Project Data Mining

Dana Abdirakhym

2024-03-18

Load libraries

```
library(caret)
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 4.3.1
## Loading required package: lattice
library(tidyverse) # for data manipulation and visualization
## Warning: package 'readr' was built under R version 4.3.1
## Warning: package 'dplyr' was built under R version 4.3.1
## Warning: package 'stringr' was built under R version 4.3.1
## Warning: package 'lubridate' was built under R version 4.3.1
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v dplyr 1.1.4 v readr
                                   2.1.5
## v forcats 1.0.0 v stringr 1.5.1
## v lubridate 1.9.3 v tibble
                                   3.2.1
                    v tidyr
                                   1.3.0
## v purrr
             1.0.2
## -- Conflicts ------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## x purrr::lift() masks caret::lift()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(randomForest)
```

```
## randomForest 4.7-1.1
## Type rfNews() to see new features/changes/bug fixes.
## Attaching package: 'randomForest'
##
## The following object is masked from 'package:dplyr':
##
##
       combine
##
## The following object is masked from 'package:ggplot2':
##
##
       margin
library(e1071) # for SVM
## Warning: package 'e1071' was built under R version 4.3.1
library(nnet) # for neural network
install.packages("kernlab")
##
## The downloaded binary packages are in
   /var/folders/zw/9p94jsvn2mb68h0wkh7y2zx80000gn/T//RtmpLok40y/downloaded_packages
library(kernlab)
##
## Attaching package: 'kernlab'
##
## The following object is masked from 'package:purrr':
##
##
       cross
## The following object is masked from 'package:ggplot2':
##
##
       alpha
```

Step 1. Import and parse breastcancer data set

```
library(readr)
data <- read_csv("/Users/danaabdirakhym/Downloads/breast_cancer.csv")

## Rows: 569 Columns: 32

## -- Column specification -------

## Delimiter: ","

## chr (1): diagnosis

## dbl (31): id, radius_mean, texture_mean, perimeter_mean, area_mean, smoothne...

##

## i Use 'spec()' to retrieve the full column specification for this data.

## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.</pre>
```

```
##Coverted Malignant to 1, Benign to 0
data$diagnosis <- as.factor(ifelse(data$diagnosis == "M", 1, 0))
breast_cancer <- na.omit(data)</pre>
breast_cancer <- subset(breast_cancer, select = -id)</pre>
colnames(breast_cancer)
##
    [1] "diagnosis"
                                    "radius_mean"
##
   [3] "texture_mean"
                                    "perimeter_mean"
## [5] "area mean"
                                    "smoothness_mean"
## [7] "compactness mean"
                                    "concavity mean"
## [9] "concave points mean"
                                    "symmetry mean"
## [11] "fractal dimension mean"
                                   "radius se"
## [13] "texture se"
                                    "perimeter se"
## [15] "area_se"
                                    "smoothness_se"
## [17] "compactness_se"
                                    "concavity_se"
## [19] "concave points se"
                                    "symmetry se"
## [21] "fractal_dimension_se"
                                    "radius worst"
## [23] "texture_worst"
                                    "perimeter_worst"
## [25] "area_worst"
                                    "smoothness_worst"
## [27] "compactness_worst"
                                    "concavity_worst"
## [29] "concave points_worst"
                                    "symmetry_worst"
## [31] "fractal_dimension_worst"
###Step 2. Create at least four different classifiers. Determine the needed features and create training and
test data.
library(caret)
set.seed(123) # for reproducibility
### Splitting to train and test data 80 to 20
index <- createDataPartition(breast_cancer$diagnosis, p=0.8, list=FALSE)</pre>
train_data <- breast_cancer[index, ]</pre>
test_data <- breast_cancer[-index, ]</pre>
head(train data)
## # A tibble: 6 x 31
##
     diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean
##
                      <dbl>
                                   <dbl>
                                                   <dbl>
                                                              <dbl>
                                                                               <dbl>
## 1 1
                                    10.4
                                                   123.
                                                              1001
                                                                              0.118
                       18.0
## 2 1
                       20.6
                                    17.8
                                                   133.
                                                              1326
                                                                              0.0847
## 3 1
                       19.7
                                    21.2
                                                   130
                                                              1203
                                                                              0.110
## 4 1
                       11.4
                                    20.4
                                                    77.6
                                                               386.
                                                                             0.142
## 5 1
                       20.3
                                    14.3
                                                   135.
                                                              1297
                                                                              0.100
## 6 1
                       12.4
                                    15.7
                                                    82.6
                                                               477.
                                                                              0.128
## # i 25 more variables: compactness_mean <dbl>, concavity_mean <dbl>,
## #
       'concave points_mean' <dbl>, symmetry_mean <dbl>,
## #
       fractal_dimension_mean <dbl>, radius_se <dbl>, texture_se <dbl>,
## #
       perimeter_se <dbl>, area_se <dbl>, smoothness_se <dbl>,
## #
       compactness_se <dbl>, concavity_se <dbl>, 'concave points_se' <dbl>,
```

```
symmetry_se <dbl>, fractal_dimension_se <dbl>, radius_worst <dbl>,
       texture_worst <dbl>, perimeter_worst <dbl>, area_worst <dbl>, ...
head(test_data)
## # A tibble: 6 x 31
     diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean
##
     <fct>
                     <dbl>
                                   <dbl>
                                                  <dbl>
                                                             <dbl>
                                                                             <dbl>
                                    24.8
                                                                            0.0974
## 1 1
                     19.2
                                                  132.
                                                             1123
## 2 1
                     15.8
                                    24.0
                                                  104.
                                                             783.
                                                                            0.0840
## 3 1
                     13.7
                                    22.6
                                                   93.6
                                                              578.
                                                                            0.113
## 4 1
                     14.7
                                    20.1
                                                   94.7
                                                              684.
                                                                            0.0987
## 5 0
                      9.50
                                    12.4
                                                   60.3
                                                              274.
                                                                            0.102
                                                              913.
## 6 1
                     17.1
                                    16.4
                                                  116
                                                                            0.119
## # i 25 more variables: compactness_mean <dbl>, concavity_mean <dbl>,
## #
       'concave points_mean' <dbl>, symmetry_mean <dbl>,
## #
       fractal_dimension_mean <dbl>, radius_se <dbl>, texture_se <dbl>,
## #
       perimeter_se <dbl>, area_se <dbl>, smoothness_se <dbl>,
       compactness_se <dbl>, concavity_se <dbl>, 'concave points_se' <dbl>,
## #
## #
       symmetry_se <dbl>, fractal_dimension_se <dbl>, radius_worst <dbl>,
## #
       texture_worst <dbl>, perimeter_worst <dbl>, area_worst <dbl>, ...
# Check the levels before conversion
levels(breast_cancer$diagnosis)
## [1] "0" "1"
# Convert factor levels "O" and "1" to actual numeric values O and 1
# This conversion ensures that 'diagnosis' is now a numeric variable instead of a factor.
breast_cancer$diagnosis <- as.numeric(as.character(breast_cancer$diagnosis))</pre>
train_data$diagnosis <- as.numeric(as.character(train_data$diagnosis))</pre>
test_data$diagnosis <- as.numeric(as.character(test_data$diagnosis))</pre>
###Creating the model using recursive partitioning
if (!requireNamespace("rpart", quietly = TRUE)) {
    install.packages("rpart")
library(rpart)
# Fit a decision tree model 1
model1_rpart <- rpart(diagnosis ~ ., data = train_data, method = "class")</pre>
model1_pred <- predict(model1_rpart, type="class", newdata= test_data)</pre>
model1_prob <-predict(model1_rpart, type="prob", newdata= test_data)</pre>
plot(model1_rpart, main= "decision tree model 1")
```

decision tree model 1


```
##create model using conditional inferences
if (!requireNamespace("party", quietly = TRUE)) {
    install.packages("party")
}
library(party)

## Warning: package 'party' was built under R version 4.3.1

## Loading required package: grid

## Loading required package: mvtnorm

## Warning: package 'mvtnorm' was built under R version 4.3.1

## Loading required package: modeltools

## Loading required package: stats4

## ## Attaching package: 'modeltools'

## The following object is masked from 'package:kernlab':
## ## prior
```

```
## Loading required package: strucchange
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
##
       as.Date, as.Date.numeric
## Loading required package: sandwich
## Attaching package: 'strucchange'
## The following object is masked from 'package:stringr':
##
##
       boundary
##
## Attaching package: 'party'
## The following object is masked from 'package:dplyr':
##
##
       where
model2 <- ctree(diagnosis ~ ., data = train_data)</pre>
# Predict class labels
model2_pred <- predict(model2, newdata = test_data, type = "response")</pre>
# Predict probabilities
model2_prob <- predict(model2, newdata = test_data, type = "prob")</pre>
plot(model2, main= "decision tree model using conditional inference tree")
```

decision tree model using conditional inference tree


```
###create random forest using conditional inference tree

if (!requireNamespace("ipred", quietly = TRUE)) {
    install.packages("ipred")
}
library(ipred)
# Fit a Bagging model
model3_bagging <- bagging(diagnosis ~ ., data = train_data, nbagg = 25) # 'nbagg' denotes the number o
model3_bagging_pred <- predict(model3_bagging, newdata = test_data, type = "class")
model3_bagging_pred <- predict(model3_bagging, newdata = test_data, type = "prob")</pre>
```

##Step 3 Provide your performance measure: confusion matrix, accuracy, recall, etc.

```
if (!requireNamespace("caret", quietly = TRUE)) {
    install.packages("caret")
}
library(caret)

if (!requireNamespace("e1071", quietly = TRUE)) { # Required for SVM
    install.packages("e1071")
}

if (!requireNamespace("class", quietly = TRUE)) { # Might be required for KNN
    install.packages("class")
}
# Convert 'diagnosis' to a factor with two levels
```

```
train_data$diagnosis <- factor(train_data$diagnosis, levels = c('0', '1'))</pre>
test_data$diagnosis <- factor(test_data$diagnosis, levels = c('0', '1'))</pre>
# Support vector machines
model_svm <- train(diagnosis ~ ., data = train_data, method = "svmRadial")</pre>
model_svm_pred <- predict(model_svm, newdata = test_data)</pre>
model_svm_prob <- predict(model_svm, newdata = test_data, type = "prob")</pre>
## Warning in method$prob(modelFit = modelFit, newdata = newdata, submodels =
## param): kernlab class probability calculations failed; returning NAs
#Knn model
model_knn <- train(diagnosis ~ ., data = train_data, method = "knn")</pre>
model_knn_pred <- predict(model_knn, newdata = test_data)</pre>
model_knn_prob <- predict(model_knn, newdata = test_data, type = "prob")</pre>
#Logistic regression model
model_log <- train(diagnosis ~ ., data = train_data, method = "glm", family = "binomial")</pre>
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
```

```
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
```

- ## Warning: glm.fit: algorithm did not converge
- ## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
- ## Warning: glm.fit: algorithm did not converge
- ## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
- ## Warning: glm.fit: algorithm did not converge
- ## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
- ## Warning: glm.fit: algorithm did not converge
- ## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
- ## Warning: glm.fit: algorithm did not converge
- ## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
- ## Warning: glm.fit: algorithm did not converge
- ## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
- ## Warning: glm.fit: algorithm did not converge
- ## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
- ## Warning: glm.fit: algorithm did not converge
- ## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
- ## Warning: glm.fit: algorithm did not converge
- ## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
- ## Warning: glm.fit: algorithm did not converge
- ## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
- ## Warning: glm.fit: algorithm did not converge
- ## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
- ## Warning: glm.fit: algorithm did not converge

```
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
model_log_pred <- predict(model_log, newdata = test_data)</pre>
model_log_prob <- predict(model_log, newdata = test_data, type = "prob")</pre>
# Calculate performance metrics for the SVM model
conf_matrix_svm <- confusionMatrix(factor(model_svm_pred, levels = levels(test_data$diagnosis)), test_d</pre>
precision_svm <- conf_matrix_svm$byClass['Pos Pred Value'] # This is the precision
recall_svm <- conf_matrix_svm$byClass['Sensitivity'] # This is the recall</pre>
accuracy_svm <- conf_matrix_svm$overall['Accuracy']</pre>
# Calculate performance metrics for the KNN model
conf matrix knn <- confusionMatrix(factor(model knn pred, levels = levels(test data$diagnosis)), test d</pre>
precision_knn <- conf_matrix_knn$byClass['Pos Pred Value']</pre>
recall_knn <- conf_matrix_knn$byClass['Sensitivity']</pre>
accuracy_knn <- conf_matrix_knn$overall['Accuracy']</pre>
# Calculate performance metrics for the Logistic Regression model
conf_matrix_log <- confusionMatrix(factor(model_log_pred, levels = levels(test_data$diagnosis)), test_d</pre>
precision_log <- conf_matrix_log$byClass['Pos Pred Value']</pre>
recall_log <- conf_matrix_log$byClass['Sensitivity']</pre>
accuracy_log <- conf_matrix_log$overall['Accuracy']</pre>
# Print out the metrics
cat("SVM Metrics: Accuracy =", accuracy_svm, ", Precision =", precision_svm, ", Recall =", recall_svm,
## SVM Metrics: Accuracy = 0.9823009 , Precision = 1 , Recall = 0.971831
```

```
cat("KNN Metrics: Accuracy =", accuracy_knn, ", Precision =", precision_knn, ", Recall =", recall_knn,
## KNN Metrics: Accuracy = 0.9115044 , Precision = 0.942029 , Recall = 0.915493
cat("Logistic Regression Metrics: Accuracy =", accuracy log, ", Precision =", precision log, ", Recall =
## Logistic Regression Metrics: Accuracy = 0.9380531 , Precision = 1 , Recall = 0.9014085
###Step 4 Combine the classifiers in an ensemble
classifier1_svm <- as.numeric(model_svm_pred) - 1 # Convert factors to numeric</pre>
classifier2_knn <- as.numeric(model_knn_pred) - 1</pre>
classifier3_log <- as.numeric(model_log_pred) - 1</pre>
classifier4_dtree <- as.numeric(model1_pred) - 1</pre>
# Assuming your factor levels are correctly ordered, like c('0', '1')
# If they are not, replace '0' and '1' with the actual factor levels from your predictions
classifier1_svm <- ifelse(model_svm_pred == '1', 1, 0) # Adjust based on your actual levels</pre>
classifier2_knn <- ifelse(model_knn_pred == '1', 1, 0)</pre>
classifier3_log <- ifelse(model_log_pred == '1', 1, 0)</pre>
classifier4_dtree <- ifelse(model1_pred == '1', 1, 0)</pre>
combine.df <- data.frame(classifier1_svm, classifier2_knn, classifier3_log, classifier4_dtree)</pre>
combine.df
##
       classifier1_svm classifier2_knn classifier3_log classifier4_dtree
## 1
                                       1
                                                                           1
                      1
                                                        1
## 2
                      1
                                       1
                                                        1
                                                                           1
## 3
                      1
                                       0
                                                        1
                                                                           1
## 4
                      1
                                       1
                                                                           1
## 5
                      0
                                       0
                                                        0
                                                                           Ω
## 6
                      1
                                                                           1
## 7
                                       1
                                                        1
                                                                           0
                      1
## 8
                                       0
                      1
                                                        1
                                                                           1
## 9
                                       1
                                                        1
                      1
                                                                           1
## 10
                      0
                                       0
                                                        0
                                                                           0
## 11
                      0
                                       0
                                                        0
                                                                           0
## 12
                      0
                                                        0
                                                                           0
## 13
                      0
                                       0
                                                        0
                                                                           0
## 14
                      1
                                       0
                                                        1
                                                                           1
## 15
                      1
                                       1
                                                        1
                                                                           1
## 16
                      1
                                       1
                                                        1
                                                                           1
## 17
                      0
                                       0
                                                        0
                                                                           0
## 18
                                       1
                                                        1
                      1
                                                                           1
## 19
                                       0
                                                        1
                      1
                                                                           1
## 20
                                       1
                      1
                                                        1
                                                                           1
## 21
                      1
                                       1
                                                        1
                                                                           1
## 22
                      1
                                       1
                                                        1
                                                                           1
## 23
                                       1
                                                                           1
## 24
                      1
                                       1
                                                        1
                                                                           1
```

## 25	0	1	1	0
## 26	0	0	0	0
## 27	0	0	0	0
## 28	0	0	0	0
## 29	1	0	1	1
## 30	0	0	0	1
## 31	0	0	0	0
## 32	1	1	1	0
## 33	1	1	1	1
## 34	0	0	0	0
## 35	1	1	1	1
## 36	1	1	1	0
## 37	0	0	0	0
## 38	1	1	1	1
## 39	1	1	1	0
## 40	0	0	0	0
## 41	0	0	1	0
## 42	0	0	0	0
## 43	1	1	1	1
## 44	1	1	1	1
## 45	0	0	0	0
## 46	0	0	0	1
## 47	1	1	1	1
## 48	1	1	1	1
## 49	1	1	1	1
## 50	0	0	0	0
## 51	0	0	0	0
## 52	0	0	0	0
## 53	1	1	1	1
## 54	0	0	0	0
## 55	0	0	1	0
## 56	1	1	1	1
## 57	1	1	1	1
## 58	0	0	0	0
## 59	0	0	1	0
## 60	0	0	0	0
## 61	0	0	0	0
## 62	0	0	0	0
## 63	0	0	0	0
## 64	0	0	0	0
## 65	1	1	1	1
## 66	0	0	0	0
## 67 ## 68	1	1	1	1
## 68 ## 69	0 0	0 0	1 0	0
## 69 ## 70	0	0	0	0
## 70 ## 71	1	1	1	1
## 71 ## 72	0	0	0	0
## 72 ## 73	0	0	0	0
## 74	1	1	1	1
## 75	0	0	0	0
## 76	0	1	0	0
## 77	0	0	0	0
## 78	1	1	1	1

```
## 79
                       0
                                          0
                                                                                0
## 80
                       0
                                          0
                                                            0
                                                                                0
## 81
                                          0
                                                            0
                       0
                                                                                0
## 82
                       0
                                          1
                                                            0
                                                                                0
## 83
                       1
                                                            1
                                                                                1
## 84
                       0
                                          0
                                                            0
                                                                                0
## 85
                       1
                                                                                1
## 86
                                          0
                                                            0
                                                                                0
                       0
## 87
                       0
                                                            0
                                                                                0
## 88
                       0
                                          0
                                                            0
                                                                                1
## 89
                       1
                                          1
                                                            1
                                                                                1
## 90
                       0
                                          0
                                                            0
                                                                                0
## 91
                                          1
                                                            1
                                                                                1
                       1
## 92
                                          0
                                                            0
                       0
                                                                                0
## 93
                       0
                                          0
                                                            0
                                                                                0
## 94
                       0
                                          1
                                                            0
                                                                                1
## 95
                       0
                                          0
                                                            0
                                                                                0
## 96
                       0
                                          0
                                                            0
                                                                                1
## 97
                       0
                                          0
                                                            0
                                                                                0
## 98
                                          0
                       0
                                                            0
                                                                                1
## 99
                                          0
                                                            0
                       0
                                                                                0
## 100
                       0
                                                                                0
## 101
                                          1
                                                            1
                                                                                1
                       1
## 102
                       0
                                          0
                                                            0
                                                                                0
## 103
                       0
                                          0
                                                            0
                                                                                0
## 104
                       0
                                          0
                                                            0
                                                                                0
## 105
                       0
                                          0
                                                            0
                                                                                0
## 106
                       0
                                          1
                                                            0
                                                                                0
## 107
                                          0
                                                            0
                                                                                0
                       0
## 108
                       0
                                          0
                                                            0
                                                                                1
## 109
                                          0
                                                            0
                                                                                0
                       0
## 110
                       0
                                          0
                                                            0
                                                                                0
## 111
                       0
                                          0
                                                            0
                                                                                0
## 112
                       0
                                          0
                                                            0
                                                                                0
## 113
```

```
combine.df$vote <- rowSums(combine.df)
combine.df$class <- ifelse(combine.df$vote >= 2,1,0)
# Majority is 'malignant' if 2 or more classifiers predict 1
combine.df
```

##		classifier1_svm	classifier2_knn	classifier3_log	classifier4_dtree	vote
##	1	1	1	1	1	4
##	2	1	1	1	1	4
##	3	1	0	1	1	3
##	4	1	1	1	1	4
##	5	0	0	0	0	0
##	6	1	1	1	1	4
##	7	1	1	1	0	3
##	8	1	0	1	1	3
##	9	1	1	1	1	4
##	10	0	0	0	0	0
##	11	0	0	0	0	0
##	12	0	0	0	0	0

## 13	0	0	0	0 0
## 13 ## 14	1			1 3
		0	1	
## 15	1	1	1	1 4
## 16	1	1	1	1 4
## 17	0	0	0	0 0
## 18	1	1	1	1 4
## 19	1	0	1	1 3
## 20	1	1	1	1 4
## 21	1	1	1	1 4
## 22	1	1	1	1 4
## 23	1	1	1	1 4
## 24	1	1	1	1 4
## 25	0	1	1	0 2
## 26	0	0	0	0 0
## 27	0	0	0	0 0
## 28	0	0	0	0 0
## 29	1	0	1	1 3
## 30	0		0	
## 30 ## 31		0		1 1
	0	0	0	0 0
## 32	1	1	1	0 3
## 33	1	1	1	1 4
## 34	0	0	0	0 0
## 35	1	1	1	1 4
## 36	1	1	1	0 3
## 37	0	0	0	0 0
## 38	1	1	1	1 4
## 39	1	1	1	0 3
## 40	0	0	0	0 0
## 41	0	0	1	0 1
## 42	0	0	0	0 0
## 43	1	1	1	1 4
## 44	1	1	1	1 4
## 45	0	0	0	0 0
## 46	0	0	0	1 1
## 47	1	1	1	1 4
## 48	1	1	1	1 4
## 49	1	1	1	1 4
## 50	0	0	0	0 0
## 51	0	0	0	0 0
## 52	0	0	0	0 0
## 52 ## 53				
	1	1	1	1 4
## 54	0	0	0	0 0
## 55	0	0	1	0 1
## 56	1	1	1	1 4
## 57	1	1	1	1 4
## 58	0	0	0	0 0
## 59	0	0	1	0 1
## 60	0	0	0	0 0
## 61	0	0	0	0 0
## 62	0	0	0	0 0
## 63	0	0	0	0 0
## 64	0	0	0	0 0
## 65	1	1	1	1 4
## 66	0	0	0	0 0

##	67	1	1	1	1 4
##	68	0	0	1	0 1
##	69	0	0	0	0 0
##	70	0	0	0	0 0
##	71	1	1	1	1 4
##		0	0	0	0 0
##		0	0	0	0 0
##		1	1	1	1 4
##		0	0	0	0 0
##		0	1	0	0 1
##		0	0	0	0 0
##		1	1	1	1 4
##		0	0	0	0 0
##		0		0	0 0
##			0	0	0 0
##		0	0		
		0	1	0	
##		1	1	1	1 4
##		0	0	0	0 0
##		1	0	1	1 3
##		0	0	0	0 0
##		0	0	0	0 0
##		0	0	0	1 1
##		1	1	1	1 4
##		0	0	0	0 0
##		1	1	1	1 4
##		0	0	0	0 0
##		0	0	0	0 0
##		0	1	0	1 2
##		0	0	0	0 0
##		0	0	0	1 1
##		0	0	0	0 0
##		0	0	0	1 1
##		0	0	0	0 0
	100	0	1	0	0 1
	101	1	1	1	1 4
	102	0	0	0	0 0
	103	0	0	0	0 0
	104	0	0	0	0 0
	105	0	0	0	0 0
	106	0	1	0	0 1
	107	0	0	0	0 0
	108	0	0	0	1 1
	109	0	0	0	0 0
	110	0	0	0	0 0
	111	0	0	0	0 0
	112	0	0	0	0 0
	113	1	1	1	1 4
##	class				
##					
##	2 1				
##					
##					
##	5 0				
##	6 1				

	-	
##	7	1
##	8	1
##	9	1
##	10	0
##	11	0
##	12	0
##	13	0
##	14	1
##	15	1
##	16	1
##	17	0
##	18	1
##	19	1
##	20	1
##	21	1
##	22	1
##	23	1
##	24	1
##	25	1
##	26	0
##	27	0
##	28	0
##	29	1
##	30	0
##	31	0
##	32	1
##	33	1
##	34	0
##	35	1
##	36	1
##	37	0
##	38	1
##	39	1
##	40	0
##	41	0
##	42	0
##	43	
##	44	1
##	45	0
##	46 47	1
##	48	1
##	49	1
##	50	0
##	51	0
##	52	0
##	53	1
##	54	0
##	55	0
##	56	1
##	57	1
##	58	0
##	59	0
##	60	0
	55	•

```
## 61
            0
## 62
            0
## 63
            0
## 64
            0
## 65
            1
## 66
            0
## 67
            1
## 68
            0
## 69
            0
## 70
            0
## 71
            1
## 72
            0
## 73
            0
## 74
            1
## 75
            0
## 76
            0
## 77
            0
## 78
            1
## 79
            0
## 80
            0
## 81
            0
## 82
            0
## 83
            1
## 84
            0
## 85
            1
## 86
            0
## 87
            0
## 88
            0
## 89
            1
## 90
            0
## 91
            1
## 92
            0
## 93
            0
## 94
            1
## 95
            0
## 96
            0
## 97
            0
## 98
            0
## 99
            0
## 100
            0
## 101
            1
## 102
            0
## 103
            0
## 104
            0
## 105
            0
## 106
            0
## 107
            0
## 108
            0
## 109
            0
## 110
            0
## 111
            0
## 112
            0
## 113
            1
```