

MA1014 CALCULUS AND ANALYSIS TUTORIAL 13

Dr. Andrew Tonks: apt12@le.ac.uk

Ben Smith: bjs30@le.ac.uk

LOCAL EXTREMA

- If $f(c) \le f(x) \ \forall x$ in the neighbourhood of c, this is called a **local minimum**.
- If $f(c) \ge f(x) \ \forall x$ in the neighbourhood of c, this is called a **local maximum**.
- <u>Critical point</u>: A point where f'(x) = 0 i.e. the tangent line is horizontal/constant or f'(x) does not exist.

GLOBAL EXTREMA

- If $f(c) \le f(x) \ \forall x \in \text{dom}(f)$ this is called the **global minimum**
- If $f(c) \ge f(x) \ \forall x \in \text{dom}(f)$ this is called the **global maximum**
- If at (c, f(c)) the concavity changes, then this is called an **Inflection point**.

Suppose f'(c) = 0 and f''(c) exists.

- i. If f''(c) < 0 then f has a local maximum at c
- ii. If f''(c) > 0 then f has a local minimum at c
- iii. If f''(c) = 0 then f has an inflection point at c

EXAMPLE

Find and classify the critical points of $f(x) = -3x^5 + 5x^3$.

EXERCISE

Find and classify the critical points of

$$f(x) = -\frac{(x+2)^2(x-4)^2}{8}$$
. Find all points of inflection, and, hence, sketch a graph of $f(x)$.

EXERCISE

The deflection D of a beam of length L is

 $D = 2x^4 - 5Lx^3 + 3L^2x^2$, where x is the distance from one end of the beam. Find the value of x that yields the maximum deflection.

EXERCISE

A small aircraft starts its descent from an altitude of 1km, 4km west of the runway.

- a) Find the cubic polynomial $f(x) = ax^3 + bx^2 + cx + d$ where $x \in [-4,0]$ that describes the smooth glide path for the landing.
- b) The function f(x) models the glide path of the plane. When would the plane be descending at the greatest rate.
- c) If $x(t) = -4 + t^2$: $t \in [0,2]$, calculate f(t) and hence determine the velocity of the plane. When does it travel at its fastest?

$$rac{d}{dx}\int_a^x f(t)\,dt = f(x)$$

$$\int_a^b \! f(x) dx = F(b) \! - \! F(a)$$

$$m\frac{d^2x}{dt^2} = -kx$$

$$\int \frac{dx}{1+x^2} = \tan^{-1}(x) + C$$

