GeospatialRules: A Datalog⁺ RuleML Rulebase for Geospatial Reasoning

RuleML 2014, Rule Challenge Prague, Czech Republic, August 18–22, 2014

Gen Zou

Faculty of Computer Science, University of New Brunswick, Fredericton, Canada

- Background
- Development of GeospatialRules
- Conclusion and Future Work

- Background
- Development of GeospatialRules
- 3 Conclusion and Future Work

Datalog⁺

- Datalog⁺ extends Datalog with rule heads allowing
 - Existential quantifiers
 - Equality
 - Falsity (for integrity rules)
- A family of decidable sublanguages of Datalog⁺, Datalog[±], restricts rule bodies for ontological querying
- Deliberation RuleML 1.01 introduces Relax NG and XSD schemas for Datalog⁺

Region Connection Calculus (RCC)

- RCC axiomatizes spatial relations between 'regions' in first-order logic
- Primitive binary relation C(x, y): x connects with y
 - Reflexivity and symmetry of C(x, y)

 - (1) $\forall x : C(x, x)$ (2) $\forall x, y : C(y, x) \rightarrow C(x, y)$

Defining Axioms of RCC Relations

	Relation Definition	Meaning
	C(x, y) (primitive)	x connects with y
(3)	$DC(x, y) \equiv_{def} \neg C(x, y)$	x is disconnected from y
(4)	$P(x,y) \equiv_{def} \forall z [C(z,x) \rightarrow C(z,y)]$	x is part of y
(5)	$O(x, y) \equiv_{def} \exists z [P(z, x) \land P(z, y)]$	x overlaps with y
(6)	$DR(x,y) \equiv_{def} \neg O(x,y)$	x is discrete from y
(7)	$EC(x,y) \equiv_{def} C(x,y) \wedge DR(x,y)$	x is externally connected to y
(8)	$PO(x, y) \equiv_{def} O(x, y) \land \neg P(x, y)$	x partially overlaps with y
	$\wedge \neg P(y, x)$	
(9)	$EQ(x, y) \equiv_{def} P(x, y) \wedge P(y, x)$	x is equal to y
(10)	$PP(x,y) \equiv_{def} P(x,y) \land \neg P(y,x)$	x is a proper part of y
(11)	$TPP(x,y) \equiv_{def} PP(x,y) \wedge$	x is a tangential
	$\exists z [EC(z,x) \land EC(z,y)]$	proper part of y
(12) $NTPP(x,y) \equiv_{def} PP(x,y) \land$		x is a nontangential
	$\neg \exists z [EC(z,x) \land EC(z,y)]$	proper part of y

Inverses of non-symmetric RCC relations:

$$\Phi i(x,y) \equiv_{\operatorname{def}} \Phi(y,x), \Phi \in \{P,PP,TPP, NTPP\} \}_{\text{total points}}$$

Graphical View of RCC Relations

Figures borrowed from Cohn, A., Bennett, B., Gooday, J., Gotts, N.: Qualitative spatial representation and reasoning with the Region Connection Calculus. GeoInformatica 1(3) (October 1997) 275-316.

RCC8 Relations (A jointly exhaustive and

pairwise disjoint subset of RCC relations)

DC(a,b)

EC(a,b)

TPP(a,b)

TPPi(a,b)

NTPP(a,b)

NTPPi(a,b)

Hierarchy of RCC relations

- Background
- Development of GeospatialRules
- Conclusion and Future Work

Kinds of GeospatialRules

- Rules
 - a) Datalog⁺ fragment of the first-order RCC defining axioms
 - b) Additional rules which express part of the RCC knowledge that is not captured by a)
- Facts and Queries (special cases of Rules)

Mapping: RCC Relations ←→ GeospatialRules Relations

RCC Relation	GeospatialRules Relation
С	RCCConnected
DC	RCCDisconnected
Р	RCCPartOf
0	RCCOverlapped
DR	RCCDiscrete
EC	RCCExternallyConnected
PO	RCCPartiallyOverlapped
EQ	RCCEqual
PP	RCCProperPartOf
TPP	RCCTangentialProperPartOf
NTPP	RCCNonTangentialProperPartOf
Pi	RCCInversePartOf
PPi	RCCInverseProperPartOf
TPPi	RCCInverseTangentialProperPartOf
NTPPi	RCCInverseNonTangentialProperPartOf

Identifying Datalog⁺ Fragment of RCC Axioms

 Reflexivity and symmetry axioms of C(x, y) are kept unchanged

```
Forall ?X ( RCCConnected(?X ?X) )
Forall ?X ?Y (
   RCCConnected(?Y ?X) :- RCCConnected(?X ?Y)
)
```

- Datalog⁺ fragment of other axioms is exposed using first-order transformations
 - Split "iff" definitions into two rules expressing "if" and "only if" parts separately
 - Transform each "only if" rule into one or more Datalog+ rules
 - Take note of any "if" rules that cannot be expressed in Datalog⁺, and transform the remaining ones into Datalog⁺

Identifying Datalog⁺ Fragment of RCC – Example

Split defining axiom of TangentialProperPartOf into three rules:

$$\mathsf{TPP}(x,y) \equiv_{\mathsf{def}} \mathsf{PP}(x,y) \land \exists z [\mathsf{EC}(z,x) \land \mathsf{EC}(z,y)]$$

$$\equiv (\mathsf{TPP}(x,y) \to \mathsf{PP}(x,y) \land \exists z [\mathsf{EC}(z,x) \land \mathsf{EC}(z,y)]) \land (\mathsf{PP}(x,y) \land \exists z [\mathsf{EC}(z,x) \land \mathsf{EC}(z,y)] \to \mathsf{TPP}(x,y))$$

$$\equiv (\mathsf{TPP}(x,y) \to \mathsf{PP}(x,y)) \land (\mathsf{TPP}(x,y) \to \exists z [\mathsf{EC}(z,x) \land \mathsf{EC}(z,y)]) \land (\forall z (\mathsf{PP}(x,y) \land \mathsf{EC}(z,x) \land \mathsf{EC}(z,y) \to \mathsf{TPP}(x,y)))$$

Identifying Datalog⁺ Fragment of RCC – Example

Identify Datalog⁺ fragment of defining axiom of ProperPartOf:

$$\begin{array}{l} \mathsf{PP}(x,y) \equiv_{\mathsf{def}} \mathsf{P}(x,y) \land \neg \mathsf{P}(y,x) \\ \equiv & (\mathsf{PP}(x,y) \to \mathsf{P}(x,y) \land \neg \mathsf{P}(y,x)) \\ & \land (\mathsf{P}(x,y) \land \neg \mathsf{P}(y,x) \to \mathsf{PP}(x,y)) \\ \equiv & (\mathsf{PP}(x,y) \to \mathsf{P}(x,y)) \land (\mathsf{PP}(x,y) \to \neg \mathsf{P}(y,x)) \\ & \land (\mathsf{P}(x,y) \land \neg \mathsf{P}(y,x) \to \mathsf{PP}(x,y)) \\ \equiv & (\mathsf{PP}(x,y) \to \mathsf{P}(x,y)) \land (\mathsf{PP}(x,y) \land \mathsf{P}(y,x) \to \bot) \\ & \land (\mathsf{P}(x,y) \land \neg \mathsf{P}(y,x) \to \mathsf{PP}(x,y)) \end{array}$$

The first two conjuncts, which are within Datalog⁺ expressivity, are included in GeospatialRules as two rules. These rules express the "only if" part of the axiom. Note that the third conjunct is omitted since it is beyond Datalog⁺ expressivity.

Additional Rules

- Compensate for a portion of information that is lost when the Datalog⁺ fragment was identified
- Subsumptions between RCC relations, e.g.

```
Forall ?X ?Y (
   RCCConnected(?X ?Y) :- RCCOverlapped(?X ?Y)
)
```

Rules from the RCC8 composition table, e.g.

```
Forall ?X ?Y ?Z (
   RCCNonTangentialProperPartOf(?X ?Z) :-
   And(RCCPartOf(?X ?Y)
        RCCNonTangentialProperPartOf(?Y ?Z))
)
```

Facts

 Describe geospatial relationships among regions in North America, as well as the Pacific and the Atlantic oceans

```
RCCProperPartOf (USA NorthAmerica)
Ocean (Pacific)
Ocean (Atlantic)
State (California)
RCCProperPartOf (California USA)
RCCExternallyConnected (Pacific USA)
RCCExternallyConnected (Pacific California)
State (Virginia)
RCCProperPartOf (Virginia USA)
RCCExternallyConnected (Atlantic USA)
RCCExternallyConnected (Atlantic Virginia)
```

Sample Query

English Query: "Which states [in the rulebase] are tangential proper parts of the USA?"

```
GeospatialRules Query:
   And(State(?St) RCCTangentialProperPartOf(?St USA))
Answer: ?St=California, ?St=Virginia
Rule applied:
Forall ?X ?Y ?Z (
   RCCTangentialProperPartOf(?X ?Y) :-
   And(RCCProperPartOf(?X ?Y)
        RCCExternallyConnected(?Z ?X)
   RCCExternallyConnected(?Z ?Y))
)
```

RuleML/XML Version of GeospatialRules

 GeospatialRules rulebase (42 rules, 11 facts, 3 queries) available online

```
http://deliberation.ruleml.org/1.01/exa/
RulebaseCompetition2014/GeospatialRulesRCC.ruleml
```

 Can be validated against Deliberation RuleML 1.01 Relax NG schema (Relaxed Serialization for Datalog⁺)

```
http://deliberation.ruleml.org/1.01/relaxng/datalogplus_min_relaxed.rnc
```

 Can be normalized and validated against Deliberation RuleML 1.01 XSD schema for Datalog⁺

```
http://deliberation.ruleml.org/1.01/xsd/datalogplus_min_normal.xsd
```

 Mathematical English definitions of each RCC relation are included as comments

- Background
- 2 Development of GeospatialRules
- Conclusion and Future Work

Conclusion

- We developed a Datalog⁺ rulebase, GeospatialRules, which can be used in geospatial applications for reasoning with RCC relations (e.g., in RCC8)
- GeospatialRules consists of rules, facts, and queries
- Subsumptions between RCC relations are preserved in GeospatialRules
- An XML version of GeospatialRules complying to the Deliberation RuleML 1.01 standard is provided
- Demo available online http://wiki.ruleml.org/index.php/ GeospatialRules_Demo

Future Work

- Create new GeospatialRules versions for graph queries
 - Represent regions by globally unique object identifiers
 - Use graph versions of binary RCC relations as slot names
 - Express transformation from relational to graph version of RCC as rules in PSOA RuleML
 - Create new versions of GeospatialRules
 - Mediator-style: Extend rulebase with transformation rules from relational to graph schema
 - Warehouse-style: Convert rulebase into a pure graph version using transformation rules
- Compare GeospatialRules versions using PSOA RuleML implementation based on PSOA2Prolog
 - Mediator-Warehouse trade-off
 - Readability assessment (collaboration with geospatial experts)
 - Efficiency exploration (translation and execution times, memory requirements)