Topic 15: Maxwell's Equations

Advanced Placement Physics C

Dr. Timothy Leung August 26, 2020

Olympiads School, Toronto, ON, Canada

Intro

Making Ampère's Law Better

Ampère's law, as we know it, only applies to steady currents I_c :

$$\oint_C \mathbf{B} \cdot d\boldsymbol{\ell} = \mu_0 I_c$$

However,

- Current are usually not steady in RC, RL, LC or RLC circuits
- Applying Ampère's law at a charging/discharging capacitor gives an ambiguous answer

Modifying Ampère's Law for Unsteady Current

Four surfaces bounded by the same circular Amperian loop (think blowing a soap bubble). Surfaces 1, 2 and 4 have currents penetrating through them, but surface 3 does not.

Modifying Ampère's Law

This might give a better view of what the "soap bubble" looks like

There is no current through the surface A_2 (same as surface 3 in the last slide), but there is definitely a changing *electric flux*

Maxwell's Modification to Ampère's Law

James Clerk Maxwell, in 1860, proposed a modification to Ampère's Law to make it work with unsteady current as well

$$\oint \mathbf{B} \cdot d\boldsymbol{\ell} = \mu_0 \left(I + \varepsilon_0 \frac{d\Phi_E}{dt} \right)$$

Maxwell called the correction term $\varepsilon_0 \frac{d\Phi_E}{dt}$ displacement current.

- · The word "displacement" has historical roots, but no physical meaning
- However, "current" means that the effect of changing the electric flux is indistinguishable from real currents in producing magnetic field

Maxwell's Equations

- Maxwell recognized the relationship between electricity and magnetism in Gauss's law, Faraday's law and Ampère's law
- Combined them into a unified set of equations, now known as Maxwell's equations for electrodynamics

Maxwell's Equations in Integral Form

Maxwell's equations can be expressed in its integral form, which is how we have studied the equations in the first place:

$$\oint \mathbf{E} \cdot d\mathbf{A} = \frac{q}{\varepsilon_0} \qquad (Gauss, for \mathbf{E})$$

$$\oint \mathbf{B} \cdot d\mathbf{A} = 0 \qquad (Gauss, for \mathbf{B})$$

$$\oint \mathbf{E} \cdot d\ell = -\frac{d\Phi_B}{dt} \qquad (Faraday)$$

$$\oint \mathbf{B} \cdot d\ell = \mu_0 I + \mu_0 \varepsilon_0 \frac{d\Phi_E}{dt} \qquad (Ampère-Maxwell)$$

Maxwell's Equations in Vacuum

$$\oint \mathbf{E} \cdot d\mathbf{A} = 0$$

$$\oint \mathbf{B} \cdot d\mathbf{A} = 0$$

$$\oint \mathbf{E} \cdot d\boldsymbol{\ell} = -\frac{d\Phi_B}{dt}$$

$$\oint \mathbf{B} \cdot d\boldsymbol{\ell} = \mu_0 \epsilon_0 \frac{d\Phi_E}{dt}$$

In vacuum, we can remove all references to matter in the equation, and Maxwell's equations simplifies.

- The equations show "symmetry"
- Magnetic and electric fields are on equal footing
- In a vacuum where charges are currents are absent, the only source of either field is a change in the other field

Maxwell's Equations in Differential Form

$$\nabla \cdot \mathbf{E} = 0$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{B} = \mu_o \varepsilon_o \frac{\partial \mathbf{E}}{\partial t}$$

- Maxwell's equations are usually expressed in differential form, which is obtained using vector calculus. Follow [this link] if you want to see how it's done.
- The differential form shows how the time derivatives of E and B are related to the spatial derivatives of the other field
- The last two equations (Faraday's and Ampère's laws) together represent two set of second order partial differential equations (one for each field), the solution of which represents a traveling wave

Maxwell's equations show that an "electromagnetic wave" must exist. In a simple case where electric and magnetic fields only vary in x and time t only, i.e. $\mathbf{E} = E(x,t)$ and $\mathbf{B} = B(x,t)$, Faraday's and Ampère's laws reduce to:

$$\frac{\partial E}{\partial x} = -\frac{\partial B}{\partial t}$$
 $\frac{\partial B}{\partial x} = -\mu_0 \varepsilon_0 \frac{\partial E}{\partial t}$

(A negative sign appears on the right-hand side because we have ignored some of the vector operations.) Taking the spatial derivative of E with respect to E on both side of Faraday's law, and switch the order of differentiation, we get:

$$\frac{\partial}{\partial x} \left(\frac{\partial E}{\partial x} \right) = -\frac{\partial}{\partial x} \left(\frac{\partial B}{\partial t} \right) \quad \to \quad \frac{\partial^2 E}{\partial x^2} = -\frac{\partial}{\partial t} \left(\frac{\partial B}{\partial x} \right)$$

But we already have an expression for $\partial B/\partial x$ from Ampère's law:

$$\frac{\partial^2 E}{\partial x^2} = -\frac{\partial}{\partial t} \left(\frac{\partial B}{\partial x} \right) = -\frac{\partial}{\partial t} \left(-\mu_0 \varepsilon_0 \frac{\partial E}{\partial t} \right)$$

Rearranging the terms on the right hand side, we get

$$\frac{\partial^2 E}{\partial x^2} = \mu_0 \varepsilon_0 \frac{\partial^2 E}{\partial t^2}$$

This is the standard form of the **wave equation** (a second-order partial differential equation):

$$\frac{\partial^2 \Psi}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 \Psi}{\partial t^2}$$

- "Second-order" means that the equation deals with second derivatives, in this case, in *x* and in *t*.
- "Partial" means the equation involves partial derivatives (i.e. when a function has more than one variables, and you only differentiate against one variable)
- · We can also repeat the exercise by first differentiating Ampère's law to get

$$\frac{\partial^2 B}{\partial x^2} = \mu_0 \varepsilon_0 \frac{\partial^2 B}{\partial t^2}$$

The wave equation shows that disturbances in electric and magnetic fields propagate as an electromagnetic wave ("EM wave") with a universal speed generally referred to as the **speed of light**.

$$v = c_0 = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = 299792458 \,\mathrm{m/s}$$

The simplified 1D example cannot (because we have ignored the cross-product) that ${\bf E}$ and ${\bf B}$ are actually perpendicular to each other

A EM wave is considered to be **polarized** if both \mathbf{E} (and therefore) \mathbf{B} of the wave are confined to a single plane. The direction of the polarization is the direction of \mathbf{E} .

"Failure" of Maxwell's Equation

A peculiar feature of Maxwell's equation:

- When applying *Galilean transformation* (our classical equation for *relative motion*) to Maxwell's equations, they seem to "fail"
- Gauss's law for magnetism break down: magnetic field lines appear to have beginnings/ends
- So does that mean that in some inertial frames of reference, Maxwell's equations are valid, but in others, they are not?
- Physicists theorized that, perhaps, there is/are actually preferred inertial frame(s) of references
- This violate the long-standing principle of relativity, which says that the laws of physics are equal in all inertial frames of reference

Making The Equations Work Again

Maxwell's equations didn't "fail"; it was our understanding of space and time that needed to change

- Albert Einstein believed in the principle of relativity, and rejected the concept of a preferred frame of reference
- In Maxwell's equations, the speed of an electromagnetic wave (speed of light) is independent of the frame of reference
- In order to make the equations to work again, Einstein revisited the most basic concepts involved in our understanding of physics: space and time

Einstein and Special Relativity

Einstein's Postulates of Special Relativity:

- 1. **Principle of relavity:** All laws of physics must apply equally in all inertial frames of reference.
- 2. **Principle of invariant speed of light:** As measured in any inertial frame of reference, light always propagated in a vacuum with a definite velocity c_0 that is independent of the state of motion of the emitting body.

Published in 1905 in the article *On the Electrodynamics of Moving Bodies* when Einstein was 26 years old working as a patent clerk in Switzerland