0.1 集合及其运算

0.1.1 集合的基本概念

集合的定义

定义 0.1 (集合)

具有确定内容或满足一定条件的事物的全体称为**集合**(或**集**),通常用大写字母如A,B,C等表示。构成一个集合的那些事物称为集合的元素(或元),通常用小写字母如a,b,c等表示。

若 a 是集合 A 的元素,则称 a 属于 A,记为 $a \in A$;若 a 不是集合 A 的元素,则称 a 不属于 A,记为 $a \notin A$ 。对于给定的集合,任一元素要么属于它,要么不属于它,二者必居其一。

不含任何元素的集合称为空集,用 \emptyset 表示;只含有限个元素的集合称为有限集;不是有限集的集合称为无限集。

我们用 $\mathbb{Z}, \mathbb{N}, \mathbb{Q}, \mathbb{R}$ 分别表示整数集、自然数集 (不包含 0)、有理数集和实数集. 特别地, 我们用 \mathbb{N}_0 表示 $\mathbb{N} \cup 0$.

集合的表示方法

(1) 列举法——列出给定集合的全部元素. 例如

$$A = \{a, b, c\}, B = \{1, 3, \dots, 2n - 1\}$$

(2) 描述法 $---A = \{x : x 具有性质P\}$. 例如

$$\ker f = \{x : f(x) = 0\}$$

集合的相等与包含

若集合 A 和 B 具有完全相同的元素,则称 A 与 B 相等,记为 A = B. 若 A 中的每个元素都是 B 的元素,则称 A 为 B 的子集,记为 A \subset B 或 B \supset A. 若 A \subset B 且 A \neq B,则称 A 为 B 的真子集,记为 A \subseteq B.

0.1.2 集合的运算

交与并

设 A, B 为两个集合,由属于 A 或属于 B 的所有元素构成的集合,称为 A 与 B 的并,记为 $A \cup B$,即

$$A \cup B = \{x : x \in A \ \overrightarrow{\boxtimes} x \in B\}$$

由既属于 A 又属于 B 的元素构成的集合, 称为 A 与 B 的交, 记为 $A \cap B$, 即

$$A \cap B = \{x : x \in A \perp \exists x \in B\}$$

若 $A \cap B = \emptyset$,则称A = B 互不相交。

集族

 $\{A_{\alpha}\}_{\alpha\in\Gamma}$ 称为集族,其中 Γ 为指标集 (有限或无限), α 为指标. 特别地,当 $\Gamma=\mathbb{N}$ 时,集族称为列集,记为 $\{A_{n}\}_{n=1}^{\infty}$ 或 $\{A_{n}\}$ 。

0.1.2.0.1 集族的并:

$$\bigcup_{\alpha \in \Gamma} A_{\alpha} = \{x : \exists \alpha_0 \in \Gamma \notin \{ \exists x \in A_{\alpha_0} \} \}$$

0.1.2.0.2 集族的交:

$$\bigcap_{\alpha\in \Gamma}A_\alpha=\{x:x\in A_\alpha,\forall \alpha\in \Gamma\}$$

差与余

由属于 A 但不属于 B 的元素构成的集合, 称为 A 与 B 的差, 记为 A - B 或 $A \setminus B$, 即

$$A - B = \{x : x \in A \perp \exists x \notin B\}$$

通常所讨论的集合都是某一固定集X的子集,X称为全集或基本集. 全集X与子集A的差集X-A,称为A的 余集,记为 A^c ,即

$$A^c = \{x : x \notin A\}$$

 $\dot{\mathbf{L}}$ 补集是相对概念,若 $\mathbf{A} \subset \mathbf{B}$,则 $\mathbf{B} - \mathbf{A}$ 称为 \mathbf{A} 关于 \mathbf{B} 的补集。特别地,余集是集合关于全集的补集。

笛卡尔积

$$A \times B = \{(x, y) : x \in A, y \in B\}$$
$$A_1 \times \dots \times A_n = \{(x_1, \dots, x_n) : x_i \in A_i, i = 1, \dots, n\}$$

例如,n维欧氏空间 $\mathbb{R}^n = \underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_{n \uparrow}$ 。

集合的运算及性质

- (1) $A \cup A = A$, $A \cap A = A$;
- (2) $A \cup \emptyset = A$, $A \cap \emptyset = \emptyset$;
- (3) $A \cup B = B \cup A$, $A \cap B = B \cap A$;
- (4) $(A \cup B) \cup C = A \cup (B \cup C)$, $(A \cap B) \cap C = A \cap (B \cap C)$;
- (5) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$, $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$, $A\cap (\bigcup_{\alpha\in \Gamma}B_\alpha)=\bigcup_{\alpha\in \Gamma}(A\cap B_\alpha),\ \ A\cup (\bigcap_{\alpha\in \Gamma}B_\alpha)=\bigcap_{\alpha\in \Gamma}(A\cup B_\alpha);$ (6) $A \cup A^{c} = X$, $A \cap A^{c} = \emptyset$;
- $(7) X^c = \emptyset, \ \emptyset^c = X;$
- $(8) A B = A \cap B^c$

定理 0.1 (De Morgan 定律)

设
$$\{A_{\alpha}\}_{\alpha\in\Gamma}$$
为一集族,则

(i)
$$(\bigcup_{\alpha \in \Gamma} A_{\alpha})^{c} = \bigcap_{\alpha \in \Gamma} A_{\alpha}^{c};$$

(ii) $(\bigcap_{\alpha \in \Gamma} A_{\alpha})^{c} = \bigcup_{\alpha \in \Gamma} A_{\alpha}^{c}.$

证明 (i) 设 $x \in (\bigcup_{\alpha \in \Gamma} A_{\alpha})^{c}$,则 $x \notin \bigcup_{\alpha \in \Gamma} A_{\alpha}$,故对 $\forall \alpha \in \Gamma$, $x \notin A_{\alpha}$,即 $\forall \alpha \in \Gamma$, $x \in A_{\alpha}^{c}$ 。从而 $x \in \bigcap_{\alpha \in \Gamma} A_{\alpha}^{c}$,因此,

$$(\bigcup_{\alpha\in\Gamma}A_{\alpha})^{c}\subset\bigcap_{\alpha\in\Gamma}A_{\alpha}^{c}$$
。上述推理反过来也成立,故 $\bigcap_{\alpha\in\Gamma}A_{\alpha}^{c}\subset(\bigcup_{\alpha\in\Gamma}A_{\alpha})^{c}$ 。因此, $(\bigcup_{\alpha\in\Gamma}A_{\alpha})^{c}=\bigcap_{\alpha\in\Gamma}A_{\alpha}^{c}$ 。(ii) 类似可证。

0.1.3 上限集与下限集

设 $\{A_n\}$ 为单调集列,若 $\{A_n\}$ 单调递增,即

$$A_1 \subset A_2 \subset \cdots \subset A_n \subset \cdots$$

则
$$\{A_n\}$$
 收敛,且 $\lim_{n\to\infty}A_n=\bigcup_{n=1}^\infty A_n$ 。若 $\{A_n\}$ 单调递减,即

$$A_1 \supset A_2 \supset \cdots \supset A_n \supset \cdots$$

则
$$\{A_n\}$$
 收敛,且 $\lim_{n\to\infty}A_n=\bigcap_{n=1}^{\infty}A_n$ 。

定义 0.2 (上限集和下限集)

对于一般的集列 $\{A_n\}$

$$\bigcup_{k=1}^{\infty} A_k \supset \bigcup_{k=2}^{\infty} A_k \supset \cdots \supset \bigcup_{k=n}^{\infty} A_k \supset \cdots$$

记
$$C_n = \bigcup_{k=n}^{\infty} A_k$$
, 则 $\{C_n\}$ 单调递减,故 $\{C_n\}$ 收敛且

$$\lim_{n\to\infty} C_n = \bigcap_{n=1}^{\infty} C_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$$

称
$$\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$$
 为 $\{A_n\}$ 的上限集,记为 $\limsup_{n\to\infty} A_n$ 或 $\overline{\lim}_{n\to\infty} A_n$ 。又

$$\bigcap_{k=1}^{\infty} A_k \subset \bigcap_{k=2}^{\infty} A_k \subset \cdots \subset \bigcap_{k=n}^{\infty} A_k \subset \cdots$$

记
$$D_n = \bigcap_{k=n}^{\infty} A_k$$
, 则 $\{D_n\}$ 单调递增, 故 $\{D_n\}$ 收敛且

$$\lim_{n\to\infty} D_n = \bigcup_{n=1}^{\infty} D_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$$

称 $\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$ 为 $\{A_n\}$ 的下限集,记为 $\liminf_{n\to\infty} A_n$ 或 $\varliminf_{n\to\infty} A_n$ 。显然有如下关系

$$\bigcap_{n=1}^{\infty} A_n \subset \liminf_{n \to \infty} A_n \subset \limsup_{n \to \infty} A_n \subset \bigcup_{n=1}^{\infty} A_n$$

若 $\liminf_{n\to\infty} A_n = \limsup_{n\to\infty} A_n$, 则称 $\{A_n\}$ 收敛, 其极限记为 $\lim_{n\to\infty} A_n$ 。

命题 0.1

设 $\{A_n\}$ 为一集列,则

 $= \{x: \forall k \in \mathbb{N},$ 都存在 n_k 使得 $x \in A_{n_k} \}$

$$\begin{split} \liminf_{n \to \infty} A_n &= \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k = \{x: 除有限个A_n 外, 都含有x\} \\ &= \{x: \exists n_0 \in \mathbb{N}, 使得x \in A_n, \forall n \geqslant n_0\} \end{split}$$

证明 (1) 设 $x \in \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$,则对 n=1,有 $x \in \bigcup_{k=1}^{\infty} A_k$,故 $\exists n_1 \in \mathbb{N}$,使得 $x \in A_{n_1}$;对 $n=n_1+1$,有 $x \in \bigcup_{k=n_1+1}^{\infty} A_k$,故 $\exists n_2 > n_1$, 使得 $x \in A_{n_2}$; 以此类推, 得到一列 $\{n_k\}$ 满足 $n_1 < n_2 < \cdots$, 且 $x \in A_{n_k}$, $\forall k$. 因此, x 属于无穷多个 A_n . 反之,若x属于无穷多个 A_n ,不妨设 $x \in A_{n_k}, k=1,2,\cdots$,且 $n_1 < n_2 < \cdots$,则对 $\forall n \in \mathbb{N}$,都存在 $n_k > n$. 从

而
$$x \in A_{n_k} \subset \bigcup_{k=n}^{\infty} A_k$$
. 因此, $x \in \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$.

而
$$x \in A_{n_k} \subset \bigcup_{k=n}^{\infty} A_k$$
. 因此, $x \in \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$.

(2) $x \in \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k \iff \exists n_0 \in \mathbb{N}, 使得 x \in \bigcap_{k=n_0}^{\infty} A_k \iff x \in A_n, \forall n \geqslant n_0$.

例题 0.1 设 $A_{2n+1} = [0, 2-1/(2n+1)], n = 0, 1, 2, \dots, A_{2n} = [0, 1+1/2n], n = 1, 2, \dots, 求 \liminf_{n \to \infty} A_n$ 与 $\lim \sup A_n$.

解 注意到

$$[0,1] \subset \bigcap_{n=1}^{\infty} A_n \subset \liminf_{n \to \infty} A_n \subset \limsup_{n \to \infty} A_n \subset \bigcup_{n=1}^{\infty} A_n \subset [0,2)$$

故只需考察 (1,2) 中的点. 对 $\forall x \in (1,2)$, 存在 $n_0 \in \mathbb{N}$ (与 x 有关),

$$1 + \frac{1}{2n} < x < 2 - \frac{1}{2n+1}, \quad \forall n \geqslant n_0$$

即当 $n \ge n_0$ 时, 有 $x \notin A_{2n}, x \in A_{2n+1}$. 这说明: (i) x 不能 "除有限个 A_n 外, 都含有 x", 即 $x \notin \liminf A_n$; (ii) "x 属 于无穷多个 A_n ", 故 $x \in \limsup_{n \to \infty} A_n$. 因此, $\liminf_{n \to \infty} A_n = [0,1]$, $\limsup_{n \to \infty} A_n = [0,2)$. 例题 **0.2** 设 $f_n(x)$, f(x) 为 \mathbb{R} 上的实值函数, 则所有 $\{f_n(x)\}$ 不收敛于 f(x) 的点 x 构成的集合 D 可表示为

$$D = \bigcup_{k=1}^{\infty} \bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} \{x : |f_n(x) - f(x)| \geqslant \frac{1}{k}\}$$

证明 若 $x \in D$, 则 " $f_n(x) \rightarrow f(x)$ ", 即 $\exists \varepsilon_0 > 0$, 对 $\forall k \in \mathbb{N}$, $\exists n_k \geqslant k$, 使得

$$|f_{n\nu}(x) - f(x)| \geqslant \varepsilon_0$$

记 $E_n(\varepsilon_0) = \{x : |f_n(x) - f(x)| \ge \varepsilon_0\}$, 则由命题 1.1 知,

$$D = \bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} E_n(\varepsilon_0), \quad \exists \varepsilon_0 > 0$$

考虑到 ε_0 的取法, 不妨设 $\varepsilon_0 = 1/k_0, k_0 \in \mathbb{N}$. 因此

$$D = \bigcup_{k=1}^{\infty} \bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} E_n\left(\frac{1}{k}\right) = \bigcup_{k=1}^{\infty} \bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} \{x : |f_n(x) - f(x)| \geqslant \frac{1}{k}\}.$$

 $\dot{\mathbf{L}}$ 由于收敛点集是不收敛点集的余集, 由德 摩根公式, 所有 $\{f_n(x)\}$ 收敛于 f(x) 的点 x 构成的集合 C 可表示为

$$C = \bigcap_{k=1}^{\infty} \bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty} \{x : |f_n(x) - f(x)| < \frac{1}{k}\}$$

4