NFO THEORY - PAPER 7, 2003 98
(a) Data which is amenable to data compression that is Lossy are prinarily those data which are intended for visual or awall presentation to human. This is because the
or aural presentation to human. This is because the human perceptual system have limitation, thus, above a certain threshold, human cannot distinguish between
certain threshold, humans cannot distinguish between different sampling and quantization level.
There are a range of mechanism used to perform
There are a range of mechanism used to perform lossy compression. The guiding principle is to transform the data to a space in which perceptually important information is captured in a few components
as possible. The can be represented with many quantisation level while other components are represented by few (or no) quantisation level.
by few (or no) quantisation level.
Students may refer to particular techniques such as aural masking & DCT/DWT coding but the
Students may refer to particular techniques such as aural masking & DCT/DWT coding but the ageneral principles outlined above are sufficient to gain the majority of the marks.
(b) Let Li be the average symbol code length
$L_1 = 2(p_a + p_b + p_c + p_d)$ [where $p_a = p(a)$ etc] $L_2 = p_a + 2p_b + 3(p_c + p_d)$
We want to know when $L_2 < L_1$ $\Rightarrow p_a + 2p_b + 3(p_c + p_d) < 2p_a + 2p_b + 2(p_c + p_d)$ $\Rightarrow p_c + p_d < p_a$
$\Rightarrow \qquad p_c+p_d < p_a + 2p_b \cdot 2 \cdot (p_c+p_d)$ $\Rightarrow \qquad p_c+p_d < p_a \qquad Q.E.D.$

INFO THEORY, paper 7, 2003, page 2
(c) for an alphabet A of m symbol, the length of each symbol in the binary code is $\mathcal{L}(x)$, $x \in A$
By the Kraft-McMillan inequality, for a binary prefix code:
$\sum_{x \in A} 2^{-l(x)} \leq 1$
The average symbol length is $\sum_{\alpha \in A} p(\alpha)$. $l(\alpha)$
where $p(x) = \frac{1}{m}$ is the probability that symbol x occurs
Construct a probability distribution $q(x) = 2^{-l(x)}$
Average symbol length is now $\sum_{x \in A} p(x) \cdot \log_2 \frac{1}{q(x)}$
Kullback Leibler distance is:
$D(p q) = \sum_{x \in A} p(x), \log_2 \frac{1}{q(x)} - \sum_{x \in A} p(x), \log_2 \frac{1}{p(x)}$
average symbol = $\frac{\sum_{m}^{1} \log_2 m}{\log_2 m}$
= log, m as A =m
By Information Inequality Theorem
$\mathbb{D}(p q) \geq 0$ $\forall p, q$
So, average symbol length is greater than or equal to log_m.
To log m. C C E D

