Московский Физико-Технический Институт (государственный университет)

Работа 3.2.4 Свободные колебания в электрическом контуре

Содержание

1	Цель работы:	2
2	Теория	2
3	Описание установки	3
4	Ход работы 4.1 Измерение периодов свободных колебаний 4.2 Критическое сопротивление и декремент затухания 4.3 Добротность	3 5
5	Вывол	8

 Работа 3.2.4
 2 Теория

1 Цель работы:

Исследование свободных колебаний в электрическом колебательном контуре.

В работе используются:

генератор импульсов, электронное реле, магазин сопротивлений, магазин ёмкостей, индуктивность, электронный осциллограф, унивенрсальный мост, магазин сопротивлений.

2 Теория

Рассмотрим электрический контур, состоящий из последовательно соединённых конденстора C, катушки индуктивности L и резистора R. Обозначим разность потенциалов на конденсаторе U_C , а ток, текущий в контуре, через I.

Сумма падений напряжения на элементах цепи в отсутствие внешней ЭДС равна нулю:

$$RI + U_c + L\frac{dI}{dt} = 0$$

Подставим $I = C \frac{dU_c}{dt}$

$$CL\frac{d^2U_c}{dt^2} + CR\frac{dU_c}{dt} + U_c = 0$$

Разделим это уравнение на ${\it CL}$ и введем обозначения:

$$\gamma = \frac{R}{2L}, \, \omega_0^2 = \frac{1}{LC}$$

Тогда уравнение примет вид:

$$\frac{d^2U_c}{dt^2} + 2\gamma \frac{dU_c}{dt} + \omega_0^2 U_c = 0$$

Для решения уравнения введем вспомогательную переменную U(t), положив

$$U_c(t) = U(t) \exp^{-\gamma t}$$

При этом получим уравнение:

$$\frac{d^2U}{dt^2} + \omega_1^2 U = 0$$

где
$$\omega_1^2 = \omega_0^2 - \gamma^2$$

В зависимости от соотношения между коэффициентом затухания γ и собственной частотой ω_0 решение U(t) уравнения и соответственно напряжение на конденсаторе по-разному меняется от времени. Возможны три варианта, один из которых (затухающие колебания), нам и нужен.

Работа 3.2.4 4 Ход работы

3 Описание установки

На рисунке приведена схема для исследования свободных колебаний в контуре, содержащем постоянную индуктивность L и переменные ёмкость C и сопротивление R. Колебания наблюдаются на экране осциллографа.

Для периодического возбуждения колебаний в контуре используется генератор импульсов Γ 5-54. С выхода генератора по коаксиальному кабелю импульсы поступают на колебательный контур через электронное реле, смонтированное в отдельном блоке (или на выходе генератора). Реле содержит тиристор D и ограничительный резистор R_1 .

Импульсы заряжают конденсатор C. После каждого импульса генератор отключается от колебательного контура, и в контуре возникают свободные затухающие колебания. Входное сопротивление осциллографа велико ($\approx 1~\mathrm{MOm}$), так что его влиянием на контур можно пренебречь. Для получения устойчивой картины затухающих колебаний используется режим ждущей развёртки с синхронизацией внешними импульсами, поступающими с выхода «синхроимпульсы» генератора.

4 Ход работы

4.1 Измерение периодов свободных колебаний

Соберем полную схему, представленную на рисунке выше. Установим на магазине сопротивлений величину R=0, на магазине ёмкостей - величину C=0,02 мк Φ . Изменяя ёмкость C от 0,02 мк Φ до 0,9 мк Φ , проведем измерения значений периодов T свободных колебаний.

мк Φ , проведем измерения значений периодов T свободных колебаний. $T_0=\frac{1}{f}=0,01$ сек. Период рассчитаем по формуле $T=\frac{T_0x}{nx_0}$.

Тут же сопоставим каждому из значений C значения периода, вычисленные теоретически по формуле $T=2\pi\sqrt{LC}$.

Проверим также, что $L \approx 0,2$ Гн, как и говорилось в описании к работе.

Рассчитаем погрешность определения T_{teor} :

$$\left(\frac{\sigma_T}{T}\right)^2 = \left(\frac{\sigma_x}{r}\right)^2 + \left(\frac{\sigma_{x_0}}{r_0}\right)^2$$

$$\left(\frac{\sigma_T}{T}\right)^2 = \left(\frac{0,2}{4,358}\right)^2 + \left(\frac{0,2}{9,48}\right)^2 \approx 0,002 + 0,000445 \approx 0,002445$$

$$\sigma_{T_{exp}} = 0,086 \ ms$$

C , мк Φ	x_0	\boldsymbol{x}	n	T_{exp} , мс	T_{teor} , mc
0,02	9,4	1,58	4	0,42	0,397
0,024	9,5	1,73	4	0,456	0,435
0,028	9,5	1,88	4	0,495	0,47
0,09	9,5	1,68	2	0,88	0,84
0,1	9,5	3,55	4	0,934	0,888
0,15	9,5	4,35	4	1,445	1,088
0,2	9,5	3,75	3	1,316	1,256
0,25	9,5	4,2	3	1,474	1,404
0,3	9,5	4,6	3	1,614	1,538
0,35	9,5	4,9	3	1,719	1,662
0,4	9,5	3,5	2	1,842	1,776
0,45	9,4	3,7	2	1,968	1,884
0,5	9,4	3,95	2	2,101	1,986
0,55	9,4	4,1	2	2,18	2,083
0,6	9,5	$4,\!35$	2	2,289	2,175
0,65	9,5	4,5	2	2,368	2,264
0,7	9,5	4,7	2	2,473	2,35
0,75	9,5	7,2	3	2,526	2,432
0,8	9,5	7,5	3	2,632	2,512
0,85	9,5	7,8	3	2,737	2,589
0,9	9,5	8	3	2,807	2,664

Работа 3.2.4 4 Ход работы

4.2 Критическое сопротивление и декремент затухания

1) Считая $L\approx 200$ мГн, рассчитаем C, при которой $\nu_0=1/2\pi\sqrt{LC}=5$ кГц. Критическое сопротивление в этом случае $R=2\sqrt{\frac{L}{C}}\approx 12,6$ кОм. Рассчитаем логарифмический декремент затухания $\theta=\frac{1}{n}ln\frac{U_k}{U_{k+n}}$ в диапазоне (0.1-0.3)R:

R, O _M	1000	1400	1800	2200	2600	2800	3000
$2U_k$	2,8	1,95	1,52	1,16	0,92	0,8	0,7
$2U_{k+n}$	0,6	0,4	0,22	0,12	0,23	0,18	0,14
n	2	2	2	2	1	1	1
θ	0,77	0,79	0,966	1,134	1,386	1,492	1,61
σ_{θ}	0,06	0,1	0,22	0,47	0,31	0,42	0,58

Таблица 1: Зависимость $\theta = \theta(R)$.

Погрешность вычисления θ находили по формуле:

$$\sigma_{\theta} = \theta \sqrt{\frac{\sigma_{U_k}^2}{U_k^2} + \frac{\sigma_{U_{k+n}}^2}{U_{k+n}^2}}$$

2) Получив изображение колебаний на фазовой плоскости (в координатах $\left(U_C, \frac{dU_C}{dt}\right)$, убеждаемся, что декремент затухания вычисленный по тем же способом с достаточной точностью совпадает с вычисленным в кооридинатах (U_C, t) .

R, Om	1000	1400	1800	2200	2600	2800	3000
$2x_k$	1,6	2,3	2,75	3,15	3,5	3,6	1,9
$2x_{k+n}$	0,6	0,5	0,4	0,3	0,2	0,15	0,4
n	2	2	2	2	2	2	1
θ	0,49	0,763	0,964	1,176	1,431	1,589	1,558
σ_{θ}	0,006	0,01	0,02	0,07	0,08	0,14	0,07

Таблица 2: Зависимость $\theta = \theta(R)$.

3) Измеряем индуктивность L и R_L катушки для трёх значений частоты:

f , Γ ц	50	1000	5000
R_L , Om	11.122	18.720	38.5
L , м Γ н	204.51	199.95	200

Таблица 3: Значения R_L и L катушки при разных частотах.

4) Будем считать, что сопротивление катушки пропорционально частоте:

Тогда можно вычислить суммарное сопротивление контура: $R_{sum}=R+R_L$ 5) Построим график в координатах $\frac{1}{\theta^2}=f(\frac{1}{R_{sum}^2})$. Занесём все необходимые данные в таблицу:

$\frac{1}{\theta^2}$	1,686	1,594	1,07	0,778	0,520	0,450	0,386
$\sigma_{\frac{1}{\theta^2}}$	0,287	0,407	0,492	0,651	0,233	0,256	0,281
$\frac{1}{R_{sum}^2}$	9,75	5,01	3,04	2,04	1,47	1,26	1,10

Таблица 4: Зависимость $\frac{1}{\theta^2} = f(\frac{1}{R_{sum}^2})$

Погрешность $\sigma_{\frac{1}{\theta^2}}$ считали по формуле:

$$\sigma_{\frac{1}{\theta^2}} = \frac{2}{\theta^2} \frac{\sigma_{\theta}}{\theta}$$

По наклону графика вблизи начала координат определим $R_{kr}=2\pi\sqrt{\triangle Y/\triangle X}$ $R_{kr}\approx 2\cdot 3, 14\cdot 0, 616\cdot 3162, 3\approx 12, 2$ кОм.

Погрешность вычисляем по формуле:

$$\sigma_{R_{kr}} = \frac{1}{2} R_{kr} \frac{\sigma_a}{a} \approx 0,3$$

кОм.

Тогда итоговый ответ для R_{kr} , найденного из графика: $R_{kre}=12,2\pm0,3~kOm$

6) Сравним этот ответ с теоретическими выкладками:

 $R_{kr}=2\sqrt{L/C}, C=5 \text{ H}\Phi, L\approx 0,2 \text{ }\Gamma\text{H}.$

$$R_{kr} = 2\sqrt{0, 2*10^9/5} \approx 12,6 \ kOm$$

Погрешность вычисляем по формуле:

$$\sigma_{R_{kr}} = \frac{1}{2} R_{kr} \frac{\sigma_L}{L} \approx 0,3$$

Тогда итоговый ответ для R_{kr} , вычисленного теоретически: $R_{krt} = 12, 6 \pm 0, 3 \ kOm$ Видим, что полученные результаты для экспериментального и теоретического значения различаются всего на 2,4%.

4.3 Добротность

1) Рассчитаем добротность контура Q для максимального и минимального значений θ по картине затухающих колебаний и сравним с расчётом Q через параметры контура $Q = \frac{1}{R} \sqrt{\frac{L}{C}}$ Берем максимум и минимум сопротивления из второй таблицы. Погрешность определения добротности рассчитываем по формуле:

$$\sigma_Q = \frac{1}{2} Q \frac{\sigma_L}{L}$$

$$R_{min} = 1000 \ Om \quad Q = 6, 31 \pm 0, 02$$

$$R_{max} = 3000 \ Om \quad Q = 2, 11 \pm 0, 01$$

2) Рассчитаем добротность $Q=\frac{\pi}{\theta}$ по спирали на фазовой плоскости:

Аналогично возьмем минимум и максимум декремента из третьей таблицы. Погрешность вычисления добротности составит:

$$\begin{split} \sigma_Q &= Q \frac{\sigma_\theta}{\theta} \\ \theta_{min} &= 0, 49; \quad Q = 6, 41 \pm 0, 08 \\ \theta_{max} &= 1, 589; \quad Q = 1, 98 \pm 0, 17 \end{split}$$

По затуханию на обычной плоскости:

$$\begin{split} \sigma_Q &= Q \frac{\sigma_\theta}{\theta} \\ \theta_{min} &= 0,77; \quad Q = 4,01 \pm 0,31 \\ \theta_{max} &= 1,61; \quad Q = 1,95 \pm 0,71 \end{split}$$

Сведем результаты двух экспериментов в таблицы:

 Работа 3.2.4
 5
 Вывод

L	R_{kr} теор.	R_{kr} эксп	
200 мГн	$12,6 \pm 0,3 \; { m Om}$	$12,2 \pm 0,3 \; { m Om}$	
R	Q теор.	$f(\theta)$	Спираль
1000 Ом	$6,31 \pm 0,02$	$4,01 \pm 0,31$	$6,41 \pm 0,08$
3000 Ом	$2,11 \pm 0,01$	$1,95 \pm 0,71$	$1,98 \pm 0,17$

Таблица 5: Критическое сопротивление и добротность контуров с наибольшим и наименьшим затуханием

5 Вывод

В данной работе мы исследовали свободные колебания в электрическом колебательном контуре, а также вычислили некоторые из его параметров: добротность, логарифмический декремент, а также критическое сопротивление для разных параметров контура.

Основные результаты эксперимента приведены в таблице 5. Из неё видно, что результаты теоретического и экспериментальных значений критического сопротивления сходятся довольно точно, а вот значение добротности, как $f(\theta)$ оказалось далеко от двух других, одно из которых теоретическое, а другое - экспериментальное.