Nombre 1 Paterno, materno nombres

Nombre 2 Paterno, materno nombres

1. Resumen

Este trabajo analiza la resistencia eléctrica de 30 cables de cobre comunes en función de su longitud (x_1 , en cm) y diámetro (x_2 , en cm), mediante un modelo de regresión lineal múltiple. El objetivo es determinar cómo estas variables independientes influyen en la resistencia (y, en ohmios) bajo condiciones de uso cotidiano. Se recopilaron 30 observaciones, considerando cables con longitudes entre 10 y 300 cm y diámetros de 0.001 a 0.0326 cm. El modelo se ajusta utilizando el método de mínimos cuadrados para estimar los coeficientes β_0 , β_1 y β_2 , cumpliendo supuestos de linealidad, normalidad, homocedasticidad e independencia. Los resultados permitirán predecir la resistencia eléctrica y evaluar la relación entre las variables, contribuyendo al diseño eficiente de sistemas eléctricos. Se espera que la longitud incremente la resistencia y el diámetro la reduzca, según principios físicos.

2. Objetivo

Determinar la resistencia eléctrica de una muestra de 30 cables de cobre comunes y de uso cotidiano en función de su longitud y grosor, mediante la construcción de un modelo de regresión lineal múltiple, con el propósito de identificar la relación entre estas variables bajo las condiciones específicas de cables de cobre de aplicación habitual.

3. Desarrollo

a) Muestreo Real

El muestreo consiste en 30 observaciones de cables de cobre comunes, donde se midió la resistencia eléctrica (y, en ohmios), la longitud (x_1 , en cm) y el diámetro (x_2 , en cm). A continuación, se presenta la tabla con los datos recopilados:

Número	y: Resistencia (ohmios)	x_1 : Longitud (cm)	x_2 : Diámetro (cm)
1	5.8	300	0.0163
2	2.9	50	0.0163
3	2.8	40	0.0163
4	2.4	30	0.0163
5	2.5	20	0.0163
6	4.2	10	0.0163
7	3.2	100	0.0326
8	2.6	90	0.0326
9	2.2	80	0.0326

10	2.0	70	0.0326
11	2.0	60	0.0326
12	2.0	50	0.0326
13	2.6	10	0.0326
14	2.1	150	0.0129
15	2.2	140	0.0129
16	2.0	130	0.0129
17	2.1	120	0.0129
18	2.0	110	0.0129
19	2.0	100	0.0129
20	2.1	90	0.0129
21	2.4	80	0.0129
22	2.0	70	0.0129
23	2.1	60	0.0129
24	2.0	50	0.0129
25	2.2	40	0.0129
26	2.4	30	0.0129
27	2.6	20	0.0129
28	2.7	10	0.0129
29	2.4	20	0.001
30	2.4	10	0.001

b) Intervalos y Representación de Clases

c) Gráfica de los puntos en tres dimensiones

Se grafican los 30 puntos de la muestra en un espacio tridimensional, con x_1 (longitud, en cm) en el eje X, x_2 (diámetro, en cm) en el eje Z, y y (resistencia, en ohmios) en el eje Y. Los puntos son:

Para graficar manualmente, se recomienda escalar los ejes: por ejemplo, 1 cm en papel = 50 cm para x_1 , 1 cm = 1 ohmio para y, y 1 cm = 0.01 cm para x_2 . Los puntos se trazan en un sistema de coordenadas 3D, usando proyección isométrica.

d) Gráfica de los regresores de manera individual

Se grafican los puntos de la muestra para analizar la relación de la resistencia (y) con cada regresor por separado: $y = f(x_1)$ (resistencia vs. longitud) y $y = f(x_2)$ (resistencia vs. diámetro).

Resistencia vs. Longitud ($y = f(x_1)$)

Los puntos (x_{i1}, y_i) se grafican en un plano 2D, con x_1 (longitud, en cm) en el eje x y y (resistencia, en ohmios) en el eje Y. Se distinguen los puntos según el valor de x_2 .

Para graficar manualmente, usa una escala de 1 cm = 50 cm para x_1 y 1 cm = 1 ohmio para y. Usa símbolos distintos (por ejemplo, círculos para x_2 = 0.0163, cruces para x_2 = 0.0326, triángulos para x_2 = 0.0129, cuadrados para x_2 = 0.001).

Resistencia vs. Diámetro ($y = f(x_2)$)

Los puntos (x_{i2}, y_i) se grafican en un plano 2D, con x_2 (diámetro, en cm) en el eje X y y (resistencia, en ohmios) en el eje Y. Se distinguen los puntos según rangos de x_1 :

Para graficar manualmente, usa una escala de 1 cm = 0.01 cm para x_2 y 1 cm = 1 ohmio para y. Usa símbolos distintos para rangos de x_1 (por ejemplo, [10, 68), [68, 126), [126, 184), [184, 242), [242, 300]).

e) Hiperplanos

f) Método de Mínimos Cuadrados

Se usará el método de mínimos cuadrados. Este método minimiza la suma de los cuadrados de los residuos, asegurando un ajuste óptimo del modelo a los datos.

El modelo de regresión lineal múltiple es:

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \varepsilon_i, i = 1, ..., n$$

donde β_0 es el intercepto, β_1 y β_2 son los coeficientes parciales que indican el cambio en y por unidad de x_1 o x_2 , manteniendo la otra variable constante, y ε_i es el error con media cero.

Se minimiza la función:

$$L = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{i1} - \beta_2 x_{i2})^2$$

Derivando L respecto a β_0 , β_1 y β_2 e igualando a cero, se obtienen los estimadores $\hat{\beta}_0$, $\hat{\beta}_1$, $\hat{\beta}_2$. El método es adecuado por su simplicidad y capacidad para modelar múltiples variables, ajustándose a la relación lineal asumida entre resistencia, longitud y diámetro.

g) Cálculos

Se plantea el modelo de regresión lineal múltiple para la resistencia eléctrica y_i en función de la longitud x_{i1} y el diámetro x_{i2} de los cables, dado por:

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \varepsilon_i$$

La función de mínimos cuadrados a minimizar es:

$$L = \sum (y_i - \beta_0 - \beta_1 x_{i1} - \beta_2 x_{i2})^2$$

Derivando parcialmente con respecto a β_0 , β_1 y β_2 , se obtienen las ecuaciones normales:

$$\begin{split} \frac{\partial L}{\partial \beta_0} &= -2 \sum \left(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \hat{\beta}_2 x_{i2} \right) = 0 \\ \frac{\partial L}{\partial \beta_1} &= -2 \sum \left(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \hat{\beta}_2 x_{i2} \right) x_{i1} = 0 \\ \frac{\partial L}{\partial \beta_2} &= -2 \sum \left(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \hat{\beta}_2 x_{i2} \right) x_{i2} = 0 \end{split}$$

Simplificando:

$$\sum y_i = n\hat{\beta}_0 + \hat{\beta}_1 \sum x_{i1} + \hat{\beta}_2 \sum x_{i2}$$
$$\sum y_i x_{i1} = \hat{\beta}_0 \sum x_{i1} + \hat{\beta}_1 \sum x_{i1}^2 + \hat{\beta}_2 \sum x_{i1} x_{i2}$$
$$\sum y_i x_{i2} = \hat{\beta}_0 \sum x_{i2} + \hat{\beta}_1 \sum x_{i1} x_{i2} + \hat{\beta}_2 \sum x_{i2}^2$$

Se procede a calcular las sumatorias necesarias con los datos proporcionados (n = 30, k = 2, p = k + 1 = 3):

La solución matricial para los estimadores de mínimos cuadrados se obtiene como:

$$\hat{\beta} = (X'X)^{-1}X'y$$

Se construye la matriz X incluyendo la columna de unos para el término independiente β_0 :

$$y = \begin{bmatrix} 5.8 \\ 2.9 \\ 2.8 \\ 2.4 \\ 2.5 \\ 2.6 \\ 2.2 \\ 2.6 \\ 2.2 \\ 2 \\ 2.1 \\ 2.1 \\ 2.1 \\ 2.2 \\ 2.1 \\ 2.1 \\ 2.2 \\ 2.1 \\ 2.1 \\ 2.2 \\ 2.2 \\ 2.3 \\ 2.4 \\ 1 & 30 & 0.0129 \\ 2 & 1 & 100 & 0.0129 \\ 2 & 1 & 100 & 0.0129 \\ 2 & 1 & 100 & 0.0129 \\ 2 & 1 & 50 & 0.0129 \\ 2 & 1 & 50 & 0.0129 \\ 2 & 1 & 50 & 0.0129 \\ 2 & 1 & 50 & 0.0129 \\ 2 & 1 & 50 & 0.0129 \\ 2 & 1 & 30 & 0.0129 \\ 2 & 1 & 30 & 0.0129 \\ 2 & 1 & 30 & 0.0129 \\ 2 & 1 & 30 & 0.0129 \\ 2 & 1 & 10 & 0.0129 \\ 2 & 1 & 10 & 0.0129 \\ 2 & 1 & 20 & 0.00129 \\ 2 & 1 & 10 & 0.0129 \\ 2 & 1 & 20 & 0.00129 \\ 2 & 1 & 20 & 0.00129 \\ 2 & 1 & 20 & 0.0011 \\ 2 & 1 & 20 & 0.0011 \\ 1 & 10 & 0.0011 \\ 2 & 1 & 10 & 0.0011 \\ 3 & 1 & 10 & 0.00163 \\ 4 & 1 & 10 & 0.00163 \\ 1 & 10 & 0.00$$

Se calcula X'X:

$$X'X = \begin{bmatrix} 30 & 2140 & 0.521500000000003 \\ 2140 & 255600 & 37.841 \\ 0.521500000000003 & 37.841 & 0.01153161000000003 \end{bmatrix}$$

Se calcula X'y:

$$X'y = \begin{bmatrix} 74.90000000000002\\ 5890\\ 1.3061500000000001 \end{bmatrix}$$

Para resolver $\hat{\beta}$, se necesita $(X'X)^{-1}$. Se define la matriz X'X:

$$(X'X)^{-1} = \begin{bmatrix} 0.19930006900432076 & -0.0006501008048782533 & -6.8797437156091235 \\ -0.00065010080487825330.000009729497105269059 -0.0025275161245027333 \\ -6.8797437156091235 & -0.0025275161245027333 & 406.1384390694333 \end{bmatrix}$$

Se calcula $\hat{\beta} = (X'X)^{-1}X'y$:

$$\hat{\beta} = \begin{bmatrix} 2.11250417354786 \\ 0.005312872478634325 \\ 0.2978479180957265 \end{bmatrix}$$

El modelo de regresión estimado es:

$$\widehat{y_i} = 2.11250417354786 + 0.005312872478634325x_{i1} + 0.2978479180957265x_{i2}$$

Se calculan los valores estimados \hat{y}_i para cada observación utilizando el modelo $\hat{y}_i = 2.11250417354786 +$

 $0.005312872478634325x_{i1} + 0.2978479180957265x_{i2}$:

Se presentan los valores observados, estimados y los errores:

· 1				^	
i	y_i	x_{i1}	x_{i2}	\hat{y}_i	$\varepsilon_i = y_i - \hat{y}_i$
1	5.8	300	0.0163	3.7112208382031175	2.0887791617968823
2	2.9	50	0.0163	2.3830027185445366	0.5169972814554633
3	2.8	40	0.0163	2.329873993758193	0.47012600624180667
4	2.4	30	0.0163	2.27674526897185	0.12325473102814977
5	2.5	20	0.0163	2.2236165441855067	0.2763834558144933
6	4.2	10	0.0163	2.1704878193991637	2.0295121806008365
7	3.2	100	0.0326	2.6535012635412136	0.5464987364587865
8	2.6	90	0.0326	2.60037253875487	-0.0003725387548700887
9	2.2	80	0.0326	2.5472438139685267	-0.34724381396852655
10	2	70	0.0326	2.4941150891821837	-0.4941150891821837
11	2	60	0.0326	2.4409863643958403	-0.44098636439584027
12	2	50	0.0326	2.3878576396094973	-0.38785763960949726
13	2.6	10	0.0326	2.1753427404641243	0.42465725953587574
14	2.1	150	0.0129	2.9132772834864435	-0.8132772834864435
15	2.2	140	0.0129	2.8601485587001005	-0.6601485587001004
16	2	130	0.0129	2.807019833913757	-0.8070198339137571
17	2.1	120	0.0129	2.7538911091274136	-0.6538911091274136

18	2	110	0.0129	2.7007623843410706	-0.7007623843410706
19	2	100	0.0129	2.6476336595547276	-0.6476336595547276
20	2.1	90	0.0129	2.594504934768384	-0.4945049347683841
21	2.4	80	0.0129	2.5413762099820407	-0.1413762099820408
22	2	70	0.0129	2.4882474851956977	-0.4882474851956977
23	2.1	60	0.0129	2.4351187604093543	-0.3351187604093542
24	2	50	0.0129	2.3819900356230113	-0.38199003562301126
25	2.2	40	0.0129	2.328861310836668	-0.12886131083666763
26	2.4	30	0.0129	2.275732586050325	0.12426741394967511
27	2.6	20	0.0129	2.2226038612639814	0.37739613873601874
28	2.7	10	0.0129	2.1694751364776383	0.5305248635223618
29	2.4	20	0.001	2.219059471038642	0.18094052896135793
30	2.4	10	0.001	2.165930746252299	0.23406925374770093

Se verifica que la suma de los errores $\sum \varepsilon_i$ sea aproximadamente cero:

$$\sum_{i=1}^{30} \varepsilon_i = -0.0000000000017852386235972517 \approx 0$$

Se calculan las medias de las variables x_{i1} (longitud), x_{i2} (diámetro) y y_i (resistencia):

Se calculan las covarianzas $S_{x_1,y}$ y $S_{x_2,y}$:

La matriz de covarianza de $\hat{\beta}$ se calcula como:

$$Cov(\hat{\beta}) = \sigma^2(X'X)^{-1}$$

Se estima σ^2 :

$$\sigma^2 = \frac{\sum \varepsilon_i^2}{n - p} = 0.5422809053292159$$

La matriz de covarianza de $\hat{\beta}$ es:

 $\operatorname{Cov}(\hat{\beta}) = \begin{bmatrix} 0.10807662185183826 & -0.00035253725302463113 & -3.730753650533499 \\ -0.0003525372530246311\mathbf{0}.000005276120498643291-0.0013706237322295334 \\ -3.730753650533499 & -0.0013706237322295334 & 220.24112042756687 \end{bmatrix}$