Name: Sai Ram Gunturu ID: C00313478

Decision Tree Classifier - Predicting Customer Behavior

Data Analytics & Algorithms Log

- Algorithm Used: Decision Tree Classifier
- Datasets Used:
 - o Bank Marketing Dataset (Predicting term deposit subscriptions)
 - Credit Card Default Dataset (Predicting loan defaults)
- Framework: CRISP-DM

1. Business Understanding

Objective

I wanted to create a **Decision Tree Model** to:

- Predict whether a **bank customer** will subscribe to a term deposit.
- Predict whether a **credit card holder** will default on payment.

Decision Trees were a **good starting point** for classification tasks as they are **easily interpretable** as well as **flexible**.

Challenges I Faced

- Class Imbalance → In the Bank dataset, only 11.7% of customers subscribed, thus making it difficult for the model to correctly predict the minority class.
- Overfitting → When not tuned correctly, Decision Trees tend to overfit, therefore making poor generalization.

2. Data Understanding

- Dataset 1: Bank Marketing Dataset
 - o Total Records: 45,211
 - No missing values
- **Target Variable:** y (Subscription status: 1 = Yes, 0 = No)

Feature	Туре	Description
Age	Numerical	Age of the client

Job	Categorical	Type of job
Marital	Categorical	Marital status
Education	Categorical	Level of education
Balance	Numerical	Account balance
Housing	Categorical	Has a housing loan?
Loan	Categorical	Has a personal loan?
Duration	Numerical	Call duration (seconds)

3. Data Preparation

- Used 'LabelEncoder' to encode categorical variables
- Standardized the numerical features with 'StandardScaler'.
- Split data: 80% train | 20% test (stratified split).

4. Baseline Decision Tree Model

Algorithm: DecisionTreeClassifier (Default Parameters)

• **Criterion:** Gini impurity

• Max Depth: Not set (Caused Overfitting)

Baseline Model Performance

Metric	Value
Accuracy	87.7%
Precision (Subscription - Class 1)	48%
Recall (Subscription - Class 1)	48%

F1-score (Subscription - Class 1)	48%
-----------------------------------	-----

What I Noticed:

- subscribers had high accuracy, but low recall (48%).
- Overfitting Problem → Decision Tree fits the training data too closely but poorly generalizes.

5. Model Improvements & Adjustments

5.1 Hyperparameter Tuning (GridSearchCV)

I tuned:
max_depth, min_samples_split, criterion, min_samples_leaf.

• Best Parameters Found:

{'criterion': 'entropy', 'max_depth': 10, 'min_samples_leaf': 1, 'min_samples_split': 10}

Performance After Tuning:

Metric	Value
Accuracy	89.68%
Recall (Class 1 - Subscription)	40%

Impact:

- Improved Accuracy from $87.7\% \rightarrow 89.68\%$
- Precision and recall increased **slightly** but still **lots of false negatives**.

5.2 Feature Selection

I reduced the complexity of model by picking the top ten most important features.

Impact:

- Less complex model → Less Training Time.
- Similar accuracy, but even more interpretable.

5.3 Class Weight Adjustment (Dealing with Imbalance)

I modified **class weights** to put more emphasis on correctly predicting subscriptions, in order to **increase** recall for people who subscribe.

Performance After Class Weight Adjustment

Metric	Value
Accuracy	87.3%
Recall (Class 1 - Subscription)	66%
F1-score (Class 1 - Subscription)	55%

Impact:

- Recall Class 1 increased from $48\% \rightarrow 66\%$ (fewer false negatives).
- Accuracy decreased a little more (89.6% \rightarrow 87.3%), but more balanced classes.

5.4 Post-Pruning (Reducing Overfitting)

Used cost complexity pruning to apply post-pruning.

Best Alpha Found: 0.0028372626868269427

Performance of Pruned Model

Metric	Value
Accuracy	89.2%
Recall (Class 1 - Subscription)	56%

Impact:

- Less overfitting → Model is more generalizable.
- Slight enhancement of Class 1 recall ($48\% \rightarrow 56\%$).

5.5 Bagging for Stability

I used Bagging (Bootstrap Aggregation) with 100 Decision Trees to reduce the variance.

Bagging Model Performance

Metric	Value
Accuracy	88.8%
Recall (Class 1 - Subscription)	61%

Impact:

- Lower variance → More stable model.
- Recall increased ($56\% \rightarrow 61\%$) decreasing false negatives.

6. Final Model Performance Comparison

Model	Accuracy	Recall (Class 1)	F1-score (Class 1)
Baseline Model	87.7%	48%	48%
GridSearch Optimized	89.68%	40%	48%
Balanced Model (Class Weights)	87.3%	66%	55%
Final Pruned Model	89.2%	56%	55%
Bagging Decision Tree	88.8%	61%	56%

Final Decision: Bagging Model produced the best results.

7. Transitioning to a Different Dataset: Credit Card Default Prediction

Now that I've done testing on the **bank dataset**, I want to take a different classification problem to check how **Decision Trees perform on financial data**.

Predicting whether a credit card holder will default on their payment.

7.1 Load and Explore the Dataset

Dataset Overview

Total Records: 30,000No missing values

• Class Imbalance: 22% customers defaulted (Class 1) and 78% customers not defaulted (Class 0).

Feature	Description
LIMIT_BAL	Credit limit of the customer
SEX	Gender (1 = Male, 2 = Female)
EDUCATION	Education level (1 = Graduate, 2 = University, 3 = High School, 4 = Others)
MARRIAGE	Marital status (1 = Married, 2 = Single, 3 = Others)
AGE	Age of the client
PAY_0 to PAY_6	Payment history over the last six months
BILL_AMT1 to BILL_AMT6	Past monthly bill statements
PAY_AMT1 to PAY_AMT6	Amount paid in previous months
Y	Target variable (1 = Default, 0 = No Default)

Observation: This dataset has categorical and numerical features which need some appropriate preprocessing before training a model.

7.2 Data Preprocessing

- I have dropped ID column (Not relevant for modeling).
- Looked for missing values (None found).
- Changed categorical variables (SEX, EDUCATION, MARRIAGE, PAY_X) into numerical equivalents.
- Standardized numerical features (LIMIT_BAL, BILL_AMT, PAY_AMT) to improve model performance.
- Divided data into a Training set (80%) and Testing set (20%).

Processed Dataset Summary

Data Split	Shape
Total Records After Processing	30,000
Training Set Size	24,000
Test Set Size	6,000
Feature Count (excluding target)	23

Insight: Only 22% of customers defaulted. Hence, we need to consider class imbalance that might hamper recall of defaulters (Class 1).

7.3 Performance of Baseline Decision Tree Model

I trained a **simple Decision Tree model** to establish baseline performance before I tuned.

Baseline Model Performance

Metric	Value
Accuracy	71.5%
Precision (Class 0 - No Default)	83%
Recall (Class 0 - No Default)	80%

Precision (Class 1 - Default)	37%
Recall (Class 1 - Default)	41%
F1-score (Class 1 - Default)	39%

Observation:

• The model works effectively for non-defaulters (Class 0), however recall for defaulters (Class 1) is low (41%), i.e. quite a lot of actual defaulters are misclassified as non-defaulters.

7.4 Hyperparameter tuning (GridSearchCV)

To improve performance, I used **GridSearchCV** to fine-tune the following hyperparameters:

Criterion: gini, entropy

- *Max Depth: 5, 10, 15*
- Min Samples Split: 2, 5, 10
- Min Samples Leaf: 1, 2, 5

Best Parameters Found

{'criterion': 'entropy', 'max depth': 5, 'min samples leaf': 1, 'min samples split': 2}

Performance After Hyperparameter Tuning

Metric	Value
Accuracy	81.8%
Precision (Class 1 - Default)	66%
Recall (Class 1 - Default)	36%
F1-score (Class 1 - Default)	46%

Observation: Accuracy increased from $71.5\% \rightarrow 81.8\%$ but Class 1 recall decreased from $(41\% \rightarrow 36\%)$, i.e. more false negatives.

7.5 Balanced Model (Class Weights)

I set class weights ({0:1, 1:3}) to help balance the prediction, to increase recall for defaulters.

Performance After Class Weight Adjustment

Metric	Value
Accuracy	78.1%
Recall (Class 1 - Default)	52%
Precision (Class 1 - Default)	50%
F1-score (Class 1 - Default)	51%

Observation:

- Recall increased from $36\% \rightarrow 52\%$, i.e. fewer missed defaulters.
- Accuracy dropped slightly (81.8% \rightarrow 78.1%), while class balance improved.

7.6 Post-Pruning: Final Pruned Model

I used cost-complexity pruning, to reduce overfitting,

• Best Pruning Alpha Found: 0.0006939517173115209

Pruned Model Performance:

Metric	Value
Accuracy	81.6%
Recall (Class 1 - Default)	35%
Precision (Class 1 - Default)	66%
F1-score (Class 1 - Default)	46%

Observation:

• Accuracy was unchanged (81.6%), showing that pruning had prevented overfitting.

• Recall decreased slightly (52% \rightarrow 35%), resulting in more missed defaulters.

7.7 Final Improved Model (Bagging Decision Tree)

In order to reduce variance even more and improve stability, I used Bagging (Bootstrap Aggregation) with 100 Decision Trees.

Performance of Final Bagging Model:

Metric	Value
Accuracy	81.8%
Precision (Class 1 - Default)	67%
Recall (Class 1 - Default)	35%
F1-score (Class 1 - Default)	46%

Observation:

- Bagging decreased variance enhancing model stability.
- Precision improved from $(66\% \rightarrow 67\%)$, however recall was low (35%), that is, many defaulters were still misclassified.

7.8 Conclusion

- Data imbalance played a key role in making recall enhancement complex.
- Decision Trees also had limitations leading to poor recall for Class 1, even after utilization of tuning and resampling techniques.
- Bagging improved stability, but false negatives remained a challenge.
- Moving forward, we will try to improve results using Random Forest to reduce variance, improve recall and have better generalization.