IVY PN: 570001

CLINTON ELECTRONICS CORPORATION

6701 Clinton Road Rockford, IL 61111 (815) 633-1444

CRT TYPE: 678

BASING BOTTOM VIEW

7" RECTANGULAR HIGH RESOLUTION

90 DEG DEFLECTION LOW VOLTAGE FOCUS

.788" NECK CATHODE RAY TUBE

SCREEN DIMENSIONS

CLINTON PINCEG78W7P3IVJ

1-GRID 1 2-CATHODE 3-HEATER 4-HEATER 5-GRID 1 6-GRID 2

BULB DIMENSIONS

		- D		-
	J	-	I	-
} -				
		37		1
E		8		→ L
		#2	:	Ī
NOTE ;	#1	YRL NOTE #2		
	<u> </u>	K F	-	

	SCREEN DIMENSIONS			
	DIAGONAL	MAJOR	MINOR	
	Α	B	C	
INCHES	6.90	5.72	4.598	
METRIC	175.3	145.3	116.8	
TOLERANCE	MAX	MAX	MAX	

OVERALL	FACEPLATE
LENGTH	RADIUS
D	E
7.843	FLAT
199.2	
+ 250°	SPHERICATINO

BULB DIMENSIONS
DIAGONAL MAJOR MINOR

	G	H	I	J	K	L	M
INCHES 7.5	26 6.346	5,220	4.062	3.781	1.50	2 624	
TOTAL TO A LOCAL TOTAL AND A LOCAL CONTROL OF THE C	MID:000000000000000000000000000000000000				Accessed to the control of the contr	CONTRACTOR (1997)	The second secon
TOLERANCE ±	10" ±.10"	±10"	+ 12*	+ 12*	4 12*	101	\ . #0
		ere same est and a contract of the contract of	ongram <u>and</u> differential door	COOK AND A SPECIAL COOK	ري ۽ ڪالومنين زرزي	Sec. 44.4	#17

Clinton Electronics Corporation reserves the right to alter these specifications without prior notification.

REVISION B

May 24, 1990

1.0 **DESCRIPTION**

The 678 is a 7" diagonal, 90 deg magnetic deflection, 20mm diameter neck, low voltage focus, cathode ray tube designed for high resolution alpha-numeric and video displays. This tube is designed with a 12.0V/75mA heater.

2.0 **ELECTRICAL DATA**

2.1	FOCUSING METHOD	Electrostatic
2.2	2 DEFLECTION	
	DEFLECTION METHOD	Magnetic
	DEFLECTION ANGLES	Magnono
		850
	Diagonal Horizontal	82°
	Vertical	67°
2.3	B DIRECT INTERELECTRODE CAPACITANCES	
	Cathode to all other electrodes	4.0 pF Max
	Grid #1 to all other electrodes	
	External conductive coating to anode (note#3) 100 pF Min	500 pF Max
2.4	HEATER VALUES (nominal)	@ 12.0 V
3.0	OPTICAL DATA	
3.	1 PHOSPHOR (Aluminized)	
	For specific phosphor information, refer to "CLINTON Phosphor Data Shee	et"
3.2	2 FACEPLATE	
	Light Transmission (approximate)(NOTE #4)	
	Light tint	51 %
	Dark tint	36 %
	For faceplate treatments refer to CLINTON Specification: CS115	
4.0	MECHANICAL DATA	
	For mounting systems refer to CLINTON mechanical specification: CS134	•
4	I BULB	
	EIA Designation (or equivalent)	NONE
	Bulb Contact (EIA Designation)	
	Base (EIA Designation)	
	Basing (EIA Designation)	7GR
PAG	E 2 REVISION B May 24, 1990	CRT TYPE: 678

and the sequences				English et all gester
4.2 AG	ENCY APPROVALS			
	SYSTEM	AGENCY	NUMBER	
	T-band with ears	UL/CSA/VDE	CEULL1303TE	
	Rim band	NONE	N/A	
	Shell bond	NONE	N/A	
	Panel w/T-band + ears	UL/CSA	CEULL1303TEI	. 9
5.0	RATINGS (Absolute Max	imum Operating Ra	ntings)	•
	Clinton does not recommend t	ubes be operated at M	aximum conditions.Unless otherwi	se
	specified, voltage values are m	easured with respect to	the cathode.	
			1550 KV Min 14.0 KV	'Max
5.2	GRID #4 (Focus Voltage)		500 V Min 1100 V	'Max
5.3	GRID#2	· i		
	For fixed grid #2 operation	1	300 V Min 800 V	'Max
	For fixed grid #1 operation	1	200 V Min 800 V	'Max
5.4	GRID #1 VOLTAGES	*		
* .	Instantaneous (non-repetitive)		
	Positive Peak	<u></u>	0 V	⁷ max
	Negative Grid #1 Voltage.	**************************	210 V	'Max
	Maximum Drive Voltage (note #5) 2A/cm²	43 V	'Max
5.5	HEATER VOLTAGES			
	Negative Heater to Cathoo	le Voltage During	* 9 *	. V
			450 V	
	After Equipment Warm U	P	200 V	'Max
	Operating Heater Voltage	(DC or RMS) (note #	6)12.0 V	± 5%
5.6	MAX. grid circuit resistance n	ot to exceed 1.5 Meg O	hms	
6.0	TYPICAL OPERATING (CONDITIONS		
	Unless otherwise specified	l, voltages are measure	d with respect to the cathode with	
	cathode at ground			
6.1	VIEW SCREEN VOLTAGE		12.) KV
6.2	OPERATION AT CONSTAN	NT CUT-OFF		
	Conditions for constant cut-of			
	Grid #2 voltage range	************************************	380 V Min 770 V	
	Unive Voltage (note #5)	***************************************		25 V
			75μA(1	vom)
PAGE	3 REVISION B	May 24, 1990	CRTTY	PE: 678

Focus Voltage Range			
Best Overall Focus Voltage	nν	to	400.37
Center Focus Voltage	100 37	. 10	200 17
Lynamic rocus voltage (note #8)	,	225 37	/NT \
Center Line Width (note #9)		182 in	(Mom)
	.208	2 mm	(Nom)
6.3 OPERATIONS AT CONSTANT GRID #2 VOLTAGE (NOTE #10)			
Grid #1 art off-rolling agents (7.72)	*********	******	600 V
Grid #1 cut-off voltage range (note #7)	-52 V	to	-95 V
Cathode cut-off voltage range	46 V	to	86 V
6.4 HEATER BIAS (note #6)			
With respect to cathode, not to exceed	. 0 V	to	-50 V
Bias at nominal value	**********		12.0 V
7.0 SCREEN QUALITY			*

7.1 Screen Quality in accordance with Clinton Manufacturing Specification number CS106.

- 8.1 Maximum deviation from the mechanical center is .250" Rad
- 8.2 Undeflected spot land is measured in accordance with Clinton Manufacturing Specification CS120.

9.0 OPERATING CHARACTERISTICS

UNDEFLECTED SPOT LAND

Vd = Drive Voltage Vg1 = Grid #1 Bias Voltage Vc = Grid #1 Voltage cutoff Ic = Cathode Current γ = Vd/Vc

NOTES

8.0

- 1) External conductive coating and mounting hardware, if used, must be grounded. Pattern outline is for reference only. Actual pattern can deviate from outline shown.
- 2) Determined by plane where EIA G-156 contour reference gauge will stop.
- 3) Measured with implosion hardware, if any, connected to external coating.
- 4) This specification applies to a bare faced tube.
- 5) Drive voltage = | Grid #1 voltage for visual extinction of focused undeflected spot | minus | Grid #1 bias voltage |. For optimum life considerations reduced drive voltage must be used for high cathode duty cycle applications.
- 6) For optimum life considerations, it is recommended that the heater be operated as specified and not allowed to float and biased as specified in paragraph 6.4

- 7) Grid #1 voltage for visual extinction of focused, undeflected spot.
- 8) Dynamic focus = corner focus voltage minus center voltage.
- 9) Line width is the 63% amplitude point of line profile (with raster retrace blanking applied).
- 10) Under these conditions, sizeable variations in spot size and light output can be expected due to cut-off variations.

10.0 X-RAYEMITTANCE

10.1 X-RADIATION REFERENCE POINT

The maximum anode voltage at which the X-Radiation emitted from this tube will not exceed 0.5mR/hour at 250 uA anode current is 19.0 KV

10.2 X-RADIATION CHARACTERISTICS

The X-Radiation emitted from this display tube, as measured in accordance with the EIA Publication No. RS-501 (current revision) will not exceed 0.5mR/hour throughout the useful life of the tube when operated within regulation limits of a hypothetical power supply with a 5M ohm internal impedance, as shown by Figure XM-36. The tube should not be operated beyond its' Design Maximum Rated Anode Voltage, but its' X-Radiation will not exceed 0.5mR/hour for anode voltage and current combinations given by the Iso Exposure Rate Limit Characteristics as shown in Figure XM-36. Operation above these values shown by the curve may result in failure of the display unit to comply with the Federal Performance Standard for Television Receivers (21 CFR Subchapter J.). Maximum X-Radiation as a function of anode voltage at 250uA anode current is shown by the curve of Figure XM-35. X-Radiation at constant voltage varies linearly with anode current.

Figure XM-35

Figure XM-36

PAGE 5

REVISION B

May 24, 1990

CRT TYPE: 678

LINE WIDTH VS. CUTOFF VOLTAGE AT CONSTANT CATHODE CURRENT

PAGE 6

May 24, 1990

CRT TYPE: 678

PAGE 7

REVISION B