Risoluzione del compito n. 5 (Aprile 2023)

PROBLEMA 1

Determinate le soluzioni (z, w), con $z, w \in \mathbb{C}$, del sistema

$$\left\{ \begin{aligned} &\bar{z}-\bar{w}=\mathrm{i}\\ &zw+z+w+1=0 \end{aligned} \right. .$$

La prima equazione si riscrive

$$z - w = -i \iff z = w - i$$
,

che sostituito nella seconda equazione dà

$$w^2 - iw + w - i + w + 1 = 0 \iff w^2 + (2 - i)w + 1 - i = 0$$

una equazione di secondo grado che risolviamo:

$$w = \frac{\mathbf{i} - 2 \pm \sqrt{-1 + 4 - 4\mathbf{i} - 4 + 4\mathbf{i}}}{2} = \frac{\mathbf{i} - 2 \pm \mathbf{i}}{2} = \begin{cases} \mathbf{i} - 1 \\ -1 \end{cases}.$$

Ricavando i valori corrispondenti di z = w - i abbiamo le due soluzioni del sistema,

$$z_1 = -1$$
, $w_1 = i - 1$ $z_2 = -1 - i$, $w_2 = -1$.

PROBLEMA 2

Considerate la funzione $f(x)=\frac{3\sqrt{x}}{1+4x}$. a) Calcolatene il dominio, i limiti agli estremi del dominio, il segno.

- Calcolate la derivata di f, il dominio di f' e i limiti di f' agli estremi del suo dominio, determinate gli intervalli di monotonia di f e gli eventuali punti di massimo o minimo locale.
- Determinate al variare di $k \in \mathbb{R}$ il numero di soluzioni dell'equazione f(x)=k.
- Calcolate la derivata seconda di f e determinate gli intervalli di convessità e/o concavità di f.
- Disegnate il grafico di f.

La funzione è definita per $x \geq 0$, è continua ed è sempre positiva salvo per x = 0 dove si annulla; inoltre tende a 0^+ per $x \to +\infty$. La sua derivata è

$$f'(x) = 3 \frac{1 - 4x}{2\sqrt{x}(1 + 4x^2)^2}$$
, $f'(x) > 0 \iff 0 < x < 1/4$.

Per x=0 la funzione non è derivabile, e ha derivata $f'(0)=+\infty$ come si vede o dal limite della derivata o dal limite del rapporto incrementale. La funzione f è dunque strettamente crescente su [0,1/4] e strettamente decrescente su $[1/4,+\infty[$, ha massimo assoluto per x=1/4 dove vale 3/4, mentre già sappiamo che il minimo assoluto si ha per x=0 dove f si annulla. Allora l'immagine di f è [0,3/4] e l'equazione f(x)=kha una soluzione per k=0 e k=3/4, due soluzioni (una prima e una dopo x=1/4) per 0 < k < 3/4, e nessuna soluzione per k < 0 e per k > 3/4. La derivata seconda è

$$f''(x) = \frac{3}{2x(1+4x)^4} \left[-4\sqrt{x}(1+4x)^2 - (1-4x)\left(\frac{1}{2\sqrt{x}}(1+4x)^2 + 8\sqrt{x}(1+4x)\right) \right]$$

$$= \frac{3}{4x(1+4x)^3} \cdot \frac{-8x(1+4x) - (1-4x)(1+4x+16x)}{2\sqrt{x}}$$

$$= \frac{3}{8x\sqrt{x}(1+4x)^3} (-8x - 32x^2 - 1 - 20x + 4x + 80x^2)$$

$$= \frac{3}{8x\sqrt{x}(1+4x)^3} (48x^2 - 24x - 1) .$$

Dato che

$$48x^2 - 24x - 1 = 0 \iff x = \frac{12 \pm \sqrt{192}}{48} = \frac{3 \pm 2\sqrt{3}}{12}$$

e che $3-2\sqrt{3}=3-\sqrt{12}<0$, la derivata seconda è negativa per $~0< x<\left(3+2\sqrt{3}\right)/12$ e positiva per $~x>\left(3+2\sqrt{3}\right)/12$, dunque ~f~è

strettamente concava per $0 \le x \le (3+2\sqrt{3})/12$ strettamente convessa per $x \ge (3+2\sqrt{3})/12$.

PROBLEMA 3

Considerate le funzioni f(x) = 1/(1-2x), $g(x) = e^{2x+2x^2}$.

- a) Scrivete lo sviluppo di Taylor di ordine 4 e centrato in $x_0 = 0$ di f(x).
- b) Scrivete lo sviluppo di Taylor di ordine 4 e centrato in $x_0 = 0$ di g(x).
- c) Determinate l'ordine di infinitesimo e la parte principale, per $x \to 0$, della funzione h(x) = f(x) g(x).
- c) Determinate per quale valore del coefficiente $\alpha \in \mathbb{R}$ il limite ℓ per $x \to 0^+$ della funzione

$$\frac{h(x) + \alpha x^3}{x^4}$$

è finito. Calcolate poi tale limite ℓ .

Dallo sviluppo di 1/(1-t)

$$f(x) = 1 + 2x + 4x^2 + 8x^3 + 16x^4 + o(x^4),$$

mentre dallo sviluppo di e^t , osservando che $2x+2x^2$ è un infinitesimo di ordine 1 e quindi $o(2x+2x^2)^k=o(x^k)$,

$$g(x) = 1 + (2x + 2x^{2}) + \frac{(\cdots)^{2}}{2} + \frac{(\cdots)^{3}}{6} + \frac{(\cdots)^{4}}{24} + o(\cdots)^{4}$$

$$= 1 + (2x + 2x^{2}) + \frac{4x^{2} + 8x^{3} + 4x^{4}}{2} + \frac{8x^{3} + 24x^{4}}{6} + \frac{16x^{4}}{24} + o(\cdots)^{4}$$

$$= 1 + 2x + 4x^{2} + \frac{16}{3}x^{3} + \frac{20}{3}x^{4} + o(x^{4}).$$

Allora

$$h(x) = \frac{8}{3}x^3 + \frac{28}{3}x^4 + o(x^4) ,$$

un infinitesimo di ordine 3 con parte principale $8x^3/3$, e per $x \to 0^+$

$$\frac{h(x) + \alpha x^3}{x^4} = \frac{(\alpha + \frac{8}{3})x^3 + \frac{28}{3}x^4 + o(x^4)}{x^4} \begin{cases} \to +\infty & \text{se } \alpha + 8/3 > 0 \iff \alpha > -8/3 \\ \to 28/3 & \text{se } \alpha = -8/3 \\ \to -\infty & \text{se } \alpha < -8/3. \end{cases}$$

PROBLEMA 4

Sia $\alpha \in \mathbb{R} \setminus \{1\}$ e considerate le successioni

$$a_n = |5\alpha - 2|^n + |2\alpha - 2|^{-n}, \qquad b_n = (5\alpha - 2)^n + |2\alpha - 2|^{-n}.$$

- a) Studiate al variare di α il carattere di $\sum_n a_n$. b) Studiate al variare di α il carattere di $\sum_n b_n$.

Cominciamo studiando le tre serie geometriche

$$A := \sum_{n} |5\alpha - 2|^n$$
, $B := \sum_{n} (5\alpha - 2)^n$, $C := \sum_{n} \left(\frac{1}{|2\alpha - 2|}\right)^n$,

e partiamo dall'ultima: questa non avrebbe senso per $\alpha = 1$, ha ragione maggiore di zero quindi converge o diverge positivamente, e converge se la ragione è minore di 1 ossia

$$\frac{1}{|2\alpha-2|}<1\iff |2\alpha-2|>1\iff \left[2\alpha<1\text{ oppure }2\alpha>3\right]\iff \left[\alpha<\frac{1}{2}\ \ \mathbf{o}\ \ \alpha>\frac{3}{2}\right],$$

mentre diverge positivamente per $\alpha \in [1/2, 3/2]$ con $\alpha \neq 1$.

La serie geometrica di ragione $(5\alpha - 2)$ diverge positivamente per $\alpha \geq 3/5$, converge per $1/5 < \alpha < 3/5$ ed è indeterminata per $\alpha \le 1/5$; allora la serie geometrica di ragione $|5\alpha-2|$ converge per $1/5<\alpha<3/5$ e diverge positivamente per tutti gli altri valori di α . Ora possiamo rispondere alle due domande: per la serie $\sum_n a_n$, in cui il termine generale è somma di due addendi positivi, possiamo sempre scrivere $\sum_n a_n = A + C$, e otteniamo che essa converge quando convergono entrambe ossia per $\alpha \in]1/5, 1/2[$, e diverge positivamente per tutti gli altri valori di α (diversi da 1). Anche per $\sum_n b_n$ possiamo certamente scrivere la risposta quando $\,B\,$ non è indeterminata, ottenendo che $\sum_{n} b_n = B + C$ converge per $\alpha \in]1/5, 1/2[$ e diverge positivamente per $\alpha \geq 1/2$ (con $\alpha \neq 1$). Per $\alpha \leq 1/5$ sappiamo che B è indeterminata e C converge, dunque anche $\sum_{n} b_n$ è indeterminata: infatti se non lo fosse sarebbe o divergente o convergente, e in entrambi i casi otterremmo che

$$B = \sum_{n} (5\alpha - 2)^{n} = \sum_{n} [(5\alpha - 2)^{n} + |2\alpha - 2|^{-n} - |2\alpha - 2|^{-n}] = \sum_{n} b_{n} - C$$

sarebbe anche lei o divergente o convergente come $\sum_n b_n$, dato che C converge, ma sappiamo che B è indeterminata quindi per forza $\sum_n b_n$ è indeterminata. In conclusione

$$\begin{array}{cccc} & \sum_n a_n & \sum_n b_n \\ \alpha \leq 1/5 & +\infty & \text{indeterminata} \\ 1/5 < \alpha < 1/2 & \text{converge} & \text{converge} \\ 1/2 \leq \alpha, \ \alpha \neq 1 & +\infty & +\infty \ . \end{array}$$

Esercizio 1. Una soluzione dell'equazione $4z^3 - 2iz^2 + (1-i)z - 1 + i = 0$ è

Basta provare a sostituire i quattro numeri proposti nel polinomio al primo membro, l'unico valore che lo annulla è z = i.

Esercizio 2. Quali sono i valori di $a, b \in \mathbb{R}$ per i quali la funzione

$$f(x) = \begin{cases} 4x - 2 & \text{se } -\pi/2 < x < \pi \\ a \operatorname{sen} x + b \operatorname{cos} x & \text{se } x \le -\pi/2 \text{ o } x \ge \pi \end{cases}$$

è continua su tutto \mathbb{R} ?

(A)
$$a = 2\pi + 2$$
, $b = 2 - 4\pi$.
(B) $a = \pi - 1$, $b = 3 + 2\pi$.
(C) $a = 2\pi - 2$, $b = 2 + 4\pi$.
(D) $a = \pi + 1$, $b = 3 - 2\pi$.

Per il Teorema di località del limite, sappiamo già che la funzione è continua in tutti i punti tranne $x=-\pi/2$ e $x=\pi$, indipendentemente da a e b; resta da studiare la continuità in questi due punti. Abbiamo

$$f\left(-\frac{\pi}{2}\right) = \lim_{x \to (-\pi/2)^{-}} f(x) = -a \;, \qquad \lim_{x \to (-\pi/2)^{+}} f(x) = -4\frac{\pi}{2} - 2 = -2\pi - 2$$

$$f(\pi) = \lim_{x \to \pi^{+}} f(x) = a \operatorname{sen} \pi + b \operatorname{cos} \pi = -b \;, \qquad \lim_{x \to \pi^{-}} f(x) = 4\pi - 2$$

quindi f è continua anche in questi due punti se e solo se $a=2\pi+2$ e $b=2-4\pi$.

Esercizio 3. Nell'intervallo [-1/2,1/2] la funzione $\arctan\left|\frac{2x}{1+x}\right|$ ha immagine

(C) $]\arctan(2/3),\arctan 2]$. (D) $[\arctan(2/3),\arctan 2]$. (A) $[0, \arctan 2]$. (B) $\arctan(2/3), \pi/2$ [.

Se uno osserva che la funzione si annulla per x=0, e c'è una sola risposta che ha 0nell'immagine, non c'è altro da fare. In alternativa, se uno osserva che la funzione è continua su un intervallo chiuso e limitato, le due risposte in cui l'immmagine non ha minimo sono scartate e ne restano solo due. Ma procediamo senza astuzia: la funzione $\arctan x$ è crescente, quindi l'immagine di [a,b] sarà $[\arctan a,\arctan b]$ e basta trovare l'immagine [a,b] di |2x/(1+x)|. Osserviamo che su [-1/2,1/2] la funzione 2x/(1+x)ha il segno di x, ha derivata

$$\frac{2+2x-2x}{(1+x)^2} > 0$$

ed è quindi strettamente crescente, pertanto su [-1/2,0] va da -2 a 0 e su [0,1/2] va da 0 a 2/3. Allora il suo valore assoluto ha su [-1/2,0] immagine [0,2] e su [0,1/2]immagine [0,2/3]. In conclusione |2x/(1+x)| ha su [-1/2,1/2] immagine [0,2] e la funzione proposta ha immagine $[\arctan 0, \arctan 2] = [0, \arctan 2]$.

Esercizio 4. Aldo è un dilettante che partecipa a una corsa a ostacoli. In totale ci sono 8 ostacoli, ma Aldo non è molto bravo, e ad ogni ostacolo ha una probabilità di 1/9 di inciampare. Qual è la probabilità che arrivi al traguardo senza cadute?

(A)
$$8^8/9^8$$
.

(C) 8!/9!.(D) 16/72.

(B)
$$8/9$$
.

Occorre che abbia superato indenne il primo ostacolo (e fin qui la probabilità è 8/9), dopo di che deve aver superato anche il secondo (e fin qui la probabilità è 8/9 degli 8/9 precedenti) e così via per gli altri 6 ostacoli, e arriverà al traguardo con probabilità $(8/9) \cdot (8/9) \cdot \cdot \cdot (8/9) = (8/9)^8$.

Esercizio 5. Sia S l'insieme delle soluzioni della disequazione $|x^2+3x| \leq 3+x$. Allora:

(A)
$$[0, 1/3] \subset S$$
.

(C) S è un intervallo.

(B)
$$[-3, -1] \subset S$$
.

(D) $3 \in S$.

La disequazione equivale a

$$\begin{cases} x^2 + 3x \le 3 + x \\ x^2 + 3x \ge -3 - x \end{cases} \iff \begin{cases} x^2 + 2x - 3 \le 0 \\ x^2 + 4x + 3 \ge 0 \end{cases} \iff \begin{cases} -3 \le x \le -1 \\ x \le -3 \text{ oppure } x \ge -1 \end{cases}$$
$$\iff [x = -3 \text{ oppure } -1 \le x \le 1]$$

e la sola risposta esatta è che $[0,1/3]\subset S$. Esercizio 6. Dato il parametro $\alpha\in\mathbb{R}$, la serie $\sum_n n^{5-\alpha-2\alpha^2}$

- (A) converge se $\alpha > 3/2$. (B) diverge negativamente se $-2 \le \alpha <$ (C) converge se $\alpha < -3/2$. (D) è indeterminata per almeno un valore di α .

È una serie armonica generalizzata, $\sum 1/n^{2\alpha^2+\alpha-5}$, che converge se e solo se

$$2\alpha^2 + \alpha - 5 > 1 \iff 2\alpha^2 + \alpha - 6 > 0 \iff [\alpha < -2 \text{ oppure } \alpha > 3/2]$$

e diverge positivamente per $-2 \le \alpha \le 3/2$.

Esercizio 7. La successione $\frac{3^{1/n}-2^{1/n}}{\log_e n - \log_e (n+5)}$ ha limite

(A)
$$\frac{\log_e 2 - \log_e 3}{5}$$
.

(C)
$$-\frac{3/2}{\log_e 5}$$
.

(B)
$$\frac{\log_{e}(3/2)}{5}$$
.

Scriviamo

$$3^{1/n} - 2^{1/n} = 2^{1/n} \left((3/2)^{1/n} - 1 \right) = 2^{1/n} \left(e^{(1/n)\log(3/2)} - 1 \right)$$
$$= 2^{1/n} \frac{e^{(1/n)\log(3/2)} - 1}{(1/n)\log(3/2)} \cdot \frac{\log(3/2)}{n}$$

е

$$\log n - \log(n+5) = -\log \frac{n+5}{n} = -\log (1 + (5/n)) = -\frac{\log (1 + (5/n))}{5/n} \cdot \frac{5}{n},$$

quindi grazie ai limiti noti

$$\frac{3^{1/n} - 2^{1/n}}{\log n - \log(n+5)} = -\frac{\log(3/2)}{5} \cdot \frac{2^{1/n} \frac{e^{(1/n)\log(3/2)} - 1}{(1/n)\log(3/2)}}{\frac{\log\left(1 + (5/n)\right)}{5/n}} \to -\frac{\log(3/2)}{5} = \frac{\log 2 - \log 3}{5}.$$