Gruppe B

Beispiel 1

Zeigen Sie durch vollständige Induktion, dass für alle $n \in \mathbb{N}$,

$$\sum_{i=1}^{n} (2j-1)^2 = \frac{(2n-1)2n(2n+1)}{6}.$$

Lösung:

Induktionsvoraussetzung

$$\sum_{i=1}^{n} (2j-1)^2 = \frac{(2n-1)2n(2n+1)}{6} \tag{1}$$

• Induktionsanfang Setze n=1 ein

$$\sum_{j=1}^{1} (2j-1)^2 = 1 = \frac{(2-1)2(2+1)}{6}$$

 Induktionsschritt Zieht man den letzten Summanden aus der Summe erhält man

$$\sum_{j=1}^{n+1} (2j-1)^2 = \sum_{j=1}^{n} (2j-1)^2 + (2(n+1)-1)^2$$

Nun kann man die Induktionsvoraussetzung (1) auf die Summe, die bis n läuft anwenden. Bringt man die zwei Summanden dann noch auf gleichen Nenner so erhält man

$$\frac{(2n-1)2n(2n+1)}{6} + \frac{6(2n+1)^2}{6} = \frac{(2n+1)\big[(2n-1)2n + 6(2n+1)\big]}{6},$$

wobei auf der rechten Seite (2n+1) herausgehoben wurde. Multipliziert man in der eckigen Klammer aus, so erhält man

$$\frac{(2n+1)\big[(2n-1)2n+6(2n+1)\big]}{6} = \frac{(2n+1)\big[(2n)^2+10n+6\big]}{6}$$

An der Stelle könnte man jetzt durch Nullstellen suchen der eckigen Klammer den Zähler wieder in linear Faktoren zerlegen oder nachdem man bereits weiß worauf man kommen möchte rechnet man einfach die rechte Seite der Induktionsvorraussetzung (1) mit (n+1)

$$\frac{(2n+1)(2n+2)(2n+3)}{6} = \frac{(2n+1)[(2n)^2 + 10n + 6]}{6}$$

Beispiel 2

Sei $(K, +, \cdot, P)$ ein angeordneter Körper. Man bestimme die Menge aller oberen Schranken und die Menge aller unteren Schranken der Teilmenge

$$M := \{1_K\} \cup \bigcup_{n \in \mathbb{N}} (-1_K + \frac{1_K}{n \cdot 1_K}, 0_K] \cup (-2_K, -1_K) \subseteq K.$$

Hat diese Menge ein Infimum/Supremum in K? Falls ja, dann bestimme man diese und überprüfe, ob diese auch Minimum bzw. Maximum von M sind! Begründen Sie alle Ihre Antworten. Lösung:

$$M := \underbrace{(-2_K, -1_K)}_{:=M_1} \cup \underbrace{\bigcup_{n \in \mathbb{N}} (-1_K + \frac{1_K}{n \cdot 1_K}, 0_K]}_{:=M_2} \cup \underbrace{\{1_K\}}_{:=M_3}$$

Als erstes wird gezeigt, dass 1_K das Maximum der Menge M ist. Dazu wird zu nächst gezeigt, dass 1_K eine obere Schranke von M_1 , M_2 , und M_3 ist und damit eine obere Schranke von M.

• Da M_3 nur 1_K enthält und \leq reflexiv ist gilt

$$m < 1_K \quad \forall m \in M_3$$

• Für jedes $m \in M_2$ gilt $m \le 0_K \le 1_K$. Also wegen der Transitivität von \le

$$m \leq 1_K \quad \forall m \in M_2$$

 \bullet Da $m<-1_K<1_K$ für alle $m\in M_3$ gilt, erhält man wegen der Transitivität von <

$$m < 1_K \quad \forall m \in M_1$$

Insgesamt weiß man nun, dass 1_K eine obere Schranke ist die noch dazu in M enthalten ist. Also ist 1_K das Maximum und damit auch das Supremum.

$$\max M = \sup M = 1_K$$

Damit lässt sich aufgrund der Transitivität von \leq unmittelbar die Menge der oberen Schranken bestimmen

$$O = \{ x \in K \, | \, 1_K \le x \} = [1_K, +\infty).$$

So als nächstes wird gezeigt, dass -2_K das Infimum der Menge M ist.

- Offensichtlich ist -2_K eine untere Schranke von M_3 .
- Wegen der Definition von M_1 ist -2_K auch eine untere Schranke von M_1 .
- Aus der Definition von M_2 kann man herauslesen, dass für jedes $m \in M_2$ ein $n \in \mathbb{N}$ existiert, sodass $-1_K + \frac{1_K}{n \cdot 1_K} < m$. Da aber

$$-2_K < -1_K + \frac{1_K}{n \cdot 1_K} \quad \forall n \in \mathbb{N}$$

gilt, weil $-1_K + \frac{1_K}{n \cdot 1_K} - (-2_K) = 1_K + \frac{1_K}{n \cdot 1_K} \in K^+$ (positiv Bereich) erhält man wegen der Transitivität von <, dass -2_K eine untere Schranke von M_2 ist.

Angenommen es gäbe eine größere untere Schranke $u>-2_K$ für M dann werden 2 Fälle unterschieden.

• 1. Fall: $-1_K \leq u$. In diesem Fall erhält man wegen

$$-2<\underbrace{\frac{-2_K+-1_K}{2}}_{\in M_1}<-1_K\leq u$$

einen Widerspruch zu u ist eine untere Schranke.

• 2. Fall: $u < -1_K$. Jetzt erhält man wegen

$$-2_K < \underbrace{\frac{-2_K + u}{2}}_{\in M_1} < u < -1_K$$

einen Widerspruch zu \boldsymbol{u} ist eine untere Schranke.

Also gibt es keine größere untere Schranke als -2_K , womit inf $M=-2_K$. Da -2_K nicht in M enthalten ist, hat M kein Minimum. Wegen der Transitivität von < erhält man die Menge der unteren Schranken

$$U = \{x \in K \mid x \le -2_K\} = (-\infty, -2_K].$$