This document will contain definitions and other trivial notes.

1 'Trivial' definitons

Definition 1.1 (Inclusion Map). For $A \subseteq B$, a map $f: A \to B$ that takes $x \in A$ to $x \in B$

Definiton 1.2 (Monomorphism). Injective homomorphism

Definition 1.3 (Epimorphism). Surjective homomorphism

Definition 1.4 (Endomorphism). A homomorphism with same domain and co-domain

Definition 1.5 (Automorphism). An isomorphism with same domain and co-domain

Definition 1.6 (Pre-order). A reflexive, transitive binary relation.

Definiton 1.7 (Partial Order). Pre-order that's antisymmetric.

Definiton 1.8 (Total Order). Partial order with trichotomy.

Definition 1.9 (Presheaf). A functor $\mathcal{A}^{op} \mapsto Set$

2 Group Theory

Definition 2.1 (Monoid). A semi-group with identity.

Definition 2.2 (Direct Product). Direct product of groups G and H is the group on the set $G \times H$ with the binary operation:

$$(a,b)(a',b') = (aa',bb')$$
 where $a, a' \in G; b,b' \in H$

Definition 2.3 (Congruence Relation). On a monoid M, an equivalence relation, \sim , such that $\forall a, a', b, b' \in M$,

$$a \sim a', b \sim b' \implies ab \sim a'b'$$

Definition 2.4 ((left) G-Set). Let G be a group, and X a set. Then, f is a left group action on of G on X, or X is a left G-Set iff

$$f: G \times X \mapsto X: \forall x \in X, f(e_G, x) = x \text{ and } \forall a, b \in G, f(ab, x) = f(a, f(b, x))$$

Definition 2.5 (Equivariant Map). A function is called an equivariant map if it's domain and co-domain are acted on by the same symmetry group, and the function commutes with that group action.

$$f: X \to Y$$

Definition 2.6 (Natural Projection). Let G be a group and $N \subseteq G$. Natural projection, $\pi: G \to G/N$ defined as $g \mapsto gN$

3 Vector Spaces

Definition 3.1 (Tensor Product).