IOITC 2019 Team Selection Test 3

Labelled Tree

You are given an undirected, unweighted tree T of N nodes. All the nodes are numbered from 1 to N. Each node in the tree also has a label associated with it, which is denoted by A_1, A_2, \ldots, A_N . It is guaranteed that for any two nodes u, v where $u \neq v$, if they have the same label (ie. if $A_u = A_v$), then there is at least one node, x, in the simple path between them with a smaller label than them. That is, $A_x < A_u$.

For every pair of vertices (u, v), we define a cost function C(u, v) to be C(u, v) = dist(u, x) * dist(x, v), where x is the node in the simple path between u and v with the smallest label. dist(u, v) denotes the number of edges on the simple path between u and v.

Calculate

$$\sum_{\substack{u,v \in T\\u \neq v}} C(u,v) \tag{1}$$

Since the answer can be large, output the summation, modulo $10^9 + 7$.

Note: We are taking the sum over ordered pairs, so C(u,v) and C(v,u) should both be considered when $u \neq v$.

Input

- The first line contains a single integer, N denoting the number of nodes in the tree.
- The i^{th} of the next N-1 lines contains two integers, u_i, v_i denoting that there is an edge between nodes u_i and v_i .
- The $(N+1)^{th}$ line contains N integers: A_1, A_2, \ldots, A_N .

Output

Output a single integer in a new line, which should be the summation of the costs modulo $10^9 + 7$.

Constraints

- $1 \le N \le 10^5$
- $1 \le u_i, v_i \le N$
- $1 \le A_i \le 200$, for all $1 \le i \le N$.
- The given graph is a tree.

Subtasks

- Subtask 1: 23%: $1 \le N \le 1000$
- Subtask 2: 77%: Original Constraints

Sample Input 1

4 4 1

1 3

2 1

3 4 2 1

Sample Output 1

0

Explanation 1

The various costs are as follows:

•
$$C(1,2) = dist(1,1) * dist(1,2) = 0 * 1 = 0$$

•
$$C(1,3) = dist(1,3) * dist(3,3) = 1 * 0 = 0$$

•
$$C(1,4) = dist(1,4) * dist(4,4) = 1 * 0 = 0$$

•
$$C(2,1) = dist(2,1) * dist(1,1) = 1 * 0 = 0$$

•
$$C(3,1) = dist(3,3) * dist(3,1) = 0 * 1 = 0$$

•
$$C(4,1) = dist(4,4) * dist(4,1) = 0 * 1 = 0$$

•
$$C(2,3) = dist(2,3) * dist(3,3) = 2 * 0 = 0$$

•
$$C(2,4) = dist(2,4) * dist(4,4) = 2 * 0 = 0$$

•
$$C(3,2) = dist(3,3) * dist(3,2) = 0 * 2 = 0$$

•
$$C(4,2) = dist(4,4) * dist(4,2) = 0 * 2 = 0$$

•
$$C(3,4) = dist(3,4) * dist(4,4) = 2 * 0 = 0$$

•
$$C(4,3) = dist(4,4) * dist(4,3) = 0 * 2 = 0$$

Their sum is 0, and hence the answer is 0.

Sample Input 2

5

1 2

2 3

1 5

1 2 3 3 2

Sample Output 2

12

Explanation 1

The non-zero costs are as follows:

•
$$C(3,5) = dist(3,1) * dist(1,5) = 2 * 1 = 2$$

•
$$C(4,5) = dist(4,1) * dist(1,5) = 2 * 1 = 2$$

•
$$C(2,5) = dist(2,1) * dist(1,5) = 1 * 1 = 1$$

•
$$C(3,4) = dist(3,2) * dist(2,4) = 1 * 1 = 1$$

- C(5,3) = dist(5,1) * dist(1,3) = 1 * 2 = 2
- C(5,4) = dist(5,1) * dist(1,4) = 1 * 2 = 2
- C(5,2) = dist(5,1) * dist(1,2) = 1 * 1 = 1
- C(4,3) = dist(4,2) * dist(2,3) = 1 * 1 = 1

Their sum is 12, and hence the answer is 12.