

Peter Kairouz

ECE Department

University of Illinois at Urbana-Champaign

Communication

transfer of information from one point in space-time to the other

Wireless communication

■ the fundamental limits of wireless communication are well understood

Unprecedented level of connectivity

We're being watched!

Recent data privacy leaks

de-anonymizing Netflix data, identifying personal genomes

Global privacy model

Global privacy model

Not Interested

Other Movies You Might Enjoy

Not Interested

Global privacy model

Local privacy model

Local privacy model

Local privacy model

Differential privacy

- Q is a privacy mechanism
- ullet privacy enforced by imposing **differential privacy** parametrized by arepsilon

Differential privacy

arepsilon controls the level of privacy

large \mathcal{E} , low privacy small \mathcal{E} , high privacy

Global Privacy Model

The Laplace mechanism

Laplace Mechanism

What would Shannon do?

there is a fundamental tradeoff between privacy and utility

Data independent noise is optimal

Staircase mechanisms are optimal

Staircase Mechanism

Staircase mechanisms are optimal

differential privacy

Scholar

About 2,560,000 results (0.03 sec)

Articles

Case law

My library

Any time

Since 2016 Since 2015 Since 2012 Custom range...

Sort by relevance Sort by date

✓ include patents✓ include citations

Create alert

Differential privacy

C Dwork - Automata, languages and programming, 2006 - Springer

Abstract In 1977 Dalenius articulated a desideratum for statistical databases: nothing about an individual should be learnable from the database that cannot be learned without access to the database. We give a general impossibility result showing that a formalization of ... Cited by 1744 Related articles All 22 versions Web of Science: 293 Cite Save

Differential privacy: A survey of results

<u>C Dwork</u> - Theory and applications of models of computation, 2008 - Springer Abstract Over the past five years a new approach to **privacy**-preserving data analysis has born fruit [13, 18, 7, 19, 5, 37, 35, 8, 32]. This approach differs from much (but not all!) of the related literature in the statistics, databases, theory, and cryptography communities, in that ... Cited by 749 Related articles All 24 versions Cite Save

Mechanism design via differential privacy

F McSherry, <u>K Talwar</u> - ... of Computer Science, 2007. FOCS'07. ..., 2007 - ieeexplore.ieee.org Abstract We study the role that **privacy**-preserving algorithms, which prevent the leakage of specific information about participants, can play in the design of mechanisms for strategic agents, which must encourage players to honestly report information. Specifically, we ... Cited by 573 Related articles All 24 versions Cite Save

Differential privacy via wavelet transforms

X Xiao, G Wang, J Gehrke - Knowledge and Data Engineering, ..., 2011 - ieeexplore.ieee.org Abstract—**Privacy** preserving data publishing has attracted considerable research interest in recent years. Among the existing solutions, e-differential privacy provides the strongest **privacy** guarantee. Existing data publishing methods that achieve e-differential privacy, ...

Local Privacy Model

Local privacy

have you ever used illegal drugs?

Local privacy

have you ever used illegal drugs?

answer truthfully

What would Shannon do?

there is a fundamental tradeoff between privacy and utility

Main result: binary data

for binary data:

lie w.p.
$$\frac{1}{e^{\varepsilon}+1}$$

say the truth w.p.
$$\frac{e^{\varepsilon}}{e^{\varepsilon}+1}$$

optimal for all utilities obeying the data processing inequality

Main result: general data

for general k-ary data:

Randomized Response

optimal in the low privacy regime

Binary mechanism

$$Y = 1 \qquad \frac{e^{\varepsilon}}{e^{\varepsilon} + 1} \qquad \frac{1}{e^{\varepsilon} + 1}$$

$$2 \qquad \frac{1}{e^{\varepsilon} + 1} \qquad \frac{e^{\varepsilon}}{e^{\varepsilon} + 1}$$

$$X = 1 \qquad 2 \qquad 3 \qquad 4 \qquad 5$$

optimal in the high privacy regime

Acknowledgments

Sewoong Oh

Pramod Viswanath

Quan Geng