CS171 HW5

Q1. For Schane 1: (i) A queries m=Mollm2 and receives t= Fx (m)//Fx (m. cm)

(ii) A queries m'=m, 11m, and receiver t'= Fk (m,)11Fk (m, Am)

(iii) A sends $m^* = m$, IIm_{δ} and $t^* = F_{\kappa}(m_{\delta}) II F_{\kappa}(m_{\delta} \oplus m_{\delta})$ where $F_{\kappa}(m_{\delta})$ is the last n bits of t

For scheme 2: (i) A queries $m_0 = m_0 | lm_1$ and retrieves $t_0 = F_E(r) \oplus F_E(0|lm_0) \oplus F_E(1|lm_0)$ (ii) A queries $m_0 = m_0 | lm_0$ and retrieves $t_0 = F_E(r) \oplus F_E(0|lm_0) \oplus F_E(1|lm_0)$ (iii) A queries $m_0 = m_0 | lm_0$ and retrieves $t_0 = F_E(r) \oplus F_E(0|lm_0) \oplus F_E(1|lm_0)$

(iv) A sends m*= m, 11 mo and t*= r 11 toi \(\theta \) to \(\theta \) till where r is refrieved from any of to 1 to 0 to 0 till, and to \(\theta \) \(\theta \) till = F_K(r) \(\theta \)

F_K(O|| M,) \(\theta \) F_K(1 || m_0)

Q2. (1) We construct Mac':

(1°) :=- Gen (1°)

@Mac'(km): what t' = Mac(k,m) || LSB(Mac(k,m)) where LSB(x) is the least significant but of the output of x

(3) Vrfy'(K,m,t): Let t=tollb where to E40,25" & bE{0,15. Outpt 2 IF

to = Mac(K, m) and output 0 othernse.

(2) It there exists adversory A that breaks Mac' then adversory B can use A to treak Mac:

(i) When A outputs a query Mi for the Mac (K.) oracle, B forwards mi to its

orade for Mac (K.) and sends Mac (K.) 11 LSB (Mac (K.)) to A

(11) In the end whon A cutputs (m*, t*), B remove the last bit of t* and denote if throngerous. B outputs (m*, throngerous)

(3) Since Mac' is only unforgeable, advelogy A Gon possibly obtain t' for the same c, which (r,t') would pass the oracle for CCA which mould artest mb, giving A the probability of 1 of breaking CCA security.

Q3. (1b) $\int_{t=Mac_{R}(\Gamma_{i}K_{2},m)} (\Gamma_{i}K_{2},m)$

(26) Assume toward contradiction that adversory A can distinguish between HybO and HybI with non-negligible advantage, We can then construt B from A to detinguish between PRFF and the random function R with non-negligible advantage.

B is constructed:

(i) B receives a function a which is either Fix or R, but it doesn't know.

(ii) B' runs A, simulating the MAC oracle using a in place of F in Hybo and R in Hyb 1: When A makes a query on M, B provides the tong computed using a (m) (iii) Whenever A defermines that it is interacting with Hybo, B determines that it is interacting with FR, vice-versa.

(2C) Pr[Hyb_1->2]=2-1 since R is truly random
i. Prove by redution to R

(2d) Pr [Hybo->1] (negl ... MAC security game MAC-forge_A,TID (n) is not broakable ... TIO & a secure MAC