

EKSAMEN I KJ 2050, GRUNNKURS I ANALYTISK KJEMI (7,5 sp)

Torsdag 15. desember 2008 kl. 9.00 – 13.00.

Oppgavesettet er på tre sider. Tillatte hjelpemidler: lommekalkulator.

Alle oppgaver skal besvares, men i oppgave 1 besvares **en** av de to valgfrie oppgavene, tilsvarende i oppgave 2 besvares **en** av de to valgfrie oppgavene 2d1 / 2d2.

Sensurfrist 15. januar 2009 (3 uker + 10 dager).

Kontaktpersoner under eksamen: Øyvind Mikkelsen (928 99 450)

Oppgave 1. (10p + 10p)

Enten

En saltsyreløsning (ca. 0,2 M) skal innstilles med standard NaOH-løsning (0,400 M) der det benyttes en egnet pH indikator for å fastlegge endepunktet.

- a. Beregn pH ved ekvivalentpunkt. Beregn også den feilen man får hvis pH verdien ved endepunktet avviker 1 pH enheter fra verdien ved ekvivalentpunktet.
- b. Ovennevnte standard NaOH-løsning (0,400 M) har tatt opp noe CO_2 fra luften etter at den ble innstilt. Totalt karbonat antas å være i størrelsesorden 0,007 M. Beregn den feilen man får hvis det titreres til pH = 7 med den CO_2 holdige luten. Kommenter svaret.

DATA

$$CO_2 + H_2O = HCO_3^- + H^+$$
 $Ka_1 = 4,45 * 10^{-7}$
 $HCO_3^- = CO_3^{2-} + H^+$ $Ka_2 = 4,69 * 10^{-11}$

Eller

Vi har en løsning som inneholder 0,015 M sink. Denne skal titrere mot en 0,03 M standard EDTA-løsning. Titreringen utføres ved pH 12 i en bufferløsning som holder Zn²⁺ i løsning.

- a. Beregn den teoretiske gjenværende Zn²⁺ konsentrasjonen ved ekvivalenspunktet.
- b. Beregn titrerfeilen i prosent for denne titreringen hvis man antar at gjenværende sinkkonsentrasjon er henholdsvis $5 * 10^{-6}$ og $5 * 10^{-9}$ M. Kommenter svarene.

DATA (H₄X = EDTA)

$$HX^{3-} = H^{+} + X^{4-}$$
 $K_1 = 5.5 * 10^{-11}$
 $Zn^{2+} + X^{4-} = ZnX^{2-}$ $K_{Zn} = 3.2 * 10^{16}$

Oppgave 2. (5p + 5p + 5p + 5p)

- a. Hvilke egenskaper er ønskelig for fellingsproduktet i klassisk gravimetri, og forklar videre hvordan man kan gå frem for å oppnå et best mulig resultat.
- b. Medfelling kan være en feilkilde i gravimentri. Gjør rede for ulike typer av medfelling, hvordan disse kan påvirke resultatet og hvordan man kan gå frem for å få et bedre resultat.
- c. Gi en beskrivelse av andre typer feilkilder som kan opptre i gravimetri.

ENTEN

d1. Gjør detaljert rede for hvordan man gravimetrisk kan bestemme jern

ELLER

d2. Gjør detaljert rede for hvordan man gravimetrisk kan bestemme klorid.

Oppgave 3(5p + 5p)

- a. Forklar forskjellen mellom iodometri og iodimetri, og illustrer med eksempler på begge teknikkene
- b. Beskriv detaljert en måte å innstille standard tiosulfatløsning på. Angi sentrale reaksjonsligninger for innstillingen.

Oppgave 4. (5p + 2.5p 2.5p)

- a. Beskriv kort prinsippene som danner grunnlag for analytisk bruk av følgende fire teknikker; atomabsorpsjonspektrofotometri (AAS), ICP-MS, stripping voltammetri.
- b. Lag en tabell som indikerer omtrentlig hvilken deteksjonsgrense de nevnte teknikkene har. Ta også med potensiometri i denne tabellen.
- c. Sett fra et miljøovervåkingsperspektiv, forklar fordeler ved å kombinere ICP-MS analyser utført på manuelle prøver brakt til laboratorier, med resultater fra kontinuerlige voltammetriske analyser (utført på stede).

Oppgave 5. (10p) Kryss av for riktig eller uriktig påstand

	Riktig	Galt
EDTA er en seks-takket ligand, som betyr at EDTA har seks ledige donorgrupper som kan danne binding til kationer i et 1:6 forhold.		
En viktig forutsetning i EDTA titreringer er at indikatoren bindes sterkere til metallionet enn EDTA.		
EDTA titrering helst med pH i område 9,5 – 11.		
I elektrogravimetri uten kontroll av potensialet på arbeidselektroden holdes potensialet for cellen mer eller mindre på et konstant nivå gjennom elektrolysen.		
KSCN er en primær standard.		
Mohr titrering utføres gjerne i nøytralt miljø.		
$3IO^- = IO_3^- + 2I^-$		
$2 Cu^{2+} + S_4O_6^{2-} + 2I^{-} = 2CuI + 2S_2O_3^{2-}$		
Jod er lettløslig i vann.		
Fellingstitrering med sølvnitrat brukes typiske for å bestemme kationer, som for eksempel ulike metaller.		