# Calcul Stochastique - MMA

Partie 2 : Martingales et Processus Stochastiques

# Pr. Hamza El Mahjour

Faculté
Polydisciplinaire
Larache
Université Abdelmalek Essaâdi



# **Points Principaux**

1 Filtrations et Espérances conditionnelles

2 Martingales



conditionnelles

# Filtrations et Espérances

### Filtrations, processus

#### **Définition**

Un **processus stochastique** à valeurs dans  $(E,\mathcal{A})$  est une suite  $(X_n)_{n\in\mathbb{N}}$  de v.a à valeurs dans  $(E,\mathcal{A})$  définies sur un même espace probabilisé  $(\Omega,\mathcal{F},\mathbb{P})$ .

Si  $\mathcal F$  est une tribu, on dit que  $\mathcal A$  est une sous-tribu de  $\mathcal F$  si  $\mathcal A\subset \mathcal F$  qui est également une tribu. On dit parfois que la tribu  $\mathcal A$  est **plus grossière** que  $\mathcal F$  (ou bien  $\mathcal F$  est **plus fine** que  $\mathcal A$ ). Si X est une v.a on a l'implication suivante

$$X \subset \mathcal{A} \Rightarrow X \subset \mathcal{F}$$

Une fonction non-mesurable peut être rendue mesurable en choisissant une tribu plus fine.



#### Exemple

- La plus grossière des tribus est  $\{\emptyset, E\}$ .
- La plus petite sous-tribu pour que  $\boldsymbol{X}$  soit mesurable est

$$\sigma(X) = \{X^{-1}(A), A \in \mathcal{A}\}.$$

#### Définition (Filtration)

Sur un espace probabilisé  $(\Omega, \mathcal{F}, \mathbb{P})$ . Soit  $(\mathcal{F}_n)_{n \in \mathbb{N}}$  de  $\mathcal{F}$  une suite croissante de sous-tribus  $(\mathcal{F}_n \subset \mathcal{F}_{n+1})$ . On appelle  $(\mathcal{F}_n)_{n \in \mathbb{N}}$  une **filtration**. On dit alors que  $(\Omega, \mathcal{F}, \{\mathcal{F}_n\}, \mathbb{P})$  est un espace probabilisé **filtré**.

#### Définition (Processus adapté)

On dit que le processus  $\{X_n\}$  est adaptée à la filtration  $\{\mathcal{F}_n\}$  si pour tout  $n, X_n$  est  $\mathcal{F}_n$ -mesurable.

#### Exemples

- La filtration minimale d'un processus  $(X_n)$  est la **filtration canonique** 

$$\mathcal{F}_n = \sigma(X_0, X_1, \dots, X_n).$$

- La marche aléatoire symétrique dans  $(\mathbb{Z},\mathcal{P}(\mathbb{Z}))$ . On prend  $\Omega=\{-1,1\}^{\mathbb{N}}$  (suites infinies). n-ième éléments  $\to n-$ ième pas de la marche.

$$X_n(\omega) = \sum_{i=1}^n \omega_i.$$

La tribu associée est  $\mathcal{F}=\mathcal{P}(\{-1,1\})^{\otimes \mathbb{N}}.$  Construisons la filtration naturelle. D'abord  $X_0=0.$  Donc

$$X_0^{-1}(A) = \begin{cases} \emptyset & \text{si} \quad 0 \not\in A, \\ \Omega & \text{si} \quad 1 \in A. \end{cases}$$

#### Exemples (suite)

ce qui permet de considérer :  $\mathcal{F}_0 = \{\emptyset, \Omega\}$ . Pour n = 1, on observe  $(X_0, X_1)(\Omega) = \{(0, -1), (0, 1)\}$ . Ce qui permet de distinguer 4 cas :

$$(X_0, X_1)^{-1}(A) = \begin{cases} \emptyset & \text{si } (0, -1) \not \in A \text{ et } (0, 1) \not \in A, \\ \{\omega : \omega_1 = 1\} & \text{si } (0, -1) \not \in A \text{ et } (0, 1) \in A, \\ \{\omega : \omega_1 = -1\} & \text{si } (0, -1) \in A \text{ et } (0, 1) \notin A, \\ \Omega & \text{si } (0, -1) \in A \text{ et } (0, 1) \in A, \end{cases}$$

 $si(0,-1) \in A et(0,1) \in A$ ,

Donc

$$\mathcal{F}_1 = \{\emptyset, \{\omega: \omega_1 = -1\}, \{\omega: \omega_1 = 1\}, \Omega\}$$

On continue par un raisonnement analogue pour construire  $\mathcal{F}_n$  pour nquelconque.

 $\mathcal{F}_1$  contient l'information disponible au temps 1: On sait distinguer tous les événements dépendant du premier pas de la marche. Les v.a mesurables par rapport à  $\mathcal{F}_1$  dépendent uniquement de  $\omega_1$ .

# Espérance conditionnelle

- On travaille sur  $(\Omega, \mathcal{F}, \mathbb{P})$  avec  $\mathcal{F}_1 \subset \mathcal{F}$ .
- $\mathcal{F}_1$   $\longrightarrow$  info. partielle sur l'espace en observant une v.a  $X_1$ .
- $\mathbb{E}[X|\mathcal{F}_1]$   $\longrightarrow$  meilleure estimation qu'on peut faire de la valeur de X à l'aide de l'information contenue dans  $\mathcal{F}_1$ .

#### Définition

Soit X une v.a réelle sur  $(\Omega, \mathcal{F}, \mathbb{P})$  telle que  $\mathbb{E}[|X|] < \infty$ . On appelle **espérance conditionnelle** de X sachant  $\mathcal{F}_1$  et on note  $\mathbb{E}[X|\mathcal{F}_1]$ , toute v.a Y satisfaisant les deux conditions

- 1  $Y \subset \mathcal{F}_1$ , c-à-d Y est  $\mathcal{F}_1$  mesurable;
- $abla A \in \mathcal{F}_1, \quad \int_A X \ d\mathbb{P} = \int_A Y \ d\mathbb{P}.$

#### Remarque

Nous abrégeons  $\mathbb{E}[X|\sigma(Z)] = \mathbb{E}[X|Z]$  si Z est une v.a.r de  $(\Omega, \mathcal{F}, \mathbb{P})$ .

#### Théorème

- 1 L'espérance conditionnelle  $\mathbb{E}[X|\mathcal{F}_1]$  existe.
- 2 Si Y et Y' sont deux versions de  $\mathbb{E}[X|\mathcal{F}_1]$  alors Y=Y' p.s (unicité)
- 3 On a  $\mathbb{E}\left[\mathbb{E}[X|\mathcal{F}_1]\right] = \mathbb{E}[X]$  et  $\mathbb{E}\left[\left|\mathbb{E}[X|\mathcal{F}_1]\right|\right] \leq \mathbb{E}[|X|]$ .

#### Exemples

- Si X est  $\mathcal{F}_1$  mesurable alors  $\mathbb{E}[X|\mathcal{F}_1]=X$  (contient déjà toute l'info. sur X).
- Si X est indépendante de  $\mathcal{F}_1$  alors pour tout  $A \in \mathcal{F}_1$  et  $B \in \mathcal{B}(\mathbb{R})$

$$\mathbb{P}\left(\left\{X\in B\right\}\cap A\right)=\mathbb{P}\left(\left\{X\in B\right\}\right)\mathbb{P}(A).$$

et puisque  $\mathbb{E}[X \cdot \mathbb{1}_A] = \mathbb{E}[X]\mathbb{P}(A)$  alors  $\mathbb{E}[X|\mathcal{F}_1] = \mathbb{E}[X]$  c'est à dire la meilleure estimation de X est son espérance quand elle est indépendante de la sous-tribu  $\mathcal{F}_1$ .

#### Propriétés

L'espérance conditionnelle a les propriétés suivantes :

- 1  $\mathbb{E}[aX + Y|\mathcal{F}_1] = a\mathbb{E}[X|\mathcal{F}_1] + \mathbb{E}[Y|\mathcal{F}_1]$ . (Linéarité)
- $ext{2} ext{ Si } X \leq Y ext{ alors } \mathbb{E}[X|\mathcal{F}_1] \leq \mathbb{E}[Y|\mathcal{F}_1]. ext{ (Monotonie)}$
- Si  $X_n \geq 0$  est une suite croissante telle que  $X_n \uparrow X$  avec  $\mathbb{E}[X] < \infty$  alors  $\mathbb{E}[X_n | \mathcal{F}_1] \uparrow \mathbb{E}[X | \mathcal{F}_1]$ . (Convergence monotone)
- 4 Si  $\varphi$  est convexe et  $\mathbb{E}[X]$  et  $\mathbb{E}[|\varphi(X)|]$  sont finies alors

$$\varphi\left(\mathbb{E}[X|\mathcal{F}_1]\right) \leq \mathbb{E}[\varphi(X)|\mathcal{F}_1]. \qquad (\textit{Jensen})$$

5 Soit  $p \geq 1 : \mathbb{E}[|\mathbb{E}[X|\mathcal{F}_1]|^p] \leq \mathbb{E}[|X|^p]$ . (Contraction dans  $\mathbb{L}^p$ )



#### Proposition

Si  $\mathcal{F}_1 \subset \mathcal{F}_2$ , alors

- $\mathbb{I}$   $\mathbb{E}\left[\mathbb{E}[X|\mathcal{F}_1]|\mathcal{F}_2\right] = \mathbb{E}[X|\mathcal{F}_1]$ ;

#### Démonstration.

- 1. Notons que  $\mathbb{E}[X|\mathcal{F}_1]$  est  $\mathcal{F}_2$ -mesurable. Donc  $\mathbb{E}[\mathbb{E}[X|\mathcal{F}_1]|\mathcal{F}_2] = \mathbb{E}[X|\mathcal{F}_1]$ .
- 2. Puisque  $\mathcal{F}_1\subset\mathcal{F}_2$ , on a, par définition de des espérances conditionnelles  $\mathbb{E}[X|\mathcal{F}_1]$  et  $\mathbb{E}[X|\mathcal{F}_2]$  pour tout  $A\in\mathcal{F}_1\subset\mathcal{F}_2$

$$\int_A \mathbb{E}[X|\mathcal{F}_1] d\mathbb{P} = \int_A X d\mathbb{P} = \int_A \mathbb{E}[X|\mathcal{F}_2] d\mathbb{P}.$$



#### suite de la démo.

De plus pour tout  $A \in \mathcal{F}_1$ 

$$\int_A \mathbb{E}[X|\mathcal{F}_2] d\mathbb{P} = \int_A \mathbb{E}[X|\mathcal{F}_1] d\mathbb{P},$$

donc

$$\mathbb{E}[\mathbb{E}[X|\mathcal{F}_2]|\mathcal{F}_1]=\mathbb{E}[\mathbb{E}[X|\mathcal{F}_1]|\mathcal{F}_1],$$
 give  $\mathbb{E}[X|\mathcal{F}_1]$  est  $\mathcal{F}_1$ -mesurable donc  $\mathbb{E}[\mathbb{E}[X|\mathcal{F}_1]|\mathcal{F}_1]=\mathbb{E}[X|\mathcal{F}_1].$ 

et puisque  $\mathbb{E}[X|\mathcal{F}_1]$  est  $\mathcal{F}_1$ -mesurable donc  $\mathbb{E}[\mathbb{E}[X|\mathcal{F}_1]|\mathcal{F}_1] = \mathbb{E}[X|\mathcal{F}_1]$ .

# Martingales

Dans ce qui suit, on va voir ensemble les martingales. On s'intéresse à un résultat de convergence des martingales.

#### Définition

Une suite de v.a des appelée une **martingale** sur  $(\Omega, \mathbb{P}, \mathcal{F}, \mathcal{F}_n)$  si

- (i)  $\mathbb{E}[|\mathcal{M}_n|] < \infty$ .
- (ii)  $(\mathcal{M}_n)$  est  $(\mathcal{F}_n)$ -adapté.
- (iii)  $\mathbb{E}[\mathcal{M}_{n+1}|\mathcal{F}_n] = \mathcal{M}_n$



- surmartingale ==> (i) + (ii) +  $\mathbb{E}[\mathcal{M}_{n+1}|\mathcal{F}_n] \leq \mathcal{M}_n$ . sous-martingale ==> (i) + (ii) +  $\mathbb{E}[\mathcal{M}_{n+1}|\mathcal{F}_n] \leq \mathcal{M}_n$ . Si  $\mathcal{M}_n$  est adapté à  $\mathcal{F}_n$  ==> adapté à  $\sigma = (\mathcal{M}_1, \dots, \mathcal{M}_n)$ .  $\mathbb{E}[\mathcal{M}_{n+m}|\mathcal{F}_n] = \mathcal{M}_n$ .



#### Exemple (1) Marche Aléatoire (1)

Soit  $X_i$  des v.a i.i.d avec  $\mathbb{E}[X_i] = 0, \forall i, S_0 = 0$ .  $S_n = S_{n-1} + X_n$  avec la filtration  $\mathcal{F}_0 = \{\Omega, \emptyset\}$  et  $\mathcal{F}_n = \{\Omega, \emptyset\}$  $\sigma(X_0,\ldots,X_n), \forall n \geq 1$ 

$$\mathbb{E}[S_{n+1}|\mathcal{F}_n] = \mathbb{E}[S_n + X_{n+1}|\mathcal{F}_n]$$

$$= \mathbb{E}[S_n|\mathcal{F}_n] + \mathbb{E}[X_{n+1}|\mathcal{F}_n]$$

$$= \mathbb{E}[S_n].$$



Si  $\mathcal{M}_i$  est une martingale, on définit le processus des différences de martingales :  $Y_i = \mathcal{M}_i - \mathcal{M}_{i-1}$ . Notez que :  $\mathbb{E}[Y_i|\mathcal{F}_{i-1}] = 0$  et  $\mathcal{M}_n = \mathcal{M}_0 + \sum_{i=1}^n Y_i$ .



Dans l'exemple précédent nous n'avons pas eu besoin du fait d'avoir la même loi

#### Exemple (2) Produit aléatoire (2)

Soit  $X_i$  i.i.d ,  $X_i > 0$  et  $\mathbb{E}[X_i] = 1$ . Poser  $\mathcal{P}_0 = 1$  et  $\mathcal{P}_n = \prod_{i=1}^n X_i$ .  $\to \mathcal{P}_n$  est une martingale sur la filtration canonique  $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$ .  $\to$  En particulier, on considère la suite  $(X_i)$  t.q  $\mathbb{P}(\{X_i = 0\} = 1/2$  et  $\mathbb{P}(\{X_i = 2\} = 1/2$ . Il est clair que  $\mathbb{E}(X_i) = 1$  pour tout i.

C'est contre-intuitif!  $\mathbb{L}^1$ 

On voit bien dans ce cas particulier que  $\mathbb{E}[\prod_{i=1}^n X_i] = 1$ .

On peut montrer que  $\mathcal{P}_n \xrightarrow[n \to \infty]{\mathbb{L}^1} 0$  or  $\mathcal{P}_n \xrightarrow[n \to \infty]{p.s} 1$ .

#### Exemple (3)

Soit X une v.a intégrable et  $(F_n)_{n\in\mathbb{N}}$  une filtration.  $Z_n=\mathbb{E}[X|\mathcal{F}_n]$  est une martingale. En effet,

$$\mathbb{E}[Z_{n+1}|\mathcal{F}_n] = \mathbb{E}[\mathbb{E}[X|\mathcal{F}_{n+1}]|\mathcal{F}_n] = \mathbb{E}[X|\mathcal{F}_n] = Z_n.$$

Maintenant un exemple avec des sous-martingales.

#### Exemple

Si  $Z_n$  est une sous-martingale par rapport à la filtration  $(\mathcal{F}_n)$  et f est un fonction convexe avec  $\mathbb{E}[|f(Z_n)|] < \infty$ . Alors  $f(Z_n)$  est une sous-martingale adaptée à  $\mathcal{F}_n$ . Pour prouver l'inégalité précédente, on se base sur l'inégalité de Jensen (pour les espérances conditionnelles), c-à-d

$$\varphi(\mathbb{E}[X|\mathcal{B}]) \leq \mathbb{E}[\varphi(X)|\mathcal{B}].$$

pour toute tribu sous-tribu  $\mathcal{B}$ , et X une v.a de carrée intégrable et  $\phi$  convexe.

Applications de l'exemple précédents :  $|Z_n|^p, (Z_n-a)^+...$  sont des martingales.



# Transformée de martingale

 $X \in \mathcal{F}$  veut dire  $\mathcal{F}$ -mesurable.

#### Définition

- Soit  $(\mathcal{F}_n)$  une filtration, un processus  $H_n$  est **prévisible** si  $H_n \in \mathcal{F}_{n-1}$  pour tout n
- 2 Si  $Z_n$  est une martingale

$$ig(H\cdot Zig)_n = egin{cases} \sum_{k=1}^n H_k(Z_k-Z_{k-1}) & ext{si} & n\geq 1, \\ 0 & ext{si} & n=0. \end{cases}$$

- La transformée représente en quelque sorte la "version discrète" d'une intégrale stochastique  $\int HdB$ ?



# D'où vient le nom : martingale?

- C'est relié au "jeux de hasard" (qui sont illicites bien sûr). Soit  $X_i$  un jeu d'argent consistant à miser 1 euro ou gagner ou perdre un euro. Donc le gain réalisé (peut être négatif).
- $\mathbb{P}(\{X_i=1\})=\mathbb{P}(\{X_i=-1\})=1/2.$  Parier  $H_k$  au k-me tour, Gain réalisé :  $H_k\cdot X_k.$
- Poser  $Z_k = Z_0 + \sum_{i=1}^k$  .
- Le gain total au n-ème tour  $(H \cdot Z)_n = \sum_{k=1}^n H_k(Z_k Z_k 1)$ .
- Intuitivement, on peut dire que  $H_k$  est prévisible car tu vas miser une somme pour le prochain tour selon le résultat du tour actuel.  $H_{k+1} \in \sigma(X_1,\ldots,X_k)$
- Idée de martingale : miser le double à chaque fois que vous perdez, si vous gagnez vous arrêtez!

L'idée précédente peut ainsi se modéliser

$$H_n = \begin{cases} 2H_{n-1}, & \text{si } X_{n-1} = -1, \\ 0, & \text{si } X_{n-1} = +1. \end{cases}$$

Imaginez que  $X_1=X_2=\ldots=X_n=-1; X_{n+1}=1.$  Alors le gain réalisé est (si on commence par miser 1 dollar) :

$$-1-2-2^2-2^3-\ldots-2^{n-1}+2^n=1.$$

On gagne c'est sûr ... mais pas grand chose ... et en plus il y a un problème!



#### Théorème

Supposons que  $Z_n$  est une sous-martingale,  $H_n \ge 0$  un processus prévisible  $t.q H_n \le C_n$  p.s. Alors  $(H \cdot Z)_n$  est une sous-martinagle



Si  $Z_n$  est une martingale on obtient que

$$\mathbb{E}[H_n(Z_n-Z_{n-1})|\mathcal{F}_{n-1}]=0.$$

Donc si on arrête le jeu après n tours (finis) alors le gain moyen réalisé est 0 donc pour garantir de gagner on a besoin d'un temps infini et d'argent infini

Montrons maintenant que la transformée d'une martingale est bien une martinagle

#### Démonstration.

On a  $\mathbb{E}[(H\cdot Z)_{n+1}|\mathcal{F}_n]=\mathbb{E}[(H\cdot Z)_n+H_{n+1}(Z_{n+1}-Z_n)|\mathcal{F}_n]$ . Par linéarité et parce que  $(H\cdot Z)_n$  est  $\mathcal{F}_n$ -mesurable on obtient

..... = 
$$(H \cdot Z)_n + \mathbb{E}[H_{n+1}(Z_{n+1} - Z_n)|\mathcal{F}_n] = (H \cdot Z)_n$$

En fait, on peut décider d'arrêter de parier à un certain "temps non-déterministe".

On parle alors d'un nouveau concept qui est le suivante

#### Définition (Temps d'arrêt)

Soit  $\mathcal{F}_n$  une filtration. On dit que  $\mathcal{N}:\Omega\longrightarrow\mathbb{N}\cup\{\infty\}$  est un **temps** d'arrêt si  $\{\omega:\mathcal{N}(\omega)=n\}\in\mathcal{F}_n$  pour tout n



#### Théorème

Si  $\mathcal N$  est un temps d'arrêt et  $Z_n$  une sous-martingale alors  $Z_{\mathcal Z\wedge n}$  est une sous-martingale

On pose  $U_n = \sup\{k : \mathcal{N}_{2k} \le n\}$  N'oublions pas que notre but est un théorème de convergence

#### Théorème

Si  $Z_n$  est une sous-martingale alors

$$(b-a)\mathbb{E}[\mathcal{U}_n] \leq \mathbb{E}[(Z_n-a)^+] - \mathbb{E}[(Z_0-a)^+].$$

Démonstration ....

#### Théorème

Soit  $Z_n$  une sous-martingale,  $\sup[Z_n^+] < \infty$  alors  $M_n \xrightarrow[n \to \infty]{p.s} Z$  avec  $\mathbb{E}[|Z|] < \infty$ .