DTU

Data matrix

- n by p data matrix or design matrix $X = \begin{bmatrix} x_1^T \\ x_2^T \\ \vdots \\ x_n^T \end{bmatrix}$
- ullet Each row consists of a vector of measurements x_i^T from p variables for a particular observation; X is often column centered

National Space Institute

PCA

• R-mode or primal analysis: decompose p by p variance-covariance matrix $S = X^T X/(n-1) = 1/(n-1) \sum_{i=1}^n x_i x_i^T$

$$\frac{1}{n-1}X^TXu_i = \lambda_i u_i$$

- ullet Projections or scores are x^Tu_i
- Variance of scores maximized

ational Space Institute $u_i^T S u_i = \lambda_i u_i^T u_i = \lambda_i$

PCA

• Q-mode or dual analysis: decompose n by n (Gram) matrix $XX^T/(n-1)$ multiply from left with X , $\ v_i \propto Xu_i$

$$\frac{1}{n-1}XX^{T}(Xu_{i}) = \lambda_{i}(Xu_{i})$$

$$\frac{1}{n-1}XX^{T}v_{i} = \lambda_{i}v_{i}$$

National Space Institute

PCA

 Primal and dual problems have same eigenvalues, eigenvectors related by

$$u_i = X^T v_i / \sqrt{(n-1)\lambda_i}$$
$$v_i = X u_i / \sqrt{(n-1)\lambda_i}$$

National Space Institute

Gram matrix

• Consists of inner products only

$$XX^{T} = \begin{bmatrix} x_{1}^{T}x_{1} & x_{1}^{T}x_{2} & \cdots & x_{1}^{T}x_{n} \\ x_{2}^{T}x_{1} & x_{2}^{T}x_{2} & \cdots & x_{2}^{T}x_{n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n}^{T}x_{1} & x_{n}^{T}x_{2} & \cdots & x_{n}^{T}x_{n} \end{bmatrix}$$

National Space Institute

SVD

X is n by p cc data matrix $X = UDV^T$

D is n by p diagonal with nonnegative, non-increasing singular values

U is n by n unitary V is p by p unitary

National Space Institute

SVD

X is n by p cc data matrix $X = UDV^T$ D is n by p diagonal with nonnegative, non-increasing singular values U is n by n unitary V is p by p unitary

SVD 'economy size'

X is n by p data matrix, n > p $X = UDV^T$ D is p by p diagonal with nonnegative, non-increasing singular values U is n by p unitary V is p by p unitary

SVD/PCA/EOF

 $S = X^{T}X/(n-1)$ $Sp_{i} = \lambda_{i}p_{i}$ $SP = P\Lambda$ $S = P\Lambda P^{T}$

 $X^{T}X = (UDV^{T})^{T}UDV^{T}$ $= VDU^{T}UDV^{T}$ National Space Institute = $VD^{2}V^{T}$ (= $VD(VD)^{T}$)

SVD/PCA/EOF

P = V $D^2 = (n-1)\Lambda$

Principal component scores

 $XP = UDV^TV$ = UD

National Space Institute

ational Space Institute