IoT challenges

State of the art

Aghiles DJOUDI

LIGM/ESIEE Paris & SIC/ECE Paris

July 19, 2019

- 1. Introduction
- First contribution
- 3. Conclusion

Figure 1: IoT platform.

Figure 2: IoT challenges.

1. Introduction | 1. Context

Problematic

Where is the problem?

- 1. How to Connect sensors to the best gateway?
 - Decision and optimisation problem.
 - Various network acces
 - Various configuration of each network acces
 - Lake of selection tools
- 2. How to connect sensors to this gateway with high Security level.
 - Technical problem.
 - → Lake of selective tools
 - → How to select the **best** access point
- 3. How to extract knowledge from sensors data [1].
 - → a
 - Lake of selective tools
 - How to select the **best** access point

Figure 3: Key b Indust

a industrial internet of things

[1] Pascal Thubert, Maria Rita Palattella, and Thomas Engel. 6TiSCH Centralized Scheduling: When SDN Meet IoT In: 2015 IEEE Conference on Standards for Communications and Networking (CSCN). 2015 IEEE Conference on Standards for Communications and Networking (CSCN). 00035. Tokyo, Japan: Oct. 2015, pp. 42–47.

1. Introduction | 2. Problematic 2/21

Problematic

Where is the problem [3]?

Bandwidth (BW) Spreading Factor (SF) Coding Rate (CR) Transmission Energy (Tx) Receiver Sensitivity (RS) Signal Noise Rate (SNR) Data Rate (DR)

Setting	Values	Rewards	Cost
BW	125 → 500 <i>kHz</i>	DR	RS, Range.
SF	2 ⁶ → 2 ¹²	RS, Range	SNR, longer packets, Tx.
CR	4/5 → 4/8	Resilience	longer packets, Tx.
Tx	-4 ⇒ 20 <i>dBm</i>	SNR	Tx

Table 1: [2]

Motivations

Why should we deal with such problems

- 1. → a
 - → Lake of selective tools
 - How to select the best access point
- 2. QoS Analysis
 - → a
 - Lake of selective tools
 - How to select the best access point
- 3. Threats
 - **→** a
 - Lake of selective tools
 - → How to select the **best** access point

Figure 4: Communication diversity.

Goal

Is it specific, measurable, achievable, réalistic, for 3 years?

- 1. Allow heterogeneous network to communicate
 - 2. QoS Analysis
 - Threats
- How to select the best access point
 - 1. Allow heterogeneous network to communicate
 - 2. QoS Analysis
 - 3. Threats

Figure 5: wsn-loT.

1. Introduction | 4. Goal 5/21

Challenges

Where is the difficulty?

1. Challenge 1

- 6720 possible settings
- Lake of selective tools
- How to select the **best** configuration

2. Challenge 2

- **→** a
- Lake of selective tools
- How to select the best access point

3. Challenge 3

- → a
- Lake of selective tools
- How to select the best access point

Figure 6: tets.

Contributions

Contributions

- Environnement
 - → Rural/Urban
 - Static/Mobile

-

- Senarios
 - → For each service (Smart building: Videos, Voice, Text. Smart trafic: Videos, Voice, Text)
 - → For each application protocol (MQTT, COAP, XMPP)
 - → For each network protocol (Start, Mesh)
 - For each MAC protocol (LoraWan, Sigfox, ...)
 - → For each MAC configuration (SF, CR, BW, ...)
- Algorithms
 - → Input:
 - * Service QoS metrics requiremnts
 - * Network Transmission Parameters
 - * Network QoS metrics
 - Method:
 - * MADM
 - * Game
 - * Neural
 - Outputs:
 - * Ranked networks

Contributions

Contributions

- Environnement
 - Rural/Urban
 - Static/Mobile

- Senarios
- → For each service (Smart building: Videos, Voice, Text. Smart trafic: Videos Voice, Text)
 → For each application protocol (MQTT, COAP, XMPP)
 → For each network protocol (Start, Mesh)
 → For each MAC protocol (LoraWan, Sigfox, ...)
 → For each MAC configuration (SF, CR, BW, ...)
 → Input:

 ★ Service QoS metrics requirements
 ★ Network Transmission Parameters
- Algorithms
 - - Network Transmission Parameters
 - * Network Qoo matrics
 - Method:
 - * MADM
 - * Game
 - * Neural
 - Outputs:
 - Ranked networks

1. Introduction | 5. Challenges 7 / 21

- 1. Introduction
- 2. First contribution
- 3. Conclusion

- Introduction
- 2. First contribution
- 3. Conclusion

- 1. Related work
- 2. Contagion process
- 3. Experimentation
- 4. Results exploitation
- 5. Discussion

- Introduction
- 2. First contribution
- 3. Conclusion

- 1. Related work
- Contagion process
- Experimentation
- Results exploitation
- 5. Discussion

Related work

Comparison

Paper	A1	A2	A3	A4

Table 2: An example table.

Related work

Comparison

Paper	A1	A2	A3	A4

Table 3: An example table.

- Introduction
- 2. First contribution
- Conclusion

- Related work
- 2. Contagion process
- Experimentation
- 4. Results exploitation
 - 5. Discussion

Marcov chain

Methods

$$V(s,\pi) = \mathbb{E}_{s}^{\pi} \left(\sum_{k=0}^{\inf} \gamma^{k} \cdot r(s_{k}, a_{k}) \right), s \in \mathbb{S}$$

$$(1)$$

$$r(s_k, a_k) = G_k \cdot PRR(a_k) \tag{2}$$

$$\pi^* = \arg\max_{\pi} V(s, \pi) \tag{3}$$

$$PRR = (1 - BER)^{L} \tag{4}$$

$$BER = 10^{\alpha e^{\beta SNR}}$$
 (5)

Marcov chain

Methods

$$V(s,\pi) = \mathbb{E}_s^{\pi} \left(\sum_{k=0}^{\inf} \gamma^k \cdot r(s_k, a_k) \right), s \in \mathbb{S}$$
 (1)

$$r(s_k, a_k) = G_k \cdot PRR(a_k) \tag{2}$$

$$\pi^* = \arg\max_{\pi} V(s, \pi) \tag{3}$$

$$PRR = (1 - BER)^{L} \tag{4}$$

$$BER = 10^{\alpha e^{\beta SNR}}$$
 (5)

Genetic Algorithm

Methods

-

- S = SF12, BW125, 4/8, 17 dBm
- Input:
 - → Problem: $f(x) = max(x^2), x \in [0,32]$
 - * $x_1:01101_b$
 - * $x_2:11000_h$
 - * x₃:01000_b
 - $* x_4:10011_b$
- Method: Genetic algorithm
 - Generate a set of random possible solution
 - Test each solution and see how good it is (ranking)
 - 1. Remove some bad solutions
 - 2. Duplicate some good solutions
 - 3. Make small changes to some of them (Crossover, Mutation)
- Output:
 - → x₁: 01101 (169) (14.4)
 - → x₂: 11000 (576) (49.2)
 - → x₃: 01000 (64) (5.5)
 - → x₄: 10011 (361) (30.9)

Game theory

Methods

- → Players: K = {1,..., K}
- **Strategies:** $S = S_1 \times ... \times S_K$
 - \rightarrow S_k is the strategy set of the k^{th} player.
- \blacksquare Rewards: $u_k: S \longrightarrow R_+$ and is denoted by $r_k(s_k, s_{-k})$
 - ⇒ $s_{-k} = (s_1, ..., s_{k-1}, s_{k+1}, ..., s_K) \in S_1 \times ... \times S_{k-1} \times S_{k+1} \times ... \times S_K$

... (step 2)
Methods

2. First contribution | 2. Contagion process

... (step 3)
Methods

2. First contribution | 2. Contagion process

... (step 4)
Methods

2. First contribution | 2. Contagion process

Results

Comparison

Table 4

- Introduction
- 2. First contribution
- Conclusion

- Related work
- Contagion process
- 3. Experimentation
- Results exploitation
- Discussion

Experimentation

Experimentation

- **⇒** a
- ...

Figure 7: .

- Introduction
- 2. First contribution
- Conclusion

- Related work
- Contagion process
- Experimentation
- 4. Results exploitation
- 5. Discussion

Results

Comparison

1111

Figure 8: .

- Introduction
- 2. First contribution
- 3. Conclusion

- Related work
- Contagion process
- Experimentation
- Results exploitation
- 5. Discussion

Discussion

⇒ a

→ Ł

Figure 9: .

- Introduction
- First contribution
- 3. Conclusion

Conclusion

Our main goal was

Our main contribution was

.

Our main results was

...

3. Conclusion 20 / 21

Future Challenges

Conclusion

Our future goal was

3. Conclusion 21/21

Future Challenges

Conclusion

Our future goal was

100

Thank you!

3. Conclusion 21/21

References

- [1] Pascal Thubert, Maria Rita Palattella, and Thomas Engel. * 6TISCH Centralized Scheduling: When SDN Meet IoT *. In: 2015 IEEE Conference on Standards for Communications and Networking (CSCN). 2015 IEEE Conference on Standards for Communications and Networking (CSCN). 00035. Tokyo, Japan: Oct. 2015, pp. 42–47 (p. 4).
- [2] Marco Cattani, Carlo Boano, and Kay Römer. * An Experimental Evaluation of the Reliability of Lora Long-Range Low-Power Wireless Communication *. In: Journal of Sensor and Actuator Networks 6.2 (2017), 00942. 0, 7 (p. 5).
- [3] B. Di Martino et al. " Internet of Things Reference Architectures, Security and Interoperability: A Survey ". In: Internet of Things 1-2 (Sept. 2018). 00006, pp. 99-112 (p. 5).