MÉTODOS MATEMÁTICOS DE LA INFORMÁTICA

4. Rangos y determinantes

4.1. Demuestra que los determinantes

$$\begin{vmatrix}
 2 & 4 & 1 \\
 7 & 1 & 3 \\
 3 & 2 & 0
 \end{vmatrix}$$

$$y \qquad
 \begin{vmatrix}
 -1 & 2 & 3 \\
 3 & -1 & 2 \\
 2 & -1 & 3
 \end{vmatrix},$$

son múltiplos de 5 y de 4 respectivamente, sin desarrollarlos

4.2. Calcula los determinantes de Vandermonde

$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 5 \\ 2^2 & 3^2 & 4^2 & 5^2 \end{vmatrix}, \qquad \begin{vmatrix} 1 & \ln 2 & (\ln 2)^2 & (\ln 2)^3 \\ 1 & \ln 4 & (\ln 4)^2 & (\ln 4)^3 \\ 1 & \ln 8 & (\ln 8)^2 & (\ln 8)^3 \\ 1 & \ln 16 & (\ln 16)^2 & (\ln 16)^3 \end{vmatrix}, \qquad \begin{vmatrix} 1 & 1 & 1 & 1 \\ a & b & c & d \\ a^2 & b^2 & c^2 & d^2 \\ a^3 & b^3 & c^3 & d^3 \end{vmatrix}$$

4.3. Demuestra la igualdad

$$\begin{vmatrix} x & a & d & f \\ x & x & b & e \\ x & x & x & c \\ x & x & x & x \end{vmatrix} = x(x-a)(x-b)(x-c)$$

4.4. Demuestra las siguientes igualdades sin desarrollar los determinantes

$$\begin{vmatrix} b & c & b+c \\ a+c & c & a \\ b & a+b & a \end{vmatrix} = 2 \begin{vmatrix} c & b & 0 \\ 0 & a & c \\ a & 0 & b \end{vmatrix}, b \begin{vmatrix} a^2 & b^2 & ab \\ 2a & 2b & a+b \\ 1 & 1 & 1 \end{vmatrix} = (b-a)^3,$$

$$c) \begin{vmatrix} a+b & b+c & c+a \\ m+n & n+l & l+m \\ x+y & y+z & z+x \end{vmatrix} = 2 \begin{vmatrix} a & b & c \\ m & n & l \\ x & y & z \end{vmatrix}, d) \begin{vmatrix} 1 & 1 & 1 \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \end{vmatrix} = \begin{vmatrix} bc & ca & ab \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix}$$

4.5. Sean $x_1, x_2, x_3, ..., x_n$, números reales distintos. Encuentra una función polinómica f de grado n-1 de modo que $f(x_i) = a_i$, donde $a_1, a_2,, a_n$ son números dados y i = 1, 2,n.

Encuentra un polinomio de grado 3, P, tal que P(1)=3, P(0)=7, P(1/2)=2 y P(1/3)=1/4.

4.6. ¿Cuántos determinantes de k-ésimo orden se pueden formar de una matriz de m filas y n columnas?

4.7. Resuelve las ecuaciones

$$\begin{vmatrix} 1 & 3 & x-5 \\ 4 & x+2 & x \\ -1 & 1 & -3 \end{vmatrix} = 0, \quad b) \begin{vmatrix} 1 & 3x+6 & 3 \\ 2 & 4 & 1 \\ 1 & x+4 & -1 \end{vmatrix} = 0,$$

$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x^2 \end{vmatrix} = 0, \quad d) \begin{vmatrix} a & b & c \\ a & x & c \\ a & b & x \end{vmatrix} = 0, \quad e) \begin{vmatrix} x & a & b & c & d \\ a & x & b & c & d \\ a & b & c & c & d \\ a & b & c & c & d \\ a & b & c & d & c \end{vmatrix} = 0$$

4.8. Demuestra, sin desarrollar, que son nulos los determinantes

4.9. Calcula los determinantes de orden n

4.10. Calcula los determinantes de orden n

$$a) \begin{vmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & 2 & 1 & 1 & \cdots & 1 \\ 1 & 1 & 3 & 1 & \cdots & 1 \\ 1 & 1 & 1 & 4 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & 1 & \cdots & n \end{vmatrix}, \qquad b) \begin{vmatrix} 1 & a & a & a & \cdots & a \\ a & 1 & a & a & \cdots & a \\ a & a & 1 & a & \cdots & a \\ a & a & a & 1 & \cdots & a \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a & a & a & a & \cdots & 1 \end{vmatrix}$$

- 4.11. Sean A y B dos matrices de orden $m \times n$. Prueba que el rango de la matriz suma A + B no es mayor que la suma de los rangos de las matrices A y B.
- 4.12. Demuestra que si que si el producto de dos matrices cuadradas conmuta, es decir si AB = BA, entonces es cierto que $A^{-1}B = BA^{-1}$
- 4.13. Halla por determinantes, la matriz inversa de las siguientes si la tienen:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 2 & 0 & 3 \end{pmatrix}, C = \begin{pmatrix} 0 & 5 & 2 \\ -1 & -4 & 1 \\ -1 & 3 & -2 \end{pmatrix}$$

$$D = \begin{pmatrix} 3 & 7 & -3 \\ 1 & 1 & -4 \\ 2 & 0 & 1 \end{pmatrix}, E = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix}, F = \begin{pmatrix} 0 & 1 & 2 & 4 \\ 2 & 3 & -4 & -4 \\ -1 & 2 & 1 & 0 \\ 0 & 4 & 1 & 3 \end{pmatrix}$$

4.14. Halla el rango por determinantes:

$$A = \begin{pmatrix} -2 & 4 & 0 & 2 & -2 & 0 & 2 \\ -1 & -1 & 0 & 1 & 0 & 1 & -2 \\ -2 & 1 & 0 & 2 & -1 & 1 & -1 \\ 4 & 1 & 0 & -4 & 1 & -3 & 5 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 1 & -3 & 0 & -1 & 2 & 0 \\ 2 & 1 & -2 & 0 & 1 & 3 & 3 \\ 1 & 1 & 1 & 0 & 3 & 2 & 4 \\ 1 & 2 & -3 & 0 & 1 & 3 & 2 \end{pmatrix}$$