Going Beyond Nouns With Vision & Language Models Using Synthetic Data

Paola Cascante-Bonilla^{1,2}, Khaled Shehada^{2,3}, James Seale Smith^{2,4}, Sivan Doveh^{6,7}, Donghyun Kim^{2,7}, Rameswar Panda^{2,7}, Gül Varol⁵, Aude Oliva^{2,3}, Vicente Ordonez¹, Rogerio Feris^{2,7}, Leonid Karlinsky^{2,7}

2 MIT-IBM Watson AI Lab

Large-scale vision & language models struggle with compositional reasoning

a cat on top of a mat

a mat on top of a cat

Synthetic data is cheap to produce and comes automatically labeled; it sidesteps many ethical and privacy issues that come with natural images.

An image of a chair next to a backpack

An image of a brown table on top of a white table

We propose SyViC, a million-scale synthetic dataset, and data generation codebase. By adding digital humans and enabling physics, we aim to cover transitive and intransitive human actions.

This scene contains a shirt, a stool, a fire hydrant, and two humans. They are in a room with blue floor and white walls. The first human is to the right of the fire hydrant. The second human wears a green football jersey and blue jeans pants (...)

We finetune a large-scale pre-trained VL model using our SyViC dataset. Our proposed methodology includes domain adaptation and avoiding forgetting through parameter-efficient finetuning (LoRA) and model averaging.

Results

We evaluate our finetuned model on three benchmarks: *VL-Checklist, ARO*, and *Winoground*. The compositional reasoning evaluation includes understanding the meaning of the sentence after changing the **word order**, **attributes**, and **relations** of humans/objects.

	Relation	VL Checklist Attribute	Average	Zero-Short (21 tasks)
CLIP	63.57	67.51	65.54	56.07
CyCLIP	61.15	66.96	64.06	55.99
syn-CLIP	69.39 (+ 5.82)	70.37 (+2.86)	69.88 (+4.34)	55.27 (-0.8)
syn-CyCLIP	65.73 (+ 4.58)	68.06 (+1.1)	66.89 (+2.83)	55.40 (-0.6)

	VG-Rel.	VG-Att.	ARO Flickr30k	COCO	Average
CLIP	58.84	63.19	47.20	59.46	57.17
CyCLIP	59.12	65.41	20.82	29.54	43.72
syn-CLIP	71.40 (+12.56)	66.94 (+3.75)	59.06 (+11.86)	70.96 (+11.5)	67.09 (+9.9)
syn-CyCLIP	69.02 (+9.9)	63.65 (-1.76)	49.17 (+28.35)	59.36 (+29.82)	60.30 (+16.58)

	Winoground		Winoground [†]			
	Text	Image	Group	Text	Image	Group
CLIP	31.25	10.50	8.00	31.58	10.53	8.19
syn-CLIP	30.00	11.50	9.50 (+1.50)	29.82	12.28	9.94 (+1.75)

Grad-CAM on a Winoground sample before and after finetuning CLIP using our SyViC dataset.

Project Page

https://synthetic-vic.github.io/

