Vector Calculus \$16.6 #3) Parameterize 15 octant of Z= = 2 Vx21 y2 3 = = r=6 hetween Z= Boul Z=3 $\vec{r}(u,v) = \langle$ r(r, 0) = ⟨rcos 0, rsh0, €> U=re[0,6] V=OE [0,至] x2+y2+ 22=4 in 12 octant under come 2=1/x2+y2 (25) $r(u,v) = r(P,\Theta)$ coord. r= pshp = (2 sinfcos) 2 sinf sin D, 2 cos 9) X= rcoso x = P Sm P(000) V=OE LOS =] y = psingsin 0 Z= P105 P 4= 9e (=, =) # 14) x-427=2 Parabolic eylimle in sile x + 2=3 Cat by $\overline{z}=0$, z=3, 7 (u,v)= 7 (or, 0) Y=2 F(u,v) = (u, u, v) X= rcos6 Z= rsin & \$ a € - 52, 52] Y= x-22-2 VE[0,3] 7(1,0)= < 1000, 1000-2

#14 a) Portion of Plane X-y+2z=2(a) in side cylinder $x^2+z^2=3$ $x=r\cos\theta$ $z=r\sin\theta$ y=x+2z-2 $=r\cos\theta+2r\sin\theta-2$ $\sin^2(u,v)=7(r,\theta)=\langle r\cos\theta, r\cos\theta+2r\sin\theta-2, r\sin\theta\rangle$ $u=re[o, \sqrt{3}]$ $v=\theta \in [o, 2\pi]$

Inside
$$\gamma^2 + \overline{\epsilon}^2 = 2$$
 $\gamma = r \cos \theta$
 $\overline{\epsilon} = r \sin \theta$
 $\chi = \gamma - 2\overline{\epsilon} + 2$
 $= r \cos \theta - 2r \sin \theta + 2$
 $= r \cos \theta - 2r \sin \theta + 2$
 $= r \cos \theta - 2r \sin \theta + 2$, $r \cos \theta$, $r \sin \theta$
 $= r \cos \theta - 2r \sin \theta + 2$, $r \cos \theta$, $r \sin \theta$
 $= r \cos \theta - 2r \sin \theta + 2$, $r \cos \theta - 2r \sin \theta + 2$, $r \cos \theta$
 $= r \cos \theta - 2r \sin \theta + 2$
 $= r \cos \theta - 2r \sin \theta + 2$
 $= r \cos \theta - 2r \sin \theta + 2$
 $= r \cos \theta - 2r \sin \theta + 2$
 $= r \cos \theta - 2r \sin \theta + 2$
 $= r \cos \theta - 2r \sin \theta + 2$
 $= r \cos \theta - 2r \sin \theta + 2$
 $= r \cos \theta - 2r \sin \theta + 2$
 $= r \cos \theta - 2r \sin \theta + 2$
 $= r \cos \theta - 2r \sin \theta + 2$
 $= r \cos \theta - 2r \sin \theta + 2$
 $= r \cos \theta - 2r \sin \theta + 2$
 $= r \cos \theta - 2r \sin \theta + 2$
 $= r \cos \theta - 2r \sin \theta + 2$
 $= r \cos \theta - 2r \sin \theta + 2$
 $= r \cos \theta - 2r \sin \theta + 2$
 $= r \cos \theta - 2r \sin \theta + 2$
 $= r \cos \theta - 2r \sin \theta + 2$
 $= r \cos \theta - 2r \sin \theta + 2$
 $= r \cos \theta - 2r \sin \theta + 2$
 $= r \cos \theta - 2r \sin \theta + 2$
 $= r \cos \theta - 2r \sin \theta + 2$
 $= r \cos \theta - 2r \sin \theta + 2$
 $= r \cos \theta - 2r \sin \theta + 2$
 $= r \cos \theta - 2r \sin \theta + 2$
 $= r \cos \theta - 2r \sin \theta + 2$
 $= r \cos \theta - 2r \sin \theta + 2$
 $= r \cos \theta - 2r \sin \theta + 2$
 $= r \cos \theta - 2r \sin \theta + 2$
 $= r \cos \theta - 2r \sin \theta + 2$
 $= r \cos \theta - 2r \sin \theta + 2$
 $= r \cos \theta - 2r \sin \theta + 2$
 $= r \cos \theta - 2r \sin \theta + 2$
 $= r \cos \theta - 2r \sin \theta + 2$
 $= r \cos \theta - 2r \sin \theta + 2$
 $= r \cos \theta - 2r \sin \theta + 2$
 $= r \cos \theta - 2r \sin \theta + 2$
 $= r \cos \theta - 2r \sin \theta + 2$
 $= r \cos \theta - 2r \sin \theta + 2$
 $= r \cos \theta - 2r \cos \theta + 2 \cos \theta + 2$
 $= r \cos \theta - 2r \cos \theta + 2 \cos \theta + 2 \cos \theta + 2$
 $= r \cos \theta - 2r \cos \theta + 2 \cos \theta + 2 \cos \theta + 2$
 $= r \cos \theta - 2r \cos \theta + 2 \cos \theta + 2$
 $= r \cos \theta - 2r \cos \theta + 2 \cos \theta + 2 \cos \theta + 2$
 $= r \cos \theta - 2r \cos \theta + 2 \cos \theta + 2 \cos \theta + 2$
 $= r \cos \theta - 2r \cos \theta + 2 \cos \theta + 2 \cos \theta + 2$
 $= r \cos \theta - 2r \cos \theta + 2 \cos \theta + 2 \cos \theta + 2$
 $= r \cos \theta - 2r \cos \theta + 2 \cos \theta + 2$
 $= r \cos \theta - 2r \cos \theta + 2 \cos \theta + 2 \cos \theta + 2$
 $= r \cos \theta + 2 \cos \theta + 2 \cos \theta + 2 \cos \theta + 2$
 $= r \cos \theta + 2 \cos \theta + 2 \cos \theta + 2 \cos \theta + 2$
 $= r \cos \theta + 2 \cos \theta + 2 \cos \theta + 2 \cos \theta + 2$
 $= r \cos \theta + 2 \cos \theta + 2 \cos \theta + 2 \cos \theta + 2$
 $= r \cos \theta + 2 \cos \theta + 2 \cos \theta + 2 \cos \theta + 2$
 $= r \cos \theta + 2 \cos \theta + 2 \cos \theta + 2 \cos \theta + 2 \cos \theta + 2$
 $= r \cos \theta + 2 \cos \theta +$