Ch G.1 Q 1.3.7

- **1.** There are 18 mathematics majors and 325 computer science majors at a college.
 - a) In how many ways can two representatives be picked so that one is a mathematics major and the other is a computer science major?
 - b) In how many ways can one representative be picked who is either a mathematics major or a computer science major?

- **3.** A multiple-choice test contains 10 questions. There are four possible answers for each question.
 - a) In how many ways can a student answer the questions on the test if the student answers every question?
 - b) In how many ways can a student answer the questions on the test if the student can leave answers blank?

$$6)$$
 5.5.5.5.5.5.5.5.5 = $5^{10} = 9.765,625$ ways

7. How many different three-letter initials can people have?

$$26 \cdot 26 \cdot 26 = 26^3 = 17,576$$
 possible three-letter initials

6.2 The Pigeonhole Principle

Ch.6.2 Q * 1.3

1. Show that in any set of six classes, each meeting regularly once a week on a particular day of the week, there must be two that meet on the same day, assuming that no classes are held on weekends.

NO weekend => MONDAY through FRIDAY

By the pigeonhole principle,

at least one day must contain at least two classes.

- A drawer contains a dozen brown socks and a dozen black socks, all unmatched. A man takes socks out at random in the dark.
 - a) How many socks must he take out to be sure that he has at least two socks of the same color?
 - b) How many socks must he take out to be sure that he has at least two black socks?
- a) There are 2 colors => these are the pigeonholes.

 By the pigeonhole principle,

 it should be 3 socks.
- b) He need to take out 14 socks in order to ensure at least two black socks.

CL. 6.3 Q# 1.500,9

1. List all the permutations of $\{a, b, c\}$.

5. Find the value of each of these quantities.

a) P(6,3)

9. How many possibilities are there for the win, place, and show (first, second, and third) positions in a horse race with 12 horses if all orders of finish are possible?

6.4 Binomial Coefficients and Identities

Ch.6.4 Q# 5,9,13

5. How many terms are there in the expansion of $(x + y)^{100}$ after like terms are collected?

there is one term har each i hrow 0 =0100.

So there are 101 terms.

9. What is the coefficient of $x^{101}y^{99}$ in the expansion of $(2x - 3y)^{200}$?

By binomial theorem,

$$(0+6)^{N} = \sum_{k=0}^{k} {n \choose k} 0^{n-k} k^{k}$$

$$(2x-3y)^{200} = (2x + (-3y))^{200}$$
$$= {\binom{200}{99}} (2x)^{101} (-3y)^{99}$$

Therefore, the coefficient is $\binom{200}{99} 2^{101} (-3)^{99}$ = $-2^{101} 3^{99} C(200,99)$

13. What is the row of Pascal's triangle containing the binomial coefficients $\binom{9}{k}$, $0 \le k \le 9$?

Binomial expansion