

Quantum Computing for Everyone with Qiskit

PyLadiesBCN - 17/June/2022

Honda cmx500 Rebel

About me

- Ph.D in Computational Chemistry (2015)
- Scientific + Technology background
- Involved in PyLadiesBCN since ¿2013?
- Formally a PyLadiesBCN collaborator since 2019 (after gintonic *rite*)
- Working as software developer/ product owner 2015-2022
- HPC Specialist in HPCNow! since January 2022
- "Professora col·laboradora" in UOC (Master BiB) since 2018

What shall we talk about today?

- 1. Classical and Quantum Computers
- 2. Bits and Qubits
- 3. How to code
- 4. Hands-on!

Colossus - WWII

IBM Q One - 2019

Bit: minimum information unit

0 or 1 -> only **2** states

Bit: minimum information unit

0 or 1 -> only **2** states

Qubit: minimal representation of quantum information

n states (one for "side" of the sphere):

Bit: minimum information unit

0 or 1 -> only **2** states

Qubit: minimal representation of quantum information

n states (one for "side" of the sphere):

$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\varphi}\sin\frac{\theta}{2}|1\rangle$$

SUPERPOSITION: same qubit can have multiple states!!!

Bits and Qubits: measurement

How to code quantumly speaking? (back to classics)

How to code quantumly speaking? (back to classics)

How to code quantumly speaking? (back to classics)

How to code quantumly speaking? quantum gates

Classical gates ⊕ 🕹 🕹 💥 Phase gates Non-unitary operators and modifiers Hadamard gate Quantum gates \sqrt{X} \sqrt{X}^{\dagger} Y RX RY RXX RZZ U RCCX RC3X

How to code *quantumly speaking?* quantum gates

let's spin the ball!

Some quantum gates...

Pauli X gate -> 180° in x-axis

Pauli Y gate -> 180° in y-axis

Pauli Z gate -> 180° in z-axis

Phase gate -> 90° in z-axis

T gate -> 45° in z-axis

Some quantum gates...

Pauli X gate -> 180° in x-axis

Pauli Y gate -> 180° in y-axis

Pauli Z gate -> 180° in z-axis

Phase gate -> 90° in z-axis

T gate -> 45° in z-axis

How to code quantumly speaking?

"Assembler like" code (in Python):

Cirq (Google)

PennyLane (Xanadu)

Hands-on!!!! (notebook 1)

conda create --name qiskit-pyladies conda activate qiskit-pyladies pip install qiskit pip install jupyterlab pip install pylatexenc

The mother of the gates: Hadamard gate

The mother of the gates: Hadamard gate

Spin 90° in y-axis and 180° in x-axis

The mother of the gates: Hadamard gate

Spin 90° in y-axis and 180° in x-axis

Result: the "vector" is in the equator

The mother of the gates: Hadamard gate + CNOT gate

Spin 90° in y-axis and 180° in x-axis

Result: the "vector" is in the equator

+ **CNOT gate** -> 2 qubit gate: flips qubit_2 if qubit_1 (control qubit) is |1>

The mother of the gates: Hadamard gate + CNOT gate

Spin 90° in y-axis and 180° in x-axis

Result: the "vector" is in the equator

+ CNOT gate ->
2 qubit gate: flips qubit_2 if qubit_1
(control qubit) is |1>

The mother of the gates: Hadamard gate + CNOT gate

Hands-on!!!! (notebook 2)

Hadamard gate + CNOT gate in REAL quantum computers

"fake" quantum computer

100% real, no fake, quantum computer

Hadamard gate + CNOT gate in REAL quantum computers

"fake" quantum computer

100% real, no fake, quantum computer

