

Politechnika Wrocławska

Sprawozdanie

Platformy Programistyczne .NET i Java Obliczenia wielowątkowe w technologii .NET

Autor:

Kacper Karkosz, 275495

Prowadzący:

mgr inż. Michał Jaroszczuk

1 Opis eksperymentu

Celem eksperymentu było porównanie czasu mnożenia macierzy kwadratowych w zależności od ilości wykorzystanych wątków, oraz metody zrównoleglenia.

2 Opis eksperymentu

Eksperymenty przeprowadzono na komputerze z procesorem Intel Core i5-12400F (6 rdzeni, 12 wątków), 32 GB RAM DDR4 3600 MHz, system Windows 11.

2.1 Tabela wyników

Poniżej przedstawiono uśrednione czasy (w milisekundach) wykonania mnożenia macierzy dla różnych rozmiarów i liczby wątków. Dla każdej konfiguracji wykonano 3 pomiary i obliczono średnią.

Rozmiar macierzy	Metoda	Liczba wątków	Średni czas [ms]
200	Wysokopoziomowa	1	14
200	Niskopoziomowa	1	10
200	Wysokopoziomowa	2	5.67
200	Niskopoziomowa	2	5
200	Wysokopoziomowa	4	4
200	Niskopoziomowa	4	4.33
200	Wysokopoziomowa	8	2.67
200	Niskopoziomowa	8	3
200	Wysokopoziomowa	12	2.33
200	Niskopoziomowa	12	2.67
200	Wysokopoziomowa	24	2
200	Niskopoziomowa	24	3
500	Wysokopoziomowa	1	176
500	Niskopoziomowa	1	174.67
500	Wysokopoziomowa	2	95.33
500	Niskopoziomowa	2	105.67
500	Wysokopoziomowa	4	56.67
500	Niskopoziomowa	4	54.67
500	Wysokopoziomowa	8	40
500	Niskopoziomowa	8	42
500	Wysokopoziomowa	12	33.33
500	Niskopoziomowa	12	35.67
500	Wysokopoziomowa	24	34
500	Niskopoziomowa	24	40.67
1000	Wysokopoziomowa	1	1612.67
1000	Niskopoziomowa	1	1537.33
1000	Wysokopoziomowa	2	899
1000	Niskopoziomowa	2	873
1000	Wysokopoziomowa	4	557
1000	Niskopoziomowa	4	607.33
1000	Wysokopoziomowa	8	390
1000	Niskopoziomowa	8	445
1000	Wysokopoziomowa	12	441
1000	Niskopoziomowa	12	378.67
1000	Wysokopoziomowa	24	361.67
1000	Niskopoziomowa	24	401
2000	Wysokopoziomowa	1	21409.67
2000	Niskopoziomowa	1	23415
2000	Wysokopoziomowa	2	16994.67
2000	Niskopoziomowa	2	14918.33
2000	Wysokopoziomowa	4	6795
2000	Niskopoziomowa	4	7145.67
2000	Wysokopoziomowa	8	5017.67
2000	Niskopoziomowa	8	5352
2000	Wysokopoziomowa	12	4658.33
2000	Niskopoziomowa	12	4600.33
2000	Wysokopoziomowa	24	4415
2000	Niskopoziomowa	24	4443.33

Tabela 1: Średnie czasy wykonania mnożenia macierzy dla różnych metod i liczby wątków

2.2 Wykresy

W celu lepszej wizualizacji wyników przedstawiono wykresy zależności czasu wykonania od liczby wątków dla różnych metod.

Rysunek 1: Czas wykonania mnożenia macierzy 200x200 w zależności od metody

Rysunek 2: Czas wykonania mnożenia macierzy 500x500 w zależności od metody

3 WNIOSKI 4

Rysunek 3: Czas wykonania mnożenia macierzy 1000x1000 w zależności od metody

Rysunek 4: Czas wykonania mnożenia macierzy 2000x2000 w zależności od metody

3 Wnioski

Z przeprowadzonych pomiarów wynika, że zastosowanie zrównoleglenia znacząco skraca czas mnożenia macierzy, szczególnie dla większych rozmiarów.

- Różnica między zrównolegleniem niskopoziomowym, a wysokopoziomowym była niewielka
- Dla małych macierzy korzyści ze zrównoleglenia są mniej zauważalne i mogą być niwelowane przez narzut związany z zarządzaniem wątkami.
- Liczba wątków powinna być dostosowana do liczby logicznych rdzeni procesora większa liczba wątków niekoniecznie przekłada się na szybsze wykonanie.