不等均值等方差的标准差UMVUE

Exercise 4 (\ #3.4). Let (X ₁, ... , X _m) be a random sample from N (μ_x , σ_x^2) and let Y₁, ... , Y_n be a random sample from N (μ_y , σ_y^2). Assume that X _i 's and Y_j 's are independent.

- (i) Assume that $\mu_x \in R$, $\mu_y \in R$, $\sigma_x^2 > 0$, and $\sigma_y^2 > 0$. Find the UMVUE's of $\mu_x \mu_y$ and $(\sigma_x/\sigma_y)^r$, where r > 0 and r < n.
- (ii) Assume that $\mu_x \in R$, $\mu_y \in R$, and $\sigma_x^2 = \sigma_y^2 > 0$. Find the UMVUE's of σ_x^2 and $(\mu_x \mu_y)/\sigma_x$.
- (iii) Assume that $\mu_x = \mu_y \in R$, $\sigma_x^2 > 0$, $\sigma_y^2 > 0$, and $\sigma_x^2/\sigma_y^2 = \gamma$ is known.

Find the UMVUE of μ .

- (iv) Assume that $\mu_x=\mu_y\in\! R$, $\sigma_x^2>0$, and $\sigma_y^2>0$. Show that a UMVUE of μ does not exist.
- (v) Assume that $\mu_x \in R$, $\mu_y \in R$, $\sigma_x^2 > 0$, and $\sigma_y^2 > 0$. Find the UMVUE of P (X $_1 \le Y_1$).
- (vi) Repeat (v) under the assumption that $\sigma_X = \sigma_y$.
- (ii) 假设 $\mu_x \in R$, $\mu_y \in R$,并且 $\sigma_x^2 = \sigma_y^2 > 0$.求 σ_x^2 和 ($\mu_x \mu_y$)/ σ_x 的 UMVUE.

证明:

对于参数 (μ_x,μ_y,σ_x^2) ,其完全充分统计量为 (\bar{X},\bar{Y},S^2) ,其中

$$S^{2} = \frac{1}{m+n-2} \left[\sum_{i=1}^{m} (X_{i} - \bar{X})^{2} + \sum_{i=1}^{n} (Y_{j} - \bar{Y})^{2} \right].$$

由于 $(m+n-2)S^2/\sigma_x^2$ 服从卡方分布 χ^2_{m+n-2} ,因此 σ_x^2 的 UMVUE 为 S^2 ,而 σ_x^{-1} 的 UMVUE 为 $\kappa_{m+n-2,-1}S^{-1}$,其中 $\kappa_{m+n-2,-1}$ 是卡方分布的调整因子,用于保证无偏性. 这里

$$\kappa_{m,r} = \frac{m^{r/2} \Gamma\left(\frac{m}{2}\right)}{2^{r/2} \Gamma\left(\frac{m+r}{2}\right)}$$

由于 $\bar{X} - \bar{Y}$ 和 S^2 彼此独立,因此 $\kappa_{m+n-2,-1}(\bar{X} - \bar{Y})/S$ 是 $(\mu_x - \mu_y)/\sigma_x$ 的UMVUE.