STN SEARCH SUMMARY 10/717138

=> d his

(FILE 'HOME' ENTERED AT 14:00:16 ON 07 JUL 2005)

FILE 'REGISTRY' ENTERED AT 14:00:26 ON 07 JUL 2005 E ACYL CARRIER PROTEIN SYNTHASE/CN

L1 1 S E3

FILE 'CAPLUS' ENTERED AT 14:01:00 ON 07 JUL 2005

L2 378 S L1 OR ACPS OR DPJ OR YDCB

L3 88 S L2 AND (CRYSTAL OR STRUCTURE OR X-RAY OR NMR)

L4 12 S L3 AND SUBTILIS

L5 3.7 S L3 AND PD<2001

L7 43 S L3 AND (CRYSTAL OR X-RAY OR NMR)

L8 13 S L7 AND PD<2001

=> d his

(FILE 'HOME' ENTERED AT 15:51:49 ON 07 JUL 2005)

FILE 'REGISTRY' ENTERED AT 15:52:11 ON 07 JUL 2005 E ACYL CARRIER PROTEIN/CN

FILE 'CAPLUS' ENTERED AT 15:52:26 ON 07 JUL 2005

L1 4891 S ACYL CARRIER PROTEIN OR ACP

L2 37 S L1 (S) SUBTILIS

L3 15 S L2 AND PY<2001

WEST Search History

Hide Items	Restore	Clear	Cancel

DATE: Thursday, July 07, 2005

Hide?	<u>Set</u> Name	Query	<u>Hit</u> Count
	DB=Pc	GPB, USPT, EPAB, JPAB, DWPI; PLUR=YES; OP=OR .	
	L9	L8 same subtilis	8
	L8	((\$6acyl adj carrier adj protein adj synth\$6) or (holo\$ACP adj synth\$6) or acps or dpj or ydcb) same (crystal or NMR)	299
	L7	(\$6acyl adj carrier adj protein adj synth\$6) or (holo\$ACP adj synth\$6) or acps or dpj or ydcb	5998

END OF SEARCH HISTORY

SEQUENCE SEARCH PESSMMARY 10/717138

GenCore version 5.1.6 Copyright (c) 1993 - 2005 Compugen Ltd.

OM protein - protein search, using sw model

Run on: May 20, 2005, 02:26:43; Search time 135.522 Seconds

(without alignments)

453.427 Million cell updates/sec

Title: US-10-717-138-2

Perfect score: 595

Sequence: 1 AYGIGLDITELKRIASMAGR.....SITHTKEYAAAQVVIERLSS 120

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 1612378 seqs, 512079187 residues

Total number of hits satisfying chosen parameters: 1612378

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database : UniProt_03:*

1: uniprot_sprot:*
2: uniprot trembl:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

		8				
Result		Query				
No.	Score	Match I	Length	DB	ID	Description
					5,2/2,00	
1	591	99.3	121	1	ACPS_BACSU 5.30.00	P96618 bacillus su Kasahwa
2	313	52.6	119	2	Q81IT7 6.1.03	Q81it7 bacillus ce∤∕ ℳS
3	304	51.1	119	2	Q81JG3 //	Q81jg3 bacillus anMaus
4	304	51.1	119	2	Q6HPE3 <i>О</i> У	Q6hpe3 bacillus thun quall
5	303	50.9	119	2	Q73ET8 //	Q73et8 bacillus ce
6	300	50.4	119	2	Q63GX2	Q63gx2 bacillus ce
7	297	49.9	119	1	ACPS BACHD	Q9kfg1 bacillus ha
8	287	48.2	118	1	ACPS LISMO	Q8y812 listeria mo
9	287	48.2	118	2	Q721T0	Q721t0 listeria mo
10	283	47.6	118	1	ACPS LISIN	Q92dd0 listeria in
11	279.5	47.0	117	1	ACPS STAEP	Q8cnk6 staphylococ
12	278	46.7	119	1	ACPS STAAU	Q9zah6 staphylococ
13	277.5	46.6	119	1	ACPS OCEIH	Q8esk9 oceanobacil
14	275	46.2	119	1	ACPS STAAM	P63468 staphylococ
15	275	46.2	119	1	ACPS STAAN	P63469 staphylococ
					_	:

16	275	46.2	119	1	ACPS STAAW	P63470	staphylococ
17	275	46.2	119	2	Q6G7N8		staphylococ
18	3 275	46.2	119	2	Q6GF02		staphylococ
19	269	45.2	117	2	Q820V0		enterococcu
20	261	43.9	119	1	ACPS LACLA	Q9ch95	lactococcus
21	252.5	42.4	120	1	ACPS LACPL	Q88z44	lactobacill
22	246.5	41.4	119	2	Q74LB3	Q741b3	lactobacill
23	3 245	41.2	117	1	ACPS LACRE	Q9fcv3	lactobacill
24	243	40.8	120	1	ACPS STRPN	Q9f7t5	streptococc
25	237.5	39.9	126	1	ACPS VIBCH	Q9kpb6	vibrio chol
26	233.5	39.2	126	1	ACPS VIBVU	Q8dc72	vibrio vuln
27	231.5	38.9	126	2	Q7MHP2	Q7mhp2	vibrio vuln
28	228.5	38.4	119	1	ACPS_STRA3	P63471	streptococc
. 29	228.5	38.4	119	1 ·	ACPS_STRA5		streptococc
30	227	38.2	119	1	ACPS_STRMU	Q8dsf3	streptococc
31	223.5	37.6	126	1	ACPS_VIBPA	Q871p3	vibrio para
32		37.2	124	1	ACPS_CLOAB	Q971r5	clostridium
33		37.1	118	1	ACPS_STRP3	P63473	streptococc
34	221	37.1	118	1	ACPS_STRP8	P63474	streptococc
. 35	221	37.1	118	1	ACPS_STRPY	Q99y97	streptococc
36		36.2	133	1	ACPS_CLOPE		clostridium
37		35.9	125	2	Q7VRR2	Q7vrr2	candidatus
38		35.9	127	1	ACPS_SHEON	Q8eh77	shewanella
39		35.6	139	1	ACPS_WIGBR	Q8d303	wiggleswort
40		35.5	126	2	Q6LMS5	Q61ms5	photobacter
4.7		34.6	122	2	Q6MAG4	Q6mag4	parachlamyd
42		34.5	125	2	Q67K77	Q67k77	symbiobacte
43		34.2	126	2	Q7N1X9	. Q7n1x9	photorhabdu
4 4		33.9	169	1	ACPS_THEMA	Q9wzf6	thermotoga
4.5	5 201	33.8	126	1	ACPS_RICPR	Q9zcx5	rickettsia
					. —		
							·
		•				,	

OM protein - protein search, using sw model

Run on: May 20, 2005, 02:25:38; Search time 78.806 Seconds

(without alignments)

588.931 Million cell updates/sec

Title: US-10-717-138-2

Perfect score: 595

Sequence: 1 AYGIGLDITELKRIASMAGR.....SITHTKEYAAAQVVIERLSS 120

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 2105692 seqs, 386760381 residues

Total number of hits satisfying chosen parameters: 2105692

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database : A_Geneseq_16Dec04:*

0.

1: geneseqp1980s:*

2: geneseqp1990s:*

3: geneseqp2000s:*

4: geneseqp2001s:*

5: geneseqp2002s:*

6: genesegp2003as:*

7: genesegp2003bs:*

8: geneseqp2004s:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Result		% Query					
No.	Score	_	Length	DB	ID .	Descripti	Lon
1	595	100.0	120	5	AAU10694 2/02 App	Aau10694	B. subtil
2	591	99.3	121	3	AAY883897/25/00	Aay88389	B-ydcB es
3	591	99.3	121	4	AAM52130 ELUZ MPPI	Aam52130	Bacillus
4	304	51.1	119	6	ABU18305 <i>O</i> 2		Protein e
5	287	48.2	118	5	ABB47581 /	Abb47581	Listeria
6	287	48.2	118	6	ABU32572 //	Abu32572	Protein e
7	281.5	47.3	124	5	ABP39429	Abp39429	Staphyloc
8	281.5	47.3	124	8	ADS04560	-	Staphyloc
9	279.5	47.0	117	6	ABU42933		Protein e

1			119	6	ABU43645	Abu43645 Protein e	
1			119	6	ABR83238	Abr83238 S. aureus	
1			119	6	ABM71799	Abm71799 Staphyloc	
. 1	3 277	46.6	119	4	AAU33845	Aau33845 Staphyloc	
1		46.6	119	4	AAU36808	Aau36808 Staphyloc	
1		46.2	119	3	AAB14979	Aab14979 Staphyloc	
1			119	6	ABU16272	Abul6272 Protein e	
. 1	7 274	46.1	119	6	ABR83239	Abr83239 S. aureus	
1	8 269	45.2	117	6	ABU29452	Abu29452 Protein e	
1			117	8	ADH97041	Adh97041 E. faecal	
2			117	8	ADH97039	Adh97039 E. faecal	
2		44.9	117	4	AAU35183	Aau35183 Enterococ	
2			126	6	ABU24470	Abu24470 Protein e	
2			119	5	ABB54157	Abb54157 Lactococc	
. 2		43.7	129	7	ADC97363	Adc97363 E. faeciu	
2			117	6	ADB06134	Adb06134 Alloiococ	
2		42.0	117	8	ADJ27057	Adj27057 Alloiococ	
2			113	6	ADB06132	Adb06132 Alloiococ	
. 2			120	3	AAY58607	Aay58607 Streptoco	
2			120	6	ABU02175	Abu02175 S. pneumo	
3			120	6	ABU46200	Abu46200 Protein e	
3			120	8	ADK46642	Adk46642 Streptoco	
3			122	2	AAW80612	Aaw80612 S. pneumo	
	3 243		122	4	AAU37879	Aau37879 Streptoco	
3			122	4	AAU38056	Aau38056 Streptoco	
3			122	7	ADB37480	Adb37480 S. pneumo	
3			123	6	ABR83307	Abr83307 S. pneumo	
. 3			123	6	ABR83308	Abr83308 S. pneumo	
.3			156	3	AAY88388	Aay88388 S-ydcB es	
3			157	8	ADR95564	Adr95564 Novel S.	
4			126	6	ABU49557	Abu49557 Protein e	
4			119	3	AAY91289	Aay91289 Group B S	
4			119	5	ABP27225	Abp27225 Streptoco	
	3 · 227		119	6	ABU44498	Abu44498 Protein e	
4			124	6	ABU23706	Abu23706 Protein e	
4	5 221	37.1	118	5	ABP27226	Abp27226 Streptoco	
		•			•		

OM protein - protein search, using sw model

Run on: May 20, 2005, 02:29:24; Search time 21.4925 Seconds

(without alignments)

416.791 Million cell updates/sec

Title: US-10-717-138-2

Perfect score: 595

Sequence: 1 AYGIGLDITELKRIASMAGR.....SITHTKEYAAAQVVIERLSS 120

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 513545 seqs, 74649064 residues

Total number of hits satisfying chosen parameters: 513545

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database : Issued_Patents_AA:*

1: /cgn2 6/ptodata/1/iaa/5A COMB.pep:*

2: /cgn2 6/ptodata/1/iaa/5B COMB.pep:*

3: /cgn2 6/ptodata/1/iaa/6A COMB.pep:*

4: /cgn2 6/ptodata/1/iaa/6B COMB.pep:*

5: /cgn2 6/ptodata/1/iaa/PCTUS COMB.pep:*

6: /cgn2 6/ptodata/1/iaa/backfiles1.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Result No.	Score	% Query Match	Length	DB	ID	Description
1	595	100.0	120	4	US-09-770-834-2 App	Sequence 2, Appli
>) 2	591	99.3	121	4	US-09-163-446-4 PD 9/98	Sequence 4, Appli
´ 3	591	99.3	121	4	US-09-770-834-12 Appl	Sequence 12, Appl
4	281.5	47.3	124	3	US-09-134-001C-4274/PD98	
5	278	46.7	119	4	US-09-770-834-6 App 1	Sequence 6, Appli
6	260	43.7	129	4	US-09-107-532A-6990	Sequence 6990, Ap
7	243	40.8	120	4	US-09-583-110-3157	Sequence 3157, Ap
8	243	40.8	122	3	US-08-987-144-2	Sequence 2, Appli
9	243	40.8	156	4	US-09-163-446-2	Sequence 2, Appli
10	243	40.8	157	4	US-09-107-433-4199	Sequence 4199, Ap
11	209.5	35.2	138	4	US-09-543-681A-7596	Sequence 7596, Ap

۴.						
L						
•			•			
12	201.5	33.9	169	4	US-09-770-834-7	Sequence 7, Appli
13	201	33.8	126		US-09-770-834-9	Sequence 9, Appli
14	189.5	31.8	126		US-08-728-742A-10	Sequence 10, Appl
15	189.5	31.8	126		US-09-770-834-8	Sequence 8, Appli
16	189.5	31.8	159		US-09-489-039A-11671	Sequence 11671, A
17	177.5	29.8	122	4	US-09-198-452A-330	Sequence 330, App
.18	177.5	29.8	122	4	US-09-770-834-4	Sequence 4, Appli
19	177.5	29.8	133	4	US-09-438-185A-315	Sequence 315, App
20	173	29.1	125	4	US-09-770-834-11	Sequence 11, Appl
21	166.5	28.0	119		US-09-770-834-5	Sequence 5, Appli
22	152.5	25.6	124	4	US-09-543-681A-6834	Sequence 6834, Ap
23	151	25.4	123	4	US-09-770-834-10	Sequence 10, Appl
24	141.5	23.8	139	4	US-09-770-834-13	Sequence 13, Appl
25	134	22.5	126	4	US-09-902-540-10894	Sequence 10894, A
26	129.5	21.8	122	4	US-09-770-834-3	Sequence 3, Appli
27	124	20.8	121	4	US-08-728-742A-3	Sequence 3, Appli
28	115	19.3	130	4	US-09-770-834-14	Sequence 14, Appl
29	113	19.0	120	4	US-08-728-742A-1	Sequence 1, Appli
30	113	19.0	376	4	US-09-248-796A-17862	Sequence 17862, A
31	107	18.0	131	4	US-09-602-787A-152	Sequence 152, App
32	101	17.0	122	4	US-08-728-742A-4	Sequence 4, Appli
33	91	15.3	119	4	US-08-728-742A-11	Sequence 11, Appl
34	91	15.3	121	4	US-08-728-742A-2	Sequence 2, Appli
35	85.5	14.4	523	4	US-09-252-991A-31596	Sequence 31596, A
36	75.5	12.7	252	4	US-09-543-681A-5523	Sequence 5523, Ap
37	71	11.9	130	4	US-08-728-742A-8	Sequence 8, Appli
38	71	11.9	255	4	US-09-252-991A-19444	Sequence 19444, A
39	69	11.6	168	1	US-08-441-139-10	Sequence 10, Appl
. 40	69	11.6	187	6	5196523-13	Patent No. 5196523
41	69	11.6	187	6	5196523-13	Patent No. 5196523
42		11.6	199	4	US-09-581-001B-7	Sequence 7, Appli
43	69	11.6	253	4	US-09-581-001B-8	Sequence 8, Appli
44	69	11.6	654	1	US-08-441-139-11	Sequence 11, Appl
45	69	11.6	654	4	US-09-919-172-54	Sequence 54, Appl

·

•

OM protein - protein search, using sw model

Run on: May 20, 2005, 02:31:44; Search time 105.672 Seconds

(without alignments)

379.865 Million cell updates/sec

Title: US-10-717-138-2

Perfect score:

Sequence: 1 AYGIGLDITELKRIASMAGR.....SITHTKEYAAAQVVIERLSS 120

Scoring table: BLOSUM62

Gapop 10.0, Gapext 0.5

1434725 seqs, 334507595 residues Searched:

Total number of hits satisfying chosen parameters: 1434725

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database : Published Applications AA:*

> 1: /cgn2_6/ptodata/2/pubpaa/US07 PUBCOMB.pep:*

2: /cgn2_6/ptodata/2/pubpaa/PCT NEW PUB.pep:*

3: /cgn2 6/ptodata/2/pubpaa/US06 NEW PUB.pep:*

/cgn2 6/ptodata/2/pubpaa/US06 PUBCOMB.pep:*

5: /cgn2 6/ptodata/2/pubpaa/US07 NEW PUB.pep:*

/cgn2 6/ptodata/2/pubpaa/PCTUS PUBCOMB.pep:*

7:

/cgn2_6/ptodata/2/pubpaa/US08 NEW PUB.pep:* /cgn2 6/ptodata/2/pubpaa/US08 PUBCOMB.pep:*

/cgn2 6/ptodata/2/pubpaa/US09A_PUBCOMB.pep:*

10:

/cgn2 6/ptodata/2/pubpaa/US09B PUBCOMB.pep:* 11:

/cgn2_6/ptodata/2/pubpaa/US09C_PUBCOMB.pep:* 12:

/cgn2_6/ptodata/2/pubpaa/US09_NEW_PUB.pep:*

/cgn2_6/ptodata/2/pubpaa/US10A_PUBCOMB.pep:* 13:

14: /cgn2_6/ptodata/2/pubpaa/US10B_PUBCOMB.pep:*

15: /cgn2_6/ptodata/2/pubpaa/US10C_PUBCOMB.pep:*

16: /cgn2 6/ptodata/2/pubpaa/US10D PUBCOMB.pep:*

17: /cgn2 6/ptodata/2/pubpaa/US10 NEW PUB.pep:*

/cgn2_6/ptodata/2/pubpaa/US11 NEW PUB.pep:*

19: /cgn2_6/ptodata/2/pubpaa/US60_NEW_PUB.pep:*

20: /cgn2 6/ptodata/2/pubpaa/US60 PUBCOMB.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Result No.	Score	Query Match	Length	DB	ID	Description
. 1	595	100.0	120	10	US-09-770-834-2 App	Sequence 2, Appli
2	595	100.0	120		US-10-717-138-2 APP	Sequence 2, Appli
<u>→</u> 3	591	99.3	121	9	US-09-771-383-1 PD I/∞	Sequence 1, Appli Xtal
4	591	99.3	121	9	US-09-771-383-11	Sequence 11, Appl
5	591	99.3	121	10	US-09-770-834-12/App	Sequence 12, Appl
6 لمود	591	99.3	121	15	US-10-717-138-12/	Sequence 12, Appl
KV 7	304	51.1	119	15	US-10-282-122A-4622904	Sequence 46229, A
8	287	48.2	118	15	US-10-282-122A-60496	Sequence 60496, A
9	279.5	47.0	117	15	US-10-282-122A-70857	Sequence 70857, A
10	278.5	46.8	119	15	US-10-282-122A-71569	Sequence 71569, A
11	278	46.7	119	9	US-09-771-383-5	Sequence 5, Appli
12	278	46.7	119	10	US-09-770-834-6	Sequence 6, Appli
13	278	46.7	119	15		Sequence 6, Appli
14	277	46.6	119	9	US-09-815-242-5341	Sequence 5341, Ap
15	277	46.6	119	9	US-09-815-242-12401	Sequence 12401, A
16	275	46.2	119	15	US-10-282-122A-44196	Sequence 44196, A
17	275	46.2	119	17	US-10-857-625-722	Sequence 722, App
18	269	45.2	117	15	US-10-282-122A-57376	Sequence 57376, A
19	267	44.9	117	9		Sequence 10776, A
20	262	44.0	126	15	US-10-282-122A-52394	Sequence 52394, A
21	243	40.8	120	15	US-10-282-122A-74124	Sequence 74124, A
22	243	40.8	120	17	US-10-472-928-3504	Sequence 3504, Ap
23	243	40.8	122	9	US-09-815-242-13472	Sequence 13472, A
24	243	40.8	122	9	US-09-815-242-13649	Sequence 13649, A
25	243	40.8	122	10	US-09-897-645-1	Sequence 1, Appli
26	237.5	39.9	126	15	US-10-282-122A-77481	Sequence 77481, A
27	228.5	38.4	119	10	US-09-769-736-30	Sequence 30, Appl
28	227	38.2	119	15	US-10-282-122A-72422	Sequence 72422, A
29	221.5	37.2	124	15	US-10-282-122A-51630	Sequence 51630, A
30	221	37.1	118	15	US-10-282-122A-74722	Sequence 74722, A
31	219.5	36.9	126	15	US-10-282-122A-53036	Sequence 53036, A
32	209.5	35.2	126	15	US-10-282-122A-69169	Sequence 69169, A
33	201.5	33.9	169	9	US-09-771-383-6	Sequence 6, Appli
34	201.5	33.9	169	10	US-09-770-834-7	Sequence 7, Appli
35	201.5	33.9	169	15	US-10-717-138-7	Sequence 7, Appli
36	201	33.8	126	9	US-09-771-383-8	Sequence 8, Appli
37	201	33.8	126	10	US-09-770-834-9	Sequence 9, Appli
38	201	33.8	126	15	US-10-717-138-9	Sequence 9, Appli
39	200.5	33.7	.126	15	US-10-282-122A-78498	Sequence 78498, A
40	192.5	32.4	126	9	US-09-815-242-13796	Sequence 13796, A
41	192.5	32.4	126	15	US-10-282-122A-73373	Sequence 73373, A
42	192.5	32.4	126	15	US-10-282-122A-75802	Sequence 75802, A
43	189.5	31.8	126	9	US-09-815-242-10256	Sequence 10256, A
44	189.5	31.8	126	9	US-09-771-383-7	Sequence 7, Appli
45	189.5	31.8	126	10	US-09-770-834-8	Sequence 8, Appli

OM protein - protein search, using sw model

Run on: May 20, 2005, 02:27:29 ; Search time 14.9254 Seconds

(without alignments)

773.583 Million cell updates/sec

Title: US-10-717-138-2

Perfect score: 595

Sequence: 1 AYGIGLDITELKRIASMAGR.....SITHTKEYAAAQVVIERLSS 120

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 283416 seqs, 96216763 residues

Total number of hits satisfying chosen parameters: 283416

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database : PIR_79:*

1: pir1:*

2: pir2:*

3: pir3:*

4: pir4:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

	•	8				
Result		Query				
No.	Score	Match	Length	DB	ID	Description
1	 591	99.3	121	1	н69772 1999, (1997)	holo-(acyl-carried Kunst)
2	297	49.9	119	2	F83714 2000	holo-[acyl-carrier Kunst) holo-(acyl carrier
3	287	48.2	118	2	AE1185 200)	holo-acyl-carrier
4	283	47.6	118	2	AD1543 //	holo-acyl-carrier
5	275	46.2	119	2	E89999 [*]	holo-ACP synthase
6	261	43.9	119	2	C86730	acyl carrier prote
. 7	243	40.8	120	2	н95197	holo-(acyl-carrier
8	243	40.8	120	2	D98064	holo-[acyl-carrier
9	237.5	39.9	126	2	F82072	holo-(acyl-carrier
10	221.5	37.2	124	2	В96960	holo-acyl-carrier
11	201.5	33.9	169	2	B72345	holo-(acyl carrier
12	201	33.8	126	2	F71662	holo-[acyl-carrier
13	200.5	33.7	126	2	AF0356	holo-[acvl-carrier

195.5 32.9 126 2 E91057 14 hypothetical prote 15 192.5 32.4 126 2 B85902 hypothetical prote 16 192.5 32.4 126 2 AG0828 holo-[acyl-carrier 17 189.5 126 1 31.8 B42294 holo-[acyl-carrier 18 189 31.8 131 A97810 hypothetical prote 19 188.5 31.7 126 2 F84959 holo-[acyl-carrier 20 180.5 30.3 119 2 C71556 holo-[acyl-carrier 21 178.5 30.0 125 2 D81833 holo-[acyl-carrier 22 177.5 29.8 122 2 A86530 acyl-carrier prote 2 23 177.5 29.8 122 B72093 acyl-carrier prote 24 173.5 29.2 125 2 D81710 holo-(acyl-carrier 25 125 2 173 29.1 F71276 holo-[acyl-carrier 26 168.5 28.3 125 2 F81197 holo-(acyl-carrier 27 166.5 28.0 119 1 H64620 holo-[acyl-carrier 28 162.5 27.3 191 2 AC3413 holo-[acyl-carrier 29 161.5 27.1 119 2 G71894 holo-[acyl-carrier 158.5 134 30 26.6 2 H97485 holo-acyl-carrier 31 158.5 26.6 134 AH2703 holo-(acyl-carrier 32 151 25.4 123 2 T35573 probable holo-[acy 33 139.5 23.4 133 2 E87442 holo-(acyl-carrier probable acyl-carr 122 34 134.5 22.6 2 G85649 134.5 35 22.6 122 2 D90789. probable holo-[acy 36 133 22.4 133 2 F75544 probable holo-acyl 37 132.5 22.3 124 2 B70101 holo-acyl-carrier 38 132 22.2 115 A81286 probable holo-[acy . 39 129.5 21.8 122 2 H70370 holo-[acyl-carrier 127.5 40 21.4 115 2 G82895 holo-acyl carrier 20.8 41 124 1857 1 S01787 fatty-acid synthas 42 115 19.3 2 130 B87058 holo-[acyl-carrier 115 43 19.3 130 2 H70870 holo-[acyl-carrier 44 113 19.0 1885 1 JC4086 fatty-acid synthas 45 104 17.5 119 S73864 hypothetical prote

ALIGNMENTS

RESULT 1 H69772

holo-[acyl-carrier-protein] synthase (EC 2.7.8.7) - Bacillus subtilis C; Species: Bacillus subtilis

C;Date: 10-Sep-1999 #sequence_revision 10-Sep-1999 #text_change 09-Jul-2004 C;Accession: H69772

R; Kunst, F.; Ogasawara, N.; Moszer, I.; Albertini, A.M.; Alloni, G.; Azevedo, V.; Bertero, M.G.; Bessieres, P.; Bolotin, A.; Borchert, S.; Boriss, R.; Boursier, L.; Brans, A.; Braun, M.; Brignell, S.C.; Bron, S.; Brouillet, S.; Bruschi, C.V.; Caldwell, B.; Capuano, V.; Carter, N.M.; Choi, S.K.; Codani, J.J.; Connerton, I.F.; Cummings, N.J.; Daniel, R.A.; Denizot, F.; Devine, K.M.; Duesterhoeft, A.; Ehrlich, S.D.; Emmerson, P.T.; Entian, K.D.; Errington, J.; Fabret, C.; Ferrari, E.

Nature 390, 249-256, 1997

A; Authors: Foulger, D.; Fritz, C.; Fujita, M.; Fujita, Y.; Fuma, S.; Galizzi, A.; Galleron, N.; Ghim, S.Y.; Glaser, P.; Goffeau, A.; Golightly, E.J.; Grandi, G.; Guiseppi, G.; Guy, B.J.; Haga, K.; Haiech, J.; Harwood, C.R.; Henaut, A.; Hilbert, H.; Holsappel, S.; Hosono, S.; Hullo, M.F.; Itaya, M.; Jones, L.; Joris, B.; Karamata, D.; Kasahara, Y.; Klaerr-Blanchard, M.; Klein, C.;

OM protein - protein search, using sw model

Run on: May 20, 2005, 02:29:24; Search time 14.5075 Seconds

(without alignments)

416.791 Million cell updates/sec

Title: US-10-717-138-1

Perfect score: 397

Sequence: 1 GPLGSADTLERVTKIIVDRL......EDAEKIATVGDAVNYIQNQQ 81

Scoring table: BLOSUM62

Gapop 10.0, Gapext 0.5

Searched: 513545 seqs, 74649064 residues

Total number of hits satisfying chosen parameters: 513545

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database : Issued Patents AA:*

1: /cgn2_6/ptodata/1/iaa/5A_COMB.pep:*

2: /cgn2_6/ptodata/1/iaa/5B_COMB.pep:*
3: /cgn2_6/ptodata/1/iaa/6A_COMB.pep:*

4: /cgn2_6/ptodata/1/iaa/6B_COMB.pep:*

5: /cgn2_6/ptodata/1/iaa/PCTUS_COMB.pep:*
6: /cgn2_6/ptodata/1/iaa/backfiles1.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

		8				
ılt		Query				
No.	Score	Match	Length	DB	ID	Description
1	397	100.0	81	 4	US-09-770-834-1 App	Sequence 1, Appli
2	238	59.9	79	3	US-09-134-001C-4809	Sequence 4809, Ap
3	225	56.7	94	4	US-09-543-681A-7956 🧹	Sequence 7956, Ap
4	222.5	56.0	80	4	US-09-902-540-14560	Sequence 14560, A
5	215	54.2	77	4	US-09-770-834-15	Sequence 15, Appl
6	215	54.2	108	4	US-09-489-039A-7550	Sequence 7550, Ap
7	214	53.9	81	4	US-09-252-991A-18646	Sequence 18646, A
8	205	51.6	372	4	US-09-252-991A-30132	Sequence 30132, A
9	197	49.6	79	4	US-09-198-452A-308	Sequence 308, App
10	197	49.6	80	4	US-09-438-185A-297	Sequence 297, App
11	188	47.4	99	4	US-09-328-352-4669 V	Sequence 4669, Ap
	4 5 6 7 8 9	No. Score 1 397 2 238 3 225 4 222.5 5 215 6 215 7 214 8 205 9 197 10 197	No. Score Match 1 397 100.0 2 238 59.9 3 225 56.7 4 222.5 56.0 5 215 54.2 6 215 54.2 7 214 53.9 8 205 51.6 9 197 49.6 10 197 49.6	No. Score Match Length 1 397 100.0 81 2 238 59.9 79 3 225 56.7 94 4 222.5 56.0 80 5 215 54.2 77 6 215 54.2 108 7 214 53.9 81 8 205 51.6 372 9 197 49.6 79 10 197 49.6 80	No. Score Match Length DB 1 397 100.0 81 4 2 238 59.9 79 3 3 225 56.7 94 4 4 222.5 56.0 80 4 5 215 54.2 77 4 6 215 54.2 77 4 6 215 54.2 108 4 7 214 53.9 81 4 8 205 51.6 372 4 9 197 49.6 79 4 10 197 49.6 80 4	No. Score Match Length DB ID 1 397 100.0 81 4 US-09-770-834-1

15 16 17 18 19 15 20 14 21 22 23 24 25 26 27 28 29 30 31 32 33 34	64.5 4 160 4 58.5 3 154 3 53.5 3 53.5 3 48.5 3 134 3 122 3 122 3 122 3 122 3 106 2 106 2 99.5 2 99.5 2		111 100 101 74 122 77 84 77 97 120 120 120 136 136 2756	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	US-09-248-796A-17438 US-09-902-540-13542 US-09-107-532A-7092 US-09-583-110-3914 US-09-248-796A-17437 US-09-583-110-4176 US-09-107-433-4377 US-08-858-207A-302 US-09-602-787A-36 US-09-852-137-2 US-09-056-556-195 US-09-072-596-190 US-09-072-967-195 US-08-580-545B-8	Sequence 7143, Ap Sequence 17438, A Sequence 13542, A Sequence 7092, Ap Sequence 3914, Ap Sequence 17437, A Sequence 4176, Ap Sequence 4377, Ap Sequence 302, App Sequence 36, Appl Sequence 2, Appli Sequence 195, App Sequence 190, App Sequence 195, App Sequence 8, Appli
15 16 17 18 19 15 20 14 21 22 23 24 25 26 27 28 29 30 31 32 33 34	160 4 58.5 3 154 3 53.5 3 53.5 3 48.5 3 134 3 122 3 122 3 122 3 122 3 106 2 106 2 99.5 2 99.5 2	0.3 99.9 88.8 88.7 87.4 83.8 80.7 80.7 80.7 86.7 86.7	101 74 122 77 84 77 97 97 120 120 120 136 136	4 4 4 4 4 3 4 4 3 4 4 2	US-09-107-532A-7092 US-09-583-110-3914 US-09-248-796A-17437 US-09-583-110-4176 US-09-107-433-4377 US-08-858-207A-302 US-09-602-787A-36 US-09-852-137-2 US-09-056-556-195 US-09-072-596-190 US-09-072-967-195	Sequence 7092, Ap Sequence 3914, Ap Sequence 17437, A Sequence 4176, Ap Sequence 4377, Ap Sequence 302, App Sequence 36, Appl Sequence 2, Appli Sequence 195, App Sequence 190, App Sequence 195, App
16 15 17 18 15 19 15 20 14 21 22 23 24 25 26 27 28 29 30 31 32 33 34	58.5 154 33.5 33.5 348.5 348.5 3134 3122	99.9 98.8 98.7 97.4 93.8 90.7 90.7 96.7 96.7 95.1	74 122 77 84 77 97 97 120 120 120 136 136	4 4 4 3 4 4 3 4 4 2	US-09-583-110-3914 US-09-248-796A-17437 US-09-583-110-4176 US-09-107-433-4377 US-08-858-207A-302 US-09-602-787A-36 US-09-852-137-2 US-09-056-556-195 US-09-072-596-190 US-09-072-967-195	Sequence 3914, Ap Sequence 17437, A Sequence 4176, Ap Sequence 4377, Ap Sequence 302, App Sequence 36, Appl Sequence 2, Appli Sequence 195, App Sequence 190, App Sequence 195, App
17 18 19 19 20 14 21 22 23 24 25 26 27 28 29 30 31 32 33 34	154 3 53.5 3 53.5 3 48.5 3 134 3 122 3 122 3 122 3 106 2 99.5 2 99.5 2	88.8 88.7 17.4 13.8 13.8 10.7 10.7 16.7 16.7 15.1	122 77 84 77 97 97 120 120 120 136 136	4 4 3 4 4 3 4 4 2	US-09-248-796A-17437 US-09-583-110-4176 US-09-107-433-4377 US-08-858-207A-302 US-09-602-787A-36 US-09-852-137-2 US-09-056-556-195 US-09-072-596-190 US-09-072-967-195	Sequence 17437, A Sequence 4176, Ap Sequence 4377, Ap Sequence 302, App Sequence 36, Appl Sequence 2, Appli Sequence 195, App Sequence 190, App Sequence 195, App
18 15 19 15 20 14 21 22 23 24 25 26 27 28 29 30 31 32 33 34	53.5 3 53.5 3 48.5 3 134 3 132 3 122 3 122 3 106 2 106 2 99.5 2 99.5 2	88.7 88.7 77.4 63.8 60.7 60.7 66.7 75.1	77 84 77 97 97 120 120 136 136	4 4 3 4 4 3 4 4 2	US-09-583-110-4176 US-09-107-433-4377 US-08-858-207A-302 US-09-602-787A-36 US-09-852-137-2 US-09-056-556-195 US-09-072-596-190 US-09-072-967-195	Sequence 4176, Ap Sequence 4377, Ap Sequence 302, App Sequence 36, Appl Sequence 2, Appli Sequence 195, App Sequence 190, App Sequence 195, App
19 15 20 14 21 22 23 24 25 26 27 28 29 30 31 32 33 34	53.5 3 48.5 3 134 3 134 3 122 3 122 3 122 3 106 2 106 2 99.5 2 99.5 2	88.7 67.4 63.8 63.8 60.7 60.7 66.7 66.7 75.1	84 77 97 97 120 120 120 136 136	4 3 4 4 3 4 4 2	US-09-107-433-4377 US-08-858-207A-302 US-09-602-787A-36 US-09-852-137-2 US-09-056-556-195 US-09-072-596-190 US-09-072-967-195	Sequence 4377, Ap Sequence 302, App Sequence 36, Appl Sequence 2, Appli Sequence 195, App Sequence 190, App Sequence 195, App
20 14 21 22 23 24 25 26 27 28 9 30 9 31 9 32 33 34 9	48.5 3 134 3 122 3 122 3 122 3 106 2 106 2 99.5 2 99.5 2	37.4 33.8 33.8 30.7 30.7 30.7 46.7 46.7 45.1	77 97 97 120 120 120 136 136	3 4 4 3 4 4 2	US-08-858-207A-302 US-09-602-787A-36 US-09-852-137-2 US-09-056-556-195 US-09-072-596-190 US-09-072-967-195	Sequence 302, App Sequence 36, Appl Sequence 2, Appli Sequence 195, App Sequence 190, App Sequence 195, App
21 22 23 24 25 26 27 28 29 30 31 32 33 34	134 3 134 3 122 3 122 3 122 3 106 2 106 2 99.5 2 99.5 2	33.8 33.8 30.7 50.7 66.7 66.7 75.1	97 97 120 120 120 136 136	4 4 3 4 4 2	US-09-602-787A-36 US-09-852-137-2 US-09-056-556-195 US-09-072-596-190 US-09-072-967-195	Sequence 36, Appl Sequence 2, Appli Sequence 195, App Sequence 190, App Sequence 195, App
22 23 24 25 26 27 28 29 30 31 32 33 34	134 3 122 3 122 3 122 3 106 2 106 2 99.5 2 99.5 2	33.8 30.7 30.7 36.7 26.7 25.1	97 120 120 120 136 136	4 3 4 4 2	US-09-852-137-2 US-09-056-556-195 US-09-072-596-190 US-09-072-967-195	Sequence 36, Appl Sequence 2, Appli Sequence 195, App Sequence 190, App Sequence 195, App
23 24 25 26 27 28 29 30 31 32 33 34	122 3 122 3 122 3 106 2 106 2 99.5 2 99.5 2	30.7 30.7 30.7 36.7 36.7	120 120 120 136 136	3 4 4 2	US-09-056-556-195 US-09-072-596-190 US-09-072-967-195	Sequence 195, App Sequence 190, App Sequence 195, App
24 25 26 27 28 29 30 31 32 33 34	122 3 122 3 106 2 106 2 99.5 2 99.5 2	80.7 80.7 86.7 86.7	120 120 136 136	4 4 2	US-09-072-596-190 US-09-072-967-195	Sequence 195, App Sequence 190, App Sequence 195, App
25 26 27 28 29 30 31 32 33 34	122 3 106 2 106 2 99.5 2 99.5 2	0.7 6.7 6.7 5.1 2	120 136 136	4 2	US-09-072-967-195	Sequence 190, App Sequence 195, App
26 27 28 29 30 31 32 33 34	106 2 106 2 99.5 2 99.5 2	26.7 26.7 25.1 2	136 136	2		
27 28 29 30 31 32 33 34	106 2 99.5 2 99.5 2 99.5 2	26.7 25.1 2	136		US-08-580-545B-8	
28 9 29 9 30 9 31 9 32 33 34 9	99.5 2 99.5 2 99.5 2	25.1 2		3		pedagine o' Whbit
29 9 30 9 31 9 32 33 34 9	99.5 2 99.5 2		2756		US-09-262-653A-8	Sequence 8, Appli
30 9 31 9 32 33 34 9	99.5 2	5.1 2		1	US-08-375-709-11	Sequence 11, Appl
31 9 32 33 34 9			2756	1	US-08-752-929-11	Sequence 11, Appl
32 33 34	00 5 0	25.1 2	2756	3	US-09-090-793-7	Sequence 7, Appli
33 34	99.5 2	25.1 2	2756	4	US-09-231-899-7	Sequence 7, Appli
34 9	97 2	4.4	41	1	US-08-453-924-8	Sequence 8, Appli
	94 2	13.7	110	4	US-09-543-681A-6806	Sequence 6806, Ap
	93.5 2	3.6	93	4	US-09-266-965-117	Sequence 117, App
	91.5 2	3.0	1481	4	US-09-231-899-70	Sequence 70, Appl
	85.5 2	1.5	85	4	US-09-902-540-13340 ·	Sequence 13340, A
37	84 2	21.2	40	1	US-08-129-129-6	Sequence 6, Appli
38	83 2	20.9	359	4	US-09-266-965-120	Sequence 120, App
39	76 1	9.1	84	2	US-08-901-306-4	Sequence 4, Appli
40	75 1	.8.9	90	4	US-09-134-000C-5474	Sequence 5474, Ap
41 7	74.5 1	.8.8	1610	4	US-09-602-787A-14	Sequence 14, Appl
42 7	74.5 1	.8.8	1610	4	US-09-602-787A-56	Sequence 56, Appl
43		.8.4	41	1	US-08-129-129-5	Sequence 5, Appli
	71.5 1	.8.0	186	4	US-09-248-796A-27171	Sequence 27171, A
45	71 1	.7.9	41	1	US-08-453-924-7	Sequence 7, Appli

.

OM protein - protein search, using sw model

Run on: May 20, 2005, 02:31:44; Search time 71.3284 Seconds

(without alignments)

379.865 Million cell updates/sec

Title: US-10-717-138-1

Perfect score:

Sequence: 1 GPLGSADTLERVTKIIVDRL......EDAEKIATVGDAVNYIQNQQ 81

Scoring table: BLOSUM62

Gapop 10.0, Gapext 0.5

Searched: 1434725 segs, 334507595 residues

Total number of hits satisfying chosen parameters: 1434725

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database : Published Applications AA:*

/cgn2 6/ptodata/2/pubpaa/US07 PUBCOMB.pep:* 1:

2: /cgn2 6/ptodata/2/pubpaa/PCT NEW PUB.pep:*

/cgn2 6/ptodata/2/pubpaa/US06 NEW PUB.pep:*

/cgn2 6/ptodata/2/pubpaa/US06 PUBCOMB.pep:*

/cgn2 6/ptodata/2/pubpaa/US07 NEW PUB.pep:*

/cgn2_6/ptodata/2/pubpaa/PCTUS_PUBCOMB.pep:* 6:

/cgn2 6/ptodata/2/pubpaa/US08 NEW PUB.pep:*

/cgn2 6/ptodata/2/pubpaa/US08 PUBCOMB.pep:*

/cgn2 6/ptodata/2/pubpaa/US09A_PUBCOMB.pep:*

10: /cgn2 6/ptodata/2/pubpaa/US09B PUBCOMB.pep:*

11: /cgn2 6/ptodata/2/pubpaa/US09C PUBCOMB.pep:*

12: /cgn2 6/ptodata/2/pubpaa/US09 NEW PUB.pep:*

13: /cgn2_6/ptodata/2/pubpaa/US10A_PUBCOMB.pep:*

14: /cgn2 6/ptodata/2/pubpaa/US10B PUBCOMB.pep:*

15: /cgn2 6/ptodata/2/pubpaa/US10C PUBCOMB.pep:*

16:

/cgn2 6/ptodata/2/pubpaa/US10D PUBCOMB.pep:*

/cgn2 6/ptodata/2/pubpaa/US10 NEW PUB.pep:*

18: /cgn2 6/ptodata/2/pubpaa/US11 NEW PUB.pep:*

/cgn2 6/ptodata/2/pubpaa/US60_NEW_PUB.pep:* 19:

20: /cgn2 6/ptodata/2/pubpaa/US60 PUBCOMB.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Result		Query				
No.	Score	Match	Length	DB	ID	Description
1	 397	100.0	81	10	US-09-770-834-1 A790)	Sequence 1, Appli
2	397	100.0	81	15	US-10-717-138-1	Sequence 1, Appli
3	307	77.3	80	15	US-10-282-122A-46208	Sequence 46208, A
4	284	71.5	77	15	US-10-282-122A-60882	Sequence 60882, A
5	254	64.0	76	9	US-09-815-242-10973	Sequence 10973, A
6	254	64.0	76	15	US-10-282-122A-58089	Sequence 58089, A
7	249	62.7	76	15	US-10-282-122A-67443	Sequence 67443, A
8	239	60.2	110	15	US-10-282-122A-77373	Sequence 77373, A
9	238	59.9	77	15	US-10-282-122A-70919	Sequence 70919, A
10	238	59.9	77	15	US-10-282-122A-71791	Sequence 71791, A
11	236	59.4	77	15	US-10-282-122A-51523	Sequence 51523, A
12	234	58.9	77	9	US-09-815-242-12802	Sequence 12802, A
13	234	58.9	77	9	US-09-815-242-13101	Sequence 13101, A
14	234	58.9	77	15	US-10-282-122A-44414	Sequence 44414, A
15	234	58.9	77	17	US-10-857-625-626	Sequence 626, App
16	232	58.4	73	9	US-09-815-242-5462 \ \ /	Sequence 5462, Ap
17	232	58.4	77	9	US-09-815-242-12124	Sequence 12124, A
18	227	57.2	79	15	US-10-282-122A-51445	Sequence 51445, A
19	226.5	57.1	78	15	US-10-282-122A-78573	Sequence 78573, A
20	225	56.7	104	15	US-10-282-122A-52553	Sequence 52553, A
21	223.5	56.3	. 75	15	US-10-369-493-8522	Sequence 8522, Ap
22	222.5	56.0	72	15	US-10-369-493-7064	Sequence 7064, Ap
23	222.5	56.0	78	15	US-10-369-493-4308	Sequence 4308, Ap
24	222.5	56.0	79	15	US-10-282-122A-47901	Sequence 47901, A
25	222.5	56.0	79	15	US-10-282-122A-49501	Sequence 49501, A
26	222.5	56.0	79	15	US-10-282-122A-50326	Sequence 50326, A
27	222	55.9	78	15	US-10-369-493-132	Sequence 132, App
28	220	55.4	75	15	US-10-369-493-21035	Sequence 21035, A
29	220	55.4	82	15	US-10-282-122A-61113	Sequence 61113, A
30	217	54.7	71	15	US-10-369-493-9111	Sequence 9111, Ap
31 32	217 217	54.7 54.7	76	15	US-10-369-493-10628	Sequence 10628, A
33	216	54.4	78 78	15 15	US-10-282-122A-65150	Sequence 65150, A
34	216	54.4	78	15	US-10-369-493-12321 US-10-282-122A-65580	Sequence 12321, A
35	215	54.2	77	10	US-09-770-834-15	Sequence 65580, A
36	215	54.2		15	US-10-717-138-15	Sequence 15, Appl
37	215	54.2	78	9	US-09-815-242-10127	Sequence 15, Appl
38	215	54.2	78	14	US-10-230-331-39	Sequence 10127, A
39	215	54.2	78	15	US-10-369-493-795	Sequence 39, Appl Sequence 795, App
40	215	54.2	78	15	US-10-282-122A-43145	Sequence 43145, A
41	215	54.2	78	15	US-10-282-122A-67855	Sequence 67855, A
42	215	54.2	78	15	US-10-282-122A-72742	Sequence 72742, A
43	215	54.2	78	15	US-10-282-122A-75153	Sequence 75153, A
44	215	54.2	78	15	US-10-282-122A-76355	Sequence 76355, A
45	214.5	54.0	75	15	US-10-369-493-18782	Sequence 18782, A
						<u> </u>

OM protein - protein search, using sw model

Run on: May 20, 2005, 02:27:29; Search time 10.0746 Seconds

(without alignments)

773.583 Million cell updates/sec

Title: US-10-717-138-1

Perfect score: 397

Sequence: 1 GPLGSADTLERVTKIIVDRL......EDAEKIATVGDAVNYIQNQQ 81

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 283416 seqs, 96216763 residues

Total number of hits satisfying chosen parameters: 283416

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Q.

Maximum Match 100%

Listing first 45 summaries

Database : PIR_79:*

1: pir1:*

2: pir2:*

3: pir3:*

4: pir4:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

		8					•	
Result		Query						
No.	Score	Match	Length	DB	ID			Description
1	370	\$3.2	77	2	JC4822 Kun	st 1997	₩ .	acyl carrier prote
2	313	78.8	77	2	B83961		- 1	acyl-carrier prote
3	284	71.5	77	2	AF1300			acyl carrier prote
4	284	71.5	77	2	AF1672		1	acyl carrier prote
5	254	64.0	76	2	C64051		1	acyl carrier prote
6	244	61.5	77	2	T12052			acyl carrier prote
7	239	60.2	110	2	E82128			acyl carrier prote
. 8	236	59.4	77	2	F97115			acyl carrier prote
9	234	58.9	77	2	C89896			HmrB protein [impo
10	226.5	57.1	78	2	AC0195	,		acyl carrier prote
11	222	55.9	78	2	A70448	•	\mathbb{V}	acyl carrier prote
12	220	55.4	78	2	T44435		V	acyl carrier prote
13	217.5	54.8	84	2	AG2223			acyl carrier prote

14	216	54.4	78	2	F81222		
1`5	215	54.2	78	1	AYEC		
16	215	54.2	78	2	AE0642		
17	215	54.2	78	2	D85672		
18	. 215	54.2	78	2	Н90812		
19	213	53.7	78	2	A83276		
20	212	53.4	78	2	T12021		
21	212	53.4	78	2	A36728		
22	211	53.1	77	2	H71541		
23	209	52.6	78	2	AG2711		
24	209	52.6	[.] 78	2	AE3436		
25	204	51.4	78	2	C87457	•	
26	203	51.1	77	2	D81695		
27	203	51.1	77	2	S77465		
28	202	50.9	110	2	F75333	_	
29	201	50.6	78	2 -	H71922		
30	200.5	50.5	79	2	D83411		
31	200	50.4	77	2	G81388		
32	200	50.4	80	2	H84970		
33	197	49.6	79	2	G86527		•
34	197	49.6	79	2	C72096		
3.5	196	49.4	81	2	C72349		
36	194	48.9	78	2	G64589		
37	193	48.6	80	2	S78295		
38	192.5	48.5	76	2	S13819		
39	192	48.4	80	2	A39452		
40	189	47.6	123	2	C71616	_	
41	188	47.4	85	2	G82776	_	
42	187	47.1	84	2	S73201		
43	184.5	46.5	153	2	B64640		
44	184	46.3	69	2	B36728		
45	176	44.3	80	2	C41609		

acyl carrier prote probable acyl carr acyl carrier prote probable acyl carr acyl carrier prote ACP XF0672 [import acyl carrier prote acyl carrier prote acyl carrier prote acyl carrier prote

OM protein - protein search, using sw model

Run on: May 20, 2005, 02:26:43; Search time 91.4776 Seconds

(without alignments)

453.427 Million cell updates/sec

Title: US-10-717-138-1

Perfect score: 397

Sequence: 1 GPLGSADTLERVTKIIVDRL.....EDAEKIATVGDAVNYIQNQQ 81

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 1612378 seqs, 512079187 residues

Total number of hits satisfying chosen parameters: 1612378

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database : UniProt_03:*

1: uniprot_sprot:*
2: uniprot trembl:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

							~	
	Result	Score	% Query Match	Length	DB	ID		Description
								Description
A) 1	370	93.2	77	1	ACP_BACSU /	996 X	P80643 bacillus su
L	2	345	86.9	.77	2	Q65JQ6		Q65jq6 bacillus li
	3	313	78.8	77	1	ACP BACHD	1	Q9ka04 bacillus ha
	4	302 ⁻	76.1	77	1	ACP BACAN		Q81wi7 bacillus an
	5	302	76.1	77	1	ACP BACCR	}	Q819v7 bacillus ce
	6	302	76.1	77	2	Q63 6 H6		Q636h6 bacillus ce
	7	302	76.1	7 7	2	Q732M0		Q732m0 bacillus ce
	8	302	76.1	77	2	Q6HEW5	İ	Q6hew5 bacillus th
	9	284	71.5	77	1	ACP LISIN		P63440 listeria in
	10	284	71.5	77	1	ACP_LISMO		P63439 listeria mo
	11	284	71.5	77	2	$Q71\overline{Y}L0$.	Q71yl0 listeria mo
	12	271	68.3	77	1	ACP OCEIH		Q8er06 oceanobacil
	13	254	64.0	76	1	ACP HAEIN	1	P43709 haemophilus
	14	254	64.0	76	2	Q65RC8	NL	Q65rc8 mannheimia
	15	249	62.7	76	1	ACP_PASMU	\forall	Q9cjs5 pasteurella

16	249	62.7	83	2	Q67PF6	Q67pf6 symbiobacte
17	244	61.5	76	1	ACP VIBPA	P55337 vibrio para
18	239	60.2	77	1	ACP_VIBCH	Q9kqh8 vibrio chol
19	238	59.9	77	1	ACP STAEP	Q8cpi2 staphylococ
20	236	59.4	77	1	ACP CLOAB	Q97ia5 clostridium
21	236	59.4	77	1	ACP_VIBVU	Q8d8g9 vibrio vuln
22	236	59.4	78	2	Q7MLZ9	Q7mlz9 vibrio vuln
23	235	59.2	77	1	ACP HAEDU	Q7vkh6 haemophilus
24	234	58.9	77	1	ACP STAAM	Q99qn7 staphylococ
25	234	58.9	77	2	Q6G9Y1	Q6g9y1 staphylococ
26	234	58.9	77	2	Q6GHK3	Q6ghk3 staphylococ
27	233	58.7	76	1	ACP_THETN	Q8r9w1 thermoanaer
28	233	58.7	78	2	Q7N387	Q7n387 photorhabdu
29	232	58.4	78	1	ACP_PHOPR	Q9r6z3 photobacter
30	230	57.9	77	1	ACP_SHEON	Q8edh4 shewanella
31	230	57.9	77	2	Q74CR8	Q74cr8 geobacter s
32	230	57.9	77	2	Q75FW6	Q75fw6 leptospira
33	230	57.9	77	2	Q8EXX4	Q8exx4 leptospira
34	228	57.4	98	2	Q7W5I7	Q7w5i7 bordetella
35	228	57.4	103	2	Q7NI72	Q7ni72 gloeobacter
36	227	57.2	79	2	Q7VW32	Q7vw32 bordetella
37	227	57.2	79	2	Q7WD23	Q7wd23 bordetella
38	226.5	57.1	77	1	ACP_YERPE	Q8zft4 yersinia pe
39	226.5	57.1	78	2	Q669L4	Q66914 yersinia ps
40	224	56.4	76	2	Q72CS8	Q72cs8 desulfovibr
41	223.5	56.3	79	1	ACP1_RALSO	Q8y0j1 ralstonia s
42	223	56.2	78	2	Q8A2E6	Q8a2e6 bacteroides
43	222.5	56.0	79	2	Q62LT9	Q62lt9 burkholderi
44	222.5	56.0	79	2	Q63S86	Q63s86 burkholderi
45	222	55.9	78	1	ACP_AQUAE	067611 aquifex aeo

ALIGNMENTS

```
ACP BACSU
ID ACP BACSU
                    STANDARD;
                                    PRT;
                                            77 AA.
AC
     P80643; P51832;
DT
     01-OCT-1996 (Rel. 34, Created)
DT
     01-OCT-1996 (Rel. 34, Last sequence update)
     25-OCT-2004 (Rel. 45, Last annotation update)
DT
DE
     Acyl carrier protein (ACP).
     Name=acpA; Synonyms=acpP; OrderedLocusNames=BSU15920;
GN
os
     Bacillus subtilis.
OC
     Bacteria; Firmicutes; Bacillales; Bacillaceae; Bacillus.
OX
     NCBI_TaxID=1423;
RN
     [1]
RP
     SEQUENCE OF 15-77, AND SEQUENCE OF 1-14 FROM N.A.
RC
     STRAIN=168;
RX
     MEDLINE=96326321; PubMed=8759840;
RA
     Morbidoni H.R., de Mendoza D., Cronan J.E. Jr.;
RT .
     "Bacillus subtilis acyl carrier protein is encoded in a cluster of
     lipid biosynthesis genes.";
RL
     J. Bacteriol. 178:4794-4800(1996).
RN
     [2]
RP
     SEQUENCE FROM N.A.
```

RESULT 1

OM protein - protein search, using sw model

Run on: May 20, 2005, 02:25:38; Search time 53.194 Seconds

(without alignments)

588.931 Million cell updates/sec

Title: US-10-717-138-1

Perfect score: 397

Sequence: 1 GPLGSADTLERVTKIIVDRL......EDAEKIATVGDAVNYIQNQQ 81

Scoring table: BLOSUM62

Gapop 10.0, Gapext 0.5

Searched: 2105692 seqs, 386760381 residues

Total number of hits satisfying chosen parameters: 2105692

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database : A_Geneseq_16Dec04:*

1: geneseqp1980s:*

2: geneseqp1990s:*

3: geneseqp2000s:*

4: geneseqp2001s:*

5: geneseqp2002s:*

6: genesegp2003as:*

7: geneseqp2003bs:*

8: geneseqp2004s:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

		ક્ર				•
Result		Query				
No.	Score	Match	Length	DB	ID	Description
1	397	100.0	81	 5	AAU10693 2002 App [WO	Aau10693 B. subtil notsubhle
2	. 307	77.3	80	6	ABU18284 03	Abu18284 Protein e
3	284	71.5	77	5	ABB49632	Abb49632 Listeria
4	284	71.5	77	6	ABU32958	Abu32958 Protein e
5	254	64.0	76	4	AAU35380	Aau35380 Haemophil
6	254	64.0	76	6	ABU30165	Abu30165 Protein e
7	. 249	62.7	76	6	ABU39519	Abu39519 Protein e
8	239	60.2	110	6	ABU49449	Abu49449 Protein e
9	238	59.9	77	6	ABU43867	Abu43867 Protein e

		•					
10	238	59.9	77	6	ABU42995	Abu42995	Protein e
11	238	59.9	79	5	ABP39964		Staphyloc
12	238	59.9	79	8	ADS06306		Staphyloc
13	236	59.4	77	6	ABU23599		Protein e
14	234	58.9	77	4	AAU37508		Staphyloc
15	234	58.9	77	4	AAU37209		Staphyloc
16	· 234	58.9	77	4	AAE02204		Staphyloc
17	234	58.9	77	6	ABU16490		Protein e
18	234	58.9	77	6	ABM73195	Abm73195	Staphyloc
19	232	58.4	73	4	AAU33966	Aau33966	Staphyloc
20	232	58.4	77	4	AAU36531	Aau36531	Staphyloc
21	227	57.2	79	6	ABU23521	Abu23521	Protein e
22	226.5	57.1	78	6	ABU50649	Abu50649	Protein e
23	225	56.7	94	7	ADF07671	Adf07671	Bacterial
24	225	56.7	104	6	ABU24629	Abu24629	Protein e
25	223.5	56.3	48	5	AAM47181	Aam47181	Modular e
26	223.5	56.3	75	8	ADN25869	Adn25869	Bacterial
27	222.5	56.0	72	8	ADN24411	Adn24411	Bacterial
28	222.5	56.0	78	8	ADN21655	. Adn21655	Bacterial
29	222.5	56.0	79	6	ABU19977	Abu19977	Protein e
30	222.5	56.0	79	6	ABU22402	Abu22402	Protein e
31	222.5	56.0	79	6	ABU21577	Abu21577	Protein e
32	222	55.9	78	8	ADN17479	Adn17479	Bacterial
33	222	55.9	80	6	ADB10328	Adb10328	Alloiococ
34	220	55.4	75	8	ADS42605	Ads42605	Bacterial
35	220	55.4	82	6	ABU33189	Abu33189	Protein e
36	217	54.7	71	8	ADN26458	Adn26458	Bacterial
37	217	54.7	76	. 8	ADS21595	Ads21595	Bacterial
38	217	54.7	78	6	ABP80257	Abp80257	N. gonorr
39	217	54.7	78	6	ABP78733	Abp78733	N. gonorr
40	217	54.7	78	6	ABU37226		Protein e
41	217	54.7	90	6	ABP78743	_	N. gonorr
42	216	54.4	78	6	ABU37656		Protein e
43	216	54.4	78	8	ADS23288		Bacterial
44	215	54.2	78	4	AAU34534		E. coli c
45	215	54.2	78	4	AAE02208	Aae02208	Escherich

(5 ED IDWO:1) RESULT 1 ACP BACSU ACP BACSU STANDARD; ID PRT: 77 AA. P80643; P51832; AC DT 01-OCT-1996 (Rel. 34, Created) DT 01-OCT-1996 (Rel. 34, Last sequence update) DT 25-OCT-2004 (Rel. 45, Last annotation update) DΕ Acyl carrier protein (ACP). GN Name=acpA; Synonyms=acpP; OrderedLocusNames=BSU15920; OS Bacillus subtilis. OC Bacteria; Firmicutes; Bacillales; Bacillaceae; Bacillus. OX NCBI TaxID=1423; RN[1] RP SEQUENCE OF 15-77, AND SEQUENCE OF 1-14 FROM N.A. RC STRAIN=168; RX MEDLINE=96326321; PubMed=8759840; Morbidoni H.R., de Mendoza D., Cronan J.E. Jr.; RA "Bacillus subtilis acyl carrier protein is encoded in a cluster of . RT RT lipid biosynthesis genes."; RL J. Bacteriol. 178:4794-4800(1996). RN RP SEQUENCE FROM N.A. RC STRAIN=168; RX MEDLINE=96257247; PubMed=8654983; DOI=10.1016/0378-1119(96)00181-3; Oguro A., Kakeshita H., Takamatsu H., Nakamura K., Yamane K.; RA RT"The effect of Srb, a homologue of the mammalian SRP receptor alpha-RTsubunit, on Bacillus subtilis growth and protein translocation."; RLGene 172:17-24(1996). RN[3] SEQUENCE FROM N.A. RP RC STRAIN=168; RX MEDLINE=98044033; PubMed=9384377; DOI=10.1038/36786; RA Kunst F., Ogasawara N., Moszer I., Albertini A.M., Alloni G., Azevedo V., Bertero M.G., Bessieres P., Bolotin A., Borchert S., RA RA Borriss R., Boursier L., Brans A., Braun M., Brignell S.C., Bron S., RA Brouillet S., Bruschi C.V., Caldwell B., Capuano V., Carter N.M., RA Choi S.K., Codani J.J., Connerton I.F., Cummings N.J., Daniel R.A., RA Denizot F., Devine K.M., Dusterhoft A., Ehrlich S.D., Emmerson P.T., Entian K.-D., Errington J., Fabret C., Ferrari E., Foulger D., RA RA Fritz C., Fujita M., Fujita Y., Fuma S., Galizzi A., Galleron N., RA Ghim S.Y., Glaser P., Goffeau A., Golightly E.J., Grandi G., RA Guiseppi G., Guy B.J., Haga K., Haiech J., Harwood C.R., Henaut A., RA Hilbert H., Holsappel S., Hosono S., Hullo M.F., Itaya M., RA Jones L.-M., Joris B., Karamata D., Kasahara Y., Klaerr-Blanchard M., RA Klein C., Kobayashi Y., Koetter P., Koningstein G., Krogh S., RA Kumano M., Kurita K., Lapidus A., Lardinois S., Lauber J., RA Lazarevic V., Lee S.M., Levine A., Liu H., Masuda S., Mauel C., RA Medigue C., Medina N., Mellado R.P., Mizuno M., Moestl D., Nakai S., RA Noback M., Noone D., O'Reilly M., Ogawa K., Ogiwara A., Oudega B., RA Park S.H., Parro V., Pohl T.M., Portetelle D., Porwollik S., RA Prescott A.M., Presecan E., Pujic P., Purnelle B., Rapoport G., RA Rey M., Reynolds S., Rieger M., Rivolta C., Rocha E., Roche B., RA Rose M., Sadaie Y., Sato T., Scanlan E., Schleich S., Schroeter R., RA Scoffone F., Sekiguchi J., Sekowska A., Seror S.J., Serror P., RA Shin B.S., Soldo B., Sorokin A., Tacconi E., Takagi T., Takahashi H.,

```
RA
     Takemaru K., Takeuchi M., Tamakoshi A., Tanaka T., Terpstra P.,
RA
     Tognoni A., Tosato V., Uchiyama S., Vandenbol M., Vannier F.,
RA
     Vassarotti A., Viari A., Wambutt R., Wedler E., Wedler H.,
     Weitzenegger T., Winters P., Wipat A., Yamamoto H., Yamane K.,
RA
     Yasumoto K., Yata K., Yoshida K., Yoshikawa H.F., Zumstein E.,
RA
     Yoshikawa H., Danchin A.;
RA
     "The complete genome sequence of the Gram-positive bacterium Bacillus
RT
RT
     subtilis.";
RL
     Nature 390:249-256(1997).
RN
     [4]
     SEQUENCE OF 1-17.
RP
RX
     MEDLINE=94131947; PubMed=8300523;
RA
     Heaton M.P., Neuhaus F.C.;
     "Role of the D-alanyl carrier protein in the biosynthesis of D-alanyl-
RT
RT
     lipoteichoic acid.";
     J. Bacteriol. 176:681-690(1994).
RL
RN
     [5]
     X-RAY CRYSTALLOGRAPHY (2.3 ANGSTROMS) OF HOLO-(ACYL CARRIER PROTEIN)
RP
RP
     IN COMPLEX WITH HOLO-(ACYL CARRIER PROTEIN) SYNTHASE.
     PubMed=10997907; DOI=10.1016/S0969-2126(00)00178-7;
RX
     Parris K.D., Lin L., Tam A., Mathew R., Hixon J., Stahl M.,
RA
RA
     Fritz C.C., Seehra J., Somers W.S.;
     "Crystal structures of substrate binding to Bacillus subtilis holo-
RT
RT
     (acyl carrier protein) synthase reveal a novel trimeric arrangement of
RT
     molecules resulting in three active sites.";
RL
     Structure 8:883-895(2000).
RN
     STRUCTURE BY NMR.
RP
     MEDLINE=21416009; PubMed=11525165; DOI=10.1016/S0969-2126(01)00586-X;
RX
     Xu G.Y., Tam A., Lin L., Hixon J., Fritz C.C., Powers R.;
RA
     "Solution structure of B. subtilis acyl carrier protein.";
RT
RL
     Structure 9:277-287(2001).
CC
     -!- FUNCTION: Carrier of the growing fatty acid chain in fatty acid
CC
         biosynthesis.
CC
     -!- PATHWAY: De novo fatty acid biosynthesis.
CC
     -!- SUBCELLULAR LOCATION: Cytoplasmic (By similarity).
CC
     -!- PTM: 4'-phosphopantetheine is transferred from CoA to a specific
CC
         serine of apo-ACP by acpS. This modification is essential for
CC
         activity because fatty acids are bound in thioester linkage to the
CC
         sulfhydryl of the prosthetic group.
     -!- SIMILARITY: Contains 1 acyl carrier domain.
CC
CC
     This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
CC
     between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
     the European Bioinformatics Institute. There are no restrictions on
CÇ
     use by non-profit institutions as long as its content is in no way
CC
     modified and this statement is not removed. Usage by and for commercial
CC
     entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
     or send an email to license@isb-sib.ch).
CC
     _____
DR
     EMBL; U59433; AAC44308.1; -.
DR
     EMBL; D64116; BAA10975.1; -.
DR
     EMBL; Z99112; CAB13465.1; -.
DR
     PIR; JC4822; JC4822.
DR
     PIR; T46634; T46634.
DR
     PDB; 1F80; X-ray; D/E/F=1-77.
DR
     PDB; 1HY8; NMR; A=2-77.
```

```
DR
    SubtiList; BG11536; acpA.
    HAMAP; MF 01217; -; 1.
DR
     InterPro; IPR009081; ACP_like.
DR
     InterPro; IPR003231; Acyl carrier.
DR
DR
    InterPro; IPR006163; Pp bind.
     InterPro; IPR006162; Ppantne S.
DR
DR
     Pfam; PF00550; PP-binding; 1.
DR
     ProDom; PD000887; Acyl carrier; 1.
    TIGRFAMs; TIGR00517; acyl_carrier; 1.
DR
DR
    PROSITE; PS50075; ACP DOMAIN; 1.
DR
    PROSITE; PS00012; PHOSPHOPANTETHEINE; 1.
KW
     3D-structure; Complete proteome; Direct protein sequencing;
KW
     Fatty acid biosynthesis; Lipid synthesis; Phosphopantetheine.
FT
    BINDING
                 37
                        37
                                Phosphopantetheine.
FT
    HELIX
                 3
                        16
FT
     TURN
                 25
                        26
FT
    STRAND
                 28
                        28
FT
    HELIX
                 29
                        33
FT
                 37
    HELIX
                        50
FT
    TURN
                 51
                        52
FT
    HELIX
                 57
                        61
FT
                 62
    TURN
                        62
FT
    STRAND
                 65
                        65
FT
                 66
    HELIX
                        74
    SEQUENCE
               77 AA;
                       8591 MW;
SQ
                                75E745DE3C6A0951 CRC64;
  Query Match
                         93.2%;
                                Score 370; DB 1; Length 77;
  Best Local Similarity
                         100.0%; Pred. No. 6e-23;
  Matches
           76; Conservative
                               0; Mismatches
                                                    Indels
                                              0;
           6 ADTLERVTKIIVDRLGVDEADVKLEASFKEDLGADSLDVVELVMELEDEFDMEISDEDAE 65
Qy
             2 ADTLERVTKIIVDRLGVDEADVKLEASFKEDLGADSLDVVELVMELEDEFDMEISDEDAE 61
Db
Qу
          66 KIATVGDAVNYIQNQQ 81
            Db
          62 KIATVGDAVNYIONOO 77
```

(SEQ ID NO:2)

C; Genetics: A; Gene: ydcB

C; Superfamily: holo-ACP synthase C; Keywords: coenzyme A; transferase

RESULT 1 H69772 holo-[acyl-carrier-protein] synthase (EC 2.7.8.7) - Bacillus subtilis C; Species: Bacillus subtilis C; Date: 10-Sep-1999 #sequence revision 10-Sep-1999 #text change 09-Jul-2004 C; Accession: H69772 R; Kunst, F.; Ogasawara, N.; Moszer, I.; Albertini, A.M.; Alloni, G.; Azevedo, V.; Bertero, M.G.; Bessieres, P.; Bolotin, A.; Borchert, S.; Boriss, R.; Boursier, L.; Brans, A.; Braun, M.; Brignell, S.C.; Bron, S.; Brouillet, S.; Bruschi, C.V.; Caldwell, B.; Capuano, V.; Carter, N.M.; Choi, S.K.; Codani, J.J.; Connerton, I.F.; Cummings, N.J.; Daniel, R.A.; Denizot, F.; Devine, K.M.; Duesterhoeft, A.; Ehrlich, S.D.; Emmerson, P.T.; Entian, K.D.; Errington, J.; Fabret, C.; Ferrari, E. Nature 390, 249-256, 1997 A; Authors: Foulger, D.; Fritz, C.; Fujita, M.; Fujita, Y.; Fuma, S.; Galizzi, A.; Galleron, N.; Ghim, S.Y.; Glaser, P.; Goffeau, A.; Golightly, E.J.; Grandi, G.; Guiseppi, G.; Guy, B.J.; Haga, K.; Haiech, J.; Harwood, C.R.; Henaut, A.; Hilbert, H.; Holsappel, S.; Hosono, S.; Hullo, M.F.; Itaya, M.; Jones, L.; Joris, B.; Karamata, D.; Kasahara, Y.; Klaerr-Blanchard, M.; Klein, C.; Kobayashi, Y.; Koetter, P.; Koningstein, G.; Krogh, S.; Kumano, M.; Kurita, K.; Lapidus, A.; Lardinois, S. A; Authors: Lauber, J.; Lazarevic, V.; Lee, S.M.; Levine, A.; Liu, H.; Masuda, S.; Maueel, C.; Medigue, C.; Medina, N.; Mellado, R.P.; Mizuno, M.; Moestl, D.; Nakai, S.; Noback, M.; Noone, D.; O'Reilly, M.; Ogawa, K.; Ogiwara, A.; Oudega, B.; Park, S.H.; Parro, V.; Pohl, T.M.; Portetelle, D.; Porwolik, S.; Prescott, A.M.; Presecan, E.; Pujic, P.; Purnelle, B.; Rapoport, G.; Rey, M.; Reynolds, S.; Rieger, M.; Rivolta, C.; Rocha, E.; Roche, B.; Rose, M.; Sadaie, Y.; Sato, T.; Scanlon, E. A; Authors: Schleich, S.; Schroeter, R.; Scoffone, F.; Sekiguchi, J.; Sekowska, A.; Seror, S.J.; Serror, P.; Shin, B.S.; Soldo, B.; Sorokin, A.; Tacconi, E.; Takagi, T.; Takahashi, H.; Takemaru, K.; Takeuchi, M.; Tamakoshi, A.; Tanaka, T.; Terpstra, P.; Tognoni, A.; Tosato, V.; Uchiyama, S.; Vandenbol, M.; Vannier, F.; Vassarotti, A.; Viari, A.; Wambutt, R.; Wedler, E.; Wedler, H.; Weitzenegger, T.; Winters, P.; Wipat, A.; Yamamoto, H.; Yamane, K.; Yasumoto, K.; Yata, K.; Yoshida, K. A; Authors: Yoshikawa, H.F.; Zumstein, E.; Yoshikawa, H.; Danchin, A. A; Title: The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. A; Reference number: A69580; MUID: 98044033; PMID: 9384377 A; Accession: H69772 A; Status: preliminary; nucleic acid sequence not shown; translation not shown A; Molecule type: DNA A; Residues: 1-121 <KUN> A; Cross-references: UNIPROT: P96618; GB: Z99106; GB: AL009126; NID: q2632653; PIDN:CAB12269.1; PID:q2632762 A; Experimental source: strain 168

Query Match 99.3%; Score 591; DB 1; Length 121; Best Local Similarity 100.0%; Pred. No. 1.1e-51; Matches 119; Conservative 0; Mismatches 0; Indels 0; Gaps 0; 2 YGIGLDITELKRIASMAGRQKRFAERILTRSELDQYYELSEKRKNEFLAGRFAAKEAFSK 61 Qу 3 YGIGLDITELKRIASMAGRQKRFAERILTRSELDQYYELSEKRKNEFLAGRFAAKEAFSK 62 Db 62 AFGTGIGRQLSFQDIEIRKDQNGKPYIICTKLSQAAVHVSITHTKEYAAAQVVIERLSS 120 Qу 63 AFGTGIGRQLSFQDIEIRKDQNGKPYIICTKLSQAAVHVSITHTKEYAAAQVVIERLSS 121 Db