Minor Thesis

Development and Analysis of Barrier Protocols

Ronny Brendel (http://automaton2000.com)

Responsible Professor: Prof. Dr. Christel Baier

Supervisor: Dr. Sascha Klüppelholz

Content

Introduction

Basics, Motivation

Protocols

Central Counter, B1 Barrier

Modelling

Shared Memory, Protocols

Analysis

Functional, Quantitative

Conclusion, Future Work, Sources

- Usual Implementations include
 - Central Counter Barrier (atomic increment)
 - Hierarchical approaches

Round 1: $0 \leftarrow 1$ $2 \leftarrow 3$ $4 \leftarrow 5$ $6 \leftarrow 7$ Round 2: $0 \leftarrow 2$ $4 \leftarrow 6$

Broadcast:

Gather:

Round 2:
$$0 \longrightarrow 2$$
 $4 \longrightarrow 6$

Motivation < Introduction

- Today's Barrier Protocols have been invented long ago
- Probabilistic Write/Copy-Select (pW/CS)
 - Concurrent protocols are unnecessarily strict
 - Relieving strictness can improve performance
 - Complexity of modern computers makes the timing of concurrent interaction effectively random. Employ the tools of probability theory for designing protocols

Central Counter Bar. < Protocols

```
shared variables: integer barrier := threadCount
atomic{barrier := barrier - 1}
wait until barrier = 0
```

Atomic decrement:

Repeated reading:

B1 Barrier < Protocols

```
shared variables: boolean barrier[threadCount]
local variables: integer
initialisation: barrier[*] := false
barrier [threadIndex] := true
i := 0
while i < threadCount {
    if barrier[i] = false {
      i := -1
```

Modelling

- Functional
 - Non-deterministic transition system + LTL
 - SPIN
 - detailed model to reveal all possible mistakes

- Quantitative
 - CTMC + CSL/CSRL

- PRISM
- reduced to just costly transitions, no reinitialisation

Shared Variable < Modelling

- Synchronisation is about exchanging information, i.e. sharing memory
- Very small information -> Timing dominated by memory access latency
- Memory access is cached -> We have to model caching
- We identify a shared variable with the cache line it resides on
- MSI protocol + atomic operations

Shared Variable < Modelling

Central Counter Bar. < Modelling

B1 Barrier < Modelling

Functional < Analysis

Functional < Analysis

Quantitative < Analysis

Conclusion

- Introduced innovative barrier protocols
 - No atomic operations or locks required
 - + Competitive performance
 - Bandwidth/Energy hungry
- Principles of pW/CS apt to improve synchronisation performance
- Quantitative model checking enables exhaustive, fine-grained analysis beyond the capability of tests/benchmarks

Future Work

- Analyse protocols using measurement
- Invent more protocols
 - variations of existing
 - remote write-based
- Extend model checking
 - more processes/threads
 - more detail
 - cache protocols, cache hierarchies
 - limited bandwidth and other influences

Sources

- [1] Probabilistic write copy select, Paper,
 In 13th Real-Time Linux Workshop, pages 195–206, Oct. 2011
- [2] A probabilistic quantitative analysis of probabilistic-write/copy-select, Paper,
 In NASA Formal Methods, pages 307–321. Springer, 2013.
- [3] Evaluation of publicly available Barrier-Algorithms and Improvement of the Barrier-Operation for large-scale Cluster-Systems with special Attention on InfiniBand Networks

http://htor.inf.ethz.ch/publications/index.php?pub=12

- [4] PRISM, Website, 13-03-019
 http://www.prismmodelchecker.org
- [5] SPIN, Website, 13-01-08
 http://spinroot.com

Thank you!

Slides and report are available at

http://automaton2000.com/barrier-slides.pdf

http://automaton2000.com/barrier-minor-thesis.pdf