

Excelencia gráfica

Visualización Científica
6 de septiembre de 2016
Eduardo Castro-Nallar, PhD
Center for Bioinformatics and Integrative Biology

www.cbib.cl

www.castrolab.org

Excelencia gráfica

 Conjunto de principios que nos ayudan a inducir al lector a pensar sobre la substancia de los datos presentados

¿Por qué no simplemente usamos tablas?

I		II		III		IV	
X	у	Х	у	X	у	X	у
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

¿Por qué no simplemente usamos tablas?

- El promedio de los valores x es 9 para cada dataset
- El promedio de los valores y es 7.50 para cada dataset
- La varianza de x es 11 y la de y es 4.12
- El coeficiente de correlación entre x e y es 0.816 para cada dataset
- La ecuación de la recta para cada dataset es y = 0.5x
 + 3

¿Podemos descubrir algo si visualizamos los datos?

E. R. Tufte. The Visual Display of Quantitative Information, 2nd Edition. Graphics Press, Cheshire, Connecticut, 2001.

Excelencia gráfica

- Mostrar los datos
- Inducir al lector a considerar la sustancia de los resultados en vez de la metodología, el diseño, o cualquier otra cosa
- Evitar distorsionar lo que los datos pueden decir
- Presentar números eficientemente
- Mostrar gran cantidad de datos de manera coherente
- Estimular comparaciones
- Revelar los datos a distintos niveles de detalle y complejidad
- El gráfico tiene que tener un propósito claro: descripción, exploración, tabulación, etc.
- Integrar el gráfico con los métodos estadísticos usados para analizar los datos

Tasas de cáncer por condado en EE.UU

- Tasa de mortalidad para cáncer de estómago
- Cada mapa muestra ~21000 puntos
- Eficiente, coherente, efectivo

Figura por John Snow en 1854

- Cada disco negro representa un caso de cólera
- El punto rojo representa un grifo de agua en la calle Broad

Principios a seguir

- Ser exacto y claro
- La mayor cantidad de información posible sin obscurecer el mensaje
- Ciencia y no ventas, i.e., nada de 3D
- Rigurosidad con las cifras significativas
- Siempre mostrar incertidumbre en mediciones

- No esconder los datos
- Mostrar la dispersión
- Mostrar la incertidumbre

- No esconder los datos
- Mostrar la dispersión
- Mostrar la incertidumbre

- No esconder los datos
- Mostrar la dispersión
- Mostrar la incertidumbre

- Histogramas sobre gráficos de torta
- Apto para datos continuos, para mostrar distribución

- Histogramas sobre gráficos de torta
- Apto para datos continuos, para mostrar distribución

Considerar transformaciones de datos - Logaritmos

 ¿Qué gráfico muestra mejor los datos?

Considerar transformaciones de datos - Logaritmos

 ¿Qué gráfico muestra mejor los datos?

- Las escalas son distintas
- Es difícil hacer comparaciones

Gráficos para comparar deben ir lado a lado

- La escala debe ser igual para facilitar la comparación
- Agregar color para distinguir categorías de mejor forma

Gráficos para comparar deben ir lado a lado

- La escala debe ser igual para facilitar la comparación
- Agregar color para distinguir categorías de mejor forma

Usar colores de manera consistente entre figuras y paneles

Fig. 1. (A) Empirical type I error rate in 15,000 simulations of 999 null SNPs, empirical type I error rates for (B) 14,985,000 null SNPs and (C) 14,985,000 null SNPs broken into minor allele frequency categories. A horizontal line is drawn at the theoretical type I error rate in each plot.

Círculos o polígonos deben ser proporcionales al área

• proporcional al radio

Círculos o polígonos deben ser proporcionales al área

• proporcional al área

...O mejor usar barras

• proporcional a la longitud

Prefieran etiquetas en vez de leyendas

 Etiquetas no quitan la atención del lector de los datos

Nunca ordenar datos alfabeticamente

- Se pierde la estructura de los datos
- De mayor a menor las comparaciones son más eficientes

A veces no es necesario incluir una escala completa

Los 10 gráficos más malos

 https://www.biostat.wisc.edu/~kbroman/ topten_worstgraphs/

El ridiculograma

• https://twitter.com/hashtag/ridiculogram

Preparen sus computadores

- Instalar R y R Studio
- Realizar el tutorial: http://www.datacarpentry.org/R-ecology-lesson/ de la lección 1 a la 6
- Averiguar lo que es un Tufte Handout
- Instalar el paquete de R "ggplot2"