Linear algebra, Exercise 3

叶卢庆*

August 1, 2014

Exercise. ^a Let V_1, V_2, V_3, V_4 be vector spaces such that

$$\dim(V_1) = 8, \dim(V_2) = 5, \dim(V_3) = 7, \dim(V_4) = 6.$$

Let $T_1: V_1 \to V_2, T_2: V_2 \to V_3$, and $T_3: V_3 \to V_4$ be linear transformations. Let $T = T_3T_2T_1$ be their composition. Prove that T is not surjective.

^aThis exercise is from http://www.math.ucla.edu/ tao/resource/general/115a.3.02f/practice.pdf

Proof. Prove by contradiction. If T is surjective, then T_3 must be surjective. Then $N(T_3) = 7 - 6 = 1$, which means that there exists a basis $\{v_1, \cdots, v_6\}$ of V_3 such that there is a bijection T_3' from $Span(\{v_1, \cdots, v_6\})$ to V_4 , where for all $x \in Span(\{v_1, \cdots, v_6\}), T_3'(x) = T_3(x)$.

So there is a surjection from V_2 to V_3 .But $\dim(V_2) < \dim(V_3)$, which leads to contradiction.

 $^{^*} Luqing \ Ye (1992-), E-mail: yeluqing mathematics@gmail.com$