Faculdade de Engenharia Elétrica e de Computação

EA722 - Laboratório de Controle e Servomecanismos

Experiência 1:

Fundamentos de Realimentação: Simulação dos Modelos do ECP em Malha Fechada

6 de agosto de 2024

Conteúdo

1	Introdução		1	
2	Emu 2.1	ulador Industrial Preliminares para a Simulação do Modelo	2	
	2.2	Procedimento de simulação	5	
3	Sistema Retilíneo			
	3.1	Preliminares para a Simulação do Modelo	9	
	3.2	Procedimento de simulação	10	
4	Sistema Torcional			
	4.1	Preliminares para a Simulação do Modelo	14	
	4.2	Procedimento de simulação	15	
5	Pêndulo Invertido 1			
	5.1	Preliminares para a Simulação do Modelo	20	
	5.2	Procedimento de simulação	21	
6	Levitador Magnético		23	
	6.1	Preliminares para a Simulação do Modelo	27	
	6.2	Procedimento de simulação	28	
Referências			30	

1 Introdução

O objetivo desta experiência inicial é o estudo preliminar de sistemas de controle através da simulação dos modelos dos sistemas "Educational Control Products" (ECP). Nesta experiência verifica-se qualitativamente as vantagens da realimentação, do ponto de vista de rastreamento do sinal de referência, denominado comportamento servo do sistema controlado; e de atenuação de sinais de distúrbios que possam atingir o sistema, conhecido como comportamento

regulador do sistema controlado.

Com base nos modelos linearizados serão feitos projetos de controladores simples: em malha aberta e em malha fechada do tipo proporcional. O desempenho quanto ao comportamento servo e regulador serão comparados via simulação, observando estas propriedades fundamentais de sistemas de controle. O controle em malha fechada é realizado através de um controlador simples, do tipo proporcional, e o amortecimento do sistema é aumentado através de realimentação de velocidade, que simula matematicamente uma alteração da viscosidade do meio onde ocorrem os movimentos. Também o efeito de um pré-filtro adicional sobre a resposta ao degrau do sistema em malha aberta é estudado.

As simulações servem como ferramenta auxiliar e guia para os projetos de controle a ser implementados nos sistemas ECP nas próximas experiências desta disciplina, cujo objetivo é a implementação de vários algoritmos de controle e o estudo da sua eficácia, dependendo da aplicação a que se destina.

Essa experiência deve ser acompanhada pela leitura do texto [6], para a revisão de conceitos essenciais ao aproveitamento da disciplina; os quais sejam:

- 1. Função de transferência [6, sec.1];
- 2. Diagramas e álgebra de blocos [6, sec.2];

além da introdução dos seguintes conceitos básicos:

- 1. Sistemas de controle em malha aberta e malha fechada [6, sec.3];
- 2. Redução de sensibilidade aos parâmetros da planta [6, sec.4.1];
- 3. Redução de sensibilidade a perturbações na saída [6, sec.4.2].

2 Emulador Industrial

Para o sistema emulador industrial [2] demonstra-se algumas vantagens da realimentação do ponto de vista do comportamento servo do sistema controlado, principalmente quando ocorrem perturbações na planta. O emulador industrial deverá estar configurado da seguinte maneira:

- Discos de atuação e carga conectados pelo dispositivo SR;
- Relação de engrenagens 4: 1 (24 dentes na atuação e 36 dentes na carga). Correias #140 e #260;
- Nenhuma inércia adicional sobre os discos.

Para outras configurações que serão adotadas em futuras experiências bastará adaptar o programa de simulação e isto será feito na medida em que for necessário. Para a configuração acima descrita, o modelo, bem como, a função de transferência da planta são dados por,

$$\begin{cases}
J_d^* \ddot{\theta_1} + c_d^* \dot{\theta_1} = T_d \\
\theta_2 = \frac{\theta_1}{g_r}
\end{cases} \tag{1}$$

e

$$G_p(s) = \frac{k_{hw}}{s(J_d^* s + c_d^*)}$$
 (2)

onde k_{hw} é o ganho de hardware do emulador e J_d^* e c_d^* são, respectivamente, o momento de inércia e o atrito viscoso equivalentes na configuração adotada:

$$J_d^* = J_d + J_l(g_r)^{-2},$$
 $c_d^* = c_d + c_l(g_r)^{-2},$

onde J_d e J_l são os momentos de inércias dos discos de atuação e de carga, c_d e c_l são os coeficientes de atrito viscoso dos discos de atuação e de carga e g_r é a relação de engrenagens.

Observe que as expressões acima refletem os parâmetros J_l e c_l da carga para a atuação. Além disso, como os atritos viscosos naturais dos discos (c_d, c_l) são muito pequenos, o atrito viscoso equivalente c_d^* também será bem pequeno. Nesta experiência, o amortecimento da planta será alterado artificialmente através de realimentação derivativa, como ilustrado na figura 1.

Figura 1: Planta compensada com simulação de atrito viscoso adicional. T_a : torque de acionamento (entrada servo); T_p : torque de perturbação (entrada de perturbação).

Nesta experiência vamos estudar o conceito de controle em malha fechada, comparando um controlador proporcional simples com o controle realizado sem realimentação, também chamado de controle em malha aberta. Os diagramas de representação dos dois controladores são apresentados na figura 2.

Note que a entrada de acionamento ou entrada servo (T_a) é utilizada, enquanto a entrada de perturbação T_p é em geral inacessível. A variável θ_r é o valor de referência para a variável de saída θ , e pela qual se define a trajetória desejada para a evolução do sistema.

Figura 2: a) Controle em malha aberta; b) Controle em malha fechada do tipo proporcional. Θ_r : entrada de referência, G_{pf} : função de transferência do pré-filtro, K_p : ganho do controlador proporcional.

A partir das Figs. 1 e 2 podemos identificar dois problemas fundamentais de controle:

Problema do Servo consiste em comandar o sistema segundo uma trajetória desejada, utilizando a entrada acessível para acionamento T_a . Neste caso faz-se a pertubação T_p nula.

Problema de Regulação consiste em considerar o efeito do sinal de pertubação T_p na saída θ . Neste caso toma-se o sinal de referência θ_r nulo.

É natural definirmos um sinal de erro expresso por:

$$e(t) = \theta_r(t) - \theta(t)$$

denominado de *erro dinâmico entre o sinal de referência e a saída*. Note que é o erro dinâmico que serve como entrada para o controlador proporcional no controle em malha fechada da figura 2 (b), gerando um torque de acionamento definido por $T_a(t) = K_p e(t)$.

Em controle é sempre importante conhecermos o valor do erro dinâmico após passado o transitório, ou seja o *erro de regime estacionário* ou meramente, *erro de regime*. Utilizando o teorema do valor final, podemos avaliar o erro de regime da seguinte forma

$$e_r = \lim_{t \to \infty} e(t) = \lim_{s \to 0} s E(s)$$
 (3)

onde $E(s) = \Theta_r(s) - \Theta(s)$, é a transformada de Laplace da função e(t).

2.1 Preliminares para a Simulação do Modelo

Os símbolos g, t, d e s indicam a necessidade de produção de um gráfico, desenvolvimento teórico, diagrama simulink e script Matlab , respectivamente.

1. Mostre que função de transferência $\Theta(s)/T_a(s)$ da "planta compensada com simulação de atrito viscoso adicional" da figura 1 para o problema do servo, será

$$G'_{p_s}(s) = \frac{k_{hw}}{J_d^* s^2 + (c_d^* + k_{hw} k_v) s}$$
(4)

sendo que T_a é o torque gerado pelo controlador \bigcirc

2. Mostre que função de transferência $\Theta(s)/T_p(s)$ da "planta compensada com simulação de atrito viscoso adicional", da figura 1 para o problema do regulador, será

$$G'_{p_r}(s) = \frac{-k_e/g_r}{J_d^* s^2 + (c_d^* + k_{hw} k_v) s}$$
 (5)

sendo que T_p é o torque gerado motor de distúrbio t. Note que o coeficiente associado ao atrito viscoso c_d^* pode ser aumentado através da escolha de k_v .

- 3. Faça um programa Matlab S utilizando os parâmetros do emulador industrial, contendo:
 - (a) a função de transferência da "planta compensada" da figura 1, para o problema do servo, $G'_{p_s}(s)$. Utilize as funções Matlab tf, dcgain. O fato de $G'_{p_s}(0)$ ser infinito tem qual implicação no erro em regime permanente t?
 - (b) a função de transferência da "planta compensada" da figura 1, para o problema do regulador, $G'_{p_r}(s)$, e encontre o ganho de baixas frequências $G'_{p_r}(0)$.
 - (c) a função de transferência de malha fechada de acordo com a figura 2 (b), com $G_{p_f} = 1$. Utilize a função Matlab feedback com $K_p = 0, 12$.
 - (d) os erros de regime (devem ser impressos na tela) dos sistemas em malha fechada para uma entrada Θ_r em degrau unitário, utilizando a função degain. Justifique os valores encontrados utilizando o teorema do valor final como em (3) \bigcirc t.
 - (e) as respostas ao degrau dos sistemas em malha aberta (g) e em malha fechada (g). No Matlab utilize a função step.

Parâmetros do Emulador:

$$g_r = 4$$
, $k_{hw} = 5,7669$ [Nm/rd] $J_l = 0,0063$, $J_d = 4,0742 \times 10^{-4}$ [Kg m²] $c_l = 0,005$, $c_d = 7,3811 \times 10^{-4}$ [Nm/(rd/s)] $k_v = 0,005$ [Nm/(rd/s)], $k_e = 16000/2\pi$ [counts/rd]

2.2 Procedimento de simulação

Nesta experiência serão realizados ensaios sobre as simulações das duas formas de controle:

• Controle em malha aberta. (vide figura 2 (a)) Neste caso o pré-filtro terá a função de tornar pequeno (limitado) o erro de regime para uma entrada em degrau, uma vez que pela equação (3) este erro tende para infinito, conforme verificado em 3 (e). A função de transferência sugerida para o pré-filtro é

$$G_{p_f}(s) = \frac{k_{pf} \, s}{1 + 0.01 \, s}$$

onde k_{pf} é uma constante.

• Controle em malha fechada. (vide figura 2 (b)) Neste caso o pré-filtro terá a função de corrigir o erro de regime, caso exista necessidade. A função de transferência sugerida para o pré-filtro será simplesmente uma constante, isto é, $G_{pf}(s) = k_{pf}$.

- 4. Determine k_{pf} para que o erro de regime de malha aberta seja mínimo (nulo) t. No programa Matlab do item 3 inclua o pré-filtro calculado com o ganho k_{pf} .
- 5. No controle em malha fechada, fixe $k_{pf} = 1$ e varie o valor de K_p em torno do valor 0,12 e observe o erro de regime. Repita o procedimento fixando $K_p = 0,12$ e variando k_{pf} em torno do valor anterior. Calcule o erro em regime em função de K_p e k_{pf} t.

O procedimento experimental a seguir envolve as respostas ao degrau dos sistemas em malha aberta e em malha fechada. Nos ensaios em malha aberta, utiliza-se primeiro a conexão clássica e em seguida, uma conexão com pré-filtro. Os desempenhos dos sistemas em malha aberta e em malha fechada frente a um degrau de distúrbio na carga são também investigados.

- 6. Faça um programa simulink do do emulador de acordo com a configuração definida na Seção 2, a partir das funções de transferências já obtidas no item 3. No simulink utilize os blocos em /Continuous/Transfer Fcn. No Matlab utilize o comando sim < arquivo.mdl > ou sim < arquivo.slx > para executar a chamada de tais programas do simulink;
- 7. Considere uma entrada um pulso de **8000** [counts], com duração de **2000** ms (1000 ms no valor 8000 e 1000 ms no valor zero), e uma repetição em direção contrária;
- 8. Ajuste o simulink para realizar integração em passo fixo com **Ts=0,00442** s. O amortecimento adicional da planta é introduzido através de $k_v = 0,005$. Implemente no simulink o pré-filtro recomendado, tanto para malha aberta como para malha fechada. O ganho do controlador é definido inicialmente como $K_p = 0,03$. Simule estes modelos em malha aberta e em malha fechada inicialmente com $k_{pf} = 1$;
- 9. Plote a saída de posição \mathfrak{G} , e a posição comandada \mathfrak{G} (sinal de referência θ_r);
- 10. Para ajustar corretamente o pré-filtro, determine k_{pf} de tal forma que $G_{pf}(0)G_a(0) = 1^1$. Implemente o novo valor de k_{pf} e repita o item 8, ajustando, **se necessário** o ganho k_{pf} para tentar anular o erro de regime da saída. Para o controle em malha fechada, aumente progressivamente o ganho K_p , usando os valores $K_p = \{0,06; 0,12; 0,18; 0,24\}$; e se necessário recalcule o valor de k_{pf} para cada ajuste. Verifique o efeito desses valores sobre o comportamento da saída \bigcirc
- 11. Simule um torque de distúrbio na carga. Considere um pulso de amplitude **0,65** [Nm], com duração de **1000** ms (500 ms no valor 0,65 e 500 ms no valor -0,65) e **4** repetições. Inclua o distúrbio nas simulações em malha aberta e malha fechada e repita as simulações com os ajustes utilizados no passo 10. As respostas em malha aberta e fechada obtidas coincidem com as esperadas teoricamente? Compare e justifique ①.

¹No caso malha aberta, $G_a(s) \equiv G'_{ps}(s)$ dada em (4), e no caso em malha fechada $G_a(s) \equiv G_f(s)$ determinada no item 3 (e). Vide as Figs. 2 (a) e 2 (b), respectivamente.

12. Responda as questões:

- (a) Como o comportamento regulador do sistema com relação à variação da posição comandada é afetado, quando sujeito aos distúrbios na carga? ① Compare os controles em malha aberta e em malha fechada com respeito a essa característica de desempenho.
- (b) Como o comportamento regulador do sistema é afetado com o controle em malha fechada, pelo aumento do ganho de malha produzido por K_p t?
- (c) Comente sobre o erro de regime obtido em malha aberta e malha fechada (t).

3 Sistema Retilíneo

Para o sistema retilíneo [4] demonstra-se algumas vantagens da realimentação do ponto de vista do comportamento servo do sistema controlado, principalmente quando ocorrem variações em parâmetros da planta. O parâmetro a ser variado será a mola conectada entre o carro #1 e um obstáculo rígido. O sistema retilíneo deverá estar inicialmente configurado da seguinte maneira:

- Mola de dureza média conectando o atuador ao carro #1;
- 4 massas de 500 g sobre o carro #1
- Carro #2 desconectado do carro #1.

Para outras configurações, que serão adotadas em futuras experiências, bastará adaptar o programa de simulação e isto será feito na medida em que for necessário. Para a configuração acima descrita, o modelo bem como, a função de transferência da planta são dados por,

$$m_1 \ddot{x}_1 + c_1 \dot{x}_1 + k_1 x_1 = F(t) \tag{6}$$

e

$$G_p(s) = \frac{k_{hw}}{m_1 s^2 + c_1 s + k_1} , \qquad m_1 = m_{c_1} + m_{w_1}$$
 (7)

onde

khw - ganho de hardware m_{w1} - massa sobre o carro #1 m_1 - massa total do sistema c_1 - atrito viscoso do sistema

 m_{c1} - massa do carro #1 k_1 - constante de mola da molá média

F - força aplicada através do motor

Como o atrito viscoso inicial do carro #1 (c_1) é muito pequeno, o amortecimento da planta será aumentado por meio da realimentação derivativa, como ilustrado no sistema em malha fechada da figura 3.

Nesta experiência vamos estudar o conceito de controle em malha fechada, comparando um controlador proporcional simples com o controle realizado sem realimentação, também chamado de controle em malha aberta. Os diagramas de representação dos dois controladores são

Figura 3: Planta compensada com simulação de atrito viscoso adicional. F_a : força de acionamento (entrada servo); F_p : força de perturbação (entrada de perturbação).

Figura 4: a) Controle em malha aberta; b) Controle em malha fechada do tipo proporcional. X_{1r} : entrada de referência, G_{p_f} : função de transferência do pré-filtro, K_p : ganho do controlador proporcional.

apresentados na figura 4.

A variável x_{1r} é o valor de referência para a variável de saída x_1 , e pela qual se define a trajetória desejada para a evolução do sistema. Utiliza-se a entrada de acionamento ou entrada servo (F_a) , enquanto a entrada de perturbação F_p é em geral inacessível para o controle.

A partir das Figs. 3 e 4 podemos identificar dois problemas fundamentais de controle:

Problema do Servo consiste em comandar o sistema segundo uma trajetória desejada, utilizando a entrada acessível para acionamento F_a . Neste caso faz-se a pertubação F_p nula.

Problema de Regulação consiste em considerar o efeito do sinal de pertubação F_p na saída x_1 . Neste caso toma-se o sinal de referência x_{1r} nulo.

É natural definirmos um sinal de erro expresso por:

$$e(t) = x_{1r}(t) - x_1(t)$$

denominado de *erro dinâmico entre o sinal de referência e a saída*. Note que é o erro dinâmico que serve como entrada para o controlador proporcional no controle em malha fechada da figura 4 (b), gerando um torque de acionamento definido por $F_a(t) = K_p e(t)$.

Em controle é sempre importante conhecermos o valor do erro dinâmico após passado o transitório, ou seja o *erro de regime estacionário* ou meramente, *erro de regime*. Utilizando o teorema do valor final, podemos avaliar o erro de regime da seguinte forma

$$e_r = \lim_{t \to \infty} e(t) = \lim_{s \to 0} s E(s)$$
 (8)

onde $E(s) = X_{1r}(s) - X_1(s)$, é a transformada de Laplace da função e(t).

Para o sistema retilíneo a entrada de perturbação F_p não está disponível². Nesta experiência a análise do efeito de perturbação externa será realizada através da variação da rigidez da mola, isto é, no lugar de uma perturbação externa ao sistema (sinal $F_p(t)$) será produzida uma variação paramétrica, no caso uma alteração na rigidez da mola.

3.1 Preliminares para a Simulação do Modelo

Os símbolos g, t, d e s indicam a necessidade de produção de um gráfico, desenvolvimento teórico, diagrama simulink e e script Matlab m, respectivamente.

1. Mostre que a função de transferência $X_1(s)/F_a(s)$ da "planta compensada com simulação de atrito viscoso adicional" da figura 3 com a mola média (k_1) , será

$$G'_{p_s}(s) = \frac{k_{hw}}{m_1 s^2 + (c_1 + k_{hw} k_v) s + k_1}, \quad m_1 = m_{c1} + m_{w1}$$
 (9)

onde: F_a é a força de acionamento gerada pelo controlador \bigcirc

2. Mostre que a função de transferência $X_1(s)/F_p(s)$ da "planta compensada com simulação de atrito viscoso adicional" da figura 3 com a mola trocada (k_1^*) , será

$$G'_{p_r^*}(s) = \frac{1}{m_1 s^2 + (c_1 + k_{hw} k_v) s + k_1^*}, \quad m_1 = m_{c1} + m_{w1}$$
 (10)

sendo: $k_1^* = k_1 + \Delta k_1$, e Δk_1 a diferença entre a mola trocada e a mola inicial \bigcirc t. Note que o efeito do coeficiente associado ao atrito viscoso c_1 pode ser aumentado através da escolha de k_v .

- 3. Faça um programa Matlab (8) utilizando os parâmetros do sistema retilíneo, contendo:
 - (a) a função de transferência da "planta compensada" da figura 3, para o problema do servo, $G'_{p_s}(s)$ com mola k_1 (valor nominal) e com mola $k_1^* = k_1 + \Delta k_1$ (valor perturbado), e então encontre os ganhos de baixas frequências $G'_{p_s}(0)$ e $G'_{p_s^*}(0)$. Utilize as funções Matlab tf, dcgain.
 - (b) a função de transferência da "planta compensada" da figura 3, para o problema do regulador, considerando $G_{p_r}'(s)$ quando $k_1^* = k_1$ (valor nominal), e encontre o ganho de baixas frequências $G_{p_r}'(0)$.

²Seria possível produzir uma perturbação F_p aplicando manualmente uma força ao carrinho. Contudo, essa força não seria mensurável com a presente instrumentação.

- (c) compare $G'_{p_s}(0)$ com $G'_{p_s^*}(0)$.
- (d) a função de transferência de malha fechada, $G_f(s)$, de acordo com a figura 4 (b), com $G_{pf} = 1$. Utilize a função Matlab feedback com $K_p = 0, 12$.
- (e) os erros de regime (devem ser impressos na tela) dos sistemas em malha fechada para uma entrada x_{1r} em degrau unitário, utilizando a função degain. Justifique os valores encontrados utilizando o teorema do valor final como em (8) \bigcirc t.
- (f) as respostas ao degrau dos sistemas em malha aberta ^(g) e em malha fechada ^(g). No Matlab utilize a função step.

Parâmetros do Retilíneo:

```
k_{hw} = 14732 \text{ [N/m]}, \Delta k_1 = 361,4 \text{ [N/m]}

m_{c1} = 0,778 \text{ [Kg]}, c_1 = 2,94 \text{ [N/m/seg]}

m_{w1} = 4 \times 0,500 \text{ [Kg]}, k_v = 0,005 \text{ [N/m/seg]}

k_1 = 338,6 \text{ [N/m]}
```

3.2 Procedimento de simulação

Nesta experiência serão realizados ensaios sobre as simulações das duas formas de controle:

- Controle em malha aberta. (vide figura 4 (a)) Neste caso o pré-filtro terá a função de anular o erro de regime para uma entrada em degrau do sistema sem perturbações. A função de transferência sugerida para o pré-filtro é G_{pf}(s) = k_{pf}.
- Controle em malha fechada. (vide figura 4 (b)) Neste caso o pré-filtro terá a função de corrigir o erro de regime, caso exista necessidade. A função de transferência sugerida para o pré-filtro será simplesmente uma constante, isto é, $G_{p_f}(s) = k_{pf}$.
- 4. Determine k_{pf} para que o erro de regime de malha aberta seja mínimo (nulo) ①. No programa Matlab do item 3 inclua o pré-filtro calculado com o ganho k_{pf} .
- 5. Determine k_{pf} como função de K_p tal que o erro de regime de malha fechada seja nulo ①. No programa Matlab do item 3 inclua o cálculo de k_{pf} , como função de K_p .

O procedimento experimental a seguir envolve as respostas ao degrau dos sistemas em malha aberta e em malha fechada. Os desempenhos dos sistemas em malha aberta e em malha fechada com controlador proporcional, frente à variação da constante de mola (k_1) são também investigados.

6. Faça um programa simulink do sistema retilíneo de acordo com a configuração definida na Seção 3, a partir das funções de transferências já obtidas no item 3. No simulink utilize os blocos em /Continuous/Transfer Fcn. No Matlab utilize o comando sim < arquivo.mdl > ou sim < arquivo.slx > para executar a chamada de tais programas do simulink;

7. Considere uma entrada um pulso de **3000** [counts], com duração de **2000** ms (1000 ms no valor 3000 e 1000 ms no valor zero), e uma repetição em direção contrária;

- 8. Ajuste o simulink para realizar integração em passo fixo com **Ts=0,00442** s. O amortecimento adicional da planta é introduzido através de $k_v = 0,005$. Implemente no simulink o pré-filtro recomendado, tanto para malha aberta como para malha fechada. O ganho do controlador é definido inicialmente como $K_p = 0,03$. Simule estes modelos em malha aberta e em malha fechada inicialmente com $k_{pf} = 1$;
- 9. Plote a saída de posição \mathfrak{E} , e a posição comandada \mathfrak{E} (sinal de referência x_{1r});
- 10. Para ajustar corretamente o pré-filtro, determine k_{pf} de tal forma que $G_{pf}(0)G_a(0) = 1^3$. Implemente o novo valor de k_{pf} e repita o item 8, ajustando, **se necessário** o ganho k_{pf} para tentar anular o erro de regime da saída. Para o controle em malha fechada, aumente progressivamente o ganho K_p , usando os valores $K_p = \{0,03; 0,06; 0,12; 0,24\}$; e recalcule o valor de k_{pf} para cada ajuste. Verifique o efeito desses valores sobre o comportamento da saída (t).
- 11. Simule a substituição da mola de dureza média pela de maior dureza (700 N/m), e mantenha todos os demais parâmetros do sistema inalterados, inclusive os parâmetros de controles de malha aberta e malha fechada (k_{pf} e K_p). Inclua o distúrbio nas simulações em malha aberta e malha fechada e repita as simulações com os ajustes utilizados no item 10. As respostas em malha aberta e fechada obtidas coincidem com as esperadas teoricamente? Compare e justifique t.

12. Responda as questões:

- (a) Como o comportamento regulador do sistema com relação à variação da posição comandada é afetado, quando sujeito aos distúrbios na carga? Compare os controles em malha aberta e em malha fechada com respeito a essa característica de desempenho t.
- (b) Como o comportamento regulador do sistema é afetado com o controle em malha fechada, pelo aumento do ganho de malha produzido por K_p t?
- (c) Comente sobre o erro de regime obtido em malha aberta e malha fechada (t).

³No caso malha aberta, $G_a(s) \equiv G'_{p_s}(s)$ dada em (9), e no caso em malha fechada $G_a(s) \equiv G_f(s)$ determinada no item 3 (e). Vide as Figs. 4 (a) e 4 (b), respectivamente.

4 Sistema Torcional

Para o sistema torcional [3] demonstra-se algumas vantagens da realimentação do ponto de vista do comportamento servo do sistema controlado, principalmente quando ocorrem variações em parâmetros da planta. O parâmetro a ser variado será o valor da mola torcional conectada entre o disco #1 e um obstáculo rígido. O sistema torcional deverá estar inicialmente configurado da seguinte maneira:

- Discos #1 e #2 conectados à mola torcional;
- Inércias adicionais sobre o disco #1: quatro massas de 500 g posicionadas a 9.0 cm do centro do disco;
- Disco #2 travado.

Para outras configurações, que serão adotadas em futuras experiências, bastará adaptar o programa de simulação e isto será feito na medida em que for necessário. Para a configuração acima descrita, o modelo bem como, a função de transferência da planta são dados por,

$$J_1\ddot{x}_1 + c_1\dot{x}_1 + k_1x_1 = T(t) \tag{11}$$

e

$$G_p(s) = \frac{k_{hw}}{J_1 s^2 + c_1 s + k_1}, \qquad J_1 = J_{d1} + J_w$$
 (12)

onde

 k_{hw} - ganho de hardware c_1 - atrito viscoso do sistema J_1 - momento de inércia total do sistema k_1 - constante de mola do sistema J_{d1} - momento de inércia do disco #1 T - Torque aplicado pelo motor

 J_w - momento de inércia sobre o disco #1⁴

Como o atrito viscoso inicial do disco #1 (c_1) é muito pequeno, o amortecimento da planta será aumentado por meio da realimentação derivativa, como ilustrado no sistema em malha fechada da figura 5.

Nesta experiência vamos estudar o conceito de controle em malha fechada, comparando um controlador proporcional simples com o controle realizado sem realimentação, também chamado de controle em malha aberta. Os diagramas de representação dos dois controladores são apresentados na figura 6.

A variável Θ_{1r} é o valor de referência para a variável de saída Θ_1 , e pela qual se define a trajetória desejada para a evolução do sistema. Utiliza-se a entrada de acionamento ou entrada servo (T_a) , enquanto a entrada de perturbação T_p é em geral inacessível para o controle.

A partir das Figs. 5 e 6 podemos identificar dois problemas fundamentais de controle:

⁴A contribuição de cada massa adicional ao momento de inércia é $(md^2 + \frac{1}{2}mr^2)$ onde d é a distância dos pesos de massa m = 0, 5 [Kg] ao centro do disco, e r = 4,95/2 [cm] é raio destes pesos. Portanto, $Jw = 4 \times (md^2 + \frac{1}{2}mr^2)$.

Figura 5: Planta compensada com simulação de atrito viscoso adicional. T_a : torque de acionamento (entrada servo); T_p : torque de perturbação (entrada de perturbação).

Figura 6: a) Controle em malha aberta; b) Controle em malha fechada do tipo proporcional. Θ_{1r} : entrada de referência, G_{p_f} : função de transferência do pré-filtro, K_p : ganho do controlador proporcional.

Problema do Servo consiste em comandar o sistema segundo uma trajetória desejada, utilizando a entrada acessível para acionamento T_a . Neste caso faz-se a pertubação T_p nula.

Problema de Regulação consiste em considerar o efeito do sinal de pertubação T_p na saída Θ_1 . Neste caso toma-se o sinal de referência Θ_{1r} nulo.

É natural definirmos um sinal de erro expresso por:

$$e(t) = \theta_{1r}(t) - \theta_1(t)$$

denominado de *erro dinâmico entre o sinal de referência e a saída*. Note que é o erro dinâmico que serve como entrada para o controlador proporcional no controle em malha fechada da figura 6 (b), gerando um torque de acionamento definido por $T_a(t) = K_p e(t)$.

Em controle é sempre importante conhecermos o valor do erro dinâmico após passado o transitório, ou seja o *erro de regime estacionário* ou meramente, *erro de regime*. Utilizando o teorema do valor final, podemos avaliar o erro de regime da seguinte forma

$$e_r = \lim_{t \to \infty} e(t) = \lim_{s \to 0} s E(s)$$
 (13)

onde $E(s) = \Theta_{1r}(s) - \Theta_{1}(s)$, é a transformada de Laplace da função e(t).

Para o sistema torcional a entrada de perturbação T_p não está disponível⁵. Nesta experiência a análise do efeito de perturbação externa será realizada através da variação da rigidez da mola, isto é, no lugar de uma perturbação externa ao sistema (sinal $T_p(t)$) será produzida uma variação paramétrica, no caso uma alteração na rigidez da mola.

4.1 Preliminares para a Simulação do Modelo

Os símbolos (g), (t), (d) e (s) indicam a necessidade de produção de um gráfico, desenvolvimento teórico, diagrama simulink (g) e script Matlab (h), respectivamente.

1. Mostre que função de transferência $\Theta_1(s)/T_a(s)$ da "planta compensada com simulação de atrito viscoso adicional" da figura 5 com a mola torcional (k_1) , será

$$G'_{p_s}(s) = \frac{k_{hw}}{J_1 s^2 + (c_1 + k_{hw} k_v) s + k_1}, \quad J_1 = J_{d1} + J_w$$
 (14)

onde: T_a é o torque de acionamento gerado pelo controlador \bigcirc t.

2. Mostre que função de transferência $\Theta_1(s)/T_p(s)$ da "planta compensada com simulação de atrito viscoso adicional" da figura 5, com a mola torcional alterada (k_1^*) , será

$$G'_{p_r^*}(s) = \frac{1}{J_1 s^2 + (c_1 + k_{hw} k_v) s + k_1^*}, \quad J_1 = J_{d1} + J_w$$
 (15)

sendo que k_1^* é a constante da mola equivalente da associação das molas k_1 e k_3 , isto é,

$$\frac{1}{k_1^*} = \frac{1}{k_1} + \frac{1}{k_3} \tag{16}$$

No experimento, essa variação da mola será conseguida com a retirada do disco #2. Note que o coeficiente associado ao atrito viscoso c_1 pode ser aumentado através da escolha de k_v t.

- 3. Faça um programa Matlab (S) utilizando os parâmetros do sistema torcional, contendo:
 - (a) a função de transferência da "planta compensada" da figura 5, para o problema do servo, $G'_{p_s}(s)$ quando a constante da mola tem o valor nominal k_1 e quando tem o valor perturbado k_1^* , e encontre também os respectivos ganhos de baixas frequências $G'_{p_s}(0)$ e $G'_{p_s^*}(0)$. Utilize as funções Matlab tf, degain.
 - (b) a função de transferência da "planta compensada" da figura 5, para o problema do regulador, $G'_{p_r}(s)$ quando a mola tem a constante k_1 (valor nominal), e encontre o ganho de baixas frequências $G'_{p_r}(0)$.
 - (c) compare $G'_{p_s}(0)$ com $G'_{p_s^*}(0)$.
 - (d) a função de transferência de malha fechada, $G_f(s)$, de acordo com a figura 6 (b), com $G_{p_f} = 1$. Utilize a função Matlab feedback com $K_p = 0, 12$.

⁵Seria possível produzir uma perturbação T_p aplicando manualmente um torque ao disco. Contudo, esse torque não seria mensurável com a presente instrumentação.

(e) os erros de regime (devem ser impressos na tela) dos sistemas em malha fechada para uma entrada Θ_{1r} em degrau unitário, utilizando a função degain. Justifique os valores encontrados utilizando o teorema do valor final como em (13) t.

(f) as respostas ao degrau dos sistemas em malha aberta (g) e em malha fechada (g). No Matlab utilize a função step.

Parâmetros do Torcional:

```
\begin{array}{lll} k_{hw} = & 17,57 \ [\text{Nm/rd}] \,, & k_1 = & 2,684 \ [\text{Nm/rd}] \,, \\ J_{d1} = & 2,38 \times 10^{-3} \ [\text{Kg m}^2] \,, & k_3 = & 2,602 \ [\text{Nm/rd}] \,, \\ c_1 = & 7,6 \times 10^{-3} \ [\text{Nm/(rd/s)}] \,, & k_{\nu} = & 2,5 \times 10^{-2} \ [\text{Nm/(rd/s)}] \,. \end{array}
```

4.2 Procedimento de simulação

Nesta experiência serão realizados ensaios sobre as simulações das duas formas de controle:

- Controle em malha aberta. (vide figura 6 (a)) Neste caso o pré-filtro terá a função de anular o erro de regime para uma entrada em degrau do sistema sem perturbações. A função de transferência sugerida para o pré-filtro é $G_{p_f}(s) = k_{pf}$.
- Controle em malha fechada. (vide figura 6 (b)) Neste caso o pré-filtro terá a função de corrigir o erro de regime, caso exista necessidade. A função de transferência sugerida para o pré-filtro será simplesmente uma constante, isto é, $G_{pf}(s) = k_{pf}$.
- 4. Determine k_{pf} para que o erro de regime de malha aberta seja mínimo (nulo) t. No programa Matlab do item 3 inclua o pré-filtro calculado com o ganho k_{pf} .
- 5. Determine k_{pf} como função de K_p tal que o erro de regime de malha fechada seja nulo \bigcirc t. No programa Matlab do item \bigcirc 3 inclua o cálculo de k_{pf} , como função de K_p .

O procedimento experimental a seguir envolve as respostas ao degrau dos sistemas em malha aberta e em malha fechada. Os desempenhos dos sistemas em malha aberta e em malha fechada com controlador proporcional, frente à variação da constante de mola (k_1) são também investigados.

- 6. Faça um programa simulink d do sistema retilíneo de acordo com a configuração definida na Seção 4, a partir das funções de transferências já obtidas no item 3. No simulink utilize os blocos em /Continuous/Transfer Fcn. No Matlab utilize o comando sim < arquivo.mdl > ou sim < arquivo.slx > para executar a chamada de tais programas do simulink;
- 7. Considere uma entrada um pulso de **1000** [counts], com duração de **2000** ms (1000 ms no valor 1000 e 1000 ms no valor zero), e uma repetição em direção contrária;

8. Ajuste o simulink para realizar integração em passo fixo com **Ts=0,00442** s. O amortecimento adicional da planta é introduzido através de $k_v = 0,025$. Implemente no simulink o pré-filtro recomendado, tanto para malha aberta como para malha fechada. O ganho do controlador é definido inicialmente como $K_p = 0,12$. Simule estes modelos em malha aberta e em malha fechada inicialmente com $k_{pf} = 1$;

- 9. Plote a saída de posição \mathfrak{G} , e a posição comandada \mathfrak{G} (sinal de referência Θ_{1r});
- 10. Para ajustar corretamente o pré-filtro, determine k_{pf} de tal forma que $G_{pf}(0)G_a(0) = 1^6$. Implemente o novo valor de k_{pf} e repita o item 8, ajustando, **se necessário** o ganho k_{pf} para tentar anular o erro de regime da saída. Para o controle em malha fechada, aumente progressivamente o ganho K_p , usando os valores $K_p = \{0, 12; 0, 24; 0, 48; 0, 96\}$; e recalcule o valor de k_{pf} para cada ajuste. Verifique o efeito desses valores sobre o comportamento da saída t.
- 11. Simule a alteração da mola nominal (curta) retirando o disco #2⁷, e mantenha todos os demais parâmetros do sistema inalterados. Inclua o distúrbio nas simulações em malha aberta e malha fechada e repita as simulações com os ajustes utilizados no item 10. As respostas em malha aberta e fechada obtidas coincidem com as esperadas teoricamente? Compare e justifique t.

12. Responda as questões:

- (a) Como o comportamento regulador do sistema com relação à variação da posição comandada é afetado, quando sujeito aos distúrbios na carga? Compare os controles em malha aberta e em malha fechada com respeito a essa característica de desempenho t.
- (b) Como o comportamento regulador do sistema é afetado com o controle em malha fechada, pelo aumento do ganho de malha produzido por K_p t?
- (c) Comente sobre o erro de regime obtido em malha aberta e malha fechada t.

⁶No caso malha aberta, $G_a(s) \equiv G'_{p_s}(s)$ dada em (14), e no caso em malha fechada $G_a(s) \equiv G_f(s)$ determinada no item 3 (e). Vide as Figs. 6 (a) e 6 (b), respectivamente.

⁷Os segmentos de mola torcional entre os discos #1 e #2, e entre os discos #2 e #3 tem os valores de constante de torção k_1 e k_3 , respectivamente. Assim a mola total entre os discos #1 e #3 passa a ter rigidez dada pela equação (16).

5 Pêndulo Invertido

Para o pêndulo invertido [1] demonstra-se algumas vantagens da realimentação do ponto de vista do comportamento servo e do comportamento regulador do sistema controlado. O modelo não linear do pêndulo invertido foi apresentado na Experiência 4, seção 2.1.4. da disciplina EA619. Reproduzimos abaixo, através das equações (17) e (18), o referido modelo, acrescentando a ação do atrito viscoso c_1 entre a barra deslizante e o ar.

$$\overline{J}(\ddot{x} + \frac{c_1}{m_1}\dot{x}) - J^*x\dot{\theta}^2 - 2m_1\ell_0x\dot{x}\dot{\theta} + (m_2\ell_0\ell_c - \overline{J})g\sin\theta + m_1\ell_0gx\cos\theta = \frac{J^*}{m_1}F(t)$$
 (17)

$$\overline{J}\ddot{\theta} + c_r\dot{\theta} + 2m_1x\dot{x}\dot{\theta} + m_1\ell_0x\dot{\theta}^2 - m_2\ell_cg\sin\theta - m_1gx\cos\theta = -\ell_0F(t)$$
(18)

Como já visto, as equações (17) e (18) caracterizam um sistema intrinsecamente não-linear, e linearizações em torno do ponto de equilíbrio $\theta_e = x_e = 0$ são necessárias para obter-se modelos lineares válidos. O modelo linearizado nesse ponto de equilíbrio é descrito pelas equações

$$\overline{J}(\ddot{x} + \frac{c_1}{m_1}\dot{x}) + m_1 \ell_0 g x + (m_2 \ell_o \ell_c - \overline{J}) g \theta = \frac{J^*}{m_1} F(t)$$
(19)

$$\overline{J}\ddot{\theta} + c_r\dot{\theta} - m_1gx - m_2\ell_cg\theta = -\ell_0F(t)$$
(20)

onde:

 $\begin{array}{lll} m_1 = & m_{1o} + m_{w1} \\ m_2 = & m_{2o} + m_{w2} \\ \ell_c = & (m_{w2}\ell_{w2} + m_{2o}\ell_{co})/m_2 \\ \overline{J} = & J_0^* + m_{w2}(\ell_{w2})^2 \\ J^* = & J_0^* + m_1\ell_o^2 + m_{w2}(\ell_{w2})^2 \end{array}$

e

x: deslocamento linear da haste deslizante,

 θ : deslocamento angular da haste principal,

F(t): força aplicada à haste deslizante,

 m_{10} : massa da haste deslizante,

 m_{w1} : massa dos pesos na haste deslizante ("orelhas"),

 ℓ_0 : distância com sinal da haste deslizante ao pivot,

 m_{w2} : massa do contrapeso,

 ℓ_{w2} : distância com sinal do centro de massa do contrapeso ao pivot (ajustável),

 m_{2o} : massa da haste principal,

 ℓ_{c0} : distância com sinal do centro de massa da haste principal ao pivot,

J0*: momento de inércia do pêndulo (sem a haste deslizante e contrapeso),

 c_1 : coeficiente de atrito viscoso entre a haste deslizante e o ar,

 c_r : coeficiente de atrito viscoso entre a haste rotacional e o ar.

O pêndulo invertido deverá estar na **configuração estável**, isto é, a distância do contra-peso ao ponto de pivoteamento deve ser de **10 cm**⁸. Os pesos nas extremidades da haste deslizante também deverão estar presentes. Esta configuração permitirá que o pêndulo retorne à posição

⁸Esta posição do contrapeso corresponde a um valor de $l_{w2} = -13,75$ cm.

de equilíbrio $x_e = 0$, $\theta_e = 0$ após pequenos deslocamentos da haste.

Nesta experiência, considera-se apenas o controle proporcional de posição da haste deslizante do pêndulo inicialmente sem presença de distúrbio e depois com a presença de uma força de distúrbio. Para isso vamos considerar, numa primeira etapa, a **haste rotacional travada**, ou seja, haverá movimento somente da haste deslizante. Numa segunda etapa o movimento da haste rotacional será liberado e com isso observa-se que devido a uma ligeira inclinação desta, a haste deslizante estará sob a ação de uma força adicional em relação ao **caso travado**, e que vamos considerar nesta experiência, particularmente, como força de distúrbio $F_p(t)$ ao movimento livre da haste deslizante.

Observe que na situação **haste rotacional travada** teremos $\theta \equiv 0$, $\dot{\theta} \equiv 0$ e $\ddot{\theta} \equiv 0$. Nesta situação pode-se deduzir das equações (19) e (20) que o movimento da haste deslizante é descrito pela equação (21).

$$m_1 \ddot{x} + c_1 \dot{x} = F(t) \tag{21}$$

Na situação **haste rotacional destravada** a ação do distúrbio $F_p(t)$ transforma a equação (21) em

$$m_1\ddot{x} + c_1\dot{x} = F_a(t) + F_p(t)$$
 (22)

A função de transferência do comportamento do servo será então

$$G_p(s) = \frac{X(s)}{F(s)} = \frac{k_{hw}}{m_1 s^2 + c_1 s}, \quad k_{hw} = k_s k_f k_x$$
 (23)

onde

F(s) – força aplicada à haste

X(s) – deslocamento linear da haste

 k_{hw} – ganho de hardware

 m_1 massa da haste deslizante incluindo as 'orelhas'

Para diminuir o comportamento oscilatório da haste, e melhor ressaltar o efeito do distúrbio, introduz-se alterações no amortecimento na planta artificialmente através de realimentação derivativa, como ilustrado diagrama da figura 7. Desta forma o amortecimento da planta será aumentado "simulando-se matematicamente uma mudança da viscosidade do meio onde o movimento ocorre".

Nesta experiência vamos estudar o conceito de controle em malha fechada, comparando um controlador proporcional simples com o controle realizado sem realimentação, também chamado de controle em malha aberta. Os diagramas de representação dos dois controladores são apresentados na figura 8.

Note que a entrada de acionamento ou entrada servo (F_a) é utilizada, enquanto a entrada de perturbação F_p é em geral inacessível. A variável x_{1r} é o valor de referência para a variável de saída x_1 , e pela qual se define a trajetória desejada para a evolução do sistema.

A partir das Figs. 7 e 8 podemos identificar dois problemas fundamentais de controle:

Figura 7: Planta compensada com simulação de atrito viscoso adicional. F_a : força de acionamento (entrada servo); F_p : força de perturbação (entrada de perturbação).

Figura 8: a) Controle em malha aberta; b) Controle em malha fechada do tipo proporcional. X_{1r} : entrada de referência, G_{pf} : função de transferência do pré-filtro, K_p : ganho do controlador proporcional.

Problema do Servo consiste em comandar o sistema segundo uma trajetória desejada, utilizando a entrada acessível para acionamento F_a . Neste caso faz-se a pertubação F_p nula.

Problema de Regulação consiste em considerar o efeito do sinal de pertubação F_p na saída x_1 . Neste caso toma-se o sinal de referência x_{1r} nulo.

É natural definirmos um sinal de erro expresso por:

$$e(t) = x_{1r}(t) - x_1(t)$$

denominado de *erro dinâmico entre o sinal de referência e a saída*. Note que é o erro dinâmico que serve como entrada para o controlador proporcional no controle em malha fechada da figura 8 (b), gerando um torque de acionamento definido por $F_a(t) = K_p e(t)$.

Em controle é sempre importante conhecermos o valor do erro dinâmico após passado o transitório, ou seja o *erro de regime estacionário* ou meramente, *erro de regime*. Utilizando o teorema do valor final, podemos avaliar o erro de regime da seguinte forma

$$e_r = \lim_{t \to \infty} e(t) = \lim_{s \to 0} s E(s)$$
 (24)

onde $E(s) = X_{1r}(s) - X_1(s)$, é a transformada de Laplace da função e(t).

5.1 Preliminares para a Simulação do Modelo

Os símbolos g, t, d e s indicam a necessidade de produção de um gráfico, desenvolvimento teórico, diagrama simulink e script Matlab , respectivamente.

1. Mostre que função de transferência $X_1(s)/F_a(s)$ da "planta compensada com simulação de atrito viscoso adicional" da figura 7 para o problema do servo, será t

$$G'_{p_s}(s) = \frac{k_{hw}}{m_1 s^2 + (c_1 + k_{hw} k_v) s}$$
 (25)

2. Mostre que função de transferência $X_1(s)/F_p(s)$ da "planta compensada com simulação de atrito viscoso adicional", da figura 7, para o problema do regulador, será

$$G'_{p_r}(s) = \frac{1}{m_1 s^2 + (c_1 + k_{hw} k_v) s}$$
 (26)

sendo que a simulação do aumento do atrito viscoso pode ser controlada através da escolha de k_v t.

- 3. Faça um programa Matlab S utilizando os parâmetros do pêndulo invertido, contendo:
 - (a) a função de transferência da "planta compensada" da figura 7, para o problema do servo, $G'_{p_s}(s)$. Utilize as funções Matlab tf, dcgain. Qual o significado para o erro em regime permanente do valor de $G'_{p_s}(0)$ ser infinito?
 - (b) a função de transferência da "planta compensada" da figura 7, para o problema do regulador, $G'_{p_r}(s)$, e encontre o ganho de baixas frequências $G'_{p_r}(0)$.
 - (c) a função de transferência de malha fechada, $G_f(s)$, de acordo com a figura 8 (b), com $G_{p_f} = 1$. Utilize a função Matlab feedback com $K_p = 0, 2$.
 - (d) os erros de regime (devem ser impressos na tela) dos sistemas em malha fechada para uma entrada X_{1r} em degrau unitário, utilizando a função degain. Justifique os valores encontrados utilizando o teorema do valor final como em (24) $^{\textcircled{t}}$.
 - (e) as respostas ao degrau dos sistemas em malha aberta ^(g) e em malha fechada ^(g). No Matlab utilize a função step.

Parâmetros do Pêndulo Invertido:

$$J_0^* = 0,024264 \text{ [Kg.m}^2]$$
 $\ell_{w2} = -0,1375 \text{ [m]}$
 $g = 9,8 \text{ [m/s}^2]$ $\ell_0 = 0,33 \text{ [m]}$
 $c_1 = 0,2254 \text{ [Ns/m]}$ $k_a = 2546$
 $c_r = 0,0144 \text{ [Nms/rad]}$ $k_x = 50200$
 $m_1 = 0,2376 \text{ [Kg]}$ $k_f = 0,0013$
 $k_v = 0,01 \text{ [Ns/m]}$ $k_s = 32$
 $m_{w2} = 1 \text{ [Kg]}$ $k_{hw} = k_s k_f k_x \text{ [N/m]}$
 $m_{2o} = 0,785 \text{ [Kg]}$ $\ell_{co} = 0,071 \text{ [m]}$

5.2 Procedimento de simulação

Nesta experiência serão realizados ensaios sobre as simulações das duas formas de controle:

• Controle em malha aberta. (vide figura 8 (a)) Neste caso o pré-filtro terá a função de tornar pequeno (limitado) o erro de regime para uma entrada em degrau, uma vez que pela função de transferência (25) este erro tende para infinito, conforme verificado no item 3 (e). A função de transferência sugerida para o pré-filtro é

$$G_{p_f}(s) = \frac{k_{pf} s}{1 + 0.01 s} \tag{27}$$

onde k_{pf} é uma constante.

- Controle em malha fechada. (vide figura 8 (b)) Neste caso o pré-filtro terá a função de corrigir o erro de regime, caso exista necessidade. A função de transferência sugerida para o pré-filtro será simplesmente uma constante, isto é, $G_{pf}(s) = k_{pf}$.
- 4. Determine k_{pf} para que o erro de regime de malha aberta seja mínimo (nulo) t. No programa Matlab do item 3 inclua o pré-filtro calculado com o ganho k_{pf} .
- 5. No controle em malha fechada, fixe $k_{pf} = 1$ e varie o valor de K_p em torno do valor 0,2 e observe o erro de regime. Repita o procedimento fixando $K_p = 0,2$ e variando k_{pf} em torno do valor anterior. Calcule o erro em regime em função de K_p e k_{pf} t.

O procedimento experimental a seguir envolve as respostas ao degrau dos sistemas em malha aberta e em malha fechada. Nos dois casos utiliza-se o pré-filtro para tentar anular o erro de regime. Em malha aberta o pré-filtro é dado pela equação (27), e em malha fechada $G_{p_f}(s) = k_{pf}$.

Observe que nos modelos não-linear e linearizado sem travamento da haste rotacional, uma força gravitacional atua sobre a haste deslizante quando o ângulo $\theta \neq 0$. Considere essa força como um distúrbio atuando sobre o sistema (vide figura 7).

- 6. Faça um programa simulink d para simular o modelo linear do pêndulo invertido com a haste rotacional travada de acordo com a equação (23). No simulink utilize os blocos em /Continuous/Transfer Fcn.
- 7. Utilize um programa simulink disponível no laboratório para simular o modelo nãolinear do pêndulo invertido, de acordo com as equações (17) e (18). Para completar a malha de acionamento é preciso lembrar como estão distribuídos os ganhos de hardware k_f , k_s , k_x e k_a , ver figura 9;
- 8. Faça um programa simulink para simular o modelo linearizado \$, em torno do ponto x(0) = 0, de acordo com as equações (19) e (20). Inclua as constantes k_f , k_s , k_x e k_a como na figura 9;

⁹vide roteiro da Experiência 3 da disciplina EA619.

Figura 9: Diagrama de blocos para o modelo completo do pêndulo (não-linear).

- 9. Utilize o programa Matlab contendo os parâmetros do sistema, feito no item 3 como programa "monitor" para chamar os programas simulink feitos nos itens 6, 7 e 8. No Matlab utilize o comando sim < arquivo.mdl > ou sim < arquivo.slx > para executar a chamada de tais programas do simulink;
- 10. Considere como entrada pulsos, com amplitudes:
 - (a) **500** [counts], com duração de **4000** ms (2000 ms no valor 500 e 2000 ms no valor zero), e uma repetição em direção contrária,
 - (b) **2000** [counts], com duração de **4000** ms (idem) e uma repetição em direção contrária;
- 11. Ajuste o simulink para realizar integração em passo fixo com **Ts=0,001768** s. Introduza nos três modelos utilizados, o atrito viscoso adicional através da realimentação de velocidade com $k_v = 0,01$. Implemente no simulink o pré-filtro recomendado, tanto para malha aberta como para malha fechada. O ganho do controlador é definido inicialmente como $K_p = 0,05$. Simule estes modelos em malha aberta e em malha fechada inicialmente com $k_{pf} = 1$;
- 12. Plote a saída de posição (g), e a posição comandada (g);
- 13. Introduza os seguintes valores para controlador proporcional, $K_p = 0,1$; 0,2; 0,4; 0,8 e recalcule o valor de k_{pf} para cada ajuste. Repita os itens de 10 a 12 no que se refere ao controle em malha fechada;
- 14. Responda as questões:
 - (a) As respostas em malha aberta obtidas coincidem com as esperadas teoricamente? Justifique t.
 - (b) De que forma o comportamento regulador do sistema frente ao distúrbio na carga é afetado quando o controle é feito em malha aberta e em malha fechada to?
 - (c) De que forma o comportamento regulador do sistema frente ao distúrbio na carga é afetado pelo aumento do ganho de malha produzido por K_p no sistema de malha fechada e com relação à variação da posição comandada t.

(d) Por que o erro de regime do controle em malha fechada do modelo não linear não é nulo? Comente a variação deste erro com relação à variação de K_p e da posição comandada t.

6 Levitador Magnético

Para o levitador magnético [5] demonstra-se algumas vantagens da realimentação do ponto de vista do comportamento servo e do comportamento regulador do sistema controlado.

O levitador deverá estar na configuração com um único disco (disco #1). O modelo não-linear que descreve o movimento do disco #1, quando há corrente tanto na bobina #1 como na bobina #2 é descrito na pg.61 do Manual [5], e é apresentado a seguir, em unidades do MKS:

$$m_1 \ddot{y}_1 + c_1 \dot{y}_1 = \frac{u_1}{a (k_s y_1 + b)^4} - \frac{u_2}{a (y_c - k_s y_1 + b)^4} - m_1 g$$
 (28)

onde

 m_1 :massa do disco magnético #1[Kg]; c_1 :coeficiente de atrito viscoso do disco #1 com o ar[Ns/m]; y_1 :altura do disco #1[m]; u_1 :corrente na bobina #1[A]; u_2 :corrente na bobina #2[A]; y_c :distância entre as bobinas #1 e #2[cm]; k_s :relação de metros para centímetros, ou seja, $k_s = 100$;

a e b : constantes que descrevem as propriedades físicas do atuador.

Observação Importante: As constantes a e b foram determinadas na Experiência 4 da disciplina EA-619. Os valores são $a = 8,8090 \times 10^{-5}$ e b = 6,3690, quando as forças de interação magnética são medidas em [N], e a altura do disco é medida em [cm].

A compensação da não linearidade do sensor por calibração será utilizada nesta experiência, mas não a compensação da não linearidade do atuador. Com esta configuração pode-se assumir um *modelo linearizado por série de Taylor*, em torno de um ponto de operação y_{1_0} , conforme descrito em [5, Cap.5, p.63]. Este modelo, quando considerado o ganho de calibração do sensor k_s , é dado pela seguinte equação diferencial, em unidades do MKS:

$$m_1 \ddot{y}_1^* + c_1 \dot{y}_1^* + k_1 y_1^* = k_{u_1} u_1^*(t) + k_{u_2} u_2^*(t)$$
(29)

onde:

 y_{1_0} : ponto de operação para o disco [m]

 u_{1_0} : corrente de manutenção do disco em y_{10} [m];

 $y_1^* = y_1(t) - y_{1_0}$ [m]: desvio em torno do ponto de operação; $u_1^* = u_1(t) - u_{1_0}$ [A]: desvio de corrente necessária para reconduzir o disco até y_{10} ;

 $u_2^* = u_2(t)$ [A]: corrente na bobina #2¹⁰.

As constantes k_1 , k_{u_1} e k_{u_2} são as resultantes do desenvolvimento da equação (28) em série de Taylor e são dadas na forma,

$$k_1 = \frac{4k_s u_{1_0}}{a (k_s y_{1_0} + b)^5}$$
 [N/m] (30)

$$k_{u_1} = \frac{1}{a (k_s y_{10} + b)^4} [\text{N/A}]$$
 (31)

$$k_{u_2} = \frac{1}{a(y_c - k_s y_{1_0} + b)^4} [\text{N/A}]$$
 (32)

Introduz-se a seguir uma transformação de unidades a fim de compatibilizar as equações acima com o hardware do sistema ECP. É preciso considerar que o sistema ECP foi projetado para operar em unidade de [counts] tanto para as forças geradas por u_1 e u_2 , como para as posições especificadas dos discos #1 e #2, obtidas na forma de medidas calibradas dos sensores $y_{1_{cal}}$ e $y_{1_{0_{cal}}}$, respectivamente. As relações entre [counts] e [N], e entre [counts] e [m] são dadas por

$$1[N] = 10^4 [counts]$$
 e $1[m] = 10^4 k_s [counts]$

Portanto, a relação entre a altura real y_1 [m] e a saída calibrada do sensor $y_{1_{cal}}$ [counts] será

$$y_1[m] = \frac{y_{1_{\text{cal}}}[\text{counts}]}{10^4 k_s}$$
 (33)

Substituindo a equação (33) nas equações (28) e (29) o sistema será representado em unidades do sistema ECP para o *modelo não-linear* como:

$$m_1 \ddot{y}_{1_{\text{cal}}} + c_1 \dot{y}_{1_{\text{cal}}} = \frac{k_s u_{1_{\text{counts}}}}{a (y_{1_{\text{cal}}} / 10^4 + b)^4} - \frac{k_s u_{2_{\text{counts}}}}{a (y_c - y_{1_{\text{cal}}} / 10^4 + b)^4} - k_s 10^4 m_1 g$$
 (34)

Veja a figura 10 e observe que, em regime permanente, a força necessária a ser aplicada ao disco magnético $(u_{1_{0_{\text{counts}}}})$, conhecendo-se o ponto de equilíbrio desejado $(y_{1_{0_{\text{cal}}}})$, é obtida fazendo o lado direito da equação (34) igual a zero, com $u_{2_{\text{counts}}} = 0$, resultando em:

$$u_{1_{0_{\text{counts}}}} = 10^4 a \, m_1 \, g \left(\frac{y_{1_{0_{\text{cal}}}}}{10^4} + b \right)^4 \tag{35}$$

Nas Experiências 1 e 2 utiliza-se o modelo linearizado do sistema por Taylor no ponto (u_{1_0}, y_{1_0}) . A representação em torno deste ponto de operação é dada por:

$$m_1 \ddot{y}_{1_{\text{cal}}}^* + c_1 \dot{y}_{1_{\text{cal}}}^* + k_1 y_{1_{\text{cal}}}^* = k_{u_1} u_{1_{\text{counts}}}^* - k_{u_2} u_{2_{\text{counts}}}^*$$
 (36)

onde¹¹:

$$k_1 = \frac{4 k_s u_{10} / 10^4}{a \left(y_{10_{col}} / 10^4 + b \right)^5}$$
 (37)

¹⁰ a força de interação magnética gerada pela bobina #2 é vista como uma força de perturbação agindo sobre o disco.

¹¹aqui as constantes k_1 , k_{u_1} e k_{u_2} são adimensionais

Figura 10: Sistema levitador com ajuste de operação no ponto de equilíbrio desejado y_{1_0} . Variáveis: u_1^* entrada incremental, y_1^* saída incremental.

$$k_{u_1} = \frac{k_s}{a \left(y_{1_{0ab}} / 10^4 + b \right)^4} \tag{38}$$

$$k_{u_2} = \frac{k_s}{a\left((y_c - y_{1_{0_{\text{cal}}}})/10^4 + b\right)^4}$$
 (39)

A equação (36) é uma das possíveis formas de representação linear do levitador, quando configurado com um único disco. Reforçando, esta representação levou em conta a calibração do sensor óptico para compensar a não linearidade deste medidor e a linearização por série de Taylor do modelo do atuador eletromagnético. São equações de $2^{\underline{a}}$ ordem cujas funções de transferência são dadas por

$$\frac{Y_1^*}{U_1^*} = \frac{k_{u_1}}{m_1 s^2 + c_1 s + k_1}, \quad \frac{Y_1^*}{U_2^*} = \frac{-k_{u_2}}{m_1 s^2 + c_1 s + k_1}$$
(40)

e a figura 11 mostra o diagrama de blocos correspondente.

Figura 11: Modelo incremental do sistema levitador (sem amortecimento adicional).

Como o atrito viscoso c_1 entre o disco #1 e o ar é muito pequeno, as oscilações poderão apresentar grande amplitude quando se deseja levar o disco a um determinado ponto de operação. Desta forma o amortecimento da planta será aumentado por meio da realimentação de velocidade \dot{y}_1 , vide figura 12, "simulando-se" uma mudança da viscosidade do meio onde o movimento ocorre.

Figura 12: Planta compensada com simulação de atrito viscoso adicional. F_a : torque de acionamento (entrada servo); F_p : torque de perturbação (entrada de perturbação).

Nesta experiência vamos estudar o conceito de controle em malha fechada, comparando um controlador proporcional simples com o controle realizado sem realimentação, também chamado de controle em malha aberta. Os diagramas de representação dos dois controladores são apresentados na figura 13. Para simplificar a notação denotaremos as variáveis incrementais u_1^* e y_1^* simplesmente por u_1 e y_1 nas representações lineares a seguir.

Figura 13: a) Controle em malha aberta; b) Controle em malha fechada do tipo proporcional. Y_{1r} : entrada de referência, G_{p_f} : função de transferência do pré-filtro, K_p : ganho do controlador proporcional.

Note que a entrada de acionamento ou entrada servo (Fa) é utilizada, enquanto a entrada de perturbação F_p é em geral inacessível. A variável y_{1r} é o valor de referência para a variável de saída y_1 , e pela qual se define a trajetória desejada para a evolução do sistema.

A partir das Figs. 12 e 13 podemos identificar dois problemas fundamentais de controle:

Problema do Servo consiste em comandar o sistema segundo uma trajetória desejada, utilizando a entrada acessível para acionamento F_a . Neste caso faz-se a pertubação F_p nula.

Problema de Regulação consiste em considerar o efeito do sinal de pertubação F_p na saída

 y_1^* . Neste caso toma-se o sinal de referência y_{1r} nulo.

É natural definirmos um sinal de erro expresso por:

$$e(t) = y_{1r}(t) - y_1(t)$$

denominado de *erro dinâmico entre o sinal de referência e a saída*. Note que é o erro dinâmico que serve como entrada para o controlador proporcional no controle em malha fechada da figura 13 (b), gerando um torque de acionamento definido por $F_a(t) = K_p e(t)$.

Em controle é sempre importante conhecermos o valor do erro dinâmico após passado o transitório, ou seja o *erro de regime estacionário* ou meramente, *erro de regime*. Utilizando o teorema do valor final, podemos avaliar o erro de regime da seguinte forma

$$e_r = \lim_{t \to \infty} e(t) = \lim_{s \to 0} s E(s)$$
(41)

onde $E(s) = Y_{1r}(s) - Y_{1}(s)$, é a transformada de Laplace da função e(t).

6.1 Preliminares para a Simulação do Modelo

Os símbolos ②, ①, ⓓ e ③ indicam a necessidade de produção de um gráfico, desenvolvimento teórico, diagrama simulink® e script Matlab™, respectivamente.

1. Mostre que função de transferência da "planta compensada com simulação de atrito viscoso adicional" da figura 12 para o problema do servo, será

$$G'_{p_s}(s) = \frac{k_{u_1}}{m_1 s^2 + (c_1 + k_{u_1} k_v) s + k_1}$$
(42)

2. Mostre que função de transferência da "planta compensada com simulação de atrito viscoso adicional", para o problema do regulador, será

$$G'_{p_r}(s) = \frac{-k_{u_2}}{m_1 s^2 + (c_1 + k_{u_1} k_{\nu}) s + k_1}$$
(43)

Note que o efeito do coeficiente de atrito viscoso c_1 pode ser modificado através da escolha de k_v . \bigcirc

- 3. Faça um programa Matlab S utilizando os parâmetros do levitador, contendo:
 - (a) a função de transferência da "planta compensada" da figura 12, para o problema do servo, $G'_{p_s}(s)$ quando a massa do disco é m_1 (valor nominal) e quando a massa é alterada para $m_1 + \Delta m_1$ (valor perturbado), e encontre os ganhos de baixas frequências $G'_{p_s}(0)$ e $G'_{p_r}(0)$. Utilize as funções Matlab tf, dcgain.
 - (b) a função de transferência da "planta compensada" da figura 12, para o problema do regulador, $G'_{p_r}(s)$ quando a massa do disco m_1 tem valor nominal, e encontre o ganho de baixas frequências $G'_{p_r}(0)$.

- (c) compare $G'_{p_s}(0)$ com $G'_{p_r}(0)$ para o valor nominal m_1 da massa do disco.
- (d) a função de transferência de malha fechada, $G_f(s)$, de acordo com a figura 13 (b), com $G_{pf} = 1$. Utilize a função Matlab feedback com $K_p = 1$.
- (e) os erros de regime (devem ser impressos na tela) dos sistemas em malha fechada para uma entrada y_{1r} em degrau unitário, utilizando a função degain. Justifique os valores encontrados utilizando o teorema do valor final como em (41) t.
- (f) as respostas ao degrau dos sistemas em malha aberta (g) e em malha fechada (g). No Matlab utilize a função step.

Parâmetros do Levitador:

```
a = 8,557 \times 10^{-5} k_s = 100 \text{ [N/m]}

b = 6,5580 m_1 = 0,123 \text{ [Kg]}

g = 9,8 \text{ [m/s}^2\text{]} \Delta m_1 = 0,023 \text{ [Kg]}

c_1 = 0,4078 \text{ [Ns/m]} k_v = 0,01 \text{ [Ns/m]}

k_1 = 56,34 y_c = 13,2 \text{ [cm]}

k_{u_1} = 217,87 y_{1_0} = 2,0 \times 10^4 \text{ [counts]}

k_{u_2} = 11,75
```

6.2 Procedimento de simulação

Nesta experiência serão realizados ensaios sobre as simulações das duas formas de controle:

- Controle em malha aberta. (vide figura 13 (a)) Neste caso o pré-filtro terá a função de anular o erro de regime para uma entrada em degrau do sistema sem perturbações. A função de transferência sugerida para o pré-filtro será simplesmente uma constante, isto é, G_{pf}(s) = k_{pf}.
- Controle em malha fechada. (vide figura 13 (b)) Neste caso o pré-filtro terá a função de corrigir o erro de regime, caso exista necessidade. A função de transferência sugerida para o pré-filtro será simplesmente uma constante, isto é, $G_{p_f}(s) = k_{pf}$.
- 4. Determine k_{pf} para que o erro de regime de malha aberta seja mínimo (nulo) ①. No programa Matlab do item 3 inclua o pré-filtro calculado com o ganho k_{pf} .
- 5. Determine k_{pf} como função de K_p tal que o erro de regime de malha fechada seja nulo \bigcirc t. No programa Matlab do item \bigcirc 3 inclua o cálculo de k_{pf} , como função de K_p .

O procedimento experimental a seguir envolve as respostas ao degrau dos sistemas em malha aberta e em malha fechada. Os desempenhos dos sistemas em malha aberta e em malha fechada com controlador proporcional, frente à variação da massa do disco #1 (m_1) são também investigados.

6. Faça um programa simulink d para simular o levitador magnético de acordo com a equação (34). No Matlab utilize o comando sim < arquivo.mdl > ou sim < arquivo.slx > para executar a chamada de tais programas do simulink;

7. Faça um programa simulink d do levitador magnético para simular o modelo linearizado em torno do ponto y_{1_0} , de acordo com a equação (36) e as Figs. 13 (a) e 13 (b), a partir das funções de transferências já obtidas no item 3. No simulink utilize os blocos em /Continuous/Transfer Fcn.

- 8. Considere como entrada de referência os seguintes sinais:
 - um pulso com amplitude **15000** [counts] com duração de **4000** [ms] (2000 ms no valor 15000 counts e 2000 ms no valor zero);
 - idem, com amplitude de **1000** [counts] (Obs. Note que esta amplitude corresponde a uma variação de 1mm na posição do disco. Comente sobre a possibilidade de realizar este ensaio no sistema real).
- 9. Ajuste o simulink para realizar integração em passo fixo com **Ts=0,001768** s. O amortecimento adicional da planta é introduzido através de $k_v = 0,01$. Implemente no simulink o pré-filtro recomendado, tanto para malha aberta como para malha fechada. O ganho do controlador é definido inicialmente como $K_p = 0,1$. Simule estes modelos em malha aberta e em malha fechada inicialmente com $k_{pf} = 1$. Utilize y_{1_0} conforme a tabela dos parâmetros do levitador apresentada ao final da sub-seção anterior e u_{1_0} definido pela equação (35);
- 10. Plote a saída de posição \mathfrak{G} , e a posição comandada \mathfrak{G} (sinal de referência y_{1r});
- 11. Para ajustar corretamente o pré-filtro, determine k_{pf} de tal forma que o erro em regime dos sistemas em malha aberta e malha fechada seja mínimo. No caso do modelo linearizado isso significa adotar o ganho k_{pf} de forma a se obter $G_{pf}(0)G_a(0)=1^{12}$. Implemente o novo valor de k_{pf} e repita o item 9, ajustando, **se necessário** o ganho k_{pf} para tentar anular o erro de regime da saída. Para o controle em malha fechada, aumente progressivamente o ganho K_p , usando os valores $K_p = \{0,1; 0,3; 0,6; 1,0\}$; e recalcule o valor de k_{pf} para cada ajuste. Verifique o efeito desses valores sobre o comportamento da saída t.
- 12. Simule uma força magnética de distúrbio provocada pela bobina #2. Considere um pulso de amplitude 22000 [counts] iniciando em 1000 [ms] com largura de 1000 [ms] e repetindo-se novamente a partir de 3000 [ms]. Inclua o distúrbio nas simulações em malha aberta e malha fechada e repita as simulações com os ajustes utilizados no item 11. As respostas em malha aberta e fechada obtidas coincidem com as esperadas teoricamente? Compare e justifique t.

13. Responda as questões:

(a) Como o comportamento regulador do sistema com relação à variação da posição comandada é afetado, quando sujeito aos distúrbios na carga? Compare os controles em malha aberta e em malha fechada com respeito a essa característica de desempenho t.

¹²No caso malha aberta, $G_a(s) \equiv G'_{p_s}(s)$ dada em (42), e no caso em malha fechada $G_a(s) \equiv G_f(s)$ determinada no item 3 (e). Vide as Figs. 13 (a) e 13 (b), respectivamente.

(b) Como o comportamento regulador do sistema é afetado com o controle em malha fechada, pelo aumento do ganho de malha produzido por K_p t ?

(c) Comente sobre o erro de regime obtido em malha aberta e malha fechada (t).

Referências

- [1] ECP. Manual for Model 505 Inverted Pendulum Educational Control Products, 1994. 5
- [2] ECP. Manual for Model 220 Industrial Emulator/Servo Trainer Educational Control Products, 1995. 2
- [3] ECP. Manual for Model 205/205a Torsional Control System Educational Control Products, 1997. 4
- [4] ECP. Manual for Model 210/210a Rectilinear Control System Educational Control Products, 1998. 3
- [5] ECP. Manual for Model 730 Magnetic Levitation System Educational Control Products, 1999. 6, 6
- [6] P. A. V. Ferreira. Introdução aos Sistemas de Controle. Notas de aula, prof. Paulo Valente. FEEC-UNICAMP, 1999. 1, 1, 2, 1, 2, 3
- [7] G.F. Franklin, J.D. Powell, and A. Emami-Naeini. *Feedback Control of Dynamic Systems*. Pearson Education Limited, 8th edition, 2018.
- [8] J.C. Geromel and R.H. Korogui. *Controle Linear de Sistemas Dinâmicos: Teoria, Ensaios Práticos e Exercícios*. Edgard Blücher Ltda., 3rd edition, 2011.
- [9] J.C. Geromel and A.G.B. Palhares. *Análise Linear de Sistemas Dinâmicos: Teoria, Ensaios Práticos e Exercícios*. Edgard Blücher Ltda., 3rd edition, 2019.
- [10] D.J. Higham and N.J. Higham. MATLAB Guide. Siam, 3rd edition, 2017.
- [11] The MathWorks Inc. MATLAB and $Simulink^{\textcircled{8}}$ CoverageTM User's Guide. The MathWorks, Inc., 2022.
- [12] N.S. Nise. *Control System Engineering*. Wiley, 8th edition, 2019.
- [13] K. Ogata. Engenharia de Controle Moderno. Prentice Hall, 5th edition, 2010.