Motivating Riemann sums

November 11th, 2024

Here are some	key idea	s from	section	5.1.

Here are some key ideas from section 5.1.	
The area problem asks us to find the area of the reg	gion S that lies under the curve $y = f(x)$ from a to b .
We will use the convention that regions under the diagram above, the area of the region is	e x-axis have area. So in the
• A Riemann sum is a way to approximate areas un sums. Here are some sketches:	nder curves. There are left, right, and midpoint Riemann
The problems below will walk you through the pro	ocess of calculating Riemann sums.
Trig practice: Sketch the graphs of $y = 2\cos x$ and $y = -$	$3 \cot x$.
Problem 1: (Stewart 5.1) Let $y=x^2$ on the interval $0 \le \sup$ with four rectangles.	$x \leq 1$. In this problem, we will find R_4 , a right Riemann
1. Sketch the graph of y on the interval $[0,1]$. Shade the	ne area under the curve.
2. Divide the interval $[0,1]$ on the x -axis into four equ	al segments. What is the width of each segment?
3. Each segment has a left and right endpoint. For each	right endpoint, draw a point at the corresponding \emph{y} -value.
4. Each point you drew represents the height of the r the four rectangles.	ectangle whose base is the corresponding segment. Draw
5. Find the area of each rectangle (width \times height). A	dd the four areas to approximate the area under the curve.
My Attempt:	Solution:

Problem 2: (Stewart 5.1) Repeat Problem 1, but find a left Riemann sum (L_4) instead of a right Riemann sum. In this case, the heights of the rectangles are given by the y-values of the left endpoints.

My Attempt: Solution:

Problem 3: (Stewart 5.1) Using the diagram below, find L_4 , R_4 , and M_4 to estimate the area under the curve from x=0 to x=8. This problem is calculator friendly.

My Attempt: Solution:

Problem 4: (Stewart 5.1) Let $f(x) = x^2$.

- a) Use the formula $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$ to find R_n and L_n for arbitrary n.
- b) Find $\lim_{n\to\infty} R_n$ and $\lim_{n\to\infty} L_n$. What do you notice? What do these value represent?

My Attempt:

Solution:

Problem 5: (Stewart 5.1) Suppose we want to find the area under the curve f(x) on a given interval. We split our interval into n segments, and we let x_1, x_2, \cdots, x_n represent the right endpoints of each of our n segments. Let Δx be the width of each segment.

- a) Find an expression for R_n using that information (the notation $\sum_{i=1}^n$ might be helpful).
- b) What does $\lim_{n\to\infty} R_n$ represent, and how should it compare to $\lim_{n\to\infty} L_n$ and $\lim_{n\to\infty} M_n$?

My Attempt:

Solution:

Problem 6: (Stewart 5.1) Derive an expression for the area under the curve $y=x^3$ from 0 to 1 as a limit. Then use the sum of cubes formula $1^3+2^3+3^3+\cdots+n^3=\left[\frac{n(n+1)}{2}\right]^2$ to evaluate the limit.

My Attempt:

Solution: