03_Change_Detection

1. Introduction

Two Misclassification Scenarios

Overview

2. Deterministic Tests

Limit Check: Scalar Version

Limit Check: Vector

Limit Check: Time Window

Limit Check: Improvements

3. Probabilistic Test

Recursive Calculation of Mean and Variance

Detection use t test (for test μ)

Detection use χ test (for test σ)

Detection use F test (for test σ)

Pros and Cons

4. Advanced Probabilistic Tests

Multivariate Case

Log Likelihood Ratio: Neyman-Pearson's Approach

CUSUM

Generalized Likelihood Ratio (GLR) test

5. Summary

1. Introduction

For change detection, we mainly focus on how to detect whether the system behaving in a nominal way.

A symptoms generator + a change detection algorithm = a diagnosis method

Two Misclassification Scenarios

• False Positive: False Alarm Rate (FAR)

• False Negative: Missed Detection Rate (MDR)

Overview

Detect Change, estimate k_0 and $heta_1$

03_Change_Detection 1

2. Deterministic Tests

Limit Check: Scalar Version

Limit checking simply verify the variable is inside this static, deterministic range

$$z_{min} \leq z \leq z_{max}$$

Problem:

z maybe a **vector** variable, or we want to check behavior over a **time window**

Limit Check: Vector

- norm-based limit check
- component-wise limit check
- set-based limit check: like SVM

Limit Check: Time Window

- ullet number of non-zero samples (l_0 norm)
- peak value (l_{∞} norm)
- average
- Manhattan Norm (l_1 norm)
- RMS (l_2 norm)

Limit Check: Improvements

Dynamic Check:

- relative on signal amplitude
- based on models

3. Probabilistic Test

Express nominal conditions in terms of **statistical moments, or of the Probability Density Function** (pdf) of z (always assume Gaussian)

Recursive Calculation of Mean and Variance

- mean: $\hat{\mu}(k) = \hat{\mu}(k-1) + \frac{1}{k}[z(k) \hat{\mu}(k-1)]$
- variance: $\hat{\sigma}^2(k)=rac{k-2}{k-1}\hat{\sigma}^2(k-1)+rac{1}{k}[z(k)-\hat{\mu}(k-1)]^2$

Detection use t test (for test μ)

Case 1:

- known μ ,
- $\hat{\mu}, \hat{\sigma}$ estimated from N samples

$$t(N-1) = rac{\hat{\mu}(N) - \mu}{\hat{\sigma}/\sqrt{N}}$$

Case 2:

- unknown μ , unknown but constant σ ;
- ullet estimation from N_0 samples before the (hypothetical) change and N_1 after

$$t(N_0+N_1-1)=rac{\hat{\mu}_0-\hat{\mu}_1}{\sqrt{\left(N_0-1
ight)\hat{\sigma}_0^2+\left(N_1-1
ight)\hat{\sigma}_1^2}}\sqrt{rac{N_0N_1\left(N_0+N_1-2
ight)}{N_0+N_1}}$$

Detection use χ test (for test σ)

Case 3:

- known σ_0 ,
- $\hat{\sigma}$ estimated from N samples

$$\chi^2(N-1)=rac{(N-1)\hat{\sigma}_1^2}{\sigma_0^2}$$

Detection use F test (for test σ)

Case 4:

- σ estimated from N_0 samples before change
- From N_1 samples after change, mean is unknown and can even vary

$$F\left(N_0-1,N_1-1
ight)=rac{\hat{\sigma}_0^2}{\hat{\sigma}_1^2}$$

Pros and Cons

- To verify/falsify the null hypothesis with **good significance**, you need **a high number of samples** before and after the (hypothetical) change
- Makes Detection Delayed

4. Advanced Probabilistic Tests

Multivariate Case

Assumption

- Assume *z* is a vector
- nominal mean μ and covariance matrix C are known

Mahalanobis Distance

It is a weighted distance between observation and known mean based on the known covariance

$$D_M(ec{x}) = \sqrt{(ec{x} - ec{\mu})^ op \mathbf{C}^{-1} (ec{x} - ec{\mu})}.$$

Theorem: Multi-Dimensional Chebyshev Inequality

In probability theory, the <u>multidimensional Chebyshev's inequality</u> is a generalization of Chebyshev's inequality, which puts a bound on the probability of the event that a random variable differs from its expected value by more than a specified amount.

$$\Pr\left(\sqrt{(X-\mu)^TC^{-1}(X-\mu)}>t
ight)\leq rac{N}{t^2}$$

Change Detection using Mahalanobis Distance and Multi-Dimensional Chebyshev Inequality

By using Chebyshev Inequality, we can generate a **(conservative)** boundary based on our desired FAR lpha

$$ar{d} = rac{n}{lpha} \quad \Rightarrow \quad \mathbb{P}\{d^2(z) \geq ar{d}\} \leq lpha$$

where n is the dimension of z

Log Likelihood Ratio: Neyman-Pearson's Approach

Assumption

- Assumed that no prior knowledge is available
- System to be validate:

$$\circ~~\mathcal{H}_0$$
: $p(z)=p_{ heta_0}(z)$

$$\circ \ \mathcal{H}_1 : p(z) = p_{ heta_1}(z)$$

Log-Likelihood

Since Probability Distributions are often assumed to be **Gaussian**, the logarithm of this probability ratio gives very convenient calculations, given a **single observation** z

$$s(z) = \ln rac{p_{ heta_1}(z)}{p_{ heta_0}(z)}$$

Property

The log-likelihood ratio has the following fundamental statistical property

$$E_{ heta_0}(s) = \int_{-\infty}^{\infty} s(z) p_{ heta_0}(z) \mathrm{d}z < 0$$

$$E_{ heta_1}(s) = \int_{-\infty}^{\infty} s(z) p_{ heta_1}(z) \mathrm{d}z > 0$$

 $E_{ heta_i}$ denotes expectation of s(z) under the distribution associated to $p_{ heta_i}(z)$

CUSUM

Assumption

- Assume $heta_0$ (that is μ_0 and σ_0) is known
- We need to tune θ_1

Model

• Cumulative Sum:

$$S(k) = \sum_{i=1}^k s(z(i)) = \sum_{i=1}^k \ln rac{p_{ heta_1}(z(i))}{p_{ heta_0}(z(i))}$$

 \boldsymbol{S} is expected to exhibit a **negative drift before** the change, and **positive after**

• Decision Function *g*

$$g(k) = S(k) - m(k)$$

m(k) is the minimum of S until time index k

• Threshold

- A specific threshold is needed because **variance and noise** may lead to some positive drift even before the change
- \circ null hypothesis falsified for g>h, with h suitable

Parameter Tuning

Assume σ not change, μ_1 and h are still need to be tuned.

- for μ_1
 - replace by **minimum change** you want to detect
 - estimate it from data (may cause detection delay)
- tuning h
 - o trade-off among detection time, FAR and MDR
 - \circ know what reasonably is the **slope of** S after a change, h = desired detection time * slope

Generalized Likelihood Ratio (GLR) test

<u>GLR</u> aims at estimating both the **post-change parameter** θ_1 and the **change time** k_0 based on maximum likelihood thought

$$egin{aligned} S_j^k\left(heta_1
ight) &= \sum_{i=j}^k \ln rac{p_{ heta_1}(z(i))}{p_{ heta_0}(z(i))} \ \left(\hat{k}_0,\hat{ heta}_1
ight) &= rg\left\{ \max_{1\leq j\leq k} \max_{ heta_1} S_j^k\left(heta_1
ight)
ight\} \ g(k) &= \max_{1\leq j\leq k} \max_{ heta_1} S_j^k\left(heta_1
ight) \end{aligned}$$

During implementation, a maximum history buffer M can be used to reduce the complexity.

5. Summary

- change detection: A symptoms generator + a change detection algorithm = a diagnosis method
 - o MAR and FAR
- Deterministic Method: Limit check
 - Scalar
 - Evaluation Function and Time window
 - o Dynamic Check
- Probabilistic Method:
 - \circ t, F, χ tests
- Advance Probabilistic Method:
 - Multivariate: MD and Chebychev Inequality
 - Log-likelihood and property: opposite sign
 - $\circ~$ CUSUM: known $heta_0$, tune h and $heta_1$, can be easily used in multi-variable cases
 - g(k), S(k), m(k), h
 - $\circ~$ GLR: known $heta_0$, estimate k_0 and $heta_1$, can be easily used in multi-variable cases
 - g(k), multiple S(k), m(k), h