Dcard Machine Learning Homework Report Mao-Siang Chen

1. Introduction

In this homework, I predict the like count 24 hours after the post is created on Dcard. There are 17 features, including title, like count 1~6 hours, comment counts 1~6 hours, forum id, forum stats, author id, and created time.

2. Methods

 Easy Data Analysis
 First, I do EDA on the training dataset to find out the correlation between the other features and the target one. This is the correlation matrix using seaborn.

As observed, the like counts of 1 to 6 hours are more correlated with the like count in 24 hours. The count of comments, forum id, author id, forum statistics, etc. do not have a direct correlation with the target feature.

Feature Engineering

Then, I analyze the distribution of the target feature, as the graph below shows, most of the like counts are very low. However, some posts are having a relatively large number of likes, therefore, the Skewness and Kurtosis of the data are high. To fix this problem, I perform log transform on all these like count features. After the log transform, the correlation increases, and the MAPE decreases sharply, from 24% to 14%.

Figure 1: like count 6h after log transform

After that, I remove the outliers by removing those rows with like counts increasing sharply between the one after 6 hours and the one after 24 hours. Removing these outliers reduces the MAPE by around 1%.

Figure 2: Before and After removing outliers

To further improve the results, I train an RNN model with the first 6 hours as training data and predict the like count after 24 hours. Then, I add the hidden layer output from the RNN model as new features for later regression.

Model Selection

Since the target is a regression problem, I have tried some of the well-known regression models, such as XGBoost and Gradient Boosting. They all have better performance and robustness than a simple linear regression. After that, I choose XGBoost since it achieves the best results.

	XGBoost	Gradient Boosting	Linear Regression
MAPE	13.1%	13.7%	14.04%

• Hyperparameter Tuning

To find out the best hyperparameters for these regression models, I use the GridSearchCV from the scikit-learn package. I have tried tuning the number of estimators, learning rate, max depth, and subsample proportion.

The best hyperparameters I have found are 300 for estimators and 0.01 for learning rate and 5 for max depth and 0.7 for subsample rate.

3. Results

• The target metric is Mean Absolute Percentage Error, and in this work, I achieve a 13.1% of MAPE.

4. Future Expectations

- Use NLP with Google Trends to improve feature engineering
- Explore further regression-related skills
- Enhance RNN performance

5. Reference

- Comprehensive data exploration with Python https://www.kaggle.com/code/pmarcelino/comprehensive-data-explorationwith-python/notebook#1.-So...-What-can-we-expect?
- My GitHub Link: https://github.com/Mao-Siang/Dcard Intern Homework