Modul USB FM rádia USB FM Radio Modul

2016 Bc. Pavel Kovář

Tuto stránku nahradíte v tištěné verzi práce oficiálním zadáním Vaší diplomové či bakalářské práce.

Souhlasím se zveřejněním této bakalářské práce dle pož a zkušebního řádu pro studium v bakalářských programech VS	žadavků čl. 26, odst. 9 Studijního ŠB-TU Ostrava.
V Ostravě 1. dubna 2016	
Prohlašuji, že jsem tuto bakalářskou práci vypracoval s literární prameny a publikace, ze kterých jsem čerpal.	amostatně. Uvedl jsem všechny
V Ostravě 1. dubna 2016	

Abstrakt

Tato práce popisuje návrh USB FM přijímače se dvěma tunery. Jeden tuner slouží pro přehrávání zvuku a druhý pro vyhledávání dalších stanic. přijímač je v systému reprezentován jako USB zvuková karta.

Příjem je realizován dvojicí integrovaných obvodů Si4735-DU. Tyto jsou přes I²S a I²C spojeny s MCU PIC32MX250F128B, který přes USB zajišťuje komunikaci s počítačem. V rámci firmware MCU je, po neúspěchu s Microchip harmony frameworkem, napsán vlastní USB stack.

Knihovna je napsána v jazyku C s využitím knihovny libusb. Poskytuje funkce pro tři úrovně přístupu k tunerům.

Demonstrační aplikace je ve formě grafického uživatelského rozhraní, napsaná v C++ s využitím QT frameworku.

Vše je funkční pod OS Linux i Windows.

Klíčová slova: FM rádio, USB, RDS, QT, libusb, PIC

Abstract

This work describes design of USB FM radio receiver with two tuners. One tuner is for radio playback, second one seeks new stations. In computer, device acts as sound card. Receiving is done by couple of Si4735-DU integrated circuits, which are connected to MCU via I^2C and I^2S . MCU forwards data over USB to computer and back. Use of Microchip harmony framework was not successful so in firmware is USB stack written from scratch.

Library is written in C with use of libusb library. There are three levels of functions to access tuners.

Demo application has graphical user interface and is written in C++ in QT framework. All works under Linux and Windows.

Keywords: FM radio receiver, USB, RDS, QT, libusb, PIC

Seznam použitých zkratek a symbolů

AM – Amlitudová Modulace (Rozhlasové vysílání v pásmu dlou-

hých vln)

CD – Compact disc

DAB – Digital Audio Broadcasting (Digitální pozemní rozhlasové vy-

sílání)

DIP – Dual Inline Package

FM – Rozhlasové vysílání v pásmu velmi krátkých vln

I²C – Inter-Integrated Circuit
I²S – Integrated Interchip Sound

LW – Long Waves (Rozhlasové vysílání v pásmu dlouhých vln)

MCU – Microcontroller unit PCM – Pulse-code modulation RDS – Radio Data System

SPI – TODO Serial Peripheral Interface ??

SSOP – TODC

SW – Short Waves (Rozhlasové vysílání v pásmu krátkých vln)

USB – Universal Serial Bus

QFN - TODO

Obsah

1	Úvod	5
2	Výběr součástek2.1Způsob příjmu rozhlasového vyslání2.2Volba rozhraní pro spojení modulu a počítače2.3Napojení tuneru na USB2.4Výsledná konstrukce	6 6 6 7 9
3	USB 3.1 USB audio	10 10
4	Tuner 4.1 I2S	11 11 11
5	Knihovna5.1 Nízko úrovňové funkce5.2 Středně úrovňové funkce5.3 Vysoko úrovňové funkce	12 12 12 12
6	Závěr	13
7	Reference	14
Př	álohy	15
A	Schéma zapojení modulu	16

Seznam tabulek

Seznam obrázků

1	Blokové schéma TAS1020b. (Převzato z [13])	8
2	Blokové schéma zapojení	9

Seznam výpisů zdrojového kódu

1 Úvod

Tento text je ukázkou sazby diplomové práce v La pomocí třídy dokumentů diploma. Pochopitelně text není skutečnou diplomovou prací, ale jen ukázkou použití implementovaných maker v praxi. V kapitole ?? jsou ukázky použití různých maker a prostředí. V kapitole 6 bude "jako závěr". Zároveň tato kapitola slouží jako ukázka generování křížových odkazů v La prostředí.

2 Výběr součástek

Vzhledem k tomu, že není možné se cenou zařízení přiblížit zavedeným výrobcům elektroniky, rozhodl jsme se výběr součástek a konstrukci modulu přizpůsobit tak, aby bylo možné modul vyrobit v domácích podmínkách.

2.1 Způsob příjmu rozhlasového vyslání

Jednou možností je řešení příjmu z diskrétních součástek a nebo s pomocí analogových IO. Ovšem toto je příliš komplikované.

Na trhu je ovšem řada integrovaných obvodů, které zajišťují samotný příjem vysílání včetně vyhledávání static, měření kvality signálu a přijmu RDS a to s minimem potřebných externích součástek. Tyto IO se typicky ovládají pomocí I²C nebo SPI a zvuk poskytují digitálně přes rozhraní I²S a nebo analogově.

Bohužel drtivá většina je dostupná pouze v pouzdru QFN, které se velmi obtížně pájí a v minimální množství 1000 kusů. Výjimkou je SI4735-D60 od výrobce SILICON LABS, který je dostupný v pouzdru SSOP24 a je možné jej u nás zakoupit i po jednotlivých kusech. IO neumožňuje přijímat DAB, ale umí následující:

- Pásma: FM, SW, MW, LW
- Vzorkovací frekvence až do 48kHz
- Rozlišení vzorku kanálu až do 24bitů
- Stereofonní příjem.
- Příjem RDS

2.2 Volba rozhraní pro spojení modulu a počítače

Po tomto rozhraní se budou přenášet dva druhy informací a to samotný zvuk a ovládání tunerů.

V současné době je prakticky jediným schůdným řešením použití rozhraní USB díky celé řadě výhod, které nabízí. Zejména jeho širokým rozšířením na téměř všech počítačích, od osobních přes servery až po jednodeskové či průmyslové počítače. Stejně tak je k
dispozici velké množství součástek se zabudovanou podporou tohoto rozhraní. USB dále
poskytuje možnost napájení připojených zařízení až do příkonu 2,5W. Má zabudovanou
podporu pro různé druhy přenosů včetně isochronních (garantovaný periodický přenos
předem dohodnutého množství dat). Specifikace USB zavádí standardní třídy funkcí v
zařízení. V době psaní tohoto textu sice neexistuje třída pro ovládání tuneru, ale existuje třída popisující zvuková zařízení. Díky tomuto není potřeba vyvíjet vlastní ovladač
zvukové karty na straně počítače.

2.2.1 Verze USB specifikací

V současné době je možné se setkat s USB verze 1.0, 1.1, 2.0 a 3.0. Dobrou zprávou je zpětná kompatibilita všech verzí. tj. zařízení podle specifikace 1.0 by mělo fungovat s jakýmkoliv hostem. Rychlost full speed definuje už první specifikace, její maximální propustnost 12Mbit je pro věrný přenos dvoukanálového zvuku více než dostatečná. Novější verze nepřinášejí žádnou vlastnost, která by byla por tento projekt přínosná.

Odlišná situace je v případě specifikací třídy USB audio. Existují vzájemně nekompatibilní verze 1.0 a 2.0. Ani zde mladší verze nepřináší žádný benefit, který bych mohl využít. Navíc doposud nemá nativní podporu ani ve Windows 10. Z tohoto důvodu není použití USB audio 2.0 příliš vhodné.

2.3 Napojení tuneru na USB

Požadavky:

- Schopnost přenášet dvoukanálový zvuk beze znatelného zkreslení. Zvolil jsem PCM formát o vzorkovací frekvenci 48kHz a rozlišení 16bitů na jeden kanál. Pro srovnání audio CD používá 44,1kHz/16bitů.
- Alespoň jedno rozhraní I²S schopné přijímat zvuk a fungující v režimu master.
- Podporu pro USB audio. To implikuje nutnost podpory full speed USB a nebo rychlejší. Low speed nepodporuje isochronní přenosy, které jsou nezbytné pro přenos zvuku.
- Rozhraní I²C master pro ovládání tunerů.
- Kompatibilita s 3,3V logikou tunerů.

2.3.1 TAS1020b

Jak je patrné z obrázku 1, jedná se o USB I²S zvukovou kartu a MCU v jednom. Narozdíl od většiny MCU nemá interní paměť programu. Program se načítá při spuštění buď z eeprom paměti připojené přes I²C a nebo z přes USB ze zařízení ke kterému je obvod připojen.

Obvod podle specifikace [13] podporuje všechno potřebné. Full speed USB1.1 včetně USB audio 1.0, 14 endpointů z toho až dva mohou být isochronní. Dále až dvě vstupní I²S rozhraní a jednu I²C sběrnici. Nevýhodou je absence programové paměti, kusová dostupnost obvodu pouze ve formě vzorků a v mém případě také fakt, že s tímto druhem obvodů nemám žádné zkušenosti.

2.3.2 PIC16F1454

Je osmi bitový MCU od firmy Microchip s podporou full speed USB 2.0. Obvod obsahuje továrně kalibrovaný oscilátor a umí pracovat při napájecím napětí 2,3-5,5V. Díky tomu

Obrázek 1: Blokové schéma TAS1020b. (Převzato z [13])

obvod nepotřebuje prakticky žádné externí součástky. V podstatě k němu stačí připojit pouze USB kabel.

Výrobce poskytuje k tomuto MCU knihovnu Microchip Library for aplications, které mimo jiné obsahuje implementaci USB audio 1.0. Navíc jedním ze vzorových projektů u této knihovny je i USB mikrofón, který řeší přenos zvuku do počítače.

Bohužel tento MCU nemá podporu I²S a na jeho softwarovou implementaci je příliš pomalý.

2.3.3 PIC32MX250F128

Tento 32 bitový MCU, taktéž od firmy Microchip, je vybaven všemi potřebnými rozhraními. Full speed USB 2.0, 2x nezávislé I²S , 2x I²C . Pracuje v rozmezí napájecích napětí 2,3-3,6V. V MCU jsou k dispozici čtyři DMA kanály, které je možné řetězit (po ukončení jednoho kanálu se automaticky spustí druhý). Podobně jako u PIC16F1454 je i k tomuto čipu je k dispozici framework Harmony [12] s podporou pro USB Audio 1.0. Je k dispozici v různých pouzdrech, dokonce i v DIP, které je možné přímo zapojit do nepájivého pole.

Pro modul jsem vybral právě tento MCU. Případně je možné něco málo ušetřit a použít PIC32MX220F032. Liší se pouze menšími velikostmi pamětí, konkrétně 32KB programové paměti místo 128KB a 8KB datové paměti namísto 32KB.

Obrázek 2: Blokové schéma zapojení.

2.4 Výsledná konstrukce

Propojení jednotlivých komponent je naznačeno na obrázku 2.

3 USB

minimální zařízení suspend a test mod

3.1 USB audio

Nepoužitelnost Harmony frameworku i2c -> usb zmínit chyby v křemíku (nefunkčnost pinu, a problém dvojího zápisu po přerušení)

4 Tuner

4.1 I2S

Popis

Problém synchronizace hodin

4.2 Ovládání tuneru

4.2.1 RDS

čtení z tuneru dekódování základních informací

5 Knihovna

- 5.1 Nízko úrovňové funkce
- 5.2 Středně úrovňové funkce
- 5.3 Vysoko úrovňové funkce
- 5.3.1 RDS dekodér

6 Závěr

Tak doufám, že Vám tato ukázka k něčemu byla. Další informace najdete v publikacích

Bc. Pavel Kovář

7 Reference

- [1] AXELSON, Jan. *USB complete: the developer's guide.* 4th ed. Madison, WI: Lakeview Research, 2009, xxiii, 504 p. ISBN 1-931448-08-6.
- [2] Compaq, Hewlett-Packard, Intel, Lucent, Microsoft, NEC, Philips. *Universal Serial Bus Specification: Revision 2.0* [online] 2000-04-27 [2015-12-26] http://www.usb.org/developers/docs/usb20_docs/usb_20_0702115.zip
- [3] Gal Ashour, Billy Brackenridge, Oren Tirosh, Altec Lansing, Craig Todd, Remy Zimmermann, Geert Knapen. *Universal Serial Bus Device Class Definition for Audio Devices: Release 1.0* [online] 1998-03-18 [2015-12-26] http://www.usb.org/developers/docs/devclass_docs/audio10.pdf
- [4] Silicon Laboratories, Si4730/Si4731/Si4734/Si4735-D60 Broadcast AM/FM/SW/LW Radio Receiver: Rev. 1.2 8/13 [online] 2013-08-08 [2015-12-26] https://www.silabs.com/Support%20Documents/TechnicalDocs/Si4730-31-34-35-D60.pdf
- [5] Silicon Laboratories, AN332: Si47xx Programming Guide: Rev. 1.0 9/14 [online] 2014-09-10 [2015-12-26] http://www.silabs.com/Support%20Documents/TechnicalDocs/AN332.pdf
- [6] Microchip Technology Inc. PIC32MX1XX/2XX Family Data Sheet: Revision H [online] 2015-07-29 [2015-12-26] http://wwl.microchip.com/downloads/en/DeviceDoc/60001168H.pdf
- [7] Microchip Technology Inc. PIC32 Family Reference Manual, Sect. 23 Serial Peripheral Interface [online] 2011-10-11 [2015-12-26] http://wwl.microchip.com/downloads/en/DeviceDoc/61106G.pdf
- [8] Microchihttp://ww1.microchip.com/downloads/en/DeviceDoc/61116F.pdp
 Technology Inc. PIC32 Family Reference Manual, Sect 24. Inter-Integrated Circui
 [online] 2013-03 [2015-12-26] http://ww1.microchip.com/downloads/en/
 DeviceDoc/61116F.pdf
- [9] Microchip Technology Inc. PIC32 Family Reference Manual, Sect. 31 DMA Controller [online] 2013-11-15 [2015-12-26] http://wwl.microchip.com/downloads/en/DeviceDoc/60001117H.pdf
- [10] Microchip Technology Inc. PIC32 Family Reference Manual, Sect. 27 USB On-The-Go [online] 2011-04-13 [2015-12-26] http://wwl.microchip.com/downloads/en/DeviceDoc/61126F.pdf
- [11] Microchip Technology Inc. PIC32MX1XX/2XX 28/36/44-pin Family Silicon Errata and Data Sheet Clarification [online] 2015-07-29 [2015-12-26] http://wwl.microchip.com/downloads/en/DeviceDoc/80000531G.pdf

- [12] Microchip Technology Inc. MPLAB Harmony USB Libraries Help [online] 2012-11-15 [2015-12-26] http://wwl.microchip.com/downloads/en/DeviceDoc/MPLAB%20Harmony%20USB%20Libraries%20%28v1.06.02%29.pdf
- [13] TAS1020B USB Streaming Controller [online] 2011-05 [2015-12-29] http://www.ti.com/lit/ds/symlink/tas1020b.pdf

A Schéma zapojení modulu

Na štorc