

EffEval: A Comprehensive Evaluation of Efficiency for MT Evaluation Metrics

Daniil Larionov¹, Jens Grünwald², Christoph Leiter¹ and Steffen Eger¹

¹ Natural Language Learning Group, Bielefeld University ² Department of Computer Science, Technical University of Darmstadt daniil.larionov@uni-bielefeld.de

Main Contributions

We study 3 different aspects of computational efficiency in application to MT evaluation metrics.

- 1. We replace computationally-heavy transformer models with their light-weight alternatives for metrics like **BERTScore**, MoverScore, BaryScore.
- 2. We switch from costly alignment techniques (Word Mover Distance - WMD) to their approximations in **MoverScore**
- 3. We train **COMET**-like models efficiently with adapters

Motivation

- Inefficient metrics (like BERTScore with RoBERTa-Large) require expensive hardware to run in reasonable time, which prevents **under-resourced practitioners** from using it.
- Even with good hardware it takes too much time and energy: 71 hours for BERTScore to evaluate (30k segments × 5 language pairs × 50 MT systems)
- Metrics have loads of other applications which would benefit from an efficient option: RL reward functions, mined data filtering, online re-ranking

1. Efficient Transformers

0.6

- Evaluation datasets: WMT 15/16/21
- Measured runtime in ms/segment, on GPU g and CPU, averaged across 3 runs.
- Evaluated models:
 - RoBERTa-Large Baseline
 - **BERT-Base**
 - DistilBERT
 - TinyBERT
 - o BERT-Tiny miniatures
 - o DeeBERT

TinvRERT

- exiting
- Best tradeoff between quality/efficiency -
- RoBERTa_{LARGE} DeeBERT_{MNLI}BERT_{BASE} BERT_{BASE} • 0.55DeeBERT_{MNLI} DistilBERT • BERT_{BASE} DistilBERT - Smaller model = DistilBERT • TinyBERT DeeBERT_{MNL} TinyBERT 0.5BERTTINY BERTScore • BERT_{TINY} MoverScore • BERT_{TINY} BaryScore 50100 150200250400 450500 550 650 700 600 300 350 750runtime in ms/segment

- Dyn. early

- Distilled

- BERT

- Adv. Distilled

2. Approximations of Word Mover Distance

- MoverScore uses **WMD** as measure of distance between two texts.
- WMD calculates minimum cumulative distance that words from one text needs to travel to match the other text. Complexity is $O(p^3 \log p)$.
- Word Centroid Distance (WCD) and Relaxed Word Mover Distance (RWMD) are two fast approximations of WMD.

Step	WMD	WCD	RWMD
get BERT embeddings	285.499	287.915	291.122
calculate distance matrix	0.829	0.005	0.782
calculate distance	5.602	0.616	0.449

3. COMET + Adapters = •?

- COMET is a trained MT evaluation metric, based on XLM-RoBERTa-Large. It is quite large and takes days to train fully. An ideal case for adapters!
- We tested various adapter configurations: Pfeiffer et al, Houlsby et al, Parallel adapter, Compacter, (IA)3. Measured Mem. in MB/Token, Fwd. and **Bwd.** speed in <u>Tokens/Second</u> and <u>Kendall-tau</u> correlation on WMT21
- Along with large COMET we also tested smaller COMETINHO.
- Results:
 - Adapters **decrease** GPU RAM usage for training and **improve** backward pass speed
 - Models with adapter can **outperform** the ones without them!
 - Simpler adapters works better

Config	Mem.↓	Fwd.↑	Bwd.↑	$ au \uparrow$	Config	Mem.↓	Fwd.↑	Bwd.↑	$ au\uparrow$
pfeiffer parallel	4.88	5123	4808 4525	0.273 0.289	pfeiffer parallel	0.770 0.741	25499 26109	25774 26113	0.252 0.252
houlsby	4.87	4607	4036	0.273	houlsby	0.769	23746	21678	0.252
compacter $(IA)^3$	4.80 5.76	3649 5195	3049 4712	0.269 0.268	compacter $(IA)^3$	0.776 0.997	18382 27075	15671 24804	0.243 0.248
no adapters	7.32	6247	2238	0.275	no adapters	1.012	31836	18941	0.243
reference	-	-	-	0.290	reference	_	-	-	0.241

