Лабораторная работа №6

Жижченко (Ветошкина) Валерия Викторовна 2021 Москва

RUDN University, Moscow, Russian Federation

Цель работы

Цель работы

Рассмотреть задачу об эпидемии, как пример одной из задач построения математических моделей.

Задание

Задание

На одном острове вспыхнула эпидемия. Известно, что из всех проживающих на острове (N=19000) в момент начала эпидемии (t=0) число заболевших людей (являющихся распространителями инфекции) I(0)=119, А число здоровых людей с иммунитетом к болезни R(0)=19. Таким образом, число людей восприимчивых к болезни, но пока здоровых, в начальный момент времени S(0)=N-I(0)-R(0).

Постройте графики изменения числа особей в каждой из трех групп. Рассмотрите, как будет протекать эпидемия в случае:

- 1. если $I(0) \leq I^*$
- 2. если $I(0) > I^*$

Выполнение лабораторной

работы

Рассмотрим простейшую модель эпидемии. Предположим, что некая популяция, состоящая из N особей, (считаем, что популяция изолирована) подразделяется на три группы. Первая группа - это восприимчивые к болезни, но пока здоровые особи, обозначим их через S(t). Вторая группа – это число инфицированных особей, которые также при этом являются распространителями инфекции, обозначим их I(t). А третья группа, обозначающаяся через R(t) – это здоровые особи с иммунитетом к болезни.

До того, как число заболевших не превышает критического значения I^* , считаем, что все больные изолированы и не заражают здоровых. Когда $I(t)>I^*$, тогда инфицирование способны заражать восприимчивых к болезни особей.

Таким образом, скорость изменения числа S(t) меняется по следующему закону:

$$\frac{dS}{dt} = \begin{cases} -\alpha S, \text{ если } I(t) > I^* \\ 0, \text{ если } I(t) \le I^* \end{cases}$$
 (1)

Поскольку каждая восприимчивая к болезни особь, которая, в конце концов, заболевает, сама становится инфекционной, то скорость изменения числа инфекционных особей представляет разность за единицу времени между заразившимися и теми, кто уже болеет и лечится, т.е.:

$$\frac{dI}{dt} = \begin{cases} \alpha S - \beta I, \text{ если } I(t) > I^* \\ -\beta I, \text{ если } I(t) \le I^* \end{cases}$$
 (2)

А скорость изменения выздоравливающих особей (при этом приобретающие иммунитет к болезни)

$$\frac{dR}{dt} = \beta I \tag{3}$$

Постоянные пропорциональности α, β , - это коэффициенты заболеваемости и выздоровления соответственно. Для того, чтобы решения соответствующих уравнений определялось однозначно, необходимо задать начальные условия. Считаем, что на начало эпидемии в момент времени t=0нет особей с иммунитетом к болезни R(0) = 0, а число инфицированных и восприимчивых к болезни особей I(0) и S(0) соответственно. Для анализа картины протекания эпидемии необходимо рассмотреть два случая: $I(0) \leq I^*$ и $I(0) > I^*$.

Figure 1: График для случая $I(0) \leq I^*$

Figure 2: Графики для случая $I(0)>I^*$

Коэффициенты $\alpha = 0.01, \beta = 0.02.$

Выводы

Выводы

Рассмотрели задачу об эпидемии. Провели анализ и вывод дифференциальных уравнений.

