

GENERAL PURPOSE DUAL BIPOLAR TIMERS

- LOW TURN OFF TIME
- MAXIMUM OPERATING FREQUENCY GREATER THAN 500kHz
- TIMING FROM MICROSECONDS TO **HOURS**
- OPERATES IN BOTH ASTABLE AND MONOSTABLE MODES
- HIGH OUTPUT CURRENT CAN SOURCE OR SINK 200mA
- ADJUSTABLE DUTY CYCLE
- TTL COMPATIBLE
- TEMPERATURE STABILITY OF 0.005% **PER°C**

DESCRIPTION

The NE556 dual monolithic timing circuit is a highly stable controller capable of producing accurate time delays or oscillation. In the time delay mode of operation, the time is precisely controlled by one external resistor and capacitor. For a stable operation as an oscillator, the free running frequency and the duty cycle are both accurately controlled with two external resistors and one capacitor.

The circuit may be triggered and reset on falling waveforms, and the output structure can source or sink up to 200mA.

ORDER CODE

Part Number	Tomporoturo Bango	Package		
Part Number	Temperature Range	N D		
NE556	0°C, 70°C	•	•	
SA556	-40°C, 105°C	•	•	
SE556	-55°C, 125°C	•	•	

f N = Dual in Line Package (DIP) f D = Small Outline Package (SO) - also available in Tape & Reel (DT)

PIN CONNECTIONS (top view)

June 2003 1/8

BLOCK DIAGRAM

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	18	V
Tj	Junction Temperature	150	°C
T _{stg}	Storage Temperature Range	-65 to 150	°C

OPERATING CONDITIONS

Symbol	Parameter	Value	Unit	
V _{CC}	Supply Voltage NE556 SA556 SE556	4.5 to 16 4.5 to 16 4.5 to 18	V	
V _{th} , V _{trig} , V _{cl} , V _{reset}	Maximum Input Voltage	V _{CC}	V	
T _{oper}	Operating Free Air Temperature Range for NE556 for SA556 for SE556	0 to 70 -40 to 105 -55 to 125	°C	

2/8

ELECTRICAL CHARACTERISTICS T_{amb} = +25°C, V_{CC} = +5V to +15V (unless otherwise specified)

Cumbal	ICAL CHARACTERISTICS T _{amb} = +25°C, V _C		SE556			NE556 - SA556		
Symbol	Parameter	Min. Typ.		Max.	Min.	Тур.	Max.	Unit
Icc	Supply Current (RL \propto) - note ¹⁾ (2 timers) Low Stage $V_{CC} = +5V$ $V_{CC} = +15V$ High State $V_{CC} = +5V$		6 20 4	10 24		6 20 4	12 30	mA
	Timing Error (monostable) (R _A = 2k to 100k Ω , C = 0.1 μ F)		0.5	2		4	2	0/
	Initial Accuracy - note ²⁾ Drift with Temperature Drift with Supply Voltage		0.5 30 0.05	2 100 0.2		1 50 0.1	3 0.5	% ppm/°(%/V
	Timing Error (astable) $ (R_A, R_B = 1 k\Omega \text{ to } 100 k\Omega, C = 0.1 \mu\text{F}, V_{CC} = +15 \text{V}) $ Initial Accuracy - see note 2 Drift with Temperature Drift with Supply Voltage		1.5 90 0.15			2.25 150 0.3		% ppm/°(%/V
V_{CL}	Control Voltage Level V _{CC} = +15V V _{CC} = +5V	9.6 2.9	10 3.33	10.4 3.8	9 2.6	10 3.33	11 4	V
V_{th}	Threshold Voltage V _{CC} = +15V V _{CC} = +5V	9.4 2.7	10 3.33	10.6 4	8.8 2.4	10 3.33	11.2 4.2	V
l _{th}	Threshold Current - note 3)		0.1	0.25		0.1	0.25	μΑ
V_{trig}	Trigger Voltage $V_{CC} = +15V$ $V_{CC} = +5V$	4.8 1.45	5 1.67	5.2 1.9	4.5 1.1	5 1.67	5.6 2.2	V
I _{trig}	Trigger Current (V _{trig} = 0V)		0.5	0.9		0.5	2.0	μA
V_{reset}	Reset Voltage ⁴⁾	0.4	0.7	1	0.4	0.7	1	V
I _{reset}	Reset Current V _{reset} = +0.4V V _{reset} = 0V		0.1 0.4	0.4 1		0.1 0.4	0.4 1.5	mA
V _{OL}	Low Level Output Voltage $V_{CC} = +15V \qquad I_{O(sink)} = 10mA$ $I_{O(sink)} = 50mA$ $I_{O(sink)} = 100mA$ $I_{O(sink)} = 200mA$ $V_{CC} = +5V \qquad I_{O(sink)} = 8mA$ $I_{O(sink)} = 5mA$		0.1 0.4 2 2.5 0.1 0.05	0.15 0.5 2.2 0.25 0.2		0.1 0.4 2 2.5 0.3 0.25	0.25 0.75 2.5 0.4 0.35	V
V _{OH}	$\begin{array}{ll} \mbox{High Level Output Voltage} \\ \mbox{V}_{CC} = +15\mbox{V} & \mbox{I}_{O(sink)} = 200\mbox{mA} \\ \mbox{I}_{O(sink)} = 100\mbox{mA} \\ \mbox{V}_{CC} = +5\mbox{V} & \mbox{I}_{O(sink)} = 100\mbox{mA} \end{array}$	13 3	12.5 13.3 3.3		12.75 2.75	12.5 13.3 3.3		V
I _{dis(off)}	Discharge Pin Leakage Current (output high) (V _{dis} = 10V)		20	100		20	100	nA
V _{dis(sat)}	Discharge pin Saturation Voltage (output low) - note $^{5)}$ $V_{CC} = +15V$, $I_{dis} = 15mA$ $V_{CC} = +5V$, $I_{dis} = 4.5mA$		180 80	480 200		180 80	480 200	mV
t _r t _f	Output rise Time Output Fall Time		100 100	200 200		100 100	300 300	ns
toff	Turn off Time - note ⁶⁾ (V _{reset} = V _{CC})		0.5			0.5		μs

^{1.} Supply current when output is high is typically 1mA less.

^{6.} Time measured from a positive going input pulse from 0 to 0.8x Vcc into the threshold to the drop from high to low of the output trigger is tied to threshold.

^{2.} Tested at V_{CC} = +5V and V_{CC} = +15V 3. This will determine the maximum value of R_A + R_B for +15V operation the max total is $R = 20M\Omega$ and for 5V operation the max total $R = 3.5M\Omega$

^{4.} Specified with trigger input high

^{5.} No protection against excessive pin 7 current is necessary, providing the package dissipation rating will not be exceeded

Figure 1: Minimum Pulse Width Required for Triggering

Figure 2: Supply Current versus Supply Voltage

Figure 3: Delay Time versus Temperature

Figure 4 : Low Output Voltage versus Output Sink Current

Figure 5 : Low Output Voltage versus Output Sink Current

Figure 6 : Low Output Voltage versus Output Sink Current

4/8

Figure 7 : High Output Voltage Drop versus Output

Figure 8 : Delay Time versus Supply Voltage

Figure 9 : Propagation Delay versus Voltage Level of Trigger Value

TYPICAL APPLICATION

50% DUTY CYCLE OSCILLATOR

 $t_1 = 0.693 R_A.C$ $t2 = [(RARB)/(RA+RB)]CLn \left[\frac{RB-2RA}{2RB-RA}\right]$ $f = \frac{t1}{t1+t2} RB < \frac{1}{2} RA ti$

PULSE WIDTH MODULATOR

477

TONE BURST GENERATOR

For a tone burst generator the first timer is used as a monostable and determines the tone duration when triggered by a positive pulse at pin 6. The second timer is enabled by the high output or the monostable. It is connected as an astable and determines the frequency of the tone.

MONOSTABLE OPERATION

ASTABLE OPERATION

 t_1 = 0.693 (R_A + R_B) C Output High t_2 = 0.693 R_BC Output Low

6/8

PACKAGE MECHANICAL DATA

Plastic DIP-14 MECHANICAL DATA

DIM		mm.			inch		
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
a1	0.51			0.020			
В	1.39		1.65	0.055		0.065	
b		0.5			0.020		
b1		0.25			0.010		
D			20			0.787	
E		8.5			0.335		
е		2.54			0.100		
e3		15.24			0.600		
F			7.1			0.280	
I			5.1			0.201	
L		3.3			0.130		
Z	1.27		2.54	0.050		0.100	

PACKAGE MECHANICAL DATA

SO-14 MECHANICAL DATA

DIM		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α			1.75			0.068
a1	0.1		0.2	0.003		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45°	(typ.)		
D	8.55		8.75	0.336		0.344
E	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		7.62			0.300	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.68			0.026
S		•	8° (ı	max.)	•	•

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 2003 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom http://www.st.com

