S 16

## Homework 11 Experiment Design and Analysis



Option A: Assume that the one-way commute time of an U student from his or her home to their class at the U is a normally distributed random variable that we will call X. Furthermore, assume that the population standard deviation of X is  $\sigma_0 = 10$  minutes. Let  $\mu$  be the unknown population mean for X. In part (g), you will use  $\mu_0 = 20$  minutes.

Option B: Come up with your own random variable X. For example, it could be the resistance of a resistor, or the run time of a particular executable. State an initial assumption for the population standard deviation of X, which you will call  $\sigma_0$ . State an initial hypothesis for the mean of X, calling it  $\mu_0$ . Note that your assumed values may or may not be correct – they are a good guess and a starting point for this assignment. These values,  $\sigma_0$  and  $\mu_0$ , could be a from a data sheet, or from an expert's opinion (it may be that you are the expert). Note: If your random variable is anything asked of a person, please do not ask any private or sensitive information, and ask your instructor if there is any possibility for concern.

- 1. State which option you are doing (A or B, not both). If B, state what your random variable X is, and state your assumptions for the population standard deviation and population mean,  $\sigma_0$  and  $\mu_0$ .
- 2. Experimental design: Determine a minimum sample size such that we will be 95% confi- dent that the error will not exceed  $\sigma_0/2$  when the sample average  $\overline{X}$  is used to estimate the population mean  $\mu$ . Let n denote this sample size.
- 3. Population: From what population are you sampling? For Option A, the population might be: U of U students in the class, or your U of U student friends on Facebook, for example. Describe how you collect the data make sure this samples from your chosen population.
- 4. Data Collection: Collect a sample of size *n* from among your chosen population, and record their answers.
- 5. Mean Estimation I: Based on your sample, and your assumed known standard deviation  $\sigma_0$ , find a 95% confidence interval for  $\mu$ . (Assume the central limit theorem applies.)
- 6. Mean Estimation II: Now assume that you don't know the population standard deviation, and use the t-distribution and the sample standard deviation S to find a 95% confidence interval for  $\mu$ .
- 7. Test Hypothesis: Test the null hypothesis that the mean of X is  $\mu_0$  at the significance level  $\alpha = 0.01$ . The alternate hypothesis is that the mean commute time is not  $\mu_0$ . You may assume that the standard deviation of X is known to be  $\sigma_0$ .