Задание А2

Пункт 1.

В классическом алгоритме Дейкстры на каждом шаге у вершины v, до которой сейчас найден ближайший путь, просматриваем всех соседей u и обновляем расстояния до них как $dist[u] = \min(dist[u], dist[v] + w(v, u))$.

Пользуясь тем, что уже существует доказательство корректности алгоритма Дейкстры, заметим, что в нём используется то, что веса рёбер неотрицательные и прибавление w(v,u) к dist[v] может уменьшить dist[u], но не сделает его меньше dist[v].

Таким образом, при модификации алгоритма достаточно заменить операцию сложения на умножение и при инициализации расстояние до стартовой вершины сделать равным 1, а не 0, тогда алгоритм будет работать корректно, если веса всех рёбер неотрицательны.

Если в графе есть ребро (u,v) с отрицательным весом, то до вершины u можно дойти по очень длинному пути, а потом пройти по ребру (u,v), дойдя до вершины v по пути с большим отрицательным весом Рассмотрим пример: пусть в ориентированном графе G = (V, E) необходимо найти кратчайший путь из v_1 в v_8

Граф G:

Пункт 2.

Пусть, если вершина v_j не достижима из вершины $v_i \implies$ между ними нет кратчайшего пути, то положим $dist[v_i][v_i] = \infty$

1. Сначала для всех пар $1 \le i, j, k \le n$, для которых $i \ne j \ne k \ne i$ необходимо проверить выполнение неравенства треугольника:

$$(dist[v_i][v_i] \neq \infty \land dist[v_i][v_k] \neq \infty) \implies (dist[v_i][v_k] \neq \infty \land dist[v_i][v_i] + dist[v_i][v_k] \geq dist[v_i][v_k])$$
(1)

Если оно не выполняется, то приходим к противоречию с определением кратчайшего пути \implies по такой матрице dist[][] нельзя восстановить граф.

2. При выполнении неравенства рассмотрим такой алгоритм:

В качестве матрицы весов w восстанавливаемого графа положим данную матрицу dist[][] кратчайших путей

А в качестве восстанавливаемого графа G рассмотрим список смежности, построенный из этой матрицы (вершина u принадлежит списку вершины v, если $dist[u][v] \neq inf$)

Это корректно, т.к. если дан ориентированный взвешенный граф H, и к нему применили алгоритм Флойда-Уоршелла, получив матрицу кратчайших путей $dist_H$ [[], то, применив алгоритм Флойда-Уоршелла уже к этой матрице $dist_H$ [[], проинтерпретировав её как матрицу весов, алгоритм вернёт ту же матрицу $dist_H$ (по факту, ни на одной итерации алгоритма обновление элементов матрицы не произойдёт, т.к. между вершинами уже найдены оптимальные пути в виду выполнения неравенства треугольника)

В качестве примера рассмотрим матрицу dist[][]:

$$dist = \begin{bmatrix} 0 & \infty & 4 & \infty & 2 \\ -1 & 0 & 3 & \infty & 1 \\ 4 & \infty & 0 & \infty & 6 \\ 2 & \infty & 3 & 0 & 4 \\ 1 & \infty & 2 & \infty & 0 \end{bmatrix}$$

Здесь присутствует путь отрицательного веса между вершинами v_2 и v_1 , а также не между любой парой вершин есть путь

Для всех троек элементов данной матриц выполняется неравенство треугольника в форме (1) Применив к dist[][] алгоритм Флойда-Уоршелла, получим ту же матрицу dist[][] Тогда для восстанавливаемого графа положим матрицу весов равной w = dist и сформируем список смежности:

$$L_G = \{ \\ v_1 : \{v_3, v_5\}, \\ v_2 : \{v_1, v_3, v_5\}, \\ v_3 : \{v_1, v_5\}, \\ v_4 : \{v_1, v_3, v_5\}, \\ v_5 : \{v_1, v_3\} \}$$

Пункт 4.

Т.к. в графе G=(V,E) есть путь из a в b, проходящий через ребро (v_i,v_j) , то из вершины a есть путь P_{a,v_i} до вершины v_i и из вершины v_j есть путь $P_{v_j,b}$ до вершины b. Аналогично, т.к. в графе G есть путь из b в a, проходящий через ребро (v_i,v_j) , то из вершины b есть путь P_{b,v_i} до вершины v_i и из вершины v_j есть путь $P_{v_i,a}$ до вершины a.

Следовательно, в графе G есть циклы $P_{a,v_i} \cup \{(v_i,v_j)\} \cup P_{v_j,a}$ и $P_{b,v_i} \cup \{(v_i,v_j)\} \cup P_{v_j,b}$. При этом, кратчайшие пути по условию существуют, то есть из этих циклов не достижимы циклы отрицательного веса, если они есть в графе G (точнее, если и есть ребро из данных циклов в цикл с отрицательным весом, то обратно из этого цикла с отрицательным весом в данные циклы вернуться нельзя), и сами циклы неотрцательного веса (иначе бы из a в a можно было прийти со сколько угодно малым весом пути)

Пример такого графа:

Данные ограничения на граф не гарантируют отсутствие цикла отрицательного веса, но и не накладвают дополнительные ограничения на структуру графа кроме наличия указанных выше циклов (которые, как показано, неотрицательного веса), а алгоритм Дейкстры, A^* , Форда-Беллмана и Флойда-Уоршелла корректно работают при наличии циклов, если их вес ≥ 0 .

Пункт 3.

Рассмотрим граф G = (V, E, w), где $V = \{1, 2, 3, 4\}$, $E = \{(1, 2), (2, 3), (3, 4), (4, 1)\}$ Матрица весов графа:

$$w = \begin{bmatrix} 0 & 1 & +\infty & +\infty \\ +\infty & 0 & 1 & +\infty \\ +\infty & +\infty & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$$

Граф G:

Инициализация матрицы dist[][]

$$dist = w = \begin{bmatrix} 0 & 1 & +\infty & +\infty \\ +\infty & 0 & 1 & +\infty \\ +\infty & +\infty & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$$

Опишем 64 итераций алгоритма в таблице ниже

(латех смещает таблицу в конец документа, вставить её между последующим выводом о получившейся матрице dist[][] и фразой "Опишем 64 итераций..." не получилось)

Получившаяся матрица расстояний:

$$\begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & 2 \\ 2 & 3 & 0 & 1 \\ 1 & 2 & 3 & 0 \end{bmatrix}$$

Однако корректный алгоритм Флойда-Уоршелла завершает работу, найдя такую матрицу расстояний:

4

 $\begin{bmatrix} 0 & 1 & 2 & 3 \\ 3 & 0 & 1 & 2 \\ 2 & 3 & 0 & 1 \\ 1 & 2 & 3 & 0 \end{bmatrix}$

 $\overline{\mathrm{Takum}}$ образом, некорректный вариант алгоритма не смог найти путь из v_2 в v_1

	for cyc	cle values		dist values	
dist[][] before update	i j	k	$\overline{dist[i][j]}$ before update	dist[i][k] + dist[k][j]	dist[i][j] after update
$\begin{bmatrix} 0 & 1 & +\infty & +\infty \\ +\infty & 0 & 1 & +\infty \\ +\infty & +\infty & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	1 1	1	0	0	0
$\begin{bmatrix} 0 & 1 & +\infty & +\infty \\ +\infty & 0 & 1 & +\infty \\ +\infty & +\infty & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	1 1	2	0	+∞	0
$\begin{bmatrix} 0 & 1 & +\infty & +\infty \\ +\infty & 0 & 1 & +\infty \\ +\infty & +\infty & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	1 1	3	0	+∞	0
$\begin{bmatrix} 0 & 1 & +\infty & +\infty \\ +\infty & 0 & 1 & +\infty \\ +\infty & +\infty & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	1 1	4	0	+∞	0
$\begin{bmatrix} 0 & 1 & +\infty & +\infty \\ +\infty & 0 & 1 & +\infty \\ +\infty & +\infty & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	1 2	1	1	1	1
$\begin{bmatrix} 0 & 1 & +\infty & +\infty \\ +\infty & 0 & 1 & +\infty \\ +\infty & +\infty & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	1 2	2	1	1	1
$\begin{bmatrix} 0 & 1 & +\infty & +\infty \\ +\infty & 0 & 1 & +\infty \\ +\infty & +\infty & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	1 2	3	1	+∞	1
$\begin{bmatrix} 0 & 1 & +\infty & +\infty \\ +\infty & 0 & 1 & +\infty \\ +\infty & +\infty & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	1 2	4	1	+∞	1
$\begin{bmatrix} 0 & 1 & +\infty & +\infty \\ +\infty & 0 & 1 & +\infty \\ +\infty & +\infty & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	1 3	1	+∞	+∞	+∞
$\begin{bmatrix} 0 & 1 & +\infty & +\infty \\ +\infty & 0 & 1 & +\infty \\ +\infty & +\infty & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	1 3	2	+∞	2	2

	for	сус	cle values		dist values	
dist[][] before update	i	j	k	dist[i][j] before update	dist[i][k] + dist[k][j]	dist[i][j] after update
$\begin{bmatrix} 0 & 1 & 2 & +\infty \\ +\infty & 0 & 1 & +\infty \\ +\infty & +\infty & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	1	3	3	2	2	2
$\begin{bmatrix} 0 & 1 & 2 & +\infty \\ +\infty & 0 & 1 & +\infty \\ +\infty & +\infty & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	1	3	4	2	+∞	2
$ \begin{bmatrix} 0 & 1 & 2 & +\infty \\ +\infty & 0 & 1 & +\infty \\ +\infty & +\infty & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix} $	1	4	1	+∞	+∞	+∞
$\begin{bmatrix} 0 & 1 & 2 & +\infty \\ +\infty & 0 & 1 & +\infty \\ +\infty & +\infty & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	1	4	2	+∞	+∞	+∞
$ \begin{bmatrix} 0 & 1 & 2 & +\infty \\ +\infty & 0 & 1 & +\infty \\ +\infty & +\infty & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix} $	1	4	3	+∞	3	3
$ \begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & +\infty \\ +\infty & +\infty & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix} $	1	4	4	3	3	3
$\begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & +\infty \\ +\infty & +\infty & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	2	1	1	+∞	+∞	+∞
$\begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & +\infty \\ +\infty & +\infty & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	2	1	2	+∞	+∞	+∞
$\begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & +\infty \\ +\infty & +\infty & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	2	1	3	+∞	+∞	+∞
$\begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & +\infty \\ +\infty & +\infty & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	2	1	4	+∞	+∞	+∞

	for cyc	cle values		dist values	
dist[][] before update	i j	k	$\overline{dist[i][j]}$ before update	dist[i][k] + dist[k][j]	dist[i][j] after update
$\begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & +\infty \\ +\infty & +\infty & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	2 2	1	0	+∞	0
$\begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & +\infty \\ +\infty & +\infty & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	2 2	2	0	0	0
$\begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & +\infty \\ +\infty & +\infty & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	2 2	3	0	+∞	0
$\begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & +\infty \\ +\infty & +\infty & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	2 2	4	0	+∞	0
$\begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & +\infty \\ +\infty & +\infty & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	2 3	1	1	+∞	1
$\begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & +\infty \\ +\infty & +\infty & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	2 3	2	1	1	1
$\begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & +\infty \\ +\infty & +\infty & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	2 3	3	1	1	1
$\begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & +\infty \\ +\infty & +\infty & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	2 3	4	1	+∞	1
$\begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & +\infty \\ +\infty & +\infty & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	2 4	1	+∞	+∞	+∞
$\begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & +\infty \\ +\infty & +\infty & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	2 4	2	+∞	+∞	+∞

	for	cycle values		dist values	
dist[][] before update	i	j k	dist[i][j] before update	dist[i][k] + dist[k][j]	dist[i][j] after update
$\begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & +\infty \\ +\infty & +\infty & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	2	4 3	+∞	2	2
$\begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & 2 \\ +\infty & +\infty & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	2	4 4	2	2	2
$\begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & 2 \\ +\infty & +\infty & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	3	1 1	+∞	+∞	+∞
$\begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & 2 \\ +\infty & +\infty & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	3	1 2	+∞	+∞	+∞
$\begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & 2 \\ +\infty & +\infty & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	3	1 3	+∞	+∞	+∞
$\begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & 2 \\ +\infty & +\infty & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	3	1 4	+∞	2	2
$\begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & 2 \\ 2 & +\infty & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	3	2 1	+∞	3	3
$\begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & 2 \\ 2 & 3 & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	3	2 2	3	3	3
$\begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & 2 \\ 2 & 3 & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	3	2 3	3	3	3
$\begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & 2 \\ 2 & 3 & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	3	2 4	3	+∞	3

	for cycle values			dist values			
dist[][] before update	i	j	k	dist[i][j] before update	dist[i][k] + dist[k][j]	dist[i][j] after update	
$\begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & 2 \\ 2 & 3 & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	3	3	1	0	4	0	
$ \begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & 2 \\ 2 & 3 & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix} $	3	3	2	0	4	0	
$\begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & 2 \\ 2 & 3 & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	3	3	3	0	0	0	
$\begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & 2 \\ 2 & 3 & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	3	3	4	0	+∞	0	
$ \begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & 2 \\ 2 & 3 & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix} $	3	4	1	1	5	1	
$ \begin{array}{c ccccc} \hline $	3	4	2	1	5	1	
$ \begin{array}{c ccccc} \hline $	3	4	3	1	1	1	
$ \begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & 2 \\ 2 & 3 & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix} $	3	4	4	1	1	1	
$\begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & 2 \\ 2 & 3 & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	4	1	1	1	1	1	
$ \begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & 2 \\ 2 & 3 & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix} $	4	1	2	1	+∞	1	

	fo	г су	cle values		dist values	
dist[][] before update	i	j	k	dist[i][j] before update	dist[i][k] + dist[k][j]	dist[i][j] after update
$\begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & 2 \\ 2 & 3 & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	4	1	3	1	+∞	1
$ \begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & 2 \\ 2 & 3 & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix} $	4	1	4	1	1	1
$\begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & 2 \\ 2 & 3 & 0 & 1 \\ 1 & +\infty & +\infty & 0 \end{bmatrix}$	4	2	1	+∞	2	2
$\begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & 2 \\ 2 & 3 & 0 & 1 \\ 1 & 2 & +\infty & 0 \end{bmatrix}$	4	2	2	2	2	2
$ \begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & 2 \\ 2 & 3 & 0 & 1 \\ 1 & 2 & +\infty & 0 \end{bmatrix} $	4	2	3	2	+∞	2
$ \begin{array}{c ccccc} \hline $	4	2	4	2	2	2
$ \begin{array}{c ccccc} \hline $	4	3	1	+∞	3	3
$\begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & 2 \\ 2 & 3 & 0 & 1 \\ 1 & 2 & 3 & 0 \end{bmatrix}$	4	3	2	3	3	3
$\begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & 2 \\ 2 & 3 & 0 & 1 \\ 1 & 2 & 3 & 0 \end{bmatrix}$	4	3	3	3	3	3
$\begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & 2 \\ 2 & 3 & 0 & 1 \\ 1 & 2 & 3 & 0 \end{bmatrix}$	4	3	4	3	3	3

for cycle values			le values	dist values			
dist[][] before update	i	j	k	dist[i][j] before update	dist[i][k] + dist[k][j]	dist[i][j] after update	
$\begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & 2 \\ 2 & 3 & 0 & 1 \\ 1 & 2 & 3 & 0 \end{bmatrix}$	4	4	1	0	4	0	
$\begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & 2 \\ 2 & 3 & 0 & 1 \\ 1 & 2 & 3 & 0 \end{bmatrix}$	4	4	2	0	4	0	
$ \begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & 2 \\ 2 & 3 & 0 & 1 \\ 1 & 2 & 3 & 0 \end{bmatrix} $	4	4	3	0	4	0	
$\begin{bmatrix} 0 & 1 & 2 & 3 \\ +\infty & 0 & 1 & 2 \\ 2 & 3 & 0 & 1 \\ 1 & 2 & 3 & 0 \end{bmatrix}$	4	4	4	0	0	0	