Предварительные замечания:

- 1. Описание алгоритма состоит из описания пяти нижеприведенных процедур (пятая процедура дополнительная, на которую нет прямой ссылки в алгоритме).
- 2. Предполагается, что к началу исполнения алгоритма был произведен переход к системе координат наблюдателя и выполнены все манипуляции с изображением (т.е. ко всем точкам применено преобразование $V \cdot T$, описанное в методических рекомендациях к задаче 9, но не применено преобразование U). Слова «Начертить многоугольник» в алгоритме DRAWBSPTREE означают, что здесь нужно перейти к экранной системе координат (преобразование U), отбросить третью координату, отсечь многоугольник (2-мерным алгоритмом) и изобразить то, что получилось.
- 3. При сравнении значений координаты y на равенство следует округлять эти значения до целого числа.
- 4. Предполагается, что каждый многоугольник P_i в списке $\mathscr P$ представлен семеркой (L,n,C,a,b,c,d), где L список вершин многоугольника при обходе в некотором порядке, n количество вершин, C цвет многоугольника, a,b,c,d коэффициенты уравнения несущей плоскости (для их вычисления можно использовать приведенный ниже пятый алгоритм).
- 5. Для изображения многоугольника в программе на Visual C++ желательно использовать процедуру Graphics::FillPolygon(SolidBrush^, array<PointF>^).
- 6. Непосредственно перед изображением должно производиться отсечение многоугольника относительно области видимости. Для отсечения должен использоваться алгоритм, реализованный при выполнении задания 7.

Алгоритм 1: Алгоритм Художника с использованием BSP-деревьев

Вход: \mathscr{P} — список многоугольников трехмерной сцены

начало алгоритма

Присвоить T пустое дерево;

цикл для каждого P s $\mathscr P$ выполнить

Выполнить процедуру PutPolyGonToBSP(P, T);

Выполнить процедуру DRAWBSPTREE(T);

Алгоритм 2: PutPolygonToBSP Добавление многоугольника в BSP-дерево

Вход: P — многоугольник, T — бинарное дерево многоугольников.

Выход: Измененное бинарное дерево многоугольников T с внесенным в него многоугольником P.

начало алгоритма

если T — $nycmoe \ depeso$ то

- \cdot Создать вершину дерева с пустыми левым и правым поддеревьями. Присвоить её переменной T;
- \cdot В соданную вершину записать P; **закончить алгоритм**;

иначе

- · Пусть P_T многоугольник в корне дерева T;
- · Выполнить процедуру VERTEXCOUNT (P,P_T) для подсчета величин PosCount, NegCount и получения многоугольников P_{pos} и P_{neg} ;

если PosCount > 0 то

Выполнить PutPolygonToBSP $(P_{pos}, T \rightarrow Left)$. Результат присвоить T;

если NegCount > 0 или PosCount = 0 то

 $\ \ \, \bigsqcup$ Выполнить PutPolyGonToBSP($P_{neg}, T \rightarrow Right).$ Результат присвоить T;

```
Алгоритм 3: VERTEXCOUNT
```

Вход: P, P_T — многоугольники.

Выход: PosCount, NegCount — количество вершин многоугольника P, расположенных, соответственно, в положительном и отрицательном полупространстве относительно несущей плоскости многоугольника P_T ; P_{pos} , P_{neg} — многоугольники, результат разбиения многоугольника P несущей плоскостью многоугольника P_T .

начало алгоритма

```
· Пусть (L_P, n, C, a, b, c, d) — пятерка, представляющая многоугольник P, (L_T, n_T, C_T, a_T, b_T, c_T, d_T) пятерка, представляющая многоугольник P_T;
```

- · Присвоить PosCount = 0; NegCount = 0; $L_{pos} = \emptyset$; $L_{neg} = \emptyset$;
- · Положить $A = L_P[n]$; intersectionVertex = False; ZeroCount = 0;
- · Вычислить $SpacePartA = A_x \cdot a_T + A_y \cdot b_T + A_z \cdot c_T + d_T;$ ActiveSign = signum(SpacePartA);

если ActiveSign = 0 то intersectionVertex = True;

цикл для $i\ om\ 1\ \partial o\ n$ выполнять

- $\cdot B = L_P[i];$
- · Вычислить $SpacePartB = B_x \cdot a_T + B_y \cdot b_T + B_z \cdot c_T + d_T;$ NewSign = signum(SpacePartB);

если NewSign = 0 то

- · Добавить вершину B в списки L_{pos} и L_{neg} ;
- $\cdot ZeroCount = ZeroCount + 1;$
- $\cdot intersectionVertex = True;$

иначе

если $NewSign \neq ActiveSign$ то

если !intersectionVertex то

· Вычислить координаты точки пересечения *D*:

$$t = SpacePartA/(SpacePartA - SpacePartB)$$

$$D_x = A_x + (B_x - A_x)t;$$

$$D_y = A_y + (B_y - A_y)t;$$

$$D_z = A_z + (B_z - A_z)t;$$

- \cdot Добавить вершину D в списки L_{pos} и L_{neg} ;
- $\cdot ZeroCount = ZeroCount + 1;$
- \cdot Присвоить ActiveSign = NewSign; intersectionVertex = False;

если NewSign>0 то

- \cdot Добавить вершину B в список L_{pos} ;
- $\cdot PosCount = PosCount + 1;$

иначе

- · Добавить вершину B в список L_{neq} ;
- $\cdot NegCount = NegCount + 1;$
- $\cdot A = B$; SpacePartA = SpacePartB;
- Присвоить

$$P_{pos} = (L_{pos}, PosCount + ZeroCount, C, a, b, c, d);$$

 $P_{neg} = (L_{neg}, NegCount + ZeroCount, C, a, b, c, d);$

Алгоритм 4: DRAWBSPTREE Изображение многоугольников в порядке от наиболее удаленного до наблюдателя

Вход: $T - \mathsf{BSP}$ -дерево многоугольников.

начало алгоритма

если T — $nycmoe \ depeso$ то закончить алгоритм;

Пусть (L_P, n, C, a, b, c, d) — семерка, для многоугольника P в корне дерева T;

если d < 0 то

- · Выполнить процедуру DRAWBSPTREE $(T \rightarrow Right)$;
- \cdot Начертить многоугольник P;
- \cdot Выполнить процедуру DRAWBSPTREE($T \to Left$);

иначе

- · Выполнить процедуру DRAWBSPTREE $(T \rightarrow Left)$;
- \cdot Начертить многоугольник P;
- \cdot Выполнить процедуру DRAWBSPTREE($T \to Right$);

конец алгоритма

Алгоритм 5: INITIALIZEPOLYGON Вычисление коэффициентов уравнения плоскости

 $\overline{\mathbf{B}}$ ход: P — список вершин многоугольника в трехмерном пространстве

Выход: a, b, c, d — коэффициенты уравнения несущей плоскости

начало алгоритма

Пусть (x_1, y_1, z_1) , (x_2, y_2, z_2) , (x_3, y_3, z_3) — первые три вершины в списке P.

Предполагаем, что эти вершины не лежат на одной прямой. Тогда

$$a = \begin{vmatrix} 1 & y_1 & z_1 \\ 1 & y_2 & z_2 \\ 1 & y_3 & z_3 \end{vmatrix}; \quad b = \begin{vmatrix} x_1 & 1 & z_1 \\ x_2 & 1 & z_2 \\ x_3 & 1 & z_3 \end{vmatrix}; \quad c = \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}; \quad d = - \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}.$$