

Magic Pie (mgcpy)

Team Captain: Sambit Panda

Sandhya Ramachandran, Bear Xiong, Richard Guo, Satish Palaniappan

Date: 9/12/2018

Visualization: edgelist

Edgelist

- Graph node with edge weight indicating the strength of correlation between two nodes
- Use to represent connectome
- sub-NDARAA536PTU_acq-64dir_dwi_JHU_ res-1x1x1 measure-spatial-ds.edgelist

Observation

- Diagonals
- Graph nodes with smaller indices (Interpretation?)

42	42	44966
42	29	1707
42	24	1328
42	25	859
42	26	11215
42	27	2818
42	20	5116
42	21	2319
42	22	5459
42	23	4
42	47	48
42	28	6999
42	43	1

Tool: mcorr, dcorr, mantel

- Input: data matrix (n by d)
- Process
 - Calculate distance matrix
 - Use distances between all pairs (global correlation) → can identify correlation on linear data, but not on nonlinear data
- Output: correlation coefficient between -1 and 1
 - 1: perfect positive correlation
 - 0: uncorrelated

```
>> [all_corr] = run_tools(8, 100, 1, 1, 0)

all_corr =

0.0343  0.0185  0.0345
```



```
% type: the type of data: linear, jointly normal, independent, etc.
 % n: the number of data points generated
 % dim: the dimensionality of the data
 % dependent: indicating whether the two variables in the data are dependent
 % noise: additive noise
  % return corr: a number from -1 to 1, 1 indicating perfect positive correlation
 % 0 indicating no correlation

□ function [all_corr] = run_tools(type,n,dim,dependent, noise)

     all_corr = zeros(3, 0);
     tool = ['mcorr', 'dcorr', 'mantel'];
     for i = 1:3
          [x, y] = CorrSampleGenerator(type,n,dim,dependent, noise);
          scatter(x, y, 'filled');
          xlabel('x');
          ylabel('v');
         title('Graph of x vs y: spiral with noise=0');
          [corr, \sim, \sim] = DCorr(x, y, tool(i));
          all corr(i) = corr;
```

Visualization of HBN

- Video shows horizontal sections of slices as it goes inferior to superior
- Right side is anterior and left side of posterior

T1 MRI of NDARAA075MK (n=1) Animation

AP Distance (Pixels)

(Pixels)

ML Distance

Tool: HHG (Heller-Heller-Gorfine Tests Of Independence And Equality Of Distributions)

- Input: 2 distance matrices
- Output: HHG test statistic
 - HHG space partitioned by taking two points and seeing how close other points are in space relative to those two points
 - Chi square statistic is calculated from 2x2 matrix for each point
 - HHG stat is sum of sum all the the chi square statistics
- After: HHG stat run through permutation independence tests

$$S(i,j) = \frac{(N-2)(A_{12}A_{21} - A_{11}A_{22})^2}{A_{1.}A_{2.}A_{.1}A_{.2}}$$

$$T = \sum_{i=1}^{N} \sum_{j=1, j \neq i}^{N} S(i, j)$$

>> HHG(A,	В)	2
ans =		
2.49636	e+04	

	$d_{y}(P_0,\cdot) \le d_{y}(P_0,P_1)$	$d_{y}(P_0,\cdot) > d_{y}(P_0,P_1)$	
$d_x(P_0,\cdot) \le d_x(P_0,P_1)$	$A_{11}(P_0, P_1)$	$A_{12}(P_0, P_1)$	$A_1.(P_0, P_1)$
$d_x(P_0,\cdot) > (P_0, P_1)$	$A_{21}(P_0, P_1)$	$A_{22}(P_0, P_1)$	$A_2.(P_0, P_1)$
	$A_{\cdot 1}(P_0, P_1)$	$A_{.2}(P_0, P_1)$	N-2

Table 1: The observed counts in an HHG partition of the sample space.

Distances in X Coordinates

Visualization of HBN Data (fMRI of Subject-NDARBN100LCD)

Tool: MGC (Multiscale Graph Correlation)

Visualization of HBN: ITK-SNAP

- Visualization of the dwi MRI of sub NDARAA536PTU, registered, and represented in greyscale
- Axial, sagittal, and coronal views shown
- Shows differentiation between white and grey matter, ventricles

Tool: fastmgc used on demo data

- A and B are 100x100 distance matrices calculated for sample data
- Finds a perfect relationship (artificial data, expected) despite the data being nonlinear

Looking at it

fMRI of Subject-NDARAD224CRB During Movie Watching

Exploratory Data Analysis

Looking more at fMRI during the start of the task

fMRI of Subject-NDARAD224CRB During Movie Watching

Making sure I can run Random Forest

Acknowledgements

- Jovo
- Vikram
- Healthy Brain Network people