Theoretische Mechanik Sommersemester 2023

Prof. Dr. W. Strunz, Dr. R. Hartmann, Institut für Theoretische Physik, TU Dresden https://tu-dresden.de/mn/physik/itp/tqo/studium/lehre

3. Übung (Besprechung 24.4. - 28.4.)

1. Anharmonischer Oszillator

Betrachten Sie die Bewegung eines Massenpunkts in einer Raumdimension unter dem Einfluss des anharmonischen Potentials $V(x) = \frac{k}{2} x^2 + \alpha x^4$ mit $k, \alpha > 0$. Zur Zeit $t_0 = 0$ befinde sich der Massenpunkt bei $x_0 = x(0)$ im Ruhezustand.

- a) Beschreiben Sie qualitativ die Bewegung des Massenpunkts. Wie lautet die Newtonsche Bewegungsgleichung und welche Erhaltungssätze gelten für das eindimensionale Bewegungsproblem?
- b) Bestimmen Sie für eine vorgegebene Energie E die zwei Umkehrpunkte $x_{<}$ und $x_{>}$.
- c) Leiten Sie nun die Lösung der Bewegungsgleichung in Form einer Integraldarstellung für die Umkehrfunktion t = t(x) für die gegebenen Anfangsbedingungen her. Welcher Ausdruck ergibt sich somit für die Schwingungsdauer T als Funktion der Energie E?
- d) Verifizieren Sie den Ausdruck für die Schwingungsdauer T für den leicht anharmonischen Fall, d.h. $\alpha E \ll k^2$

$$T = 2\pi \sqrt{\frac{m}{k}} \left(1 - \frac{3\alpha E}{k^2} \right) .$$

Hinweis: Verwenden Sie für die näherungsweise Auswertung des Integrals aus Teil c) die Substitution $V(x)/E = \sin^2(\varphi)$.

e) Berechnen Sie für verschiedene Werte der Energie das Integral für die Schwingungsdauer numerisch. Nutzen Sie z.B. Python und Scipy (download Python, install Scipy), Wolfram Alpha oder Matlab (Lizenz @ TUD). Vergleichen Sie die Ergebnisse mit den Näherungswerten aus d).

2. Raketengleichung

Eine Rakete befinde sich in der Startphase und bewege sich im (als konstant angenommenen) Schwerefeld der Erde senkrecht nach oben. Es seien:

 $m(t) \quad \text{die momentane Masse der Rakete,} \\ M, m_0^{TS} \quad \text{die Masse der Rakete, Treibstoffmasse vor dem Start} \\ \mu(t) = -\frac{dm(t)}{dt} > 0 \quad \text{Massenabnahme der Rakete pro Zeit,} \\ v(t) \quad \text{die momentane Geschwindigkeit der Rakete,} \\ v_G(t) \quad \text{der Betrag der Austrittsgeschwindigkeit der Verbrennungsgase,} \\ \varrho_G(t) \quad \text{die Dichte der austretenden Verbrennungsgase,} \\ A \quad \text{der Düsenquerschnitt.}$

- a) Leiten Sie die Bewegungsgleichung für die Rakete her. Betrachten Sie hierfür die Änderung des Gesamtimpulses. Welcher Zusammenhang besteht zwischen ϱ_G und v_G ?
- b) Finden Sie v(t) mit v(0) = 0 unter der Annahme, dass v_G und μ konstant sind. Unter welcher Bedingung erhebt sich die Rakete, d.h. v(t) > 0 während der Startphase?

3. Lasso (Massenpunkt an einem Faden)

Ein Massenpunkt der Masse m, der sich am Ende eines reibungsfrei durch eine dünne Röhre (Ausrichtung in z-Richtung) geführten Fadens befindet, rotiere um die z-Achse (parallel zur x-y-Ebene). Zieht man an dem Faden, so verringert sich der Abstand des Massenpunkts ρ zur z-Achse. Der Einfachheit halber sei der Durchmesser der Röhre sowie der Einfluss der Gravitation nicht zu berücksichtigen.

- a) Wählen Sie geeignete Koordinaten und bestimmen Sie in diesen die Bewegungsgleichungen des Massenpunkts.
- b) Zeigen Sie, dass der Drehimpuls eine Erhaltungsgröße ist.
- c) Berechnen Sie die Arbeit, die geleistet werden muss um den Massenpunkt von einer stationären Kreisbahn mit Radius ρ_0 auf eine stationäre Kreisbahn mit dem halben Radius zu bringen.
- d) Das Lasso werde nun so geworfen, dass dessen Länge linear mit der Zeit zunehme. Bestimmen Sie die Bahnkurve $\varphi(\rho)$. Diskutieren Sie das Verhalten bei großen Zeiten.

