Pytorch_EHR: Building Recurrent Neural Network based Predictive Models using Electronic Health Records

Use Case: COVID-19 Patient's Risk for PASC

A HANDS-ON TUTORIAL
BROUGHT YOU BY DEGUI ZHI, LAILA RASMY, ZIQIAN XIE
ICHI 2023

Learning Objectives

Understanding the theories behind EHR predictive modeling using deep learning.

Learn the basic tools of deep learning to convert theory to practice.

Understand the basics of proper cohort definition.

Practice data preparation and preprocessing

Practice RNN model training and evaluation for binary classification and survival prediction

Learn different techniques used for hyperparameter tuning.

Learn how to present model predictions as well as explanations using attribution mechanism.

Agenda

Introduction of the EHR predictive modeling: theory and practice

EHR data preparation

RNN-based model training and evaluation

Explainability of model predictions

Section 1: EHR predictive modeling: Introduction and theory

Learning Objectives

Understanding the theories behind EHR predictive modeling using deep learning.

Learn the basic tools of deep learning to convert theory to practice.

Understand the basics of proper cohort definition.

Practice data preparation and preprocessing

Practice RNN model training and evaluation for binary classification and survival prediction

Learn different techniques used for hyperparameter tuning.

Learn how to present model predictions as well as explanations using attribution mechanism.

Introduction: Deep learning for EHR predictive modeling

Deep Learning for EHR Predictive Modeling

Flexible architecture of neural nets allows modeling complex dependency structures in EHR data.

Data Volume

Data Quality

Temporality

Multi-Modality

Knowledge

Deep Learning starting to achieve SotA

Model	Heart Failure	Readmis sion
GRU	84.8	75.5
LSTM	83.9	73.8
Vanilla- RNN	83.3	63.9
D-GRU	83.3	73.5
D-LSTM	83.3	72.8
D-RNN	83.2	70.9
Bi-GRU	84.5	74.4
Bi-LSTM	84.4	75.2
Bi-RNN	83.1	74.1
T-LSTM	82.4	72.1
QRNN	83.2	71.5
RETAIN	83.8	70.1
LR	79.0	67.0
RF	78.8	73.6

Pooling data improves performance

RNN-based RETAIN model
Predicting Heart Failure Risks for 10
largest hospitals in Cerner Health Facts
2016

Each hospital has 2,000-6,500 patients Full data set has 1.3 million patients

Pre-trained models boost performance

Predicting COVID-19 outcomes at admission using Cerner COVID DataLab n=247K, 125K variables

Our most recent example

Flexible architecture of neural nets allows modeling complex dependency structures in EHR data.

Data Volume

Data Quality

Temporality

Multi-Modality

Knowledge

Promise: An integrated DL system

Future: Towards an integrated learning health system

Theory: RNN for structured EHR

Electronic Health Records (EHR)

One of the richest (and messiest) sources of patient information

EHR data vs NLP data

Criteria	Natural language	EHR
Token granularity	word	code
Syntactic: Hierarchical structure	Document – paragraph- sentence – phrase - word	Patient – visit – code (of different categories)
Syntactic: Sequential order	Simple and clear.	Codes may with time stamp, but the codes within a visit may be unordered
Semantic	Dependency relations are clear to average human.	Dependency unclear
Time interval	Regular	irregular
Data completeness	Relatively complete.	Usually incomplete, may contain errors.
Sequence length	Within a relatively narrow range.	More variable

EHR predictive modeling: Input data modality

EPISODIC

Longer time span, chronical conditions

Patient is a sequence of visits

Time interval irregular between visits

Each visit has a number of codes

Each codes are categorical variable

CONTINUOUS MONITORING

Shorter time span, acute intense care, usually a single visit

Patient has observations at continuous times

One measure per variable per window

EHR predictive modeling: Output data modalities

Binary outcomes

Survival (Binary outcome with a time horizon)

Continuous variables (e.g., biomarkers)

Drug concentration monitoring

Multiple structured outcomes (e.g., length of stay)

Recurrent Neural Network - RNN

An unrolled recurrent neural network.

https://www.youtube.com/watch?v=co3ITOSgFIA&feature=youtu.be

The RNN Framework

Vanilla

RNN

(Hochreiter & Schmidhuber, 1997)

(Chung et al., 2014)

Better memory for long sequences

Computational efficient

Baseline RNN cells

LSTM and GRU. Images from Colah's blog http://colah.github.io/posts/2015-08-Understanding-LSTMs

Basic Unidirectional RNN

Bidirectional RNN

(Schuster & Paliwal, 1997)

Better representation of the context and eliminate ambiguity.

RETAIN model architecture

more RNN structures

Hyperparameter tuning

IEEE ICHI 2023 25

Practice:

Software packages for EHR predictive modeling

IEEE ICHI 2023 26

Major components of EHR predictive modeling

DATA PREPARATION

PREDICTION ENGINE

INTERPRETATION

PyTorch_EHR: source codes based on PyTorch to analyze EHR

- Lower the bar of entering this field for researchers
- Provide efficient data loading
- Enable experimenting mix and match of components
- Deliver competitive performance

Pytorch_EHR (v.3) Framework

Section 2: Data Preparation

Learning Objectives

Understanding the theories behind EHR predictive modeling using deep learning.

Learn the basic tools of deep learning to convert theory to practice.

Understand the basics of proper cohort definition.

Practice data preparation and preprocessing

Practice RNN model training and evaluation for binary classification and survival prediction

Learn different techniques used for hyperparameter tuning.

Learn how to present model predictions as well as explanations using attribution mechanism.

Cohort Definition

Steps toward proper cohort definition:

- 1. Understand the clinical problem
- 2. Engage stakeholders (clinicians / users)
- 3. Clearly define your outcome based on how the model is intended to be used
 - What to predict
 - When to predict
- Understand the data
 - strength
 - Limitations
- 5. Decide on your inclusion / exclusion criteria
 - Basic data cleaning

Our model can consume all data, so no need for further feature selection

Let's Practice Now

https://github.com/ZhiGroup/pytorch_ehr/tree/ACM-BCB

- 1. Cohort definition and data extraction from the EHR database
- 2. Data reformatting to be efficiently consumed by Pytorch_ehr

	Diabetes heart failure cohort (DHF)		Pancreatic cancer cohort (PC)			
Diagnosis terminology	Number of unique codes	LR	RNN	Number of unique codes	LR	RNN
Raw data (ICD -9 +ICD-10)	26,427	80.61	85.48 (0.10)	13,071	80.30	81.43 (0.37)
CCS-single level	284	78.07	82.96 (0.15)	253	77.23	79.03 (0.36)
CCSR	538	78.87	84.17 (0.21)	538	77.92	79.63 (0.34)
ICD-9	11,187	80.12	85.20 (0.13)	7,055	79.15	80.78 (0.32)
ICD-10	22,893	79.78	84.35 (0.20)	13,620	78.95	79.27 (0.44)
PheWAS	1,820	80.71	85.87 (0.10)	1,715	78.82	81.15 (0.31)
UMLS CUI	29,491	81.15	85.55 (0.06)	14,551	80.53	82.24 (0.29)

Terminology Normalization

https://github.com/ZhiGroup/terminology_representation

Section 3: Model Training & Evaluation

Learning Objectives

Understanding the theories behind EHR predictive modeling using deep learning.

Learn the basic tools of deep learning to convert theory to practice.

Understand the basics of proper cohort definition.

Practice data preparation and preprocessing

Practice RNN model training and evaluation for binary classification and survival prediction

Learn different techniques used for hyperparameter tuning.

Learn how to present model predictions as well as explanations using attribution mechanism.

Pytorch_EHR: under the hood

Packed Sequence

Let's Practice Now

- 1. Model training for binary classification
- 2. Model training survival prediction
- 3. Hyperparameter tuning
- 4. Model evaluation

Back to the colab

Section 4: Explanation by Attribution score lens into the inner working of the models

Learning Objectives

Understanding the theories behind EHR predictive modeling using deep learning.

Learn the basic tools of deep learning to convert theory to practice.

Understand the basics of proper cohort definition.

Practice data preparation and preprocessing

Practice RNN model training and evaluation for binary classification and survival prediction

Learn different techniques used for hyperparameter tuning.

Learn how to present model predictions as well as explanations using attribution mechanism.

Explainable Pytorch_EHR

Assign a value to each of the input features

Attribution mechanism

The value represent the contribution of the feature to the output of the model

[1] Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "" Why should i trust you?" Explaining the predictions of any classifier." *Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining*. 2016. [2] Lundberg, Scott M., and Su-In Lee. "A unified approach to interpreting model predictions." *Proceedings of the 31st international conference on neural information processing systems*. 2017.

[3] Montavon, Grégoire, et al. "Layer-wise relevance propagation: an overview." *Explainable Al: interpreting, explaining and visualizing deep learning* (2019): 193-209

[4] Sundararajan, Mukund, Ankur Taly, and Qiqi Yan. "Axiomatic attribution for deep networks." *International Conference on Machine Learning*. PMLR, 2017.

Common methods includes LIME [1], SHAP [2], LRP [3], IG [4], etc.

IEEE ICHI 2023 43

Integrated Gradient

Posthoc method

Computation doesn't require modifying network structure

Has some good theoretical properties

IEEE ICHI 2023 44

Integrated Gradient

$$f(X) - f(X_{baseline}) = \int_{X_{baseline}}^{X} \sum \frac{\partial f}{\partial x_i} dx_i$$

Multivariate calculus

For each variable, the attribution is $\int \frac{\partial f}{\partial x} dx$

Can be calculated using simple Riemann sum

Pytorch implementation

Make sure the feature tensor that you want to calculate attribute score on is a leaf node (detach if necessary)

Set requires_grad = True

Gradually increase the feature from baseline level to current level, accumulate the gradient.

IEEE ICHI 2023 46

Example

Rasmy, Laila, et al. "Recurrent neural network models (CovRNN) for predicting outcomes of patients with COVID-19 on admission to hospital: model development and validation using electronic health record data." *The Lancet Digital Health* (2022).

Thank you!

HTTPS://GITHUB.COM/ZHIGROUP/PYTORCH_EHR/

Pytorch_EHR v.3 Framework