1er examen parcial de Introducción a los Sistemas Dinámicos Maestría en Ciencias de la Complejidad

Grupo de Dinámica no Lineal y Sistemas Complejos* GDNLySC

Octubre de 2014

1. Presentación

Este examen es una parte de los instrumentos de certificación de *Introducción a los Sistemas Dinámicos*, asignatura curricular del Plan de Estudios de la Maestría en Ciencias de la Complejidad.

1.1. Objetivos de evaluación

En este examen se trata de evaluar si los sustentantes han desarrollado la capacidad de:

- 1. Comprender un modelo matemático simple expresado en términos de un sistema dinámico discreto.
- 2. Seguir paso a paso un argumento deductivo en el contexto de los sistemas dinámicos y sus herramientas matemáticas auxiliares.
- 3. Manipular operativamente tales herramientas.

^{*}Los responsables de elaborar esta propuesta del GDNLySC fueron Jorge Fernando Camacho Pérez y José Luis Gutiérrez Sánchez. Para cualquier observación, comunicarse por correo electrónico a jose.gutierrez@uacm.edu.mx

4. Aplicar las facilidades computacionales de los sistemas de cómputo algebraico (como *Maple*, *Mathematica*, *Matlab*, etcétera) para simular y analizar el comportamiento de sistemas dinámicos continuos.

1.2. Criterios de evaluación

Cada uno de los siguientes criterios se refiere, respectivamente, a los objetivos descritos en la subsección anterior.

- 1. La comprensión del modelo se evaluará en términos de la explicación verbal o escrita que dé el sustentante sobre el significado fenomenológico de las componentes del sistema y cómo las ecuaciones del mismo representan las interacciones que definen la evolución temporal del mismo.
- 2. La capacidad de seguir un argumento deductivo se evaluará en términos de la descripción que haga el sustentante de la secuencia lógica que lleva de un enunciado a otro en el desarrollo del argumento.
- 3. La capacidad de manipular operativamente las herramientas matemáticas utilizadas se evaluará en términos de la corrección del resultado que obtenga al aplicarlas en el contexto del modelo que se plantea.
- 4. La aplicación de las facilidades computacionales se evaluará en términos de los procedimientos usados en las hojas de trabajo (del sistema algebraico computacional que haya elegido para hacerlo) generadas para simular y analizar el modelo.

1.3. Procedimiento de aplicación

El enunciado del examen se dará a los sustentantes el martes 28 de octubre y éstos entregarán, individualmente o en equipos de dos personas, un reporte escrito de la solución, el lunes 10 de noviembre. Los estudiantes podrán recurrir a la asesoría de cualquiera de los profesores de la Maestría para resolver adecuadamente el examen. El Comité de Certificación evaluará el reporte escrito y, de considerarlo necesario, podrá solicitar a los estudiantes una réplica oral que deberá llevarse a cabo en el transcurso de la segunda semana de noviembre.

2. El examen

Considere la sucesión de números de Fibonacci:

$$0, 1, 1, 2, 3, 5, 8, 13, \dots$$

correspondiente al desarrollo de la ecuación de recurrencia de segundo orden

$$F_{k+2} = F_{k+1} + F_k \tag{1}$$

con condiciones iniciales $F_0 = 0, F_1 = 1$. Explique brevemente con qué problema de crecimiento poblacional se relaciona esta sucesión.

¿Cómo se puede calcular el valor del número de Fibonacci F_{1000} ?. En principio, aplicando la ecuación de recurrencia (1) novecientas noventainueve veces. El propósito de este ejercicio es obtener una "fórmula cerrada" que permita calcular F_k como función del índice k. Se trata de probar que, para cualquier k = 0, 1, 2, ...

$$F_k = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^k - \left(\frac{1 - \sqrt{5}}{2} \right)^k \right]. \tag{2}$$

Para hacerlo será necesario hacer uso del siguiente

Teorema 1 Sea A una matriz cuadrada de dimensión n. Si A tiene n valores propios distintos

$$\lambda_1, \lambda_2, ..., \lambda_n,$$

con vectores propios correspondientes

$$v_1, v_2, ..., v_n,$$

entonces

1. A es diagonalizable; es decir, existen P y D, matrices de dimensión n tales que D es una matriz diagonal y

$$P^{-1}AP = D.$$

2. De hecho,

$$D = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & & \lambda_n \end{bmatrix}$$

y

$$P = \begin{bmatrix} \mathbf{v}_1 | \mathbf{v}_2 | \cdots | \mathbf{v}_n \end{bmatrix}$$

es la matriz cuyas columnas son los vectores propios.

Veamos ahora cómo se generan los números de la sucesión de Fibonacci en las coordenadas de los vectores en \mathbb{R}^2 que forman la órbita de la condición inicial

$$\mathbf{u}_0 = \left[\begin{array}{c} F_1 \\ F_0 \end{array} \right] = \left[\begin{array}{c} 1 \\ 0 \end{array} \right],$$

para un sistema dinámico discreto adecuado.

Sea

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \tag{3}$$

entonces, si

$$\mathbf{u}_k = A\mathbf{u}_{k-1} \tag{4}$$

para k = 1, 2, 3, ..., explique porqué

$$\mathbf{u}_k = \left[\begin{array}{c} F_{k+1} \\ F_k \end{array} \right]$$

y porqué

$$\mathbf{u}_k = A^k \mathbf{u}_0 \tag{5}$$

donde A^k denota la k-ésima potencia de la matriz A (es decir, A multiplicada por sí misma k veces).

Para desarrollar lo que se indica en este ejercicio, apóyese en el Teorema 1.

1. Pruebe que el polinomio característico de A es

$$p(\lambda) = \lambda^2 - \lambda - 1$$

y que, por consiguiente, los valores propios son

$$\lambda_1 = \frac{1+\sqrt{5}}{2}$$

$$\lambda_2 = \frac{1-\sqrt{5}}{2}$$
(6)

2. Muestre ahora que los vectores propios correspondientes a λ_1 y λ_2 son, respectivamente:

$$\mathbf{v}_1 = \begin{bmatrix} \lambda_1 \\ 1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} \lambda_2 \\ 1 \end{bmatrix} \tag{7}$$

3. Con \mathbf{v}_1 y \mathbf{v}_2 , forme la matriz de transición P y muestre que

$$P^{-1} = \frac{1}{\lambda_1 - \lambda_2} \left[\begin{array}{cc} 1 & -\lambda_2 \\ -1 & \lambda_1 \end{array} \right].$$

4. Compruebe que

$$P^{-1}AP = \left[\begin{array}{cc} \lambda_1 & 0\\ 0 & \lambda_2 \end{array} \right] = D.$$

5. Explique porqué

$$A^k = PD^k P^{-1} (8)$$

y porqué

$$D^k = \begin{bmatrix} \lambda_1^k & 0\\ 0 & \lambda_2^k \end{bmatrix}. \tag{9}$$

6. Ahora sustituya la igualdad (8) en la ecuación (4) para mostrar que

$$\mathbf{u}_{k} = (PD^{k}P^{-1})\mathbf{u}_{0}$$

$$= \frac{1}{\lambda_{1} - \lambda_{2}} \begin{bmatrix} \lambda_{1}^{k+1} - \lambda_{2}^{k+1} \\ \lambda_{1}^{k} - \lambda_{2}^{k} \end{bmatrix}$$

de donde se sigue que

$$F_k = rac{1}{\sqrt{5}} \left[\left(rac{1+\sqrt{5}}{2}
ight)^k - \left(rac{1-\sqrt{5}}{2}
ight)^k
ight],$$

como se quería probar.

- 7. En el sistema de cómputo algebraico que prefiera,
 - a) Haga un programa que genere los números de la sucesión de Fibonacci aplicando la ecuación de recurrencia (1) que los define y calcule, con él, los valores de F_k para k=0,1,...,25.

b) Modifique, si fuere necesario, el programa del inciso anterior para generar la sucesión de números de Lucas que son de la forma

$$L_{k+2} = L_{k+1} + L_k$$

pero cuyas condiciones iniciales son $L_0 = 1, L_1 = 2$ y calcule los valores de L_k para k = 0, 1, ..., 25.

- c) Defina, como función de k, el valor de F_k según la fórmula cerrada (2) y confirme que le da los mismos valores de F_k para k = 0, 1, ..., 25.
- d) Compare las dificultades algorítmicas que puede haber en los procedimientos de los incisos 7a) y 7c).

Referencias

- [1] Anton, Howard y Chris Rorres (2005): Elementary Linear Algebra. Applications Version. Ninth Edition. Hoboken, Nueva Jersey, John Wiley & Sons, (xii + 832 pp).
- [2] Strang, Gilbert (1976): Linear Algebra and its Applications. Nueva York, Academic Press, (xi + 374 pp.).