Intégrales généraliséees

${\rm Marc~SAGE}$

$2 \ \mathrm{juillet} \ 2006$

Table des matières

1	Intégrale de Gauss	2
2	Intégrale de Fresnel	2
3	Intégrale de Dirichlet	2
4	Intégrale de Raabe	3
5	Intégrale de Poisson	3
6	Intégrabilité et carrés	4
7	Transformée de Laplace	4
8	Intégrales de Drinfeld et dualité des polyzétas	6

1 Intégrale de Gauss

Caluler $\int_{\mathbb{R}} e^{-x^2} dx$ en élevant au carré.

Solution proposée.

L'intégrande étant paire, on peut intégrer sur \mathbb{R}^+ (où l'intégrale est clairement définie). Calculons le carré comme demandé :

$$\left(\int_{\mathbb{R}^+} e^{-x^2} dx\right)^2 = \left(\int_{\mathbb{R}^+} e^{-x^2} dx\right) \left(\int_{\mathbb{R}^+} e^{-y^2} dy\right) = \int \int_{x,y \ge 0} e^{-(x^2 + y^2)} dx dy$$

(tout est positif, donc Fubini s'applique). Le terme $x^2 + y^2 = r^2$ nous incite à passer en polaires :

$$\int \int_{x,y\geq 0} e^{-\left(x^2+y^2\right)} dx dy = \int_{\theta=0}^{2\pi} \int_{r=0}^{\infty} r e^{-r^2} dr d\theta = 2\pi \left[\frac{-1}{2} e^{-r^2}\right]_0^{\infty} = \pi.$$

On en déduit le résultat :

$$\int_{\mathbb{R}} e^{-x^2} dx = \sqrt{\pi}.$$

2 Intégrale de Fresnel

Calculer $\int_0^{-\infty} e^{ix^2} dx$.

Solution proposée.

On procède comme dans l'exercice précédent, en prenant le carré de l'intégrale sur [0, A] (on prendra A très grand):

$$\left(\int_{0}^{A} e^{ix^{2}} dx\right)^{2} = \int_{[0,A]^{2}} e^{i(x^{2}+y^{2})} dx dy =$$

3 Intégrale de Dirichlet

Calculer $I = \int_0^{\frac{\pi}{2}} \ln \circ \sin \theta$

Solution proposée.

I est bien définie car $\ln \circ \sin$ est continue sur $\left]0, \frac{\pi}{2}\right]$ et on dispose d'un équivalent \ln en 0 qui est intégrable (tout est de même signe – négatif).

Pour calculer I, on va utiliser les propriétés multiplicatives de ln. Pour cela, il faut faire apparaître un produit avec le sinus. On pense naturellement à la formule de duplication :

$$I = \int_0^{\frac{\pi}{2}} \ln\left(2\sin\frac{x}{2}\cos\frac{x}{2}\right) dx = \int_0^{\frac{\pi}{2}} \ln 2 + \int_0^{\frac{\pi}{2}} \ln\left(\sin\frac{x}{2}\right) dx + \int_0^{\frac{\pi}{2}} \ln\left(\cos\frac{x}{2}\right) dx$$
$$= \pi \frac{\ln 2}{2} + 2 \int_0^{\frac{\pi}{4}} \ln \circ \sin + 2 \int_0^{\frac{\pi}{4}} \ln \circ \cos.$$

On reconnaît I dans la première intégrale, sauf que la borne supérieure $\frac{\pi}{4}$ n'est pas égale à $\frac{\pi}{2}$... On souhaite doubler la borne supérieure? On n'a qu'à le faire dès le début :

$$\int_0^\pi \ln \circ \sin = 2 \int_0^{\frac{\pi}{2}} \ln \circ \sin$$

par symétrie de sin par rapport à $\frac{\pi}{2}$ sur $[0,\pi]$ (plus formellement, découper $[0,\pi]$ en $\left[0,\frac{\pi}{2}\right]$ et $\left[\frac{\pi}{2},\pi\right]$ puis faire le changement de variables $x\longmapsto \pi-x$ sur $\left[\frac{\pi}{2},\pi\right]$). Par ailleurs, la seconde intégrale $\int_0^{\frac{\pi}{2}}\ln\circ\cos$ vaut également I car cos se comporte comme sin sur $\left[0,\frac{\pi}{2}\right]$ (faire $x\longmapsto \frac{\pi}{2}-x$).

De toutes les remarques précédentes résulte l'égalité

$$2I = \int_0^{\pi} \ln \circ \sin = \pi \ln 2 + 2 \int_0^{\frac{\pi}{2}} \ln \circ \sin + 2 \int_0^{\frac{\pi}{2}} \ln \circ \cos = \pi \ln 2 + 4I,$$

d'où on tire la valeur recherchée :

$$I = -\pi \frac{\ln 2}{2}.$$

4 Intégrale de Raabe

Soit $\Gamma(x) = \int_0^\infty \frac{t^x}{e^t} \frac{dt}{t}$ la fonction d'Euler définie pour tout x > 0. On rappelle que

$$\Gamma(x+1) = x\Gamma(x)$$

$$\Gamma(x)\Gamma(1-x) = \frac{\pi}{\sin \pi x}$$

pour les valeurs de x où les quantités sont définies. Montrer que

$$\int_{x}^{x+1} \ln \circ \Gamma = x \ln x - x + \frac{1}{2} \ln 2\pi.$$

Solution proposée.

On reconnaît en $x \ln x - x$ une primitive de $\ln x$. En dérivant pour x > 0, on obtient

$$\partial_x \left(\int_x^{x+1} \ln \circ \Gamma \right) = \ln \Gamma (x+1) - \ln \Gamma (x) = \ln x,$$

ce qui montre que $\int_x^{x+1} \ln \circ \Gamma - (x \ln x - x)$ est une constante. Pour la calculer, on regarde sa limite $\int_{-0}^1 \ln \circ \Gamma$ quand $x \longrightarrow 0$, et on utilise la formule des compléments ainsi que le calcul de l' intrégale de Dirichlet :

$$\int_{-0}^{1} \ln \Gamma(x) \, dx = \int_{-0}^{1} \ln \Gamma(1-x) \, dx = \frac{\int_{-0}^{1} \ln \Gamma(x) \, dx + \int_{-0}^{1} \ln \Gamma(1-x) \, dx}{2}$$
$$= \frac{1}{2} \int_{-0}^{1} \ln \left(\frac{\pi}{\sin \pi x}\right) dx = \frac{\ln \pi}{2} - \frac{1}{\pi} \int_{-0}^{\frac{\pi}{2}} \ln \circ \sin$$
$$= \frac{\ln \pi}{2} - \frac{1}{\pi} \left(-\pi \frac{\ln 2}{2}\right) = \frac{\ln 2\pi}{2}, \quad CQFD.$$

5 Intégrale de Poisson

Calculer $\int_0^{2\pi} \frac{d\theta}{r^2 - 2r\cos\theta + 1} \ pour \ |r| < 1$.

Solution proposée.

On a un trinôme en r au dénominateur de racines $e^{\pm i\theta}$:

$$\int_0^{2\pi} \frac{d\theta}{r^2 - 2r\cos\theta + 1} = \int_0^{2\pi} \frac{d\theta}{(r - e^{-i\theta})(r - e^{i\theta})} = \int_0^{2\pi} \frac{d\theta}{(1 - re^{i\theta})(1 - re^{-i\theta})}.$$

On développe alors $\frac{1}{1-*}$ en série entière et on intervertit \sum et \int :

$$= \int_0^{2\pi} \sum_{p \ge 0} \left(r e^{i\theta} \right)^p \sum_{q \ge 0} \left(r e^{-i\theta} \right)^q d\theta \stackrel{?}{=} \sum_{p,q \ge 0} r^{p+q} \underbrace{\int_0^{2\pi} e^{(p-q)i\theta} d\theta}_{=\delta_n^q 2\pi} = 2\pi \sum_{p \ge 0} r^{2p} = \frac{2\pi}{1 - r^2}.$$

Il reste à justifier l'interversion : en prenant les modules, on tombe sur

$$\sum_{p,q \ge 0} |r|^{p+q} 2\pi = \frac{1}{1 - |r|} \frac{1}{1 - |r|} 2\pi$$

qui est évidement fini, d'où la sommabilité voulue.

Remarque. La fonction $P_r(\theta) = \frac{1-r^2}{r^2-2r\cos\theta+1}$ est appelée noyau de Poisson; on vient de montrer que son intégrale le long du cercle (mesuré par $\frac{dx}{2\pi}$) faisait 1. En traçant le graphe de P_r , on voit que les P_r "tendent" vers le Dirac en 0 quand $r \longrightarrow 1$, et l'on peut montrer que si f est une application continue du cercle unité à valeurs dans \mathbb{C} , alors la fonction définie sur le disque unité par $\overline{f}(re^{i\theta}) = f * P_r(\theta)$ (on convole f par un noyau de Poisson) prolonge continûment f en une fonction harmonique sur le disque unité (problème de Dirichlet). Le principe du maximum pour les fonctions harmoniques assure que ce prolongement est unique.

6 Intégrabilité et carrés

Soit $f: \mathbb{R}^+ \longrightarrow \mathbb{R}$ de classe C^2 telle que f^2 et f''^2 soient intégrables. Montrer alors que f'^2 est intégrable et que

$$\int_0^{\infty} f'^2 \le \int_0^{\infty} f^2 + \int_0^{\infty} f''^2.$$

Solution proposée.

Une intégration par parties donne

$$\int_0^x f'^2 = [ff']_0^x - \int_0^x ff''.$$

L'intégrale $\int_0^x ff''$ converge par Cauchy-Schwarz. Si $\int_0^x f'^2$ divergeait, ff' devrait donc tendre vers ∞ , d'où la divergence de $\int_0^\infty ff'$, *i.e.* de f'^2 , mais alors $\int_0^\infty f'^2$ ne pourrait converger, *absurde* par hypothèse.

Pour comparer les différentes intégrales de f, f' et f'', on s'appuie sur le développement de $(f + f' + f'')^2$ et on isole la différence $f^2 + f''^2 - f'^2$ que l'on veut ≥ 0 (après intégration) :

$$\left(f^2+f^{\prime\prime2}-f^{\prime2}\right)-\left(f+f^\prime+f^{\prime\prime}\right)^2=-2\left(f^{\prime2}+ff^\prime+ff^{\prime\prime}+f^\prime f^{\prime\prime}\right)=-2\left(f+f^\prime\right)\left(f^\prime+f^{\prime\prime}\right).$$

Par intégration, il vient :

$$\int_0^x f^2 + f''^2 - f'^2 = \int_0^x (f + f' + f'')^2 - \left[(f + f')^2 \right]_0^x.$$

Les deux intégrales convergeant, $(f + f')^2$ admet une limite en ∞ , mais comme $(f + f')^2$ est intégrable, cette limite doit être nulle. On en déduit

$$\int_{0}^{x} f^{2} + f''^{2} - f'^{2} = \int_{0}^{x} (f + f' + f'')^{2} - (f(x) + f'(x))^{2} + (f(0) + f'(0))^{2}$$

$$\geq -(f(x) + f'(x))^{2} \xrightarrow{x \to \infty} 0,$$

d'où l'inégalité recherchée.

7 Transformée de Laplace

Soit $f: \mathbb{R}^+ \longrightarrow \mathbb{C}$. Lorqu'elle existe, on définit la transformée de Laplace de f par

$$L_{f}(x) = \int_{0}^{+\infty} f(t) e^{-tx} dt.$$

Son intérêt principal est qu'il est tentant d'écrire $\int_0^{+\infty} f = \lim_0 L_f$, fournissant ainsi un moyen de calculer l'intégrale de f connaissant sa transformée de Laplace. Lorsque f est intégrable, cette égalité est évidente par domination de $f(t)e^{-tx}$ par |f(t)|. Dans le cas contraire, on dispose du théorème suivant :

Théorème taubérien fort.

Supposons que $L_f(x)$ soit défini pour tout x>0 et admette une limite l quand $x\longrightarrow 0$. Sous l'hypothèse xf(x) borné quand x décrit \mathbb{R}^+ , on a alors $\int_0^{\infty} f = l$.

• Soit Φ l'ensemble des fonctions $\varphi:[0,1] \longrightarrow \mathbb{C}$ telles que $\int_0^{\infty} f(t) \varphi(e^{-tx}) dt$ existe pour tout x>0 et admette l comme limite quand $x\longrightarrow 0$. Montrer que le problème est résolu si l'on prouve que $\chi:=\chi_{\left[\frac{1}{2},1\right]}$ appartient à Φ .

On va maintenant raisonner par densité en approchant χ par de gentils polynômes. On fixe un $\varepsilon > 0$.

• Montrer qu'il y a deux polynômes χ^* et χ_* vérifiant

$$\begin{cases} \chi_*\left(0\right) = \chi^*\left(0\right) = 0 \\ \chi_*\left(1\right) = \chi^*\left(1\right) = 1 \end{cases}, \\ \chi_* \le \chi \le \chi^* \text{ sur } \left[0,1\right], \\ \int_0^1 \frac{\chi^*\left(x\right) - \chi_*\left(x\right)}{x\left(1-x\right)} < \varepsilon \end{cases}$$

(on pourra chercher à approcher $H(x) := \frac{\chi(x) - x}{x(1 - x)}$ par des polynômes). • Montrer que les polynômes nuls en 0 sont dans Φ .

- Appliquer une transformée de Laplace pour caculer $\int_0^{\infty} \frac{\sin x}{x} dx$.

Solution proposée.

• On regarde ce que vaut

$$\int_{0}^{-\infty} f(t) \chi\left(e^{-tx}\right) dt = \int_{0}^{\frac{\ln 2}{x}} f(t) dt \xrightarrow{x \to 0} \int_{0}^{-\infty} f,$$

et comme cette limite vaut par hypothèse l, on a terminé.

• Un tracé du graphe de H montre que l'on peut approcher H par deux application continues $H_* \leq H \leq H^*$ telles que $\int_0^1 (H^* - H_*) < \varepsilon$. On approxime alors H^* et H_* par des polynômes à ε près (Stone-Weierstrass), disons $\left\{ \begin{array}{l} H^* \simeq P^* \\ H_* \simeq P_* \end{array} \right.$, et on rectifie $\left\{ \begin{array}{l} Q^* := P^* + \varepsilon \\ Q_* := P_* - \varepsilon \end{array} \right.$ afin de conserver l'inégalité $Q_* \le H \le Q^*$. Voilà notre approximation polynomiale de H, qui a le bon goût de vérifier

$$\int_0^1 |Q^* - Q_*| \le \int_0^1 |Q^* - P^*| + \int_0^1 |P^* - H^*| + \int_0^1 |H^* - H_*| + \int_0^1 |H_* - P_*| + \int_0^1 |P_* - Q_*| < 5\varepsilon.$$

Ensuite, puisque $\chi(x) = x + x(1 - x)H(x)$, il est naturel de poser

$$\left\{ \begin{array}{l} \chi^{*} = X + X \left(1 - X \right) Q^{*} \\ \chi_{*} = X + X \left(1 - X \right) Q_{*} \end{array} \right. ,$$

lesquels vérifient les propriétés souhaitées (quitte à couper notre ε de départ en 5).

• Il suffit de montrer que les monômes X^n sont dans Φ pour $n \geq 1$. Or, cela est immédiat :

$$\int_{0}^{+\infty} f(t) X^{n} \left(e^{-tx}\right) dt = \int_{0}^{+\infty} f(t) e^{-ntx} dt = L_{f}(nx)$$

qui est défini pour tout x > 0 et qui tend vers l quand $x \longrightarrow 0$.

• Il s'agit de finir le raisonnement par densité en montrant l'aspect "continuité". On sait déjà (par le premier point) que $\int_0^{-\infty} f(t) \chi(e^{-tx}) dt$ converge, seul reste à montrer que sa limite quand $x \longrightarrow 0$ est bien l. On sait par ailleurs que les approximations $\int_0^{-\infty} f(t) \chi^*(e^{-tx}) dt$ sont gentilles, au sens où $\chi^* \in \Phi$ (cf. troisième point). On va par conséquent comparer ces deux quantités. C'est là que va intervenir pour la première fois l'hypothèse $|tf(t)| \leq M$. On notera par commodité $\delta := \frac{\chi^* - \chi_*}{\operatorname{Id}(1 - \operatorname{Id})}$, le point b) montrant que $\int_0^1 \delta < \varepsilon$:

$$\begin{split} \left| \int_0^{\to\infty} f\left(t\right) \chi^* \left(e^{-tx}\right) dt - \int_0^{\to\infty} f\left(t\right) \chi \left(e^{-tx}\right) dt \right| &\leq \int_0^{\to\infty} \left| f\left(t\right) \right| \left[\chi^* - \chi \right] \left(e^{-tx}\right) dt \\ &\leq \int_0^{\to\infty} \left| f\left(t\right) \right| \left[\chi^* - \chi_* \right] \left(e^{-tx}\right) dt \leq \int_0^{\to\infty} \left| f\left(t\right) \right| \delta \left(e^{-tx}\right) \left(e^{-tx}\right) \left(e^{-tx}\right) dt \\ &\leq \int_0^{\to\infty} t \left| f\left(t\right) \right| \delta \left(e^{-tx}\right) x e^{-tx} dt \leq M \int_{-\infty}^0 \delta \left(e^{-tx}\right) d \left(e^{-tx}\right) \stackrel{u=e^{-tx}}{=} M \int_{-\infty}^1 \delta \left(u\right) du < M \varepsilon. \end{split}$$

Pour x assez petit, l'intégrale de gauche est proche de l à ε près, donc celle de droite aussi (quitte à diviser ε par M), ce qui conclut la démonstration.

• La transformée de Laplace de $f(x) = \frac{\sin x}{x}$ est clairement définie au voisinage de 0 ($\frac{\sin x}{x}$ se prolonge par continuité) et au voisinage de ∞ (l'exponentielle écrase tout le monde). Pour calculer L_f , on va la dériver afin de tuer le x au dénominateur.

On remarque pour ce faire que la dérivée de l'intégrande est dominée sur tout $[a, \infty[$ avec a > 0:

$$\int_0^\infty \left| \partial_x \left(\frac{\sin t}{t} e^{-tx} \right) \right| dt = \int_0^\infty \left| \sin t \right| e^{-tx} dt \le \int_0^\infty e^{-at} dt.$$

On peut donc dériver sous le signe intégrale pour x > 0 :

$$\partial_x L_f(x) = -\int_0^\infty (\sin t) e^{-tx} dt = \frac{1}{2i} \left(\int_0^\infty e^{-(x+i)t} dt - \int_0^\infty e^{-(x-i)t} dt \right)$$
$$= \frac{1}{2i} \left(\frac{1}{x+i} - \frac{1}{x-i} \right) = -\frac{1}{x^2+1}.$$

En intégrant entre x > 0 et A > 0, on en déduit

$$L_f(A) - L_f(x) = \arctan x - \arctan A.$$

Or, quand $A \longrightarrow \infty$, $L_f(A)$ tend vers 0:

$$|L_f(A)| \le \int_0^{-\infty} \left| \frac{\sin t}{t} \right| e^{-At} dt \le \int_0^{-\infty} e^{-At} dt = \frac{1}{A}.$$

On obtient ainsi l'expression de la tranformée de Laplace de $\frac{\sin x}{x}$, valable pour tout x>0:

$$L_f(x) = \frac{\pi}{2} - \arctan x.$$

Les hypothèse du théorème sont maintenant réunies : L_f admet clairement une limite en 0 (qui est $\frac{\pi}{2}$) et xf(x) est trivialement borné (par 1). Finalement :

$$\int_0^{-\infty} \frac{\sin t}{t} dt = \frac{\pi}{2}.$$

Remarque. Il y a un théorème taubérien faible, où l'hypothèse $f(x) = O\left(\frac{1}{x}\right)$ est remplacée par $f(x) = o\left(\frac{1}{x}\right)$, hypothèse évidemment plus forte!

8 Intégrales de Drinfeld et dualité des polyzétas

Soit $k_1, ..., k_n$ des entiers ≥ 1 . On définit le polyzêta

$$\zeta(k_1, ..., k_n) = \sum_{1 \le m_1 < ... < m_n} \frac{1}{m_1^{k_1} ... m_n^{k_n}}$$

qui généralise la fonction $\zeta(k) = \sum_{m \geq 1} \frac{1}{m^k}$. On pourra admettre (ou redémontrer) que $\zeta(k_1, ..., k_n)$ est fini ssi $k_n \geq 2$.

Soient $\varepsilon_1,...,\varepsilon_n$ dans $\{0,1\}$ et $\left\{\begin{array}{l} A_0\left(t\right)=t\\ A_1\left(t\right)=1-t \end{array}\right.$ On définit l'intégrale de Drinfeld

$$I\left(\varepsilon_{1},...,\varepsilon_{n}\right)=\int_{0}^{-\infty}\frac{dt_{1}}{A_{\varepsilon_{1}}\left(t_{1}\right)}...\frac{dt_{n}}{A_{\varepsilon_{n}}\left(t_{n}\right)}$$

(qui a toujours un sens car tout le monde est positif). On peut montrer que $I(\varepsilon_1, ..., \varepsilon_n)$ est finie ssi $(\varepsilon_1, \varepsilon_n) = (1,0)$

Notre but est de montrer que

$$I\left(\underbrace{1,0,...,0}_{k_{1}},\underbrace{1,0,...,0}_{k_{2}},...,\underbrace{1,0,...,0}_{k_{n}}\right) = \zeta\left(k_{1},...,k_{n}\right),$$

ce qui donnera une représentation des polyzêtas par les intégrales de Drinfeld, puis d'utiliser la relation de dualité

$$I(\varepsilon_1, ..., \varepsilon_n) = I(1 - \varepsilon_n, ..., 1 - \varepsilon_1)$$

pour en déduire pleins d'identités entre les polyzêtas.

• Montrer en lemme que

$$\int_0^1 (-\ln t)^{k-1} t^{m-1} \frac{dt}{(k-1)!} = \frac{1}{m^k}.$$

- Montrer que $I\left(\underbrace{1,0,...,0}_{k}\right) = \zeta\left(k\right)$. En déduire la représentation des polyzêtas par les intégrales de Drinfeld.
- Montrer ensuite la relation de dualité annoncée et donner un exemple d'utilisation.

Solution proposée.

• On fait un changement de variables $u=-\ln t$, afin de se ramener à intégrer une exponentielle contre un polynôme :

$$\int_0^1 (-\ln t)^{k-1} \, t^{m-1} \frac{dt}{(k-1)!} = \int_{-\infty}^0 u^{k-1} e^{-(m-1)u} \frac{-e^{-u} du}{(k-1)!} = \int_0^\infty u^{k-1} e^{-mu} \frac{du}{(k-1)!}.$$

On homogénéise à l'aide du changement de variables v=mu, ce qui fait apparaître la fonction Γ :

$$= \int_0^\infty \frac{v^{k-1}}{m^{k-1}} e^{-v} \frac{\frac{dv}{m}}{(k-1)!} = \frac{1}{m^k} \underbrace{\int_0^\infty v^{k-1} e^{-v} dv}_{=\Gamma(k)} \frac{1}{(k-1)!} = \frac{1}{m^k}$$

• On va développer le $\frac{1}{1-t}$ en série entière et utiliser la symétrie de ce qui reste :

$$\begin{split} I\left(\underbrace{1,0,...,0}_{k}\right) &= \int_{0 < t_{1} < ... < t_{k} < 1} \frac{dt_{1}}{1-t_{1}} \frac{dt_{2}}{t_{2}} ... \frac{dt_{k}}{t_{k}} \\ &= \int_{t_{1}=0}^{1} \int_{t_{1} < t_{2} < ... < t_{k} < 1} \sum_{m \geq 0} t_{1}^{m} dt_{1} \frac{dt_{2}}{t_{2}} ... \frac{dt_{k}}{t_{k}} \\ &\stackrel{t=t_{1}}{=} \sum_{m \geq 0} \int_{t=0}^{1} \left[\int_{t < t_{2} < ... < t_{k} < 1} \frac{dt_{2}}{t_{2}} ... \frac{dt_{k}}{t_{k}} \right] t^{m} dt \\ &= \sum_{m \geq 0} \int_{0}^{1} \left[\frac{1}{(k-1)!} \int_{[t,1] \times ... \times [t,1]} \frac{dt_{2}}{t_{2}} ... \frac{dt_{k}}{t_{k}} \right] t^{m} dt \end{split}$$

(on a dit que toutes les intégrales $\int_{t < t_{\sigma(2)} < \ldots < t_{\sigma(k)} < 1} \frac{dt_2}{t_2} \ldots \frac{dt_k}{t_k}$ sont identiques pour σ une permutation de $\{2, \ldots, k\}$, elles sont en nombre (k-1)!, et leur somme vaut l'intégrale sur la réunion des domaines $t < t_{\sigma(2)} < \ldots < t_{\sigma(k)} < 1$ quand σ varie, *i.e.* tous les t_i de [t, 1] modulo un ensemble de mesure nulle)

$$= \sum_{m\geq 0} \frac{1}{(k-1)!} \int_0^1 \left(\int_{[t,1]} \frac{dt_2}{t_2} \right) \dots \left(\int_{[t,1]} \frac{dt_k}{t_k} \right) t^m dt$$

$$= \sum_{m\geq 1} \frac{1}{(k-1)!} \int_0^1 \ln(-t)^{k-1} t^{m-1} dt$$

$$= \sum_{m\geq 1} \frac{1}{m^k} \text{ par le lemme}$$

$$= \zeta(k).$$

• Pour le cas général, on regarde le cas de seulement trois variables pour alléger, et on mène le même calcul que précédemment modulo quelques homogénéisations :

$$\begin{split} I\left(\underbrace{1,0,...,0}_{a},\underbrace{1,0,...,0}_{b},\underbrace{1,0,...,0}_{c}\right) \\ &= \int_{\substack{0 < x_{1} < ... < x_{a} \\ < y_{1} < ... < y_{b}}} \frac{dx_{1}}{1-x_{1}} \frac{dx_{2}}{x_{2}} ... \frac{dx_{a}}{x_{a}} \cdot \frac{dy_{1}}{1-y_{1}} \frac{dy_{2}}{y_{2}} ... \frac{dy_{b}}{y_{b}} \cdot \frac{dz_{1}}{1-z_{1}} \frac{dz_{2}}{z_{2}} ... \frac{dz_{c}}{z_{c}} \\ &= \sum_{\alpha,\beta,\gamma \geq 0} \int_{0 < x < y < z < 1} x^{\alpha} y^{\beta} z^{\gamma} \int_{x < x_{2} < ... < x_{a} < y} \frac{dx_{2}}{x_{2}} ... \frac{dx_{a}}{x_{a}} \int_{y < y_{2} < ... < y_{b} < z} \frac{dy_{2}}{y_{2}} ... \frac{dy_{b}}{y_{b}} \int_{z < z_{2} < ... < z_{c} < 1} \frac{dz_{2}}{z_{2}} ... \frac{dz_{c}}{z_{c}} dx dy dz \\ &= \sum_{\alpha,\beta,\gamma \geq 1} \int_{0 < x < y < z < 1} x^{\alpha-1} y^{\beta-1} z^{\gamma-1} \frac{1}{(a-1)!} \left(\ln \frac{y}{x} \right)^{a-1} \frac{1}{(b-1)!} \left(\ln \frac{z}{y} \right)^{b-1} \frac{1}{(c-1)!} \left(\ln \frac{1}{z} \right)^{c-1} dx dy dz \end{split}$$

La seule variable qui apparaît une seul fois étant x, on va chercher à intégrer d'abord en x. On va retomber sur les intégrales du lemme, au changement de variables x = uy près :

$$= \sum_{\alpha,\beta,\gamma\geq 1} \int_{z=0}^{1} \left(\int_{y=0}^{z} \left(\int_{x=0}^{y} x^{\alpha-1} \frac{1}{(a-1)!} \left(-\ln \frac{x}{y} \right)^{a} dx \right) y^{\beta-1} \frac{1}{(b-1)!} \left(-\ln \frac{y}{z} \right)^{b-1} dy \right) z^{\gamma-1} \frac{1}{(c-1)!} \left(-\ln z \right)^{c-1} dz$$

$$= \sum_{\alpha,\beta,\gamma>1} \int_{z=0}^{1} \left(\int_{y=0}^{z} \left(\int_{u=0}^{1} u^{\alpha-1} y^{\alpha-1} \frac{1}{(a-1)!} \left(-\ln u \right)^{a-1} du \ y \right) y^{\beta-1} \frac{1}{(b-1)!} \left(\ln \frac{z}{y} \right)^{b-1} dy \right) z^{\gamma-1} \frac{1}{(c-1)!} \left(\ln \frac{1}{z} \right)^{c-1} dz.$$

On reconnait l'intégrale du lemme (en u), ce qui fait sortir un $\frac{1}{a^{\alpha}}$. On continue en intégrant en y, toujours en homogénéisant par y=vz, et ainsi de suite :

$$\begin{split} &= \sum_{\alpha,\beta,\gamma \geq 1} \frac{1}{a^{\alpha}} \int_{z=0}^{1} \left(\int_{y=0}^{z} y^{\alpha+\beta-1} \frac{1}{(b-1)!} \left(\ln \frac{z}{y} \right)^{b-1} dy \right) z^{\gamma-1} \frac{1}{(c-1)!} \left(\ln \frac{1}{z} \right)^{c-1} dz \\ &\stackrel{y=vz}{=} \sum_{\alpha,\beta,\gamma \geq 1} \frac{1}{\alpha^{a}} \int_{z=0}^{1} \left(\underbrace{\int_{v=0}^{1} v^{\alpha+\beta-1} \frac{1}{(b-1)!} \left(-\ln v \right)^{b-1} dv}_{=\frac{1}{(\alpha+\beta)^{b}}} \right) z^{a+\beta+\gamma-1} \frac{1}{(c-1)!} \left(\ln \frac{1}{z} \right)^{c-1} dz \\ &= \sum_{\alpha,\beta,\gamma \geq 1} \frac{1}{\alpha^{a}} \frac{1}{(\alpha+\beta)^{b}} \int_{z=0}^{1} z^{a+\beta+\gamma-1} \frac{1}{(c-1)!} \left(-\ln z \right)^{c-1} dz \\ &= \sum_{\alpha,\beta,\gamma \geq 1} \frac{1}{\alpha^{a}} \frac{1}{(\alpha+\beta)^{b}} \frac{1}{(\alpha+\beta+\gamma)^{c}} \\ &= \zeta \left(a,b,c \right). \end{split}$$

• Montrons à présent que I est stable par la transformation proposée, grâce au changement de variable

u=1-t et en remarquant que $A_{1-\varepsilon}\left(1-t\right)=A_{\varepsilon}\left(t\right)$:

$$\begin{split} I\left(1-\varepsilon_{n},...,1-\varepsilon_{1}\right) &= \int_{t_{n}=0}^{1} \int_{t_{n-1}=0}^{t_{n}} ... \int_{t_{1}=0}^{t_{2}} \frac{dt_{1}}{A_{1-\varepsilon_{n}}\left(t_{1}\right)} ... \frac{dt_{n}}{A_{1-\varepsilon_{1}}\left(t_{n}\right)} \\ &= \int_{u_{n}=1}^{0} \int_{u_{n-1}=1}^{u_{n}} ... \int_{u_{1}=1}^{u_{2}} \frac{-du_{1}}{A_{1-\varepsilon_{n}}\left(1-u_{1}\right)} ... \frac{-du_{n}}{A_{1-\varepsilon_{1}}\left(1-u_{n}\right)} \\ &= \int_{u_{n}=0}^{1} \int_{u_{n-1}=u_{n}}^{1} ... \int_{u_{1}=u_{2}}^{u_{1}} \frac{du_{1}}{A_{\varepsilon_{n}}\left(u_{1}\right)} ... \frac{du_{n}}{A_{\varepsilon_{1}}\left(u_{n}\right)} \\ &= \int_{0< u_{n}< ... < u_{1}<1}^{1} \cdot \frac{du_{n}}{A_{\varepsilon_{1}}\left(u_{n}\right)} ... \frac{du_{1}}{A_{\varepsilon_{n}}\left(u_{1}\right)} \\ &= I\left(\varepsilon_{1}, ..., \varepsilon_{n}\right). \end{split}$$

On en déduit par exemple que

$$\zeta\left(2,4,1,3\right)=I\left(\underline{1,0,\underline{1,0,0,0}},\underline{1},\underline{1,0,0}\right)=I\left(\underline{1},\underline{1,0,0},\underline{1},\underline{1},\underline{1,0},\underline{1,0}\right)=\zeta\left(1,3,1,1,2,2\right),$$
ce qui illustre la dualité des polyzêtas.