Chapitre 9

Suites numériques

Objectifs

- Définir l'ensemble des suites réelles et étudier la structure de cet ensemble.
- Donner la définition générale de limite et ses applications
- Étudier les propriétés des limites vis à vis des opérations et de la relation d'ordre.
- Étudier le lien entre le sens de variation d'une suite et la notion de limite.
- Étendre ces différentes notions aux suites complexes.
- Définir les trois relations de comparaison entre les suites.

Sommaire

I)	Suites	s réelles, généralités	
	1)	<u>Définitions</u>	
	2)	Vocabulaire	
	3)	Opérations sur les suites	
II)	Suites	s convergentes	
	1)	Définition	
	2)	Premières propriétés	
	3)	Convergence et opérations	
	4)	Convergence et relation d'ordre	
III)	Suites	s ayant une limite infinie	
	1)	Définition	
	2)	Limite infinie et ordre	
	3)	Limite infinie et opérations	
IV)	Théor	rèmes d'existence d'une limite	
	1)	Suites monotones	
	2)	Suites adjacentes	
	3)	Le théorème de BOLZANO - WEIERSTRASS	
V)	Exten	sion aux suites complexes	
	1)	Définitions	
	2)	Convergence	
	3)	Propriétés	
VI)	Comp	araison des suites	
	1)	Définitions	
	2)	Les exemples classiques	
	3)	Propriétés	
VII)	Annex	xe	
	1)	Structure d'anneau	
	2)	Relation d'équivalence	

Suites réelles, généralités I)

Définitions

Définition 9.1

Une suite numérique u est une application de A vers \mathbb{R} : $u:A\to\mathbb{R}$, où A est une partie de \mathbb{N} . Par convention le réel u(n) est noté u_n , et la suite u est parfois notée $(u_n)_{n\in A}$. Si la partie A est finie, on dit que la suite u est une suite finie. L'ensemble des suites réelles définies sur A est donc l'ensemble des applications de A vers \mathbb{R} , c'est à dire $\mathscr{F}(A,\mathbb{R})$.

On prendra garde à ne pas confondre u_n qui est un réel (terme de rang n) avec $(u_n)_{n\in A}$ qui désigne la suite u. Les suites finies présentant peu d'intérêt, on étudiera seulement le cas où A est une partie infinie de $\mathbb N$. On peut alors montrer qu'il est toujours possible de se ramener au cas où $A = \mathbb{N}$, si bien que dans la suite de ce chapitre on étudiera $\mathscr{F}(\mathbb{N},\mathbb{R})$ l'ensemble des suites réelles définies sur \mathbb{N} .

Exemples:

- Une suite u est **arithmétique** ssi il existe un réel r (appelé **raison**), tel que \forall $n \in \mathbb{N}$, $u_{n+1} = u_n + r$. On a alors les formules suivantes : $\forall n, p \in \mathbb{N}, u_n = u_p + (n-p)r$. La somme de n termes consécutifs est $S = \frac{n(p+d)}{2}$ où pdésigne le premier terme, et *d* le dernier.
- Une suite u est **géométrique** ssi il existe $q \in \mathbb{R}^*$ (appelé **raison**), tel que $\forall n \in \mathbb{N}, u_{n+1} = qu_n$. On a alors les formules suivantes : $\forall n, p \in \mathbb{N}, u_n = u_p q^{n-p}$. La somme de n termes consécutifs est $S = \begin{cases} np & \text{si } q = 1 \\ \frac{p - qd}{1 - q} & \text{si } q \neq 1 \end{cases}$, où

p désigne le premier terme, d le dernier et q la raison.

- Suites récurrentes à un pas : ce sont les suites u définies par : u_0 ∈ \mathbb{R} et \forall $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$, où $f: I \to \mathbb{R}$ est une fonction donnée. Par exemple : $u_0 = \frac{1}{2}$ et $u_{n+1} = u_n^2$. Dans le plan, à l'aide de la courbe représentative de fet de la première bissectrice, on peut construire géométriquement les termes de la suite sur l'axe des abscisses.
- Suites récurrentes à deux pas : par exemple la suite de Fibonacci 1 qui est définie par : $u_0 = u_1 = 1$ et $\forall n \in \mathbb{N}, u_{n+2} = u_{n+1} + u_n.$

2) Vocabulaire

- Sens de variation : soit u une suite réelle et p un entier, on dit que la suite u est :
 - croissante à partir du rang *p* lorsque : \forall *n* ≥ *p*, $u_n \leq u_{n+1}$.
 - strictement croissante à partir du rang *p* lorsque : \forall *n* ≥ *p*, u_n < u_{n+1} .
 - décroissante à partir du rang p lorsque : $\forall n \ge p, u_{n+1} \le u_n$.
 - strictement décroissante à partir du rang p lorsque : $\forall n \ge p, u_{n+1} < u_n$.
 - constante (ou stationnaire) à partir du rang p lorsque : $\forall n \ge p, u_{n+1} = u_n$.
 - monotone lorsque u est croissante ou bien décroissante.
 - strictement monotone lorsque u est strictement croissante ou bien strictement décroissante.

Étudier le sens de variation de u peut se faire en étudiant le signe de $u_{n+1} - u_n$, ou encore le signe de $f(u_{n+1}) - f(u_n)$ où f désigne une fonction monotone.

- Suite bornée : on dit qu'une suite réelle *u* est :
 - majorée lorsque : $\exists M \in \mathbb{R}, \forall n \in \mathbb{N}, u_n \leq M$.
 - minorée lorsque : \exists *m* ∈ \mathbb{R} , \forall *n* ∈ \mathbb{N} , *m* ≤ u_n .
 - bornée lorsque : $\exists m, M \in \mathbb{R}, \forall n \in \mathbb{N}, m \leq u_n \leq M$ (i.e. minorée et majorée).

Une suite u est bornée ssi il existe un réel M positif tel que $\forall n \in \mathbb{N}, |u_n| \leq M$.

Par exemple, la suite $(u_n = \sin(n))$ est bornée, la suite $(v_n = n^2)$ est minorée mais non majorée, la suite $(w_n = (-2)^n)$ est ni minorée ni majorée.

^{1.} FIBONACCI Leonardo (1180 – 1250 (environ)): mathématicien italien (de son vrai nom Leonardo da Pisa) qui œuvra pour l'introduction de nombres arabes en Occident.

- Suite périodique : on dit qu'une suite u est p -périodique (où $p ∈ \mathbb{N}^*$) à partir du rang n_0 lorsque : $\forall n \ge n_0, u_{n+p} = u_n$. Par exemple, la suite $(u_n) = (-1)^n$) est 2 - périodique, la suite w définie par $w_0 = 1$, $w_1 = 1$ et pour tout n $w_{n+2} = -w_{n+1} - w_n$, est 3 - périodique, mais la suite des décimales de π n'est pas périodique car π est irrationnel.
- Suite extraite : soit u une suite réelle et soit $\sigma: \mathbb{N} \to \mathbb{N}$ une application strictement croissante, alors la suite v définie par $v_n = u_{\sigma(n)}$ est appelée suite extraite de u (σ étant l'extraction). On remarquera que l'on a : $\forall n \in \mathbb{N}, n \le \sigma(n)$. Par exemple, la suite (u_{2n}) est une suite extraite de u, c'est la suite des termes de rangs pairs, de même la suite (u_{2n+1}) est extraite de u, c'est la suite des termes de rangs impairs.

3) **Opérations sur les suites**

Soient u et v deux suites réelles et soit $\lambda \in \mathbb{R}$, on définit les suites :

- -u+v: en posant pour tout $n \in \mathbb{N}$, $(u+v)_n = u_n + v_n$;
- $-u \times v$: en posant $(u \times v)_n = u_n v_n$.
- $-\lambda v$: en posant $(\lambda v)_n = \lambda v_n$.
- $-\frac{1}{\nu}$: si ν ne s'annule pas à partir d'un certain rang n_0 , en posant : $(\frac{1}{\nu})_n = \frac{1}{\nu}$.

On vérifie alors que :

- $-(\mathscr{F}(\mathbb{N},\mathbb{R}),+)$ est un groupe abélien. Son élément neutre est la suite nulle (notée 0) et l'opposé d'une suite u est la suite $(-u_n)_{n\in\mathbb{N}}$ (notée -u).
- La multiplication est associative, commutative, admet comme élément neutre la suite constante $(u_n = 1)_{n \in \mathbb{N}}$ (notée 1), et elle est distributive sur l'addition. Mais il y a des suites non nulles qui n'ont pas d'inverse, par exemple la suite u définie par $u_n = 1 + (-1)^n$. Seules les suites u qui ne s'annulent jamais ont un inverse, et cet inverse est la suite $\frac{1}{u}$.

L'ensemble $(\mathscr{F}(\mathbb{N},\mathbb{R}),+,\times)$ n'est donc pas un corps, mais seulement un **anneau commutatif**. Les deux suites u et v définies par $u_n = 1 + (-1)^n$ et $v_n = 1 - (-1)^n$ sont non nulles, mais leur produit est la suite nulle, ceci prouve que $(\mathscr{F}(\mathbb{N},\mathbb{R}),+,\times)$ est un anneau **non intègre**.

II) Suites convergentes

Définition 1)

ØDéfinition 9.2

Soit u une suite réelle et $\ell \in \mathbb{R}$, on dit que u admet comme limite ℓ lorsque u_n peut être aussi proche (ou voisin) que l'on veut de ℓ pourvu que n soit assez grand, c'est à dire :

$$\forall \ \varepsilon > 0, \exists \ N \in \mathbb{N}, \forall \ n \in \mathbb{N}, n \geqslant N \Longrightarrow |u_n - \ell| < \varepsilon$$

Notation : $\lim u = \ell$ ou $\lim u_n = \ell$ ou $u_n \to \ell$.

Remarques:

- Comme $|u_n - \ell| = |(u_n - \ell) - 0| = ||u_n - \ell| - 0|$, on a :

$$\lim u_n = \ell \iff \lim u_n - \ell = 0 \iff \lim |u_n - \ell| = 0.$$

- Comme $||u_n| |\ell|| \le |u_n \ell|$, on a : $\lim u_n = \ell \Longrightarrow \lim |u_n| = |\ell|$ (réciproque fausse).
- Si à partir d'un certain rang on a : $|u_n \ell| \le v_n$, et si $v_n \to 0$, alors $\lim u_n = \ell$. En effet : soit ε >, à partir d'un rang N_1 on a $|v_n| < \varepsilon$, et à partir d'un rang N_2 on a $|u_n - \ell| \le v_n$, donc à partir du rang $Max(N_1, N_2)$ on a $|u_n - \ell| < \varepsilon$.

ØDéfinition 9.3

Lorsque la suite u admet une limite finie, on dit que u est convergente, sinon on dit qu'elle est divergente.

Exemples:

- Toute suite stationnaire (à partir d'un certain rang) est convergente.
- Soit $x \in \mathbb{R}$ et $v_n = \frac{E(nx)}{n}$: on a $v_n \to x$. Soit $\varepsilon > 0$, $|v_n x| = \frac{nx E(nx)}{n} < \frac{1}{n} < \varepsilon \iff n > \frac{1}{\varepsilon}$, il suffit donc de prendre $N = 1 + E(\frac{1}{\varepsilon})$ pour avoir : $n \ge N \Longrightarrow |v_n x| < \varepsilon$.
- $-u_n = q^n$ avec q = 1: la suite est constante et $u_n \to 1$.
- $-u_n=q^n$ avec |q|<1 et $q\neq 0$: alors $q^n\to 0$. Soit $\varepsilon>0$, comme $\frac{1}{|q|}>1$, on a $\frac{1}{|q|}=1+p$ avec p>0, on peut montrer alors que $\forall n\in\mathbb{N}, \frac{1}{|q|^n}\geqslant 1+np$ (récurrence ou binôme de *Newton*), on a $\frac{1}{|q|^n}>\frac{1}{\varepsilon}$ dès que $1+np>\frac{1}{\varepsilon}$ c'est à dire dès que $n\geqslant N=1+\mathrm{E}(\frac{1}{p\varepsilon}-\frac{1}{p})$, donc $n\geqslant N\Longrightarrow |q^n|<\varepsilon$.
- $-u_n=(-1)^n$ alors la suite est divergente (2-périodique). Supposons qu'elle ait une limite finie ℓ alors à partir d'un certain rang N on aura $|u_n-\ell|<\frac{1}{3}$ par conséquent les valeurs -1 et 1 sont dans l'intervalle $]\ell-\frac{1}{3};\ell+\frac{1}{3}[$ ce qui est absurde.

Exercice: Montrer qu'une suite d'entiers convergente est stationnaire.

2) Premières propriétés

Soit *u* une suite réelle :

– Si *u* admet une limite $\ell \in \mathbb{R}$, alors celle - ci est unique.

Preuve: Supposons $u_n \to \ell$ et $u_n \to \ell'$ avec $\ell \neq \ell'$, Soit $\alpha \in]\ell; \ell'[$, $\varepsilon = \alpha - \ell$ et $\varepsilon' = \ell' - \alpha$, alors à partir d'un certain rang N on a $|u_n - \ell| < \varepsilon$, ce qui donne $u_n < \alpha$, et à partir d'un certain rang N' on a $|u_n - \ell'| < \varepsilon'$, ce qui donne $\alpha < u_n$, donc à partir de $\max(N, N')$ on a une contradiction, donc $\ell = \ell'$.

On a démontré au passage :

- Si u converge vers ℓ et si $\alpha < \ell$, alors à partir d'un certain rang $\alpha < u_n$. De même, si $\alpha > \ell$, alors à partir d'un certain rang on a $\alpha > u_n$.
- Si *u* est convergente, alors *u* est bornée (la réciproque est fausse).

Preuve: Si $u_n \to \ell \in \mathbb{R}$, il existe un entier N tel que $n \ge N \Longrightarrow |u_n - \ell| < 1$, ce qui entraı̂ne $|u_n| < |\ell| + 1$. On a alors pour tout entier $n : |u_n| \le \max(|u_0|, \dots, |u_N|, 1 + |\ell|)$. Pour voir que la réciproque est fausse, on peut considérer la suite u définie par $u_n = (-1)^n$, elle est bornée mais non convergente.

Conséquence : la suite (q^n) avec |q| > 1 est divergente car non bornée, en effet : |q| = 1 + p avec p > 0 donc $|q^n| \ge 1 + np$ qui peut être aussi grand que l'on veut.

– Si u converge vers ℓ , alors toutes les suites extraites de u convergent vers ℓ .

Preuve: Soit $v_n = u_{\sigma(n)}$ une suite extraite de u et supposons $u_n \to \ell \in \overline{\mathbb{R}}$. Soit W un voisinage de ℓ , il existe un entier N tel que $n \ge N \Longrightarrow u_n \in W$. Mais σ étant strictement croissante, on a $\forall n \in \mathbb{N}, n \le \sigma(n)$, donc $n \ge N \Longrightarrow \sigma(n) \ge N$, mais alors $u_{\sigma(n)} \in W$, c'est à dire $n \ge N \Longrightarrow v_n \in W$ et donc $v_n \to \ell$.

Cette propriété est souvent utilisée pour montrer qu'une suite u n'a pas de limite. Soit en trouvant une suite extraite qui diverge, soit en trouvant deux suites extraites qui ne convergent pas vers la même limite. Par exemple : $u_n = \cos((n + \frac{1}{n})\pi)$.

- Si $\lim u_{2n} = \lim u_{2n+1} = \ell \in \mathbb{R}$, alors $\lim u = \ell$. **Preuve**: Soit $\varepsilon > 0$, il existe un entier N_1 tel que $k \ge N_1 \Longrightarrow |u_{2k} - \ell| < \varepsilon$, de même il existe un entier N_2 tel que $k \ge N_2 \Longrightarrow |u_{2k+1} - \ell| < \varepsilon$. Posons $N = \max(2N_1, 2N_2 + 1)$, si $n \ge N$ alors lorsque n = 2k on a $k \ge N_1$ et donc $|u_n - \ell| < \varepsilon$, lorsque n = 2k + 1 on a $k \ge N_2$ et donc $|u_n - \ell| < \varepsilon$, finalement dès que $n \ge N$ on a $|u_n - \ell| < \varepsilon$ et donc $u_n \to \ell$. □

3) Convergence et opérations

🎖 THÉORÈME 9.1

Soient u et v deux suites qui convergent respectivement vers ℓ et ℓ' , et soit $\lambda \in \mathbb{R}$ alors :

- $(u_n + v_n)$ converge vers $\ell + \ell'$.
- $-(\lambda u_n)$ converge vers $\lambda \ell$.

Preuve: Soit $\varepsilon > 0$, il existe un entier N à partir duquel on a $|u_n - \ell| < \varepsilon/2$ et $|v_n - \ell'| < \varepsilon/2$, mais alors on a $|u_n + v_n - (\ell + \ell')| \le |u_n - \ell| + |v_n - \ell'| < \varepsilon$, donc $u_n + v_n \to \ell + \ell'$.

Soit $\lambda \neq 0$, et soit $\varepsilon > 0$, à partir d'un certain rang on a $|u_n - \ell| < \frac{\varepsilon}{|\lambda|}$ d'où $|\lambda u_n - \lambda \ell| < \varepsilon$.

√THÉORÈME 9.2

 $Si(u_n)$ converge vers ℓ et (v_n) vers ℓ' alors :

- $(u_n v_n)$ converge vers $\ell \ell'$.
- $Si \ell \neq 0$, alors à partir d'un certain rang la suite les termes u_n sont non nuls et la suite $(\frac{1}{u_n})$ converge vers $\frac{1}{\ell}$.

Preuve: $|u_nv_n - \ell\ell'| = |(u_n - \ell)v_n + \ell(v_n - \ell')| \le |u_n - \ell||v_n| + |\ell||v_n - \ell'|$, mais la suite ν est bornée donc il existe un réel M strictement positif tel que $|v_n| \le M$ et donc $|u_nv_n - \ell\ell'| < |u_n - \ell|M + |\ell||v_n - \ell'|$, mais d'après le théorème précédent la deuxième suite tend vers 0, donc $u_nv_n \to \ell\ell'$.

La suite $(|u_n|)$ converge vers $|\ell| > 0$ donc à partir d'un certain rang on a $|u_n| > \frac{|\ell|}{2} > 0$, donc $u_n \neq 0$ et alors : $|\frac{1}{u_n} - \frac{1}{\ell}| = \frac{|\ell - u_n|}{|\ell u_n|} < \frac{2|\ell - u_n|}{\ell^2}$, or cette deuxième suite tend vers 0, donc $\frac{1}{u_n} \to \frac{1}{\ell}$.

4) Convergence et relation d'ordre

√ THÉORÈME 9.3

Soient u, v et w trois suites réelles. Si u converge vers ℓ , v converge vers ℓ' , et si à partir d'un certain rang on a $u_n \leq v_n$, alors $\ell \leq \ell'$ (c'est le théorème du **passage à la limite**).

Preuve: Supposons $\ell > \ell'$, alors il existe $\alpha \in]\ell', \ell[$ donc à partir d'un certain rang on doit avoir $u_n > \alpha$ et $v_n < \alpha$ ce qui est contradictoire, donc $\ell \leq \ell'$.

Pour le passage à la limite on peut avoir $u_n < v_n$ et $\ell = \ell'$, par exemple en prenant $u_n = 1 - \frac{1}{n}$ et $v_n = 1 + \frac{1}{n}$, donc dans un passage à la limite les inégalités deviennent larges.

THÉORÈME 9.4

Soient u, v et w trois suites réelles. Si u et v convergent vers ℓ et si à partir d'un certain rang on a $u_n \le w_n \le v_n$, alors w converge vers ℓ (c'est le théorème **des gendarmes ou de l'étau**).

Preuve: Soit $\varepsilon > 0$, il existe un entier N à partir duquel on a $u_n \le w_n \le v_n$ avec $u_n, v_n \in]\ell - \varepsilon, \ell + \varepsilon[$, donc $w_n \in]\ell - \varepsilon, \ell + \varepsilon[$ à partir du rang N, donc $w_n \to \ell$.

√ THÉORÈME 9.5

• Soient u et v deux suites réelles. Si u converge vers 0 et si v est bornée, alors $\lim u \times v = 0$.

Preuve: Il existe un réel positif M tel que $|v_n| \le M$ pour tout n, d'où $|u_n v_n| \le M |u_n|$, c'est à dire $-M |u_n| \le u_n v_n \le M |u_n|$, on peut donc conclure que $u_n v_n \to 0$.

Déterminer la limite des suites (si elle existe) :

Exemples:

$$-a_n = \frac{\sin(n)}{n} \qquad b_n = \frac{n}{2n + (-1)^n} \qquad c_n = \sum_{k=1}^n \frac{1}{n + \sqrt{k}} \qquad d_n = n - \sqrt{n}$$

$$-e_n = \frac{n^3 - 1}{n^2 + 1} \qquad f_n = \sqrt{n^2 + n + 1} - n \qquad g_n = \left(1 + \frac{1}{n}\right)^n$$

III) Suites ayant une limite infinie

1) Définition

DÉFINITION 9.4

Soit u une suite réelle :

- on dit que u admet comme limite $+\infty$ lorsque u_n peut être aussi grand que l'on veut pourvu que n soit assez grand, c'est à dire : \forall $A \in \mathbb{R}, \exists$ $N \in \mathbb{N}, \forall$ $n \in \mathbb{N}, n \geqslant N \Longrightarrow u_n > A$. Notation : $\lim u = +\infty$ ou $\lim u_n = +\infty$ ou $u_n \to +\infty$.
- on dit que u admet comme limite -∞ lorsque u_n peut être aussi petit que l'on veut pourvu que n soit assez grand, c'est à dire : \forall $A \in \mathbb{R}, \exists$ $N \in \mathbb{N}, \forall$ $n \in \mathbb{N}, n \geqslant N \Longrightarrow u_n < A$. Notation : $\lim u = -\infty$ ou $\lim u_n = -\infty$ ou $u_n \to -\infty$.

Remarques:

- Si u_n → +∞ alors u n'est pas majorée.
- Si u_n → - ∞ alors u n'est pas minorée.
- On a l'équivalence : $\lim u_n = -\infty \iff \lim -u_n = +\infty$.

Exemple: Si q > 1 alors $\lim q^n = +\infty$.

Comme pour les suites convergentes, on peut montrer :

- Si u admet une limite infinie, alors toutes les suites extraites de u ont la même limite que u.
- Si $u_{2n} \to +\infty$ et $u_{2n+1} \to +\infty$, alors $u_n \to +\infty$.

2) Limite infinie et ordre

-THÉORÈME 9.6

Soient u et v deux suites réelles :

- Si $\lim u = +\infty$ et si à partir d'un certain rang on a $u_n \le v_n$, alors $\lim v = +\infty$.
- Si lim $v = -\infty$ et si $u_n ≤ v_n$ à partir d'un certain rang, alors lim $u = -\infty$.
- Si $\lim u = +\infty$ (respectivement $-\infty$) et si v est minorée (respectivement majorée), alors $\lim u + v = +\infty$ (respectivement $-\infty$).

Preuve: Pour le premier point : il existe un entier N_1 à partir duquel on a $u_n \le v_n$, soit A un réel, il existe un entier N_2 à partir duquel on a $A < u_n$, donc si $n \ge \max(N_1, N_2)$ alors $A < v_n$, donc $v_n \to +\infty$.

Pour le deuxième point : on peut appliquer le précédent aux suites -u et -v.

Pour le troisième point : supposons $u_n \to +\infty$ et v minorée par un réel m, alors pour tout entier n on a $m+u_n \le u_n+v_n$, or la suite $(m+u_n)$ tend vers $+\infty$, on peut donc appliquer le premier point, *i.e.* $u_n+v_n \to +\infty$. Dans l'autre cas on peut raisonner sur les suites -u et -v.

3) Limite infinie et opérations

-\

🎧 - THÉORÈME 9.7

Soient u et v deux suites de limites respectives ℓ et ℓ' dans $\overline{\mathbb{R}}$, et soit $\lambda \in \mathbb{R}$.

- $\lim u + v = \ell + \ell'$ sauf si $\ell = +\infty$ et $\ell' = -\infty$ (ou l'inverse).
- $\lim u \times v = \ell \ell'$ sauf si $\ell = 0$ et $\ell' = \pm \infty$ (ou l'inverse).
- $\lim \lambda u = \lambda \ell$ (si $\lambda = 0$ alors la suite λu est nulle).
- Si à partir d'un certain rang la suite u ne s'annule pas, alors la suite $\frac{1}{u}$:

```
 \begin{cases} & tend \ vers \ \frac{1}{\ell} & si \ \ell \in \mathbb{R}^* \\ & tend \ vers \ 0 & si \ \ell = \pm \infty \\ & tend \ vers \ + \infty & si \ \ell = 0 \ et \ u > 0 \\ & tend \ vers \ - \infty & si \ \ell = 0 \ et \ u < 0 \\ & n'a \ pas \ de \ limite \ dans \ les \ autres \ cas \end{cases}
```

Preuve: Pour la somme : prenons par exemple le cas $\ell \in \mathbb{R}$ et $\ell' = +\infty$, la suite u_n est minorée par un certain réel m (car convergente) d'après le paragraphe précédent, $u_n + v_n \rightarrow +\infty$.

Pour le produit : prenons par exemple le cas où ℓ est un réel strictement positif et $\ell' = -\infty$. Soit A un réel et

 $B=\min(A,0)$, la suite u_n est minorée à partir d'un certain rang N_1 un réel strictement positif α , il existe un entier N_2 à partir duquel $v_n<\frac{B}{\alpha}$, soit $N=\max(N_1,N_2)$ si $n\geqslant N$ alors $u_nv_n<\frac{B}{\alpha}u_n\leqslant B\leqslant A$, donc $u_nv_n\to-\infty$. Pour l'inverse : supposons que $\ell=0$ et u>0, soit A un réel et $B=\max(A,0)+1$, il existe un entier N à partir duquel on a $|u_n|<\frac{1}{B}$, c'est à dire en fait, $0< u_n<\frac{1}{B}$ et donc $A< B<\frac{1}{u_n}$, par conséquent $u_n\to+\infty$. Pour terminer prenons la suite $u_n = \frac{(-1)^n}{n}$, son inverse est la suite $((-1)^n n)$ et cette suite n'a pas de limite.

Théorèmes d'existence d'une limite

Suites monotones

THÉORÈME 9.8

Si u est une suite croissante (respectivement décroissante), alors dans $\overline{\mathbb{R}}$ on a $\lim u_n = \sup u_n$ (respectivement $\inf_{n\in\mathbb{N}}u_n$).

Preuve: Supposons u croissante, soit $\ell = \sup u_n$, et soit W un voisinage de ℓ . Comme W est un intervalle ouvert, il existe un réel A dans W tel que $A < \ell$, donc il existe un entier N tel que $u_N > A$, ce qui entraîne que $u_N \in W$ car $u_N \leqslant \ell$. Si $n \geqslant N$ alors $u_N \leqslant u_n \leqslant \ell$ et donc $u_n \in W$, ce qui prouve que $u_n \to \ell$. Lorsque u est décroissante, on applique ce qui précède à la suite -u et on utilise que inf $u_n = -\sup -u_n$.

Conséquences:

- a) Si (u_n) est croissante majorée, alors $\ell = \sup u_n \in \mathbb{R}$ et donc (u_n) converge vers ℓ , de plus $\forall n \in \mathbb{R}$ $\mathbb{N}, u_n \leq \ell$. En fait si u est strictement croissante, alors $\forall n \in \mathbb{N}, u_n < \ell$ (car s'il y avait l'égalité au rang N, alors la suite serait constante à partir de l'indice N).
- b) Si (u_n) est décroissante minorée, alors $\ell = \inf u_n \in \mathbb{R}$ et donc (u_n) converge vers ℓ , de plus $\forall n \in \mathbb{R}$ $\mathbb{N}, u_n \ge \ell$. En fait si u est strictement décroissante, alors $\forall n \in \mathbb{N}, u_n > \ell$ (car s'il y avait l'égalité au rang N, alors la suite serait constante à partir de l'indice N).
- c) Si u est croissante non majorée, alors $\ell = \sup u_n = +\infty$, donc $u_n \to +\infty$. De même, si u est décroissante non minorée, alors $u_n \to -\infty$.
- d) Une suite monotone est donc convergente ssi elle est bornée.

Exemples:

- Soit u la suite définie par : $u_n = \sum_{k=1}^n \frac{1}{k^2}$. Cette suite est croissante $(u_{n+1} u_n > 0)$, en remarquant que pour $k\geqslant 2$ on a $\frac{1}{k^2}<\frac{1}{k(k-1)}=\frac{1}{k}-\frac{1}{k-1}$, on voit que $u_n<2$, la suite u est donc convergente (de limite $\frac{\pi^2}{6}$).
- Soit ν la suite définie par $\nu_0 = 1$ et \forall $n \in \mathbb{N}$, $\nu_{n+1} = \sin(\nu_n)$. Il s'agit d'une suite récurrente, la représentation graphique des premiers termes suggère que la suite est décroissante minorée par 0, ce qui est facile à vérifier par récurrence. La suite ν est donc convergente de limite ℓ , la fonction sinus étant continue, on a $\sin(\nu_n) \to \sin(\ell)$, c'est à dire $v_{n+1} \to \sin(\ell)$, donc $\ell = \sin(\ell)$. L'étude de la fonction $x \mapsto \sin(x) - x$ montre que l'unique solution de sin(x) = x est 0, donc $\ell = 0$, i.e. $v_n \to 0$

Suites adjacentes

ØDéfinition 9.5

Soient u et v deux suites, on dit qu'elles sont adjacentes lorsque l'une est croissante, l'autre décroissante et $\lim u_n - v_n = 0$.

Exemple: Soient u et v les suites définies par : $u_n = \sum_{k=0}^{n} \frac{1}{k!}$ et $v_n = u_n + \frac{1}{n \times n!}$, ces deux suites sont adjacentes.

-`@-THÉORÈME 9.9

Deux suites adjacentes sont nécessairement convergentes et convergent vers la même limite.

Preuve: Supposons u croissante, v décroissante, et $\lim u_n - v_n = 0$. Soit $w_n = v_n - u_n$, alors $w_{n+1} - w_n = (v_{n+1} - v_n) - v_n = 0$. $(u_{n+1}-u_n) \le 0$, donc la suite w est décroissante, or $\lim w_n = 0$, donc $\forall n \in \mathbb{N}, w_n \ge 0$, i.e. $u_n \le v_n$. Mais alors u est majorée par v_0 et v est minorée par u_0 , donc u et v sont convergentes : $u_n \to \ell$ et $v_n \to \ell'$, par conséquent $w_n \to \ell' - \ell$, or $w_n \to 0$, donc $\ell = \ell'$.

🎖 THÉORÈME 9.10 (des segments emboîtés)

Soit $(I_n = [a_n; b_n])_{n \in \mathbb{N}}$ une suite de segments emboîtés (i.e. $I_{n+1} \subset I_n$), l'intersection des intervalles I_n est non vide. De plus, si $\lim b_n - a_n = 0$, alors $\bigcap_{n \in \mathbb{N}} I_n$ est un singleton.

Preuve: Il découle de la définition que la suite a est croissante, la suite b est décroissante, et pour tout n $a_n \le b_n$. La suite a est donc majorée par b_0 , la suite b est minorée par a_0 , donc a converge vers un réel ℓ et b vers un réel ℓ' , avec $\ell \leqslant \ell'$ (passage à la limite). Si $x \in [\ell; \ell']$, alors $\forall n \in \mathbb{N}, a_n \leqslant \ell \leqslant w \leqslant \ell' \leqslant b_n$, donc $x \in I_n$ et par conséquent, $[\ell;\ell'] \subset \bigcap I_n$. Si $x \in \bigcap I_n$, alors pour tout n on a $a_n \leq x \leq b_n$ et donc par passage à la limite, $x \in [\ell;\ell']$. Finalement $\bigcap I_n = [\ell; \ell']$. Si de plus, $\lim b_n - a_n = 0$, alors les suites a et b sont adjacentes, et donc $\ell = \ell'$.

Le théorème de BOLZANO - WEIERSTRASS

THÉORÈME 9.11 (de Bolzano ²- Weierstrass ³.)

Si u est une suite réelle bornée, alors on peut en extraire une suite convergente.

Preuve: Il existe $a_0 < b_0$ deux réels tels que $\forall n \in \mathbb{N}, u_n \in [a_0; b_0]$. On pose $I_0 = [a_0; b_0]$ et $\sigma(0) = 0$. On coupe cet intervalle en deux, soit $I_0' = [a_0; \frac{a_0 + b_0}{2}]$ et $I_0'' = [\frac{a_0 + b_0}{2}; b_0]$, si $\{n \in \mathbb{N} \mid u_n \in I_0'\}$ est infini alors on pose $I_1 = I_0'$, sinon on pose $I_1 = I_0''$. On alors un nouveau segment I_1 inclus dans I_0 avec $\ell(I_1) = \frac{\ell(I_0)}{2}$ et $\{n \in \mathbb{N} \mid u_n \in I_1\}$ infini. On peut donc choisir $n_1 > 0$ tel que $u_{n_1} \in I_1$, on pose $\sigma(1) = n_1$. On recommence avec I_1 , on construit ainsi une suite de segments emboîtés (I_n) et une application $\sigma: \mathbb{N} \to \mathbb{N}$ strictement croissante telles que : $\ell(I_n) = \frac{\ell(I_0)}{2n}$ et $u_{\sigma(n)} \in I_n$. D'après le théorème des segments emboîtés, il existe un réel ℓ tel que $\bigcap I_n = {\ell}$, or pour tout entier n, on a $u_{\sigma(n)}$, $\ell \in I_n$, donc $|u_{\sigma(n)} - \ell| \leq \ell(I_n) \to 0$, donc $u_{\sigma(n)} \to \ell$.

Exercices:

- Soit A une partie non vide de \mathbb{R} et soit $M \in \mathbb{R}$, montrer que M est la borne supérieure de A si et seulement si M majore A et il existe une suite d'éléments de A qui converge vers M. Montrer un énoncé analogue pour la borne
- Soit A une partie non vide de \mathbb{R} , montrer que A est dense dans \mathbb{R} si et seulement si pour tout réel x il existe une suite d'éléments de A qui converge vers x.

V) Extension aux suites complexes

1) Définitions

On adopte la même définition et les mêmes notations que pour les suites réelles, une suite complexe est donc une application $u: \mathbb{N} \to \mathbb{C}$, l'ensemble des suites complexes est $\mathscr{F}(\mathbb{N}, \mathbb{C})$.

- Si u est une suite complexe, on pose pour tout entier n, $a_n = \text{Re}(u_n)$ et $b_n = \text{Im}(u_n)$, alors les suites a et b sont des suites réelles, avec $u_n = a_n + ib_n$. La suite a est appelée partie réelle de u et notée a = Re(u), la suite b est appelée partie imaginaire de u et notée Im(u). Par exemple, si $\theta \in \mathbb{R}$, la partie réelle que la suite $(e^{in\theta})$ est la suite $(\cos(n\theta))$, et sa partie imaginaire est la suite $(\sin(n\theta))$.
- La suite **conjuguée** de *u* est notée \overline{u} et définie par $\overline{u}_n = a_n ib_n$.
- La suite **module** de *u* est notée |*u*| est définie par $|u|_n = |u_n| = \sqrt{a_n^2 + b_n^2}$.
- Soit $\sigma: \mathbb{N} \to \mathbb{N}$ une application strictement croissante, la suite $(u_{\sigma(n)})$ est appelée **suite extraite** de uet on a $u_{\sigma(n)} = a_{\sigma(n)} + i b_{\sigma(n)}$.
- 3. BOLZANO Bernhard (1781 1848): mathématicien et philosophe tchèque.
- 3. WEIERSTRASS Karl (1815 1897) : mathématicien allemand parfois surnommé le père de l'analyse moderne

- On dit que la suite complexe u est bornée lorsque sa partie réelle a et sa partie imaginaire b sont des suites réelles bornées. Ceci revient à dire que la suite |u| est majorée.
- On définit dans $\mathscr{F}(\mathbb{N},\mathbb{C})$ les mêmes opérations que pour les suites réelles : addition, multiplication et produit par un complexe. On trouve de même que $(\mathscr{F}(\mathbb{N},\mathbb{C}),+,\times)$ est un anneau commutatif non intègre.

Convergence

ØDéfinition 9.6

Soit u une suite complexe, a = Re(u), b = Im(u) et soit $\ell = \alpha + i\beta$ un complexe. On dira que la suite u converge vers ℓ lorsque la suite α tend vers α dans \mathbb{R} et la suite b vers β .

Exemple: Soit $u_n = \frac{e^{in\theta}}{n}$, la partie réelle de u est la suite réelle $a_n = \frac{\cos(n\theta)}{n}$ et sa partie imaginaire est la suite réelle $b_n = \frac{\sin(n\theta)}{n}$, comme $a_n \to 0$ et $b_n \to 0$, on a d'après la définition, $u_n \to 0$.

Propriétés 3)

Connaissant les propriétés de suites réelles convergentes, on peut en déduire celles des suites complexes convergentes en raisonnant sur les parties réelles et imaginaires :

- Toute suite convergente est bornée.
- Si u converge vers $\ell \in \mathbb{C}$, alors toute suite extraite de u converge vers ℓ .
- Si *u* converge vers ℓ ∈ \mathbb{C} et *v* converge vers ℓ' ∈ \mathbb{C} , alors $u + v \rightarrow \ell + \ell'$, $uv \rightarrow \ell\ell'$ et $\forall \lambda \in \mathbb{C}$, $\lambda u \rightarrow \lambda\ell$.
- Si $u \to \ell \in \mathbb{C}^*$, alors à partir d'un certain rang $u_n \neq 0$ et $\frac{1}{u} \to \frac{1}{\ell}$.
- Si u converge vers $\ell \in \mathbb{C}$, alors la suite \overline{u} converge vers $\overline{\ell}$ et la suite |u| converge vers $|\ell|$.
- Si u est bornée alors on peut en extraire une suite convergente (Bolzano Weierstrass).

[™]THÉORÈME 9.12

La suite complexe u converge vers $\ell = \alpha + i\beta$ si et seulement si :

$$\forall \ \varepsilon > 0, \exists \ N \in \mathbb{N}, \forall \ n \in \mathbb{N}, n \geq N \Longrightarrow |u_n - \ell| < \varepsilon.$$

Preuve: Supposons que $u_n \to \ell$, soit $\varepsilon > 0$, il existe un entier N tel que $n \ge N \Longrightarrow |a_n - \alpha| < \varepsilon/\sqrt{2}$ et $|b_n - \beta| < \varepsilon/\sqrt{2}$, ce qui entraîne que $|u_n - \ell| < \varepsilon$.

Réciproquement, soit $\varepsilon > 0$, il existe un entier N tel que $n \geqslant N \Longrightarrow |u_n - \ell| < \varepsilon$, or $|a_n - \alpha| \leqslant |u_n - \ell|$ et $|b_n - \beta| \leqslant |u_n - \ell|, \text{ donc } |a_n - \alpha| < \varepsilon \text{ et } |b_n - \beta| < \varepsilon, \text{ ce qui prouve que } a_n \to \alpha \text{ et } b_n \to \beta, \text{ donc } u_n \to \alpha + i\beta = \ell. \ \Box$

Si $u_n \to \ell$ dans \mathbb{C} , et si u est à valeurs réelles, alors la suite (b_n) est la suite nulle, or $b_n \to \text{Im}(\ell)$, donc $\operatorname{Im}(\ell) = 0$, c'est à dire $\ell \in \mathbb{R}$.

Exemple: Étude de la suite $(u_n = e^{in\theta})$.

C'est une suite géométrique de raison $e^{i\theta}$. Si $\theta = 0$ (2π), alors la suite est constante égale à 1, donc $u_n \to 1$. Si $\theta \neq 0$ (2π) , supposons que $u_n \to \ell \in \mathbb{C}$, alors $|u_n| \to |\ell|$, or $|u_n| = 1$, donc $|\ell| = 1$. D'autre part, $u_{n+1} = e^{i\theta}u_n$, par passage à la limite, on a $\ell = \ell e^{i\theta}$, or $\ell \neq 0$ (car $|\ell| = 1$), donc $e^{i\theta} = 1$ ce qui est absurde, par conséquent si $\theta \neq 0$ (2π), la suite (u_n) est divergente.

Comparaison des suites VI)

1) Définitions

DÉFINITION 9.7

Soient (u_n) , (v_n) et (ε_n) trois suites telles qu'à partir d'un certain rang $u_n = v_n \varepsilon_n$. On dit que :

- u_n est dominée par v_n lorsque la suite (ε_n) est **bornée**. Notation : $u_n = O(v_n)$.
- u_n est négligeable devant v_n lorsque $\varepsilon_n \to 0$. Notation : $u_n = o(v_n)$.

 $-u_n$ est équivalente à v_n lorsque $ε_n → 1$. Notation : $u_n \sim v_n$.

THÉORÈME 9.13 (Caractérisations)

Lorsque la suite v ne s'annule pas à partir d'un certain rang :

- $u_n = O(v_n)$ ssi la suite $\frac{u}{v}$ est bornée.
- $-u_n = o(v_n) \, ssi \lim \frac{u_n}{v_n} = 0.$
- $-u_n \sim v_n \, ssi \lim \frac{u_n}{v_n} = 1.$

Preuve: Celle - ci est simple et laissée en exercice.

Exemple: $n = o\left(n^2\right)$; $\frac{n}{n^2+1} \sim \frac{1}{n}$; $n\sin(n) = O(n)$.

Remarques:

- a) $u_n = O(1)$ signifie que la suite (u_n) est bornée [donc $O(v_n) = v_n \times O(1)$].
- b) $u_n = o(1)$ signifie que $u_n \to 0$ [donc $o(v_n) = v_n \times o(1)$].
- c) Si $u_n = o(v_n)$ alors $u_n = O(v_n)$.
- d) Si $u_n \sim v_n$ alors $u_n = O(v_n)$.
- e) Si $u_n = o(v_n)$ et $v_n = o(w_n)$, alors $u_n = o(w_n)$ (transitivité).
- f) Si $u_n = O(v_n)$ et $v_n = O(w_n)$, alors $u_n = O(w_n)$ (transitivité).
- g) $u_n \sim v_n \iff u_n v_n = o(v_n)$.

-`<mark>@</mark>´-THÉORÈME **9.1**4

La relation « ... est équivalente à ... » est une relation d'équivalence dans $\mathcal{F}(\mathbb{N},\mathbb{C})$, c'est à dire qu'elle est réflexive, symétrique et transitive. De plus :

- $Si \ell$ ∈ \mathbb{C} et $si u_n \sim \ell$ alors $u_n \to \ell$ [réciproque vraie lorsque $\ell \in \mathbb{C}^*$].
- $Si u_n = o(v_n) alors u_n + v_n \sim v_n$.
- $Si(u_n)$ et (v_n) sont à termes non nuls et si à partir d'un certain rang on a $\left|\frac{u_{n+1}}{u_n}\right| \leq \left|\frac{v_{n+1}}{v_n}\right|$, alors $u_n = O(v_n)$ [comparaison logarithmique].

Preuve: Pour le dernier point : la suite $(\frac{|u_n|}{|v|})$ est décroissante à partir d'un certain rang et positive, donc bornée. \Box

Les exemples classiques

- (des croissances comparées)

- Soient $\alpha, \beta \in]0; +\infty[$: $Si \alpha < \beta \ alors : n^{\alpha} = o(n^{\beta}) \ et \ \frac{1}{n^{\beta}} = o(\frac{1}{n^{\alpha}}).$
 - $[\ln(n)]^{\alpha} = o(n^{\beta}).$
 - $n^{\alpha} = o(e^{n\beta}) \text{ et } n^{\alpha} = o(e^{n\beta}).$
 - $\forall a \in \mathbb{R}, a^n = o(n!) \text{ et donc } n^\alpha = o(n!).$

Preuve: Pour l'avant dernier point avec $a \neq 0$: on pose $u_n = \frac{|a|^n}{n!}$, alors $\frac{un+1}{u_n} = \frac{|a|}{n+1} \leqslant \frac{1}{2}$ à partir d'un certain rang, d'où $u_n = O\left(\frac{1}{2^n}\right)$ et donc $u_n = o(1)$.

Pour le dernier point : Soit $u_n = \frac{n!}{n^n}$ alors $\frac{u_{n+1}}{u_n} = \left(\frac{n}{n+1}\right)^n \to \frac{1}{e} \leqslant \frac{1}{2}$, donc à partir d'un certain rang $\frac{u_{n+1}}{u_n} \leqslant \frac{1}{2}$, on conclut comme ci-dessus.

- THÉORÈME 9.16 (les équivalents classiques)

Soit (u_n) une suite de **limite nulle**, alors;

$$\sin(u_n) \sim u_n;$$
 $e^{u_n} - 1 \sim u_n;$ $\ln(1 + u_n) \sim u_n$

$$\tan(u_n) \sim u_n$$
; $1 - \cos(u_n) \sim \frac{1}{2}u_n^2$; $(1 + u_n)^{\alpha} - 1 \sim \alpha u_n$

- Soit $P(x) = \sum_{k=0}^{P} a_k x^k$ une fonction polynomiale avec $a_p \neq 0$, alors $P(n) \sim a_p n^p$ (équivalence
- avec le terme de plus haut degré).

 Soit $Q(x) = \frac{P(x)}{R(x)}$ une fraction rationnelle avec $a_p x^p$ le terme de plus haut degré de $P(a_p \neq 0)$ et $b_r x^r$ celui de R ($b_r \neq 0$), alors $Q(n) \sim \frac{a_p}{b_r} n^{p-r}$ (équivalence avec le rapport des termes de plus haut degré).

Preuve: Les premiers découlent du résultat suivant : si f est une fonction dérivable en 0, alors il existe une fonction ε de limite nulle en 0 telle que : $f(x) - f(0) = xf'(0) + x\varepsilon(x)$, si $f'(0) \neq 0$ alors pour n assez grand on aura $f(u_n) - f(0) = u_n f'(0) [1 + \frac{\varepsilon(u_n)}{f'(0)}]$, ce qui entraîne que $f(u_n) - f(0) \sim u_n f'(0)$ car $u_n \to 0$.

Propriétés

. THÉORÈME 9.17

Soient u et v deux suites,

- $-Si u_n \sim v_n$ et $si \lim v_n = \ell \in \mathbb{R}$, alors $\lim u_n = \ell$.
- $Si u_n \sim v_n$ et $si a_n \sim b_n$, alors $u_n a_n \sim v_n b_n$ (compatibilité avec la multiplication). $Si u_n \sim v_n$ et si v ne s'annule pas à partir d'un certain rang, alors $\frac{1}{u_n} \sim \frac{1}{v_n}$ (compatibilité avec le passage à l'inverse).

Preuve: Celle - ci découle directement de la définition.

Il n'y a pas compatibilité avec l'addition en général, par exemple : $n + \sin(\frac{1}{n}) \sim n$ et $-n \sim 1 - n$, mais $\sin(\frac{1}{n})$ n'est pas équivalent à 1.

Ces propriétés sont utiles pour les calculs de limites qui ne peuvent pas être faits directement : on essaie de se ramener à un équivalent plus simple (s'il y en a ...) dont on sait calculer la limite.

Exemples:

- Soit $u_n = \sqrt{n^2 n} n$, alors $u_n = n[(1 1/n)^{1/2} 1] \sim n[\frac{-1}{2n}] = -1/2$, donc $u_n \to -1/2$. Soit $u_n = \frac{n^2 e^n}{n! + n^4}$, on a $n^2 = o(e^n)$ donc $n^2 e^n \sim -e^n$, d'autre part $n^4 = o(n!)$ donc $n! + e^n \sim n!$, d'où $u_n \sim -\frac{e^n}{n!}$, mais $e^n = o(n!)$, donc $u_n \to 0$.

VII) Annexe

Structure d'anneau

ØDéfinition 9.8

Un anneau est un ensemble A muni de deux lois de composition internes : une addition et une multiplication, qui vérifient :

- -(A, +) est un groupe abélien.
- La multiplication:
 - est associative,
 - admet un élément neutre (noté 1).
 - est distributive sur l'addition.

Si de plus la multiplication est commutative, on dit que $(A, +, \times)$ est un anneau commutatif.

Exemples:

- Tout corps est un anneau (réciproque fausse).
- $-(\mathbb{Z},+,\times)$ est un anneau commutatif mais ce n'est pas un corps.
- $-(\mathscr{F}(\mathbb{N},\mathbb{C}),+,\times)$ est un anneau commutatif.
- Si E est un ensemble non vide, l'ensemble des fonctions de E dans $\mathbb C$ muni des opérations usuelles sur les fonctions, est un anneau commutatif, i.e. $(\mathcal{F}(E,\mathbb{C}),+,\times)$ est un anneau commutatif.

Règles de calculs dans un anneau : soit $(A, +, \times)$ un anneau,

- a) $\forall x \in A, x \times 0 = 0 \times x = 0$.
- b) $\forall x, y \in A, -(x \times y) = (-x) \times y = x \times (-y).$
- c) $\forall x, y \in A$, si x et y sont inversibles (pour la multiplication), alors $x \times y$ est inversible est $(x \times y)^{-1} =$ $v^{-1} \times x^{-1}$.
- d) $\forall x, y \in A$, si x et y commutent (i.e. $x \times y = y \times x$), alors on peut utiliser la formule du binôme,

$$\forall n \in \mathbb{N}, (x + y)^n = \sum_{k=0}^n C_n^k . x^k \times y^{n-k} = \sum_{k=0}^n C_n^k . x^{n-k} \times y^k.$$

Avec la convention, si $n \in \mathbb{Z}$ et $x \in A$:

$$n.x = \begin{cases} x + \dots + x & (n \text{ fois}) & \text{si } n > 0 \\ 0 & \text{si } n = 0 \\ (-x) + \dots + (-x) & (-n \text{ fois}) & \text{si } n < 0 \end{cases}$$
 et

$$x^{n} = \begin{cases} x \times \dots \times x & (n \text{ fois}) & \text{si } n > 0\\ 1 & \text{si } n = 0\\ x^{-1} \times \dots \times x^{-1} & (-n \text{ fois}) & \text{si } n < 0 \text{ et } x \text{ inversible} \end{cases}$$

√
THÉORÈME 9.18 (Groupe des inversibles)

Soit $(A, +, \times)$ un anneau, l'ensemble des inversibles de A est noté U(A), cet ensemble est un groupe multiplicatif. $(U(A), \times)$ est appelé groupe des unités de A.

Preuve: Celle - ci est simple et laissée en exercice.

Exemples:

- $U(\mathbb{Z}) = \{\pm 1\}.$
- Si A est l'anneau des suites complexes, alors U(A) est l'ensemble des suites complexes qui ne s'annulent pas.

DÉFINITION 9.9

Soit $(A, +, \times)$ un anneau. On dit que A est un anneau intègre lorsque le produit de deux éléments non nuls est toujours non nul, sinon on dit que A est un anneau non intègre.

Dans un anneau intègre, un produit de facteurs est nul ssi au moins un des facteurs est nul.

Exemples:

- $-(\mathbb{Z},+,\times)$ est un anneau intègre.
- L'ensemble des suites complexes est un anneau non intègre.

Relation d'équivalence

ØDéfinition 9.10

Soit E un ensemble et R une relation de E dans E, on dit que R est une relation d'équivalence lorsqu'elle est réflexive, symétrique et transitive. Si c'est le cas, alors pour tout élément a de E, on appelle classe de a l'ensemble des $x \in E$ en relation avec a, notation : $Cl(a) = \{x \in E \mid x \Re a\}$.

Exemples:

- L'égalité dans un ensemble est une relation d'équivalence.
- Dans \mathbb{Z} , la relation définie par \forall $x, y \in \mathbb{Z}$, $x \mathcal{R} y \iff x y \in 5 \mathbb{Z}$, est une relation d'équivalence.

-`<mark>@</mark>-THÉORÈME 9.19

 $Si \mathcal{R}$ est une relation d'équivalence dans E, alors :

- $\forall a, b \in E, Cl(a) = Cl(b) \iff a \mathcal{R} b.$
- Les classes d'équivalence forment une partition de E, c'est à dire :
 - Les classes d'équivalence sont des parties de E non vides et deux à deux disjointes.
 - La réunion des classes d'équivalence est égale à E.

Preuve: Celle - ci est laissée en exercice.

Exemple: Dans le dernier exemple, si $n \in \mathbb{Z}$, alors $Cl(n) = \{n + 5k \mid k \in \mathbb{Z}\}$, de plus il n'y a que cinq classes, celles de 0, de 1, de 2, de 3 et de 4.

VIII) **Exercices**

★Exercice 9.1

Soit *u* une suite et $\ell \in \mathbb{R}$, interpréter les assertions suivantes :

a)
$$\forall \ \varepsilon > 0, \forall \ N \in \mathbb{N}, n \ge N \Longrightarrow |u_n - \ell| < \varepsilon$$
.

b)
$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, n \geqslant N \Longrightarrow |u_n - \ell| < \varepsilon$$
.

c)
$$\exists \ \varepsilon > 0, \forall \ N \in \mathbb{N}, n \ge N \Longrightarrow |u_n - \ell| < \varepsilon$$
.

d)
$$\exists \varepsilon > 0, \exists N \in \mathbb{N}, n \ge N \Longrightarrow |u_n - \ell| < \varepsilon.$$

e)
$$\forall N \in \mathbb{N}, \exists \varepsilon > 0, n \geqslant N \Longrightarrow |u_n - \ell| < \varepsilon$$
.

f)
$$\exists N \in \mathbb{N}, \forall \varepsilon > 0, n \ge N \Longrightarrow |u_n - \ell| < \varepsilon$$
.

★Exercice 9.2

Étudier la suite *u* dans les cas suivants :

a)
$$u_0 = 1$$
 et $\forall n \in \mathbb{N}, u_{n+1} = \ln(1 + u_n)$. b) $u_0 = \frac{\pi}{4}$ et $\forall n \in \mathbb{N}, u_{n+1} = \sin(u_n)$.

c)
$$u_0 \in \mathbb{R}$$
 et $\forall n \in \mathbb{N}, u_{n+1} = 1 - \cos(u_n)$. d) $u_0 \in \mathbb{R}$ et $\forall n \in \mathbb{N}, u_{n+1} = \frac{e^{-u_n}}{n+1}$.

e)
$$u_0 = 3$$
 et $\forall n \in \mathbb{N}, u_{n+1} = e^{-u_n}$. f) $u_0 = 3$ et $\forall n \in \mathbb{N}, u_{n+1} = u_n e^{-u_n}$.

★Exercice 9.3

Pour $n \ge 1$, on pose : $u_n = \sum_{k=1}^n \frac{1}{k} - \ln(n)$ et $v_n = \sum_{k=1}^n \frac{1}{k} - \ln(n+1)$.

a) Montrer que :
$$\forall n \ge 1, \frac{1}{n+1} \le \ln(1+\frac{1}{n}) \le \frac{1}{n}$$
.

- b) En déduire que u et v sont adjacentes, on notera γ leur limite commune (constante d'Euler).
- c) Montrer que pour $n \ge 1, 0 \le u_n \gamma \le \frac{1}{n}$, en déduire une valeur approchée de γ à 10^{-2} près..
- d) Montrer que : $\sum_{k=1}^{n} \frac{1}{k} \sim \ln(n)$.

★Exercice 9.4

Soient a et b les suites définies par : $a_0 = 1$, $b_0 = 2$ et $\forall n \in \mathbb{N}$, $b_{n+1} = \frac{a_n + b_n}{2}$ et $\frac{2}{a_{n+1}} = \frac{1}{a_n} + \frac{1}{b_n}$.

Montrer que les suites a et b sont bien définies sur \mathbb{N} et qu'elles sont adjacentes. Calculer la limite commune.

★Exercice 9.5

Soit u la suite définie par $u_0 \in \mathbb{R} \setminus \{-5\}$ et $\forall n \in \mathbb{N}, u_{n+1} = \frac{4u_n + 2}{u_n + 5} = f(u_n)$.

- a) Montrer que l'équation f(x) = x admet deux solutions a et b (avec a < b). Étudier la suite lorsque $u_0 = a$ puis $u_0 = b$.
- b) On suppose que $u_0 \notin \{a, b\}$ et que u_n est défini pour tout n. On pose $v_n = \frac{u_n b}{u_n a}$. Étudier la nature de la suite v. En déduire l'expression de u_n en fonction de n. Soit $k \in \mathbb{N}^*$, pour quelle valeur de u_0 a t on $u_k = -5$?
- c) Faire le bilan en fonction de u_0 .

★Exercice 9.6

Soit u la suite définie par $u_0 \neq \frac{5}{3}$ et $\forall n \in \mathbb{N}, u_{n+1} = \frac{7u_n - 12}{3u_n - 5} = f(u_n)$.

- a) Montrer que l'équation f(x) = x admet une seule solution a. Étudier la suite lorsque $u_0 = a$.
- b) On suppose que $u_0 \neq a$ et que u_n est défini pour tout n. On pose $v_n = \frac{1}{u_n a}$. Étudier la nature de la suite v. En déduire l'expression de u_n en fonction de n. Soit $k \in \mathbb{N}^*$, pour quelle valeur de u_0 a t on $u_k = \frac{5}{3}$?
- c) Faire le bilan en fonction de u_0 .

★Exercice 9.7

Étudier les suites complexes définies par :

- a) $u_0 \in \mathbb{C}$ et $\forall n \in \mathbb{N}, u_{n+1} = au_n + b$ où $a \in \mathbb{C}^* \setminus \{1\}$ et $b \in \mathbb{C}^*$ (suites arithmético géométriques).
- b) $u_0 \in \mathbb{C}$ et $\forall n \in \mathbb{N}, u_{n+1} = \frac{2u_n 4}{u_n + 4}$.

★Exercice 9.8

Déterminer, si elle existe, la limite de (u_n) dans les cas suivants :

$$u_n = \frac{a^n - b^n}{a^n + b^n} \ (a, b > 0); \quad \frac{\mathrm{E}(nx)}{n}; \quad \frac{n^2 + \cos(n)}{2^n + (-1)^n}; \quad \frac{1000^n + n!}{n^{1000} + e^n}; \quad \frac{(8n^3 + 1)^{1/3} - 2n}{(n^3 + 1)^{1/3} - n}$$

$$\sum_{k=1}^{n} \frac{1}{n^2 + k}; \sum_{k=1}^{n} \frac{1}{C_n^k}; \sum_{k=1}^{n} \frac{E(kx)}{n^2}; \sum_{k=1}^{n} \frac{1}{n+k}; u_n \text{ est la } n\text{-ième décimale de } \sqrt{2}.$$

★Exercice 9.9

Pour $n \in \mathbb{N}$, montrer qu'il existe un unique réel $x_n \in [n\pi; n\pi + \frac{\pi}{2}]$ tel que $\tan(x_n) = x_n$. Trouver un équivalent simple de la suite (x_n) . Trouver deux réels a et b tels que $x_n = n\pi + a + \frac{b}{n} + o\left(\frac{1}{n}\right)$.

★Exercice 9.10

Pour $n \ge 2$ on pose $g_n(t) = t^n + t - 1$. Montrer que g_n s'annule une seule fois dans $]0; +\infty[$ en un certain réel que l'on notera t_n . Étudier la suite (t_n) .

★Exercice 9.11

Soit u la suite définie par : $u_n = \int_0^1 \frac{x^n}{1+x^n} dx$. Montrer que $u_n \sim \frac{\ln(2)}{n}$.

★Exercice 9.12

Pour $n \ge 1$, on pose $S_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{k}$, $u_n = S_{2n}$ et $v_n = S_{2n+1}$.

- a) Montrer que les suites (u_n) et (v_n) sont adjacentes.
- b) En déduire que (S_n) est convergente.

★Exercice 9.13

- a) Théorème de *Cesàro*: soit u une suite avec $u_n \to \ell \in \mathbb{C}$, on pose: $v_n = \frac{u_1 + \dots + u_n}{n}$. Montrer que $v_n \to \ell$. On commencera par le cas où $\ell = 0$.
- b) Une application : soit u la suite définie par $u_0=1$ et $\forall n\in\mathbb{N}, u_{n+1}=\ln(1+u_n)$. Soit $v_n=\frac{1}{u_{n+1}}-\frac{1}{u_n}$. Montrer que (v_n) est convergente. En déduire à l'aide du théorème de Césaro un équivalent de u_n .

★Exercice 9.14

Soit (u_n) une suite bornée, pour tout n on pose : $v_n = \inf\{u_k \mid k \ge n\}$ et $w_n = \sup\{u_k \mid k \ge n\}$.

- a) Justifier l'existence des suites (v_n) et (w_n) .
- b) Déterminer les suites (v_n) et (w_n) lorsque : i) $u_n = (-1)^n$; ii) $u_n = \frac{1}{n}$; iii) $u_n = \frac{1}{n} + (-1)^n$.
- c) Étudier le sens de variation des suites (v_n) et (w_n) . Sont-elles convergentes?
- d) Montrer que (u_n) converge si et seulement si $\lim v_n w_n = 0$.

★Exercice 9.15

Trouver un équivalent simple à la suite :

a)
$$u_n = \ln(\sin(\frac{1}{n}));$$
 b) $u_n = \left(\tan(\frac{\pi}{3} + \frac{1}{n})\right)^n;$
c) $u_n = \sum_{k=1}^n \frac{1}{\sqrt{n^3 + k}};$ d) $u_n = \sqrt{n + \sqrt{n^2 + 1}} - \sqrt{n + \sqrt{n^2 - 1}}.$

★Exercice 9.16

Soient 0 < a < b, et les suites (u_n) et (v_n) définies par $u_0 = a, v_0 = b$, et :

$$\forall \ n \in \mathbb{N}, u_{n+1} = \frac{u_n + v_n}{2}, \ v_{n+1} = \sqrt{u_{n+1}v_n}.$$

- a) Étudier les sens de variation des deux suites.
- b) Montrer que $\forall n \in \mathbb{N}, |v_{n+1} u_{n+1}| \leq \frac{1}{2}|v_n u_n|$. En déduire que $\lim v_n u_n = 0$. Conclusion ?
- c) Soit $\alpha \in]0; \frac{\pi}{2}[$ tel que $\cos(\alpha) = \frac{a}{b}$.
 - i) Montrer que $\forall n \in \mathbb{N}^*, \nu_n = b \prod_{k=1}^n \cos(\frac{\alpha}{2^k})$ et $u_n = \nu_n \times \cos(\frac{\alpha}{2^n})$.
 - ii) On pose $p_n = v_n \times \sin(\frac{\alpha}{2^n})$. Montrer que (p_n) est géométrique. En déduire une simplification de v_n puis la limite de la suite (v_n) .

★Exercice 9.17

Soient a, b, c trois complexes tels que $a \neq 0$ et $c \neq 0$. On étudie les suites complexes (u_n) qui vérifient la relation : (E) : $\forall n \in \mathbb{N}$, $au_{n+2} + bu_{n+1} + cu_n = 0$.

- a) Montrer que la suite géométrique (q^n) vérifie la relation (E) si et seulement si q est solution de l'équation $ax^2 + bx + c = 0$ (appelée **équation caractéristique**).
- b) Soit λ_1 et λ_2 les solutions complexes de l'équation caractéristique.
 - i) En déduire que (u_n) vérifie la relation (E) ssi il existe deux complexes α et β tels que : $-\forall n\in\mathbb{N}, u_n=\alpha\lambda_1^n+\beta\lambda_2^n$, lorsque $\lambda_1\neq\lambda_2$. $-\forall n\in\mathbb{N}, u_n=(\alpha+n\beta)\lambda_1^n$, lorsque $\lambda_1=\lambda_2$.
- c) On suppose dans cette question que $a, b, c \in \mathbb{R}$, avec $a \neq 0$ et $c \neq 0$.
 - i) Montrer que les suites **réelles** vérifiant la relation (*E*) sont les parties réelles des suites complexes vérifiant (*E*).
 - ii) Un exemple : déterminer les suites **réelles** (u_n) vérifiant $\forall n \in \mathbb{N}, u_{n+2} u_{n+1} + u_n = 0$.

★Exercice 9.18

La méthode de Newton : Soit f une fonction continue dérivable sur un intervalle I telle que l'équation f(x) = 0 possède une seule solution ℓ dans I et telle que f' ne s'annule pas. Pour obtenir des valeurs approchées de ℓ , on construit une suite (x_n) de la manière suivante : on choisit x_0 dans I (pas trop loin de ℓ si possible), puis pour $n \in \mathbb{N}$, on note x_{n+1} l'abscisse du point d'intersection de l'axe (Ox) avec (T_n) la tangente à C_f au point d'abscisse x_n . La théorie montre que sous certaines hypothèses la suite (x_n) converge vers ℓ .

- a) i) Faire une figure illustrant la construction des trois premiers termes de la suite.
 - ii) Montrer que la suite (x_n) vérifie la relation : $\forall n \in \mathbb{N}, x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$.

Dans la suite, on applique cette méthode au calcul approché de racines carrées : soit a>0, on pose $f(x)=x^2-a$ sur l'intervalle $I=[0;+\infty[$, on a donc $\ell=\sqrt{a}$. On pose $x_0=\begin{cases} a & \text{si } a\geqslant 1\\ a+\frac{1}{2} & \text{sinon} \end{cases}$

- b) Vérifier que $x_{n+1} = \frac{x_n^2 + a}{2x_n}$.
- c) Étudier les fonctions $F: x \mapsto \frac{x^2 + a}{2x}$ et $g: x \mapsto F(x) x$ sur l'intervalle I.
- d) En déduire que la suite (x_n) est décroissante, minorée et qu'elle converge vers \sqrt{a} .
- e) On pose pour $n \in \mathbb{N}, v_n = \frac{x_n \sqrt{a}}{x_n + \sqrt{a}}$. Montrer que $v_{n+1} = v_n^2$, en déduire que :

$$|x_n - \sqrt{a}| \le 2x_0 (v_0)^{2^n}$$
 avec $|v_0| < 1$.

f) **Exemple**: avec a=2, montrer que $|x_n-\sqrt{2}|\leqslant 4\left(\frac{1}{3}\right)^{2^n}$. À partir de quelle valeur N est-on sûr que x_N est une valeur approchée de $\sqrt{2}$ à 10^{-6} près? Écrire un algorithme permettant le calcul de x_N , donner le résultat.