

Algoritmos e Programação II Variáveis compostas homogêneas: vetores e matrizes

Profa. Dra. Eloize Seno

Variáveis compostas homogêneas

- Variável composta é formada por um conjunto de variáveis: Vetor e Matriz
 - Todas com o mesmo nome;
 - Todas do mesmo tipo de dados;
 - Alocadas em <u>sequência</u> na memória;
 - Por ter o mesmo nome, o que faz a distinção são os <u>índices</u>, que permitem acesso ao conteúdo de sua estrutura.

Vetor

Declaração:

tipo identificador[tamanho];

onde:

- tipo: é o tipo básico dos dados que serão armazenados no vetor (por ex., int, char, float, etc.);
- identificador: nome da variável do tipo vetor;
- tamanho: é a quantidade de variáveis que compõem o vetor.

Vetor (cont.)

• Exemplo: int vet[10];

Acessando os elemento de um vetor

- O acesso aos elementos de um vetor é feito por meio de índices;
 - Em C, os índices iniciam sempre em **zero** e vão até o tamanho do vetor menos 1 posição.
- Atribuição: atribuindo o valor 45 a 4ª posição de vet:

$$vet[3] = 45;$$

Índices de acesso

Acessando os elemento de um vetor (cont.)

• Leitura:

```
scanf("%d", &vet[3]);
```

Impressão:

```
printf("Valor armazenado na terceira
posição de vet = %d ", vet[3]);
```


Inicializando vetores

Inicialização:

```
int z[10];

float f[4] = \{4.5, 2.9, -9.0, 5.6\};

int a[100] = \{0\};

int b[] = \{1,2,3,4\};
```


Preenchendo um vetor

- Para preencher um vetor inteiro é necessário usar uma estrutura de repetição.
- Ex.:

```
for (i=0; i<10; i++)
{ printf("Digite o valor da posição
%d",i);
  scanf("%d", &vet[i]);
}</pre>
```


Imprimindo um vetor

 Para imprimir um vetor inteiro é necessário usar uma estrutura de repetição.

• Ex.:

```
for (i=0; i<10; i++)
    printf("Elemento da linha %d coluna
%d", vet[i]);</pre>
```


Vetor de caracteres

- Uma string em C é um vetor de caracteres.
- Exemplo:
 - char nome[40]; /*armazena um único nome.*/
- Inicialização:

```
char s[] = "abc";
char s[] = {'a', 'b', 'c', '\0'};
char s[] = "Linguagem Programação I";
```


Vetor de caracteres (cont.)

• Leitura:

- gets(nome); /* lê toda a string até
 que a tecla Enter seja digitada
 (inclui espaços em branco). */

Impressão:

- puts(nome); /* imprime toda a string
até encontrar o o caracter null
 ('\0')*/

Obs: para os comandos **gets** e **puts**, usar a biblioteca **stdio.h**

Matriz

- Variável composta <u>multidimensional</u> formada por um conjunto de variáveis;
 - Vetor <u>multidimensional</u> (até 12 dimensões segundo o padrão ANSI)
- Armazena um conjunto de variáveis de um mesmo tipo e identificadas pelo mesmo nome;
- Alocação estática e sequencial na memória;
 - É necessário definir o <u>número de dimensões</u> e o tamanho de cada dimensão a priori;

- Declaração
 - tipo identificador[dimensão1] [dimensão2];
- Onde:
 - tipo: é o tipo básico dos dados que serão armazenados na matriz;
 - identificador: nome da variável do tipo matriz;
 - [dimensão1]: número de linhas da matriz;
 - [dimensão2]: número de colunas da matriz;

 Acesso aos valores da matriz: são necessários dois índices (um para linha e um para coluna);

 Assim como ocorre nos vetores, os índices de uma matriz iniciam sempre em zero;

- Exemplo:
 - float mat[2][10];

Acesso ao elemento da 1ª linha e 5ª coluna: mat[0][4]

Inicializando matrizes

• Ex:

```
int mat1[2][3] = \{1,2,3,4,5,6\};
int mat2[2][3] = \{\{1,2,3\},\{4,5,6\}\};
```

Acesso aos elementos de uma Matriz

• Atribuição: atribuindo o valor 4.3 a 1ª linha e 5ª coluna da matriz:

$$- mat[0][4] = 4.3;$$

0	0	1	2	3	_4	5	6	7	8	9
					4.3					
1										
•										

Acesso aos elementos de uma Matriz (cont.)

 Leitura: Mostrando o valor armazenado na 1ª linha e 5ª coluna da matriz :

```
scanf("%f", &mat[0][4]);
```

 Impressão: Mostrando o valor armazenado na 1ª linha e 5ª coluna da matriz :

```
printf("%2.2f", mat[0][4]);
```


Preenchendo a matriz toda

- Para preencher uma matriz são necessárias duas estruturas de repetição.
- Ex.:

Imprimindo Todos os Elementos de uma Matriz:

 Para imprimir todos os elementos de uma matriz são necessárias duas estruturas de repetição.

Exercícios de Fixação

1- Faça um programa que preencha vetor com oito números inteiros, calcule e mostre dois vetores resultantes. O primeiro vetor deve conter os números positivos e o segundo deve conter os números negativos. Atenção: cada vetor terá no máximo oito posições, que podem não ser completamente usadas. Não deve haver posições vazias entre dois valores. Por exemplo:

vetor inicial

2- Faça um programa que preencha dois vetores A e B com dez elementos numéricos cada um calcule e apresente um vetor C resultante da intercalação deles. Por exemplo:

3- Crie um programa que preencha uma matriz 3x3 de números inteiros e verifique se a matriz é simétrica. A matriz será simétrica se e somente se todo elemento A[i,j] = A[j,i]. Segue um exemplo de matriz simétrica:

$$\mathbf{P} = \begin{bmatrix} 3 & 2 & 4 \\ 2 & 5 & 8 \\ 4 & 8 & 6 \end{bmatrix}$$

4- Faça um programa que crie uma matriz A de tamanho n x n de valores inteiros informados pelo usuário. O programa deverá verificar se A é uma matriz identidade e imprimir uma mensagem informando o usuário. Considere que a matriz identidade possui todos os elementos da diagonal principal iguais a 1 e os demais elementos iguais a 0, como no exemplo:

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

5- Faça um programa que crie uma matriz A de dimensão m x n e outra matriz B de dimensão n x p. O programa deverá calcular e apresentar a multiplicação de A por B, como segue no exemplo:

$$A = \begin{bmatrix} 2 & 3 \\ 0 & 1 \\ -1 & 4 \end{bmatrix} e B = \begin{bmatrix} 1 & 2 & 3 \\ -2 & 0 & 4 \end{bmatrix}$$

$$A \cdot B = \begin{bmatrix} 2 & 3 \\ 0 & 1 \\ -1 & 4 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & 3 \\ -2 & 0 & 4 \end{bmatrix} = \begin{bmatrix} 2.1 + 3(-2) & 2.2 + 3.0 & 2.3 + 3.4 \\ 0.1 + 1(-2) & 0.2 + 1.0 & 0.3 + 1.4 \\ -1.1 + 4(-2) & -1.2 + 4.0 & -1.3 + 4.4 \end{bmatrix} = \begin{bmatrix} -4 & 4 & 18 \\ -2 & 0 & 4 \\ -9 & -2 & 13 \end{bmatrix}$$