

MULTIPLEXER

Presented by Nabanita Das

MULTIPLEXER

- Multiplexer is a device that has multiple inputs and a single line output.
- It is also called data selectors.
- Basic function: select one of its 2^n data input lines and place the corresponding information onto a single output line.
- n input bits needed to specify which input line is to be selected.
 - ullet Place binary code for a desired data input line onto its n select input lines.

Multiplexer Block Diagram

TYPICAL APPLICATION OF A MUX

4-TO-1 MULTIPLEXER (MUX)

APPLICATIONS OF MULTIPLEXER

- Telephone Network
- Transmission from the Computer of a Satellite.
- Communication System
- Computer Memory

Implementation of Boolean Function

 Like Logic Gates, the multiplexers can also be used to implement any Boolean expression.

Points to remember.

- Any n-variable Boolean Expression can be implemented using 2ⁿ⁻¹ to 1 MUX and NOT Gates.
- If we have a 3-variable boolean function, it can be implemented using 2³⁻¹ = 4 to 1 MUX.
- If we have a 4-variable boolean function, it can be implemented using $2^{4-1} = 8$ to 1 MUX.

Steps to be followed for Implementation

- If you have a function of n variables, we convert it into SOP form.
- We leave out one variable and connect the remaining (n-1) variables to the select lines of Multiplexer.
- The remaining single variable of the function is used for the inputs of the multiplexer.
- · Draw a implementation table.

Implementation Table

- Implementation is the list of inputs of the multiplexer and under them the list of all possible minterms in two rows.
- First Row list all those minterms where the variable connected to input of MUX is zero
- Second Row list all those minterms where the variable connected to input of MUX is one.

Implementation Table

		Io	I ₁	I_2	I_3	I_4	15	16	17
Ā	0	0 (1	2	(3)	4	5	6	7
A	1	8	9	10	11)	(12)	(13)	(14)	(15)
		0	Ā	0	1	1	A	А	А

$$F(A,B,C,D) = \Sigma (1,3,4,11,12,13,14,15)$$

A is MSB and D is LSB in the minterm

				Mint	erm
В	C	D	Υ	A=0	A=I
0	0	0	10	0	8
0	0	1	I_{l}	1	9
0	1	0	12	2	10
0	1	1	l ₃	3	11
1	0	0	14	4	12
1	0	1	15	5	13
1	1	0	16	6	14
1	1	1	17	7	15

RULES

- If both the minterms in a column are not circled, apply 0 to the corresponding input.
- If both the minterms in a column are circled, apply 1 to the corresponding input.
- lacktriangle If the bottom minterms is circled and top is not circled, apply A to the input.
- If the top minterms is circled and bottom is not circled, apply A' to the input.

FINAL CIRCUIT

	TO STATE OF STATE	*
F(A,B,C,D) =	Σ (1,3,4,11	,12,13,14,15)

		10	1,	12	I_3	I_4	\mathbf{I}_{5}	l_6	1,
Ā	0	0	1	2	(3)	4	5	6	7
A	1	8	9	10	(11)	(12)	13)	14	(15)
		0	Ā	0	1	1	A	A	A

IMPLEMENTATION OF HIGHER-ORDER MULTIPLEXERS (8:1 MUX BY USING 4:1 MUX)

To select one of the 8 inputs, three select lines (S2S1S0) are required.

To select lines (SISO) are connected with two inputs

of both nultiplexer.

the most significant line S2 is connected directly to the E input of MUXI while the same is connected an involve E input of MUX2.

So, when S2=0 is MUXI is connected &

MOX2 is disabled.

When Sz=1 MUXI disabled MUX2 counceted. The output of MUXI & MUX2 ared ORed using OR gate to generate the output.

WHAT IS A DEMULTIPLEXER (DEMUX)

A DEMUX is a digital switch with a single input (source) and a multiple outputs (destinations).

The select lines determine which output the input is connected to.

DEMUX Types

- → 1-to-2 (1 select line)
- \rightarrow 1-to-4 (2 select lines)
- \rightarrow 1-to-8 (3 select lines)
- → 1-to-16 (4 select lines)

Demultiplexer Block Diagram

TYPICAL APPLICATION OF A DEMUX

1-TO-4 DE-MULTIPLEXER (DEMUX)

В	Α	D0	D1	D2	D3
0	0	Х	0	0	0
0	1	0	Х	0	0
1	0	0	0	Х	0
1	1	0	0	0	Χ