# **Query Execution**

DSCI 551 Wensheng Wu

## Components of Query Processor



#### Converting SQL to Logical Plans

Select 
$$a_1, ..., a_n$$
  
From  $R_1, ..., R_k$   
Where C

$$\Pi_{a1,...,an}(\sigma_{C}(R_{1}\times R_{2}\times...\times R_{k}))$$

```
Select b_1, ..., b_m, aggs
From R_1, ..., R_k
Where C
Group by b_1, ..., b_m
```

$$\gamma_{b1, ..., bm, aggs} (\sigma_{C}(R_1 \times R_2 \times ... \times R_k))$$

## Logical Query Optimization

 Apply algebraic laws to turn initial query plan into more efficient one

- Use heuristics
  - E.g., do selections & projection as early as possible

### Example of Algebraic Law

$$\square \, \sigma_{\mathcal{C}}(\mathbf{R} \bowtie \mathbf{S}) = \sigma_{\mathcal{C}}(\mathbf{R}) \bowtie \mathbf{S}$$

• That is, we can push selection down to R if condition C only contains attributes in R

## Physical Query Optimization

- Turn logical query plan into physical ones
  - That is, plan with physical operators

- Pick a physical plan with the lowest cost (I/O's)
  - I.e., cost-based optimization

#### Outline

- Logical/physical operators
- Cost model
- One-pass algorithms
- Nested-loop joins: 1.x
- Two-pass algorithms
  - Sorting-based
  - Hashing-based
- Index-based algorithms

### Logical vs. Physical Operators

- Logical operators
  - what they do
  - e.g., union, selection, projection, join, group-by
- Physical operators
  - <u>how</u> they do it
  - Main methods: scanning, hashing, sorting, and indexbased
  - E.g., methods for implementing joins include:
    - nested loop join, sort-merge join, hash join, index join
  - Different methods may have different requirements on the amount of available memory & different costs

## Logical Query Plans

```
SELECT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND
Q.city='LA'
```

Construct logical plan...

## Logical Query Plans

SELECT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND
Q.city='LA'

#### Query Plan:

•Tree with logical operators



## Physical Query Plans

SELECT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND
Q.city='LA'

#### Query Plan:

- Logical tree plus
- Implementation choice at each node



#### How do We Combine Operations?

- The iterator model. Each operation is implemented by 3 functions:
  - Open: sets up the data structures and performs initializations
  - GetNext: returns the the next tuple of the result.
  - Close: ends the operations. Cleans up the data structures.
- Enables pipelining!
- Contrast with data-driven materialized model

#### Cost Model

#### Cost parameters

- M = number of blocks/pages that are available in main memory
- B(R) = number of blocks holding R
- T(R) = number of tuples in R
- V(R,a) = number of distinct values of the attribute a of R
- Estimating the cost of physical operators:
  - Important in query optimization
  - Here we consider I/O cost only
  - We assume operands are relations stored on disk, but operator results will be left in main memory (e.g., pipelined to next operator in query plan)
  - So we don't include the cost of writing the result

## Selectivity

• The larger V(R,a), the more selective a is for R

- Employee(ssn, name, age, gender)
  - Which of the above attributes is most/least selective?
  - V(Employee, gender) = ?
  - V(Employee, ssn) = ?

#### I/O Cost

• # of blocks read from or written to disk

 Recall that disk reads/writes data in the unit of block

## **Scanning Tables**

Reading every row of tables

- The table is *clustered* (i.e., block consists only of records from this table):
  - # of I/O's = # of blocks

- The table is *unclustered* (e.g. its records are placed in blocks with those of other tables)
  - May need one block read for each record

#### Scanning Clustered/Uncluserted Tables



Clustered table

Unclustered table

## Cost of the Scan Operator

- Clustered relation:
  - -Table scan: B(R)

We assume clustered relations to estimate the costs of other physical operators.

- Unclustered relation:
  - -T(R)

## Classification of Physical Operators

- One-pass algorithms
  - Read the data only once from disk
  - Usually, require at least one of the input relations fits in main memory
- Nested-Loop Join algorithms
  - Read one relation only once, while the other will be read repeatedly from disk
- Two-pass algorithms
  - First pass: read data from disk, process it, write it to the disk
  - Second pass: read the data for further processing

## Classification of Physical Operators

- K-pass algorithms
  - If data are too big or memory is too small, the algorithm may need k > 2 passes over the data

#### Selection $\sigma(R)$ , projection $\Pi(R)$

- Both are <u>tuple-at-a-time</u> algorithms
- Cost: B(R)



#### Duplicate elimination $\delta(R)$

- Need to keep a dictionary in memory:
  - balanced search tree
  - hash table
  - Etc.
- Cost: B(R)
- Assumption:

$$B(\delta(R)) \le M-2$$
 or roughly M



LA

LA

**SFO** 

|                                                             | LA, 2  |
|-------------------------------------------------------------|--------|
|                                                             | LA, 3  |
| Grouping: $\gamma_{city, sum(price)}(R)$                    | SFO, 2 |
| <ul> <li>Need to keep a dictionary in memory</li> </ul>     | SFO, 4 |
| <ul> <li>Also store the sum(price) for each city</li> </ul> | LA, 5  |
| • Cost: B(R)                                                | • • •  |

- COSI. D(N)
- Assumption: number of cities and sums fit in memory

#### Binary operations: $R \cap S$ , $R \cup S$ , R - S, $R \bowtie S$

- Assumption: min(B(R), B(S)) <= M (or M-2 to be exact)
- Scan a smaller table of R and S into main memory, then read the other one, block by block
- Cost: B(R)+B(S) (assume both are clustered)
- E.g.  $R \cap S$  (assume set-based, no duplicates)
  - Read S into M-2 buffers and build a search structure
  - Read each block of R, and for each tuple t of R, see if t is also in S.
  - If so, copy t to the output; if not, ignore t

## One-pass join algorithm



$$M = 102$$
  
 $B(R) \le 100$ 

# Nested-loop join (none of tables fits in memory...)

### Tuple-based Nested Loop Joins

- Join  $R \bowtie S$
- Assume neither relation is clustered

for each tuple r in R dofor each tuple s in S doif r and s join then output (r,s)

• Cost: T(R) T(S)

### Block-based Nested Loop Joins

Assume both relations are clustered

```
for each (M-2) blocks b_r of R do

for each block b_s of S do

for each tuple r in b_r do

for each tuple s in b_s do

if r and s join then output(r,s)
```

• Assume  $B(R) \le B(S) \& B(R) > M$ 

### Block-based Nested Loop Joins



R outer: B(R) + B(R)/(M-2) \* B(S)

S outer: B(S) + B(S)/(M-2) \* B(R)

$$M-2 >= 1 => M >= 3$$

### Block-based Nested Loop Joins

- Cost:
  - Read R once: cost B(R)
  - Outer loop runs B(R)/(M-2) times, and each time need to read S: costs B(R)B(S)/(M-2)
  - Total cost: B(R) + B(R)B(S)/(M-2)
- Notice: it is better to iterate over the smaller relation first
- R  $\bowtie$  S: R=outer relation, S=inner relation

• What is the minimum memory requirement?

### Example

Suppose M = 102 blocks (i.e., pages), B(R) = 1,000 blocks, B(S) = 5,000 blocks

- Cost of R ⋈ S using blocked-based nested-loop join algorithm
  - If R is outer relation
  - If S is outer relation

# Two-pass algorithms

### Two-pass Algorithms

- If an operation can not be completed in one pass, can we design an algorithm to complete it in two passes?
  - Yes, but with certain restriction on the relation size

#### Ideas

#### Sorting

- Sort relation(s) into runs
- Perform the needed operation while merging the runs

#### Hashing

- Hash relation(s) into buckets
- Only need to examine a bucket or a pair of buckets at a time

# Duplicate Elimination $\delta(R)$ Based on Sorting

- Simple idea: sort first, then eliminate duplicates
- Pass1: sort runs of size M, write
  - Cost: 2B(R)
- Pass 2: merge M-1 runs, but include each tuple only once
  - Cost: B(R)
- Total cost: 3B(R), Assumption:  $B(R) \le M^2$ 
  - since B/M = # of runs
  - # of runs has to be <= M-1 to complete the merging in the second pass
  - So B/M  $\leq$  M 1

# Grouping: $\gamma_{city, sum(price)}$ (R) Based on Sorting

- Pass 1: same as before
- Pass 2: same as before, but also compute sum(price) for group during the merge phase.
- Total cost: 3B(R)
- Assumption:  $B(R) \le M^2$

# Binary operations: $R \cap S$ , $R \cup S$ , R - SBased on Sorting

- Idea: sort R, sort S, then do the right thing
- A closer look:
  - Step 1: split R into runs of size M, then split S into runs of size M. Cost: 2B(R) + 2B(S)
  - Step 2: merge M-1 runs from R and S; output a tuple on a case by cases basis
- Total cost: 3B(R)+3B(S)
- Assumption:  $B(R)+B(S) \le M^2$

# Merging picture



$$B(R)/M + B(S)/M \le M-1$$

### Problem with join

• A large number of tuples with the same value on the join attribute(s)

• But buffer can not hold all joining tuples (with the same value on join attribute) for at least one relation

# Problem with join

Many tuples may have the same value on the join attribute



# Sort-Merge Join

- Assume buffer is enough to hold join tuples for at least one relation
  - Note that buffer also needs to hold a block for each run of the other relation

- Total cost: 3B(R)+3B(S)
- Assumption:  $B(R) + B(S) \le M^2$

### Example

- Suppose M = 101 blocks (i.e., pages), B(R) = 1,000 blocks, B(S) = 5,000 blocks
  - Suppose we use 100 blocks in sorting

• Cost of  $R \bowtie S$  using sort-merge join algorithm

• What if B(S) = 50,000 blocks?

### Simple Sort-based Join

- Start by completely sorting both R and S on the join attribute (assuming this can be done in 2 passes):
  - Cost: 4B(R)+4B(S) (because we need to write result to disk)
- Read both relations in sorted order, match tuples
  - Cost: B(R) + B(S)
- Can use as many buffers as possible to load join tuples from one relation (with the same join value), say R
  - Only one buffer is needed for the other relation, say S
- If we still can not fit all join tuples from R
  - Need to use nested loop algorithm, higher cost

# Simple Sort-based Join

• Total cost: 5B(R)+5B(S)

- Assumption:  $B(R) \le M^2$ ,  $B(S) \le M^2$ , and at least one set of the tuples with a common value for the join attributes fit in M (or M-2 to be exact)
  - Note that we only need one page buffer for the other relation

### Example

- Suppose M = 101 blocks (i.e., pages), B(R) = 1,000 blocks, B(S) = 5,000 blocks
  - Assume that we use 100 blocks in sorting

• Cost of  $R \bowtie S$  using simple sort-based join algorithm

• What if B(S) = 50,000 blocks?

# Two-Pass Algorithms Based on Hashing

### Hashing-Based Algorithms

- Hash all the tuples of input relations using an appropriate hash key such that:
  - All the tuples that need to be considered together to perform an operation go to the same bucket
- Reduce the size of input relations by a factor of M
- Perform the operation by working on a bucket (or a pair of buckets for binary operations) at a time
  - Apply a one-pass algorithm for the operation

# Sorting vs. Hashing



"Partitioning" picture

### Hashing-Based Algorithm for $\delta$

- Recall:  $\delta(R)$  = duplicate elimination
- Step 1. Partition R into (M-1) buckets
- Step 2. Apply  $\delta$  to each bucket (must read it into main memory)

- Cost: 3B(R)
- Assumption:  $B(R) \le M^2$ 
  - To be more exact:  $B(R)/(M-1) \le M-2$

# Two-Pass Duplicate Elimination Based on Hashing

• Idea: partition a relation R into buckets, on disk



# Two Pass Duplicate Elimination Based on Hashing

- Does each bucket fit in main memory?
  - Yes if  $B(R)/(M-1) \le M-2$  (i.e., approx.  $B(R) \le M^2$ )
- Apply the one-pass  $\delta$  algorithm for each  $R_i$



### Partitioned Hash Join

#### $R \bowtie S$

- Step 1:
  - − Hash S into M − 1 buckets
  - send all buckets to disk
- Step 2
  - − Hash R into M − 1 buckets
  - Send all buckets to disk
- Step 3
  - Join every pair of corresponding buckets

# **Partitioned** Hash-Join

- Partition tuples in R and S using join attributes as key for hash
- Tuples in partition R<sub>i</sub> only match tuples **Relation** in partition S<sub>i</sub>.

#### Relation





### Partitioned Hash-Join: Second Pass

- Read in a partition of S, say S<sub>i</sub>, hash it using another hash function h'
- Load the matching partition R<sub>i</sub>, one block at a time, output joining tuples.



### Partitioned Hash Join

- Cost: 3B(R) + 3B(S)
- Assumption:  $min(B(R), B(S)) \le M^2$ 
  - Or to be more exact:  $min(B(R), B(S))/(M-1) \le M-3$
  - Or min(B(R), B(S))/(M-1) <= M-2 (if we do not use hash table to speed up the lookup)

# Example

• Suppose M = 101 blocks (i.e., pages), B(R) = 1,000 blocks, B(S) = 5,000 blocks

• Cost of  $R \bowtie S$  using partitioned hash join algorithm

• What if B(S) = 50,000 blocks?

### Sort-based vs. Hash-based Algorithms

- Hash-based algorithms for binary operations have a size requirement only on the smaller of two input relations
- Sort-based algorithms sometimes allow us to produce a result in sorted order and take advantage of that sort later
- Hash-based algorithm depends on the buckets being of equal size, which may not be true if data are skewed

# Index-Based Algorithms

### Index-based Algorithms

- The existence of an index on one ore more attributes of a relation makes available some algorithms that would not be feasible without the index
- Useful for selection operations
- Also, algorithms for join and other binary operations use indexes to good advantage

### Clustered indexes

- In a clustered index, all tuples with the same value of the search key appear on roughly as the number of blocks as can hold them
  - That is, they are clustered together



### **Index Based Selection**

- Selection on equality:  $\sigma_{a=v}(R)$
- Clustered index on attribute a: cost = B(R)/V(R,a)
- Unclustered index on a: cost = T(R)/V(R,a)

We here ignore the cost of reading index blocks

### **Index Based Selection**

- Example: B(R) = 2000, T(R) = 100,000, V(R, a) = 20, compute the cost of  $\sigma_{a=v}(R)$
- Cost of using table scan:
  - If R is clustered: B(R) = 2000 I/Os
  - If R is unclustered: T(R) = 100,000 I/Os
- Cost of index-based selection:
  - If index is clustered: B(R)/V(R,a) = 100
  - If index is unclustered: T(R)/V(R,a) = 5000

Compare this

### **Index-Based Join**

- $R \bowtie S$
- Assume S has an index on the join attribute
- Iterate over R, for each tuple, fetch corresponding tuple(s) from S
- Assume R is clustered. Cost:
  - If index is clustered: B(R) + T(R)B(S)/V(S,a)
  - If index is unclustered: B(R) + T(R)T(S)/V(S,a)
- Compare this to NLJ (both R & S clustered)
  - -B(R) + B(R)/(M-2) \* B(S)

### Indexed-Based Join vs. NLJ

- Index-based (R clustered, clustered index S.a)
  - -B(R) + T(R)B(S)/V(S,a)
- NLJ (R & S clustered)
  - B(R) + B(R)/(M-2) \* B(S)

- Index-Based wins if:
  - -T(R)/V(S,a) < B(R)/(M-2), or
  - -V(S,a) > (M-2) \* T(R)/B(R)

### Index-Based Join: Clustered Index



### Index-Based Join: Unclustered Index



# Example

- Suppose M = 102 blocks (i.e., pages)
- $R(a, b) \bowtie S(a, c)$
- S has an index on attribute "a" and V(S,a) = 100
- B(R) = 1,000 blocks, B(S) = 5,000 blocks
- T(R) = 10,000 tuples, T(S) = 50,000 tuples

- Cost of  $R \bowtie S$  using index-based join algorithm
  - Index on S.a is clustered
  - Index on S.a is unclustered

### Index-Based Join: Two Indexes

- Assume both R and S have a clustered index (e.g., B+-tree) on the join attribute
- Then can perform a sort-merge join where sorting is already done (for free)
- Cost: B(R) + B(S)

