Analysis of Serie A 2009-10 Results

Ourfali Marc

17 janvier 2020

- Introduction
- 2 Models
- Methods Implemented
- 4 Conclusion

Introduction

- Goal: Predict Results from 2009-2010.
- Models used :
 - Poisson distribution
 - Skellam distribution
 - 3 Zero inflated version of Skellam's distribution (ZPD)
- Methods implemented :
 - Metropolis-Within-Gibbs
 - Metropolis-Adjusted Langeving (MALA)
 - Gradient descent

Dataset

 Data set: Seasons 2006-2007 till 2009-2010 from Serie A. We have dropped the teams that where relegated before season 2009-2010.

index	Home	Away	HG	AG	Result
0	Fiorentina	Inter	2	3	Α
1	Roma	Livorno	2	0	Н
3	Cagliari	Catania	0	1	Α
4	Chievo	Siena	1	2	Α
6	Milan	Lazio	2	1	Н

TABLE - Head of the Data set

- In 2009-10 We have the following Results over 380 matches :
 - Home Win H = 186
 - Oraw D =102
 - Away Win A=92

Updated Coefficients

- For each teams give an attacking and defensive coefficient.
- Coefficient Δ gives the Home Advantage.

	Att	Dif
Team		
Atalanta	0.010361	0.002564
Bari	-0.001984	0.002543
Bologna	-0.003227	0.011944
Cagliari	0.005107	0.015559
Catania	0.003522	-0.011179

TABLE - Head of coefficient Data frame

- Δ , Att_i , Att_j , Dif_i , $Dif_j \sim \mathcal{N}(0, 0.1)$ $i, j \in \{2, \dots, 20\}$
- $Att_1 = -\sum_{i=2}^{20} Att_i$ et $Dif_1 = -\sum_{i=2}^{20} Dif_i \Rightarrow$ identifiable model

- Introduction
- 2 Models
- Methods Implemented
- 4 Conclusion

Poisson Model

- Predict the number of Home and Away goals of team i and j respectively for each match.
- ullet Home Goals are given by $HG_{i,j} \sim \mathcal{P}(\lambda_{HG_{i,j}})$
- Away Goals are given by $AG_{i,j} \sim \mathcal{P}(\lambda_{AG_{i,j}})$
- $\bullet \ \lambda_{HG_{i,j}} = exp(\Delta + Att_i Dif_j)$
- $\lambda_{AG_{i,j}} = exp(Att_j Dif_i)$

Implementation

- Parameters : $\theta = (\Delta, Att_2, \dots, Att_{20}, Dif_2, \dots, Dif_{20})$
- Prior : $f_p(\theta) = f_{norm}(\Delta) \times \prod_{i=2}^{20} f_{norm}(Att_i) \times \prod_{i=2}^{20} f_{norm}(Dif_i)$ $f_{norm}(x) = \frac{1}{\sqrt{2\pi}0.1} e^{\frac{1}{2} \frac{x}{0.1^2}}$
- Likelihood : $f_L(D|\theta) = \prod_{i,j=2}^{20} f_{poiss}(HG_{i,j}, \lambda_{HG_{i,j}}) \times f_{poiss}(AG_{i,j}, \lambda_{AG_{i,j}})$ $f_{poiss}(k, \lambda) = e^{-\lambda} \frac{k^{\lambda}}{k!}$

Skellam Model

- Predict the difference of the goal scored between the two teams rather than the number of home and away goals.
- Model goal difference as Skellam distribution : probability distribution of the difference of two statistically independent random Poisson-distributed variables.
- Main Idea. Incorporate correlation between the goals in a football game.
 - \Rightarrow Empirical evidence has shown relatively low correlation.
- Difference given by : $SD_{i,j} = HG_{i,j} AG_{i,j} \sim PD(\lambda_{HG_{i,j}}, \lambda_{AG_{i,j}})$, with $\lambda_{HG_{i,j}}$ and $\lambda_{AG_{i,j}}$ defined as before.

Implementation

- Parameters : $\theta = (\Delta, Att_2, \dots, Att_{20}, Dif_2, \dots, Dif_{20})$
- Prior : $f_p(\theta) = f_{norm}(\Delta) \times \prod_{i=0}^{20} f_{norm}(Att_i) \times \prod_{i=0}^{20} f_{norm}(Dif_i)$ $f_{norm}(x) = \frac{1}{\sqrt{2\pi}0.1} e^{\frac{1}{2} \frac{x}{0.1^2}}$
- Likelihood : $f_L(D|\theta) = \prod_{i=-2}^{20} f_{Skellam}(S_{i,j}, \lambda_{H_{i,j}}, \lambda_{A_{i,j}})$ $f_{Skellam}(k,\lambda_1,\lambda_2) = e^{-(\lambda_1 + \lambda_2)} \left(\frac{\lambda_1}{\lambda_2}\right)^k I_{|k|}(2\sqrt{\lambda_1\lambda_2})$ where $I_r(x) = \left(\frac{x}{2}\right) \cdot \sum_{k=0}^{\infty} \frac{\left(\frac{x^2}{4}\right)^k}{k!\Gamma(r+k+1)}$

ZPD Model

- Zero Inflated version of our previous Skellam Model.
 Allows for frequent zero-valued observations.
- This new prior permits to control the excess of draws adding a new parameter p.
- Parameter p initialized as $p \sim \mathcal{U}(0,1)$.
- For the predictions generate a random variable $a \sim \mathcal{U}(0,1)$.
 - If a ,
 - Else : $SD_{i,j} \sim PD(\lambda_{HG_{i,j}}, \lambda_{AG_{i,j}})$

Implementation

- Parameters : $\theta = (\Delta, Att_2, \dots, Att_{20}, Dif_2, \dots, Dif_{20}, p)$
- Prior : $f(\theta) = f_{norm}(\Delta) \times \prod_{i=2}^{20} f_{norm}(Att_i) \times \prod_{i=2}^{20} f_{norm}(Dif_i)$ $f_{norm}(x) = \frac{1}{\sqrt{2\pi}0.1} e^{\frac{1}{2} \frac{x}{0.12}}$
- Likelihood : $f(D|\theta) = \prod_{i,j=2}^{20} f_{ZPD}(S_{i,j}, \lambda_{H_{i,j}}, \lambda_{A_{i,j}}, p)$

$$f_{ZPD} = \begin{cases} p + (1-p)f_{Skellam}(0, \lambda_1, \lambda_2) & \text{if } k = 0\\ (1-p)f_{Skellam}(k, \lambda_1, \lambda_2) & \text{if } k \neq 0 \end{cases}$$

- Introduction
- 2 Models
- Methods Implemented
- 4 Conclusion

Metropolis within Gibbs

Algorithm:

Given : target : \widetilde{f} , proposal : $q(\eta)$ Input : θ_0 , N_{max} for i in 1 : N_{max} :

- sample a proposal : $\theta_{i+1}^c \sim q(., \theta_i)$
- ② Compute M-H acceptance ratio : $\alpha = \min\{\frac{\widetilde{f}(\theta^c|D)}{\widetilde{f}(\theta|D)}, 1\}$
- $u \sim Unif(0,1)$ If $u < \alpha : \theta_{i+1} = \theta_{i+1}^c$ Else $\theta_{i+1} = \theta_i$

Output : Mean of the accepted θ^c

Implemented:

- $\theta_0 \sim \mathcal{N}(0, 0.1)^d$
- $q(\theta_i, \theta_{i+1}^c) = q(\theta_{i+1}^c, \theta_i)$ At each iteration update 5

random coefficients adding δ_i

to each of them :

$$\delta_i \sim \mathcal{N}(0,0.1), \ i = \{1,\cdots,5\}$$

- $\bullet \ \widetilde{f}(\theta|D) = f_p(\theta) \times f_L(D|\theta)$
- N = 10 000

Convergence of the Model

- Acceptance ratio : around 20% for each model.
- Coefficient in accord with the number of goals scored and conceded by each team.

Match Prediction

- For each match calculate $\lambda_{HG_{i,j}}$ and $\lambda_{AG_{i,j}}$.
- Skellam and Poisson Model :1000 simulations of the posterior distribution are generated.
- Average the goals and set draw if the difference between the two results \in (0; 0.25).
 - ⇒ Limit the number of draws to get better predictive performance.
- ZPD Model: Generate only one simulation of the posterior distribution.

Results

- \bullet For each model obtain a high Home Advantage coefficient : $\Delta\approx 0.35.$
 - Poisson Model.
 - 50.03% of well predicted results.
 - Distribution :

 Computationally faster; Small results obtain.

- Skellam Model.
- 49.47% of well predicted results.
- Distribution :

Computationally slower.

- ZPD Model.
- 48.94% of well predicted results.
- Distribution :

- Here $p \rightarrow 0.05$.
- *p* is independent of the teams.

Conclusion Metropolis Within Gibbs Model

- Advantage : Method easily implemented with satisfying results.
- Model easily incorporate new prior information.
- Easy to interpret: used by bookmakers.
- Drawbacks : Need to choose adapted δ_i to add to the coefficients.
- For Skellam and ZPD Models gives to much weights to the defense coefficients.
- Model: Seems best to choose Poisson Model.

Metropolis-Adjusted Langeving (MALA)

Algorithm:

Given : target : \tilde{f} , proposal : $q(\eta)$ Input : θ_0 , N_{max} , τ

for i in $1:N_{max}:$

- Calculate gradient : $\nabla(\log(f(\theta_i|D)))$
- ② Proposal $\theta_{i+1}^c = \theta_i + \tau \times \nabla(\log(f(\theta_i|D))) + \sqrt{2\tau}\epsilon$
- Compute

$$\alpha = \min\{\frac{\widetilde{f}(\theta_{i+1}^c|D)}{\widetilde{f}(\theta_i)|D)}\frac{q(\theta_i,\theta_{i+1}^c)}{q(\theta_{i+1}^c,\theta_i)},1\}$$

Implemented:

- $\theta_0 \sim \mathcal{N}(0, 0.1)^d$
- $\widetilde{f}(\theta|D) = f_p(\theta) \times f_L(D|\theta)$
- $\frac{\partial f(\theta)}{\partial \theta_i} = \frac{f(\theta_i + \delta)f(\theta_i \delta)}{2\delta}$
- $q(x,y) = exp(-\frac{1}{4\tau}||x-y-\tau\nabla(\log(f(y)))||_2^2)$
- $\epsilon \sim \mathcal{N}(0, 0.6)^d$
- $\delta = 0.01$
- N = 250
- $\tau = 0.0001$

Output : Mean of the accepted θ^c

Convergence of the Model

- Acceptance ratio: around 60% for each model.
- Coefficient Smaller than previous Methods. Smaller differences between teams.

Results

- Same procedure to obtain predictions.
- Home Advantage coefficient is high for both models : $\Delta \approx 0.40$.
- Poisson Model.
- 51.58% of well predicted results.
- Results distributed as follows:
 - H = 338
 - D = 34
 - A= 8

- Skellam Model.
- 52.05% of well predicted results.
- Results distributed as follows:
 - H = 292
 - D =71
 - A=17
- Too much weight on home coefficients. Optimize overall prediction but undermines team level.
 - ⇒ Need to augment number of iterations and use different approach calculate the gradient.

Conclusion Metropolis Adjusted-Langeving

- Advantage: Percentage of well predicted result is a bit higher.
- Drawbacks : Very costly methods : slow iteration.
 ⇒Need to compute twice the gradient at each iteration.
- Need to find τ and $Var(\varepsilon)$ that gives good acceptance ratio.
- Model: For this method Skellam distribution gives better results.

Backtracking line search Gradient Descent

Algorithm:

Input θ_0 , N_{max} , r, α for i in 1 : N_{max} :

- Calculate $\nabla(f(\theta_i))$
- ② Update $\theta_{i+1}^c = \theta_i r \times \nabla(f(\theta_i))$
- While $f(\theta_{i+1}^c) > f(\theta_{i+1}) \times r \times ||\nabla(f(\theta_i))||^2$:
 - $r = \alpha \times r$
 - $\theta_{i+1}^c = \theta_i r \times \nabla(f(\theta_i))$

Output : $\theta^c_{N_{Max}}$

Implemented:

- $\theta_0 \sim \mathcal{N}(0, 0.1)^{39}$
- $f(\theta) = -log(f_p(\theta) \times f_L(D|\theta))$
- $\frac{\partial f(\theta)}{\partial \theta_i} = \frac{f(\theta_i + \delta) f(\theta_i \delta)}{2\delta}$
- $\delta = 0.01$
- $r = 5x10^{-3}$
- $\alpha = 0.2$
- $N_{max} = 500$

Results

FIGURE – Minimization of the negative log likelihood

- Poisson Model.
- 50.79% of well predicted results.
- Home coefficient is : $\Delta = 0.39$
- Results distributed as follows :
 - H=248
 - D = 64
 - A= 68
- Similar to Metropolis Within Gibbs results.

Conclusion Backtracking line search Gradient Descent

- Advantage: Method easily implemented with satisfying results.
- Easily adapted to other models.
- Can be used to compute other methods as Stochastic Gradient Descent.
- Drawbacks: Computationally slow, approximate the gradient at each iteration.
- Need to find initial coefficient θ_0 and rate r that minimizes the negative log-likelihood.

- Introduction
- 2 Models
- Methods Implemented
- 4 Conclusion

Comparing Methods

- Analyze the coefficient given to each team with Poisson posterior.
- For each methods similar home Advantage coefficient.
- Calculate the probability of team A to beat team B without considering effects of home coefficient.
- \bullet Results are given as 20 \times 20 matrix. Tables are found in Annexes.

Results

- \Rightarrow Similar results obtained for method 1 and method 3.
- ⇒ Distinction between teams is smaller with MALA method. Gives worse results.
- ⇒ Results reflect well the reality for the best 4 and worse 4 teams.
- \Rightarrow Harder to obtain good results for the mid table teams.

Comparing Methods

FIGURE – Table of probability for Metropolis within Gibbs Methods

- Probability of row team to beat column team.
- Darker the cell higher are the odds of winning.
- We see clear distinction between the strongest and weakest team.

Conclusion

- In this project better to choose Poisson Model: as efficient but computationally faster, simpler and easy interpretability.
- Metropolis Within Gibbs methods is computationally faster than other methods and easy to interpret.

To go further

- Change the prior distribution to incorporate prior knowledge on the teams.
- Augment number of iteration ⇒ optimize coefficients.
- Could try to take into account the difference of the teams within the years (transfers) or the date when the match is played.
 - \Rightarrow More motivation towards end of season for teams near relegation or in Top 4 and tiredness from Champions League game.

References

Dimitris Karlis and Ioannis Ntzoufras (2008)

Bayesian modelling of football outcomes : Using the Skellam's distribution for the goal difference.

Department of Statistics, Athens University of Economics and Business

G. Dehaene (2019)

Bayesian Computation.

EPFL

Annexes

- For the Metropolis Within Gibbs method the table is given by : Link: Table Metropolis within Gibbs.
- For the Metropolis Adjusted-Langeving the table is given by : Link:Table MALA.
- For the Backtracking Gradient descent the table is given by : Link: Table Gradient Descent.