EJEMPLO IPv6

Supongamos que una universidad tiene asignado este rango:

2001:0720:1E10::/48

Podría establecer la siguiente jerarquía:

Dar un /56 a cada facultad.

En cada facultad, los /64 para las diferentes redes, del anterior prefijo..

Los valores anteriores se pueden variar, según las necesidades. Así la Universidad podría empezar a asignar de la siguiente manera:

2001:0720:1E10:00::/56 Rango para interfaces de los routers core.

2001:0720:1E10:0100::/56 Reservado.

2001:0720:1E10:0200::/56 Rango para primera facultad o centro.

2001:0720:1E10:0300::/56 Reservado. ...

La universidad podría asignar en un primer paso, 128 centros como máximo.

El centro podría considerar reservar un bloque de redes para sus propios proyectos.

Respecto al prefijo usado para las **interfaces punto a punto** actualmente hay cierta discrepancia.

RIPE recomienda un /64, pero no es una norma, con lo que se aplica cierta flexibilidad ya que se considera que un /64 es un desperdicio enorme para dos direcciones.

Hay cierta tendencia en cuanto a usar un /127 (en IPv6 no hay dirección de broadcast ni de red) o un /126 para mantener la similitud con el direccionamiento IPv4 de dichas interfaces.

DIRECCIONAMIENTO DE VLANes o redes

Por ejemplo, si tengo mi prefijo 2001:0720:1E10:02::/56 para mi centro, podría hacer una división por ejemplo por plantas, aulas, edificios, habitaciones...de la siguiente manera:

2001:0720:1E10:02::/56 Centro de Tecnología de la universdad

2001:0720:1E10:0200::/60 Planta 1

2001:0720:1E10:0210::/60 Planta 2

. . .

2001:0720:1E10:02F0::/60 CPD

En cada una de las anteriores, tendría opción de hasta 16 VLANes:

2001:0720:1E10:0200::/60 Red de Planta 1 de Centro de Tecnología

2001:0720:1E10:0200::/64 VLAN invitados 2001:0720:1E10:0201::/64 VLAN servidores 2001:0720:1E10:0202::/64 VLAN usuarios

. . .

2001:0720:1E10:020F::/64 VLAN wifi

Gracias al direccionamiento jerárquico de IPv6, es fácil ver la distribución de direccionamiento de manera gráfica:

Redes finales (wifi, servidores, usuarios...)

DIRECCIONAMIENTO DE HOSTS

Aquellos hosts que por su naturaleza deben tener una IP fija (servidores, por ejemplo) se les puede asignar una IPv6 de manera sencilla: los 4 últimos

caracteres hexadecimales se utilizan para poner los caracteres de la última parte de la dirección IPv4.

Por ejemplo, si mi servidor es 130.111.24.253, mi dirección IPv6 podría ser: 2001:0720:1E10:020F::0253

Otra opción es utilizar el mecanismo de RA (Router Advertisement) de forma que nuestro router anuncia un prefijo a la LAN y los host configuran automaticamente su dirección IPv6, utilizando para los últimos 64 bits información de la dirección MAC de su interfaz de red.

Según el número de hosts, redes y servidores, se elegirá la opción más conveniente en cada caso.

SUBREDES CON IPv6

En el siguiente esquema se muestra de manera gráfica las diferentes subredes que se pueden crear en IPv6, desde el /32, pasando por el /48 que se asigna a cada institución, hasta el /64 de la red final.

Subredes con IPv6

CUESTIÓN DE NOMBRES

¿Por qué no aprovechar los caracteres hexadecimales de las direcciones IPv6?

Disponemos de la A a la F para formar direcciones que podamos recordar fácilmente.

Por ejemplo, por qué no poner a una red wifi para invitados la siguiente dirección:

2001:0720:1E10:CAFE::/64

Evidentemente, lo importante es realizar un plan de direccionamiento que se adapte a la institución y a la red actual y su posible evolución aprovechando el direccionamiento jerárquico que ofrece IPv6.