Groups and Rings

Carter Aitken

2025 - 05 - 05

Abstract

We're studying abstract algebra, specifically groups and rings.

Contents

1	Ope	erations on Sets
	1.1	K-Ary Operations
		Definition: Binary Operations
	1.2	Associative Operations
		Definition: (Informal) Bracketing
		Definition: Bracketing
		Notation: Associativity makes Brackets Pointless
		Definition: Commutative
		Definition: Identity
		Lemma: Uniqueness of Identity
		Definition: Inverse
		Lemma: Associtivity implies Uniqueness of Inverses
		Notation: Inverse
		Lemma: Properties of the Inverse

1 Operations on Sets

1.1 K-Ary Operations

- \mathbb{N} +, ·
- \mathbb{Z} +, ·, -
- $\bullet \mathbb{Q} +, \cdot, -$
- \mathbb{R} +, ·, -
- \mathbb{C} +, ·, -, $x \mapsto \overline{x}, x \mapsto \sqrt{x}$
- (Vectors) +, (scalarmul)
- (Matricies) +, (scalarmul), (matrixmul)
- (polynomials) $+, \cdot$

In abstract algebra, we're iinterested in what notions of "numbers" exists.

The different "types" of numbers really are distinguished by the operations on them. In this class we'll stick with operating on sets.

Definition 1.1: Binary Operations. A binary operation on a set X is a function $b: X \times X \to X$.

Note: we often write binary operators inline (like in Haskell).

We could use $+,\cdot,\times,\div,\otimes,\boxtimes,\oplus,\boxplus,\diamond$

FIND \gop in the .tex file to change the operator used. $\label{eq:change} $$ /\newcommand{\gop}$

Definition 1.2. a **k-ary operator** on X is a func $f: \underbrace{X \times \cdots \times X}_{k} \to X$.

 $x \mapsto \frac{1}{x}$ on \mathbb{Q} isn't a unary operation b/c $\frac{1}{0}$ isn't defined. $\mathbb{Q}^{\times} = \{x \in \mathbb{Q} : x \neq 0\}$ does have the reciprocal as a binary operator, but not minus.

1.2 Associative Operations

Definition 1.3. a binary operator \boxtimes on X is **associative** if

$$x \boxtimes (y \boxtimes z) = (x \boxtimes y) \boxtimes z, \quad \forall x, y, z \in X$$

 $+,\cdot$ on \mathbb{N},\mathbb{Z} are associative. $-:\mathbb{Z}\times\mathbb{Z}\to\mathbb{Z}$ isn't associative. Neither is $\div:\mathbb{Q}^{\times}\times\mathbb{Q}^{\times}\to\mathbb{Q}^{\times}$. Function composition is associative.

Definition 1.4: (Informal) Bracketing. Let \boxtimes be a bin operator on a set X. A **bracketing** of a seq $a_1, \ldots, a_n \in X$ is a way of inserting brackets into

 $a_1 \boxtimes \cdots \boxtimes a_n$ s/t the expression can be evaluated

Definition 1.5: Bracketing. A bracket of a_1, \ldots, a_n is

```
n = 1 : \text{(word) } a_1

n > 1 : (w_1 \boxtimes w_2) \text{ where}

w_1 \leftarrow \text{(bracket) of } a_1, \dots a_k

w_2 \leftarrow \text{(bracket) of } a_{k+1}, \dots, a_n
```

Proposition 1.1. a binary operation \boxtimes on X is associative **iff** for every seq $a_1, \ldots, a_n, n \ge 1$, every bracketing of $a_1, \ldots a_n$ evaluates to the same elem of X.

Proof. (\iff) Take n=3. Then

$$(a \boxtimes b) \boxtimes c = a \boxtimes (b \boxtimes c), \forall a, b, c \in X$$

 (\Longrightarrow) Proof by induction.

Base Case: n = 1. Every bracketing of a word evaluates to that same word.

Assume proposition is true for n < k, where k > 1. Let $a_1, \dots, a_k \in X$. If w is a bracketing of a_1, \dots, a_k then $w = (w_1 \boxtimes w_2)$, where w_1 is a bracketing of a_1, \dots, a_k and w_2 is a bracketing of a_{l+1}, \dots, a_k .

$$w_{1} = (\cdots (a_{1} \boxtimes a_{2}) \boxtimes \cdots) \boxtimes a_{l}$$

$$w_{2} = (a_{l+1} \boxtimes (\cdots (a_{k-1} \boxtimes a_{k}) \cdots))$$

$$w \stackrel{\text{in } X}{=} w_{1} \boxtimes w_{2}$$

$$= (A \boxtimes a_{l}) \boxtimes w_{2}$$

$$= A \boxtimes (a_{l} \boxtimes w_{2}) \text{ by assoc.}$$

$$\cdots = a_{1} \boxtimes (\cdots (a_{k-1} \boxtimes a_{k}) \cdots)$$

Hence any 2 bracketings of a_1, \ldots, a_k evaluate to $a_1 \boxtimes (\cdots (a_{k-1} \boxtimes x_k) \cdots)$. By induction, the prop holds.

Notation 1.1: Associativity makes Brackets Pointless. Since \boxtimes is associative, brackets become redundant. $a \boxtimes b \boxtimes c := a \boxtimes (b \boxtimes c)$

Definition 1.6: Commutative. $(\boxtimes): X \times X \to X$ is commutative (or "abelian") if

$$a \boxtimes b = b \boxtimes a, \forall a, b \in X$$

 $+, \cdot$ on $\mathbb{R}, \mathbb{C}, \mathbb{Q}, \mathbb{Z}$ are commutative.

+ on $M_{n \times m} \leftarrow \text{(comm)}$. (matrix mul) on $M_n \not\leftarrow \text{(comm)}$.

We're much more focused on associative operators as opposed to commutative. We cover 2 Topics:

- 1. Group Theory: a single associative op w/ some additional properties
- 2. Ring Theory: 2 associative op that behave "like" + & \cdot .

Definition 1.7: Identity. An identity for a given bin op \boxtimes is a element $e \in X$ s/t $e \boxtimes x = x \boxtimes e = x$, $\forall x \in X$.

0 is an identity for + on $\mathbb{Z}, \mathbb{R}, \mathbb{Q}, \cdots$. 1 is an identity for \cdot on \mathbb{Q}

Lemma 1.1: Uniqueness of Identity. If e and e' are identities for \boxtimes on X, then e = e'.

Proof.
$$e = e \boxtimes e' = e'$$

Definition 1.8: Inverse. let \boxtimes be a bin op on X with iden e. Let $x \in X$. $y \in X$ is a

- 1. **left inverse** for X if $y \boxtimes x = e$,
- 2. **right inverse** for X if $x \boxtimes y = e$,
- 3. and an **inverse** for X if $x \boxtimes y = e = y \boxtimes x$.

Lemma 1.2: Associtivity implies Uniqueness of Inverses. Suppose we have $(\boxtimes) \leftarrow (\operatorname{assoc})$. If y_L and y_R are left and right inverses of x, then $y_L = y_R$.

Proof.

$$(y_L \boxtimes x) \boxtimes y_R = e \boxtimes y_R$$

$$= y_R$$

$$(y_L \boxtimes x) \boxtimes y_R = y_L \boxtimes (x \boxtimes y_R) \quad \text{(by assoc)}$$

$$= y_L \boxtimes e$$

$$= y_L$$

Consequences: x is invertable iff it has a left and right inverse.

Note: is is possible to be left invertable but not right invertable, and vice verse.

 $\mathbb{N} = \{1, 2, \dots\}, +$ has no invertable elements.

 $(\mathbb{Z},+)$ has every element invertable.

 (\mathbb{Z},\cdot) has only $\{\pm 1\}$ as invertable.

 (\mathbb{Q},\cdot) has \mathbb{Q}^\times as invertable.

Notation 1.2: Inverse. if x is inivertable, and has a uni inv, then we denote it x^{-1} .

Lemma 1.3: Properties of the Inverse. Let $(\boxtimes) \leftarrow (\operatorname{assoc}) \ w/\ id\ e.$

1. e is invertable, $e^{-1} = e$.

Proof. $e \boxtimes e = e$

- 2. if a is invertable, then so is a^{-1} and $(a^{-1})^{-1} = a$.
- 3. if a and $b \leftarrow (invertable) \implies (a \boxtimes b)^{-1} = b^{-1} \boxtimes a^{-1}$

Proof. $a \boxtimes b \boxtimes b^{-1} \boxtimes a^{-1} = a \boxtimes e \boxtimes a^{-1} = e$ Similiar in reverse.

4. a is invertable iff

 $a \boxtimes x = b$

 $y \boxtimes a = b$

both have uniq sols $\forall b \in X$.

Proof. (\Longrightarrow) Assume a is invertable. Then

$$x = a^{-1} \boxtimes b$$

 $y = b \boxtimes a^{-1}$

(\Leftarrow) Assume the system has a uni X and Y, $\forall B \in X$. Let b = e, where e is the identity of (X, \boxtimes) .

$$a \boxtimes x = e$$

$$y \boxtimes a = e$$

$$\implies x = a_R^{-1}$$

$$\implies y = a_L^{-1}$$

$$(\boxtimes) \leftarrow (\mathrm{assoc}) \implies a_R^{-1} = a_L^{-1} = a^{-1}$$

 $\implies a$ is invertable