Prject Overview:-

Focuses on leveraging machine learning classification techniques to develop an effective fraud detection system for Fastag transactions. The dataset comprises key features such as transaction details, vehicle information, geographical location, and transaction amounts. The goal is to create a robust model that can accurately identify instances of fraudulent activity, ensuring the integrity and security of Fastag transactions.

Principle Aim:-

The main goal is to develop a robust fraud detection system for Fastag transactions using machine learning. By analyzing transaction details, vehicle information, location, and amounts, the system aims to accurately identify fraudulent activities, ensuring the security and integrity of Fastag transactions.

```
# Data Loading
from google.colab import drive
import pandas as pd
drive.mount('/content/drive')
file_path = '/content/drive/My Drive/FastagFraudDetection.csv'
df = pd.read_csv(file_path)
```

Mounted at /content/drive

```
df.head()
```

	Transaction_ID	Timestamp	Vehicle_Type	FastagID	TollBoothID	Lane_Type
0	1	1/6/2023 11:20	Bus	FTG-001- ABC-121	A-101	Express
4	0	1/7/2023	0~	FTG-002-	D 400	Dagular

1	_	14:55	∪ar	XYZ-451	D-IU∠	negular
2	3	1/8/2023 18:25	Motorcycle	NaN	D-104	Regular
3	4	1/9/2023 2:05	Truck	FTG-044- LMN-322	C-103	Regular
4	5	1/10/2023 6:35	Van	FTG-505- DEF-652	B-102	Express

Next steps:

Generate code with df

View recommended plots

df.head(20)

	Transaction_ID	Timestamp	Vehicle_Type	FastagID	TollBoothID	Lane_Type
0	1	1/6/2023 11:20	Bus	FTG-001- ABC-121	A-101	Express
1	2	1/7/2023 14:55	Car	FTG-002- XYZ-451	B-102	Regula
2	3	1/8/2023 18:25	Motorcycle	NaN	D-104	Regula
3	4	1/9/2023 2:05	Truck	FTG-044- LMN-322	C-103	Regula
4	5	1/10/2023 6:35	Van	FTG-505- DEF-652	B-102	Express
5	6	1/11/2023 10:00	Sedan	FTG-066- GHI-987	A-101	Regula
6	7	1/12/2023 15:40	SUV	FTG-707- JKL-210	B-102	Express
7	8	1/13/2023 20:15	Bus	FTG-088- UVW-543	C-103	Regula
8	9	1/14/2023 1:55	Car	FTG-909- RST-876	A-101	Expres
9	10	1/15/2023 7:30	Motorcycle	NaN D-104	D-104	Regula
10	11	1/16/2023 12:10	Truck	FTG-021- QWE-765	C-103	Express
11	12	1/17/2023 17:45	Van	FTG-011- ZXC-431	B-102	Regula
12	13	1/18/2023 22:20	Sedan	FTG-013- POI-104	A-101	Expres
13	14	1/19/2023 4:00	SUV	FTG-014- KJH-872	B-102	Regula
14	15	1/20/2023 8:30	Bus	FTG-055- DCV-543	A-101	Express
	. =	1/21/2023	_	FTG-066-		

15	16	13:10	Car	NBH-210	B-102	Regula
16	17	1/22/2023 16:45	Motorcycle	NaN	D-104	Regula
17	18	1/23/2023 22:25	Truck	FTG-088- EYT-654	C-103	Regula
18	19	1/24/2023 2:55	Van	FTG-099- FTD-321	B-102	Express
19	20	1/25/2023 7:35	Sedan	FTG-120- TTU-098	A-101	Regula

Next steps:

Generate code with df

View recommended plots

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 5000 entries, 0 to 4999 Data columns (total 13 columns):

#	Column	Non-N	Null Count	Dtype
0	Transaction_ID	5000	non-null	int64
1	Timestamp	5000	non-null	object
2	Vehicle_Type	5000	non-null	object
3	FastagID	4451	non-null	object
4	TollBoothID	5000	non-null	object
5	Lane_Type	5000	non-null	object
6	Vehicle_Dimensions	5000	non-null	object
7	Transaction_Amount	5000	non-null	int64
8	Amount_paid	5000	non-null	int64
9	Geographical_Location	5000	non-null	object
10	Vehicle_Speed	5000	non-null	int64
11	Vehicle_Plate_Number	5000	non-null	object
12	Fraud_indicator	5000	non-null	object
Alaba and				-

dtypes: int64(4), object(9) memory usage: 507.9+ KB

df.describe()

	Transaction_ID	Transaction_Amount	Amount_paid	Vehicle_Speed	Ħ
count	5000.000000	5000.00000	5000.000000	5000.000000	
mean	2500.500000	161.06200	141.261000	67.851200	
std	1443.520003	112.44995	106.480996	16.597547	
min	1.000000	0.00000	0.000000	10.000000	
25%	1250.750000	100.00000	90.000000	54.000000	
50%	2500.500000	130.00000	120.000000	67.000000	
75%	3750.250000	290.00000	160.000000	82.000000	
max	5000.000000	350.00000	350.000000	118.000000	

df.shape

(5000, 13)

```
print(df.columns)
```

```
df['Timestamp'] = pd.to_datetime(df['Timestamp'])
df.isnull()
```

	Transaction_ID	Timestamp	Vehicle_Type	FastagID	TollBoothID	Lane_Ty
0	False	False	False	False	False	Fa
1	False	False	False	False	False	Fa
2	False	False	False	True	False	Fa
3	False	False	False	False	False	Fa
4	False	False	False	False	False	Fa
4995	False	False	False	False	False	Fa
4996	False	False	False	False	False	Fa
4007	Foloo	Ealaa	Foloo	Foloo	Foloo	E.

4331	raise	raise	Faise	Гаю€	Faist	Гс
4998	False	False	False	False	False	Fa
4999	False	False	False	False	False	Fε

5000 rows × 13 columns

```
df=df.set_index('Transaction_ID')
df.describe().T
```

	count	mean	std	min	25%	50%	75 %	max
Transaction_Amount	4451.0	180.927881	103.004437	0.0	110.0	140.0	300.0	350.0
Amount_paid	4451.0	158.684565	99.857565	0.0	100.0	120.0	180.0	350.0
Vehicle_Speed	4451.0	67.884745	16.632295	10.0	55.0	67.0	82.0	118.0

```
plt.figure(figsize=(5,4))

plt.boxplot(df['Transaction_Amount'])
plt.xlabel('Transaction Amount')
plt.ylabel('Frequency')
plt.title('Boxplot of Transaction Amount')

plt.tight_layout()
plt.show()
```



```
avg_transaction_amounts = df.groupby('Vehicle_Type')['Transaction_Amount'].mean
plt.figure(figsize=(6, 4))
sns.barplot(x='Vehicle_Type', y='Transaction_Amount', data=avg_transaction_amou
plt.xlabel('Vehicle Category')
plt.ylabel('Average Transaction Amount')
plt.title('Average Transaction Amount by Vehicle Category')
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
plt.show()
```



```
plt.figure(figsize=(6,4))
df['Fraud_indicator'].value_counts().plot(kind='pie', autopct='%1.1f%', colors
plt.title('Proportion of Fraudulent Transactions')
plt.ylabel('')
plt.show()
```

Proportion of Fraudulent Transactions


```
plt.figure(figsize=(6,4))
sns.kdeplot(data=df['Transaction_Amount'], fill=True, label='Transaction Amount
sns.kdeplot(data=df['Amount_paid'], fill=True, label='Amount Paid')
plt.xlabel('Amount')
plt.ylabel('Density')
plt.title('Kernel Density Estimation of Transaction Amount and Amount Paid')
```

plt.legend()
plt.show()

Kernel Density Estimation of Transaction Amount and Amount Paid


```
df['Timestamp'] = pd.to_datetime(df['Timestamp'])

# Extract hour from the timestamp
df['Hour'] = df['Timestamp'].dt.hour

# Filter fraudulent transactions
fraudulent_transactions = df[df['Fraud_indicator'] == 'Fraud']

# Group by hour and sum transaction amount
fraudulent_amount_by_hour = fraudulent_transactions.groupby('Hour')['Transactic
plt.figure(figsize=(10, 4))
fraudulent_amount_by_hour.plot(marker='o', linestyle='-')
plt.title('Fraud Amount Throughout the Day')
```

```
plt.xlabel('Hour of the Day')
plt.ylabel('Total Fraud Amount')
plt.xticks(range(24))
plt.show()
```



```
print("Missing values in 'FastagID':", df['FastagID'].isnull().sum())
```

Missing values in 'FastagID': 549

```
df = df.dropna(subset=['FastagID'])
df.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 4451 entries, 0 to 4999
Data columns (total 13 columns):

Ducu	cotamiis (totat 15 cott	111113/1	
#	Column	Non-Null Count	Dtype
0	Transaction_ID	4451 non-null	int64
1	Timestamp	4451 non-null	datetime64[ns]
2	Vehicle_Type	4451 non-null	object
3	FastagID	4451 non-null	object
4	TollBoothID	4451 non-null	object
5	Lane_Type	4451 non-null	object
6	Vehicle_Dimensions	4451 non-null	object
7	Transaction_Amount	4451 non-null	int64
8	Amount_paid	4451 non-null	int64
9	Geographical_Location	4451 non-null	object
10	Vehicle_Speed	4451 non-null	int64
11	<pre>Vehicle_Plate_Number</pre>	4451 non-null	object
12	Fraud_indicator	4451 non-null	object
	es: datetime64[ns](1), ry usage: 486.8+ KB	int64(4), object	(8)

import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
import numpy as np
import pandas as pd
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_s
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import confusion_matrix, classification_report
import tensorflow as tf

df.hist(figsize=(10, 8), bins=20) plt.show()


```
sns.countplot(x='Fraud_indicator', data=df, palette=['red', 'green'])
plt.xlabel('Fraud Indicator')
plt.ylabel('Count')
plt.title('Count of Fraud and Non-Fraud Indicators')
plt.show()
```

<ipython-input-13-a0b8bf54ff9b>:1: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed
sns.countplot(x='Fraud_indicator', data=df, palette=['red', 'green'])

sns.pairplot(df, vars=['Transaction_Amount', 'Amount_paid', 'Vehicle_Speed'])
plt.show()


```
sns.boxplot(
    x = "Fraud_indicator",
    y = "Transaction_Amount",
    showmeans=True,
    data=df,
    palette=["red", "green"]
)

plt.xlabel("Fraud Indicator")
plt.ylabel("Transaction Amount")
plt.title("Distribution of Transaction Amount by Fraud Indicator")
plt.xticks(rotation=45)
plt.show()
```

<ipython-input-15-b6b2f11221a9>:1: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed sns.boxplot(

correlation_matrix = df[['Transaction_Amount', 'Amount_paid', 'Vehicle_Speed']]
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
plt.show()

sns.boxplot(x='Transaction_Amount', data=df)
plt.show()

selected_features = ['Transaction_Amount', 'Amount_paid']

```
X = df[selected_features]
y = df['Fraud_indicator']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random
```

```
from sklearn.preprocessing import LabelEncoder
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
label_encoder = LabelEncoder()
y_train_encoded = label_encoder.fit_transform(y_train)
y_test_encoded = label_encoder.transform(y_test)
```

```
from tensorflow.keras import models, layers

model = models.Sequential()
model.add(layers.Dense(32, activation='relu', input_shape=(X_train_scaled.shape
model.add(layers.Dense(16, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))

model.summary()
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'
```

Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 32)	96
dense_1 (Dense)	(None, 16)	528
dense_2 (Dense)	(None, 1)	17

Total params: 641 (2.50 KB)
Trainable params: 641 (2.50 KB)
Non-trainable params: 0 (0.00 Byte)

```
model.fit(X_train_scaled, y_train_encoded, epochs=40, batch_size=32, validation
Epoch 12/40
```

,				,		
Epoch						
89/89	[======================================	_	0s	2ms/step -	loss:	0.0394 - accur
Epoch						
89/89	[======================================	_	0s	3ms/step -	loss:	0.0383 - accur
Epoch				·		
	[======================================	_	0s	3ms/step -	loss:	0.0375 - accur
Epoch				, ,		
	[======================================	_	0s	3ms/step -	loss:	0.0366 - accur
Epoch				,		
	[=======]	_	05	3ms/step -	loss:	0.0359 - accur
Epoch				J, J. J.		
	[========]	_	05	3ms/step -	loss:	0.0347 - accur
Epoch				S5, 5 15p	10001	
•	[=========]	_	۵۵	3mc/cton -	1000	0 0338 - accur
Epoch			03	31113/3 CEP -	1033.	0.0330 - accui
	[==========]		0.0	2mc/cton	10001	0 0221 20005
		_	05	Silis/step -	LOSS:	0.0331 - accur
Epoch			0.0	2ma/atan	1	0 0220
	[======================================	_	05	3ms/step -	toss:	0.0320 - accur
Epoch			0 -	2/	1	0.0211
	[======================================	_	05	3ms/step -	LOSS:	0.0311 - accur
Epoch			_			
	[=========]	_	ขร	2ms/step -	loss:	0.0304 - accur
Epoch			_			
	[========]	_	0s	2ms/step -	loss:	0.0292 - accur
Epoch					_	
	[=======]	_	0s	2ms/step -	loss:	0.0281 - accur
Epoch					_	
	[=======]	_	0s	3ms/step -	loss:	0.0274 - accur
Epoch					_	
	[=======]	_	0s	2ms/step -	loss:	0.0263 - accur
Epoch						
	[=======]	-	0s	2ms/step -	loss:	0.0256 - accur
Epoch						
	[=========]	_	0s	3ms/step -	loss:	0.0243 - accur
Epoch						
	[==========]	_	0s	3ms/step -	loss:	0.0228 - accur
Epoch						
	[=========]	_	0s	2ms/step -	loss:	0.0216 - accur
	36/40					
89/89	[======================================	_	0s	2ms/step -	loss:	0.0202 - accur
	37/40					
89/89	[======================================	_	0s	2ms/step -	loss:	0.0188 - accur
Epoch	38/40					
89/89	[======================================	_	0s	2ms/step -	loss:	0.0172 - accur
Epoch	39/40					
	[======================================	_	0s	3ms/step -	loss:	0.0160 - accur
	40/40			•		
	[===========]	_	0s	3ms/step -	loss:	0.0144 - accur
	s.src.callbacks.History at 0x7f73					
	•					

```
y_pred_prob = model.predict(X_test_scaled)
# Convert probabilities to binary predictions
y_pred = np.round(y_pred_prob)
# Print accuracy metrics
accuracy = accuracy_score(y_test_encoded, y_pred)
precision = precision_score(y_test_encoded, y_pred)
recall = recall_score(y_test_encoded, y_pred)
f1 = f1_score(y_test_encoded, y_pred)
# Print accuracy metrics
print("Accuracy: {:.2f}%".format(accuracy * 100))
print("Precision: {:.2f}%".format(precision * 100))
print("Recall: {:.2f}%".format(recall * 100))
```

28/28 [========] - 0s 5ms/step

Accuracy: 99.66% Precision: 99.57% Recall: 100.00% F1 Score: 99.79%

import matplotlib.pyplot as plt

```
metrics = ['Accuracy', 'Precision', 'Recall', 'F1 Score']
values = [99.66 ,99.57, 100.00 , 99.79]

plt.bar(metrics, values, color=['blue', 'green', 'orange', 'red'])
plt.ylabel('Score')
plt.title('Model Metrics')
plt.ylim(0, 1)
plt.show()
```



```
df['Day']=df['Timestamp'].dt.dayofweek

df['Month']=df['Timestamp'].dt.month
```

```
# Calculate the difference between "Transaction_Amount" and "Amount_paid"
df['Amount_Difference'] = df['Transaction_Amount'] - df['Amount_paid']

# Calculate the ratio of "Amount_paid" to "Transaction_Amount"
df['Payment_Ratio'] = df['Amount_paid'] / df['Transaction_Amount']
```

df.head(2)

Timestamp Vehicle_Type FastagID TollBoothID Lane_Type Vo

Transaction_ID

1	2023-01-06 11:20:00	Bus FTG-001- ABC-121	A-101	Express
2	2023-01-07 14:55:00	Car FTG-002- XYZ-451	B-102	Regular

```
Next steps: Generate code with df

Output

Output
```

Timestamp FastagID TollBoothID Transaction Amount Amount Transaction_ID FTG-001-2023-01-06 1 A-101 350 ABC-121 11:20:00 2023-01-07 FTG-002-2 B-102 120 14:55:00 XYZ-451 2023-01-09 FTG-044-C-103 350 02:05:00 LMN-322

3 rows × 26 columns

```
# Extract latitude and longitude from 'Geographical_Location'
df['Latitude'] = df['Geographical_Location'].apply(lambda x: float(x.split(',')
df['Longitude'] = df['Geographical_Location'].apply(lambda x: float(x.split(',')
# Drop the original 'Geographical_Location' column
df.drop(columns=['Geographical_Location'], inplace=True)
```

df.head(3)

	Timestamp	FastagID	TollBoothID	Transaction_Amount	Amount
Transaction_ID					
1	2023-01-06 11:20:00	FTG-001- ABC-121	A-101	350	
2	2023-01-07 14:55:00	FTG-002- XYZ-451	B-102	120	
4	2023-01-09 02:05:00	FTG-044- LMN-322	C-103	350	

3 rows × 27 columns

```
df.Fraud_indicator.value_counts()
```

1 3468 0 983

Name: Fraud_indicator, dtype: int64

```
# Separate features and target variable
X = df.drop(columns=['Fraud_indicator', 'Timestamp', 'FastagID', 'TollBoothID',
X
```

	Transaction_Amount	Amount_paid	Vehicle_Speed	Hour	Day	Mo
Transaction_ID						
1	350	120	65	11	4	
2	120	100	78	14	5	
4	350	120	92	2	0	
5	140	100	60	6	1	
6	160	100	105	10	2	
4996	330	330	81	22	6	
4997	125	125	64	13	1	
4998	115	115	93	5	6	
4999	145	145	57	20	0	
5000	330	125	86	0	4	

4451 rows × 22 columns

```
y = df['Fraud_indicator']
y
```

```
Transaction ID
2
         0
4
         0
5
         0
6
         0
4996
4997
4998
         1
4999
         1
5000
```

Name: Fraud_indicator, Length: 4451, dtype: int64

```
from sklearn.impute import SimpleImputer
from sklearn.ensemble import RandomForestClassifier
imputer = SimpleImputer(strategy='mean')
# Fit the imputer on the features and transform the features
X_imputed = imputer.fit_transform(X)
rf_classifier = RandomForestClassifier()
rf_classifier.fit(X_imputed, y)
feature_importances = rf_classifier.feature_importances_
feature_importance_df = pd.DataFrame({
    'Feature': X.columns,
    'Importance': feature_importances
})
# Sort the DataFrame by feature importance
feature_importance_df = feature_importance_df.sort_values(by='Importance', asce
# Print the top 5 important features
top n = 5
print(f"Top {top_n} Important Features:")
print(feature_importance_df.head(top_n))
```

Top 5 Important Features:

	Feature	Importance
6	Amount_Difference	0.479879
7	Payment_Ratio	0.352243
1	Amount_paid	0.092946
0	Transaction_Amount	0.026552
19	Vehicle Dimensions Small	0.010919

```
plt.figure(figsize=(10, 4))
plt.barh(feature_importance_df['Feature'], feature_importance_df['Importance'],
plt.xlabel('Importance')
plt.ylabel('Feature')
plt.title('Feature Importance')
plt.gca().invert_yaxis()
plt.show()
```



```
from sklearn.preprocessing import OneHotEncoder, LabelEncoder from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, classification_report from sklearn.model_selection import cross_val_score, StratifiedKFold from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_s from sklearn.metrics import confusion_matrix, roc_curve, auc
```

```
top_features = feature_importance_df.head(5)['Feature'].tolist()
X_top_features = X[top_features]
y = df['Fraud_indicator']
# StratifiedKFold
```

```
skf = StratifiedKFold(n splits=5, shuffle=True, random state=42)
logistic model = LogisticRegression()
# Initialize lists to store evaluation metrics
accuracies = []
# Perform cross-validation
for train_index, test_index in skf.split(X_top_features, y):
    X train, X test = X top features.iloc[train index], X top features.iloc[tes
    y_train, y_test = y.iloc[train_index], y.iloc[test_index]
    # Impute missing values
    imputer = SimpleImputer(strategy='mean')
    X train imputed = imputer.fit transform(X train)
    X_test_imputed = imputer.transform(X_test)
    # Fit the model
    logistic_model.fit(X_train_imputed, y_train)
    # Make predictions
    y_pred = logistic_model.predict(X_test_imputed)
    # Calculate accuracy and store it
    accuracy = accuracy_score(y_test, y_pred)
    accuracies.append(accuracy)
# Calculate mean accuracy
mean_accuracy = np.mean(accuracies)
print("Mean Accuracy of stratified cross validation:", mean_accuracy)
# Display classification report using the entire dataset
X imputed = imputer.fit transform(X top features)
logistic_model.fit(X_imputed, y)
y pred = logistic model.predict(X imputed)
print("Classification Report:")
print(classification_report(y, y_pred))
```

Mean Accuracy of stratified cross validation: 0.9836002976077882 Classification Report:

	precision	recall	f1-score	support
0	1.00	0.93	0.96	983
1	0.98	1.00	0.99	3468
accuracy			0.98	4451
macro avg	0.99	0.96	0.98	4451
weighted avg	0.98	0.98	0.98	4451

```
# Calculate ROC curve and AUC
fpr, tpr, _ = roc_curve(y, y_pred)
```

```
roc_auc = auc(fpr, tpr)

# Plot ROC curve
plt.figure(figsize=(8, 4))
plt.plot(fpr, tpr, color='b', label=f'ROC Curve (AUC = {roc_auc:.2f})')
plt.plot([0, 1], [0, 1], color='r', linestyle='--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
plt.legend()
plt.show()
```



```
# Calculate confusion matrix
cm = confusion_matrix(y, y_pred)

# Normalize confusion matrix
cm_norm = cm / cm.sum(axis=1)[:, np.newaxis] # Normalize along the true labels

# Define class labels
class_labels = ['Non-Fraudulent', 'Fraudulent']

# Plot confusion matrix with probabilities
```

```
plt.figure(figsize=(8, 4))
sns.heatmap(cm_norm, annot=True, cmap='Blues', fmt='.2%', cbar=False, xticklabe
plt.xlabel('Predicted Label')
plt.ylabel('True Label')
plt.title('Confusion Matrix')
plt.show()
```

