ESPACE VECTORIEL \mathbb{R}^n

PROPRIÉTÉS DES APPLICATIONS LINÉAIRES

Soit $(n, p, q) \in (\mathbb{N}^*)^3$.

1 Composition des applications linéaires et produit de matrices

Soient $f: \mathbb{R}^p \to \mathbb{R}^n$ et $g: \mathbb{R}^q \to \mathbb{R}^p$ deux applications linéaires et $A \in M_{n,p}(\mathbb{R})$ et $B \in M_{p,q}(\mathbb{R})$ leur matrices associées relativement aux bases canoniques. L'application composée $fog: \mathbb{R}^q \to \mathbb{R}^n$ est une application linéaire et son matrice associée est définie par $C:=A \times B \in M_{n,p}(\mathbb{R})$.

Remarque 1 Pour tout $X \in \mathbb{R}^n$, (fog)(X) = (AB)X.

2 Application linéaire bijective et matrice inversible

Une application linéaire $f:\mathbb{R}^n\to\mathbb{R}^n$ est bijective si et seulement si sa matrice associée dans la base canonique $A=Mat(f)\in M_n(\mathbb{R})$ est inversible et

$$Mat(f^{-1}) = (Mat(f))^{-1}.$$

Théorème 1 La matrice A est inversible si et seulement si le système linéaire AX = B admet une solution unique pour tout second membre B.

3 Caractérisation des applications linéaires

Une application $f:\mathbb{R}^p \to \mathbb{R}^n$ est linéaire si et seulement si pour tous les vecteurs u,v dans \mathbb{R}^p et pour tout réel λ , on a :

1.
$$f(u+v) = f(u) + f(v)$$
,

2.
$$f(\lambda u) = \lambda f(u)$$
.

Remarque 2 Pour démontrer la linéarité d'une application $f: \mathbb{R}^p \to \mathbb{R}^n$, on pourra regrouper les deux propriétés : $\forall (u, v) \in (\mathbb{R}^p)^2$ et $\forall (\lambda, \mu) \in \mathbb{R}^2$,

$$f(\lambda u + \mu v) = \lambda f(u) + \mu f(v).$$

Les vecteurs de la base canonique de \mathbb{R}^n sont définis par

$$e_{1} = \begin{pmatrix} 1 \\ 0 \\ \cdot \\ \cdot \\ \cdot \\ 0 \end{pmatrix}, e_{2} = \begin{pmatrix} 0 \\ 1 \\ \cdot \\ \cdot \\ \cdot \\ 0 \end{pmatrix}, e_{3} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ 0 \\ 0 \end{pmatrix}, \dots, e_{n-1} = \begin{pmatrix} 0 \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ 0 \\ 1 \\ 0 \end{pmatrix} \text{ et } e_{n} = \begin{pmatrix} 0 \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

1 IONISX

ESPACE VECTORIEL \mathbb{R}^n

PROPRIÉTÉS DES APPLICATIONS LINÉAIRES

Soit $f:\mathbb{R}^q \to \mathbb{R}^n$ une application linéaire, et soit $(e_1,\ e_2,...,e_p)$ la base canonique de \mathbb{R}^p . Alors la matrice de f relativement aux bases canoniques de \mathbb{R}^p et \mathbb{R}^n est donnée par

$$A = Mat(f) = (f(e_1) f(e_2) ... f(e_p)),$$

autrement dit les vecteurs colonnes de A sont les images par f des vecteurs de la base canonique $(e_1,e_2,...,e_p)$.

2 IONISX