

Adjustable and fixed low drop positive voltage regulator

Datasheet - production data

flows mostly into the load. Only a very common 10 μ F minimum capacitor is needed for stability. On chip trimming allows the regulator to reach a very tight output voltage tolerance, within ± 1 % at 25 °C. The adjustable LD1117 is pin to pin compatible with the other standard. Adjustable voltage regulators maintaining the better performances in terms of drop and tolerance.

Features

- Low dropout voltage (1 V typ.)
- 2.85 V device performances are suitable for SCSI-2 active termination
- Output current up to 800 mA
- Fixed output voltage of: 1.2 V, 1.8 V, 2.5 V, 3.3 V, 5.0 V
- Adjustable version availability (V_{RFF} = 1.25 V)
- · Internal current and thermal limit
- Available in ± 1 % (at 25 °C) and 2 % in full temperature range
- Supply voltage rejection: 75 dB (typ.)

Description

The LD1117 is a low drop voltage regulator able to provide up to 800 mA of output current, available even in adjustable version ($V_{REF} = 1.25 \text{ V}$). Concerning fixed versions, are offered the following output voltages: 1.2 V, 1.8 V, 2.5 V, 2.85 V, 3.3 V and 5.0 V. The device is supplied in: SOT-223, DPAK, SO-8 and TO-220. The SOT-223 and DPAK surface mount packages optimize the thermal characteristics even offering a relevant space saving effect. High efficiency is assured by NPN pass transistor. In fact in this case, unlike than PNP one, the quiescent current

Contents LD1117

Contents

1	Diagram 5
2	Pin configuration 6
3	Maximum ratings
4	Schematic application 8
5	Electrical characteristics 9
6	Typical application
7	LD1117 adjustable: application note
8	Package mechanical data
9	Packing mechanical data
10	Order codes
11	Revision history

LD1117 List of tables

List of tables

rabie 1.	Absolute maximum ratings	/
Table 2.	Thermal data	7
Table 3.	Electrical characteristics of LD1117#12	
Table 4.	Electrical characteristics of LD1117#18	10
Table 5.	Electrical characteristics of LD1117#25	11
Table 6.	Electrical characteristics of LD1117#33	
Table 7.	Electrical characteristics of LD1117#50	
Table 8.	Electrical characteristics of LD1117 (adjustable)	14
Table 9.	Electrical characteristics of LD1117#12C	
Table 10.	Electrical characteristics of LD1117#18C	
Table 11.	Electrical characteristics of LD1117#25C	
Table 12.	Electrical characteristics of LD1117#33C	
Table 13.	Electrical characteristics of LD1117#50C	
Table 14.	Electrical characteristics of LD1117C (adjustable)	20
Table 15.	TO-220 mechanical data (type STD-ST Dual Gauge)	25
Table 16.	TO-220 mechanical data (type STD-ST Single Gauge)	27
Table 17.	SOT-223 mechanical data	
Table 18.	SO-8 mechanical data	30
Table 19.	DPAK mechanical data	31
Table 20.	Footprint data	35
Table 21.	SOT-223 tape and reel mechanical data	37
Table 22.	SO-8 tape and reel mechanical data	39
Table 23.	DPAK tape and reel mechanical data	
Table 24.	Order codes	42
Table 25.	Document revision history	43

List of figures LD1117

List of figures

Figure 1.	Вюск diagram	5
Figure 2.	Pin connections (top view)	6
Figure 3.	Application circuit (for 1.2 V)	8
Figure 4.	Application circuit (for other fixed output voltages)	8
Figure 5.	Negative supply	
Figure 6.	Circuit for increasing output voltage	21
Figure 7.	Voltage regulator with reference	21
Figure 8.	Battery backed-up regulated supply	22
Figure 9.	Post-regulated dual supply	23
Figure 10.	Adjustable output voltage application	24
Figure 11.	Adjustable output voltage application with improved ripple rejection	24
Figure 12.	Drawing dimension TO-220 (type STD-ST Dual Gauge)	26
Figure 13.	Drawing dimension TO-220 (type STD-ST Single Gauge)	28
Figure 14.	Drawing dimension SOT-223	29
Figure 15.	Drawing dimension SO-8	30
Figure 16.	Drawing dimension DPAK (type STD-ST)	32
Figure 17.	Drawing dimension DPAK (type Fujitsu-subcon.)	
Figure 18.	Drawing dimension DPAK (type IDS-subcon.)	34
Figure 19.	DPAK footprint recommended data	35
Figure 20.	Drawing dimension tube for TO-220 Dual Gauge (mm.)	36
Figure 21.	Drawing dimension tube for TO-220 Single Gauge (mm.)	36
Figure 22.	Tape for SOT-223 (dimensions are in mm)	37
Figure 23.	Reel for STO-223 (dimensions are in mm)	38
Figure 24.	SO-8 tape and reel dimensions	39
Figure 25.	DPAK footprint	40
Figure 26.	Tape for DPAK	41
Figure 27	Pool for DPAK	11

Diagram LD1117

Diagram 1

VOLTAGE GENERATOR CURRENT GENERATOR THERMAL PROTECTION THERMAL COMPENSATION _∨out

Figure 1. Block diagram

SC08251

Pin configuration LD1117

2 Pin configuration

TO-220

Figure 2. Pin connections (top view)

Note: The TAB is connected to the V_{OUT}

DPAK

LD1117 Maximum ratings

3 Maximum ratings

Table 1. Absolute maximum ratings

Symbol	Parameter		Value	Unit
V _{IN} ⁽¹⁾	DC input voltage	15	V	
P _{TOT}	Power dissipation	Power dissipation		
T _{STG}	Storage temperature range	Storage temperature range		
т	Operating junction temperature range	for C version	-40 to +125	°C
T _{OP}		for standard version	0 to +125	°C

^{1.} Absolute maximum rating of V_{IN} = 18 V, when I_{OUT} is lower than 20 mA.

Table 2. Thermal data

Symbol	Parameter	SOT-223	SO-8	DPAK	TO-220	Unit
R _{thJC}	Thermal resistance junction-case	15	20	8	5	°C/W
R _{thJA}	Thermal resistance junction-ambient	110	55	100	50	°C/W

4 Schematic application

Figure 3. Application circuit (for 1.2 V)

Figure 4. Application circuit (for other fixed output voltages)

5 Electrical characteristics

Refer to the test circuits, T $_{\rm J}$ = 0 to 125 °C, C $_{\rm O}$ = 10 μ F, R = 120 Ω between GND and OUT pins, unless otherwise specified.

Table 3. Electrical characteristics of LD1117#12

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _O	Output voltage	$V_{in} = 3.2 \text{ V}, I_{O} = 10 \text{ mA}, T_{J} = 25 ^{\circ}\text{C}$	1.188	1.20	1.212	V
V _O	Output voltage	I _O = 10 to 800 mA V _{in} - V _O = 1.4 to 10 V	1.140	1.20	1.260	V
ΔV_{O}	Line regulation	$V_{in} - V_{O} = 1.5 \text{ to } 13.75 \text{ V}, I_{O} = 10 \text{ mA}$		0.035	0.2	%
ΔV_{O}	Load regulation	$V_{in} - V_{O} = 3 \text{ V}, I_{O} = 10 \text{ to } 800 \text{ mA}$		0.1	0.4	%
ΔV_{O}	Temperature stability			0.5		%
ΔV_{O}	Long term stability	1000 hrs, T _J = 125 °C		0.3		%
V _{in}	Operating input voltage				15	V
I _{adj}	Adjustment pin current	V _{in} ≤ 15 V		60	120	μΑ
ΔI_{adj}	Adjustment pin current change	V _{in} - V _O = 1.4 to 10 V I _O = 10 to 800 mA		1	5	μΑ
I _{O(min)}	Minimum load current	V _{in} = 15 V		2	5	mA
I _O	Output current	$V_{in} - V_{O} = 5 \text{ V}, T_{J} = 25 \text{ °C}$	800	950	1300	mA
eN	Output noise (%V _O)	B = 10 Hz to 10 kHz, T _J = 25 °C		0.003		%
SVR	Supply voltage rejection	$I_O = 40$ mA, f = 120 Hz, $T_J = 25$ °C V_{in} - $V_O = 3$ V, $V_{ripple} = 1$ V_{PP}	60	75		dB
		I _O = 100 mA		1	1.1	
V_d	Dropout voltage	I _O = 500 mA		1.05	1.15	V
		I _O = 800 mA		1.10	1.2	
	Thermal regulation	T _a = 25 °C, 30 ms Pulse		0.01	0.1	%/W

Electrical characteristics LD1117

Refer to the test circuits, T_J = 0 to 125 °C, C_O = 10 μ F, unless otherwise specified.

Table 4. Electrical characteristics of LD1117#18

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _O	Output voltage	$V_{in} = 3.8 \text{ V}, I_{O} = 10 \text{ mA}, T_{J} = 25 \text{ °C}$	1.78	1.8	1.82	V
V _O	Output voltage	$I_{O} = 0$ to 800 mA, $V_{in} = 3.3$ to 8 V	1.76		1.84	V
ΔV _O	Line regulation	V _{in} = 3.3 to 8 V, I _O = 0 mA		1	6	mV
ΔV _O	Load regulation	$V_{in} = 3.3 \text{ V}, I_{O} = 0 \text{ to } 800 \text{ mA}$		1	10	mV
ΔV _O	Temperature stability			0.5		%
ΔV _O	Long term stability	1000 hrs, T _J = 125 °C		0.3		%
V _{in}	Operating input voltage	I _O = 100 mA			15	V
I _d	Quiescent current	$V_{in} \le 8 \text{ V}$		5	10	mA
Io	Output current	V _{in} = 6.8 V, T _J = 25 °C	800	950	1300	mA
eN	Output noise voltage	B = 10 Hz to 10 kHz, T _J = 25 °C		100		μV
SVR	Supply voltage rejection	I_O = 40 mA, f = 120 Hz, T_J = 25 °C V_{in} = 5.5 V, V_{ripple} = 1 V_{PP}	60	75		dB
		I _O = 100 mA		1	1.1	
V_d	Dropout voltage	I _O = 500 mA		1.05	1.15	V
		I _O = 800 mA		1.10	1.2	
	Thermal regulation	T _a = 25 °C, 30 ms Pulse		0.01	0.1	%/W

Refer to the test circuits, T $_{\rm J}$ = 0 to 125 °C, C $_{\rm O}$ = 10 $\mu{\rm F},$ unless otherwise specified.

Table 5. Electrical characteristics of LD1117#25

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _O	Output voltage	$V_{in} = 4.5 \text{ V}, I_{O} = 10 \text{ mA}, T_{J} = 25 \text{ °C}$	2.475	2.5	2.525	V
Vo	Output voltage	$I_{O} = 0$ to 800 mA, $V_{in} = 3.9$ to 10 V	2.45		2.55	V
ΔV_{O}	Line regulation	$V_{in} = 3.9 \text{ to } 10 \text{ V}, I_{O} = 0 \text{ mA}$		1	6	mV
ΔV _O	Load regulation	V _{in} = 3.9 V, I _O = 0 to 800 mA		1	10	mV
ΔV _O	Temperature stability			0.5		%
ΔV_{O}	Long term stability	1000 hrs, T _J = 125 °C		0.3		%
V _{in}	Operating input voltage	I _O = 100 mA			15	V
I _d	Quiescent current	V _{in} ≤ 10 V		5	10	mA
I _O	Output current	V _{in} = 7.5 V T _J = 25 °C	800	950	1300	mA
eN	Output noise voltage	B = 10 Hz to 10 kHz, T _J = 25 °C		100		μV
SVR	Supply voltage rejection	I_O = 40 mA, f = 120 Hz, T_J = 25 °C V_{in} = 5.5 V, V_{ripple} = 1 V_{PP}	60	75		dB
		I _O = 100 mA		1	1.1	
V_d	Dropout voltage	I _O = 500 mA		1.05	1.15	V
		I _O = 800 mA		1.10	1.2	
	Thermal regulation	T _a = 25 °C, 30 ms Pulse		0.01	0.1	%/W

Electrical characteristics LD1117

Refer to the test circuits, T_J = 0 to 125 °C, C_O = 10 μ F, unless otherwise specified.

Table 6. Electrical characteristics of LD1117#33

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _O	Output voltage	$V_{in} = 5.3 \text{ V}, I_{O} = 10 \text{ mA}, T_{J} = 25 \text{ °C}$	3.267	3.3	3.333	V
V _O	Output voltage	$I_{O} = 0$ to 800 mA, $V_{in} = 4.75$ to 10 V	3.235		3.365	V
ΔV_{O}	Line regulation	$V_{in} = 4.75 \text{ to } 15 \text{ V}, I_{O} = 0 \text{ mA}$		1	6	mV
ΔV_{O}	Load regulation	$V_{in} = 4.75 \text{ V}, I_{O} = 0 \text{ to } 800 \text{ mA}$		1	10	mV
ΔV_{O}	Temperature stability			0.5		%
ΔV_{O}	Long term stability	1000 hrs, T _J = 125 °C		0.3		%
V _{in}	Operating input voltage	I _O = 100 mA			15	V
I _d	Quiescent current	V _{in} ≤ 15 V		5	10	mA
I _O	Output current	V _{in} = 8.3 V, T _J = 25 °C	800	950	1300	mA
eN	Output noise voltage	B = 10 Hz to 10 kHz, T _J = 25 °C		100		μV
SVR	Supply voltage rejection	I_O = 40 mA, f = 120 Hz, T_J = 25 °C V_{in} = 6.3 V, V_{ripple} = 1 V_{PP}	60	75		dB
		I _O = 100 mA		1	1.1	
V_d	Dropout voltage	I _O = 500 mA		1.05	1.15	V
		I _O = 800 mA		1.10	1.2	
	Thermal regulation	T _a = 25 °C, 30 ms Pulse		0.01	0.1	%/W

Text

Refer to the test circuits, T_J = 0 to 125 °C, C_O = 10 μ F, unless otherwise specified.

Table 7. Electrical characteristics of LD1117#50

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _O	Output voltage	$V_{in} = 7 \text{ V}, I_{O} = 10 \text{ mA}, T_{J} = 25 ^{\circ}\text{C}$	4.95	5	5.05	V
Vo	Output voltage	$I_{O} = 0$ to 800 mA, $V_{in} = 6.5$ to 15 V	4.9		5.1	V
ΔV _O	Line regulation	$V_{in} = 6.5 \text{ to } 15 \text{ V}, I_{O} = 0 \text{ mA}$		1	10	mV
ΔV _O	Load regulation	$V_{in} = 6.5 \text{ V}, I_{O} = 0 \text{ to } 800 \text{ mA}$		1	15	mV
ΔV _O	Temperature stability			0.5		%
ΔV _O	Long term stability	1000 hrs, T _J = 125 °C		0.3		%
V _{in}	Operating input voltage	I _O = 100 mA			15	V
I _d	Quiescent current	V _{in} ≤ 15 V		5	10	mA
Io	Output current	V _{in} = 10 V, T _J = 25 °C	800	950	1300	mA
eN	Output noise voltage	B = 10 Hz to 10 kHz, T _J = 25 °C		100		μV
SVR	Supply voltage rejection	I_O = 40 mA, f = 120 Hz, T_J = 25 °C V_{in} = 8 V, V_{ripple} = 1 V_{PP}	60	75		dB
		I _O = 100 mA		1	1.1	
V_d	Dropout voltage	I _O = 500 mA		1.05	1.15	V
V _O ΔV _O ΔV _O ΔV _O ΔV _O ΔV _O V _{in} I _d I _O eN SVR		I _O = 800 mA		1.10	1.2	
	Thermal regulation	T _a = 25 °C, 30 ms Pulse		0.01	0.1	%/W

Electrical characteristics LD1117

Refer to the test circuits, T_J = 0 to 125 °C, C_O = 10 μ F, unless otherwise specified.

Table 8. Electrical characteristics of LD1117 (adjustable)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _{ref}	Reference voltage	V_{in} - V_O = 2 V, I_O = 10 mA, T_J = 25 °C	1.238	1.25	1.262	V
V _{ref}	Reference voltage	I_{O} = 10 to 800 mA, V_{in} - V_{O} = 1.4 to 10 V	1.225		1.275	V
ΔV_{O}	Line regulation	$V_{in} - V_{O} = 1.5 \text{ to } 13.75 \text{ V}, I_{O} = 10 \text{ mA}$		0.035	0.2	%
ΔV _O	Load regulation	$V_{in} - V_{O} = 3 \text{ V}, I_{O} = 10 \text{ to } 800 \text{ mA}$		0.1	0.4	%
ΔV_{O}	Temperature stability			0.5		%
ΔV _O	Long term stability	1000 hrs, T _J = 125 °C		0.3		%
V _{in}	Operating input voltage				15	V
I _{adj}	Adjustment pin current	V _{in} ≤ 15 V		60	120	μΑ
ΔI_{adj}	Adjustment pin current change	V_{in} - V_{O} = 1.4 to 10 V, I_{O} = 10 to 800 mA		1	5	μΑ
I _{O(min)}	Minimum load current	V _{in} = 15 V		2	5	mA
Io	Output current	V_{in} - V_O = 5 V, T_J = 25 °C	800	950	1300	mA
eN	Output noise (%V _O)	B = 10 Hz to 10 kHz, T_J = 25 °C		0.003		%
SVR	Supply voltage rejection	I_O = 40 mA, f = 120 Hz, T_J = 25 °C V_{in} - V_O = 3 V, V_{ripple} = 1 V_{PP}	60	75		dB
		I _O = 100 mA		1	1.1	
V_d	Dropout voltage	I _O = 500 mA		1.05	1.15	V
$\begin{array}{c} \Delta V_{O} \\ \Delta V_{O} \\ \Delta V_{O} \\ \end{array}$ $\begin{array}{c} \Delta V_{O} \\ V_{in} \\ I_{adj} \\ \Delta I_{adj} \\ I_{O(min)} \\ I_{O} \\ \end{array}$ $\begin{array}{c} I_{O} \\ \end{array}$ $\begin{array}{c} I_{O} \\ \end{array}$ $\begin{array}{c} SVR \\ \end{array}$		I _O = 800 mA		1.10	1.2	
	Thermal regulation	T _a = 25 °C, 30 ms Pulse		0.01	0.1	%/W

Refer to the test circuits, T_J = -40 to 125 °C, C_O = 10 μ F, R = 120 Ω between GND and OUT pins, unless otherwise specified.

Table 9. Electrical characteristics of LD1117#12C

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
Vo	Output voltage	$V_{in} - V_O = 2 \text{ V}, I_O = 10 \text{ mA}, T_J = 25 \text{ °C}$	1.176	1.20	1.224	V
Vo	Output voltage	I_{O} = 10 to 800 mA, V_{in} - V_{O} = 1.4 to 10 V	1.120	1.20	1.280	V
ΔV_{O}	Line regulation	V_{in} - V_{O} = 1.5 to 13.75 V, I_{O} = 10 mA			1	%
ΔV_{O}	Load regulation	$V_{in} - V_{O} = 3 \text{ V}, I_{O} = 10 \text{ to } 800 \text{ mA}$			1	%
ΔV_{O}	Temperature stability			0.5		%
ΔV_{O}	Long term stability	1000 hrs, T _J = 125 °C		0.3		%
V _{in}	Operating input voltage				15	V
I _{adj}	Adjustment pin current	V _{in} ≤ 15 V		60	120	μΑ
ΔI_{adj}	Adjustment pin current change	V _{in} - V _O = 1.4 to 10 V I _O = 10 to 800 mA		1	5	μΑ
I _{O(min)}	Minimum load current	V _{in} = 15 V		2	5	mA
I _O	Output current	$V_{in} - V_{O} = 5 \text{ V}, T_{J} = 25 \text{ °C}$	800	950	1300	mA
eN	Output noise (%V _O)	B = 10 Hz to 10 kHz, T _J = 25 °C		0.003		%
SVR	Supply voltage rejection	$I_{O} = 40 \text{ mA}, f = 120 \text{ Hz}, T_{J} = 25 \text{ °C}$ $V_{in} - V_{O} = 3 \text{ V}, V_{ripple} = 1 \text{ V}_{PP}$	60	75		dB
		I _O = 100 mA, T _J = 0 to 125 °C		1	1.1	
V_d	Dropout voltage	I _O = 500 mA, T _J = 0 to 125 °C		1.05	1.2	V
		I _O = 800 mA, T _J = 0 to 125 °C		1.10	1.3	
	Thermal regulation	T _a = 25 °C, 30 ms Pulse		0.01	0.1	%/W

Electrical characteristics LD1117

Refer to the test circuits, T $_{\rm J}$ = -40 to 125 °C, C $_{\rm O}$ = 10 $\mu{\rm F},$ unless otherwise specified.

Table 10. Electrical characteristics of LD1117#18C

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _O	Output voltage	$V_{in} = 3.8 \text{ V}, I_{O} = 10 \text{ mA}, T_{J} = 25 \text{ °C}$	1.76	1.8	1.84	V
V _O	Output voltage	$I_{O} = 0$ to 800 mA, $V_{in} = 3.9$ to 10 V	1.73		1.87	٧
ΔV_{O}	Line regulation	V _{in} = 3.3 to 8 V, I _O = 0 mA		1	30	mV
ΔV_{O}	Load regulation	$V_{in} = 3.3 \text{ V}, I_{O} = 0 \text{ to } 800 \text{ mA}$		1	30	mV
ΔV_{O}	Temperature stability			0.5		%
ΔV _O	Long term stability	1000 hrs, T _J = 125 °C		0.3		%
V _{in}	Operating input voltage	I _O = 100 mA			15	V
I _d	Quiescent current	$V_{in} \le 8 V$		5	10	mA
Io	Output current	V _{in} = 6.8 V T _J = 25 °C	800	950	1300	mA
eN	Output noise voltage	B = 10 Hz to 10 kHz, T _J = 25 °C		100		μV
SVR	Supply voltage rejection	I_O = 40 mA, f = 120 Hz, T_J = 25 °C V_{in} = 5.5 V, V_{ripple} = 1 V_{PP}	60	75		dB
		I_{O} = 100 mA, T_{J} = 0 to 125 °C		1	1.1	
V_d	Dropout voltage	I _O = 500 mA, T _J = 0 to 125 °C		1.05	1.15	٧
		I _O = 800 mA, T _J = 0 to 125 °C		1.10	1.2	
		I _O = 100 mA			1.1	
V_d	Dropout voltage	I _O = 500 mA			1.2	٧
		I _O = 800 mA			1.3	
	Thermal regulation	T _a = 25 °C, 30 ms Pulse		0.01	0.1	%/W

Refer to the test circuits, T $_{\rm J}$ = -40 to 125 °C, C $_{\rm O}$ = 10 $\mu{\rm F},$ unless otherwise specified.

Table 11. Electrical characteristics of LD1117#25C

Symbol	Parameter	Test condition Min.		Тур.	Max.	Unit
V _O	Output voltage	$V_{in} = 4.5 \text{ V}, I_{O} = 10 \text{ mA}, T_{J} = 25 ^{\circ}\text{C}$	2.45	2.5	2.55	V
Vo	Output voltage	$I_{O} = 0$ to 800 mA, $V_{in} = 3.9$ to 10 V	2.4		2.6	V
ΔV_{O}	Line regulation	$V_{in} = 3.9 \text{ to } 10 \text{ V}, I_{O} = 0 \text{ mA}$		1	30	mV
ΔV_{O}	Load regulation	$V_{in} = 3.9 \text{ V}, I_{O} = 0 \text{ to } 800 \text{ mA}$		1	30	mV
ΔV _O	Temperature stability			0.5		%
ΔV_{O}	Long term stability	1000 hrs, T _J = 125 °C		0.3		%
V _{in}	Operating input voltage	I _O = 100 mA			15	V
I _d	Quiescent current	V _{in} ≤ 10 V		5	10	mA
Io	Output current	V _{in} = 7.5 V T _J = 25 °C	800	950	1300	mA
eN	Output noise voltage	B = 10 Hz to 10 kHz, T _J = 25 °C		100		μV
SVR	Supply voltage rejection	I_O = 40 mA, f = 120 Hz, T_J = 25 °C V_{in} = 5.5 V, V_{ripple} = 1 V_{PP}	60	75		dB
		I _O = 100 mA, T _J = 0 to 125 °C		1	1.1	
V_d	Dropout voltage	I _O = 500 mA, T _J = 0 to 125 °C		1.05	1.15	V
		I _O = 800 mA, T _J = 0 to 125 °C		1.10	1.2	
		I _O = 100 mA			1.1	
V _d	Dropout voltage	I _O = 500 mA			1.2	V
		I _O = 800 mA			1.3	
	Thermal regulation	T _a = 25 °C, 30 ms Pulse		0.01	0.1	%/W

Electrical characteristics LD1117

Refer to the test circuits, T $_{\rm J}$ = -40 to 125 °C, C $_{\rm O}$ = 10 $\mu{\rm F},$ unless otherwise specified.

Table 12. Electrical characteristics of LD1117#33C

Symbol	Parameter	Test condition	Min.	Typ.	Max.	Unit
V _O	Output voltage	$V_{in} = 5.3 \text{ V}, I_{O} = 10 \text{ mA}, T_{J} = 25 ^{\circ}\text{C}$	3.24	3.3	3.36	V
V _O	Output voltage	I_{O} = 0 to 800 mA, V_{in} = 4.75 to 10 V	3.16		3.44	V
ΔV_{O}	Line regulation	$V_{in} = 4.75 \text{ to } 15 \text{ V}, I_{O} = 0 \text{ mA}$		1	30	mV
ΔV_{O}	Load regulation	$V_{in} = 4.75 \text{ V}, I_{O} = 0 \text{ to } 800 \text{ mA}$		1	30	mV
ΔV_{O}	Temperature stability			0.5		<mark>%</mark>
ΔV_{O}	Long term stability	1000 hrs, T _J = 125 °C		0.3		<mark>%</mark>
V _{in}	Operating input voltage	I _O = 100 mA			15	V
I _d	Quiescent current	$V_{in} \le 15 \text{ V}$		5	10	mA
I _O	Output current	$V_{in} = 8.3 \text{ V}, T_J = 25 ^{\circ}\text{C}$	800	950	1300	mA
eN	Output noise voltage	B = 10 Hz to 10 kHz, T _J = 25 °C		100		μV
SVR	Supply voltage rejection	$I_O = 40$ mA, f = 120 Hz, $T_J = 25$ °C $V_{in} = 6.3$ V, $V_{ripple} = 1$ V_{PP}	60	<mark>75</mark>		dB
		I _O = 100 mA, T _J = 0 to 125 °C		1	1.1	
V_d	Dropout voltage	$I_O = 500$ mA, $T_J = 0$ to 125 °C		1.05	1.15	V
		$I_O = 800$ mA, $T_J = 0$ to 125 °C		1.10	1.2	
		I _O = 100 mA			1.1	
V_d	Dropout voltage	I _O = 500 mA			1.2	V
		I _O = 800 mA			1.3	
	Thermal regulation	T _a = 25 °C, 30 ms Pulse		0.01	0.1	<mark>%/W</mark>

This is the one im using 23/11/2017

Refer to the test circuits, T $_{\rm J}$ = -40 to 125 °C, C $_{\rm O}$ = 10 $\mu{\rm F},$ unless otherwise specified.

Table 13. Electrical characteristics of LD1117#50C

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _O	Output voltage	$V_{in} = 7 \text{ V}, I_{O} = 10 \text{ mA}, T_{J} = 25 \text{ °C}$	4.9	5	5.1	V
Vo	Output voltage	$I_{O} = 0$ to 800 mA, $V_{in} = 6.5$ to 15 V	4.8		5.2	V
ΔV_{O}	Line regulation	V _{in} = 6.5 to 15 V, I _O = 0 mA		1	50	mV
ΔV_{O}	Load regulation	$V_{in} = 6.5 \text{ V}, I_{O} = 0 \text{ to } 800 \text{ mA}$		1	50	mV
ΔV _O	Temperature stability			0.5		%
ΔV_{O}	Long term stability	1000 hrs, T _J = 125 °C		0.3		%
V _{in}	Operating input voltage	I _O = 100 mA			15	V
I _d	Quiescent current	V _{in} ≤ 15 V		5	10	mA
Io	Output current	V _{in} = 10 V, T _J = 25 °C	800	950	1300	mA
eN	Output noise voltage	B = 10 Hz to 10 kHz, T _J = 25 °C		100		μV
SVR	Supply voltage rejection	I_O = 40 mA, f = 120 Hz, T_J = 25 °C V_{in} = 8 V, V_{ripple} = 1 V_{PP}	60	75		dB
		I _O = 100 mA, T _J = 0 to 125 °C		1	1.1	
V _d	Dropout voltage	I _O = 500 mA, T _J = 0 to 125 °C		1.05	1.15	V
		I _O = 800 mA, T _J = 0 to 125 °C		1.10	1.2	
		I _O = 100 mA			1.1	
V _d	Dropout voltage	I _O = 500 mA			1.2	V
		I _O = 800 mA			1.3	
	Thermal regulation	T _a = 25 °C, 30 ms Pulse		0.01	0.1	%/W

Electrical characteristics LD1117

Refer to the test circuits, T $_{\rm J}$ = -40 to 125 °C, C $_{\rm O}$ = 10 $\mu{\rm F},$ unless otherwise specified.

Table 14. Electrical characteristics of LD1117C (adjustable)

Symbol	Parameter	Test condition		Тур.	Max.	Unit
V _{ref}	Reference voltage	V_{in} - V_O = 2 V, I_O = 10 mA, T_J = 25 °C	1.225	1.25	1.275	V
V _{ref}	Reference voltage	$I_O = 10 \text{ to } 800 \text{ mA}, V_{in} - V_O = 1.4 \text{ to } 10 \text{ V}$	1.2		1.3	V
ΔV_{O}	Line regulation	$V_{in} - V_{O} = 1.5 \text{ to } 13.75 \text{ V}, I_{O} = 10 \text{ mA}$			1	%
ΔV _O	Load regulation	$V_{in} - V_{O} = 3 \text{ V}, I_{O} = 10 \text{ to } 800 \text{ mA}$			1	%
ΔV_{O}	Temperature stability			0.5		%
ΔV_{O}	Long term stability	1000 hrs, T _J = 125 °C		0.3		%
V _{in}	Operating input voltage				15	V
I _{adj}	Adjustment pin current	V _{in} ≤ 15 V		60	120	μΑ
ΔI_{adj}	Adjustment pin current change	V_{in} - V_{O} = 1.4 to 10 V, I_{O} = 10 to 800 mA		1	10	μΑ
I _{O(min)}	Minimum load current	V _{in} = 15 V		2	5	mA
Io	Output current	$V_{in} - V_{O} = 5 \text{ V}, T_{J} = 25 \text{ °C}$	800	950	1300	mA
eN	Output noise (%V _O)	B = 10 Hz to 10 kHz, T_J = 25 °C		0.003		%
SVR	Supply voltage rejection	I_O = 40 mA, f = 120 Hz, T_J = 25 °C V_{in} - V_O = 3 V, V_{ripple} = 1 V_{PP}	60	75		dB
		I _O = 100 mA, T _J = 0 to 125 °C		1	1.1	
V_d	Dropout voltage	I _O = 500 mA, T _J = 0 to 125 °C		1.05	1.15	V
		I _O = 800 mA, T _J = 0 to 125 °C		1.10	1.2	
		I _O = 100 mA			1.1	
V _d	Dropout voltage	I _O = 500 mA			1.2	V
		I _O = 800 mA			1.3	
	Thermal regulation	T _a = 25 °C, 30 ms Pulse		0.01	0.1	%/W

LD1117 Typical application

6 Typical application

Figure 5. Negative supply

Figure 6. Circuit for increasing output voltage

Figure 7. Voltage regulator with reference

Typical application LD1117

Figure 8. Battery backed-up regulated supply

LD1117 Typical application

Figure 9. Post-regulated dual supply

7 LD1117 adjustable: application note

The LD1117 adjustable has a thermal stabilized 1.25 \pm 0.012 V reference voltage between the OUT and ADJ pins. I_{ADJ} is 60 μ A typ. (120 μ A max.) and ΔI_{ADJ} is 1 μ A typ. (5 μ A max.).

 R_1 is normally fixed to 120 Ω . From *Figure 9* we obtain:

$$V_{OUT} = V_{REF} + R_2 (I_{ADJ} + I_{R1}) = V_{REF} + R_2 (I_{ADJ} + V_{REF} / R_1) = V_{REF} (1 + R_2 / R_1) + R_2 \times I_{ADJ}$$

In normal application R_2 value is in the range of few $k\Omega$, so the R_2 x I_{ADJ} product could not be considered in the V_{OUT} calculation; then the above expression becomes:

$$V_{OUT} = V_{RFF} (1 + R_2 / R_1).$$

In order to have the better load regulation it is important to realize a good Kelvin connection of R_1 and R_2 resistors. In particular R_1 connection must be realized very close to OUT and ADJ pin, while R_2 ground connection must be placed as near as possible to the negative Load pin. Ripple rejection can be improved by introducing a 10 μ F electrolytic capacitor placed in parallel to the R_2 resistor (see *Figure 10*).

Figure 10. Adjustable output voltage application

Figure 11. Adjustable output voltage application with improved ripple rejection

8 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

Table 15. TO-220 mechanical data (type STD-ST Dual Gauge)

Dim		mm					
Dim.	Min.	Тур.	Max.				
Α	4.40		4.60				
b	0.61		0.88				
b1	1.14		1.70				
С	0.48		0.70				
D	15.25		15.75				
D1		1.27					
E	10		10.40				
е	2.40		2.70				
e1	4.95		5.15				
F	1.23		1.32				
H1	6.20		6.60				
J1	2.40		2.72				
L	13		14				
L1	3.50		3.93				
L20		16.40					
L30		28.90					
ØP	3.75		3.85				
Q	2.65		2.95				

Figure 12. Drawing dimension TO-220 (type STD-ST Dual Gauge)

47/

Table 16. TO-220 mechanical data (type STD-ST Single Gauge)

	mm						
Dim.	Min.	Тур.	Max.				
А	4.40		4.60				
b	0.61		0.88				
b1	1.14		1.70				
С	0.48		0.70				
D	15.25		15.75				
E	10		10.40				
е	2.40		2.70				
e1	4.95		5.15				
F	0.51		0.60				
H1	6.20		6.60				
J1	2.40		2.72				
L	13		14				
L1	3.50		3.93				
L20		16.40					
L30		28.90					
ØP	3.75		3.85				
Q	2.65		2.95				

Figure 13. Drawing dimension TO-220 (type STD-ST Single Gauge)

Table 17. SOT-223 mechanical data

Dim.	mm						
Dilli.	Min.	Тур.	Max.				
А			1.80				
A1	0.02		0.1				
В	0.60	0.70	0.85				
B1	2.90	3.00	3.15				
С	0.24	0.26	0.35				
D	6.30	6.50	6.70				
е		2.30					
e1		4.60					
E	3.30	3.50	3.70				
Н	6.70	7.00	7.30				
V			10°				

Figure 14. Drawing dimension SOT-223

Table 18. SO-8 mechanical data

Dim.		mm						
Dilli.	Min.	Тур.	Max.					
Α			1.75					
A1	0.10		0.25					
A2	1.25							
b	0.28		0.48					
С	0.17		0.23					
D	4.80	4.90	5.00					
Е	5.80	6.00	6.20					
E1	3.80	3.90	4.00					
е		1.27						
h	0.25		0.50					
L	0.40		1.27					
L1		1.04						
k	0°		8°					
CCC			0.10					

Figure 15. Drawing dimension SO-8

Table 19. DPAK mechanical data

	Ту	pe STD-S	ST	Type I	Fujitsu-su	bcon.	Тур	con	
Dim.		mm.		mm.		mm.			
	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	2.20		2.40	2.25	2.30	2.35	2.19		2.38
A1	0.90		1.10	0.96		1.06	0.89		1.14
A2	0.03		0.23	0		0.10	0.03		0.23
b	0.64		0.90	0.76		0.86	0.64		0.88
b4	5.20		5.40	5.28		5.38	5.21		5.46
С	0.45		0.60	0.46		0.56	0.46		0.58
c2	0.48		0.60	0.46		0.56	0.46		0.58
D	6.00		6.20	6.05		6.15	5.97		6.22
D1		5.10		5.27		5.47		5.20	
Е	6.40		6.60	6.55	6.60	6.65	6.35		6.73
E1		4.70			4.77			4.70	
е		2.28		2.23	2.28	2.33		2.28	
e1	4.40		4.60				4.51		4.61
Н	9.35		10.10	9.90		10.30	9.40		10.42
L	1.00			1.40		1.60	0.90		
L1		2.80					2.50		2.65
L2		0.80		1.03		1.13	0.89		1.27
L4	0.60		1.00	0.70		0.90	0.64		1.02
R		0.20			0.40			0.20	
V2	0°		8°	0°		8°	0°		8°

Note: The DPAK package coming from the two subcontractors (Fujitsu and IDS) are fully compatible with the ST's package suggested footprint.

Figure 16. Drawing dimension DPAK (type STD-ST)

Note: 1 Maximum resin gate protrusion: 0.5 mm.

2 Maximum resin protrusion: 0.25 mm.

Figure 17. Drawing dimension DPAK (type Fujitsu-subcon.)

47/

Figure 18. Drawing dimension DPAK (type IDS-subcon.)

47/

Table 20. Footprint data

Values							
	mm.	inch.					
A	6.70	0.264					
В	6.70	0.64					
С	1.8	0.070					
D	3.0	0.118					
E	1.60	0.063					
F	2.30	0.091					
G	2.30	0.091					

Figure 19. DPAK footprint recommended data

9 Packaging mechanical data

Figure 20. Drawing dimension tube for TO-220 Dual Gauge (mm.)

Figure 21. Drawing dimension tube for TO-220 Single Gauge (mm.)

36/44 DocID2572 Rev 33

Table 21. SOT-223 tape and reel mechanical data

		Таре		Reel		
Dim.	mm		Dim.	m	nm	
Dilli.	Min.	Тур.	Max.	J Dilli.	Min.	Max.
A0	6.75	6.85	6.95	А		180
В0	7.30	7.40	7.50	N	60	
K0	1.80	1.90	2.00	W1		12.4
F	5.40	5.50	5.60	W2		18.4
Е	1.65	1.75	1.85	W3	11.9	15.4
W	11.7	12	12.3			
P2	1.90	2	2.10	Base qua	antity pcs	1000
P0	3.90	4	4.10	Bulk qua	intity pcs	1000
P1	7.90	8	8.10			
Т	0.25	0.30	0.35			
Dφ	1.50	1.55	1.60			
D1ф	1.50	1.60	1.70			

Figure 22. Tape for SOT-223 (dimensions are in mm)

47/

Figure 23. Reel for SOT-223 (dimensions are in mm)

Table 22. SO-8 tape and reel mechanical data

Dim.	mm				
	Min.	Тур.	Max.		
Α			330		
С	12.8		13.2		
D	20.2				
N	60				
Т			22.4		
Ao	8.1		8.5		
Во	5.5		5.9		
Ko	2.1		2.3		
Po	3.9		4.1		
Р	7.9		8.1		

Figure 24. SO-8 tape and reel dimensions

Table 23. DPAK tape and reel mechanical data

Таре				Reel		
Dim.	n	nm	Dim.	mm		
	Min.	Max.		Min.	Max.	
A0	6.8	7	Α		330	
В0	10.4	10.6	В	1.5		
B1		12.1	С	12.8	13.2	
D	1.5	1.6	D	20.2		
D1	1.5		G	16.4	18.4	
Е	1.65	1.85	N	50		
F	7.4	7.6	Т		22.4	
K0	2.55	2.75				
P0	3.9	4.1		Base qty.	2500	
P1	7.9	8.1		Bulk qty.	2500	
P2	1.9	2.1				
R	40					
Т	0.25	0.35				
W	15.7	16.3				

Figure 25. DPAK footprint^(a)

a. All dimensions are in millimeters

Top cover tolerance on tape +/- 0.2 mm

Top cover tolerance on tape +/- 0.2 mm

For machine ref. only including draft and radii concentric around B0

User direction of feed

AM08852v1

AM08852v1

Figure 26. Tape for DPAK

Order codes LD1117

10 Order codes

Table 24. Order codes

Packages					
SOT-223	SO-8	DPAK (Tape and reel)	TO-220	TO-220 (Dual Gauge)	Output voltages
LD1117S12TR		LD1117DT12TR			1.2 V
LD1117S12CTR		LD1117DT12CTR			1.2 V
LD1117S18TR		LD1117DT18TR	LD1117V18		1.8 V
LD1117S18CTR		LD1117DT18CTR			1.8 V
LD1117S25TR		LD1117DT25TR			2.5 V
LD1117S25CTR		LD1117DT25CTR			2.5 V
LD1117S33TR	LD1117D33TR	LD1117DT33TR	LD1117V33	LD1117V33-DG	3.3 V
				LD1117V33C-DG	3.3 V
LD1117S33CTR	LD1117D33CTR	LD1117DT33CTR	LD1117V33C		3.3 V
LD1117S50TR		LD1117DT50TR	LD1117V50	LD1117V50-DG	5 V
					5 V
LD1117S50CTR		LD1117DT50CTR	LD1117V50C		5 V
LD1117STR		LD1117DTTR	LD1117V	LD1117V-DG	ADJ from 1.25 to 15 V
					ADJ from 1.25 to 15 V
LD1117SC-R		LD1117DTC-R			ADJ from 1.25 to 15 V

LD1117 Revision history

11 Revision history

Table 25. Document revision history

Date	Revision	Changes	
22-Sep-2004	15	Add new part number #12C; typing error: note on table 2.	
25-Oct-2004	16	Add V _{ref} reference voltage on table 12.	
18-Jul-2005	17	The DPAK mechanical data updated.	
25-Nov-2005	18	The TO220FM package removed.	
14-Dec-2005	19	The T _{op} on table 2 updated.	
06-Dec-2006	20	DPAK mechanical data updated and added footprint data.	
05-Apr-2007	21	Order codes updated.	
30-Nov-2007	22	Added Table 1.	
16-Apr-2008	23	Modified: Table 24 on page 42.	
08-Jul-2008	24	Added note 1. on page 7.	
30-Mar-2009	25	Modified: V _{IN} max value <i>Table 4 on page 10</i> and <i>Figure 9 on page 23</i> .	
29-Jul-2009	26	Modified: Table 24 on page 42.	
03-Feb-2010	27	Modified Table 9 on page 15.	
22-Mar-2010	28	Added: Table 16 on page 22, Figure 13 on page 23, Figure 14 on page 24, Figure 17 and Figure 18 on page 33.	
15-Nov-2010	29	Modified: R _{thJC} value for TO-220 <i>Table 2 on page 7</i> .	
30-Nov-2011	30	Added: order code LD1117V33-DG Table 24 on page 42.	
13-Feb-2012	31	Added: order codes LD1117V50-DG and LD1117V-DG Table 24 on page 42.	
19-Oct-2012	32	Added: R _{thJA} value for DPAK, SOT-223 and SO-8 <i>Table 2 on page 7</i> .	
20-Nov-2013	33	Part number LD1117xx changed to LD1117. Updated the Description in cover page, Section 8: Package mechanical data and Table 24: Order codes. Cancelled Table 1: Device summary. Added Section 9: Packaging mechanical data. Minor text changes.	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics:

LD1117V33C LD1117SC-R LD1117V LD1117STR LD1117V50C LD1117S25TR LD1117S18TR

LD1117DT50CTR LD1117DTTR LD1117S50CTR LD1117S25CTR LD1117DT33CTR LD1117S33TR

LD1117S12TR LD1117S50TR LD1117D33CTR LD1117V50 LD1117V18 LD1117V33 LD1117DT12TR

LD1117DT50TR LD1117DT18CTR LD1117DT18TR LD1117DT25TR LD1117DT33TR LD1117S33CTR

LD1117DT25CTR LD1117DTC-R LD1117D33TR LD1117S18CTR LD1117DT12CTR LD1117V50-DG LD1117V33
DG LD1117S12CTR STEVAL-MKI111V1 LD1117V-DG LD1117D33C LD1117DT25 LD1117DT25C LD1117DT

LD1117DT50C LD1117DT33C LD1117V33C-DG LD1117DT50 LD1117DT18