.

1. Definitionen zu Reflexionspositivität

Definition 1 (\mathbb{T}_L)

Bezeichnen wir daher mit \mathbb{T}_L den d-dimensionalen Ring der linearen Größe L > 0, den man erhält, indem man die gegenüberliegenden Seiten der Box $\{0, 1, ..., L\}^d$ identifiziert. Äquivalent dazu können wir können wir auch $\mathbb{T}_L \stackrel{\text{def}}{=} (\mathbb{Z}/L\mathbb{Z})^d$ schreiben.

Definition 2 (Reflexion in einer Ebene)

Als **Reflexion** durch eine Ebenen, die den Ring in zwei Teile teilt, definieren wir Transformationen der Form: $\Theta : \mathbb{T}_L \to \mathbb{T}_L$. Diese lassen sich aufteilen in:

1. Reflexion durch Scheitelpunkte Sei $k \in \{1, ..., d\}$ und sei $n \in \{0, ..., \frac{1}{2}L - 1\}$. Dann wird $\Theta_L : \mathbb{T}_L \to \mathbb{T}_L$ mit $i = (i_1, ..., i_d) \to \Theta(i) = (\Theta_1, ..., \Theta(i)_d)$ wie folgt definiert:

$$\Theta(i)_l = \left\{ \begin{array}{ll} (2n - i_k) \mod L & l = k, \\ i_l & l \neq k \end{array} \right..$$

2. Reflexion durch Kanten Sei $k \in \{1, ..., d\}$ und sei $n \in \{\frac{1}{2}, \frac{3}{2}, ..., \frac{L-1}{2}\}$. Dann wird $\Theta_L : \mathbb{T}_L \to \mathbb{T}_L$ analog zur Reflexion durch Scheitelpunkte definiert.

$$\Theta(i)_l = \left\{ \begin{array}{ll} (2n - i_k) \mod L & l = k, \\ i_l & l \neq k \end{array} \right..$$

$\textbf{Definition 3} \ (\text{Wirkung auf Spin-Konfiguration}) \\$

Eine Reflexion $\Theta: \Omega_L \to \Omega_L$ kann auf Spin-Konfigurationen einwirken, dann definieren wir:

$$(\Theta(\omega))_i \stackrel{\text{def}}{=} \omega_{\Theta(i)}.$$

Definition 4 (Wirkung auf eine Funktion)

Eine Reflexion Θ kann ähnlich auf eine Funktion $f:\Omega_L\to\mathbb{R}$ wirken, durch:

$$\Theta(f)(\omega) \stackrel{\text{def}}{=} f(\Theta^{-1}(\omega)).$$

Notation

 $\mathfrak{A}_{+}(\Theta)$ bzw. $\mathfrak{A}_{-}(\Theta)$ bezeichnen die Algebren aller beschränkten, messbaren Funktionen f auf Ω_{L} innerhalb von $\mathbb{T}_{L,+}(\Theta)$ bzw. $\mathbb{T}_{L,-}(\Theta)$.

Antonia Westphal

HS Stochastik

Reflection Positivity

2021/07/22

Definition 5

Da $\Theta:\Omega_L\to\Omega_L$ messbar ist, können wir definieren:

$$\Theta(\mu)(A) \stackrel{\text{def}}{=} \mu(\Theta^{-1}A) \text{ mit } A \in \mathcal{F}_L$$

Und daraus folgt, dass für jede beschränkte, messbare Funktion f gilt, dass

$$\langle f \rangle_{\Theta(\mu)} = \langle \Theta(f) \rangle_{\mu}$$

Definition 6 (Reflexionspositive Maße)

Sei Θ eine Reflexion. Ein Maß $\mu \in \mathcal{M}(\Omega_L, \mathcal{F}_L)$ ist **reflexionspositiv in Bezug auf** Θ , wenn

- 1. $\langle f\Theta(g)\rangle_{\mu} = \langle g\Theta(f)\rangle_{\mu}$ für alle $f, g \in \mathfrak{A}_{+}(\Theta)$;
- 2. $\langle f\Theta(f)\rangle_{\mu} \geq 0$, für alle $f \in \mathfrak{A}_{+}(\Theta)$.

Die Menge der Maße die reflexionspositiv in Bezug zu Θ sind, werden mit $\mathcal{M}_{RP(\Theta)}$ bezeichnet.

Lemma 7

Sei $\mu \in \mathcal{M}_{RP(\Theta)}$. Dann gilt für alle $f, g \in \mathfrak{A}_+(\Theta)$,

$$\langle f\Theta(g)\rangle_{\mu}^{2} \leq \langle f\Theta(f)\rangle_{\mu}\langle g\Theta(g)\rangle_{\mu}$$

2. Die Infrarot-Schranke

 ${\bf Satz}~{\bf 8}$ (spontane Brechung globaler Symmetrien)

Nehmen wir an, dass $N \ge 2$ und $d \ge 3$. Dann exisitiert $0 < \beta_0 < \infty$ und $m^* = m^*(\beta) > 0$ so, dass für $\beta > \beta_0$, für jede Richtung $\mathbf{e} \in \mathbb{S}^{N-1}$ ein $\mu^{\mathbf{e}} \in \mathcal{G}(\beta)$ exisitiert so, dass

$$\langle \mathbb{S}_0 \rangle_{\mu^{\mathbf{e}}} = m^* \mathbf{e}.$$

Anmerkung

Spins werden als v-dimensionale Vektoren angenommen

$$\Omega_0 \stackrel{\text{def}}{=} \mathbb{R}^v$$

und die Hamilton ist mit $\beta \geq 0$ gegeben durch

$$\mathcal{H}_{L;\beta} \stackrel{\text{def}}{=} \beta \sum_{\{i,j\} \in \mathcal{E}_L} \|\mathbf{S}_i - \mathbf{S}_j\|_2^2.$$

HS Stochastik

Definition 9

Wir nehmen außerdem an, dass das Referenzmaß ρ auf Ω_0 auf einer kompakten Teilmenge von \mathbb{R}^v liegt und definieren:

$$\mu_0 = \underset{i \in \mathbb{T}_L}{\otimes} \rho.$$

Außerdem ist das Gibbs-Maß $\mu_{L;\beta}$ auf $(\Omega_O, \mathcal{F}_L)$ wie folgt definiert:

$$\mu_L(A) \stackrel{\text{def}}{=} \int_{\Omega_L} \frac{e^{-\mathcal{H}_L(w)}}{\mathbf{Z}_L} 1_A(w) \mu_0(d\omega)$$

Satz 10 (Infrarot-Schranke)

Sei $\mu_{L;\beta}$ die Gibbs-Verteilung, die zu der Hamiltonian gehört. Dann gilt für jedes $p \in \mathbb{T}_L^* \setminus \{0\}$,

$$\sum_{j \in \mathbb{T}_L} e^{ip \cdot j} \langle \mathbf{S}_0 \cdot \mathbf{S}_j \rangle_{L;\beta} \le \frac{v}{4\beta d} \{ 1 - \frac{1}{2d} \sum_{j \sim 0} cos(p \cdot j) \}^{-1}.$$

Proposition 11(Gaußsche Dominanz)

Für alle $h = (h_i)_{i \in \mathbb{T}_L}$,

$$\mathbf{Z}_{L;\beta} \leq \mathbf{Z}_{L;\beta}(0).$$

3. Die Schachbrettabschätzung

Definition 12 (Blöcke)

Sei B < L beides ganze, positive Zahlen so dass $2B \mid L$ und wir definieren $\Lambda_B \stackrel{\text{def}}{=} \{0, ..., B-1\}^d \subset \mathbb{T}_L$. Dann zerlegen wir den Ring in disjunkte ünions of translates" von Λ_B , die wir Blöcke nennen.

$$\mathbb{T}_L = \bigcup_{t \in \mathbb{T}_L} (\Lambda_B + Bt)$$

Definition 13 $(\Lambda_B - lokal)$

Eine Funktion f mit Unterstützung in Λ_B heißt $\Lambda_B - lokal$

Definition 14 $(\Lambda_B + Bt - lokale \text{ Funktion})$

Ein solches $f^{[t]}$ erhalten wir über sukzessive Reflexionen

$$f^{[t]} \stackrel{\text{def}}{=} \Theta_{\circ} \Theta_{k-1} \circ \dots \circ \Theta_1(f)$$

Definition 15 (B-periodisch)

 $\mu \in \mathcal{M}(\Omega_L, \mathcal{F}_L)$ ist B-periodisch, wenn es unter translationen durch B entlang einer KO-Achse invariant ist:

 $\mu = \mu \circ \theta_{B\mathbf{e}_k}$ für alle $k \in \{1, ..., d\}$.

Satz 16 (Schachbrettabschätzung)

Sei $\mu \in \mathcal{M}(\Omega_L, \mathcal{F}_L)$ B-periodisch und sei außerdem $\mu \in \mathcal{M}_{RP(\Theta)}$ für alle Reflexionen zwischen direkt benachbarten Blöcken. Dann gilt für jede Familie $(f_t)_{t \in \mathbb{T}_{L \setminus B}} \Lambda_B - lokaler$ Funktionen, die alle beschränkt sindn oder alle nichtnegativ sind:

$$|\langle \prod_{t \in \mathbb{T}_{L/B}} f_t^{[t]} \rangle_{\mu}| \leq \prod_{t \in \mathbb{T}_{L/B}} [\langle \prod_{s \in \mathbb{T}_{L/B}} f_t^{[s]} \rangle_{\mu}]^{1 \setminus |\mathbb{T}_L/B|}.$$

Proposition 17(Anwendung im Ising-Modell)

Für alle $h \geq 0$, gleichmäßig in L und mit $\beta \geq 0$:

$$\mu_{L;\beta;h}(\sigma_0 = -1) \le d^{-2h}.$$

Satz 18(Spontane Magnetisierung)

Wir nehmen an, dass N=2 und d=2. Für jedes $0 \le \alpha < 1$ existiert ein $\beta_0 = \beta_0(\alpha)$ so, dass für alle $\beta > \beta_0$ zwei Maße $\mu^+, \mu^- \in \mathcal{G}(\beta, \alpha)$ existieren so, dass:

$$\langle \mathbf{S}_0 \cdot \mathbf{e}_1 \rangle_{\mu^+} > 0 > \langle \mathbf{S}_0 \cdot \mathbf{e}_1 \rangle_{\mu^-}$$

Grundlage des Vortrags: S.Friedli und Y.Velenik(2017): Models with Continuous Symmetry. In: S.Friedli und Y.Velenik: StatisticalMechanics of Lattice Systems: A Concrete Mathematical Introduction. (CambridgeUniversityPress) Cambridge. S. 437 - 467