Propriétés de \mathbb{R}

DARVOUX Théo

Septembre 2023

Exercices.

Exercice 2.1]
Exercice 2.2	2
Exercice 2.3	2
Exercice 2.4	:

Exercice 2.1 $[\Diamond \Diamond \Diamond]$

Soient a et b deux nombres réels strictement positifs. Démontrer l'inégalité

$$\frac{a^2}{b} + \frac{b^2}{a} \ge a + b$$

On a:

$$\frac{a^2}{b} + \frac{b^2}{a} \ge a + b$$

$$\iff \frac{a^3 - a^2b + b^3 - ab^2}{ab} \ge 0$$

$$\iff \frac{a^2(a-b) + b^2(b-a)}{ab} \ge 0$$

$$\iff \frac{(a-b)(a^2 - b^2)}{ab} \ge 0$$

$$\iff \frac{(a-b)^2(a+b)}{ab} \ge 0$$

Or $(a - b)^2 \ge 0$, $(a + b) \ge 0$ et $ab \ge 0$.

Ainsi, cette inégalité est vraie pour tout $(a, b) \in \mathbb{R}_+^*$.

Exercice 2.2 $[\Diamond \Diamond \Diamond]$

1. Montrer que $\forall (a,b) \in (\mathbb{R}_+)^2 \sqrt{a+b} \leq \sqrt{a} + \sqrt{b}$. Soit $(a,b) \in (\mathbb{R}_+)^2$.

$$\sqrt{a+b} \le \sqrt{a} + \sqrt{b}$$

$$\iff a+b \le a + 2\sqrt{ab} + b$$

$$\iff 2\sqrt{ab} \ge 0$$

Ainsi, $\forall (a,b) \in (\mathbb{R}_+)^2 \sqrt{a+b} \le \sqrt{a} + \sqrt{b}$.

2. Montrer que $\forall (a,b) \in (\mathbb{R}_+)^2 |\sqrt{a} - \sqrt{b}| \leq \sqrt{|a-b|}$. Soit $(a,b) \in (\mathbb{R}_+)^2$.

Considérons $a \ge b$, alors |a - b| = a - b.

$$|\sqrt{a} - \sqrt{b}| \le \sqrt{a - b}$$

$$\iff a - 2\sqrt{ab} + b \le a - b$$

$$\iff 2b \le 2\sqrt{ab}$$

$$\iff b^2 < ab$$

Or a > b donc $ab > b^2$

Le raisonnement est symétrique lorsque $b \ge a$. Ainsi, $\forall (a,b) \in (\mathbb{R}_+)^2 | \sqrt{a} - \sqrt{b} | \le \sqrt{|a-b|}$.

Exercice 2.3 $[\blacklozenge \lozenge \lozenge]$ Manipuler la notion de distance

En utilisant la notion de distance sur \mathbb{R} , écrire comme réunion d'intervalles l'ensemble

$$E = \{x \in \mathbb{R} \mid |x+3| \le 6 \text{ et } |x^2 - 1| > 3\}$$

On a:

$$x \in [-9,3]$$
 et $x \in]-\infty,-2[\cup]2,+\infty[$

Donc:

$$x\in[-9,-2]\cup[2,3]$$

Exercice 2.4 $[\blacklozenge \blacklozenge \lozenge]$ Plusieurs façons de définir une moyenne

Soient a et b deux réels tels que $0 < a \le b$. On définit les nombres m, g, h par

$$m = \frac{a+b}{2},$$
 $g = \sqrt{ab},$ $\frac{1}{h} = \frac{1}{2}\left(\frac{1}{a} + \frac{1}{b}\right).$

Et on les appelle respectivement moyenne arithmétique, géométrique et harmonique de a et b.

Démontrer l'encadrement

$$a \le h \le g \le m \le b$$

Montrons les inégalités une par une :

- $m \le b \iff \frac{a+b}{2} b \le 0 \iff \frac{a-b}{2} \le 0 \iff a-b \le 0 \iff a \le b$.
- $g \le m \iff \sqrt{ab} \le \frac{a+b}{2} \iff \frac{a-2\sqrt{ab}+b}{2} \ge 0 \iff \frac{(\sqrt{a}-\sqrt{b})^2}{2} \ge 0.$
- $\bullet \ h \le g \iff \frac{1}{h} \ge \frac{1}{g} \iff \frac{1}{2a} + \frac{1}{2b} \frac{1}{\sqrt{ab}} \ge 0 \iff \frac{a 2\sqrt{ab} + b}{2ab} \ge 0 \iff \frac{(\sqrt{a} \sqrt{b})^2}{2ab} \ge 0.$
- $\bullet \ a \le h \iff \frac{1}{a} \ge \frac{1}{h} \iff \frac{1}{a} \frac{1}{2a} \frac{1}{2b} \ge 0 \iff \frac{b-a}{2ab} \ge 0 \iff b-a \ge 0 \iff a \le b$

Ainsi, toutes les inégalités sont vraies et $a \le h \le g \le m \le b$.