$A = V\Lambda V'$$

which is called the **spectral decomposition** of A. The matrix of eigenvalues can be written as $\Lambda = V'AV$.

4.3.4 Eigendecomposition in R

The function eigen() computes the eigenvalues and corresponding eigenvectors.

```
B=t(A)%*%A
B #A'A is symmetric
```

```
[1,] [,2] [,3]
[1,] 10 29 6
[2,] 29 206 70
[3,] 6 70 35
```

eigen(B) #eigenvalues and eigenvector matrix

```
eigen() decomposition
$values
[1] 234.827160 12.582227 3.590613
```

\$vectors

```
[,1] [,2] [,3]
[1,] -0.1293953 -0.5312592 0.8372697
[2,] -0.9346164 -0.2167553 -0.2819739
[3,] -0.3312839 0.8190121 0.4684764
```

4.4 Definite matrix

The $k \times k$ square matrix **A** is called **positive definite** if

holds for all nonzero vectors $\boldsymbol{c} \in \mathbb{R}^k$. If

$$c'Ac \ge 0$$

for all vectors $c \in \mathbb{R}^k$, the matrix is called **positive semi-definite**. Analogously, \mathbf{A} is called **negative definite** if $\mathbf{c}'\mathbf{A}\mathbf{c} < 0$ and **negative semi-definite** if $\mathbf{c}'\mathbf{A}\mathbf{c} \leq 0$ for all nonzero vectors $\mathbf{c} \in \mathbb{R}^k$. A matrix that is neither positive semi-definite nor negative semi-definite is called **indefinite**

The definiteness property of a symmetric matrix \boldsymbol{A} can be determined using its eigenvalues:

- i) A is positive definite \Leftrightarrow all eigenvalues of A are strictly positive
- ii) \boldsymbol{A} is negative definite \Leftrightarrow all eigenvalues of \boldsymbol{A} are strictly negative
- iii) A is positive semi-definite \Leftrightarrow all eigenvalues of A are non-negative
- iv) A is negative semi-definite \Leftrightarrow all eigenvalues of A are non-positive

```
eigen(B)$values #B is positive definite (all eigenvalues positive)
```

```
[1] 234.827160 12.582227 3.590613
```

The matrix analog of a positive or negative number (scalar) is a positive definite or negative definite matrix. Therefore, we use the notation

- i) A > 0 if A is positive definite
- ii) $\mathbf{A} < 0$ if \mathbf{A} is negative definite
- iii) $\mathbf{A} \geq 0$ if \mathbf{A} is positive semi-definite

iv) $\mathbf{A} \leq 0$ if \mathbf{A} is negative semi-definite

The notation A > B means that the matrix A - B is positive definite.

4.5 Cholesky decomposition

Any positive definite and symmetric matrix B can be written as

$$B = PP'$$

where P is a lower triangular matrix with strictly positive diagonal entries $p_{jj} > 0$. This representation is called **Cholesky decomposition**. The matrix P is unique. For a 2×2 matrix P we have

$$\begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} p_{11} & 0 \\ p_{21} & p_{22} \end{pmatrix} \begin{pmatrix} p_{11} & p_{21} \\ 0 & p_{22} \end{pmatrix}$$

$$= \begin{pmatrix} p_{11}^2 & p_{11}p_{21} \\ p_{11}p_{21} & p_{21}^2 + p_{22}^2 \end{pmatrix},$$

which implies $p_{11} = \sqrt{b_{11}}$, $p_{21} = b_{21}/p_{11}$, and $p_{22} = \sqrt{b_{22} - p_{21}^2}$. For a 3 × 3 matrix we obtain

$$\begin{pmatrix} b_{11} & b_{12} & b_{31} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} = \begin{pmatrix} p_{11} & 0 & 0 \\ p_{21} & p_{22} & 0 \\ p_{31} & p_{32} & p_{33} \end{pmatrix} \begin{pmatrix} p_{11} & p_{21} & p_{31} \\ 0 & p_{22} & p_{32} \\ 0 & 0 & p_{33} \end{pmatrix}$$

$$= \begin{pmatrix} p_{11}^2 & p_{11}p_{21} & p_{11}p_{31} \\ p_{11}p_{21} & p_{21}^2 + p_{22}^2 & p_{21}p_{31} + p_{22}p_{32} \\ p_{11}p_{31} & p_{21}p_{31} + p_{22}p_{32} & p_{31}^2 + p_{32}^2 + p_{33}^2 \end{pmatrix},$$

which implies

$$\begin{split} p_{11} &= \sqrt{b_{11}}, \quad p_{21} = \frac{b_{21}}{p_{11}}, \quad p_{31} = \frac{b_{31}}{p_{11}}, \quad p_{22} = \sqrt{b_{22} - p_{21}^2}, \\ p_{32} &= \frac{b_{32} - p_{21}p_{31}}{p_{22}}, \quad p_{33} = \sqrt{b_{33} - p_{31}^2 - p_{32}^2}. \end{split}$$

Let's compute the Cholesky decomposition of

$$\mathbf{B} = \begin{pmatrix} 1 & -0.5 & 0.6 \\ -0.5 & 1 & 0.25 \\ 0.6 & 0.25 & 1 \end{pmatrix}$$

using the R function chol():

```
B = matrix(c(1, -0.5, 0.6, -0.5, 1, 0.25, 0.6, 0.25, 1), ncol=3)
chol(B)
```

```
[,1] [,2] [,3]
[1,] 1 -0.5000000 0.6000000
[2,] 0 0.8660254 0.6350853
[3,] 0 0.0000000 0.4864840
```

4.6 Vectorization

The **vectorization operator** vec() stacks the matrix entries column-wise into a large vector. The vectorized $k \times m$ matrix \mathbf{A} is the $km \times 1$ vector

$$\operatorname{vec}(\mathbf{A}) = (a_{11}, \dots, a_{k1}, a_{12}, \dots, a_{k2}, \dots, a_{1m}, \dots, a_{km})'.$$

c(A) #vectorize the matrix A

[1] 1 3 0 2 9 11 3 1 5

4.7 Kronecker product

The **Kronecker product** \otimes multiplies each element of the left-hand side matrix with the entire matrix on the right-hand side. For a $k \times m$ matrix \boldsymbol{A} and a $r \times s$ matrix \boldsymbol{B} , we get the $kr \times ms$ matrix

$$A\otimes B = \begin{pmatrix} a_{11} \pmb{B} & \dots & a_{1m} \pmb{B} \\ \vdots & & \vdots \\ a_{k1} \pmb{B} & \dots & a_{km} \pmb{B} \end{pmatrix},$$

where each entry $a_{ij}\mathbf{B}$ is a $r \times s$ matrix.

A %x% B #Kronecker product in R

```
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [1,] 1.0 -0.50 0.60 2.0 -1.00 1.20 3.0 -1.50 1.80 [2,] -0.5 1.00 0.25 -1.0 2.00 0.50 -1.5 3.00 0.75 [3,] 0.6 0.25 1.00 1.2 0.50 2.00 1.8 0.75 3.00 [4,] 3.0 -1.50 1.80 9.0 -4.50 5.40 1.0 -0.50 0.60 [5,] -1.5 3.00 0.75 -4.5 9.00 2.25 -0.5 1.00 0.25
```

```
[6,] 1.8 0.75 3.00 5.4 2.25 9.00 0.6 0.25 1.00 [7,] 0.0 0.00 0.00 11.0 -5.50 6.60 5.0 -2.50 3.00 [8,] 0.0 0.00 0.00 -5.5 11.00 2.75 -2.5 5.00 1.25 [9,] 0.0 0.00 0.00 6.6 2.75 11.00 3.0 1.25 5.00
```

4.8 Vector and matrix norm

A norm $\|\cdot\|$ of a vector or a matrix is a measure of distance from the origin. The most commonly used norms are the Euclidean vector norm

$$\|\pmb{a}\| = \sqrt{\pmb{a}'\pmb{a}} = \sqrt{\sum_{i=1}^k a_i^2}$$

for $\boldsymbol{a} \in \mathbb{R}^k$, and the Frobenius matrix norm

$$\|\pmb{A}\| = \sqrt{\sum_{i=1}^k \sum_{j=1}^m a_{ij}^2}$$

for $\boldsymbol{A} \in \mathbb{R}^{k \times m}$.

A norm satisfies the following properties:

- i) $\|\lambda \mathbf{A}\| = |\lambda| \|\mathbf{A}\|$ for any scalar λ (absolute homogeneity)
- ii) $\|\boldsymbol{A} + \boldsymbol{B}\| \le \|\boldsymbol{A}\| + \|\boldsymbol{B}\|$ (triangle inequality)
- iii) $\|\mathbf{A}\| = 0$ implies $\mathbf{A} = \mathbf{0}$ (definiteness)

5 Matrix calculus

Let $f(\beta_1, \dots, \beta_k) = f(\beta)$ be a twice-differential real-valued function that depends on some vector $\boldsymbol{\beta} = (\beta_1, \dots, \beta_k)'$. Examples that frequently appear in econometrics are functions of the inner product form $f(\boldsymbol{\beta}) = \boldsymbol{a}'\boldsymbol{\beta}$, where $\boldsymbol{a} \in \mathbb{R}^k$, and functions of the sandwich form $f(\boldsymbol{\beta}) = \boldsymbol{\beta}'\boldsymbol{A}\boldsymbol{\beta}$, where $\boldsymbol{A} \in \mathbb{R}^{k \times k}$.

5.1 Gradient

The first derivatives vector or gradient is

$$\frac{\partial f(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \begin{pmatrix} \frac{\partial f(\boldsymbol{\beta})}{\partial \beta_1} \\ \vdots \\ \frac{\partial f(\boldsymbol{\beta})}{\partial \beta_h} \end{pmatrix}$$

If the gradient is evaluated at some particular value $\beta = b$, we write

$$\frac{\partial f}{\partial \boldsymbol{\beta}}(\boldsymbol{b})$$

Useful properties for inner product and sandwich forms are

$$\frac{\partial (\boldsymbol{a}'\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \boldsymbol{a}$$

$$\begin{split} (i) & \frac{\partial (\pmb{a}'\pmb{\beta})}{\partial \pmb{\beta}} = \pmb{a} \\ (ii) & \frac{\partial (\pmb{\beta}'\pmb{A}\pmb{\beta})}{\partial \pmb{\beta}} = (\pmb{A} + \pmb{A}')\pmb{\beta}. \end{split}$$

5.2 Hessian

The **second derivatives matrix** or **Hessian** is the $k \times k$ matrix

$$\frac{\partial^2 f(\boldsymbol{\beta})}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}'} = \begin{pmatrix} \frac{\partial^2 f(\boldsymbol{\beta})}{\partial \beta_1 \partial \beta_1} & \cdots & \frac{\partial^2 f(\boldsymbol{\beta})}{\partial \beta_k \partial \beta_1} \\ \vdots & & \vdots \\ \frac{\partial^2 f(\boldsymbol{\beta})}{\partial \beta_1 \partial \beta_k} & \cdots & \frac{\partial^2 f(\boldsymbol{\beta})}{\partial \beta_k \partial \beta_k} \end{pmatrix}.$$

If the Hessian is evaluated at some particular value $\beta = b$, we write

$$\frac{\partial^2 f}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta'}}(\boldsymbol{b})$$

The Hessian is symmetric. Each column of the Hessian is the derivative of the components of the gradient for the corresponding variable in β' :

$$\begin{split} \frac{\partial^2 f(\boldsymbol{\beta})}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}'} &= \frac{\partial (\partial f(\boldsymbol{\beta})/\partial \boldsymbol{\beta})}{\partial \boldsymbol{\beta}'} \\ &= \left[\frac{\partial (\partial f(\boldsymbol{\beta})/\partial \boldsymbol{\beta})}{\partial \beta_1} \ \frac{\partial (\partial f(\boldsymbol{\beta})/\partial \boldsymbol{\beta})}{\partial \beta_2} \ \dots \ \frac{\partial (\partial f(\boldsymbol{\beta})/\partial \boldsymbol{\beta})}{\partial \beta_n} \right] \end{split}$$

The Hessian of a sandwich form function is

$$\frac{\partial^2 (\boldsymbol{\beta}' \boldsymbol{A} \boldsymbol{\beta})}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}'} = \boldsymbol{A} + \boldsymbol{A}'.$$

5.3 Optimization

Recall the *first-order* (necessary) and *second-order* (sufficient) conditions for optimum (maximum or minimum) in the univariate case:

- First-order condition: the first derivative evaluated at the optimum is zero.
- **Second-order condition**: the second derivative at the optimum is negative for a maximum and positive for a minimum.

Similarly, we formulate first and second-order conditions for a function $f(\beta)$. The **first-order** condition for an optimum (maximum or minimum) at \boldsymbol{b} is

$$\frac{\partial f}{\partial \boldsymbol{\beta}}(\boldsymbol{b}) = \mathbf{0}.$$

The second-order condition is

$$\frac{\partial^2 f}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta'}}(\boldsymbol{b}) > 0 \quad \text{for a minimum at } \boldsymbol{b},$$
$$\frac{\partial^2 f}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta'}}(\boldsymbol{b}) < 0 \quad \text{for a maximum at } \boldsymbol{b}.$$

Recall that, in the context of matrices, the notation "> 0" means positive definite, and "< 0" means negative definite.

6 Problems

Problem 1

Consider the matrix

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
.

- a) Determine A'. Is A symmetric?
- b) Is \boldsymbol{A} idempotent?
- c) Compute the determinant and the rank. Is **A** nonsingular?
- d) Compute the inverse.
- e) Compute the trace.

Problem 2

a) Let AB = C, where

$$A = \begin{pmatrix} 1 & 0 \\ 2 & 2 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix}.$$

Compute B.

- b) $\boldsymbol{\delta}$ and $\boldsymbol{\gamma}$ are $c \times 1$ vectors, \boldsymbol{X} is a $d \times c$ matrix, and \boldsymbol{Y} is a $c \times d$ matrix. Determine the orders of \boldsymbol{XY} , \boldsymbol{YX} , $\boldsymbol{\gamma'\gamma}$, $\boldsymbol{\gamma\gamma'}$, and $\boldsymbol{\delta'YX\gamma}$. Under which conditions do the expressions \boldsymbol{Y}^{-1} and $\boldsymbol{\delta'YX} + \boldsymbol{\gamma'\gamma}$ exist?
- c) Compute $\operatorname{tr}(\lambda R'R)$ for $\lambda \in \mathbb{R}$ and

$$R = \begin{pmatrix} rac{1}{4} & rac{\sqrt{3}}{4} \\ rac{\sqrt{3}}{4} & rac{3}{4} \end{pmatrix}.$$

Problem 3

Let \boldsymbol{A} be nonsingular. Simplify the expression

$$\left(\frac{1}{\sqrt{2}}\boldsymbol{A}^{-1}\left(\frac{1}{\sqrt{2}}\boldsymbol{A}''+\frac{\sqrt{2}}{2}\boldsymbol{A}\right)\right).$$

Problem 4

Consider the $n \times k$ matrix \boldsymbol{X} with rank $(\boldsymbol{X}) = k$. Moreover, let $\boldsymbol{P} = \boldsymbol{X}(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'$, and let $\boldsymbol{M} = \boldsymbol{I}_n - \boldsymbol{P}$

- a) Determine the order of the following matrices: I_n , X'X, P, M
- b) Which matrices from a) are symmetric?
- c) Which matrices from a) are idempotent?
- d) Compute the trace of \boldsymbol{I}_n and $\boldsymbol{P}.$

Problem 5

Let X be a $n \times k$ matrix. Show that X'X is positive semi-definite. Under which condition is X'X positive definite?

Problem 6

Let $\boldsymbol{y} \in \mathbb{R}^n$, \boldsymbol{X} be a $n \times k$ matrix, and $\boldsymbol{\beta} \in \mathbb{R}^k$. Compute the derivatives

$$\frac{\partial f(\pmb{\beta})}{\partial \pmb{\beta}}, \quad \frac{\partial^2 f(\pmb{\beta})}{\partial \pmb{\beta} \partial \pmb{\beta}'},$$

for the function $f(\beta) = (y - X\beta)'(y - X\beta)$.

6.1 Solutions

Solutions to the problems are available here (unfortunately only in German so far)