Decision Tree based Learning

Example

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Decision tree representation (PlayTennis)

⟨Outlook=Sunny, Temp=Hot, Humidity=High, Wind=Strong⟩ No

Decision trees expressivity

 Decision trees represent a disjunction of conjunctions on constraints on the value of attributes:

Top-down induction of Decision Trees

- ID3 (Quinlan, 1986) is a basic algorithm used to create DT's
- Given a training set of examples, the algorithms for building DT performs search in the space of decision trees.
- The construction of the tree is top-down. The algorithm is greedy.
- The fundamental question is "which attribute should be tested next? Which attribute gives us more information?"
- Select the best attribute
- A descendent node is then created for each possible value of this attribute and data set is partitioned according to this value.
- The process is repeated for each successor node until all the examples are classified correctly or there are no attributes left

Which attribute is the best classifier?

- A statistical property called information gain, measures how well a given attribute separates the training examples
- Information gain uses the notion of entropy, commonly used in information theory
- Information gain = expected reduction of entropy

suddenly is suddenly in suddenly is suddenly in suddenly in many countries saw whole everything back little every some round heard moments fell toward baris saw officer rights door words

Entropy in binary classification

- Entropy measures the impurity of a collection of examples. It depends from the distribution of the random variable p.
 - ullet S is a collection of training examples
 - ullet p_{ullet} the proportion of positive examples in S
 - ullet p_- the proportion of negative examples in S

Entropy
$$(S) = -p_{+} \log_{2} p_{+} - p_{-} \log_{2} p_{-}$$
 [0 $\log_{2} 0 = 0$]
Entropy $([14+, 0-]) = -14/14 \log_{2} (14/14) - 0 \log_{2} (0) = 0$
Entropy $([9+, 5-]) = -9/14 \log_{2} (9/14) - 5/14 \log_{2} (5/14) = 0.94$
Entropy $([7+, 7-]) = -7/14 \log_{2} (7/14) - 7/14 \log_{2} (7/14) = 1/2 + 1/2 = 1$ [$\log_{2} 1/2 = -1$]

Note: the log of a number < 1 is negative, $0 \le p \le 1$, $0 \le entropy \le 1$

Entropy in general

Entropy measures the amount of information in a random variable

$$H(X) = -p_{+} \log_{2} p_{+} - p_{-} \log_{2} p_{-}$$
 $X = \{+, -\}$

for binary classification [two-valued random variable]

$$H(X) = -\sum_{i=1}^{c} p_i \log_2 p_i = \sum_{i=1}^{c} p_i \log_2 1/p_i \quad X = \{i, ..., c\}$$

for classification in c classes

Example: rolling a die with 8, equally probable, sides

$$H(X) = -\sum_{i=1}^{8} 1/8 \log_2 1/8 = -\log_2 1/8 = \log_2 8 = 3$$

Information gain as entropy reduction

- Information gain is the expected reduction in entropy caused by partitioning the examples on an attribute.
- The higher the information gain the more effective the attribute in classifying training data.
- Expected reduction in entropy knowing A

$$Gain(S, A) = Entropy(S) - \sum_{v \in Values(A)} \frac{|Sv|}{|S|}$$
 $Entropy(Sv)$

Values(A) possible values for A

Sv subset of S for which A has value v

Example: expected information gain

- Let
 - Values(Wind) = {Weak, Strong}
 - S = [9+, 5-]
 - $S_{Weak} = [6+, 2-]$
 - $S_{Strong} = [3+, 3-]$
- Information gain due to knowing Wind:

```
Gain(S, Wind) = Entropy(S) - 8/14 \ Entropy(S_{Weak}) - 6/14 \ Entropy(S_{Strong})
= 0.94 - 8/14 × 0.811 - 6/14 × 1.00
= 0.048
```

Which attribute is the best classifier?

Which attribute is the best classifier?

First step: which attribute to test at the root?

- Which attribute should be tested at the root?
 - Gain(S, Outlook) = 0.246
 - Gain(S, Humidity) = 0.151
 - Gain(S, Wind) = 0.048
 - Gain(S, Temperature) = 0.029
- Outlook provides the best prediction for the target
- Lets grow the tree:
 - add to the tree a successor for each possible value of Outlook
 - partition the training samples according to the value of Outlook

After first step

Second step

Working on Outlook=Sunny node:

$$Gain(S_{Sunny}, Humidity) = 0.970 - 3/5 \times 0.0 - 2/5 \times 0.0 = 0.970$$

 $Gain(S_{Sunny}, Wind) = 0.970 - 2/5 \times 1.0 - 3/5 \times 0.918 = 0.019$
 $Gain(S_{Sunny}, Temp.) = 0.970 - 2/5 \times 0.0 - 2/5 \times 1.0 - 1/5 \times 0.0 = 0.570$

- Humidity provides the best prediction for the target
- Lets grow the tree:
 - add to the tree a successor for each possible value of Humidity
 - partition the training samples according to the value of Humidity

Second and third steps

Thanks