50.043 Database and Big Data Systems

Relational Algebra

Roy Ka-Wei Lee Assistant Professor, ISTD, SUTD

Learning Outcome

By the end of this unit, you should be able to

- Interpret relational algebra terms (queries)
- Define relational algebra terms to query a relational model

The Big Picture

Payroll

UserID	Name	Job	Salary
123	Alice	Asst. Prof	100
456	Bob	TA	80
789	Carol	Asst. Prof	120
101	David	Prof	150

SQL query DBMS SELECT UserID, Salary FROM Payroll SPECIAL SKILL SET... WHERE Job = "Asst. Prof" Payroll(**UserID**, Name, Job, Salary)

UserID	Name	Job	Salary
123	Alice	Asst. Prof	100
456	Bob	TA	80
789	Carol	Asst. Prof	120
101	David	Prof	150

UserID	Salary
123	100
789	120

Execution Engine

foreach row in Payroll:
 if (row.Job == "Asst. Prof")
 output (row.UseID, row.Salary)

Relational Algebra

- Algebra:
 - Study of symbols
 - Their meanings
 - Their relationships

Algebra (from Arabic "al-jabr", literally meaning "reunion of broken parts"^[1]) is one of the broad parts of mathematics, together with number theory, geometry and analysis. In its most general form, algebra is the study of mathematical symbols and the rules for manipulating these symbols;^[2] it is a unifying thread of almost all of mathematics.^[3] It includes everything from elementary equation solving to the study of abstractions such as groups, rings, and

Relational Algebra

 $x^2 - 2x - 4 = 0$

- Study of symbols that manipulates relations
- Symbols = operators

$$\sigma_{A>3}(\pi_{X,Y}(R)\bowtie_X\pi_{X,Z}(T))=S$$

Relational Algebra

- Contain operators to:
 - Retrieve, manipulate relations
 - Each operator:
 - Take one or more relations as input
 - Output a new relation
- Meaning of each operation (semantics)
 - Based on set
- They can be chained
 - To express complex operation

σ	Selection
π	Projection
_	Difference
U	Union
n	Intersection
×	Join
×	Product
ρ	Rename
γ	Aggregation

Selection

- Syntax: σ_{predicate}(R)
- Return tuples from R satisfying the predicate
 - Like a filter
 - Predicate can be complex, with conjunction (AND) and disjunction (OR)

 $\sigma_{A="a2"AND}$ B>102(R)

Note: Selection does not correspond to SELECT in SQL, but to WHERE, Why?

A	В
a1	101
a2	102
a2	103
а3	104

Α	В
a2	103

Projection

- Syntax: π_{A1,A2...}(R)
- Return tuples with the specified attributes
 - Can rearrange attribute order
 - Can transform values

```
Select B-100, A from R Where A='a2';
```

$$\pi_{B-100,} (\sigma_{A="a2"}(R))$$

A	В
a1	101
a2	102
a2	103
а3	104

B-100	A
2	a2
3	a2

Union

- Syntax: (R ∪ S)
- Return tuples appearing in any of the two relations
 - Exactly like set union

```
(Select * from R)
UNION
(Select * from S);
```

14(74,0)		
A	В	
a1	101	
a2	102	
а3	103	

R(A.B)

S(A,B)		
A	В	
a3	103	
a4	104	
а5	105	

$R \cup S$		
A	В	
a1	101	
a2	102	
a3	103	
a4	104	
a5	105	

DILC

Intersection

- Syntax: (R ∩ S)
- Return tuples appearing in **both** relations
 - Exactly like set intersection

```
(Select * from R)
INTERSECT
(Select * from S);
```

R(A,B)		
A	В	
a1	101	
a2	102	
а3	103	

() (, -)			
A	В		
а3	103		
a4	104		
а5	105		

S(A.B)

RNS						
A	В					
a3	103					

Difference

- Syntax: (R S)
- Return tuples appearing in R but not in S
 - Exactly like set difference

K(A,D)		
Α	В	
a1	101	
a2	102	
a3	103	

D/A B)

3(A,B)			
A	В		
a3	103		
a4	104		
а5	105		

S(A R)

R - S				
A	В			
a1	101			
a2	102			

Product

- Syntax: (R x S)
- Return all possible combination of tuples from R and S
 - Exactly like set Cartesian product
 - o R, S can have different schema

Select * from R cross join S;

R(A,B)

Α	В
a1	101
a2	102

S(C,D)

-(-,-,			
С	D		
a3	103		
a4	104		

$R \times S$

R.A	R.B	S.C	S.D
a1	101	а3	103
a1	101	a4	104
a2	102	а3	103
a2	102	a4	104

Product

- Syntax: (R x S)
- Return all possible combination of tuples from R and S
 - Exactly like set Cartesian product
 - o R, S can have different schema

Select * from R cross join S;

When there is no ambiguity, we drop the Relation name prefix.

R(A,B)

Α	В
a1	101
a2	102

S(C,D)

-(-,-,			
С	D		
а3	103		
a4	104		

$R \times S$

Α	В	С	D	
a1	101	а3	103	
a1	101	a4	104	
a2	102	а3	103	
a2	102	a4	104	

Join

- Very important
- Already seen cross-join: x
- We focus on three variants:
 - Inner Join (Equi-Join)
 - Natural Join
 - Left/Right/Full Outer Join

Inner Join

- Syntax: (R ⋈_{R.A = S.B,R.C=S.D,.} S)
- Return tuples in R x S and satisfying a condition
 - Product followed by Selection
 - Can join on multiple columns

Select * from R, S
Where R.A = S.D;

R(A,B,C)			S(D,E,F)				
	A	В	ВС		D	E	F
	a1	101	0		а3	103	ʻa'
	a2	102	1		a1	107	ʻb'
	а3	103	0		а5	105	ʻc'

R	M _{R.A}	= S.C	S
---	------------------	-------	---

R.A	R.B	R.C	S.D	S.E	S.F
a1	101	0	a1	107	ʻb'
а3	103	0	а3	103	ʻa'

Natural Join

- Syntax: (R ⋈ S)
- Like Inner Join, but:
 - Detect attributes with the same names, then use them as join condition
 - Remove duplicate columns (same names)

Select * from R natural join S;

R(A,B,C)			S	(D,E,F	=)	
	A	В	С	D	Е	F
	a1	101	0	а3	103	ʻa'
	a2	102	1	a1	107	ʻb'
	а3	103	0	а5	105	ʻc'

R⋈S

R.A	R.B	R.C	S.E	S.F
a1	101	0	107	ʻb'
а3	103	0	103	ʻa'

Left Outer Join

- Syntax: (R ⋈_{R,A = S,B} S)
- Same as Inner Join, except:
 - All tuples of R appear in the result

Select * from R left outer
join S on R.A = S.D;

R(A,	B,C)
------	------

Α	В	С
a1	101	0
a2	102	1
аЗ	103	0

S(D,E,F)

	(, , ,				
D	E	F			
а3	103	ʻa'			
a1	107	ʻb'			
а5	105	ʻc'			

$$R M_{R.A=S.D} S$$

R.A	R.B	R.C	S.D	S.E	S.F
a1	101	0	a1	107	ʻb'
а3	103	0	а3	103	ʻa'
a2	102	1	NULL	NULL	NULL

Rename

- Syntax: ρ_{R'(A1,...,An)}(R)
- R' is the new relation name
 - A₁,....,A_n are the new attribute names
 - We omit the field names if we rename only the relation name, vice versa.

Select * from R natural join (Select D as A, E, F from S) as S2;

R(Ά,	В,	C)
----	----	----	----

Α	В	С
a1	101	0
a2	102	1
а3	103	0

S(D,E,F)

	• • •	
D	E	F
a3	103	ʻa'
a1	107	ʻb'
а5	105	ʻc'

$R \bowtie \rho_{S(A,E,F)}(S)$

R.A	R.B	R.C	S.E	S.F
a1	101	0	107	ʻb'
а3	103	0	103	ʻa'

Aggregation

- Syntax: _{A1,...,An}γ_{F1(B1),F2(B2),...}(R)
- R' is the new relation name
 - A₁,...,A_n are the attributes on which to group
 - F₁,...,F_m are aggregation functions
 - SUM(), AVG(), MIN(), MAX(), COUNT()
 - B₁,...,B_m are the attributes served as arguments of the aggregation functions.

R(A,B,C)

Α	В	С
a1	101	0
a2	102	1
а3	103	0

$\rho_{(\mathsf{C},\mathsf{CNT})}({}_{\mathsf{C}}\gamma_{\mathsf{COUNT}(\mathsf{B})}(\mathsf{R}))$

C	CNT
0	2
1	1

Other Operators

- Many other operators
- Check them out yourself

δ	Duplicate Elimination
τ	Sorting
×	Right Outer Join
×	Full Outer Join

Relational Algebra

- What can you say about these two:
 - \circ $\sigma_{SB=102}(R \bowtie S)$
 - \circ R \bowtie ($\sigma_{R=102}(S)$)
- Given input relations, there are > 1 ways to get the desired output
- What this means?
 - Let the machine select the best way

σ	Selection
π	Projection
_	Difference
U	Union
Λ	Intersection
M	Join
×	Product
ρ	Rename
γ	Aggregation

Glimpse Into Database Internal

R(A,B)

Α	В
1	x
2	у
2	Z
3	х
9	а

В	С	D
х	0	3
у	2	1
у	3	3
w	3	0
у	2	0

Expression	Size of results
R×S	
RMS	
R⋈ _{A=D} S	
$\pi_{B}^{(R)} - \pi_{B}^{(\sigma_{C < 3}^{(S))}}$	

R(A,B)

Α	В
1	х
2	у
2	Z
3	х
9	а

В	С	D
x	0	3
у	2	1
у	3	3
w	3	0
у	2	0

Expression	Size of results
R×S	25
RMS	
R⋈ _{A=D} S	
$\pi_{B}^{(R)} - \pi_{B}^{(\sigma_{C < 3}^{(S))}}$	

R(A,B)

Α	В
1	X
2	у
2	Z
3	х
9	а

В	С	D
x	0	3
у	2	1
у	3	3
w	3	0
у	2	0

Expression	Size of results
R×S	25
RMS	5
R⋈ _{A=D} S	
$\pi_{B}^{(R)} - \pi_{B}^{(\sigma_{C < 3}^{(S))}}$	

R(A,B)

Α	В
1	х
2	у
2	Z
3	х
9	а

В	С	D
x	0	3
у	2	1
у	3	3
w	3	0
у	2	0

Expression	Size of results
R×S	25
RMS	5
R ⋈ _{A=D} S	3
$\pi_{B}^{(R)} - \pi_{B}^{(\sigma_{C < 3}^{(S))}}$	

R(A,B)

Α	В
1	х
2	у
2	Z
3	х
9	а

В	С	D
x	0	3
у	2	1
у	3	3
w	3	0
у	2	0

Expression	Size of results
R×S	25
RMS	5
R ⋈ _{A=D} S	3
$\pi_{B}^{(R)} - \pi_{B}^{(\sigma_{C < 3}^{(S))}}$	2

What you should know?

- How to interpret relational algebra terms (queries)?
- How to define relational algebra terms to query a relational model?

Reading Resources:

https://sutd50043.github.io/notes/l2_relational_algebra/

Please work on Cohort 2!

Acknowledgement

- The following material have been referenced or partially used:
 - MIT Database Systems (6.830)
 - University of Washington: Introduction to Data Management (CSE344)
 - CMU Database Systems (15-445/645)
 - ETH's Data Modeling and Databases (252-0063-00L)
 - ETH's Big Data For Engineers
 - Yale's Database System Concepts Seventh Edition (https://codex.cs.yale.edu/avi/courses/CS-437/slides/index.html)

