

STU	JDENT	ID NO	

MULTIMEDIA UNIVERSITY SUPPLEMENTARY EXAMINATION

TRIMESTER 1, 2015/2016

EEL1166 – CIRCUIT THEORY

(All sections / Groups)

17 NOV 2015 9.00 AM – 11.00 AM (2 HOURS)

INSTRUCTIONS TO STUDENTS

- 1. This Question paper consists of 6 pages with 4 Questions only.
- 2. Attempt ALL questions. All questions carry equal marks and the distribution of the marks for each question is given.
- 3. Please write all your answers in the Answer Booklet provided.

(a) Using the Superposition Principle, determine the voltage, v_0 in the circuit given in Figure Q1(a).

[11 marks]

(b) Using Norton's Theorem, determine the voltage, V_0 in the circuit given in Figure Q1(b). [14 marks]

(a) Define 'Periodic' and 'Aperiodic' signals. Give an example for each.

[3 marks]

(b) For the waveform shown in Figure Q2(b),

(i) calculate the fundamental cyclic frequency, and

[1 mark]

(ii) find the average value of the waveform.

[5 marks]

(c) Use the node-voltage method to find the branch currents i_1 , i_2 and i_3 in the circuit of Figure Q2(c). Show that the power developed in the circuit is equal to the power dissipated.

[16 marks]

- (a) A linear bilateral circuit is shown in Figure Q3(a). Determine the following:
 - (i) total impedance, Z_T , and
 - (ii) total current, I.

[5 marks]

[2 marks]

Figure Q3(a)

- (b) The parallel RLC circuit is shown in Figure Q3(b). Determine the following:
 - (i) total admittance of the circuit and express the result in polar as well as in rectangular form and also draw admittance diagram,
 - (ii) total impedance of the circuit in polar form, and

[4 marks]

(iii) total rms current of the circuit.

[2 marks]

[2 marks]

[10 marks]

Figure Q3(b)

(c) A series sinusoidal Steady state *RLC* circuit is shown in Figure Q3(c). Given values are $R = 20 \Omega$, L = 5 mH and C = 3 pF. Determine bandwidth, BW.

Figure Q3(c)

(a) Determine the capacitor voltage v(t) for t > 0 in the circuit of Figure Q4(a). Assume that the switch was open for a long time.

[9 marks]

Figure Q4(a)

(b) The switch in the circuit of Figure Q4(b) has been at position a for a long time. At t = 0, it moves to position b. Find v(t) for t > 0 in the circuit of Figure Q4(b).

[16 marks]

End of paper