

Evaluation of Real-time Property in Embedded Linux

LinuxCon Japan 2014

Hiraku Toyooka, Hitachi

<hiraku.toyooka.gu@hitachi.com>

- Hiraku Toyooka
 - Software engineer at Hitachi

- Working on operating systems
 - Linux (mainly) for industrial control systems
 - Server, <u>Embedded</u>
 - Tracing
 - Real-time virtualization (partitioning)

- What is a real-time system?
- Real-time features in Linux
- Tuning points for evaluation
- Performance measurement

What is a real-time system?

What is a real-time system?

- Real-time system must always handle events within deadlines
 - Real-time doesn't mean fast
 - Worst case performance is important
 - Deterministic behavior is required

Robot control (inverted pendulum)

6

Real-time features in Linux

Linux and real-time

- Linux is originally designed to be a general purpose OS (GPOS)
 - High functionality
 - Average or peak performance is usually important for GPOS
 - Latency varies widely

- Current mainline Linux has a variety of realtime features
 - Certain level of deterministic behavior by appropriate configurations and tuning

- PREEMPT_RT patchset reduce maximum latency much more
 - Many real-time features in mainline are derived from PREEMPT RT

(Some) Real-time features

- Mainline
 - Fixed-priority scheduling
 - Kernel preemption
 - High resolution timer (hrtimer)
 - IRQ thread
 - Others
- Out of tree
 - PREEMPT_RT patchset

Fixed-priority scheduling

- Linux has three types of schedulers
 - Completely Fair Scheduler (CFS)
 - Policy: SCHED_OTHER(Default), _BATCH, _IDLE
 - Task has dynamic-priority based on time slice (nondeterministic)
 - Real-time scheduler
 - Policy: SCHED_FIFO, _RR
 - Task has fixed-priority (deterministic)
 - Deadline scheduler
 - Policy: SCHED_DEADLINE
 - Merged in 3.14

Fixed-priority scheduling (cont.)

- There are per-cpu runqueues in Linux
 - RT tasks are always dispatched prior to CFS tasks

Kernel preemption

 Without preemption support: when higher priority tasks wake up, they are delayed until current task exits from a syscall or yields explicitly

CONFIG_PREEMPT

- Enables forcible context-switch even in kernel mode
- Though spin-locks disable preemption
- Improves response latency of high priority tasks

High resolution timer (hrtimer)

- Some real-time systems start processing triggered by periodic timer events
 - But timer_list subsystem has only tick(jiffies) resolution
 - Tick intervals of 1~10ms are too long
 - Tick-independent software timer is necessary
- CONFIG_HIGH_RES_TIMERS
 - Enables software timer mechanism which supports nanosecond resolution
 - Userspace programs using nanosleep, itimers or posix-timers can benefit from this feature

- Move a part of the interrupt handler code to a kernel thread
 - reduce interrupt-disabled section
 - prioritize interrupt handlers

- CONFIG_IRQ_FORCED_THREADING
 - Force threading of all interrupt handlers
 - except handlers marked IRQF_NO_THREAD
 - Enabled by boot parameter "threadirqs"

IRQ thread (cont.)


```
# ps | grep irq
    3 root
                 0:00 [ksoftirgd/0]
   64 root
                 0:00 [irq/12-edma]
   65 root
                 0:00 [irq/14-edma_err]
  203 root
                 0:00 [irq/70-omap_i2c]
  921 root
                 0:00 [irg/30-omap i2c]
  956 root
                 0:00 [irq/18-musb-hdr]
  959 root
                 0:00 [irq/19-musb-hdr]
  967 root
                 0:00 [irq/75-rtc0]
  968 root
                 0:00 [irq/76-rtc0]
                 0:00 [irq/64-mmc0]
  977 root
  978 root
                 0:00 [irq/166-mmc0]
  988 root
                 0:00 [irq/77-wkup m3]
  989 root
                 0:00 [irq/78-wkup_m3_]
                 0:00 [irq/120-smartre]
  990 root
  991 root
                 0:00 [irq/121-smartre]
 1006 root
                 0:00 [irg/72-OMAP UAR]
```


16

- PI (Priority Inheritance) mutex
- Preemptive RCU
- RT group scheduling
- RT throttling
- Full tickless (no_hz)
- etc...

PREEMPT_RT patchset

- provides more deterministic behavior
 - https://www.kernel.org/pub/linux/kernel/projects/rt/
 - It consists of lots of patches lowering maximum latency
 - There are 318 patches in 3.14.2-rt3

- CONFIG_PREEMPT_RT_FULL
 - allows "full preemption"
 - nearly all of the kernel can be preempted
 - replaces spin-locks with mutexes (Sleeping spin-lock)
 - many other improvements

Tuning points for evaluation

Tuning points for evaluation

- Clocksource resolution
- Task priority
- Task switching cost
- Page faults
- Multi-core
- Lock debugging

Clocksource resolution

- Getting and updating clock time depend on clocksource
 - gettimeofday(2), clock_gettime(2)
- This means that time measurement is affected by clocksource resolution
 - Confirmation is necessary before measurement

```
# dmesg | grep clock
[0.000000] OMAP clocksource: GPTIMER1 at <u>24000000 Hz</u>
[0.000000] sched_clock: 32 bits at <u>24MHz, resolution 41ns,</u>
wraps every 178956ms
```

Task priority

- We need to use RT policy and priorities for deterministic scheduling
 - sched_setscheduler(2) can change those scheduling attributes of specified tasks
 - In pthread library, new thread's scheduling attributes can be set by pthread_attr_setschedparam(3)
 - Do not forget to call pthread_attr_setinheritsched(3) with PTHREAD_EXPLICIT_SCHED

Task switching

- Process switching cost is significantly larger than thread switching
 - Process switching needs to flush TLB
 - If your real-time application is composed of lots of processes, process switching measurement is necessary

- Memory allocation to userspace is usually only virtual address space allocation
 - Initial memory access causes page fault, and this produces more latency
 - Page-out to swap area also causes page faults
- To prevent page faults, mlockall(2) is used
 - All memory-mapped pages remain on physical memory after mlockall(2)

- In multi-core SoC, tasks can move from local core to remote cores
 - This migration causes additional latency
 - Tasks can be fixed to a specific core by cpuset cgroup

- Influence of unrelated interrupt handling
 - It's effective to fix real-time tasks to cores which doesn't handle unrelated IRQs
 - after setting IRQ affinity.

Lock debugging features

- Lock debugging features add much more latency
 - Disabling them is effective

Performance measurement

Measured items [1/2]

- Interrupt response time
 - Time period between expiry of a hardware timer and scheduling of a userspace task
 - measured by cyclictest (in rt-tests)
 - cyclictest -a 0 -p 99 -m -n -l 100000 -q -histogram=500
 - -a: set CPU affinity to CPU0
 - -p 99: set priority to 99
 - -m: use mlockall
 - -n: use clock_nanosleep to measure time
 - -I 100000: number of trials
 - -q: don't print anything while testing
 - --histogram=50: print histogram 0-49us after the test

- Task switching time
 - measured by own program (though ptsematest exists...)
 - Cause thread switching by POSIX semaphore 100k times

Evaluation environment

Board	BeagleBone Black	Altima Helio board	
SoC	TI Sitara AM3359	Altera Cyclone V	
CPU	ARM Cortex-A8 (1GHz)	ARM Cortex-A9 (800MHz x2)	
L1 cache (inst. / data)	32KB / 32KB	32KB / 32KB	
L2 cache	256KB	512KB	
Main memory	512MB	1GB	
Linux version	3.14.0	3.14.0 [1]	
PREEMPT_RT version	3.14.0-rt1	3.14.0-rt1	

[1] http://rocketboards.org/gitweb/?p=linux-socfpga.git

30

Comparison

- Three types of kernels
 - "No preempt"
 - "Preempt"
 - "Preempt RT"

Settings	"No Preempt"	"Preempt"	"Preempt RT"
Kernel version	3.14.0	3.14.0	3.14.0-rt1
Preemption	No	Yes	Yes
Forced IRQ threading	No	Yes	Yes
Full preemption (RT patch)	No	No	Yes

Interrupt response time (BeagleBoneBlack)

Interrupt response time (Helio)

Task switching time (BeagleBoneBlack)

Task switching time (Helio)

35

Conclusion

- Current mainline Linux has lots of real-time features
- PREEMPT_RT patchset provides more deterministic behavior
- We can reduce maximum latency by using these features with appropriate configuration and tuning

Trademarks

- Linux is a trademark of Linus Torvalds in the United States, other countries, or both.
- Other company, product, or service names may be trademarks or service marks of others.