Residual resampling with multinomial residuals

Suzie Brown

29 April 2021

(A1) The conditional distribution of parental indices $a_t^{(1:N)}$ given offspring counts $\nu_t^{(1:N)}$ is uniform over all assignments such that $|\{j:a_t^{(j)}=i\}|=\nu_t^{(i)}$ for all i.

Corollary 1. Consider an SMC algorithm using residual resampling with multinomial residuals, such that (A1) is satisfied. Assume that there exists a constant $a \in [1, \infty)$ such that for all x, x', t,

$$\frac{1}{a} \le g_t(x, x') \le a.$$

Assume that $\mathbb{P}[\tau_N(t) = \infty] = 0$ for all finite t. Let $(G_t^{(n,N)})_{t\geq 0}$ denote the genealogy of a random sample of n terminal particles from the output of the algorithm when the total number of particles used is N. Then, for any fixed n, the time-scaled genealogy $(G_{\tau_N(t)}^{(n,N)})_{t\geq 0}$ converges to Kingman's n-coalescent as $N \to \infty$, in the sense of finite-dimensional distributions.

Proof. With residual-multinomial resampling, for each i

$$\nu_t^{(i)} \mid w_t^{(1:N)} \stackrel{d}{=} \lfloor N w_t^{(i)} \rfloor + X_i$$

where $X_i \sim \text{Binomial}(R, r_i)$. As usual, $R := N - \sum_{i=1}^N \lfloor Nw_t^{(i)} \rfloor$ and $r_i := (Nw_t^{(i)} - \lfloor Nw_t^{(i)} \rfloor)/R$. If R = 0 then $r_i = 0$ for all i and the following calculations remain correct. —SB We can therefore compute

$$\mathbb{E}[(\nu_t^{(i)})_2 \mid w_t^{(1:N)}] = \mathbb{E}\left[(\lfloor Nw_t^{(i)} \rfloor + X_i)(\lfloor Nw_t^{(i)} \rfloor + X_i - 1) \mid w_t^{(1:N)}\right]$$

$$= (\lfloor Nw_t^{(i)} \rfloor)_2 + 2\lfloor Nw_t^{(i)} \rfloor E[X_i \mid w_t^{(1:N)}] + \mathbb{E}[(X_i)_2 \mid w_t^{(1:N)}]$$

$$= (\lfloor Nw_t^{(i)} \rfloor)_2 + 2\lfloor Nw_t^{(i)} \rfloor Rr_i + (R)_2 r_i^2$$

Suzie Brown 1

using the moments of the Binomial distribution. We also have

$$\begin{split} \mathbb{E}[(\nu_t^{(i)})_3 \mid w_t^{(1:N)}] &= \mathbb{E}\left[(\lfloor Nw_t^{(i)} \rfloor + X_i) (\lfloor Nw_t^{(i)} \rfloor + X_i - 1) (\lfloor Nw_t^{(i)} \rfloor + X_i - 2) \, \Big| \, w_t^{(1:N)} \right] \\ &= \lfloor Nw_t^{(i)} \rfloor^3 + \lfloor Nw_t^{(i)} \rfloor^2 \mathbb{E}[3X_i - 3 \mid w_t^{(1:N)}] \\ &+ \lfloor Nw_t^{(i)} \rfloor \mathbb{E}[X_i(X_i - 1) + X_i(X_i - 2) + (X_i - 1)(X_i - 2) \mid w_t^{(1:N)}] \\ &+ \mathbb{E}[(X_i)_3 \mid w_t^{(1:N)}] \\ &= \lfloor Nw_t^{(i)} \rfloor^3 - 3 \lfloor Nw_t^{(i)} \rfloor^2 + 3 \lfloor Nw_t^{(i)} \rfloor^2 \mathbb{E}[X_i \mid w_t^{(1:N)}] \\ &+ \lfloor Nw_t^{(i)} \rfloor \mathbb{E}[3X_i^2 - 6X_i + 2 \mid w_t^{(1:N)}] + E[(X_i)_3 \mid w_t^{(1:N)}] \\ &= \left(\lfloor Nw_t^{(i)} \rfloor^3 - 3 \lfloor Nw_t^{(i)} \rfloor^2 + 2 \lfloor Nw_t^{(i)} \rfloor \right) + 3 \left(\lfloor Nw_t^{(i)} \rfloor^2 - \lfloor Nw_t^{(i)} \rfloor \right) \mathbb{E}[X_i \mid w_t^{(1:N)}] \\ &+ 3 \lfloor Nw_t^{(i)} \rfloor \mathbb{E}[(X_i)_2 \mid w_t^{(1:N)}] + \mathbb{E}[(X_i)_3 \mid w_t^{(1:N)}] \\ &= (\lfloor Nw_t^{(i)} \rfloor)_3 + 3 (\lfloor Nw_t^{(i)} \rfloor)_2 Rr_i + 3 \lfloor Nw_t^{(i)} \rfloor (R)_2 r_i^2 + (R)_3 r_i^3 \\ &\leq \left(\lfloor Nw_t^{(i)} \rfloor + Rr_i \right) \left\{ (\lfloor Nw_t^{(i)} \rfloor)_2 + 2 \lfloor Nw_t^{(i)} \rfloor Rr_i + (R)_2 r_i^2 \right\} \\ &= Nw_t^{(i)} \mathbb{E}[(\nu_t^{(i)})_2 \mid w_t^{(1:N)}] \\ &\leq a^2 \mathbb{E}[(\nu_t^{(i)})_2 \mid w_t^{(1:N)}], \end{split}$$

using the almost sure bound $w_t^{(i)} \leq a^2/N$.

...

To complete the proof we need to exchange the conditioning on $w_t^{(1:N)}$ for conditioning on \mathcal{H}_t so we can then invoke the D-separation and tower property to get

$$\frac{1}{(N)_3} \sum_{i=1}^{N} \mathbb{E}_t[(\nu_t^{(i)})_3] \le b_N \frac{1}{(N)_2} \sum_{i=1}^{N} \mathbb{E}_t[(\nu_t^{(i)})_2]$$

for some sequence $b_N \to 0$. Perhaps we should expect bounds on q_t to be required, so that ε will also appear in b_N . —SB

Suzie Brown 2