Seed Scan: A Corn Seed Viability Assessment using Image Recognition Technology

Christian Barbosa

4th yr. Bachelor of Science in Information Technology (BSIT)

Leyte Normal University

Brgy. Zone 4 Sta. Fe, Leyte

Github: lightdarkmaster

Seed Scan: A **Corn Seed** Viability Assessment using Image Recognition Technology

Problem

How do farmers determine which corn seeds will grow?

Traditional Way

Rag Doll

Time Consuming – This test takes days to determined Viability.

Inaccurate – Human error can lead to incorrect assumptions.

Resource Intensive – Laboratory base testing is expensive.

Solution

Seedscan

Corn Viability Detection
Users can start the viability
detection process for corn.

Corn Type DetectionAllows users to determine the type of corn with ease.

Harvest Estimation Features
Allows users to determine the probable number of harvest base on the viability results.

Seedscan

Data History

Allows users to save detection reading.

Display Graphical Representations

Can Display data visualization in each readings in a graphical representation.

User Friendly

Allows users to use the app with ease.

How it Works?

My YOLO Model

Corn Viability Model

Corn Type Model

Corn Type Model

Precission Recall Curve

Precission Recall Curve

Corn Viability Model

Technology Breakdown

A real time object detection algorithm that identifies and localizes objects in images or videos with high accuracy and speed.

A UI toolkit by Google for building natively compiled applications for mobile, web and desktop from single codebase.

A lightweight, optimized version of Tensorflow designed for deploying machine learning models on mobiles and embedded devices

A versatile, high level programming language known for its simplicity and broad use in web, development, data analysis and Al.

Core Packages Used:

A library designed for implementing machine learning and computer vision tasks In flutter applications.

A flutter package that supports local authentication using biometric fingerprint recognitions

Is a flutter lightweight, relational database integrated into mobile apps for local storage of structured data.

supports theming, animations, and adaptive designs, making it easy to create beautiful and user-friendly applications.

Real World Impact and Result

- Higher Crop Yields
- Cost Reduction
- Sustainable Agriculture

Future Plans

- Expand Detection to other crops
- Improve Model
- Develop cloudbase analysis

END