Лабораторная работа №9 Дифференцирование и интегрирование

Смирнов Никита

5 мая 2021 г.

Оглавление

1	Упражнение 9.1	4
2	Упражнение 9.2	5
3	Упражнение 9.3	8
4	Упражнение 9.4	12
5	Упражнение 9.5	14
6	Выводы	18

Список иллюстраций

2.1	Треугольный сигнал	5
2.2	Визуализация при использованииdiff	
2.3	Визуализация при использованииdifferentiate	7
3.1	Прямоугольный сигнал	8
3.2	Визуализация при использовании с шви	9
3.3	Визуализация при использованииintegrate	10
3.4	Сравнение волн	10
4.1	Создание сигнала	12
4.2	Двойное применение integrate	13
5.1	Создание сигнала	14
5.2	Применение diff	15
5.3		16
5.4	Визуализация двух фильтров(синий - diff, оранжевый - deriv)	16

Листинги

2.1	Создание треугольного сигнала	5
2.2	Визуализация при diff	5
2.3	Визуализация при differentiate	6
3.1	Создание сигнала	8
3.2	Визуализация при cumsum	8
3.3	Визуализация при integrate	9
	Сравнение волн	10
3.5	Разница между реализациями	11
4.1	Создание сигнала	12
4.2	двойное применение integrate	12
5.1	Создание сигнала	14
5.2	Применение diff	14
5.3	Визуализация двух фильтров	16

Упражнение 9.1

В данном упражнении нам нужно открыть chap09.ipynb, прочитать пояснения и запустить примеры. Поэтому я просто изучил все примеры с комментариями.

Упражнение 9.2

Создаю треугольный сигнал TriangleSignal:

- 2 in_wave.plot()
- 3 thinkplot.config(xlabel='Time (s)')

Листинг 2.1: Создание треугольного сигнала

Рис. 2.1: Треугольный сигнал

Применяю
diff. diff от треугольной функции - прямоугольная функция. Можно сказать, что гарм
нритки прямоугльной и треугольной гармоники совпадают по
 1/f и 1/f2.

```
1 out_wave = in_wave.diff()
2 out_wave.plot()
```

Листинг 2.2: Визуализация при diff

Рис. 2.2: Визуализация при использованииdiff

Когда мы берём спектральную производную, мы получаем "звон"вокруг разрывов.

```
1 out_wave2 = in_wave.make_spectrum().differentiate().make_wave()
2 out_wave2.plot()
```

Листинг 2.3: Визуализация при differentiate

Рис. 2.3: Визуализация при использованииdifferentiate

Различия между diff и differentiate заключается в том, что производная треугольной волны не определена в точках треугольника.

Упражнение 9.3

Для начала я создал прямоугольный сигнал.

Листинг 3.1: Создание сигнала

Рис. 3.1: Прямоугольный сигнал

Мы получим треугольный сигнал из прямоугольного, что довольно логично после выполнения предыдущего упражнения.

```
1 out_wave = in_wave.cumsum()
2 out_wave.plot()
```

3 thinkplot.config(xlabel='Time (s)')

Листинг 3.2: Визуализация при cumsum

Рис. 3.2: Визуализация при использовании **cumsum**

Создаем спектр сигнала и используем фйнкцию integrate и получаем новый сигнал на его основе.

```
spectrum = in_wave.make_spectrum().integrate()
spectrum.hs[0] = 0
sout_wave2 = spectrum.make_wave()
sout_wave2.plot()
```

Листинг 3.3: Визуализация при integrate

Рис. 3.3: Визуализация при использованииintegrate

Если уравновесить и нормализовать две волны, они будут визуально похожи.

```
out_wave.unbias()
out_wave.normalize()
out_wave2.normalize()
out_wave.plot()
out_wave2.plot()
```

Листинг 3.4: Сравнение волн

Рис. 3.4: Сравнение волн

```
1 max(abs(out_wave.ys - out_wave2.ys))
Листинг 3.5: Разница между реализациями
```

Считаем разницу между реализациями и получаем 0.0027210884353741083.

Упражнение 9.4

Создаю пилообразный сигнал.

2 in_wave.plot()

Листинг 4.1: Создание сигнала

Рис. 4.1: Создание сигнала

Вычисляем спектр и применяем к нему функцию integrate два раза.

```
1 out_wave = in_wave.cumsum()
2 out_wave.unbias()
3 out_wave.plot()
4 out_wave = in_wave.cumsum()
```

- 5 out_wave.unbias()
- 6 out_wave.plot()

Листинг 4.2: двойное применение integrate

Рис. 4.2: Двойное применение integrate

Двойное интегрирование дает кубическую кривую. На этом этапе результат всё больше и больше напоминает синусоиду. Причина в том, что интеграция действует как фильтр нижних частот.

Упражнение 9.5

Создадим кубически сигнал.

```
in_wave =
        thinkdsp.CubicSignal(freq=0.0005).make_wave(duration=10000,
        framerate=1)
2 in_wave.plot()
```

Листинг 5.1: Создание сигнала

Рис. 5.1: Создание сигнала

Дважды применим функцию diff и получи пилообразный сигнал, что довольно логично после выполнения предыдущего упражнения.

```
out_wave = in_wave.diff().diff()
```

2 out_wave.plot()

Листинг 5.2: Применение diff

Рис. 5.2: Применение diff

Когда мы дифференцируем дважды, получаем пилообразную форму с некоторым звоном. Проблема в том, что производная параболического сигнала в точках не определена.

```
spectrum = in_wave.make_spectrum().differentiate().differentiate()
out_wave2 = spectrum.make_wave()
```

³ out_wave2.plot()

Рис. 5.3:

В конце работы я вывел фильтры для второй разницы и второй производной фильтры и сравнил их:

Рассмотрим два фильтра в одном масштабе:

```
diff_filter.plot(label='2nd diff')
deriv_filter.plot(label='2nd deriv')
```

Листинг 5.3: Визуализация двух фильтров

Рис. 5.4: Визуализация двух фильтров(синий - diff, оранжевый - deriv)

Теперь мы можем видеть, что оба являются фильтрами верхних частот, которые усиливают компоненты самых высоких частот. Второй deriv параболический, поэтому он сильнее всего усиливает самые высокие частоты. Второй diff - хорошее приближение второй производной только на самых низких частотах, затем он существенно отклоняется.

Выводы

Во время выполнения лабораторной работы получены навыки работы с взаимосвязью между окнами во временной области и фильтрами в частотной области. Также изучалось влияние окна конечных разностей, которое приближает дифференцирование, и операции накопления суммы, которая приближает интегрирование.