Machine learning을 활용한 Adaptive learning platform 구축

2018. 09. 07 김민우 대표 Kidaptive Asia

Edu-tech의 특징 & Why Kidaptive?

Edu-tech 프로젝트의 특징

Education + Technology

Contents Curriculum Meta data Assessment Psychometrics Big data
Cloud computing
Machine learning
Deep learning
SDK

양 쪽을 모두 깊이 있게 이해하고 있는 강력한 팀이 필요함

Kidaptive's talents

교육 빅데이터 분석을 위한 전문가 집단

요시나 베르하겐 박사

웹 필립스 박사 ^{심리언어 및 통계 전문가}

딜런 아레나 박사 _{맞춤형교육 전문가}

우마 비쉬 박사 ^{박데이터분석 전문가}

데이빗 햇필드 박사

지 안 박사 데이터 모델링 전문가

현직 Stanford University 교수로 구성된 자문단

대 슈왈츠 교수 교육대학원 원장 [자문위원장]

애드 헤어텔 교수 교육대학 명예교수

엠마 러드윅 교수 정신분석학

Kidaptive ALP

Real time Adaptivity

Baysian-IRT 이론을 기반으로 개별 학습자에게 가장 필요한 다음 문제를 실시간으로 제공합니다.

Actionable Insights

교사, 학습자, 관리자 등 학습의 주요 Stake holder들에게 학습자의 진도, 성취, 성향에 대한 분석과 추천을 포함한 다양한 Insights를 제공합니다.

Personalized Learning

개별 학습자에게 커리큘럼 전반에 걸쳐 문항 뿐 아니라, Reading contents, 학습 영상 등 최적의 과정을 맞춤형으로 추천합니다.

formation | 8

Korea Investment Partners Co., Ltd.

Machine Intelligence LANDSCAPE

CORE TECHNOLOGIES

ARTIFICIAL INTELLIGENCE

@ IBMWATSON MetaMind ANumenta ai-one @Cycorp Research non @

G Reactor SI KAID

DEEP LEARNING

√ vicarious facebook Bara IDL Google ersalz SKYMIND SignalSense

MACHINE LEARNING

rapidminer context Oxdatan,o G DATARPM ALiftigniter Simplement Anne Mt. Shot Tution Sense Graphtab Alphe Charan

NLP PLATFORMS

PREDICTIVE APIS

AlchemyAPI OMNOUPS Go gle o blg@ Indico ALGORITHMIA Expect PredictionIO - Labs

IMAGE RECOGNITION

clarifai MADBITS VISENZE Blookflow

SPEECH RECOGNITION

≪ GRIDSPACE popup archive NUANCE

RETHINKING ENTERPRISE

SALES

AVISO Preact O RelateIO NG DATA GLARASSIDES FRAMED Infer ATTEMMY causata

SECURITY / AUTHENTICATION

FRAUD DETECTION

sift science @socure Threat Metrix feedzai Br ghterion VERSEIN

HR / RECRUITING

TalentBin entelo predikt Connectifier

MARKETING

Thrightfurnel Chloomreach CommandIQ AIRPR @ Tellupart Pattern Person

PERSONAL ASSISTANT

Siri X Google now cleversense O Cortana Rebinlabs tempo **fuse**lmachines KASISTO CLARA LABS

INTELLIGENCE TOOLS

MADATAD Q Palantir Quid Digital Reasoning ## FirstRain

RETHINKING INDUSTRIES

ADTECH

METAMARKETS detitlery perocketfuet YieldMo ADBRAIN

AGRICULTURE

BLUEGRIVER ATEMATION a ceresimogna Hotel Com the climate tule X

EDUCATION

Geclara Consera SKNEWTON kidaptive?

FINANCE

C Fromma KENSHO minettabrook

LEGAL

MLex Machina brightleaf COUNSELYTICS RAVEL JUDICATA @Brevia Officence Engine

MANUFACTURING

(SIGHT MACHINE MICROSCAN **VIVISYS**

MEDICAL

♥ Parzival * transcriptic ZEPHYR Genescient bing TUTE Spreed mond bible

OIL AND GAS

kaggle AYASDI TACHYUS bieta .C. Flutura

MEDIA / CONTENT

Outbrain newste ARRIA SAILTHRU WOVII OWL Have above to the state of Supering △ Prismatic

CONSUMER

Affirm inVenture

CUARD Lendup

LendingClub W Kabbage

FINANCE

Bloomberg

alphasense **E Dataminr**

BINATIX

PHILANTHROPIES

DataKind thorn

AUTOMOTIVE

(ontinental 3)

Monteye CRUISE

DIAGNOSTICS

Cenlitic 3SCAN lumiata 🚳

RETAIL

BAY SENSORS PRISH SKYLABS celect "euclid

RETHINKING HUMANS / HCI

AUGMENTED REALITY

GESTURAL COMPUTING

ROBOTICS

EMOTIONAL

DATA

SUPPORTING TECHNOLOGIES

HARDWARE

rigetti

DATA PREP

COLLECTION

DATA

RECOGNITION

변화의시대

Featured by 4차 산업혁명

Cloud

Alpha-go

Big data

Machine learning

AI

IoT

Deep learning

4차 산업혁명

"지금 직업의 47%는

20년 내에 사라질 것"

영국 옥스포드 대학교, 칼 오스본 교수

뉴스

증권

부동산

정책·금융

기업

오피니언

뉴스

[이코노미조선] '100엔 초밥' 만들어 낸 '초밥 로봇'...일본 회전초밥 체인점 '구라스시'

아나운서 72%

요리사 96%

"오늘날의 과학기술에 우리의 눈과 같은 것이 있다면, 그것이 바로 사물 인터넷 (IoT)이다.

이전에 캄브리아기 대폭발이 있었다면, 이젠 사물인터넷 대폭발이 있을 것이다."

소프트뱅크, 손정의 회장

Edu-Al service process

Al Ed-tech project process (Ed + Tech)

교육의 영역

Data의

IT + AI의 영역

┚ Data 수집

> **사람** 학습자

- 교사

- 학부모

디지털

- Devices

- IoT

Hybrid

- OMR
- 전자팬
- 스캐너

Data 처리&저장

Big data processing

Cloud computing

Data 분석

Al

Deep learning

Machine learning

⁴ Data 활용

Insights

- 교수
- 학생
- 관리자

Dash board

Adaptivity

- 문항
- 컨텐츠
- 학습방법

Key questions

[정의] 어떤 Data를 모을 것인가?

[생성] 어떻게 Data를 모을 것인가?

[구분] 어떻게 Data를 분류할 것인가?

Behavior, Academic

채널, 방법, 주기

Meta data tagging 방법론 및 기준

[생성] 생성 방법

Full digital 방식

Digital device 활용 (Tablet, Smart phone, PC) 직접 Internet 방식, SDK 활용방식

문항당 소요 시간, 집중시간 등 세밀한 정보 파악 가능 실시간 Feed back 및 맞춤형 구현 인프라에 상당한 투자가 필요함

Hybrid 방식

OMR 카드 → 중앙 Server Smart OMR (답안입력 only) 좌표 인식 Paper 이미지 Scanner

빠른 시행 가능 기존 수업 방식에 최소한의 변화 세밀한 학습자 정보 및 실시간 Feed back 등 구현에 제약

[정의] 데이터의 종류

Academic data (학습데이터)

교육적 속성을 포함한 데이터 과목에 따라 속성이 달라짐 예) 문항 A: 교양수학-연산-단답형-1학년1학기-미분

세밀한 학습적 분석이 가능 학습자 약점 분석 및 맞춤형 진단에 용이 상당한 수준의 초기 투자 필요

Behavior data (행동데이터)

학습자의 행동 습성을 포함한 데이터 과목과 상관없이 수집 가능 예) 문항 A: 풀이횟수-정오여부-풀이시간

학습자의 습관을 기반으로 분석 초기 실행 용이 하고 전공 및 학년 등 커리큘럼에 따른 제약 없음 특정 교과목 강.약점 분석에 제약 존재

[구분] Meta data의 Tagging

Manual tagging

과정별 Skills frame work Contents에 초기 Meta data 부여 서비스를 운영하면서 고도화

과목별 별도 작업 초기에 많은 노력이 필요함 세밀한 분석과 측정이 가능

Auto tagging

초기 High level Meta data 혹은 none meta data 서비스를 운영하면서 학습자의 반응을 귀납적으로 분석하여 진행

빠른 시행 가능 Al 기술의 발전에 따라 고도화 가능 특정 기준에 부합하는 성취도 개선에 제약

Case 1 [Academic data 중심]

Project 진행 방식

Skills frame work

Meta
data
Tagging

Data 분석

⁴ Data 활용

Skills frame work

개념 중심 Frame work

이론적 기준 map을 활용 개념간의 상관 관계를 통해, 맞춤형 교육을 실시하면서 문제 지점을 발견

역량 중심 Frame work

문제를 풀기 위해 해당되는 역량을 중심으로 high level mapping 서비스를 제공하면서 상관관계를 고도화

Skills frame work (Early learning)

LANGUAGE & LITERACY

Language Development

- Receptive Language
- Expressive Language

Alphabet Knowledge

- Letter Recognition &
 Alphabet Sequence
- Letter Sound Production

Phonological Awareness

- . Phonemic Recognition
- Blending & Segmentation

Phonics & Word Recognition

- · Decoding
- · Spelling
- Word Recognition

Vocabulary

- . Word Acquisition
- Word Relationships

· Reading Aloud

Reading

· Reading Comprehension

Writing & Print Conventions

- Book & Print Familiarity
- Narrative & Expository Writing
- Grummar
- Punctuation & Capitalization

1 1

MATHEMATICS

Numbers & Counting

- Number Recognition & Place Value
- Number Sequence
- Counting Sets
- Comparing Quantities
- Addition & Subtraction
- Representing Operations

Moseument & Date

- Making Measurements.
- Telling Time
- Estimating
- Data Collection & Representation
- . Sorting & Classifying

Geometry & Spatial Sense

- Shape Recognition & Attributes
- Shape Manipulation
- Composition & Decomposition
- · Position, Location, & Direction

8

SCIENCE

Health

- * Health & Hygiene Practices
- Health & Wellness Knowledge

The same of the same of

- Human Body
- Plants & Animals
- Weather & Seasons

District of Sections

- * Forces & Motion
- Properties of Materials & Objects

- Natural Resources
- Physical Environments

cientific Shifts & Metho

- Scientific Method
- Engineering & Technology

PHYSICAL DEVELOPMENT

Sentiney Side

- Auditory Skills
- Visual Skills
- Tactile Skills

Mutor Still

- Fine Motor Skills
- . Gross Motor Skills

THINKING SKILLS

leaunning & Problem Salvin

- * Potterns
- Deductive Reasoning
- Analogical Reasoning
- . Perspective Taking

Experience Properties Skills

- Working Memory
- Persistence
- Flexible Thinking
- Planning

SOCIAL EMOTIONAL INILIS

Interacting with Others

- . Friendship & Play Skills.
- Understanding Others' Emotions

Understanding the Self

- Expressing & Managing Emotions
- Confidence & initiative
- Regulating Behaviors

CREATIVE ARTS

Munic & The Arts

- Music
- Drawing & Painting

Integligitive Play & Storytelling

- · Protond Play
- Storytelling

Frame work 활용 사례 (Learner's Mosaic)

시계열에 걸쳐, 동일 기준으로의 성취도를 지속적으로 측정 가능 Data pipe lines를 확장하면 더 정교하고 종합적 측정 가능

Frame work의 변경 등 유연성이 부족함 신규 콘텐츠 추가 시 추가 작업 지속 필요

Case 2 [Behavior data 중심]

Project 진행 방식

¹ Event → ² Event → ³ Data → ⁴ Data 점의 생성 분석 활용

Event의 정의

수집, 활용하는 정보의 최소 단위 동일한 현상도 Event의 정교함에 따라 분석의 깊이가 매우 달라짐

동일한 교과서를 100쪽 중 80쪽까지 읽은 두 학생

학생 A

Page 당 소요 시간이 점점 길어지다가 80 page에서 멈춤

책이 지루함 (맞지 않음)

학생 B

동일한 속도로 읽다가 78 page - 80 page를 반복해서 계속 읽음

해당 Page에 관심이 있음 (혹은) 모르는 내용이 있음

Case in depth (W社)

[Behavior data 중심]

Case [Summary]

W社개요

- 국내 1위의 Tablet based 교육 기업
- 50만 학습자 + 17만 Daily active user
- 6개월간 축적 Events 111억개
- 기존 콘텐츠의 활용을 위해, Behavior data 중심으로 분석 서비스 론칭 (2018.02)

과목 및 커리큘럼에 무관한 행동 데이터를 전과목에서 수집

W社 Events

- 학습 시작/종료: 무엇, 시작/종료 시점
- 문항 풀이: 문항 정보, 시도 횟수, 정오답 여부, 입력한 답안, 채점여부, 풀이소요시간
- 강의관련: 영상 정보, 학습 시간, 마지막 학습 위치 등
- 한트관련: 관련 문항 정보, 힌트 종류, 학습 시간 등

과목 및 커리큘럼에 무관한 행동 데이터를 전과목에서 수집

W사 Event (분석 체계)

학습패턴(과거)

소요시간(과거)

학습패턴

문제소요시간

우리아이

학습패턴(예측)

소요시간(예측)

개선사항

소요시간(과거)

좋은 행동

소요시간(예측)

정오여부(과거) 정오여부

정오여부(난이도예측)

적용 이론

IRT(Item Response Theory)

$$P(Y_{ik} = 1) = \Phi(-b_k + \alpha_k \theta_i)$$
 P(k문항에 맞게 답할 k문항의 k문항의 i학습자의 학습자 i의 확률 값) 난이도 변별력 능력치

Bayesian model

지속적인 측정과 Peer group을 대상으로 한 Machine learning 분석을 활용, 학습자의 능력치에 대한 정확도를 향상 시킴

Case [사전 작업]

난이도 부여

시간-정답률 상관관계 분석 1/1

시간 – 정답률 상관관계 2/2

X축: 응답시간 너무 빠름/너무 느림으로 나타난 문항의 비율 Y축: 정답률

파란 선: 느림 / **붉은 선**: 빠름

Case [서비스; USER]

틀린 문제 분석

다원 학생의 **이번 테스트에서 틀린 13 문제**에 대한 분석입니다.

틀린 문제 분석 (상세)

행동분석 1

다원 학생의 이번 테스트 중 **12개의 문항에서 고쳐야할 습관**을 발견했습니다.

특히, 문제 품이에 2회 이상 플리고도 해설 강의를 보지 않은 문제 8개였습니다.

행동분석 2

첫 2주 동안 다원 학생은 틀린 문제에 대해 힌트를 확인하지 않았습니다. 하지만 가장 최근 2개의 시험에서는 틀린 문제의 80%에 대해 힌트를 확인했습니다. 다원 학생의 개선된 학습 태도를 칭찬해 주세요!

개인별 난이도 분석

다원 학생이 다음 테스트의 **15,19번 문 제에서 어려움을 느낄 것으로 예측됩니다.** 문제를 풀 때, 신중하게 풀 수 있도록 지도해 주세요.

시험대비 점수 예측

다원 학생의 최근에 본 3개의 **시험결과** 를 **분석하여 예측한 주니어 토플 점수는** 845점 입니다.

다원 학생은 Reading Comprehension 영역에서 쉬운 문 제를 빨리 풀어 들리는 실수를 하는 경향이 있으니 실제 시 현에서는 이점에 주의하여 차분하게 시험에 임하도록 지도 해주세요.

Case [서비스; 관리자]

역량 Tracking

Learner clustering

행동 특성에 따라 학습자를 8개 클러스터로 구분

Leaner clustering

클러스터/ 퍼포먼스	정의 & 기준	각클러스터로 분류되는 %	상	К	하
CL1	연습문항 점수가 좋지 않으나 열심히함 강의(>=.7)와 연습 목차(>=.9)를 대부분 완료함, 적정시간에 응답함, 틀린 문항을 상대적으로 많이 재시도함 (>=.25)	27.3%	31.3%	54.6%	14.1%
CL2	연습문항 점수가 좋지 않으나, 대부분의 학습을 완료함, 하지만 재시도는 잘 안함 연습문항 점수가 좋지 않음 (<.85) 강의(>=.7)와 연습 목차(>=.9)를 대부분 완료함,적정시간에 응답함, 틀린 문항을 상대적 으로 많이 재시도하지 않음	6.9%	31.1%	46.7%	22.2%
CL3	강의 또는 연습문항 목차를 완료하지 않음 연습문항 점수가 좋지 않음, 대부분의 강의 또는 연습문항 목차를 완료하지 않음, 적정시 간에 응답함	13.7%	27.2%	55.1%	17.7%
CL4	대부분의 연습문항 목차를 완료하였고 좋은 연습문항 점수를 보임	16.6%	61.0%	30.1%	8.9%
CL5	호 내 강의들을 거의 완료하지 않음 연습문항 점수가 좋지 않음, 강의 완료율이 .3을 넘지 않음, 너무 빠르게 풀지 않음	4.5%	38.9%	45.4%	15.6%
CL6	느림 연습문항 점수가 좋지 않음, 너무 빠르게 풀지 않음비교적 느리거나(>=.15) 또는 지나치 게 오래 집중함 (>=.25)	17.8%	33.8%	51.5%	14.7%
CL7	지나치게 빨리 풀고, 한 가지의 고쳐야할 습관을 가짐 연습문항 점수가 좋지 않음 (또는 좋으나 대부분의 연습문항 목차를 완료하지 않음) 적어도 40%의 문항들을 지나치게 빨리 답함	11.0%	11.4%	31.0%	57.6%
CL8	지나치게 빨리 품 & 고쳐야할 습관 없음 (클러스터 7에 비해) 연습문항 점수가 좋지 않음,적어도 40%의 문항들을 지나치게 빨리 답함. 지나치게 빨리 푼 문항 중, 25% 미만을 틀림, 재시도율 >= .25, 빠르게 건너뛴 비율 <= .3	2.3%	27.8%	50.4%	21.8%

ALP Ecosystem

ALP Ecosystem

Self-learning

학습현황 Data

Adaptive learning

Dash board

다양한 분석 결과 제공

정.오답 + 교수 피드백

학생 성취도 현황 및 추천의 제공

Classroom

학습자 Profile 구축

Al Ed-tech project process (Ed + Tech)

교육의 영역

Data의

IT + AI의 영역

Data수집

사람 학습자

- 교사

- 학부모

디지털

- Devices

- IoT

Hybrid

- OMR
- 전자팬
- 스캐너

Data 처리&저장

Big data processing

Cloud computing

Data 분석

Al

Deep learning

Machine learning

⁴ Data 활용

Insights

- 교수
- 학생
- 관리자

Dash board

Adaptivity

- 문항
- 컨텐츠
- 학습방법

목표와 측정할 Data에 대한 정의의 의미와 가치가 있는 Data의 생성과 수집 고도와 된 Tech의 활용

의지와 좋은 Data + Al = High quality service

Clients

SAT, ACT test prep.

Thank you

양지원 메니져 jiwon.yang@kidaptive.com 정다희 팀장 dahee.jung@kidaptive.com 김민우대표 min.kim@kidaptive.com