

CLAIMS

1. A cryptographic method during which an integer division of the type $q = a \text{ div } b$ and $r = a \text{ mod } b$ is
 5 performed, with q a quotient, a a number of m bits, b a number of n bits with n less than or equal to m and b_{n-1} non-zero, b_{n-1} being the most significant bit of b , a method during which, at each iteration of a loop subscripted by i varying between 1 and $m-n+1$, a partial division of a word A
 10 of n bits of the number a by the number b is performed in order to obtain a bit of the quotient q ,

the method being characterised in that the same operations are performed at each iteration, whatever the value of the quotient bit obtained.

15 2. A method according to Claim 1, during which, at each iteration, an addition of the number b to the word A and a subtraction of the number b from the word A are performed.

20 3. A method according to one of Claims 1 to 2, during which all the following steps are performed :

Input : $a = (0, a_{m-1}, \dots, a_0)$

$b = (b_{n-1}, \dots, b_0)$

Output: $q = a \text{ div } b$ and $r = a \text{ mod } b$

$A = (0, a_{m-1}, \dots, a_{m-n+1}) ; \sigma' \leftarrow 1$

25 For $j = 1$ to $(m-n+1)$, do:

$a \leftarrow \text{SHL}_{m+1}(a, 1) ; \sigma \leftarrow \text{carry}$

$A \leftarrow (\sigma') \text{SUB}_n(A, b) + (\neg\sigma') \text{ADD}_n(A, b)$

$\sigma \leftarrow (\sigma' \text{ AND } \sigma') / (\sigma' \text{ AND carry}) / (\sigma' \text{ AND carry})$

$\text{lsb}(a) \quad \sigma'$

30 $\sigma' \leftarrow \sigma$

End For

if ($\neg\sigma = \text{TRUE}$) then $A \leftarrow \text{ADD}_n(A, b)$

4. A method according to Claim 1, during which, at each iteration, an operation of addition either of the number b or of a number \bar{b} complementary to the number b with the word A is performed.

5 5. A method according to Claim 4, during which, at each iteration, an updating is also carried out of a first variable (σ') indicating whether, during the following iteration, the number b or the number \bar{b} must be added with the word A according to the quotient bit produced ($\text{lsb}(a)$).

10 6. A method according to Claim 4 or Claim 5, during which all the following steps are performed :

Input : $a = (0, a_{m-1}, \dots, a_0)$

$b = (b_{n-1}, \dots, b_0)$

Output: $q = a \text{ div } b$ and $r = a \text{ mod } b$

15 $A = (0, a_{m-1}, \dots, a_{m-n+1}) ; \sigma' \leftarrow 1 ; \bar{b} \leftarrow \text{CPL2}_N(b)$

For $j = 1$ to $(m-n+1)$, do:

$a \leftarrow \text{SHL}_{m+1}(a, 1) ; \sigma \leftarrow \text{carry}$

$d_{addr} \leftarrow b_{addr} + \sigma' (\bar{b}_{addr} - b_{addr})$

$A \leftarrow \text{ADD}_n(A, d)$

20 $\sigma \leftarrow (\sigma' \text{ AND } \sigma') / (\sigma' \text{ AND carry}) / (\sigma' \text{ AND carry})$

$\text{lsb}(a) \leftarrow \sigma'$

$\sigma' \leftarrow \sigma$

End For

if ($\neg\sigma = \text{TRUE}$) then $A \leftarrow \text{ADD}_n(A, b)$

25 7. A method according to Claim 1, during which, at each iteration, an operation of complement to 2^n of an updated data item (b or \bar{b}) or of a notional data item (c or \bar{c}) is performed, and then an operation of addition of the updated data item with the word A.

30 8. A method according to Claim 7, during which, at each iteration, an operation of updating a second variable

(δ) is also performed, indicating whether, during the following iteration, the operation of complement to 2^n must be performed on the updated data item or on the notional data item..

5 9. A method according to one of Claims 7 or 8, in which, at each iteration, there is also performed an updating of a third variable (β) indicating whether the updated data item is equal to the data item b or to its complement to 2^n .

10 10. A method according to one of Claims 7 to 9, during which all the following steps are also performed :

Input : $a = (0, a_{m-1}, \dots, a_0)$

$b = (b_{n-1}, \dots, b_0)$

Output: $q = a \text{ div } b$ and $r = a \text{ mod } b$

15 $\sigma' \leftarrow 1 ; \beta \leftarrow 1, \gamma \leftarrow 1 ; A = (0, a_{m-1}, \dots, a_{m-n+1})$

for $j = 1$ to $(m-n+1)$, do:

$a \leftarrow \text{SHL}_{m+1}(a, 1) ; \sigma \leftarrow \text{carry}$

$\delta \leftarrow \sigma' / \beta$

$d_{addr} \leftarrow b_{addr} + \delta (c_{addr} - b_{addr})$

20 $d \leftarrow \text{CPL2}_n(d)$

$A \leftarrow \text{ADD}_n(A, b)$

$\sigma \leftarrow (\sigma \text{ AND } \sigma') / (\sigma \text{ AND carry}) / (\sigma' \text{ AND carry})$

$\beta \leftarrow \neg\sigma' ; \gamma \leftarrow \gamma / \delta ; \sigma' \leftarrow \sigma$

$\text{lsb}(a) = \sigma$

25 end for

if ($\neg\sigma = \text{TRUE}$) then $A \leftarrow \text{ADD}_n(A, b)$

11. A method according to Claim 10, during which, at the end, the following operations are performed :

if ($\neg\beta = \text{TRUE}$) then $b \leftarrow \text{CPL2}_n(b)$

30 if ($\neg\gamma = \text{TRUE}$) then $c \leftarrow \text{CPL2}_n(c)$

12. An electronic component comprising calculation

means programmed to implement a method according to one of Claims 1 to 11, the calculation means comprising in particular a central unit associated with a memory comprising several registers for storing the data a and b.

5 13. A chip card comprising an integrated circuit according to Claim 12.