LAB 6 Support Vector Machine

Support Vector Machine (SVM)

- A classifier derived from statistical learning theory by Vapnik, et al. in 1992
- SVM became famous when, using images as input, it gave accuracy comparable to neural-network with hand-designed features in a handwriting recognition task
- Currently, SVM is widely used in object detection & recognition, content-based image retrieval, text recognition, biometrics, speech recognition, etc.

Discriminant Function

• It can be arbitrary functions of x, such as:

Nearest Neighbor

Decision Tree

Linear Functions

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$

Nonlinear Functions

• g(x) is a linear function:

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$

- A hyper-plane in the feature space
- (Unit-length) normal vector of the hyper-plane:

$$\mathbf{n} = \frac{\mathbf{w}}{\|\mathbf{w}\|}$$

denotes +1

denotes -1

 How would you classify these points using a linear discriminant function in order to minimize the error rate?

Infinite number of answers!

 X_2

denotes +1

 \odot denotes -1

 How would you classify these points using a linear discriminant function in order to minimize the error rate? O denotes 1

Infinite number of answers!

denotes +1

 \odot denotes -1

 How would you classify these points using a linear discriminant function in order to minimize the error rate?

Infinite number of answers!

 X_2

denotes +1

 \odot denotes -1

 How would you classify these points using a linear discriminant function in order to minimize the error rate?

Infinite number of answers!

Which one is the best?

• The linear discriminant function (classifier) with the maximum

margin is the best

 Margin is defined as the width that the boundary could be increased by before hitting a data point

Why it is the best?

 Robust to outliners and thus strong generalization ability

denotes +1

- denotes +1
- o denotes -1

• Given a set of data points:

$$\{(\mathbf{x}_i, y_i)\}, i = 1, 2, \dots, n, \text{ where }$$

For
$$y_i = +1$$
, $\mathbf{w}^T \mathbf{x}_i + b > 0$

For
$$y_i = -1$$
, $\mathbf{w}^T \mathbf{x}_i + b < 0$

 With a scale transformation on both w and b, the above is equivalent to

For
$$y_i = +1$$
, $\mathbf{w}^T \mathbf{x}_i + b \ge 1$

For
$$y_i = -1$$
, $\mathbf{w}^T \mathbf{x}_i + b \le -1$

Large Margin Linear Classifier denotes +1

We know that

$$\mathbf{w}^T \mathbf{x}^+ + b = 1$$
$$\mathbf{w}^T \mathbf{x}^- + b = -1$$

The margin width is:

$$M = (\mathbf{x}^+ - \mathbf{x}^-) \cdot \mathbf{n}$$
$$= (\mathbf{x}^+ - \mathbf{x}^-) \cdot \frac{\mathbf{w}}{\|\mathbf{w}\|} = \frac{2}{\|\mathbf{w}\|}$$

- denotes +1
- odenotes -1

• Formulation:

maximize
$$\frac{2}{\|\mathbf{w}\|}$$

For
$$y_i = +1$$
, $\mathbf{w}^T \mathbf{x}_i + b \ge 1$

For
$$y_i = -1$$
, $\mathbf{w}^T \mathbf{x}_i + b \le -1$

- denotes +1
- o denotes -1

• Formulation:

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2$$

For
$$y_i = +1$$
, $\mathbf{w}^T \mathbf{x}_i + b \ge 1$
For $y_i = -1$, $\mathbf{w}^T \mathbf{x}_i + b \le -1$

denotes +1

○ denotes -1

• Formulation:

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2$$

$$y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$$

Quadratic programming with linear constraints

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2$$

s.t.
$$y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$$

Lagrangian Function

minimize
$$L_p(\mathbf{w}, b, \alpha_i) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i(\mathbf{w}^T \mathbf{x}_i + b) - 1 \right)$$

s.t.
$$\alpha_i \geq 0$$

Solving the Optimization Problem minimize
$$L_p(\mathbf{w}, b, \alpha_i) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^n \alpha_i \left(y_i(\mathbf{w}^T \mathbf{x}_i + b) - 1 \right)$$

s.t.
$$\alpha_i \geq 0$$

$$\frac{\partial L_p}{\partial \mathbf{w}} = 0 \qquad \mathbf{w} = \sum_{i=1}^n \alpha_i y_i \mathbf{x}_i$$

$$\frac{\partial L_p}{\partial b} = 0 \qquad \sum_{i=1}^n \alpha_i y_i = 0$$

minimize
$$L_p(\mathbf{w}, b, \alpha_i) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i(\mathbf{w}^T \mathbf{x}_i + b) - 1 \right)$$

s.t.
$$\alpha_i \geq 0$$

Lagrangian Dual Problem

maximize
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$

s.t.
$$\alpha_i \geq 0$$
 , and $\sum_{i=1}^n \alpha_i y_i = 0$

From KKT condition, we know:

$$\alpha_i \left(y_i (\mathbf{w}^T \mathbf{x}_i + b) - 1 \right) = 0$$

- Thus, only support vectors have $\alpha_i \neq 0$
- The solution has the form:

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i = \sum_{i \in SV} \alpha_i y_i \mathbf{x}_i$$

get *b* from $y_i(\mathbf{w}^T\mathbf{x}_i + b) - 1 = 0$, where \mathbf{x}_i is support vector

The linear discriminant function is:

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = \sum_{i \in SV} \alpha_i \mathbf{x}_i^T \mathbf{x} + b$$

- Notice it relies on a dot product between the test point x and the support vectors x_i
- Also keep in mind that solving the optimization problem involved computing the dot products x_i^Tx_j between all pairs of training points

odenotes -1

 What if data is not linear separable? (noisy data, outliers, etc.)

Slack variables ξ_i can be added to allow mis-classification of difficult or noisy data points

Formulation:

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i$$

such that

$$y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \xi_i$$
$$\xi_i \ge 0$$

Parameter C can be viewed as a way to control over-fitting.

Formulation: (Lagrangian Dual Problem)

maximize
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$

$$0 \le \alpha_i \le C$$

$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

Non-linear SVMs

Datasets that are linearly separable with noise work out great:

But what are we going to do if the dataset is just too hard?

How about... mapping data to a higher-dimensional space:

Non-linear SVMs: Feature Space

General idea: the original input space can be mapped to some higher-dimensional feature space where the training set is separable:

Nonlinear SVMs: The Kernel Trick

With this mapping, our discriminant function is now:

$$g(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b = \sum_{i \in SV} \alpha_i \phi(\mathbf{x}_i)^T \phi(\mathbf{x}) + b$$

- No need to know this mapping explicitly, because we only use the dot product of feature vectors in both the training and test.
- A kernel function is defined as a function that corresponds to a dot product of two feature vectors in some expanded feature space:

$$K(\mathbf{x}_i, \mathbf{x}_j) \equiv \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$$

Nonlinear SVM: Optimization

Formulation: (Lagrangian Dual Problem)

maximize
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j)$$
 such that
$$0 \le \alpha_i \le C$$

$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

The solution of the discriminant function is

$$g(\mathbf{x}) = \sum_{i \in SV} \alpha_i K(\mathbf{x}_i, \mathbf{x}) + b$$

The optimization technique is the same.

Summary: Support Vector Machine

- 1. Large Margin Classifier
 - Better generalization ability & less over-fitting

- 2. The Kernel Trick
 - Map data points to higher dimensional space in order to make them linearly separable.
 - Since only dot product is used, we do not need to represent the mapping explicitly.

References

 http://www1.cs.columbia.edu/~belhumeur/course s/biometrics/2010/svm.ppt