

Basic Business Statistics 11th Edition

Chapter 3

Numerical Descriptive Measures

Learning Objectives

In this chapter, you learn:

- To describe the properties of central tendency, variation, and shape in numerical data
- To calculate descriptive summary measures for a population
- To calculate descriptive summary measures for a frequency distribution
- To construct and interpret a boxplot
- To calculate the covariance and the coefficient of correlation

Summary Definitions

- The **central tendency** is the extent to which all the data values group around a typical or central value.
- The **variation** is the amount of dispersion, or scattering, of values
- The **shape** is the pattern of the distribution of values from the lowest value to the highest value.

Measures of Central Tendency: The Mean

 The arithmetic mean (often just called "mean") is the most common measure of central tendency

Measures of Central Tendency: The Mean

(continued)

- The most common measure of central tendency
- Mean = sum of values divided by the number of values
- Affected by extreme values (outliers)

Measures of Central Tendency: The Median

 In an ordered array, the median is the "middle" number (50% above, 50% below)

Not affected by extreme values

Measures of Central Tendency: Locating the Median

The location of the median when the values are in numerical order (smallest to largest):

Median position =
$$\frac{n+1}{2}$$
 position in the ordered data

- If the number of values is odd, the median is the middle number
- If the number of values is even, the median is the average of the two middle numbers

Note that n+1 is not the *value* of the median, only the *position* of the median 2 the ranked data

Measures of Central Tendency: The Mode

- Value that occurs most often
- Not affected by extreme values
- Used for either numerical or categorical (nominal) data
- There may may be no mode
- There may be several modes

Measures of Central Tendency: Review Example

House Prices:

\$2,000,000 \$500,000 \$300,000 \$100,000

Sum \$3,000,000

- Mean: (\$3,000,000/5)= \$600,000

Median: middle value of ranked data

= \$300,000

- Mode: most frequent value = \$100,000

Measures of Central Tendency: Which Measure to Choose?

- The **mean** is generally used, unless extreme values (outliers) exist.
- The **median** is often used, since the median is not sensitive to extreme values. For example, median home prices may be reported for a region; it is less sensitive to outliers.
- In some situations it makes sense to report both the **mean** and the **median**.

Measures of Central Tendency: Summary

Measures of Variation

Measures of Variation: The Range

- Simplest measure of variation
- Difference between the largest and the smallest values:

$$Range = X_{largest} - X_{smallest}$$

Measures of Variation: Why The Range Can Be Misleading

Ignores the way in which data are distributed

Sensitive to outliers

Range =
$$5 - 1 = 4$$

Range =
$$120 - 1 = 119$$

Measures of Variation: The Variance

 Average (approximately) of squared deviations of values from the mean

Sample variance:

$$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1}$$

Where
$$X = \text{arithmetic mean}$$

 $n = \text{sample size}$
 $X_i = i^{th} \text{ value of the variable } X$

Measures of Variation: The Standard Deviation

- Most commonly used measure of variation
- Shows variation about the mean
- Is the square root of the variance
- Has the same units as the original data

Sample standard deviation:

$$S = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}}$$

Measures of Variation: The Standard Deviation

Steps for Computing Standard Deviation

- 1. Compute the difference between each value and the mean.
- 2. Square each difference.
- 3. Add the squared differences.
- 4. Divide this total by n-1 to get the sample variance.
- 5. Take the square root of the sample variance to get the sample standard deviation.

Measures of Variation: Sample Standard Deviation: Calculation Example

Sample

Data (X_i) :

$$n = 8$$

$$n = 8$$
 Mean $= \overline{X} = 16$

$$S = \sqrt{\frac{(10 - \overline{X})^2 + (12 - \overline{X})^2 + (14 - \overline{X})^2 + [1 + (24 - \overline{X})^2]}{n - 1}}$$

$$= \sqrt{\frac{(10-16)^2 + (12-16)^2 + (14-16)^2 + [] + (24-16)^2}{8-1}}$$

$$=\sqrt{\frac{130}{7}} = \boxed{4.3095} \Longrightarrow$$

A measure of the "average" scatter around the mean

Measures of Variation: Comparing Standard Deviations

Mean =
$$15.5$$

S = 0.926

Mean =
$$15.5$$

S = 4.570

Measures of Variation: Comparing Standard Deviations

- The more the data are spread out, the greater the range, variance, and standard deviation.
- The more the data are concentrated, the smaller the range, variance, and standard deviation.
- If the values are all the same (no variation), all these measures will be zero.
- None of these measures are ever negative.

Measures of Variation: The Coefficient of Variation

- Measures relative variation
- Always in percentage (%)
- Shows variation relative to mean
- Can be used to compare the variability of two or more sets of data measured in different units

$$CV = \left(\frac{S}{\overline{X}}\right) \cdot 100\%$$

Measures of Variation: Comparing Coefficients of Variation

Stock A:

- Average price last year = \$50
- Standard deviation = \$5

$$CV_A = \left(\frac{S}{\overline{X}}\right) \cdot 100\% = \frac{\$5}{\$50} \cdot 100\% \neq \frac{10\%}{\$50}$$

- - Average price last year = \$100
 - Standard deviation = \$5

$$CV_B = \left(\frac{S}{\overline{X}}\right) \cdot 100\% = \frac{\$5}{\$100} \cdot 100\% = \frac{5\%}{\$}$$

Both stocks have the same standard deviation, but stock B is less variable relative to its price

- To compute the **Z-score** of a data value, subtract the mean and divide by the standard deviation.
- The Z-score is the number of standard deviations a data value is from the mean.
- A data value is considered an extreme outlier if its Z-score is less than -3.0 or greater than +3.0.
- The larger the absolute value of the Z-score, the farther the data value is from the mean.

Locating Extreme Outliers: Z-Score

$$Z = \frac{X - \overline{X}}{S}$$

where X represents the data value

X is the sample mean

S is the sample standard deviation

Locating Extreme Outliers: Z-Score

• Compute the Z-score for a test score of 620.

$$Z = \frac{X - \overline{X}}{S} = \frac{620 - 490}{100} = \frac{130}{100} = 1.3$$

A score of 620 is 1.3 standard deviations above the mean and would not be considered an outlier.

Shape of a Distribution

- Describes how data are distributed
- Measures of shape
 - Symmetric or skewed

General Descriptive Stats Using Microsoft Excel

- 1. Select Tools.
- 2. Select Data Analysis.
- 3. Select Descriptive Statistics and click OK.

Excel output

Microsoft Excel descriptive statistics output, using the house price data:

House Prices:

\$2,000,000 500,000 300,000 100,000

	А	В
1	House Prices	
2		
	Mean	600000
4	Standard Error	357770.8764
5	Median	300000
6	Mode	100000
7	Standard Deviation	800000
8	Sample Variance	6.4E+11
9	Kurtosis	4.130126953
10	Skewness	2.006835938
11	Range	1900000
12	Minimum	100000
13	Maximum	2000000
14	Sum	3000000
15	Count	5
16		i i
17		

Minitab Output

Descriptive Statistics: House Price

Total

Variable Count Mean SE Mean StDev Variance Sum Minimum House Price 5 600000 357771 800000 6.40000E+11 3000000 100000

N for

Variable Median Maximum Range Mode Skewness Kurtosis House Price 300000 2000000 1900000 100000 2.01 4.13

Numerical Descriptive Measures for a Population

- Descriptive statistics discussed previously described a *sample*, not the *population*.
- Summary measures describing a population, called **parameters**, are denoted with Greek letters.
- Important population parameters are the population mean, variance, and standard deviation.

Numerical Descriptive Measures for a Population: The mean μ

 The population mean is the sum of the values in the population divided by the population size, N

$$\mu = \frac{\sum\limits_{i=1}^{N} X_i}{N} = \frac{X_1 + X_2 + \left[\right] + X_N}{N}$$

Where

 μ = population mean

N = population size

 $X_i = i^{th}$ value of the variable X

Numerical Descriptive Measures For A Population: The Variance σ^2

 Average of squared deviations of values from the mean

Population variance:

$$\sigma^2 = \frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N}$$

Where μ = population mean

N = population size

 $X_i = i^{th}$ value of the variable X

Numerical Descriptive Measures For A Population: The Standard Deviation σ

- Most commonly used measure of variation
- Shows variation about the mean
- Is the square root of the population variance
- Has the same units as the original data

Population standard deviation:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N}}$$

Sample statistics versus population parameters

Measure	Population Parameter	Sample Statistic
Mean	μ	\overline{X}
Variance	σ^2	S^2
Standard Deviation	σ	S

The Empirical Rule

- The empirical rule approximates the variation of data in a bell-shaped distribution
- Approximately 68% of the data in a bell shaped distribution is within 1 standard deviation of the mean or $\,\mu \pm 1\sigma$

The Empirical Rule

 Approximately 95% of the data in a bell-shaped distribution lies within two standard deviations of the mean, or μ ± 2σ

 Approximately 99.7% of the data in a bell-shaped distribution lies within three standard deviations of the mean, or μ ± 3σ

95% μ±2σ

Using the Empirical Rule

- Suppose that the variable Math SAT scores is bell-shaped with a mean of 500 and a standard deviation of 90. Then,
 - 68% of all test takers scored between 410 and 590 (500 ± 90) .
 - 95% of all test takers scored between 320 and 680 (500 \pm 180).
 - 99.7% of all test takers scored between 230 and 770 (500 ± 270) .

Chebyshev Rule

- Regardless of how the data are distributed, at least (1 - 1/k²) x 100% of the values will fall within k standard deviations of the mean (for k > 1)
 - Examples:

At least	within
- 1/2 ²) x 100% = 75%	

Quartile Measures

 Quartiles split the ranked data into 4 segments with an equal number of values per segment

- The first quartile, Q₁, is the value for which 25% of the observations are smaller and 75% are larger
- Q₂ is the same as the median (50% of the observations are smaller and 50% are larger)
- Only 25% of the observations are greater than the third quartile

Quartile Measures: Locating Quartiles

Find a quartile by determining the value in the appropriate position in the ranked data, where

First quartile position: $Q_1 = (n+1)/4$ ranked value

Second quartile position: $Q_2 = (n+1)/2$ ranked value

Third quartile position: $Q_3 = 3(n+1)/4$ ranked value

where **n** is the number of observed values

Quartile Measures: Calculation Rules

- When calculating the ranked position use the following rules
 - If the result is a whole number then it is the ranked position to use
 - If the result is a fractional half (e.g. 2.5, 7.5, 8.5, etc.) then average the two corresponding data values.
 - If the result is not a whole number or a fractional half then round the result to the nearest integer to find the ranked position.

Quartile Measures: Locating Quartiles

Sample Data in Ordered Array: 11 12 13 16 16 17 18 21 22

(n = 9)
$$Q_1 \text{ is in the } \underbrace{(9+1)/4 = 2.5 \text{ position}}_{\text{of the ranked data}} \text{ of the ranked data}$$
 so use the value half way between the 2^{nd} and 3^{rd} values, so
$$Q_1 = 12.5$$

 Q_1 and Q_3 are measures of non-central location Q_2 = median, is a measure of central tendency

Quartile Measures Calculating The Quartiles: Example

Sample Data in Ordered Array: 11 12 13 16 16 17 18 21 22

$$(n = 9)$$

 Q_1 is in the (9+1)/4 = 2.5 position of the ranked data, so $Q_1 = (12+13)/2 = 12.5$

 Q_2 is in the $(9+1)/2 = 5^{th}$ position of the ranked data, so $Q_2 = median = 16$

 Q_3 is in the 3(9+1)/4 = 7.5 position of the ranked data, so $Q_3 = (18+21)/2 = 19.5$

 Q_1 and Q_3 are measures of non-central location Q_2 = median, is a measure of central tendency

Quartile Measures: The Interquartile Range (IQR)

- The IQR is Q₃ − Q₁ and measures the spread in the middle 50% of the data
- The IQR is also called the midspread because it covers the middle 50% of the data
- The IQR is a measure of variability that is not influenced by outliers or extreme values
- Measures like Q₁, Q₃, and IQR that are not influenced by outliers are called resistant measures

Calculating The Interquartile Range

Example:

The Five Number Summary

The five numbers that help describe the center, spread and shape of data are:

- X_{smallest}
- First Quartile (Q₁)
- Median (Q_2)
- Third Quartile (Q₃)
- X largest

Relationships among the five-number summary and distribution shape

Left-Skewed	Symmetric	Right-Skewed
Median – X _{smallest}	Median – X _{smallest}	Median – X _{smallest}
>	≈	<
X _{largest} – Median	X _{largest} – Median	X _{largest} – Median
Q ₁ - X _{smallest}	Q ₁ - X _{smallest}	Q ₁ - X _{smallest}
>	≈	<
$X_{largest} - Q_3$	X _{largest} – Q ₃	$X_{largest} - Q_3$
Median – Q ₁	Median – Q₁	Median – Q₁
>	≈	<
Q ₃ – Median	Q ₃ – Median	Q ₃ – Median

Five Number Summary and The Boxplot

The Boxplot: A Graphical display of the data based on the five-number summary:

Example:

Five Number Summary: Shape of Boxplots

 If data are symmetric around the median then the box and central line are centered between the endpoints

A Boxplot can be shown in either a vertical or horizontal orientation

Distribution Shape and The Boxplot

Left-Skewed

Symmetric

Right-Skewed

Boxplot Example

Below is a Boxplot for the following data:

The data are right skewed, as the plot depicts

- The boxplot below of the same data shows the outlier value of 27 plotted separately
- •A value is considered an outlier if it is more than 1.5 times the interquartile range below Q₁ or above Q₃

Chapter Summary

- Described measures of central tendency
 - Mean, median, mode, geometric mean
- Described measures of variation
 - Range, interquartile range, variance and standard deviation, coefficient of variation, Z-scores
- Illustrated shape of distribution
 - Symmetric, skewed
- Described data using the 5-number summary
 - Boxplots