Math League Contest Problem Set 12113 Team Round Problem 3

David Sun

Math League, LLC

Identify our objective.

In right-angled $\triangle ABC$, the hypotenuse has a length of 15. If the perimeter of $\triangle ABC$ is $15 + \sqrt{353}$, what is the area of $\triangle ABC$?

Perimeter of
$$\triangle ABC = 15 + \sqrt{353}$$

$$AB + BC + AC = 15 + \sqrt{353}$$

$$AB + BC + 15 = 15 + \sqrt{353}$$

$$AB + BC = \sqrt{353}$$

$$AB + BC = \sqrt{353}$$

Area of $\triangle ABC$

$$AB + BC = \sqrt{353}$$
 Area of $\triangle ABC = \frac{1}{2} \cdot AB \cdot BC$

$$AB + BC = \sqrt{353}$$
 Area of $\triangle ABC = \frac{1}{2} \cdot AB \cdot BC$ $(AB + BC)^2$

$$AB+BC=\sqrt{353}$$
 Area of $\triangle ABC=rac{1}{2}\cdot AB\cdot BC$ $(AB+BC)^2=AB^2+2\cdot AB\cdot BC+BC^2$

$$AB + BC = \sqrt{353}$$

Area of $\triangle ABC = \frac{1}{2} \cdot AB \cdot BC$
 $(\sqrt{353})^2 = AB^2 + 2 \cdot AB \cdot BC + BC^2$

$$AB + BC = \sqrt{353}$$

Area of $\triangle ABC = \frac{1}{2} \cdot AB \cdot BC$
 $353 = AB^2 + 2 \cdot AB \cdot BC + BC^2$

$$AB + BC = \sqrt{353}$$

Area of $\triangle ABC = \frac{1}{2} \cdot AB \cdot BC$
 $353 = AB^2 + (2 \cdot AB \cdot BC + BC^2)$

$$AB + BC = \sqrt{353}$$

Area of $\triangle ABC = \frac{1}{2} \cdot AB \cdot BC$
 $353 = AB^2 + (BC^2 + 2 \cdot AB \cdot BC)$

$$AB + BC = \sqrt{353}$$

Area of $\triangle ABC = \frac{1}{2} \cdot AB \cdot BC$
 $353 = AB^2 + BC^2 + 2 \cdot AB \cdot BC$

$$AB + BC = \sqrt{353}$$

Area of $\triangle ABC = \frac{1}{2} \cdot AB \cdot BC$
 $353 = (AB^2 + BC^2) + 2 \cdot AB \cdot BC$

$$AB + BC = \sqrt{353}$$

Area of $\triangle ABC = \frac{1}{2} \cdot AB \cdot BC$
 $353 - (AB^2 + BC^2) = 2 \cdot AB \cdot BC$

$$AB + BC = \sqrt{353}$$

Area of $\triangle ABC = \frac{1}{2} \cdot AB \cdot BC$
 $2 \cdot AB \cdot BC = 353 - (AB^2 + BC^2)$

$$AB + BC = \sqrt{353}$$
Area of $\triangle ABC = \frac{1}{2} \cdot AB \cdot BC$
 $2 \cdot AB \cdot BC = 353 - (AB^2 + BC^2)$
 $AB^2 + BC^2 = AC^2$

$$AB + BC = \sqrt{353}$$
Area of $\triangle ABC = \frac{1}{2} \cdot AB \cdot BC$
 $2 \cdot AB \cdot BC = 353 - (AB^2 + BC^2)$
 $AB^2 + BC^2 = 15^2$

$$AB + BC = \sqrt{353}$$
Area of $\triangle ABC = \frac{1}{2} \cdot AB \cdot BC$
 $2 \cdot AB \cdot BC = 353 - (AB^2 + BC^2)$
 $AB^2 + BC^2 = 225$

$$AB + BC = \sqrt{353}$$

Area of $\triangle ABC = \frac{1}{2} \cdot AB \cdot BC$
 $2 \cdot AB \cdot BC = 353 - 225$
 $AB^2 + BC^2 = 225$

$$AB + BC = \sqrt{353}$$

Area of $\triangle ABC = \frac{1}{2} \cdot AB \cdot BC$
 $2 \cdot AB \cdot BC = 128$
 $AB^2 + BC^2 = 225$

$$AB + BC = \sqrt{353}$$

Area of $\triangle ABC = \frac{1}{2} \cdot AB \cdot BC$
 $\frac{1}{2} \cdot 2 \cdot AB \cdot BC = \frac{1}{2} \cdot 128$
 $AB^2 + BC^2 = 225$

$$AB + BC = \sqrt{353}$$

Area of $\triangle ABC = \frac{1}{2} \cdot AB \cdot BC$
 $AB \cdot BC = 64$
 $AB^2 + BC^2 = 225$

$$AB + BC = \sqrt{353}$$

Area of $\triangle ABC = \frac{1}{2} \cdot 64$
 $AB \cdot BC = 64$
 $AB^2 + BC^2 = 225$

$$AB + BC = \sqrt{353}$$

Area of $\triangle ABC = \boxed{32}$
 $AB \cdot BC = 64$
 $AB^2 + BC^2 = 225$

Key Concepts

Key Concepts

■ Perimeter and Area of a Triangle

Key Concepts

- Perimeter and Area of a Triangle
- Algebraic Manipulation

Key Concepts

- Perimeter and Area of a Triangle
- Algebraic Manipulation
- Pythagorean Theorem

