Stochastik 1 Hausaufgaben Blatt 11

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: January 15, 2025)

Problem 1. Betrachte den Wahrscheinlichkeitsraum ([0,1], $\mathcal{B}([0,1]), \mathcal{U}([0,1])$), mit $\Omega = [0,1]$ und der uniformen Verteilung $\mathcal{U}([0,1])$. Mit den Teilmengen

$$E_1 = [0, 1/4] \cup [1/2, 3/4], \quad E_2 = [0, 1/3] \cup [2/3, 1] \quad \text{und} \quad E_3 = [0, 1/2],$$

seien zwei Mengensysteme \mathcal{E}_1 und \mathcal{E}_2 gegeben durch

$$\mathcal{E}_1 = \{E_1, E_2\}, \quad \mathcal{E}_2 = \{E_3\}.$$

- (a) Zeigen Sie, dass \mathcal{E}_1 und \mathcal{E}_2 unabhängig sind.
- (b) Zeigen Sie, dass $\sigma(\mathcal{E}_1)$ und \mathcal{E}_2 nicht unabhängig sind.
- (c) Folgern Sie, dass die von \mathcal{E}_1 und \mathcal{E}_2 erzeugten σ -Algebren nicht unabhängig sind. Wieso folgt aus (a) nicht die Unabhängigkeit der erzeugten σ -Algebren?

Proof. (a) Wir müssen nur $E_1 \cap E_3$ und $E_2 \cap E_3$ betrachten. E_1 und E_3 sind unabhängig, da

$$\mathbb{P}(E_1 \cap E_3) = \mathbb{P}([0, 1/4]) = \frac{1}{4} = \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) = \mathbb{P}(E_1)\mathbb{P}(E_3).$$

 E_2 und E_3 sind unabhängig, da

$$\mathbb{P}(E_2 \cap E_3) = \mathbb{P}([0, 1/3]) = \frac{1}{3} = \left(\frac{2}{3}\right) \left(\frac{1}{2}\right) = \mathbb{P}(E_2)\mathbb{P}(E_3).$$

Daher sind \mathcal{E}_1 und \mathcal{E}_2 unabhängig.

(b) $E_1 \cup E_2 \in \sigma(\mathcal{E}_1)$. Es gilt auch $E_1 \cup E_2 = [0, 1/3] \cup [1/2, 1]$. Damit ist

$$\mathbb{P}(E_3) = \frac{1}{2}, \qquad \mathbb{P}(E_1 \cup E_2) = \frac{1}{3} + \frac{1}{2} = \frac{5}{6}.$$

aber

$$\mathbb{P}(E_3 \cap (E_1 \cup E_2)) = \mathbb{P}([1/3, 1/2]) = \frac{1}{6} \neq \mathbb{P}(E_3)\mathbb{P}(E_1 \cup E_2).$$

 $^{^{\}ast}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

(c) Da $\mathcal{E}_2 \subseteq \sigma(\mathcal{E}_2)$ ist, können $\sigma(\mathcal{E}_1)$ und $\sigma(\mathcal{E}_2)$ nicht unabhängig sein, da die Bedingung auch nicht erfüllt ist, selbst wenn wir eine kleinere Menge betrachten.

Die Unabhängigkeit folgt nicht aus (a), da \mathcal{E}_1 nicht \cap -stabil ist, weil $E_1 \cap E_2 \notin \mathcal{E}_1$. \square

Problem 2. Es sei X eine exponentialverteilte Zufallsvariable, $X \sim \text{Exp}(\lambda)$, $\lambda > 0$. Die Zufallsvariable Y sei unabhängig von X mit

$$\mathbb{P}(Y=1) = \mathbb{P}(Y=-1) = \frac{1}{2}.$$

Leiten Sie die Verteilungsfunktion der Zufallsvariablen $Z = X \cdot Y$ her.

Proof. Die Verteilungsfunktion ist definiert durch $F(x) = \mathbb{P}(Z \leq x)$. Wir betrachten zwei Fälle:

1. $x \le 0$:

$$\begin{split} \mathbb{P}(Z \leq x) &= \mathbb{P}(Y = -1 \cap X \geq (-x)) \\ &= \mathbb{P}(Y = -1) \mathbb{P}(X \geq (-x)) \\ &= \frac{1}{2} (e^{\lambda x}) \end{split}$$

2. x > 0:

$$\begin{split} \mathbb{P}(Z \leq x) &= \mathbb{P}(Y = -1) + \mathbb{P}(Y = 1)\mathbb{P}(X \leq x) \\ &= \frac{1}{2} + \frac{1}{2}(1 - e^{-\lambda x}) \\ &= 1 - \frac{1}{2}e^{-\lambda x} \end{split}$$

Damit ist die Verteilungsfunktion

$$F_Z(x) = \begin{cases} \frac{1}{2}e^{\lambda x} & x \le 0\\ 1 - \frac{1}{2}e^{-\lambda x} & \text{sonst.} \end{cases}$$