高速公路区域联网不停车收费示范工程暂行技术要求 第5部分

电子收费 关键信息编码规则

目 录

目录	ĺ
1 OBU 的 MAC 地址编码规则	1
2 RSU 的 BeaconI D 编码规则	1
3 合约(Contract) 相关信息编码规则	1
3.1 ContractSerialNumber 编码规则	1
3. 1. 1 ESAMProviderID 编码规则	1
3. 1. 2 OBEProviderID 编码规则	1
3. 1. 3 ESAMIndividulID 编码规则	1
4 服务提供商编码规则	2
5 用户卡卡号编码规则	2
6 发卡方标识的编码规则	3
7 PSAM 序列号及终端机编号编码规则	1
8 分散代码规则	4

1 OBU 的 MAC 地址编码规则

《数据链路层》规定OBU采用4字节固定MAC地址,《应用层》标准附录A中在其ObuConfiguration定义了MAC地址的ASN.1数据类型macID为INTEGER(0...4294967295)。

由此,OBE的专用MAC地址可以使用4字节的二进制数进行编码。

OBE的专用MAC地址可划分为两个部分,如下图所示:

制造商代码	OBU 制造商内部编码			
1B	3B			

其中:

■ 制造商代码

由"公路电子收费密钥管理及安全认证系统"建设单位统一管理,OBU制造商要提交书面申请,经核准后获取其唯一代码。

其取值范围为: 0~255, 其中: 0~254分配给厂商, 255保留做测试等用途。

▮ OBU制造商内部编码

由0BU制造商根据其生产、管理等方面的需要自行定义。其取值范围为: $0\sim16777215$ $(2^{24}-1)$ 。

2 RSU 的 BeaconID 编码规则

《应用层》标准附录A中定义了BeaconID的ASN. 1数据类型为:

BeaconID: : = SEQUENCE{

manufacturerID INTEGER(0..255), individualID INTEGER(0..16777215)

}

建议其编码规则同OBU的MAC地址编码规则,即:

- I manufacturerID采用"制造商代码";
- I individual ID由RSU制造商根据其生产、管理等方面的需要自行定义。其取值范围为: 0∼16777215(224-1)。

3 合约(Contract)相关信息编码规则

3.1 ContractSerialNumber 编码规则

《设备应用》标准中,定义ContractSerial Number的ASN. 1数据类型为:

ContractSeri al Number: : =SEQUENCE{

ESAMProviderID HEX STRING SIZE (2)
OBEProviderID HEX STRING SIZE (1)
ESAMIndividulID HEX STRING SIZE (5)

}

3.1.1 ESAMProviderID 编码规则

由"公路电子收费密钥管理及安全认证系统"建设单位统一管理ESAMProviderID的分配。

3.1.2 OBEProviderID 编码规则

由"公路电子收费密钥管理及安全认证系统"建设单位统一管理OBEProvi der I D的分配。

3.1.3 ESAMIndividulID 编码规则

该编码由ESAM厂商提供,要求同一厂商产品的编码不能相同。

4 服务提供商编码规则

"服务提供商标识"是指OBE-SAM中"系统信息文件"(EF01)中的第1~8字节,服务提供商标识由"公路电子收费密钥管理及安全认证系统"建设单位统一分配并登记备案。如服务提供商同时也是用户卡的发卡方,则OBU的"服务提供商"编码与"发卡方标识"的代码相同。

XX	XX	XX	XX	XX	XX	XX	XX
区域代码			服务提供	共商标识	保留	密钥分散	
							标识

区域代码为各省、直辖市、自治区的唯一标识,用汉字表示。

服务提供商标识为省内服务提供商的唯一标识,由"公路电子收费密钥管理及安全认证系统"建设单位分配并登记。

密钥分散标识定义如下:

- 01- 通过两级分散得到卡片密钥,第一级采用区域代码(复制一次变为8个字节)作为分散因子,第二级采用CPU卡内部编号作为分散因子。
- 02- 通过三级分散得到卡片密钥,第一级采用区域代码(复制一次变为8个字节)作为分散因子,第二级采用运营商标识(补"F"变为8个字节)作为分散因子,第三级采用CPU卡内部编号作为分散因子。
- 03- 通过三级分散得到卡片密钥,第一级采用运营商标识(补 "F"变为8个字节)作为分散因子,第二级采用区域代码(复制一次变为8个字节)作为分散因子,第三级采用CPU卡内部编号作为分散因子。

其它保留。

5 用户卡卡号编码规则

用户卡(包括储值卡和记账卡)的卡号对应JR/T 0025.2-2005 (PB0C 2.0)附录C ED / EP应用的基本数据文件(EF)的表C.1 ED和EP应用的公共应用基本数据文件中11~20字节 "应用序列号"。在公路电子收费应用中为"卡片发行基本数据文件(0015文件)"中的"卡片网络编号"(2B)+ "CPU卡内部编号"(8B)。

其中,"卡片网络编号"由"公路电子收费密钥管理及安全认证系统"建设方统一编号; "CPU卡内部编号"由卡片发行商自行定义。

建议用户卡卡号整体采用压缩BCD码的编码方式,每字节表示两个数字,共20位(4+16)数字,并用于卡片的表面光刻打印。在卡片上光刻打印时,采用4个数字为一组的方式,组与组之间用一个空格隔开。

Ⅰ "卡片网络编号"的编码规则

省级行政区划代码	运营商序号		
1B	1B		

"卡片网络编号"的第1个字节为"省级行政区划代码"(GB/T 2260-2002 中华人民共和国行政区划代码),如表1所示。

"卡片网络编号"的第2个字节为行政区域内"运营商序号",北京ETC专营公司的序号为"01"。

北京国标IC卡的"卡片网络编号"为: "1101"。

■ "CPU卡内部编号"的编码规则

"CPU卡内部编号"可表示16个数字(0~9),可划分为四个部分

表1 CPU 卡内部编号的组成

初始化年份	初始化星期	卡片类型	卡片序列号	
YY (1B)	WW (1B)	XX (1B)	XX (5B)	

其中:

表2 卡片类型编码

代码	含义
21	年 / 月票卡
22	储值卡
23	记帐卡
	保留
51	测试用年 / 月票卡
52	测试用储值卡
53	测试用记账卡
l .	

[&]quot;卡片序列号"采用顺序编号的方式,可容纳9,999,999,999张卡片。

6 发卡方标识的编码规则

"发卡方标识"是指用户IC卡中"卡片发行基本数据文件"(0015文件)中的第1~8字节,发卡方标识由"公路电子收费密钥管理及安全认证系统"建设单位统一分配并登记备案。如发卡单位同时也是ETC系统运营商(发行OBU),则"发卡方标识"的代码与OBU的"服务提供商"编码相同。

XX	XX	XX	XX	XX	XX	XX	XX
区域代码			运营商标识		保留	密钥分散	
							标识

区域代码为各省、直辖市、自治区的唯一标识,用汉字表示。

运营商标识为省内运营商的唯一标识,由"公路电子收费密钥管理及安全认证系统"建设单位分配并登记。

密钥分散标识定义如下:

- 01- 通过两级分散得到卡片密钥,第一级采用区域代码(复制一次变为8个字节)作为分散因子,第二级采用CPU卡内部编号作为分散因子。
- 02- 通过三级分散得到卡片密钥,第一级采用区域代码(复制一次变为8个字节)作为分散因子,第二级采用运营商标识(补"F"变为8个字节)作为分散因子,第三级采用CPU卡内部编号作为分散因子。
- 03- 通过三级分散得到卡片密钥,第一级采用运营商标识(补 "F"变为8个字节)作为分散因子,第二级采用区域代码(复制一次变为8个字节)作为分散因子,第三级采用CPU卡内部编号作为分散因子。

其它保留。

[&]quot;初始化年份"和"初始化星期"用于表示卡片的批次。

[&]quot;卡片类型编码"参照《公路联网收费技术要求》及IC卡格式国标中的有关规定:

7 PSAM 序列号及终端机编号编码规则

由"公路电子收费密钥管理及安全认证系统"建设单位统一编码。

8 分散代码规则

一级分散代码由"公路电子收费密钥管理及安全认证系统"建设方规定。二级分散代码由各省(直辖市)自行定义,该级分散可选。用户卡分散采用CPU卡内部编号; ESAM(OBU)分散采用合同序列号。