

Trajectories

Input

Joystick commands: cmd_hst_pt, cmd_crd_pt

Output

- Torques: u_hst, u_crd
- Positions: y_hst, y_crd

Currently we have:

- n_tra different trajectories of size n_sim
- n_tra = 9; n_sim = 1000
- each of them is a matrix of size (n_sim, n_tra)

Objective Function

Parameters that are optimized:

hst_inertia_engine, inertia_yy, hst_friction, crd_mass

$$\min_{p \in \mathbb{R}^4} f(p) = \frac{1}{n_{\text{tra}}} \cdot \left(\alpha_1 \cdot \| \overline{U}_{\text{hst}} - U_{\text{hst}} (p) \|_{\text{F}}^2 + \dots \right)$$
s. t.
$$p_i \ge 0$$

where

$$\alpha_1 = \frac{1}{\|\overline{U}_{\text{hst}}\|_{\text{F}}^2}$$
 $\|\overline{U}_{i,j}\|_{\text{F}}^2 = \sum_{j=1}^{n_{\text{tra}}} \sum_{i=1}^{n_{\text{sim}}} |\overline{U}_{i,j}|^2$

 $\|\cdot\|_{\mathrm{F}}$ is the Frobenius norm

Influence of the Parameters

10% deviation of parameter . . . cause in the objective function:

- hst inertia engine

linear linear

inertia_yy

 $3.3 \cdot 10^{-3}$ $7.8 \cdot 10^{-11}$

 $1 \cdot 10^{-3}$

quadratic

hst_friction

linear

crd mass

 $52 \cdot 10^{-3}$

Inertia Engine

Solvers

Conditions:

■ Starting values: $X \sim N(\bar{x}, \bar{x}/2)$, where \bar{x} is the given value

■ Smarm Size: 10

■ Function Tolerance: 10⁻⁹

■ Time Limit: 15 min

■ Max Iterations: ∞

	penalty	evaluations	time
Particle Swarm	10^{-13}	2500	3 min
Pattern Search	10^{-3}	6000	8 min
Genetic Algorithm	10^{-2}	7500	10 min (time limit)
Simulated Annealing	10^{-1}	3000	4 min