Functional and logic programming written exam -

Important:

- 1. Subjects are graded as follows: By default 1p; A − 2p; B 4p; C 3p.
- 2. Prolog problems will be resolved using SWI Prolog. The following are required: (1) explanation of the code and of the reasoning behind it; (2) recursive model that solves the problem, for all the predicates used; (3) specification of every predicate (parameters and their meaning, flow model, type of the predicate deterministic/non-deterministic).
- 3. Lisp problems will be resolved using Common Lisp. The following are required: (1) explanation of the code and of the reasoning behind it; (2) recursive model that solves the problem, for each function used; (3) specification of every function (parameters and their meaning).
- **A.** Let L be a list of numbers and given the following PROLOG predicate definition **f(list, integer)**, with the flow model (i, o):

```
f([], 0).

f([H|T],S):-\underline{f(T,S1)},H<S1,!,S \text{ is }H+S1.

f([\_|T],S):-\underline{f(T,S1)}, S \text{ is }S1+2.
```

Rewrite the definition in order to avoid the recursive call **f(T,S)** in both clauses. Do NOT redefine the predicate. Justify your answer.

B. Given a list composed of integer numbers, generate in PROLOG the list of arrangements of N elements ending with an odd value and have the sum S given. Write the mathematical models and flow models for the predicates used. For example, for the list L=[2,7,4,5,3], N=2 and S=7 \Rightarrow [[2,5], [4,3]] (not necessarily in this order).

C. Given a nonlinear list, write a Lisp function to return the list with all atoms on level **k** removed. The superficial level is assumed 1. **A MAP function shall be used.**

Example for the list (a (1 (2 b)) (c (d)))

- **a)** k=2 => (a ((2 b)) ((d))) **b)** k=1 => ((1 (2 b)) (c (d))) **c)** k=4 => the list does not change
- **C.** Given a nonlinear list, write a Lisp function to return the list with all occurrences of an element **e** removed. **A MAP function shall be used.**

Example a) if the list is (1 (2 A (3 A)) (A)) and e is A => (1 (2 (3)) NIL)

b) if the list is (1 (2 (3))) and **e** is A = (1 (2 (3)))