Surds

- 1. Which of the following is rational?
 - **A.** $\sqrt{12^3}$
 - **B.** $\sqrt{4} \times \sqrt{3}$
 - C. $\sqrt{8} \div \sqrt{2}$
 - **D.** $\sqrt{8} + \sqrt{8}$
 - **E.** $\sqrt{3} \sqrt{2}$

[1972-CE-MATHS B1-2]

- 2. $\frac{\sqrt{3}-1}{\sqrt{3}+1} \frac{\sqrt{3}+1}{\sqrt{3}-1} =$
 - **A.** $-2\sqrt{3}$.
 - **B.** $-\frac{1}{2}\sqrt{3}$.
 - C. $\frac{1}{2}\sqrt{3}$.
 - **D.** $2\sqrt{3}$.
 - E. 4.

[1977-CE-MATHS 2-5]

- 3. One of the following expressions is different in value from the other four. Which one is it?
 - A. $.0234\sqrt{43200}$
 - **B.** $.234\sqrt{432}$
 - C. $2.34\sqrt{4.32}$
 - **D.** $23.4\sqrt{.432}$
 - E. $234\sqrt{.000432}$

[SP-CE-MATHS 2-36]

- 4. $\sqrt{4+4x^2} \sqrt{1+x^2} =$
 - **A.** 1 + x.
 - **B.** $\sqrt{1+x^2}$
 - C. $3\sqrt{1+x^2}$. D. $\sqrt{3+3x^2}$. E. $\sqrt{3} + \sqrt{3}x$.

[SP-CE-MATHS 2-10]

- 5. If $(\sqrt{3} \sqrt{2})x = 1$, then x =
 - **A.** $\sqrt{3} + \sqrt{2}$.
 - **B.** $\frac{1}{\sqrt{3} + \sqrt{2}}$.

 - **D.** $\frac{1}{\sqrt{3}} \frac{1}{\sqrt{2}}$.

[1984-CE-MATHS 2-6]

- 6. If $x + \frac{1}{x} = 1 + \sqrt{2}$, then $x^2 + \frac{1}{x^2} = \frac{1}{x^2}$
 - A. 1.
 - B. 3.
 - C. $1 + 2\sqrt{2}$.
 - **D.** $2 + 2\sqrt{2}$.
 - E. $3 + 2\sqrt{2}$.

[1987-CE-MATHS 2-6]

- 7. If $x = \sqrt{a+1} \sqrt{a}$, where a > 0, then $x + \frac{1}{x} =$
 - A. 2.
 - **B.** $2\sqrt{a}$.
 - C. $2\sqrt{a+1}$.
 - **D.** $2\sqrt{a+1} \sqrt{a}$
 - **E.** $2(\sqrt{a+1} + \sqrt{a})$.

[1989-CE-MATHS 2-43]

- 8. $\frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \frac{1}{\sqrt{4}+\sqrt{5}} =$
 - A. $\frac{1}{1-\sqrt{5}}$.
 - **B.** $\frac{1}{\sqrt{5}-1}$.
 - C. $1 + \sqrt{5}$.
 - **D.** $1 \sqrt{5}$.
 - E. $-1 + \sqrt{5}$.

[1990-CE-MATHS 2-33]

- 9. If $(\sqrt{3} + 1)\sqrt{x} = 2$, then x =
 - **A.** $2 \sqrt{3}$.
 - **B.** $\sqrt{3} 1$.

 - **D.** $2(2-\sqrt{3})$.
 - **E.** $4 \sqrt{3}$.

[1991-CE-MATHS 2-33]

- 10. $\frac{\sqrt{5}+1}{\sqrt{5}-1} \frac{\sqrt{5}-1}{\sqrt{5}+1} =$
 - **A.** 0.

 - C. 3.
 - **D.** $\sqrt{5}$.
 - E. $\frac{1}{2} + \sqrt{5}$.

[1992-CE-MATHS 2-4]

11. Simplify
$$\frac{\sqrt{b}}{\sqrt{a}-\sqrt{b}} + \frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}}$$
.

$$\mathbf{A.} \quad \frac{1}{\sqrt{a} - \sqrt{b}}$$

$$\mathbf{B.} \quad \frac{a + 2\sqrt{ab} - b}{a - b}$$

$$\mathbf{C.} \quad \frac{\sqrt{b} + \sqrt{a}}{2\sqrt{a}}$$

$$\mathbf{D.} \quad \frac{b + 2\sqrt{ab} - a}{a - b}$$

E.
$$\frac{a+b}{a-b}$$

[1993-CE-MATHS 2-4]

12. If
$$a = \sqrt{3} + \sqrt{2}$$
, then $a - \frac{1}{a} =$

- **A.** 0.
- **B.** $2\sqrt{2}$.
- C. $2\sqrt{3}$.
- **D.** $\sqrt{3} \sqrt{2}$...

E.
$$\frac{2\sqrt{3}}{3} + \frac{\sqrt{2}}{2}$$
.

[1994-CE-MATHS 2-4]

13.
$$\frac{1}{2+\sqrt{6}} - \frac{1}{2-\sqrt{6}} =$$

- **A.** $-\sqrt{6}$.
- **B.** $-\frac{\sqrt{6}}{2}$.
- **C**. 0
- **D.** $\frac{\sqrt{6}}{2}$.
- **E.** $\sqrt{6}$.

[1995-CE-MATHS 2-5]

14. If
$$(\frac{\sqrt{3}}{3} - \frac{1}{2})x = 1$$
, then $x =$

- **A.** $-\frac{\sqrt{3}}{3} + \frac{1}{2}$.
- **B.** $\frac{\sqrt{3}}{3} + \frac{1}{2}$.
- C. $-4\sqrt{3} 6$.
- **D.** $4\sqrt{3} 6$.
- **E.** $4\sqrt{3} + 6$.

[1996-CE-MATHS 2-39]

15.
$$\frac{1}{\sqrt{2}-1} - \frac{1}{\sqrt{3}-\sqrt{2}} =$$

- **A.** $-1 + \sqrt{3}$.
- **B.** $1 \sqrt{3}$.
- C. $-1 + 2\sqrt{2} \sqrt{3}$.
- **D.** $1 2\sqrt{2} + \sqrt{3}$.
- E. $1 + 2\sqrt{2} \sqrt{3}$.

[1997-CE-MATHS 2-29]

16. If
$$(\frac{\sqrt{5}}{2} + 1)x = \sqrt{2}$$
, then $x =$

- **A.** $2\sqrt{10} 2$.
- **B.** $2\sqrt{10} 4\sqrt{2}$.
- C. $2\sqrt{10} + 4\sqrt{2}$.
- **D.** $\frac{\sqrt{10}-1}{2}$.
- E. $\frac{2\sqrt{10}-4\sqrt{2}}{3}$.

[2000-CE-MATHS 2-40]

17. If
$$(x+1)(\sqrt{3}-1) = 4$$
, then $x =$

- A. $2\sqrt{3} 3$.
- **B.** $2\sqrt{3} + 1$.
- C. $2\sqrt{3} + 2$.
- **D.** $\frac{4\sqrt{3}-1}{2}$.

[2002-CE-MATHS 2-39]

18.
$$\sqrt{25a} - \sqrt{4a} =$$

- A. $3\sqrt{a}$.
- **B.** $7\sqrt{a}$.
- C. $21\sqrt{a}$.
- **D.** $\sqrt{21a}$.

[2004-CE-MATHS 2-4]

19. If
$$n$$
 is a positive integer, then
$$\frac{1}{1+2\sqrt{n}} - \frac{1}{1-2\sqrt{n}} =$$

- $\mathbf{A.} \quad \frac{4\sqrt{n}}{1-4n}$
- $\mathbf{B.} \quad \frac{-4\sqrt{n}}{1+4n}$
- $\mathbf{C.} \quad \frac{4\sqrt{n}}{4n+1} \ .$
- **D.** $\frac{4\sqrt{n}}{4n-1}$

[2005-CE-MATHS 2-37]

- 20. If a > 0, then $\frac{3\sqrt{a}}{2} \frac{a}{\sqrt{4a}} =$
 - **A.** 1.

 - C. \sqrt{a} . D. $2\sqrt{a}$.

[2007-CE-MATHS 2-37]

- 21. If a > 0, then $\sqrt{49a} \sqrt{25a} =$

 - **A.** $2\sqrt{a}$. **B.** $12\sqrt{a}$. **C.** $\sqrt{24a}$.
 - **D.** $\sqrt{74a}$.

[2008-CE-MATHS 2-39]

Basic Concepts

- 1. If a and b are greater than 1, which of the following statements is/are true?
 - $(1) \quad \sqrt{a+b} = \sqrt{a} + \sqrt{b}$
 - (2) $(a^{-1} + b^{-1})^{-1} = a + b$
 - (3) $a^2b^3 = (ab)^6$
 - A. (1) only
 - **B.** (2) only
 - C. (3) only
 - **D.** (1) and (2) only
 - E. None of them

[1992-CE-MATHS 2-9]

Simplification of Indices

2. Which of the following is identical to

$$\frac{\left(\frac{p}{q}\right)^{-\frac{1}{3}}\left(\frac{q}{p}\right)^{2}}{p^{-\frac{2}{3}}q^{\frac{2}{3}}}?$$

[1972-CE-MATHS B1-15]

- 3. $32^{-\frac{2}{5}} =$

[1974-CE-MATHS A1-1]

- 4. $\frac{(a-b)^{\frac{1}{2}}}{b^{\frac{1}{2}}} =$ **A.** $(ab-b^2)^{\frac{1}{2}}.$ **B.** $\left(\frac{a}{b}-1\right)^{\frac{1}{2}}.$

- C. $\left(\frac{a}{b}\right)^{\frac{1}{2}} 1$.
- **D.** $-b^{\frac{1}{2}}(a-b)^{\frac{1}{2}}$.

[1977-CE-MATHS 2-13]

- 5. $\left(\frac{27}{64}\right)^{-\frac{2}{3}} =$

[SP-CE-MATHS A2-36]

- - **A.** 3^2 . **B.** 3^{2n} . **C.** 3^{2-n} **D.** 3^{n-2}
 - E. 3^{3n+2}

[SP-CE-MATHS A2-37]

- - **A.** x^2 . **B.** x^3 . **C.** x^4 . **D.** x^{3-n}
 - **E.** x^{n-3} .

[1978-CE-MATHS 2-6]

- 8. $(3^{a+b})^2 =$
 - **A.** 3^{a+b+2}
 - **B.** $3^{a^2+b^2}$
 - C. $3^{(a+b)^2}$ **D.** 3^{2a+2b}
 - $9^{a^2+b^2}$

[1978-CE-MATHS A2-45]

- 9. $125^a \cdot 5^b =$
 - **A.** 625^{a+b}
 - **B.** 625^{ab}
 - C. 125^{a+3b} **D.** 5^{a+3b}

 - **E.** 5^{3a+b}

[1980-CE-MATHS 2-2]

$$10. \ \frac{5^{n+2} - 35(5^{n-1})}{18(5^{n+1})} =$$

- **A.** $\frac{1}{18}$.
- **B.** $\frac{1}{15}$.
- **D.** 5.
- E. 5^n .

[1980-CE-MATHS 2-8]

11.
$$\frac{(a^2b^{-3})^2}{a^{-2}b} =$$

- **A.** a^2b^{-7} .
- **B.** a^2b^{-5} .
- C. a^6b^{-2} .
- **D.** a^6b^{-6} .
- **E.** a^6b^{-7} .

[1981-CE-MATHS 2-1]

12.
$$(2^x)^x =$$

- **A.** $2^{(x^x)}$.
- **B.** $2^x \cdot x^x$.
- C. $2x^x$.
- **D.** 2^{2x} .
- **E.** $2^{(x^2)}$

[1981-CE-MATHS 2-4]

13.
$$\frac{8^{2x} \cdot 4^{3x}}{2^x \cdot 16^{2x}} =$$

- **A.** 2^{3x} .
- **B.** 2^{2x} .
- \mathbf{C} . 2^x .
- D. 8.
- **E.** 1.

[1982-CE-MATHS 2-2]

14.
$$(x^2y^{-1}) \div (x^{\frac{1}{2}}y^{-1})^2 =$$

- \mathbf{A} . xy.
- **B.** xy^{-1} .
- **C.** xy^{-3} .
- **D.** $x^2y^{\frac{1}{2}}$.
- **E.** $x^{-\frac{1}{2}}y^{-2}$.

[1983-CE-MATHS 2-4]

15.
$$(2^{n+1})^2 \times (2^{-2n-1}) \div 4^n =$$

- **B.** 2^{2n-1} .
- C. 2^{n^2+2n}
- **D.** 2^{n^2-2n} .
- E. 2^{-2n+1} .

[1984-CE-MATHS 2-3]

16.
$$\frac{2^{n+4}-2(2^n)}{2(2^{n+3})} =$$

- **B.** $\frac{7}{4}$. **C.** $1 2^{n+1}$.
- **D.** $2^{n+4} \frac{1}{8}$.
- 2^{n+1} .

[1988-CE-MATHS 2-1]

17.
$$3^{n-1} \times 3^{n+1} =$$

- **A.** 3^{n^2-1} .
- **B.** 9^{n^2-1}
- C. 3^{2n} .
- **D.** 6^{2n} .
- E. 9^{2n} .

[1989-CE-MATHS 2-1]

18.
$$\sqrt{\frac{x}{\sqrt{x}}} =$$

- C. $x^{\frac{1}{2}}$.
- **E.** $x^{-\frac{3}{4}}$.

[1989-CE-MATHS 2-3]

- 19. $(a^{2n})^3 =$
 - **A.** a^{6n} .
 - **B.** a^{8n} .
 - C. a^{2n^3}
 - **D.** a^{6n^3} .
 - **E.** a^{8n^3} .

[1990-CE-MATHS 2-1]

20.
$$(a^{2a})(3a^{4a}) =$$

- **A.** $3a^{6a}$.
- **B.** $(3a)^{6a}$.
- C. $3a^{8a}$.
- **D.** $4a^{6a}$.
- **E.** $(3^{4a})(a^{6a})$.

[1991-CE-MATHS 2-1]

21. Simplify
$$\underbrace{\frac{n \text{ times}}{n \times n \times ... \times n}}_{n \text{ times}}$$

- **A.** n^{n-2}
- **B.** $n^{\frac{n}{2}}$
- C. n-2
- **D.** $\frac{n}{2}$
- E. 1

[1992-CE-MATHS 2-8]

22.
$$(3^x)^2 =$$

- **A.** $3^{(x^2)}$.
- **B.** 3^{x+2} .
- C. 3^{2x} .
- **D.** 6^x .
- **E.** 9^{2x} .

[1994-CE-MATHS 2-33]

23. Simplify
$$\left(\frac{a^6}{b^{12}}\right)^{-\frac{2}{3}}$$
.

[1995-CE-MATHS 2-4]

24.
$$\frac{27^x}{3^y} =$$

- **D.** $3^{\frac{3x}{y}}$.
- E. 3^{3x-y} .

[1996-CE-MATHS 2-2]

25.
$$\frac{(2^m)^2}{8^m} =$$

- **B.** 2^{-m} .
- **D.** 2^{m^2-3m}
- E. 2^{2m^2-3m} .

[1998-CE-MATHS 2-7]

26.
$$\frac{(a^3b^{-1})^{-2}}{(a^{-1}b^2)^4} =$$

[2000-CE-MATHS 2-3]

$$27. \ \frac{a^{n-2} + a^{n-1}}{a^{n-2}} =$$

- **A.** a^{n-1} . **B.** $a^{n-2}(1+a)$. **C.** $1+a^{n-1}$.
- $1 + \frac{1}{a}$.

1 + a.

[2001-CE-MATHS 2-10]

28.
$$2^x \cdot 8^y =$$

- **A.** 2^{x+3y}
- **B.** 2^{3xy}
- **C.** 16^{x+y}
- **D.** 16^{xy} .

[2002-CE-MATHS 2-3]

29.
$$3^x \cdot 9^y =$$

- **A.** 3^{x+2y} .
- **B.** 3^{x+3y} . **C.** 27^{x+y} .
- **D.** 27^{xy} .

[2003-CE-MATHS 2-4]

30.
$$\frac{2^{2n} \cdot 9^n}{3^n} =$$

- **A.** 6^{2n} .
- **B.** 6^{3n} .
- C. 12^n .
- **D.** 12^{2n} .

[2004-CE-MATHS 2-1]

- 31. $a \cdot a(a+a) =$
 - **A.** a^4 .
 - **B.** $2a^3$.
 - **C.** $a^3 + a$.
 - **D.** $3a^2 + a$.

[2005-CE-MATHS 2-1]

- 32. $(2x)^3 \cdot x^3 =$
 - **A.** $6x^6$.
 - **B.** $8x^6$.
 - **C.** $6x^9$.
 - **D.** $8x^9$.

[2006-CE-MATHS 2-1]

- 33. If n is a positive integer, then $3^{2n} \cdot 4^n =$
 - **A.** 6^{2n} .
 - **B.** 6^{3n} .
 - C. 12^{2n} .
 - **D.** 12^{3n} .

[2007-CE-MATHS 2-1]

- 34. $\left(\frac{1}{2}\right)^{888}(-2)^{887} =$
 - **A.** −2.
 - **B.** -0.5.
 - **C.** 0.
 - **D.** 0.5.

[2008-CE-MATHS 2-1]

- 35. $2^n \cdot 3^n =$
 - A. 5^n .
 - **B.** 6^n .
 - **C.** 8^n .
 - **D.** 9^n .

[2009-CE-MATHS 2-1]

- $36. \ \left(\frac{1}{9}\right)^{500} (3^{500})^3 =$
 - **A.** 0.
 - **B.** 3⁵⁰⁰.
 - **C.** 6^{500} .
 - **D.** 18^{500} .

[2010-CE-MATHS 2-2]

37. If a and b are positive numbers, then $\frac{1}{\sqrt{b}}$

$$\frac{1}{\sqrt{a^3}} \div \frac{\sqrt{b}}{a} =$$

- A. $\frac{\sqrt{b}}{ab}$
- **B.** $\frac{\sqrt{ab}}{b}$.
- C. $\frac{\sqrt{ab}}{ab}$
- **D.** $\frac{\sqrt{a^3b}}{b}$.

[2010-CE-MATHS 2-39]

- $38. \ 5^{334} \left(\frac{-1}{5}\right)^{333} =$
 - **A.** −5.
 - **B.** -0.2.
 - C. 0.
 - **D.** 5.

[2011-CE-MATHS 2-1]

Equations with Indices

- 39. If $25^x = 125$, then x =
 - **A.** $\frac{5}{2}$.
 - **B.** $\frac{2}{5}$
 - C. 5.
 - **D.** $\frac{3}{2}$.
 - **E.** $\frac{2}{3}$.

[SP-CE-MATHS 2-2]

- 40. If $9^{2x} = 27$, then x =
 - **A.** $\frac{3}{2}$.
 - **B.** $\frac{1}{3}$
 - C. $\frac{2}{3}$
 - **D.** $\frac{4}{3}$.
 - **E.** $\frac{3}{4}$.

[1978-CE-MATHS 2-5]

- 41. If $10^{2y} = 25$, then $10^{-y} =$
 - **A.** $\frac{1}{5}$.

 - C. $\frac{1}{25}$.

[1979-CE-MATHS 2-23]

- 42. If $(10^x)^y = (2^z)(5^z)$, then which of the following must be true?
 - A. xy = z
 - **B.** xy = 2z
 - $\mathbf{C.} \quad xy = z^2$
 - $\mathbf{D.} \quad x^y = z$
 - **E.** $x^y = 2z$

[1986-CE-MATHS 2-29]

- 43. If $3^{2k+1} = 3^{2k} + 6$, then k =

[1987-CE-MATHS 2-7]

- 44. If $9^{x+2} = 36$, then $3^x =$

 - **B.** $\frac{4}{3}$.
 - C. 2.
 - **D.** $\sqrt{6}$.

[1993-CE-MATHS 2-34]

- 45. If $5^a = 2^b = 10^c$ and a, b, c are non-zero, then $\frac{c}{a} + \frac{c}{b} =$
 - **A.** $\frac{7}{10}$.
 - 1. В.
 - C. 7.
 - **D.** log 7.

[1995-CE-MATHS 2-38]

- 46. If $2^x \cdot 8^x = 64$, then x =
 - **A.** $\frac{3}{2}$.
 - **B.** $\frac{3}{4}$.
 - C. $\frac{6}{5}$.
 - D. 2.
 - E. 4.

[1997-CE-MATHS 2-2]

- 47. If $4^x = a$, then $16^x =$
 - **A.** 4a.
 - **B.** a^2 .
 - C. a^4 .
 - **D.** 2^a .
 - **E.** 4^a .

[1999-CE-MATHS 2-4]

HKDSE Problems

- 48. $(3a)^2 \cdot a^3 =$
 - **A.** $3a^5$.
 - **B.** $6a^6$.
 - C. $9a^5$.
 - **D.** $9a^6$.

[SP-DSE-MATHS 2-1]

- 49. $\frac{(2x^4)^3}{2x^5} =$
 - **A.** $3x^2$. **B.** $3x^7$.

 - **C.** $4x^7$
 - **D.** $4x^{59}$.

[2012-DSE-MATHS 2-1]

- 50. $(27 \cdot 9^{n+1})^3 =$
 - **A.** 3^{6n+12}
 - **B.** 3^{6n+15} .
 - C. 3^{9n+12} .
 - **D.** 6^{9n+18} .

[2013-DSE-MATHS 2-1]

- 51. $(2n^3)^{-5} =$

 - C. $\frac{1}{10n^{125}}$.

[2014-DSE-MATHS 2-1]

$$52. \ \frac{(3y^6)^4}{3y^2} =$$

- **A.** $4y^5$. **B.** $4y^8$. **C.** $27y^{12}$. **D.** $27y^{22}$.

[2015-DSE-MATHS 2-2]

53.
$$8^{222} \cdot 5^{666} =$$

- **A.** 10⁶⁶⁶ . **B.** 10⁸⁸⁸ . **C.** 40⁶⁶⁶ . **D.** 40⁸⁸⁸ .

[2016-DSE-MATHS 2-1]

$$54. \ \left(\frac{1}{9^{555}}\right) 3^{444} =$$

[2017-DSE-MATHS 2-2]

55.
$$\frac{8^{2n+1}}{4^{2n+1}} =$$

- B. 2
- C. 2ⁿ
- D. 2-n

[2018-DSE-MATHS 2-1]

56.
$$\frac{(6x^7)^2}{4x^5} =$$

- A. 3x4
- B. 9x4
- C. 3x9
- D. 9x⁹

[2019-DSE-MATHS 2-2]

57.
$$\frac{6x}{(3x^{-5})^{-2}} =$$

- A. $54x^3$

[2020-DSE-MATHS 2-1]

Basic Concepts

- 1. If a and b are positive numbers, which of the following is/are true?
 - (1) $\log_{10}(a+b) = \log_{10}a + \log_{10}b$
 - (2) $\log_{10} \frac{a}{b} = \log_{10} a \log_{10} b$

 - **A.** (1) only
 - В. (2) only
 - **C.** (3) only
 - **D.** (1) and (2) only
 - **E.** (1), (2) and (3)

[1983-CE-MATHS 2-36]

- 2. If $\log x^2 + \log y^2 = \log z^2$, where x, y and z are positive numbers, which of the following must be true?
 - (1) $x^2 + y^2 = z^2$
 - $(2) \quad \log x + \log y = \log z$
 - (3) $x^2y^2 = z^2$
 - (1) only
 - (2) only
 - C. (3) only
 - D. (1) and (2) only
 - (2) and (3) only

[1986-CE-MATHS 2-33]

- 3. If $\log a > 0$ and $\log b < 0$, which of the following is/are true?
 - (1) $\log \frac{a}{b} > 0$
 - (2) $\log b^2 > 0$
 - (3) $\log \frac{1}{a} > 0$
 - A. (1) only
 - В. (2) only
 - C. (3) only
 - D. (1) and (2) only
 - (2) and (3) only

[1988-CE-MATHS 2-35]

Logarithmic Expressions

- 4. $10^{\log_{10} b} =$
 - **A.** $(\log_{10} b)^2$.
 - **B.** $\log_{10} (\log_{10} b)$.
 - \mathbb{C} . $\log_{10} b$.
 - **D.** b.
 - $10 \log_{10} b$.

[1974-CE-MATHS A1-16]

- 5. If $3^x = 8$, then x =

 - **D.** log 5.

[1977-CE-MATHS 2-15]

- 6. If $\log a = 0.0490$, then $\log \frac{1}{a} =$
 - 0.0490
 - -0.9510. B.
 - -1.9510. C.
 - -0.0490.
 - -1.0490.

[SP-CE-MATHS 2-12*]

- 7. $\log_{10}(0.1) =$
 - **A.** −2.
 - **B.** −1 . **C.** 0 .
 - 1. D.
 - E.
 - 2.

[SP-CE-MATHS A2-38]

- 8. If $\log a = 0.5678$, then $\log \sqrt{a} =$
 - A. $\sqrt{0.5678}$.
 - **B.** $0.5678 \div 2$
 - C. 0.5678 2
 - **D.** 2 0.5678.
 - 2.5678.

[1978-CE-MATHS 2-2]

- 9. What is $\frac{\log_{10} 5}{\log_{10} 3}$ equal to?
 - A.
 - **B.** $\log_{10} (5-3)$
 - **C.** $\log_{10} 5 \log_{10} 3$
 - **D.** $\log_{10}(\frac{3}{3})$
 - None of the above

[1979-CE-MATHS 2-14]

- 10. If $n = 10^a$, then $\log_{10} n =$
 - **A.** 10^{a}
 - 10^{n} В.
 - \mathbf{C} . n^a .
 - a^n . D.
 - E. a.

[1980-CE-MATHS 2-4]

- 11. If $\log_{10} x + \log_{10} 4 = \log_{10} (x + 4)$, what is the value of x?
 - **A.** 0
 - **B.** 1
 - C. $\frac{4}{3}$
 - **D.** 4
 - \mathbf{E} . x may be any positive number

[1981-CE-MATHS 2-8]

- 12. $\log_{10} (x^{\log_{10} x}) =$
 - **A.** $(\log_{10} x)^2$.
 - **B.** $\log_{10}(x^2)$.
 - C. $x \log_{10} x$.
 - **D.** $\log_{10} (\log_{10} x)$.
 - **E.** 10^{-2} .

[1982-CE-MATHS 2-30]

- 13. $\log_{10} (a^2 b^2) =$
 - $\mathbf{A.} \quad \frac{\log_{10} a}{\log_{10} b}$
 - **B.** $2 \log_{10} (a b)$.
 - C. $2 \log_{10} a 2 \log_{10} b$.
 - **D.** $\log_{10}(a+b) + \log_{10}(a-b)$.
 - **E.** $(\log_{10} a + \log_{10} b)(\log_{10} a \log_{10} b)$.

[1985-CE-MATHS 2-8]

- 14. $\log_4 2\sqrt{2} =$
 - **A.** $\frac{3}{8}$.
 - **B.** $\frac{3}{4}$.
 - C. $\frac{1}{4}$.
 - **D.** $2^{\frac{3}{4}}$.
 - **E.** $2^{\frac{3}{8}}$.

[1989-CE-MATHS 2-42]

- 15. If $2 = 10^p$, $3 = 10^q$, express $\log \frac{1}{6}$ in terms of *p* and *q*.
 - $\mathbf{A.} \quad -p-q$
 - **B.** $\frac{1}{pq}$
 - C. $\frac{1}{p+q}$
 - **D.** pq
 - \mathbf{E} . p+q

[1990-CE-MATHS 2-5]

- 16. If $\log x : \log y = m : n$, then x =
 - A. $\frac{my}{n}$.
 - **B.** (m-n)y.
 - C. m-n+y.
 - **D.** $y^{\overline{n}}$.
 - E. $\frac{m \log y}{n}$

[1991-CE-MATHS 2-34]

- 17. If $\log_{10} b = 1 + \frac{1}{2} \log_{10} a$, then b =
 - **A.** $10\sqrt{a}$.
 - **B.** $10 + \sqrt{a}$.
 - **C.** 5a.
 - **D.** $\frac{a}{2}$.
 - **E.** $1 + \frac{a}{2}$

[1992-CE-MATHS 2-5]

- 18. If $\log (p+q) = \log p + \log q$, then
 - **A.** p = q = 1.
 - **B.** $p = \frac{q}{q-1}$.
 - $\mathbf{C.} \quad p = \frac{q}{q+1}.$
 - **D.** $p = \frac{q+1}{q}$.
 - $\mathbf{E.} \quad p = \frac{q-1}{q}$

[1993-CE-MATHS 2-8]

- 19. If $\log 2 = a$ and $\log 9 = b$, then $\log 12 =$
 - **A.** $2a + \frac{b}{3}$
 - **B.** $2a + \frac{b}{2}$
 - C. $\frac{2}{3}a + \frac{2}{3}b$.
 - **D.** $a^2 + b^{\frac{1}{2}}$
 - **E.** $a^2b^{\frac{1}{2}}$.

[1994-CE-MATHS 2-34]

- 20. Let x > y > 0. If $\log (x + y) = a$ and $\log (x y) = b$, then $\log \sqrt{x^2 y^2} =$
 - A. $\frac{a+b}{2}$
 - **B.** $\frac{ab}{2}$
 - C. $\sqrt{a+b}$.
 - **D.** \sqrt{ab}
 - **E.** $\sqrt{a} + \sqrt{b}$.

[1996-CE-MATHS 2-38]

- 21. If $\log (x + a) = 2$, then x =
 - **A.** 2 a.
 - **B.** 100 a.
 - C. $\frac{100}{a}$
 - **D.** $2 \log a$.
 - **E.** $100 \log a$.

[1997-CE-MATHS 2-5]

- 22. Suppose $\log_{10} 2 = a$ and $\log_{10} 3 = b$. Express $\log_{10} 15$ in terms of a and b.
 - **A.** -a + b + 1
 - **B.** -a + 10b
 - C. a + 2b
 - **D.** (a+b)b
 - E. $\frac{10b}{a}$

[1998-CE-MATHS 2-40]

- 23. If $\frac{1}{2} \log y = 1 + \log x$, then
 - **A.** $y = \sqrt{10x}$.
 - **B.** $y = 100 + x^2$
 - C. $y = (10 + x)^2$.
 - **D.** $y = 10x^2$.
 - **E.** $y = 100x^2$.

[1999-CE-MATHS 2-39]

- 24. If $\log (x a) = 3$, then x =
 - **A.** 3^{3+a} .
 - **B.** a^3 .
 - C. 1000a.
 - **D.** 1000 + a.
 - **E.** 30 + a.

[2000-CE-MATHS 2-38]

- 25. If $\log x^2 = (\log x)^2$, then x =
 - **A.** 1.
 - **B.** 10.
 - C. 100.
 - **D.** 1 or 10.
 - E. 1 or 100.

[2001-CE-MATHS 2-37]

- 26. If $\log x^2 = \log 3x + 1$, then x =
 - A. 2.
 - **B.** 5.
 - C. 30.
 - **D.** 0 or 30.

[2002-CE-MATHS 2-40]

- 27. If $10^{a+b} = c$, then b =
 - A. $\log c a$.
 - **B.** $a \log c$.
 - C. $\frac{c}{10} a$
 - **D.** $c 10^a$.

[2003-CE-MATHS 2-40]

- 28. If $5 = 10^a$ and $7 = 10^b$, then $\log \frac{7}{50} =$
 - **A.** b a 1.
 - **B.** b a + 1.
 - C. $\frac{D}{a}$
 - **D.** $\frac{b}{a+1}$.

[2004-CE-MATHS 2-39]

- 29. If a and b are positive integers, then $\log (a^b b^a) =$
 - **A.** $ab \log (ab)$.
 - **B.** $ab (\log a)(\log b)$.
 - C. $(a+b) \log (a+b)$.
 - **D.** $b \log a + a \log b$.

[2005-CE-MATHS 2-39]

- 30. Let a and b be positive numbers. If $\log \frac{a}{10}$ = $2 \log b$, then a =
 - **A.** $10b^2$.
 - **B.** 20b.
 - **C.** $b^2 + 10$.
 - **D.** 2b + 10

[2006-CE-MATHS 2-38]

Application of Logarithm

- 31. Which of the following is the greatest?
 - **A.** 500³⁰⁰⁰
 - **B.** $2\,000^{2500}$
 - C. 2500^{2000}
 - **D.** $3\,000^{500}$

[2007-CE-MATHS 2-39]

- 32. Which of the following is the best estimate of 1234³²³⁵?
 - **A.** 10⁴⁰⁰⁰
 - **B.** 10⁵⁰⁰⁰
 - **C.** 10¹⁰⁰⁰⁰
 - **D.** 10^{20000}

[2009-CE-MATHS 2-38]

33. Which of the following is the least?

- **A.** 1234¹⁸¹¹
- **B.** 2345¹⁷¹¹
- C. 3456¹⁵¹¹
- **D.** 7890¹⁴¹¹

[2011-CE-MATHS 2-39]

HKDSE Problems

34. Let b > 1. If $a = \log_{12} b$, then $\frac{1}{a} =$

- A. $\log_b \frac{1}{12}$.
- **B.** $\log_b 12$.
- C. $\log_{12} \frac{1}{h}$

[PP-DSE-MATHS 2-36]

35. If $x - \log y = x^2 - \log y^2 - 10 = 2$, then y =

- A. 100.
- **B.** 2 or -4.
- \mathbb{C}_* $\frac{1}{100}$ or 10 000.
- **D.** $\frac{1}{10000}$ or 100.

[2013-DSE-MATHS 2-34]

36. Which of the following is the greatest?

- **A.** 124²⁴¹
- **B.** 241²¹⁴
- C. 412¹⁴²
- **D.** 421¹²⁴

[2014-DSE-MATHS 2-33]

37. If $\begin{cases} \log_9 y = x - 3 \\ 2(\log_9 y)^2 = 4 - x \end{cases}$, then y =

- **A.** -1 or $\frac{1}{2}$.
- **B.** 1 or $\frac{1}{3}$
- C. 2 or $\frac{7}{2}$
- **D.** 3 or $\frac{1}{9}$

[2017-DSE-MATHS 2-34]

38. The figure shows the graph of $y = \log_a x$ and the graph of $y = \log_b x$ on the same rectangular coordinate system, where a and b are positive constant. If a vertical line cuts the graph of v = $\log_a x$, the graph of $y = \log_b x$ and the x-axis at the points A, B and C respectively, which of the following is/are true?

- a > 1
- $\frac{AB}{BC} = \log_a \frac{b}{a}$
- A. I only
- B. II only
- C. I and III only
- D. II and III only

[2018-DSE-MATHS 2-32]

39. If $\frac{3}{3\log x - 2} + 7 = \frac{2}{2\log x + 1}$, then $\log \frac{1}{x} =$

- A. −3 or 2
- B. -2 or 3
- C. $-\frac{1}{3} \text{ or } \frac{1}{2}$ D. $-\frac{1}{2} \text{ or } \frac{1}{3}$

[2019-DSE-MATHS 2-32]

40. If the roots of the equation $(\log_{\pi} x)^2$ $10 \log_{\pi} x + 24 = \log_{\pi} x$ are α and β , then $\alpha\beta =$

- A. π¹⁰
- B. π¹¹
- C. log₁ 10
- D. log, 11

[2020-DSE-MATHS 2-32]

Exponential Graphs

1. The figure shows the graph of $y = 4^x$. The coordinates of P are

- (1,0).
- (0, 1). В.
- C. (4, 0).
- D. (0,4).

[2006-CE-MATHS 2-37]

2.

The figure shows the graph of $y = a^x$, the graph of $y = b^x$ and the graph of $y = c^x$ on the same rectangular coordinate system, where a, b and c are positive constants. Which of the following must be true?

- (1) a > b
- (2) b > c
- (3) a > 1
- (4) c > 1
- (1) and (3) only
- (1) and (4) only В.
- C. (2) and (3) only
- D. (2) and (4) only

[2008-CE-MATHS 2-38]

3. Which of the following may represent the graph of $y = -3^{-x}$?

A.

В.

C.

[2009-CE-MATHS 2-39]

4.

The figure shows the graph of $y = a^x + b$, where a and b are constants. Which of the following must be true?

- 0 < a < 1 and b > 0
- 0 < a < 1 and b < 0
- **C.** a > 1 and b > 0
- a > 1 and b < 0

[2010-CE-MATHS 2-38]

5. The figure shows the graph of $y = 7^{-x}$. The coordinates of R are

- A. (1,0).
- В. (0, 1).
- C. (7,0).
- (0,7).D.

[2011-CE-MATHS 2-38]

HKDSE Problems

6. The figure shows the graph of $y = b^x$ and the graph of $y = c^x$ on the same rectangular coordinate system, where b and c are positive constants. If a horizontal line L cuts the y-axis, the graph of $y = b^x$ and the graph of $y = c^x$ at A, B and C respectively, which of the following are true?

- (1) b < c
- (2) bc > 1
- (3) $\frac{AB}{AC} = \log_b c$
- A. (1) and (2) only
- **B.** (1) and (3) only
- C. (2) and (3) only
- **D.** (1), (2) and (3)

[2014-DSE-MATHS 2-32]

7. The figure shows the graph of y = ax and the graph of y = bx on the same rectangular coordinate system, where a and b are positive constants. If the graph of y = ax is the reflection image of the graph of y = bx with respect to the y-axis, which of the following are true?

- I. $\alpha < 1$
- II. b > 1
- III. ab = 1
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III only

[2020-DSE-MATHS 2-33]