MODULE 4-COMPOUNDS

CHEMICAL NOMENCLATURE OR NAMING IONIC AND MOLECULAR COMPOUNDS

REF: CHAPTER 5 OF TEXTBOOK

TOPICS COVERED:

- ✓ CLASSIFICATION OF COMPOUNDS FOR NOMENCLATURE PURPOSE
- ✓ TYPES OF BINARY IONIC COMPOUNDS
- ✓ NOMENCLATURE FOR BINARY IONIC COMPOUNDS
- ✓ NOMENCLATURE FOR IONIC COMPOUNDS CONTAINING POLYATOMIC IONS
- ✓ NOMENCLATURE FOR BINARY MOLECULAR/ COVALENT COMPOUND
- ✓ NOMENCLATURE FOR ACIDS
- ✓ NOMENCLATURE RULES: A SUMMARY

NAMING COMPOUNDS

- THE INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY, IUPAC, HAS SET RULES FOR NAMING COMPOUNDS.
- IN 1921, IUPAC FORMED A COMMISSION ON THE NOMENCLATURE OF INORGANIC CHEMISTRY.
- IN 1940 IUPAC SET THE RULES FOR THE NAMING AND CLASSIFICATION OF INORGANIC COMPOUNDS.
- THESE RULES, REFERRED TO AS IUPAC NOMENCLATURE ARE STILL IN USE TODAY.

NOMENCLATURE

CHEMICAL NOMENCLATURE IS THE SYSTEM OF NAMES USED TO DISTINGUISH COMPOUNDS FROM EACH OTHER. WE WILL CONSIDER HOW TO NAME:

- BINARY IONIC COMPOUNDS, WHICH CONTAIN A METAL AND A NONMETAL.
- BINARY MOLECULAR COMPOUNDS, WHICH
 CONSIST ONLY OF NONMETALS. (FOR NAMING
 PURPOSES METALLOIDS ARE TREATED AS
 NONMETALS)
- BINARY AND ACIDS, COMPOUNDS THAT RELEASE HYDROGEN IONS WHEN DISSOLVED IN WATER.

IONIC COMPOUNDS

LET'S BEGIN BY REVIEWING WHAT WE KNOW ABOUT **IONIC** COMPOUNDS...

- THE **BONDING** IN **IONIC COMPOUNDS** CONSISTS OF THE ATTRACTION BETWEEN OPPOSITELY CHARGED **IONS NOT** ATOMS ANYMORE.
- THEY DON'T FORM MOLECULES, BUT CRYSTAL LATTICES.
- THE CHARGE FOR THE FORMULA UNIT MUST BE NEUTRAL.
- THE REACTION OF A METAL AND A NONMETAL ALWAYS FORMS AN *IONIC COMPOUND*.
- OTHER *IONIC COMPOUNDS* MIGHT CONTAIN ONE OR MORE **POLYATOMIC IONS**.

FOR NOMENCLATURE PURPOSES, THERE ARE **TWO** TYPES OF METAL IONS:

FIXED CHARGE METAL IONS ONLY FORM ONE TYPE OF POSITIVE ION – ALWAYS HAS THE SAME CHARGE.

VARIABLE CHARGE METAL IONS CAN FORM MORE THAN ONE TYPE OF POSITIVE ION – USE NOMENCLATURE TO KNOW THE MAGNITUDE OF THE CHARGE.

WHICH ONES ARE <u>FIXED</u> AND WHICH ONES ARE <u>VARIABLE</u>?

FIXED-CHARGE METAL IONS

VARIABLE-CHARGE METAL IONS

WHICH METALS HAVE A VARIABLE CHARGE?

The rest of them!

Can you think of at least one you have seen in lab?

Cu

VARIABLE-CHARGE METAL IONS

Examples shown for some common metals with variable

charges	Ions Formed		
Chromium	Cr^{2+} and Cr^{3+}		
Cobalt	Co^{2+} and Co^{3+}		
Copper	Cu ⁺ and Cu ²⁺		
Gold	Au ⁺ and Au ³⁺		
Iron	Fe^{2+} and Fe^{3+}		
Lead	Pb^{2+} and Pb^{4+}		
Manganese	Mn^{2+} and Mn^{3+}		
Tin	Sn^{2+} and Sn^{4+}		

NAMING BINARY IONIC COMPOUNDS

- WHEN NAMING *IONIC COMPOUNDS*, WE NAME THE **POSITIVELY-CHARGED** SPECIES FIRST (THE CATION) AND THE **NEGATIVELY-CHARGED** SPECIES SECOND (THE ANION).
- METAL IONS (FIXED OR VARIABLE) TAKE THE NAME OF THE METAL FROM WHICH THEY COME.
- NONMETAL IONS ARE NAMED BY TAKING THE <u>STEM</u> OF THE NONMETAL AND ADDING —IDE.

lithium (Li)

CATIO N

Li⁺

NAME OF CATIO

lithium ion

magnesium (Mg)

CATIO N

 Mg^{2+}

NAME OF CATIO

magnesium ion

strontium (Sr)

CATIO N

 Sr^{2+}

NAME OF CATIO

strontium ion

sodium (Na)

CATIO N

NAME OF

calcium (Ca)

CATIO N

NAME OF

NAMING BINARY IONIC COMPOUNDS

- THE NEGATIVELY CHARGED SPECIES, NONMETALS AND METALLOIDS (OR POLYATOMIC IF APPLICABLE) IS NAMED SECOND.
- NONMETAL IONS ARE NAMED BY TAKING THE <u>STEM</u> OF THE <u>NONMETAL</u> AND ADDING <u>-IDE</u>.
- **POLYATOMIC IONS** BRING THEIR OWN NAME TO THE COMPOUND.

bromine (Br)

ANION

Br

NAME OF ANION stem

bromide ion

nitrogen (N)

ANION

N3-

NAME OF ANION stem
nitride ion

phosphorous (P)

ANION

P³-

NAME OF ANION stem

phosphide ion

oxygen (O)

ANION

NAME stem ANION

oxide ion

ATOM

fluorine (F)

ANION

NAME OF ANION

stem

chlorine (Cl)

ANION

NAME OF ANION stem

Names for the More Common Nonmetal Ions

Element	Stem Name of Ion		Formula
Bromine	brom-	bromide ion	Br^-
Carbon	carb-	carbide ion	C^{4-}
Chlorine	chlor-	chloride ion	Cl^-
Fluorine	fluor-	fluoride ion	F^-
Hydrogen	hydr-	hydride ion	H^-
Iodine	iod-	iodide ion	I^-
Nitrogen	nitr-	nitride ion	N^{3-}
Oxygen	OX-	oxide ion	O^{2-}
Phosphorus	phosph-	phosphide ion	P^{3-}
Sulfur	sulf-	sulfide ion	S ²⁻

NAMING BINARY IONIC COMPOUNDS THAT CONTAIN A FIXED-CHARGE METAL

AGAIN, WHEN NAMING THESE COMPOUNDS, WE NAME
THE POSITIVELY-CHARGED SPECIES FIRST (THE CATION)
AND THE NEGATIVELY-CHARGED SPECIES SECOND (THE
ANION).

THEREFORE...

STEP 1 FROM THE FORMULA IT IS A BINARY COMPOUND; ONLY TWO ELEMENTS.

STEP 2 THE COMPOUND IS COMPOSED OF Ca, A METAL AND F, A NONMETAL. Ca FORMS ONLY A 2+CATION. SO WE CALL THE POSITIVE PART OF THE COMPOUND CALCIUM.

STEP 3 MODIFY THE NAME OF THE SECOND ELEMENT TO THE STEM FLUOR- AND ADD THE -IDE ENDING TO FORM THE NAME OF THE NEGATIVE PART, FLUORIDE.

STEP 4 THE NAME OF THE COMPOUND IS THEREFORE *CALCIUM FLUORIDE*.

NAMING BINARY IONIC COMPOUNDS THAT CONTAIN A VARIABLE-CHARGE METAL

SUPPOSE YOU WERE ASKED TO NAME THESE TWO COMPOUNDS:

FeS

 Fe_2S_3

BOTH OF THESE COMPOUNDS EXIST, AND THEY HAVE
DIFFERENT PHYSICAL AND CHEMICAL PROPERTIES. WE CAN'T
VERY WELL CALL THEM BOTH *IRON SULFIDE*. WE NEED A
DIFFERENT NAMING SYSTEM FOR CASES SUCH AS THESE.

Iron is found in the area of the periodic table we call the transition metals; most of these metals form more than one type of cation, and iron certainly does.

Each ion of iron forms a different compound with the same anion.

In the Stock System the charge on the cation is designated by a Roman numeral placed in parentheses immediately following the name of the metal.

Cation Charge	+1	+2	+3	+4	+5
Roman Numera	l	II	III	IV	V

The nonmetal name still ends in -ide.

Stock System

Lower Charge

Name

Higher Charge

Formula Name

Formula

iron(III)

Copper

Lead

Element

 Fe^{2+}

iron(II)

Cu⁺ copper (I) Cu²⁺

 Fe^{3+}

copper(II)

Iron

Pb²⁺

lead (II)

Pb⁴⁺

lead(IV)

Mercury

mercury(II)

 Hg_2^{2+} mercury(I) Hg_2^{2+}

Tin

 Sn^{2+}

tin(II)

Sn⁴⁺ tin

SO, THE FIRST THING YOU SHOULD ASK YOURSELF WHEN CONFRONTED WITH THE FORMULA OF A COMPOUND THAT YOU HAVE TO NAME IS THIS:

IS THERE A METAL IN THIS COMPOUND?

IF THE ANSWER IS YES, THEN THE COMPOUND IS

IONIC

This should prompt a second question:

Is it a *fixed-charge* metal or

a variable-charge

metal?

Name the metal, add the stem of the nonmetal and add -ide

Name the metal, add a Roman numeral for the metal's charge, then add the stem of the nonmetal and -ide

NOMENCLATURE FOR BINARY IONIC COMPOUNDS

HOW TO NAME IONIC COMPOUNDS WITH POLYATOMIC IONS

SOME POINTS TO HELP REMEMBER THE POLYATOMIC IONS:

- 1. MOST POLYATOMIC IONS ARE NEGATIVELY CHARGED. ONLY TWO MAIN POSITIVELY CHARGED ONES AMMONIUM ION AND HYDRONIUM ION
- 2. FOUR POLYATOMIC IONS HAVE NAMES THAT END IN "IDE" LIKE THE NONMETAL IONS: HYDROXIDE, CYANIDE, AZIDE AND PEROXIDE.
- 3. NOTE THE "-ATE" AND "-ITE" PAIRS. THEY DIFFER BY THE NUMBER OF OXYGEN ATOMS. THE "-ATE" ALWAYS HAS THE GREATER NUMBER OF OXYGEN ATOMS. (SULFATE SO₄²⁻ AND SULFITE SO₃²⁻)
- 4. SOME PAIRS DIFFER BY A HYDROGEN ION CARBONATE (CO₃²⁻) AND HYDROGEN CARBONATE (HCO₃⁻). THE ADDITION OF H REDUCES THE CHARGE.
- 5. WHEN SULFUR REPLACES AN OXYGEN ATOM, THE PREFIX "THIO-" IS ADDED TO THE NAME. CYANATE ION (OCN-) THIOCYANATE SCN-, SULFATE (SO_4^{2-}) THIOSULFATE ($S_2O_3^{2-}$)

POLYATOMIC NOMENCLATURE

• WHEN NAMING A COMPOUND CONTAINING A POLYATOMIC ION, NAME THE CATION FIRST AND THEN NAME THE

Sodium carbonate

This is the way the formula is written.

 $\frac{KMnO_4}{Potassium\ permanganate}\\ \frac{K^+}{MnO_4}$

The ions are what is actually present.

BINARY MOLECULAR COMPOUNDS

- A BINARY MOLECULAR COMPOUND CONSISTS OF TWO NONMETALS ELEMENTS.
- NAME THE COMPOUND AS THE FORMULA IS WRITTEN.
 - THE LEAST ELECTRONEGATIVE ELEMENT IS NAMED FIRST.
 USE THE FULL NAME OF THE ELEMENT.
 - THE STEM OF THE SECOND NONMETAL FOLLOWS WITH THE SUFFIX "-IDE."
 - NUMERICAL PREFIXES ARE USED TO INDICATE THE NUMBER OF BOTH ATOMS PRESENT.

Binary Molecular Compounds

A Greek prefix is placed before the name of each element to indicate the number of atoms of the element that are present.

•
$$mono = 1$$

•
$$Hexa = 6$$

•
$$Di = 2$$

•
$$Tri = 3$$

•
$$Tetra = 4$$

BINARY MOLECULAR COMPOUNDS

- EXCEPTION TO THE RULE:
 - BINARY COMPOUNDS WITH HYDROGEN
 LISTED AS THE FIRST ELEMENT IN THE
 FORMULA ARE NAMED WITHOUT USING THE
 PREFIX FOR HOW MANY ATOMS THERE ARE.
 - PREFIX "MONO" IS ALWAYS DROPPED AT THE BEGINNING OF A NAME.

dinitrogen trioxide

 N_2O_3

indicates two nitrogen atoms

indicates three oxygen atoms

indicates one phosphorous atom

indicates five chlorine atoms

N_2O_3

DINITROGEN TRIOXIDE

CCL₄

CARBON TETRACHLOR IDE

CO

CARBON MONOXIDE

NAME CO2

CARBON DIOXIDE

NAME PI3

PHOSPHOROUS TRIIODIDE

COMMON NAMES TO KNOW

H₂O WATER

H₂O₂ HYDROGEN PEROXIDE

NH₃ AMMONIA

N₂H₄ HYDRAZINE

 CH_4 METHANE

 C_2H_6 ETHANE

PH₃ PHOSPHINE

AsH₃ ARSINE

OTHER MOLECULAR COMPOUNDS

- THE ABOVE EXAMPLES ARE ALL BINARY COMPOUNDS.
- OTHER MOLECULAR COMPOUNDS WITH MORE THAN 2 ELEMENTS DON'T FOLLOW THESE RULES.
- ORGANIC CHEMISTRY HAS ITS OWN SET OF RULES THAT INCLUDES BOND STRUCTURE.
- WE WILL LOOK AT NAMING TERNARY ACIDS (THREE ELEMENTS).

SOME H-CONTAINING COMPOUNDS DISSOLVE IN H₂O TO GIVE SOLUTIONS WITH PROPERTIES QUITE DIFFERENT FROM THE COMPOUNDS THEMSELVES. THESE SOLUTIONS ARE CALLED ACIDS. (CHAP. 14).

BUT NOT ALL H-CONTAINING COMPOUNDS GIVE ACIDIC SOLUTIONS IN H₂O. HOW CAN YOU TELL WHICH IS WHICH? ACIDS CAN BE IDENTIFIED BY THEIR CHEMICAL FORMULAS: H IS THE FIRST ELEMENT SHOWN IN THE FORMULA. E.G.,

ACIDS: HCl, H₂S, H₂SO₄, HNO₃

NONACIDS: NH₃, CH₄, PH₃, SiH₄

An acid is a H-containing molecular compound whose molecules yield hydrogen ions (H⁺) when dissolved in H₂O.

Acids produce H⁺ in H₂O, but an anion is also produced, depending on the structure of the molecular compound. E.g.,

HCl
$$\stackrel{\sqcup}{\vdash}$$
 H⁺ + Cl⁻
HNO₃ $\stackrel{\sqcup}{\vdash}$ H⁺ + NO₃ $\stackrel{\sqcup}{\vdash}$ HCN $\stackrel{\sqcup}{\vdash}$ H⁺ + CN⁻

ACID NOMENCLATURE

Anion
Ending Acid Name

-ide hydro-(stem)-ic acid

-ate (stem)-ic acid

-ite (stem)-ous acid

COMMON STUDENT MISSTEPS

- FOR IONIC COMPOUNDS, FORMULAS MUST BE REDUCED TO SIMPLEST RATIOS. EX:

 MnO₂, NOT Mn₂O₄ (DON'T REDUCE MOLECULAR COMPOUNDS.)
- THERE IS A DIFFERENCE BETWEEN AMMONIA (NH₃) AND AMMONIUM ION (NH₄⁺).
- CHEMICAL FORMULAS <u>DO NOT</u> SHOW IONIC CHARGES. EX: NaCl, <u>NOT</u> Na⁺Cl⁻
- DON'T PUT PARENTHESES UNLESS THEY ARE NEEDED TO SHOW MORE THAN ONE OF THE SAME ION. EX: NaNO₃, NOT Na(NO₃)