連立一次方程式を解く

方程式を解くということは、次のような問題に答えることである

ref: 行列と行列式の基 礎 p25

- A. 解は存在するか?
- B. 解が存在する場合、それはただ 1 つの解か?
- C. 解が複数存在する場合は、どれくらい多く存在するのか?
- D. 解全体の集合を以下にしてわかりやすく表示できるか?

拡大係数行列

A を m 行 n 列の行列、 $b \in \mathbb{R}^m$ とし、線形方程式

 $A\boldsymbol{x} = \boldsymbol{b}$

ref: 行列と行列式の基

礎 p31~32

を考える

これは、n 個の文字に関する m 本の連立方程式である

 \boldsymbol{x} は未知数 x_1, x_2, \ldots, x_n を成分とするベクトルである

このとき、A は方程式の係数行列と呼ばれる

A の右端に列ベクトル b を追加して得られる m 行 (n+1) 列の行列

$$\tilde{A} = (A \mid \boldsymbol{b})$$

を考えて、これを拡大係数行列という

斉次形

b=0 の場合、つまり

の形の線形連立方程式は斉次形であるという

斉次形の場合は $\mathbf{x} = \mathbf{0}$ が明らかに解になっていて、これを自明解というしたがって、自明解以外に解が存在するかどうかが基本的な問題である

解の存在条件

まず、一般の**b** の場合の解の存在(問題 A) について考える

拡大係数行列 \tilde{A} は A の右端に 1 列追加して得られるので、掃き出しの過程を考えると、 $\mathrm{rank}(\tilde{A})$ は $\mathrm{rank}(A)$ と等しいか、1 だけ増えるかのどちらかであることがわかる

また、方程式の拡大係数行列の行に関する基本変形は、元の連立方程式と同値な式への変形であるため、

基本変形によって得られる方程式の解は、元の方程式の解と同じ

となる

そこで、 $ilde{A}=(A\mid \pmb{b})$ の既約行階段形を $(P\mid \pmb{q})$ とし、 $A\pmb{x}=\pmb{b}$ の代わりに

$$P\boldsymbol{x} = \boldsymbol{q}$$

を解くことを考える

まず、

$$P = \begin{pmatrix} P_1 \\ O \end{pmatrix}, \quad \boldsymbol{q} = \begin{pmatrix} \boldsymbol{q}_1 \\ \boldsymbol{q}_2 \end{pmatrix}$$

とおく

ここで、 P_1 は $r \times n$ 行列($r = \operatorname{rank}(P)$)とし、 \boldsymbol{q}_1 は r 次元列ベクトル、 \boldsymbol{q}_2 は m-r 次元列ベクトルとする

ref: 行列のヒミツがわ かる!使える!線形代数 講義 p110~111 すると、P $\boldsymbol{x} = \boldsymbol{q}$ は

$$\begin{pmatrix} P_1 \\ O \end{pmatrix} \boldsymbol{x} = \begin{pmatrix} P_1 \boldsymbol{x} \\ \boldsymbol{o} \end{pmatrix} = \begin{pmatrix} \boldsymbol{q}_1 \\ \boldsymbol{q}_2 \end{pmatrix}$$

と表せる

このとき、この方程式が解を持つには、 $\mathbf{q}_2 = \mathbf{o}$ でなければならないたとえば、

$$q_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

だとしたら、

$$\begin{pmatrix} P_1 \boldsymbol{x} \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} \boldsymbol{q}_1 \\ 0 \\ -1 \end{pmatrix}$$

となり、0 = -1 という矛盾が生じる時点で、この方程式は不能になる

このような $\mathbf{q}_2 \neq \mathbf{0}$ の場合、拡大係数行列の階数は、係数行列の階数 +1 となっている

$$P = \begin{pmatrix} 1 & 0 & 0 & * & * & 0 \\ 0 & 1 & 0 & * & * & 0 \\ 0 & 0 & 1 & * & * & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$(P \mid \mathbf{q}) = \begin{pmatrix} 1 & 0 & 0 & * & * & 0 & 0 \\ 0 & 1 & 0 & * & * & 0 & 0 \\ 0 & 0 & 1 & * & * & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

一方、 $\mathbf{q}_2 = \mathbf{o}$ であれば、方程式は

$$P_1 \boldsymbol{x} = \boldsymbol{q}_1$$

となる

ここで、 P_1 は r = rank(P) 個の行をもち、行数と階数が一致しているということは、すべての行に主成分が現れていることを意味する

主成分は最も左側にある 0 でない成分なので、係数拡大行列にするために右に 1 列追加したとしても、主成分の数は増えることがないすなわち、 $\mathbf{q}_2 = \mathbf{o}$ の場合は係数行列と拡大係数行列の階数が一致する

以上の考察から、連立方程式 Ax = b の解が存在する条件は、

係数行列と係数拡大行列の階数が等しい

ことだとわかる

そして、その階数 r は、係数行列の行数とも一致していたため、次の 2 つの定理が得られる

 $oldsymbol{\$}$ 解の存在条件 A を m × n 型行列、 $oldsymbol{b} \in \mathbb{R}^m$ とする $ilde{A} = (A \mid oldsymbol{b})$ とおくとき、

$$\operatorname{rank}(\tilde{A}) = \operatorname{rank}(A) \Longleftrightarrow A\boldsymbol{x} = \boldsymbol{b}$$
 に解が存在する

証明 証明

[Todo 1: ref: 行列と行列式の基礎 p31 (定理 1.5.1)]

 * 解の存在条件の系 $A \in m \times n$ 型行列とするとき、

 $\forall \boldsymbol{b} \in \mathbb{R}^m$, $A\boldsymbol{x} = \boldsymbol{b}$ の解が存在する \iff rank(A) = m

証明 証明

[Todo 2: ref: 行列と行列式の基礎 p32 (定理 1.5.2, 1.5.3)]

がある

解が 1 つに定まらない場合は、解の全体像を知ることが方程式を「解く」ことになる

解の集合が直線を成していたり、もっと高い次元の図形になっていること

一般解のパラメータ表示

係数行列 A の n 個の列が、n 個の変数に対応していることを思い出そう

ref: 行列と行列式の基 礎 p33~36

 主変数と自由変数 行列 A を行基本変形により行階段形に したとき、主成分がある列に対応する変数を主変数と呼び、それ以 外の変数を自由変数と呼ぶ

解が存在する場合には、

$$\mathbf{x} = \mathbf{x}_0 + t_1 \mathbf{u}_1 + t_2 \mathbf{u}_2 + \cdots + t_{n-r} \mathbf{u}_{n-r}$$

という形の一般解の表示(問題 D の答え)が得られる ここで、r は行列 A の階数である

自由変数、すなわちパラメータの個数を解の自由度と呼ぶ

解の自由度 = (変数の個数)
$$- \operatorname{rank}(A)$$

= $n - r$

これは、解全体の集合が何次元の空間なのかを表している(問題 C の答え)

解の一意性

ここまでの議論で、問題 B が解決している

ref: 行列と行列式の基 礎 p37~38

解が一意的である \iff rank(A) = n

ここで、n は変数の個数である

「Todo 3: ref: 行列と行列式の基礎 p37 (定理 1.5.8)]

斉次形の場合の非自明解の存在問題も解決している

♣ 斉次形の非自明解の存在条件 斉次形の方程式 *A***x** = **0** において、

自明解しか存在しない \iff rank(A) = n

ここで、n は変数の個数である

証明 証明

斉次形の場合は自明解が常に存在するので、解の一意性は、それ以 外の解がないということである ■ 自由変数を $x_{j_1},\ldots,x_{j_{n-r}}$ とするとき、一般解の表示

$$\boldsymbol{x} = \boldsymbol{x}_0 + t_1 \boldsymbol{u}_1 + t_2 \boldsymbol{u}_2 + \dots + t_{n-r} \boldsymbol{u}_{n-r}$$

の j_k 番目の成分は等式

$$x_{j_k}=t_k$$

を意味するので、解が与えられたとき、パラメータの値は直接に読み取れる このことから、

$$\boldsymbol{x} = \boldsymbol{x}_0 + t_1 \boldsymbol{u}_1 + t_2 \boldsymbol{u}_2 + \cdots + t_{n-r} \boldsymbol{u}_{n-r}$$

によって解を表示する際の n-r 個のパラメータの値は一意的に定まることがわかる

この事実は、 $m{u}_1, m{u}_2, \ldots, m{u}_{n-r} \in \mathbb{R}^m$ が線形独立であると表現される

Zebra Notes

Туре	Number
todo	3