CS 228 : Logic in Computer Science

Krishna, S

Propositional Logic

Finite set of propositional variables p, q, \dots

3/2

- Finite set of propositional variables p, q, \dots
- ► Each of these can be true/false

- Finite set of propositional variables p, q, \dots
- Each of these can be true/false
- ▶ Combine propositions using \neg , \lor , \land , \rightarrow

- Finite set of propositional variables p, q, \dots
- Each of these can be true/false
- ▶ Combine propositions using \neg , \lor , \land , \rightarrow
- Parantheses as required

- ▶ Finite set of propositional variables *p*, *q*, . . .
- Each of these can be true/false
- ▶ Combine propositions using \neg , \lor , \land , \rightarrow
- Parantheses as required
- ▶ Example : $[p \land (q \lor r)] \rightarrow [\neg r \land p]$
- ▶ ¬ binds tighter than \vee , \wedge , which bind tighter than \rightarrow . In the absence of parantheses, $p \rightarrow q \rightarrow r$ is read as $p \rightarrow (q \rightarrow r)$

Natural Deduction

▶ If it rains, Tia is outside and does not have any raingear with her, she will get wet. $\varphi = (R \land TiaOut \land \neg RG) \rightarrow TiaWet$

4/20

Natural Deduction

- ▶ If it rains, Tia is outside and does not have any raingear with her, she will get wet. $\varphi = (R \land TiaOut \land \neg RG) \rightarrow TiaWet$
- It is raining, and Tia is outside, and is not wet. ψ = (R ∧ TiaOut ∧ ¬TiaWet)

Natural Deduction

- ▶ If it rains, Tia is outside and does not have any raingear with her, she will get wet. $\varphi = (R \land TiaOut \land \neg RG) \rightarrow TiaWet$
- ▶ It is raining, and Tia is outside, and is not wet. $\psi = (R \land TiaOut \land \neg TiaWet)$
- So, Tia has her rain gear with her. RG
- ▶ Thus, $\chi = \varphi \wedge \psi \rightarrow RG$. You can deduce RG from $\varphi \wedge \psi$.
- ▶ Is χ valid? Is χ satisfiable?

Two Examples of Natural Deduction

Solve Sudoku

Consider the following kid's version of Sudoku.

	2	4	
1			3
4			2
	1	3	

Rules:

- Each row must contain all numbers 1-4
- ► Each column must contain all numbers 1-4
- ► Each 2 × 2 block must contain all numbers 1-4
- ▶ No cell contains 2 or more numbers

▶ Proposition P(i,j,n) is true when cell (i,j) has number n

- ▶ Proposition P(i, j, n) is true when cell (i, j) has number n
- ▶ $4 \times 4 \times 4$ propositions

- ▶ Proposition P(i, j, n) is true when cell (i, j) has number n
- ▶ 4 × 4 × 4 propositions
- Each row must contain all 4 numbers
 - ▶ Row 1: $[P(1,1,1) \lor P(1,2,1) \lor P(1,3,1) \lor P(1,4,1)] \land$ $[P(1,1,2) \lor P(1,2,2) \lor P(1,3,2) \lor P(1,4,2)] \land$ $[P(1,1,3) \lor P(1,2,3) \lor P(1,3,3) \lor P(1,4,3)] \land$ $[P(1,1,4) \lor P(1,2,4) \lor P(1,3,4) \lor P(1,4,4)]$

- ▶ Proposition P(i, j, n) is true when cell (i, j) has number n
- ▶ 4 × 4 × 4 propositions
- Each row must contain all 4 numbers
 - ▶ Row 1: $[P(1,1,1) \lor P(1,2,1) \lor P(1,3,1) \lor P(1,4,1)] \land$ $[P(1,1,2) \lor P(1,2,2) \lor P(1,3,2) \lor P(1,4,2)] \land$ $[P(1,1,3) \lor P(1,2,3) \lor P(1,3,3) \lor P(1,4,3)] \land$ $[P(1,1,4) \lor P(1,2,4) \lor P(1,3,4) \lor P(1,4,4)]$
 - ► Row 2: [P(2, 1, 1) ∨ . . .
 - ▶ Row 3: [*P*(3, 1, 1) ∨ . . .
 - ► Row 4: [P(4, 1, 1) ∨ . . .

Each column must contain all numbers 1-4

Each column must contain all numbers 1-4

```
► Column 1: [P(1,1,1) \lor P(2,1,1) \lor P(3,1,1) \lor P(4,1,1)] \land [P(1,1,2) \lor P(2,1,2) \lor P(3,1,2) \lor P(4,1,2)] \land [P(1,1,3) \lor P(2,1,3) \lor P(3,1,3) \lor P(4,1,3)] \land [P(1,1,4) \lor P(2,1,4) \lor P(3,1,4) \lor P(4,1,4)]
```

Each column must contain all numbers 1-4

- ► Column 1: $[P(1,1,1) \lor P(2,1,1) \lor P(3,1,1) \lor P(4,1,1)] \land [P(1,1,2) \lor P(2,1,2) \lor P(3,1,2) \lor P(4,1,2)] \land [P(1,1,3) \lor P(2,1,3) \lor P(3,1,3) \lor P(4,1,3)] \land [P(1,1,4) \lor P(2,1,4) \lor P(3,1,4) \lor P(4,1,4)]$
- ► Column 2: [*P*(1, 2, 1) ∨ . . .
- **▶** Column 3: [*P*(1,3,1) ∨ . . .
- **▶** Column 4: [*P*(1, 4, 1) ∨ . . .

Each 2 × 2 block must contain all numbers 1-4

Each 2 × 2 block must contain all numbers 1-4

Upper left block contains all numbers 1-4:

$$[P(1,1,1) \lor P(1,2,1) \lor P(2,1,1) \lor P(2,2,1)] \land [P(1,1,2) \lor P(1,2,2) \lor P(2,1,2) \lor P(2,2,2)] \land [P(1,1,3) \lor P(1,2,3) \lor P(2,1,3) \lor P(2,2,3)] \land [P(1,1,4) \lor P(1,2,4) \lor P(2,1,4) \lor P(2,2,4)]$$

Each 2 × 2 block must contain all numbers 1-4

Upper left block contains all numbers 1-4:

$$\begin{split} &[P(1,1,1)\vee P(1,2,1)\vee P(2,1,1)\vee P(2,2,1)]\wedge\\ &[P(1,1,2)\vee P(1,2,2)\vee P(2,1,2)\vee P(2,2,2)]\wedge\\ &[P(1,1,3)\vee P(1,2,3)\vee P(2,1,3)\vee P(2,2,3)]\wedge\\ &[P(1,1,4)\vee P(1,2,4)\vee P(2,1,4)\vee P(2,2,4)] \end{split}$$

Upper right block contains all numbers 1-4:

$$[P(1,3,1) \lor P(1,4,1) \lor P(2,3,1) \lor P(2,4,1)] \land \dots$$

Lower left block contains all numbers 1-4:

$$[P(3,1,1) \lor P(3,2,1) \lor P(4,1,1) \lor P(4,2,1)] \land \dots$$

▶ Lower right block contains all numbers 1-4:

$$[P(3,3,1) \lor P(3,4,1) \lor P(4,3,1) \lor P(4,4,1)] \land \dots$$

No cell contains 2 or more numbers

► For cell(1,1):

$$P(1,1,1) \to [\neg P(1,1,2) \land \neg P(1,1,3) \land \neg P(1,1,4)] \land P(1,1,2) \to [\neg P(1,1,1) \land \neg P(1,1,3) \land \neg P(1,1,4)] \land P(1,1,3) \to [\neg P(1,1,1) \land \neg P(1,1,2) \land \neg P(1,1,4)] \land P(1,1,4) \to [\neg P(1,1,1) \land \neg P(1,1,2) \land \neg P(1,1,3)] \land$$

Similar for other cells

Encoding Initial Configuration:

$$P(1,2,2) \wedge P(1,3,4) \wedge P(2,1,1) \wedge P(2,4,3) \wedge$$

$$P(3,1,4) \land P(3,4,2) \land P(4,2,1) \land P(4,3,3)$$

Solving Sodoku

To solve the puzzle, just conjunct all the above formulae and find a satisfiable truth assignment!

11/2

Gold Rush

(Box1) The gold is not here

(Box2) The gold is not here

(Box3) The gold is in Box 2

Only one message is true; the other two are false. Which box has the gold?

12/2

- ▶ Propositions M1, M2, M3 representing messages in boxes 1,2,3
- ▶ Propositions G1, G2, G3 representing gold in boxes 1,2,3
- ► Formalize what is given to you

- ▶ Propositions M1, M2, M3 representing messages in boxes 1,2,3
- ▶ Propositions G1, G2, G3 representing gold in boxes 1,2,3
- Formalize what is given to you
 - ► $M1 \leftrightarrow \neg G1$.

- ▶ Propositions M1, M2, M3 representing messages in boxes 1,2,3
- ▶ Propositions G1, G2, G3 representing gold in boxes 1,2,3
- Formalize what is given to you
 - ▶ $M1 \leftrightarrow \neg G1$, $M2 \leftrightarrow \neg G2$,

- ▶ Propositions M1, M2, M3 representing messages in boxes 1,2,3
- ▶ Propositions G1, G2, G3 representing gold in boxes 1,2,3
- Formalize what is given to you
 - ▶ $M1 \leftrightarrow \neg G1$, $M2 \leftrightarrow \neg G2$, $M3 \leftrightarrow G2$

- ▶ Propositions M1, M2, M3 representing messages in boxes 1,2,3
- ▶ Propositions G1, G2, G3 representing gold in boxes 1,2,3
- Formalize what is given to you
 - ▶ $M1 \leftrightarrow \neg G1$, $M2 \leftrightarrow \neg G2$, $M3 \leftrightarrow G2$
 - \rightarrow $\neg (M1 \land M2 \land M3),$

- ▶ Propositions M1, M2, M3 representing messages in boxes 1,2,3
- ▶ Propositions G1, G2, G3 representing gold in boxes 1,2,3
- Formalize what is given to you
 - ▶ $M1 \leftrightarrow \neg G1$, $M2 \leftrightarrow \neg G2$, $M3 \leftrightarrow G2$
 - \rightarrow $\neg (M1 \land M2 \land M3), M1 \lor M2 \lor M3,$

- ▶ Propositions M1, M2, M3 representing messages in boxes 1,2,3
- ▶ Propositions G1, G2, G3 representing gold in boxes 1,2,3
- Formalize what is given to you
 - ▶ $M1 \leftrightarrow \neg G1$, $M2 \leftrightarrow \neg G2$, $M3 \leftrightarrow G2$
 - \rightarrow $\neg (M1 \land M2 \land M3), M1 \lor M2 \lor M3,$
 - $(\neg M1 \land \neg M2) \lor (\neg M1 \land \neg M3) \lor (\neg M2 \land \neg M3)$

- ▶ Propositions M1, M2, M3 representing messages in boxes 1,2,3
- ▶ Propositions G1, G2, G3 representing gold in boxes 1,2,3
- Formalize what is given to you
 - ▶ $M1 \leftrightarrow \neg G1$, $M2 \leftrightarrow \neg G2$, $M3 \leftrightarrow G2$
 - \rightarrow $\neg (M1 \land M2 \land M3), M1 \lor M2 \lor M3,$
 - $(\neg M1 \land \neg M2) \lor (\neg M1 \land \neg M3) \lor (\neg M2 \land \neg M3)$
 - ▶ Conjunct all these, and call the formula φ .

- ▶ Propositions M1, M2, M3 representing messages in boxes 1,2,3
- ▶ Propositions G1, G2, G3 representing gold in boxes 1,2,3
- Formalize what is given to you
 - ▶ $M1 \leftrightarrow \neg G1$, $M2 \leftrightarrow \neg G2$, $M3 \leftrightarrow G2$
 - \rightarrow $\neg (M1 \land M2 \land M3), M1 \lor M2 \lor M3,$
 - $(\neg M1 \land \neg M2) \lor (\neg M1 \land \neg M3) \lor (\neg M2 \land \neg M3)$
 - Conjunct all these, and call the formula φ .
 - ▶ Is there a unique satisfiable assignment for φ ?

- ▶ Propositions M1, M2, M3 representing messages in boxes 1,2,3
- ▶ Propositions G1, G2, G3 representing gold in boxes 1,2,3
- Formalize what is given to you
 - ▶ $M1 \leftrightarrow \neg G1$, $M2 \leftrightarrow \neg G2$, $M3 \leftrightarrow G2$
 - \rightarrow $\neg (M1 \land M2 \land M3), M1 \lor M2 \lor M3,$
 - $(\neg M1 \land \neg M2) \lor (\neg M1 \land \neg M3) \lor (\neg M2 \land \neg M3)$
 - ▶ Conjunct all these, and call the formula φ .
 - ▶ Is there a unique satisfiable assignment for φ ?
 - For example, is M1 = true a part of the satisfiable assignment?

A Proof Engine

- ▶ Given a formula φ in propositional logic, how to "prove" φ if φ is valid?
- ▶ What is the proof engine?

A Proof Engine

- ▶ Given a formula φ in propositional logic, how to "prove" φ if φ is valid?
- What is the proof engine?
- ► For example, in the Tia example, how do you prove that Tia had indeed rain gear with her, given the premises?

Proof Engine: Natural Deduction

- ▶ Natural Deduction as a technique to "prove" valid formulae
- Understand this proof engine
- Show that this proof engine is sound and complete
 - Completeness: Any fact that can be captured using propositional logic can be proved by the proof engine
 - Soundness: Any formula that is proved to be valid by the proof engine is indeed valid

▶ In natural deduction, we have a collection of proof rules

16/20

- ▶ In natural deduction, we have a collection of proof rules
- These proof rules allow us to infer formulae from some given formulae

16/20

- In natural deduction, we have a collection of proof rules
- These proof rules allow us to infer formulae from some given formulae
- Given a set of premises, we deduce some formulae using proof rules. Recall how we deduced that Tia had rain gear with her, from the given premises

- In natural deduction, we have a collection of proof rules
- These proof rules allow us to infer formulae from some given formulae
- Given a set of premises, we deduce some formulae using proof rules. Recall how we deduced that Tia had rain gear with her, from the given premises
- ho $\varphi_1, \ldots, \varphi_n \vdash \psi$: This is called a sequent. $\varphi_1, \ldots, \varphi_n$ are premises, and ψ , the conclusion.
- ▶ Given $\varphi_1, \ldots, \varphi_n$, we can deduce or prove ψ . What was the sequent in Tia's case?

- In natural deduction, we have a collection of proof rules
- These proof rules allow us to infer formulae from some given formulae
- Given a set of premises, we deduce some formulae using proof rules. Recall how we deduced that Tia had rain gear with her, from the given premises
- ▶ $\varphi_1, \ldots, \varphi_n \vdash \psi$: This is called a sequent. $\varphi_1, \ldots, \varphi_n$ are premises, and ψ , the conclusion.
- ▶ Given $\varphi_1, \ldots, \varphi_n$, we can deduce or prove ψ . What was the sequent in Tia's case?
- ► For example, $\neg p \rightarrow q, q \rightarrow r, \neg r \vdash p$ is a sequent. How do you prove this?

- In natural deduction, we have a collection of proof rules
- These proof rules allow us to infer formulae from some given formulae
- Given a set of premises, we deduce some formulae using proof rules. Recall how we deduced that Tia had rain gear with her, from the given premises
- ho $\varphi_1, \ldots, \varphi_n \vdash \psi$: This is called a sequent. $\varphi_1, \ldots, \varphi_n$ are premises, and ψ , the conclusion.
- ▶ Given $\varphi_1, \ldots, \varphi_n$, we can deduce or prove ψ . What was the sequent in Tia's case?
- ► For example, $\neg p \rightarrow q, q \rightarrow r, \neg r \vdash p$ is a sequent. How do you prove this?
- ▶ Proof rules to be carefully chosen, for instance you should not end up proving something like $p \land q \vdash \neg q$

The Rules of the Proof Engine

Rules for Natural Deduction

The and introduction rule denoted $\wedge i$

Rules for Natural Deduction

The and elimination rule denoted $\wedge e_1$

$$\frac{\varphi \wedge \psi}{\varphi}$$

The and elimination rule denoted $\wedge e_2$

$$\frac{\varphi \wedge \psi}{\psi}$$

▶ Show that $p \land q, r \vdash q \land r$

- 1. $p \wedge q$ premise
- 2.

▶ Show that $p \land q, r \vdash q \land r$

```
1. p \wedge q premise
```

2. r premise

3.

▶ Show that $p \land q, r \vdash q \land r$

```
1. p \land q premise 2. r premise
```

3.
$$q \wedge e_2$$
 1

4.

▶ Show that $p \land q, r \vdash q \land r$

```
1. p \land q premise 2. r premise
```

3.
$$q \wedge e_2$$
 1

4.
$$q \wedge r \wedge i 3,2$$