Gravitation universelle

Lituation problème

La cohésion du système solaire est due aux interactions mécaniques de ses éléments, quelle est la nature de ses interactions ? et par quelle loi sont-elles régies ?

Mouvement du planètes autour du soleil

Activité n°1

Isaak newton (physicien anglais) supposa que les corps s'attirent entre eux à couse de leurs masses, et que l'intensité de la force d'attraction dépond de la distance séparant ses corps, l'explication fournis par newton du mouvement des planètes autour du soleil du fait que la masse de ce dernier est la plus grande dans le système solaire.

Comment expliquer la cohésion du système solaire?
D'après newton, qu'elle est la cause de cette force
d'attraction universelle?
Pourquoi la terre tourne autour du soleil?

Prof: Katif Abdellah

2019-2020

Page: 1

Gravitation universelle

1- **f**oi de la gravitation

Newton énonça la loi de gravitation universelle en 1687. D'après cette loi, deux corps, a couse de leurs masse, exercent l'un sur l'autre une force gravitationnelle qui est attractive. Exemple:

La terre attire la lune comme la lune attire la terre.

1-1 Définition

Deux corps A et B, assimilables à des points, s'attirents mutuellement, L'attraction qu'ils exercent l'un sur l'autre est:

- ★ Proportionnelle a leurs masse m(A) et m(B)
- ★ Inversement proportionnelle au carré de la distance d entre les deux points.

d: la distance entre A et B $\overrightarrow{F}_{A/B}$: la force exercée de A sur B $\overrightarrow{F}_{B/A}$: la force exercée de B sur A

d=AB

m(B)

 $\overrightarrow{F}_{A/B}$

 $F_{B/A}$

1- **f**oi de la gravitation

1-2 formule mathématique de loi de newton

L'interaction gravitationnelle entre deux corps ponctuels A et B de masses respectives m(A) (ou m_A) et m(B) (ou m_B). Séparés d'une distance d=AB. Est Modélisée par des forces d'attraction Gravitationnelle $\overrightarrow{F}_{A/B}$ et $\overrightarrow{F}_{B/A}$ telle que:

1 Le point d'application:

- ullet la force exercée par A sur B ($F_{A/B}$) m(A) S'applique en B
- La force exercée de B sur A $(\overrightarrow{F}_{B/A})$ s'applique en A **2** La Direction: la droite AB
 - **1** Le sens:
- ◆ la force exercée par A sur B est dirigée vers A
- ◆ La force exercée de B sur A est dirigée vers B
 - **<u>4 La valeur:</u>** de même valeur qui est donnée par:

$$F = F_{A/B} = F_{B/A} = G \frac{m_A m_B}{d^2}$$

 $m_{\rm A}$: masse de A en Kg

 $m_{\rm B}$: masse de B en Kg

d : la distance entre A et B en m

G: constante de gravitation, sa valeur dans le (SI) est:

 $G = 6.67 \times 10^{-11} \text{ N.m}^2 \text{.kg}^{-2}$.L'unité de la force dans le SI est newton (N)

vraie

faux

1- foi de la gravitation

1-3 | Exercice d'application n°1

L'objet A est soumis l'action de la force d'attraction $F_{\it B/A}$	
L'objet B est soumis l'action de la force d'attraction $\overrightarrow{F}_{A/B}$	
Les caractéristiques des 2 forces :	
même direction	
même intensité	
sens opposé.	

- 1) Calculer l'intensité de la force d'interaction mutuellement exercée par 2 objets ponctuels de même masse 500 hg et distants de 500 cm
- 2) Calculer l'intensité de la force d'interaction mutuellement exercée par la terre sur la lune.
- 3) Que peut on déduire?

Données :

- Constante de gravitation universelle : $G = 6,67 \times 10^{-11} \text{ N.m}^2 \text{.kg}^{-2}$
- -distance entre la surface de la terre et celle de la lune : $d_{T-L} = 3,70.10^8$ m

	rayon	masse
Terre	$R_T = 6.38 \times 10^3 \text{ km}$	$M_T = 6.0 \times 10^{24} \text{ kg}$
Lune	$R_L = 1,74 \times 10^3 \text{ km}$	$M_L = 7.3 \times 10^{22} \text{ kg}$

2- La pesanteur

2-1- Le poids des corps

Le poids est la force d'attraction entre un objet de masse m et la terre

g appelé le pesanteur terrestre

2-2- Intensité de la pesanteur à la surface de la terre

2-2-1: Activité n°2

Un objet solide S de masse \mathbf{m} se trouve à la surface de la terre est soumis à une force d'attraction universelle

- 1) Donner l'intensité de la force d'attraction en fonction de M_T , m et R_T (M_T : masse de la terre et R_T : rayon de la terre)
- 1) Donner l'expression puis calculer sa valeur.
- 2) Comparer et intensité de la pesanteur $g_0 = 9.81 \text{ N.kg}^{-1}$, déduire

<u>Données</u> :

 $\overline{M_T} = 5,97.10^{24} \text{ kg}$; $G = 6.67.10^{-11} \text{ N.m}^2 \text{.kg}^{-2}$; $R_T = 6,38.10^6 \text{ m}$

2-2-2: Conclusion

Toute corps (S) de masse m, placé au voisinage De la terre subit un force gravitationnelle Exercée par la terre

$$\mathbf{P} = m_s \times g_0 = \left[\mathbf{G} \frac{\mathbf{M}_T}{\mathbf{R}_T^2} \right] \mathbf{m}_S$$

$$\Rightarrow g_0 = \left| G \frac{M_T}{R_T^2} \right|$$

2- La pesanteur

2-3- Intensité de la pesanteur à la hauteur h

2-3-1: Activité n°3

On considère un objet solide S de masse \mathbf{m} se trouve à la surface de la terre tel que intensité de la pesanteur g_0 = 9,81 N/Kg.

On trouver g_h : intensité de la pesanteur à la hauteur h de la surface de la terre.

- 1) Donner l'intensité de la force d'attraction en fonction de M_T , m et R_T puis déduire l'expression de g_0
- Donner l'expression de g_h en fonction de : M_T; R_T; h et G
- 3) On déduire la relation qui donne g_h en fonction de g_0 ; R_T et h
- 4) Calculer la hauteur h tel que $g_h = 2,45 \text{ Nkg}^{-1}$

Données:

 $M_T = 6.10^{24} \text{ kg}$; $R_T = 6400 \text{ km}$; m = 70 kg; $G = 6.67.10^{-11} \text{ N.m}^2 \text{.kg}^{-2}$

2-3-2: Conclusion

Toute corps (S) de masse m, placé a une hautuer h De la terre subit un force gravitationnelle Exercée par la terre

$$P = m_s \times g_h = \left[G \frac{M_T}{(R_T + h)^2} \right] m_S$$

$$\Rightarrow g_h = \left| G \frac{M_T}{(R_T + h)^2} \right|$$

(s)

2- La pesanteur

2-3- Exercice d'application n°2

On considère un satellite (S), de masse m, se trouve à une hauteur h de la surface de la terre (on considère que la terre est sphérique).

- 1) Représente sur un schéma la force d'attraction exercée par la terre sur le stellite (S)
- 2) Donner l'expression de la force d'attraction exercée par la terre sur le stellite (S)
- 3) Retrouver expression intensité de la pesanteur à la surface de la terre: g₀
- 4) Donner l'expression de la hauteur h en fonction de g₀; g_h et R_T
- 5) Calculer h pour $g_h = 2,45 \text{ N.kg}^{-1}$.
- 6) Donner l'unité de constante de gravitation universelle G dans le système international des unités
- 7) Calculer le poids du stellite à la surface de la terre puis à la hauteur h : h = $3x R_{\tau}$

Données :

m = 8,00.10² kg;
$$M_T$$
 = 6,0 × 10²⁴ kg; R_T = 6,38 × 10³ km; G = 6,67 × 10⁻¹¹ (SI)

3- f'échelle des longueurs

3-1- Introduction

Il y a des microscopes perfectionnés permettent d'explorer la matière jusqu'au niveau atomique.

Grace à des télescopes de plus en plus performants, nous observons des galaxies très éloignées.

Comment pouvons-nous exprimer des distances et des tailles allant de l'échelle microscopique à l'échelle macroscopique ?

3-2- L'échelle des longueurs de l'univers

3-2-1: Unité de longueur:

Dans le S.I (Système International des Unités), l'unité de longueur est **le mètre** ; symbole m. On exprime souvent les longueurs avec des **multiples** ou des **sous-multiples** du mètre.

3-2-2: Multiples et sous multiples d'une unité:

les sous multiples de mètre	Préfixe	milli	micro	nano	piko
	symbole	mm	μm	nm	pm
	valeur	10 ⁻³	10 ⁻⁶	10 ⁻⁹	10 ⁻¹²
Les multiples de mètre	valeur	10 ³	10 ⁶	10 ⁹	10 ¹²
	symbole	Km	Mm	Gm	Tm
	Préfixe	Kilo	Méga	Giga	Téra

Prof: Katif Abdellah

2019-2020

Page: 8

3- L'échelle des longueurs

Gravitation universelle

3-2- L'échelle des longueurs de l'univers

3-2-3: Ecriture scientifique d'un nombre:

La notation scientifique est l'écriture d'un nombre sous la forme du produit : a.10ⁿ Avec a : nombre décimal 1 < a < 10 et n, entier positif ou négatif exemple:

Nombre	1920000	0,00031900	723456	8,35
Ecriture scientifique	1,92.10 ⁶	3,19.10 ⁻⁴	7,23456.10 ⁵	8,35.10 ⁰

3-2-4: Ordre de grandeur d'un nombre:

L'ordre de grandeur d'un nombre est la puissance de 10 la plus proche de ce nombre. Pour trouver l'ordre de grandeur d'un nombre on doit l'écrire en notation scientifique qui se compose d'un nombre à multiplier par **10**ⁿ c'est-à-dire **(a. 10**ⁿ**).** puis on applique la règle suivante :

- ⇒Si a < 5 alors l'ordre de grandeur du nombre est **10**ⁿ ;
- \Rightarrow Si a > 5 alors l'ordre de grandeur est **10**ⁿ⁺¹.

Exemple:

Nombre	1920000	0,00031900	723456	8,35
Ecriture scientifique	1,92.10 ⁶	3,19.10 ⁻⁴	7,23456.10 ⁵	8,35.10 ⁰
Ordre de grandeur	10^6	10 ⁻⁴	10 ⁵	10 ⁰

Prof: Katif Abdellah

2019-2020

Page: 9

www.pc1.ma

3- L'échelle des longueurs

3-2- L'échelle des longueurs de l'univers

3-2-5: L'échelle des longueurs

Pour explorer et décrire l'univers. Le physicien construit une échelle de distance de l'infiniment petit vers l'infiniment grand, c'est l'échelle des longueurs.

3-2-6: Exercice d'application n°3

1) Compléter le tableau suivant:

	Objet	Longueur	Longueur sous forme en (m)	Ordre de grandeur
Α	Unité astronomique	1,5.10 ⁸ Km		
С	Une orange	8 cm		
D	Galaxie	10 ²¹ m		
E	Un globule rouge	7μm		
F	Le noyau d'atome	1fm	10 ⁻¹⁵ m	
G	Un atome	0.14nm		
Н	Jbel Toubkal	4167m		

<u>Remarque</u>: Unité astronomique : est la distance moyenne entre la terre et le Soleil tel que : 1.U.A=1.5.108km

L'année lumière: est la distance parcourue par la lumière dans le vide pendant une année avec une vitesse de 3.108m/s.

2) Sur l'axe gradué ci-dessous, placer les lettres correspondantes aux ordres de grandeur des objets précédents.

 $10^{-15} \ 10^{-12} \ 10^{-9} \ 10^{-6} \ 10^{-3} \ 10^{0} \ 10^{3} \ 10^{6} \ 10^{9} \ 10^{12} \ 10^{15} \ 10^{18} \ 10^{21} \ 10^{24}$