MGB 206: Decision Making and Management Science

Sanjay Saigal
ssaigal@ucdavis.edu
650 283 1985

Lesson Plan: Session 7

- 1. Session 6 reprise
- 2. Optimizing portfolios
- 3. Optimizing under uncertainty
- 4. Decision trees

What We Discussed Last Time

Page 3

MGB 206

Lesson Plan: Session 7

- 1. Session 6 reprise
- 2. Optimizing portfolios
- 3. Optimizing under uncertainty
- 4. Decision trees

Portfolio Management

- Choosing among uncertain investments
 - Financial instruments
 - Real assets
 - Projects
- Portfolio selection is all about balancing
 - Reward
 - Risk

Page 5

MGB 206

Financial Portfolio Allocation Under Uncertainty

- Harry Markowitz, ca. 1950 @UChicago
 - Recognized risk/return link
 - Use covariance as measure of stock movement, and thus risk

Page 6

MGB 206

Basics: Covariance

Recall definition of variance

$$\sigma_x^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$$

For two vectors x and y, covariance is

$$\sigma_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_x)(y_i - \mu_y)$$

Covariance tracks if x and y move together

Page 7

MGB 206

Basics: Correlation

 Correlation measures the power of x as explanatory factor for y

$$R = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$$

- R takes on values between 1 and -1
- R² is the familiar measure from linear regression

Correlation And Risk

- Diversification reduces portfolio risk on its own (even before we consider any correlation between individual financial instruments)
- Negative correlation further lowers risk
- Positive correlation increases risk

Page 9 MGB 206

Portfolio Risk (2 Instruments)

Instrument	A	В
Expected return (µ)	r_A	$r_{\!\scriptscriptstyle B}$
Variance (σ^2)	$\sigma_{\!A}^{2}$	$\sigma_{\!B}^2$

Investment split

$$x_A + x_B = 1$$

Expected return

$$E_P = r_A x_A + r_B x_B$$

Portfolio risk

$$\sigma_P^2 = \sigma_A^2 x_A^2 + \sigma_B^2 x_B^2 + 2\sigma_{AB} x_A x_B$$

Page 10 MGB 206 Aug 22, '14

Portfolio Risk (n Instruments)

- Investment split $\sum_{i=1}^{n} x_i = 1$
- Expected return $E_P = \sum_{i=1}^n r_i x_i$
- Portfolio risk $\sigma_P^2 = x^T Q x$
 - $-x^{T}$ is the transpose of the n-dimensional portfolio allocation vector x
 - Q is the $n \times n$ variance-covariance matrix

Markowitz Portfolio Allocation

• Nonlinear programming formulation $min \ x^TQx$ $subject \ to$

$$\begin{array}{l} \sum_{i=1}^{n} r_i x_i \geq r_{expected} \\ \sum_{i=1}^{n} x_i = 1 \\ x_i \geq 0, \quad \forall i = 1...n \end{array}$$

Page 12

MGB 206

Markowitz Model Attributes

- Solution depends on choice of $r_{expected}$
 - How should we choose it?
- Is this optimizing under uncertainty?
- Objective is quadratic, constraints linear
 - QPs can be solved using LP methods
 - That's faster than general NLP methods
- Example: Stock Portfolio Optimization

Page 13 MGB 206 Aug 22, '14

Lesson Plan: Session 7

- 1. Session 6 reprise
- 2. Optimizing portfolios
- 3. Optimizing under uncertainty
- 4. Decision trees

Stochastic Programming

- Uncertainty in LP/MIP/NLP
- Many ways to model unknowns
 - Multi-stage (2-stage) recourse models
 - Chance constraints
 - Robust optimization
- Different problem types require different solution technique
- RSPE example: chance constraints

Lesson Plan: Session 7

- 1. Session 6 reprise
- 2. Optimizing portfolios
- 3. Optimizing under uncertainty
- 4. Decision trees

Exercise: Wertz Game & Toy

- Read your handout
- Discuss possible decision criteria

Page 17

MGB 206

Optimistic Approach

States

Payoffs	Good	Fair	Poor	Max payoff
Conservative	100	60	-10	100
Hedged	200	50	-40	200
Bold	300	40	-100	300

Maximum payoff criterion

Page 18

MGB 206

Pessimistic Approach

Payoffs	Good	Fair	Poor	Min payoff
Conservative	100	60	-10	-10
Hedged	200	50	-40	-40

40

-100

-100

States

Maximin payoff criterion

300

Bold

Page 19 MGB 206 Aug 22, '14

Regret-Avoiding Approach

Regret	Good	Fair	Poor	Max regret
Conservative	200	0	0	200
Hedged	100	10	30	100

States

Minimax regret criterion

Bold

Page 20 MGB 206 Aug 22, '14

20

90

90

Probabilities ⇒ Expected Values

States				
	Good	Fair	Poor	Expected
Probability	0.2	0.5	0.3	payoff
Conservative	100	60	-10	47
Hedged	200	50	-40	53
Bold	300	40	-100	50

Page 21

MGB 206

What Does Uncertainty Cost?

 What if we can wait until the market response is known?

```
- Market = Good \Rightarrow Bold (payoff = 300)
```

$$-$$
 Market = Fair \Rightarrow Conservative (60)

$$-$$
 Market = Poor \Rightarrow Conservative (-10)

Profit	300	60	-10
Probability	0.2	0.5	0.3

- Exp. payoff w/ perfect info = 87
- Value of perfect info = 87 53 = 34

Page 22

MGB 206

Key Concepts

- Expected value
- Probability
- Utility vs. money
- Value of information
- Good decisions vs. good outcomes

Page 23

MGB 206

Building Decision Trees

- Excel
 - Risk Solver has Decision Tree capability
 - Well integrated (e.g., parametrized analysis)
 - Limited (e.g., cannot flip a tree)
 - XLTree included with textbook
 - Comparatively inelegant, but functional
 - Can flip tree to compute value of information
- TreeAge, Precision Tree, etc. available
 - From small vendors

Page 24

MGB 206

Using Decision Trees

- Framework for coarse-grain decisions under uncertainty
 - Computation is easy/minor

- Apparent ease of use may obscure knowledge pitfalls
- Powerful tool, but it requires considerable psychological buy-in

Lesson Plan: Session 7

- 1. Session 6 reprise
- 2. Optimizing portfolios
- 3. Optimizing under uncertainty
- 4. Decision trees