集成学习学习笔记

Ensemble

Bagging (Random Forests)

Stacking

Boosting(AdaBoost)

RegionBoost

GitHub https://github.com/kongzz311/MachineLearningNotes

假如有帮助欢迎加星

水平有限,若有错误欢迎指出: kozenzei@outlook.com

1. 集成学习学习笔记

1.1. Ensemble

Motivations

- 提高准确度
- 降低选择差模型的概率(Model Selection)

常见

- Bagging
- Boosting

前提分类器不同

- 不同的学习算法
- 不同的训练过程
 - o 不同参数
 - o 不同训练集
 - o 不同特征集

弱分类器

- 容易产生不同的dicision boundaries
- Stumps...(树桩)

怎样combine不同分类器

- 平均
- 投票
 - Majority Voting
 - Random Forest

- Weighted Majority Voting(加权)
 - AdaBoost
- Learning Combiner
 - General Combiner
 - Stacking
 - o Piecewise Combiner
 - RegionBoost
- No Free Lunch

1.2. Bagging (Random Forests)

Bootstrap Aggregation(Bagging)

• 有放回的采样(Resample with Replacement)

对D采样K次独立训练分类器然后voting

Random Forests

- 有放回的采样(Resample with Replacement)
- 使用大约 2/3 的原始数据(why U)

$$1-\lim_{n o\infty}(1-rac{1}{n})^n$$

- Majority Voting
- Number of Varibles

$$\sqrt{k}$$

- k = available variables
- Number of Trees
 - o 500 or more
- Self-Testing
 - Around one third of the original data are left out.
 - Out if Bag(OOB)
 - Similar to Cross-Validation

优点

- All data can be used in the training process
 - Data in **OOB** are used to evaluate the current tree
- High levels of predictive accuracy
 - 只要调少量的参数,如树的数量
 - 。 分类和回归都可以
- Resistant to overfitting
- No need for prior feature selection

1.3. Stacking

先生成不同的分类器再在输出上进行学习**权重**(模型)

Base Classifiers -> Meta Classification

1.4. Boosting(AdaBoost)

Boosting

串行,先生成第一个C1,再在第一个的基础上生成后续模型

加入之前分错的数据进来

得到C2

加入分类器分类不一致的数据进来

得到C3

用来学习C1 和 C2 分类不同的

Boosting 和 bagging 的区别

Bagging aims at reducing variance, not bias.

In Boosting, classifiers are generated **sequentially**. Focuses on most informative data points. Training samples are **weighted**. Outputs are combined via **weighted** voting. Can create arbitrarily **strong** classifiers. The base learners can be arbitrarily **weak**(比瞎猜好就可以). As long as they are better than random forests

AdaBoost

Input: Data set $D = \{(x_1, y_1), (x_2, y_2), \cdots, (x_m, y_m)\};$ Base learning algorithm $\mathcal{L};$ Number of learning rounds T.

Process:

- 1. $\mathcal{D}_1(i) = 1/m$. % Initialize the weight distribution
- 2. **for** $t = 1, \dots, T$:
- 3. $h_t = \mathcal{L}(D, \mathcal{D}_t);$ % Train a learner h_t from D using distribution \mathcal{D}_t
- 4. $\epsilon_t = \Pr_{\boldsymbol{x} \sim \mathcal{D}_t, y} \boldsymbol{I}[h_t(\boldsymbol{x}) \neq y];$ % Measure the error of h_t
- 5. if $\epsilon_t > 0.5$ then break
- 6. $\alpha_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$; % Determine the weight of h_t

7.
$$\mathcal{D}_{t+1}(i) = \frac{\mathcal{D}_{t}(i)}{Z_{t}} \times \begin{cases} \exp(-\alpha_{t}) \text{ if } h_{t}(\boldsymbol{x}_{i}) = y_{i} \\ \exp(\alpha_{t}) \text{ if } h_{t}(\boldsymbol{x}_{i}) \neq y_{i} \end{cases}$$
$$= \frac{\mathcal{D}_{t}(i)\exp(-\alpha_{t}y_{i}h_{t}(\boldsymbol{x}_{i}))}{Z_{t}} \quad \% \text{ Update the distribution, where}$$
$$\% Z_{t} \text{ is a normalization factor which}$$
$$\% \text{ enables } \mathcal{D}_{t+1} \text{ to be a distribution}$$

8. end

Output:
$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

可证明的结论:

- 1. 训练误差可以通过减小 Z_t 而减小,减小 Z_t 就是通过 $lpha=ln(rac{1-arepsilon}{arepsilon})$ (有解析解)
- 2. 训练误差一定趋近0

优点

● 没什么参数要调整。一般设定50.

缺点

• α 局部最优,类似贪心($\sum z$)

理论发展空间大

1.5. RegionBoost

动态调整权重(1998)

计算 $\alpha_j(x_i)$

- 通过KNN
- 计算正确率

