

# Chapter 5 Divide and Conquer



Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

# Divide-and-Conquer

#### Divide-and-conquer.

- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

#### Most common usage.

- Break up problem of size n into two equal parts of size  $\frac{1}{2}$ n.
- Solve two parts recursively.
- Combine two solutions into overall solution in linear time.

#### Consequence.

- Brute force: n<sup>2</sup>.
- Divide-and-conquer: n log n.

Divide et impera. Veni, vidi, vici. - *Julius Caesar* 

# 5.1 Mergesort

# Sorting

Sorting. Given n elements, rearrange in ascending order.

Obvious sorting applications.

List files in a directory.

Organize an MP3 library.

List names in a phone book.

Display Google PageRank

results.

Problems become easier once sorted.

Find the median.

Find the closest pair.

Binary search in a

database.

Identify statistical

outliers.

Find duplicates in a mailing list.

Non-obvious sorting applications.

Data compression.

Computer graphics.

Interval scheduling.

Computational biology.

Minimum spanning tree.

Supply chain management.

Simulate a system of

particles.

Book recommendations on

Amazon.

Load balancing on a parallel

computer.

. . .

# Mergesort

#### Mergesort.

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves to make sorted whole.



Jon von Neumann (1945)

|   | A   | L   | G          | 0 | R   | I | T | H | M | s |   |        |         |
|---|-----|-----|------------|---|-----|---|---|---|---|---|---|--------|---------|
| A | · I | . ( | G (        | F | R . |   | I | T | Н | M | S | divide | O(1)    |
| A | . G | ; I | <b>L</b> C | F | 2   |   | н | I | M | S | T | sort   | 2T(n/2) |
|   | A   | G   | Н          | I | L   | M | 0 | R | s | Т |   | merge  | O(n)    |

# Merging

Merging. Combine two pre-sorted lists into a sorted whole.

# How to merge efficiently?



- Linear number of comparisons.
- Use temporary array.



Challenge for the bored. In-place merge. [Kronrud, 1969]

using only a constant amount of extra storage

#### A Useful Recurrence Relation

Def. T(n) = number of comparisons to mergesort an input of size n.

Mergesort recurrence.

$$T(n) \leq \begin{cases} 0 & \text{if } n = 1 \\ T(\lceil n/2 \rceil) + T(\lceil n/2 \rfloor) + n & \text{otherwise} \end{cases}$$

Solution.  $T(n) = O(n \log_2 n)$ .

Proofs. We describe several ways to prove this recurrence. Initially we assume n is a power of 2 and replace  $\leq$  with =.

# Proof by Recursion Tree

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ 2T(n/2) + n & \text{otherwise} \end{cases}$$
sorting both halves merging



# Proof by Telescoping

Claim. If T(n) satisfies this recurrence, then  $T(n) = n \log_2 n$ .

assumes n is a power of 2

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ 2T(n/2) + n & \text{otherwise} \end{cases}$$
sorting both halves merging

Pf. For n > 1:

$$\frac{T(n)}{n} = \frac{2T(n/2)}{n} + 1$$

$$= \frac{T(n/2)}{n/2} + 1$$

$$= \frac{T(n/4)}{n/4} + 1 + 1$$

$$\dots$$

$$= \frac{T(n/n)}{n/n} + \underbrace{1 + \dots + 1}_{\log_2 n}$$

$$= \log_2 n$$

9

# Proof by Induction

Claim. If T(n) satisfies this recurrence, then  $T(n) = n \log_2 n$ .

assumes n is a power of 2

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ 2T(n/2) + n & \text{otherwise} \end{cases}$$
sorting both halves merging

#### Pf. (by induction on n)

- Base case: n = 1.
- Inductive hypothesis:  $T(n) = n \log_2 n$ .
- Goal: show that  $T(2n) = 2n \log_2 (2n)$ .

$$T(2n) = 2T(n) + 2n$$
  
=  $2n \log_2 n + 2n$   
=  $2n(\log_2(2n)-1) + 2n$   
=  $2n \log_2(2n)$ 

# Analysis of Mergesort Recurrence

Claim. If T(n) satisfies the following recurrence, then  $T(n) \le n \lceil \lg n \rceil$ .

$$T(n) \leq \begin{cases} 0 & \text{if } n = 1 \\ T(\lceil n/2 \rceil) + T(\lceil n/2 \rfloor) + n & \text{otherwise} \end{cases}$$
solve left half  $n = 1$  otherwise

† log₂n

#### Pf. (by induction on n)

- Base case: n = 1.
- Define  $n_1 = \lfloor n/2 \rfloor$ ,  $n_2 = \lceil n/2 \rceil$ .
- Induction step: assume true for 1, 2, ..., n-1.

$$T(n) \leq T(n_{1}) + T(n_{2}) + n$$

$$\leq n_{1} \lg n_{1} + n_{2} \lg n_{2} + n$$

$$\leq n_{1} \lg n_{2} + n_{2} \lg n_{2} + n$$

$$= n \lg n_{2} + n$$

$$\leq n( \lg n_{1} - 1) + n$$

$$= n \lg n$$

$$n_{2} = |n/2|$$

$$\leq \left\lceil 2^{\lceil \lg n \rceil} / 2 \right\rceil$$

$$= 2^{\lceil \lg n \rceil} / 2$$

$$\Rightarrow \lg n_{2} \leq \lceil \lg n \rceil - 1$$

# 5.3 Counting Inversions

#### Counting Inversions

Music site tries to match your song preferences with others.

- You rank n songs.
- Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

- My rank: 1, 2, ..., n.
- Your rank:  $a_1, a_2, ..., a_n$ .
- Songs i and j inverted if i < j, but  $a_i > a_j$ .

|     | Songs |   |   |   |   |  |  |  |  |
|-----|-------|---|---|---|---|--|--|--|--|
|     | Α     | В | С | D | Е |  |  |  |  |
| Me  | 1     | 2 | 3 | 4 | 5 |  |  |  |  |
| You | 1     | 3 | 4 | 2 | 5 |  |  |  |  |
|     |       |   |   |   |   |  |  |  |  |

Inversions 3-2, 4-2

Brute force: check all  $\Theta(n^2)$  pairs i and j.

# **Applications**

#### Applications.

- Voting theory.
- Collaborative filtering.
- Measuring the "sortedness" of an array.
- Sensitivity analysis of Google's ranking function.
- Rank aggregation for meta-searching on the Web.
- Nonparametric statistics (e.g., Kendall's Tau distance).

Divide-and-conquer.

| 1 | 5 | 4 | 8 | 10 | 2 | 6 | 9 | 12 | 11 | 3 | 7 |
|---|---|---|---|----|---|---|---|----|----|---|---|
| _ |   | • |   |    | _ |   |   |    |    | _ |   |

#### Divide-and-conquer.

Divide: separate list into two pieces.



#### Divide-and-conquer.

5-4, 5-2, 4-2, 8-2, 10-2

- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.



6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7

#### Divide-and-conquer.

- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.
- Combine: count inversions where a<sub>i</sub> and a<sub>j</sub> are in different halves, and return sum of three quantities.



8 green-green inversions

9 blue-green inversions Combine: ??? 5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.

# Counting Inversions: Combine

Combine: count blue-green inversions

- What happens if each half is sorted.
- Count inversions where  $a_i$  and  $a_j$  are in different halves.







13 blue-green inversions: 6 + 3 + 2 + 2 + 0 + 0

Count: O(n)

2 3 7 10 11 14 16 17 18 19 23 25

Merge: O(n)

#### Counting Inversions: Implementation

```
Count_Inversions(L) {
   if list L has one element
     return 0 and the list L

Divide the list into two halves A and B
   (r<sub>A</sub>) ← Count_Inversions(A)
   (A) ← Sort(A)
   (r<sub>B</sub>) ← Count_Inversions(B)
   (B) ← Sort(B)
   r ← Merge-and-Count(A, B)

return r<sub>A</sub> + r<sub>B</sub> + r
}
```

$$T(n) \le T \left( \frac{n}{2} \right) + T \left( \frac{n}{2} \right) + O(n \log n) \Longrightarrow T(n) = O(n \log^2 n)$$

# Counting Inversions: Combine Revised

Combine: count blue-green inversions

- Assume each half is sorted.
- Count inversions where  $a_i$  and  $a_j$  are in different halves.
- Merge two sorted halves into sorted whole.

to maintain sorted invariant



13 blue-green inversions: 6+3+2+2+0+0 Count: O(n)

2 3 7 10 11 14 16 17 18 19 23 25 Merge: O(n)

# Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted. Post-condition. [Sort-and-Count] L is sorted.

```
Sort-and-Count(L) {
   if list L has one element
      return 0 and the list L

Divide the list into two halves A and B
   (r<sub>A</sub>, A) ← Sort-and-Count(A)
   (r<sub>B</sub>, B) ← Sort-and-Count(B)
   (r , L) ← Merge-and-Count(A, B)

return r = r<sub>A</sub> + r<sub>B</sub> + r and the sorted list L
}
```

$$T(n) \le T(\lfloor n/2 \rfloor) + T(\lfloor n/2 \rfloor) + O(n) \Rightarrow T(n) = O(n \log n)$$

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

#### Fundamental geometric primitive.

- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.

fast closest pair inspired fast algorithms for these problems

Brute force. Check all pairs of points p and q with  $\Theta(n^2)$  comparisons.

1-D version. O(n log n) easy if points are on a line.

Assumption. No two points have same x coordinate.

to make presentation cleaner

# Algorithm.

• Divide: draw vertical line L so that roughly  $\frac{1}{2}$ n points on each side.



# Algorithm.

- Divide: draw vertical line L so that roughly  $\frac{1}{2}$ n points on each side.
- Conquer: find closest pair in each side recursively.



#### Algorithm.

- Divide: draw vertical line L so that roughly  $\frac{1}{2}$ n points on each side.
- Conquer: find closest pair in each side recursively.
- Combine: find closest pair with one point in each side.  $\leftarrow$  seems like  $\Theta(n^2)$
- Return best of 3 solutions.



Find closest pair with one point in each side, assuming that distance  $< \delta$ .



Find closest pair with one point in each side, assuming that distance  $< \delta$ .

 $\blacksquare$  Observation: only need to consider points within  $\delta$  of line L.



Find closest pair with one point in each side, assuming that distance  $< \delta$ .

- Observation: only need to consider points within  $\delta$  of line L.
- Sort points in  $2\delta$ -strip by their y coordinate.



Find closest pair with one point in each side, assuming that distance  $< \delta$ .

- Observation: only need to consider points within  $\delta$  of line L.
- Sort points in  $2\delta$ -strip by their y coordinate.
- Only check distances of those within 7 positions in sorted list!



33

Def. Let  $s_i$  be the point in the  $2\delta$ -strip, with the i<sup>th</sup> smallest y-coordinate.

Claim. If  $|i-j| \ge 7$ , then the distance between  $s_i$  and  $s_j$  is at least  $\delta$ .

Pf.

- No two points lie in same  $\frac{1}{2}\delta$ -by- $\frac{1}{2}\delta$  box.
- Two points at least 2 rows apart have distance  $\geq 2(\frac{1}{2}\delta)$ . ■



#### Closest Pair Algorithm

```
Sort all points according to x-coordinate.
                                                                        O(n \log n)
Closest-Pair (p_1, ..., p_n) {
   Compute separation line L such that half the points
   are on one side and half on the other side.
                                                                       2T(n / 2)
   \delta_1 = Closest-Pair(left half)
   \delta_2 = Closest-Pair(right half)
   \delta = \min(\delta_1, \delta_2)
   Delete all points further than \delta from separation line L
                                                                        O(n)
   Sort remaining points by y-coordinate.
                                                                        O(n log n)
   Scan points in y-order and compare distance between
   each point and next 7 neighbors. If any of these
                                                                        O(n)
   distances is less than \delta, update \delta.
   return \delta.
```

# Closest Pair of Points: Analysis

#### Running time.

$$T(n) \le 2T(n/2) + O(n \log n) \Rightarrow T(n) = O(n \log^2 n)$$

- Q. Can we achieve O(n log n)?
- A. Yes. Don't sort points in strip from scratch each time.
  - Each recursive returns the lists of all points sorted by y coordinate
  - Sort by merging two pre-sorted lists.

$$T(n) \le 2T(n/2) + O(n) \implies T(n) = O(n \log n)$$

# Closest Pair Algorithm: O(n log n)

```
Sort all points according to x-coordinate.
                                                                          O(n \log n)
Sort and Closest-Pair(p<sub>1</sub>, ..., p<sub>n</sub>) {
   Compute separation line L such that half the points
   are on one side and half on the other side.
                                                                         2T(n / 2)
   (A, \delta_1) = Sort and Closest-Pair(left half)
   (B, \delta_2) = Sort and Closest-Pair(right half)
    \delta = \min(\delta_1, \delta_2)
   S \leftarrow Merge(A,B) by y-coordinate.
                                                                         O(n)
   Let S' be the list obtained from S by deleting all
                                                                           O(n)
   points further than \delta from separation line L
   Scan points of S' in y-order and compare distance
                                                                          O(n)
   between each point and next 7 neighbors. If any of
   these distances is less than \delta, update \delta.
   return \delta and S.
```

# 5.5 Integer Multiplication

# Integer Arithmetic

Add. Given two n-digit integers a and b, compute a + b.

• O(n) bit operations.

Multiply. Given two n-digit integers a and b, compute a  $\times$  b.

• Brute force solution:  $\Theta(n^2)$  bit operations.

| 1 | 1 | 1 | 1 | 1   | 1 | 0 | 1 |   |
|---|---|---|---|-----|---|---|---|---|
|   | 1 | 1 | 0 | 1   | 0 | 1 | 0 | 1 |
| + | 0 | 1 | 1 | 1   | 1 | 1 | 0 | 1 |
| 1 | 0 | 1 | 0 | 1   | 0 | 0 | 1 | 0 |
|   |   |   | P | ldd |   |   |   |   |

## Divide-and-Conquer Multiplication: Warmup

### To multiply two n-digit integers:

- Multiply four ½n-digit integers.
- Add two  $\frac{1}{2}$ n-digit integers, and shift to obtain result.

$$x = 2^{n/2} \cdot x_1 + x_0$$

$$y = 2^{n/2} \cdot y_1 + y_0$$

$$xy = \left(2^{n/2} \cdot x_1 + x_0\right) \left(2^{n/2} \cdot y_1 + y_0\right) = 2^n \cdot x_1 y_1 + 2^{n/2} \cdot \left(x_1 y_0 + x_0 y_1\right) + x_0 y_0$$

$$T(n) = \underbrace{4T(n/2)}_{\text{recursive calls}} + \underbrace{\Theta(n)}_{\text{add, shift}} \Rightarrow T(n) = \Theta(n^2)$$

assumes n is a power of 2

## Karatsuba Multiplication

### To multiply two n-digit integers:

- Add two  $\frac{1}{2}$ n digit integers.
- Multiply three  $\frac{1}{2}$ n-digit integers.
- Add, subtract, and shift  $\frac{1}{2}$ n-digit integers to obtain result.

$$x = 2^{n/2} \cdot x_1 + x_0$$

$$y = 2^{n/2} \cdot y_1 + y_0$$

$$xy = 2^n \cdot x_1 y_1 + 2^{n/2} \cdot (x_1 y_0 + x_0 y_1) + x_0 y_0$$

$$= 2^n \cdot x_1 y_1 + 2^{n/2} \cdot ((x_1 + x_0)(y_1 + y_0) - x_1 y_1 - x_0 y_0) + x_0 y_0$$

$$A \qquad B \qquad A \qquad C$$

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit integers in  $O(n^{1.585})$  bit operations.

$$T(n) \leq \underbrace{T(\lfloor n/2 \rfloor) + T(\lfloor n/2 \rfloor) + T(1+ \lfloor n/2 \rfloor)}_{\text{recursive calls}} + \underbrace{\Theta(n)}_{\text{add, subtract, shift}}$$

$$\Rightarrow T(n) = O(n^{\log_2 3}) = O(n^{1.585})$$

#### Karatsuba: Recursion Tree

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ 3T(n/2) + n & \text{otherwise} \end{cases}$$

$$T(n) = \sum_{k=0}^{\log_2 n} n \left(\frac{3}{2}\right)^k = \frac{\left(\frac{3}{2}\right)^{1 + \log_2 n} - 1}{\frac{3}{2} - 1} = 3n^{\log_2 3} - 2$$



# Matrix Multiplication

## Matrix Multiplication

Matrix multiplication. Given two n-by-n matrices A and B, compute C = AB.

$$c_{ij} = \sum_{k=1}^n a_{ik} b_{kj}$$

$$C_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

$$\begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \times \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix}$$

Brute force.  $\Theta(n^3)$  arithmetic operations.

Fundamental question. Can we improve upon brute force?

## Matrix Multiplication: Warmup

#### Divide-and-conquer.

- Divide: partition A and B into  $\frac{1}{2}$ n-by- $\frac{1}{2}$ n blocks.
- Conquer: multiply 8  $\frac{1}{2}$ n-by- $\frac{1}{2}$ n recursively.
- Combine: add appropriate products using 4 matrix additions.

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

$$C_{11} = (A_{11} \times B_{11}) + (A_{12} \times B_{21})$$

$$C_{12} = (A_{11} \times B_{12}) + (A_{12} \times B_{22})$$

$$C_{11} = (A_{11} \times B_{11}) + (A_{12} \times B_{21})$$

$$C_{12} = (A_{11} \times B_{12}) + (A_{12} \times B_{22})$$

$$C_{21} = (A_{21} \times B_{11}) + (A_{22} \times B_{21})$$

$$C_{22} = (A_{21} \times B_{12}) + (A_{22} \times B_{22})$$

$$T(n) = \underbrace{8T(n/2)}_{\text{recursive calls}} + \underbrace{\Theta(n^2)}_{\text{add, form submatrices}} \Rightarrow T(n) = \Theta(n^3)$$

## Matrix Multiplication: Key Idea

Key idea. multiply 2-by-2 block matrices with only 7 multiplications.

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} \qquad P_1 = A_{11} \times (B_{12} - B_{22})$$

$$C_{11} = P_5 + P_4 - P_2 + P_6$$

$$C_{12} = P_1 + P_2$$

$$C_{21} = P_3 + P_4$$

$$C_{22} = P_5 + P_1 - P_3 - P_7$$

$$P_{1} = A_{11} \times (B_{12} - B_{22})$$

$$P_{2} = (A_{11} + A_{12}) \times B_{22}$$

$$P_{3} = (A_{21} + A_{22}) \times B_{11}$$

$$P_{4} = A_{22} \times (B_{21} - B_{11})$$

$$P_{5} = (A_{11} + A_{22}) \times (B_{11} + B_{22})$$

$$P_{6} = (A_{12} - A_{22}) \times (B_{21} + B_{22})$$

$$P_{7} = (A_{11} - A_{21}) \times (B_{11} + B_{12})$$

- 7 multiplications.
- 18 = 10 + 8 additions (or subtractions).

## Fast Matrix Multiplication

#### Fast matrix multiplication. (Strassen, 1969)

- Divide: partition A and B into  $\frac{1}{2}$ n-by- $\frac{1}{2}$ n blocks.
- Compute:  $14 \frac{1}{2}$ n-by- $\frac{1}{2}$ n matrices via 10 matrix additions.
- Conquer: multiply  $7\frac{1}{2}$ n-by- $\frac{1}{2}$ n matrices recursively.
- Combine: 7 products into 4 terms using 8 matrix additions.

### Analysis.

- Assume n is a power of 2.
- T(n) = # arithmetic operations.

$$T(n) = \underbrace{7T(n/2)}_{\text{recursive calls}} + \underbrace{\Theta(n^2)}_{\text{add, subtract}} \implies T(n) = \Theta(n^{\log_2 7}) = O(n^{2.81})$$

## Fast Matrix Multiplication in Practice

### Implementation issues.

- Sparsity.
- Caching effects.
- Numerical stability.
- Odd matrix dimensions.

Common misperception: "Strassen is only a theoretical curiosity."

- Advanced Computation Group at Apple Computer reports 8x speedup on G4 Velocity Engine when  $n \sim 2,500$ .
- Range of instances where it's useful is a subject of controversy.

Remark. Can "Strassenize" Ax=b, determinant, eigenvalues, and other matrix ops.

## Fast Matrix Multiplication in Theory

- Q. Multiply two 2-by-2 matrices with only 7 scalar multiplications?
- A. Yes! [Strassen, 1969]  $\Theta(n^{\log_2 7}) = O(n^{2.81})$
- Q. Multiply two 2-by-2 matrices with only 6 scalar multiplications?
- A. Impossible. [Hopcroft and Kerr, 1971]  $\Theta(n^{\log_2 6}) = O(n^{2.59})$
- Q. Two 3-by-3 matrices with only 21 scalar multiplications?
- A. Also impossible.  $\Theta(n^{\log_3 21}) = O(n^{2.77})$
- Q. Two 70-by-70 matrices with only 143,640 scalar multiplications?
- A. Yes! [Pan, 1980]  $\Theta(n^{\log_{70} 143640}) = O(n^{2.80})$

#### Decimal wars.

- December, 1979: O(n<sup>2.521813</sup>).
- **January**, 1980:  $O(n^{2.521801})$ .

# Fast Matrix Multiplication in Theory

Best known. O(n<sup>2.376</sup>) [Coppersmith-Winograd, 1987.]

Conjecture.  $O(n^{2+\epsilon})$  for any  $\epsilon > 0$ .

Caveat. Theoretical improvements to Strassen are progressively less practical.