FONCTIONS PART2 E03

EXERCICE N°3 (Le corrigé)

Pour chacune des fonctions f_i suivantes, déterminer une équation de la tangente (d_i) à la courbe représentative C_{f_i} au point d'abscisse a puis la tracer d'un repère orthonormé.

- 1) Soit f_1 la fonction définie sur \mathbb{R} par $f_1(x) = -x^2 x + 2$ et a := -2
- Commençons par calculer $f_1(-2)$ et $f_1'(-2)$. Pour tout réel x: $f_1(x) = -x^2 x + 2$, en particulier $f_1(-2) = 0$

 $f_1'(x)=-2x-1$, en particulier $f_1'(-2)=3$ On sait que la tangente à la courbe C au point d'abscisse a admet une équation de la forme : y=f'(a)(x-a)+f(a)

• Une équation de (d_1) est alors :

$$y = f_1'(-2)(x-(-2))+f_1(-2)$$
 soit $y = 3(x+2)+0$ d'où on déduit l'équation réduite :

$$y = 3x + 6$$

• Enfin pour tracer une droite, il suffit d'en connaître deux points. Et comme un point appartient à une droite ssi ses coordonnées vérifient l'équation de cette droite :

X	0	-2
y = 3x - 6	6	0
Point	(0;6)	(-2;0)

2) Soit f_2 la fonction définie sur \mathbb{R} par $f_2(x) = x^3 - 3x + 2$ et a := 0.5

Commençons par calculer $f_2(0,5)$ et $f_2'(0,5)$. Pour tout réel x :

$$f_2(x) = x^3 - 3x + 2$$
, en particulier $f_2(0,5) = 0,625$

$$f_2'(x)=3x^2-3$$
, en particulier $f_2'(0,5)=-2,25$

On sait que la tangente à la courbe C_f au point d'abscisse a admet une équation de la forme : y = f'(a)(x-a)+f(a)

Une équation de (d_2) est alors :

$$y = f_2'(0,5)(x-2) + f_2(0,5)$$
 soit

soit
$$y = -2,25(x-2)+0,625$$

l'équation réduite :

$$y = -2,25 x + 5,125$$

• Enfin pour tracer une droite, il suffit d'en connaître deux points. Et comme un point appartient à une droite ssi ses coordonnées vérifient l'équation de cette droite :

x	0,5	2,5
y = -2,25 x + 5,125	4	-0,5
Point	(0,5;4)	(2,5;-0,5)

