

Control of a Thrust-Vectoring CubeSat Using a Single Variable-Speed Control Moment Gyroscope

Rod Regado | Steven Sharp

Objective

- CubeSats should be as small, light, cheap, and simple as possible
 → we want to minimize the amount of thrusters and MEDs per CubeSat
- Full attitude control is impossible with just one MED and one thruster
 - Need at least 3 reaction wheels or CMGs for 6-axis control
 - Using 4 to 6 MEDs is common for redundancy

AERO 560 - Advanced Spacecraft Dynamics and Control

Objective

- What if we only need to point one axis of the CubeSat in a certain direction, but don't care about MED redundancy or spinning around that axis?
 - Fine for orbital maneuvers
 - Not fine for sensors that need to be stabilized in all three axes
- Then we can use a VSCMG for attitude control and a thruster for translations
 - This is the minimum number of actuators needed for orbital maneuvers
- Configuration is valid if some control law reaches stability in torque-free motion
- Additional objectives:
 - Show that the system is robust by maintaining stability with perturbations and thruster offset
 - Apply the control law to a rendezvous mission

Dynamic Theory

- Assumptions
 - Negligible Gimbal acceleration
 - Time-varying spin rate
 - o $m_{cma} << m_{SC} : J$ is constant
- Dynamics of problem defined as $\dot{\omega} = J^{-1}(-\omega^x J \omega + u + d)$
- where the control term $u = -I_{ws} \dot{\Omega} \hat{s} I_{ws} \Omega \dot{y} \hat{t}$
- and the secondary term $d = -I_{cq} \dot{y} \omega^{x} \hat{g} I_{ws} \Omega \omega^{x} \hat{s}$
- and m represents any disturbance torques on the spacecraft, which are only considered for the offset thruster case where $m = [||T||d_1 ||T||d_2 | 0]$

Stability Analysis

- Nonlinear Reduced-Attitude Control for Thrust-Vectoring
 - Asymptotically stable for states ω_1 and ω_2 while ω_3 stabilizes to a constant value.
- Nonlinear Control for Impulsive Thrust Vectoring
 - Asymptotically stable for states ω_1 , ω_2 and the pointing error Γ_e . While ω_3 is not guaranteed to converge to zero, pointing direction is invariant to changes in ω_3
- Nonlinear Tracking for Low-Thrust (Continuous) Vectoring
 - \circ Asymptotically stable for the states $\omega_{
 m e}^{\, *}$ and $\Gamma_{
 m e}^{\, }$
 - \circ ω_{e3} does not converge to a constant value

Implementation

VSCMG

Repointing

Tracking

Simulation Parameters

Fig. 2 System configuration.

$$\mathbf{J}_{b} \begin{bmatrix} 1.009 & 0 & 0 \\ 0 & 0.251 & 0 \\ 0 & 0 & 0.916 \end{bmatrix} \quad \mathbf{kg} \cdot \mathbf{m}^{2}$$

$$I_{ws}$$
 0.002 kg·m²

$$_{cq}$$
 0.03 kg·m²

$$\Omega_0$$
 1 rad/s

$$\gamma_0$$
 1 rad

$$\omega_0$$
 $\begin{bmatrix} 0 \\ 0 \\ 0.15 \end{bmatrix}$ rad/s

Repointing

$$\begin{bmatrix} \Gamma_{d0} \end{bmatrix}^{B} \begin{bmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{bmatrix} \qquad \qquad k_{1} \qquad 0.5$$

$$k_{2} \qquad 0.5$$

Tracking

$$\left[\Gamma_{d0} \right]^{N} \begin{bmatrix} 0 \\ \sin(0.2t) \\ \cos(0.2t) \end{bmatrix} \qquad k_{1} \qquad 0.1$$

Tracking Simulation Results

Tracking Simulation Results

Tracking Simulation Results

Tracking Simulation Results (steady state)

Tracking Simulation Results (steady state)

Tracking Simulation Results (steady state)

Conclusion

- Not recommended to rely solely on the VSCMG for attitude control
 - Redundancy (or lack thereof)
 - Complexity
 - Settling time
 - Only 2/3 axes controlled
- Instead, use the VSCMG as a backup for other MEDs
 - Maintain pointing even with total failure of all other MEDs
- Future work
 - Rendezvous simulation
 - Offset thruster simulation
 - Implementation of external disturbances

References

[1] Control of a Thrust-Vectoring CubeSat Using a Single Variable-Speed Control Moment Gyroscope

James D. Biggs and Gaetano Livornese

Journal of Guidance, Control, and Dynamics 2020 43:10, 1865-1880

