• Some Definitions:

- \triangleright Loop Gain (L) = fA
- \triangleright Return Difference (D) = 1 + L
- $ightharpoonup Amount of Feedback (N) = 20 log_{10}D (dB)$
- Positive Feedback:
 - > Output fed back to the input through the mixer, but now with a positive sign
 - ⇒ Feedback signal gets added to the input signal

> Show that under this condition:

$$A_{f}(j\omega) = \frac{A(j\omega)}{1 - f(j\omega)A(j\omega)} = \frac{A(j\omega)}{1 - L(j\omega)}$$

- This is a *general expression*, taking both A and f as *frequency dependent*
- \triangleright Note: As $L \rightarrow 1, A_f \rightarrow \infty$
 - Implies that output is possible even without any input
 - This is the *basic principle of oscillation*

- Conditions for Oscillation:
 - Barkhausen's Criteria:
 - L becoming unity implies that the signal has completely regenerated itself while traversing once through the loop
 - ⇒ There is no need for any input any more, since the loop has become self-sustained!
 - > Since A and f are frequency dependent, hence, there may exist a frequency ω_0 , at which:

$$L(j\omega_0) = f(j\omega_0)A(j\omega_0) = 1$$

- Since ω_0 is a *particular frequency*, for which *this condition holds*, hence, the output will be a *pure sinusoid* of *this frequency*
 - Similar to *picking out* f₀ only from a *Fourier Spectrum*
 - This phenomenon is known as *Sinusoidal Oscillation*
- Serman physicist *Heinrich Georg Barkhausen* summed this up by *two conditions*, came to be known as the *Barkhausen's Criteria*:
 - 1. $|L(j\omega_0)| = 1$ and
 - 2. $\angle L(j\omega_0) = 0^\circ$

- > Barkhausen's Criteria in words:
 - For a feedback system to oscillate, the magnitude of the loop gain must at least be unity, and the total phase shift around the loop should be 0° or 360°
- ➤ If these criteria are satisfied exactly, then the oscillations would go on forever, and can be stopped only by shutting the power off for the system
- ➤ However, for *practical circuits*, the *exact conditions for oscillations* are *very difficult to achieve*

- ➤ If |L| becomes *slightly less than 1*, but ∠ L is *exactly 0°*, then with *each pass around the loop*, the *amplitude of oscillation* would keep on *going down*, and eventually, it will *die down* on its own
 - Thus, under this condition, sustained sinusoidal oscillation won't be achieved
- ➤ On the other hand, if |L| becomes *slightly* larger than unity, but ∠ L is exactly 0°, then with each pass around the loop, the amplitude of the signal will keep on growing
 - Will eventually get limited by the nonlinearities present in the circuit

Stability

- 2 Types of Systems:
 - > Stable
 - > Unstable
- Stable System:
 - Any transient disturbance would result in a response that will die down with time
 - The system will be able to get rid of the disturbance on its own

• Unstable System:

- Any transient disturbance would result in a response that will persist or even blow up with time
 - Eventually gets limited by the nonlinearities of the system
- > Positive feedback systems are inherently unstable
 - They are designed as such, e.g., oscillators
- > Negative feedback systems are inherently stable