République Islamique de Mauritanie Ministère de l'Education Nationale et de la Réforme du Système Educatif Direction des Examens et des Concours

BACCALAUREAT 2021

Session Normale Epreuve: MATHEMATIQUES Série : C & TMGM Coefficient: 9 & 6 Durée: 4h

Exercice 1: (3 points)

A. 1. Déterminer le reste de la division euclidienne du nombre 2021 par 11.	0.25pt
2. Déterminer suivant les valeurs de l'entier naturel n, le reste de la division euclidienne de 2021 ⁿ par 11.	0.5pt
*	0.25pt
3. Justifier que le nombre $2021^{2020} - 2021^{1960}$ est divisible par 11.	0.25pt
B. Soit N un entier naturel s'écrivant xyxy dans le système décimal.	
1. Montrer que N est un multiple de 101.	0.25pt
2. Déterminer y pour que N soit un multiple de 5.	0.25pt 0.25pt
3. Déterminer x et y pour que N soit un multiple de 20 et préciser N dans ces cas.	0.5pt
C. Soit la matrice $M = \begin{pmatrix} x & y \\ 5 & 11 \end{pmatrix}$, où x et y sont deux entiers strictement compris entre 0 et 10.	
1. Montrer que M est inversible et déterminer sa matrice inverse M^{-1} , en fonction de x et y.	0.5pt
2. Déterminer les valeurs possibles de x et y telles que le déterminant de M soit égal à 1.	0.5pt

Exercice 2: (4 points)

ABCD un rectangle de centre O tel que $(\overrightarrow{AB}, \overrightarrow{AC}) = \frac{\pi}{3} [2\pi]$. Soient E le symétrique de B par

rapport à (AC), F celui de O par rapport à A, I le milieu de [OA] et J celui de [OD].

1. Faire une figure soignée.	0.5pt
2. Justifier que le triangle BEF est équilatéral direct.	0.25pt
3. Montrer que les points O, E, F et B appartiennent à un même cercle. Préciser son centre.	0.25pt
4. a) Montrer qu'il existe un unique antidéplacement f transformant F en O et A en D.	0.5pt
b) Justifier que f est une symétrie glissante et donner sa forme réduite.	0.5pt
5. a) Montrer qu'il existe une unique similitude directe S transformant E en O et B en C.	0.25pt
b) Déterminer le rapport de S et une mesure de son angle.	0.5pt
c) Montrer que le centre de S appartient aux cercles de diamètres respectifs [OE] et [BC] . Préciser le centre de S.	0.5pt
d) Déterminer l'image de C par S et construire le point $K = S(D)$.	0.5pt
e) Soit (M_n) la suite des points du plan tels que $M_0 = B$ et $\forall n \in \mathbb{N}$, $M_{n+1} = S(M_n)$.	0.25pt
Vérifier que M ₂₀₂₁ ∈[JC]	0.25pt

Exercice 3: (5 points)

Dans le plan complexe, muni d'un repère orthonormal direct (O, \vec{u}, \vec{v}) , on considère les points A et B d'affixes respectives $z_A = -2 - i$ et $z_B = -1 - 3i$.

1. a) Montrer que $\forall z \in \mathbb{C}$, on a: $-4z^2 - (12+16i)z + 7 - 24i = (2iz - 4 + 3i)^2$	0.5pt
b) En déduire les solutions dans C de l'équation	0.5pt
(E): $z^2 - (2m+2+i)z + 2m^2 + (5+5i)m - 1 + 7i = 0$, où m est un paramètre complexe.	v.spt
2. Soit S_1 la similitude directe qui, à tout point M d'affixe m ,associe le point M_1 d'affixe	
$z_1 = (1+i)m-1+2i$ et soit S_2 la similitude directe qui, à tout point M d'affixe m associe le	
point M_2 d'affixe $z_2 = (1-i)m+3-i$.	
a) Donner les éléments caractéristiques de S_1 et S_2 .	1pt
b) Montrer que $S_1 \circ S_2$ est une homothétie dont on donnera le rapport et le centre C .	0.5pt
c) Soit R la transformation qui au point M_1 associe le point M_2 , pour tout point M du plan.	0.5pt
Justifier que R est une rotation dont on donnera une mesure de l'angle et l'affixe du centre D.	

d) Placer les points A, B, C et D et déterminer la nature du triangle ABD.

0.75pt

- 3. Soit E l'ellipse de foyers A et B et dont D est un sommet.
- a) Déterminer le centre I de E et justifier que la longueur du grand axe de E est $\sqrt{10}$.
- 0.5pt 0.25pt

- b) Donner l'équation de E.
- c) Construire E après avoir placé ses sommets.

0.5pt

0.75pt

0.5pt

0.25pt

0.5pt

0.5pt

Exercice 4: (4 points)

Soit f la fonction définie sur l'intervalle $I =]-1; +\infty[$ par $f(x) = 1 + (x+1)\ln(x+1) - (\ln(x+1))^2$

On note (C) la courbe représentative de f dans un repère orthonormé $(0, \vec{i}, \vec{j})$.

- 1. Calculer et interpréter les limites suivantes : $\lim_{x \to -1^+} f(x)$, $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to +\infty} \frac{f(x)}{x}$.
- 2. Pour tout réel x > -1, on note $u(x) = x + 1 \ln(x + 1)$ et $v(x) = x \ln(x + 1)$
- a) Montrer que la fonction v est positive sur chacun des intervalles]-1,0[et $]0,+\infty[$. 0.5pt
- b) Etudier les variations de la fonction u puis en déduire qu'elle est positive sur]−1;+∞[
- c) Montrer que $\forall x > -1$; $f'(x) = \frac{u(x) + v(x)}{x+1}$ où f' est la dérivée de f. 0.25pt
- d) Dresser le tableau de variation de f .
- 3. Montrer que f réalise une bijection de I sur un intervalle J à déterminer. 0.25pt
- 4. Soit g(x) = f(x) x.
- a) Etudier les variations de g et justifier que l'équation g(x) = 0 admet sur I une unique solution α
- b) Vérifier que $-0.7 < \alpha < -0.6$. En déduire la position relative de (C) et la droite Δ d'équation y = x
- 5. Construire la droite Δ et les courbes (C) et (C') . ((C') étant la courbe de la réciproque f⁻¹ de f) 0.5pt

Exercice 5: (4 points)

Soit f la fonction numérique définie sur $[0,+\infty[$ par f(0)=0 et $\forall x>0$; $f(x)=\frac{e^{\frac{1-x}{x}}}{x^2}$ et soit Γ sa courbe représentative dans un repère orthonormé d'unité graphique 2 cm.

- 1. a) Justifier que $\forall x > 0$; $\frac{e^{1-\frac{1}{x}}}{x^n} = e^{1-\frac{1}{x} + n \ln\left(\frac{1}{x}\right)}$ puis en déduire que $\lim_{x \to 0^+} \left(\frac{e^{1-\frac{1}{x}}}{x^n}\right) = 0$
- b) Etudier la continuité et la dérivabilité de f à droite de 0.
- 2. a) Montrer que $\forall x > 0$, $f'(x) = \frac{(1-2x)e^{\frac{1-1}{x}}}{x^4}$ et préciser son signe.
- b) Dresser le tableau de variation de f et tracer sa courbe Γ .
- 3. Calculer l'aire A du domaine délimité par la courbe Γ , l'axe des abscisses et les droites d'équations respectives x=1 et x=2.
- 4. On définit la suite (I_n) par : $\forall n \in \mathbb{N}$, $I_n = \int_1^2 \frac{f(x)}{x^n} dx$
- a) Justifier que $I_0 = A$ 0.25pt
- b) Montrer que la suite (I_n) est strictement décroissante et positive. Que peut-on en déduire ? 0.5pt
- c) A l'aide d'une intégration par parties montrer que $\forall n \in \mathbb{N}$; $I_{n+1} (n+1)I_n = \frac{\sqrt{e}}{2^{n+1}} 1$.
- d) Montrer que $\forall n \in \mathbb{N}^*$; $0 \le I_n \le \frac{1}{n} \left(1 \frac{\sqrt{e}}{2^{n+1}}\right)$ et calculer $\lim_{n \to +\infty} I_n$.