EE 538B CMOS RF IC DESIGN

		and Hi = 100
Midterm	Examination No. 1: April 24,	2002 111 - 100
•		16=70
Time Allowed: 110 Minutes		1 M= 8.4
Student Name:	Solutions	(
UW Student ID #:	123-45-6789	· · · · · · · · · · · · · · · · · · ·

You are allowed one sheet of notes. Write legibly. Show all work. State assumptions.

Problem #	Points Possible	Points
		Tonts
1	20	20
2	10	10
3	25	
4	25	25
· · · · · · · · · · · · · · · · · · ·	23	25
5	20	20
		T. A.A.

1. (20 points) Find the noise factor of the circuit shown with respect to the source resistance Rs. Neglect channel length modulation effects and all parasitic capacitors. Consider only drain current

$$\stackrel{\circ}{\circ} F = 1 + \frac{\left[(\omega R_S C)^2 + 1 + \left[(\omega R_S C)^2 \right] + \left[(\omega R_S C)^2 \right] + \left[(\omega R_S C)^2 \right] + \frac{2}{3m^2 R_D R_S}}{3m^2 R_S}$$

(10 points) With respect to a source resistance R_S:
 (a) What value of R_L maximizes power transfer?

We obtain maximum power transfor when the load impedance in the complex conjugate of the source impedance; i.e., $Z_L = Z_S +$ In this case, $R_L = R_S$.

(b) What value of R_L minimizes the noise factor F?

with $V_{in}=0$, redraw circuit with noise:

With $V_{in}=0$, redraw circuit with noise:

What $V_{in}=0$ and $V_{in}=0$ and

Clearly F = fmin = 1 whom RL = 0. This simple examples illustrates the key point are different. That optimum gain match and uptimum noise match are different.

3. (25 points) With Q=10, the matching circuit below is used to convert $R_L = 200\Omega$ to $R_{\rm IN} = 50\Omega$ at $f_O = 100$ 5.6GHz. Determine the required component values. ERL = 200-2 band pass matching Rin = 50 1 consider a sequence of transformations: The final circuit is pure series Rec eirent with: Q=10; $R_5=Rin=50$ e; $f_5=5.6$ GHz For (C): $Q=10=\frac{W_0U_1}{R_5}$ $U_1=\frac{QR_5}{W_0}=\boxed{14.2}$ nH Q= 10 = 40 Rs Cs = 0 R. W. = 56.8 FF Rp= Rs (42+1) = 50 (101) = [5050.2] $C_{7} = \frac{C_{5} \Omega^{2}}{\Omega^{2} + 1} = \frac{156.8 \, fF}{(101)} \frac{100}{100} = \frac{156.3 \, fF}{100}$ 4 = 1 = 14.92 Q2 = WORD C2 = Q2WORE = [28.9 FF] Q2 = WORD CP = CP = WORD = [27.7 FF] Finally, C= Cy-Cp=[28.6FF]

This means Pds, = Yds2 = 30

(25 points) Find an expression for the noise factor of the circuit below with respect to the source resistance Rs Neglect channel length modulation and all parasitic capacitors; also, neglect induced gate current noise. Assume that the DC bias voltage across L is zero.

The noise sources are uncorrelated: PARO = 13 $in_{i}R_{i} = \frac{4kTR_{i}Af \cdot gm_{i}}{V_{s}} \cdot \frac{gm_{2}(\omega L)^{2}}{1+gm_{2}(\omega L)^{2}}$ $in_{i}R_{i} = \frac{4kTR_{i}Af \cdot gm_{i}}{V_{s}} \cdot \frac{gm_{2}(\omega L)^{2}}{1+gm_{2}(\omega L)^{2}}$ $in_{i}R_{i} = \frac{4kTR_{i}Af \cdot gdo_{i}Af \cdot gm_{2}(\omega L)^{2}}{1+gm_{2}(\omega L)^{2}}$ in, Ro = 4hT of Finally, F = 1 + 89401 + 912 RsRo + 1 + 829402 RDNote: When we use this equivalent eircuit, the components in a are eircuit eircuit.

Enably, Finally, Finally, eircuit eircuit

5. (20 points) Determine expressions for the equivalent two-port input noise voltage and current power sources for the two-port network shown assuming it is driven from a source resistor R_S.

Prob-3 Zin@5.6GHz = 50 ohm

Prob-3 BW \cong 560*MHz*