Expectation Maximization (Contd.)

Piyush Rai

Probabilistic Machine Learning (CS772A)

September 5, 2017

• Initialize the parameters $\Theta^{(0)} = \{\pi_k^{(0)}, \boldsymbol{\mu}_k^{(0)}, \boldsymbol{\Sigma}_k^{(0)}\}_{k=1}^K$ randomly, or using K-means

- Initialize the parameters $\Theta^{(0)} = \{\pi_k^{(0)}, \boldsymbol{\mu}_k^{(0)}, \boldsymbol{\Sigma}_k^{(0)}\}_{k=1}^K$ randomly, or using K-means
- For t = 1, 2, ... or until convergence (e.g., when $\log p(\mathbf{x}|\Theta)$ ceases to increase)

- Initialize the parameters $\Theta^{(0)} = \{\pi_k^{(0)}, m{\mu}_k^{(0)}, m{\Sigma}_k^{(0)}\}_{k=1}^K$ randomly, or using K-means
- For t = 1, 2, ... or until convergence (e.g., when $\log p(\mathbf{x}|\Theta)$ ceases to increase)
 - **E Step:** Given $\Theta^{(t-1)}$, compute expectation $\mathbb{E}[z_{nk}]$ (same as posterior probability of $z_{nk} = 1$), $\forall n, k$

$$\gamma_{nk}^{(t)} = \mathbb{E}[z_{nk}^{(t)}] \propto \pi_k^{(t-1)} \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_k^{(t-1)}, \boldsymbol{\Sigma}_k^{(t-1)})$$

- Initialize the parameters $\Theta^{(0)} = \{\pi_k^{(0)}, m{\mu}_k^{(0)}, m{\Sigma}_k^{(0)}\}_{k=1}^K$ randomly, or using K-means
- For t = 1, 2, ... or until convergence (e.g., when $\log p(\mathbf{x}|\Theta)$ ceases to increase)
 - **E Step:** Given $\Theta^{(t-1)}$, compute expectation $\mathbb{E}[z_{nk}]$ (same as posterior probability of $z_{nk} = 1$), $\forall n, k$

$$\gamma_{nk}^{(t)} = \mathbb{E}[z_{nk}^{(t)}] \propto \pi_k^{(t-1)} \mathcal{N}(\pmb{x}_n | \pmb{\mu}_k^{(t-1)}, \pmb{\Sigma}_k^{(t-1)})$$
 (basically depends on posterior $p(\pmb{z} | \pmb{x}, \Theta^{(t-1)})$

- Initialize the parameters $\Theta^{(0)} = \{\pi_k^{(0)}, m{\mu}_k^{(0)}, m{\Sigma}_k^{(0)}\}_{k=1}^K$ randomly, or using K-means
- For t = 1, 2, ... or until convergence (e.g., when $\log p(\mathbf{x}|\Theta)$ ceases to increase)
 - **E Step:** Given $\Theta^{(t-1)}$, compute expectation $\mathbb{E}[z_{nk}]$ (same as posterior probability of $z_{nk} = 1$), $\forall n, k$ $\gamma_{nk}^{(t)} = \mathbb{E}[z_{nk}^{(t)}] \propto \pi_k^{(t-1)} \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k^{(t-1)}, \boldsymbol{\Sigma}_k^{(t-1)}) \qquad \text{(basically depends on posterior } p(\mathbf{z} | \mathbf{x}, \boldsymbol{\Theta}^{(t-1)})$
 - M Step: Given $\gamma_{nk}^{(t)}$, maximize expected CLL w.r.t. Θ . Results in the following updates

- Initialize the parameters $\Theta^{(0)} = \{\pi_k^{(0)}, m{\mu}_k^{(0)}, m{\Sigma}_k^{(0)}\}_{k=1}^K$ randomly, or using K-means
- For t = 1, 2, ... or until convergence (e.g., when $\log p(\mathbf{x}|\Theta)$ ceases to increase)
 - **E Step:** Given $\Theta^{(t-1)}$, compute expectation $\mathbb{E}[z_{nk}]$ (same as posterior probability of $z_{nk} = 1$), $\forall n, k$

$$\gamma_{nk}^{(t)} = \mathbb{E}[z_{nk}^{(t)}] \propto \pi_k^{(t-1)} \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_k^{(t-1)}, \boldsymbol{\Sigma}_k^{(t-1)}) \qquad \text{(basically depends on posterior } \boldsymbol{p}(\boldsymbol{z} | \boldsymbol{x}, \boldsymbol{\Theta}^{(t-1)})$$

• M Step: Given $\gamma_{nk}^{(t)}$, maximize expected CLL w.r.t. Θ . Results in the following updates

$$\mu_k^{(t)} = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk}^{(t)} x_n$$
 (where $N_k^{(t)} = \sum_{n=1}^N \gamma_{nk}^{(t)}$)

- Initialize the parameters $\Theta^{(0)} = \{\pi_k^{(0)}, m{\mu}_k^{(0)}, m{\Sigma}_k^{(0)}\}_{k=1}^K$ randomly, or using K-means
- For t = 1, 2, ... or until convergence (e.g., when $\log p(\mathbf{x}|\Theta)$ ceases to increase)
 - **E Step:** Given $\Theta^{(t-1)}$, compute expectation $\mathbb{E}[z_{nk}]$ (same as posterior probability of $z_{nk}=1$), $\forall n,k$

$$\gamma_{nk}^{(t)} = \mathbb{E}[z_{nk}^{(t)}] \propto \pi_k^{(t-1)} \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k^{(t-1)}, \boldsymbol{\Sigma}_k^{(t-1)}) \qquad \text{(basically depends on posterior } p(\mathbf{z} | \mathbf{x}, \boldsymbol{\Theta}^{(t-1)})$$

• M Step: Given $\gamma_{nk}^{(t)}$, maximize expected CLL w.r.t. Θ . Results in the following updates

$$\mu_k^{(t)} = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk}^{(t)} \mathbf{x}_n$$
 (where $N_k^{(t)} = \sum_{n=1}^N \gamma_{nk}^{(t)}$)

$$\mathbf{\Sigma}_{k}^{(t)} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma_{nk}^{(t)} (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}^{(t)}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}^{(t)})^{\top}$$

- Initialize the parameters $\Theta^{(0)} = \{\pi_k^{(0)}, m{\mu}_k^{(0)}, m{\Sigma}_k^{(0)}\}_{k=1}^K$ randomly, or using K-means
- For t = 1, 2, ... or until convergence (e.g., when $\log p(\mathbf{x}|\Theta)$ ceases to increase)
 - **E Step:** Given $\Theta^{(t-1)}$, compute expectation $\mathbb{E}[z_{nk}]$ (same as posterior probability of $z_{nk} = 1$), $\forall n, k$

$$\gamma_{nk}^{(t)} = \mathbb{E}[z_{nk}^{(t)}] \propto \pi_k^{(t-1)} \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_k^{(t-1)}, \boldsymbol{\Sigma}_k^{(t-1)}) \qquad \text{(basically depends on posterior } \boldsymbol{p}(\boldsymbol{z} | \boldsymbol{x}, \boldsymbol{\Theta}^{(t-1)})$$

• M Step: Given $\gamma_{nk}^{(t)}$, maximize expected CLL w.r.t. Θ . Results in the following updates

$$\mu_k^{(t)} = \frac{1}{N_k} \sum_{n=1}^{N} \gamma_{nk}^{(t)} x_n \quad \text{(where } N_k^{(t)} = \sum_{n=1}^{N} \gamma_{nk}^{(t)} \text{)}$$

$$\Sigma_k^{(t)} = \frac{1}{N_k} \sum_{n=1}^{N} \gamma_{nk}^{(t)} (x_n - \mu_k^{(t)}) (x_n - \mu_k^{(t)})^{\top}$$

$$\pi_k^{(t)} = \frac{N_k^{(t)}}{N}$$

The General EM Algorithm

Consider a latent variable model with joint distribution

$$p(\mathbf{X},\mathbf{Z}|\Theta) = \prod_{n=1}^{N} p(x_n,z_n|\Theta) = \prod_{n=1}^{N} p(x_n|z_n,\theta)p(z_n|\phi)$$

ullet All model parameters collectively denoted by $\Theta=(\theta,\phi)$, $\mathbf{X}=\{\mathbf{z}_1,\ldots,\mathbf{z}_N\}$, $\mathbf{Z}=\{\mathbf{z}_1,\ldots,\mathbf{z}_N\}$

Consider a latent variable model with joint distribution

$$p(\mathbf{X},\mathbf{Z}|\Theta) = \prod_{n=1}^{N} p(\mathbf{x}_n,\mathbf{z}_n|\Theta) = \prod_{n=1}^{N} p(\mathbf{x}_n|\mathbf{z}_n,\theta) p(\mathbf{z}_n|\phi)$$

ullet All model parameters collectively denoted by $\Theta=(\theta,\phi)$, $\mathbf{X}=\{\mathbf{z}_1,\ldots,\mathbf{z}_N\}$, $\mathbf{Z}=\{\mathbf{z}_1,\ldots,\mathbf{z}_N\}$

• Goal: Estimate the model parameters Θ via MLE/MAP (sometimes also the latent variales z_n 's)

$$\hat{\Theta} = \arg \max_{\Theta} \log p(\mathbf{X}|\Theta)$$

$$\hat{\Theta} = \arg \max_{\Theta} \log p(\mathbf{X}|\Theta) = \arg \max_{\Theta} \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta)$$

$$\hat{\Theta} = \arg \max_{\Theta} \log p(\mathbf{X}|\Theta) = \arg \max_{\Theta} \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) \quad \text{or} \quad \arg \max_{\Theta} \log \int_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) d\mathbf{Z}$$

ullet Goal: Estimate the model parameters Θ via MLE/MAP

$$\hat{\Theta} = \arg \max_{\Theta} \log p(\mathbf{X}|\Theta) = \arg \max_{\Theta} \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) \quad \text{or} \quad \arg \max_{\Theta} \log \int_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) d\mathbf{Z}$$

• Getting closed-form MLE/MAP in such models can be difficult because of the log-sum/integral

Goal: Estimate the model parameters Θ via MLE/MAP

$$\hat{\Theta} = \arg \max_{\Theta} \log p(\mathbf{X}|\Theta) = \arg \max_{\Theta} \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) \quad \text{or} \quad \arg \max_{\Theta} \log \int_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) d\mathbf{Z}$$

- Getting closed-form MLE/MAP in such models can be difficult because of the log-sum/integral
- An idea: Let's do MLE on $\log p(\mathbf{X}, \mathbf{Z}|\Theta)$ instead since it usually has a much simpler expression

Goal: Estimate the model parameters Θ via MLE/MAP

$$\hat{\Theta} = \arg \max_{\Theta} \log p(\mathbf{X}|\Theta) = \arg \max_{\Theta} \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) \quad \text{or} \quad \arg \max_{\Theta} \log \int_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) d\mathbf{Z}$$

- Getting closed-form MLE/MAP in such models can be difficult because of the log-sum/integral
- An idea: Let's do MLE on $\log p(\mathbf{X}, \mathbf{Z}|\Theta)$ instead since it usually has a much simpler expression
 - .. simpler especially when $p(x_n|z_n,\theta)$ and $p(z_n|\phi)$ are exponential family distributions

Goal: Estimate the model parameters Θ via MLE/MAP

$$\hat{\Theta} = \arg \max_{\Theta} \log p(\mathbf{X}|\Theta) = \arg \max_{\Theta} \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) \quad \text{or} \quad \arg \max_{\Theta} \log \int_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) d\mathbf{Z}$$

- Getting closed-form MLE/MAP in such models can be difficult because of the log-sum/integral
- An idea: Let's do MLE on $\log p(\mathbf{X}, \mathbf{Z}|\Theta)$ instead since it usually has a much simpler expression
 - .. simpler especially when $p(x_n|z_n,\theta)$ and $p(z_n|\phi)$ are exponential family distributions
- Question: Is MLE on $\log p(\mathbf{X}, \mathbf{Z}|\Theta)$ a sensible thing to do?

■ Goal: Estimate the model parameters Θ via MLE/MAP

$$\hat{\Theta} = \arg \max_{\Theta} \log p(\mathbf{X}|\Theta) = \arg \max_{\Theta} \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) \quad \text{or} \quad \arg \max_{\Theta} \log \int_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) d\mathbf{Z}$$

- Getting closed-form MLE/MAP in such models can be difficult because of the log-sum/integral
- An idea: Let's do MLE on $\log p(\mathbf{X}, \mathbf{Z}|\Theta)$ instead since it usually has a much simpler expression
 - .. simpler especially when $p(x_n|z_n,\theta)$ and $p(z_n|\phi)$ are exponential family distributions
- Question: Is MLE on $\log p(\mathbf{X}, \mathbf{Z}|\Theta)$ a sensible thing to do? Yes :-) Will see justification shortly

■ Goal: Estimate the model parameters Θ via MLE/MAP

$$\hat{\Theta} = \arg \max_{\Theta} \log p(\mathbf{X}|\Theta) = \arg \max_{\Theta} \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) \quad \text{or} \quad \arg \max_{\Theta} \log \int_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) d\mathbf{Z}$$

- Getting closed-form MLE/MAP in such models can be difficult because of the log-sum/integral
- An idea: Let's do MLE on $\log p(\mathbf{X}, \mathbf{Z}|\Theta)$ instead since it usually has a much simpler expression
 - .. simpler especially when $p(x_n|z_n,\theta)$ and $p(z_n|\phi)$ are exponential family distributions
- Question: Is MLE on $\log p(\mathbf{X}, \mathbf{Z}|\Theta)$ a sensible thing to do? Yes :-) Will see justification shortly
- Note: Since **Z** is latent, we will actually do MLE on the expectation of $\log p(\mathbf{X}, \mathbf{Z}|\Theta)$

■ Goal: Estimate the model parameters Θ via MLE/MAP

$$\hat{\Theta} = \arg \max_{\Theta} \log p(\mathbf{X}|\Theta) = \arg \max_{\Theta} \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) \quad \text{or} \quad \arg \max_{\Theta} \log \int_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) d\mathbf{Z}$$

- Getting closed-form MLE/MAP in such models can be difficult because of the log-sum/integral
- An idea: Let's do MLE on $\log p(\mathbf{X}, \mathbf{Z}|\Theta)$ instead since it usually has a much simpler expression
 - .. simpler especially when $p(x_n|z_n,\theta)$ and $p(z_n|\phi)$ are exponential family distributions
- Question: Is MLE on $\log p(\mathbf{X}, \mathbf{Z}|\Theta)$ a sensible thing to do? Yes :-) Will see justification shortly
- Note: Since **Z** is latent, we will actually do MLE on the expectation of $\log p(\mathbf{X}, \mathbf{Z}|\Theta)$

$$\boxed{\mathbb{E}[\log p(\mathbf{X}, \mathbf{Z}|\Theta)] = \mathbb{E}[\log p(\mathbf{X}|\mathbf{Z}, \theta) + \log p(\mathbf{Z}|\phi)]} \quad \text{(called exp. complete data log-lik.)}$$

ullet Goal: Estimate the model parameters Θ via MLE/MAP

$$\hat{\Theta} = \arg \max_{\Theta} \log p(\mathbf{X}|\Theta) = \arg \max_{\Theta} \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) \quad \text{or} \quad \arg \max_{\Theta} \log \int_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) d\mathbf{Z}$$

- Getting closed-form MLE/MAP in such models can be difficult because of the log-sum/integral
- An idea: Let's do MLE on $\log p(\mathbf{X}, \mathbf{Z}|\Theta)$ instead since it usually has a much simpler expression
 - .. simpler especially when $p(x_n|z_n,\theta)$ and $p(z_n|\phi)$ are exponential family distributions
- Question: Is MLE on $\log p(\mathbf{X}, \mathbf{Z}|\Theta)$ a sensible thing to do? Yes :-) Will see justification shortly
- Note: Since **Z** is latent, we will actually do MLE on the expectation of $\log p(\mathbf{X}, \mathbf{Z}|\Theta)$

$$\mathbb{E}[\log p(\mathbf{X}, \mathbf{Z}|\Theta)] = \mathbb{E}[\log p(\mathbf{X}|\mathbf{Z}, \theta) + \log p(\mathbf{Z}|\phi)] \quad \text{(called exp. complete data log-lik.)}$$

where expectation is taken w.r.t. an "optimal" distribution of Z (will see shortly what this distr. is)

ullet Goal: Estimate the model parameters Θ via MLE/MAP

$$\hat{\Theta} = \arg \max_{\Theta} \log p(\mathbf{X}|\Theta) = \arg \max_{\Theta} \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) \quad \text{or} \quad \arg \max_{\Theta} \log \int_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) d\mathbf{Z}$$

- Getting closed-form MLE/MAP in such models can be difficult because of the log-sum/integral
- An idea: Let's do MLE on $\log p(\mathbf{X}, \mathbf{Z}|\Theta)$ instead since it usually has a much simpler expression
 - .. simpler especially when $p(x_n|z_n,\theta)$ and $p(z_n|\phi)$ are exponential family distributions
- Question: Is MLE on $\log p(\mathbf{X}, \mathbf{Z}|\Theta)$ a sensible thing to do? Yes :-) Will see justification shortly
- Note: Since **Z** is latent, we will actually do MLE on the expectation of $\log p(\mathbf{X}, \mathbf{Z}|\Theta)$

$$\boxed{\mathbb{E}[\log p(\mathbf{X},\mathbf{Z}|\Theta)] = \mathbb{E}[\log p(\mathbf{X}|\mathbf{Z},\theta) + \log p(\mathbf{Z}|\phi)]} \quad \text{(called exp. complete data log-lik.)}$$

where expectation is taken w.r.t. an "optimal" distribution of Z (will see shortly what this distr. is)

• This procedure is basically the Expectation Maximization (EM) algorithm for latent variable models

• Define $p_z = p(\mathbf{Z}|\mathbf{X}, \Theta)$. The identity below holds for any choice of the distribution q

(Exercise: Verify the above identity)

• Define $p_z = p(\mathbf{Z}|\mathbf{X}, \Theta)$. The identity below holds for any choice of the distribution q

 $\mathrm{KL}(q||p)$ $\mathcal{L}(q,oldsymbol{ heta})$ $\ln p(\mathbf{X}|oldsymbol{ heta})$

• Since $\mathsf{KL}(q||p_z) \geq 0$, $\mathcal{L}(q,\Theta)$ is a lower-bound on $\log p(\mathbf{X}|\Theta)$

• Define $p_z = p(\mathbf{Z}|\mathbf{X}, \Theta)$. The identity below holds for any choice of the distribution q

- Since $\mathsf{KL}(q||p_z) \geq 0$, $\mathcal{L}(q,\Theta)$ is a lower-bound on $\log p(\mathbf{X}|\Theta)$
 - Consequence: Maximizing $\mathcal{L}(q,\Theta)$ will also make $\log p(\mathbf{X}|\Theta)$ go up

• Define $p_z = p(\mathbf{Z}|\mathbf{X}, \Theta)$. The identity below holds for any choice of the distribution q

- Since $\mathsf{KL}(q||p_z) \geq 0$, $\mathcal{L}(q,\Theta)$ is a lower-bound on $\log p(\mathbf{X}|\Theta)$
 - Consequence: Maximizing $\mathcal{L}(q,\Theta)$ will also make $\log p(\mathbf{X}|\Theta)$ go up
- Therefore, to do MLE on $\log p(\mathbf{X}|\Theta)$, we can maximize $\mathcal{L}(q,\Theta)$ w.r.t. q and Θ

• Define $p_z = p(\mathbf{Z}|\mathbf{X}, \Theta)$. The identity below holds for any choice of the distribution q

$$\begin{array}{rcl} \log p(\mathbf{X}|\Theta) = \mathcal{L}(q,\Theta) + \mathsf{KL}(q||p_z) \\ \\ \mathcal{L}(q,\Theta) &=& \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \left\{ \frac{p(\mathbf{X},\mathbf{Z}|\Theta)}{q(\mathbf{Z})} \right\} \\ \\ \mathsf{KL}(q||p_z) &=& -\sum_{\mathbf{Z}} q(\mathbf{Z}) \log \left\{ \frac{p(\mathbf{Z}|\mathbf{X},\Theta)}{q(\mathbf{Z})} \right\} \end{array}$$
(Exercise: Verify the above identity)

 $\mathrm{KL}(q||p)$ $\mathcal{L}(q,oldsymbol{ heta})$ $\ln p(\mathbf{X}|oldsymbol{ heta})$

(Exercise. Verify the above identity

- Since $\mathsf{KL}(q||p_z) \geq 0$, $\mathcal{L}(q,\Theta)$ is a lower-bound on $\log p(\mathbf{X}|\Theta)$
 - Consequence: Maximizing $\mathcal{L}(q,\Theta)$ will also make $\log p(\mathbf{X}|\Theta)$ go up
- Therefore, to do MLE on $\log p(\mathbf{X}|\Theta)$, we can maximize $\mathcal{L}(q,\Theta)$ w.r.t. q and Θ
 - Maximizing $\mathcal{L}(q,\Theta)$ jointly w.r.t. q and Θ isn't possible, so we alternate between:

• Define $p_z = p(\mathbf{Z}|\mathbf{X}, \Theta)$. The identity below holds for any choice of the distribution q

$$\begin{array}{rcl} \log p(\mathbf{X}|\Theta) = \mathcal{L}(q,\Theta) + \mathsf{KL}(q||p_z) \\ \\ \mathcal{L}(q,\Theta) &=& \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \left\{ \frac{p(\mathbf{X},\mathbf{Z}|\Theta)}{q(\mathbf{Z})} \right\} \\ \\ \mathsf{KL}(q||p_z) &=& -\sum_{\mathbf{Z}} q(\mathbf{Z}) \log \left\{ \frac{p(\mathbf{Z}|\mathbf{X},\Theta)}{q(\mathbf{Z})} \right\} \end{array}$$
(Exercise: Verify the above identity)

- Since $\mathsf{KL}(q||p_z) \geq 0$, $\mathcal{L}(q,\Theta)$ is a lower-bound on $\log p(\mathbf{X}|\Theta)$
 - Consequence: Maximizing $\mathcal{L}(q,\Theta)$ will also make $\log p(\mathbf{X}|\Theta)$ go up
- Therefore, to do MLE on $\log p(\mathbf{X}|\Theta)$, we can maximize $\mathcal{L}(q,\Theta)$ w.r.t. q and Θ
 - Maximizing $\mathcal{L}(q,\Theta)$ jointly w.r.t. q and Θ isn't possible, so we alternate between: (1) Given Θ , find the optimal q that maximizes $\mathcal{L}(q,\Theta)$

• Define $p_z = p(\mathbf{Z}|\mathbf{X}, \Theta)$. The identity below holds for any choice of the distribution q

 $\mathrm{KL}(q||p)$ $\mathcal{L}(q,oldsymbol{ heta}) = \ln p(\mathbf{X}|oldsymbol{ heta})$

- Since $\mathsf{KL}(q||p_z) \geq 0$, $\mathcal{L}(q,\Theta)$ is a lower-bound on $\log p(\mathbf{X}|\Theta)$
 - Consequence: Maximizing $\mathcal{L}(q,\Theta)$ will also make $\log p(\mathbf{X}|\Theta)$ go up
- Therefore, to do MLE on $\log p(\mathbf{X}|\Theta)$, we can maximize $\mathcal{L}(q,\Theta)$ w.r.t. q and Θ
 - Maximizing $\mathcal{L}(q,\Theta)$ jointly w.r.t. q and Θ isn't possible, so we alternate between: (1) Given Θ , find the optimal q that maximizes $\mathcal{L}(q,\Theta)$, and (2) Given q, find the optimal Θ that maximizes $\mathcal{L}(q,\Theta)$

$$\log p(\mathbf{X}|\Theta) = \mathcal{L}(q,\Theta) + \mathsf{KL}(q||p_z)$$

• Since Θ (and thus $\log p(\mathbf{X}|\Theta)$) doesn't change in this step, the sum $\mathcal{L}(q,\Theta) + \mathsf{KL}(q||p_z)$ is fixed

$$\log p(\mathbf{X}|\Theta) = \mathcal{L}(q,\Theta) + \mathsf{KL}(q||p_z)$$

- Since Θ (and thus $\log p(\mathbf{X}|\Theta)$) doesn't change in this step, the sum $\mathcal{L}(q,\Theta) + \mathsf{KL}(q||p_z)$ is fixed
- ullet Therefore, with Θ fixed to Θ^{old} , maximizing the lower bound $\mathcal{L}(q,\Theta^{old})$ w.r.t. q, i.e.,

$$\hat{q} = rg \max_{q} \mathcal{L}(q, \Theta^{old})$$

$$\log p(\mathbf{X}|\Theta) = \mathcal{L}(q,\Theta) + \mathsf{KL}(q||p_z)$$

- Since Θ (and thus $\log p(\mathbf{X}|\Theta)$) doesn't change in this step, the sum $\mathcal{L}(q,\Theta) + \mathsf{KL}(q||p_z)$ is fixed
- ullet Therefore, with Θ fixed to Θ^{old} , maximizing the lower bound $\mathcal{L}(q,\Theta^{old})$ w.r.t. q, i.e.,

$$\hat{q} = rg \max_{q} \mathcal{L}(q, \Theta^{old})$$

.. is equivalent to finding q for which $\mathsf{KL}(q||p_z) = 0$

$$\log p(\mathbf{X}|\Theta) = \mathcal{L}(q,\Theta) + \mathsf{KL}(q||p_z)$$

- Since Θ (and thus $\log p(\mathbf{X}|\Theta)$) doesn't change in this step, the sum $\mathcal{L}(q,\Theta) + \mathsf{KL}(q||p_z)$ is fixed
- ullet Therefore, with Θ fixed to Θ^{old} , maximizing the lower bound $\mathcal{L}(q,\Theta^{old})$ w.r.t. q, i.e.,

$$\hat{q} = rg \max_{q} \mathcal{L}(q, \Theta^{old})$$

.. is equivalent to finding q for which $KL(q||p_z) = 0$, i.e., $\hat{q} = p_z = p(\mathbf{Z}|\mathbf{X}, \Theta^{old})$

Given q, which Θ maximizes $\mathcal{L}(q,\Theta)$?

$$\log p(\mathbf{X}|\Theta) = \mathcal{L}(q,\Theta) + \mathsf{KL}(q||p_z)$$

where
$$\mathcal{L}(q,\Theta) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \left\{ \frac{\rho(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \right\}$$

• With q fixed at $\hat{q} = p(\mathbf{Z}|\mathbf{X}, \Theta^{old})$, we want to maximize $\mathcal{L}(\hat{q}, \Theta)$ w.r.t. Θ , where

$$\mathcal{L}(\hat{q}, \Theta) \quad = \quad \sum_{\mathbf{Z}} \rho(\mathbf{Z}|\mathbf{X}, \Theta^{old}) \log \rho(\mathbf{X}, \mathbf{Z}|\Theta) - \sum_{\mathbf{Z}} \rho(\mathbf{Z}|\mathbf{X}, \Theta^{old}) \log \rho(\mathbf{Z}|\mathbf{X}, \Theta^{old})$$

Given q, which Θ maximizes $\mathcal{L}(q,\Theta)$?

$$oxed{\log p(\mathbf{X}|\Theta) = \mathcal{L}(q,\Theta) + \mathsf{KL}(q||p_z)}$$

where
$$\mathcal{L}(q,\Theta) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \left\{ \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \right\}$$

• With q fixed at $\hat{q} = p(\mathbf{Z}|\mathbf{X}, \Theta^{old})$, we want to maximize $\mathcal{L}(\hat{q}, \Theta)$ w.r.t. Θ , where

$$\begin{split} \mathcal{L}(\hat{q},\Theta) &= \sum_{\mathbf{Z}} \rho(\mathbf{Z}|\mathbf{X},\Theta^{old}) \log \rho(\mathbf{X},\mathbf{Z}|\Theta) - \sum_{\mathbf{Z}} \rho(\mathbf{Z}|\mathbf{X},\Theta^{old}) \log \rho(\mathbf{Z}|\mathbf{X},\Theta^{old}) \\ &= \mathcal{Q}(\Theta,\Theta^{old}) + \text{const} \end{split}$$

.. where $\mathcal{Q}(\Theta, \Theta^{old}) = \mathbb{E}[\log p(\mathbf{X}, \mathbf{Z}|\Theta)]$ is the exp. complete data log-lik

Given q, which Θ maximizes $\mathcal{L}(q,\Theta)$?

$$\log p(\mathbf{X}|\Theta) = \mathcal{L}(q,\Theta) + \mathsf{KL}(q||p_z)$$

where
$$\mathcal{L}(q,\Theta) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \left\{ \frac{\rho(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \right\}$$

• With q fixed at $\hat{q} = p(\mathbf{Z}|\mathbf{X}, \Theta^{old})$, we want to maximize $\mathcal{L}(\hat{q}, \Theta)$ w.r.t. Θ , where

$$\begin{split} \mathcal{L}(\hat{q},\Theta) &= \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X},\Theta^{old}) \log p(\mathbf{X},\mathbf{Z}|\Theta) - \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X},\Theta^{old}) \log p(\mathbf{Z}|\mathbf{X},\Theta^{old}) \\ &= \mathcal{Q}(\Theta,\Theta^{old}) + \text{const} \end{split}$$

- .. where $\mathcal{Q}(\Theta, \Theta^{old}) = \mathbb{E}[\log p(\mathbf{X}, \mathbf{Z}|\Theta)]$ is the exp. complete data log-lik
- ullet Therefore the optimal Θ is

$$\Theta^{new} = \arg\max_{\Theta} \mathbb{E}[\log p(\mathbf{X}, \mathbf{Z}|\Theta)]$$

• Step 1: Setting $q = p(\mathbf{Z}|\mathbf{X}, \Theta^{old})$ makes KL zero, and $\mathcal{L}(q, \Theta^{old})$ becomes equal to $\log p(\mathbf{X}|\Theta^{old})$

ullet Step 2: Maximizing $\mathcal{L}(q,\Theta)=\mathcal{Q}(\Theta,\Theta^{old})$ w.r.t. Θ will lead to

- ullet Step 2: Maximizing $\mathcal{L}(q,\Theta)=\mathcal{Q}(\Theta,\Theta^{old})$ w.r.t. Θ will lead to
 - $\mathcal{L}(q,\Theta)$ increasing, if not already at the optima

- ullet Step 2: Maximizing $\mathcal{L}(q,\Theta)=\mathcal{Q}(\Theta,\Theta^{old})$ w.r.t. Θ will lead to
 - ullet $\mathcal{L}(q,\Theta)$ increasing, if not already at the optima
 - $\mathsf{KL}(q||p_z) > 0$ again because $q \neq p(\mathbf{Z}|\mathbf{X}, \Theta^{new})$

- Step 2: Maximizing $\mathcal{L}(q,\Theta) = \mathcal{Q}(\Theta,\Theta^{old})$ w.r.t. Θ will lead to
 - $\mathcal{L}(q,\Theta)$ increasing, if not already at the optima
 - $\mathsf{KL}(q||p_z) > 0$ again because $q \neq p(\mathbf{Z}|\mathbf{X}, \Theta^{new})$
 - ullet As a result, ensures that $\log p(\mathbf{X}|\Theta^{new}) = \mathcal{L}(q,\Theta^{new}) + \mathsf{KL}(q||p_z) \geq \log p(\mathbf{X}|\Theta^{old})$

ullet E-step: Update of q makes the $\mathcal{L}(q,\Theta)$ curve touch the $\log p(\mathbf{X}|\Theta)$ curve at Θ^{old}

- E-step: Update of q makes the $\mathcal{L}(q,\Theta)$ curve touch the $\log p(\mathbf{X}|\Theta)$ curve at Θ^{old}
- ullet M-step gives the maxima Θ^{new} of $\mathcal{L}(q,\Theta^{old})$

- E-step: Update of q makes the $\mathcal{L}(q,\Theta)$ curve touch the log $p(\mathbf{X}|\Theta)$ curve at Θ^{old}
- M-step gives the maxima Θ^{new} of $\mathcal{L}(q,\Theta^{old})$
- ullet Next E-step readjusts $\mathcal{L}(q,\Theta^{old})$ curve (green) to meet $\log p(\mathbf{X}|\Theta)$ curve again, now at Θ^{new}

- E-step: Update of q makes the $\mathcal{L}(q,\Theta)$ curve touch the log $p(\mathbf{X}|\Theta)$ curve at Θ^{old}
- M-step gives the maxima Θ^{new} of $\mathcal{L}(q, \Theta^{old})$
- ullet Next E-step readjusts $\mathcal{L}(q,\Theta^{old})$ curve (green) to meet $\log p(\mathbf{X}|\Theta)$ curve again, now at Θ^{new}
- This continues until a local maxima of $\log p(\mathbf{X}|\Theta)$ is reached

$$\log p(\mathbf{X}|\Theta) = \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta)$$

$$\log p(X|\Theta) = \log \sum_{Z} p(X, Z|\Theta) = \log \sum_{Z} q(Z) \frac{p(X, Z|\Theta)}{q(Z)}$$

$$\log p(\mathbf{X}|\Theta) = \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) = \log \sum_{\mathbf{Z}} q(\mathbf{Z}) \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \text{ (where } q(\mathbf{Z}) \text{ can be any distribution)}$$

$$\begin{split} \log \rho(\mathbf{X}|\Theta) &= & \log \sum_{\mathbf{Z}} \rho(\mathbf{X}, \mathbf{Z}|\Theta) = \log \sum_{\mathbf{Z}} q(\mathbf{Z}) \frac{\rho(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(where } q(\mathbf{Z}) \text{ can be any distribution)} \\ &\geq & \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{\rho(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \end{split}$$

$$\log p(\mathbf{X}|\Theta) = \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) = \log \sum_{\mathbf{Z}} q(\mathbf{Z}) \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(where } q(\mathbf{Z}) \text{ can be any distribution)}$$

$$\geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(concave } f, \text{ Jensen's Ineq.: } f(\sum \lambda_i x_i) \geq \sum \lambda_i f(x_i), \text{ if } \sum_i \lambda_i = 1)$$

$$\log p(\mathbf{X}|\Theta) = \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) = \log \sum_{\mathbf{Z}} q(\mathbf{Z}) \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(where } q(\mathbf{Z}) \text{ can be any distribution)}$$

$$\geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(concave } f, \text{ Jensen's Ineq.: } f(\sum \lambda_i x_i) \geq \sum \lambda_i f(x_i), \text{ if } \sum_i \lambda_i = 1)$$

$$\log p(\mathbf{X}|\Theta) \geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) - \sum_{\mathbf{Z}} q(\mathbf{Z}) \log q(\mathbf{Z})$$

$$\log p(\mathbf{X}|\Theta) = \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) = \log \sum_{\mathbf{Z}} q(\mathbf{Z}) \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(where } q(\mathbf{Z}) \text{ can be any distribution)}$$

$$\geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(concave } f, \text{ Jensen's Ineq.: } f(\sum \lambda_i x_i) \geq \sum \lambda_i f(x_i), \text{ if } \sum_i \lambda_i = 1)$$

$$\log p(\mathbf{X}|\Theta) \geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) - \sum_{\mathbf{Z}} q(\mathbf{Z}) \log q(\mathbf{Z}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) + \text{const.}$$

Consider the 'incomplete" data log likelihood

$$\log p(\mathbf{X}|\Theta) = \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) = \log \sum_{\mathbf{Z}} q(\mathbf{Z}) \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(where } q(\mathbf{Z}) \text{ can be any distribution)}$$

$$\geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(concave } f, \text{ Jensen's Ineq.: } f(\sum \lambda_i x_i) \geq \sum \lambda_i f(x_i), \text{ if } \sum_i \lambda_i = 1)$$

$$\log p(\mathbf{X}|\Theta) \geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) - \sum_{\mathbf{Z}} q(\mathbf{Z}) \log q(\mathbf{Z}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) + \text{const.}$$

• If we set $q(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \Theta)$, the above inequality becomes equality.

Consider the 'incomplete" data log likelihood

$$\log p(\mathbf{X}|\Theta) = \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) = \log \sum_{\mathbf{Z}} q(\mathbf{Z}) \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(where } q(\mathbf{Z}) \text{ can be any distribution)}$$

$$\geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(concave } f, \text{ Jensen's Ineq.: } f(\sum \lambda_i x_i) \geq \sum \lambda_i f(x_i), \text{ if } \sum_i \lambda_i = 1)$$

$$\log p(\mathbf{X}|\Theta) \geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) - \sum_{\mathbf{Z}} q(\mathbf{Z}) \log q(\mathbf{Z}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) + \text{const.}$$

Consider the 'incomplete" data log likelihood

$$\log p(\mathbf{X}|\Theta) = \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) = \log \sum_{\mathbf{Z}} q(\mathbf{Z}) \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(where } q(\mathbf{Z}) \text{ can be any distribution)}$$

$$\geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(concave } f, \text{ Jensen's Ineq.: } f(\sum \lambda_i x_i) \geq \sum \lambda_i f(x_i), \text{ if } \sum_i \lambda_i = 1)$$

$$\log p(\mathbf{X}|\Theta) \geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) - \sum_{\mathbf{Z}} q(\mathbf{Z}) \log q(\mathbf{Z}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) + \text{const.}$$

$$\sum_{\mathsf{Z}} q(\mathsf{Z}) \log rac{p(\mathsf{X}, \mathsf{Z}|\Theta)}{q(\mathsf{Z})}$$

Consider the 'incomplete" data log likelihood

$$\log p(\mathbf{X}|\Theta) = \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) = \log \sum_{\mathbf{Z}} q(\mathbf{Z}) \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(where } q(\mathbf{Z}) \text{ can be any distribution)}$$

$$\geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(concave } f, \text{ Jensen's Ineq.: } f(\sum \lambda_i x_i) \geq \sum \lambda_i f(x_i), \text{ if } \sum_i \lambda_i = 1)$$

$$\log p(\mathbf{X}|\Theta) \geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) - \sum_{\mathbf{Z}} q(\mathbf{Z}) \log q(\mathbf{Z}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) + \text{const.}$$

$$\sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{\rho(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} = \sum_{\mathbf{Z}} \rho(\mathbf{Z}|\mathbf{X}, \Theta) \log \frac{\rho(\mathbf{Z}|\mathbf{X}, \Theta) \rho(\mathbf{X}|\Theta)}{\rho(\mathbf{Z}|\mathbf{X}, \Theta)}$$

Consider the 'incomplete" data log likelihood

$$\log p(\mathbf{X}|\Theta) = \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) = \log \sum_{\mathbf{Z}} q(\mathbf{Z}) \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(where } q(\mathbf{Z}) \text{ can be any distribution)}$$

$$\geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(concave } f, \text{ Jensen's Ineq.: } f(\sum \lambda_i x_i) \geq \sum \lambda_i f(x_i), \text{ if } \sum_i \lambda_i = 1)$$

$$\log p(\mathbf{X}|\Theta) \geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) - \sum_{\mathbf{Z}} q(\mathbf{Z}) \log q(\mathbf{Z}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) + \text{const.}$$

$$\sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{\rho(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} = \sum_{\mathbf{Z}} \rho(\mathbf{Z}|\mathbf{X}, \Theta) \log \frac{\rho(\mathbf{Z}|\mathbf{X}, \Theta)}{\rho(\mathbf{Z}|\mathbf{X}, \Theta)} = \sum_{\mathbf{Z}} \rho(\mathbf{Z}|\mathbf{X}, \Theta) \log \rho(\mathbf{X}|\Theta)$$

Consider the 'incomplete" data log likelihood

$$\log p(\mathbf{X}|\Theta) = \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) = \log \sum_{\mathbf{Z}} q(\mathbf{Z}) \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(where } q(\mathbf{Z}) \text{ can be any distribution)}$$

$$\geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(concave } f, \text{ Jensen's Ineq.: } f(\sum \lambda_i x_i) \geq \sum \lambda_i f(x_i), \text{ if } \sum_i \lambda_i = 1)$$

$$\log p(\mathbf{X}|\Theta) \geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) - \sum_{\mathbf{Z}} q(\mathbf{Z}) \log q(\mathbf{Z}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) + \text{const.}$$

$$\sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta) \log \frac{p(\mathbf{Z}|\mathbf{X}, \Theta)p(\mathbf{X}|\Theta)}{p(\mathbf{Z}|\mathbf{X}, \Theta)} = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta) \log p(\mathbf{X}|\Theta)$$

$$= \log p(\mathbf{X}|\Theta) \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta)$$

Consider the 'incomplete" data log likelihood

$$\log p(\mathbf{X}|\Theta) = \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) = \log \sum_{\mathbf{Z}} q(\mathbf{Z}) \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(where } q(\mathbf{Z}) \text{ can be any distribution)}$$

$$\geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(concave } f, \text{ Jensen's Ineq.: } f(\sum \lambda_i x_i) \geq \sum \lambda_i f(x_i), \text{ if } \sum_i \lambda_i = 1)$$

$$\log p(\mathbf{X}|\Theta) \geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) - \sum_{\mathbf{Z}} q(\mathbf{Z}) \log q(\mathbf{Z}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) + \text{const.}$$

$$\sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta) \log \frac{p(\mathbf{Z}|\mathbf{X}, \Theta) p(\mathbf{X}|\Theta)}{p(\mathbf{Z}|\mathbf{X}, \Theta)} = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta) \log p(\mathbf{X}|\Theta)$$

$$= \log p(\mathbf{X}|\Theta) \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta) = \log p(\mathbf{X}|\Theta)$$

Consider the 'incomplete" data log likelihood

$$\log p(\mathbf{X}|\Theta) = \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) = \log \sum_{\mathbf{Z}} q(\mathbf{Z}) \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(where } q(\mathbf{Z}) \text{ can be any distribution)}$$

$$\geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(concave } f, \text{ Jensen's Ineq.: } f(\sum \lambda_i x_i) \geq \sum \lambda_i f(x_i), \text{ if } \sum_i \lambda_i = 1)$$

$$\log p(\mathbf{X}|\Theta) \geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) - \sum_{\mathbf{Z}} q(\mathbf{Z}) \log q(\mathbf{Z}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) + \text{const.}$$

• If we set $q(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \Theta)$, the above inequality becomes equality. To see this, note that

$$\sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta) \log \frac{p(\mathbf{Z}|\mathbf{X}, \Theta)p(\mathbf{X}|\Theta)}{p(\mathbf{Z}|\mathbf{X}, \Theta)} = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta) \log p(\mathbf{X}|\Theta)$$

$$= \log p(\mathbf{X}|\Theta) \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta) = \log p(\mathbf{X}|\Theta)$$

• Thus for $q(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \Theta)$, we have

Consider the 'incomplete" data log likelihood

$$\log p(\mathbf{X}|\Theta) = \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) = \log \sum_{\mathbf{Z}} q(\mathbf{Z}) \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(where } q(\mathbf{Z}) \text{ can be any distribution)}$$

$$\geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(concave } f, \text{ Jensen's Ineq.: } f(\sum \lambda_i x_i) \geq \sum \lambda_i f(x_i), \text{ if } \sum_i \lambda_i = 1)$$

$$\log p(\mathbf{X}|\Theta) \geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) - \sum_{\mathbf{Z}} q(\mathbf{Z}) \log q(\mathbf{Z}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) + \text{const.}$$

• If we set $q(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \Theta)$, the above inequality becomes equality. To see this, note that

$$\sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta) \log \frac{p(\mathbf{Z}|\mathbf{X}, \Theta)p(\mathbf{X}|\Theta)}{p(\mathbf{Z}|\mathbf{X}, \Theta)} = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta) \log p(\mathbf{X}|\Theta)$$

$$= \log p(\mathbf{X}|\Theta) \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta) = \log p(\mathbf{X}|\Theta)$$

• Thus for $q(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \Theta)$, we have

$$\log p(\mathbf{X}|\Theta) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X},\Theta) \log p(\mathbf{X},\mathbf{Z}|\Theta) + \text{const.}$$

Consider the 'incomplete" data log likelihood

$$\log p(\mathbf{X}|\Theta) = \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) = \log \sum_{\mathbf{Z}} q(\mathbf{Z}) \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(where } q(\mathbf{Z}) \text{ can be any distribution)}$$

$$\geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(concave } f, \text{ Jensen's Ineq.: } f(\sum \lambda_i x_i) \geq \sum \lambda_i f(x_i), \text{ if } \sum_i \lambda_i = 1)$$

$$\log p(\mathbf{X}|\Theta) \geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) - \sum_{\mathbf{Z}} q(\mathbf{Z}) \log q(\mathbf{Z}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) + \text{const.}$$

• If we set $q(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \Theta)$, the above inequality becomes equality. To see this, note that

$$\sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta) \log \frac{p(\mathbf{Z}|\mathbf{X}, \Theta)p(\mathbf{X}|\Theta)}{p(\mathbf{Z}|\mathbf{X}, \Theta)} = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta) \log p(\mathbf{X}|\Theta)$$

$$= \log p(\mathbf{X}|\Theta) \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta) = \log p(\mathbf{X}|\Theta)$$

• Thus for $q(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \Theta)$, we have

$$\log p(\mathbf{X}|\Theta) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X},\Theta) \log p(\mathbf{X},\mathbf{Z}|\Theta) + \text{const.} = \mathbb{E}[\log p(\mathbf{X},\mathbf{Z}|\Theta)] + \text{const.}$$

Consider the 'incomplete" data log likelihood

$$\log p(\mathbf{X}|\Theta) = \log \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\Theta) = \log \sum_{\mathbf{Z}} q(\mathbf{Z}) \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(where } q(\mathbf{Z}) \text{ can be any distribution)}$$

$$\geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} \quad \text{(concave } f, \text{ Jensen's Ineq.: } f(\sum \lambda_i x_i) \geq \sum \lambda_i f(x_i), \text{ if } \sum_i \lambda_i = 1)$$

$$\log p(\mathbf{X}|\Theta) \geq \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) - \sum_{\mathbf{Z}} q(\mathbf{Z}) \log q(\mathbf{Z}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z}|\Theta) + \text{const.}$$

• If we set $q(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \Theta)$, the above inequality becomes equality. To see this, note that

$$\sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\Theta)}{q(\mathbf{Z})} = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta) \log \frac{p(\mathbf{Z}|\mathbf{X}, \Theta)}{p(\mathbf{Z}|\mathbf{X}, \Theta)} = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta) \log p(\mathbf{X}|\Theta)$$
$$= \log p(\mathbf{X}|\Theta) \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \Theta) = \log p(\mathbf{X}|\Theta)$$

• Thus for $q(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \Theta)$, we have

$$\log p(\mathbf{X}|\Theta) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X},\Theta) \log p(\mathbf{X},\mathbf{Z}|\Theta) + \text{const.} = \mathbb{E}[\log p(\mathbf{X},\mathbf{Z}|\Theta)] + \text{const.}$$

• Thus ILL $\log p(\mathbf{X}|\Theta)$ is tightly lower-bounded by expected CLL $\mathbb{E}[\log p(\mathbf{X},\mathbf{Z}|\Theta)]$ which EM maximizes

Initialize the parameters: Θ^{old} . Then alternate between these steps:

• E (Expectation) step:

• M (Maximization) step:

Initialize the parameters: Θ^{old} . Then alternate between these steps:

- E (Expectation) step:
 - Compute the posterior distribution $p(\mathbf{Z}|\mathbf{X}, \Theta^{old})$ over latent variables \mathbf{Z} using Θ^{old}

M (Maximization) step:

Initialize the parameters: Θ^{old} . Then alternate between these steps:

- E (Expectation) step:
 - Compute the posterior distribution $p(\mathbf{Z}|\mathbf{X}, \Theta^{old})$ over latent variables \mathbf{Z} using Θ^{old}
 - Compute the expected complete data log-likelihood w.r.t. this posterior distribution

$$\mathcal{Q}(\Theta, \Theta^{old}) = \mathbb{E}_{
ho(\mathbf{Z}|\mathbf{X}, \Theta^{old})}[\log
ho(\mathbf{X}, \mathbf{Z}|\Theta)]$$

M (Maximization) step:

Initialize the parameters: Θ^{old} . Then alternate between these steps:

- E (Expectation) step:
 - Compute the posterior distribution $p(\mathbf{Z}|\mathbf{X}, \Theta^{old})$ over latent variables \mathbf{Z} using Θ^{old}
 - Compute the expected complete data log-likelihood w.r.t. this posterior distribution

$$\mathcal{Q}(\Theta, \Theta^{old}) = \mathbb{E}_{
ho(\mathbf{Z}|\mathbf{X}, \Theta^{old})}[\log p(\mathbf{X}, \mathbf{Z}|\Theta)]$$

- Note: Expected CLL $\mathcal{Q}(\Theta, \Theta^{old})$ usually has a simple expression when $p(x|z, \theta)$ and $p(z|\phi)$ are exp. famility distributions can simply write down the log joint probability expression $\log p(x, z|\Theta)$ and simply replace any occurrence of a term with z by its expectation (we already saw it in GMM)
- M (Maximization) step:

Initialize the parameters: Θ^{old} . Then alternate between these steps:

E (Expectation) step:

- Compute the posterior distribution $p(\mathbf{Z}|\mathbf{X}, \Theta^{old})$ over latent variables \mathbf{Z} using Θ^{old}
- Compute the expected complete data log-likelihood w.r.t. this posterior distribution

$$\mathcal{Q}(\Theta, \Theta^{old}) = \mathbb{E}_{
ho(\mathbf{Z}|\mathbf{X}, \Theta^{old})}[\log
ho(\mathbf{X}, \mathbf{Z}|\Theta)]$$

• Note: Expected CLL $\mathcal{Q}(\Theta, \Theta^{old})$ usually has a simple expression when $p(x|z,\theta)$ and $p(z|\phi)$ are exp. famility distributions - can simply write down the log joint probability expression $\log p(x,z|\Theta)$ and simply replace any occurrence of a term with z by its expectation (we already saw it in GMM)

M (Maximization) step:

Maximize the expected complete data log-likelihood w.r.t. Θ

$$\Theta^{new} = \arg \max_{\Theta} \mathcal{Q}(\Theta, \Theta^{old})$$
 (if doing MLE)

The Expectation Maximization (EM) Algorithm

Initialize the parameters: Θ^{old} . Then alternate between these steps:

E (Expectation) step:

- Compute the posterior distribution $p(\mathbf{Z}|\mathbf{X},\Theta^{old})$ over latent variables \mathbf{Z} using Θ^{old}
- Compute the expected complete data log-likelihood w.r.t. this posterior distribution

$$\mathcal{Q}(\Theta, \Theta^{old}) = \mathbb{E}_{
ho(\mathbf{Z}|\mathbf{X}, \Theta^{old})}[\log
ho(\mathbf{X}, \mathbf{Z}|\Theta)]$$

• Note: Expected CLL $\mathcal{Q}(\Theta, \Theta^{old})$ usually has a simple expression when $p(x|z,\theta)$ and $p(z|\phi)$ are exp. famility distributions - can simply write down the log joint probability expression $\log p(x,z|\Theta)$ and simply replace any occurrence of a term with z by its expectation (we already saw it in GMM)

M (Maximization) step:

Maximize the expected complete data log-likelihood w.r.t. Θ

$$\Theta^{new} = \arg\max_{\Theta} \mathcal{Q}(\Theta, \Theta^{old}) \qquad \text{(if doing MLE)}$$

$$\Theta^{new} = \arg\max_{\Theta} \{\mathcal{Q}(\Theta, \Theta^{old}) + \log p(\Theta)\} \qquad \text{(if doing MAP)}$$

The Expectation Maximization (EM) Algorithm

Initialize the parameters: Θ^{old} . Then alternate between these steps:

• E (Expectation) step:

- Compute the posterior distribution $p(\mathbf{Z}|\mathbf{X}, \Theta^{old})$ over latent variables \mathbf{Z} using Θ^{old}
- Compute the expected complete data log-likelihood w.r.t. this posterior distribution

$$\mathcal{Q}(\Theta, \Theta^{old}) = \mathbb{E}_{
ho(\mathbf{Z}|\mathbf{X}, \Theta^{old})}[\log
ho(\mathbf{X}, \mathbf{Z}|\Theta)]$$

• Note: Expected CLL $\mathcal{Q}(\Theta, \Theta^{old})$ usually has a simple expression when $p(x|z,\theta)$ and $p(z|\phi)$ are exp. famility distributions - can simply write down the log joint probability expression $\log p(x,z|\Theta)$ and simply replace any occurrence of a term with z by its expectation (we already saw it in GMM)

M (Maximization) step:

• Maximize the expected complete data log-likelihood w.r.t. Θ

$$\Theta^{new} = \arg \max_{\Theta} \mathcal{Q}(\Theta, \Theta^{old})$$
 (if doing MLE)
 $\Theta^{new} = \arg \max_{\Theta} \{\mathcal{Q}(\Theta, \Theta^{old}) + \log p(\Theta)\}$ (if doing MAP)

• If the incomplete log-lik $p(\mathbf{X}|\Theta)$ not yet converged then set $\Theta^{old} = \Theta^{new}$ and go to the E step.

$$p(\mathbf{x}_n|\mathbf{z}_n,\mathbf{W}) = \mathcal{N}(\mathbf{W}\mathbf{z}_n,\sigma^2\mathbf{I}) \qquad p(\mathbf{z}_n) = \mathcal{N}(\mathbf{0},\mathbf{I})$$

• Already seen GMM. Let's consider a latent factor model for dimensionality reduction (next class)

$$p(\mathbf{x}_n|\mathbf{z}_n,\mathbf{W}) = \mathcal{N}(\mathbf{W}\mathbf{z}_n,\sigma^2\mathbf{I}) \qquad p(\mathbf{z}_n) = \mathcal{N}(\mathbf{0},\mathbf{I})$$

• A linear Gaussian model: Low-dim $\mathbf{z}_n \in \mathbb{R}^K$ mapped to high-dim $\mathbf{x}_n \in \mathbb{R}^D$ via $\mathbf{W} \in \mathbb{W}^{D \times K}$

$$p(\mathbf{x}_n|\mathbf{z}_n,\mathbf{W}) = \mathcal{N}(\mathbf{W}\mathbf{z}_n,\sigma^2\mathbf{I}) \qquad p(\mathbf{z}_n) = \mathcal{N}(\mathbf{0},\mathbf{I})$$

- A linear Gaussian model: Low-dim $\mathbf{z}_n \in \mathbb{R}^K$ mapped to high-dim $\mathbf{x}_n \in \mathbb{R}^D$ via $\mathbf{W} \in \mathbb{W}^{D \times K}$
- The complete data log-likelihood for this model will be

$$\log p(\mathbf{X},\mathbf{Z}|\mathbf{W},\sigma^2)$$

$$p(\mathbf{z}_n|\mathbf{z}_n,\mathbf{W}) = \mathcal{N}(\mathbf{W}\mathbf{z}_n,\sigma^2\mathbf{I}) \qquad p(\mathbf{z}_n) = \mathcal{N}(\mathbf{0},\mathbf{I})$$

- A linear Gaussian model: Low-dim $\mathbf{z}_n \in \mathbb{R}^K$ mapped to high-dim $\mathbf{x}_n \in \mathbb{R}^D$ via $\mathbf{W} \in \mathbb{W}^{D \times K}$
- The complete data log-likelihood for this model will be

$$\log p(\mathbf{X}, \mathbf{Z}|\mathbf{W}, \sigma^2) = \log \prod_{n=1}^{N} p(\mathbf{x}_n, \mathbf{z}_n | \mathbf{W}, \sigma^2)$$

$$p(\mathbf{x}_n|\mathbf{z}_n,\mathbf{W}) = \mathcal{N}(\mathbf{W}\mathbf{z}_n,\sigma^2\mathbf{I}) \qquad p(\mathbf{z}_n) = \mathcal{N}(\mathbf{0},\mathbf{I})$$

- A linear Gaussian model: Low-dim $\mathbf{z}_n \in \mathbb{R}^K$ mapped to high-dim $\mathbf{x}_n \in \mathbb{R}^D$ via $\mathbf{W} \in \mathbb{W}^{D \times K}$
- The complete data log-likelihood for this model will be

$$\log p(\mathbf{X}, \mathbf{Z}|\mathbf{W}, \sigma^2) = \log \prod_{n=1}^{N} p(\mathbf{x}_n, \mathbf{z}_n|\mathbf{W}, \sigma^2) = \log \prod_{n=1}^{N} p(\mathbf{x}_n|\mathbf{z}_n, \mathbf{W}, \sigma^2) p(\mathbf{z}_n)$$

$$p(\mathbf{x}_n|\mathbf{z}_n,\mathbf{W}) = \mathcal{N}(\mathbf{W}\mathbf{z}_n,\sigma^2\mathbf{I}) \qquad p(\mathbf{z}_n) = \mathcal{N}(\mathbf{0},\mathbf{I})$$

- A linear Gaussian model: Low-dim $\mathbf{z}_n \in \mathbb{R}^K$ mapped to high-dim $\mathbf{x}_n \in \mathbb{R}^D$ via $\mathbf{W} \in \mathbb{W}^{D \times K}$
- The complete data log-likelihood for this model will be

$$\log p(\mathbf{X}, \mathbf{Z}|\mathbf{W}, \sigma^2) = \log \prod_{n=1}^{N} p(\mathbf{x}_n, \mathbf{z}_n|\mathbf{W}, \sigma^2) = \log \prod_{n=1}^{N} p(\mathbf{x}_n|\mathbf{z}_n, \mathbf{W}, \sigma^2) p(\mathbf{z}_n) = \sum_{n=1}^{N} \{\log p(\mathbf{x}_n|\mathbf{z}_n, \mathbf{W}, \sigma^2) + \log p(\mathbf{z}_n)\}$$

• Already seen GMM. Let's consider a latent factor model for dimensionality reduction (next class)

$$p(\mathbf{x}_n|\mathbf{z}_n,\mathbf{W}) = \mathcal{N}(\mathbf{W}\mathbf{z}_n,\sigma^2\mathbf{I}) \qquad p(\mathbf{z}_n) = \mathcal{N}(\mathbf{0},\mathbf{I})$$

- A linear Gaussian model: Low-dim $\mathbf{z}_n \in \mathbb{R}^K$ mapped to high-dim $\mathbf{x}_n \in \mathbb{R}^D$ via $\mathbf{W} \in \mathbb{W}^{D \times K}$
- The complete data log-likelihood for this model will be

$$\log p(\mathbf{X}, \mathbf{Z}|\mathbf{W}, \sigma^2) = \log \prod_{n=1}^{N} p(\mathbf{x}_n, \mathbf{z}_n|\mathbf{W}, \sigma^2) = \log \prod_{n=1}^{N} p(\mathbf{x}_n|\mathbf{z}_n, \mathbf{W}, \sigma^2) p(\mathbf{z}_n) = \sum_{n=1}^{N} \{\log p(\mathbf{x}_n|\mathbf{z}_n, \mathbf{W}, \sigma^2) + \log p(\mathbf{z}_n)\}$$

• Plugging in the expressions for $p(x_n|z_n, \mathbf{W}, \sigma^2)$ and $p(z_n)$ and simplifying

$$CLL = -\sum_{n=1}^{N} \left\{ \frac{D}{2} \log \sigma^2 + \frac{1}{2\sigma^2} ||\mathbf{x}_n||^2 - \frac{1}{\sigma^2} \mathbf{z}_n^\top \mathbf{W}^\top \mathbf{x}_n + \frac{1}{2\sigma^2} \operatorname{tr}(\mathbf{z}_n \mathbf{z}_n^\top \mathbf{W}^\top \mathbf{W}) + \frac{1}{2} \operatorname{tr}(\mathbf{z}_n \mathbf{z}_n^\top) \right\}$$

• Already seen GMM. Let's consider a latent factor model for dimensionality reduction (next class)

$$p(\mathbf{x}_n|\mathbf{z}_n,\mathbf{W}) = \mathcal{N}(\mathbf{W}\mathbf{z}_n,\sigma^2\mathbf{I}) \qquad p(\mathbf{z}_n) = \mathcal{N}(\mathbf{0},\mathbf{I})$$

- A linear Gaussian model: Low-dim $\mathbf{z}_n \in \mathbb{R}^K$ mapped to high-dim $\mathbf{x}_n \in \mathbb{R}^D$ via $\mathbf{W} \in \mathbb{W}^{D \times K}$
- The complete data log-likelihood for this model will be

$$\log p(\mathbf{X}, \mathbf{Z}|\mathbf{W}, \sigma^2) = \log \prod_{n=1}^{N} p(\mathbf{x}_n, \mathbf{z}_n|\mathbf{W}, \sigma^2) = \log \prod_{n=1}^{N} p(\mathbf{x}_n|\mathbf{z}_n, \mathbf{W}, \sigma^2) p(\mathbf{z}_n) = \sum_{n=1}^{N} \{\log p(\mathbf{x}_n|\mathbf{z}_n, \mathbf{W}, \sigma^2) + \log p(\mathbf{z}_n)\}$$

• Plugging in the expressions for $p(\mathbf{x}_n|\mathbf{z}_n,\mathbf{W},\sigma^2)$ and $p(\mathbf{z}_n)$ and simplifying

$$CLL = -\sum_{n=1}^{N} \left\{ \frac{D}{2} \log \sigma^2 + \frac{1}{2\sigma^2} ||\mathbf{x}_n||^2 - \frac{1}{\sigma^2} \mathbf{z}_n^\top \mathbf{W}^\top \mathbf{x}_n + \frac{1}{2\sigma^2} \operatorname{tr}(\mathbf{z}_n \mathbf{z}_n^\top \mathbf{W}^\top \mathbf{W}) + \frac{1}{2} \operatorname{tr}(\mathbf{z}_n \mathbf{z}_n^\top) \right\}$$

ullet Expected CLL will require replacing z_n by $\mathbb{E}[z_n]$ and $z_nz_n^ op$ by $\mathbb{E}[z_nz_n^ op]$

• Already seen GMM. Let's consider a latent factor model for dimensionality reduction (next class)

$$p(\mathbf{x}_n|\mathbf{z}_n,\mathbf{W}) = \mathcal{N}(\mathbf{W}\mathbf{z}_n,\sigma^2\mathbf{I}) \qquad p(\mathbf{z}_n) = \mathcal{N}(\mathbf{0},\mathbf{I})$$

- A linear Gaussian model: Low-dim $\mathbf{z}_n \in \mathbb{R}^K$ mapped to high-dim $\mathbf{x}_n \in \mathbb{R}^D$ via $\mathbf{W} \in \mathbb{W}^{D \times K}$
- The complete data log-likelihood for this model will be

$$\log p(\mathbf{X}, \mathbf{Z}|\mathbf{W}, \sigma^2) = \log \prod_{n=1}^{N} p(\mathbf{x}_n, \mathbf{z}_n|\mathbf{W}, \sigma^2) = \log \prod_{n=1}^{N} p(\mathbf{x}_n|\mathbf{z}_n, \mathbf{W}, \sigma^2) p(\mathbf{z}_n) = \sum_{n=1}^{N} \{\log p(\mathbf{x}_n|\mathbf{z}_n, \mathbf{W}, \sigma^2) + \log p(\mathbf{z}_n)\}$$

• Plugging in the expressions for $p(\mathbf{x}_n|\mathbf{z}_n,\mathbf{W},\sigma^2)$ and $p(\mathbf{z}_n)$ and simplifying

$$CLL = -\sum_{n=1}^{N} \left\{ \frac{D}{2} \log \sigma^2 + \frac{1}{2\sigma^2} ||\mathbf{x}_n||^2 - \frac{1}{\sigma^2} \mathbf{z}_n^\top \mathbf{W}^\top \mathbf{x}_n + \frac{1}{2\sigma^2} tr(\mathbf{z}_n \mathbf{z}_n^\top \mathbf{W}^\top \mathbf{W}) + \frac{1}{2} tr(\mathbf{z}_n \mathbf{z}_n^\top) \right\}$$

- Expected CLL will require replacing z_n by $\mathbb{E}[z_n]$ and $z_n z_n^{\top}$ by $\mathbb{E}[z_n z_n^{\top}]$
 - These expectations can be easily obtained from the posterior $p(z_n|x_n)$ (computed in E step)

Already seen GMM. Let's consider a latent factor model for dimensionality reduction (next class)

$$p(\mathbf{x}_n|\mathbf{z}_n,\mathbf{W}) = \mathcal{N}(\mathbf{W}\mathbf{z}_n,\sigma^2\mathbf{I}) \qquad p(\mathbf{z}_n) = \mathcal{N}(\mathbf{0},\mathbf{I})$$

- A linear Gaussian model: Low-dim $\mathbf{z}_n \in \mathbb{R}^K$ mapped to high-dim $\mathbf{x}_n \in \mathbb{R}^D$ via $\mathbf{W} \in \mathbb{W}^{D \times K}$
- The complete data log-likelihood for this model will be

$$\log p(\mathbf{X}, \mathbf{Z}|\mathbf{W}, \sigma^2) = \log \prod_{n=1}^{N} p(\mathbf{x}_n, \mathbf{z}_n|\mathbf{W}, \sigma^2) = \log \prod_{n=1}^{N} p(\mathbf{x}_n|\mathbf{z}_n, \mathbf{W}, \sigma^2) p(\mathbf{z}_n) = \sum_{n=1}^{N} \{\log p(\mathbf{x}_n|\mathbf{z}_n, \mathbf{W}, \sigma^2) + \log p(\mathbf{z}_n)\}$$

• Plugging in the expressions for $p(x_n|z_n, \mathbf{W}, \sigma^2)$ and $p(z_n)$ and simplifying

$$CLL = -\sum_{n=1}^{N} \left\{ \frac{D}{2} \log \sigma^2 + \frac{1}{2\sigma^2} ||\mathbf{x}_n||^2 - \frac{1}{\sigma^2} \mathbf{z}_n^\top \mathbf{W}^\top \mathbf{x}_n + \frac{1}{2\sigma^2} \operatorname{tr}(\mathbf{z}_n \mathbf{z}_n^\top \mathbf{W}^\top \mathbf{W}) + \frac{1}{2} \operatorname{tr}(\mathbf{z}_n \mathbf{z}_n^\top) \right\}$$

- Expected CLL will require replacing z_n by $\mathbb{E}[z_n]$ and $z_n z_n^{\top}$ by $\mathbb{E}[z_n z_n^{\top}]$
 - These expectations can be easily obtained from the posterior $p(z_n|x_n)$ (computed in E step)
- The M step maximizes the expected CLL w.r.t. the parameters (W in this case)

• Needn't compute $p(\mathbf{z}_n|\mathbf{x}_n)$ for every \mathbf{x}_n in each EM iteration (computational/storage efficiency)

- Needn't compute $p(\mathbf{z}_n|\mathbf{x}_n)$ for every \mathbf{x}_n in each EM iteration (computational/storage efficiency)
 - Recall that the expected CLL is often a sum over all data points

$$\mathcal{Q}(\Theta, \Theta^{old}) = \mathbb{E}[\log p(\mathbf{X}, \mathbf{Z}|\Theta) = \sum_{n=1}^{N} \mathbb{E}[\log p(\mathbf{x}_n|\mathbf{z}_n, \theta)] + \mathbb{E}[\log p(\mathbf{z}_n|\phi)]$$

- Needn't compute $p(\mathbf{z}_n|\mathbf{x}_n)$ for every \mathbf{x}_n in each EM iteration (computational/storage efficiency)
 - Recall that the expected CLL is often a sum over all data points

$$\mathcal{Q}(\Theta, \Theta^{old}) = \mathbb{E}[\log p(\mathbf{X}, \mathbf{Z}|\Theta) = \sum_{n=1}^{N} \mathbb{E}[\log p(\mathbf{x}_n|\mathbf{z}_n, \theta)] + \mathbb{E}[\log p(\mathbf{z}_n|\phi)]$$

Can compute this quantity recursively using small minibatches of data

$$\mathcal{Q}_t = (1 - \gamma_t)\mathcal{Q}_{t-1} + \gamma_t \left[\sum_{n=1}^{N_t} \mathbb{E}[\log p(\mathbf{x}_n|\mathbf{z}_n, \theta)] + \mathbb{E}[\log p(\mathbf{z}_n|\phi)] \right]$$

.. where $\gamma_t = (1+t)^{-\kappa}, 0.5 < \kappa \le 1$ is a decaying learning rate

- Needn't compute $p(\mathbf{z}_n|\mathbf{x}_n)$ for every \mathbf{x}_n in each EM iteration (computational/storage efficiency)
 - Recall that the expected CLL is often a sum over all data points

$$\mathcal{Q}(\Theta, \Theta^{old}) = \mathbb{E}[\log p(\mathbf{X}, \mathbf{Z}|\Theta) = \sum_{n=1}^{N} \mathbb{E}[\log p(\mathbf{x}_n|\mathbf{z}_n, \theta)] + \mathbb{E}[\log p(\mathbf{z}_n|\phi)]$$

Can compute this quantity recursively using small minibatches of data

$$\mathcal{Q}_t = (1 - \gamma_t)\mathcal{Q}_{t-1} + \gamma_t \left[\sum_{n=1}^{N_t} \mathbb{E}[\log p(\mathbf{x}_n|\mathbf{z}_n, heta)] + \mathbb{E}[\log p(\mathbf{z}_n|\phi)] \right]$$

- .. where $\gamma_t = (1+t)^{-\kappa}, 0.5 < \kappa \le 1$ is a decaying learning rate
- Requires computing $p(z_n|x_n)$ only for data in current mini-batch (computational/storage efficiency)

- Needn't compute $p(\mathbf{z}_n|\mathbf{x}_n)$ for every \mathbf{x}_n in each EM iteration (computational/storage efficiency)
 - Recall that the expected CLL is often a sum over all data points

$$\mathcal{Q}(\Theta, \Theta^{old}) = \mathbb{E}[\log p(\mathbf{X}, \mathbf{Z}|\Theta) = \sum_{n=1}^{N} \mathbb{E}[\log p(\mathbf{x}_n|\mathbf{z}_n, \theta)] + \mathbb{E}[\log p(\mathbf{z}_n|\phi)]$$

Can compute this quantity recursively using small minibatches of data

$$\mathcal{Q}_t = (1 - \gamma_t)\mathcal{Q}_{t-1} + \gamma_t \left[\sum_{n=1}^{N_t} \mathbb{E}[\log p(\mathbf{x}_n|\mathbf{z}_n, heta)] + \mathbb{E}[\log p(\mathbf{z}_n|\phi)] \right]$$

- .. where $\gamma_t = (1+t)^{-\kappa}, 0.5 < \kappa \le 1$ is a decaying learning rate
- Requires computing $p(z_n|x_n)$ only for data in current mini-batch (computational/storage efficiency)
- ullet MLE on above \mathcal{Q}_t akin to simple recursive updates for Θ . E.g., something like this for GMM

$$\mu_k^{(t)} = (1-\gamma_t)\mu_k^{(t-1)} + \gamma_t \frac{1}{N_t} \sum_{n=1}^{N_t} \gamma_{nk} x_n$$
 (update for k -th Gaussian's mean)

- Needn't compute $p(z_n|x_n)$ for every x_n in each EM iteration (computational/storage efficiency)
 - Recall that the expected CLL is often a sum over all data points

$$\mathcal{Q}(\Theta, \Theta^{old}) = \mathbb{E}[\log p(\mathbf{X}, \mathbf{Z}|\Theta) = \sum_{n=1}^{N} \mathbb{E}[\log p(x_n|\mathbf{z}_n, \theta)] + \mathbb{E}[\log p(\mathbf{z}_n|\phi)]$$

• Can compute this quantity recursively using small minibatches of data

$$\mathcal{Q}_t = (1 - \gamma_t)\mathcal{Q}_{t-1} + \gamma_t \left[\sum_{n=1}^{N_t} \mathbb{E}[\log p(\mathbf{x}_n|\mathbf{z}_n, heta)] + \mathbb{E}[\log p(\mathbf{z}_n|\phi)] \right]$$

- .. where $\gamma_t = (1+t)^{-\kappa}$, $0.5 < \kappa \le 1$ is a decaying learning rate
- Requires computing $p(z_n|x_n)$ only for data in current mini-batch (computational/storage efficiency)
- MLE on above Q_t akin to simple recursive updates for Θ . E.g., something like this for GMM

$$\mu_k^{(t)} = (1 - \gamma_t)\mu_k^{(t-1)} + \gamma_t \frac{1}{N_t} \sum_{n=1}^{N_t} \gamma_{nk} x_n$$
 (update for k -th Gaussian's mean)

• Note: The above is only a sketchy description of the procedure. I will provide a reference.

• Mixture of (multivariate) Bernoulli distributions (if each x is a binary vector)

- Mixture of (multivariate) Bernoulli distributions (if each **x** is a binary vector)
- Mixture of (multivariate) multinoulli distributions (if each x is a categorical vector)

- Mixture of (multivariate) Bernoulli distributions (if each **x** is a binary vector)
- Mixture of (multivariate) multinoulli distributions (if each x is a categorical vector)
- Hyperparameter estimation in probabilistic models (an alternative to MLE-II)

- Mixture of (multivariate) Bernoulli distributions (if each x is a binary vector)
- Mixture of (multivariate) multinoulli distributions (if each x is a categorical vector)
- Hyperparameter estimation in probabilistic models (an alternative to MLE-II)
 - We've already seen MLE-II where we did MLE on marginal likelihood, e.g., for linear regression

$$p(\mathbf{y}|\mathbf{X},\lambda,\beta) = \int p(\mathbf{y}|\mathbf{X},\mathbf{w},\beta)p(\mathbf{w}|\lambda)d\mathbf{w}$$

- Mixture of (multivariate) Bernoulli distributions (if each x is a binary vector)
- Mixture of (multivariate) multinoulli distributions (if each x is a categorical vector)
- Hyperparameter estimation in probabilistic models (an alternative to MLE-II)
 - We've already seen MLE-II where we did MLE on marginal likelihood, e.g., for linear regression

$$p(\mathbf{y}|\mathbf{X},\lambda,\beta) = \int p(\mathbf{y}|\mathbf{X},\mathbf{w},\beta)p(\mathbf{w}|\lambda)d\mathbf{w}$$

ullet As an alternative, can treat $oldsymbol{w}$ as a latent variable and eta,λ as parameters and use EM to learn these

- Mixture of (multivariate) Bernoulli distributions (if each x is a binary vector)
- Mixture of (multivariate) multinoulli distributions (if each **x** is a categorical vector)
- Hyperparameter estimation in probabilistic models (an alternative to MLE-II)
 - We've already seen MLE-II where we did MLE on marginal likelihood, e.g., for linear regression

$$p(\mathbf{y}|\mathbf{X},\lambda,\beta) = \int p(\mathbf{y}|\mathbf{X},\mathbf{w},\beta)p(\mathbf{w}|\lambda)d\mathbf{w}$$

- ullet As an alternative, can treat $oldsymbol{w}$ as a latent variable and eta,λ as parameters and use EM to learn these
- E step computes posterior $p(w|X, y, \beta, \lambda)$ assuming β, λ fixed from the previous M step

- Mixture of (multivariate) Bernoulli distributions (if each x is a binary vector)
- Mixture of (multivariate) multinoulli distributions (if each x is a categorical vector)
- Hyperparameter estimation in probabilistic models (an alternative to MLE-II)
 - We've already seen MLE-II where we did MLE on marginal likelihood, e.g., for linear regression

$$p(\mathbf{y}|\mathbf{X},\lambda,\beta) = \int p(\mathbf{y}|\mathbf{X},\mathbf{w},\beta)p(\mathbf{w}|\lambda)d\mathbf{w}$$

- ullet As an alternative, can treat $oldsymbol{w}$ as a latent variable and eta,λ as parameters and use EM to learn these
- E step computes posterior $p(w|\mathbf{X}, \mathbf{y}, \beta, \lambda)$ assuming β, λ fixed from the previous M step
- M step maximizes $\mathbb{E}[\log p(y, w|X, \beta, \lambda)] = \mathbb{E}[\log p(y|w, X, \beta) + \log p(w|\lambda)]$ w.r.t. λ, β

- Mixture of (multivariate) Bernoulli distributions (if each x is a binary vector)
- Mixture of (multivariate) multinoulli distributions (if each x is a categorical vector)
- Hyperparameter estimation in probabilistic models (an alternative to MLE-II)
 - We've already seen MLE-II where we did MLE on marginal likelihood, e.g., for linear regression

$$p(\mathbf{y}|\mathbf{X},\lambda,\beta) = \int p(\mathbf{y}|\mathbf{X},\mathbf{w},\beta)p(\mathbf{w}|\lambda)d\mathbf{w}$$

- ullet As an alternative, can treat $oldsymbol{w}$ as a latent variable and eta,λ as parameters and use EM to learn these
- E step computes posterior $p(w|\mathbf{X}, \mathbf{y}, \beta, \lambda)$ assuming β, λ fixed from the previous M step
- M step maximizes $\mathbb{E}[\log p(\mathbf{y}, \mathbf{w} | \mathbf{X}, \beta, \lambda)] = \mathbb{E}[\log p(\mathbf{y} | \mathbf{w}, \mathbf{X}, \beta) + \log p(\mathbf{w} | \lambda)]$ w.r.t. λ, β
 - This requires using expectations of quantities like \mathbf{w} and $\mathbf{w}\mathbf{w}^{\top}$ which can be obtained easily from the posterior $p(\mathbf{w}|\mathbf{X},\mathbf{y},\beta,\lambda)$ which we compute in the E step

- Mixture of (multivariate) Bernoulli distributions (if each x is a binary vector)
- Mixture of (multivariate) multinoulli distributions (if each x is a categorical vector)
- Hyperparameter estimation in probabilistic models (an alternative to MLE-II)
 - We've already seen MLE-II where we did MLE on marginal likelihood, e.g., for linear regression

$$p(\mathbf{y}|\mathbf{X},\lambda,\beta) = \int p(\mathbf{y}|\mathbf{X},\mathbf{w},\beta)p(\mathbf{w}|\lambda)d\mathbf{w}$$

- ullet As an alternative, can treat $oldsymbol{w}$ as a latent variable and eta,λ as parameters and use EM to learn these
- E step computes posterior $p(w|\mathbf{X}, \mathbf{y}, \beta, \lambda)$ assuming β, λ fixed from the previous M step
- M step maximizes $\mathbb{E}[\log p(\mathbf{y}, \mathbf{w} | \mathbf{X}, \beta, \lambda)] = \mathbb{E}[\log p(\mathbf{y} | \mathbf{w}, \mathbf{X}, \beta) + \log p(\mathbf{w} | \lambda)]$ w.r.t. λ, β
 - This requires using expectations of quantities like \mathbf{w} and $\mathbf{w}\mathbf{w}^{\top}$ which can be obtained easily from the posterior $p(\mathbf{w}|\mathbf{X},\mathbf{y},\beta,\lambda)$ which we compute in the E step
- Exercise: Try some of these by yourself. The books (MLAPP/PRML) contain such examples

- Mixture of (multivariate) Bernoulli distributions (if each **x** is a binary vector)
- Mixture of (multivariate) multinoulli distributions (if each x is a categorical vector)
- Hyperparameter estimation in probabilistic models (an alternative to MLE-II)
 - We've already seen MLE-II where we did MLE on marginal likelihood, e.g., for linear regression

$$p(\mathbf{y}|\mathbf{X},\lambda,\beta) = \int p(\mathbf{y}|\mathbf{X},\mathbf{w},\beta)p(\mathbf{w}|\lambda)d\mathbf{w}$$

- ullet As an alternative, can treat $oldsymbol{w}$ as a latent variable and eta,λ as parameters and use EM to learn these
- E step computes posterior $p(w|\mathbf{X}, \mathbf{y}, \beta, \lambda)$ assuming β, λ fixed from the previous M step
- M step maximizes $\mathbb{E}[\log p(y, w|X, \beta, \lambda)] = \mathbb{E}[\log p(y|w, X, \beta) + \log p(w|\lambda)]$ w.r.t. λ, β
 - This requires using expectations of quantities like \mathbf{w} and $\mathbf{w}\mathbf{w}^{\top}$ which can be obtained easily from the posterior $p(\mathbf{w}|\mathbf{X},\mathbf{y},\beta,\lambda)$ which we compute in the E step
- Exercise: Try some of these by yourself. The books (MLAPP/PRML) contain such examples
- Next Class: EM for latent factor models (dimensionality reduction) and mixture of LFMs

• A general framework for parameter estimation (MLE/MAP) in latent variable models

- A general framework for parameter estimation (MLE/MAP) in latent variable models
- Widely used for problems with "missing data", e.g., missing features, missing labels (SSL)

- A general framework for parameter estimation (MLE/MAP) in latent variable models
- Widely used for problems with "missing data", e.g., missing features, missing labels (SSL)
 - \bullet "Missing" parts can be treated as latent variables z and estimated in the E step

- A general framework for parameter estimation (MLE/MAP) in latent variable models
- Widely used for problems with "missing data", e.g., missing features, missing labels (SSL)
 - ullet "Missing" parts can be treated as latent variables z and estimated in the E step
- Good convergence properties (in some cases converges like second-order optimization methods)

- A general framework for parameter estimation (MLE/MAP) in latent variable models
- Widely used for problems with "missing data", e.g., missing features, missing labels (SSL)
 - "Missing" parts can be treated as latent variables z and estimated in the E step
- Good convergence properties (in some cases converges like second-order optimization methods)
- Other advanced probabilistic inference algorithms are based on ideas similar to EM

- A general framework for parameter estimation (MLE/MAP) in latent variable models
- Widely used for problems with "missing data", e.g., missing features, missing labels (SSL)
 - "Missing" parts can be treated as latent variables z and estimated in the E step
- Good convergence properties (in some cases converges like second-order optimization methods)
- Other advanced probabilistic inference algorithms are based on ideas similar to EM
 - E.g., Variational Bayesian (VB) inference

- A general framework for parameter estimation (MLE/MAP) in latent variable models
- Widely used for problems with "missing data", e.g., missing features, missing labels (SSL)
 - ullet "Missing" parts can be treated as latent variables z and estimated in the E step
- Good convergence properties (in some cases converges like second-order optimization methods)
- Other advanced probabilistic inference algorithms are based on ideas similar to EM
 - E.g., Variational Bayesian (VB) inference
- Note: The E and M steps may not always be possible to perform exactly

- A general framework for parameter estimation (MLE/MAP) in latent variable models
- Widely used for problems with "missing data", e.g., missing features, missing labels (SSL)
 - ullet "Missing" parts can be treated as latent variables z and estimated in the E step
- Good convergence properties (in some cases converges like second-order optimization methods)
- Other advanced probabilistic inference algorithms are based on ideas similar to EM
 - E.g., Variational Bayesian (VB) inference
- Note: The E and M steps may not always be possible to perform exactly
 - Approximate inference methods may be needed in such cases

- A general framework for parameter estimation (MLE/MAP) in latent variable models
- Widely used for problems with "missing data", e.g., missing features, missing labels (SSL)
 - ullet "Missing" parts can be treated as latent variables z and estimated in the E step
- Good convergence properties (in some cases converges like second-order optimization methods)
- Other advanced probabilistic inference algorithms are based on ideas similar to EM
 - E.g., Variational Bayesian (VB) inference
- Note: The E and M steps may not always be possible to perform exactly
 - Approximate inference methods may be needed in such cases
- EM works even if the M step is only solved approximately (Generalized EM)

- A general framework for parameter estimation (MLE/MAP) in latent variable models
- Widely used for problems with "missing data", e.g., missing features, missing labels (SSL)
 - ullet "Missing" parts can be treated as latent variables z and estimated in the E step
- Good convergence properties (in some cases converges like second-order optimization methods)
- Other advanced probabilistic inference algorithms are based on ideas similar to EM
 - E.g., Variational Bayesian (VB) inference
- Note: The E and M steps may not always be possible to perform exactly
 - Approximate inference methods may be needed in such cases
- EM works even if the M step is only solved approximately (Generalized EM)
- If M step has multiple parameters whose updates depend on each other, they are updated in an alternating fashion called Expectation Conditional Maximization (ECM) algorithm