KMS Symulacja dynamiki kwantowej cząstki

Dawid Karpiński

20.12.2023 r.

1 Test symulacji

Rysunek 1: Średnia energia od czasu dla niestabilnych kroków $d\tau$

Symulacja okazała się być stabilna tylko dla kroku $d\tau=0.0001$. Inne zbadane kroki powodowały, że symulacja była mocno niestabilna (średnia energia dążyła szybko do nieskończoności).

Rysunek 2: Zależności od czasu dla: normy $\mathcal{N},$ średniego położenia x, średniej energii ε (brak zaburzenia)

Rysunek 3: Zależności od czasu dla: normy $\mathcal{N},$ średniego położenia x, średniej energii ε (z zaburzeniem)

2 Badanie rezonansu

Rysunek 4: Skan wartości ω w poszukiwaniu rezonansu

Wartości ω dla których zachodzi rezonans znaleziono poprzez wykonanie skanu 30 punktów pomiarowych. Zbadano miejsca w których zaobserwowano pik.

ω	stan własny / przejście	rezonans	t
$\frac{1\pi^2}{2}$	1	nie	-
$ \begin{array}{c c} \frac{1\pi^2}{2} \\ \hline \frac{2\pi^2}{2} \\ \hline \frac{3\pi^2}{2} \end{array} $	1	nie	-
$\frac{3\pi^2}{2}$	$1 \ / \ 1 \rightarrow 2$	tak	1.5
$\frac{4\pi^2}{2}$ $\frac{5\pi^2}{2}$	1	nie	-
$\frac{5\pi^2}{2}$	1	nie	-
$\frac{14\pi^2}{2}$	1	nie	-
$\frac{15\pi^2}{2}$	$1 \rightarrow 2$	tak	4.0
$\frac{16\pi^2}{2}$	1	nie	_

Tabela 1: n=1

Rysunek 5: Zachowanie gęstości w różnych krokach czasowych dla n=1, od lewej: t=0.1,1.5,2.5

ω	stan własny / przejście	rezonans	t
$\frac{7\pi^2}{2}$	A	_	-
2	4	nie	-
$\frac{8\pi^2}{2}$	4	nie	-
$\frac{9\pi^2}{2}$	$4 / 4 \rightarrow 5$	tak	2.0
$\frac{10\pi^2}{2}$	4	nie	-
$\frac{11\pi^2}{2}$	4	nie	-

Tabela 2: n=4

Rysunek 6: Zachowanie gęstości w różnych krokach czasowych dla n=4, od lewej: t=0.1,1.0,2.0

ω	stan własny / przejście	rezonans	t
$\frac{17\pi^2}{2}$	9	nie	-
$\frac{18\pi^2}{2}$	9	nie	-
$\frac{19\pi^2}{2}$	$9 / 9 \rightarrow 10$	tak	2.0
$\frac{20\pi^2}{2}$	9	nie	-
$\frac{21\pi^2}{2}$	9	nie	-

Tabela 3: n=9

Rysunek 7: Zachowanie gęstości w różnych krokach czasowych dla n=9, od lewej: t=0.1, 2.5, 5.0

3 Wnioski

W pierwszym etapie symulacji sprawdzono poprawność algorytmu. Wykonano obliczenia dla stanów cząstkowych o numerach 1, 4 i 9, monitorując normę, średnie położenie i średnią energię.

W dalszych symulacjach wprowadzono zaburzające pole zewnętrzne. Przeprowadzono symulacje dla różnych wartości częstotliwości rezonansowej ω . Czas symulacji ustawiono tak, aby obejmował co najmniej jeden pełny cykl okresowych zmian energii.

Do wykonania symulacji zastosowano język F#, a do wizualizacji Python/Matplotlib.