Course code	Course Title	L 3	Т	Р	С				
BCSE332L	CSE332L Deep Learning		0	0	3				
Pre-requisite	NIL	Syllal			ion				
_			1.0						
Course Objecti	ves								
 Introduce major deep neural network frameworks and issues in basic neural networks. 									
2. To solve	real world applications using Deep learning.								
Course Outcon									
 At the end of this course, student will be able to: Understand the methods and terminologies involved in deep neural network, differentiate the learning methods used in Deep-nets. Identify and apply suitable deep learning approaches for given application. 									
 Design and develop custom Deep-nets for human intuitive applications. Design of test procedures to assess the efficiency of the developed model. 									
•	·								
3. To under	stand the need for Reinforcement learning in real – time p	problem	15.						
Module:1 Intr	oduction to neural networks and deep neural networl	ks		7 ho	urs				
	s Basics - Functions in Neural networks – Activation func								
Function approximation - Classification and Clustering problems - Deep networks basics -									
Shallow neural networks – Activation Functions – Gradient Descent – Back Propagation –									
Deep Neural Networks – Forward and Back Propagation – Parameters – Hyperparameters.									
	roving deep neural networks			8 ho					
Mini-batch Gradient Descent – Exponential Weighted Averages – Gradient Descent with									
Momentum – RMSProp and Adam Optimization – Hyperparameter tuning – Batch									
	Softmax Regression - Softmax classifier - Deep Learn	ning Fra	ame	work	s –				
	ion - Under-fitting Vs Over-fitting.								
Module:3 Cor	volution neural networks		(6 ho	urs				
Foundations of Convolutional Neural Networks – CNN operations – Architecture – Simple									
Convolution Network – Deep Convolutional Models – ResNet, AlexNet, InceptionNet and others.									
	urrent networks			6 ho	urs				
Recurrent Neural Networks - Bidirectional RNNs, Encoder, Decoder, Sequence-to-Sequence Architectures, Deep Recurrent Networks, Auto encoders - Bidirectional Encoder Representations from Transformers (BERT).									
	cursive neural networks			6 ho	urs				
	pendencies - Echo State Networks - Long Short-Term	Memory							
Gated RNNs - Optimization for Long-Term Dependencies - Explicit Memory.									
	anced Neural networks	•	(6 ho	urs				
Transfer Learning – Transfer Learning Models – Generative Adversarial Network and their									
variants – Regio	n based CNN – Fast RCNN - You Only Look Once – Sing	gle shot	dete	ector					
	p reinforcement learning			5 ho					
Deep Reinforcement Learning – Q-Learning – Deep Q-Learning – Policy Gradients - Advantage Actor Critic (A2C) and Asynchronous Advantage Actor Critic (A3C) – Model based Reinforcement Learning – Challenges.									
	ntemporary issues			1 h	our				
	Total Lecture h	nours:	4	5 Но	urs				

Text Book(s)

1.	Ian Goodfellow Yoshua Bengio Aaron Courville, Deep Learning, MIT Press, 2017.						
2	Michael Nielsen, Neural Networks and Deep Learning, Determination Press, first						
	Edition, 2013.						
Reference Books							
1.	. N D Lewis, Deep Learning Step by Step with Python, 2016.						
2.	Josh Patterson, Adam Gibson, Deep Learning: A Practitioner's Approach, O'Reilly						
	Media, 2017.						
3	Umberto Michelucci, Applied Deep Learning. A Case-based Approach to Understanding						
	Deep Neural Networks, Apress, 2018.						
4	Giancarlo Zaccone, Md. RezaulKarim, Ahmed Menshawy, Deep Learning with						
	TensorFlow: Explore neural networks with Python, Packt Publisher, 2017.						
Mode of Evaluation: CAT / Written Assignment / Quiz / FAT							
Ţ.							
Recommended by Board of Studies		09-05-2022					
Apı	proved by Academic Council	No. 66	Date	16-06-2022			