תורת הסיבוכיות – תרגול 10 תכניות מתפצלות ומשפט ברינגטון

תכנית מתפצלת – הגדרה

תכנית מתפצלת (Branching Program) היא רביעיה העיה היא רביעיה $\pi=(G,s,t,\phi)$ הוא התחלה, t צומת התחלה, צומת וכל שנקציה המתאימה (Branching Program) היא רביעיה השמה אומר היא העריה הוא $\pi=(G,s,t,\phi)$ האיא רביעיה שימוניהן מסתפקים על ידי t ליטרל היא קבוע. כל השמה t למשתנים משרה תת גרף t המכיל רק את הקשתות שסימוניהן מסתפקים על ידי t

. נקראת π אחרת היותר 1; אחרת π היא אי דטרמיניסטית. דרגת היציאה של כל צומת ב־ היא לכל היותר 1; אחרת היא אי דטרמיניסטית π

מקבלת את x אם בגרף G_x קיים מסלול מ־s אל t ("מסלול מקבל"). בכך היא למעשה מגדירה פונקציה $f:\{0,1\}^n \to \{0,1\}^n \to \{0,1\}$ מקבלת את t אם בגרף t אל t מחלול מ־t אל t מחלול מ־t אל מחלול מ־t מחלול מחלול מ־t מחלול מחלו

דוגמה:

.1 אם ורק אם שניים מהמשתנים מקבלים, Majority (x_1,x_2,x_3) אה מחשב אה גרף זה מקבלים, CMajority (x_1,x_2,x_3)

אם הגרף G של תכנית מתפצלת הוא גרף שכבות (כלומר, ניתן לחלק את צמתיו לשכבות כך שכל קשת היא בין שתי שכבות עוקבות), אז הרוחב של π הוא גודל השכבה הגדולה ביותר, וה**אורך** הוא מספר השכבות פחות π .

2 בדוגמה שלנו הרוחב הוא והאורך הוא

משפט ברינגטון

כרגיל בתורת הסיבוכיות, העניין בתכניות מתפצלות נובע מהיותן מודלים פשוטים יחסית של חישוב, ומכאן מקור לתקווה שיהיה ניתן להוכיח עליהן חסמים תחתונים בקלות (ולהסיק מהם חסמים תחתונים על מודלים אחרים). לרוע המזל מציאת חסמים תחתונים לתכניות מתפצלות כלליות התגלתה כמאתגרת, ולכן החוקרים פנו לתקיפת בעיה מוגבלת יותר. בשנת 1983 הועלתה השערה (על ידי שתי קבוצות חוקרים שונות) לפיה אם מגבילים את הרוחב של תכנית מתפצלת לרוחב קבוע, אז תכנית מתפצלת עבור פונקציית ה־ Majority (ובהכללה, פונקציות "NC") דורשת אורך סופר־פולינומי. במאמר נוסף הוכח חסם תחתון סופר־לינארי עבור תכניות מתפצלות מרוחב קבוע, ולאחר מכן תוצאה זו שופרה על ידי הסרת הדרישה לרוחב קבוע. נראה היה שהמחקר מתקרב למציאת חסמים תחתונים משופרים אף יותר, אך אז בשנת 1989 הבעיה נקברה לחלוטין כאשר ברינגטון הוכיח את התוצאה המפתיעה לפיה ההשערה שגויה.

. אם ורק אם קיימות ל־ L ל- אם ורק אם אם ורק אם אם ורק אם אם ורק אם ורק אם $L\in\mathsf{NC}^1$

 $O(\log n)$ היא מחלקת השפות שקיימת עבורן משפחת מעגלים בעלי דרגת כניסה חסומה, בגודל פולינומי, ובעומק NC^1

אנו עוסקים כאן במשפחות לא יוניפורמיות (הן של מעגלים והן של תכניות מתפצלות); אם מצטמצמים לעיסוק במשפחות יוניפורמיות לא חל שינוי מהותי בהוכחה.

הוכחת הכיוון הקל

 $L \in \mathsf{NC}^1$ עבורה קיימת משפחת תכניות מתפצלות ברוחב לובאורך פולינומי, ונראה ש

. עביר משפט באופן שדומה באופן שדומה באופן מסלול מ־ v_1 ל־ v_2 בי v_2 , באופן שהיא $\Psi_{v_1,v_2}(x)$ שהיא שהיא $\Psi_{v_1,v_2}(x)$

 $\Psi_{v_1,v_2}\left(x
ight)=egin{cases} 0 & (v_1,v_2) \notin E \\ \phi\left(v_1,v_2
ight) & (v_1,v_2) \in E \end{cases}$ אז v_1 ל־ אז ברור: אם v_2 בשכבה העוקבת ל־ v_1 אז

 $\Psi_{v_1,v_2}\left(x
ight)=\bigvee_{u\in U}\left(\Psi_{v_1,u}\left(x
ight)\wedge\Psi_{u,v_2}\left(x
ight)
ight)$ אז נגדיר ענמצא לפחות במרחק שתי שכבות מ־ v_1 אז נגדיר ענדיר ענדיר ענדיר אז נגדיר

. (קרובה היע מספר שכבות הביניים הוא v_1 ל־ v_1 ל־ ען היא השכבה שבאמצע הדרך בין אוגי).

 $\Psi_{s,t}\left(x
ight)$ הנוסחה המובקשת היא

ניתוח:

m את גודל המעגל בשיטה שלעיל בשיטה בשיטה את $s\left(m
ight)$ את גודל המעגל המתקבל בשיטה אורך

נשים לב שבנוסחה הרקורסיבית אנו בונים את המעגל של $\Psi_{v_1,v_2}(x)$ באמצעות 10 תתי־מעגלים לכל היותר (כי גודל U הוא לכל היותר $\Psi_{v_1,v_2}(x)$ באמצעות של החלטים לב שכל היותר $\frac{m}{2}$ ששתי תתי־נוסחאות), ונשים לב שכל תת־מעגל כזה מתאים לתכנית מתפצלת הוא U, ולכל U שתי תתי־נוסחאות), ונשים לב שכל החלטים לב שכל היותר של היותר

 $s(m) = S(m) = O\left(10^{\log_2 m}\right) = O\left(m^{\log_2 10}\right)$ מכאן ש־ $s(m) = S(m) = O\left(10^{\log_2 m}\right) = O\left(m^{\log_2 10}\right)$ מכאן ש־

 \wedge וה־ \vee וה־ d מגיע משערי ה־ d (m) את עומק המעגל שמתקבל לתכנית מתפצלת בגודל m. בבירור d (m) בבירור d (m) את עומק המעגל שמתקבל לתכנית מתפצלת בגודל m. בבירור שבהם השתמשנו).

הוכחת הכיוון הקשה

הוכחת כיוון זה תתבצע בשני שלבים. ראשית נציג מודל ביניים בין מעגלים ותכניות מתפצלות – **תכניות חבורה** – ונראה כיצד ניתן להמיר מודל זה לתכנית מתפצלת רגילה; ולאחר מכן נראה כי קיימת תכנית חבורה קטנה יחסית עבור כל מעגל.

תכניות חבורה

עבור $A=\{1,2,\ldots,n\}$ את להיות A להיות ערכית ועל. בדרך כלל בוחרים את A להיות פונקציה A היא פונקציה $\sigma:A\to A$ שהיא חד־חד ערכית ועל. בדרך כלל בוחרים את A להיות A היא פונקציה היא שנוח לנו.

אוסף כל הפרמוטציות על $\sigma\cdot au$ מסומן ב־ S_n קבוצה זו מהווה חבורה ביחס לפעולת ההרכבה של פרמוטציות: $\sigma\cdot au$ היא הפרמוטציה שמתקבלת על ידי הפעלת σ ומייד לאחר מכן הפעלת σ .

. פרמוטצית הזהות, שנסמנה ב־e, היא הפרמוטציה שמעבירה כל איבר לעצמו.

תכנית חבורה באורך l מתאימה פרמוטציה לכל השמה למשתנים (x_1,\dots,x_n) , כאשר הפרמוטציה נבנית כמכפלה של l פרמוטציות ובכל סיבוב נבחרת אחת משתי פרמוטציות אפשריות להוספה למכפלה על פי אחד מביטי הקלט. פורמלית תכנית פרמוטציות מוגדרת על ידי סדרה של שלשות נבחרת אחת משתי פרמוטציות אפשריות להוספה למכפלה על פי אחד מביטי הקלט. פורמלית תכנית פרמוטציות אפשריות להשתמש גם בחבורות $g_i^b \in S_5$ כד ש־ (g_1^0,g_1^1,k_1) , כך ש־ (g_1^0,g_1^1,k_1) , כך ש־ (g_1^0,g_1^1,k_1) , כך ש־ (g_1^0,g_1^1,k_1) , בחבורות פרמוטציות גדולות יותר אך אנו לא נזדקק לכך ומכאן ההגדרה המצומצמת.

 $\prod_{i=1}^l g_i^{x_{k_i}}$ הפלט של התכנית על ההשמה א

- σ עבור x כך ש־ f(x)=1, פלט תכנית החבורה הוא •
- e עבור x כך ש־ f(x)=0, פלט תכנית החבורה הוא

מתכנית חבורה לתכנית מתפצלת

נראה כעת כי ניתן לסמלץ תכניות חבורה באמצעות תכנית מתפצלת מרוחב 5 ובעלת l שכבות. הרעיון הוא שכל שכבה תכלול בדיוק 5 צמתים אמייצגים את האיברים שעליהם פועלות הפרמוטציות שבתכנית החבורה (כזכור, התכנית מוגדרת באמצעות פרמוטציות מ־5; לסימולציה עבור (כזכור, התכנית מוגדרת באמצעות פרמוטציות מ־5; לסימולציה עבור כללי היה צורך ברוחב t של התכנית המתפצלת).

פורמלית, נניח כי יש לנו תכנית חבורה מאורך l אשר σ ־מחשבת את f. נבנה תכנית מתפצלת עבור f באופן הבא:

- $V = \{v_1^1, \dots, v_1^5\} \cup \dots \cup \{v_l^1, \dots, v_l^5\}$
- עם הליטרל $\left(v_i^r,v_{i+1}^{g_i^0(r)}\right)$: עבור השלשה עבור $\left(v_i^r,v_{i+1}^{g_i^0(r)}\right)$ שבתכנית החבורה, ולכל $1\leq r\leq 5$ נוסיף לתכנית המתפצלת שתי קשתות: $\left(v_i^r,v_{i+1}^{g_i^0(r)}\right)$ עם הליטרל $\left(v_i^r,v_{i+1}^{g_i^1(r)}\right)$

ניתן להוכיח באינדוקציה על שהבניה עובדת, כלומר שעבור השמה x, אם פלט תכנית החבורה הוא τ , אז בתכנית המתפצלת המתאימה יש מסלול מין להוכיח באינדוקציה על t שהבניה עובדת, כלומר שעבור השמה t אל $v_i^{ au(r)}$ אל $v_i^{ au(r)}$

ממעגל בוליאני לתכנית חבורה

נוכיח כעת את הטענה (המפתיעה!) הבאה: כל פונקציה $f:\{0,1\}^n o \{0,1\}^n$ אשר ניתנת לחישוב באמצעות מעגל בוליאני מעומק d, ניתנת ל- σ ניתנת לחישוב על ידי תכנית חבורה (עם פרמוטציות מתוך S_5) מאורך d מאורך d מאורך d נאשר d הוא d-מעגל כלשהו. זה יסיים את ההוכחה שכן עבור פונקציות d ניתנת חבורה מאורד פולינומי.

l ניתנת ל־auרחישוב על ידי תכנית מאורך f ניתנת ל־auרחישוב על ידי תכנית מאורך f ניתנת ל־auרחישוב על ידי תכנית מאורך f ניתנת ל־

כלומר, הזהות הספציפית של המעגל אינה משנה כל עוד הוא 5־מעגל. הסיבה לכך היא שכל שתי פרמוטציות שיש להן אותו מבנה מעגלים (בפירוק שלהן למכפלת מעגלים זרים יש אותה כמות מעגלים ואותם גדלים של מעגלים) הן **צמודות**: קיימת פרמוטציה ρ כך ש־ ρ (זהו משפט אלמנטרי נוסף מתורת החבורות שלא נוכיח כאן).

אם כן, אם תכנית מאותו אורך ש־ (g_1^0,g_1^1,k_1) , (g_2^0,g_2^1,k_1) , \dots , (g_l^0,g_l^1,k_l) אם כן, אם $(\rho g_1^0,\rho g_1^1,k_1)$, (g_2^0,g_2^1,k_1) ,

ואם אס אס התכנית החדשה היה החדשה היה אחדשה היה אחדשה ולכן אם פלט התכנית הישנה היה או ho או היה אחדשה היה או ho היה או פלט התכנית החדשה היה שנה היה או פלט התכנית החדשה היה שנה היה שנה

נעבור כעת לבניית תכנית החבורה. נראה בניה אינדוקטיבית – דהיינו, כיצד לכל צומת במעגל ניתן לבנות תכנית חבורה שמחשבת את אותה הפונקציה כמו הצומת הזה. לצורך פשטות נניח כי המעגל כולל שערי \neg ו \land וליטרלים חיוביים בלבד (את \lor ניתן לסמלץ בעזרת דה־מורגן מבלי לגרום לשינוי מהותי בעומק).

בסיס: עבור צומת ליטרל x_i שמייצג את הפונקציה $f(x)=x_i$ נבנה את תכנית הפרמוטציות שמייצג את שמייצג את הפונקציה $f(x)=x_i$ נבנה את תכנית הפרמוטציות ליטרל $\sigma \neq e$ ובפרט לכזו שהיא $\sigma \neq e$

P' אשר P' מאורך P' עבור P' עבור P' תהיה זהה ל־ P' מאורך P' מאורך P' עבור P' עבור P' תהיה זהה ל־ P' בעד - שער P' נניח כי יש לנו תכנית P' מאורך P' אז ב־ P' השלשה תהיה P' אז ב־ P' השלשה האחרונה. אם ב־ P' השלשה הייתה P' אז ב־ P' השלשה מהיה P' מאורך P' מאורך P' מאורך P' מאורך P' השלשה הייתה P' מאורך P

P' לכן $P'(x)=e\sigma^{-1}=\sigma^{-1}$ ולכן P(x)=e אז P(x)=e אז לP(x)=e ואילו אם P(x)=e ואילו אם P(x)=e ואכן P(x)=e ולכן P(x)=e אז P(x)=e ואכן P

אורכיהן σ_2 אורכיהן σ_3 אורכיהן σ_3 אורכיהן σ_3 אורכים את יניח כי σ_1 אורכים לניפוח התכנית). נניח כי σ_1 אורכים לניפוח החלק המורכב של הבניה (וזה שיגרום לניפוח התכנית). נניח כי σ_1 אור σ_3 אורכים בננה σ_3 אשר σ_3 אשר σ_3 מחשבת את σ_3 אורכים בהתאמה, וז σ_3 הוא σ_3 הוא σ_3 אשר σ_3 אשר σ_3 אשר σ_3 מורכים בהתאמה, וז σ_3 אורכים בננה σ_3 אשר σ_3

קיימים שני τ_1 בדיקה גם הקומוטטור τ_1 ב τ_2 הקומוטטור שלהם הוא τ_1 שלהם הוא τ_2 מעגל. למשל, עבור τ_1 אשר גם הקומוטטור הקומוטטור הוא τ_1 בדיקה שבגללה היה עלינו להשתמש בפרמוטציות מאורך τ_2 ולא קטן יותר; תופעה דומה לא מתקיימת עבור פרמוטציות על 4 איברים או פחות.

ניתן להניח בלי הגבלת הכלליות כי P_1 בהחשבת את P_2 בי P_3 ־מחשבת את P_2 שכן, כפי שכבר ראינו, ניתן להחליף כל T_1 מעגל ב־ T_2 מאותם אורכים של P_1 כך ש־ T_1^{-1} בחשבת את T_1 בחשבת את T_1 ו־ T_2^{-1} מאותם אורכים של P_1 כך ש־ T_1^{-1} בחשבת את T_1 בי מחשבת את T_2 בי מחשבת T_2 בי

- $.P\left(x\right)=\tau_{1}\tau_{2}\tau_{1}^{-1}\tau_{2}^{-1}=\tau$ יתקיים $f_{1}\left(x\right)=f_{2}\left(x\right)=1$ שעבורו על קלט •
- $f_{1}\left(x
 ight)=1$ דו $f_{1}\left(x
 ight)=0$ אם $P\left(x
 ight)=e$ אופן דומה יתקיים פורן $P\left(x
 ight)= au_{1}$ יתקיים $f_{2}\left(x
 ight)= au_{1}$ יתקיים $f_{2}\left(x
 ight)=0$ די $f_{1}\left(x
 ight)=0$ אם $P\left(x
 ight)=0$

. מכאן ש־ au אכן au־מחשבת את $f_1 \wedge f_2$ עבור au שהיא P־מעגל

הוא $s\left(d\right)$ הם שהיא $s\left(d\right)$ האיא שהיא $s\left(d\right)$ הם שהיא מעגל. אם שהיא $s\left(d\right)$ הוא הראינו כי ניתן לקבל באינדוקציה תכנית חבורה אשר σ ־מחשבת את f של מעגל כלשהו, עבור $s\left(d+1\right) \leq 2\left(s\left(d\right)+s\left(d\right)\right)=4s\left(d\right)$ מכאן האורך המקסימלי של תכנית החבורה שהבנייה מניבה עבור מעגל מעומק d עם d בי בי בי מעגל מעומק d עם הבנייה מניבה עבור מעגל מעומק d עם d בי בי מעגל מעומק d עם הבנייה מניבה עבור מעגל מעומק d עם האורך המקסימלי של הבנייה מניבה שבי d מעגל מעומק d עם הבנייה מניבה עבור מעגל מעומק של האורך מעגל מעומק מעגל כלשהי שהיא d מעגל באינדוקציה מניבה שהבנייה מניבה עבור מעגל מעומק d