La transformation non totale

Transformation totale

$$x_f \approx x_{\text{max}} \text{ ou } \tau = 1$$

 $a \land (aq) + b \land (aq) \rightarrow c \land (aq) + d \land (aq)$

Transformation non totale

$$x_f < x_{max}$$
 ou $0 < \tau < 1$
 $a \land A(aq) + b \land B(aq) \xrightarrow{sens direct} c \land C(aq) + d \land D(aq)$

2 L'évolution spontanée d'un système

Système chimique

$$a A(aq) + b B(aq) \rightleftharpoons c C(aq) + d D(aq)$$

• Quotient de réaction Q, (sans unité) :

$$Q_{r} = \frac{\left(\frac{\boxed{C}}{c^{\circ}}\right)^{c} \times \left(\frac{\boxed{D}}{c^{\circ}}\right)^{d}}{\left(\frac{\boxed{A}}{c^{\circ}}\right)^{a} \times \left(\frac{\boxed{B}}{c^{\circ}}\right)^{b}}$$

• Constante d'équilibre K (sans unité) : $K = Q_{r,éq}$

Hors état d'équilibre

$$a A (aq) + b B (aq)$$
 sens direct $c C (aq) + d D (aq)$ sens inverse

État d'équilibre

$$Q_{r,\acute{e}q} = K$$

3 Le transfert spontané d'électrons

Fonctionnement d'une pile

- Le signe de la tension lue indique la polarité de la pile.
- Dans le circuit extérieur à la pile, les électrons circulent de la borne

 à la borne

 . Le sens conventionnel du courant est inverse.
- 3. Borne ⊕ : gain d'électrons, donc réduction. Borne ⊖ : perte d'électrons, donc oxydation.
- 4. Capacité électrique Q_{max}:

$$Q_{\text{max}} = n(e^{-})_{\text{max}} \times N_{A} \times e$$

$$C \quad \text{mol} \quad \text{mol}^{-1} \quad C$$

5. Le pont salin assure la neutralité des solutions et ferme le circuit.

Réducteurs usuels

Métaux

Exemples: métaux du blocs, tel que le lithium Li(s).

Dihydrogène H₂ (g).

Oxydants usuels

Dioxygène $O_2(g)$; dichlore $C\ell_2(g)$; acide ascorbique; ion hypochlorite $C\ell O^-(aq)$.

Pour chaque question,	indiquer la	(ou les)	bonne(s)
réponse(s)			

A B C

1 La transformation non totale

1. On mélange 1 mol d'ions fer (II) Fe ²⁺ (aq) et 2 mol d'ions argent Ag ⁺ (aq). On obtient 0,80 mol d'ions fer (III) Fe ³⁺ (aq). Donnée: Fe ²⁺ (aq) + Ag ⁺ (aq) ⇒ Fe ³⁺ (aq) + Ag(s)	La transformation est non totale.	La transformation est modélisée par deux réactions opposées l'une de l'autre.	La transformation est totale.
2. Le taux d'avancement final de la réaction décrite en 1. vaut :	$\tau = \frac{0,80}{1,0} = 0,80.$	$\tau = \frac{1,0}{0,80} = 1,2.$	$\tau = 80 \%$.
3. À l'état d'équilibre de la transformation décrite en 1. :	$v_{\rm app}(Fe^{3+}) = v_{\rm disp}(Fe^{3+})$	microscopiquement, il n'y a plus de réaction.	le système chimique n'évolue plus.

2 L'évolution spontanée d'un système

4. Le quotient de la réaction Q _r :	s'exprime en mol·L⁻¹.	dépend de l'écriture de l'équation de la réaction.	varie au cours de la transformation.
5. Soit l'équation : Cu ²⁺ (aq) + 2 Ag (s) Cu(s) + 2 Ag ⁺ (aq) Le quotient de réaction associé s'écrit :	$Q_{r} = \frac{\left[Cu^{2+}\right] \times c^{\circ}}{\left[Ag^{+}\right]^{2}}.$	$Q_{r} = \frac{\left[Ag^{+}\right]^{2}}{\left[Cu^{2+}\right] \times c^{\circ}}.$	$Q_{r} = \frac{\left[Ag^{+}\right]^{2} \times \left[Cu\right]}{\left[Cu^{2+}\right] \times \left[Ag\right]^{2}}.$
6. Soit l'équation : $CH_3CO_2H(aq) + H_2O(\ell)$ $\rightleftharpoons CH_3CO_2^-(aq) + H_3O^+(aq)$ À 25 °C, la constante d'équilibre associée est $K = 6,3 \times 10^4$. Le quotient de réaction à l'état initial $Q_{r,i}$ d'un système est égal à $3,0 \times 10^5$.	La transformation évolue dans le sens direct de l'équation.	La transformation évolue dans le sens inverse de l'équation.	La transformation n'évolue pas car l'état d'équilibre est atteint.

3 Le transfert spontané d'électrons

7. Lors de son fonctionnement, la pile décrite ci-dessous : $U > 0$ $COM V$ $Zn^{2+} (aq) + SO_4^{2-} (aq) \qquad Ag^+ (aq) + NO_3^- (aq)$	évolue par transfert direct d'électrons entre ses réactifs.	évolue vers un état d'équilibre.	évolue par transfert indirect d'électrons.
8. Dans la pile décrite en 7., les électrons circulent :	de l'électrode de zinc vers l'électrode d'argent.	de l'électrode d'argent vers l'électrode de zinc.	dans les solutions.
9. Pour la pile décrite en 7., l'équation de la réaction électrochimique s'écrit :	$Zn^{2+}(aq) + 2e^- \rightarrow Zn(s)$ sur l'électrode de zinc.	$Zn(s) \rightarrow Zn^{2+}(aq) + 2 e^{-}$ sur l'électrode de zinc.	$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$ sur l'électrode d'argent.
10. L'équation de la réaction de fonctionnement de la pile décrite en 7. est :	$Zn^{2+}(aq) + 2 Ag(s)$ $\rightarrow Zn(s) + 2 Ag^{+}(aq)$	$Zn(s) + 2 Ag^{+}(aq)$ $\rightarrow Zn^{2+}(aq) + 2 Ag(s)$	2 Zn(s) + Ag ⁺ (aq) \rightarrow 2 Zn ²⁺ (aq) + Ag(s)
11. Un réducteur usuel peut être du :	dioxygène O ₂ (g).	dihydrogène H ₂ (g).	dichlore $C\ell_2$ (g).

1 Exercice

Préparer une suspension de sulfate de baryum

Mobiliser et organiser ses connaissances ; effectuer des calculs.

Le sulfate de baryum BaSO₄, opaque aux rayons X, est utilisé en radiologie. À 25 °C, on prépare une solution de volume V = 2,0 L en introduisant une masse m = 5,0 g de BaSO₄(s) dans de l'eau. La dissolution du sulfate de baryum dans l'eau a pour équation : BaSO₄(s) \rightleftharpoons Ba²⁺(aq)+SO₄²⁻(aq)

- 1. Montrer, qu'à 25 °C, du sulfate de baryum BaSO₄(s) se dissout.
- 2. À l'état final, $[Ba^{2+}]_f = 1.1 \times 10^{-5}$ mol·L⁻¹. En déduire que la transformation n'est pas totale.

Données

Constante d'équilibre à 25 °C : $K = 10^{-9.9}$; $M(BaSO_4) = 233.4 \text{ g} \cdot \text{mol}^{-1}$.

Radiographie d'un intestin grâce à l'utilisation du sulfate de baryum.

Exercice

Une pile saline utilisable pour observer les étoiles ?

Utiliser un modèle pour expliquer ; comparer à une valeur de référence.

Afin d'éviter la buée sur les optiques des télescopes, les astronomes amateurs utilisent des résistances chauffantes. Pour fonctionner, l'une d'elles nécessite une quantité d'électricité Q=6 Ah. Des astronomes veulent alimenter cette résistance à l'aide d'une pile saline décrite ci-contre. Cette pile saline contient entre autres, 3,5 g de zinc Zn(s) et 4,9 g de dioxyde de manganèse MnO $_2$ (s) en poudre. En branchant la borne COM sur l'électrode de carbone C(s), la tension mesurée est égale à -1,5 V.

- 1. Écrire l'équation de la réaction de fonctionnement de la pile saline.
- Déterminer la capacité électrique Q_{max} de cette pile.
- 3. La pile saline permet-elle aux astronomes amateurs d'alimenter la résistance chauffante?

La pile saline fait intervenir les couples oxydant /réducteur $Zn^{2+}(aq)$ / Zn(s) et $MnO_2(s)$ / $MnO_2H(s)$.

Données

- L'électrode de carbone C(s) inerte est ajoutée pour assurer la conduction électrique du dioxyde de manganèse.
- Charge élémentaire : $e = 1.6 \times 10^{-19}$ C.
- 1 Ah = 3 600 C.
- Masses molaires :

 $M(Zn) = 65.4 \text{ g} \cdot \text{mol}^{-1}$; $M(MnO_2) = 86.9 \text{ g} \cdot \text{mol}^{-1}$.

4 Caractériser une transformation

| Exploiter des graphiques.

À 50,0 mL d'une solution de nitrate d'argent telle que $[Ag^+] = 1,0 \times 10^{-2} \text{ mol} \cdot \text{L}^{-1}$, sont ajoutés, plusieurs fois, une masse $m_0 = 20$ mg de sulfate de fer (II) FeSO₄(s). Ces ajouts se font sans variation de volume. De l'argent Ag(s) et des ions fer (III) Fe³⁺ se forment.

Les graphes a et b indiquent l'évolution des quantités des différentes espèces en fonction de la masse m introduite.

- Écrire l'équation de la réaction.
- Conclure quant au caractère total ou non de la transformation.

Données

M(FeSO₄)=151,9 g·mol⁻¹.
 Ag⁺(aq)/Ag(s) et
 Fe³⁺(aq)/Fe²⁺(aq).

5 Déterminer un taux d'avancement final

Exploiter des graphiques ; mobiliser ses connaissances.

Un fil de cuivre Cu(s) de masse $m_{\text{Cu}} = 5.0 \text{ g}$ est plongé dans une solution de volume V = 100 mL contenant des ions argent Ag⁺ (aq) telle que [Ag⁺] = 0,075 mol·L⁻¹. La solution se colore en bleu

et un dépôt d'argent se forme sur le cuivre. L'absorbance, à $\lambda = 800$ nm, de la solution obtenue est égale à 0,47.

- Écrire l'équation de la réaction.
- 2. À l'aide du taux d'avancement, conclure au caractère total ou non de la transformation.

Données

 $Ag^{+}(aq) / Ag(s)$; $Cu^{2+}(aq) / Cu(s)$; $M(Cu) = 63.5 g \cdot mol^{-1}$.

6 Calculer un taux d'avancement final

Exploiter des mesures ; faire des calculs.

Un volume $V_A = 1,00$ mL d'acide éthanoïque pur est versé dans une fiole jaugée de volume V = 500,0 mL. On ajuste au trait de jauge avec de l'eau distillée. Le pH de la solution est égal à 3,1.

L'acide éthanoïque réagit avec l'eau suivant la réaction d'équation :

$$CH_3CO_2H(aq) + H_2O(\ell) \rightleftharpoons CH_3CO_2^-(aq) + H_3O^+(aq)$$

- 1. Calculer l'avancement maximal de la réaction.
- 2. Calculer le taux d'avancement final.
- 3. Conclure quant au caractère total ou non de la transformation.

7 Exprimer un quotient de réaction l Organiser ses connaissances.

Soient les équations des réactions suivantes :

$$PbO(s) + H2O(\ell) \rightleftharpoons Pb2+(aq) + 2 HO-(aq)$$
 (1)

$$2 \text{ PbO}(s) + 2 \text{ H}_2\text{O}(\ell) \rightleftharpoons 2 \text{ Pb}^{2+}(aq) + 4 \text{ HO}^{-}(aq)$$
 (2)

- **1.** Exprimer les quotients de réaction Q_{r1} et Q_{r2} associés aux équations (1) et (2).
- 2. L'expression du quotient de réaction dépend-elle de l'écriture de l'équation de réaction ?

8 Lier équation et quotient de réaction | Mobiliser ses connaissances.

Parmi les expressions données ci-dessous, associer un quotient de réaction à une équation de réaction.

- 1. $Cu^{2+}(aq) + 2 Ag(s) \rightleftharpoons Cu(s) + 2 Ag^{+}(aq)$
- 2. $Cu(OH)_2(s) \rightleftharpoons Cu^{2+}(aq) + 2 HO^{-}(aq)$ $\frac{\left[Cu^{2+}\right] \times c^{\circ}}{\left[Ag^{+}\right]^2}; \frac{\left[Ag^{+}\right]^2}{\left[Cu^{2+}\right] \times c^{\circ}}; \frac{\left[Cu^{2+}\right] \times \left[HO^{-}\right]^2}{\left(c^{\circ}\right)^3}$

Prévoir le sens d'évolution spontanée

Effectuer des calculs ; utiliser un modèle pour prévoir.

À un volume V = 20 mL d'une solution de nitrate de plomb (II) telle que $[Pb^{2+}] = 1.0 \times 10^{-2}$ mol·L⁻¹ est ajouté, sans variation de volume, à 25 °C, 200 mg de poudre d'étain Sn(s).

À l'état final, $[Sn^{2+}]_f = 2.5 \times 10^{-3} \text{ mol} \cdot L^{-1}$. À 25 °C, la constante d'équilibre K associée à l'équation de la réaction est égale à 0.33.

- 1. Écrire l'équation de la réaction modélisant la transformation.
- 2. Calculer la valeur du quotient de réaction à l'état initial du système considéré.
- 3. En déduire le sens d'évolution spontanée du système.

4. Calculer la valeur du quotient de réaction à l'état final du système. Conclure.

Données

- Couples: Pb²⁺(aq) / Pb(s); Sn²⁺(aq) / Sn(s).
- M(Sn) = 118,7 g ⋅ mol⁻¹.

10 Évaluer une constante d'équilibre

Effectuer des calculs ; utiliser un modèle pour prévoir.

À 25 °C, dans une fiole jaugée de 250,0 mL, sont dissous totalement une masse $m_1 = 1,21$ g de nitrate de fer (III) nonahydraté $Fe(NO_3)_3$, $9 H_2O(s)$, une masse $m_2 = 0,87$ g de sulfate de fer (II) heptahydraté $FeSO_4$, $7 H_2O(s)$, une masse $m_3 = 0,64$ g de nitrate d'argent AgNO₃(s) et de la poudre d'argent Ag(s) est ajoutée. On complète au trait de jauge avec de l'eau distillée. La transformation est modélisée par deux réactions opposées. L'équation s'écrit :

$$Fe^{3+}(aq) + Ag(s) \rightleftharpoons Fe^{2+}(aq) + Ag^{+}(aq)$$

- Calculer le quotient de réaction à l'état initial Q_{r.i}.
- 2. Sachant que la masse d'argent diminue, comparer la constante d'équilibre K, à 25 °C, au quotient de réaction à l'état initial.
- 3. À 25 °C, dans un erlenmeyer, sont ajoutées les solutions suivantes :

Solutions	Fe ³⁺ (aq) + 3 NO ₃ (aq)	Fe ²⁺ (aq) + SO ₄ -(aq)	Ag ⁺ (aq) + NO ₃ (aq)
C (mol·L ⁻¹)	1,0 × 10 ⁻⁴	5,0 × 10 ⁻²	1,0 × 10 ⁻²
V (mL)	30,0	50,0	20,0

De l'argent Ag (s) se forme. Déterminer un encadrement de la constante d'équilibre K.

Données

 $M(Fe(NO_3)_3) = 241.9 \text{ g} \cdot \text{mol}^{-1}$; $M(FeSO_4) = 151.9 \text{ g} \cdot \text{mol}^{-1}$; $M(AgNO_3) = 169.9 \text{ g} \cdot \text{mol}^{-1}$; $M(H_2O) = 18.0 \text{ g} \cdot \text{mol}^{-1}$.

(15) Déterminer la capacité électrique d'une pile

| Effectuer des calculs.

Une pile est réalisée en associant :

- une plaque de nickel Ni(s) de masse m = 25 g plongeant dans 50,0 mL d'une solution sulfate de nickel telle que $[Ni^{2+}] = 1,0 \times 10^{-1}$ mol·L⁻¹;
- une plaque d'argent Ag (s) plongeant dans 50,0 mL d'une solution de nitrate d'argent telle que $[Ag^+] = [Ni^{2+}]$. Lors du fonctionnement de la pile, les ions argent Ag^+
- 1. Écrire l'équation de la réaction de fonctionnement de la pile.
- 2. Déterminer la capacité électrique de la pile.

Données

sont réduits.

- Ni²⁺(aq) / Ni(s) et Ag⁺(aq) / Ag(s).
- M(Ni) = 58,7 g⋅mol⁻¹.
- $N_A = 6.02 \times 10^{23} \text{ mol}^{-1} \text{ et e} = 1.6 \times 10^{-19} \text{ C}.$