

Universidad Nacional de Colombia Facultad de Ciencias

Análisis Funcional

Ejercicio 13 (I) Muestre que los siguientes conjuntos M son subespacios cerrados no vacíos de $L^2((-1,1))$ y determine explícitamente la proyección P_M en cada caso.

- (a) $M = \{ f \in L^2((-1,1)) : f(x) = f(-x) \text{ para casi todo } x \in (-1,1) \}.$
- (b) $M = \left\{ f \in L^2((-1,1)) : \int_{-1}^1 f(x) dx = 0 \right\}.$
- (c) $M = \{ f \in L^2((-1,1)) : f(x) = 0 \text{ para casi todo } x \in (-1,0) \}.$
- (II) Sea $\Omega \subset \mathbb{R}^n$ un abierto acotado. Considere

$$K = \left\{ f \in L^2(\Omega) : \int_{\Omega} f(x) dx \ge 1 \right\}$$

- (a) Muestre que K es un conjunto cerrado convexo de $L^2(\Omega)$.
- (b) Determine la proyección sobre K, es decir, el operador P_K.

Ejercicio 14 Sea H un espacio de Hilbert y $A \in L(H) = L(H, H)$ (el conjunto de funciones lineales continuas de H en H).

(I) Para $y \in H$ fijo, muestre que el funcional $\Phi_y : H \to \mathbb{R}$ dado por $x \mapsto (Ax, y)$ es lineal y continuo. Deduzca que existe un único elemento en H, que denotaremos por A^*y , tal que

$$(Ax,y) = (x, A^*y), \forall x \in H$$

Demostración. Probemos primero la linealidad del funcional. Sean $x_1, x_2 \in H$ y $\lambda \in \mathbb{R}$, como A es una funcion lineal y el producto interno es bilineal, tenemos

$$\begin{split} \Phi_{y}(x_{1} + \lambda x_{2}) &= (A(x_{1} + \lambda x_{2}), y) \\ &= (A(x_{1}) + \lambda A(x_{2}), y) \\ &= (Ax_{1}, y) + \lambda (Ax_{2}, y) \\ &= \Phi_{y}(x_{1}) + \lambda \Phi_{y}(x_{2}). \end{split}$$

Mostrando asi la linealidad. Para ver que es continuo basta con ver que es acotado, pero por la desigualdad de Cauchy-Schwartz tenemos que

$$\begin{aligned} |\Phi_{y}(x)| &= |(Ax, y)| \\ &\leq (Ax, Ax)^{\frac{1}{2}} (y, y)^{\frac{1}{2}} \\ &= ||Ax|| ||y||. \end{aligned}$$

Note que esto ultimo es debido a que H es un espacio de Hilbert, por lo que $\|\cdot\|$ es la norma en H inducida por el producto interno. Como por hipotesis $A \in L(H, H)$, asi sabemos que $\|Ax\| \le \|A\| \|x\|$, es decir $\|Ax\| \|y\| \le \|A\| \|y\| \|x\|$, pero como y es fijo, si tomamos $M = \|A\| \|y\|$ concluimos que

$$|\Phi_{y}(x)| \leq M||x||,$$

es decir Φ_y es actodado y por tanto continuo para cada y, por lo que $\Phi_y \in H^*$. Ahora por el teorema de representacion de Riesz-Frechet existe un unico elemento $z_y \in H$ tal que

$$\Phi_{y}(x) = (z, x).$$

Para todo $x \in H$. Note que este z_y es unico para cada y, por lo que denotaremos $z_y := A^*y$. Por la definicion de Φ_y y como el producto interno es simetrico conluimos la existencia de un unico elemento en H tal que

$$(Ax, y) = (x, A^*y).$$

 $Q^{*}Q$

(II) Muestre que $A^* \in L(H, H).A^*$ se llama el adjunto de A.

Demostración. Primero note que el operador A^* esta bien definido, ya que como dijimos en el anterior punto para cada y, existe un unico z_y , que definimos como $A^*y = z_y$, por lo que si es una funcion. Ahora veamos que es lineal, sean $y_1, y_2 \in H$ y $\lambda \in \mathbb{R}$ note que por la propiedad respecto al producto interno del operador tenemos que para todo $x \in H$

$$(x, A^*(y_1 + \lambda y_2)) = (Ax, y_1 + \lambda y_2)$$

$$= (Ax, y_1) + \lambda (Ax, y_2)$$

$$= (x, A^*y_1) + \lambda (x, A^*y_2)$$

$$= (x, A^*y_1 + \lambda A^*y_2),$$

note que usamos la bilinialidad del producto interno. Si ahora restamos y usamos la bilinealidad nuevamente obtenemos que

$$(x, A^*(y_1 + \lambda y_2) - (A^*y_1 + \lambda A^*y_2)) = 0,$$

para todo $x \in H$, si en particular tomamos $x = A^*(y_1 + \lambda y_2) - (A^*y_1 + \lambda A^*y_2)$, como el producto interno es no nulo para todo elemento diferente del 0, tenemos que

$$A^*(y_1 + \lambda y_2) - (A^*y_1 + \lambda A^*y_2) = 0$$

es decir

$$A^*(y_1 + \lambda y_2) = A^*y_1 + \lambda A^*y_2.$$

Concluyendo asi la linealidad. Por ser lineal basta con ver que el operador es acotado, note que como la norma de H viene dada por el producto interno y por la desigualdad de

Cauchy-Schwartz tenemos que

$$||A^*y||^2 = (A^*y, A^*y)$$

= |(A(A^*y), y)|
\(\le ||A(A^*y)|||y||,

Como $A \in L(H, H)$, tenemos que $||A(A^*y)|| \le ||A|| ||A^*y||$, Asi si llamamos M = ||A||

$$||A(A^*y)||||y|| \le M||A^*y|||y||,$$

y por tanto

$$||A^*y||^2 \le M||A^*y|||y||,$$

note que si $||A^*y|| = 0$, se tiene trivialmente la acotacion, en cambio si $||A^*y|| > 0$, podemos dividir a ambos lados por esta cantidad obteniendo asi

$$||A^*y|| \le M||y||.$$

Concluyendo que es acotado y por tanto continuo, asi $A^* \in L(H, H)$.

 $O^{\circ}O$

(III) Verifique que $(A^*)^* = A$ y que $||A^*|| = ||A||$.

Demostración. Para la primera parte, sean $x, y \in H$, note que por la propiedad del adjunto tenemos que

$$(x, (A^*)^*y) = (A^*x, y)$$

= (y, A^*x)
= (Ay, x)
 $(x, Ay).$

Observe que en dos ocasiones usamos la simetria del producto interno. Luego por la bilinealidad

$$(x, (A^*)^*y - Ay) = 0,$$

si tomamos $x = (A^*)^*y - Ay$, de manera similar a la prueba de la linealidad del adjunto, concluimos que $(A^*)^*y - Ay = 0$, luego $(A^*)^*y = Ay$, pero note que en este proceso y era arbitrario, por lo que como son iguales para todo y, podemos concluir que

$$(A^*)^* = A.$$

Para la segunda parte en el anterior numeral habiamos conluido que

$$||A^*y|| \le ||A|| ||y||.$$

Por lo que

$$\|A^*\| = \sup_{\substack{\|y\|=1\\y\in H}} \|A^*y\| \leq \sup_{\substack{\|y\|=1\\y\in H}} \|A\| \|y\| = \|A\|.$$

Por lo que faltaria ver la otra desigualdad. Pero esto se ve facilmente ya que como $||A^*|| \le ||A||$, si reemplazamos A con A^* , tenemos que $||(A^*)^*|| \le ||A^*||$, luego por la anterior parte, como $(A^*)^* = A$, asi concluimos que

$$||A|| \leq ||A^*||$$
.

De esta manera concluimos la igualdad de las normas.

 $Q^{*}Q$

Ejercicio 15 Sea H un espacio de Hilbert $yM \subseteq H$ un subespacio cerrado. Considera la proyección ortogonal P_M . Muestre que

- (I) P_M es lineal.
- (II) $P_M^2 = P_M$ (esto es, aplicar dos veces el operador proyección da el mismo resultado).
- (III) $P_M^{\star} = P_M$, donde P_M^{\star} denota el adjunto de P_M (vea el Ejercicio 14).
- (IV) Rango $(P_M) = M$ y Kernel $(P_M) = M^{\perp}$.
- (V) Suponga que $P \in L(H)$. Entonces P es una proyección ortogonal sobre un subespacio cerrado de H si, y solo si, $P = P^2 = P^*$.

Ejercicio 3

Considere los operadores de desplazamiento $S_r, S_l \in L(l^2)$, donde si $x = (x_1, x_2, ..., x_n, ...) \in l^2$, estos se definen como

$$S_r x = (0, x_1, x_2, \dots, x_{n-1}, \dots)$$

y

$$S_1x = (x_2, x_3, x_4, \dots, x_{n+1}, \dots)$$
.

 S_r se conoce como desplazamiento a derecha y S_1 como desplazamiento a izquierda.

- (a) Determinar las normas de $||S_r|| y ||S_l||$.
- (b) Muestre que $EV(S_r) = \emptyset$,
- (c) Muestre que $\sigma(S_r) = [-1, 1]$.
- (d) Muestre que EV $(S_1) = (-1, 1)$. Encuentre el espacio propio correspondiente.
- (e) Muestre que $\sigma(S_1) = [-1, 1]$.
- (f) Determine los adjuntos S_r^* y S_1^* .

Ejercicio 4 Sea $1 \le p < \infty$ y consideremos el espacio $L^p((0,1))$, Dado $\mathfrak{u} \in L^p((0,1))$, definimos

$$Tu(x) = \int_0^x u(t)dt$$

- (a) Demuestre que $T \in \mathcal{K}(L^p((0,1)))$.
- (b) Determine EV(T) y σ (T).
- (c) Dé una fórmula explícita para $(T-\lambda I)^{-1}$ cuando $\lambda\in\rho(T).$

(d) Determine T*.

Ejercicio 6 Considere $g \in L^{\infty}(\mathbb{R}) \cap C(\mathbb{R})$ (es decir, g es continua y acotada). Definimos el operador de multiplicación $M_g: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ dado por

$$M_g(f)(x) = g(x)f(x)$$

- (a) Muestre que $\sigma(M_g) = \overline{\{g(x) : x \in \mathbb{R}\}}$.
- (b) ¿Es el operador $M_{\mathfrak{g}}$ compacto?