Math136 - January 11'th, 2016

F-Flats, Hyperplanes and Subspaces

Line

A line in \mathbb{R}^3 through $\vec{b} \in \mathbb{R}$ with direction vector $v \in \mathbb{R}$ is the set $\{c_1\vec{v} + \vec{b}\}$ which we often write as a vector equation:

$$\vec{x} = c_1 \vec{v} + \vec{v}, \ c_1 \in \mathbb{R} \quad (\vec{v} \neq \vec{0})$$

Plane

A **plane** in \mathbb{R}^n is given by the vector equation:

$$\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \vec{b}, \ c_1, c_2 \in \mathbb{R}$$

 $\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \vec{b}, \ c_1, c_2 \in \mathbb{R}$ (Where $\vec{v}_1, \vec{v}_2, \vec{b}$ are fixed vectors and c_1, c_2 vary over \vec{b}) where $\{\vec{v}_1, \vec{v}_2\}$ are linearly independent (L.I)

K-Flat

Let $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k \in mathbb{R}^n$ be L.I. vectors and $\vec{b} \in \mathbb{R}^n$. We call the set with vector equation

$$\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_k \vec{v}_k + \vec{b}, \ c_1, c_2, \dots, c_k \in \mathbb{R}$$

A **k-flat** through \vec{b}

Hyperplane

A (n-1)-flat in \mathbb{R}^n is called a **hyperplane**.

E.g. The vector equation:

$$\vec{x} = c_1 \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} + c_3 \begin{bmatrix} 2 \\ 1 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} -1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \quad c_1, c_2, c_3 \in \mathbb{R}$$

Defines a 3-flat in \mathbb{R}^4 which is a hyperplane.

Note: Before we call this a 3-flat, we must check all vectors are L.I.

Subspaces

A subspace of \mathbb{R}^n is a subset $S \subset \mathbb{R}^n$ which satisfies the following 10 properties:

$$S_1 \ \vec{x} + \vec{y} \in S \ \forall \vec{x}, \vec{y} \in S$$

$$S_2 \ (\vec{x} + \vec{y}) + \vec{w} = \vec{x} + (\vec{y} + \vec{w}) \ \forall \vec{x}, \vec{y}, \vec{w} \in S$$

$$S_3 \vec{x} + \vec{y} = \vec{y} + \vec{x}$$

$$S_4$$
 There is $\vec{0} \in S$ with $\vec{x} + \vec{0} = \vec{x} \ \forall \vec{x} \in S$

$$S_5$$
 For any $\vec{x} \in S$, there is $(-\vec{x}) \in S$ with $\vec{x} + (-\vec{x}) = \vec{0}$

$$S_6 \ c\vec{x} \in S \forall c \in \mathbb{R}, \vec{x} \in S$$

$$S_7 \ c(d\vec{x}) = (cd)\vec{x} \ \forall c, d \in \mathbb{R}, \vec{x} \in S$$

$$S_8 (c+d)\vec{x} = c\vec{x} + d\vec{x} \,\forall c, d \in \mathbb{R}$$

$$S_9 \ c(\vec{x} + \vec{y}) = c\vec{x} + c\vec{y} \ \forall c \in \mathbb{R}, \vec{x}, \vec{y} \in S$$

$$S_10 \ 1\vec{x} = \vec{x} \ \forall \vec{x} \in S$$

Theorem 1.2.1 - Subspace Test

Let $S \subset \mathbb{R}^n$ be a non-empty subset of \mathbb{R}^n that is closed under addition and scaler multiplication (I.e. $\vec{x} + \vec{y} \in S \ \forall \vec{x}, \vec{y} \in S \ \text{and} \ c\vec{x} \in S \ \forall c \in \mathbb{R}, \vec{x} \in S$

Then, S is a subspace of \mathbb{R}^n

E.g. Is $S = \operatorname{span}\left\{\begin{bmatrix}1\\0\end{bmatrix}\right\}$ a subspace of \mathbb{R}^2 ?

First, note that $\begin{bmatrix} 1 \\ 1 \end{bmatrix} = 0 \begin{bmatrix} 1 \\ 0 \end{bmatrix} \in S$, so S is non empty.

Now we must check that S satisfies closure under addition.

If $\vec{x}, \vec{y} \in S$, then by definition $\vec{x} = c_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \vec{y} = c_2 \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ for some $c_1, c_2 \in \mathbb{R}$

Then
$$\vec{x} + \vec{y} = c_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} = (c_1 + c_2) \begin{bmatrix} 1 \\ 0 \end{bmatrix} \in S$$

 $\therefore S$ is closed under addition \checkmark

Now we must check closure under scalar multiplication.

Suppose $\vec{x} \in S$, $d \in \mathbb{R}$

We need to check that $d\vec{x} \in S$

$$d\vec{x} = d(c \begin{bmatrix} 1 \\ 0 \end{bmatrix}) = dc \begin{bmatrix} 1 \\ 0 \end{bmatrix} \in S$$

 $\therefore S$ is closed under scalar multiplication.

 $\therefore S$ is a subspace of \mathbb{R}^n

E.g. Is
$$T = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2 \mid x_1 + x_2^2 = 0 \right\}$$
 a subset of \mathbb{R}^3 ?

Trick question! $T \in \mathbb{R}^2$, so it can't be a subspace of \mathbb{R}^3

Is T a subspace of \mathbb{R}^2 ?

It is non empty because $\begin{bmatrix} 0 \\ 0 \end{bmatrix} \in T$

Closed under multiplication?

Lets try
$$\begin{bmatrix} -1\\1 \end{bmatrix} \in T$$
 since $(-1) + 1^2 = 0$

But
$$2\begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} -2\\2 \end{bmatrix} \notin T$$
 since $(-2) + 2^2 \neq 0$

Since T is not closed under multiplication it is not a subspace of \mathbb{R}^2

E.g. is
$$u=\{\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}\in\mathbb{R}^3\mid x_1+x_2+x_3=0\}$$
 a subspace of \mathbb{R}^3 ?
$$\begin{bmatrix}0\\0\\0\end{bmatrix}\in U\checkmark$$

Closed under addition?

If
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
, $\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \in U$, then
$$(x_1 + y_1) + (x_2 + y_2) + (x_3 + y_3) = (x_1 + x_2 + x_3) + (y_1 + y_2 + y_3) = 0 + 0 = 0$$
 So $\begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ x_3 + y_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \in U$

Exercise: Check closure under scalar multiplication.

Theorem 1.2.2

If $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k \in \mathbb{R}^n$, then $S = \operatorname{span}{\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}}$ is a subspace of \mathbb{R}^n

E.g. Is the line with vector equation $\vec{x} = c \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \ c \in \mathbb{R}$ a subspace of \mathbb{R}^2 ?

If we were to graph this vector equaton, we would see this:

Notice this never passes through the $\vec{0}$ vector. Clearly this cannot be a subspace of \mathbb{R}^2