Problem Set 9

Ryan Coyne

November 5, 2023

Result 1: There exist two distinct irrational numbers a and b such that a^b is rational.

PROOF: Consider the number $\sqrt{6}^{\sqrt{2}}$. Now, there are two cases.

Case 1: The number $\sqrt{6}^{\sqrt{2}}$ is rational. Then $a = \sqrt{6}$, $b = \sqrt{2}$, and a^b is rational.

Case 2: The number $\sqrt{6}^{\sqrt{2}}$ is irrational. Now, raise this number to the power of $\sqrt{2}$, $(\sqrt{6}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{6}^2 = 6$, which is rational. Then, $a = \sqrt{6}^{\sqrt{2}}$, $b = \sqrt{2}$, and a^b is rational.

Result 2: There exists four distinct positive integers such that each of the integers divides (evenly) the sum of the remaining three integers.

PROOF: Consider the numbers 2, 4, 6, 12. Now sum each combination of three numbers, 4+6+12=22, 2+6+12=20, 2+4+12=18, and 2+4+6=12. Then, 2|22, 4|20, 6|18, and 12|12. Therefore there are four such integers.

Result 3: There are no integers $a \ge 2$ and $n \ge 1$ such that $a^2 + 1 = 2^n$

PROOF: Suppose to the contrary, that $a^2 + 1 = 2^n$. Now rearrange into, $a^2 = 2^n - 1$. Then, consider two cases: n = 1 and n > 2.

Case 1: If n = 1, then $2^1 - 1 = 1$. However, this is incompatible because $a \ge 2$.

Case 2: Let $n \ge 2$. Now, $a^2 = 2^n - 1$ suggests that $2^n - 1$ is a perfect square because a is assumed to be an integer. However, $2^n - 1 = (2^{n/2} + 1)(2^{n/2} - 1)$ and thus cannot be a perfect square.

Therefore, by contradiction, there cannot be integers $a \ge 2$ and $n \ge 1$ such that $a^2 + 1 = 2^n$.

Result 4: There do not exists real numbers a and b in the open interval (0,1) such that 4a(1-b) > 1 and 4b(1-a) > 1.

PROOF: Start by manipulating the first equation,

$$4a(1-b) > 1$$
 $a > \frac{1}{4(1-b)}$

Now, consider the second equation,

$$4b(1-a) > 1$$

$$4b - 4ab > 1$$

$$-4ab > 1 - 4b$$

$$a < \frac{4b-1}{4b}.$$

Then,

$$\frac{4b-1}{4b} > \frac{1}{4(1-b)}$$

$$4(4b-1)(1-b) > 4b$$

$$(4b-1)(1-b) > b$$

$$4b-4b^2-1+b > b$$

$$-4b^2+4b-1 > 0.$$

In this manipulation, we can be sure that we never divide by zero or implicitly multiply by a negative number because we have already restricted ourselves to the interval (0,1). Now, the sole value for b at which $-4b^2 + 4b - 1 = 0$ is $b = \frac{1}{2}$. This value is not valid because we require $-4b^2 + 4b - 1 > 0$. Now, we choose values within the interval (0,1) and on either side of $b = \frac{1}{2}$ to check the truth of the hypothesis.

Case 1: Let $b = \frac{1}{4}$. Now, $-4b^2 + 4b - 1 = -1 < 0$. Therefore there are no values on the interval $(0, \frac{1}{2}]$ which satisfy both inequalities.

Case 2: Let $b = \frac{3}{4}$. Now, $-4b^2 + 4b - 1 = -1 < 0$. Therefore there are no values on the interval $(\frac{1}{2}, 1]$ which satisfy both inequalities.

Therefore there are no values of b on the interval (0,1) that can satisfy both 4a(1-b) > 1 and 4b(1-a) > 1, for any value of a.