Compedium-CV Original document by: Tomás Alves - ist175541

Original document by: Tomás Alves - ist175541 Translated by: Afonso Carvalho - ist193681 & Martim Afonso - ist192522

April 17, 2022

Chapters I & II

Basics of image processing

Select the correct option for each of the following sentences.
(a) An example of mid-level image processing is
i noise reduction;
ii image enhancement;
iii highlighting of features;
iv region classification (image segmentation).
Answer:
(b) The structuring elements of the human eye responsible for photopic vision are
the
i retinas;
ii rod cells;
iii cone cells;
iv corneas.
Answer:
(c) The structuring elements of the human eye sensitive to light are
i retinas;
ii rod cells;
iii cone cells;
iv cornea.
Answer:

(d)	Which of the following elements is not part of the photometric model?
	i source of light;
	ii object on the surface;
	iii sensor;
	iv digital scanner.
	Answer:
(e)	The amount of light reflected by an object varies between
	i 0 and $+\infty$;
	ii 0 and 1;
	iii1 and 1;
	iv. None of the above.
	Answer:
(f)	The dominant color in the Bayer filter is
, ,	i red;
	ii green;
	iii blue;
	iv white.
	Answer:
(g)	In computer vision, sampling consists in
	i digitizing the co-ordinate values of an image;
	ii digitizing the amplitude values of an image;
	iii applying a threshold operation;
	iv changing the magnification value.
	Answer:

(h)	The following expression for distances between pixels, $D[p(x,y), q(s,t)] = x-s + y-t $, is called i Euclidean distance; ii City-block distance; iii Chessboard distance; iv Point-to-point distance.
	Answer:
(i)	Which of the following codes represent the code 1011101100 in RLE format? i. $1(1)1(0)3(1)1(0)2(1)2(1)$; ii. $1(1)0(1)1(3)0(1)1(2)1(2)$; iii. $6(1)4(0)$; iv. None of the above.
	Answer:
(j)	Which of the following can be considered a type of low-level image processing? i. Region description; ii. Image enhancement; iii. Scene interpretation; iv. Region classification.
(k)	Answer: The structuring elements of the human eye responsible for scotopic vision are the i retinas; ii rod cells; iii cone cells; iv corneas.
	Answer:

(1)	The structuring elements of the human eye sensitive to color are the
	i retinas;
	ii rod cells;
	iii cone cells;
	iv corneas.
	Answer:
(m)	The element that is part of the PDI system is
	i the light source;
	ii the surface element;
	iii the sensor;
	iv the human eye.
	Answer:
(n)	The amount of light that strikes an object varies between
	i 0 and $+\infty$;
	ii 0 and 1;
	iii1 and 1;
	iv. None of the above.
	Answer:
(o)	The dominant color in the Bayer filter is green because
	i we are more sensitive to green;
	ii the combination of blue with red results in green;
	iii the visible spectrum has more shades of green;
	iv it avoids chromatic distortion.
	Answer:

(p) In computer vision, quantization consists in
i digitizing the co-ordinate values of an image;
ii digitizing the amplitude values of an image;
iii applying a threshold operation;
iv changing the magnification value.
Answer:
$ \begin{array}{l} (q) \ \ The \ following \ expression \ for \ distances \ between \ pixels, \ D[p(x,y), \ q(s,t)] = max(s , \ y-t), \ is \ called \ \\ i. \ \ Euclidean \ distance; \\ ii. \ \ City-block \ distance; \\ iii. \ \ Chessboard \ distance; \\ iv. \ \ Point-to-point \ distance. \end{array} $
Answer:
 (r) How many bits are required to represent 128 different intensity values in digital image? i. 8 bits; ii. 7 bits; iii. 6 bits; iv. 128 bits.
Answer:

2.	Knowing that an object O is 5 meters away from the camera and that two points placed in the same plane as the object are 0.5 meters apart, what's the corresponding distance of those points in the image plane? Consider the focal distance f to be 5 millimeters.
3.	A point P as the following co-ordinates $(x,y,z) = (6,8,2)$ in world space. Knowing that the focal distance f is equal to 3, determine the corresponding co-ordinates of $P'(x',y',z')$ in the retina space.

Binary image analysis

4. Consider the following representation of a digital image in Figure 1.

4	7	6	3	7
8	9	5	4	8
5	9	6	2	4
7	8	1	3	7
4	2	5	9	8

Figure 1

(a) Fill Figure 2 with the result of applying I>6, where I corresponds to Figure 1.

Figure 2

(b) Apply the CCA algorithm, considering a connectivity of 4, to Figure 2, and place the results on Figure 3.

Figure 3

5. Consider the following masks M, N and O, which correspond to Figures 4, 5 and 6, respectively. Also consider Figure 7 as image F

0		1	1	1]	1
1	1 1	1	0	1]	1
0	1 0	1	1	1		0

Figure 4 Figure 5 Figure 6

1	1	1	0	1	0	1
1	0	1	0	1	1	1
1	1	1	0	0	0	0
1	0	1	0	0	0	0
0	0	0	0	0	1	1
1	1	1	0	0	1	0
1	0	1	1	0	1	1

Figure 7

(a) Apply F \oplus M and fill Figure 8 with the results.

Figure 8

(b) Apply F \bigcirc N and fill Figure 9 with the results.

Figure 9

(c) Apply (F \ominus O) \oplus |FM and fill Figure 10 with the results.

Figure 10

6. Consider the matrix in Figure 11.

2	3	5	4	2
4	6	9	1	1
1	6	2	4	6
7	8	4	5	7
2	4	2	1	3

Figure 11

(a) Fill Figure 12 with the result of applying I>4, where I corresponds to Figure 11.

Figure 12

- (b) Apply the algorithm for detecting corners in Figure 12 and write down the number of external corners, internal corners and number of objects.
 - i. Number of external corners: _____
 - ii. Number of internal corners:
 - iii. Number of objects: _____

7. Consider the following matrix on Figure 13. Using an algorithm for building Region Adjacent Graphs, fill Figure 14 with the results and draw the resulting graph. Consider a connectivity of 4.

1	1	1	0	1	1	1
1	0	1	0	1	0	1
1	1	1	0	1	1	1
1	1	0	0	0	0	0
1	1	0	1	1	1	1
1	1	0	1	0	0	1
0	0	0	1	1	1	1

Figure 13

Figure 14

8. Consider the following matrix on Figure 15.

1	2	1	4
4	3	2	2
2	2	5	2
5	3	4	1

Figure 15

(a) Determine the histogram of Figure 15.

(b) Using the Otsu algorithm, determine the threshold t and its "goodness".

ii.
$$\lambda =$$

Chapters IV

Image Preprocessing

9. Stat	e what is:
(a)	Image Enhancement:
(b)	Image Restauration:
10. Sta	te 3 techniques for image enhancement:
(a)	
, ,	
(0)	
11. Sta	te 2 techniques for image restauration:
(a)	
(b)	

12. Consider the matrix in Figure 16, in which 16 different levels of intensities (I) are possible. Fill in Table 1 with the cumulative distribution of pixels (CDF) and their equalized intensity (IQ)

10	6	8	4	8	9
5	12	6	3	1	8
7	10	4	4	8	12
14	5	16	10	12	3

Figure 16

Ι	CDF	IQ
1		
3		
4		
5		
6		
7		
8		
9		
10		
12		
14		
16		

Table 1

13. Recall t	he	properties	of	bitmask	operations.	Select	the	correct	options	for	each
statemen	nt.										

(a)	Regarding differential operators,	the mask co-ordinates must have
	signs in order to obtain a	_ output whenever intensity transitions exist.

- i. ...opposite...maximum;
- ii. ...opposite...minimum;
- iii. ...equal...maximum;
- iv. ...equal...minimum;

٨		
Answer:		
A XIID W CI .		

(b) Regarding smoothness operators, the mask M x N elements are and their sum equals in order for the output to be equal to the input regions with constant intensity ipositiveM x N; iinegativeM x N; iiisymmetrical0; iv. None of the above;	
Answer:	
(c) Abrupt transitions are sparse the the mask dimensions are imoresmaller; iimorelarger; iiilesslarger; iv. None of the above;).
Answer:	
Consider the following matrix in Figure 17.	

14.

1	6	4	8
5	3	2	6
7	1	5	4
6	2	3	4

Figure 17

(a) Fill the matrix in Figure 18 with the result of applying a mean filter on Figure 17 with a 3x3 mask. Only apply the filter if the mask overlaps all bits in the matrix.

Figure 18

(b) Fill the matrix in Figure 19 with the result of applying a median filter on Figure 17 with a 3x3 mask. Only apply the filter if the mask overlaps all bits in the matrix.

Figure 19

- 15. Recall the different kernels for edge detection.
 - (a) Fill the matrix in Figure 20 with one of the Prewitt's kernels

Figure 20

(b) Fill the matrix in Figure 21 with one of the Sobel's kernels

Figure 21

Chapters V

Color and Texture Extraction

Select the correct option for each of the following sentences
(a) Following a structural approach, a texture is
i the way how a set of basic patterns are organized in a region;
ii a quantitative measure of how the intensities are arranged in a region;
-
iii a relation between a number of pixels and a certain luminous intensity
iv. None of the above.
Answer:
(b) What's the following color (255, 255, 0) in the CMY model?
i cyan;
ii magenta;
iii green;
iv blue;
Answer:
(c) Let D be the color (123, 214, 21) in RGB. The chrominance value for red is
i0.66;
ii0.33;
iii0.34;
iv123;
Answer:

- 17. Consider the matrix in Figure 22. Write down the quantitative measures of density and edge orientation.
 - (a) $F_{\text{edgeness}} = (\underline{\hspace{1cm}}, \underline{\hspace{1cm}})$
 - (b) $F_{magdir} = (__, __, __)$

Figure 22

- 18. Consider the following color (123,44,202) in the RGB model.
 - (a) Convert that color to the CMY model: (___,___);
 - (b) State the chrominance value for each of the RGB model components:
 - i. $r = _{--};$
 - ii. g = ___;
 - iii. b = ____.
 - (c) State the luminance of the RGB model: ____.
- 19. Consider the following histograms h_1 and h_2 . State the value of the intersection $\{h_1, h_2\}$ and match $\{h_1, h_2\}$.

$$h1 = [5 \ 3 \ 2 \ 6 \ 2 \ 3]$$

$$h2 = [4 \ 3 \ 1 \ 4 \ 3 \ 1]$$

- (a) intersection $\{h_1, h_2\} = \underline{\hspace{1cm}}$.
- (b) $match\{h_1, h_2\} =$ _____.

Chapters VI

Motion Analysis

20.		te two image subtraction methods.
21.	Stat (a)	te the 5 steps of the simple algorithm for region detection.
	(b)	
	(c)	
	(d)	
	(e)	

22.	Name 3	phenomena	between	bounding	boxes	that	might	occur	in a	ı video	surveil-
	lance sys	tem									

(a) ______.

(b) _____

(c) _____

23. Observe images 1 e 2. How can you differentiate the active regions to know if it's a car, a persona or another set of active pixels?

Image 1

Image 2

Chapters VI

Region Segmentation

24	Name	3	possible	features	to	segment	regions
44.	rame	J	Droggraf	icatures	ω	SUSTITUTE	regions

25. Build the quadtree of the binary image represented in Fig. 23, according with Fig. 24.

Figure 23

Figure 24

- 26. Name the 4 steps of the canny algorithm.
 - (a) _____
 - (b) ______.
 - (c) ______
 - (d) ______
- 27. Build the polygonal approximation of the following *chaincode* in Figure 25. Begin in the designated dot.

chaincode: 101776655242432

Figure 23

3	2	1
4		0
5	6	7

Figure 24

28. Using the matrices ThetaQ and DQ in Figures 27 and 28 respectively, fill the Accumulator matrix in Figure 29.

NOTE: Assume that in the Accumulator matrix, ThetaQ has intervals of 10 and DQ intervals of 1.

_	-	0	0	_
-	-	0	0	-
90	90	40	20	-
90	90	60	40	-
_	-	-	-	-

Figure 27

-	-	3	3	1
-	-	3	3	-
3	3	3	3	-
3	3	3	3	-
-	_	-	-	-

Figure 28

Figure 29

29. Given the Tables 2, 3 and 4, each corresponding to the lines and angles of a certain point, write down the angle and approximated distance, rounding to decimal places, of a line connecting all three points.

Angle	Dist.
0	40.0
30	69.6
60	81.2
90	70.0
120	40.6
150	0.4

Angle	Dist.
0	57.1
30	79.5
60	80.5
90	60.0
120	23.4
150	-19.5

Angle	Dist.
0	74.6
30	89.6
60	80.6
90	50.0
120	6.0
150	-39.6

Table 2

Table 3

Table 4

- (a) Angle: _____.
- (b) Distance: _____.
- 30. Analyse Figure 30.
 - (a) Draw the MST of the tree.
 - (b) What is the value of Int(C)? $Int(C) = \underline{\hspace{1cm}}$.

Figure 30