PROTEIN CRYSTAL COMPRISING THE PROCESSIVITY CLAMP FACTOR OF DNA POLYMERASE AND A LIGAND, AND ITS USES

5

The present invention relates to a protein crystal comprising the processivity clamp factor of DNA polymerase and a peptide comprising all or part of the processivity clamp factor binding sequence of a processivity clamp factor interacting protein, and its uses, in particular for the screening, the design or the modification of ligands of the processivity clamp factor of DNA polymerase.

10

15

20

The presence of lesions on DNA may severely impair its replication and have dramatic consequences on cells survival. Beside the activity of efficient repair processes, which remove most of the lesions from DNA before replication occurs, the replisome is able to cope with replication blocking DNA lesions, thanks to specialized biochemical processes refered to as damaged DNA tolerance pathways. Translesion synthesis (TLS) is one of these mechanisms which requires the incorporation of a nucleotide opposite and past the lesion. Depending on the nature of the incorporated nucleotide relative to the parental sequence, the TLS process is error-free or mutagenic. TLS has recently gained much understanding, with the discovery of specialized DNA polymerases, which are able to replicate through lesions which otherwise impede the progression of DNA polymerases involved in replication. These new polymerases have been found in both prokaryotes and eukaryotes and most of them have been classified in the Y superfamily (Ohmori et al., 2001). In Escherichia coli, two such polymerases have been identified, Pol IV (DinB) (Wagner et al., 1999) and Pol V (Tang et al., 1999; Reuven et al., 1999), whereas Pol II polymerase has also been shown to perform TLS, although it belongs to the B family (Napolitano et al., 2000; Becherel et al., 2001; Fuchs et al., 2001). Interestingly, all these three polymerase genes are part of the SOS network and are induced upon the arrest of replication due to the presence of replicase blocking lesions onto DNA.

25

The discovery of translesional polymerases (Ohmori et al., 2001) resulted in a major modification of the molecular model of TLS and resulting lesion induced mutagenesis. The previous model, essentially built on genetic experiments in E. coli (Bridges and Woodgates, 1985) suggested that the replicative polymerase stalled at blocking lesions was assisted by SOS induced proteins, whose functions were expected to facilitate the polymerase progression through the lesion by increasing its anchoring

10

15

20

25

30

onto modified DNA or by reducing its fidelity either by alteration of the correct nucleotide selection process and/or by inhibition of its proofreading activity. The current new model (Cordonnier et al., 1999) proposes that the blocked replicative polymerase is replaced by one or several TLS polymerases that cooperate at different steps of the translesional process, namely incorporation opposite the lesion and elongation of the lesion terminus, to ensure an efficient bypass of the lesion. These polymerases further dissociate from the DNA substrate and the replicative enzyme resumes its synthesis function.

It was demonstrated that prokaryotic and eukaryotic replicative polymerases (Pol III holoenzyme of E. coli, pol C, eukaryotic pol δ and pol ϵ) physically interact with their respective processivity clamp factor, also called sliding clamp. Moreover, all prokaryotic and most eukaryotic TLS polymerases also interact with their processivity clamp factor (Lenne-Samuel et al., 2002; Wagner et al., 2000; Becherel et al., 2002; Haracska et al., 2002; Haracska et al., 2001a; Haracska et al., 2001b). These clamps, which act by increasing the replicative polymerase processivity (Bruck and O'Donnel, 2001), are homodimeric (β of E. coli) or homotrimeric (gp45 of T4/RB69 or PCNA in eukaryotes) toroid-shape molecules that are loaded onto DNA near primer-template junctions, by specific clamp loader complexes (e.g. the so-called γ complex in E. coliand RFC in eukaryotes). The β and PCNA monomers fold into structurally similar subdomains (3 and 2, respectively), despite a lack of internal homology in their amino acids sequences, so that the ring presents a pseudo-six-fold symetry. A consensus pentapeptidic sequence, QL(SD)LF, conserved among eubacteria, was identified in most of the β -binding proteins as the motif mediating their connection with the clamp, through hydrophobic interactions (Dalrymple et al., 2001). Similarly, a eukaryotic PCNA (or alternative sliding clamps) consensus binding sequence has been identified. A recent study in E. coli demonstrated that the integrity of this motif is absolutely required for the inducible polymerases to perform TLS: Pol IV and Pol II mutant proteins deleted for their β -clamp binding motif retain their polymerase activity, but loose their functions in the TLS process in vivo, highlightening the fact that their functional interaction with β is crucial for translesion DNA synthesis and mutagenesis (Becherel et al., 2002; Lenne-Samuel et al., 2002).

The presence of several TLS polymerases within a single organism has remained a puzzling question. Analysis of the TLS process in E. coli indicated that, depending on

10

15

20

25

30

both the nature of the lesion and the local DNA sequence, one or several TLS polymerases may participate to a single TLS event (Napolitano et al., 2000; Wagner et al., 2002). TLS appears as a complex process where a pool of low fidelity polymerases replace the highly stringent replisome and eventually exchange mutually to accommodate the large variety of DNA lesions and to ensure ultimately the completion of DNA replication. Whether this polymerase switching process is somehow coordinated or simply occurs on the basis of competition between the different TLS polymerases is not yet known.

An object of the invention is to provide a method to obtain ligands of the processivity clamp factor which would impair the interaction between the sliding clamp and its interacting proteins.

Such ligands might be useful for the preparation of drugs for the treatment of bacterial diseases or of proliferative disorders.

The invention follows on from the solving by the Inventors of the structure of a co-cristal obtained between the β clamp of E. coli and the 16 residues C-terminal peptide of Pol IV DNA polymerase (P16) of E. coli containing its β -binding sequence, from the identification of the peptide binding site on β and from the description of the interactions between P16 and β residues.

The Invention also follows on from the results of experiments carried out by the Inventors showing that P16 competes with Pol IV, but also with the α subunit of the E. coli replicative Pol III holoenzyme, for binding to β , thus inhibiting their β dependent polymerase activity.

The present invention relates to a protein crystal comprising the processivity clamp factor of DNA polymerase and a peptide of about 3 to about 30 amino acids, in particular of about 16 amino acids, said peptide comprising all or part of the processivity clamp factor binding sequence of a processivity clamp factor interacting protein, such as prokaryotic Pol I, Pol II, Pol III, Pol IV, Pol V, MutS, ligase I, α subunit of DNA polymerase, UmuD or UmuD', or eukaryotic pol ϵ , pol δ , pol η , pol ι , pol κ .

Other processivity clamp factor interacting proteins are notably described in Tsurimoto et al. (1999).

The expression "processivity clamp factor of DNA polymerase" refers to dnaN genes products and their functional analogs in prokaryotes, and PCNA genes products

10

15

20

25

30

and their functional analogs and orthologs in eukaryotes. It can also be referred to as a sliding clamp. It is notably described in Kong et al. (1992) and Gulbis et al. (1996).

"Pol I", "Pol II", "Pol IV", "Pol V" respectively refer to DNA polymerase I, II, III, IV and V, in bacteria, such as E. coli, as reviewed in Friedberg et al. (2000a), and Friedberg et al. (2000b).

"MutS" refers to the product of the mutS gene in E. coli, and functional analogs and orthologs thereof, involved in mismatch repair.

"Ligase I" refers to the product of the *lig* gene in E. coli, and functional analogs and orthologs thereof.

"\alpha subunit of DNA polymerase" refers to the product of the dnaE gene in E. coli, and functional analogs and orthologs thereof.

"UmuD" refers to the product of the umuD gene in E. coli, and functional analogs and orthologs thereof.

"Pol ϵ ", "pol δ ", "pol η ", "pol ι ", "pol κ " refer to eukaryotic polymerases as reviewed in Friedberg et al. (2000a), and Friedberg et al. (2000b).

The invention more particularly relates to a protein crystal as defined above, wherein the processivity clamp factor of DNA polymerase is the β subunit of DNA polymerase, in particular the β subunit of DNA polymerase III of *Escherichia coli*, and the peptide has the following sequence:

VTLLDPQMERQLVLGL (SEQ ID NO: 1)

The β subunit of DNA polymerase III of Escherichia coli is in particular described in Kong et al. (1992).

The invention more particularly relates to a protein crystal as defined above, comprising the β subunit of DNA polymerase III of *Escherichia coli* and the peptide of SEQ ID NO: 1, said crystal belonging to the triclinic space group P1 and its cell dimensions being approximately a = 41.23 Å, b = 65.22 Å, c = 73.38 Å, $\alpha = 73.11^\circ$, $\beta = 85.58^\circ$, $\gamma = 85.80^\circ$.

The expression "triclinic space goup P1" refers to a nomenclature well known to the man skilled in the art, it is in particular described in "International tables for X-ray crystallography", Vol. 1 (The Kynoch press, Birmingham, England, 1968)

The expression "cell dimensions" refers to the geometrical description of the smallest volume being repeated in the three dimensions to build the crystal.

The invention more particularly relates to a protein crystal as defined above, characterized by the atomic coordinates such as obtained by the X-ray diffraction of said crystal, said atomic coordinates being represented in Figure 1.

The expression "atomic coordinates" refers to the three coordinates X, Y, Z (given in Å, $1\text{Å}=10^{-10}$ m) necessary to describe the exact position of each atom in the molecule.

5

10

15

The expression "X-ray diffraction" refers to the phenomenon following which X-rays are scattered in a specific way by a crystal.

Two major X-ray sources can be used: a rotating anode, which is a usual laboratory equipment and/or a synchrotron which is a large-scale equipment, such as the European Synchrotron Radiation Facility (ESRF) in Grenoble, France.

The general methodology to obtain atomic coordinates from X-ray diffraction of a crystal is well known to man skilled in the art, briefly it consists in measuring the intensities of the numerous secondary X-rays beams resulting from the diffraction by the crystal of an incident X-ray beam.

The invention more particularly relates to a protein crystal as defined above, characterized by the atomic coordinates representing the peptide and the peptide binding site of the β subunit of DNA polymerase III of *Escherichia coli*, and being as follows:

LEU B 155 5.874 17.816 ATOM 22.109 4046 LEU B 155 1.00 CA 20 6.029 ATOM 16.359 22.087 4047 CB LEU 1.00 B 155 1.00 В 5.055 15.686 ATOM 23.064 4048 CG LEU B 155 1.00 1.00 5.260 В 16.046 24.536 ATOM 4049 CD1 LEU B 155 1.00 1.00 В 4.256 ATOM 15.237 25.360 4050 LEU B 155 1.00 CD2 1.00 6.686 В 15.757 ATOM 24.980 4051 LEU B 155 1.00 1.00 25 5.808 15.776 ATOM 20.682 4052 1.00 LEU B 155 1.00 В 6.177 14.613 ATOM 20.431 4177 THR B 172 1.00 1.00 11.246 9.112 ATOM 4178 22.902 CA 1.00 THR B 172 1.00 8.212 10.730 ATOM 4179 23.917 CB 1.00 THR B 172 1.00 8.776 11.014 ATOM 25.344 4180 OG1 1.00 THR B 172 1.00 30 В 7.931 10.400 ATOM 4181 26.328 THR B 172 1.00 CG2 1.00 В 8.870 12.532 ATOM 4182 25.619 1.00 THR B 172 1.00 В 6.805 11.269 ATOM 23.709 4183 THR B 172 1.00 1.00 В 6.588 12.352 MOTA 4192 23.145 N **GLY B 174** 1.00 1.00 В 4.562 10.770 ATOM 26.397 4193 CA 1.00 1.00 **GLY B 174** 35 R 3.992 ATOM 10.745 27.737 4194 С 1.00 GLY B 174 1.00 В 3.762 9.337 MOTA 28.266 4195 0 GLY B 174 1.00 1.00 3.667 В 9.141 ATOM 29.489 4196 N 1.00 HIS B 175 1.00 В 3.650 ATOM 8.349 27.375 4197 CA HIS B 175 1.00 1.00 3.440 В ATOM 6.953 27.796 4198 CB HIS B 175 1.00 1.00 40 В 2.313 ATOM 6.309 26,977 4199 HIS B 175 1.00 1.00 В 0.992 6.997 27.119 **ATOM** 4200 CD2 1.00 HIS B 175 1.00 0.106 7.435 ATOM 4201 ND1 26.193 1.00 HIS B 175 1.00 В 0.420 7.255 ATOM 28.345 4202 1.00 CE1 HIS B 175 1.00 -0.763 7.817 ATOM 28.170 4203 1.00 NE₂ 45 HIS B 175 1.00 В -0.977 7.938 ATOM 26.875 4204 C HIS B 175 1.00 1.00 В 4.706 6.135 ATOM 27.641 4205 0 HIS B 175 1.00 1.00 В 4.990 ATOM 5.212 28.403 4207 ARG B 176 CA 1.00 1.00 В 6.711 5.768 26.422 ATOM 420B CB ARG B 176 1.00 18.30 В 6.575 4.633 MOTA 25.398 4209 ARG B 176 1.00 19.53 CG 50 В 6.329 5.094 23.954 ATOM 4210 CD 1.00 ARG B 176 22.88 В 4.876 4.888 23.657 ATOM 4211 1.00 22.11 NE ARG B 176 В 4.435 5.312 ATOM 22.314 4212 czARG B 176 1.00 22.09 В 4.555 4.591 ATOM 4213 21.202 1.00 20.17 NH1 ARG B 176 В 5.159 3.403 MOTA 4214 21.213 1.00 17.04 NH2 ARG B 176 55 В 3.914 MOTA 4.977 20.120 4215 ARG B 176 С 1.00 20.02 В 7.684 6.807 25.902 1.00 17.30

	ATOM								
	ATOM		12.0 2 170	7.255	7.86	25.37	4 1 00		
				8.957	6.504			18.10	
	ATOM	_		10.049	7.360			17.97	
5	ATOM			10.664				17.85	
J	ATOM		CG LEU B 177	11.921	8.095				1
	ATOM		CD1 LEU B 177	11.819	8.955			16.28	1
	ATOM		CD2 LEU B 177		10.163			19.52	1
	ATOM	4223	C LEU B 177	13.191	8.172		9 1.00	19.12	1
10	ATOM	4224	O LEU B 177	11.110	6.517		1.00	18.45	
10	ATOM		N PRO B 242	11.291	5.329	25.281	1.00	18.33	
	ATOM		CD PRO B 242	11.254	17.279	27.890		1.00	
	ATOM			9.987	16.826	27.286	1.00	1.00	
	ATOM			11.660	16.404	28.997		1.00	1
	ATOM			10.688	15.230	28.874			Ŀ
15	ATOM		CG PRO B 242	9.448	15.869			1.00	E
	ATOM	_	C PRO B 242	13.124	15.947			1.00	E
		4716	O PRO B 242	13.728	15.748			1.00	E
	ATOM	4748	N ARG B 246	16.133	11.840			1.00	E
	MOTA	4749	CA ARG B 246	15.239	11.808			1.00	E
20	ATOM	4750	CB ARG B 246	14.755		•	_	1.00	E
20	ATOM	4751	CG ARG B 246	15.880	13.227			1.00	E
	ATOM	4752	CD ARG B 246	16.443	14.252			1.00	E
	MOTA	4753	NE ARG B 246		14.295	36.529	1.00	1.00	B
	MOTA	4754	CZ ARG B 246	15.374	14.318	37.524	1.00	1.00	В
25	ATOM	4755	NH1 ARG B 246	14.316	15.126		1.00	1.00	B
25	ATOM	4756	NH2 ARG B 246	14.169	15.992	36.481	1.00	1.00	
	ATOM	4757		13.396	15.067	38.430	1.00	1.00	В
	ATOM	4758	2 2 2 2 3 0	14.022	10.889	34.566			В
	ATOM	4759		13.384	10.536	35.560		1.00	В
	ATOM	4760	N VAL B 247	13.695	10.532	33.327		1.00	В
30	ATOM		CA VAL B 247	12.553	9.675	33.018	1.00	1.00	В
	ATOM	4761	CB VAL B 247	12.061	9.942	31.585	1.00	1.00	В
	ATOM	4762	CG1 VAL B 247	10.930	8.991		1.00	1.00	В
		4763	CG2 VAL B 247	11.624	11.391	31.216	1.00	1.00	В
	ATOM	4764	C VAL B 247	12.962	8.218	31.462	1.00	1.00	В
35	MOTA	4765	O VAL B 247	12.125	7.334	33.133	1.00	1.00	В
	ATOM	4996	N PHE B 278	-7.702		33.308		1.00	В
	ATOM	4997	CA PHE B 278	-6.698	-1.352	24.244	1.00	1.00	В
	ATOM	4998	CB PHE B 278		-1.155	25.300	1.00	1.00	В
	MOTA	4999	CG PHE B 278	-7.318	-1.432	26.663	1.00	1.00	В
40	MOTA	5000	CD1 PHB B 278	-8.431	-0.459	27.021		1.00	B
40	MOTA	5001	CD2 PHB B 278	-8.142	0.882	27.268		1.00	B
	MOTA	5002	CB1 PHB B 278	-9.760	-0.869	27.021		1.00	В
	ATOM	5003	CE2 PHE B 278	-9.177	1.816	27.508		1.00	В
	ATOM	5004	CZ PHE B 278	-10.795	0.052	27.258		1.00	
. 45	MOTA	5005		-10.496	1.391	27.500		1.00	В
45	ATOM	5006		-5.403	-1.957	25.131		1.00	В
	ATOM	5332			-1.582	25.677			В
	ATOM	5333		0.635	-2.143	27.431		1.00	В
	ATOM	5334		-0.051	-1.983	26.158	_	1.00	В
	ATOM	5335	CB ASN B 320		-0.504	25.796		L.00	В
50	ATOM		CG ASN B 320		-0.259	24.407		1.00	В
	ATOM	5336	OD1 ASN B 320		-0.997	23.481		L.00	В
	ATOM	5337	ND2 ASN B 320	-1.362	0.791	24.242		1.00	В
		5338	C ASN B 320		-2.745			L.00	В
	MOTA	5339	O ASN B 320	_	-2.350	25.249		1.00	В
55	ATOM	5353	N TYR B 323		-0.853	25.102		1.00	В
	ATOM	5354	CA TYR B 323		-0.088	22.482		00	В
	ATOM	5355	CB TYR B 323	3.878		22.908		00	B
	ATOM	5356	CG TYR B 323	2.813	0.590	24.259	1.00 1	00	В
	MOTA	5357	CD1 TYR B 323	2.397	1.668	24.294	1.00 1	00	В
60	MOTA	5358	CB1 TYR B 323		2.314	23.127		00	В
00	MOTA	5359	CD2 TYR B 323	1.458	3.374	23.170		. 00	В
	MOTA		CB2 TYR B 323	2.284	2.093	25.509		.00	
	ATOM	5361	CZ TYR B 323	1.354	3.166	25.567		.00	В
	ATOM		OH TYR B 323	0.957	3.790	24.399			В
	ATOM			0.112	4.886	24.453		.00	В
65	ATOM		C TYR B 323	5.327 -	-1.018	23.041	_	-00	В
	ATOM		O TYR B 323		-0.646	22.726		.00	В
			N VAL B 344		-1.100			.00	В
	ATOM		CA VAL B 344	3.324	0.227	39.291		.00	В
	ATOM		CB VAL B 344	2.676		39.030		.00	В
70	ATOM	5522	CG1 VAL B 344		0.818	40.318	1.00 1	.00	В
, 0	ATOM	5523	CG2 VAL B 344		0.026	40.725	1.00 1	.00	В
	ATOM		C VAL B 344		0.847	41.456		.00	В
	MOTA		O VAL B 344		1.163	38.512		.00	В
	ATOM		N 6BR B 346		2.365	38.405	_	.00	В
75	ATOM		CA SER B 346		2.153	35.615	1.00 21		
75	ATOM		CB SER B 346		2.002	34.239	1.00 21	. 50	В
	MOTA						1.00 21	47	В
	ATOM						1.00 26	00	В
			SBR B 346				1.00 26	70	В
							1.00 20	. /0	В

	ATOM	5537	٥	SER I	B 346	9.755	0 501				
	ATOM	5632	N		B 360		0.521	35.07B	1.00	21.55	В
	ATOM	5633	CA		3 3 6 0	11.730	3.546	27.545	1.00	1.00	В
	ATOM	5634	CB			11.023	3.501	28.812	1.00	1.00	В
5	ATOM				360	11.276	4.794	29.641	1.00		В
_	ATOM	5635	CGI	VAL I	3 360	10.448	4.742	30.934	1.00		В
		5636	CGZ	VAL E	3 360	12.753	4.923	29.937	1.00		
	MOTA	5637	C		360	9.562	3.381	28.501			В
	ATOM	5638	0	VAL E	3 3 6 0	9.008	4.188	27.753	1.00		В
10	ATOM	5639	N	VAL I	3 361	8.905			1.00		В
10	ATOM	5640	CA	VAL E			2.372	29.069		19.72	В
	ATOM	5641	CB	VAL E		7.488	2.188	28.831	1.00	18.92	В
	ATOM	5642		VAL 2	2 201	7.216	0.872	28.069		18.99	В
	ATOM		CGT	VAL E	3 361	5.743	0.769	27.716		18.31	В
		5643		VAL E		8.065	0.839	26.786		17.76	
15	ATOM	5644	С	VAL E		6.793	2.100	30.167			В
1.5	ATOM	5645	0	VAL E	361	7.232	1.362	31.038	1.00	19.47	В
	ATOM	5646	N	MET E	3 3 6 2	5.737	2.885			16.90	В
	ATOM	5647	CA	MET E		4.962		30.318	1.00		В
	ATOM	5648	CB	MET E			2.882	31.540	1.00	1.00	В
	ATOM	5649	CG	MET E		4.226	4.206	31.682	1.00	1.00	В
20	ATOM	5650				3.918	4.589	33.122	1.00	1.00	В
			SD	MET E		5.405	4.806	34.163	1.00		В
	MOTA	5651	CB	MET E		4.575	4.880	35.731	1.00	_	
	ATOM	5652	C	MET E		3.949	1.731	31.471	1.00		В
	MOTA	5653	0	MET E	3 3 6 2	3.385	1.438	30.410			В
25	MOTA	5654	N	PRO E	3 3 6 3	3.698			1.00	1.00	В
25	ATOM	5655	CD	PRO E	3 3 6 3	4.521	1.069	32.599	1.00		В
	ATOM	5656	CA	PRO E			1.025	33.818	1.00	1.00	В
	MOTA	5657	CB	PRO E		2.729	-0.038	32.579	1.00	1.00	В
	ATOM	5658	CG			3.155	-0.883	33.776	1.00	1.00	В
	ATOM			PRO E		3.665	0.160	34.754	1.00	1.00	В
30		5659	C	PRO E		1.272	0.395	32.672	1.00	1.00	
20	MOTA	5660	0	PRO E		0.959	1.574	32.811	1.00		В
	ATOM	5661	N	MET E		0.368	-0.568	32.537		1.00	В
	ATOM	5662	CA	MET E	364	-1.037	-0.272	32.674	1.00	1.00	В
	MOTA	5663	CB	MET E	364	-1.780	-0.391		1.00	1.00	В
25	MOTA	56.64	CG	MET E	364	-1.636		31.332	1.00	1.00	В
35	ATOM	5665	SD	MET E			-1.670	30.568	1.00	1.00	В
	MOTA	5666	CE	MET B		-2.386	-1.510	28.872	1.00	1.00	В
	ATOM	5667	c	MET B	304	-4.155	-1.253	29.308	1.00	1.00	В
	ATOM	5668				-1.602	-1.218	33.725	1.00	1.00	В
	ATOM		0	MET B		-0.999	-2.251	34.035	1.00	1.00	B
40		5669	И	ARG B		-2.732	-0.836	34.307	1.00	1.00	
	ATOM	5670	CA	ARG B		-3.383	-1.655	35.324	1.00	1.00	В
	MOTA	5671	CB	ARG B	365	-4.029	-0.756	36.394	1.00		В
	ATOM	5672	CG	ARG B	365	-4.785	-1.490	37.505		1.00	В
	ATOM	5673	CD	ARG B	365	-3.859	-2.316		1.00	1.00	В
15	ATOM	5674	NE	ARG B		-4.571		38.398	1.00	1.00	В
45	ATOM	5675	CZ	ARG B		-3.984	-2.956	39.505	1.00	1.00	В
	ATOM	5676		ARG B	366		-3.707	40.434	1.00	1.00	В
	ATOM	5677	MHO	ARG B	366	-2.678	-3.913	40.385	1.00	1.00	В
	ATOM	5678	C	And b	303	-4.698	-4.247	41.418	1.00	1.00	В
	ATOM			ARG B		-4.459	-2.492	34.648	1.00	1.00	В
50	ATOM	5679	0	ARG B		-5.449	-1.961	34.150	1.00	1.00	В
- •		5680	N	TEA B		-4.267	-3.801	34.609		41.59	
	ATOM	5681	CA	TEA B		-5.272	-4.665	33.996	1 00	44.05	В
	ATOM	5682	CB	LEU B		-4.615	-5.908	33.366	1.00	44.25	В
	ATOM	5683	CG	LEU B	366	-3.640	-5.701	32.202		45.24	В
E	ATOM	5684	CD1	TEA B	366	-4.331	-5.029			45.46	В
55	ATOM	5685	CD2	LEU B	366	-2.489		31.031		47.09	В
	MOTA	5686	C	TER B	366		-4.856	32.678		46.71	В
	ATOM	5687	0	LEU B		-6.263	-5.080	35.092	1.00	45.55	В
	ATOM	5688		PRO B	300	-6.424	-6.296	35.333	1.00	46.32	В
	MOTA	5689	OVI	ם טמע	366	-6.868	-4.169	35.704		46.33	В
60				ARG C		-5.663	0.205	32.737	0.76	1.00	č
	ATOM	5690		ARG C		-7.073	-0.397	32.771	0.76	1.00	
	MOTA	5691		ARG C		-7.748	-0.383	31.408	0.76		C
	MOTA	5692	ИE	ARG C	10	-8.728	-1.462	31.268		1.00	C
	ATOM	5693	CZ	ARG C	10	-9.992	-1.301		0.76	1.00	C
65	ATOM	5694	NH1	ARG C	10	-10.464		30.875	0.76	1.00	C
65	MOTA	5695		ARG C			-0.093	30.582	0.76	1.00	C
	ATOM	5696		ARG C		-10.779	-2.365	30.749	0.76	1.00	C
	ATOM	5697				-4.106	2.152	32.497	0.76	1.00	C
	MOTA	5698		ARG C		-3.278	1.863	33.369	0.76	1.00	č
	ATOM			ARG C		-6.417	2.186	31.464	0.76	1.00	c
70		5699		ARG C	10	-5.587	1.727	32.625	0.76		-
	ATOM	5700	N	GLN C	11	-3.805	2.853	31.408		1.00	C
	MOTA	5701		GLN C	11	-2.458	3.321		0.76	1.00	C
	MOTA	5702	CB	GLN C	11	-2.423	3.866	31.094	0.76	1.00	C
	ATOM	5703		GLN C	11	-1.047		29.662	0.76	1.00	C
75	MOTA	5704		GTM C	11		4.361	29.231	0.76	1.00	C
75	ATOM	5705		GLN C	11	-0.039	3.245	29.174	0.76	1.00	С
	MOTA	5706		GLN C		-0.263	2.232	28.494	0.76	1.00	č
	MOTA	5707			11	1.082	3.415	29.876	0.76	1.00	c
	OFI	3707	С	GTW C	11	-1.895	4.396	32.038	0.76	1.00	
										4.00	С

	ATOM	5708	0	GLN	С	11	-2.494					
	ATOM	5709	N	LEU		12	-0.732	,		0.76	1.00	C
	ATOM	5710	CA	LEU		12				0.76	1.00	č
5	ATOM	5711	CB	LEU		12	-0.065			0.76	1.00	č
3	ATOM	5712	CG	LEU		12	0.754	4.277		0.76	1.00	č
	ATOM	5713	CD1	. LEU		12	-0.036	3.305		0.76	1.00	č
	ATOM	5714	CD2			12	0.907	2.681	36.468	0.76	1.00	č
	MOTA	5715	C	LEU		12	-1.184	4.040	36.153	0.76	1.00	č
10	MOTA	5716	0	LEU		12	0.845	5.948	32.680	0.76	1.00	Ċ
10	MOTA	5717	N	VAL		13	1.111	5.653	31.510	0.76	1.00	c
	ATOM	5718	CA	VAL		13	1.317	7.044	33.273	0.76	1.00	Ċ
	ATOM	5719	CB	VAL		13	2.166	7.987	32.543	0.76	1.00	Ġ
	ATOM	5720	CG1			13	1.473	9.371	32.386	0.76	1.00	Ċ
15	ATOM	5721	CG2			13	0.217	9.239	31.523	0.76	1.00	č
15	ATOM	5722	C	VAL		13	1.113	9.929	33.750	0.76	1.00	ç
	ATOM	5723	0	VAL		13	3.542	8.211	33.174	0.76	1.00	Ĉ
	MOTA	5724	N	LEU		14	3.740	8.050	34.381	0.76	1.00	Ċ
	ATOM	5725	CA	LEU		14	4.498	8.596	32.339	0.76	1.00	Ċ
20	ATOM	5726	CB	LEU		14	5.860	8.846	32.803	0.76	1.00	č
20	ATOM	5727	CG	LEU		14	6.836	8.819	31.619	0.76	1.00	č
	ATOM	5728	CD1	LEU		14	6.972 7.666	7.481	30.889	0.76	1.00	Ċ
	ATOM	5729	CD2	LEU		14	7.744	7.705	29.557	0.76	1.00	č
	ATOM	5730	C	LEU		14	6.010	6.495	31.769	0.76	1.00	č
25	ATOM	5731	0	LEU		14	5.238	10.186	33.517	0.76	1.00	č
23	ATOM	5732	N	GLY		15	7.000	11.126	33.284	0.76	1.00	ç
	ATOM	5733	CA	GLY		15	7.264	10.263	34.396	0.76	1.00	č
	MOTA	5734	C	GLY	С	15	8.263	11.510	35.090	0.76	1.00	Ċ
	ATOM	5735	0	GLY	С	15	9.472	12.275	34.234	0.76	1.00	C
30	ATOM	5736	N	LEU (С	16	7.750	12.210	34.462	0.76	1.00	c
JO	ATOM	5737	CA	LEU (C	16	8.576	12.995	33.241	0.76	1.00	C
	ATOM	5738	CB	LEU (C	16	7.732	13.756	32.306	0.76	1.00	Ċ
	ATOM	5739	CG	LEU (16	7.258	14.157	31.094	0.76	1.00	Ċ
	ATOM	5740		LEU (16	6.303	12.955	30.269	0.76	1.00	Ċ
35	ATOM	5741		LEU (2	16	8.467	13.411 12.233	29.171	0.76	1.00	Ċ
	ATOM	5742	C	LEU (16	9.263	14.982	29.690	0.76	1.00	C
	ATOM	5743		LEU (16	10.182		32.898	0.76	1.00	C
	ATOM	5744	OXT	LEU (16	8.870	15.515 15.398	32.231	0.76	1.00	Ċ
	END	_					2.570	43.338	34.009	0.76	1.00	C
	ushara	in -4	4	045								

45

50

55

wherein atoms 4045 to 5688 represent the peptide binding site and atoms 5689 to 5748 represent the peptide.

The atomic coordinates are represented in protein data bank (pdb) format. Such a format is well known to the man skilled in the art.

According to another embodiment, the invention relates to a method to purify the processivity clamp factor of DNA polymerase, in particular the β subunit of DNA polymerase III of *Escherichia coli*, comprising the following steps:

- elution of a solution containing the processivity clamp factor of DNA polymerase, in particular the β subunit of DNA polymerase III of *Escherichia coli*, through a cation exchange column, in particular a SP sepharose column;
- elution of a solution containing the processivity clamp factor of DNA polymerase, in particular the β subunit of DNA polymerase III of *Escherichia coli*, in particular as obtained by the preceding step, through an anion exchange column, in particular a Mono Q column;
- elution of a solution containing the processivity clamp factor of DNA polymerase, in particular the β subunit of DNA polymerase III of

Escherichia coli, in particular as obtained by the preceding step, through a cation exchange column, in particular a Mono S column.

The expression "purify" relates to the process of separating a protein of interest from substantially all the other components of a solution containing said protein of interest, such as a bacterial extract.

5

10

15

20

25

30

Assessment of the purity of the protein of interest can be carried out by methods well known to the man skilled in the art, such as polyacrylamide gel electrophoresis analysis and Coomassie Blue staining or other type of protein staining (e.g. silver staining), mass spectrometry, protein sequencing, HPLC (high performance liquid chromatography). Quantification can be measured by absorbance spectroscopy, Bradford colorimetric assay, or protein sequencing.

The SP sepharose column, Mono Q column and Mono S column are obtained from Pharmacia (Uppsala, Sweden).

Alternatively, columns carrying ion exchange groups with properties similar to those of the SP sepharose column, Mono Q column and Mono S column can also be

The above mentioned column can be used with a FPLC system (Pharmacia), and possesses a high protein binding capacity. Advantageously, the SP sepharose column is used during the initial steps of the purification process because it is usually not clogged by dirty samples. The Mono Q and Mono S column are used during the last steps of the purification process, they are highly resolutive columns, but they are easily clogged by dirty samples.

The invention also relates to a method to obtain a protein crystal as defined above, comprising the following steps:

mixing a solution of processivity clamp factor of DNA polymerase, with a solution of a peptide of about 3 to about 30 amino acids, in particular of about 16 amino acids, said peptide comprising all or part of the processivity clamp factor binding sequence of a processivity clamp factor interacting protein, such as prokaryotic Pol I, Pol II, Pol III, Pol IV, Pol V, MutS, ligase I, a subunit of DNA polymerase, UmuD or UmuD', or eukaryotic pol ε , pol δ , pol η , pol ι , pol κ , and with a solution of MES pH 6.0 0.2 M, CaCl₂ 0.2 M, PEG 400 60%, to obtain a crystallisation drop,

10

15

20

25

30

- letting the crystallisation drop concentrate against a solution of MES pH 6.0 0.1 M, CaCl₂ 0.1 M, PEG 400 30%, by vapour diffusion, to obtain a protein crystal.

The expression "vapour diffusion" refers to a crystallization method for macromolecules well known to the man skilled in the art, it is in particular described in "Crystallization of nucleic acids and proteins", pp. 130-145. A. Ducruix & R. Giegé eds., 1999, Oxford University Press.

MES refers to 2-(N-morpholino)-ethane sulfonic acid.

PEG 400 refers to polyethylene glycol 400.

Advantageously MES, PEG and CaCl₂ can be obtained from Hampton Research, (Laguna Niguel, USA).

The invention more particularly relates to a method to obtain a protein crystal as defined above, wherein the processivity clamp factor of DNA polymerase is the β subunit of DNA polymerase, in particular the β subunit of DNA polymerase III of *Escherichia coli*, in particular as purified according the abovementioned methods of purification, and the peptide has the following sequence:

VTLLDPQMERQLVLGL (SEQ ID NO: 1).

According to a preferred embodiment the β subunit of DNA polymerase III of *Escherichia coli* and the peptide of SEQ ID NO: 1 are mixed in a molar ratio of about 1:1 to about 1:3 in particular about 1:1.5

According to another preferred embodiment the concentration of the β subunit of DNA polymerase III of *Escherichia coli* is from about 8 mg/ml to about 50 mg/ml , in particular about 34 mg/ml.

According to another preferred embodiment the concentration of the peptide of SEQ ID NO: 1 is from about 0.5 mg/ml to about 1.2 mg/ml, in particular about 1.1 mg/ml.

According to another embodiment, the invention relates to the use of the atomic coordinates as defined above, for the screening, the design or the modification of ligands of the processivity clamp factor of DNA polymerase, in particular of the β subunit of DNA polymerase III of *Escherichia coli*.

The expression "ligand" refers to a compound which is liable to bind to the processivity clamp factor of DNA polymerase.

WO 2005/001084

5

10

15

20

25

30

The invention also relates to the use as defined above, for the screening, the design or the modification of ligands liable to be used for the preparation of pharmaceutical compositions useful for the treatment of bacterial diseases or diseases originating from DNA synthesis processes, such as fragile X syndrome, or proliferative disorders, such as cancers.

The expression "bacterial diseases" refers to diseases which are caused by bacterial influences, such as infections.

The expression "proliferative disorders" refers to disorders which are linked to abnormal cell multiplication, such as cancers.

The invention also relates to a method to screen ligands of the processivity clamp factor of DNA polymerase, said method comprising the step of assessing the interaction of tridimensional models of the ligands to screen with the structure of the β subunit of DNA polymerase as defined by the atomic coordinates as defined above, and in particular with the structure of the peptide binding site as defined by the atomic coordinates defined above, and more particularly with at least nine of the following amino acids: Leu 155, Thr 172, Gly 174, His 175, Arg 176, Leu 177, Pro 242, Arg 246, Val 247, Phe 278, Asn 320, Tyr 323, Val 344, Ser 346, Val 360, Val 361, Met 362, Pro 363, Met 364, Arg 365, Leu 366.

Assessing the interaction can be done by methods such as molecular dynamics, energy calculation, continuum electrostatics, semi-empirical free energy functions and other related methods well known to the man skilled in the art. Several packages and softwares are available for these purposes such as CHARM, UHBD, or SYBILL.

The invention more particularly relates to a method as defined above, to screen ligands liable to be used for the preparation of pharmaceutical compositions useful for the treatment of bacterial diseases or diseases originating from DNA synthesis processes, such as fragile X syndrome, or proliferative disorders, such as cancers.

The invention also relates to a method to design or to modify compounds liable to bind to the processivity clamp factor of DNA polymerase, said method comprising the step of designing or modifying a compound, so that the tridimensional model of said compound is liable to interact with the structure of the β subunit of DNA polymerase as defined by the atomic coordinates as defined above, and in particular with the structure of the peptide binding site as defined by the atomic coordinates as defined above, and more particularly with at least nine of the following amino acids: Leu 155, Thr 172, Gly

174, His 175, Arg 176, Leu 177, Pro 242, Arg 246, Val 247, Phe 278, Asn 320, Tyr 323, Val 344, Ser 346, Val 360, Val 361, Met 362, Pro 363, Met 364, Arg 365, Leu 366.

The invention more particularly relates to a method as defined above, to design or to modify ligands liable to be used for the preparation of pharmaceutical compositions useful for the treatment of bacterial diseases or diseases originating from DNA synthesis processes, such as fragile X syndrome, or proliferative disorders, such as cancers.

According to another embodiment, the invention relates to a peptide of the following sequence:

VTLLDPQMERQLVLGL (SEQ ID NO: 1).

According to a preferred embodiment, said peptide comprises non-hydrolysable bonds between amino-acids and/or non-amide bonds between amino-acids.

The invention also relates to a pharmaceutical composition comprising as active substance the peptide of SEQ ID NO: 1, in association with a pharmaceutically acceptable carrier.

Examples of pharmaceutically acceptable carrier are well known to the man skilled in the art.

According to a preferred embodiment, said peptide comprises non-hydrolysable bonds between amino-acids and/or non-amide bonds between amino-acids.

According to another embodiment the invention relates to the use of the peptide of SEQ ID NO: 1, as an anti-bacterial compound.

The expression "anti-bacterial compound" refers to a compound which has bactericidal or bacteriostatic properties, such as an antibiotic.

According to a preferred embodiment, said peptide comprises non-hydrolysable bonds between amino-acids and/or non-amide bonds between amino-acids.

The invention more particularly relates to the use of the peptide of SEQ ID NO: 1 for the manufacture of a medicament for the treatment of bacterial diseases or diseases originating from DNA synthesis processes, such as fragile X syndrome, or proliferative disorders, such as cancers.

According to another embodiment the invention relates to a method to test *in vitro* the inhibitory effect of compounds on the processivity clamp factor-dependant activity of DNA polymerase, in particular of Pol IV DNA polymerase of *Escherichia coli*, or of the α subunit of Pol III DNA polymerase of *Escherichia coli*, comprising the following steps:

10

5

15

20

25

30

10

15

20

25

- adding to assay solutions comprising a labelled nucleotidic primer, a template DNA, and DNA polymerase, in particular Pol IV DNA polymerase of *Escherichia coli*, or the α subunit of Pol III DNA polymerase of *Escherichia coli*, a compound to test at a given concentration for each assay solution, in the presence or the absence of the processivity clamp factor of DNA polymerase, in particular the β subunit of DNA polymerase III of *Escherichia coli*,
 - electrophoretically migrating the abovementioned assay solutions,
- comparing the migration pattern of each assay solutions in the presence or the absence of the processivity clamp factor of DNA polymerase, in particular the β subunit of DNA polymerase, in particular the β subunit of DNA polymerase III of *Escherichia coli*.

According to a preferred embodiment of the above defined in vitro test method, the assay solutions also comprise a clamp loader, in particular the γ complex of E. coli, adenosine triphosphate (ATP), the divalent cation Mg^{2+} and single strand binding protein (SSB) of E. coli.

According to another preferred embodiment of the above mentioned in vitro test method, the compounds to be tested are such that their tridimensional models have been screened, modified or designed with respect to the structure of the β subunit of DNA polymerase, according to the corresponding above defined screening, modifying or designing methods.

The invention also relates to the use of the *in vitro* test method defined above, for the screening of compounds liable to be used for the preparation of pharmaceutical compositions useful for the treatment of bacterial diseases or diseases originating from DNA synthesis processes, such as fragile X syndrome, or proliferative disorders, such as cancers.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1

5

20

25

Figure 1 represents the atomic coordinates in protein databank (pdb) format of the crystallographic structure of the complex between *Escherichia coli* β subunit of DNA polymerase III and the 16 C-terminal residues of the β binding peptide of *E. coli* Pol IV DNA polymerase (P16)

Figure 2

Figure 2 represents a ribbon representation of the β subunit of DNA polymerase III of E. coli complexed with the P16 peptide (boxed) as obtained from the crystallographic structure of the complex.

Figure 3A, Figure 3B, Figure 3C and Figure 3D

Figure 3A and Figure 3B represent the inhibition of β dependant activity of Pol IV by the Pol IV β binding peptide, P16

Figure 3C and Figure 3D represent the inhibition of β dependant activity of Pol III α subunit by the Pol IV β binding peptide, P16.

Figure 3A represents the migration pattern of an electrophoresis gel. β free (lanes 1-4 and 9-12) or β loaded (lanes 5-8 and 13-16) labelled primer/template hybrids are incubated with increasing amounts of control peptide (CLIP) (lanes 1-8) or P16 peptide (lanes 9-16). Concentrations of peptides are as follows: $0 \mu M$, lanes 1, 5, 9 and 13; 1 μM , lanes 2, 6, 10 and 14; 10 μM , lanes 3, 7, 11 and 15; 25 μM , lanes 4, 8, 12 and 16. This mixture is then submitted to the enzymatic activity of Pol IV (1.5 nM) in the presence of each four dNTPs for 1 minute at room temperature. Beside the overall increase in DNA synthesis activity, the β -dependent activity of the polymerase is characterised by the apparition of synthesis products longer than 12 nucleotides (β dependent synthesis), β independent synthesis is characterised by products shorter than 12 nucleotides. The broader band at the bottom of the gel corresponds to the primer.

Figure 3B represents the quantitative analysis of the relative amounts of each β-independent (incorporation of 1 up to 12 nucleotides) and β-dependent (12 and more nucleotides incorporation) activities observed in lanes 5-8 and 13-16. Black and white rectangles represent the ratio of β-dependent to β-independent polymerase activities

(vertical axis) in the presence of specified amounts of CLIP and P16 peptides (horizontal axis), respectively. Decrease in this ratio value actually indicates a specific inhibition of the β -dependent polymerase activity.

Figure 3C and 3D respectively correspond to the same experiments than those represented in Figure 3A and 3B, except that the polymerase used is the purified α subunit of Pol III (6 nM).

Figure 4

5

10

20

Figure 4 represents the growth rate of *E. coli* transformed by IPTG inducible plasmids expressing either the wild type Pol IV (pWp4) (triangles) or the Pol IVD5 mutant of Pol IV lacking the 5 C-terminal amino-acids (pD5p4) (squares, dotted line) in the presence of IPTG. The vertical axis represents the OD at 600 nm and the horizontal axis the time in minutes.

15 <u>Figure 5A and Figure 5B</u>

Figure 5A represents the growth rate of independent *E. coli* clones harbouring the P403FL vector in the absence (diamonds, triangles, crosses) or the presence (squares, dashes, circles) of 0.1 mM IPTG.

Figure 5B represents the growth rate of independent *E. coli* clones harbouring the P403D5 vector in the absence (diamonds, triangles, crosses) or the presence (squares, dashes, circles) of 0.1 mM IPTG.

The vertical axis represents the O.D. at 600 nm and the horizontal axis represents the time (in minutes).

25 <u>Figure 6</u>

Figure 6 represents Petri dishes containing an agarose-based nutritive medium supplemented with 0.05 mM IPTG and plated with *E. coli* cells harbouring P403FL (top) or with *E. coli* cells harbouring P403D5 (bottom).

EXAMPLES

EXAMPLE 1

5

10

20

25

Crystallographic study of the *Escherichia coli* β sliding clamp complexed with the β binding peptide of Pol IV DNA Polymerase of *E. coli*.

1. β binding peptide synthesis and purification

The 16-mer peptide sequence VTLLDPQMERQLVLGL (P16) (SEQ ID NO: 1), representing the 16 last residues of Pol IV DNA polymerase of *E. coli*, was obtained purified from Neosystem (Illkirch, France) and the 22-mer control peptide RPVKVTPNGAEDESAEAFPLEF (CLIP) (SEQ ID NO: 2) was a gift from Dr J.P. Briand (Strasbourg, France). P16 was resuspended at 1.1 mg/ml in a buffer containing Tris HCl 20 mM, pH 7.5, 5 mM EDTA, 20% glycerol, and kept at -80°C. CLIP was resuspended in 20 mM NaHCO₃ buffer, pH 9, at concentrations of 250, 100 and 10 pmoles/µl

15 $2. \beta$ protein purification

The dnaN gene encoding E. coli β sliding clamp (hereafter referred to as β protein) was cloned into the pET15b plasmid (Invitrogen). The β protein was expressed in a transformed E. coli BL21(DE3)pLysS/(pET15b-dnaN) and was purified as described (Johanson et al., 1986) with the following modifications. A SP Sepharose column (Pharmacia, Upsalla, Sweden) was used instead of the SP Sephadex column. A Mono Q column (Pharmacia, Upsalla, Sweden) followed by a Mono S column (Pharmacia, Upsalla, Sweden) were performed after the SP Sepharose column step. The β protein was purified to >99% purity, as judged by Coomassie gel analysis, and concentrated using Centriplus YM-30 concentrators (Amicon) to 34.2 mg/ml in a buffer containing 20 mM Tris-HCl pH 7.5, 0.5 mM EDTA and 20% (v/v) glycerol, as determined by Bradford assay, using BSA as a standard.

3. Crystalization conditions

Drops were obtained by mixing 0.92 μL of β protein at 34.2 mg/ml (775 pmoles) with 1.89 μl of P16 at 1.1 mg/ml (1136 pmoles) and 1 μl of 2X reservoir solution. Reservoir solution contains 0.1 M MES pH 6.0, 0.1M CaCl₂ and 30% PEG 400 (Hampton Research, Laguna Niguel, CA, USA). The peptide/β monomer molar ratio was 1.46. Co-crystals were

grown by vapour diffusion in hanging drops at 20°C. They typically grew within three days and reached 200 x 100 x 40 μ m³. Cristals were mounted in loops (Hampton Research, Laguna Niguel, CA, USA), frozen in liquid ethane and kept in liquid nitrogen before collection of crystallographic data.

5

10

15

4. Data collection and structure determination

Diffraction data were collected at beam line ID 14-EH4 (ESRF, Grenoble, France). The data were integrated with DENZO and normalized with SCALEPACK (Z. Otwinowski and W. Minor "Processing of X-ray Diffraction Data Collected in Oscillation Mode", Methods in Enzymology, Volume 276; Macromolecular Crystallography, part A, p. 307-326, 1997, C.W. Carter, Jr. and R.M. Sweet, Eds., Academic Press (New York)). The structure was solved by molecular replacement with MOLREP (CCP4, COLLABORATIVE COMPUTATIONAL PROJECT, NUMBER 4. (1994) "The CCP4 Suite: Programs for Protein Crystallography". Acta Cryst. D50, 760-763.), using the known β protein structure as a search model (Kong et al., 1992). The peptide was built with the graphics program O (Copyright 1990 by Alwyn Jones, DatOno AB, Blueberry Hill, S-75591 Uppsala, Sweden) and the model was refined with O and CNS (Brunger et al., 1998) (Copyright © 1997-2001 Yale University).

The results are summarized in following Table 1:

Data collection	
Space group Cell parameters X-ray source Wavelenght (Å) Asymetric unit Resolution (Å) Number of observations	P1 a=41.23 Å; b=65.22 Å; c=73.38 Å; α=73.11°; β=85.58°; γ=85.80° ID14eh4 0.93922 1 dimer 1.65
Unique Total Completeness (%) Rsym Mean I/o	85999 231008 96.7 (95.4) ⁸ 0.051 (0.254) ⁸ 15.5 (4.3) ^a

Refinement		
Resolution range (Å)	500-1.65	
R-factor, reflections	20.87, 80566	
Rfree, reflexions	23.71, 4226	
Number of atoms		
Protein	5744	
Water	443	
R.m.s deviation		
Bond angles (°)	1.59	
Bond lenghts (Å)	0.013	
Average atomic B-value (A	2)	
Protein	•	
β	22.8	
Peptide	29.7	
Water	29.1	
Ramachandran plot ^b (%)		
residues in core,	92.4	
allowed,	6.9	
generously allowed reg		

^a Number in parentheses is for the last shell (1.71-1.65)

10

15

20

Table 1: Crystal structure data and refinement statistics

The results obtained indicate that the crystal is triclinic, with cell dimensions a= 41.23 Å, b= 65.22Å, c= 73.38 Å, α = 73.11°, β = 85.58°, γ = 85.79°. These cell parameters lead to a quite usual value of $2.36 \text{ Å}^3/\text{Dalton}$ for two molecules (i.e. one ring) per asymmetric unit. The present structure was solved by molecular replacement with the program MOLREP and was refined up to 1.65 Å resolution, which represents an important improvement in comparison to the 2.5 Å resolution obtained for the structure published previously (Kong et al., 1992). The atomic coordinates of the structure solved by the Inventors are given in Figure 1 in pdb format. The superposition of the present structure onto the previous one yields an overall rmsd of 1.22 Å for the Ca chain, which indicates that both structures are very similar, although numerous side chains and several mobile loops were rebuilt and a better description of the solvent was achieved. A more sensible superposition, systematically downweighting too distant residues (as those in the rebuilt loops), yields a weighted rmsd of 0.78 Å, which is more significant than the former value.

A density related to the presence of the peptide could be located after several rounds of refinement in a "simulated annealing composite omit map" (Brunger et al., 1998). The seven C-terminal residues of the P16 peptide, $R_{10}Q_{11}L_{12}V_{13}L_{14}G_{15}L_{16}$, encompassing the

^b Statistics from PROCHECK (Laskowski et al., 1993)

WO 2005/001084 PCT/EP2004/006942

 β binding sequence were built into the density map (Figure 2). This map extended slightly toward the N-terminus of the peptide but rapidly faded, so that the Q_{11} residue was still easily seen while the R_{10} was built in a poor density region. The rest of the peptide, probably disordered, was not visible. The seven C-terminal amino acids of the P16 peptide bind onto the β surface within two distinct but adjacent domains: one deep crevice, located between sub-domains 2 and 3 (area 1), and a second area which extends over the third β subdomain, close to the C-terminal extremity of the β chain (area 2) (Figure 2).

5

10

15

20

25

30

In the first area (area 1) of the peptide P16 binding site, two β strands of the clamp ($\beta^{4'}$ of domain 2 and $\beta^{8''}$ of domain 3) align. Some of their residues (L177 and V360, respectively), along with residues of the subdomain connecting loop (P242 and V247), form a hydrophobic pocket at the surface of the β monomer. The P16 residues L16 and L14 bind in this crevice. The hydrophobic nature of the interactions is revealed by the removal, upon peptide binding, of water molecules nested inside the free pocket. However, L14 and L16 are also involved in interactions with other adjacent residues like L155, T172, H175, R176, S346 and M362 (Table 2). The residue G15 has no interaction with any residues of the pocket and serves as a connector between L14 and L16. Consequently, the L16 residue which, according to the pentapeptidic consensus motif (Q₁L₂(SD)₃L₄F₅) (Dalrymple *et al.*, 2001), was not considered to belong to the β -binding sequence, actually fully participates to the interaction.

In the second binding area (area 2), the four other P16 residues, V13, L12, Q11 and R10 establish mostly hydrophobic interactions with residues H175, N320, Y323, V344, M362, P363 and M364 of the β monomer (Table 2). Among the four P16 residues located within this region, the Q residue is highly conserved within the binding motifs of the various β ligands, to the same extent as residues that bind into the hydrophobic crevice (L14 and L16) (Dalrymple et al., 2001). Particularly, it forms interactions, directly or mediated by two water molecules with β residues M362 and E320. These contacts might prime the binding of the peptide with the β surface and facilitate the formation of interactions of the C-terminal residues within the hydrophobic pocket of area 1. Thus the peptide would be anchored on the β surface by two points located on each extremity of the binding sequence.

β residues	
M364	Interacting P16 residues
P363	R10,Q11,L12
M362	Q11, L12
V361	Q11,L12,V13,L14
V344	L14
Y323	L12
N320	Q11
V360	Q11
S346	L14
V247	L14
P242	L14,L16
L177	L16
R176	L14, L16
H175	L14
T172	Q11,L12,V13,L14
L155	L14,L16
	L16

Interactions between the β residues and the peptide P16 residues. All considered distances between β and peptide P16 residues are between 3 and 3.8 Å, except those (P16 residues in bold) between L155:L16, T172:L14, L177:L16 and V361:L14 which are larger than 4 Å.

Table 2

5. N-terminal sequencing of the protein

The cristal was recovered after data collection, washed several times in the well solution, and dissolved in $10~\mu l$ water. The proteins contained within the crystal were derivatized and sequenced by automated Edman's degradation using a PE Applied Biosystems 492 cLC Protein Sequencer allowing the identification and precise quantitative analysis of the amino acids released at each step of degradation.

10

5

6. Improvement of the P16-β clamp interaction

Preliminary in silico docking experiments carried out with modified versions of the P16 peptide suggest that its interaction with the β clamp could be strengthened by replacing Leu 12 and Leu 14 by aromatic amino acids, or by extending the lateral chain of Gln 11. Thus, these modifications show the way to designing new high affinity β clamp interaction inhibitors.

15

EXAMPLE 2

5

10

15

20

25

30

In vitro study of the β clamp- β binding peptide of Pol IV interaction by competition assays

In order to ascertain the biological relevance of the P16 peptide- β clamp interaction observed in the crystallographic structure, an *in vitro* assay based on the activity of Pol IV DNA polymerase was designed. This assay relies on the observation that the *in vitro* activity of Pol IV is greatly enhanced by the presence of the β subunit loaded onto a primer/template DNA substrate (Wagner *et al.*, 2000) (Figure 3A, compare lanes 1 and 5 or 9 and 13), while the enzyme alone incorporates nucleotides in a distributive mode (Wagner *et al.*, 1999).

Briefly, P16 peptide and a control peptide (CLIP) were diluted in 20 mM NaHCO₃ at concentrations of 250, 100 and 10 pmol/µl. 5' end radiolabelling, purification and annealing of synthetic primers were performed as previously described (Wagner *et al.*, 1999). The 30/90 nucleotide synthetic construct (Wagner *et al.*, 2000) was obtained by annealing the 30 nucleotide primer (5'GTAAAACGACGGCCAGTGCCAAGCTTAGTC) (SEQ ID NO: 3) with the 90 nucleotide template (5'CCATGATTACGAATTCAGTCATCACCGGCGC CACAGACTAAGCTTGGCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACC CTGG) (SEQ ID NO: 4) to form a double stranded structure with 5' and 3' single stranded DNA overhangs of 25 and 35 nucleotides, respectively.

All replication experiments (10 μ l final volume) were carried out in buffer E (40 mM HEPES pH 7.5, 80 mM potassium glutamate, 160 μ g/ml BSA, 16 % glycerol, 0.016 % NP40, 8 mM DTT). The 30/90 nucleotide hybrid was first incubated with single strand binding proteins (SSB; Sigma; 90 nM final concentration) in the presence of ATP (200 μ M) and MgCl₂ (7.5 mM) at 37°C for 10 min. When specified, the γ complex (1 nM final concentration) (gift from Dr. C. S. McHenry, Denver, USA), and the β clamp (5 nM as dimer final concentration) were added at that stage, and incubation was carried out at 37°C for 10 min. Then, 7 μ l of the mixture was added to 1 μ l of either 20 mM NaHCO₃ or 1 μ l of peptide solution (1, 10 or 25 μ M final concentration), incubated 20 min. at room temperature and further 2 hours at 4°C. 1 μ l of polymerase was then added (1.5 nM of Pol IV or 6 nM of α subunit (gift from Dr. H. Maki, Nara, Japan) final concentrations), incubated 5 min. at room temperature and finally, the whole reaction was mixed with 1 μ l of a dNTPs solution (200 μ M each dNTP final concentration) and let to react for 1 min. at room temperature. Reactions were quenched by the addition of 20 μ l of 95 % formamide/dyes solution containing 7.5 mM

EDTA, heat-denatured and analysed by chromatography on 12 % denaturing polyacrylamide gels. Radiolabelled products were visualised and quantified using a PhosphorImager 445 SI (Molecular Dynamics) and the ImageQuant software.

5

10

As shown in Figure 3A and Figure 3B, increasing amounts of P16 inhibits the β -dependent activity of Pol IV (lane 13 to 16). At the highest P16 concentration tested (25 μ M), the β -dependent Pol IV activity is decreased by a factor around 30, as indicated on the graphic. On the other hand, the control peptide (CLIP) has no effect on this activity even at the highest concentration tested (Figure 3A, lane 8). Also, neither P16 nor CLIP peptides do affect the intrinsic activity of Pol IV characterised by the distributive incorporation of one to up to 12 nucleotides (Figure 3A, lanes 1-4, 9-12, Figure 3B). Thus P16 specifically inhibits the β -Pol IV DNA polymerase interaction in solution, which demonstrate that the site we identified actually corresponds to the Pol IV DNA polymerase binding site on β .

The polymerase activity of the α subunit of the replicative DNA Polymerase III of E. coli is greatly enhanced by its interaction with the β clamp (Marians et al., 1998) (Figure 3C, compare lanes 1 and 5 or 9 and 13), and the putative β binding peptide of the α subunit has 15 been identified through bioinformatics analysis (Dalrymple et al., 2001) and is a variant of the pentapeptide consensus motif. In order to determine if the replicative DNA polymerase interact with the β monomer within the same site than Pol IV, the ability of P16 peptide to inhibit the β -dependent activity of the α subunit was tested. The dose dependent inhibition of the α subunit β -dependent activity (Figure 3C, lane 13 to 16, Figure 3D) strongly suggest 20 that this is the case. To achieve a high level of inhibition, the concentration of P16 peptide should exceed the polymerase concentration by a factor of 4 to 16.103. The need for such a high excess of peptide may reflect a higher affinity of the whole protein for the DNA- β substrate, mediated by other polymerase-β and/or polymerase-DNA interactions, but also a high entropic factor of the free peptide as opposed to the same fragment folded in the whole 25 protein. Therefore, the lower peptide affinity would result from a lower kinetic constant kon, and not from an increased koff. Overall, this biochemical analysis indicates that (i) the P16-β structure we solved is of biological significance as indicated by the competitive inhibition of the β dependent activity of Pol IV DNA polymerase by peptide P16 and (ii) that peptide P16 also competes with and inhibits the β dependent activity of the α subunit of the DNA 30 Polymerase III of E. coli which suggests that (iii) if not identical, the Pol IV and α subunit interaction sites on β subunit overlap.

EXAMPLE 3

5

10

15

20

25

30

In vivo study of the inhibition of bacterial growth by the β binding peptide of Pol IV

Plasmids bearing either the wild type Pol IV (pWp4) or the Pol IV mutant deleted for the 5 last C-terminal residues (pD5p4) coding sequences under the IPTG inducible *lac* promoter were transformed into recipient *E. coli* cells (BL21(DE3, pLys)). These transformed cells were then allowed to grow in LB medium at 37°C with aeration and without or with (Figure 4) addition of the protein expression inducer IPTG (0.1 mM). Growth rates were monitored by measuring the optical density of the cultures (OD 600 nm) at different time points.

The growth rates of both cultures without artificial protein expression were identical whether the cells contain the wild type Pol IV expression plasmid (pWp4) or the Pol IVD5 mutant (pD5p4). On the other hand, when protein expression was induced by the adjunction of low IPTG concentration in the culture medium (Figure 4), a clear growth inhibition was observed for the culture expressing the wild type Pol IV protein compared to the one expressing the mutant protein. As the mutant protein (expressed from pD5p4) lacks essential amino acids for the interaction with the β -clamp, the observed cytotoxicity may be rationalised by the fact that the wild type Pol IV protein interacts with the β clamp and, because of its relative high concentration, interfere and/or compete with the binding of the replicative DNA polymerase, thereby inhibiting chromosome replication and culture growth.

In other words, these preliminary results indicate that site-specific β binding molecules (such as the Pol IV β binding motif) may serve as antimicrobial agents.

EXAMPLE 4

In vivo study of the inhibition of bacterial growth by the β binding peptide of Pol IV

A DNA sequence encoding a catalytically inactive version of DNA polymerase IV of $E.\ coli$ has been cloned into a vector to form P403FL which enable the IPTG inducible expression of the corresponding inactive enzyme. Similarly, a DNA sequence encoding the catalytically inactive version of DNA polymerase IV of $E.\ coli$ depleted of the 5 last C-terminal residues (which are essential residues for the interaction with the β clamp) has been cloned into the same IPTG inducible vector to form P403D5.

Three independently isolated clones of *E. coli* containing either P403FL or P403D5 were cultured in a selective medium until an optical density (O.D.) of 0.2 at 600 nm was reached, 15 ml of a selective medium containing 0 or 0.1 mM PTG were then inoculated with a quantity corresponding to 0.02 O.D. unit of the culture and bacterial growth was followed by the measure of the optical density at 600 nm during 5 hours.

The results indicate that in the absence of IPTG the three cultures of the independent clones carrying P403FL grow normally, however, in the presence of 0.1 mM IPTG the growth of these clones is completely halted (Figure 5A). Conversely, the three independent clones carrying P403D5 grow normally, irrespective of the presence or not of IPTG (Figure 5B).

10

5

Furthermore, about 1000 E. coli cells harbouring either P403FL or P403D5 were plated on nutritive agarose dishes containing 0.05 mM IPTG. The results shown in Figure 6 indicate that, whereas essentially no P403FL carrying cells are growing, essentially all P403D5 carrying cells are growing.

15

As in Example 3, those results confirm that site-specific β binding molecules (such as the Pol IV β binding motif) may serve as antimicrobial agents.

REFERENCES

Becherel O. et al. (2002) "Pivotal role of the b-clamp in translesion DNA synthesis and mutagenesis in E. coli cells." DNA Repair 68: 1_6.

5

Becherel O. and Fuchs R. P. (2001) "Mechanism of DNA polymerase II-mediated frameshift mutagenesis." Proc Natl Acad Sci USA 98(15): 8566-71.

Bridges B. A. and Woodgate R. (1985). "The two-step model of bacterial UV mutagenesis." Mutat Res 150(1-2): 133-9.

Bruck, I. and O'Donnell M. (2001). "The ring-type polymerase sliding clamp family." Genome Biol. 2(1): 3001.1-3000.3.

10

Brunger A. T. et al., (1998) "Crystallography and NMR system (CNS) a new software system for macromolecular structure determination." Acta Cryst. D54: 905-921.

15

Cordonnier A. M. et al. (1999) "Impaired translesion synthesis in xeroderma pigmentosum variant extracts." Mol Cell Biol 19(3): 2206-11.

Dalrymple B. P. et al. (2001) "A universal protein-protein interaction motif in the eubacterial DNA replication and repair systems." Proc Natl Acad Sci U S A 98(20): 11627-32.

Friedberg et al. (2000a) "The many faces of DNA polymerases: strategies for mutagenesis or for mutational avoidance." Proc Natl Acad Sci USA 97:5681-5683.

20

Friedberg et al. (2000b), "Specialized DNA polymerases, cellular survival, and the genesis of mutations." Science 296:1627-1630.

Fuchs R. P. et al. (2001) 'DNA polymerases II and V mediate respectively mutagenic (-2 frameshift) and error-free bypass of a single N-2-acetylaminofluorene adduct." Biochem Soc Trans 29(Pt 2): 191-5.

25

Gulbis J. M. et al. (1996) "Structure of the C-terminal region of p21 complexed with human PCNA." Cell 87:297-306.

Haracska L. et al. (2001a) "Physical and functional interactions of human DNA polymerase eta with PCNA." Mol Cell Biol 21(21): 7199-206.

30

Haracska L. et al. (2001b) "Targeting of human DNA polymerase iota to the replication machinery via interaction with PCNA." Proc Natl Acad Sci U S A 98(25): 14256-61.

Haracska L. et al. (2002) "Stimulation of DNA synthesis activity of human DNA polymerase kappa by PCNA." Mol Cell Biol 22(3): 784-91.

10

15

20

25

30

Jeruzalmi D. et al. (2001) "Mechanism of processivity clamp opening by the delta subunit wrench of the clamp loader complex of E. coli DNA polymerase III." Cell 106(4): 417-28.

Kong, X. P. et al. (1992) "Three-dimensional structure of the beta subunit of E. coli DNA polymerase III holoenzyme: a sliding DNA clamp." Cell 69(3): 425-37.

Laskowski R A et al. (1993) "PROCHECK: a program to check the stereochemical quality of protein structures." <u>J. Appl. Cryst.</u> 26: 283-291.)

Lenne-Samuel N. et al. (2002) "The processivity factor beta controls DNA polymerase IV traffic during spontaneous mutagenesis and translesion synthesis in vivo." EMBO Rep 3(1): 45-9.

Marians K. J. et al. (1998) "Role of the core DNA polymerase III subunits at the replication fork." The Journal of biological Chemistry 273(4): 2452-2457.

Napolitano R. et al. (2000) "All three SOS-inducible DNA polymerases (Pol II, Pol IV and Pol V) are involved in induced mutagenesis." Embo J 19(22): 6259-65.

Ohmori H. et al. (2001). "The Y family of DNA polymerases", Mol Cell, 8: 7-8.

Reuven N. B. et al. (1999) "The mutagenesis protein UmuC is a DNA polymerase activated by UmuD', RecA, and SSB and is specialized for translesion replication." J Biol Chem. 274(45): 31763-6.

Shamoo Y. and Steitz T. A. (1999) "Building a replisome from interacting pieces: sliding clamp complexed to a peptide from DNA polymerase and a polymerase editing complex." Cell 99(2): 155-66.

Tang M. et al. (1999) "UmuD'(2)C is an error-prone DNA polymerase, Escherichia coli pol V." Proc Natl Acad Sci U S A 96(16): 8919-24.

Thompson J. D. et al. (2000) "DbClustal: rapid and reliable global multiple alignments of protein sequences detected by database searches." <u>Nucleic Acids</u> Research 28(15): 2919-2926.

Tsurimoto T. (1999) "PCNA binding proteins." in Front Biosci, vol 4:D 849-858.

Wagner J. et al. (2002) "Genetics of mutagenesis in E. coli: various combinations of translesion polymerases (Pol II, IV and V) deal with lesion/sequence context diversity." <u>DNA Repair</u> 1: 159-167.

Wagner J. et al. (2000) "The beta clamp targets DNA polymerase IV to DNA and strongly increases its processivity." <u>EMBO Rep</u> 1(6): 484-8.

Wagner J. et al. (1999) "The dinB gene encodes a novel E. coli DNA polymerase, DNA pol IV, involved in mutagenesis." Mol Cell 4(2): 281-6.

Willcox B. E. (1999) "TCR binding to peptide-MHC stabilizes a flexible recognition interface." <u>Immunity</u> 10: 357-65.