Latent Stable Diffusion (LDM)

Latent Stable Diffusion

Es un modelo de deep learning para pasar texto a imagen creado en 2022. Fue creado por Stability AI, CompVis LMU y Runway.

Aplicaciones:

- Convertir texto en imagen (es el más usado)
- Inpainting
- Outpainting
- Imagen a imagen

Texto en imagen

```
prompt = "astronaut riding a horse"
image = pipe(prompt).images[0]
image.save(f"astronaut_rides_horse.png")
image
```

50/50 [00:09<00:00, 5.32it/s]

Input: texto
Output: imagen

```
prompt = "people eating pizza"
image = pipe(prompt).images[0]
image
```


Inpainting

Input: imagen Output: imagen

Outpainting

Input: imagen Output: imagen

Imagen a imagen

Input: imagen Output: imagen

Idea general de stable diffusion

Se puede dividir en 3 partes:

Modelo

- 1. Autoencoder (VAE) (parte roja)
- 2. U-Net (Verde abajo, denoising U-net)
- 3. Text-encoder, e.g. CLIP's Text Encoder. (conditioning if text, derecha)

Vamos por partes como dice jack:

El text encoder toma el texto como input y devuelve una lista de números por palabra/token

The U-Net part

Objetivo de la U-Net es detectar el ruido. Output ruido de la imagen

En realidad no se sustrae todo el ruido sino el ruido por epsilon (entre 0 - 1)

Como se agrega el texto:

Problema: Muy costoso para imágenes grandes

Solución: AutoEncoder

Recapitulando:

Imagen generada por la U-Net cada 10 iteraciones

Dibujando a Artica!

Resources:

https://www.youtube.com/watch?v=J87hffSMB60

https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffuse rs/stable_diffusion.ipynb#scrollTo=b2i37Salfyce