

# **S**EQUENCES

## Why

We introduce language for the steps of an infinite process.

#### Definition

A finite sequence is a family whose index set is a natural number (excluding zero). An infinite sequence is a family whose index set is the set of natural numbers (without zero). The  $nth\ term$  of a sequence (finite or infinite) is the result of the  $nth\ natural\ number$ . Let A be a non-empty set. A sequence in A is a function from the natural numbers to the set.

#### Notation

Let A be a non-empty set. Let  $a : \mathbb{N} \to A$  Then a is a sequence in A. a(n) is the nth term. We also denote a by  $(a_n)_n$  and a(n) by  $a_n$ .

### Natural Unions and intersections

If  $\{A_i\}$  is a finite sequence of sets indexed by  $\{1, 2, ..., n\}$ , then we denote the union of the family by

$$\bigcup_{i=1}^{n} A_i$$

If  $\{A_i\}$  is an infinite sequence of sets, then we denote the union of the family by

$$\bigcup_{i=1}^{\infty} A_i$$
.

Similarly, we denote the intersections of a finite and infinite sequence of sets  $\{A_i\}$  by

$$\bigcap_{i=1}^n A_i$$
 and  $\bigcap_{i=1}^\infty A_i$ .

respectively.

