Design a Single Ended Two Stage Miller Compensated OTA meets the Specs (Use IREF = 10u)

Spec.	
DC Gain	≥ 66 dB
Unity Gain Frequency	≥ 50 MHz
Power Consumption	≤ 1 mW
Cap Load	1 pF

- Assume $C_C = 0.5 C_L = 0.5 pF$
- Assume CMIR from $0.2 \rightarrow 0.6 \text{ V} \rightarrow \text{use PMOS}$ input transistors
- Assign higher gain for the first stage $A_V=A_{V1}, A_{V2}=63*32$

$$I_{Consmax} = \frac{P_{cons}}{V_{DD}} \rightarrow I_{Dmax} \le 666 \text{ uA}$$

$$UGF = \frac{g_{m1,2}}{2\pi C_C} \ge 50 \text{ MHz} \rightarrow g_{m1,2} \ge 157 \text{ uS} \rightarrow g_{m1,2} = 300 \text{ uS}$$

Assume
$$M_{1,2}$$
 in MI $\left(\frac{g_{m1,2}}{I_D}=15\right) \rightarrow I_{D1,2}=20~\text{uA} \rightarrow I_{B1}=40~\text{uA}$

$$A_{V1} = \frac{g_{m1,2} r_{o2,4}}{2} (\text{Assume } r_{o2} = r_{o4}) \geq 64 \rightarrow r_{o2,4} = 420 \; \text{k}\Omega \rightarrow (g_m r_o)_{1,2} = 126$$

$L_{1,2} = 1.7 \text{ um}$, $V_{GS1,2} = 371.6 \text{ mV}$, $W_{1,2} = 55.89 \text{ um}$

Choose
$$\omega_{p2}=4\omega_u \rightarrow g_{m7}=8~g_{m1,2}=2.4~mS \rightarrow I_{B2}=4I_{B1}=160~uA$$

$$A_{V2} = \frac{g_{m7} r_{o6,7}}{2} (\text{Assume } r_{o6} = r_{o7}) \ge 32 \rightarrow r_{o2,4} = 27 \text{ k}\Omega \rightarrow (g_m r_o)_7 = 64$$

$L_7 = 420 \text{ nm}$, $V_{GS7} = 389.8 \text{ mV}$, $W_7 = 31.16 \text{ um}$

set
$$V_{GS3,4} = V_{GS7}$$
 @ $r_{o3,4} = 420 \ k\Omega$

$$L_{3,4} = 3.8 \text{ um}$$
, $W_{3,4} = 34.47 \text{ um}$, $\left(\frac{g_{m3,4}}{I_D}\right) = 14.56$

$$\text{CMIR}_{\text{H}} = -\text{V}_{\text{SG1,2}} - \text{V}_5^* + \text{V}_{\text{DD}} = 0.6 \rightarrow \text{V}_5^* \leq 0.2284 \ \text{V} \rightarrow \text{V}_5^* = 0.2 \ \text{V} \rightarrow \left(\frac{\text{g}_{\text{m5}}}{\text{I}_{\text{D}}}\right) = 10$$

 $L_{CM} = L_5 = L_6 = 360 \text{ nm}, W_{CM} = 1.807 \text{ um}, W_5 = 7.228 \text{ um}, W6 = 28.91 \text{ um}$

** After Running DC Analysis W3,4 needed to be increased to 47.72u **

Sizing Summary

	M1	M2	M3	M4	M5	M6	M7	MCM
\mathbf{L}	1.7u	$1.7\mathrm{u}$	3.8u	3.8u	360n	360n	420n	360n
W	$55.89\mathrm{u}$	55.89u	47.72u	47.72u	7.48u	28.91u	31.16u	1.807u

Simulations Results

- DC Operating Points

- AC Analysis

- CMIR Results

- STB Analysis

