

GaAlAs Plastic Infrared Emitting Diodes

Types OP266A, OP266B, OP266C, OP266D

Features

- Narrow irradiance pattern
- Mechanically and spectrally matched to the OP506 series devices
- Significantly higher power output than GaAs at equivalent drive currents
- Wavelength matched to silicon's peak response
- T-1 package style

Description

The OP266 device is an 890nm high intensity gallium aluminum arsenide infrared emitting diode molded in an IR transmissive amber tinted epoxy package. The narrow irradiance pattern provides high on-axis intensity for excellent coupling efficiency. Lead spacing on this device is .100 inch (2.54mm).

Replaces

OP261

Absolute Maximum Ratings ($T_A = 25^\circ\text{C}$ unless otherwise noted)

Reverse Voltage	2.0 V
Continuous Forward Current	50 mA
Peak Forward Current (1 μs pulse width, 300 pps)	3.0 A
Storage and Operating Temperature Range	-40° C to +100° C
Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 sec. with soldering iron]	260° C ⁽¹⁾
Power Dissipation	100 mW ⁽²⁾

Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. A max. of 20 grams force may be applied to the leads when soldering.
- (2) Derate linearly 1.33 mW/ $^\circ\text{C}$ above 25° C.
- (3) $E_e(\text{APT})$ is a measurement of the average apertured radiant incidence upon a sensing area 0.081" (2.06 mm) in diameter, perpendicular to and centered on the mechanical axis of the lens, and 0.590" (14.99 mm) from the measurement surface. $E_e(\text{APT})$ is not necessarily uniform within the measured area.

Typical Performance Curves

Percent Changes in Radiant Intensity vs Time

Coupling Characteristics of OP266 and OP506

Types OP266A, OP266B, OP266C, OP266D

Electrical Characteristics ($T_A = 25^\circ C$ unless otherwise noted)

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
$E_e(APT)$	Apertured Radiant Incidence	OP266D OP266C OP266B OP266A	0.54 0.54 1.65 2.70		3.30 4.70	mW/cm^2 mW/cm^2 mW/cm^2 mW/cm^2	$I_F = 20 mA^{(3)}$ $I_F = 20 mA^{(3)}$ $I_F = 20 mA^{(3)}$ $I_F = 20 mA^{(3)}$
V_F	Forward Voltage				1.80	V	$I_F = 20 mA$
I_R	Reverse Current				100	μA	$V_R = 2 V$
λ_p	Wavelength at Peak Emission			890		nm	$I_F = 10 mA$
B	Spectral Bandwidth Between Half Power Points			80		nm	$I_F = 10 mA$
$\Delta\lambda_p/\Delta T$	Spectral Shift with Temperature			+0.18		$nm/^\circ C$	$I_F = \text{Constant}$
θ_{HP}	Emission Angle at Half Power Points			18		Deg.	$I_F = 20 mA$
t_r	Output Rise Time			500		ns	$I_F(PK) = 100 mA$, PW = 10 μs , D.C. = 10%
t_f	Output Fall Time			250		ns	

INFRARED
EMITTING
DIODES

Typical Performance Curves

Forward Voltage vs
Forward Current

Forward Voltage and Radiant Incidence
vs Forward Current

Forward Voltage vs
Ambient Temperature

Rise Time and Fall Time vs
Forward Current

Relative Radiant Intensity and Wavelength
at Peak Emission vs Ambient Temperature

Relative Radiant Intensity vs
Angular Displacement

Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Optek Technology, Inc.

1215 W. Crosby Road

Carrollton, Texas 75006

(972)323-2200

Fax (972)323-2396