Homework 6

Problem 1. (a) Prove that SO(n) is connected.

(b) Prove that O(n) is not connected. Do this by first proving that $\det: GL(n,\mathbb{R}) \to \mathbb{R}^*$ is continuous.

Proof. (a) Note that SO(n) is the group of rotations in \mathbb{R}^n . Any rotation can be specified by picking a point on $(x_1,\ldots,x_n)\in S^{n-1}$ and forming the isometry where $(1,0,\ldots,0)$ moves to (x_1,\ldots,x_n) . We need n-1angles to specify such a point, so we get a map

$$\varphi: [0,2\pi]^{n-2} \times [0,\pi] \to SO(n).$$

This map takes an (n-1)-tuple of angles and uses sine and cosine to specify a point on S^{n-1} , and then this point corresponds to some rotation of SO(n) which is a matrix with entires sin and cos of the angles from the (n-1)-tuple. But note then that since sine and cosine are both continuous, we must have φ is continuous. Since the domain of φ is connected, its image must also be connected. But we've already shown that φ is onto, so SO(n) is connected.

(b) The determinant of $A = [a_{ij}]$ is a continuous function simply because it's a polynomial in the n^2 variables $a_{11}, \ldots, a_{21}, \ldots, a_{nn}$, given by

$$\det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n A_{i\sigma(j)}.$$

Since polynomials are continuous, the determinant must be. Now note that R^* is not connected since $(-\infty,0)$ and $(0,\infty)$ provide a separation. The determinant map is surjective since for $a \in \mathbb{R}$ we can form the matrix $a_{11}=a, a_{ii}=1$ for $i\neq 1$ and $a_{ij}=0$ for $i\neq j$. Then if O(n) were connected, we would have a continuous map from a connected space into a disconnected space, which is a contradiction.

Problem 2. Let G be a topological group. Prove that a representation $\rho: G \to GL(n,\mathbb{C})$ is a continuous (by the definition given in class) if and only if ρ is a continuous map, where $GL(n,\mathbb{C})$ is given the standard topology.

Proof. Suppose ρ is continuous as a representation. Then the map $\varphi: G \times V \to V$ given by $\varphi: (g, v) \mapsto gv$ is continuous. Now, V is n-dimensional, so if we fix a basis for V as e_1, \ldots, e_n , then $(g, e_i) \mapsto ge_i$ is a continuous map $G \to V$ for each $1 \le i \le n$. The product of theses maps is still continuous. Now fix some g for each component in the product. Then we have a continuous map which takes $g \in G$ to an n-tuple of basis vectors under the image of g. But this is precisely the matrix representation of g, so this is the map $\rho: G \to GL(n, \mathbb{C})$. Thus ρ is continuous as a topological map.

Now suppose ρ is continuous as a topological map. We have n projection maps $\pi_i: GL(n,\mathbb{C}) \to V$ which give the i^{th} column of an element of $GL(n,\mathbb{C})$. Then the maps $\pi_i\rho:G\to V$ are each continuous maps which give the image under g of the ith basis vector of V. Now if we have some vector $v = \sum_{i=1}^{n} a_i e_i$ then we can form the map $(g,v) \mapsto \sum_{i=1}^n a_i(\pi_i \rho(g)) = gv$. This is a sum of scaled continuous maps, so it's continuous. Thus ρ is continuous as a representation.

Problem 3. Let $\psi : \mathbb{R} \to \mathbb{C}^*$ be a continuous map satisfying for all $s, t \in \mathbb{R}$: (a) $\psi(s+t) = \psi(s)\psi(t)$.

(b) $\psi(t) = 1$ for all $t = 2\pi n$, $n \in \mathbb{Z}$.

Prove that there exists $c \in \mathbb{C}^*$ and $\zeta \in \mathbb{C}$ so that $\psi(t) = ce^{t\zeta}$ for all t.

Proof. Define ζ to be the real number such that $\psi(1) = ce^{i\zeta}$ for some $c \in \mathbb{R}$ (since $\psi(1)$ is some complex number it has this form). Then by property (a) we know for any integer n we have $\psi(n) = \psi(1)^n = ce^{n\zeta}$. In particular, $\psi(0) = ce^0 = c = 1$. Now if we have $1/n \in \mathbb{Q}$ then $\psi(1) = \psi(1/n + \cdots + 1/n) = \psi(1/n)^n$ so $\psi(1/n) = \psi(1)^{1/n} = e^{i\zeta/n}$. Then if we have $p/q \in \mathbb{Q}$ we must have $\psi(p/q) = \psi(1/q)^p = \psi(1)^{p/q} = e^{ip\zeta/q}$. Now let $t \in \mathbb{R}$ and pick a sequence of rationals (x_n) converging to t. Then $\lim_{n\to\infty} x_n = t$ and since ψ is continuous $\psi(t) = \lim_{n\to\infty} \psi(x_n) = \lim_{n\to\infty} e^{ix_n\zeta} = e^{it\zeta}$.

Problem 4. Let $V_{m,n}$ denote the vector space of the homogenous complex polynomials of degree m in n variables (under addition).

(a) Extend the case m=3 in class to define a continuous representation

$$\pi_{m,n}: SO(n) \to GL(V_{m,n}).$$

Prove this is indeed a continuous representation.

- (b) What is the degree of $\pi_{m,n}$, i.e. what is the dimension of $V_{m,n}$?
- (c) For which $\pi_{m,n}$ does there exists an SO(n)-invariant vector?

Proof. (a) To show continuity we need to show that the map $(g,p) \mapsto gp$ is continuous for all $g \in G$ and polynomials $p \in V_{m,n}$. Since g acts linearly and $V_{m,n}$ is a space under addition, it's enough to show continuity for monomials p. Note that if $p(x_1,\ldots,x_n) = c \prod_{j=1}^n x_j^{m_j}$ with $\sum_{j=1}^n m_j = m$, and $g^{-1} = [a_{ij}]$ then we have

$$gp = p(g^{-1}(x_1, \dots, x_n)) = p\left(\sum_{i=1}^n a_{i1}x_1, \dots, \sum_{i=1}^n a_{in}x_n\right) = c\prod_{j=1}^n \left(\sum_{i=1}^n a_{ij}x_j\right)^{m_j}.$$

To check continuity we need to make sure that small changes in the entires of g and small changes c will result in a small change in gp. Clearly if c changes by δ , then gp will change by a corresponding amount. If the entries g_{ij} in g change by some δ_{ij} then the entires a_{ij} will also change by some small δ'_{ij} since the inverse map is continuous. Then we note that the terms in gp are just polynomial functions in a_{ij} , that is, just summing them and raising them to m_j . This is a continuous function, so the change in gp is small if the δ'_{ij} are small enough. Thus $(g, p) \mapsto gp$ is continuous.

(b) The dimension is given by the number of n-variable monomials of degree m. To count these consider an arbitrary monomial $x_1^{m_1} \cdots x_n^{m_n}$ and take the corresponding multiset of terms

$$\{x_1, x_1, \dots, x_2, x_2, \dots, x_n, x_n\}$$

so that the cardinality of this multiset is m. We can group these terms as

$$\{x_1,\ldots,x_1 \mid x_2,\ldots,x_2 \mid x_3,\ldots \mid \ldots,x_{n-1} \mid x_n,\ldots,x_n\}.$$

Now the number of such multisets (and thus, of such monomials) is the number of ways to arrange the n-1 vertical bars. But this is just the number of ways to choose an (n-1)-sized subset out of an (n+m-1)-sized set. Thus the dimension is

$$\binom{n+m-1}{n-1} = \binom{n+m-1}{m}.$$

(c) Note that by definition for $g \in SO(n)$ and $x \in \mathbb{R}^n$ we have

$$\langle gx, gx \rangle = \langle x, x \rangle = x_1^2 + \dots + x_n^2$$
.

So if $p(x_1, ..., x_n) = \langle x, x \rangle^k$ for some k, then this vector is fixed under g by definition since g acts by first acting with g^{-1} on $(x_1, ..., x_n)$ and then evaluating at $p(x_1, ..., x_n)$. Thus, for all even m we have an SO(n)-invariant vector $\langle x, x \rangle^{m/2}$.

Problem 5. Let $g \in SU(2)$.

(a) Prove that g must have the form

$$g = \left(\begin{array}{cc} a & b \\ -\overline{b} & \overline{a} \end{array}\right)$$

where $a, b \in \mathbb{C}$ and $|a|^2 + |b|^2 = 1$.

(b) For $\alpha, \theta \in [0, 2\pi]$ define:

$$s(\alpha) = \begin{pmatrix} e^{i\alpha} & 0 \\ 0 & e^{-i\alpha} \end{pmatrix} \quad and \quad r(\theta) = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$

Prove that each $g \in SU(2)$ can be decomposed as a product

$$\begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} = s(-\alpha/2)r(-\beta/2)s(-\gamma/2)$$

for some $\alpha, \gamma \in [0, 2\pi]$ and $\beta \in [0, \pi]$. As a corollary note that SU(2) is generated by all matrices of the form $s(\alpha)$, $r(\beta)$.

(c) Check that the measure

$$dg = (1/8\pi^2)\sin\beta d\alpha d\beta d\gamma$$

is left invariant (it is actually bi-invariant) and has total mass 1, so it is the Haar measure on SU(2).

Proof. (a) Let

$$g = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right).$$

We know

$$\left(\begin{array}{cc} \overline{a} & \overline{c} \\ \overline{b} & \overline{d} \end{array}\right) = \overline{g}^T = g^{-1} \frac{1}{ad - bc} \left(\begin{array}{cc} d & -b \\ -c & a \end{array}\right)$$

and ad - bc = 1 since det(g) = 1. Then we immediately have $d = \overline{a}$ and $c = -\overline{b}$.

(b) Note that

$$\begin{split} s(-\alpha/2)r(-\beta/2)s(-\gamma/2) &= \left(\begin{array}{cc} e^{-i\alpha/2} & 0 \\ 0 & e^{i\alpha/2} \end{array} \right) \left(\begin{array}{cc} \cos(-\beta/2) & \sin(-\beta/2) \\ -\sin(-\beta/2) & \cos(-\beta/2) \end{array} \right) \left(\begin{array}{cc} e^{-i\gamma/2} & 0 \\ 0 & e^{i\gamma/2} \end{array} \right) \\ &= \left(\begin{array}{cc} e^{-i\alpha/2} & 0 \\ 0 & e^{i\alpha/2} \end{array} \right) \left(\begin{array}{cc} e^{-i\gamma/2} \cos(-\beta/2) & e^{i\gamma/2} \sin(-\beta/2) \\ -e^{-i\gamma/2} \sin(-\beta/2) & e^{i\gamma/2} \cos(-\beta/2) \end{array} \right) \\ &= \left(\begin{array}{cc} e^{-i(\alpha+\gamma)/2} \cos(-\beta/2) & e^{i(\gamma-\alpha)/2} \sin(-\beta/2) \\ -e^{-i(\gamma-\alpha)/2} \sin(-\beta/2) & e^{i(\alpha+\gamma)/2} \cos(-\beta/2) \end{array} \right). \end{split}$$

Now let $q \in SU(2)$ and from part (a) we know q has the form

$$g = \begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} = \begin{pmatrix} ce^{i\theta} & de^{i\psi} \\ -de^{i\psi} & ce^{-i\theta} \end{pmatrix}$$

where $\theta, \psi \in [0, 2\pi]$ and $|c|^2 + |d|^2 = 1$. Then (c, d) lies on the unit circle so we can find $\beta \in [0, \pi]$ such that $\cos(-\beta/2) = c$ and $\sin(-\beta/2) = d$. Also, if we let $\alpha = -\theta - \psi$ and $\gamma = \psi - \theta$ then g has the exact form above.

(c) To check that the total mass is 1 we simply find

$$\begin{split} \int_G dg &= \frac{1}{8\pi^2} \int \int \int \sin\beta d\alpha d\beta d\gamma \\ &= \frac{1}{8\pi^2} \int_0^{2\pi} \int_0^{\pi} \int_0^{2\pi} \sin\beta d\alpha d\beta d\gamma \\ &= \frac{1}{8\pi^2} \int_0^{2\pi} d\alpha \int_0^{\pi} \sin\beta d\beta \int_0^{2\pi} d\gamma \\ &= \frac{1}{8\pi^2} (2\pi)(2)(2\pi) \\ &= 1. \end{split}$$

To show that the measure is left invariant, we note that by part (a) SU(2) is the set of complex numbers $x_1 + ix_2, x_3 + ix_4 \in \mathbb{C}$ such that

$$1 = |x_1 + ix_2|^2 + |x_3 + ix_4|^2 = x_1^2 + x_2^2 + x_3^2 + x_4^2.$$

But this is exactly the subset $S^3 \subseteq \mathbb{R}^4$. The standard measure on \mathbb{R}^4 , $dx_1 dx_2 dx_3 dx_4$ is left invariant, so if we can change variables to $r^3 \sin \beta d\alpha d\beta d\gamma dr$, we will show that dg is left invariant.

Now, to find equations for x_1 , x_2 , x_3 and x_4 in terms of α , β , γ and r we can use part (b) and note that $x_1 + ix_2 = e^{-i(\alpha+\gamma)/2}\cos(-\beta/2)$ and $x_3 + ix_4 = e^{i(\gamma-\alpha)/2}\sin(-\beta/2)$. Thus

$$x_1 = r \cos\left(-\frac{\beta}{2}\right) \cos\left(-\frac{\alpha + \gamma}{2}\right)$$
$$x_2 = r \cos\left(-\frac{\beta}{2}\right) \sin\left(-\frac{\alpha + \gamma}{2}\right)$$
$$x_3 = r \sin\left(-\frac{\beta}{2}\right) \cos\left(\frac{\gamma - \alpha}{2}\right)$$
$$x_4 = r \sin\left(-\frac{\beta}{2}\right) \sin\left(\frac{\gamma - \alpha}{2}\right)$$

This gives (after some simplification) the sixteen partial derivatives

$$\frac{\partial x_1}{\partial \alpha} = -\frac{r}{2} \cos\left(\frac{\beta}{2}\right) \sin\left(\frac{\alpha + \gamma}{2}\right)$$

$$\frac{\partial x_1}{\partial \beta} = -\frac{r}{2} \sin\left(\frac{\beta}{2}\right) \cos\left(\frac{\alpha + \gamma}{2}\right)$$

$$\frac{\partial x_1}{\partial \gamma} = -\frac{r}{2} \cos\left(\frac{\beta}{2}\right) \sin\left(\frac{\alpha + \gamma}{2}\right)$$

$$\frac{\partial x_1}{\partial r} = \cos\left(\frac{\beta}{2}\right) \cos\left(\frac{\alpha + \gamma}{2}\right)$$

$$\frac{\partial x_2}{\partial \alpha} = -\frac{r}{2} \cos\left(\frac{\beta}{2}\right) \cos\left(\frac{\alpha + \gamma}{2}\right)$$

$$\frac{\partial x_2}{\partial \beta} = \frac{r}{2} \sin\left(\frac{\beta}{2}\right) \sin\left(\frac{\alpha + \gamma}{2}\right)$$

$$\frac{\partial x_2}{\partial \beta} = -\frac{r}{2} \cos\left(\frac{\beta}{2}\right) \cos\left(\frac{\alpha + \gamma}{2}\right)$$

$$\frac{\partial x_2}{\partial r} = -\cos\left(\frac{\beta}{2}\right)\sin\left(\frac{\alpha+\gamma}{2}\right)$$

$$\frac{\partial x_3}{\partial \alpha} = \frac{r}{2}\sin\left(\frac{\beta}{2}\right)\sin\left(\frac{\alpha-\gamma}{2}\right)$$

$$\frac{\partial x_3}{\partial \beta} = -\frac{r}{2}\cos\left(\frac{\beta}{2}\right)\cos\left(\frac{\alpha-\gamma}{2}\right)$$

$$\frac{\partial x_3}{\partial \gamma} = -\frac{r}{2}\sin\left(\frac{\beta}{2}\right)\sin\left(\frac{\alpha-\gamma}{2}\right)$$

$$\frac{\partial x_3}{\partial r} = -\sin\left(\frac{\beta}{2}\right)\cos\left(\frac{\alpha-\gamma}{2}\right)$$

$$\frac{\partial x_4}{\partial \alpha} = \frac{r}{2}\sin\left(\frac{\beta}{2}\right)\cos\left(\frac{\alpha-\gamma}{2}\right)$$

$$\frac{\partial x_4}{\partial \beta} = \frac{r}{2}\cos\left(\frac{\beta}{2}\right)\sin\left(\frac{\alpha-\gamma}{2}\right)$$

$$\frac{\partial x_4}{\partial \gamma} = -\frac{r}{2}\sin\left(\frac{\beta}{2}\right)\cos\left(\frac{\alpha-\gamma}{2}\right)$$

$$\frac{\partial x_4}{\partial \gamma} = \sin\left(\frac{\beta}{2}\right)\sin\left(\frac{\alpha-\gamma}{2}\right)$$

$$\frac{\partial x_4}{\partial \gamma} = \sin\left(\frac{\beta}{2}\right)\sin\left(\frac{\alpha-\gamma}{2}\right)$$

We now transform the differentials using the change of variables formula so $dx_1 dx_2 dx_3 dx_4 = \det(D) d\alpha d\beta d\gamma dr$ where D is the Jacobian of the transformation. Thus

$$\det(D) = \left| \begin{pmatrix} \frac{\partial x_1}{\partial \alpha} & \frac{\partial x_1}{\partial \beta} & \frac{\partial x_1}{\partial \gamma} & \frac{\partial x_1}{\partial r} \\ \frac{\partial x_2}{\partial \alpha} & \frac{\partial x_2}{\partial \beta} & \frac{\partial x_2}{\partial \gamma} & \frac{\partial x_2}{\partial r} \\ \frac{\partial x_3}{\partial \alpha} & \frac{\partial x_3}{\partial \beta} & \frac{\partial x_3}{\partial \gamma} & \frac{\partial x_3}{\partial r} \\ \frac{\partial x_4}{\partial \alpha} & \frac{\partial x_4}{\partial \beta} & \frac{\partial x_4}{\partial \gamma} & \frac{\partial x_4}{\partial r} \end{pmatrix} \right| = \frac{1}{8} r^3 \sin(\beta).$$

We're fixing r=1 in this case, so this leaves us with $dx_1dx_2dx_3dx_4=(1/8)\sin(\beta)d\alpha d\beta d\gamma$. Thus, up to a constant, this is the same as dg so it must be left invariant.