Semestre: 2°

Unidade Curricular: Algoritmos e Programação de

Computadores II

Docente: Rafael de Moura Speroni

Exercícios de Revisão

- 1. Faça um programa que solicite valores inteiros fornecidos pelo usuário até ele informar o valor **0** (zero). Em seguida, identifique e exiba quantos números **impares** e os **pares** foram fornecidos, sem considerar o valor 0.
- 2. A prefeitura de uma cidade fez uma pesquisa com 100 pessoas, coletando dados sobre o salário e o número de filhos. A prefeitura deseja saber:
 - a. A média do salário dessas pessoas
 - a. A média do número de filhos
 - b. O maior salário
 - c. A percentagem de pessoas com salários até R\$ 1500,00
- 3. Faça um programa que leia o nome do usuário e mostre o nome de trás para frente, utilizando somente letras maiúsculas.

NÃO UTILIZE FUNÇÃO PARA REVERTER!

Exemplo: Nome = Lidiane

Resultado gerado pelo programa: RAFAEL

4. Faça um programa que leia o nome do usuário e o imprima na vertical, em forma de escada, usando apenas letras maiúsculas.

Exemplo: Nome = RAFAEL

Resultado gerado pelo programa:

R

RA

RAF

RAFA

RAFAE

RAFAEL

5. Monte o teste de mesa para o código a seguir indicando os valores de cada variável em cada linha do código a ser executada.

Curso: Bacharelado em Sistemas de Informação **Semestre**: 2°

Unidade Curricular: Algoritmos e Programação de

Computadores II

Docente: Rafael de Moura Speroni

Exercícios de Revisão

1	quant = 0
2	c = 1
3	while c <= 5:
4	<pre>n= float(input(f'Digite o {c} valor: '))</pre>
5	c = c + 1
6	if n > 30:
7	quant += 1
8	<pre>print(n)</pre>
9	<pre>print(f' Dos 5 Numeros {quant} sao maiores que 30. ')</pre>

linha de execução do algoritmo	quant	С	n
1			

Semestre: 2°

Unidade Curricular: Algoritmos e Programação de

Computadores II

Docente: Lidiane Visintin e Rafael de Moura Speroni

Exercício Nº 1 - Arrays

Exercícios vetores(sem utilizar os métodos especiais):

- 1. Faça um algoritmo que lê 10 valores para uma variável do tipo vetor de nome x e mostra os 10 valores armazenados na estrutura.
- 2. Faça um algoritmo que lê 5 valores para uma variável do tipo vetor e determine o somatório de todos os valores armazenados no vetor.
- 3. Faça um algoritmo que lê 5 valores para uma variável do tipo vetor e determine a média de todos os valores armazenados no vetor.
- 4. Faça um algoritmo que lê 5 valores para uma variável do tipo vetor e determine o maior e o menor valor armazenado no vetor.
- 5. Faça um algoritmo que lê 10 valores para uma variável do tipo vetor e mostre qual a posição está armazenado o maior e o menor valor no vetor.

Semestre: 2°

Unidade Curricular: Algoritmos e Programação de

Computadores II

Docente: Lidiane Visintin e <u>Rafael De Moura Speroni</u>

Exercício Nº 4 - Listas, Tuplas e Conjuntos

Questões práticas:

Observação: Podem ser utilizadas listas, tuplas ou conjuntos para resolver as seguintes questões, utilize a que melhor se adequa ao problema.

 Ler 2 duas estruturas (lista, tupla ou conjunto), denominada R de 5 elementos e S de 10 elementos, ambos de inteiros. Gere outra estrutura X que possua os elementos comuns a R e a S. Considere que na mesma estrutura não haverá números repetidos.

Por exemplo:

 Ler uma estrutura (lista, tupla ou conjunto), R de 5 elementos, inteiros, contendo o resultado da LOTO. A seguir ler outra estrutura (lista, tupla ou conjunto), A de 10 elementos inteiros contendo uma aposta. A seguir imprima quantos pontos fez o apostador.

Por exemplo:

```
[Entrada]
4 12 34 25 17 (gabarito)
3 17 55 21 34 4 27 29 20 11 (aposta)
[Saida]
3 (pontos)
```

Semestre: 2°

Unidade Curricular: Algoritmos e Programação de

Computadores II

Docente: Lidiane Visintin e Rafael De Moura Speroni

Exercício Nº 4 - Listas, Tuplas e Conjuntos

- 3. Faça um algoritmo que lê estrutura (lista, tupla ou conjunto), K que comporte 20 elementos. Troque a seguir os elementos de índice ímpar com os de índice par imediatamente seguinte. Mostre, no final, como ficou a estrutura K, com as alterações.
- 4. Faça um programa que preencha uma estrutura (lista, tupla ou conjunto) com 9 números inteiros, calcule e mostre os números primos e suas respectivas posições na estrutura.
- 5. Faça um programa que preencha duas estruturas (lista, tupla ou conjunto), X e Y, com dez números inteiros cada. Calcule e mostre o seguinte resultado: A diferença entre X e Y, por exemplo:

x	3	8	4	2	1	6	8	7	11	9
	1	2	3	4	5	6	7	8	9	10
	2	1	5	12	3	0	1	4	5	6
9). HI	1	2	3	4	5	6	7	8	9	10
Diferença		8	7	11	9					
		1	2	3	4					

Semestre: 2°

Unidade Curricular: Algoritmos e Programação de

Computadores II

Docente: Lidiane Visintin e Rafael de Moura Speroni

Exercício Nº 3 - Listas e Arrays

1. Sendo o vetor V igual a:

2	6	8	3	10	9	1	21	33	14
0	1	2	3	4	5	6	7	8	9

E as variáveis X=2 e Y=4, escreva o valor que será acessado no vetor, considerando os seguintes índices:

a.
$$V[X+1] =$$

b.
$$V[X+2] =$$

c.
$$V[X+3] =$$

d.
$$V[X*4] =$$

e.
$$V[X*1] =$$

f.
$$V[X^*2] =$$

g.
$$V[X*3] =$$

h.
$$V[V[X+Y]] =$$

i.
$$V[X+Y] =$$

j.
$$V[8-V[2]] =$$

m.
$$V[V[1]*V[4]]=$$

n.
$$V[X+4]=$$

- 2. Faça um programa que preencha um vetor com 9 números inteiros, calcule e mostre os que são números primos e suas respectivas posições.
- 3. Ler 2 vetores, R de 5 elementos e S de 10 elementos, ambos de inteiros. Gere um vetor X que possua os elementos comuns a R e a S. Considere que no mesmo vetor não haverá números repetidos.

Por exemplo:

4. Ler um vetor R de 5 elementos, inteiros, contendo o resultado da LOTO. A seguir ler um vetor A de 10 elementos inteiros contendo uma aposta. A seguir imprima quantos pontos fez o apostador.

Semestre: 2°

Unidade Curricular: Algoritmos e Programação de

Computadores II

Docente: Lidiane Visintin e Rafael de Moura Speroni

Exercício Nº 3 - Listas e Arrays

Por exemplo:

```
[Entrada]
4 12 34 25 17 (gabarito)
3 17 55 21 34 4 27 29 20 11 (aposta)
[Saída]
3 (pontos)
```

5. Faça um programa que preencha dois vetores de dez elementos numéricos cada um e mostre o vetor resultante da intercalação deles:

- 6. Faça um programa que preencha um vetor com os modelos de cinco carros (exemplos de modelos: Fusca, Gol, Vectra, etc). Carregue outro vetor com o consumo desses carros, isto é, quantos quilômetros cada um deles faz com um litro de combustível. Calcule e mostre:
 - a. O modelo do carro mais econômico; e
 - b. Quantos litros de combustível cada um dos carros cadastrados consome para percorrer uma distância de 1000 Km.
- 7. Faça um programa que preencha dois vetores, X e Y, com dez números inteiros cada. Calcule e mostre os seguintes vetores resultantes:

A diferença entre X e Y

(3	8	4	2	1	6	8	7	11	9
	1	2	3	4	5	6	7	8	9	10
I	2	1	5	12	3	0	1	4	5	6
,	1	2	3	4	5	6	7	8	9	10
Difer	ença	8	7	11	9					
		1	2	3	4					

Semestre: 2°

Unidade Curricular: Algoritmos e Programação de

Computadores II

Docente: Lidiane Visintin e Rafael de Moura Speroni

Exercícios Nº 1 - Matrizes

- 1. Faça um algoritmo que lê uma matriz M5x5 e mostrar os valores digitados para a matriz M.
- 2. Faça um algoritmo que lê uma matriz M5x5. A matriz deve ser preenchida através das colunas, por exemplo, se for digitado: 1,2,3,4,5,6,7,8,9,10,...

Após mostre a matriz resultante.

1	6	•••			o
2	7				1
3	8				2
4	9				3
5	10				4
0	1	2	3	4	_

- 3. Faça um algoritmo que lê uma matriz M5x5 e mostrar os valores da diagonal principal.
- 4. Faça um algoritmo que lê uma matriz M5x5. Calcular e mostrar a soma de todos os valores da linha 4.
- 5. Faça um algoritmo que lê valores para uma matriz M10x10 calcular e mostrar:
 - O somatório dos valores da coluna 2
 - O somatório dos valores da diagonal principal

Semestre: 2°

Unidade Curricular: Algoritmos e Programação de

Computadores II

Docente: Lidiane Visintin

Exercícios Nº 1 - Funcões e Procedimentos

Exercícios sobre funções:

- 1. Elabore um algoritmo que receba as 3 notas de um aluno e uma letra. Se a letra for "A", deve-se chamar uma sub-rotina que deverá calcular a média aritmética das notas dos alunos; Se a letra for "P", deverá calcular a média ponderada, com pesos 5, 3 e 2. A média calculada deverá ser devolvida ao programa principal para, então, ser mostrada.
- 2. Faça um algoritmo contendo uma sub-rotina que receba dois números positivos inteiros por parâmetro e retorne a soma dos N números inteiros existentes entre eles, incluindo na soma os dois números informados.
- 3. Crie uma sub-rotina que receba como parâmetro uma lista V contendo 25 elementos de números inteiros e substitua todos os valores negativos de V por 0. A lista deverá ser retornada para quem realizou a chamada desta função.
- 4. Faça uma sub-rotina que imprima todos os números inteiros de 10 a 1 (ou seja, em ordem decrescente).

Semestre: 2°

Unidade Curricular: Algoritmos e Programação de

Computadores II

Docente: Lidiane Visintin e Rafael de Moura Speroni

Exercício Nº 1

Exercícios listas:

- 1. Faça um algoritmo que lê 10 valores para uma variável do tipo lista de nome x e mostre os 10 valores armazenados.
- 2. Faça um algoritmo que lê 10 valores para uma variável do tipo lista de nome x. Após completar toda a leitura da lista, verificar se cada valor armazenado na lista é par ou ímpar. Se for par, fazer com que o valor seja atualizado para o resultado da multiplicação do valor contido pelo índice. Se for impar, fazer com que a lista receba o valor do seu próprio índice.
- 3. Elabore um algoritmo que leia duas listas de 5 posições, após a leitura realizar a soma e imprima o resultado da soma entre as duas listas de inteiros.
- 4. Altere o algoritmo anterior para que ele realize o produto da primeira lista, pelo inverso da segunda lista.
- 5. Faça um algoritmo que lê duas listas A e B com 5 elementos cada. Construir uma lista C, sendo este a junção das duas outras listas, ou seja, a lista C deverá conter 10 elementos. Mostre no final a lista C.

Semestre: 2°

Unidade Curricular: Algoritmos e Programação de

Computadores II

Docentes: Lidiane Visintin

Exercício Para Praticar

Exercícios sobre Arquivos:

- 1. Faça um programa que crie um arquivo texto e que salve seu nome neste arquivo (o nome deve ser informado via terminal).
- 2. Faça um programa que crie um arquivo texto e que salve seu nome neste arquivo, após sobrescreva o conteúdo deste arquivo com a frase "Eu amo algoritmos!".
- 3. Escreva um programa que receba do usuário 5 números inteiros e o nome do arquivo no qual eles devem ser armazenados. Em seguida, ler do arquivo os valores armazenados copiando-os para uma lista de inteiros e os imprimindo na tela.
- 4. Utilize os arquivos *pares.txt* e *impares.txt* gerados através do código-fonte, apresentado nos slides. Faça a leitura destes dois arquivos e crie um só arquivo denominado de *pareseimpares.txt* com base em todas as linhas dos dois arquivos lidos e para preservar a ordem numérica.
- 5. Crie um programa que inverta a ordem das linhas do arquivo *pares.txt*. A primeira linha deverá conter o maior número; e a última, o menor.