Pflichtenheft Zwei-Gelenk-Roboter

Projektmanagement
Ines Marquardt-Schmidt
Hochschule Heilbronn

Status: In Arbeit

Freigabevermerk: Nicht freigegeben

Winter Semester 2022/23

Marc Grosse (210233), Moritz Hoehnel (210258), Mattis Ritter (210265)

Inhaltsverzeichnis

	Tabe	ellarische Versionshistorie	. 3
	Abk	ürzungsverzeichnis	. 3
1.	Ei	nleitung	. 3
	a.	Zweck	. 3
	b.	Umfang	. 3
	c.	Verweise auf sonstige Ressourcen oder Quellen	. 3
2.	Α	llgemeine Beschreibung	. 3
	a.	Produktperspektive	. 3
	b.	Produktfunktionen	. 3
	c.	Annahmen und Abhängigkeiten	. 4
	d.	Benutzermerkmale	. 4
3.	S	pezifische Anforderungen	. 5
	a.	funktionale Anforderungen	. 6
	b.	nicht funktionale Anforderungen	. 6
1	Vori	filation	c

Tabellarische Versionshistorie

Version	Datum
Version 1.0	17.10.2022
Version 1.1	19.10.2022
Version 1.2	20.20.2022

Abkürzungsverzeichnis

Kürzel	Bedeutung	
Pr.	Priorität	

1. Einleitung

a. Zweck

Dieses Dokument legt die Pflichten für das Labor Modellbildung und Simulationstechnik (304143) Projekt Zwei-Gelenk-Roboter fest.

b. Umfang

Es soll die Modellbildung und Simulation eines Zwei-Gelenk-Roboters durchgeführt werden.

c. Verweise auf sonstige Ressourcen oder Quellen

Es soll folgende Literaturquelle verwendet werden:

Woernle, C.: Mehrkörpersysteme: eine Einführung in die Kinematik und Dynamik von Systemen starrer Körper, 2022, Springer Vieweg Berlin

2. Allgemeine Beschreibung

a. Produktperspektive

Es muss ein Roboter mit zwei aneinandergereihten Armen erstellt werden. Der Roboter ist fest mit dem Boden verankert. In dem Gelenk (Schulter) zwischen Boden und ersten Arm, als auch in dem Gelenk (Ellenbogen) zwischen ersten und zweiten Arm sind Motoren. Der Roboter wird zweidimensional betrachtet. Jedes Gelenk soll eine 360 Grad Drehung ausführen können. Die Längen der Arme sind konstant. Massen sind in den Gelenken und am Greifer punktuell konzentriert darzustellen.

Es soll eine visuelle Simulation erstellt werden. Diese muss auf einem PC laufen. Dabei sollen die zwei Roboter-Arme dargestellt werden. Eine Animation dieser Arme ist gefordert (diese sollen Bewegungen ausführen).

Der Nutzer soll die Simulation starten und stoppen können.

b. Produktfunktionen

Das Projektteam muss dazu ein dynamisches Modell erstellen. Danach müssen stationäre Gleichungen ermittelt werden. Schließlich werden die Gleichungen in ein Zustandsraummodell umgewandelt, dass diese in dem Simulationstool implementiert werden können.

c. Annahmen und Abhängigkeiten

Für die Simulation soll die Software Matlab verwendet werden. Es soll dabei die Toolbox Simulink zugegriffen werden.

d. Benutzermerkmale

Bei Benutzern wird die Bedienung der Software Matlab als auch Simulink vorausgesetzt. Die Nutzer verfügen darüber hinaus reglungstechnische Grundlagen und höhere Mathematische Kenntnisse.

3. Spezifische Anforderungen

Nr.	Q/T/B	Name	Beschreibung	Klassifizierung	Messkriterien	Pr.
A.0	Т	Anmeldung	Meldung zur Teilnahme mit Projektthema und Teamkollegen	Vorgehensziel	Zusage des Dozenten	А
A.1	Q	Massematrix	Es muss gezeigt werden, dass die Massenmatrix invertierbar ist	Ergebnisziel	Determinante der Matrix ist ungleich Null	A
A.2	Q	Stationäre Gleichungen	Bestimmen der allgemeinen stationären Gleichungen	Ergebnisziel	Lösung muss der Gleichung des Dynamischen Modells im Lastenheft entsprechen	A
A.3	Q	Umformen	Die stationäre Gleichung muss nach $\overline{\varphi_1}$ umgeformt werden	Ergebnisziel	Gleichung muss semantisch mit der Musterlösung übereinstimmen	A
A.4	Q	Saubere Dokumentation	Erstellen Zusammenschrift mit Hilfe des PowerPoint Formeleditors	Ergebnisziel	In Nr. 1-3 erstellte Rechnungen aufgeschrieben	В
A.5	Т	Vorabgabe	09.11.2022	Vorgehensziel	Abgabe via Mail	Α
A.6	Q	Gleichungen Implementieren	Stationäre Gleichung in Matlab Simulink implementieren	Ergebnisziel	Gleichungen bekommen keine Fehlermeldung zugeordnet	A
A.7	Q	Modellwerte Einpflegen	Vorgaben an die Bauteile in die Simulation übertragen	Ergebnisziel	Kontrolle durch eine Konsolenausgabe der Eingegebenen Werte	A
A.8	Q	Visualisieren	Erstellen der graphischen Oberfläche	Ergebnisziel	Sichtprüfung ob Bauteile vorhanden	А
A.9	Q	Animieren	Implementieren der Bewegungen der Arme	Ergebnisziel	Sichtprüfung, Arme müssen 2 Minuten lang rotieren	A
A.10	Q	Bedienungs- anleitung	Es muss eine Bedienungsanleitung für die Anwendung der Simulation erstellt werden	Ergebnisziel	Dokument muss abgeben werden	A
A.11	Q	Zusammen- schrift Größen	Alles Eingangs-, Ausgangs- und Zustandsgrößen	Ergebnisziel	Tabelle muss abgeben werden	A

			müssen in einer Tabelle zusammengefasst werden			
A.12	Т	Upload final	10.01.2022	Vorgehensziel	Abgabe via .zip file in Ilias Ordner	Α
A.13	Т	Abschluss- Präsentation	17.01.2022	Vorgehensziel	Präsentation von Dozenten benotet	А

a. funktionale Anforderungen

Nr.	Q/T/B	Name	Beschreibung	Klassifizierung	Messkriterien	Pr.
B.1	B.1 Q Masse m ₁		10kg	Ergebnisziel	Masse in Software	Α
					ausgeben lassen	
B.2	Q	Masse m ₂	10kg	Ergebnisziel	Masse in Software	Α
					ausgeben lassen	
B.3	Q	Länge l₁	Länge des ersten Armes I ₁	Ergebnisziel	Länge in Software	Α
			= 0.8m		ausgeben lassen	
B.4 Q Länge l ₂		Länge l₂	Länge des zweiten Armes	Ergebnisziel	Länge in Software	Α
			$I_2 = 0.7m$		ausgeben lassen	
B.5 Q Rotation		Rotation	Rotation der Gelenke	Ergebnisziel	Winkel in Software	Α
			unbegrenzt		ausgeben lassen	

b. nicht funktionale Anforderungen

Nr.	Q/T/B	Name	Beschreibung	Klassifizierung	Messkriterien	Pr.
C.1	Q	Software	Verwendung MATLAB Vorgehensziel R2021a		Alle Rechner werden vor	А
C.2	Q	Toolboxen	Verwendung von Control Systems Toolbox und Symbolic Math Toolbox	ems Toolbox und kontrolliert,		А
C.3	Q	Software	Es muss der Real-Time- Pacer verwendet werden	Vorgehensziel	erstellt wurde	А

4. Verifikation

Das Projektteam führt eine Sichtprüfung der Animation durch. Beide Arme müssen sich bewegen. Es soll eine Rotation erkennbar sein.

Es soll vor Abgabe der finalen Ergebnisse ein Testdurchlauf mit dem Auftraggeber durchgeführt werden. Dabei gibt der Auftraggeber Feedback.

Projektmanagement

Pflichtenheft Projekt Zwei-Gelenkroboter

Die Parteien bestätigen hiermit das Pflichtenheft.					
Datum, Unterschrift Projektteam Stellvertreter	Datum, Unterschrift Auftraggeber				