SMALL ULTRAFILTER NUMBER AND SOME COMPACTNESS PRINCIPLES

ŠÁRKA STEJSKALOVÁ

The ultrafilter number $\mathfrak{u}(\kappa)$ is one of the generalized cardinal invariants which study the combinatorial properties of the spaces κ^{κ} or 2^{κ} for topological, purely combinatorial, or forcing-related reasons. Since the tree property and the failure of approachability at κ^{++} both imply $2^{\kappa} > \kappa^{+}$, they make the structure of the generalized cardinal invariants at κ possibly non-trivial. It is natural to ask to what extent the invariants can be manipulated while ensuring some form of compactness, such as the tree property or stationary reflection, at κ^{++} .

In the talk, we will focus on small $\mathfrak{u}(\kappa)$ for κ which is a strong limit singular cardinal. The possibility of having κ singular is even more interesting from the point of compactness at κ^{++} : it combines three intriguing properties – the necessary failure of SCH at κ , compactness at κ^{++} and non-trivial cardinal invariants at κ .

Department of Logic, Charles University / Institute of Mathematics, Czech Academy of Sciences; Prague

 $Email\ address: {\tt sarka.stejskalova@ff.cuni.cz}$

 URL : logika.ff.cuni.cz/sarka