Лекция XI - Проверка на хипотези

Лекция XI - Проверка на хипотези

- Проста срещу проста
- ▼ Грешка от I първи и II род
- Лема на Неймън Пирсън
- Проста срещу сложна
- Хипотези за нормални извадки

В статистиката много често ни се налага да проверяваме истинността на някое твърдение. То може да е съвсем свободно формулирано, например - "лекарството подобрява състоянието на болните", или да носи в себе си конкретна информация - "5% от заболелите нямат определен симптом", или да бъде формално - "броят на заразяванията е експоненциално разпределена сл.в. с параметър $\lambda=2$ ". Във всички случай ни е необходим критерии, с който да отсъдим дали твърдението е истина. Също така искаме да знаем вероятността за допускане на грешка.

В статистиката много често ни се налага да проверяваме истинността на някое твърдение. То може да е съвсем свободно формулирано, например - "лекарството подобрява състоянието на болните", или да носи в себе си конкретна информация - "5% от заболелите нямат определен симптом", или да бъде формално - "броят на заразяванията е експоненциално разпределена сл.в. с параметър $\lambda=2$ ". Във всички случай ни е необходим критерии, с който да отсъдим дали твърдението е истина. Също така искаме да знаем вероятността за допускане на грешка.

Проблемът с проверката на хипотези е изследван от Нейман и Пирсън през 30 години на XX век. Предложения подход в някакъв смисъл е аналогичен на разсъждение с допускане на противното. Допускаме, че хипотезата е вярна. Конструираме събитие A, което би се изпълнило с голяма вероятност при вярна хипотеза. Извършваме опит, правим наблюдения и ако събитието A не настъпи имаме основание да отхвърлим хипотезата. Това е така, защото вероятността събитието A да не настъпи при вярна хипотеза е много малка, т.е. наблюдаваме сбъдването на невероятното събитие \overline{A} . Хипотезата, която сме направили влиза в противоречие с наблюденията, затова я отхвърляме.

Ако събитието A настъпи ние нямаме основание да отхвърляме хипотезата.

Ще зададем подходящ математически модел за проверка на хипотези, като ще започнем от най-простия възможен случай. Ще предполагаме, че хипотезата се отнася за параметър θ , от който зависи сл.в. X. Както обикновено $\overrightarrow{X}=(X_1,\ldots,X_n)$ са независими наблюдения над нея. Проверяваме

срещу
$$\hbox{ хипотеза } H_0 : \theta = \theta_0 \\ \hbox{ алтернатива } H_1 : \theta = \theta_1$$

Съвсем естествено е хипотезата и алтернативата да са взаимноизключващи, т.е. не могат да се едновременно верни.

Константите θ_0 и θ_1 са известни, предварително зададени, не се определят от данните. В случай като този хипотезата и алтернативата са прости, доколкото става дума за константи. За сложна алтернатива говорим тогава, когато вместо една единствена стойност θ_1 е зададено цяло множество T_1 . Най-често използваните сложни алтернативи са от вида:

$$H_1: \theta < \theta_0, \qquad H_1: \theta > \theta_0, \qquad \qquad \underbrace{H_1: \theta \neq \theta_0}_{\text{двустранна}}$$

Ще зададем подходящ математически модел за проверка на хипотези, като ще започнем от най-простия възможен случай. Ще предполагаме, че хипотезата се отнася за параметър θ , от който зависи сл.в. X. Както обикновено $\overrightarrow{X} = (X_1, \ldots, X_n)$ са независими наблюдения над нея. Проверяваме

срещу
$$\hbox{ хипотеза } H_0 \quad : \quad \theta = \theta_0 \\ \hbox{ алтернатива } H_1 \quad : \quad \theta = \theta_1$$

Съвсем естествено е хипотезата и алтернативата да са взаимноизключващи, т.е. не могат да се едновременно верни.

Константите θ_0 и θ_1 са известни, предварително зададени, не се определят от данните. В случай като този хипотезата и алтернативата са прости, доколкото става дума за константи. За сложна алтернатива говорим тогава, когато вместо една единствена стойност θ_1 е зададено цяло множество T_1 . Най-често използваните сложни алтернативи са от вида:

$$H_1: \theta < \theta_0, \qquad H_1: \theta > \theta_0,$$
 едностранни $H_1: \theta \neq \theta_0$ двустранна

Основната ни цел е да конструираме множество W в n-мерното пространство, което наричаме **критична област**, и което е критерий за проверка на хипотезата: \rightarrow

$$A$$
 ко $\overrightarrow{X} \in W$ \Rightarrow Отхвърляме H_0 Ако $\overrightarrow{X} \notin W$ \Rightarrow Приемаме H_0

Възможно е разбира се да отхвърлим хипотезата H_0 дори когато е вярна. Тогава допускаме **грешка от I род**. Вероятността за грешка от първи род се нарича **ниво на съгласие**

$$\alpha = P\left(\overrightarrow{X} \in W | H_0\right)$$

Желателно е това число да бъде малко, обикновено то се избира предварително. Нивото на съгласие α не определя критичната област W еднозначно, съществуват много области с равно ниво на съгласие.

Възможно е разбира се да отхвърлим хипотезата H_0 дори когато е вярна. Тогава допускаме **грешка от I род**. Вероятността за грешка от първи род се нарича **ниво на съгласие**

$$\alpha = P\left(\overrightarrow{X} \in W|H_0\right)$$

Желателно е това число да бъде малко, обикновено то се избира предварително. Нивото на съгласие α не определя критичната област W еднозначно, съществуват много области с равно ниво на съгласие.

Възможно е, също така, хипотезата да е невярна, но ние да я приемем, това се нарича **грешка от II род**, вероятността за нея бележим с

$$\beta = P\left(\overrightarrow{X} \notin W|H_1\right)$$

Противоположната вероятност $\pi=1-\beta$ да отхвърлим хипотезата H_0 , ако тя е погрешна, наричаме **мощност на критерия**. Стремим се да направим мощността възможно най-голяма.

 H_0 H_1 грешка от II род H_1

Ако изберем по-голяма област W вероятността да попаднем в нея ще нарастне, съответно грешката от I род α ще е по-голяма, а β ще намалее. Обратно, ако изберем по-малка W вероятността да попаднем извън нея ще нарастне, т.е. β ще се увличи, а α ще намалее. В крайния случай $W=\emptyset$ явно $\alpha=0$. Когато едната грешка расте другата намалява. Коя от двете грешки е по-опасна зависи от конкретните хипотези.

Ако изберем по-голяма област W вероятността да попаднем в нея ще нарастне, съответно грешката от I род α ще е по-голяма, а β ще намалее. Обратно, ако изберем по-малка W вероятността да попаднем извън нея ще нарастне, т.е. β ще се увличи, а α ще намалее. В крайния случай $W=\emptyset$ явно $\alpha=0$. Когато едната грешка расте другата намалява. Коя от двете грешки е по-опасна зависи от конкретните хипотези. Например

 H_0 : виното е отровно

 H_1 : виното не е отровно

Грешката от I род е "виното е отровно, а ние приемаме че не е", очевидно тове е изключително неприятна грешка.

Грешката от II род "виното не е отровно, но ние приемаме че е", няма да доведе до трагични последствия.

Ако изберем по-голяма област W вероятността да попаднем в нея ще нарастне, съответно грешката от I род α ще е по-голяма, а β ще намалее. Обратно, ако изберем по-малка W вероятността да попаднем извън нея ще нарастне, т.е. β ще се увличи, а α ще намалее. В крайния случай $W=\emptyset$ явно $\alpha=0$. Когато едната грешка расте другата намалява. Коя от двете грешки е по-опасна зависи от конкретните хипотези. Например

 H_0 : виното е отровно

 H_1 : виното не е отровно

Грешката от I род е "виното е отровно, а ние приемаме че не е", очевидно тове е изключително неприятна грешка.

Грешката от II род "виното не е отровно, но ние приемаме че е", няма да доведе до трагични последствия.

Изборът на основна хипотеза се определя и от това коя от двете грешки искаме да избегнем. Така фиксираме максималната грешка от I род, която можем да си позволим да допуснем, обикновено това е число от порядък $\alpha=0.05,\,0.01,\,0.001$ и т.н. и при това условие избираме такава област W, че грешката от II род да бъде възможно най-малка, т.е. фиксираме α и търсим минимум по β .

Ако съществува област върху която се изпълняват тези условия, то казваме че това е оптимална критична област (о.к.о.) и я бележим с W^* .

Намирането на оптималната критична област се извършва по лемата на Нейман - Пирсън. Ще предполагаме, че разпределението на сл.в. X е известно, но то зависи от параметър θ , за който формулираме проста хипотеза срещу проста алтернатива.

$$H_0$$
 : $\theta = \theta_0$
 H_1 : $\theta = \theta_1$

Нека $\overrightarrow{\mathbf{X}}=(X_1,\dots,X_n)$ са наблюденията над X, а $L(x,\theta)$ е съответната функция на правдоподобие

$$L(x,\theta) = \prod_{k=1}^{n} f_{X_k}(x_k,\theta), \qquad x = (x_1, x_2, \dots, x_n)$$

Ще въведем означенията $L_0(x) = L(x, \theta_0)$ и $L_1(x) = L(x, \theta_1)$.

Намирането на оптималната критична област се извършва по лемата на Нейман - Пирсън. Ще предполагаме, че разпределението на сл.в. X е известно, но то зависи от параметър θ , за който формулираме проста хипотеза срещу проста алтернатива.

$$H_0$$
 : $\theta = \theta_0$
 H_1 : $\theta = \theta_1$

Нека $\overrightarrow{\mathbf{X}}=(X_1,\dots,X_n)$ са наблюденията над X, а $L(x,\theta)$ е съответната функция на правдоподобие

$$L(x,\theta) = \prod_{k=1}^{n} f_{X_k}(x_k,\theta), \qquad x = (x_1, x_2, \dots, x_n)$$

Ще въведем означенията $L_0(x) = L(x, \theta_0)$ и $L_1(x) = L(x, \theta_1)$.

Лема на Нейман - Пирсън

При проверка на проста хипотеза срещу проста алтернатива с ниво на съгласие lpha, ако W^* е такава, че $P\left(\overrightarrow{X}\in W^*\mid H_0\right)=lpha$ и съществува константа K=K(lpha) за която $L_1(x)\geq K\;L_0(x),\qquad \forall x\in W^*$

$$L_1(x) \le K L_0(x), \quad \forall x \notin W^*$$

Тогава W^* е оптимална критична област.

 $oldsymbol{\mathcal{L}}$ ок. Нека W е произволна друга критична област за която грешката от I род е точно lpha $\mathsf{P}\left(\overrightarrow{\mathbf{X}}\in W|H_0\right)=lpha$

Ще докажем че върху W^* грешката от II род е по-малка отколкото върху W, или което е същото, че мощността е по-голяма. Ще въведем означенията

 $m{\mathcal{L}}$ ок. Нека W е произволна друга критична област за която грешката от I род е точно lpha $\mathsf{P}\left(\overrightarrow{\mathbf{X}}\in W|H_0\right)=lpha$

Ще докажем че върху W^* грешката от II род е по-малка отколкото върху W, или което е същото, че мощността е по-голяма. Ще въведем означенията

Ако е изпълнена хипотеза H_0 , то съвместната плътност на наблюденията е L_0 и lpha може да се пресметне чрез съответния n-мерен интеграл.

$$\begin{split} \alpha &= \mathsf{P}\left(\overrightarrow{\mathbf{X}} \in W^* | H_0\right) &= \int_{W^*} L_0(x) \; dx &= \int_A L_0(x) \; dx + \int_C L_0(x) \; dx \\ \alpha &= \mathsf{P}\left(\overrightarrow{\mathbf{X}} \in W \; | H_0\right) &= \int_W L_0(x) \; dx &= \int_B L_0(x) \; dx + \int_C L_0(x) \; dx \end{split}$$

Следователно

$$\int_{A} L_0(x) \ dx = \int_{B} L_0(x) \ dx$$

Нека π^* и π са мощностите съответно върху W^* и W.

$$\pi^* = P(\overrightarrow{X} \in W^* \mid H_1), \qquad \pi = P(\overrightarrow{X} \in W \mid H_1)$$

Ще разгледаме разликата

$$\pi^* - \pi = \int_{W^*} L_1(x) \ dx - \int_W L_1(x) \ dx =$$

$$= \left(\int_A + \int_C \right) L_1(x) \; dx - \left(\int_B + \int_C \right) L_1(x) \; dx = \int_A L_1(x) \; dx - \int_B L_1(x) \; dx$$

Нека π^* и π са мощностите съответно върху W^* и W.

$$\pi^* = P\left(\overrightarrow{X} \in W^* \mid H_1\right), \qquad \pi = P\left(\overrightarrow{X} \in W \mid H_1\right)$$

Ще разгледаме разликата

$$\pi^* - \pi = \int_{W^*} L_1(x) \ dx - \int_W L_1(x) \ dx =$$

$$= \left(\int_{A} + \int_{C} \right) L_{1}(x) \ dx - \left(\int_{B} + \int_{C} \right) L_{1}(x) \ dx = \int_{A} L_{1}(x) \ dx - \int_{B} L_{1}(x) \ dx$$

 $A\subset W^*$ следователно за $\forall x\in A$ е изпълнено $L_1(x)\geq KL_0(x)$, аналогично $B\cap W^*=\emptyset$, тогава от $x\in B$ следва $x\notin W^*$ и съгласно условието на лемата $L_1(x)\leq K\,L_0(x)$, т.е. $-L_1(x)\geq -K\,L_0(x)$. Тези неравенства ни дават възможност да оценим $\pi^*-\pi$

$$\pi^* - \pi \geq \int_A KL_0(x) \ dx - \int_B KL_0(x) \ dx = K\left(\int_A L_0(x) \ dx - \int_B L_0(x) \ dx\right) = 0$$

Областта W беше произволно избрана, доказахме, че върху нея мощността е по-малка, отколкото мощността върху W^* . Това означава, че върху W^* мощността достига максимум.

Лемата на Нейман-Пирсън дава начин за конструиране на оптимална критична област при проверка на хипотези. С нейна помощ ще разгледаме хипотези за математическото очакване на нормално разпределена сл.в.

Нека $X\in N(\mu,\sigma^2)$ като предполагаме, че дисперсията σ^2 е известна. При зададено ниво на съгласие α ще проверим

$$H_0$$
 : $\mu = \mu_0$
 H_1 : $\mu = \mu_1$

Тук μ_0 и μ_1 са известни константи, за определеност ще приемем, че $\mu_0 < \mu_1.$

Лемата на Нейман-Пирсън дава начин за конструиране на оптимална критична област при проверка на хипотези. С нейна помощ ще разгледаме хипотези за математическото очакване на нормално разпределена сл.в.

Нека $X\in N(\mu,\sigma^2)$ като предполагаме, че дисперсията σ^2 е известна. При зададено ниво на съгласие α ще проверим

$$H_0$$
 : $\mu = \mu_0$
 H_1 : $\mu = \mu_1$

Тук μ_0 и μ_1 са известни константи, за определеност ще приемем, че $\mu_0 < \mu_1$. В лекция XI изведохме функцията на правдоподобие при нормално разпределени наблюдения.

$$L(\overrightarrow{X},\mu) = \prod_{k=1}^n \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x_k-\mu)^2}{2\sigma^2}} = \frac{1}{\left(\sqrt{2\pi}\sigma\right)^n} e^{-\sum_{k=1}^n \frac{(x_k-\mu)^2}{2\sigma^2}}$$

Съгласно лемата трябва да намерим област W^* такава, че

$$\alpha = P\left(\overrightarrow{X} \in W^* \mid H_0\right) = P\left(L_1(x) \ge K L_0(x) \mid H_0\right)$$

Където L_0 и L_1 са функциите на правдоподобие, ако са изпълнени съответно H_0 и H_1 . Ще заместим в горния израз и щу преобразуваме.

Целта ни е да достигнем до достатъчно прост вид на израза такъв, че да можем да пресметнем вероятността.

$$\alpha = P\left(\frac{1}{\left(\sqrt{2\pi}\sigma\right)^{n}}e^{-\sum_{k=1}^{n}\frac{(x_{k}-\mu_{1})^{2}}{2\sigma^{2}}} \ge K\frac{1}{\left(\sqrt{2\pi}\sigma\right)^{n}}e^{-\sum_{k=1}^{n}\frac{(x_{k}-\mu_{0})^{2}}{2\sigma^{2}}} \mid H_{0}\right) =$$

$$= P\left(e^{-\frac{1}{2\sigma^{2}}\sum_{k=1}^{n}\left[(x_{k}-\mu_{1})^{2}-(x_{k}-\mu_{0})^{2}\right]} \ge K\mid H_{0}\right)$$

$$= P\left(e^{\frac{2(\mu_{1}-\mu_{0})}{2\sigma^{2}}\sum_{k=1}^{n}x_{k}}e^{-\frac{n(\mu_{1}^{2}-\mu_{0}^{2})}{2\sigma^{2}}} \ge K\mid H_{0}\right) =$$

Целта ни е да достигнем до достатъчно прост вид на израза такъв, че да можем да пресметнем вероятността.

$$\alpha = P\left(\frac{1}{\left(\sqrt{2\pi}\sigma\right)^{n}}e^{-\sum_{k=1}^{n}\frac{(x_{k}-\mu_{1})^{2}}{2\sigma^{2}}} \ge K \frac{1}{\left(\sqrt{2\pi}\sigma\right)^{n}}e^{-\sum_{k=1}^{n}\frac{(x_{k}-\mu_{0})^{2}}{2\sigma^{2}}} \mid H_{0}\right) =$$

$$= P\left(e^{-\frac{1}{2\sigma^{2}}\sum_{k=1}^{n}\left[(x_{k}-\mu_{1})^{2}-(x_{k}-\mu_{0})^{2}\right]} \ge K \mid H_{0}\right)$$

$$= P\left(e^{\frac{2(\mu_{1}-\mu_{0})}{2\sigma^{2}}\sum_{k=1}^{n}x_{k}}e^{-\frac{n(\mu_{1}^{2}-\mu_{0}^{2})}{2\sigma^{2}}} \ge K \mid H_{0}\right) =$$

Втората експонента $e^{-\frac{n(\mu_1^2-\mu_0^2)}{2\sigma^2}}$ е константа от гледна точка на наблюденията x_k . Ще направим тази константа част от K и ще означим новата константа с K_1

 $= P\left(e^{\frac{2(\mu_1 - \mu_0)}{2\sigma^2} \sum_{k=1}^{n} x_k} \ge K_1 \mid H_0\right) =$

Целта ни е да достигнем до достатъчно прост вид на израза такъв, че да можем да пресметнем вероятността.

$$\alpha = P\left(\frac{1}{\left(\sqrt{2\pi}\sigma\right)^{n}}e^{-\sum_{k=1}^{n}\frac{(x_{k}-\mu_{1})^{2}}{2\sigma^{2}}} \ge K\frac{1}{\left(\sqrt{2\pi}\sigma\right)^{n}}e^{-\sum_{k=1}^{n}\frac{(x_{k}-\mu_{0})^{2}}{2\sigma^{2}}} \mid H_{0}\right) =$$

$$= P\left(e^{-\frac{1}{2\sigma^{2}}\sum_{k=1}^{n}\left[(x_{k}-\mu_{1})^{2}-(x_{k}-\mu_{0})^{2}\right]} \ge K\mid H_{0}\right)$$

$$= P\left(e^{\frac{2(\mu_{1}-\mu_{0})}{2\sigma^{2}}\sum_{k=1}^{n}x_{k}}e^{-\frac{n(\mu_{1}^{2}-\mu_{0}^{2})}{2\sigma^{2}}} \ge K\mid H_{0}\right) =$$

Втората експонента $e^{-\frac{n(\mu_1^2-\mu_0^2)}{2\sigma^2}}$ е константа от гледна точка на наблюденията x_k . Ще направим тази константа част от K и ще означим новата константа с K_1

 $= P\left(e^{\frac{2(\mu_1 - \mu_0)}{2\sigma^2} \sum_{k=1}^{n} x_k} \ge K_1 \mid H_0\right) =$

Ще логаритмуваме двете страни на израза и нека $K_2 = \ln K_1$

$$= P\left(\frac{2(\mu_1 - \mu_0)}{2\sigma^2} \sum_{k=1}^{n} x_k \ge K_2 \mid H_0\right) =$$

По допускане $\mu_0 < \mu_1$, следователно $\frac{2(\mu_1 - \mu_0)}{2\sigma^2}$ е положителна константа, ако разделим двете страни на на нея, то знакът на неравенството няма да се промени. По този начин окончатено получаваме

$$= P\left(\sum_{k=1}^{n} x_k \ge K_3 \mid H_0\right) = \alpha$$

По допускане $\mu_0 < \mu_1$, следователно $\frac{2(\mu_1 - \mu_0)}{2\sigma^2}$ е положителна константа, ако разделим двете страни на на нея, то знакът на неравенството няма да се промени. По този начин окончатено получаваме

$$= P\left(\sum_{k=1}^{n} x_k \ge K_3 \mid H_0\right) = \alpha$$

При зададена конкретна стойност на α не е проблем да се определи K_3 , достатъчно е да се знае разпределението на $\sum x_k$. При изпълнена хипотеза $H_0: X_k \in \mathcal{N}(\mu_0,\sigma^2)$. В лекция XII показахме, че $\frac{\overline{X}-\mu_0}{\sigma/\sqrt{n}} \in \mathcal{N}(0,1)$. Това ни позволява да запишем вероятността по следния начин.

$$P\left(\frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} \ge K_4 \mid H_0\right) = \alpha$$

По допускане $\mu_0 < \mu_1$, следователно $\frac{2(\mu_1 - \mu_0)}{2\sigma^2}$ е положителна константа, ако разделим двете страни на на нея, то знакът на неравенството няма да се промени. По този начин окончатено получаваме

$$= P\left(\sum_{k=1}^{n} x_k \ge K_3 \mid H_0\right) = \alpha$$

При зададена конкретна стойност на α не е проблем да се определи K_3 , достатъчно е да се знае разпределението на $\sum x_k$. При изпълнена хипотеза $H_0: X_k \in \mathcal{N}(\mu_0,\sigma^2)$. В лекция XII показахме, че $\frac{\overline{X}-\mu_0}{\sigma/\sqrt{n}} \in \mathcal{N}(0,1)$. Това ни позволява да запишем вероятността по следния начин.

$$P\left(\frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \ge K_4 \mid H_0\right) = \alpha$$

Константата K_4 се намира от таблица за N(0,1) като $\alpha-1$ квантил, т.е. $K_4=q_{1-\alpha}$. Последното събитие, което получихме е еквивалентно на $\overrightarrow{X}\in W^*$, или казано по друг начин, то задава вида на оптималната критична област

$$W^* = \left\{ \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \ge K_4 \right\} = \left\{ \overline{X} \ge \mu_0 + q_{1-\alpha} \frac{\sigma}{\sqrt{n}} \right\}$$

Проверявахме хипотези за очакването μ на нормално разпределена сл.в. като имахме две възможности, μ_0 и μ_1 , т.е трябва да изберем една от двете плътности показани по-долу в зелено.

Проверявахме хипотези за очакването μ на нормално разпределена сл.в. като имахме две възможности, μ_0 и μ_1 , т.е трябва да изберем една от двете плътности показани по-долу в зелено.

При допускането $\mu_0<\mu_1$ съвсем естествено получихме оптимална критичната област във вид на интервал за среднототаритметичното на наблюденията. Ако \overline{X} е по-голямо от някаква гранична стойност отхвърляме H_0 и приемаме H_1 .

Проверявахме хипотези за очакването μ на нормално разпределена сл.в. като имахме две възможности, μ_0 и μ_1 , т.е трябва да изберем една от двете плътности показани по-долу в зелено.

При допускането $\mu_0<\mu_1$ съвсем естествено получихме оптимална критичната област във вид на интервал за среднототаритметичното на наблюденията. Ако \overline{X} е по-голямо от някаква гранична стойност отхвърляме H_0 и приемаме H_1 .

Аналогично, ако $\mu_0 > \mu_1$ тогава критичната област ще е в обратна посока

$$W^* = \left\{ \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \le K_4 \right\}$$

В този случай константата $K_4=q_{lpha}=-q_{1-lpha}$ ще е отрицателна.

$$W^* = \left\{ \overline{X} \le \mu_0 - q_{1-\alpha} \frac{\sigma}{\sqrt{n}} \right\}$$

Пример

Нека $X \in \mathcal{N}(\mu,1)$. С ниво на съгласие lpha = 0.01 проверяваме

$$H_0$$
 : $\mu = 1$
 H_1 : $\mu = 3$

Ако направените наблюдения са: 1.5, 1.9, 2.9 можем ли да примем за вярна хипотезата H_0 ?

Пресмятаме $\overline{X}=2.1$, тази стойност е по близо до 3, отколкото до 1. Дали това е достатъчно да отхвърлим H_0 и да приемем H_1 ?

В нашия случай критичната област е от типа $W^* = \left\{\overline{X} \geq \mu_0 + q_{1-lpha} rac{\sigma}{\sqrt{n}}
ight\}$

От
$$\mu_0=1$$
, $\sigma=1$ и $q=2.33$ за о.к.о. получаваме $W^*=\left\{\overline{X}\geq 2.35\right\}$

Но $2.1 \ngeq 2.35$ следователно $\overrightarrow{X} \notin W^*$, тогава приемаме H_0 . Наблюденията са по-големи от 1, но не достатъчно за да отхвърлим H_0 с ниво на съгласие $\alpha=0.01$. При друго ниво на съгласие изводът би могъл да е различен.

След като разполагаме с критичната област не е проблем да пресметнем мощността на критерия π , т.е. вероятността да отхвърлим хипотезата H_0 , ако тя наистина е погрешна. При $\mu_0 < \mu_1$

$$\pi = P\left(\overrightarrow{X} \in W^* \mid H_1\right) = P\left(\overrightarrow{X} \ge \mu_0 + q_{1-\alpha} \frac{\sigma}{\sqrt{n}} \mid H_1\right)$$

Вероятността трябва да бъде сметната при условие, че е изпълнена алтернативата H_1 . Тогава $\overline{X}\in N(\mu_1,\frac{\sigma}{\sqrt{n}})$, следователно $Z=\frac{\overline{X}-\mu_1}{\sigma/\sqrt{n}}\in N(0,1)$. След съответното стандартизиране получаваме

$$\pi^* = P\left(Z \ge \frac{\sqrt{n}}{\sigma}(\mu_0 - \mu_1) + q_{1-\alpha}\right)$$

След като разполагаме с критичната област не е проблем да пресметнем мощността на критерия π , т.е. вероятността да отхвърлим хипотезата H_0 , ако тя наистина е погрешна. При $\mu_0 < \mu_1$

$$\pi = P\left(\overrightarrow{X} \in W^* \mid H_1\right) = P\left(\overrightarrow{X} \ge \mu_0 + q_{1-\alpha} \frac{\sigma}{\sqrt{n}} \mid H_1\right)$$

Вероятността трябва да бъде сметната при условие, че е изпълнена алтернативата H_1 . Тогава $\overline{X}\in N(\mu_1,\frac{\sigma}{\sqrt{n}})$, следователно $Z=\frac{\overline{X}-\mu_1}{\sigma/\sqrt{n}}\in N(0,1)$. След съответното стандартизиране получаваме

$$\pi^* = P\left(Z \ge \frac{\sqrt{n}}{\sigma}(\mu_0 - \mu_1) + q_{1-\alpha}\right)$$

Пример

Ще пресметнем мощността в предишния пример.

$$\pi = P\left(Z \ge \frac{\sqrt{3}}{1}(1-3) + 2.33\right) = P(Z \ge -1.13) = 0.8708$$

Мощността не е голяма, приблизително 87%, т.е. съществува 13% вероятност за грешка от II род.

Увеличаването на броя на наблюденията води до нарастване на мощността на критерия, т.е. повечето наблюдения водят до по-точни критерии. Възможно е да фиксираме мощността π , която искаме да достигнем и при това условие да намерим броя на необходимите наблюдения. За целта трябва да решим спрямо п неравенството

$$P\left(Z \ge \frac{\sqrt{n}}{\sigma}(\mu_0 - \mu_1) + q_{1-\alpha}\right) \ge \pi$$

Нека $q_{1-\pi}$ е граничната стойност $P(Z \geq q_{1-\pi}) = \pi$, тогава решението на неравенството е откъдето не е трудно да се изрази n.

Увеличаването на броя на наблюденията води до нарастване на мощността на критерия, т.е. повечето наблюдения водят до по-точни критерии. Възможно е да фиксираме мощността π , която искаме да достигнем и при това условие да намерим броя на необходимите наблюдения. За целта трябва да решим спрямо п неравенството

$$\mathsf{P}\left(\,Z\geq\frac{\sqrt{n}}{\sigma}(\mu_0-\mu_1)+q_{1-\alpha}\right)\geq\pi$$

Нека $q_{1-\pi}$ е граничната стойност $P(Z \geq q_{1-\pi}) = \pi$, тогава решението на неравенството е $rac{\sqrt{n}}{\sigma}(\mu_0-\mu_1)+q_{1-lpha}\leq q_{1-\pi}$ Откъдето не е трудно да се изрази n.

Пример

В примера, който изследвахме ще определим n такова, че мощността на критерия да е по-голяма от 0,95.

$$\pi = P\left(Z \ge \frac{\sqrt{n}}{1}(1-3) + 2.33\right) \ge 0.95$$

$$\frac{\sqrt{n}}{1}(1-3) + 2.33 \le q_{0.05} = -q_{0.95} = -1.645$$

Оттук пресмятаме n=4.

Проста хипотеза срещу сложна алтернатива

Разглеждаме проста хипотеза срещу сложна алтернатива.

$$H_0$$
: $\theta = \theta_0$
 H_1 : $\theta = T_1$

където T_1 е множество, което не съдържа θ_0 . Наричаме H_1 сложна, защото не задава единствена стойност, а цяло множество. Тази задача лесно се свежда до предишния случай на проверка на проста хипотеза срещу проста алтернатива. Избираме фиксирано $\theta_1 \in T_1$ и проверяваме

$$H_0$$
 : $\theta = \theta_0$
 H_1 : $\theta = \theta_1$

Проста хипотеза срещу сложна алтернатива

Разглеждаме проста хипотеза срещу сложна алтернатива.

$$H_0$$
 : $\theta = \theta_0$
 H_1 : $\theta = T_1$

където T_1 е множество, което не съдържа θ_0 . Наричаме H_1 сложна, защото не задава единствена стойност, а цяло множество. Тази задача лесно се свежда до предишния случай на проверка на проста хипотеза срещу проста алтернатива. Избираме фиксирано $\theta_1 \in T_1$ и проверяваме

$$H_0$$
 : $\theta = \theta_0$
 H_1 : $\theta = \theta_1$

По лемата на Нейман Пирсън получаваме съответната оптимална критична област W^* . Ако се окаже, че получената област не зависи от конкретния избор на θ_1 , т.е. при всяка възможна стойност получаваме една и съща област, тогава логично тя е областа за проверка на проста хипотеза срещу сложна алтернатива. Ако областта зависи от избора на θ_1 , този метод не работи.

Ако се вгледате внимателно в критичната област за проверка на проста срещу проста хипотеза, която изведохме (стр.11), ще забележите, че ние работихме в общ случай с две константи $\mu_0 < \mu_1$, а критичната област изобщо не зависи от μ_1 , нейното значение се загуби.

Оказва се, че когато алтернативите са едностранни описаният метод работи и за проверка на "проста срещу сложна" могат да се използват вече изведените критични области.

Нека $X \in \mathcal{N}(\mu, \sigma^2)$ и основната хипотеза е

$$H_0 : \mu = \mu_0$$

• При алтернатива

$$H_1 : \mu > \mu_0$$

критичната област е $W^* = \left\{\overline{X} \geq \mu_0 + q_{1-lpha} rac{\sigma}{\sqrt{n}}
ight\}$

Оказва се, че когато алтернативите са едностранни описаният метод работи и за проверка на "проста срещу сложна" могат да се използват вече изведените критични области.

Нека $X \in N(\mu, \sigma^2)$ и основната хипотеза е

$$H_0 : \mu = \mu_0$$

• При алтернатива

$$H_1: \mu > \mu_0$$
 критичната област е $W^* = \left\{\overline{X} \geq \mu_0 + q_{1-lpha} rac{\sigma}{\sqrt{n}}
ight\}$

• При алтернатива

$$H_1: \mu < \mu_0$$
 критичната област е $W^* = \left\{\overline{X} \leq \mu_0 - q_{1-lpha} rac{\sigma}{\sqrt{n}}
ight\}$

Оказва се, че когато алтернативите са едностранни описаният метод работи и за проверка на "проста срещу сложна" могат да се използват вече изведените критични области.

Нека $X \in \mathcal{N}(\mu, \sigma^2)$ и основната хипотеза е

няма да се спираме.

$$H_0$$
: $\mu = \mu_0$

 $oldsymbol{ heta}$ При алтернатива $H_1: \mu > \mu_0$ критичната област е $W^* = \left\{\overline{X} \geq \mu_0 + q_{1-lpha} rac{\sigma}{\sqrt{n}}
ight\}$

ullet При алтернатива $H_1: \mu < \mu_0$ критичната област е $W^* = \left\{\overline{X} \leq \mu_0 - q_{1-lpha}rac{\sigma}{\sqrt{n}}
ight\}$ ____

• При алтернатива $H_1 \ : \ \mu \neq \mu_0$ критичната област е $W^* = \left\{ |\overline{X}| \geq \mu_0 + q_{1-\frac{lpha}{2}} \frac{\sigma}{\sqrt{n}} \right\}$ В този случай се използва съвсем резлична теория, на която ние

$N(\mu, \sigma^2)$

Хипотезите за очакването на нормалното разпределение, които проверихме дотук се отнасят само за случая на известна дисперсия. Ако дисперсията е неизвестна един възможен подход е да я оценим от данните. Тогава обаче директното приложение на лемата на Нейман-Пирсън е невъзможно, защото в нея се изисква при изпълнена хипотеза H_0 функцията на правдоподобие да е точно определена. Подходът е с използване на така нареченото "частно на правдоподобие". Ние няма да навлизаме в детайлите, ще дадем само крайния резултат. На практика се получават аналогични критични области, разликата е, че в тях неизвестната дисперсия σ^2 е заменена с оценката за нея S^2 . Така например при алтернатива $H_1: \mu > \mu_0$ критичната област е

$$W = \left\{ \frac{\overline{X} - \mu_0}{S / \sqrt{n}} \ge q_{1-\alpha} \right\} = \left\{ \overline{X} \ge \mu_0 + q_{1-\alpha} \frac{S}{\sqrt{n}} \right\}$$

Както доказахме в лекция XII случайната величнина тук е с разпределение на Стюдънт с n-1 степени на свобода. Съответно квантила $q_{1-\alpha}$ се намира от таблици на Стюдънт.

Ясно е как ще изглеждат критичните области и в другите два случая.

$N(\mu, \sigma^2)$

Хипотезите за очакването на нормалното разпределение, които проверихме дотук се отнасят само за случая на известна дисперсия. Ако дисперсията е неизвестна един възможен подход е да я оценим от данните. Тогава обаче директното приложение на лемата на Нейман-Пирсън е невъзможно, защото в нея се изисква при изпълнена хипотеза H_0 функцията на правдоподобие да е точно определена. Подходът е с използване на така нареченото "частно на правдоподобие". Ние няма да навлизаме в детайлите, ще дадем само крайния резултат. На практика се получават аналогични критични области, разликата е, че в тях неизвестната дисперсия σ^2 е заменена с оценката за нея S^2 . Така например при алтернатива $H_1: \mu > \mu_0$ критичната област е

$$W = \left\{ \frac{\overline{X} - \mu_0}{S / \sqrt{n}} \ge q_{1-\alpha} \right\} = \left\{ \overline{X} \ge \mu_0 + q_{1-\alpha} \frac{S}{\sqrt{n}} \right\}$$

Както доказахме в лекция XII случайната величнина тук е с разпределение на Стюдънт с n-1 степени на свобода. Съответно квантила $q_{1-\alpha}$ се намира от таблици на Стюдънт.

Ясно е как ще изглеждат критичните области и в другите два случая.

21.6.2023 EK