Advanced Algorithms Homework 1: Preliminaries, Divide and Conquer CS 611, Spring 2020

Name: Kunjal Panchal Student ID: 32126469 Email: kpanchal@umass.edu

February 2, 2020

Contents

1	Problem 3: Strassen's Algorithm			3
	1.1	(a) Matrix Multiplication		3
			Multiplying $kn \times n$ matrix with $n \times kn$ matrix	
		1.1.2	Multiplying $n \times kn$ matrix with $kn \times n$ matrix	3
1.2 (b) Complex Number Multiplication		mplex Number Multiplication	4	

1 Problem 3: Strassen's Algorithm

1.1 (a) Matrix Multiplication

1.1.1 Multiplying $kn \times n$ matrix with $n \times kn$ matrix

The resultant matrix will be $kn \times kn$. This gives k^2 multiplications of $n \times n$ matrices.

There will be 7 recursive multiplicative calls as per Strassen's method. The matrix is divided with a 2×2 grid. We are dividing $kn\times n$ matrix into $\frac{kn}{2}\times \frac{n}{2}$ matrix.

For a $n \times n$ matrix, the run-time would be $\Theta(n^{\log_2 7})$ and the extra k^2 multiplications are to be accounted for too, thus, making the runtime $\Theta(k^2 n^{\log_2 7})$.

Note that this k^2 is because for each $c_{ij} = \sum_{m=1}^n a_{im} b_{mj}$, there will be k inner and outer loops, $1 \le i, j \le k$.

1.1.2 Multiplying $n \times kn$ matrix with $kn \times n$ matrix

The resultant matrix will be $n \times n$. This gives k multiplications of $n \times n$ matrices.

There will be 7 recursive multiplicative calls as per Strassen's method. The matrix is divided with a 2×2 grid. We are dividing $n \times kn$ matrix into $\frac{n}{2} \times \frac{kn}{2}$ matrix.

For a $n \times n$ matrix, the run-time would be $\Theta(n^{\log_2 7})$ and the extra k multiplications are to be accounted for too, thus, making the runtime $\Theta(kn^{\log_2 7})$.

Note that this k is because for each $c_{ij} = \sum_{m=1}^k a_{im} b_{mj}$, there will be k innermost loops, $1 \le m \le k$.

1.2 (b) Complex Number Multiplication

First Complex Number: a+biSecond Complex Number: c+diWe need to achieve (a+bi)(c+di), which is (ac-bd)+(ad+bc)i.

Suppose, we calculate:

$$P_1 = (a+b)(c+d)$$

$$P_2 = ac$$

$$P_3 = bd$$

To achieve the **real** part of the result, we can calculate $P_2 - P_3$.

$$P_2 - P_3 = ac - bd$$

To achieve the **imaginary** part of the result, we can calculate $P_1 - P_2 - P_3$.

$$P_1 - P_2 - P_3 = ac + ad + bc + bd - ac - bd = ad + bc$$

Thus, there are 3 multiplications and 3 subtractions.