

<u>Help</u>

sandipan_dey ~

Course

Progress

<u>Dates</u>

Discussion

MO Index

☆ Course / 8 Initial Value Problems, Python Classes, a... / 8.2 Models of time-dependent...

Previous

Next >

Discussions

All posts sorted by recent activity

Tiny formatting feedback No preview available m_powers

心☆

□ Bookmark this page

MO2.4

The mathematical models used to describe timedependent phenomena in Nature and social systems are frequently **differential equations**, i.e., relationships between functions *and their derivatives*.

8.2.1 Models of time-dependent phenomena

Where do models involving derivatives come from? The most important example is perhaps $\vec{F}=m\vec{a}$, Newton's second law, that we have already encountered. Here the basic quantity is the position $\vec{x}\left(t\right)$ of a particle or an object as a function of time t. In general, $\vec{x}\left(t\right)=\left(x_1\left(t\right),x_2\left(t\right),x_3\left(t\right)\right)$ is a vector in 3 dimensions for each time t, but there are also cases where we only consider two, or one component of $\vec{x}\left(t\right)$ at a time (and we might still denote those by $x\left(t\right)$ when convenient). Then the velocity vector $\vec{v}\left(t\right)$ is the time derivative of $\vec{x}\left(t\right)$, and the acceleration vector $\vec{a}\left(t\right)$ is the time derivative of $\vec{v}\left(t\right)$:

$$\vec{v}(t) = \frac{\mathrm{d}\vec{x}}{\mathrm{d}t}(t), \qquad \vec{a}(t) = \frac{\mathrm{d}\vec{v}}{\mathrm{d}t}(t) = \frac{\mathrm{d}^2\vec{x}}{\mathrm{d}t^2}(t).$$

The force vector \vec{F} acting on the object at \vec{x} (t) is either given as a function of time, or is itself a function of \vec{x} and/or \vec{v} . Either way, "F=ma" becomes a differential equation.

More generally, mathematical models involving derivatives range from trustworthy elegant theories (like Newton's laws of gravity: or Fuler's equation of fluid

Previous

Next >

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

Blog

Contact Us

Help Center

<u>Security</u>

Media Kit

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>