HM53461 Series

65,536-word x 4-bit Multiport CMOS Video RAM

■ DESCRIPTION

The HM53461 is a 262,144-bit multiport memory equipped with a 64k-word x 4-bit Dynamic RAM port and a 256-word x 4-bit Serial Access Memory (SAM) port. The SAM port is connected to an internal 1,024-bit data register through a 256-word x 4-bit serial read or write access control. In the read transfer cycle, the memory cell data is transferred from a selected word line of the RAM port to the data register. The RAM port has a write mask capability in addition to the conventional operation mode. Write bit selection out of 4 data bit can be achieved.

Utilizing the Hitachi 2 μm CMOS process, fast serial access operation and low power dissipation are realized. All inputs and outputs, including clocks, are TTL compatible.

■ FEATURES

- Multiport Organization
 - (RAM; 64k-word x 4-bit and SAM; 256 word x 4-bit)
- Double Layer Polysilicon/Polyicide n-Well CMOS Process
- Single 5V (±10%)
- Low Power

• Low Power
Active
RAM380 mW (max)
SAM220 mW (max)
Standby40 mW (max)
Access Time
RAM100 ns/120 ns/150 ns
SAM
 Cycle Time Random Read or Write Cycle Time (RAM) 190 ns/220 ns/260 ns
Serial Read or Write Cycle Time (SAM) 40 ns/40 ns/60 ns

- - RAS Only Refresh
 CAS Before RAS Refresh
 - Hidden Refresh
- Data Transfer Operation (RAM ←→ SAM)
- Fast Serial Access Operation Asynchronized with RAM Port Except Data Transfer Cycle
- Real Time Read Transfer Capability
- Write Mask Mode Capability

■ ORDERING INFORMATION

Part No.	Access Time	Package
HM53461P-10	100 ns	400 mil 24-pin
HM53461P-12	120 ns	Plastic DIP
HM53461P-15	150 ns	(DP-24A)
HM53461ZP-10	100 ns	24-pin
HM53461ZP-12	120 ns	Plastic ZIP
HM53461ZP-15	150 ns	(ZP-24)

■ PIN OUT

■ PIN DESCRIPTION

Pin Name	Function
A ₀ -A ₇	Address Inputs
I/O ₁ -I/O ₄	RAM Port Data Input/Output
SI/O ₁ -SI/O ₄	SAM Port Data Input/Output
RAS	Row Address Strobe
CAS	Column Address Strobe
SC	Serial Clock
WE	Write Enable
DT/OE	Data Transfer/Output Enable
SOE	SAM Port Enable
v_{cc}	Power Supply
V _{SS}	Ground

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Voltage on Any Pin Relative to VSS	v_{T}	-1.0 to +7.0	V
Power Supply Voltage Relative to V _{SS}	v _{cc}	-0.5 to $+7.0$	v
Operating Temperature, T _A (Ambient)	Topr	0 to + 70	°C
Storage Temperature	T _{stg}	- 55 to + 125	°C
Short Circuit Output Current	I _{out}	50	mA
Power Dissipation	P _T	1.0	w

■ ELECTRICAL CHARACTERISTICS

 \bullet Recommended DC Operating Conditions (T_A = 0 to +70°C)

Parameter	Symbol	Min	Тур	Max	Unit	Note
Supply Voltage	v _{cc}	4.5	5.0	5.5	v	
Input High Voltage	V _{IH}	2.4		6.5	v	
Input Low Voltage	V _{IL}	- 0.5	_	0.8	v	2

Notes: 1. All voltages referenced to VSS.

2. -3.0V for pulse width ≤ 10 ns.

• DC Electrical Characteristics ($T_A = 0$ to $+70^{\circ}$ C, $V_{CC} = 5V \pm 10\%$, $V_{SS} = 0V$)

		SAM PORT		**********	TYD 452461 12	HM53461-15	Unit	RAM PORT	Note
Parameter	Symbol	Standby	Active	HM53461-10	HM53461-12	HM33401-13	Unit	Test Conditions	14016
0 1 0	I _{CC1}	_	×	70	60	50	mA	RAS, CAS Cycling	
Operating Current	I _{CC7}	×	_	110	100	80	mA	$t_{RC} = Min$	
	I _{CC2}		×	7	7	7	mA	$\overline{RAS}, \overline{CAS} = V_{TH}$	
Standby Current	I _{CC8}	×		40	40	30	mA	RAB, CAB — TIH	
RAS Only Refresh Current	I _{CC3}	_	×	60	50	40	mA	$\overline{CAS} = V_{IH},$	
	I _{CC9}	×	-	100	90	70	mA	RAS Cycling t _{RC} = Min	
	I _{CC4}	_	×	50	40	35	mA	$\overline{RAS} = V_{IL},$	
Page Mode Current	I _{CC10}	×	_	90	80	65	mA	CAS Cycling tpC = Min	
	I _{CC5}	_	×	60	50	40	mA	RAS Cycling	
CBR Refresh Current	I _{CC11}	×	-	100	90	70	mA	t _{RC} = Min	
	I _{CC6}	_	×	75	65	55	mA	RAS, CAS Cycling	L
Data Transfer Current	I _{CC12}	×	_	115	105	85	mA	t _{RC} = Min	<u>L_</u>

Parameter	Symbol	Min	Max	Unit	Test Conditions	Note
Input Leakage	I_{LI}	- 10	10	μA		
Output Leakage	I _{LO}	- 10	10	μΑ		
Output High Voltage	V _{OH}	2.4	_	v	$I_{OH} = -2 \text{ mA}$	
Output Low Voltage	v _{oL}		0.4	v	$I_{OL} = 4.2 \text{mA}$	

■ INPUT/OUTPUT CAPACITANCE

Parameter	Symbol	Тур	Max	Unit	Not
Address	CII	_	5	pF	
Clocks	C ₁₂	_	5	pF	
I/O, SI/O	C _{I/O}		7	pF	

■ ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

 $(T_A = 0 \text{ to } +70^{\circ}\text{C}, V_{CC} = 5\text{V} \pm 10\%, V_{SS} = 0\text{V})^{1, 10, 11}$

Parameter	Symbol	HM53	461-10	HM53461-12		HM53461-15		Unit	Note
T drameter	Symbol	Min	Max	Min	Max	Min	Max	Cint	Hote
Random Read or Write Cycle Time	t _{RC}	190	_	220	_	260	_	ns	
Read-Modify-Write Cycle Time	tRWC	260	_	300	-	355	_	ns	
Page Mode Cycle Time	t _{PC}	70	_	85	_	105	_	ns	
Access Time from RAS	t _{RAC}	_	100	_	120	_	150	ns	2, 3
Access Time from CAS	t _{CAC}	_	50	_	60	_	75	ns	3, 4
Output Buffer Turn-off Delay Referenced to CAS	t _{OFF1}	0	25	0	30	0	40	ns	5
Transition Time (Rise and Fall)	t _T	3	50	3	50	3	50	ns	6
RAS Precharge Time	tRP	80		90	_	100		ns	
RAS Pulse Width	tRAS	100	10000	120	10000	150	10000	ns	
CAS Pulse Width	tCAS	50	10000	60	10000	75	10000	ns	
RAS to CAS Delay Time	tRCD	25	50	25	60	30	75	ns	7
RAS Hold Time	trsh	50	_	60	<u> </u>	75	_	ns	
CAS Hold Time	t _{CSH}	100	_	120	_	150	_	ns	
CAS to RAS Precharge Time	tCRP	10	_	10	_	10	<u> </u>	ns	
Row Address Setup Time	tASR	0	_	0	_	0	<u> </u>	ns	
Row Address Hold Time	tRAH	15	_	15	_	20	_	ns	
Column Address Setup Time	tASC	0	_	0	_	0		ns	
Column Address Hold Time	tCAH	20	_	20	_	25		ns	
Write Command Setup Time	twcs	0	_	0		0	<u> </u>	ns	8
Write Command Hold Time	twch	25	_	25		30	 	ns	
Write Command Pulse Width	twp	15		20		25	<u> </u>	ns	
Write Command to RAS Lead Time	tRWL	35	_	40	_	45	<u> </u>	ns	
Write Command to CAS Lead Time	tCWL	35		40		45	 _	ns	
Data-in Setup Time	tDS	0	<u> </u>	0		0	†	ns	9
Data-in Hold Time	t _{DH}	25	_	25		30	<u> </u>	ns	8,9
Read Command Setup Time		0		0	 	0	 	ns	3, 2
Read Command Hold Time	tncu	0		0		0	<u> </u>	ns	
Read Command Hold Time Referenced to RAS	tRCH	10		10		10	 	ns	
Refresh Period	tnnn	- 10	4		4	_	4	ms	
RAS Pulse Width (Read-Modify-Write Cycle)	tnus	170	10000	200	10000	245	10000	ns	ļ
CAS to WE Delay	tRWS	85	10000	100	10000	125		ns	8
CAS Setup Time (CAS Before RAS Refresh)	tCWD	10		100		10		-	l °
CAS Hold Time (CAS Before RAS Refresh)	t _{CSR}	20	-	25		30	<u> </u>	ns	
	[‡] CHR			10		10	 -	ns	
RAS Precharge to CAS Hold Time	t _{RPC}	10		 				ns	
CAS Precharge Time	t _{CP}	10		15	7.5	20	-	ns	-
Access Time from OE	tOAC		30		35		40	ns	-
Output Buffer Turn-off Delay referenced to OE	t _{OFF2}	0	25	0	30	0	40	ns	
OE to Data-in Delay Time	todd	25	_	30	_	40	 -	ns	
OE Hold Time referenced to WE	t _{OEH}	10	-	15		20	 -	ns	
Data-in to CAS Delay Time	tDZC	0		0		0	 -	ns	
Data-in to OE Delay Time	t _{DZO}	0		0		0		ns	
OE to RAS Delay Time	tord	35		40		45		ns	<u> </u>
Serial Clock Cycle Time	tscc	40		40		60	 	ns	<u> </u>
Access Time from SC	tSCA		40		40		60	ns	10
Access Time from SOE	tSEA		25		30		40	ns	10

■ ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

 $\{T_A = 0 \text{ to } +70^{\circ}\text{C}, V_{CC} = 5\text{V} \pm 10\%, V_{SS} = 0\text{V}\}1, 10, 11 \text{ (continued)}$

Parameter	T		53461-10	НМ	HM53461-12		HM53461-15		т — —
r arameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Note
SC Pulse Width	t _{SC}	10	_	10		10	IVIAN	ns	
SC Precharge Width	tSCP	10	1 _	10	+	10	 -	 	
Serial Data-out Hold Time after SC High	tsoH	10	1 _	10	+	10	 _	ns	
Serial Output Buffer Turn-off Delay from SOE	t _{SEZ}	0	25	0	25	0	30	ns	
Serial Data-in Setup TIme	tsis	0	 	0		1 0	30	ns	
Serial Data-in Hold Time	tSIH	15	<u> </u>	20		25	+	ns	
DT to RAS Setup Time	t _{DTS}	0	<u> </u>	0	+ = -	0		ns	
DT to RAS Hold Time (Read Transfer Cycle)	tRDH	80	† <u> </u>	90		110		ns	
DT to RAS Hold Time	tDTH	15	<u> </u>	15	 	20		ns	
DT to CAS Hold Time	tCDH	20	 _	30	+=	45	 -	ns	
Last SC to DT Delay Time	tSDD	5		5	+=	10		ns	<u> </u>
First SC to DT Hold Time	tSDH	25	 	25	 _	30		ns	
DT to RAS Delay Time	tDTR	10	 	10	 - -	10		ns	
WE to RAS Setup Time	tws	0	 	0	 -	0		ns	
WE to RAS Hold Time	twH	15		15				ns	
I/O to RAS Setup Time	tMS	0		0		20		ms	
I/O to RAS Hold Time	t _{MH}	15		15	 	20		ns	
Serial Output Buffer Turn-off Delay from RAS	tSRZ	10	50	10	60	10	75	ns	
SC to RAS Setup Time	tsrs	30		40	- 00	45	75	115	
RAS to SC Delay Time	tSRD	25		30				ns	
Serial Data Input Delay Time from RAS	tSID	50		60		35		ns	
Serial Data Input to DT Delay Time	tszD	0		0		75		ns	
SOE to RAS Setup Time	tES	0		0		0		ns	
SOE to RAS Hold Time	t _{EH}	15		15		0		ns	
Serial Write Enable Setup Time	tsws	0		0				ns	
Serial Write Enable Hold Time	tswh	35		35		0	_=_	ns	
Serial Write Disable Setup Time	tswis	0			_=_	55		ns	
Serial Write Disable Hold Time		35		0		0		ns	
DT to Sout in Low-Z Delay Time	tswin	5		35		55		ns	
Notes: 1. AC measurements assume to = 5 no	tDLZ			10		10		ns	

- Notes: 1. AC measurements assume $t_T = 5$ ns.
 - 2. Assumes that t_{RCD} ≤ t_{RCD} (max). If t_{RCD} is greater than the maximum recommended value shown in this table, t_{RAC} exceeds the value shown.
 - 3. Measured with a load circuit equivalent to 2 TTL loads and 100 pF.
 - 4. Assumes that $t_{RCD} \ge t_{RCD}$ (max).
 - 5. toff (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage
 - 6. VIH (min) and VIL (max) are reference levels for measuring timing of input signals. Also, transition times are measured between VIH and VII.
 - 7. Operation with the t_{RCD} (max) limit insures that t_{RAC} (max) can be met, t_{RCD} (max) is specified as a reference point only, if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC}.
 - 8. twcs and tcwD are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only: if twcs ≥ twcs (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if t_{CWD} ≥ t_{CWD} (min), the cycle is a read/write and the data output will contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.
 - 9. These parameters are referenced to \overline{CAS} leading edge in an early write cycle and to \overline{WE} leading edge in a delayed write or a read-modify-write cycle.
 - Measured with a load circuit equivalent to 2 TTL and 50 pF.
 - 11. An initial pause of 100 µs is required after power-up. Then execute at least 8 initialization cycles.

III TIMING WAVEFORMS

• Read Cycle

• Early Write Cycle

Note: *1. When WE is "H" level, all the data on the I/O can be written into the cell.

When WE is "L" level, the data on the I/O are not written except for when I/O is "high" at the falling edge of RAS.

Delayed Write Cycle

Note: *1. When \overline{WE} is "H" level, all the data on $I/O_1-I/O_4$ can be written into the memory cell. When WE is "L" level, the data on I/Os are not written except for when I/O = "H" at the falling edge of RAS.

• Read-Modify-Write Cycle

*1. When WE is "H" level, all the data on I/O₁-I/O₄ can be written into the memory cell. When WE is "L" level, the data on I/Os are not written except for when I/O = "H" at the falling edge of RAS.

• Page Mode Read Cycle

• Page Mode Write Cycle (Early Write)

Note: *1. When \overline{WE} is "H" level, all the data on $I/O_1-I/O_4$ can be written into the memory cell. When \overline{WE} is "L" level, the data on I/Os are not written except for when I/O = "H" at the falling edge of \overline{RAS} .

• Page Mode Write Cycle (Delayed Write)

Note: *1. When \overline{WE} is "H" level, all the data on $I/O_1-I/O_4$ can be written into the memory cell. When \overline{WE} is "L" level, the data on I/O_5 are not written except for when I/O = "H" at the falling edge of \overline{RAS} .

• RAS Only Refresh Cycle

• CAS Before RAS Refresh Cycle

• Hidden Refresh Cycle

• Read Transfer Cycle (1)*1,*2

Notes: *1. In the case that the previous data transfer cycle was read transfer.

- *2. Assume that SOE is "L" level.
- *3. CAS and SAM start address need not be supplied every cycle, only when it is desired to change to a new SAM start address.

• Read Transfer Cycle (2)*1, *2

Notes: *1. In the case that the previous data transfer cycle was write transfer or pseudo transfer.

- *2. Assume that \overline{SOE} is "L" level.
- *3. CAS and SAM start address need not be supplied every cycle, only when it is desired to change to a new SAM start address.

• Pseudo Transfer Cycle

Note: *1. CAS and SAM start address need not be supplied every cycle, only when it is desired to change to a new SAM start address.

• Write Transfer Cycle

Note: *1. CAS and SAM start address need not be supplied every cycle, only when it is desired to change to a new SAM start address.

• Serial Read Cycle

• Serial Write Cycle

