Lecture 3 - 9/10/24

Recall

Theorem 0.1. (Hurewicz)

Let X be a connected CW complex, $n \geq 2$. Then if $\pi_k(X) = 0$ for k < n, then $H_k(X) = 0$ for k < n, and $H: \pi_n(X) \to H_n(X)$ is an isomorphism.

Proof. Last time, modulo the fact that H is injective.

We can assume $X^{(n)} = \bigvee_i S_i^n$. Suppose we have a map $f: S^n \to X$. Then we can

- 1. Push it into $X^{(n)}$ (by CW approximation theorem)
- 2. Make it smooth

3. Give it the structure of

Then $H([f]) = \sum_i a_i [S_i^n]$ and $\sum_i a_i [S_i^n] = \partial$ (some set of (n+1)-cells) is by definition nullhomotopic, and f+g has total degree 0 on S_i^n .

So f + g is nullhomotopic by the π_n argument, so $f \simeq 0$.

There is a relative version if one replaces X by (X, A).

Corollary 0.2. Let X, Y be two simply connected spaces. If a map $f: X \to Y$ induces an isomorphism on H_n for all n, then $X \simeq Y$.

Example 0.1. $S^2 \times S^2$ and $S^2 \vee S^2 \vee S^4$ are not homotopy equivalent, so there is no map between them preserving H_* .

Proof. Apply relative Hurewicz to the mapping cylinder. We can assume $X \hookrightarrow Y$, then use naturality of H.

$$H_{i}(X) \longrightarrow H_{i}(Y) \longrightarrow H_{i}(Y,X) \longrightarrow H_{i-1}(X) \longrightarrow H_{i-1}(Y)$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\pi_{i}(X) \longrightarrow \pi_{i}(Y) \longrightarrow \pi_{i}(Y,X) \longrightarrow \pi_{i-1}(X) \longrightarrow \pi_{i-1}(Y)$$

The top left and top right morphisms are isomorphisms, $H_i(Y, X) = 0$, and we know $\pi_1(X) \cong \pi_1(Y) \cong \pi_1(Y, X) \cong 0$.

By Hurewicz, $\pi_2(Y, X) \cong H_2(Y, X) \cong 0$.

So for every k, $\pi_k(Y,X) \cong H_k(Y,X) \cong 0$.

By the Whitehead theorem, $Y \cong X$.

Corollary 0.3. For any CW complex with $\pi_1(X) \cong 0$, there exists a CW complex $X(n) \xrightarrow{a_n} X$ such that

- (i) a_n induces an isomorphism on H_k for $k \leq n$
- (ii) $H_k(X(n)) \cong 0$ for k > n.

Proof. Take $X^{(n)}$ and add some (n+1)-cells: we have the long exact sequence

$$\cdots \longrightarrow H_{n+1}(X,X^{(n)}) \longrightarrow H_n(X^{(n)}) \longrightarrow H_n(X) \longrightarrow \cdots$$

By relative Hurewicz, the first thing is isomorphic to $\pi_{n+1}(X, X^{(n)})$. Take a basis for the kernel of the second map, and take preimages in $H_{n+1}(X, X^{(n)})$ and corresponding maps.

$$f_i: (D^{n+1}, \partial D^{n+1}) \to (X, X^{(n)})$$

Use those to attach cells, completing the construction.

Fibrations

Definition 0.1. A fiber bundle $p: Y \to B$ with fiber F is a map such that

- For all $x \in B$, $p^{-1}(X) \cong F$
- For all $x \in B$, there is a neighborhood $U \ni x$ such that

$$p^{-1}(U) \xrightarrow{\cong} U \times F$$

$$\downarrow^{p}$$

$$U$$

commutes.

Example 0.2.

1. *F* × *B*

- **2.** Any covering space (F) is discrete in this case
- 3. The Möbius strip locally looks like $\underbrace{S^1}_{=B} \times \underbrace{[0,1]}_{-F}$
- **4.** The Hop fibration, the quotient map $\mathbb{C}^2 \supseteq S^3 \to S^2 \cong \mathbb{C}P^1$ which sends

$$h(z_1, z_2) = (z_1 : z_2)$$
$$= \frac{z_1}{z_2}$$

where in the last line $S^2 = \mathbb{C} \cup \{\infty\}$

preimages of points are S^1 .

If we think of $S^3 = \mathbb{R}^3 \cup \{\infty\}$, then any two fibers link with each other. This is

how you know the fibration is nontrivial.

More generally, $\mathbb{C}^{n+1} \supseteq S^{2n+1} \to \mathbb{C}P^n$, sending $(z_0, \ldots, z_n) \to (z_0 : z_1 : \cdots : z_n)$.

Definition 0.2. A (Serre) fibration $p: Y \to B$ is a map which satisfies the homotopy lifting for any CW complex X and any map $f: X \to Y$, there is a homotopy $F: X \times [0,1] \to B$ such that $F|_{t=0} = p \circ f$. So there is a lift

$$X \xrightarrow{f} Y$$

$$\downarrow p$$

$$X \times [0,1] \xrightarrow{F} B$$

making the diagram commute.

Exercise:

Show that fiber bundles are fibrations. Hint: enough to do it for $X = D^n$, and even for $F: D^n \to X$ stopping in a small region.

Example 0.3. 1. This is a fibration but not a fiber bundle:

This is not:

2. Given (Y, y_0) path-connected, let the path space

$$\mathcal{P}Y = \{ \gamma : [0,1] \to Y \text{cts} \mid \gamma(0) = y_0 \}$$

with the compact-open topology (i.e. the topology on $\operatorname{Map}(X,Y)$ such that for all $Z, f: Z \to \operatorname{Map}(X,Y)$ is continuous if and only if $Z \times X \to Y, (z,x) \mapsto f(z)(x)$ is

 ${\bf continuous}\ ({\bf hom\text{-}tensor}\ {\bf adjunction}))$

Facts:

1. PY is contractible via the contration

$$H(\gamma, t)(s) = \gamma((1 - t)s)$$

2. $\mathcal{P}Y \to Y$ is a fibration sending $\gamma \mapsto \gamma(1)$ where the fiber is the loop space,

$$\Omega Y = \{ \gamma : [0,1] \to Y \mid \gamma(0) = \gamma(1) = y_0 \}$$

Exercise: Show that this is indeed the case

Exdercise: Use the Hom-tensor adjunction to show that it has HLP.

3. Any map $f: X \to Y$ can be replaced by a homotopy equivalent fibration. Let $\mathcal{P}_f = \{(\gamma: [0,1] \to Y, x \in X) \mid \gamma(0) = f(x)\} \subseteq \underbrace{\tilde{\mathcal{P}}}_{\text{unbased paths}} Y \times X$

Then we have

$$\begin{array}{c}
\mathcal{P}_f(\gamma, x) \\
\downarrow \\
X \xrightarrow{f} Y
\end{array}$$

The vertical map sends $(\gamma, x) \mapsto x$, the diagonal sends $(\gamma, x) \mapsto \gamma(1)$, which is a fibration, and this diagram commutes up to homotopy.

- **4.** A homotopy of maps $X \to Y$ can be thought of as a map $X \times [0,1] \to Y$ but we can also think of it as a map $X \to \tilde{\mathcal{P}}Y$
 - A nullhomotopy of a map $X \to Y$ is a map from $C(X) \to Y$, or $X \to \mathcal{P}(Y)$

Theorem 0.4. (Long exact sequence of a fibration) For a fibration $F \hookrightarrow Y \twoheadrightarrow B$, there is a long exact sequence of homotopy groups

$$\cdots \longrightarrow \pi_n(F) \xrightarrow{i_*} \pi_n(Y) \xrightarrow{p_*} \pi_n(B) \xrightarrow{\partial} \pi_{n-1}(F) \longrightarrow \cdots$$

Proof. (sketch)

We want to think of maps of S^n as being a map of $(I^n, \partial I^n)$. Here is a picture (don't really get?):

Exercise: Show that all fibers of a fibration are (w.) homotopy equivalent (use HLP) Corollary 0.5. 1.

$$\pi_n(\Omega X) \cong \pi_{n+1}(X)$$

2. For n > 1, $\pi_n(S^1) \cong \pi_n(\mathbb{R}) \cong 0$, so by the Hopf fibration $\pi_n(S^3) \cong \pi_n(S^2)$ for $n \geq 3$, and $\pi_n(\mathbb{C}P^2) = \begin{cases} \mathbb{Z} & n = 2 \\ \pi_n(S^{2n+1}) & \text{otherwise} \end{cases}$

$$\lim_{k \to \infty} \pi_n(\mathbb{C}P^k) = \pi_n(\mathbb{C}P^\infty) = \begin{cases} \mathbb{Z} & n = 2\\ 0 & n \neq 2 \end{cases}$$

Definition 0.3. An Eilenberg-Maclane space K(A, n) is a space with

$$\pi_k(A) = \begin{cases} A & k = n \\ 0 & k \neq n \end{cases}$$

So \mathbb{CP}^{∞} is a $K(\mathbb{Z}, 2)$ -space.