ECE 345 / ME 380 Introduction to Control Systems Lecture Notes 5

Dr. Oishi oishi@unm.edu

September 29, 2020

Outline

- Block diagram reduction
- Negative unity feedback
- $\bullet \ \mathsf{Signal} \ \mathsf{flow} \ \mathsf{graphs}$

THE UNIVERSITY OF NEW MEXICO

Learning Objectives

- Reduce a block diagram of multiple subsystems to a single block representing the transfer function from input to output
- Reduce a negative unity feedback system
- Convert block diagrams to signal flow diagrams
- Represent state equations as signal flow graphs

References

• Nise Chapter 5.1-5.3 (5.4-5.7 optional)

THE UNIVERSITY OF NEW MEXICO

Block diagram algebra

• Two basic equations

– One for every block, $Y(s) = G(s) \cdot X(s)$

– One for every junction, $Y(s) = X_1(s) + X_2(s)$

• With these two types of equations, *any* block diagram can be reduced into a simple, input-output relationship.

3

Block diagram reduction

- Elements of block diagrams
 - Signals: Lines
- Systems: BlocksSumming junctions
- Pickoff points

- Graphical representation that facilitates transfer function modeling and analysis
- Rules for manipulating signals and systems to reduce complexity

Block diagram reduction

Moving pickoff points or summing junctions can help with breaking tightly integrated systems into manageable chunks that can be reduced.

Block diagram reduction

Clicker question

Which of the following describes the transfer

$$A. \frac{10}{s(s+1)}$$

B.
$$\frac{10}{s(s+1)}$$
 +

c.
$$\frac{s^2 + s + 30}{s(s+1)}$$

D.
$$\frac{s^2 + 21s + 1}{s(s+1)}$$

Block diagram reduction

Feedback form

$$B(s) = H(s)Y(s)$$

$$Y(s) = G(s)E(s)$$

• Using block diagram reduction,
$$\frac{Y(s)}{P(s)} = \frac{G(s)}{1 + H(s)G(s)}$$

THE UNIVERSITY OF NEW MEXICO

Block diagram reduction

**Negative unitary feedback

- Simplest controller is often an amplifier (e.g., **P**roportional control with gain K)
- ullet "Unitary" because the feedback loop has H(s)=1

$$Y(s) = KG(s)E(s), \quad E(s) = R(s) - Y(s)$$

- Error drives plant, not the reference signal
- "Open-loop" vs. "Closed-loop" systems

8

10

Block diagram reduction

Clicker question

Consider the effect of increasing the gain K>0 in open-loop system (left) and in the closed-loop system (right).

Which of the following statements is always incorrect?

- A. The poles of the open-loop system are on the real axis, but the poles of the closed-loop system have imaginary components.
- B. The zeros of the open-loop system depend on the value of K.
- C. The zeros of the closed-loop system and the zeros of the open-loop system are the same.
- D. For any $K \neq 0$, the poles of the open-loop system and the poles of the closed-loop system will be different.

Block diagram reduction

Clicker question

A single-axis spacecraft attitude control system has controller K.

Which of the following describes the transfer function $\frac{\theta(s)}{\theta_d(s)}$

- A. $\frac{s+1}{s^2+2s+3}$
- B. $\frac{K(s+1)}{s^2 + (2+K)s + (3+K)}$
- C. $\frac{K(s+1)}{2}$
- D. $\frac{s+1}{2}$
- THE UNIVERSITY OF NEW MEXICO

Signal flow graphs

Elements of signal-flow graphs

- 1. Systems: Branches
- 2. Signals: Nodes

(f)

THE UNIVERSITY OF NEW MEXICO

11

Signal flow graphs

Mason's rule for signal-flow graph reduction

Loop gain: Product of branch gains traversing a path that starts and ends at the same node **Forward-path gain:** Product of branch gains traversing a path from input to output nodes

Nontouching loops: Loops that do not have any nodes in common

Nontouching loop gain: Product of loop gains from non-touching loops

12

Signal flow graphs

Lends itself to state-space representations

- Observer canonical form
- Controller canonical form (compare to phase-variable form)

14

Signal flow graphs

Mason's rule for signal-flow graph reduction

$$G(s) = \frac{\sum_{k} (T_k(s)\Delta_k(s))}{\Delta(s)} \tag{1}$$

- Let $\Delta(s)=1-$ loop gains + non-touching loop gains (in pairs) - non-touching loop gains (in threes) $+\cdots$
- $\bullet\,$ For each of the k forward paths in the transfer function,
- Find the forward path gain $T_k(s)$
- Calculate $\Delta_k(s)=\Delta(s)-$ loop gains that touch the kth forward path

13