Research Planning

Part 3: Safety

Safety and Experimental Design

- Safety considerations vary widely depending on
 - Type of research
 - Type of equipment
 - Type of lab
- Common classes of hazards
 - Chemical
 - Nuclear
 - Biological
 - Mechanical & Electrical
 - Other?
- Usually not explicitly mentioned in proposals
 - Considered part of standard, good laboratory practice
 - Exceptions: Unusual degree or nature of safety issues

Exceptional Cases

- Some examples of types of research projects where safety should be explicitly discussed in a proposal
 - Any project where the funding agency asks for it explicitly
 - Nuclear or radioactive materials
 - Biohazards
 - Viruses, bacteria, infectious agents
 - Unusually hazardous chemicals
 - Examples: methylmercury compounds, chemical warfare agents, high explosives
- Whether explicitly dealt with in the proposal or not, safety MUST be considered when planning and executing a research project!

- What are the potential hazards associated with implementing the design?
- For each potential problem:
 - Identify any potential hazard
 - Think of consequences if that problem occurred
 - Identify preventive measures
 - Identify contingency plans
- Potential Problem Analysis
 - Can be helpful in this process

Identifying Potential Hazards

Fault-Tree Analysis

- Widely used for more complex systems
- Helpful for:
 - Identifying potential hazards
 - Determining likelihood of a problem occurring
 - Visualizing safety measures in place
 - Identifying problems that could have multiple causes
 - Identifying a potential "chain of events" that could create a problem

Safety Measures

- What personal protective equipment (PPE) will be needed?
 - Gloves, face shields, aprons, respirators, etc.
- What safeguards should be put in place on equipment?
 - <u>Sensors</u> (fire alarms, toxic gases, motion detectors, etc.)
 - <u>Fail-safes</u> (fuses, compliance voltage/current in circuit design, relief valves, etc.)
 - Security (Locks, video cameras, etc.) esp. unattended experiments
 - Many others
- What procedures should be in place increase safety?
 - Safety training
 - Mechanisms for disseminating info about hazards
 - Handling and disposal of hazardous materials

Safety Response

- If an incident occurs, what is the appropriate response?
 - Who do you tell?
 - How to contact emergency personnel?
 - Which supervisors need to be notified?
 - What is the safety response?
 - What are appropriate measures for clean-up?
 - What are mechanisms for evaluation?

- Every organization has plans in place for this (or should)
- See "Safety Documents" link on the page: https://www.latech.edu/administration/administration-facilities/environmental-health-safety/

When working in the lab, safety should be your first priority

■ Take responsibility for your own safety!

The End