1-10 Set Theory (III): Functions

魏恒峰

hfwei@nju.edu.cn

2019年12月10日

Functions

PROOF!

Definition of Functions

$$R \subseteq A \times B$$

is a *relation* from A to B

Definition (Function)

$$R \subseteq A \times B$$
 is a *function* from A to B if

$$\forall a \in A : \exists! b \in B : (a, b) \in f.$$

$$f:A \to B$$

$$dom(f) = A \qquad cod(f) = B$$

$$ran(f) = f(A) \subseteq B$$

$$f:a \mapsto b$$

$$f(a) \triangleq b$$

Definition (Function)

 $R \subseteq A \times B$ is a *function* from A to B if

$$\forall a \in A : \exists! b \in B : (a, b) \in f.$$

For Proof:

 $\forall a \in A:$

$$\forall a \in A : \exists b \in B : (a, b) \in f$$

 $\exists!b \in B:$

$$\forall b, b' \in B : (a, b) \in f \land (a, b') \in f \implies b = b'$$

The **set** of all functions from X to Y:

$$Y^X = \{ f \mid f : X \to Y \}$$

$$Y^X = \{ f \in \mathcal{P}(X \times Y) \mid f : X \to Y \}$$

X and Y are finite sets with x and y elements, respectively.

$$|X| = x \quad |Y| = y, \qquad |Y^X| = y^x$$

The set of all functions from X to Y:

$$Y^X = \{f \mid f : X \to Y\}$$

$$\forall Y: Y^{\emptyset} = \{\emptyset\}$$

$$\emptyset^{\emptyset} = \{\emptyset\}$$

$$\forall X \neq \emptyset : \emptyset^X = \emptyset$$

The set of all functions from X to Y:

$$Y^X = \{ f \mid f : X \to Y \}$$

$$2^X = \{0, 1\}^X \cong \mathcal{P}(X)$$

The set of all functions from X to Y:

$$Y^X = \{ f \mid f : X \to Y \}$$

Q: Is there a set consisting of all functions?

Theorem

There is no set consisting of all functions.

Suppose by contradiction that A is the set of all functions.

For every set X, there exists a function $I_X : \{X\} \to \{X\}$.

$$\bigcup_{I_X \in A} dom(I_X)$$

Functions as Sets

Axiom (Axiom of Extensionality)

$$\forall A \ \forall B \ \forall x : (x \in A \iff x \in B) \iff A = B.$$

Theorem (The Principle of Functional Extensionality)

f, g are functions:

$$f = g \iff dom(f) = dom(g) \land (\forall x \in dom(f) : f(x) = g(x))$$

$$\forall f \ \forall g \ \forall (a,b) : ((a,b) \in f \iff (a,b) \in g) \iff f = g.$$

It may be that $cod(f) \neq cod(g)$.

$$f:A \to B$$
 $g:C \to D$

 $Q: \text{Is } f \cap g \text{ a function?}$

Theorem (Intersection of Functions)

$$f\cap g:(A\cap C)\to (B\cap D)$$

$$f:A \to B$$
 $g:C \to D$

Q: Is $f \cup g$ a function?

Theorem (Union of Functions)

$$f \cup g: (A \cup C) \rightarrow (B \cup D) \iff \forall x \in dom(f) \cap dom(g): f(x) = g(x)$$

UD Problem 14.3 (g)

$$f: \mathbb{Q} \to \mathbb{R}$$

$$f(x) = \begin{cases} x+1 & \text{if } x \in 2\mathbb{Z} \\ x-1 & \text{if } x \in 3\mathbb{Z} \\ 2 & \text{otherwise} \end{cases}$$

 $x \in 6\mathbb{Z}$

$$D: \mathbb{R} \to \mathbb{R}$$

$$D(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Dirichlet Function

Special Functions (-jectivity)

Definition (Injective (one-to-one; 1-1) 单射函数)

$$f:A\to B$$
 $f:A\rightarrowtail B$

$$\forall a_1, a_2 \in A : a_1 \neq a_2 \implies f(a_1) \neq f(a_2)$$

For Proof:

 \blacktriangleright To prove that f is 1-1:

$$\forall a_1, a_2 \in A : f(a_1) = f(a_2) \implies a_1 = a_2$$

 \blacktriangleright To show that f is not 1-1:

$$\exists a_1, a_2 \in A : a_1 \neq a_2 \land f(a_1) = f(a_2)$$

Definition (Surjective (onto) 满射函数)

$$f: A \to B$$
 $f: A \twoheadrightarrow B$
$$ran(f) = B$$

For Proof:

ightharpoonup To prove that f is onto:

$$\forall b \in B \ \Big(\exists a \in A : f(a) = b \Big)$$

ightharpoonup To show that f is not onto:

$$\exists b \in B \ (\forall a \in A : f(a) \neq b)$$

Definition (Bijective (one-to-one correspondence) ——对应)

$$f: A \to B$$
 $f: A \stackrel{1-1}{\longleftrightarrow} B$

1-1 & onto

Functions as Relations

$$f|_X \qquad f(A) \qquad f^{-1}(B) \qquad f^{-1} \qquad f \circ g$$

Definition (Restriction)

The restriction of a function f to X is the function:

$$f|_X = \{(x, y) \in f \mid x \in X\}$$

$$f: A \to B$$

$$f|_X: A \cap X \to B$$

$$f|_X(x) = f(x), \forall x \in A \cap X$$

Definition (Image)

The image of X under a function f is the set

$$f(X) = \{ b \mid \exists a \in X : (a, b) \in f \}$$

Definition (Inverse Image)

The *inverse image* of Y under a function f is the set

$$f^{-1}(Y) = \{ a \mid \exists b \in Y : (a, b) \in f \}$$

$$X \subseteq dom(f), Y \subseteq ran(f)$$
 are not necessary

f may not be invertible in $f^{-1}(Y)$

$$y \in f(X) \iff \exists x \in dom(f) \cap X : y = f(x)$$

$$y \in f(X) \iff \exists x \in X : y = f(x)$$

$$x \in f^{-1}(Y) \iff f(x) \in Y$$

Theorem (Properties of f and f^{-1} (UD Theorem 17.7))

$$f: A \to B$$
 $A_1, A_2 \subseteq A, B_1, B_2 \subseteq B$

- (i) f preserves only \subseteq and \cup :
 - $(1) \ A_1 \subseteq A_2 \implies f(A_1) \subseteq f(A_2)$
 - (2) $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$
 - (3) $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$
 - $(4) \ f(A_1 \setminus A_2) \supseteq f(A_1) \setminus f(A_2)$
- (ii) f^{-1} preserves $\subseteq, \cup, \cap, and \setminus$:
 - (5) $B_1 \subseteq B_2 \implies f^{-1}(B_1) \subseteq f^{-1}(B_2)$
 - (6) $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$
 - (7) $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$
 - (8) $f^{-1}(B_1 \setminus B_2) = f^{-1}(B_1) \setminus f^{-1}(B_2)$

Theorem (UD Problem 17.5)

$$f:A\to B$$

$$f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$$

$$b \in f(A_1 \cap A_2)$$

$$\implies \exists a \in A_1 \cap A_2 \cap A : b = f(a)$$

$$\implies \exists a \in A : a \in A_1 \land a \in A_2 \land b = f(a)$$

$$\implies \exists a \in A \cap A_1 : b = f(a) \land \exists a \in A \cap A_2 : b = f(a)$$

$$\implies b \in f(A_1) \cap f(A_2)$$

Q: When does $f(A_1 \cap A_2) = f(A_1) \cap f(A_2)$ hold?

f is injective.

Theorem (Properties of f and f^{-1} (UD Theorem 17.7))

$$f:A\to B$$

- (iii) f and f^{-1} :
 - $(9) \ A_0 \subseteq A \implies A_0 \subseteq f^{-1}(f(A_0))$
 - (10) $B_0 \supseteq f(f^{-1}(B_0))$

Theorem (UD Problem 17.8)

$$A_0 \subseteq A \implies A_0 \subseteq f^{-1}(f(A_0))$$

Theorem

$$f: A \to B$$

$$B_0 \supseteq f(f^{-1}(B_0))$$

$$b \in f(f^{-1}(B_0))$$

$$\implies \exists a \in f^{-1}(B_0) : b = f(a)$$

$$\implies \exists a \in A : f(a) \in B_0 \land b = f(a)$$

$$\implies b \in B_0$$

Q: When does
$$B_0 = f(f^{-1}(B_0))$$
 hold?

f is surjective and $B_0 \subseteq B$.

$$B_0 \subseteq ran(f)$$

Function Composition

Definition (Composition)

$$f: A \to B$$
 $g: C \to D$
$$ran(f) \subseteq C$$

The composite function $g \circ f : A \to D$ is defined as

$$(g \circ f)(x) = g(f(x))$$

Why not " $\exists b$ " as below?

Definition (Composition)

The *composition* of relations R and S is the relation

$$R \circ S = \{(a,c) \mid \exists b : (a,b) \in S \land (b,c) \in R\}$$

Theorem (Associative Property for Composition)

$$f:A \to B$$
 $g:B \to C$ $h:C \to D$

$$h \circ (g \circ f) = (h \circ g) \circ f$$

Proof.

$$dom(h \circ (g \circ f)) = dom((h \circ g) \circ f)$$

$$(h\circ (g\circ f))(x)=((h\circ g)\circ f)(x)$$

Theorem (UD Theorem 16.7)

$$f:A \to B$$
 $g:B \to C$

- (i) If f, g are injective, then $g \circ f$ is injective.
- (ii) If f, g are surjective, then $g \circ f$ is surjective.
- (iii) If f, g are bijective, then $g \circ f$ is bijective.

Proof for (i).

$$\forall a_1, a_2 \in A : ((g \circ f)(a_1) = (g \circ f)(a_2) \implies a_1 = a_2)$$

Proof for (ii).

$$\forall c \in C : (\exists a \in A : (g \circ f)(a) = c)$$

Theorem (UD Theorem 16.8)

$$f:A \to B$$
 $g:B \to C$

- (i) If $g \circ f$ is surjective, then g is surjective.
- (ii) If $g \circ f$ is injective, then f is injective.

You can also prove it by contradiction.

Inverse Functions

Definition (Inverse)

Let $f: A \to B$ be a bijective function.

The *inverse* of f is the function f^{-1} : $B \to A$ defined by

$$f^{-1}(b) = a \iff f(a) = b.$$

信息量太大

Definition (Invertible)

 $f: X \to Y$ is invertible if there exists $g: Y \to X$ such that

$$f(x) = y \iff g(y) = x.$$

Theorem

f is invertible \iff f is bijective.

f is invertible $\implies f$ is bijective g is a function $\implies f$ is injective $dom(g) = Y \implies f$ is surjective

f is bijective $\implies f$ is invertible

To show that g defined above is indeed a function from Y to X.

Definition (Invertible)

 $f:X \to Y$ is invertible if there exists $g:Y \to X$ such that

$$f(x) = y \iff g(y) = x.$$

Theorem

 $g: Y \to X$ is unique.

By Contradiction

$$f^{-1} \triangleq q$$

$$f(x) = y \iff f^{-1}(y) = x$$

Theorem (UD Theorem 16.4)

$f: A \to B$ is bijective

(i)
$$f \circ f^{-1} = I_B$$

(ii)
$$f^{-1} \circ f = I_A$$

(iii) f^{-1} is bijective.

(iv)
$$g: B \to A \land f \circ g = I_B \implies g = f^{-1}$$

(v)
$$g: B \to A \land g \circ f = I_A \implies g = f^{-1}$$

The ways to find/check f^{-1} .

$$g = f^{-1} \circ (f \circ g) = f^{-1} \circ I_B = f^{-1}$$

Theorem (Inverse of Composition (UD Theorem 16.6))

$$f:A \to B$$
 $g:B \to C$ are bijective

- (i) $g \circ f$ is bijective
- (ii) $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$

Proof for (ii).

It suffices to check either one of the following identities:

$$(f^{-1} \circ g^{-1}) \circ (g \circ f) = I_A$$

$$(g \circ f) \circ (f^{-1} \circ g^{-1}) = I_C$$

Theorem (UD Theorem 16.8)

$$f:A \to B \quad g:B \to A$$

(iii)
$$f \circ g = I_B \wedge g \circ f = I_A \implies g = f^{-1}$$

You need to check both identities.

Theorem (UD Theorem 16.8)

$$f:A \to B$$
 $g:B \to C$

- (i) If $g \circ f$ is surjective, then g is surjective.
- (ii) If $g \circ f$ is injective, then f is injective.

First show that f is bijective, and then use Theorem 16.4.

Thank You!