Chapter 13

Eigenvalues

Chapter Objectives

 Understanding the mathematical definition of eigenvalues and eigenvectors.

 Knowing how to use and interpret the Python NumPy linalg eigvals and eig functions.

Characteristic Eigenvalue Equation

The characteristic or eigenvalue equation is of the form

$$Ax = \lambda x$$

Here A is a matrix, x is a vector and λ is a scalar.

In this equation both x (eigenvector) and λ (eigenvalue) are unknowns.

For physical systems A is an hermitian matrix and hence λ gives real eigenvalues

Eigenvalues & Eigenvectors with Python: 'eig'

```
A =
   [[10, -5],
   [-5, 10]
[lam, v] = np. linalg.eig(A)
V =
[-0.70710678 0.70710678]]
Lam = [15, 5]
Check eigenvectors are orthogonal
```

- Diagonal elements of lambda are the eigenvalues
- Columns of V are the normalized eigenvector in the order of eigenvalues: first column is the eigenvector of the first eigenvalue: $V[:,0] = |\lambda_1| >$
- To make sure that the eigenvalues are ordered in ascending order together with the corresponding eigenvectors use np.argsort()

Example

Find the eigenvalues of A=magic(3). Note A is not Hermitian.

Open a function file example_eig

Show the eigenvalues and eigenvectors

```
import numpy as np
from scipy.linalg import eig
def example eig():
    A = np.array([[8, 1, 6]],
                   [3, 5, 7],
                    [4, 9, 2]]) # 3x3 magic square
    # Compute eigenvalues and eigenvectors
    eigenvalues, eigenvectors = eig(A)
    return eigenvectors, eigenvalues
# Example of how to call the function
V, D = example_eig()
print("Eigenvectors (V):")
print(V)
print("Eigenvalues (D):")
print(D)
                                Eigenvectors (V):
                                [[-0.57735027 -0.81305253 -0.34164801]
                                [-0.57735027 0.47140452 -0.47140452]
                                 [-0.57735027 0.34164801 0.81305253]]
                                Eigenvalues (D):[15.
                                                   +0.j 4.89897949+0.j -4.89897949+0.j]
```

Functions of Matrices

When working with functions of matrices add 'm' to the function. For example for matrix A

expm(A) or e^A and not exp(A) is used for e^A

Functions like sqrtm, logm exist.

A = [[1 , 2],
[2 , -1]]
Then np.exp(A) =
2.7183 7.3891
7.3891 0.3679
np.expm(A)=
$$e^A$$

6.7999 4.1365
4.1365 2.6634
Different values

 Note exp(A) takes the exponentials of the elements. i.e.

$$\exp(A) = \begin{bmatrix} \exp(A_{11}) & \exp(A_{21}) \\ \exp(A_{21}) & \exp(A_{22}) \end{bmatrix}$$

While expm do the true exponentiation

$$expm(A) = 1 + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \cdots$$

Similarly for other functions with 'm'

Matrix Representation of Angular Momentum

In the special case of spin-1/2, we have found the spin matrices by considering their action on the basis vectors $|sm\rangle$

$$S^{2} |sm\rangle = \hbar^{2}s(s+1)|sm\rangle$$

$$S_{z} |sm\rangle = \hbar m|sm\rangle$$

$$S_{\pm} |sm\rangle = \hbar \sqrt{s(s+1) - m(m\pm 1)}|s(m\pm 1)\rangle$$

$$S_{x} = (S_{+} + S_{-})/2 \text{ and } S_{y} = (S_{+} - S_{-})/2i$$

Since there are only two values of m for s=1/2, the matrices are 2x2.

Angular Momentum

For a general value of j, the matrices will be (2j+1)x(2j+1).

The matrix elements are given by:

$$A_{m'm} = \langle jm' | A | jm \rangle$$

where A is one of the angular momentum operators: J^2 , J_x , J_y , J_z , J_+ , J_-

Angular Momentum

Using the orthonormality of the eigenstates $|jm\rangle$

$$\langle jm' | J^2 | jm \rangle = \hbar^2 j(j+1) \, \delta_{m',m}$$

$$\langle jm' | J_z | jm \rangle = \hbar m \, \delta_{m',m}$$

$$\langle jm' | J_{\pm} | jm \rangle = \hbar \sqrt{j(j+1) - m(m\pm 1)} \, \delta_{m',m\pm 1}$$

Notice that J^2 and J_7 are diagonal matrices.

For
$$J_x$$
 and J_y , we use
$$J_x = (J_+ + J_-)/2$$

$$J_y = (J_+ - J_-)/2i$$

```
import numpy as np
def Joperator(j):
    N = int(2 * j + 1)
    # Initialize matrices with zeros
    Jp = np.zeros((N, N), dtype=complex)
    Jm = np.zeros((N, N), dtype=complex)
    # Calculate J+ and J- matrices
    for n in range(N):
        for m in range(N):
            Jp[m, n] = np.sqrt(j * (j + 1) - (n - j) * (n - j + 1)) * (m == n + 1)
            Jm[m, n] = np.sqrt(j * (j + 1) - (n - j) * (n - j - 1)) * (m == n - 1)
    # Calculate Jx, Jy, and Jz matrices
    Jx = (Jp + Jm) / 2
    Jy = (1j * (Jm - Jp)) / 2 # `1j` represents the imaginary unit in Python
    Jz = np.diag(np.arange(-j, j + 1))
    return Jx, Jy, Jz, Jp, Jm
# Example usage:
Jx, Jy, Jz, Jp, Jm = Joperator(1) # Example for <math>j=1
print("Jx:\n", Jx)
print("Jy:\n", Jy)
print("Jz:\n", Jz)
print("Jp:\n", Jp)
print("Jm:\n", Jm)
```

Example1: Spin in a magnetic field

Consider a particle of spin 5/2 in a magnetic field

B = 3 **i** + 2 **j** - 4 **k**. Its Hamiltonian is given by
$$H = -\vec{\mu} \cdot \vec{B}$$
 Here $\vec{\mu} = \gamma \vec{S}$. Take $\gamma = 1$, $\hbar = 1$ Calculate the eigenvalues and eigenvectors. What are the ground state eigenvalues and eigenvectors. Show that ground state is orthogonal to the second excited state.

- Write a function file called magnetic
- Call Joperator with j=5/2
- Write the B vector (array)
- Calculate the Hamiltonian matrix
- Calculate ordered the eigenvalues and eigenvectors.
- Obtain the ground state eigenvalue and eigenvector
- Verify that the second excited state is orthogonal to the ground state.

```
import numpy as np
from scipy.linalg import eig
def Joperator(j):
    N = int(2 * j + 1)
    # Initialize matrices with zeros
    Jp = np.zeros((N, N), dtype=complex)
    Jm = np.zeros((N, N), dtype=complex)
    # Calculate J+ and J- matrices
    for n in range(N):
       for m in range(N):
            Jp[m, n] = np.sqrt(j * (j + 1) - (n - j) * (n - j + 1)) * (m == n + 1)
            Jm[m, n] = np.sqrt(j * (j + 1) - (n - j) * (n - j - 1)) * (m == n - 1)
    # Calculate Jx, Jy, and Jz matrices
    Jx = (Jp + Jm) / 2
    Jy = (1j * (Jm - Jp)) / 2 # `1j` represents the imaginary unit in Python
    Jz = np.diag(np.arange(-j, j + 1))
    return Jx, Jy, Jz, Jp, Jm
```

```
def magnetic():
   # Elzain Summer 2014
    i = 5 / 2
   # Call the Joperator function
    Jx, Jy, Jz, Jp, Jm = Joperator(j)
    # Define the magnetic field vector B
    B = np.array([3, 2, -4])
    # Hamiltonian matrix H
    H = -(B[0] * Jx + B[1] * Jy + B[2] * Jz)
    # Eigenvalues and eigenvectors
    D, V = eig(H)
    # Sorting eigenvalues and corresponding eigenvectors
    idx = np.argsort(D)
    D = D[idx]
    V = V[:, idx]
   # Extract ground state energy and eigenvector
    Eg = D[0] # ground state energy
    Vg = V[:, 0] # ground state eigenvector
    Ve2 = V[:, 2] # third column eigenvector
    s = np.vdot(Vg, Ve2) # Dot product, `vdot` handles conjugate transpose
    # Display results
    print(f'Ground state energy Eg: {Eg.real:.4f}')
    print(f'Ground state eigenvector Vg:\n{Vg}')
    print(f'Orthogonality check s = {s.real:.4f}')
# Call the function
magnetic()
```

Development in Time

The time-dependent Schrodinger equation

$$i\hbar \frac{\partial}{\partial t} |\psi(t)> = H|\psi(t)>$$

has formal solution

$$|\psi(t)\rangle = e^{-\frac{iHt}{\hbar}}|\psi(0)\rangle$$

where $|\psi(0)>$ is the initial state

Example1: Development in Time

For example for an electron of spin $\frac{1}{2}$ in a magnetic field B in the z-directions where values of physical constants are set to 1, the Hamiltonian

$$H = -\frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix},$$

has eigenvalues $\pm \frac{1}{2}$ and eigenvectors $\binom{1}{0}$ and $\binom{0}{1}$.

If the system is initial in the state $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, find its state at time t. What is the probability for finding the system in $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$?

Example2: Development in Time

Spectral solution

$$|\psi(t)\rangle = \frac{1}{\sqrt{2}}e^{it/2} {1 \choose 0} + \frac{1}{\sqrt{2}}e^{-it/2} {0 \choose 1}$$

Probability amplitude for particle to be in

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$pA = \frac{1}{2} \left(e^{\frac{it}{2}} - e^{-\frac{it}{2}} \right) = i \sin\left(\frac{t}{2}\right)$$

Probability is then

$$p = |pA|^2 = \sin^2\left(\frac{\tau}{2}\right)$$

The direct solution can also be analytically calculated since in this case, the Hamiltonian satisfy

$$H^2 = \frac{1}{2^2}I, H^4 = H^3 = \frac{1}{2^2}H$$

Hence

$$e^{-iHt} = \cos\left(\frac{1}{2}t\right)I - i2\sin\left(\frac{1}{2}t\right)H$$

$$= \begin{bmatrix} \cos\left(\frac{t}{2}\right) + i\sin\left(\frac{t}{2}\right) & 0\\ 0 & \cos\left(\frac{t}{2}\right) - i\sin\left(\frac{t}{2}\right) \end{bmatrix}$$

Hence

$$e^{-iHt} = \begin{bmatrix} e^{i\frac{t}{2}} & 0\\ 0 & e^{-i\frac{t}{2}} \end{bmatrix}$$

$$|\chi(t)\rangle = \begin{bmatrix} e^{i\frac{t}{2}} & 0\\ 0 & e^{-i\frac{t}{2}} \end{bmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} e^{i\frac{t}{2}}\\ e^{-i\frac{t}{2}} \end{pmatrix}$$

Probability amplitude
$$pA = \frac{1}{\sqrt{2}} \left(\frac{1}{-1}\right)' * |\chi(t)>$$

$$pA = i \sin\left(\frac{t}{2}\right)$$

$$p(t) = |pA|^2 = \sin^2\frac{t}{2}$$

Numerical Solution

- Open a function file called time_development
- Define the Hamiltonian H
- In a loop over time from t = 0 to t = 6*pi in steps of pi/20, calculate the probability amplitude $pA = <\psi_f |e^{-iHt}|\psi_i>$
- Calculate probability p and plot p vs. t
- Compare with analytic solution

```
import numpy as np
from scipy.linalg import expm
import matplotlib.pyplot as plt
def time development():
    # Hamiltonian matrix H
   H = -0.5 * np.array([[1, 0], [0, -1]], dtype=complex)
   # Initial state psi_i
   psi_i = 1 / np.sqrt(2) * np.array([[1], [1]], dtype=complex)
   # Final state psi_f
    psi_f = 1 / np.sqrt(2) * np.array([[1], [-1]], dtype=complex)
    # Parameters for the time evolution
   T = 6 * np.pi
   step = np.pi / 20
    # Arrays to store results
   p = []
   pa = []
   tp = []
    # Time evolution loop
   t_vals = np.arange(0, T + step, step) # Generate time values from 0 to T with step size
   for t in t_vals:
       # Probability amplitude
        pA1m1 = np.dot(psi_f.T.conj(), expm(-1j * H * t) @ psi_i) # Using @ for matrix multiplication
       p.append(np.abs(pA1m1[0, 0])**2) # Extract scalar value and compute probability
       pa.append(np.sin(t / 2)**2) # Analytic probability
       tp.append(t)
    # Plotting
   plt.plot(tp, pa, '*r', label='Analytic Probability')
   plt.plot(tp, p, linewidth=2, label='Computed Probability')
   plt.grid(True)
   plt.title('Probability for system in psi1 at time t')
   plt.xlabel('Time')
   plt.ylabel('Probability')
   plt.legend()
   plt.show()
# Call the function
time development()
```


Example3

- A system with j=5/2 is in magnetic field
 B = 3 i + 2 j 4 k.
- Initially the system is in the state A[1;-1;i;1;0;2]
- Find the probability that the system will be at the same state at time t, using
- a. Spectral resolution
- b. Direct time development

Recall for spectral resolution we have

•
$$|\chi(t)\rangle = \sum_{n=1}^{N} c_n e^{-\frac{iE_n t}{\hbar}} |n\rangle$$

•
$$c_n = \langle n | \chi_i \rangle$$

•
$$pA = \langle \chi_i | \chi(t) \rangle = \sum_{n=1}^{N} |c_n|^2 e^{-\frac{iE_n t}{\hbar}}$$

For direct calculation we have

•
$$pA = \langle \chi_i | \chi(t) \rangle = \langle \chi_i | e^{-\frac{iHt}{\hbar}} | \chi_i \rangle$$

- Open function file time_spect_develop
- Call Joperator, Write B array and Hamiltonian
- Calculate Eigenvalues and Eigenvectors
- You need two for loops: One over time and an inner loop for carrying the spectral sum over eigenvalues
- The direct development is calculated within the time loop
- Create arrays to plot the probabilities vs. time

```
import numpy as np
from scipy.linalg import expm, eig
import matplotlib.pyplot as plt
def Joperator(j):
    N = int(2 * j + 1)
    # Initialize matrices with zeros
    Jp = np.zeros((N, N), dtype=complex)
    Jm = np.zeros((N, N), dtype=complex)
    # Calculate J+ and J- matrices
    for n in range(N):
        for m in range(N):
            Jp[m, n] = np.sqrt(j * (j + 1) - (n - j) * (n - j + 1)) * (m == n + 1)
            Jm[m, n] = np.sqrt(j * (j + 1) - (n - j) * (n - j - 1)) * (m == n - 1)
    # Calculate Jx, Jy, and Jz matrices
    Jx = (Jp + Jm) / 2
    Jy = (1j * (Jm - Jp)) / 2 # `1j` represents the imaginary unit in Python
    Jz = np.diag(np.arange(-j, j + 1))
    return Jx, Jy, Jz, Jp, Jm
def time spect develop():
    # Elzain Fall 2014
    j = 5 / 2
    # Call the Joperator function
    Jx, Jy, Jz, Jp, Jm = Joperator(j)
    # Define the magnetic field vector B
    B = np.array([3, 2, -4])
    # Hamiltonian matrix H
   H = -(B[0] * Jx + B[1] * Jy + B[2] * Jz)
    # Eigenvalues and eigenvectors
    D, V = eig(H)
    # Sorting eigenvalues and corresponding eigenvectors
    idx = np.argsort(D)
    D = np.diag(D[idx]) # Sorted eigenvalues in diagonal matrix form
    V = V[:, idx]
                        # Sorted eigenvectors
```

```
# Compute the condition number of H
   condition number = np.linalg.cond(H)
    print(f"Condition number of H: {condition number}")
    # Initial state xi
   xi = np.array([1, -1, 1j, 1, 0, 2], dtype=complex)
   xi = xi / np.linalg.norm(xi) # Normalizing xi
   # Time evolution parameters
   T = np.pi
    step = np.pi / 200
   N = int(2 * j + 1)
   tp = np.arange(0, T + step, step) # Time points array
   # Arrays to store results
    ps = np.zeros like(tp, dtype=float) # Spectral resolution probability
    p = np.zeros like(tp, dtype=float) # Direct calculation probability
# Time evolution loop
   for k, t in enumerate(tp):
        # Spectral resolution calculation
        pAspec = 0
        for n in range(N):
            pAspec += np.exp(-1j * D[n, n] * t) * np.abs(np.vdot(V[:, n], xi))**2
       ps[k] = np.abs(pAspec)**2
       # Direct calculation using matrix exponentiation
        pA1m1 = np.vdot(xi, expm(-1j * H * t) @ xi) # Probability amplitude
       p[k] = np.abs(pA1m1)**2 # Probability
   # Plotting
    plt.plot(tp, ps, '*r', label='Spectral', markersize=5)
   plt.plot(tp, p, linewidth=2, label='Direct')
   plt.grid(True)
   plt.title('Probability for system in psi1 at time t')
   plt.xlabel('Time')
   plt.ylabel('Probability')
   plt.legend()
   plt.show()
# Call the function
time spect develop()
```


Homework

Consider the Hamiltonian
$$H = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$$

- Find analytically its eigenvalues and eigenvectors
- If the system was initially in the state $\chi_i = \frac{1}{\sqrt{2}}(1;1)$
- Calculate and plot the probability as function of time for finding the system in the same state using analytic calculation, spectral resolution and direct time development