EJERCICIO	EJENCICIO I			SNATI		, \), j.A. 44 			
			34	48/1	I					Annual & Sparephon	1 56	044	2021-10
										1			
S1 ₹ S:=		-	}						-		-		
Sz = +:=										-	-		
$S \equiv S_1;$		-					-						
B = 5 > 0							-			and brought of contra			an transport designed on the
7B = 5 €		-		-					-				
Pc: { n	> 0	۸ ۵	.= (n	(n+1)) div	2 1	(= n }						
Qc : { 5:	20	ΛŁ	=0	}									
I: { 6	<	n	N S:	= (t((++1)	div	2 1 5	303	3			1	
PREGUNT	ΑΑ	: /	I ^	7B	=>	Qc							+
				(, (1	- v - a - c						
I A 7B =	o & F	< n	V ?=	י (ציני	E+13)	alv	2 /	3 40 1	, , , ,				
• 57,67	-		C 6 0		=>	3 =	0	5	=>	10			
- 70	-	1	3 2 0	-	-	2							
• 5=0	Λ (- (+	(++1)	div	Z								
		- (-	(- 11)) 01-			which there is not a reserved to		1- 1- 1				
			(- ///	7 01					1	and the same of the same of			
⇒						Z	PUES	Myuz AJ	DE D				
⇒	5=0	۸	5 = 5	F (F+		Z	PUES	Myuz AJ	PAR.	3 + 4 = 7 De hecho, la	ı suma de d	los enterd	
⇒	5=0	۸		F (F+		Z	PUES	Myuz AJ			ı suma de d	los enterd	
⇒	S=0 0=	۲ (۶	s = z (+ +) /	/z	1)/	Z	PUES SIEMF	U SUMB	FAIR.	3 + 4 = 7 De hecho, la consecutivos	suma de de s siempre es	los entero s impar.	os
⇒ ⇒	S=0 0=	۲ (۶	5 = 5	/z	1)/	Z	PUES SIEMF	U SUMB		3 + 4 = 7 De hecho, la consecutivos	suma de de s siempre es	los entero s impar.	os
⇒ ⇒> =>	S=0 0= t=	1 t (t	s = z (+ +) /	/z	1)/	Z	PUES SIEMF	U SUMB	FAIR.	3 + 4 = 7 De hecho, la consecutivos	suma de de s siempre es	los entero s impar.	os
⇒ ⇒> =>	S=0 0=	1 t (t	s = z (+ +) /	/z	1)/	Z	PUES SIEMF	U SUMB	FAIR.	3 + 4 = 7 De hecho, la consecutivos	suma de de s siempre es	los entero s impar.	os
⇒ ⇒ ⇒	S=0 0= t=	^ t (t	S = ; {+1),	£ (£+	-1		PUES SIEMF PERO	U SUMB	FAIR.	3 + 4 = 7 De hecho, la consecutivos	suma de de s siempre es	los entero s impar.	os
⇒ ⇒> =>	S=0 0= t=	^ t (t	S = ; {+1),	£ (£+	-1		PUES SIEMF PERO	U SUMB	FAIR.	3 + 4 = 7 De hecho, la consecutivos	suma de de s siempre es	los entero s impar.	os
⇒ ⇒ ⇒	S=0 0= t=	^ t (t	S = ; {+1),	£ (£+	-1		PUES SIEMF PERO	U SUMB	FAIR.	3 + 4 = 7 De hecho, la consecutivos	suma de de s siempre es	los entero s impar.	os
⇒ ⇒ ⇒	S=0 0= t=	^ t (t	S = ; {+1),	£ (£+	-1		PUES SIEMF PERO	U SUMB	FAIR.	3 + 4 = 7 De hecho, la consecutivos	suma de de s siempre es	los entero s impar.	os
⇒ ⇒ ⇒	S=0 0= t=	^ t (t	S = ; {+1),	£ (£+	-1		PUES SIEMF PERO	U SUMB	FAIR.	3 + 4 = 7 De hecho, la consecutivos	suma de de s siempre es	los entero s impar.	os
⇒ ⇒ ⇒	S=0 0= t=	^ t (t	S = ; {+1),	£ (£+	-1		PUES SIEMF PERO	U SUMB	FAIR.	3 + 4 = 7 De hecho, la consecutivos	suma de de s siempre es	los entero s impar.	os
⇒ ⇒ ⇒	S=0 0= t=	^ t (t	S = ; {+1),	£ (£+	-1		PUES SIEMF PERO	U SUMB	FAIR.	3 + 4 = 7 De hecho, la consecutivos	suma de de s siempre es	los entero s impar.	os
⇒ ⇒ ⇒	S=0 0= t=	^ t (t	S = ; {+1),	£ (£+	-1		PUES SIEMF PERO	U SUMB	FAIR.	3 + 4 = 7 De hecho, la consecutivos	suma de de s siempre es	los entero s impar.	os
⇒ ⇒ ⇒	S=0 0= t=	^ t (t	S = ; {+1),	£ (£+	-1		PUES SIEMF PERO	U SUMB	FAIR.	3 + 4 = 7 De hecho, la consecutivos	suma de de s siempre es	los entero s impar.	os
⇒ ⇒ ⇒	S=0 0= t=	^ t (t	S = ; {+1),	£ (£+	-1		PUES SIEMF PERO	U SUMB	FAIR.	3 + 4 = 7 De hecho, la consecutivos	suma de de s siempre es	los entero s impar.	os
⇒ ⇒ ⇒	S=0 0= t=	^ t (t	S = ; {+1),	£ (£+	-1		PUES SIEMF PERO	U SUMB	FAIR.	3 + 4 = 7 De hecho, la consecutivos	suma de de s siempre es	los entero s impar.	os
⇒ ⇒ ⇒	S=0 0= t=	^ t (t	S = ; {+1),	£ (£+	-1		PUES SIEMF PERO	U SUMB	FAIR.	3 + 4 = 7 De hecho, la consecutivos	suma de de s siempre es	los entero s impar.	os
⇒ ⇒ ⇒	S=0 0= t=	^ t (t	S = ; {+1),	£ (£+	-1		PUES SIEMF PERO	U SUMB	FAIR.	3 + 4 = 7 De hecho, la consecutivos	suma de de s siempre es	los entero s impar.	os
⇒ ⇒ ⇒	S=0 0= t=	^ t (t	S = ; {+1),	£ (£+	-1		PUES SIEMF PERO	U SUMB	FAIR.	3 + 4 = 7 De hecho, la consecutivos	suma de de s siempre es	los entero s impar.	os
⇒ ⇒ ⇒	S=0 0= t=	^ t (t	S = ; {+1),	£ (£+	-1		PUES SIEMF PERO	U SUMB	FAIR.	3 + 4 = 7 De hecho, la consecutivos	suma de de s siempre es	los entero s impar.	os
⇒ ⇒ ⇒	S=0 0= t=	^ t (t	S = ; {+1),	£ (£+	-1		PUES SIEMF PERO	U SUMB	FAIR.	3 + 4 = 7 De hecho, la consecutivos	suma de de s siempre es	los entero s impar.	os
⇒ ⇒ ⇒	S=0 0= t=	^ t (t	S = ; {+1),	£ (£+	-1		PUES SIEMF PERO	U SUMB	FAIR.	3 + 4 = 7 De hecho, la consecutivos	suma de de s siempre es	los entero s impar.	os
⇒ ⇒ ⇒	S=0 0= t=	^ t (t	S = ; {+1),	£ (£+	-1		PUES SIEMF PERO	U SUMB	FAIR.	3 + 4 = 7 De hecho, la consecutivos	suma de de s siempre es	los entero s impar.	os
⇒ ⇒ ⇒	S=0 0= t=	^ t (t	S = ; {+1),	£ (£+	-1		PUES SIEMF PERO	U SUMB	FAIR.	3 + 4 = 7 De hecho, la consecutivos	suma de de s siempre es	los entero s impar.	os

PREGUNTA B: {INB} S {I} (=> INB => WP (S, I) wp(S, I) = wp(S1; Sz, I) = wp(S1, wp(Sz, I)) (I,sz)qu = wp(+ = +-1, I) AXI def(t) AL It-1 = True A It - ASUMIMOS QUE TODAS LAS VARIABLES ESTAIN DEFINIDAS = 0 < t-1 < n n S = ((t-1)(t-1+1)) d1v 2 n 5 > 6 = 0 < t-1 < NO N S = (t(t-1)) div Z N S > 0 = Ez wp(SI, wp(Sz, I)) = wp(SI, Ez) = wp (S == S-t, Ez) = def(s) n def(t) NL Ezs-t = 0 st-1 sn n s-t = (+(+-1)) div 2 n s-t>0 5-6= 6(4-1)/2 = 5= 6(4-1)/2 + 6 = S= E(E-1)/2 + ZE/2 = S= (E(E-1) + ZE)/Z = S= & (t-1+2)/2 = S= t(t+1)/2 = S = (t(t+1)) div 2 1 S = (E(E+1)) div Z 1 S=t>0 = 0 (f-1 (N) = E NOTA

EJERCICIO I	JONATHAN BEKENSTEIN	BOUNTY :				
	348/11	FECHA 2021-10-				
QVQ: INB =>	$Wp(S, I) \in E_I$					
INB = Ofts	(n n s= (t(t+1)) div z n s>0 n	() (
E1 = 0 < 6-1	1 < n 0 N S = (t(t+1)) dIV Z N S-t	20				
5 = (t(t+1)) di	v Z => S= (t(t+1)) div Z					
ÉN INB S>	0 => (t(t+1)) div 2 > 0 => t > 0					
COMBINANDO Ł	>0 V 0 <f <="" u=""> 0 <f <="" td="" u<=""><td></td></f></f>					
	=> -1 < t-1 < N-1					
	=> 0 < t-1 < N					
EN INB, S=	(t(t+1)) div 2 ES DECIR QUE S ES U	A SUMA DE GAUSS				
DE LOS ENTEROS	ENTRE O Y E. POR LO TANTO ES	EVIDENTE QUE				
	E STE EN UP WP.					

1	comprimir (in pal: Palabra, out cod: Código) {
	Pre {
	Ipal) > 0
	3 +209
	es Código Vólido (cod) n es Descompresión (cod, pal)
	pred es Código Válido (cod: Código) {
	$(\forall i: \mathcal{Z})(0 \leq i \leq cod = > L (cod[i])_0 > 0 \land (cod[i])_i > 6)$
	\$
}	
3VOC	optimizar Código (inout cod: Código) {
	Pre {
	cod = Co
	3
	<i>3 t</i> 209
	(3 pal: Palabra)
	es Descompressión (Co, pal)
	n es Des compressión (cod, pal)
	n es El Código Más Barato (cod, pal)
	5
	pred esEl Código Mas Barato (Ci: Código, pal: Palabra) {
	(Ycz: Codigo) (espescompresión (cz, pal) =>L costo (cz) > costo (c,))
	3

	JONATHAN BEKENSTEIN	
	348/11	1, FEGYA 2021-10-15
P : { K+1 (1	SI AL posiciones Correspondientes (s, k,	<i>(i.i.</i>)
	nes Correspondientes (s, K+1, i, j) }	
B = S[K] = 0		
7B = S[K] ≠ 0		
S1 = i = i +	+1	
Sz = j == 0		
$S_3 \equiv j := j+1$		
S = if R the	n Si; sz else sz endif	
	71 31,72 0130 35 611014	
PREGUNTA A	Ax, WP(S1; SZ, Q)=	ωρ(s1, wp(sz, Q))
$wD(S Q) \equiv d$	ef (B) AL ((B A WP(SI, WP(SZ, Q))) V (TR 0 (10 (5 0))
		101100000000000000000000000000000000000
def (B) = 0 ≤ 1	K< 5	
A×ı		
wp (52, Q) =		K+1, i, 0) = Ez
(5	(2) = (2) = (2) = (2) = (2) = (2)	
$ \begin{array}{c} A \times 1 \\ $	i iti = posiciovies Correspondientes (S, Kti	$i(1) \in F_2$
		, 2, 400, -5
$wp(s, \alpha) = d$	ef(B) NL ((BNEI) V (7BNE3))	
	EKCISI NL (
= 0.		
	STKT = O A posiciovies Correspondientes	K+1 i+1 a1
	(S[K]= O A posicionles Correspondientes (s. K+1, i+1,0))
	V	
	V	
	V	
	V	

PREGUNTA B {P} 5 {Q} <=> P => wp (5, a) posiciones Correspondientes (s, k, i, i) => 0 < K < |s| CASO S[k]=0: QVQ: P => posiciones Correspondientes (5, Kt1, it1, 0) posiciones Correspondientes (s, Ktl iti o) = (0<K1<1S1 / 0<0<K1) 0 3 Az cant Apariciones (subseq (s, o, k+1-d, o) = i+1 1 (K+1-0=0 VL S[K+1-0-1]=0) 3 n cant Apariciones (subseq (s, K+1-0, K+1), o) = 0 9 D POR P: K+1<|S| 1 0 < K < |S| => 0 < K+1 < |S| 1 0 < K+1 (3) POR P: cant Apart ciones (subseq (5, 0, K-1) 0) = i ES DEUR HAY I CANTIDAD DE O EN LA SUBSER ENTRE [O, K-1) ADEMAS POR P: CANTApariciones (subseq (5, K-j, K), 0) = 0 NOS DICE QUE NO HAY NINGUN O EN LA SUESER ENTRE [K-j, K) => cantapariciones (subseq (s, o, k), o) = i ES DECIR HAY I CANTIDAD DE CEROS EN LA SUBSEQ ENTRE [O, K) COMBINANDO ESTO CON EZ CASO SIKI = O PODEMOS IMPLICAR @ => cantapariciones (subseq(5,0, K+1),0) = î+1 ES DECIR AHORA MAY I HI CANTIDAD DE O EN LA SUBSER ENTRE [O,KHI) PUET INCLUIMOS SEKT EN LA SURSEQ QUE SABEMOS QUE VALE O. MOTA

IERCICIO 3	JONATHAN BEKENSTEIN	FECHA	2021-10-19
	EMOS LO QUE QUEREMOS IMPLICAR		
	S[K+1-0-1]=0) = K+1=0 V		
COMO ESTAMOS	EN EZ CASO S[K]=0, ESTE PR	LEDICADO SE CUMPL	Ε.
& SIMPLIFIQUEN	405 LO QUE QUEREMON IMPLICAR		
cantApart clovies	(subseq(5, K+1-0, K+1),0) = 0		
	DEVUELVE UNA LISTA VACIA		
= cantAparicion	es $(\langle \rangle, o) = 0 = \text{True} = \epsilon$ s	UNA TAUTOLOGIA	
CASO S[K] 7	o: QVQ: P => postantes Corr	espondientes (S, K+1	, i, i+1) .
posiciones Corre	espondientes (s, Kt1, i, i+1)		
= (0 < K+1 < 15	1 1 0 < j+1 < k+1)		
nl cantApa	inciones (subseq(s, o, k+1-(i+1)), o)	= 1.	
V (K+1-(j.	+1) = 0 VL S[K+1-(]+1)-1]=0)		
n Cant Apar	-1 aones (subseq (s, k+1-(j+1), k+1	1),0)=0	
= (0 \le k+1 < 2	1 1 0 < 1+1 < k+1)	٥	
nl cant Apar	-iciones (subseq(S , O , K - j), O) =	i Ø	
√ (K-j = 0	VL S[K-j-1]=0)	3	
	idones (subseq (s, K-j, K+1), o) =	= 0 D	
OY O SON IM	PUCADOS TRIVIALMENTE POR P P	UET SON EXACTAME.	76J 37V
MISMOS PREIDI	CADOS.		
O POR P: K	(+1< s 1 0 < K < s => 0 6	K+1< 5	
) < j < K => 1 < j + 1 < K + 1 =		
	cant Apariciones (subseq (s, K-j, K)		
ADEMÁS EST	AMOS EN EL CASO S[K] + O, ENT	CONCES SI INCLUÍMO	S A

V977150	JK	EN LA	SURSE	α	VAM	os A	21	IMA	R		7	APARI	CIONES	DE	L	0	
>VE3	SIK	() # O		-				-								1	
				- /				_				<u>ii</u> _				-	-
=> can	+A-pa	Fluories	2 (subs	equs	, K-], K+1) , (5)	= (J 1	rC) = 0					_
														-			
													1				7
								1.0						-	-		_
																	-
					-									-			-
				-				-						1	-		-
							1					I I			T		
							-						1 7 -				
							1		-					-	1 +		
				- 1						-					+		
					-			-			-:-			-			
																	-
				_													
																	_
							-					1.7					
			i i														
				-						- 1							
							_	-			-						
				-				-					9 9				_
								-	-								_
									-								
											-					-	
							_	-								-	
	-			-				-			1						
							-	-									new to
						+											
		-					-										
	-			-				-				1			-		
									+1000	-					-		
				-			-		-	to part of				-	-		
								-							-		
	1-1				-		1							7			-
consequent of consequence		name or an extension	**************************************	and the second				-	or manage			-					

