Data structure exercises

Banker's algorithm

- 1) Examine the following table (Table 1) of resource requirements for five (5) processes (P1-P5), four (4) resource types (A, B, C, D), and total resources are A=10, B=6, C=15, and D=10.
- a) Determine whether the current system is in a safe state or not using the Banker's Algorithm. Show the processes' execution sequence and changes in the available vector elements in each step.
- **b**) If a request from P4 arrives for (2, 1, 0, 1), can the request be granted immediately? Show all necessary steps.

Process	Allocation (A, B, C, D)	Max (A , B , C , D)
P1	(3, 2, 2, 1)	(5, 3, 4, 2)
P2	(2, 1, 3, 2)	(4, 2, 5, 4)
P3	(1, 1, 0, 3)	(3, 2, 2, 4)
P4	(3, 0, 2, 1)	(4, 1, 3, 2)
P5	(0, 2, 1, 0)	(2, 3, 4, 2)

2)

Assume that there are three resources, A, B, and C. There are 4 processes P_0 to P_3 . At T_0 we have the following snapshot of the system:

	Allocation			Max			Available		
	Α	В	С	Α	В	С	Α	В	С
P ₀	1	0	1	2	1	1	2	1	1
P ₁	2	1	2	5	4	4			
P ₂	3	0	0	3	1	1			
P ₃	1	0	1	1	1	1			

- 1. Create the need matrix.
- 2. Is the system in a safe state? Why or why not?
- 3) The given figure indicates the resource allocation graph(RAG)

a) Analyze the given Resource Allocation Graph (RAG) to find a safe sequence.