Пример построения микроЭВМ с развитой системой адресации. Лабораторная работ №2

- 1 Пример задания
- 2 Разработка архитектуры ЭВМ
 - 2.1 Форматы данных и программно-доступные регистры
 - 2.2 Программистская структура
 - 2.3 Система команд
 - 2.4 Форматы команд
- 3 Рабочий цикл
- 4 Микропрограммная реализация ЭВМ

1 Пример задания

• Определить архитектуру, разработать и отладить микропрограмму командного цикла ЭВМ, составить и выполнить программу вычисления суммы частных S:

$$S = \sum_{i=1}^{N} Z_i, \qquad \qquad Z_i = \left] \frac{X_i}{Y_i} \right[,$$

- где Z_i частное от деления целых чисел X_i и Y_i нацело, $X_i, Y_i, Z_i \in [0...32767]$. Кроме результата S, необходимо формировать и записывать в ОЗУ значения признака переполнения Q, которые могут возникнуть при делении чисел.
- Для деления чисел использовать подпрограмму на основе программы, составленной при выполнении предыдущей лабораторной работы.
- Обмен данными между программой и подпрограммой должен производиться через стек.

2 Разработка архитектуры ЭВМ 2.1 Форматы данных и программнодоступные регистры

- <u>Форматы данных</u>. Данные представляются 16разрядным двоичным кодом, старший разряд которого определяет знак числа.
- <u>Программно-доступные регистры</u>. ЭВМ имеет девять программно-доступных регистров: шесть регистров общего назначения (r0-r5), программный счетчик PC (r6), регистр признаков RP (r7), содержащий разряды двух признаков: нуля (PZ) и знака (PS), а также регистр указателя стека rSP (r8).

2.2 Программистская структура

	15		0	_
r0:				
r1:				
r2:				Регистры
r3:				> общего
r4:				назначения
r5:				
13.				
r6:		PC		Программный счетчик
r7:	PS	RP	PZ	Регистр признаков
r8:		rSP		Регистр указателя стека

2.3 Система команд

- Разработка системы команд предполагает определение набора операций, способов адресаций, модификаций и форматов команд.
- Для рассматриваемого примера система команд ЭВМ приведена ниже в таблице. В таблице использованы следующие обозначения:
 - $-r,r^* \in \{r0,r1,...,r8\}$ программно-доступные регистры:
 - регистр r* является источником данных, а регистр r приемником результата, но может также служить источником второго операнда;
 - M[A] ячейка памяти с адресом A;
 - знак "+" в описании признаков означает, что устанавливается новое значение признака по результату выполнения команды, а знак "-" свидетельствует о сохранении старого значения признака.

Арифметические команды и команды пересылки

Наименование	Мнемоника	Описание	Приз	наки
			PZ	PS
СУММИРОВАНИЕ	ADD r r*	r:= r+r*, PC:=PC+1	+	+
ВЫЧИТАНИЕ	SUB r r*	r:= r-r*, PC:=PC+1	+	+
ДОБАВЛЕНИЕ С	AD r C	r:= r+C, PC:=PC+1	+	+
вычитание с	SBrC	r:= r-C, PC:=PC+1	+	+
ЧТЕНИЕ В РЕГИСТР	LD r A	r:= M[A], PC:=PC+1	_	
ЗАПИСЬ РЕГИСТРА	MV r A	M[A]:= r, PC:=PC+1	_	
ЧТЕНИЕ В РЕГИСТР с индексацией	LDI r (r*)+	r:= M[r*], r*:= r*+1; PC:=PC+1	+	+

Команды управления и работы со стеком

Наименование	Мнемоника	Описание	PZ	PS
ЗАПИСЬ В СТЕК	PUSH r (rSP)-	M[rSP]:=r; rSP:=rSP-1, PC:=PC+1	_	_
ЧТЕНИЕ ИЗ СТЕКА	POP r (rSP)+	rSP:=rSP+1; r:=M[rSP], PC:=PC+1	_	_
ПЕРЕХОД	BR A	PC:=A	_	
ПЕРЕХОД, ЕСЛИ НУЛЬ	BEQ A	Если PZ=1, то PC:=A, иначе PC:=PC+1	_	
ПЕРЕХОД, ЕСЛИ МИНУС	BMI A	Если PS=1, то PC:=A, иначе PC:=PC+1	_	_
ОБРАЩЕНИЕ К ПОДПРОГРАММЕ	CALL (rSP)- A	M[rSP]:=PC; rSP:=rSP-1, PC:=A	_	_
ОСТАНОВ	HLT A	РС:=А, останов	_	_

Особенности системы команд

- Чтение данных в регистр возможно из ячейки памяти, адрес которой содержится в регистре (LDI r (r*)+), при этом номера регистров источника и приемника задаются в команде, а адрес после выполнения операции увеличивается на единицу.
- В командах чтения из стека (POP r (rSP)+) и записи в стек (PUSH r (rSP)-) содержимого регистра r в качестве накопителя стека используются область памяти, а указатель стека размещается в специальном регистре rSP.
- В систему команд включена команда обращения к подпрограмме (CALL (rSP)- A). Эта команда сохраняет содержимое программного счетчика в стеке и обеспечивает переход на начальный адрес подпрограммы (A). Функция команды возврата из подпрограммы может быть выполнена командой чтения из стека в программный счетчик.

Способы адресации

- — Прямая (абсолютная) в адресной части команды указан адрес ячейки памяти, к которой происходит обращение при выполнении команды. Применяется в командах: LD r A, MV r A (по второму адресу).
- — Непосредственная в адресной части команды содержится операнд, используемый при выполнении команды. Применяется в командах AD r C, SB r C (по второму адресу), а также в командах BR A, BEQ A, BMI A, HLT A, CALL (rSP)- A (по второму адресу), где в качестве операнда выступает адрес перехода A, над которым выполняется операция пересылки в регистр PC.
- — *Регистровая неявная* номер регистра в команде не указывается, а определяется кодом операции: BEQ A, BMI A, CALL (rSP)-, HLT A регистр PC.

Способы адресации (продолжение)

- Регистровая прямая в адресной части команды содержатся номера регистров: ADD r r*, SUB r r* (первый и второй адрес), AD r C, SB r C, LD r A, LDI r (r*)+, PUSH r (rSP)-, POP r (rSP)+, MV r A (первый адрес).
- — Регистровая косвенная автоинкрементная в адресной части команды указан номер регистра, содержащего адрес ячейки памяти, после обращения к которой в процессе выполнения команды содержимое регистра увеличивается на единицу (LDI r (r*)+, POP r (rSP)+ (второй адрес)).
- — Регистровая косвенная автодекрементная в адресной части команды указан номер регистра, содержащего адрес ячейки памяти, до обращения к которой в процессе выполнения команды содержимое регистра уменьшается на единицу (PUSH r (rSP)- (второй адрес), CALL (rSP)- А (первый адрес)).

Коды операций

Мнемоника	Код операции
ADD	01
SUB	02
AD	9
SB	A
LD	В
MV	С
LDI	10
PUSH	03
POP	04
BR	05
BEQ	06
BMI	07
CALL	8
HLT	00

Основная программа

06	B801	LD r8 AASP	Загрузка регистра указателя стека SP
07	B502	LD r5 AAM	Загрузка адреса массива АМ в регистр r5
08	B403	LD r4 AN	Загрузка числа повторений цикла N
09	0233	SUB r3 r3	Очистка регистра для суммы S
0A	0222	SUB r2 r2	Очистка регистра для признака Q
0B	1015	LDI r1 (r5)+	Чтение делителя Y в регистр r1
0C	0713	BEQ m1	Если PZ=1 (Y=0), то переход на метку m1 (13)
0D	1005	LDI r0 (r5)+	Чтение делимого X в регистр r0
0E	8920	CALL AD	Обращение к подпрограмме по адресу AD
0F	0131	ADD r3 r1	Суммирование
10	A401	SB r4 "1"	Вычитание единицы из числа N
11	0614	BEQ m2	Если N=0, то переход на метку m2 (14)
12	050B	BR m3	Переход на метку m3 (0D)
13	A201	SB r2 "1"	Запись единиц в регистр признака Q
14	C304	MV r3 AS	Запись суммы S адресу AS
15	C205	MV r2 AQ	Запись признака Q адресу AQ
16	0007	HLT SA	Загрузка РС и останов

Программа деления чисел нацело

	Подпрограмма деления чисел нацело								
20	0320	PUSH r2	Сохранение содержимого регистра Q						
21	0222	SUB r2 r2	Очистка регистра для частного Z						
22	0201	SUB r0 r1	Вычитание из делимого Х делителя Ү						
23	0726	BMI m1	Если PS=1, то переход на метку m1 (26)						
24	9201	AD r2 "1"	Увеличение на единицу частного Z						
25	0522	BR m2	Переход на метку m2 (22)						
26	0211	SUB r1 r1	Очистка регистра гҮ						
27	0112	ADD r1 r2	Запись частного Z в регистр r1						
28	0420	POP r2	Восстановление содержимого регистра rQ						
29	0460	POP r6	Возврат из подпрограммы						

2.4 Форматы команд

Ф

15 14...12 11...8 7...4 3...0

0 K1 r r*

ADD, SUB, LDI, PUSH, POP

0 K2 A

BR, BEQ, BMI, HLT

1 K3 r C AD, SB

1 K4 r A LD, MV, CALL

 Φ — поле признака формата команды; К1, К2, К3, К4 — поля кода операции; r, r* - номера регистров; А — адрес; С — непосредственный операнд.

3 Рабочий цикл

- Алгоритм работы ЭВМ представлен на рисунке ниже в виде укрупненной граф-схемы микропрограммы командного цикла, содержащие подмикропрограммы: выборки команды (ВК), анализа признака формата (Ф), дешифрации кода операции (для команд первого формата (Ф=0), заданных операций; дешифрации и выполнения команд (КФ1) второго формата (Ф=1),
- Подготовка к циклу включает состояние ожидания сигнала пуска (установки специального флага TST=1) и загрузку начального адреса программы (SA) в программный счетчик.
- Командный цикл для команд первого формата (Ф=0) включает три этапа: выборку команды, дешифрацию кода операции и выполнение заданной операции.
- Команды второго формата выполняются за четыре этапа, так как добавляется еще этап распаковки команд (подмикропрограмма РК).
- Выход из командного цикла производится при выполнении команды HLT.

Микропрограмма командного цикла

Микропрограмма дешифрации и выполнения команд формата 1

РК – распаковка команд.

4 Микропрограммная реализация ЭВМ

- ЭВМ может быть реализована микропрограммно с использованием аппаратных средств микропрограммируемого микропроцессора. Структура необходимых аппаратных средств показана ниже на рисунке.
- Микропрограммная реализация ЭВМ включает:
 - распределение внутренних регистров микропроцессора,
 - разработку и кодирование подмикропрограмм командного цикла,
 - распределение памяти микропрограмм.

Регистры ЭВМ

- Распределение внутренних регистров микропроцессора показано далее на рисунке.
- Кроме девяти программно-доступных регистров r0r8 в состав ЭВМ входят пять программнонедоступных регистров (два для команды, и по одному для константы, счетчика адреса ЗУ, операнда Y).
- Программно-доступные регистры отображаются на регистры (R0-R8), а программно-недоступным регистрам соответствуют регистры R13-R15 и RQ операционного устройства микропроцессора.
- Кроме того, дополнительными программнонедоступными регистрами являются регистр адреса ЗУ (RA) и регистр команд (RK).

Распределение внутренних регистров

		Р3У	(R0-R7))	_	РЗУ (R8-R15)
0:	r0				8:	r8 (SP)
1:	r1				9:	
2:	r2				10:	
3:	r3				11:	
4:	r4				12:	
5:	r5				13:	Буферный регистр команд
6:	r6 (F	PC)			14:	Регистр константы
7:	PS	r7 ((RP)	PZ	15:	Счетчик адреса ЗУ
RA:	Адр	ес ЗУ			RQ:	Регистр Ү
RK:	Реги	істр кол	манд			

Принятая настройка схемы выбора адреса (СВА)

MS1 (управляю щий вход СВА)	А (адресный вход РЗУ)	MS2 (управля щий вхо СВА)	
0	PMK[A]	0	PMK[B]
1	PK[3:0]	1	PK[7:4]

Вкладка "Настройки"

Дешифрация кода операции

Мнемоника	Код операции	Адрес первой МК
ADD	01	1F
SUB	02	1E
AD	9	20
SB	A	21
LD	В	1A
MV	C	1C
LDI	10	22
PUSH	03	26
POP	04	2B
BR	05	32
BEQ	06	31
BMI	07	33
CALL	8	36
HLT	00	35

Фрагмент микропрограммы КЦ

N₂	МИ	P 3	S Y	У Упр. АЛУ		Упр. ОЗУ		Шина	МИ	Упр. усл.		сл.	Упр. УУ			Упр. РК				
M	I8-0	A	В	C0		S				D11-0	I3-0	A	U	ŌE	C0		ŌE	M	L	ŌE
К						C														
00	571	E	E	0	0	00	1	1	1	006	C	000	0	0	1	1	0	00	1	1
RE:=	=011111	1111	111	111; P	A/C]	Ц:=6		_												
01	533	0	E	0	0	00	1	1	1	001	9	000	0	0	1	1	0	00	1	1
RE –	сдвиг	впр	аво	; PA/(СЦ:=	=PA/(СЦ-1													
02	143	0	6	0	0	00	1	1	0	000	E	000	0	0	1	1	0	00	1	1
RA:=	=0								-											
03	337	0	6	0	1	00	0	1	0	000	E	000	0	0	1	1	0	00	1	1
R6:=	SA (PC	C:=S	SA)																	
04	203	6	6	1	0	00	1	1	0	000	E	000	0	0	1	1	0	00	1	1
RA:=	R6; R6	5:=R	R6 +.	1 (RA	:=P(C; PC	:=PC-	+1)												
05	337	0	C	0	1	00	0	1	1	007	3	001	1	0	1	1	0	00	0	1
RK:=	=K; R(:= F	<u> </u>																	
06	345	E	F	0	1	00	1	1	1	000	2	000	0	0	1	1	0	00	1	0
RF:=	K[A]	П	epe	ход п	о КС	ЭΠ														