

Instituto Federal Farroupilha

Disciplina: Química

Professora: Vanize Caldeira da Costa

Cálculos estequiométricos

Utilizando uma equação química balanceada pode-se realizar vários cálculos, que são chamados de <u>cálculos estequiométricos</u>

Permitem estimar:

- ➤ a quantidade de produto que pode ser obtida a partir de uma determinada quantidade de reagente(s);
- a quantidade de reagentes que deve ser utilizada para se obter uma determinada quantidade de produto.

As bases para o estudo da estequiometria das reações químicas foram propostas por cientistas que conseguiram expressar matematicamente as regularidades que ocorrem nas reações químicas.

LEIS PONDERAIS

Lei da conservação das massas

"Na natureza, nada se cria, nada se perde, tudo se transforma."

Num sistema fechado, a massa total dos reagentes é igual à massa total dos produtos

Exemplo:

CaO + H₂O
$$\longrightarrow$$
 Ca(OH)₂

56 g 18 g 74 g

massa dos reagentes 74 g 74 g

Lei das proporções constantes

"A proporção de cada elemento em uma determinada substância é constante, independentemente de seu processo de obtenção."

Exemplo:

	Hidrogênio	+	oxigênio –		► água
Proporção	1	:	8	:	9
Experiência A	10 g		80 g		90 g
Experiência B	5 g		40 g		45 g

A composição da água apresentará sempre uma mesma relação entre as massas de hidrogênio e oxigênio (1:8) Instituto Federal Farroupilha

Disciplina: Química

Professora: Vanize Caldeira da Costa

COEFICIENTES ESTEQUIOMÉTRICOS E A QUANTIDADE DE SUBSTÂNCIA (MOL)

Os coeficientes de cada substância, numa equação química balanceada, correspondem aos números de mol de cada um dos participantes envolvidos na reacão.

Como:

Interpretação	1 N _{2(g)}	+ 3 H _{2(g)} —	→ 2 NH _{3(g)}
molecular	1 (6,0 · 10 ²³) moléculas	3 (6,0 · 10 ²³) moléculas	2 (6,0 · 10 ²³) moléculas
número de mol	1 mol	3 mol	2 mol
massa	28 g	6 g	34 g
volume (CNTP)	22,4 L	67,2 L	44,8 L

Esse raciocínio é válido para qualquer reação química, o que permite prever as quantidades de reagentes e produtos envolvidos em uma reação.

REGRAS GERAIS PARA CÁLCULOS ESTEQUIOMÉTRICOS

- 1) Escrever a equação química do processo;
- 2) Balancear a equação química (os coeficientes estequiométricos darão a relação segundo a qual as substâncias se combinam);
- Montar a relação necessária para o cálculo considerando os dados e as perguntas do problema;
- 4) Utilizar a regra de três para chegar à resposta.

Exemplo 1:

Calcular o número de mol de amônia produzido na reação de 5 mol de gás nitrogênio com quantidade suficiente de gás hidrogênio.

Instituto Federal Farroupilha

Disciplina: Química

Professora: Vanize Caldeira da Costa

Exemplo 2:

Determinar a massa de amônia produzida na reação de 5 mol de gás nitrogênio com quantidade suficiente de gás hidrogênio.

Exemplo 3:

Calcular a massa de amônia produzida na reação de 140 g de gás nitrogênio com quantidade suficiente de gás hidrogênio.

Exemplo 4:

Determinar o volume de amônia, nas CNTP, produzido na reação de 140 g de gás nitrogênio com quantidade suficiente de gás hidrogênio.

Referências bibliográficas

USBERCO, J.; SALVADOR, E. Química. São Paulo: Saraiva, 2002.