BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI INSTRUCTION DIVISION INSTRUCTION DIVISION FIRST SEMESTER 2015-2016

Course Handout Part II

Date: 03/08/2015

In addition to part -I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : ME F312

Course Title : Advanced Mechanics of Solids Instructor-in-charge : Prof. M. S. DASGUPTA

Tutorial Instructors: Dr. Arun Jalan

- **1. Course Description:** The course starts with generalized Hooke's law and three dimensional stress strain relations putting emphasis on Materials-Mechanics linkage to elucidate mechanical properties of materials. It also includes Energy methods; Torsion of non-circular members; Shear center and Asymmetrical bending of beams; Curved beams; Thick cylinders; Plates and shells; Contact stress.
- 2. **Scope and Objective of the Course:** The course deals with in-depth analysis of some advanced topics in Mechanics of Solids, necessary for Mechanical Engineering students, beyond what is covered in the common course Mechanics of Solids.

3. Text books:

T1: "Advanced Mechanics of Materials" - Arthur P., Boresi and R.J. Schinid, John Wiley, 6th Edition.

Reference books:

- R1: "Advanced Mechanics & Solids" L.S. Srinath, Tata Mc.Graw-Hill Publishing Co. 2nd Edition, 2003
- R2: "Advanced Mechanics of Solids" Otto T. Bruhns, Springer Verlag, 2003
- R3: "Advanced Mechanics of Materials" R. Davis Cook and Warren C. Young, Prentice Hall 2nd Edition, 1998.

4. Lecture Plan:

Lect. No.	Learning Objectives	Topics to be Coursed	Chap/Sec.
			(Book)
1	Review of elementary Mechanics	Introduction & review of	CH1 (TB1)
	of Materials and methods of	elementary mechanics of solids,	
	analysis, failure analysis &	methods of analysis, failures in	
	properties of material	design	
2-6	Energy methods and applications	Principle of stationary potential	CH5 (TB1)
		energy, Castigliano's theorem,	
		Deflections in statically	
		determinate structures and	
		statically indeterminate	

7-12	Theories of stress and strain	structures, applications to curved beam treated as straight beams. Stress at a point, stress on an arbitrarily oriented plane, transformation of stress, principal stresses, differential equations of motion of a	CH2 (TB1)	
12-16	Linear stress strain temperature relations.	deformable body, deformation, strain theory, small displacement theory Generalized Hooke's Law, anisotropic and isotropic elasticity, thermoelasticity for isotropic materials, Hook's law for orthotropic material	CH3 (TB1)	
17-22	Torsion of non-circular member	Torsion of prismatic bar, Saint Venant's Semi-inverse method, linear elastic solutions, Prandtle elastic membrane analogy torsion of rectangular cross section	CH 6.1-6.6 (TB1)	
23-25	Asymmetrical bending	Non-symmetrical loading bending and deflection of straight beams.	CH7.1- 7.3(TB1)	
26-28	Shear Center for thin walled beam cross sections	Shear flow in thin-walled beam cross sections, Shear Center for channel section	CH 8.1-8.3 (TB1)	
29-31	Curved beams	Location of neutral axis, radial stress, correction of circumferential stress and deflections of curved beams. Curved beams of standard sections: I & T. Analysis of statically indeterminate curved beams (closed ring).	CH9.1-9.6 (TB1)	
32-33	Thick walled cylinders	Stress – Stain – Temperature relation for thick walled cylinders and composite cylinders. Analysis of open and closed cylinders	thick walled (TB1)	
34-37	Flat Plates	Stress resultants in a flat plate, kinematics, equilibrium equations, stress strain temperature relations, strain energy of a plate, boundary	CH 13 (TB1)	

		conditions, solution of rectangular and circular plate problems	
38-40	Contact stress	Geometry of contact surface, methods of computing contact stress, deflection of bodies in point contact and line contact with normal load.	

Evaluation Scheme:

EC No	Evaluation Component	Duration	Weightage	Date, time & Venue	Nature of
		(min.)			component
1	Surprise tests	-	10		СВ
2	Mid-semester Test	90	25	5/10 8:00 - 9:30 AM	OB
3	*Tutorials	50	15	Tutorial hour as announced in Timetable, OB	
4	Comprehensive Exam	180	50	1/12 FN	CB & OB

^{*} Tutorials will be utilized for numerical problem solving and computer assisted problem solving under guidance of tutorial instructor and the same will be evaluated. Best **four** performances out of evaluated ones for each student will be counted for aggregate marks.

Chamber Consultation Hour: To be announced in the class.

Notices: If any, will be displayed in Mechanical Engineering notice board only.

Make-up policy: No makeup is allowed for Tutorials / Surprise test.

Instructor-in-charge ME 392