Álgebra Linear I - Lista 3

Produto escalar. Ângulos. Ortogonalidade

Respostas

- 1) Nenhuma das expressões a continuação tem sentido. Explique o que há de errado em cada expressão. Sejam u, v, w e n quatro vetores, α um número e " $\underline{\cdot}$ " o produto escalar.
 - $u \cdot v \cdot w = 5$,
 - $\bullet \ u \cdot v \cdot w = n,$
 - $(u \cdot v) + w$,
 - $\alpha \cdot (u \cdot v)$.

Resposta: Na primeira, $u \cdot v$ é um número κ , não faz sentido o produto escalar de κ (um número) pelo vetor w. Mesmo comentário para a segunda (em qualquer caso, o resultado de um produto escalar é um número, nunca um vetor). Na terceira estamos considerando a soma de um número $(u \cdot v)$ e um vetor. Finalmente, na última temos o mesmo tipo de absurdos.

2) Determine os ângulos do triângulo cujos vértices são

$$A=(3,2,1), \quad B=(3,2,2) \quad {\rm e} \quad C=(3,3,2).$$

Resposta: Os lados são paralelos aos vetores $\overline{AB} = (0,0,1), \ \overline{AC} = (0,1,1),$ e $\overline{BC} = (0,1,0).$ Portanto é um triângulo retângulo (os lados BC e AB são perpendiculares pois $\overline{AB} \cdot \overline{BC} = 0$. O ângulo ϕ entre AB e AC verifica

$$\overline{AB} \cdot \overline{BC} = 1 = |\overline{AB}| |\overline{BC}| \cos \phi = \sqrt{2} \cos \phi.$$

Ou seja o ângulo e $\pi/4$. Claramente o ângulo que falta por calcular também é $\pi/4$.

3) Seja $\bar{u} = (\alpha, \beta, \gamma)$ um vetor unitário, onde α, β e γ são números diferentes de zero. Determine t de forma que os vetores

$$\bar{v} = (-\beta t, \alpha t, 0), \quad \bar{w} = (\alpha \gamma t, \beta \gamma t, -1/t)$$

e \bar{u} sejam unitários e dois a dois ortogonais.

Resposta: Para que os vetores sejam ortogonais seu produto escalar deve ser nulo. Vemos diretamente que os produto escalares $u \cdot v$ e $v \cdot w$ são sempre zero. Por outro lado,

$$u \cdot w = (\alpha^2 + \beta^2)(\gamma t) - \gamma/t = 0.$$

Portanto, $(\alpha^2 + \beta^2) = 1/t^2$.

Os quadrados dos módulos dos vetores são:

$$\alpha^2 + \beta^2 + \gamma^2$$
, $t^2(\alpha^2 + \beta^2)$, $t^2\gamma^2(\alpha^2 + \beta^2) + 1/t^2$.

Como $t^2(\alpha^2 + \beta^2) = 1$, temos

$$\gamma^2 + 1/t^2 = 1, \quad \gamma^2 = 1 - 1/t^2.$$

Ou seja, as condições são

$$\alpha = \pm \frac{1}{t} \cos \phi, \quad \beta = \pm \frac{1}{t} \sin \phi, \quad \gamma = \pm \sqrt{1 - 1/t^2}.$$

- 4) Responda as seguintes questões:
- Encontre, se possível, dois vetores \bar{u} e \bar{v} do plano tais que os vetores $\bar{u} + \bar{v}$ e $\bar{u} \bar{v}$ tenham o mesmo modulo.
- Mostre que se os vetores \bar{u} e \bar{v} tem o mesmo módulo então os vetores $(\bar{u}+\bar{v})$ e $(\bar{u}-\bar{v})$ são ortogonais. Usando este fato, prove que as diagonais de um losango são perpendiculares.

Resposta: Para o primeiro item observe que os quadrados dos módulos dos vetores também devem ser iguais. Isto é

$$||u+v||^2 = (u+v) \cdot (u+v) = u \cdot u + 2u \cdot v + v \cdot v = ||u-v||^2 = (u-v) \cdot (u-v) = u \cdot u - 2u \cdot v + v \cdot v.$$

Simplificando,

$$u \cdot v = -u \cdot v$$
, $2u \cdot v = 0$.

Ou seja, é suficiente que os vetores sejam ortogonais (perpendiculares). Portanto, é suficiente escolher dois vetores ortogonais, por exemplo (1,1) e (1,-1).

Para o segundo item (se os vetores u e v tem o mesmo módulo então (u+v) e (u-v) são ortogonais) veja que

$$(u+v)\cdot(u-v)=u\cdot u-u\cdot v+v\cdot u+v\cdot v.$$

Como $u \cdot v = v \cdot u$. Portanto,

$$(u+v)\cdot(u-v) = u\cdot u - v\cdot v.$$

Como, por hipótese, $u \cdot u = v \cdot v$, obtemos $(u+v) \cdot (u-v) = 0$ e portanto os vetores são ortogonais.

Finalmente, para provar que as diagonais de um losango são perpendiculares, considere u e v vetores paralelos aos lados do losango. Observe que ||u|| = ||v|| e que as diagonais são paralelas a u + v e u - v. Calculando o produto escalar,

$$(u+v)\cdot(u-v)=0.$$

Portanto, os vetores são ortogonais.

5) Use o produto escalar para provar que o ângulo inscrito em um semicírculo é reto. Veja a Figura 1.

Resposta: Observe que o ângulo inscrito é o ângulo formado pelos vetores (u-v) e -(v+u). Como no Exercício 4 temos

$$(u-v)\cdot -(v+u) = -|u|^2 + |v|^2 = 0,$$

pois u e v tem o mesmo módulo.

Figura 1:

6) Sejam **i**, **j** e **k** os vetores unitários (1,0,0), (0,1,0) e (0,0,1). Considere o vetor v=(a,b,c) e defina α , β e γ como os ângulos do vetor v com os vetores **i**, **j** e **k**, respectivamente.

- Determine $\cos \alpha$, $\cos \beta$ e $\cos \gamma$ (os denominados cossenos diretores de v).
- Mostre que $\frac{v}{||v||} = (\cos \alpha, \cos \beta, \cos \gamma).$
- Como consequência obtenha $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$.
- Considere um vetor w com cossenos diretores $\cos \alpha'$, $\cos \beta'$ e $\cos \gamma'$. Mostre que v e w são perpendiculares se, e somente se, $\cos \alpha \cos \alpha' + \cos \beta \cos \beta' + \cos \gamma \cos \gamma' = 0$.

Resposta: Teremos

$$\cos \alpha = \frac{a}{\sqrt{a^2 + b^2 + c^2}}, \quad \cos \beta = \frac{b}{\sqrt{a^2 + b^2 + c^2}}, \quad \cos \gamma = \frac{c}{\sqrt{a^2 + b^2 + c^2}}.$$

Por outra parte

$$\frac{v}{||v||} = \frac{1}{\sqrt{a^2 + b^2 + c^2}}(a, b, c) = (\cos \alpha, \cos \beta, \cos \gamma).$$

Observe que

$$1 = \frac{v}{||v||} = \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma.$$

Para o último item observe que

$$u \cdot w = ||u||||w|| = \cos \alpha \cos \alpha' + \cos \beta \cos \beta' + \cos \gamma \cos \gamma',$$

e que este número será zero se e somente se $\cos \alpha \cos \alpha' + \cos \beta \cos \beta' + \cos \gamma \cos \gamma' = 0$.

7) Sejam u e v dois vetores de módulo k e ℓ , respectivamente. Considere o vetor $w = \ell u + kv$. Mostre que este vetor bissecta o ângulo entre u e v (isto é, os ângulos entre w e u e entre w e v são iguais).

Resposta: Devemos ver que os ângulos ϕ entre w e u e ρ entre w e v são iguais. Considere os vetores unitários $u_1 = u/||u||$ e $v_1 = v/||v||$ e observe que $||\ell u|| = ||kv|| = \ell k = m$. Portanto $w = m(u_1 + v_1)$. Isto significa que w é a diagonal do losango de lados paralelos a u e v e de comprimento m (fazendo um desenho v. verá que agora o resultado é intuitivamente claro).

Usando produto escalar:

$$w \cdot u_1 = m(u_1 + v_1) \cdot u_1 = m(1 + v_1 \cdot u_1) = ||w|| \cos \phi.$$

Portanto,

$$\cos \phi = \frac{m(1 + u_1 \cdot v_1)}{||w||}.$$

Analogamente,

$$w \cdot v_1 = m(u_1 + v_1) \cdot v_1 = m(u_1 \cdot v_1 + 1) = ||w|| \cos \rho.$$

Portanto,

$$\cos \rho = \frac{m(1 + u_1 \cdot v_1)}{||w||}.$$

Logo os dois ângulos são iguais.

8) Considere dois vetores u e v não paralelos. Verifique que os vetores

$$u' = u / || u ||$$
 e $v' = v - (v \cdot u') u'$

são ortogonais.

Resposta: É suficiente escrever

$$u' \cdot v' = \frac{u}{||u||} \cdot (v - (v \cdot \frac{u}{||u||}) \frac{u}{||u||} = \frac{1}{||u||} (u \cdot v) - \frac{1}{||u||^3} (v \cdot u) (u \cdot u) = \frac{1}{||u||} u \cdot v - \frac{1}{||u||^3} (v \cdot u) ||u||^2 = \frac{1}{||u||} (u \cdot v - v \cdot u) = 0.$$

9) Considere três vetores e_1 , e_2 e e_3 de \mathbb{R}^3 tais que

$$||e_1|| = ||e_2|| = ||e_3|| = 1$$
 e $e_1 \cdot e_2 = e_1 \cdot e_3 = e_2 \cdot e_3 = 0$.

Sejam $u \in v$ vetores em \mathbb{R}^3 tais que

$$u = 3e_1 + 4e_2$$
, $||v|| = 5$ e $v \cdot e_3 \neq 0$.

Utilizando estas informações, calcule o ângulo entre os vetores u+v e u-v. O que pode dar errado se $v\cdot e_3=0$?

Resposta: Veja que ||u|| = 5 = ||v|| e que

$$(u+v)\cdot(u-v) = ||u||^2 - ||v||^2 = 0.$$

Observe que a condição $e_3 \cdot v \neq 0$ implica que $u \neq v$. Portanto, se $e_3 \cdot v = 0$ poderíamos ter u - v = 0 ou u + v = 0

10) Considere u, v e w vetores não nulos, com $u \cdot v = u \cdot w$. Mostre por um exemplo que não necessariamente temos v = w.

Resposta: É suficiente considerar u = (1, 0, 0), v = (0, 1, 0) e w = (0, 0, 1). Temos $u \cdot v = u \cdot w$ e $v \neq w$. Também poderimos escolher u = (1, 0), v = (0, 1) e w = (0, -11).

11) Considere os vetores u=(1,1) e v=(-5,9). Ache um vetor não nulo $w=\alpha u$ tal que o vetor (v-w) seja ortogonal ao vetor u.

Resolva agora o mesmo problema no caso geral: considere vetores não nulos u, v e $w = \alpha u$. Determine α para que o vetor (v - w) seja ortogonal ao vetor u?

Resposta: Temos $(v-w)=(-5-\alpha,9-\alpha)$. Para que este vetor seja ortogonal a (1,1), devemos ter $(-5-\alpha,9-\alpha)\cdot(1,1)=0$, isto é, $-5-\alpha+9-\alpha=0$, $\alpha=2$.

Para o caso geral veja que $\alpha = u \cdot v/||u|||^2$.

12 Os quatro vértices a seguir determinam um tetraedro regular: A = (0,0,0), B = (1,0,1), C = (0,1,1) e D = (1,1,0). Se E é o ponto médio do segmento \overline{BC} , determine qual dos ângulos \widehat{AED} ou \widehat{CBA} é o menor.

Resposta: Para calcular \widehat{CBA} fazemos

$$\overline{BC} \cdot \overline{BA} = (-1, 1, 0) \cdot (-1, 0, -1) = 1 =$$

$$= ||\overline{BC}|| ||\overline{BA}|| \cos \widehat{CBA} = 2 \cos \widehat{CBA}.$$

Ou seja o ângulo é 60 graus.

Veja que E=(1/2,1/2,1). Como antes, para calcular \widehat{AED} fazemos

$$\overline{EA} \cdot \overline{ED} = (-1/2, -1/2, -1) \cdot (1/2, 1/2, -1) = 1/2 =$$

= $||\overline{EA}|| ||\overline{EB}|| \cos \widehat{AED} = 6/4 \cos \widehat{AED}.$

Ou seja $\widehat{AED}=1/3$. Como 1/3<1/2 temos que o ângulo \widehat{CBA} é menor.

13) Um vetor unitário v forma com o eixo coordenado OX um ângulo de 60° e com os outros dois eixos OY e OZ ângulos congruentes. Calcule as coordenadas de v.

Resposta: Temos que o vetor v = (a, b, c) e ||v|| = 1. Fazendo

$$(a, b, c).(1, 0, 0) = (1)(1)\cos 60^{\circ}$$

temos a=1/2. Os ângulos do vetor v com os eixos OY e OZ são iguais, logo:

$$(1/2,b,c).(0,1,0)=\cos\beta=\cos\rho=(1/2,b,c).(0,0,1)$$

Assim b = c e como o vetor v tem norma igual a 1:

$$||\sqrt{1/4 + b^2 + b^2}|| = 1$$

 $b = \pm \frac{\sqrt{6}}{4}$

. Teremos então o vetor

$$v = (\frac{1}{2}, \pm \frac{\sqrt{6}}{4}, \pm \frac{\sqrt{6}}{4})$$