# Contents

| 1        | Introduction                               | 2 |
|----------|--------------------------------------------|---|
|          | 1.1 Basic Definitions                      | 2 |
| <b>2</b> | System P                                   | 2 |
|          | 2.1 Definitions                            | 2 |
|          | 2.2 Provability in System P is undecidable | • |

## 1 Introduction

 $FV(\Gamma) = \bigcup \{FV(t) \mid (x:t) \in \Gamma\}$   $\lambda 2$  deduction Rules

$$\begin{array}{ll} \text{(Axiom)} & \Gamma, x: t \vdash x: t \\ \\ \text{($\lambda$-Introduction)} & \frac{\Gamma, x: t_1 \vdash e: t_2}{\Gamma \vdash \lambda x. e: t_1 \to t_2} \\ \\ \text{($\lambda$-Elimination)} & \frac{\Gamma \vdash e_1: t_1 \to t_2 \quad \Gamma \vdash e_2: t_1}{\Gamma \vdash e_1 e_2: t_2} \\ \\ \text{($\forall$-Introduction)} & \frac{\Gamma \vdash e: t}{\Gamma \vdash \Lambda \alpha. e: \forall \alpha. t} \qquad \alpha \notin FV(\Gamma) \\ \\ \text{($\forall$-Elimination)} & \frac{\Gamma \vdash e: \forall \alpha. t}{\Gamma \vdash et': t \left[\alpha:=t'\right]} \end{array}$$

### 1.1 Basic Definitions

We will denote the set  $\{1, \ldots, n\}$  by [n].

# 2 System P

#### 2.1 Definitions

Let  $V_P=\{\alpha,\beta,\dots\}$  be a countably infinite set (of variables) and  $R_P=\{false^{(0)},P^{(2)},Q^{(2)},\dots\}$  a ranked alphabet (of relation symbols). A first-order logic formula  $\varphi$  is an

**atomic formula** if  $\varphi = false$  or  $\varphi = P(\alpha, \beta)$  for some  $P \in R_P$  and  $\alpha, \beta \in V_P$ .

**universal formula** if  $\varphi = \forall \overrightarrow{\alpha}(A_1 \to A_2 \to \cdots \to A_n)$  where  $A_i$  is an atomic formula for  $i \in [n]$ ,  $A_i \neq false$  for  $i \in [n-1]$  and for each  $\alpha \in FV(\varphi) \cap FV(A_n)$  there exists an  $i \in [n-1]$  such that  $\alpha \in FV(A_i)$ .

**existential formula** if there exits  $n \ge 0$ , atomic formulas  $A_i \ne false$  for  $i \in [n]$  such that  $\varphi = \forall \overrightarrow{\alpha}(A_1 \to A_2 \to \cdots \to A_{n-1} \to \forall \beta(A_n \to false) \to false)$ .

The set of formulas of System  $\mathbf{P}$  over  $V_P$  and  $R_P$  is the set of all first order formulas over the same "alphabet" that are either an atomic, universal or existential formula.

 $FV(\Gamma) = \bigcup \{FV(A) \mid A \in \Gamma\}$ 

Deduction Rules

$$\begin{array}{ll} (\operatorname{Axiom}) & \Gamma, A \vdash A \\ \\ (\to \operatorname{-Introduction}) & \frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B} \\ \\ (\to \operatorname{-Elimination}) & \frac{\Gamma \vdash A \to B \quad \Gamma \vdash A}{\Gamma \vdash B} \\ \\ (\forall \operatorname{-Introduction}) & \frac{\Gamma \vdash B}{\Gamma \vdash \forall \alpha B} \qquad \alpha \notin FV(\Gamma) \\ \\ (\forall \operatorname{-Elimination}) & \frac{\Gamma \vdash \forall \alpha B}{\Gamma \vdash B \, [\alpha := b]} \end{array}$$

An Interpretation I of a P formula is a tuple  $I = (\Delta, \cdot^I)$  where  $\Delta$  is a set (called domain),  $P^I \subseteq \Delta^k$  and  $\alpha^I \in \Delta \dots$ 

If we interpret *false* with the logical constant false  $(\bot)$  (denoted by  $\vdash_f$ ) we can add a new deduction rule.

$$(\exists \text{-Introduction}) \quad \frac{\Gamma, A \left[\alpha := a\right] \vdash_f B}{\Gamma, \forall \alpha (A \to false) \to false \vdash_f B} \quad a \notin \mathit{FV}(\Gamma, A, B)$$

*Proof.* Let  $I = (\Delta, \cdot^I)$  be a model of  $\Gamma, \forall \alpha(A \to false) \to false$  with  $false^I = \bot$ .

$$\begin{split} I &\models \Gamma, \forall \alpha(A \to false) \to false \Rightarrow I \models \forall \alpha(A \to false) \to false \\ &\Rightarrow (\forall \alpha(A \to false))^I \to false^I \\ &\Rightarrow (\forall \alpha(A \to false))^I \to \bot \\ &\Rightarrow \neg (\forall \alpha(A \to false))^I \\ &\Rightarrow \neg (\forall d \in \Delta : (A \to false)^{I[\alpha \mapsto d]}) \\ &\Rightarrow \exists d \in \Delta : \neg (A^{I[\alpha \mapsto d]} \to false^{I[\alpha \mapsto d]}) \\ &\Rightarrow \exists d \in \Delta : \neg (A^{I[\alpha \mapsto d]} \to \bot) \\ &\Rightarrow \exists d \in \Delta : \neg (\neg A^{I[\alpha \mapsto d]}) \\ &\Rightarrow \exists d \in \Delta : A^{I[\alpha \mapsto d]} \end{split}$$

Together with  $a \notin FV(\Gamma, A)$ , it follows that  $I[a \mapsto d]$  is a model of  $\Gamma, A[\alpha := a]$ . Which implies  $I[a \mapsto d] \models B$ . Since a is not free in B we conclude that I is also a model of B.

## 2.2 Provability in System P is undecidable

 $\Gamma_C$ :

- Q(a)
- $R_1(a, a_0), P(a_{i-1}, a_i)$  for  $i \in \{1, \dots, m\}$
- $R_2(a, b_0), P(b_{i-1}, b_i)$  for  $i \in \{1, \dots, n\}$
- $D(a), D(a_i), D(b_j)$  for  $i \in \{1, ..., m\}$  and  $j \in \{1, ..., n\}$
- $E(a_m), E(b_n)$
- +(Q,1,Q'):
- $\forall \alpha \beta (Q(\alpha) \to S(\alpha, \beta) \to Q'(\beta))$ change of state
- $\forall \alpha \beta \gamma \delta(Q(\alpha) \to S(\alpha, \beta) \to R_1(\alpha, \gamma) \to R_1(\beta, \delta) \to P(\delta, \gamma))$ increment register 1
- $\forall \alpha \beta \delta(Q(\alpha) \to S(\alpha, \beta) \to R_1(\beta, \delta) \to D(\delta))$ prevent zero
- $\forall \alpha \beta \gamma (Q(\alpha) \to S(\alpha, \beta) \to R_2(\alpha, \gamma) \to R_2(\beta, \gamma))$ do not change register 2
- $-(Q, 1, Q_1, Q_2)$ :
- $\forall \alpha \beta \gamma (Q(\alpha) \to S(\alpha, \beta) \to R_1(\alpha, \gamma) \to E(\gamma) \to Q_2(\beta))$  jump on zero
- $\forall \alpha \beta \gamma (Q(\alpha) \to S(\alpha, \beta) \to R_1(\alpha, \gamma) \to E(\gamma) \to R_1(\beta, \gamma)$ register 1 stays zero
- $\forall \alpha \beta \gamma (Q(\alpha) \to S(\alpha, \beta) \to R_1(\alpha, \gamma) \to D(\gamma) \to Q_1(\beta))$ change state if register 1 is greater zero
- $\forall \alpha \beta \gamma \delta(Q(\alpha) \to S(\alpha, \beta) \to R_1(\alpha, \gamma) \to D(\gamma) \to P(\gamma, \delta) \to R_1(\beta, \delta))$ decrement register 1
- $\forall \alpha \beta \gamma (Q(\alpha) \to S(\alpha, \beta) \to R_2(\alpha, \gamma) \to R_2(\beta, \gamma))$ do not change register 2

#### Lemma 1.

M terminates on input (0,0) iff  $\Gamma_M \vdash \text{false holds in system } P$ .

#### Claim 2.

 $\Gamma_M \vdash \text{false holds in system } P \implies M \text{ terminates on input } (0,0)$ 

*Proof.* Assume M does not terminate then there is an infinite chain  $C_1 \Rightarrow_M C_2 \Rightarrow_M C_3 \Rightarrow_M \dots$   $(C_i = \langle Q_i, m_i, n_i \rangle)$  Now we construct a model of  $\Gamma_M$  which interprets false with  $\bot$  this contradicts  $\Gamma_M \vdash false$ .

To illustrate the idea we will use a graphical notation for an interpretation I. By  $d_1 \stackrel{R}{\longrightarrow} d_2$  we say that  $(d_1, d_2) \in R^I$ . And we use q to say that  $d \in P^I$  for unary predicate symbols. Now the idea for our model of  $\Gamma_M$  looks like this:



We have  $0 \in E^I$  and all other numbers are in  $D^I$ . Here is the more formal definition of our model  $I = (\mathbb{N}, \cdot^I)$ .

$$P^{I} = \{(i+1,i) \mid i \in \mathbb{N}\} \qquad R_{1}^{I} = \{(i,m_{i}) \mid i \in \mathbb{N}\} \qquad R_{2}^{I} = \{(i,n_{i}) \mid i \in \mathbb{N}\}$$

$$Q^{I} = \{i \in \mathbb{N} \setminus \{0\} \mid Q = Q_{i}\} \qquad D^{I} = \mathbb{N} \setminus \{0\} \qquad E^{I} = \{0\}$$

$$S^{I} = \{(i,i+1) \mid i \in \mathbb{N}\}$$

$$a^{I} = 1$$
  $a_{0}^{I} = 0$   $b_{0}^{I} = 0$ 

**Claim 3.** If a final state is reachable from C then  $\Gamma_C \cup \Gamma \vdash$  false.

*Proof.* By induction on the length of the computation. For the tableau proofs we will abbreviate false by f.

Induction Base trivial ...

Induction Step

 $C \Rightarrow_M^r D$ 

We need to make a case distinction on the rule r.

Case r = +(Q, 1, Q')

Basic idea:

$$\frac{IH}{\frac{\Gamma_C \cup \Gamma \cup \Gamma_D \vdash f}{\Gamma_C \cup \Gamma \vdash \Gamma}} \frac{\Gamma_C \cup \Gamma \vdash \Gamma_D}{\Gamma_C \cup \Gamma \vdash f}$$

Since  $I \models \mathit{false}$  holds trivially if I interprets  $\mathit{false}$  with  $\top$  we only need to consider models (note that there are none if M terminates which is exactly what we want to proof) of  $\Gamma_C \cup \Gamma$  that interpret  $\mathit{false}$  with  $\bot$  (so we can use

our new deduction rule).

We will just drop  $\Gamma_C \cup \Gamma$  and only write new formulas on the left side. We first introduce the new variables needed for  $\Gamma_D$  (let  $b, d \in V_P \setminus \mathrm{FV}(\Gamma_C \cup \Gamma)$ ). Intuitively b will represent the successor state and d will be the anchor for register one.

$$\frac{\vdots}{S(a,b),D(b)\vdash_{f}f} = \frac{S(a,b)\vdash_{f}\forall\alpha\beta(S(\alpha,\beta)\to D(\beta))}{S(a,b)\vdash_{f}S(a,b)\to D(b)\quad S(a,b)\vdash_{f}S(a,b)}$$

$$\frac{S(a,b)\vdash_{f}f}{S(a,b)\vdash_{f}f} = \frac{S(a,b)\vdash_{f}f}{\forall\beta(S(a,\beta)\to f)\to f)\to f} = \frac{F_{f}\forall\alpha(\forall\beta(S(\alpha,\beta)\to f)\to f)}{\vdash_{f}\forall\beta(S(a,\beta)\to f)\to f}$$

$$\frac{F_{f}\forall\beta(S(a,\beta)\to f)\to f}{\vdash_{f}f} = \frac{F_{f}\forall\alpha(\forall\beta(S(a,\beta)\to f)\to f)}{\vdash_{f}f} = \frac{F_{f}\forall\beta(S(a,\beta)\to f)\to f}{\vdash_{f}f} = \frac{F_{f}\forall\beta(S(a,\beta)\to f})\to f}{\vdash_{f}f} = \frac{F_{f}\lor f}{\vdash_{f}f} = \frac{F_{f}\lor f}}{\vdash_{f}f} = \frac{F_{f}\lor f}$$

The formula  $R_1(b,d)$  can be acquired in a similar way. Again we will just drop S(a,b) and D(b) on the left side for comprehensibility.

$$\frac{\vdots}{R_{1}(b,d)\vdash_{f}f} \\
\frac{\forall \beta(R_{1}(b,\beta)\to f)\to f\vdash_{f}f}{\forall \beta(R_{1}(b,\beta)\to f)\to f)\to f} \\
\frac{\vdash_{f} (\forall \beta(R_{1}(b,\beta)\to f)\to f)}{\vdash_{f} f} \\
\frac{\vdash_{f} D(b)\to \forall \beta(R_{1}(b,\beta)\to f)\to f}{\vdash_{f} D(b)\to \forall \beta(R_{1}(b,\beta)\to f)\to f} \\
\vdash_{f} f$$

Now we have all the new free variables we need and we continue by ensuring that these variables fulfill all the formulas in  $\Gamma_D$ .

$$\frac{\vdots}{Q'(b)\vdash_{f}f} \frac{\vdash_{f} \forall \alpha \beta(Q(\alpha) \to S(\alpha,\beta) \to Q'(\beta))}{\vdash_{f} Q(a) \to S(a,b) \to Q'(b)} \vdash_{f} Q(a)}{\vdash_{f} Q'(b) \to f} \frac{\vdash_{f} S(a,b) \to Q'(b)}{\vdash_{f} S(a,b) \to Q'(b)} \vdash_{f} S(a,b)}{\vdash_{f} f}$$

Starting from  $Q'(b) \vdash_f false$  we can connect d and  $a_0$ .

$$\frac{ \begin{array}{c} \vdash_{f} \forall \alpha\beta\gamma\delta(Q(\alpha) \rightarrow S(\alpha,\beta) \rightarrow R_{1}(\alpha,\gamma) \rightarrow R_{1}(\beta,\delta) \rightarrow P(\delta,\gamma)) \\ \hline \\ P_{f} Q(a) \rightarrow S(a,b) \rightarrow R_{1}(a,a_{0}) \rightarrow R_{1}(b,d) \rightarrow Q'(b) & \vdash_{f} Q(a) \\ \hline \vdots & \hline \\ P(d,a_{0}) \vdash_{f} f \\ \hline \vdash_{f} P(d,a_{0}) \rightarrow f & \hline \\ \hline \\ P_{f} R_{1}(a,a_{0}) \rightarrow R_{1}(b,d) \rightarrow Q'(b) & \vdash_{f} R_{1}(a,a_{0}) \\ \hline \\ P_{f} R_{1}(b,d) \rightarrow Q'(b) & \vdash_{f} R_{1}(b,d) \\ \hline \\ \vdash_{f} P(d,a_{0}) & \hline \\ \vdash_{f} P(d,a_{0}) \\ \hline \\ \vdash_{f} f \end{array}$$

 $R_2(b, b_0)$  can be deduced in the same way.

Now we have  $\Gamma_C$  (Since  $P(a_{i-1}, a_i)$  is already in  $\Gamma_D$ ) and can deduce false by induction hypothesis.

Case 
$$r = -(Q, 1, Q_1, Q_2)$$