Cascaded NMOS Only PTs

- Pass transistor gates should never be cascaded as on the left
- Logic on the right suffers from static power dissipation and reduced noise margins

- Full swing on x (due to Level Restorer) so no static power consumption by inverter
- No static backward current path through Level Restorer and PT since Restorer is only active when A is high
- For correct operation M_r must be sized correctly (<u>ratioed</u>)

Transient Level Restorer Circuit Response

Restorer has speed and power impacts: increases the cap at x, slowing down the gate; increases t_r (but decreases t_f)

Solution 2: Multiple V_T Transistors

 Technology solution: Use (near) zero V_T devices for the NMOS PTs to eliminate most of the threshold drop (body effect still in force preventing full swing to V_{DD})

Impacts static power consumption due to subthreshold currents flowing through the PTs (even if V_{GS} is below V_T)

Solution 3: Transmission Gates (TGs)

 Full swing bidirectional switch controlled by the gate signal C, A = B if C = 1

TG Multiplexer

Transmission Gate XOR

TG Full Adder

