

Wydział Mechaniczny Energetyki i Lotnictwa Politechnika Warszawska

Projektowanie

mgr inż. Grzegorz Kamiński

18 marca 2025

Wprowadzenie

Wałem lub osią nazywamy element maszyny ujęty w łożyskach i służący do podtrzymania innych elementów maszyny, wykonujących ruchy obrotowe lub wahadłowe. **Wały** służą do przenoszenia momentu obrotowego. Dodatkowo mogą być one obciążone momentem zginającym i siłą wzdłużną. Rozróżnia się wały dwu- i wielopodporowe, sztywne, półsztywne i giętkie.

Osie to elementy, które nie przenoszą momentu obrotowego, a są obciążone momentem gnącym. Mogą być one ruchome (mają wówczas kształt podobny do wału) lub nieruchome. Krótkie osie nazywa się **sworzniami** [1] [2].

Dobór materiału

S275JR i **E295** — wały maszynowe, korbowe i osie poddane słabym obciążeniom.

C35, **C45** i **C55** — wały poddane większemu obciążeniu i temperaturze (do 500°*C*)

34CrMo4, **42CrMo4**, **41Cr4** — wały, na które działają silne obciążenia zmienne i udarowe

15Cr2, **18CrMo4** — wały maszyn pracujących z dużymi obciążeniami zmiennymi i wysokimi obrotami.

Obliczenia wytrzymałościowe

Przystępując do projektowania, należy dokładnie ustalić obciążenie zewnętrzne zarówno pod względem ilościowym, jak i jakościowym. Trzeba przy tym wyraźnie wyróżnić zmiany wartości obciążenia zachodzące w czasie pracy i jego kierunek.

Jednowymiarowy stan naprężenia

Obciążenie jedynie momentem gnącym:

$$\sigma_g = \frac{M_g}{W_x} \le k_{go}$$

po uwzględnieniu: $W_x = \frac{\pi \cdot d^3}{32}$ sprawdzany warunek:

$$d \geq \sqrt[3]{\frac{32 \cdot M_g}{\pi \cdot k_{go}}}$$

Obciążenie jedynie momentem skręcającym:

$$au_s = \frac{M_s}{W_o} \leq k_{sj}$$

po uwzględnieniu: $W_o = \frac{\pi \cdot d^3}{16}$ sprawdzany warunek:

$$d \geq \sqrt[3]{\frac{16 \cdot M}{\pi \cdot k_{sj}}}$$

Wielowymiarowy stan naprężeń

Zastępcze wartości naprężeń w przypadku przewagi naprężeń normalnych:

$$\sigma_z = \sqrt{\sigma^2 + (\alpha \cdot \tau)^2}$$

a <mark>w</mark> przypad<mark>k</mark>u przew<mark>ag</mark>i naprę<mark>że</mark>ń stycz<mark>ny</mark>ch

$$au_{\mathsf{z}} = \sqrt{(\frac{1}{\alpha} \cdot \sigma)^+ au^2}$$

Współczynnik redukujący naprężenia

Współczynnik α oblicza się z proporcji naprężeń dopuszczalnych. Dla tego samego rodzaju cyklu:

$$\alpha = \frac{k_g}{k_s} = \frac{k_{gj}}{k_{sj}} = \frac{k_{go}}{k_{so}} \cong \sqrt{3}$$

dla obrotowego zginania i odzerowo-tętniącego skręcania:

$$\alpha = \frac{k_{gj} \cdot k_{go}}{k_{sj} \cdot k_{gj}} = \frac{k_{go}}{k_{sj}} \cong \frac{\sqrt{2}}{2}$$

Warunki wytrzymałościowe dla wielowymiarowego stanu naprężeń

 $\operatorname{Gdy} M_g \geq 2 \cdot M_s$

$$\sigma_{z} = rac{\sqrt{M_{g}^{2} + (rac{lpha}{2} \cdot M_{s})^{2}}}{W_{x}} \leq k_{go}$$

Gdy $M_g < 2 \cdot M_s$

$$\tau_{z} = \frac{\sqrt{(\frac{2}{\alpha} \cdot M_{g})^{2} + M_{s}^{2}}}{W_{o}} \le k_{sj}$$

po uwzględnieniu:

$$M_z = \sqrt{M_g^2 + (\frac{\alpha}{2} \cdot M_s)^2}$$

po uwzględni<mark>en</mark>iu:

$$M_z = \sqrt{(\frac{2}{\alpha} \cdot M_g)^2 + M_s^2}$$

sprawdzany warunek:

$$d \geq \sqrt[3]{\frac{32 \cdot M_z}{\pi \cdot k_{go}}}$$

sprawdzany warunek:

$$d \geq \sqrt[3]{\frac{16 \cdot M_z}{\pi \cdot k_{sj}}}$$

Warunki wytrzymałościowe dla wielowymiarowego stanu naprężeń

Jeżeli naprężenia ściskające (lub rozciągające) są na tyle duże to

$$\sigma_{\mathbf{z}} = \sqrt{(\sigma_{\mathbf{g}} + \sigma_{\mathbf{r}})^2 + (\alpha \cdot \tau_{\mathbf{s}})^2} = \sqrt{(\frac{M_{\mathbf{g}}}{W_{\mathbf{x}}} + \mathbf{n} \cdot \frac{P}{F})^2 + (\alpha \cdot \frac{M_{\mathbf{s}}}{W_{\mathbf{o}}})^2}$$

Gdzie:

- * P siła ściskająca wał;
- * F przekrój poprzeczny wału;
- * n- dla obustronnego zginania i odzerowo-tętniącego rozciągania n=0.5, w przypadku odwrotnym n=2. Jeżeli obliczenia są dokładne, to wartość n należy pomnożyć przez $\frac{k_g}{k_c}=1.1\div 1.3$.

Obliczenia dwupodporowych wałów prostych

- * Metoda analityczna;
- Metoda analityczno-wykreślna;
- * Metoda wykreślna.

Metoda analityczna

Równanie momentów obrotowych:

$$\sum r_i \cdot P_i = r_1 \cdot P_1 - r_2 \cdot P_2 = 0$$

rzuty sił na kierunki:

$$P_{ix} = P_i \cdot \sin(\alpha_i)$$

$$P_{iy} = P_i \cdot \cos(\alpha_i)$$

Metoda analityczna

Równanie równowagi:

$$R_{Bx} = -\frac{1}{l} \cdot \sum a_i \cdot P_{ix}$$

$$R_{By} = -\frac{1}{l} \cdot \sum a_i \cdot P_{iy}$$

$$R_{Ax} = -R_{Bx} - \sum P_{ix}$$

$$R_{Ay} = -R_{By} - \sum P_{iy}$$

$$M_{gxk} = -a_k \cdot R_{Ax} - \sum (a_k - a_i) \cdot P_{ix}$$

$$M_{gyk} = -a_k \cdot R_{Ay} - \sum (a_k - a_i) \cdot P_{iy}$$

Wypadkowe momenty zginające w obliczanym przekroju wynoszą:

$$M_{gk} = \sqrt{M_{gxk}^2 + M_{gyk}^2}$$

Metoda analityczna

Moment skręcający:

$$M_{sk} = \sum_{i} r_i \cdot P_i$$

Wyznaczenie momentu zastępczego oraz średnic wału

Metoda analityczno-wykreślna

Reakcje podpór i momenty zginające w poszczególnych płaszczyznach są obliczane analitycznie, natomiast sumowanie momentów wykonuje się wykreślnie. Wykresy M_{gx} i M_{gy} buduje się na podstawie obliczeń i sumuje je geometrycznie dzięki wprowadzeniu skali κ_M $N \backslash mm$.

Metoda analityczno-wykreślna

- * geometryczne złożenie M_{gx} i M_{gy} do M_a ,
- * geometryczne złożenie M_g i M_s do M_z ,
- * uproszczenie wykresu do M_o wyznaczenie średnic,
- wyznaczenie długości czopów i budowa zarysu rzeczywistego wałka.

Metoda wykreślna

Zamiast rachunkowego wyznaczania reakcji podpór oraz momentów M_{gx} i M_{gy} stosuje się wykreślne wyznaczanie tych wielkości za pomocą wieloboków sił i wieloboków sznurowych.

Kształtowanie wałów

- * na podstawie danych funkcjonalnych i wstępnych wymiarów kształtuje się czopy łożyskowe, czopy końcowe, powierzchnie bazowe i oporowe kół, łożysk itp., a następnie kształtuje się powierzchnie swobodne wału,
- pamiętać o sprzężeniu zwrotnym od pozostałych elementów węzła konstrukcyjnego,
- * zw<mark>róc</mark>ić uwagę na wytrzymałość zmęcze<u>nio</u>wą.

$$r_6 < \text{od fazy}$$
 $d_4 = d_{5-0,2}$

$$\frac{d_8}{d_9} = \frac{d_7}{d_8} = \frac{d_6}{d_7}$$

$$d_{11} = d_{10-0,1}$$

$$\frac{d_5}{d_3} = \frac{d_3}{d_2} \qquad r > \frac{d_5}{d_8}$$

Uwzględnianie rowków wpustowych w średnicy teoretycznej

zbliżony do statycznego cykl obciążenia

zmienny <mark>c</mark>ykl obciążenia, *M*_s jest niewielki

zmienny cykl obciążenia, M_s jest duży

Wskaźniki na zginanie i skręcanie

$$W_X = \frac{\pi \cdot D^3}{32},$$

$$W_O = \frac{\pi \cdot D^3}{16}$$

$$W_{x} = \frac{\pi \cdot D^{3}}{32} - \frac{b \cdot s \cdot (2D - s)^{2}}{16 \cdot D}$$

$$W_{o} = \frac{\pi \cdot D^{3}}{16} - \frac{b \cdot s \cdot (2D - s)^{2}}{16 \cdot D}$$

$$W_{X} = \frac{\pi \cdot D^{3}}{32} - \frac{b \cdot s \cdot (2D - s)^{2}}{8 \cdot D},$$

$$W_{O} = \frac{\pi \cdot D^{3}}{16} - \frac{b \cdot s \cdot (2D - s)^{2}}{8 \cdot D},$$

Sprawdzanie ugięcia i skręcenia

Obliczanie strzałek i kątów ugięcia metodą analityczną (tzn. przez napisanie równania osi ugiętej) w przypadku projektowania wałów maszynowych **nie ma** większego zastosowania.

Stosuje się

- * superpozycję ugięcia przypadków elementarnych,
- * metodę Mohra.

$$R_A = R_B = \frac{P}{2}$$

$$M_{max} = \frac{P \cdot l}{4} \, dla \, x = \frac{l}{2}$$

$$f_{max} = f_C = \frac{P \cdot l^3}{48 \cdot E \cdot J}$$

$$v_{\mathsf{A}} = -v_{\mathsf{B}} = -\frac{P \cdot l^2}{16 \cdot E \cdot J}$$

Moment gnący

$$R_A = P \cdot \frac{a}{l}, \quad R_B = P \cdot \frac{l-a}{l},$$

$$M_{max} = P \cdot \frac{a \cdot (l-a)}{l} dla x = l - a,$$

$$v_A = -\frac{P \cdot a \cdot (l^2 - a^2)}{6 \cdot l \cdot E \cdot J}, \quad v_B = -\frac{P \cdot a \cdot (l - a) \cdot (2 \cdot l - a)}{6 \cdot l \cdot E \cdot J}$$

$$f_C = \frac{P \cdot a^2 \cdot (l-a)^2}{3 \cdot l \cdot E \cdot J} \operatorname{dla} x \le \frac{1}{2}l,$$

$$f_{max} = \frac{P \cdot a}{3 \cdot l \cdot E \cdot J} \cdot (\frac{(l^2 - a^2)}{3})^{\frac{3}{2}} dla x = \sqrt{\frac{1}{3} \cdot (l^2 - a^2)}$$

$$R_A = -R_B = -\frac{M}{l}$$

 $M_{max} = M \, dla \, x = 0,$

$$v_A = -\frac{M \cdot l}{3 \cdot E \cdot J}, \quad v_B = \frac{M \cdot l}{6 \cdot E \cdot J},$$

$$f = \frac{M \cdot l^2}{16 \cdot E \cdot J} \, \text{dla} \, x = \frac{1}{2} l$$

$$f_{max} = \frac{M \cdot l^2}{9\sqrt{3} \cdot E \cdot J} \operatorname{dla} x = l \cdot \frac{3 - \sqrt{3}}{3}$$

Siła tnąca:

Moment gnący:

$$R_A = R_B = \frac{M}{l},$$

$$M_{max} = M \cdot \frac{l-a}{l} \text{ dla } a \le \frac{1}{2}l,$$

$$v_A = \frac{M}{6 \cdot l} \cdot (2l^2 - 6la + 3a^2),$$

$$v_B = -\frac{M}{6 \cdot l} \cdot (l^2 - 3a^2),$$

$$f_C = \frac{M \cdot a}{3 \cdot l} \cdot (l^2 - 3la + 2a^2)$$

$$v_C = v_B = \frac{P \cdot a \cdot (l^2 - a^2)}{6 \cdot l \cdot E \cdot J}$$

$$f_{C} = v_{B} \cdot b = \frac{P \cdot a \cdot b \cdot (l^{2} - a^{2})}{6 \cdot l \cdot E \cdot J},$$

$$v_B = \frac{v_C}{16 \cdot E \cdot J} \operatorname{dla} a = \frac{1}{2}a,$$

$$f_C = \frac{P \cdot l^2 \cdot b}{16 \cdot E \cdot J} \, dla \, a = \frac{1}{2} a$$

Moment gnący:

$$R_A = P \cdot \frac{a}{l}, \quad R_B = P \cdot \frac{l+a}{l},$$
 $M_{max} = P \cdot l \text{ dla } x = l,$

$$v_A = \frac{P \cdot l \cdot a}{6 \cdot E \cdot J}, \quad v_B = -\frac{P \cdot l \cdot a}{3 \cdot E \cdot J},$$

$$v_{\mathsf{C}} = -\frac{P \cdot a}{6 \cdot E \cdot J} \cdot (2l + 3a),$$

$$f_C = \frac{P \cdot a^2}{3 \cdot E \cdot J} \cdot (l + a),$$

$$f_{max} = -\frac{P \cdot l^2 \cdot a}{9\sqrt{3} \cdot E \cdot J} \, dla \, x = \frac{l}{\sqrt{3}}$$

$$v_B = v_C = \frac{M \cdot l}{6 \cdot E \cdot J},$$

$$f_C = v_C \cdot a = \frac{M \cdot l \cdot a}{6 \cdot E \cdot J}$$

$$R_A = R_B = \frac{M}{l},$$
 $M_{max} = M,$
 $v_A = -\frac{M \cdot l}{6 \cdot E \cdot J}, \quad v_B = \frac{M \cdot l}{3 \cdot E \cdot J},$
 $v_C = \frac{M}{3 \cdot E \cdot J} \cdot (l + 3a),$

 $f_{max} = -\frac{M \cdot l^2}{9\sqrt{3} \cdot F \cdot J} \, dla \, x = \frac{l}{\sqrt{3}}$

Metoda Mohra

- * wykres momentów gnących traktuje się formalnie jako obciążenie ciągłe nazwane obciążeniem fikcyjnym $q^*(z)$ dla nowej belki,
- * wyznaczenie wykresów siły tnącej $T^*(z)$ i momentów gnących $M_g^*(z)$,
- * wyznaczenie strzałki i kątów ugięcia.

$$f = \frac{M_g^*}{E \cdot J} \qquad v = \frac{T_g^*}{E \cdot J}$$

Tworzenie belki fikcyjnej

Układ rzeczy <mark>wisty</mark>	Szkic	Układ fi <mark>kcyjny</mark>	Sz <mark>kic</mark>
Koniec swobodny	-	Utwierdzenie	
Utwierdzenie		Koniec swobodny	0
Podpora przegubowa pośrednia		Przegub	-
Przegub		Podpora pr <mark>zegub</mark> owa pośrednia	
Podpora przeg <mark>ubowa</mark> skrajna	111111	Podpora prz <mark>egub</mark> owa skrajna	

Dyskretyzacja obciążenia ciągłego

Zastępowanie poszczególnych pól rzeczywistego wykresu momentów podzielonego przez J, wektorami o równej im wartości umieszczonymi w środkach ciężkości tych pól (S_i) .

Pamiętać że należy:

- przyjmować zawsze rzeczywiste maksymalne wartości momentów gnących, a nie momenty gnące zastępcze,
- * chcąc określić linię ugięcia z uwzględnieniem jej przestrzennego charakteru, należy dokonać obliczenia dla kierunku x i y osobno, a następnie złożyć w każdym przekroju oddzielnie.

Określenie ugięć dopuszczalnych

- * w budowie przekładni zębatych (przeważnie) $f_{dop} = 0.005 \div 0.001 \cdot m$, gdzie m oznacza moduł koła zębatego,
- * w budowie silników elektrycznych $f_{dop} < 0.001 \cdot \delta$, gdzie δ oznacza wielkość szczeliny między wirnikiem a stojanem,
- * dla wałów innych maszyn $f_{dop}=2\div 3\cdot 10^{-4}\cdot l$, gdzie l oznacza rozstaw między łożyskami.

Dopuszczalne kąty ugięcia

Rodzaj łożysk	Dopuszczalny kąt ugięcia
Kulkowe wahliwe	0,07
Barył <mark>ko</mark> we jed <mark>no</mark> rzędow <mark>e</mark>	$0.035 \div 0.07$
Kulkowe zwykłe (p	asowanie - K5/h6)
a) luz poprzeczny normalny	0,0023
b) luz poprzeczny C3	0,0035
c) luz poprzeczny C4	0,0047
Wałeczkowe	e i stożkowe 👚 👚 👚
a) łożyska wałeczkowe typu N i NU serii 10, 2, 3, 4	0,00116
b) pozostałe	0,0058
Slizg	owe C
samonastawne	0,001
sztywne	0,0003

Obliczanie kątów skręcenia

Kąt skręcenia wału od znanego momentu skręcającego

$$\varphi = \frac{M_{\rm s} \cdot l}{G \cdot J_o} [rad]$$

Do porównania używa się pojęcia jednostkowego kąta skręcenia

$$\varphi' = \frac{\varphi}{l} = \frac{M_s}{G \cdot J_o} [rad/m]$$

Wartości graniczne wynoszą:

- * dla obciążeń jednostronnie zmiennych $\varphi' = 0.004 \left[rad/m \right]$
- * ob<mark>cią</mark>żeń ob<mark>ust</mark>ronnie zmiennych $arphi'=0,\!00$ 25 [rad/m]

D<mark>la wałów o zmiennej sztywnośc</mark>i sprawdza się w<mark>ar</mark>unek:

$$\varphi = M_{s} \cdot \sum_{i=1}^{n} \frac{l_{i}}{G \cdot J_{oi}} = \frac{M_{s}}{G} \sum_{i=1}^{n} \frac{l_{i}}{J_{oi}} \leq \varphi_{dop}$$

Obliczyć reakcje łożysk oraz średnicę gładkiej osi (belki) zginanej siłami: $P_1 = 1000 \, \text{N}$, $P_2 = 4000 \, \text{N}$ przyłożonych do kół bosych K_1 i K_2 . Naprężenia dopuszczalne materiału osi (stal C35) wynoszą $k_{go} = 64 \, \text{MPa}$, a dopuszczalna strzałka ugięcia $f_{dop} = 0.0005 \cdot l$. Dane wymiary: $a = 200 \, \text{mm}$, $b = 300 \, \text{mm}$, $c = 500 \, \text{mm}$, $l = b + c = 800 \, \text{mm}$.

Równania równowagi:

$$M_D: -P_1 \cdot (a+b+c) - R_B \cdot (b+c) + P_2 \cdot c = 0$$

 $\sum P_y: -P_1 - R_B + P_2 - R_D = 0$

Momenty gnące wynoszą:

Przedział	Wzór m	Wartość
x = 0		0 Nm
$x \in (0,a)$	$-P_1 \cdot x$	
x = a	Sind Sind Sind Sind Sind Sind	-200 Nm
$x \in (a,a+b)$	$-P_1 \cdot x - R_B \cdot (x - a)$	0
x = a + b		$-875\mathrm{Nm}$
$x \in (a+b,a+b+c)$	$-P_1 \cdot x - R_B \cdot (x-a) + P_2 \cdot (x-a-b)$	400
x = a + b + c	offer offer offer offer	0 Nm

$$d \geq \sqrt[3]{\frac{32 \cdot M_{gmax}}{\pi \cdot k_{go}}} \cong 52 \, mm$$

 $M_{gmax} = |M_{gC}| = 875 \, \text{Nm}$

Maksymalną strzałkę ugięcia osi wyznaczono metodą analityczno-wykreślną. Dokonano dyskretyzacji obciążenia ciągłego:

$$S_{1} = \frac{1}{2} \cdot M_{g}(a) \cdot a = 20 \text{ Nm}^{2}$$

$$S_{2} = M_{g}(a) \cdot b = 60 \text{ Nm}^{2}$$

$$S_{3} = \frac{1}{2} \cdot (M_{g}(a+b) - M_{g}(a)) \cdot b = 101,25 \text{ Nm}^{2}$$

$$S_{4} = \frac{1}{2} \cdot M_{g}(a+b) \cdot c = 218,75 \text{ Nm}^{2}$$

Równania równowagi dla fikcyjnej belki:

$$\sum M_{D} : \bar{R_{B}} \cdot (b+c) - S_{2} \cdot (\frac{1}{2} \cdot b+c) - S_{3} \cdot (\frac{1}{3} \cdot b+c) - S_{4} \cdot \frac{2}{3} \cdot c = 0$$

$$\sum F_{y} : -\bar{R_{B}} + S_{2} + S_{3} + S_{4} - \bar{R_{D}} = 0$$

$$\sum F_{y} : -\bar{R_{A}} + S_{1} + \bar{R_{B}} = 0$$

$$\sum M_{A} : \bar{M_{A}} - \bar{R_{B}} \cdot a - S_{1} \cdot \frac{2}{3} \cdot a = 0$$

$$\bar{R}_{B} = \frac{S_{2} \cdot (\frac{1}{2} \cdot b + c) + S_{3} \cdot (\frac{1}{3} \cdot b + c) + S_{4} \cdot \frac{2}{3} \cdot c}{b + c} = 215,83 \text{ Nm}^{2}$$

$$\bar{R}_{D} = -\bar{R}_{B} + S_{2} + S_{3} + S_{4} = 164,17 \text{ Nm}^{2}$$

$$\bar{R}_{A} = S_{1} + \bar{R}_{B} = 235,83 \text{ Nm}^{2}$$

$$\bar{M}_{A} = \bar{R}_{B} \cdot a + S_{1} \cdot \frac{2}{3} \cdot a = 45,83 \text{ Nm}^{3}$$

Momenty g<mark>ną</mark>ce dla f<mark>ik</mark>cyjnej b<mark>el</mark>ki:

Przedział	Wzór	Wartość
x = 0		$45,83 \text{Nm}^3$
$x \in (0, \frac{2}{3} \cdot a)$	$\bar{M_A} - \bar{R_A} \cdot x$	In an af
$x = \frac{2}{3} \cdot a$		14,39 Nm
$x \in (\frac{2}{3} \cdot a, a)$	$\bar{M_A} - \bar{R_A} \cdot x + S_1 \cdot (x - \frac{2}{3} \cdot a)$	
x = a		0 Nm ³
$x \in (a, a + \frac{1}{2} \cdot b)$	$-\bar{R_B} \cdot (x-a)$	
$x = a + \frac{1}{2} \cdot b$		$-32,375 \text{Nm}^3$
$x \in (a + \frac{1}{2} \cdot b, a + \frac{2}{3} \cdot b)$	$-\bar{R_B}\cdot(x-a)+S_2\cdot(x-a-\frac{1}{2}\cdot b)$	In "I
$x = a + \frac{2}{3} \cdot b$		$-40,17\mathrm{Nm}^3$
$x \in (a + \frac{2}{3} \cdot b, a + b + \frac{1}{3} \cdot c)$	$-\bar{R_B} \cdot (x-a) + S_2 \cdot (x-a-\frac{1}{2} \cdot b) + S_3 \cdot (x-a-\frac{2}{3} \cdot b)$	non-
$x = a + b + \frac{1}{3} \cdot c$	din an din an din an din an din an din	$-54,72{\rm Nm}^3$
$x \in (a+b+\frac{1}{3}\cdot c, a+b+c)$	$-R_B \cdot (x-a) + S_2 \cdot (x-a-\frac{1}{2} \cdot b) + S_3 \cdot (x-a-\frac{2}{3} \cdot b) + S_4 \cdot (x-a-b-\frac{1}{3} \cdot c)$	
x = a + b + c		0 Nm ³

Maksymalny moment gnący dla belki fikcyjnej wyznacza największe ugięcie belki ($M_{Amax} = 54.72 \, Nm^3$, $E = 210 \, GPa$):

$$y_A = \frac{M_{Amax}}{E \cdot J} = \frac{64 \cdot M_{Amax}}{E \cdot \pi \cdot d^4} \le f_{dop}$$

$$d \ge \sqrt[4]{\frac{64 \cdot M_{Amox}}{E \cdot \pi \cdot f_{dop}}} = 60,36 \, \text{mm}$$
Przyjęto $d = 62 \, \text{mm}$.

Obliczyć średnicę wału w miejscu osadzenia kół zębatych. Wał jest obciążony siłami międzyzębnymi przekładni zębatej walcowej o zębach prostych. Na koło 1 działają siły: obwodowa $P_{o1}=11950~N$ i promieniowa $P_{r1}=4350~N$, na koło 2 odpowiednio: $P_{o2}=5370~N$ i $P_{r2}=1950~N$. Obliczenia należy wykonać dla następujących wymiarów: $r_2=160~mm$, a=80~mm, b=100~mm, c=90~mm. Wał wykonano ze stali C45, dla której: $k_{go}=78~MPa$, $k_{sj}=95~MPa$.

Równania równowagi:

$$\sum_{x} F_{y} : -R_{Ay} - P_{r1} + P_{r2} - R_{Dy} = 0$$

$$\sum_{x} M_{A} : -P_{r1} \cdot a + P_{r2} \cdot (a+b) - R_{Dy} \cdot (a+b+c) = 0$$

$$R_{Dy} = \frac{-P_{r1} \cdot a + P_{r2} \cdot (a+b)}{a+b+c} = 11,11 N$$

$$R_{Ay} = \frac{-P_{r1} + P_{r2} - R_{Dy}}{P_{r2} - R_{Dy}} = -2411,11 N$$

Momenty g<mark>ną</mark>ce w p<mark>un</mark>ktach w<mark>y</mark>noszą:

Przedział Przedział	Wzór	Wartość
x = 0		0 Nm
$x \in (0,a)$	$R_{Ay} \cdot x$	m m
x = a	00000	-192,88 Nm
$x \in (a,a+b)$	$R_{Ay} \cdot x + P_{r1} \cdot (x - a)$	
x = a + b	un sun sun sun sun sun	1,0 Nm
$x \in (a+b,a+b+c)$	$R_{Ay} \cdot x + P_{r1} \cdot (x-a) - P_{r2} \cdot (x-a-b)$	
x = a + b + c		0 Nm

Równania równowagi:

$$\sum_{z} F_{z} : R_{Az} - P_{o1} - P_{o2} + R_{Dz} = 0$$

$$\sum_{z} M_{A} : P_{o1} \cdot a + P_{o2} \cdot (a + b) - R_{Dz} \cdot (a + b + c) = 0$$

$$R_{Dz} = \frac{P_{o1} \cdot a + P_{o2} \cdot (a+b)}{a+b+c} = 7120,74 \text{ N}$$

$$R_{Az} = \frac{P_{o1}}{P_{o1}} + \frac{P_{o2}}{P_{o2}} - R_{Dz} = \frac{10199,26 \text{ N}}{P_{o2}}$$

Momenty gnące w punktach wynoszą:

Przedział	Wzór	Wartość
x = 0	and the sum that t	0 Nm
$x \in (0,a)$	$R_{Az} \cdot x$	0
x = a		815,94 Nm
$x \in (a,a+b)$	$R_{Az} \cdot x - P_{o1} \cdot (x - a)$	6
x = a + b		640,87 Nm
$x \in (a+b,a+b+c)$	$R_{Az} \cdot x - P_{o1} \cdot (x-a) - P_{o2} \cdot (x-a-b)$	alli all
x = a + b + c	00000	0 Nm

Momenty gnące wypadkowe w punktach B i C wynoszą:

$$M_{gB} = \sqrt{M_{gyB}^2 + M_{gzB}^2} = 838,43 \text{ Nm}$$
 $M_{gC} = \sqrt{M_{gyC}^2 + M_{gzC}^2} = 640,87 \text{ Nm}$

Up<mark>ro</mark>szczon<mark>o</mark> przebie<mark>g momentu</mark> gnące<mark>go</mark> między <mark>p</mark>unkam<mark>i B</mark> i C.

Wał jest skręcany stałym momentem skręcającym na odcinku BC:

 $= P_{o2} \cdot r_2 = 859.2 \text{ Nm}$

Ponieważ $M_q < 2 \cdot M_s$

$$M_{zB} = \sqrt{(\frac{2 \cdot k_{sj}}{k_{go}} \cdot M_{gB})^2 + M_s^2} = 2215,7 \text{ N}$$

$$M_{zC} = \sqrt{(\frac{2 \cdot k_{sj}}{k_{go}} \cdot M_{gC})^2 + M_s^2} = 1781,91 \text{ N}$$

Średnica wału w punktach B i C wynosi:

$$d_{B} \ge \sqrt[3]{\frac{16 \cdot M_{ZB}}{\pi \cdot k_{sj}}} = 49,16 \text{ mm}$$
 $d_{C} \ge \sqrt[3]{\frac{16 \cdot M_{zC}}{\pi \cdot k_{sj}}} = 45,71 \text{ mm}$

Przyjęto:
$$d_B = 50 \text{ mm}, d_C = 46 \text{ mm}$$

Na wale dwupodporowym osadzono dwa koła zębate o zębach śrubowych i promieniach tocznych $r_1=155\,mm$, $r_2=62.5\,mm$. Na koło 1 działają siły: obwodowa $P_{o1}=1805\,N$, promieniowa $P_{r1}=679\,N$ i wzdłużna $P_{w1}=484\,N$, natomiast na koło 2 odpowiednio: $P_{o2}=4480\,N$, $P_{r2}=1610\,N$ i $P_{w2}=790\,N$. Określić teoretyczny (z warunku wytrzymałościowego) i rzeczywisty zarys wału wykonanego ze stali 15Cr2, dla której: $k_{go}=80\,MPa$, $k_{sj}=85\,MPa$. Dane wymiary: $a=80\,mm$, $b=120\,mm$, $c=80\,mm$.

Równania równowagi w płaszczyźnie XY:

$$\sum_{x} F_{y} : R_{Ay} - P_{r1} - P_{r2} + R_{Dy} = 0$$

$$\sum_{x} M_{A} : r_{1} \cdot P_{w1} + a \cdot P_{r1} + (a+b) \cdot P_{r2} - r_{2} \cdot P_{w2} - (a+b+c) \cdot R_{Dy} = 0$$

 $\frac{(a+b)\cdot P_{r2} - r_2\cdot P_{w2}}{r_1} = 1435,59 \text{ N}$

Momenty gnące w punktach B i C zmieniają się skokowo, stąd należy w każdym z punktów obliczać dwie wartości momentu M_{qL} i M_{qP} .

Przedział	Wzór	Wartość
x = 0		0 <i>Nm</i>
$x \in (0,a)$	$R_{Ay} \cdot x$	All I
$x_L = a$		68,27 Nm
$x_P = a$	m	143,29 Nm
$x \in (a, a+b)$	$R_{Ay} \cdot x + P_{w1} \cdot r_1 - P_{r1} \cdot (x - a)$	4
$x_L = a + b$		$164,22\mathrm{Nm}$
$x_P = a + b$	m cun cun cun cun cun cun cun cun cun	114,85 Nm
$x \in (a+b,a+b+c)$	$R_{Ay} \cdot x + P_{w1} \cdot r_1 - P_{r1} \cdot (x - a) - P_{w2} \cdot r_2 - P_{r2} \cdot (x - a - b)$	
x = a + b + c		0 Nm

Równania równowagi w płaszczyźnie XZ:

$$\sum_{z} F_{z} : R_{Az} - P_{o1} + P_{o2} - R_{Dz} = 0$$

$$\sum_{z} M_{A} : a \cdot P_{o1} - (a+b) \cdot P_{o2} + (a+b+c) \cdot R_{Dz} = 0$$

$$R_{Dz} = \frac{-a \cdot P_{o1} + (a+b) \cdot P_{o2}}{a+b+c} = 2684,29 \text{ N}$$

$$R_{Az} = P_{o1} - P_{o2} + R_{Dz} = 9,29 \text{ N}$$

Przedział	Wzór	Wartość
x = 0	dill and dill and dill and	0 Nm
$x \in (0,a)$	$R_{Az} \cdot x$	
x = a		0,74 Nm
$x \in (a,a+b)$	$R_{Az} \cdot x - P_{o1} \cdot (x - a)$	
x = a + b		$-214,74{\rm Nm}$
$x \in (a+b,a+b+c)$	$R_{Az} \cdot x - P_{o1} \cdot (x-a) + P_{o2} \cdot (x-a-b)$	Guil Gui
x = a + b + c		0 Nm

Momenty gnące wypadkowe w punktach B i C wynoszą:

$$M_{gBL} = \sqrt{M_{gyBL}^2 + M_{gzB}^2} = 68,28 \text{ Nm}$$

$$M_{gBP} = \sqrt{M_{gyBP}^2 + M_{gzB}^2} = 143,29 \text{ Nm}$$

$$M_{gCL} = \sqrt{M_{gyCL}^2 + M_{gzC}^2} = 270,34 \text{ Nm}$$

$$M_{gCP} = \sqrt{M_{gyCP}^2 + M_{gzC}^2} = 243,52 \text{ Nm}$$

Wał jest skręcany stałym momentem skręcającym na odcinku BC:

$$M_s = P_{o1} \cdot r_1 = 279.8 \, \text{N} \cdot \text{m}$$

Ponieważ $M_g < 2 \cdot M_s$

$$M_{zBP} = \sqrt{(\frac{2 \cdot k_{sj}}{k_{go}} \cdot M_{gBP})^2 + M_s^2} = 413,52 \, N$$

$$M_{zCL} = \sqrt{(\frac{2 \cdot k_{sj}}{k_{go}} \cdot M_{gCL})^2 + M_s^2} = 638,98 \, N$$

W punktach 1, 2, 3, 4L, 10P, 11, 12, 13 wał jest zginany, zatem

$$M_{zi} = M_{gi}$$

$$d_i \ge \sqrt[3]{\frac{32 \cdot M_{zi}}{\pi \cdot k_{go}}}$$

W punktach 4P, 5, 6, 7, 8, 9, 10L wał jest zginany i skręcany, zatem

$$M_{zi} = \sqrt{(rac{2 \cdot k_{sj}}{k_{go}} \cdot M_{gi})^2 + M_s^2}$$
 $d_i \geq \sqrt[3]{rac{16 \cdot M_{zi}}{\pi \cdot k_{sj}}}$

Nr przekroju	Współrzędna x	Mz	di	d	
0	0	0	0	200	
(1)	20	17,07	12,95	20	
2	40	34,14	16,32	25	
3	60	51,21	18,68	- 11	
4L	80	68,28	20,56	30	
4P	80	413,52	29,15	30	
5	100	425,62	29,43	The same	
6	120	450,62	30	35	
7	140	486,55	30,78	33	
8	160	531,19	31,69	40	
9	180	582,53	32,68		
10L	200	638,98	33,7	35	
10P	200	243,52	31,42	33	
11	220	182,64	28,54		
12	240	121,76	24,94	30	
13	260	60,88	19,79	25	
14	280	_ 0	0_	25	

Określić z warunku wytrzymałościowego teoretyczny zarys wału, oraz na jego podstawie ustalić rzeczywisty zarys wału. Na wale są osadzone dwa koła zębate. Na koło 1 działają siły: $P_{o1}=5000~N$ i $P_{r1}=2800~N$, na koło 2 o promieniu $r_2=0.05~m$ działają siły: $P_{o2}=8000~N$, $P_{r2}=3800~N$ i $P_{w2}=2400~N$. Naprężenia dopuszczalne dla materiału wału (stal C45) wynoszą: $k_{go}=78~MPa$, $k_{sj}=95~MPa$. Długości wału: a=0.08~m, b=0.06~m.

Bibliografia

- [1] E. MAZANEK, A. DZIURSKI, AND L. KANIA. Przykłady obliczeń z podstaw konstrukcji maszyn: Połączenia, sprężyny, zawory, wały maszynowe. tom 1. WNT, 2005. ISBN: 9788320435528.
- A. DZIURSKI, E. MAZANEK, AND L. KANIA. Przykłady obliczeń z podstaw konstrukcji maszyn: Łożyska, sprzęgła i hamulce, przekładnie mechaniczne. tom 2. WNT, 2015. ISBN: 9788393491360.

Dziękuję za uwagę

grzegorz.kaminski@pw.edu.pl