1

UNIT:4

COMBINATIONAL CIRCUITS

LOGIC CIRCUITS

- 2.1 Multiplexers (MUX)
- □ 2.2 Decoders
- □ 2.3 Encoders

2.1) Multiplexers (Data Selectors)

- A multiplexer (MUX) selects 1 of N input data sources and transmits the selected data to a single output—called multiplexing.
 - Basic function: select one of its 2^N data input lines and place the corresponding information onto a single output line.

2-1 Multiplexer

- A two-input MUX comprises of 2 Data Input's I₀ & I₁
- It comprises of a single Select Input S
- \square Based on the value of S (either 0/1), either the value of $\mathbf{I_0}$ or $\mathbf{I_1}$ is transferred at the output

Logic Symbol of 4-1 Multiplexer

4-1 Multiplexers (Data Selectors)

- Four Input Multiplexer comprises of 4 Data Inputs & 2
 Select Input lines
 - Based on the combination of select inputs, either of the data input is transferred to the output.

2.2) Decoders

 A decoder accepts a set of inputs that represents a binary number—activating only the output that corresponds to the input number.

For each of these input combinations, only one of the *M* outputs will be active (HIGH); all the other outputs are LOW.

Many decoders are designed to produce active-LOW outputs, where only the selected output is LOW while all others are HIGH.

2 line to 4 line Decoder

 Block diagram of 2-line to 4-line Decoder comprising of 2 Inputs & 4 Outputs is shown in the figure.

2 line to 4 line Decoder

- When A=0 & B=0 ,Output $\mathbf{D_0}$ is activated (Logic 1) , remaining all outputs are deactivated (Logic 0)
- When A=0 & B=1 ,Output \mathbf{D}_1 is activated (Logic 1), remaining all outputs are deactivated (Logic 0)
- When A= 1 & B = 0 ,Output $\mathbf{D_2}$ is activated (Logic 1) , remaining all outputs are deactivated (Logic 0)
- When A=1 & B=1 ,Output $\mathbf{D_3}$ is activated (Logic 1) , remaining all outputs are deactivated (Logic 0)

INPUTS		OUTPUTS				
A (MSB)	B (LSB)	D ₃ (MSB)	D_2	D ₁	D _o (LSB)	
0	0	0	0	0	1	
0	1	0	0	1	0	
1	0	0	1	0	0	
1	1	1	0	0	0	

3 line to 8 line Decoder

A 3 line to 8 line Decoder has 3 Inputs and 8 Outputs.

 Also called Binary to Octal Decoder-taking 3 bit binary input code and activating one of eight (octal) outputs

Also referred to as a 1-of-a-8-Decoder-only 1 of the 8 outputs is activated at a time.

3 line to 8 line Decoder

- Truth Table of 3 line to 8 line Decoder is given below
- Assignment Question: Draw the block level diagram of 3 line to 8 line Decoder & explain the operation

A_2	A_1	A_0	D ₇	D_6	D_5	D_4	D_3	D_2	D_1	D_0
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

2.3) Encoders

- Most decoders accept an input code & produce a HIGH (or LOW) at one and only one output line.
 - A decoder identifies, recognizes, or detects a particular code.

2.3) Encoders

- □ The opposite of decoding process is **encoding**.
 - Performed by a logic circuit called an encoder.

An encoder has a number of input lines, only **one** of which is activated at a given time.

Shown is an encoder with *M* inputs and *N* outputs.

Inputs are active-HIGH, which means that they are normally LOW.

It produces an *N*-bit output code, depending on which input is activated.

4 line to 2 line Encoder

A 4 line to 2 line Encoder comprises of 4 Inputs and
 2 Outputs.

 Based on the Input that's being activated a 2 bit code is generated at the output.

 The block diagram and truth table of the aforementioned is shown

4 line to 2 line Encoder

	Inp	Outputs			
D ₃	D_2	D_1	D ₀	Q_1	Q ₀
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1
0	0	0	0	χ	Χ