

Setting up your ML application

Train/dev/test sets

Applied ML is a highly iterative process

Idea # layers # hidden units learning rates activation functions Experiment Code

NLP, Vision, Speech, Structural dorta Ads Search Security Logistic

Train/dev/test sets

Mismatched train/test distribution

Training set: Dev/test sets: Cat pictures from? Cat pictures from users using your app webpages -> Make sure des al test come from some distibution. tran / test"

tran / test

tran / dev

Town / dev

Not having a test set might be okay. (Only dev set.)

Setting up your ML application

Bias/Variance

Bias and Variance

Bias and Variance

High bias and high variance

Setting up your ML application

Basic "recipe" for machine learning

Basic recipe for machine learning

Regularizing your neural network

Regularization ?

To reduce variance or prevent overfitting in NN

Logistic regression

$$\min_{w,b} J(w,b) \qquad \qquad \omega \in \mathbb{R}^{n_{x}}, b \in \mathbb{R} \qquad \begin{array}{l} l = l \text{ equilization porometer} \\ landa & landa \\ lan$$

Neural network

Neural network

$$\int (\omega^{(1)}, b^{(2)}, \dots, \omega^{(2)}, b^{(2)}) = \int_{-\infty}^{\infty} \sum_{i=1}^{\infty} \int_{-\infty}^{\infty} (y^{(i)}, y^{(i)}) + \int_{-\infty}^{\infty} \sum_{i=1}^{\infty} ||\omega^{(1)}||_{F}^{2}$$

$$||\omega^{(1)}||_{F}^{2} = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} (\omega^{(1)}, y^{(j)})^{2} + \int_{-\infty}^{\infty} (\omega^{(1)}, y^{(j)})^{2} + \int_{-\infty}^{\infty} (\omega^{(1)}, y^{(i)})^{2}$$

$$||\omega^{(1)}||_{F}^{2} = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} (\omega^{(1)}, y^{(j)})^{2} + \int_{-\infty}^{\infty} (\omega^{(1)}, y^{(j)})^{2} + \int_{-\infty}^{\infty} (\omega^{(1)}, y^{(j)})^{2}$$

$$||\omega^{(1)}||_{F}^{2} = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} (\omega^{(1)}, y^{(j)})^{2} + \int_{-\infty}^{\infty} (\omega^{(1)}, y^{(i)})^{2}$$

$$||\omega^{(1)}||_{F}^{2} = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} (\omega^{(1)}, y^{(j)})^{2} + \int_{-\infty}^{\infty} (\omega^{(1)}, y^{(i)})^{2}$$

$$||\omega^{(1)}||_{F}^{2} = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} (\omega^{(1)}, y^{(j)})^{2} + \int_{-\infty}^{\infty} (\omega^{(1)}, y^{(i)})^{2}$$

$$||\omega^{(1)}||_{F}^{2} = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} (\omega^{(1)}, y^{(j)})^{2}$$

$$||\omega^{(1)}||_{F}^{2} = \sum_{i=1}^{\infty} (\omega^{(1)}, y^{(i)})^{2}$$

$$||\omega^{(1)}||_{F}^{2} = \sum_{i=1}^{\infty}$$

Regularizing your neural network

Why regularization reduces overfitting

How does regularization prevent overfitting?

How does regularization prevent overfitting?

Regularizing your neural network

Dropout regularization

Dropout regularization

Implementing dropout ("Inverted dropout")

Illustrate with layer
$$l=3$$
. $teep-pnb=0.8$

$$\frac{d3}{d3} = np. random. rand (a3. shape To1, a3. shape To1) < teep-prob$$

$$\frac{a3}{d3} = np. multiply (a1, d3) # a3 * = d3.$$

$$\frac{a3}{d3} = \frac{a3}{d3} = \frac{a3}{d3}$$

Making predictions at test time

/= keap-pols

Regularizing your neural network

Understanding dropout

Why does drop-out work?

Intuition: Can't rely on any one feature, so have to spread out weights. Shrink weights.

Regularizing your neural network

Other regularization methods

Data augmentation

Setting up your optimization problem

Normalizing inputs

Normalizing training sets

Why normalize inputs?

Setting up your optimization problem

Vanishing/exploding gradients

Single neuron example

Setting up your optimization problem

Numerical approximation of gradients

Checking your derivative computation

Checking your derivative computation

Setting up your optimization problem

Gradient Checking

Gradient check for a neural network

Take $W^{[1]}$, $b^{[1]}$, ..., $W^{[L]}$, $b^{[L]}$ and reshape into a big vector θ . $\mathcal{J}(\omega^{CD}, b^{CD}, \omega^{CD}, b^{CD})^2 \mathcal{J}(\theta)$

Take $dW^{[1]}$, $db^{[1]}$, ..., $dW^{[L]}$, $db^{[L]}$ and reshape into a big vector $d\theta$.

Is do the gradet of J(0)?

Gradient checking (Grad check)

for each
$$\bar{c}$$
:

 $\Rightarrow \underline{AOCiJ} = \underline{J(O_1,O_2,...,O_i+E_1,...)} - \underline{J(O_1,O_2,...,O_i+E_1,...)}$
 $\Rightarrow \underline{AOCiJ} = \underline{JJ}$

Check

 $||AO_{apper} - AO||_2$
 $\Rightarrow ||AO_{apper} - AO||_2$

Setting up your optimization problem

Gradient Checking implementation notes

Gradient checking implementation notes

- Don't use in training – only to debug

- If algorithm fails grad check, look at components to try to identify bug.

- Remember regularization.

- Doesn't work with dropout. 🗉 🏅 keep-pob = 1.0

- Run at random initialization; perhaps again after some training.

