25X1

Page Denied

N REF	PORT
	N REI

CENTRAL INTELLIGENCE AGENCY

rh!	is material	contains	inform	ation affec	ting the	National	Defense of	he United	1 States wit	hin the	magning	of the	Fenionege	T.o.ws	Title
8.	U.S.C. Sec	s. 793 an	d 794 t	he transm	ission o	r reveletion	n of which	in one r	nanner to s	n 110011	thorized		to prohibit	tad har	10 117

Soviet documen	REPORT DATE DISTR. nniques, NO. PAGES REQUIREMEN NO. REFERENCES APPRAISAL OF COM nts on the development technique cical Computing Razvitiva Soy	. 29 No	hematical ne translatio	<i>G</i> ^{25X1} 25X
Computing Tech: ion ARE DEFINITIVE. A Soviet documen pparatus, comp oviet Mathemat h 1956. (Puti	DATE DISTR. aniques, NO. PAGES REQUIREMEN NO. REFERENCES APPRAISAL OF CON ats on the develuting technique cical Computing Razvitiva Soo	I I I I I I I I I I I I I I I I I I I	chematical ne translation	
Computing Tech: ion ARE DEFINITIVE. A Soviet documen pparatus, comp oviet Mathemat h 1956. (Puti	NO. PAGES REQUIREMENNO. REFERENCES APPRAISAL OF CON Its on the develuting technique Cical Computing Razvitiya Sov	I I I I I I I I I I I I I I I I I I I	chematical ne translation	
Computing Tech: ion ARE DEFINITIVE. A Soviet documen pparatus, comp oviet Mathemat h 1956. (Puti	NO. PAGES REQUIREMENNO. REFERENCES APPRAISAL OF CON Its on the develuting technique Cical Computing Razvitiya Sov	I I I I I I I I I I I I I I I I I I I	chematical ne translation	
ARE DEFINITIVE. A Soviet documen pparatus, comp oviet Mathemat h 1956. (Puti	REQUIREMEN NO. REFERENCES APPRAISAL OF COM Its on the develouting technique Cical Computing Razvitiya Soy	NI STENTATIVE	hematical ne translatio	
Soviet documen pparatus, compoviet Mathemat h 1956. (Puti	REFERENCES APPRAISAL OF CON Its on the develouting technique Cical Computing Razvitiya Sov	elopment of mat	hematical ne translatio	
Soviet documen pparatus, compoviet Mathemat h 1956. (Puti	appraisal OF COM nts on the deve outing technique cical Computing Razvitiva Sov	elopment of mat	hematical ne translatio	
Soviet documen pparatus, compoviet Mathemat h 1956. (Puti	nts on the devenuting techniquesical Computing	elopment of mat les, and machin	hematical ne translatio	
Soviet documen pparatus, compoviet Mathemat h 1956. (Puti	nts on the devenuting techniquesical Computing	elopment of mat les, and machin	hematical ne translatio	
Soviet documen pparatus, compoviet Mathemat h 1956. (Puti	nts on the devenuting techniquesical Computing	elopment of mat les, and machin	hematical ne translatio	n
, Academy of S	ciences of the	USSR, Moscow	1956.	
		A Danguages, U	У	
Sphere of Com	puting Techniq	ues, by S.A. L	ebedev, 1956.	
fied documents		,		
	-			J.
				•
				25X1
			•	
S-E-C	C-R-E-T		0574	
S-E-C	C-R-E-T		25X1	
S-E-C	C-R-E-T	1 05/	25X1	٠.
, e	Academy of S ms of Machine Sphere of Com	Academy of Sciences of the ems of Machine Translation of Sphere of Computing Technic	Academy of Sciences of the USSR, Moscow ems of Machine Translation of Languages, b Sphere of Computing Techniques, by S.A. L	Machine Translation of Languages Carried Out on the Academy of Sciences of the USSR, Moscow 1956. Ems of Machine Translation of Languages, by Sphere of Computing Techniques, by S.A. Lebedev, 1956. Tied documents

конференция

(a)

"ПУТИ РАЗВИТИЯ
СОВЕТСКОГО МАТЕМАТИЧЕСКОГО
МАШИНОСТРОЕНИЯ
И ПРИБОРОСТРОЕНИЯ

(сборник тезисов)

MOCKBA, 12-17 марта 1956 г.

конференция "ПУТИ РАЗВИТИЯ СОВЕТСКОГО МАТЕМАТИЧЕСКОГО МАЦ!!!НОСТРОЕНИЯ И ПРИБОРОСТРОЕНИЯ* MOCKBA, 12 - 17 wapra 1956 r

КОНФЕРЕНЦИЯ "ПУТИ РАЗВИТИЯ СОВЕТСКОГО МАТЕМАТИЧЕСКОГО МАШИНОСТРОЕНИЯ И ПРИБОРОСТРОЕНИЯ* МОСКВА, 12—17 марта 1956 г.

А. СЕКЦИЯ УНИВЕРСАЛЬНЫХ ЦИФРОВЫХ МАШИН Руководитель — $aka\partial e \mu u k$ С. А. ЛЕБЕДЕВ

Sanitized Copy Approved for Release 2010/07/08 : CIA-RDP81-01043R000400100011-0

Доклад 1

АЛЕКСАНДРИДИ Т. М. — инженер

электростатическое запоминающее УСТРОЙСТВО ВЫЧИСЛИТЕЛЬНОЙ МАШИНЫ М-2

1. Общие принципы работы запоминающего устройства. Информация в электростатическом запоминающем устройстве сохраняется в виде некоторого распределения статических электрических зарядов на экране осциллографической трубки типа 13 ЛО-37.

Нулю соответствует запись с фокусированным лучом, единие— запись в виде черточки. Чтение осуществляется черточкой, сигналы с экрана снимаются с помощью тонкой металлической сетки.

2. Блак-стема Заполического статического сетки.

металлической сетки.
2. Блок-схема. Запоминающее устройство параллельного типа, «объем» — 512 34-х разрядных двоичных чисел. Режим работы запоминающего устройства задается программным датчиком машины через блок селекторных импульсов, который в соответствии с поступающими командами управляет работой блока разверток и формирует те или иные стробирующие импульсы, поступающие на клапаны блока реченовлици. генерации.

3. Отбор трубок. Для отбора трубок сконструирован специальный стенд, в котором трубки в основном проверяются на максимально допустимое число повторных обращений. Трубки, допускающие количество обращений более 800, считаются годными. Максимально возможное число повторных обращений в машине — 170. Срок службы трубок не мене одного года. Причина выхода трубки из строя: перегорание нити накала, пробой; в двух случаях — увеличение помех.

Доклад 3 (тезисы)

Доклад 2 (тезисы) ДАШЕВСКИЙ Л. Н. — кандидат технических наук

ЭКСПЛУАТАЦИЯ МАЛОЙ ЭЛЕКТРОННОЙ СЧЕТНОЙ МАШИНЫ АН УССР

- 1. Малая электронная счетная машина (МЭСМ), построенная в г. Кневе под руководством академика С. А. Лебедева в 1951 г., находится в экспауатации с 1952 г. К 1/XII-1955 г. машина проработала более з 3 тыс. часов. Машина испольмашина прорасотала соличения пексоторых практических задач, а так-зовалась для решения некоторых практических задач, а так-же для обучения эксплуатационного персонала и программистов.
- 2. На машине решались в основном задачи, связанные с интегрированием линейных и нелинейных дифереренциаль-ных уравнений, определение границ области устойчивости динамических систем, описываемых уравнениями до десятого порядка по методу Рауса, Гурвица, Неймарка и др.
 - 3. Основные технические данные машины следующие:
 - скорость работы 50 операций в секунду;

 - количество разрядов 20 двоичных, запятая фикси-рована перед старшим разрядом; память оперативная: активная 31 число и 40 команд; пассивная 31 число и 63 команды; память внешняя около 2000 кодов на магнитном
 - барабане;

 - одначане, причисло дами 7200 (после замены дамповых диодов германиевыми будет уменьшено до 3 000); е) вывод результатов со скоростью одно число в секунду с помощью цифропечатающей установки.
- 4. На машине ведется регулярный учет условий работы радиоламп, причин выхода их из строя. Установлено, что срок службы радиоламп липа 6Н8С, 6Н9С, 6Х6С лежит в пределах 8 000—9 000 часов.
- 5. В машине применен последовательный накал радиомп (группами по $6-10~{
 m mm}$); производились исследования работы лами в таком режиме.

КАРЦЕВ М. А. — инженер

АРИФМЕТИЧЕСКИЙ УЗЕЛ ВЫЧИСЛИТЕЛЬНОЙ МАШИНЫ М-2

- 1. Общая характеристика арифметического узла. Арифметический узел M-2 параллельного типа выполнен на 4 статических тригтерных регистрах. Количество двоичных разрядов—34, рабочая частота—80 кгц. Устройство предназначено для работы как с числами с фиксированной запятой.
- 2. Элементы схемы. Применены триггеры на двойных триодах 6Н8с, с внешним смещением и с запуском по сеткам, через купроксные выпрямители.
- Все логические схемы («и», «или», «несовпадение») осуществлены на диодах, в качестве которых использованы купроксные выпрямители КВМП-2-7.
- Окончательное формирование импульсов осуществляется клапанам (вентилями) на двойных триодах 6Н8С. Благо-клапанами (вентилями) на двойных триодах 6Н8С. Благо-даря тому, что триоды в клапане соединены последовательно, характеристики клапана почти идентичны характеристикам леравтеристика въедина почти пасптично заравтеристика триод-ных клапанов меньше, а срок службы оольше, чем для

- пентодных. Для изменения полярности импульсов использованы импульсные трансформаторы 1:1. Всего в АУ затрачивается 12 ламп на 1 разряд, причем
 все лампы типа 6Н8С. 3. Выполнение операций над числами. Сложение с фиксированной запятой выполняется в два шага: образование
 единиц двоичного переноса, выдача суммы; первый шаг может
 быть отделен от второго, что удобно при выполнении деления
 и сравчения чисел.

и сравнения чисел.
Вычитание производится как сложение уменьшаемого с дополнением от вычитаемого до 1; умножение— как ряд вычитаний и сдвигов; деление— как ряд вычитаний и сдвигов.
При сложении и вычитании с плавающей запятой предва-

При сложении и вычитании с плавающей запятои предва-рительно производится выравнивание порядков: умножение и деление с плавающей запятой состоят из сложения (вычи-тания) порядков и умножения (деления) мантисс. Все опе-рации с плавающей запятой заканчиваются нормализацией

4. Некоторые сведения об эксплуатации. Основным мето-дом профизактики является производство сдвигов и запуск контрольных задач при уменьшении напряжения накала с 6,3 до 4,7 в, изменении напряжения на катодах клапанов от 122 в до 137 в и изменении напряжения смещения тритеров. Профилактическая проверка ламп производится через гаждые 1500 часов. Лампы ставятся предварительно трени-рованные. рованные.

Доклад 4

МЕЛЬНИКОВ В. А. — инженер

НЕКОТОРЫЕ ВОПРОСЫ ТЕХНИЧЕСКОЙ ЭКСПЛУАТАЦИИ БЭСМ АН СССР

Устойчивость и надежность работы электронных счетных машин качественно характеризуют работу вычислительных машин, а следовательно, основной задачей технической эксплуатации является определение таких приемов и средств, которые могли бы обеспечить бесперебойную работу машины

на период счета.
Возможность получения бесперебойной работы машины достигается путем проведения специальной профилактической подготовки.

подготовки.

Сочетание методов профилактического контроля с выполнением тестовых программ обеспечивает выявление элементов, имеющих малую надежность, что позволяет значительно повысить устойчивость и надежность работы машины.

Собранный статистический материал на основе эксплуатации мащины в течение 1952—1955 г. позволяет дать определенные рекомендации, необходимые для проектирования и эксплуатации универсальных быстродействующих электронных счетных машин.

Доклад 5

МЯМЛИН А. Н. — инженер

ОПЫТ ТЕХНИЧЕСКОЙ ЭКСПЛУАТАЦИИ машины «СТРЕЛА-1» И ЕЕ МОДЕРНИЗАЦИЯ

1. Технические характеристики и конструкция машины «Стрела-1» — трехадресная универсальная машина параллельного действия с плавающей запятой.

Диапазон изменения чисел от 10^{-19} до 10^{+19} , значащих

цифр девять.

Скорость работы — 3 000 операций в секунду.
В состав машины входят запоминающие устройства на электроннолучевых трубках, магнитных лентах и купроксных диодах, арифметическое устройство и механические устройства ввода и вывода информации.

Отдельные узлы машины выполнены в виде 2-х—9-ти ламповых ячеек. Более удобным для эксплуатации было бы истолиемия узлов машины в виде подолживать ответствующим в виде отволяющим образоваться ответствующим в разоватиля в подолжения отволяющим в подолжения в подол

полнение узлов машины в виде одноламповых ячеек. Схемы машины излишне громоздки и запутаны.

2. Модернизация. Модернизация проводилась с целью

повышения надежности и скорости работы машины. Изменениям подверглись в основном схемы центрального управления, арифметического устройства и управления запоминающим устройством на магнитной ленте.

поминающим устройством на магнитной ленте. Режимы профилактического контроля, введенные на всех узлах машины, позволяют гарантировать в течение недели дравильную работу схем. Исключение составляет оператив- ное запоминающее устройство. Выполненные работы позволили повысить время исправ- ной работы машины с 10-11 часов в сутки в январе—фев- рале 1955 г до 19-20 часов в январе—феврале 1956 г, и повысить скорость работы с $2\,000$ до $3\,000$ операций в се-

3. Режим эксплуатации и показатели работы машины. Проверка машины в режимах профилактического контроля производится один раз в неделю в течение 16—24 часов. Контроля правильности работы оперативного запоминающего устройства пре водится ежедневно. Сравнительный анализ работы машины за январь—февраль 1956 г. позволяет оценить насколько увеличилась надежность работы машины.

4. Выводы. Манцина «Стрела-1» имеет компактную хорошо продуманную систему команд, удобную для програм-мировання. Возможность выполнення арифметических и ло-гических действий с помощью групповых операций в боль-

шинстве случаев сокращает время решения задачи. Удачными принципиальными решениями является включение в состав машины запоминающих устройств на диодах для хранения констант и стандартных подпрограмм, испольдля хранения констант и стандартных подпро-зование для ввода и вывода перфокарт и т. д. Вместе с тем нельзя считать удачными конструктивными

использование широкой магнитной ленты;

 а) использование широкой магинилой менци,
 б) отсутствие достаточно быстродействующего него запоминающего устройства; буфер-

построение узлов машины на 9-ти ламповых ячейках; вынесение большого количества радиодеталей на мон-

тажную сторону конструкции.
При падлежащей технической эксплуатации коэффидиент полезного действия машины равен 65—70%.

Доклад 6

(тезисы)

НЕСЛУХОВСКИЙ Қ $_{ullet}$ С. — инженер

СРАВНЕНИЕ ПАРАЛЛЕЛЬНЫХ И ПОСЛЕДОВАТЕЛЬНЫХ УНИВЕРСАЛЬНЫХ ВЫЧИСЛИТЕЛЬНЫХ МАШИН С УЧЕТОМ И БЕЗ УЧЕТА ПОРЯДКОВ

Рассматриваются основные схемные отличия машин с

Рассматриваются основные схемные отличия машин с учетом и без учета порядков. Сравниваются машины с учетом и без учета порядков с точки зрения количества задействованной аппаратуры. Определяется время, затрачиваемое на выполнение операции в машинах с учетом и без учета порядков. И, наконец, машины указанных типов сравниваются с точки зрения скорости их работы.

Доклад 7 ПОГРЕБИНСКИЙ С.Б.— инженер (тезисы)

устроиство для преобразования кодов из одной системы счисления в другую

Преобразование колов в двоичных БВМ осуществляется обычно с помощью программ. Имеются сообщения о разра-ботке программных устройств для ускорения преобразований.

оотке программных устройств для ускорения преобразования.
2. Программа прямого преобразования сводится к вычислению по схеме Горнера полинома, изображающего число в десятичной системе счисления, и требует производства 40 ÷ 60 операций. Обратное преобразование выполняется по известному алгорифму и требует производства примерно такого: же числа операций.

3. Предлагаемый метол полсчета полинома использует

кого же числа операций. 3. Предлагаемый метод подсчета полинома использует набор двоичных значений степеней десяти, расположенных определенным образом, что позволяет свести преобразование к одной операции, эквивалентной умножению. (i+1)-ое значение полинома N может быть получено из i-го путем сдвига ранее полученной суммы и прибавления двоичного кола степени десяти, если (i+1)-ый коэффициент двоичного разложения цифр переводимого числа равен единице. Аналогичная методика предлагается и для обратного пре-

Аналогичная методика предлагается и для обратного пре-

Аналогичная методика предлагается и для обратного преобразования.

4. При использовании множительного устройства БВМ количество дополнительной аппаратуры для прямого преобразования — 5—6 днодов на один десятичный разряд вводимого числа; для обратного два устройства совпадения на один десятичный разряд в устройства совпадения Б. Время преобразований равно времени одного умножения. Прямое преобразование обычно может быть совмещено по времени с вводом исходных данных в машину.

6. Устройство прямого и обратного преобразования работающее по описанной методике, эксплуатируется в схеме специализирования машины. Статическое устройство обратного преобразования включено в схему МЭСМ АН УССР.

Доклад 8 (тезисы)

РАМЕЕВ Б. И. — инженер

УНИВЕРСАЛЬНАЯ АВТОМАТИЧЕСКАЯ ЦИФРОВАЯ ВЫЧИСЛИТЕЛЬНАЯ МАШИНА ТИПА «УРАЛ»

- Введение. Область применения, решаемые задачи, основные требования к конструкции машины.
- 2. Основные параметры машины. Эксплуатационно-технические показатели.
- Время решения некоторых задач. 3. Система команд. Особенности системы команд.
- 4. Краткое описание машины. Состав машины. Основные параметры и особенности схем и конструкций отдельных устройств.
- 5. Конструкция машины. Особенности конструкции от-дельных устройств и узлов, а также машины в целом. Комплектность.
- 6. Заключение. Сравнение машины «Урал» с известными серийными машинами этого класса.

ЩЕРБАКОВ О. К. — инженер

принципиальные вопросы электропитания цифровых электронных машин

Требования к устройствам электропитания, являясь важ-

Требования к устройствам электропитании, явлиясь важным и актуальным вопросом при проектиропении и эксплуатации цифровых вычислительных машин, за исключением кратких упоминаний, в литературе не освещались. Анализируются особенности электропитания электроных цифровых вычислительных машин переменным и постоянным напряжением. Рассматриваются принципы построения защиты, индикации и сигнализации. Обобщен опыт эксплуатации электропитания БЭСМ АН СССР, на основе которого даются некоторые рекомендации для создания простых, надежных в работе и имеющих долгий срок службы, систем электропитания электронных цифровых вычислительных машин. вычислительных машин.

Поклад 9 (тезисы)

а) УЗЛЫ И ЭЛЕМЕНТЫ МАШИН

Доклад 10 (тезисы)

Sanitized Copy Approved for Release 2010/07/08 : CIA-RDP81-01043R000400100011-0

АЛЕКСЕЕВ В. Я. — инженер

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ динамических триггеров

Рассматривается принципиальная схема динамического триггера на триоде с запоминающей емкостью и ее преимущества перед схемой обычного триггера с потенциальными

связями. Приводятся технические характеристики динамического триггера с запоминающей емкостью на двойном триоде 6НЗП (нагрузочная, частотная, амплитудная). Рассматриваются требования, предъявляемые к источникам питания. З. Рассматриваются два варианта принципивальной схемы динамического триггера на пентоде с запоминающей емкостью с управлением по двум сеткам. 4. Приводятся технические характеристики динамических триггеров с запоминающей емкостью на пентоде 6Ж2П (нагрузочная, частотная, амплитудная). Рассматриваются требования, предъявляемые к источникам питания.

Доклад 11

(тезисы)

БАРДИЖ В.В.— кандидат технических наук ВИЗУНЮ.И.— инженер КОБЕЛЕВ В.В.— инженер

МАГНИТНОЕ ОПЕРАТИВНОЕ ЗАПОМИНАЮЩЕЕ УСТРОЙСТВО С ДЕШИФРАТОРАМИ НА ЛЕНТОЧНЫХ МАГНИТНЫХ СЕРДЕЧНИКАХ

1. Применение ферритовых сердечников для запоминающих устройств цифровых быстролействующих машин является весьма перспективным.

2. Одним из способов повышения надежности работы запоминающего устройства является повышение отношения токов, воздействующих на избранный и неизбранные сердечники. Применение динамического смещения позволяет получить это отношение равным 3:1 простыми средствами и без наложения помехи на считываемый сигнал.

3. Ограничение числа сердечников запоминающего устройства, с которыми связана считывающая обмотка, наряду с применением схем объединения этих обмоток существенно увеличивает отношение сигнала к помехе.

4. Применение магнитных дешифраторов на сердечниках из ленточных материалов, в схеме запоминающего устройства, улучшает надежность работы устройства за счет высокой температурной стабильности характеристик ленточных магнитных материалов.

Доклад 12 (тезисы)

Sanitized Copy Approved for Release 2010/07/08 : CIA-RDP81-01043R000400100011-0

ГОЛОВИСТИКОВ П. П. — инженер

СХЕМЫ, ПОСТРОЕННЫЕ НА ДИНАМИЧЕСКИХ ТРИГГЕРАХ

- 1. Счетные и управляющие схемы быстродействующих электронных машин в зависимости от характера связей, существующих между логическими элементами, можно разбить на

- три типа:

 схемы с потенциальными связями между элементами;
 схемы с импульсными связями между элементами;
 схемы со импульсными связями между элементами.

 2. Схемы с импульсными связями между элементами.

 2. Схемы с импульсными связями между элементами по сравнению с другими схемами обладают рядом премуществ:
 легкостью согласования выходного сопротивления запоминающей ячейки с входным сопротивлением диодных логических схем;
 высокой скоростью работы при малом количестве электронных ламп и других деталей;
 большей надежностью, т. к. схемы работают по принципу грубого усилителя;

 - ципу грубого усилителя; большей экономичностью; меньшими габаритами схем (детали в схемах используются в облегченных режимах и поэтому могут быть взяты малогабаритными). Возможностью более легкой замены электронных ламп
- возможностью более легкой замены электронных ламп в схемах е германиевыми триодами;
 простотой, гибкостью и универсальностью схем.
 Разработанные схемы динамических триггеров с запоминающей емкостью позволили устранить основной недостаток существоавших ранее схем, а именно необходимость точного согласования по времени входных сигналов.
 Схемы с динамическими триггерами, с запоминающей емкостью, могут быть широко использованы в универсальных машинах параллельного лействия.
- машинах параллельного действия.

Доклад 13 (тезисы)

ДОБРОСМЫСЛОВ В. И. — инженер

БЫСТРОДЕЙСТВУЮЩЕЕ ПЕЧАТАЮЩЕЕ УСТРОИСТВО ДЛЯ ВЫЧИСЛИТЕЛЬНЫХ МАШИН

В современных вычислительных машинах требуются большие скорости выходных устройств. Печатающее устройство с непрерывно вращающимся печатающим колесом и молоточками, удар которых по нужному знаку колеса определяется срабатыванием электромагнита, мо-

ет надежно работать при достаточно больших скоростях. В настоящее время в НИИсчетмаш'е изготовлен и рабо-В настоящее время в плиясчетмащ е изготовлен и расо-тает макет такого печатающего устройства. Согласно предва-рительным лабораторным испытаниям, макет обеспечивает скорость печати до 10—15 строк в секунду. Для обеспечения больших скоростей печати проводится разработка второго варианта печатающего устройства с непре-

рывно вращающимся і затающим колесом, в котором изме-

рывно вращающимся і натающим колесом, в котором изменена кинематика связи молоточка с электромагнитом.
Производительность печатающего устройства определяется количеством строк, которые могут быть напечатаны в секунду.
При этом должны быть соблюдены условия отсутствия сма-

При этом должны быть соблюдены условия отсутствия смазывания знаков, а разброс знаков по вертикали не должен
превосходить заданной величины (обычно $\pm 0.15 \div \pm 0.3$ мм).
Техническая скорость печатающего устройства ограничивается
допустимой окружной скоростью вращения печатающего колеса.

В докладе будут сообщены результаты лабораторных испытаний, а также будут даны рекомендации по проектированию печатающего устройства с непрерывно вращающимся печатающим колесом.

Доклад 14 (тезисы)

ЗИМАРЕВ А. Н.— инженер ЗЕПДЕНБЕРГ В. К.— инженер ЛАНДЕРЕ. П.— инженер СЕНАТОРОВ Ю. И.— инженер

АРИФМЕТИЧЕСКОЕ УСТРОЙСТВО АВТОМАТИЧЕСКОЙ ВЫЧИСЛИТЕЛЬНОЙ МАШИНЫ ПАРАЛЛЕЛЬНОГО **ДЕИСТВИЯ НА ГЕРМАНИЕВЫХ** ТОЧЕЧНО-КОНТАКТНЫХ ПРИБОРАХ

При проектировании арифметического устройства (АУ) выбран динамический принцип работы элементов схем. Приводятся преимущества этого принципа в схемах на германие-

вых триодах. 2. Рассматриваются отдельные элементы, из которых строятся схемы АУ: динамический триггер, каскад синхронизации, усилитель, вентильные схемы.

3. Описывается общая блок-схема арифметического устрой-

о. Описывается оощая олок-схема арифметического устройства и приводятся результаты экспериментальной проверки макета АУ.

Доклад 15 (тезисы)

ЗИМИН В. А - кандидат техимческих наук

НАДЕЖНОСТЬ ЛАМП В ЭЛЕКТРОННОЙ ВЫЧИСЛИТЕЛЬНОЙ МАШИНЕ

1. Лампы в элементах электронных вычислительных машин

Пляты в элементах электронных вычислительных машин используются в качестве быстродействующего ключа.
 Уточнение средних параметров ламп облегчило работу по проектированию и эксплуатации электронной аппаратуры и создало предпосылки для увеличения надежности работы

и создалю предпосылки для увеличена подсильного гожа в течение срока службы лампы среднее значение анодного тока снижается. Вначале ток убывает относительно быстро, а затем начинает асимптотически стремиться к величине порядка 0,6 от номинального значения. При этом имеют место могабания величины анолного тока в поеделах около 0,15 от

порядка 0,6 от номинального значения. При этом имеют место колебания величины анодного тока в пределах около 0,15 от номинального значения. Поэтому схемы электронной автоматики целесообразно конструпровать, исхоля из значения анодного тока, равного 0,5 от номинального значения.

4. Основные дефекты ламп обнаруживаются в течение первых часов работы. Действие случайных причин выхода ламп из строя, в случае предельно допустимого режима эксплуатации, заканчивается достаточно быстро. Затем выход ламп из строя начинает приобретать систематический характер. Поэтому технически и экономически целесообразно стабилизировать параметры ламп путем соответствующих испытаний перед установкой их на эксплуатацию.

5. Семейства статических импульсных характеристых зами

Семейства статических импульсных характеристик ламп позволяют выбрать рабочий режим ламп, сочетающий макси-

позволяют выбрать рабочий режим ламп, сочетающий максимальную отдачу с наибольшей долговечностью работы.

6. Применяемые в БЭСМ электронные лампы типов 6Ж4, 6П9, 6П3С и 6Н8С имеют средний срок службы порядка 15 000 часов. Долговечность ламп мало зависит от режима использования электронного тока, а определяется критерием, принятым для фиксирования непригодности лампы.

Доклад 16 (тезисы)

ЗИМИН В. А. — кандидат технических наук

ЛОГИЧЕСКИЕ СХЕМЫ НА ИМПУЛЬСНЫХ ТРАНСФОРМАТОРАХ И ПОЛУПРОВОДНИКОВЫХ диодах

1. Логические схемы «и», «или» и «нет» могут быть осу-1. Логические схемы «и», «или» и «нет» могут быть осуществлены на импульсных трансформаторах и полупроводинковых диодах. Если импульсный трансформатор обладает свойствами колебательного контура, то мощность, затрачиваемая на поддержание формы импульса, реако уменьшается.

2. Надежность точечных германиевых диодов типа ДГЦ при работе в электрических цепях, собранных на импульсных трансформаторах. лостаточно велика.

при работе в электрических цепях, собранных на импульсных трансформаторах, достаточно велика.

3. Исследование резонансных свойств импульсных трансформаторов, выполненных на ферритовых сердечниках, позволило выявить ряд физических закономерностей, которые молило выявить ряд физических закономерностей, которые могут быть использованы в практике построения логических схем ка импульсных 4. Изучение поведения логических схем на импульсных трансформаторах и германиевых диодах позволило использовать обратный ток переходного режима диода для гашения помех в схемах совпадения.

5. Энергетические соотношения в диодно-трансформаторных схемах таковы, что элементы работают друг на друга с

5. Энергетические соотношения в диодно-трансформаторных схемах таковы, что элементы работают друг на друга с
коэффициентом передачи около единицы.
6. Созданы схемы «н» и «нет», не требующие для своей
работы применения источников питания.
7. Исследование сумматора на диодно-трансформаторных
элементах показало возможность создания высокоэкономичных
схем вычислительной техники. схем вычислительной техники.

ЗУБРИЛИН Н. П. — инженер

Доклад 17 (тезисы)

БЫСТРОДЕЙСТВУЮЩЕЕ ФОТОПЕЧАТАЮЩЕЕ УСТРОЙСТВО (ФПУ)

1. Быстродействующие выходные устройства повышают общую производительность работы электронных цифровых

общую производительность расста в производительность расста в производительность расста в производительность из фотопленку результатов вычислений, полученных на БЭСМ. Скорость записи на фотопленку равна 200 десятичных чисел в секунду. При необходимости скорость записи может быть значительно повышена. ФПУ может работать совместно с БЭСМ без промежуточной саписи на магнитную ленту или барабан.

записи на магнитную ленту или барабан.
3. Запись на фотопленку производится с помощью спе-циальных аргоно-ртутных ламп. Изображение цифр (на лампы надеты цифровые трафареты) проектируется на фотопленку нидивидуальными объективами. Приводится оптико-механиче-ская схема устройства и показываются особенности конструк-

ции.

4. Магнитная лента считывается на специальном магнитофоне. Преобразование кода чисел из двоично-десятичной системы в десятичную и управление лампами осуществляется при помощи электронного блока.

 Экспенированная пленка проявляется, фиксируется, промывается и сушится на машине 6ОП-1 со скоростью 180 м/час. мывается и сущится на машине оотт-т со скоростью то мучас. С фотопленки цифровые результаты размножаются при помощи специального автоматического проекционного аппарата на рулонну о фотобумагу с увеличением в 3,6 раза со скоростью 600 м/час. Фотобумага обрабатывается (проявление, фиксиня) на тамках.

6. Значи глыное повышение скорости выходных устройств

может быть достигнуто с помощью использования немеханических способов записи.

Поклад 18 (тезисы)

КОБЕЛЕВ В. В. — инженер

УСТОЙЧИВОСТЬ РАБОТЫ МАГНИТНЫХ ДВУХТАКТНЫХ РЕГИСТРОВ СДВИГА

1. Вопросы устойчивости работы регистра сдвига, являясь макиым эксплуатационным фактором, за исключением кратких упоминаний, в литературе не освещались.

2. Найден способ расчета процесса передачи намагниченности одного сердечника к другому в двухтактиом регистре сдвига, минуя рассмотрение временных соотношений.

3. На основе расчета построены графики, дающие зависимость между пачальным и конечным значениями потока в магнитных сердечниках, что дает возможность указать области начальных потоков, в которых стабильны «единица» дя «нуль» регистра.

сти начальных потоков, в которых стабильны «единица» и «пуль» регистра.

4. Исследуется зависимость устойчивости регистра от амерынгков импульсов сдвига, крутизны их фронта и соотношения витков. Показано, что конечность фронта импульса сдвига приводит к устойчивости «пуля» регистра.

5. Рассмотрено влияние наклюна петли гистерезиса на работу регистра сдвига при различных предположениях относительно процессов, происходящих в магнитном материале, когда состояние материала характеризуется точкой, лежащей внутри предельной петли гистерезиса.

Доклад 19 (тезисы)

ЛАУТ В. Н. — инженер

СХЕМНЫЕ МЕТОДЫ УМЕНЬШЕНИЯ ЗАСЕВА В ЗАПОМИНАЮЩИХ ТРУБКАХ И УСТРОЙСТВО СЧИТЫВАНИЯ С МАЛЫМ ВРЕМЕНЕМ **УСПОКОЕНИЯ**

•1. Рассматривается физическая сущность засева и обстоя-

5. Приводится экспериментальные данные для нескольких грубок по засеву в обычном и улучшенном режиме.
 4. Приводится схема устройства записи — считывания для трубок с временем восстановления не более 4 мксек. Схема не чувствительна к изменению частоты обращений к трубке и коду, записываемому в ней.

Доклад 20 (тезисы)

Sanitized Copy Approved for Release 2010/07/08 : CIA-RDP81-01043R000400100011-0

ЛЮБОВИЧ Л. А. — инженер

ОПЕРАТИВНОЕ ЗАПОМИНАЮЩЕЕ УСТРОИСТВО НА Э. Л. НАКОПИТЕЛЬНЫХ трубках бэсм

Оперативное запоминающее устройство (ЗУ) БЭСМ выполнено на специальных электроинолучевых накопительных трубках с модуляцией на сигнальную пластину. ЗУ паралельного действия на 39 разрядов с 1023 ячейками запоминания выполнено на 1073 лампах, 231 днодах и 39 э. л. трубках в блочном оформлении. Максимальная частота работы 80 кгг. Отклоняющая схема трубок работает по принципу сложения равных стабилизированных токов с установлением напряжение в 25 мксек. Пля увеличения надежности хоаненапряжения в 2,5 *мксек*. Для увеличения надежности хранения применена автоматическая регулировка уровня считываемого сигнала и система считывания перед записью. Модуляция мого сигнала и система считывания перед записью. Модуляция лучей трубок, централизованная с гальванической связью. Для последовательной регенерации растра используется свободное от обращений к ЗУ время. Надежность работы проверяется тестовыми программами и автономным контролем. Питание трубок производится от централизованных стабилизированных источников тока.

Для увеличения полезного времени работы используется резервирование разрядов и предварительная проверка трубок и и пользуется режервирование разрядов и предварительная проверка трубок и и пользуется растратура успользуется растратура успользуется растратура успользуется разрядов и предварительная проверка трубок

резурвующим расумент и их блоков. Эксплуатация показала достаточную надежность устройства (за сутки переключение на резерв: 1÷2 разрядов). По своим параметрам данное ЗУ стоит в одном ряду с тако-

выми же заграничными.

Доклад 21

(тезисы)

МАЛИНОВСКИЙ Б. Н. — кандидат технических наук

УСТРОЙСТВА, ОСНОВАННЫЕ НА СОЧЕТАНИИ МАГНИТНЫХ И КРИСТАЛЛИЧЕСКИХ **ЭЛЕМЕНТОВ**

1. В настоящее время широкое распространение имеют релаксапионные генераторы, формирователи и триггерные устройства, основанные на использовании N- и S-образной характеристик точечного кристаллического триода. Эти устройства могут быть получены с применением емкости и индуктивности. Устройства с применением емкости получили уже достаточное освещение в литературе. Представляют интерес схемы с применением индуктивности, которые имеют ряд специфических свойств. 1. В настоящее время широкое распространение имеют

2. Использование подмагничиваемого дросселя позволяет получить релаксационный генератор переменной частоты, формирователь импульсов различной продолжительности и другие устройства. Эти устройства также весьма удобны в экспе риментальной работе

- 3. Индуктивности могут быть использованы в схеме триг-
- гера.
 4. Опытные и теоретические исследования генератора с ин-
- Опытные и теоретические исследования генератора с индуктивностью в цепи основания показывают, что:
 а) между частотой колебаний генератора и величиной индуктивности имеется прямо пропорциональная зависимость;
 величина скважности генерируемых импульсов при изменения индуктивности остажете постоящей.
- менении индуктивности остается постоянной; в) изменение скважности возможно получить путем изменения напряжения смещения в цепи основания.

 5. Полученные выводы можно использовать при анализе
- устройств данного типа.

Поклад 22 (тезисы)

МАМОНОВ Е И -- канлилат технических наук

ОПТИМАЛЬНАЯ СКОРОСТЬ РАБОТЫ И ДРУГИЕ ТЕХНИЧЕСКИЕ ПОКАЗАТЕЛИ ОПЕРАТИВНЫХ УСТРОИСТВ ХРАНЕНИЯ ИНФОРМАЦИИ ЭЛЕКТРОННЫХ АВТОМАТИЧЕСКИХ ЦИФРОВЫХ ВЫЧИСЛИТЕЛЬНЫХ МАШИН

Для определенной длительности арифметических операций на арифметическом устройстве (АУ) можно выбрать оптимальное соотношение времени ожидания оперативного устройства хранения и длительности операции Топ на АУ, при которой обеспечивается эффективная скорость вычислений. Отношение длительности арифметической операции к времени ожидания показывает, какую часть длительности операции на АУ, акцивают замес съмъжна в хранительности операции на AV занимает время ожидания и характеризует эффективность работы устройства хранения.

В известных конструкциях машин на одну операцию в AV может требоваться несколько обращений к устройству хранения. Существует оптимальная величина указанного выше отношения, дальнейшее повышение которого не дает существенного повышения скорости вычислений.

Сравнительный анализ скорости работы различных быстро-Сравнительный анализ скорости работы различных быстро-действующих устройств хранения показывает, что наименьшее время ожидания обеспечивают устройства с электроннолуче-выми трубками и магнитными сердечинками (6—12 мксек). Эффективное повышение емкости хранения позволяет полу-чить магнитный барабан и магнитные сердечники. Однако наибольшее распространение в машинах получили устройства из электроннолучевых трубках (ЭЛТ). Из различных типов ЭЛТ практическое применение в циф-ровых машинах получили: а) ЭЛТ осциллографического типа (применение по системе Вильямса); б) ЭЛТ с барьерной сет-кой: в) ЭЛТ с внутренния восстановлением потенциалов. По

кой: в) ЭЛТ с внутренним восстановлением потенциалов. По техническим характеристикам (емкость хранения, коэффициент допустимых обращений и др.) ЭЛТ с внутренним восстановлением могут обладать преимуществами. По общим техно-экономическим показателям выгоднее устройства хранения на ЭЛТ осциллографического типа. Доклад 23

НЕЧАЕВ Г. К. — кандидат технических наук МАЛИНОВСКИЙ Б. Н. — кандидат технических наук

АНАЛИЗ И ИССЛЕДОВАНИЕ СХЕМ ТРИГГЕРА НА ТОЧЕЧНЫХ КРИСТАЛЛИЧЕСКИХ ТРИОДАХ

1. При использовании точечных кристаллических триодов триггерная счетная ячейка может быть выполнена на одном, либо на двух триодах. В опубликованных материалах отсутствует подробный анализ возможных режимов работы схем и не предложено оптимального варианта.

и не предложено оптимального варианта.

2. При рассмотрении триггерных схем, управляемых в основание (базу), целесообразно использовать зависимости напряжения от тока. Триоды различных марок при одних и тех же параметрах внешних цепей дают различные характеристики. По своему виду их можно разбить на два основных типа: S-образные и петлеобразные.

3. Схема триггера со счетным входом на двух точечных коисталлических типолах выполняется аналогично дамоовому.

кристаллических триодах выполняется аналогично ламповому варианту триггера, но, в отличие от него, может иметь три и даже четыре устойчивых состояния.

4. Сравнение разработанных вариантов триггера на 2 триолах показывает

а) для практического использования следует рекомендо-

а) для практического использования следует рекомендовать режим трех устойчивых состояний;
б) для триггера в этом режиме целесообразно использовать триоды с S-образной характеристикой
4. В цепи оснований триодов могут быть введены индуктинести, что позволяет: а) избежать применения емкостей в цепях обратной связи, б) увеличить чувствительность триг-

гера.
5. Перспективной является схема триггера на одном триоде, типа С2В (КС-8) с петлеобразными характеристиками.

Доклад 24 (тезисы)

Sanitized Copy Approved for Release 2010/07/08 : CIA-RDP81-01043R000400100011-0

ОФЕНГЕНДЕН Р. Г. — инженер

ЗАПОМИНАЮЩИЕ УСТРОЙСТВА НА МАГНИТНЫХ БАРАБАНАХ

МАГНИТНЫХ БАРАБАНАХ

В данной работе проведено исследование зависимости разрешающей способности, амплитуды выходного напряжения от отдельных параметров тракта магнитной записи и исследование импульсного стирания. Под разрешающей способностью понимается максимально допустимое число записанных на единице длины носителя импульсов.

На основании экспериментальных и теоретических данных показано, что с увеличением зазора между носителем и головкой уменьшается разрешающая способность. Приведены, формулы для определения разрешающей способности, амплитуды выходных импульсов при бесконтактной записи. Проведены экспериментальные исследования зависимости разрешающей способности и амплитуды выходных импульсов от величины передней щели головки, намагичинающей силы, длительности записываемых импульсов.

В результате исследования импульсого стирания выяснены причины малого отношения сигнал/помеха и даются методы стирания, при помощи которых можно увеличить отношение сигнал/помеха до 10—20.

Проведены исследования записи импульсов с большими частотыми следования. Создана экспериментальная установка, на которой осуществлена запись импульсов с частотами следования до 500 кгм.

РАМЕЕВ Б. И. — инженер

Доклад 25 (тезисы)

типовые элементы вычислительных машин дискретного действия

- 1. Введение. Общие соображения о конструкции электронных устройств вычислительных машин дискретного действия. Типовые элементы машин.
- 2. Основные параметры, определяющие класс типовых элементов: быстродействие и надежность. Достаточность этих двух параметров.

 3. Требования и конструкции типовых элементов. Примеры

Доклад 26 (тезисы)

ТРУБНИКОВ Н. В. — кандидат технических наук

ВНЕШНИЕ УСТРОЙСТВА АВТОМАТИЧЕСКИХ БЫСТРОДЕЙСТВУЮЩИХ ЦИФРОВЫХ ВЫЧИСЛИТЕЛЬНЫХ МАШИН

Внешними устройствами автоматических вычислительных машин охватывается комплект устройств, используемых для полготовки и ввода в вычислительную машину исходных данных для решения задачи и фиксации результатов решения, выводимых из машины.

ровредимых из машины. Функции внешних устройств и предъявляемые к ним требования. Организация работы внешних устройств цифровых машин. Скорость работы внешних устройств и связь их с ма-

минои. Носители информации. Виды посителей. Перфокарты. Перфоленты. Магнитная лента и магнитная проволока. Кино-

нта. Состав оборудования и унификация внешних устройств. ТЯПКИН М. В. — инженер

Доклад 27 (тезисы)

ЗАПОМИНАЮЩЕЕ УСТРОЙСТВО НА МАГНИТНОЙ ЛЕНТЕ В СОВРЕМЕННЫХ УНИВЕРСАЛЬНЫХ ЭЛЕКТРОННЫХ ВЫЧИСЛИТЕЛЬНЫХ МАШИНАХ

1. В последнее время наметилась тенденция к резкому повышению основных показателей запоминающих устройств на магнитной ленте (повышение плотности записи, уменьшение времени разгона и останова ленты). В результате значительно повышаются требования к точности изготовления лентопротяжного механизма и магнитных головок, требуегся более прочная основа магнитной ленты, усложивется конструкция лентопротажных устройств

прочная основа магнитной ленты, усложняется конструкция лентопрогряжных устройств.

2. Требования минимума аппаратуры и достаточной скорости работы приводят к параллельно-последовательному 4-х или 8-ми дорожечному принципу записи кодов. Число вспомогательных дорожек при этом должно быть сведено к минимуму. Малое время разгона ленты приводит к необходимости пользоваться при записи синхронизирующими имгульсами, считываемыми с ленты, что усложияет конструкцию головки.

3. Повышение плотности записи достигается за счет улучшения параметров ленты и магнитных головок и за счет снижения уровня записи. Применяется метод записи «с невозвращением к нулю», позволяющий при прочих равных условиях повысить плотность вдвое.

4. Для автоматического контроля правильности работы употребляются два метода: на нечетность числа импульсов в одной строке и при помощи суммирования кодов. Первый метод более сложен и предпочтение должно быть отдано второму.

the state of the s

Доклад 28 (тезисы)

ФЕДОРОВ А. С. — инженер

МАГНИТНОЕ ОПЕРАТИВНОЕ ЗАПОМИНАЮЩЕЕ УСТРОЙСТВО

- 1. Оперативное запоминающее устройство на ферритах имеет малое врсмя обращения. Принятая схема выборки чисел позволяет обращаться при считывании сразу ко всем разрядам одного числа, не оказывая воздействия токами выборки. на другие числа запоминающего устройства. Такая схема позволяет осуществлять считывание кодов при форсированных режимах, что приводит к увеличению выходного сигнала и сокращению времени выборки.
- Использование для цепей запоминания двух сердечников на один двоичный разряд существенно повышает надежность работы запоминающего устройства и снижает требования к отбору магнитных сердечников по сравнению с другими известными схемами ЗУ.
- 3. В схеме запоминающего устройства предусмотрены эффективные способы устранения наводки от сигнала записи на входе усилителя сиятывания, что позволяет сравнительно просто решить задачу сунтывания сигнала.
- воде уклипать задачу считывания сигнала.

 4. Принятая схема коммутации цепей выборки чисел позволяет значительно сократить величину изменения смилитуды выходного сигнала в зависимости от кодов, хранящихся в дан-
- ном разряде.

 5. Макет магнитного оперативного запоминающего устройства проверяется при совместной работе с БЭСМ. Результаты эксплуатации макета позволяют сделать вывод о достаточно высокой надежности запоминающих устройств такого типа.

Доклад 29

ШКАБАРА Е. А. — кандидат технических наук

ИМПУЛЬСНОЕ ПЕРЕМАГНИЧИВАНИЕ ФЕРРИТОВ С ПРЯМОУГОЛЬНОЙ ПЕТЛЕЙ ГИСТЕРЕЗИСА

- 1. Характеристики ферромагнитных сердечников при работе в импульсном режиме существенно отличаются от их статических характеристик. Основную роль в изменении характеристик ферритовых сердечников играет эффект магнитной вязкости.
- Данное исследование проводилось для случая перемагничивания импульсами тока. Существенное влияние на процессы, происходящие в сердечнике оказывает форма перемагничивающих импульсов тока.
- 3. Время перемагничивания при сопротивлении нагрузки, равном бесконечности, может быть выражено соответствующей зависимостью от параметров импульса тока и параметров сердечника.
- Наклон восходящей части петли гистерезиса может быть учтен путем введения отношения приращения индукции к приращению напряженности. При большой крутизне фронта импульса изменение наклона петли практически не влияет на
- время перемагничивания.

 4. ЭДС, индуктируемая в обмотке сердечника за время перемагничивания (если считать ее постоянной в течение этого времени), также может быть выражена аналитически.
- перемагничивания (если считать ее постоянной в течение этого времени), также может быть выражена аналитически.

 5. Значения времени перемагничивания и ЭДС, рассчитанные аналитически, совпадают с экспериментальными кривыми с точностью погрешности измерения 10-15%. Увеличение значения наклона и малых помех на экспериментальных кривых согласуется с положением о том, что время магнитной релаксации увеличивается с уменьшением намагничивающего поля.
- 6. При уменьшении длительности импульсов до некоторого значения и увеличении частоты перемагничивания до 500 кгц ширина петли гистерезиса почти не изменяется, но заметно уменьшается ее высота и наклон восходящей ветви.

 7. На основании произведенных исследований можно реко-
- 7. На основании произведенных исследований можно рекомендовать при проектировании импульсных устройств на ферритовых сердечниках применение управляющих импульсов с постоянной времени фронта меньше, чем постоянная времени магнитной ре-лаксации, длительностью намагничивающего импульса, равной 3—5 постоянной времени магнитной релаксации, и амплитудой, соответствующей значению 3÷5 коэрцитивной силы данного сердечника.

Доклад 30

АБРАМОВ А. А. — кандидат физ.-мат. наук

РЕШЕНИЕ БОЛЬШИХ СИСТЕМ ЛИНЕИНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ НА БЭСМ

АЛГЕБРАИЧЕСКИХ УРАВНЕНИИ НА БЭСМ

На БЭСМ было решено несколько систем с 200—300 неизвестными (системы возникли при уравнивании геодезических сетей). Некоторые из этих систем были переопределенными и решались с учетом требования минимума суммы квадратов погрешностей без перекола к нормальной системе уравнений. Системы обладали тем свойством, что большое число кожфициентов равнялось нулю. Системы решались методом итераций. Чрезвычайно медленная сходимость преодолевалась специальными приемами. Необходимость большого числа вспомогательных операций (арифметических и особенно операций с магнитным запоминающим устройством) очень снижала эффективность работы БЭСМ.

Ход решения рассматриваемых систем дает основание считать, что при проектированни специальзированных машин для решения способом совершенно необходимо заботиться о механизации приемов ускорения сходимости.

6) ПРИМЕНЕНИЕ МАШИН

Доклад 31 (тезисы)

Sanitized Copy Approved for Release 2010/07/08 : CIA-RDP81-01043R000400100011-0

БЕЛЬСҚАЯ И. К. МУХИН И. С. -- кандидат физ.-мат. наук

АВТОМАТИЧЕСКИЙ ПЕРЕВОД С АНГЛИЙСКОГО ЯЗЫКА НА РУССКИЙ НА БЭСМ

Создание БЭСМ. БЭСМ показала себя, как мощное средство научны исследований. Решение логических задач является новым этапом в использовании электронных вычислительных машь:: Автоматический перевод с одного языка на другой — пример решения логической задачи. БЭСМ позволяет исследовать логические схемы перевода и выработать принципы для создания специализированной переводной машины. Эксперимент перевода научно-технического текста с английского языка на русский с помощью БЭСМ.

Основные принципы автоматического перевода. Обоснования возможности перевода. Замена букв числами. Ввод

Создание специального словаря. Слова однозначные и многозначные. Грамматические признаки слов. Возможность пополнения словаря. Объем словаря. Специализированные словари для различных областей науки и техники.

Разделение процесса перевода на две главные части: анализ и синтез. Замена английских слов эквивалентами — результат применения английских слов эквивалентами — результат применения английской части словаря. Дихотомические схемы анализа. Определение грамматической формы русских слов является результатом анализа английского предложения и выражается с помощью признаков эквивалентов. Изменение грамматической формы русских слов, взятых из словаря, в соответствии с признаками эквивалентов — результат применения схем синтеза русского предложения. Возвращение к буквам и вывод результатов. Степень изменения отдельных частей программы перевода

Степень изменения отдельных частей программы перевода для текстов из различных областей науки и техники. Пригодность схем синтега для перевода с различных языков. Возможность пополнения словаря с помощью машины.

Примеры перевода английского текста.

Доклад 32

ВОЛКОВ Е. А. — кандидат физ.-мат. наук

О ПОВЫШЕНИИ СКОРОСТИ ВЫЧИСЛЕНИЯ ЭЛЕМЕНТАРНЫХ ФУНКЦИЙ НА БЭСМ

При решении некоторых трудоемких задач на БЭСМ около половины общего счетного времени, а иногда и больше, занимает вычкление элементарных функций по стандартным подпрограммам. Поэтому повышение скорости вычкления элементарных функций представляет значительный практический интерес.

Существующие стандартные подпрограммы БЭСМ не являются оптимальными в отношении затраты времени на вычисление элементарных функций.

числение элементарных функций.

Имеется три приема, позволяющие сократить время вычисления многих функций. Первый — следует значительно уменьшить диапазон изменения аргумента. Второй — на данном отрезке изменения аргумента следует аппроксимировать функцию наилучшим полиномом, который обычно содержит меньше членов, чем, например, отрезок ряда, обеспечивающий ту же точность. Третий — полученный полином следует подсчитывать по схеме Горнера непосредственно (без цикла).

В частности, при использовании в ДЗУ (диодное запоминающее устройство) дополнительных 8 ячеек для подпрограммы вычисления логарифма и 12 ячеек для подпрограммы

В частности, при использований в ДЗУ (диодное запоминающее устройство) дополнительных 8 ячеек для подпрограммы вычисления логарифма и 12 ячеек для подпрограммы вычисления показательной функции можно сократить время вычисления показательной функции приблизительно в 2 раза и скорость вычисления показательной функции приблизительно в 2,5 раза. При увеличении существующей подпрограммы вычисления функции «арктангенс» приблизительно в два раза можно повысить скорость ее вычисления приблизительно в 12 раз. Реально возможно повысить скорость вычисления тригонометрических функций приблизительно в два раза.

Доклад 33

(тезисы)

ГАВРИЛОВ М. А. — доктор технических наук

АНАЛИТИЧЕСКИЕ И ГРАФО-АНАЛИТИЧЕСКИЕ методы синтеза декодирующих устроиств

- 1. Синтез декодирующих устройств требует решения сле-
- дующих задач: а) выбор системы сигналов, обладающей наибольшей эф-
- фективностью и надежностью;
 б) выбор технических средств, которые позволяли бы реализовать систему сигналов с наименьшим количеством ментов.
- 2. Задача эффективности системы сигналов сводится к вы-5 эздача эффективности системы сигналов сводится к вы-бору системы комбинирования, при которой заданиюе число сигналов могло бы быть передано при помощи наименьшего количества импульсов. С точки зрения комбинирования в этом отношении нужно различать полные и неполные элементы комбинирования. Имеющиеся в распоряжении проектировщика средства (каналы связи, импульсы и физические свойства их, используемые для комбинирования) могут быть сведены к полным и неполным элементам комбинирования при помощи анализа таблиц двоичных чисел, характеризующих физически реализуемые комбинации.
- 3. Задача надежности передачи сигналов сводится к вы-5 задача надежности передачи сигналов сводител к обору из всех возможных комбинаций таких, которые не давали бы перехода одного из сигналов в другой. Различают системы сигналов с защитным отказом (с обнаружением ошибки) и с исправлением искажения (самокорректирующиеся 🛫 ошном) и с исправлением искажения (самокорректирующиеся сигналы). Качественное рассмотрение вопроса о выборе на-дежной системы сигналов удобно производить при помощи графов, представляющих собой выбранные сигналы в виде графов, представляющих сооби выпоранные сигналы в виде узлов и возможные переходы между ними при заданных иска-жениях в виде ветвей. Количественная оценка надежности передачи требует анализа помехоустойчивости. Необходимо отметить, что в том и другом случае нужню учитывать не только помехи в канале связи, но и искажения, даваемые повреждениями элементов кодирующих и декодирующих уст-
- Декодирующие устрейства с защитным отказом принад-лежат к однотактным релейным схемам, 3 с исправлением искажения к многотактным. Количественные соотношения можду числом политу в неволичу элементов комбинирования этределовотся на основе анализа таблиц и числом сипиалов

двоичных чисел, характеризующих систему сигналов. Эффективность систем сигналов значительно увеличивается при комбинированном использовании физических свойств импульсов, используемых для выбора. Общие вопросы построения систем сигналов с исправлением искажений еще не исследованы. Описанные в литературе системы сигналов (Хемминга, Вагнера)

санные в литературе системы сигналов (Хемминга, Вагнера) являются, очевидно, частными случаями.

5. Задача создания релейной схемы, реализующей систему сигналов, относится к теории релейных схем и в принципе представляет собой задачу построения (1, К) — полюсинка. Имеется ряд методов решения этой задачи (аналитические, графические, табличные). Автором предложен метод, базирующийся на формулах ложных цепей. Использование этого метода дает возможность при применении вентилыных элементов получить схему, требующую всего одного переключающего контакта на каждом из элементов. Это дает непосредственный переход к применению электронных и кристаллических элементов. Для схем с электронных и кристаллических эленальным является применение комбинирования на обмотках. нальным является применение комбинирования на обмотках.

Поклад 34 (тезисы)

Sanitized Copy Approved for Release 2010/07/08 : CIA-RDP81-01043R000400100011-0

ЕРШОВ А. П. — научный сотрудник

ПРОГРАММИРУЮЩАЯ ПРОГРАММА для БЭСМ АН СССР

Подготовка задания к работе с ПП состоит в составлении логической схемы программы, т. е. в представлении задачи в виде последовательности нескольких типов стандартных

В виде последовательности нескольких типов стандартных соператоров». Каждый такой оператор представляет собой решение некоторой стандартной задачи. ПП различает следующие типы стандартных операторов: арифметический оператор А, логический оператор Р, цикл, нестандартный оператор Н.

ПП состоит из трех частей, работающих одна вслед за другой, ПП-1, ПП-2 и ПП-3. ПП-1, последовательно обрабатывая операторы А, Р и Н, расписывает формулы арифметических операторов в готовую программу (при этом производится максимальная экономия рабочих ячеек в пределах одного оператора). Строит команды перевачи управления одного оператора), строит команды передачи управления, реализующие логические операторы, а оператор Н передает без изменений в программу. ПП-2, обрабатывая циклы, строит все команды управления, относящиеся к циклу, и формирует константы переадресации и начальный вид переменных команд, причем все команды управления, относящиеся к программе, получаются в относительных адресах. ПП-3 производит распределение памяти, окончательную компоновку программы, печать готовой программы.

граммы, печать готовои программы. Описываемая программы программы содержит 1 500 команд и является 2-м вариантом программы, составленным в октябре 1955 г. — январе 1956 г. 1-й вариант был составлен в октябре 1954 г. — апреле 1955 г. Л. Н. Королевым (ПП-1), А. П. Ершовым (ПП-2) и А. И. Срагович (ПП-3).

Некоторые перспективы развития этого направления автоматического программирования:

 Использование готовых типовых программ.
 Передача машине составления схемы программы по схеме счета, исходя из требования получения лучшего варианта программы.

Доклад 35 (тезисы)

ЖОГОЛЕВ Е. А. — научный сотрудник

ОПЫТ РАБОТЫ НА МАШИНЕ М-2 С АВТОМАТИЧЕСКИМ УЧЕТОМ МАСШТАБОВ

Данное сообщение посвящено некоторым вопросам программирования с помощью метода «плавающих масштабов» при работе на фиксированной запятой.

при расоте на фиксированной запятои.
Сущность метода «плавающих масштабов», примененього для ряда задач сотрудниками Вычислительного центра МГУ на машине М-2 ЭНИН АН СССР, состоит в том, что некоторые числа хранятся в двух ячейках ЗУ: в одной — «мантисса», а в другой — «порядок» (или «масштаб») числа; по ходу вычислений возникает необходимость изменения масштабов тех или иных величин, что производится автоматически программой.

Рассматриваются стандартные подпрограммы основных элементарных функций, составленных в МГУ для данного метода: подпрограммы перевода из десятиричной системы счи-

сления в двоичную и из двоичной в десятиричную. Кроме того, рассматриваются программы интегрирования Кроме того, рассматриваются программы интегрирования систем дифференциальных уравнений по методу Рунге-Кутта с видоизменением Гилла, когда правые части являются полиномами от искомых функций, а также, когда правые части представляют собой дробь из тригнонометрических полиномов. Производится сравнение с программами, составленными на плавающую запятую, показываются недостатки и преимущества обому методов

щества обоих методов.

На примере решения алгебраического уравнения методом Лобачевского показывается преимущество метода «плавающих масштабов» перед работой на плавающей запятой.

Доклад 36 (тезисы)

Sanitized Copy Approved for Release 2010/07/08 : CIA-RDP81-01043R000400100011-0

КАРМАЗИНА Л. Н. — кандидат физ-мат. ьаук

вычисление таблиц на машинах

1. С 1952 г. выпускается серия «Математические таблицы ИТМ и ВТ АН СССР».

ГМ и ВТ АН СССР».
Специфика работы над таблицами состоит в необходимои вывода и контроля большого числа значений.
Вычисление, контроль таблиц, подготовка их к изданию,

Вычисление, контроль таолив, подготовка их к изданию, ведение корректур выполняется из машинах.
При системе непосредственного вывода всех табличных значений вычисление таблиц на БЭСМ является малополуктивным. Возможности САМ для вычисления таблиц очень страциями.

2. Основным материалом при контроле вычисленных таблиц, а также их подготовке к изданию и корректурах является

лиц, а также их подготовке к изданию и корректурах является массив перфокарт. Его изготовление и контроль выполняется на САМ, основной метод контроля — проверка разностей. З. До сих пор таблицы издаются с помощью типографского набора, поэтому приходится вести большую работу с корректурами. Корректуры ведутся ручным способом н∌ контрольниках. Значительно надежнее и дешевле фотосветный способ издания таблиц, осуществление которого упирается в отсутствие необходимого оборудования.

4. Задачи:

4. Задачи:

1. Разработка методов вычисления таблиц, позволяющих разработка методов вычисления таблиц, позволяющих более рационально использовать имеющуюся вычислительную технику и создание специализированных машин. 2. Применение вычислительных машин для разработки

таблиц

3. Автоматизация работ, связанных с изданием.

Доклад 37 (тезисы)

КАЦКОВА О. Н.— научный сотрудник, ЧУШКИН П. И.— научный сотрудник, ШМЫГЛЕВСКИЙ Ю. Д.— научный сотрудник.

Некоторые задачи газовой динамики

1. Расчет обтекания профилей и тел вращения околозвуковым потенциальным потоком газа (П. И. Чушкин).

Для решения этой задачи применен метод интегральных
равненя неразрывности и
улавнения координатах,
интегрируются по координате,
интегрируются по координате,
осотношениях подученных таким обрасотношениях полученных таким образапроксимируются полиномами по этой координате.
Тогда
запача приближенно сводится к краевой задаче для систекоординате.

координате.
Посредством многократного численного интегрирования этой системы на электронной счетной машине подбирается решение, удовлетворяющее краевым условиям. Этот подбор можно осуществлять автоматически по специальной программе. Составление интегральных соотношений до линий, промежуточных между границей профиля или тела и бесконеч-

ме. Составление интегральных соотношений до линий, про-межуточных между границей профиля или тела и бесконеч-ностью, позволяет повышать точность аппроксимации и уточнять приближенное решение. Подобным методом были определены критические числа Маха для эллипсов и эллипсоидов вращения. В качестве примера этим методом рассчитывались также дозвуковое об-текание посфиля Жуковского и обтекание эллипсов звуковым екание профиля Жуковского и обтекание эллипсов звуковым

потоком газа.

2. Осесимметричное сверхзвуковое течение свободно расширяющегося газа с плоской переходной поверхностью (О. Н. Каикова и Ю. Д. Шмыглевский).

Обычные уравнения газовой динамики преобразуются к новым координатам — функции тока и характеристической переменной, меняющейся вдоль характеристик первого семейства. В окрестности переходной поверхности решение для искомых функций (угла Маха, угла наклона скорости и расстояния от точки до эси потока) найдено в виде степенных рядов по характеристической переменной. Для построения решения в остальной сверхзвуковой области течения применен метод

характеристик. Вблизи оси потока раскрыта неопределенность осесимметричного члена соотношений, выполняющихся вдоль характеристик.
Получение решения с нужной точностью связано с очень трудоемкими расчетами, которые были проведены на электронной счетной машине БЭСМ. Решение рассматриваемой задачи ависит от отношения удельных теплоемкостей газа при по-стоянном давлении и постоянном объеме. Были рассчитаны таблицы искомых функций для следующих значений этого отношения: 1,14; 1,33; 1,40 и 1,666.

Локлад 38 (тезисы)

ҚОРОЛЮҚ В. С. — кандидат физ.-мат. наук Ю Щ ЕНҚО Е. Л. — кандидат физ.-мат. наук

определение линии уровня функции двух переменных на быстродействующих ЭЛЕКТРОННЫХ СЧЕТНЫХ МАШИНАХ

Для определения линии уровня функции двух переменных используются схемы блуждания по сторонам квадратов сети параллельных прямых с фиксированным шагом.
Принятые схемы блуждания осуществляются в виде простых и экономных программ для быстродействующих счетных машин, позволяющих фиксировать вершины квадратов, имеющих общие точки с линией уровня.

Доклад 39 (тезисы)

КУЛАГИНА О. С. — научный сотрудник

о машинном переводе с французского языка НА РУССКИЙ

- Выработка алгоритма перевода.
 Построение словаря для машинного перевода:
 а) выбор переводов;
 б) характер словарной информации;
 в) словарь оборотов.
 Структура алгоритма перевода:
- - а) принцип поиска в словаре;б) обработка оборотов;
- - орасотка осоротов,
 различение омонимов;
 группа анализирующих правил;
 характер информации о переводимой фразе, получаемой анализирующими правилами;
 группа синтезирующих правил.
- Грамматические особенности машинного перевода:
 а) разделение глаголов на группы;
 предложные коды.

- 5. Структура программы перевода:а) порядок работы правил перевода.

Доклад 40 (тезисы)

ЛЮБИМСКИЙ Э. З.— научный сотрудник КАМЫНИН С. С. — лаборант

АВТОМАТИЗАЦИЯ ПРОГРАММИРОВАНИЯ

1. Программирующие программы

1. Программирующие программы
Программирующая программа как пример формализации сложной задачи. Дается определение счетной задачи как задания алгоритма и рассматриваются различные способы описания алгоритмов для ручного счета и для машины. Отмечается необходимость расширения алгоритма при реализации его на машине исследуется состав расширенного алгоритма. Вводятся обобщенные команды (операторы) и схема программы как описание расширенного алгоритма. Рассматрираммы как описание расширенного алгоритма. Рассматринаются способы автоматизации перевода обобщенных командина «язык машины». Приводится несколько алгоритмов программирующей программы и анализируется ее опыт эксплуатации.

2. Дальнейшие пути автоматизации программирования

Рассматриваются различные пути автоматизации програми подправания путем применения стандартных подсхем и подпрограмм и автоматизации составления расширенного алгоритма

по исходному. Исследуются принципы построения программы, составляющей схемы (п. с. с.) и возможные принципы построения программы, распределяющей память.

3. Автоматизация контроля

Рассматриваются задачи контроля на различных стадиях автоматизации программирования. Способы контроля и методы автоматизации контроля.

Доклад 41 (тезисы)

Sanitized Copy Approved for Release 2010/07/08 : CIA-RDP81-01043R000400100011-0

ЛЯПУНОВ А. А. — доктор физ.-мат. наук ЯНОВЮ. И. — научный сотрудник

О ЛОГИЧЕСКИХ СХЕМАХ ПРОГРАММ

- 1. Необходимость расчленения процесса программирования на возможь более автономные этапы.
- на возможно более автономные этапы.

 2. Выдел-ние элементарных операторов и основных управляющих пара-етров. Построение схемы счета.

 3. Операторы управления и их основные типы. Переход от схемы счета к схеме программы.

 4. Методика построения программы при данной схеме.

 5. Содержательное преобразование схемы счета и схемы программы с целью улучшения окончательной программы.

 6. Понятие о схемах алгоритмов.

 7. Тождественные преобразования алгоритмов и их использование для улучшения программ.

 8. Об использовании схем программ в некоторых вопросах кибернетики.

- кибернетики.

Доклад 42 (тезисы)

ПУРТО В. А.— кандидат филологических наук МОЛОШНАЯ Т. Н.— научный сотрудник О МАШИННОМ ПЕРЕВОДЕ С АНГЛИЙСКОГО ЯЗЫКА НА РУССКИЯ

(Некоторые лингвистические вопросы)

- (Некоторые лингвистические вопросы)

 I. Краткий очерк истории постановки проблемы машинного перевода за рубежом и методов её решения.

 II. Пути осуществления машинного перевода с английского языка на русский и возникающие при этом задачи.

 1) Необхолимость формального анализа грамматической структуры языка при машинном переводе.

 2) Сравнительно небольшое количество словоизмерительных аффиксов в английском языке. Лексико-грамматическая омонимия.
- ных аффиксов в аптилистика в правильного монимия.

 3) Снятие омонимии как необходимое условие правильного анализа английской и построения русской фразы.

 4) Методы анализа английского предложения:
- а) Выделение классов слов английского языка по фор-
- мальным признакам.

 6) Выделение типичных структур английского предложения.
- в) Метод анализа структур путем деления предложения на двучленные (или трехчленные) связи. Последовательные ступени анализа предложения по дву- и трехчленным связям. «Развертывание» проанализированной английской струк-
- туры в русскую структуру. Возможности дополнительной проверки правильности апализа английского предложения путем применения метода
- Бар-Хиллела: рар-лилиела:
 а) Классификация английских слов на имена и предикативные слова. Принципы индексации.
 б) Служебные слова и их индексация.
 - в) Отражение структуры английского предложения приня-
- той индексацией.
- той индексацией.

 г) Проверка правильности подбора индексов для членов предложения по конечному результату, полученному в результате сокращения; возможность снятия омонимии.

 б) Элементы организации словаря для машинного перевода с английского языка на русский с учетом особенностей английского языка и правилами анализа английского предложения.

Доклад 43 (тезисы)

Sanitized Copy Approved for Release 2010/07/08 : CIA-RDP81-01043R000400100011-0

РАМЕЕВ Б. И. — инженер

ОБ ОДНОМ МЕТОДЕ РАСЧЕТА НАДЕЖНОСТИ ЭЛЕКТРОННЫХ СХЕМ ДИСКРЕТНОГО ДЕЙСТВИЯ

1. Надежность работы является одним из основных параметров вычислительной машины. Известны несколько работ, рассматривающих вопросы расчета надежности отдельных СКРМ Необходим общей выста расчета.

схем. Необходим общий метод расчета.

2. Деление электрических цепей в зависимости от математического аппарата, применяемого для их анализа, на цепи линейные и нелинейные не полностью характеризует электрическую цепь. Знание характера изменения переменных величин может существенно изменить метод изучения данной электрической цепи.

Целесообразно деление электрических цепей по характеру изменения переменных величин на схемы дискретного и непрерывного действия.

Зависимость между переменными величинами на входе и выходе схемы дискретного действия задается логической функцией и может быть в реальных схемах реализована абсолютно точно в отличие от схем непрерывного действия. Характеристика достоверности работы схемы дискретного действия не имеет плавного перехода: схема или работает правильно—тогда основная функциональная зависимость выполняется абсолютно точно, или работает неправильно—тогда основная функциональная зависимость выполняется с недопустимо большой ошибкой.

Если схема при любых допустимых изменениях параметров элементов, включая и изменения питающих напряжений, безошибочно выполняет заданное логическое действие, то такая схема может быть названа надежной.

кай схема может овые назрана надежнои.

Изучение реальных электрических цепей непрерывного действия составляет предмет теории точности. По аналогии с этим изучение реальных цепей дискретного действия может быть предметом теории надежности электрических цепей диск

кретного действия.

Теория надежности должна решать следующие основные задачи:

 а) по заданным отклонениям параметров (допускам) всех входящих в схему элементов и отклонениям напряжения всех источников питания для заданиюй схемы определить надежность работы (прямая задача или задача анализа схемы); б) по заданной надежности данной схемы определить допустимые отклонения параметров всех входящих в схему элементов и допустимые отклонения напряжений всех источников питания (обратная задача или задача синтеза схемы).

3. В силу прерывности основной функциональной зависимости и относительно больших значений отклонений параметров (10—30% от номинала) положения и методы расчета известных теорий точности не приемлемы при рассмотрении электрических цепей дискретного действия.

Расчет надежности сколь угодно сложной схемы дискретного действия может быть сведен к расчету надежности от-

дельных простейших схем.

Некоторые дополнения к известным способам расчета с помощью вольтамперных характеристик делают графический метод определения напряжений в отдельных точках достаточно полным и общим для расчета очень сложных нелинейных электрический цепей.

Несложные правила позволяют рассчитывать нелинейные цепи очень просто с учетом отклонений параметров элементов. Расчет может быть выполнен как на наихудшее, так и на вепоятное сочетание погрешностей элементов.

роятное сочетание погрешностей элементов.
4. Для упрощения и ускорения расчетов целесообразно пользование номограммами. Возможно решение как прямой,

так и обратной задачи.

5. Основные правила построения вольтамперных характеристик для простых и сложных цепей с учетом отклонения параметров и оценка погрешностей метода расчета.

6. Примеры расчета некоторых схем.

Доклад 44 (тезисы)

Sanitized Copy Approved for Release 2010/07/08 : CIA-RDP81-01043R000400100011-0

ШРЕЙДЕР Ю. А. — кандидат физ.-мат. наук

МЕТОД МОНТЕ-КАРЛО

Схема алгоритма, даваемого методом Монте-Карло для

решения ряда важнейших задач, требует запоминания малого числа промежуточных результатов. Ошибка, получаемая в решении по методу Монте-Карло, определяется числом испытаний. Ошибки округления и арифметические ошибки в отдельных испытаниях не влиямот существенно на точность результата. Реально достижимая точность составляет около трех десятичных знаков.

Областью применения метода Монте-Карло являются за-дачи, где не требуется слишком большая точность, но сама задача носит сложную структуру. В первую очередь сюда относятся краевые задачи для уравнений в частных производных, вычисления многомерных интегралов, решение интегральных уравнений. Особенно удобны задачи, имеющие вероят-ностную природу: задачи теории рассеяния, прохождения ча-стиц через вещество, теории стрельбы. Ряд задач, решение которых обычными методами вызывает большие вычислительные трудности или вообще нереально в настоящее время, могут быть эффективно решены с помощью метода Монте-Карло.

Для реализации метода, можно использовать существующие машины, эффективность применения которых можно увеличить созданием специальных приставок. Но более эффективным явпяется конструирование специализированных машин, решаю-щих либо отдельный класс задач по методу Монте-Карло, либо допускающих возможность решения широкого класса задач по этому методу (машины универсального типа). По-следние два типа машин должны быть существенно проще цифровых машин общего назначения. Доклад 45

ШУРА-БУРА М. Р. — доктор физ.-мат. наук ТРИФОНОВ Н. П. — кандидат физ.-мат. наук

ОПЫТ ПРОГРАММИРОВАНИЯ И РЕШЕНИЯ НЕКОТОРЫХ МАТЕМАТИЧЕСКИХ ЗАДАЧ НА МАШИНЕ М-2 ЭНИН АН СССР В МГУ

МГУ начал регулярно эксплуатировать машину М-2 сов-местно с ЭНИН АН СССР с конца декабря 1955 г.

Тематика предложенных задач весьма разнообразна (си-стемы обыкновенных дифференциальных уравнений, отыскание экстремумов функции трех переменных, системы линейных алгебранческих и трансцендентных уравнений, вычисление несоб-ственных интегралов, составление таблиц и т. д.), однако во всех задачах имеется много сходных частей. Поэтому было решено сначала составить библиотеку стандартных подпро-

Считаем, что в большинстве случаев работа на фиксированной запятой с постоянными масштабами нецелесообразна, поэтому работаем в двух режимах: на плавающей запятой и на фиксированной запятой с «плавающими масштабами».

фуксированной запитой с «плавающими масштаовми». В соответствии с этим библиотека стандартных подпрограмм составлена из двух частей, применительно к каждому из этих режимов. (О работе с плавающими масштабами будет отдельное сообщение).

Оставлена программа ввода, которая контролирует правильность ввода материала с перфоленты и ставит стандартные подпрограммы и другой материал на соответствующие места ЗУ

Методика отладки задач разработана еще слабо. Решение задач по отлаженным программам проводится, как правило, сменными инженерами, без присутствия математиков.

Доклад 46 (тезисы)

ЭТЕРМАН И. И. — кандидат физ.-мат. наук

ОСОБЕННОСТИ ПРОГРАММИРОВАНИЯ

Назначение и краткая характеристика машины «Урал». Форма представления чисел и величина разрядной сетки, емкостя накопителей и временные параметры, внешние устройства машины

НА МАШИНЕ «УРАЛ»

остав операции и структура команд. Некоторые особенсостав операций выполняемых машиной. Примеры простых программ. Аппроксимационные формулы и программы для реализации в машине некоторых элементарных функций. Осо-бенности программ для машин с фиксированной запатой, При-меры рабочих программ для решения задач на машине «Урал»

меры рабочих программ для решения задач на машине «урал» и их параметры (емкость накопителей, количество команд, время решения и т. п.).

Специальные методы программирования для машин с фиксированиой запятой, использование подпрограмм для выполнения операций с плавающей запятой, автоматическая коргостирова масштабов и масштабовых коэффициентов.

ректировка масштабов и масштабных коэффициентов. Характеристика испытательных программ и методы контроля правильности работы машины.

Доклад 47

ЯБЛОНСКИЙ С. В.— кандидат физ.-мат. наук **ВИЧОЕТ И АЗИТОК ВАНРАНЕОТОНМ** электрических схем

В приложениях часто встречаются устройства, которые имеют, вообще говоря, *п* входов и *т* выходов, каждые из которых могут пребывать в одном из *k* состояний; причем состояния выходных каналов однозначно определяются состояния выходных каналов однозначно определяются состояния входных каналов можим характепизовать состояния состояния выходных каналов однодначно определяются со-стоянием входных каналов. Можно характеризовать состояния этих каналов посредством целых чисел 0, 1, 2, ..., k-1. Оче-видно, что работа таких устройств описывается набором не-которых *т* функций от л переменных таким образом, что значения аргументов указывают состояния входов, а значения функций — состояния выходов. Совокупность всех таких функ-пий образует К-значное логическое исчисление.

имдии — состояния выходов. Совокунноств всех также фа образует К-значное логическое исчисление. Функции могут задаваться с помощью таблиц. Однако та кое задание связано с громоздкой записью даже в случае К:2 (т. е. алгебры логики) и небольших л. Возникает задача о задании функций К-значного исчисления посредством формул, построенных из некоторого множества более простых

мул, пострусеных из некоторого множества более простых жэлементарных функций».

Известно, что любая функция К-значной логики может быть записана формулюй, построенной из функций таких си-стем. Такие формулы могут быть интересны также и с той точки зрения, что они в некоторых случаях отображают структуру схем.

структуру схем.

В связи с этим возникает задача о выделении всех тех систем из К-значного исчисления, через которые может быть изображена в виде формулы всякая функция этого исчисления (проблема полноты). Проблема полноты решена во всей общиости. Оказывается, что из всякой такой системы (полной системы) можил выбать полную полемствум, не составляють из стемы) можно выбрать полную подсистему, но состоящую из конечного числа функций. Однако общее решение оказывается практически не эффективным.

практически не эффективным.
В случае произвольного К можно указать ряд достаточных критернев полноты и обладающих эффективностью. Все они опираются на понятие так называемого замкнутого класса. Эффективные критерии получены л тя К-2 Постом и для К-3—докладчиком. В этих случаях проблема полноты допускает полное эффективное решение. Оказывается также, что при К-2 из всякой полной системы можно выбрать полную-недсистему и содержащую не более 4 функций, для К-3 соответствующая полная полсистема содержит не более 7 функций. ветствующая полная подсистема содержит не более 7 функций.

Б. СЕКЦИЯ СПЕЦИАЛИЗИРОВАННЫХ МАШИН

Руководитель — чл.-корр. ТРАПЕЗНИКОВ В. А.

Доклад 48 (тезисы)

БЕДНЯКОВ А. А. — инженер

ЭЛЕКТРОМЕХАНИЧЕСКИЙ ДИФФЕРЕНЦИАЛЬНЫЙ **АНАЛИЗАТОР**

Общая характеристика машины и ее структурные осо-

Общая характеристика машины и ее структурные осо-бенности.

Характеристики основных математических устройств диф-ференциального анализатора (интегрирующих, функциональ-ных, суммирующих, маюжительных), их конструктивные осо-бенности и точность работы устройств при образовании функ-ций и реаливации операций.

Автоматическая настройка, контроль и управление: ком-мутация устройств, ввод условий задачи, контроль правильности настройки, привод независимой переменной и система автома-тического регулирования скоростного режима, следящие систе-мы, выдача результата.

Основные моменты подготовки задач к решению на ма-шине: преобразование уравнений к виду, удобному для реше-ния на машине, составление схем настройки, расчет масшта-бов и масштабных коэффициентов.

Опыт решения некоторых задач на машине и сравнитель-ные оценки приборного решения с численными решениями. Основные методы контроля точности работы отдельных математических устройств и машины в целом.

Доклад 49

(тезисы)

СПЕЦИАЛИЗИРОВАННАЯ АВТОМАТИЧЕСКАЯ ЦИФРОВАЯ ВЫЧИСЛИТЕЛЬНАЯ МАШИНА ТИПА «КРИСТАЛЛ»

БЕЛИКОВ Ю. Н.— инженер РАМЕЕВ Б. И.— инженер

1. Ввеление

Задачи, решаемые на машине «Кристалл»: расчет электронной плотности, структурных амплитуд и значения параметра р². Основные формулы, возможные варианты решения, диапазоны изменения исходных данных.

2. Основные эксплуатационно-технические параметры машины

Общие показатели машины. Время решения 1, 2 и 3 задачи при различных диапазонах изменения исходных данных задач.

3. Состав машины и особенности отдельных устройств

Блок-схема машины. Устройства для ввода исходных дан-

пок-схема машины. Эстроиства для ввода исходных дав-ных и вымода результатов и их сосбенности (автоматический перевод, контроль, скорость работы и др.). Функциональное устройство и его особенности. Выработка значений тригонометрических функций. Сведение углов в первой четчерти: Выработка значений функции ψ (p²). Учет атомного веса. Выработка значений индексов h, k и их преизведения.

4. Работа машины

Процесс решения задачи на машине «Кристалл».

Доклад 50 (тезисы)

ВИНЬКОВ М. П. — научный сотрудник КАЛАШНИКОВ В. А. — научный сотрудник

опыт эксплуатации электронного вычислителя эв-80-3

Опыт эксплуатации электронных вычислителей в ЦАГИ и Опыт эксплуатации электронных вычислителей в ЦАГИ и МГУ показал, что эти машины имеют ряд серьезных эксплуатационных недотактов, обусловленных недоработанностью технического проекта и плохим выполнением отдельных узлов и деталей.

Основными недостатками ЭВ-80-3 являются:

1) малай емкость запоминающего устройства;

2) невозможносто проведения полного контрола вычислений за один прогон перфокарт;

3) низкая надежность работы.

Вследствие этих недостатков фактическая производительность машины составляет лишь несколько процентов от заявленной в технических условиях, а выполнение на ней рас-

явленнои в технических условиях, а выполнение на неи расчетов, связанных жесткими сроками, практически не пред-ставляется возможным.

Выпуск электронных вычислителей может стать целесооб-разным только при условии улучшения машины в следующих направлениях:

- Должна быть увеличена емкость запоминающего устрой-
- ства; 2. Более тщательно должна быть разработана система контроля вычислений;
- контрыля вачисления, 3. Должны быть доработаны в конструктивном отношении» узлы и блоки, работающие ненадежно: редуктор пробивного механизма, блок питания, крепление каскадов и пр.

65

Доклад 51 (тезисы)

ВИНЬКОВ М. П.— научный сотрудник

исследование эксплуатационных своиств ТАБУЛЯТОРОВ ПРИМЕНИТЕЛЬНО К ЗАДАЧАМ, РЕШАРМЫМ НА МАШИНОСЧЕТНЫХ СТАНЦИЯХ **МАШИНОСТРОИТЕЛЬНЫХ ЗАВОДОВ**

Опыт использования счетно-аналитических машин на заводских л.СС свидетельствует о наличии значительных разрывов между эксплуатационными свойсствами табуляторов и предъявляемыми к ним требованиями. Основными недостатками счетных и печатающих механизмов табуляторов Т-4МИ и Т-5 являются:

а) малые их емкости;
б) постоянство или недостаточная гибкость систем разделения счетных механизмов на счетчики;
в) постоянство систем разделения печатающих механизмов на секции; Опыт использования счетно-аналитических машин на за-

г) неприспособленность к печатанию букв, вызывающая необходимость применения цифровых кодов для обозначения признаков.

релейно-контактной счемы табулятора Т-4МИ являются:

нчи являются:

а) отсутствие возможности ввода чисел в обычном виде
и в виде дополнения из любого разряда счетного механиз-

мая в любой другой разряд;
б) отсутствие возможности печатания чисел, фиксирующихся с каком-либо разряде счетного механизма, в любом

тивному применению счетно-аналитических машин для ме-ханизации нормативных расчетов. Для устранения затруднений при решении сложных задач и повышения эффективности применения счетно-аналитиче-ских машин в условиях МСС машиностроительных заводов

эксплуатационные свойства табоуляторов должны быть улуч-нены следующим образом: 1) емкости счетного и печатающего механизмов должны составлять соответственно 140—150 и 110 разрядов;

система разделения счетного и печатающего механиз-мов на счетчики и секции должна обеспечивать возможность наиболее полного использования емкостей;

3) примерно половина емкости счетного механизма должна быть приспособлена к преобразованию вводимых чисел в дополнения;

4) левая часть печатающего механизма должна быть приспособлена к печатанию буквенных обозначений;

спосоолена к печатанию оуквенных ооозначений;
5) построение релейно-контактной схемы должно обеспечивать возможность выполнения всех действий, допускаемых схемой табулятора Т-5, и, кроме того, возможность выполнения умножения табличным методом;
6) построение релейно-контактной схемы должно обеспечивать максимальную простоту настройки машины;
7) конструкции основных мехацизмов, и построение релей.

7) конструкции основных механизмов и построение релейно-контактной схемы должны предусматривать возможность автоматического контроля вычислений.

Поклад 52

(тезисы)

Sanitized Copy Approved for Release 2010/07/08 : CIA-RDP81-01043R000400100011-0

ВИТТЕНБЕРГ И. М. — кандидат технических наук

О РАСШИРЕНИИ ВОЗМОЖНОСТЕЙ ЭЛЕКТРИЧЕСКИХ МОДЕЛЕЙ, РАЗРАБОТАННЫХ В КБ ММиП

- 1. Устройства наблюдения и фиксации решений, получаемых с пс ощью электронных моделей, разработанных в КБ ММиГі
- 2. Решен з краевых задач на электронных моделях методом мини изации с помощью электроннолучевого минимизатора.

- мизатора
 3. Способы решения на электронных моделях систем алгебраических и трансендентных уравнений.
 4. Малая электронная модель типа МЛ-2 для решения системы алгебраических уравнений с 12 неизвестными.
 5. Решение на электронных моделях интегральных уравнений типа Фредгольма и Вольттера методом последовательных приближений. Описание устройства для многократного воспроизведения решения.

Поклад 53 (тезисы)

ВОЛЫНСКИЙ Б. А. — кандидат технических наук

моделирующие устройства для решения КРАЕВЫХ ЗАДАЧ

За последние годы моделирующие устройства для решения краевых задач имели существенное дальнейшее развитие. В течение 1950—1955 гг. были разработаны и созданы специализированные электрические сетки для решения нефтяной проблемы по рациональной разработке нефтяных пластов. Особенностью сеток ЭМ-5, ЭМ-7 и ЭМ-8 является масштабная структура схемы и электронное устройство для решению нестационарных задач. Эти сетки имеют от 2 до 7 тысяч узловых точек и позволяют «включать» сотни скважин.

узловых точек и позволяют «включать» сотни скважин.

Для решений важных задач по определению прочности
в фундаментах, плитах и др. уже более 4-х лет успешно эксплуатируется электрическая модель ЭМ-6 в Гипропроекте.

Для решения магнитной задачи в полупространстве в в
1949 г. была построена первая объемная сетка на 15 000 узловых точек, состоящая из центральной части и периферии, на которой моделируется бесконечность. Значительная погрешность на этой модели привела к принципиально новому

грешность на этои модели привела к принципиально новому методу моделирования с помощью интегральной формы. В 1955 г. Институтом точной механики и вычислительной техники АН СССР был сдан в нормальную эксплуатацию прибор ИЗ (названный авторами «интегрирующими звездами»). Принцип устройства прибора основан на применении дами»). Принцип устройства прибора основан на применении интегральной формы решения с последующим нахождением интеграла при помощи интегрирующих звезд. На приборе находятся первые и вторые производные с точностью до 3—5%. Для этого метода исследован вопрос о погрешности. Ряд важных задач практически может решаться приме-нением комплекса сеток, звезд и быстродействующих машин. Эта возможность требует дополнительных исследований.

Дальнейшими задачами в области развития теории и практики моделирующих устройств для решения краевых задач являются: разработка методики решения задач на сетках и интегрирующих задач по сетках и интегрирующих задач; моделирование элементов циркуляции, сириательного выполняться поделирование элементов циркуляции. той теплоты, нелинейности; исследование возможности при-менения печатиму схем; автоматизация входчого и ветемене.

(тезисы)

Поклад 54

ҚОГАН Б. Я. — кандидат технических наук

ГЛУЗБЕРГ Э. А.

ПРИЕМЫ КОНТРОЛЯ ПРАВИЛЬНОСТИ подготовки и точности решения задач на электрических моделях для решения обыкновенных дифференциальных **УРАВНЕНИЙ**

1. Основы математического аппарата анализа погрешностей электрических моделей для решения обыкновенных дифференциальных уравнений. Примеры.
2. Практические приемы оценки влияния дрейфа усилителей, точности задания коэффициентов и нелинейных функций на точность решения задач на электромоделях.
3. Сравнение решения на электромоделя с численным ре-

ций на точность решения задач на электромоделях.

3. Сравнение решения на электромодели с численным решением для одного из вариантов, как один из методов оценки точности исследования задач на электромоделях. Значение накопления опытных данных по точности моделирования некоторых типов задач. Примеры.

4. Методы проверки правильности расчета масштабов и коэффициентов передачи блоков, а также правильности настройки функциональных блоков и их коммутации.

5. Некоторые результаты испытаний электромоделей в КБ ММиП.

КБ ММиП.

Доклад 55 (тезисы)

применение электронных моделирующих УСТАНОВОК ДЛЯ ИССЛЕДОВАНИЯ СИСТЕМ **АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ**

1. Методы моделирования систем автоматического регулирования и их краткая характеристика. Модели—аналоги и счетно-решающие устройства. Моделирующая установка как вычислительная машина и ее место в общем комплексе средств вычислительной техники. Тенденции и перспективы развития этих устройств развития этих устройств.
2. Классификация систем автоматического регулирования.

2. Классификация систем автоматического регулирования. Требования, предъявляемые к техническим характеристикам и составу современных электронных моделей, предиазначенных для исследования систем автоматического регулирования. Воз-можности использования элементов электронных моделей в качестве составных частей системы автоматического регули-

рования.

3. Принципы построения электронных моделей, не требующих стабилизированных источников питания. Методы увеличения длительности решения задач на электронных моделях. Моделирующая установка ЭМУ-6 ИАТ АН СССР.

4. Применение электронных моделирующих установок для анализа и синтеза систем автоматического регулирования. Нахождение границ области устойчивости. Вычисление знанизирования пределение связи инфа

Нахождение границ ооласти устоичивости. Бычасленае значения средне-квадратичной ошибки, определение связи интегральных оценок с качеством переходного процесса, получение общих зависимостей для нелинейных систем.

Пример исследования простейшей нелинейной системы. Исследования с реальными элементами аппаратуры.

МАСЛОВ Н. Г.— инженер РАМЕЕВБ. И.—инженер

АВТОМАТИЧЕСКАЯ ВЫЧИСЛИТЕЛЬНАЯ

Доклад 57

(тезисы)

машина для вычисления сумм парных ПРОИЗВЕДЕНИЙ («погода»)

Назначение и область применения — решение задач, сво-дящихся к вычислению сумм парных произведений. Типовая задача — умножение матриц. Задачи: разложение в ряды и суммирование рядов (Фурье, по сферическим функциям и др.), решение систем линейных алгебранческих уравнений методом итераций (простой итерации, методом Зейделя), вычисление значений полинома по схеме Горнера.

Укрупненная блок-схема машины

Анализ особенностей численных методов решения рассмотренных залач: упорядоченное расположение числового материала, большое количество исходных данных при относительно небольшом количестве операций. Структурная схема машины. Основные устройства машины и их назначение. Общая схема работы машины.

Устройства преобразования чисел и управления. Назначение устройсте. Система счисления, Перевод чисел из одной системы счисления в другую одновременно с арифметической операцией в специальном блоке. Операции над числами. Блокстема Работа с числами пониженной разрядности. Система

схема. Работа с числами пониженной разрядности. Система команд.

тапд. Конструктивные особенности машины. Основные параметры машины и сравнение с другими машинами.

Доклад 56 (тезисы)

КУЗЬМИНОК Г. К. -- инженер

ОПЫТ ЭКСПЛУАТАЦИИ МОДЕЛИРУЮЩИХ ВЫЧИСЛИТЕЛЬНЫХ УСТРОИСТВ

1. Обзор моделирующих установок (универсальных и спе-

 Оозор моделирующих установок (универсальных и спе-щализированных), разработанных Институтом точной меха-ники и вычислительной техники Академии наук СССР.
 Опыт эксклуатащии: а) электроинтегратора ЭИ-12 для решения уравнений Лапласа и Пуассона; б) моделирующей установки, предназначенной для решения уравнений парабо-лического типа: а) электроиноламповых интеграторов ЭЛИ-12 лического типа; в) электронноламповых интеграторов ЭЛИ-12

3. Перспективы дальнейшего развития моделирующих установок.

Доклад 58 (тезисы)

МАЙОРОВ Ф. В. — доктор технических наук

ПРИМЕНЕНИЕ ЦИФРОВЫХ ИНТЕГРИРУЮЩИХ МАШИН ДЛЯ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ОБЪЕКТАМИ

1. Предлагаемая схема цифровой интегрирующей машины с частотой синхронизирующих импульсов в 1 магц и выше позволяет получить весьма высокие скорости решения задачи при автоматическом управлении объектами.
2. Применение цифровых интегрирующих машин обеспечи-

вает непрерывность процесса управления объектами, а также простоту и гибкость настройки машины для решения различ-

3. Предлагаемые многоканальные преобразовательные и функциональные устройства позволяют сравнительно простыми средствами осуществить ввод в интегрирующую машину различной информации, в том числе и табличные данные большого объема.

4. Компактность и экономичность цифровых интегрирующих машин позволяет использовать их для многих практических применений.

Доклад 59 (тезисы)

НИКОЛАЕВ Н. С. — инженер

СПЕЦИАЛИЗИРОВАННАЯ СЕТОЧНАЯ ЭЛЕКТРОМОДЕЛЬ ТИПА ЭИ-С

Решение задач подземной гидравлики, связанных с рациональной разработкой нефтяных месторождений при строгой

нальнои разрасоткои нефтяных месторождении при строгои их постановке, сводится к решению дифференциальных уравнений в частных производных.

Стационарные задачи (водонапорный режим) сводятся к уравнениям типа Лапласса и нестационарные (упругий режим) — к уравнениям типа Фурье. Аналитические методы решения этих уравнений имеются либо для частных случаев (задачи Дирихле-Неймана для прямоугольной области или круга), либо настолько сложны, что их практическое применение затруднено.

Численные методы, в частности конечно-разностный, позволяют получить решения для широкого класса уравнений в частных производ: ых, не ограничивая исходные данные.
Однако конечно-разностный метод приводит к необходи-

мости решения систем алгебраических уравнений порядка не-скольких тысяч. Даже применение быстродействующих вы-числительных машин дискретного действия в этом случае не реально из-за необходимости огромного объема памяти и за-труднений в вариациях параметров.

Исходные данные для решения нефтяных задач получают в результате геологических исследований и вероятная ошибка их достигает $15 \div 20\,\%$, следовательно, требования к точности

решения не могут быть высоки.

Специализированная электромодель типа ЭИ-С, разработанная и спроектированияя в 1954—1955 гг. позволяет решать описанные задачи с погрешностью порядка несьольких про-

Исследуемая область моделируется сеткой активных со-

противлений, имеющей около 13 тысяч угловых т.чек. Упругая емкость пласта моделируется с помощью конден-

саторов, подключаемых к узловым точкам сетки. Модель позволяет исследовать месторождения, предпола-гающие наличие до 500 эксплуатационных и до 250 инжекционных скважин.

Скважины моделируются специальными каналами, общее количество которых 750.

74

Каналы могут быть автоматически включены или выключены несколько раз за время решения по заданной про-

Также может быть осуществлено автоматическое переключение каналов из режима задания граничных условий II-го рода (дебит) в режим задания граничных условий I-го рода (давление) в ходе решения задачи. Возможно моделирование переменного во времени давле-

розможно моделирование персывенного в чения или дебита скражин по заданному графику.

Задание начальных условий (потенциалов на узловых точках сетки в начальный момент времени) производится через

те же конденсаторы сетки подключением их обратных обкладок к специальному делителю начальных условий.
При решении нестационарных задач решение на модели
периодически повторяется с частотой 4—8 герч.
До приведения схемы к исходному состоянию во временном
цикле модели отведено время порядка 0,1 сек, в течение которого производится разряд емкостей сетки с помощью электронных ключей.

ных ключей.
Мгновенные значения этих функций могут быть измерены с помощью компенсационных измерительных устройств.

(тезисы)

НИКОЛАЕВ Н. С. — инженер

ПРИМЕНЕНИЕ СЧЕТНО-РЕШАЮШЕЙ ТЕХНИКИ на железнодорожном транспорте

Для составления графиков движения поездов, при проектировании железнодорожных линий, новых типов подвижного состава и т. п., производятся тяговые и тепловые расчеты, а также расчеты потребляемой электроэнергии и затрачиваемой механической работы.

В теговых расчетах производится разначие поличение натичейного

В тяговых расчетах производится решение нелинейного дифференциального уравнения движения поезда. В это уравнение в качестве исходных данных задаются нелинейные занисимости тяговых и тормозных сил от скорости и профиль пути. В результате решения должны быть получены графики зависимости скорости и времени от пути.

зависимости скорости и времени от пути.
При тепловых расчетах производится решение нелинейного сифференциального уравнения нагрева обмоток тяговых электромашин электровозов и тепловозов. В качестве исходных данных в этом уравнении задаются нелинейные зависимости тепловых параметров от тока электромашин. В результате решения должен быть получен график зависимости нагрева электромашин от пути. При расчете расхода электроэнергии решается дифференциальное уравнение 1-го порядка. В качестве исходных данных в этом уравнения задаются нелиненные зависимости мощности от скорости. В результате решения определяется количество электроэнергии или механической работы, затрачиваемой локомативом при конкретных условиях боты, затрачиваемой локомативом при конкретных условиях движения поезда.

До настоящего времени тяговые и тепловые расчеты про-

До настоящего времени тяговые и тепловые расчеты про-изводились графическим интегрированием. Трудоемкость этих работ приковывала большое число специалистов и порождала всякого рода упрощения, снижавшие точность расчетов. В 1954 г. разработана специализированиая нелинейная эле-ктромодель АТР-1 для тяговых расчетов и в 1955—1956. гг. — нелинейная электромодель для тепловых расчетов, расчетов расхода электроморель или механической работы — АТР-2. В настоящее время начат серийный выпуск этих моделей. Ре-зультаты опытной эксплуатации и испытаний опытных образ-нов характеризуют достаточную точность решения на моделях оучитаты опытной эксплуа ации и испытании опытных образ-цов характеризуют достаточную точность решения на моделях описанных задач.

описанных задач. С применением их становятся реальными многочисленные варианты расчетов для выбора оптимальных результатов.

Возможность мгновенного решения уравнения движения поезда позволяет принципиально решить вопрос автоматического управления поездной работой локоматива. Автоматизация управления локомативом позволит исключить выпияние субъективных факторов и обеспечить выполнение графика движения поезда с большой точностью, обеспечит более экономичный режим и повысит безопасность движения. Наличие на многих железнодорожных станциях механизированных сортировочных горок, к сожалению, не позволяет до сих пор устранить ручной труд башмачников, ликвидировать «окна» между остановившимися отцепами на сортировочных путях и бой вагонов вследствие недопустимой скорости соударения.

орсния. Причиной этому является отсутствие на механизированных Піричипои этому является отсутствие на механизированных сортировочных горках ватоматического управления вагонными замедлителями. Автоматизация этой важнейшей операции должна обеспечить следование отцепов с допустимыми интервалами, на максимально допустимых скоростях при условии их останова в заданном месте с допустимой скоростью сочларения

удерения. Единственным эффективным вариантом такой автоматиза-ции является применение для ее управления специализирован-ной математической машины.

ной математической машины. Математическая машина по данным об отцепе, скатывающимся с горба горки, вычисляет его сопротивление движению и скорость выхода с тормозной позиции замедлителя для конкретных условий профиля и длины пути до места сцепки. Вычисленная скорость определяет время торможения и нужное тормозное усилие, автоматически задаваемое замедлителю.

Затем замеренная фактическая скорость следования отцепа через тормозные позиции автоматически сравнивается с заданной и вносятся соответствующие коррекции.

Доклад 61 (тезисы)

ПЕТРОВ Г. М. — инженер

МАЛЫЕ НЕЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ **МОДЕЛИ МН-7 и МН-10**

- 1. Краткая техническая характеристика малогабаринной электронной нелинейной моделирующей установки типа МП-7 а) область ее применения; б) состав основных решающих элементов; в) специфические особенности, отличающие эту установку от выпускаемых в Союзе и за рубежом.
 2. Особенности установки типа МН-10.

Доклад 62

(тезисы)

СМИРНОВ А. Д. — кандидат технических наук

опыт эксплуатации моделирующих **УСТРОЙСТВ**

1. Опыт эксплуатации электронных моделирующих установок типа ИПТ-4, ИПТ-5, МН-3 и МН-2.

2. Краткая характеристика задач, которые были решены

на этих установках.
3. Эксплуатационные недостатки перечисленных установок

эксплуатационные педостатки перечленения;
 и меры для их устранения.
 Преобразующие устройства к электронным моделям и требования, предъявляемые к ним.
 Методы оценки точности решения и требования к точности отдельных решающих элементов.

Доклад 63 (тезисы)

СУЛИМ М. К. — инженер

ЦИФРОВОЙ ДИФФЕРЕНЦИАЛЬНЫЙ АНАЛИЗАТОР

Принципы построения цифровых дифференциальных ана-лизаторов: применяемый метод интегрирования, схема цифро-вого интегратора, схема образования приращения подинте-гральной функции и самой функции, схема образования при-ращения независимой переменной. Функциональная схема цифрового дифференциального ана-лизатора. Ввод начальных данных. Ввод табличных и экспе-риментальных функций. Выходные устройства машины: печа-тающее устройство, графическое устройство. Специальные режимы работы интеграторов: работа в ре-жиме сумматора, работа в режиме умножения на постоянное число.

число.
Подготовка исходных данных для решения задач на цифровом дифференциальном анализаторе; схема связи интеграторов для решения задачи и шифровальные таблицы; масштабы и масштабыне соотношения.

Состав и параметры построенной машины. Результаты решения задач на машине.

Доклад 64 (тезисы)

ФЕЛЬДБАУМ А. А. -- доктор технических наук

ВОЗМОЖНОСТИ ПРИМЕНЕНИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ ДЛЯ АВТОМАТИЗАЦИИ ПРОИЗВОДСТВЕННЫХ ПРОЦЕССОВ В МЕТАЛЛУРГИИ

1. Основные пути применения вычислительных устройств (ВУ) в автоматических системах (АС)

ВУ, применяемые в АС, можно разделить на три группы: командные ВУ, ВУ обработки информации и ВУ, встроенные в замкнутую цепь АС. Последняя категория ВУ является наи-более перспективной.

2. Краткая характеристика возможностей применения ВУ в металлургических объектах

Возможные объекты автоматизации — прокатные станы, доменные печи, мартеновские, электросталеплавильные печи и т. д. В настоящее время применение ВУ в первую очерсъе целесообразно для таких объектов, как дуговая электросталеплавильная печь и непрерывный листовой стан холодной прокатки.

3. Основные направления работы при разработке ВУ для автоматизации указанных выше объектов

Основными направлениями в части разработки ВУ являются: теоретическое изучение идеализированных систем, построение электронных моделей систем, участие в разработке блок-схемы автоматизации, разработка блоков ВУ, испытание аппаратуры ВУ на электронной модели объекта и т. д.

4. Работа по автоматизации дуговой электросталеплавильной печи

По данным ЦЛА НИИЧЕРМЕТ и совместно с этой организацией разработаны основные принципы применения ВУ для автоматизации объекта.

для автоматизации остекта. Первая очередь включает в себя автоматизацию только электрической части печи, ввиду отсутствия в настоящее время измерительной аппаратуры для тепловых измерений. Макетный образец регулятора с применением ВУ прошел опытную проверку.

5. Работа по автоматизации непрерывного стана холодной прокатки

Работа начата совместно с ЦКБ ММ (Минтяжмаш) и ЦЛА (Минчермет). В этой области можно указать приближенные уравнения объекта, что облегчает разработку блоксхемы автоматизации и электронной модели стана.

6. Ближайшие перспективы автоматизации в металлургии с применением ВУ

Основные трудности: недостаточная изученность объектов, недостаток измерительной аппаратуры, недостаточность современной теории и существующих принципов построения автоматических систем, недостаточная надежность известной вычислительной аппаратуры при длительной работе в цеховых условиях. Преодоление научных и технических трудностей, указанных выше, потребует тесной увязки работы ряда организаций как Министерств, так и Академии наук.

Доклад 65 (тезисы)

ЦУКЕРНИК Л. В. — кандидат технических наук

АНАЛИЗ УСТОЙЧИВОСТИ ДИНАМИЧЕСКИХ СИСТЕМ ПРИ ИСПОЛЬЗОВАНИИ ЭЛЕКТРОННЫХ СЧЕТНЫХ МАШИН (НА ПРИМЕРЕ ЭНЕРГОСИСТЕМЫ)

- 1. Задача, по Ляпунову, распадается на две, по существу пезависимых, части:
- а) определение коэффициентов характеристического урав-

- а) определение коэффициентов характеристического урав-нения сложной регулируемой системы; б) расчет критериев устойчивости и определение границ областей устойчивости в функции заданных параметров. 2. Для преобразования исходных дифференциальных урав-нений и вычисления коэффициентов характеристического урав-нения может быть получен алгорифм для типового програм-мирования логических операций в вычислений на электронной счетной машине. Особенностью программирования задач та-кого рода является необходимость производить действия с мат-рицами, элементы которых представляют собой не только рицами, элементы которых представляют собой не только числа, но и алгебраические выражения.

 3. Для расчетов границ области устойчивости рекомен-
- дуется следующая методика:
- дуется следующая методика:

 а) исходными данными являются коэффициенты характеристического уравнения, представленные в виде функции двух параметров (например коэффициентов регулирования);
 б) в процессе счета этим параметрам придается, с достаточно малым расчетным шагом, последовательный ряд численных значений. Для каждой пары значений непрерывно вычисляется критерий Раута. В качестве результатов расчета из машины выводятся попарно значения варьируемых пара-метров для начала и конца интервала, в котором происходит изменение знака критерия. Эти значения и являются препольтьства знава критерия. Эти значения и изыяются пре-дельными координатами, между которыми проходит искомая граница области устойчивости.
- 4. Для энергосистем, представленных в виде трех эквивалентных станций, характеристические уравнения которых в менлым станым, деранства уравнения которых в анализировавшихся вариантах имели порядок до 10-го вклю-чительно, ИЭ и ИМ АН УССР выполнены серии расчетов статической устойчивости на БВМ. Рассматривалось автоматическое регулирование возбуждения одного или двух генераторов удаленной станции или промежуточного синхронного компенсатора. Предполагалось основное регулирование по от-

клонениям тока и напряжения и дополнительное регулирование по 1-й и 2-й производным тока или по скольжению и ускорению. Получены серии областей устойчивости в плоскости коэффициентов регулирования по производным тока, производным угла (по скольжению и ускорению) или по отклонениим тока и напряжения. Варьировались также исходные режимы (P_0 —0; 0,5; 1,0; 1,1) и схема энергосистемы (наличие и отсутствие продольной компенсации линии дальней электроперевани) передачи).

Результаты расчетов достаточно хорошо соответствуют ре-зультатам испытаний на электродинамических моделях для тех вариантов, по которым имеются экспериментальные данные

ч сопоставления.
Все расчеты производились на основе выведенных автором доклада уравнений возмущенного движения сложной энерго-системы. Программирование выполнено Институтом матема-тики АН УССР.

85

Доклап 66 (тезисы)

ЦЫПКИН Я. З. - доктор технических наук

НЕКОТОРЫЕ ВОПРОСЫ ДИНАМИКИ СИСТЕМ РЕГУЛИРОВАНИЯ И УПРАВЛЕНИЯ С ЦИФРОВЫМИ вычислительными устроиствами

Рассматриваются основные типы систем регулирования и управления с цифровыми вычислительными устройствами (ц. в. у.) и их особенности.
Показывается эквиваленность систем с ц. в. у. и систем

Показывается эквивалентность систем с ц. в. у. и систем импульсного или прерывистого регулирования. Для анализа динамических свойств систем с ц. в. у. привлекается теория импульсного регулирования. Показывается, что введение в систему регулирования ц. в. у. позноляет увеличить запас устойчивости, достигнуть оптимальным процессов, т. е. процессов с конечным и минимальным пременем регулирования как в системах без запаздывания, так и в системах с запаздыванием. Излагается методика определения программы ц. в. у., исходя из заданных требований к качеству процесса. Кратко рассматриваются требования к ц. в. у. с точки зрения применения их в системах регулирования и управления.

Доклад 67

(тезисы) КОРОЛЬКОВ Н. В. — кандидат технических наук

ПРИМЕНЕНИЕ ФЕРРИТОВЫХ СЕРДЕЧНИКОВ В ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКЕ

1. Быстродействующие цифровые вычислительные машины, машины, предпазначенные для выполнения преимуществению логических операций, машины для регулирования прои подственных процессов и другие специализированные цифровые машины обычно состоят из очень большого чиста элементариму праву в надомности достомно продага задементариму праву в надомности достомно продага задементариму праву ных ячеек, к надежности которых предъявляются высокие требования.

элементарные ячейки, построенные с использованием фер-ритовых сердечников, отличаются наличием целого ряда пре-имуществ по сравнению со схемами, использующими электрон-по-изкуумные приборы.

но-гакуумные приборы.
 К числу основных преимуществ относятся:
надежность, долговечность, малогабаригность, относительно
малая потребляемая мощность и дешевизна.
 2. Схемы основных элементов и устройств, выполненные с
использованием ферритовых сердечников:

- а) элемент регистра;

 б) динамический триггер;

 в) логические схемы «И-И», «Или Или», «запрет» и др.;

 г) магнитное оперативное запоминающее устройство;

 д) адресные системы (дешифратор).
- адресные системы (дешифратор).

 Основные характеристики элементарных схем входные сигналы:
- выходные сигналы;
- потребляемая мощность;
- днапазон частот; вентили.

е) вентили.
 4. Технические и экономические соображения, касающиеся выполнения цифровых вычислительных устройств с использованием ферритовых сердечников, и уже достигнутый уровсив разработок схем дают возможность рекомендовать широкое развертывание производства элементарных яческ и блоков, что позволят широко и быстро внедрить быстродействующие имилительные устройства в народное хозяйство и даст большой народнохозяйственный эффект.
 Необходимо для осуществления этой задачи срочно решить вопрос о промышленной базе.

86

25X1

ACADEMY OF SCIENCES OF THE USSR AN EXPERIMENT
OF THE MACHINE TRANSLATION OF LANGUAGES
CARRIED OUT ON THE B E S M

ACADEMY OF SCIENCES OF THE USSR

l. S. Mukhin

 $\begin{array}{c} \text{AN EXPERIMENT} \\ \text{OF THE MACHINE TRANSLATION OF LANGUAGES} \\ \text{CARRIED OUT ON THE B E S } M \end{array}$

MOSCOW, 1986

Sanitized Copy Approved for Release 2010/07/08 : CIA-RDP81-01043R000400100011-0

The work in the machine translating from English into Russian was started in January, 1955, by the Institute of Scientific Information, of the Academy of Scences of the USSR, in conjunction with the Academy of Sciences Institute of Precise Mechanics and Computing Technique. The research workers—participants in the work are Prof. Panov, D. Ju., Belskaja I., Korolev, L. N., Rasumovsky, S. N., Selenkevich, G., I the author of this paper. The experiments were carried out on the high-speed electronic computer BESM, designed and constructed at the Institute of Precise Mechanics and Computing Techique by Prof. Lebedev, S. A., and his associates.

- 3 -

1. Introduction. The idea of machine translation of languages began to draw special attention of scientists of late in connection with recent advances in the development of the high-speed automatic electronic computers with programmed control. In 1948—1949 British and American scientists discussed the possibility of translation from one language into another by an electronic computer (1, pg. 2—3). Soon afterwards (in 1950—1951) various institutions both in Great Britain and the USA started working out the problem, and on Jaunary 7, 1954, the first public demonstration of translation from Russian into English was held in New Jork by the International Business Machines Co. For this experiment a special vocabulary was compiled, consisting of 250 Russian words in Latin script. The words were selected with a view that each of them had one, or at least two English equivalents.

The International Busineess Machines Co. experiment aroused great interest throughout the world. Numerous comments published in general and special periodicals gave the impression, however, that practical results of the experiment could hardly be expected in the nearest future. Most scientists were of the opinion that the problems to start with were those connected with the translation of scientific texts, and the compilation of specialized vocabularies for different branches of science and technology was mentioned as one of them. A specialized vocabulary of the type is estimated, for English, at 1,000 general-purpose words and 1,000 special terms (3). But at present, in the opinion of most scientists, we can hardly afford such a large vocabulary, and hence a scientific book cannot be tranlated by machine as yet, not to mention a work of art.

Having started work on automatic translation, we very soon came to the conclusion that it should be organized on lines different from those described in the report of the American experiment. To our minds, the excessively rigid connection between the translation programme and the vocabulary (ascription of the control-codes directly to the words in the vocabulary) caused certain limitations in solving the machine translation problem. For this reason, we decided to try and develop such a system of sentence analysis that would enable us to find out the meaning of every word in the sentence (except for the case when it is impossible within a sentence) as well as to determine ist grammar characteristics. Linguistically, we proceeded from the assumption that all thoughts and ideas are expressed in language by means of words having very definite relations with each other. Experience showed that these relations could be defined, at least for the scientific texts. The system worked out for the analysis of an English sentence and synthesis of its Russian translation proved to be pracically independent of the vocabulary.

The texts selected for translation were a number of exercite from Miles allowed.

dent of the vocabulary.

The texts selected for translation were a number of exerpts from Miln's «Numerical Solution of Differential Equations» along with some more texts of different specification (e. g., an article from «The Times», etc.).

The following is a short discription of the accepted vocabulary as well as of our system of analysis and synthesis; it should also give an idea of the way the BESM was made use of in the experiment.

2. Vocabulary. Translation requires a vocabulary, no matter whether it is done with or without the help of a machine. If, for man, each word is made up of letters, for a computing machine, which carries out operations with figures, letters must be replaced by figures.

If we substitute each letter of the Latin alphabet by a definite combination of figures, we shall be able to express any English word by a corresponding number. Thus, using the bonder code (Fig. 2.1), we can change

This happens when the sentence contains pronouns standing for words belonging to a previous sentence.

the words THE, EQUATIONS, METHOD, THEREFORE into the following numbers: 212608, 082320162112281505, 110821262830, 212608070814280708.

Fig. 2.1.

Fig. 2.1.

Our vocabulary includes 952 English words. Besides its numerical expression every word of the vocabulary has a definite ordinal number, that is, a special place-in-the vocabulary indication. Thus, for instance, the words BELOW (060827813). DEVICE (300829122208), REGION (070810122815), WHOLE (1326282708), have respectively the following place-in-the-vocabulary indications: 110, 211, 570, 748.

A vocabulary compiled for the mechanical translation differs from the usual vocabulary in that it consists of two sections and contains, besides the Russian word corresponding to the English word sought, certain additional information (indications) concerning the Russian word.

One of the sections contains the English words, recorded as numbers and all the vocabulary indications of the corcesponding Russian words. For example, in the case of nouns, the following information of the Russian word is given: gender, declension, soft or hard stem, presence or absence of sibilants in the stem, denotation of animate or inanimate objects, etc.; in the case of verbs, their conjugation, aspect, etc.; in the case of adjective, hard or soft stem, etc. We call this section of the vocabulary the English section.

The second sections consists of Russian words recorded as digit combinations in the order defined by their place-in-the-vocabulary (Fig. 2.2). The second section is called the Russian section of the vocabulary.

```
а — 16
6 — 05
в — 13
г — 10
д — 30
е — 08
                                             ж — 29

3 — 25

н — 12

к — 19

л — 27

м — 11
                                                                                               at — 15

o — 28

n — 24

p — 07

c — 05
                                                                                                                                             y - 20

ф - 14

x - 26

u - 22

u - 23
                                                                                                                                                                                             т — 23

э — 17

ь — 09

ы — 04

ю — 01

я — 03

й — 18
                                                                                                         - 21
```

Fig. 2.2.

3. Vocabulary of polysemantic words. For some of the English words of the vocabulary (121 words in our case) special digit indications, substituting the place-in-the-vocabulary indication of the Russian words, are used to show that these words have multiple meaning. The correct meaning of the Russian word in this case, comes as a result of the context analysis of the polysemantic word done by a special translation program, called the vocabulary of polysemantic words. Example (Fig. 3.1). The word «true» has two meanings in our vocabulary: «верный» and «выверить». Using the program of the polysemantic word vocabulary we find for the word «true» in our sentence (Fig. 3.1) the meaning «верный». The polysemantic word vocabulary gives the same kind of information on the word as the English part of the vocabulary.

This is true certainly of the vast category of problems associated with force and motion.

4. The Input of the English text. The English text is put into the machine one senience at a time. The text is preliminarily punched on a paper tape with a special puncher which has Latin letters and punctuation marks engraved on its keys.

Thus, the English text is represented on a paper tape in the form of groups of holes, according to the above mentioned code for Latin letters. Besides letters, the following supplementary denotations are employed: space between words — 00, period — 31, comma — 03, etc.

3. Voc. case) spe the-vocabu to show th rect mean
a result o
done by a
lary of pc
Examp

in our vo program for the we ing «верн the same part of th

This is with force

4. The into the n narily pu which has on its ke Thus, in the for mentionec lowing st

between v

5. Finding words in the English section of the vocabulary. Those of the words in the English text whose spelling coincides exactly with that of the words in the vocabulary are easily determined by the operation of comparing carried out by the electronic computer. This process may be represented in a simplified way as follows. Let the number sought, i. e. the word in the text, be subfracted successively from each of the numbers representing word in the vocabulary. When the difference is zero our matching job is over: the word sought is found. In some cases the words of the text do not coincide exactly with the corresponding words of the vocabulary, since they possess grammar affixes (s, 's, ing, ed, er, est, e, th).

since they possess grammar affixes (s, s, ing, ed, er, est, e, th).

I no exact coincidence between the word in the text and those in the vocabulary can be found, the word sought is verified for presence of one of the above mentioned affixes.

The affix found is then discarded, and the search for the text word in the vocabulary is repeated.

The entire process of finding the words of the text is carried out according to the scheme (Fig. 5.1).

One of the quickest ways of finding words in the vocabulary, in our opinion, is the following.

All the English words in the vocabulary, recorded as figure combinations, are positive numbers. Each word, depending on the number of letters it consists of, takes up one, three or four positions of the storage unit. Then the words are devided into groups: the first group consists of words occupying one storage position, the second—of words occupying two positions, the third one of those occupying three positions, etc.

occupying three positions, etc.

The words within each group are arranged in the increasing order of the numbers representing the words.

Finding words in the vocabulary begins with a determination of the number of positions occupied by the word sought. This is followed by looking up the word in the corresponding word group of the vocabulary. For this purpose, the numerical value of the word in the middle of the group is compared to the value of the word sought. If the word sought is greater in value than that selected from the group, the half-group of words having greater values than that selected from the middle of the group

is considered. If it is smaller in value, the half-group having smaller values than that selected from the middle of the group is taken. This process of halving the groups of words in the vocabulary ensures rapid finding of the word needed.

The time required to find a word by this method is proportional to the logarithm of N, with a base of 2, where N is the number of words in the vocabulary.

A special programme is used to carry out the supplementation of the vocabulary and the ensuing rearrangement of the words.

6. Replacing the words of the sentence by equivalents.
After the word has been found in the vocabulary, all the information on the word is taken from the vocabulary: the number of the word in the English section of the wo the information on the word is taken from the vocadulary the number of the word in the English section of the vocadulary, the number of the corresponding Russian word and the grammatical information recorded in the vocabulary on the Russian word.

This information is the numerical equivalent of the word, and all subsequent operations are carried out with this equivalent.

The numerical equivalent of each English word was stored in two positions of the memory. The use of two, and not one, three or any other number of positions is due to the particular characteristics of the BESM employ-

due to the particular characteristics of the BESM employed for our purpose.

7. Arrangement of the parts-of-speech indications in the storage positions. In order that the machine should be able to distinguish parts of speech automatically, the parts-of-speech indications, when transferred from the vocabulary to the positions, always occupy the same part of the position. Thus «1» in that position always means enoun», a «2» — «verb», «3» — «adjective», «4» — «numeral», «5» — «adverb», «6» — «preposition», «7» — «conjunction», etc.

It was mentioned above that each English word has

junctions, etc.
It was mentioned above that each English word has two positions to substitute it. Table I shows the meanings of the indication digits of the words as well as their arrangement. They are placed in the first of the two positions substituting the English word. The number in the second position shows the number of the word in the Russian section of the vocabulary. If this number is 0000 after the entire programme is carried out, the cor-

responding English word will be omitted in the trans-

8. Division of the Automatic Translation Programme into Two Main Parts — Analysis and Synthesis. The first part of the programme deals with the analysis of the English sentence and includes the analysis of the indications taken from the vocabulary, the characteristic affixes of the English words, as well as their position in the sentence. The aim of the analysis is to make out the grammatical form and position in the sentence of the corresponding Russian words. The information thus obtained is expressed by means of a set of indications and makes it possible to pass over to the second part of the programme, which is the synthesis of the Russian sentence.

The second part of the programme makes necessary changes in the grammatical form and position of the Russian words, taking into account the set of indications the word has received.

words, taking into account the set of indications the word has received.

9. Sequence of the Parts of the Programme. The sequence of the various parts of the programme of mechanical translation is shown diagramatically in fig. 9.1.

Separate parts of the program are applied in a sequence which in the vast majority of cases ensures development of the indications needed for the fulfillment of the subsequent operations. The role of the separate programmes is obvious from their names (Fig. 9.1) Only two parts of the programme need some explanations. The syntax and the «change of word order». The syntax part of the programme breaks up complex sentences into clauses, by placing the following marks: beginning, end, end-beginning of clauses, punctuation marks.

marks.

The «change of word order» part rearranges the words in accordance with the rules of the Russian grammar.

Repetition of the «verbs» part is necessary because the verb indications cannot be worked out completely until the «syntax», «numericals», «nouns» and «adjectives» parts of the programme are fulfilled. Application of the «verbs» part before these parts of the programme is necessary because some of the information on verbs, obtained as a result of the first application of this part of the programme, is needed for the «syntax», «numerals». «nouns» and «adjectives» parts.

Fig. 9.1.

10. An Illustration. Let us see in a sumplified form how an English sentence is put into the machine, taking as our example the sentence in Fig. 3.1. The sentence is punched on a paper tape in the form of a number consisting of one hundred and seventy six digits (Fig. 10.1).

 $2126 \div 205001205002107200800220807211612152704002814002126080\\ 02916052100221621081028070400281400240728062708110500160505\\ 2822121621083000131221260014280722080016153000112821122815$

Fig. 10.1.

Fig. 10.1.

After the sentence is entered, the machine breaks up this one-hundred-and-seventy-six-digit number into separate number-words.

Then begins the work with the English section of the vocabulary and the polysemantic word vocabulary.

!1. Substitution of Words by Equivalents in the Sentence in Fig. 3.1. As a result of the application of the English section of the vocabulary and the polysemantic word vocabulary, each word in our sentence is substituted by two numbers located in two positions. The first number contains all the indications transferred from the English section of the vocabulary and the polysemantic word vocabulary, according to the designation in Table 1. The second number is the ordinal number of the Russian word if the Russian number equals 0000, the Russian word lift he Russian number of the word it stands for has not been found in the vocabulary. The Russian meaning of such a word can be found through the subsequent parts of the programme. If the Russian number of the word remains equal to 0000 by the end of the analysis of the English sentence, the English word is omitted in the transation.

Let us see how our sentence is transformed here. The words of the sentence are substituted by the following equivalents (Fig. 11.):

100010030000010001115 6327 This 2000011000200000001038 is 3000000000000000001264 6344

certainly	51013: 225
of	60047
the	30000000000000000 116:
vast	300000000000000000000729 4410
category	120000000000001000130 2253
of	600472 0000
problems	121000020001001000529 3620
associated	20100004000000000030085 2140
with	600749 0000
force .	12000002000000000000312 3012
and .	71001028 6470
motion	110000030000001000441 3367

Fig. 11.1.

As can be seen in (11.1) the word PROBLEMS is substituted by the numbers 121000020001001000529 and 3620. The digits of these numbers mean (Fig. 11.2): The second number 3620 is the number of the Russian

```
0 — number indication of word not developed.
1 — English word has -s ending.
0 — is not verbal noun.
0 — is not subject.
1 — word has sait stem.
0 — person of word not determined.
```

Fig. 11.2.

This word was not been found in the vocabulary at first (since it has the ending «s») and was detected only after its ending was discarded. At the same time the presence of the ending «s» was recorded as one of the indications.

The contents of the equivalents of the rest of the words can easily be determined with the aid of Table 1.

12. The Results of the Application of the Parts of the Programme Doing the Analysis of the English Sentence to the Phrase (3.1). After the words of the sentence have been substituted by their equivalents, they are subjected to the parts of the programme concerned with the analysis of the English sentence.

We mean to explain the principle of the operation of different parts of the programme by considering two examples.

Example 1. In the sentence (3.1) the word OF occurs twice. In the first case the equivalent of the word OF undergoes changes according to the scheme in Fig. 12.1,

undergoes changes according to the scheme in Fig. 12.1, as follows:

1-2-3-4-5,
where the figures .1 to 5 denote the individual logical elements of the *prepositions* program. As a result, we get the following value of the equivalent*

620472

5046

which means:
6 — preposition,
2 — takes Genitive case,
0472 — word number in the English section of the vocabulary, the number 5046 is the Russian number for the

 $[\]begin{array}{l} {\rm I-noun.} \\ {\rm 2-2-nd~declension.} \end{array}$

¹ — stem ends in sibilant or r, κ , x. 0 — word has no flexion.

^{0 -} plural.

^{0 —} is not a predicate.
0 — case not determined.

^{2 -} feminine.

^{9 —} word denotes animate object.
0 — word is not proper noun.

^{0—} afsence of

omitt

indication.

omitt

omitt

indication.

omitt

o

In the second case the equivalent of Or changes according to the same scheme in the following manner: 1-2-3-4-5-6-7-8-9-10-11-12-13This gives the following value of the equivalent: 620472where: 6 means strepositions,
2 means staker Genitive cases,
0472 is the word number in the English section
of the vocabulary.
The number 0000 shows that in this case OF is not translated. 0000 Example 2. The equivalent of the word CATEGORY undergoes changes according to the scheme (Fig. 12.2). Check for indication yes of singular or plural Check previous word yes no Check for indication of any case Check for indication «subject» Develop indication of singular No further checking necessary Fig. 12.2. which is part of the «nouns» programme, and acquires the following value: 12001022010001000130 2253 The equivalent of the other words are changed in In equivalent of the other words are changed in a similar manner.

After the programmes of the English sections are fulfilled, we shall have the following equivalents of the words in the sentence (3.1) (Fig. 12.3):

Fig. 12.1

This	100110130010010001115 6327
is	210000000000000000001038 0000
true	3000010030110000001204 6344
certainly	510132 2257
of	620472 5046
the	3000010220010000001161 0009
vast	3000019220010000000729 4410
category	120010220010001000130 2253
of	620472 0000
problems	121000220011001000529 3620
associated	310000002010300410085 2140
with	650749 5030
force	120010520610000000312 3012
and	71001028 6470
motion	110010530010001000441 3367

Fig. 12.3.

13. Application of the Part of the Programme Doing the Synthesis of the Russian Sentence to the Sentence (3.1). The next step in mechanical translation is the treatment of the Russian words recorded in the denotations (2.2). The correct grammatical form of the Russian word is derived by using certain parts of the programme of synthesis of the Russian sentence, which are made up in accordance with the requirements of the Russian grammar, the indications of the word equivalents being obtained as

- 6 a result of the analysis of the English sentence. The sequence of the parts of the programme can be seen in Fig. 9.1

As an example we may consider the changes in the Russian word «Katerophas», which take place according to the scheme (Fig. 13.1).

Fig. 13.1.

The required gramatical forms of the rest of the words in the sentence are derived in a similar way. As a result we get the final translation of the sentence, recorded with the aid of the designations in (5.2).

14. Output of the Russian Text. The last step of mechanical translation is printing the text by the printer. The numbers are changed into Russian letters according to the designations in (2.2) and printed on a paper tape. The phrase (3.1) will be printed in the form of the Russian sentence, given in the Fig. 13.2.

| 172128 | 1308071528 | 06082520062728131528 | 302703 | 2806021207152818 | 191621081028071212 | 2516301631 | 051303251615150426 | 05 | 0512272818 | 12 | 301312290815120811 |

Fig. 13.2.

15. A Few Examples of Texts Translated by Machine.

In conclusion we present a few examples of the texts translated from English into Russian by the BESM in the latter part of 1955 and early in 1956. The translation is given exactly as it was obtained from the machine, without editing (Fig. 15.1).

Of course, the first experiments in mechanical translation carried out at present in the USSR and other countries are far from being practical realization of the machine translation of languages on a large scale. But our firm belief is that new achievements are to be expected in the nearest future, at least as concerns machine in the nearest future, at least as concerns machine translation of scientific and technical texts.

When a practical problem in science or technology permits mathematical formulation, the chances are rather good that it leads to one or more differential equations. This is true certainly of the vast cauegory of problems associated with force and motion, so that whether we want to know the future path of Jupiter in the heavens or the path of an electron microscope we resort to differential equations. The same is true for the study of phenomena in continuous media, propagation of continuous media, propagation of continuous well as the propagation of continuous well as the continuous with the continuo

Если практическая задача в науке или технике допускает математическую формулировку, шамска довольно велики что это дирводит к одному или более
дифференциальным уравнениям,
Это верио безусловно для общирной категорин задач связанных
с склой и движением, так что
хотим лля мы знать будущий путь
Юпитера в небесак или путь электрона в залектронном микроскопе
мы прибегаем к лифференциалыным уравнениям. То же верио
для изучения явлений в негрерывной среде, распространения
воли, потока телиа, диффузии,
статического или динамического
электричествя, и т. д., за исключением того что мы дассь будем
рассматривать дифференциальные
уравнения в частных производных.

In problems of this type numerical methods become a necessity due to absence of other methods for getting the requisite information out of the differential equations.

В задачах этого типа численные методы становятся необходимостью обусловленной отсутствительной получения необходимость обусловления получения необходимого сведения подиференциальных уравнений.

It is often impossible, however, to perform the actual eliminations, and hence this transformation is of theoretical rather than practical interest.

Suppose that both equations actually contain all the possible partial derivatives of second order.

This was based on an expensive experiment done by myself and Dr. R. H. Richens, of Cambridge University, in which we worked out a method of translating small sections of selected text in foreign languages. We gave an account of this at a conference in Massachusetts in 1952, after which the International Business Machines Company, in conjunction with Georgetown University, applied our methods to give a popular demonstration which was limited to translating a few sentences from Russian into English. There is no possibility at present of translating a book as a work of art.

Часто невозможно тем не менее, выполнить действительные исключения, и следовательно это преобразование имеет теоретический скорее чем прантический имперес

Допустим, что оба ўравнення действительно содержат все воз-можные частные производные эторого порядка.

Это было основано на дорогом эксперименте проведениюм мной и доктором R. Н. Richens, от кэмбрыжского Университета, в котором мы разработали метол перевода малых отрывков выстранные языки. Мы дал отчет о этом на конференции в Масsarchusetts в 1952 после которого L.В.М. компания в сотруаничестве с Джоражтауский Университетом применили наши метолы чтобы дать наглавлуют демонстрацию, которая была ограничена переводом некольких предлажений с русского на англидский. Не имееств возможности а настоящее время перевода кинги зак произведения искусства.

REFERENCES

- 1. Machine Translation of Languages. Edited by W. Locke and A. Booth, 1955, p. 243.

 2. N. Macdonald. Language Translation by Machine «Computers & Automation», 3, No. 2, pp. 6—10.

 3. A. Booth Calculating Machines and Mechanical Translation «Discover», 1954, 15, No. 7, pp. 290—285.

- 20 -

Sequence of digits	Indi- cation Meaning of indication digits		
Nоил			
firts digit	I — noun		
second digit	0 — is declined like adjective. 1 — belongs to first declension 2 — belongs to second declension 3 — belongs to third declension		
third digit	0 — stem does not end in sibilant or r, κ, x 1 — stem ends in sibilant or r, κ, x		
fourth digit	0 — word is declined 1 — word is not declined		
fifth digit	0 — plural 1 — singular		
sixth digit	0 — is not predicate 1 — is predicate		
seventh digit	0 — case not defined 1 — Nominative case 2 — Genitive case 3 — Dative case 4 — Accusative case 5 — Instrumental case 6 — Prepositional case		
eighth digit	1 — masculine 2 — feminine 3 — neuter		
ninth digit	0 — word denotes inanimate object 1 — word denotes animate object		
tenth digit	0 — word in not proper noun 1 — word is proper noun		
eleventh digit	0 — number indication not developed 1 — number indication developed		

twelfth digit	0—English word has no s, ing, 's ending word has ending s 2—English word has ending ing 3—English word has ending 's
thirteenth digit	0 — is not verbal noun
fourteenth digit	0 — is not subject 1 — is subject
fifteenth digit	0 — word has hard stem 1 — word has soft stem
sixteenth digit	1 — first person 2 — second person 3 — third person
seventeenth digit	0 — «omit» indication absent 1 — «omit» indication present
last four digits	word number in English section o
	Verb
firts digit	2 — verb
second digit	0 — word has no number indication 1 — word has number indication
third digit	0 second conjugation 1 first conjugation
fourth digit	0 — stem does not end in sibilant or г, к, х 1 — stem ends in sibilant or г, к, х
fifth digit	0 — word is conjugated 1 — word is not conjugated
sixth digit	0 — singular 1 — plural
seventh digit	0 — is not predicate 1 — is predicate

-- 23 --

eighth digit	0—verb does not take definite case 1—verb takes Nominative case 2—verb takes Genitive case 3—verb takes Dative case 4—verb takes Accusative case 5—verb takes Instrumental case 6—verb takes Prepositional case
ninth digit	0 — verb has no gender 1 — masculine 2 — feminine 3 — neuter
tenth digit	0 — imperfect aspect 1 — perfect aspect
eleventh digit	0 — verb has no tense 1 — past tense 2 — present tense 3 — future tense
twelfth digit	0 — absence of «omit» indication 1 — presence of «omit» indication
thirteenth digit	0 — is not verbal adverb 1 — is verbal adverb
fourteenth digit	0 — active voice 1 — passive voice
fifteenth digit	0 — is not subject 1 — is subject
sixteenth digit	0 — indicative mood 1 — imperative mood 2 — oblique mood 3 — indefinite mood
seventeenth digit	1 — first person 2 — second person 3 - third person

eighteenth digit.	0 — English word has no -s, -ing, or ending 1 — English word has ending -s 2 — English word has ending -ing 3 — English word has ending -ed
last four digits	Word number in English section
	Adjective.
firts digit	3 — adjective
second digit	0—word has hard stem 1—word has soft stem
third digit	0 — second conjugation 1 — first conjugation
fourth digit	0 — word stem does not end in sibilant г, к, х 1 — word stem ends in sibilant от г, к,
fifth digit	0 — word is declined 1 — word is not declined
sixth digit	0 — plural 1 — singular
seventh digit	0 — is not predicate 1 — is predicate
eighth digit	0—case of word not defined 1—Nominative case 2—Genitive case 3—Dative case 4—Accusative case 5—Instrumental case 6—Prepositional case
ninth digit	0—gender of word not defined 1—masculine 2—feminine 3—neuter
tenth digit	0 word denotes inanimate object

Sanitized Copy App	roved for Release	2010/07/08 :	CIA-RDP81-01	043R0004001	100011-0

eleventh digit	0 — adjective is in complete form 1 — adjective is in short form
twelfth digit	0 — word has no indication of number 1 — word has indication of number
thirteenth digit	0 — indication of degree or participle absent 1 — adjective is in superlative degree 2 — adjective is in comparative degree 3 — word is participle
fourteenth digit	0 — past tense 1 — present tense
fifteenth digit	0 — word is not subject 1 — word is subject
sixteenth digit	0 — word does not take definite case 1 — word takes Nominative case 2 — word takes Genitive case 3 — word takes Dative case 4 — word takes Accusative case 5 — word takes Instrumental case 6 — word takes Prepositiontl case
seventeenth digit	0 — «omit» indication absent 0 — «omit» indication present
eigtheenth digit	0 — English word does not end in -ed I — English word ends in -ed
last four digits	Word number in English section o vocabulary
	Numeral
firts digit	4 — numeral
second digit	0 — plural 1 — singular
third digit	0 — is not predicate 1 — is predicate

fourth digit	0—case of word not defined 1—word is in Nominative case 2—word is in Genitive case 3—word is in Dative case 4—word is in Accusative case 5—word is in Instrumental case 6—word is in Prepositional case		
fifth digit	0 — word has no gender 1 — masculine 2 — feminine 3 — neuter		
sixth digit	0 — word has no indication of number 1 — word has indication of number		
seventh digit	0 — is not subject I — is subject		
eighth digit	0 — «omit» indication absent 1 — «omit» indication present		
last four digits	Word number in English section vocabulary		
Adve	rbs, parenthetic words, particles.		
firts digit	5 — adverb		
second digit	0 — adverb 1 — parenthetic word 2 — particle		
last four digits	Word number in English section of vocabulary		

-- 26 -

	Preposition
firts digit	6 — preposition
	1 — takes Nominative case
	2 — takes Genitive case
second digit	3 — takes Dative case
second digit	4 — takes Accusative case
	5 — takes Instrumental case
	6 — takes Prepositional case
last four digits	Word number in English section o vocabulary
	Conjunction
first digit	7 — conjunction
second digit	1 — co-ordinative conjunction 2 — subordinative cojunction
	0 — no indication of beginning or end of
	1 - indication of beginning of clause
third digit	2 - indication of end of clause
	3 — indication of end of one clause and be ginning of another
fourth digit	0 — is not subject 1 — is subject
last four digits	Word number in English section

(d.)

D. Panov

OF LANGUAGES

1956

THE ACADEMY OF SCIENCES, U.S.S.R.

D. Panov

CONCERNING THE PROBLEM OF MACHINE TRANSLATION
OF LANGUAGES

1956.

CONCERNING THE PROBLEM OF MACHINE TRANSLATION OF LANGUAGES

D. Panov

1. Introduction

Strictly speaking, my paper is not concerned with problems of the theory of information in its classical form, I mean the form it has adopted in the works of C.E. Shannon, Ph. M. Woodward, L.L. Davies and others, which problem have also been studied by the Soviet mathematicians Kolmogorov, Khinchin, Kotelnikov and Siforov.

The problem of machine translation of languages belongs, in my opinion, among certain specific problems, which until now have not been taken up by learned men working in the field of the theory of information, but which, possibly, deserve to be taken up.

Up to now, the theory of information has developed as a purely mathematical theory, applying the means of the calculus of probability to formalise the original material it has dealt with. Claude E. Shannon does not make any distinction between discrete sources of information and stochastic process (1, p. 00), thus ignoring all the individual qualities of the information given, preserving only its statistic characteristics. In speaking of telegraph messages, Shannon points out that these messages consist of letter sequences which are "not completely random" and which, "in general form sentences and have the statistical structure of, say, English". They go on to say that "this structure allows one to make a saving in time (or channel capacity) by properly encoding the message sequences into signal sequences" (1, p. 00).

The successful application of statistical methods in cryptography naturally led some investigators to the idea that a similar approach could be as promising in solving problems of automatic translating. Thus Weaver thought it most tempting to say that" a book written in Chinese is simply a book written in English, which was coded into the "Chinese code" (2, p. 22), and to translate from one language into another one needs "to descend from

each language to the common base of human communication-the real but as yet undiscovered universal language- and then re-emerge by whatever particular route is convenient" to the other individual language (2, p. 23). This idea being developed, one very naturally comes to the necessity of analysing the logical structure of language as a means of solving the problem of automatic translation. Investigations in this field undertaken by O. Jespersen (4). Ch. C. Fries (3), and others seemed to be providing mathematicians with material highly promising. Should it be achieved, the problem of automatic translation would join as equal those profound problems united under the name of theory of information. Unfortunately, so it seems to me, we must refrain from this tempting road. The very nature of the problem of translation is such that individual features of the translated text cannot quite be ignored. This circumstance makes the direct application of the methods of the theory of information impossible, but it does afford certain other advantageous prospects. I believe here we are faced with a problem which, though statistical in character, requires special methods of analysis, similar to the experimental methods used in the study of natural phenomena. I shall note that it is just the problems, at the borderline of two branches of science, that often prove to be most helpful in scientific research work.

2. Some Peculiarities of Machine Translation.

I should like to give a few examples to illustrate the necessity of considering individual lexical peculiarities in translating. Investigation of linguistic structures can be of interest in many ways, but from the point of view of translation it aims, and here I am convinced, at secondary questions and, thus, leads away from the solution of our problem. The reason is that in taking to generalised structures, one can not but lose a number of peculiarities of the text which are of vital importance for the translation. Mathematically there does not exist a one-to-one correspondence between the sentence structures in different languages. Two English sentences of the same structure, when correctly translated into Russian may produce two Russian sentences of structures entirely different. (See Fig. 1). It is as easy to give sentences which are impossible to

translate correctly without knowing the context. In figure 2 a stanza from a poem by Swinburne is given. The pronoun "mine" in the last sentence of the stanza, can not be correctly translated into Russian without referring to the preceding sentence, while in the English text it presents no ambiguity. Some other examples are given by Charles Fries in his book, "The Structure of English". While analyzing possible meanings of the phrase, "The King of England's empire" (3, p. 265) he comes to the conclusion that the structural grouping here is ambiguous. The meaning of the phrase can be determined only by some supplementary means (and Fries suggests intonation for one). Thus it becomes evident that in many cases, a structural analysis is useless, and other means must be utilized to determine the meaning. The authors of the structural methods in linguistics are well aware of the shortcomings of their system. Thus, Fries writes in the book just mentioned:

"In this book I have challenged the traditional uses of meaning as the tool of analysis in dealing with sentence structure".

"... I have, not, however, repudiated "all uses of meaning" in linguistic analysis, and I have deliberately insisted that all substitution procedures demand for their use the control of certain aspects of meaning". (3, pp. 293-294).

Our idea is that both lexical meaning and grammatical characteristics of the word can and should be considered in translating languages. It is highly unpractical to decline the information which can be thus obtained. We find in "Analytic Syntax" by Jespersen (4, p. 105) the following admission: "However much we may try to speak of pure syntax as apart from morphology (accidence) considerations of form will necessarily force themselves on us here and there". Precisely for this reason, in analysing the structure, recourse must be made to quite complex systems of supplementary elements introduced into the structural systems which finally lead to the classical morphological analysis.

The consideration of the lexical meaning of words as well as of their context may be useful in solving problems of coding. These problems are extremely important and I shall later return to them. Here I should only like to note that under certain conditions, great economy can be achieved in coding. There is a popular game for children in my country, which consists

in guessing a word, of which only three data are given: its first and its last letters, and the number of letters between these two. The guesser is allowed a certain number of attempts for suggesting any letter he likes; if any of them belong to the word, they are entered in their place. To win the game one must guess the whole of the word. I wonder whether children play this game in your country, but in any case it is quite instructive in solving code problems. It proves that under certain conditions, very few attempts are needed to guess a word. And with lexical meaning of the word taken into consideration the economy in coding still increases; take crossword puzzles as an illustration. I should like to note that codes of this type can be easily used for a dictionary stored in the computer. As it seems, it would not take too long to get the computer accustomed to solving crossword puzzles.

3. Machine Translation from English into Russian at the USSR Academy of Sciences:

Having started work in machine translating, we very soon came to the conclusion that it should be organized on lines different from those described in the reports on American experiments. In our opinion, excessive contact between the translation programme and the dictionary ascription of the control codes directly to the words in the dictionary cannot but limit the possibilities of translation making the solution of the problem extremely complicated. Therefore, we made it our point to work out basic principles of machine translation before starting. Our five basic principles are the following:

- 1. Maximum separation of the dictionary from the translation programme.

 This enables us easily to enlarge the dictionary without changing the programme.
- 2. Division of the translation programme into two independent parts: analysis in the foreign language sentence, and synthesis of the corresponding Russian sentence. This enables us to utilize the same Russian synthesis programme in translation from any languages.
- 3. Storing all the words in the dictionary in their basic form. This enables us to make use of the standard Russian grammar in the synthesis of Russian words.
- 4. Storing in the dictionary a set of invariant grammatical characteristics of the word.

5. Determination of multiple meaning of the words from the context whereas their variant grammatical characteristics are defined by analyzing the grammatical structure of the sentence.

These principles have proved quite reliable in the practical test they were put to, and hence they must be considered as basic in the solution of the problem.

I shall describe here our dictionary and translation programme worked out for machine translating from English into Russian.

Our dictionary for machine translation consists of two sections.

The first section contains English words, coded into digit combinations. Here we have also dictionary information of the corresponding Russian words, together with their number in the Russian Section of the dictionary. Thus, for nouns the following information is given: gender, declension, soft or hard stem, presence or absence of sibilants in the stem, animate or inanimate object expressed, etc.; verbs are given information concerning conjugation, aspect, etc.; in the case of adjectives the only information given is soft or hard stem. We call this section of the dictionary the English Section.

The other section does not contain anything but Russian words coded into digit combinations. The second section is called the Russian section of the dictionary. Every English word in the dictionary is provided with a certain ordinal number, that is with a special place—in—the-vocabulary indication. This compilation came as a result of linguistic analysis of mathematical texts, starting with Milne's "Numerical Solution of Differential Equations". For the practical experiments in MT carried out on BESM (the USSR Academy of Sciences high-speed electronic computer) a dictionary of 952 English and 1,073 Russian words was compiled.

For a number of English words (121 words, in our case), the place-in-the -vocabulary indication is replaced by special digit indication to show that these words have multiple meaning. The proper Russian word is chosen in this case by utilizing a special programme of automatic translation, which we call the Polysemantic Dictionary"

If the spelling of the word in the text coincides exactly with that of a word in the dictionary (or rather their numerical codes coincide), it can easily be identified by the operation of matching. This is the principle used for finding words in the dictionary.

In case the word in the text is inflected, i.e. has some grammar affix (say, "s", or, "ing", or, "ed"), a special programme for discarding these affixes is used. Then the search of the word with the discarded affix should be repeated.

To determine multiple meaning context analysis is performed which consists in analysing the surrounding words when both their meaning and grammatical characteristics are taken into consideration. The routine for determining the multiple meaning of a word has emerged from elaborate analysis of a great number of English texts.

It is the Polysemantic Dictionary that deals with idioms. A "key word" is found in every idiomatic expression and marked in the dictionary "polysemantic". This brings about checking of the words preceding and following it for participating in the idiom. If the answer is "yes", the translation is given to the idiomatic expression as a whole.

Take for instance, the English word "able" which is ordinarily translated into Russian as the adjective "способный" (capable), but when linked with any form of the verb "to be" (is, are, was, were, been, being) it can no longer be translated separately, instead it affects the translation of the verb, and the two of them acquire as their Russian equivalent the verb "мочь" (can). Therefore, before giving the translation "способный" for the word "able", the preceding word should be checked up for "is", "are", etc. If the answer is "yes", the correct translation for the whole word combination is "мочь" It should be noted that the system of the most simple and general criterions for determining the multiple meaning of a word (or a group of words) has required a lot of preliminary research work on the part of our linguists.

If a word in the English sentence is not found in the dictionary, it is stored unaltered in the memory of the machine. When the translated sentence is put out, such a word will be printed in Latin script.

A study for the design of an automatic dictionary presents special interest. In our group it has been carried out by L. N. Korolyov. Here are some of his results.

For the speed of the entire translating process the time spent in dictionary search is decisive. Therefore, much attention must be given to questions of speeding up this part of the programme. One of the quickest ways of finding words proved to be the following. The codes of the English words in the dictionary are arranged in the increasing order. Thus, by comparing the code of the word sought with that of a word taken at random from the dictionary, we can easily see whether to go on with our search in the section preceding or following our word. The method of search just described resembles very much that of finding roots of an equation by the "supposed conditions" method. It is remarkable that only 14 check- ups are required (14=1g₂10,000) to find a word in a 10,000-word dictionary by this method, and in a 30,000-word dictionary, no more than 15 check-ups are necessary.

Another problem that has been studied by L. N. Korolyov is that of saving the memory space required for storing the dictionary. The "code compressing" method has been worked out for the purpose.

The operation of compressing the codes to value a makes any code $\leq a$. Let the codes be represented by some combinations of binary digits i.e., of certain combinations of 0 and 1.

Here are a few examples of the operation $\forall a$, "compressing the code to value a".

- 1° . Discard the code positions, the ordinal number of which is greater than a.
- 2° . If the length of a code being compressed is greater than a, divide it into sections so that the lengths of each section be less than a.

This is followed by the binary arithmetic addition of the sections. Division into sections is correct when the code for the sum of these sections $\leq a$ in length.

 3° . Here too, long codes are divided into sections but instead of binary arithmetic addition positional addition is used (1+1=0, 0+1=1, 1+0=1, 0+0=0) in order to obtain the compressed code.

Codes for all the words in the dictionary are divided into several groups depending on the number of letters the word consists of. The operation of compressing $\forall a$ is performed for each of these codes. The words in the text undergo the same "code compressing" operation $\forall a$ before they are sought

in the dictionary. Thus matching is fulfilled for the "compressed code". Although the "code compressing" operation may result in having similar codes for two or more different words in the dictionary, the probability of the case has proved exceedingly small*).

Should it happen, however the codes of these words as, indeed, of all the words of that group will be compressed in a different manner, say with a shift by one position. The corresponding group of words in the text will be treated in a similar way before being matched in the dictionary.

The significance of this method lies not only in the fact that it provides considerable storage economy but in that it enables us to simplify the search routines as well as to speed up the whole translating procedure.

The word being found in the dictionary, all the information concerning this word, including its place-in the vocabulary indications both in the English and in the Russian sections, and grammatical information as well, is taken from the dictionary to form the numerical equivalent of the word. All subsequent operations are performed with these numerical equivalents. Every numerical equivalent is stored in two cells of the memory, the grammatical indications having constant positions. Thus necessary information of the word can be acquired automatically.

The value of the equivalents is not limited to the fact that they contain necessary information about words. The replacing of words by their numerical equivalents makes grammar part of the programme universal in application, since it no longer depends on concrete texts or dictionary.

The automatic translation programme concerned with grammar is divided into two main parts, these being Analysis and Synthesis.

In the first part the form of the English words, their place in the sentence, as well as their dictionary grammatical information are taken

For a 2^{10} - word dictionary, when the codes are compressed to 30 binary positions by means of the operation ∇a as described in 3° ., this probability is about 0.0005.

into consideration with a view to determination of both grammatical form of the corresponding Russian words and their place in the Russian sentence. The resulting information is recorded in the numerical equivalent of the word, thus permitting to pass on to the second part of the programme, that is "Synthesis of the Russian sentence". Here, Russian words, taken from the dictionary in their basic form, acquire grammatical form in accordance with the characteristics resulting from the analysis.

Both English and Russian Grammar is presented as a series of special schemes for the following parts of speech: verbs, nouns, adjectives, numerals. These are supplied with two more schemes, one dealing with syntactical analysis of the sentence, the other changing word-order in the Russian sentence if necessary. The working basis of each scheme is dichotomic analysis, i.e., a system of "checking up" for the presence or absence of a certain grammatical (morphological or syntactical) characteristics of the analysed word. These alternative check-ups may result in only two answers, either positive or negative, which mean either a final conclusion and development of a certain grammar indication in the numerical equivalent of the word, or passing on to the next check-up until the necessary grammatical characterictics of the word is completed.

Different parts of the programme are applied in a sequence which can ensure the development of the indications necessary to carry out further operations.

Figures 3 and 4 present part of the schemes for the Polysemantic Dictionary and for the English Noun. The following symbols are accepted in the schemes: A/B, C/ means passing on to No. B in the case of the positive answer, whereas negative answer will result in passing on to No. C. Obviously A/B, B/ means passing on to No. B in both cases (that is without special checking-up) A/O, O/ means that the final result is acquired and no further search is necessary. In the Polysemantic Dectionary scheme both figures and letters are used as symbols, whereas in the other schemes only figures are utilized.

S.N. Razumovsky has been studying the logical structure of the schemes and programmes for machine translation. He has developed a system of symbols to fix the contents of the schemes in a unifying manner. In Figure 5 the English Noun Analysis scheme is present in the symbolized form. The symbol system

of S. N. Razumovsky allows a unified recording of the formation processes, thus permitting an automatic compilation of the machine translation programme. Figure 6 presents part of the information used to automatically compile a programme of analysis for an English noun.

The Russian Synthesis programme is fully independent of the foreign language Analysis. The form of the Russian word is determined by the grammar characteristics found in the dictionary together with those developed in the English Analysis part of the programme. Hence, the Russian Synthesis part of the programme depends on Russian Section of the dictionary. Russian schemes may vary in form depending on the role relegated to the dictionary. It has been mentioned, that in our dictionary words are kept in their basic form, i.e., nominative singular for nouns, nominative singular masculine for adjectives, infinitive for verbs, etc. The primary concern of the Russian Synthesis programme is to modify the endings of the dictionary words, with necessary provision for the interchange of vowels and consonants, when required.

The main difference between the Russian Synthesis programme and the Analysis programme (English Analysis in this case) lies in the fact that separate words and their characteristics in the former programme are considered with no reference whatsoever to the neighbouring words.

Figure 7 presents part of the Russian Verb Synthesis scheme.

In Figure 8 principle steps in the machine translating of an English sentence are given. The sentence: "The cause of this phenomenon will be considered in the following articles", goes to the operative memory in coded form, as a 146 digit number:

2126080022162005080021140021261205002426 0815288110815281500131227270006080022281505 12300807083000121500212608001428272628 13121510001607211222270805

With every two digits coded in the binary system.

Then the sentence is broken up into words and the words are sought in the dictionary.

For only five words of this sentence, we can find in the dictionary the corresponding Russian words, with its grammar characteristics attached.

These words are:

- 1. phenomenon явление (noun, neutral gender, first declension, soft stem)
- 2. consider рассматривать (verb, first conjugation, imperfect aspect, takes the accusative case)
- 3. article статья (noun, feminine gender, second declension, soft stem)
- 4. will is not translated (modal verb; predicate)
- 5 be быть (verb, first conjugation, perfect aspect)

Note that the machine could find the words "consider" and "article" only after it had discarded the endings "s" in "articles" and "ed" in "considered"

For the rest of the words the indication is given in the dictionary that they have multiple meaning, which means that a special analysis of the sentence is required in order to choose the correct meaning of the word.

The English word "in", most often translated as the preposition "B", may be translated in certain word combinations in a different way, say, preposition " κ " interest in (интерес κ) or "c", or " π pи" and so on. In our sentence context analysis shows that "in" should be translated as preposition "B".

All the dictionary information (the information taken from the Polysemantic Dictionary included) is recorded in the form of numerical equivalents of the words of the sentence. The Russian place-in-the-vocabulary indications of the equivalents furnish the following list of Russian words:

причина	TOTE	явление		быть	рассматривать		
(cause)	(this)		(phenomenon)	(be)	(consider)		
		В	следоват ь	статья			
		(in)	(follow)	(article)			

One can easily note that several words in the English sentence have not been translated into Russian (the, of, will), this being recorded as "omit"-indication in their equivalents.

The grammatical analysis programme supplements the originally received

from the dictionary equivalents by a series of characterictics required later for the Russian Synthesis programme. Thus, for the word "article", the English Analysis programme furnishes the following additional characteristics: plural (since the word in the text has the "s" ending), and prepositional case (since preposition "in" precedes the word). Together with characteristics obtained from the dictionary, programme characteristics furnish sufficient information for the Russian noun Synthesis programme to produce the correct ending of the word "статья" (article).

For the word "follow", the English Verb programme develops the following characteristics: present participle ("ing" having been discarded), plural, prepositional case, (the two latter characteristics being inferred from the noun following our participle).

Finally, the Russian Synthesis programme having been fulfilled, we get a Russian sentence, which is correct both semantically and gramatically. Here is the sentence:

"Причина этого явления будет рассмотрена в следующих статьях".

I should like to emphasize the fact that from the very input of the English sentence into machine, the entire translation process has been carried out automatically with no human intervenience whatsoever. Enormous preliminary research work is required of philologists to make the machine translate in the manner just described. In our group the linguistic research work has been carried out by I. K. Belskaya, our Philologist-in-Chief, while the mathematical part of research has been done by the mathematicians I. S. Mukhin, L. N. Korolyov S. N. Razumovsky, G. P. Zelenkevich, and partly by N. P. Trifonov.

In Figures 9 and 10 you can see sentences translated by machine from English into Russian. In Figures 11 and 12 a few illustrations are given of incorrect translations, with mistakes due to errors in the coding. The tapes shown in these photographs have actually been produced by the machine.

4. Further Studies in the Field of MT

Our opinion is that principally, the lines of which machine translation of languages should be organized, have been sufficiently developed by now and the time has come to consider the opportunities for practical work in this

field on a larger scale. With this view, we have started research work in automatic translation from German, Chinese, and Japanese into Russian. In Figure 13 part of the German noun scheme is shown, in Figure 14 you can see part of the Chinese numeral, and in figure 15 part of scheme analysing Japanese verbs. These are our recent achievements.

When taking up machine translation from Chinese and Japanese we had our doubts as to the problem of input in these languages. We have come to the conclusion by now, that Chinese telegraph code (Figs. 16 and 17) may perfectly solve the problem.

The group of linguists engaged in further studies in MT includes I. K. Belskya, G. P. Zelenkevich, E. A. Khodzinskaya (German studies) A. A. Zvonov, V. A. Voronin (Chinese studies) and M. B. Yefimov (Japanese studies).

We intend soon to take up the problem of multilingual machine translation with foreign languages both at the input and output, while Russian serves as interlanguage into which the input is first translated. The choice of Russian interlanguage in our case proves highly practical. It is worth noticing that the method we have suggested is of great help in solving the problem of multilingual MT. The diagram in Fig. 18 illustrates the translation of an English sentence E into the corresponding Russian R. Letter V stands for Vocabulary, letter A stands for Analysis part of the programme; ER stand for "Englishinto-Russian". Letter S stands for Synthesis programme. VA symbolizes that both Vocabulary and Analysis part of work is over. It is evident that when so much as VA is accomplished, we are fully provided with Russian equivalents, with all their grammatical characteristics attached. Thus we can easily pass on to, say, a Russian-French dictionary, and get the corresponding French equivalents with their necessary grammatical characteristics. Thus using only the French Synthesis programme we can obtain a French sentence automatically translated from English.

We do not make any secret of our work, and last summer, when a group of American engineers were visiting our Institute, we mentioned our experiments in automatic translation carried out on BESM. We made a statement concerning our first achievements at the Conference on Computing Techniques in Moscow and at the two international conferences in London and Brussels. Certain

information on our first results was given in our first publications (5,6,7,8). Nevertheless, the French journal "TSF Phono-Ciné-Electricité" (1956, no. 730, p.6) published not very long ago an article bearing the title "Pour percer le secret du cerveau electronique russe". I believe, it is clear from what was told above that we have no special "secret". We have found a method of solving the problem by combining mathematical approach with very concrete linguistic analysis, thus not going too far into formal methods of investigation. I shall conclude with a statement made by Jespersen, in his "Analytic Syntax" (4, pp. 13-14):

"The symbols here introduced to some extent resemble the wonderful system of symbols which during the last few centuries has contributed so much to make mathematics (and in some degree logic) exact and more easy to manage than was possible with the unwieldly word-descriptions used formerly. My system aims at providing linguists with some of the same advantages. But it cannot pretend to the same degree of universality as either the chemical or mathematical symbols. That is precluded simply because of the fact, which it is no use shirking, that language is everywhere socially conditioned and there is no getting away from that".

ТОЖДЕСТВЕННЫЕ РУССКИЕ СТРУКТУРЫ

У нас есть черный кот.

У нас есть собственный дом.

<u>ТОЖДЕСТВЕННЫЕ</u> <u>АНГЛИЙСКИЕ СТРУКТ</u>УРЫ

- 17 -

He should knock at the door before coming in.

He would knock at the door before coming in.

<u>РАЗЛИЧНЫЕ</u> <u>АНГЛИЙСКИЕ СТРУКТУРЫ</u>

We have a black cat.

We have a house of our own.

<u>РАЗЛИЧНЫЕ</u> <u>РУССКИЕ</u> СТРУКТУРЫ

Следовало бы ему постучать в дверь, прежде чем входить.

Он вывало постучит в дверь, прежде чем войти.

Can I forget? yea, that can I,
And that can all men; so will you,
Alive, or later, when you die,
Ah, but the love you plead was true?
Was mine not too?

	СУЩЕСТВИТЕЛЬНОЕ (АНГЛИЙСКАЯ ЧАСТЬ)
1(2,7)	Проверить данное слово на us.
2(3,5)	Проверить следующее слово на существительное.
3(0,0)	Выработать признак дательного падежа.
5(6,13)	Проверить предыдущее (непосредственно) слово на let.
6(0,0)	Выработать именительный падеж.
7(8,13)	Проверить данное слово на it.
8(13,10)	Проверить it на наличие признака какого-либо рода.
10(0,0)	Взять род от ближайшего предшествующего подлежа- щего.
13(14,15)	Проверка на наличие признака единственного или множественного числа.
14(0,21)	Проверка на наличие признака любого падежа
15(16,19)	Проверка на окончание - S.
16(17,17)	Выработка признака множественного числа.
17(18,14)	Проверка предыдущего слова на формулу без = .
18(0,0)	Выработка признака родительного падежа.
19(16,20)	Проверка предыдущего слова на much (*).
20(14,14)	Выработка признака единственного числа.
21(22,23)	Проверить предыдущее слово на let.
22(0,0)	Выработка признака именительного падежа и подлежащего.
23(24,28,	Проверить предыдущее слово на признак "союз одно- родный".
24(28,25)	Проверить непосредственно предшествующее и сле- дующее (относительно союза однородного) слово на прилагательное.
25(26,27)	Проверить все слова на то же слово, что и данное.
26(0,0)	Взять падеж от найденного существительного.
27(0,0)	Взять падеж от ближайшего предшествующего существительного.
28(18,29)	Проверка на окончание 'S.
	. Fig. 3

,	
61 (a,62)	look
а(в,с,)	Проверить следующее слово (или ближайший следу- ющий предлог) на for (+).
в(0,0)	ИСКАТЬ (глагол, I спряжение, несовершенный вид + винительный падеж).
c (dd, e)	Проверить следующее слово (непосредственно) на
d (0,0)	upon. СМОТРЕТЬ (глагол, II спряжение, несовершенный
e(0,0)	вид). РАССМАТРИВАТЬ (глагол, I спряжение, несовершен- ный вид + винительный падеж). Вставить после него (непосредственно) КАК (частица).
62(a,63)	many, much
а(в,с)	Проверить предыдущее слово (непосредственно) на how.
в(0,0)	СКОЛЬКО (числительное, не склоняется).
c(d, e)	Проверить предыдущее слово (непосредственно) на as.
d(0,0)	СТОЛЬКО ЖЕ (числительное склоняется).
e(g, i)	Проверить данное слово на much .
f(0,0)	Не переводится (наречие).
g(f, k)	Проверить предыдущее слово (непосредственно) на very .
h(0,0)	МНОГИЙ (прилагательное, твердая основа, с шипящим).
i(h, []])	Проверить предыдущее слово на предлог и следующее на существительное.
j(0, 0)	МНОГО (наречие).
k(l, j)	Проверить следующее слово на существительное.
1(0, 0)	МНОГО (числительное, склоняется).
	Fig. 4

$$O = \{ \alpha[\kappa+1] (\alpha_{1,\kappa} = 1) 1; (\alpha_{2,\kappa} = N_{\text{точки}}) B; \alpha \}$$

$$\{(a_{2,\kappa} = N_{us}) 2; 7 \}$$

2
$$\{(a_{1,\kappa+1}=1)3;5\}$$

3
$$\left[\ell_{4,\kappa} = 3; 0 \right]$$

$$5 \{(a_{1,\kappa-1} = N_{let}), 6; 13\}$$

6
$$[\beta_{1,R} = 1; 0]$$

$$7 \{(a_{2,\kappa} = N_{it}) 8; 12 \}$$

$$8 \{(a_{6,\kappa} = 0) 10; 0\}$$

$$\int_{10}^{10} \left\{ [i = \kappa] \alpha [i - 1] \left\{ (\alpha_{4i} = 1) \beta; \alpha \right\} \beta [\alpha_{6,\kappa} = \alpha_{6,i}] \right\}$$
Fig. 5

Nº 1 O	011	63.15	33.0	19.0
1	. 212	0.0	46.0	0.0
2	101	34.0	0.0	37.0
3	011	63.14	35.0	19.0
4	121	44.0	0.1	36.0
5	113	39.0	16.1	16.0
6	121	41.0	0.1	40.0
7	211	0.1	46.0	39.0
8	131	16.2	16.0	41.0
9	211	0.1	40.0	49.0
10	121	46.0	63.14	38.0
11	011	0.1	37.0	39.0
12	131	16.2	16.0	41.0
13	212	10.13	40.0	0.2
14	121	46.0	0.7	38.0
15	011	0.2	37.0	39.0
16	131	16.1	17.0	41.0
17	212	0.1	40.0	0.3
18	121	46.0	0.5	38.0
19	011	0.3	33.0	6.1
20	321	16.0	0.3	46.0
21	210	0.0	34.0	0.5
22	111	3 7 70	39.0	16.2
23	322	29.0	41.0	27.6
24	121	40.0	0.6	46.0
25	210	0.13	38.0	0.6
26 2 7	113	33.0	6.1	16.0
27	212	0.1	46.0	0.0
28 29	101	34.0	0.7	3 7. 0
30	113	39.0	16.2	16.0
30	121	41.0	8.9	40.0
32	212	0.8	46.0	0.13
32	1	⁴ 38.0		

Fig. 6

«The cause of this phenomenon will be considered in the following articles».

BYKBЫ

 $\begin{array}{c} 2126080022162005080028140021261205002426 \\ 081528110815281500131227270006080022281505 \\ 12300807083000121500212608001428272728 \\ 13121510001607211222270805 \end{array}$

ВВОД

цифРы

причина рассматривать

- 24 -

этот В явление следовать быть статья

(признаки)

SNAAHA

Причина этого явления будет рассмотрена в следующих статьях.

CUHTES

	115(116,120)	Проверка на наличие признака "множественное число".
	116(117,118)	Проверка на наличие признака "1 лицо".
	117(0,0)	Добавить окончание -ЕМ.
	118(0,0)	Добавить окончание - УТ.
	119(115,115)	Взять данное слово без изменения из словаря, но перед ним поставить другое слово: БУД - с окончанием, найденным по схеме.
	120(0,0)	Добавить (к БУД-) окончание - ЕТ.
	122(123,124)	Проверка на слово ИСПРАВИТЬ.
	123(0,0)	Отбросить три последние буквы и вместо них добавить к оставшейся части -bTE
	124(125,126)	Проверка на слово ПОКАЗЫВАТЬ.
	125(0,0)	Отбросить последние шесть букв, затем к оставшейся части добавить окончание - ЖИТЕ.
ĺ	126(0,0)	Добавить к оставшейся части слова окончание
		- MTE.
	128(129,130)	Проверка на слово ВЫЧИСЛЯТЬ.
	129(157,157)	Перевод: ВЫЧИСЛИТЕЛЬНЫЙ. Выработка признака "твердая основа".
	130(131,132)	Проверка на слово ИТТИ.
	131(157,157)	Перевод: ПРОИСХОДЯЩИЙ. Выработка признаков "мягкая основа с шипящим".
	132(133,134)	Проверка на слово ПРЕДШЕСТВОВАТЬ.
-	133(157,157)	Перевод: ПРЕДЫДУЩИЙ. Выработка признаков "мягкая основа с шипящим".
	134(135,136)	Проверка на слово УДИВИТЬ.
	135(157,157)	Перевод: УДИВИТЕЛЬНЫЙ. Выработка признака "твердая основа".
	136(137,138)	Проверка на слово ОТЛИЧАТЬСЯ.
	137(157,157)	Перевод: "различный". Выработка признака "твердая основа".
		Fig.7
3	₹	

Это было основано на дорогом эксперименте, проведенном мной и доктоpom R. H. Richens, or Kam-Университебриджского та, в котором мы разработали метод перевода малых отрывков выбранного текста на иностранные языки. Мы дали от чет о этом на конференции в Massachusetts в 1952. после которого компания в сотрудничестве с Джордж-Университетом таунским применили наши методы наглядную чтобы дать демонстрацию, которая была ограничена переводом нескольких предложений на английс русского ский. Не имеется возможности в настоящее время перевода книги как произведения искусства.

This was based on an expensive experiment done by myself and Dr. R. H. Richens, of Cambridge University, in which we worked out a method of transsections of lating small text in foreign selected languages. We gave an account of this at a conference in Massachusetts in 1952, after which the International Business Machines Company, in coniunction with Georgetown applied University, methods to give a popudemonstration which was limited to translating a few sentences form Russian into English. There is no possibility at present of translating a book as a work of art.

Equations involving more than one independent variable and the partial derivatives of the dependent variables with respect to the independent variables are called partial differential equations.

Suppose that both equations actually contain all the possible partial derivatives of second order.

It is necessary to find values between which the function f(x) is zero.

There are various numerical methods for this purpose.

Уравнения, содержащие более чем одну независимую переменную и частные производные зависимых переменных относительно независимых переменных называются дифференциальными уравнениями в частных производных.

Допустим, что оба уравнения действительно содержат все возможные частные производные второго порядка.

Необходимо найти значения, между которыми функция f(x) есть нуль.

Имеются разные численные методы для этой цели.

THIS IS TRUE CERTAINLY OF THE VAST CATEGORY OF PROBLEMS

ASSOCIATED WITH FORCE AND MOTION .

ЭТО ВЕРНО КОНЕЧНО ДЛЯ ОБШИРНОЙ КАТЕГОРИИ ЗАДАЧ СВЯЗА<u>ТЫХ</u> С

силой и движением.

SO THAT WHETHER WE WANT TO KNOW THE FUTURE PATH OF

JUPITER IN THE HEAVENS OR THE PATH OF AN ELECTRON IN AN

ELECTRON MICROSCOPE WE RESORT TO DIFFERENTIAL EQUATIONS.

TAK 4TO XO4EM NN MW 3HATE SYAYMUN NYTE WNNTEPA B

HEBECAX NNN NYTE 3NEKTPOHA B 3NEKTPOHHOM MNKPOCKONE MW NPNBEFAEM K

ANOOEPEHUNANEHUM YPABHEHNAM.

Fig. 12

Sanitized Conv. Approved for Release 2010/07/08 - CIA-RDP81-01043R000400100011-0

немецкий язык

СУЩЕСТВИТЕЛЬНОЕ

5(6,11)	Проверить предшествующее слово на неопределенный артикль.
6(0,0)	Выработать признак "единственное число",
7(38,19)	Проверить данное существительное на признак "местоименное".
11(12,13)	Проверить на наличие числительного перед дан- ным существительным.
12(38,20)	Проверить найденное числительное на zwei, drei, vier, beide.
13(14,15)	Проверить на наличие перед данным словом опре- деленного артикля.
14(6,18)	Проверить найденный артикль на das, des, dem.
15(16,17)	Проверить предшествующее существительное на признаки "местоименное" и склоняется, как прилагательное.
16(17,17)	Дальнейшая проверка одинаково распространяется на оба существительные: данное и найденное.
17(6,38)	Проверить на окончание (e)m или (e)s у данного (или найденного) существительного.
18(6,38)	Проверить наше существительное на окончание е и найденный артикль на der.
19(6,21)	Проверить на наличие перед данным существи - тельным одного из слов: ein, am, im, bein, vom, aufs, durchs, fürs.
20(0,0)	Выработать признак "множественное число".

китайский язык

числительное

23(24,25)	Проверить данное числительное на нали- чие перед ним форманта Я
24(0,0)	Переводится порядковым числительным, ко- торое аналивируется по схеме "прилагатель- ное".
25(26,33)	Проверить данное числительное на наличие после него суффиксов единичности:
	個(个), 本, 把(巴),篇, 隻, 枝, 誫,座, 保(星),所,根,棵,場,次,件,陣,方, 架,枝,名, 位,盆,台,首, 頭, 凿,放, 家, 腿,局,部,門, 菸,服,什,匹,
26(27,29)	Проверить данное числительное на — (один).
27(28,30)	Проверить предыдущее слово на указатель- ное местоимение: ﴿ ﴿ ﴿ ﴿ ﴿ ﴿ ﴾ ﴿ ﴾ ﴿ ﴿ ﴾ ﴿ ﴿ ﴾ ﴿ ﴿ ﴾ ﴿ ﴿ ﴾ ﴿ ﴿ ﴾ ﴿ ﴿ ﴿ ﴾ ﴿ ﴿ ﴾ ﴿ ﴿ ﴾ ﴿ ﴿ ﴾ ﴿ ﴿ ﴾ ﴿ ﴿ ﴿ ﴾ ﴿ ﴾ ﴿ ﴿ ﴾ ﴿ ﴿ ﴾ ﴿ ﴾ ﴿ ﴿ ﴾ ﴿ ﴾ ﴿ ﴿ ﴾ ﴿ ﴾ ﴿ ﴿ ﴾ ﴿ ﴾ ﴿ ﴿ ﴾ ﴿ ﴾ ﴿ ﴾ ﴿ ﴿ ﴾ ﴿ ﴾ ﴿ ﴾ ﴿ ﴾ ﴿ ﴾ ﴿ ﴾ ﴿ اللَّهُ الللَّهُ اللَّهُ الللَّهُ الللَّهُ الللَّهُ الللَّهُ الللَّهُ الللللللللللللللللللللللللللللللللللل
28(0,0)	Числительное $ extstyle extstyle $
29(0,0)	Переводится количественным числительным, которое аналивируется по схеме "сущест-вительное".
30(<i>2</i> 8,31)	Проверить предыдущее слово на притяжательное местоимение 我,我們,我的,我們的,他,他們,他的,他們的,他們的,你們的,我們們,她們,我們們們們們們們們們們們們們們們們們們們們們們們們們們們們們
	ATTO ATTO ATTO ATTO ATTO ATTO ATTO ATTO

31(28,32)

Проверить предыдущее слово на признак 4 прилагательное.

глагол японский язык Проверить данный глагол на наличие окончаний 11(12,13) **从"れる** HITH KAS MIN ちんる или **がれる** NIN られる NJIN へらんろ HLN ひられる или される Выработать признаки страдательного залога и изъявительного наклонения и перейти к 12(24,24) определению времени по схеме. Проверить данный глагол на наличие оконча-13(14,15) は"丸(-) NJN は丸(-) NJN ち丸(-) かれ (-) KIN られ (-) KIN へられ(-) NIN ひられ(-) MJH され(-)・ 14(25,25) Выработать привнаки страдательного запога и произвести дальнейшую проверку. 15(18,17) Проверить данный глагол на наличие окончаний めろ HIH Hb NIIN せめる Вставить глагол №ЭЧЬ, выработать признаки неопределенной формы для нашего глагола и перейти к определению времени по схеме. 16(24,24) 17(18,19) Проверить данный глагол на наличие окончаний め(-) NJN け(-) NAH.せめ(-) nAn え(-). 18(25,25) Вставить глагол МОЧЬ, выработать привнаки инфинитива для нашего глагола и произвести дальнейшую проверку. 19(20,21) Проверить данный глагол на наличие окончаний MIN させる Вставить глагол ДАТЬ, выработать признаки инфинитива для нашего глагола и перейти 20(24,24) к определению времени по схеме. 21(22,23) Проверить данный глагол на наличие окончаний **せ(-) WIN させ(-)**. Вставить глагол ДАТЬ, выработать привнаки инфинитива для нашего глагола и произвести 22(25,25)

Fig. 15

делению времени по схеме.

Выработать привнаки действительного залога изъявительного наклонения и перейти к опре-

дальнейшую проверку.

23(24,24)

												1
L	_	200:	8602	6602	6604	6605	6606	6607	6608	6609		走
	00	6601	6602	6603			迢	迤	迥	迦		
	也	迎	近	近	返	迕		100	JUE	JUF		
_	TW	JTX		JTZ	JUA	J U B 6615	6616	6617	6618	6619		
	510	6611	6612	6613	6614		迴	迷	进	迹		
	迨	迪	迫	选	逢	述	JUM		100	JUP		
_	UG	_	_	101			6626	6627	6628	6629		1
	620				1 .	逃	逅	逆	逋	逯		
	追	迺		送		-			1 U A	JUZ		
	UQ								6638	6639		1
	630	1 -				逕	邀	逗	這	通		1
	進	透			途	1				1 4 7		
_	1 1 /	_	_									1
	564(1				追	逮		1
	逛						1 1 0					1
	1 1 1			M J V I 2 665		_						1
1	665	665	· 1				1 _	<u>م</u> ا ا		1		
1	进			, ,								
I	J V					_					_	1
	666				م ـ ا		1					
	遄								, ,			1
	JW	_		_		_	_				_	7
	667 لدر		. ! .						. 1 -	· 1		
	道		- 1			-	-	- -				
	JW				_		_				_	7
	668						. 1 .					يد
	芷						- 1					太
	JW					_					_	72
	669		_ !	_ 1	1		. !			11		1
	칟		包封			- 1			- 1		R	-
	17	111	(1)1)	(KJ)	r l x	MIN	X L N	0 3 1	. 1			

Fig. 16

中國人民郵電 (6-5012) 去報紙 电 報 明剂 密語 外文 發 Peking **仮報** 局名 往 B 低机員 制数 電報 掛号 文字 车 007 請勿寫草字或簡筆字 6424 13627 0589 Shanghan 收 報 地 名 (請註省名) 自左重右 2013 特 9704 1412 O A 9903 5-D 4418 京 6153 00)9 iè 10 6643 0565 (300) 小棉室字 15 5116 20 Fig. 17

33

 $E \longrightarrow V_{ER} \longrightarrow A_{ER} \longrightarrow S_{R} \longrightarrow R$ $VA_{ER} \longrightarrow VA_{ER} \longrightarrow S_{R} \longrightarrow R$ $R \longrightarrow VA_{RF} \longrightarrow S_{F} \longrightarrow F$

JIMTEPATYPA

- 1. Shannon C. and Weaver W. Mathematical theory of Communication.
- 2, Machine Translation of Languages. Edited by W. N. Locke & A. D. Booth. 1955.
- 3. Fries C.C. The Structure of English. N. Y. 1952.
- 4. Jespersen O. Analytic Syntax, Kopenhagen, 1937.
- 5.Д.Ю.Панов. Автоматический перевод. Москва, 1956.
- 6.Г.П.Зеленкевич, Л.Н.Королев, С.Н.Разумовский. Опыты автоматического перевода на электронной вычислительной машине БЭСМ, "Природа" № 8, 1956.
- 7. I.S. Mukhin. An Experiment of the Machine Translation of Languages Carried out on the BESM. Academy of Sciences, U.S.S.R.
- 8. И.К.Бельская, И.С.Мухин. Автоматический перевод с английского на русский с помощью БЭСМ труды конференции "Пути развития советского математичес-кого машиностроения" /в печати/.

e.

Academician S. A. Lebedev

CERTAIN WORKS
INTHE SPHERE
OF COMPUTING
TECHNIQUE

9 5 6

INSTITUTE OF EXACT MECHANICS AND COMPUTING TECHNIQUE ACADEMY OF SCIENCES OF THE U.S.S.R.

Academician S. A. Lebedev

CERTAIN WORKS
IN THE SPHERE
OF COMPUTING
TECHNIQUE

1956

POOR ORIGINAL

CERTAIN WORKS IN THE SPHERE OF COMPUTING TECHNIQUE

One of the principal works carried out by the Institute is the high speed computer (BESM) on which I and my collaborators have already reported at a number of conferences.

I wish to recall certain basic parameters of the machine.

The BESM is a digital electronic machine for the solution of laborious problems in physics, mechanics, astronomy, engineering, etc. In designing the machine emphasis was laid out convenience of programming and simplicity of operation.

A binyry number system with a floating point was selected. Calculations are made, as a rule, with normalized numbers. The mantissa of the number is represented by 32 binary positions; then, there is one position for the sign of the number, 5 positions for the characteristic of the number and one position for the sign of the characteristic.

The machine has a three-address system. The code of each address consists of 11 bits, the operation part -- of 5 bits, and the sixth operation position is for result normalization interlocking. Thus, provision has been made in the machine for 31 instructions.

The standard cycle of the machine includes selection of two numbers from the memory, carrying the predetermined operation with these numbers, sending the result to the memory and selection of a new instruction from the memory. This cycle takes 77 microsecs.

Addition and subtraction are carried out in 77 to 182 microsecs, depending on the necessity of equalizing characteristics or normalizing results. Multiplication takes 270 microsecs, and division 288 microsecs.

- 3 -

POOR ORIGINAL

When solving complex problems on the machine, the average operation speed is from 7,000 to 8,000 three-address operations per second including reference to the magnetic drum and the magnetic tapes.

All operations are carried out by a single universal parallel action arithmetical unit.

Special cathode-ray tubes are employed for the memory. The capacity of the memory is 1023 numbers.

In order to extend the sphere of solvable problems to include such as require large storage capacities, the machine is provided with a magnetic drum and a magnetic tape storage devices.

The magnetic drum has a capacity of 5120 numbers.

The magnetic tape storage consists of 4 series action magnetophones. One tape can hold an order of 30,000 numbers, making a total of about 120,000 numbers for the 4 magnetophones.

Fig. 1 General View of the BESM.

The numbers and instructions are put into the machine from a punched tape in the form of a series code. The reading rate is 20 numbers per second.

The results of the calculations are withdrawn from the machine by recording on magnetic tape and then printed on a motion picture film inde-

POOR ORIGINAL

pendently, on a special photoprinting device. The printing device works at a rate of 200 numbers per second.

Besides the above photoprinting unit there is an electromechanical printing unit, controlled directly by the machine. The printing rate is 1.5 numbers per second. This printing unit is used when the material to be withdrawn is small in volume compared to the calculations, and to print control values for checking the progress of the calculations.

The general view of the machine is shown on Fig.1. The BESM has been in operation since 1952.

The machine operates 24 hours per day, part of the time being spent on checking. The useful operating time of the machine is 72 per cent, the time spent on checking is 20 per cent, and error losses total eight per cent.

During the time of the operation the machine has solved many laborious and complex mathematical problems in various fields of science and technology, as well as certain logical problems, for instance experiments in translation of scientific texts from English into Russian.

The Institute conducts further work in elaborating the principles of designing electronic computers and creating more perfect units. I shall dwell on some of these works.

A dynamic trigger circuit with an accumulating capacitor has been worked out for the temporary storage of codes in separate units of the machine (suggested by Master of Science P.P.Golovistikov). The circuit of the dynamic trigger and the diagram of operation are shown on Figs. 2 and 3.

When the trigger state corresponds to code "O", there is a big negative voltage on the grid of the valve which is backet up by the bias voltage (- V_{CM}) coupled with the grid by the resistance R_{C} . The valve is reliably closed and the synchronising pulses (FM) applied to the cathole do not pass through the valve. The bias value (- V_{CM}) and the FM pulse amplitude are selected so that when the cathode voltage decreases at the expense of the FM pulses, the grid voltage with relation to the cathode would not surpass the cut-off voltage of the valve. When the trigger is in this state there would be no pulses on the output winting of the transformer which corresponds to code "O".

POOR ORIGINAL

When a positive pulse is applied to the input Y"I" the capacitance "C" is charged through the \mathbb{D}^n I" diode to -10v. The winding of the transformer which gives the Y"I" pulse is coupled with the base voltage -Vcm so that

Fig. 2. 1) The scheme of the triode dynamic trigger; 2) output.

there would be no charging of the capacitance through diode D"I" when the trigger is in a state corresponding to code "O". Therefore the Y"I" pulse begins the voltage equalling $-V_{\text{CM}}$. The surpassing of the Y"I" signal over and above -10v will entail only a short time increase in voltage on the capacitance "C" since the excessive voltage is discharged through the D"O" diode which is coupled through the winding of the transformer which creates

the Y"O" singal with the reference voltage, -10v. Thus, after the passage of the Y"I" pulse the voltage on the valve grid will be -10v. The capacitance "C" maintaining this voltage will be gradually discharging through $\rm R_2$ resistance. The time constant is taken sufficiently great so that in the

Fig. 3. The diagram of the dynamic trigger operation.

time between the two synchronising pulses, the capacitor discharge was insignificant. When the grid voltage is in the order of -10v the decrease in the cathode voltage, at the expense of the synchronising impulses (ΓW), opens the valve and the synchronising impulses pass through it and the output transformer (T_p). Pulses arriving to the external circuit appear on the outer winding of the transformer. From the other winding of the transformer, positive pulses are applied to the valve grid through the resistance R_1 and the diode D_2 . These pulses maintain the charge of the capacitance. The winding is coupled to the reference voltage $-V_M$, so that when the trigger state corresponds to code "O" there would be no charging of

the capacitance through the D_2 diode. The surpassing of the voltage on the grid over and above -10v is taken off by the D"O" diode just as at the operation of the Y"I" signal. Thanks to the sub-charging of the capacitor, the given trigger state may be maintained indefinitely.

To switch the trigger into a state corresponding to "O" code, a negative pulse is supplied to the Y"O" input. This pulse discharges the "C" capacitance through the D"O" diode to a voltage equalling V_{CM} . The surplus capacitor discharge below the -Vcm voltage is taken up by a subcharge through the D"I" and D"2" diodes which are coupled with the reference voltage V_{CM} by corresponding windings of the transformers.

Besides this circuit, we have worked out a series of its modifications. The dynamic trigger circuits with a storage capacitor have a number of important advantages compared with the trigger circuits with potential couplings. The most important ones are the following.

The circuits are very simple and operate on a coarse amplifier principle. They have a sufficiently high input resistance and a very low output resistance, which helps to bring them into agreement with simple logical circuits on the diodes.

The circuits operate on one valve only and do not present particularly great demands for the spread of its parameters and also for the spread of the values of the parameter's details.

Since the circuit operates in a voltage pulse condition with a great duty-ratio it is not difficult to obtain, with a small supply power expenditure, output signals with great front slopes and consequently a greater speed of circuits on small power, economic receiving-amplifying valves.

Compared with the known circuits of delay line dynamic triggers, or the elements of the type that were employed in the IBM-701 machine, the circuits worked out by us are favourably distinguished by the fact that they permit to perform a number of operations non-synchronically with synchronising pulses. In the main this is determined by the fact that the voltage on the dynamic trigger accumulating capacity may be employed to control the pulse-potential gate. Thanks to this the high speed of the dynamic triggers is determined not by the synchronising pulse frequency, but by the duration signals setting the "O" and the "I".

Sanitized Copy Approved for Release 2010/07/08: CIA-RDP81-01043R000400100011-0

POOR ORIGINAL

Fig. 4 gives an example of a simplified adder circuit with employment of dynamic triggers. The withdrawal of the code is performed simultaneously with the synchronising pulses (FU). When the trigger is in an "O" code state there would be no signal on its output and the non-coincidence gate (1) will be open while the coincidence gate (3) will be closed. The code signal will arrive to the Y"I" input and will set the trigger into the "I" code position. If the trigger was in the "I" code position, its outgoing signal would close the non-coincidence gate (1) and open the coincidence gate (3). The code signal will come to the Y"O" input and will set the trigger into the "O" code position. Besides the signal will be applied through the delay line (3) to the ripple-through carry unit.

The impulse will pass via the above unit through the impulse-potential gates (4) which are controlled by the trigger accumulating capacitor voltage. When the trigger is in a state of "I" code the through carry pulse passes through the gate (4), is applied to the next position and establishes the overrun position into a state of "O" code. If the trigger is in a state of "O" code then the ripple-through carry pulse will not pass through the gate (4), the signal will be absent on its output, the non-coincidence gate (2) will be open and the ripple-through carry pulse will be applied to the Y"I" input of the trigger establishing it into the state of code "I".

To increase the speed of modern computers the multiplication time is of great importance. Our Institute has worked out a number of methods reducing the multiplication time. I shall dwell on one of them (suggested by senior engineer, V.S. Burtsev). According to this method the adder is supplied not by all the positions of the multiplicand at once on every adding tact, but in succession beginning with the first one.

The difference in the time of supplying two neighbouring positions equals the delay time in the ripple-through carry gate of one position. At the same time the partial product shift on the adder begins without waiting for the reception of the result of adding of all positions, immediately upon the formation of the result in the second position of the adder. Similarly to the adding, this shift is performed in turns, one position after another beginning with the smallest.

Sanitized Copy Approved for Release 2010/07/08 : CIA-RDP81-01043R000400100011-0

Fig. 4. 1) Simplified circuit of the adder; 2) code.

ORIGINA

Under such a regime of adding it proved to be possible to avoid two operations of the adder trigger per one adding tact. The time of one adding tact in this case is determined: 1. By the transfer time from the first position to the second - $\frac{T_n}{N}$, and 2. By the operational time of the second position of the adder - T_9 . Using a single tact circuit shift and one operation of the basic element per one shift will give us the multiplication time $t_{\text{mult}} = (\frac{T_{\text{n}}}{N} + T_{\text{p}}) + T_{\text{p}}N + T_{\text{n}} + T_{\text{p}}.$ as being equal to

In the usual multiplication circuit, the multiplication time will be

$$t_{\text{mult}} = (T_{n} + \Sigma T_{n}) N + \Sigma T_{n} N.$$

In these formulas:

N is the number of binary positions;

T₉, the adder's trigger operation time;

 $\mathbf{T}_{\mathbf{n}}$ the ripple-through carry maximum time.

Fig. 5 shows the circuit of an arithmetic unit performing step-by-step adding with a single trigger operation.

Here the principle of operation is as follows: supplying the code to the adder of every position is conducted by individual control lines 1,2,...30, which are tappings of the delay line, its length being 'In. The second operation of the base element is avoided by closing its input by means of an "pulse-no pulse" circuit in case of coincidence of the code and carry pulses.

Fig.6 shows a circuit guaranteeing a consequent shift of positions with a single operation of the trigger.

The circuit employs the same sequence shift principle as in adding. The double operation of the trigger is non-existent thanks to the elimination of the T"C" chain during the shift and the introduction of a paraphase carry chain.

Combining this method with others worked out by the Institute, the multiplication time may be substantially reduced without any noticeable increase in the instruments.

The Institute followed a new line in working out a memory made up of ferrite cores with a rectangular hysteresis loop. Instead of a usual matrix system we have worked out a system which we style as "Z type" (suggested by Prof. L. I. Sutenmacher). In this system the ampere-windings of the read

Fig. 5. 1) 5th position; 2) 4th position; 3) carry; 4) carry from the third position.

off are applied simultaneously to all the positions of one number selected at a given moment. Apparently, in such units it is necessary to provide an individual gate for every number. These gates are executed in the form or coordinate transformers.

Let us analyse the circuit of number selection of the 16-number Z-type memory shown on Fig. 7. Here the registers PA_{χ} and PA_{y} and accorp

Fig. 7. 1) Digit line.

dingly the D_{x} and D_{y} decoders are employed for the transforming of the binary code address into current pulses along the selected wires, in the direction of X and Y. A common winding passes through all the coordinate transformers. The direct current flowing through this winding creates the magnetising ampere-windings, aw_{CM} , and thereby determines the operation point A. Thus every coordinate transformer is a gate which operates at a coincidence of the aw_{x} and aw_{y} ampere-windings. When the address code is

applied, the D_X and D_Y decoders excite one wire each and on their intersection is a single selected gate which forms the current pulse for the memory cores of the given number in its output winding.

Those coordinate transformers which are influenced only by the aw_x or aw_y ampere-windings (we shall style them half-selected) will supply to their digit lines the disturbance current caused by the deflection of the hysteresis loopshape from that of rectangular.

To eliminate the disturbance currents from the half-selected transformers we use a disturbance compensation method worked out by professor L.I.Guttenmacher, which employs an additional compensation transformer. Fig. 8 shows a circuit of a coordinate transformer helping to

Fig. 8. Output.

understand the idea of this method. Two cores, working and compensating, have four windings each. The windings \mathbf{w}_1 and \mathbf{w}_2 of each core are coupled uniformly and serve for selection of the coordinate transformer. The windings of \mathbf{w}_3 are coupled in a counterphase and the permanent bias current flows through them determining the working points of both cores. The output windings are also coupled into the counterphase. If affecting the coordinate transformer of the ampere-windings, only on one

coordinate on the output winding of the half-selected transformer there appears a signal equal to the signal difference of the working and the compensation cores. Now, if we select the winding data and the working points of both cores in an appropriate way, the difference of signals on the output of the half-selected coordinate transformer may be made very small and the disturbance would be practically eliminated.

Every coordinate transformer serves a line of memory cores (Fig. 9). It is known that the resistance offered by the core to the current which flows through its windings, changes depending on the remagnetizing or not of the core.

Fig. 9.

Therefore, the problem of stabilising the current which comes from the coordinate transformer into the digit line arises in the units of the ${\bf Z}$ type.

This problem was solved by two cores for every position - a work-ing core and a stabilising one. During the read-off in any position one core is remagnetizing in a major cycle, while the other core, in a minor cycle maintaining the load stability.

The scheme of one memory line and the diagram of its operation are shown on Fig. 10. Every pair of cores besides the winding z has another two absolutely indentical windings. One of these windings serves for writing the codes into the given position, while the other is used as a readout. Both windings are common for all the memory cores in the given position.

The coordinate transformer supplies to its line two half waves of the $\rm I_{z1}$ and $\rm I_{z2}$ currents. (Up to now we have been considering only the first half wave). The $\rm L_{z1}$ current has a big amplitude and performs the switching of one of the cores of the pair, i.e. the readout. The $\rm I_{z2}$ current is of a different polarity than the $\rm I_{z1}$ and is used for writing together with the current flowing through the write winding.

In order to perform the writing of the "I" code, a positive current pulse is applied on the write winding simultaneously with the $\rm I_{z2}$ current. For writing the "O" code it is necessary to supply a negative polarity pulse current through the write winding. Let us consider the diagram shown on Fig. 10. It presents the sequence of the writing and readout currents.

After the I_{21} pulse current at a moment t_1 the first core will be in a state of "O" while the second, in the state of "I". At a time moment t_2 , together with the I_{22} current both cores are affected by the writing code "I" current (on Fig. 10 it is etched).

Its polarity is such that its absolute value will add up with the I $_{\rm Z2}$ current in the first core and will perform the writing of the "I" code in the first core. In the second core the writing current "I" will be subtracted from the $\mathbf{I}_{\mathbf{Z}\mathbf{\hat{2}}}$ current and the summed ampere-windings will be unable to change the state of the second core. If it is considered that during the switching from the "O" state into the "I" state every core induces a positive polarity EMF then during the writing "I" the first core will give a big positive pulse and the second, a small negative pulse. The sum of the EMF's of both cores will ensure a big positive pulse on the output winding. During the next reading at a time moment t3 there will be a switching of the first core from the "I" state into the "O" state, while the second core will not change its "I" state. At this time the first core will give out a big negative signal while the second core will give out a small positive signal. As a result there will appear a big negative pulse on the output. During the writing of the "O" code during a time moment $\mathbf{t_4}$, the pulse current of the "O" writing will have a negative polarity and will be subtracted from the ${\rm I}_{{\rm Z}{\rm Z}}$ current of the first core. The summed ampere--windings in this process will be unable to change the magnetic state of

the first core while their summed ampere windings of the second core will transfer it into the "O" state. Apparently a big negative pulse will appear then at the output winding. Finally, in the readout of the "O" code the first core will not change its state, while the second will take the state of "I". At this moment there will appear a big positive pulse on the output. Regarding the pulse table on Fig. 10, we see one of the most peculiar features of the given system, namely: the reading signals of the "I" code differ from the reading signals of the "O" code not by the amplitude, as is the case of matrix systems but by the sign.

As distinct from the matrix systems where the reliability of the readout $U_{"I"}$ min is determined by the ratio $U_{"O"}$ max' in the given system the problem of readout is solved in a very simple manner. To bring this about it is sufficient to render the output chains sensitive to the pulses of only one polarity. It is easy to notice that the second core, besides the stabilisation load, performs in this case the disturbance compensation in reading out "O" which appears in the matrix circuits of the memory units with the utilisation of one core only.

The worked out system favourably differs from the usual matrix circuits by smaller requirements for the characteristics of the ferrite cores and their identity, and it does not require great stabilisation of the readout signals. The reliability of the operation improves greatly thanks to the absence of disturbances during the reading, a great selection speed and a greater amplitude of the output signal.

The memory of such a type for 1023 numbers is manufactured by the Institute and is adjusted as such. At present its adjustment is being made in operation jointly with the BESM, as a high speed operational memory.

The photoprinter employed in the BESM for the withdrawing of the obtained results at a rate of 200 numbers per second, has proved to be a reliable and highly efficient unit. Many millions of figures have been printed by it. However, the development of the film and the printing on paper delay the obtaining of the results which creates certain hindrances in the operation. Therefore the Institute is developing an electromechanical printing machine with a high operational speed.

t, tz

t3 t4

t₅ t₆

Fig. 10. 1) Writing; 2) readout; 3) voltage.

Fig. 11. 1) Electronic circuit; 2) FD.

Fig. 12. The electromechanical printing machine.

- 19 -

Fig. 11 shows the méchanical scheme of this machine. The motor M with a speed of 20 revolutions per second rotates the printing drum B on the circumference of which there are digits from 0 to 15 for every position. On the same axis there is mounted a cup-shape commutator K with holes corresponding to the digits from 0 to 15 in the binary system.

Before the drum, the supplying mechanism pulls up the paper and the carbon of the same size in a start-stop method. The lamp I lights the germanium photo-diodes FD at a moment when the holes in the commutator and the corresponding lines of digits on the printing drum come to the keys. The photo-diodes send the impulses of the code of the digits and the synchronising impulses to the electron circuit. The high speed solenoids C, which are controlled by the electronic circuit put in motion the keys which hit through the carbon on the paper and print the corresponding digits.

One third part of the printing drum is not occupied by digits. While the unoccupied by digits part of the drum B passes, the paper and the carbon are supplied one step forward by the controlled machanism. In the time of one turn all the digits of one number are printed (the paper is motionless) and one step is made by the paper and the carbon (there is no printing this time). At present a sample of such a machine (Fig. 12) is being checked in joint operation with the BESM. Fig. 13 shows a sample of number printing on this machine at a rete of 20 lines per second.

```
111144444

111144444

111144444

111444444

111444444

11144444

11144444

11144444

11144444

11144444
```

Fig. 13. A sample of printing done by the machine.

Besides the works presented in this report, the Institute conducts a number of other researches and experiments directed towards a further development of the computating technique and its application.