

AUTOMOTIVE DOOR CONTROL SYSTEM DYNAMIC DESIGN

Nader Abd Elhalim Ahmed Embedded Systems (Advanced Track)

March 30, 2023

State Machine Diagram for each ECU1 component:

1-Light switch (L)

5- ADC Module

6-GPIO Module

7-CAN MODULE

State Machine Diagram for the ECU1 operation

• ECU1 CPU LOAD

Three tasks (LightSW_Task 1 /Door_Task 2 /Speed_Task 3) Where E ==> execution time, P ==> Periodicity Assume E1 \rightarrow 3ms, Assume E2 \rightarrow 2 ms, Assume E3 \rightarrow 1.5 ms Assume P1 \rightarrow 20ms, us Assume P2 \rightarrow 10 us, Assume P3 \rightarrow 5 us Hyperperiod = 20 ms.

SO CPU1 Load = (3*1) + (2*2) + (1.5*4) = 13/20*100 = 65%

Sequence Diagram for the ECU1

State Machine Diagram for each ECU2 component:

State Machine Diagram for the ECU2 operation

• ECU2 CPU LOAD

```
Four tasks ( Update_changes / Update_L / Upadate_D / Update_S ) Where E ==> execution time, P ==> Periodicity Assume E1 \rightarrow 2ms, Assume E2 \rightarrow 1.8ms, Assume E3 \rightarrow 1.5 ms , Assume E4 \rightarrow 1.3 ms Assume P1 \rightarrow 5ms, us Assume P2 \rightarrow 20 us, Assume P3 \rightarrow 10 us , Assume P4 \rightarrow 5us Hyperperiod = 20 ms. SO CPU2 Load = (2*4) + (1.8*1) + (1.5*2) + (1.3*4) = 18/20*100 = 90%
```

Sequence Diagram for the ECU2

