

July 2014

Page 2 of 48

OWNERSHIP STATEMENT

This document, the data contained in it and copyright therein are owned by Bayer CropScience. No part of the document or any information contained therein may be disclosed to any thick party without the prior written authorisation of Bayer CropScience.

The summaries and evaluations contained in this document are based on unpublished proprietary data submitted for the purpose of the assessment undertaken by the regulatory authority. Other registration authorities should be a submitted for the purpose of the assessment undertaken by the regulatory authorities should be a submitted for the purpose of the assessment undertaken by the regulatory authorities should be a submitted for the purpose of the assessment undertaken by the regulatory authorities should be a submitted for the purpose of the assessment undertaken by the regulatory authorities should be a submitted for the purpose of the assessment undertaken by the regulatory authorities should be a submitted for the purpose of the assessment undertaken by the regulatory authorities about the submitted for the purpose of the assessment undertaken by the regulatory authorities about the submitted for the purpose of the assessment undertaken by the regulatory authorities about the submitted for the purpose of the assessment undertaken by the regulatory authorities about the submitted for the purpose of the assessment undertaken by the regulatory authorities about the submitted for the purpose of the assessment undertaken by the regulatory authorities about the submitted for the purpose of the assessment undertaken by the regulatory authorities about the submitted for the purpose of the submitted for the authority. Other registration authorities should not grant, amend, or renew a registration on the basis of the summaries and evaluation of unpublished proprietary data contained in the document unless they have not in the basis of the summaries and evaluation of unpublished proprietary data contained in the document unless they have not in the basis of the summaries and evaluation of unpublished proprietary data contained in the document unless they have not in the summaries and evaluation of unpublished proprietary data contained in the summaries and evaluation of unpublished proprietary data contained in the summaries and evaluation of unpublished proprietary data contained in the summaries and evaluation of unpublished proprietary data contained in the summaries and evaluation of unpublished proprietary data contained in the summaries and evaluation of unpublished proprietary data contained in the summaries and evaluation of unpublished proprietary data contained in the summaries and evaluation of unpublished proprietary data contained in the summaries and evaluation of unpublished proprietary data contained in the summaries and evaluation of unpublished proprietary data contained in the summaries and evaluation of unpublished proprietary data contained in the summaries and evaluation of unpublished proprietary data contained in the summaries and evaluation of unpublished proprietary data contained in the summaries and evaluation of unpublished proprietary data contained in the summaries and evaluation of unpublished proprietary data contained in the summaries and evaluation of unpublished proprietary data contained in the summaries and evaluation of unpublished proprietary data contained in the summaries and evaluation of unpublished proprietary data contained in the summaries and evaluation of unpublished proprietary data contained in the summaries and the summarie document unless they have received the data on which the summaries and evaluation are based either: proprietary data contained in this server the data on which the summaries and overlation are based?

From Bayer CropScience; or
From other applicants once the period of that a protection has expired.

Version history

Date	Data points containing amendments or additions 1 ow the amendments or additions are represented (italics) or additions 1	Document identifier or version on number
		S 4 S
		<u> </u>
12.7		
Note ho	ow the amendments or additions are represented (italics/	number A Colour etc) A A A A A A A A A A A A A
4		
4 1		
*		

Table of contents

		راك
CP 10	ECOTOXICOLOGICAL STUDIES ON THE PLANT PROTECTION OF PRODUCT.	6
CP 10.1	Effects on birds and other terrestrial vertebrates.	7
CP 10.1.1	Effects on birds	8
CP 10.1.1.1	Acute oral toxicity	\$11
CP 10.1.1.2	Higher tier data on birds	11
CP 10.1.2	Effects on terrestrial vertebrates other than Birds	11
CP 10.1.2.1	Acute oral toxicity to mammals	14
CP 10.1.2.2	Higher tier data on mammals	14
CP 10.1.3	Effects on other terrestrial vertebrate wildlife (reptiles and amphibians)	14
CP 10.2	Effects on aquatic organisms	14
CP 10.2.1	Acute toxicity to fish, aquatic inverted rates or effects on aquatic algae and macrophytes.	27
CP 10.2.2	Additional long-term and chromic toxicity studies on fish, aquatic invertebrates and sediment dwelling organisms.	27
CP 10.2.3	Further testing on aquatic organisms	27
CP 10.3	Effects on arthropods	27
CP 10.3.1	Effects on bees.	27
CP 10.3.1.	Acute toxicity to bees	30
CP 10.3 A.1.1	Acute oral toxicity to bees	30
	Agute contact toxicity to bees.	
	Chranic to Cicity to bees.	
CP 10.3.1.3	Effects on honey becodevelopment and other honey bee life stages	
CP 10.3.1.4		
CP 163.1.5	Sub-lethal effects Cage and tunnel tests Field tests with honeybees	33
CP 10.3.1.6	Field tests with honeybees	33
CP 10.3.2	Effects on non-garget arthropods other than bees	33
CP 10.3.29	Standard laboratory testing for non-target arthropods	36
CP 10.3.2.2	Extended aboratory testing, aged residue studies with non-target	
	arthropods	
CP 10.3 2.3	Semisfield studies with non-target arthropods	
CP 10.3.2.4	Field studies with non-target arthropods	
CP 10.3.2.5	Other routes of exposure for non-target arthropods	
CP 10.4	Effects on non-target soil meso- and macrofauna	36

CP 10.4.1	Earthworms36
CP 10.4.1.1	Earthworms – sub-lethal effects39
CP 10.4.1.2	Earthworms – sub-lethal effects
CP 10.4.2	Effects on non-target soil meso- and macrofauna (other than
CP 10.4.2.1	Species level testing
CP 10.4.2.2	Species level testing
CP 10.5	Effects on soil nitrogen transformation
CP 10.6	
CP 10.6.1	Summary of screening data & 47 4 9 9 47 47 47 47
CP 10.6.2	Testing on non-target plants 2 2 5 6 47
CP 10.6.3	Extended laboratory studies on non-target plants 47
CP 10.6.4	Semi-field and field tests on fron-target plants &
CP 10.7	Semi-field and field tests on non-target plants
CP 10.8	Monitoring data 48
	Extended laboratory studies on non-target plants

July 2014

Page 6 of 48

ECOTOXICOLOGICAL STUDIES ON THE PLANT PROTECTION **CP 10 PRODUCT**

Introduction

Ecotoxicological studies described in this document address data requirements pecified in Commission Regulation No. 284/2013 of 1 March 2012 (1D) Commission Regulation No. 284/2013 of 1 March 2013 ('Data requirements for plant protection products'). Experimental details of ecotoxicological studies done with the 283/2013 ('Data requirements for active substances') were included in Commission Regulation No. 283/2013 ('Data requirements for active substances') were included in Cocument M.C.A.; only the conclusions will be reported here in summary form.

ATTRIBUT SG70 is considered to be ecotoxicologically equivalent to MKH 6561 WC 70, the representative product of the former dossier submitted for A way 1. representative product of the former dossier submitted for Annex I inclusion in the year 2000. For further details please refer to CONFIDENTIAL information, provided separately in Document J of the the dossier for the new representative formulation P 10243-01). Was proposed to use toxicity data for MKH 6561 WG 70 to support ATTRIBUT

Intended application pattern

The formulation is intended for use as an herbigide for sereals formulation is summarised in the table below.

Intended application pattern of ATTRIBUT **Table 10-1**

Crop	Application method	annication rate	Number of applications	Minimum application interval (days)	Application timing BBCH
Winter &		0,00°2 2	> 15°	<i>-</i>	BBCH 11- 33
spring cereals	Spray	0.070	\$ 9 L	- -	BBCH 11- 33

Definition of the residue for bisk assessment

Justification for the esidue definition for risk assessment is provided in M-CA Sec.7, Point CA 7.4.1 Tarthe definiti (environmental matrices). The proposed residue definitions relevant for risk assessment for each

Table 10 -2 Definition of the residue for risk assessment

Compartment	Residue definition (Name; alternative code)
	Propoxycarbazone-sodium (MKH 6561) M05 (MKH 6561-sulfonamide methyl ester; STJ 4934) M07 (MKH 6561-saccharin; MKH 7284) M08 (MKH 6561-4-hydroxy-saccharin, KTS 9357) M09 (MKH 6561-propoxytriazolinonamide; KTS 9304) M10 (MKH6561-N-methyl propoxytriazolinone; MKH 7017) M11 (MKH6561-methoxy-saccharin)
	M05 (MKH 6561-sulfonamide methyl ester; STJ 4934)
	M07 (MKH 6561-saccharin; MKH 7284)
Soil	M08 (MKH 6561-4-hydroxy-saccharin, KTS 9357)
	M09 (MKH 6561-propoxytriazolinonamide; KT 8 9304)
	M10 (MKH6561-N-methyl propoxytriazolinose; MKH 7017)
	M11 (MKH6561-methoxy-saccharin)
	Propoxycarbazone-sodium (MAH 6561)
	M05 (MKH 6561-sulfonamide methylester; SJJ 4934)
	M07 (MKH 6561-sarcharing MKH 284)
Groundwater	M08 (MKH 6561-4-hydroxy-sagcharin KTS 9397)
	M09 (MKH 6561-propoxytriazolinommide; 187S 9304)
	M10 (MKH6561-0)-methyl proposytriazolmone; MKH 7017)
	M11 (MKH656) methosy-sackbarin) S
	Propoxycarbazone sodium (MKH0561)
	MU4 \(\sigma\) (MAC) 0301-carbox voic acid; MAC) \(\sigma\)
	M05 (MKH 656) sulforamide methyl ester; 39 J 49340
	MOS (MKH6561-salfonanade Acid; MKH7283)
Surface water / sediment	M07 MKM 656 Caccharm; MKM 7284
	M08 QKH 6561-4-hydroxy-saccharin, KTS 9357)
<u>۾</u>	MD9 (MKH 6561-propoxytirazoline) amide, KTS (304)
	M10 (MKH6561-N-methyl propoxytria olinone, MKH 7017)
	MIN MKH6561-methoxy-saccharin

CP 10.1 Effects on birds and other terrestrial vertebrates

The risk assessment for hirds and mammals was carried out according to the EFSA Guidance Document on Risk Assessment for Burds and Mammals (2009)¹, which follows a tiered approach to assess the effects of pant protection products on birds and mammals. It consists of an initial screening assessment followed by a Dier Lassessment (where necessary), for both acute and long term (reproductive) assessments. The screening step starts by using generic 'indicator species' and is based on a multiplication of hypothetical worst-case assumptions. The risk to birds and mammals was assessed using Toxicity / Exposure Ratio (TER), i.e. by comparing the relevant Daily Dietary Dose (DDD) with the appropriate endpoint:

¹ European Food Safety Authority; Guidance Document on Risk Assessment for Birds and Mammals on request from EFSA. EFSA Journal 2009; 7(12):1438. [139 pp.]

Page 8 of 48

CP 10.1.1 Effects on birds

Summary

The acute and long-term risk of ATTRIBUT SG70 to birds was assessed from toxicity-exposure vatios? between toxicity endpoints, estimated from studies with propoxycarbazone-sodom and maximum residues potentially occurring on food items following the use according to the proposed use pattern. The TER values, calculated for recommended scenarios, all exceed the trigger value of 100 or acore risk and of 5 for long-term risk at the screening step, indicating acceptable risk to birds following the use of ATTRIBUT SG70.

Due to the log $P_{\rm OW} < 3$ of propoxycarbazone-sodium, bioaccumulation of the substance in prey like earthworms or fish is not likely. The risk to birds from exposure via drinking water has been as so and considered acceptable.

Toxicity

The avian toxicity studies with the active substance propoxycarbatione-so fium relevant for the visk assessment are summarised in the table below. For details please refer to Document M-Point CA 8.1 of this submission (published dossier number: P010245-02)

Acute and long-term loxicity of propoxycar bazone sodium to bird, endpoints rejevant for **Table 10.1-1** the risk assessment

Test substance	Species	Test design	Endpoint &	Reference	EU agreed endpoint
Propoxy-	quail &	acute	LD ₅ 2000 ing a.s kg b	© KOČA 8.1 1/01	Yes
carbazone- sodium	B. B. White Oquail		MOEL 45 mg a Okg bw	& (2013) EBMIL003 M-449836-01-1 KCA 8.1.1.3 /03	New study

Studies shaded in grey have been reviewed as part of the first EU review of propoxycarbazone-sodium (in Baseline Dossier foothe active substance \$\P\$-010245-01\\$\text{Other studies}\$ are part of the Supplemental Dossier (P-010245-02).

Endpoints used for tisk assessment

Short-term endpoints

According to the risk assessment scheme of EFSA D birds and mammals (2009) a short-term risk assessment is not required. However, the endpoint from short-term dietary studies, e.g. 5-day dietary study in birds (OECD 20%, for details please peter to Point CA 8.1 in document M-CA, Section 8) should be used in a quite risk assessment when indicating a higher toxicity via the dietary exposure route (lower DDD₅₀)

For proposicarbazone-sodium, were is no indication that 5-day exposure via dietary route might provoke figher exicity than the application via gavage in acute study.

Reproductive endpoints

The acute oral LD₅₀ value used in the acute avian assessment divided by 10 to obtain LD₅₀/10 will be compared with the lowest NO(A)EL from the reproduction studies.

For propoxycarbazone-sodium the acute oral LD₅₀ value is > 2000 mg/kg bw generating an LD₅₀ 0 value of > 200 mg/kg bw. The worst-case NOEL is 45 mg/kg bw/day and therefore the NOEL will be used in the risk assessment.

Metabolites of propoxycarbazone-sodium

From toxicological studies performed in mammals there is no indication that the metabolite care more toxic than the active substance propoxycarbazone-sodium. For this reason and also considering animal, welfare, no toxicity studies in birds with the metabolites were deeped necessary.

Risk assessment for birds

Screening step

The crop groupings, indicator species and critical use patterns relevant to the use of propoxycarbazone-sodium according to the EFSA Quidance Doomnent of Risk Assessment for Birds and Mammals are shown in the table below.

Table 10.1-2 Screening step Gop groupings, indicator species and critical use pattern relevant to the use of proposacarbazone-softum

C	Ųs©patto	enn s		Shortcut	value (SV)
Crop group	Appl. Rate No. at appl.	Application Library	Indivator pecies	For long-termorA based on RUDm	For acute RA based on RUD90
Cereals	0.045 1	BBCH 11- 33 BBCH 11- 33	Smatt@mniv@ous	\$\tilde{\psi}\$.8	158.8

The resulting DDDs and TERs for acute and long term exposure are presented in the tables below.

Table 10.1-3 Screening step: acute DDO and TER calculation for birds

Test substance	Fop A	(O) *. ~ **	OLDso V Ing a.s., Rg	Agol. rato	SV90	MAF90	DDD	TERA	Trigger
Propox	a 1 *	Smalf		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1.500		6.67	> 300	1.0
carbazone- sodžum	Cereals	Small Somniverous	> 2000	0.070	158.8	1	11.12	> 180	10

The TERA values are above the Regulation (EU) No 546/2011 trigger of 10 for acute exposure. Accordingly, a safe use of the product in cereals can be concluded.

Page 10 of 48

Table 10.1-4 Screening step: long-term DDD and TER calculation for birds

Test substance	Crop	Indicator species	NOEL [mg a.s./kg bw/d]	Appl. rate [kg a.s./ha]		MAFm	ftwa	DDD ©	TER _{LT}	Triğger
Propoxy-		Small	4.5	0.042	64.0			1.44	31	
carbazone- sodium	Cereals	omnivorous bird	45	0.070	64.8 Ča	1	0.534	2.40	\$\tag{9} \tag{8}	\$\frac{7}{5}

The TER_{LT} values are above the Regulation (EU) No 546/2011 trigger of 5 for long term Accordingly, a safe use of the product in cereals can be concluded

Risk for birds through drinking water

Two scenarios are provided in the EFSA (2009) Goldance T and Mammals, for assessing the risk from drinking water.

Leaf scenario

The leaf scenario is only relevant for birds, possibly drinking water from puddles in baf whorls after application of a pesticide to a crop and subsequent rainfall or prigation. As ATTRIBUT SG70 is applied in cereals, no pools in leaf axis where an acore exposure possibly mightoccur are to be expected.

Puddle scenario

This scenario is relevant for birds taking water from puddles formed on the soil surface of a field when a (heavy) rainfall event follows the application of a pesticide to a crop or annual weeds. In the EFSA Guidance Document (2009) it is stated that "Diffe to the characteristics of the exposure scenario in connection with the standard assumptions for water water by animals ..., no specific calculations of exposure and TER are necessary when the ratio of effective application rate (in g/ha) to relevant endpoint (in mg/kg bw/d) does not exceed W in the case of less sorptive substances (Koc < 500 L/kg Fr 3000 in the case of more forptive substances (Koc 5000 L/kg)."

Evaluation of potential concern for exposure of birds drinking water **Table 10.1-5**

Test substance	Effective NO(APLL Application [mg.a.s./ L/kg rate kg/bw/dl	terrective application	No concern if ratio	Conclusion
Propoxycarbazone- sodium	28.8	1.56	≤ 50	No concern

The evaluation confirms that the long term risk for birds from drinking water that may contain residues from the use of propoxycarbazone-sodium is acceptable. The evaluation for long-term risk represents the worst case, also covering the acute risk from drinking water.

Effects of secondary poisoning

Substances with a high bioaccumulation potential could theoretically bear a risk of secondary portoning for birds if feeding on contaminated prey like fish or earthworms. For organic chemicals, a $\log P_{OW}$ 3 is used to trigger an in-depth evaluation of the potential for bioaccumulation.

Table 10.1-6 Log Pow values

Substance	log Pow	Reference
Propoxycarbazone-sodium	-1.55 (pH 7)	
M05	-0.34 (pH 7)	
M06	-2.9 (pH 7)	
M07	-2.0 (pH 7)	MACA, Sec. 2, Point CA 200 Partition co-efficients n-octanol/water
M08	-1.9 (pH 7.5)	Partition co-efficients n-octanol/water
M09	-0.07 (pH♥)	Talqasii co-cincingii-octanoi waxe
M10	0.39 (gH 7)	
M11	-2.8 (pH 7)	

As summarised in the table above, the log Powwalues of propoxycarbazone-sodium and its metabolites are below that trigger. Thus, a risk assessment for a generic earthworm cating bird and a generic fish eating bird is not necessary since bioaccumulation of the Substance is not likely.

CP 10.1.1.1 Acute oral toxicity

The risk assessment based on the active substance revealed triggers indicating acceptable acuto and long-term risk to birds

not take into Onsideration, also Therefore, a further acute study on birds with the formulation was considering animal welfare reasons.

CP 10.1.1.2 Higher tier data on birds

In view of the results presented above no further staties

CP 10.1.2

Summary 8

The acute and long-term risk of ATTROBUT SG70 to mammals was assessed from toxicity-exposure ratios berween toxicity endpoints, estimated from studies with propoxycarbazone-sodium and maximum residues potentially occurring on food items following application according to the proposed use pattern.

The TER values, calculated for recommended sceparios, all exceed the trigger value of 10 for acute risk and of 5 for long-term risk at the screening step, indicating acceptable risk to mammals following use of ATTRIBUT SG70.

Due to the log P_{OW} < 3 of propoxycar azone vodium, bioaccumulation of the substance in prey like earthworms or fish is not likely. The risk to mannals from exposure via drinking water has been assessed and considered acceptable

Toxicity

The mammatian toxicity suidies with the active substance propoxycarbazone-sodium relevant for the risk assessment are summarised in the table below. For details please refer to Document M-CA, Section of this submission published dossier number: P-010245-02).

Page 12 of 48

Table 10.1-7 Acute and long-term toxicity of propoxycarbazone-sodium to mammals; endpoints relevant for ecotoxicological risk assessment

Test substance	Test design	Species	Endpoint	Reference	EU agreed endpoint
Propoxy- carbazone-	acute, oral	Rat	LD ₅₀ > 5000 mg a.s./kg bw	(1994) 23480 M-001552-01-1 &A 5.2.1 /01	
carbazone- sodium	2-generation	Rat	NOAEL 16000 ppm corresponding to 1231 mg/kg bw/d	(1999) 3 09096 3 012427-03-1 KCA\$ 6.1 /02	Y Syres Syr

Studies shaded in grey have been reviewed as part of the first El review of propoxycarbazone sodium in Baseline Dossier for the active substance \$1024\$

Metabolites of propoxycarbazone-solium

From toxicological studies performed in mammals there is no indication that the metabolities are more toxic than the active substance propoxy arbazone-sod m. For details please refer to Document M-CA Section 5, Point CA 5.8. Since the metabolites proofed to be less that the parent, potential risk is considered to be covered by that of the parent propoxycarbazone, sodium.

Risk assessment for other terrestrial vertebrates

The risk assessment procedure for wild mammals tollows the same principles as described in detail for birds under Point CP 10.1.1 above i.e. FFSA Guidance Document on Risk Assessment for Birds & Mammals (2009)

Screening step

The crop groupings, indicator species and critical use patterns relevant to the use of propoxycarbazone-sodium according to the EUCA Critical use patterns relevant to the use of propoxycarbazone-sodium according to the EFSA Guidance Document and Mammals (2009) are shown in the table below propoxycarbazone-sodium according to the EFSA Guidance Document on Risk Assessment for Birds

Page 13 of 48

Table 10.1-8 Screening step crop groupings, indicator species and critical use pattern relevant to the use of propoxycarbazone-sodium

C	Use pattern				Shortcut value (SV)			
Crop group	Appl. Rate [kg a.s./ha]	No. of appl.	Application timing	Indicator species	For long-term RA based on RUO _m	For acute RA based of RUD		
Cereals	0.042	1	BBCH 11- 33	Small herbivorous	19:2	Ø119.46.		
Cereais	0.070	1	BBCH 11- 33	mammal	48.3	\$118. 4 \$'		

The resulting DDDs and TERs for acute and long term exposure are presented in the table below

Table 10.1-9 Screening step: acute DDD and TER calculation for mammals

Test substance	Crop	Indicator species	LD50 A _I	pp rate of SV.	MAP ₀	DDD V	TERA (Trigger
Propoxy- carbazone- sodium	Cereals	Small herbivorous mammal	\$\times 500@\times \frac{1}{\times}	0.070		4.2	\$\int 005 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	10

The TER_A values are above the Regulation (EU) No 546/2011 trigger of 10 for acute exposure. Accordingly, a safe use of the product in Greals can be concluded.

Table 10.1-10 Screening step long-form DDD and TER carculation for mammals

Test substance	Crop	Indicator species	OOAE mg a.s./kg bwd]	Appl. rate Appl. rate (kg // (a.s./tta)	SVady	Z) MAEm	ffva Ø	₩	TER _{LT}	Trigger
Propoxy->	(Q) 1	Small	1287	© :042	7 48;3	~0	<i>)</i>	1.08	1145	
sodium	Cereals	Small herbivoroùs mamma	1237	0.070	4853° Z		0.53	1.79	687	5

The TER_{LT} value are above the Regulation (EU) No 546/2011 trigger of 5 for long-term exposure. Accordingly, wasfe use of the product in coeals can be concluded.

Risk for mammals through donking water

Assessing the risk for wild mammals from drinking water follows the same principles as described above in detail under Point CP 10.1.

Table 10.1-11 Evaluation of potential concern for exposure of mammals drinking water

Test substance	K@ [k/kg]	Application rate	NO(A)ED [mg a.s./ kg bw/d]	Ratio (effective application rate) / NO(A)EL	No concern if ratio	Conclusion
Propoxycarsazone- sodom	28.8	70	1231	≤ 0.06	≤ 50	No concern

The evaluation confirms that the long-term risk for mammals (covering acute risk) from drinking water that may contain residues from the use of propoxycarbazone-sodium is acceptable.

July 2014

Effects of secondary poisoning

As outlined under Point CP 10.1.1 above, propoxycarbazone-sodium and its metabolites have log values < 3 and a risk assessment is not required.

CP 10.1.2.1 Acute oral toxicity to mammals

The acute oral toxicity of the formulated product ATTRIBUT SG70 (performed with MKH 6561 70 WG) was determined in a study on rats. The result is showly summarised in the table below for more details please refer to Document M-CP Section 7.

Mammalian toxicity data of the formulated product ATTOIBUT SG70 **Table 10.1-12**

Test substance	Test species	Test design	Ecotoxicological Reference endpoint
MKH 6561 70 WG	Rat	acute, oral	LDs > 2000 mg/kg (1998)

Studies shaded in grey have been reviewed as part of the first EU review of proposy carbazone-sodium (in SANCO dossier of former representative formulation of Annex Linclusion ATTRIBUT OWG Dossier P-010244-01).

The acute oral study on rats was conducted according to OFCD 423 and demonstrated that dosing fasted rats with MKH \$561 70 WG at a dose of 2000 mg/kg bw did not olicit any observable toxicity (no mortality, no effects on body weight to clinical signs, no pathological findings). Thus, the toxic class assigned was LD₅₀ 2500 mg/kg bw".

These experimental data do not suggest any increased risk by the formulated product for wild mammals and the risk assessment can be lessed on the data for the active substance propoxycarbazonesodium.

Higher tier data on manimals

In view of the results presented above no further studies are necessary.

Effects on other terrestrial vertebrate wildlife (reptiles and amphibians) **CP 10.1.3**

As the risk assessments depronstrate low toxicity for bods and mammals, no effects on other terrestrial vertebrates (reptiles and amphibians) are to be expected following application of ATTRIBUT SG70 according to the proposed use Pattern. Further studies are not considered necessary.

CP 10.2

Summary

The acoustic and long-term risk of ATTRIBUT SG70 to aquatic organisms was assessed from toxicityexposure ratios between toxicity endpoints, estimated from studies with propoxycarbazone-sodium and its metabolites and maximum PECsw values following the use according to the proposed use pattern,

The TERA values for propoxycarbazone-sodium and its metabolites all exceed the trigger value of 100 for acute risk at FOCUS Step 1. The TER_{LT} values for propoxycarbazone-sodium and its metabolites

Page 15 of 48

all exceed the trigger value of 10 for long-term risk at FOCUS Step 1 with the exception of Lemna exposed to propoxycarbazone-sodium.

The risk to *Lemna* has been refined by using FOCUS Step 3 and Step 4 values. Acceptable risk aquatic plants following use of ATTPIPITE SC70 and 11 aquatic plants following use of ATTRIBUT SG70 according to the proposed use pattern is indicated:

- without mitigation following application of 42 g/ha in spring cereals for all FOCUS scenarios;
- without mitigation following application of 42 g/ha in winter cereals for FQCUS D1, D3, D4, D5, D6 and R1 and with a 10 m spray drift and run-off buffer for FOCUS scenarios R3 and R4
- without mitigation following application of 7% g/ha in spring cereals for (stream), D3, D4, D5 and R4 and with a 5 m spray drift buffer for FOCUS seenarios D1 (ditch);
- without mitigation following application of 70 g/ha in winter rereals for FOCUS seenarios D1 (stream), D3, D4, D5, D6 and R1 (pond) and with a 10 m spray drift and run-off buffer for FOCUS scenarios R1 and R4 and with a 20 m spray drift and run-off buffer for FOCUS scenarios R1 and R4 and

Further refinement of the D2 (ditch and dream) scenario should be addressed by Member States during national registration.

Toxicity

ATTRIBUT SG70
Tests with MKH 65 of 70 WG were nerformed with a specific part of the property of the prop

conducted and evaluated during the first EU review and are still considered adequate. For detailed information on studies already evaluated during the first Evreview of propoxycarbazone-sodium, please refer to corresponding section in the Baseline Dossier and in the Monograph.

The results of acute and chronic wests with propoxy drbazoffe-sodium on fish and Daphnia demonstrate that the active substance is not toxic to these organisms (LC₅₀ > 77.2 mg a.s./L for rainbow trout and EC3 > 1.10 mg s.s./L for Daphylia, see Table 10.2-2 below).

As can be expected for an herbicide, tests with algoe and quatic plants show that these organisms are more sensitive to propoxycarbazone-sodum. For algae, the lowest $E_bC_{50}=1.57~mg$ a.s./L was obtained for *Pseudokirchneriella subcapitata*. Most sensitive organisms (> 100 times more sensitive) are aquatic macrophytes: for Lemna at ba the lowest $EC_{50} = 0.00453$ mg a.s./L and for Myriophyllum spicatume the $EC_{50} = 0.0292$ mg/a.s./L.

Therefore, studies with the formulated product were performed only with algae and Lemna. A summary of the aquatic toxicity profile of ATTRIBUT SG70 is provided in the table below.

Table 10.2-1 Toxicity of ATTRIBUT SG70 to aquatic organisms

Test substance	Species	Test design	Endpoint [mg product/L]	Reference	EU agreed endpoint
MKH 6561 WG 70	P. subcapitata	72 h	$E_rC_{50} > 113.4 \text{ (nom)}$ (corresp. to 80.2 mg a.s./L) $E_bC_{50} > 11.46 \text{ (nom)}$ (corresp. to 8.1 mg a.s./L)	(1998) (DOM \$048) M-00691-01-1 KCR 10.2.1 /08	Yes
MKH 6561 WG 70	L. gibba	7 d, static	$\begin{array}{c} E_rC_{50(frondarea)} & 0.0158(nom)\\ (corresp.to0.002mga.s./L) \end{array}$	DOM 9809 M-009766-02-1 KGP 10.2,1/22	Fig. 1

Studies shaded in grey have been reviewed as part of the first EU review of propoxygarbazone-sodium (in SANCO dossier of former representative formulation of Amex Linclusion ATTRIBUT 70WG; Dossier P-010244-01).

Results show that the toxicity of the formulation ATTRIBUT SG70 is a reflection of the toxicity of the active substance. The risk assessment can therefore be based on the most sensitive empoints derived for the active substance.

Propoxycarbazone-sodium and its metabolites

A summary of the relevant active and long-term endpoints for aquatic risk assessment is provided below. Full details of the tests on the active substance and the metabolities are provided in Doc M-CA, Section 8, Points CA 8.2 to 8.6. Only strates representing the worst case for key species are presented in the table below.

Table 10.2-2 Aquatic endpoints for propoxycar bazone sodium and its metabolites

1 abic 10.2-2	Aquatic chapo		oxycaroazone souragi ar		
Test substance	Species	Test design	Endpoint S Img/L	Reference	EU agreed endpoint
	O. mykass	\$96 h	LC ₅₀ >77.2 (10m)	(1998) 108066 M-004219-01-1 KCA 8.2.1 /01	Yes
	P. prometas	ELS flow through	NOEC 105 (fam)	(1999) 108453 M-015904-01-1 KCA 8.2.2.1 /01	Yes
Propexy- carbazone-	D. magna	48 h,	EC35> 110 (nom)	(1998) 107841 M-002122-01-1 KCA 8.2.4.1 /01	Yes
sodium	D. Magna	static renewal	NOEC 110 (nom)	& (1999) 108845 M-016508-01-1 KCA 8.2.5.1 /02	Yes
	P. subcapitana	96 h	E _r C ₅₀ 7.36 (mm) E _b C ₅₀ 1.57 (mm)	& (1999) 108820 M-012242-01-1 KCA 8.2.6.1 /01	Yes
	L. gibba	14 d static-	EC _{50 (biomass)} 0.0064 (mm)	& (1999) 108338	Yes

July 2014

Test substance	Species	Test design	Endpoint [mg/L]	Reference	EU agreed endpoint
		renewal		M-009972-01-1	
	L. gibba	7 day, static	E _r C _{50 (frond no)} 0.00664 (nom) E _r C _{50 (frond area)} 0.00453 (nom)	CA 8.2,7 /01 (2004) DOM 23101 M-04,604-01-1 KCA 8.2.7 /05	New Study
	Myriophyllum spicatum	14 d static	E _r C _{50 (wet weight)} 0.063 (nom) E _y C _{50 (wet weight)} 0.0292 (nom)	(2013) 70401245 My46660\$ 02-1 KCA 8.2.7 /08	New stude
	L. macrochirus	96 h, static	LC ₅₀ 100 (pcm)	(1998) DOM 98054 M-005105-01-1 KCA 8.2.1 63	Eyaluated during the first W
	D. magna	48 P.,	EC ₅₀ > 100 (nom)	MBF/D6 199 M1-005032-01-1 KC 8.2.4 0/03	Yes
M04	P. subcapitation	92 h &	E. C > 100 (nom)	(1999) DOM 9805 (2) M.007702-02-1 K.CA 8.2 (3) /04	Yes
	J. gibba	d, static	FC ₅₀ 7 74.2 (min)	(1999) DOM 98094 M-009770-01-1 @KCA 8.2.7 /03	Yes
Ş	B. rego	96 h	LCso 79 (com) C	(1999) 742072 M-017346-01-1 KCA 8.2.1 /05	Yes
	D. mana	48 has serbi-	EC: 63 (70m)	(1999) 742050 M-017326-01-1 KCA 8.2.4.1 /04	Yes
M05	S. substitution	72,h	$E_rC_5 > 62 \text{ (mm)}$ $E_0C_0 > 62 \text{ (mm)}$	(1999) 742094 M-017343-01-1 KCA 8.2.6.1 /05	Yes
Ž.	O Legioba	7 d, static	EC ₅₀ > 89.4 (mm)	(1999) DOM 99081 M-018594-01-1 KCA 8.2.7 /04	Yes
M06 5	Legioba O. mykiss	acute, 96 h, static	LC ₅₀ > 100 (nom)	& (2006) 30183230 M-278097-01-1 KCA 8.2.1 /07	New study
	D. magna	48 h,	EC ₅₀ > 100 (nom)	&	New study

July 2014

Page 18 of 48

Test substance	Species	Test design	Endpoint [mg/L]	Reference	EU agreed endpoint
		static		(2006) 30183220 M-27897 91-1 KCA 8 4.1 /05	
	P. subcapitata	72 h	$E_rC_{50} > 100$ (mom)	(2006) (30181210 (M-293396-014) (KCA 8.2.6.0/06)	New study
	L. gibba	7 d, static	EC ₅₀ > 100° (nom)	2006 30\284240 M-281240-01-1 KCA 8.2.7 /07	New study
	O. mykiss	96 h	LC ₅₀ Y00 (poin)	30193230 M27809201-1	New study
1407	D. magna 🕹	48 h,	EC ₅₀ > 100 (nom)	30192220 (2006) M-278973-01-1 KCAS 2.4.1406	New study
M07	P. subvapitata		E _r C ₃ > 100 (nom)	(2006) 30141210 M-281243-01-1 K & 8.2.6.1 /07	New study
	L. gibba	Zd, static	EC 50 > 100 (no@)	(2006) 30194240 M-281250-01-1 KCA 8.2.7 /08	New study
a	B. magad	48 ly statuc	EC50 \$100 (dom)	& (2006) 30202220 M-278974-01-1 KCA 8.2.4.1 /07	New study
M408		AZ h	Er 30.8 (gmm b)	(2006) 30201210 M-281220-01-1 KCA 8.2.6.1 /08	New study
	P. subsapitater, B. gibba L. macrochirus	J d, static	EC ₅₀ > 100 (nom)	(2006) 30203240 M-281362-01-1 KCA 8.2.7 /09	New study
M160	L. macrochirus	96 h, static	LC ₅₀ > 100 (nom)	(1998) DOM 98052 M-005052-01-1 KCA 8.2.1 /04	Evaluated during the first EU review
	D. magna	48 h,	$EC_{50} > 100 \text{ (nom)}$	(1998)	Yes

Page 19 of 48

Test substance	Species	Test design	Endpoint [mg/L]	Reference	EU agreed endpoint	^
		static		HBF/Dm 198 M-005036-01-1 KCA 8.2.♣ /02		
	P. subcapitata ^a	96 h	$E_rC_{50} > 100 \text{ (nom)}$ $E_bC_{50} > 100 \text{ (nom)}$	DOM 98049 M-096193-01-1	T Ses S	
	L. gibba	7 d, static	EC ₅₀ 100 (nom)	DOM 98 P4 12009757-01-1 XCA 8.2.7 /92	Yes	5

^a formerly Selenastrum capricornutum

Studies shaded in grey have been reviewed as part of the first by review of propoxycarbazone-sodium (in Baseline Dossier for the active substance P-010245-01. Other studies are part of the supplemental Bossier (P-010245-02).

Selection of algae endpoint

Processes in ecosystems are downnantly rate driven and therefore the unit development per time (growth rate) appears most statable to measure effects in algae. Also, growth rates and their inhibition can easily be compared between species, test durations and test conditions, which is not the case for biomass. After numerous discussions, the current test guidelines OECD To 201 the EU-Method C3, the EC regulation for Classification and Labelling & C regulation 1272/2008) and the PPR Opinion (EFSA Journal 461, 3,44; 2007) list grow to rate at the most suitable endpoint of the algae inhibition test. Also in the new Aquatic Guidance Document (EKSA Journal 2013;1167):3290, 268 pp. doi:10.2903/j.efsa.2013.3290) it is stated that growth rate is the preferred endpoint to be used.

Therefore, for newl@submitted studies only the growth rate endpoints are reported in the table above and will be considered for the risk assessment. However, the currence EU agreed endpoint for propoxycarbazone-sodium is based on biomass. The biomass endpoint is lower than the growth rate endpoint and can be considered worst case

Selection of macrophytes endpoint

Aquatic plants are clearly the most sensitive group of arganisms when exposed to propoxycarbazonesodium. In addition to Leiona gibba, a second macrophyte species Myriophyllum spicatum was tested, showing that Lemna is the most sensitive species.

An additional study on the prost sensitive species Lemna with propoxycarbazone-sodium was DOM 23Y01, M-001604-01-1) to demonstrate technical equivalence of conducted in 2004 (the active substance after the change of specification of propoxycarbazone-sodium technical. The EC₅₀ for average gowth rate were determined to be 6.64 µg a.s./L for frond numbers, 4.53 µg a.s./L for total frond area and 320 ag a.s./L for Gry weight of plants.

As the new endpoint of $\mathbb{P}_r C_{50} \approx 4.53 \,\mu g/L$ from the new *Lemna gibba* study is the lowest endpoint of all studies with aquatic plants, the risk assessment will be based on this endpoint as a worst case approach.

Metabolites

A full aquatic data package (acute fish, acute Daphnia, algae and Lemna) is available for surface water metabolites M04 and M06 and for soil metabolites M05, M07 and M10. Soil metabolite M08 was

b geometric mean of the measured test concentration

Page 20 of 48

tested on Daphnia, algae and Lemna. All metabolites were found to be non-toxic to fish and Daphnia and showed no herbicidal activity against algae and Lemna. Therefore, no studies were conducted with soil metabolites M09 and M11 (for details please refer to Document M-CA, Section 8, Point CA 82). To address these metabolites, a risk assessment for algae and *Lemna* is conducted, assuming tended toxicity of the structurally similar metabolites M10 and M08 for metabolites M09 and M11, respectively. This can be considered a worst case approach.

sodium)

Risk assessment for aquatic organisms

The risk assessment was conducted following the EU (2002) Guidance Document on Aquation Ecotoxicology (SANCO/3268/2001 rev.4 (final) 17 October 2002).

The initial risk assessments were carried out by comparing the PECsw values with the scute and long. to FOCUS, Step 1. Man. term toxicity endpoints. Acute and long-term toxicity exposure ratios (VERA and TERT) were calculated using the following equations:

 $TER_A = LC_{50}$ or EC_{50} / max. PEC_{SW} $TER_{LT} = EC_{50}$ or $NOEC / max. PEC_{SW}$

Exposure

PEC_{SW} values were calculated according to FOCUS step 1 of 4 and were taken from Document M-CP, Section 9. For full details of the assumptions used in the exposure calculations please refer to that 0

Maximum Step 1 & 2 values for propoxycarbazone-sodium and for metabolites of propoxycarbazonesodium are presented in Table 70.2-3 and Table 102-4, respectively.

Maximum PECswand PECsep values for propoxycarbazone sodium after application to **Table 10.2-3** winter and spring cereals (FQCUS Step 1 & 2)

Crop/ &	FOCUS	Propoxycarb	azone-sodium
Crop/ & * Application rate	FOCUS Step	PEÇW (ûy/L)	PEC _{SED} (μg/kg)
Winter and Spring cereals	StepQ 🔭	² √3.666	5.474
(1 x 42 g a.s./ha)	Step 2 6	3.581	1.434
Winter and Spring cereals	Step 1	22.776	9.124
(1 x 70 g &s./ha)	StepQ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	5.968	2.390

Values in bold are used in the risk assessment as a worst case approach

Maximum RECsy value of the metabolites of propoxycarbazone-sodium following application to winter and spring cereals (FOCUS Step 1 & 2)

Application			PEC _{sw} (μg/L)							
Application	FOCUL	WM040	M05	M06	M07	M08	M09	M10	M11	
Winter and	Step 1 5	0.242	1.437	0.036	1.651	0.443	0.700	2.800	1.865	
(1 x 42 g/a.s./ha)		0.242	0.298	0.036	0.514	0.161	0.256	1.045	0.516	
Winter and	© Step l	0.403	2.395	0.060	2.751	0.738	1.166	4.667	3.109	
Spring ceceals (1 x 70 g a.s./ha)	Step 2	0.403	0.497	0.060	0.856	0.268	0.426	1.741	0.860	

Values in bold are used in the risk assessment as a worst case approach

Maximum PEC_{SW} of propoxycarbazone-sodium at Step 3 following application to winter and spring cereals are shown in Table 10.2-5 and Table 10.2-6, respectively.

FOCUS Step 3 - Maximum PEC_{SW} values for propoxycarbazone-sodium after application to winter cereals **Table 10.2-5** to winter cereals

		Winter cereals:	Winter cereals:
	3.6	1 × 42 g a.s./ha	1 × 70 g acs/ha
Scenario	Main entry path	PECsw, max (µg/🍪	PECsty, max (1) (fig/L)
D1 (Ditch)	Drift	0,287	©0.48Q
D1 (Stream)	Drift	40 .240	0.400
D2 (Ditch)	Drainage	4.288	2 2 Z291
D2 (Stream)	Drainage	2.675	
D3 (Ditch)	Drift	£266 £	0.444
D4 (Pond)	Drift	0.009	915 A
D4 (Stream)	Drift	\$\tag{2}\tag{1} \tag{2}\tag{1} \tag{4}	0.352
D5 (Pond)	Drift @		\$\frac{1}{2}\tag{0.0\$5}
D5 (Stream)	Drift 🔗	0.200	0.015 0.0249
D6 (Ditch)	Drift 💉	0.272	J. 50.4534
R1 (Pond)	Runoff	\$ Q012 65 L	0.019
R1 (Stream)	Rungoff 💝	©0.2794 P	0.470
R3 (Stream)	Runoff &	8 4 0.740 F	1.229
R4 (Stream)	Runoff	0.497	√ √ 0.822

values for propoxycarbazone-sodium after application **Table 10.2-6**

	N A		Mar 2
	(// a.	Spring cereals: S • × 42 ca.s./ha	Spring cereals: 1 × 70 g a.s./ha
Scenarjo	Main entry path	PEC _{SW, m}	PEC _{SW, max}
	Main entrypath	PEC _{SW, m}	
Ž, Š		φ(μg/L) ^γ	(μg/L)
D1 (Ditch)	🔿 🎤 Drift 🖇	0 0 281 A	0.468
D1 (Stream)	Drift	9.219 n	0.366
D3 (Ditch)	Q'Drytt	\$\times 0.266\times	0.443
D4 (Pond)	Prift \	©219 0.266 0.009 0.221	0.015
D4 (Stream)	O Drifto 4	© 221	0.368
D5 (Qo nd)	, O Don O	0.009 0.208 0.175	0.015
D5 (Stream)	Drift V	0.208	0.348
RA (Stream)	Drift A	0.175	0.292
In some risk assessn are presented in the	L. O	US Step 4 values are required; v	where necessary these values
CO*			

Risk assessment for aquatic organisms

Acute risk assessment

TERA calculations based on FOCUS Step 1 **Table 10.2-7**

Acute risk assessn	<u>nent</u>					
The acute risk assessment for propoxycarbazone-sodium and its metabolites based on FOCUS tep 1 is presented in the table below. Table 10.2-7 TERA calculations based on FOCUS Step 1						
	ER _A calculations base					
Test substance	Species	Endpoint 💎 [μg/L]	PECW, max	TERA É	Trigger	
Propoxycarbazone-	Fish, acute	LC ₅₀ 77200	Q' 000	3396	9 27	
sodium	Daphnia, acute	EC50 > 110000	22.976	30 30		
M04	Fish, acute	LC 50 \$ 100000	0.403	© 248 \$9		
1/104	Daphnia, acute	EC ₅₀ > 190000		>248139		
M05	Fish, acute	LC5 79000		\$\int 329 85	O	
MOS	Daphnia, acut	EC ₅₀ 23000		> <u>2</u> 6305°√		
M06	Fish, acore	LC ₅₀ 100000		©166667	100	
MOO	Daphrija, acut	EC ₅₀ > 100000	\$ 0:060 \$	> 1686667		
M07	Fish, acute	LG \$ 100000	\$\frac{\psi}{2} \frac{\psi_5}{2} \	36350		
IVIO /	Daphnia, acute	C50 S > 100000		> 36350		
M08	Danhnia, avute 🖔	EC 100000	0.738	> 135501		
M10 Ø	Fish, acute	ĽC ₅₀ > 100000	W 5467	> 21427		
	Daphnia, coute	EC ₅₀ > 100000	A.667	> 21427		

Chronic risk assessment

The chronic risk assessment for proposycarba one-sodium and its metabolites based on FOCUS step 1 is presented in the table below.

Table 10.2-8 TER_{LT} calculations based on FOCUS Step 1

Test substance	Species	Endpoi	nt [μg/L]	PECsw, max [μg/L] ^a	TER _{LT}	Trigger
	Fish, chronic	NOEC	105000		% 4610	
Propoxycarbazone-	Daphnia, chronic	NOEC	110000	22.776 4	4830	
sodium	Algae	E_bC_{50}	1570	22.776	69	
	Lemna gibba	EC ₅₀	4.33		Q20	
1.604	Algae	$E_{r/b}C_{50}$	2 100000	Q 0.460°	248139	
M04	Lemna gibba	EC ₅₀	14200	0.493	35236 ×	
1.605	Algae	$E_{r/b}C_{\mathfrak{D}}$	\$ 620 0	2.399	£ 25887	
M05	Lemna gibba	£ 50 ~	>89400	Y A S	> 37328	
1407	Algae	E _r Q ₂₀	£100000	© 0.06P	£1666667	
M06	Lemna gibba	E C 50	> 100000	0.06	> 1665667 s	
1.607	Algae Ø	ErCs	\$100000	Q 2.751	36350	10
M07	Lemna gibba 📞	EC 50	> 100000	© 2.7 5]	> 36350	
M08	Algae	E _r C _{so}	\$0800\\$\	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	4 1734	
MU8	Temna gibba	EC50 \$	> 100000	0.738	> 135501	
M11 b	Algae A	E _r C50/	3080	L, Q	991	
M11 b	Lemna@ibba O	E 50 &	> 10000	3.169	> 3216	
	Algae	$E_{r/b}C$	>90000	W 1667	> 21427	
M/O	Lemna gibba	EC 50	> 100000 3	4.667	> 21427	
M09 °	Algae	$E_{r/b}C_{5}$	\$\tilde{\sigma}_{1000}\text{.}	1.166	> 8576	
1V1U9 ~ ~ ~	Démna Bibba	1 1 1 1 1 1 1 1 1 1	> 10000	1.166	> 8576	

In bold: value below the trigger of 10

For propoxy orbazone-sodom, all TER calues are greater than the Regulation (EU) No 546/2011 trigger value of 16 with the exception of Lemna. For metabolites of propoxycarbazone-sodium all TER values are above the trigger value of 10, indicating acceptable risk when based on FOCUS Step 1 PECsw values values

Thus for Lemna, the TER calculations for both application rates based on FOCUS Step 2 PEC_{SW} values are presented below.

^a FOCUS Step 1 values calcidated for 1 x 700 ha are used in the risk assessment as a worst case approach b As no data is available for M11, in a sampled as a worst case approach that M11 is 10 fold more toxic than the structurally similar metabolite Me.

c As no data is available for M09, it is assumed as a worst case approach that M09 is 10 fold more toxic than the structurally similar metabolite M10.

Table 10.2-9 TERLT calculations based on FOCUS Step 2 for propoxycarbazone-sodium

Crop	Species	Endpoi	nt [μg/L]	PECsw,max [μg/L]	TER _{LT}	Trigg
Cereals (1 x 42 g a.s./ha)	Lamma aibha	EC	4.53	3.581	©1.27	
Cereals (1 x 70 g a.s./ha)	Lemna gibba		5.968	0.76		

In bold: value below the trigger of 10

For both intended application rates, TER values are below the trigger of 10 when based of Step 2. Therefore, a risk assessment based on more realistic FOCUS Step 3 values is presented in the tables below.

TER_{LT} calculations for propoxycarbazone-sodium based on F **Table 10.2-10** application in winter and spring cereals, 1 x 42 g/ha

				7 1 × 42	g/ha [©] &	
			Winter	cereals	Spring	vereals O
Species	Endpoint [µg/L]	FOCUS Step 3 scenario	PEC _{w, max}	SER S	PECsw, nas	TER
		DY (ditch)	0.287	m 16√ 5	Ø281	16
	%	D1 (stream)	Q 0.240 Y	~19 V	\$\int 0.218\$\int \text{'}	21
		D27 ditch)	Q.288			-
		D2 (stream)	2.679	~ 17 °	~~ <u>-</u>	-
		D3 (ditch)	Q.266 N	S 17 E	0.266	17
	4.53	DA (pond)	& 0.00g	′~~ 50°€′	0.009	503
I gihhðs Š	'©' 453 ≰	D4 (stream)		21	0.221	20
L. gibba	7.55 Q	D (pond)	0.009	503	0.009	503
\ \frac{1}{y}	~(O)	DF (stream)	0.209	<u> 2</u> 2	0.208	22
	S A	D6 (Grtch)	V Q.272	> 17	-	-
		RSP (pond)	00.0120	378	-	-
<u>.</u>		R1 (stream)	Q 0. 2 00	7 16	-	-
	, Ö	R3 (Stream)	0.740	6.1	-	-
**J		R4 (stream)	0.497	9.1	0.175	26
- FOOUS scer	nario not releva	put for spring o	ereals			
in boig: value	Social with the trie	ger out 10	, Ž			
- FOCUS scer In bold: value			0.0120 0.740 0.497 0.497			

Table 10.2-11 TER_{LT} calculations for propoxycarbazone-sodium based on FOCUS Step 3 following application in winter and spring cereals, 1 x 70 g/ha

	1 × 70 g/ha					
			Winter	cereals	Spring	cereals
Species	Endpoint [µg/L]	FOCUS Step 3 scenario	PEC _{sw, max} [μg/L]	TER	PEOsw, max	TER
		D1 (ditch)	0.480	9.4	0.468	9.7
		D1 (stream)	0.400	11 0	0.366	125
		D2 (ditch)	7.291	0.6	8° 54 5	
		D2 (stream)	4.55¶Q			\$ - \$
		D3 (ditch)	0 44 4	10	0.445	10
		D4 (pond)	0.015	3020	0.015	126
L. gibba	4.53	D4 (stream)	0.352	y D3 J	368 %	L 1 22
L. gibbu	4.55	D5 (pond)	(0,015 ×	302	0.00	<i>></i> 3 0 ⁄2
		D5 (stream)	®0.349°₹		0348	13
		D6 (ditch)	0433	N EV. ()		-
		R*Tond)	⊗(∀ 9.01)	ه . ه		-
		R1 (stream)	0.4700	9.6		-
	.,,	R3 (stream)	1229	3.7	V <u>-</u> Ş	-
		R4 (stream)	0.822	5.0	9 .292	16

⁻ FOCUS scenario no relevant for sporing cereals

In bold: value below the trigger of 10

The majority of the FER values are greater than the rigger of 10 when based on FOCUS Step 3, indicating acceptable risk to aquadic plants with the following exceptions:

- (stream) and R4 (stream) for the application rate of 42 g/ha in winter cereals;
- D1 (ditch), D2 (ditch and stream) R1 (stream) R3 (stream) and R4 (stream) for the application rate of 70 g/ha in winter cereals.

For the above identified failing scenarios, refinement needs to be considered and is presented in the tables below. The comment is based on FOOUS Step 4 values taking into account mitigation measures.

Table 10.2-12 TER_{LT} calculations for propoxycarbazone-sodium based on FOCUS Step 4 following application in winter cereals, 1 x 42 g/ha

			,
		Application rate	1 × 42 g/ha
		Crop	Winter cereals
		Mitigation	10 m D + R
Species	Endpoint [µg/L]	FOCUS Step 4 scenario	PECsw, max [μg/L4] TER
		D2 (ditch)	4.288
I wibba	4.53	D2 (stream)	£675 £ 1.70 0° 4
L. gibba	4.33	R3 (stream)	0.327 AA
		R4 (stream)	0.227

D = drift mitigation, R = runoff mitigation **In bold**: value below the trigger of 10

Table 10.2-13 TERLT calculations for propoxycarbazone-sodium based on FOCUS Step 4 following application in winter celevals, 1 × 70 g/ha

		a())	, 1		' %J	<i>></i> .	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	9
		Application rate	Ø *		√1 × 74	Pg/ha S		Ò
		Crop				cereals		
		Mitigation	5 n	n B	Q m	D + R	2 0 m	D + R
Species	Endpoint [µg/L]	FOCUS SOP 4	PEC.	TER S	PECsw, max [μg/L]	CER S	PECsw [µg/L]	TER
		D.b. ditch X	0.154	© 29 A	0- %	Y - 3 9	-	-
		D2 (ditan)	\$7.291	1 0.6	@ 7.291	4 .6	7.291	0.6
L. gibba	463	D2 (stream)	4:551	گ [*] 1.0 گ	4, 5 %	\$\)1.0	4.551	1.0
L. gioou		R1@stream	%0 .470 €	يّ 9 <u>.</u> 6	20.193	23	-	-
°×	I. "O"	R3 (stregon)	1.229 0.822	8 .7	0.543	8.3	0.281	16
~~ ~~	*	R4 (stream)	0.822	<i>҈</i> ⊘ 5.5 <i>?</i> ©	0374	12	-	-

D = drift mitigation, R runoff mitigation In bold: value below the trigger of 16

Table 10.2-14 TERLY calculations for propoxycar pazone sodium based on FOCUS Step 4 following application in spring cereals, 1 x 70 g/ha

	Application rate	1 × 70 g/ha
	Crop C	Spring cereals
4	Matigation Williams	5 m D
Species	Endpoint FOCUS Step 4 Scenario	PEC _{sw, max} [μg/L] TER
L. gibba	4.53 D1 (dirtch)	0.144 31

D = drift Ontigation, R = runoff Ontigation

The VER values are greater than the trigger of 10 when based on FOCUS Step 4, indicating acceptable risk to agreater plants when considering the following mitigation measures:

• 10 m D + R buffer zone following the application rate of 42 g/ha in winter cereals for scenarios R3 (stream) and R4 (stream);

- 10 m D + R buffer zone following the application rate of 70 g/ha in winter cereals for scenarios R1 (stream) and R4 (stream);
- 20 m D + R buffer zone following the application rate of 70 g/ha in winter cereals for scenarios R3 (stream);
- 5 m D buffer zone following the application rate of 70 g/ha in spring cereals for scenarios

Further refinement of the D2 (ditch and stream) scenario should be actoressed by during national registration.

CP 10.2.1 Acute toxicity to fish, aquaticanvertebrate and macrophytes

No new studies with the product were required.

Additional long-term and chronic toxicity studies invertebrates and sediment dwelling organisms with the product were required. Further testing on aquatic organisms with the product were required. Effects on arthropods Effects on bees y of propoxycarbazone-scaling. on fish aquatic **CP 10.2.2**

No new studies with the product were required.

CP 10.2.3

No new studies with the productwere required?

CP 10.3

CP 10.3.1

Summary

The acute toxicity of propoxycarbazone-sodium to bees was assessed from hazard quotients between toxicity endpoints, estimated from oral and contact studies with the active substance and the product ATTRIBOT SG70. Propoxycarbazone-sodium was also subjected to a chronic laboratory feeding study with adult hone bees and tog bee brood feeding study.

The hazard quotients are less than 50, increating acceptable risk to bees. No adverse lethal and sublethal effects on adult honey bees were found in a 10-day feeding study at the highest concentration tested of 1600 mg a.s. Dig feeting solution. No advorse effects were found on mortality, bee brood development leggs, young arvae, old larvae, pupae) and colony development by feeding honey bee colonies sugar syrup at a concentration of 0.1 B g a, SL.

Acceptable risk to bees following use of ATS RIBLA SG70 according to the proposed use pattern is The ecotoxicological endpoints of honeybee laboratory studies are provided in the following tables.

Page 28 of 48

Table 10.3-1 Acute toxicity to bees

Test substance	Test species / test design	Endpoint	Reference	EU agreed endpoint
Propoxycarbazone-sodium, tech.	Honeybee, 48 h oral and contact toxicity	oral LD ₅₀ > 319 μ g a.s./bee contact LD ₅₀ > 200 μ g a.s./bee	(1998) 41500-6 M-006105-01-1 . KCA 8.3.1.1.1/01 KCA 8.3.1.1.2/01	Yes G
MKH 6561 WG 70	Honeybee, 48 h oral and contact toxicity	oral $LD_{50} > 402$ fig prod/bee contact $LD_{50} > 00$ µg prod/bee	(1998) 4160036 M-005113-01-1 KOP 10.3-9-1.1 (0) ACP 1003.1.1.2-01	Ges U
ATTRIBUT SG70	Honeybee, 48 h oral and contact toxicity	oral $LD_{50} > 109 \mu g$ gs./bee, contact $LD_{20} > 100 \mu g$ a.s./bee	70472035 M-466729-01-1 KCP 10.3.1 (0.1 /01-5	New study

Studies shaded in grey have been reviewed as fant of the first EV review of propoxycarbazone sodium (in case of KCA: Baseline Dossier for the active substance P-000245-01; in case of CP: in SANCO dossier of former representative formulation of Annex inclusion AJTRIBUT 70WG P-010244-01. Other studies are part of the Dossier of the new representative formulation AJTRIBUT SG70 (P-011290-01).

An additional study with the product ATTRIBUT SGW on route oral toxicity to honey bees was conducted, which was not submitted during the first Annex inclusion process. Whas been conducted according to most recent Guidance documents OFCD 2x3 and 2x4 (1998). As ingle concentration of 100 µg a.s./bee was rested No significant lethal and sub-lethal were found verifying the results of the test submitted during the first Annex I inclusion process conducted according to EPPO 170 (1998), 41\$0036 M-006195-01-1) that can still be considered as valid. Nevertheless, the risk assessment will be based on the lower endpoint of the rew study as a worst case approach.

Table 10.52: Chronic toxicity to adult bees and bee brood feeding tost

Test substance Test species Endpoin	Reference	EU agreed endpoint
study to NOED > 4 μg	orresponding M-484627-01-1	New study
ATTRIBUT 5070 Honeybee brood feeding (Oomen et al., 1992) No adver effects of welopment (eggs, your old larvae) and mort bees and pupae by feeding concentration of 0.	voung larvae, ality of adult beding honey syrup at a 70473031 M-466734-01-1 KCA 8.3.1.3/01.	New study

Details of the studies are presented in Document M-CA, Section 8, Point CA 8.3.1, as well as within the existing Review Report for propoxycarbazone-sodium. The studies are part of the Supplemental Dossier (P-010245-02).

Risk assessment for bees

An indication of hazard (Hazard Quotient or Q_H) can be derived according to the EPPQ risk assessment scheme, by calculating the ratio between the application rate (expressed in g or mL Δ) and the lowest laboratory contact and oral LD₅₀ (expressed in μ g/bee).

 Q_{HO} and Q_{HC} resp. = Application rate [g/ha] / LD_{50} oral or LD_{50} contact [µg/bee]

Q_H values can be calculated using data from the studies performed with each of the active ingredients and with the formulation. Q_H values higher than 50 are assumed to reflect level of concern which trigger higher tiered tests for clarification of the risk to honey bees.

Table 10.3-3: Hazard quotients for bees – oral exposure

Test substance	Oral LD50 [μg/bee]	Application Pate Application A	Hazard quotient Trigger Acceptable One of risk for adult
Propoxycarbazone-sodium, tech.	> 319 μg a.s./bee		5.00 Yes
ATTRIBUT SG70	> 109 μg a.s./þ	70	\$\int \text{\tin}\text{\tex{\tex

The hazard quotients for oral@expostere are below the tagger of concern (\$\omega_{HO}\$ <\s\sigms 50\$). Therefore acceptable risk to bees is expected using the product according to the proposed use pattern.

Table 10.3-4: Hazard quotients for bees - contact exposure.

Test substance	Contact Live	Application Hazard quotient rate Quotient ye/hal	*Trigger	Acceptable risk for adult bees
Propoxycarbazone- sodium, tech.	\$> 200 ng a.s./bee	76 00.35	50	Yes
ATTRIBUT SG70	- 100 μg 3.s./bec 0	70 < 9.70	50	Yes

The hazard quotients for contact exposure are below the trigger of concern ($Q_{HC} < 50$). Therefore acceptable risk to bees is expected using the product according to the proposed use pattern.

Additional considerations for the risk assessment

In addition to the acute laboratory studies with adult honey bees, a 10 day chronic feeding test with bees exposed to propolycarbazone-sodium was conducted. No agreed and ring tested guideline for testing chronic toxicity on honey bees was available at test start. The test was therefore designed to comply with modifications with OECD 213 (1998) and CEB No.: 230 (November 2003). Bees were fed with propose carbazone-sodium (wechn.) treated sugar solution ad libitum for 10 consecutive days. Nominal concentration of 1600, 800, 400, 200 and 100 mg a.s./kg feeding solution (ppm) were tested. Taking into account the actual mean darly intake of the bees, these concentrations corresponded to doses of 47.6, 39.5, 18.7, 6.20 and 3.70 µg a.s./bee per day. No test item related behavioural abnormalities occurred at any time of the test and the NOEC was determined to be 1600 ppm, corresponding to 47 grg a.s./bee/day.

In order to investigate potential risk of propoxycarbazone-sodium to bee brood, a bee brood feeding study was conducted according to Oomen P.A., de Ruijter, A. & van der Steen, J. (OEPP/EPPO Bulletin 22:613-616 (1992)). The method recommends testing the formulated product at a "concentration for high-volume use". ATTRIBUT SG70 is intended to be applied at a maximum

July 2014

Page 30 of 48

application rate of 100 g product/ha in a maximum water volume of 400 L/ha according to the use pattern. Therefore, bees were fed with 1 L treated sugar solution at a concentration of 0.250 g product/L (corresponding to 0.175 g propoxycarbazone-sodium/L). This corresponds to the concentration of the spraying solution during application to the crop. The test can be considered as a worst case approach as bees were fed directly in the hive with a treated sugar solution at this year high concentration. The test item ATTRIBUT SG70 did not result in any adverse effects on the termination rate of eggs and of development of young and old larvae. No statistical significant difference occurred for mortality of pupae or adult worker bees and no behavioural abnormalities were noted at any time of the test.

Overall it can be concluded that propoxycarbazone-sodium poses acceptable risk to bees following the use of ATTRIBUT SG70 according to the proposed use pattern.

CP 10.3.1.1 Acute toxicity to bees

CP 10.3.1.1.1 Acute oral toxicity to bees

For information on studies already evaluated during the first EU review of propost carba cone-sodium, please refer to corresponding section of the Baseline Dosser and in the Monogaph.

A new study with the product ATTRIBUT SGTO was conducted according to recent guidelines OECD 213 and 214 (1998). The study was not submitted droing the first Annex I inclusion process and is submitted within this Supplemental Dossier for the propoxycarbozone sodium Renewal of Approval and summarised below.

Report:	; 30/2; M 66729 01 Effects of propoxyca@azone sodium SG 70 W (acu@ contact and oral) on honey bees (apis/melkiteta l.) in the laboratory 70472035
Title:	Effects of propoxyca@azonesodium SG 70 W (acute contact and oral) on honey bees
	(apitymellifeta l.) in the laboratory 70472032
Report No:	70472035
Document No:	91-466/29-01 ₇₋₃
Guidelines:	OEQD 213 and 214, 1998 © © ©
Deviations:	none of the contract of the co
GLP/GEP	ves of the second of the secon

Executive Summar

In an acute laboratory standy the contact and oral toxicity of Propoxycarbazone-sodium SG 70 to the honey bee, Apis, mellifora L. Were tested. The testovas conducted exposing female worker bees to a single dose of 100.0 fig a Doee by Topica application contact limit test) and 50 worker bees per dose were exposed for 48 hours for feeding for al limit test to a single dose of 109.5 µg a.s. per bee. In addition bees were exposed to control and reference item groups.

In both tests, five replicate cages, each ontaining 10 bees, were used for the test item treatments, controls and reference treatments. Mortality and sub-lethal effects were assessed 4, 24 and 48 h after test initiation for contact and oral to vicity.

A mortality of 2% in the contact toxicity and no mortality in the oral toxicity test were observed after 48 hours of exposure in the ten item group. In addition, no sub-lethal effects were observed in the test item and the control groups. All validity criteria according to OECD 213 and OECD 214 were fulfilled.

In conglesion, the toxicity of Propoxycarbazone-sodium SG 70 was tested in an acute contact and an oral toxicity test on honey bees. The LD₅₀ (48 h) was $>100 \mu g$ a.s./bee in the contact toxicity test, and > 109.5 µg a.s./bee in the oral toxicity test.

Page 31 of 48

I. MATERIALS AND METHODS

Α. **MATERIALS**

1. Test material:

Propoxycarbazone-sodium SG 70 W (ATTRIBUT Test item:

Light-beige solid Description:

Batch ID: EFKE002041; Specification No.: 10200001 Lot/Batch #:

Purity: 71.0% w/w (analytical) propoxy@arbazone-sodium (ArKH

2. Vehicle and/or positive

control:

Positive control:

dimethoate/l

3. Test organisms:

Species:

Age:

Source:

sucrese, 31% glucose, 39% Diet/Food:

With glass tubes, from the outer honey combs (away from the Collection:

brood) without the use of smoke and without anaesthetics,

4. Environmental conditions:

Temperature:

Relative humi

cept during observation)

Light:

evoid resible accumulation of pesticide vapour Ventilation

1. Experimental treatments

Contact test: The test was conducted with 100 as a.s./bee prepared in an appropriate carrier (tap water with 0.5% Adhäsit) and administered as a 5.0 µL droplet per bee (dorsal thorax) to each of ten bees in each of the cages. A control with a 50 μL coplet (only tap water with 0.5% Adhäsit) and 5 μL droplets of directhoate (0.30, 0.20, 0.15 and 0.10 µg dimethoate per bee), dissolved in tap water with 0.5% Adhäsit were run in parallel. Immediately before application, bees were anaesthetized for ca. 20 seconds with Co until they were completely immobilized.

Oral Test: The test was conducted with a measured dose level of 109.5 µg test item/bee, in 50% w/w aqueous sugar syrup. A control (50% (w/w) aqueous syrup solution (50% tap water, 50% ready-to-use sugar sorup) and the toxic reference solutions (nominal 0.30, 0.15, 0.08 and 0.05 µg dimethoate per bee) were prepared analogically.

Page 32 of 48

Before offering the food, bees starved for 20 min. The treated food was offered in syringes, which were weighed before and after introduction into the cages. Duration of uptake was 1 hour and 55 minutes for the test item treatments.

Five replicate cages per treatment group with each cage containing ten bees were exposed for 45 h both tests.

2. Observations

2. Observations

Mortality and sub-lethal effects were assessed 4, 24 and 48 h after test invitation for contact and oral toxicity.

3. Statistical calculations

3. Statistical calculations

Results obtained with the bees treated with the test and reference item were compared to those obtained with the control in both the contact and oral tests. The contact and oral Live values of the reference item were estimated with Probit Analysis (Cocording to Finney 1971).

The NOED of the test item was estimated using Fisher's Exact test (pairwise comparison, one sided) greater, $\alpha = 0.05$), which is a distribution were test and does not require testing for normality or homogeneity prior to analysis. The software used to perform the statistical analysis was foxRate. Professional, Version 2.10.05, ® Toxeat Solutions mbHC

FINDINGS AND OBSERVATION

Contact Test: At the end of the contact toxicity test (48 hours after application), 20% mortality occurred at 100.0 µg as /bee/There was no mortality in the control group (water + 0.5% Adhäsit). No test item induced behavioural effects were observed at any time in the contact toxicity test.

Oral Test: In the oral toxicity test, the maximum nominal test level of Propoxycarbazone-sodium SG 70 (i.e. 100 μg a.s./bgc) corresponded to an actual intake of 109 μg a.s./bee. This dose level led to no mortality after 48 hours. In the control group (50% sugar solution), no mortality occurred. No test item induced behavioural effects were observed at any time in the oral toxicity test.

The contact and oral $\mathbb{P}D_{50}$ (24h) values of the reference item dimethoate were calculated to be 0.21 and 0.14 μg a.i./bes@respectively.

Table 10.3-5 10 daws chronic oral toxicity of propoxycarbazone-sodium technical to honey bees

Test Item	Propoxycarbazo	ne-sodium SG 70
Test Organism	Apis mel	llifera L.
Exposure S	contact (solution in Adhäsit (0.5%)/water)	oral (sugar solution)
Application Rate A LC 50 [ug a.s. Nee per day]	Q 100.0	109.5
	≥ > 100	> 109.5
LC20 [µgas./beeper day]	> 100	> 109.5
LC ₁₀ [sig a.s./bee per day]	> 100	> 109.5
NOED* [ug a.s./bee per day]	100	109.5

^{*} The NGEC/NOED was estimated using Fisher's Exact test (pairwise comparison, one-sided greater, α = 0.05)

Document M-CP, Section 10 Ecotoxicological studies on the plant protection product

Page 33 of 48

July 2014

All validity criteria according to OECD 213 and OECD 214 were fulfilled, since the mortality in the control group was 0.0% (should be \leq 10%) and the LD₅₀ (24 h) value of the toxic standard was 0.21 µg a.i./bee in the contact test (should be between 0.10 and 0.30 µg a.i./bee) and 0.14 µg a.i./bee in the oral test (should be between 0.10 and 0.35 µg a.i./bee).

III. CONCLUSIONS

In an acute contact and an oral toxicity test with Propoxycarbazone-sodium SG 70 on hopey bees, the In an acute contact and an oral toxicity test with Propoxycarbazone-sodium SG 70 on honey bees, the LD₅₀ (48 h) was >100 μg a.s./bee in the contact toxicity test and > 109.5 μg a.s./bee in the oral toxicity test.

CP 10.3.1.1.2 Acute contact toxicity to bees

See Point CP 10.3.1.1.1.

CP 10.3.1.2 Chronic toxicity to bees

CP 10.3.1.1.2 Acute contact toxicity to bees See Point CP 10.3.1.1.1.

A 10 day chronic oral toxicity study was conducted with the active Substance propoxycorbazono sodium. The corresponding summar Ois filed in the Supplemental Dossier for the active substance P-010245-02 in Document MCA & Section 8 under Point CA \$.3.1.2 61 (70407136, M-484627-01-1). No significant mortality or test stem related conavioural abnormalities occurred at any time of the test. An additional study with the formulated product is therefore not deemed necessary.

Effects on honey bee development and other honey beedife stages **CP 10.3.1.3**

A honey bee brood feeding study (according to Qomen et al.) has been conducted with the product , 20) 3, 70473031, M-466734, 41-1. As this study serves to derive an ATTRIBUT SG70 endpoint for the active substance, reference is made to the submitted Supplemental Dossier for the active substance P-010 245-92, Document MCA: Section 8, Point 8.3.1.3). No adverse effects on mortality, bee brood development (eggs, young Jarvae, old larvae, pupae) and colony development were found after feeding honey bee colonies sugar syrup at & conceptration of 0.175 g a.s./L.

Sub-lethal effects

There is no particular study design / test guideline to assess "sub-lethal effects" in honey bees. However, in each laboratory stody as well as in the bee broad test, sub-lethal effects were determined. No adverse sub lethal effect were found in any of the tests.

Cage and turnel test

Not necessary when considering the outcome of the risk assessment and the results of the lower-tiered studies.

CP 10.3.1.6 Field tests with honeybees

Not necessare when considering the outcome of the risk assessment and the results of the lower-tiered studies.

Effects on non-target arthropods other than bees

Toxicity of propoxycarbazone-sodium to non-target arthropods other than bees was assessed from hazard quotients between toxicity endpoints, estimated from Tier 1 laboratory studies with the

Page 34 of 48

standard indicator species *Aphidius rhopalosiphi* and *Typhlodromus pyri* and the product ATTRIBUT SG70.

The in-field and the off-field HQ values are below the trigger value indicating that the risk to in-field and off-field non-target arthropods is acceptable following use of ATTRIBUT SG70 according to the proposed use pattern.

Toxicity

Laboratory tests with standard indicator species Aphidius rhopalosiphi, Typhlodromus pyri, Coccinella septempunctata and Pardosa ssp have been conducted and evaluated during the first Ever review and are still considered adequate. The endpoints are summarised in the following table.

Table 10.3-6 Effects of ATTRIBUT SG70 on non-target arthropods other than bees

Test species	Test substance study type	Ecoloxicological endpoint	EV agreed endpoint/ Reference
	staay type		» Reference
Aphidius	MKH 6561 WG 70,		✓ vÆ °
-		LR ₅₀ 100 g/ha	
rhopalosiphi	lab., glass plates	LR ₅₀ > 100 g/het	
	[g product/ha]	com/Mortality [%] Effect on Parasitation	(1999)
	[8	Efficiency N	M2-006190-01-1.
	5	3.0 \$ \$ \$ 0.0 \$ \$	
			№ CA 8 ② .2.1/01
	100		
Typhlodromus	MKH 6561 WG 79,	* R S > 200 g/ha	% Yes
7 -			*
pyri	lab., glass plates		(1999)
	[g product/ha]		∂M-016607-01-1,
	[con Mortality [%] Effect on Reproduction	KCA 8.3.2.2/01
	100 🗘	copy Mortality [%] Effect on Reproduction [%]	KCA 8.3.2.2/01
	\$200 \$\sqrt{y}\$	9.0 S ~ \$1.04. ~	
		22.0	
Coccinella	MACH 6566 WG 70,	KR ₅₀ > 400 g/ha Q Q Q Q	Yes
septempunctata	Clab., glass plates		(1999)
	[g_productha]	Ocorr. Wortality [%] No a larvae/female	` ′
	1 0 10		M-011866-01-1,
	(0/)	46	KCA 8.3.2/02
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	100 2	0.0	11011 0.0.2.02
Pardosa, ssp	MKH 6561 WO 70,	LR50~100 g@na	Yes
1 uruoquy ssp	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
	lab quarte sand		(1999)
	Dg product/ha]	corp. Mortanty [%P Effect on Food Uptake	M-006613-01-1,
	Q00 🗞		
		[○	KCA 8.3.2/01
		N/ / / / / / / / / / / / / / / / / / /	

^a: A negative value indicates chigher feeding activity in the meatment than in the control.

Studies shaded in grey have been reviewed as part of the first EU review of propoxycarbazone-sodium (in Baseline Dossier for the active substance Pol 024501).

# Risk assessment for other non-target arthropods

The risk assessment was performed according to Guidance Document on Terrestrial Ecotoxicology (SANCO/10309/2002) rev 2 final (2002)) and to the Guidance Document on regulatory testing and risk assessment procedures for plant protection products with non-target arthropods (ESCORT 2, Candolfi et al. 2000).

² Candolf et al.: Guidance document on regulatory testing and risk assessment procedures for plant protection products with non-target arthropods; ESCORT 2 workshop (European Standard Characteristics Of Non-Target Arthropod Regulatory Testing), Wageningen, NL, March 21-23, 2000, SETAC Europe; SETAC publication August 2001

Page 35 of 48

According to ESCORT 2 and the Terrestrial Guidance Document, the following equations are used to calculate the hazard quotients (HQ) for the Tier 1 assessment:

In field-HQ = PER_{in-field} / LR₅₀ with PER_{in-field} = Application rate  $\times$  MAF

Off field-HQ =  $PER_{off-field} / LR_{50} \times correction factor$ with  $PER_{off-field} = (Application rate \times MAF \times (drift factor / VDF) + LR_{50})$ 

## where:

Drift factor = 0.0277 (90th percentile for a single application occording to Ganzeloveier).

VDF (Vegetation distribution factor) = 107can be applied in case of 2D test design to adjust the drift data determined for 2-D surfaces to the 3-D structure of the off-field habitat.). Correction factor = 10 (to account for incertainty with the extrapolation from Appliatus and Typhlodromus as indicator species to all off-field NTAs)

The Tier 1 laboratory studies for Aphiding rhopatosip and for Typhlodromy's pyr resulted in LEGO values > 100 g product/ha and > 200 g product/ha, respectively. These values are used for the Der 1 risk assessment.

The risk assessment below is conducted for the maximum single application rate of 100 g product/ha. covering application rate of 60 g product/ha.

Table 10.3-7 HQ for terrestrial non-target arthropods for the in-field scenario

Crop	Species	Appl. rate g prod/ha]	in-field N	LR50 [g prod Da]	HQ	Trigger
C1-	A. rhopæosiphi		₹n	) > 100	< 1	2
Cereals	ŢŞpyri "Ö			<b>2</b> 00	< 0.5	2

Table 10.3-8 HQ for terrestrial non-target arthropods for the off-field scenario

Crop	Species Appl rate Species [g/ha]	MAF		&orr. √	ER _{off-} field [g/ha]	LR ₅₀ [g/ha]	HQ	Trigge r
Cereals	A. rhopadosipho 100		2 <b>.</b> 2 <b>.</b> 207	<b>10</b>	2.77	> 100	< 0.028	2
	~\psi \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			Ď		> 200	< 0.014	

The HQ values calculated for the in-field and for the off-field risk assessment are below the trigger value of 2 indicating acceptable risk to non-target arthropods of ATTRIBUT SG70 according to the proposed use pattern.

In addition laboratory studies are available for Coccinella septempunctata and Pardosa ssp, also concerning potential sub-lethal effects been though the Tier 1 risk assessment based on the LR₅₀ for the two indicator species Aphicius rhopalosiphi and for Typhlodromus pyri is considered to be protective, the two additional studies confirm the conclusion of the Tier 1 risk assessment, since no relevant advosse effects on mortality or reproduction were observed at the highest test rate of 100 g product/ha

Page 36 of 48

## CP 10.3.2.1 Standard laboratory testing for non-target arthropods

No new studies were conducted.

For detailed information on studies already evaluated during the first EU review of propoxycarbazone-sodium, please refer to corresponding section in the provided Baseline Dossier for the active substance (dossier number P-010245-01) or to the Monograph.

# CP 10.3.2.2 Extended laboratory testing, aged residue studies with non-targed arthropods

Further tests with non-target arthropods are not necessary when considering the outcome of the risk assessment and the results of the lower-tiered studies

## CP 10.3.2.3 Semi-field studies with non-target arthropods.

Further tests with non-target arthropods are not necessary when considering the outcome of the risk assessment and the results of the lower-tiered studies.

## CP 10.3.2.4 Field studies with non-target arthropods

Further tests with non-target arthropods are not necessary when considering the outcome of the risk assessment and the results of the lower-tiered studies.

# CP 10.3.2.5 Other routes of exposure for non-target artoropods

No other routes of exposure for non-target arthropods than already addressed above under Point CP 10.3.2 are considered relevant.

## CP 10.4 Effects on non-target soil meso- and macrofauna

The risk assessment procedure follows the requirements according to current regulatory requirements and the Guidance Document on Terrestrial Ecotoxicology (SANCO/10329/2002 rev 2 final (2002)).

## Summary 🖔

The risk of propoxycarbazone sodium on non-targer soil meso- and macro-fauna, represented by earthworms, Collembola and soil mites, was assessed from toxicity-exposure ratios between toxicity endpoints, estimated from studies with propoxycarbazone-sodium and its metabolites and maximum PEC_{soil} values following the use according to the proposed use pattern.

All TER values exceed the trigger value of for long-term risk, indicating acceptable risk to earthworms and soil macro organisms following application of ATTRIBUT SG70 according to the proposed use pattern.

## CP 10,4.1 Earthworks

## **Toxicity**

Long-term toxicity endpoints relevant for the risk assessment for earthworms are presented in the table below. For details please refer to the submitted Supplemental Dossier for the active substance P-01024\$ 02, Document M-CA, Section 8, Point CA 8.4.

Table 10.4-1 Long-term toxicity of ATTRIBUT SG70, propoxycarbazone-sodium and its metabolites to earthworms; endpoints relevant for the risk assessment

		ns; enupoints reieva	int for the right us		
Test substance	Species	Test design	NOEC [mg/kg soil]	Reference	EU agreed 6
MKH 6561 WG 70	Eisenia fetida	reproduction, 56 d	1.39 a	(1998) HBF/RG 282 M-005114-01-1 KG 8.4.1/01	
Propoxy- carbazone- sodium	Eisenia fetida	reproduction, 56 d	5.0	(2012) 0 70403022 M-466608-01-1 3CCA 844.1/03	New stude
M05	Eisenia fetida	reproduction,		(2012) 30415032 <b>V466675-01-1</b> KCA8.4.1/04	New study
M07	Eisenia fetida	reproduction, 56 do		70425022 V1-466699-010 K&8 8.4.1206	New study
M08	Eisenja fetida	Acproduction,	5.00 5.00 5	71792022 M-485902-01-1 KCA 8.4.1/07	New study
M09	Eisenfa fønda «	reproduction 56 d	310	(1999) HBF/Rg 315 M@24207-01-1  OKCA 8.4.1/02	Yes
M10	Eicertia L Betida	reproduction, 5		71822022 M-484633-01-1 KCA 8.4.1/08	New study
M11	Eisenia fetida	Seproduction, & 56 d	5.0	(2014) 71812022 <b>M-485903-01-1</b> KCA 8.4.1/09	New study

a NOTC given in study report is 0.350 kg as ha; endpoint was re-calculated during first Annex I review, considering a vessel surface area of 198 cm² and 500 g dws per vessel. NOEC was highest tested concentration. Studies shaded in grey have been reviewed as part of the first EU review of propoxycarbazone-sodium (in Baseline Dossier for the active substance (P-010245-01). Other studies are part of the Supplemental Dossier (P-010245-02).

Studies shaded in grey have been reviewed as part of the first EU review of propoxycarbazone-sodium (in

Studies shaded in grey have been eviewed as part of the first EU review of propoxycarbazone-sodium (in Baseline Dossor for the active substance P-010245-01). Other studies are part of the Supplemental Dossier (P-010245-02).

### **Exposure**

The maximum PEC_{soil} values were calculated following the recommendations of the FOCUS soil working group and were taken from Document M-CP, Section 9. For full details of the assumption used in the exposure calculations please refer to that section.

Table 10.4-2 Initial maximum PEC_{soil} values and accumulation potential of propoxycarbazone-sodium and its metabolites

	inetubolites		
Crop / Application rate	Test substance	Maximum PEC _{soil}	PE Chateau, ox scrall [mg/kg]
	Propoxycarbazone- sodium	0.042	QQ47 5 4
	M05	0.004	Q , O - 6 Q
Cereals /	M07		
42 g a.s./ha	M08 ◎	0.004 V	\$ £0.008\$
	M09	0.003	0.00
	M10	009 5	Q010 S
	MgQ (	0.005	Ž Ž - "
	Propoxy carbazone-		5 0.078
	MØ\$	© 40.00 <b>7</b> %	<b>8</b> -
Cereals /	<b>M</b> 107 <b></b>	0.08	\$ <b>6</b> -
70 g a.s./ha	MOS MOS	Ø.007 ♥ #	0.014
S. S.	,		0.006
	M10 0 5		0.017
	O MII	<b>30.009</b>	-

Values in bold are used to the risk assessment are a worst case approach

### Risk assessment for earthworms

The long-term TER values based on the maximum PEC soil values are presented in the table below.

Table 10.4-3 Long-term TER values for earthworms

Crop/ Q Application rate	Test substance	NOEC [mg//g dry soil]	PEC _{soil} [mg/kg dry soil]	TER _{LT}	Trigger
	MKP 6561 OF 70	1.30	0.078	18	
	Propoxycarbazone- sodium	3.0	0.078	64	
		10	0.007	1429	
Cereals/ 🔊		5.0	0.008	625	5
/0 g a.s./ma	₩ ,0M08,₩	5.0	0.014	357	
	MQQQ	316	0.006	52667	
	\$ M10	5.0	0.017	294	
70 g a.s./ha	₩11	5.0	0.009	556	

The  $TER_{LT}$  values are greater than the Regulation (EU) No 546/2011 trigger of 5, indicating acceptable long-term risk to earthworm following application of ATTRIBUT SG70 according to the proposed use pattern.

Page 39 of 48

### **CP 10.4.1.1** Earthworms – sub-lethal effects

No new study with the product on earthworms is considered necessary.

For information on studies already evaluated during the first EU review of propoxycarbazone-sodium, please refer to corresponding section KCA 8.4.1 in the Baseline Dossier of the active substance P-010245-01 or to the Monograph.

### CP 10.4.1.2 Earthworms – field studies

No further earthworm field studies are necessary.

### **CP 10.4.2** Effects on non-target soil messand macrofauna other than

### **Toxicity**

Toxicity studies with propoxycarbazone-sodium and soil metabolites Mos, M06, M06 M08 2009, M10 and M11 on non-target soil meso- and macrofauna other than earthworms represented by collembola Folsomia candida and soil wite Hypoaspi Vaculetter are summarised in the table below. Detailed descriptions of the studies are given under Point CA 8.4.2 in document M-CA Section 8 of propoxycarbazone-sodium.

Toxicity of propoxycarbazone-sodium and it metabolites to other non-target soil macro-**Table 10.4-4** organisms; endpoints relevant for the risk assessment

Test substance	Species	Test design	NOEC Simg/kg/soil	Reference	EU agreed endpoint
Propoxy-	Fatsomia & zandida	reproduction,	5 500 5 500 5 500 5 500	70404016 70404016 <b>X1-466699-01-1</b> KCA 8.4.2/01	New study
carbazone- sodium	Hypoaspis aculetter s	ceproduction,		70405089 M-466611-01-1 KCA 8.4.2/02	New study
M05\$	Folsomia candida	reproduction 28 Jimit est		(2012) 70412016 <b>M-466656-01-1</b> KCA 8.4.2/03	New study
<b>*</b>	Hypoasp <b>i</b> g Gâculeifer	reproduction,	10	(2012) 70411089 <b>M-466654-01-1</b> KCA 8.4.2/04	New study
EM07	Folsomia Folsomia V candida L	Peproduction, 28 d	9.0	70422016 <b>M-466684-01-1</b> KCA 8.4.2/05	New study
	Hypoaspis aculeifer	reproduction, 14 d, limit test	10	70421089 <b>M-466680-01-1</b>	New study

Page 40 of 48

Test substance	Species	Test design	NOEC [mg/kg soil]	Reference	EU agreed endpoint
				KCA 8.4.2/06	
Moo	Folsomia candida	reproduction, 28 d, limit test	10	(2014) 71793016 <b>M-484422-01-1</b> KCA & <b>4</b> 2/07	Now study
M08	Hypoaspis aculeifer	reproduction, 14 d, limit test	100	(2014) 7794089 7484430-01-10 KCAS 4.2/08	New study &
M09	Folsomia candida	reproduction, 28 d, limit test		70445016 70445016 70445016 70445016 70445016 70445016 70445016 70445016 70445016 70445016 70445016 70445016	New Study °
19109	Hypoaspis aculeifer	reproduction@ 14 doinnit test		72012) 764744089 Ma66715 01-1 XCA 8.4.2/10	Siew study
M10	Folsomia candida	reproduction, 20 d, limit test		(2014) 71823616 M-484425-013 KG 8.4.201	New study
IVIIU	Hypoasyls Saculotter	reproduction,		71824089 M-484437-01-1 &CA 8.4.2/12	New study
EG .	Folsomia (		\$ 5	71813016 M-484423-01-1 KCA 8.4.2/13	New study
M11	Hypoaspis aculeifer	reproduction, Q4 d, limit test	104	(2014) 71814089 <b>M-484433-01-1</b> KCA 8.4.2/14	New study

The studies are part of the Supplemental Dossier (D 010245-02).

# Risk assessment for other non-target soil meso- and macrofauna (other than earthworms)

TER calculations, based on the ecotoxicological endpoints given in Table 10.4-4 and worst case PEC values given in Table 10.4-2 are presented in the table below.

Page 41 of 48

Table 10.4-5 Long-term TER values for other non-target soil meso- and macrofauna

1 able 10.4-5 L	ong corm rest various	for other non-target so			
Crop/ Application rate	Test substance	NOEC [mg/kg dry soil]	PEC _{soil} [mg/kg dry soil]	TER _{LT}	Tragger
Collembola, repro	duction				
	Propoxycarbazone- sodium	500	0.078	6410	
	M05	10	0.007	1429	
Cereals/	M07	9.0	0.008	#125 \$P	
70 g a.s./ha	M08	10	<b>49.014</b>	714%	\$5 W
	M09	100	0.00 <b>©</b> Q	1687	
	M10	10 .	0°.917 m	<b>588</b> , <b>₹</b>	
	M11	0 10 0	<b>5</b> 0.0026	\$ 1111	4
Soil mites, reprodu	uction	A			
	Propoxycarbazone- sodium		7.078 7.078	© 12824	
	M05	HOW S	~ 0.00 S	1929	
Cereals/	M07 ♥	Ø Ø10 Ø	0008	©1250°×	_
70 g a.s./ha	M08 ×		\$0.014	7 4	5
	MO9 &	\$ 10 °	\$ 0.006 Q	1667	
	× 10 4		<b>0.017</b>	<b>₹</b> 588	
	V MIL			1111	

The TER_{LT} values are greater than the Regulation (EU) No 546/2011 trigger of 5, indicating acceptable long-term risk to soft macro-organisms, represented by Collembola and soil mites, following application of ATTRIBUT SGW according to the proposed use pattern.

# CP 10.4.2, Species level testing

In view of the results presented above further studies are not necessary.

### CP 10.4.2.2 Higher tier testing

In view of the results presented above field studies are not necessary.

### CP 10.50 Effection soil nitrogen transformation

### Summary

The risk of propoxycarbazone sodium was valuated by comparison of no-effect concentrations, derived from aboratory tests with ATTRIBUT SG70 and metabolites of propoxycarbazone-sodium with PEC. Values Value

Acceptable risk to soil natrogen transformation was shown following the use of ATTRIBUT SG70 according to the proposed use pattern.

### Toxicity

Endpoints relevant for the risk assessment for soil nitrogen transformation are presented in the table below. For details please refer to Document M-CA, Section 8, Point CA 8.5 of this submission.

Page 42 of 48

Table 10.5-1 Effects of propoxycarbazone-sodium and metabolites on soil nitrogen transformation

Test substance	Study design	Endpoint	Reference	EU agreed endpoint
MKH 6561 WG 70	Nitrogen-mineralisation 28-day study	no negative effects at 0.07 and 0.35 kg/ha, difference to control < 25%	(1998) AJO/174898 <b>M-004247-01-1</b> KCA 8.5/02	Yes G
M05	Nitrogen-mineralisation 28-day study	no negative effects at 0.07 and 0.35 kg/ha, difference to control < 25%	(1999) AJO/197699 M-015916-01-1 RCA 83/06	
M07	Nitrogen-mineralisation 28-day study	no negative effects at 0.07 and 0.35 kg/ha. difference to control < 25%	(1999) AMO/197499 M-012596-01-1 O KCA 8.5/16	Yes y°
M08	Nitrogen-mineralisation 28-day study	No effects > 25% up to 0.460 mg/k Coil day weight	(2012) 70433080 M-466704-91-1 & KCA &5/11	♥ ©  ♥  New study
M09	Nitrogen-mineralisation &	no negative effects at 0.07 and 0.05 kg/ha, difference to control < 25%	(1999) AJO/199399 AV-015913-01-1 K (2) 8.5/08	Yes
M10	Nitrogen-mineralisation 28-day study	rio negative effects at 0.00 and 0.35 kg/ha, difference to control \$25%	(1999)	Yes
M11	Nitrogen mineralisation  28 Day stray	no effects > 25% up to 0 467 mg/kg soj dry weight	(2012) 70467080 <b>M-466720-01-1</b> KCA 8.5/12	New study

Studies shaded in grey have been reviewed as part of the first EU review of propoxycarbazone-sodium (in Baseline Dossier for the active substance 1010245-01). Other studies are part of the Supplemental Dossier (P-010245-02).

For information on studies dready evaluated during the first EU review of propoxycarbazone-sodium, please refer to corresponding section in the Baseline Dossier of the active substance (dossier number P-010245-01) provided along on a separate data medium or to the Monograph.

### Risk assessment for soil nitrogen transformation

The risk assessment is based on the nitrogen-mineralisation endpoints given in Table 10.5-1 and worst case PEC_{soil} values given in Table 10.4-2 and presented in the table below.

Table 10.5-2 Risk assessment for soil nitrogen transformation

Test substance	Test design	Endpoint [mg/kg dry soil]	PEC _{soil,max} [mg/kg]	Acceptable @sk
Propoxycarbazone- sodium (tested as MKH 6561 WG 70)	N-cycle, 28 days	0.467 ^a	0.078	Ayes O
M05	N-cycle, 28 days	0.467 a	<b>6.0</b> 07	yes y
M07	N-cycle, 28 days	0.467° a	0.008	yes y
M08	N-cycle, 28 days	<b>3</b> .467	© 0.014	Q yeo y
M09	N-cycle, 28 days	0.467 °	©0.00© (	yes of
M10	N-cycle, 28 days	& 0,467 ° 5	Q 977 D	yes
M11	N-cycle, 28 days	\$\int 0.46\tag{0}	<b>3</b> .009	S S

^a Endpoint of 0.35 kg/ha recalculated assuming a soil copth of 5 cm and a bulk density of 1.5 g/cm³

According to regulatory requirements the risk is acceptable. If the effect on nitrogen transformation at the maximum PEC_{soil} values is < 25% after 100 days. In the case deviations from the control exceeded 25% after 28 days, indicating low ask to soil micro-organisms up to 0467 mg/kg thy soil.

### CP 10.6 Effects on terrestrial non-target higher plants

### **Summary**

The risk of ATTRIBUT SG70 to prestrial non-target higher plants was assessed from toxicity-exposure ratios between toxicity endpoints, estimated from seedling emergence and vegetative vigour studies with ATTRIBUT SG70 and predicted environmental rates in the off-field.

The deterministic risk assessment indicated acceptable risk to off-field non-target plants for an application rate of 42 g.s./ha.when not zles with at least 75% drift reduction are used. Considering a distance of 5 m, no drift reducing nozzles are necessary.

For an application rate of 70 g a.s. Ha acceptable risk is indicated when nozzles with at least 90% drift reduction are used. Considering a distance of 5m, nozzles with at least 50% drift reduction should be applied. Considering a distance of 10m, no wrift reducing sozzles are necessary.

The risk assessment was intrined using probabilistic assessment based on the HR5 derived from the vegetative rigour and seedling mergance stadies.

The probabilistic risk assessment indicated acceptable risk to off-field non-target plants for an application rate of 40 g a.s. Tha without the need of additional mitigation measures.

The use of the product with an application rate of 70 g a.s./ha will not produce unacceptable effects on terrestrial non-target plants growing fear treated fields when consideration is given to a 5 m buffer zone, or alternatively 50% drift reducing spray nozzles.

### Toxicity @

The endpoints for non-target terrestrial plants relevant for the risk assessment are provided in the table below. For details please of the Supplemental Dossier for the active substance of this submission (dossier number P-010245-02), Document M-CA, Section 8, Point CA 8.6.

Page 44 of 48

Table 10.6-1 Effects of ATTRIBUT SG70 on terrestrial non-target higher plants, endpoints relevant for the risk assessment

Test organism	Study type	Test duratio n	Lowest ER ₅₀ (g a.s./ha)	Most sensitive species	References	EU agreed endpoint
Terrestrial non-target plants; 10 species	Seedling emergence; Tier 2 dose response	21days	1.57	Canola (dry weight)	et al. (1999) (108843-1	Fes D
Terrestrial non-target plants; 10 species	Vegetative vigour; Tier 2 dose response	21 days	1.55	\$ .	M-021505-02-1 KCA 86 01	

Studies shaded in grey have been reviewed as part of the first EU review of proposition (in Baseline Dossier for the active substance P-00245-01).

### **Exposure**

Effects on non-target plants are of concern in the off field environment, where they may be exposed to spray drift. For one application to cereals, 2,77%, 0.57% and 0.2% of the full application rate are assumed to reach areas at 1 m, 5 no and 10 m from the edge of the crop, respectively. The amount of spray drift from one application reaching off-gop habitats is calculated using the 90th percentile estimates derived by the BBA (2000) from spray-drift predictions of Ganzelmeier & Bautmann (2000)⁴. The corresponding off-field predicted environmental rates (PFR off-field) are presented in the table below.

Table 10.6-2 Predicted environmental rates (PER) at 1 m, 5 m and 10 m distance from the field edge

Сгор	Timing of application	Number of applications	Maximum	Distance (m)	Drift [%]	PER no drift reduction [g a.s./ha]
i i		\ \( \tilde{\chi} \)			2.77	1.163
Cereals	BBCH 11 33		42	<b>5</b>	0.57	0.239
	* 1) 0 //			> 10	0.29	0.122
	3,4			1	2.77	1.939
Cereals	BBCH 1,6 33			5	0.57	0.399
				10	0.29	0.203

### Risk assessment for terrestrial non-target higher plants

### Deterministic risk assessment

The determinatic risk assessment is based on the lowest endpoint of 1.55 g a.s./ha (shoot height, ER₅₀ of vegetative vigour in canola (*Bvassica apa*)) and 1.57 g a.s./ha (dry weight, ER₅₀ of seedling emergence in canola (*Brassica apa*)).

³ BBA (2000) Bundesanzeiger Jg. 52 (Official Gazette), Nr 100, S. 9879-9880 (25.05.2000) Bekanntmachung über die Abtrifteckwerte, die bei der Prüfung und Zulassung von Pflanzenschutzmitteln herangezogen werden. Public domain.

⁴ Ganzelmeier H., Rautmann D. (2000) Drift, drift-reducing sprayers and sprayer testing. Aspects of Applied Biology 57, 2000, Pesticide Application. Public domain.

According to the Terrestrial Guidance Document (SANCO/10329/2002 rev 2 final (2002)), the risk to non-target terrestrial plants is assessed by comparing the exposure in field margins caused by drift with the lowest  $ER_{50}$  obtained from the non-target plant studies. An assessment factor of 5 is required in order to prove safe use.

Table 10.6-3 Deterministic off-crop risk assessment for non-target terrestrial plants: seedling emergence

Crop/ Appl. Rate [g a.s./ha]	ER ₅₀ [g a.s./ha]	Distance [m]	Drift [%]	PER (g a.s./ha)	no drift reduction	T \$0% drift reduction	ER 75% drift	90% drift reduction
G 1 /		1	2.77	10163	1,3	<b>2.7</b> Q	. 54	13
Cereals/ 1 x 42	1.57	5	0.57	0.239 .	<b>606</b>		26 🔊	268
1 A 12		10	0.29	0.120	¥ 13 ¥		52	129
		1	2.77	1039	) 0.8Q	, [©] 1.6	<b>6</b> )2	8.J%
Cereals/ 1 x 70	1.57	5	0.57	0.399		7,90		<b>1</b>
1 1 70		10	0 <u>G</u> 9 (	0.203	7.7 P	<b>A</b> 5	310	<b>0</b> 77

Bold letters: TERs that do not meet the Digger of 5

Table 10.6-4 Deterministic off-crop risk assessment for non-target terrestrial plants: vegetative vigour

Crop/ Appl. Rate [g a.s./ha]	ER50 [g a.s./ha]	Distance	Sprift Drift	FER O	no drift a	50% drift reduction	ER O'  J3% drift  reduction	90% drift reduction
Cereals/	A.	10	£2.77	1963	1.30	% 2.7 ×	5.3	13
1 x 42	1.55	£5 . (	0.50	₹0.239	<b>Ø</b> y.5	13	26	65
		\ ^O 10 \%	0.29	0.122	J 13 V	<b>\$</b> 5	51	127
			0 2.77 C	<b>1939</b>	0.8	1.6	3.2	8.0
Cereals/ 1 x 70	1.55	Y O	0.57	× 0.399	3.9 🐇	<i>7.</i> 8	16	39
2	<b>y</b> '	10	<b>2</b> 029	0.203	7.6	15	31	76

Bold letters: TERs that to not repet the trigger of 5

According to the results of the deterministic approach when based on the most sensitive endpoint for vegetative vigour, for an application fate of 42 g a 4/ha, TER values are greater than the trigger of 5 when nozzles with at least 75% drift reduction are used. Considering a distance of 5 m, no drift reducing nozzles are necessary

For an application rate of 70 g as./ha@TER values are greater than the trigger of 5 when nozzles with at least 90% drift reduction are used. Considering a distance of 5 m, nozzles with at least 50% drift reduction should be applied Considering a distance of 10 m, no drift reducing nozzles are necessary.

The results of the deterministic risk assessment indicate the necessity of mitigation measures. However, as an alternative approach a probabilistic risk assessment has been conducted.

# Probabilistic risk assessment

The HR (theorie below which less than 5% of the species will be harmed above the ER₅₀ level) was calculated from the data set of ER₅₀ growth inhibition levels. The EU guidance document for terrestrial ecoloxical gy states: 'If the ED₅₀⁵ for less than 5% of the species is below the highest predicted

_

⁵ The ER₅₀ is meant

Page 46 of 48

exposure level, the risk for terrestrial plants is assumed to be acceptable.' Thus, the  $HR_5$  itself (TER = 1) can be regarded to be protective.

The HR₅ was calculated according to & (2000)⁶ using the software package TX 2.0 by RIVM.

The HR₅ calculation was based on the ER₅₀-values for the lowest value of either dry weight, shoot height or phytotoxicity as a worst case approach. A summary of all ER₅₀-values included in the table below.

Table 10.6-5 Summary of definitive ER50-values (seedling emergence used for HR5 calculation

Test design	Test species	Ecotoxicological endpoint			
		ER50 [ga.s./ha] Parameter Reference			
Tier 2 dose response seedling emergence test	Canola	1.57 Dry weight et al. (1999)			
	Corn	11.9			
	Oat	M-021505-02			
	Onion	Dry weight T Study Gold under KCA			
	Rye 🛴	Dry Wight 8.6.2 4 (in Supplemental Desire for the active			
	Sugar beet	© \$6.94			

Four 'greater than' figures (buckwheat, flax soybean and sunflower) were excluded from the calculation.

For seedling emergence median  $HR_5$  of 1.29g a.s. that (with lower and upper 90% confidence limits were 0.26 g/ha and 265 g/ha, Goodness of fit: accepted p=0.01, Darling test for normality) was obtained from the calculation with six  $R_{50}$ -values of the remaining species.

Table 10.6-6 Summary of definitive ER values (Vegetative vigour) used for HRs calculation

T4-1Q:		A Leotoxicological endpoint		Defenence	
Test design	Lest species	ER ₅₀ [g ass./ha]	<b>P</b> arameter	Reference	
~O	Buckwheat	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Shoot height		
Ş	Canol	(7) (91.55 ° 6)	Shoot height		
<i>Ø1</i>	Çan (	3.85	Dry weight	et al. (1999)	
	Slax S	13.64 b	Dry weight	108843-1	
Tier 2 dose response	Oat	2.27	Dry weight	M-021505-02-1	
vegetatice vigour test	v 4	3.6	Shoot height	Study filed under KCA	
J J	Rye	2 A. 35	Phytotoxicity	8.6.2 /01 (in Supplemental Dossier for the active	
•	Soybean	© 6.24	Phytotoxicity	substance P-010245-02)	
	Sugar beet	2.91	Dry weight		
	Sinflower	4.52	Phytotoxicity		
	() V				

⁶ T. & J.S. (2000): Uncertainty of the hazardous concentration and fraction affected for normal species sensitivity distributions. Ecotoxicology and Environmental Safety, 46: 1-18.

For vegetative vigour a median  $HR_5$  of 1.34 g a.s./ha (with lower and upper 90% confidence limits were 0.59 g/ha and 2.14 g/ha; Goodness of fit: accepted - p = 0.01, Anderson-Darling test for normality) was obtained from the calculation with ten  $ER_{50}$ -values.

Table 10.6-7 Probabilistic off-crop risk assessment for non-target terrestrial plants: seedling emergence

Crop/ Appl. Rate [g a.s./ha]	HR5 [g a.s./ha]	Distance [m]	Drift [%]		no drift reduction	50% drift	I ((// 1)	90% drift reduction
Cereals/ 1 x 42	1.29	1	2.77	1.163	1.1	○ ▼ 2.2	∜ 4.4 Q	. O 1 &
		5	0.57	0.239	5.4 🗣	øii d	2Q,	O 54 ( )
Cereals/ 1 x 70	1.29	1	2.77	QD.939	0.67	1.3	2.7	
		5	0.57	📞 0.39%)	√3.2 ×	J 645)	13	<b>₹</b> 32

**Bold letters**: TERs which do not meet the trigger of 1

Table 10.6-8 Probabilistic off-crop risk assessment for non target terrestrial plants: vegetative vigour

Crop/ Appl. Rate [g a.s./ha]	HR5 [g a.s./ha]	Distance Drift PER 40 drift 50% drift	TER S	90% drift reduction
Cereals/	1.34	1 2.770  163  1.2  2.3	ۇر.4.6	12
1 x 42	1.54	5 027 0.239 5.6	22	56
Cereals/	1.24	10 0.69 (1.4 )	2.8	6.9
1 x 70	1.34	9 0.57 <b>3</b> 7399 3.4 0 6.7 4	13	34

Bold letters: TERs which do not meet the trigger of 1

When using the respective HB₅ derived from the data on seedling emergence and vegetative vigour, for an application rate of 42 g a.s. ha, a threshold TER of 1 is exceeded with conventional spraying equipment.

For an application rate of 70 gas.s./has a threshold DER of is exceeded at 1 m distance with 50% drift reducing spraying equipment. Considering a distance of 5 m, no drift reducing nozzles are necessary.

# CP 10.6.1 Summary of screening data

As propoxycarbazone-sodium is an herbicide, greening data with the product are not necessary.

## CP 10.6.2 Testing of non Targer plants

For information on studies already evaluated during the first EU review of propoxycarbazone-sodium, please refer to corresponding section in the Baseline Dossier and in the Monograph.

For the newly submitted study of canola (2004), 200994, M-059849-01-1) to demonstrate technical equivalence of two formulations of MKH 6561 WG 70 containing the old and new specification of propoxycarbazone-sodium, please refer to the Supplemental Dossier P-010245-02 for the active substance, pocument M-CA, Section 8, Point CA 8.6 of this submission.

### **CP 106.3** Extended laboratory studies on non-target plants

No extended laboratory studies on non-target plants are considered necessary as acceptable risk to non-target plants was demonstrated in the risk assessment under Point CP 10.6 above.

### **CP 10.6.4**

The state of the s risk to not the property of the party of the No semi-field and field tests on non-target plants are considered necessary as acceptable risk to not target plants was demonstrated in the risk assessment under Point CP 10 Cell and the risk assessment under Point CP 10 Cell and the risk assessment under Point CP 10 Cell and the risk assessment under Point CP 10 Cell and the risk assessment under Point CP 10 Cell and the risk assessment under Point CP 10 Cell and the risk assessment under Point CP 10 Cell and the risk assessment under Point CP 10 Cell and the risk assessment under Point CP 10 Cell and the risk assessment under Point CP 10 Cell and the risk assessment under Point CP 10 Cell and the risk assessment under Point CP 10 Cell and the risk assessment under Point CP 10 Cell and the risk assessment under Point CP 10 Cell and the risk assessment under Point CP 10 Cell and the risk assessment under Point CP 10 Cell and the risk assessment under Point CP 10 Cell and the risk assessment under Point CP 10 Cell and the risk assessment under Point CP 10 Cell and the risk assessment under Point CP 10 Cell and the risk assessment under Point CP 10 Cell and the risk assessment under Point CP 10 Cell and the risk assessment under Point CP 10 Cell and the risk assessment under Point CP 10 Cell and the risk assessment under Point CP 10 Cell and the risk assessment under Point CP 10 Cell and the risk assessment under the risk ass

#