Twisted super Yangians of type AIII

Kang Lu

University of Cincinnati

Work in progress

Special Session on Representation Theory, Geometry and Mathematical Physics April 15, 2023

Overview of twisted Yangians

- Mathematical Physics
 - quantum integrable models with boundaries [Cherednik'84]
 [Sklyanin'88] . . .
- Constructions and Representation Theory
 - types AI and AII (R-matrix presentation)[Olshanski'92] [Molev'97]
 - type AIII (R-matrix presentation) (reflection algebras)
 [Molev-Ragoucy'01]
 - all types (*J*-presentation) [Mackay'02]
 - types BCD (R-matrix presentation) [Guay-Regelskis'14]
 [Guay-Regelskis-Wendlandt'16]
 - degenerations of twisted q-Yangians cf. [Drinfeld'86]
 [Gautam-Toledano-Laredo'10] [Guay-Ma'12]
 - finite W-algebras of types BCD [Ragoucy'00] [Brown'07]
- Geometry
 - partial flag varieties of type B/C cf. [Bao-Kujawa-Li-Wang'14]
 - (conjecturally) equivariant homology on the Steinberg varieties of type B/C cf. [Ginzburg-Vasserot'93] [Nakajima'99] [Varagnolo'00] A new Drinfeld presentation is probably required.

Super Yangians $\mathrm{Y}(\mathfrak{gl}_{m|n}^{\mathfrak s})$

Set $\varkappa=m+n.$ The super Yangians $Y(\mathfrak{gl}_{m|n}^{\mathfrak s})$ is

- ullet a unital associative superalgebra (\mathbb{Z}_2 -graded algebra) [Nazarov'91].
- Parity sequence: $\mathfrak{s}=(s_1,s_2,\cdots,s_\varkappa)$, where $s_i=\pm 1$ and $\#\{i|s_i=1\}=m$; define $|i|\in\mathbb{Z}_2$ by the rule $s_i=(-1)^{|i|}$;
- Generators: $t_{ij}^{(r)}$ of parity |i|+|j|, $1\leqslant i,j\leqslant \varkappa$ and $r\geqslant 1$;
- Defining relations:

$$\mathcal{R}_{12}(u-v)T_1(u)T_2(v) = T_2(v)T_1(u)\mathcal{R}_{12}(u-v),$$

where $\mathcal{R}(u) = u\mathbb{I} - \mathcal{P}$ (\mathcal{P} is the super flip operator) and

$$T(u) = (t_{ij}(u))_{i,j=1}^{\varkappa}, \qquad t_{ij}(u) = \delta_{ij} + \sum_{r=1}^{\infty} t_{ij}^{(r)} u^{-r}.$$

Let
$$T'(u) = (t'_{ij}(u)) = T^{-1}(u)$$
.

Twisted super Yangians

- Fix $\varepsilon = (\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_{\varkappa})$ where $\varepsilon_i = \pm 1$. Set $G = \operatorname{diag}(\varepsilon)$.
- Twisted super Yangian $\mathcal{B}_{\mathfrak{s},\varepsilon}$, the subalgebra of $Y(\mathfrak{gl}_{m|n}^{\mathfrak{s}})$ generated by the coefficients of entries of

$$B(u) = (b_{ij}(u)) = T(u)GT^{-1}(-u),$$

where
$$b_{ij}(u) \in \delta_{ij}\varepsilon_i + \mathcal{B}_{\mathfrak{s},\boldsymbol{\varepsilon}}[[u^{-1}]]u^{-1}$$
.

- Coideal subalgebra: $\Delta(b_{ij}(u)) \in Y(\mathfrak{gl}_{m|n}^{\mathfrak{s}}) \otimes \mathcal{B}_{\mathfrak{s},\varepsilon}$.
- Unitary condition: B(u)B(-u) = I.
- Reflection equation:

$$R(u-v)B_1(u)R(u+v)B_2(v) = B_2(v)R(u+v)B_1(u)R(u-v).$$

• Deformations of twisted current superalgebras.

Known results and goal

For nonsuper case.

- [Molev-Ragoucy'01] Highest weight representation theory and classification of f.d. irreducible representations;
- [Chen-Guay-Ma'14] Schur-Weyl dual to dAHA of type B/C.

For super case.

• [Ragoucy-Satta'07] Nested algebraic Bethe ansatz.

Goal

For arbitrary $\mathfrak s$ and $\boldsymbol \varepsilon$, we would like to

- establish highest weight representation theory;
- 2 classify f.d. irreducible representations;
- 3 obtain Schur-Weyl duality with dAHA of type B/C.

Highest weight representations

A representation L of $Y(\mathfrak{gl}_{m|n}^{\mathfrak{s}})$ is called highest weight if there exists a nonzero vector $\xi \in L$ such that L is generated by ξ and ξ satisfies

$$t_{ij}(u)\xi = 0,$$
 $1 \le i < j \le \varkappa,$
 $t_{ii}(u)\xi = \lambda_i(u)\xi,$ $1 \le i \le \varkappa,$

where $\lambda_i(u) \in 1 + u^{-1}\mathbb{C}[[u^{-1}]]$. The vector ξ is called a highest weight vector of L and the tuple $\lambda(u) = (\lambda_i(u))_{1 \leq i \leq \varkappa}$ is the highest weight of L.

Theorem [Zhang'94]

- Every f.d. irreducible representation L of super Yangian $\mathrm{Y}(\mathfrak{gl}_{m|n}^{\mathfrak{s}})$ is a highest weight representation.
- ullet Moreover, L contains a unique (up to proportionality) highest weight vector.
- Classification of f.d. irreducible reps for standard root system.

Highest weight representations

A representation V of $\mathcal{B}_{\mathfrak{s},\varepsilon}$ is called highest weight if there exists a nonzero vector $\eta \in V$ such that V is generated by η and η satisfies

$$b_{ij}(u)\eta = 0,$$
 $1 \le i < j \le \varkappa,$
 $b_{ii}(u)\eta = \mu_i(u)\eta,$ $1 \le i \le \varkappa,$

where $\mu_i(u) \in \varepsilon_i + u^{-1}\mathbb{C}[[u^{-1}]]$. The vector η is called a highest weight vector of V and the tuple $\mu(u) = (\mu_i(u))_{1 \le i \le \varkappa}$ is the highest weight of V.

Proposition

- Every f.d. irreducible representation V of the twisted super Yangian $\mathcal{B}_{\mathfrak{s},\varepsilon}$ is a highest weight representation.
- ullet Moreover, V contains a unique (up to proportionality) highest weight vector.

Verma modules

- Give a weight $\mu(u) = (\mu_i(u))_{1 \le i \le \varkappa}$, $\mu_i(u) \in \varepsilon_i + u^{-1}\mathbb{C}[[u^{-1}]]$.
- Verma module $M(\mu(u)) = \mathcal{B}_{\mathfrak{s}, \boldsymbol{\varepsilon}} / \langle b_{ij}(u), b_{kk}(u) \mu_k(u) \rangle$, for $1 \leqslant i < j \leqslant \varkappa$ and $1 \leqslant k \leqslant \varkappa$.
- $\rho_i = s_i + s_{i+1} + \dots + s_{\varkappa}.$

Theorem

The Verma module $M(\mu(u))$ is nontrivial if and only if

$$\mu_{\varkappa}(u)\mu_{\varkappa}(-u) = 1,$$

$$\tilde{\mu}_{i}(u)\tilde{\mu}_{i}(-u+\rho_{i+1}) = \tilde{\mu}_{i+1}(u)\tilde{\mu}_{i+1}(-u+\rho_{i+1}),$$

where $1 \leqslant i < \varkappa$ and

$$\tilde{\mu}_i(u) = (2u - \rho_{i+1})\mu_i(u) + \sum_{a=i+1}^{\varkappa} s_a \mu_a(u).$$

Tensor product

- $V(\mu(u))$, the irreducible quotient of Verma module $M(\mu(u))$ with highest weight vector η .
- $L(\lambda(u))$, the irreducible quotient of Verma module over $Y(\mathfrak{gl}_{m|n}^{\mathfrak{s}})$ with highest weight vector ξ .
- Set

$$\tilde{b}_{ii}(u) = (2u - \rho_{i+1})b_{ii}(u) + \sum_{a=i+1}^{\kappa} s_a b_{aa}(u).$$

Then

- $L(\lambda(u)) \otimes V(\mu(u))$ is a $\mathcal{B}_{\mathfrak{s},\varepsilon}$ -module;
- $\Delta(\tilde{b}_{ii}(u)) \approx t_{ii}(u)t'_{ii}(-u) \otimes \tilde{b}_{ii}(u)$ on highest weight vector $\xi \otimes \eta$;
- $\tilde{b}_{ii}(u)(\xi \otimes \eta) = \lambda_i(u)\lambda'_i(-u)\tilde{\mu}_i(u)(\xi \otimes \eta)$, $1 \leqslant i \leqslant \varkappa$.

Sufficient conditions

Let
$$\varpi_i = s_i \varepsilon_i + s_{i+1} \varepsilon_{i+1} + \dots + s_{\varkappa} \varepsilon_{\varkappa}$$
.

Proposition

Suppose the highest weight $\mu(u)$ satisfies

$$\frac{\tilde{\mu}_i(u)}{\tilde{\mu}_{i+1}(u)} = \frac{(2\varepsilon_i u - \varepsilon_i \rho_{i+1} + \varpi_{i+1} + 2\gamma)\lambda_i(u)\lambda_{i+1}(-u + \rho_{i+1})}{(2\varepsilon_{i+1} u - \varepsilon_{i+1}\rho_{i+2} + \varpi_{i+2} + 2\gamma)\lambda_{i+1}(u)\lambda_i(-u + \rho_{i+1})}, \quad (1)$$

where $1\leqslant i<\varkappa$, $\gamma\in\mathbb{C}$, and $\pmb{\lambda}(u)=(\lambda_i(u))_{1\leqslant i\leqslant \varkappa}$ is a highest weight such that the $Y(\mathfrak{gl}^{\mathfrak{s}}_{m|n})$ -module $L(\pmb{\lambda}(u))$ is f.d., then $V(\pmb{\mu}(u))$ is f.d.

Conjecture

If the irreducible $\mathcal{B}_{\mathfrak{s},\varepsilon}$ -module $V(\boldsymbol{\mu}(u))$ is finite-dimensional, then there exist $\gamma \in \mathbb{C}$ and a highest weight $\boldsymbol{\lambda}(u) = (\lambda_i(u))_{1 \leq i \leq \varkappa}$ such that

- the equations (1) hold, and
- 2 the $Y(\mathfrak{gl}_{m|n}^{\mathfrak{s}})$ -module $L(\lambda(u))$ is finite-dimensional.

Classifications

Note that if $\varepsilon_i = \varepsilon_{i+1}$, then

$$\frac{2\varepsilon_i u - \varepsilon_i \rho_{i+1} + \varpi_{i+1} + 2\gamma}{2\varepsilon_{i+1} u - \varepsilon_{i+1} \rho_{i+2} + \varpi_{i+2} + 2\gamma} = 1.$$

We say that ε is simple if $\#\{i \mid \varepsilon_i \neq \varepsilon_{i+1}\} \leqslant 1$.

Theorem

The conjecture is true for the following cases,

- if n = 0, 1 and ε is arbitrary;
- ② if $\mathfrak s$ is the standard parity sequence and $\mathfrak e$ is simple (and other cases that can be obtained from this by odd reflections).

The case when n=0 and ε is simple is due to [Molev-Ragoucy'01].

Schur-Weyl duality

- Let $\mathcal{H}^l_{\vartheta_1,\vartheta_2}$ be the degenerate affine Hecke algebra of type B/C.
- Let $p = \#\{i \mid \varepsilon_i = 1, 1 \leqslant i \leqslant \varkappa\}.$

The following are super generalizations of [Chen-Guay-Ma'14], cf. [Drinfeld'85] [Arakawa'98] [Nazarov'99] [L-Mukhin'20].

Theorem

If $\vartheta_1=1$ and $\vartheta_2=\varpi_1$, then the following holds.

- $\textbf{ Exist a Drinfeld functor } \mathcal{D}^{\varepsilon}_{\mathfrak{s},\varepsilon} \text{ from the category of } \mathcal{H}^{l}_{\vartheta_{1},\vartheta_{2}}\text{-modules to the category of } \mathcal{B}_{\mathfrak{s},\varepsilon}\text{-modules of level } l.$
- ② If $\max\{p,\varkappa-p\}< l$, then the Drinfeld functor $\mathcal{D}^{\varepsilon}_{\mathfrak{s},\varepsilon}$ is an equivalence of categories.
- $\textbf{ 3} \ \, \mathsf{Drinfeld} \ \, \mathsf{functor} \ \, \mathcal{D}_{\mathfrak{s},\varepsilon}^{\varepsilon} \ \, \mathsf{maps} \ \, \mathsf{simple} \ \, \mathcal{H}^{l}_{\vartheta_{1},\vartheta_{2}} \mathsf{-modules} \ \, \mathsf{to} \ \, \mathsf{either} \ \, \mathsf{0} \ \, \mathsf{or} \\ \mathsf{simple} \ \, \mathcal{B}_{\mathfrak{s},\varepsilon}\mathsf{-modules}.$

Thank you!