© Laurent Garcin MP Dumont d'Urville

Devoir surveillé n°02

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1 – EPITA/IPSA 2017

Dans tout ce problème, on désigne par α un nombre réel *positif* et on se propose d'étudier la fonction f définie par l'intégrale suivante lorsque celle-ci est convergente

$$f(\alpha) = \int_0^{+\infty} \frac{\sin(t)}{t^{\alpha}} dt$$

On se propose d'approfondir dans la partie I l'absolue convergence, puis la convergence de l'intégrale $f(\alpha)$, ce qui permet d'obtenir le domaine de définition de f. Puis on étudie dans les parties II et III le comportement de f au voisinage de 0 et 2. Enfin, dans la partie IV (qui est indépendante des précédentes), on calcule l'intégrale f(1).

I Absolue convergence et convergence de l'intégrale $f(\alpha)$

Dans cette partie, on étudie la convergence de $f(\alpha)$ à l'aide des deux intégrales suivantes :

$$I(\alpha) = \int_0^{\pi} \frac{\sin(t)}{t^{\alpha}} dt \qquad \text{et} \qquad J(\alpha) = \int_{\pi}^{+\infty} \frac{\sin(t)}{t^{\alpha}} dt$$

1 Etude de la convergence de l'intégrale $I(\alpha)$

- **1.a** Donner un équivalent de la fonction $t\mapsto \frac{\sin(t)}{t^{\alpha}}$ au voisinage de 0.
- **1.b** En déduire pour quelles valeurs du réel α l'intégrale $I(\alpha)$ est convergente.

2 Etude de l'absolue convergence de l'intégrale $J(\alpha)$

- **2.a** Démontrer que l'intégrale $J(\alpha)$ est absolument convergente pour $\alpha > 1$.
- **2.b** Vérifier que la fonction $t \mapsto |\sin t|$ est π -périodique et en déduire, pour tout entier k la valeur de l'intégrale $\int_{k\pi}^{(k+1)\pi} |\sin t| \, dt$.
- **2.c** Démontrer l'encadrement suivant pour tout réel $\alpha \ge 0$ et tout entier $k \ge 1$:

$$\frac{2}{(k+1)^{\alpha}\pi^{\alpha}} \le \int_{k\pi}^{(k+1)\pi} \frac{|\sin t|}{t^{\alpha}} dt \le \frac{2}{k^{\alpha}\pi^{\alpha}}$$

En déduire pour tout réel $\alpha \ge 0$ et tout entier $n \ge 1$ que :

$$\frac{2}{\pi^{\alpha}} \sum_{k=2}^{n} \frac{1}{k^{\alpha}} \le \int_{\pi}^{n\pi} \frac{|\sin t|}{t^{\alpha}} dt \le \frac{2}{\pi^{\alpha}} \sum_{k=1}^{n-1} \frac{1}{k^{\alpha}}$$

1

2.d Préciser pour quelles valeurs du réel α l'intégrale $J(\alpha)$ est absolument convergente.

3 Etude de la convergence de l'intégrale $J(\alpha)$

- **3.a** Etudier la convergence de l'intégrale J(0).
- **3.b** Démontrer la relation suivante pour tout réel $\alpha > 0$ et tout réel $x \ge \pi$:

$$\int_{\pi}^{x} \frac{\sin t}{t^{\alpha}} dt = -\frac{1}{\pi^{\alpha}} - \frac{\cos x}{x^{\alpha}} - \alpha \int_{\pi}^{x} \frac{\cos t}{t^{\alpha+1}} dt$$

3.c Calculer (en justifiant son existence) l'intégrale $\int_{\pi}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha+1}}$ pour $\alpha > 0$. En déduire l'absolue convergence de l'intégrale $\int_{\pi}^{+\infty} \frac{\cos t}{t^{\alpha+1}} \, \mathrm{d}t$ pour $\alpha > 0$.

3.d En déduire la convergence de l'intégrale $J(\alpha)$ pour $\alpha > 0$.

$\boxed{\mathbf{4}}$ Domaine de définition de la fonction f

Préciser les domaines de convergence et d'absolue convergence de l'intégrale $f(\alpha)$. En déduire le domaine de définition de la fonction f introduite dans le préambule.

Dans toute la suite, on suppose que le paramètre α appartient à ce domaine de définition.

II Etude de $f(\alpha)$ lorsque α tend vers 0

On se propose d'étudier $f(\alpha)$ lorsque α tend vers 0 et on écrit à cet effet :

$$f(\alpha) = \int_0^{+\infty} \frac{\sin(t)}{t^{\alpha}} dt = \int_0^{\pi/2} \frac{\sin(t)}{t^{\alpha}} dt + \int_{\pi/2}^{+\infty} \frac{\sin(t)}{t^{\alpha}} dt$$

$\boxed{\mathbf{5}} \ \mathbf{Limite de l'intégrale} \int_0^{\pi/2} \frac{\sin t}{t^{\alpha}} \ \mathrm{d}t$

- **5.a** Justfier l'inégalité $0 \le \sin t \le t$ pour $0 \le t \le \frac{\pi}{2}$.
- **5.b** En déduire à l'aide du théorème de convergence dominée (dont on précisera l'énoncé et dont on vérifiera les hypothèses) la valeur de la limite suivante :

$$\lim_{\alpha \to 0} \int_0^{\pi/2} \frac{\sin t}{t^{\alpha}} \, \mathrm{d}t$$

REMARQUE. Si on ne connaît pas encore le théorème de convergence dominée, on admettra que

$$\lim_{\alpha \to 0} \int_0^{\pi/2} \frac{\sin t}{t^{\alpha}} dt = \int_0^{\frac{\pi}{2}} \left(\lim_{\alpha \to 0} \frac{\sin t}{t^{\alpha}} \right) dt$$

6 Limite de l'intégrale $\int_{\pi/2}^{+\infty} \frac{\sin t}{t^{\alpha}} dt$

6.a A l'aide d'une double intégration par parties, justifier l'égalité suivante :

$$\int_{\pi/2}^{+\infty} \frac{\sin t}{t^{\alpha}} dt = \frac{\alpha}{(\pi/2)^{\alpha+1}} - \alpha(\alpha+1) \int_{\pi/2}^{+\infty} \frac{\sin t}{t^{\alpha+2}} dt$$

© Laurent Garcin MP Dumont d'Urville

6.b Calculer l'expression $\alpha(\alpha + 1) \int_{\pi/2}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha+2}}$, puis déterminer sa limite quand α tend vers 0. En déduire la limite de $\alpha(\alpha + 1) \int_{\pi/2}^{+\infty} \frac{\sin t}{t^{\alpha+2}} \, \mathrm{d}t$ puis de $\int_{\pi/2}^{+\infty} \frac{\sin t}{t^{\alpha}} \, \mathrm{d}t$, quand α tend vers 0.

6.c Déduire de cette question et de la précédente la limite de $f(\alpha)$ lorsque α tend vers 0. Peut-on obtenir cette limite par application directe du théorème de convergence dominée à l'intégrale $f(\alpha)$?

REMARQUE. Si on ne connaît pas encore le théorème de convergence dominée, on pourra sauter cette deuxième partie de la question.

III Etude de $f(\alpha)$ lorsque α tend vers 2

$\boxed{7}$ Une autre expression de la fonction f.

7.a Démontrer la convergence de l'intégrale suivante pour $\alpha \in]0, 2[$:

$$\int_0^{+\infty} \frac{1 - \cos(t)}{t^{\alpha + 1}} dt$$

7.b A l'aide d'une intégration par parties justifiée, établir que :

$$f(\alpha) = \alpha \int_0^{+\infty} \frac{1 - \cos(t)}{t^{\alpha + 1}} dt$$

En déduire que la fonction f est à valeurs strictement positives sur]0,2[.

8 Limite de $f(\alpha)$ quand α tend vers 2.

On considère la fonction auxiliaire φ définie sur \mathbb{R}_+^* par $\varphi(t) = \frac{1 - \cos t}{t^2}$.

- **8.a** Quelle est la limite L de φ en 0? On posera désormais $\varphi(0) = L$ de sorte que φ est ainsi définie et continue sur \mathbb{R} .
- **8.b** Montrer que la fonction φ reste strictement positive sur $[0, \pi]$ et qu'elle admet sur $[0, \pi]$ un minimum strictement positif noté μ (que l'on ne demande pas d'expliciter).
- 8.c Etablir les inégalités suivantes :

$$f(\alpha) \ge \alpha \int_0^{\pi} \frac{1 - \cos(t)}{t^{\alpha + 1}} dt \ge \alpha \mu \frac{\pi^{2 - \alpha}}{2 - \alpha}$$

8.d En déduire la limite de $f(\alpha)$ quand α tend vers 2 par valeurs inférieures.

IV Calcul de l'intégrale f(1)

9 Calcul d'intégrales auxiliaires.

9.a Justifier pour tout entier naturel *n* l'existence de l'intégrale suivante :

$$I_n = \int_0^{\pi/2} \frac{\sin((2n+1)t)}{\sin(t)} dt$$

9.b Préciser la valeur de I_0 et prouver que $I_n - I_{n-1} = 0$ pour tout entier $n \ge 1$. En déduire la valeur de l'intégrale I_n .

- 9.c On considère la fonction ψ définie sur $\left]0, \frac{\pi}{2}\right]$ par $\psi(t) = \frac{1}{\sin t} \frac{1}{t}$. Quelle est la limite L de ψ en 0. On posera désormais $\psi(0) = L$ de sorte que ψ est définie et continue sur $\left[0, \frac{\pi}{2}\right]$.
- **9.d** Démontrer l'égalité suivante pour tout entier naturel n:

$$\int_0^{\pi/2} \psi(t) \sin((2n+1)t) dt = \frac{\pi}{2} - \int_0^{(2n+1)\pi/2} \frac{\sin(u)}{u} du$$

10 Lemme de Rieman-Lebesgue pour les fonctions de classe \mathcal{C}^1 .

On considère une fonction g de classe \mathcal{C}^1 du segment $\left[0,\frac{\pi}{2}\right]$ dans \mathbb{R} . A tout entier naturel n, on assoccie l'intégrale suivante :

$$u_n = \int_0^{\pi/2} g(t) \sin((2n+1)t) dt$$

10.a Démontrer que

$$u_n = \frac{g(0)}{2n+1} + \frac{1}{2n+1} \int_0^{\pi/2} g'(t) \cos((2n+1)t) dt$$

- **10.b** A l'aide d'une majoration convenable de cette dernière intégrale, en déduire la limite de la suite (u_n) .
- **10.c** Justifier que la fonction ψ définie à la question **9.c** est de classe \mathcal{C}^1 sur $\left[0, \frac{\pi}{2}\right]$.
- **10.d** En déduire la valeur de f(1).