Math 240C: Real Analysis, Spring 2020

Homework Assignment 4

Due 12:00 noon, Monday, April 27, 2020

1. Let X and Y be locally compact Hausdorff spaces. Let μ and ν be Radon measures on X and Y, respectively. Assume $f \in C_c(X \times Y)$. Prove that the functions

$$x \mapsto \int_{Y} f_x(y) d\nu(y)$$
 and $y \mapsto \int_{X} f^y(x) d\mu(x)$

are continuous functions on X and Y, respectively.

2. Let X and Y be locally compact Hausdorff spaces. Let μ and ν be Radon measures on X and Y, respectively. (They are not necessary σ -finite.) Assume $f: X \times Y \to \mathbb{R}$ is nonnegative lower semi-continuous. Prove that the functions

$$x \mapsto \int_{Y} f_x(y) \, d\nu(y)$$
 and $y \mapsto \int_{X} f^y(x) \, d\mu(x)$

are Borel-measurable functions on X and Y, respectively, and

$$\iint f d(\mu \hat{\times} \nu) = \iint f d\mu d\nu = \iint f d\nu d\mu.$$

- 3. Let p = p(x) $(x \in \mathbb{R}^n)$ be a polynomial and define $f(x) = p(x)e^{-|x|^2}$ $(x \in \mathbb{R}^n)$. Prove that $f \in \mathcal{S}$.
- 4. Let $\eta_t = e^{-1/t}$ for t > 0 and $\eta(t) = 0$ for $t \le 0$. Prove the following:
 - (1) If $k \in \mathbb{N}$ and t > 0 then $\eta^{(k)}(t) = P_k(1/t)e^{-1/t}$, where P_k is a polynomial of degree 2k;
 - (2) $\eta^{(k)}(0)$ exists and equals zero for all $k \in \mathbb{N}$.
- 5. If $f \in L^{\infty}(\mathbb{R}^n)$ be such that $\|\tau_y f f\|_{\infty} \to 0$ as $y \to 0$. Prove that f agrees a.e. with a uniformly continuous function. (See the hint for Exercise 4 on page 239.)
- 6. Let $f \in L^1_{loc}(\mathbb{R}^n)$ and $g \in C^k_c(\mathbb{R}^n)$. Prove that $f * g \in C^k(\mathbb{R}^n)$ and $\partial^{\alpha}(f * g) = f * \partial^{\alpha}g$ for all α with $|\alpha| \leq k$.