

Politechnika Bydgoska im. J.J. Śniadeckich w Bydgoszczy Wydział Telekomunikacji, Informatyki i Elektrotechniki Zakład Informatyki Stosowanej i Inżynierii Systemów

100,000					
Przedmiot	Układy cyfrowe		Kierunek/ Tryb	IS / ST	
Temat	Układ potęgujący				
lmię i nazwisko:	Nikodem Gębicki				
Numer lab.	6	Data oddania sprawozdania:	16.06.2023		

Cel ćwiczenia

Zaprojektować i zoptymalizować układ iteracyjny wykrywający sekwencję 3 zer.

Przebieg Diagram

Tabela prawdy, tabelki Karnaugh i postać zoptymalizowana

р	X	out_q, out_p		Lp.	in_q, in_p, x	out_q, out_p				Lp.	in_q, in_p, x	у		q,p	Stan
0	0	01		0	000	01				0	000	0		00	bez zer
1	1	00		1	001	00				1	001	0		01	jedno zero
				2	010	10				2	010	0		10	dwa zera
		out_q = 0		3	011	00				3	011	0		11	trzy zera
		out_p = !x		4	100	11				4	100	1			
				5	101	00				5	101	0			
				6	110	11				6	110	1			
				7	111	11				7	111	1			
				in_q							in_q				
			in_p, x		00	01	11	10		in_p, x		00	01	11	10
				0				:			0				
				1	1		1	. :	l.		1	1		1	1
				out_q=	p!c+q!x+qp	(in_)					y=	q!x+qp	(in_)		
				in_q											
			in_p, x		00	01	11	10							
				0											
				1	1		1								
				out_p=	!p!x+qp	(in_)									

Układ

Testy (Analiza układu wykonana przez program Digital)

Testy	(Allaliza	uklaut	ı vvyku	шапа р	rzez pi	ogram
x0	x1	x2	х3	x4	х5	у
0	0	0	0	0	0	1
0						
0	0	0	0	0	1	1
0	0	0	0	1	0	1
0	0	0	0	1	1	1
0	0	0	1	0	0	1
0	0	0	1	0	1	1
0	0	0	1	1	0	1
0	0	0	1	1	1	1
0	0	1	0	0	0	1
0	0	1	0	0	1	0
0	0	1	0	1	0	0
0	0	1	0	1	1	0
	0			,	0	
0		1	11	0		0
0	0	1	1	0	1	0
0	0	1	1	1	0	0
0	0	1	1	1	1	0
0						
0	1	0	0	0	0	1
0	1	0	0	0	1	1
0	1	0	0	1	0	0
0	1	0	0	1	1	0
0	1	0	1	0	0	0
0	1	0	1	0	1	0
0	1	0	1	1	0	0
	1		1			
0		0		1	1	0
0	1	1	0	0	0	1
0	1	1	0	0	1	0
0	1	1	0	1	0	0
0	1	1	0	1	1	0
0	1	1	1	0	0	0
0	1	1	1	0	1	0
0	1	1	1	1	0	0
0	1	1	1	1	1	0
1	0	0	,	0		1
		0	0	0	0	
1	0	0	0	0	1	1
1	0	0	0	1	0	1
1	0	0	0	1	1	1
1	0	0	1	0	0	0
1	0	0	1	0	1	0
1	0	0	1	1	0	0
1	0	0	1	1	1	0
1	0	1	0	0	0	1
1	0	1	0	0	1	0
1	0	1	0	1	0	0
1	0	1	0	1	1	0
1	0	1	1	0	0	0
1	0	1	1	0	11	0
1	0	1	1	1	0	0
1	0	1	1	1	1	0
1	1	0	0	0	0	1
	1					
1		0	0	0	1	1
1	1	0	0	1	0	0
1	1	0	0	1	1	0
1	1	0	1	0	0	0
1	1	0	1	0	1	0
1	1	0	1	1	0	0
1	1	0	1	1	1	0
1	1	1	0	0	0	1
1	1	1	0	0	1	0
1	1	1	0	1	0	0
1	1	1	0	1	1	0
1	1	1	1	0	0	0
1	1	1	1	0	1	0
1	1	1	1	1	0	0
1	1	1	1	1	1	0

Wnioski

Układ iteracyjny składa się z modułów i nie jest synchronizowany zegarem, każdy bit wejściowy analizowany jest w tym samym czasie.