Machine Intelligence

Lecture 7: Learning - Introduction and decision trees

Thomas Dyhre Nielsen

Aalborg University

MI Autumn 2018

Tentative course overview

Topics:

- Introduction
- Search-based methods
- Constrained satisfaction problems
- Logic-based knowledge representation
- Representing domains endowed with uncertainty.
- Bayesian networks
- Inference in Bayesian networks
- Machine learning
- Planning
- Reinforcement learning
- Multi-agent systems

MI Autumn 2018

Supervised Learning

The general pattern so far:

Problem/Domain description	State Space Problem	Variables, Constraints	Probabilistic Model		
Inference Algorithms	Search $(A^*,)$	Arc Consistency, Variable Elimination	Variable Elimination		
Solutions	Goal states, plans, diagnoses, predictions,				

- Problem/Domain description and algorithms designed by human
- Agent will always act the same in the same situation

The general pattern so far:

Problem/Domain description	State Space Problem	Variables, Constraints	Probabilistic Model		
Inference Algorithms	Search $(A^*,)$	Arc Consis- tency, Variable Elimination	Variable Elimi- nation		
Solutions	Goal states, plans, diagnoses, predictions,				

- Problem/Domain description and algorithms designed by human
- Agent will always act the same in the same situation

Objective of (machine) learning:

- Agent can learn by experience: improve performance over time
- Agent (program) can be automatically constructed from examples (rather than designed by expert)

Tasks and Model Types

The models constructed by machine learning algorithms are used for several kinds of tasks:

Predictive tasks/models

- Task: predict some (unobserved) target or class variable based on observed values of (predictor) attributes
 - Regression, if target is continuous
 - Classification, if target is discrete
- Examples: Spam filtering, Character recognition, ...
- Model types e.g.: Decision trees, k nearest neighbors, Neural networks, Naive Bayes,...

Descriptive tasks/models

- Task: Clustering: identify coherent subgroups in data
- Examples: Recommender systems,
- \bullet Model types e.g.: k-means, hierarchical clustering, Self-organizing maps, probabilistic clustering, . . .

Example: Spam filter

Example: Character Recognition

Experience, Data

In order to show a certain behavior, or perform certain tasks, an agent needs to

• make (the right) decisions based on possible observations

Experience from which the right behavior can be learned consists of

• Examples or Cases of inputs that are labeled with the correct decisions (outputs).

This is also called Labeled data.

We assume that data (experience) consists of an attribute-value table:

(,	Target Feature (Class variable)			
SubAllCap	TrustSend	InvRet	 B'zambia'	Spam
У	n	n	 n	у
n	n	n	 n	n
n	у	n	 n	у
n	n	n	 n	n

- Columns correspond to attributes given by a name and a state space (attributes are basically the same as (chance) variables).
- Rows correspond to examples (also called cases or instances): observations of joint occurrences of values of the attributes.
- In prediction problems, there is a distinguished target attribute. When the target attribute is discrete, it is usually called the class variable. The attributes used for prediction are then called predictor attributes.

In table above: *Spam* is class variable for the prediction problem: predict whether a mail is spam, given characteristics of the mail.

Continuous Attributes

current temp	pressure change (24h)	rain tomorrow	temp tomorrow
16.8	-8.5	yes	15.3
21.7	2.1	no	22.5
19.5	-1.4	no	20.4
8.4	0.5	yes	7.2

- Classification problem: predict whether it rains tomorrow, given current temperature and pressure change (rain tomorrow is class variable).
- Regression problem: predict temperature tomorrow, given current temperature and pressure change (temperature tomorrow is target attribute).
- Clustering problem: identify groups of observations representing similar weather patterns (e.g. stable winter high pressure situations).

→ one data set can be the basis for many different learning tasks!

Classification, Regression

- Predicting a discrete target feature: classification
- Agent/Model/Program that classifies: classifier
- Predicting a continuous (numeric) target feature: regression
- Agent/Model/Program that performs regression: regression model

Learning and Using a Classifier

Ingredients

Key ingredients of a learning method are:

- a Hypothesis Space: set of all possible classifiers that could be learned based on a given Representation
- an Evaluation Measure that is used to decide how good a candidate hypothesis is
- a Search or Optimization method used to find a hypothesis that scores high according to the evaluation measure.

Decision Trees

13

Example: Training Data

User preference data:

Example	Author	Thread	Length	WhereRead	UserAction
e_1	known	new	long	home	skips
e_2	unknown	new	short	work	reads
e_3	unknown	follow Up	long	work	skips
e_4	known	follow Up	long	home	skips
e_5	known	new	short	home	reads
e_6	known	follow Up	long	work	skips
e_7	unknown	follow Up	short	work	skips
e_8	unknown	new	short	work	reads
e_9	known	follow Up	long	home	skips
e_{10}	known	new	long	work	skips
e_{11}	unknown	follow Up	short	home	skips
e_{12}	known	new	long	work	skips
e_{13}	known	follow Up	short	home	reads
e_{14}	known	new	short	work	reads
e_{15}	known	new	short	home	reads
e_{16}	known	follow Up	short	work	reads
e_{17}	known	new	short	home	reads
e_{18}	unknown	new	short	work	reads
e_{19}	unknown	new	long	work	?
e_{20}	unknown	follow Up	long	home	?
e_{21}	unknown	follow Up	short	home	?

Tree 1 is equivalent to the following logic program:

$$skips \leftarrow long$$
 $reads \leftarrow short \land new$
 $reads \leftarrow short \land follow_up \land known$
 $skips \leftarrow short \land follow_up \land unknown$

14

Example: Classifications

Example	Author	Thread	Length	WhereRead	UserAction	Tree 1	Tree 2
e_1	known	new	long	home	skips	skips	skips
e_2	unknown	new	short	work	reads	reads	reads
e_3	unknown	follow Up	long	work	skips	skips	skips
e_4	known	follow Up	long	home	skips	skips	skips
e_5	known	new	short	home	reads	reads	reads
e_6	known	follow Up	long	work	skips	skips	skips
e_7	unknown	follow Up	short	work	skips	skips	reads
e_8	unknown	new	short	work	reads	reads	reads
e_9	known	follow Up	long	home	skips	skips	skips
e_{10}	known	new	long	work	skips	skips	skips
e_{11}	unknown	follow Up	short	home	skips	skips	reads
e_{12}	known	new	long	work	skips	skips	skips
e_{13}	known	follow Up	short	home	reads	reads	reads
e_{14}	known	new	short	work	reads	reads	reads
e_{15}	known	new	short	home	reads	reads	reads
e_{16}	known	follow Up	short	work	reads	reads	reads
e_{17}	known	new	short	home	reads	reads	reads
e_{18}	unknown	new	short	work	reads	reads	reads
e_{19}	unknown	new	long	work	?	skips	skips
e_{20}	unknown	follow Up	long	home	?	skips	skips
e_{21}	unknown	follow Up	short	home	?	skips	reads

Top-down construction:

procedure DecisionTreeLearner(\mathbf{X}, Y, E) $//\mathbf{X} = \{X_1, \dots, X_n\}$: input features

- // Y: target feature
- $/\!/ E$: set of training examples
- 1. if stopping criterion is true
- 2. ${\it return leaf node}$ labeled with most frequent target feature value in E
- 3. else
- 4. select feature $X_i \in \mathbf{X}$
 - // let v_1, v_2 be the possible values of X_i
- 5. $E_1 = \{e \in E : \textit{val}(e, X_i) = v_1\}$
- 6. $T_1 = DecisionTreeLearner(\mathbf{X}, Y, E_1)$
- 7. $E_2 = \{e \in E : val(e, X_i) = v_2\}$
- 8. $T_2 = DecisionTreeLearner(\mathbf{X}, Y, E_2)$
- 9. return

$$X_i$$
/ \

$$T_1$$
 T_2

Choosing X_i

Key question: which X_i to choose in line 4.?

Approach: choose the feature that would provide the best classifier if construction would terminate with that feature.

Showing

- Number of examples with class labels skips,reads belonging to different sub-trees
- Green: predicted class label (possibly a tie between two labels)

Class Purity

Principle: Prefer features that split the examples into *class pure* subsets:

pure:	nearly pure:	impure:
skips: 7, reads: 0 skips: 0, reads: 5	skips: 6, reads: 1 skips: 2, reads: 15	skips: 6, reads: 5 skips: 7, reads: 7
skips: 11, reads: 0	skips: 11, reads: 1	skips: 13, reads: 12

Normalized to probabilities:

pure:	nearly pure:	impure:
skips: 1, reads: 0	skips: 0.85, reads: 0.15	skips: 0.54, reads: 0.46
skips: 0, reads: 1	skips: 0.12, reads: 0.88	skips: 0.5, reads: 0.5
skips: 1, reads: 0	skips: 0.91, reads: 0.09	skips: 0.52, reads: 0.48

Purity Measure

For a probability distribution (p, 1-p) of a two-valued class label, define

- High values for impure distributions
- Maximal for (0.5, 0.5)
- Zero for (1, 0) and (0, 1)

Examples:

- Entropy $(0.5, 0.5) = -0.5 \cdot \log_2(0.5) 0.5 \cdot \log_2(0.5) = 0.5 \cdot 1 + 0.5 \cdot 1 = 1$
- Entropy $(0.35, 0.65) = -0.35 \cdot \log_2(0.35) 0.65 \cdot \log_2(0.65) = 0.93$
- Entropy $(0,1) = -0 \cdot \log_2(0) 1 \cdot \log_2(1) = -0 0 = 0$
- Entropy $(1,0) = -1 \cdot \log_2(1) 0 \cdot \log_2(0) = -0 0 = 0$

Generalization to larger domains

For a probability distribution on domain with n elements:

$$\mathbf{p} = (p_1, p_2, \dots, p_n)$$
 $(p_n = 1 - \sum_{i=1}^{n-1} p_i)$

define entropy:

$$h(\mathbf{p}) = -\sum_{i=1}^{n} p_i \cdot \log(p_i)$$

Again:

- Maximal for $\mathbf{p} = (1/n, \dots, 1/n)$
- \bullet Zero for $\mathbf{p}=(1,0,\dots,0),\,\mathbf{p}=(0,1,0,\dots,0),\dots,\,\mathbf{p}=(0,\dots,0,1)$

Expected Entropy Example

We prefer features that split into subsets with low entropy, but consider example for binary class variable (values c_1 , c_2 with initial counts c_1 : 20, c_2 : 20), and two 3-valued features X_1 , X_2 :

MI Autumn 2018 Decision Trees 21

Expected Entropy Example

 $c_1:0,c_2:15$

(0,1)

We prefer features that split into subsets with low entropy, but consider example for binary class variable (values c_1, c_2 with initial counts $c_1 : 20, c_2 : 20$), and two 3-valued features X_1, X_2 :

 $c_1:5,c_2:5$

(0.5, 0.5)

normalized

entropy

 X_2 provides a better division of examples than X_1 . It gives a lower *expected entropy*:

(1,0)

$$(1/40) \cdot 0 + (1/40) \cdot 0 + (38/40) \cdot 1 > (15/40) \cdot 0 + (15/40) \cdot 0 + (10/40) \cdot 1$$

Expected Entropy and Information Gain

For feature X with domain v_1, \ldots, v_n , let:

- E_i be the set of examples with $X = v_i$
- $q_i = |E_i|/|E|$
- ullet h_i the entropy of the class label distribution in E_i

The **expected entropy** from splitting on X then is:

$$h(\textit{Class} \mid X) = \sum_{i=1}^{n} q_i \cdot h_i$$

Let

h(Class): entropy of class label distribution before splitting

The **Information Gain** from splitting on X then is:

$$h(Class) - h(Class \mid X)$$

Information Gain in Decision Tree Learning

ullet In line 4. of algorithm choose feature X_i that gives highest information gain.

Information gain

Information gain

Constructing the decision tree

Continuous/many-valued attributes I

The information gain measure favors attributes with many values:

For example, the attribute Date (with the possible dates as states) will have a very high information gain but is unable to generalize!

One approach for avoiding this problem is to select attributes based on GainRation:

$$\mathsf{GainRation}(S,A) = \frac{\mathsf{Gain}(S,A)}{\mathsf{SplitInformation}(S,A)}$$

$$\label{eq:SplitInformation} \text{SplitInformation}(S,A) = -\sum_{i=1}^{c} \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|},$$

where S_i is the subset of examples produced by splitting on the *i*'th value of A.

Note that SplitInformation is the entropy of S w.r.t. the values of A.

Continuous/many-valued attributes I

We require that the attributes being tested are discrete valued. So in order to test a continuous valued attribute we need to "discretize" it.

Suppose that the training examples are associated with the attribute Temperature:

Temperature:	40	48	60	72	80	90
Rain tomorrow:	yes	yes	no	no	no	yes

Continuous/many-valued attributes I

We require that the attributes being tested are discrete valued. So in order to test a continuous valued attribute we need to "discretize" it.

Suppose that the training examples are associated with the attribute Temperature:

Temperature:	40	48	60	72	80	90
Rain tomorrow:	yes	yes	no	no	no	yes

Create a new boolean valued attribute by first testing the two candidate thresholds:

- (48+60)/2
- **●** (80+90)/2

Next, pick the one with highest information gain (i.e., Temperature>54)

Overfitting

Noise in data may lead to a bad classifier. In particularly, if the decision tree fits the data perfectly. This is called overfitting.

Definition

A hypothesis h is said to <u>overfit</u> the training data if there exists some alternative hypotheses h', such that:

- ullet h has smaller error than h' over the training data, but
- \bullet h' has a smaller error than h over the entire distribution of instances.

