Course Instructor: Ming Lin

• Time and Location:

- 16:40-18:20, Wednesday; Room 204, Zuying Building
- 10:10-11:50, Friday; Room 204, Zuying Building
- Course Instructor: Ming Lin
 - Email: linming50@xmu.edu.cn
 - Office: A313, Economics Building
 - Office Hour: 13:00-16:00, Thursday
- Teaching Assistant: Jiajing Xue
 - Email: xuestatistics@163.com
- **QQ** Group:;

• **Prerequisties:** Calculus, Linear Algebra, Probability Theory, Mathematical Statistics

• References:

- Computational Statistics, Geof H. Givens and Jennifer A. Hoeting, John
 Wiley & Sons, Inc., 2nd edition, 2013.
- Numerical Optimization, Jorge Nocedal and Stephen J. Wright, Springer,
 2nd edition, 2006.
- Simulation, Sheldon M. Ross, Elsevier, 5th edition, 2013.

• Homework:

- Homework assignments are due on Wednesday, **before the class.**
- You need use Python to do programming.

• Grade Policy:

- Attendance & Homework (written questions): 5%;
- Homework (programming questions): 10%;
- Course Project: 25%;
- Midterm: 30%;
- Final Exam: 30%.

• Course Outline:

- 1. Optimization and Solving Nonlinear Equations
- 2. EM Optimization Methods
- 3. Numerical Integration
- 4. Simulation and Monte Carlo Integration
- 5. Markov Chain Monte Carlo
- 6. Bootstrapping

1. Optimization and Solving Nonlinear Equations

• Optimization Problem: We want to find a point $\theta^* \in \Theta$ (for example, $\Theta = \mathbb{R}^p$) to maximize (or minimize) an objective function $g(\theta)$, denoted by

$$\theta^* = \arg\max_{\theta \in \Theta} g(\theta).$$

Under certain conditions, it is equivalent to solving equation $\nabla g(\theta) = 0$.

- Maximum Likelihood Estimate (MLE): Let X_1, X_2, \dots, X_n be a random sample following a distribution with probability density function (PDF) $f(x_1, \dots, x_n; \theta)$, where θ is a $p \times 1$ vector.
 - For each given x_1, \dots, x_n , $f(x_1, \dots, x_n; \theta)$ considered as a function of the parameter θ is called the *likelihood function* and denoted by $l(\theta)$.
 - The MLE of θ is

$$\hat{\theta}_{MLE} = \arg \max_{\theta \in \Theta} l(\theta) = \arg \max_{\theta \in \Theta} \log l(\theta).$$

1. Optimization and Solving Nonlinear Equations

• We often use an iterative updating step

$$\theta^{(t+1)} = \theta^{(t)} + \alpha_t u^{(t)}$$

to search for θ^* , where $u^{(t)}$ is a $p \times 1$ direction vector and $\alpha_t > 0$ is the *step* size. Consider Taylor series expansion, we have

$$g(\theta^{(t+1)}) = g(\theta^{(t)} + \alpha_t u^{(t)}) \approx g(\theta^{(t)}) + \alpha_t \nabla g(\theta^{(t)})^T u^{(t)}.$$

When $\nabla g(\theta^{(t)})^T u^{(t)} > 0$ and α_t is not too large, we can have $g(\theta^{(t+1)}) > g(\theta^{(t)})$.

- How to choose $u^{(t)}$?
- How to decide α_t ?

2. EM Optimization Methods

- Suppose we want to estimate parameter θ in model $f_{XY}(x, y; \theta)$, but we can not observe x.
 - In this case, the MLE of θ is

$$\theta_{MLE} = \arg \max_{\theta} l(\theta)$$

$$= \arg \max_{\theta} f_Y(y; \theta) = \arg \max_{\theta} \int f_{XY}(x, y; \theta) dx.$$

- The integration $\int f_{XY}(x,y;\theta) dx$ may be difficult to calculate.
- The expectation-maximization (EM) algorithm provides a strategy to find the MLE in this case.

3. Numerical Integration

- Suppose we want to calculate integration $\int g(x) dx$ for some function $g(\cdot)$.
 - For example, when $g(x) = f_{XY}(x, y)$ for a given y, then $\int g(x) dx = \int f_{XY}(x, y) dx = f_Y(y)$.
 - Numerical Integration: Let $a = x_0 < x_1 < \cdots < x_{m-1} < x_m = b$ be a partition of interval [a, b] and ξ_j is any point between x_{j-1} and x_j . Then

$$\widetilde{\Pi} \stackrel{\triangle}{=} \sum_{j=1}^{m} g(\xi_j)(x_j - x_{j-1}) \to \int_a^b g(x) \, dx.$$

3. Numerical Integration

Riemann Rule, trapezoidal rule and Simpson's rule

• Example: Calculating π . A circle of radius 1 will have area equal to π , and a square drawn around that circle will have area 4. If we draw samples $(x_j, y_j), j = 1, \dots, m$, uniformly distributed within the square, then

$$\frac{1}{m} \sum_{j=1}^{m} I(x_j^2 + y_j^2 < 1) \approx \pi/4.$$

- Calculate π using simulation:
 - Generate random samples (x_j, y_j) , $j = 1, \dots, m$, where $x_j \sim U(-1, 1)$ and $y_j \sim U(-1, 1)$.
 - Estimate π by

$$\widehat{\pi} = 4 \cdot \frac{1}{m} \sum_{j=1}^{m} I(x_j^2 + y_j^2 < 1),$$

where $I(\cdot)$ is the **indicator function**. Here

$$I(x_j^2 + y_j^2 < 1) = \begin{cases} 1, & \text{if } x_j^2 + y_j^2 < 1; \\ 0, & \text{if } x_j^2 + y_j^2 \ge 1. \end{cases}$$

• Monte Carlo Methods:

- Wikipedia: Monte Carlo methods are a broad class of computational algorithms that rely on repeated **random sampling** to obtain numerical results.
- It was named, by Stanislaw Ulam and Nicholas Metropolis, after the Monte Carlo Casino.

- Monte Carlo Integration: Suppose we want to calculate $\int g(x) dx$.
 - Generate random samples $x^{(1)}, \dots, x^{(m)}$ from a trial distribution (or sampling distribution) with PDF q(x).
 - Calculate

$$\widehat{\Pi} = \frac{1}{m} \sum_{j=1}^{m} \frac{g(x^{(j)})}{q(x^{(j)})}$$

$$\to E\left(\frac{g(x^{(j)})}{q(x^{(j)})}\right) = \int \frac{g(x)}{q(x)} q(x) dx = \int g(x) dx.$$

• Example: Calculating π . We want to calculate integration

$$\pi = \int_{x^2 + y^2 < 1} 1 \, dx dy = \int I(x^2 + y^2 < 1) \, dx dy.$$

- Generate random samples (x_j, y_j) , $j = 1, \dots, m$, where $x_j \sim U(-1, 1)$ and $y_j \sim U(-1, 1)$. The PDF of the trial distribution is

$$q(x,y) = 1/4$$
 for $-1 < x, y < 1$.

- Estimate π by

$$\widehat{\pi} = \frac{1}{m} \sum_{j=1}^{m} \frac{I(x_j^2 + y_j^2 < 1)}{q(x_j, y_j)}$$

$$= 4 \cdot \frac{1}{m} \sum_{j=1}^{m} I(x_j^2 + y_j^2 < 1).$$

• The convergence rate of Monte Carlo integration is

$$\sqrt{\operatorname{Var}(\widehat{\Pi})} = \sqrt{\frac{1}{m}} \operatorname{Var}\left(\frac{g(x^{(j)})}{q(x^{(j)})}\right) = \frac{c}{\sqrt{m}}.$$

- In one-dimensional cases, the convergence rate of numerical integration is 1/m (or even faster).
- \bullet However, the convergence rate of numerical integration will decrease as the dimension of x increases.

5. Markov Chain Monte Carlo

- Markov Chain Monte Carlo (MCMC): We want to compute $E_f[g(X)] = \int g(x)f(x) dx$, where the dimension of x is large. The MCMC algorithm generates a sequence of random variables $x^{(1)}, \dots, x^{(m)}$ (a Markov chain), so that $\frac{1}{m} \sum_{i=1}^m g(x^{(i)}) \xrightarrow{a.s.} E_f[g(x)]$.
- **Ising Model:** In a magnet field, the atomic spins on a $N \times N$ lattice space, $\mathcal{L} = \{(i,j) : i,j = 1,\dots,N\}$, can be represented by a random matrix $\mathbf{X} = \{X_{i,j}\}_{N \times N}$. Each $X_{i,j}$ is either 1 or -1.

5. Markov Chain Monte Carlo

 \bullet The random matrix X follows a distribution with the form

$$\pi(\boldsymbol{x}) = P(\boldsymbol{X} = \boldsymbol{x}) = \frac{1}{S} e^{-U(\boldsymbol{x})/kT} \propto e^{-U(\boldsymbol{x})/kT},$$

where $\mathbf{x} = \{x_{i,j}\}_{N \times N}$, k is the Boltzmann constant, T is the temperature, $S = \sum_{\mathbf{x}} e^{-U(\mathbf{x})/kT}$ is the normalizing constant.

- The potential function is

$$U(\mathbf{x}) = -J \sum_{(i,j)\sim(i',j')} x_{i,j} x_{i',j'} + \sum_{i,j} h_{i,j} x_{i,j},$$

where the symbol $(i, j) \sim (i', j')$ means that the two sites are neighbors, J is called the *interaction strength*, $\{h_{i,j}\}_{N\times N}$ is the magnetic field.

- We want to calculate the *internal energy*, which is defined as

$$E[U(\boldsymbol{X})] = \sum_{\boldsymbol{x}} U(\boldsymbol{x})\pi(\boldsymbol{x}) = \frac{\sum_{\boldsymbol{x}} U(\boldsymbol{x})e^{-U(\boldsymbol{x})/kT}}{\sum_{\boldsymbol{x}} e^{-U(\boldsymbol{x})/kT}}.$$

6. Bootstrapping

- Suppose we have one realization x_1, \dots, x_n of i.i.d. random variables X_1, \dots, X_n from a population P. We often want to know the distribution of a statistic $T(X_1, \dots, X_n)$, especially for testing problems.
 - We only have one observation $T(x_1, \dots, x_n)$, how to estimate the distribution of $T(X_1, \dots, X_n)$?

- Bootstrap Method:

- * For $b = 1, \dots, B$,
 - · Randomly draw samples $\{x_1^{*(b)}, \dots, x_n^{*(b)}\}$ from $\{x_1, \dots, x_n\}$ with replacement;
 - · Compute $T^{*(b)} = T(x_1^{*(b)}, \dots, x_n^{*(b)}).$
- * Under certain conditions, we can use $\{T^{*(1)}, \dots, T^{*(B)}\}$ to estimate the distribution of $T(X_1, \dots, X_n)$.

6. Bootstrapping

- The use of the term "bootstrap" derives from the phrase to pull oneself up by one's bootstrap.
 - Adventures of Baron Munchausen by Rudolph Erich Raspe: "The Baron had fallen to the bottom of a deep lake. Just when it looked like all was lost, he thought to pick himself up by his own bootstraps".

6. Bootstrapping

- **Principle of Bootstrap:** Suppose we have one realization x_1, \dots, x_n of i.i.d. random variables X_1, \dots, X_n from a population P. We are interested in the distribution of a statistic $T(X_{1:n})$.
 - Assume that the true population P is known.
 - * Compute the exact distribution of $T(X_{1:n})$ using P.
 - * Draw new sample sets $\{x_{1:n}^{(b)}\}$, $b=1,\dots,B$, from P, compute $T(x_{1:n}^{(b)})$, and use $T(x_{1:n}^{(1)}),\dots,T(x_{1:n}^{(B)})$ to estimate the distribution of $T(X_{1:n})$.
 - The true population P is unknown in most cases.
 - * Use limiting theories to develop the asymptotic distribution of $T(X_{1:n})$.
 - * **Bootstrap:** Consider $\{x_1, \dots, x_n\}$ as the "true" population. Draw new sample sets $\{x_1^{*(b)}, \dots, x_n^{*(b)}\}$, $b = 1, \dots, B$, from $\{x_1, \dots, x_n\}$ randomly with replacement, compute $T(x_{1:n}^{*(b)})$, and use $T(x_{1:n}^{*(1)}), \dots, T(x_{1:n}^{*(B)})$ to estimate the distribution of $T(X_{1:n})$.

Homework

1. Use the Monte Carlo method to estimate the value of π with sample sizes of m=10000, 20000, and 40000. Repeat each experiment 500 times and report the root mean squared errors (RMSE) for each sample size.