7장 정규화

데이터베이스 연구실

[목 차]

- 7.1 관계 데이터베이스 설계
 - **7**.I.I 설계 기준
 - 7.1.2 이상현상(anomaly)
- 7.2 설계 이론
 - 7.2.1 함수적 종속성
- 7.3 정규형
 - 7.3.1 정규형
 - 7.3.2 무손실 분해

7.1 관계 데이터베이스 설계

7.I.I 설계 기준

데이터베이스 설계 예

- ex) 수강 신청 (학번, 이름, 학년, 수강과목, 과목시간) 정보 표현 방법
 - -> 다음 방법1과 방법2 중 어느 방법이 좋은가?
 - -> 어떤 문제가 있는가?

방법 1 수강-신청

학번	이름	학년	수강과목	과목시간
100	0	4	PASCAL	월2,3
200	조	3	FORTRAN	화3,4
100	0	4	С	수1,2
150	김	3	PASCAL	월2,3
200	조	3	COBOL	금3,4

방법 2

학생

수강

학번	이름	학년
100	0	4
150	김	3
200	조	3

학번	수강과목	과목시간
100	PASCAL	월2,3
200	FORTRAN	화3,4
100	С	수1,2
150	PASCAL	월2,3
200	COBOL	∃3,4

7.1.2 이상현상(anomaly)

-좋은 설계는 데이터 조작 시 anomaly가 없도록 해야 한다.

- ex) 계절 강좌 신청(학번, 과목, 수강료) 잘못된 설계의 예
 - o 삭제이상(deletion anomaly) -> triggered deletion 현상
 - 150번 학생의 삭제(PASCAL 수강료의 삭제)
- o 삽입이상(insertion anomaly) -> null value 문제
 - COBOL의 수강료(10,000원)의 삽입 (가상의 학생 삽입 필요)
- o 갱신이상(update anomaly) -> inconsistency 발생
 - FORTRAN 수강료 변화 (모든 FORTRAN 수강료 data를 찾아 갱신)

학번	과목	수강료
100	FORTRAN	20,000
150	PASCAL	15,000
200	С	10,000
250	FORTRAN	20,000

릴레이션 : **계절강좌신청**

7.2 설계 이론 7.2.1 함수적 종속성

-함수적 종속성(functional dependency) (R.X->R.Y)

(정의) X⊆R, Y⊆R 일 때 relation R의 tuple t1, t2 에 대하여 (if (t1[X] = t2[X]) 이면 -> (t1[Y] = t2[Y])) 일 때, "Y는 X에 함수적으로 종속되었다"

- 즉, f(X)=Y 에서 X가 같으면 Y는 항상 같다.
- 애트리뷰트 X는 Y를 (함수적으로) 결정, 즉, X는 Y의 결정자(determinant)-
- X, Y는 복합 애트리뷰트일 수 있음
- 속성 X가 키이면, R의 모든 애트리뷰트 Y에 대해 X -> Y 성립

함수 종속성에 대한 추론 규칙

(기본규칙) R1: (재귀) A ⊇ B 이면 A -> B 이다.

R2: (첨가) A -> B 이면 AC -> BC 이다.

R3: (이행) A -> B 이고 B -> C이면 A -> C 이다.

(추가규칙) R4: (연합) A -> B 이고 A -> C 이면 A -> BC 이다.

R5: (분해) A -> BC 이면 A -> B, A -> C 이다.

R6: (가이행) A -> B, CB -> D 이면 AC -> D 이다.

-완전 함수 종속성 (fully functionally dependency) -> 부분 함수 종속

(정의) Y가 X에 종속되어 있으면서 X의 어떤 진부분 집합에도 종속되지 않을 때

▶ 5 Y는 X에 완전 함수적 종속되어 있다고 한다.

- 함수종속성 연습

□ 다음 함수적 종속성이 설립하는지 아닌지를 답하라.

A	В	С
2	3	8
5	9	6
7	9	6
5	2	2

- (1) A -> B
- (2) $B \rightarrow C$
- (3) (B,C) -> A
- (4) (A, B) -> C

□ 다음 릴레이션에 존재하는 함수적 종속성을 모두 열거하라.

A	В	С	D
al	b 4	cl	d6
al	b2	c4	d5
a2	b4	cl	d4
a2	b2	c4	d3
a2	b3	c2	d2

- 함수적 종속성 다이어그램

ex) 계절강좌신청 relation (functionally dependency diagram) 함수적 종속성 다이어그램

학번	과목	수강료
100	FORTRAN	20,000
150	PASCAL	15,000
200	С	10,000
250	FORTRAN	20,000

ex) 성적 relation 함수적 종속성 다이어그램

학 번	과 목	교 수	학 점
100	FORTRAN	김	А
100	PASCAL	0	А
150	PASCAL	01	В
175	С	01	Α
175	FORTRAN	김	С

(a)

7.3 정규형

7.3.1 정규형 (Normal Form, NF)

(1) 제 1 정규형 (1NF)

정의 (1NF): 어떤 릴레이션 R이 모든 도메인들의 값이 오직 원자값(atomic value)만을 가지며, 릴레이션 R은 제 1정규형 (1NF)에 속한다

• 관계 데이터베이스 정의에 의하면 모든 속성의 값은 원자 값만을 갖도록 정의하고 있다. 즉 모든 릴레이션은 1 정규형을 만족한다.

(2) 제 2 정규형 (2NF)

- 1 정규형의 불완전 함수적 종속성 (non-full FD)를 없앤다.

정의 (2NF): 어떤 릴레이션 R이 1NF이고, 또 키가 아닌 모든 애트리뷰트 (non-key attribute)들이 기본 키에 완전 함수적 종속일 때 이 릴레이션 R은 제 2정규형(2NF)에 속한다.

GRAD 릴레이션 - 1정규형이나 2정규형은 아님

릴레이션의 키는 무엇인가?

릴레이션 GRAD와 종속성 다이어그램(1NF but NOT 1NF)

- 정규화가 안되는 경우 문제 발생 이유

(3) 제 3 정규형 (3NF) – 2NF에 있는 이행적 (transitive) 종속성을 분해한다.

정의 (3NF): 어떤 릴레이션 R이 2NF이고, 또 키가 아닌 모든 애트리뷰트들 이 비 이행적(non-transitive)으로 기본 키에 종속되어 있을 때 이 릴레이션은 제 3정규형 (3NF)에 속한다

- 정규화가 안되는 경우 문제 발생 이유

(4) Boyce / Codd Normal Form (BCNF)

정의 (BCNF) : 릴레이션 R의 모든 결정자(determinant)가 후보키(candidate key) 이면, 릴레이션 R은 Boyce/Codd 정규형에 속한다.

수강 현황 릴레이션 - (1 교수가 1과목을 가르친다.) - 3NF but anomaly

학 번	과 목	교 수
100	FORTRAN	정
100	PASCAL	01
150	PASCAL	01
175	С	조
175	FORTRAN	황
200	С	조
200	PASCAL	김

(학번,과목)을 기본키로 했을 때 함수 종속성 다이어그램

릴레이션의 키는 무엇인가?

- 정규화가 안되는 경우 문제 발생 이유

- 릴레이션 수강-현황을 두 개의 릴레이션으로 분해

학번 - 교수

학 번	교 수
100	정
100	01
150	0
175	조
175	황
200	조
200	김

과목 - 교수

과 목	교 수
FORTRAN	정
PASCAL	01
С	조
FORTRAN	황
PASCAL	김

릴레이션 분해 결과

(5) 제 4 정규형

정의 (4NF) : 릴레이션 R이 MVD A->->B가 성립하는 경우에 A가 슈퍼키이

면 그 릴레이션 P는 4NF에 속한다.

즉, B ⊆ A or (AB) =R (trivial) 이거나 아니면 A가 슈퍼키여야 한다.

(다치종속성, MVD) : (정의) A,B,C 세 개의 애트리뷰트를 가진 릴레이션 R에서 속성에 대하여 t1[A]=t2[a] 투플 t1과 t2가 존재한다면 다음 투플 t3와 t4도 반드시 존재한다.

(A,B,C는 물론 복합 애트리뷰트이어도 상관 없다.)

t1[A]=t2[A]=t3[A]=t4[A]에 대하여

t3[B]=t1[B] and t4[B]=t2[B], t3[C]=t2[C] and t4[C]=t1[C]

개설-교과목

과 목	교 수	교 재
FORTRAN	{정, 황}	{전산기 개론 및 프로 그래밍, FORTRAN 77}
PASCAL	{이, 조}	{PASCAL REPORT 자료구조론}
С	김	C프로그래밍

개설-교과목 - (3NF but not 4NF)

과 목	교 수	교 재
FORTRAN	정	전산기개론 및 프로그래밍
FORTRAN	정	FORTRAN 77
FORTRAN	황	전산기개론 및 프로그래밍
FORTRAN	황	FORTRAN 77
PASCAL	0	PASCAL REPORT
PASCAL	0	자료구조론
PASCAL	조	PASCAL REPORT
PASCAL	조	자료구조론
С	김	C프로그래밍

- { FORTRAN 담당교수로 "정"과 "홍"이며 지정교재는 "T1"과 "T2" 중 어느 것도 (어느 교수, 어느 교재) 될 수 있다. }
- (함수종속성) 과목->교수, 과목->교재 PASCAL -> {이,조}, PASCAL -> {PASCAL REPORT, 자료구조론}

과 목	교 수
FORTRAN	정
FORTRAN	황
PASCAL	0
PASCAL	조
С	김

과 목	교 재
FORTRAN	전산기개론 및 프로그래밍
FORTRAN	FORTRAN 77
PASCAL	PASCAL REPORT
PASCAL	자료구조론
С	C프로그래밍

분해된 릴레이션(4NF) - 둘 다 4NF이다.

(6) 제 5 정규형

정의 (5NF): 릴레이션 R의 모든 조인 종속성(JD)의 만족이 R의 후보키로 암시될 수 있을 때 그 릴레이션은 제 5 정규형(5NF), 또는 프로젝션-조인 정규형(projection-join normal form; PJ/NF)에 속한다고 한다.

(정의): 조인종속성(JD) - 일반적으로, 릴레이션 R이 그이 프로젝션 X,Y,...,Z의 조인으로 만들어 질 수 있을 때 조인 종속성(JD) (X,Y,...Z)를 만족한다고 한다. 여기서 X,Y,...,Z의 애트리뷰트 집합이 부분 집합이다.

예) SPJ (supplier supplies the part to the specified project)

예) SPJ의 anomaly 발생 예 (앞 예에서 (S2,P1,J1)만 삽입했을 때)

- 정규화 정리

- 데이터베이스 설계의 문제점은 다음과 같다 잘못된 설계의 결과
 - 1. 정보의 중복 (repetition of information -> inconsistency)
 - 2. NULL 값 (inability to represent certain information -> null value)
 - 3. 정보의 손실 (loss of information)
- -잘못된 설계의 해결책은 분해(decomposition)

(anomaly의 해결책은 분해이다.)

relation R의 분해 -> R₁R₂,...,R_n

 $r \subseteq r_1 \bowtie r_2,..., \bowtie r_n$ 이 성립=> $(r=r_1 \bowtie r_2,..., \bowtie r_n)$ 이면 무손실 분해)

- **분해의 바람직한 조건** R->R₁ and R₂
 - 1. 무손실 분해(lossless-join decomposition, $r=r_1 \bowtie r_2,..., \bowtie r_n$) if at least $R_1 \cap R_2 \rightarrow R_1$ or $R_1 \cap R_2 \rightarrow R_2$
 - 2. 종속성 보존(dependency preservation)

if
$$F_i^+ = F$$

- 3. 정보 중복의 해소(avoid repetition of information)
 - -> 분해하면 자동으로 해결

함수적 종속성에 의한 분해

(normalization using functional dependencies)

- BCNF 함수종속성 α -> β에 대하여 at least one of 1,2 holds
 - 1. $\alpha \rightarrow \beta$ is trivial FD
 - 2. α is a superkey for scheme R

(BCNF 정규화 : α -> β when α is not a key, decomposition of R : (R - β), (α β)

 $(Q \mid R(A,B,C) \text{ with } AB->C, C->B => R(A,C), R(C,B) \text{ with } C->B$

단점: dependency AB->C가 없어진다.

dependency를 보존하기 위하여 그대로 두면 데이터 중복이 있다)

- **3NF** 함수종속성 α -> β 에 대하여 at least one of 1,2,3 holds
 - 1. $\alpha \rightarrow \beta$ is trivial FD
 - 2. α is a superkey for scheme R
 - 3. every attribute A in β is contained in a candidate key for R (3NF allow transitive dependencies eg AB->C, C->A)

- BCNF와 3NF 비교

	3NF	BCNF	MVD	
Lossless decomposition	Ο	Ο	0	
Dependency preserving	Ο	Χ	Χ	
No repetition of info	X	Ο	0	

7.3.2 무손실 분해

- 무손실 분해(lossless decomposition)/종속성 보존(dependency preservation)

□ <mark>손실 분해</mark>의 예 - R을 R1과 R2로 분해하면 어떻게 될까?

R

А	В	С
a1	b1	с1
a1	b1	c2
a2	b1	c1
a3	b2	c2

R1

А	В
a1	b1
a2	b1
a3	b2

R2

В	С
b1	c1
b1	с2
b2	c2

□ <mark>종속성 보존</mark>이 되지 않는 경우의 문제의 예 - R을 R1과 R2로 분해하면 어떻게 될까? (R 에서 (100,FORTRAN,최)는 삽입이 불가능하지만 분해된 R1, R2에서는 삽입이 가능함)

R	학 번	과 목	교 수
	100	FORTRAN	정
	100	PASCAL	0
	150	PASCAL	0
	175	С	조
	175	FORTRAN	황
	200	С	조
	200	PASCAL	감

R1

학 번	교 수
100	정
100	0
150	0
175	조
175	황
200	조
200	김
100	최

R2

2	과 목	교 수
_	FORTRAN	정
	PASCAL	01
	С	조
	FORTRAN	황
	PASCAL	김
	FORTRAN	최

- 분해 연습

□ 수강과목(학번,과목,교수) 릴레이션(3NF)의 분해 예

키 :(학번,과목),(학번,교수)

종속성 :(학번,과목)->교수,교수->과목

- 아래 3가지로 분해하는 경우 각각 무슨 문제가 생길 것인가?
- I. RI(학번,과목), R2(과목,교수)
- 2. RI(학번,과목), R2(학번,교수)
- 3. RI(학번,교수), R2(과목,교수)