2024.12.13 Homework Due: 2024.12.15

- 1. 设 $\dim V = n$, 设 $\varphi \in \operatorname{End}_F(V)$ 且 $\varphi^2 = \varphi$, 求证:
 - (i) $V = \text{Im}\varphi \oplus \text{Ker}\varphi$;
 - (ii) φ 为 $Im\varphi$ 上的投影变换,即

$$\forall \alpha \in \text{Im}\varphi, \ \varphi(\alpha) = \alpha.$$

(iii) 存在 V 的一组基 ξ_1, \cdots, ξ_n ,使得

$$\varphi(\xi_1,\dots,\xi_n) = (\xi_1,\dots,\xi_n) \begin{pmatrix} E_r & O \\ O & O \end{pmatrix}.$$

(iv) 若 $A, B \in M_n(F)$ $(n \ge 2)$, $B^2 = B$, 则 $r(AB - BA) \le r(AB + BA)$.

2. 设 $\dim V=n,\,\varphi\in \mathrm{End}_F(V)$,且 $\varphi^2=\mathscr{O}$,求证:存在 V 的一组基 ξ_1,\cdots,ξ_n 满足

$$\varphi(\xi_1,\dots,\xi_n) = (\xi_1,\dots,\xi_n) \operatorname{diag} \{ J(0,2),\dots,J(0,2),J(0,1),\dots,J(0,1) \}.$$

其中
$$\boldsymbol{J}(0,2) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \boldsymbol{J}(0,1) = \begin{pmatrix} 0 \end{pmatrix}$$
。

进一步,定义 $\dim \operatorname{Im} \varphi = r(\varphi)$,请你 check:

- $J(0,k)(k \ge 1)$ 的个数 $N(J(0,k)) = n r(\varphi)$;
- J(0,1) 的个数 $N(J(0,1)) = r(\varphi^2) + n 2r(\varphi)$;
- J(0,2) 的个数 $N(J(0,2)) = r(\varphi^3) + r(\varphi) 2r(\varphi^2)$.

3. 设 $\dim V = n$, $0 \neq \alpha \in V$, 记

$$\mathcal{L}(V)\alpha = \{\varphi(\alpha) \mid \varphi \in \mathcal{L}(V)\},\$$

求证:

$$\mathcal{L}(V)\alpha = V.$$

- 4. 若存在 m,使得 $\varphi^m=\mathscr{O}, \varphi^{m-1}\neq \mathscr{O}$, $\dim \mathrm{Im} \varphi=n-1$,求证:
 - (i) dim $\operatorname{Im} \varphi^m \geqslant n m$;
 - (ii) 取 $\alpha \notin \text{Ker}\varphi^{m-1}$, 则 $\alpha, \varphi(\alpha), \cdots, \varphi^{m-1}(\alpha)$ 线性无关;
 - (iii) 存在 V 的一组基 ξ_1, \cdots, ξ_n 满足

$$\varphi(\xi_1,\dots,\xi_n) = (\xi_1,\dots,\xi_n) \begin{pmatrix} O & O \\ E_{n-1} & O \end{pmatrix}.$$

(iv) 思考本题能不能用扩基的方法?