КР1533**ИР**9, **КФ**1533**ИР**9, **ЭКФ**1533**ИР**9

Микросхемы представляют собой 8-разрядный сдвиговый регистр с параллельной загрузкой (записью). Имеют 2 режима работы: параллельная загрузка и сдвиг. Корпус типа 238.16-1, масса не более 1,2 г и 4307.16-А.

Назначение выводов: 1 - вход выбора режима SEMO; 2 - вход синхросигнала SYN; 3...6 - информационные входы DI4...DI7; 7 - выход информационный прямой 8 разряда; 8 - общий; 9 - выход информационный инверсный 8 разряда; 10...14 - информационные входы DI0...DI3; 15 - вход блокировки синхросигнала DESYN; 16 - напряжение питания.

Условное графическое обозначение КР1533ИР9, КФ1533ИР9, ЭКФ1533ИР9

Электрические параметры

Номинальное напряжение питания5 В ± 10% Выходное напряжение низкого уровня при					
$U_n = 5 B$; $U_{Bx}^0 = 0.8 B$; $U_{Bx}^1 = 2 B$:					
- при I ⁰ _{вых} = 4 мА≤ 0,4 В					
- при I ⁰ _{вых} = 8 мА≤ 0,5 В					
Выходное напряжение высокого уровня при					
$U_n = 5 \text{ B}; \ U^0_{BX} = 0.8 \text{ B}; \ U^1_{BX} = 2 \text{ B}; \ I^1_{BMX} = -0.4 \text{ MA} \dots \ge (U_n - 2) \text{ B}$					
Прямое падение напряжения на антизвонном диоде					
при $U_n = 4,5$ B; $I_{BX} = -18$ мА $\leq -1,5 $ В					
Ток потребления при U _п = 5,5 В≤ 28 мА					
Входной ток низкого уровня при $U_n = 5.5 \text{ B}; \ U^0_{\text{Bx}} = 0.4 \text{ B} \dots \le \left -0.1 \right \text{ мA}$					
Входной ток высокого уровня при $U_n = 5.5 \text{ B}$; $U_{\text{Bx}}^1 = 2.7 \text{ B} \dots \leq 20 \text{ мкA}$					
Выходной ток при $U_n = 5.5 \text{ B}$; $U_{\text{вых}} = 2.25 \text{ B} \dots -30 \dots -30 \dots -112 \text{ мA}$					

Время задержки распространения сигнала при включении при $U_n = 5$ B; $C_H = 50$ пФ; $R_H = 0.5$ кОм:

•					
-	от вывода 1 к выводам 7, 9	.≤ 90 нс			
-	от вывода 2 к выводам 7, 9	.≤ 16 нс			
-	от вывода 6 к выводу 7	.≤ 27 нс			
-	от вывода 6 к выводу 9	.≤21 нс			
Время задержки распространения сигнала при выключении					
при L	$J_n = 5 B$; $C_H = 50 п\Phi$; $R_H = 0.5 кОм$:				
-	от вывода 1 к выводам 7, 9	.≤22 нс			
-	от вывода 2 к выводам 7, 9	.≤16 нс			
-	от вывода 6 к выводу 7	.≤ 18 нс			
-	от вывода 6 к выводу 9	.≤19 нс			

Таблица истинности

Входы			Фуниция	
SEMO	SYN	DESYN	Функция	
L	Χ	X	Параллельная загрузка	
Н	Н	Χ	Не изменяется	
Н	Χ	Χ	Не изменяется	
Н	L	L→H	Сдвиг	
Н	L→H	Ĺ	Сдвиг	

Предельно допустимые режимы эксплуатации

Напряжение питания	4,55,5 B
Входное напряжение низкого уровня	00,8 в
Входное напряжение высокого уровня	25,5 в
Максимальное напряжение, подаваемое на выход	5,5 B
Температура окружающей среды	10+70 °C

Общие рекомендации по применению

Безотказность работы микросхем в аппаратуре достигается: правильным выбором условий эксплуатации и электрических режимов микросхем; соблюдением последовательности монтажа микросхем в аппаратуре, исключающих тепловые, электрические и механические повреждения микросхем.

Лужение производить в следующих режимах: температура расплавленного припоя не более 260 °C; время погружения не более 2 с; расстояние от корпуса до зеркала припоя (по длине вывода) не менее 1 мм; допустимое количество погружений не более 2; интервал между двумя

погружениями не менее 5 мин.

Лужение и пайка должны производиться предпочтительно припоем ПОС61 по ГОСТ 21930-76, флюсом, состоящим из 25% по массе канифоли и 75% по массе изопропилового или этилового спирта.

Установку микросхем на плату производить с зазором, который обеспечивается конструкцией выводов.

Пайку микросхем на печатную плату одножальным паяльником производить по следующему режиму: температура жала паяльника не более 270 °C; время касания каждого вывода не более 3 с; расстояние от корпуса до места пайки (по длине вывода) не менее 1 мм; интервал между пайками соседних выводов не менее 3 с.

Жало паяльника должно быть заземлено.

Пайку микросхем на печатную плату групповым способом производить по следующему режиму: температура жала группового паяльника не более 265 °C; время воздействия этой температуры (одновременно на все выводы) не более 3 с; расстояние от корпуса до места пайки (по длине вывода) не менее 1 мм; интервал между двумя повторными пайками выводов не менее 5 мин.

Операцию очистки печатных плат с микросхемами от паяльных флюсов производить тампоном или кистью, смоченными спирто-бензиновой смесью в пропорции 1:1, ацетоном, спиртом или трихлорэтиленом, исключив при этом механическое повреждение выводов.

Сушку печатных плат с микросхемами после очистки производить при температуре не выше 60 °C.

Для влагозащиты плат с микросхемами применять лак УР-231 по ТУ 6-10-863-84 или ЭП-730 по ГОСТ 20924-81. Оптимальная толщина покрытия лаком УР231 должна быть 35...55 мкм, лаком ЭП-730 - 35...100 мкм.

Количество слоев 3.

Рекомендуемая температура сушки (полимеризации) лака 65 ± 5 °C.

Свободные входы необходимо подключать к источнику постоянного напряжения 5 В \pm 10%, к источнику выходного напряжения высокого уровня или заземлять.

Допустимое значение электростатического потенциала 200 В.