Linguagens Formais e Autômatos

Aula 05 - Equivalência DFA x NFA

Prof. Dr. Daniel Lucrédio Departamento de Computação / UFSCar Última revisão: ago/2015

Referências bibliográficas

- Introdução à teoria dos autômatos, linguagens e computação / John
 E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman; tradução da 2.ed.
 original de Vandenberg D. de Souza. Rio de Janeiro: Elsevier, 2002
 (Tradução de: Introduction to automata theory, languages, and computation ISBN 85-352-1072-5)
 - Capítulo 2 Seção 2.3
- Introdução à teoria da computação / Michael Sipser; tradução técnica Ruy José Guerra Barretto de Queiroz; revisão técnica Newton José Vieira.
 São Paulo: Thomson Learning, 2007 (Título original: Introduction to the theory of computation. "Tradução da segunda edição norte-americana" -ISBN 978-85-221-0499-4)
 - Capítulo 1 Seção 1.2

Equivalência DFA e NFA

- Intuitivamente, NFA é mais poderoso
 - Mas as linguagens aceitas por um NFA são regulares
 - Ou seja, qualquer NFA pode ser convertido em um DFA que reconhece a mesma linguagem
- Teorema:
 - Uma Linguagem L é aceita por algum DFA se e somente se L é aceita por algum NFA
 - Prova por construção dos dois lados:
 - "Se": um processo que constrói um DFA a partir de um NFA
 - "Somente se": um processo que constrói um NFA a partir de um DFA

- Na maioria dos casos, um DFA equivalente tem o mesmo número de estados que o NFA, só que mais transições
- No pior caso, tem 2ⁿ estados
 - $\circ \quad NFA N = (Q_N, \Sigma, \delta_N, q0, F_N)$
 - $\circ \quad \mathsf{DFA} \; \mathsf{D} = (\mathsf{Q}_{\mathsf{D}}, \; \mathsf{\Sigma}, \; \mathsf{\delta}_{\mathsf{D}}, \; \{\mathsf{q0}\}, \; \mathsf{F}_{\mathsf{D}})$
 - \circ L(D) = L(N)
- Q_D é o conjunto de subconjuntos de Q_N
- F_Dé o conjunto S de subconjuntos de Q_N

tal que
$$S \cap F_N \neq \emptyset$$

- Para cada conjunto S ⊆ Q_N
 - e para cada a ∈ Σ
 - $\delta_{D}(S,a) = U \text{ todos os } \delta_{N}(p,a) \text{ para } p \in S$

- Consiste em pegar todas as combinações de estados e agregar as transições do NFA
 - Cada combinação de estados do NFA é um estado no DFA
- Consiste basicamente na implementação "em paralelo"
 - Mas pré-calculando as combinações de estados

- Passo a passo com exemplo
- Dado o NFA (cadeias que terminam com 01):

	0	1
→ q0	{q0,q1}	{q0}
q 1	Ø	{q2}
* q2	Ø	Ø

- Passo 1:
 - Faça uma tabela "vazia", com as mesmas entradas como colunas (a tabela vai crescer para baixo)

0	1

- Passo 2:
 - Crie um novo estado inicial no DFA, um conjunto que contém somente o estado inicial do NFA

	0	1
→ {q0}		

Passo 3:

 Para cada entrada, insira no DFA um conjunto que contém a união de todos os resultados da transição NFA daquela entrada para todos os estados do conjunto à esquerda

	0	1
→ {q0}	{q0,q1}	{q0}

Passo 4:

 Para cada novo conjunto de estados que aparecer, insira uma nova linha na tabela do DFA e volte para o passo 3

	0	1
→ {q0}	{q0,q1}	{q0}
{q0,q1}	{q0,q1}	{q0,q2}

• Passo 4 (novamente):

	0	1
→ {q0}	{q0,q1}	{q0}
{q0,q1}	{q0,q1}	{q0,q2}
{q0,q2}	{q0,q1}	{q0}

 Passo 5: Quando não houver mais novos estados, marque como estado de aceitação os conjuntos que contém ao menos um estado de aceitação do NFA

	0	1
→ {q0}	{q0,q1}	{q0}
{q0,q1}	{q0,q1}	{q0,q2}
* {q0,q2}	{q0,q1}	{q0}

 Passo 6: "Renomeie" os conjuntos para estados, de forma a facilitar a leitura do DFA

	0	1
\rightarrow A	В	Α
В	В	С
* C	В	Α

- Dado o seguinte NFA:
 - Construa um DFA que aceite a mesma linguagem

	0	1
→ p	{p,q}	{p}
q	{r}	{r}
r	{s}	Ø
* s	{s}	{s}

	0	1
→ {p} A	{p,q} B	{p} A
{p,q} B	{p,q,r} D	{p,r} C
{p,r} C	{p,q,s} E	{p} A
{p,q,r} D	{p,q,r,s} F	{p,r} C
* {p,q,s} E	{p,q,r,s} F	{p,r,s} G
* {p,q,r,s} F	{p,q,r,s} F	{p,r,s} G
* {p,r,s} G	{p,q,s} E	{p,s} H
* {p,s} H	{p,q,s} E	{p,s} H

- Dado o seguinte NFA:
 - Construa um DFA que aceite a mesma linguagem

	0	1
→ * q0	{q1}	{q2}
* q1	Ø	{q0}
* q2	{q0}	Ø

	0	1
→ * {q0} A	{q1} B	{q2} C
* {q1} B	{} D	{q0} A
* {q2} C	{q0} A	{} D
{} D (morto)	{} D	{} D

Conversão DFA → **NFA**

- "Resto" da prova
- Parte fácil
 - Construir um NFA a partir de um DFA
 - Basta "copiar" o diagrama (ou tabela), trocando estados por conjuntos de estados
 - Um DFA é um caso específico de NFA
 - NFA permite 0 ou mais transições em cada situação
 - DFA permite sempre 1 transição em cada situação
 - 1 está entre 0 ou mais

Conversão DFA → **NFA**

	0	1
→ q1	q1	q2
* q2	q1	q2

	0	1
→ q1	{q1}	{q2}
* q2	{q1}	{q2}

Conversão DFA → **NFA**

- Formalmente:
 - Seja D = $(Q, \Sigma, \delta_D, q_0, F)$ um DFA
 - O Defina N = (Q,Σ, δ_N ,q₀,F)
 - Onde δ_N é definido pela regra:
 - Se $\delta_D(q,a)=p$, então $\delta_N(q,a)=\{p\}$
- Como consequência
 - Se $\delta^{\wedge}_{D}(q_{0},w)=p$, então $\delta^{\wedge}_{N}(q_{0},w)=\{p\}$
- Portanto, w é aceito por D se e somente se é aceito por N
 - Isto é: L(D) = L(N)

Fim

Aula 05 - Equivalência DFA x NFA