Prof. Dr. Andreas Maletti, Dr. Erik Paul, Fabian Sauer, Dr. habil. Karin Quaas

Aufgaben zur Lehrveranstaltung

Berechenbarkeit

Serie 1

- ▶ Die Übungsaufgaben werden in den Übungen ab dem 15.4.2024 besprochen.
- ▶ Abgabeschluss für Hausaufgaben: 28.4.2024 um 22:00 Uhr im Moodle-Kurs.
- ▶ Sie können gern in 2er-Gruppen abgeben. Bitte schreiben Sie dazu die Namen und Matrikelnummern beider Personen auf das Blatt und reichen Sie Ihre Lösungen über einen Account ein.

Übungsaufgabe 1.1 (Abzählbare Mengen)

Beweisen Sie, dass die Menge $M = \{f \mid f : \mathbb{N} \to \mathbb{N}\}$ nicht abzählbar ist.

Übungsaufgabe 1.2 (Intuitive Berechenbarkeit)

Sei $\Sigma = \{a, b\}$ ein endliches Alphabet, und $\mathbb N$ bezeichne (wie immer) die natürlichen Zahlen. Sind die folgenden partiellen Funktionen $f_i : \mathbb N^* \dashrightarrow \mathbb N^*$ intuitiv berechenbar? Begründen Sie kurz Ihre Antwort.

(a)
$$f_1(w) = \begin{cases} w \cdot w & \text{falls } w \text{ kein Palindrom ist,} \\ w & \text{sonst.} \end{cases}$$

(b)
$$f_2(w) = \begin{cases} 1 & \text{falls } w \text{ eine kontextfreie Grammatik ""uber Σ enkodiert,} \\ 0 & \text{sonst.} \end{cases}$$

(c)
$$f_3(w) = \begin{cases} 1 & \text{falls } w \text{ eine Grammatik } G \text{ ""uber } \Sigma \text{ enkodiert sodass } L(G) \text{ regul"ar ist,} \\ 0 & \text{sonst.} \end{cases}$$

(d)
$$f_4(w) = \begin{cases} 1 & \text{falls es eine linkslineare Grammatik G gibt sodass} \\ L(G) & \text{die Menge der Palindrome "über Σ ist,} \\ 0 & \text{sonst.} \end{cases}$$

Übungsaufgabe 1.3 (Turingmaschinen)

Gegeben sei die Turingmaschine $M=(Q,\Sigma,\Gamma,\Delta,\Box,q_0,q_+,q_-)$, wobei

•
$$Q = \{q_0, q_1, q_2, q_+, q_-\}, \Sigma = \{0, 1\}, \Gamma = \{0, 1, \square\}, \text{ und }$$

ullet Δ ist die Vereinigung der folgenden Mengen von Transitionen

$$- \{(q_0, 1) \to (q_1, 1, \triangleright)\},$$

$$- \{(q_1, \gamma) \to (q_2, \gamma, \triangleright) \mid \gamma \in \Gamma\},$$

$$- \{(q_2, \gamma) \to (q_+, \gamma, \triangleleft) \mid \gamma \in \Gamma\},$$

$$- \{(q_0, \gamma) \to (q_-, 1, \diamond) \mid \gamma \in \Gamma \setminus \{1\}\}.$$

- (a) Geben Sie für jedes der Wörter ε , 1, 110, 1101 und 011 alle möglichen Ableitungsschritte der Turingmaschine beginnend von der Ausgangssituation an.
- (b) Welches der obenstehenden Wörter wird von M akzeptiert?
- (c) Geben Sie die von M akzeptierte Sprache L(M) an.
- (d) Ändert sich L(M) falls wir die Transition $(q_0, 1) \rightarrow (q_-, 1, \diamond)$ zu Δ hinzufügen?

(3)

(8)

(9)

Hausaufgabe 1.4 (Abzählbare Mengen)

Beweisen Sie, dass die Menge $M = \{A \mid A \subseteq \mathbb{N}\}$ nicht abzählbar ist.

Hausaufgabe 1.5 (Intuitive Berechenbarkeit)

Sei $\Sigma = \{0,1\}$ ein endliches Alphabet. Sind die folgenden partiellen Funktionen $f_i: \Sigma^* \dashrightarrow \Sigma^*$ intuitiv berechenbar? Begründen Sie kurz Ihre Antwort.

(a)
$$f_1(w) = \begin{cases} 1 & \text{falls } w = \text{bin}(n) \text{ für eine natürliche Zahl } n \text{ ist } \\ 0 & \text{sonst.} \end{cases}$$

(b)
$$f_2(w) = \begin{cases} 1 & \text{falls } w \text{ ein Präfix von } w^r \text{ ist (wobei } w^r \text{ hier das Wort} \\ & \text{bezeichnet, das man erhält, wenn man } w \text{ rückwärts liest)} \\ 0 & \text{sonst.} \end{cases}$$

(c)
$$f_3(w) = \bot$$

(d)
$$f_4(w) = \begin{cases} 1 & \text{falls Sie die Berechenbarkeitsklausur bestehen werden,} \\ 0 & \text{sonst.} \end{cases}$$

Hausaufgabe 1.6 (Turingmaschinen)

Gegeben sei die Turingmaschine $M = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$, wobei

•
$$Q = \{q_0, q_1, q_2, q_+, q_-\}, \Sigma = \{0, 1\}, \Gamma = \{0, 1, \square\}, \text{ und }$$

• Δ ist die Vereinigung der folgenden Mengen von Transitionen

- {
$$(q_0,1) \rightarrow (q_1,1,\triangleright)$$
},
- { $(q_0,0) \rightarrow (q_2,1,\triangleright)$ },

Seite 2 von 3

-
$$\{(q_1, \gamma) \to (q_1, \gamma, \triangleright) \mid \gamma \in \{0, 1\}\},$$

- $\{(q_1, 1) \to (q_+, 1, \diamond)\},$
- $\{(q_1, \square) \to (q_-, \square, \triangleleft)\},$
- $\{(q_2, 1) \to (q_1, 1, \triangleright)\},$
- $\{(q_2, \gamma) \to (q_2, \gamma, \triangleright) \mid \gamma \in \{0, 1\}\}.$

- (a) Geben Sie für jedes der Wörter ε , 11 und 01 alle möglichen Ableitungsschritte der Turingmaschine beginnend von der Ausgangssituation an. (5)
- (b) Welches der Wörter wird von M akzeptiert? (3)
- (c) Geben Sie die von M akzeptierte Sprache L(M) an. (1)