

Vorlesung 14 - Ringe, Körper, Polynome

Diskrete Strukturen (WS 2024-25)

Łukasz Grabowski

Mathematisches Institut

Übersicht

1. Wiederholung

2. Polynome

3. Abstrakter Sichtpunkt - Ideale und Faktorringe

Diskrete Strukturen 1/21

Diskrete Strukturen	
1. Wiederholung	
2. Polynome	
3. Abstrakter Sichtpunkt - Ideale und Faktorringe	

- Ein Ring ist eine algebrische Struktur $(M, +, \cdot)$, so dass
 - \blacktriangleright (M,+) ist eine kommutative Gruppe (genannt additive Gruppe des Rings)
 - ▶ · ist assoziativ und kommutativ
 - $lackbox{ es gibt } 1_M \in M ext{ so dass für alle } m \in M ext{ gilt } 1_M \cdot m = m ext{ (daraus folgt, dass } 1_M ext{ eindeutig ist)}.$
 - ▶ für alle $a, b, c \in M$ gilt $a \cdot (b + c) = a \cdot b + a \cdot c$.

- Körper ein Ring $(M,+,\cdot)$ so dass für jedes $x\in M$ mit $x\neq 0_M$ existiert $y\in M$ mit $xy=1_M$.
- Äquivalent: $(M,+,\cdot)$ ist ein Körper, wenn $(M\setminus\{0_M\},\cdot)$ eine Gruppe ist.
- Beispiele für Körper: $(\mathbb{Q},+,\cdot)$, $(\mathbb{R},+,\cdot)$ und $(\mathbb{C},+,\cdot)$. $(\mathbb{Z},+,\cdot)$ ist kein Körper.
- In einem Körper $(M,+,\cdot)$ gilt, dass xy=0 impliziert, dass x=0 oder y=0.
- ▶ In der Tat, wenn $x \neq 0$ dann können wir schreiben $y = x^{-1}xy = x^{-1}0 = 0$.
- Wenn A und B Ringe sind, dann ist $A\times B$ ebenfalls ein Ring. Wenn A und B jedoch Körper sind, dann ist $A\times B$ kein Körper: wir haben $(1_A,0_B)\cdot(0_A,1_B)=(0_A,0_B)$

Beispiel

 \mathbb{Z}/m ist ein Ring. Wenn m nicht prim ist, kann man $[a],[b]\in\mathbb{Z}/m$ mit $[a],[b]\neq [0]$ so finden, dass [a][b]=0. Wenn also m nicht prim ist, dann ist \mathbb{Z}/m kein Körper.

Lemma. \mathbb{Z}/p ist ein Körper gdw. p ist eine Primzahl.

- Der Körper \mathbb{Q} und die Körper \mathbb{Z}/p werden als Primkörper bezeichnet. Jeder Körper enthält ein Primkörper.
- Gibt's andere als \mathbb{Z}/p endliche Körper?

• Sei $(M,+,\cdot)$ ein Ring, und sei $a_0,\dots,a_n\in M$ mit $a_n\neq 0$. Wir assoziieren mit dieser endlichen Folge ein Polynom: $n=a_0+a_1X+\dots a_nX^n.$

$$p(x) = a_0 + a_1 x + \dots a_n x^n \in M.$$

• Dieses Polynom p definiert eine Funktion $p: M \to M$. Für alle $x \in M$:

• Wir schreiben auch $\operatorname{grad}(p)=n$. Das Nullpolynom p mit p=0 hat kein Grad oder Grad $-\infty$. Ein Element $x\in M$ ist Nullstelle von p gdw. p(x)=0.

• Die Menge von allen Polynomen $\,$ mit Koeffizienten aus M $\,$ wird $\,$ mit $\,$ M[X] bezeichnet.

• Im Körper $\mathbb{Z}/5$ betrachten wir das Polynom X^2+4X+2 . Es gilt $p(2)\equiv 2+(4\cdot 2)+(2\cdot 2)\equiv 2+3+4\equiv 4$

• Für die Bestimmung der Nullstellen von p berechnen wir:

$$ightharpoonup p(0) \equiv 2$$

 $ightharpoonup p(2) \equiv 4.$

$$p(1) \equiv 2 + 4 + 1 \equiv 2$$
,

$$(2) - 2 + 2 + 4 - 2 \text{ und}$$

▶
$$p(3) \equiv 2 + 2 + 4 \equiv 3$$
 und
▶ $p(4) \equiv 2 + 1 + 1 \equiv 4$.

Offenbar hat p keine Nullstellen.

- Wie schnell kann man p(a) berechnen?
 - ► Wie viele Operationen + und · werden gebraucht?.
 - Nicht mehr als: (n+1) (für a_na^n) +n (für $a_{n-1}a^{n-1}$...
 - ► Also nicht mehr als $\frac{(n+1)(n+2)}{2} + n$. D.h. Cn^2 .
 - ▶ kann man einen besseren Algorithmus finden?

Lemma. [Horner-Schema] Sei $(M,+,\cdot)$ ein Ring und sei $p=a_0+a_1X+\ldots+a_nX$

ein Polynom von einem Grad n > 0. Dann gilt für alle $x \in M$

$$p(x) = a_0 + x \cdot (a_1 + x \cdot (a_2 + \dots x a_n))$$

• Mit Induktion beweisen wir dass mit Horner-Schema brauchen wir nur 2n Operationen. Also $C_1 \cdot n$. Deutlich besser als $C \cdot n^2$.

Satz. (Polynomdivision) Sei $(M, +, \cdot)$ ein Körper. Seien p und q Polynome mit $\operatorname{grad}(q) \geq 1$ 0. Dann existieren Polynome t und r mit

$$p(X) = t(X) \cdot q(X) + r(X)$$

und grad(r) < grad(q).

• Die Polynome t und r erhält man per Polynomdivision.

$$\begin{array}{r}
x^3 - x - 2 \\
x^5 - 2x^2 + 4x + 7 \\
\underline{-x^5 - x^3} \\
-x^3 - 2x^2 + 4x \\
\underline{-x^3 + x} \\
-2x^2 + 5x + 7 \\
\underline{2x^2 + 2} \\
5x + 9
\end{array}$$

•
$$x^5 - 2x^2 + 4x + 7 = (x^3 - x - 2)(x^2 + 1) + (5x + 9)$$

$$\begin{array}{r}
\frac{1}{2}x^3 & -\frac{1}{4}x - 1 \\
x^5 & -2x^2 + 4x + 7 \\
\underline{-x^5 - \frac{1}{2}x^3} \\
-\frac{1}{2}x^3 - 2x^2 + 4x \\
\underline{-\frac{1}{2}x^3 - 2x^2 + 4x} \\
-2x^2 + \frac{17}{4}x + 7 \\
2x^2 & + 1
\end{array}$$

• In
$$\mathbb{Q}$$
: $x^5 - 2x^2 + 4x + 7 = (\frac{1}{2}x^3 - \frac{1}{4}x - 1)(2x^2 + 1) + (\frac{17}{4}x + 8)$

 $\frac{17}{4}x + 8$

• In
$$\mathbb{Z}/5$$
: $x^5 - 2x^2 + 4x + 2 \equiv (3x^3 + x - 1)(2x^2 + 1) + (3x + 3)$

- Folgerung: Wenn M ist ein Körper, dann M[X] hat Euklidischer Algorithmus.
 - ▶ Wenn $p,q \in M[X]$ und ggt(p,q)=1, dann existieren polynome a,b mit ap+bq=1. (ggt(p,q) ist nur bis zur Multiplikation mit einer Konstante nicht gleich Null definiert!)
 - **►** Z.B.
 - $p = x^4 2x^2 3x 2 \ q = x^3 + 4x^2 + 4x + 1$
 - ▶ Euklidischer Algorithmus: ggt(p,q) = x + 1
 - ► Bezout-identiät:

$$x + 1(5x^2/22 - 3x/11 - 3/11)p + (-5x/22 - 7/11)q$$

- Wir sagen, dass ein Polynom f irreduzibel ist, wenn es mindestens den Grad 1 hat, und seine einzigen Teiler von der Form Cf, C sind, wobei $C \in M$.
- Folgerung: "Unreduzierbare Polynome sind prim"
 - ▶ Das heißt, wenn $f \in M[X]$ irreduzibel ist, dann hat f die folgende Eigenschaft. Wenn $f \mid ab$ und $f \mid /a$, dann $f \mid b$.
 - ▶ Beweis. Wir schreiben sf + ta = 1, dann erhalten wir sfb + tab = b, und wir erhalten, dass f die linke Seite teilt, und deshalb teilt es auch die rechte Seite.
 - ▶ Zum Beispiel: in $\mathbb{Z}/5$ das Polynom $p = X^2 + 4X + 2$ ist irreduzibel.

- Folgerung: ("Eindeutigkeit der Faktorisierung") Wenn $f \in M[X]$, dann kann f als Produkt irreduzibler Polynome p_1, \ldots, p_k geschrieben werden. Die Polynome p_1, \ldots, p_k sindp bis zur Multiplikation mit einer Konstanten eindeutig.
 - ▶ Beweis. Nehmen wir an, wir haben zwei Faktorisierungen $p_1 \cdot \ldots \cdot p_k = r_1 \ldots r_l$. Dann teilt p_1 das Produkt $r_1 \ldots r_l$, und da p_1 irreduzibel ist, teilt p_1 also einen der Faktoren r_i . Dann können wir Induktion benutzen um die Eindeutigkeit zu zeigen.
- Folgerung: Wenn $f \in M[X]$ und $a \in M$, dann sind die folgenden äquivalent: a ist eine Wurzel von f gdw $(X a) \mid f$.
 - ▶ In der Tat: Wir schreiben f = q(X a) + r, mit deg r < 1.

- Folgerung: Ein Polynom f in M[X] vom Grad n hat höchstens n Wurzeln.
 - ▶ Die Polynome (X-a) sind irreduzibel, wenn also a eine Wurzel von f ist, dann erscheint (X-a) in der irreduziblen Faktorisierung von f. Die Behauptung folgt aus dem Vergleich der Grade.
- Für Ringe, die keine Körper sind, gilt dies nicht.
 - ▶ In $\mathbb{Z}/8$ hat das Polynom x^3 die Wurzeln 0, 2, 4, 6.

- Wir können nun Körper mit p^k Elementen konstruieren.
- Wir beginnen mit einem irrreduzierbaren Polynom F vom Grad k. Um z.B. ein Körper mit 25 Elementen zu konstruieren, können wir mit x^2+x+2 beginnen.
- Als Elemente nehmen wir die Menge $\mathbb{Z}/5[X]/(x^2+x+2)$, die aus allen Polynomen vom Grad höchstens k-1 besteht. In unserem Beispiel also ux+v, mit $u,v\in\mathbb{Z}/5$.
 - $(x+3)(x+2) \equiv x^2+1 \equiv -x-3$.

 Die Irreduzibilität von F wird benutzt, um zu zeigen, dass alle Elemente

• Um Elemente zu multiplizieren, reduzieren wir modulo F. Zum Beispiel

- ungleich Null Inverse haben.
- ▶ In der Tat: Wenn $g \in M[X]/(x^2+x+2)$, dann können wir mitte Bezout-Identität ag+bF=1 für einige Polynome a,b schreiben. Dann ist a die multiplikative Inverse von g modulo F.

Satz. [Moore]

- Sei $(M,+,\cdot)$ ein endlicher Körper (auch Galois-Kórper genannt). Dann existieren $n,p\in\mathbb{N}$ mit p prim, so dass $|M|=p^n$.
- Seien $\mathcal K$ und $\mathcal N$ endliche Körper mit gleich vielen Elementen. Dann sind $\mathcal K$ und $\mathcal N$ isomorph.
- Insbesondere: kein Körper mit 6 Elemente.

- Sei $(M,+,\cdot)$ ein Ring. Wir sagen, dass $I\subset M$ ein Ideal ist, wenn
 - ightharpoonup I eine Untergruppe von (M,+) ist und
 - \blacktriangleright für alle $m \in M$ gilt $mI \subset I$

Beispiele

- M ist ein Ideal von M. Jedes andere Ideal heißt echt. Ein Ideal ist echt, wenn es $\mathbf{1}_M$ nicht als Element enthält.
- $\{0\}\subset M$ ist ein Ideal.
- $n\mathbb{Z}\subset\mathbb{Z}$ ist ein Ideal für jede natürliche Zahl n.
- $fM[X] \subset M[X]$ ist ein Ideal für jedes Polynomi f.

- Ist $I \subset M$ ein Ideal, so nehmen wir eine Äquivalenzrelation auf M so definiert: $a \equiv b$ gdw $a-b \in I$.
- ullet Die Menge der Äquivalenzklassen nennen wir M/I.

Lemma.
$$(M/I,+,\cdot)$$
 wird zu einem Ring, mit $[m]\cdot [n]:=[mn]$, und $[m+n]:=[m+n]$.

Beweis.

- Wir überprüfen z.B., dass die Multiplikation wohldefiniert ist.
- will aberpraien 2.b., dass are mattiplikation worldenmert ist.
- Nehmen wir also [m] = [m'] und [n] = [n'] an, so haben wir $m-m', n-n' \in I$. Da I ein Ideal ist, haben wir auch $n(m-m'), m(n-n') \in I$. Daraus folgt, dass $n'(m-m') + m(n-n') = mn n'm' \in I$ und somit tatsächlich [mn] = [m'n'].
- Spezieller Fall: $\mathbb{Z}/5[X]/(x^2+x+2)$.

VIELEN DANK FÜR IHRE AUFMERKSAMKEIT!

Łukasz Grabowski

Mathematisches Institut

grabowski@math.uni-leipzig.de