# Minimização de Autômatos Finitos Determinísticos

#### Convertendo NFA- $\epsilon$ em DFA $\rightarrow$ ANTES

#### ERs para IF, ID, NUM e error



#### Convertendo NFA- $\epsilon$ em DFA $\rightarrow$ DEPOIS



#### **Estados Equivalentes**

- Dois estados  $s_1$  e  $s_2$  são equivalentes quando o autômato aceita uma cadeia w começando em  $s_1 \Leftrightarrow$  ele também aceita a mesma cadeia w começando em  $s_2$
- Para cada símbolo do alfabeto, tem-se que:

trans[
$$s_1$$
,  $\boldsymbol{c}$ ] = trans[ $s_2$ ,  $\boldsymbol{c}$ ] para  $\forall \boldsymbol{c}$ 

Quais estados são equivalentes no autômato?

- trans[ $s_1$ ,  $\boldsymbol{c}$ ] = trans[ $s_2$ ,  $\boldsymbol{c}$ ] para  $\forall \boldsymbol{c}$ 



Quais estados são equivalentes no autômato?

- trans[ $s_1$ ,  $\boldsymbol{c}$ ] = trans[ $s_2$ ,  $\boldsymbol{c}$ ] para  $\forall \boldsymbol{c}$ 



Quais estados são equivalentes no autômato?

- trans[ $s_1$ ,  $\boldsymbol{c}$ ] = trans[ $s_2$ ,  $\boldsymbol{c}$ ] para  $\forall \boldsymbol{c}$
- Os estados {3,6,7,8} e {6,7,8} são equivalentes?



Quais estados são equivalentes no autômato?

- trans[ $s_1$ ,  $\boldsymbol{c}$ ] = trans[ $s_2$ ,  $\boldsymbol{c}$ ] para  $\forall \boldsymbol{c}$
- Os estados {3,6,7,8} e {6,7,8} são equivalentes?
   NÃO!!! Embora ambos tenham a mesma função de transição, eles reconhecem *tokens* de tipos diferentes. Somente estados finais reconhecendo o mesmo tipo de *token* podem ser equivalentes.



- Como encontrar estados equivalentes?
  - trans[ $s_1$ , c] = trans[ $s_2$ , c] para  $\forall c$
  - Não é suficiente!!!



Contra exemplo:

Os estados 2 e 4 são equivalentes, mas trans[2, a] ≠ trans[4, a]



#### **Estados Equivalentes**

• Dois estados  $s_1$  e  $s_2$  são equivalentes quando o autômato aceita uma cadeia w começando em  $s_1 \Leftrightarrow$  ele também aceita a mesma cadeia w começando em  $s_2$ 

$$\delta(s_1, w) \rightarrow$$
 cadeia aceita  $e$ 
 $\delta(s_2, w) \rightarrow$  cadeia aceita

OU

$$\delta(s_1, w) \rightarrow \text{cadeia NÃO aceita}$$

$$e$$

$$\delta(s_2, w) \rightarrow \text{cadeia NÃO aceita}$$

#### Minimização de DFA: Método da Tabela

#### Minimização de DFA: Método do Preenchimento de Tabela

- 1) Desenhe uma tabela com todos os pares de estados  $(s_1, s_2)$
- 2) Marque com um X na tabela as entradas  $[s_1, s_2]$  onde  $s_1$  é estado final e  $s_2$  não é estado final, e vice versa (um estado final não pode ser equivalente a um estado não final).
- 3) Se existe algum par de estados  $[s_1, s_2]$  não marcados com X, tal que a função de transição  $[\delta(s_1, c), \delta(s_2, c)]$  está marcada na tabela, onde c é um símbolo de entrada, então marque com X a entrada  $[s_1, s_2]$ . Repita esta etapa até que nenhuma nova entrada da tabela seja marcada com X
- 4) Combine todos os pares  $[s_1, s_2]$  <u>não</u> marcados fazendo os mesmos um único estado no autômato minimizado.

















































































































































































































































### Lista de Exercícios

Lista 4