

University of Dhaka

DU_Antifragile

Asif Jawad, Shakil Muhit, Yeamin Kaiser

Notebook for ICPC Dhaka Regional 2023

Updated: November 2023

Un	iversity of Dh	aka DU_Antifragile					1
Co	ntents			4.18	Maximum Independent Set	14	8.8.7 Legendre symbol
1	DD			4.19	MinCut	14	8.8.8 Jacobi symbol
1	DP 1.1 AlienTricl	ς	1	4.21	SCC	$\begin{array}{c c} 14 \\ 14 \end{array}$	8.8.9 Kronecker symbol
	1.2 CHT		$\bar{2}$	4.22	TreeHashAllRoot	$\begin{array}{c c} 15 \\ 15 \\ \end{array}$	8.8.10 Primitive roots
		mization	2	4.23	Weighted Matching	19	8.8.11 Discrete logarithm problem 24
		timization	$\frac{2}{2}$ 5	Mat	h	15	8.8.12 Postage stamps/McNuggets problem 24
		ree	$\frac{2}{2}$	5.1	<u>CRT</u>	15	8.8.13 Fermat's two-squares theorem
			$\bar{2}$		Diophantine	15	8.8.14 Bezout's Theorem
2	Data Structu	****			Discrete Log	15 15	8.9 Combinatorics
4	2.1 BIT 2D w	th Range Update and Range Query	$\frac{2}{2}$		FastFourierTransform	16	8.9.1 Biomial Coefficient 24 8.9.2 Fibonacci Numbers 24
		Tree	3	5.6	FindRoots	16	8.9.3 2nd Kaplansky's Lemma
	2.3 Block Cut 2.4 Bridge Tr	Tree	3	$\frac{5.7}{5.8}$	Floor Sum of AP Gaussian Elimination	$\begin{array}{c c} 16 \\ 16 \end{array}$	8.9.4 Balls in Bins
		Decomposition	3	5.9	Integrate Adaptive	17	8.9.5 Ballot Problem
			3	5.10	Inverse Exp Log	17	8.9.6 Coloring
	2.7 Interval C	ontainer	4		Lagrange Interpolation	17	8.9.7 Matrix Tree Theorem
	2.8 Interval C 2.9 LCA	over	$\frac{4}{4}$	5.12	Linear Recurrence	18 18	8.9.8 Erdős–Gallai theorem 24
		Γree	$\frac{1}{4}$	5.14	Miller Rabin	18	8.9.9 Selected cycle lengths 24
	2.11 MO's Algo	rithm	4	5.15	ModLog	18	8.9.10 Factorial
	2.12 Matrix Ex	po	5	5.16	ModMulLL ModSqrt	18 18	8.9.11 Cycles
	2.13 Mo On 1r 2.14 Mo With I	ee	5	5.18	NumberTheoreticTransform	18 19	8.9.12 Derangements
	2.15 Ordered S	et	5	5.19	Online Convolution	19	8.9.13 Burnside's lemma
	2.16 Persistent	Segment Tree	5		Pollard Rho	19 19	8.9.14 Partition function
	2.17 Persistent	Trie	5	5.22	Power Sum	19 19	8.9.16 Stirling (second kind)
	2.16 Segment '		5	5.23	Simplex		8.9.17 Bell number
	2.20 Sparse Ta	ble	6	5.24	Stirling	$\frac{20}{20}$	8.9.18 Eulerian numbers
	2.21 Treap		6	5.26	Sum of Totient Function	$\frac{20}{20}$	8.9.19 Bernoulli numbers
	2.22 Trie		6	5.27	Xor Basis	$\overline{21}$	8.9.20 Lucas' Theorem
9						0.1	8.9.21 Catalan numbers
	Geometry		اء	Miso		21	8.9.21 Catalan numbers 25 8.9.22 Catalan Convolution 25
	Geometry 3.1 2D 3.1.1 Cir	clė2D		Mis 6.1	Bebug	21 21 21	8.9.21 Catalan numbers 25 8.9.22 Catalan Convolution 25 8.9.23 Labeled unrooted trees 25
	Geometry 3.1 2D 3.1.1 Cir 3.1.2 Lir	cle2D		Miso 6.1 6.2 6.3	Bebug	21 21 21 21	8.9.21 Catalan numbers 25 8.9.22 Catalan Convolution 25 8.9.23 Labeled unrooted trees 25 8.10 Trivia 25
	Geometry 3.1 2D 3.1.1 Cir 3.1.2 Lir 3.1.3 Poi	cle2D		Misc 6.1 6.2 6.3 6.4	Debug LIS Misc Random	21 21 21 21 21 21	8.9.21 Catalan numbers 25 8.9.22 Catalan Convolution 25 8.9.23 Labeled unrooted trees 25 8.10 Trivia 25 8.10.1 Pythagorean (coprime) triples 25
	Geometry 3.1 2D	cle2D e2D t2D ygon2D .r2D		Misc 6.1 6.2 6.3 6.4	Bebug	21 21 21 21 21 21 21	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
,	Geometry 3.1 2D	cle2D	6 6 6 7 7 8 8 8	Misc 6.1 6.2 6.3 6.4 6.5	Debug LIS Misc Random Stress Testing	21 21	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
,	Geometry 3.1 2D	cle2D le2D nt2D ygon2D ur2D angle2D	6 6 6 6 7 7 8 8 8 9 9 9	Misc 6.1 6.2 6.3 6.4 6.5 Strin 7.1	Debug LIS Misc Random Stress Testing Aho Corasick	21 21 21	8.9.21 Catalan numbers 25 8.9.22 Catalan Convolution 25 8.9.23 Labeled unrooted trees 25 8.10 Trivia 25 8.10.1 Pythagorean (coprime) triples 25 8.10.2 Primes less than 10^6 25 8.10.3 nth root congruence 25 8.10.4 Max number of divisors ≤ n 25
,	Geometry 3.1 2D	cle2D	6 6 6 6 7 7 8 8 8 9 9 9	Misc 6.1 6.2 6.3 6.4 6.5 Strin 7.1	Debug LIS Misc Random Stress Testing Aho Corasick Hash	21 21 21	8.9.21 Catalan numbers 25 8.9.22 Catalan Convolution 25 8.9.23 Labeled unrooted trees 25 8.10 Trivia 25 8.10.1 Pythagorean (coprime) triples 25 8.10.2 Primes less than 10^6 25 8.10.3 nth root congruence 25 8.10.4 Max number of divisors ≤ n 25 8.10.5 Two Square Theorem 25
,	Geometry 3.1 2D	cle2D .te2D .te2D .te2D .tr2D .tr2D .tr2D .tr2D .tr2D .tr2D .tr2D .tr3D .tr3D	6 6 6 7 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Misc 6.1 6.2 6.3 6.4 6.5 Strin 7.1 7.2 7.3 7.4	Debug LIS LIS Misc Random Stress Testing Mase Misc Random Misc Random Misc Random Misc Random Misc Misc Misc Misc Misc Misc Misc Misc	21 21 21	8.9.21 Catalan numbers 25 8.9.22 Catalan Convolution 25 8.9.23 Labeled unrooted trees 25 8.10 Trivia 25 8.10.1 Pythagorean (coprime) triples 25 8.10.2 Primes less than 10^6 25 8.10.3 n th root congruence 25 8.10.4 Max number of divisors ≤ n 25 8.10.5 Two Square Theorem 25 8.10.6 Perfect Number 25
,	Geometry 3.1 2D	cle2D cle2D nt2D nt2D ygon2D nr2D angle2D angle2D ne3D nt3D nt3D rgon3D	6 6 6 7 7 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Misc 6.1 6.2 6.3 6.4 6.5 Strin 7.1 7.2 7.3 7.4 7.5	Debug LIS Misc Random Stress Testing Aho Corasick Hash KMP Manacher MinRotation	21 21 21	8.9.21 Catalan numbers 25 8.9.22 Catalan Convolution 25 8.9.23 Labeled unrooted trees 25 8.10 Trivia 25 8.10.1 Pythagorean (coprime) triples 25 8.10.2 Primes less than 10^6 25 8.10.3 nth root congruence 25 8.10.4 Max number of divisors ≤ n 25 8.10.5 Two Square Theorem 25 8.10.6 Perfect Number 25 8.11 Inequalities 25
	Geometry 3.1 2D	cle2D	6 6 6 7 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Misc 6.1 6.2 6.3 6.4 6.5 Strin 7.1 7.2 7.3 7.4 7.5 7.6	Debug LIS LIS Misc Random Stress Testing Mase Misc Random Misc Random Misc Random Misc Random Misc Misc Misc Misc Misc Misc Misc Misc	21 21 21 21 22 22 22 22 22 22	8.9.21 Catalan numbers 25 8.9.22 Catalan Convolution 25 8.9.23 Labeled unrooted trees 25 8.10 Trivia 25 8.10.1 Pythagorean (coprime) triples 25 8.10.2 Primes less than 10^6 25 8.10.3 n th root congruence 25 8.10.4 Max number of divisors ≤ n 25 8.10.5 Two Square Theorem 25 8.10.6 Perfect Number 25
	Geometry 3.1 2D	cle2D .te2D .te2D .tr2D	6 6 6 7 7 8 8 8 9 7 9 9 9 9 10 10 10 10 10	Misc 6.1 6.2 6.3 6.4 6.5 Strii 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8	Debug LIS Misc Random Stress Testing mgs Aho Corasick Hash KMP Manacher MinRotation Palindromic Tree Suffix Array SuffixAutomaton	21 21 21 21 22 22 22 22 22 22	8.9.21 Catalan numbers 25 8.9.22 Catalan Convolution 25 8.9.23 Labeled unrooted trees 25 8.10 Trivia 25 8.10.1 Pythagorean (coprime) triples 25 8.10.2 Primes less than 10^6 25 8.10.3 nth root congruence 25 8.10.4 Max number of divisors ≤ n 25 8.10.5 Two Square Theorem 25 8.10.6 Perfect Number 25 8.11 Inequalities 25 8.11.1 Titu's Lemma 25
	Geometry 3.1 2D	cle2D nt2D nt2D ygon2D rr2D angle2D e3D ne3D nt3D ygon3D nere3D urr ull n Volume	6 6 6 7 7 8 8 8 9 7 9 9 9 9 10 10 10 10 10 10 10	Misc 6.1 6.2 6.3 6.4 6.5 Strii 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8	Debug LIS Misc Random Stress Testing ngs Aho Corasick Hash KMP Manacher MinRotation Palindromic Tree Suffix Array	21 21 21	8.9.21 Catalan numbers 25 8.9.22 Catalan Convolution 25 8.9.23 Labeled unrooted trees 25 8.10 Trivia 25 8.10.1 Pythagorean (coprime) triples 25 8.10.2 Primes less than 10^6 25 8.10.3 nth root congruence 25 8.10.4 Max number of divisors ≤ n 25 8.10.5 Two Square Theorem 25 8.10.6 Perfect Number 25 8.11 Inequalities 25 8.11.1 Titu's Lemma 25 8.12 Games 25
	Geometry 3.1 2D	cle2D .te2D .te2D .tr2D	6 6 6 7 7 7 8 8 8 9 7 9 9 9 9 10 10 10 10 10 10 10 10 10 10	Misc 6.1 6.2 6.3 6.4 6.5 Strii 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	Debug LIS Misc Random Stress Testing Mosc Random Stress Testing Mosc Random Stress Testing Mosc Random Stress Testing Mosc Random R	21 21 21 22 22 22 22 22 22 23 23	8.9.21 Catalan numbers 25 8.9.22 Catalan Convolution 25 8.9.23 Labeled unrooted trees 25 8.10 Trivia 25 8.10.1 Pythagorean (coprime) triples 25 8.10.2 Primes less than 10^6 25 8.10.3 nth root congruence 25 8.10.4 Max number of divisors ≤ n 25 8.10.5 Two Square Theorem 25 8.10.6 Perfect Number 25 8.11 Inequalities 25 8.11.1 Titu's Lemma 25 8.12 Games 25 8.12.1 Grundy numbers 25
	Geometry 3.1 2D	cle2D nt2D nt2D ygon2D rr2D angle2D e3D ne3D nt3D ygon3D nere3D urr ull n Volume	6 6 6 6 7 7 8 8 8 9 7 9 9 9 9 10 10 10 10 10 10 10 10 8	Misc 6.1 6.2 6.3 6.4 6.5 Stri 7.2 7.3 7.4 7.5 7.7 7.8 7.9 Note 8.1	Debug LIS Misc Random Stress Testing mgs Aho Corasick Hash KMP Manacher MinRotation Palindromic Tree Suffix Array SuffixAutomaton Z Algorithm es Equations	21 21 21 22 22 22 22 22 22 23 23 23	8.9.21 Catalan numbers 25 8.9.22 Catalan Convolution 25 8.9.23 Labeled unrooted trees. 25 8.10 Trivia 25 8.10.1 Pythagorean (coprime) triples. 25 8.10.2 Primes less than 10^6 25 8.10.3 nth root congruence. 25 8.10.4 Max number of divisors ≤ n 25 8.10.5 Two Square Theorem. 25 8.10.6 Perfect Number. 25 8.11 Inequalities 25 8.11.1 Titu's Lemma 25 8.12 Games 25 8.12.1 Grundy numbers 25 8.12.2 Sums of games 25
4	Geometry 3.1 2D	cle2D te2D nt2D nt2D ygon2D tr2D angle2D te3D ne3D ne3D ne3D tr2D tr2D tr2D tr2D tr2D tr2D tr2D tr2	6 6 6 6 7 7 8 8 8 9 7 9 9 9 9 9 10 10 10 10 10 10 10 11 11 11 8	Misc 6.1 6.2 6.3 6.4 6.5 Strii 7.1 7.2 7.4 7.5 7.7 7.8 7.9 Note 8.1	Debug LIS Misc Random Stress Testing ngs Aho Corasick Hash KMP Manacher MinRotation Palindromic Tree Suffix Array SuffixAutomaton Z Algorithm es Equations Recurrences	21 21 21 22 22 22 22 22 22 23 23 23	8.9.21 Catalan numbers 25 8.9.22 Catalan Convolution 25 8.9.23 Labeled unrooted trees 25 8.10 Trivia 25 8.10.1 Pythagorean (coprime) triples 25 8.10.2 Primes less than 10^6 25 8.10.3 nth root congruence 25 8.10.4 Max number of divisors ≤ n 25 8.10.5 Two Square Theorem 25 8.10.6 Perfect Number 25 8.11 Inequalities 25 8.12.1 Grundy numbers 25 8.12.2 Sums of games 25 8.12.3 Misère Nim 25
4	Geometry 3.1 2D	cle2D nt2D nt2D ygon2D rr2D angle2De3D ne3D ne3D ne3D ne3D nt3D gon3D lerer3D tir ull n Volume Distance	6 6 6 6 7 7 7 8 8 8 9 7 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 11 11 11 11	Misc 6.1 6.2 6.3 6.4 6.5 Strin 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 Note 8.1 8.2 8.3	Debug LIS Misc Random Stress Testing mgs Aho Corasick Hash KMP Manacher MinRotation Palindromic Tree Suffix Array Suffix Automaton Z Algorithm es Equations Recurrences Trigonometry	21 21 21 22 22 22 22 22 22 23 23 23 23 23 1	8.9.21 Catalan numbers 25 8.9.22 Catalan Convolution 25 8.9.23 Labeled unrooted trees 25 8.10 Trivia 25 8.10.1 Pythagorean (coprime) triples 25 8.10.2 Primes less than 10^6 25 8.10.3 nth root congruence 25 8.10.4 Max number of divisors ≤ n 25 8.10.5 Two Square Theorem 25 8.10.6 Perfect Number 25 8.11 Inequalities 25 8.11.1 Titu's Lemma 25 8.12 Games 25 8.12.1 Grundy numbers 25 8.12.2 Sums of games 25 8.12.3 Misère Nim 25
44	Geometry 3.1 2D	cle2D nt2D nt2D ygon2D rr2D angle2D e3D nt3D nt3D ygon3D nere3D uir uil n Volume Distance	6 6 6 6 7 7 7 8 8 8 9 7 9 9 9 9 9 10 10 10 10 10 10 10 11 11 11 11 11 11	Misc 6.1 6.2 6.3 6.4 6.5 Strif 7.1 7.2 7.3 7.4 7.6 7.7 7.8 7.9 Note 8.1 8.2 8.3 8.4	Debug LIS Misc Random Stress Testing mgs Aho Corasick Hash KMP Manacher MinRotation Palindromic Tree Suffix Array SuffixAutomaton Z Algorithm es Equations Recurrences Trigonometry Geometry Geometry	21 21 21 22 22 22 22 22 22 23 23 23 23 23 1. 23 1.	8.9.21 Catalan numbers 25 8.9.22 Catalan Convolution 25 8.9.23 Labeled unrooted trees. 25 8.10 Trivia 25 8.10.1 Pythagorean (coprime) triples. 25 8.10.2 Primes less than 10^6 25 8.10.3 n th root congruence. 25 8.10.4 Max number of divisors ≤ n 25 8.10.5 Two Square Theorem. 25 8.10.6 Perfect Number. 25 8.11 Inequalities 25 8.11.1 Titu's Lemma 25 8.12 Games 25 8.12.1 Grundy numbers 25 8.12.2 Sums of games 25 8.12.3 Misère Nim 25
4	Geometry 3.1 2D	cle2D te2D nt2D ygon2D rr2D angle2D te3D ne3D ne3D ne3D nt3D ygon3D tereaD tir ull n Volume Distance	6 6 6 6 7 7 8 8 8 9 7 9 9 9 9 9 10 10 10 10 10 10 10 11 11 11 11 11 11	Misc 6.1 6.2 6.3 6.4 6.5 Strin 7.1 7.3 7.4 7.5 7.7 7.8 7.9 Note 8.1 8.2 8.3 8.4	Debug LIS Misc Random Stress Testing mgs Aho Corasick Hash KMP Manacher MinRotation Palindromic Tree Suffix Array SuffixAutomaton Z Algorithm es Equations Recurrences Trigonometry Geometry S.4.1 Triangles 8.4.2 Quadrilaterals	21 21 21 22 22 22 22 22 22 23 23 23 23 23 1 23 D 23 D	8.9.21 Catalan numbers258.9.22 Catalan Convolution258.9.23 Labeled unrooted trees258.10 Trivia258.10.1 Pythagorean (coprime) triples258.10.2 Primes less than 10^6 258.10.3 n th root congruence258.10.4 Max number of divisors $\leq n$ 258.10.5 Two Square Theorem258.10.6 Perfect Number258.11 Inequalities258.12 Games258.12.1 Grundy numbers258.12.2 Sums of games258.12.3 Misère Nim25DP1 AlienTrickDescription: Divide n elements into k groups and minimize the sum f a cost function for each group. If $f_n(k) \geq f_n(k+1)$ (monotone) and
4	Geometry 3.1 2D	cle2D ie2D nt2D nt2D ygon2D ir2D angle2D ie3D ne3D ne3D ne3D nere3D ir ull n Volume Distance	6 6 6 6 7 7 8 8 8 9 7 9 9 9 9 9 9 9 9 9 9 9 9 9	Misc 6.1 6.2 6.3 6.4 6.5 Strin 7.1 7.3 7.4 7.5 7.7 7.8 7.9 Note 8.2 8.3 8.4	Debug LIS Misc Random Stress Testing mgs Aho Corasick Hash KMP Manacher MinRotation Palindromic Tree Suffix Array SuffixAutomaton Z Algorithm es Equations Recurrences Trigonometry Geometry Geometry 8.4.1 Triangles 8.4.2 Quadrilaterals 8.4.3 Spherical coordinates	21 21 22 22 22 22 23 23	$8.9.21 \text{ Catalan numbers} \qquad 25 \\ 8.9.22 \text{ Catalan Convolution} \qquad 25 \\ 8.9.23 \text{ Labeled unrooted trees} \qquad 25 \\ 8.10 \text{ Trivia} \qquad \qquad 25 \\ 8.10 \text{ Trivia} \qquad \qquad 25 \\ 8.10.1 \text{ Pythagorean (coprime) triples} \qquad 25 \\ 8.10.2 \text{ Primes less than } 10^6 \qquad \qquad 25 \\ 8.10.3 \text{ nth root congruence} \qquad \qquad 25 \\ 8.10.4 \text{ Max number of divisors} \leq n \qquad \qquad 25 \\ 8.10.5 \text{ Two Square Theorem} \qquad \qquad 25 \\ 8.10.6 \text{ Perfect Number} \qquad \qquad 25 \\ 8.11 \text{ Inequalities} \qquad \qquad 25 \\ 8.11 \text{ Inequalities} \qquad \qquad 25 \\ 8.12 \text{ Games} \qquad \qquad 25 \\ 8.12.1 \text{ Grundy numbers} \qquad \qquad 25 \\ 8.12.2 \text{ Sums of games} \qquad \qquad 25 \\ 8.12.3 \text{ Misère Nim} \qquad \qquad 25 \\ 8.12.3 \text{ Misère Nim} \qquad \qquad 25 \\ 8.12.4 \text{ Grundy numbers} \qquad \qquad 25 \\ 8.12.5 \text{ Sums of games} \qquad \qquad 25 \\ 8.12.7 \text{ Grundy numbers} \qquad \qquad 25 \\ 8.12.8 \text{ Misère Nim} \qquad \qquad 25 \\ 8.12.9 \text{ Sums of games} \qquad \qquad 25 \\ 8.12.9 \text{ Sums of games} \qquad \qquad 25 \\ 8.12.9 \text{ Sums of games} \qquad \qquad 25 \\ 8.12.9 \text{ Misère Nim} \qquad \qquad 25 \\ 8.12.9 \text{ Misère Nim} \qquad \qquad 25 \\ 8.12.1 \text{ Grundy numbers} \qquad \qquad 25 \\ 8.12.1 \text{ Grundy numbers} \qquad \qquad 25 \\ 8.12.2 \text{ Sums of games} \qquad \qquad 25 \\ 8.12.3 \text{ Misère Nim} \qquad \qquad 25 \\ 8.12.4 \text{ Misère Nim} \qquad \qquad 25 \\ 8.12.5 \text{ Misère Nim} \qquad \qquad 25 \\ 8.12.7 \text{ Misère Nim} \qquad \qquad 25 \\ 8.12.8 \text{ Misère Nim} \qquad \qquad 25 \\ 8.12.9 \text{ Misère Nim} \qquad \qquad 25 \\ 8.12 Mis$
4	Geometry 3.1 2D	cle2D ie2D nt2D nt2D ygon2D ir2D angle2D ie3D ne3D ne3D ne3D nere3D ir ull n Volume Distance	6 6 6 6 7 7 8 8 8 9 7 9 9 9 9 9 10 10 10 10 10 10 10 11 11 11 11 11 11	Misc 6.1 6.2 6.3 6.4 6.5 Strip 7.1 7.3 7.4 7.5 7.7 7.8 7.9 Note 8.2 8.3 8.4	Debug LIS Misc Random Stress Testing mgs Aho Corasick Hash KMP Manacher MinRotation Palindromic Tree Suffix Array SuffixAutomaton Z Algorithm es Equations Recurrences Trigonometry Geometry 8.4.1 Triangles 8.4.2 Quadrilaterals 8.4.3 Spherical coordinates 8.4.4 Pick's Theorem.	21 21 21 22 22 22 22 23 23 23 1.23 D 0 of 23 ft	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
4	Geometry 3.1 2D	cle2D te2D te2D nt2D ygon2D tr2D angle2D te3D ne3D ne3D ne3D ne3D tr2D tr2D tr2D tr2D tr2D tr2D tr2D tr2	6 6 6 6 7 7 8 8 8 9 7 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 11 11	Misc 6.1 6.2 6.3 6.4 6.5 Strii 7.1 7.5 7.7 7.8 7.9 Not 8.2 8.3 8.4	Debug LIS Misc Random Stress Testing mgs Aho Corasick Hash KMP Manacher MinRotation Palindromic Tree Suffix Array SuffixAutomaton Z Algorithm es Equations Recurrences Trigonometry Geometry 8.4.1 Triangles 8.4.2 Quadrilaterals 8.4.3 Spherical coordinates 8.4.4 Pick's Theorem. Derivatives/Integrals	21 21 22 22 22 22 22 23 23 23 1. 23 D of fix 23 th	8.9.21 Catalan numbers258.9.22 Catalan Convolution258.9.23 Labeled unrooted trees258.10 Trivia258.10.1 Pythagorean (coprime) triples258.10.2 Primes less than 10^6 258.10.3 n th root congruence258.10.4 Max number of divisors $\leq n$ 258.10.5 Two Square Theorem258.10.6 Perfect Number258.11 Inequalities258.12 Games258.12.1 Grundy numbers258.12.2 Sums of games258.12.3 Misère Nim25DP1 AlienTrickDescription: Divide n elements into k groups and minimize the sum of a cost function for each group. If $f_n(k) \geq f_n(k+1)$ (monotone) and $f_n(k-1) - f_n(k) \geq f_n(k) - f_n(k+1)$ (convex) we can apply alien trick the means with the increase of k , answer becomes more optimal, but the rate of becoming optimal slows down. We define $g_n = f_n(k) + kC$.
4	Geometry 3.1 2D	cle2D te2D nt2D ygon2D yr2D angle2D ne3D ne3D ne3D ne3D ne3D ir uil n Volume Distance iridge Tree ree iree irree	6 6 6 6 7 7 8 8 8 9 7 9 9 9 9 9 9 9 9 9 9 9 9 9	Misc 6.1 6.2 6.3 6.4 6.5 Strin 7.1 7.3 7.4 7.5 6.7 7.7 7.8 7.9 Note 8.1 8.2 8.3 8.4	Debug LIS Misc Random Stress Testing mgs Aho Corasick Hash KMP Manacher MinRotation Palindromic Tree Suffix Array SuffixAutomaton Z Algorithm es Equations Recurrences Trigonometry Geometry 8.4.1 Triangles 8.4.2 Quadrilaterals 8.4.3 Spherical coordinates 8.4.4 Pick's Theorem Derivatives/Integrals Sums Sums Sums Series Lendon List	21 21 22 22 22 22 22 23 23 23 1. 23 D of fix 23 th	8.9.21 Catalan numbers258.9.22 Catalan Convolution258.9.23 Labeled unrooted trees258.10 Trivia258.10.1 Pythagorean (coprime) triples258.10.2 Primes less than 10^6 258.10.3 n th root congruence258.10.4 Max number of divisors $\leq n$ 258.10.5 Two Square Theorem258.10.6 Perfect Number258.11 Inequalities258.12 Games258.12.1 Grundy numbers258.12.2 Sums of games258.12.3 Misère Nim25DP1 AlienTrickDescription: Divide n elements into k groups and minimize the sum of a cost function for each group. If $f_n(k) \geq f_n(k+1)$ (monotone) and $f_n(k-1) - f_n(k) \geq f_n(k) - f_n(k+1)$ (convex) we can apply alien trick the means with the increase of k , answer becomes more optimal, but the rate of becoming optimal slows down. We define $g_n = f_n(k) + kC$.
4	Geometry 3.1 2D	cle2D ie2D nt2D nt2D ygon2D ir2D angle2D angle2D ie3D ne3D ne3D ne3D ne3D ir ull n Volume Distance iree	6 6 6 6 7 7 8 8 8 9 7 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 11 11	Misc 6.1 6.2 6.3 6.4 6.5 Strin 77.3 77.4 77.5 77.7 77.8 77.9 Note 8.2 8.3 8.4 8.5 8.6 8.7 8.8	Debug LIS Misc Random Stress Testing Mgs Aho Corasick Hash KMP Manacher MinRotation Palindromic Tree Suffix Array SuffixAutomaton Z Algorithm es Equations Recurrences Trigonometry Geometry Geometry 8.4.1 Triangles 8.4.2 Quadrilaterals 8.4.3 Spherical coordinates 8.4.4 Pick's Theorem Derivatives/Integrals Sums Series Number Theory	21 21 22 22 22 22 22 23 23 23 1.23 0 f. It 23 th	$8.9.21 \ \ \text{Catalan numbers} \qquad \qquad 25 \\ 8.9.22 \ \ \ \text{Catalan Convolution} \qquad \qquad 25 \\ 8.9.23 \ \ \ \ \ \ \ \ \ \ \ \ \ $
4	Geometry 3.1 2D	cle2D ie2D nt2D nt2D ygon2D ir2D angle2D angle2D ie3D ne3D ne3D ne3D ne3D ir ull n Volume Distance iree	6 6 6 6 7 7 8 8 8 9 7 9 9 9 9 9 9 9 9 9 9 9 9 9	Misc 6.1 6.2 6.3 6.4 6.5 Strin 77.3 77.4 77.5 77.7 77.8 77.9 Note 8.2 8.3 8.4 8.5 8.6 8.7 8.8	Debug LIS Misc Random Stress Testing mgs Aho Corasick Hash KMP Manacher MinRotation Palindromic Tree Suffix Array SuffixAutomaton Z Algorithm es Equations Recurrences Trigonometry Geometry 8.4.1 Triangles 8.4.2 Quadrilaterals 8.4.3 Spherical coordinates 8.4.4 Pick's Theorem Derivatives/Integrals Sums Series Number Theory 8.8.1 Primes	21 21 22 22 22 22 22 23 23 23 1.23 0 f. It 23 th	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
4	Geometry 3.1 2D	cle2D te2D nt2D ygon2D yr2D angle2D angle2D te3D ne3D ne3D ne3D nere3D tir ygon3D tere3D tir ull n Volume Distance fidge Tree free free free free k atching atching nCut Karp	6 6 6 6 7 7 8 8 8 9 7 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 11 11	Misc 6.1 6.2 6.3 6.4 6.5 Strin 77.3 77.8 77.9 Note 8.1 8.5 8.6 8.7 8.8	Debug LIS Misc Random Stress Testing mgs Aho Corasick Hash KMP Manacher MinRotation Palindromic Tree Suffix Array SuffixAutomaton Z Algorithm es Equations Recurrences Trigonometry Geometry 8.4.1 Triangles 8.4.2 Quadrilaterals 8.4.3 Spherical coordinates 8.4.4 Pick's Theorem Derivatives/Integrals Sums Series Number Theory 8.8.1 Primes 8.8.2 Estimates 8.8.3 Carmichael numbers	21 21 22 22 22 22 22 23 23 23 1.23 0 f. It 23 th	$8.9.21 \ \ \text{Catalan numbers} \qquad \qquad 25 \\ 8.9.22 \ \ \ \text{Catalan Convolution} \qquad \qquad 25 \\ 8.9.23 \ \ \ \ \ \ \ \ \ \ \ \ \ $
4	Geometry 3.1 2D	cle2D nt2D nt2D ygon2D rr2D angle2D ne3D ne3D ne3D ne3D ne3D nere3D ir ull n Volume Distance ree ree ree k atching atching atching nCut Karp vka	6 6 6 6 7 7 8 8 8 9 7 9 9 9 9 9 10 10 10 10 10 10 10 11 11 11 11 11 11	Misc 6.1 6.2 6.3 6.4 6.5 Strif 7.2 7.3 7.4 7.5 7.7 7.8 7.9 Note 8.1 8.3 8.4	Debug LIS Misc Random Stress Testing mgs Aho Corasick Hash KMP Manacher MinRotation Palindromic Tree Suffix Array SuffixAutomaton Z Algorithm es Equations Recurrences Trigonometry Geometry 8.4.1 Triangles 8.4.2 Quadrilaterals 8.4.3 Spherical coordinates 8.4.4 Pick's Theorem Derivatives/Integrals Sums Series Number Theory 8.8.1 Primes 8.8.2 Estimates	21 21 22 22 22 22 22 22 23 23 23 1. 23 1. 23 1. 23 1. 23 1. 23 1. 23 23 23 23 23 23 23 23 23 23 23 23 23	$8.9.21 \ \ \text{Catalan numbers} \qquad \qquad 25 \\ 8.9.22 \ \ \ \text{Catalan Convolution} \qquad \qquad 25 \\ 8.9.23 \ \ \ \ \ \ \ \ \ \ \ \ \ $

1.2 CHT **Description:**

- If m is decreasing:
 - for min: bad(s-3, s-2, s-1), x increasing
 - for max : bad(s-1, s-2, s-3), x decreasing
- If m is increasing:
 - for max : bad(s-3, s-2, s-1), x increasing
 - for min: bad(s-1, s-2, s-3), x decreasing
- If x isn't monotonic, then do Ternary Search or keep intersections and do binary search

```
struct CHT {
  vector<ll> m, b;
  int ptr = 0;
  bool bad(int l1, int l2, int l3) { // returns
                     l3) <= intersect(l1, l2)</pre>
   return 1.0 * (b[l3] - b[l1]) * (m[l1] - m[l2]) <= 1.0 *
        (b[l2] - b[l1]) * (m[l1] - m[l3]);
  void insert line(ll m, ll b) {
   m.push_back(_m);
b.push_back(_b);
    int s = m.size();
   while (s \ge 3 \&\& bad(s - 1, s - 2, s - 3)) {
      m.erase(m.end() - 2);
b.erase(b.end() - 2);
  ĺl f(int i, ll x) { return m[i] * x + b[i]; }
 ll eval(ll x) {
    if (ptr >= m.size()) ptr = m.size() - 1:
   while (ptr < m.size() - 1 \&\& f(ptr + 1, x) > f(ptr, x))
    return f(ptr, x);
```

1.3 DnC Optimization **Description:**

- $dp[i][j] = min_{k < j} \{dp[i-1][k] + C[k][j]\}$
- $A[i][j] \le A[i][j+1]$
- $O(kn^2)$ to $O(kn\log n)$
- sufficient: $C[a][c] + C[b][d] \le C[a][d] + C[b][c]$, $a \le b \le c \le d$ (QI) **Time:** $\mathcal{O}(\log n)$

```
void compute(int L, int R, int optL, int optR) {
  if (L > R) return;
  int M = L + R >> 1
  pair<ll, int> best(1LL << 60, -1);
  for (int k = optL; k <= min(M, optR); k++) {
  best = min(best, {dp[prv][k] + C[k + 1][M], k});</pre>
  dp[now][M] = best.ff;
compute(L, M - 1, optL, best.ss);
compute(M + 1, R, best.ss, optR);
```

1.4 Dynamic CHT

```
const ll is_query = -LLONG MAX;
struct Line {
 ll m, b;
 mutable function<const Line*()> succ;
 bool operator<(const Line&rhs) const {
   if (rhs.b != is query) return m < rhs.m;</pre>
   const Line * s = succ();
   if (!s) return 0;
   ll \dot{x} = rhs.m;
```

```
return b - s->b < (s->m - m) * x;
struct HullDynamic : public multiset<Line> {
  bool bad(iterator y) {
     auto z = next(y);
    if (y == begin()) {
   if (z == end()) return 0;
   return y->m == z->m && y->b <= z->b;
     auto x = prev(y);
     if (z == end()) return y->m == x->m \&\& y->b <= x->b;
     //may need to use int128 instead of ld if supported return ld(x->b-y->b)*(z->m-y->m)>= ld(y->b-y->m)
      \rightarrow z->b) * (y->m - x->m);
   void insert line(ll m, ll b) {
     auto y = Insert({ -m, -b }); //change here for max
     if (bad(y)) { erase(y); return; }
     while (next(y) != end() && bad(next(y))) erase(next(y));
     y->succ = [ = ] { return next(y) == end() ? 0 :
        &*next(y); };
     while (y != begin() && bad(prev(y))) erase(prev(y));
if (y != begin()) prev(y)->succ = [ = ] { return &*y; };
  il eval(ll x) {
  auto l = *lower_bound((Line) { x, is_query });
     return -(l.m * \overline{x} + l.b); //change here for max
} hull;
```

1.5 Knuth Optimization

Description: When doing DP on intervals: $\min_{i < k < j} (a[i][k] + a[k][j]) + f(i,j)$, where the (minimal) optimal k increases with both i and j, one can solve intervals in increasing order for (int mask = 0; mask < 1 << n; mask++) f[mask] = a[mask]; of length, and search k = p[i][j] for a[i][j] only between p[i][j-1]and p[i+1][j]. This is known as Knuth DP. Sufficient criteria for this are if $f(b,c) \le f(a,d)$ and $f(a,c) + f(b,d) \le f(a,d) + f(b,c)$ for all $a \le b \le c \le d$. Consider also: LineContainer, monotone queues, ternary search.

Time: $\mathcal{O}(N^2)$

1.6 Li Chao Tree

Description: Add line segment, query minimum y at some x. Provide list of all query x points to constructor (offline solution). Use 2 Data Structures add_segment(line, l, r) to add a line segment y = ax + b defined by 2.1 BIT 2D with Range Update and Range Query $x \in [l,r)$. Use query(x) to get min at x.

```
struct LiChaoTree {
  using Line = pair <ll, ll>;
  const ll linf = numeric limits<ll>::max();
  int n; vector<ll> xl; vector<Line> dat;
  LiChaoTree(const vector<ll>& xl) : xl(xl) {
   n = 1; while(n < xl.size())n <<= 1;
xl.resize(n,xl.back());
dat = vector<Line>(2 * n - 1,Line(θ,linf));
 il eval(Line f,ll x){return f.first * x + f.second;}
 void add line(Line f, int k, int l, int r){
    whi\overline{l}e (\overline{l} != r) {
      int m = (l + r) / 2;
      ll lx = xl[l],mx = xl[m],rx = xl[r - 1];
Line &g = dat[k];
      if(eval(f,lx) < eval(g,lx) \&\& eval(f,rx) <
       \rightarrow eval(q,rx)){
         g = f; return;
      if(eval(f,lx) >= eval(q,lx) \&\& eval(f,rx) >=
           eval(g,rx))return;
      if(eval(f,mx) < eval(g,mx))swap(f,g);</pre>
      if(eval(f,lx) < eval(q,lx)) k = k * 2 + 1, r = m;
```

```
else k = k * 2 + 2, l = m;
void add_line(Line f){_add_line(f,0,0,n);}
void add segment(Line f,ll lx,ll rx){
  int l = lower bound(xl.begin(), xl.end(), lx)

→ xl.beain():

  int r = lower bound(xl.begin(), xl.end(),rx) -

    xl.begin();
  int a0 = \bar{l}, b0 = r, sz = 1; l += n; r += n;
  while(l < r){
   if(r \& 1) r - -, b0 -= sz, add line(f, r - 1, b0, b0 + b)
   sz; if(l & 1) _add_line(f,l - 1,a0,a0 + sz), l++, a0 +=
   → SZ;
l >>= 1, r >>= 1, sz <<= 1;
11 query(ll x) {
  int i = lower bound(xl.begin(), xl.end(),x) -

    xl.begin();
  i += n - ĭ; ll´res = eval(dat[i],x);
  while (i) i = (i - 1) / 2, res = min(res, eval(dat[i],
  \rightarrow x)):
  return res;
```

Description: Fast sum over subsets $g_i = \sum_{j \subseteq i} f_j$ and supersets $g_i = \sum_{j \subseteq i} f_j$

```
a[i][j] = | \mathbf{Time:} \mathcal{O}(n2^n) |
```

```
// sum over subsets
for (int i = 0; i < n; ++i) {
   for (int mask = 0; mask < 1 << n; ++mask) {</pre>
     if (mask \& 1 << i) f[mask] += f[mask ^ 1 << i];
 // sum over supersets
for (int i = 0; i < n; ++i) {
   for (int mask = (1 << n) - 1; mask >= 0; --mask) {
     if (~mask & 1 << i) f[mask] += f[mask | 1 << i];</pre>
```

```
using namespace std;
const int N = 1010;
struct BIT2D {
  long long M[N][N][2], A[N][N][2];
     memset(M, 0, sizeof M);
     memset(A, 0, sizeof A);
  void upd2(long long t[N][N][2], int x, int y, long long
   → mul, long long add)
    for(int i = x; i < N; i += i & -i) {
  for(int j = y; j < N; j += j & -j) {
    t[i][j][0] += mul;
}</pre>
          t[i][j][1] += add;
  void upd1(int x, int y1, int y2, long long mul, long long
   → add) {
    upd2(M, x, y1, mul, -mul * (y1 - 1));

upd2(M, x, y2, -mul, mul * y2);

upd2(A, x, y1, add, -add * (y1 - 1));

upd2(A, x, y2, -add, add * y2);
  void upd(int x1, int y1, int x2, int y2, long long val) {
    upd1(x1, y1, y2, val, -val * (x1 - 1));
```

```
upd1(x2, y1, y2, -val, val * x2);
  long long query2(long long t[N][N][2], int x, int y) {
    long long mul = 0, add = 0;
    for(int i = y; i > 0; i -= i & -i) {
  mul += t[x][i][0];
  add += t[x][i][1];
    return mul * y + add;
  long long query1(int x, int y) {
    long mul = 0, add = 0;
for(int i = x; i > 0; i -= i & -i) {
  mul += query2(M, i, y);
      add += query2(A, i, y);
    return mul * x + add;
  long long query(int x1, int y1, int x2, int y2) {
    return query1(x2, y2) - query1(x1 - 1, y2) - query1(x2,
     \rightarrow y1 - 1) + query1(x1 - 1, y1 - 1);
} t;
int main() {
  int n, m;
  cin >> n >> m;
  for(int i = 1; i <= n; i++)
    for(int j = 1; j <= m; j++) {
      int k;
      cin >> k:
      t.upd(i, j, i, j, k);
 int q;
  cin >> a:
  while(q--)
    int ty, x1, y1, x2, y2;
    cin >> ty;
if(ty == 1) {
      long long val;
      cin >> x1 >> y1 >> x2 >> y2 >> val;
      t.upd(x1, y1, x2, y2, val); // add val from

→ top-left(x1, y1) to bottom-right (x2, y2);
    } else {
      cin >> x1 >> y1 >> x2 >> y2;
cout << t.query(x1, y1, x2, y2) << '\n'; // output
          sum from top-left(x1, y1) to bottom-right (x2,
       return 0;
2.2 BIT
//1-based
void update(int n, int idx, int v){
  while(idx \leq n) tree[idx] += v, idx += idx & (-idx);
int query(int idx){
  int sum = 0;
  while(idx > 0) sum += tree[idx], idx -= idx & (-idx):
```

2.3 Block Cut Tree

return sum;

Description: finds all vertex-biconnected components and compresses them into a tree. **Time:** $\mathcal{O}(V+E)$

```
bitset <N> art, good;
vector <int> g[N], tree[N], st, comp[N];
int n, m, ptr, cur, in[N], low[N], id[N];
void dfs (int u, int from = -1) {
  in[u] = low[u] = ++ptr;
  st.emplace_back(u);
  for (int v : g[u]) if (v ^ from) {
```

```
if (!in[v]) {
      dfs(v, u);
low[u] = min(low[u], low[v]);
if (low[v] >= in[u]) {
        art[u] = in[u] > 1 or in[v] > 2;
        comp[++cur] emplace_back(u);
        while (comp[cur].back() ^ v) {
          comp[cur].emplace back(st.back());
           st.pop_back();
    } else { low[u] = min(low[u], in[v]); }
void buildTree() {
  ptr = 0;
  for (int i = 1; i <= n; ++i) {
    if`(art[i]) id[i] = ++ptr;
  for (int i = 1; i <= cur; ++i) {
    int x = ++ptr;
    for (int u : comp[i]) {
      if (art[u]) {
        tree[x].emplace back(id[u]);
        tree[id[u]].empTace back(x);
      } else { id[u] = x; }
 for (int i = 1; i <= n; ++i) { if (!in[i]) dfs(i); }
buildTree();</pre>
```

2.4 Bridge Tree

Description: finds all edge-biconnected components and compresses them into a tree. **Time:** $\mathcal{O}(V+E)$

```
vector <int> g[N], tree[N];
int n, m, in[N], low[N], ptr, compID[N];
void go (int u, int par = -1) {
  in[u] = low[u] = ++ptr;
  for (int v : g[u]) {
  if (in[v]) {
       if (v == par) par = -1;
       else low[u] = min(low[u], in[v]);
       go(v, u); low[u] = min(low[u], low[v]);
void shrink (int u, int id) {
  compID[u] = id;
  for (int v : g[u]) if (!compID[v]) {
   if (low[v] > in[u]) {
       tree[id].emplace back(++ptr);
       shrink(v, ptr);
     } else { shrink(v, id); }
|int main() {
  cin >> n >> m;
  while (m--) {
    int u, v;
scanf("%d %d"
    scanf("%d %d", &u, &v);
g[u].emplace_back(v);
     ğ[v].emplace back(u);
  for (int i = 1; i <= n; ++i) if (!in[i]) go(i);
  vector <int> roots; ptr = 0;
  for (int i = 1; i <= n; ++i) if (!compID[i]) {</pre>
     roots.emplace back(++ptr);
     shrink(i, ptr);
```

2.5 Centroid Decomposition

Description: all path problem to paths through root problem with $O(\log n)$ overhead.

Time: $\mathcal{O}(n \log n)$

```
bool bad[N]; ll ans, h[N];
vector <pair <int, ll>> g[N];
int n, sub[N], flat[N], ptr, in[N], out[N];
void trav (int u, int par = -1) {
  sub[u] = 1;
  for (auto [v, w] : g[u]) if (!bad[v] and v != par) {
  trav(v, u); sub[u] += sub[v];
int getCentroid (int u, int tot, int par = -1) {
  for (auto [v, w] : q[u]) if (!bad[v] and v != par and
   → sub[v] > tot / 2) {
  return getCentroid(v, tot, u);
  } return ŭ;
void dfs (int u, int par = -1, ll far = 0) {
   flat[++ptr] = u, in[u] = ptr, h[u] = far;
   for (auto [v, w] : g[u]) if (!bad[v] and v != par) {
  dfs(v, u, far + w);
} out[u] = ptr;
void decompose (int u = 1) {
  trav(u);
  int cen = getCentroid(u, sub[u]);
  ptr = 0; dfs(cen);
   for (auto [u, w] : g[cen]) if (!bad[u])
     for (int i = in[u]; i <= out[u]; ++i) {</pre>
       int v = flat[i];
// update ans with v
     for (int i = in[u]; i <= out[u]; ++i) {</pre>
       int v = flat[i];
// insert v in data structure
  bad[cen] = 1;
  for (auto [v, w] : g[cen]) if (!bad[v]) decompose(v);
int main() {
  // input graph
  decompose();
```

2.6 HLD

Description: Transforms tree paths into ranges with $O(\log N)$ overhead. Subtree of v corresponds to segment [in[v], out[v]) and the path from v to the last vertex in ascending heavy path from v (which is nxt[v]) will be [in[nxt[v]], in[v]]. Use appropriate DS to handle stuff.

Time: $\mathcal{O}(\log^2 N)$

```
const int N = 1e5 + 5;
const int LOGN = 18;
int par[N], nxt[N], in[N], out[N], sz[N], h[N];
int n, timer;
vector<int> g[N];
void dfs_sz(int u = 0, int p = -1, int d = 0) {
   par[u] = p, sz[u] = 1, h[u] = d;
  for (auto &v : g[u]) {
    if (v ^ p) {
      dfs sz(v, u, d + 1);
      sz[\overline{u}] += sz[v];
      if (sz[v] > sz[q[u][0]]) swap(v, q[u][0]);
void dfs hld(int u = 0, int p = -1) {
 update(1, 0, n - 1, timer, val[u]);
  in[u] = timer++;
  for (auto v : g[u]) {
   if (v ^ p) {
```

```
nxt[v] = (v == g[u][0]) ? nxt[u] : v;
    dfs_hld(v, u);
}
out[u] = timer;
}
int hld_query(int u, int v) {
    int ret = 0;
    while (nxt[u] != nxt[v]) {
        if (h[nxt[u]] > h[nxt[v]]) swap(u, v);
        ret = merge(ret, query(1, 0, n - 1, in[nxt[v]], in[v]));
    v = par[nxt[v]];
}
if (h[u] > h[v]) swap(u, v);
//in[u] -> in[u] + 1 in case of edge values
    ret = merge(ret, query(1, 0, n - 1, in[u], in[v]));
    return ret;
}
```

2.7 Interval Container

Description: Add and remove intervals from a set of disjoint intervals. Will merge the added interval with any overlapping intervals in the set when adding. Intervals are [inclusive, exclusive).

Time: $\mathcal{O}(\log N)$

```
set<pri>set<pri>set<pri>set<pri>set<pri>set<pri>set<pri>set<pri>set<pri>set<pri>set<pri>set<pri>set<pri>set<pri>set<pri>set<pri>set<pri>set<pri>set<pri>set<pri>set<pri>set<pri>set<pri>set<pri>set<pri>set<pri>set<pri>set<pri>set<pri>set<pri>set<pri>set<pri>set<pri>set<pri>set<pri>set<pri>set<pri>set<pri>set</pr><pri>set</pr><pr>set</pr><pr>set</pr><pr>set</pr><pr>set</pr>set</pr>set</pr>set</pr>set</pr>set</pr>set</pr>set</pr>set</pr>set</pr>set</pr>set</pr>set</pr>set</pr>set</pr>set</pr>set</pr>set</pr>set</pr>set</pr>setsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsetsets
```

2.8 Interval Cover

Description: Compute indices of smallest set of intervals covering another interval. Intervals should be [inclusive, exclusive). To support [inclusive, inclusive], change (A) to add | | R.empty(). Returns empty set on failure (or if G is empty).

Time: $\mathcal{O}(N \log N)$

```
template<class T>
vi cover(pair<T, T> G, vector<pair<T, T> I) {
  vi S(sz(I)), R; iota(all(S), 0);
  sort(all(S), [&](int a, int b) { return I[a] < I[b]; });
  T cur = G.first; int at = 0;
  while (cur < G.second) { // (A)
   pair<T, int> mx = make pair(cur, -1);
   while (at < sz(I) && I[S[at]].first <= cur) {
      mx = max(mx, make_pair(I[S[at]].second, S[at])); at++;
  }
  if (mx.second == -1) return {};
  cur = mx.first; R.push_back(mx.second);
  } return R;
}</pre>
```

2.9 LCA

```
const int N = 1e5 + 5;
const int LOGN = 18;
int h[N], table[LOGN][N];
std::vector<int> g[N];
void dfs(int u = 0, int p = -1, int d = 0){
  table[0][u] = p, h[u] = d;
  for(int i = 1; i < LOGN; i++){</pre>
```

```
if(table[i - 1][u] ^ -1) {
    table[i][u] = table[i - 1][table[i - 1][u]];
    }
    else table[i][u] = -1;
}
for(auto v : g[u]){
    if(v ^ p) dfs(v, u, d + 1);
}
int get lca(int u, int v) {
    if (h[u] < h[v]) swap(u, v);
    for (int i = LOGN - 1; i >= 0; i--) {
        if (h[u] < h[v]) u = table[i][u];
}
if (u == v) return u;
for (int i = LOGN - 1; i >= 0; i--) {
        if (table[i][u] != table[i][v]) {
            u = table[i][u];
        }
    return table[0][u];
}
```

2.10 Link Cut Tree

Description: Represents a forest of unrooted trees. You can add and remove edges (as long as the result is still a forest), and check whether two nodes are in the same tree.

Time: All operations take amortized $\mathcal{O}(\log N)$.

```
struct Node { // Splay tree. Root's pp contains tree's
Node *p = 0, *pp = 0, *c[2];
bool flip = 0;
Node() { c[0] = c[1] = 0; fix(); }

void fix() {

if (c[0]) c[0]->p = this;
 if (c[1]) c[1] -> p = this;
 // (+ update sum of subtree elements etc. if wanted)
 void pushFlip() {
  if (!flip) return;
 flip = 0; swap(c[0], c[1]);
if (c[0]) c[0]->flip ^= 1;
 if (c[1]) c[1]->flip ^= 1;
int up() { return p ? p->c[1] == this : -1; }
void rot(int i, int b) {
  int h = i ^ b;
Node *x = c[i], *y = b == 2 ? x : x->c[h], *z = b ? y : x;
  if ((y->p = p)) p->c[up()] = y;
c[i] = z->c[i ^ 1];
  if^{-}(b < 2) {
   x->c[h] = y->c[h ^ 1];
z->c[h ^ 1] = b ? x : this;
  y->c[i ^1] = b ? this : x;
  fix(); x->fix(); y->fix();
 if (p) p->fix(); swap(pp, y->pp);
void splay()
  for (pushFlip(); p; )
   if (p->p) p->p->pushFlip();
   p->pushFlip(); pushFlip();
   int c1 = up(), c2 = p->up();
   if (c2 == -1) p -> rot(c1, 2)
   else p->p->rot(c2, c1 != c2);
Node* first() {
  pushFlip();
  return c[0] ? c[0]->first() : (splay(), this);
struct LinkCut {
vector<Node> node;
LinkCut(int N) : node(N) {}
void link(int u, int v) { // add an edge (u, v)
 assert(!connected(u, v));
```

```
makeRoot(&node[u]);
 node[u].pp = \&node[v];
void cut(int u, int v) { // remove an edge (u, v)
Node *x = &node[u], *top = &node[v];
 makeRoot(top); x->splay();
 assert(top == (x-pp ?: x-c[0]));
 if (x-pp) x-pp = 0;
else { x-pc[0] = top-p = 0; x-pc[x] }
bool connected(int u, int v) { // are u, v in the same
 Node* nu = access(&node[u])->first():
 return nu == access(&node[v])->first();
void makeRoot(Node* u) {
 access(u); u->splay();
 if(u->c[0]) {
  u \rightarrow c[0] \rightarrow p = 0; u \rightarrow c[0] \rightarrow flip = 1;
  u - c[0] - pp = u; u - c[0] = 0; u - fix();
Node* access(Node* u) {
 u->splay();
 while (Node* pp = u->pp) {
  pp->splay(); u->pp = 0;
  if (pp->c[1]) {
    pp->c[1]->p = 0; pp->c[1]->pp = pp; }
  pp->c[1] = u; pp->fix(); u = pp;
 } return u;
```

2.11 MO's Algorithm

```
//Hilbert Ordering for Mo's Algorithm
inline int64 t hilbertOrder(int x, int y, int pow, int
    rotate) {
  if (pow == 0) {
    return 0;
  int hpow = 1 << (pow - 1)
  int seg = (x < hpow) ? ((y < hpow) ? 0 : 3) :
               ((y < hpow) ? 1 : 2);
  seg = (seg + rotate) \& 3;
  const int rotateDelta[4] = \{3, 0, 0, 1\};
int nx = x & (x ^ hpow), ny = y & (y ^ hpow);
int nrot = (rotate + rotateDelta[seg]) & 3;
  int64 t subSquareSize = int64 t(1) << (2 * pow - 2);
  int64 t ans = seg * subSquareSize;
  int64 t add = hilbertOrder(nx, ny, pow - 1, nrot);
  ans += (seg == 1 || seg == 2) ? add : (subSquareSize -
   \rightarrow add - 1);
  return ans;
struct Query {
  int l, r, idx; // queries
  int64 t ord; // Gilbert order of a query
// call query[i].calcOrder() to calculate the Gilbert
  inline void calcorder() {
    ord = hilbertOrder(l, r, 21, 0);
   sort the gueries based on the Gilbert order
inline bool operator<(const Query &a, const Query &b) {
  return a.ord < b.ord;</pre>
int curL = 0, curR = -1;
for(int i = 0; i < 0.sz; i++){
  while(curL > 0[i].L){
     curl--; add(curl);
  \dot{\mathbf{w}}hile(curR < Q[i].R){
     curR++; add(curR);
  while(curL < Q[i].L){</pre>
```

```
remove(curL); curL++;
}
while(curR > Q[i].R){
  remove(curR); curR--;
}
}
```

2.12 Matrix Expo

```
const int MOD = 998244353;
typedef vector<int> row:
typedef vector<row> matrix:
inline int add(const int \&a, const int \&b) {
  int c = a + b;
  if (c >= MOD) c -= MOD:
  return c:
inline int mult(const int &a, const int &b) {
 return (long long)a * b % MOD;
matrix operator*(const matrix &m1, const matrix &m2) {
  int r = m1.size();
 int m = m1.back().size();
int c = m2.back().size();
  matrix ret(r, row(c, 0));
  for (int i = 0; i < r; i++)
    for (int k = 0; k < m; k++)
      for (int j = 0; j < c; j++) {
ret[i][j] = add(ret[i][j], mult(m1[i][k],
         \rightarrow m2[k][j]));
   }
  return ret;
matrix one(int dim) {
  matrix ret(dim, row(dim, 0));
  for (int i = 0; i < dim; i++) {
    ret[i][i] = 1;
  return ret:
matrix operator^(const matrix &m, const int &e) {
 if (e == 0) return one(m.size());
matrix sqrtm = m ^ (e / 2);
 matrix ret = sqrtm * sqrtm;
  if (e & 1) ret = ret * m:
 return ret;
```

2.13 Mo On Tree

Description: Build Euler order of 2N size - write node ID when entering AND exiting. Path (u,v) with $\operatorname{in}[u] < \operatorname{in}[v]$ is now range. If u is LCA, then range is $[\operatorname{in}[u], \operatorname{in}[v]]$. If not, then range is $[\operatorname{out}[u], \operatorname{in}[v]] \cup [\operatorname{in}[\operatorname{LCA}]$, in [LCA]. Nodes that appear exactly once (not 0 or 2 times) on these ranges are relevant, maintain them during Mo.

Time: $\mathcal{O}\left(N\sqrt{Q}\right)$

2.14 Mo With Updates

Description: Sort queries by tuple $(\lfloor l/B \rfloor, \lfloor r/B \rfloor, t)$ where t is the time of query. If DS has answer for [L,R] at time T now, then we have to adjust range (add/remove like usual Mo). For time, we need to make some updates if t < T and rollback some updates if t > T.

Time: $\mathcal{O}\left(QN^{2/3}\right)$

2.15 Ordered Set

```
using namespace __gnu_pbds;
using namespace std;
typedef tree<int, null_type,
less<int>, rb_tree_tag,
tree_order_statistics_node_update> ordered_set;
```

```
// T.insert(x)
// *T.find_by_order(k) -> kth element
// T.order_of_key(x) -> position of 1st element >= x
```

2.16 Persistent Segment Tree Description: RMQ, point updates.

```
Time: \overline{\mathcal{O}}(\log N)
namespace PersistentTree {
 11 †[M]:
  int \dot{L}[\dot{M}], R[M], root[N], arr[N], ptr = 0;
  void update(int x, int y, int p, int v, int b = 1, int e
    if (b' = e) return void(t[y] = v);
    int mid = b + e >> 1:
    if (p \leftarrow mid) R[y] = R[x], L[y] = ++ptr, update(L[x],
    \rightarrow L[y], p, v, b, mid);
else L[y] = L[x], R[y] = ++ptr, update(R[x], R[y], p,

    v, mid + 1, e);
t[y] = min(t[L[y]], t[R[y]]);
 for (int i = 1; i <= n; ++i) arr[i] = INT_MAX;
root[0] = 0, t[0] = INF;
for (int i = 1; i <= n; ++i) {</pre>
      root[i] = root[i - 1];
      for (auto & [r, w] : who[i]) if (w < arr[r]) {</pre>
            int new root = ++ptr;
           arr[r] \equiv w, update(root[i], new root, r, w);
            root[i] = new root;
 fl query(int u, int l, int r, int b = 1, int e = n) {
    if (!u or b > r or e < l) return INF;</pre>
    if (b >= l and e <= r) return t[u];</pre>
    int mid = b + e >> 1;
    return min(query(L[u], l, r, b, mid), query(R[u], l, r,
     \rightarrow mid + 1. e)):
 inline ll getMin(int l, int r) {
    return query(root[l], r, n);
```

2.17 Persistent Trie

```
using namespace std;
// Description: find maximum value (x^a[j]) in the range
 \rightarrow (l,r) where l <= j <= r
struct node t;
typedef node t * pnode;
struct node_t {
  int time;
  pnode to[2];
  node_t(): time(0) {
    to[0] = to[1] = 0;
  bool go(int l) const {
     if (!this) return false;
     return time >= l;
  pnode clone() {
     pnode cur = new node t();
     if (this) {
      cur->time = time;
cur->to[0] = to[0];
cur->to[1] = to[1];
     return cur;
pnode last;
pnode version[N];
```

```
void insert(int a, int time) {
 pnode v = version[time] = last = last->clone();
  for (int i = K - 1; i >= 0; --i) {
    int bit = (a >> i) & 1;
pnode &child = v->to[bit];
    child = child->clone();
    v = child;
    v->time = time;
int query(pnode v, int x, int l) {
 int ans = 0;
  for (int i = K - 1; i >= 0; --i) {
    int bit = (x \gg i) \& 1;
    if (v->to[bit]->go(l)) { // checking if this bit was

→ inserted before the range

      ans |= 1 << i:
      v = \dot{v} - > to[bit];
    } else {
      v = v \rightarrow to[bit ^ 1]:
  return ans;
void solve() {
 int n, q;
scanf("%d %d", &n, &q);
 for (int i = 0; i < n; ++i) {
    int a;
    scanf("%d", &a);
insert(a, i);
  while (q--) {
    int x, l, r;
scanf("%d %d %d", &x, &l, &r);
    printf("%d\n", query(version[r], ~x, l));
    // Trie version[r] contains the trie for [0...r]
    → elements
```

2.18 Segment Tree Beats

Description: For update $A_i \to A_i \mod x$ and similar, keep range min, max in node and lazily update whenever min = max. For update $A_i \to \min(A_i, x)$ and similar, keep range max, second max in node and lazily update whenever x > second max.

Time: $\mathcal{O}(\log^2 N)$, $\mathcal{O}(\log N)$

2.19 Segment Tree

Description: RMQ. Iterative, 0-indexed, point update, query [l,r). **Time:** $\mathcal{O}(\log N)$

```
const int N = 500010;
int n, a[N], tree[N << 1];
void init() {
   for (int i = 0; i < n; ++i) tree[n + i] = a[i];
   for (int i = n - 1; i >= 0; --i) {
      tree[i] = min(tree[i << 1], tree[i << 1 | 1]);
   }
}
void update(int p, int v) {
   for (tree[p += n] = v; p > 1; p >>= 1) {
      tree[p >> 1] = min(tree[p], tree[p ^ 1]);
   }
}
int query(int l, int r) {
   int ret = INT MAX;
   for (l += n, r += n; l < r; l >>= 1, r >>= 1) {
      if (l & 1) ret = min(ret, tree[l++]);
      if (r & 1) ret = min(ret, tree[--r]);
   }
}
```

```
2.20 Sparse Table Description: Sparse table for fast RMQ. Time: \mathcal{O}(1)
```

2.21 Treap

Description: Implicit treap - array with fast cut/join operation support. Below code supports finding root of each tree.

Time: $\mathcal{O}(\log N)$

```
mt19937 rng(chrono::steady clock::now().time since epoch().

→ count()):
struct node
  int heap, tot; ll value, sum; node *l, *r, *par;
  node (ll value) : value(value), sum(value), tot(0),
   → heap(rng()), l(nullptr), r(nullptr), par(nullptr) {}
inline int size (node *t) {return t ? t->tot : 0;}
inline ll sum (node *t) {return t ? t->sum : 0;}
inline void refresh (node *t) {
  if (t) {
    t'(')
t->tot = 1 + size(t->l) + size(t->r);
t->sum = sum(t->l) + sum(t->r) + t->value;
if (t->l) t->l->par = t;
    if (t->r) t->r->par = t;
     t -> par = nullptr;
void split (node *t, node* &l, node* &r, int key, int add =
if (!t) return void(l = r = nullptr);
  int cur key = add + size(t->l);
  if (cur_k^- key) >= key) split(t->l, l, t->l, key, add), r = t; | namespace Circular
  else spTit(t->r, t->r, r, key, cur key + 1), l = t;
  refresh(t);
void merge (node* &t, node *l, node *r) {
  if (!l or !r) t = l ? l : r;
  else if (l->heap > r->heap) merge(l->r, l->r, r), t = l;
else merge(r->l, l, r->l), t = r;
  refresh(t):
inline node* getRoot (node *u) {
  while (u->par) u = u -> par;
  return u;
int main() {
  int q; cin >> q;
  vector < node^* > a(q + 1);
  for (int i = 1; i \le q; ++i) {
    int cmd, x, y;
scanf("%d %d", &cmd, &x);
if (cmd == 1) {
       a[i] = new node(x);
    } else if (cmd == 2) {
    scanf("%d", &y);
       node *one = getRoot(a[x]), *two = getRoot(a[y]),

    *root = nullptr;

       if (one != two) merge(root, one, two);
    } else if (cmd == 3) {
   scanf("%d", &y);
       node *l, *r, *root = getRoot(a[x]);
```

```
split(root, l, r, y);
    } else
      printf("%lld\n", sum(getRoot(a[x])));
  return 0:
2.22 Trie
struct Trie {
  const int L = 26; int N;
  vector< vector<int> > next;
  vector<int> cnt;
  Trie() : N(0) {node(); }
  int node() {
  next.emplace_back(L, 0);
    cnt.emplace_back();
    return N++;
  //insert or delete
  void insert(const string &s, int a = 1){
    int u = 0, c;
for (int i = 0; i < s.length(); i++) {</pre>
      c = s[i] - 'a';
if(!next[u][c]) next[u][c] = node();
      cnt[u = next[u][c]] += a;
3 Geometry
3.1.1 Circle2D
struct Circle {
  Point o;
  double r
  Circle () {}
Circle (Point o, double r = 0): o(o), r(r) {}
  void read () { o.read(), scanf("%lf", &r); }
Point point(double rad) { return Point(o.x + cos(rad)*r,
   \rightarrow o.y + sin(rad)*r); }
  double getArea (double rad) { return rad * r * r / 2; }
  //area of the circular sector cut by a chord with central

→ angle alpha

  double sector(double alpha) {return r * r * 0.5 * (alpha
  → - sin(alpha));}
  using namespace Linear:
  using namespace Vectorial;
  using namespace Triangular;
  int getLineCircleIntersection (Point p, Point q, Circle

→ 0, double& t1, double& t2, vector<Point>& sol) {
    Vector v = q - p;
     //sol.clear();
    double a = v.x, b = p.x - 0.o.x, c = v.y, d = p.y - 0.o.x
     double e = a*a+c*c, f = 2*(a*b+c*d), g =

    b*b+d*d-0.r*0.r;
double delta = f*f - 4*e*g;
    if (dcmp(delta) < 0) return 0;</pre>
    if (dcmp(delta) == 0) {
  t1 = t2 = -f / (2 * e);
  sol.push_back(p + v * t1);
      return 1
    t1 = (-f - sqrt(delta)) / (2 * e); sol.push back(p + v
    t2 = (-f' + sqrt(delta)) / (2 * e); sol.push back(p + v)

    * t2);
    return 2;
  // signed area of intersection of circle(c.o, c.r) and
  // triangle(c.o, s.a, s.b) [cross(a-o, b-o)/2]
  double areaCircleTriIntersection(Circle c, Segment s){
    using namespace Linear;
```

```
double OA = getLength(c.o - s.a);
    double OB = getLength(c.o - s.b);
    // sector if (dcmp(getDistanceToSegment(c.o, s.a, s.b) - c.r) \Rightarrow
        return fix acute(getSignedAngle(s.a - c.o, s.b
         \leftarrow c.0)) \overline{*} (c.r*c.r) / 2.0:
        ′ triangle
    if (dcmp(0A - c.r) \le 0 \&\& dcmp(0B - c.r) \le 0)
        return getCross(c.o-s.b,s.a-s.b) / 2.0;
    // three part: (A, a) (a, b) (b, B)
vector<Point>Sect; double t1,t2;
    getLineCircleIntersection(s.a, s.b, c, t1, t2, Sect);
    return areaCircleTriIntersection(c, Segment(s.a,

→ Sect[0]))
        + areaCircleTriIntersection(c, Segment(Sect[0],

    Sect[1]))
        + areaCircleTriIntersection(c, Segment(Sect[1], s.b));
// area of intersecion of circle(c.o, c.r) and simple
        polyson(p[])
// Tested : ZOJ 2675 - Little Mammoth
double areaCirclePolygon(Circle c, Polygon p){
    double res = .0
    int n = p.size();
    for (int i = 0; i < n; ++ i)
  res += areaCircleTriIntersection(c, Segment(p[i],</pre>
         \rightarrow p[(i+1)%n]));
    return fabs(res);
     interior
// interior tangents (\tilde{d} = R - r)
                                            (d = 0)

(R - r < d < R + r) ---> 0
     concentric
 // secants
// exterior tangents (d = R + r)
                                                                                     ---> 1
// exterior
                                            (d > R + r)
                                                                                     ---> 2
int getPos(Circle o1, Circle o2) {
    using namespace Vectorial;
    double d = getLength(o1.o - o2.o);
    int in = dcmp(d - fabs(o1.r - o2.r)), ex = dcmp(d - fabs(o1.r - o2.r))
     \hookrightarrow (o1.r + o2.r));
    return in<0 ? -2': in==0? -1 : ex==0 ? 1 : ex>0? 2 : 0;
int getCircleCircleIntersection (Circle o1, Circle o2,

→ vector<Point>& sol)

    double d = getLength(o1.o - o2.o);
    if (dcmp(d) == 0) {
        if (dcmp(o1.r - o2.r) == 0) return -1;
        return 0;
    if (dcmp(o1.r + o2.r - d) < 0) return 0;
    if (dcmp(fabs(o1.r-o2.r) - d) > 0) return 0;
    Vector v = o2.o - o1.o;

double co = (o1.r*o1.r + getPLength(v) - o2.r*o2.r) / o1.r + o1.r + o2.r + o2.
    Point p1 = scale(cw(v,co, si), o1.r) + o1.o;
Point p2 = scale(ccw(v,co, si), o1.r) + o1.o;
    sol.push back(p1);
    if (p1 = p2) return 1;
    sol.push back(p2);
    return 2
double areaCircleCircle(Circle o1, Circle o2){
    Vector AB = 02.0 - 01.0
    double d = getLength(AB);
    if(d >= o1.r + o2.r) return 0;
    if(d + o1.r <= o2.r) return pi * o1.r * o1.r;
    if(d + o2.r <= o1.r) return pi * o2.r * o2.r;
    double alpha1 = acos((o1.r * o1.r + d * d - o2.r *
           o2.r) / (2.0 * o1.r * d));
    double alpha2 = acos((o2.r * o2.r + d * d - o1.r *
     \rightarrow o1.r) / (2.0 * o2.r * d));
    return o1.sector(2*alpha1) + o2.sector(2*alpha2);
```

```
int getTangents (Point p, Circle o, Vector* v) {
    Vector u = 0.0 - p;
    double d = getLength(u);
    if (d < o.r) return 0;
    else if (dcmp(d - o.r) == 0) {
       v[0] = rotate(u, pi / 2);
        return 1:
    } else {
        double ang = asin(o.r / d);
        v[0] = rotate(u, -ang);
        v[1] = rotate(u, ang);
        return 2;
int getTangentPoints (Point p, Circle o, vector<Point>&
      v) {
   Vector u = p - o.o
    double d = getLength(u);
    if (d < o.r) return 0;
    else if (dcmp(d - o.r) == 0) {
       v.push back(o.o+u);
        return 1:
    } else {
        double ang = acos(o.r / d);
        u = u / getLength(u) * o.r;
        v.push back(o.o+rotate(u, -ang));
        v.push back(o.o+rotate(u, ang));
        return 2;
int getTangents (Circle o1, Circle o2, Point* a, Point*
                                                                                                                        struct Segment{
                                                                                                                           Point a, b;
Segment(){}
 → b) {
   int cnt = 0;
   if (dcmp(o1.r-o2.r) < 0)  { swap(o1, o2); swap(a, b);  }
    double d2 = getPLength(o1.o - o2.o);
    double rdif = 01.r - 02.r, rsum = 01.r + 02.r;
if (dcmp(d2 - rdif * rdif) < 0) return 0;</pre>
    if (dcmp(d2) == 0 \&\& dcmp(o1.r - o2.r) == 0) return -1;
    double base = getAngle(o2.o - o1.o);
    if (dcmp(d2 - rdif * rdif) == 0) {
        a[cnt] = o1.point(base); b[cnt] = o2.point(base);
              cnt++
        return cnt;
    double ang = acos( (o1.r - o2.r) / sqrt(d2) );
    a[cnt] = o1.point(base+ang); b[cnt] =

→ o2.point(base+ang); cnt++;
    a[cnt] = o1.point(base-ang); b[cnt] =

→ o2.point(base-ang); cnt++;

    if (dcmp(d2 - rsum * rsum) == 0) {
        a[cnt] = o1.point(base); b[cnt] = o2.point(pi+base);

    cnt++;

    else if (dcmp(d2 - rsum * rsum) > 0) {
        double ang = acos( (o1.r + o2.r) / sqrt(d2) );
        a[cnt] = o1.point(base+ang); b[cnt] =

→ o2.point(pi+base+ang); cnt++
        a[cnt] = o1.point(base-ang); b[cnt] =
         → o2.point(pi+base-ang); cnt++;
    return cnt:
Circle CircumscribedCircle(Point p1, Point p2, Point p3) {
    double Bx = p2.x - p1.x, By = p2.y - p1.y;
    double Cx = p3.x - p1.x, Cy = p3.y - p1.y;
    double D = 2 * (Bx * Cy - By * Cx);
    double cx = (Cy * (Bx * Bx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By * (Cx * Cx + By * By) - By *
     \leftarrow Cy * Cy)) / D + p1.x;
    double cy = (Bx * (Cx * Cx + Cy * Cy) - Cx * (Bx * Bx +
     \rightarrow By * By)) / D + p1.y;
    Point p = Point(cx, cy);
    return Circle(p, getLength(p1 - p));
Circle InscribedCircle(Point p1, Point p2, Point p3) {
    double a = getLength(p2 - p3);
```

```
double b = getLength(p3 -
    double c = getLength(p1 - p2);
    Point p = (p1 * a + p2 * b + p3 * c) / (a + b + c);
    return Circle(p, getDistanceToLine(p, p1, p2));
  //distance \ From \ P : distance \ from \ Q = rp : rq
  Circle getApolloniusCircle(const Point& P, const Point& Q,
  → double rp, double rq ){
    rq *= rq ;
    rp *= rp ;
    double a = rq - rp ;
    assert(dcmp(a));

double g = rq * P.x - rp * Q.x ; g /= a ;

double h = rq * P.y - rp * Q.y ; h /= a ;
    double c = rq*P.x*P.x-rp*Q.x*Q.x+rq*P.y*P.y-rp*Q.y*Q.y;
    c /= a
    Point o(g,h);
    double R = g*g + h*h - c;
    R = sart(R):
    return Circle(o,R);
3.1.2 Line2D
```

Line (double a = 0, double b = 0, double c = 0): a(a),

typedef Point Vector: struct Line

double a, b, c;

 \rightarrow b(b), c(c) {}

```
Segment(Point aa, Point bb) {a=aa, b=bb;}
|struct DirLine {
  Point p;
  Vector v;
  double ang;
  DirLine ()
  DirLine (Point p, Vector v): p(p), v(v) { and =
   → atan2(v.y, v.x); ]
  bool operator < (const DirLine& u) const { return ang <</pre>

    u.ang: }

namespace Vectorial
  double getDot (Vector a, Vector b) { return a.x * b.x +
   → a.y * b.y; }
  double getCross (Vector a, Vector b) { return a.x * b.y
   → a.y * b.x; }
  double getLength (Vector a) { return sqrt(getDot(a, a)); }
double getPLength (Vector a) { return getDot(a, a); }
  double getAngle (Vector u) { return atan2(u.y, u.x); }
  double getSignedAngle (Vector a, Vector b) {return
      qetAngle(b)-getAngle(a);}
  Vector rotate (Vector a, double rad) { return
      Vector(a.x*cos(rad)-a.y*sin(rad),
     a.x*sin(rad)+a.y*cos(rad)); }
  Vector ccw(Vector a, double co, double si) {return
      Vector(a.x*co-a.y*si, a.y*co+a.x*si);}
  Vector cw (Vector a, double co, double si) {return
      Vector(a.x*co+a.y*si, a.y*co-a.x*si);}
  Vector scale(Vector a, double s = 1.0) {return a /
      getLength(a) * s:}
  Vector getNormal (Vector a) { double l = getLength(a);
     return Vector(-a.y/l, a.x/l); }
namespace Linear {
  using namespace Vectorial;
  Line getLine (double x1, double y1, double x2, double y2)
      { return Line(y2-y1, x1-x2, y1*x2-x1*y2); }
  Line getLine (double a, double b, Point u) { return
  \rightarrow Line(a, -b, u.y * b - u.x * a); }
  bool getIntersection (Line p, Line q, Point& o) {
    if (fabs(p.a * q.b - q.a * p.b) < eps)
```

```
return false;
 o.x = (q.c * p.b - p.c * q.b) / (p.a * q.b - q.a * p.b);
o.y = (q.c * p.a - p.c * q.a) / (p.b * q.a - q.b * p.a);
  return true;
bool getIntersection (Point p, Vector v, Point g, Vector
   w, Point& o) {
  if (dcmp(getCross(v, w)) == 0) return false;
  Vector u = p - a:
  double k = getCross(w, u) / getCross(v, w);
 o = p + v * k;
  return true:
double getDistanceToLine (Point p, Point a, Point b) {

→ return fabs(getCross(b-a, p-a) / getLength(b-a)); }

double getDistanceToSegment (Point p, Point a, Point b) {
  if (a == b) return getLength(p-a);
  Vector v1 = b - a, v2 = p - a, v3 = p - b;
  if (dcmp(getDot(v1, v2)) < 0) return getLength(v2);</pre>
  else if (dcmp(qetDot(v1, v3)) > 0) return qetLength(v3);
  else return fabs(getCross(v1, v2) / getLength(v1));
double getDistanceSegToSeg (Point a,Point b,Point c,Point
→ d){
  double Ans=INT MAX;
  Ans=min(Ans, getDistanceToSegment(a,c,d));
  Ans=min(Ans,getDistanceToSegment(b,c,d));
  Ans=min(Ans,getDistanceToSegment(c,a,b))
  Ans=min(Ans,getDistanceToSegment(d,a,b));
  return Ans;
Point getPointToLine (Point p, Point a, Point b) { Vector
\rightarrow v = b-a; return a+v*(qetDot(v, p-a) / qetDot(v,v)); }
bool onSegment (Point p, Point a, Point b) { return
    dcmp(getCross(a-p, b-p)) == 0 \&\& dcmp(getDot(a-p,
   b-p)) <= 0; }
bool haveIntersection (Point al. Point a2. Point b1.
    Point b2) -
  if(onSegment(a1,b1,b2)) return true;
  if(onSegment(a2,b1,b2)) return true;
  if(onSegment(b1,a1,a2)) return true;
  if(onSegment(b2,a1,a2)) return true; //Case of touch
  double c1=getCross(a2-a1, b1-a1), c2=getCross(a2-a1,
      b2-a1), c3=qetCross(b2-b1, a1-b1),
     c4=getCross(b2-b1,a2-b1);
  return dcmp(c1)*dcmp(c2) < 0 & dcmp(c3)*dcmp(c4) < 0;
bool onLeft(DirLine l, Point p) { return dcmp(l.v *
\rightarrow (p-l.p)) \Rightarrow 0; }
```

3.1.3 Point2D

```
const double pi = 4 * atan(1);
const double eps = 1e-6;
inline int dcmp (double x) { if (fabs(x) < eps) return 0;
    else return x < 0 ? -1 : 1;
double fix acute(double th) {return th<-pi ? (th+2*pi):</pre>

→ th>pi ? (th-2*pi) : th;}
inline double getDistance (double x, double y) { return
\rightarrow sqrt(x * x + y * y); }
inline double torad(double deg) { return deg / 180 * pi; }
struct Point {
  double x, y
 Point (double x = 0, double y = 0): x(x), y(y) {} void read () { scanf("%lf%lf", &x, &y); }
  void write () { printf("%lf %lf", x, y); }
  bool operator == (const Point& u) const { return dcmp(x -
  \rightarrow u.x) == 0 && dcmp(y - u.y) == 0; }
  bool operator != (const Point& u) const { return !(*this
   \rightarrow == 11) · }
  bool operator < (const Point& u) const { return dcmp(x -
  \rightarrow u.x) < 0 | | (dcmp(x-u.x)==0 && dcmp(y-u.y) < 0); }
```

```
bool operator > (const Point& u) const { return u <</pre>
  → *this; }
 bool operator <= (const Point& u) const { return *this <</pre>

    u || *this == u; }

 bool operator >= (const Point& u) const { return *this >

    u || *this == u; }

 Point operator + (const Point& u) { return Point(x + u.x,
     v + u.y); }
 Point operator - (const Point \( \omega \) u) { return Point (x - u.x,
  \rightarrow y - u.y); }
 Point operator * (const double u) { return Point(x * u, y
  Point operator / (const double u) { return Point(x / u, y
  \rightarrow / u); }
  double operator * (const Point& u) { return x*u.y -

→ y*u.x; }

inline double getDistance (Point a, Point b) { double
\rightarrow x=a.x-b.x, y=a.y-b.y; return sqrt(x*x + y*y); }
```

```
3.1.4 Polygon2D
typedef vector<Point> Polygon;
namespace Polygonal {
  using namespace Vectorial;
  using namespace Linear;
  using namespace Triangular;
  double getSignedArea (Point* p, int n) {
    double ret = 0;
    for (int i = 0; i
      ret += (p[i]-p[0]) * (p[i+1]-p[0]);
    return ret/2;
  int isPointInPolygon (Point o, Point* p, int n) {
    int wn = 0;
for (int i = 0; i < n; i++) {</pre>
      int j = (i + 1) % n;
      if (onSegment(o, p[i], p[i]) \mid\mid o == p[i]) return 0;
      int k = dcmp(getCross(p[j] - p[i], o-p[i]));
      int d1 = dcmp(p[i].y - o.y);
      int d2 = dcmp(p[j].y - o.y);
if (k > 0 \&\& d1 \le 0 \&\& d2 > 0) wn++;
      if (k < 0 \&\& d2 <= 0 \&\& d1 > 0) wn--;
    return wn ? -1 : 1;
  void rotatingCalipers(Point *p, int n, vector<Segment>&

    sol) {
    sol.clear();

    int j = 1; p[n] = p[0];
    for (int i = 0; i < n; i++) {
  while (getCross(p[j+1]-p[i+1], p[i]-p[i+1]) >

    getCross(p[j]-p[i+1], p[i]-p[i+1]))

         j = (j+1) \% n;
      sol.push_back(Segment(p[i],p[j]));
      sol.push back(Segment(p[i + 1], p[j + 1]));
  void rotatingCalipersGetRectangle (Point *p, int n,

→ double& area, double& perimeter) {
    p[n] = p[0];
    int l = 1, r = 1, j = 1;
    area = perimeter = 1e20;
    for (int i = 0; i < n; i++) {
  Vector v = (p[i+1]-p[i]) / getLength(p[i+1]-p[i]);</pre>
      while (dcmp(getDot(v, p[r%n]-p[i]) - getDot(v,
           p[(r+1)%n]-p[i])) < 0) r++;
      while (j < r \mid \mid dcmp(getCross(v, p[j%n]-p[i]) -
           getCross(v,p[(j+1)%n]-p[i])) < 0) j++
      while (l < j \mid | dcmp(getDot(v, p[l%n]-p[i]) -
           getDot(v, p[(l+1)%n]-p[i])) > 0) l++;
      double w = getDot(v, p[r%n]-p[i])-getDot(v,
           p[l%n]-p[i]);
      double h = getDistanceToLine (p[j%n], p[i], p[i+1]);
      area = min(area, w * h);
```

```
perimeter = min(perimeter, 2 * w + 2 * h);
Polygon cutPolygon (Polygon u, Point a, Point b) {
  Polygon ret;
  int n = u.size()
  for (int i = 0; i < n; i++) {
  Point c = u[i], d = u[(i+1)%n];
  if (dcmp((b-a)*(c-a)) >= 0) ret.push_back(c);
    if (dcmp((b-a)*(d-c)) != 0) {
      Point t;
      qetIntersection(a, b-a, c, d-c, t);
      if (onSegment(t, c, d))
         ret.push back(t);
  return ret;
int halfPlaneIntersection(DirLine* li. int n. Point*
→ poly) {
  sort(li, li + n);
  int first, last;
  Point* p = new Point[n];
  DirLine* q = new DirLine[n];
  q[first=last=0] = li[0];
  for (int i = 1; i < n; i++)
    while (first < last && !onLeft(li[i], p[last-1]))</pre>
        last--
    while (first < last && !onLeft(li[i], p[first]))</pre>
        first++
    q[++last] = li[i];
    if (dcmp(q[last].v * q[last-1].v) == 0) {
      if (onLeft(q[last], li[i].p)) q[last] = li[i];
    if (first < last)</pre>
      getIntersection(q[last-1].p, q[last-1].v,

¬ q[last].p, q[last].v, p[last-1]);
  while (first < last \&\& !onLeft(q[first], p[last-1]))
      last--;
  if (last - first <= 1) { delete [] p; delete [] q;</pre>
      return 0; }
  getIntersection(q[last].p, q[last].v, q[first].p,

¬ q[first].v, p[last]);

  for (int i = first; i <= last; i++) poly[m++] = p[i];</pre>
  delete [] p; delete [] q;
  return m;
Polygon simplify (const Polygon& poly) {
  Polygon ret;
  int n = poly.size();
  for (int i = 0; i < n; i++) {
  Point a = poly[i];</pre>
    Point b = poly[(i+1)%n];
Point c = poly[(i+2)%n];
    if (dcmp((b-a)*(c-b)) != 0 \&\& (ret.size() == 0 || b
     ret.push back(b);
  return ret;
Point ComputeCentroid( Point* p, int n){
  Point c(0,0);
  double scale = 6.0 * getSignedArea(p,n);
  for (int i = 0; i < n; i++){
  int j = (i+1) % n;</pre>
    c = c + (p[i]+p[j])*(p[i].x*p[j].y - p[j].x*p[i].y);
  return c / scale;
// Tested : https://www.spoj.com/problems/INOROUT
// pt must be in ccw order with no three collinear points
// returns inside = 1, on = 0, outside = -1
int pointInConvexPolygon(Point* pt, int n, Point p){
```

```
assert(n >= 3);
int lo = 1 , hi = n - 1 ;
while(hi - lo > 1){
    int mid = (lo + hi) / 2
    if(getCross(pt[mid] - pt[0], p - pt[0]) > 0) lo = mid;
    else hi = mid;
  bool in = pointInTriangle(pt[0], pt[lo], pt[hi], p);
  if(!in) return -1;
  if(qetCross(pt[lo] - pt[lo-1], p - pt[lo-1]) == 0)

→ return 0;

  if(getCross(pt[hi] - pt[lo], p - pt[lo]) == 0) return 0;
  if(getCross(pt[hi] - pt[(hi+1)%n], p - pt[(hi+1)%n]) ==

→ 0) return 0;

  return 1;
// Tested : https://toph.co/p/cover-the-points
// Calculate [ACW, CW] tangent pair from an external point
#define CW
#define ACW
int direction(Point st, Point ed, Point q)
                                                     {return
→ dcmp(getCross(ed - st, q - ed));}
bool isGood(Point u, Point v, Point Q, int dir) {return

    direction(0, u, v) != -dir;}

Point better(Point u, Point v, Point Q, int dir) {return
    direction(Q, u, v) == dir ? u : v;
Point tangents(Point* pt, Point Q, int dir, int lo, int

→ hi){
 while(hi - lo > 1){
int_mid = (lo + hi)/2;
    bool pvs = isGood(pt[mid], pt[mid - 1], 0, dir);
bool nxt = isGood(pt[mid], pt[mid + 1], 0, dir);
    if(pvs && nxt) return pt[mid];
    if(!(pvs || nxt)){
      Point p1 = tangents(pt, Q, dir, mid+1, hi);
      Point p2 = tangents(pt, Q, dir, lo, mid - 1);
      return better(p1, p2, Q, dir);
    if(!pvs){
      if(direction(Q, pt[mid], pt[lo]) == dir) hi = mid
      else if(better(pt[lo], pt[hi], Q, dir) == pt[lo])

→ hi = mid - 1:

      else lo = mid + 1;
    if(!nxt){
      if(direction(Q, pt[mid], pt[lo]) == dir) lo = mid
      else if(better(pt[lo], pt[hi], Q, dir) == pt[lo])
         hi = mid - 1
      else lo = mid + 1:
  Point ret = pt[lo];
  for(int i = lo + 1; i \le hi; i + +) ret = better(ret,
  → pt[i], Q, dir);
  return ret;
// [ACW, CW] Tangent
pair<Point, Point> get tangents(Point* pt, int n, Point
  Point acw_tan = tangents(pt, Q, ACW, 0, n - 1);
  Point cw \overline{t}an = tangents(pt, Q, CW, 0, n - 1);
  return make pair(acw tan, cw tan);
```

3.1.5 Star2D

```
struct Star{
  int n; // number of side of the star
double r; // radius of the circum-circle
  Star(int n, double r) {this->n=n; this->r=r;}
  double getArea(){
```

```
double theta=pi/n;
    double s=2*r*sin(theta);
double R=0.5*s/tan(theta);
    double a=0.5*n*s*R;
    double a2=0.25*s*s/tan(1.5*theta);
    return a-n*a2;
3.1.6 Triangle2D
namespace Triangular {
 using namespace Vectorial;
  double getAngle (double a, double b, double c) { return
  \rightarrow acos((a*a+b*b-c*c) / (2*a*b)); }
 double getArea (double a, double b, double c) { double s
  double getArea (double a, double h) { return a * h / 2; }
  double getArea (Point a, Point b, Point c) { return
     fabs(getCross(b - a, c - a)) / 2;
  double getDirArea (Point a, Point b, Point c) { return
  \rightarrow getCross(b - a, c - a) / 2;}
  //ma/mb/mc = length of median from side a/b/c
  double getArea (double ma, double mb, double mc) {double
      s=(ma+mb+mc)/2; return 4/3.0 *
  //ha/hb/hc = length of perpendicular from side a/b/c
  double get Area(double ha, double hb, double hc){
   double H=(1/ha+1/hb+1/hc)/2; double A = 4 * sqrt(H *
    \rightarrow (H-1/ha)*(H-1/hb)*(H-1/hc)); return 1.0/ A;
  bool pointInTriangle(Point a, Point b, Point c, Point p){
    double s1 = getArea(a,b,c);
    double s2 = getArea(p,b,c) + getArea(p,a,b) +

    getArea(p,c,a);

    return dcmp(s1 - s2) == 0;
};'
3.2 3D
3.2.1 Line3D
typedef Point3D Vector3D;
typedef vector<Point> Polygon;
typedef vector<Point3D> Polyhedron;
namespace Vectorial{
 double getDot (Vector3D a, Vector3D b) {return
     a.x*b.x+a.y*b.y+a.z*b.z;
 Vector3D getCross(Vector3D a, Vector3D b) {return
      Point3D(a.y*b.z-a.z*b.y, a.z*b.x-a.x*b.z,
     a.x*b.y-a.y*b.x);}
  double getLength (Vector3D a)
                                          {return

    sqrt(getDot(a, a)); }

  double getPLength (Vector3D a)
                                          {return getDot(a,
     a): }
 Vector3D unitVector(Vector3D v)
                                             {return

    v/getLength(v);}

  double getUnsignedAngle(Vector3D u, Vector3D v){
    double cosTheta = getDot(u,v)/getLength(u)/getLength(v);
cosTheta = max(_1.0,min(1.0,cosTheta));
    return acos(cosTheta);
 Vector3D rotate(Vector3D v, Vector3D a, double rad) {
   a = unitVector(a);
return v * cos(rad) + a * (1 - cos(rad)) * getDot(a,v)

→ + getCross(a,v) * sin(rad);
  Vector3D v; Point3D o;
Line3D() {};
  Line3D(Vector3D v,Point3D o):v(v),o(o){}
  Point3D getPoint(double t) {return o + v*t;}
namespace Linear{
  using namespace Vectorial;
```

```
double getDistSq(Line3D l, Point3D p)
                                                    {return
      getPLength(getCross(l.v,p-l.o))/getPLength(l.v);}
  double getDistLinePoint(Line3D l, Point3D p)
                                                    {return
      sqrt(getDistSq(l,p));}
  bool cmp(Line3D l,Point3D p, Point3D q)
                                                      {return
      getDot(l.v,p) < getDot(l.v,q);}</pre>
  Point3D projection(Line3D l,Point3D p)
                                                      {return
  - l.o + l.v * getDot(l.v,p-l.o)/getPLength(l.v);}
Point3D reflection(Line3D l,Point3D p) {re
                                                      {return
      projection(l,p)+projection(l,p)-p;}
  double getAngle(Line3D l,Line3D m)
                                                    {return
      getUnsignedAngle(l.v,m.v);}
  bool isParallel(Line3D p,Line3D q)
                                                    {return
      dcmp(getPLength(getCross(p.v,q.v))) == 0;}
  bool isPerpendicular(Line3D p,Line3D q)
                                                    {return

    dcmp(getDot(p.v,q.v)) == 0;
}
  double getDist(Line3D l, Line3D m){
    Vector3D n = getCross(l.v, m.v);
    if(getPLength(n) == 0) return getDistLinePoint(l,m.o);
    else return fabs(getDot(m.o-l.o , n)) / getLength(n);
  Point3D getClosestPointOnLine1(Line3D l,Line3D m){
    Vector3D n = getCross(l.v, m.v);
    Vector3D n2 = getCross(m.v, n);
    return l.o + l.v * getDot(m.o-l.o, n2) / getDot(l.v,
     3.2.2 Plane3D
```

```
struct Plane{
  Vector3D n; //normal n
  double d; //getDot(n,p) = d for any point p on the plane
 Plane() {}
  Plane(Vector3D n, double d) : n(n), d(d) {}
 Plane(Vector3D n, Point3D p) : n(n), d(Vectorial ::
     qetDot(n,p)) {}
 Plane(const Plane \&p) : n(p.n), d(p.d) {}
namespace Planar{
 using namespace Vectorial;
 Plane getPlane(Point3D a,Point3D b,Point3D c) {return
     Plane(getCross(b-a,c-a),a);}
  Plane translate(Plane p, Vector3D t)
                                                {return
 → Plane(p.n, p.d+getDot(p.n,t));}
Plane shiftUp(Plane p,double dist)
                                              {return
 Plane(p.n, p.d+dist*getLength(p.n));}
Plane shiftDown(Plane p,double dist) {
                                              {return
     Plane(p.n, p.d-dist*getLength(p.n));}
  double getSide(Plane p,Point3D a)
     getDot(p.n,a)-p.d;}
  double getDistance(Plane p,Point3D a) {return
      fabs(getSide(p,a))/getLength(p.n);}
 Point3D projection(Plane p, Point3D a)
                                             {return
 - a-p.n*getSide(p,a)/getPLength(p.n);}
Point3D reflection(Plane p,Point3D a) {return
     a-p.n*getSide(p,a)/getPLength(p.n)*2;}
  bool intersect(Plane p, Line3D l, Point3D& a){
   if(dcmp(getDot(p.n,l.v)) == 0) return false;
    a = l.o - l.v * getSide(p,l.o) / getDot(p.n,l.v);
    return true:
 bool intersect(Plane p,Plane q,Line3D& l){
    l.v = getCross(p.n,q.n);
    if(dcmp(getPLength(l.v)) == 0) return false;
    l.o = getCross(q.n*p.d - p.n*q.d , l.v) /
        getPLength(l.v);
    return true;
 double getAngle(Plane p,Plane q)
                                           {return
     getUnsignedAngle(p.n.g.n):}
  bool isParallel(Plane p,Plane q)
                                           {return

    dcmp(getPLength(getCross(p.n,q.n))) == 0;}
```

```
bool isPerpendicular(Plane p,Plane q) {return

    dcmp(getDot(p.n,q.n)) == 0;
}
bool getAngle(Plane p,Line3D l)
                                          {return pi/2.0 -
    getUnsignedAngle(p.n,l.v);}
bool isParallel(Plane p,Line3D l)
                                          {return
    dcmp(getDot(p.n,l.v)) == 0;
bool isPerpendicular(Plane p,Line3D l)
                                          {return
   dcmp(getPLength(getCross(p.n,l.v))) == 0;}
Line3D perpThrough(Plane p,Point3D a)
                                            {return
   Line3D(p.n,a);}
Plane perpThrough(Line3D l, Point3D a)
                                             {return
   Plane(l.v,a);}
//Modify p.n if necessary with respect to the reference
   noint
Vector3D rotateCCW90(Plane p, Vector3D d)
    getCross(p.n,d);]
Vector3D rotateCW90(Plane p, Vector3D d)
   qetCross(d,p.n);}
pair<Point3D, Point3D> TwoPointsOnPlane(Plane p){
  Vector3D N = p.n; double D = p.d;
  assert(dcmp(N.x) != 0 \mid | dcmp(N.y) \mid = 0 \mid | dcmp(N.z) \mid =
  if(dcmp(N.x) == 0 \&\& dcmp(N.y) == 0) return
      \{Point3D(1,0,D/N.z), Point3D(0,1,D/N.z)\};
  if(dcmp(N.y)) == 0 \&\& dcmp(N.z) == 0) return
      {Point3D(D/N.x,1,0), Point3D(D/N.x,0,1)};
  if(dcmp(N.z) == 0 \&\& dcmp(N.x) == 0) return
   → {Point3D(1,D/N.y,0), Point3D(0,D/N.y,1)};
  if(dcmp(N.x) == 0) return {Point3D(1,D/N.y,0),
   → Point3D(0,0,D/N.z)};
  if(dcmp(N.y) == 0) return \{Point3D(0,1,D/N.z),
      Point3D(D/N.x,0,0)};
  if(dcmp(N.z) == 0) return {Point3D(D/N.x,0,1),
      Point3D(0,D/N.y,0)};
  if (dcmp(D)!=0) return \{Point3D(D/N.x,0,0),
      Point3D(0,D/N.y,0)};
  return {Point3D(N.y,-N.x,0), Point3D(-N.y,N.x,0)};
Point From3Dto2D(Plane p, Point3D a){
  assert( dcmp(getSide(p,a)) == 0 );
  auto Pair = TwoPointsOnPlane(p);
  Point3D A = Pair.first;
  Point3D B = Pair second;
 Vector3D Z = p.n;
Vector3D X = B - A;
                                      Z = Z / getLength(Z);
X = X / getLength(X);
  Vector3D Y = getCross(Z,X);
 Vector3D v = a - A;
assert(_dcmp(getDot(v,Z)) == 0);
  return Point(getDot(v,X),getDot(v,Y));
Point3D From2Dto3D(Plane p, Point a){
  auto Pair = TwoPointsOnPlane(p);
  Point3D A = Pair.first;
  Point3D B = Pair second;
  Vector3D Z = p.n;
                                      Z = Z / getLength(Z);
  Vector3D X = B - A;
                                      X = X / getLength(X);
  Vector3D Y = getCross(Z,X);
  return A + X * a.x + Y * a.y;
```

3.2.3 Point3D

```
using namespace std;
const double pi = 4 * atan(1);
const double eps = 1e-10:
inline int dcmp (double x) { if (fabs(x) < eps) return 0;
   else return x < 0 ? -1 : 1;
inline double torad(double deg) { return deg / 180 * pi; }
struct Point{
 double x, y
 Point (double x = 0, double y = 0): x(x), y(y) {}
```

```
10
```

```
Point operator + (const Point& u) { return Point(x + u.x,
  \rightarrow y + u.y); }
  Point operator - (const Point \( u \) { return Point (x - u.x,
  \rightarrow y - u.y); }
  Point operator * (const double u) { return Point(x * u, y
  \rightarrow * u); }
  Point operator / (const double u) { return Point(x / u, y
  double operator * (const Point& u) { return x*u.y -

→ y*u.x; }

struct Point3D{
  double x, y,
Point3D() {}
  void read () {cin>>x>>y>>z;}
  void write () {cout<<x<<" --- "<<y<<" --- "<<z<<"\n";}</pre>
  Point3D(double x, double y, double z) : x(x), y(y), z(z)
  Point3D(const Point3D &p) : x(p.x), y(p.y), z(p.z) {}
Point3D operator +(Point3D b) {return
     Point3D(x+b.x,y+b.y, z+b.z);}
  Point3D operator - (Point3D b) {return
  \rightarrow Point3D(x-b.x,y-b.y, z-b.z);}
  Point3D operator *(double b) {return Point3D(x*b,y*b,
  Point3D operator / (double b) {return Point3D(x/b,y/b,
  \rightarrow z/b);}
  bool operator <(Point3D b) {return</pre>
      make pair(make pair(x,y),z) <
     make pair(make pair(b.x,b.y),b.z);}
  bool operator ==(Point3D b) {return dcmp(x-b.x)==0 &&
     dcmp(y-b.y) == 0 \&\& dcmp(z-b.z) == 0;
3.2.4 Poygon3D
namespace Poly{
```

```
using namespace Vectorial;
  Sphere SmallestEnclosingSphere(Polyhedron p) {
    int n = p.size();
    Point3D C(0,0,0);
    for(int i=0; i< n; i++) C = C + p[i];
    C = C / n;
    double P = 0.1;
    int pos = 0:
    int Accuracy = 70000;
    for (int i = 0: i < Accuracy: i++) {
      pos = 0;
      for (int j = 1; j < n; j++){
        if(getPLength(C - p[j]) > getPLength(C - p[pos]))
         \rightarrow pos = 1;
      C = C + (p[pos] - C)*P;

P *= 0.998;
    return Sphere(C, getPLength(C - p[pos]));
struct Pyramid{
              //number of side of the pyramid
  int n;
  double l; //length of each side
  double ang
 Pyramid(int n, double l) {this->n=n; this->l=l; ang=pi/n;}
double getBaseArea() {return l * l * n / (4* tan(ang));}
  double getHeight() {return l * sqrt(1 - 1 )
  \rightarrow (4*sin(ang)*sin(ang)));}
  double getVolume() {return getBaseArea() * getHeight() /

→ 3;}
```

3.2.5 Sphere3D

```
struct Sphere{
 Point3D c:
 double r;
```

```
Sphere() {}
  Sphere(Point3D c, double r) : c(c), r(r) {}
  //Spherical cap with polar angle theta
  double Height(double alpha)
                                      {return
   \rightarrow r*(1-cos(alpha));}
  double BaseRadius(double alpha)
                                      {return r*sin(alpha);}
  double Volume(double alpha)
                                       {double h =
      Height(alpha); return pi*h*h*(3*r-h)/3.0;}
  double SurfaceArea(double alpha) {double h =

→ Height(alpha); return 2*pi*r*h;}
namespace Spherical{
  using namespace Vectorial;
  using namespace Planar;
  using namespace Linear;
  Sphere CircumscribedSphere(Point3D a.Point3D b.Point3D
  assert( dcmp(getSide(getPlane(a,b,c), d)) != 0);
    Plane U = Plane(a-b, (a+b)/2);
Plane V = Plane(b-c, (b+c)/2);
Plane W = Plane(c-d, (c+d)/2);
    Line3D l1, l2;
    bool ret1 = intersect(U,V,l1);
bool ret2 = intersect(V,W,l2);
    assert(ret1 == true && ret2 == true);
    assert( dcmp(getDist(l1,l2)) == 0);
    Point3D C = getClosestPointOnLine1(l1,l2);
    return Sphere(C, getLength(C-a));
  pair<double, double> SphereSphereIntersection(Sphere
      s1,Sphere s2){
    double d = getLength(s1.c-s2.c);
    if(dcmp(d - s1.r - s2.r) >= 0) return {0,0};
    double R1 = max(s1.r,s2.r); double R2 = min(s1.r,s2.r);
    double y = R1 + R2 - d;
    double x = (R1*R1 - R2*R2 + d*d) / (2*d);
    double h1 = R1 - x:
    double h2 = y - h1;
    double Volume
                         = pi*h1*h1*(3*R1-h1)/3.0 +
    pi*h2*h2*(3*R2-h2)/3.0;
double SurfaceArea = 2*pi*R1*h1 + 2*pi*R2*h2;
    return make pair(SurfaceArea, Volume);
  Point3D getPoint0nSurface(double r,double Lat,double Lon){
    Lat = torad(Lat); //North-South
Lon = torad(Lon); //East-West
    return Point3D(r*cos(Lat)*cos(Lon)
        r*cos(Lat)*sin(Lon), r*sin(Lat));
  int intersect(Sphere s,Line3D l, vector<Point3D>& ret){
    double h2 = s.r*s.r - getDistSq(l,s.c);
    if(dcmp(h2)<0) return 0;</pre>
    Point3D p = projection(l,s.c);
    if(dcmp(h2) == 0) {ret.push_back(p); return 1;}
    Vector3D h = l.v * sart(h2) / getLength(l.v):
    ret.push back(p-h); ret.push back(p+h); return 2;
  double GreatCircleDistance(Sphere s,Point3D a,Point3D b){
    return s.r * getUnsignedAngle(a-s.c, b-s.c);
3.3 Closest Pair
```

Finds the closest pair of points. Time: $O(n \log n)$

```
#include "Point.h"
typedef Point<ll> P;
pair<P, P> closest(vector<P> v) {
 assert(sz(v) > 1);
  sort(all(v), [](P a, P b) { return a.y < b.y; });
  pair<ll, pair<P, P>> ret{LLONG MAX, {P(), P()}};
  int j = 0;
```

```
for (P p : v) {
   P d{1 + (ll)sqrt(ret.first), 0};
  while (v[j].y <= p.y - d.x) S.erase(v[j++]);
auto lo = S.lower bound(p - d), hi = S.upper bound(p +</pre>
  for (','lo != hi; ++lo)
  ret = min(ret, {(*lo - p).dist2(), {*lo, p}});
   S.insert(p);
return ret.second;
```

3.4 Convex Hull

```
typedef pair <ll, ll> point;
inline ll area (point a, point b, point c) {
        return (b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x 
vector <point> convexHull (vector <point> p) {
        int n = p.size(), m = 0;
        if (n < 3) return p;</pre>
        vector <point> hull(n + n);
        sort(p.begin(), p.end());
         for (int i = 0; i < n; ++i)
                 while (m > 1) and area (huilim - 2), hullim - 1, p[i]
                 for (int i = n - 2, j = m + 1; i >= 0; --i) {
                 while (m >= j \text{ and area}(hull[m - 2], hull[m - 1], p[i])
                                 <= 0) --m;
                  hull[m++1] = p[i]:
         hull.resize(m - 1); return hull;
```

3.5 Polyhedron Volume

Description: Magic formula for the volume of a polyhedron. Faces should point outwards.

```
template<class V, class L>
double signedPolyVolume(const V& p, const L& trilist) {
double v = 0:
for (auto i : trilist) v +=

→ p[i.a].cross(p[i.b]).dot(p[i.c]);
```

3.6 Spherical Distance

Description: Returns the shortest distance on the sphere with radius radius between the points with azimuthal angles (longitude) f1 (ϕ_1) and f2 (ϕ_2) from x axis and zenith angles (latitude) t1 (θ_1) and t2 (θ_2) from z axis (0 = north pole). All angles measured in radians. The algorithm starts by converting the spherical coordinates to cartesian coordinates so if that is what you have you can use only the two last rows, dx*radius is then the difference between the two points in the x direction and d*radius is the total distance between the points.

```
double sphericalDistance(double f1, double t1,
  double f2, double t2, double radius) {
double dx = sin(t2)*cos(f2) - sin(t1)*cos(f1);
double dy = sin(t2)*sin(f2) - sin(t1)*sin(f1);
double dz = cos(t2) - cos(t1);
double d = sqrt(dx*dx + dy*dy + dz*dz);
 return radius*2*asin(d/2);
```

4 Graph

a, b, c,... to a 2-SAT problem, so that an expression of the type void dfs(int u, int p) { (a|||b)&&(|a|||c)&&(d||||b)&&... becomes true, or reports that it is unsatisfiable. Negated variables are represented by bit-inversions (x). Usage: TwoSat ts(number of boolean variables); ts.either(0,); // Var 0 is true or var 3 is false ts.set_value(2); // Var 2 is true $ts.at_most_one(0,2); // \le 1 \text{ of vars } 0, \text{ and } 2 \text{ are true } ts.solve(); // Re$ turns true iff it is solvable ts.values[0..N-1] holds the assigned values

Time: $\mathcal{O}(N+E)$, where N is the number of boolean variables, and E is the number of clauses.

```
struct TwoSat {
  int N;
  vector<vector<int>> gr;
  vector<int> values; // 0 = false, 1 = true
  TwoSat(int n = 0) : N(n), gr(2 * n) {}
  int add_var() { // (optional)
    gr.emplace back();
    gr.emplace back();
    return N++:
  void either(int f, int j)
    f = max(2 * f, -1 - 2 * f);
j = max(2 * j, -1 - 2 * j);
gr[f].push_back(j ^ 1);
    ğr[j].push_back(f ^ 1);
  void set value(int x) { either(x, x); }
  void at most one(const vector<int> &li) { // (optional)
    if ((int)li.size() <= 1) return;</pre>
    int `cur = ~li[0];
    for (int i = 2; i < (int)li.size(); i++) {
      int next = add var();
      either(cur, ~lī[i]);
      either(cur, next);'
either(~li[i], next);
cur = ~next;
    either(cur, ~li[1]);
  vector<int> val, comp, z;
  int time = 0:
  int dfs(int i)
    int low = val[i] = ++time, x;
    z.push_back(i);
    for (auto &e : gr[i])
      if (!comp[e]) low = min(low, val[e] ?: dfs(e));
    if (low == val[i]) do {
         x = z.back();
         z.pop back();
         comp[\overline{x}] = low;
         if (values[x >> 1] == -1) values[x >> 1] = x & 1;
    } while (x != i);
return val[i] = low;
  bool solve() {
    values.assign(N, -1);
    val.assign(2 * N, 0);
    comp = val;
    for (int i = 0; i < 2 * N; i++) {
  if (!comp[i]) dfs(i);</pre>
    for (int i = 0; i < N; i++) {
   if (comp[2 * i] == comp[2 * i + 1]) return 0;</pre>
    return 1:
```

4.2 AP and Bridge

```
using namespace std;
```

```
const int N = 1e5 + 10;
4.1 2-SAT

Description: Calculates a valid assignment to boolean variables int vis[N], low[N], cut[N], now = θ, n, m;
                                                                       low[u] = vis[u] = ++now; int ch = 0;
                                                                        for(int v : g[u]){
                                                                          if(v ^ p)
                                                                            if(vis[v]) low[u] = min(low[u], vis[v]);
                                                                            else {
                                                                              ch++; dfs(v, u);
low[u] = min(low[u], low[v]);
if(p + 1 && low[v] >= vis[u]) cut[u] = 1;
                                                                              if(low[v] > vis[u]) {
                                                                                printf("Bridge %d -- %d\n", u, v);
                                                                       } if(p == -1 && ch > 1) cut[u] = 1;
                                                                      void fuck() {
                                                                        memset(vis, 0, sizeof vis);
                                                                       memset(low, 0, sizeof low)
                                                                       memset(cut, 0, sizeof cut)
                                                                        for(int'i = 0; i < n; i++) {
                                                                         if(!vis[i]) dfs(i, -1);
```

4.3 CompressTree

Description: Given a rooted tree and a subset S of nodes, compute the minimal subtree that contains all the nodes by adding all (at most |S|-1) pairwise LCAs and compressing edges. Tree is stored in virt[] with edge costs at cost[].

Time: $\mathcal{O}(|S|\log|S|)$

```
vector <int> g[N], virt[N], cost[N];
int n, m, ptr, h[N], in[N], stk[N];
void add edge (int u, int v) {
 if (u = v) return;
  virt[u].emplace back(v);
  virt[v].emplace_back(u);
  int w = abs(h[u] - h[v]);
  cost[u].emplace_back(w);
  cost[v].emplace_back(w);
void buildTree (vector <int> &nodes) {
 if (nodes.size() <= 1) return;
sort(nodes.begin(), nodes.end(), [] (int x, int y)</pre>
      {return in[x] < in[y];});
  int root = get lca(nodes[0], nodes.back()), sz =

→ nodes.size();
ptr = 0, stk[ptr++] = root;
  for (int i = 0; i < sz; ++i)
    int u = nodes[i], lca = get lca(u, stk[ptr - 1]);
    if (lca == stk[ptr - 1]) {
      stk[ptr++] = u;
      else {
      while (ptr > 1 and h[stk[ptr - 2]] >= h[lca]) {
        add edge(stk[ptr - 2], stk[ptr - 1]), --ptr;
      if (stk[ptr_- 1] != lca)
        add_edge(lca, stk[--ptr]);
        stk[ptr++] = lca, nodes.emplace_back(lca);
      } stk[ptr++] = u;
  if (find(nodes.begin(), nodes.end(), root) ==

→ nodes.end()) nodes.emplace back(root);
  for (int j = 0; j + 1 < ptr; ++\bar{j}) add edge(stk[j], stk[j]
  \rightarrow + 1]);
int main() {
 cin >> m; vector <int> nodes(m);
 for (int i = 0; i < m; ++i) cin >> nodes[i];
```

```
buildTree(nodes);
```

4.4 DSU On Tree

Description: DSU on tree. Count number of vertices of color c in a subtree.

Time: $\mathcal{O}(n \log n)$

```
int cnt[N];
void dfs (int u, int par, bool keep) {
  int mx = -1, bigChild = -1;
  for (auto v : g[u])
    if (v != par and sz[v] > mx)
  mx = sz[v], bigChild = v;
  for (auto v : g[u]) if (v != par and v != bigChild) {
    dfs(v, u, 0); // small child, clear them before

→ exiting

  if (bigChild != -1)
  dfs(bigChild, u, 1); // don't clear big child
for (auto v : g[u]) if (v != par and v != bigChild) {
    for (int i = in[v]; i <= out[v]; ++i)</pre>
     → ++cnt[col[flat[i]]];
  ++cnt[col[u]];
// now cnt[c] is the number of vertices in subtree of
       vertex u with color c, answer queries
 if (!keep) { // clear this subtree
     for (int i = in[u]; i <= out[u]; ++i)</pre>
         --cnt[col[flat[i]]];
```

Description: Lower bound on capacity – create a supersource, a supersink. If $u \to v$ has a lower bound of L, give an edge from supersource to v with capacity L. Give an edge from u to supersink with capacity L. Give an edge from normal sink to normal source with capacity infinity. If max flow here is equal to L, then the lower bound can be satisfied. For minimum flow satisfying lower bounds, binary search on the capacity from normal sink to normal source (instead of assigning inf). For maximum flow satisfying bounds, just add another source to normal source and binary search on capacity.

Time: $\mathcal{O}(V^2E)$, (on unit graphs $\mathcal{O}(E\sqrt{V})$)

```
struct edge
 int u, v; ll cap, flow;
 edge (int u, int v, ll cap) : u(u), v(v), cap(cap),
  \rightarrow flow(0) {}
struct Dinic {
 int N; vector <edge> E;
 vector <vector <int>> q;
  vector <int> d, pt;
 Dinic (int N) : \dot{N}(\dot{N}), E(\theta), g(N), d(N), pt(N) {} void AddEdge (int u, int v, ll cap) {
    if (u ^ v)
      E`emplace back(u, v, cap);
      g[u].emplace back(E.size() - 1);
      E.emplace back(v, u, 0);
      g[v].emplace_back(E.size() - 1);
  bool BFS (int S, int T) {
    queue \langle int \rangle q(\{S\});
    fill(d.begin(), d.end(), N + 1); d[S] = 0;
    while (!q.empty()) {
      int u = q.front(); q.pop();
if (u == T) break;
      for (int k : g[u])
        edge &e = E[k];
         if (e.flow < e.cap and d[e.v] > d[e.u] + 1) {
           d[e.v] = d[e.u] + 1; q.emplace(e.v);
```

4.6 Directed MST

Description: Finds a minimum spanning tree/arborescence of a directed graph, given a root node. If no MST exists, returns -1.

Time: $\mathcal{O}(E \log V)$

```
struct Edge { int a, b; ll w; };
struct Node
Edge key; Node *1, *r; ll delta;
void prop() {
 key.w += delta;
if (l) l->delta += delta;
  if (r) r->delta += delta;
  delta = 0:
} Edge top() { prop(); return key; }
Node *merge(Node *a, Node *b) {
if (!a | | !b) return a ?: b;
a->prop(), b->prop();
if (a->key.w > b->key.w) swap(a, b);
swap(a->l, (a->r = merge(b, a->r)));
void pop(Node*& a) { a->prop(); a = merge(a->l, a->r); }
pair<ll, vi> dmst(int n, int r, vector<Edge>& g) {
RollbackUF uf(n);
vector<Node*> heap(n);
for (Edge e : g) heap[e.b] = merge(heap[e.b], new Node{e});
ll res = 0; vi seen(n, -1), path(n), par(n);
seen[r] = r; vector\langle Edge \rangle Q(n), in(n, \{-1,-1\}), comp;
deque<tuple<int, int, vector<Edge>>> cycs;
rep(s,0,n) {
 int u = s, qi = 0, w;
while (seen[u] < 0) {
   if (!heap[u]) return {-1,{}};</pre>
   Edge e = heap[u]->top();
   heap[u]->delta -= e.w, pop(heap[u]);
  Q[qi] = e, path[qi++] = u, seen[u] = s;
res += e.w, u = uf.find(e.a);
if (seen[u] == s) {
   Node* cvc = 0;
    int end = qi, time = uf.time();
    do cyc = merge(cyc, heap[w = path[--qi]]);
    while (uf.join(u, w))
    u = uf.find(u), heap[u] = cyc, seen[u] = -1
    cycs.push front(\{u, \text{ time, } \{\&Q[qi], \&Q[end]\}\});
 frep(i,0,qi) in[uf.find(Q[i].b)] = Q[i];
 for (auto& [u,t,comp] : cycs) { // restore sol (optional)
 uf.rollback(t); Edge inEdge = in[u];
```

```
for (auto& e : comp) in[uf.find(e.b)] = e;
in[uf.find(inEdge.b)] = inEdge;
} rep(i,0,n) par[i] = in[i].a; return {res, par};
```

4.7 Dominator Tree

Description: A node u is ancestor of node v in the dominator tree if all the the paths from source to node v contain node u. If a problem asks for edge disjoint paths, for every edge, take a new node w and turn the edge $(u \to v)$ to $(u \to w \to v)$ and find node disjoint path now. 1-based directed graph input. dtree is the edge list of the dominator tree. Clear everything at the start of each test case. Only the nodes reachable from source will be in the dominator tree. **Time:** construction $\mathcal{O}(V + E)$

vector <int> g[sz], rg[sz], dtree[sz], bucket[sz];
int sdom[sz], par[sz], dom[sz], dsu[sz], label[sz]; int arr[sz], rev[sz], ts, source; void dfs(int u) ts++; arr[u] = ts; rev[ts] = u; label[ts] = sdom[ts] = dsu[ts] = ts; for(int &v : g[u]) { **if**(!arr[v]) { dfs(v); par[arr[v]] = arr[u]; } rg[arr[v]].push back(arr[u]); inline int root(int u, int x = 0) { if(u == dsu[u]) return x ? -1 : u;int v = root(dsu[u], x + 1);if(v < 0) return u;</pre> if(sdom[label[dsu[u]]] < sdom[label[u]]) label[u] =</pre> label[dsu[u]]; dsu[u] = v; return x ? v : label[u]; void build(int n) { dfs(source); for(int i=n; i; i--) { for(int j : rg[i]) sdom[i] = min(sdom[i],sdom[root(j)]); if(i > 1) bucket[sdom[i]].push back(i); for(int w : bucket[i]) { int v = root(w);
if(sdom[v] == sdom[w]) dom[w] = sdom[w];
else dom[w] = v; } if(i > 1) dsu[i] = par[i]; for(int i=2; i<=n; i++) { int &dm = dom[i]; int main() {

4.8 Edge Coloring

Description: Given a simple, undirected graph with max degree D, computes a (D+1)-coloring of the edges such that no neighboring edges share a color. (D-coloring is NP-hard, but can be done for bipartite graphs by repeated matchings of max-degree nodes.) **Time:** $\mathcal{O}(NM)$

// input graph of n nodes in g[], assign "source" vertex

ts = 0; build(n); // clear stuff before calling

```
vi edgeColoring(int N, vector<pii> eds) {
  vi cc(N + 1), ret(sz(eds)), fan(N), free(N), loc;
  for (pii e : eds) ++cc[e.first], ++cc[e.second];
  int u, v, ncols = *max element(all(cc)) + 1;
  vector<vi> adj(N, vi(ncols, -1));
  for (pii e : eds) {
    tie(u, v) = e;
    fan[0] = v;
    loc.assign(ncols, 0);
    int at = u, end = u, d, c = free[u], ind = 0, i = 0;
```

```
while (d = free[v], !loc[d] && (v = adj[u][d]) != -1)
  loc[d] = ++ind, cc[ind] = d, fan[ind] = v;
  cc[loc[d]] = c;
  for (int cd = d; at != -1; cd ^= c ^ d, at = adj[at][cd])
   swap(adj[at][cd], adj[end = at][cd ^ c ^ d]);
  while (adj[fan[i]][d] != -1) {
   int left = fan[i], right = fan[++i], e = cc[i];
   adj[u][e] = left;
   adj[u][e] = left;
   adj[left][e] = u;
   adj[right][e] = -1;
   free[right] = e;
  }
  adj[u][d] = fan[i];
  adj[fan[i]][d] = u;
  for (int y : {fan[0], u, end})
   for (int& z = free[y] = 0; adj[y][z] != -1; z++);
  }
  rep(i,0,sz(eds))
  for (tie(u, v) = eds[i]; adj[u][ret[i]] != v;) ++ret[i];
  return ret;
}
```

4.9 Euler Walk

Description: On directed graph, circuit (or edge disjoint directed cycles) exists iff each node satisfies in_degree = out_degree and the graph is strongly connected; path exists iff at most one vertex has in_degree - out_degree = 1 and at most one vertex has out_degree - in_degree = 1 and all other vertices have in_degree = out_degree, and graph is weakly connected. Push edge ID in circ if edges needed. **Time:** $\mathcal{O}(V + E)$

```
bitset <N> bad;
vector <int> g[N], circ;
int n, m, deg[N], U[N], V[N];
void hierholzer (int src) {
  if (!deg[src]) return;
  vector <int> path;
  path.push back(src);
  int at = \overline{src};
  while (!path.empty()) {
    if (deg[at]) {
       path.push back(at);
       while (bad[q[at].back()]) q[at].pop back();
       int e = g[at].back(), nxt = U[e] ^ at ^ V[e];
bad[e] = 1, --deg[at], --deg[nxt], at = nxt;
    } else {
       circ.push_back(at);
       at = path.back(), path.pop_back();
  } reverse(circ.begin(), circ.end());
int main() {
  cin >> n >> m
  for (int i = 1; i <= m; ++i) {
    scanf("%d %d", U + i, V + i);
    g[U[i]].push_back(i);
    g[V[i]].push_back(i);
     ++deg[U[i]], ++deg[V[i]];
  hierholzer(1); // run loop if not connected
```

4.10 GeneralMatching

```
using namespace std;
const int N = 505;
struct Blossom {
   queue <int> q;
   vector <int> g[N];
   int t, n, vis[N], par[N], orig[N], match[N], aux[N];
   Blossom (int n = 0) {
      n = n, t = 0;
      for (int i = 0; i <= n; ++i) {</pre>
```

for (int x : circ) printf("%d ", x); puts("");

```
g[i].clear(), match[i] = aux[i] = par[i] = 0;
  inline void addEdge (int u, int v)
    g[u].push_back(v), g[v].push_back(u);
  void augment (int u, int v) {
    int pv = v, nv;
      p\dot{v} = par[v], nv = match[pv];
       match[v] = pv, match[pv] = v, v = nv;
    } while (u ^ pv);
  int lca (int u, int v) {
    while (true) {
       if (ù) {
         if (aux[u] == t) return u; aux[u] = t;
         u = `orig[par[match[u]]];
       swap(u, v);
  void blossom (int u, int v, int x) {
    while (orig[u] ^{\circ} x) {
       par[u] = v, v = match[u];
       if (vis[v] == 1) q.emplace(v), vis[v] = 0;
       orig[u] = orig[v] = x, u = par[v];
  bool bfs (int src) {
    fill(vis + 1, vis + n + 1, -1);
iota(orig + 1, orig + n + 1, 1);
    while (!q.empty()) q.pop();
    q.emplace(src), vis[src] = 0;
    while (!q.empty())
      int u = q.front(); q.pop();
for (int v : g[u]) {
         if(vis[v] = -1)
           par[v] = u, vis[v] = 1;
           if (!match[v]) return augment(src, v), 1;
q.emplace(match[v]), vis[match[v]] = 0;
         } else if (vis[v] == 0 and orig[u] 0 orig[v]) {
  int x = lca(orig[u], orig[v]);
           blossom(v, u, x), blossom(u, v, x);
    } return 0:
  int maxMatch() {
    int ans = 0;
    vector <int> vec(n - 1);
    iota(vec.begin(), vec.end(), 1);
    shuffle(vec.begin(), vec.end(), mt19937(69));
    for (int u : vec) if (!match[u]) {
  for (int v : g[u]) if (!match[v]) {
         match[u] = \vec{v}, match[\hat{v}] = u;
         ++ans; break;
    for (int i = 1; i \le n; ++i) if (!match[i] and bfs(i))
         ++ans:
    return ans;
int n, m;
int main() {
  cin >> n >> m;
  Blossom yo(n);
  while (m--) {
    int u, v
    scanf("%d %d", &u, &v);
    yo.addEdge(u, v);
  cout << yo.maxMatch() << '\n';
  for (int i = 1; i \le n; ++i) {
```

4.11 GeneralMatching

Description: Matching for general graphs. Fails with probability N/mod.

Time: $\mathcal{O}(N^3)$

```
vector<pii> generalMatching(int N, vector<pii>& ed) {
vector<vector<ll>> mat(N, vector<ll>(N)), A;
for (pii pa : ed) {
 int a = pa.first, b = pa.second, r = rand() % mod;
 mat[a][b] = r, mat[b][a] = (mod - r) % mod;
int r = matInv(A = mat), M = 2*N - r, fi, fi;
assert(r % 2 == 0);
if (M != N) do {
 mat.resize(M, vector<ll>(M));
 rep(i,0,N) {
  mat[i].resize(M);
  rep(j,N,M) {
   int r = rand() % mod;
   mat[i][j] = r, mat[j][i] = (mod - r) % mod;
} while (matInv(A = mat) != M);
vi has(M, 1); vector<pii> ret;
rep(it,0,M/2) {
 rep(i,0,M) if (has[i])
  rep(j,i+1,M) if (A[i][j] \&\& mat[i][j]) {
   fi = i; fj = j; goto done;
   assert(0); done:
 if (fj < N) ret.emplace_back(fi, fj);</pre>
 has[fi] = has[fj] = 0;
 rep(sw,0,2) {
  ll a = modpow(A[fi][fj], mod-2);
  rep(i,0,M) if (has[i] && A[i][fj]) {
    ll b = A[i][fj] * a % mod;
    rep(j,0,M) A[i][j] = (A[i][j] - A[fi][j] * b) % mod;
  } swap(fi,fj);
} return ret;
```

4.12 Global MinCut

Description: Find a global minimum cut in an undirected graph, as represented by an adjacency matrix.

Time: $\mathcal{O}(V^3)$

```
pair<int, vi> globalMinCut(vector<vi> mat) {
  pair<int, vi> best = {INT_MAX, {}};
  int n = sz(mat); vector<vi> co(n);
  rep(i,0,n) co[i] = {i};
  rep(ph,1,n) {
    vi w = mat[0];
    size t s = 0, t = 0;
  rep(It,0,n-ph) { // O(V^2) -> O(E log V) with prio. queue
    w[t] = INT_MIN;
    s = t, t = max element(all(w)) - w.begin();
    rep(i,0,n) w[i] += mat[t][i];
  }
  best = min(best, {w[t] - mat[t][t], co[t]});
  co[s].insert(co[s].end(), alt(co[t]));
  rep(i,0,n) mat[s][i] += mat[t][i];
  rep(i,0,n) mat[s][i] = mat[s][i];
  mat[0][t] = INT_MIN;
  }
  return best;
}
```

4.13 Hopcroft Karp

Description: Fast bipartite matching. Clear match[] first. Graph is normal, undirected.

13

Time: $\mathcal{O}(E\sqrt{V})$

```
bool bfs() {
  queue <int> q;
  for (int i = 1; i <= n; ++i) {
    if (!match[i]) dist[i] = 0, q.emplace(i);
    else dist[i] = INF;
  dist[0] = INF;
  while (!q.empty()) {
    int u = q.front(); q.pop();
    if (!u) continue
    for (int v : g[u])
      if (dist[match[v]] == INF) {
        dist[match[v]] = dist[u] + 1, q.emplace(match[v]);
 } return dist[0] != INF;
bool dfs (int u) {
 if (!u) return;
  for (int v : g[u]) {
    if (dist[match[v]] == dist[u] + 1 and dfs(match[v])) {
      match[u] = v, match[v] = u; return 1;
 } dist[u] = INF; return 0;
int hopcroftKarp() {
 int ret = 0;
 while (bfs()) {
   for (int i = 1; i <= n; ++i) {
  ret += !match[i] and dfs(i);</pre>
 } return ret;
```

4.14 MCMF

```
namespace mcmf {
using T = int;
const T INF = ?;
                       // 0x3f3f3f3f or 0x3f3f3f3f3f3f3f3f1LL
const int MAX = ?;
                          // maximum number of nodes
int n, src, snk;
T dis[MAX], mCap[MAX]
int_par[MAX], pos[MAX];
bool vis[MAX];
struct Edge {
 int to, rev pos;
 T cap, cost, flow;
vector<Edge> ed[MAX];
void init(int n, int src, int snk) {
 n = n, src = src, \overline{s}nk = snk;
  for (int i = 1; i \le n; i+\overline{+}) ed[i].clear();
void addEdge(int u, int v, T cap, T cost) {
 Edge a = {v, (int)ed[v].size(), cap, cost, 0};
Edge_b = {u, (int)ed[u].size(), 0, -cost, 0};
  ed[u].push back(a);
  ed[v].push_back(b);
inline bool SPFA() {
  memset(vis, false, sizeof vis);
  for (int i = 1; i <= n; i++) mCap[i] = dis[i] = INF;</pre>
  queue<int> q;
 dis[src] = 0;
vis[src] = true;
  q.push(src);
  while (!q.empty()) {
    int u = q.front();
    q.pop();
    vis[u] = false;
    for (int i = 0; i < (int)ed[u].size(); i++) {</pre>
```

```
Edge &e = ed[u][i];
      int v = e.to;
      if (e.cap > e.flow \&\& dis[v] > dis[u] + e.cost) {
        dis[v] = dis[u] + e.cost;
par[v] = u;
pos[v] = i;
        mCap[v] = min(mCap[u], e.cap - e.flow);
        if (!vis[v]) {
          vis[v] = true;
          q.push(v);
  return (dis[snk] != INF);
inline pair<T, T> solve() {
  TF = 0, C = 0, f;
  int u, v;
  while (SPFA()) {
   u = snk;
    f = mCap[u];
    F += f;
    while (u != src) {
      v = par[u];
                                            // edge of v-->u
      ed[v][pos[u]].flow += f;
      ed[u][ed[v][pos[u]].rev pos].flow -= f;
    \dot{C} += dis[snk] * f;
  return make pair(F, C);
```

4.15 MST Boruvka

Description: While there are more than one components, Find the closest weight edge that connects this component to any other component and Add this closest edge to MST if not already added.

4.16 Manhattan MST

```
using namespace std;
using ll = long long;
struct UnionFind {
  vector<int> UF; int cnt; UnionFind(int N) : UF(N, -1),
     cnt(N) {}
  int find(int v) { return UF[v] < 0 ? v : UF[v] =</pre>

    find(UF[v]);

  bool join(int v, int w) {
    if ((v = find(v)) == (w = find(w))) return false;
if (UF[v] > UF[w]) swap(v, w);
    UF[v] \stackrel{\cdot}{+}= UF[w]; \stackrel{\cdot}{UF}[w] = v; cnt--; return true;
  bool connected(int v, int w) { return find(v) == find(w);
  int getSize(int v) { return -UF[find(v)]; }
template <class T> struct KruskalMST {
  using Edge = tuple<int, int, T>;
  T mstWeight; vector<Edge> mstEdges; UnionFind uf;
  KruskalMST(int V, vector<Edge> edges) : mstWeight(),
    sort(edges.begin(), edges.end(), [&] (const Edge &a,

→ const Edge &b) {
      return get<2>(a) < get<2>(b);
    for (auto &&e : edges)
      if (int(mstEdges.size()) >= V - 1) break;
      if (uf.join(get<0>(e), get<1>(e))) {
        mstEdges.push back(e); mstWeight += get<2>(e);
```

```
template <class T> struct ManhattanMST : public
   KruskalMST<T> {
  using Edge = typename KruskalMST<T>::Edge;
  static vector<Edge> generateCandidates(vector<pair<T, T>>
    vector<int> id(P.size()); iota(id.begin(), id.end(),

→ 0); vector<Edge> ret;
    ret.reserve(P.size() * 4); for (int h = 0; h < 4; h++) {
    sort(id.begin(), id.end(), [&] (int i, int j) {
        return P[i].first - P[j].first < P[j].second -</pre>
            P[i].second;
      map<T, int> M; for (int i : id) {
  auto it = M.lower_bound(-P[i].second);
         for (; it = M.en\overline{d}(); it = M.erase(it)) {
           int j = it->second;
           T dx = P[i].first - P[j].first, dy = P[i].second
               P[j].second;
           if (dy > dx) break;
           ret.emplace back(i, j, dx + dy);
         M[-P[i].second] = i;
       for (auto \&\&p : P) {
         if (h % 2) p.first = -p.first;
         else swap(p.first, p.second);
    return ret;
  ManhattanMST(const vector<pair<T, T>> &P)
       : KruskalMST<T>(P.size(), generateCandidates(P)) {}
int main() ·
 int N; cin >> N;
 vector, cpair<ll, ll>> P(N);
for (auto &&p : P) cin >> p.first >> p.second;
  ManhattanMST mst(P)
  cout << mst.mstWeight << '\n';</pre>
  for (auto &&[v, w, weight] : mst.mstEdges) cout << v <<
      ' << w << '\n';
  return 0;
```

4.17 Maximum Clique

Description: Quickly finds a maximum clique of a graph (given as symmetric bitset matrix; self-edges not allowed). Can be used to find a maximum independent set by finding a clique of the complement graph.

Time: Runs in about 1s for n=155 and worst case random graphs (p=.90). Runs faster for sparse graphs.

```
typedef vector<bitset<200>> vb;
struct Maxclique {
double limit=0.025, pk=0;
struct Vertex { int i, d=0; };
typedef vector<Vertex> vv;
vb e; vv V; vector<vi> C; vi qmax, q, S, old;
void init(vv& r)
  for (auto& v : r)
  for (auto& v : r) for (auto j : r) v.d += e[v.i][j.i];
 sort(all(r), [](auto a, auto b) { return a.d > b.d; });
int mxD = r[0].d;
  rep(i, 0, sz(r)) r[i] d = min(i, mxD) + 1;
void expand(vv\& R, int lev = 1) {
 S[lev] += S[lev - 1] - old[lev];
old[lev] = S[lev - 1]:
  while (sz(R))
   if (sz(q) + R.back().d <= sz(qmax)) return;</pre>
   q.push back(R.back().i);
   for(auto v:R) if (e[R.back().i][v.i]) T.push back({v.i});
   if (sz(T)) {
    if (S[lev]++ / ++pk < limit) init(T);
    int j = 0, mxk = 1, mnk = max(sz(qmax) - sz(q) + 1, 1);
```

14

4.18 Maximum Independent Set

Description: To obtain a maximum independent set of a graph, find a max clique of the complement. If the graph is bipartite, see MinimumVertexCover.

4.19 MinCut

Description: After running max-flow, the left side of a min-cut from s to t is given by all vertices reachable from s, only traversing edges with positive residual capacity.

4.20 Minimum Vertex Cover

Description: Suppose you have left and right parts in bipartite graph and you found the maximum matching M. Let's define orientation of edges. Those edges that belong to M will go from right to left, all other edges will go from left to right. Now run DFS starting at all left vertices that are not incident to edges in M. Some vertices of the graph will become visited during this DFS and some not-visited. To get minimum vertex cover you take all visited right vertices of M, and all not-visited left vertices of M.

4.21 SCC

```
// col[u] stores the component number u belongs to
vector<int> adj[N], trans[N];
int col[n], vis[n], idx = 0, n, m;
stack<int> st;
void dfs(int u) {
  vis[u] = 1;
  for(int v : adj[u]) if(!vis[v]) dfs(v);
  st.push(u);
void dfs2(int u) {
  col[u] = idx:
  for(int v : trans[u]) if(!col[v]) dfs2(v);
void scc() {
  for(int i = 1; i <= n; i++){</pre>
    if(!vis[i]) dfs(i);
  while(!st.empty()) {
    int u = st.top(); st.pop();
    if(col[u]) continue;
    idx++; dfs2(u);
```

4.22 TreeHashAllRoot

Description: Find hashes of a tree when rooted at each possible node pair<int, vi> hungarian(const vector<vi> &a) { (unrooted tree isomorphism test).

Time: $\mathcal{O}(n)$

```
const int sz = 2e5+5, mod = 1e9+7;
ll hval[sz], h[sz], dp[sz], rans[sz];
void dfs(vector <vector<int>>> &g, int u = 0, int p = -1,
\rightarrow int val = 0, int up = 0) {
   vector <int> cv, cht;
                                   // current child values &

→ heights

   if(u > 0) {
      cv.push back(val);
       cht.push back(up);
   for(int v : g[u]) if(v - p) {
    cv.push_back(dp[v]);
      cht.pus\overline{h} back(1 + h[v]);
   sort(cht.begin(), cht.end(), greater<int>());
   if(cv.size() > 1) {
    ll ret[] = {1, 1};
                                 // for biggest & 2nd-biggest

→ heights

       for(int i=0; i<2; i++)
          for(int value : cv)
  ret[i] = ret[i] * (hval[cht[i]] + value) % mod;
       rans[u] = ret[0]; // biggest is hash for this root
       for(int v : g[u]) if(v - p) {
          int id = 1;
          if(cht[0] - 1 - h[v]) id = 0; // v is not on the
         → biggest height path
val = ret[id] * invmod((hval[cht[id]] + dp[v]) %
          mod) % mod;
/* division of v subtree hash value */
          dfs(g, v, u, val, cht[id] + 1);
   else if(cv.size()) { // Leaf node u OR vertex - 1 has

→ only one child

       if(!up) val = 1;
      else val = (val + hval[up]) % mod;
       rans[u] = val;
       for(int v : q[u]) if(v - p) dfs(q, v, u, val, up + 1);
   get(vector <vector<int>> \delta g, int u = 0, int p = -1) {
   h[u] = 0;
vector <ll> childs;
   for(int v : g[u]) if(v - p) {
       childs.push_back(get(g, v, u));
      h[u] = \max(\overline{h}[u], 1 + \overline{h}[v]);
   for(int value : childs) ret = ret * (hval[h[u]] + value)

→ % mod;

   return dp[u] = ret;
mt19937 rng(chrono::steady clock::now().time since epoch().
int main() { // can remove the g as param, can change to
→ 1-index, multi-test works, no further change
      get(g); dfs(g);
tree[k] = rans[0] = dp[0];
      // rans[i] = tree hash with i as root
```

on the left with a node on the right such that no nodes are in two matchings and the sum of the edge weights is minimal. Takes cost[N][M], where cost[i][j] = cost for L[i] to be matched with R[j] and returns (min cost, match), where L[i] is matched with R[match[i]]. Negate costs for max cost.

Time: $\mathcal{O}(N^2M)$

```
if (a.empty()) return {0, {}};
                                                                              int n = sz(a) + 1, m = sz(a[0]) + 1;
                                                                              vi u(n), v(m), p(m), ans(n-1);
                                                                              rep(i,1,n) {
                                                                               p[\hat{0}] = i;
                                                                                int 10 = 0; // add "dummy" worker 0
                                                                                vi dist(m, INT_MAX), pre(m, -1);
                                                                                vector < bool > done(m' + 1);
                                                                                do { // dijkstra
                                                                                 done[j0] = true;
                                                                                 int i0 = p[j0], j1, delta = INT_MAX;
                                                                                 rep(j,1,m) if (!done[j]) {
    auto cur = a[i0 - 1][j - 1] - u[i0] - v[j];
                                                                                  if (cur < dist[j]) dist[j] = cur, pre[j] = j0;
                                                                                  if (dist[j] < delta) delta = dist[j], j1 = j;
                                                                                 rep(j,0,m)
                                                                                  if (done[j]) u[p[j]] += delta, v[j] -= delta;
                                                                                  else dist[j] -= delta;
                                                                                 j0 = j1;
                                                                               } while (p[j0]);
while (j0) { // update alternating path
  int j1 = pre[j0];
                                                                                 p[j0] = p[j1], j0 = j1;
                                                                              rep(j,1,m) if (p[j]) ans[p[j] - 1] = j - 1;
                                                                              return {-v[0], ans}; // min cost
                                                                             5 Math
                                                                             5.1 CRT
                                                                             Description: Solves for x \equiv a_i \pmod{m_i}.
                                                                              ll normalize(ll x, ll mod) {
                                                                               x %= mod:
                                                                                return (x < 0) ? x + mod : x;
                                                                             pair<ll, ll> CRT(vector<ll> a, vector<ll> m) {
                                                                               int n = a.size();
                                                                                for(int i = 0; i' < n; i++) normalize(a[i], m[i]);
ll ans = a[0], lcm = m[0];
                                                                                for(int i = 1; i < n; i++)
                                                                                  auto [d, x1, y1] = exgcd(lcm, m[i]);
if((a[i] - ans) % d) return {-1, -1};
                                                                                  ans = normalize(ans + x1 * (a[i] - ans) / d % (m[i] /

    d) * lcm, lcm * m[i] / d);
lcm = lcm * m[i] / d;
                                                                                return {ans. lcm}:
                                                                             5.2 Diophantine
                                                                             Description: For any solution (x_0, y_0), all solutions are of the form
                                                                             x = x_0 + k \frac{b}{\varrho}, y = y_0 + k \frac{a}{\varrho}
                                                                              // (d, x, y) s.t ax + by = gcd(a, b) = d
                                                                             tuple<int, int, int> exqcd(int a, int b) {
                                                                               if(b == 0) return {a, 1, 0};
auto [d, _x, _y] = exgcd(b, a % b);
int x = _y, y = _x - (a / b) * _y;
return {d, x, y};
                                                                              // returns (true, x, y) if solution exists
4.23 Weighted Matching

// returns (false, 0, 0) otherwise

Description: Given a weighted bipartite graph, matches every node tuple<br/>
tuple<br/>
bool, int, int> diophantine(int a, int b, int c) {
                                                                                auto [d, x, y] = exqcd(a, b);
                                                                                if(c % d) return {false, 0, 0};
                                                                                  int^{x} = (c / d) * x, y = (c / d) * y;
                                                                                  return {true, x, y};
```

```
5.3 Discrete Log
```

```
// Returns minimum non-negative st a^x = b \pmod{m} or -1

    if doesn't exist
int discreteLog(int a, int b, int M) {
  a %= M, b %= M;
  int k = 1, add = 0, q;
  while ((g = gcd(a, M)) > 1) {
    if (b == k) return add;
    if (b % g) return -1;
b /= g, M /= g, ++add;
k = (1LL * k * a / g) % M;
  int RT = sqrt(M) + 1, aRT = 1;
  for (int i = 0; i < RT; i++) aRT = (aRT * 1LL * a) % M;
  gp hash table<int. int> vals:
  for (int i = 0, cur = b; i \le RT; i++) {
    vals[cur] = i;
cur = (cur * 1LL * a)%M;
  for (int i = 1, cur = k; i <= M / RT + 1; i++) {
    cur = (cur * 1LL * aRT) % M:</pre>
    if (vals.find(cur) != vals.end())
       return RT * i - vals[cur] + add;
  return -1;
```

15

5.4 FWHT

```
using namespace std;
typedef long long ll:
const int N = 1 \ll 20;
// applv modulo if necessarv
void fwht xor (int *a, int n, int dir = 0) {
  for (int h = 1; h < n; h <<= 1) {
     for (int i = 0; i < n; i += h << 1) {
       for (int j = i; j < i + h; ++j) {
  int x = a[j], y = a[j + h];
          a[j] = x + y, a[j + h] = x - y;
if (dir) a[j] >>= 1, a[j + h] >>= 1;
void fwht or (int *a, int n, int dir = 0) {
  for (int h = 1; h < n; h <<= 1) {
     for (int i = 0; i < n; i += h << 1) {
  for (int j = i; j < i + h; ++j) {</pre>
          int x = a[j], y = a[j + h];
a[j] = x, a[j + h] = dir ? y - x : x + y;
void fwht_and (int *a, int n, int dir = 0) {
  for (int h = 1; h < n; h < = 1) {
     for (int i = 0; i < n; i += h << 1) {
  for (int j = i; j < i + h; ++j) {</pre>
          int x = a[j], y = a[j + h];
          a[j] = dir^{?} x - y : x + y, a[j + h] = y;
int n, a[N], b[N], c[N];
int main() {
    n = 1 << 16;</pre>
  for (int i = 0; i < n; ++i) {
    a[i] = rand() & 7;
    b[i] = rand() & 7;
  fwht xor(a, n), fwht_xor(b, n);
  for \overline{(int i = 0; i < \overline{n}; ++i)} {
```

```
c[i] = a[i] * b[i];

{\text{wht xor(c, n, 1);} \text{for (int i = 0; i < n; ++i) {} \text{cout << c[i] << " ";} \text{cout << '\n'; \text{return 0;}}
```

5.5 FastFourierTransform Description: Use multiplyMod for arbitrary mod multiplication. **Time:** $\mathcal{O}(N \log N)$

```
struct cplx {
 ld a, b;

cplx (ld a = 0, ld b = 0) : a(a), b(b) {}
 const cplx operator + (const cplx &c) const {
    return cplx(a + c.a, b + c.b); }
  const cplx operator - (const cplx &c) const {
    return cplx(a - c.a, b - c.b); }
  const cplx operator * (const cplx &c) const {
  return cplx(a * c.a - b * c.b, a * c.b + b * c.a); }
const cplx conj() const { return cplx(a, -b); }
const ld PI = acosl(-1);
const int MOD = 1e9 + 7
const int N = (1 << 20) + 5;
int rev[N]; cplx w[N];
void prepare (int n) {
  int sz = builtin ctz(n);
  for (int \bar{i} = 1; i < n; ++i) rev[i] = (rev[i >> 1] >> 1)
      ((i \& 1) << (sz - 1));
 w[0] = 0, w[1] = 1, sz = 1;
 while (1 << sz < n) {
   ld ang = 2 * PI / (1 << (sz + 1));
    cplx w_n = cplx(cosl(ang), sinl(ang));
    for (int i = 1 \ll (sz - 1); i < (1 \ll sz); ++i) {
      w[i \ll 1] = w[i], w[i \ll 1 \mid 1] = w[i] * w_n;
    } ++sz;
void fft (cplx *a, int n) {
  for (int i = 1; i < n - 1; ++i) {
    if`(i < rev[i]) swap(a[i], a[rev[i]]);</pre>
  for (int h = 1; h < n; h <<= 1) {
    for (int s = 0; s < n; s += h << 1) {
      for (int i = 0; i < h; ++i) {
        cplx \& u = a[s + i], \& v = a[s + i + h], t = v * w[h]
        \overrightarrow{v} = \overrightarrow{u} - \overrightarrow{t}, u = u + t;
static cplx f[N], g[N], u[N], v[N];
void multiply (int *a, int *b, int n, int m) {
 int sz = n + m - 1;
 while (sz \& (sz - 1)) sz = (sz | (sz - 1)) + 1;
 prepare(sz);
  for (int i = 0; i < sz; ++i) f[i] = cplx(i < n ? a[i] :
     0, i < m ? b[i] : 0);
  fft(f, sz);
  for (int i = 0; i \le (sz >> 1); ++i) {
    int j = (sz - i) \& (sz - 1);
    cplx'x = (f[i] * f[i] - (f[j] * f[j]).conj()) * cplx(0,
  -0.25);
f[j] = x, f[i] = x.conj();
} fft(f, sz);
  for(int i = 0; i < sz; ++i) a[i] = f[i].a / sz + 0.5;
void multiplyMod (int *a, int *b, int n, int m) {
 int sz = 1; while (sz < n + m - 1) sz <<= 1;
prepare(sz);</pre>
    f[i] = i < n'? cplx(a[i] & 32767, a[i] >> 15) : <math>cplx(0,
```

```
g[i] = i < m ? cplx(b[i] & 32767, b[i] >> 15) : cplx(0,
       → 0);
   fft(f, sz), fft(g, sz);
   for (int i = 0; i < sz; ++i) {
      int j = (sz - i) \& (sz - 1);
     static cplx da, db, dc, dd;
da = (f[i] + f[i].conj()) * cplx(0.5, 0);
db = (f[i] - f[i].conj()) * cplx(0, -0.5);
dc = (g[i] + g[i].conj()) * cplx(0.5, 0);
dd = (g[i] - g[i].conj()) * cplx(0.5, 0);
u[j] = da * dc + da * dd * cplx(0, -0.5);
v[j] = db * dc + db * dd * cplx(0, 1);
   fft(u, sz), fft(v, sz);
for(int i = 0; i < sz; ++i) {</pre>
      int da = (ll) (u[i] a / sz + 0.5) % MOD;
      int db = (ll) (u[i].b / sz + 0.5) % MOD;
     int dc = (ll) (viil.a / sz + 0.5) % MOD;
int dd = (ll) (viil.b / sz + 0.5) % MOD;
a[i] = (da + ((ll) (db + dc) << 15) + ((ll) dd << 30))</pre>

→ % MOD:
5.6 FindRoots
Description: Finds the real roots to a polynomial.
Usage: polyRoots(\{\{2, -3, 1\}\}, -1e9, 1e9\}) // solve x^2-3x+2=0
Time: \mathcal{O}(n^2 \log(1/\epsilon))
struct Poly
   vector <double> a;
double operator() (double x) const {
      double val = 0;
      for (int i = a.size(); i--;) (val *= x) += a[i];
      return val;
   void diff() {
      for (int i = 1; i < a.size(); ++i) a[i-1] = i*a[i];
      a.pop_back();
   void divroot(double x0) {
      double b = a.back(), c; a.back() = 0;
      for(int i=a.size()-1; i--;) c = a[i], a[i] =
           a[i+1]*x0+b, b=c;
      a.pop back();
vector<double> polyRoots(Poly p, double xmin=-1e9, double
 \rightarrow xmax=1e9)
   if (p.a.size() == 2) \{ return \{-p.a[0]/p.a[1]\}; \}
   vector<double> ret:
   Poly der = p; der.diff();
   auto dr = polyRoots(der, xmin, xmax);
   dr.push_back(xmin-1);
   dr.push back(xmax+1);
   sort(dr.begin(), dr.end());
   for (int i = 0; i < dr.size()-1; ++i) {
  double l = dr[i], h = dr[i+1];
  bool sign = p(l) > 0;
      if (sign ^{(p(h) > 0)}) {
         for(int it = 0; it < 60; ++it) { // while (h-l > 1e-8) double m = (l + h) / 2, f = p(m); if ((f <= 0) ^ sign) l = m; else h = m;
         } ret.push back((l + h) / 2);
  } return ret;
 5.7 Floor Sum of AP
ll sum(ll n){
   return n * (n - 1) >> 1;
// sum [(ai + b) / m] for 0 <= i < n
ll floorSumAP (ll a, ll b, ll m, ll n) {
    ll res = a / m * sum(n) + b / m * n;</pre>
```

a %= m, b %= m; if (!a) return res;

```
ll to = (n * a + b) / m;
return res + (n - 1) * to - floorSumAP(m, m - 1 - b, a, a)

→ to);

// sum (a + di) % m for 0 <= i < n
ll modSumAP (ll a, ll b, ll m, ll n) {
b = ((b % m) + m) % m, a = ((a % m) + m) % m;
  return n * b + a * sum(n) - m * floorSumAP(a, b, m, n);
5.8 Gaussian Elimination
using namespace std;
typedef long long ll;
typedef long double ld;
const int N = 505;
const ld EPS = 1e-10;
const int MOD = 998244353;
ll bigMod (ll a, ll e, ll mod) {
  if (e == -1) e = mod - 2;
  ll ret = 1:
  while (e) {
    if (e \& 1) ret = ret * a % mod;
    a = a * a % mod, e >>= 1;
  return ret;
pair <int, ld> gaussJordan (int n, int m, ld eq[N][N], ld

→ res[N]) {
  ld det = 1
  vector <int> pos(m, -1);
  for (int i = 0, j = 0; i < n and j < m; ++j) {
    int piv = i;
    for (int k = i; k < n; ++k) if (fabs(eq[k][i]) >
         fabs(eq[piv][j])) piv = k;
    if (fabs(eq[piv][j]) < EPS) continue; pos[j] = i;</pre>
    for (int k = j; k <= m; ++k) swap(eq[piv][k], eq[i][k]);</pre>
    if (piv ^ i) det = -det; det *= eq[i][j];
    for (int k = 0; k < n; ++k) if (k^i) {
    ld x = eq[k][j] / eq[i][j];</pre>
       for (int l = j; l \ll m; ++l) eq[k][l] -= x * eq[i][l];
    } ++i;
  int free var = 0;
  for (int i = 0; i < m; ++i) {
  pos[i] == -1 ? ++free_var, res[i] = det = 0 : res[i] =</pre>

→ eq[pos[i]][m] / eq[pos[i]][i];
  for (int i = 0; i < n; ++i) {
    ld cur = -eq[i][m];
    for (int j = 0; j < m; ++j) cur += eq[i][j] * res[j];</pre>
    if (fabs(cur) > EPS) return make pair(-1, det);
  return make pair(free var, det);
pair <int, int> gaussJordanModulo (int n, int m, int

→ eq[N][N], int res[N], int mod) {
  int det = 1;
  vector < int > pos(m,
  const ll mod sq = (ll) mod * mod;
  for (int i = 0, j = 0; i < n and j < m; ++j) {
    int piv = i:
    for (int k = i; k < n; ++k) if (eq[k][j] > eq[piv][j])
    if (!eq[piv][j]) continue; pos[j] = i;
    for (int k = j; k <= m; ++k) swap(eq[piv][k], eq[i][k]);</pre>
    if (piv ^ i) det = det ? MOD - det : 0; det = (ll) det
         * eq[i][j] % MOD;
    for (int k = 0; k < n; ++k) if (k ^ i and eq[k][j]) {
    ll x = eq[k][j] * bigMod(eq[i][j], -1, mod) % mod;</pre>
       for (int l = j; l \ll m; ++l) if (eq[i][l]) eq[k][l] =
           (eq[k][l] + mod sq - x * eq[i][l]) % mod;
    } ++i;
  int free var = 0;
  for (int i = 0; i < m; ++i) {
```

16

```
pos[i] == -1 ? ++ free var, res[i] = det = 0 : res[i] =
        eq[pos[i]][m] * b\bar{i}gMod(eq[pos[i]][i], -1, mod) %
  for (int i = 0: i < n: ++i) {</pre>
    ll\cur = -eq[i][m];
    for (int j = 0; j < m; ++j) cur += (ll) eq[i][j] *</pre>

    res[i], cur %= mod;

    if (cur) return make pair(-1, det);
 return make pair(free var, det);
pair <int, int> gaussJordanBit (int n, int m, bitset <N>
\rightarrow eq[N], bitset \langle N \rangle \& res \rangle  {
 int det = 1;
  vector <int> pos(m, -1);
  for (int i = 0, j = 0; i < n and j < m; ++j) {
    int piv = i;
    for (int k = i; k < n; ++k) if (eq[k][i]) {
      piv = k; break;
    if (!eq[piv][j]) continue; pos[j] = i, swap(eq[piv],
    \rightarrow eq[i]), det &= eq[i][j];
    for (int k = 0; k < n; ++k) if (k ^ i \text{ and } eq[k][i])
    \rightarrow eq[k] ^= eq[i]; ++i;
  int free var = 0;
 for (int i = 0; i < m; ++i) {
  pos[i] == -1 ? ++free var, res[i] = det = 0 : res[i] =</pre>

    eq[pos[i]][m];

  for (int i = 0; i < n; ++i) {
    int cur = eq[i][m];
    for (int j = 0; j < m; ++j) cur ^= eq[i][j] & res[j];
    if (cur) return make pair(-1, det);
  return make pair(free var, det);
```

5.9 Integrate Adaptive

Description: Fast integration using an adaptive Simpson's rule. **Usage:** double sphereVolume = quad(-1, 1, [](double x) { return quad(-1, 1, [&](double y) { return quad(-1, 1, [&](double z) { return x*x + y*y + z*z < 1; });});});

5.10 Inverse Exp Log

Description: Computes P^{-1} , $\exp(P)$, $\log(P)$ fast. $P^k = \exp(k \log P)$. Log is in-place. Value of n should be power of 2 larger than polynomial size. **Time:** $\mathcal{O}(n \log n)$

```
ntt(a, n << 1, 1); for (int i = n; i < n << 1; ++i) a[i]
static int f[N], g[N], h[N]; int inv[N]; // 1/i modulo MOD
void inverse (int *a, int n, int *b) {
  b[0] = inv[a[0]], b[1] = 0;
  for (int m = 2; m <= n; m <<= 1)
    for (int i = 0; i < m; ++i) f[i] = a[i], f[i + m] = b[i]
    prepare(m << 1), ntt(f, m << 1), ntt(b, m << 1);</pre>
    for (int i = 0; i < m << 1; ++i) b[i] = (ll) b[i] *
        (MOD + 2 - (ll) b[i] * f[i] % MOD) % MOD;
    ntt(b, m \ll 1, 1); for (int i = m; i < m << 1; ++i)
     \rightarrow b[i] = 0;
void log (int *a, int n) {
  inverse(a, n, g);
  for (int i = 0; i + 1 < n; ++i) a[i] = (i + 1LL) * a[i + 1]
      11 % MOD:
  multiply(a, q, n);
  for (int i = n - 1; i; --i) a[i] = (ll) a[i - 1] * inv[i]
  a[0] = 0;
void exp (int *a, int n, int *b) {
  b[0] = 1, b[1] = 0;
  for (int m = 2; m <= n; m <<= 1)
    for (int i = 0; i < m; ++i) h[i] = b[i];
    for (int i = 0; i < m; ++i) h[i] = (a[i] - h[i] + MOD)
         % MOD;
    ++h[0], h[0] %= MOD;
    for (int i = m; i < m << 1; ++i) b[i] = h[i] = 0; multiply(b, h, m); for (int i = m; i < m << 1; ++i)
        b[i] = 0;
```

5.11 Lagrange Interpolation

Description: A polynomial of degree d can be uniquely identified given its values on d+1 unique points. O(n) to pre-calculate given the first n points (x=0 to n-1) of the polynomial. Then answer each query to interpolate the x'th term in O(n). All values are done modulo mod, which needs to be a prime as we need its inverse modulo. Also includes an additional helper function called find_degree(terms, mod). Given at least the first d+2 points of a polynomial of degree d, it finds d in roughly $O(n \log d)$. Note, n should not exceed mod due to the way modular inverse is used. In such cases, we can use interpolation without modulo in big integers and take the remainder later $Time: \mathcal{O}(n)$ *

```
int expo(int a, int b){
    int res = 1:
    while (b){
      if (b \& 1) res = (long long) res * a % mod:
      a = (long long)a * a % mod;
      b >>= 1:
    return res;
  int interpolate(long long x){
    if (x < n) return terms[x] % mod;</pre>
    int i, w;
   vector<int> X(n, 1), Y(n, 1);
for (i = 1; i < n; i++){
   X[i] = (long long)X[i - 1] * (x - i + 1) % mod;</pre>
      if (X[i] < 0) X[i] += mod;
    for (i = n - 2; i \ge 0; i--){
      Y[\dot{i}] = (long'long)Y[\dot{i} + 1]^* (x - i - 1) \% mod;
      if (Y[i] < 0) Y[i] += mod;
    long long res = 0;
   for (i = 0; i < n; i++){
    w = ((long long)X[i] * Y[i] % mod) * dp[i] % mod;
    if ((n - i + 1) & 1) w = mod - w;
    res + = w;</pre>
    return res % mod:
vector<int> get terms(const vector<int>& terms, int mod,

    int l. int r){
 auto lagrange = Lagrange(terms, mod);
  vector<int> res:
  for (int i = l; i <= r; i++){
    res.push back(lagrange.interpolate(i));
 return res:
int find degree(const vector<int>& terms, int mod){
  long long v = mod;
  int k = 1, n = terms.size();
  while (v < INT MAX){
    v *= mod:
    k++;
  int l = 1 \ll 30, r = l + k - 1;
  auto expected = get terms(terms, mod, l, r);
  int low = 1, high = n - 1;
  while ((low' + 1)' < high){
    int mid = (low + high) >> 1;
    vector<int> v(terms.begin(), terms.begin() + mid);
    if (get terms(v, mod, l, r) == expected) high = mid;
    else low = mid;
  for (int d = low; d <= high; d++){
    vector<int> v(terms.begin(), terms.begin() + d);
    if (get terms(v, mod, l, r) == expected) return d - 1;
 return -1;
int main(){
 const int mod = 10000000007:
 vector <int> terms = vector<int> {0, 1, 5, 14, 30};
  auto lagrange = Lagrange(terms, mod);
  assert(lagrange.interpolate(5) == 55);
  assert(lagrange.interpolate(6) == 91);
  assert(lagrange.interpolate(1 << 30) == 300663155);
  assert(lagrange.interpolate(1LL << 60) == 717860166);
  assert(find degree(terms, mod) == 3);
  terms.pop back();
```

```
assert(find_degree(terms, mod) == -1);
  return 0;
}
```

5.12 Linear Recurrence

Description: Get *k*-th term of an *n*-order linear recurrence $S[i] = \sum_{j} S[i-j-1]tr[j]$, given $S[0... \ge n-1]$ and tr[0...n-1].

5.13 Matrix Inverse

Description: Inverts matrix *A*, stores in *A*. Returns rank.

Time: $\mathcal{O}(n^3)$

```
int matInv(vector<vector<ll>>& A) {
  int n = sz(A); vi col(n);
vector<vector<ll>>> tmp(n, vector<ll>(n));
  rep(i,0,n) tmp[i][i] = 1, col[i] = i;
  rep(i,0,n) {
    int r = i, c = i;
    rep(j,i,n) rep(k,i,n) if (A[j][k]) {
  r = j; c = k; goto found;
    return i;
  found:
    A[i].swap(A[r]); tmp[i].swap(tmp[r]);
    rep(j,0,n) swap(A[j][i], A[j][c]), swap(tmp[j][i],
    → tmp[j][c]);
swap(col[i], col[c]);
ll v = bigMod(A[i][i], -1);
     rep(j,i+1,n)
       ll'f = A[j][i] * v % mod;
      A[j][i] = 0;
       rep(k, i+1, n) A[i][k] = (A[i][k] - f*A[i][k]) % mod;
       rep(k,0,n) tmp[j][k] = (tmp[j][k] - f*tmp[i][k]) %
    rep(j,i+1,n) A[i][j] = A[i][j] * v % mod;
rep(j,0,n) tmp[i][j] = tmp[i][j] * v % mod;
A[i][i] = 1;
  for (int i = n-1; i > 0; --i) rep(j,0,i) {
    ll v = A[j][i];
    rep(k,0,n) tmp[j][k] = (tmp[j][k] - v*tmp[i][k]) % mod;
  \rightarrow mod : 0):
  return n:
```

5.14 Miller Rabin

Description: Deterministic Miller-Rabin primality test. Guaranteed to work for numbers up to $7 \cdot 10^{18}$; for larger numbers, use Python and extend A randomly.

Time: 7 times the complexity of $a^b \mod c$.

5.15 ModLog

Description: Returns the smallest x > 0 s.t. $a^x = b \pmod{m}$, or -1 if no such x exists. modLog(a,1,m) can be used to calculate the order of a.

Time: $\mathcal{O}(\sqrt{m})$

5.16 ModMulLL

Description: Calculate $a \cdot b \mod c$ for $0 \le a, b \le c \le 7.2 \cdot 10^{18}$. **Time:** $\mathcal{O}(1)$ for modmul, $\mathcal{O}(\log b)$ for modpow

```
typedef unsigned long long ull;
ull modmul(ull a, ull b, ull M) {
    ll ret = a * b - M * ull(1.L / M * a * b);
    return ret + M * (ret < 0) - M * (ret >= (ll)M);
}
ull modpow(ull b, ull e, ull mod) {
    ull ans = 1;
    for (; e; b = modmul(b, b, mod), e /= 2)
    if (e & 1) ans = modmul(ans, b, mod);
    return ans;
}
```

5.17 ModSqr

Description: Tonelli-Shanks algorithm for modular square roots. Finds x s.t. $x^2 = a \pmod{p}$ (-x gives the other solution).

Time: $\mathcal{O}(\log^2 p)$ worst case, $\mathcal{O}(\log p)$ for most p

```
ll sqrt(ll a, ll p) {
   a %= p; if (a < 0) a += p;
   if (a == 0) return 0;
   assert(bigMod(a, (p-1)/2, p) == 1); // else no solution
   if (p % 4 == 3) return bigMod(a, (p+1)/4, p);
   // a^(n+3)/8 or 2^(n+3)/8 * 2^(n-1)/4 works if p % 8 == 5
   ll s = p - 1, n = 2;
   int r = 0, m;
   while (s % 2 == 0)
    ++r, s /= 2;
   while (bigMod(n, (p - 1) / 2, p) != p - 1) ++n;
   ll x = bigMod(a, (s + 1) / 2, p);
   ll b = bigMod(a, s, p), g = bigMod(n, s, p);</pre>
```

```
for (;; r = m) {
    ll t = b;
    for (m = 0; m < r && t != 1; ++m) t = t * t % p;
    if (m == 0) return x;
    ll gs = bigMod(g, 1LL << (r - m - 1), p);
    g = gs * gs % p; x = x * gs % p; b = b * g % p;
}</pre>
```

5.18 NumberTheoreticTransform

Description: Modulo M should be of form $c \cdot 2^n + 1$ where 2^n is bigger than maximum polynomial size under computation (or as a result). G should be a primitive root of M. To find G, factor M-1 and get the distinct primes p_i . If $G^{(M-1)/p_i} \neq 1 \pmod{M}$ for each p_i then G is a valid root. Try all G until a hit is found (usually found very quick). **Time:** $\mathcal{O}(N \log N)$

```
const int G = 3;
const int MOD = 998244353:
const int N = (1 << 20) + 5;
int rev[N], w[N], inv n;
//G = primitive root(MOD)
int primitive root (int p) {
  vector <int> factor;
  int tmp = p - 1;
  for (int i = 2; i * i <= tmp; ++i) {
     if (tmp % i == 0) {
       factor.emplace_back(i);
       while (tmp \% i^-== 0) tmp /= i;
  if (tmp != 1) factor.emplace_back(tmp);
  for (int root = 1; ; ++root) [
     bool flag = true;
     for (int i = 0; i < (int) factor.size(); ++i) {
       if (bigMod(root, (p - 1) / factor[i], p) == 1) {
          flag = false; break;
     if (flag) return root;
void prepare (int n) {
  int sz = abs(31 - _ builtin_clz(n));
int r = bigMod(G, (MOD - 1) / n, MOD);
  inv_n = bigMod(n, MOD - 2, MOD), w[0] = w[n] = 1;
for (int i = 1; i < n; ++i) w[i] = (ll) w[i - 1] * r %
  for (int i = 1; i < n; ++i) rev[i] = (rev[i >> 1] >> 1) |
   \hookrightarrow ((i & 1) \ll (sz - 1));
void ntt (int *a, int n, int dir) {
  for (int i = 1; i < n - 1; ++i) {
    if (i < rev[i]) swap(a[i], a[rev[i]]);</pre>
  for (int m = 2; m <= n; m <<= 1) {
    for (int i = 0; i < n; i += m) {
        for (int j = 0; j < (m >> 1); ++j) {
         int &u = a[i + j], &v = a[i + j + (m >> 1)];
int t = (ll) v * w[dir ? n - n / m * j : n / m * j]

→ % MOD;

          v = u - t < 0 ? u - t + MOD : u - t;
          \ddot{u} = \ddot{u} + \ddot{t} > = MOD^{\circ}? u + \dot{t} - MOD^{\circ}: u + \dot{t};
  } if (dir) for (int i = 0; i < n; ++i) a[i] = (ll) a[i] *
   int f a[N], f b[N];
vector <int> multiply (vector <int> a, vector <int> b) {
  int sz = 1, n = a.size(), m = b.size();
  while (sz < n + m - 1) sz <<= 1; prepare(sz);
  for (int i = 0; i < sz; ++i) f a[i] = i < n? a[i] : 0;
  for (int i = 0; i < sz; ++i) f[b[i] = i < m ? b[i] : 0;
  ntt(f a, sz, 0); ntt(f b, sz, \overline{0});
```

5.19 Online Convolution

```
struct OnlineConvolution {
   vector<int> a, b, c;
   int k;
  OnlineConvolution(int n): a(n), b(n), c(n), k(0) {}
  // poly c = poly a * poly b
// add a[i] = x and b[i] = y and it will return c[i]
   int extend(int i, int x, int y) {
   assert(i == k);
a[k] = x; b[k] = y;
     int s = k + 2;
     for (int w = 1; s % w == 0 \&\& w < s; w <<= 1) {
       for (int ri = 0; ri < 2; ri++) {
  if (ri == 0 || w * 2 != s) {</pre>
             vector<int> f(w), g(w);
for (int i = 0; i < w; i++) f[i] = a[w - 1 + i],</pre>
              \rightarrow q[i] = b[k - w + 1 + i];
             f = multiply(f, g);
             for (int i = 0, j = k; i < f.size() && j <

    c.size(); i++, j++) {
               c[j] += f[i];
               if(c[j] \ge MOD) c[j] -= MOD;
          swap(a, b);
     return c[k++];
int main() {
   OnlineConvolution oc(n);
  vector<int> f(n + 1), g(n);
for(int i = 0; i < n; i++) g[i] = n - i;</pre>
  // f[0] = 1
// f[i] = f[j] * q[k] s.t j + k = i - 1
  for(int i = 1; i <= n; i++) {
  oc.extend(i - 1, f[i - 1], g[i - 1]);</pre>
     f[i] = oc.c[i - 1];
```

5.20 Pollard Rho

```
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
namespace Rho {
  ull mul (ull a, ull b, ull mod) {
    ll ret = a * b - mod * (ull) (1.L / mod * a * b);
    return ret + mod * (ret < θ) - mod * (ret >= (ll) mod);
  ull bigMod (ull a, ull e, ull mod) {
    ull ret = 1:
    while (e) {
   if (e & 1) ret = mul(ret, a, mod);
        red \ e >>= 1:
       a = mul(a, a, mod), e >>= 1;
     return ret;
  bool isPrime (ull n) {
  if (n < 2 or n % 6 % 4 != 1) return (n | 1) == 3;</pre>
    ull a[] = {2, 325, 9375, 28178, 450775, 9780504,

→ 1795265022

     ull s = builtin_ctzll(n - 1), d = n >> s;
     for (ull \overline{x} : a)
       ull p = bigMód(x % n, d, n), i = s;
       while (p != 1 \text{ and } p != n - 1 \text{ and } x % n \text{ and } i--) p =
        \rightarrow mul(p, p, n);
```

```
if (p != n - 1 and i != s) return 0;
    return 1;
  ull pollard (ull n) {
   auto f = [\&] (ull x) {return mul(x, x, n) + 1;};
     ull x = 0, y = 0, t = 0, prod = 2, i = 1, q;
     while (t++ \% 40 \text{ or } \_gcd(prod, n) == 1) {
       if (x == y) x = ++1, y = f(x);
       if ((q = mul(prod, max(x, y) - min(x, y), n))) prod =
       x = f(x), y = f(f(y));
     return __gcd(prod, n);
  vector <ull> factor (ull n) {
    if (n == 1) return {};
     if (isPrime(n)) return {n};
    ull x = pollard(n);
     auto l = factor(x), r = factor(n / x);
     l.insert(l.end(), r.begin(), r.end());
|<mark>int</mark> t; ll n;
int main() {
  cin >> `t:
  while (t--) {
   scanf("%lld")
    scanf("%{ld", &n);
vector <ull> facs = Rho::factor(n);
sort(facs.begin(), facs.end());
     printf("%d", (int) facs.size());
     for (auto it : facs) printf(" %llu", it);
    puts("");
  return 0;
```

5.21 Pollard Rho

→ % MOD: }

Description: Pollard-rho randomized factorization algorithm. Returns prime factors of a number, in arbitrary order (e.g. 2299 -> {11, 19, 11}).

Time: $\mathcal{O}(n^{1/4})$, less for numbers with small factors.

```
ull pollard(ull n) {
  auto f = [n](ull x) {    return modmul(x, x, n) + 1; };
  ull x = 0, y = 0, t = 30, prd = 2, i = 1, q;
  while (t++ % 40 || __gcd(prd, n) == 1) {
    if (x == y) x = ++i, y = f(x);
    if ((q = modmul(prd, max(x,y) - min(x,y), n))) prd = q;
    x = f(x), y = f(f(y));
    } return __gcd(prd, n);
}
vector<ull> factor(ull n) {
    if (n == 1) return {};
    if (isPrime(n)) return {n};
    ull x = pollard(n);
    auto l = factor(x), r = factor(n / x);
    l.insert(l.end(), all(r)); return l;
}
```

19

5.23 Simplex

Description: Solves a general linear maximization problem: maximize c^Tx subject to $Ax \le b$, $x \ge 0$. Returns -inf if there is no solution, inf if there are arbitrarily good solutions, or the maximum value of c^Tx otherwise. The input vector is set to an optimal x (or in the unbounded case, an arbitrary solution fulfilling the constraints). Numerical stability is not guaranteed. For better performance, define variables such that x = 0 is viable.

```
Usage: vvd A = {{1,-1}, {-1,1}, {-1,-2}};
vd b = {1,1,-4}, c = {-1,-1}, x;
T val = LPSolver(A, b, c).solve(x);
```

Time: $\mathcal{O}(NM * \#pivots)$, where a pivot may be e.g. an edge relaxation. $\mathcal{O}(2^n)$ in the general case.

```
rep(j,0,n+2) b[j] -= a[j] * inv2;
    b[s] = a[s] * inv2;
 rep(j,0,n+2) if (j != s) D[r][j] *= inv;
rep(j,0,m+2) if (i != r) D[i][s] *= -inv;
 D[r][s] = inv; swap(B[r], N[s]);
bool simplex(int phase) {
 int x = m + phase - 1;
 for (;;) {
   int s = -1;
    rep(j,0,n+1) if (N[j] != -phase) ltj(D[x]);
    if (D[x][s] >= -eps) return true;
   int r = -1;
rep(i,0,m) {
     if (D[i][s] <= eps) continue;</pre>
      if (r = -1) \mid MP(D[i][n+1] / D[i][s], B[i])
                    < MP(D[r][n+1] / D[r][s], B[r])) r = i;
   if (r == -1) return false; pivot(r, s);
 solve(vd &x) {
 int r = 0;
  rep(i,1,m) if (D[i][n+1] < D[r][n+1]) r = i;
 if (D[r][n+1] < -eps) {
    pivot(r, n);
    if (!simplex(2) || D[m+1][n+1] < -eps) return -inf;</pre>
    rep(i,0,m) if (B[i] = -1) {
     int s = 0; rep(j,1,n+1) ltj(D[i]); pivot(i, s);
 bool ok = simplex(1); x = vd(n);
 rep(i,0,m) if (B[i] < n) x[B[i]] = D[i][n+1];
 return ok ? D[m][n+1] : inf;
```

5.24 Stirling Description:

- Number of permutations of n elements with k disjoint cycles = Str1(n,k) = (n-1) * Str1(n-1,k) + Str1(n-1,k-1).
- n! = Sum(Str1(n,k)) (for all $0 \le k \le n$).
- Ways to partition n labelled objects into k unlabelled subsets = Str2(n,k) = k * Str2(n-1,k) + Str2(n-1,k-1).
- Parity of Str2(n,k): ((n-k) Floor((k-1)/2)) == 0). Ways to partition n labelled objects into k unlabelled subsets, with each subset containing at least r elements: SR(n,k) = k * SR(n-1,k) + C(n-1,r-1) * SR(n-r,k-1).
- Number of ways to partition n labelled objects 1,2,3, ... n into k non-empty subsets so that for any integers i and j in a given subset |i-j| >= d: Str2(n-d+1, k-d+1), n >= k >= d.

```
NTT ntt(mod);
vector<\lambda v[MAX];
//Stirling1 (n,k) = co-eff of x^k in
\rightarrow x^*(x+1)^*(x+2)^*....(x+n-1)
int Stirlingl(int n, int r) {
  int nn = 1;
  while (nn < n) nn <<= 1;
  for (int i = 0; i < n; ++i) {v[i].push back(i);
  \vee v[i].push back(1);}
  for (int i = \overline{n}; i < nn; ++i) v[i].push back(1);
  for (int j = nn; j > 1; j >>= 1) {
    int hn = j >> 1;
    for (int i = 0; i < hn; ++i) ntt.multiply(v[i], v[i +

→ hn], v[i]);
  return v[0][r];
NTT ntt(mod);
vector<ll> a, b, res;
```

```
\rightarrow A & B //where A(i) = (-1)^i / i! and B(i) = i^n / i!
int Stirling2(int n, int r) {
 a.resize(n + 1); b.resize(n + 1);
  for (int i = 0; i <= n; i++) {
    a[i] = invfct[i];
if (i % 2 == 1) a[i] = mod - a[i];
 for (int i = 0; i <= n; i++) {
  b[i] = bigMod(i, n, mod);
  b[i] = (b[i] * invfct[i]) % mod;</pre>
 NTT ntt(mod);
ntt.multiply(a, b, res);
  return res[r];
5.25 Sum of Totient Function
using namespace __gnu_pbds;
const int N = 3e5 + 9, mod = 998244353;
template <const int32 t MOD>
struct modint {
  int32 t value;
  modint() = default;
  modint(int32_t value ) : value(value ) {}
  inline modint<MOD> operator + (modint<MOD> other) const {
      int32 t c = this->value + other.value; return
      modint < MOD > (c >= MOD ? c - MOD : c); }
  inline modint<MOD> operator - (modint<MOD> other) const {
      int32 t c = this->value - other.value; return
     modint<MOD>(c < 0 ? c + MOD : c); }
inline modint<MOD> operator * (modint<MOD> other) const {
      int32 t c = (int64 t)this->value * other.value % MOD;
      return modint<MOD>(c < 0 ? c + MOD : c); }
  inline modint<MOD> & operator += (modint<MOD> other) {
      this->value += other.value: if (this->value >= MOD)
      this->value -= MOD; return *this; }
  inline modint<MOD> & operator -= (modint<MOD> other) {
      this->value -= other.value; if (this->value <</pre>
      this->value += MOD; return *this; }
  inline modint<MOD> & operator *= (modint<MOD> other) {
      this->value = (int64 t)this->value * other.value %
      MOD: if (this->value < 0) this->value += MOD: return
     *this; }
  inline modint<MOD> operator - () const { return
      modint<MOD>(this->value ? MOD - this->value : 0); }
  modint<MOD> pow(uint64 t k) const { modint<MOD> x =
       *this, y = 1; for (; k; k >>= 1) { if (k & 1) y *= x;
  x *= x; } return y; }
modint<MOD> inv() const { return pow(MOD - 2); } // MOD
      must be a prime
  inline modint<MOD> operator / (modint<MOD> other) const
      { return *this * other.inv(); }
  inline modint<MOD> operator /= (modint<MOD> other)
      { return *this *= other.inv(); }
  inline bool operator == (modint<MOD> other) const {
      return value == other.value; }
  inline bool operator != (modint<MOD> other) const {
      return value != other.value; }
  inline bool operator < (modint<MOD> other) const { return
      value < other.value; }</pre>
  inline bool operator > (modint<MOD> other) const { return
  → value > other.value: }
template <int32 t MOD> modint<MOD> operator * (int64 t
→ value, modint<MOD> n) { return modint<MOD>(value) * n; }
template <int32 t MOD> modint<MOD> operator * (int32 t
    value, modint<MOD> n) { return modint<MOD>(value % MOD)
template <int32 t MOD> istream & operator >> (istream & in,
→ modint<MOD> &n) { return in >> n.value; }
template <int32 t MOD> ostream & operator << (ostream &
→ out, modint<MOD> n) { return out << n.value; }</pre>
```

```
using mint = modint<mod>;
namespace Dirichlet
 //solution for f(x) = phi(x)
 const int T = 1e7 + 9;
  long long phi[T];
  qp hash table<long long, mint> mp;
 mint dp[T], inv;
 int sz, spf[T], prime[T];
 void init() {
   memset(spf, 0, sizeof spf);
    phi[1] = 1; sz = 0;
    for (int i = 2; i < T; i++)
      if (spf[i] == 0) phi[i] = i - 1, spf[i] = i,
       \rightarrow prime[sz++] = i;
      for (int j = 0; j < sz && i * prime[j] < T &&
      -- prime[j] <= spf[i]; j++) {
   spf[i * prime[j]] = prime[j];
   if (i % prime[j] == 0) phi[i * prime[j]] = phi[i] *</pre>
            prime[j];
        else phi[i * prime[j]] = phi[i] * (prime[j] - 1);
    dp[0] = 0;
    for(int i = 1; i < T; i++) dp[i] = dp[i - 1] + phi[i] %
    → mod;
    inv = 1; // g(1)
  mint p c(long long n) {
   if (n \% 2 == 0) return n / 2 \% mod * ((n + 1) \% mod) %

→ mod:

    return (n + 1) / 2 % mod * (n % mod) % mod:
  mint p q(long long n) {
    return n % mod;
  mint solve (long long x) {
   if (x < T) return dp[x];
    if (mp.find(x) != mp.end()) return mp[x];
    mint ans = 0:
    for (long long i = 2, last; i \le x; i = last + 1) {
      last = x / (x / i);
ans += solve (x / i) * (p g(last) - p g(i - 1));
    ans = p_c(x) - ans;
    ans /= \overline{i}nv;
    return mp[x] = ans;
```

5.26 Tridiagonal

Description: x = tridiagonal(d, p, q, b) solves the equation system

$$\begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_{n-1} \end{pmatrix} = \begin{pmatrix} d_0 & p_0 & 0 & 0 & \cdots & 0 \\ q_0 & d_1 & p_1 & 0 & \cdots & 0 \\ 0 & q_1 & d_2 & p_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & q_{n-3} & d_{n-2} & p_{n-2} \\ 0 & 0 & \cdots & 0 & q_{n-2} & d_{n-1} \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_{n-1} \end{pmatrix}.$$

This is useful for solving problems on the type

$$a_i = b_i a_{i-1} + c_i a_{i+1} + d_i, 1 \le i \le n,$$

where a_0, a_{n+1}, b_i, c_i and d_i are known. a can then be obtained from

$$\begin{split} \{a_i\} = & \operatorname{tridiagonal}(\{1,-1,-1,...,-1,1\},\{0,c_1,c_2,...,c_n\},\\ \{b_1,b_2,...,b_n,0\},\{a_0,d_1,d_2,...,d_n,a_{n+1}\}). \end{split}$$

Fails if the solution is not unique.

If $|d_i| > |p_i| + |q_{i-1}|$ for all i, or $|d_i| > |p_{i-1}| + |q_i|$, or the matrix is positive definite, the algorithm is numerically stable and neither tr nor the check for diag[i] == 0 is needed. **Time:** $\mathcal{O}(N)$

```
University of Dhaka | DU_Antifragile
typedef double T;
vector<T> tridiagonal(vector<T> diag, const vector<T>&

    super,

  const vector<T>& sub, vector<T> b) {
 int n = sz(b); vi tr(n);
 rep(i,0,n-1)
  if (abs(diag[i]) < 1e-9 * abs(super[i])) { // diag[i] == 0}
  b[i+1] -= b[i] * diag[i+1] / super[i];
if (i+2 < n) b[i+2] -= b[i] * sub[i+1] / super[i];
diag[i+1] = sub[i]; tr[++i] = 1;
  } else {
   diag[i+1] -= super[i]*sub[i]/diag[i];
   b[i+1] -= b[i]*sub[i]/diag[i];
 for (int i = n; i--;) {
  if (tr[i]) {
  swap(b[i], b[i-1]); diag[i-1] = diag[i]; b[i] /=
   \rightarrow super[i-1];
  } else {
   b[i] /= diag[i]; if (i) b[i-1] -= b[i]*super[i-1];
   return b;
5.27 Xor Basis
void tryGauss(int mask)
 for (int i = 0; i < n; i++) {
  if ((mask \& 1 << i) == 0) continue;
  if (!basis[i]) {
   basis[i] = mask;
   break;
  mask ^= basis[i];
6 Misc
6.1 Debug
template<typename A>
string to string(A v) {
  bool first = true;
  string res = "{
  for (const auto &x : v) {
    if (!first) res += ", ";
first = false;
    res += to string(x);
  res += "}"
  return res;
void debug out() { cerr << endl; }</pre>
template<typename Head, typename ... Tail>
void debug out(Head H, Tail... T) {
  cerr << " " << to_string(H) << " \";
  debug out(T ...);
#define debug(...) clog << "Line : " << LINE
                                                       << " ; ["
   <<\# VA \ ARGS << "]:", debug out( <math>\overline{VA} \ ARG\overline{S}
6.2 LIS
const int inf = 1e9;
vector<int> LIS(vector<int> a, int n){
```

```
vector < int > d(n + 1, inf);
for (int i = 0; i < n; i++) {
   *lower bound(d.begin(), d.end(), a[i]) = a[i];</pre>
 d.resize(lower_bound(d.begin(), d.end(), inf) -

    d.begin());
 return d;
```

```
6.3 Misc
 // Praamas
#pragma comment(linker, "/stack:200000000")
#pragma GCC optimize("03,unroll-loops,0fast,fast-math")
#pragma GCC target("avx,avx2,fma")
// Custom Priority Queue
std::priority queue<int, std::vector<int>,

    std::greater<int>> 0; // increasing
//qp hash table https://codeforces.com/blog/entry/60737
using namespace __gnu_pbds;
const int RANDOM = chrono::high_resolution_clock::now().tim

→ e since epoch().count();
struct chash {
 int operator()(int x) const { return x ^ RANDOM; }
|qp hash table<key, int, chash> table;
BS. Find first()
BS Find next(x) //Return first set bit after xth bit, x on
//Gray\ Code,\ G(0) = 000,\ G(1) = 001,\ G(2) = 011,\ G(3) = 010
inline int g(int n) { return n ^ (n >> 1); }
//Inverse Grav Code
int rev g(int g) {
  int n = 0;
  for ( ; g; g >>= 1) n ^= g;
  return n;
   Only for non-negative integers
// Returns the immediate next number with same count of one
 → bits, -1 on failure
long long hakmemItem175(long long n) {
  if (!n) return -1
  long long x = (n & -n);
long long left = (x + n);
long long right = ((n ^ left) / x) >> 2;
  long long res = (left | right);
  return res;
 // Returns the immediate previous number with same count of
one bits, -1 on failure
long long lol(long long n) {
  if (n < 2) return -1;
  long long res = ~hakmemItem175(~n);
  return (!res) ? -1 : res;
    builtin clz(int x);// number of leading zero
int
int
      _builtin_ctz(int x);// number of trailing zero
int
      builtin clzll(long long x);// number of leading zero
int
      builtin ctzll(long long x);// number of trailing zero
int
      _builtin_popcount(<mark>int</mark> x);// number of 1-bits in x
      _builtin_popcountll(long long x);// number of 1-bits
int
// compute next perm. ex) 00111, 01011, 01101, 01110,
 - 10011. 10101...
long long next_perm(long long v){
  long long t = v \mid (v-1);
  return (t + 1) \mid (((\sim t \& -\sim t) - 1) >> (builtin ctz(v) +
   → 1));
```

6.4 Random

```
// mt19937 64 in case of 64 bit
mt19937 rng(chrono::steady clock::now().time since epoch().
shuffle(v.begin(), v.end(), rng);
ll rnd(ll l, ll r) {
 return uniform int distribution<ll>(l, r) (rng);
```

```
6.5 Stress Testing
g++ code.cpp -o code
g++ gen.cpp -o gen
q++ brute.cpp -o brute
for((i = 1; ; ++i)); do
    ./gen $i > input file
     ./code < input file > myAnswer
     ./brute < input_file > correctAnswer
```

7 Strings

7.1 Aho Corasick

echo "Passed test: "

Description: Use add_pattern to add a bunch of strings, call compute (REMEMBER), then query/match text.

Time: linear

```
struct AC {
 int N, P; const int A = 26;
  vector <vector <int>> next;
  vector <int> link, out link;
 vector <vector <int>> out;
AC(): N(0), P(0) {node();}
int node()
  int node() {
    next.emplace_back(A, 0);
link.emplace_back(0);
    out link.empTace_back(0);
    out_emplace back(0):
    return N++;
  inline int get (char c) { return c - 'a'; }
  int add pattern (const string T) {
    int u = 0;
    for (auto c : T)
      if (!next[u][get(c)]) next[u][get(c)] = node();
      u = next[u][qet(c)];
    } out[u].push back(P); return P++;
  void compute() {
    queue <int> q:
    for (q.push(0); !q.empty();) {
      int u = q front(); q.pop();
      for (int c = 0; c < A; ++c) {
   int v = next[u][c];
   if (!v) next[u][c] = next[link[u]][c];</pre>
           link[v] = u ? next[link[u]][c] : 0;
out_link[v] = out[link[v]].empty() ?
            → out link[link[v]] : link[v];
           q.push(\overline{v});
  int advance (int u, char c) -
    while (u and !next[u][get(c)]) u = link[u];
    u = next[u][get(c)]; return u;
  void match (const string S) {
    int u = 0: for (auto c : S) {
      u = advance(u, c);
      for (int v = u; v; v = out link[v]) {
         for (auto p : out[v]) cout << "match " << p << endl;</pre>
```

7.2 Hash

```
const int N = 1e6 + 5;
const int MOD = int(1e9) + 7;
const ll P[] = {97, 1000003};
ll_pwr[2][N], inv[2][N];
void initHash() {
  for (int it = 0; it < 2; ++it) {
    pwr[it][0] = inv[it][0] = 1;
    II INV P = bigMod(P[it], -1);
```

```
for (int i = 1; i < N; ++i)
        pwr[it][i] ='pwr[it][i -'1] * P[it] % MOD;
inv[it][i] = inv[it][i - 1] * INV_P % MOD;
struct RangeHash {
  vector<ll> h[2], rev[2];
  RangeHash(const string S, bool revFlag = 0) {
     for (int it = 0; it < 2; ++it) {
  h[it].resize(S.size() + 1, 0);
  for (int i = 0; i < S.size(); ++i) {
    h[it][i + 1] = (h[it][i] + pwr[it][i + 1] * (S[i] -</pre>
               'a' + 1)) % MOD;
        if (revFlag) {
          rev[it].resize(S.size() + 1, 0);

for (int i = 0; i < S.size(); ++i) {

rev[it][i + 1] = (rev[it][i] + inv[it][i + 1] *
               \hookrightarrow (S[i] - 'a' + 1)) % MOD;
  inline ll get(int l, int r)
     ll one = (h[0][r + 1] - h[0][1]) * inv[0][1 + 1] % MOD; ll two = (h[1][r + 1] - h[1][1]) * inv[1][1 + 1] % MOD;
     if (one < 0) one += MOD; if (two < 0) two += MOD;
     return one << 31 | two:
  inline ll getReverse(int l, int r)
     ll one = (rev[0][r + 1] - rev[0][l]) * pwr[0][r + 1] %
     ll two = (rev[1][r + 1] - rev[1][l]) * pwr[1][r + 1] %
     if (one < 0) one += MOD; if (two < 0) two += MOD;
return one << 31 | two;</pre>
};
int main()
  initHash():
   string S; cin >> S
  RangeHash machine(S);
  cout << machine.get(0, S.size() - 1) << '\n';</pre>
  return 0;
```

7.3 KMP

```
template<typename T>
vector<int> prefix function(const T &s) {
 int n = (int)s.sīze();
  vector<int> p(n, 0);
  int k = 0;
 for (int i = 1; i < n; i++) {
  while (k > 0 && !(s[i] == s[k])) {
      k = p[k - 1];
    if (s[i] == s[k]) {
      k++;
   p[i] = k;
  return p;
// Returns 0-indexed positions of occurrences of s in w
template<typename T>
vector<int> kmp_search(const T &s, const T &w) {
  int n = (int)\overline{s}.size();
  int m = (int)w.size();
  const vector<int> p`='prefix_function(s);
  assert(n >= 1 \&\& (int) p.size() == n);
  vector<int> res;
  int k = 0;
  for (int i = 0; i < m; i++) {
    while (k > 0) \& (k = n | | [w[i] = s[k]))  { k = p[k]
       - 1]; }
   if (w[i]' = s[k]) \{ k++; \}
```

```
if (k == n) { res.push back(i - n + 1); }
 return res;
template<typename T>
vector<vector<int>> prefix function automaton(const T &s,

→ int alphabet size, int smallest alphabet) {
 int n = s.size();
 vector<int> pf = prefix function(s);
 vector<vector<int>> automaton(n + 1,

→ vector<int>(alphabet size)):

 for (int i = 0; i \le n; \overline{i}++) {
   for (int c = 0; c < alphabet_size; c++)</pre>
     if (i < n \text{ and } s[i] == smallest alphabet + c) {
        automaton[i][c] = i + 1;
        automaton[i][c] = i == 0 ? 0 : automaton[pf[i -
        → 1]][c];
 return automaton;
```

4 Manacher

Description: For each position in a string, computes p[0][i] = half length of longest even palindrome around pos i, p[1][i] = longest odd (half rounded down). **Time:** $\mathcal{O}(N)$

7.5 MinRotation

Description: Finds the lexicographically smallest rotation of a string. **Usage:** rotate(v.begin(), v.begin()+minRotation(v), v.end()); **Time:** $\mathcal{O}(N)$

7.6 Palindromic Tree

```
class PalindromicTree {
private:
   int A;
   string s;
   int last, ptr;
   vector<int> link, len, occ, depth;
   vector<vector<int>> nxt;

void init(int sz) {
    link.resize(sz, 0), len.resize(sz, 0), occ.resize(sz, 0), depth.resize(sz, 0);
    nxt.resize(sz, vector<int>(A, 0));
   len[1] = -1, len[2] = 0, link[1] = link[2] = 1, last = 0 ptr = 2;
```

```
void feed(int at) {
    while (s[at - len[last] - 1] != s[at]) last =
        link[last];
    int ch = s[at] - 'a', temp = link[last];
    while (s[at - len[temp] - 1] != s[at]) temp =
        link[temp]
    if (!nxt[last][ch]) {
   nxt[last][ch] = ++ptr, len[ptr] = len[last] + 2;
   link[ptr] = len[ptr] == 1 ? 2 : nxt[temp][ch];
      depth[ptr] = depth[link[ptr]] + 1;
      palindromes.emplace back(at - len[ptr], at);
    last = nxt[last][ch], ++occ[last];
public:
  vector<pair<int, int>> palindromes;
 PalindromicTree(string s, int A = 26) {
    int n = s.length();
    this->s = '0' + s:
    this -> A = A;
    init(n + 3);
    for (int i = 1; i <= n; ++i) feed(i);
```

22

7.7 Suffix Array

```
// Everything is 0-indexed
char s[N]; // Suffix array will be built for this string
int SA[N], iSA[N]; // SA is the suffix array, iSA[i] stores
the rank of the i'th suffix
int cnt[N], nxt[N]; // Internal stuff
bool bh[N], b2h[N]; // Internal stuff
int lcp[N]; // Stores lcp of SA[i] and SA[i + 1]; lcp[n -
int lcpSparse[LOGN][N]; // lcpSparse[i][j] = min(lcp[j],
 \rightarrow ..., lcp[j - 1 + (1 << i)])
void buildSA(int n) +
  for (int i = 0; i < n; i++) SA[i] = i;
sort(SA, SA + n, [](int i, int j) { return s[i] < s[j];</pre>
   → });
  for (int i = 0; i < n; i++) {
  bh[i] = i == 0 || s[SA[i]] != s[SA[i - 1]];</pre>
     b2h[i] = 0;
   for (int h = 1; h < n; h <<= 1) {
     int tot = 0;
     for (int i = 0, j; i < n; i = j) {
        i = i + 1;
        while (j < n && !bh[j]) j++;
nxt[i] = j; tot++;</pre>
      } if (tot == n) break;
     for (int i = 0; i < n; i = nxt[i]) {
  for (int j = i; j < nxt[i]; j++) iSA[SA[j]] = i;</pre>
        cnt[i] = 0:
     cnt[iSA[n - h]]++;
b2h[iSA[n - h]] = 1;
      for (int i = 0; i < n; i = nxt[i])
        for (int j = i; j < nxt[i]; j++) {</pre>
           int s = SA[j] - h;
           if (s < 0) continue;</pre>
           int head = iSA[s];
           iSA[s] = head + cnt[head]++;
b2h[iSA[s]] = 1;
        for (int j = i; j < nxt[i]; j++) {</pre>
           int s = SA[j] - h;
           if (s < 0 | | !b2h[iSA[s]]) continue;</pre>
           for (int k = iSA[s] + 1; !bh[k] \&\& b2h[k]; k++)
               b2h[k] = 0:
     for (int i = 0; i < n; i++) {
```

```
SA[iSA[i]] = i;
bh[i] |= b2h[i];
  for (int i = 0; i < n; i++) iSA[SA[i]] = i;
void buildLCP(int n) {
  for (int i = 0, k = 0; i < n; i++) {
    if (iSA[i] == n - 1) {</pre>
        k = 0;

lcp[n - 1] = 0;
        continue;
     int j = SA[iSA[i] + 1];
while (i + k < n \&\& j + k < n \&\& s[i + k] == s[j + k])
     lcp[iSA[i]] = k;
     if (k) k--;
void buildLCPSparse(int n) {
  for (int i = 0; i < n; i++) lcpSparse[0][i] = lcp[i];</pre>
  for (int i = 1; i < LOGN; i++) {
     for (int j = 0; j < n; j++) {
    lcpSparse[i][j] = min(lcpSparse[i - 1][j],</pre>
         \rightarrow lcpSparse[i - 1][min(n - 1, j + (1 << (i - 1)))]);
pair<int, int> minLCPRange(int n, int from, int minLCP) {
   for (int i = LOGN - 1; i >= 0; i--) {
     int jump = 1 << i;
     if (r + jump < n \text{ and } lcpSparse[i][r] >= minLCP) r +=
   int l = from;
  for (int i = LOGN - 1; i >= 0; i--) {
  int jump = 1 << i;</pre>
     if (l - jump >= 0 and lcpSparse[i][l - jump] >= minLCP)
   return make pair(l, r);
```

7.8 SuffixAutomaton

Description: Pattern matching – call run function. Do DP on DAG In general, given an equation Ax = b, the solution to a variable x_i is given by for number of different substrings (= different paths) or total length of different substrings. Lexicographically kth substring is kth path from root. Min rotation is smallest |S| length path on automaton of S+S. Number of occurrence for a node – mark non-clone nodes with 1 then do cnt[link[u]] + = cnt[u]. Occurrence position – maintain first-where A'_i is A with the ith column replaced by b. Pos (maybe lastPos too?) for each endpos set. Shortest non-appearing 8.2 Recurrences string – DP on DAG, DP[u] = 1 if there's no transition with a charac- If $a_n = c_1 a_{n-1} + \cdots + c_k a_{n-k}$, and $a_n = c_1 a_{n-1} + \cdots + c_k a_{n-k}$. ter, $1 + \min DP[v]$ otherwise. Longest common substring of two strings $|\cdots + c_k|$, there are d_1, \dots, d_k s.t. S, T – construct automaton S, run through T, and climb up the suffix links of automaton until a transition is found through next character of T. Do similar stuff for multiple strings.

Time: $\mathcal{O}(n \log n)$, linear if array used

```
char s[N], p[N];
map <char, int> to[N << 1]; // use array maybe?
int len[N << 1], link[N << 1], sz, last;
inline void init() {
   len[0] = 0, link[0] = -1, sz = 1, last = 0, to[0].clear();</pre>
void feed (char c) {
   int cur = sz++, p = last;
   len[cur] = len[last] + 1, link[cur] = 0, to[cur].clear();
   while (~p and !to[p].count(c)) to[p][c] = cur, p =
      → link[p];
    if (~p) {
        int q = to[p][c];
        if (len[q] - len[p] - 1) {
```

```
int r = sz++;
len[r] = len[p] + 1, to[r] = to[q], link[r] = link[q];
while (~p and to[p][c] == q) to[p][c] = r, p =
      } last = cur;
|bool run() {
  int m = strlen(p);
  for (int i = 0, u = 0; i < m; ++i) {
   if (!to[u].count(p[i])) return 0;</pre>
     u = to[u][p[i]];
  } return 1;
int main() {
  init();
  for (int i = 0; i < n; ++i) feed(s[i]);</pre>
```

7.9 Z Algorithm

```
template<typename T>
vector<int> z function(const T &s) {
   int n = (int)s.size();
  Int | = (int)s.size();
vector<int> z(n, n);
int l = 0, r = 0;
for (int i = 1; i < n; i++) {
    z[i] = (i > r ? 0 : min(r - i + 1, z[i - l]));
    while (i + z[i] < n && s[z[i]] == s[i + z[i]]) {</pre>
       if (i + z[i] - 1 > r) {
    l = i;
    r = i + z[i] - 1;
    return z:
```

Notes

8.1 Equations

$$ax + by = e$$

$$cx + dy = f$$

$$y = \frac{af - ec}{ad - bc}$$

$$y = \frac{af - ec}{ad - bc}$$

$$x_i = \frac{\det A_i'}{\det A}$$

$$a_n = d_1 r_1^n + \dots + d_k r_k^n.$$

Non-distinct roots r become polynomial factors, e.g. $a_n = (d_1 n + d_2)r^n$.

8.3 Trigonometry $(V + W)\tan(v - w)/2 = (V - W)\tan(v + w)/2$

where V, W are lengths of sides opposite angles v, w.

$$a\cos x + b\sin x = r\cos(x - \phi)$$

$$a\sin x + b\cos x = r\sin(x+\phi)$$

where $r = \sqrt{a^2 + b^2}$, $\phi = \operatorname{atan2}(b, a)$.

8.4 Geometry 8.4.1 Triangles

Circumradius: $R = \frac{abc}{4A}$, Inradius: $r = \frac{A}{s}$

Length of median (divides triangle into two equal-area triangles): m_a = $\frac{1}{5}\sqrt{2b^2+2c^2-a^2}$

Length of bisector (divides angles in two): $s_a = \sqrt{bc} \left| 1 - \left(\frac{a}{b+c} \right) \right|$

aw of tangents:
$$\frac{a+b}{a-b} = \frac{\tan \frac{\alpha+\beta}{2}}{\tan \frac{\alpha-\beta}{2}}$$

8.4.2 Quadrilaterals

With side lengths a, b, c, d, diagonals e, f, diagonals angle θ , area A and magic flux $F = b^2 + d^2 - a^2 - c^2$:

$$4A = 2ef \cdot \sin\theta = F \tan\theta = \sqrt{4e^2f^2 - F^2}$$

For cyclic quadrilaterals the sum of opposite angles is 180° , ef = ac + bd, and $A = \sqrt{(p-a)(p-b)(p-c)(p-d)}.$

8.4.3 Spherical coordinates

$$x = r \sin \theta \cos \phi \qquad r = \sqrt{x^2 + y^2 + z^2}$$

$$y = r \sin \theta \sin \phi \qquad \theta = a\cos(z/\sqrt{x^2 + y^2 + z^2})$$

$$z = r \cos \theta \qquad \phi = a\tan(y, x)$$

8.4.4 Pick's Theorem.

Area of lattice polygon A = i + b/2 - 1, where *i* is the number of lattice points strictly inside, and b is the number of lattice points on boundary (including vertices).

8.5 Derivatives/Integrals

$$\frac{d}{dx} \arcsin x = \frac{1}{\sqrt{1 - x^2}} \qquad \frac{d}{dx} \arccos x = -\frac{1}{\sqrt{1 - x^2}}$$

$$\frac{d}{dx} \tan x = 1 + \tan^2 x \qquad \frac{d}{dx} \arctan x = \frac{1}{1 + x^2}$$

$$\int \tan ax = -\frac{\ln|\cos ax|}{a} \qquad \int x \sin ax = \frac{\sin ax - ax \cos ax}{a^2}$$

$$\int e^{-x^2} = \frac{\sqrt{\pi}}{2} \operatorname{erf}(x) \qquad \int x e^{ax} dx = \frac{e^{ax}}{a^2} (ax - 1)$$

$$\begin{split} &1^2+2^2+3^2+\dots+n^2=\frac{n(2n+1)(n+1)}{6}\\ &1^3+2^3+3^3+\dots+n^3=\frac{n^2(n+1)^2}{4}\\ &1^4+2^4+3^4+\dots+n^4=\frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}\\ &\sum\limits_{i=1}^n i^m=\frac{1}{m+1}\left[(n+1)^{m+1}-1-\sum\limits_{i=1}^n\left((i+1)^{m+1}-i^{m+1}-(m+1)i^m\right)\right]\\ &\sum\limits_{i=1}^{n-1} i^m=\frac{1}{m+1}\sum\limits_{k=0}^m\binom{m+1}{k}B_kn^{m+1-k}\\ &\sum\limits_{k=0}^n kx^k=(x-(n+1)x^{n+1}+nx^{n+2})/(x-1)^2 \end{split}$$

8.7 Series

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots, (-\infty < x < \infty)$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots, (-1 < x \le 1)$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^{2}}{8} + \frac{2x^{3}}{32} - \frac{5x^{4}}{128} + \dots, (-1 \le x \le 1)$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots, (-\infty < x < \infty)$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots, (-\infty < x < \infty)$$

$$(x+a)^{-n} = \sum_{k=0}^{\infty} (-1)^{k} \binom{n+k-1}{k} x^{k} a^{-n-k}$$

8.8 Number Theory

8.8.1 **Primes**

p = 962592769 is such that $2^{21} \mid p-1$, which may be useful. For hashing use bit). There are 78498 primes less than 1000000.

there are $\phi(\phi(p^a))$ many. For p=2,a>2, the group $\mathbb{Z}_{>a}^{>}$ is instead isomorphic has logarithm-like properties: $\operatorname{ind}(1)=0$, $\operatorname{ind}(ab)=\operatorname{ind}(a)+\operatorname{ind}(b)$. to $\mathbb{Z}_2 \times \mathbb{Z}_{2a-2}$.

8.8.2 Estimates

 $\sum_{d|n} d = O(n \log \log n).$

The number of divisors of n is at most around 100 for n < 5e4, 500 for n < 1e72000 for n < 1e10, 200 000 for n < 1e19.

8.8.3 Carmichael numbers

8.8.4 Totient Function

- $\phi(n) = n \times \prod \left(1 \frac{1}{n}\right)$
- $\phi(p) = p 1$. if $gcd(m, n) = 1, \phi(mn) = \phi(m) \times \phi(n)$.
- Sum of $m \le n$ s.t, gcd(m,n) = 1: $n \times \frac{\phi(n)}{2}$
- For a and b, $\phi(ab) = \phi(a)\phi(b)\frac{d}{\phi(d)}$
- $\phi(ip) = p\phi(i)$ whenever p is a prime and it divides i
- $\sum_{i=1}^{n} \gcd(i,n) = \sum_{d|n} d\phi(\frac{n}{d})$
- $\sum_{i=1}^{n} n \operatorname{lcm}(i,n) = \frac{n}{2} (\sum_{d|n} (d\phi(d)) + 1)$

8.8.5 Mobius function

 $\mu(1) = 1$. $\mu(n) = 0$, if n is not squarefree. $\mu(n) = (-1)^s$, if n is the product of s dis tinct primes. Let f, F be functions on positive integers. If for all $n \in N$, F(n) = $\sum_{d|n} f(d)$, then $f(n) = \sum_{d|n} \mu(d) F(\frac{n}{d})$, and vice versa. $\phi(n) = \sum_{d|n} \mu(d) \frac{n}{d}$ $\sum_{d|n} \mu(d) = 1.$

If f is multiplicative, then $\sum_{d|n} \mu(d) f(d) = \prod_{p|n} (1 - f(p)), \sum_{d|n} \mu(d)^2 f(d) =$ $\prod_{p|n} (1+f(p)).$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} [gcd(i,j) = 1] = \sum_{k=1}^{n} \mu(k) \lfloor \frac{n}{k} \rfloor^{2}$$

$$\sum_{i=1}^n \sum_{i=1}^n \gcd(i,j) = \sum_{k=1}^n k \sum_{l=1}^{\lfloor \frac{n}{k} \rfloor} \mu(l) \lfloor \frac{n}{kl} \rfloor^2$$

 $\sum_{i=1}^{n} \sum_{j=1}^{n} gcd(i,j) = \sum_{k=1}^{n} \left(\frac{\lfloor \frac{n}{k} \rfloor (1 + \lfloor \frac{n}{k} \rfloor)}{2}\right)^{2} \sum_{j \in L} \mu(d)kd$

8.8.6 Quadratic Residue.

 $(\frac{a}{n})$ is 0 if $p \mid a$, 1 if a is a quadratic residue, -1 otherwise. Euler: $(\frac{a}{n}) = a^{(p-1)/2}$ $(\text{mod } p) \text{ (prime)}. \text{ Jacobi: if } n = p_1^{e_1} \cdots p_h^{e_h} \text{ then } (\frac{a}{n}) = \prod_{i=1}^{n} (\frac{a}{n})^{e_i}.$

8.8.7 Legendre symbol

If p is an odd prime, $a \in \mathbb{Z}$, then $\left(\frac{a}{p}\right)$ equals 0, if p|a; 1 if a is a quadratic

residue modulo p; and -1 otherwise. Euler's criterion: $\left(\frac{a}{n}\right) = a^{\left(\frac{p-1}{2}\right)} \pmod{p}$.

8.8.8 Jacobi symbol

If $n = p_1^{a_1} \cdots p_k^{a_k}$ is odd, then $\left(\frac{a}{n}\right) = \prod_{i=1}^k \left(\frac{a}{n_i}\right)^{k_i}$.

8.8.9 Kronecker symbol

Let a be a positive integer, which is not a perfect square and $a \equiv 0$ or 1 (mod 4). $\left(\frac{a}{2}\right) = \{1, \text{ if } a \equiv 1 \pmod{8}; -1, \text{ if } a \equiv 5 \pmod{8}\}.$

 $\left(\frac{a}{n}\right) = \prod_{i=1}^k p_i^{k_j}$, if $\gcd(a,n) \neq 1$ and $n = \prod p_i^{k_i}$. $\left(\frac{a}{n}\right)$ equals Jacobi symbol other-

8.8.10 Primitive roots

If the order of *g* modulo *m* (min n > 0: $g^n \equiv 1 \pmod{m}$) is $\phi(m)$, then *g* is called a primitive root. If Z_m has a primitive root, then it has $\phi(\phi(m))$ distinct primicious b votes, where a kb for some positive integer k. Compute the number 970592641 (31-bit number), 31443539979727 (45-bit), 3006703054056749 (52- itive roots. Z_m has a primitive root iff m is one of 2, 4, p^k , $2p^k$, where p is an odd prime. If Z_m has a primitive root g, then for all a coprime to m, there ex-Primitive roots exist modulo any prime power p^a , except for p=2,a>2, and ists unique integer $i=\operatorname{ind}_{\mathcal{G}}(a)$ modulo $\phi(m)$, such that $g^i\equiv a\pmod m$. ind_{\mathcal{G}}(a) 8.9.6 Coloring

> If p is prime and a is not divisible by p, then congruence $x^n \equiv a \pmod{p}$ has $\gcd(n, p-1)$ solutions if $a^{(p-1)/\gcd(n, p-1)} \equiv 1 \pmod{p}$, and no solutions otherwise. (Proof sketch: let g be a primitive root, and $g^i \equiv a \pmod{p}$, $g^u \equiv x$ \pmod{p} . $x^n \equiv a \pmod{p}$ iff $g^{nu} \equiv g^i \pmod{p}$ iff $nu \equiv i \pmod{p}$.

8.8.11 Discrete logarithm problem

Find x from $a^x \equiv b \pmod{m}$. Can be solved in $O(\sqrt{m})$ time and space with A positive composite n is a Carmichael number $(a^{n-1} \equiv 1 \pmod{n})$ for all a: a meet-in-the-middle trick. Let $n = \lceil \sqrt{m} \rceil$, and x = ny - z. Equation begcd(a,n)=1), iff n is square-free, and for all prime divisors p of n, p-1 divides comes $a^{ny}\equiv ba^z\pmod{m}$. Precompute all values that the RHS can take for $z = 0, 1, \dots, n - 1$, and brute force y on the LHS, each time checking whether there's a corresponding value for RHS.

8.8.12 Postage stamps/McNuggets problem

Let a, b be relatively-prime integers. There are exactly $\frac{1}{2}(a-1)(b-1)$ numbers not of form ax + by $(x, y \ge 0)$, and the largest is (a-1)(b-1) - 1 = ab - a - b.

8.8.13 Fermat's two-squares theorem

Odd prime *p* can be represented as a sum of two squares iff $p \equiv 1 \pmod{4}$. A product of two sums of two squares is a sum of two squares. Thus, n is a sum of two squares iff every prime of form p = 4k + 3 occurs an even number of times rected spanning trees rooted at i (if G is undirected, remove any row/column). in n's factorization.

8.8.14 Bezout's Theorem.

For $a \neq b \neq 0$, $d = \gcd(a, b)$ is the smallest positive integer for which there are integer solutions to ax + by = d. If (x, y) is one solution, then all solutions are given by $(x+kb/d, y-ka/d), k \in \mathbb{Z}$. Find one solution with extended Euclidean algorithm.

8.9 Combinatorics

8.9.1 Biomial Coefficient **Hockey Stick Identity:**

- (Left to right) Sum over n and k: $\sum_{k=0}^{m} {n+k \choose k} = {n+m-1 \choose m}$
- (Right to left) Sum over $n: \sum_{m=0}^{n} {n+1 \choose k} = {n+1 \choose k+1}$

Sum of the squares: $\sum_{k=0}^{n} {n \choose k}^2 = {2n \choose n}$

Weighted sum: $\sum_{k=1}^{n} k {n \choose k} = n2^{n-1}$

Connection with the fibonacci numbers: $\sum_{k=0}^{n-k} {n-k \choose k} = F_{n+1}$

Parity: $\binom{n}{r}$ is odd if r is a submask of n (n&r = r).

8.9.2 Fibonacci Numbers

$$\sum_{i=0}^{n} F_i^2 = F_{n+1} F_n$$

$$\sum_{i=0}^{n} F_i F_{i+1} = F_{n+1}^2 - (-1)^n$$

$$\sum_{i=0}^{n} F_i F_{i-1} = \sum_{i=0}^{n-1} F_i F_{i+1}$$

$$\gcd(F_m, F_n) = F_{\gcd(m,n)}$$

$$\gcd(F_n, F_{n+1}) = \gcd(F_n, F_{n+2}) = \gcd(F_{n+1}, F_{n+2}) = 1$$

8.9.3 2nd Kaplansky's Lemma

The number of ways of selecting k objects, no two consecutive, from n labelled tional symmetry using $G = \mathbb{Z}_n$ to get objects arrayed in a circle is $\frac{n}{h}\binom{n-k-1}{h-1} = \frac{n}{n-h}\binom{n-k}{h}$

8.9.4 Balls in Bins

- n distinct balls in r distinct bins (empty bins): rⁿ
- n distinct balls in r distinct bins (no empty bins): $r^n {r \choose 1}(r-1)^n + {r \choose 2}(r-1)^n$ $2)^n \dots + (-1)^{n-1} \binom{r}{r}$
- *n* distinct balls in *r* identical bins (empty bins): Bell Number
- *n* distinct balls in *r* identical bins (no empty bins): Stirling Number 2
- *n* identical balls in *r* distinct bins (empty bins): $\binom{n+r-1}{r-1}$
- *n* identical balls in *r* distinct bins (empty bins): $\binom{n-1}{r-1}$

8.9.5 Ballot Problem

Suppose that in an election, candidate A receives a votes and candidate B reof ways the ballots can be ordered so that A maintains more than k times as many votes as B throughout the counting of the ballots: $\frac{a-kb}{a+b} \times \binom{a+b}{a}$

- The number of labeled undirected graphs with n vertices, $G_n = 2^{\binom{n}{2}}$
- The number of labeled directed graphs with n vertices, $G_n = 2^{n(n-1)}$
- The number of connected labeled undirected graphs with n vertices. $\begin{array}{l} C_n = 2^{\binom{n}{2}} - \frac{1}{n} \sum_{k=1}^{n-1} k \binom{n}{k} 2^{\binom{n-k}{2}} C_k = 2^{\binom{n}{2}} - \sum_{k=1}^{n-1} \binom{n-1}{k-1} 2^{\binom{n-k}{2}} C_k \\ \bullet \ \ \text{The number of k-connected labeled undirected graphs with } n \ \text{vertices}, \end{array}$
- $D[n][k] = \sum_{s=1}^{n} {n-1 \choose s-1} C_s D[n-s][k-1]$
- **Cayley's formula:** the number of trees on *n* labeled vertices = the number of spanning trees of a complete graph with n labeled vertices = n^{n-2}
- Number of ways to color a graph using k color such that no two adjacent nodes have same color: **Complete graph** = k(k-1)(k-2)...(k-n+1), **Tree** = $k(k-1)^{n-1}$, **Cycle** = $(k-1)^n + (-1)^n(k-1)$
- Number of trees with *n* labeled nodes: n^{n-2}

8.9.7 Matrix Tree Theorem.

Create $N \times N$ matrix mat, and for each edge $a \to b \in G$, do mat[a][b]-, mat[b][b]++ (and mat[b][a]-, mat[a][a]++ if G is undirected). Remove the ith row and column and take the determinant; this yields the number of di-

8.9.8 Erdős-Gallai theorem.

A simple graph with node degrees $d_1 \ge \cdots \ge d_n$ exists iff $d_1 + \cdots + d_n$ is even and for every k = 1...n, $\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min(d_i, k)$.

8.9.9 Selected cycle lengths. If $g_S(n)$ is number of n-permutations with cycle lengths from set S then $\sum_{n\geq 0} \frac{g_S(n)}{n!} x^n = \exp(\sum_{n\in S} \frac{x^n}{n}).$

8.9.10 Factorial

8.9.11 Cycles

Let $g_S(n)$ be the number of *n*-permutations whose cycle lengths all belong to the set S. Then

$$\sum_{n=0}^{\infty} g_S(n) \frac{x^n}{n!} = \exp\left(\sum_{n \in S} \frac{x^n}{n}\right)$$

8.9.12 Derangements

Permutations of a set such that none of the elements appear in their original position.

$$D(n) = (n-1)(D(n-1) + D(n-2)) = nD(n-1) + (-1)^n = \left\lfloor \frac{n!}{e} \right\rfloor$$

8.9.13 Burnside's lemma

Given a group G of symmetries and a set X, the number of elements of X up to symmetry equals

$$\frac{1}{|G|} \sum_{g \in G} |X^g|,$$

where X^g are the elements fixed by g(g.x = x).

If f(n) counts "configurations" (of some sort) of length n, we can ignore rota-

$$g(n) = \frac{1}{n} \sum_{k=0}^{n-1} f(\gcd(n,k)) = \frac{1}{n} \sum_{k \mid n} f(k) \phi(n/k)$$

8.9.14 Partition function

Number of ways of writing n as a sum of positive integers, disregarding the order of the summands.

$$p(0) = 1, \ p(n) = \sum_{k \in \mathbb{Z} \setminus \{0\}} (-1)^{k+1} p(n - k(3k - 1)/2)$$
$$p(n) \sim 0.145/n \cdot \exp(2.56\sqrt{n})$$

8.9.15 Stirling numbers of the first kind

Number of permutations on n items with k cycles.

$$c(n,k) = c(n-1,k-1) + (n-1)c(n-1,k), \ c(0,0) = 1$$

$$\sum_{k=0}^{n} c(n,k)x^{k} = x(x+1)\dots(x+n-1)$$

c(8,k) = 8,0,5040,13068,13132,6769,1960,322,28,1

c(n,2) = 0,0,1,3,11,50,274,1764,13068,109584,...

8.9.16 Stirling (second kind).

Ways to partition n items into k non-empty groups. S(n,k) = S(n-1,k-1)kS(n-1,k), S(n,1) = S(n,n) = 1. Row generator:

$$e^{-x} \sum_{k \ge 0} \frac{k^n}{k!} x^k$$
, $S(n,k) = \frac{1}{k!} \sum_{j=0}^k (-1)^{k-j} {k \choose j} j^n$

8.9.17 Bell number.

Number of partitions of *n* distinct elements.

$$B(n) = 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, \dots$$

For prime p, $B(p^m + n) \equiv mB(n) + B(n+1) \pmod{p}$. $B(n) = \sum_{k \ge 0} {n-1 \choose k} B(k)$ $\sum_{k\geq 0} S(n,k).$

8.9.18 Eulerian numbers

Number of permutations $\pi \in S_n$ in which exactly k elements are greater than the previous element. k j:s s.t. $\pi(j) > \pi(j+1)$, k+1 j:s s.t. $\pi(j) \ge j$, k j:s s.t. **8.11.1** Titu's Lemma $\pi(j) > j$.

$$E(n,k) = (n-k)E(n-1,k-1) + (k+1)E(n-1,k)$$

$$E(n,0) = E(n,n-1) = 1$$

$$E(n,k) = \sum_{j=0}^{k} (-1)^{j} \binom{n+1}{j} (k+1-j)^{n}$$

8.9.19 Bernoulli numbers

$$\sum_{j=0}^{m} {m+1 \choose j} B_j = 0. \quad B_0 = 1, B_1 = -\frac{1}{2}. \ B_n = 0, \text{ for all odd } n \neq 1.$$

8.9.20 Lucas' Theorem.

Let n, m be non-negative integers and p a prime. Write $n = n_k p^k + ... + n_1 p + n_0$ 8.12 Games and $m = m_k p^k + ... + m_1 p + m_0$. Then $\binom{n}{m} \equiv \prod_{i=0}^k \binom{n_i}{m_i} \pmod{p}$.

8.9.21 Catalan numbers

$$\begin{split} C_n &= \frac{1}{n+1} \binom{2n}{n} = \binom{2n}{n} - \binom{2n}{n+1} = \frac{(2n)!}{(n+1)!n!} \\ C_0 &= 1, \ C_{n+1} = \frac{2(2n+1)}{n+2} C_n, \ C_{n+1} = \sum_i C_i C_{n-i} \end{split}$$

 $C_n = 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, \dots$

- sub-diagonal monotone paths in an $n \times n$ grid.
- strings with *n* pairs of parenthesis, correctly nested.
- binary trees with with n + 1 leaves (0 or 2 children).
- ordered trees with n+1 vertices.
 ways a convex polygon with n+2 sides can be cut into triangles by connecting vertices with straight lines.
- permutations of [n] with no 3-term increasing subseq.

8.9.22 Catalan Convolution

$$C_n^{(k)} = \sum_{a_0 + a_1 + \dots + a_k = n} C_{a_0} C_{a_1} \dots C_{a_k}, n \ge 0; C_0 = 1$$

$$C_n^{(k)} = \frac{k+1}{n+k+1} \binom{2n+k}{n}$$

8.9.23 Labeled unrooted trees.

 n^{n-2} trees on n vertices. $n_1n_2\cdots n_kn^{k-2}$ trees on k existing trees of size n_i $(n-2)!/[(d_1-1)!\cdots(d_n-1)!]$ trees with degree sequence d_i .

8.10 Trivia

8.10.1 Pythagorean (coprime) triples.

 $[a,b,c] = [m^2 - n^2, 2mn, m^2 + n^2]$ with m > n > 0 and m,n coprime, both not odd. Other triples are these scaled by k > 0. $x^2 + y^2 = 2z^2$ is equivalent to $(\frac{x+y}{2})^2 + (\frac{x-y}{2})^2 = z^2$.

8.10.2 Primes less than 10^6 .

78498.

8.10.3 nth root congruence.

If p is prime and p doesn't divide a, then congruence $x^n \equiv a \pmod{p}$ has $\gcd(n, p-1)$ solutions if $a^{(p-1)/\gcd(n, p-1)} \equiv 1 \pmod{p}$, and no solutions otherwise. There are $\phi(\phi(n))$ primitive roots for $n=2,4,p^k,2p^k$, odd prime p.

8.10.4 Max number of divisors $\leq n$

100 for n = 50.000, 500 for $n = 10^7$, 2000 for $n = 10^{10}$, 2.00,000 for $n = 10^{19}$

8.10.5 Two Square Theorem.

Odd prime p is a sum of two squares iff $p \equiv 1 \pmod{4}$. A product of two sums of two squares is a sum of two squares. Thus, n is a sum of two squares iff every prime of form p = 4k + 3 occurs an even number of times in n's factorization.

8.10.6 Perfect Number.

Number that equals sum of its proper divisors. n is perfect iff $n = 2^{p-1}(2^p - 1)$ and $2^p - 1$ is a (Mersenne) prime.

8.11 Inequalities

For positive reals $a_1, a_2, ..., a_n$ and $b_1, b_2, ..., b_n$,

$$\frac{{a_1}^2}{b_1} + \frac{{a_2}^2}{b_2} + \ldots + \frac{{a_n}^2}{b_n} \ge \frac{a_1 + a_2 + \ldots + {a_n}^2}{b_1 + b_2 + \ldots + b_n}$$

Equality holds if and only if $a_i = kb_i$ for a non-zero real constant k.

8.12.1 Grundy numbers

For a two-player, normal-play (last to move wins) game on a graph (V,E) $G(x) = \max(\{G(y) : (x, y) \in E\})$, where $\max(S) = \min\{n \ge 0 : n \notin S\}$. x is losing iff G(x) = 0.

8.12.2 Sums of games

- Player chooses a game and makes a move in it Grundy number of a position is xor of grundy numbers of positions in summed games.
- Player chooses a non-empty subset of games (possibly, all) and makes moves in all of them A position is losing iff each game is in a losing posi-
- Player chooses a proper subset of games (not empty and not all), and makes moves in all chosen ones. A position is losing iff grundy numbers of all games are equal.
- Player must move in all games, and loses if can't move in some game A position is losing if any of the games is in a losing position.

8.12.3 Misère Nim

Misere nim is evaluated like normal nim if all piles are not of size 1. Otherwise depends on parity of number of piles. Sum of some normal impartial games:

- · Pick non-empty subset of games and move in each: losing iff every game
- · Pick non-empty proper subset of games: losing grundy numbers of all games are equal.