Appunti di Analisi I

Analisi Matematica (prof. Mongodi) - CdL Informatica Unimib - 23/24

Federico Zotti

05 Nov 2023

1	Insie	emi	5
	1.1	Notazione	5
	1.2	Prodotto cartesiano	5
	1.3	Insieme delle parti	6
2	Fun	zioni	6
	2.1	Funzioni Iniettive e Suriettive	7
	2.2	Immagine e controimmagine	8
3	Nun	neri Reali	8
	3.1	Insiemi numerici	8
	3.2	Proprietà dei numeri reali	8
		3.2.1 Algebriche	9
		3.2.2 Di Ordinamento	9
		3.2.3 Assioma di Continuità	10
	3.3	Sottoinsiemi dei reali	10
4	Infe	riore, Superiore, Massimo e Minimo	10
	4.1	Estremo superiore ed Estremo inferiore	11
		4.1.1 Caratterizzazione di inf e sup	12

5	Funz	zioni reali	13		
	5.1	Grafici, Iniettività e Suriettività	13		
6	Funzioni elementari				
	6.1	Potenze pari	14		
	6.2	Potenze dispari	15		
	6.3	Esponenziali	15		
	6.4	Funzioni trigonometriche	16		
		6.4.1 Seno	16		
		6.4.2 Coseno	16		
		6.4.3 Tangente	17		
7	Tras	formazione di grafici	17		
8	Succ	essioni	17		
	8.1	Terminologia	17		
	8.2	Succesioni a valori reali	18		
	8.3	Limite di una successione	18		
	8.4	Teorema di unicità del limite	19		
	8.5	Limitatezza delle successioni convergenti	19		
	8.6	Teorema di permanenza del segno	20		
	8.7	Retta reale estesa	20		
	8.8	Teoremi algebrici	21		
	8.9	Teoremi di confronto	21		
9	Tecr	niche di calcolo dei limiti	22		
	9.1	Disuguaglianza di Bernoulli	23		
	9.2	Dimostrazione teorema del confronto a 2	23		
10	Crite	erio del rapporto & Criterio della radice	24		
	10.1	Criterio del rapporto	24		
	10.2	Criterio della radice	24		
	10.3	Fattoriale	25		
	10.4	Gerarchia degli infiniti	25		

	10.5 Criterio del rapporto-radice	26
	10.6 Dimostrazione del criterio della radice	27
11	Principio di induzione	28
	11.1 Disuguaglianza di Bernoulli (dimostrazione)	29
	11.2 Coeff. binomiali	29
12	Successioni monotone	30
13	Successioni per ricorrenza	31
14	Serie numeriche	34
	14.1 Definizione SBAGLIATA	34
	14.2 Definizione CORRETTA	35
	14.3 Carattere di una serie (comportamento)	35
	14.4 Serie telescopiche	35
	14.5 Serie geometriche	36
	14.6 Strumenti per lo studio delle serie	37
	14.6.1 Teoremi algebrici	37
	14.6.2 Condizione necessaria	38
	14.6.3 Serie note	38
	14.6.4 Serie a termini di segno costante	39
	14.6.5 Assoluta convergena per serie a termini di segno variabile	45
	14.6.6 Criterio di Leibniz per serie a termini alterni	45
15	Limiti di Funzione	46
	15.1 $\lim_{x\to+\infty} f(x)$	46
	15.2 $\lim_{x\to-\infty} f(x)$	47
	15.3 $\lim_{x \to x_0} f(x)$	47
	15.3.1 $\lim_{x \to x_0^+} f(x)$	48
	15.3.2 $\lim_{x \to x_0^-} f(x)$	48
	15.4 Note tecniche	48
	15.5 Caratterizzazione del limite per succesioni	49

16	Tecn	niche di Calcolo dei Limiti	49
	16.1	Continuità	50
		16.1.1 Come trovare funzioni continue	50
	16.2	Limiti notevoli	50
		16.2.1 Patriarchi	50
		16.2.2 Prima generazione	51
		16.2.3 Seconda generazione	51
	16.3	Cambi di variabile	51
17	O-pi	ccolo e Equivalenza asintotica	51
	17.1	Proprietà algebriche degli o-piccoli	52
	17.2	Transitività degli o-piccoli	52
	17.3	Limiti notevoli espressi in o-piccoli	53
	17.4	Equivalenza asintotica	53

1 Insiemi

1 Insiemi

1.1 Notazione

Per elenco: Prima operazione, poi insieme di partenza

$$A = \{1, 2, 3, 4, 5\}$$

 $B = \{n^2 \mid n \text{ naturale}\}$

Per proprietà: Prima insieme che scelgo, poi la proprietà che verifico

$$C = \{n \text{ naturale} \mid n \text{ è un quadrato}\}$$

Altri simboli:

appartiene
$$\rightarrow a \in A$$

non appartiene
$$\rightarrow a \notin A$$

è sottoinsieme
$$\rightarrow A \subseteq B$$

è sottoinsieme stretto
$$\rightarrow A \subset B$$

insieme vuoto
$$\rightarrow \emptyset$$

unione
$$\rightarrow A \cup B \mid \lor$$

intersezione
$$\rightarrow A \cap B \mid \land$$

$$\mathsf{sottrazione} \to A \smallsetminus B$$

$$\mathsf{cardinalit\grave{a}} \to |A|$$

1.2 Prodotto cartesiano

Dati due insiemi A e B, il loro **prodotto cartesiano** è l'insieme delle coppie (a,b) con $a \in A, b \in B$.

Si indica con $A \times B$.

2 Funzioni

$$|A \times B| = |A| \cdot |B|$$

Es:

$$A = \{1, 2, 3\}$$

$$A \times A = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$$

1.3 Insieme delle parti

Dato A, $\mathcal{P}(A)$ è l'insieme di tutti i sottoinsiemi di A.

$$|\mathscr{P}(A)| = 2^{|A|}$$

Es:

$$A = \{1, 2\}$$

$$\mathcal{P}(A) = \{\emptyset, A, \{0\}, \{1\}\}$$

2 Funzioni

Come si descrive una funzione:

- 1. Un insieme di partenza (A) (dominio);
- 2. Un insieme di arrivo (B) (codominio);
- 3. Una serie di regole che ad ogni elemento di A associa un **unico** elemento di $f(a) \in B$.

$$f:A\to B$$

Il grafico di una funzione è:

2 Funzioni

$$g = \{ (a, f(a)) \in A \times B | a \in A \}$$
$$= \{ (a, b) \in A \times B | b = f(a) \}$$

2.1 Funzioni Iniettive e Suriettive

Sia $f: A \rightarrow B$ una funzione.

• f si dice **iniettiva** se manda elementi distinti di A in elementi distinti di B.

$$a_1 \in A, a_2 \in A, a_1 \neq a_2 \Rightarrow f(a_1) \neq f(a_2)$$

ovvero se

$$f(a_1) = f(a_2) \Rightarrow a_1 = a_2$$

f si dice suriettiva se ogni elemento di B è ottenuto da almeno un elemento di A tramite f.

$$\forall b \in B \exists a \in A \text{ t.c. } f(a) = b$$

Una funzione si dice **biunivoca** se è sia iniettiva che suriettiva.

Teo: Una funzione $f:A\to B$ è biunivoca se e solo se è invertibile, cioè se e solo se esiste una funzione $g:B\to A$ t.c.:

$$g(f(a)) = a \forall a \in A$$

$$f(g(b)) = b \,\forall \, b \in B$$

Oss:

$$f:A\to B$$

ullet è iniettiva se ogni elemento di B è ottenuto da al più un elemento di A tramite f,

3 Numeri Reali

è suriettiva se ogni elemento di B è ottenuto da almeno un elemento di A tramite
 f.

2.2 Immagine e controimmagine

Sia $f: A \rightarrow B$ una funzione.

- Se b = f(a) con $a \in A, b \in B$, si dice che b è immagine di a tramite f;
- Sia $C \subseteq A$ un sottoinsieme, si dice *immagine di* C tramite f l'insieme degli elementi di B che sono imamgine di elementi di C. $f(c) = \{f(a) : a \in C\} \subseteq B$
- Immagine di A: $f(A) = \{ f(a) : a \in A \}$
- Sia D ⊆ B un sottoinsieme, si dice controimmagine di D tramite f l'insieme di tutti gli elementi di A che hanno immagine contenuta in D.
- Controimmagine di D: $f^{-1}(D) = \{a \in A : f(a) \in D\}$ (definita anche se f non è invertibile).

3 Numeri Reali

3.1 Insiemi numerici

- Naturali: $\mathbb{N} = \{0, 1, 2, 3, ...\}$
- Razionali: $\mathbb{Z} = \{ \frac{m}{n} : m \in \mathbb{Z}, n \in \mathbb{N} \setminus \{0\} \}$
- Reali: ℝ
- Irrazionali: Q
- Complessi: C

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{R}\subset\mathbb{Q}\subset\mathbb{C}$$

3.2 Proprietà dei numeri reali

Sono di tre tipi:

Algebriche;

3 Numeri Reali

- Di Ordinamento;
- Assioma di Continuità.

3.2.1 Algebriche

Sui numeri reali sono definite due operazioni $+ e \cdot$, dette somma e prodotto, con le seguenti proprietà:

- Relative alla somma:
 - **Commutativa:** a + b = b + a ∀ a, b∈ \mathbb{R} (n, z, q, r, c)
 - Associativa: $(a+b)+c=a+(b+c) \ \forall \ a,b,c \in \mathbb{R} \ (n,z,q,r,c)$
 - Elemento neutro somma: $\exists 0 \in R \text{ t.c. } a + 0 = a \forall a \in \mathbb{R} (n,z,q,r,c)$
 - **Esistenza dell'inverso:** $\forall a \in \mathbb{R} \exists b \in \mathbb{R} \text{ t.c. } a+b=0 \ (z,q,r,c)$
- Relative al prodotto:
 - **Commutativa:** $a \cdot b = b \cdot a \, \forall \, a, b \in \mathbb{R} \, (n,z,q,r,c)$
 - Associativa: $(a \cdot b) \cdot c = a \cdot (b \cdot c) \ \forall \ a,b,c \in \mathbb{R} \ (n,z,q,r,c)$
 - **Elemento neutro prodotto:** ∃1 ∈ \mathbb{R} t.c. $a \cdot 1 = a \forall a \in \mathbb{R}$ (n,z,q,r,c)
 - **Esistenza dell'inverso:** $\forall a \in \mathbb{R} \exists b \in \mathbb{R} \text{ t.c. } a \cdot b = 1 \ (q,r,c)$
- **Distributiva:** $a \cdot (b+c) = ab + ac \ \forall \ a,b,c \in \mathbb{R} \ (n,z,q,r,c)$

3.2.2 Di Ordinamento

Dati due numeri reali x e y, si ah sempre che $x \ge y$ oppure $x \le y$. Tale ordinamento ha le proprietà:

- Riflessiva: $x \ge x \ \forall \ x \in \mathbb{R}$
- Antisimmetrica: se $x \ge y \land y \ge x$, allora x = y
- Transitiva: se $x \ge y \land y \ge z$, allora $x \ge z$
- se $x \ge y$, allora $x + z \ge y + z \ \forall z \in \mathbb{R}$
- se $x \ge y$, allora $x \cdot z \ge y \cdot z \ \forall z \in \mathbb{R}$ con $z \ge 0$

Queste valgono in \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , ma non in \mathbb{C} .

3.2.3 Assioma di Continuità

Dati $A, B \subseteq \mathbb{R}$ sottoinsiemi diversi da \emptyset . Diciamo che A sta tutto a sinistra di B se $a \le b \ \forall \ a \in A, \ \forall \ b \in B$.

L'assioma di continuità dice che se A sta tutto a sinistra di B allora esiste almeno un $c \in \mathbb{R}$ t.c. $c \ge a \ \forall \ a \in A; c \le b \ \forall \ b \in B$.

c non è obbligato ad essere unico; c può appartenere ad A, a B o anche a entrambi (in questo caso è unico elemento "separatore").

Es:

$$A = \{ x \in Q : x \ge 0 \land x^2 < 2 \}$$

$$B = \{ x \in Q : x \ge 0 \land x^2 > 2 \}$$
se $a \in A, b \in B \to a > b$

$$c^2 = 2$$

Questo è impossibile in Q, quindi l'assioma di continuità non vale in Q.

Conclusione: sui numeri reali, $\sqrt{2}$ è l'elemento separatore tra A e B e si può dimostrare che è unico.

3.3 Sottoinsiemi dei reali

 $(a,b) \subseteq \mathbb{R}$ è l'intervallo separato da estremi $a,b \in \mathbb{R}$ (con a < b).

- $]a,b[= (a,b) = \{ x \in \mathbb{R} \text{ t.c. } a < x < b \}]$
- $[a,b] = \{ x \in \mathbb{R} \text{ t.c. } a \le x \le b \}$

4 Inferiore, Superiore, Massimo e Minimo

Sia $A \subseteq \mathbb{R}$ un sottoinsieme *non vuoto*.

 $M \in \mathbb{R}$ si dice **maggiorante** di A se $M \ge a \ \forall \ a \in A$ $m \in \mathbb{R}$ si dice **minorante** di A se $m \le a \ \forall \ a \in A$

4 Inferiore, Superiore, Massimo e Minimo

Minoranti e maggioranti non sono obbligati ad esistere. Ad esempio $A = \mathbb{N}$ ha minoranti ma non ha maggioranti.

Se esiste un maggiorante invece, ne esistono infiniti. Se M è un maggiorante, anche M+1 lo è. Lo stesso vale per i minoranti.

 $A \subseteq \mathbb{R}, A \neq \emptyset$ si dice superiormente limitato se ammette un maggiorante e inferiormente limitato se ammette un minorante. Si dice limitato se è contemporaneamente superiormente e inferiormente limitato.

- $A=(0,+\inf)$ è inferiormente limitato ma non superiormente $B=\{\frac{1-n}{2}\ :\ n\in\mathbb{N}\}$ è superiormente limitato, ma non inferiormente

 $M \in \mathbb{N}$ si dice **massimo** di A (e si scrive $M = \max A$) se $M \in A \land M \ge a \ \forall \ a \in A$ $m \in \mathbb{N}$ si dice **minimo** di A (e si scrive $m = \min A$) se $m \in A \land m \le a \ \forall \ a \in A$

max e min non sono obbligati ad esistere, nemmeno per insiemi limitati.

• A = (0, 1) non ha né \max , né \min

max e min, se esistono, sono unici.

4.1 Estremo superiore ed Estremo inferiore

Sia $A \subseteq \mathbb{R}, A \neq \emptyset$.

Si dice che $\sup A = +\inf$ se A non è superiormente limitato o $\sup A = L \in \mathbb{R}$ se lo è e L è il minimo dei maggioranti.

Si dice che $\inf A = -\inf$ se A non è inferiormente limitato o $\inf A = l \in \mathbb{R}$ se lo è e l è il massimo dei minoranti.

4 Inferiore, Superiore, Massimo e Minimo

- $\sup \mathbb{N} = +\inf$ $\inf \mathbb{N} = 0$

Teo: Se $A \subseteq \mathbb{R}, A \neq \emptyset$ è superiormente limitato, allora il minimo dei maggioranti esiste.

Dim: Sia $B = \{x \in \mathbb{R} \mid x \ge a \ \forall a \in A\}$ l'insieme dei maggioranti. Allora A sta tutto a sinistra di B. Per l'assioma di continuità c'è un elemento separatore $c \in \mathbb{R}$, ovvero $c \le b \ \forall b \in B \ e \ c \ge a \ \forall a \in A \implies c \in B$. Quindi $c = \min B$.

Esercizio per casa #todo-compito: Enunciare e dimostrare il teorema analogo per il massimo dei minoranti.

4.1.1 Caratterizzazione di inf e sup

- $\sup A = +\inf \text{ se } \forall M \in \mathbb{R} \exists a \in A \text{ t.c. } a \geq M \text{ (ovvero se posso trovare elementi di })$ A grandi quanto voglio)
- $\inf A = -\inf \text{ se } \forall M \in \mathbb{R} \ \exists a \in A \text{ t.c. } a \leq M$
- $\sup A = L \in \mathbb{R}$ se
 - $-a \le L \ \forall a \in A \ (L \ \dot{e} \ un \ maggiorante)$
 - $\forall \varepsilon > 0 \exists a \in A \text{ t.c. } a \geq L \varepsilon$
- $\inf A = L \in \mathbb{R}$ se
 - $-a \ge l \, \forall \, a \in A \, (l \, \grave{e} \, un \, minorante)$
 - $\forall \varepsilon > 0 \exists a \in A \text{ t.c. } a \leq l + \varepsilon$

Se esiste $M = \max A$ allora $\sup A = M$. Se esiste $m = \min A$ allora $\inf A = m$. $\sup A$ non è obbligato ad appartenere ad A, ma se vi appartiene è il massimo. Stessa cosa per $\inf A$.

5 Funzioni reali

 $f: \mathbb{R} \to \mathbb{R}$ oppure $f: A \to \mathbb{R}$.

Grafico di $f = \{(x, y) \in \mathbb{R}^2 : y = f(x)\} (\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}).$

Proprietà di simmetria:

- f si dice pari se $f(x) = f(-x) \ \forall x \in \mathbb{R}$ (simmetrica rispetto all'asse y)
- f si dice dispari se $f(x) = -f(-x) \ \forall x \in \mathbb{R}$ (simmetrica rispetto all'origine)
- f si dice **periodica** se $\exists T > 0$ t.c. $f(x+T) = f(x) \ \forall x \in \mathbb{R}$ (il grafico si ottiene traslando il pezzo [0,T] in [T,2T], [T,3T], ...)

Se $f : \mathbb{R} \to \mathbb{R}$ è dispari, allora f(0) = 0.

Se T è un periodo, anche 2T, 3T, 4T, ... lo sono. Il **minimo periodo** è il più piccolo T (se esiste) per cui vale f(x+T)=f(x) \forall $T\in\mathbb{R}$.

Proprietà di monotonia:

- *f* si dice **monotona**:
 - f si dice **strettamente crescente** se x > y ⇒ $f(x) > f(y) \forall x, y \in \mathbb{R}$
 - f si dice **strettamente decrescente** se $x > y \implies f(x) < f(y) \ \forall \ x, y \in \mathbb{R}$
- f si dice debolmente crescente se $x > y \implies f(x) \ge f(y) \ \forall x, y \in \mathbb{R}$
- f si dice debolmente decrescente se $x > y \implies f(x) \le f(y) \ \forall x, y \in \mathbb{R}$

Se f è strettamente crescente allora è anche debolmente crescente. Se f è strettamente decrescente allora è anche debolmente decrescente.

Se f è sia deb. crescente che deb. decrescente allora è **costante**.

5.1 Grafici, Iniettività e Suriettività

- Suriettiva

 in ogni elemento dell'insieme di arrivo termina almeno una freccia

 (tutto l'asse y è "coperto")
- Iniettiva \iff in ogni elemento dell'insieme di arrivo termina al più (0|1) una freccia (l'asse y è "coperto" solo una volta)

6 Funzioni elementari

• Retta orizzontale: $y = \lambda$

• Grafico di f: y = f(x)

• Intersezioni: $f(x) = \lambda$

$$f$$
 iniettiva $\iff f(x) = \lambda$ ha al più una soluz. $\forall \lambda \in \mathbb{R}$ f suriettiva $\iff f(x) = \lambda$ ha almeno una soluz. $\forall \lambda \in \mathbb{R}$

Se f è pari o periodica non è iniettiva. Se f è strettamente crescente o strettamente decrescente allora è iniettiva.

6 Funzioni elementari

6.1 Potenze pari

$$f(x) = x^{2k} \qquad k \in \mathbb{N} \setminus \{0\}$$

- Con $\mathbb{R} \to \mathbb{R}$ (non iniettiva o suriettiva).
- Con $\mathbb{R}_{\geq 0} \to \mathbb{R}$ (iniettiva ma non suriettiva)
- ${\color{red} \bullet}$ Con $\mathbb{R} \to \mathbb{R}_{\geq 0}$ (non iniettiva ma suriettiva)
- Con $\mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ (biunivoca)

Quindi l'inverso è

$$g: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$$
$$g(x) = \sqrt{x}^{2k}$$

Oss: $f(x) = x^{2k}$ è una funzione *pari*, strettamente crescente su $[0, +\infty)$ e strettamente decrescente su $[-\infty, 0)$.

| Oss: la funzione f(x) = |x| ha le stesse proprietà.

6 Funzioni elementari

6.2 Potenze dispari

$$f(x) = x^{2k+1} \qquad k \in \mathbb{N}$$

È una funzione dispari.

• $\mathbb{R} \to \mathbb{R}$ (biunivoca)

L'inverso è definito come

$$g: \mathbb{R} \to \mathbb{R}$$
$$g(x) = \sqrt{x}^{2k+1}$$

Vale lo stesso per $f(x) = \frac{1}{x^k}$

[!warning] Confermare la funzione

Oss: $f(x) = x^{2k+1}$ è strettamente crescente su \mathbb{R} .

6.3 Esponenziali

$$f(x) = a^x \qquad \text{con } a > 1$$

- $\mathbb{R} \to \mathbb{R}$ (iniettiva)
- $\mathbb{R} \to \mathbb{R}_{>0}$ (biunivoca)

L'inversa è

$$g: \mathbb{R}_{>0} \to \mathbb{R}$$
$$g(x) = \log_a x$$

| Ese: fate lo stesso per $f(x) = a^x \operatorname{con} 0 < a < 1$

Oss: se $a \in (0,1)$ allora $b = \frac{1}{a} \in (1,+\infty)$.

6 Funzioni elementari

6.4 Funzioni trigonometriche

6.4.1 Seno

$$f(x) = \sin x$$

 $f: \mathbb{R} \to \mathbb{R}$ è periodica di periodo minimo 2π ed è dispari $(\sin(-x) = -\sin x)$.

- $\mathbb{R} \to \mathbb{R}$ (non iniettiva e non suriettiva)
- $\bullet \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to [-1, 1] \ (biunivoca)$

L'inversa è

$$g: [-1,1] \to \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

 $g(x) = \arcsin x$

Oss: $\arcsin(\sin(\frac{3}{4}\pi)) = \frac{\pi}{4} \neq \frac{3}{4}\pi$

6.4.2 Coseno

$$f(x) = \cos x$$

 $f:\mathbb{R} \to \mathbb{R}$ è periodica di periodo minimo 2π ed è pari $(\cos x = \cos(-x))$.

- $\mathbb{R} \to \mathbb{R}$ (non iniettiva e non suriettiva)
- $[0,\pi] \rightarrow [-1,1]$ (biunivoca)

L'inversa è

$$g: [-1,1] \rightarrow [0,\pi]$$

 $g(x) = \arccos x$

Oss: $\arccos(\cos(\frac{3}{2}\pi)) \neq \frac{3}{2}\pi$

6.4.3 Tangente

$$f(x) = \tan x = \frac{\sin x}{\cos x}$$

- $\mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\} \to \mathbb{R}$ è periodica di periodo minimo π ed è dispari (solo suriettiva)
- $\mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\} \rightarrow \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ è dispari (biunivoca)

L'inversa è

$$g: \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

 $g(x) = \arctan x$

7 Trasformazione di grafici

Dato $f: \mathbb{R} \to \mathbb{R}$.

- Simmetria assiale rispetto all'asse x: y = -f(x)
- Simmetria assiale rispetto all'asse y. y = f(-x)
- Traslazione del vettore (0,c) (verso l'alto se c>0): y=f(x)+c
- Traslazione del vettore (-c,0) (verso sinistra se c>0): y=f(x+c)
- Compressione verso l'asse x (dilatazione se c > 1): $y = f(x) \cdot c$
- Dilatazione verso l'asse y (compressione se c > 1): $y = f(x \cdot c)$
- Ribaltamento sull'asse x: y = |f(x)|
- Ribaltamento sull'asse y. y = f(|x|)

8 Successioni

8.1 Terminologia

Sia $\mathcal{P}(n)$ una affermazione a proposito del numero $n \in \mathbb{N}$. Sarà vera o falsa a seconda del valore di n.

Diciamo che:

8 Successioni

- $\mathcal{P}(n)$ è vera frequentemente se è vera per infiniti $n \in \mathbb{N}$
- $\mathcal{P}(n)$ è vera definitivamente se è vera "da un certo punto in poi", cioè se $\exists n_0 \in$ \mathbb{N} t.c. $\mathscr{P}(n)$ è vera $\forall n \geq n_0$

| Oss: Definitivamente → Frequentemente.

Es:

- 1. $n^2 \geq 1000$ è vera definitivamente 2. n^3 è multiplo di 8 è vera frequentemente, ma non definitivamente
- 3. $n+1 \ge 3^n$ è falsa definitivamente

8.2 Succesioni a valori reali

Def rigida: una successione a valori reali è una funzione $a : \mathbb{N} \to \mathbb{R}$.

Di solito, invece di scrivere a(n), si scrive a_n .

Oss: così non è possibile considerare $a_n = \frac{1}{n}$.

Def più elastica: una successione a valori reali è una funzione $a:A\to\mathbb{R}$ con $A\subseteq\mathbb{N}$, tale che $\exists n_0 \in \mathbb{N}$ per cui $\forall n \geq n_0, n \in A$ (tale che $n \in A$ definitivamente).

8.3 Limite di una successione

Sia a_n una successione. Abbiamo 4 possibili comportamenti:

- 1. $\lim_{n\to+\infty} a_n = \ell \ (a_n \to \ell; \ \ell \in \mathbb{R})$
- 2. $\lim a_n = +\infty \ (a_n \to +\infty)$
- 3. $\lim a_n = -\infty \ (a_n \to -\infty)$
- 4. $\lim a_n$ non esiste $(a_n \in indeterminata)$

Def:

- Una successione è di tipo 4. se non è di nessun degli altri tipi
- Una successione è di tipo 2. se $\forall M \in \mathbb{R}, a_n \geq M$ definitivamente $(\forall M \in \mathbb{R}, \exists n_0 \in \mathbb{R})$

 \mathbb{N} t.c. $a_n \geq M \,\forall \, n \geq n_0$)

- Una successione è di tipo 3. se $\forall m \in \mathbb{R}, a_n \leq m$ definitivamente $(\forall m \in \mathbb{R}, \exists n_0 \in \mathbb{N} \text{ t.c. } a_n \leq m \ \forall n \geq n_0)$
- Una successione è di tipo 1. se
 - $\forall \varepsilon > 0, a_n \in [\ell \varepsilon, \ell + \varepsilon]$ definitivamente \vee
 - $\ \forall \, \varepsilon > 0, \ell \varepsilon \leq a_n \leq \ell + \varepsilon$ definitivamente \lor
 - $\forall \varepsilon > 0, |a_n \ell| \le \varepsilon$ definitivamente

Varianti di 1.:

è assurdo!

- $a_n \to \ell^+$ tende a ℓ da destra se $\forall \, \varepsilon > 0, \ell < a_n \le \ell + \varepsilon$ definitivamente
- $a_n \to \ell^-$ tende a ℓ da sinistra se $\forall \, \varepsilon > 0, \ell \varepsilon \leq a_n < \varepsilon$ definitivamente

8.4 Teorema di unicità del limite

Una successione ricade sempre in uno e uno solo dei quattro tipi di comportamento. Se poi ricade nel tipo 1. ($\ell \in \mathbb{R}$), il valore ℓ è unico.

Dim: se a_n è di tipo 1. cioè $a_n \to \ell$, allora definitivamente $\ell-1 \le a_n \le \ell+1$. $l-1 \le a_n$ implica che non può essere di tipo 3.. $a_n \le \ell+1$ implica che non può essere di tipo 2.. Inoltre se è di tipo 2., definitivamente si avrà $a_n \ge 1$. Se è di tipo 3., definitivamente si avrà $a_n \le -1$. Queste condizioni non possono accadere insieme. Infine, se $a_n \to \ell_1$, $a_n \to \ell_2$ con $\ell_1 \ne \ell_2$, allora fisso $\varepsilon = \frac{|\ell_1 - \ell_2|}{4}$. Quindi a_n si ritrova in due intervalli contemporaneamente: $\ell_1 - \varepsilon \le a_n \le \ell_1 + \varepsilon$ e $\ell_2 - \varepsilon \le a_n \le \ell_2 + \varepsilon$. Se $\ell_1 < \ell_2$ allora $\ell_1 + \varepsilon < \ell_2 - \varepsilon$. Dunque $a_n \le \ell_1 + \varepsilon < \ell_2 - \varepsilon \le a_n$ definitivamente. Questo

8.5 Limitatezza delle successioni convergenti

- Se $a_n \to \ell \in \mathbb{R}$ allora $\{a_n \mid n \in \mathbb{N}\}$ è limitato
- Se $a_n \to +\infty$ allora $\{a_n \mid n \in \mathbb{N}\}$ è inferiormente limitato
- Se $a_n \to -\infty$ allora $\{a_n \mid n \in \mathbb{N}\}$ è superiormente limitato

Dimostrazione nelle slide. #view-slide

8.6 Teorema di permanenza del segno

- Se $a_n \to \ell \in (0,+\infty)$ o se $a_n \to +\infty$ allora $a_n > 0$ definitivamente
- Se $a_n \geq 0$ definitivamente e se $a_n \to \ell$ allora $\ell \geq 0$ oppure $\ell = +\infty$

Dimostrazione nelle slide #view-slide

Oss: vale lo stesso risultato con i negativi.

- $\begin{tabular}{ll} \blacksquare & {\sf Se} \ a_n \to \ell \in (-\infty,0) \ {\sf o} \ {\sf se} \ a_n \to -\infty \ {\sf allora} \ a_n < 0 \ {\sf definitivamente} \\ \blacksquare & {\sf Se} \ a_n \le 0 \ {\sf definitivamente} \ {\sf e} \ {\sf se} \ a_n \to \ell \ {\sf allora} \ \ell \le 0 \ {\sf oppure} \ \ell = -\infty \\ \end{tabular}$

8.7 Retta reale estesa

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty, -\infty\}$$

- Posso scrivere $a_n \to \ell \in \overline{\mathbb{R}}$ per unificare i tipi 1., 2., 3.
- Le operazioni di \mathbb{R} si estendono a $\overline{\mathbb{R}}$ quasi bene:

$$+x\cdot(\pm\infty)=\pm\infty$$

$$-x\cdot(\pm\infty)=\mp\infty$$

$$x + (\pm \infty) = \pm \infty$$

$$(+\infty) \cdot (+\infty) = +\infty$$

$$(-\infty)\cdot(-\infty)=+\infty$$

$$(-\infty)\cdot(-\infty)=+\infty$$

$$\frac{x}{+\infty} = 0$$

- Ci sono 2 eccezioni:
 - 1. Le 7 forme indeterminate:

8 Successioni

$$(+\infty) + (-\infty)$$

$$0 \cdot (\pm \infty)$$

$$\frac{\pm \infty}{\pm \infty}$$

$$\frac{0}{0}$$

$$0^{0}$$

$$1^{\pm \infty}$$

$$(\pm \infty)^{0}$$

2. Le divisioni per 0

8.8 Teoremi algebrici

Siano $a_n,\ b_n$ successioni, $a_n \to \ell_1 \in \overline{\mathbb{R}},\ b_n \to \ell_2 \in \overline{\mathbb{R}},$ allora:

$$a_n + b_n \to l_1 + l_2$$

$$a_n - b_n \to l_1 - l_2$$

$$a_n \cdot b_n \to l_1 \cdot l_2$$

$$\frac{a_n}{b_n} \to \frac{l_1}{l_2}$$

$$a_n^{b_n} \to l_1^{l_2}$$

Con le dovute eccezioni di ∞ .

8.9 Teoremi di confronto

Se $a_n \leq b_n$ definitivamente, allora:

- 1. Se $a_n \to a$ e $b_n \to b$, allora $a \le b$
- 2. Se $a_n \to +\infty$, allora $b_n \to +\infty$
- 3. Se $b_n \to -\infty$, allora $a_n \to -\infty$

9 Tecniche di calcolo dei limiti

Se a_n,b_n,c_n sono tali che $a_n\leq b_n\leq c_n$ definitivamente e $a_n\to \ell$, $c_n\to \ell$ (lo stesso $\ell\in\overline{\mathbb{R}}$) allora $b_n \to \ell$. (teorema del carabiniere).

Es: $\lim_{n\to+\infty} n + \cos n$.

$$\forall n \in \mathbb{N}, \cos n \ge -1 \implies n + \cos n \ge n - 1$$

 $\forall\,n\in\mathbb{N},\cos n\geq -1\implies n+\cos n\geq n-1$ Per il teorema del confronto a 2, visto che $\lim_{n\to+\infty}n-1=[+\infty-1]=+\infty$, ho che $\lim_{n\to+\infty}n+\cos n=+\infty$

$$\forall n \in \mathbb{N}, -1 \le \sin n \le 1 \implies -\frac{1}{n} \le \sin n \le \frac{1}{n}$$

Es: $\lim_{n \to +\infty} \frac{\sin n}{n}$. $\forall n \in \mathbb{N}, -1 \le \sin n \le 1 \implies -\frac{1}{n} \le \sin n \le \frac{1}{n}$ E poiché $\lim_{n \to +\infty} -\frac{1}{n} = \lim_{n \to +\infty} \frac{1}{n} = 0$, per il teorema del confronto a $3 \frac{\sin n}{n} \to 0$.

9 Tecniche di calcolo dei limiti

Fatto N.1

$$\lim_{n \to +\infty} n^a = +\infty \qquad \forall \, a > 0$$

Fatto N.2

$$\lim_{n \to +\infty} n^a = 0^+ \qquad \forall \, a < 0$$

Oss:
$$n^a = \frac{1}{n^{-a}} \Rightarrow \lim_{n \to +\infty} n^a = \lim_{n \to +\infty} \frac{1}{n^{-a}} = \left[\frac{1}{+\infty}\right] = 0^+$$

Ricordare negli esercizi di scrivere teoremi algebrici dove vengono usati.

9.1 Disuguaglianza di Bernoulli

$$\forall n \in \mathbb{N}, \ \forall x \ge -1$$
 si ha $(1+x)^n \ge 1 + nx$

Fatto N.3

$$\lim_{n \to +\infty} a^n = +\infty \qquad \forall \, a > 1$$

Dim: $a^n = (1 + (a - 1))^n \ge 1 + n(a - 1) \to [1 + \infty(a - 1)] = +\infty \Rightarrow a^n \to +\infty$ per il confronto a 2.

Fatto N.4

$$\lim_{n \to +\infty} a^n = 0 \qquad \forall \, 0 < a < 1$$

Dim: $a = \frac{1}{b} \operatorname{con} b > 1 e b^n \to +\infty \operatorname{quindi} a^n = \frac{1}{b^n} \to 0^+.$

Fatto N.5

$$\lim_{n \to +\infty} a^{\frac{1}{n}} = 1 \qquad \forall \, a > 1$$

 $\bigcup \mathbf{Dim} : \ a^{\frac{1}{n}} \ge 1 \ \forall n \in \mathbb{N}$

Finire la dim dalle slide #todo-uni .

9.2 Dimostrazione teorema del confronto a 2

Sappiamo che $a_n \leq b_n$ definitivamente

1. Se $a_n \to a$, $b_n \to b$, vogliamo dimostrare che $a \le b$

Per assurdo, se b < a, posso scegliere $\varepsilon > 0$ tale che $\varepsilon < \frac{a-b}{2} \Rightarrow b + \varepsilon < a - \varepsilon$.

Allora definitivamente $a_n \geq a - \varepsilon$ e $b_n \leq b + \varepsilon$, quindi $b_n \leq b + \varepsilon < a - \varepsilon \leq a_n$ definitivamente.

10 Criterio del rapporto & Criterio della radice

Ciò significa che $b_n < a_n$, il che è assurdo.

- 2. Se $a_n \to +\infty$, $\forall M \in \mathbb{R}$, ho $a_n \geq M$ definitivamente \Rightarrow ho $b_n \geq a_n \geq M$ definitivamente $\forall M \in \mathbb{R} \Rightarrow b_n \to +\infty$.
- 3. Uguale a 2...

10 Criterio del rapporto & Criterio della radice

10.1 Criterio del rapporto

Sia a_n una successione definitivamente positiva (> 0). Supponiamo che

$$\lim_{n\to +\infty} \frac{a_{n+1}}{a_n} = \ell \in \left[0,+\infty\right]$$

allora

- 1. se $\ell < 1$, $a_n \rightarrow 0$
- 2. se $\ell > 1$, $a_n \to +\infty$
- 3. se $\ell = 1$, ??

10.2 Criterio della radice

Sia a_n una successione definitivamente ≥ 0 . Supponiamo che

$$\lim_{n\to+\infty} \sqrt[n]{a_n} = \ell \in [0,+\infty]$$

allora

- 1. se $\ell < 1$, $a_n \rightarrow 0$
- 2. se $\ell > 1$, $a_n \to +\infty$
- 3. se $\ell = 1$, ??

Es: $a_n = \frac{n^3}{2^n}$ con i teo. algebrici ottengo $\left[\frac{+\infty}{+\infty}\right]$, quindi

10 Criterio del rapporto & Criterio della radice

$$\frac{a_n+1}{a_n} = \frac{\frac{(n+1)^3}{2^{n+1}}}{\frac{n^3}{2^n}} = \frac{1}{2} \left(\frac{n+1}{n}\right)^3 \to \frac{1}{2}$$

per il criterio del rapporto $a_n \to 0$.

Fatto N.6 (Esponenziale batte potenza)

$$\lim_{n \to +\infty} \frac{n^a}{b^n} = 0 \qquad \forall \, b > 1, \, \, \forall \, a \in \mathbb{R}$$

10.3 Fattoriale

$$\lim_{n\to +\infty} n! = +\infty$$

Fatto N.7 (Il fattoriale batte l'esponenziale)

$$\lim_{n \to +\infty} \frac{b^n}{n!} = 0 \qquad \forall b > 0$$

Fatto *N.7 n^n batte il fattoriale.*

$$\lim_{n\to+\infty}\frac{n!}{n^n}=0$$

10.4 Gerarchia degli infiniti

- 1. n^n
- 2. n!
- 3. b^{n}
- 4. *n*^a
- 5. n

Attenzione: nella gerarchia degli infiniti, dovete rispettare religiosamente le espressioni date. n! batte 2^n , ma non so cosa fa con $2^{(n^2)}$.

10.5 Criterio del rapporto-radice

Supponiamo $a_n > 0$ definitivamente e che

$$\lim_{n\to +\infty}\frac{a_{n+1}}{a_n}=\ell\in \left[0,+\infty\right]$$

allora

$$\lim_{n \to +\infty} \sqrt[n]{a_n} = \ell \quad \text{(stesso } \ell\text{)}$$

Applico il criterio rapporto-radice con $a_n=n$, che è definitivamente >0. Ho che

$$\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = \lim_{n \to +\infty} \frac{n+1}{n} = \lim_{n \to +\infty} 1 + \frac{1}{n} = 1 \implies \lim_{n \to +\infty} \sqrt[n]{n} = \lim_{n \to +\infty} \sqrt[n]{a_n} = 1$$

Es:
$$\lim_{n \to +\infty} a_n$$
 $n \to +\infty$ n $n \to +\infty$ $n \to +\infty$ $n \to +\infty$

$$\lim_{n \to +\infty} \sqrt[n]{n^a} = ?$$

$$\lim_{n \to +\infty} \sqrt[n]{n^a} = \lim_{n \to +\infty} n^{\frac{a}{n}} = \lim_{n \to +\infty} (n^{\frac{1}{n}})^a = 1$$
Es: $\lim_{n \to +\infty} \sqrt[n]{n^7 - n^2 + 1} = ?$

Es: $\lim_{n\to+\infty} \sqrt[n]{n^7 - n^2 + 1} = ?$

Ha senso perché $n^7-n^2+1 \to +\infty \implies$ è definitivamente positiva per il teorema di

$$\lim_{n \to +\infty} \sqrt[n]{n^7} \cdot \sqrt[n]{1 - \frac{1}{n^5} - \frac{1}{n^7}} = 1 \cdot 1 = 1$$

Fatto N.8

$$\lim_{n \to +\infty} \sqrt[n]{\text{polinomio}} = 1 \qquad \forall \text{ polinomio}$$

Fatto N.9

$$\lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n = e$$

Metodo 1: $\forall b>1$ ho che $n!>b^n$ (per il teo di permanenza del segno: $\frac{b^n}{n!}\to 0 \implies$ definitivamente $\frac{b^n}{n!}<1 \implies b^n< n!$ definitivamente) $\implies \sqrt[n]{n!}>b$ definitivamente $\forall b>1n \implies \sqrt[n]{n!}\to +\infty$.

Metodo 2:

$$\lim_{n \to +\infty} \sqrt[n]{n!} = \lim_{n \to +\infty} \frac{(n+1)!}{n!} = \lim_{n \to +\infty} n + 1 = +\infty$$

Es: $\lim_{n \to +\infty} \frac{\sqrt[n]{n!}}{n} = \lim_{n \to +\infty} \sqrt[n]{\frac{n!}{n^n}} = ?$ $= \frac{1}{\left(\frac{n+1}{n}\right)^n} \to \frac{1}{e}$

$$= \frac{1}{\left(\frac{n+1}{n}\right)^n} \to \frac{1}{e}$$

Oss: per *n* molto grandi, *n*! assomiglia a $\left(\frac{n}{e}\right)^n$.

Es: $\lim_{n\to+\infty} \frac{2^{n^2}}{n!} = ?$ Applico il criterio della radice.

$$\sqrt[n]{a_n} = \sqrt[n]{\frac{2^{n^2}}{n!}} = \frac{(2^{n^2})^{\frac{1}{n}}}{(n!)^{\frac{1}{n}}} = \dots$$

10.6 Dimostrazione del criterio della radice

Supponiamo che $\sqrt[n]{a_n} \to \ell > 1$, allora la media sarà un numero tra 1 e ℓ

$$1 < \frac{ell+1}{2} < \ell \implies \text{ definitivamente } \sqrt[n]{a_n} \ge \frac{\ell+1}{2} \implies a_n \ge \left(\frac{\ell+1}{2}\right)^n$$

e poiché $\frac{\ell+1}{2} > 1$, $\left(\frac{\ell+1}{2}\right)^n \to +\infty$. Quindi per il confronto a 2, ho che $a_n \to +\infty$.

11 Principio di induzione

Se invece $0 \le \ell < 1$, allora $0 \le \frac{\ell+1}{2} < 1 \implies$ definitivamente $\sqrt[n]{a_n} \le \frac{\ell+1}{2}$, inoltre $0 \le \sqrt[n]{a_n} \le \frac{\ell+1}{2} \implies 0 \le a_n \le \left(\frac{\ell+1}{2}\right)^n$ definitivamente e $0 < \frac{\ell+1}{2} < 1 \implies \left(\frac{\ell+1}{2}\right)^n \to 0$, dunque, per il teo del confronto a 3, $a_n \to 0$.

11 Principio di induzione

$$\mathbb{N} = \{0, 1, 2, 3, \dots\}$$

 $\mathcal{P}(n)$ = affermazione a prop. di n che può essere vera o falsa

Es: $n^2 = n + 6$ (definitivamente vera)

- n = 0: falsa
 n = 1: falsa
 n = 2: falsa
 n = 3: vera!
 n = 4: falsa

Es: se l'insieme A ha n elementi, allora $\mathcal{P}(A)$ ha 2^n elementi (definitivamente vera).

Principio di induzione: supponiamo di sapere che

- 1. $\mathcal{P}(0)$ è vera (passo base)
- 2. $\mathcal{P}(n) \implies \mathcal{P}(n+1) \ \forall \ n \ge 0 \ (passo induttivo)$

allora $\mathcal{P}(n)$ è vera per ogni $n \in \mathbb{N}$.

Es: dimostrare che $0 + 1 + \dots + n = \frac{n(n+1)}{2}$.

Dimostrazione per induzione:

- 1. n = 0: $0 = \frac{0(0+1)}{2} = 0 \longrightarrow \text{vero}$ 2. Ipotesi(passo n): $0+1+\dots+n=\frac{n(n+1)}{2}$. Voglio dire che $0+1+\dots+n+(n+1)=\frac{(n+1)(n+2)}{2}$. $0+1+\dots+(n+1)=0+1+\dots+n+(n+1)=\frac{n(n+1)}{2}+(n+1)=\frac{n(n+1)(n+2)}{2}$

Ese: da fare a casa #todo-compito

1.
$$0^2 + 1^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

1.
$$0^2 + 1^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

2. $0^3 + 1^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$

11.1 Disuguaglianza di Bernoulli (dimostrazione)

$$\forall n \in \mathbb{N}, \ \forall x \ge -1 \text{ si ha } (1+x)^n \ge 1 + nx$$

Dimostrazione per induzione su n

1. Passo base:

$$n = 0 \quad (1+x)^0 \ge 1 \qquad \forall x > -1$$

$$n = 1 \quad (1+x)^1 \ge 1+x \qquad \forall \, x \ge -1$$

2. Passo induttivo:

Ipotesi(passo
$$n$$
): $(1+x)^n \ge 1 + nx$

Tesi(passo
$$n + 1$$
): $(1 + x)^{n+1} \ge 1 + (n + 1)x$

$$(1+x)^{n+1} = (1+x)^n \cdot (1+x) \ge (1+nx)(1+x) =$$

$$= 1+nx+x+nx^2 =$$

$$= 1+(n+1)^x+nx^2 \ge 1+(n+1)x \longrightarrow \text{Vero!} \Rightarrow$$

La disug è dimostrata $\forall n \in \mathbb{N}, \ \forall x \ge -1$

11.2 Coeff. binomiali

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

è l'elemento in posizione k nella riga n del **triangolo di Tartaglia** (si conta da 0).

Sviluppo del binomio:

$$(a+b)^n = \sum_{j=0}^n \binom{n}{j} \cdot a^{n-j} \cdot b^j$$

12 Successioni monotone

Sia a_n una successione. Diciamo che a_n è

- 1. **strettamente crescente** se $a_{n+1} > a_n \ \forall \ n \in \mathbb{N}$
- 2. **strettamente decrescente** se $a_{n+1} < a_n \ \forall \ n \in \mathbb{N}$
- 3. **debolmente crescente** se $a_{n+1} \ge a_n \ \forall \ n \in \mathbb{N}$
- 4. **debolmente decrescente** se $a_{n+1} \leq a_n \ \forall \ n \in \mathbb{N}$

Oss: similmente si definiscono i corrispondenti concetti per successioni definitivamente monotone.

Teo delle successioni monotone: sia a_n una successione debolmente crescente, allora a_n ha limite $\ell \in \mathbb{R} \cup \{+\infty\}$. Più precisamente $a_n \to \sup\{a_n \mid n \in \mathbb{N}\}$. Lo stesso vale per le successioni debolmente decrescenti $(a_n \to \inf\{a_n \mid n \in \mathbb{N}\})$.

Dim (caso crescente):

Primo caso: $\sup\{a_n \mid n \in \mathbb{N}\} = +\infty \implies \forall M \in \mathbb{R} \ \exists \ n_0 \in \mathbb{N} \ \text{t.c.} \ a_{n_0} \geq M.$ Ma se la succ. è debolmente crescente \implies $\forall \, n \geq n_0 \, , \, \, a_n \geq a_{n_0} \geq M \implies a_n \rightarrow \infty.$

Secondo caso: $\sup\{a_n \mid n \in \mathbb{N}\} = \ell \in \mathbb{R} \implies$

- $\begin{array}{l} \bullet \quad \forall \, n \in \mathbb{N} \,, \, \, a_n \leq \ell \, \left(\ell \, \stackrel{.}{\text{e}} \, \, \text{un maggiorante}\right) \\ \\ \bullet \quad \forall \varepsilon > 0 \, \exists \, n_0 \in \mathbb{N} \, \, \text{t.c.} \, \, \ell \varepsilon \leq a_{n_0} \, \left(\ell \, \stackrel{.}{\text{e}} \, \, \text{il minimo tra i maggioranti}\right) \end{array}$

 $\mathsf{Ma}\ a_n \ \grave{\mathsf{e}}\ \mathsf{debolmente}\ \mathsf{crescente}\ \Longrightarrow\ \ \forall\, n \geq n_0\ \mathsf{ho}\ \mathsf{che}\ \ell - \varepsilon \leq a_{n_0} \leq a_n \leq \ell\ \Longrightarrow\ a_n \to \ell^-$

| Caso decrescente: #todo-compito

Oss:

- 1. Se a_n è debolmente crescente e superiormente limitata, allora $a_n o \ell \in \mathbb{R}$
- 2. Se a_n è definitivamente debolmente crescente (o decrescente) allora $a_n \to \ell \in$

 $\mathbb{R} \cup \{+\infty\}$ (o $\mathbb{R} \cup \{-\infty\}$), ma non posso dire che $\ell = \sup\{a_n \mid n \in \mathbb{N}\}$

Es: Sia $a_n = \left(1 + \frac{1}{n}\right)^n$. Allora $1. \ 2 \le a_n \quad \forall \, n \in \mathbb{N}$ $2. \ a_n \le 3 \quad \forall \, n \in \mathbb{N}$ $3. \ a_n \le a_{n+1} \quad \forall \, n \in \mathbb{N}$ Per il teo sulle successioni monotone, $a_n \to \ell \in \mathbb{R}$ e $2 \le \ell \le 3$.

1. Per Bernoulli:
$$\left(1+\frac{1}{n}\right)^n \geq 1+n\cdot\frac{1}{n}=2 \quad \forall n\in\mathbb{N}\setminus\{0\}$$

2. $\left(1+\frac{1}{n}\right)^n = \sum_{j=0}^n \binom{n}{j}\cdot 1^{n-j}\cdot\frac{1}{n^j} \longrightarrow \text{guardare le slide}$

3. $\left(1+\frac{1}{n+1}\right)^{n+1} \geq \left(1+\frac{1}{n}\right)^n \Rightarrow a_n \text{ è decrescente} \longrightarrow \text{guardare le slide}$

$$\lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n = e$$

$$\lim_{n\to+\infty} \left(1-\frac{1}{n}\right)^n = \lim_{n\to+\infty} \left(\frac{n-1}{n}\right)^n = \lim_{n\to+\infty} \frac{1}{\left(1+\frac{1}{n-1}\right)^{n-1}\cdot\left(\frac{n}{n-1}\right)} = \frac{1}{e}$$

$$\lim_{n \to +\infty} \left(1 + \frac{1}{2n}\right)^n = \lim_{n \to +\infty} \left(\left(1 + \frac{1}{2n}\right)^{2n}\right)^{\frac{1}{2}} = \sqrt{e}$$

13 Successioni per ricorrenza

Una successione per ricorrenza si presenta così:

- Un punto di partenza: $a_0 = 2$
- Una regola per calcolare il valore di un elemento dati i precedenti: $a_n = a_{n-1}^2 + \frac{1}{n+2}$

13 Successioni per ricorrenza

Possono essere dimostrate per induzione.

$$\begin{cases} a_0 = 1 & (I) \\ a_n = n \cdot a_{n-1} & (II) \end{cases}$$

Se voglio calcolare $a_4 = 4 \cdot a_3 = 4 \cdot 3 \cdot a_2 = 4 \cdot 3 \cdot 2 \cdot a_1 = 4 \cdot 4 \cdot 2 \cdot 1 \cdot a_0 = 4 \cdot 3 \cdot 2 \cdot 1 \cdot 1 = 24$. In questo caso si ha $a_n = n!$.

Es 2:

$$\begin{cases} a_0 = 3 & (I) \\ a_n = 2a_{n-1} - 1 & (II) \end{cases}$$

Calcolando un po' di valori trovo guess: $a_n = 2^{n+1} + 1$. Si può dimostrare per induzione:

- P.B.: n = 0 per (I), $a_0 = 3 = 2^{0+1} + 1$ (Ok!)■ P.I.: se $a_n = 2^{n+1} + 1$ allora $a_{n+1} = 2 \cdot a_n 1 = 2(2^{n+1} + 1) 1 = 2^{(n+1)+1} + 1$

Attenzione: Poter trovare una formula esplicita per le successioni per ricorrenza è rarissimo!

Terminologia: una successione per ricorrenza che dipende dai k termini precedenti si dice di ordine k. Una successione per ricorrenza senza una dipendenza esplicita da nsi dice autonoma.

Tratteremo quasi esclusivamente successioni per ricorrenza di ordine 1, autonome.

$$\begin{cases} a_0 = a \\ a_n = f(a_{n-1}) & n \ge 1 \end{cases}$$

13 Successioni per ricorrenza

Es 3:

$$\begin{cases} a_0 = 2 \\ a_n = a_{n-1}^2 - 1 & n \ge 1 \end{cases}$$

$$a_n = f(a_{n-1})$$

$$f(x) = x^2 - 1$$

Intersezioni con la bisettrice y = x: $x = \frac{1 \pm \sqrt{5}}{2}$.

Guess: la successione è crescente e tende a $+\infty$.

Strategia:

1.
$$a_n \ge 2 \quad \forall n \ge 0$$

2.
$$a_n \leq a_{n+1} \quad \forall n$$

1.
$$a_n \ge 2 \quad \forall n \ge 0$$

2. $a_n \le a_{n+1} \quad \forall n$
3. $a_n \to \ell \in \mathbb{R} \cup \{+\infty\}$
4. $\ell = +\infty$

4.
$$\ell = +\infty$$

Dim 3.: segue dal punto 2. per il teo sulle successioni monotone.

Dim 4.: Se $\ell \in \mathbb{R}$, allora posso passare al limite la relazione ricorsiva:

$$\lim_{n \to +\infty} a_{n+1} = \lim_{n \to +\infty} f(a_n) = \lim_{n \to +\infty} a_n^2 - 1$$

$$\implies \ell = \ell^2 - 1$$

$$\implies \ell = \frac{1 + \sqrt{5}}{2} \text{ oppure } \frac{1 - \sqrt{5}}{2}$$

Ma $a_n \ge 2 \ \forall n \ (\text{per } 1.) \implies \ell \ge 2 \ (\text{permanenza del segno}) \implies \text{nessuno dei valori trovati è accettabile} \implies \ell = +\infty.$ Dim $1: a_n \ge 2 \ \forall n.$ Per induzione:

P.B.: $a_n = 2 \ge 2 \ (Ok!)$ P.I.: se $a_n \ge 2$, allora $a_{n+1} = a_n^2 - 1 \ge 4 - 1 = 3 \ge 2 \ (Ok!)$ Dim $2: a_n \le a_{n+1} \ \forall n.$ Per induzione:

P.B.: $a_1 = a_0^2 - 1 = 4 - 1 = 3 \ge a_0 \ (Ok!)$ P.I.: se $a_n \le a_{n+1}$, allora $f(a_n) \le f(a_{n+1})$ perché $f(x) = X^2 - 1$ è crescente su $[0, +\infty)$.

14 Serie numeriche

14.1 Definizione SBAGLIATA

Data una successione a_n , indico con

14 Serie numeriche

$$\sum_{n=0}^{\infty} a_n$$

la somma di tutti i termini della successione (che sono infiniti).

Questo non ha senso

14.2 Definizione CORRETTA

Def: data una successione a_n , dato $k \in \mathbb{N}$, la **somma parziale** k-esima di a_n è

$$S_k = a_0 + a_1 + \dots + a_k = \sum_{n=0}^k a_n$$

Def: una **serie numerica** $\sum_{n=0}^{\infty} a_n (\sum a_n)$ è il limite della successione S_k , per $k \to \infty$. Cioè

$$\sum_{n=0}^{\infty} a_n = \lim_{k \to +\infty} S_k = \lim_{k \to +\infty} (a_0 + a_1 + \dots + a_n)$$

14.3 Carattere di una serie (comportamento)

Essendo un limite, $\sum_{n=0}^{\infty} a_n$ ha 4 possibili comportamenti:

- 1. Converge a $\ell \in \mathbb{R}$ se $S_k \to \ell$
- 2. **Diverge** a $+\infty$ se $S_k \to +\infty$
- 3. Diverge a $-\infty$ se $S_k \to -\infty$
- 4. È **indeterminata** se S_k non ha limite

14.4 Serie telescopiche

$$\sum_{n=2}^{\infty} \frac{1}{n^2 - n} = \sum_{n=2}^{\infty} \frac{1}{n - 1} - \frac{1}{n}$$
• $S_2 = a_2 = 1 - \frac{1}{2} = \frac{1}{2}$

•
$$S_2 = a_2 = 1 - \frac{1}{2} = \frac{1}{2}$$

•
$$S_3 = a_2 + a_3 = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) = 1 - \frac{1}{3}$$

•
$$S_3 = a_2 + a_3 = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) = 1 - \frac{1}{3}$$

• $S_4 = a_2 + a_3 + a_4 = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) = 1 - \frac{1}{4}$
• $S_k = 1 - \frac{1}{k}$ (dimostrato per induzione)

•
$$S_k = 1 - \frac{1}{k}$$
 (dimostrato per induzione)

$$\lim_{k \to +\infty} S_k = 1 \implies \sum_{n=2}^{\infty} \frac{1}{n^2 - n} \text{ converge a } 1$$

14.5 Serie geometriche

La serie geometrica di ragione $a \in \mathbb{R}$ è

$$\sum_{n=0}^{\infty} a^n$$

Lemma:
$$a^0 + a^1 + \dots + a^k = \frac{a^{k+1}-1}{a-1}$$
 se $a \ne 1$

Dim:

$$(a^{0} + a^{1} + \dots + a^{k}) \cdot a = a^{1} + a^{2} + \dots + a^{k+1} + (a^{0} + a^{1} + \dots + a^{k})(-1) = -a^{0} - a^{1} - \dots - a^{k} = (a^{0} + a^{1} + \dots + a^{k})(a - 1) = -a^{0} + a^{k+1}$$

Poiché $a \neq 1$, posso dividere ed ottengo il teo.

Oss: se a = 1, $a^0 + \dots + a^k = k + 1$.

Dunque si ha

$$S_k = \begin{cases} k+1 & \text{se } a=1\\ \frac{a^{k+1}-1}{a-1} & \text{se } a \neq 1 \end{cases}$$

 $\lim_{k\to+\infty} S_k = ?$

- 1. Se -1 < a < 1 la serie converge a $\frac{1}{1-a}$
- 2. Se a = 1 vedere esempio 2.

- 3. Se a > 1 diverge a $+\infty$
- 4. Se a < -1 non ha limite
- 5. Se a = -1 vedere esempio stupido 4

Dimostrazioni nelle slide #view-slide

14.6 Strumenti per lo studio delle serie

Il problema è determinare il carattere di una serie senza poter ricavare un'espressione esplicita per le somme parziali. Per farlo abbiamo:

- Teoremi algebrici
- Condizione necessaria alla convergenza
- Serie "note"
- Criteri di convergenza
 - Serie a termini di segno costante ($a_n \le 0$ def. o $a_n \le 0$ def.)
 - * Radice
 - * Rapporto
 - * Confronto
 - * Confronto asintotico
 - * Condensazione di Cauchy
 - Serie a termini di segno alterno
 - * Leibniz
 - Serie a termini di segno qualunque
 - * Assoluta convergenza

14.6.1 Teoremi algebrici

1. Sia a_n una successione e sia $\lambda \in \mathbb{R}, \lambda \neq 0$. Allora (come operazione in $\overline{\mathbb{R}}$)

$$\sum_{n=0}^{\infty} (\lambda \cdot a_n) = \lambda \cdot \sum_{n=0}^{\infty} a_n \text{ (come operazione in } \overline{\mathbb{R}}\text{)}$$

2. Se a_n, b_n sono successioni, allora (con tutte le attenzioni delle operazioni nella retta reale estesa)

$$\sum_{n=0}^{\infty} (a_n + b_n) = \lambda \cdot \sum_{n=0}^{\infty} a_n + \sum_{n=0}^{\infty} b_n$$

3. Attenzione!

$$\sum_{n=0}^{\infty} a_n \cdot b_n \neq \sum_{n=0}^{\infty} a_n \cdot \sum_{n=0}^{\infty} b_n$$

14.6.2 Condizione necessaria

$$\sum_{n=0}^{\infty} a_n \text{ converge } \implies a_n \to 0$$

Dim: $a_n = S_n - S_{n-1}$. Se $\sum_{n=0}^{\infty} a_n$ converge, allora $S_n \to \ell \in \mathbb{R}$. Quindi $\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} (S_n - S_{n-1}) = \lim_{n \to +\infty} S_n - \lim_{n \to +\infty} S_{n-1} = \ell - \ell = 0$.

Dunque se a_n non tende a 0, la serie non può convergere (può divergere o essere indeterminata). Se $a_n \to 0$, potrebbe convergere.

14.6.3 Serie note

- 1. Serie geometriche
- 2. Serie armoniche generalizzate

$$\sum_{n=1}^{\infty} \frac{1}{n^a} = \begin{cases} \text{diverge a } +\infty & \text{se } a \leq 1 \\ \text{converge} & \text{se } a > 1 \end{cases}$$

3. Parenti dell'armonica

$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^a} = \begin{cases} \text{diverge a } +\infty & \text{se } a \leq 1 \\ \text{converge} & \text{se } a > 1 \end{cases}$$

14.6.4 Serie a termini di segno costante

Lemma: sia a_n una successione def. ≥ 0 . Allora la successione $S_k = (a_0 + \cdots + a_k)$ delle somme parziali è def. debolmente crescente.

Dim:

$$\exists n_0 \in \mathbb{N} \text{ t.c. } \forall n \geq n_0, \ a_n \geq 0 \implies$$
 $\forall n \geq n_0, \ S_n = a_n + S_n \geq S_{n-1}$

Teo: Se a_n è una succ. def. ≥ 0 , allora $\sum_{n=0}^{\infty} a_n$ ha due comportamenti possibili: converge o diverge a $+\infty$.

Dim: teo sulle successioni monotone applicato a S_k .

Oss: vale lo stesso risultato se $a_n \leq 0$ def. In quel caso $\sum_{n=0}^{\infty} a_n$ converge oppure diverge a $-\infty$.

14.6.4.1 Criterio della radice

Sia $a_n \geq 0$ def. Supponiamo che $\sqrt[n]{a_n} \to \ell \in \overline{\mathbb{R}}$. Allora:

- 1. Se $\ell > 1$ la serie diverge a $+\infty$
- 2. Se $\ell < 1$ la serie converge
- 3. Se $\ell = 1$???

Dim: #view-slide

Se $a_n \geq 0$ def. e $\sqrt[n]{a_n} \rightarrow \ell \in \mathbb{R} \cup \{+\infty\}$, allora

- 1. $\ell < 1 \iff \sum a_n$ converge
- 2. $\ell > 1 \iff \sum a_n \text{ diverge a } +\infty$

Dim 2.: se $\ell > 1$, per il criteri odella radice per successioni, $a_n \to +\infty$. Quindi non è rispettata la condizione necessaria per la convergenza. Poiché al serie è a termini def. ≥ 0 , può solo convergere o divergere a $+\infty$. Dunque $\sum a_n$ diverge a $+\infty$.

Dim 1.:

$$\ell < 1 \implies \varepsilon = \frac{1 - \ell}{2} \implies \ell + \varepsilon < 1 \in \varepsilon > 0$$

$$\exists n_0 \in \mathbb{N} \text{ t.c.} \quad \forall n \ge n_0 \quad \sqrt[n]{a_n} \le \ell + \varepsilon < 1$$

$$\implies \forall n \ge n_0 \quad a_n \le (\ell + \varepsilon)^n < 1$$

$$\implies \forall k \ge n_0 \quad S_k = 0$$

Ho dimostrato che $\exists M \in \mathbb{R}$ t.c. $S_k \leq M$ def.. Ma poiché $a_n \geq 0$ def., S_k è una successione cresente \implies per il teo sulle successioni monotone, $S_k \to L \in \mathbb{R} \implies \sum a_n$ converge.

14.6.4.2 Criterio del rapporto

Sia $a_n>0$ def. Supponiamo che $\frac{a_{n+1}}{a_n} o \ell \in \overline{\mathbb{R}}$. Allora:

- 1. Se $\ell > 1$ la serie diverge a $+\infty$
- 2. Se $\ell < 1$ la serie converge
- 3. Se $\ell = 1$???

14.6.4.3 Confronto per serie numeriche

Siano a_n, b_n successioni.

Def: se $0 \le a_n \le b_n$ def., allora:

- 1. $\sum a_n$ diverge a $+\infty \implies \sum b_n$ diverge a $+\infty$
- 2. $\sum b_n$ converge $\implies \sum a_n$ converge

Occhio: ogni altra implicazione è ILLEGALE!

Dim:

A meno di cambiare le serie per un numero finito di termini, posso supporre che la disuguaglianza $0 \leq a_n \leq b_n$ valga per $\forall\, n \in \mathbb{N}.$

$$S_k^a = a_0 + \dots + a_k \qquad S_k^b = b_0 + \dots + b_k$$

allora $0 \leq S_k^a \leq S_k^b \; \forall \, k \in \mathbb{N}.$

- Se S_k^a → +∞, per il confronto tra successioni, S_k^b → +∞. Ovvero, se ∑ a_n diverge a +∞, allora ∑ b_n diverge a +∞.
 Se ∑ b_n converge, allora S_k^b → ℓ ∈ ℝ, ma b_n ≥ 0 ∀ n ∈ ℕ ⇒ S_k^b è deb. crescente verso ℓ ⇒ S_k^b ≤ ℓ ∀ k ∈ ℕ ⇒ S_k^a ≤ S_k^b ≤ ℓ ∀ k ∈ ℕ ⇒ S_k^a deb. crescente e

14.6.4.4 Confronto asintotico per serie numeriche

Siano a_n, b_n successioni con $a_n \ge 0, b_n > 0$ def..

Def: se

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\ell\in(0,+\infty)\qquad \left[\ell\neq 0,\ell\neq +\infty\right]$$

allora $\sum a_n, \sum b_n$ hanno lo stesso comportamento.

14.6.4.4.1 Casi limite del confronto asintotico

- Se $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$, allora $0 \le a_n \le b_n$ def. \implies applico il confronto
 - 1. $\sum a_n$ diverge a $+\infty \implies \sum b_n$ diverge a $+\infty$
 - 2. $\sum b_n$ converge $\implies \sum a_n$ converge
- Se $\lim_{n \to \infty} \frac{a_n}{b_n} = +\infty$, allora $0 \le b_n \le a_n$ def. \implies applico il confronto
 - 1. $\sum b_n$ diverge a $+\infty$ \Longrightarrow $\sum a_n$ diverge a $+\infty$
 - 2. $\sum a_n$ converge $\implies \sum b_n$ converge

14.6.4.5 Esempi

$$a_n = \frac{1}{3^n + 1} > 0 \ \forall n \in \mathbb{N}$$

Condizione necessaria: $\lim a_n = 0$

Radice:

$$\begin{split} \lim_{n \to +\infty} \sqrt[n]{a_n} &= \lim_{n \to +\infty} \frac{1}{\sqrt[n]{3^n + 1}} \\ &= \lim_{n \to +\infty} \frac{1}{\sqrt[n]{3^n}} \cdot \frac{1}{\sqrt[n]{1 + \frac{1}{3^n}}} \\ &= \frac{1}{3} \implies \sum a_n \text{ converge perchè } \ell < 1 \end{split}$$

Rapporto:

$$\begin{split} \lim_{n \to +\infty} \frac{a_{n+1}}{a_n} &= \lim_{n \to +\infty} \frac{1}{3^{n+1} + 1} \cdot \frac{1}{\frac{1}{3^n + 1}} \\ &= \frac{1}{3} \implies \sum a_n \text{ converge perchè } \ell < 1 \end{split}$$

Confronto: $0 \le a_n = \frac{1}{3^n + 1} \le \frac{1}{3^n}$

$$\sum \frac{1}{3^n} \ \text{è geometrica di ragione} \ \frac{1}{3} \implies \text{ converge}$$

$$\implies \sum \frac{1}{3^n+1} \text{ converge per il confronto}$$

Confronto asintotico: $a_n = \frac{1}{3^n+1}$, $b_n = \frac{1}{3^n}$

$$\lim_{n \to +\infty} \frac{a_n}{b_n} = \lim_{n \to +\infty} \frac{3^n}{3^n + 1} = 1 \in (0, +\infty)$$

$$\implies \sum a_n, \sum b_n \text{ hanno lo stesso comp. per il confr. asint.}$$

$$\implies \sum b_n \text{ converge perchè geom di rag. } \frac{1}{3}$$

Es: $\sum \frac{3}{n^2+1}$

$$a_n = \frac{3}{n^2 + 1} > 0 \ \forall n \in \mathbb{N} \ \land \ a_n \to 0$$

Occhio: radice e rapporto sono inconcludenti $(\ell = 1)!$

Confronto: $b_n = \frac{3}{n^2} \ge \frac{3}{n^2+1} = a_n$

$$\sum \frac{3}{n^2} = 3 \sum \frac{1}{n^2} \text{ è convergente (arm. gener.)}$$

$$\implies \text{ per il confr. anche } \sum a_n \text{ converge}$$

Confronto asintotico: $b_n = \frac{3}{n^2}$

$$\lim_{n \to +\infty} \frac{a_n}{b_n} = \lim_{n \to +\infty} \frac{\frac{3}{n^2 + 1}}{\frac{1}{n^2}}$$

$$= \lim_{n \to +\infty} \frac{3n^2}{n^2 + 1}$$

$$= 3 \in (0, +\infty)$$

$$\implies \sum b_n \in \sum a_n \text{ hanno stesso carattere}$$

$$\implies \sum a_n \text{ conv. perchè } \sum b_n \text{ conv.}$$

Es:
$$\sum \frac{n^2-7}{n+1}$$

$$a_n=\frac{n^2}{n+1}>0 \text{ definitivamente}$$

$$a_n\to +\infty \implies \sum a_n \text{ diverge a } +\infty$$

Es:
$$\sum \frac{n^3-8}{3^n}$$

$$a_n = \frac{n^3 - 8}{3^n} > 0 \text{ definitivamente}$$

$$a_n \to +\infty = 0$$

Confronto e confronto asintotico sono complicati da usare.

Crit. del rapporto:

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)^3 - 8}{3^{n+1}}$$

$$= \frac{1}{3} \cdot \frac{(n+1)^3 - 8}{n^3 - 8}$$

$$\lim_{n \to +\infty} \frac{1}{3} \cdot \frac{(n+1)^3 - 8}{n^3 - 8} = \lim_{n \to +\infty} \frac{1}{3} \cdot \frac{(n+1)^3}{n^3} \cdot \frac{1 - \frac{8}{(n+1)^3}}{1 - \frac{8}{n^3}}$$

$$= \frac{1}{3} < 1 \implies \sum a_n \text{ converge}$$

Es:
$$\sum \frac{\cos^2(n)}{n^2}$$

Es: $\sum \frac{\cos^2(n)}{n^2}$ Occhio: radice e rapporto non funzionano. Confronto asintotico con $\frac{1}{n^2}$ non funziona

$$a_n=rac{\cos^2(n)}{n^2}\geq 0$$
 def.
$$a_n\to 0 \text{ per il teo del confr. a } 3:$$

$$0\leq rac{\cos^2(n)}{n^2}\leq rac{1}{n^2}$$

So che $\sum rac{1}{n^2}$ converge (armonica generalizzata di esponente > 1). Dunque per il confronto tra serie a termini positivi, $\sum a_n$ converge.

Es:
$$\sum \frac{\cos^2(n)}{n}$$

Es: $\sum \frac{\cos^2(n)}{n}$ Boh! (per quello che ne sappiamo noi).

Es:
$$\sum \frac{n^2 - n + 2}{\sqrt{n} \cdot n^3 - n + 7}$$

$$a_n = \frac{n^2 - n + 2}{\sqrt{n} \cdot n^3 - n + 7} > 0 \text{ def.}$$

$$a_n = \frac{1}{\sqrt{n} \cdot n} \cdot \frac{1 - \frac{1}{n} + \frac{2}{n^2}}{1 - \frac{1}{\sqrt{n} \cdot n^2} + \frac{7}{\sqrt{n} \cdot n^3}} \to 0$$

Posso applicare il **confronto asintotico** con $b_n=\frac{1}{\sqrt{n}\cdot n}$ e ho

$$\lim_{n \to +\infty} \frac{a_n}{b_n} = \lim_{n \to +\infty} \frac{1 - \frac{1}{n} + \frac{2}{n^2}}{1 - \frac{1}{\sqrt{n} \cdot n^2} + \frac{7}{\sqrt{n} \cdot n^3}}$$

$$= 1 \in (0, +\infty)$$

$$\implies \sum a_n, \sum b_n \text{ hanno lo stesso carattere}$$

$$\implies \text{converge}$$

Es:
$$\sum \frac{2^n}{n!}$$

$$a_n = \frac{2^n}{n!} > 0 \quad \forall \, n \in \mathbb{N}$$

$$\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = \lim_{n \to +\infty} \frac{2}{n+1}$$

$$= 0 < 1$$

$$\implies \sum a_n \text{ converge}$$

Es per casa: determinare per quali a > 0 la seguente serie converge

$$\sum \frac{n^a + 2}{n\sqrt{n} + 2n - \sqrt[3]{n} + 8}$$

Per altri esempi consultare le slide #view-slide

14.6.5 Assoluta convergena per serie a termini di segno variabile

Teo: se $\sum |a_n|$ converge, allora $\sum a_n$ converge.

Se voglio studiare $\sum a_n$ con termini a segno variabile, provo a studiare $\sum |a_n|$ che è a termini \geq 0: 1. $\sum |a_n|$ converge $\implies \sum a_n$ converge (per il crit. di conv. assoluta) 2. $\sum |a_n|$ diverge a $+\infty \implies$ II criterio fallisce!

Terminologia: se $\sum |a_n|$ converge, si dice che $\sum a_n$ converge assolutamente.

Es:
$$\sum \frac{\cos(n)}{n^2}$$

Provo a studiare $\sum \frac{|\cos(n)|}{n^2}$.

$$\forall n \qquad 0 \leq \frac{|\cos(n)|}{n^2} \leq \frac{1}{n^2}$$
Poiché $\sum \frac{1}{n}$ converge $\sum \frac{|\cos(n)|}{n^2}$ converge per il criterio

Poiché $\sum \frac{1}{n^2}$ converge, $\sum \frac{|\cos(n)|}{n^2}$ converge per il criterio di assoluta convergenza.

14.6.6 Criterio di Leibniz per serie a termini alterni

Sia a_n una successioni dalla forma $a_n=(-1)^n\alpha_n$ tale che

- 1. $\alpha_n \geq 0$ definitivamente
- 2. α_n decrescente definitivamente
- 3. $\alpha_n \rightarrow 0$

allora $\sum a_n = \sum (-1)^n \alpha_n$ converge.

Occhio: se manca anche solo una delle 3 ipotesi il criterio fallisce!

$$a_n = \frac{(-1)^n}{n} \implies \alpha_n = \frac{1}{n}$$

Es: $\sum \frac{(-1)^n}{n}$ $a_n = \frac{(-1)^n}{n} \implies \alpha_n = \frac{1}{n}$ 1. $\alpha_n > 0 \ \forall n \ge 1$ 2. α_n è decrescente: $\frac{1}{n+1} < \frac{1}{n} \ \forall n$ 3. $\alpha_n \to 0$ Posso dunque applicare Leibniz $\implies \sum \frac{(-1)^n}{n}$ converge $\left| \begin{array}{c} \mathbf{Oss:} \ \sum \frac{(-1)^n}{n} \ \text{non converge} \ assolutamente cioè} \ \sum \left| \frac{(-1)^n}{n} \right| \ \text{diverge.} \end{array} \right|$

Copiare anche altro esempio #todo-uni

15 Limiti di Funzione

 $A\subseteq \mathbb{R}, f:A\to \mathbb{R}$ (A è di solito un'unione di intervalli). Voglio definire $\lim_{x\to x_0}f(x)$ $(x \in \overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty, -\infty\}).$

Per le successioni, facevamo i limiti solo per $n \to +\infty$, ora abbiamo 3 casi da distinguere:

- 1. $\lim_{x\to+\infty} f(x)$
- 2. $\lim_{x\to-\infty} f(x)$
- 3. $\lim_{x\to x_0} f(x)$

15.1 $\lim_{x\to +\infty} f(x)$

Possono esserci quattro risultati per $\lim_{x\to +\infty} f(x)$:

1. $\ell \in \mathbb{R}$: Si dice che $\lim_{x \to +\infty} f(x) = \ell \in \mathbb{R}$ se $\forall \varepsilon > 0 \ \exists k \in \mathbb{R}$ t.c. $\ell - \varepsilon \leq f(x) \leq 1$ $\ell + \varepsilon \, \forall \, x \ge k$

15 Limiti di Funzione

- 1. $\lim_{x \to +\infty} f(x)o = \ell^+$ se $\forall \, \varepsilon > 0 \, \exists \, k \in \mathbb{R} \, \text{t.c.} \, \ell < f(x) \le \ell + \varepsilon \, \forall \, x \ge k$
- 2. $\lim_{x\to +\infty} f(x)o = \ell^-$ se $\forall \varepsilon > 0 \ \exists k \in \mathbb{R} \ \text{t.c.} \ \ell \varepsilon \le f(x) < \ell \ \forall x \ge k$
- 2. $+\infty$: Si dice che $\lim_{x\to +\infty} f(x) = +\infty$ se $\forall M \in \mathbb{R} \ \exists k \in \mathbb{R} \ \text{t.c.} \ f(x) \geq M \ \forall x \geq k$
- 3. $-\infty$: Si dice che $\lim_{x\to +\infty} f(x) = -\infty$ se $\forall m \in \mathbb{R} \ \exists k \in \mathbb{R} \ \text{t.c.} \ f(x) \leq m \ \forall x \geq k$
- 4. N.E.: Si dice che $\nexists \lim_{x\to +\infty} f(x)$ se non è nessuno degli altri casi

15.2 $\lim_{x\to -\infty} f(x)$

Possono esserci quattro risultati per $\lim_{x\to-\infty} f(x)$:

- 1. $\ell \in \mathbb{R}$: Si dice che $\lim_{x \to -\infty} f(x) = \ell \in \mathbb{R}$ se $\forall \, \varepsilon > 0 \, \exists \, k \in \mathbb{R} \, \text{t.c.} \, \ell \varepsilon \leq f(x) \leq \ell + \varepsilon \, \forall \, x \leq k$
 - 1. $\lim_{x \to -\infty} f(x)o = \ell^+$ se $\forall \varepsilon > 0 \ \exists k \in \mathbb{R} \ \text{t.c.} \ \ell < f(x) \le \ell + \varepsilon \ \forall x \le k$
 - 2. $\lim_{x\to-\infty} f(x)o = \ell^-$ se $\forall \varepsilon > 0 \ \exists k \in \mathbb{R} \ \text{t.c.} \ \ell \varepsilon \leq f(x) < \ell \ \forall x \leq k$
- 2. $+\infty$: Si dice che $\lim_{x\to -\infty} f(x) = +\infty$ se $\forall M \in \mathbb{R} \ \exists k \in \mathbb{R} \ \text{t.c.} \ f(x) \geq M \ \forall x \leq k$
- 3. $-\infty$: Si dice che $\lim_{x\to -\infty} f(x) = -\infty$ se $\forall\, m\in\mathbb{R}\;\exists\, k\in\mathbb{R}\; \mathrm{t.c.}\;\; f(x)\leq m\;\forall\, x\leq k$
- 4. N.E.: Si dice che $eta \lim_{x \to -\infty} f(x)$ se non è nessuno degli altri casi

15.3 $\lim_{x\to x_0} f(x)$

Possono esserci quattro risultati per $\lim_{x\to x_0} f(x)$:

- 1. $\ell \in \mathbb{R}$: Si dice che $\lim_{x \to x_0} f(x) = \ell \in \mathbb{R}$ se $\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{t.c.} \ \ell \varepsilon \le f(x) \le \ell + \varepsilon$ se $0 < |x x_0| < \delta \ (\forall x \in [x_0 \delta, x_0 + \delta] \setminus \{x_0\})$
 - 1. $\lim_{x \to x_0} f(x)o = \ell^+ \text{ se } \forall \, \varepsilon > 0 \, \exists \, \delta > 0 \, \text{ t.c. } \ell < f(x) \leq \ell + \varepsilon \, \text{ se } \, 0 < |x x_0| < \delta$ $(\forall \, x \in [x_0 \delta, x_0 + \delta] \setminus \{\, x_0\, \})$
 - 2. $\lim_{x\to x_0} f(x)o = \ell^- \text{ se } \forall \, \varepsilon > 0 \, \exists \, \delta > 0 \, \text{ t.c. } \ell \varepsilon \leq f(x) < \ell \, \text{ se } 0 < |x-x_0| < \delta$ $(\forall \, x \in [x_0 \delta, x_0 + \delta] \setminus \{x_0\})$
- 2. $+\infty$: Si dice che $\lim_{x\to x_0} f(x) = +\infty$ se $\forall M \in \mathbb{R} \ \exists \ \delta > 0 \ \text{t.c.} \ f(x) \ge M \ \text{se } 0 < |x-x_0| < \delta \ (\forall \ x \in [x_0-\delta,x_0+\delta] \setminus \{x_0\})$
- 3. $-\infty$: Si dice che $\lim_{x\to x_0} f(x) = -\infty$ se $\forall m\in\mathbb{R}\ \exists\,\delta>0$ t.c. $f(x)\leq m$ se $0<|x-x_0|<\delta\ (\forall\,x\in[x_0-\delta,x_0+\delta]\setminus\{x_0\})$

15 Limiti di Funzione

4. **N.E.**: Si dice che $\nexists \lim_{x \to x_0} f(x)$ se non è nessuno degli altri casi

15.3.1
$$\lim_{x \to x_0^+} f(x)$$

 $\lim_{x\to x_0^+} f(x)$ vuol dire x tende a x_0 da destra. Ciò significa che la condizione è se $x_0 < x \le x_0 + \delta$ ($\forall x \in (x_0, x_0 + \delta]$).

15.3.2
$$\lim_{x\to x_0^-} f(x)$$

 $\lim_{x \to x_0^-} f(x)$ vuol dire x tende a x_0 da sinistra. Ciò significa che la condizione è se $x_0 - \delta \le x < x_0$ ($\forall x \in [x_0 - \delta, x_0)$).

Occhio: al limite non frega nulla del valore di $f(x_0)$

15.4 Note tecniche

Quando possiamo calcolare il limite $\lim_{x\to x_0} f(x)$ $(x\in \overline{\mathbb{R}})$? Quando x_0 è **punto di** accumulazione del dominio di f.

 $f:A\to\mathbb{R},\ A$ è unione di intervalli e semirette *localmente finita*, cioè vicino a un qualunque punto di \mathbb{R} trovo un numero finito di intervalli che compongono A.

Contresempio:

$$f(x) = \frac{1}{\sin\left(\frac{1}{x}\right)}$$

$$A = \left(-\infty, -\frac{1}{\pi}\right) \cup \left(-\frac{1}{\pi}, -\frac{1}{2\pi}\right) \cup \dots \cup \left(\frac{1}{2\pi}, \frac{1}{\pi}\right) \cup \left(\frac{1}{\pi}, +\infty\right)$$

 x_0 è un **punto interno ad** A se sta dentro ad uno degli intervalli che compongono A (*gli esterni non vanno bene*).

 x_0 è un **punto di accumulazione di** A se è un punto interno o è un estremo di un intervallo o semiretta che compone A.

16 Tecniche di Calcolo dei Limiti

Es:
$$f:(0,+\infty)\to\mathbb{R}$$
 $f(x)=\ln x$. Posso calcolare:
$$\lim_{x\to x_0}f(x)\qquad\forall x_0>0$$

$$\lim_{x\to 0^+}f(x)$$

$$\lim_{x\to +\infty}f(x)$$

15.5 Caratterizzazione del limite per succesioni

Teo: sia $f:A\to\mathbb{R}$ una funzione e sia $x_0\in\overline{\mathbb{R}}$ un punto di acc. di A. Allora $\lim\nolimits_{x\to x_0}f(x)=\ell\in\overline{\mathbb{R}}\iff \forall\,a_n\text{ successione con: }a_n\in A\;\forall\,n\in\mathbb{N},a_n\neq x_0\text{ def. },a_n\to x_0\text{ def. }$ x_0 si ha $f(a_n) \to \ell$

Conseguenza: tutti i risultati generali sulle successioni valgono anche per i limiti di funzione:

- 1. Unicità del limite
- 2. Teoremi algebrici (e forme indeterminate)
- 3. Teoremi di confronto a 2 e a 3

Oss: $\lim_{x\to x_0^+} e \lim_{x\to x_0^-} si$ ottengono usando successioni a_n tale che $a_n\to x_0^+$ o e $a_n\to x_0^-$.

16 Tecniche di Calcolo dei Limiti

- 1. Continuità
- 2. Teoremi algebrici
- 3. Teoremi di confronto a 2 e a 3
- 4. Cambi di variabile
- 5. Limiti notevoli
- 6. Criterio funzioni successioni
- 7. Confronto tra ordini di infiniti (gerarchia degli infiniti)

16.1 Continuità

Def: $x_0 \in A$ punto di accumulazione, $f: A \to \mathbb{R}$ si dice **continua** in x_0 se

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Una funzione è continua su A se è continua in x_0 per ogni $x_0 \in A$.

Oss: se $\lim_{x\to x_0^+} f(x) = f(x_0)$, f si dice continua in x_0 da destra. Se $\lim_{x\to x_0^-} f(x) = f(x_0)$, f si dice continua in x_0 da sinistra.

16.1.1 Come trovare funzioni continue

Tutte le funzioni elementari (potenze, esponenziali, logaritmi, radici, trig., trig. inverse) e quelle ottenute da loro tramite operazioni algebriche e composizione sono continue dove non hanno *problemi burocratici* di definizione (denominatore = 0, radice < 0, ...).

16.2 Limiti notevoli

I limiti notevoli sono limiti che si dimostrano una volta per tutte *e poi si ricordano per la vita*!

16.2.1 Patriarchi

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \quad \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e$$

16.2.2 Prima generazione

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2} \qquad \lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to -\infty} \left(1 + \frac{1}{x} \right)^x = e$$

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

16.2.3 Seconda generazione

$$\lim_{x \to 0} \frac{\tan x}{x} = 1 \quad \lim_{x \to 0} \frac{a^x - 1}{x} = \ln a$$

$$\lim_{x\to 0} \frac{\arctan x}{x} = 1 \quad \lim_{x\to 0^+} x \ln x = 0$$

$$\lim_{x \to 0} \frac{\arcsin x}{x} = 1$$

16.3 Cambi di variabile

$$\lim_{x\to 0} \left(1 + \frac{1}{x^2}\right)^{x^2}$$

 $\lim_{x\to 0} \left(1+\frac{1}{x^2}\right)^{x^2}$ Pongo $x^2=y$. Se $x\to 0$, allora $y\to 0$ $(\tan x$ è continua in x=0).

$$\lim_{x \to 0} \left(1 + \frac{1}{x^2} \right)^{x^2} = \lim_{x \to 0} \left(1 + \frac{1}{y} \right)^y = e$$

| Es: copiare #todo-uni

17 O-piccolo e Equivalenza asintotica

Siano f(x), g(x) funzioni, $x_0 \in \overline{\mathbb{R}}$ in cui posso calcolare i loro limiti.

17 O-piccolo e Equivalenza asintotica

Def: si dice che f(x) è **o-piccolo** di g(x) per $x \to x_0$ e si scrive f(x) = (g(x)) per $x \to x_0$ se esiste una funzione $\omega(x)$ tale che

- $f(x) = g(x) \cdot \omega(x)$
- $\bullet \quad \lim x \to x_0 \omega(x) = 0$

Cioè f(x) = g(x) [roba che tende a 0 in x_0].

Def quasi equivalente: se posso dividere per g(x) vicino a x_0 (cioè se $\exists \delta > 0$ t.c. $g(x) \neq 0 \ \forall x \in [x_0 - \delta, x_0 + \delta] \setminus \{x_0\}$), allora f(x) = (g(x)) per $x \to x_0$ se e solo se

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$$

Questo permette di esprimere le gerarchie degli infiniti.

Es: $x^2 = (x) \text{ per } x \to 0$

Verifica: $x^2 = x \cdot x \ (x = \omega(x) \rightarrow 0)$

Terminologia: f(x) si dice **infinitesima** per $x \to x_0$ se il suo limite è 0.

Oss: $\lim_{x\to x_0} f(x) = 0 \iff f(x) = (1) \quad x\to x_0$

17.1 Proprietà algebriche degli o-piccoli

Se $f_1 = (g)$, $f_2 = (g)$ per $x \to x_0$, allora

- 1. $f_1 \pm f_2 = (g)$
- 2. $a \cdot f_1 = (g)$ $a \in \mathbb{R}$
- 3. $f_1 \cdot f_2 = (g^2)$
- 4. $\frac{f_1}{f_2}$ non funziona!

17.2 Transitività degli o-piccoli

$$f = (g), g = (h)$$
 per $x \to x_0 \implies f = (h)$ per $x \to x_0$

17.3 Limiti notevoli espressi in o-piccoli

$$\sin x = x + (x) \qquad \text{per } x \to 0$$

$$\tan x = x + (x) \qquad \text{per } x \to 0$$

$$e^x = 1 + x + (x) \qquad \text{per } x \to 0$$

$$\ln(1+x) = x + (x) \qquad \text{per } x \to 0$$

$$(1+x)^{\alpha} = 1 + \alpha x + (x) \qquad \text{per } x \to 0$$

$$\cos x = 1 + \frac{x^2}{2} + (x^2) \qquad \text{per } x \to 0$$

17.4 Equivalenza asintotica

Def: si dice che f(x) e g(x) sono **asintoticamente equivalenti per** $x \to x_0$ e si scrive $f(x) \sim g(x)$ per $x \to x_0$ se esiste

- $f(x) = \omega(x) \cdot g(x)$
- $\bullet \quad \lim_{x \to x_0} \omega(x) = 1$

Definizione quasi equivalente: $f \sim g$ per $x \to x_0$ se e solo se $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$.

| Es: $\sin x \sim x \text{ per } x \rightarrow x_0$

Es:
$$\cos x \sim 1 \text{ per } x \to x_0$$

$$\cos x - 1 \sim -\frac{x^2}{2} \text{ per } x \to x_0$$