THE SPARKS FOUNDATION

Data Science and Buisness Analytics Tasks

NAME: M.NIVETHITHAA

TASK 2 - Prediction using UnSupervised ML

DATA AUDIT

Importing Libraries

In [1]: import pandas as pd
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans

Displaying Raw Dataset

Out[2]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
145	146	6.7	3.0	5.2	2.3	Iris-virginica
146	147	6.3	2.5	5.0	1.9	Iris-virginica
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

First five rows of the dataset

In [3]: data.head(5)

Out[3]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

Last five rows of the dataset

In [4]: data.tail(5)

Out[4]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
145	146	6.7	3.0	5.2	2.3	Iris-virginica
146	147	6.3	2.5	5.0	1.9	Iris-virginica
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

Shape of the dataset

In [5]: data.shape

Out[5]: (150, 6)

Columns present in the dataset

Summary of the dataset

```
Non-Null Count Dtype
     Column
                   150 non-null
 0
     Ιd
                                   int64
    SepalLengthCm 150 non-null
 1
                                   float64
    SepalWidthCm 150 non-null
                                   float64
    PetalLengthCm 150 non-null
                                   float64
    PetalWidthCm 150 non-null
                                   float64
    Species
                   150 non-null
                                   object
dtypes: float64(4), int64(1), object(1)
memory usage: 7.2+ KB
```

In [8]: data.describe()

Out[8]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

Checking Datatypes

In [9]: data.dtypes

Out[9]: Id

Id int64
SepalLengthCm float64
SepalWidthCm float64
PetalLengthCm float64
PetalWidthCm float64
Species object

dtype: object

Checking missing values

No Missing values

CORRELATION

In [11]: data.corr()

Out[11]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
ld	1.000000	0.716676	-0.397729	0.882747	0.899759
SepalLengthCm	0.716676	1.000000	-0.109369	0.871754	0.817954
SepalWidthCm	-0.397729	-0.109369	1.000000	-0.420516	-0.356544
PetalLengthCm	0.882747	0.871754	-0.420516	1.000000	0.962757
PetalWidthCm	0.899759	0.817954	-0.356544	0.962757	1.000000

```
In [12]: #As this is an Unsupervised Learning we can take features and neglect other columns
    data = data.drop(columns=['Id','Species'])
    data
```

Out[12]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
145	6.7	3.0	5.2	2.3
146	6.3	2.5	5.0	1.9
147	6.5	3.0	5.2	2.0
148	6.2	3.4	5.4	2.3
149	5.9	3.0	5.1	1.8

150 rows × 4 columns

Predict the optimum number of clusters

Preparing the Data

Create X

Create Y

Elbow Method

In [14]: #For creating y we need no of clusters. And we can find the optimum number of clusters using elbow method

- -> In the Elbow method, we are actually varying the number of clusters (K) from 1 10.
- -> For each value of K, we are calculating WCSS (Within-Cluster Sum of Square).
- -> WCSS is the sum of squared distance between each point and the centroid in a cluster.
- -> When we plot the WCSS with the K value, the plot looks like an Elbow.
- -> When we analyze the graph we can see that the graph will rapidly change at a point and thus creating an elbow shape. The K value corresponding to this point is the optimal K value or an optimal number of clusters

```
In [15]: within_cluster_sum_of_squares = []
Range_of_cluster = range(1, 11)
for i in Range_of_cluster:
    kmeans = KMeans(n_clusters = i)
    kmeans.fit(X)
    within_cluster_sum_of_squares.append(kmeans.inertia_)
```

```
In [16]: plt.plot(Range_of_cluster, within_cluster_sum_of_squares,color="green")
    plt.title('The elbow method')
    plt.xlabel('Number of clusters')
    plt.ylabel('Within cluster sum of squares')
    plt.show()
```


The point at which the elbow shape is created is 3. Therefore optimal number of clusters is 3

K-Means Clustering

```
In [17]: y = KMeans(n_clusters=3)
```

Fit K means cluster model

```
In [18]: y_kmean = y.fit_predict(X)
```

Visualization of Results

Compare our original data vs clustered results

```
In [19]: new_labels = y.labels_
fig, axes = plt.subplots(1, 2, figsize=(16,8))
    axes[0].scatter(X[:, 0], X[:, 1], c=y_kmean, cmap='gist_rainbow',
    edgecolor='k', s=150)
    axes[1].scatter(X[:, 0], X[:, 1], c=new_labels, cmap='jet',
    edgecolor='k', s=150)
    axes[0].set_xlabel('Sepal length', fontsize=18)
    axes[0].set_ylabel('Sepal width', fontsize=18)
    axes[1].set_xlabel('Sepal length', fontsize=18)
    axes[1].set_ylabel('Sepal width', fontsize=18)
    axes[0].tick_params(direction='in', length=10, width=5, colors='k', labelsize=20)
    axes[0].set_title('Actual', fontsize=18)
    axes[0].set_title('Predicted', fontsize=18)
```

Out[19]: Text(0.5, 1.0, 'Predicted')

localhost:8888/notebooks/GRIP Task 2 .ipynb

In []: