Gradient Descent for Solving Least-Squares Problems Proof: Bounds on Step Size for Guaranteed Convergence

© Barry Van Veen 2019

Gradient descent minimizes the cost function

$$f(\boldsymbol{w}) = ||\boldsymbol{A}\boldsymbol{w} - \boldsymbol{d}||_2^2$$

using the iterative algorithm

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \tau \mathbf{A}^T (\mathbf{A} \mathbf{w}^{(k)} - \mathbf{d}), \quad k = 0, 1, 2, 3, \dots$$
 (1)

where $\tau > 0$ so that we modify the current iterate in the negative gradient direction. Often this algorithm is initialized with $\mathbf{w}^{(0)} = \mathbf{0}$. The initialization does not affect the convergence behavior because $f(\mathbf{w})$ is convex.

The iteration is guaranteed to converge to the minimum of the cost function if the squared error decreases with each iteration, that is, if

$$f(\boldsymbol{w}^{(k+1)}) = ||\boldsymbol{A}\boldsymbol{w}^{(k+1)} - \boldsymbol{d}||_2^2 < f(\boldsymbol{w}^{(k)}) = ||\boldsymbol{A}\boldsymbol{w}^{(k)} - \boldsymbol{d}||_2^2$$

Begin by substituting $\boldsymbol{w}^{(k)} - \tau \boldsymbol{A}^T (\boldsymbol{A} \boldsymbol{w}^{(k)} - \boldsymbol{d})$ for $\boldsymbol{w}^{(k+1)}$ in $f(\boldsymbol{w}^{(k+1)})$ to write

$$f(\boldsymbol{w}^{(k+1)}) = ||\boldsymbol{A}\left(\boldsymbol{w}^{(k)} - \tau \boldsymbol{A}^{T}(\boldsymbol{A}\boldsymbol{w}^{(k)} - \boldsymbol{d})\right) - \boldsymbol{d}||_{2}^{2}$$
(2)

$$= ||(\boldsymbol{A}\boldsymbol{w}^{(k)} - \boldsymbol{d}) - \tau \left(\boldsymbol{A}\boldsymbol{A}^{T}(\boldsymbol{A}\boldsymbol{w}^{(k)} - \boldsymbol{d})\right)||_{2}^{2}$$
(3)

Now let $\mathbf{c} = A\mathbf{w}^{(k)} - \mathbf{d}$ and $\mathbf{e} = \tau \left(AA^T(A\mathbf{w}^{(k)} - \mathbf{d}) \right)$ be the first and second terms in parentheses so $f(\mathbf{w}^{(k+1)}) = ||\mathbf{c} - \mathbf{e}||_2^2 = (\mathbf{c} - \mathbf{e})^T(\mathbf{c} - \mathbf{e})$. Expand the product to write $f(\mathbf{w}^{(k+1)}) = ||\mathbf{c}||_2^2 + ||\mathbf{e}||_2^2 - 2\mathbf{e}^T\mathbf{c}$. Substituting for \mathbf{c} and \mathbf{e} we thus obtain

$$f(\boldsymbol{w}^{(k+1)}) = ||\boldsymbol{A}\boldsymbol{w}^{(k)} - \boldsymbol{d}||_{2}^{2} + \tau^{2}||\boldsymbol{A}\boldsymbol{A}^{T}(\boldsymbol{A}\boldsymbol{w}^{(k)} - \boldsymbol{d})||_{2}^{2} - 2\tau\left((\boldsymbol{A}\boldsymbol{w}^{(k)} - \boldsymbol{d})^{T}\boldsymbol{A}\boldsymbol{A}^{T}\right)(\boldsymbol{A}\boldsymbol{w}^{(k)} - \boldsymbol{d})$$
(4)

$$= f(\boldsymbol{w}^{(k)}) + \tau^{2} ||\boldsymbol{A} \left(\boldsymbol{A}^{T} (\boldsymbol{A} \boldsymbol{w}^{(k)} - \boldsymbol{d})\right)||_{2}^{2} - 2\tau \left((\boldsymbol{A} \boldsymbol{w}^{(k)} - \boldsymbol{d})^{T} \boldsymbol{A}\right) \left(\boldsymbol{A}^{T} (\boldsymbol{A} \boldsymbol{w}^{(k)} - \boldsymbol{d})\right)$$
(5)

Define $\mathbf{v} = \mathbf{A}^T (\mathbf{A} \mathbf{w}^{(k)} - \mathbf{d})$ to simplify the expression and rewrite Eq. 5 as

$$f(\mathbf{w}^{(k+1)}) = f(\mathbf{w}^{(k)}) + \tau^2 ||\mathbf{A}\mathbf{v}||_2^2 - 2\tau \mathbf{v}^T \mathbf{v}$$

Note that \boldsymbol{v} does not depend on τ . Thus, to prove $f(\boldsymbol{w}^{(k+1)}) < f(\boldsymbol{w}^{(k)})$, we must find the condition for which

$$q(\tau) = \tau^2 ||\mathbf{A}\mathbf{v}||_2^2 - 2\tau \mathbf{v}^T \mathbf{v}$$

is less than zero.

Recall the operator norm of a matrix X satisfies $\max_{g} ||Xg||_2 \le ||X||_{op}||g||_2$, so the first term in $q(\tau)$ may be upper bounded as

$$| au^2||m{A}m{v}||_2^2 \le au^2||m{A}||_{op}^2||m{v}||_2^2$$

We may rewrite the second term in $q(\tau)$ as

$$-2\tau \boldsymbol{v}^T \boldsymbol{v} = -2\tau ||\boldsymbol{v}||_2^2$$

Hence, we obtain an upper bound on $q(\tau)$

$$q(\tau) \le \tau^2 ||\boldsymbol{A}||_{op}^2 ||\boldsymbol{v}||_2^2 - 2\tau ||\boldsymbol{v}||_2^2$$

Factoring out the common terms we write

$$q(\tau) \le \left(\tau ||\boldsymbol{A}||_{op}^2 - 2\right) \tau ||\boldsymbol{v}||_2^2$$

The second term in $q(\tau)$, $\tau ||\boldsymbol{v}||_2^2$, is positive provided $\boldsymbol{v} \neq \boldsymbol{0}$, so we obtain $q(\tau) < 0$ by requiring

$$\left(\tau||\boldsymbol{A}||_{op}^2-2\right)<0$$

which indicates τ must satisfy

$$\tau < \frac{2}{||\boldsymbol{A}||_{op}^2}$$

Note that $\mathbf{v} = \mathbf{0}$ implies $\mathbf{A}^T (\mathbf{A} \mathbf{w}^{(k)} - \mathbf{d}) = \mathbf{0}$, or $\mathbf{A}^T \mathbf{A} \mathbf{w}^{(k)} = \mathbf{A}^T \mathbf{d}$, or $\mathbf{w}^{(k)} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{d}$. Thus, if $\mathbf{v} = \mathbf{0}$, then the iteration has converged to the minimum of the squared error and the update term in Eq. 1 is zero.

Hence, the gradient descent algorithm will converge to the minimum of the squared error cost function provided the step-size τ satisfies $\tau < \frac{2}{||A||_{op}^2}$.