Name: Vijay G

Email: 241901124@rajalakshmi.edu.in

Roll no: 241901124 Phone: 7548817843

Branch: REC

Department: I CSE (CS) AC

Batch: 2028

Degree: B.E - CSE (CS)

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 4_MCQ_Updated

Attempt : 1 Total Mark : 20

Marks Obtained: 18

Section 1: MCQ

1. Which one of the following is an application of Queue Data Structure?

Answer

All of the mentioned options

Status: Correct Marks: 1/1

2. After performing this set of operations, what does the final list look to contain?

InsertFront(10); InsertFront(20);

InsertRear(30);

DeleteFront();

InsertRear(40);

InsertRear(10); DeleteRear(); InsertRear(15); display();

Answer

10 30 40 15

Status: Correct Marks: 1/1

3. What are the applications of dequeue?

Answer

All the mentioned options

Status: Correct Marks: 1/1

4. Which of the following can be used to delete an element from the front end of the queue?

Answer

public Object deleteFront() throws emptyDEQException(if(isEmpty())throw new emptyDEQException("Empty");else{Node temp = head.getNext();Node cur = temp.getNext();Object e = temp.getEle();head.setNext(cur);size--;return e;}}

Status: Correct Marks: 1/1

5. In a linked list implementation of a queue, front and rear pointers are tracked. Which of these pointers will change during an insertion into a non-empty queue?

Answer

Both front and rear pointer

Status: Wrong Marks: 0/1

6. Front and rear pointers are tracked in the linked list implementation of

a queue. Which of these pointers will change during an insertion into the EMPTY queue?

Answer

Only rear pointer

Status: Wrong Marks: 0/1

7. What will the output of the following code?

```
#include <stdio.h>
    #include <stdlib.h>
    typedef struct {
    int* arr:
      int front:
      int rear:
      int size:
    } Queue:
    Queue* createQueue() {
      Queue* queue = (Queue*)malloc(sizeof(Queue));
      queue->arr = (int*)malloc(5 * sizeof(int));
      queue->front = 0;
      queue->rear = -1;
return queue;
      queue->size = 0;
      Queue* queue = createQueue();
      printf("%d", queue->size);
      return 0;
    Answer
    0
    Status: Correct
```

3. The essential condition that is checked before insertion in a queue is?

Marks: 1/1

24,190,174 Marks : 1/1 Status: Correct

9. What will be the output of the following code?

```
#include <stdio.h>
    #define MAX_SIZE 5
    typedef struct {
      int arr[MAX_SIZE];
      int front;
   oint rear;
      int size;
    } Queue;
    void enqueue(Queue* queue, int data) {
      if (queue->size == MAX_SIZE) {
        return;
      }
      queue->rear = (queue->rear + 1) % MAX_SIZE;
      queue->arr[queue->rear] = data;
      queue->size++;
    int dequeue(Queue* queue) {
      if (queue->size == 0) {
        return -1;
      int data = queue->arr[queue->front];
      queue->front = (queue->front + 1) % MAX_SIZE;
      queue->size--;
      return data:
    }
    int main() {
      Queue queue;
                                                241901124
queue.size
```

241901124

```
enqueue(&queue, 1);
enqueue(&queue, 2);
enqueue(&queue, 3);
printf("%d ", dequeue(&queue));
printf("%d ", dequeue(&queue));
enqueue(&queue, 4);
enqueue(&queue, 5);
printf("%d ", dequeue(&queue));
printf("%d ", dequeue(&queue));
return 0;
}

Answer
1 2 3 4

Status: Correct

Marks: 1/1
```

10. When new data has to be inserted into a stack or queue, but there is no available space. This is known as

Answer

overflow

Status: Correct Marks: 1/1

11. A normal queue, if implemented using an array of size MAX_SIZE, gets full when

Answer

Rear = MAX_SIZE - 1

Status: Correct Marks: 1/1

12. In linked list implementation of a queue, the important condition for a queue to be empty is?

Answer

Status: Correct Marks: 1/1

13. The process of accessing data stored in a serial access memory is similar to manipulating data on a

Answer

Queue

Status: Correct Marks: 1/1

14. What does the front pointer in a linked list implementation of a queue contain?

Answer

The address of the first element

Status: Correct Marks: 1/1

15. Which of the following properties is associated with a queue?

Answer

First In First Out

Status: Correct Marks: 1/1

16. What is the functionality of the following piece of code?

```
public void function(Object item)
{
   Node temp=new Node(item,trail);
   if(isEmpty())
   {
      head.setNext(temp);
      temp.setNext(trail);
   }
}
```

```
else
{
    Node cur=head.getNext();
    while(cur.getNext()!=trail)
    {
        cur=cur.getNext();
    }
    cur.setNext(temp);
}
size++;
}
Answer
Insert at the rear end of the dequeue
Status: Correct

Marks: 1/1
```

17. Insertion and deletion operation in the queue is known as

Answer

Enqueue and Dequeue

Status: Correct Marks: 1/1

18. In what order will they be removed If the elements "A", "B", "C" and "D" are placed in a queue and are deleted one at a time

Answer

ABCD

Status: Correct Marks: 1/1

19. What will be the output of the following code?

```
#include <stdio.h>
#include <stdlib.h>
#define MAX_SIZE 5
typedef struct {
```

```
arr;
int front;
int ro
      int* arr;
      int size;
    } Queue;
    Queue* createQueue() {
      Queue* queue = (Queue*)malloc(sizeof(Queue));
      queue->arr = (int*)malloc(MAX_SIZE * sizeof(int));
      queue->front = -1;
      queue->rear = -1;
      queue->size = 0;
      return queue;
    int isEmpty(Queue* queue) {
      return (queue->size == 0);
    int main() {
      Queue* queue = createQueue();
      printf("Is the queue empty? %d", isEmpty(queue));
      return 0:
    }
    Answer
    Is the queue empty? 1
                                                                       Marks : 1/1
    Status: Correct
```

20. Which operations are performed when deleting an element from an array-based queue?

Answer

Dequeue

Status: Correct Marks: 1/1

241901124

Name: Vijay G

Email: 241901124@rajalakshmi.edu.in

Roll no: 241901124 Phone: 7548817843

Branch: REC

Department: I CSE (CS) AC

Batch: 2028

Degree: B.E - CSE (CS)

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 4_COD_Question 1

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

Imagine a bustling coffee shop, where customers are placing their orders for their favorite coffee drinks. The cafe owner Sheeren wants to efficiently manage the queue of coffee orders using a digital system. She needs a program to handle this queue of orders.

You are tasked with creating a program that implements a queue for coffee orders. Each character in the queue represents a customer's coffee order, with 'L' indicating a latte, 'E' indicating an espresso, 'M' indicating a macchiato, 'O' indicating an iced coffee, and 'N' indicating a nabob.

Customers can place orders and enjoy their delicious coffee drinks.

Input Format

The input consists of integers corresponding to the operation that needs to be performed:

Choice 1: Enqueue the coffee order into the queue. If the choice is 1, the following input is a space-separated character ('L', 'E', 'M', 'O', 'N').

Choice 2: Dequeue a coffee order from the queue.

Choice 3: Display the orders in the queue.

Choice 4: Exit the program.

Output Format

The output displays messages according to the choice and the status of the queue:

If the choice is 1:

- 1. Insert the given order into the queue and display "Order for [order] is enqueued." where [order] is the coffee order that is inserted.
- 2. If the queue is full, print "Queue is full. Cannot enqueue more orders."

If the choice is 2:

- 1. Dequeue a character from the queue and display "Dequeued Order: " followed by the corresponding order that is dequeued.
- 2. If the queue is empty without any orders, print "No orders in the queue."

If the choice is 3:

- 1. The output prints "Orders in the queue are: " followed by the space-separated orders present in the queue.
- 2. If there are no orders in the queue, print "Queue is empty. No orders available."

If the choice is 4:

1. Exit the program and print "Exiting program"

If any other choice is entered, the output prints "Invalid option."

241901124

247907124

Refer to the sample output for the exact text and format.

```
Sample Test Case
```

```
Input: 1 L
    1 E
    1 M
    10
    1 N
    10
    Output: Order for L is enqueued.
    Order for E is enqueued.
    Order for M is enqueued.
    Order for O is enqueued.
    Order for N is enqueued.
    Queue is full. Cannot enqueue more orders.
    Orders in the queue are: L E M O N
    Dequeued Order: L
    Orders in the queue are: E M O N
    Exiting program
Answer
    #include <stdio.h>
    #define MAX_SIZE 5
    char orders[MAX_SIZE];
    int front = -1;
    int rear = -1;
    void initializeQueue() {
      front = -1;
      rear = -1;
int enqueue(char order) {
```

```
if (rear == MAX_SIZE - 1) {
     printf("Queue is full. Cannot enqueue more orders.\n");
     return 1;
   if (front == -1) {
     front = 0;
   rear++;
   orders[rear] = order;
   printf("Order for %c is enqueued.\n", order);
   return 1;
}
void dequeue() {
 if (front == -1 || front > rear) {
     printf("No orders in the queue.\n");
     return;
   printf("Dequeued Order: %c\n", orders[front]);
   front++;
   if (front > rear) {
     front = rear = -1; // Reset the queue
   }
}
void display() {
   if (front == -1 || front > rear) {
     printf("Queue is empty. No orders available.\n");
     return;
   printf("Orders in the queue are: ");
   for (int i = front; i <= rear; i++) {
     printf("%c ", orders[i]);
   printf("\n");
}
int main() {
   char order;
   int option;
   initializeQueue();
while (1) {
     if (scanf("%d", &option) != 1) {
```

```
24,901,124
         break;
         switch (option) {
            case 1:
              if (scanf(" %c", &order) != 1) {
                break;
              if (enqueue(order)) {
              break;
            case 2:
              dequeue();
break
case 3:
die
              break;
              display();
              break;
              printf("Exiting program");
              return 0;
            default:
              printf("Invalid option.\n");
              break;
         }
       }
       return 0;
Status : Correct
                                                                        Marks : 10/10
```

24,901,124

24,901,124

24,901,124

24,190,1,124

Name: Vijay G

Email: 241901124@rajalakshmi.edu.in

Roll no: 241901124 Phone: 7548817843

Branch: REC

Department: I CSE (CS) AC

Batch: 2028

Degree: B.E - CSE (CS)

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 4_COD_Question 2

Attempt : 1
Total Mark : 10
Marks Obtained : 10

Section 1: Coding

1. Problem Statement

In a bustling IT department, staff regularly submit helpdesk tickets to request technical assistance. Managing these tickets efficiently is vital for providing quality support.

Your task is to develop a program that uses an array-based queue to handle and prioritize helpdesk tickets based on their unique IDs.

Implement a program that provides the following functionalities:

Enqueue Helpdesk Ticket: Add a new helpdesk ticket to the end of the queue. Provide a positive integer representing the ticket ID for the new ticket. Dequeue Helpdesk Ticket: Remove and process the next helpdesk ticket from the front of the queue. The program will display the ticket ID of the processed ticket. Display Queue: Display the ticket IDs of all the

helpdesk tickets currently in the queue.

Input Format

The input consists of integers corresponding to the operation that needs to be performed:

Choice 1: Enqueue the ticket ID into the queue. If the choice is 1, the following input is a space-separated integer, representing the ticket ID to be enqueued into the queue.

Choice 2: Dequeue a ticket from the queue.

Choice 3: Display the ticket IDs in the gueue.

Choice 4: Exit the program

Output Format

The output displays messages according to the choice and the status of the queue:

If the choice is 1:

- 1. Insert the given ticket ID into the queue and display "Helpdesk Ticket ID [id] is enqueued." where [id] is the ticket ID that is inserted.
- 2. If the queue is full, print "Queue is full. Cannot enqueue."

If the choice is 2:

- 1. Dequeue a ticket ID from the queue and display "Dequeued Helpdesk Ticket ID: " followed by the corresponding ID that is dequeued.
- 2. If the queue is empty without any elements, print "Queue is empty."

If the choice is 3:

- 1. The output prints "Helpdesk Ticket IDs in the queue are: " followed by the space-separated ticket IDs present in the queue.
- 2. If there are no elements in the queue, print "Queue is empty."

If the choice is 4:

1. Exit the program and print "Exiting the program"

If any other choice is entered, print "Invalid option."

Refer to the sample output for formatting specifications.

Sample Test Case

```
Input: 1 101
    1 202
    1 203
    1 204
    1 205
    1 206
    3
    Output: Helpdesk Ticket ID 101 is enqueued.
    Helpdesk Ticket ID 202 is enqueued.
    Helpdesk Ticket ID 203 is enqueued.
    Helpdesk Ticket ID 204 is enqueued.
    Helpdesk Ticket ID 205 is enqueued.
    Queue is full. Cannot enqueue.
    Helpdesk Ticket IDs in the gueue are: 101 202 203 204 205
    Dequeued Helpdesk Ticket ID: 101
    Helpdesk Ticket IDs in the queue are: 202 203 204 205
Exiting the program

Answer
   Exiting the program
    Answer
    #include <stdio.h>
    #define MAX SIZE 5
    int ticketIDs[MAX_SIZE];
    int front = -1;
    int rear = -1;
    int lastDequeued;
    void initializeQueue() {
rear = -1;
      front = -1;
```

241901124

```
void enqueue(int ticketID) {
if (rear == MAX_SIZE - 1) {
      printf("Queue is full. Cannot enqueue.\n");
      return;
   if (front == -1) {
      front = 0:
   rear++;
   ticketIDs[rear] = ticketID;
   printf("Helpdesk Ticket ID %d is enqueued.\n", ticketID);
 int dequeue() {
 if (front == -1 || front > rear) {
      return 0; // Queue is empty
   lastDequeued = ticketIDs[front];
   front++;
   if (front > rear) {
      front = rear = -1; // Reset queue after last element is dequeued
   return 1;
 }
 void display() {
   if (front == -1 || front > rear) {
     printf("Queue is empty.\n");
      return:
   printf("Helpdesk Ticket IDs in the queue are: ");
   for (int i = front; i <= rear; i++) {
     printf("%d ", ticketIDs[i]);
   printf("\n");
 }
 int main() {
   int ticketID;
                                                                                 241901124
   int option;
   initializeQueue();
while (1) {
      if (scanf("%d", &option) == EOF) {
```

```
break;
         switch (option) {
           case 1:
             if (scanf("%d", &ticketID) == EOF) {
                break;
             }
             enqueue(ticketID);
              break;
           case 2:
             if (dequeue()) {
                printf("Dequeued Helpdesk Ticket ID: %d\n", lastDequeued);
             } else {
                                                                                 24,901,124
                printf("Queue is empty.\n");
              break;
           case 3:
             display();
              break;
           case 4:
             printf("Exiting the program\n");
              return 0;
           default:
              printf("Invalid option.\n");
              break;
return 0;
                                                                         Marks: 10/10
    Status: Correct
```

24,1901,124

24,1901,124

24,190,174

24,001,124

Name: Vijay G

Email: 241901124@rajalakshmi.edu.in

Roll no: 241901124 Phone: 7548817843

Branch: REC

Department: I CSE (CS) AC

Batch: 2028

Degree: B.E - CSE (CS)

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 4_COD_Question 3

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

Write a program to implement a queue using an array and pointers. The program should provide the following functionalities:

Insert an element into the queue. Delete an element from the queue. Display the elements in the queue.

The queue has a maximum capacity of 5 elements. If the queue is full and an insertion is attempted, a "Queue is full" message should be displayed. If the queue is empty and a deletion is attempted, a "Queue is empty" message should be displayed.

Input Format

Each line contains an integer representing the chosen option from 1 to 3.

Option 1: Insert an element into the queue followed by an integer representing

Option 1: Insert an element into the queue followed by an integer representing the element to be inserted, separated by a space.

Option 2: Delete an element from the queue.

Option 3: Display the elements in the queue.

Output Format

For option 1 (insertion):-

- 1. The program outputs: "<data> is inserted in the queue." if the data is successfully inserted.
- 2. "Queue is full." if the queue is already full and cannot accept more elements.

For option 2 (deletion):-

- 1. The program outputs: "Deleted number is: <data>" if an element is successfully deleted and returns the value of the deleted element.
- 2. "Queue is empty." if the queue is empty no elements can be deleted.

For option 3 (display):-

- 1. The program outputs: "Elements in the queue are: <element1> <element2> ... <elementN>" where <element1>, <element2>, ..., <elementN> represent the elements present in the queue.
- 2. "Queue is empty." if the queue is empty no elements can be displayed.

For invalid options, the program outputs: "Invalid option."

Refer to the sample output for the formatting specifications.

Sample Test Case

Input: 1 10

```
Output: 10 is inserted in the queue.
     Elements in the queue are: 10
     Invalid option.
     Answer
     #include <stdio.h>
     #include <stdlib.h>
     #define max 5
                                                                                     241901124
     int queue[max];
       if (rear == max - 1) {
return 0; // Querr
}
     int front = -1, rear = -1;
    int insertq(int *data) {
        if (front == -1) {
          front = 0;
        rear++;
        queue[rear] = *data;
        return 1; // Successful insertion
     // Function to delete an element from the queue
 int delq() {

if 'E
       if (front == -1 || front > rear) {
          printf("Queue is empty.\n");
          return 0;
        } else {
          printf("Deleted number is: %d\n", queue[front]);
          front++;
          if (front > rear) {
            front = rear = -1; // Reset the queue when empty
24196172h
          return 1;
                                                                                     241901124
```

```
24,901,124
                                                   24,1901,124
// Function to display the queue elements
void display() {
  if (front == -1 || front > rear) {
    printf("Queue is empty.\n");
  } else {
    printf("Elements in the queue are: ");
    for (int i = front; i <= rear; i++) {
       printf("%d ", queue[i]);
    printf("\n");
  }
                                                                                241901124
int main()
 int data, reply, option;
  while (1)
    if (scanf("%d", &option) != 1)
       break;
    switch (option)
       case 1:
         if (scanf("%d", &data) != 1)
            break;
         reply = insertq(&data);
         if (reply == 0)
           printf("Queue is full.\n");
            printf("%d is inserted in the queue.\n", data);
         break;
       case 2:
         delq(); // Called without arguments
         break:
       case 3:
         display();
         break;
       default:
         printf("Invalid option.\n");
                                                                                241901124
                       241901124
                                                   241901124
         break:
  return 0;
```

} Status : Correct

Marks : 10/10

Name: Vijay G

Email: 241901124@rajalakshmi.edu.in

Roll no: 241901124 Phone: 7548817843

Branch: REC

Department: I CSE (CS) AC

Batch: 2028

Degree: B.E - CSE (CS)

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 4_COD_Question 4

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

In an office setting, a print job management system is used to efficiently handle and process print jobs. The system is implemented using a queue data structure with an array.

The program provides the following operations:

Enqueue Print Job: Add a print job with a specified number of pages to the end of the queue. Dequeue Print Job: Remove and process the next print job in the queue. Display Queue: Display the print jobs in the queue

The program should ensure that print jobs are processed in the order they are received.

Input Format

The input consists of integers corresponding to the operation that needs to be performed:

Choice 1: Enqueue the print job into the queue. If the choice is 1, the following input is a space-separated integer, representing the pages to be enqueued into the queue.

Choice 2: Dequeue a print job from the queue.

Choice 3: Display the print jobs in the queue.

Choice 4: Exit the program.

Output Format

The output displays messages according to the choice and the status of the queue:

If the choice is 1:

- 1. Insert the given page into the queue and display "Print job with [page] pages is enqueued." where [page] is the number of pages that are inserted.
- 2. If the queue is full, print "Queue is full. Cannot enqueue."

If the choice is 2:

- 1. Dequeue a page from the queue and display "Processing print job: [page] pages" where [page] is the corresponding page that is dequeued.
- 2. If the queue is empty without any elements, print "Queue is empty."

If the choice is 3:

- 1. The output prints "Print jobs in the queue: " followed by the space-separated pages present in the queue.
- 2. If there are no elements in the queue, print "Queue is empty."

If the choice is 4:

1, Exit the program and print "Exiting program"

If any other choice is entered, the output prints "Invalid option."

Refer to the sample output for the formatting specifications.

Sample Test Case

```
Input: 1
    10
    1
    20
    30,1
40
    50
    1
    60
    3
    2
    3
    4
    Output: Print job with 10 pages is enqueued.
    Print job with 20 pages is enqueued.
                                                   241901124
    Print job with 30 pages is enqueued.
   Print job with 40 pages is enqueued.
Print job with 50 pages is enqueued.
    Queue is full. Cannot enqueue.
    Print jobs in the queue: 10 20 30 40 50
    Processing print job: 10 pages
    Print jobs in the queue: 20 30 40 50
    Exiting program
    Answer
    #include <stdio.h>
    #define MAX_SIZE 5
                                                   241901124
int front = -1, rear = -1;
```

241901124

241901124

```
241901124
     // Function to enqueue a print job
    void enqueue(int pages) {
       if (rear == MAX_SIZE - 1) {
         printf("Queue is full. Cannot enqueue.\n");
       } else {
         if (front == -1) front = 0;
         rear++:
          queue[rear] = pages;
         printf("Print job with %d pages is enqueued.\n", pages);
       }
    }
    // Function to dequeue a print job
    void dequeue() {
    if (front == -1 || front > rear) {
         printf("Queue is empty.\n");
       } else {
         printf("Processing print job: %d pages\n", queue[front]);
         front++;
         if (front > rear) {
            front = rear = -1; // Reset the queue if empty
       }
    }
     // Function to display the print jobs in the queue
if (front == -1 || front > rear) {

printf("Queue is empt.")
                                                          241901124
         printf("Queue is empty.\n");
       } else {
         printf("Print jobs in the queue: ");
         for (int i = front; i <= rear; i++) {
            printf("%d ", queue[i]);
         printf("\n");
       }
    }
     int main() {
       int choice, pages;
       while (1) {
```

241901124

241901124

```
24,901,124
                                              24,901,124
 if (scanf("%d", &choice) != 1) break;
  switch (choice) {
    case 1:
      if (scanf("%d", &pages) != 1) break;
      enqueue(pages);
      break;
    case 2:
      dequeue();
      break;
    case 3:
      display();
                                                                         24,901,124
      break;
case 4:
      printf("Exiting program\n");
      return 0;
    default:
      printf("Invalid option.\n");
 }
}
return 0;
```

Status: Correct Marks: 10/10

241901124

241901124

041901124

047907124

24,901,124

24,901,124

24,1901,124

24,901,124

Name: Vijay G

Email: 241901124@rajalakshmi.edu.in

Roll no: 241901124 Phone: 7548817843

Branch: REC

Department: I CSE (CS) AC

Batch: 2028

Degree: B.E - CSE (CS)

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 4_COD_Question 5

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

You are tasked with implementing basic operations on a queue data structure using a linked list.

You need to write a program that performs the following operations on a queue:

Enqueue Operation: Implement a function that inserts an integer element at the rear end of the queue.Print Front and Rear: Implement a function that prints the front and rear elements of the queue. Dequeue Operation: Implement a function that removes the front element from the queue.

Input Format

The first line of input consists of an integer N, representing the number of elements to be inserted into the queue.

The second line consists of N space-separated integers, representing the queue elements.

Output Format

The first line prints "Front: X, Rear: Y" where X is the front and Y is the rear elements of the queue.

The second line prints the message indicating that the dequeue operation (front element removed) is performed: "Performing Dequeue Operation:".

The last line prints "Front: M, Rear: N" where M is the front and N is the rear elements after the dequeue operation.

Refer to the sample output for the formatting specifications.

Sample Test Case

newNode->next = NULL

```
Input: 5
    12 56 87 23 45
   Output: Front: 12, Rear: 45
   Performing Dequeue Operation:
   Front: 56, Rear: 45
   Answer
   #include <stdio.h>
#include <stdlib.h>
   struct Node {
     int data:
      struct Node* next:
   };
   struct Node* front = NULL;
   struct Node* rear = NULL;
   void enqueue(int d) {
      struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));
     newNode->data = d;
```

```
of (rear == NULL) {
     front = rear = newNode;
   } else {
     rear->next = newNode;
     rear = newNode;
   }
}
// Function to print front and rear elements
void printFrontRear() {
   if (front == NULL) {
     printf("Queue is empty.\n");
   } else {
     printf("Front: %d, Rear: %d\n", front->data, rear->data);
// Function to dequeue the front element
void dequeue() {
   if (front == NULL) {
     return;
   }
   struct Node* temp = front;
   front = front->next;
   if (front == NULL) {
    rear = NULL;
   free(temp);
int main() {
   int n, data;
   scanf("%d", &n);
   for (int i = 0; i < n; i++) {
     scanf("%d", &data);
     enqueue(data);
   }
   printFrontRear();
                                                   241901124
   printf("Performing Dequeue Operation:\n");
   dequeue();
   printFrontRear();
   return 0;
```

} Status : Correct

Marks : 10/10