$11a_6 \ (K11a_6)$

Ideals for irreducible components 2 of X_{par}

$$\begin{split} I_1^u &= \langle -u^3 + b - u, \ -u^{13} - u^{12} - 4u^{11} - 3u^{10} - 7u^9 - 5u^8 - 6u^7 - 4u^6 - 2u^5 - 2u^4 - 2u^3 - u^2 + a - 2u - 1, \\ & u^{17} + u^{16} + \dots + u + 1 \rangle \\ I_2^u &= \langle -u^{53} - 2u^{52} + \dots + b - 1, \ -u^{52} - 2u^{51} + \dots + a - 3, \ u^{54} + 2u^{53} + \dots + u + 1 \rangle \\ I_3^u &= \langle b + u + 1, \ a + 1, \ u^2 + u + 1 \rangle \\ I_4^u &= \langle b - u, \ a - u - 1, \ u^2 + u + 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 75 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -u^3 + b - u, -u^{13} - u^{12} + \dots + a - 1, u^{17} + u^{16} + \dots + u + 1 \rangle$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{13} + u^{12} + \dots + 2u + 1 \\ u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{16} - u^{15} + \dots - u + 1 \\ -u^{6} - 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ u^{3} + u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{13} + u^{12} + \dots + 2u + 1 \\ -u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{16} - u^{15} + \dots - u^{3} + 1 \\ -u^{8} - 2u^{6} - 2u^{4} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{8} + u^{6} + u^{4} + 1 \\ u^{8} + 2u^{6} + 2u^{4} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{8} + u^{6} + u^{4} + 1 \\ u^{8} + 2u^{6} + 2u^{4} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-4u^{16} - 6u^{15} - 18u^{14} - 22u^{13} - 40u^{12} - 46u^{11} - 56u^{10} - 54u^9 - 54u^8 - 44u^7 - 44u^6 - 28u^5 - 26u^4 - 22u^3 - 12u^2 - 10u - 8$$

Crossings	u-Polynomials at each crossing
c_1, c_4, c_6 c_{10}	$u^{17} + u^{16} + \dots + u + 1$
c_2, c_{11}	$u^{17} + 9u^{16} + \dots - 3u - 1$
c_3, c_8	$u^{17} - 5u^{16} + \dots - 8u + 4$
c_5, c_9	$u^{17} - u^{16} + \dots - u + 2$
c ₇	$u^{17} + 5u^{16} + \dots + 56u^2 + 16$

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_6 c_{10}	$y^{17} + 9y^{16} + \dots - 3y - 1$
c_2, c_{11}	$y^{17} + y^{16} + \dots + 5y - 1$
c_3,c_8	$y^{17} - 5y^{16} + \dots - 56y^2 - 16$
c_5, c_9	$y^{17} - 7y^{16} + \dots + y - 4$
c ₇	$y^{17} + 7y^{16} + \dots - 1792y - 256$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.364031 + 1.042940I		
a = -2.23442 + 1.04009I	-3.22508 + 4.12748I	-8.88917 - 5.53460I
b = -0.775626 + 0.323135I		
u = 0.364031 - 1.042940I		
a = -2.23442 - 1.04009I	-3.22508 - 4.12748I	-8.88917 + 5.53460I
b = -0.775626 - 0.323135I		
u = -0.783861 + 0.397949I		
a = -0.183240 - 0.678603I	2.83523 + 5.37992I	0.58832 - 3.10862I
b = -0.893091 + 1.068470I		
u = -0.783861 - 0.397949I		
a = -0.183240 + 0.678603I	2.83523 - 5.37992I	0.58832 + 3.10862I
b = -0.893091 - 1.068470I		
u = -0.228107 + 1.129710I		
a = 1.006760 + 0.533745I	-6.66052 + 0.33441I	-12.27972 + 0.14725I
b = 0.633379 - 0.135717I		
u = -0.228107 - 1.129710I		
a = 1.006760 - 0.533745I	-6.66052 - 0.33441I	-12.27972 - 0.14725I
b = 0.633379 + 0.135717I		
u = 0.701375 + 0.463501I		
a = 0.486517 - 0.757070I	3.82884 + 0.36538I	2.43059 - 2.03934I
b = 0.594363 + 1.047950I		
u = 0.701375 - 0.463501I		
a = 0.486517 + 0.757070I	3.82884 - 0.36538I	2.43059 + 2.03934I
b = 0.594363 - 1.047950I		
u = 0.572214 + 1.088100I		
a = -2.74846 - 1.45002I	0.06925 + 9.48553I	-4.16847 - 7.65622I
b = -1.27288 + 0.86865I		
u = 0.572214 - 1.088100I		
a = -2.74846 + 1.45002I	0.06925 - 9.48553I	-4.16847 + 7.65622I
b = -1.27288 - 0.86865I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.451021 + 1.148490I		
a = 2.21759 - 0.36414I	-8.03366 - 8.05681I	-11.19202 + 7.52466I
b = 1.241950 + 0.334481I		
u = -0.451021 - 1.148490I		
a = 2.21759 + 0.36414I	-8.03366 + 8.05681I	-11.19202 - 7.52466I
b = 1.241950 - 0.334481I		
u = -0.601205 + 1.123530I		
a = 2.35978 - 1.49796I	-1.4738 - 15.8440I	-5.36436 + 10.86165I
b = 1.45822 + 0.92357I		
u = -0.601205 - 1.123530I		
a = 2.35978 + 1.49796I	-1.4738 + 15.8440I	-5.36436 - 10.86165I
b = 1.45822 - 0.92357I		
u = 0.237306 + 0.655876I		
a = 0.689506 + 1.196060I	-0.38141 + 1.45461I	-4.03529 - 4.09951I
b = -0.055578 + 0.484541I		
u = 0.237306 - 0.655876I		
a = 0.689506 - 1.196060I	-0.38141 - 1.45461I	-4.03529 + 4.09951I
b = -0.055578 - 0.484541I		
u = -0.621462		
a = -0.188062	-1.88169	-4.17970
b = -0.861480		

$$II. \\ I_2^u = \langle -u^{53} - 2u^{52} + \dots + b - 1, \ -u^{52} - 2u^{51} + \dots + a - 3, \ u^{54} + 2u^{53} + \dots + u + 1 \rangle$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{52} + 2u^{51} + \dots + 3u + 3 \\ u^{53} + 2u^{52} + \dots + 3u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{52} + u^{51} + \dots + u + 3 \\ u^{53} + 2u^{52} + \dots + 2u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{53} + u^{52} + \dots + 3u + 4 \\ u^{53} + 4u^{52} + \dots + 4u + 3 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -2u^{53} - u^{52} + \dots + 4u + 3 \\ u^{53} + 4u^{52} + \dots + 3u + 3 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{8} + u^{6} + u^{4} + 1 \\ u^{8} + 2u^{6} + 2u^{4} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{8} + u^{6} + u^{4} + 1 \\ u^{8} + 2u^{6} + 2u^{4} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{8} + u^{6} + u^{4} + 1 \\ u^{8} + 2u^{6} + 2u^{4} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-5u^{53} 8u^{52} + \cdots 15u 5$

Crossings	u-Polynomials at each crossing
c_1, c_4, c_6 c_{10}	$u^{54} + 2u^{53} + \dots + u + 1$
c_2, c_{11}	$u^{54} + 24u^{53} + \dots + 5u + 1$
c_3,c_8	$(u^{27} + 2u^{26} + \dots + 3u + 2)^2$
c_5,c_9	$u^{54} - 2u^{53} + \dots - 145u + 17$
c ₇	$(u^{27} + 10u^{26} + \dots + 25u + 4)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_6 c_{10}	$y^{54} + 24y^{53} + \dots + 5y + 1$
c_2, c_{11}	$y^{54} + 12y^{53} + \dots + 53y + 1$
c_{3}, c_{8}	$(y^{27} - 10y^{26} + \dots + 25y - 4)^2$
c_5, c_9	$y^{54} + 38y^{52} + \dots - 4637y + 289$
C ₇	$(y^{27} + 14y^{26} + \dots - 95y - 16)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.349223 + 0.956682I		
a = -1.49999 - 0.14653I	-1.01872 - 3.73043I	-9.17515 + 3.57270I
b = -0.583952 - 1.234060I		
u = -0.349223 - 0.956682I		
a = -1.49999 + 0.14653I	-1.01872 + 3.73043I	-9.17515 - 3.57270I
b = -0.583952 + 1.234060I		
u = 0.748850 + 0.603065I		
a = 0.217497 + 0.802869I	1.90449 + 7.58447I	-1.82775 - 8.11380I
b = 1.22625 - 0.91458I		
u = 0.748850 - 0.603065I		
a = 0.217497 - 0.802869I	1.90449 - 7.58447I	-1.82775 + 8.11380I
b = 1.22625 + 0.91458I		
u = -0.239448 + 0.923216I		
a = 0.896353 + 0.856395I	-0.538859 + 1.164110I	-6.09920 - 3.89817I
b = -0.055765 + 1.171120I		
u = -0.239448 - 0.923216I		
a = 0.896353 - 0.856395I	-0.538859 - 1.164110I	-6.09920 + 3.89817I
b = -0.055765 - 1.171120I		
u = 0.227574 + 1.026590I		
a = -2.62355 - 1.10867I	-2.23363 - 2.56106I	-7.40701 + 2.25118I
b = -1.066100 - 0.705684I		
u = 0.227574 - 1.026590I		
a = -2.62355 + 1.10867I	-2.23363 + 2.56106I	-7.40701 - 2.25118I
b = -1.066100 + 0.705684I		
u = 0.622213 + 0.701611I		
a = -0.125307 + 0.872732I	-0.538859 + 1.164110I	-6.09920 - 3.89817I
b = 0.359087 + 0.295131I		
u = 0.622213 - 0.701611I		
a = -0.125307 - 0.872732I	-0.538859 - 1.164110I	-6.09920 + 3.89817I
b = 0.359087 - 0.295131I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.725685 + 0.567873I		
a = -0.020644 - 0.712194I	3.74831 + 2.63920I	1.74271 - 3.37289I
b = -0.639257 + 1.031450I		
u = 0.725685 - 0.567873I		
a = -0.020644 + 0.712194I	3.74831 - 2.63920I	1.74271 + 3.37289I
b = -0.639257 - 1.031450I		
u = 0.626309 + 0.880271I		
a = 0.459060 - 0.105789I	-1.01872 + 3.73043I	-9.17515 - 3.57270I
b = 0.567055 - 0.431109I		
u = 0.626309 - 0.880271I		
a = 0.459060 + 0.105789I	-1.01872 - 3.73043I	-9.17515 + 3.57270I
b = 0.567055 + 0.431109I		
u = 0.312561 + 0.860769I		
a = 1.090150 + 0.590870I	-0.36265 + 1.51655I	-2.55288 - 3.58996I
b = 0.301084 + 0.372364I		
u = 0.312561 - 0.860769I		
a = 1.090150 - 0.590870I	-0.36265 - 1.51655I	-2.55288 + 3.58996I
b = 0.301084 - 0.372364I		
u = -0.809979 + 0.388169I		
a = 0.387729 + 0.682238I	0.71725 + 10.56860I	-2.49476 - 7.09212I
b = 1.40169 - 0.91902I		
u = -0.809979 - 0.388169I		
a = 0.387729 - 0.682238I	0.71725 - 10.56860I	-2.49476 + 7.09212I
b = 1.40169 + 0.91902I		
u = -0.155842 + 1.113420I		
a = -1.28841 + 0.90918I	-2.12405 + 3.04478I	-5.96953 + 0.I
b = -0.921991 + 0.867194I		
u = -0.155842 - 1.113420I		
a = -1.28841 - 0.90918I	-2.12405 - 3.04478I	-5.96953 + 0.I
b = -0.921991 - 0.867194I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.708611 + 0.447215I		
a = 0.247473 - 0.847336I	3.74831 + 2.63920I	1.74271 - 3.37289I
b = 0.405789 + 1.281900I		
u = -0.708611 - 0.447215I		
a = 0.247473 + 0.847336I	3.74831 - 2.63920I	1.74271 + 3.37289I
b = 0.405789 - 1.281900I		
u = -0.151780 + 1.152760I		
a = 2.17540 - 0.88692I	-4.41486 + 8.03203I	0
b = 1.38571 - 0.79831I		
u = -0.151780 - 1.152760I		
a = 2.17540 + 0.88692I	-4.41486 - 8.03203I	0
b = 1.38571 + 0.79831I		
u = 0.511133 + 1.056250I		
a = -0.62752 - 1.87534I	-2.23363 + 2.56106I	0
b = -0.480147 - 0.104188I		
u = 0.511133 - 1.056250I		
a = -0.62752 + 1.87534I	-2.23363 - 2.56106I	0
b = -0.480147 + 0.104188I		
u = -0.751654 + 0.335841I		
a = 0.096897 + 0.981834I	-2.12405 + 3.04478I	-5.96953 - 2.28005I
b = 0.419969 - 0.185771I		
u = -0.751654 - 0.335841I		
a = 0.096897 - 0.981834I	-2.12405 - 3.04478I	-5.96953 + 2.28005I
b = 0.419969 + 0.185771I		
u = -0.664646 + 0.482177I		
a = -0.369465 + 1.094390I	2.43288 - 2.48370I	-0.17393 + 1.70527I
b = -1.04005 - 1.12862I		
u = -0.664646 - 0.482177I		
a = -0.369465 - 1.094390I	2.43288 + 2.48370I	-0.17393 - 1.70527I
b = -1.04005 + 1.12862I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.709728 + 0.409816I		
a = -0.797906 + 0.871398I	2.05766 - 4.56252I	-0.66909 + 3.14948I
b = -1.19348 - 0.92713I		
u = 0.709728 - 0.409816I		
a = -0.797906 - 0.871398I	2.05766 + 4.56252I	-0.66909 - 3.14948I
b = -1.19348 + 0.92713I		
u = 0.645440 + 0.992497I		
a = -0.430435 + 1.133340I	0.74861 - 2.30237I	0
b = 1.13054 + 0.89132I		
u = 0.645440 - 0.992497I		
a = -0.430435 - 1.133340I	0.74861 + 2.30237I	0
b = 1.13054 - 0.89132I		
u = 0.616080 + 1.011230I		
a = 1.033840 - 0.596746I	2.43288 + 2.48370I	0
b = -0.494676 - 1.009080I		
u = 0.616080 - 1.011230I		
a = 1.033840 + 0.596746I	2.43288 - 2.48370I	0
b = -0.494676 + 1.009080I		
u = -0.425486 + 1.115580I		
a = -1.66016 + 0.73542I	-4.91302 - 3.80494I	0
b = -1.086700 - 0.177414I		
u = -0.425486 - 1.115580I		
a = -1.66016 - 0.73542I	-4.91302 + 3.80494I	0
b = -1.086700 + 0.177414I		
u = -0.564050 + 1.052370I		
a = 0.555172 + 1.140900I	0.74861 - 2.30237I	0
b = -0.99305 + 1.25524I		
u = -0.564050 - 1.052370I		
a = 0.555172 - 1.140900I	0.74861 + 2.30237I	0
b = -0.99305 - 1.25524I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.578440 + 1.064250I		
a = 2.17032 + 0.76831I	2.05766 + 4.56252I	0
b = 0.709634 - 0.960278I		
u = 0.578440 - 1.064250I		
a = 2.17032 - 0.76831I	2.05766 - 4.56252I	0
b = 0.709634 + 0.960278I		
u = -0.387985 + 1.148030I		
a = 1.72235 - 1.44568I	-8.45612	0
b = 1.087670 - 0.153410I		
u = -0.387985 - 1.148030I		
a = 1.72235 + 1.44568I	-8.45612	0
b = 1.087670 + 0.153410I		
u = -0.578445 + 1.073080I		
a = -1.171830 - 0.616273I	1.90449 - 7.58447I	0
b = 0.35175 - 1.39829I		
u = -0.578445 - 1.073080I		
a = -1.171830 + 0.616273I	1.90449 + 7.58447I	0
b = 0.35175 + 1.39829I		
u = -0.567778 + 1.119960I		
a = 0.778236 - 1.171470I	-4.41486 - 8.03203I	0
b = 0.449802 + 0.299411I		
u = -0.567778 - 1.119960I		_
a = 0.778236 + 1.171470I	-4.41486 + 8.03203I	0
b = 0.449802 - 0.299411I		
u = -0.595230 + 1.111930I		
a = -2.04660 + 0.90398I	0.71725 - 10.56860I	0
b = -0.97525 - 1.09368I		
u = -0.595230 - 1.111930I	0.71705 10.50007	
a = -2.04660 - 0.90398I	0.71725 + 10.56860I	0
b = -0.97525 + 1.09368I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.721512 + 0.069386I		
a = 0.646399 - 0.423989I	-4.91302 + 3.80494I	-7.92053 - 4.08050I
b = 1.086050 - 0.333117I		
u = -0.721512 - 0.069386I		
a = 0.646399 + 0.423989I	-4.91302 - 3.80494I	-7.92053 + 4.08050I
b = 1.086050 + 0.333117I		
u = 0.347654 + 0.291444I		
a = 0.18494 + 1.84096I	-0.36265 + 1.51655I	-2.55288 - 3.58996I
b = -0.351655 + 0.475282I		
u = 0.347654 - 0.291444I		
a = 0.18494 - 1.84096I	-0.36265 - 1.51655I	-2.55288 + 3.58996I
b = -0.351655 - 0.475282I		

III.
$$I_3^u=\langle b+u+1,\ a+1,\ u^2+u+1\rangle$$

a) Arc colorings
$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -1 \\ -u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u - 2 \\ -u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -1 \\ -u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u + 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ u + 1 \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} 1 \\ u + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 8u + 4

Crossings	u-Polynomials at each crossing
$c_1, c_2, c_5 \\ c_6, c_9, c_{11}$	$u^2 + u + 1$
c_3, c_7, c_8	u^2
c_4, c_{10}	$u^2 - u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_5, c_6, c_9 c_{10}, c_{11}	$y^2 + y + 1$
c_3, c_7, c_8	y^2

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I		
a = -1.00000	-4.05977I	0. + 6.92820I
$\frac{b = -0.500000 - 0.866025I}{u = -0.500000 - 0.866025I}$		
a = -0.300000 - 0.8000231 $a = -1.00000$	4.059771	0 6.92820I
a = -1.00000 $b = -0.500000 + 0.866025I$	4.039777	0 0.928201

IV.
$$I_4^u = \langle b-u, \ a-u-1, \ u^2+u+1 \rangle$$

a₆ =
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u+1 \\ u+1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 2 \\ u+1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u+1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 2u+1 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u+1 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -3

Crossings	u-Polynomials at each crossing
$c_1, c_2, c_5 \\ c_6, c_9, c_{11}$	$u^2 + u + 1$
c_3, c_7, c_8	u^2
c_4, c_{10}	$u^2 - u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_5, c_6, c_9 c_{10}, c_{11}	$y^2 + y + 1$
c_3, c_7, c_8	y^2

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I		
a = 0.500000 + 0.866025I	0	-3.00000
b = -0.500000 + 0.866025I		
u = -0.500000 - 0.866025I		2 00000
a = 0.500000 - 0.866025I	0	-3.00000
b = -0.500000 - 0.866025I		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_6	$((u^2 + u + 1)^2)(u^{17} + u^{16} + \dots + u + 1)(u^{54} + 2u^{53} + \dots + u + 1)$
c_2, c_{11}	$((u^{2} + u + 1)^{2})(u^{17} + 9u^{16} + \dots - 3u - 1)(u^{54} + 24u^{53} + \dots + 5u + 1)$
c_3, c_8	$u^{4}(u^{17} - 5u^{16} + \dots - 8u + 4)(u^{27} + 2u^{26} + \dots + 3u + 2)^{2}$
c_4, c_{10}	$((u^{2} - u + 1)^{2})(u^{17} + u^{16} + \dots + u + 1)(u^{54} + 2u^{53} + \dots + u + 1)$
c_5,c_9	$((u^{2}+u+1)^{2})(u^{17}-u^{16}+\cdots-u+2)(u^{54}-2u^{53}+\cdots-145u+17)$
c_7	$u^4(u^{17} + 5u^{16} + \dots + 56u^2 + 16)(u^{27} + 10u^{26} + \dots + 25u + 4)^2$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_6 c_{10}	$((y^2 + y + 1)^2)(y^{17} + 9y^{16} + \dots - 3y - 1)(y^{54} + 24y^{53} + \dots + 5y + 1)$
c_2, c_{11}	$((y^2+y+1)^2)(y^{17}+y^{16}+\cdots+5y-1)(y^{54}+12y^{53}+\cdots+53y+1)$
c_3, c_8	$y^4(y^{17} - 5y^{16} + \dots - 56y^2 - 16)(y^{27} - 10y^{26} + \dots + 25y - 4)^2$
c_5, c_9	$((y^{2} + y + 1)^{2})(y^{17} - 7y^{16} + \dots + y - 4)$ $\cdot (y^{54} + 38y^{52} + \dots - 4637y + 289)$
c ₇	$y^4(y^{17} + 7y^{16} + \dots - 1792y - 256)(y^{27} + 14y^{26} + \dots - 95y - 16)^2$