Algebra z geometria analityczna

dr Joanna Jureczko

Zestaw 3

Postać trygonometryczna i wykładnicza liczb zespolonych Interpretacja geometryczna liczby zespolonej

3.1. Obliczyć moduły liczb zespolonych

a)
$$(1+2i)(3-4i)$$
, b) $\frac{4+i}{3+2i}$,
c) $(1+\sqrt{2}i)^4$, d) $\frac{(3-\sqrt{3}i)^2}{(\sqrt{2}+2i)^3}$.

b)
$$\frac{4+i}{3+2i}$$
,

c)
$$(1 + \sqrt{2}i)^4$$

d)
$$\frac{(3-\sqrt{3}i)^2}{(\sqrt{2}+2i)^3}$$
.

3.2. Znaleźć argumenty główne liczb zespolonych

a)
$$z = 2$$

b)
$$z = i$$
,

c)
$$z = 3 - 3i$$

a)
$$z = 2$$
, b) $z = i$, c) $z = 3 - 3i$, d) $-\frac{1}{2} - \frac{\sqrt{3}}{2}i$.

3.3. Przedstawić poniższe liczby w postaci trygonometrycznej i wykładniczej

a)
$$1 + \sqrt{3}$$

b)
$$\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i$$

c)
$$2i(1-i)$$

$$d) -4$$

e)
$$2i$$
.

f)
$$i^2$$
,

g)
$$\frac{1-i}{1+i}$$
,

a)
$$1 + \sqrt{3}i$$
, b) $\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i$, c) $2i(1-i)$, d) -4 , e) $2i$, f) i^2 , g) $\frac{1-i}{1+i}$, h) $(-\frac{1}{2} + \frac{\sqrt{3}}{2}i)^2$, i) $(1+i\sqrt{3})2i$.

i)
$$(1 + i\sqrt{3})2i$$

3.4. Korzystając z postaci trygonometrycznej liczb zespolonych obliczyć

a)
$$(4+4i)(-3+3i)$$
, b) $\frac{2+2i}{1-i}$, c) $\frac{1-\sqrt{3}i}{\sqrt{3}+i}$, d) $\frac{3i}{1+i}$.

b)
$$\frac{2+2i}{1-i}$$

c)
$$\frac{1-\sqrt{3}i}{\sqrt{3}+i}$$
,

d)
$$\frac{3i}{1+i}$$
.

3.5. Obliczyć wartości podanych wyrażeń i zaznaczyć je na płaszczyźnie zespolonej

a)
$$exp(i\pi/2)$$

b)
$$exp(\pi i)$$
,

a)
$$exp(i\pi/2)$$
, b) $exp(\pi i)$, c) $exp(-4\pi i/3)$, d) $exp(-i)$.

d)
$$exp(-i)$$
.

3.6. Zaznaczyć na płaszczyźnie zespolonej zbiory punktów spełniających warunki

a)
$$\arg z = \frac{5\pi}{4}$$

a)
$$\arg z = \frac{5\pi}{4}$$
, b) $\frac{\pi}{6} < \arg(z+3i) < \frac{\pi}{3}$, c) $\pi \leqslant \arg(iz) < 2\pi$, d) $\frac{\pi}{3} \leqslant \arg(-z) \leqslant \frac{\pi}{2}$.

c)
$$\pi \leqslant \arg(iz) < 2\pi$$

d)
$$\frac{\sigma}{3} \leqslant \arg(-z) \leqslant \frac{\pi}{2}$$
.

3.7. Zaznaczyć na płaszczyźnie zespolonej zbiory punktów spełniających warunki

a)
$$|z| < 2$$
 oraz $|\arg z| \leqslant \frac{\pi}{4}$,

a)
$$|z| < 2$$
 oraz $|\arg z| \leqslant \frac{\pi}{4}$, b) $1 < |z + 2i| < 2$ oraz $0 < \arg z < \frac{\pi}{3}$, c) $|z - (4 + 3i)| < 2$ oraz $2 < Imz < 4$, d) $|z + 3i| \leqslant 3$ oraz $Rez = Imz$.

c)
$$|z - (4+3i)| < 2 \text{ oraz } 2 < Imz < 4$$

d)
$$|z + 3i| \le 3$$
 oraz $Rez = Imz$.

3.8. Zaznaczyć na płaszczyzme zeopola a) |z-3+4i|=1, b) $|\frac{z-2i}{z+1}|=1,$ c) |z+5|=|3i-z|, d) $2\leqslant |iz-5|<3,$ e) $|z+1-2i|\geqslant 3$ oraz |z-3|<4, f) $|\frac{z+i}{z^2+1}|\geqslant 1,$ h) $3|z-1|\leqslant |z^2-1|<6|z+1|.$ 3.8. Zaznaczyć na płaszczyźnie zespolonej zbiory punktów spełniających warunki

1

a)
$$|z - 3 + 4i| = 1$$
,

b)
$$\left| \frac{z-2i}{z+1} \right| = 1$$
,

c)
$$|z+5| = |3i-z|$$
.

d)
$$2 \le |iz - 5| < 3$$

e)
$$|z + 1 - 2i| \ge 3$$
 oraz $|z - 3| <$

$$f)\left|\frac{z+i}{z^2+1}\right| \ge 1,$$

$$g) |\overline{z} + 2 - i| \le |z|,$$

h)
$$\tilde{3}|z-1| \le |z^2-1| < 6|z+1|$$

ODPOWIEDZI

- **3.1.** a) $5\sqrt{5}$, b) $\sqrt{17/13}$, c) 9, d) $\frac{\sqrt{6}}{3}$. **3.2.** a) 0, b) $\frac{\pi}{2}$, c) $\frac{7\pi}{4}$, d) $\frac{4\pi}{3}$.
- **3.3.** a) $2exp(i\pi/3)$, b) $exp(i\frac{7}{4}\pi)$, c) $2\sqrt{2}exp(i\pi/4)$, d) $4exp(i\pi)$, e) $2exp(i\pi/2)$, f) $exp(i\pi)$, g) $exp(i\frac{3}{2}\pi)$, h) $exp(i\frac{4}{3}\pi)$, i) $4exp(i\frac{5}{6}\pi)$.
- **3.4.** a) -24, b) $2i = 2(\cos(\pi/2) + i\sin(\pi/2))$, c) $-i = 1(\cos(3\pi/2) + i\sin(3\pi/2))$,
- d) $(3/2)(1+i) = (3\sqrt{2}/2)(\cos(\pi/4) + i\sin(\pi/4)).$
- **3.5.** a) i, b) -1, c) $-1/2 + i\sqrt{3}/2$, d) $\cos 1 i \sin 1$.