LINEARLY REDUCTIVE GROUPS

1. MOTIVATION – LINEAR REPRESENTATIONS OF COMPACT TOPOLOGICAL GROUPS

In this section we fix a compact topological group **G**. Assume that $\rho : \mathbf{G} \to \mathrm{GL}_n(\mathbb{C})$ is a continuous homomorphism i.e. a complex, n-dimensional linear representation of **G**. For every $g \in \mathbf{G}$ we get a matrix

$$\rho(g) = \left[c_{ij}(g)\right]_{1 < i, j < n}$$

For i, j function $c_{ij} : \mathbf{G} \to \mathbb{C}$ is a continuous complex valued function. Alternatively suppose that $\{e_1, e_2, ..., e_n\}$ is the standard basis of \mathbb{C}^n on which $\mathrm{GL}_n(\mathbb{C})$ act. Then c_{ij} is equal to a function

$$\mathbf{G} \ni g \mapsto \langle g \cdot e_i, e_i \rangle \in \mathbb{C}$$

Fix now $g_1, g_2 \in \mathbf{G}$ and note that

$$\left[c_{ij}(g_2 \cdot g_1)\right]_{1 \le i, j \le n} = \rho(g_2 \cdot g_1) = \rho(g_2) \cdot \rho(g_1) = \left[\sum_{k=1}^n c_{ik}(g_2) \cdot c_{kj}(g_1)\right]_{1 \le i, j \le n}$$

Hence

$$c_{ij}(g_2 \cdot g_1) = \sum_{k=1}^{n} c_{ik}(g_2) \cdot c_{kj}(g_1)$$

for every $1 \le i, j \le n$. This implies that $\sum_{1 \le i, j \le n} \mathbb{C} \cdot c_{ij} \subseteq \mathcal{L}^2(\mathbf{G}, \mathbb{C})$ is a linear $\mathbf{G} \times \mathbf{G}^{\mathrm{op}}$ -subrepresentation of the regular representation $\mathcal{L}^2(\mathbf{G}, \mathbb{C})$. We call it *the matrix coefficients of* ρ .

2. MATRIX COEFFICIENTS OF A REPRESENTATION

Proposition 2.1. Let \mathfrak{X} be a monoid k-functor and let V be a finitely generated, projective k-module. Fix a morphism of monoids $\rho: \mathfrak{X} \to \mathcal{L}_V$. Fix k-algebra A and elements $v \in A \otimes_k V$, $w \in A \otimes_k V^{\vee}$. For every A-algebra B and $x \in \mathfrak{X}_A(B)$ we consider the formula

$$c_{v,w}(x) = \langle \rho_A(x) \cdot v_B, w_B \rangle$$

Then $c_{v,w}$ defines a regular function on \mathfrak{X}_A for every k-algebra A.

Proof. Suppose that $f: B \to C$ is a morphism of A-algebras and pick $x \in \mathfrak{X}_A(B)$. Since ρ_A is natural and $w: A \otimes_k V \to A$ is a morphism of A-modules, we derive that the diagram

$$V_{B} \xrightarrow{\rho_{A}(x)} V_{B} \xrightarrow{w_{B}} B$$

$$\downarrow 1_{V_{A} \otimes_{A} f} \downarrow f$$

$$V_{C} \xrightarrow{\rho_{A}(\mathfrak{X}_{A}(f)(x))} V_{C} \xrightarrow{w_{C}} C$$

is commutative. Hence

$$c_{v,w}(\mathfrak{X}_A(f)(x)) = \langle \rho_A(\mathfrak{X}_A(f)(x)) \cdot v_C, w_C \rangle = f(\langle \rho_A(x) \cdot v_B, w_B \rangle) = f(c_{v,w}(x))$$

and this implies that $c_{v,w}: \mathfrak{X}_A \to \mathbb{A}^1_A$ is natural.

1

Definition 2.2. Let \mathfrak{X} be a monoid k-functor and let (V, ρ) be its representation with finitely generated, projective underlying k-module V. Fix k-algebra A and elements $v \in A \otimes_k V$, $w \in A \otimes_k V^{\vee}$. Then the regular function $c_{v,w}$ on \mathfrak{X}_A is called *the matrix coefficient of v and w.*

Proposition 2.3. Let \mathfrak{X} be a monoid k-functor and let (V, ρ) be its representation with finitely generated projective underlying k-module V. Then the following assertions holds.

(1) For every k-algebra A map

$$(A \otimes_k V) \times (A \otimes_k V^{\vee}) \ni (v, w) \mapsto c_{v, w} \in \operatorname{Mor}_A (\mathfrak{X}_A, \mathbb{A}_A^1)$$

is A-bilinear.

(2) *The collection of maps*

$$\left\{ \left(A \otimes_{k} V \right) \times \left(A \otimes_{k} V^{\vee} \right) \ni \left(v, w \right) \mapsto c_{v, w} \in \operatorname{Mor}_{A} \left(\mathfrak{X}_{A}, \mathbb{A}_{A}^{1} \right) \right\}_{A \in \operatorname{\mathbf{Alg}}_{v}}$$

gives rise to a morphism of k-functors

$$V_{\mathbf{a}} \times V_{\mathbf{a}}^{\vee} \longrightarrow \mathcal{M}\mathrm{or}_{k} (\mathfrak{X}, \mathbb{A}_{k}^{1})$$

Proof. We left the proof of **(1)** to the reader.

We prove **(2)**. Consider k-algebra A and an A-algebra B with structural morphism $f: A \to B$. Fix $v \in A \otimes_k V$, $w \in A \otimes_k V^{\vee}$. We prove that restriction of $c_{v,w}: \mathfrak{X}_A \to \mathbb{A}^1_A$ to the category \mathbf{Alg}_B is c_{v_B,w_B} . For this pick a B-algebra C and an element $x \in \mathfrak{X}_A(C) = \mathfrak{X}_B(C)$. Note that

$$c_{v,w}(x) = \langle \rho_A(x) \cdot v_C, w_C \rangle = \langle \rho_B(x) \cdot v_C, w_C \rangle = \langle \rho_B(x) \cdot (v_B)_C, (w_B)_C \rangle = c_{v_B,w_B}(x)$$

and hence $c_{v,w|\mathbf{Alg}_B} = c_{v_B,w_B}$. Consider the square

$$V_{a}(A) \times V_{a}^{\vee}(A) \longrightarrow \mathcal{M}or_{k}(\mathfrak{X}, \mathbb{A}^{1})(A)$$

$$\downarrow^{V_{a}(f) \times V_{a}^{\vee}(f)} \qquad \qquad \downarrow^{\mathcal{M}or_{k}(\mathfrak{X}, \mathbb{A}^{1})(f)}$$

$$V_{a}(B) \times V_{a}^{\vee}(B) \longrightarrow \mathcal{M}or_{k}(\mathfrak{X}, \mathbb{A}^{1})(B)$$

in which both horizontal arrows are given by formula $(v, w) \mapsto c_{v,w}$. We proved that the square commutes. Since f is an arbitrary morphism of k-algebras, we conclude the assertion.

Corollary 2.4. Let \mathfrak{X} be a monoid k-functor and let (V, ρ) be its representation with finitely generated projective underlying k-module V. Then there exists a morphism of k-functors

$$(V \otimes_k V^{\vee})_a \xrightarrow{c} \mathcal{M}or_k(\mathfrak{X}, \mathbb{A}^1_k)$$

given by formula

$$(A \otimes_k V) \otimes_A (A \otimes_k V^{\vee}) \ni (v, w) \mapsto c_{v, w} \in \operatorname{Mor}_A (\mathfrak{X}_A, \mathbb{A}_A^1)$$

Moreover, c is a morphism of k-functors equipped with $\mathfrak{X} \times \mathfrak{X}^{op}$ -actions.

Proof. The first part is an immediate consequence of Proposition 2.3. We prove that c is a morphism of k-functors equipped with $\mathfrak{X} \times \mathfrak{X}^{\mathrm{op}}$ -actions. For this we fix a k-algebra k and elements $v \in A \otimes_k V$, $w \in A \otimes_k V^{\vee}$. Pick a morphism of k-algebras $f: A \to B$, $(y,z) \in \mathfrak{X}(A) \times \mathfrak{X}(A)^{\mathrm{op}}$ and $x \in \mathfrak{X}_A(B)$. Then we have

$$c_{\rho(y)\cdot v,w\cdot\rho(z)}(x) = \langle \rho_A(x)\cdot(\rho(y)\cdot v)_B, (w\cdot\rho(z))_B \rangle =$$

$$= \langle \rho_A(x)\cdot\rho_A((\mathfrak{X}_A(f)(y)))\cdot v_B, w_B\cdot\rho_A(\mathfrak{X}_A(f)(z)) \rangle = w_B(\rho_A(\mathfrak{X}_A(f)(z))\cdot\rho_A(x)\cdot\rho_A(\mathfrak{X}_A(f)(y))\cdot v_B) =$$

$$= w_B(\rho_A(\mathfrak{X}_A(f)(z)\cdot x\cdot\mathfrak{X}_A(f)(y))\cdot v_B) = \langle \rho_A(\mathfrak{X}_A(f)(z)\cdot x\cdot\mathfrak{X}_A(f)(y))\cdot v_B, w_B \rangle =$$

$$= c_{v,w} \big(\mathfrak{X}_A(f)(z) \cdot x \cdot \mathfrak{X}_A(f)(y) \big)$$

and hence *c* is a morphism of *k*-functors equipped with actions of $\mathfrak{X} \times \mathfrak{X}^{op}$.

The discussion below is partially an application of the main result in [Mon19a, section 6] (Remark 5.6 shows that \mathcal{L}_V is a subcopresheaf of internal endomorphisms of V_a and hence the machinery developed in the citation above can be applied), but for the reader's convenience we decide to include all essential details even if this requires repetition.

Let $\mathfrak G$ be a monoid k-functor and let be V be a k-module. Suppose that $\alpha: \mathfrak G \times V_a \to V_a$ is an action of $\mathfrak G$ on V_a . Assume that A is a k-algebra and $x \in \mathfrak G(A)$. We denote by $i_x: \mathbf 1_A \to \mathfrak G_A$ the morphism of A-functors corresponding to x by means of [Mon19b, Fact 2.4]. Since $\mathbf 1_A$ is terminal A-functor, a morphism $\alpha_A \cdot \left(i_x \times \mathbf 1_{(V_a)_A}\right)$ is isomorphic to a morphism $\alpha_x: (V_a)_A \to (V_a)_A$ of A-functors.

Definition 2.5. Let \mathfrak{G} be a monoid k-functor and let V be a k-module. An action $\alpha : \mathfrak{G} \times V_a \to V_a$ of \mathfrak{G} such that for any k-algebra A and point $x \in \mathfrak{G}(A)$ morphism α_x is linear is called *a linear action of* \mathfrak{G} *on* V.

Theorem ?? states that for every monoid k-functor \mathfrak{G} and every k-module V linear actions $\alpha: \mathfrak{G} \times V_a \to V_a$ and morphisms $\rho: \mathfrak{G} \to \mathcal{L}_V$ of k-monoids are in bijective correspondence. This shows that the formal machinery developed so far works as expected. Now we introduce the following notion

Definition 2.6. Let \mathfrak{G} be a monoid k-functor. A pair (V, ρ) consisting of a k-module V and a morphism $\rho : \mathfrak{G} \to \mathcal{L}_V$ of k-monoids is called a *linear representation of* \mathfrak{G} .

Proposition 2.7. Let \mathfrak{G} be a monoid k-functor. Suppose that $\alpha: \mathfrak{G} \times V_a \to V_a$, $\beta: \mathfrak{G} \times W_a \to W_a$ are k-linear actions on k-modules V and W, respectively. Suppose that $\sigma: V_a \to W_a$ is a linear morphism of k-functors and $\phi = \sigma^k$ is the corresponding morphism of k-modules. Then the following assertions are equivalent.

(i) The square

$$\mathfrak{G} \times V_{\mathbf{a}} \xrightarrow{1_{\mathfrak{G}} \times \sigma} \mathfrak{G} \times W_{\mathbf{a}}$$

$$\downarrow^{\alpha}$$

$$V_{\mathbf{a}} \xrightarrow{\sigma} W_{\mathbf{a}}$$

is commutative.

(ii) For every k-algebra A and $x \in \mathfrak{G}(A)$ we have

$$(1_A \otimes_k \phi) \cdot \rho(x) = \delta(x) \cdot (1_A \otimes_k \phi)$$

where $\rho: \mathfrak{G} \to \mathcal{L}_V$ and $\delta: \mathfrak{G} \to \mathcal{L}_W$ are morphism of monoid k-functors corresponding to α and β , respectively.

Proof. Indeed, conditions expressed in (i) and (ii) are directly translatable to each other by virtue of Fact 5.3 and the bijection in Theorem ??.

Definition 2.8. Let \mathfrak{G} be a monoid k-functor and let (V, ρ) , (W, δ) be its linear representations. A morphism $\phi : V \to W$ of k-modules such that for every k-algebra A and $x \in \mathfrak{G}(A)$ we have

$$(1_A \otimes_k \phi) \cdot \rho(x) = \delta(x) \cdot (1_A \otimes_k \phi)$$

is called a morphism of linear representations of \mathfrak{G} .

Let \mathfrak{G} be a monoid k-functor. We denote by $\mathbf{Rep}(\mathfrak{G})$ its category of linear representations.

3. The Category of Linear Representations

In this section we fix a monoid k-functor \mathfrak{G} . Note that there exists the forgetful functor $\mathbf{Rep}(\mathfrak{G}) \to \mathbf{Mod}(k)$ that sends each linear representation to its underlying k-module.

Theorem 3.1. The forgetful functor

$$Rep(\mathfrak{G}) \longrightarrow Mod(k)$$

creates small colimits.

Proof. Suppose that $I \ni i \mapsto (V_i, \rho_i) \in \mathbf{Rep}(\mathfrak{G})$ is a diagram of linear representations of \mathfrak{G} indexed by some category I. Let V together with $u_i : V_i \to V$ for $i \in I$ be a colimit of the diagram $I \ni i \mapsto V_i \in \mathbf{Mod}(k)$.

Assume first that (V, ρ) is a structure of the linear representation of $\mathfrak G$ on V such that $u_i : V_i \to V$ for $i \in I$ becomes a cocone over the diagram $I \ni i \mapsto (V_i, \rho_i) \in \mathbf{Rep}(\mathfrak G)$. For every k-algebra A the functor $A \otimes_k (-)$ preserves colimits and hence $1_A \otimes_k u_i$ for $i \in I$ is a colimit of the diagram $I \ni i \mapsto 1_A \otimes_k V_i \in \mathbf{Mod}(A)$. For each $i \in I$ we have an action $\rho_i^A : \mathfrak G(A) \to \mathrm{Hom}_A (A \otimes_k V_i, A \otimes_k V_i)$ of $\mathfrak G(A)$ on $A \otimes_k V_i$ and we may view the diagram $I \ni i \mapsto 1_A \otimes_k V_i \in \mathbf{Mod}(A)$ as a diagram in the category of A-modules equipped with $\mathfrak G(A)$ -actions given by A-module morphisms. We refer to this category as to category of A-linear $\mathfrak G(A)$ -actions. Now the forgetful functor

$$\left\{\text{the category of }A\text{-linear }\mathfrak{G}(A)\text{-actions}\right\}\longrightarrow \mathbf{Mod}(A)$$

creates small limits. Indeed, the category on the right hand side is isomorphic with the category $\mathbf{Mod}(A[\mathfrak{G}(A)])$ of left modules over the monoid A-algebra $A[\mathfrak{G}(A)]$ and the forgetful functor

$$\mathbf{Mod}(A[\mathfrak{G}(A)]) \longrightarrow \mathbf{Mod}(A)$$

creates small colimits. This implies that $\rho^A : \mathfrak{G}(A) \to \operatorname{Hom}_A(A \otimes_k V, A \otimes_k V)$ must be a unique morphism of monoids such that $1_A \otimes_k u_i$ for every $i \in I$ is a morphism of A-modules with A-linear action of $\mathfrak{G}(A)$. This implies that ρ is unique and hence (V, ρ) is unique lift of $(V, \{u_i\}_{i \in I})$ to $\operatorname{\mathbf{Rep}}(\mathfrak{G})$. This shows the uniqueness of a lift.

For the existence assume for given k-algebra A that $\rho^A: \mathfrak{G}(A) \to \operatorname{Hom}_A(A \otimes_k V, A \otimes_k V)$ is a unique morphism of monoids such that $1_A \otimes_k u_i$ for every $i \in I$ is a morphism of A-modules with A-linear action of $\mathfrak{G}(A)$. Note that ρ^A exists because the forgetful functor

$$\left\{\text{the category of }A\text{-linear }\mathfrak{G}(A)\text{-actions}\right\}\longrightarrow \mathbf{Mod}(A)$$

creates small colimits. Denote $\rho = \{\rho^A\}_{A \in \mathbf{Alg}_k}$. We verify that ρ is a morphism of k-functors $\rho : \mathfrak{G} \to \mathcal{L}_V$. For this consider morphism $f : A \to B$ of k-algebras and the commutative square

$$A \otimes_{k} V_{i} \xrightarrow{1_{A} \otimes_{k} u_{i}} A \otimes_{k} V$$

$$f \otimes_{k} 1_{V_{i}} \downarrow \qquad \qquad \downarrow f \otimes_{k} 1_{V}$$

$$B \otimes_{k} V_{i} \xrightarrow{1_{B} \otimes_{k} u_{i}} B \otimes_{k} V$$

defined for every $i \in I$. Note that the top row of the square is a morphism of A-modules with A-linear $\mathfrak{G}(A)$ -actions. Similarly interpreting $B \otimes_k V_i$ and $B \otimes_k V$ as A-modules with A-linear actions of $\mathfrak{G}(A)$ given by $\rho_i^B \cdot \mathfrak{G}(f)$ and $\rho^B \cdot \mathfrak{G}(f)$, respectively, we derive that the square consists of A-modules with A-linear actions of $\mathfrak{G}(A)$ and all maps preserve actions except possibly $f \otimes_k 1_V$. Since $A \otimes_k V$ together with $1_A \otimes_k u_i$ for $i \in I$ is a colimit of $I \ni i \mapsto 1_A \otimes_k V_i \in \mathbf{Mod}(A)$ in the category of A-modules, we deduce that $f \otimes_k 1_V$ is the only morphism of A-modules making squares commutative for all $i \in I$. Since $A \otimes_k V$ with ρ^A and $1_A \otimes_k u_i$ for $i \in I$ is a colimit of the same diagram, but interpreted as a diagram of A-modules with A-linear action of $\mathfrak{G}(A)$ -modules, we derive from uniqueness of $f \otimes_k 1_V$ that it must also preserve $\mathfrak{G}(A)$ -action. Hence $(f \otimes_k 1_V) \cdot \rho^A = \rho^B \cdot \mathfrak{G}(f)$. Thus ρ is a morphism of k-functors. By definition of ρ^A for each k-algebra A, we derive that it is a morphism of monoid k-functors. Hence (V, ρ) is a linear representation of \mathfrak{G} and again by componentwise definition of ρ we deduce that (V, ρ) is a colimit of the diagram $I \ni i \mapsto (V_i, \rho_i) \in \mathbf{Rep}(\mathfrak{G})$.

Theorem 3.2. Let A be a commutative ring. The following assertions are equivalent.

- **(i)** Spec *A* is a Hausdorff space.
- (ii) Every prime ideal of A is maximal.
- **(iii)** Every A/N-module is flat, where N is a nilradical of A.
- **(iv)** Every finitely generated ideal of A is generated by an idempotent.

Lemma 3.2.1. Let A be a commutative ring and M be an A-module. Then M is flat if and only if $M_{\mathfrak{p}}$ is flat for all $\mathfrak{p} \in \operatorname{Spec} A$.

Proof of the lemma. For every $\mathfrak{p} \in \operatorname{Spec} A$ we have a natural isomorphism

$$M_{\mathfrak{p}} \otimes_A (-) \cong (M \otimes_A (-))_{\mathfrak{p}}$$

Now the statement follows from the fact that a chain complex of A-modules is exact if and only if it is exact after localization in every prime ideal $\mathfrak{p} \in \operatorname{Spec} A$

Lemma 3.2.2. Let A be a local ring such that each A-module is flat. Then A is a field.

Proof of the lemma. Let \mathfrak{m} be a maximal ideal of A and k be a residue field. Pick finitely generated ideal $\mathfrak{a} \subseteq \mathfrak{m}$. Consider the canonical exact sequence

$$0 \longrightarrow \mathfrak{a} \longrightarrow A \xrightarrow{a \mapsto a \bmod \mathfrak{a}} A/\mathfrak{a} \longrightarrow 0$$

Since *k* is a flat *A*-module, we derive that the sequence

$$0 \longrightarrow k \otimes_A \mathfrak{a} \longrightarrow k \xrightarrow{\alpha \mapsto \alpha \operatorname{mod} \mathfrak{a} k} k/\mathfrak{a} k \longrightarrow 0$$

is exact. Since $\mathfrak{a}k = 0$ because $\mathfrak{a} \subseteq \mathfrak{m}$, we deduce from the short exact sequence that $k \otimes_A \mathfrak{a} = 0$. By Nakayama lemma this implies that $\mathfrak{a} = 0$ (\mathfrak{a} is finitely generated over A). Thus every finitely generated A-submodule of \mathfrak{m} is trivial. Thus $\mathfrak{m} = 0$ and hence A is a field.

4

5. Linear representations of monoid k-functors

Example 5.1. Let V be a k-module. We define a k-functor V_a . We set

$$V_{a}(A) = A \otimes_{k} V$$
, $V_{a}(f) = f \otimes_{k} 1_{V}$

for every k-algebra A and every morphism $f: A \to B$ of k-algebras. Moreover, V_a admits a structure of a commutative group k-functor. Indeed, $V_a(A)$ is a commutative group with respect to addition induced by its structure of A-module and $V_a(f): V_a(A) \to V_a(B)$ preserves the addition.

Suppose now that V, W are k-modules and $\sigma: (V_a)_A \to (W_a)_A$ is a morphism of A-functors for some k-algebra A. Then for every A-algebra B we denote by $\sigma^B: B \otimes_k V \to B \otimes_k W$ the component of σ for B.

Definition 5.2. Let V, W be k-modules and let A be a k-algebra. A morphism $\sigma: (V_a)_A \to (W_a)_A$ of A-functors is *linear* if for every A-algebra B the component $\sigma^B: B \otimes_k V \to B \otimes_k W$ is a morphism of B-modules.

Next result characterizes linear morphism.

Fact 5.3. Let V, W be k-modules and let A be a k-algebra. Suppose that $\phi: A \otimes_k V \to A \otimes_k W$ is a morphism of A-modules. Then there exists a unique linear morphism $\sigma: (V_a)_A \to (W_a)_A$ of A-functors such that $\sigma^A = \phi$.

Proof. Note that if such σ exists, then by requirement $\sigma^A = \phi$ for every morphism $f: A \to B$ of k-algebras the following diagram

$$\begin{array}{ccc} A \otimes_k V & \xrightarrow{\phi} & A \otimes_k W \\ f \otimes_k 1_V & & & \downarrow f \otimes_k 1_W \\ B \otimes_k V & \xrightarrow{\sigma^B} & B \otimes_k W \end{array}$$

must commute. We make this into a definition of a morphism σ^B of B-modules. It is a matter of linear algebra that this diagram uniquely determines σ^B and also that $\sigma^A = \phi$. It remains to verify that $\sigma = \{\sigma^B\}_{B \in \mathbf{Alg}_A}$ defined in such a way is a morphism of A-functors. For this suppose that $f: A \to B$ and $g: B \to C$ are morphisms of k-algebras. Then we have

$$\sigma^{C} \cdot (g \otimes_{k} 1_{V}) \cdot (f \otimes_{k} 1_{V}) = \sigma^{C} \cdot ((g \cdot f) \otimes_{k} 1_{V}) = ((g \cdot f) \otimes_{k} 1_{W}) \cdot \phi =$$

$$= (g \otimes_{k} 1_{W}) \cdot (f \otimes_{k} 1_{V}) \cdot \phi = (g \otimes_{k} 1_{W}) \cdot \sigma^{B} \cdot (f \otimes_{k} 1_{V})$$

and hence $\sigma^C \cdot (g \otimes_k 1_V) = (g \otimes_k 1_W) \cdot \sigma^B$. Thus σ is a linear morphism of A-functors.

We restate Fact 5.3 in the form of the following result.

Corollary 5.4. *Let V, W be k-modules and A be a k-algebra. Consider the map*

$$\operatorname{Hom}_{A}(A \otimes_{k} V, A \otimes_{k} W) \longrightarrow \operatorname{Mor}_{A}((V_{a})_{A}, (W_{a})_{A})$$

that sends morphism ϕ to a unique linear morphism $\sigma:(V_a)_A\to (W_a)_A$ of A-functors such that $\sigma^A=\phi$. Then this map is injective and its image consists of all linear morphisms of A-functors.

Example 5.5. Let V be a k-module. We define a k-functor \mathcal{L}_V . We set

$$\mathcal{L}_V(A) = \operatorname{Hom}_A(A \otimes_k V, A \otimes_k V)$$

for every k-algebra A. Next for every morphism $f:A\to B$ of k-algebras and every morphism $\phi:A\otimes_k V\to A\otimes_k V$ of A-modules we define $\mathcal{L}_V(f)(\phi)$ as a unique morphism of B-modules such that the diagram

$$A \otimes_{k} V \xrightarrow{\phi} A \otimes_{k} V$$

$$f \otimes_{k} 1_{V} \downarrow \qquad \qquad \downarrow f \otimes_{k} 1_{V}$$

$$B \otimes_{k} V \xrightarrow{\mathcal{L}_{V}(\phi)} B \otimes_{k} V$$

is commutative. Note also that $\mathcal{L}_V(A)$ is a monoid with respect to the usual composition of morphism of A-modules and $\mathcal{L}_V(f) : \mathcal{L}_V(A) \to \mathcal{L}_V(B)$ preserves this composition. Hence \mathcal{L}_V is a monoid k-functor.

Remark 5.6. Corollary 5.4 implies that there are injective maps that make the square

$$\mathcal{L}_{V}(A) \longleftrightarrow \operatorname{Mor}_{A}\left((V_{a})_{A}, (V_{a})_{A}\right)$$

$$\mathcal{L}_{V}(f) \downarrow \qquad \qquad \downarrow^{\sigma \mapsto \sigma_{B}}$$

$$\mathcal{L}_{V}(B) \longleftrightarrow \operatorname{Mor}_{B}\left((V_{a})_{B}, (V_{a})_{B}\right)$$

commutative for every morphism $f: A \to B$ of k-algebras. It also shows that for every k-algebra A this identifies $\mathcal{L}_V(A)$ with a subset of the class $\operatorname{Mor}_A\left((V_a)_A,(V_a)_A\right)$ consisting of all linear morphism of the A-functor $(V_a)_A$.

6. RESULTS ON AFFINE MONOIDS

Definition 6.1. Let \mathfrak{G} be a monoid k-functor. We say that \mathfrak{G} is a monoid k-functor with zero if there exists a k-point \mathbf{o} of \mathfrak{G} such that the following two morphisms

$$\mathbf{1} \times \mathfrak{G} \xrightarrow{\mathbf{o} \times 1_{\mathfrak{G}}} \mathfrak{G} \times \mathfrak{G} \xrightarrow{\mathrm{mul}} \mathfrak{G} \qquad \qquad \mathfrak{G} \times \mathbf{1} \xrightarrow{1_{\mathfrak{G}} \times \mathbf{o}} \mathfrak{G} \times \mathfrak{G} \xrightarrow{\mathrm{mul}} \mathfrak{G}$$

where mul: $\mathfrak{G} \times \mathfrak{G} \to \mathfrak{G}$ is the multiplication on \mathfrak{G} , factor through \mathbf{o} . If this is the case, then \mathbf{o} is called *the zero of* \mathfrak{G} .

Definition 6.2. Let \mathfrak{G} be a monoid k-functor. For each k-algebra A we denote by $\mathfrak{G}^*(A)$ the group of units of $\mathfrak{G}(A)$. This gives rise to a subgroup k-functor \mathfrak{G}^* of \mathfrak{G} . We call \mathfrak{G}^* the group of units of \mathfrak{G} .

Now we describe the universal property of the group of units. Let \mathfrak{G} be a monoid k-functor and let \mathfrak{G} be a group k-functor. Suppose that $\sigma:\mathfrak{G}\to\mathfrak{G}$ is a morphism of monoid k-functors. Then σ factors through \mathfrak{G}^* .

Proposition 6.3. Let \mathbf{M} be an affine k-monoid scheme and denote by \mathfrak{G} the k-monoid functor that represents \mathbf{M} . Then \mathfrak{G}^* is representable by an affine k-group scheme. Moreover, if \mathbf{M} is an affine integral k-monoid scheme of finite type over k, then \mathfrak{G}^* is an open k-subfunctor of \mathfrak{G} .

REFERENCES

[ML98] Saunders Mac Lane. Categories for the working mathematician, volume 5 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1998.

[Mon19a] Monygham. Categories of presheaves. github repository: "Monygham/Pedo-mellon-a-minno", 2019.

 $[Mon19b]\ \ Monygham.\ Geometry\ of\ k-functors.\ \textit{github\ repository:}\ "Monygham/Pedo-mellon-a-minno", 2019.$