BBM413 Fundamentals of Image Processing

Image Enhancement

Contents

- Point processing techniques
 - Negative images
 - Thresholding
 - Logarithmic transformation
 - Power law transforms
 - Grey level slicing
 - Bit plane slicing
- Histogram processing methods:
 - Histogram processing
 - Histogram Equalization
 - Histogram Matching

Contents

- Point processing techniques
 - Negative images
 - Thresholding
 - Logarithmic transformation
 - Power law transforms
 - Grey level slicing
 - Bit plane slicing
- Histogram processing methods:
 - Histogram processing
 - Histogram Equalization
 - Histogram Matching

A Note About Grey Levels

- When we have spoken about image grey level values we have said they are in the range [0, 255]
 - Where 0 is black and 255 is white
- There is no reason why we have to use this range
 - The range [0,255] stems from display technologies.
- For many of the image processing operations in this lecture grey levels are assumed to be given in the range [0.0, 1.0]

What Is Image Enhancement?

Image enhancement is the process of making images more useful The reasons for doing this include:

- Highlighting interesting detail in images
- Removing noise from images
- Making images more visually appealing

Image Enhancement Examples

Image Enhancement Examples (cont...)

Image Enhancement Examples (cont...)

Image Enhancement Examples (cont...)

Spatial & Frequency Domains

- There are two broad categories of image enhancement techniques
 - Spatial domain techniques
 - Direct manipulation of image pixels
 - Frequency domain techniques
 - Manipulation of Fourier transform or wavelet transform of an image
- For the moment we will concentrate on techniques that operate in the spatial domain

Basic Spatial Domain Image Enhancement

Most spatial domain enhancement operations can be reduced to the form

$$g(x, y) = T[f(x, y)]$$

•where f(x, y) is the input image, g(x, y) is the processed image and T is some operator defined over some neighbourhood of (x, y)

Point Processing

- •The simplest spatial domain operations occur when the neighbourhood is simply the pixel itself
- •In this case T is referred to as a grey level transformation function or a point processing operation
- Point processing operations take the form

$$s = T(r)$$

•where S refers to the processed image pixel value and ${\cal V}$ refers to the original image pixel value

Point Processing Example: Negative Images

- •Negative images are useful for enhancing white or grey detail embedded in dark regions of an image
 - Note how much clearer the tissue is in the negative image of the mammogram below

 $s = intensity_{max} - r$

Intensity Transformations

a b

FIGURE 3.2

Intensity transformation functions.

- (a) Contraststretching function.
- (b) Thresholding function.

Point Processing Example: Thresholding

•Thresholding transformations are particularly useful for segmentation in which we want to isolate an object of interest from a background

Threshold Selection

Original Image

Threshold too low

Binary Image

Threshold too high

Basic Grey Level Transformations

- There are many different kinds of grey level transformations
- •Three of the most common are shown here
 - Linear
 - Negative/Identity
 - Logarithmic
 - Log/Inverse log
 - Power law
 - nth power/nth root

Logarithmic Transformations

•The general form of the log transformation is

$$s = c * log(1 + r)$$

- •The log transformation maps a narrow range of low input grey level values into a wider range of output values
- •The inverse log transformation performs the opposite transformation

Logarithmic Transformations (cont)

- •Log functions are particularly useful when the input grey level values may have an extremely large range of values
- •In the following example the Fourier transform of an image is put through a log transform to reveal more detail

Logarithmic Transformations (cont...)

$$s = log(1 + r)$$

We usually set c to 1 Grey levels must be in the range [0.0, 1.0]

Power Law (Gamma Correction) Transformations

Power law transformations have the following form

$$s = c * r^{\gamma}$$

- Map a narrow range of dark input values into a wider range of output values or vice versa
- •Varying γ gives a whole family of curves

FIGURE 3.6 Plots of the equation $s = cr^{\gamma}$ for various values of γ (c = 1 in all cases). All curves were scaled to fit in the range shown.

Power Law Transformations

(cont...)
Original Image

$$s=r^{\gamma}$$

- •We usually set C to 1
- •Grey levels must be in the range [0.0, 1.0]

Power Law Example

$$\gamma = 0.6$$

$$\gamma = 0.4$$

$$\gamma = 0.3$$

- •The images to the right show a magnetic resonance (MR) image of a fractured human spine
- •Different curves highlight different detail

Power Law Example

$$\gamma = 5.0$$

Power Law Transformations (cont...)

- •An aerial photo of a runway is shown
- •This time power law transforms are used to darken the image
- •Different curves highlight different detail

Gamma Correction

 Many of you might be familiar with gamma correction of computer monitors

•Problem is that display devices do not respond linearly to different intensities

Piecewise Linear Transformation Functions

- •Rather than using a well defined mathematical function we can use arbitrary user-defined transforms
- •The images below show a contrast stretching linear transform to add contrast to a poor quality image

Gray Level Slicing

- •Highlights a specific range of grey levels
 - Similar to thresholding
 - Other levels can be suppressed or maintained
 - Useful for highlighting features in an image

Bit Plane Slicing

- •By isolating particular bits of the pixel values in an image we can highlight interesting aspects of that image
 - Higher-order bits usually contain most of the significant visual information
 - Lower-order bits contain subtle details

Bit Plane Slicing (cont...)

[10000000]

[01000000]

[00001000]

[0000001]

Bit Plane Slicing (cont...)

FIGURE 3.14 (a) An 8-bit gray-scale image of size 500×1192 pixels. (b) through (i) Bit planes 1 through 8, with bit plane 1 corresponding to the least significant bit. Each bit plane is a binary image.

Reconstructed image using only bit planes 8 and 7

Reconstructed image using only bit planes 8, 7 and 6

Reconstructed image using only bit planes 7, 6 and 5

Contents

- Point processing techniques
 - Negative images
 - Thresholding
 - Logarithmic transformation
 - Power law transforms
 - Grey level slicing
 - Bit plane slicing
- Image enhancement techniques working in the spatial domain:
 - Histogram processing
 - Histogram Equalization
 - Histogram Matching

Image Histograms

- The histogram of an image shows us the distribution of grey levels in the image
- Massively useful in image processing, especially in segmentation and enhancement

Histogram Examples

Histogram Examples (cont...)

Histogram Examples (cont...)

Histogram Examples (cont...)s

Histogram Examples (cont...)

Histogram Examples (cont...)

- A selection of images and their histograms
- Notice the relationships between the images and their histograms
- Note that the high contrast image has the most evenly spaced histogram

Contrast Stretching

- We can fix images that have poor contrast by applying a pretty simple contrast specification
- The interesting part is how do we decide on this transformation function?

Histogram Equalisation

 Spreading out the frequencies in an image (or equalising the image) is a simple way to improve dark or washed out images

FIGURE 3.18 (a) An arbitrary PDF. (b) Result of applying the transformation in Eq. (3.3-4) to all intensity levels, r. The resulting intensities, s, have a uniform PDF, independently of the form of the PDF of the r's.

Histogram Equalisation

Spreading out the frequencies in an image (or equalising the image) is a simple way to improve dark or washed out images

a b

FIGURE 3.17

(a) Monotonically increasing function, showing how multiple values can map to a single value. (b) Strictly monotonically increasing function. This is a one-to-one mapping, both ways.

Histogram Equalisation

• The formula for histogram equalisation is given where

```
• r_k: input intensity
```

- s_k : processed intensity
- k: the intensity range (0 ... L-1) (e.g 0 255)
- n_i : the frequency of intensity j
- *n*: the sum of all frequencies

$$S_k = T(r_k)$$

$$= (L-1) \sum_{j=0}^k p_r(r_j)$$

$$= (L-1) \sum_{j=0}^k \frac{n_j}{n}$$

Example (3.5 G&W)

r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02

TABLE 3.1 Intensity distribution and histogram values for a 3-bit, 64×64 digital image.

a b c

$$s_k = T(r_k) = (L-1) \sum_{j=0}^k p_r(r_j) \qquad k = 0, 1, 2, \dots, L-1$$

$$s_0 = T(r_0) = 7 \sum_{j=0}^0 p_r(r_j) = 7 p_r(r_0) = 1.33$$

$$s_0 = 1.33 \rightarrow 1$$
 $s_2 = 4.55 \rightarrow 5$ $s_4 = 6.23 \rightarrow 6$ $s_6 = 6.86 \rightarrow 7$ $s_1 = 3.08 \rightarrow 3$ $s_3 = 5.67 \rightarrow 6$ $s_5 = 6.65 \rightarrow 7$ $s_7 = 7.00 \rightarrow 7$

FIGURE 3.19 Illustration of histogram equalization of a 3-bit (8 intensity levels) image. (a) Original histogram. (b) Transformation function. (c) Equalized histogram.

Equalisation Transformation Function

Equalisation Examples

Equalisation Transformation Functions

The functions used to equalise the images in the previous example

Equalisation Examples

Equalisation Transformation Functions

The functions used to equalise the images in the previous example

Equalisation Examples (cont...)

Equalisation Transformation Functions

The functions used to equalise the images in the previous examples

Histogram Matching

- There are applications in which histogram equalization is not suitable.
- It is useful sometimes to be able to specify the shape of the histogram that we wish the processed image to have.

a b

FIGURE 3.23 (a) Image of the Mars moon Phobos taken by NASA's Mars Global Surveyor. (b) Histogram. (Original image courtesy of NASA.)

Histogram Matching

a b

FIGURE 3.24

(a) Transformation function for histogram equalization. (b) Histogramequalized image (note the washedout appearance). (c) Histogram of (b).

Histogram Matching

FIGURE 3.25

- (a) Specified histogram.
- (b) Transformations.
- (c) Enhanced image using mappings from curve (2).
- (d) Histogram of (c).

Example (3.7 G&W)

5

3

4

a b

FIGURE 3.22 (a) Histogram of a 3-bit image. (b) Specified histogram. (c) Transformation function obtained from the specified histogram. (d) Result of performing histogram

specification. Compare (b) and (d).

$$G(z_0) = 0.00 \rightarrow 0$$
 $G(z_4) = 2.45 \rightarrow 2$
 $G(z_1) = 0.00 \rightarrow 0$ $G(z_5) = 4.55 \rightarrow 5$
 $G(z_2) = 0.00 \rightarrow 0$ $G(z_6) = 5.95 \rightarrow 6$
 $G(z_3) = 1.05 \rightarrow 1$ $G(z_7) = 7.00 \rightarrow 7$

$s_0 = 1.33 \to 1$	$s_2 = 4.55 \rightarrow 5$	$s_4 = 6.23 \rightarrow 6$	$s_6 = 6.86 \rightarrow 7$
$s_1 = 3.08 \rightarrow 3$	$s_3 = 5.67 \rightarrow 6$	$s_5 = 6.65 \rightarrow 7$	$s_7 = 7.00 \to 7$

Example (3.7 G&W)

r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02

$$s_0 = 1.33 \rightarrow 1$$
 $s_2 = 4.55 \rightarrow 5$ $s_4 = 6.23 \rightarrow 6$ $s_6 = 6.86 \rightarrow 7$ $s_1 = 3.08 \rightarrow 3$ $s_3 = 5.67 \rightarrow 6$ $s_5 = 6.65 \rightarrow 7$ $s_7 = 7.00 \rightarrow 7$

z_q	$G(z_q)$
$z_0 = 0$	0
$z_1 = 1$	0
$z_2 = 2$	0
$z_3 = 3$	1
$z_4 = 4$	2
$z_5 = 5$	5
$z_6 = 6$	6
$z_7 = 7$	7

Mapping

Example (3.7 G&W)

z_q	Specified $p_z(z_q)$	Actual $p_z(z_k)$
$z_0 = 0$	0.00	0.00
$z_1 = 1$	0.00	0.00
$z_2 = 2$	0.00	0.00
$z_3 = 3$	0.15	0.19
$z_4 = 4$	0.20	0.25
$z_5 = 5$	0.30	0.21
$z_6 = 6$	0.20	0.24
$z_7 = 7$	0.15	0.11

Partial Transformations

a b c

FIGURE 3.27 (a) SEM image of a tungsten filament magnified approximately 130×. (b) Result of global histogram equalization. (c) Image enhanced using local histogram statistics. (Original image courtesy of Mr. Michael Shaffer, Department of Geological Sciences, University of Oregon, Eugene.)

Summary

- We have looked at:
 - Different kinds of image enhancement
 - Histograms
 - Histogram equalisation, matching.
- We have looked at different kinds of point processing image enhancement
- Next time we will start to look at neighbourhood operations
- in particular filtering and convolution