Method of sucide: international sucide patterns derived from the WHO motality database

Papers

Bull World Health Organ. 2008 Sep; 86(9): 726-732.

Published online 2008 Jun 2. doi: 10.2471/BLT.07.043489

PMCID: PMC2649482

PMID: <u>18797649</u>

Language: English | French | Spanish | Arabic

Methods of suicide: international suicide patterns derived from the WHO mortality database

<u>Vladeta Ajdacic-Gross</u>, Matthias Mitchell G Weiss, Mariann Ring, Matthias Bopp, Matthias Bopp,

FINDINGS: Poisoning by pesticide was common in many Asian countries and in Latin America; poisoning by drugs was common in both Nordic countries and the United Kingdom. Hanging was the preferred method of suicide in eastern Europe, as was firearm suicide in the United States and jumping from a high place in cities and urban societies such as Hong Kong Special Administrative Region, China. Correspondence analysis demonstrated a polarization between pesticide suicide and firearm suicide at the expense of traditional methods, such as hanging and jumping from a high place, which lay in between.

논문 method

- 1. WHO mortality database에서 국가, 자살 방법별 사망률에 대한 정보 뽑기
- 2. PCA 분석으로, 자살 패턴이 비슷한 나라 확인하기

WHO Mortality database 구조

WHO Mortality Database

- World Health Organization
- WHO Mortality Database는

연령, 성별 및 사망 원인 별 사망률 데이터를 집계 한 것으로, 회원국이 시민 등록 시스템을 통해 매년 보고합니다.

Final Output

사망률 테이블(mortrate2)

국가	년도	ICD버	전 사망원인	성	별	나이0~4	세 사망률				
Country_code	Year	List	Cause_code	Sex	Frmat	Age0to4	Age5to19	Age20to39	Age40to59	•••	MortRate17
1125	1978	08A	A000	1	03	2997.8362	182.3809	319.1513	1143.4632		2299.4274
1125	1978	08A	A000	2	03	3053.4023	136.2138	198.1190	574.1872		1180.0894
1125	1978	08A	A001	1	03	0.0000	0.0000	0.0000	0.0000		0.0000

Country_code	Year	List	Cause_code	Sex	Frmat	Age0to4	Age5to19	Age20to39	Age40to59	•••	MortRate17	
1125	1978	08A	A000	1	03	2997.8362	182.3809	319.1513	1143.4632		2299.4274	
1125	1978	08A	A000	2	03	3053.4023	136.2138	198.1190	574.1872		1180.0894	
1125	1978	08A	A001	1	03	0.0000	0.0000	0.0000	0.0000		0.0000	

사망률 = (사망자 수/ 전체 인구 수) *100,000 = 100,000명 당 ___ 명 사망

- 1125 국가에서 1978년에 A000 사망원인으로 죽은 남자 0-4세는 100,000명 당 2,997명이다.
- 1125 국가에서 1978년 A000 사망원인으로 죽은 여자 0-4세는 100,000명 당 3,053명이다.

International Classification of disease (ICD)

- ICD: 질병 및 관련 건강 문제의 국제 통계 분류
- 세계 보건 기구에서 질병과 증상을 분류한 것
- ICD version7, 8, 9, 10

International Classification of disease (ICD)

• ICD -10 질병의 코드 예시

챕터	구간	제목
1	A00-B99	특정 전염병 및 기생충병
П	C00-D48	종양
Ш	D50-D89	혈액과 조혈 기관의 질병 및 면역 체계 관련 특정 장애
IV	E00-E90	내분비, 영양 및 대사 질병
V	F00-F99	정신 및 행동 장애
VI	G00-G99	신경 계통의 질병
VII	H00-H59	눈과 부속기의 질병
VIII	H60-H95	귀와 유양돌기의 질병
IX	100-199	순환 계통의 질병
X	J00-J99	호흡 계통의 질병
XI	K00-K93	소화 계통의 질병
XII	L00-L99	피부와 피하 조직의 질병

Final Output

사망률 테이블(mortrate2)

국가	년도	ICD出	전 사망원인	성	별	나이0~4	세 사망률				
Country_code	Year	List	Cause_code	Sex	Frmat	Age0to4	Age5to19	Age20to39	Age40to59	•••	MortRate17
1125	1978	08A	A000	1	03	2997.8362	182.3809	319.1513	1143.4632		2299.4274
1125	1978	08A	A000	2	03	3053.4023	136.2138	198.1190	574.1872		1180.0894
1125	1978	08A	A001	1	03	0.0000	0.0000	0.0000	0.0000	•••	0.0000

ICD-10: https://icd.who.int/browse10/2016/en

icdcodes table

Cause	Detailed_code	Cause_code	List
Accidental poisoning	E870-E895	A140	07A
Accidental falls	E900-E904	A141	07A
Accident caused by machinery	E912	A142	07A
Accident caused by fire and explosion of combustible material	E916	A143	07A

population1 – 각 국가의 해당 년도에 인구 수

Country_code	Year	Sex	Frmat	Pop1	Pop2	Pop3	Pop4	Pop5	
1060	1980	1	7	137100	3400	15800	NA	NA	
1060	1980	2	7	159000	4000	18400	NA	NA	
1125	1955	1	2	5051500	150300	543400	NA	NA	
1125	1955	2	2	5049400	145200	551000	NA	NA	

mortality2 – 각 국가의 해당 년도에 특정 사망 원인으로 죽은 사람 수

Country_code	Year	List	Cause_code	Sex	Frmat	IM_Frmat	Deaths1	Deaths2	Deaths3	Deaths4	Deaths5
1060	1980	08A	A000	1	07	08	1087	375	132	NA	NA
1060	1980	08A	A000	2	07	08	1194	313	133	NA	NA
1060	1980	08A	A001	1	07	08	0	0	0	NA	NA
1060	1980	08A	A001	2	07	80	0	0	0	NA	NA

mortrate=100000 * (Deaths/Pop))

Population table

Pop1	Population at all ages &
Pop2	Population at age 0 year @
Pop3 &	Population at age1 year
Pop4	Population at age 2 years
Pop5	Population at age 3 years
Pop6 ₽	Population at age 4 years
Pop7	Population at age 5-9 years ₽
Pop8	Population at age 10-14 years
Pop9	Population at age 15-19 years
Pop10 ₽	Population at age 20-24 years
Pop11 &	Population at age 25-29 years
Pop12 &	Population at age 30-34 years
Pop13 &	Population at age 35-39 years
Pop14 @	Population at age 40-44 years
Pop15 &	Population at age 45-49 years
Pop16₽	Population at age 50-54 years
Pop17 ₽	Population at age 55-59 years
D 10	D 1.1 1 CO CA

Pop1	Population at all ages @				
Pop2 🕹	Population at age 0 year				
Pop3 🖟	Population at age1 year				
Pop4 ₽	Population at age 2 years				
Pop5 ₽	Population at age 3 years				
Pop6 ₽	Population at age 4 years				
Pop7 ₽	Population at age 5-9 years ₽				
Pop8 🛭	Population at age 10-14 years				

population1 – 각 국가의 해당 년도에 인구 수

	Country_code	Year	Sex	Frmat	Pop1	Pop2	Pop3	Pop4	Pop5
	1060	1980	1	7	137100	3400	15800	NA	NA
•	1060	1980	2	7	159000	4000	18400	NA	NA
	1125	1955	1	2	5051500	150300	543400	NA	NA
	1125	1955	2	2	5049400	145200	551000	NA	NA

- 첫번째 행의 Pop1: 1060 국가에 1980년 총 남자 인구 수
 첫번째 행의 Pop2: 1060 국가에서 1980년 남자 0세 인구 수
 첫번째 행의 Pop3: 1060 국가에서 1980년 남자 1세 인구 수

Mortality table

Deaths1 ₽	Deaths at all ages a
Deaths2	Deaths at age 0 year
Deaths3	Deaths at age 1 year
Deaths4₽	Deaths at age 2 years
Deaths5 ₽	Deaths at age 3 years
Deaths6₽	Deaths at age 4 years
Deaths7₽	Deaths at age 5-9 years
Deaths 8 -	Deaths at age 10-14 years
Deaths9	Deaths at age 15-19 years
Deaths 10	Deaths at age 20-24 years
Deaths 11	Deaths at age 25-29 years
Deaths 12	Deaths at age 30-34 years
Deaths 13	Deaths at age 35-39 years
Deaths 14	Deaths at age 40-44 years
Deaths 15	Deaths at age 45-49 years
Deaths 16	Deaths at age 50-54 years
Deaths 17	Deaths at age 55-59 years
Deaths 18	Deaths at age 60-64 years
Deaths 19	Deaths at age 65-69 years

Deaths 1	Deaths at all ages
Deaths2 4	Deaths at age 0 year
Deaths3 ₽	Deaths at age 1 year
Deaths4 ₽	Deaths at age 2 years ₽
Deaths5 ₽	Deaths at age 3 years ₽
Deaths6 ₽	Deaths at age 4 years ₽
Deaths7₽	Deaths at age 5-9 years ₽
Deaths8 ₽	Deaths at age 10-14 years

mortality2 – 각 국가의 해당 년도에 특정 사망 원인으로 죽은 사람 수

Country_code	Year	List	Cause_code	Sex	Frmat	IM_Frmat	Deaths1	Deaths2	Deaths3	Deaths4	Deaths5
1060	1980	08A	A000	1	07	08	1087	375	132	NA	NA
1060	1980	08A	A000	2	07	08	1194	313	133	NA	NA
1060	1980	08A	A001	1	07	08	0	0	0	NA	NA

- 첫번째 행의 Deaths1: 1060 국가에 1980년 A000 사망원인으로 죽은 총 남자 사망자 수
- 첫번째 행의 Deaths2: 1060 국가에서 1980년 A000 사망원인으로 죽은 0세 남자 사망자 수
- 첫번째 행의 Deaths3: 1060 국가에서 1980년 A000 사망원인으로 죽은 1세 남자 사망자 수

population1 –인구수 정보

Country_code	Year	Sex	Frmat	Pop1	Pop2	Pop3	Pop4	Pop5
1060	1980	1	7	137100	3400	15800	NA	NA

mortality2 – 사망자 정보

Country_code	Year	List	Cause_code	Sex	Frmat	IM_Frmat	Deaths1	Deaths2	Deaths3	Deaths4	Deaths5
1060	1980	08A	A000	1	07	08	1087	375	132	NA	NA

mortrate2 (mortrate1=100000 * (Deaths1/Pop1))

Country_code	Year	List	Cause_code	Sex	Frmat	Age0to4	Age5to19	Age20to39	Age40to59	Age60to79	Age80andup	MortRate1	MortRate2
1060	1980	08A	A000	1	07	NA	NA	NA	NA	NA	NA	792.8519	1029.4117

 $mortrate1 = (1087/137100) \times 100000 = 792.8519$

mortrate1 = 1060 국가에서 1980년도에 A000의 사망 원인으로 죽은 남성은 10만명당 792명

WHO mortality database concept

Mortality rates were calculated from the population and mortality data. Within the mortality dataset, one can look at the data from different perspectives using the variables year, cause of death, country, age cohort and sex.

WHO Mortality database Quality Control

Mortality QC

Quality Control 과정

Quality Control – mortality table

1. sub-divisions 또는 regions 정보가 있는 행은 모두 지우기

2. icd10 코드가 4글자로 되어있으면, 3글자로 치환

3. 남녀 정보 통합

QC 1st step in mortality

- 1. mortality0 테이블에서 sub-divisions 또는 regions 정보가 있는 행은 모두 지우기
- 2. 1번의 결과를 mortality1 테이블로 저장

■ Field "Admin1"

 $^{+^{j}}$

Country .	Admin1 ₽	Description @
2070 🕫	901 ₽	North and North-East
2070 🕫	902 ₽	South, South-East and Central West
2350 ₽	901 🕫	Former Canal Zone
3150 🕫	901 ₽	Jewish Population

₽

- Field "Subdiv" ₽

+

Subdiv -	Description ₽
A10 43	Survey &
A20 4	Reporting Areas
A30 47	Part₽
A35 4	Selected Urban and Rural Areas
A41 4	Selected Rural Areas
A51 🕫	Selected Urban Areas.
A70 🕫	Cities &
A80 &	Certified Deaths

QC 1st step in mortality

• mortality0 테이블에서 sub-divisions 또는 regions 정보가 있는 행은 모두 지우기

Country_code	Admin1	Sub-division	Cause_code	Death0
1101	NULL	NULL	A00	1000
1101	NULL	North	A00	50

첫번째 줄: 1101 국가의 A00 사망원인으로 죽은 전체 사망자 수는 1000명이다

두번째 줄: 1101 국가의 북쪽 지역에서 AOO 사망원인으로 죽은 전체 사망자 수는 100명이다

- -> 두번째 줄은 첫번째 줄의 정보의 **부분집합**이다.
- -> 우리는 국가별 사망률을 분석
- -> Sub-division에 값이 있는 행 제거! (즉, 두번째 줄 제거)

$QC 1^{st} step$ in mortality

• mortality0 테이블에서 sub-divisions 또는 regions 정보가 있는 행은 모두 지우기

Country_code	Admin1	Sub-division	Cause_code	Death0
1101	NULL	NULL	A00	1000
1101	Cities	NULL	A00	100

첫번째 줄: 1101 국가의 A00 사망원인으로 죽은 전체 사망자 수는 1000명이다

두번째 줄: 1101 국가에서 도시에서 AOO 사망원인으로 죽은 전체 사망자 수는 100명이다

- -> 두번째 줄은 첫번째 줄의 정보의 **부분집합**이다.
- -> 우리는 국가별 사망률을 분석
- -> Admin1에 값이 있는 행 제거! (즉, 두번째 줄 제거)

$QC \ 1^{st} \ step$ in raw mortality

Mortality

Rows without subdivs/region	mort0	3920396
Rows with subdivs/regions	mort0	141236
		4061632
Mortality1	mort1	3920396

$QC 1^{st} step$ in mortality

SELECT COUNT(*)

FROM mortality1;

COUNT(*)

18114

- 1. mortality0 테이블에서 sub-divisions 또는 regions 정보가 있는 행은 모두 지우기
- 2. 1번의 결과를 mortality1 테이블로 저장

```
DROP TABLE IF EXISTS mortality1;
CREATE TABLE mortality1 AS (
SELECT Country_code, Year, List, Cause_code, Sex,
FROM mortality0
where (Admin1 IS NULL and SubDiv IS NULL)
);
```

Country_code	Year	List	Cause_code	Sex	Frmat	IM_Frmat	Deaths1
4210	1996	10M	A020	1	00	08	2
4210	1996	10M	A020	2	00	08	2
							_

Deaths26	IM_Deaths1	IM_Deaths2	IM_Deaths3	IM_Deaths4
0	0	NULL	NULL	NULL
0	0	NULL	NULL	NULL

QC 2nd step in mortality

- 1. mortality table1에서 ICD-10 버전이면서, Cause_code가 4글자로 되어 있으면 Cause_code를 3글자로 바꾼다.
- 2. 2. 동일한 Cause_code끼리 묶어서 사망자 수 합산

예시)

mort1	4210	2000	104	C340	Male	0	1	26
mort1	4210	2000	104	C341	Male	0	1	164
mort1	4210	2000	104	C342	Male	0	1	8
mort1	4210	2000	104	C343	Male	0	1	54
mort1	4210	2000	104	C348	Male	0	1	9
mort1	4210	2000	104	C349	Male	0	1	6031
								6292
mort2	4210	2000	104	C34	Male	0	1	6292

C34 Malignant neoplasm of bronchus and lung

C340 Malignant neoplasm: Main bronchus

C341 Malignant neoplasm: Upper lobe, bronchus or lung C342 Malignant neoplasm: Middle lobe, bronchus or lung

C343 Malignant neoplasm: Lower lobe, bronchus or lung

C348 Malignant neoplasm: Overlapping lesion of bronchus and lung

C349 Malignant neoplasm: Bronchus or lung, unspecified

QC 2nd step in mortality

- SELECT COUNT(*)
- FROM mortality2;

- 1. mortality table1에서 Cause_code가 4글자로 되어 있으면 Cause_code를 3글자로 바꾼다.
- 2. 동일한 Cause code끼리 묶어서 사망자 수 합산
- 3. Mortality2로 저장

Country_code	Year	List	Cause_code	Sex	Frmat	IM_Frmat	Deaths1
4210	1996	10M	A02	1	00	08	5
4210	1996	10M	A02	2	00	08	2

Deaths26	IM_Deaths1	IM_Deaths2	IM_Deaths3	IM_Deaths4
0	0	NULL	NULL	NULL
0	0	NULL	NULL	NULL

QC 3rd step in mortality

mortality2에는 남자, 여자 따로 사망자수가 기록되어 있다.

- 1. 남자 여자 합쳐서 사망자수가 기록되도록 한다.
- 2. 1번 결과값을 mortality3 table에 저장

Mortality

mort2	4210	2000	104	C34	Male	6292
mort2	4210	2000	104	C34	Female	2261
						8553
mort3	4210	2000	104	C34		8553

QC 3rd step in mortality

mortality2에는 남자, 여자 따로 사망자수가 기록되어 있다.

- 1. 남자 여자 합쳐서 사망자수가 기록되도록 한다.
- 2. 1번 결과값을 mortality3 table에 저장

Country_code	Year	List	Cause_code	Frmat	IM_Frmat	Deaths1
4210	1996	10M	A02	00	08	7
4210	1996	10M	A03	00	08	1

Deaths26	IM_Deaths1	IM_Deaths2	IM_Deaths3	IM_Deaths4
0	0	NULL	NULL	NULL
0	0	NULL	NULL	NULL
		SHIP	NULL	MILITA

Population QC

Quality Control – population table

1. sub-divisions 또는 regions 정보가 있는 행은 모두 지우기

2. 남녀 정보 통합

QC 1st step in population

- SELECT COUNT(*)
- 2 FROM population1;

- 1. population0 테이블에서 sub-divisions 또는 regions 정보가 있는 행은 모두 지우기
- 2. 1번의 결과를 population1 테이블로 저장

Country_code	Year	Sex	Frmat	Pop1	Pop2
1060	1980	1	7	137100	3400
1060	1980	2	7	159000	4000
1125	1955	1	2	5051500	150300

Pop25	Pop26	Lb
NULL	6500	5000
NULL	7500	6000
NULL	0	253329

QC 2nd step in population

population1에는 남자, 여자 따로 사망자수가 기록되어 있다.

- 1. 남자 여자 합쳐서 사망자수가 기록되도록 한다.
- 2. 1번 결과값을 population2 table에 저장

- 1 SELECT COUNT(*)
- 2 FROM population2;

Country_code	Year	Frmat	Pop1	Pop2	Pop3
1060	1980	7	296100	7400	34200
1125	1955	2	10100900	295500	1094400
1125	1956	2	10705100	312300	1161400
1125	1957	2	10795000	315600	1170200
1125	1958	2	11001300	320600	1192100

Pop22	Pop23	Pop24	Pop25	Pop26	Lb
NULL	NULL	NULL	NULL	14000	11000
29800	53800	HULL	NULL	0	491230
31400	56000	NULL	NULL	0	485909
31100	56300	NULL	NULL	0	447223
31300	56900	NULL	NULL	0	493709

Quality Control 과정

Mortrate table 만들기 (join)

mortrate2: 국가, 연도, 사망원인, 성별, 나이별 사망률

mortality2

population1

mortrate2

mortrate3: 국가, 연도, 사망원인, 나이별 사망률

mortality3

population2

mortrate3

mortrate=100000 * (Deaths/Pop)

mortrate2

country_code	year	List	Cause_code	Sex	Frmat	MortRate1
4210	1996	10M	A02	1	00	0.0651
4210	1996	10M	A03	1	00	0.0130
4 210	1996	10M	A04	1	00	0.0130

MortRate23	MortRate24	MortRate25	MortRate26
0.0000	NULL	NULL	NULL
0.0000	NULL	NULL	NULL
0.0000	NULL	NULL	NULL

mortrate3

country_code	year	List	Cause_code	Frmat	MortRate1
4210	1996	10M	A02	00	0.0450
4210	1996	10M	A03	00	0.0064

- MortRate24 MortRate25 MortRate26 MortRate23 NULL NULL MULL 0.4786 NULL NULL MULL 0.0000
- SELECT COUNT(*) SELECT COUNT(*)
- FROM mortrate2;

5 FROM mortrate3;

WHO DB 분석

논문 분석을 위한 Final Table

Mortrate3 를 통해 만들 Final table

whoregion	name	pesticide	other_poision	hanging	drowning	firearms	jumping
AFR	Mauritius	11.9502	0.8226	33.6238	0.4904	0.4939	0.1645
AFR	Rodrigues	8.0365	0.0000	23.9804	0.0000	0.0000	0.0000
AFR	South Africa	0.2154	0.3475	1.6405	0.0102	0.1840	0.0080
AMR	Canada	0.2814	17.1748	30.3154	1.9346	11.9188	3.4814
AMR	United States of America	0.3165	16.8653	20.8614	1.0947	52.4990	2.1488
EMR	Bahrain	0.1041	0.0962	30.2487	0.6169	0.0000	0.0000
EMR	Cyprus	3.5500	1.9875	8.1034	0.3599	4.6451	4.7333
EMR	Egypt	0.1311	0.0606	0.2309	0.0123	0.2999	0.0015
EMR	Jordan	0.0170	0.0671	0.1507	0.0000	0.0678	0.0000

1. Country, year, cause_code별 사망률을 Country, cause_code별 사망률로 바꾸기 (연도별 사망률 합하기)

analysis0 table

USE who_mortality;	Country_code	Cause_code	MortRate 1
Combine annual mortality rates	1060	A000	770.3478
DROP TABLE IF EXISTS analysis0;	1060	A001	0.0000
CREATE TABLE analysis0 AS (1060	A002	6.0790
SELECT Country_code, Cause_code, SUM(MortRate1) AS MortRate1	1060	A003	2.0263
<pre>FROM real_mortrate3 GROUP BY Country code, Cause code);</pre>	1060	A004	1.6886
droop by country_code, cause_code /,	1060	A005	93.5494
	1060	A006	12.1580
	1060	A007	0.0000
	1060	A008	0.0000
	1060	A009	0.0000
	1060	A010	0.6754
	1060	A011	0.0000

2. 자살과 관련된 cause_code만 추출

analysis1 table

Country_code	Cause_code	MortRate 1
1125	X60	0.0040
1125	X62	0.0094
1125	X65	0.0112
1125	X66	0.0097
1125	X67	0.0079

The ICD-10 codes for suicide are in the range X60–X849. We differentiated suicides due to a pesticide or an unspecified poison (X68–X699), other poisons (X60–X679), hanging (X70–X709), drowning (X71–X719), firearms and explosives (X72–X759), and jumping from a height (X80-X809), and other suicide methods. Some methods, such as hanging or firearm suicide, are reported more accurately than others, such as poisoning or drowning. This should be kept in mind when interpreting frequency distributions, particularly in countries with incomplete data.

- pesticide or unspecified poision: X68-X69
- other poision: X60-X67
- hanging: X70
- drowning: X71
- firearms and explosives: X72-X75
- jumping from height: X80

3. 비슷한 방법끼리 같은 카테고리로 만들기

analysis2 table

Country_code	Cause_code	MortRate1	Suicide_method
1125	X60	0.0040	other_poision
1125	X62	0.0094	other_poision
1125	X65	0.0112	other_poision
1125	X66	0.0097	other_poision
1125	X67	0.0079	other_poision
1125	X68	0.0904	pesticide
1125	X69	0.0407	pesticide
1125	X70	0.2309	hanging
1125	X73	0.0205	firearms
1125	X74	0.2652	firearms
1125	X80	0.0015	jumping
1125	X64	0.0089	other_poision

```
-- Converting the same type of suicide method into one category
DROP TABLE IF EXISTS analysis2;
CREATE TABLE analysis2 AS (
SELECT *,

CASE WHEN Cause_code REGEXP 'X6[89]' THEN 'pesticide'

WHEN Cause_code REGEXP 'X6[0-7]' THEN 'other_poision'
WHEN Cause_code = 'X70' THEN 'hanging'
WHEN Cause_code = 'X71' THEN 'drowning'
WHEN Cause_code REGEXP 'X7[2-5]' THEN 'firearms'
WHEN Cause_code = 'X80' THEN 'jumping'
END AS Suicide_method
FROM analysis1
);

SELECT * FROM analysis2;
```

- pesticide or unspecified poision: X68-X69
- other poision: X60-X67
- hanging: X70
- drowning: X71
- firearms and explosives: X72-X75
- jumping from height: X80

4. 자살 방법별 사망률 계산

같은 그룹의 사망률 합산

analysis3 table

Country_code	Suicide_method	MortRate1
1125	other_poision	0.0606
1125	pesticide	0.1311
1125	hanging	0.2309
1125	firearms	0.2999
1125	jumping	0.0015
1125	drowning	0.0123
1300	other_poision	0.8226
1300	pesticide	11.9502

5. Reformat

```
-- final output

DROP TABLE IF EXISTS analysis4;

CREATE TABLE analysis4 AS (

SELECT Country_code,

SUM(CASE WHEN Suicide_method='pesticide' THEN MortRate1 ELSE 0 END) AS pesticide,

SUM(CASE WHEN Suicide_method='other_poision' THEN MortRate1 ELSE 0 END) AS other_poision,

SUM(CASE WHEN Suicide_method='hanging' THEN MortRate1 ELSE 0 END) AS hanging,

SUM(CASE WHEN Suicide_method='drowning' THEN MortRate1 ELSE 0 END) AS drowning,

SUM(CASE WHEN Suicide_method='firearms' THEN MortRate1 ELSE 0 END) AS firearms,

SUM(CASE WHEN Suicide_method='jumping' THEN MortRate1 ELSE 0 END) AS jumping

FROM analysis3

GROUP BY Country_code
);

SELECT * FROM analysis4;
```

analysis4 table

Country_code	pesticide	other_poision	hanging	drowning	firearms	jumping
1125	0.1311	0.0606	0.2309	0.0123	0.2999	0.0015
1300	11.9502	0.8226	33.6238	0.4904	0.4939	0.1645
1365	8.0365	0.0000	23.9804	0.0000	0.0000	0.0000
1430	0.2154	0.3475	1.6405	0.0102	0.1840	0.0080

6. Final Output

- 국가의 whoregion 정보와 이름 추가
- whoregion, name 기준으로 table 정렬

```
DROP TABLE IF EXISTS analysis5;

CREATE TABLE analysis5 AS (

SELECT c.whoregion, c.name, a.pesticide, a.other_poision, a.hanging, a.drowning, a.firearms, a.jumping

FROM analysis4 as a

LEFT JOIN country as c ON a.Country_code=c.Country_code

ORDER BY c.whoregion, c.name
);

SELECT *

FROM analysis5;

-- write table to csv file

SELECT * FROM analysis5 INTO OUTFILE 'C:\\ProgramData\\MySQL\\MySQL Server 8.0\\Uploads\\
\analysis5.csv' FIELDS TERMINATED BY ',' LINES TERMINATED BY '\n';

-- SHOW VARIABLES LIKE "secure_file_priv";
```

analysis5 table

whoregion	name	pesticide	other_poision	hanging	drowning	firearms	jumping
AFR	Mauritius	11.9502	0.8226	33.6238	0.4904	0.4939	0.1645
AFR	Rodrigues	8.0365	0.0000	23.9804	0.0000	0.0000	0.0000
AFR	South Africa	0.2154	0.3475	1.6405	0.0102	0.1840	0.0080
AMR	Canada	0.2814	17.1748	30.3154	1.9346	11.9188	3.4814

기계학습을 이용한 분석

Principal Component Analysis (PCA)

- 차원 축소
- 고차원에서 저차원으로 비슷한 패턴끼리 묶음
- 새로운 축을 만듬 -> PC1, PC2 ,...

예제)

- 2차원을 1차원으로 축소
- 초록색 선이 새로운 축(PC1)

PCA

original data space

Suicide 분석 - PCA

suicide pattern 분석

• data: suicide_mortrate2_final.csv 이용

(전체 62개의 행(analysis5)에서 동일 국가의 다른 지역 데이터 삭제 후, 총 58개의 국가에 대한 table이다.)

- 분석 시, code 작성 위치와 csv 파일 위치 동일한 곳에서 하기
- Python으로 분석

Python으로 분석

- 1) pip install -U matplotlib
- 2) pip install -U scikit-learn
- 3) pip install pandas

코드 https://github.com/zlslsp54/WHO Sucide Analysis

