Inteligência Artificial: Busca Heurística

Prof. Leandro Fernandes

Em busca da solução

- Um sistema de IA pode resolver problemas da seguinte forma:
 - Ele sabe onde ele está (conjunto de informações inicial)
 - Ele sabe onde deseja ir (estado objetivo)
- Resolver problema em IA envolve busca pelo estado objetivo

Busca

- Problemas de busca são frequentemente descritos utilizando diagramas de árvores
 - Nó inicial = onde a busca começa
 - Nó objetivo = onde ela termina
- Objetivo: Encontrar um caminho que ligue o nó inicial a um nó objetivo

Busca

• Entrada:

- Descrição dos nós inicial e objetivo
- Procedimento que produz os sucessores de um nó arbitrário

• Saída:

- Sequência legal de nós iniciando com o nó inicial e terminando com o nó objetivo
- Exemplo: palavras cruzadas

Uma árvore de busca

Uma busca pode ser definida graficamente:

 O objetivo é atravessar a árvore partindo do estado inicial até o estado objetivo

Estratégias Básicas de Busca

- Há basicamente duas estratégias para realizarmos a busca do estado de solução em uma árvore de possibilidade, sendo estas:
 - Busca em Profundidade
 - Busca em Largura

Busca em Profundidade

Busca pelo nó J

- Nó escolhido:
 - É sempre o mais distante do nó inicial

Busca em Profundidade - Algoritmo

Se N é um nó solução então Sol = [N], ou

 Se há um nó adjacente N1 a N, tal que existe um caminho Sol1 partindo de N1 até o nó meta, então Sol = [N | Sol1]

Busca em Largura

Busca pelo nó J

- Nó escolhido:
 - É sempre o mais *próximo* do nó inicial

Busca em Largura - Algoritmo

Dado um conjunto de caminhos candidatos:

- Se o primeiro caminho contém o nó meta como primeiro elemento da fila, este é uma solução, ou
- Remova o primeiro caminho do conjunto de candidatos e gere um conjunto de todas as possíveis extensões de um nó deste caminho, adicione este conjunto de extensões ao final do conjunto de candidatos e execute busca em largura no conjunto restante

Execução do Algoritmo


```
1 - [[a]]
```

- 4 [[d,b,a] , [e,b,a] , [f,c,a] , [g,c,a]]
- 5 [[e,b,a] , [f,c,a] , [g,c,a] , [h,d,b,a]]
- 6 [[f,c,a] , [g,c,a] , [h,d,b,a] , [i,e,b,a] , [j,e,b,a]]

Busca Heurística

 Melhores estratégias de Busca para resolução de problemas complexos

 Heurística: "conselhos" não numéricos que determinam o sucessor de um dado estado

Busca Heurística (cont)

- Possui efeito "local" oferece um conselho de escolha do sucessor de um estado específico mas não referente à toda estratégia de busca
- Principal papel: eliminar ou podar ramos de busca

Busca Heurística (cont)

Funções de Avaliação e Funções de Custo • Problema -- "

Funções de Avaliação

Método para:

- calcular um valor numérico para os estados sucessores de um dado estado
- decidir pelo sucessor que tem o "melhor" valor

Valores:

- números não negativos
- o menor valor é o mais promissor
- o estado meta é 0 (zero)
- Referência ao futuro

Estratégias de Busca usando Funções de Avaliação

- Hill-Climbing (ou otimização discreta)
 - consiste de uma busca em *profundidade* usando funções de avaliação

- Best-First
 - consiste de uma busca em *largura* usando funções de avaliação

Execução do Algoritmo Hill-Climbing

• Busca pelo no f.

Execução do Algoritmo Best-First


```
1 - [[a]]
```

Funções de Custo

- Funções não negativas que medem a dificuldade de ir de um estado para o outro
- Usando-as, é possível encontrar um bom ou ainda o melhor caminho para alcançar uma dada meta
- Referência ao **passado**

Estratégias de Busca usando Funções de Custo

- Branch-and-Bound
 - consiste de uma busca em *largura* usando funções de custo

Execução do Algoritmo Branch-and-Bound

- 1 [[a]]
- 2 [[1,c,a] , [2,b,a]]
- 3 [[2,b,a] , [3,f,c,a] , [4,g,c,a]]
- 4 [[3,f,c,a] , [4,g,c,a] , [3,e,b,a] , [4,d,b,a]]

Busca Ótima (A*)

- Faz uso tanto da função de avaliação quanto da de custo
- Atribui valores de custo e avaliação aos sucessores de um estado a fim de selecionar aquele mais promissor
- Importante: os valores possuem mesmas unidades!

Busca Ótima (A*) (cont)

 Estimativa de custo de ir da raiz (r) até a meta (m) passando pelo nó n:

$$f(n) = g(n) + h(n)$$

onde:

- g(n) = função de custo do nó n
- h(n) = função de avaliação do nó n

Busca Ótima (A*) (cont2)

Se a função de avaliação para qualquer estado e_i é sempre menor ou igual que o custo real de e_i para a meta, então o primeiro caminho encontrado pela estratégia de busca A* é o caminho de custo mínimo (ótimo)

Execução do Algoritmo A*

- 1 [[a]]
- 2 [[1,2,c,a], [2,2,b,a]]
- 3 [[2,2,b,a], [3,2,f,c,a], [4,3,g,c,a]]
- 4 [[3,2,f,c,a], [4,3,g,c,a], [3,1,e,b,a], [4,2,d,b,a]]

Organização das Estratégias de Busca

Estratégias de Busca	Usa Agenda?	Usa função de avaliação	Usa função de custo	Próximo estado
Profundidade	Não	Não	Não	o sucessor do último estado, caso contrario o sucessor do predecessor
Largura	Sim	Não	Não	o estado mais longe na agenda(fila)
Hill-Climbing	Não	Sim	Não	o sucessor com mínimo valor de função de avaliação
Best-First	Sim	Sim	Não	o estado na agenda com mínimo valor de função de avaliação
Branch-and-Bound	Sim	Não	Sim	o estado na agenda com mínimo valor de função de custo total
A*	Sim	sim	Sim	o estado na agenda com mínimo valor da soma da função de avaliação e custo total