4. The main pcf theorems

The sets H_{Ψ}

We will shortly give several proofs involving the important general idea of making elementary chains inside the sets H_{Ψ} . Recall that H_{Ψ} , for an infinite cardinal Ψ , is the collection of all sets hereditarily of size less than Ψ , i.e., with transitive closure of size less than Ψ . We consider H_{Ψ} as a structure with \in together with a well-ordering $<^*$ of it, possibly with other relations or functions, and consider elementary substructures of such structures.

Recall that A is an elementary substructure of B iff A is a subset of B, and for every formula $\varphi(x_0, \ldots, x_{m-1})$ and all $a_0, \ldots, a_{m-1} \in A$, $A \models \varphi(a_0, \ldots, a_{m-1})$ iff $B \models \varphi(a_0, \ldots, a_{m-1})$.

The basic downward Löwenheim-Skolem theorem will be used a lot. This theorem depends on the following lemma.

Lemma 4.1. (Tarski) Suppose that A and B are first-order structures in the same language, with A a substructure of B. Then the following conditions are equivalent:

- (i) A is an elementary substructure of B.
- (ii) For every formula of the form $\exists y \varphi(x_0, \ldots, x_{m-1}, y)$ and all $a_0, \ldots, a_{m-1} \in A$, if $B \models \exists y \varphi(a_0, \ldots, a_{m-1}, y)$ then there is a $b \in A$ such that $B \models \varphi(a_0, \ldots, a_{m-1}, b)$.

Proof. (i) \Rightarrow (ii): Assume (i) and the hypotheses of (ii). Then by (i) we see that $A \models \exists y \varphi(a_0, \ldots, a_{m-1}, y)$, so we can choose $b \in A$ such that $A \models \varphi(a_0, \ldots, a_{m-1}, b)$. Hence $B \models \varphi(a_0, \ldots, a_{m-1}, b)$, as desired.

(ii) \Rightarrow (ii): Assume (ii). We show that for any formula $\varphi(x_0, \ldots, x_{m-1})$ and any elements $a_0, \ldots, a_{m-1} \in A$, $A \models \varphi(a_0, \ldots, a_{m-1})$ iff $B \models \varphi(a_0, \ldots, a_{m-1})$, by induction on φ . It is true for φ atomic by our assumption that A is a substructure of B. The induction steps involving \neg and \lor are clear. Now suppose that $A \models \exists y \varphi(a_0, \ldots, a_{m-1}, y)$, with $a_0, \ldots, a_{m-1} \in A$. Choose $b \in A$ such that $A \models \varphi(a_0, \ldots, a_{m-1}, b)$. By the inductive assumption, $B \models \varphi(a_0, \ldots, a_{m-1}, b)$. Hence $B \models \exists y \varphi(a_0, \ldots, a_{m-1}, y)$, as desired.

Conversely, suppose that $B \models \exists y \varphi(a_0, \ldots, a_{m-1}, y)$. By (ii), choose $b \in A$ such that $B \models \varphi(a_0, \ldots, a_{m-1}, b)$. By the inductive assumption, $A \models \varphi(a_0, \ldots, a_{m-1}, b)$. Hence $A \models \exists y \varphi(a_0, \ldots, a_{m-1}, y)$, as desired.

Theorem 4.2. Suppose that A is an L-structure, X is a subset of A, κ is an infinite cardinal, and κ is \geq both |X| and the number of formulas of \mathcal{L} , while $\kappa \leq |A|$. Then A has an elementary substructure B such that $X \subseteq B$ and $|B| = \kappa$.

Proof. Let a well-order \prec of A be given. We define $\langle C_n : n \in \omega \rangle$ by recursion. Let C_0 be a subset of A of size κ with $X \subseteq C_0$. Now suppose that C_n has been defined. Let M_n be the collection of all pairs of the form $(\exists y \varphi(x_0, \ldots, x_{m-1}, y), a)$ such that a is a sequence of elements of C_n of length m. For each such pair we define $f(\exists y \varphi(x_0, \ldots, x_{m-1}, y), a)$ to be the \prec -least element b of A such that $A \models \varphi(a_0, \ldots, a_{m-1}, b)$, if there is such an element, and otherwise let it be the least element of C_n . Then we define

$$C_{n+1} = C_n \cup \{ f(\exists y \varphi(x_0, \dots, x_{m-1}, y), a) : (\exists y \varphi(x_0, \dots, x_{m-1}, y), a) \in M_n \}.$$

Finally, let $B = \bigcup_{n \in \omega} C_n$.

By induction it is clear that $|C_n| = \kappa$ for all $n \in \omega$, and so also $|B| = \kappa$.

Now to show that B is an elementary substructure of A we apply Lemma 4.1. To show that B is a substructure of A, let \mathbf{F} be a fundamental operation of A, say of arity n, and suppose that $a \in {}^{n}B$. Choose m so that $a \in {}^{n}C_{m}$. Then

$$\mathbf{F}^{A}(a) = f(\exists y [\mathbf{F}(x_0, \dots, x_n) = y], a) \in C_{m+1} \subseteq B,$$

as desired.

Now suppose that we are given a formula of the form $\exists y \varphi(x_0, \ldots, x_{m-1}, y)$ and elements a_0, \ldots, a_{m-1} of B, and $A \models \exists y \varphi(a_0, \ldots, a_{m-1}, y)$. Clearly there is an $n \in \omega$ such that $a_0, \ldots, a_{m-1} \in C_n$. Then $(\exists y \varphi(x_0, \ldots, x_{m-1}, y), a) \in M_n$, and the element $b \stackrel{\text{def}}{=} f(\exists y \varphi(x_0, \ldots, x_{m-1}, y), a)$ is in $C_{n+1} \subseteq B$ and is such that $A \models \varphi(a_0, \ldots, a_{m-1}, b)$. This is as desired in Lemma 4.1.

Given an elementary substructure A of a set H_{Ψ} , we will frequently use an argument of the following kind. A set theoretic formula holds in the real world, and involves only sets in A. By absoluteness, it holds in H_{Ψ} , and hence it holds in A. Thus we can transfer a statement to A even though A may not be transitive; and the procedure can be reversed.

This kind of argument depends on properties of transitive closures. For any set A, define a sequence $\langle B_{An} : n \in \omega \rangle$ as follows: $B_{A0} = A$, and $B_{A,n+1} = \bigcup B_{An}$. Then we define $\operatorname{tr} \operatorname{cl}(A) = \bigcup_{n \in \omega} B_{An}$, the transitive closure of A. Thus $\operatorname{tr} \operatorname{cl}(A)$ is a transitive set which contains A and is included in any transitive set which contains A. We summarize some properties of transitive closures:

```
Lemma 4.3. (i) If X \subseteq A, then \operatorname{tr}\operatorname{cl}(X) \subseteq \operatorname{tr}\operatorname{cl}(A).

(ii) \operatorname{tr}\operatorname{cl}(\mathscr{P}(A)) = \mathscr{P}(A) \cup \operatorname{tr}\operatorname{cl}(A).

(iii) If \operatorname{tr}\operatorname{cl}(A) is infinite, then |\operatorname{tr}\operatorname{cl}(\mathscr{P}(A))| \leq 2^{|\operatorname{tr}\operatorname{cl}(A)|}.

(iv) \operatorname{tr}\operatorname{cl}(A \cup B) = \operatorname{tr}\operatorname{cl}(A) \cup \operatorname{tr}\operatorname{cl}(B).

(v) \operatorname{tr}\operatorname{cl}(A \times B) = (A \times B) \cup \{\{a\} : a \in A\} \cup \{\{a,b\} : a \in A, b \in B\} \cup \operatorname{tr}\operatorname{cl}(A) \cup \operatorname{tr}\operatorname{cl}(B).

(vi) If \operatorname{tr}\operatorname{cl}(A) or \operatorname{tr}\operatorname{cl}(B) is infinite, then |\operatorname{tr}\operatorname{cl}(A \times B)| \leq \max(\operatorname{tr}\operatorname{cl}(A), \operatorname{tr}\operatorname{cl}(B).

(vii) If \operatorname{tr}\operatorname{cl}(A) or \operatorname{tr}\operatorname{cl}(B) is infinite, then |\operatorname{tr}\operatorname{cl}(AB)| \leq 2^{\max(|\operatorname{tr}\operatorname{cl}(A)|, |\operatorname{tr}\operatorname{cl}(B)|)}.

(ix) If \operatorname{tr}\operatorname{cl}(A) is infinite, then |\operatorname{tr}\operatorname{cl}(AB)| \leq 2^{|\operatorname{tr}\operatorname{cl}(A)|}.
```

- (x) If $\operatorname{tr}\operatorname{cl}(A)$ or $\operatorname{tr}\operatorname{cl}(B)$ is infinite, then $|\operatorname{tr}\operatorname{cl}(A(\prod B))| \leq 2^{2^{\max(|\operatorname{tr}\operatorname{cl}(A)|,|\operatorname{tr}\operatorname{cl}(B)|)}}$
- (xi) If A is a set of infinite cardinals, then $\operatorname{tr} \operatorname{cl}(A) = \bigcup A$.
- (xii) If A is an infinite set of regular cardinals, then $|\operatorname{tr}\operatorname{cl}(\operatorname{pcf}(A))| \leq 2^{|\operatorname{tr}\operatorname{cl}(A)|}$.

Proof. (i)–(viii) are clear. For (ix), note that $\prod A \subseteq {}^{A} \bigcup A$, so (ix) follows from (viii). For (x),

$$\begin{split} \left|\operatorname{tr}\operatorname{cl}\left(^{A}\left(\prod B\right)\right)\right| &\leq 2^{\max(\left|\operatorname{tr}\operatorname{cl}(A),\left|\operatorname{tr}\operatorname{cl}(\prod B)\right.)} \quad \operatorname{by} \, \left(\operatorname{viii}\right) \\ &\leq 2^{\max(\left|\operatorname{tr}\operatorname{cl}(A),2\right|^{\operatorname{tr}\operatorname{cl}(B)})} \\ &\leq 2^{2^{\max(\left|\operatorname{tr}\operatorname{cl}(A)\right|,\left|\operatorname{tr}\operatorname{cl}(B)\right|)}}. \end{split}$$

(xi) is clear.

Finally, for (xii), by (xi) it suffices to show that $\bigcup \operatorname{pcf}(A) \leq 2^{\operatorname{tr}\operatorname{cl}(A)}$. So, let $\alpha \in \bigcup \operatorname{pcf}(A)$. Choose $\lambda \in \operatorname{pcf}(A)$ such that $\alpha < \lambda$. Now there is a one-one function mapping λ into $\prod A/F$ for some ultrafilter F on A; hence $\lambda \leq |\prod A|$. So, using (ix),

$$\alpha < \lambda \le \left| \prod A \right| \le \left| \operatorname{tr} \operatorname{cl} \left(\prod A \right) \right| \le 2^{\operatorname{tr} \operatorname{cl}(A)}.$$

We also need the fact that some rather complicated formulas and functions are absolute for sets H_{Ψ} . Note that H_{Ψ} is transitive. Many of the indicated formulas are not absolute for H_{Ψ} in general, but only under the assumptions given that Ψ is much larger than the sets in question.

Lemma 4.4. Suppose that Ψ is an uncountable regular cardinal. Then the following formulas (as detailed in the proof) are absolute for H_{Ψ} .

- (i) $B = \mathscr{P}(A)$.
- (ii) "D is an ultrafilter on A".
- (iii) κ is a cardinal.
- (iv) κ is a regular cardinal.
- (v) " κ and λ are cardinals, and $\lambda = \kappa^+$ ".
- (vi) $\kappa = |A|$.
- (vii) $B = \prod A$.
- (viii) $A = {}^{B}C$.
- (ix) "A is infinite", if Ψ is uncountable.
- (x) "A is an infinite set of regular cardinals and D is an ultrafilter on A and λ is a regular cardinal and $f \in {}^{\lambda} \prod A$ and f is strictly increasing and cofinal modulo D", provided that $2^{|\operatorname{tr} \operatorname{cl}(A)|} < \Psi$.
 - (xi) "A is an infinite set of regular cardinals, and $B = \operatorname{pcf}(A)$ ", if $2^{|\operatorname{tr}\operatorname{cl}(A)|} < \Psi$.
- (xii) "A is an infinite set of regular cardinals and $f = \langle J_{<\lambda}[A] : \lambda \in \operatorname{pcf}(A) \rangle$ ", provided that $2^{|\operatorname{tr}\operatorname{cl}(A)|} < \Psi$.
- (xiii) "A is an infinite set of regular cardinals and $B = \langle B_{\lambda} : \lambda \in \operatorname{pcf}(A) \rangle$ and $\forall \lambda \in \operatorname{pcf}(A)(B_{\lambda} \text{ is a λ-generator})}$ ", if $2^{2^{|\operatorname{tr} \operatorname{cl}(A)|}} < \Psi$.

Proof. Absoluteness follows by easy arguments upon producing suitable formulas, as follows.

(i): Suppose that $A, B \in H_{\Psi}$. We may take the formula $B = \mathscr{P}(A)$ to be

$$\forall x \in B[\forall y \in x (y \in A)] \land \forall x [\forall y \in x (y \in A) \to x \in B].$$

The first part is obviously absolute for H_{Ψ} . If the second part holds in V it clearly holds in H_{Ψ} . Now suppose that the second part holds in H_{Ψ} . Suppose that $x \subseteq A$. Hence $x \in H_{\Psi}$ and it follows that $x \in B$.

(ii): Assume that $A, D \in H_{\Psi}$. We can take the statement "D is an ultrafilter on A" to be the following statement:

$$\forall X \in D(X \subseteq A) \land A \in D \land \forall X, Y \in D(X \cap Y \in D) \land \emptyset \notin D$$
$$\land \forall Y \forall X \in D[X \subseteq Y \land Y \subseteq A \to Y \in D] \land \forall Y [Y \subseteq A \to Y \in D \lor (A \backslash Y) \in D].$$

Again this is absolute because $Y \subseteq A$ implies that $Y \in H_{\Psi}$.

(iii): Suppose that $\kappa \in H_{\Psi}$. Then

 κ is a cardinal iff κ is an ordinal and $\forall f[f]$ is a function and $\operatorname{dmn}(f) = \kappa$ and $\operatorname{rng}(f) \in \kappa \to f$ is not one-to-one].

Note here that if f is a function with $dmn(f) = \kappa$ and $rng(f) \subseteq \kappa$, then $f \subseteq \kappa \times \kappa$, and hence $f \in H_{\Psi}$.

(iv): Assume that $\kappa \in H_{\Psi}$. Then

 κ is a regular cardinal iff κ is a cardinal, $1 < \kappa$, and $\forall f[f]$ is a function and $dmn(f) \in \kappa$ and $rng(f) \subseteq \kappa$ and $\forall \alpha, \beta \in dmn(f)(\alpha < \beta \to f(\alpha) < f(\beta))$ $\to \exists \gamma < \kappa \forall \alpha \in dmn(f)(f(\alpha) \in \gamma)].$

- (v): Assume that $\kappa, \lambda \in H_{\Psi}$. Then $(\kappa \text{ and } \lambda \text{ are cardinals and } \lambda = \kappa^+)$ iff κ is a cardinal and λ is a cardinal and $\kappa < \lambda$ and $\forall \alpha < \lambda [\kappa < \alpha \to \exists f [f \text{ is a function and dmn}(f) = \kappa$ and $\operatorname{rng}(f) = \alpha$ and f is one-one and $\operatorname{rng}(f) = \alpha$].
- (vi): Suppose that $\kappa, A \in H_{\Psi}$. Then

$$\kappa = |A|$$
 iff κ is a cardinal and $\exists f [f]$ is a function and $dmn(f) = \kappa$ and $rng(f) = A$ and f is one-to-one]

(vii): Assume that $A, B \in H_{\Psi}$. Then

$$B = \prod A$$
 iff $\forall f \in B[f \text{ is a function and } \dim(f) = A \text{ and}$ $\forall x \in A[f(x) \in x]]$ and $\forall f[f \text{ is a function and } \dim(f) = A \text{ and } \forall x \in A[f(x) \in x] \to f \in B].$

Note that if f is a function with domain A and $f(x) \in x$ for all $x \in A$, then $f \subseteq A \times \bigcup A$, and hence $f \in H_{\Psi}$.

(viii): Suppose that $A, B, C \in H_{\Psi}$. Then

$$A = {}^BC$$
 iff $\forall f \in A[f \text{ is a function and } \mathrm{dmn}(f) = B$
and $\mathrm{rng}(f) \subseteq C]$ and $\forall f[f \text{ is a function}$
and $\mathrm{dmn}(f) = B$ and $\mathrm{rng}(f) \subseteq C \to f \in A]$.

(ix): "A is infinite" iff $\exists f(f \text{ is a one-one function, } \dim(f) = \omega, \text{ and } \operatorname{rng}(f) \subseteq A).$

(x): Suppose that $A, D, \lambda, f \in H_{\Psi}$, and $2^{|\operatorname{tr} \operatorname{cl}(A)|}$) $< \Psi$. Then $\prod A \in H_{\Psi}$ by Lemma 4.3(ix). Now

A is an infinite set of regular cardinals and D is an ultrafilter on A and λ is a regular cardinal and $f \in {}^{\lambda} \prod A$ and f is strictly increasing and cofinal modulo D

iff

A is infinite and $\forall x \in A[x \text{ is a regular cardinal}]$ and D is an ultrafilter on A and

 λ is a regular cardinal and $\exists B \bigg[B = \prod A \text{ and } f \text{ is a function}$

$$\begin{split} &\text{and } \operatorname{dmn}(f) = \lambda \text{ and } \operatorname{rng}(f) \subseteq B \text{ and} \\ &\forall \xi, \eta < \lambda \forall X \subseteq A [\forall a \in A [a \in X \Leftrightarrow f_{\xi}(a) < f_{\eta}(a)] \to X \in D] \\ &\text{and } \forall g \in B \exists \xi < \lambda \forall X \subseteq A [\forall a \in A [a \in X \Leftrightarrow g(a) < f_{\xi}(a)] \to X \in D] \end{split}.$$

- (xi): Assume that $2^{|\operatorname{tr} \operatorname{cl}(A)|} < \Psi$, and $A, B \in H_{\Psi}$. Let $\varphi(A, D, \lambda, f)$ be the statement of (xi). Note:
- (1) If $\varphi(A, D, \lambda, f)$, then $D, \lambda, f \in H_{\Psi}$, and $\max(\lambda, |\operatorname{tr} \operatorname{cl}(A)|) \leq 2^{|\operatorname{tr} \operatorname{cl}(A)|}$.

In fact, $D \subseteq \mathscr{P}(A)$, so $\operatorname{tr} \operatorname{cl}(D) \subseteq \operatorname{tr} \operatorname{cl}(\mathscr{P}(A)) = \mathscr{P}(A) \cup \operatorname{tr} \operatorname{cl}(A)$, and so $|\operatorname{tr} \operatorname{cl}(D)| < \Psi$ by Lemma 4.3(iii); so $D \in H_{\Psi}$. Now f is a one-one function from λ into $\prod A$, so $\lambda \leq |\prod A| < \Psi$, and hence $\lambda \in H_{\Psi}$ and $\max(\lambda, |\operatorname{tr} \operatorname{cl}(A)|) \leq 2^{|\operatorname{tr} \operatorname{cl}(A)|}$. Finally, $f \subseteq \lambda \times \prod A$, so it follows that $f \in H_{\Psi}$.

Thus (1) holds. Hence the following equivalence shows the absoluteness of the statement in (xi):

A is an infinite set of regular cardinals and B = pcf(A)

iff

A is infinite, and $\forall \mu \in A(\mu \text{ is a regular cardinal}) \land \forall \lambda \in B \exists D \exists f \varphi(A, D, \lambda, f) \land \forall D \forall \lambda \forall f [\varphi(A, D, \lambda, f) \rightarrow \lambda \in B].$

(xii): Assume that $2^{|\operatorname{tr} \operatorname{cl}(A)|} < \Psi$. By Lemma 4.3(xii) we have $\operatorname{pcf}(A) \in H_{\Psi}$. Hence A is an infinite set of regular cardinals $\wedge f = \langle J_{<\lambda}[A] : \lambda \in \operatorname{pcf}(A) \rangle$

iff

A is infinite and $\forall \kappa \in A(\kappa \text{ is a regular cardinal and}$ f is a function and $\exists B[B = \operatorname{pcf}(A) \land B = \operatorname{dmn}(f)]$ $\forall \lambda \in \operatorname{dmn}(f) \forall X \subseteq A[A \in f(\lambda) \text{ iff } \exists C[C = \operatorname{pcf}(X) \land C \subseteq \lambda]]$

(xiii): Assume that $2^{2^{|\operatorname{tr}\operatorname{cl}(A)|}} < \Psi$, and $A, B \in H_{\Psi}$. Note as above that $\operatorname{pcf}(A) \in H_{\Psi}$. Note that for any cardinal λ we have $J_{<\lambda}[A] \subseteq \mathscr{P}(A)$ and, with f as in (xi), $f \subseteq \operatorname{pcf}(A) \times \mathscr{P}(\mathscr{P}(A))$; so $f \in H_{\Psi}$. Let $\varphi(f, A)$ be the formula of (xii). Thus

A is a set of regular cardinals and $B = \langle B_{\lambda} : \lambda \in \operatorname{pcf}(A) \rangle$ and $\forall \lambda \in \operatorname{pcf}(A)(B_{\lambda} \text{ is a } \lambda\text{-generator})$

iff

B is a function and
$$\exists C[C = \operatorname{pcf}(A) \land C = \operatorname{dmn}(B)] \land \exists f[\varphi(f, A) \land \forall \lambda \in \operatorname{dmn}(B) \forall \mu \in \operatorname{dmn}(B)[\lambda \text{ is a cardinal and } \mu \text{ is a cardinal and } \mu = \lambda^+ \to B_\lambda \in f(\mu) \land \forall X \subseteq A[X \in f(\mu) \text{ iff } X \backslash B_\lambda \in f(\lambda)]]$$

Now we turn to the consideration of elementary substructures of H_{Ψ} . The following lemma gives basic facts used below.

Lemma 4.5. Suppose that Ψ is an uncountable cardinal, and N is an elementary substructure of H_{Ψ} (under \in and a well-order of H_{Ψ}).

- (i) For every ordinal α , $\alpha \in N$ iff $\alpha + 1 \in N$.
- (ii) $\omega \subseteq N$.
- (iii) If $a \in N$, then $\{a\} \in N$.
- (iv) If $a, b \in N$, then $\{a, b\}, (a, b) \in N$.
- (v) If $A, B \in N$, then $A \times B \in N$.
- (vi) If $A \in N$ then $\bigcup A \in N$.
- (vii) If $f \in N$ is a function, then $dmn(f), rng(f) \in N$.
- (viii) If $f \in N$ is a function and $a \in N \cap dmn(f)$, then $f(a) \in N$.
- (ix) If $X, Y \in N$, $X \subseteq N$, and $|Y| \le |X|$, then $Y \subseteq N$.
- (x) If $X \in N$ and $X \neq \emptyset$, then $X \cap N \neq \emptyset$.
- (xi) $\mathscr{P}(A) \in N$ if $A \in N$ and $2^{|\operatorname{tr} \operatorname{cl}(A)|} < \Psi$.
- (xii) If ρ is an infinite ordinal, $|\rho|^+ < \Psi$, and $\rho \in N$, then $|\rho| \in N$ and $|\rho|^+ \in N$.
- (xiii) If $A \in N$, then $\prod A \in N$ if $2^{|\operatorname{tr}\operatorname{cl}(A)|} < \Psi$.
- (xiv) If $A \in N$, A is a set of regular cardinals, and $A \subseteq H_{\Psi}$, then $pcf(A) \in N$ if $2^{|\operatorname{tr} cl(A)|} < \Psi$.
- (xv) If $A \in N$, A is a set of regular cardinals, then $\langle J_{<\lambda}[A] : \lambda \in \operatorname{pcf}(A) \rangle \in N$ if $2^{2^{|\operatorname{tr}\operatorname{cl}(A)|}} < \Psi$.
- (xvi) If $A \in N$ and A is a set of regular cardinals, then there is a function $\langle B_{\lambda} : \lambda \in \operatorname{pcf}(A) \rangle \in N$, where for each $\lambda \in \operatorname{pcf}(A)$, the set B_{λ} is a λ -generator, if $2^{2^{|\operatorname{tr} \operatorname{cl}(A)|}} < \Psi$.

Proof. (i): Let α be an ordinal, and suppose that $\alpha \in N$. Then $\alpha \in H_{\Psi}$, and hence $\alpha \cup \{\alpha\} \in H_{\Psi}$. By absoluteness, $H_{\Psi} \models \exists x(x = \alpha \cup \{\alpha\})$, so $N \models \exists x(x = \alpha \cup \{\alpha\})$. Choose $b \in N$ such that $N \models b = \alpha \cup \{\alpha\}$. Then $H_{\Psi} \models b = \alpha \cup \{\alpha\}$, so by absoluteness, $b = \alpha \cup \{\alpha\}$. This proves that $\alpha \cup \{\alpha\} \in N$.

The method used in proving (i) can be used in the other parts; so it suffices in most other cases just to indicate a formula which can be used.

- (ii): An easy induction, using the formulas $\exists x \forall y \in x (y \neq y)$ and $\exists x [a \subseteq x \land a \in x \land \forall y \in x [y \in a \lor y = a]]$.
 - (iii): Use the formula $\exists x [\forall y \in x (y = a) \land a \in x]$.
 - (iv): Similar to (iii).
 - (v): Use the formula

$$\exists C [\forall a \in A \forall b \in B[(a,b) \in C] \land \forall x \in C \exists a \in A \exists b \in B[x = (a,b)]].$$

- (vi): Use the formula $\exists B [\forall x \in A[x \subseteq B] \land \forall y \in B \exists x \in A(y \in x)].$
- (vii): Use the formula $\exists A[\forall x \forall y[(x,y) \in f \to x \in A] \land \forall x \in A \exists y[(x,y) \in f]]$. Note that this formula is absolute for H_{Ψ} for example $(x,y) \in f \in H_{\Psi}$ implies that $x,y \in H_{\Psi}$.
 - (viii): Use the formula $\exists x [(a, x) \in f]$.
- (ix): Let f be a function mapping X onto Y (assuming, as we may, that $Y \neq \emptyset$). Then $f \in H_{\Psi}$, so by the above method, we get another function $g \in N$ which maps X onto Y. Now (viii) gives the conclusion of (ix).
 - (x): Use the formula $\exists x \in X[x=x]$.
 - (xi): $\mathcal{P}(A) \in H_{\Psi}$ by Lemma 4.3(iii). Hence we can use the formula

$$\exists B [\forall x \in B (x \subseteq A) \land \forall x [x \subseteq A \to x \in B]].$$

(xii): Assume that ρ is an infinite ordinal and $\rho \in N$. Then

$$H_{\Psi} \models \exists \alpha \leq \rho[(\exists f : \rho \to \alpha, \text{ a bijection}) \land \forall \beta \leq \rho[(\exists g : \rho \to \beta, \text{ a bijection}) \to \alpha \leq \beta]].$$

Hence by the standard argument, there are $\alpha, f \in N$ such that

$$H_{\Psi} \models f : \rho \to \alpha \text{ is a bijection } \land \forall \beta \leq \rho[(\exists g : \rho \to \beta, \text{ a bijection}) \to \alpha \leq \beta].$$

Clearly then $\alpha = |\rho|$.

For $|\rho|^+$, use the formula

$$\begin{split} \exists \beta \exists \Gamma \bigg[\forall \gamma \in \Gamma \exists f [f \text{ is a bijection from } \rho \text{ onto } \gamma] \\ & \wedge \forall \gamma \forall f [f \text{ is a bijection from } \rho \text{ onto } \gamma \to \gamma \in \Gamma] \\ & \wedge \beta = \bigcup \Gamma \bigg]. \end{split}$$

(xiii): Note that $\prod A \in H_{\Psi}$ by Lemma 4.3(ix). Then use the formula

$$\exists B \bigg[\forall f \in B(f \text{ is a function } \wedge \operatorname{dmn}(f) = A \wedge \forall a \in A(f(a) \in a)) \\ \\ \wedge \forall f [f \text{ is a function } \wedge \operatorname{dmn}(f) = A \wedge \forall a \in A(f(a) \in a) \to f \in B] \bigg].$$

(xiv): $pcf(A) \in H_{\Psi}$ by Lemma 4.3(xi), so by Lemma 4.4(xi) we can use the formula $\exists B[B = pcf(A)].$

(xv): We have $pcf(A) \in H_{\Psi}$, and hence easily $\langle J_{<\lambda}[A] : \lambda \in pcf(A) \rangle \in H_{\Psi}$. Hence by Lemma 4.4(xii) we can use the formula $\exists f[f = \langle J_{<\lambda}[A] : \lambda \in pcf(A) \rangle]$.

(xvi): By Lemma 4.3(iii),(xi) and Lemma 4.4(xiii) we can use the formula

$$\exists B[B: \operatorname{pcf}(A) \to \mathscr{P}(A) \land \forall \lambda \in \operatorname{pcf}(A)[B_{\lambda} \text{ is a } \lambda \text{ generator for } A]]. \qquad \square$$

Definition. Let κ be a regular cardinal. An elementary substructure N of H_{Ψ} is κ presentable iff there is an increasing and continuous chain $\langle N_{\alpha} : \alpha < \kappa \rangle$ of elementary
substructures of H_{Ψ} such that:

- (1) $|N| = \kappa$ and $\kappa + 1 \subseteq N$.
- (2) $N = \bigcup_{\alpha < \kappa} N_{\alpha}$.
- (3) For every $\alpha < \kappa$, the function $\langle N_{\beta} : \beta \leq \alpha \rangle$ is a member of $N_{\alpha+1}$.

It is obvious how to construct a κ -presentable substructure of H_{Ψ} .

Lemma 4.6. If N is a κ -presentable substructure of H_{Ψ} , with notation as above, and if $\alpha < \kappa$, then:

- (i) $\alpha + 1 \in N_{\alpha+1}$;
- (ii) $\alpha + \omega \subseteq N_{\alpha+1}$;
- (iii) $N_{\alpha} \in N_{\alpha+1}$.

Proof. Since $\langle N_{\beta}: \beta \leq \alpha \rangle \in N_{\alpha+1}$, (i) follows from Lemma 4.5 (vii). Hence $\alpha+1 \subseteq N_{\alpha+1}$ by induction, and (ii) follows by Lemma 4.5(i). (iii) holds by Lemma 4.5(viii).

For any set M, we let \overline{M} be the set of all ordinals α such that $\alpha \in M$ or $M \cap \alpha$ is unbounded in α .

Lemma 4.7. If N is a κ -presentable substructure of H_{Ψ} , with notation as above, then (i) If $\alpha < \kappa$, then $\overline{N_{\alpha}} \subseteq N$.

(ii) If $\kappa < \alpha \in \overline{N} \backslash N$, then α is a limit ordinal and $\operatorname{cf}(\alpha) = \kappa$, and in fact there is a closed unbounded subset E of α such that $E \subseteq N$ and E has order type κ .

Proof. First we consider (i). Suppose that $\gamma \in \overline{N}_{\alpha}$. We may assume that $\gamma \notin N_{\alpha}$. Case 1. $\gamma = \sup(N_{\alpha} \cap \operatorname{Ord})$. Then

$$H_{\Psi} \models \exists \gamma' [\forall \delta(\delta \in N_{\alpha} \to \delta \leq \gamma') \land \forall \varepsilon [\forall \delta(\delta \in N_{\alpha} \to \delta \leq \varepsilon) \to \gamma' \leq \varepsilon]];$$

in fact, our given γ is the unique γ' for which this holds. Hence this statement holds in N, as desired.

Case 2. $\exists \theta \in N_{\alpha}(\gamma < \theta)$. We may assume that θ is minimum with this property. Now for any $\beta \in N_{\alpha}$ we can let $\rho(\beta)$ be the supremum of all ordinals in N_{α} which are less than β . So $\rho(\theta) = \gamma$. By absoluteness we get

$$H_{\Psi} \models \forall \beta \in N_{\alpha} \exists \rho [\forall \varepsilon \in N_{\alpha}(\varepsilon < \beta \to \varepsilon < \rho) \\ \land \forall \chi [\forall \varepsilon \in N_{\alpha}(\varepsilon < \beta \to \varepsilon < \chi) \to \rho \le \chi]];$$

Hence N models this formula too; applying it to θ in place of β , we get $\rho \in N$ such that

$$N \models \forall \varepsilon \in N_{\alpha}(\varepsilon < \theta \to \varepsilon < \rho)$$
$$\land \forall \chi [\forall \varepsilon \in N_{\alpha}(\varepsilon < \theta \to \varepsilon < \chi) \to \rho \le \chi].$$

Thus $\gamma = \rho \in N$, as desired. This proves (i).

For (ii), suppose that $\kappa < \alpha \in \overline{N} \backslash N$. Let $E = \{ \sup(\alpha \cap N_{\xi}) : \xi < \kappa \}$. Note that if $\xi < \kappa$, then by (i), $\sup(\alpha \cap N_{\xi}) \in N$. So $E \subseteq N$. It is clearly closed in α . It is unbounded, since for any $\beta \in \alpha \cap N$ there is a $\xi < \kappa$ such that $\beta \in N_{\xi}$, and so $\beta \leq \sup(\alpha \cap N_{\xi}) \in N$.

For any set N we define the *characteristic function* of N; it is defined for each regular cardinal μ as follows:

$$\operatorname{Ch}_N(\mu) = \sup(N \cap \mu).$$

Proposition 4.8. Let κ be a regular cardinal, let N be a κ -presentable substructure of H_{Ψ} , and let μ be a regular cardinal.

- (i) If $\mu \leq \kappa$, then $Ch_N(\mu) = \mu \in N$.
- (ii) If $\kappa < \mu$, then $\operatorname{Ch}_N(\mu) \notin N$, $\operatorname{Ch}_N(\mu) < \mu$, and $\operatorname{Ch}_N(\mu)$ has cofinality κ .
- (iii) For every $\alpha \in \overline{N} \cap \mu$ we have $\alpha \leq \operatorname{Ch}_N(\mu)$.

Proof. (i): True since $\kappa + 1 \subseteq N$.

(ii): Since $|N| = \kappa < \mu$ and μ is regular, we must have $\operatorname{Ch}_N(\mu) \notin N$ and $\operatorname{Ch}_N(\mu) < \mu$. Then $\operatorname{Ch}_N(\mu)$ has cofinality κ by Lemma 4.7.

(iii): clear.
$$\Box$$

Theorem 4.9. Suppose that M and N are elementary substructures of H_{Ψ} and $\kappa < \mu$ are cardinals, with $\mu < \Psi$.

- (i) If $M \cap \kappa \subseteq N \cap \kappa$ and $\sup(M \cap \nu^+) = \sup(M \cap N \cap \nu^+)$ for every successor cardinal $\nu^+ \leq \mu$ such that $\nu^+ \in M$, then $M \cap \mu \subseteq N \cap \mu$.
- (ii) If M and N are both κ -presentable and if $\sup(M \cap \nu^+) = \sup(N \cap \nu^+)$ for every successor cardinal $\nu^+ \leq \mu$ such that $\nu^+ \in M$, then $M \cap \mu = N \cap \mu$.
- **Proof.** (i): Assume the hypothesis. We prove by induction on cardinals δ in the interval $[\kappa, \mu]$ that $M \cap \delta \subseteq N \cap \delta$. This is given for $\delta = \kappa$. If, inductively, δ is a limit cardinal, then the desired conclusion is clear. So assume now that δ is a cardinal, $\kappa \leq \delta < \mu$, and $M \cap \delta \subseteq N \cap \delta$. If $\delta^+ \notin M$, then by Lemma 4.5(xii), $[\delta, \delta^+] \cap M = \emptyset$, so the desired conclusion is immediate from the inductive hypothesis. So, assume that $\delta^+ \in M$. Then the hypothesis of (i) implies that there are ordinals in $[\delta, \delta^+]$ which are in $M \cap N$, and hence by Lemma 4.5(xii) again, $\delta^+ \in N$. Now to show that $M \cap [\delta, \delta^+] \subseteq N \cap [\delta, \delta^+]$, take any ordinal $\gamma \in M \cap [\delta, \delta^+]$. We may assume that $\gamma < \delta^+$. Since $\sup(M \cap \delta^+) = \sup(M \cap N \cap \delta^+)$ by assumption, we can choose $\beta \in M \cap N \cap \delta^+$ such that $\gamma < \beta$. Let f be the $<^*$ -smallest bijection from β to δ . So $f \in M \cap N$. Since $\gamma \in M$, we also have $f(\gamma) \in M$ by Lemma 4.5(viii). Now $f(\gamma) < \delta$, so by the inductive assumption that $M \cap \delta \subseteq N \cap \delta$, we have $f(\gamma) \in N$. Since $f \in N$, so is f^{-1} , and $f^{-1}(f(\gamma)) = \gamma \in N$, as desired. This finishes the proof of (i).
- (ii): Assume the hypothesis. Now we want to check the hypothesis of (i). By the definition of κ -presentable we have $\kappa = M \cap \kappa = N \cap \kappa$. Now suppose that ν is a cardinal

and $\nu^+ \leq \mu$ with $\nu^+ \in M$. We may assume that $\kappa < \nu^+$. Let $\gamma = \operatorname{Ch}_M(\nu^+)$; this is the same as $\operatorname{Ch}_N(\nu^+)$ by the hypothesis of (ii). By Lemma 4.8 we have $\gamma \notin M \cup N$; hence by Lemma 4.7 there are clubs P, Q in γ such that $P \subseteq M$ and $Q \subseteq N$. Moreover, $\operatorname{cf}(\gamma) = \kappa$, so that $M \cap N$ is also club in γ . Hence $\sup(M \cap \nu^+) = \sup(M \cap \nu^+) = \sup(M \cap N \cap \nu^+)$. This verifies the hypothesis of (i) for the pair M, N and also for the pair N, M. So our conclusion follows.

Minimally obedient sequences

Suppose that A is progressive, $\lambda \in \operatorname{pcf}(A)$, and B is a λ -generator for A. A sequence $\langle f_{\xi} : \xi < \lambda \rangle$ of members of $\prod A$ is called *persistently cofinal* for λ, B provided that $\langle (f_{\xi} \upharpoonright B) : \xi < \lambda \rangle$ is persistently cofinal in $(\prod B, <_{J_{<\lambda}[B]})$. Recall that this means that for all $h \in \prod B$ there is a $\xi_0 < \lambda$ such that for all ξ , if $\xi_0 \leq \xi < \lambda$, then $h <_{J_{<\lambda}[B]} (f_{\xi} \upharpoonright B)$.

Lemma 4.10. Suppose that A is progressive, $\lambda \in \operatorname{pcf}(A)$, and B and C are λ -generators for A. A sequence $\langle f_{\xi} : \xi < \lambda \rangle$ of members of $\prod A$ is persistently cofinal for λ, B iff it is persistently cofinal for λ, C .

Proof. Suppose that $\langle f_{\xi} : \xi < \lambda \rangle$ is persistently cofinal for λ, B , and suppose that $h \in \prod C$. Let $k \in \prod B$ be any function such that $h \upharpoonright (B \cap C) = k \upharpoonright (B \cap C)$. Choose $\xi_0 < \lambda$ such that for all $\xi \in [\xi_0, \lambda)$ we have $k <_{J_{<\lambda}[B]} (f_{\xi} \upharpoonright B)$. Then for any $\xi \in [\xi_0, \lambda)$ we have

$$\{a \in C : h(a) \ge f_{\xi}(a)\} = \{a \in B \cap C : h(a) \ge f_{\xi}(a)\} \cup \{a \in C \setminus B : h(a) \ge f_{\xi}(a)\}$$

$$\subseteq \{a \in B : k(a) \ge f_{\xi}(a)\} \cup (C \setminus B);$$

Now $(C \setminus B) \in J_{<\lambda}[A]$ by Lemma 3.17(xi), so $h <_{J_{<\lambda}[C]} (f_{\xi} \upharpoonright C)$. By symmetry the lemma follows.

Because of this lemma we say that f is persistently cofinal for a $\lambda \in pcf(A)$ iff it is persistently cofinal for λ, B for some λ -generator B.

Lemma 4.11. Suppose that A is progressive, $\lambda \in \operatorname{pcf}(A)$, and $A \in N$, where N is a κ -presentable elementary substructure of H_{Ψ} , with $|A| < \kappa < \min(A)$ and $2^{|\operatorname{tr} \operatorname{cl}(A)|} < \Psi$. Suppose that $f = \langle f_{\xi} : \xi < \lambda \rangle$ is a sequence of functions in $\prod A$.

Then for every $\xi < \lambda$ there is an $\alpha < \kappa$ such that for any $a \in A$,

$$f_{\xi}(a) < \operatorname{Ch}_{N}(a)$$
 iff $f_{\xi}(a) < \operatorname{Ch}_{N_{\alpha}}(a)$.

Proof.

$$Ch_{N}(a) = \sup(N \cap a)$$

$$= \bigcup(N \cap a)$$

$$= \bigcup \left(a \cap \bigcup_{\alpha < \kappa} N_{\alpha}\right)$$

$$= \bigcup_{\alpha < \kappa} \bigcup(N_{\alpha} \cap a)$$

$$= \bigcup_{\alpha < \kappa} Ch_{N_{\alpha}}(a).$$

Hence for every $a \in A$ for which $f_{\xi}(a) < \operatorname{Ch}_{N(a)}$, there is an $\alpha_a < \kappa$ such that $f_{\xi}(a) < \operatorname{Ch}_{N_{\alpha_a}}(a)$. Hence the existence of α as indicated follows.

Lemma 4.12. Suppose that A is progressive, κ is regular, $\lambda \in \operatorname{pcf}(A)$, and $A, \lambda \in N$, where N is a κ -presentable elementary substructure of H_{Ψ} , with $|A| < \kappa < \min(A)$ and Ψ is big. Suppose that $f = \langle f_{\xi} : \xi < \lambda \rangle \in N$ is a sequence of functions in $\prod A$ which is persistently cofinal in λ . Then for every $\xi \geq \operatorname{Ch}_N(\lambda)$ the set

$$\{a \in A : \operatorname{Ch}_N(a) \le f_{\xi}(a)\}$$

is a λ -generator for A.

Proof. Assume the hypothesis, including $\xi \geq \operatorname{Ch}_N(\lambda)$. Let α be as in Lemma 4.11. We are going to apply Lemma 3.17(ix). Since $A, f, \lambda \in N$, we may assume that $A, f, \lambda \in N_0$, by renumbering the elementary chain if necessary. Now $\kappa \subseteq N$, and $|A| < \kappa$, so we easily see that there is a bijection $f \in N$ mapping an ordinal $< \kappa$ onto A; hence $A \subseteq N$ by Lemma 4.5(viii), and so $A \subseteq N_\beta$ for some $\beta < \kappa$. We may assume that $A \subseteq N_0$. By Lemma 4.5(xvi),(viii), there is a λ -generator B which is in N_0 .

Now the sequence f is persistently cofinal in $\prod B/J_{<\lambda}$, and hence

$$H_{\Psi} \models \forall h \in \prod B \exists \eta < \lambda \forall \rho \geq \eta [h \upharpoonright B <_{J_{<\lambda}} f_{\rho} \upharpoonright B]; \quad \text{hence}$$

$$N \models \forall h \in \prod B \exists \eta < \lambda \forall \rho \geq \eta [h \upharpoonright B <_{J_{<\lambda}} f_{\rho} \upharpoonright B];$$

Hence for every $h \in N$, if $h \in \prod B$ then there is an $\eta < \lambda$ with $\eta \in N$ such that $N \models \forall \rho \geq \eta[h \upharpoonright B <_{J_{<\lambda}} f_{\varphi} \upharpoonright B]$; going up, we see that really for every $h \in N \cap \prod A$ there is an $\eta_h \in N \cap \lambda$ such that for all ρ with $\rho \geq \eta_h$ we have $h \upharpoonright B <_{J_{<\lambda}} f_{\rho} \upharpoonright B$. Since ξ , as given in the statement of the Lemma, is \geq each member of $N \cap \lambda$, hence $\geq \eta_h$ for each $h \in N \cap \prod A$, we see that

(1)
$$h \upharpoonright B <_{J_{<\lambda}} f_{\xi} \upharpoonright B \text{ for every } h \in N \cap \prod A.$$

Now we can apply (1) to $h = \operatorname{Ch}_{N_{\alpha}}$, since this function is clearly in N. So $\operatorname{Ch}_{N_{\alpha}} \upharpoonright B <_{J_{<\lambda}[B]} f_{\xi} \upharpoonright B$. Hence by the choice of α (see Lemma 4.11)

(2)
$$\operatorname{Ch}_N \upharpoonright B \leq_{J_{<\lambda}[B]} f_{\xi} \upharpoonright B.$$

Note that (2) says that $B \setminus \{a \in A : \operatorname{Ch}_N(a) \leq f_{\xi}(a)\} \in J_{<\lambda}[B]$.

Now $\lambda \notin \operatorname{pcf}(A \backslash B)$ by Lemma 3.17(ii), and hence $J_{<\lambda}[A \backslash B] = J_{\leq \lambda}[A \backslash B]$. So by Theorem 3.4 we see that $\prod (A \backslash B)/J_{<\lambda}[A \backslash B]$ is λ^+ -directed, so $\langle f_{\eta} \upharpoonright (A \backslash B) : \eta < \lambda \rangle$ has an upper bound $h \in \prod (A \backslash B)$. We may assume that $h \in N$, by the usual argument. Hence

$$f_{\xi} \upharpoonright (A \backslash B) <_{J_{<\lambda}[A \backslash B]} h < \operatorname{Ch}_N \upharpoonright (A \backslash B);$$

hence $\{a \in A \setminus B : \operatorname{Ch}_N(a) \leq f_{\xi}(a)\} \in J_{<\lambda}[A]$, and together with (2) and using Lemma 3.17(ix) this finishes the proof.

Now suppose that A is progressive, δ is a limit ordinal, $f = \langle f_{\xi} : \xi < \delta \rangle$ is a sequence of members of $\prod A$, $|A|^+ \leq \operatorname{cf}(\delta) < \min(A)$, and E is a club of δ of order type $\operatorname{cf}(\delta)$. Then we define

$$h_E = \sup\{f_{\xi} : \xi \in E\}.$$

We call h_E the supremum along E of f. Thus $h_E \in \prod A$, since $\operatorname{cf}(\delta) < \min(A)$. Note that if $E_1 \subseteq E_2$ then $h_{E_1} \leq h_{E_2}$.

Lemma 4.14. Let A, δ, f be as above. Then there is a unique function g in $\prod A$ such that the following two conditions hold.

- (i) There is a club C of δ of order type $cf(\delta)$ such that $g = h_C$.
- (ii) If E is any club of δ of order type $cf(\delta)$, then $g \leq h_E$.

Proof. Clearly such a function g is unique if it exists.

Now suppose that there is no such function g. Then for every club C of δ of order type $\mathrm{cf}(\delta)$ there is a club D of order type $\mathrm{cf}(\delta)$ such that $h_C \not\leq h_D$. Thus there is an $a \in A$ such that $h_C(a) > h_D(a)$, i.e., $\sup\{f_\xi(a) : \xi \in C\} > \sup\{f_\xi(a) : \xi \in D$, hence also $\sup\{f_\xi(a) : \xi \in C\} > \sup\{f_\xi(a) : \xi \in C\} > \sup\{f_\xi(a) : \xi \in C \cap D$. So $h_C \not\leq h_{C \cap D}$. Hence there is a decreasing sequence $\langle E_\alpha : \alpha < |A|^+ \rangle$ of clubs of δ such that for every $\alpha < |A|^+$ we have $h_{E_\alpha} \not\leq h_{E_{\alpha+1}}$. Now note that

$$|A|^+ = \bigcup_{a \in A} \{ \alpha < |A|^+ : h_{E_{\alpha}}(a) > h_{E_{\alpha+1}}(a) \}.$$

Hence there is an $a \in A$ such that $M \stackrel{\text{def}}{=} \{ \alpha < |A|^+ : h_{E_{\alpha}}(a) > h_{E_{\alpha+1}}(a) \}$ has size $|A|^+$. Now $h_{E_{\alpha}}(a) \ge h_{E_{\beta}}(a)$ whenever $\alpha < \beta < |A|^+$, so this gives an infinite decreasing sequence of ordinals, contradiction.

The function g of this lemma is called the *minimal club-obedient bound* of f.

Corollary 4.15. Suppose that A is progressive, δ is a limit ordinal, $f = \langle f_{\xi} : \xi < \delta \rangle$ is a sequence of members of $\prod A$, $|A|^+ \leq \operatorname{cf}(\delta) < \min(A)$, J is an ideal on A, and f is $<_J$ -increasing. Let g be the minimal club-obedient bound of f. Then g is a \leq_J -bound for f.

Now suppose that A is progressive, $\lambda \in \operatorname{pcf}(A)$, and κ is a regular cardinal such that $|A| < \kappa < \min(A)$. We say that $f = \langle f_{\alpha} : \alpha < \lambda \rangle$ is κ -minimally obedient for λ iff f is a universal sequence for λ and for every $\delta < \lambda$ of cofinality κ , f_{δ} is the minimal club-obedient bound of f.

A sequence f is minimally obedient for λ iff $|A|^+ < \min(A)$ and f is minimally obedient for every regular κ such that $|A| < \kappa < \min(A)$.

Lemma 4.16. Suppose that $|A|^+ < \min(A)$ and $\lambda \in \operatorname{pcf}(A)$. Then there is a minimally obedient sequence for λ .

Proof. By Theorem 4.16 let $\langle f_{\xi}^0 : \xi < \lambda \rangle$ be a universal sequence for λ . Now by induction we define functions f_{ξ} for $\xi < \lambda$. Let $f_0 = f_0^0$, and choose $f_{\xi+1}$ so that $\max(f_{\xi}, f_{\xi}^0) < f_{\xi+1}$.

For limit $\delta < \lambda$ such that $|A| < \operatorname{cf}(\delta) < \min(A)$, let f_{δ} be the minimally club-obedient bound of $\langle f_{\xi} : \xi < \delta \rangle$.

For other limit $\delta < \lambda$, use the λ -directedness (Theorem 9.8) to get f_{δ} as a $<_{J_{<\lambda}}$ -bound of $\langle f_{\xi} : \xi < \delta \rangle$.

Thus we have assured the minimally obedient property, and it is clear that $\langle f_{\xi} : \xi < \lambda \rangle$ is universal.

Lemma 4.17. Suppose that A is progressive, and κ is a regular cardinal such that $|A| < \kappa < \min(A)$. Also assume the following:

- (i) $\lambda \in \operatorname{pcf}(A)$.
- (ii) $f = \langle f_{\xi} : \xi < \lambda \rangle$ is a κ -minimally obedient sequence for λ .
- (iii) N is a κ -presentable elementary substructure of H_{Ψ} , with Ψ large, such that $\lambda, f, A \in N$.

Then the following conditions hold:

- (iv) For every $\gamma \in \overline{N} \cap \lambda \backslash N$ we have:
 - (a) $cf(\gamma) = \kappa$.
- (b) There is a club C of γ of order type κ such that $f_{\gamma} = \sup\{f_{\xi} : \xi \in C\}$ and $C \subseteq N$.
 - (c) $f_{\gamma}(a) \in \overline{N} \cap a$ for every $a \in A$.
 - (v) If $\gamma = \operatorname{Ch}_N(\lambda)$, then:
 - (a) $\gamma \in \overline{N} \cap \lambda \backslash N$; hence we let C be as in (iv)(b), with $f_{\gamma} = \sup\{f_{\xi} : \xi \in C\}$.
 - (b) $f_{\xi} \in N$ for each $\xi \in C$.
 - (c) $f_{\gamma} \leq (\operatorname{Ch}_N \upharpoonright A)$.
- (vi) $\gamma = \operatorname{Ch}_N(\lambda)$ and C is as in (iv)(b), with $f_{\gamma} = \sup\{f_{\xi} : \xi \in C\}$, and B is a λ generator, then for every $h \in N \cap \prod A$ there is a $\xi \in C$ such that $(h \upharpoonright B) <_{J_{<\lambda}} (f_{\xi} \upharpoonright B)$.
- **Proof.** Assume (i)–(iii). Note that $A \subseteq N$, by Lemma 4.5(ix), applied to κ, A in place of X, Y.
- For (iv), suppose also that $\gamma \in \overline{N} \cap \lambda \backslash N$. Then by Lemma 4.7 we have $\operatorname{cf}(\gamma) = \kappa$, and there is a club E in γ of order type κ such that $E \subseteq N$. By (ii), we have $f_{\gamma} = f_{C}$ for some club C of γ of order type κ . By the minimally obedient property we have $f_{C} = f_{C \cap E}$, and thus we may assume that $C \subseteq E$. For any $\xi \in C$ and $a \in A$ we have $f_{\xi}(a) \in N$ by Lemma 4.5(viii). So (iv) holds.
- For (v), suppose that $\gamma = \operatorname{Ch}_N(\lambda)$. Then $\gamma \in \overline{N} \cap \lambda \setminus N$ because $|N| = \kappa < \min(A) \le \lambda$. For each $\xi \in C$ we have $f_{\xi} \in N$ by Lemma 4.5(viii). For (c), if $a \in A$, then $f_{\gamma}(a) = \sup_{\xi \in C} f_{\xi}(a) \le \operatorname{Ch}_N(a)$, since $f_{\xi}(a) \in N \cap a$ for all $\xi \in C$.

Next, assume the hypotheses of (vi). By Lemma 4.11, f is persistently cofinal in λ , so by Lemma 4.13, $B' \stackrel{\text{def}}{=} \{a \in A : \operatorname{Ch}_N(a) \leq f_{\gamma}(a)\}$ is a λ -generator. By Lemma 4.23(v) there is a $\xi \in C$ such that $h \upharpoonright B' <_{J_{<\lambda}} f_{\xi} \upharpoonright B'$. Now $B =_{J_{<\lambda}[A]} B'$ by Lemma 4.23(xi), so

$$\{a \in B : h(a) \ge f_{\xi}(b)\} \subseteq (B \setminus B') \cup \{a \in B' : h(a) \ge f_{\xi}(b)\} \in J_{<\lambda}[A]. \qquad \Box$$

We now define some abbreviations.

$H_1(A, \kappa, N, \Psi)$ abbreviates

A is a progressive set of regular cardinals, κ is a regular cardinal such that $|A| < \kappa < \min(A)$, and N is a κ -presentable elementary substructure of H_{Ψ} , with Ψ big and $A \in N$.

 $H_2(A, \kappa, N, \Psi, \lambda, f, \gamma)$ abbreviates

 $H_1(A, \kappa, N, \Psi), \ \lambda \in \operatorname{pcf}(A), \ f = \langle f_{\xi} : \xi < \lambda \rangle \ is \ a \ sequence \ of \ members \ of \prod A, \ f \in N,$ and $\gamma = \operatorname{Ch}_N(\lambda).$

 $H_3(A, \kappa, N, \Psi, \lambda, f, \gamma)$ abbreviates

 $H_2(A, \kappa, N, \Psi, \lambda, f, \gamma)$ and $\{a \in A : \operatorname{Ch}_N(a) \leq f_{\gamma}(a)\}$ is a λ -generator.

 $H_4(A, \kappa, N, \Psi, \lambda, f, \gamma)$ abbreviates

 $H_2(A, \kappa, N, \Psi, \lambda, f, \gamma)$ and the following hold:

- (i) $f_{\gamma} \leq (\operatorname{Ch}_N \upharpoonright A)$.
- (ii) For every $h \in N \cap \prod A$ there is a $d \in N \cap \prod A$ such that for any λ -generator B,

$$(h \upharpoonright B) <_{J_{<\lambda}} (d \upharpoonright B)$$
 and $d \le f_{\gamma}$.

Thus $H_1(A, \kappa, N, \Psi)$ is part of the hypothesis of Lemma 4.17, and $H_2(A, \kappa, N, \Psi, \lambda, f, \gamma)$ is a part of the hypotheses of Lemma 4.17(v).

Lemma 4.18. If $H_2(A, \kappa, N, \Psi, \lambda, f, \gamma)$ holds and f is persistently cofinal for λ , then $H_3(A, \kappa, N, \Psi, \lambda, f, \gamma)$ holds.

Proof. This follows immediately from Lemma 4.13.

Lemma 4.19. If $H_2(A, \kappa, N, \Psi, \lambda, f, \gamma)$ holds and f is κ -minimally obedient for λ , then both $H_3(A, \kappa, N, \Psi, \lambda, f, \gamma)$ and $H_4(A, \kappa, N, \Psi, \lambda, f, \gamma)$ hold.

Proof. Since f is κ -minimally obedient for λ , it is a universal sequence for λ , by definition. Hence by Lemma 4.11 f is persistently cofinal for λ , and so property H_3 follows from Lemma 4.18.

For H_4 , note that $\lambda, A \in N$ since $f \in N$, by Lemma 4.5(vii),(ix). Hence the hypotheses of Lemma 4.17(v) hold. So (i) in H_4 holds by Lemma 4.17(v)(c). For condition (ii), suppose that $h \in N \cap \prod A$. Take B and C as in Lemma 4.17(vi), and choose $\xi \in C$ such that $h \upharpoonright B <_{J_{<\lambda}} f_{\xi} \upharpoonright B$. Let $d = f_{\xi}$. Clearly this proves condition (ii).

The following obvious extension of Lemma 4.19 will be useful below.

Lemma 4.20. Assume $H_1(A, \kappa, N, \Psi)$, and also assume that $\gamma = \operatorname{Ch}_N(\lambda)$ and

(i) $f \stackrel{\text{def}}{=} \langle f^{\lambda} : \lambda \in \operatorname{pcf}(A) \rangle$ is a sequence of sequences $\langle f_{\xi}^{\lambda} : \xi < \lambda \rangle$ each of which is κ -minimally obedient for λ .

Then for each $\lambda \in N \cap \operatorname{pcf}(A)$, $H_3(A, \kappa, N, \Psi, \lambda, f^{\lambda}, \gamma)$ and $H_4(A, \kappa, N, \Psi, \lambda, f^{\lambda}, \gamma)$ hold.

Lemma 4.21. Suppose that $H_3(A, \kappa, N, \Psi, \lambda, f, \gamma)$ and $H_4(A, \kappa, N, \Psi, \lambda, f, \gamma)$ hold. Then

- (i) $\{a \in A : \operatorname{Ch}_N(a) = f_{\gamma}(a)\}\ is\ a\ \lambda$ -generator.
- (ii) If $\lambda = \max(\operatorname{pcf}(A))$, then $\{a \in A : f_{\gamma}(a) < \operatorname{Ch}_{N}(a)\} \in J_{<\lambda}[A]$.

Proof. By (i) of $H_4(A, \kappa, N, \Psi, \lambda, f, \gamma)$ we have $f_{\gamma} \leq (\operatorname{Ch}_N \upharpoonright A)$, so (i) holds by $H_3(A, \kappa, N, \Psi, \lambda, f, \gamma)$. (ii) follows from $H_3(A, \kappa, N, \Psi, \lambda, f, \gamma)$ and Lemma 4.23(xii).

Lemma 4.22. Assume that $H_3(A, \kappa, N, \Psi, \lambda, f, \gamma)$ and $H_4(A, \kappa, N, \Psi, \lambda, f, \gamma)$ hold. Let

$$b = \{a \in A : \operatorname{Ch}_N(a) = f_{\gamma}(a)\}.$$

Then

- (i) b is a λ -generator.
- (ii) There is a set $b' \subseteq b$ such that:
 - (a) $b' \in N$;
 - (b) $b \backslash b' \in J_{<\lambda}[A]$;
 - (c) b' is a λ -generator.

Proof. (i) holds by Lemma 4.21(i). For (ii), by Lemma 4.12 choose $\alpha < \kappa$ such that, for every $a \in A$,

(1)
$$f_{\gamma}(a) < \operatorname{Ch}_{N}(a) \quad \text{iff} \quad f_{\gamma}(a) < \operatorname{Ch}_{N_{\alpha}}(a).$$

Now by (i) of $H_4(A, \kappa, N, \Psi, \lambda, f, \gamma)$ we have $f_{\gamma} \leq (\operatorname{Ch}_N \upharpoonright A)$. Hence by (1) we see that for every $a \in A$,

(2)
$$a \in b \quad \text{iff} \quad \operatorname{Ch}_{N_{\alpha}}(a) \leq f_{\gamma}(a).$$

Now by (ii) of $H_4(A, \kappa, N, \Psi, \lambda, f, \gamma)$ applied to $h = \operatorname{Ch}_{N_\alpha} \upharpoonright A$, there is a $d \in N \cap \prod A$ such that the following conditions hold:

- (3) $(\operatorname{Ch}_{N_{\alpha}} \upharpoonright b) <_{J_{<\lambda}} (d \upharpoonright b)$.
- (4) $d \leq f_{\gamma}$.

Now we define

$$b' = \{ a \in A : \operatorname{Ch}_{N_{\alpha}}(a) \le d(a) \}.$$

Clearly $b' \in N$. Also, by (3),

$$b \backslash b' = \{ a \in b : d(a) < \operatorname{Ch}_{N_{\alpha}}(a) \} \in J_{<\lambda},$$

and so (ii)(b) holds. If $a \in b'$, then $\operatorname{Ch}_{N_{\alpha}}(a) \leq d(a) \leq f_{\gamma}(a)$ by (4), so $a \in b$ by (2). Thus $b' \subseteq b$. Now (ii)(c) holds by Lemma 4.23(ix).

Lemma 4.23. Assume $H_1(A, \kappa, N, \Psi)$ and $A \in N$. Suppose that $\langle f^{\lambda} : \lambda \in \operatorname{pcf}(A) \rangle \in N$ is an array of sequences $\langle f_{\xi}^{\lambda} : \xi < \lambda \rangle$ with each $f_{\xi}^{\lambda} \in \prod A$. Also assume that for every $\lambda \in N \cap \operatorname{pcf}(A)$, both $H_3(A, \kappa, N, \Psi, \lambda, f^{\lambda}, \gamma(\lambda))$ and $H_4(A, \kappa, N, \Psi, \lambda, f^{\lambda}, \gamma(\lambda))$ hold.

Then there exist cardinals $\lambda_0 > \lambda_1 > \cdots > \lambda_n$ in $pcf(A) \cap N$ such that

$$(\operatorname{Ch}_N \upharpoonright A) = \sup\{f_{\gamma(\lambda_0)}^{\lambda_0}, \dots, f_{\gamma(\lambda_n)}^{\lambda_n}\}.$$

Proof. We will define by induction a descending sequence of cardinals $\lambda_i \in \operatorname{pcf}(A) \cap N$ and sets $A_i \in \mathscr{P}(A) \cap N$ (strictly decreasing under inclusion as i grows) such that if $A_i \neq \emptyset$ then $\lambda_i = \max(\operatorname{pcf}(A_i))$ and

$$(1) \qquad (\operatorname{Ch}_{N} \upharpoonright (A \backslash A_{i+1})) = \sup \{ (f_{\gamma(\lambda_{0})}^{\lambda_{0}} \upharpoonright (A \backslash A_{i+1})), \dots, (f_{\gamma(\lambda_{i})}^{\lambda_{i}} \upharpoonright (A \backslash A_{i+1})) \}.$$

Since the cardinals are decreasing, there is a first i such that $A_{i+1} = \emptyset$, and then the lemma is proved. To start, $A_0 = A$ and $\lambda_0 = \max(\operatorname{pcf}(A))$. Clearly $\lambda_0 \in N$. Now suppose that λ_i and A_i are defined, with $A_i \neq 0$. By Lemma 4.22(i) and Lemma 4.23(x), the set

$$\{a \in A \cap (\lambda_i + 1) : \operatorname{Ch}_N(a) = f_{\gamma(\lambda_i)}^{\lambda_i}(a)\}$$

is a λ_i -generator. Hence by Lemma 4.22(ii) we get another λ_i -generator b'_{λ_i} such that

(2)
$$b'_{\lambda_i} \in N$$
.

$$(3) b'_{\lambda_i} \subseteq \{a \in A \cap (\lambda_i + 1) : \operatorname{Ch}_N(a) = f^{\lambda_i}_{\gamma(\lambda_i)}(a)\}.$$

Note that $b'_{\lambda_i} \neq \emptyset$. Let $A_{i+1} = A_i \setminus b'_{\lambda_i}$. Thus $A_{i+1} \in N$. Furthermore,

$$(4) A \setminus A_{i+1} = (A \setminus A_i) \cup b'_{\lambda_1}.$$

Now by Lemma 4.23(ii) and $\lambda_i = \max(\operatorname{pcf}(A_i))$ we have $\lambda_i \notin \operatorname{pcf}(A_{i+1})$. If $A_{i+1} \neq \emptyset$, we let $\lambda_{i+1} = \max(\operatorname{pcf}(A_{i+1}))$. Now by (i) of $H_4(A, \kappa, N, \Psi, \lambda, f^{\lambda_j}, \gamma(\lambda_j))$ we have

(5)
$$f_{\gamma(\lambda_j)}^{\lambda_j} \leq (\operatorname{Ch}_N \upharpoonright A)$$
 for all $j \leq i$.

Now suppose that $a \in A \setminus A_{i+1}$. If $a \in A_i$, then by (4), $a \in b'_{\lambda_1}$, and so by (3), $\operatorname{Ch}_N(a) = f_{\gamma(\lambda_1)}^{\lambda_i}(a)$, and (1) holds for a. If $a \notin A_i$, then $A \neq A_i$, so $i \neq 0$. Hence by the inductive hypothesis for (1),

$$\operatorname{Ch}_{N}(a) = \sup\{f_{\gamma(\lambda_{0})}^{\lambda_{0}}(a), \dots, f_{\gamma(\lambda_{i-1})}^{\lambda_{i-1}}(a)\},\,$$

and (1) for a follows by (5).

Theorem 4.24. Suppose that μ is singular and $\kappa < \mu$ is an uncountable regular cardinal such that $A \stackrel{\text{def}}{=} (\kappa, \mu)_{\text{reg}}$ has $size \leq \kappa$. Then

$$\operatorname{cf}([\mu]^{\kappa}, \subseteq) = \max(\operatorname{pcf}(A)).$$

Proof. Note by the progressiveness of A that every limit cardinal in the interval (κ, μ) is singular, and hence every member of A is a successor cardinal.

First we prove \geq . Suppose to the contrary that $\operatorname{cf}([\mu]^{\kappa}, \subseteq) < \max(\operatorname{pcf}(A))$. For brevity write $\max(\operatorname{pcf}(A)) = \lambda$. let $\{X_i : i \in I\} \subseteq [\mu]^{\kappa}$ be cofinal and of cardinality less than λ . Pick a universal sequence $\langle f_{\xi} : \xi < \lambda \rangle$ for λ by Theorem 4.16. For every $\xi < \lambda$, $\operatorname{rng}(f_{\xi})$ is a subset of μ of size $\leq |A| \leq \kappa$, and hence $\operatorname{rng}(f_{\xi})$ is covered by some X_i . Thus $\lambda = \bigcup_{i \in I} \{\xi < \lambda : \operatorname{rng}(f_{\xi}) \subseteq X_i\}$, so by $|I| < \lambda$ and the regularity of λ we get an $i \in I$ such that $|\{\xi < \lambda : \operatorname{rng}(f_{\xi}) \subseteq X_i\}| = \lambda$. Now define for any $a \in A$,

$$h(a) = \sup(a \cap X_i).$$

Since $\kappa < a$ for each $a \in A$, we have $h \in \prod A$. Now the sequence $\langle f_{\xi} : \xi < \lambda \rangle$ is cofinal in $\prod A$ under $\langle f_{\xi} : \xi < \lambda \rangle$ by Lemma 4.17. So there is a $\xi < \lambda$ such that $h < f_{\xi}$. Thus there is an $a \in A$ such that $h(a) < f_{\xi}(a) \in X_i$, contradicting the definition of h.

Second we prove \leq , by exhibiting a cofinal subset of $[\mu]^{\kappa}$ of size at most max(pcf(A)). Take N and Ψ so that $H_1(A, \kappa, N, \Psi)$. Let \mathscr{M} be the set of all κ -presented elementary substructures M of H_{Ψ} such that $A \subseteq M$, and let

$$F = \{ M \cap \mu : M \in \mathscr{M} \} \setminus [\mu]^{<\kappa}.$$

Since $|M| = \kappa$, we have $|M \cap \mu| \le \kappa$, and so $\forall M \in F(|M \cap \mu| = \kappa)$.

(1) F is cofinal in $[\mu]^{\kappa}$.

In fact, for any $X \in [\mu]^{\kappa}$ we can find $M \in \mathcal{M}$ such that $X \subseteq M$, and (1) follows.

By (1) it suffices to prove that $|F| \leq \max(\operatorname{pcf}(A))$.

Claim. If $M, N \in \mathcal{M}$ are such that $\operatorname{Ch}_M \upharpoonright A = \operatorname{Ch}_N \upharpoonright A$, then $M \cap \mu = N \cap \mu$.

For, if ν^+ is a successor cardinal $\leq \mu$, then $\sup(M \cap \nu^+) = \operatorname{Ch}_M(\nu^+) = \operatorname{Ch}_N(\nu^+) = \sup(N \cap \nu^+)$. So the claim holds by Theorem 4.9.

Now for each $M \in \mathcal{M}$, let g(M) be the sequence $\langle (\lambda_0, \gamma_0), \dots, (\lambda_n, \gamma_n) \rangle$ given by Lemma 4.23. Clearly the range of g has size $\leq \max(\operatorname{pcf}(A))$. Now for each $X \in F$, choose $M_X \in \mathcal{M}$ such that $X = M_X \cap \mu$. Then for $X, Y \in F$ and $X \neq Y$ we have $M_X \cap \mu \neq M_Y \cap \mu$, hence by the claim $\operatorname{Ch}_{M_X} \upharpoonright A \neq \operatorname{Ch}_{M_Y} \upharpoonright A$, and hence by Lemma 4.23, $g(M_X) \neq g(M_Y)$. This proves that $|F| \leq \max(\operatorname{pcf}(A))$.

Corollary 4.25. Let $A = \{\aleph_m : 1 < m < \omega\}$. Then for any $m \in \omega$ we have $\operatorname{cf}([\aleph_\omega]^{\aleph_m}) = \max(\operatorname{pcf}(A))$.

Proof. Immediate from Lemma 2.27(vi) and Theorem 4.24. □

Elevations and transitive generators

We start with some simple general notions about cardinals. If B is a set of cardinals, then a walk in B is a sequence $\lambda_0 > \lambda_1 > \cdots > \lambda_n$ of members of B. Such a walk is necessarily finite. Given cardinals $\lambda_0 > \lambda$ in B, a walk from λ_0 to λ is a walk as above with $\lambda_n = \lambda$. We denote by $F_{\lambda_0,\lambda}(B)$ the set of all walks from λ_0 to λ .

Now suppose that A is progressive and $\lambda_0 \in \operatorname{pcf}(A)$. A special walk from λ_0 to λ_n in $\operatorname{pcf}(A)$ is a walk $\lambda_0 > \cdots > \lambda_n$ in $\operatorname{pcf}(A)$ such that $\lambda_i \in A$ for all i > 0. We denote by $F'_{\lambda_0,\lambda}(A)$ the collection of all special walks from λ_0 to λ in $\operatorname{pcf}(A)$.

Next, suppose in addition that $f \stackrel{\text{def}}{=} \langle f^{\lambda} : \lambda \in \text{pcf}(A) \rangle$ is a sequence of sequences, where each f^{λ} is a sequence $\langle f_{\xi}^{\lambda} : \xi < \lambda \rangle$ of members of $\prod A$. If $\lambda_0 > \cdots > \lambda_n$ is a special walk in pcf(A), and $\gamma_0 \in \lambda_0$, then we define an associated sequence of ordinals by setting

$$\gamma_{i+1} = f_{\gamma_i}^{\lambda_i}(\lambda_{i+1})$$

for all i < n. Note that $\gamma_i < \lambda_i$ for all i = 0, ..., n. Then we define

$$\mathrm{El}_{\lambda_0,\ldots,\lambda_n}(\gamma_0) = \gamma_n.$$

Now we define the *elevation* of the sequence f, denoted by $f^e \stackrel{\text{def}}{=} \langle f^{\lambda,e} : \lambda \in \operatorname{pcf}(A) \rangle$, by setting, for any $\lambda_0 \in \operatorname{pcf}(A)$, any $\gamma_0 \in \lambda_0$, and any $\lambda \in A$,

$$f_{\gamma_0}^{\lambda_0,e}(\lambda) = \begin{cases} f_{\gamma_0}^{\lambda_0}(\lambda) & \text{if } \lambda_0 \leq \lambda, \\ \max(\{\text{El}_{\lambda_0,\dots,\lambda_n}(\gamma_0): (\lambda_0,\dots,\lambda_n) \in F'_{\lambda_0,\lambda}\}) & \text{if } \lambda < \lambda_0, \\ & \text{and this maximum exists,} \end{cases}$$

$$f_{\gamma_0}^{\lambda_0}(\lambda) & \text{if } \lambda < \lambda_0, \text{ otherwise.}$$

Note here that the superscript ^e is only notational, standing for "elevated".

Lemma 4.26. Assume the above notation. Then $f_{\gamma_0}^{\lambda_0} \leq f_{\gamma_0}^{\lambda_0,e}$ for all $\lambda_0 \in \text{pcf}(A)$ and all $\gamma_0 \in \lambda_0$.

Proof. Take any $\gamma_0 \in \lambda_0$ and any $\lambda \in A$. If $\lambda_0 \leq \lambda$, then $f_{\gamma_0}^{\lambda_0,e}(\lambda) = f_{\gamma_0}^{\lambda_0}(\lambda)$. Suppose that $\lambda < \lambda_0$. If the above maximum does not exist, then again $f_{\gamma_0}^{\lambda_0,e}(\lambda) = f_{\gamma_0}^{\lambda_0}(\lambda)$. Suppose the maximum exists. Now $(\lambda_0, \lambda) \in F'_{\lambda_0, \lambda}(A)$, so

$$f_{\gamma_0}^{\lambda_0}(\lambda) = \mathrm{El}_{\lambda_0,\lambda}(\gamma_0) \leq \max(\{\mathrm{El}_{\lambda_0,\dots,\lambda_n}(\gamma_0) : (\lambda_0,\dots,\lambda_n) \in F'_{\lambda_0,\lambda}\}) = f_{\gamma_0}^{\lambda_0,e}(\lambda). \qquad \Box$$

Lemma 4.27. Suppose that A is progressive, κ is a regular cardinal such that $|A| < \kappa < \min(A)$, and $f \stackrel{\text{def}}{=} \langle f^{\lambda} : \lambda \in \operatorname{pcf}(A) \rangle$ is a sequence of sequences f^{λ} such that f^{λ} is κ -minimally obedient for λ . Assume also $H_1(A, \kappa, N, \Psi)$ and $f \in N$.

Then also $f^e \in N$.

Proof. The proof is a more complicated instance of our standard procedure for going from V to H_{Ψ} to N and then back. We sketch the details.

Assume the hypotheses. In particular, $A \in N$. Hence also $pcf(A) \in N$. Also, $|A| < \kappa$, so $A \subseteq N$. Now clearly $F' \in N$. Also, $E \in N$. (Note that El depends upon A.) Then by absoluteness,

 $H_{\Psi} \models \exists g \ g \text{ is a function, } \dim(g) = \operatorname{pcf}(A) \land \forall \lambda_0 \in \operatorname{pcf}(A) \forall \gamma_0 \in \lambda_0 \forall \lambda \in A$

$$g(\lambda) = \begin{cases} f_{\gamma_0}^{\lambda_0}(\lambda) & \text{if } \lambda_0 \leq \lambda, \\ \max(\{\text{El}_{\lambda_0,\dots,\lambda_n}(\gamma_0) : (\lambda_0,\dots,\lambda_n) \in F'_{\lambda_0,\lambda}\}) & \text{if } \lambda < \lambda_0, \\ & \text{and this maximum exists,} \end{cases}$$

$$f_{\gamma_0}^{\lambda_0}(\lambda) & \text{if } \lambda < \lambda_0, \text{ otherwise.}$$

Now the usual procedure can be applied.

Lemma 4.28. Suppose that A is progressive, κ is a regular cardinal such that $|A| < \kappa < \min(A)$, and $f \stackrel{\text{def}}{=} \langle f^{\lambda} : \lambda \in \operatorname{pcf}(A) \rangle$ is a sequence of sequences f^{λ} such that f^{λ} is κ -minimally obedient for λ . Assume $H_1(A, \kappa, N, \Psi)$ and $f \in N$.

Suppose that $\lambda_0 \in \operatorname{pcf}(A) \cap N$, and let $\gamma_0 = \operatorname{Ch}_N(\lambda_0)$.

(i) If $\lambda_0 > \cdots > \lambda_n$ is a special walk in pcf(A), and $\gamma_1, \ldots, \gamma_n$ are formed as above, then $\gamma_i \in \overline{N}$ for all $i = 0, \ldots, n$.

(ii) For every $\lambda \in A \cap \lambda_0$ we have $f_{\gamma_0}^{\lambda_0,e}(\lambda) \in \overline{N}$.

Proof. (i): By induction, using Lemma 4.17(iv)(c).

(ii): immediate from (i).

Lemma 4.29. Assume the hypotheses of Lemma 4.28. Then

(i) For any special walk $\lambda_0 > \cdots > \lambda_n = \lambda$ in $F'_{\lambda_0,\lambda}$, we have

$$El_{\lambda_0,\ldots,\lambda_n}(\gamma_0) \leq Ch_N(\lambda).$$

(ii) $f_{\gamma_0}^{\lambda_0,e} \leq \operatorname{Ch}_N \upharpoonright A \text{ for every } \gamma_0 < \lambda_0.$

(iii) If there is a special walk $\lambda_0 > \cdots > \lambda_n = \lambda$ in $F'_{\lambda_0,\lambda}$ such that

$$El_{\lambda_0,\ldots,\lambda_n}(\gamma_0) = Ch_N(\lambda),$$

then

$$\operatorname{Ch}_N(\lambda) = f_{\gamma_0}^{\lambda_0, e}(\lambda).$$

(iv) Suppose that $\operatorname{Ch}_N(\lambda) = f_{\gamma_0}^{\lambda_0, e}(\lambda) = \gamma$. If there is an $a \in A \cap \lambda$ such that $f_{\gamma}^{\lambda, e}(a) = \operatorname{Ch}_N(a)$, then also $f_{\gamma_0}^{\lambda_0, e}(a) = \operatorname{Ch}_N(a)$.

Proof. (i) is immediate from Lemma 4.28(i) and Lemma 4.8(iii). (ii) and (iii) follow from (i). For (iv), by Lemma 4.28(i) and (i) there are special walks $\lambda_0 > \cdots > \lambda_n = \lambda$ and $\lambda = \lambda_0' > \cdots > \lambda_m' = a$ such that

$$f_{\gamma_0}^{\lambda_0,e}(\lambda) = \operatorname{Ch}_N(\lambda) = \operatorname{El}_{\lambda_0,\dots,\lambda_n}(\gamma_0)$$
 and $f_{\gamma}^{\lambda,e}(a) = \operatorname{Ch}_N(a) = \operatorname{El}_{\lambda'_0,\dots,\lambda'_m}(a)$.

It follows that

$$\mathrm{El}_{\lambda_0,\ldots,\lambda_n,\lambda_1',\ldots,a}(\gamma_0) = \mathrm{Ch}_N(a),$$

and (iii) then gives $f_{\gamma_0}^{\lambda_0,e}(a) = \operatorname{Ch}_N(a)$.

Definition. Suppose that A is progressive and $A \subseteq P \subseteq pcf(A)$. A system $\langle b_{\lambda} : \lambda \in P \rangle$ of subsets of A is *transitive* iff for all $\lambda \in P$ and all $\mu \in b_{\lambda}$ we have $b_{\mu} \subseteq b_{\lambda}$.

Theorem 4.30. Suppose that $H_1(A, \kappa, N, \Psi)$, $f = \langle f^{\lambda} : \lambda \in \operatorname{pcf}(A) \rangle$ is a system of functions, and each f^{λ} is κ -minimally obedient for λ . Let f^e be the derived elevated array. For every $\lambda_0 \in \operatorname{pcf}(A) \cap N$ put $\gamma_0 = \operatorname{Ch}_N(\lambda_0)$ and define

$$b_{\lambda_0} = \{ a \in A : \operatorname{Ch}_N(a) = f_{\gamma_0}^{\lambda_0, e}(a) \}.$$

Then the following hold for each $\lambda_0 \in \operatorname{pcf}(A) \cap N$:

- (i) b_{λ_0} is a λ_0 -generator.
- (ii) There is a $b'_{\lambda_0} \subseteq b_{\lambda_0}$ such that

(a)
$$b_{\lambda_0} \setminus b'_{\lambda_0} \in J_{<\lambda_0}[A]$$
.

- (b) $b'_{\lambda_0} \in N$ (each one individually, not the sequence).
- (c) b'_{λ_0} is a λ_0 -generator.
- (iii) The system $\langle b_{\lambda} : \lambda \in \operatorname{pcf}(A) \cap N \rangle$ is transitive.

Proof. Note that $H_2(A, \kappa, N, \Psi, \lambda_0, f^{\lambda_0, e}, \gamma_0)$ holds by Lemma 4.27. By definition, minimally obedient implies universal, so f^{λ_0} is persistently cofinal by Lemma 4.11. Hence by Lemma 4.26, $f^{\lambda_0, e}$ is persistently cofinal, and so $H_3(A, \kappa, N, \Psi, \lambda_0, f^{\lambda_0, e}, \gamma_0)$ holds by Lemma 4.18. Also, by Lemma 4.19 $H_4(A, \kappa, N, \Psi, \lambda_0, f^{\lambda_0}, \gamma_0)$ holds, so the condition $H_4(A, \kappa, N, \Psi, \lambda_0, f^{\lambda_0, e}, \gamma_0)$ holds by Lemmas 4.26 and 4.29(ii). Now (i) and (ii) hold by Lemma 4.22.

Now suppose that $\lambda_0 \in \operatorname{pcf}(A) \cap N$ and $\lambda \in b_{\lambda_0}$. Thus

$$\operatorname{Ch}_N(\lambda) = f_{\gamma_0}^{\lambda_0, e}(\lambda),$$

where $\gamma_0 = \operatorname{Ch}_N(\lambda_0)$. Write $\gamma = \operatorname{Ch}_N(\lambda)$. We want to show that $b_{\lambda} \subseteq b_{\lambda_0}$. Take any $a \in b_{\lambda}$. So $\operatorname{Ch}_N(a) = f_{\gamma}^{\lambda,e}(a)$. By Lemma 4.29(iv) we get $f_{\gamma_0}^{\lambda_0,e}(a) = \operatorname{Ch}_N(a)$, so $a \in b_{\lambda_0}$, as desired.

Localization

Theorem 4.31. Suppose that A is a progressive set. Then there is no subset $B \subseteq \operatorname{pcf}(A)$ such that $|B| = |A|^+$ and, for every $b \in B$, $b > \max(\operatorname{pcf}(B \cap b))$.

Proof. Assume the contrary. We may assume that $|A|^+ < \min(A)$. In fact, if we know the result under this assumption, and now $|A|^+ = \min(A)$, suppose that $B \subseteq \operatorname{pcf}(A)$ with $|B| = |A|^+$ and $\forall b \in B[b > \max(\operatorname{pcf}(B \cap b))]$. Let $A' = A \setminus \{|A|^+\}$. Then let $B' = B \setminus \{|A|^+\}$. So by Proposition 9.1(vi) we have $B' \subseteq \operatorname{pcf}(A')$. Clearly $|B'| = |A'|^+$ and $\forall b \in B'[b > \max(\operatorname{pcf}(B' \cap b))]$, contradiction.

Also, clearly we may assume that B has order type $|A|^+$.

Let $E = A \cup B$. Then $|E| < \min(E)$. Let $\kappa = |E|$. By Lemma 4.16, we get an array $\langle f^{\lambda} : \lambda \in \operatorname{pcf}(E) \rangle$, with each f^{λ} κ -minimally obedient for λ . Choose N and Ψ so that $H_1(A, \kappa, N, \Psi)$, with N containing $A, B, E, \langle f^{\lambda} : \lambda \in \operatorname{pcf}(E) \rangle$. Now let $\langle b_{\lambda} : \lambda \in \operatorname{pcf}(E) \cap N \rangle$ be the set of transitive generators as guaranteed by Theorem 4.30. Let $b'_{\lambda} \in N$ be such that $b'_{\lambda} \subseteq b_{\lambda}$ and $b_{\lambda} \setminus b'_{\lambda} \in J_{<\lambda}$.

Now let F be the function with domain $\{a \in A : \exists \beta \in B(a \in b_{\beta})\}$ such that for each such a, F(a) is the least $\beta \in B$ such that $a \in b_{\beta}$. Define $B_0 = \{\gamma \in B : \exists a \in \text{dmn}(F)(\gamma \leq F(a))\}$. Thus B_0 is an initial segment of B of size at most |A|. Clearly $B_0 \in N$. We let $\beta_0 = \min(B \setminus B_0)$; so $B_0 = B \cap \beta_0$.

Now we claim

(1) There exists a finite descending sequence $\lambda_0 > \cdots > \lambda_n$ of cardinals in $N \cap \operatorname{pcf}(B_0)$ such that $B_0 \subseteq b_{\lambda_0} \cup \ldots \cup b_{\lambda_n}$.

We prove more: we find a finite descending sequence $\lambda_0 > \cdots > \lambda_n$ of cardinals in $N \cap \operatorname{pcf}(B_0)$ such that $B_0 \subseteq b'_{\lambda_0} \cup \ldots \cup b'_{\lambda_n}$. Let $\lambda_0 = \operatorname{max}(\operatorname{pcf}(B_0))$. Since $B_0 \in N$, we clearly have $\lambda_0 \in N$ and hence $b'_{\lambda_0} \in N$. So $B_1 \stackrel{\text{def}}{=} B_0 \setminus b'_{\lambda_0} \in N$. Now suppose that $B_k \subseteq B_0$ has been defined so that $B_k \in N$. If $B_k = \emptyset$, the construction stops. Suppose that

 $B_k \neq \emptyset$. Let $\lambda_k = \max(\operatorname{pcf}(B_k))$. Clearly $\lambda_k \in N$, so $b'_{\lambda_k} \in N$ and $B_{\kappa+1} \stackrel{\text{def}}{=} B_k \setminus b'_{\lambda_k} \in N$. Since $B_{\kappa+1} = B_k \setminus b'_{\lambda_k}$ and b'_{λ_k} is a λ_k -generator, from Lemma 4.23(xii) it follows that $\lambda_0 > \lambda_1 > \cdots$. So the construction eventually stops; say that $B_{n+1} = \emptyset$. So $B_n \subseteq b'_{\lambda_n}$. So

$$B_{0} \subseteq b'_{\lambda_{0}} \cup (B_{0} \setminus b'_{\lambda_{0}})$$

$$= b'_{\lambda_{0}} \cup B_{1}$$

$$\subseteq b'_{\lambda_{0}} \cup b'_{\lambda_{1}} \cup B_{2}$$

$$\cdots \cdots$$

$$\subseteq b'_{\lambda_{0}} \cup b'_{\lambda_{1}} \cup \cdots \cup B_{n}$$

$$\subseteq b'_{\lambda_{0}} \cup b'_{\lambda_{1}} \cup \cdots \cup b'_{\lambda_{n}}.$$

This proves (1).

Note that $\beta_0 > \max(\operatorname{pcf}(B \cap \beta_0) = \max(\operatorname{pcf}(B_0)) = \lambda_0$ by the initial assumption of the proof. Next, we claim

$$(2) b_{\beta_0} \cap A \subseteq b_{\lambda_0} \cup \ldots \cup b_{\lambda_n}.$$

Consider any cardinal $a \in b_{\beta_0} \cap A$. Since $\beta_0 \in B$, we have $a \in \text{dmn}(F)$, and since $\beta_0 \notin B_0$ we have $F(a) < \beta_0$. Let $\beta = F(a)$. So $a \in b_{\beta}$, and $\beta < \beta_0$, so by the minimality of β_0 , $\beta \in B_0$. Since $B_0 \subseteq b_{\lambda_0} \cup \ldots \cup b_{\lambda_n}$, it follows that $\beta \in b_{\lambda_i}$ for some $i = 0, \ldots, n$. But transitivity implies that $b_{\beta} \subseteq b_{\lambda_i}$, and hence $a \in b_{\lambda_i}$, as desired. So (2) holds.

Using Lemma 2.27(ii),(iii), by (2) we have

(3)
$$\operatorname{pcf}(b_{\beta_0}) \subseteq \operatorname{pcf}(b_{\lambda_0}) \cup \ldots \cup \operatorname{pcf}(b_{\lambda_n}).$$

Now $\beta_0 \notin \operatorname{pcf}(A \setminus b_{\beta_0})$ by Lemma 4.23(ii), but $\beta_0 \in B \subseteq \operatorname{pcf}(A)$, so $\beta_0 \in \operatorname{pcf}(b_{\beta_0} \cap A)$. Hence $\beta_0 \in \operatorname{pcf}(b_{\lambda_i})$ for some $i \leq n$, so $\beta_0 \leq \lambda_i$ by Lemma 4.23(vii). This contradicts what was stated before (2) above.

Theorem 4.32. (Localization) Suppose that A is a progressive set of regular cardinals. Suppose that $B \subseteq pcf(A)$ is also progressive. Then for every $\lambda \in pcf(B)$ there is a $B_0 \subseteq B$ such that $|B_0| \leq |A|$ and $\lambda \in pcf(B_0)$.

Proof. We prove by induction on λ that if A and B satisfy the hypotheses of the theorem, then the conclusion holds. Let C be a λ -generator over B. Thus $C \subseteq B$ and $\lambda = \max(\operatorname{pcf}(C))$ by Lemma 4.23(vii). Now $C \subseteq \operatorname{pcf}(A)$ and C is progressive. It suffices to find $B_0 \subseteq C$ with $|B_0| \leq |A|$ and $\lambda \in \operatorname{pcf}(B_0)$.

Let $C_0 = C$ and $\lambda_0 = \lambda$. Suppose that $C_0 \supseteq \cdots \supseteq C_i$ and $\lambda_0 > \cdots > \lambda_i$ have been constructed so that $\lambda = \max(\operatorname{pcf}(C_i))$ and C_i is a λ -generator over B. If there is no maximal element of $\lambda \cap \operatorname{pcf}(C_i)$ we stop the construction. Otherwise, let λ_{i+1} be that maximum element, let D_{i+1} be a λ_{i+1} -generator over B, and let $C_{i+1} = C_i \setminus D_{i+1}$. Now $D_{i+1} \in J_{\leq \lambda_{i+1}}[B] \subseteq J_{<\lambda}[B]$, so C_{i+1} is still a λ -generator of B by Lemma 4.23(ix), and $\lambda = \max(\operatorname{pcf}(C_{i+1}))$ by Lemma 4.23(vii). Note that $\lambda_{i+1} \notin \operatorname{pcf}(C_{i+1})$, by Lemma 4.23(ii).

This construction must eventually stop, when $\lambda \cap C_i$ does not have a maximal element; we fix the index i.

(1) There is an $E \subseteq \lambda \cap \operatorname{pcf}(C_i)$ such that $|E| \leq |A|$ and $\lambda \in \operatorname{pcf}(E)$.

In fact, suppose that no such E exists. We now construct a strictly increasing sequence $\langle \gamma_j : j < |A|^+ \rangle$ of elements of $\lambda \cap \operatorname{pcf}(C_i)$ such that $\gamma_k > \operatorname{max}(\operatorname{pcf}(\{\gamma_j : j < k\}))$ for all $k < |A|^+$. (This contradicts Theorem 4.31.) Suppose that $\{\gamma_j : j < k\} = E$ has been defined. Now $\lambda \notin \operatorname{pcf}(E)$ by the supposition after (1), and $\lambda < \operatorname{max}(\operatorname{pcf}(E))$ is impossible since $\operatorname{pcf}(E) \subseteq \operatorname{pcf}(C_i)$ and $\lambda = \operatorname{max}(\operatorname{pcf}(C_i))$. So $\lambda > \operatorname{max}(\operatorname{pcf}(E))$. Hence, because $\lambda \cap C_i$ does not have a maximal element, we can choose $\gamma_k \in \lambda \cap C_i$ such that $\gamma_k > \operatorname{max}(\operatorname{pcf}(E))$, as desired. Hence (1) holds.

We take E as in (1). Apply the inductive hypothesis to each $\gamma \in E$ and to A, E in place of A, B; we get a set $G_{\gamma} \subseteq E$ such that $|G_{\gamma}| \leq |A|$ and $\gamma \in \operatorname{pcf}(G_{\gamma})$. Let $H = \bigcup_{\gamma \in E} G_{\gamma}$. Note that $|H| \leq |A|$. Thus $E \subseteq \operatorname{pcf}(H)$. Since $\operatorname{pcf}(E) \subseteq \operatorname{pcf}(H)$ by Theorem 4.13, we have $\lambda \in \operatorname{pcf}(H)$, completing the inductive proof.

The size of pcf(A)

Theorem 4.33. If A is a progressive interval of regular cardinals, then $|pcf(A)| < |A|^{+4}$.

Proof. Assume that A is a progressive interval of regular cardinals but $|pcf(A)| \ge |A|^{+4}$. Let $\rho = |A|$. We will define a set B of size ρ^+ consisting of cardinals in pcf(A) such that each cardinal in B is greater than $max(pcf(B \cap b))$. This will contradict Theorem 4.31.

Let $S = S_{\rho^+}^{\rho^{+3}}$; so S is a stationary subset of ρ^{+3} . By Theorem 1.3, let $\langle C_k : k \in S \rangle$ be a club guessing sequence. Thus

- (1) C_k is a club in k of order type ρ^+ , for each $k \in S$.
- (2) If D is a club in ρ^{+3} , then there is a $k \in D \cap S$ such that $C_k \subseteq D$.

Let σ be the ordinal such that $\aleph_{\sigma} = \min(A)$, and let $\max(\operatorname{pcf}(A)) = \aleph_{\gamma}$. Choose δ such that $\sigma + \delta = \gamma$. So $|A|^{+4} \leq |\operatorname{pcf}(A)| \leq \delta$. Now $\operatorname{pcf}(A)$ is an interval of regular cardinals by Theorem 4.12. So $\operatorname{pcf}(A)$ contains all regular cardinals in the set $\{\aleph_{\sigma+\alpha} : \alpha < \rho^{+4}\}$.

Now we are going to define a strictly increasing continuous sequence $\langle \alpha_i : i < \rho^{+3} \rangle$ of ordinals less than ρ^{+4} .

- 1. Let $\alpha_0 = \rho^{+3}$.
- 2. For *i* limit let $\alpha_i = \bigcup_{j < i} \alpha_j$.
- 3. Now suppose that α_j has been defined for all $j \leq i$; we define α_{i+1} . For each $k \in S$ let $e_k = \{\aleph_{\sigma + \alpha_j + 1} : j \in C_k \cap (i+1)\}$. Thus e_k is a subset of $\operatorname{pcf}(A)$. If $\operatorname{max}(\operatorname{pcf}(e_k)) < \aleph_{\sigma + \rho^{+4}}$, let β_k be an ordinal such that $\operatorname{max}(\operatorname{pcf}(e_k)) < \aleph_{\sigma + \beta_k}$ and $\beta_k < \rho^{+4}$; otherwise let $\beta_k = 0$. Let α_{i+1} be greater than α_i and all β_k for $k \in S$, with $\alpha_{i+1} < \rho^{+4}$. This is possible because $|S| = \rho^{+3}$. Thus
- (3) For every $k \in S$, if $\max(\operatorname{pcf}(e_k)) < \aleph_{\sigma+\rho^{+4}}$, then $\max(\operatorname{pcf}(e_k)) < \aleph_{\sigma+\alpha_{i+1}}$.

This finishes the definition of the sequence $\langle \alpha_i : i < \rho^{+3} \rangle$. Let $D = \{\alpha_i : i < \rho^{+3}\}$, and let $\delta = \sup(D)$. Then D is club in δ . Let $\mu = \aleph_{\sigma+\delta}$. Thus μ has cofinality ρ^{+3} , and it is singular since $\delta > \alpha_0 = \rho^{+3}$. Now we apply Corollary 4.32: there is a club C_0 in μ such that $\mu^+ = \max(\operatorname{pcf}(C_0^{(+)}))$. We may assume that $C_0 \subseteq [\aleph_{\sigma}, \mu)$. so we can write

 $C_0 = \{\aleph_{\sigma+i} : i \in D_0\}$ for some club D_0 in δ . Let $D_1 = D_0 \cap D$. So D_1 is a club of δ . Let $E = \{i \in \rho^{+3} : \alpha_i \in D_1\}$. It is clear that E is a club in ρ^{+3} . So by (2) choose $k \in E \cap S$ such that $C_k \subseteq E$. Let $C'_k = \{\beta \in C_k : \text{there is a largest } \gamma \in C_k \text{ such that } \gamma < \beta\}$. Set $B = \{\aleph_{\sigma+\alpha_i}^+ : i \in C'_k\}$. We claim that B is as desired. Clearly $|B| = \rho^+$.

Take any $j \in C'_k$. We want to show that

$$(*) \aleph_{\sigma+\alpha_j}^+ > \max(\operatorname{pcf}(B \cap \aleph_{\sigma+\alpha_j}^+)).$$

Let $i \in C_k$ be largest such that i < j. So $i + 1 \le j$. We consider the definition given above of α_{i+1} . We defined $e_k = \{\aleph_{\sigma + \alpha_l + 1} : l \in C_k \cap (i+1)\}$. Now

$$(4) B \cap \aleph_{\sigma + \alpha_j}^+ \subseteq e_k.$$

For, if $b \in B \cap \aleph_{\sigma + \alpha_j}^+$, we can write $b = \aleph_{\sigma + \alpha_l}^+$ with $l \in C_k'$ and l < j. Hence $l \le i$ and so $b = \aleph_{\sigma + \alpha_l}^+ \in e_k$. So (4) holds.

Now if $l \in C_k \cap (i+1)$, then $l \in E$, and so $\alpha_l \in D_1 \subseteq D_0$. Hence $\aleph_{\sigma+\alpha_l} \in C_0$. This shows that $e_k \subseteq C_0$. So $\max(\operatorname{pcf}(e_k)) \leq \max(\operatorname{pcf}(C_0)) = \mu^+ < \aleph_{\sigma+\rho^{+4}}$. Hence by (3) we get $\max(\operatorname{pcf}(e_k)) < \aleph_{\sigma+\alpha_{i+1}}$. So

$$\max(\operatorname{pcf}(B \cap \aleph_{\sigma+\alpha_{j}}^{+})) \leq \max(\operatorname{pcf}(e_{k})) \quad \text{by (4)}$$
$$< \aleph_{\sigma+\alpha_{i+1}}^{+}$$
$$\leq \aleph_{\sigma+\alpha_{i}}^{+},$$

which proves (*).

Theorem 4.34. If \aleph_{δ} is a singular cardinal such that $\delta < \aleph_{\delta}$, then

$$\mathrm{cf}([\aleph_\delta]^{|\delta|},\subseteq)<\aleph_{|\delta|^{+4}}.$$

Proof. Let $\kappa = |\delta|^+$ and $A = (\kappa, \aleph_{\delta})_{reg}$. By Lemma 2.30(iii) and Lemma 4.24,

$$cf([\aleph_{\delta}]^{|\delta|}, \subseteq) \leq \max(|\delta|^{+}, cf([\aleph_{\delta}]^{|\delta|^{+}}, \subseteq))$$

$$\leq \max(|\delta|^{+}, \max(pcf(A))).$$

Hence it suffices to show that $\max(\operatorname{pcf}(A)) < \aleph_{|\delta|^{+4}}$.

By Theorem 4.33, $|\operatorname{pcf}(A)| < |A|^{+4}$. Write $\max(\operatorname{pcf}(A)) = \aleph_{\alpha}$ and $\kappa = \aleph_{\beta}$. We want to show that $\alpha < |\delta|^{+4}$. Now $\operatorname{pcf}(A) = (\kappa, \max(\operatorname{pcf}(A))]_{\operatorname{reg}} = (\aleph_{\beta}, \aleph_{\alpha}]_{\operatorname{reg}}$. By Lemma 1.2, $|(\beta, \alpha)| = |\operatorname{pcf}(A)| < |A|^{+4} \le |\delta|^{+4}$. Also, $\beta \le \aleph_{\beta} = \kappa = |\delta|^{+} < |\delta|^{+4}$. So $|\alpha| < |\delta|^{+4}$, and hence $\alpha < |\delta|^{+4}$.

Theorem 4.35. If δ is a limit ordinal, then

$$\aleph_{\delta}^{\mathrm{cf}(\delta)} < \max\left(\left(|\delta|^{\mathrm{cf}(\delta)}\right)^{+}, \aleph_{|\delta|^{+4}}\right).$$

Proof. If $\delta = \aleph_{\delta}$, then $|\delta| = \aleph_{\delta}$ and the conclusion is obvious. So assume that $\delta < \aleph_{\delta}$. Now

$$(1)\ \aleph_{\delta}^{\mathrm{cf}(\delta)} \leq |\delta|^{\mathrm{cf}(\delta)} \cdot \mathrm{cf}([\aleph_{\delta}]^{|\delta|}, \subseteq).$$

In fact, let $B \subseteq [\aleph_{\delta}]^{|\delta|}$ be cofinal and of size $\operatorname{cf}([\aleph_{\delta}]^{|\delta|}, \subseteq)$. Now $\operatorname{cf}(\delta) \leq |\delta|$, so

$$[\aleph_{\delta}]^{\mathrm{cf}(\delta)} = \bigcup_{Y \in B} [Y]^{\mathrm{cf}(\delta)},$$

and (1) follows. Hence the theorem follows by Theorem 4.34. \Box

Corollary 4.36. $\aleph_{\omega}^{\aleph_0} < \max \left((2^{\aleph_0})^+, \aleph_{\omega_4} \right)$.