

Network Layer: Routing Protocols

A/PROF. DUY NGO

Learning Objectives

5.1 introduction

- **5.2** routing protocols
 - link state
 - distance vector

Network-Layer Functions

Recall: two network-layer functions:

 forwarding: move packets from router's input to appropriate router output

data plane

routing: determine route taken by packets from source to destination

control plane

Two approaches to structuring network control plane:

- per-router control (traditional)
- logically centralized control (software defined networking)

Per-Router Control Plane

Individual routing algorithm components in each and every router interact with each other in control plane to compute forwarding tables

Logically Centralized Control Plane

A distinct (typically remote) controller interacts with local control agents (CAs) in routers to compute forwarding tables

Routing Protocols

Routing protocol goal: determine "good" paths (equivalently, routes), from sending hosts to receiving host, through network of routers

- path: sequence of routers packets will traverse in going from given initial source host to given final destination host
- "good": least "cost", "fastest", "least congested"
- routing: a "top-10" networking challenge!

Graph Abstraction of the Network

graph: G = (N, E)

 $N = set of routers = \{ u, v, w, x, y, z \}$

 $E = set of links = \{ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) \}$

aside: graph abstraction is useful in other network contexts, e.g., P2P, where **N** is set of peers and **E** is set of TCP connections

Graph Abstraction: Costs

$$c(x,x') = cost of link(x,x') e.g., c(w,z) = 5$$

cost could always be 1, or inversely related to bandwidth, or inversely related to congestion

cost of path
$$(x_1, x_2, x_3, ..., x_p) = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{p-1}, x_p)$$

key question: what is the least-cost path between u and z? **routing algorithm**: algorithm that finds that least cost path

Routing Algorithm Classification

Q: global or decentralized information?

global:

- all routers have complete topology, link cost info
- "link state" algorithms

decentralized:

- router knows physically-connected neighbors, link costs to neighbors
- iterative process of computation, exchange of info with neighbors
- "distance vector" algorithms

Q: static or dynamic?

static:

 routes change slowly over time

dynamic:

- routes change more quickly
 - periodic update
 - in response to link cost changes

A Link-State Routing Algorithm

Dijkstra's algorithm

- network topology, link costs: known to all nodes
 - accomplished via "link state broadcast"
 - all nodes have the same information
- compute the least-cost paths from one node ("source") to all other nodes
 - gives forwarding table for that node
- iterative: after k iterations, know the least-cost paths to k destinations

Notation:

- c(x,y): link cost between node x and node y
- If (x,y) does not belong to E (that is, x and y are not direct neighbours), then we set c(x,y)
 = ∞
- **D(v):** current cost of the least-cost path from the source to destination **v** (as of this iteration of the routing algorithm)
- **p(v):** previous node (neighbour of **v**) along the current least-cost path from the source to **v**
- N': a subset of nodes whose least-cost path is definitively known

Dijsktra's Algorithm

```
1 Initialization:
   N' = \{u\}
   for all nodes v
    if v adjacent to u
      then D(v) = c(u,v)
    else D(v) = \infty
  Loop
   find w not in N' such that D(w) is a minimum
    add w to N'
    update D(v) for all v adjacent to w and not in N':
      D(v) = \min(D(v), D(w) + c(w,v))
    /* new cost to v is either old cost to v or known
     shortest path cost to w plus cost from w to v */
15 until all nodes in N' (that is, N'=N)
```

Dijkstra's Algorithm: Example

00000		D(v)	$D(\mathbf{w})$	$D(\mathbf{x})$	$D(\mathbf{y})$	D(z)
Ste	p N'	p(v)	p(w)	p(x)	p(y)	p(z)
0	u	7,u	(3,u)	5,u	00	00
1_	uw	6,w	200 - 200	(5,u)	711,w	00
<u>2</u> 3	uwx	6.W		3	11,w	14,x
3	uwxv				(0,v)	14,x
4_	uwxvy					(12,y)
5	uwxvyz					

Notes:

- construct shortest path tree by tracing predecessor nodes
- ties can exist (can be broken arbitrarily)

Dijkstra's Algorithm: Another Example

Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,u	(1,u)	00	00
1	ux ←	2,u	4,x		(2,x	∞
2	uxy-	2,u	3, <u>y</u>			4,y
3	uxyv ←	$\overline{}$	(3,y)			4,y
4	uxyvw ←					(4,y)
5	uxyvwz ←					
				2	2 3 V	1 2

^{*} Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose ross/interactive/

Dijkstra's Algorithm: Example (2 of 2)

• The resulting **least-cost paths** from u:

• The resulting **forwarding table** in u:

Destination	Link
٧	(u,v)
Х	(u,x)
У	(u,x)
W	(u,x)
Z	(u,x)

Dijkstra's Algorithm: Discussion

Computational complexity: given *n* nodes (not counting the source)

- First iteration: need to check all n nodes to find the node w not in N' that has the minimum cost.
- Second iteration: check (n-1) nodes to determine the minimum cost
- And so on...
- Overall, n(n+1)/2 comparisons. Worst—case complexity: $O(n^2)$
- More efficient implementation (using heap data structure) to reduce complexity to O(nlog(n))

Distance Vector Algorithm (1 of 6)

Bellman-Ford equation (dynamic programming)

```
let d_x(y) := \text{cost of least-cost path from } x \text{ to } y then d_x(y) = \min_{v} \left\{ c(x,v) + d_v(y) \right\} cost from neighbor v to destination v cost to neighbor v min taken over all neighbors v of x
```

Bellman-Ford Example

clearly,
$$d_v(z)=5$$
, $d_x(z)=3$, $d_w(z)=3$

B-F equation says:

$$d_{u}(z) = \min \{c(u,v) + d_{v}(z),$$

$$c(u,x) + d_{x}(z),$$

$$c(u,w) + d_{w}(z)\}$$

$$= \min \{2 + 5,$$

$$1 + 3,$$

$$5 + 3\} = 4$$

Node achieving minimum is the next hop in the shortest path, used in the forwarding table

Distance Vector Algorithm (2 of 6)

Initialisation step:

- •Each node x begins with $D_x(y)$, an estimate of the cost of the least-cost path from x to y, for all nodes y in N.
- •Let $\mathbf{D}_{x} = [D_{x}(y): y \text{ in } N]$ be node x's distance vector of cost estimates from x to all other nodes y in N.
- •Each node x maintains the following routing information:
 - The cost c(x,v) from x to each directly attached neighbor v
 - Node x's distance vector $\mathbf{D}_{x} = [D_{x}(y): y \text{ in } N]$
 - The distance vectors of each of its neighbours v, that is, $\mathbf{D}_{v} = [D_{v}(y): y \text{ in } N]$

Distance Vector Algorithm (3 of 6)

Update step:

- From time-to-time, each node sends a copy of its own distance vector to its neighbours
- When a node x receives a new distance vector from its neighbor w, it saves w's distance vector and updates its own distance vector using B-F equation: $D_x(y) \leftarrow \min_v \{c(x,v) + D_v(y)\}$ for each node $y \in N$
- If node x's distance vector has changed as a result of this update step, node x sends its updated distance vector to each of its neighbours, which in turn update their own distance vectors.
- Miraculously, each cost <u>estimate</u> D_x(y) converges to d_x(y), the <u>actual</u> cost of the least-cost path from node x to node y!

Distance Vector Algorithm (4 of 6)

iterative, asynchronous: each local iteration caused by:

- local link cost change
- Distance vector update message from neighbour

distributed:

- each node notifies neighbors only when its distance vector changes
 - neighbors then notify their neighbors if necessary

each node:

Distance Vector Algorithm (5 of 6)

Distance Vector Algorithm (6 of 6)

Distance Vector: Link Cost Changes (1 of 2)

link cost changes:

- node detects local link cost change
- updates routing info, recalculates distance vector
- if DV changes, notify neighbors

"good news travels fast"

 t_0 : y detects link-cost change, updates its DV, informs its neighbors.

 t_1 : z receives update from \mathbf{y} , updates its table, computes new least cost to x, sends its neighbors its DV.

 t_2 : y receives z's update, updates its distance table. y's least costs do not change, so y does **not** send a message to z.

http://gaia.cs.umass.edu/kurose ross/interactive/

^{*} Check out the online interactive exercises for more examples:

Distance Vector: Link Cost Changes (2 of 2)

link cost changes:

- node detects local link cost change
- bad news travels slow "count to infinity" problem!
- 44 iterations before algorithm stabilizes: see text

poisoned reverse:

- If z routes through y to get to x:
 - z tells y its (z's) distance to x is infinite (so y won't route to x via z)
- Will this completely solve count to infinity problem? No for loops involving three or more nodes.

Comparison of LS and DV Algorithms

message complexity

- LS: with n nodes, E links, O(nE) msgs sent
- DV: exchange between neighbors only
 - convergence time varies

speed of convergence

- LS: O(n²) algorithm requires O(nE) msgs
 - may have oscillations
- **DV**: convergence time varies
 - may be routing loops
 - count-to-infinity problem

robustness: what happens if router malfunctions?

LS:

- node can advertise incorrect link cost
- each node computes only its own table

DV:

- DV node can advertise incorrect path cost
- each node's table used by others
 - error propagate thru network