Intervals, Transformations, and Slope Solution (version 31)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	(-6, -2)
Negative	$(-9, -8) \cup (-8, -6) \cup (-2, 2)$
Increasing	$(-7, -5) \cup (1, 2)$
Decreasing	$(-9, -7) \cup (-5, 1)$
Domain	(-9,2)
Range	(-9,9)

Intervals, Transformations, and Slope Solution (version 31)

2. In the four graphs below, y = f(x) is graphed as a dotted line. Please add the indicated transformed graphs indicated by the equations below using a solid line.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=14$ and $x_2=39$. Express your answer as a reduced fraction.

$$\frac{f(39) - f(14)}{39 - 14} = \frac{20 - 55}{39 - 14} = \frac{-35}{25}$$

The greatest common factor of -35 and 25 is 5. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-7}{5}$$

2