

Approximation de bordures de motifs fréquents par le calcul de traverses minimales approchées d'hypergraphes

Nicolas Durand & Mohamed Quafafou

LSIS UMR 7296 - Aix-Marseille Université

Conférence Francophone sur l'Apprentissage Automatique (CAP) 4 juillet 2013

- Introduction
- 2 Bordures de motifs fréquents et hypergraphes
- 3 Calcul de bordures approximatives
- 4 Calcul de traverses minimales approchées d'hypergraphes
- Expérimentations
- 6 Conclusion et perspectives

- Découverte de motifs fréquents, règles d'association [AIS93]
- Contexte de fouille de données : $\mathcal{D} = (\mathcal{T}, \mathcal{I}, \mathcal{R})$ où $\mathcal{R} \subseteq \mathcal{T} \times \mathcal{I}$ Trouver l'ensemble S des motifs fréquents : $\{X \subseteq \mathcal{I} \text{ tq. } | \{t \in \mathcal{T} \text{ tq. } \forall i \in X, (t, i) \in \mathcal{R}\} | \geq minsup \}$

Exemple

Id				Item	S			
t_1	Α		С	Ε		G		
t_2		В	С	Ε		G		
t ₃	Α		С	Ε			Н	
t ₄	Α			D	F		Н	
t_5		В	С		F		Н	
t ₆		В	С	Ε	F		Н	

minsup = 3

A fréquent (support=3)

BC fréquent (support=3) EG infréquent (support=2)

motifs 3-fréquents = $\{A, B, C, E, F, H, BC, CE, CH, FH\}$

- Problèmes rencontrés :
 - Vaste espace de recherche
 - Nombre élevé de motifs produits
- Notre contribution : réduction du nombre de motifs fréquents maximaux via un calcul approché (de bordures de motifs fréquents)

Exemple

motifs fermés 3-fréquents = $\{A, C, H, BC, CE, CH, FH\}$

- Introduction
- 2 Bordures de motifs fréquents et hypergraphes
- 3 Calcul de bordures approximatives
- Calcul de traverses minimales approchées d'hypergraphes
- Expérimentations
- 6 Conclusion et perspectives

Conclusion

Bordures de motifs fréquents

Définition (Bordure positive et bordure négative (MT97))

La bordure positive (resp. négative) de S, notée $Bd^+(S)$ (resp. $Bd^-(S)$), est constituée par les motifs fréquents maximaux (resp. infréquents minimaux) (au sens de l'inclusion) de \mathcal{D} .

$$Bd^{+}(S) = \{X \in S \mid \forall Y \ tq \ X \subset Y, \ Y \notin S\}$$

$$Bd^{-}(S) = \{X \in 2^{\mathcal{I}} \setminus S \mid \forall Y \ tq \ Y \subset X, \ Y \in S\}$$

Exemple

Si
$$minsup=3$$

 $Bd^+(S) = \{A, BC, CE, CH, FH\}$
 $Bd^-(S) = \{D, G, AB, AC, AE, AF, AH, BE, BF, BH, CF, EF, EH\}$

Hypergraphes et traverses minimales

Définition (Hypergraphe (Berge89))

Hypergraphe $\mathcal{H} = (V, E)$, ensemble V de sommets et ensemble E d'hyperarêtes ($\forall e \in E, e \subseteq V$).

Définition (Traverse et traverse minimale (Berge89))

 $\tau \subseteq V$ est une traverse de \mathcal{H} ssi $\forall e \in E, \tau \cap e \neq \emptyset$.

Traverse τ de \mathcal{H} est minimale si $\exists \tau' \subset \tau$ tq. τ' est une traverse de \mathcal{H} .

 $MinTr(\mathcal{H})$: ensemble des traverses minimales de \mathcal{H} .

Exemple

Introduction

Exemple précédent $= \mathcal{H}$. BC n'est pas une traverse. ABC est une traverse mais pas minimale car AC est une traverse (minimale).

 $MinTr(\mathcal{H}) = \{AB, AC, CD, CF, CH, EF, EH, GH, AFG, BDE\}$

Bordures et traverses minimales : dualisation

Propriété (De la bordure positive à la bordure négative (MT97))

$$Bd^{-}(S) = MinTr(\overline{Bd^{+}(S)})$$

Introduction

où $Bd^+(S)$ représente l'hypergraphe dont les sommets sont les items de $\mathcal I$ et les hyperarêtes sont les complémentaires des motifs de la bordure positive de S.

Propriété (De la bordure négative à la bordure positive (DMP03))

$$Bd^+(S) = \overline{MinTr(Bd^-(S))}$$

où $Bd^-(S)$ représente l'hypergraphe dont les sommets sont les items de \mathcal{I} et les hyperarêtes sont les motifs de la bordure négative de S.

- Introduction
- 2 Bordures de motifs fréquents et hypergraphes
- 3 Calcul de bordures approximatives
- 4 Calcul de traverses minimales approchées d'hypergraphes
- Expérimentations
- 6 Conclusion et perspectives

Conclusion

Approche proposée d'approximation de bordures

- Exploitation des dualisations entre la bordure positive et la bordure négative
- Notons f et g les fonctions qui permettent de passer respectivement de $Bd^+(S)$ à $Bd^-(S)$ et de $Bd^-(S)$ à $Bd^+(S)$

• Nouvelle fonction \widetilde{f} qui utilise un calcul de traverses minimales approchées noté \widetilde{MinTr}

Approche proposée d'approximation de bordures

$$\widetilde{f}(Bd^{+}(S)) = \widetilde{MinTr}(\overline{Bd^{+}(S)}) = \widetilde{Bd^{-}(S)}$$

$$g(\widetilde{Bd^{-}(S)}) = \overline{MinTr}(\overline{Bd^{-}(S)}) = \widetilde{Bd^{+}(S)}$$

$$Bd^{+}(S) \qquad \widetilde{f}$$

$$Bd^{+}(S) \qquad \widetilde{f}$$

$$Bd^{+}(S) \qquad \widetilde{f}$$

$$Bd^{-}(S)$$

• Résultat : bordure négative approchée $\overrightarrow{Bd^-}(S)$ et la bordure positive approchée correspondante $\overrightarrow{Bd^+}(S)$

Approche proposée d'approximation de bordures

Exemple

Introduction

$$Bd^{-}(S) = \widetilde{f}(Bd^{+}(S)) = MinTr(\overline{Bd^{+}(S)})$$

= $MinTr(\{\overline{A}, \overline{BC}, \overline{CE}, \overline{CH}, \overline{FH}\}$
= $MinTr(\{BCDEFGH, ADEFGH, ABDFGH, ABDEFG, ABCDEG\})$
Supposons que le calcul de traverses minimales approchées nous donne : $Bd^{-}(S) = \{D, E, G, AF, AH, BF, BH\}$.

Dualisons pour obtenir la bordure positive approchée :

$$\widetilde{Bd^+(S)} = g(\widetilde{Bd^-(S)}) = MinTr(\widetilde{Bd^-(S)})$$

= $\{ABDEG, DEFGH\} = \{ABC, CFH\}.$

- ABC n'est pas fréquent ni existant, mais A, B, C et BC sont fréquents. CFH n'est pas fréquent mais il l'est presque.
- Notons que les hyperarêtes de $Bd^+(S)$ ont de fortes intersections.

- Introduction
- 2 Bordures de motifs fréquents et hypergraphe
- 3 Calcul de bordures approximatives
- Calcul de traverses minimales approchées d'hypergraphes
- Expérimentations
- 6 Conclusion et perspectives

Conclusion

Traverses minimales approchées

- La méthode proposée est constituée de 2 phases :
 - 1. Réduction de l'hypergraphe ${\cal H}$ avec algorithme spécialement conçu pour le calcul de traverses minimales
 - (se base sur les intersections des hyperarêtes et le nombre d'occurrences de chaque sommet)
 - 2. Calcul des traverses minimales de l'hypergraphe réduit \mathcal{H}_R

$$\widetilde{MinTr}(\mathcal{H}) = MinTr(\mathcal{H}_R)$$

Conclusion

Traverses minimales approchées

- ullet Réduction d'un hypergraphe $\mathcal{H}=(V,E)$ en 3 étapes :
 - 1. Calcul du nbre d'occurrences de chaque sommet dans les hyperarêtes de \mathcal{H} ,
 - 2. Calcul des intersections de chaque paire d'hyperarêtes et construction d'un graphe valué G = (V', E') où un sommet v'_i représente une hyperarête e_i de \mathcal{H} , une arête entre v'_i et v'_j traduit une intersection non vide entre les deux hyperarêtes e_i , e_j . Poids d'une arête (v'_i, v'_j) : $w_{(v'_i, v'_j)} = \sum_{v \in e_i \cap e_i} occur[v]$
 - 3. Sélection d'arêtes de G et génération de l'hypergraphe réduit $\mathcal{H}_R = (V_R, E_R)$: algorithme glouton sélectionnant l'arête ayant le plus fort poids tant qu'il reste des arêtes à selectionner. Chaque arête sélectionnée est transformée en une hyperarête pour \mathcal{H}_R (elle contient les sommets de \mathcal{H} correspondant à l'intersection).
- Algorithme en $O(m^2)$ où m = |E|

Traverses minimales approchées : exemple

Exemple

Considérons notre exemple comme un hypergraphe \mathcal{H} .

Calcul des nombres d'occurrences :

$$occur[A] = 3$$
, $occur[B] = 3$, $occur[C] = 5$, $occur[D] = 1$, $occur[E] = 4$, $occur[F] = 3$, $occur[G] = 2$ et $occur[H] = 4$.

Calcul des intersections des hyperarêtes :

par exemple,
$$e_5 \cap e_6 = \{B, C, F, H\}$$
.

$$w_{(v'_5,v'_6)} = occur[B] + occur[C] + occur[F] + occur[H] = 15.$$

Matrice d'adjacence du graphe valué généré :

Traverses minimales approchées : exemple

Sélection d'arête pour générer l'hypergraphe réduit : (v_5', v_6') est sélectionnée car poids le plus élevé. Les arêtes où figurent v_5' ou v_6' sont supprimées. On a $V_R = \{B, C, F, H\}$ et $E_R = \{\{B, C, F, H\}\}$. Le matrice d'adjacence du graphe restant est :

 (v'_1, v'_3) est sélectionnée. Après suppression, plus d'arêtes donc fin. Donc $\mathcal{H}_R = (V_R, E_R)$ où $V_R = \{A, B, C, E, F, H\}$ et $E_R = \{\{A, C, E\}, A, C, E\}$ $\{B, C, F, H\}\}$).

 $MinTr(\mathcal{H}) = MinTr(\mathcal{H}_R) = \{C, AB, AF, AH, BE, EF, EH\}$ (rappel: $MinTr(\mathcal{H}) = \{AB, AC, CD, CF, CH, EF, EH, GH, AFG, BDE\}$)

- Introduction
- 2 Bordures de motifs fréquents et hypergraphes
- 3 Calcul de bordures approximatives
- Calcul de traverses minimales approchées d'hypergraphes
- Expérimentations
- 6 Conclusion et perspectives

Conclusion

Expérimentations : données

- 4 jeux de données classiques : Mushroom, Chess, Connect et Kosarak
- Couvrent les différents types selon 2 classifications : [GZ01] [FMP10]

Données		Nb transactions	Nb items	Taille moy transaction
Mushroom		8124	119	23
Chess 3196		3196	75	37
	Connect 67557		129	43
	Kosarak	990002	41270	8,1

Conclusion

Conclusion

Expérimentations : protocole

- Pour chaque jeu de données et pour différentes valeurs de seuil minimum de support,
 - 1. Calcul de $Bd^+(S)$ en utilisant IBE [SU03],
 - 2. Calcul de $Bd^-(S)$ avec DL [DL05] (la référence), de $\widetilde{Bd}^-(S)$ avec δ -MTminer [RZC10,HBC07] (pour δ =1 et δ =2) et de $\widetilde{Bd}^-(S)$ avec notre méthode (appelée HR),
 - 3. Dualisation vers 1 $Bd^+(S)$ et 3 $Bd^+(S)$ avec DL.
- Pour chaque bordure calculée : <u>nombre de motifs</u>, taille moyenne d'un motif, <u>distance avec la bordure exacte</u>.

$$D(\mathcal{X},\mathcal{Y}) = \max \left\{ \ h(\mathcal{X},\mathcal{Y}) \ , \ h(\mathcal{Y},\mathcal{X}) \ \right\}$$
 avec
$$h(\mathcal{X},\mathcal{Y}) = \max_{X \in \mathcal{X}} \left\{ \min_{Y \in \mathcal{Y}} \ d(X,Y) \right\} \text{ et } \ d(X,Y) = 1 - \frac{|X \cap Y|}{\sqrt{|X| \times |Y|}}$$

Expérimentations : résultats

Mushroom : $Bd^+(S)$

Introduction

Nombre de motifs en fonction de minsup (%)

en fonction de minsup (%)

Expérimentations : résultats

Chess: $Bd^+(S)$

Introduction

Nombre de motifs en fonction de minsup (%)

en fonction de minsup (%)

Expérimentations

000000

Expérimentations : résultats

Connect : $Bd^+(S)$

Expérimentations : résultats

Kosarak : $Bd^+(S)$

Nombre de motifs en fonction de minsup (%)

en fonction de minsup (%)

- Introduction
- 2 Bordures de motifs fréquents et hypergraphes
- 3 Calcul de bordures approximatives
- Calcul de traverses minimales approchées d'hypergraphes
- Expérimentations
- 6 Conclusion et perspectives

Conclusion

Conclusion

- Nouvelle approche d'approximation de bordures de motifs fréquents via le calcul de traverses minimales approchées d'hypergraphes.
- Nouvelle méthode pour calculer les traverses minimales approchées, basée sur la réduction d'hypergraphes.
- Pas de nouveaux paramètres à fixer.
- Expérimentations ont montré que
 - Notre proposition produit une bordure positive approximative plus petite que la bordure positive exacte, tout en gardant une distance raisonnable avec elle,
 - Semble robuste par rapport aux différents types de jeux de données que nous pouvons rencontrés,

Perspectives

- Utilisation de notre méthode pour introduire une part d'approximation dans des algorithmes qui se basent sur la dualisation (comme ABS - Adaptive Borders Search [FMP04])
- Développement de systèmes de recommandation utilisant les motifs de bordures positives approchées (dans le domaine de la découverte de services Web, la recherche de documents, ...).

Merci de votre attention