Hydraulique 2

Fiches de révision

David Consuegra | Timur Gökok

<u>Sommaire</u>

- Profils M et S
- Exemple de profils
- Energie totale
- Equation de Manning
- Niveau de danger et Niveau d'intensité
- Obstruction de ponts
- Génie biologique ou Génie végétal

Tra	avaux pratiques
	Calcul de la profondeur
	<u>normale</u>
	Calcul de la profondeur
	critique
	Profil M1
	Profil S1S2S3

Profil M1M2

H normale ou
torrentiel
H critique

La ligne d'eau cherche toujours à converger vers « *H normal* »

Ecoulement:

- M : Fluvial (supercritical)
- S: torrentiel (subcritical)

M → S : profondeur critique

S → M : ressaut hydraulique

Sens du calcul

Exemple de profil (vidange d'un lac)

Energie totale

Open Channel Flow: Energy Relations

Bottom slope (S_o) not necessarily equal to EGL slope (S_f)

Energy Equation for Open Channel Flow

$$y_1 + \frac{V_1^2}{2g} + S_o Dx = y_2 + \frac{V_2^2}{2g} + S_f Dx$$

<u>Equation de Manning</u>

$$S_f = \frac{Q^2 n^2}{A^2 R^{4/3}}$$

$$\Delta x = \frac{\Delta E}{\frac{S_0 - Sf}{2}} = \frac{2 \cdot \Delta E}{S_0 - Sf}$$

Niveau de danger & Niveau d'intensité

Niveau de danger & Niveau d'intensité

Inondations

Erosion des berges

Laves torrentielles

Forte	h > 2 m ou <mark>v x h > 2 m²/s</mark>	d > 2 m	h > 1 m et v > 1 m/s
	2 m > <mark>h</mark> > 0.5 m	2 m > d > 0.5 m	h < 1 m
Moyenne	ou		ou
	2 m²/s > <mark>v x h</mark> > 0.5 m²/s		v < 1 m/s

Faible

h < 0.5 m ou v x h < 0.5 m²/s

d < 0.5 m

Si Q < 1 [m3/s], débit dit statique, et donc calcul d'intensité avec h. Sinon : v*h

Détermination du degré de danger de crues d = épaisseur de la couche érodée

h = hauteur de l'eau v = vitesse de l'eau

Glissement des berges

Obstruction des ponts

Tirant d'air	Niveau effectif du tablier inférieur	Conséquence pour les flottants
1 m	normal	Passage libre sous le pont
½ m	- 1 m	Obstruction au pont
- ½ m	- 2 m	Obstruction au pont

Sur HEC-RAS, pour simuler une obstruction de ponts, on abaisse le bas du tablier.

Génie végétal

- GV Domaines associés
- GV Domaines d'application
- GV Techniques mixtes
- GV Végétaux
- GV Avantages
- GV Limites

- <u>GV Matériaux secondaires :</u> géotextiles biodégradables
- GV Matériaux secondaires : bois
- GV Protection de pieds de berges
- GV Protection des talus
- GV Ensemencement hydraulique

Génie biologique ou Génie Végétal (GV)

Définition

Techniques végétales mises à disposition de l'ingénieur pour des ouvrages de stabilisation de talus et l'aménagement de cours d'eau. Ces méthodes utilisent des végétaux entiers ou partiels, souvent en combinaison avec des matériaux inertes (pieux, géotextiles, rondins de bois, ...)

Objectifs

- Offrir une solution efficace à un problème de protection des sols (érosion, glissement, ...)
- Engendrer un coût de réalisation raisonnable, dont le montant reste à la mesure du problème constaté et des avantages procurés
- Atténuer considérablement les principaux impacts négatifs sur les écosystèmes et le paysage, induits par les méthodes traditionnelles de protection contre l'érosion

GV – Domaines associés

<u>GV – Domaines d'applications</u>

PROTECTION DES SOLS

En aménagement de cours d'eau

- Lors de déplacement ou d'aménagement ← Préventif → Préventif → Projets de renaturation.
- Suite à des phénomènes d'érosion de berges.

← Curatif ⇒

En aménagement de talus

- Lors de l'aménagement de nouveaux talus (autoroutes, chemins de fer,...).
- Suite à des glissements de terrain ou à des phénomènes de ravinement.

REVERDISSEMENT DE SITES DEGRADES EN CONDITIONS DIFFICILES

- Pistes de ski
- Décharges de matériaux inertes
- Carrières en fin d'exploitation
- ...

PREVENTION DES DANGERS NATURELS

- Chutes de pierres
- Avalanches
- ...

FREQUENCE D'APPLICATION

GV – Techniques mixtes

Enrochement de pied de berge

Caisson en rondins, végétalisé

GV – Végétaux

Volume de tiges

Volume de tiges
•
souterraines

RAPPORT RACINE / TI en volume	GE	VALEURS INDICATIVES DE RESISTANCE A LA FORCE D'ARRACHEMENT en N/m²			
Plantes de steppes	5 - 15	Sable fin (<0.2mm)	1		
Viorne orbier	2,3	Petit gravier (<2mm)	12		
Saule drapé	1,8	Petits galets	40-60		
Saule noircissant	1,8	Gazon	30		
Saule à grandes feuilles	1,7	« Boudin » de roseaux	60		
Aulne vert	1,6	Herbacées adaptées + géotextile	120		
Saule pourpre	1,5	Boutures de saules	100		
Frêne	1,5	Fascine d'hélophytes	120		
Chèvrefeuille	1,3	Lits de plants et pançons	120-150		
Troène	1,2	Tressages de saules	150		
Tamarin	1,2	Fascines de saules	200 - 250		
Erable sycomore	1,1	Couches de branches à rejets	>300 (450)		
Tremble	1,1	Caissons végétalisés	500 (600)		
Argousier	1,0	Enrochements (libres)	250 - 350 et +		
Saule blanc	0.5				

Ancrage des berges dans le système racinaires

0,5

<0,4

Peuplier blanc

Peuplier noir cult.

GV – Végétaux

Prélèvement en milieu naturel (un chantier d'entretien peut être l'occasion d'un prélèvement)

- ⇒ Caractère pionnier;
- capacité de fixation du sol (profondeur d'enracinement, forme des racines, masse du chevelu racinaire, résistance à la traction);
- Résistance aux sollicitations mécaniques (glissements, érosions);

- Port de la plante (buissonnant, arbustif, arborescent, herbacées hautes, basses);
- ⇒ flexibilité, souplesse;
- ⇒ capacité de rejeter.

GV – Avantages

- Aspects biotechniques et hydrauliques
 - Effet de stabilisation dynamiquement croissant
 - Souplesse des ouvrages et résistance (ancrage dans la berge, tensions d'arrachement)
 - Actions hydromécaniques de la végétation dans le sol, interception, absorption et transpiration d'eau, ralentissement des vitesses d'écoulement
 - Relations avec les nappes non perturbées
- Aspects biologiques et paysagers
 - Amélioration de l'autoépuration du cours d'eau
 - Augmentation de la biodiversité et de la valeur du milieu par reconstruction du cordon boisée
 - Contribution au maintien et renforcement de biotopes
 - Réservoir génétique et patrimonial
 - Augmentation de la teneur en oxygène de l'eau et de la fraîcheur

GV – Limites

- Milieu trop artificiel, emprise de projet trop restreinte
- Limite altitudinale de la végétation
- Substrat rocheux
- Régime torrentiel
- Efficacité de stabilisation non optimale dès la mise en place
- Entretien parfois accru de la végétation, notamment sur certain cours d'eau de petite taille

<u>GV – Matériaux secondaires : Géotextiles</u> biodégradables

Fonctions suivantes:

- Eviter l'érosion superficielle des sols avant la reprise des végétaux
- Favoriser un démarrage rapide de la végétation par l'effet de serre
- Favoriser un développement optimal de la végétation par le maintien d'un microclimat
- Contribuer à l'enrichissement du sol par décomposition

Géotextiles tissés

Treillis de coco ou jute dont le poids et l'efficacité en terme de protection varient en fonction de la nature des fibres et de la desnité des mailles (400g/m² à 1400g/m²)

Constitués d'un amalgame plus ou moins épais de fibres de coco agglomérées, renforcé soit par un filet de jute, de coco ou de nylon, voire caoutchouc naturel

GV – Matériaux secondaires : bois

Rondins

<u>GV – Protection de pieds de berges</u>

Tressage de saules

Pieux et branches, Minimiser l'attente entre le prélèvement et l'utilisation

Fascine d'hélophytes

Pieux, ramilles antiaffouillement, motte de végétaux semi-aquatiques double rangée de pieux

Fascine de saules à

Pieux, branches de saules, treillis, ramilles antiaffouillement, gravelo-terreux

GV – Protection des talus

Bouturage

Caissons en rondins végétalisé

Couche de branche à rejets

Lits de plants et plançons

<u>GV – Ensemencement hydraulique</u>

• Composants :

- eau (substance porteuse),
- semences (adaptées à la station),
- mulch (substance organique protectrice),
- Engrais starter ou longue durée
- Produit adhésif

Matériel :

- Citerne Pompe Malaxeur Lance
- Camion avec pont ou tracteur/jeep
- Utilisation possible de l'hélicoptère

Aménager des surfaces inaccessibles

Généralement, accompagne des techniques plus performantes mais parfois revêt une importance fondamentale

Travaux Pratiques

/!\ Calcul du débit en [m³/s] /!\

Calcul de la profondeur normale

- 1. Poser une hauteur normale (hn)
- 2. Calculer : surface mouillée, périmètre mouillé, rayon hydraulique, débit
- 3. Valeur cible pour le débit et faire modifier la hauteur normale

H. normale	[m]	0.3165
S. mouillée	[m²]	1.5825
P. mouillé	[m]	5.6330
R. hydraulique	[m]	0.2809
Débit	[m³/s]	8.0000

- K: rugosité de Strickler = 1/n (ex : 100)
- n: rugosité de Manning (ex: 0.0035)
- *b* : largeur miroir
- *S* : pente
- Surface mouillée : A = hn * b
- Périmètre mouillé : P = 2hn + b
- R. hydraulique : Rh = A/P
- Débit : $Q = K * A * Rh^{2/3} * S^{1/2}$ [m3/s]

Calcul de la profondeur critique

- 1. Poser une hauteur critique (hc)
- 2. Calculer : surface mouillée, Froude
- 3. Valeur cible sur le Froude (=1) et faire modifier la hc

- *b* : largeur miroir
- *S* : section mouillée

Le débit reste le même que demandé

Hauteur critique	[m]	0.6567
Section	[m²]	1.9700
Débit	[m ³ /s]	5.0000
Nombre de Froude	[-]	1.0000

• Surface mouillée :
$$A = hc * b$$

• Froude:
$$Fr = \sqrt{\frac{Q^2b}{gS^3}}$$

TP Profil M1

Canal:

- Largeur L = 0.086 [m]
- Rugosité = 110 [m1/3/s]

Calcul Prof. Normale et prof. Crit. :

- Poser une hauteur normale
- Calculer : surface mouillée, périmètre mouillé, rayon hydraulique, débit
- Valeur cible pour le débit et faire modifier la hauteur normale
- Calculer Froude et profondeur critique

Obstacle:

- Vitesse critique = Q/(yc*L)
- Ecin = V^2/g
- Emin = yc + Ecin
- Hamont : Hauteur + hamont

Déversoir (seuil épais) :

- Hauteur totale des plaques = w
- H : poser et *valeur cible*
- Coefficient de débit Cd
- Débit
- Hamont = H + w

Partie 2	Pente	[-]	0.00
	Profondeur normale	[m]	0.052
	Surface mouillée	[m2]	0.004
	Périmètre mouillé	[m]	0.190
	Rayon hydraulique	[m]	0.024
	Débit	[m3/s]	0.003
	Débit	[m3/h]	10.000
	Débit imposé	[m3/h]	10.000
	Froude	[-]	0.867
	Profondeur critique	[m]	0.047
Obstacle	Hauteur	[m]	0.11
	Vitesse critique	[m/s]	0.682
	Ecin	[m]	0.024
	Emin	[m]	0.07
	hamont	[m]	0.182
Déversoir		[m]	0.11:
	Н	[m]	0.06:
	Cd	[-]	0.730
	Débit	[m3/s]	0.003
	Débit	[m3/h]	10.000
	hamont	[m]	0.172

TP Profil M1

• Tracer le fond du canal et représenter surfaces normales et critiques

A savoir : pour deux pentes \neq , de 5.0 à 2.5, pente A puis de 2.4 à - ∞ pente B Surface normale = position du fond du canal + prof. normale (z+hn) Surface critique = position du fond du canal + prof. critique (z+hc)

TP Profil S1,S2,S3

Canal:

- Largeur L = 0.086 [m]
- Rugosité = 110 [m1/3/s]

Calcul Prof. Normale et prof. Crit.:

- Poser une hauteur normale
- Calculer : surface mouillée, périmètre mouillé, rayon hydraulique, débit
- Valeur cible pour le débit et faire modifier la hauteur normale
- Calculer Froude et profondeur critique

Vanne:

Hamont : fixer puis valeur cible

Ouverture vanne : w

Coefficient de contraction : Cc

Coefficient : Cd

Largeur miroir : b

• Débit : Q

Position haut de la vanne

Position bas de la vanne = 0.5*pente + w

Partie 2	Pente	[-]	0.022
	Profondeur normale	[m]	0.0295
	Surface mouillée	[m2]	0.003
	Périmètre mouillé	[m]	0.145
	Rayon hydraulique	[m]	0.018
	Débit	[m3/s]	0.003
	Débit	[m3/h]	10.000
	Débit imposé	[m3/h]	10.000
	Froude	[-]	2.032
	Profondeur critique	[m]	0.047

Vanne	hamont	[m]	0.131
	w	[m]	0.036
	Cc	[-]	0.605
	Cd	[-]	0.560
	b	[m]	0.086
	Q	[m3/s]	0.003
	Q	[m3/h]	10.000
	Position haut de la vanne	[m]	0.160
	Position bas de la vanne	[m]	0.043

Ligne d'énergie = Ecin + z + h

TP Profil S1,S2,S3 Quantité de mouvement $M = \frac{Q^2}{9.81*h*b} + \frac{h^2b}{2}$ [m³] [x106 cm³] Qté de mvt : aval = amont, permet de trouver coordonnées ressaut

ч 🗵 Profondeur	V al Surface mouilkée	[m/s]	u: 3 Energie cinétique	а 🗒 Perimètre mouillé	과 글 Rayon hydraulique	भू 🗋 Pente de la ligne d'énergie	Stente de la ligne d'énergie moyenne	я Э Espécifique	A 글 Différence d'énergie spécifique	-] So-Sfmoy	xσ [m]	x [] Coordonnées x	t [] Position surface	3 Ligne d'énergie	M (2) Quantité de mouvement
		•	20			-		S1				-	2		
0.1308	0.0112	0.247	0.003	0.348	0.032	0.000		0.134				4.500	0.138	0.141	805
0.1300	0.0112	0.248	0.003	0.346	0.032	0.000	0.000	0.133	0.001	0.014	0.051	4.449	0.138	0.141	797
0.1200	0.0103	0.269	0.004	0.326	0.032	0.001	0.001	0.124	0.009	0.014	0.666	3.783	0.138	0.142	695
0.1100	0.0095	0.294	0.004	0.306	0.031	0.001	0.001	0.114	0.009	0.014	0.660	3.123	0.138	0.142	603
0.1004	0.0086	0.322	0.005	0.287	0.030	0.001	0.001	0.106	0.009	0.014	0.623	2.500	0.137	0.143	525
0.1004	0.0006	0.222	0.005	0.207	0.020	0.001		0.106				2.500	0.127	0.142	F2F
0.1004	0.0086	0.322	0.005	0.287	0.030	0.001	0.001	0.106	0.000	0.021	0.010	2.500	0.137	0.143	525
0.1000	0.0086	0.323	0.005	0.286	0.030	0.001	0.001	0.105	0.000	0.021	0.019	2.481	0.137	0.143	521
0.0900	0.0077	0.359	0.007	0.266	0.029	0.001	0.001	0.097	0.009	0.021	0.423	2.058	0.136	0.143	450
0.0800	0.0069	0.404	0.008	0.246	0.028	0.002	0.001	0.088	0.008	0.020	0.405	1.653	0.135	0.144	390

Hauteur du lac d'alimentation : énergie pour coordonnée x = 0.0

TP Profil M1M2

Canal:

- Largeur L = 0.086 [m]
- Rugosité = 110 [m1/3/s]

- Poser une hauteur normale
- Calculer : surface mouillée, périmètre mouillé, rayon hydraulique, débit
- Valeur cible pour le débit et faire modifier la hauteur normale
- Calculer Froude et profondeur critique

3 Profondeur	3 Surface mouillée	Vitesse	Energie cinétique	Perimètre mouillé	Rayon hydraulique	Pente de la ligne d'énergie	Pente de la ligne d'énergie moyenr	. E spécifique	Différence d'énergie spécifique] So-Sfmoy	Distance	Coordonnées x	Position surface	Ligne d'énergie
h	Α	[m/s] V	[m] Ecin	[m] P	[m] Rh	[-] Sf	[-] Sfmoy	[m] E	[m] Δε	[-]	[m] Δx	[m] x	[m] z+h	[m]
h	A	V	Ecin	Р	Rh	Sf M	Sfmoy	E		[-]		x	z+h	
h 0.0474	A 0.0041	V 0.682	Ecin 0.024	P 0.181	Rh 0.023	Sf M 0.008	Sfmoy 2	0.071	ΔΕ		Δχ	x 5.00	z+h 0.0474	0.0711
h	A	V	Ecin	Р	Rh	Sf M	Sfmoy	E		-0.007		x	z+h	
h 0.0474	A 0.0041	V 0.682	Ecin 0.024	P 0.181	Rh 0.023	Sf M 0.008	Sfmoy 2	0.071	ΔΕ		Δχ	x 5.00	z+h 0.0474	0.0711
0.0474 0.0480	0.0041 0.0041	0.682 0.673	0.024 0.023	P 0.181 0.182	0.023 0.023	Sf M 0.008 0.008	Sfmoy 2 0.008	0.071 0.071	ΔE 0.000	-0.007	Δx	5.00 5.00	z+h 0.0474 0.0480	0.0711 0.0711
0.0474 0.0480 0.0500	0.0041 0.0041 0.0043	0.682 0.673 0.646	0.024 0.023 0.021	0.181 0.182 0.186	0.023 0.023 0.023	Sf 0.008 0.008 0.007	Sfmoy 2 0.008 0.007	0.071 0.071 0.071	ΔE 0.000 0.000	-0.007 -0.007	Δx 0.002 0.028	5.00 5.00 4.97	z+h 0.0474 0.0480 0.0500	0.0711 0.0711 0.0713
0.0474 0.0480 0.0500 0.0520	0.0041 0.0041 0.0043 0.0045	0.682 0.673 0.646 0.621	0.024 0.023 0.021 0.020	0.181 0.182 0.186 0.190	0.023 0.023 0.023 0.023	Sf 0.008 0.008 0.007 0.006	0.008 0.007 0.007	0.071 0.071 0.071 0.072	0.000 0.000 0.000	-0.007 -0.007 -0.006	0.002 0.028 0.066	5.00 5.00 4.97 4.90	z+h 0.0474 0.0480 0.0500 0.0521	0.0711 0.0711 0.0713 0.0717
0.0474 0.0480 0.0500 0.0520 0.0540	0.0041 0.0041 0.0043 0.0045 0.0046	0.682 0.673 0.646 0.621 0.598	0.024 0.023 0.021 0.020 0.018	0.181 0.182 0.186 0.190 0.194	0.023 0.023 0.023 0.024 0.024	Sf 0.008 0.008 0.007 0.006 0.006	0.008 0.007 0.007 0.006	0.071 0.071 0.071 0.072 0.072	0.000 0.000 0.000 -0.001	-0.007 -0.007 -0.006 -0.005	0.002 0.028 0.066 0.106	5.00 5.00 4.97 4.90 4.80	2+h 0.0474 0.0480 0.0500 0.0521 0.0541	0.0711 0.0711 0.0713 0.0717 0.0724