Handout 12: 2.10 Composition

- 1. An automobile manufacturer pays its sales representatives an annual salary plus a bonus of 3% of their sales over \$500,000. Consider the two functions f(x) = x - 500,000 and g(x) = 0.03x. If $x \ge 0.03x$ 500,000, which of the following represents the bonus for a sales representative?
- a. f(g(x))
- b. g(f(x))
- 2. Given $f(x) = x^2$ and g(x) = 3x + 2
- a. For what value(s) of x does f(g(x)) attain a minimum value?
- b. What is the minimum value of f(g(x))?
- c. For what value(s) of x does g(f(x)) attain a minimum value?
- d. What is the minimum value of g(f(x))?
- 3. Write and simplify an expression for f(g(x)) and state the domain of the composition.

- a. $f(x) = x^2 + 3$ $g(x) = \sqrt{2x 6}$ b. f(x) = 3x + 4 $g(x) = \frac{1}{3}(x 4)$ c. $f(x) = \frac{1}{x^2}$ $g(x) = \sqrt{5 x}$ d. $f(x) = \frac{2}{x 3}$ $g(x) = \frac{1}{x}$
- 4. Let $f(x) = x^2$, g(x) = 3x and $h(x) = \sqrt{x} + 1$. Express each function as a composite of f, g, and/or h.

a.
$$p(x) = 9x^2$$

b.
$$q(x) = 3x^2$$

c.
$$r(x) = |x| + 1$$

3

4

4

2

d.
$$a(x) = 3\sqrt{x} + 3$$

g. $j(x) = x^4$

b.
$$q(x) = 3x^2$$

e. $b(x) = x + 2\sqrt{x} + 1$
h. $k(x) = \sqrt{\sqrt{x} + 1} + 1$

$$f. \ c(x) = 9x$$

3

5. In the following chart, f(x) has domain $\{x \mid -3 \le x \le 3, x \text{ is an integer}\}$. Fill in the remainder of the chart as completely as possible, crossing out any box that is not defined

0

1

0

the chart as completely		dis possible, crossing out any box that is not defined.					
х	-3	-2	-1	0	1	2	3
f(x)	7	-1	3	2	0	-5	-6
3 <i>f</i> (<i>x</i>)							
f(x-2)							
f(2x)							
f(f(x))							

n

p(n)

q(n)

6. The functions p(n) and q(n) are defined below.

Find the following:

- a. p(q(2))
- b. q(p(2))
- c. p(p(2))
- d. q(q(2))
- e. Solve q(p(n)) = 2
- f. Solve p(q(n)) = 2

7. Given the graphs of k(x) and j(x). Find the following:

b.
$$j(k(2))$$

c.
$$k(k(2))$$

d.
$$j(j(2))$$

$$j(k(x)) = 1$$

- 8. The number of bacteria in a food that has been refrigerated, but is now left on the counter to warm, is given by $N(T) = 20T^2 80T + 50$, $2 \le T \le 14$, where T is the Celsius temperature of the food. When the food is removed from refrigeration, the temperature is given by T(x) = 4x + 2, $0 \le x \le 3$, where x is the time in hours.
- a. What does the composite function N(T(x)) represent? State in words and include units.
- b. According to this model, what is the temperature of the food when it is removed from the refrigerator?
- c. Find the number of bacteria in the food if it has been out of the refrigerator for 2 hours.
- d. When will the bacteria count reach 2000?

9. Complete the tables given that h(x) = g(f(x)).

х	f(x)
-1	6
0	
1	8
2	
3	7
4	9

0 () () /	
x	g(x)
5	
6	4
7	1
8	3
9	2
10	0
7 8 9	

x	h(x)
-1	4
0	-1
1	3
2	0
3	
4	