ME623 - Planejamento e Pesquisa Parte 02

Tatiana Benaglia - 2024S1

Experimentos Comparativos Simples

- Revisão de alguns conceitos estatísticos: variáveis aleatórias, distribuições de probabilidade, amostra aleatória, distribuição amostral e testes de hipóteses.
- Comparação de Duas Médias para Amostras Independentes.
- Comparação de Duas Médias para Amostras Pareadas.

Revisão

Faremos somente uma revisão de experimentos para comparar duas condições (ou tratamentos), também conhecidos como **Experimentos Comparativos Simples**.

Isso é assunto que vocês viram em outros cursos como Noções de Estatística e Inferência e os nomes comuns são teste t para amostras independentes, teste t pareado.

Montgomery, Exemplo 2.1: Testar duas formulações para fazer argamassas de cimento.

Um engenheiro estuda a formulação de uma argamassa de cimento Portland. Argamassa é um composto de cimento, areia e água usado nas construções em revestimento cerâmico, além de impermeabilização e nivelamente de paredes, tetos e pisos.

Ele adicionou uma emulsão de látex durante a mistura para determinar se isso afeta a resistência da argamassa.

O experimentador preparou 10 amostras da formulação original (não modificada) e 10 amostras da formulação modificada.

Iremos nos referir às duas formulações diferentes como dois tratamentos ou como dois níveis do fator formulação.

Exemplo: Formulações de Argamassa

Os dados obtidos são apresentados na tabela a seguir.

UE	Modificada	Não Modificada
j	y_{lj}	y_{2j}
- 1	16.85	16.62
2	16.40	16.75
3	17.21	17.37
4	16.35	17.12
5	16.52	16.98
6	17.04	16.87
7	16.96	17.34
8	17.15	17.02
9	16.59	17.08
10	16.57	17.27

Exemplo: Formulações de Argamassa

Figure 1: Boxplots da resistência da argamassa para cada formulação.

Perguntas de Interesse

- Existe diferença entre as duas formulações?
- Essa diferença é estatisticamente significante?
- E a variância, é a mesma?
- Como comparar os resultados para essas duas formulações?

Testes de Hipóteses - Revisão

Teste de hipóteses: critérios estatísticos que permitem rejeitar ou não hipóteses testadas, com determinado grau de confiança, baseados em valores amostrais.

Os testes de hipóteses, no geral, apresentam duas hipóteses:

- **Hipótese nula** (H_0) : hipótese natural colocada à prova.
- Hipótese alternativa (H_1 ou H_A): hipótese alternativa à hipótese colocada à prova.

Tipo de Erros

- Erro do Tipo I: H_0 é rejeitada quando é verdadeira.
- ullet Erro do Tipo II: H_0 não é rejeitada quando H_1 é verdadeira.

Decisão	${\cal H}_0$ é verdadeira	H_1 é verdadeira
Rejeita H_0	Erro Tipo I	Correto
Não Rejeita H_0	Correto	Erro Tipo II

A probabilidade do erro tipo I é conhecida como α , o nível de significância do teste

Teste de Hipóteses

Os testes de hipóteses devem seguir os passos:

- Passo 1: Estabelecer as hipóteses $(H_0 \in H_1)$.
- Passo 2: Obter uma estatística do teste, cuja distribuição é conhecida e completamente definida sob H_0 .
- Passo 3: Estabelecer o nível de significância do teste.
- Passo 4: Calcular o valor observado da estatística usando os valores da amostra.
- Passo 5: Aplicar o critério do teste, ou seja, calcular o p-valor ou definir a região crítica e tirar conclusões.

Esse teste é bem conhecido na literatura como **Teste t para Amostras Independentes**.

Suposições: $y_{ij} \sim N(\mu_i, \sigma^2)$, para i=1,2, e $j=1,\ldots,n$.

 $\mbox{Hip\'oteses: } H_0: \mu_1 = \mu_2 \qquad \mbox{vs} \qquad H_1: \mu_1 \neq \mu_2.$

Estatística do Teste:

$$t_0 = \frac{\bar{y}_{1\cdot} - \bar{y}_{2\cdot}}{\sqrt{\frac{2S_p^2}{n}}} \overset{H_0}{\sim} t_{2(n-1)},$$

em que

$$\bar{y}_{i\cdot} = \frac{1}{n} \sum_{j=1}^n y_{ij} \qquad \text{e} \qquad S_p^2 = \frac{(n-1)S_1^2 + (n-1)S_2^2}{2(n-1)}.$$

$$\textbf{Hipóteses:} \ H_0: \mu_1 = \mu_2 \qquad \text{vs} \qquad H_1: \mu_1 \neq \mu_2$$

Estatística do Teste:

$$t_0 = \frac{\bar{y}_{1\cdot} - \bar{y}_{2\cdot}}{\sqrt{\frac{2S_p^2}{n}}} \overset{H_0}{\sim} t_{2(n-1)}$$

p-valor: No caso de hipóteses bilaterais:

$$\begin{aligned} \text{p-valor} &= P(|t_{2(n-1)}| \geq |t_{obs}|) \\ &= 2P(t_{2(n-1)} > |t_{obs}|) \end{aligned}$$

Conclusão: Para um nível de significância α , rejeita-se H_0 se:

- p-valor $< \alpha$; ou
- $|t_{obs}| > t_{1-\alpha/2,2(n-1)} = t_c$

Estatística Sumárias

Modificada: $\bar{y}_{1.} = 16.76, S_1 = 0.316$

Não Modificada: $\bar{y}_{2.} = 17.04, S_2 = 0.248$

Exercício: Encontre o valor da estatística do teste t_0 .

No R:

```
y1 = c(16.85, 16.4, 17.21, 16.35, 16.52, 17.04, 16.96, 17.15, 16.59, 16.57)
y2 = c(16.62, 16.75, 17.37, 17.12, 16.98, 16.87, 17.34, 17.02, 17.08, 17.27)
```

```
Media1 DP1 n1 16.764 0.316 10.000
```

Media2 DP2 n2 17.042 0.248 10.000

No R, podemos usar a função t.test() para executar o teste t.

```
t.test(y1, y2, var.equal=TRUE)
```

```
Two Sample t-test
```

```
data: y1 and y2
t = -2, df = 18, p-value = 0.04
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
   -0.5451 -0.0109
sample estimates:
mean of x mean of y
   16.8  17.0
```

Qual a conclusão do teste?

Suposições do Teste: independência, normalidade, igualdade das variâncias.

ANOVA de Um Fator (One-Way ANOVA)

ANOVA: Análise de Variância

No exemplo da argamassa, podemos descrever os resultados com o seguinte modelo:

$$y_{ij} = \mu + \tau_i + \varepsilon_{ij},$$

com i = 1, 2, e $j = 1, \dots, n$.

As componentes do modelo são:

- ullet y_{ij} é a j-ésima observação do i-ésimo nível do fator (tratamento)
- ullet μ é a média geral
- ullet au_i é o efeito do i-ésimo tratamento
- ε_{ij} é o erro aleatório. Assumimos que os erros são independentes e seguem uma distribuição $N(0,\sigma^2)$.

Exemplo: Argamassa

```
No R:
```

```
form <- factor(rep(1:2, each=10), labels=c("Modificada", "Não Modificada"))
fit <- aov(c(y1,y2) ~ form)
summary(fit)</pre>
```

```
Df Sum Sq Mean Sq F value Pr(>F)

form 1 0.386 0.386 4.78 0.042 *

Residuals 18 1.454 0.081
---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Note que o p-valor aqui é idêntico ao obtido pelo teste t.

Qual a relação entre esses dois testes?

E quando as variâncias são diferentes?

Suposições: $y_{ij}\sim N(\mu_i,\sigma_i^2)$, para i=1,2, e $j=1,\ldots,n_i$, e $\sigma_1^2\neq\sigma_2^2$.

 $\mbox{Hip\'oteses: } H_0: \mu_1 = \mu_2 \qquad \mbox{vs} \qquad H_1: \mu_1 \neq \mu_2.$

Estatística do Teste:

$$t_0 = \frac{\bar{y}_{1\cdot} - \bar{y}_{2\cdot}}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \overset{H_0}{\sim} t_{\nu},$$

em que

$$\nu = \frac{(A+B)^2}{\frac{A^2}{n_1-1} + \frac{B^2}{n_2-1}}, \qquad \text{sendo } A = \frac{S_1^2}{n_1} \text{ e } B = \frac{S_2^2}{n_2}.$$

Outro Exemplo: Suplementação alimentar ajuda emagrecimento?

Resposta: quilos eliminados

Os dados estão na tabela ao lado.

Exercício: Fazer o boxplot desses dados e comparar as médias dos dois grupos.

UE	Suplemento	Placebo
Pessoa j	y_{1j}	y_{2j}
- 1	1.85	-1.62
2	2.40	-0.75
3	-1.21	1.70
4	0.35	2.12
5	3.52	3.98
6	4.04	-4.87
7	4.96	-2.34
8	0.15	3.02
9	-0.59	-0.08
10	2.57	-1.27

Comparação de Duas Médias - Amostras Dependentes (Pareadas)

Exemplo: Suponha que queremos testar se existe diferença no desempenho dos alunos entre a P1 e P2.

Resposta: Notas na P1 e P2.

Selecionamos 10 alunos ao acaso

Os dados estão na tabela ao lado.

Aluno	Nota PI	Nota P2
j	y_{lj}	y_{2j}
- 1	7.5	6.3
2	3.2	4.5
3	5.4	6.2
4	1.5	2.7
5	6.0	6.9
6	9.2	7.7
7	7.9	8.5
8	3.5	1.2
9	4.7	7.2
10	6.2	6.5

Exemplo: Desempenho nas Provas

Figure 2: Boxplots das notas dos alunos na P1 e P2.

Perguntas de Interesse

- Houve uma melhora nas notas?
- Essa diferença é estatisticamente significante?
- Como comparar os resultados das duas provas?

Comparação de Duas Médias - Amostras Pareadas

Esse teste é bem conhecido na literatura como **Teste t Pareado**.

$$\mbox{ Diferença: } d_j = y_{1j} - y_{2j} \mbox{, para } j = 1, \ldots, n. \label{eq:definition}$$

$$\mbox{Hipóteses:} \ H_0: \mu_d = 0 \qquad \mbox{vs} \qquad H_1: \mu_d \neq 0.$$

Estatística do Teste:

$$t_0 = \frac{\bar{d}}{\sqrt{\frac{S_d^2}{n}}} \stackrel{H_0}{\sim} t_{n-1},$$

em que

$$\bar{d} = \frac{1}{n} \sum_{j=1}^n d_j \qquad \text{e} \qquad S_d^2 = \frac{1}{n-1} \sum_{j=1}^n (d_j - \bar{d})^2.$$

Calcula-se o p-valor e tira-se a conclusão do teste.

Comparação de Duas Médias - Amostras Pareadas

```
y1 <- c(7.5, 3.2, 5.4, 1.5, 6, 9.2, 7.9, 3.5, 4.7, 6.2)

y2 <- c(6.3, 4.5, 6.2, 2.7, 6.9, 7.7, 8.5, 1.2, 7.2, 6.5)

prova <- as.factor(rep(1:2, each=10))

t.test(y1, y2, paired=TRUE, equal.var=TRUE)
```

Paired t-test

Qual a conclusão deste teste?

Caso especial de experimentos em blocos aleatorizados

- Blocos referem-se a UE mais homogêneas (no nosso exemplo, os alunos)
- Experimento é aleatorizado somente dentro dos blocos.

$$y_{ij} = \mu + \tau_i + \beta_j + \varepsilon_{ij},$$

com i = 1, 2, e j = 1, ..., n.

As componentes do modelo são:

- ullet y_{ij} é a nota do j-ésimo aluno na i-ésima prova
- ullet μ é a média geral
- ullet au_i é o efeito do i-ésima prova
- ullet eta_i é o efeito do j-ésima aluno
- ε_{ij} é o erro aleatório. Assumimos que os erros são independentes e seguem uma distribuição $N(0,\sigma^2)$.

Duas Amostras Pareadas e Experimentos em Blocos

No R:

```
y = c(y1, y2)
prova = as.factor(rep(1:2, each=10))
aluno = as.factor(rep(1:10, 2))
fit = aov(y ~ prova + aluno)
summary(fit)

Df Sum Sq Mean Sq F value Pr(>F)
prova 1 0.3 0.34 0.31 0.5909
```

```
aluno 9 87.8 9.75 8.96 0.0016 **

Residuals 9 9.8 1.09
---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Note que o p-valor relativo à prova é idêntico ao obtido pelo teste t pareado.

Leitura

• Montgomery, DC. Design and Analysis of Experiments. Capítulo 2.