#### Is my infrastructure really resilient?

Paweł Cyman

# Chaos Engineering



#### The Netflix Simian Army (2011)



#### Chaos Monkey



#### Latency Monkey



# Conformity Monkey



#### Doctor Monkey



# Janitor Monkey



# Security Monkey



# 10-18 Monkey



# Chaos Gorilla



#### Chaos Engineering Upgraded (2015)

#### Chaos Kong



#### Chaos Kong



#### Principles of Chaos

#### CHAOS IN PRACTICE

To specifically address the uncertainty of distributed systems at scale, Chaos Engineering can be thought of as the facilitation of experiments to uncover systemic weaknesses. These experiments follow four steps:

- 1. Start by defining 'steady state' as some measurable output of a system that indicates normal behavior.
- 2. Hypothesize that this steady state will continue in both the control group and the experimental group.
- 3. Introduce variables that reflect real world events like servers that crash, hard drives that malfunction, network connections that are severed, etc.
- 4. Try to disprove the hypothesis by looking for a difference in steady state between the control group and the experimental group.

# AWS?

#### AWS

