Dinámica Hamiltoniana

Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

5 de noviembre de 2024

Agenda

- 🚺 Entre Lagrange y Hamilton
 - La idea lagrangiana
 - La idea hamiltoniana
 - Velocidades generalizada y momentos conjugados
- El esquema Hamiltoniano
 - Del lagrangeano al hamiltoniano
 - La transformación de Legendre
 - El oscilador armónico
 - Partícula moviéndose en cono vertical
 - Partícula en un potencial central
- Simetrías y leyes de conservación
 - El Hamiltoniano y la Energía
 - Un ejemplo de la realción entre Hamiltoniano y la Energía total

• La formulación lagrangiana de la Mecánica describe el movimiento a partir de una función $\mathcal{L}(q_i, \dot{q}_i, t), i = 1, 2, ..., s$, sus coordenadas y velocidades generalizadas en el el espacio de configuración (q_i, \dot{q}_i) .

- La formulación lagrangiana de la Mecánica describe el movimiento a partir de una función $\mathcal{L}(q_i, \dot{q}_i, t)$, i = 1, 2, ..., s, sus coordenadas y velocidades generalizadas en el el espacio de configuración (q_i, \dot{q}_i) .
- En la formulación lagrangiana el movimiento de un sistema mecánico con n grados de libertad se rige por n ecuaciones diferenciales ordinarias de segundo orden.

- La formulación lagrangiana de la Mecánica describe el movimiento a partir de una función $\mathcal{L}(q_i, \dot{q}_i, t)$, i = 1, 2, ..., s, sus coordenadas y velocidades generalizadas en el el espacio de configuración (q_i, \dot{q}_i) .
- En la formulación lagrangiana el movimiento de un sistema mecánico con n grados de libertad se rige por n ecuaciones diferenciales ordinarias de segundo orden.
- El movimiento del sistema se determina unívocamente al especificar las 2n condiciones iniciales: los valores de las coordenadas q_s y velocidades \dot{q}_s para un instante particular t_0 .

- La formulación lagrangiana de la Mecánica describe el movimiento a partir de una función $\mathcal{L}(q_i, \dot{q}_i, t), i = 1, 2, ..., s$, sus coordenadas y velocidades generalizadas en el el espacio de configuración (q_i, \dot{q}_i) .
- En la formulación lagrangiana el movimiento de un sistema mecánico con n grados de libertad se rige por n ecuaciones diferenciales ordinarias de segundo orden.
- El movimiento del sistema se determina unívocamente al especificar las 2n condiciones iniciales: los valores de las coordenadas q_s y velocidades \dot{q}_s para un instante particular t_0 .
- El movimiento se representa geométricamente mediante una trayectoria en el espacio de configuración n-dimensional descrito por las coordenadas generalizadas q_1, \ldots, q_n

 La formulación hamiltoniana se desarrolla en el espacio de fase (p_i, q_i), en términos del conjunto de sus coordenadas generalizadas q_i y de sus momentos conjugados p_i.

- La formulación hamiltoniana se desarrolla en el espacio de fase (p_i, q_i) , en términos del conjunto de sus coordenadas generalizadas q_i y de sus momentos conjugados p_i .
- La dinámica de hamiltoniana consiste en sustituir las n ecuaciones de Lagrange por un conjunto equivalente de n ecuaciones diferenciales ordinarias de primer orden.

- La formulación hamiltoniana se desarrolla en el espacio de fase (p_i, q_i) , en términos del conjunto de sus coordenadas generalizadas q_i y de sus momentos conjugados p_i .
- La dinámica de hamiltoniana consiste en sustituir las n ecuaciones de Lagrange por un conjunto equivalente de n ecuaciones diferenciales ordinarias de primer orden.
- El movimiento se representa por una curva descrita en el espacio de fase, un espacio de 2n dimensiones cuyas coordenadas son las variables independientes q_i y p_i .

- La formulación hamiltoniana se desarrolla en el espacio de fase (p_i, q_i) , en términos del conjunto de sus coordenadas generalizadas q_i y de sus momentos conjugados p_i .
- La dinámica de hamiltoniana consiste en sustituir las n ecuaciones de Lagrange por un conjunto equivalente de n ecuaciones diferenciales ordinarias de primer orden.
- El movimiento se representa por una curva descrita en el espacio de fase, un espacio de 2n dimensiones cuyas coordenadas son las variables independientes q_i y p_i .
- La importancia del formalismo hamiltoniano radica en que proporciona un método potente, general y flexible para la investigación de las cuestiones estructurales más profundas de la mecánica clásica y también en que sirve de fundamento a la mecánica cuántica y a la mecánica estadística.

• No se trata de sustituir tivialmente las n ecuaciones de Lagrange por un sistema de 2n ecuaciones primer orden equivalente mediante un variables $s_i = \dot{q}_i, i = 1, \ldots, n$, tratando q_1, \ldots, q_n y s_1, \ldots, s_n como variables independientes.

- No se trata de sustituir tivialmente las n ecuaciones de Lagrange por un sistema de 2n ecuaciones primer orden equivalente mediante un variables $s_i = \dot{q}_i, \ i = 1, \ldots, n$, tratando q_1, \ldots, q_n y s_1, \ldots, s_n como variables independientes.
- Es decir $\dot{q}_i = s_i$, $\Rightarrow \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial s_i} \right) \frac{\partial \mathcal{L}}{\partial q_i} = 0$, para i = 1, ..., n, donde $\mathcal{L}(q_i, s_i, t)$ es el Lagrangiano del sistema.

- No se trata de sustituir tivialmente las n ecuaciones de Lagrange por un sistema de 2n ecuaciones primer orden equivalente mediante un variables $s_i = \dot{q}_i, i = 1, \ldots, n$, tratando q_1, \ldots, q_n y s_1, \ldots, s_n como variables independientes.
- Es decir $\dot{q}_i = s_i$, $\Rightarrow \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial s_i} \right) \frac{\partial \mathcal{L}}{\partial q_i} = 0$, para $i = 1, \dots, n$, donde $\mathcal{L}(q_i, s_i, t)$ es el Lagrangiano del sistema.
- Estas ecuaciones, involucran a las q_i y s_i de forma muy asimétrica y no son especialmente útiles.

- No se trata de sustituir tivialmente las n ecuaciones de Lagrange por un sistema de 2n ecuaciones primer orden equivalente mediante un variables $s_i = \dot{q}_i, i = 1, \ldots, n$, tratando q_1, \ldots, q_n y s_1, \ldots, s_n como variables independientes.
- Es decir $\dot{q}_i = s_i$, $\Rightarrow \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial s_i} \right) \frac{\partial \mathcal{L}}{\partial q_i} = 0$, para $i = 1, \dots, n$, donde $\mathcal{L}(q_i, s_i, t)$ es el Lagrangiano del sistema.
- Estas ecuaciones, involucran a las q_i y s_i de forma muy asimétrica y no son especialmente útiles.
- Bajar el orden del sistema de ecuaciones dinámicas, se consigue describiendo la evolución del sistema mediante 2n, cantidades: las posiciones q_1, \ldots, q_n y los momentos conjugados p_1, \ldots, p_n , definidos por $p_i = \frac{\partial \mathcal{L}}{\partial \dot{q}_i}, \quad i = 1, \ldots, n$.

• La descripción hamiltoniana implica sustituir las variables (q_i, \dot{q}_i) por (q_i, p_i) en todas las magnitudes mecánicas y sustituir la función el Lagrangiano $\mathcal{L}(q, \dot{q}, t)$ por $\mathcal{H}(q, p, t)$ como generador de la dinámica.

- La descripción hamiltoniana implica sustituir las variables (q_i, \dot{q}_i) por (q_i, p_i) en todas las magnitudes mecánicas y sustituir la función el Lagrangiano $\mathcal{L}(q, \dot{q}, t)$ por $\mathcal{H}(q, p, t)$ como generador de la dinámica.
- Definimos $\mathcal{H}(q, p, t) = \sum_{i=1}^{n} \dot{q}_i p_i \mathcal{L}(q, \dot{q}, t)$ como la transformación de Legendre del lagrangiano $\mathcal{L}(q, \dot{q}, t)$. En el lado derecho las velocidades se expresan como $\dot{q}_i = f_i(q, p, t)$.

- La descripción hamiltoniana implica sustituir las variables (q_i, \dot{q}_i) por (q_i, p_i) en todas las magnitudes mecánicas y sustituir la función el Lagrangiano $\mathcal{L}(q, \dot{q}, t)$ por $\mathcal{H}(q, p, t)$ como generador de la dinámica.
- Definimos $\mathcal{H}(q, p, t) = \sum_{i=1}^{n} \dot{q}_{i} p_{i} \mathcal{L}(q, \dot{q}, t)$ como la transformación de Legendre del lagrangiano $\mathcal{L}(q, \dot{q}, t)$. En el lado derecho las velocidades se expresan como $\dot{q}_{i} = f_{i}(q, p, t)$.
- Las ecuaciones dinámicas serán $\dot{q}_i = \frac{\partial \mathcal{H}}{\partial p_i}, \quad \dot{p}_i = -\frac{\partial \mathcal{H}}{\partial q_i}, \quad i = 1, \dots, n$

- La descripción hamiltoniana implica sustituir las variables (q_i, \dot{q}_i) por (q_i, p_i) en todas las magnitudes mecánicas y sustituir la función el Lagrangiano $\mathcal{L}(q, \dot{q}, t)$ por $\mathcal{H}(q, p, t)$ como generador de la dinámica.
- Definimos $\mathcal{H}(q, p, t) = \sum_{i=1}^{n} \dot{q}_i p_i \mathcal{L}(q, \dot{q}, t)$ como la transformación de Legendre del lagrangiano $\mathcal{L}(q, \dot{q}, t)$. En el lado derecho las velocidades se expresan como $\dot{q}_i = f_i(q, p, t)$.
- Las ecuaciones dinámicas serán $\dot{q}_i = \frac{\partial \mathcal{H}}{\partial n}$, $\dot{p}_i = -\frac{\partial \mathcal{H}}{\partial a}$, $i = 1, \dots, n$
- El planteamiento hamiltoniano de la dinámica implica los siguientes pasos
 - Se fijan las coordenadas generalizadas y construye el lagrangeano a partir de las energías cinética y potencial
 - Se expresan la velocidades generalizadas en término de los momentos canónicos conjungados $\dot{q}_i = f_i(q, p, t)$.
 - Se construye el Hamiltoniano a partir de la transformación de Legendre del Lagrangeano
 - Se plantean las ecuaciones dinámicas de Hamilton

• Dada una función f(x), la transformación de Legendre permite encontrar otra función g(y) que contiene la misma información que f(x), usando como argumento la pendiente y = f'(x)

• Dada una función f(x), la transformación de Legendre permite encontrar otra función g(y) que contiene la misma información que f(x), usando como argumento la pendiente y = f'(x)

• Cada punto (f,x) en la curva f(x) define una línea recta que pasa por un punto (0,b) con pendiente y=f'(x).

• Dada una función f(x), la transformación de Legendre permite encontrar otra función g(y) que contiene la misma información que f(x), usando como argumento la pendiente y = f'(x)

- Cada punto (f,x) en la curva f(x) define una línea recta que pasa por un punto (0,b) con pendiente y=f'(x).
- El conjunto de todas las rectas (y, b) describe las envolventes de la curva f(x) y contiene la misma información que f(x).

• Dada una función f(x), la transformación de Legendre permite encontrar otra función g(y) que contiene la misma información que f(x), usando como argumento la pendiente y = f'(x)

- Cada punto (f,x) en la curva f(x) define una línea recta que pasa por un punto (0, b) con pendiente y = f'(x).
- El conjunto de todas las rectas (y, b) describe las envolventes de la curva f(x) y contiene la misma información que f(x).
- Ambas descripciones (f, x) o de (y, b), son equivalentes.

• Dada una función f(x), la transformación de Legendre permite encontrar otra función g(y) que contiene la misma información que f(x), usando como argumento la pendiente y = f'(x)

- Cada punto (f,x) en la curva f(x) define una línea recta que pasa por un punto (0,b) con pendiente y=f'(x).
- El conjunto de todas las rectas (y, b) describe las envolventes de la curva f(x) y contiene la misma información que f(x).
- Ambas descripciones (f,x) o de (y,b), son equivalentes.
- https://youtu.be/vgLq90cOI_M?si=bLGxc5GFEGesVJId

5 de noviembre de 2024

• La transformada de Legendre de una función f(x) se define como $g(y) \equiv yx(y) - f(x(y))$

- La transformada de Legendre de una función f(x) se define como $g(y) \equiv yx(y) f(x(y))$
- Matemáticamente, los puntos (g, y) corresponden a (-b, y) y, describen la misma curva que f(x).

- La transformada de Legendre de una función f(x) se define como $g(y) \equiv yx(y) f(x(y))$
- Matemáticamente, los puntos (g, y) corresponden a (-b, y) y, describen la misma curva que f(x).
- Si tenemos una función de s variables $f(x_1, x_2, \ldots, x_s)$, existen s derivadas $y_i = \frac{\partial f}{\partial x_i} = y_i(x_1, x_2, \ldots, x_s)$ para $i = 1, 2, \ldots, s$.

- La transformada de Legendre de una función f(x) se define como $g(y) \equiv yx(y) f(x(y))$
- Matemáticamente, los puntos (g, y) corresponden a (-b, y) y, describen la misma curva que f(x).
- Si tenemos una función de s variables $f(x_1, x_2, \ldots, x_s)$, existen s derivadas $y_i = \frac{\partial f}{\partial x_i} = y_i(x_1, x_2, \ldots, x_s)$ para $i = 1, 2, \ldots, s$.
- y la transformada de Legendre de $f(x_1, x_2, \ldots, x_s)$ será $g(y_1, y_2, \ldots, y_s) = \sum_{i=1}^s x_i y_i f(x_1, x_2, \ldots, x_s)$, con $x_i = x_i (y_1, y_2, \ldots, y_s)$

- La transformada de Legendre de una función f(x) se define como $g(y) \equiv yx(y) f(x(y))$
- Matemáticamente, los puntos (g, y) corresponden a (-b, y) y, describen la misma curva que f(x).
- Si tenemos una función de s variables $f(x_1, x_2, \ldots, x_s)$, existen s derivadas $y_i = \frac{\partial f}{\partial x_i} = y_i(x_1, x_2, \ldots, x_s)$ para $i = 1, 2, \ldots, s$.
- y la transformada de Legendre de $f(x_1, x_2, \ldots, x_s)$ será $g(y_1, y_2, \ldots, y_s) = \sum_{i=1}^s x_i y_i f(x_1, x_2, \ldots, x_s)$, con $x_i = x_i (y_1, y_2, \ldots, y_s)$
- Variables termodinámicas conjugadas: (Presión-Volumen);
 (Temperatura-Entropía); (Potencial Químico-Número de partículas).

- La transformada de Legendre de una función f(x) se define como $g(y) \equiv yx(y) f(x(y))$
- Matemáticamente, los puntos (g, y) corresponden a (-b, y) y, describen la misma curva que f(x).
- Si tenemos una función de s variables $f(x_1, x_2, \ldots, x_s)$, existen s derivadas $y_i = \frac{\partial f}{\partial x_i} = y_i(x_1, x_2, \ldots, x_s)$ para $i = 1, 2, \ldots, s$.
- y la transformada de Legendre de $f(x_1, x_2, \ldots, x_s)$ será $g(y_1, y_2, \ldots, y_s) = \sum_{i=1}^s x_i y_i f(x_1, x_2, \ldots, x_s)$, con $x_i = x_i (y_1, y_2, \ldots, y_s)$
- Variables termodinámicas conjugadas: (Presión-Volumen);
 (Temperatura-Entropía); (Potencial Químico-Número de partículas).
- Potenciales termodinámicos: entalpía H(S,p) = U + pV; Energía libre de Helmholtz F(T,V) = U TS; y Energía libre de Gibbs G(T,p) = H TS = U + pV TS

• El Lagrangiano es $\mathcal{L} = T - V = \frac{1}{2}m\dot{q}^2 - \frac{1}{2}kq^2$

- ullet El Lagrangiano es $\mathcal{L}=T-V=rac{1}{2}m\dot{q}^2-rac{1}{2}kq^2$
- Hay un único momento conjugado: $p = \frac{\partial \hat{\mathcal{L}}}{\partial \dot{a}} = m\dot{q} \quad \Rightarrow \quad \dot{q} = \frac{p}{m}$

- ullet El Lagrangiano es $\mathcal{L}=T-V=rac{1}{2}m\dot{q}^2-rac{1}{2}kq^2$
- Hay un único momento conjugado: $p = \frac{\partial \mathcal{L}}{\partial \dot{q}} = m\dot{q} \quad \Rightarrow \quad \dot{q} = \frac{p}{m}$
- El Hamiltoniano es $\mathcal{H}(q,p) = p\dot{q} \mathcal{L} = p\dot{q} \frac{1}{2}m\dot{q}^2 + \frac{1}{2}kq^2$, es decir $\mathcal{H}(q,p) = p\frac{p}{m} \frac{1}{2}m\left(\frac{p}{m}\right)^2 + \frac{1}{2}kq^2 = \frac{p^2}{2m} + \frac{1}{2}kq^2$

- El Lagrangiano es $\mathcal{L} = T V = \frac{1}{2}m\dot{q}^2 \frac{1}{2}kq^2$
- Hay un único momento conjugado: $p=rac{\partial \mathcal{L}}{\partial \dot{q}}=m\dot{q} \quad \Rightarrow \quad \dot{q}=rac{p}{m}$
- El Hamiltoniano es $\mathcal{H}(q,p) = p\dot{q} \mathcal{L} = p\dot{q} \frac{1}{2}m\dot{q}^2 + \frac{1}{2}kq^2$, es decir $\mathcal{H}(q,p) = p\frac{p}{m} \frac{1}{2}m\left(\frac{p}{m}\right)^2 + \frac{1}{2}kq^2 = \frac{p^2}{2m} + \frac{1}{2}kq^2$
- Las ecuaciones de Hamilton son $\dot{q}=\frac{\partial \mathcal{H}}{\partial p}=\frac{p}{m}$ y $\dot{p}=-\frac{\partial \mathcal{H}}{\partial q}=-kq$

- El Lagrangiano es $\mathcal{L} = T V = \frac{1}{2}m\dot{q}^2 \frac{1}{2}kq^2$
- Hay un único momento conjugado: $p = \frac{\partial \mathcal{L}}{\partial \dot{q}} = m\dot{q} \quad \Rightarrow \quad \dot{q} = \frac{p}{m}$
- El Hamiltoniano es $\mathcal{H}(q,p) = p\dot{q} \mathcal{L} = p\dot{q} \frac{1}{2}m\dot{q}^2 + \frac{1}{2}kq^2$, es decir $\mathcal{H}(q,p) = p\frac{p}{m} \frac{1}{2}m\left(\frac{p}{m}\right)^2 + \frac{1}{2}kq^2 = \frac{p^2}{2m} + \frac{1}{2}kq^2$
- Las ecuaciones de Hamilton son $\dot{q}=\frac{\partial \mathcal{H}}{\partial p}=\frac{p}{m}$ y $\dot{p}=-\frac{\partial \mathcal{H}}{\partial q}=-kq$
- Se resuelven igual que la ecuación de Lagrange $\ddot{q} = \frac{\dot{p}}{m} = -\frac{k}{m}q$

- El Lagrangiano es $\mathcal{L}=T-V=rac{1}{2}m\dot{q}^2-rac{1}{2}kq^2$
- Hay un único momento conjugado: $p=rac{\partial \mathcal{L}}{\partial \dot{q}}=m\dot{q} \quad \Rightarrow \quad \dot{q}=rac{p}{m}$
- El Hamiltoniano es $\mathcal{H}(q,p) = p\dot{q} \mathcal{L} = p\dot{q} \frac{1}{2}m\dot{q}^2 + \frac{1}{2}kq^2$, es decir $\mathcal{H}(q,p) = p\frac{p}{m} \frac{1}{2}m\left(\frac{p}{m}\right)^2 + \frac{1}{2}kq^2 = \frac{p^2}{2m} + \frac{1}{2}kq^2$
- Las ecuaciones de Hamilton son $\dot{q} = \frac{\partial \mathcal{H}}{\partial p} = \frac{\bar{p}}{m}$ y $\dot{p} = -\frac{\partial \mathcal{H}}{\partial q} = -kq$
- Se resuelven igual que la ecuación de Lagrange $\ddot{q}=rac{\dot{p}}{m}=-rac{k}{m}q$
- Con solución $q(t) = A\sin(\omega t + \varphi)$, $\omega^2 = \frac{k}{m}$, es decir $p(t) = m\dot{q} = Am\omega\cos(\omega t + \varphi)$

- El Lagrangiano es $\mathcal{L}=T-V=rac{1}{2}m\dot{q}^2-rac{1}{2}kq^2$
- Hay un único momento conjugado: $p = \frac{\partial \vec{\mathcal{L}}}{\partial \dot{q}} = m\dot{q} \quad \Rightarrow \quad \dot{q} = \frac{p}{m}$
- El Hamiltoniano es $\mathcal{H}(q,p) = p\dot{q} \mathcal{L} = p\dot{q} \frac{1}{2}m\dot{q}^2 + \frac{1}{2}kq^2$, es decir $\mathcal{H}(q,p) = p\frac{p}{m} \frac{1}{2}m\left(\frac{p}{m}\right)^2 + \frac{1}{2}kq^2 = \frac{p^2}{2m} + \frac{1}{2}kq^2$
- Las ecuaciones de Hamilton son $\dot{q} = \frac{\partial \mathcal{H}}{\partial p} = \frac{p}{m}$ y $\dot{p} = -\frac{\partial \mathcal{H}}{\partial q} = -kq$
- Se resuelven igual que la ecuación de Lagrange $\ddot{q}=rac{\dot{p}}{m}=-rac{k}{m}q$
- Con solución $q(t) = A\sin(\omega t + \varphi)$, $\omega^2 = \frac{k}{m}$, es decir $p(t) = m\dot{q} = Am\omega\cos(\omega t + \varphi)$
- El Hamiltoniano es independiente del tiempo, entonces $\mathcal{H}(q,p)=rac{p^2}{2m}+rac{1}{2}kq^2=$ cte Una elipse en el espacio de fase

• El sistema tiene 2 grados de libertad y su Lagrangiano es $\mathcal{L} = \frac{1}{2}m\dot{r}^2\csc^2\alpha + \frac{1}{2}mr^2\dot{\varphi}^2 - mgr\cot\alpha$

- El sistema tiene 2 grados de libertad y su Lagrangiano es $\mathcal{L} = \frac{1}{2}m\dot{r}^2\csc^2\alpha + \frac{1}{2}mr^2\dot{\varphi}^2 mgr\cot\alpha$
- Los momentos conjugados son $p_r = \frac{\partial \mathcal{L}}{\partial \dot{r}} = m\dot{r}\csc^2 \alpha$ y $p_{\varphi} = \frac{\partial \mathcal{L}}{\partial \dot{\varphi}} = mr^2\dot{\varphi}$

- El sistema tiene 2 grados de libertad y su Lagrangiano es $\mathcal{L} = \frac{1}{2}m\dot{r}^2\csc^2\alpha + \frac{1}{2}mr^2\dot{\varphi}^2 mgr\cot\alpha$
- Los momentos conjugados son $p_r = \frac{\partial \mathcal{L}}{\partial \dot{r}} = m\dot{r}\csc^2 \alpha$ y $p_{\varphi} = \frac{\partial \mathcal{L}}{\partial \dot{\varphi}} = mr^2\dot{\varphi}$
- Se despejan las velocidades generalizadas como $\dot{r}=rac{p_r}{m\csc^2\alpha}$ y $\dot{arphi}=rac{p_{arphi}}{mr^2}$

- El sistema tiene 2 grados de libertad y su Lagrangiano es $\mathcal{L} = \frac{1}{2}m\dot{r}^2\csc^2\alpha + \frac{1}{2}mr^2\dot{\varphi}^2 mgr\cot\alpha$
- Los momentos conjugados son $p_r = \frac{\partial \mathcal{L}}{\partial \dot{r}} = m\dot{r}\csc^2 \alpha$ y $p_{\varphi} = \frac{\partial \mathcal{L}}{\partial \dot{\varphi}} = mr^2\dot{\varphi}$
- Se despejan las velocidades generalizadas como $\dot{r}=rac{p_r}{m \csc^2 lpha}$ y $\dot{arphi}=rac{p_{arphi}}{mr^2}$
- El Hamiltoniano es $\mathcal{H} = \sum_{i=1}^{s} p_i \dot{q}_i \mathcal{L} = p_r \dot{r} + p_{\varphi} \dot{\varphi} \frac{1}{2} m \dot{r}^2 \csc^2 \alpha \frac{1}{2} m r^2 \dot{\varphi}^2 + mgr \cot \alpha.$ Es decir $\mathcal{H}(r, \varphi, p_r, p_{\varphi}) = \frac{p_r^2}{2m \csc^2 \alpha} + \frac{p_{\varphi}^2}{2mr^2} + mgr \cot \alpha$

- El sistema tiene 2 grados de libertad y su Lagrangiano es $\mathcal{L} = \frac{1}{2}m\dot{r}^2\csc^2\alpha + \frac{1}{2}mr^2\dot{\varphi}^2 mgr\cot\alpha$
- Los momentos conjugados son $p_r = \frac{\partial \mathcal{L}}{\partial \dot{r}} = m\dot{r}\csc^2 \alpha$ y $p_{\varphi} = \frac{\partial \mathcal{L}}{\partial \dot{\varphi}} = mr^2\dot{\varphi}$
- Se despejan las velocidades generalizadas como $\dot{r}=rac{p_r}{m \csc^2 lpha}$ y $\dot{arphi}=rac{p_{arphi}}{mr^2}$
- El Hamiltoniano es $\mathcal{H} = \sum_{i=1}^{s} p_i \dot{q}_i \mathcal{L} = p_r \dot{r} + p_{\varphi} \dot{\varphi} \frac{1}{2} m \dot{r}^2 \csc^2 \alpha \frac{1}{2} m r^2 \dot{\varphi}^2 + mgr \cot \alpha.$ Es decir $\mathcal{H}(r, \varphi, p_r, p_{\varphi}) = \frac{p_r^2}{2m \csc^2 \alpha} + \frac{p_{\varphi}^2}{2mr^2} + mgr \cot \alpha$
- Las ecuaciones de Hamilton son $\dot{\varphi} = \frac{\partial \mathcal{H}}{\partial p_{\varphi}} = \frac{p_{\varphi}}{mr^2}$; $\dot{r} = \frac{\partial \mathcal{H}}{\partial p_r} = \frac{p_r}{m \csc^2 \alpha}$; $\dot{p}_{\varphi} = -\frac{\partial \mathcal{H}}{\partial \varphi} = 0 \Rightarrow p_{\varphi} = mr^2 \dot{\varphi} = \text{cte y } \dot{p}_r = -\frac{\partial \mathcal{H}}{\partial r} = \frac{p_{\varphi}^2}{mr^3} mg \cot \alpha$

- El sistema tiene 2 grados de libertad y su Lagrangiano es $\mathcal{L} = \frac{1}{2}m\dot{r}^2\csc^2\alpha + \frac{1}{2}mr^2\dot{\varphi}^2 mgr\cot\alpha$
- Los momentos conjugados son $p_r = \frac{\partial \mathcal{L}}{\partial \dot{r}} = m\dot{r}\csc^2 \alpha$ y $p_{\varphi} = \frac{\partial \mathcal{L}}{\partial \dot{\varphi}} = mr^2\dot{\varphi}$
- Se despejan las velocidades generalizadas como $\dot{r}=rac{p_r}{m\csc^2\alpha}$ y $\dot{arphi}=rac{p_{arphi}}{mr^2}$
- El Hamiltoniano es $\mathcal{H} = \sum_{i=1}^{s} p_i \dot{q}_i \mathcal{L} = p_r \dot{r} + p_{\varphi} \dot{\varphi} \frac{1}{2} m \dot{r}^2 \csc^2 \alpha \frac{1}{2} m r^2 \dot{\varphi}^2 + mgr \cot \alpha.$ Es decir $\mathcal{H} \left(r, \varphi, p_r, p_{\varphi} \right) = \frac{p_r^2}{2m \csc^2 \alpha} + \frac{p_{\varphi}^2}{2mr^2} + mgr \cot \alpha$
- Las ecuaciones de Hamilton son $\dot{\varphi} = \frac{\partial \mathcal{H}}{\partial p_{\varphi}} = \frac{p_{\varphi}}{mr^2}$; $\dot{r} = \frac{\partial \mathcal{H}}{\partial p_r} = \frac{p_r}{m \csc^2 \alpha}$; $\dot{p}_{\varphi} = -\frac{\partial \mathcal{H}}{\partial \varphi} = 0 \Rightarrow p_{\varphi} = mr^2 \dot{\varphi} = \text{cte y } \dot{p}_r = -\frac{\partial \mathcal{H}}{\partial r} = \frac{p_{\varphi}^2}{mr^3} mg \cot \alpha$
- Adicionalmente, $\frac{\partial \mathcal{H}}{\partial t} = 0 \quad \Rightarrow \quad H(r, \varphi, p_r, p_{\varphi}) = \text{cte.}$

- El sistema tiene 2 grados de libertad y su Lagrangiano es $\mathcal{L} = \frac{1}{2}m\dot{r}^2\csc^2\alpha + \frac{1}{2}mr^2\dot{\varphi}^2 mgr\cot\alpha$
- Los momentos conjugados son $p_r = \frac{\partial \mathcal{L}}{\partial \dot{r}} = m\dot{r}\csc^2 \alpha$ y $p_{\varphi} = \frac{\partial \mathcal{L}}{\partial \dot{\varphi}} = mr^2\dot{\varphi}$
- Se despejan las velocidades generalizadas como $\dot{r}=rac{p_r}{m\csc^2\alpha}$ y $\dot{arphi}=rac{p_{arphi}}{mr^2}$
- El Hamiltoniano es $\mathcal{H} = \sum_{i=1}^{s} p_i \dot{q}_i \mathcal{L} = p_r \dot{r} + p_{\varphi} \dot{\varphi} \frac{1}{2} m \dot{r}^2 \csc^2 \alpha \frac{1}{2} m r^2 \dot{\varphi}^2 + mgr \cot \alpha.$ Es decir $\mathcal{H} \left(r, \varphi, p_r, p_{\varphi} \right) = \frac{p_r^2}{2m \csc^2 \alpha} + \frac{p_{\varphi}^2}{2mr^2} + mgr \cot \alpha$
- Las ecuaciones de Hamilton son $\dot{\varphi}=\frac{\partial \mathcal{H}}{\partial p_{\varphi}}=\frac{p_{\varphi}}{mr^{2}};\;\dot{r}=\frac{\partial \mathcal{H}}{\partial p_{r}}=\frac{p_{r}}{m\csc^{2}\alpha};\;\dot{p}_{\varphi}=-\frac{\partial \mathcal{H}}{\partial \varphi}=0 \Rightarrow p_{\varphi}=mr^{2}\dot{\varphi}=$ cte y $\dot{p}_{r}=-\frac{\partial \mathcal{H}}{\partial r}=\frac{p_{\varphi}^{2}}{mr^{3}}-mg\cot\alpha$
- Adicionalmente, $\frac{\partial \mathcal{H}}{\partial t} = 0 \implies H(r, \varphi, p_r, p_{\varphi}) = \text{cte.}$
- La función $\mathcal{H}(r, \varphi, p_r, p_{\varphi}) = \text{cte describe una hipersuperficie}$ 3-dimensional en el espacio de fase 4-dimensional $(r, \varphi, p_r, p_{\varphi})$.

Dinámica Hamiltoniana

• El lagrangeano en coordenadas esféricas es

$$\mathcal{L} = T - V = \frac{m}{2} \left(\dot{r}^2 + r^2 \dot{\theta}^2 + r^2 \sin^2 \theta \dot{\phi}^2 \right) - V(r)$$

• El lagrangeano en coordenadas esféricas es

$$\mathcal{L} = T - V = \frac{m}{2} \left(\dot{r}^2 + r^2 \dot{\theta}^2 + r^2 \sin^2 \theta \dot{\phi}^2 \right) - V(r)$$

• Los momentos conjugados son $p_r = \frac{\partial \mathcal{L}}{\partial \dot{r}} = m\dot{r}$; $p_{\theta} = \frac{\partial \mathcal{L}}{\partial \dot{\theta}} = mr^2\dot{\theta}$ y $p_{\phi} = \frac{\partial \mathcal{L}}{\partial \dot{\phi}} = mr^2\sin^2\theta\dot{\phi}$.

• El lagrangeano en coordenadas esféricas es

$$\mathcal{L} = T - V = \frac{m}{2} \left(\dot{r}^2 + r^2 \dot{\theta}^2 + r^2 \sin^2 \theta \dot{\phi}^2 \right) - V(r)$$

- Los momentos conjugados son $p_r = \frac{\partial \mathcal{L}}{\partial \dot{r}} = m\dot{r}$; $p_{\theta} = \frac{\partial \mathcal{L}}{\partial \dot{\theta}} = mr^2\dot{\theta}$ y $p_{\phi} = \frac{\partial \mathcal{L}}{\partial \dot{\phi}} = mr^2\sin^2\theta\dot{\phi}$.
- Despejamos las velocidades generalizadas $\dot{r}=\frac{p_r}{m},~\dot{\theta}=\frac{p_{\theta}}{mr^2},$ y $\dot{\phi}=\frac{p_{\phi}}{mr^2\sin^2{\theta}}$

• El lagrangeano en coordenadas esféricas es

$$\mathcal{L} = T - V = \frac{m}{2} \left(\dot{r}^2 + r^2 \dot{\theta}^2 + r^2 \sin^2 \theta \dot{\phi}^2 \right) - V(r)$$

- Los momentos conjugados son $p_r = \frac{\partial \mathcal{L}}{\partial \dot{r}} = m\dot{r}$; $p_{\theta} = \frac{\partial \mathcal{L}}{\partial \dot{\theta}} = mr^2\dot{\theta}$ y $p_{\phi} = \frac{\partial \mathcal{L}}{\partial \dot{\phi}} = mr^2\sin^2\theta\dot{\phi}$.
- Despejamos las velocidades generalizadas $\dot{r}=\frac{p_r}{m},~\dot{\theta}=\frac{p_{\theta}}{mr^2},$ y $\dot{\phi}=\frac{p_{\phi}}{mr^2\sin^2{\theta}}$
- Construimos el Hamiltoniano

$$\mathcal{H}=\dot{r}p_r+\dot{ heta}p_ heta+\dot{\phi}p_\phi-\mathcal{L}=rac{1}{2m}\left(p_r^2+rac{p_ heta^2}{r^2}+rac{p_\phi^2}{r^2\sin^2 heta}
ight)+V(r)$$

• El lagrangeano en coordenadas esféricas es

$$\mathcal{L} = T - V = \frac{m}{2} \left(\dot{r}^2 + r^2 \dot{\theta}^2 + r^2 \sin^2 \theta \dot{\phi}^2 \right) - V(r)$$

- Los momentos conjugados son $p_r = \frac{\partial \mathcal{L}}{\partial \dot{r}} = m\dot{r}$; $p_{\theta} = \frac{\partial \mathcal{L}}{\partial \dot{\theta}} = mr^2\dot{\theta}$ y $p_{\phi} = \frac{\partial \mathcal{L}}{\partial \dot{\phi}} = mr^2\sin^2\theta\dot{\phi}$.
- Despejamos las velocidades generalizadas $\dot{r}=\frac{p_r}{m},~\dot{\theta}=\frac{p_{\theta}}{mr^2},$ y $\dot{\phi}=\frac{p_{\phi}}{mr^2\sin^2{\theta}}$
- Construimos el Hamiltoniano

$$\mathcal{H} = \dot{r}p_r + \dot{ heta}p_{ heta} + \dot{\phi}p_{\phi} - \mathcal{L} = \frac{1}{2m}\left(p_r^2 + \frac{p_{ heta}^2}{r^2} + \frac{p_{\phi}^2}{r^2\sin^2{ heta}}\right) + V(r)$$

• Las ecuaciones de Hamilton serán $\dot{r} = \frac{\partial \mathcal{H}}{\partial p_r} = \frac{p_r}{m}; \, \dot{\theta} = \frac{\partial \mathcal{H}}{\partial p_\theta} = \frac{p_\theta}{mr^2};$

$$\dot{\phi} = \frac{\partial \mathcal{H}}{\partial p_{\phi}} = \frac{p_{\phi}}{mr^2 \sin^2 \theta}; \ \dot{p}_r = -\frac{\partial \mathcal{H}}{\partial r} = \frac{p_{\theta}^2}{mr^3} + \frac{p_{\phi}^2}{mr^3 \sin^2 \theta} - \frac{dV}{dr};$$

$$\dot{p}_{\theta} = -\frac{\partial \mathcal{H}}{\partial \theta} = \frac{p_{\phi}^2 \cot \theta}{mr^2 \sin^2 \theta} \text{ y } \dot{p}_{\phi} = -\frac{\partial \mathcal{H}}{\partial \phi} = 0.$$

• El Hamiltoniano \mathcal{H} es equivalente a la función de energía \mathcal{E} $\mathcal{E}\left(q_i,\dot{q}_i,t\right) = \sum_{i=1}^s \frac{\partial \mathcal{L}}{\partial \dot{q}_i} \dot{q}_i - \mathcal{L}(q_i,\dot{q}_i,t) = \sum_{i=1}^s p_i \dot{q}_i - \mathcal{L} = \mathcal{H}(q_i,p_i,t)$

- El Hamiltoniano \mathcal{H} es equivalente a la función de energía \mathcal{E} $\mathcal{E}\left(q_i,\dot{q}_i,t\right) = \sum_{i=1}^s \frac{\partial \mathcal{L}}{\partial \dot{q}_i} \dot{q}_i \mathcal{L}(q_i,\dot{q}_i,t) = \sum_{i=1}^s p_i \dot{q}_i \mathcal{L} = \mathcal{H}(q_i,p_i,t)$
- Es claro que $\frac{d\mathcal{H}}{dt}(q_i, p_i, t) = \sum_{i=1}^s \frac{\partial \mathcal{H}}{\partial q_i} \dot{q}_i + \sum_{i=1}^s \frac{\partial \mathcal{H}}{\partial p_i} \dot{p}_i + \frac{\partial \mathcal{H}}{\partial t} = \sum_{i=1}^s \frac{\partial \mathcal{H}}{\partial q_i} \frac{\partial \mathcal{H}}{\partial p_i} \sum_{i=1}^s \frac{\partial \mathcal{H}}{\partial p_i} \frac{\partial \mathcal{H}}{\partial q_i} + \frac{\partial \mathcal{H}}{\partial t} = \frac{\partial \mathcal{H}}{\partial t}$

- El Hamiltoniano \mathcal{H} es equivalente a la función de energía \mathcal{E} $\mathcal{E}\left(q_i,\dot{q}_i,t\right) = \sum_{i=1}^s \frac{\partial \mathcal{L}}{\partial \dot{q}_i} \dot{q}_i \mathcal{L}(q_i,\dot{q}_i,t) = \sum_{i=1}^s p_i \dot{q}_i \mathcal{L} = \mathcal{H}(q_i,p_i,t)$
- Es claro que $\frac{d\mathcal{H}}{dt}(q_i, p_i, t) = \sum_{i=1}^s \frac{\partial \mathcal{H}}{\partial q_i} \dot{q}_i + \sum_{i=1}^s \frac{\partial \mathcal{H}}{\partial p_i} \dot{p}_i + \frac{\partial \mathcal{H}}{\partial t} = \sum_{i=1}^s \frac{\partial \mathcal{H}}{\partial q_i} \frac{\partial \mathcal{H}}{\partial p_i} \sum_{i=1}^s \frac{\partial \mathcal{H}}{\partial p_i} \frac{\partial \mathcal{H}}{\partial q_i} + \frac{\partial \mathcal{H}}{\partial t} = \frac{\partial \mathcal{H}}{\partial t}$
- Si el Hamiltoniano de un sistema no depende explicitamente del tiempo, entonces $\mathcal{H}(q_i, p_i)$ es constante.

- El Hamiltoniano \mathcal{H} es equivalente a la función de energía \mathcal{E} $\mathcal{E}\left(q_i,\dot{q}_i,t\right) = \sum_{i=1}^s \frac{\partial \mathcal{L}}{\partial \dot{q}_i} \dot{q}_i \mathcal{L}(q_i,\dot{q}_i,t) = \sum_{i=1}^s p_i \dot{q}_i \mathcal{L} = \mathcal{H}(q_i,p_i,t)$
- Es claro que $\frac{d\mathcal{H}}{dt}(q_i, p_i, t) = \sum_{i=1}^{s} \frac{\partial \mathcal{H}}{\partial q_i} \dot{q}_i + \sum_{i=1}^{s} \frac{\partial \mathcal{H}}{\partial p_i} \dot{p}_i + \frac{\partial \mathcal{H}}{\partial t} = \sum_{i=1}^{s} \frac{\partial \mathcal{H}}{\partial q_i} \frac{\partial \mathcal{H}}{\partial p_i} \sum_{i=1}^{s} \frac{\partial \mathcal{H}}{\partial p_i} \frac{\partial \mathcal{H}}{\partial q_i} + \frac{\partial \mathcal{H}}{\partial t} = \frac{\partial \mathcal{H}}{\partial t}$
- Si el Hamiltoniano de un sistema no depende explicitamente del tiempo, entonces $\mathcal{H}(q_i, p_i)$ es constante.
- La función energía es el Hamiltoniano pero no es la energía total (ciertas condiciones aplican)

- El Hamiltoniano \mathcal{H} es equivalente a la función de energía \mathcal{E} $\mathcal{E}\left(q_i,\dot{q}_i,t\right) = \sum_{i=1}^s \frac{\partial \mathcal{L}}{\partial \dot{q}_i} \dot{q}_i \mathcal{L}(q_i,\dot{q}_i,t) = \sum_{i=1}^s p_i \dot{q}_i \mathcal{L} = \mathcal{H}(q_i,p_i,t)$
- Es claro que $\frac{d\mathcal{H}}{dt}(q_i, p_i, t) = \sum_{i=1}^{s} \frac{\partial \mathcal{H}}{\partial q_i} \dot{q}_i + \sum_{i=1}^{s} \frac{\partial \mathcal{H}}{\partial p_i} \dot{p}_i + \frac{\partial \mathcal{H}}{\partial t} = \sum_{i=1}^{s} \frac{\partial \mathcal{H}}{\partial q_i} \frac{\partial \mathcal{H}}{\partial p_i} \sum_{i=1}^{s} \frac{\partial \mathcal{H}}{\partial p_i} \frac{\partial \mathcal{H}}{\partial q_i} + \frac{\partial \mathcal{H}}{\partial t} = \frac{\partial \mathcal{H}}{\partial t}$
- Si el Hamiltoniano de un sistema no depende explicitamente del tiempo, entonces $\mathcal{H}(q_i, p_i)$ es constante.
- La función energía es el Hamiltoniano pero no es la energía total (ciertas condiciones aplican)
- Un lagrangeano se puede descomponer como $\mathcal{L}=\mathcal{L}_2+\mathcal{L}_1+\mathcal{L}_0$. \mathcal{L}_2 es una función homogénea de grado dos, $f(\lambda y_1,\ldots,\lambda y_s)=\lambda^2 f(y_1,\ldots,y_s)$, \mathcal{L}_1 homogénea de grado 1 y \mathcal{L}_0 homogénea de grado cero. Se cumple $\sum_{i=1}^s \frac{\partial f}{\partial y_i}y_i=nf$.

- El Hamiltoniano \mathcal{H} es equivalente a la función de energía \mathcal{E} $\mathcal{E}\left(q_i,\dot{q}_i,t\right) = \sum_{i=1}^s \frac{\partial \mathcal{L}}{\partial \dot{q}_i} \dot{q}_i \mathcal{L}(q_i,\dot{q}_i,t) = \sum_{i=1}^s p_i \dot{q}_i \mathcal{L} = \mathcal{H}(q_i,p_i,t)$
- Es claro que $\frac{d\mathcal{H}}{dt}(q_i, p_i, t) = \sum_{i=1}^{s} \frac{\partial \mathcal{H}}{\partial q_i} \dot{q}_i + \sum_{i=1}^{s} \frac{\partial \mathcal{H}}{\partial p_i} \dot{p}_i + \frac{\partial \mathcal{H}}{\partial t} = \sum_{i=1}^{s} \frac{\partial \mathcal{H}}{\partial q_i} \frac{\partial \mathcal{H}}{\partial p_i} \sum_{i=1}^{s} \frac{\partial \mathcal{H}}{\partial p_i} \frac{\partial \mathcal{H}}{\partial q_i} + \frac{\partial \mathcal{H}}{\partial t} = \frac{\partial \mathcal{H}}{\partial t}$
- Si el Hamiltoniano de un sistema no depende explicitamente del tiempo, entonces $\mathcal{H}(q_i, p_i)$ es constante.
- La función energía es el Hamiltoniano pero no es la energía total (ciertas condiciones aplican)
- Un lagrangeano se puede descomponer como $\mathcal{L} = \mathcal{L}_2 + \mathcal{L}_1 + \mathcal{L}_0$. \mathcal{L}_2 es una función homogénea de grado dos, $f(\lambda y_1, \dots, \lambda y_s) = \lambda^2 f(y_1, \dots, y_s)$, \mathcal{L}_1 homogénea de grado 1 y \mathcal{L}_0 homogénea de grado cero. Se cumple $\sum_{i=1}^s \frac{\partial f}{\partial y_i} y_i = nf$.
- Entonces $\mathcal{E}(q_i, \dot{q}_i) = \sum_{i=1}^s \frac{\partial \mathcal{L}}{\partial \dot{q}_i} \dot{q}_i \mathcal{L} = 2\mathcal{L}_2 + \mathcal{L}_1 \mathcal{L} = \mathcal{L}_2 \mathcal{L}_0$

- El Hamiltoniano \mathcal{H} es equivalente a la función de energía \mathcal{E} $\mathcal{E}\left(q_i,\dot{q}_i,t\right) = \sum_{i=1}^s \frac{\partial \mathcal{L}}{\partial \dot{q}_i} \dot{q}_i \mathcal{L}(q_i,\dot{q}_i,t) = \sum_{i=1}^s p_i \dot{q}_i \mathcal{L} = \mathcal{H}(q_i,p_i,t)$
- Es claro que $\frac{d\mathcal{H}}{dt}(q_i, p_i, t) = \sum_{i=1}^{s} \frac{\partial \mathcal{H}}{\partial q_i} \dot{q}_i + \sum_{i=1}^{s} \frac{\partial \mathcal{H}}{\partial p_i} \dot{p}_i + \frac{\partial \mathcal{H}}{\partial t} = \sum_{i=1}^{s} \frac{\partial \mathcal{H}}{\partial q_i} \frac{\partial \mathcal{H}}{\partial p_i} \sum_{i=1}^{s} \frac{\partial \mathcal{H}}{\partial p_i} \frac{\partial \mathcal{H}}{\partial q_i} + \frac{\partial \mathcal{H}}{\partial t} = \frac{\partial \mathcal{H}}{\partial t}$
- Si el Hamiltoniano de un sistema no depende explicitamente del tiempo, entonces $\mathcal{H}(q_i, p_i)$ es constante.
- La función energía es el Hamiltoniano pero no es la energía total (ciertas condiciones aplican)
- Un lagrangeano se puede descomponer como $\mathcal{L}=\mathcal{L}_2+\mathcal{L}_1+\mathcal{L}_0$. \mathcal{L}_2 es una función homogénea de grado dos, $f(\lambda y_1,\ldots,\lambda y_s)=\lambda^2 f(y_1,\ldots,y_s)$, \mathcal{L}_1 homogénea de grado 1 y \mathcal{L}_0 homogénea de grado cero. Se cumple $\sum_{i=1}^s \frac{\partial f}{\partial y_i} y_i = nf$.
- Entonces $\mathcal{E}(q_i, \dot{q}_i) = \sum_{i=1}^s \frac{\partial \mathcal{L}}{\partial \dot{q}_i} \dot{q}_i \mathcal{L} = 2\mathcal{L}_2 + \mathcal{L}_1 \mathcal{L} = \mathcal{L}_2 \mathcal{L}_0$
- Si $\frac{\partial \mathcal{L}}{\partial t} = 0$ y el potencial no depende de las velocidades $\mathcal{L}_2 = T$ y $\mathcal{L}_0 = -V$, entonces $\mathcal{E} = T + V = E$

• Consideremos una cuenta de masa m que desliza por una barra, sin masa, que rota sobre un plano con velocidad angular ω constante.

• Consideremos una cuenta de masa m que desliza por una barra, sin masa, que rota sobre un plano con velocidad angular ω constante.

• El lagrangeano $\mathcal{L}=\mathcal{T}=rac{m}{2}\left(\dot{r}^2+\omega^2r^2
ight),$

• Consideremos una cuenta de masa m que desliza por una barra, sin masa, que rota sobre un plano con velocidad angular ω constante.

- El lagrangeano $\mathcal{L} = \mathcal{T} = \frac{m}{2} \left(\dot{r}^2 + \omega^2 r^2 \right),$
- ullet El momento conjugado $p_r=m\dot{r}$

• Consideremos una cuenta de masa m que desliza por una barra, sin masa, que rota sobre un plano con velocidad angular ω constante.

- El lagrangeano $\mathcal{L} = T = \frac{m}{2} \left(\dot{r}^2 + \omega^2 r^2 \right)$,
- El momento conjugado $p_r = m\dot{r}$ El hamiltoniano $\mathcal{H} = \frac{p_r^2}{2m} \frac{m\omega^2}{2}r^2$ no es la energía, $E = T = \frac{p_r^2}{2m} + \frac{m\omega^2}{2}r^2$ pero se conserva $\partial \mathcal{H}/\partial t = 0$

• Consideremos una cuenta de masa m que desliza por una barra, sin masa, que rota sobre un plano con velocidad angular ω constante.

- El lagrangeano $\mathcal{L} = T = \frac{m}{2} \left(\dot{r}^2 + \omega^2 r^2 \right)$,
- El momento conjugado $p_r = m\dot{r}$ El hamiltoniano $\mathcal{H} = \frac{p_r^2}{2m} \frac{m\omega^2}{2}r^2$ no es la energía, $E = T = \frac{p_r^2}{2m} + \frac{m\omega^2}{2}r^2$ pero se conserva $\partial \mathcal{H}/\partial t = 0$
- Diferentes elecciones de coordenadas generalizadas cambian la forma funcional de un Lagrangiano, pero su valor sigue siendo el mismo.

• Consideremos una cuenta de masa m que desliza por una barra, sin masa, que rota sobre un plano con velocidad angular ω constante.

- El lagrangeano $\mathcal{L} = T = \frac{m}{2} \left(\dot{r}^2 + \omega^2 r^2 \right)$,
- El momento conjugado $p_r = m\dot{r}$ El hamiltoniano $\mathcal{H} = \frac{p_r^2}{2m} \frac{m\omega^2}{2}r^2$ no es la energía, $E = T = \frac{p_r^2}{2m} + \frac{m\omega^2}{2}r^2$ pero se conserva $\partial \mathcal{H}/\partial t = 0$
- Diferentes elecciones de coordenadas generalizadas cambian la forma funcional de un Lagrangiano, pero su valor sigue siendo el mismo.
- El valor y la forma funcional del hamiltoniano dependen del conjunto de coordenadas generalizadas. Puede ocurrir que se conserve en un sistema de coordenadas pero varíe en otro.