

SUPPLEMENTARY INFORMATION

https://doi.org/10.1038/s41587-019-0290-0

In the format provided by the authors and unedited.

High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell

Song Chen, Blue B. Lake, and Kun Zhang, *

Department of Bioengineering, University of California San Diego, La Jolla, CA, USA. *e-mail: kzhang@bioeng.ucsd.edu

Quality metrics of SNARE-seq chromatin profiles of GM12878 cells.

a, DNA fragment size distribution showing nucleosomal periodicity. (Inset) log-transformed histogram. **b**, Representative Venn diagram showing the numbers of overlapping accessible sites generated using ATAC-seq, Omni-ATAC and SNARE-seq chromatin assays. **c**, Enrichment of chromatin accessibility signals around transcription start sites (TSS). Top: enrichment around individual TSS. Bottom: aggregated enrichment across all TSSs. X axis indicates the relative distance to TSSs. **d**, Total number of accessible sites versus fraction of reads in open chromatin peaks (FRiP) within GM12878 cells (n = 3,787 after filtration). Dotted lines (2,000 and 49%) represent cutoffs used for downstream analysis.

Supplementary Figure 2

Comparison of the number of accessible sites, genes and transcripts detected per nucleus by SNARE-seq with different single-cell/nucleus chromatin accessibility or RNA-seq methods.

a, Histogram showing the numbers of accessible sites captured by SNARE-seq chromatin profiles. **b**, Histogram showing the numbers of accessible sites detected per nucleus with different single-cell/nucleus ATAC-seq methods. The processed peak count matrices of published reports were downloaded from GEO (scATAC, GSE65360; sci-ATAC, GSE68103; snATAC, GSE100033; sci-CAR, GSE117089) and binarized. **c**, Histogram showing the fraction of reads in peaks (FRiP) within GM12878 or postnatal day 0 mouse cerebral cortex SNARE-seq chromatin accessibility data. GM12878, **GM**; Human cell lines mixture (BJ, GM12878, H1 and K562), lyzed by Triton-X, **HuMix**; Human cell lines mixture, lyzed by Nuclei EZ Prep, **HuMix2**; Postnatal day 0 mouse cerebral cortex, **P0-brain**; Adult mouse cerebral cortex, **Ad-brain**. **d**, Histogram showing the numbers of UMIs and genes captured by SNARE-seq expression profiles. **e**, Histogram showing the number of UMIs and genes detected per nucleus with different single-cell/nucleus RNA-seq methods. The UMI count matrices of published reports were downloaded from GEO (snDrop, GSE97942; SPLiT-seq, GSE110823; sciCAR, GSE117089). Adult human brain cortex, **Brain (H)**; Postnatal day 2 mouse cerebral cortex, **Brain (M)**.

SNARE-seq identified cell types within a human cell line mixture (n=1,047).

a, Feature plot showing the marker gene expression of individual cell lines within each cluster. **b**, Biplot showing the contribution of accessible peak topics (n=11) identified by cisTopic in classifying cell types with chromatin data. **c**, Dot plot showing the expression of transcription factors (TF) in individual clusters. The size of the dot represents the percentage of nuclei within a cell type expressing the transcription factor and the color indicates the average expression level. **d**, Motif analysis identified the level of significance (in p-value) of transcription factor binding within differential accessible peak topics (n=404,665 fragments) as mentioned above. One-tailed Fisher's exact test was used to calculate significance, and Bonferroni correction was made for multiple testing. p-value of marker TF for each cell type is colored in red.

Comparison of SNARE-seq dual-omics assay (n=1,043) with single-omic expression (snDrop-seq, n=591) and chromatin (chromatin only, n=494) methods.

a, Clustering of snDrop-seq and SNARE-seq combined expression profiles of human cell line mixture. Cells were labeled by cell type (left) or method (right). **b**, Clustering of SNARE-seq chromatin profiles (dual or chromatin-only assay) of human cell line mixture. Cells were labeled by cell type (left) or method (right). **c**, Distribution of transcripts and accessible chromatin peaks detected by SNARE-seq method in individual cell types **d**, Pearson correlation of gene expression (n=34,828 genes) and chromatin profiles (n=309,891 genomic regions) between dual- and single-omic assays. Aggregated transcript reads and chromatin reads were log10 normalized. **e**, Distribution of transcripts and chromatin peaks detected by dual- and single-omic assays. The median numbers of transcripts detected by snDrop-seq and SNARE-seq are 1747 and 1159 respectively and the median number of chromatin peaks detected by SNARE-seq single- and dual-omic assay are 2254 and 1960 respectively. In box plots, center lines indicate the median, box limits correspond to the first and third quartiles and whiskers indicate 1.5x interquartile range. **f**, Species-mixing experiment showing the transcript and chromatin reads detected by SNARE-seq and proportion of human reads in each barcodes.

Reproducibility of SNARE-seq (n=5 replicates).

a, Pair-wise correlation of gene expression profiles between individual replicates of postnatal day 0 sample. Aggregated transcript reads were log10 normalized. **b**, Pair-wise correlation of chromatin accessibility profiles between individual replicates. Aggregated genome coverage was log10 normalized. **c**, Proportion of sequencing reads mapped to different genomic features. Top, mapping of reference expression reads, chromatin reads and accessible peaks. Bottom, mapping of SNARE-seq expression reads, chromatin reads and accessible peaks of mouse cerebral cortex data. For this analysis, total expression reads of snDrop-seq and SNARE-seq are 32,059,445 and 8,238,261, respectively. Total chromatin reads and peaks called are 180,548,727 and 140,102, 428,942,515 and 175,298 for snATAC and SNARE-seq, respectively.

Supplementary Figure 6Robustness of SNARE-seq.

a, Barplot showing the numbers of nuclei recovered for each cell type. UMAP projection of mouse cerebral cortex expression data
a , Barplot showing the numbers of nuclei recovered for each cell type. UMAP projection of mouse cerebral cortex expression data (n=5,081) as in Fig. 2a showing batch identity (b), and UMI read depth (c). UMAP projection of chromatin accessibility data (n=5,081 as in Fig. 2c showing batch identity (d), and peak read depth (e).

Neonatal mouse cerebral cortex SNARE-seq profiles are correlated with published expression and chromatin data.

a, Pearson correlation heatmap of mouse cerebral cortex cell types identified with SNARE-seq expression data (n=4,768) compared with previously identified cell types using SPLiT-seq (n=28,384). **b**, Intra-assay pair-wise Pearson correlation heatmap of cell types identified with SNARE-seq expression data (n=5,081). **c**, Intra-assay pair-wise Pearson correlation heatmap of cell types identified with SPLiT-seq expression data (n=28,384). **d**, Proportion of nuclei in different cell cycle phases showing cell cycle exit of late intermediate progenitor cells. **e**, Representative Venn diagram showing the number of overlap of common peaks between bulk ATAC-seq (ENCODE) data and SNARE-seq chromatin profiles of mouse brain cortex. **f**, Aggregated SNARE-seq chromatin profiles (bottom two tracks) agree with bulk ATAC-seq (ENCODE, top two tracks) and are consistent between independent experiments.

SNARE-seq expression data identified cell type specific markers in mouse neonatal cerebral cortex.

a, Dot plot showing the expression of known and novel marker genes (**Table S1**) in each cell type. **b**, RNA *in situ* hybridization (ISH) stains (Allen Human Brain) of postnatal (day 4) mouse cerebral cortex showing layer-specific marker gene expression.

Clustering of SNARE-seq single-cell chromatin accessibility on mouse neonatal cerebral cortex (n=5,081).

a, UMAP projection of SNARE-seq chromatin data generated with aggregating chromatin reads by transcriptome labeling first, same as Figure 2c. Cells are labeled with the same color codes for cell types identified by the linked expression data. **b**, Same UMAP projection of SNARE-seq chromatin as **a**, but cells are labeled with results of independent clustering with each cell's Principal Component scores of topic information calculated by cisTopic. **c**, Different from **a** and **b**, chromatin peak count matrix were generated without using any expression information, and data was clustered independently by cisTopic. Cells are labeled with corresponding cell types identified by expression profile. **d**, Aggregate chromatin accessibility profiles at loci of cell type-specific marker genes. For better visualization, tracks of differential expressing genes in respective cell types are shaded in gray.

SNARE-seq links the promoter accessibility with expression level of cell type-specific genes.

a, Top, dot plot showing the differential expression of genes in each cell type. The size of the dot represents the percentage of nuclei within a cell type expressing the gene and the color depth indicates the average expression level. Bottom, dot plot showing the promoter accessibility of markers in each cell type. The size of the dot represents the percentage of nuclei within a cell type that is accessible in promoter regions of corresponding genes and the color depth indicates the average accessibility level. **b**, Pearson correlation of promoter accessibility and expression levels (n=128 genes) across all cell types for the lineage-specific genes.

Cluster	#	GO Biological Process	p-Value	Motif	TF	p-Value
Ast/RG	436	somatic stem cell maintenance	1.41E-31	ECTAATTA	LHX2	1E-142
IP-Hmgn2	214	spinal cord development	6.01E-12	<u><u><u></u></u></u> <u><u></u><u></u><u></u> <u></u> <u> </u></u>	SOX10	1E-60
IP-Gadd45g	99	Wnt receptor signaling pathway	2.96E-09	ESPECACETORS	TCF12	1E-45
IP-Eomes	437	telencephalon development	4.29E-12	<u><u><u></u>CCATCTGEE</u></u>	NEUROD1	1E-233
Ex-L2/3-Cntn2	177	ventricular cardiac muscle cell differentiation	2.02E-06	<u>ATGTSTGACA</u>	PBX3	1E-14
Ex-L2/3-Cux1	542	embryonic skeletal system development	1.28E-05	<u>GACTGACA</u>	MEIS1	1E-36
Ex-L3/4-Tenm3	424	regulation of vasculogenesis	2.64E-06	CCATGGEAAC	RFX1	1E-53
Ex-L3/4/5-Foxp1	486	response to alkaloid	6.70E-05	CTATITITAG	MEF2A	1E-34
Ex-L5-Crmp1	401	protein O-linked glycosylation	1.52E-05	CACTAGATGGCA	CTCF	1E-22
Ex-L4/5-GaIntl6	405	neutrophil chemotaxis	2.17E-05	CTTGGC ASSE	NF1	1E-81
Ex-L5/6-Epha6	216	actin cytoskeleton reorganization	1.84E-05	PACAGATOS	NEUROG2	1E-212
Ex-L6-Tle4	527	central nervous system neuron development	3.89E-07	ZETTGGCA	NFIA	1E-176
In-Nxph1	230	lens development in camera-type eye	8.76E-10	EEACAÇCTGE	E2A	1E-291
In-Adarb2	216	central nervous system neuron differentiation	5.44E-07	SETAATTA	EMX2	1E-49
CR	75	response to light stimulus	4.91E-07	ETESTAATTA	LHX1	1E-49
OPC	42	stem cell differentiation	2.89E-10	ACAAAGGGEE	SOX2	1E-54
Endo	66	blood vessel morphogenesis	5.78E-28	<u>\$FITCCI5</u>	ETV2	1E-171
Peri	51	blood vessel morphogenesis	6.90E-14	AFITCCTGEL	ELF3	1E-50
Mic	37	response to biotic stimulus	4.58E-10	<u><u><u>AAASAGGAAGTS</u></u></u>	SFPI1(PU.1)	1E-55

SNARE-seq chromatin data (n=5,081) from neonatal mouse cerebral cortex uncovers lineage-specific regulatory information.

Gene ontology of top biological process was analyzed using a binomial test over 1 kb upstream and 1 kb downstream, up to 500-kb max extension of differential accessible genomic regions in GREAT and transcription factor motifs were discovered using one-tailed Fisher's exact test and Bonferroni correction in HOMER for each cell type. Interesting examples are shaded in gray.

Pseudotime analysis reveals dynamics of gene expression in early neurogenesis.

a, Heatmap of selected genes involved in neurogenesis showing the expression changes along developmental trajectory. **b**, Promoter accessibility and gene expression dynamics showing mostly similar directional changes along pseudotime. **c**, Relative expression of gene markers identified by the pseudotime trajectory analysis. The relative expression is calculated by first model read count with the negative binomial and then normalize with cell size factor estimated by estimateSizeFactors function in Monocle. Smoothed pseudotime-dependent gene expression curve as shown in Figure 2g is colored in red. **d**, Histogram showing the percentage of cells that had accessible promoters calculated by aggregating chromatin signals into bins (bins=30) along pseudotime, and smoothed curve as shown in Figure 2g is colored in orange.

Sensitivity of SNARE-seq chromatin data.

a, Total called peaks, recovered promoter regions, median numbers of accessible sites detected per nuclei and total differential accessible sites across all cell types after downsampling raw reads 20-, 15-, 10- and 5-folds. Each dot represents a random downsampling test. Sci-CAR data have a median of ~700 accessible sites/nucleus (indicated by the dash line), which is close to the 15x down-sampled SNARE-seq data. **b,** Representative UMAP projection of cisTopic clustering result of SNARE-seq chromatin data (n=5,081) at varying down-sampled depths. Cells are labeled with the same color codes for cell types identified by the linked expression data and those discernible clusters are labeled with cluster identities showing on the right.

The SNARE-seq profiles of adult mouse cerebral cortex are correlated with published gene expression and chromatin accessibility data.

a, The expression level of marker genes (**Table S1**) for each cell type in adult mouse cerebral cortex. **b**, Pearson correlation heatmap of mouse cerebral cortex cell types identified with SNARE-seq expression data (n=9,119) compared with previously identified cell types using DroNc-seq (n=4,596). **c**, Intra-assay pair-wise pearson correlation heatmap of cell types identified with SNARE-seq expression data. **d**, Intra-assay pair-wise pearson correlation heatmap of cell types identified with DroNc-seq expression data. **e**, Pair-wise correlation of chromatin accessibility profiles between adult mouse frontal cortex replicates (ENCODE, n=2) and SNARE-seq replicates (n=2). Aggregated genome coverage was log10 normalized. **f**, In silico downsampling showing the change of genes and UMIs detected by SNARE-seq expression on different sequencing depth.

Cluster	#	GO Biological Process	p-Value	Motif	TF	p-Value
Ex-L2/3-Rasgrf2	2254	inactivation of MAPK activity	4.9E-14	ESETGAST CASE	FRA1	1E-286
Ex-L3/4-Rorb	1443	unsaturated fatty acid metabolic process	4.6E-09	<u><u><u></u>SCCATCTGII</u></u>	NEUROG2	1E-233
Ex-L3/4-Rmst	231	regulation of neurological system process	2.3E-06	ACCATCTGEE	NEUROG2	1E-65
Ex-L4/5-Thsd7a	470	regulation of peptide hormone secretion	3.5E-09	<u><u><u></u>CCAICTGIL</u></u>	NEUROG2	1E-360
Ex-L4/5-II1rapl2	620	heparan sulfate proteoglycan metabolic process	8.9E-06	<u><u><u><u><u></u><u><u><u></u><u><u></u><u><u></u> <u><u></u> <u></u> <u> </u> <u> </u> </u></u></u></u></u></u></u></u></u>	OLIG2	1E-125
Ex-L5-Galnt14	532	cartilage development	1.3E-06	EESTGASTCAIS	FRA1	1E-110
Ex-L5-Parm1	345	smooth muscle contraction	6.7E-07	<u>PATGAGTCALIS</u>	ATF3	1E-360
Ex-L5/6-Tshz2	85	organelle localization	7.2E-09	\$EASTICCOSTCTSSTGGSSA	CTCF	1E-76
Ex-L5/6-Sulf1	223	neurotransmitter transport	3.8E-05	ATACTICCCAPCTACTGGSSA	CTCF	1E-28
Ex-L6-Tle4	1186	response to alkaloid	2.7E-14	ETGECAAS	NF1	1E-235
Claustrum	146	exocytosis	7.5E-09	EATGASTCALS	ATF3	1E-167
In-Pvalb	274	actin filament bundle assembly	1.9E-10	SCTATITATEGS	MEF2B	1E-260
In-Sst	206	synapse organization	8.0E-09	EASCAGCTGS	TCF21	1E-187
In-Npy	100	neuromuscular process	2.7E-10	ETGECAAS	NF1	1E-39
In-Vip	129	calcium ion transmembrane transport	1.7E-07	ETERCAGETGE	ASCL1	1E-46
OPC	98	small GTPase mediated signal transduction	2.0E-08	ATAGTOCCACCTAGTOCCAA	CTCF	1E-30
Oli-Itpr2	30	actin filament-based process	4.5E-07	<u>ATAGTICCCACCTAGTICGCSA</u>	CTCF	1E-53
Oli-Mal	270	axon ensheathment	2.1E-14	CCATTGTE	SOX3	1E-167
Mic	63	endocytosis	1.2E-09	AGAGGAAGT	PU.1	1E-31
Ast	444	regulation of Rho protein signal transduction	5.3E-18	IAATIASE	LHX2	1E-188
Peri	19	regulation of exocytosis	4.4E-05	<u><u><u></u></u><u><u></u><u><u></u><u><u></u><u><u></u> <u></u> <u><u></u> <u> </u> </u></u></u></u></u></u>	CTCF	1E-34
Endo	22	neuromuscular process controlling balance	1.8E-06	<u>ATAGET GCCACCT AGT GCCAA</u>	CTCF	1E-58

SNARE-seq chromatin data (n=10,309) reveals lineage-specific regulatory information in adult mouse cerebral cortex.

Gene ontology of top biological process (binomial test over 1 kb upstream and 1 kb downstream, up to 500-kb max extension of differential accessible genomic regions in GREAT) and transcription factor motifs analysis (using one-tailed Fisher's exact test and Bonferroni correction in HOMER) of each cell type in adult mouse cerebral cortex.