Mass splitting in the Skyrme model

Martin Speight University of Leeds, UK

LEEDS@Leeds, July 2018

• $m_n = 939.56563 \text{ MeV}, m_p = 938.27231 \text{ MeV},$

$$\frac{2(m_n - m_p)}{m_n + m_p} = 0.1377\%$$

Skyrme model?

• $m_n = 939.56563 \text{ MeV}, m_p = 938.27231 \text{ MeV},$

$$\frac{2(m_n - m_p)}{m_n + m_p} = 0.1377\%$$

Skyrme model?

$$U(r\mathbf{n}) = \cos f(r) \mathbb{I}_2 + i \sin f(r) \mathbf{n} \cdot \mathbf{\tau}$$

• $m_n = 939.56563 \text{ MeV}, m_p = 938.27231 \text{ MeV},$

$$\frac{2(m_n - m_p)}{m_n + m_p} = 0.1377\%$$

Skyrme model?

$$U(t,r\mathbf{n}) = e^{-i\nu t\tau_3/2}[\cos f(r)\mathbb{I}_2 + i\sin f(r)\mathbf{n}\cdot\tau]e^{i\nu t\tau_3/2}$$

Quantize. Proton $l_3 = 1/2$, neutron $l_3 = -1/2$

• $m_n = 939.56563 \text{ MeV}, m_p = 938.27231 \text{ MeV},$

$$\frac{2(m_n - m_p)}{m_n + m_p} = 0.1377\%$$

Skyrme model?

$$U(t,r\mathbf{n}) = e^{-i\nu t\tau_3/2}[\cos f(r)\mathbb{I}_2 + i\sin f(r)\mathbf{n}\cdot\tau]e^{i\nu t\tau_3/2}$$

Quantize. Proton $l_3 = 1/2$, neutron $l_3 = -1/2$

• Action must somehow distinguish between clockwise and anticlockwise isorotation in π_1 - π_2 plane...

• $m_n = 939.56563 \text{ MeV}, m_p = 938.27231 \text{ MeV},$

$$\frac{2(m_n - m_p)}{m_n + m_p} = 0.1377\%$$

Skyrme model?

$$U(t,r\mathbf{n}) = e^{-i\nu t\tau_3/2}[\cos f(r)\mathbb{I}_2 + i\sin f(r)\mathbf{n}\cdot\tau]e^{i\nu t\tau_3/2}$$

Quantize. Proton $I_3 = 1/2$, neutron $I_3 = -1/2$

- Action must somehow distinguish between clockwise and anticlockwise isorotation in π₁-π₂ plane...
- ...and be Lorentz and parity invariant.
- Difficult.

Two solutions

- Holography (Bigazzi and Niro 2018): introduce explicit m_u-m_d difference in Sakai-Sugimoto model.
 - Also get π^{\pm} - π^{0} mass difference
 - But it's not really the Skyrme model
 - U coupled to infinite tower of vector mesons
- Chiral perturbation theory

PHYSICAL REVIEW D

VOLUME 40. NUMBER 3

1 AUGUST 1989

Neutron-proton mass-splitting puzzle in Skyrme and chiral quark models

P. Jain

Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and Physics Department, West Virginia University, Morgantown, West Virgina 26506

R. Johnson

Department of Physics, Iowa State University, Ames, Iowa 50011

N. W. Park, J. Schechter, and H. Weigel Physics Department, Syracuse University, Syracuse, New York 13244-1130 (Received 23 February 1989)

$$\begin{split} \mathcal{L}_{\text{SB}} &= \text{Tr} [(\alpha \lambda_3 + \alpha' T + \alpha'' S) (A_\mu^L U A_\mu^R + A_\mu^R U^\dagger A_\mu^L) \\ &+ (\beta \lambda_3 + \beta' T + \beta'' S) (\partial_\mu U \partial_\mu U^\dagger U + U^\dagger \partial_\mu U \partial_\mu U^\dagger) \\ &+ (\gamma \lambda_3 + \gamma' T + \gamma'' S) (F_{\mu\nu}^L U F_{\mu\nu}^R + F_{\mu\nu}^R U^\dagger F_{\mu\nu}^L) \\ &+ (\delta \lambda_3 + \delta' T + \delta'' S) (U + U^\dagger - 2)] \;, \end{split}$$

$$\begin{split} \mathscr{L}_0 &= \frac{-F_\pi^2}{8} \mathrm{Tr}(\partial_\mu U \partial_\mu U^\dagger) \\ \\ \mathscr{L}_1 &= -\frac{1}{2} \, \mathrm{Tr}(F_{\mu\nu}^L F_{\mu\nu}^L + F_{\mu\nu}^R F_{\mu\nu}^R) + \gamma \, \mathrm{Tr}(F_{\mu\nu}^I U F_{\mu\nu}^R U^\dagger) \\ \\ \mathscr{L}_2 &= -m_0^2 \mathrm{Tr}(A_\mu^L A_\mu^L + A_\mu^R A_\mu^R) + B \, \mathrm{Tr}(A_\mu^L U A_\mu^R U^\dagger) \end{split}$$

ω-meson Skyrme model

Adkins and Nappi 1984:

$$\mathcal{L} = \frac{1}{16} \operatorname{tr}(\partial_{\mu} U \partial^{\mu} U^{\dagger}) + \frac{m^2}{8} \operatorname{tr}(U - \mathbb{I}_2) - \frac{1}{4} \omega_{\mu\nu} \omega^{\mu\nu} + \frac{1}{2} \omega_{\mu} \omega^{\mu} + \beta \omega_{\mu} B^{\mu}$$

- $m = m_{\pi}/m_{\omega} = 0.176$
- Coupling constant: $\beta_{AN} = 96.7$, $\beta_{Sutcliffe} = 34.7$.

ω-meson Skyrme model

- More geometric formulation: $M = \mathbb{R}^3$, $N = S^3 \subset \mathbb{R}^4$,
 - $\phi: M \to N$,
 - $\omega_0 \in C^{\infty}(M)$,
 - $\omega \in \Omega^1(M)$
 - $\Omega = vol_N/Vol(N)$ (so $B_0 = \phi^*\Omega$)
- Static field equations

$$\begin{split} \frac{1}{4}\tau(\phi) + \frac{m^2}{4}(\nabla\sigma) \circ \phi - \beta * (d\omega_0 \wedge \Xi_{\phi}) &= 0 \\ \Delta\omega_0 + \omega_0 + \beta * \phi^*\Omega &= 0 \\ \delta d\omega + \omega &= 0 \end{split}$$

where
$$\langle X, \Xi_{\phi}(Y_1, Y_2) \rangle = \Omega(X, d\phi(Y_1), d\phi(Y_2))$$

• E.g. for a hedgehog $\phi(r\mathbf{n}) = (\cos f(r), \sin f(r)\mathbf{n})$

$$\Xi_{\phi} = -\frac{\sin^2 f}{2\pi^2} \Omega_{S_1^2}(-\sin f, \cos f\mathbf{n}) - \frac{f'\sin f}{2\pi^2} dr \wedge (0, \mathbf{n} \times d\mathbf{n})$$

ω-meson Skyrme model

Coincides with constrained variational problem

$$\begin{array}{lcl} E_{\omega}(\varphi,\omega_{0}) & = & \frac{1}{8}\|d\varphi\|^{2} + \frac{m^{2}}{4}\int_{M}(1-\sigma\circ\varphi) + \frac{1}{2}\|d\omega_{0}\|^{2} + \frac{1}{2}\|\omega_{0}\|^{2} \\ (\Delta+1)\omega_{0} & = & -\beta*\varphi^{*}\Omega \end{array}$$

- $\phi \Rightarrow \omega_0$, nonlocal functional $E_{\omega}(\phi)$
- Cf sextic model

$$\begin{split} E_6(\varphi) &= \frac{1}{8} \|\mathrm{d}\varphi\|^2 + \frac{m^2}{4} \int_M (1 - \sigma \circ \varphi) + \frac{\beta^2}{2} \|\varphi^*\Omega\|^2 \\ &\frac{1}{4} \tau(\varphi) + \frac{m^2}{4} (\nabla \sigma) \circ \varphi - \beta^2 * (\mathrm{d} * \varphi^*\Omega) \wedge \Xi_{\varphi}) = 0 \end{split}$$

E_{ω} versus E_{6}

Energy bounds: compact M

$$\textit{E}_{\omega}(\varphi),\,\textit{E}_{6}(\varphi) \geq \frac{\textit{C}}{\textit{Vol}(\textit{M})}\textit{B}^{2}$$

• $M = \mathbb{R}^3$:

$$E_6(\phi) \geq C'B$$

- Unfortunately $E_{\omega}(\phi) \leq E_{6}(\phi)$, so doesn't imply bound on E_{ω}
- Thm For all $\beta^2 \ge 1/4$, $Id: N \to N$ is E_6 stable
- Thm If N is Einstein, there exists $\beta_0 \ge 0$ s.t. for all $\beta^2 \ge \beta_0^2$, $Id: N \to N$ is E_{ω} stable

The E_{ω} skyrmion

• Supports hedgehog solution $\phi(r\mathbf{n}) = (\cos t, \sin t\mathbf{n}), \omega_0(r)$

$$f'' + \frac{2}{r}f' - \frac{\sin 2f}{r^2} - m^2 \sin f + \frac{2\beta}{\pi^2 r^2} \omega_0' \sin^2 f = 0$$
$$\omega_0'' + \frac{2}{r}\omega_0' - \omega_0 + \frac{\beta}{2\pi^2 r^2} f' \sin^2 f = 0$$

The perturbation

$$\mathcal{L} = \{\cdots\} - \frac{\kappa}{4} \omega^{\mu\nu} \Pi_{\mu\nu}$$

where $\Pi_{\mu\nu} = \partial_{\mu}\pi_1\partial_{\nu}\pi_2 - \partial_{\nu}\pi_1\partial_{\nu}\pi_2$

• Has terms linear in ∂_t . E.g. for isospinning hedgehog

$$\kappa \partial_r \omega_0 (\partial_t \pi_1 \partial_r \pi_2 - \partial_t \pi_2 \partial_r \pi_1)$$

- Lorentz and parity invariant
- Static field equations

$$\begin{split} \frac{1}{4}\tau(\varphi) + \frac{\textit{m}^2}{4}(\nabla\sigma) \circ \varphi - \beta * (d\omega_0 \wedge \Xi_\varphi) \\ + \frac{\kappa}{2} * (d\omega \wedge \varphi^* d\pi_1 \nabla \pi_2 \circ \varphi - d\omega \wedge \varphi^* d\varphi_2 \nabla \pi_1 \circ \varphi) &= 0 \\ \Delta\omega_0 + \omega_0 + \beta^*\Omega &= 0 \\ \delta d\omega + \omega + \frac{\kappa}{2}\delta(\varphi^* d\pi_1 \wedge d\pi_2) &= 0 \end{split}$$

 Bad news: no longer supports hedgehog ansatz. The B = 1 skyrmion is only axially symmetric. PDEs!!

The perturbation

- Perturbative calculation: $\omega = O(\kappa)$
- ϕ , ω_0 unperturbed to leading order
- Hedgehog has

$$\delta(\phi^* \mathrm{d}\pi_1 \wedge \mathrm{d}\pi_2) = P_f(r) \sin^2 \theta \mathrm{d}\phi$$

Nice fact: $\delta d(P(r) \sin^2 \theta d\phi) = [-P''(r) + 2r^{-1}P(r)] \sin^2 \theta d\phi$

• To leading order, still an ODE problem! $\omega = \kappa W(r) \sin^2 \theta d\phi$,

$$f'' + \frac{2}{r}f' - \frac{\sin 2f}{r^2} - m^2 \sin f + \frac{2\beta}{\pi^2 r^2} \omega_0' \sin^2 f = 0$$

$$\omega_0'' + \frac{2}{r}\omega_0' - \omega_0 + \frac{\beta}{2\pi^2 r^2} f' \sin^2 f = 0$$

$$W'' - \left(1 + \frac{2}{r^2}\right)W - \frac{1}{8}\left(F'' - \frac{1}{r^2}F + \frac{1}{r^2}\right) = 0, \quad F := \cos 2f$$

The perturbed skyrmion

- Classical static solution $(\phi_H, \omega_0, \omega)$
- Spin-isospin symmetry group: $G = SU(2) \times U(1)$

$$(g,\lambda): (\phi_H,\omega_0,\omega) \mapsto (h(\lambda)(\phi_H \circ \mathscr{R}_{g^{-1}})h(\lambda)^\dagger,\omega_0 \circ \mathscr{R}_{g^{-1}},\mathscr{R}_{g^{-1}}^*\omega)$$

where $h(\lambda)=\operatorname{diag}(\lambda,\bar{\lambda})$ and $\mathscr{R}_g:\mathbb{R}^3\to\mathbb{R}^3$ denotes the orthogonal linear map defined so that

$$(\mathscr{R}_g\mathbf{x})\cdot i\tau = g(\mathbf{x}\cdot i\tau)g^{-1}$$

- Isotropy group $H = \{(\pm h(\lambda), \lambda) : \lambda \in U(1)\} = U(1) \times \mathbb{Z}_2$
- Orbit of static solution $\mathscr{M} \equiv G/H \equiv SU(2)/\mathbb{Z}_2$

$$\{\pm g\}\mapsto (U_H,\omega_0,\omega)_{(g,1)}$$

Induced action of G on $SU(2)/\mathbb{Z}_2$

$$(g,\lambda):\{\pm g'\}\mapsto \{\pm h(\lambda)^\dagger g'g\}$$

- Restrict field theory Lagrangian $L = \int_M \mathcal{L}$ to \mathcal{M} , i.e. compute for $(U_H, \omega_0, \omega)_{(g(t), 1)}$
- L a quadratic polynomial in time derivatives

$$L(g,\dot{g}) = \frac{1}{2}\gamma(\dot{g},\dot{g}) + A(\dot{g}) - M_0$$

where γ , A, M_0 are a metric, one form and function on \mathcal{M}

L invariant under induced G action:

$$\gamma = \Lambda_1 \big(\Sigma_1^2 + \Sigma_2^2 \big) + \Lambda_3 \Sigma_3^2, \quad \textit{A} = \textit{C} \Sigma_3, \quad \textit{M}_0 = \textit{const}$$

where Σ_a are **right** invariant one forms on SU(2) dual to $-i\tau_a/2$

Up to here: true for exact axial solution also

Explicit computation (perturbed hedgehog)

$$\begin{array}{rcl} \Lambda_1 & = & \displaystyle \frac{2\pi}{3} \int_0^\infty r^2 \sin^2 f \, dr + O(\kappa^2) \\ \Lambda_3 & = & \Lambda_1 + O(\kappa^2) \\ C & = & \kappa C_* + O(\kappa^2) \\ C_* & = & \displaystyle \frac{4}{3} \int_0^\infty complicated(f, \omega_0, \textbf{W}) dr + O(\kappa) \\ M_0 & = & \displaystyle \int_0^\infty complicated(f, \omega_0) dr + O(\kappa^2). \end{array}$$

 M_0 = static energy of hedgehog

$$L = \frac{1}{2}\gamma(\dot{g}, \dot{g}) + A(\dot{g}) - M_0$$

• Fermionic quantization: lift dynamics to double cover $\widetilde{\mathscr{M}} \equiv SU(2)$

$$\psi: SU(2) \to \mathbb{C}, \qquad \psi(-g) = -\psi(g)$$

• Unit mass particle moving on mfd $(SU(2), \gamma)$ under influence of "magnetic field" B = dA:

$$H\psi = -\frac{1}{2} * \mathrm{d}_A * \mathrm{d}_A \psi + M_0 \psi$$

$$\mathbf{d}_{A}=\mathbf{d}-i\mathbf{A}.$$

$$H\psi = -\frac{1}{2\Lambda_1}(\Theta_1^2 + \Theta_2^2 + \Theta_3^2 - 2i\kappa C_*\Theta_3)\psi + M_0\psi + O(\kappa^2)$$

- Reexpress in terms of angular momentum operators.
 - Spatial rotation about j axis \leftrightarrow **right** multiplication by $\exp(i\alpha\tau_j/2)$, generated by **left** invariant vector field $-\theta_i$.

$$S_j = -i(-\theta_j)$$

• Isorotation about 3 axis \leftrightarrow **left** multiplication by $\exp(-i\alpha\tau_3/2)$, generated by **right** invariant vector field Θ_3 .

$$I_3 = -i\Theta_3$$

ullet $\Theta_1^2 + \Theta_2^2 + \Theta_3^2 = \theta_1^2 + \theta_2^2 + \theta_3^2$, so

$$H = \frac{1}{2\Lambda_1} |\mathbf{S}|^2 - \frac{\kappa C_*}{\Lambda_1} I_3 + M_0$$

- Spectrum $H|S,I_3\rangle = \left(\frac{S(S+1)}{2\Lambda_1} \frac{\kappa C_*I_3}{\Lambda_1} + M_0\right)|S,I_3\rangle$
 - Proton |1/2, 1/2>,

$$m_p = M_0 + \frac{1}{2\Lambda_1} \left(\frac{3}{4} - \kappa C_* \right)$$

• Neutron $|1/2, -1/2\rangle$,

$$m_p = M_0 + \frac{1}{2\Lambda_1} \left(\frac{3}{4} + \kappa C_* \right)$$

• For $\beta_{Sutcliffe}$, $\kappa = -0.08075$ gives correct mass splitting

Electric charge density

Noether current associated to isospin symmetry

$$J^{\mu} = rac{\partial \mathcal{L}}{\partial (\partial_{\mu} \pi_a)} \Delta \pi_a, \qquad \Delta \pi = (\pi_2, -\pi_1, 0)$$

Electric charge density?

$$\rho_e(\mathbf{x}) = \frac{1}{2}B_0(\mathbf{x}) + I_3 \frac{J_0(\mathbf{x})}{\int_{\mathbb{R}^3} J_0}$$

where J_0 is the Noether charge density of a classical isospinning hedgehog.

• Problem: $\exp(-iv\tau_3/2)U_H \exp(iv\tau_3/2)$ has

$$J_0(\mathbf{x}) = \left(\frac{v}{4}\sin^2 f + \frac{\beta\kappa}{2\pi^2 r^2}Wf'\sin f + \frac{\kappa}{4}\omega_0'(\sin 2f)'\right)\sin^2\theta$$

Not homogeneous in v! How should v be chosen?

Electric charge density

$$\bullet J_0 = v\rho_1 + \rho_2$$

$$\rho_{\text{e}}(\boldsymbol{x}) = \frac{1}{2} B_0(\boldsymbol{x}) + \left[\nu \rho_1(\boldsymbol{x}) + \rho_2(\boldsymbol{x}) \right]$$

Choose v such that $\int \rho_e = 1$ (proton) or $\int \rho_e = 0$ (neutron)

• $\int \rho_1 = \Lambda_1$, $\int \rho_2 = \kappa C_*$ (of course)

$$v_p = rac{1}{\Lambda_1} \left(rac{1}{2} - \kappa C_*
ight)$$
 $v_n = -rac{1}{\Lambda_1} \left(rac{1}{2} + \kappa C_*
ight)$

Electric charge density $\beta_{Sutcliffe}$, κ_{tuned}

Electric charge density β_{AN} , $\kappa = 0$

Electric charge density $\beta_{Sutcliffe}$, κ_{tuned}

Conclusion

- Very simple perturbation of L_ω can produce p-n mass splitting
- Beyond perturbative calculation: (U, ω_0, ω) axially symmetric, $\Lambda_3 \neq \Lambda_1$

$$E(s, I_3) = \frac{s(s+1)}{2\Lambda_1} - \frac{CI_3}{\Lambda_3} + M_0 + \frac{C^2}{2\Lambda_3} + \frac{\Lambda_1 - \Lambda_3}{2\Lambda_1\Lambda_3}I_3^2.$$

- Isospin only softly broken: quantize motion on whole $G' = SU(2) \times SU(2)$ orbit.
 - M' 5 dimensional
 - γ , M_0 only G invariant (M_0 =potential)
- Higher B: would like proper solutions of unperturbed model...