

☐ Clustering unidimensional:

■ Dado un conjunto de n puntos en orden creciente, $x_1, x_2, ... x_n$, y un entero $k \ge 1$, asignar cada uno de los puntos x_i a un subconjunto S_j , $1 \le j \le k$, de forma que se minimice

☐ Propiedad básica:

• Si ordenamos en orden creciente los puntos medios de los subconjuntos S_i , c_1 , c_2 , ... c_k , entonces se verifica

$$max(S_j) \le min(S_{j+1}) \qquad 1 \le j < k$$

Introducción a Big Data con Python - Cátedra Accenture Digital-UPM de Big Data

☐ Algoritmo (programación dinámica):

• Calcular la solución óptima D[i,m] para todo $1 \le i \le n$ y $1 \le m \le k$

$$D[i,m] = \min_{m \le j \le i} \{ D[j-1,m-1] + d(x_j,...,x_i) \}$$

 $d(x_j,...x_i)$ es la suma de distancias al cuadrado desde $x_i,...,x_i$ a su media

Nota:
$$D[i,m] = 0$$
 si $i \le m$

$$D[i,1] = \sum_{1 \le j \le i} (x_j - c)^2 \quad c = \frac{1}{i} \sum_{1 \le j \le i} x_j, \quad i \ge 2$$

Introducción a Big Data con Python - Cátedra Accenture Digital-UPM de Big Data

- □ Cálculo de los subconjuntos S_i:
 - A lo largo del algoritmo calcular la matriz B[i,m] que contiene el índice j de elemento más pequeño x_i en el subconjunto m (S_m)

$$B[i,m] = \underset{m \le j \le i}{\text{indmin}} \{ D[j-1,m-1] + d(x_j,...,x_i) \}$$

- ☐ Salida del algoritmo:
 - Valor mínimo de la función a optimizar D[n,k]
 - Subconjuntos solución S_i $1 \le j \le k$:

$$S_k = \{x_{j1}, ..., x_n\}$$
 con j1=B[n,k]
 $S_{k-1} = \{x_{j2}, ..., x_{j1-1}\}$ con j2=B[j1-1,k-1]
 $S_{k-2} = \{x_{j3}, ..., x_{j2-1}\}$ con j3=B[j2-1,k-2]

Introducción a Big Data con Python - Cátedra Accenture Digital-UPM de Big Data

