MATH 417 Lec01-05

Wenxiao Yang *

 $^*\mbox{Department}$ of Mathematics, University of Illinois at Urbana-Champaign

2021

目录

T	Fun	Function and Set				
	1.1	Funct	ion	3		
		1.1.1	Composition of functions	3		
		1.1.2	Proposition 1.1.3: Associativity of Functions	3		
		1.1.3	Injective, surjective, bijective	3		
		1.1.4	Lemma 1.1.7: 两个 injective/surjective/bijective 的方程的 composition 保留性质	3		
		1.1.5	Proposition 1.1.8: Inverse of Function	4		
	1.2	${\rm Set}$.		4		
		1.2.1	Well Defined Set	4		
		1.2.2	Power Set	4		
		1.2.3	Cardinalities of Sets, Pigeonhole Principle	4		
		1.2.4	B^A : Sets of Function	4		
		1.2.5	Binary operations on a Set, associative, commutative	5		
2	Equ	uivalence relations and Partition				
	2.1	2.1 Equivalence relations (理性等价的定义)				
2.2 F		Partit	Partition (满足不重叠, 无剩余的 set 拆分结果)			
	2.3	Equiv	Equivalence class			
		2.3.1	[x]: equivalence class	6		
		2.3.2	X/\sim : set of equivalence classes	6		
	2.4	2.4 Relationship of $\underline{Equivalence\ relation}$, $\underline{Set\ of\ equivalence\ classes}$ and $\underline{Partitions}$				
		2.4.1	Theorem 1.2.7: Equivalence relation $\sim \Leftrightarrow$ Set of equivalence classes X/\sim ;			
			$\{ \text{all Sets of equivalence classes} \} = \{ \text{all Partitions} \} \dots \dots \dots \dots$	6		
		2.4.2	Proposition 1.2.12: 根据结果 $X/\sim=\{[x] x\in X\}$ 推断的 \sim_{π} equals to \sim	7		
		2.4.3	Proposition 1.2.13: 给 X 标记 Y : f , 给 X/\sim 标记 Y : \tilde{f} ,; 两函数之间——对应	8		

3	Permutations 改变位置			
	3.1	Sym(L)	$X(X) = \{\sigma: X \to X \sigma \text{ is a bijection}\}: $ permutation group of $X(X) \in X(X)$	
	Sym(X): permutations of X			8
		3.1.1	Properties of \circ on $Sym(X)$	8
		3.1.2	S_n : Permutation group on n elements, σ^i	Ć
		3.1.3	k-cycle, cyclically permute/fix	Ć
3.2 Disjoint cycles			nt cycles	10
		3.2.1	Theorem: Every permutation is a union of disjoint cycles, uniquely	10
	3.3 Transposition		position	12
		3.3.1	Theorem: 每个 permutation 可以由若干个(可能不 disjoint 的)transposition	
			表示	12
		3.3.2	Sign of Permutation	12

1 Function and Set

1.1 Function

$$A \times B = \{(a, b) | a \in A, b \in B\}.$$

<u>Function</u> is a rule σ that assigns an element B to every element of A.

$$\sigma: A \to B$$

$$\forall a \in A, \sigma(a) \in B.$$

$$\sigma(a) = value \ of \ \sigma \ at \ a. \ (the \ \underline{image} \ of \ a)$$

A set $C \subset B$, we call $\sigma^{-1}(C) = \{a \in A | \sigma(a) \in C\}$ as the <u>preimage</u> of a. An element $b \in B$, we call $\sigma^{-1}(b) = \{a \in A | \sigma(a) = b\}$ as the <u>fiber</u> of b. A is the domain of σ , B is the range of σ .

1.1.1 Composition of functions

$$\sigma: A \to B, \tau: B \to C$$
. The function $\tau \circ \sigma: A \to C$ is $\forall a \in A, (\tau \circ \sigma)(a) = \tau(\sigma(a))$

1.1.2 Proposition 1.1.3: Associativity of Functions

Proposition 1 (Proposition 1.1.3). $\sigma: A \to B, \tau: B \to C, \rho: C \to D$ functions then,

$$\rho\circ(\tau\circ\sigma)=(\rho\circ\tau)\circ\sigma$$

1.1.3 Injective, surjective, bijective

A function $\sigma: A \to B$ is called,

1. Injective (1 to 1)

$$\forall a_1, a_2 \in A, \sigma(a_1) = \sigma(a_2) \Rightarrow a_1 = a_2$$

2. Surjective (onto)

$$\forall b \in B, \exists a \in A, s.t. \sigma(a) = b$$

3. Bijective (if injective and surjective)

1.1.4 Lemma 1.1.7: 两个 injective/surjective/bijective 的方程的 composition 保留性质

Lemma 1 (Lemma 1.1.7). Suppose $\sigma: A \to B, \tau: B \to C$ are functions,

If σ, τ are injective, then $\tau \circ \sigma$ is injective.

If σ, τ are surjective, then $\tau \circ \sigma$ is surjective.

If σ, τ are bijective, then $\tau \circ \sigma$ is bijective.

1.1.5 Proposition 1.1.8: Inverse of Function

Proposition 2 (Proposition 1.1.8). A function $\sigma: A \to B$ is a bijection if $\exists \ a \ function \ \tau: B \to A \ such \ that$

$$\sigma \circ \tau = id_B = identity \ on \ B(id_B(x) = x, \forall x \in B)$$

$$\tau \circ \sigma = id_A$$

Such τ is unique, called inverse of σ , $\tau = \sigma^{-1}$.

1.2 Set

1.2.1 Well Defined Set

Definition 1. A set S is well defined if an object a is either $a \in S$ or $a \notin S$.

1.2.2 Power Set

Definition 2. For any set A, we denote by $\mathcal{P}(A)$ the collection of all subsets of A. $\mathcal{P}(A)$ is the power set of A.

1.2.3 Cardinalities of Sets, Pigeonhole Principle

Definition 3. If A is a set, |A| = cardinality of A = # of elements

 $n\in\mathbb{N}, |\{1,\dots n\}|=n;\, |\emptyset|=0 (\emptyset=\text{ empty set }).$

|A| = |B| if there is a bijection $\sigma : A \to B$.

If there is an injection $\sigma: A \to B$, we can write $|A| \leq |B|$;

If there is a surjection $\sigma: A \to B$, we can write $|A| \ge |B|$.

Theorem 1 (Pigeonhole Principle). If A and B are sets and |A| > |B|, then there is no injective function $\sigma: A \to B$.

1.2.4 B^A : Sets of Function

If A, B are sets, then $B^A = \{ \sigma : A \to B | \sigma \text{ a function} \}.$

Example 1. $n \in \mathbb{Z}$, we define a function $f: B^{\{1,\dots,n\}} \to B^n (= B \times B \times B \times \dots \times B)$ by the equation $f(\sigma) = \{\sigma(1), \dots, \sigma(n)\}$, where $\sigma: \{1, \dots, n\} \to B$. The f is a bijection.

证明.

 $1. \ \textit{Injective} :$

$$f(\sigma_1) = f(\sigma_2) \Rightarrow \{\sigma_1(1), ..., \sigma_1(n)\} = \{\sigma_2(1), ..., \sigma_2(n)\}$$

Since $\sigma : \{1, ..., n\} \rightarrow B$, it is sufficient to prove $\sigma_1 = \sigma_2$.

2. Surjective:

$$\forall \{b_1,...,b_n\}, \text{ we have } \sigma^*(x) = b_x, x = 1,...,n. \text{ s.t. } f(\sigma^*) = \{b_1,...,b_n\}$$

Example 2.

$$C(\mathbb{R}, \mathbb{R}) = \{continuous \ functions \ \sigma : \mathbb{R} \to \mathbb{R}\} \subset \mathbb{R}^{\mathbb{R}}$$

1.2.5 Binary operations on a Set, associative, commutative

A binary operation on a set A is a function $*: A \times A \rightarrow A$.

The operation is associative if $a * (b * c) = (a * b) * c, \forall a, b, c \in A$.

The operation is *commutative* if $a * b = b * a, \forall a, b \in A$.

Example 3. $+, \circ$ are both associative and commutative operations on $\mathbb{Z}, \mathbb{N}, \mathbb{Q}, \mathbb{R}$; - is a neither associative nor commutative operation on $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$, but not \mathbb{N} .

2 Equivalence relations and Partition

2.1 Equivalence relations (理性等价的定义)

理性的等价需要满足: (1)Reflexive, (2)Symmetric, (3)Transitive. Given a set X, a relation on X is a subset of $R \subset X \times X$. We write $a \sim b$.

A relation \sim is said to be

- 1. Reflexive if $\forall x \in X$, we have $x \sim x$.
- 2. Symmetric if $\forall x, y \in X, x \sim y \Rightarrow y \sim x$.
- 3. Transitive if $\forall x, y, z \in X, x \sim y, y \sim z \Rightarrow x \sim z$.

The sim is called **equivalence relation** if it is reflexive, Symmetric and Transitive.

Example 4. Set $X = \{(a,b) \in \mathbb{Z}^2 | b \neq 0\}$, satisfies $(a,b) \sim (c,d)$ if ad = bc.

- 1. Reflexive: $(a,b) \sim (a,b), \forall (a,b) \in \mathbb{Z}^2$.
- 2. Symmetric: $\forall (a,b), (c,d) \in \mathbb{Z}^2, (a,b) \sim (c,d) \Rightarrow (c,d) \sim (a,b).$
- 3. Transitive: $\forall (a,b), (c,d), (u,v) \in \mathbb{Z}^2, (a,b) \sim (c,d), (c,d) \sim (u,v) \Rightarrow ad = bc, cv = du \Rightarrow acv = adu = bcu \Rightarrow av = bu \Rightarrow (a,b) \sim (u,v).$

So this is an equivalence relation.

Example 5. $f: X \to Y$ is a function, define \sim_f on X by $a \sim_f b$ if f(a) = f(b).

- 1. Reflexive: $a \sim a, \forall a \in X$.
- 2. Symmetric: $a, b \in X, a \sim b \Rightarrow b \sim a$.
- 3. Transitive: $\forall a, b, c \in X, a \sim b, b \sim c \Rightarrow f(a) = f(b) = f(c) \Rightarrow a \sim c$.

So \sim_f is an equivalence relation.

2.2 Partition (满足不重叠, 无剩余的 set 拆分结果)

X a set, a partition of X is a collection ω of subsets of X s.t.

- 1) $\forall A, B \in \omega$ either A = B or $A \cap B = \emptyset$.
- $2) \cup_{A \in \omega} A = X.$

The subsets are the **cell**s of partition.

2.3 Equivalence class

2.3.1 [x]: equivalence class

Define the **equivalence class** of x to be the subset $[x] \subset X$:

$$[x] = \{ y \in X | y \sim x \}$$

Where \sim is an equivalence relation.

 \sim is reflexive $\Rightarrow x \in [x]$. We say that any $y \in [x]$ as a **representative** of the equivalence class.

2.3.2 X/\sim : set of equivalence classes

Set of equivalence classes 是一个 **set** 被某种 *equivalence relation* 分类的结果 We write the set of equivalence classes

$$X/\sim=\{[x]|x\in X\}$$

2.4 Relationship of Equivalence relation, Set of equivalence classes and Partitions

给定 X, <u>Equivalence relation</u> \sim 与<u>Set of equivalence classes</u> X/\sim 具有相同的信息量;包含所有<u>Partitions</u> 的集合与包含所有<u>Set of equivalence classes</u> 的集合相同。

2.4.1 Theorem 1.2.7: Equivalence relation $\sim \Leftrightarrow$ Set of equivalence classes X/\sim ; {all Sets of equivalence classes} = {all Partitions}

Theorem 2 (Theorem 1.2.7). X/\sim is a partition of X. Conversely, given a partition ω of X, there exists a unique equivalence relation \sim_{ω} s.t. $X/\sim_{\omega}=\omega$.

(1) <u>Equivalence relation</u> ~ 生成一个对应的<u>Set of equivalence classes</u> X/\sim , 该 X/\sim 就是一个 Partition。(可以看作 1. 所有 Set of equivalence classes 都是 Partitions; $2.\sim \Rightarrow X/\sim$ 由方式推结果) (2) 反之,我们也可以根据已有的 Partition ω ,将其作为一种分类方式 \sim_{ω} 的 _(i.e. $X/\sim_{\omega}=\omega$) 这个对应的 \sim_{ω} 存在且是唯一的。(可以看作 1. 所有 Partitions 都是 Set of equivalence classes; $2.X/\sim \Rightarrow \sim$ 由结果推方式)

证明.

 $(1)X/\sim$ is a partition of X:

$$\forall x, y \in X \text{ s.t. } [x] \cap [y] \neq \emptyset$$

$$Let \ z \in [x] \cap [y] \Rightarrow z \sim x, z \sim y$$

$$\forall w \in [x] \Rightarrow w \sim x \Rightarrow x \sim w \Rightarrow z \sim w \Rightarrow w \sim z \Rightarrow w \sim y \Rightarrow [x] \subset [y]$$

$$Similarly \ we \ can \ prove \ [y] \subset [x] \Rightarrow [x] = [y]$$

- (2) Given a partition ω of X, there exists a unique equivalence relation \sim_{ω} s.t. $X/\sim_{\omega}=\omega$:
- (2.1) Prove there exists an equivalence relation s.t. $X/\sim_{\omega}=\omega$:

We define a relation: $x \sim_{\omega} y$ if there exists $A \in \omega$ s.t. $x, y \in A \Rightarrow \sim_{\omega}$ is symmetric and transitive. Since $\bigcup_{A \in \omega} A = X$, we know $\forall x \in X, \exists A \in \omega$ s.t. $x \in A \Rightarrow \sim_{\omega}$ is reflexive. So \sim_{ω} is an equivalence relation.

We know $A = [x], \forall A \in \omega, \forall x \in A \text{ (by } \sim_{\omega}), \text{ then } X/\sim_{\omega} = \{[x]|x \in \cup_{A \in \omega} A\} = \{\{A^*|x \in A^*\}|A^* \in \omega\} = \omega.$

(2.2) Prove the equivalence relation is unique:

Set \sim be any equivalence relation that make $X/\sim=\omega$, then we know $\forall A\in\omega, \exists x\in X$ s.t. [x]=A. According to the definition of [x], if $x\in A, y\sim x$ if and only if $y\in [x]=A$. Which is exactly the \sim_{ω} .

Example 6 (the same as example 5). $f: X \to Y$ is a function, define \sim_f on X by $a \sim_f b$ if f(a) = f(b). In this example the **equivalence classes** are precisely the fibers $[x] = f^{-1}(f(x))$. $y \sim_f x \Rightarrow y \in f^{-1}(f(x))$

Example 7 (the same as example 4). Set $X = \{(a,b) \in \mathbb{Z}^2 | b \neq 0\}$, satisfies $(a,b) \sim (c,d)$ if ad = bc. i.e. we write the equivalence of (a,b) as $\frac{a}{b} = [(a,b)]$. Then $X/\sim = \mathbb{Q}$.

2.4.2 Proposition 1.2.12: 根据结果 $X/\sim=\{[x]|x\in X\}$ 推断的 \sim_{π} equals to \sim .

Proposition 3 (Proposition 1.2.12). If \sim is an equivalence relation on X, define a surjective function $\pi: X \to X/\sim by \ \pi(x) = [x]$. Then $\sim_{\pi} = \sim$ (the definition of \sim_f in example 6.)

证明.

(1)Surjective:

 $X/\sim=\{[x]|x\in X\}=\{\pi(x)|x\in X\}, \text{ so } \forall y\in X/\sim,\ y\in\{\pi(x)|x\in X\}, \text{ there exists } x\in X \text{ s.t. } \pi(x)=y.$

 $(2)\sim_{\pi}=\sim$

 $a \sim_{\pi} b$ if $\pi(a) = \pi(b) \Leftrightarrow [a] = [b]$, which is exactly the definition of \sim .

逻辑:

- 1. Given \sim ;
- 2. Get the corresponding $X/\sim=\{[x]|x\in X\};$

- 3. $\pi(x) = [x];$
- 4. \sim_{π} : $a \sim_{\pi} b \text{ iff } \pi(a) = \pi(b)$
- 5. $\sim_{\pi} = \sim$

根据结果 $X/\sim=\{[x]|x\in X\}$ 推断的 \sim_{π} equals to \sim .

2.4.3 Proposition 1.2.13: 给 X 标记 Y: f, 给 X/\sim 标记 Y: \widetilde{f} , ; 两函数之间一一对应

Proposition 4 (Proposition 1.2.13). Given any function $f: X \to Y$ there exists a unique function $\tilde{f}: X/\sim Y$ such that $\tilde{f}\circ \pi = f$, where $\pi: X \to X/\sim$ in proposition 3. Furthermore, \tilde{f} is a bijection onto the image f(X).

证明.

(1) Existence:

We define $x_1 \sim_f x_2$ if $f(x_1) = f(x_2)$. Set $\tilde{f}: X/\sim_f \to Y$, $\tilde{f}([x]) = f(x)$. Then $\tilde{f}[\pi(x)] = \tilde{f}([x]) = f(x)$. Exactly what we require.

(2) Uniqueness:

Set any \tilde{f}' s.t. $\tilde{f}' \circ \pi = f$, then $\tilde{f}'[\pi(x)] = \tilde{f}'([x]) = f(x)$, i.e. the \tilde{f} is unique.

(3) Bijection:

Surjective, which we proved before $\forall f, \exists \tilde{f} \text{ s.t. } \tilde{f} \circ \pi = f;$

Injective, we also have proved the uniqueness $f = \tilde{f} \circ \pi = \tilde{f}' \circ \pi \Rightarrow \tilde{f}' = \tilde{f}$.

3 Permutations 改变位置

Definition 4. Let X be a finite set, a permutation is bijection $\sigma: X \to X$.

Definition 5. Let $S_X(Sym(X))$ be the set of all bijection $\sigma: X \to X$.

If |X| = n, $|S_X| = n!$.

3.1 $Sym(X) = \{\sigma : X \to X | \sigma \text{ is a bijection}\}$: permutation group of X; elements in Sym(X): permutations of X

We set $Sym(X) = \{\sigma : X \to X | \sigma \text{ is a bijection}\} \subset X^X$. We call it **symmetric group of** X or **permutation group of** X. We call the elements in Sym(X) the **permutations of** X or the **symmetries of** X.

3.1.1 Properties of \circ on Sym(X)

Proposition 5 (Proposition 1.3.1.). For any nonempty set X, \circ is an operation on Sym(X) with the following properties:

- $(i) \circ is associative.$
- (ii) $id_X \in Sym(X)$, and for all $\sigma \in Sym(X)$, $id_X \circ \sigma = \sigma \circ id_X = \sigma$, and
- (iii) For all $\sigma \in Sym(X)$, $\sigma^{-1} \in Sym(X)$.

Permutations 类似于 rearrangement, 交换 X 中元素的排序。

3.1.2 S_n : Permutation group on n elements, σ^i

Note 1. When $X = \{1, ..., n\}, n \in \mathbb{Z}$, write $S_n = Sym(X)$ symmetric/permutation group on n elements.

Note 2. $\sigma \in Sym(X)$, write $\sigma^n = \sigma \circ \sigma \circ ... \circ \sigma$, $\sigma^0 = id_X$, $\sigma^{-1} = inverse$, r > 0, $\sigma^{-r} = (\sigma^{-1})^r$. So, $r, s \in \mathbb{Z}$, $\sigma^{r+s} = \sigma^r \circ \sigma^s = \sigma^s \circ \sigma^r$.

3.1.3 *k*-cycle, cyclically permute/fix

Example 8.

$$1 \stackrel{\sigma}{\mapsto} 2 \stackrel{\sigma}{\mapsto} 5 \stackrel{\sigma}{\mapsto} 1, \quad \tau_1$$

$$3 \stackrel{\sigma}{\mapsto} 4 \stackrel{\sigma}{\mapsto} 3$$
, τ_2

图 1: Example of Cycle

In the example of Figure 1, $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 4 & 3 & 2 \end{pmatrix}$, $\sigma = \tau_1 \circ \tau_2$, where $\tau_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 3 & 4 & 2 \end{pmatrix}$,

 $\tau_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 4 & 3 & 5 \end{pmatrix}$. τ_1 is 3-cycle, τ_2 is 2-cycle. We could represent $\tau_1 = (1\ 2\ 5) = (2\ 5\ 1) = (5\ 1\ 2),$

i.e. 1
$$5$$
 Similarly, we can represent $\tau_2 = (3,4) = (4,3)$, i.e. $3 \longleftrightarrow 4$

We can find that $\forall x \in \{1, 2, 3, 4, 5\}$, $\tau_1^3(x) = x$, $\tau_2^2(x) = x$, so we write τ_1 as a **3-cycle** in S_5 , τ_2 as a **2-cycle** in S_5 .

Given $k \geq 2$, a **k-cycle** in S_n is a permutation σ with the property that $\{1, ..., n\}$ is the union of two disjoint subsets, $\{1, ..., n\} = Y \cup Z$ and $Y \cap Z = \emptyset$, such that

1. $\sigma(x) = x$ for every $x \in \mathbb{Z}$, and

2.
$$|Y| = k$$
, and for any $x \in Y, Y = {\sigma(x), \sigma^2(x), \sigma^3(x) ... \sigma^k(x) = x}$.

We say that σ cyclically permutes the elements of Y and fixes the elements of Z.

 $\tau_1 = (1\ 2\ 5)$ cyclically permutes the elements of $Y = \{1, 2, 5\}$ and fixes the elements of $Z = \{3, 4\}$.

 $\tau_2 = (3 \ 4)$ cyclically permutes the elements of $Y = \{3,4\}$ and fixes the elements of $Z = \{1,2,5\}$.

3.2 Disjoint cycles

Since the sets are cyclically permuted by τ_1, τ_2 (i.e. Y) are disjoint. We call the **disjoint cycle** notation $\sigma = \tau_1 \circ \tau_2 = (1\ 2\ 5)(3\ 4)$. (Commute the order is irrelevant)

3.2.1 Theorem: Every permutation is a union of disjoint cycles, uniquely.

Given $\sigma \in S_n$, there exists a unique (possibly empty) set of pairwise disjoint cycles.

Theorem 3. Let X be a finite set, the graph of permutation $\sigma \in S_X$ is a union of disjoint cycle.

证明. Prove by induction:

If |X| = 1, the graph is circle:

For |X| > 1, let $i_1 \in X$ and let $\mathcal{O}(i_1) = \{\sigma^r(i_1), r \geq 0\} = \{i_1, \sigma(i_1), \sigma^2(i_1), ...\}$. $\mathcal{O}(i_1)$ is finite, and there is a smallest r s.t. $\sigma^r(i_1) \in \{i_1, \sigma(i_1), \sigma^2(i_1), ..., \sigma^{r-1}(i_1)\}$. Then $\sigma^r(i_1) = i_1$ because other elements already have a pre-change under σ .

Then $i_1 \to \sigma(i_1) \to \sigma^2(i_1) \to \cdots \to \sigma^{r-1}(i_1) \to i_1$ is a cycle of length r.

For $j \notin \mathcal{O}(i_1)$, $\sigma(j) \notin \mathcal{O}(i_1)$, $\sigma^{-1}(j) \notin \mathcal{O}(i_1)$. Let $Y = X/\mathcal{O}(i_1)$ then $\sigma: Y \to Y$ is a bijection. Then prove by induction.

Example 9. $\sigma_1 = (1 \ 2 \ 6 \ 5)(3)(4)$, can be written by $\sigma_1 = (1 \ 2 \ 6 \ 5)$, $\sigma_2 = (2 \ 3 \ 5 \ 4)$

$$\sigma_1 \circ \sigma_2 = (1\ 2\ 6\ 5) \circ (2\ 3\ 5\ 4)$$

$$1 \xrightarrow{(2 \ 3 \ 5 \ 4)} 1 \xrightarrow{(1 \ 2 \ 6 \ 5)} 2$$

$$2 \xrightarrow{(2 \ 3 \ 5 \ 4)} 3 \xrightarrow{(1 \ 2 \ 6 \ 5)} 3$$

$$3 \xrightarrow{(2 \ 3 \ 5 \ 4)} 5 \xrightarrow{(1 \ 2 \ 6 \ 5)} 1$$

$$4 \xrightarrow{(2 \ 3 \ 5 \ 4)} 2 \xrightarrow{(1 \ 2 \ 6 \ 5)} 6$$

$$5 \xrightarrow{(2 \ 3 \ 5 \ 4)} 4 \xrightarrow{(1 \ 2 \ 6 \ 5)} 4$$

$$6 \xrightarrow{(2 \ 3 \ 5 \ 4)} 6 \xrightarrow{(1 \ 2 \ 6 \ 5)} 5$$

Then $\sigma_1 \circ \sigma_2 = (1 \ 2 \ 3) \circ (4 \ 6 \ 5)$

$$\sigma_{2} \circ \sigma_{1} = (2 \ 3 \ 5 \ 4) \circ (1 \ 2 \ 6 \ 5)$$

$$1 \xrightarrow{(1 \ 2 \ 6 \ 5)} 2 \xrightarrow{(2 \ 3 \ 5 \ 4)} 3$$

$$2 \xrightarrow{(1 \ 2 \ 6 \ 5)} 6 \xrightarrow{(2 \ 3 \ 5 \ 4)} 6$$

$$3 \xrightarrow{(1 \ 2 \ 6 \ 5)} 3 \xrightarrow{(2 \ 3 \ 5 \ 4)} 5$$

$$4 \xrightarrow{(1 \ 2 \ 6 \ 5)} 4 \xrightarrow{(2 \ 3 \ 5 \ 4)} 2$$

$$5 \xrightarrow{(1 \ 2 \ 6 \ 5)} 1 \xrightarrow{(2 \ 3 \ 5 \ 4)} 1$$

$$6 \xrightarrow{(1 \ 2 \ 6 \ 5)} 5 \xrightarrow{(2 \ 3 \ 5 \ 4)} 4$$

Then $\sigma_2 \circ \sigma_1 = (1 \ 3 \ 5) \circ (2 \ 6 \ 4)$

Note: $\sigma_1 \circ \sigma_2 \neq \sigma_2 \circ \sigma_1$

Example 10 (Exercise 1.3.2.). Consider $\sigma = (3\ 4\ 8)(5\ 7\ 6\ 9)$ and $\tau = (1\ 9\ 3\ 5)(2\ 7\ 4)$ in S_9 expressed in disjoint cycle notation. Compute $\sigma \circ \tau$ and $\tau \circ \sigma$ expressing both in disjoint cycle notation.

$$1 \to \sigma(\tau(1)) = \sigma(9) = 5; \ 2 \to \sigma(\tau(2)) = \sigma(7) = 6;$$

$$3 \to \sigma(\tau(3)) = \sigma(5) = 7; \ 4 \to \sigma(\tau(4)) = \sigma(2) = 2;$$

$$5 \to \sigma(\tau(5)) = \sigma(1) = 1; \ 6 \to \sigma(\tau(6)) = \sigma(6) = 9;$$

$$7 \to \sigma(\tau(7)) = \sigma(4) = 8; \ 8 \to \sigma(\tau(8)) = \sigma(8) = 3;$$

$$9 \to \sigma(\tau(9)) = \sigma(3) = 4;$$

$$\Rightarrow \sigma \circ \tau = (1 \ 5)(2 \ 6 \ 9 \ 4)(3 \ 7 \ 8)$$

$$1 \to \tau(\sigma(1)) = \tau(1) = 9; \ 2 \to \tau(\sigma(2)) = \tau(2) = 7;$$

$$3 \to \tau(\sigma(3)) = \tau(4) = 2; \ 4 \to \tau(\sigma(4)) = \tau(8) = 8;$$

$$5 \to \tau(\sigma(5)) = \tau(7) = 4; \ 6 \to \tau(\sigma(6)) = \tau(9) = 3;$$

$$7 \to \tau(\sigma(7)) = \tau(6) = 6; \ 8 \to \tau(\sigma(8)) = \tau(3) = 5;$$

$$9 \to \tau(\sigma(9)) = \tau(5) = 1;$$

$$\Rightarrow \tau \circ \sigma = (1 \ 9)(2 \ 7 \ 6 \ 3)(4 \ 8 \ 5)$$

Example 11. Let $\sigma, \tau \in S_7$, given in disjoint cycle, notation by $\sigma = (1\ 5\ 4)(3\ 7), \tau = (1\ 3\ 2\ 6\ 4),$ Compute $\sigma^2, \sigma^{-1}, \tau \circ \sigma$

$$\sigma^{2} = (1\ 4\ 5), \qquad \sigma^{-1} = (4,5,1)(3,7),$$

$$1 \to \tau(\sigma(1)) = \tau(5) = 5, \quad 2 \to \tau(\sigma(2)) = \tau(2) = 6,$$

$$3 \to \tau(\sigma(3)) = \tau(7) = 7, \quad 4 \to \tau(\sigma(4)) = \tau(1) = 3,$$

$$5 \to \tau(\sigma(5)) = \tau(4) = 1, \quad 6 \to \tau(\sigma(6)) = \tau(6) = 4,$$

$$7 \to \tau(\sigma(7)) = \tau(3) = 2,$$

$$\Rightarrow \tau \circ \sigma = (1,5)(2,6,4,3,7)$$

3.3 Transposition

Definition 6. A transposition is a cycle of length 2: $\sigma = (i \ j)$.

3.3.1 Theorem: 每个 permutation 可以由若干个 (可能不 disjoint 的) transposition 表示

Theorem 4. Every permutation σ of X is a product of transposition. (the product is not unique) **Equivalent:** Given $n \geq 2$, any $\sigma \in S_n$ can be expressed as a composition of 2-cycles. (not require disjoint)

证明.

Version 1:

$$(x_1 \ x_k)(x_1 \ x_2, \dots x_{k-1} \ x_k) = (x_1 \ x_2 \ \dots x_{k-1})$$

$$(x_1 \ x_2 \ \dots x_{k-1} \ x_k) = (x_1 \ x_k)(x_1, x_2 \ \dots x_{k-1})$$

$$= (\mathbf{x_1} \ \mathbf{x_k})(\mathbf{x_1} \ \mathbf{x_{k-1}})(\mathbf{x_1} \ \mathbf{x_2} \ \dots \mathbf{x_{k-2}})$$

$$\dots$$

$$= (\mathbf{x_1} \ \mathbf{x_k})(\mathbf{x_1} \ \mathbf{x_{k-1}})(\mathbf{x_1} \ \mathbf{x_{k-2}}) \dots (\mathbf{x_1} \ \mathbf{x_2})$$

Version 2:

$$(x_1 \ x_2, \dots x_{k-1} \ x_k)(x_1 \ x_k) = (x_2 \ x_3 \ \dots x_k)$$
$$(x_1 \ x_2 \ \dots x_{k-1} \ x_k) = (x_2 \ x_3 \ \dots x_k)(x_1 \ x_k)$$
$$\dots$$
$$= (\mathbf{x_{k-1}} \ \mathbf{x_k})(\mathbf{x_{k-2}} \ \mathbf{x_k}) \dots (\mathbf{x_2} \ \mathbf{x_k})(\mathbf{x_1} \ \mathbf{x_k})$$

3.3.2 Sign of Permutation

Theorem 5. Although the product of transposition of a permutation is not unique, the <u>parity (odd or even) of the residuents in a product is unique. We call it the **sign** of permutation.</u>

$$sign(\sigma) = (-1)^{(\# even-length \ cycles \ in \ \sigma)}$$

= $(-1)^{(\# transpositions \ in \ \sigma)}$

What happens to a permutation σ 's cycles if $\sigma \to (i \ j) \circ \sigma$?

- 1. i and j are not contained in σ .
- 2. i and j appear in the same cycle of σ .
- 3. i and j appear in disjoint cycles.

$$(i \ j) \circ (i - -j \sim \sim) = (i - -) \circ (j \sim \sim)$$
$$(i \ j) \circ (i - -) \circ (j \sim \sim) = (i - -j \sim \sim)$$

Proposition 6. $sign((i \ j) \circ \sigma) = -1 \cdot sign(\sigma)$

证明.

Suppose
$$\sigma = (a_1 \ a_2 \ \cdots a_k \ \sigma_1 \ \sigma_2 \ \cdots \sigma_l)$$

Then $(a_1 \ b_1) \circ \sigma = (a_1 \ a_2 \ \cdots a_k)(\sigma_1 \ \sigma_2 \ \cdots \sigma_l)$

$$sign(\sigma) = \begin{cases} +1 & \text{if } k+l \text{ is odd} \\ -1 & \text{if } k+l \text{ is even} \end{cases}$$

$$sign((a_1 \ b_1) \circ \sigma) = \begin{cases} -1 & \text{if } k+l \text{ is odd} \\ +1 & \text{if } k+l \text{ is even} \end{cases}$$

参考文献

[1] Christopher J Leininger Introduction to Abstract Algebra (Draft) 2017.