PROPOSITION is

Tantology - Always True

Contradiction - Always False

Contingency --- Sometimes True Sometimes False

· Logical equivalence

Each statements in both Truth Table has same fruth value for two different expressions.

inverse

1 converse

$$p \rightarrow q \xrightarrow{\text{converse}} q \rightarrow p$$

VATOMIC PROPOSITION

COMPOUND PROPOSITION

Well Formed Formulas

√ Representation using BOOLEAN ALGEBRA LOGIC GATE

contra-positive

$$p \rightarrow q \xrightarrow{\text{centra-positive}} \sim q \rightarrow \sim p$$

Duality Principle

Dual of (AMB) OC is (AUB) AC

- · interchange union into intersection & vice versa
- · interchange Null set with universial set & vice versa

Deductions

If Vijay eats his vegelable then he can have cont

Vijay ate his vegetable.

Therefore, he gets a cookie.

1	P	Q	P->Q
		TUGE	T
	181 11	F	
	F	Til	
	F	Fan	

When P-Q=T, P=T then Q=T (1st row of the truth table)

This is a valid deduction rule.

Expressiontree

Normal Forms

· Disjunctive Normal Form (DNF)
(PAq) V (7PA +iq)

· Conjunctive Normal Form (CNF)

(PV9) 1 (7PV79)

 $P.q + \overline{P}\overline{9}$ DNF $(P+9) \cdot (\overline{P}+\overline{9})$ CNF Conjunction P/9
Disjunction pv9

Arguments

P1, P2, P3--- Pn HQ is valid if

Q is true whenever P, P2, P3... Pn are true! If an argument is not valid then H is called fallacy.

 $\begin{array}{ccc}
P \to Q & \longrightarrow & P \to Q, P \stackrel{}{\vdash} Q \\
\hline
\vdots & Q
\end{array}$

BENEFIT PARTY OF THE STATE OF T

Fit Was a Color of the Art of the

The Landson Park State of the Control of the Contro

Valuation

Each row of truth table corresponds
to valuations

P	9	F
T	T	T
Γ.	F	F
F	T	T
F	F	F
_	"	_

Valuation is a function that takes proposition & produces touth value &T, F3

Interpretation

An interpretation function takes a proposition formula & and a valuation V, and returns truth value of the formula.

$$\Phi = P \rightarrow (PVQ)$$

Valuation V(p) = T and V(q) = F

Then interpretation function

$$\Phi^{V} = V(p) \rightarrow (V(p) \vee V(q))$$

$$= T \rightarrow (T \vee F)$$

$$= T \rightarrow T$$

$$= T$$

Satisfiability & Validity

true

A proposition that has at least one interpretation is called satisfiable.

A proposition that is false in all interpretations is called unsatisfiable.

True in all interpretation—valid False in at least one interpretation—invalid