	Utech
Name:	
Roll No.:	To Owner of Samueley and Explored
Invigilator's Signature :	

CS/B.TECH(ECE-N)/SEM-3/EC-303/2012-13 2012 SIGNALS & SYSTEMS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following :

$$10 \times 1 = 10$$

i) The fundamental period of the sequence

$$x [n] = \sin\left(\frac{2\pi n}{3}\right) is$$

a) 1

b) 2

c) 3

- d) 6.
- ii) A signal is a power signal if
 - a) $E < \infty$, P = 0
- b) $P < \infty$, E = 0
- c) $P < \infty$, $E = \infty$
- d) $P = \infty$, E = 0

3204(N) [Turn over

CS/B.TECH(ECE-N)/SEM-3/EC-303/2012-13

- a) Odd harmonics of sine terms
- b) Constant term and even harmonics of cosine terms
- c) Even harmonics of sine and cosine terms
- d) Odd harmonics of sine and cosine terms.
- iv) The system described by y [n] = nx [n] is
 - a) Linear, time varying and stable
 - b) Non-Linear, time invariant and unstable
 - c) Non-linear, time varying and stable
 - d) Linear, time varying and unstable.
- v) A signal is given by the equation $\left(\frac{1}{3}\right)^n u$ (n). The signal is
 - a) an energy signal
 - b) a power signal
 - c) both energy and power signal
 - d) netither energy nor power signal.

- The signal $x(n) = e^{j\frac{3}{5}}(n + \frac{1}{2})$
 - is periodic with period $\frac{3}{5}$
 - is periodic with period $\frac{1}{2}$ b)
 - c) is non-periodic
 - d) none of these.
- The Fourier series coefficient b_n contains
 - only cosine terms a)
 - only sine terms b)
 - c) only dc and cosine terms
 - only dc and sine terms. d)
- viii) The z-transform of a sequence x (n) is X (z). The ztransform of nx(n) is
 - a) $z \frac{d}{dx} X(z)$ b) $\frac{d}{dz} X(z)$
 - c) $-z\frac{d}{dz}X(z)$
- d) None of these.
- The minimum sampling frequency associated with a ix) signal of bandwidth B Hz is
 - 2B Hz a)

b) 4B Hz

B Hz c)

d) 3B Hz.

CS/B.TECH(ECE-N)/SEM-3/EC-303/2012-13

x) The ROC of the signal
$$x(n) = \left(\frac{1}{2}\right)^n u(n) + \left(\frac{1}{3}\right)^n u(-n-1) \text{ is}$$

a)
$$\frac{1}{3} < |z| < \frac{1}{2}$$

b)
$$\frac{1}{2} < |z| < \frac{1}{3}$$

c)
$$\frac{1}{3} = |z| < \frac{1}{2}$$

- The z-transform of the signal does not exist.
- The z transform of δ (n m) is

a)
$$z^{-m}$$

b)
$$z^{-m-n}$$

c)
$$z^{n-m}$$

d)
$$z^{m-n}$$
.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

2. Define energy and power signal.

Calculate the power of signal sequence given by,

$$x[n] = e^{j(\frac{\pi n}{2} + \frac{\pi}{4})}$$
 2 + 3

3. Find the system function and impulse response of the system described by the difference equation

$$Y(n) = X(n) + 5X(n-2) - 3X(n-3) + X(n-4).$$

CS/B.TECH(ECE-N)/SEM-3/EC-303/2012-13

- Find the compact trigonometric Fourier series for the 4. exponential $e^{-t/2}$ over the interval $0 \le t \le \pi$.
- Find the Fourier transform of the signal $e^{-a|t|}$ for a > 0. 5.
- Find the Laplace transform of the signal $\frac{t^{n-1}}{(n-1)!}e^{-at}$. 6.
- 7. Determine the z-transform of the following sequence and find its ROC:

$$x(n) = \{2, -1, 3, 2, 1 \uparrow, 0, 2, 3, -1\}$$

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

- 8. Write various forms of Fourier series representation for a) continuous time periodic signal.
 - b) How do we get the frequency representation of aperiodic signal?
 - State the condition required for existence of Fourier c) Transform.
 - d) State and prove Parseval's theorem for energy signal.
 - State the F.T. of the signal $x(t) = e^{-at} u(t)$. Hence e) find out F.T. of the signal

$$x(t-t_0) = e^{-(t-t_0)}$$
. $u(t-t_0)$. $3+2+2+3+5$

CS/B.TECH(ECE-N)/SEM-3/EC-303/2012-13

- b) State and prove convolution theorem of *Z*-transform.
- c) Find z-transform and ROC of

$$x(n) = [3(3)^n - 4(2)^n]u(n).$$

d) Find the inverse z-transform using Residue method

$$X(z) = (1 - \frac{1}{4}z^{-1}) / (1 - \frac{1}{9}z^{-1}), ROC : |z| > 1/3.$$

 $2 + 3 + 5 + 5$

- 10. a) State and prove time convolution theorem for CTFT.
 - b) Find out Fourier Transform of
 - i) $\cos \omega_0 t$
 - ii) $e^{-at}u(t)$.
 - c) The input and the output of a causal LTI system are related by differential equation

$$\frac{d^{2}y(t)}{dt^{2}}+6\frac{dy(t)}{dt}+8y(t)=2x(t)$$

Find the impulse response of the system. 5 + 5 + 5

- 11. a) State and prove Sampling theorem.
 - b) What is aliasing effect? How can we overcome from this effect?

3204(N)

c) Two signals $x_1(t)$ and $x_2(t)$ are multiplied together and the product is sampled by a periodic impulse train

$$p(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT).$$
 If the signal $x_1(t)$ and $x_2(t)$

are band limited to Ω $_1$ and Ω $_2$ respectively. That is

$$X_1 (j\Omega) = 0 \text{ for } |\Omega| > \Omega_1$$

$$X_2$$
 ($j\Omega$) = 0 for $|\Omega| > \Omega_2$

Determine the maximum sampling interval T that recovers the signal form its sampling. 5 + 5 + 5

- 12. Write short note on any three of the following: 5 + 5 + 5
 - a) Probability Density Function
 - b) Stability of a system
 - c) Power Spectral Density and Energy Spectral Density
 - d) Significance of ROC.