2 7 23 REACTION PLAN & LAME & BAS THE ABLLETS TO SMITT BUTS CONTOUR LIMITS MCIPICATION LINES PILITE SPETIES IS DISPLAINS 0.03 ----STATES SECTION 2 DATA PASSED NORMALITY TEST YES • | 190 | Courties revise uses using the last of t PAINT PAINT ON IT OF ALMANDESS SHOOTS WAS FUI YES D Teupe Prime . A CACALAND SON, LAND OF PAGE CONTROL CHART VARIABLES DATA (X-BAR & R) Avail Of Bill Of Bill Of Bill Of Bill Of Continue on C PAINT APPLICATIONS TEAM FILM BUILD SPC Unit of Measure Mil. a HSTORICAL PASSOO 1 UNT OCANA DAN CALLATE PELT BOOTH LAT LATE CALCULATED PELT CAGE PRINE BOOTH UCUDARA CLIDA UCLRbar LCLRbar 1 egmeyA 8 8 3 A 8 8 8 8 27.0 Range - Legand 8 3 3 Range

APPENDIX A

20 23 . 22 REACTION PLAN # . • | DENO | DATA PASSED NORMALITY TEST YES NO 8.0 Consulte serial control state out to the serial control of the ser . • . A A CLOLARS - STATE STAT . INDIVIDIJAL MOVING RANGE CONTROL CHART PAINT APPLICATIONS TEAM FILM BUILD SPC . . : Und of Measure MR , **1** | •) DISABLED PELI GAGE
100
00
0010 CONTACT NATIONAL DIVING . PELT BOOTH
FOR LIGHT
CALCULATED
ON
CALCULATE USIASI UCL Xbark CLXbar MRbar UCLMRbar/ (CLMRbar PRINE BOOTH | |S agenerA 8 8 8 egnaA 8 8 8 8 3 8 8 Range - Legend 3 9 8 8 8

Ø

APPENDIX

APPENDIX C

FILM BUILD EXECUTIVE SCHEMATIC (RIGHT AND LEFT SIDES)

	LEGEND	Average (Y)	(9.5) BUBICO	Data out of spec is underlined and shaded	DATA RECORD COLANT	7: .:
I SIDES)		PAINT	CHARACTERSTIC Taupe Prime	PELT BOOTH	TOTIONO to 0727/01 080 1.10 0.00 1.00	
MODELLA CONTENT OF THE LAND LEFT SIDES	- 1	DEMO	CENSC. Schematics	Condition	PROCESS ENGINEER	
CE TO USE	unit of MEASURE - ::	DBINE BOOM	E CO STATE	COURT COUNTROL		

FILM BUILD SPC PAINT APPLICATIONS TEAM

Relifeval System stows storage of Schematic for electronic distribution and review.

Profile includes coatings' averages, process performance and the number of units measured.

APPENDIX D

Film Build Cpk's Cost Impact Analysis

		-	1	4			WORLD CLASS	B Within World Class - UCL - LCL - Average
:	33	2	9, 10		3		ACTUAL	Webn World Class - UCL - LCL
and the same			8.0	147	2 7	1.5	¥600	
VARIATION REDUCTION 1) Variability Adjusted to World Class Standard	2) Coating Usage Remains Consistent 3) Average Remains Constant	Costing: Taupe Prime Point: 22 Booth, na	Coeting Min Spec.:	Actual Average: Actual Range:	Actual Cpk; New Range;	World Class Cpk:	Effect on Coating Usage	Approximate Annualized Cost Impact \$ n0

THE RESERVE TO SERVE THE PROPERTY OF THE PROPE				
VAKIATION SELECTION				
1) Choose Variability			FILM BUTLD MILLAGE	LAGE
2) Select Second Target Range	-	25	: : -	
3) Average Adjusted to World Class Standard				
Costno Tarne Prime		~	3002	
Point: 22		,		
Booth: ne		-		
Coating Min. Spec.:		n x	<u></u>	
Actual Average:	147	min.		
Actual Range:	021	wo:		Ī
Actual Cpk:	2	•		
Target Range:	0.0	ô		
World Class Cpk:	5.			
Effect on Coating Usage	36.06%	۰		
			ACTUAL	WORLD CLASS
Approximate Annuelized Cost Impect		5	B Within World Class - UCL - LCL - Average	L -LCL -Average

	Uh % Flow. Annuakzed Production (units): 100 200,000
	19 Populanty %: Point % Boo
Cost per Unit Fectors	(gal.). Cost per Gallon (5) Coetun 30.00
	Point: Usage per Unit
	Coating. Taupe Prime

APPENDIX E

Lower Control

CONSTANTS AND FORMULAS

Range Chart R

	l		Š	3			ı	L	ı	1	ı	L		ı	ı	L	L	ı	ı	L	l		1	ļ	1	J	1	l		Ξ				_		_	-	☱	<u> </u>	L
		- 1	Estimate of Stan	Deviation Divis	1.128	1.693	2.059	2.326	2.534	2.704	2.847	2.970	3.078	3.173	3.258	3.336	3.407	3.472	3.532	3.588	3.640	3,689	3,735	3778	3.840	3 848	3.695	3.931					1	\			MOVING IN THE SAME DIRECTION FITTED	IDICATES A	ROCESS	
			Subgroup	Size	2	6	*	80	•	7	8	•	٥	=	12	2	7	15	16	17	18	19	20	21	22	23	24	25			\	1				200000	CONSECUTIVE SAME DIREC	OWNWARD IN	NGE IN THE P	
	×	7	Upper and Lower	Control Limit Factor	7.550	1.023	0.729	0.577	0.483	0.419	0.3/3	0.337	2000	0 368	0.50	0.443	0.433	0.223	0.212	0.203	0.194	0.187	0.180	0.173	0.167	0.162	0.157	6.193		호		\ 	> =		9	A TREND OF	MOVING IN THE SAME DIRECTION EN	UPWARD OR DOWNWARD INDICATES A	GRADUAL CHANGE IN THE PROCESS	
	Chart X		5 ,	5	1		1	1		1	1	\downarrow	L	L		ļ				1			1							:				>	B	뿔	•			
		۲	Subgroup	6								2	=	12	15		=	=		=	2			15	315	3	2 2				_	1				A POINT OUTSIDE OR DIRECTLY ON THE				
																•					ā				•					:	1		•			OUTSIDE OR	I LINE			
_			<u> </u>	د ا	_			_								7													3		<			:	ਧੂ	A POINT	CONTROL LINE			
RTS	1	K-Char	A3 . R . C.	 2		UCLR = D, x R	•		D ₃ ×R	Ľ	r	~		-LSI	4	3																								
CHA	٥	ו צ	7) 		LR =		,	LCLR = D3 x R		* " *O			X	 		DATA						_	_	_															
FORMULA FOR & AND R CHARTS						ž		•						Cok - minimum & USL-X	33		MAGLE						⊒=^ #8#A						ation of		, 1 , 7		Jar	<u></u>	: :	SSeco				
FOR X A												is T	ð	90 00110	5		¥ > ¥ >	rement	0						Ħ	ŧ	90110	1	O Davis			֓֞֞֞֞֜֞֞֜֞֜֞֜֞֜֜֞֜֞֜֞֜֞֜֜֞֜֞֜֞֜֞֜֓֓֓֓֓֓֓	ב	on Limi	ion Limi	ting Pro	5			
ULA F	t	=			Þ	: I:	¥	N X	1 4 4 7	ğ	1 2 2 7	Co = USI-1-SI	9	ı giçin			ב הוא	Measu	Averag	rade	À	100		Φ.	라이드	ntrol Li	Subo	Siza	Standar	2 D	בי ל בי ל	֡֝֟֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	י רר ס	ecificati	ecificati	estima	Deviati			
FORMULA	X-Chart	5	X = X	c	ı			UCLX = X + (A, y B)	-	LCLX = X - (A. x B)		ပ	•	۲	2	100	CONTINUE CHARLS FOR VARIABLE DATA	Individual Measurement	Subgroup Average	Grand Average	Simon		Railge - ruginesi varus - Lowest Value	Center Line	Upper Control Limit	Lower Control Limit	Number of Subgroups	Subaroup Size	Process Standard Deviation	Factor for 9 Chart imits	Factor for LICL on D. Charles		ו שכנטו זטו בכר סח א כחמת	Upper Specification Limit	Lower Specification Limit	Factor for estimating Process	Standard Deviation			
			>	` 		ב כ		J Z		CLX						CONTE		= : !	ທ ×	ტ ლ	ν. 	. 0		: ر ن	_	ב ה ה	z		9					_	ר וצו	d 2	73			

Deviation Divisor Lt. Deviation Divisor Lt. 1.28 Lt. 1.28 Lt. 1.28 Lt. 1.29 Lt. 1.29

CONSTANTS AND FORMULAS

SEVEN POINTS ABOVE THE CENTRAL LINE INDICATE THAT THE CENTER OF THE NORMAL DISTRIBUTION HAS STARTED UPWARD

g :

APPENDIX F

Film Build Cpk's Cost Impact Analysis

	LIAGE	\$ 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5					WORLD CLASS
	FILM BUILD MILLAGE	8	907-1	11.0802	9.		ACTUAL WORLD CLASS Within World Class - UCL - LCL - Average
EMISE	23	× •		JOSTINIOS Ŝ	8	8	_
INCREASED MILLAGE	1) Coating Usage increases 2) Variability Remains Constant 3) Average Adjusted to World Class Standard	Coating: Black Prime Panel: Hood Booth: na	Coating Min. Spec.: 0.9	Actual Average: 1.25 Actual Range: 0.68 Actual Color	_	Effect on Coating Usage . 43.85%	Approximate Annualized Cost Impect \$ 23,976.12

ILAGE	H	4				-			WORLD CLASS
FILM BUILD MILLAGE	1.80	1.30	1.00	98 0	90	970	20	8	ACTUAL WORLD CLASS Within World Class = LICI = LAurens
_	$\overline{\neg}$					_		_	
	nderd		0.0		0.587		 	24.03%	npect
VARIATION SELECTION 1) Choose Variability	4) Select Second Target Range 3) Avarage Adjusted to World Class Standard	Coating: Black Prime Panel: Hood Booth: na	Coating Min. Spec.:	Actual Average:	Actual Range: Actual Cpk:	Subgroup Size:	World Class Cpk:	Effect on Coating Usage	Approximate Annualized Cost Impact

	Annualized Production (units): 200,000
	Booth % Flow: 100
	i: Panel %: 15
er Unit Factors:	Coating Popularity % 25
Cost	Cost per Gallon (\$):
	Usage per Unit (gal.): 0.27
	Panet: Hood
	Coating: Black Prima
	_

APPENDIX G

DEFENDING G

Variability Reduction Tools

Booth 2 Clear Coat Film Build Cost Analysis Automotive Facility

