Copyright © 2017 LoRa Alliance, Inc. All rights reserved.

4

5

678910112131415161718192212232425627289331

NOTICE OF USE AND DISCLOSURE

Copyright © LoRa Alliance, Inc. (2017). All Rights Reserved.

The information within this document is the property of the LoRa Alliance ("The Alliance") and its use and disclosure are subject to LoRa Alliance Corporate Bylaws, Intellectual Property Rights (IPR) Policy and Membership Agreements.

Elements of LoRa Alliance specifications may be subject to third party intellectual property rights, including without limitation, patent, copyright or trademark rights (such a third party may or may not be a member of LoRa Alliance). The Alliance is not responsible and shall not be held responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights.

This document and the information contained herein are provided on an "AS IS" basis and THE ALLIANCE DISCLAIMS ALL WARRANTIES EXPRESS OR IMPLIED, INCLUDING BUT NOTLIMITED TO (A) ANY WARRANTY THAT THE USE OF THE INFORMATION HEREINWILL NOT INFRINGE ANY RIGHTS OF THIRD PARTIES (INCLUDING WITHOUTLIMITATION ANY INTELLECTUAL PROPERTY RIGHTS INCLUDING PATENT, COPYRIGHT OR TRADEMARK RIGHTS) OR (B) ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR NONINFRINGEMENT.

IN NO EVENT WILL THE ALLIANCE BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF BUSINESS, LOSS OF USE OF DATA, INTERRUPTION OFBUSINESS, OR FOR ANY OTHER DIRECT, INDIRECT, SPECIAL OR EXEMPLARY, INCIDENTIAL, PUNITIVE OR CONSEQUENTIAL DAMAGES OF ANY KIND, IN CONTRACT OR IN TORT, IN CONNECTION WITH THIS DOCUMENT OR THE INFORMATION CONTAINED HEREIN, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE.

The above notice and this paragraph must be included on all copies of this document that are made.

LoRa Alliance, Inc. 3855 SW 153rd Drive Beaverton, OR 97003

Note: All Company, brand and product names may be trademarks that are the sole property of their respective owners.

37

LoRaWAN™ 1.1 Regional Parameters

This document is a companion document to the LoRaWAN 1.1 protocol specification

Authored by the LoRa Alliance Technical Committee

Chairs:

N.SORNIN (Semtech), A.YEGIN (Actility)

Editor:

N.SORNIN (Semtech)

Revision: A

 Date: October 11, 2017 **Status:** Final release

Contents

LoRaWAN Regional Parameters......8 2.1.7 2.2.3 2.2.7 2.2.8 EU 433MHz ISM Band 24 2.4.7

112		AU915-928 Class B beacon	
113	2.5.9	AU915-928 Default Settings	33
114		I 470-510MHz Band	
115		CN470-510 Preamble Format	
116		CN470-510 Channel Frequencies	
117		CN470-510 Data Rate and End-point Output Power encoding	
118		CN470-510 Join-accept CFList	
_			
119		CN470-510 LinkAdrReq command	
120		CN470-510 Maximum payload size	
121		CN470-510 Receive windows	
122		CN470-510 Class B beacon	
123		CN470-510 Default Settings	
124		923MHz ISM Band	
125		AS923 Preamble Format	
126	2.7.2	AS923 ISM Band channel frequencies	39
127		AS923 Data Rate and End-point Output Power encoding	
128	2.7.4	AS923 Join-accept CFList	41
129	2.7.5	AS923 LinkAdrReq command	41
130	2.7.6	AS923 Maximum payload size	42
131		AS923 Receive windows	
132		AS923 Class B beacon and default downlink channel	
133		AS923 Default Settings	
134		uth Korea 920-923MHz ISM Band	
135	2.8.1	KR920-923 Preamble Format	
136	_	KR920-923 ISM Band channel frequencies	
137		KR920-923 Data Rate and End-device Output Power encoding	
138		KR920-923 Join-accept CFList	
139		KR920-923 Join-accept Of List	
140	2.8.6	KR920-923 Maximum payload size	
140 141		KR920-923 Receive windows	
142		KR920-923 Class B beacon and default downlink channel	
143		KR920-923 Default Settings	
144		lia 865-867 MHz ISM Band	
145		INDIA 865-867 Preamble Format	
146		INDIA 865-867 ISM Band channel frequencies	
147		INDIA 865-867 Data Rate and End-device Output Power Encoding	
148		INDIA 865-867 Join-accept CFList	
149	2.9.5	INDIA 865-867 LinkAdrReq command	
150	2.9.6	INDIA 865-867 Maximum payload size	52
151	2.9.7	INDIA 865-867 Receive windows	
152	2.9.8	INDIA 865-867 Class B beacon and default downlink channel	53
153	2.9.9	INDIA 865-867 Default Settings	54
154	3 Revis	sions	55
155	3.1 Re	vision A	55
156	4 Biblio	graphy	56
157		ferences	
158			
159	Tables		
160	Table 1: El	J863-870 synch words	8
161		J863-870 default channels	
162		J863-870 Join-request Channel List	
	0 (

163	Table 4: TX Data rate table	9
164	Table 5: TX power table	9
165	Table 6: ChMaskCntl value table	10
166	Table 7: EU863-870 maximum payload size	11
167	Table 8 : EU863-870 maximum payload size (not repeater compatible)	
168	Table 9: EU863-870 downlink RX1 data rate mapping	
169	Table 10: EU863-870 beacon settings	
170	Table 11: TX Data rate table	
171	Table 12: TX power table	
172	Table 13: ChMaskCntl value table	
173	Table 14: US902-928 maximum payload size (repeater compatible)	
174	Table 15 : US902-928 maximum payload size (not repeater compatible)	
175	Table 16: US902-928 downlink RX1 data rate mapping	
176	Table 17: US902-928 beacon settings	
177	Table 18: CN779-787 synch words	
178	Table 19: CN780 Join-request Channel List	
179	Table 20: Data rate and TX power table	
180	Table 21: ChMaskCntl value table	
181	Table 22: CN780 maximum payload size	
182	Table 23 : CN780 maximum payload size (not repeater compatible)	
183	Table 24: CN780 downlink RX1 data rate mapping	
184	Table 25: CN780 beacon settings	
185	Table 26: EU433 synch words	
	•	
186 187	Table 27: EU433 Join-request Channel List	
	Table 28: Data rate and TX power table	
188	Table 29: ChMaskCntl value table	
189	Table 30: EU433 maximum payload size	
190	Table 31: EU433 maximum payload size (not repeater compatible)	
191	Table 32: EU433 downlink RX1 data rate mapping	
192	Table 33 : EU433 beacon settings	
193	Table 34: AU915-928 Data rate table	
194	Table 35 : AU915-928 TX power table	
195	Table 36: ChMaskCntl value table	
196	Table 37: AU915-928 maximum payload size	
197	Table 38: AU915-928 maximum payload size (not repeater compatible)	
198	Table 39 : AU915-928 downlink RX1 data rate mapping	
199	Table 40 : AU915-928 beacon settings	
200	Table 41: CN470 Data rate and TX power table	
201	Table 42: CN470 ChMaskCntl value table	
202	Table 43: CN470-510 maximum payload size	
203	Table 44 : CN470-510 maximum payload size (not repeater compatible)	
204	Table 45: CN470-510 downlink RX1 data rate mapping	
205	Table 46: CN470-510 beacon settings	
206	Table 47: AS923 synch words	39
207	Table 48: AS923 default channels	
208	Table 49: AS923 Join-request Channel List	
209	Table 50: Data rate table	
210	Table 51: TxPower table	
211	Table 52: ChMaskCntl value table	
212	Table 53: AS923 maximum payload size	42
213	Table 54: AS923 maximum payload size (not repeater compatible)	
214	Table 55 : AS923 beacon settings	
215	Table 56: Center frequency, bandwidth, maximum EIRP output power table	45

216	Table 57: KR920-923 default channels	45
217	Table 58: KR920-923 Join-request Channel List	46
218	Table 59: TX Data rate table	46
219	Table 60: TX power table	47
220	Table 61: ChMaskCntl value table	
221	Table 62: KR920-923 maximum payload size	
222	Table 63: KR920-923 maximum payload size (not repeater compatible)	48
223	Table 64: KR920-923 downlink RX1 data rate mapping	
224	Table 65: KR920-923 beacon settings	
225	Table 66: India 865-867 synch words	
226	Table 67: INDIA 865-867 default channels	
227	Table 68: INDIA 865-867 Join-request Channel List	
228	Table 69: TX Data rate table	
229	Table 70: TxPower table	
230	Table 71: ChMaskCntl value table	
231	Table 72: INDIA 865-867 maximum payload size	
232	Table 73: INDIA 865-867 maximum payload size (not repeater compatible)	53
233		
234	Figures	
235	Figure 1: US902-928 channel frequencies	13
236	Figure 2: AU915-928 channel frequencies	
237	Figure 3: CN470-510 channel frequencies	
238	0	

1 Introduction

239240241

242243

244

This document describes the LoRaWAN™ regional parameters for different regulatory regions worldwide. This document is a companion document to the LoRaWAN 1.1 protocol specification [LORAWAN]. Separating the regional parameters from the protocol specification allows addition of new regions to the former without impacting the latter document.

245246

247 248

250 2 LoRaWAN Regional Parameters

2.1 EU 863-870MHz ISM Band

2.1.1 EU863-870 Preamble Format

The following synchronization words should be used:

253
254

255

257

258259

260

251

252

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols
GFSK	0xC194C1	5 bytes

Table 1: EU863-870 synch words

256 2.1.2 EU863-870 ISM Band channel frequencies

This section applies to any region where the ISM radio spectrum use is defined by the ETSI [EN300.220] standard.

The network channels can be freely attributed by the network operator. However the three following default channels must be implemented in every EU868MHz end-device. Those channels are the minimum set that all network gateways should always be listening on.

261 262

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels	Duty cycle
LoRa	125	868.10 868.30 868.50	DR0 to DR5 / 0.3-5 kbps	3	<1%

263

Table 2: EU863-870 default channels

264265266

In order to access the physical medium the ETSI regulations impose some restrictions such maximum time the transmitter can be on or the maximum time a transmitter can transmit per hour. The ETSI regulations allow the choice of using either a duty-cycle limitation or a so-called **Listen Before Talk Adaptive Frequency Agility** (LBT AFA) transmissions management. The current LoRaWAN specification exclusively uses duty-cycled limited transmissions to comply with the ETSI regulations.

268 269

270

271

272

267

EU868MHz end-devices should be capable of operating in the 863 to 870 MHz frequency band and should feature a channel data structure to store the parameters of at least 16 channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

273274

275

276

The first three channels correspond to 868.1, 868.3, and 868.5 MHz / DR0 to DR5 and must be implemented in every end-device. Those default channels cannot be modified through the *NewChannelReq* command and guarantee a minimal common channel set between end-devices and network gateways.

277278279

The following table gives the list of frequencies that should be used by end-devices to broadcast the Join-request message. The Join-request message transmit duty-cycle shall follow the rules described in chapter "Retransmissions back-off" of the LoRaWAN specification document.

281 282

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels
LoRa	125	868.10 868.30 868.50	DR0 – DR5 / 0.3-5 kbps	3

Table 3: EU863-870 Join-request Channel List

2.1.3 EU863-870 Data Rate and End-device Output Power encoding

There is no dwell time limitation for the EU863-870 PHY layer. The *TxParamSetupReq* MAC command is not implemented in EU863-870 devices.

The following encoding is used for Data Rate (DR) and End-device EIRP (TXPower) in the EU863-870 band:

289

DataRate	Configuration	Indicative physical bit rate [bit/s]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
6	LoRa: SF7 / 250 kHz	11000
7	FSK: 50 kbps	50000
814	RFU	
15	Defined in LoRaWAN ¹	

Table 4: TX Data rate table

290 291 292

293 294

283

284285

286

287

288

EIRP² refers to the Equivalent Isotropically Radiated Power, which is the radiated output power referenced to an isotropic antenna radiating power equally in all directions and whose gain is expressed in dBi.

TXPower	Configuration (EIRP)
0	Max EIRP
1	Max EIRP – 2dB
2	Max EIRP – 4dB
3	Max EIRP – 6dB
4	Max EIRP – 8dB
5	Max EIRP – 10dB
6	Max EIRP – 12dB
7	Max EIRP – 14dB
814	RFU
15	Defined in LoRAWAN

Table 5: TX power table

¹ DR15 and TXPower15 are defined in the LinkADRReq MAC command of the LoRaWAN1.1 specification

² ERP = EIRP - 2.15dB; it is referenced to a half-wave dipole antenna whose gain is expressed in dBd

300

By default MaxEIRP is considered to be +16dBm. If the end-device cannot achieve 16dBm EIRP, the Max EIRP should be communicated to the network server using an out-of-band channel during the end-device commissioning process.

301 302

2.1.4 EU863-870 Join-accept CFList

304 305

303

306

307

The EU 863-870 ISM band LoRaWAN implements an optional channel frequency list (CFlist) of 16 octets in the Join-accept message.

In this case the CFList is a list of five channel frequencies for the channels four to eight whereby each frequency is encoded as a 24 bits unsigned integer (three octets). All these 308 309 310

channels are usable for DR0 to DR5 125kHz LoRa modulation. The list of frequencies is followed by a single CFListType octet for a total of 16 octets. The CFListType shall be equal

to zero (0) to indicate that the CFList contains a list of frequencies.

312

313

315 316

317

318

319

320

321

311

Size	3	3	3	3	3	1
(bytes)						
CFList	Freq Ch4	Freq Ch5	Freq Ch6	Freq Ch7	Freq Ch8	CFListType

The actual channel frequency in Hz is 100 x frequency whereby values representing frequencies below 100 MHz are reserved for future use. This allows setting the frequency of 314 a channel anywhere between 100 MHz to 1.67 GHz in 100 Hz steps. Unused channels have a frequency value of 0. The CFList is optional and its presence can be detected by the length of the Join-accept message. If present, the **CFList** replaces all the previous channels stored in the end-device apart from the three default channels. The newly defined channels are immediately enabled and usable by the end-device for communication.

2.1.5 EU863-870 LinkAdrReg command

The EU863-870 LoRaWAN only supports a maximum of 16 channels. When **ChMaskCntl** field is 0 the ChMask field individually enables/disables each of the 16 channels.

322 323

ChMaskCntl	ChMask applies to
0	Channels 1 to 16
1	RFU
4	RFU
5	RFU
6	All channels ON
	The device should enable all currently defined
	channels independently of the ChMask field
	value.
7	RFU

324

Table 6: ChMaskCntl value table

325 326

327

328

329

If the ChMaskCntl field value is one of values meaning RFU, the end-device should reject the command and unset the "Channel mask ACK" bit in its response.

2.1.6 EU863-870 Maximum payload size

The maximum **MACPayload** size length (*M*) is given by the following table. It is derived from limitation of the PHY layer depending on the effective modulation rate used taking into

account a possible repeater encapsulation layer. The maximum application payload length in the absence of the optional **FOpt** control field (*N*) is also given for information only. The value of N might be smaller if the **FOpt** field is not empty:

DataRate	M	N	
0	59	51	
1	59	51	
2	59	51	
3	123	115	
4	230	222	
5	230	222	
6	230	222	
7	230	222	
8:15	Not defined		

Table 7: EU863-870 maximum payload size

If the end-device will never operate with a repeater then the maximum application payload length in the absence of the optional **FOpt** control field should be:

DataRate	M	N	
0	59	51	
1	59	51	
2	59	51	
3	123	115	
4	250	242	
5	250	242	
6	250	242	
7	250	242	
8:15	Not defined		

Table 8 : EU863-870 maximum payload size (not repeater compatible)

2.1.7 EU863-870 Receive windows

The RX1 receive window uses the same channel than the preceding uplink. The data rate is a function of the uplink data rate and the RX1DROffset as given by the following table. The allowed values for RX1DROffset are in the [0:5] range. Values in the [6:7] range are reserved for future use.

RX1DROffset	0	1	2	3	4	5	
Upstream data rate		Downstream data rate in RX1 slot					
DR0	DR0	DR0	DR0	DR0	DR0	DR0	
DR1	DR1	DR0	DR0	DR0	DR0	DR0	
DR2	DR2	DR1	DR0	DR0	DR0	DR0	
DR3	DR3	DR2	DR1	DR0	DR0	DR0	
DR4	DR4	DR3	DR2	DR1	DR0	DR0	
DR5	DR5	DR4	DR3	DR2	DR1	DR0	
DR6	DR6	DR5	DR4	DR3	DR2	DR1	
DR7	DR7	DR6	DR5	DR4	DR3	DR2	

Table 9: EU863-870 downlink RX1 data rate mapping

The RX2 receive window uses a fixed frequency and data rate. The default parameters are 869.525 MHz / DR0 (SF12, 125 kHz)

2.1.8 EU863-870 Class B beacon and default downlink channel

351 The beacons SHALL be transmitted using the following settings

DR	3 Corresponds to SF9 spreading factor with 125 kHz BV	
CR	1	Coding rate = 4/5
Signal polarity	Non-inverted	As opposed to normal downlink traffic which uses inverted
		signal polarity

Table 10: EU863-870 beacon settings

352353

350

354 The beacon frame content is:

Size (bytes)	2	4	2	7	2
BCNPayload	RFU	Time	CRC	GwSpecific	CRC

355 The beacon default broadcast frequency is 869.525MHz.

The class B default downlink pingSlot frequency is 869.525MHz

356 357

358

2.1.9 EU863-870 Default Settings

The following parameters are recommended values for the EU863-870MHz band.

360	RECEIVE_DELAY1	1 s
361	RECEIVE_DELAY2	2 s (must be RECEIVE_DELAY1 + 1s)
362	JOIN_ACCEPT_DELAY1	5 s
363	JOIN_ACCEPT_DELAY2	6 s
364	MAX_FCNT_GAP	16384
365	ADR_ACK_LIMIT	64
366	ADR_ACK_DELAY	32
367	ACK_TIMEOUT	2 +/- 1 s (random delay between 1 and 3 seconds)

If the actual parameter values implemented in the end-device are different from those default values (for example the end-device uses a longer RECEIVE_DELAY1 and RECEIVE_DELAY2 latency), those parameters must be communicated to the network server using an out-of-band channel during the end-device commissioning process. The

372 network server may not accept parameters different from those default values.

375

376

377

378

379

380

381

382 383

384

385 386

387

388

389 390

391

392 393

394

395 396

397

398 399

400 401

402

403

404 405

406 407

408 409

2.2 US 902-928MHz ISM Band

This section defines the regional parameters for the USA, Canada and all other countries adopting the entire FCC-Part15 regulations in 902-928 ISM band.

2.2.1 US902-928 Preamble Format

The following synchronization words should be used:

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols

LoRaWAN does not make use of GFSK modulation in the US902-928 ISM band.

2.2.2 US902-928 Channel Frequencies

The 915 MHz ISM Band shall be divided into the following channel plans.

- Upstream 64 channels numbered 0 to 63 utilizing LoRa 125 kHz BW varying from DR0 to DR3, using coding rate 4/5, starting at 902.3 MHz and incrementing linearly by 200 kHz to 914.9 MHz
- Upstream 8 channels numbered 64 to 71 utilizing LoRa 500 kHz BW at DR4 starting at 903.0 MHz and incrementing linearly by 1.6 MHz to 914.2 MHz
- Downstream 8 channels numbered 0 to 7 utilizing LoRa 500 kHz BW at DR8 to DR13, starting at 923.3 MHz and incrementing linearly by 600 kHz to 927.5 MHz

Figure 1: US902-928 channel frequencies

915 MHz ISM band end-devices are required to operate in compliance with the relevant regulatory specifications,. The following note summarizes some of the current (March 2017) relevant regulations.

Frequency-Hopping, Spread-Spectrum (FHSS) mode, which requires the device transmit at a measured conducted power level no greater than +30 dBm, for a period of no more than 400 msec and over at least 50 channels, each of which occupy no greater than 250 kHz of bandwidth.

Digital Transmission System (DTS) mode, which requires that the device use channels greater than or equal to 500 kHz and comply to a conducted Power Spectral Density measurement of no more than +8 dBm per 3kHz of spectrum. In practice, this limits the conducted output power of an end-device to +26 dBm.

Hybrid mode, which requires that the device transmit over multiple channels (this may be less than the 50 channels required for FHSS mode, but is recommended to be at least 4) while complying with the

Power Spectral Density requirements of DTS mode and the 400 msec dwell time of FHSS mode. In practice this limits the measured conducted power of the end-device to 21 dBm.

Devices which use an antenna system with a directional gain greater than +6 dBi, but reduce the specified conducted output power by the amount in dB of directional gain over +6 dBi.

US902-928 end-devices MUST be capable of operating in the 902 to 928 MHz frequency band and MUST feature a channel data structure to store the parameters for 72 channels. This channel data structure contains a list of frequencies and the set of data rates available for each frequency.

If using the over-the-air activation procedure, it is recommended that the end-device transmit the Join-request message alternatively on a random 125 kHz channel amongst the 64 channels defined using **DR0** and a random 500 kHz channel amongst the 8 channels defined using **DR4**. The end-device SHALL change channel for every transmission. For rapid network acquisition in mixed channel plan environments, it is further recommended that the device follow a channel selection sequence (still random) which efficiently probes the groups of nine (8 + 1) channels which are typically implemented by smaller gateways (channel groups 0-7+64, 8-15+65, etc.).

Personalized devices SHALL have all 72 channels enabled following a reset and shall use the channels for which the device's default data-rate is valid.

2.2.3 US902-928 Data Rate and End-device Output Power encoding

FCC regulation imposes a maximum dwell time of 400ms on uplinks. The *TxParamSetupReq* MAC command MUST not be implemented by US902-928 devices.

The following encoding is used for Data Rate (**DR**) and End-device conducted Power (**TXPower**) in the US902-928 band:

DataRate	Configuration	Indicative physical bit rate [bit/sec]
0	LoRa: SF10 / 125 kHz	980
1	LoRa: SF9 / 125 kHz	1760
2	LoRa: SF8 / 125 kHz	3125
3	LoRa: SF7 / 125 kHz	5470
4	LoRa: SF8 / 500 kHz	12500
5:7	RFU	
8	LoRa: SF12 / 500 kHz	980
9	LoRa: SF11 / 500 kHz	1760
10	LoRa: SF10 / 500 kHz	3900
11	LoRa: SF9 / 500 kHz	7000
12	LoRa: SF8 / 500 kHz	12500
13	LoRa: SF7 / 500 kHz	21900
14	RFU	
15	Defined in LoRaWAN1	

Table 11: TX Data rate table

Note: DR4 is purposely identical to DR12, DR8..13 must be implemented in end-devices and are reserved for future applications

436 437

438

416

417

418

419

420

421

422

423

424

425

426

427

430 431

432

433

434

435

_

¹ DR15 is defined in the LinkADRReg MAC command of the LoRaWAN1.1 specification

TXPower	Configuration (conducted power)
0	30 dBm – 2*TXpower
1	28 dBm
2	26 dBm
3:9	
10	10 dBm
11:14	RFU
15	Defined in LoRaWAN

Table 12: TX power table

2.2.4 US902-928 Join-accept CFList

The US902-928 LoRaWAN supports the use of the optional **CFlist** appended to the Join-accept message. If the **CFlist** is not empty then the **CFListType** field shall contain the value one (0x01) to indicate the **CFList** contains a series of ChMask fields. The ChMask fields are interpreted as being controlled by a virtual ChMaskCntl that initializes to a value of zero (0) and increments for each ChMask field to a value of four (4). (The first 16 bits controls the channels 0 to 15, ..)

447	
448	

Size	[2]	[2]	[2]	[2]	[2]	[2]	[3]	[1]
(bytes)								
CFList	ChMask0	ChMask1	ChMask2	ChMask3	ChMask4	RFU	RFU	CFListType

2.2.5 US902-928 LinkAdrReg command

For the US902-928 version the **ChMaskCntl** field of the **LinkADRReq** command has the following meaning:

ChMaskCntl	ChMask applies to		
0	Channels 0 to 15		
1	Channels 16 to 31		
4	Channels 64 to 71		
5	8LSBs controls Channel		
	Blocks 0 to 7		
	8MSBs are RFU		
6	All 125 kHz ON		
	ChMask applies to		
	channels 64 to 71		
7	All 125 kHz OFF		
	ChMask applies to		
	channels 64 to 71		
Table 13: ChMaskCntl value table			

If **ChMaskCntl** = 5 then the corresponding bits in the ChMask enable and disable a bank of 8 125kHz channels and the corresponding 500kHz channel defined by the following calculation: [ChannelMaskBit * 8, ChannelMaskBit * 8 +7],64+ChannelMaskBit.

If **ChMaskCntl** = 6 then 125 kHz channels are enabled, if **ChMaskCntl** = 7 then 125 kHz channels are disabled. Simultaneously the channels 64 to 71 are set according to the

to 21 dBm.

ChMask bit mask. The DataRate specified in the command need not be valid for channels specified in the ChMask, as it governs the global operational state of the end-device.

Note: FCC regulation requires hopping over at least 50 channels when

using maximum output power. It is possible to have end-devices with

less channels when limiting the end-device conducted transmit power

Note: A common network server action may be to reconfigure a device

through multiple LinkAdrReq commands in a contiguous block of MAC Commands. For example to reconfigure a device from 64 channel

operation to the first 8 channels could contain two LinkAdrReg, the first

(ChMaskCntl = 7) to disable all 125kHz channels and the second

(ChMaskCntrl = 0) to enable a bank of 8 125kHz channels.

463 464

462

465 466 467

469 470 471

468

472 473 474

475

476

477

478

479 480

481

2.2.6 US902-928 Maximum payload size

The maximum **MACPayload** size length (M) is given by the following table. It is derived from the maximum allowed transmission time at the PHY layer taking into account a possible repeater encapsulation. The maximum application payload length in the absence of the optional **FOpt** MAC control field (N) is also given for information only. The value of N might be smaller if the **FOpt** field is not empty:

482 483

DataRate	М	N		
0	19	11		
1	61	53		
2	133	125		
3	250	242		
4	250 242			
5:7	Not defined			
8	41	33		
9	117	109		
10	230	222		
11	230	222		
12	230	222		
13	230	222		
14:15	Not defined			

484 485

Table 14: US902-928 maximum payload size (repeater compatible)

486 487 The greyed lines correspond to the data rates that may be used by an end-device behind a repeater.

488 489 490 If the end-device will never operate under a repeater then the maximum application payload length in the absence of the optional **FOpt** control field should be:

DataRate	M	N
0	19	11
1	61	53
2	133	125
3	250	242

4	250	242	
5:7	Not de	efined	
8	61	53	
9	137	129	
10	250	242	
11	250	242	
12	250	242	
13	250	242	
14:15	Not defined		

Table 15 : US902-928 maximum payload size (not repeater compatible)

491

492

493 494

495

496 497

498 499

500

501

502

503 504

2.2.7 US902-928 Receive windows

- The RX1 receive channel is a function of the upstream channel used to initiate the data exchange. The RX1 receive channel can be determined as follows.
 RX1 Channel Number = Transmit Channel Number modulo 8
 - The RX1 window data rate depends on the transmit data rate (see Table 16 below).
- The RX2 (second receive window) settings uses a fixed data rate and frequency. Default parameters are 923.3MHz / DR8

Upstream data rate	Downstream data rate					
RX1DROffset	0	1	2	3		
DR0	DR10	DR9	DR8	DR8		
DR1	DR11	DR10	DR9	DR8		
DR2	DR12	DR11	DR10	DR9		
DR3	DR13	DR12	DR11	DR10		
DR4	DR13	DR13	DR12	DR11		

Table 16: US902-928 downlink RX1 data rate mapping

The allowed values for RX1DROffset are in the [0:3] range. Values in the range [4:7] are reserved for future use.

2.2.8 US902-928 Class B beacon

The beacons are transmitted using the following settings:

DR	8	Corresponds to SF12 spreading factor with 500kHz	
		bw	
CR	1	Coding rate = 4/5	
Signal polarity	Non-inverted	As opposed to normal downlink traffic which uses inverted signal polarity	
frequencies	923.3 to 927.5MHz with 600kHz steps	Beaconing is performed on the same channel that normal downstream traffic as defined in the Class A specification	

Table 17: US902-928 beacon settings

The downstream channel used for a given beacon is:

Channel =
$$\left[floor\left(\frac{beacon_time}{beacon_period}\right)\right]$$
 modulo 8

- whereby beacon_time is the integer value of the 4 bytes "Time" field of the beacon frame
- whereby beacon period is the periodicity of beacons, 128 seconds
- whereby floor(x) designates rounding to the integer immediately inferior or equal to x

511 512

510

505

506

507

Example: the first beacon will be transmitted on 923.3Mhz, the second on 923.9MHz, the 9th beacon will be on 923.3Mhz again.

Beacon channel nb Frequency [MHz] 0 923.3 1 923.9 2 924.5 3 925.1 4 925.7 926.3 5 6 926.9

927.5

517 518 519

513

514 515 516

The beacon frame content is:

Size (bytes)	5	4	2	7	3	2
BCNPayload	RFU	Time	CRC	GwSpecific	RFU	CRC

520

521

2.2.9 US902-928 Default Settings

The following parameters are recommended values for the US902-928 band.

7

523 RECEIVE_DELAY1 1 s

524 RECEIVE_DELAY2 2 s (must be RECEIVE_DELAY1 + 1s)

 525
 JOIN_ACCEPT_DELAY1
 5 s

 526
 JOIN_ACCEPT_DELAY2
 6 s

 527
 MAX_FCNT_GAP
 16384

 528
 ADR_ACK_LIMIT
 64

 529
 ADR_ACK_DELAY
 32

529 ADR_ACK_DELAY 32

530 ACK_TIMEOUT 2 +/- 1 s (random delay between 1 and 3 seconds)

If the actual parameter values implemented in the end-device are different from those default values (for example the end-device uses a longer RECEIVE_DELAY1 & 2 latency), those parameters must be communicated to the network server using an out-of-band channel during the end-device commissioning process. The network server may not accept parameters different from those default values.

535536

531

532 533

2.3 China 779-787MHz ISM Band

2.3.1 CN779-787 Preamble Format

The following synchronization words should be used:

540		
		Modulatio
		LOR

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols
GFSK	0xC194C1	5 bytes
_	1.1. 4.0. ONITED TOT	

Table 18: CN779-787 synch words

2.3.2 CN779-787 ISM Band channel frequencies

543

537

538

539

541

542

544

545

547

548

549

550

551

552

553554

555 556

557

558559

560

561

The LoRaWAN can be used in the Chinese 779-787MHz band as long as the radio device EIRP is less than 12.15dBm.

The end-device transmit duty-cycle should be lower than 1%.

The LoRaWAN channels center frequency can be in the following range:

• Minimum frequency: 779.5MHz

• Maximum frequency: 786.5 MHz

CN780MHz end-devices should be capable of operating in the 779 to 787 MHz frequency band and should feature a channel data structure to store the parameters of at least 16 channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

The first three channels correspond to 779.5, 779.7 and 779.9 MHz with DR0 to DR5 and must be implemented in every end-device. Those default channels cannot be modified through the *NewChannelReq* command and guarantee a minimal common channel set between end-devices and gateways of all networks. Other channels can be freely distributed across the allowed frequency range on a network per network basis.

The following table gives the list of frequencies that should be used by end-devices to broadcast the Join-request message The Join-request message transmit duty-cycle shall follow the rules described in chapter "Retransmissions back-off" of the LoRaWAN specification document.

562563

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels	Duty cycle
	125	779.5	DR0 – DR5	6	<0.1%
LoRa		779.7	/ 0.3-5 kbps		
		779.9			
		780.5			
		780.7			
		780.9			

Table 19: CN780 Join-request Channel List

2.3.3 CN779-787 Data Rate and End-device Output Power encoding

There is no dwell time limitation for the CN779-787 PHY layer. The *TxParamSetupReq* MAC command is not implemented by CN779-787 devices.

The following encoding is used for Data Rate (DR) and End-device EIRP (TXPower) in the CN780 band:

DataRate	Configuration	Indicative physical bit rate [bit/s]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
6	LoRa: SF7 / 250 kHz	11000
7	FSK: 50 kbps	50000
814	RFU	
15	Defined in LoRaWAN	

TXPower	Configuration (EIRP)
0	Max EIRP
1	Max EIRP – 2dB
2	Max EIRP – 4dB
3	Max EIRP – 6dB
4	Max EIRP – 8dB
5	Max EIRP – 10dB
614	RFU
15	Defined in LoRaWAN
table	

Table 20: Data rate and TX power table

EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output power referenced to an isotropic antenna radiating power equally in all directions and whose gain is expressed in dBi.

By default MAxEIRP is considered to be +12.15dBm. If the end-device cannot achieve 12.15dBm EIRP, the Max EIRP should be communicated to the network server using an out-of-band channel during the end-device commissioning process.

2.3.4 CN779-787 Join-accept CFList

The CN780 ISM band LoRaWAN implements an optional **channel frequency list** (CFlist) of 16 octets in the Join-accept message.

In this case the CFList is a list of five channel frequencies for the channels four to eight whereby each frequency is encoded as a 24 bits unsigned integer (three octets). All these channels are usable for DR0 to DR5 125kHz LoRa modulation. The list of frequencies is followed by a single CFListType octet for a total of 16 octets. The CFListType shall be equal to zero (0) to indicate that the CFList contains a list of frequencies.

Size	3	3	3	3	3	1
(bytes)						
CFList	Freq Ch4	Freq Ch5	Freq Ch6	Freq Ch7	Freq Ch8	CFListTYpe

The actual channel frequency in Hz is 100 x frequency whereby values representing frequencies below 100 MHz are reserved for future use. This allows setting the frequency of a channel anywhere between 100 MHz to 1.67 GHz in 100 Hz steps. Unused channels have a frequency value of 0. The **CFList** is optional and its presence can be detected by the length of the Join-accept message. If present, the **CFList** replaces all the previous channels stored in the end-device apart from the three default channels.

The newly defined channels are immediately enabled and usable by the end-device for communication.

2.3.5 CN779-787 LinkAdrReq command

The CN780 LoRaWAN only supports a maximum of 16 channels. When **ChMaskCntl** field is 0 the ChMask field individually enables/disables each of the 16 channels.

ChMaskCntl	ChMask applies to			
0	Channels 1 to 16			
1	RFU			
••				
4	RFU			
5	RFU			
6	All channels ON			
	The device should enable all currently defined			
	channels independently of the ChMask field			
	value.			
7	RFU			

Table 21: ChMaskCntl value table

603 604 605

606

607

608

609

610

611

598

599 600

601

602

If the ChMask field value is one of values meaning RFU, then end-device should reject the command and unset the "**Channel mask ACK**" bit in its response.

2.3.6 CN779-787 Maximum payload size

The maximum **MACPayload** size length (M) is given by the following table. It is derived from limitation of the PHY layer depending on the effective modulation rate used taking into account a possible repeater encapsulation layer. The maximum application payload length in the absence of the optional **FOpt** control field (N) is also given for information only. The value of N might be smaller if the **FOpt** field is not empty:

61	2
61	3

DataRate	М	N		
0	59	51		
1	59	51		
2	59	51		
3	123	115		
4	230	222		
5	230	222		
6	250	242		
7	230	222		
8:15	Not defined			

614 615 Table 22: CN780 maximum payload size

616 617 618 If the end-device will never operate with a repeater then the maximum application payload length in the absence of the optional **FOpt** control field should be:

DataRate M		N		
0	59	51		
1	59	51		
2	59	51		
3	123	115		
4	250	242		
5	250	242		
6	250	242		
7	250	242		

8:15 Not defined

Table 23 : CN780 maximum payload size (not repeater compatible)

2.3.7 CN779-787 Receive windows

The RX1 receive window uses the same channel than the preceding uplink. The data rate is a function of the uplink data rate and the RX1DROffset as given by the following table. The allowed values for RX1DROffset are in the [0:5] range. Values in the range [6:7] are reserved for future use

625 RX1DROffset

619

620

621

622 623

624

626

629

631

0	1	2	3	4	5
	Downstream data rate in RX1 slot				
DR0	DR0	DR0	DR0	DR0	DR0
DR1	DR0	DR0	DR0	DR0	DR0
DR2	DR1	DR0	DR0	DR0	DR0
DR3	DR2	DR1	DR0	DR0	DR0
DR4	DR3	DR2	DR1	DR0	DR0
DR5	DR4	DR3	DR2	DR1	DR0
DR6	DR5	DR4	DR3	DR2	DR1
DR7	DR6	DR5	DR4	DR3	DR2
	DR1 DR2 DR3 DR4 DR5 DR6 DR7	DR0 DR0 DR1 DR0 DR2 DR1 DR3 DR2 DR4 DR3 DR5 DR4 DR6 DR5 DR7 DR6	DR0 DR0 DR0 DR1 DR0 DR0 DR2 DR1 DR0 DR3 DR2 DR1 DR4 DR3 DR2 DR5 DR4 DR3 DR6 DR5 DR4 DR7 DR6 DR5	DR0 DR0 DR0 DR0 DR1 DR0 DR0 DR0 DR2 DR1 DR0 DR0 DR3 DR2 DR1 DR0 DR4 DR3 DR2 DR1 DR4 DR3 DR2 DR1 DR5 DR4 DR3 DR2 DR6 DR5 DR4 DR3	DR0 DR0 DR0 DR0 DR0 DR1 DR0 DR0 DR0 DR0 DR2 DR1 DR0 DR0 DR0 DR3 DR2 DR1 DR0 DR0 DR4 DR3 DR2 DR1 DR0 DR5 DR4 DR3 DR2 DR1 DR6 DR5 DR4 DR3 DR2 DR7 DR6 DR5 DR4 DR3

Table 24: CN780 downlink RX1 data rate mapping

The RX2 receive window uses a fixed frequency and data rate. The default parameters are 786 MHz / DR0.

2.3.8 CN779-787 Class B beacon and default downlink channel

630 The beacons SHALL be transmitted using the following settings

DR	3	Corresponds to SF9 spreading factor with 125
		kHz BW
CR	1	Coding rate = 4/5
Signal polarity	Non-inverted	As opposed to normal downlink traffic which uses
		inverted signal polarity

Table 25: CN780 beacon settings

632 The beacon frame content is:

Size (bytes)	2	4	2	7	2
BCNPayload	RFU	Time	CRC	GwSpecific	CRC

The beacon default broadcast frequency is 785MHz.

The class B default downlink pingSlot frequency is 785MHz

635

636

634

2.3.9 CN779-787 Default Settings

The following parameters are recommended values for the CN779-787MHz band.

638 RECEIVE DELAY1 1 s

639 RECEIVE_DELAY2 2 s (must be RECEIVE_DELAY1 + 1s)

640 JOIN_ACCEPT_DELAY1 5 s 641 JOIN_ACCEPT_DELAY2 6 s 642 MAX_FCNT_GAP 16384 643 ADR ACK LIMIT 64

644 645	ADR_ACK_DELAY ACK_TIMEOUT	32 2 +/- 1 s (random delay between 1 and 3 seconds)
646 647 648 649	values (for example the end RECEIVE_DELAY2 latency), those	emented in the end-device are different from those default dedvice uses a longer RECEIVE_DELAY1 and e parameters must be communicated to the network nel during the end-device commissioning process. The
650	network server may not accept para	meters different from those default values.

652 653

654

655

656

660

661

662

663

664 665

666

667

668

669

670

671 672

673

674 675

676

2.4 EU 433MHz ISM Band

2.4.1 EU433 Preamble Format

The following synchronization words should be used:

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols
GFSK	0xC194C1	5 bytes

Table 26: EU433 synch words

2.4.2 EU433 ISM Band channel frequencies

The LoRaWAN can be used in the ETSI 433-434 MHz band as long as the radio device EIRP is less than 12.15dBm.

The end-device transmit duty-cycle should be lower than 1%¹

The LoRaWAN channels center frequency can be in the following range:

Minimum frequency: 433.175 MHzMaximum frequency: 434.665 MHz

EU433 end-devices should be capable of operating in the 433.05 to 434.79 MHz frequency band and should feature a channel data structure to store the parameters of at least 16 channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

The first three channels correspond to 433.175, 433.375 and 433.575 MHz with DR0 to DR5 and must be implemented in every end-device. Those default channels cannot be modified through the *NewChannelReq* command and guarantee a minimal common channel set between end-devices and gateways of all networks. Other channels can be freely distributed across the allowed frequency range on a network per network basis.

The following table gives the list of frequencies that should be used by end-devices to broadcast the Join-request message. The Join-request message transmit duty-cycle shall follow the rules described in chapter "Retransmissions back-off" of the LoRaWAN specification document.

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels	Duty cycle
LoRa	125	433.175 433.375 433.575	DR0 – DR5 / 0.3-5 kbps	3	<1%

Table 27: EU433 Join-request Channel List

¹ The EN300220 ETSI standard limits to 10% the maximum transmit duty-cycle in the 433MHz ISM band. The LoRaWAN requires a 1% transmit duty-cycle lower than the legal limit to avoid network congestion.

2.4.3 EU433 Data Rate and End-device Output Power encoding

There is no dwell time limitation for the EU433 PHY layer. The *TxParamSetupReq* MAC command is not implemented by EU433 devices.

The following encoding is used for Data Rate (DR) and End-device EIRP (TXPower) in the EU433 band:

684

DataRate	Configuration	Indicative physical bit rate [bit/s]	TXPo	ower	Configuration (EIRP)
0	LoRa: SF12 / 125 kHz	250	C)	Max EIRP
1	LoRa: SF11 / 125 kHz	440	1		Max EIRP – 2dB
2	LoRa: SF10 / 125 kHz	980	2	<u> </u>	Max EIRP – 4dB
3	LoRa: SF9 / 125 kHz	1760	3	}	Max EIRP – 6dB
4	LoRa: SF8 / 125 kHz	3125	4		Max EIRP – 8dB
5	LoRa: SF7 / 125 kHz	5470	5	5	Max EIRP – 10dB
6	LoRa: SF7 / 250 kHz	11000	6	14	RFU
7	FSK: 50 kbps	50000			
814	RFU		·		
15	Defined in LoRaWAN		1:	5	Defined in LoRaWAN

Table 28: Data rate and TX power table

EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output power referenced to an isotropic antenna radiating power equally in all directions and whose gain is expressed in dBi.

By default MAxEIRP is considered to be +12.15dBm. If the end-device cannot achieve 12.15dBm EIRP, the Max EIRP should be communicated to the network server using an out-of-band channel during the end-device commissioning process.

2.4.4 EU433 Join-accept CFList

The EU433 ISM band LoRaWAN implements an optional **channel frequency list** (CFlist) of 16 octets in the Join-accept message.

In this case the CFList is a list of five channel frequencies for the channels four to eight whereby each frequency is encoded as a 24 bits unsigned integer (three octets). All these channels are usable for DR0 to DR5 125 kHz LoRa modulation. The list of frequencies is followed by a single CFListType octet for a total of 16 octets. The CFListType shall be equal to zero (0) to indicate that the CFList contains a list of frequencies.

Size	3	3	3	3	3	1
(bytes)						
CFList	Freq Ch4	Freq Ch5	Freq Ch6	Freq Ch7	Freq Ch8	CFListType

The actual channel frequency in Hz is 100 x frequency whereby values representing frequencies below 100 MHz are reserved for future use. This allows setting the frequency of a channel anywhere between 100 MHz to 1.67 GHz in 100 Hz steps. Unused channels have a frequency value of 0. The **CFList** is optional and its presence can be detected by the length of the Join-accept message. If present, the **CFList** replaces all the previous channels stored in the end-device apart from the three default channels.

715

716 717

718

721

722

723

724

725 726

727

728

729 730

731 732

The newly defined channels are immediately enabled and usable by the end-device for communication.

2.4.5 EU433 LinkAdrReq command

The EU433 LoRaWAN only supports a maximum of 16 channels. When **ChMaskCntl** field is 0 the ChMask field individually enables/disables each of the 16 channels.

ChMaskCntl	ChMask applies to	
0	Channels 1 to 16	
1	RFU	
4	RFU	
5	RFU	
6	All channels ON	
	The device should enable all currently defined	
	channels independently of the ChMask field	
	value.	
7	RFU	

Table 29: ChMaskCntl value table

If the ChMask field value is one of the values meaning RFU, then end-device should reject the command and unset the "**Channel mask ACK**" bit in its response.

2.4.6 EU433 Maximum payload size

The maximum **MACPayload** size length (M) is given by the following table. It is derived from limitation of the PHY layer depending on the effective modulation rate used taking into account a possible repeater encapsulation layer. The maximum application payload length in the absence of the optional **FOpt** control field (N) is also given for information only. The value of N might be smaller if the **FOpt** field is not empty:

DataRate	М	N
0	59	51
1	59	51
2	59	51
3	123	115
4	230	222
5	230	222
6	230	222
7	230	222
8:15	Not d	efined

Table 30: EU433 maximum payload size

If the end-device will never operate with a repeater then the maximum application payload length in the absence of the optional **FOpt** control field should be:

DataRate	M	N
0	59	51
1	59	51
2	59	51
3	123	115
4	250	242
5	250	242
6	250	242

7	250	242
8:15	Not de	efined

Table 31 : EU433 maximum payload size (not repeater compatible)

733 734

735 736

737

738

2.4.7 EU433 Receive windows

The RX1 receive window uses the same channel than the preceding uplink. The data rate is a function of the uplink data rate and the RX1DROffset as given by the following table. The allowed values for RX1DROffset are in the [0:5] range. Values in the range [6:7] are reserved for future use.

739740

RX1DROffset	0	1	2	3	4	5
Upstream data rate		Dow	nstream data	a rate in RX1	slot	
DR0	DR0	DR0	DR0	DR0	DR0	DR0
DR1	DR1	DR0	DR0	DR0	DR0	DR0
DR2	DR2	DR1	DR0	DR0	DR0	DR0
DR3	DR3	DR2	DR1	DR0	DR0	DR0
DR4	DR4	DR3	DR2	DR1	DR0	DR0
DR5	DR5	DR4	DR3	DR2	DR1	DR0
DR6	DR6	DR5	DR4	DR3	DR2	DR1
DR7	DR7	DR6	DR5	DR4	DR3	DR2

741 742

Table 32: EU433 downlink RX1 data rate mapping

The RX2 receive window uses a fixed frequency and data rate. The default parameters are 434.665MHz / DR0 (SF12, 125kHz).

743744

745

747

2.4.8 EU433 Class B beacon and default downlink channel

746 The beacons SHALL be transmitted using the following settings

DR	3	Corresponds to SF9 spreading factor with 125	
	kHz BW		
CR	1	Coding rate = 4/5	
Signal polarity	Non-inverted	As opposed to normal downlink traffic which uses	
		inverted signal polarity	

Table 33: EU433 beacon settings

748 The beacon frame content is:

Size (bytes)	2	4	2	7	2
BCNPayload	RFU	Time	CRC	GwSpecific	CRC

The beacon default broadcast frequency is 434.665MHz.

750 The class B default downlink pingSlot frequency is 434.665MHz

751

752

2.4.9 EU433 Default Settings

753 The following parameters are recommended values for the EU433band.

754 RECEIVE DELAY1 1 s

755 RECEIVE_DELAY2 2 s (must be RECEIVE_DELAY1 + 1s)

756 JOIN_ACCEPT_DELAY1 5 s

757	JOIN_ACCEPT_DELAY2	6 s
758	MAX_FCNT_GAP	16384
759	ADR_ACK_LIMIT	64
760	ADR_ACK_DELAY	32
761	ACK TIMEOUT	2 +/- 1 s (random delay between 1 and 3 seconds)

764 765

766

If the actual parameter values implemented in the end-device are different from those default values (for example the end-device uses a longer RECEIVE_DELAY1 & 2 latency) , those parameters must be communicated to the network server using an out-of-band channel during the end-device commissioning process. The network server may not accept parameters different from those default values.

767 768

769

770

2.5 Australia 915-928MHz ISM Band

2.5.1 AU915-928 Preamble Format

The following synchronization words should be used:

771 772

774

775

776 777

778

779 780

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols

773 LoRaWAN does not make use of GFSK modulation in the AU915-928 ISM band.

2.5.2 AU915-928 Channel Frequencies

The AU ISM Band shall be divided into the following channel plans.

- Upstream 64 channels numbered 0 to 63 utilizing LoRa 125 kHz BW varying from DR0 to DR5, using coding rate 4/5, starting at 915.2 MHz and incrementing linearly by 200 kHz to 927.8 MHz
- Upstream 8 channels numbered 64 to 71 utilizing LoRa 500 kHz BW at DR6 starting at 915.9 MHz and incrementing linearly by 1.6 MHz to 927.1 MHz
- Downstream 8 channels numbered 0 to 7 utilizing LoRa 500 kHz BW at DR8 to DR13) starting at 923.3 MHz and incrementing linearly by 600 kHz to 927.5 MHz

781 782 783

784 785

786

787

788

789

790

Figure 2: AU915-928 channel frequencies

AU ISM band end-devices may use a maximum EIRP of +30 dBm.

AU915-928 end-devices should be capable of operating in the 915 to 928 MHz frequency band and should feature a channel data structure to store the parameters of 72 channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

If using the over-the-air activation procedure, the end-device should broadcast the Joinrequest message alternatively on a random 125 kHz channel amongst the 64 channels

- defined using **DR0** and a random 500 kHz channel amongst the 8 channels defined using **DR6**. The end-device should change channel for every transmission.
- 795 Personalized devices shall have all 72 channels enabled following a reset.

2.5.3 AU915-928 Data Rate and End-point Output Power encoding

- 797 The *TxParamSetupReq* MAC command is not implemented by AU915-928 devices.
- The following encoding is used for Data Rate (**DR**) and End-point EIRP (**TXPower**) in the AU915-928 band:

DataRate	Configuration	Indicative physical bit rate [bit/sec]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
6	LoRa: SF8 / 500 kHz	12500
7	RFU	
8	LoRa: SF12 / 500 kHz	980
9	LoRa: SF11 / 500 kHz	1760
10	LoRa: SF10 / 500 kHz	3900
11	LoRa: SF9 / 500 kHz	7000
12	LoRa: SF8 / 500 kHz	12500
13	LoRa: SF7 / 500 kHz	21900
14	RFU	
15	Defined in LoRaWAN	

Table 34: AU915-928 Data rate table

801

796

800

DR6 is identical to DR12, DR8...13 must be implemented in end-devices and are reserved for future applications.

TXPower Configuration (EIRP)		
0	Max EIRP	
1:10	Max EIRP – 2*TXPower	
11:14	RFU	
15	Defined in LoRaWAN	

Table 35: AU915-928 TX power table

806 807 808

EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output power referenced to an isotropic antenna radiating power equally in all directions and whose gain is expressed in dBi.

810 811 812

813

809

By default MaxEIRP is considered to be +30dBm. If the end-device cannot achieve 30dBm EIRP, the Max EIRP should be communicated to the network server using an out-of-band channel during the end-device commissioning process.

814 815

2.5.4 AU915-928 Join-accept CFList

The AU915-928 LoRaWAN supports the use of the optional **CFlist** appended to the Join-accept message. If the **CFlist** is not empty then the CFListType field shall contain the value one (0x01) to indicate the CFList contains a series of ChMask fields. The ChMask fields are interpreted as being controlled by a virtual ChMaskCntl that initializes to a value of zero (0) and increments for each ChMask field to a value of four(4). (The first 16 bits controls the channels 1 to 16...)

		/						
Size	[2]	[2]	[2]	[2]	[2]	[2]	[3]	[1]
(bytes)								
CFList	ChMask0	ChMask1	ChMask2	ChMask3	ChMask4	RFU	RFU	CFListType

2.5.5 AU915-928 LinkAdrReg command

For the AU915-928 version the **ChMaskCntl** field of the **LinkADRReq** command has the following meaning:

ChMaskCntl	ChMask applies to
0	Channels 0 to 15
1	Channels 16 to 31
4	Channels 64 to 71
5	8LSBs controls Channel Blocks 0 to 7
	8MSBs are RFU
6	All 125 kHz ON
	ChMask applies to channels 64 to 71
7	All 125 kHz OFF
	ChMask applies to channels 64 to 71

If **ChMaskCntl** = 5 then the corresponding bits in the ChMask enable and disable a bank of 8 125kHz channels and the corresponding 500kHz channel defined by the following calculation: [ChannelMaskBit * 8, ChannelMaskBit * 8 +7],64+ChannelMaskBit.

Table 36: ChMaskCntl value table

If **ChMaskCntl** = 6 then 125 kHz channels are enabled, if **ChMaskCntl** = 7 then 125 kHz channels are disabled. Simultaneously the channels 64 to 71 are set according to the **ChMask** bit mask. The DataRate specified in the command need not be valid for channels specified in the ChMask, as it governs the global operational state of the end-device.

2.5.6 AU915-928 Maximum payload size

The maximum **MACPayload** size length (M) is given by the following table. It is derived from the maximum allowed transmission time at the PHY layer taking into account a possible repeater encapsulation. The maximum application payload length in the absence of the optional **FOpt** MAC control field (N) is also given for information only. The value of N might be smaller if the **FOpt** field is not empty:

DataRate	M	N
0	59	51
1	59	51
2	59	51

847

848

849

850

851

852

853

854

855

856

857

858 859

860

3	123	115			
4	230	222			
5	230	222			
6	230	222			
7	Not defined				
8	41	33			
9	117	109			
10	230	222			
11	230	222			
12	230	222			
13	230	222			
14:15	Not defined				

Table 37: AU915-928 maximum payload size

The greyed lines correspond to the data rates that may be used by an end-device behind a repeater.

If the end-device will never operate with a repeater then the maximum application payload length in the absence of the optional **FOpt** control field should be:

DataRate	М	N		
0	59	51		
1	59	51		
2	59	51		
3	123	115		
4	250	242		
5	250	242		
6	250	242		
7	Not defined			
8	61	53		
9	137	129		
10	250	242		
11	250	242		
12	250	242		
13	250	242		
14:15	Not defined			

Table 38: AU915-928 maximum payload size (not repeater compatible)

2.5.7 AU915-928 Receive windows

- The RX1 receive channel is a function of the upstream channel used to initiate the data exchange. The RX1 receive channel can be determined as follows.
 - RX1 Channel Number = Transmit Channel Number modulo 8
- The RX1 window data rate depends on the transmit data rate (see Table 16 below).
- The RX2 (second receive window) settings uses a fixed data rate and frequency. Default parameters are 923.3Mhz / DR8

Upstream data rate		D	ownstrea	m data ra	te	
RX1DROff set	0	1	2	3	4	5
DR0	DR8	DR8	DR8	DR8	DR8	DR8
DR1	DR9	DR8	DR8	DR8	DR8	DR8
DR2	DR10	DR9	DR8	DR8	DR8	DR8
DR3	DR11	DR10	DR9	DR8	DR8	DR8
DR4	DR12	DR11	DR10	DR9	DR8	DR8

Upstream data rate		D	ownstrea)	m data ra	te	
RX1DROff set	0	1	2	3	4	5
DR5	DR13	DR12	DR11	DR10	DR9	DR8
DR6	DR13	DR13	DR12	DR11	DR10	DR9

Table 39: AU915-928 downlink RX1 data rate mapping

861 862 863

The allowed values for RX1DROffset are in the [0:5] range. Values in the range [6:7] are reserved for future use.

864 865

866867

2.5.8 AU915-928 Class B beacon

The beacons are transmitted using the following settings:

DR	10	Corresponds to SF10 spreading factor with	
		500kHz bw	
CR	1	Coding rate = 4/5	
Signal polarity	Non-inverted	As opposed to normal downlink traffic which	
		uses inverted signal polarity	
frequencies	923.3 to 927.5MHz	Beaconing is performed on the same channel	
	with 600kHz steps	that normal downstream traffic as defined in	
		the Class A specification	

Table 40: AU915-928 beacon settings

868 869

The downstream channel used for a given beacon is:

Channel = $\left[floor\left(\frac{beacon_time}{beacon_period}\right)\right]$ modulo 8

871872873

874

875

870

- whereby beacon_time is the integer value of the 4 bytes "Time" field of the beacon frame
- whereby beacon_period is the periodicity of beacons, 128 seconds
- whereby floor(x) designates rounding to the integer immediately inferior or equal to x

876 877 Example: the first beacon will be transmitted on 923.3Mhz, the second on 923.9MHz, the 9th beacon will be on 923.3Mhz again.

878 879

Beacon channel nb	Frequency [MHz]
0	923.3
1	923.9
2	924.5
3	925.1
4	925.7
5	926.3
6	926.9
7	927.5

880 881 882

The beacon frame content is:

Size (bytes)	3	4	2	7	1	2
BCNPayload	RFU	Time	CRC	GwSpecific	RFU	CRC

899

2.5.9 AU915-928 Default Settings

The following parameters are recommended values for the AU915-928 band.

886 RECEIVE_DELAY1 1 s

887 RECEIVE_DELAY2 2 s (must be RECEIVE_DELAY1 + 1s)

 888
 JOIN_ACCEPT_DELAY1
 5 s

 889
 JOIN_ACCEPT_DELAY2
 6 s

 890
 MAX_FCNT_GAP
 16384

 891
 ADR_ACK_LIMIT
 64

 892
 ADR_ACK_DELAY
 32

893 ACK_TIMEOUT 2 +/- 1 s (random delay between 1 and 3 seconds)

If the actual parameter values implemented in the end-device are different from those default values (for example the end-device uses a longer RECEIVE_DELAY1 & 2 latency), those parameters must be communicated to the network server using an out-of-band channel during the end-device commissioning process. The network server may not accept

898 parameters different from those default values.

901

902

903

904 905 906

907

908 909

910

911

912

913 914

915 916

917

918

919

920 921

922 923

924

925

926927928929

930 931

932

933

934

935

2.6 CN 470-510MHz Band

2.6.1 CN470-510 Preamble Format

The following synchronization words should be used:

Modulation	Sync word	Preamble length	
LORA	0x34	8 symbols	

2.6.2 CN470-510 Channel Frequencies

In China, this band is defined by SRRC to be used for civil metering applications.

The 470 MHz ISM Band shall be divided into the following channel plans:

 Upstream – 96 channels numbered 0 to 95 utilizing LoRa 125 kHz BW varying from DR0 to DR5, using coding rate 4/5, starting at 470.3 MHz and incrementing linearly by 200 kHz to 489.3 MHz.

Channel Index 6 to 38 and 45 to 77 are mainly used by China Electric Power. In the areas where these channels are used by China Electric Power, they should be disabled.

 Downstream – 48 channels numbered 0 to 47 utilizing LoRa 125 kHz BW varying from DR0 to DR5, using coding rate 4/5, starting at 500.3 MHz and incrementing linearly by 200 kHz to 509.7 MHz

Figure 3: CN470-510 channel frequencies

The LoRaWAN can be used in the Chinese 470-510MHz band as long as

- The radio device EIRP is less than 19.15dBm
- The transmission never lasts more than 5000 ms.

CN470-510 end-devices should be capable of operating in the 470 to 510 MHz frequency band and should feature a channel data structure to store the parameters of 96 uplink channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

If using the over-the-air activation procedure, the end-device should broadcast the Join-request message on a random 125 kHz channel amongst the 96 uplink channels defined using **DR5** to **DR0**.

936 Personalized devices shall have all 96 channels enabled following a reset.

2.6.3 CN470-510 Data Rate and End-point Output Power encoding

There is no dwell time limitation for the CN470-510 PHY layer. The *TxParamSetupReq* MAC command is not implemented by CN470-510 devices.

The following encoding is used for Data Rate (**DR**) and End-point EIRP (**TXPower**) in the CN470-510 band:

943

DataRate	Configuration	Indicative physical bit rate [bit/sec]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa:SF7 / 125 kHz	5470
6:14	RFU	
15	Defined in LoRaWAN	

TXPower	Configuration (EIRP)
0	Max EIRP
1	Max EIRP – 2dB
2	Max EIRP – 4dB
3	Max EIRP – 6dB
4	Max EIRP – 8dB
5	Max EIRP – 10dB
6	Max EIRP – 12dB
7	Max EIRP – 14dB
814	RFU
15	Defined in
(- - -	LoRaWAN

Table 41: CN470 Data rate and TX power table

EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output power referenced to an isotropic antenna radiating power equally in all directions and whose gain is expressed in dBi.

 By default MaxEIRP is considered to be +19.15dBm. If the end-device cannot achieve 19.15dBm EIRP, the Max EIRP should be communicated to the network server using an out-of-band channel during the end-device commissioning process.

2.6.4 CN470-510 Join-accept CFList

The CN470-510 LoRaWAN supports the use of the optional **CFlist** appended to the Join-accept message. If the **CFlist** is not empty then the CFListType field shall contain the value one (0x01) to indicate the CFList contains a series of ChMask fields. The ChMask fields are interpreted as being controlled by a virtual ChMaskCntl that initializes to a value of zero (0) and increments for each ChMask field to a value of five (5). (The first 16 bits controls the channels 1 to 16, ...)

962	

Size	[2]	[2]	[2]	[2]	[2]	[2]	[3]	[1]
(bytes)								
CFList	ChMask0	ChMask1	ChMask2	ChMask3	ChMask4	ChMask5	RFU	CFListType

965 966

967

968

969

970

971

972

973

974

975

976

977

978 979

980

981 982

983 984

2.6.5 CN470-510 LinkAdrReq command

For the CN470-510 version the **ChMaskCntl** field of the **LinkADRReq** command has the following meaning:

ChMaskCntl	ChMask applies to	
0	Channels 0 to 15	
1	Channels 16 to 31	
2	Channels 32 to 47	
3	Channels 48 to 63	
4	Channels 64 to 79	
5	Channels 80 to 95	
6	All channels ON	
	The device should enable all currently defined	

Table 42: CN470 ChMaskCntl value table

channels independently of the ChMask field value.
RFU

If the ChMask field value is one of the values meaning RFU, then end-device should reject the command and unset the "Channel mask ACK" bit in its response.

2.6.6 CN470-510 Maximum payload size

The maximum **MACPayload** size length (M) is given by the following table. It is derived from the maximum allowed transmission time at the PHY layer taking into account a possible repeater encapsulation. The maximum application payload length in the absence of the optional **FOpt** MAC control field (N) is also given for information only. The value of N might be smaller if the **FOpt** field is not empty:

DataRate	М	N
0	59	51
1	59	51
2	59	51
3	123	115
4	230	222
5	230	222
6:15	Not defined	

Table 43: CN470-510 maximum payload size

If the end-device will never operate with a repeater then the maximum application payload length in the absence of the optional **FOpt** control field should be:

DataRate	M	N
0	59	51
1	59	51
2	59	51
3	123	115
4	250	242
5	250	242
6:15	Not defined	

Table 44: CN470-510 maximum payload size (not repeater compatible)

2.6.7 CN470-510 Receive windows

 The RX1 receive channel is a function of the upstream channel used to initiate the data exchange. The RX1 receive channel can be determined as follows.

- 985 986 987 988 989 990
- RX1 Channel Number = Uplink Channel Number modulo 48, for example, when transmitting channel number is 49, the rx1 channel number is 1.
- The RX1 window data rate depends on the transmit data rate (see Table below).
- The RX2 (second receive window) settings uses a fixed data rate and frequency. Default parameters are 505.3 MHz / DR0

RX1DROffset	0	1	2	3	4	5		
Upstream data rate		Downstream data rate in RX1 slot						
DR0	DR0	DR0	DR0	DR0	DR0	DR0		
DR1	DR1	DR0	DR0	DR0	DR0	DR0		
DR2	DR2	DR1	DR0	DR0	DR0	DR0		
DR3	DR3	DR2	DR1	DR0	DR0	DR0		
DR4	DR4	DR3	DR2	DR1	DR0	DR0		
DR5	DR5	DR4	DR3	DR2	DR1	DR0		

Table 45: CN470-510 downlink RX1 data rate mapping

991 992

993

994

995

996

The allowed values for RX1DROffset are in the [0:5] range. Values in the range [6:7] are reserved for future use.

2.6.8 CN470-510 Class B beacon

The beacons are transmitted using the following settings:

DR	2	Corresponds to SF10 spreading factor with 125kHz		
		bw		
CR	1	Coding rate = 4/5		
Signal polarity	Non-inverted	As opposed to normal downlink traffic which uses		
		inverted signal polarity		
frequencies	508.3 to 509.7MHz			
	with 200kHz steps			

Table 46: CN470-510 beacon settings

997 998 999

The downstream channel used for a given beacon is:

1000 1001 $\mathsf{BeaconChannel} = \left[floor\left(\frac{beacon_time}{beacon_period}\right)\right] \ modulo \ 8$

1002 1003 1004

1005

- whereby beacon_time is the integer value of the 4 bytes "Time" field of the beacon frame
- whereby beacon_period is the periodicity of beacons , 128 seconds
- whereby floor(x) designates rounding to the integer immediately inferior or equal to x

Example: the first beacon will be transmitted on 508.3Mhz, the second on 508.5MHz, the 9^{th} beacon will be on 508.3Mhz again.

1	006
1	007
1	800
1	009

Beacon channel nb	Frequency [MHz]
0	508.3
1	508.5
2	508.7
3	508.9
4	509.1
5	509.3
6	509.5

7 509.7

1010

1011

1012 The beacon frame content is:

Size (bytes)	3	4	2	7	1	2
BCNPayload	RFU	Time	CRC	GwSpecific	RFU	CRC

1013

1014 **2.6.9 CN470-510 Default Settings**

1015 The following parameters are recommended values for the CN470-510 band.

1016 RECEIVE_DELAY1 1 s

1017 RECEIVE_DELAY2 2 s (must be RECEIVE_DELAY1 + 1s)

 1018
 JOIN_ACCEPT_DELAY1
 5 s

 1019
 JOIN_ACCEPT_DELAY2
 6 s

 1020
 MAX_FCNT_GAP
 16384

 1021
 ADR_ACK_LIMIT
 64

 1022
 ADR_ACK_DELAY
 32

1023 ACK_TIMEOUT 2 +/- 1 s (random delay between 1 and 3 seconds)

1024 If the actual parameter values implemented in the end-device are different from those default 1025 values (for example the end-device uses a longer RECEIVE_DELAY1 & 2 latency), those 1026 parameters must be communicated to the network server using an out-of-band channel 1027 during the end-device commissioning process. The network server may not accept

1028 parameters different from those default values.

1029 2.7 AS923MHz ISM Band

2.7.1 AS923 Preamble Format

The following synchronization words should be used:

1031 1032

1033

1034

1030

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols
GFSk	0xC194C1	5 bytes

Table 47: AS923 synch words

2.7.2 AS923 ISM Band channel frequencies

This section applies to regions where the frequencies [923...923.5MHz] are comprised in the ISM band, which is the case for the following countries:

- 1037 ❖ Brunei [923-925 MHz]
- 1038 ❖ Cambodia [923-925 MHz]
- 1039 ❖ Indonesia [923-925 MHz]

- 1042 ❖ New Zealand [915-928 MHz]
- 1043 ❖ Singapore [920-925 MHz]
- 1044 ❖ Taiwan [922-928 MHz]

The network channels can be freely attributed by the network operator. However the two following default channels must be implemented in every AS923MHz end-device. Those channels are the minimum set that all network gateways should always be listening on.

1049 1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1047

1048

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels	Duty cycle
LoRa	125	923.20 923.40	DR0 to DR5 / 0.3-5 kbps	2	< 1%

Table 48: AS923 default channels

Those default channels must be implemented in every end-device and cannot be modified through the *NewChannelReq* command and guarantee a minimal common channel set between end-devices and network gateways.

AS923MHz ISM band end-devices should use the following default parameters

• Default EIRP: 16 dBm

AS923MHz end-devices should feature a channel data structure to store the parameters of at least 16 channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

1063

1064

1065

1066 1067

1068

1069

1070

1074

1075

1076

1077 1078

1079

The following table gives the list of frequencies that should be used by end-devices to broadcast the Join-request message.

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels	Duty cycle
LoRa	125	923.20 923.40	DR2	2	< 1%

Table 49: AS923 Join-request Channel List

The default Join-request Data Rate is DR2 (SF10/125KHz), this setting ensures that end-devices are compatible with the 400ms dwell time limitation until the actual dwell time limit is notified to the end-device by the network server via the MAC command "TxParamSetupReg".

The Join-request message transmit duty-cycle shall follow the rules described in chapter "Retransmissions back-off" of the LoRaWAN specification document.

2.7.3 AS923 Data Rate and End-point Output Power encoding

1071 The "TxParamSetupReq/Ans" MAC command MUST be implemented by the AS923 devices.

1073 The following encoding is used for Data Rate (DR) in the AS923 band:

DataRate	Configuration	Indicative physical bit rate [bit/s]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
6	LoRa: SF7 / 250 kHz	11000
7	FSK: 50 kbps	50000
814	RFU	
15	Defined in LoRaWAN	

Table 50: Data rate table

The TXPower table indicates power levels relative to the Max EIRP level of the end-device, as per the following table:

TXPower	Configuration (EIRP)			
0	Max EIRP			
1	Max EIRP – 2dB			
2	Max EIRP – 4dB			
3	Max EIRP – 6dB			
4	Max EIRP – 8dB			
5	Max EIRP – 10dB			
6	Max EIRP – 12dB			
7	Max EIRP – 14dB			
814	RFU			

15	Defined in			
	LoRaWAN			
Table 54: Table 1-bit				

1080 Table 51: TxPower table

1081

1082

1083 1084 EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output power referenced to an isotropic antenna radiating power equally in all directions and whose gain is expressed in dBi.

1085 By default Max EIRP shall be 16dBm. The Max EIRP can be modified by the network server through the TxParamSetupReq MAC command and should be used by both the end-1086 device and the network server once *TxParamSetupReg* is acknowledged by the device via 1087 1088 TxParamSetupAns.

1089

1090 1091

1092

1093

1094

1095

1096 1097

2.7.4 AS923 Join-accept CFList

The AS923 LoRaWAN implements an optional channel frequency list (CFlist) of 16 octets in the Join-accept message.

In this case the CFList is a list of five channel frequencies for the channels three to seven whereby each frequency is encoded as a 24 bits unsigned integer (three octets). All these channels are usable for DR0 to DR5 125 KHz LoRa modulation. The list of frequencies is followed by a single CFListType octet for a total of 16 octets. The CFListType shall be equal to zero (0) to indicate that the CFList contains a list of frequencies.

1098

1099

1100

1101 1102

1103 1104

1105

1106

1107

Size	3	3	3	3	3	1
(bytes)						
CFList	Freq Ch3	Freq Ch4	Freq Ch5	Freq Ch6	Freq Ch7	CFListType

The actual channel frequency in Hz is 100 x frequency whereby values representing frequencies below 100 MHz are reserved for future use. This allows setting the frequency of a channel anywhere between 915 and 928MHz in 100 Hz steps. Unused channels have a frequency value of 0. The CFList is optional and its presence can be detected by the length of the Join-accept message. If present, the CFList replaces all the previous channels stored in the end-device apart from the two default channels. The newly defined channels are immediately enabled and usable by the end-device for communication.

2.7.5 AS923 LinkAdrReq command

The AS923 LoRaWAN only supports a maximum of 16 channels. When ChMaskCntl field is 0 the ChMask field individually enables/disables each of the 16 channels.

ChMaskCntl	ChMask applies to
0	Channels 1 to 16
1	RFU
••	
4	RFU
5	RFU
6	All channels ON
	The device should enable all currently
	defined channels independently of the
	ChMask field value.

ChMaskCntl	ChMask applies to
7	RFU

Table 52: ChMaskCntl value table

If the ChMask field value is one of values meaning RFU, the end-device should reject the command and unset the "Channel mask ACK" bit in its response.

1113

1114

1115

1116 1117

1118

1110

1111

1112

2.7.6 AS923 Maximum payload size

The maximum **MACPayload** size length (M) is given by the following table for both dwell time configurations: No Limit and 400ms. It is derived from the PHY layer limitation depending on the effective modulation rate used taking into account a possible repeater encapsulation layer.

1119

DataRate	Uplink MAC Pa	ayload Size (M)	Downlink MAC I	Payload Size (M)
	UplinkDwellTime	UplinkDwellTime	DownlinkDwellTime	DownlinkDwellTime
	= 0	= 1	= 0	= 1
0	59	N/A	59	N/A
1	59	N/A	59	N/A
2	59	19	59	19
3	123	61	123	61
4	230	133	230	133
5	230	250	230	250
6	230	250	230	250
7	230	250	230	250
8:15	RI	=U	RF	-U

11201121

Table 53: AS923 maximum payload size

1122 should be:

If the end-device will never operate with a repeater then the maximum MAC payload length should be:

DataRate	Uplink MAC Pa	ayload Size (M)	Downlink MAC F	Payload Size (M)	
	UplinkDwellTime	UplinkDwellTime	DownlinkDwellTime	DownlinkDwellTim	
	= 0	= 1	= 0	e = 1	
0	59	N/A	59	N/A	
1	59	N/A	59	N/A	
2	59	19	59	19	
3	123	61	123	61	
4	250	133	250	133	
5	250	250	250	250	
6	250	250	250	250	
7	250	250	250	250	
8:15	RI	U	RF	:U	
T-11-F4 40000 1 1 1-1-1-1-1-1-1-1-1-1-1					

11231124

Table 54: AS923 maximum payload size (not repeater compatible)

1125 1126 The maximum application payload length in the absence of the optional **FOpt** control field (*N*) is eight bytes lower than the MACPayload value in the above table. The value of N might be smaller if the **FOpt** field is not empty.

1127

1128

1129

1130

2.7.7 AS923 Receive windows

The RX1 receive window uses the same channel than the preceding uplink. The data rate is a function of the uplink data rate and the RX1DROffset as following:

- 1131 Downstream data rate in RX1 slot = *MIN* (5, *MAX* (MinDR, Upstream data rate 1132 Effective RX1DROffset))
- 1133 MinDR depends on the DownlinkDwellTime bit sent to the device in the *TxParamSetupReq* 1134 command:
- Case DownlinkDwellTime = 0 (No limit): MinDR = 0
- Case DownlinkDwellTime = 1 (400ms): MinDR = 2

1137 The allowed values for RX1DROffset are in the [0:7] range, encoded as per the below table:

RX1DROffset (Coded value)	0	1	2	3	4	5	6	7
Effective_RX1DROffset	0	1	2	3	4	5	-1	-2

- Values in the [6:7] range allow setting the Downstream RX1 data rate higher than Upstream data rate.
- The RX2 receive window uses a fixed frequency and data rate. The default parameters are 923.2 MHz / DR2 (SF10/125KHz).

1143 2.7.8 AS923 Class B beacon and default downlink channel

1144 The beacons SHALL be transmitted using the following settings

DR	3	Corresponds to SF9 spreading factor with 125 kHz BW
CR	1	Coding rate = 4/5
Signal polarity	Non-inverted	As opposed to normal downlink traffic which uses
		inverted signal polarity

Table 55: AS923 beacon settings

1146 The beacon frame content is:

1142

1145

1149

Size (bytes)	2	4	2	7	2
BCNPayload	RFU	Time	CRC	GwSpecific	CRC

- 1147 The beacon default broadcast frequency is 923.4MHz.
- 1148 The class B default downlink pingSlot frequency is 923.4MHz

1150 2.7.9 AS923 Default Settings

1151 The following parameters are recommended values for the AS923MHz band.

1152	RECEIVE_DELAY1	1 s
1153	RECEIVE_DELAY2	2 s (must be RECEIVE_DELAY1 + 1s)
4454	IOINI AOOEDT DELAYA	r -

 1154
 JOIN_ACCEPT_DELAY1
 5 s

 1155
 JOIN_ACCEPT_DELAY2
 6 s

 1156
 MAX_FCNT_GAP
 16384

 1157
 ADR_ACK_LIMIT
 64

 1158
 ADR_ACK_DELAY
 32

1159 ACK_TIMEOUT 2 +/- 1 s (random delay between 1 and 3 seconds)

1160 If the actual parameter values implemented in the end-device are different from those default 1161 values (for example the end-device uses a longer RECEIVE_DELAY1 and

1162 RECEIVE_DELAY2 latency), those parameters must be communicated to the network

server using an out-of-band channel during the end-device commissioning process. The network server may not accept parameters different from those default values.

2.8 South Korea 920-923MHz ISM Band

2.8.1 KR920-923 Preamble Format

The following synchronization words should be used:

Modulation	Sync word	Preamble length
LORA	0x34	8 symbols

2.8.2 KR920-923 ISM Band channel frequencies

The center frequency, bandwidth and maximum EIRP output power for the South Korea RFID/USN frequency band are already defined by Korean Government. Basically Korean Government allocated LPWA based IoT network frequency band from 920.9 to 923.3MHz.

Center frequency	Bandwidth	Maximum EIRP output power (dBm)	
(MHz)	(kHz)	For end-device	For gateway
920.9	125	10	23
921.1	125	10	23
921.3	125	10	23
921.5	125	10	23
921.7	125	10	23
921.9	125	10	23
922.1	125	14	23
922.3	125	14	23
922.5	125	14	23
922.7	125	14	23
922.9	125	14	23
923.1	125	14	23
923.3	125	14	23

Table 56: Center frequency, bandwidth, maximum EIRP output power table

The three following default channels (922.1, 922.3 and 922.5MHz / DR0 to DR5) determined by the network operator from the set of available channels as defined by the South Korean regulation must be implemented in every KR920-923MHz end-device, and cannot be alterable by the *NewChannelReq* command. Those channels are the minimum set that all network gateways should always be listening on to guarantee a minimal common channel set between end-devices and network gateways.

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels
LoRa	125	922.10	DR0 to DR5	3
		922.30 922.50	/ 0.3-5 kbps	

Table 57: KR920-923 default channels

In order to access the physical medium the South Korea regulations impose some restrictions. The South Korea regulations allow the choice of using either a duty-cycle limitation or a so-called Listen Before Talk Adaptive Frequency Agility (LBT AFA) transmissions management. The current LoRaWAN specification for the KR920-923 ISM

band exclusively uses LBT channel access rule to maximize MACPayload size length and comply with the South Korea regulations.

1189 KR920-923MHz ISM band end-devices should use the following default parameters

- Default EIRP output power for end-device(920.9~921.9MHz): 10 dBm
- Default EIRP output power for end-device(922.1~923.3MHz): 14 dBm
- Default EIRP output power for gateway: 23 dBm

KR920-923MHz end-devices should be capable of operating in the 920 to 923MHz frequency band and should feature a channel data structure to store the parameters of at least 16 channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

The following table gives the list of frequencies that should be used by end-devices to broadcast the Join-request message.

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels
LoRa	125	922.10	DR0 to DR5	3
		922.30	/ 0.3-5 kbps	
		922.50		

Table 58: KR920-923 Join-request Channel List

2.8.3 KR920-923 Data Rate and End-device Output Power encoding

There is no dwell time limitation for the KR920-923 PHY layer. The *TxParamSetupReq* MAC command is not implemented by KR920-923 devices.

The following encoding is used for Data Rate (DR), and EIRP Output Power (TXPower) in the KR920-923 band:

DataRate	Configuration	Indicative physical bit rate [bit/s]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
614	RFU	
15	Defined in LoRAWAN	

Table 59: TX Data rate table

1206
1207
1208

1190

1191 1192

1193

1194

1195 1196

1197

1198

1199

1200

1201 1202

1203

TXPower	Configuration (EIRP)	
0	Max EIRP	
1	Max EIRP – 2dB	
2	Max EIRP – 4dB	
3	Max EIRP – 6dB	
4	Max EIRP – 8dB	
5	Max EIRP – 10dB	
6	Max EIRP – 12dB	
7	Max EIRP – 14dB	
814	RFU	
15	Defined in LoRAWAN	

1221

1231 1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1210 1211 EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output 1212 power referenced to an isotropic antenna radiating power equally in all directions and whose 1213 gain is expressed in dBi. 1214 1215 By default MaxEIRP is considered to be +14dBm. If the end-device cannot achieve 14dBm 1216 EIRP, the MaxEIRP should be communicated to the network server using an out-of-band 1217 channel during the end-device commissioning process. 1218 When the device transmits in a channel whose frequency is <922MHz, the transmit power SHALL be limited to +10dBm EIRP even if the current transmit power level set by the 1219 1220 network server is higher.

Table 60: TX power table

2.8.4 KR920-923 Join-accept CFList

The KR920-923 ISM band LoRaWAN implements an optional **channel frequency list** (CFlist) of 16 octets in the Join-accept message.

In this case the CFList is a list of five channel frequencies for the channels four to eight whereby each frequency is encoded as a 24 bits unsigned integer (three octets). All these channels are usable for DR0 to DR5 125kHz LoRa modulation.

The list of frequencies is followed by a single CFListType octet for a total of 16 octets. The CFListType shall be equal to zero (0) to indicate that the CFList contains a list of frequencies.

1230 3 1 Size 3 3 3 3 (bytes) Frea Ch4 Frea Ch5 Frea Ch6 Frea Ch7 Frea Ch8 **CFList** CFListType

The actual channel frequency in Hz is 100 x frequency whereby values representing frequencies below 100 MHz are reserved for future use. This allows setting the frequency of a channel anywhere between 100 MHz to 1.67 GHz in 100 Hz steps. Unused channels have a frequency value of 0. The **CFList** is optional and its presence can be detected by the length of the Join-accept message. If present, the **CFList** replaces all the previous channels stored in the end-device apart from the three default channels. The newly defined channels are immediately enabled and usable by the end-device for communication.

2.8.5 KR920-923 LinkAdrReq command

The KR920-923 LoRaWAN only supports a maximum of 16 channels. When **ChMaskCntl** field is 0 the ChMask field individually enables/disables each of the 16 channels.

ChMaskCntl	ChMask applies to			
0	Channels 1 to 16			
1	RFU			
4	RFU			
5	RFU			
6	All channels ON			
	The device should enable all currently defined channels independently of the ChMask field value.			

ChMaskCntl	ChMask applies to
7	RFU

Table 61: ChMaskCntl value table

1242 1243 1244

1245

1246

1247

1248

1249 1250

1251

If the ChMaskCntl field value is one of values meaning RFU, the end-device should reject the command and unset the "Channel mask ACK" bit in its response.

2.8.6 KR920-923 Maximum payload size

The maximum **MACPayload** size length (*M*) is given by the following table for the regulation of dwell time; less than 4 sec with LBT. It is derived from limitation of the PHY layer depending on the effective modulation rate used taking into account a possible repeater encapsulation layer. The maximum application payload length in the absence of the optional **FOpt** control field (*N*) is also given for information only. The value of N might be smaller if the **FOpt** field is not empty:

12521253

DataRate	М	N	
0	59	51	
1	59	51	
2	59	51	
3	123	115	
4	230	222	
5	230 222		
6:15	Not defined		

1254 1255 Table 62: KR920-923 maximum payload size

1256 1257 If the end-device will never operate with a repeater then the maximum application payload length in the absence of the optional **FOpt** control field should be:

DataRate	M	N
0	59	51
1	59	51
2	59	51
3	123	115
4	250	242
5	250	242

Table 63 : KR920-923 maximum payload size (not repeater compatible)

Not defined

1258 1259

1260

1261

1262

1263

1264

2.8.7 KR920-923 Receive windows

6:15

D-4-D-4-

The RX1 receive window uses the same channel than the preceding uplink. The data rate is a function of the uplink data rate and the RX1DROffset as given by the following table. The allowed values for RX1DROffset are in the [0:5] range. Values in the [6:7] range are reserved for future use.

RX1DROffset	0	1	2	3	4	5
Upstream data rate		Dow	nstream data	a rate in RX1	slot	
DR0	DR0	DR0	DR0	DR0	DR0	DR0
DR1	DR1	DR0	DR0	DR0	DR0	DR0
DR2	DR2	DR1	DR0	DR0	DR0	DR0
DR3	DR3	DR2	DR1	DR0	DR0	DR0

RX1DROffset	0	1	2	3	4	5
Upstream data rate		Dow	nstream data	rate in RX1	slot	
DR4	DR4	DR3	DR2	DR1	DR0	DR0
DR5	DR5	DR4	DR3	DR2	DR1	DR0

Table 64: KR920-923 downlink RX1 data rate mapping

The RX2 receive window uses a fixed frequency and data rate. The default parameters are 921.90MHz / DR0 (SF12, 125 kHz).

2.8.8 KR920-923 Class B beacon and default downlink channel

1270 The beacons SHALL be transmitted using the following settings

DR	3	Corresponds to SF9 spreading factor with 125 kHz BW
CR	1	Coding rate = 4/5
Signal polarity	Non-inverted	As opposed to normal downlink traffic which uses
		inverted signal polarity

Table 65: KR920-923 beacon settings

12711272

1266

1267

1268

1269

1273 The beacon frame content is:

Size (bytes)	2	4	2	7	2
BCNPayload	RFU	Time	CRC	GwSpecific	CRC

1274 The beacon default broadcast frequency is 923.1MHz.

1275 The class B default downlink pingSlot frequency is 923.1MHz

1276

1277

2.8.9 KR920-923 Default Settings

1278 The following parameters are recommended values for the KR920-923Mhz band.

1279	RECEIVE_DELAY1	1 s
1280	RECEIVE_DELAY2	2 s (must be RECEIVE_DELAY1 + 1s)
1281	JOIN_ACCEPT_DELAY1	5 s
1282	JOIN_ACCEPT_DELAY2	6 s
1283	MAX_FCNT_GAP	16384
1284	ADR_ACK_LIMIT	64
1285	ADR_ACK_DELAY	32
1286	ACK_TIMEOUT	2 +/- 1 s (random delay between 1 and 3

1287 If the actual parameter values implemented in the end-device are different from those default 1288 values (for example the end-device uses a longer RECEIVE_DELAY1 and 1289 RECEIVE_DELAY2 latency), those parameters must be communicated to the network 1290 server using an out-of-band channel during the end-device commissioning process. The 1291 network server may not accept parameters different from those default values.

1292

3 seconds)

1293 **2.9 India 865-867 MHz ISM Band**

2.9.1 INDIA 865-867 Preamble Format

The following synchronization words should be used:

1296	

1294

1295

1297

1298

1300

1301

1302

LORA	0x34	8 symbols
GFSK	0xC194C1	5 bytes

Table 66: India 865-867 synch words

2.9.2 INDIA 865-867 ISM Band channel frequencies

1299 This section applies to the Indian sub-continent.

The network channels can be freely attributed by the network operator. However the three following default channels must be implemented in every India 865-867MHz end-device. Those channels are the minimum set that all network gateways should always be listening on.

1303 1304

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels
LoRa	125	865.0625	DR0 to DR5	3
		865.4025 865.985	/ 0.3-5 kbps	

1305 Table 67: INDIA 865-867 default channels

1306 1307 1308 End-devices should be capable of operating in the 865 to 867 MHz frequency band and should feature a channel data structure to store the parameters of at least 16 channels. A channel data structure corresponds to a frequency and a set of data rates usable on this frequency.

1310 1311 1312

1309

The first three channels correspond to 865.0625, 865.4025, and 865.985 MHz / DR0 to DR5 and must be implemented in every end-device. Those default channels cannot be modified through the *NewChannelReq* command and guarantee a minimal common channel set between end-devices and network gateways.

1314 1315 1316

1313

The following table gives the list of frequencies that should be used by end-devices to broadcast the Join-request message. The Join-request message transmit duty-cycle shall follow the rules described in chapter "Retransmissions back-off" of the LoRaWAN specification document.

1317 1318

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels
LoRa	125	865.0625 865.4025	DR0 – DR5 / 0.3-5 kbps	3
		865.9850	,	

1319

Table 68: INDIA 865-867 Join-request Channel List

1320

2.9.3 INDIA 865-867 Data Rate and End-device Output Power Encoding

There is no dwell time or duty-cycle limitation for the INDIA 865-867 PHY layer. The TxParamSetupReq MAC command is not implemented by INDIA 865-867 devices.

The following encoding is used for Data Rate (DR) and End-device Output Power (TXPower) in the INDIA 865-867 band:

1325

DataRate	Configuration	Indicative physical bit rate [bit/s]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
6	RFU	RFU
7	FSK: 50 kbps	50000
814	RFU	
15 Defined in LoRaWAN		
	Table 69: TX Data rate	table

1326

1327

1328 1329 The TXPower table indicates power levels relative to the Max EIRP level of the end-device, as per the following table:

1330

TXPower	Configuration (EIRP)
0	Max EIRP
1	Max EIRP – 2dB
2	Max EIRP – 4dB
3	Max EIRP – 6dB
4	Max EIRP – 8dB
5	Max EIRP – 10dB
6	Max EIRP – 12dB
7	Max EIRP – 14dB
8	Max EIRP – 16dB
9	Max EIRP – 18dB
10	Max EIRP – 20dB
1114	RFU
15	Defined in
	LoRAWAN

1331 1332

1333

1334

1335

1336 1337 Table 70: TxPower table

EIRP refers to the Equivalent Isotropically Radiated Power, which is the radiated output power referenced to an isotropic antenna radiating power equally in all directions and whose gain is expressed in dBi.

By default MaxEIRP is considered to be 30dBm. If the end-device cannot achieve 30dBm EIRP, the Max EIRP should be communicated to the network server using an out-of-band channel during the end-device commissioning process.

1338 1339

1340

2.9.4 INDIA 865-867 Join-accept CFList

The India 865-867 ISM band LoRaWAN implements an optional **channel frequency list** (CFlist) of 16 octets in the Join-accept message.

In this case the CFList is a list of five channel frequencies for the channels four to eight whereby each frequency is encoded as a 24 bits unsigned integer (three octets). All these channels are usable for DR0 to DR5 125kHz LoRa modulation.

The list of frequencies is followed by a single CFListType octet for a total of 16 octets. The CFListType shall be equal to zero (0) to indicate that the CFList contains a list of frequencies.

Size	3	3	3	3	3	1
(bytes)						
CFList	Freq Ch4	Freq Ch5	Freq Ch6	Freq Ch7	Freq Ch8	CFListType

The actual channel frequency in Hz is 100 x frequency whereby values representing frequencies below 100 MHz are reserved for future use. This allows setting the frequency of a channel anywhere between 100 MHz to 1.67 GHz in 100 Hz steps. Unused channels have a frequency value of 0. The **CFList** is optional and its presence can be detected by the length of the Join-accept message. If present, the **CFList** replaces all the previous channels stored in the end-device apart from the three default channels. The newly defined channels are immediately enabled and usable by the end-device for communication.

2.9.5 INDIA 865-867 LinkAdrReq command

The INDIA 865-867 LoRaWAN only supports a maximum of 16 channels. When **ChMaskCntl** field is 0 the ChMask field individually enables/disables each of the 16 channels.

ChMaskCntl	ChMask applies to
0	Channels 1 to 16
1	RFU
••	
4	RFU
5	RFU
6	All channels ON
	The device should enable all currently defined
	channels independently of the ChMask field
	value.
7	RFU

Table 71: ChMaskCntl value table

If the ChMaskCntl field value is one of values meaning RFU, the end-device should reject the command and unset the "Channel mask ACK" bit in its response.

2.9.6 INDIA 865-867 Maximum payload size

The maximum **MACPayload** size length (M) is given by the following table. It is derived from limitation of the PHY layer depending on the effective modulation rate used taking into account a possible repeater encapsulation layer. The maximum application payload length in the absence of the optional **FOpt** control field (N) is also given for information only. The value of N might be smaller if the **FOpt** field is not empty:

DataRate	M	N
0	59	51
1	59	51
2	59	51
3	123	115

1373

1374

1375

1376

1377

1378

1379

1380

1381

1387

1388

1389

4	230	222		
5	230	222		
6	230	222		
7	230	222		
8:15	Not defined			

Table 72: INDIA 865-867 maximum payload size

If the end-device will never operate with a repeater then the maximum application payload length in the absence of the optional **FOpt** control field should be:

DataRate	M	N
0	59	51
1	59	51
2	59	51
3	123	115
4	250	242
5	250	242
6	250	242
7	250	242
8:15	Not d	efined

Table 73: INDIA 865-867 maximum payload size (not repeater compatible)

2.9.7 INDIA 865-867 Receive windows

The RX1 receive window uses the same channel than the preceding uplink. The data rate is a function of the uplink data rate and the RX1DROffset as given by the following table. The allowed values for RX1DROffset are in the [0:7] range. Values in the [6:7] range allow setting the Downstream RX1 data rate higher than Upstream data rate.

1382 The allowed values for RX1DROffset are in the [0:7] range, encoded as per the below table:

RX1DROffset (Coded value)	0	1	2	3	4	5	6	7
Effective RX1DROffset	0	1	2	3	4	5	-1	-2

1383 Downstream data rate in RX1 slot = *MIN* (5, *MAX* (0, Upstream data rate – 1384 Effective_RX1DROffset))

The RX2 receive window uses a fixed frequency and data rate. The default parameters are 866.550 MHz / DR2 (SF10, 125 kHz).

2.9.8 INDIA 865-867 Class B beacon and default downlink channel

The beacons are transmitted using the following settings

The beacene are transmitted deling the fellowing cettings					
DR	4	Corresponds to SF8 spreading factor with			
		125 kHz BW			
CR	1	Coding rate = 4/5			
Signal polarity	Non-inverted	erted As opposed to normal downlink traffic which uses			
		inverted signal polarity			

1390 The beacon frame content is:

Size (bytes)	1	4	2	7	3	2
BCNPayload	RFU	Time	CRC	GwSpecific	RFU	CRC

1391 The beacon default broadcast frequency is 866.550MHz.

1392 The class B default downlink pingSlot frequency is 866.550MHz

1393

1394 **2.9.9 INDIA 865-867 Default Settings**

1395 The following parameters are recommended values for the INDIA 865-867MHz band.

1396

1397 RECEIVE_DELAY1 1 s

1398 RECEIVE_DELAY2 2 s (must be RECEIVE_DELAY1 + 1s)

 1399
 JOIN_ACCEPT_DELAY1
 5 s

 1400
 JOIN_ACCEPT_DELAY2
 6 s

 1401
 MAX_FCNT_GAP
 16384

 1402
 ADR_ACK_LIMIT
 64

 1403
 ADR_ACK_DELAY
 32

1404 ACK_TIMEOUT 2 +/- 1 s (random delay between 1 and 3 seconds)

1405 If the actual parameter values implemented in the end-device are different from those default 1406 values (for example the end-device uses a longer RECEIVE_DELAY1 and 1407 RECEIVE_DELAY2 latency), those parameters must be communicated to the network 1408 server using an out-of-band channel during the end-device commissioning process. The 1409 network server may not accept parameters different from those default values.

1410

1412 **3 Revisions**

1413	3.1	Revision A
1414	•	Initial 1.1 revision, the regional parameters were extracted from the LoRaWANV1.0.2
1415		revision B
1416	•	Modified meaning of ChMaskCntl=5 for the US900 region and AU900 (TC11
1417		CR1274)
1418	•	DR=15 and TXPower=15 are now reserved for all regions, meaning is defined in
1419		LoRaWAN1.1
1420	•	Introduced CFlistType field in the Join-accept message

1421 **4 Bibliography**

1422 **4.1 References**

1423 1424

[LORAWAN] LoRaWAN Specification, V1.1, the LoRa Alliance, October 2017.