TRABALHO 3

May 10, 2020

Análise Numérica (M2018)

Francisco Gonçalves - 201604505 Márcia Dias - 201704466

Departamento de Ciência de Computadores Faculdade de Ciências de Universide do Porto

Contents

0.1	Read	Me
0.2	Prime	iro Exercício
	0.2.1	Alínea a)
	0.2.2	Alínea b)
0.3	Segun	do Exercício
	0.3.1	Alínea a)
	0.3.2	Alínea b)
		0.3.2.1 Polinómio Interpolador
		0.3.2.2 Spline Cúbico
	0.3.3	Alínea c)
		0.3.3.1 Representações Gráficas
	0.3.4	Alínea d)
		0.3.4.1 a)
		0.3.4.2 b)
		0.3.4.2.1 Polinómio Interpolador
		0.3.4.2.2 Spline Cúbico
		0.3.4.3 c)
	0.3.5	Alínea e)

O.1 README

Este trabalho é composto pelos seguintes programas:

- problem2a.py [Python]
- problem2bd.c [C]
- problem2bd.py [Python]

Para testar o programa problem2bd.c basta fazer:

- 1. gcc problem2bd.c
- 2. ./a.out

Para testar os programas problem2a.py e problem2bd.py basta fazer:

- python3 problem2a.py
- python3 problem2bd.py

\triangle NOTA \triangle

Por favor assegure-se que instalou todos os módulos e bibliotecas necessárias ao bom funcionamento dos programas, especialmente para Python 3:

Os programas aqui exibidos assim como os resultados obtidos podem ser consultados em detalhe aqui: https://github.com/1Skkar1/Numerical-Analysis/tree/master/Trabalho3

0.2 Primeiro Exercício

Na seguinte tabela apresenta-se o número de animais de uma determinada espécie, p(t), medido em vários tempos t:

0.2.1 Alínea a)

Calculem um valor aproximado de p(9), número de animais dessa espécie ao fim de 9 anos, por interpolação polinomial sobre os dados conhecidos, usando toda a informação fornecida:

Temos 7 pontos do tipo (t_i, p_i) , logo o polinómio tem grau menor ou igual a n = 6.

$$I_0 = \frac{(t-5)(t-10)(t-15)(t-20)(t-25)(t-30)}{(0-5)(0-10)(0-15)(0-20)(0-25)(0-30)} \tag{1}$$

$$I_1 = \frac{(t-0)(t-10)(t-15)(t-20)(t-25)(t-30)}{(5-0)(5-10)(5-15)(5-20)(5-25)(5-30)}$$
(2)

$$I_2 = \frac{(t-0)(t-5)(t-15)(t-20)(t-25)(t-30)}{(10-0)(10-5)(10-15)(10-20)(10-25)(10-30)}$$
(3)

$$I_3 = \frac{(t-0)(t-15)(t-20)(t-25)(t-30)}{(15-0)(15-5)(15-10)(15-20)(15-25)(15-30)} \tag{4}$$

$$I_4 = \frac{(t-0)(t-5)(t-10)(t-15)(t-25)(t-30)}{(20-0)(20-5)(20-10)(20-15)(20-25)(20-30)}$$
(5)

$$I_5 = \frac{(t-0)(t-5)(t-10)(t-15)(t-20)(t-30)}{(25-0)(25-5)(25-10)(25-15)(25-20)(25-30)}$$
(6)

$$I_6 = \frac{(t-0)(t-5)(t-10)(t-15)(t-20)(t-25)}{(30-0)(30-5)(30-10)(30-15)(30-20)(30-25)} \tag{7}$$

 $P_6(t) = I_0 \cdot 100 + I_1 \cdot 89.5560 + I_2 \cdot 78.4905 + I_3 \cdot 67.2706 + I_4 \cdot 56.3897 + I_5 \cdot 46.2842 + I_6 \cdot 37.2687$

Substituindo t por 9, obtivemos:

 $P_6(9) \approx 80.73186813$

0.2.2 Alínea b)

Calculem um majorante do erro cometido sabendo que a população da espécie pode ser modelada por $p(t) = \frac{300}{2 + e^{0.06t}}$

$$|\mathbf{p}(t) - \mathbf{p}_{6}(t)| \le \frac{M}{(n+1)!} |(t - t_{0})(t - t_{1})(t - t_{2})(t - t_{3})(t - t_{4})(t - t_{5})(t - t_{6})|$$

$$\mathbf{M} = \max_{t \in I} |p^{(7)}(t)|$$

Para cálculo do M, recorremos ao gráfico de $\frac{d_7}{dx_7} \frac{300}{2 + e^{0.06x}}$, ou seja, a sétima derivada de p(t). Obtivemos o seguinte gráfico:

graph 1b: Representação gráfica da sétima derivada de p(t) no intervalo [5,10]

Concluímos que o valor máximo é $4.321 \cdot 10^{-7}$.

$$|80.73182078 - 80.73186813| \le \frac{4.321 \cdot 10^{-7}}{7!} |9 \cdot 4 \cdot (-1) \cdot (-6) \cdot (-11) \cdot (-16) \cdot (-21)|$$

$$\iff 4.7 \cdot 10^{-5} \le 6.3 \cdot 10^{-5}$$

Logo, o erro cometido é: $80.73182 \pm 6.3 \cdot 10^{-5}$

0.3 SEGUNDO EXERCÍCIO

Considerem a função:

$$f(x) = e^{-\frac{1}{1+x^2}}, para - 4 \le x \le 4$$
 (8)

0.3.1 Alínea a)

Construam um conjunto de n+1=7 pontos, $(x_i, f_i=f(x_i))_i^n=0$, de abcissas $x_i, i=0,...,n$ igualmente espaçadas no intervalo [4,4]:

A seguinte implementação permite construir o conjunto de pontos desejados:

createPoints() in problem2a.py (PYTHON)

```
import math as math
import numpy as np

def main():
    f = lambda x: np.power(math.e, -1/(1+x**2))
    nPoints = 7 # 7 for problem 2a) Or 8 for problem 2d) [change accordingly]
    createPoints(f, nPoints)

def createPoints(f, nPoints):
    xPoints = np.around(np.linspace(-4,4,nPoints),3)
    yPoints = []

for i in xPoints:
    yPoints.append(round(f(i),3))

points = zip(xPoints,yPoints)
    print ("CONJUNTO DE PONTOS: \n", tuple(points))

main()
```

Caso se deseje alterar o número de pontos a criar, como será posteriormente necessário para o exercício 2.d), basta alterar a variável nPoints para refletir a quantidade desejada.

Após executar a função createPoints(), a variável xPoints cria (para este exercício) 7 pontos igualmente espaçados, no intervalo [-4,4].

O loop da função permite calcular as imagens desses pontos relativamente à função f previamente definida.

x_i	-4	-2.667	-1.333	0	1.333	2.667	4
f_i	0.943	0.884	0.698	0.368	0.698	0.884	0.943

0.3.2 Alínea b)

Construam o polinómio interpolador, p, e o spline cúbico natural, s, de f naquele conjunto de pontos:

O mesmo programa *problem2bd.c* constrói o interpolador e o spline em simultâneo, imprimindo os resultados que permitem fazer as respetivas representações gráficas.

0.3.2.1 Polinómio Interpolador

Newton() / DiffTable() in problem2b.c (c)

```
double Newton(int n, double x[], double diffTable[][10]){
   printf("P%d(x) = %f + ", n-1, diffTable[0][0]);
   for(int i = 1; i < n; i++) {</pre>
      printf("%f * ", diffTable[0][i]);
      for(int j = 0; j < i; j++) {</pre>
          if(j != i - 1)
             printf("(x - \%f) * ", x[j]);
          else
             printf("(x - %f) ", x[j]);
      if(i != n - 1)
          printf("+ ");
      printf("\n\t");
   }
   printf("\n");
}
void DiffTable(int n, double x[], double fx[], double diffTable[][10]) {
   for(int i = 0; i < n; i++) {</pre>
      diffTable[i][0] = fx[i];
   }
   for(int i = 1; i < n; i++) {</pre>
      for(int j = 0; j < n - i; j++) {
          x[i+j]);
      }
   }
}
```

 \wedge NOTA \wedge

Por razões de formatação e estética foi adotada uma precisão de 3 casas decimais nos resultados aqui exibidos. Para melhores resultados, a precisão dos prints pode ser aumentada nos printfs em problem2bd.c

x_i	$f(x_i)$	f[,]	f[,,]	f[,,,]	f[,,,,]	f[,,,,]	f[,,,,,]
-4	0.943	-0.044	-0.036	-0.001	0.011	-0.005	0.001
-2.667	0.884	-0.140	-0.041	0.057	-0.021	0.005	
-1.333	0.698	-0.248	0.186	-0.057	0.011		
0	0.368	0.248	-0.041	0.001			
1.333	0.698	0.140	-0.036				
2.667	0.884	0.044					
4	0.943						

$$\begin{split} P_6(x) &= \\ 0.943 - 0.044*(x+4) + \\ -0.036*(x+4)*(x+2.667) + \\ -0.001*(x+4)*(x+2.667)*(x+1.333) + \\ 0.011*(x+4)*(x+2.667)*(x+1.333)*(x-0) + \\ -0.005*(x+4)*(x+2.667)*(x+1.333)*(x-0)*(x-1.333) + \\ 0.001*(x+4)*(x+2.667)*(x+1.333)*(x-0)*(x-1.333)*(x-2.667) \end{split}$$

De forma a obter o polinómio interpolador, foi usado o método de Newton, embora houvesse outras possibilidades, como o Método de Lagrange. No entanto, este método estima as raízes de uma dada função, escolhendo uma aproximação inicial. Posteriormente, calcula a reta tangente nesse ponto assim como a sua interseção com o eixo das abcissas, permitindo encontrar a melhor aproximação possível para a raíz. Este processo é repetido para os diversos pontos a considerar. A partir desta expressão final de $P_6(x)$ será possível representar graficamente o polinómio interpolador, demonstrado na alínea seguinte.

 $1.333 \le x \le 2.667$

0.3.2.2 Spline Cúbico

CubicSpline() in *problem2bd.c* (C)

```
void cubicSpline(int n, double xi[], double fxi[]) {
              double h[n], A[n], l[n+1], u[n+1], z[n+1], c[n+1], b[n], d[n];
              for(int i = 0; i < n; i++)</pre>
                            h[i] = xi[i+1] - xi[i];
              for(int i = 1; i < n; i++)</pre>
                            A[i] = 3 * (fxi[i+1] - fxi[i]) / h[i] - 3 * (fxi[i] - fxi[i-1]) / h[i-1];
              1[0] = 1;
              u[0] = 0;
              z[0] = 0;
              for (int i = 1; i < n; i++) {</pre>
                            l[i] = 2 * (xi[i+1] - xi[i-1]) - h[i-1] * u[i-1];
                            u[i] = h[i] / l[i];
                            z[i] = (A[i] - h[i-1] * z[i-1]) / l[i];
              }
              1[n] = 1;
              z[n] = 0;
              c[n] = 0;
              for (int j = n - 1; j \ge 0; j--) {
                            c[j] = z[j] - u[j] * c[j+1];
                            b[j] = (fxi[j+1] - fxi[j]) / h[j] - h[j] * (c[j+1] + 2 * c[j]) / 3;
                            d[j] = (c[j+1] - c[j]) / (3 * h[j]);
              }
              printf("\nCubic Spline:\n");
              printf("%2s %8s %8s %8s %8s \n", "i", "x^3", "x^2", "x", "fxi");
              for (int i = 0; i < n; i++)</pre>
                            printf("%2d %8.3f %8.3f %8.3f %8.3f\n", i, d[i], c[i], b[i], fxi[i]);
S(x) = \begin{cases} -4.3755 \cdot 10^{-3} \cdot x^3 - 5.2506 \cdot 10^{-2} \cdot x^2 - 2.4651 \cdot 10^{-1} \cdot x + 5.1702 \cdot 10^{-1}, & -4 \le x \le -2.667 \\ -3.1625 \cdot 10^{-2} \cdot x^3 - 2.7053 \cdot 10^{-1} \cdot x^2 - 8.2797 \cdot 10^{-1} \cdot x + 1.0589 \cdot 10^{-4}, & -2.667 \le x \le -2.667 \\ 1.2370 \cdot 10^{-1} \cdot x^3 + 3.5061 \cdot 10^{-1} \cdot x^2 + 6.2400 \cdot 10^{-64} \cdot x + 3.6800 \cdot 10^{-1}, & -1.333 \le x \le 0 \\ -1.2370 \cdot 10^{-1} \cdot x^3 + 3.5061 \cdot 10^{-1} \cdot x^2 + 6.2400 \cdot 10^{-64} \cdot x + 3.6800 \cdot 10^{-1}, & 0 \le x \le 1.333 \\ 3.1625 \cdot 10^{-2} \cdot x^3 - 2.7053 \cdot 10^{-1} \cdot x^2 + 8.2797 \cdot 10^{-1} \cdot x + 1.0589 \cdot 10^{-4}, & 1.333 \le x \le 2.67 \le 0.667 \le 0
                                                                                                                                                                                                                                                                     -4 \le x \le -2.667
                                                                                                                                                                                                                                                            -2.667 \le x \le -1.333
```

Relativamente à construção do spline cúbico, o programa permite resolver o sistema de equações de forma a obter a solução. Posteriormente, basta considerar cada função para o respetivo intervalo de tempo, obtendo a sua representação gráfica.

0.3.3 Alínea c)

Comparem os gráficos das aproximações p e s com o de f no intervalo dado, e comparem os gráficos das funções erro |f-p| e |f-s|:

0.3.3.1 Representações Gráficas

Os seguintes gráficos são obtidos ao executar o programa *problem2bd.py*, guardando as seguintes imagens na mesma localização da sua implementação. Foi recorrida à biblioteca *matplotlib* para desenhar os gráficos pedidos. Este programa será usado posteriormente para o exercício 2.*d*):

graph2b_Lines: Comparação gráfica entre o polinómio interpolador, o spline cúbico e a função original f, tendo em conta a distribuição de pontos

graph2b_Errors: Comparação gráfica entre as funções erro |f-p| e |f-s|

0.3.4 Alínea d)

Repitam as alíneas anteriores para n+1=8:

0.3.4.1 a)

Repetindo o processo do exercício 2.a) para obter um conjunto de 8 pontos no mesmo intervalo [-4,4]. O programa é o mesmo que o apresentado anteriormente, alterando apenas o valor da variável *nPoints* para 8. Após correr o programa *problem2a.py* com a alteração mencionada, obtêm-se os seguintes resultados:

\mathbf{x}_i	-4	-2.857	-1.714	-0.571	0.571	1.714	2.857	4
f_i	0.943	0.897	0.776	0.470	0.470	0.776	0.897	0.943

0.3.4.2 b)

A implementação usada para resolver o exercício 2.b) permanece quase inalterada com a exceção de algumas variáveis. Dado que o programa é interativo, basta escolher a segunda opção para obter os resultados estimados:

0.3.4.2.1 Polinómio Interpolador

x_i	$f(x_i)$	f[,]	f[,,]	f[,,,]	f[,,,,]	f[,,,,]	f[,,,,,]	f[,,,,,,]
-4	0.943	-0.040	-0.029	-0.012	0.015	-0.005	0.001	-0.000
-2.857	0.897	-0.106	-0.071	0.055	-0.012	-0.000	0.001	
-1.714	0.776	-0.268	0.117	-0.000	-0.012	0.005		
-0.571	0.470	-0.000	0.117	-0.055	0.015			
0.571	0.470	0.268	-0.071	0.012				
1.714	0.776	0.106	-0.029					
2.857	0.897	0.040						
4	0.943							

```
P_{7}(x) = 0.943 - 0.040 * (x + 4) + 0.0029 * (x + 4) * (x + 2.857) + 0.012 * (x + 4) * (x + 2.857) * (x + 1.714) + 0.015 * (x + 4) * (x + 2.857) * (x + 1.714) * (x + 0.571) + 0.005 * (x + 4) * (x + 2.857) * (x + 1.714) * (x + 0.571) * (x - 0.571) + 0.001 * (x + 4) * (x + 2.857) * (x + 1.714) * (x + 0.571) * (x - 0.571) * (x - 1.714) + 0.000 * (x + 4) * (x + 2.857) * (x + 1.714) * (x + 0.571) * (x - 0.571) * (x - 1.714) * (x - 2.857)
```

0.3.4.2.2 Spline Cúbico

```
S(x) = \begin{cases} -1.8280 \cdot 10^{-3} \cdot x^3 - 2.1936 \cdot 10^{-2} \cdot x^2 - 1.2560 \cdot 10^{-1} \cdot x + 6.7458 \cdot 10^{-1}, & -4 \le x \le -2.857 \\ -4.1085 \cdot 10^{-2} \cdot x^3 - 3.5841 \cdot 10^{-1} \cdot x^2 - 1.0869 \cdot x - 2.4091 \cdot 10^{-1}, & -2.857 \le x \le -1.714 \\ 9.2506 \cdot 10^{-2} \cdot x^3 + 3.2852 \cdot 10^{-1} \cdot x^2 + 9.0482 \cdot 10^{-2} \cdot x + 4.3178 \cdot 10^{-1}, & -1.714 \le x \le -0.571 \\ 5.1180 \cdot 10^{-64} \cdot x^3 + 1.7005 \cdot 10^{-1} \cdot x^2 - 4.7770 \cdot 10^{-64} \cdot x + 4.1456 \cdot 10^{-1}, & -0.571 \le x \le 0.571 \\ -9.2506 \cdot 10^{-2} \cdot x^3 + 3.2852 \cdot 10^{-1} \cdot x^2 - 9.0482 \cdot 10^{-2} \cdot x + 4.3178 \cdot 10^{-1}, & 0.571 \le x \le 1.714 \\ 4.1085 \cdot 10^{-2} \cdot x^3 - 3.5841 \cdot 10^{-1} \cdot x^2 + 1.0869 \cdot x - 2.4091 \cdot 10^{-1}, & 1.714 \le x \le 2.857 \\ 1.8280 \cdot 10^{-3} \cdot x^3 - 2.1936 \cdot 10^{-2} \cdot x^2 + 1.2560 \cdot 10^{-1} \cdot x + 6.7458 \cdot 10^{-1}, & 2.857 \le x \le 4 \end{cases}
```

main() in problem2bd.c (C)

```
int main() {
   int option, nPoints;
   double xb[] = \{-4, -2.667, -1.333, 0, 1.333, 2.667, 4\};
   double fxb[] = {0.943,0.884,0.698,0.368,0.698,0.884,0.943};
   double xd[] = \{-4, -2.857, -1.714, -0.571, 0.571, 1.714, 2.857, 4\};
   double fxd[] = {0.943,0.897,0.776,0.470,0.470,0.776,0.897,0.943};
   double diffTable[10][10];
   printf("Exercise to be solved:\n1) Exercise 2.b) [nPoints = 7]\n2) Exercise 2.d)
       [nPoints = 8] \n");
   scanf("%d", &option);
   if (option == 1) { // Exercise 2.b)
       int nPoints = 7;
       splitDiffTable(nPoints, xb, fxb, diffTable);
       printDiffTable(nPoints, xb, diffTable);
       Newton(nPoints, xb, diffTable);
       cubicSpline(nPoints, xb, fxb);
   else if (option == 2) { // Exercise 2.d)
       int nPoints = 8;
       splitDiffTable(nPoints, xd, fxd, diffTable);
       printDiffTable(nPoints, xd, diffTable);
       Newton(nPoints, xd, diffTable);
       cubicSpline(nPoints, xd, fxd);
   }
   return 0;
}
```

0.3.4.3 c)

Para ilustrar um novo gráfico representativo da nova alínea d) basta escolher a segunda opção ao correr o programa *problem2bd.py*. Visto que este é interativo não é preciso modificar nada no código do mesmo para obter os seguintes gráficos:

 ${f graph2d_Lines:}$ Comparação gráfica entre o polinómio interpolador, o spline cúbico e a função original f, tendo em conta a distribuição de pontos

graph2d_Errors: Comparação gráfica entre as funções erro |f-p| e |f-s|

0.3.5 Alínea e)

Observem e comentem os resultados obtidos:

Comparando primeiro as funções obtidas do spline cúbico com as do interpolador polinomial e tendo em consideração a função original f, é possível verificar, tanto para n=7 como para n=8 que o spline cúbico consegue obter valores mais aproximados daqueles de f. Contrariamente, a função do interpolador polinomial afasta-se mais da função original enquanto se desloca de um ponto para o próximo.

Estas observações são comprovadas pelos gráficos das funções erro |f-p| e |f-s| mostrando que os valores da segunda, que aborda a diferença absoluta entre a função original e o spline cúbico natural, se aproximam mais de 0 durante a a grande maioria do intervalo. Por outro lado, a função que representa a diferença absoluta entre f e o interpolador polinomial tem picos de valores mais acentuados, que se referem aos momentos entre os diferentes pontos em que a função se afasta.

Sabe-se que para as alíneas b) e d), o polinómio interpolador tem grau 6 e 7, respetivamente. Isso causa uma oscilação justificadamente elevada entre os diversos pontos de f, levando a erros de arredondamento inevitáveis.

Quanto ao spline cúbico natural, trata-se de um polinómio de grau inferior ou igual a 3 em cada ramo e, como tal, apresenta oscilações menos protuberadas, diminuindo os seus erros de aproximação.