(1)
$$f(-1) = 3 \cdot (-1) + 1$$

= $-3 + 1 = -2$

(2)
$$f(-a) = 3 \cdot (-a) + 1$$

= $-3a + 1$

(3)
$$f(a+1) = 3(a+1) + 1$$

= $3a + 3 + 1 = 3a + 4$

問2

(1)
$$x=0$$
 のとき , $y=-1$ $x=1$ のとき , $y=1$

 $-1 \leqq y \leqq 1$

(
$$2$$
) $x=1$ ගෙප් , $y=-1$ $x=2$ ගෙප් , $y=-4$

 $-4 < y \leq -1$

問3

(1) この関数のグラフは , $y=2x^2$ のグラフを y 軸方向 に 1 平行移動したものである .

軸 x=0

(2) この関数のグラフは , $y=-2x^2$ のグラフを x 軸方向に 1 平行移動したものである .

軸
$$x=1$$
 頂点 $(1, 0)$

(3) この関数のグラフは , $y=-x^2$ のグラフを x 軸方向 に 2 , y 軸方向に -1 平行移動したものである .

軸
$$x=2$$

(4) この関数のグラフは , $y=3x^2$ のグラフを x 軸方向 に -1 , y 軸方向に 2 平行移動したものである .

$$= -1$$

求める放物線の方程式は

$$y-3=-2\{x-(-1)\}^2$$

すなわち , $y=-2(x+1)^2+3$

問 5

(1)
$$y = (x-2)^2 - 4 + 5$$

= $(x-2)^2 + 1$

よって,標準形は, $y=(x-2)^2+1$ この関数のグラフは, $y=x^2$ のグラフを x 軸方向に 2,y 軸方向に 1 平行移動したものである.

軸 x=2

頂点 (2, 1)

(2)
$$y = -(x^{2} + 6x) - 7$$
$$= -\{(x+3)^{2} - 9\} - 7$$
$$= -(x+3)^{2} + 9 - 7$$
$$= -(x+3)^{2} + 2$$

よって , 標準形は , $y=-(x+3)^2+2$ この関数のグラフは , $y=-x^2$ のグラフを x 軸方向に -3 , y 軸方向に 2 平行移動したものである .

軸 x=-3

頂点 (-3, 2)

(3)
$$y = 4(x^{2} + x)$$
$$= 4\left\{\left(x + \frac{1}{2}\right)^{2} - \frac{1}{4}\right\}$$
$$= 4\left(x + \frac{1}{2}\right)^{2} - 4 \cdot \frac{1}{4}$$
$$= 4\left(x + \frac{1}{2}\right)^{2} - 1$$

よって,標準形は, $y=4\left(x+rac{1}{2}
ight)^2-1$

この関数のグラフは , $y=4x^2$ のグラフを x 軸方向に $-\frac{1}{2}$, y 軸方向に -1 平行移動したものである .

軸
$$x=-rac{1}{2}$$

頂点
$$\left(-\frac{1}{2}, -1\right)$$

$$(4) y = -3(x^2 - 3x) - 6$$

$$= -3\left(\left(x - \frac{3}{2}\right)^2 - \frac{9}{4}\right) - 6$$

$$= -3\left(x - \frac{3}{2}\right)^2 + 3 \cdot \frac{9}{4} - 6$$

$$= -3\left(x - \frac{3}{2}\right)^2 + 274 - 6$$

$$= -3\left(x - \frac{3}{2}\right)^2 + \frac{3}{4}$$

よって,標準形は, $y=-3\left(x-\frac{3}{2}\right)^2+\frac{3}{4}$ この関数のグラフは, $y=-3x^2$ のグラフを x 軸方向に $\frac{3}{2}$,y 軸方向に $\frac{3}{4}$ 平行移動したものである.

軸
$$x=rac{3}{2}$$

頂点
$$\left(\frac{3}{2}, \frac{3}{4}\right)$$

(1) 頂点の座標が(1, 2) であるから,求める放物線の方 程式は $y = a(x-1)^2 + 2$ とおくことができる.この放 物線が,原点(0,0)を通るから

$$0=a(0-1)^2+2$$
 $0=a+2$ よって, $a=-2$ したがって,求める放物線の方程式は $y=-2(x-1)^2+2$

(2) 軸が x=1 であるから, 求める放物線の方程式は $y = a(x-1)^2 + q$ とおくことができる.この放物線が, 2点(0, 1),(3, 7)を通るから

$$\begin{cases} 1 = a(0-1)^2 + q \\ 7 = a(3-1)^2 + q \end{cases}$$

整理すると

$$\begin{cases} a+q=1\\ 4a+q=7 \end{cases}$$

これを解いて, a = 2, q = -1

したがって, 求める放物線の方程式は

$$y = 2(x-1)^2 - 1$$

(3) 頂点がy 軸上にあるので,求める放物線の方程式は $y = ax^2 + q$ とおくことができる.この放物線が,2 点 (1, 0), (2, -3) を通るから

$$\begin{cases} 0 = a \cdot 1^2 + q \\ -3 = a \cdot 2^2 + q \end{cases}$$

整理すると

$$\begin{cases} a+q=0\\ 4a+q=-3 \end{cases}$$

これを解いて,a = -1,q = 1

したがって, 求める放物線の方程式は

$$y = -x^2 + 1$$

問7

(1) 求める放物線の方程式を $y = ax^2 + bx + c$ とおく.こ の放物線が、この放物線が3点(-1,7),(0,1),(1,-1)

1) を通るから

$$\begin{cases} 7 = a - b + c \\ 1 = c \\ -1 = a + b + c \end{cases}$$

これを解いて,a=2,b=-4,c=1

したがって, 求める放物線の方程式は

$$y = 2x^2 - 4x + 1$$

標準形に変形すると

$$y = 2(x^{2} - 2x) + 1$$

$$= 2\{(x - 1)^{2} - 1\} + 1$$

$$= 2(x - 1)^{2} - 2 + 1$$

$$= 2(x - 1)^{2} - 1$$

x = 1

頂点 (1, -1)

(2) 求める放物線の方程式を $y = ax^2 + bx + c$ とおく.こ の放物線が,この放物線が3点(1,0),(-2,0),(0,2) を通るから

$$\begin{cases}
0 = a + b + c \\
0 = 4a - 2b + c \\
2 = c
\end{cases}$$

これを解いて, a = -1, b = -1, c = 2

したがって, 求める放物線の方程式は

$$y = -x^2 - x + 2$$

標準形に変形すると

$$y = -(x^{2} + x) + 2$$

$$= -\left\{\left(x + \frac{1}{2}\right)^{2} - \frac{1}{4}\right\} + 2$$

$$= -\left(x + \frac{1}{2}\right)^{2} + \frac{1}{4} + 2$$

$$= -\left(x + \frac{1}{2}\right)^{2} + \frac{9}{4}$$

$$\mathbf{m} \qquad \mathbf{x} = -\frac{1}{2}$$

[別解]

二次方程式の解とグラフの関係から,求める放物線 の方程式を,y = a(x-1)(x+2) とおくことができる. この放物線が点(0,2)を通るから

$$2 = a(0-1)(0+2)$$

 $2 = -2a$, よって, $a = -1$

したがって, 求める放物線の方程式は

$$y=-(x-1)(x+2)$$
展開すると, $y=-x^2-x+2$

(1) 標準形に変形すると

$$y = -(x^{2} - 4x) - 3$$

$$= -\{(x - 2)^{2} - 2^{2}\} - 3$$

$$= -(x - 2)^{2} + 4 - 3$$

$$= -(x - 2)^{2} + 1$$

よって

最大値
$$1$$
 $(x=2$ のとき)

最小値 なし

(2) 標準形に変形すると

$$y = 10\left(x^{2} - \frac{1}{2}x\right) - 1$$

$$= 10\left\{\left(x - \frac{1}{4}\right)^{2} - \left(\frac{1}{4}\right)^{2}\right\} - 1$$

$$= 10\left(x - \frac{1}{4}\right)^{2} - \frac{5}{8} - 1$$

$$= 10\left(x - \frac{1}{4}\right)^{2} - \frac{13}{8}$$

よって

最小値
$$-rac{13}{8}$$
 $\left(x=-rac{1}{4}$ のとき $ight)$

問9

(1) 標準形に変形すると

$$y = (x-2)^2 - 2^2 + 3$$
$$= (x-2)^2 - 1$$

また

$$x=0$$
 のとき , $y=3$ $x=3$ のとき , $y=0$

よって

最大値
$$3 (x = 0 \text{ obs})$$

最小値 -1 (x=2 のとき)

(2) 標準形に変形すると

$$y = -(x^{2} - 2x) + 1$$

$$= -\{(x - 1)^{2} - 1^{2}\} + 1$$

$$= -(x - 1)^{2} + 1 + 1$$

$$= -(x - 1)^{2} + 2$$

また

$$x=-3$$
 のとき , $y=-14$ $x=0$ のとき , $y=1$

よって

最大値
$$1 (x = 0 \text{ obs})$$

最小値 -14 (x=-3 のとき)

横の長さは

$$\dfrac{20-2x}{2}=10-x$$
 $x>0,\;10-x>0$ より,定義域は, $0< x<10$ 長方形の面積を S とすると

$$S = x(10 - x)$$

$$= -x^{2} + 10x$$

$$= -(x^{2} - 10x)$$

$$= -\{(x - 5)^{2} - 5^{2}\}$$

$$= -(x - 5)^{2} + 25$$

また

$$x=0$$
 のとき , $y=0$ $x=10$ のとき , $y=0$

よって, x=5 のとき, S は最大値 $25\,\mathrm{(m^2)}$ をとる.

問 11

(1)
$$9x^2-6x+1=0$$
 の判別式を D とすると
$$\frac{D}{4}=(-3)^2-9\cdot 1$$

$$=9-9=0$$

よって,グラフはx軸と接する.

接点の x 座標は $,9x^2-6x+1=0$ を解いて $(3x-1)^2 = 0$

$$x=rac{1}{3}$$

(2) $-2x^2 + 8x - 10 = 0$ の判別式を D とすると $\frac{D}{4} = 4^2 - (-2) \cdot (-10)$ =16-20=-4<0

よって、グラフとx軸との共有点はない、

(3)
$$x^2+x-1=0$$
 の判別式を D とすると
$$D=1^2-4\cdot 1\cdot (-1)$$

$$=1+4=5>0$$

よって,グラフはx軸と2点で交わる.

共有点の
$$x$$
座標は $,x^2+x-1=0$ を解いて $x=rac{-1\pm\sqrt{5}}{2\cdot 1}$ $=rac{-1\pm\sqrt{5}}{2}$ $x=rac{-1\pm\sqrt{5}}{2}$

[問 12]

(1)
$$x^2+2x+k=0$$
 の判別式を D とすると $\frac{D}{4}=1^2-1\cdot k$ $=1-k$

放物線のグラフが x 軸と 2 点で交わるのは , D>0のときだから

$$1 - k > 0$$
$$-k > -1$$
$$k < 1$$

(2)
$$6x^2-2kx+5=0$$
 の判別式を D とすると
$$\frac{D}{4}=(-k)^2-6\cdot 5$$

$$=k^2-30$$

放物線のグラフがx軸に接するのは,D=0のとき だから

$$k^2 - 30 = 0$$
$$k^2 = 30$$
$$k = \pm \sqrt{30}$$

(3)
$$2x^2 + 3x + k = 0$$
 の判別式を D とすると $D = 3^2 - 4 \cdot 2 \cdot k$ $= 9 - 8k$

放物線のグラフがx軸と共有点をもたないのは, D < 0 のときだから

$$9 - 8k < 0$$
$$-8k < -9$$
$$k > \frac{9}{8}$$

問 13

(1)
$$x^2+2x-3=0$$
 の判別式を D とすると
$$\frac{D}{4}=1^2-1\cdot(-3)$$

$$=1+3=4>0$$
 $x^2+2x-3=0$ を解くと

$$(x+3)(x-1) = 0$$

 $x = -3, 1$

$$y=x^2+2x-3$$
 のグラフより, $x^2+2x-3 \ge 0$ の解は $x \le -3, \ 1 \le x$

(2) 両辺に
$$-1$$
をかけて, $x^2-6x+9>0$
$$x^2-6x+9=0$$
の判別式を D とすると
$$\frac{D}{4}=(-3)^2-1\cdot 9$$

$$=9-9=0$$

$$x^2 - 6x + 9 = 0$$
 を解くと

$$(x-3)^2 = 0$$

$$x = 3 \; (2 \; \mathbf{重解})$$

$$y=x^2-6x+9$$
 のグラフより, $x^2-6x+9>0$ の解は $x
eq 3$

(
$$3$$
) $x^2-6x+7=0$ の判別式を D とすると
$$\frac{D}{4}=(-3)^2-1\cdot 7$$

$$=9-7=2>0$$

$$x^2-6x+7=0$$
 を解くと
$$x=\frac{-(-3)\pm\sqrt{2}}{1}$$

$$=3\pm\sqrt{2}$$

$$y=x^2-6x+7$$
 のグラフより, $x^2-6x+7\leq 0$ の解は $3-\sqrt{2}\leq x\leq 3+\sqrt{2}$

(4)
$$2x^2+x+1=0$$
 の判別式を D とすると
$$D=1^2-2\cdot 1$$

$$=1-2=-1<0$$

よって, $y=2x^2+x+1$ のグラフは,x 軸と共有点をもたず,つねに y>0 である.したがって, $2x^2+x+1>0$ を満たす x はすべての実数である.