

Faculté des sciences et technologie

Bus de communication et réseaux industriels

Architecture des réseaux

Mr. ABAINIA

Licence Automatique

Objectifs du cours ?

❖ Avoir une idée générale sur les réseaux informatiques.

Connaitre quelques protocoles de communication.

Connaitre quelques techniques de transmission.

C'est quoi un réseau?

Un réseau est un ensemble de machines communicantes entre elles conformément ou non à un standard.

- ❖Machine = ordinateur, téléphone, tablette, instrument, etc.
- **❖**Réseau informatique = communication entre processus ou application via un medium

❖Medium = support de transmission (filaire ou sans fils)

Exemple de réseaux sans fils tiré du site icriq.com

Bref historique

- **❖Télégraphe optique par Claude Chappe (1794).**
- ❖Télégraphe électrique après la découverte de l'électricité (1840).
- **❖Transmission sans fils avec la découverte des ondes électromagnétiques (1870).**
- **❖Transistor** en 1947, puis l'ordinateur en 1949 et le traitement électronique de l'information (informatique).
- ❖Premier modem transmet des données sur ligne téléphonique (1958).
- ❖Internet (1969).
- **⇔Etc.**

A quoi sert un réseau?

*Partager les données (e.g. fichiers, images, etc.).

Communiquer à distance (e.g. chat, visioconférence, etc.).

❖Partager les ressources (e.g. imprimante, scanner, etc.).

Unicité de l'information (base de données).

Architectures des réseaux?

Architecture serveur/client:

- ✓ Serveur s'occupe de la gestion de communication entre les clients et le partage des données.
- ✓ Client envoie des requêtes au serveur.
- **✓ Communication** entre clients passe par le serveur.
- ✓ Serveur peut être un client d'an autre serveur.

Panne du serveur = coupure de tout le réseau

Architecture peer-to-peer (p2p):

✓ Chaque ordinateur est serveur et client.

Difficile à administrer, faible sécurité, non tolérant au grand nombre d'ordinateurs

Meilleure solution = réseau hybride

Classification des réseaux ?

Les réseaux sont classifiés selon le nombre de machines, le débit et la distance.

- **✓ PAN (Personal Area Network).**
- ✓ LAN (Local Area Network).
- ✓TAN (Tiny Area Network) = LAN avec 2-3 machines.
- ✓ MAN (Metropolitan Area Network).
- **✓WAN (Wide Area Network).**

Figure tirée de supinfo.com

Personal Area Network:

- ☐ Nombre restreint de machines utilisées dans le cadre personnel
- ☐ Bus USB et technologies sans fils(Bluetooth, Infrarouge, Zigbee)
- ☐ Distance de quelques mètres (dizaine max)

Local Area Network:

- ☐ Nombre restreint de machines (salle, bâtiment ou entreprise)
- ☐ Vitesse de 10 à 1000 Mbit/s
- ☐ 100 à 1000 machines

Metropolitan Area Network:

- ☐ basé sur la technologie LAN mais étendu sur une ville
- ☐ interconnecte plusieurs LAN géographiquement proches
- ☐ utilise des commutateurs/routeurs interconnectés par des liens de haut débit (e.g. fibre optique)
- □ ne dépasse pas 200km au maximum
- ☐ doit être tolérant aux pannes et perturbations

Wide Area Network:

- ☐ réseau à l'échelle d'un pays ou mondial
- □ peut s'étendre jusqu'à internet.

Topologies des réseaux?

La topologie est la structure du réseau ou l'arrangement physique (câblage) des éléments.

- ✓ Topologie en bus
- ✓ Topologie en étoile
- ✓ Topologie en anneau
- ✓ Topologie maillée
- ✓ Topologie en arbre
- ✓ Topologie hybride

La topologie en bus:

- ✓ Un câble passe d'une machine à un autre
- ✓ Le message passe par plusieurs ordi sans le prendre

Avantages:

✓ Facile à mettre en œuvre et fonctionnement simple Inconvénients:

- ✓ Un ordinateur endommagé coupe le réseau entier
- ✓ Message distribué à toutes les machines (temps perdu)
- ✓ Risque de collision si plusieurs machines transmettent des messages au même temps

La topologie en anneau:

- ✓ Machines interconnectées par un medium circulaire
- ✓ Jeton circule en permanence dans le réseau
- ✓ La machine capte le jeton si elle veut communiquer, puis envoie le message
- ✓ Cette topologie est souvent utilisée dans Macintosh

Avantages:

√Une seule machine envoie à la fois

Inconvénients:

- ✓ Machine doit attendre le jeton pour envoyer un message
- ✓ Machine émettrice doit attendre l'accusé de réception

La topologie en étoile:

√ Toutes les machines sont reliées à dispositif central

√ L'ordinateur central se charge de la distribution des

messages

Avantages:

- √ Machine en panne n'affecte pas les autres
- ✓ Répétition du message est <u>adressée au destinataire</u> Inconvénients:
 - ✓ Plus couteux (matériel supplémentaire)
 - √ Fonctionnement du réseau dépend du dispositif central

La topologie maillée:

- ✓ Plusieurs machines sont liées point-à-point
- √ Chaque machine est liée à toutes les autres

Avantages:

✓ Plusieurs chemins pour atteindre la destination

Inconvénients:

√ Plus couteux (<u>nombre de liaisons</u> important)

Le prochain cours

Protocoles de communication et techniques de transmission.

Ce cours est disponible sur http://abainia.net/#teaching