21-R-KM-SS-35

The gear A is spinning with a velocity of $5\hat{k}$ rad/s and is accelerating at $2t\hat{k}$ rad/s^2 . The gear ratio, $\frac{r}{R} = 15$ Determine the angular acceleration and velocity of gear B after 5 seconds.

Soluton

Since it is a non-constant acceleration, we need to integrate the angular acceleration equation to get angular velocity. Remember to evaluate the constant (+C). The answer box asks for vector solutions. Remember that a gear flips the direction of rotation.

$$\alpha_{\rm A} = \frac{d\omega_{\rm A}}{dt} = 2t$$

$$\omega_{\rm A} = \int 2t \, dt$$

$$= t^2 + C$$
At $t = 0$, $\omega = 5$, so:
$$\Rightarrow C = 5$$
After 5s,
$$\omega_{\rm A} = 30\hat{\mathbf{k}} \quad [\text{ rad/s }]$$

$$\alpha_{\rm A} = 10\hat{\mathbf{k}} \quad [\text{ rad/s }]$$

$$GR = 15 = -\frac{\omega_{\rm A}}{\omega_{\rm B}}$$

$$\Rightarrow \omega_{\rm B} = -2\hat{\mathbf{k}} \quad [\text{ rad/s }]$$

$$GR = 15 = -\frac{\alpha_{\rm A}}{\alpha_{\rm B}}$$

$$\Rightarrow \alpha_{\rm B} = -\frac{2}{3}\hat{\mathbf{k}} \quad [\text{ rad/s}^2]$$