

OLYMPEX Data Workshop: GPM View

W. Petersen, NASA Marshall Space Flight Center

OLYMPEX Primary Objectives: Datasets to enable.......

- Direct validation over complex terrain at multiple scales, liquid and frozen precip types,
 - Do we capture terrain and synoptic regime transitions, orographic enhancements/structure, full range of precipitation intensity (e.g., very light to heavy) and types, spatial variability?
 - How well can we estimate space/time-accumulated precipitation over terrain (liquid + frozen)?
- Physical validation of algorithms in mid-latitude cold season frontal systems over ocean and complex terrain,
 - What are the column properties of frozen, melting, liquid hydrometeors- their relative contributions to estimated surface precipitation, transition under the influence of terrain gradients, and systematic variability as a function of synoptic regime?
- Integrated hydrologic validation in complex terrain
 - Can satellite estimates be combined with modeling over complex topography to drive improved products (assimilation, downscaling) [Level IV products]
 - What are capabilities and limitations for use of satellite-based precipitation estimates in stream/river flow forecasting?

Requests From GPM Algorithm Developers

- Ensure well calibrated instruments producing near collocated data (Ocean & Land)
- Coordinate remote sensing and in situ microphysical profiles along ground-based radar & disdrometer radials over both ocean and land (ice and liquid PSDs, type, $q_{i,l}$ -contents)
- Collect surface reference emissivity and σ_0 data over land/ocean in rain-free conditions
- Provide estimates of seasonal/basin-integrated snow water equivalent
- Collect T/P/RH sounding profiles
- Coordinate aircraft/ground instruments with GPM overpasses

.....Translated to OLYMPEX Observations

<u>Airborne</u>

- Well-stacked airborne microphysics (ice-liquid) and "simulator" (radar, radiometer) observations over land/ocean, coincident GPM core (Ka-swath)
- Quality over quantity; preference for stratiform over convective
- Over ocean radiometer/radar instrument calibration
- Rain/no-rain reference backscatter cross-sections and emission (land/sea)

Ground Based

- Operational network radar for continuous/regular background sampling
- Research-grade scanning multi-frequency/polarimetric and vertically-pointing radars (rain mapping, hydrometeor profiling, "build the column")
- Reference gauge/disdrometer/sounding network(s) supporting ground-radar retrievals, environment and process characterization, hydrologic studies.
- Regional falling snow estimates/measurements in terrain
- Basin hydrologic measurement networks (stream flow, soil state etc.)

0.125

0.000

0.250

Mission to OLYMPEX: The Bottom Line (Precipitation Rate)

Performance in *broader stratiform* (light/moderate) Ok.....

Mission to OLYMPEX: Key Observables to Key Retrievals

2ADPR/NS V04A Dm vs. GR Dm Scatter, Mean GR-DPR Blas: 0.1 mm, N=107 All Samples Below Bright Band and <= 3 km AGL, 70% Above Thresh.

2ADPR/NS V04A RR vs. GR RC Scatter, Mean GR-DPR Bias: 0.1 (mm/h), N=101 Stratiform Samples, Below Bright Band and <= 3 km AGL, 70% Above Thresh.

2ADPR/NS V04A Nw vs. GR NW Scatter, Mean GR-DPR Bias: -0.0 log(Nw), N=96 Stratiform Samples, Below Bright Band and <= 3 km AGL, 70% Above Thresh.

Potential Challenges GMI: Regime, Land Surface

Post frontal

Coastal, Pre-Frontal/Frontal NCFR

89 GHz had little or no ice scattering offshore; DPR NS consistent with GV

Potential Challenges DPR: Clutter and Orographic Processes

 ρ_{hv}

VR

How well can we detect the orographic enhancement and precipitation process?

Extrapolating to the surface.....?

NPOL RHIs up River Valley, across DPR 1532 UTC (OP+10 min) 1512 UTC (OP-10 min) Ku Z Z_{dr} $Ku Z_{dr}$

Stephanie Wingo, NASA MSFC/NPP

Column Properties and Variability

Ocean to Summit

Can we capture the microphysical parameter and process variability from ocean to summit?

Ice Process Contribution to Rain Water as f(regime, terrain)

Examining Ice and liquid water path (IWP, LWP) under the influence of orography

Distance from radar (km

Capturing the Uniqueness of OLYMPEX Regime: DSD

DSD "REGIME" IMPACT GV D_{mass} - Z_{DR} relationship

Empirical nature of the ZDR-D_m fits combined with the prodigious numbers of smaller drops and attendant ZDR in the OLYMPEX precip regime illustrate:

- a) uniqueness of OLYMPEX regime; and
- b) the impact of "regime" when considering/parameterizing global behavior.

• OLYMPEx relationship underestimates D_{mass} at $Z_{DR} > 1.5$ dB significantly if its relationship were used for ALL locations

Cloud Resolving Models to Bridge Observational Gaps

Courtesy, Aaron Naeger, UAH

Seasonal Precipitation: Verifying Integrated Multi-Satellite Estimate

First, we need to create a "best" estimate!

OLYMPEX gauge, radar, snow observations integrated with VIC to create "best" estimate How will Satellite estimates do?

Multi-Platform Data Fusion: E.g., SIMBA Applied to OLYMPEX

SIMBA Framework

<u>System for Integrating Multi-platform data</u> to <u>Build the Atmospheric column</u>

Define Column: grid center location, horizontal and vertical extent, spacing

Platform-specific Modules: read in native data formats, process gridding and/or interpolation as needed to set coincident observations into single, 3D column grid

SIMBA Column Data File: Write all available observations to a common 3D grid in NetCDF format. Attributes maintain key properties of original data (exact locations, operation modes, algorithm versions, etc.)

- Developed initially for NASA WFF Precipitation Research Facility
- Versatile SIMBA system can be applied to multi-sensor observations in any geographic domain

Existing SIMBA modules support several OLYMPEX sensors:

- NPOL
- 2DVDs
- D3R
- Pluvios
- DOW
- Gauges
- NEXRAD/88D GMI/GPROF
 - APUs
- DPR/2ADPR

Continuing work to incorporate:

- Soundings
- Aircraft-based platforms

SIMBA's data-fusion column product can accelerate precipitation process & satellite algorithm assessment studies

Contact: Stephanie.M.Wingo@nasa.gov -- NPP/USRA at NASA MSFC

Summary

Datasets collected for determining......

- Direct validation: Product uncertainties and their association with orographic enhancements, synoptic regime, terrain gradients, precipitation intensity and type, area/time-accumulated precipitation over terrain (*liquid + frozen*).....Link to physical validation where possible.
- Physical validation: Column properties/processes of liquid, melting, frozen precipitation in terrain gradient and frontal regimes; systematic variability that can be observed, modeled, and represented in algorithms.
- Integrated hydrologic validation in complex terrain
 - Can satellite estimates be combined with modeling over complex topography to drive improved products (assimilation, downscaling) [Level IV products]
 - How can satellite-based precipitation estimates be best used in stream/river flow forecasting over orographic watersheds?