Laboratorio de Arquitectura de Redes

Introducción al lenguaje C

Introducción al lenguaje C

- Introducción
- Características del lenguaje C
- □ Funciones en C
- Identificadores o etiquetas
- □ Las librerías y el linkado
- Compilación de un programa en C
- Ejemplos

Introducción al lenguaje C

- ☐ Fue creado en los años 70 por Dennis Ritchie sobre una máquina PDP-11 bajo el sistema operativo Unix
- ☐ Se desarrolló bajo el sistema operativo Unix pero no está ligado a él ni a ningún otros sistema operativo (algunos sistemas operativos están escritos en C)
- Durante mucho tiempo el estándar fue el entregado con la versión 5 del sistema operativo Unix, descrita por Brian Kernighan y Dennis Ritchie
- La proliferación de implementaciones obligaron a la creación de un estándar: el ANSI (American National Standard Institute)

Características del lenguaje C (I)

- Tuvo mucho éxito desde el principio por ser
 - Compacto
 - Estructurado
 - Portable
 - Flexible
 - De tipo medio
 - Muy difundido

Características del lenguaje C (II)

COMPACTO

Sólo hay 32 palabras reservadas en el estándar ANSI:

auto	double	int	struct
break	else	long	switch
case	enum	register	typedef
char	extern	return	union
const	float	short	unsigned
continue	for	signed	void
default	goto	sizeof	volatile
do	if	static	while

- Permite el uso de todas las operaciones algebraicas, lógicas y relacionales de las matemáticas convencionales
- Cualquier programa podría escribirse sólo con las palabras reservadas y los operadores definidos (muy laborioso)

Características del lenguaje C (III)

ESTRUCTURADO

- La componente estructural es la función
- No permite escribir funciones dentro de otra función
- Permite partes de código con datos privados: funciones independientes del programa que pueden ser utilizadas en otras aplicaciones
- Permite los bloques de código: sentencias y proposiciones agrupadas entre llaves «{ }» formando una unidad lógica
- Dispone de potentes sentencias de decisión e iteración
- La sentencia goto está prohibida o totalmente desaconsejada.

Características del lenguaje C (IV)

PORTABLE

- Los programas resultantes son independientes del hardware en el que se diseñan si se usan librerías y funciones del estándar
- Un mismo código es compilable en diferentes sistemas cambiando sólo el compilador
- El compilador de C es sencillo si se compara con otros compiladores, por lo que hay compiladores para todos los entornos

FLEXIBLE

- Fue creado, influenciado y probado por programadores profesionales por lo que tiene pocas restricciones y poco control sobre las decisiones del programador
 - Inconveniente para los principiantes, ventaja para los avanzados
- Permite múltiples tipos de datos y gran facilidad para conversiones entre esos tipos

Características del lenguaje C (V)

DE TIPO MEDIO

- Combina elementos de lenguajes de alto nivel con otros de lenguajes de bajo nivel:
 - Potentes sentencias (alto nivel)
 - Operaciones a nivel de bits, registros del procesador, puertos y memoria (bajo nivel)

MUY DIFUNDIDO

- Al ser sencillos, los compiladores de C son de los primeros que se crean cuando aparece un sistema nuevo
- Muy popular entre programadores profesionales y aficionados
- Muy utilizado para programar sistemas operativos, intérpretes, compiladores, ensambladores, drivers y controladores de red, etc.

Funciones en C

- □ La **función** es la unidad primaria de programación en
 C: es donde se desarrolla la actividad del programa
- Cada función determina un bloque de código independiente y portable
- Forma genérica:

Variables en C

- Las variables en C son porciones de memoria con un nombre
- Se utilizan para almacenar valores que pueden ser modificados por el programa
- Deben ser declaradas antes de ser utilizadas
 - La declaración establece el tipo de dato que va a contener
- El C soporta todos los tipos básicos de variables (carácter, entero, decimal, etc.) y permite:
 - Modificar los tipos definidos
 - Crear tipos nuevos

Identificadores o etiquetas

- Son los nombres con los que se identifican
 - Las variables
 - Las constantes
 - Las funciones
- Características:
 - Deben empezar con carácter alfabético o el subrayado «_» y pueden contener caracteres alfanuméricos
 - No son válidas las palabras reservadas
 - El C distingue entre mayúsculas y minúsculas
- Recomendaciones
 - Las funciones creadas por el programador comienzan con mayúscula
 - Las etiquetas o identificadores de constantes definidas o constantes simbólicas se escriben en mayúsculas

Sentencias en C

- Pueden ir en cualquier posición de la línea, no existe el concepto de campo (columnas en la línea)
- ☐ Finalizan con punto y coma «;»
- Indentación
 - Sangrado de líneas atendiendo a criterios de subordinación
 - Facilita la lectura y escritura del programa
 - Es ignorada por el compilador
- Bloques de sentencias
 - Conjuntos agrupados entre llaves «{}» formando una unidad indivisible
- Comentarios
 - Textos aclaratorios imprescindibles (no abusar)
 - Precedidos de «//» hasta el final de la línea
 - Entre los símbolos «/* */» cualquier número de líneas
- Directivas del preprocesador
 - Sentencias que comienzan siempre con el símbolo almohadilla «#»
 - Determinan el modo de actuar del compilador sobre el archivo fuente
 - No forman parte del lenguaje C en un sentido estricto. Las incluyen todos los compiladores y facilitan mucho la programación

Las librerías y el enlazado

- Los compiladores proporcionan un conjunto de funciones básicas en librerías (bibliotecas) de funciones (archivos *.LIB)
 - Pueden usarse en sentencias ordinarias
 - El estándar ANSI especifica un conjunto mínimo de funciones y sus características.
 - Los compiladores suelen incluir muchas más
 - El usuario puede crear sus propias librerías de funciones
- Las funciones incluidas en las librerías tienen formato reubicable (direcciones de memoria relativas)
- El enlazador o linker se encarga de unir el código de las funciones con el código fuente del programador

Compilación de un programa en C

- Pasos a seguir:
 - Diseño del algoritmo
 - Creación y escritura del programa en un fichero de texto (*.C)
 - Compilación del programa y obtención del archivo objeto (*.OBJ)
 - Enlazado (linkado) del fichero objeto con las librerías de las funciones utilizadas en el programa para obtener el fichero ejecutable (*.EXE)
- En los grandes trabajos el programa se divide en varios archivos, formando un proyecto, que pueden compilarse y probarse por separado y enlazarse para formar el ejecutable final

Ejemplos (I)

- El programa más sencillo
- Obsérvese
 - □ La directiva del preprocesador
 - La función principal
 - El comentario
 - □ La llamada a una función
 - La cadena de caracteres

Ejemplos (II)

- Programa para convertir una temperatura en grados Fahrenheint a grados Celsius
- Obsérvese
 - Las directivas del preprocesador
 - La declaración de variables previa a su utilización
 - Las sentencias de asignación y las operaciones aritméticas
 - El tipo de los datos
 - Los comentarios
 - ☐ La función printf()
 - La sentencia de salida return

Ejemplos (III)

```
/* Conversión de una temperatura en grados Fahrenheit
  a grados Celsius. */
#include <stdio.h>
main()
   int fahren, celsius; /* Variables enteras */
   printf("Conversión de °F a °C:\n");
   fahren = 100; /* Temperatura a convertir */
   celsius = 5*(fahren-32)/9; /* Fórmula de conversión */
   return 0;
```

Ejemplos (IV)

- Programa para convertir cualquier temperatura en grados Celsius a grados Fahrenheit
- Obsérvese:
 - El modo de lectura de datos del teclado

Ejemplos (V)

```
/* Conversión de temperaturas Fahrenheit-Celsius empleando números
   reales. */
#include <stdio.h>
main()
   float fahren, celsius; /* Variables reales*/
   printf("Conversión de °F a °C:\n");
   printf("Introduce la temperatura Fahrenheit: ");
   scanf("%f", &fahren); /* Toma de datos reales */
   celsius = (5.0/9.0)*(fahren-32);
                                                  /* Fórmula */
   return 0;
```

Ejemplos (VI)

- Programa para convertir una temperatura en grados Celsius a grados Fahrenheit utilizando números reales
- Obsérvese
 - La declaración y utilización de variables no enteras
 - Las operaciones aritméticas con números reales
 - Los cambios en las funciones de entrada y salida de datos

Ejemplos (VII)

```
/* Conversión de temperaturas Fahrenheit-Celsius empleando números
  reales. */
#include <stdio.h>
main()
   float fahren, celsius; /* Variables reales*/
   printf("Conversión de °F a °C:\n");
   printf("Introduce la temperatura Fahrenheit: ");
   scanf("%f", &fahren); /* Toma de datos reales */
                              /* Fórmula */
   celsius = (5.0/9.0)*(fahren-32);
   return 0;
```

Ejemplos (VIII)

- Programa que muestra una tabla de equivalencia entre temperaturas Celsius y Fahrenheit (con bucle de tipo para)
- Obsérvese:
 - La utilización de distintos tipos de variables
 - La indentación
 - La sentencia for, su sintaxis y significado
 - Los modificadores de formato en la función printf()

Ejemplos (IX)

```
/* Tabla de conversión de temperaturas Fahrenheit-Celsius. Versión con bucle for */
#include <stdio.h>
main()
     float fahren, celsius;
                                                  /* Variables */
     int liminfe, limsup, increm;
     liminfe = 0;
                                                  /* Límite inferior */
     limsup = 100;
                                                  /* Límite superior */
     increm = 10;
                                                  /* Incrementos */
     printf(" oF\t oC\n");
                                                  /* Cabecera de la tabla */
     printf("=======\n");
     for (fahren=liminfe ; fahren<=limsup ; fahren=fahren+increm)</pre>
          celsius = (5.0/9.0)*(fahren-32.0);
          printf("%3.0f\t%6.1f\n",fahren, celsius);
     return 0;
```

Ejemplos (X)

- Programa que muestra una tabla de equivalencia entre temperaturas Celsius y Fahrenheit (con bucle de tipo mientras)
- Obsérvese:
 - La utilización de constantes simbólicas
 - La llamada a la función system()
 - La sentencia while, su sintaxis y significado
 - La comparación menor o igual que «<=»</p>

Ejemplos (XI)

/* Tabla de conversión de temperaturas Fahrenheit-Celsius. Versión con bucle while y constantes simbólicas. */ #include <stdio.h> #include <stdlib.h> 0 /* Limite inferior */ #define LIMINFE #define LIMSUP 100 /* Límite superior */ /* Incrementos */ #define INCREM 10 main() float fahren, celsius; /* Variables */ fahren = LIMINFE; /* Origen de la tabla */ /* Borra la pantalla */ system("cls"); printf(" oF\t oC\n"); /* Cabecera de la tabla */ printf("========\n"); while (fahren<=LIMSUP)</pre> celsius = (5.0/9.0)*(fahren-32.0);printf("%3.0f\t%6.1f\n",fahren, celsius); fahren = fahren+INCREM; return 0;