Module III

Finite Cyclic Groups and Conditions on n for \underline{Z}_n^* to be Cyclic

In Module II we determined that Z_n^* is a finite group of order $\varphi(n)$ and that if $a \in Z_n^*$ then ord (a) $\varphi(n)$. Of course, if ord (a) = $\varphi(n)$ then

$$Z_n^* = \{1, a, a^2, ..., a^{\varphi(n)-1}\}$$

and we say that Z_n^* is cyclic. Our purpose is to determine those values of n for which Z_n^* is cyclic. In preparation for that discussion we begin with a general definition of a cyclic group and a result regarding the structure of an arbitary finite cyclic group.

<u>Definition 1.</u> Let G be a finite group. If $\exists \ a \in G$ such that $G = (a) \underline{\Delta} \{a^k \mid k \ge 0\}$ then G is said to be <u>cyclic</u> and a is called a <u>generator</u> of G.

Remark 1. Of course, if G = (a) then ord(a) = |G|

Proposition 1. Let G be a finite group.

- (i) if $a \in G$ and ord a = t then ord $(a^k) = t/\gcd(k, t)$
- (ii) if G is cyclic and d ord (G) then G has $\varphi(d)$ elements of order d.
- (iii) if G is cyclic and $H \subseteq_g G$ then H is cyclic. Moreover, if $d \mid \operatorname{ord}(G)$ then \exists exactly one subgroup of G having order = d.

Proof (i) Observe that

$$(a^k)^{t/\gcd(k, t)} = a^{\frac{kt}{\gcd(k, t)}} = a^{\ell \operatorname{cm}(k, t)} = e^{-\frac{kt}{\gcd(k, t)}}$$

because t $\mid \ell cm(k, t)$. Thus $ord(a^k) \le t / gcd(k, t)$.

Next realize
$$e = (a^k)^{ord(a^k)} = a^{k ord(a^k)}$$

But then $t \mid k \text{ ord } (a^k)$

and so k ord(ak) is a common multiple of k and t;

whence $\ell cm(k, t) \mid k \text{ ord}(a^k)$.

Thus
$$ord(a^k) \ge \frac{\ell cm(k,t)}{k} = \frac{t}{gcd(k,t)}$$
.

(ii) Suppose
$$\alpha$$
 is a generator. We want ord $(\alpha^{t}) = d$

But ord
$$(\alpha^{t}) = \text{ ord } G / \text{ gcd } (t, \text{ ord } G) \text{ i.e. gcd } (t, \text{ ord } G) = \frac{\text{ ord } (G)}{d}$$
.

Now this holds if and only if
$$\gcd(t/\frac{\operatorname{ord}(G)}{d}, d) = 1.$$

But
$$t < \text{ord } G \Rightarrow t / \frac{\text{ord}(G)}{d} < d$$
.

Conversely, suppose
$$1 \le a < d$$
 and set $t = a \left(\frac{ord(G)}{d} \right)$

if
$$gcd(a, d) = 1$$
 then $gcd(t / \frac{ord(G)}{d}, d) = 1$

Thus \exists 1-1 correspondence between the t's such that $t \le \operatorname{ord}(G)$ and $\operatorname{ord}(\alpha^t) = d$ and the a = [d] such that $\gcd(a, d) = 1$ thereby implying that $\exists \varphi(d)$ such t's.

(iii) Suppose α is a generator of G, i.e. $ord(\alpha) = |G|$. If d|G| then

ord
$$(\alpha^{|G|/d}) = \frac{|G|}{\gcd(|G|,|G|_{/d})}$$

Of course with t = |G|/d

$$H_{t}\underline{\Delta}(\alpha^{t})$$

is cyclic and has $|H_t| = d$ so for each divisior of ord $G \exists$ a cyclic subgroup of G having order d.

By ii) H_t contains $\varphi(d)$ elements of order d. But $d\|G\|$ also implies G contains EXACTLY $\varphi(d)$ elements of order d. Thus H_t consists of all of the elements of G having order d. Now suppose $H \subseteq_g G$ such that |H| = d. It remains to show that $H = H_t$. Consider $a \in H$ so that ord (a) $|d| = |H_t|$ implies that G contains exactly $\varphi(d)$ elements of ord (a) and ord (b) $|d| = |H_t|$ implies that $|H_t| = |H_t|$ contains $|H_t| = |H_t|$ forces $|H_t| = |H_t$

Example 1. Consider
$$Z_9$$
. Then $\varphi(9) = 9\left(1 - \frac{1}{3}\right) = 6$

and

$$Z_9^* = \left\{ a \in Z_9 \middle| \gcd(a, 9) = 1 \right\}$$
$$= \left\{ 1, 2, 4, 5, 7, 8 \right\}.$$

Now Z_9^* is cyclic since $2^1 = 2$, $2^2 = 4$, $2^3 = 8$, $2^4 \equiv 7 \pmod{9}$, $2^5 \equiv 5 \pmod{9}$ and it is easy to see that 5 is the other generator. But Z_9^* has two subgroups, one of order 2 and one of order 3. Since $\varphi(2) = 1$ there is one element of order 2 namely 8 so the unique subgroup of order 2 is $\{1,8\}$. Hence $\{1,4,7\}$ is the sole subgroup of order 3. In summary we have

	Subgroup	Order	Generators
	G	6	${2, 5}$
	{1, 8}	2	{8}
	$\{1, 4, 7\}$	3	${4,7}$
AND	{1}	1	{1}

Corollary 1.1 a) $\alpha \in \mathbb{Z}_n^*$ is a generator if and only if \forall primes p

$$(p | \varphi(n)) \Rightarrow \alpha^{\varphi(n)/p} \not\equiv 1 \pmod{n}$$

b) if α is a generator of Z_n^* then $b = \alpha^i \mod n$ is also a generator if and only iff gcd $(i, \varphi(n)) = 1$

Moreover, if Z_n^* is cyclic then the number of generators is $\varphi(\varphi(n))$

Proof i) if
$$\alpha$$
 is a generator then ord $(\alpha) = \varphi(n) > \varphi(n)/p$ so $\alpha^{\varphi(n)/p} \not\equiv 1 \pmod{n}$.

If α is not a generator then $\operatorname{ord}(\alpha) = t < \varphi(n)$ and $t \mid \varphi(n)$. Let $p \mid \frac{\varphi(n)}{t}$

i.e
$$\varphi(n) = \beta p t$$
 for some $\beta \in \mathbb{Z}$. Thus $\alpha^{\varphi(n)/p} = (\alpha^t)^{\beta} \equiv 1 \pmod{n}$

ii) We know ord
$$b = \frac{\text{ord } \alpha}{\gcd(\text{ord}\alpha, i)} = \text{ord } \alpha = \varphi(n)$$
 if and only if

gcd (i, $\varphi(n)$) = 1. Also the number of generators is just $\varphi(\text{ord }Z_n^*) = \varphi(\varphi(n))$.

Exercise 1 (Submit this exercise). Given that Z_{19}^* and Z_{81}^* are cyclic find all generators and all subgroups of each of them and draw hierarchical diagrams for each.

Two more preliminary results are required prior to proving that Z_n^* is cyclic whenever n is prime. As it happens the arguments required for this development are valid for the general case when F is a finite field. Accordingly we state and prove them in the general form and draw the immediate consequences for the finite field Z_p^* (see Corollary 2.2). First we require the notion of a polynomial.

<u>Definition 2</u>. Suppose F is a field. An expression of the form

$$\sum_{i=0}^{n} a_{i} x^{i}$$

where $n \ge 0$, $a_i \in F$ for each i $a_n \ne 0$ and x is an indeterminant (place holder) is called a <u>polynomial</u> of <u>degree</u> n with coefficients from F. The degenerate case where each $a_i = 0$ is referred to as the "<u>zero</u>" polynomial, is denoted by 0 and is assigned the degree $-\infty$.

Remark 2 Of course we allow the substitution of any $a \in F$ for x, thereby producing a field element.

<u>Lemma 1</u> Suppose f is a polynomial with coefficients from a field F and with degree $n \ge 1$. Then f(a) = 0 in F for $a \in F$ if and only if \exists a polynomial q(x) with coefficients from F having degree n-1 such that f(x) = (x - a) q(x)

 $\underline{\text{Proof}}$ (\Leftarrow): trivial

$$(\Rightarrow)$$
: induction on $n-$

if n = 1, i.e. f(x) = cx + b where $c \ne 0$. Then f(a) = 0 forces c + b = 0

so b = -ca. Hence f(x) = c x + b = c (x-a) and

q(x) = c does the job. Suppose the result is true for deg $f \le n-1$ and consider deg f = n with f(a) = 0.

Let
$$g(x) = f(x) - a_n x^{n-1}(x-a)$$

where
$$f(x) = a_n x^n + \cdots + a_1 x + a_0$$

Then deg $g \le n-1$. Also g(a) = 0

so the induction hypothesis yields $g(x) = (x-a) \hat{q}(x)$

where deg $\hat{q} \le \text{ n-2.}$ Thus $(x-a) \hat{q}(x) = f(x) - a_n x^{n-1} (x-a)$

or, equivalently, $f(x) = (a_n x^{n-1} + \hat{q}(x)) (x-a)$ with deg $(a_n x^{n-1} + \hat{q}(x)) = n-1$.

<u>Lemma 2</u> If f is a polynomial with coefficients from F and with degree $n \ge 1$ then f(x) has at most n distinct roots in F.

<u>Proof</u> If f has no roots then we are done. Otherwise let f(a) = 0 for $a \in F$. Then by Lemma 1, f(x) = (x-a) q(x)

where q has coefficients from F and degree = n - 1.

Suppose f(b) = 0 and $b \ne a$. Then 0 = f(b) = (b-a) q(b)

But b-a \in F, and b - a \neq 0 so q(b) = 0 as F* = F - {0} is a group. Hence all other roots, if they exist, of f(x) must be roots of q(x). By the induction hypothesis q has at most n-1 distinct roots.

Proposition 2. If F is a finite field then $F^*=F-\{0\}$ is cyclic

<u>Proof</u> Let $t = \ell cm \{ ord \ a \mid \ a \in F^* \}$. Of course $t \mid |F^*|$. Write

$$t = p_1^{c_1} p_2^{c_2} \cdots p_k^{c_k}$$
 where p_1, p_2, \cdots, p_k are distinct primes.

Consider $p_i^{c_i}$; $\exists a_i$, such that ord $a_i = p_i^{c_i} \beta$ where

gcd $(p_i^{c_i}, \beta) = 1$. Thus $\partial_i = a_i^{\beta}$ has order $p_i^{c_i}$. Since the $p_i^{c_i}$'s are pairwise relatively prime.

$$\operatorname{ord}(\partial_1 \partial_2 \cdots \partial_k) = p_1^{c_1} p_2^{c_2} \cdots p_k^{c_k} = t$$

But orda $t \forall a \in F^* \Rightarrow \text{ every } a \in F^* \text{ satisfies } x^t - 1 = 0.$

Thus $|F^*| \le t$ by Lemma 2 and $t = |F^*|$. Therefore $\partial_1 \partial_2 \cdots \partial_k$ is a generator of F^* , i.e. F^* is cyclic.

Corollary 2.1 Z_p^* is cyclic for all primes $p \ge 2$.

Our next result establishes the fact that Z_n^* is cyclic whenever $n = p^k$ where $p \ge 3$ and $k \ge 1$.

<u>Proposition 3.</u> $Z_{p^k}^*$ is cyclic $\forall p$ prime ≥ 3 and $\forall k \geq 1$.

<u>Proof</u> Let g be a generator of Z_p^* so that $\exists T \in Z$ such that

$$g^{p-1} = 1 + pT$$

Let $t \in Z$ and consider

$$\begin{split} \left(g+t\;p\right)^{p-1} &=\; g^{p-1} + \sum\limits_{i=1}^{p-1} {p-1 \choose i} (t\;p)^i \;\; g^{p-1-i} \\ &=\; 1+p\;T + \left(p-1\right)t\;g^{p-2}p + \sum\limits_{i=2}^{p-1} {p-1 \choose i} (t\;p)^i \;\; g^{p-1-i} \\ &=\; 1+p\Bigg[T + \left(p-1\right)t\;g^{p-2} + p\sum\limits_{i=2}^{p-1} {p-1 \choose i} \;t^i \;p^{i-2} \;g^{p-1-i}\Bigg] \end{split}$$

Set
$$u = T + (p-1) t g^{p-2} + p \sum_{i=0}^{p-1} {p-1 \choose i} t^i p^{i-2} g^{p-1-i}$$

Observe that $p\chi g^{p-2}$ and $p\chi p-1$ so $p\chi(p-1) g^{p-2}$

Thus

- if p|T and we set
$$t = 1$$
 then p χ u

- if
$$p \chi T$$
 and we set $t = 0$ then $p \chi u$

Hence $\exists t_0 \in Z$ such that $(g + t_0 p)^{p-1} = 1 + p u_0$ where $p \chi u_0$.

Next consider

$$(g + t_0 p)^{p(p-1)} = (1 + p u_0)^p = 1 + \sum_{i=1}^p {p \choose i} p^i u_0^i$$
$$= 1 + p^2 u_0 + \sum_{i=2}^p {p \choose i} p^i u_0^i$$

Since $p \ge 3$, $\sum_{i=2}^{p} \binom{p}{i} p^i u_0^i$ is divisible by p^3

and so

$$(g + t_0 p)^{p(p-1)} = 1 + p^2 u_1$$
 such that $p \chi u_1$

By the same manipulation we obtain, by induction

$$(g + t_0 p)^{p^{\alpha(p-1)}} = 1 + p^{\alpha+1} u_{\alpha}$$
 such that $p \chi u_{\alpha}$.

Let

$$a_k \equiv g + t_0 p \pmod{p^k}$$

and let $\delta_k = \text{ord } (a_k)$. Thus $a_k^{\delta_k} \equiv 1 \mod (p^k)$ and so, since

$$a_{\nu}^{p^{k-1}(p-1)} \equiv 1 \mod (p^k),$$

we have

$$\delta_k | \varphi(p^k) = p^{k-1}(p-1).$$

But

$$a_k^{\delta_k} \equiv 1 \pmod{p}$$

as well so $|p-1| |\delta_k|$ and therefore

$$\delta_{k} = p^{\beta} (p-1)$$

for some $0 \le \beta \le k-1$. However if $\beta \le k-2$ then

$$(a_k)^{p^{\beta(p-1)}} \equiv (g + t_0 p)^{p^{\beta(p-1)}} = 1 + p^{\beta+1} u_{\beta}, \quad p \chi u_{\beta}$$

$$\not\equiv 1 \pmod{p^k}$$

Consequently $\delta_k = p^{k-1}(p-1) = \varphi(p_k)$ and Z_{p^k} is cyclic.

One more positive result is possible:

<u>Proposition 4.</u> $Z_{2p^k}^*$ is cyclic \forall primes $p \ge 3$ and all $k \ge 1$.

If fact, if g is a generator of $Z_{p^k}^*$ and g is odd then g is also a generator of $Z_{2p^k}^*$. If g is even then $g+p^k$ is a

generator of $Z_{2p^k}^*$.

<u>Proof</u> First observe that $\varphi(p^k) = \varphi(2p^k) = p^{k-1}(p-1) \ \forall$ primes $p \ge 3$ and $k \ge 1$. Of course if x is odd

$$p^k \mid x^{\alpha} - 1 \iff 2 p^k \mid x^{\alpha} - 1.$$

Thus

ord (x) in
$$Z_{p^k}^* = \text{ord}(x)$$
 in $Z_{2p^k}^*$

Hence if g is odd

ord (g) in
$$Z_{2p^k}^* = p^{k-1}(p-1) = \varphi(2p^k)$$

Suppose g is even; then $g+p^k$ is odd (since $p \ge 3$) and $g+p^k \in Z_{2p^k}$. Furthermore, since $g+p^k \equiv g \pmod{p^k}$

$$(g + p^k)^{\nu} \equiv 1 \pmod{p^k} \iff g^{\nu} \equiv 1 \pmod{p^k}$$
$$\iff p^{k-1}(p-1)|\nu$$

Thus, as above, the minimum value of ν that satisfies $(g+p^k)^{\nu} \equiv 1 \pmod{2} p^k$ is just $p^{k-1}(p-1)$ and so $\operatorname{ord}(g+p^k) = \varphi(2p^k)$ in $Z_{2p^k}^*$.

The remaining results regarding the existence of a generator in Z_n^* exclude all n other than those we have considered above, except n = 4. Of course

 $Z_4^* = (3)$, which is cyclic.

Case (1)
$$n = 2^k, k \ge 3$$

First consider $Z_8^* = \{1, 3, 5, 7\}$. Each $a \ne 1$ has ord = 2 so Z_8^* is not cyclic.

Now realize that $Z_{2^k}^* = \{a \in [2^k] | a \text{ is odd} \}$ and $\varphi(2^k) = 2^{k-1}$.

Claim $a^{2^{k^2}} \equiv 1 \pmod{2^k}$ so a is not a generator and

 $Z_{2^k}^*$ is NOT cyclic for $k \ge 3$.

Proof Realize

$$a^{2^{\alpha}} - 1 = (a^{2^{\alpha-1}} + 1)(a^{2^{\alpha-1}} - 1)$$

Of course if $\alpha \ge 1$ then $2 \mid a^{2^{\alpha-1}} + 1$ because a is odd.

Observe that for $a = 2b + 1, b \ge 1$

$$a^2 - 1 = 4 (b^2 + b)$$

so that

$$8|a^2-1$$

Thus
$$16 | a^4 - 1.$$

Next

$$a^8 - 1 = (a^4 + 1)(a^4 - 1)$$

so

$$32|a^8-1$$

By induction

$$2^{k} \mid a^{2^{k-2}} - 1, \quad k \ge 3$$

so

$$a^{2^{k-2}} \equiv 1 \pmod{2^k}.$$

Case (2) all other n: Since $n \neq p^k$ or $2p^k$ for $k \geq 1$ and $n \neq 2^k$ for $k \geq 3$ it follows that $n = n_1, n_2, n_1, n_2 > 2$ and $gcd(n_1, n_2) = 1$.

Thus

$$\varphi(\mathbf{n}) = \varphi(\mathbf{n}_1) \ \varphi(\mathbf{n}_2)$$

Claim If m > 2 then $2 | \varphi(m)$

Proof Exercise 2 (Submit this one)

Thus
$$\gcd(\varphi(n_1), \varphi(n_2)) \ge 2$$

and

$$c = \ell cm(\varphi(n_1), \varphi(n_2)) < \varphi(n_i)\varphi(n_2) = \varphi(n).$$

Now suppose $a \in \mathbb{Z}_n^*$, i.e gcd(a, n) = 1.

Then $gcd(a, n_1) = gcd(a, n_2) = 1$ and so

$$a^{\varphi(n_1)} \equiv 1 \pmod{n_1}$$

and

$$a^{\varphi_{(n_2)}} \equiv 1 \pmod{n_2}$$

But then

$$a^c \equiv 1 \pmod{n_1}$$

and

$$a^c \equiv 1 \pmod{n_2}$$

i.e.
$$n_1, n_2 \mid a^c - 1$$

But
$$gcd(n_1, n_2) = 1 \implies n_1 n_2 = n \mid a^c - 1$$

and so

$$a^c \equiv 1 \pmod{n}$$

As $c < \varphi(n)$, a is not a generator of Z_n^* .

Summarizing this extensive development we have the following theorem:

Theorem 1. Z_n^* is cyclic if and only if $n = 2, 4, p^k$ or $2 p^k$ for $p \ge 3$ and $k \ge 1$.

Prior to doing an example we summarize the procedural aspects of the development.

<u>Procedure for Finding Generators of</u> Z_p^* , $Z_{p^k}^*$ and $Z_{2p^k}^*$ $(p \ge 3)$.

1. Use the theorem:

 $\alpha \in \mathbb{Z}_p^*$ is a generator if and only if $\forall q$ primes

$$q \mid (p-1) \Rightarrow \alpha \stackrel{(p-1)}{q} \not\equiv 1 \pmod{p}$$

to find a generator g of Z_p^*

2. Method 1: Use the theorem

 $\alpha \in Z_{p^k}^*$ is a generator if and only if \forall primes q

$$q \mid \varphi(p^k) = p^{k-1}(p-1) \Rightarrow \alpha \stackrel{p^{k-1}(p-1)}{q} \not\equiv 1 \pmod{p^k}$$

to find a generator of $Z_{p^k}^*$

Method 2: Take the g of 1. (i.e. a generator of Z_p^*)

- write $g^{p-1} = 1 + p T$ (i.e. find T)
- if p χ T declare g to be a generator of $Z_{p^k}^*$
- if $p \mid T$ declare g + p to be a generator of $Z_{p^k}^*$
- 3. Let g' be a generator of $Z_{p^k}^*$
 - if $\,g'\,$ is odd it is also a generator of $\,Z_{_{2\,p^k}}^*$
 - if g' is even then $g + p^k$ is a generator of $Z_{2p^k}^*$

Remark (3.a) I have not found an example where $p \mid T$ so that it is therefore necessary to use g + p for $Z_{p^k}^*$

b) The method shows that a generator for $Z_{p^2}^*$ is a generator for all $Z_{p^k}^*,\;k\geq 2.$

Example 2. Find a primitive (generator) of Z_p^* where p = 41

Solution: Here p - 1 = 40 = (2³) (5). Consider
$$\alpha = 2 \quad 2^{\varphi(p)/2} = 2^{20} = (32)^4 = (1024)^2 \equiv (-1)^2 \pmod{41}$$

$$\alpha = 3 \quad 3^{20} = (81)^5 \equiv (-1)^5 \equiv -1 \pmod{41}$$

$$3^8 = (81)^2 \equiv (-1)^2 \equiv 1 \pmod{41}$$

$$\alpha = 4 \quad 4^{20} = (256)^5 \equiv 10^5 \equiv 1 \pmod{41}$$

$$\alpha = 5 \quad 5^{20} = (625)^5 \equiv (10)^5 \equiv 1 \pmod{41}$$

$$\alpha = 6 \quad 6^{20} = (1296)^5 \equiv (25)^5 \equiv (625)^2 \quad 25 \equiv 40 \pmod{41}$$

$$\alpha = 6$$
 $6^8 = (1296)^2 \equiv (25)^2 \equiv 625 \equiv 10 \pmod{41}$

SO $\alpha = 6$ is a primitive.

The others are α^3 , α^7 , α^9 , α^{11} , α^{13} , α^{17} , α^{19} , α^{21} , α^{23} , α^{27} , α^{29} , α^{31} , α^{33} , α^{37} , α^{39} .

Continuation Consider $6^{40} = 1 + 41T$. As 41χ $6^{20} - 1$ since 6 is a generator of Z_{41}^* , it must be that $41 \left| 6^{20} + 1 \right|$. Indeed, $6^{20} + 1 = (41)\hat{T}$ and $T = \left(6^{20} = 1\right)\hat{T}$.

Now 41χ \hat{T} = 89174596099097 and 41χ 6^{20} -1 so 41χ T. Thus 6 is a generator of $Z^*_{(41)^2}$. A generator for $Z^*_{2(41)^2}$ is given by $6 + (41)^2$ since g is even. Exercise 3. (Submit this one) Find generators of Z_{11}^* , $Z_{(11)}^*$ and $Z_{2(11)^2}^*$.

Exercise 4. (Extra Credit) A function

$$\Theta$$
: $Z^+ \rightarrow reals$

is multiplicative if and only if $\Theta \not\equiv 0$ and

$$\forall \ \mathbf{n}_1, \ \mathbf{n}_2 \in \mathbf{Z}^+ \ (\gcd(\mathbf{n}_1, \ \mathbf{n}_2) = \mathbf{1} \ \Rightarrow \ \mathbf{\Theta}(\mathbf{n}_1 \ \mathbf{n}_2) = \mathbf{\Theta}(\mathbf{n}_1) \mathbf{\Theta}(\mathbf{n}_2))$$

- a) Prove: $\Theta(1) = 1$
- b) Prove if $x = p_1^{c_1} p_2^{c_2} \cdot \cdot p_k^{c_k} \ge 2$ where $p_1,..., p_k$ are distinct primes then

$$\sum_{d \mid x} \Theta(d) = \prod_{i=1}^{k} \sum_{j=0}^{c_i} \Theta(p_i^j)$$

c) Prove: $\sum_{d|n} \varphi(d) = n$.