Exam 2

Aleksandr Efremov

September 2023

1 Problem 1

Estimate the following to two decimal places (show work).

a. $\sin(\pi + 1/100)$

$$\sin(\pi + 1/100) \approx \frac{\cos \pi}{100} + \sin \pi = -\frac{1}{100} + 0 = -0.01$$

b. $\sqrt{101}$

$$\sqrt{101} \approx \frac{1}{2\sqrt{100}} \cdot 1 + \sqrt{100} = \frac{201}{20} = 10.05$$

2 Problem 2

Sketch the graph of $y = \frac{4}{x} + x + 1$ on $-\infty < x < \infty$ and label all critical points and infection points with their coordinates on the graph along with the letter "C" or "I"

Skipped.

3 Problem 3

An architect plans to build a triangular enclosure with a fence on two sides and a wall on the third side. Each of the fence segments has fixed Length L. What is the length x of the third side if the region enclosed has the largest possible area? Show work and include an argument to show that your answer really gives the maximum area.

The area A is given by the formula

$$A = \frac{x}{2}\sqrt{L^2 - \frac{x^2}{4}} = \frac{1}{4}\sqrt{4L^2x^2 - x^4}$$

We consider only $x \ge 0$. The constraint is that $L^2 - \frac{x^2}{4} \ge 0 \Rightarrow x \le 2L$. So if x = 0 or x = 2L, then A = 0. So the maximum area must be in between at critical point.

$$\frac{d}{dx} \left(\frac{1}{4} \sqrt{4L^2 x^2 - x^4} \right) = 0$$
$$\frac{2L^2 x - x^3}{\sqrt{L^2 x^2 - x^4}} = 0$$
$$x = \sqrt{2}L$$

4 Problem 4

A rocket has launched straight up, and its altitude is $h=10t^2$ feet after t seconds. You are on the ground 1000 feet from the launch site. The line of sight from you to the rocket makes an angle θ with the horizontal. By how many Radians per second is θ changing ten seconds after the launch?

We need to find $\frac{d\theta}{dt}$ where t is measured in seconds. We are given that $h=10t^2$, therefore $\frac{dh}{dt}$ after 10 seconds is 200. To find $\frac{d\theta}{dt}$ we implicitly differentiate the equation $\tan\theta=\frac{h}{1000}$ with respect to t.

$$\frac{d}{dt}\tan\theta = \frac{d}{dt}\frac{h}{1000}$$

$$\sec^2\theta \frac{d\theta}{dt} = \frac{dh/dt}{1000}$$

If t = 10, then h = 1000 and $\sec^2 \theta = \tan^2 \theta + 1 = \frac{1000}{1000} + 1 = 2$. Then,

$$2\frac{d\theta}{dt} = \frac{200}{1000} \Rightarrow \frac{d\theta}{dt} = \frac{1}{10}$$

5 Problem 5

- a. Evaluate the following indefinite integrals.
- i. $\int \cos(3x)dx$

$$u = 3x;$$
 $du = 3dx$ \Rightarrow $\frac{1}{3} \int \cos(u) du = \frac{1}{3} \sin 3x + C$

ii. $\int xe^{x^2}dx$

$$u=x^2;\quad du=2xdx\quad\Rightarrow\quad \frac{1}{2}\int e^udu=\frac{1}{2}e^{x^2}+C$$

b. Find y(x) such that $y' = \frac{1}{y^3}$ and y(0) = 1.

$$\frac{dy}{dx} = \frac{1}{y^3}$$

$$y^3 dy = dx$$

Taking the integral of both sides

$$\int y^3 dy = \int dx$$

$$\frac{y^4}{4} + C = x + C$$

$$y = (4x + C)^{1/4}$$

$$y(0) = 1 \Rightarrow (4 \cdot 0 + C)^{1/4} = 1 \Rightarrow C = 1$$

$$y = (4x + 1)^{1/4}$$

6 Problem 6

Suppose that $f'(x) = e^{(x^2)}$, and f(0) = 10. One can conclude from the mean value theorem that

$$A < f(1) < B$$

for which numbers A and B?

The mean value theorem says

$$\frac{f(1) - f(0)}{1 - 0} = f'(c), \text{ for some } c \text{ s.t. } 0 < c < 1$$

Then $f(1) = e^{(c^2)} + 10$. If 0 < c < 1, then 1 < f'(c) < e. Hence,

$$11 < f(1) < 10 + e$$