

Fundada en 1936

CÁLCULO DIFERENCIAL

Centro de Ciencia Básica Universidad Pontificia Bolivariana

Vigilada Mineducación

Fundada en 1936

ENCUENTRO 7.1

Sección 1.5: Funciones trigonométricas inversas.

Funciones trigonométricas inversas

Cuando tratamos de encontrar las funciones trigonométricas inversas, tenemos una pequeña dificultad: debido a que las funciones trigonométricas no son uno a uno, no tienen funciones inversas. La dificultad se supera mediante la restricción de los dominios de estas funciones para que sean uno a uno.

Fundada en 1936

Puede verse en la figura 17 que la función seno, $y = \operatorname{sen} x$, no es uno a uno (utilice la prueba de la recta horizontal). Pero la función $f(x) = \operatorname{sen} x$, $-\pi/2 \le x \le \pi/2$, es uno a uno (figura 18). La función inversa de la función seno restringida f existe y se denota por sen-1 o arcsen. Se llama **función seno inverso** o **función arco seno**.

FIGURA 17

FIGURA 18 $y = \text{sen } x, -\frac{\pi}{2} \le x \le \frac{\pi}{2}$

Dado que la definición de una función inversa indica que

$$f^{-1}(x) = y \iff f(y) = x$$

tenemos

Fundada en 1936

$$\operatorname{sen}^{-1} x = y \iff \operatorname{sen} y = x \quad y \quad -\frac{\pi}{2} \le y \le \frac{\pi}{2}$$

Por tanto, $-1 \le x \le 1$ es el número entre $-\pi/2$ y $\pi/2$ cuyo seno es x.

$$ext{Sen}^{-1}x \neq \frac{1}{\text{sen }x}$$

La función inversa del seno, sen⁻¹, tiene dominio [-1, 1] y rango $[-\pi/2, \pi/2]$, y su gráfica, que se muestra en la figura 20, se obtiene a partir de la función seno restringido (figura 18), mediante la reflexión sobre la recta y = x.

Fundada en 1936

FIGURA 20

$$y = \operatorname{sen}^{-1} x = \operatorname{arcsen} x$$

Las ecuaciones de cancelación para las funciones inversas resultan ser, en este caso,

$$\operatorname{sen}^{-1}(\operatorname{sen} x) = x \quad \operatorname{para} -\frac{\pi}{2} \le x \le \frac{\pi}{2}$$

$$sen (sen^{-1}x) = x para - 1 \le x \le 1$$

La **función coseno inverso** se maneja en forma similar. La función coseno restringida $f(x) = \cos x$, para $0 \le x \le \pi$, es uno a uno (figura 21) y, por tanto, tiene una función inversa denotada por cos⁻¹ o arccos.

$$\cos^{-1} x = y \iff \cos y = x \quad y \quad 0 \le y \le \pi$$

FIGURA 21

FIGURA 21 FIGURA 22

$$y = \cos x, 0 \le x \le \pi$$
 $y = \cos^{-1} x = \arccos x$

Las ecuaciones de cancelación son

$$\cos^{-1}(\cos x) = x$$
 para $0 \le x \le \pi$
 $\cos(\cos^{-1}x) = x$ para $-1 \le x \le 1$

La función coseno inverso, \cos^{-1} , tiene dominio [-1, 1]y rango $[0, \pi]$. Su gráfica se muestra en la figura 22.

La función tangente puede hacerse uno a uno mediante la restricción de que el intervalo sea $(-\pi/2, \pi/2)$. Así, la **función tangente inversa** se define como la inversa de la función $f(x) = \tan x, -\pi/2 < x < \pi/2$. (Véase la figura 23), y se denota por tan⁻¹ o arctan.

$$\tan^{-1} x = y \iff \tan y = x \quad y \quad -\frac{\pi}{2} < y < \frac{\pi}{2}$$

La función tangente inversa, $\tan^{-1} = \arctan$, tiene dominio \mathbb{R} y rango $(-\pi/2, \pi/2)$. Su gráfica se muestra en la figura 25.

FIGURA 25

$$y = \tan^{-1} x = \arctan x$$

El resto de las funciones trigonométricas inversas no se utilizan con tanta frecuencia y se resumen aquí.

11
$$y = \csc^{-1} x (|x| \ge 1) \iff \csc y = x \quad y \quad y \in (0, \pi/2] \cup (\pi, 3\pi/2]$$

$$y = \sec^{-1} x (|x| \ge 1) \iff \sec y = x \quad y \quad y \in [0, \pi/2) \cup [\pi, 3\pi/2]$$

$$y = \cot^{-1} x \ (x \in \mathbb{R}) \iff \cot y = x \quad y \quad y \in (0, \pi)$$

Dado que las funciones trigonométricas no son uno a uno (ver prueba de la recta horizontal), no tienen funciones inversas. La dificultad se supera mediante la restricción de los dominios de estas funciones para que sean uno a uno.

Función trigonométrica	Dominio	Rango	Gráfica
y = senx	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	[-1, 1]	$-\frac{\pi}{2}$ 0 $\frac{\pi}{2}$
$y = sen^{-1}x$ $y = arcsenx$	[-1,1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	$ \begin{array}{c c} & x \\ \hline & x \\ \hline & -1 \\ \hline & 0 \\ \hline & -\frac{\pi}{2} \end{array} $

Función trigonométrica	Dominio	Rango	Gráfica
y = cosx	[0, π]	[-1,1]	$\frac{y}{0}$ $\frac{\pi}{2}$ π x
$y = cos^{-1}x$ $y = arccosx$	[-1, 1]	[0, π]	$\frac{\pi}{2}$

Función trigonométrica	Dominio	Rango	Gráfica
y = tanx	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	$(-\infty, +\infty)$	$-\frac{\pi}{2}$ 0 $\frac{\pi}{2}$ x
$y = tan^{-1}x$ $y = arctanx$	$(-\infty, +\infty)$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	$ \begin{array}{c c} & \frac{\pi}{2} \\ \hline 0 & \\ \hline -\frac{\pi}{2} \end{array} $

Completar la siguiente información:

	_					100
- 1	-11	nd	21	e h	on	193
- 1	- u	пu	a	u a	CII	100

Función trigonométrica	Dominio	Rango	Gráfica
$y = \csc x$			
$y = \csc^{-1}x$ $y = arc\csc x$			

Completar la siguiente información:

Función trigonométrica	Dominio	Rango	Gráfica
$y = \sec x$			
$y = \sec^{-1} x$ $y = arc\sec x$			

Completar la siguiente información:

Función trigonométrica	Dominio	Rango	Gráfica
$y = \cot x$			
$y = \cot^{-1} x$ $y = arc\cot x$			

EJEMPLO 13 Simplifique la expresión cos $(\tan^{-1} x)$.

SOLUCIÓN 1 Sea $y = \tan^{-1} x$. Tenemos que, $\tan y = x$ y $-\pi/2 < y < \pi/2$. Queremos encontrar cos y, pero, ya que tan y es conocida, es más fácil encontrar primero sec y:

$$\sec^2 y = 1 + \tan^2 y = 1 + x^2$$

$$\sec y = \sqrt{1 + x^2}$$
 (ya que $\sec y > 0$ para $-\pi/2 < y < \pi/2$)

$$\cos(\tan^{-1} x) = \cos y = \frac{1}{\sec y} = \frac{1}{\sqrt{1 + x^2}}$$

SOLUCIÓN 2 En lugar de utilizar las identidades trigonométricas como en la solución 1, es quizá más fácil usar un diagrama. Si $y = \tan^{-1} x$, entonces $\tan y = x$, y podemos leer en la figura 24 (que ilustra el caso y > 0) que

FIGURA 24

63-68 Encuentre el valor exacto de cada una de las siguientes expresiones.

63. a)
$$\text{sen}^{-1} \left(\sqrt{3}/2 \right)$$

b)
$$\cos^{-1}(-1)$$

64. a)
$$\tan^{-1} \left(1/\sqrt{3} \right)$$

b)
$$\sec^{-1} 2$$

b)
$$\text{sen}^{-1} (1/\sqrt{2})$$

66. a)
$$\cot^{-1}(-\sqrt{3})$$

b)
$$\arccos\left(-\frac{1}{2}\right)$$

b)
$$sen^{-1} (sen(7\pi/3))$$

68. a)
$$\tan (\sec^{-1} 4)$$

b) sen
$$\left(2 \operatorname{sen}^{-1}\left(\frac{3}{5}\right)\right)$$

69. Pruebe que cos (sen⁻¹ x) = $\sqrt{1 - x^2}$

70-72 Simplifique cada una de las siguientes expresiones:

70.
$$tan (sen^{-1} x)$$

71. sen
$$(\tan^{-1} x)$$

72.
$$\cos (2 \tan^{-1} x)$$

REPASO

Verificación de conceptos

- 1. a) ¿Qué es una función? ¿Cuáles son su dominio y su rango?
 - b) ¿Qué es la gráfica de una función?
 - c) ¿Cómo se puede saber si una curva dada es la gráfica de una función?
- Analice cuatro maneras de representar una función. Ilustre la discusión con ejemplos.
- 3. a) ¿Qué es una función par? ¿Cómo puede saber si una función es par observando su gráfica? Dé tres ejemplos de una función par.
 - b) ¿Qué es una función impar? ¿Cómo puede saber si una función es impar observando su gráfica? Dé tres ejemplos de una función impar.
- 4. ¿Qué es una función creciente?
- 5. ¿Qué es un modelo matemático?
- 6. Dé un ejemplo de cada tipo de función
 - a) lineal

b) potencia

c) exponencial

- d) cuadrática
- e) polinomial de grado 5
- f) racional
- Trace a mano, en los mismos ejes, las gráficas de las siguientes funciones.
 - a) f(x) = x

b) $g(x) = x^2$

c) $h(x) = x^3$

d) $j(x) = x^4$

- **8.** Trace a mano un bosquejo de la gráfica de cada una de las siguientes funciones.
 - a) $v = \sin x$

b) $y = \tan x$

c) $y = e^x$

d) $y = \ln x$

e) y = 1/x

f) y = |x|

g) $y = \sqrt{x}$

- h) $y = \tan^{-1}x$
- **9.** Suponga que f tiene dominio A y g tiene dominio B.
 - a) ¿Cuál es el dominio de f + g?
 - b) ¿Cuál es el dominio de fg?
 - c) ¿Cuál es el dominio de f/g?
- 10. ¿Cómo se define la función compuesta f ∘ g? ¿Cuál es su dominio?
- 11. Suponga que la gráfica de f está dada. Escriba una ecuación para cada una de las gráficas que se obtienen de aquella de f de la siguiente manera.
 - a) Desplazamiento de 2 unidades hacia arriba.
 - b) Desplazamiento de 2 unidades hacia abajo.
 - c) Desplazamiento de 2 unidades a la derecha.
 - d) Desplazamiento de 2 unidades a la izquierda.
 - e) Reflexión sobre el eje x.
 - f) Reflexión sobre el eje y.
 - g) Alargamiento vertical por un factor de 2.
 - h) Contraer verticalmente por un factor de 2.
 - i) Alargar horizontalmente por un factor de 2.
 - j) Contraer horizontalmente por un factor de 2.

- 12. a) ¿Qué es una función uno a uno? ¿Cómo puede saber si una función es uno a uno observando su gráfica?
 - b) Si f es una función uno a uno, ¿cómo se define su función inversa f⁻¹? ¿Cómo se obtiene la gráfica de f⁻¹ a partir de la gráfica de f?
- **13.** a) ¿Cómo se define la función seno inverso $f(x) = \text{sen}^{-1} x$? ¿Cuáles son su dominio y su rango?
 - b) ¿Cómo se define la función coseno inverso $f(x) = \cos^{-1} x$? ¿Cuáles son su dominio y rango?
 - c) ¿Cómo se define la función tangente inversa f(x) = tan⁻¹ x?
 ¿Cuáles son su dominio y rango?

Fundada en 1936

Examen rápido Verdadero-Falso

Determine si la afirmación es verdadera o falsa. Si es verdadera, explique por qué. Si es falsa, explique por qué o dé un ejemplo que refute la afirmación.

- 1. Si f es una función, entonces f(s + t) = f(s) + f(t).
- **2.** Si f(s) = f(t), entonces s = t.
- **3.** Si f es una función, entonces f(3x) = 3f(x).
- **4.** Si $x_1 < x_2$ y f es una función decreciente, entonces $f(x_1) > f(x_2)$.
- Una recta vertical intersecta la gráfica de una función a lo más una vez.
- **6.** Si f y g son funciones, entonces $f \circ g = g \circ f$.
- 7. Si f es uno a uno, entonces $f^{-1}(x) = \frac{1}{f(x)}$.

- **8.** Siempre puede dividirse por e^x .
- **9.** Si 0 < a < b, entonces $\ln a < \ln b$.
- **10.** Si x > 0, entonces $(\ln x)^6 = 6 \ln x$.
- 11. Si x > 0 y a > 1, entonces $\frac{\ln x}{\ln a} = \ln \frac{x}{a}$.
- **12.** $tan^{-1}(-1) = 3\pi/4$.
- 13. $\tan^{-1} x = \frac{\sin^{-1} x}{\cos^{-1} x}$.
- **14.** Si x es cualquier número real, entonces $\sqrt{x^2} = x$.

REFERENCIA

Fundada en 1936

Stewart, J., Cálculo de una variable Trascendentes tempranas, Cengage Learning. Octava edición, 2018.

Formación integral para la transformación social y humana

