CSE 1729:Principles of Programming

Lecture 16: Binary Search Trees

Kaleel Mahmood

Department of Computer Science and Engineering

University of Connecticut

Trees in Scheme

- The basic pair structure we have introduced is extremely flexible.
- A natural extension: trees.
- A tree is a natural hierarchical data structure.
- We'll focus on a variant called binary trees.

Pictured: A binary tree in Scheme

Motivation: Why do we care about the tree data structure?

- Can be used to store data and do a faster look up than searching through an entire array (we may explain this more later).
- Modeling any kind of hierarchal data- e.g. trees data structures are used in many bioinformatics algorithms.
- Machine learning A decision tree is one artificial intelligence algorithm that can be used to make classifications.

TREES, A DEFINITION

- The notion of tree can be defined recursively:
- A tree is either:
 - The empty tree.
 - A node, with arrows pointing to two trees.

The empty tree

A larger tree: A node with arrows pointing to two empty trees.

A more complicated tree with four nodes

TERMINOLOGY

- The top of the tree is the root.
- The children of a node are the roots of the trees to which it points.
- A leaf is a node with no children (so it points to two empty trees).

DEPTH

- The depth of a tree is length of the longest path from the root to a leaf.
- We do not define the depth of the empty tree.
- A tree with a single node has depth 0.
- Otherwise, notice that the depth of a tree is one more than the maximum depth of the trees rooted at its children.

Depth 1

CONVENTIONS

- When we draw trees, we typically suppress the empty trees.
- Thus:

MOTIVATING TREES: MAINTAINING A SET

- Why might you wish to store data this way?
- Consider the basic task of maintaining a set of numbers. We'd like to be able to
 - insert a number into our set, and
 - test membership: Determine if a given number is an element of our set.

Need to insert elements

Why you no use List?

MAINTAINING A SET WITH A LIST

- What's the problem? We have a data structure we can use for this purpose: a list.
 - To insert a number: Easy! Just add it at the beginning of the list unless it is already in the set.
 - To test membership: Easy! Just scan the list from left to right.

```
(define (insert element set)
                                      Note... this returns the new set
  (if (ismember? element set)
      set
      (cons element set))
(define (ismember? element set)
  (cond ((null? set) #f)
        ((equal? element (car set)) #t)
        (else (ismember? element (cdr set)))))
```

WHAT'S THE PROBLEM?

- So...
 - Insertion can be FAST if not a member. A single function call to cons.
 - But... testing membership is SLOW.
 - We may have to scan the entire list each time.
- Unfortunately, in practice, most processing with sets tends to be membership queries.
- We'd like a way to maintain sets so that both insertion and membership are fast.

IDEA: MAINTAIN THE SET IN A BINARY SEARCH TREE

- A binary search tree for the set S:
 - \blacksquare Elements of S are placed on the nodes in such a way that...
 - Rule:
 - \circ elements in the left subtree of x are smaller than x;
 - \circ elements in the right subtree are larger than x.

BINARY SEARCH TREES

- Note that a given set can have many binary search trees.
- Consider the set $\{11, 22, 23, 28, 36, 54\}$.
 - Two binary search trees are shown below:

SEARCHING FOR AN ELEMENT IN A BINARY SEARCH TREE

- Element?(x,T)
 - If T is empty, return #f.
 - If x = root(T), return #t.
 - Otherwise:
 - if x > root(T) return Element?(x, RightChild(T));
 - if x < root(T) return Element?(x, LeftChild(T)).

A more formal Pseudocode of the above algorithm:


```
1 Element?(x,T)
2    If T is empty,
3        return #f.
4    If x = root(T),
5        return #t.
6    Otherwise:
7        if x > root(T)
8            return Element?(x, RightChild(T));
9        if x < root(T)
10        return Element?(x, LeftChild(T)).</pre>
```



```
1 Element?(x,T)
2    If T is empty,
3        return #f.
4    If x = root(T),
5        return #t.
6    Otherwise:
7        if x > root(T)
8            return Element?(x, RightChild(T));
9        if x < root(T)
10        return Element?(x, LeftChild(T)).</pre>
```



```
1 Element?(x,T)
2    If T is empty,
3        return #f.
4    If x = root(T),
5        return #t.
6    Otherwise:
7        if x > root(T)
8        return Element?(x, RightChild(T));
9        if x < root(T)
10        return Element?(x, LeftChild(T)).</pre>
```



```
1 Element?(x,T)
2    If T is empty,
3        return #f.
4    If x = root(T),
5        return #t.
6    Otherwise:
7        if x > root(T)
8        return Element?(x, RightChild(T));
9        if x < root(T)
10        return Element?(x, LeftChild(T)).</pre>
```



```
1 Element?(x,T)
2    If T is empty,
3        return #f.
4    If x = root(T),
5        return #t.
6    Otherwise:
7        if x > root(T)
8            return Element?(x, RightChild(T));
9        if x < root(T)
10        return Element?(x, LeftChild(T)).</pre>
```



```
1 Element?(x,T)
2    If T is empty,
3        return #f.
4    If x = root(T),
5        return #t.
6    Otherwise:
7        if x > root(T)
8            return Element?(x, RightChild(T));
9        if x < root(T)
10        return Element?(x, LeftChild(T)).</pre>
```


Finally we found x is equal to a root so we can return true!

```
1 Element?(x,T)
2    If T is empty,
3        return #f.
4    If x = root(T),
5        return #t.
6    Otherwise:
7        if x > root(T)
8        return Element?(x, RightChild(T));
9        if x < root(T)
10        return Element?(x, LeftChild(T)).</pre>
```

Why is inserting in a tree faster than inserting in a list?

- Its not magic.
- For a list we have to go through every element and make a comparison.
- This means for a list, every comparison operation we make reduce the amount of elements we have left to compare by ONE.
- When using a tree every comparison operation reduces the amount of elements we have left to compare by AT LEAST one, but often more.

Head to head comparison: Find out if element 10 is in the data structure?

Binary Tree

Head to head comparison: Find out if element 10 is in the data structure?

Comparison 1

Binary Tree: 5 Elements Eliminated

List: 1 Element Eliminated

Head to head comparison: Find out if element 10 is in the data structure?

Comparison 2

Binary Tree: 1 Element Eliminated and done!

LiSt: 1 Element Eliminated

And 5 more comparisons to go...

INSERTING AN ELEMENT INTO A BINARY SEARCH TREE

- Insert (x, T). To insert an element x into a tree T:
 - If T is empty, return a new node containing x.
 - Otherwise,
 - \circ if x < root(T), insert into the left subtree of T
 - if x > root(T), insert into the right subtree of T.
 - \blacksquare Return the resulting T.
- Note: The tree T is "traversed" in the same way by both Insertion and Element?.

return Insert(x, right(T))


```
1 Insert(x, T)
2 If T is empty
3         return make-tree(x, (list) (list))
4 Otherwise
5         if x < root(T)
6              return Insert(x, left(T))
7         if x > root(T)
8              return Insert(x, right(T))
```


HOW EXPENSIVE IS A MEMBERSHIP QUERY?

 In general, to determine membership (or insert an element), we may have to traverse the tree from the root to a leaf. In the worst case, this will involve a number of function calls proportional to

The DEPTH of the tree.

Question: How can we expect depth to scale with the number of elements?

DEPTH VERSUS SIZE

- Depth: longest path in a tree.
- Size: total number of nodes in a tree.
- These could be comparable: a long skinny tree.
- Size could be much larger: a bushy tree.

THE SIZE OF A BUSHY TREE

• Consider "complete" trees of various depths. How many elements do they have?

depth: 0

size: 1

depth: 1

size: 3

depth: 2

size: 7

IN GENERAL...

• Let S_d be the size for depth d. Then $S_{d+1} = 2 \cdot S_d + 1$.

So if we look at base case $S_0 = 1$ (when the depth is 0) from here we can verify the relationship:

For example
$$S_2 = 2S_1 + 1 = 2 * (2S_0 + 1) + 1$$

 $S_2 = 2 * (2 * 1 + 1) + 1 = 7$

IN GENERAL...

- Let S_d be the size for depth d. Then $S_{d+1} = 2 \cdot S_d + 1$.
- The sequence: 1, 3, 7, 15, 31, 63, ... may be familiar.
 - It is the sequence 2, 4, 8, 16, 32, 64, less one. Or:

$$S_d=2^{d+1}-1$$
 (approximately 2^{d+1})

- It follows that we can pack an n element set into a very shallow tree.
 - If $2^d > n$, we can do it with depth d. We can have d about $\log_2 n$.
- $\log_2 n$ grows very slowly.
 - If n = 100,000,000 then $\log_2 n \sim 27$.

Again, why is log(n) depth for size n elements important?

- If the most common operation is membership query, a list will take n time for n elements.
- A tree will take $\sim \log(n)$ time for n elements. This means the tree scales better than a basic list.

IMPLEMENTING BINARY SEARCH TREES IN SCHEME

- To represent a node of a tree, we need to maintain 3 data items: the value at the node, the left subtree, and the right subtree.
- We choose to represent these as a list:

```
(value left-subtree right-subtree)
```

Define helper functions to create trees and extract these fields:

```
(define (make-tree value left right)
  (list value left right))

(define (value T) (car T))
(define (left T) (cadr T))
(define (right T) (caddr T))
```

What the heck is a cadr?

```
cadr = (car (cdr (list))
```

- Then you can also have: caddr (car (cdr (list))))
- You can also have cadddr.
- However: caddddr (Using four ds, is not allowed)

Scheme: Checking for membership in a Tree

```
Pseudocode

1 Element?(x,T)
2 If T is empty,
3 return #f.
4 If x = root(T),
5 return #t.
6 Otherwise:
7 if x > root(T)
8 return Element?(x, RightChild(T));
9 if x < root(T)
10 return Element?(x, LeftChild(T)).
```

Scheme: Inserting into a Tree

```
Insert(x, T)
                  If T is empty
Pseudocode
                         return make-tree(x, (list) (list))
                  Otherwise
                         if x < root(T)
                                 return Insert(x, left(T))
                         if x > root(T)
Scheme Code
                                 return Insert(x, right(T))
       (define (insert x T)
         (cond ((null? T) (make-tree x '() '()))
                ((eq? x (value T)) T)
                ((< x (value T)) (make-tree (value T)
                                               (insert x (left T))
                                               (right T)))
                (else (make-tree
                                  (value T)
                                   (left T)
                                   (insert x (right T))))))
```

MAINTAINING SETS WITH TREES: PERFORMANCE

- What happens if you insert elements into a tree in sorted order?
 - You get a skinny tree.
- However, one can prove that if elements are inserted into a tree in random order, the tree is near-bushy with high probability.
- There are also fancier ways of insuring that trees remain balanced.
 - 2-3 trees, splay trees, AVL trees, etc.
 - You'll learn about some of them in your algorithms course.

Consider the following trees. Which element is smallest?

Do you see any pattern in finding the smallest element in a binary search tree?

Consider the following trees. Which element is largest?

Do you see any pattern in finding the largest element in a binary search tree?

Finding the smallest and largest elements in a binary search tree

- It should be obvious that the leftmost element (circled in red) in a binary search tree is always the smallest.
- Likewise it should be obvious that the rightmost element (circled in gree) in a binary search tree is always the largest.

Figure Sources

- https://static0.gamerantimages.com/wordpress/wp-content/uploads/2021/08/lord-of-the-rings-ents-feature-treebeard-picture-bright.jpg?q=50&fit=crop&w=1800&dpr=1.5
- https://www.xoriant.com/sites/default/files/uploads/2017/08/Decision-Trees-modified-1.png
- https://i.kym-cdn.com/entries/icons/original/000/004/006/YUNO.jpg
- https://static.wikia.nocookie.net/the-fairyworld/images/2/25/Wizard by adam brownd3iiyfb.jpg/revision/latest?cb=20171109173637&path-prefix=hr
- https://techsupport.cambridgeaudio.com/hc/article_attachments/360000 169198/log lin approx.jpg