LID - 04/09/2024

Real nos. are eq. classes of Cauchy seq. of rationals.

· Bounded seq. - (an) is bounded,
if I integer M s.t

[an] \in M \text{Y} n \in \text{Z}_1

| Ianl \ M \ H ne \ Z_{\rightarrow}|

L: Every Cauchy seq. is bounded

pf - Given a Cauchy seq. (an),

HE70, 3 NEIN s.t \ H m, n \ > N

VETO, $\exists N \in \mathbb{N}$ s.t $\forall m, n \in \mathbb{N}$ $|a_m - a_n| < \epsilon$ $|a_m - a_n| < |a_m - a_n| < |a_n + |a_n|$ Let

 $M = man\{|a_1|, |a_2|, \dots |a_{N-1}|, |a_N-1|, |a_N+1|\}$

$$(an) + (bn) := (an + bn)$$

C:
$$(an+bn)$$
 is Cauchy

Pf - : (an) and (bn) are Cauchy

... $\forall \in >0$, $\exists N_1$ and N_2 s.t.

 $\forall m, n > N_1$, $|am-an| < \in /2$
 $\forall m, n > N_2$, $|bm-bn| < \in /2$

Consider $N = \max\{N_1, N_2\}$

So, $\forall m, n > N$
 $|(am+bm)-(an+bn)| = |(am-an)+(bm-bn)|$
 $|(am+bm)-(an+bn)| = |(am-bn)| < \in |am-an|+|bm-bn| < \in |am-an|+|bm-bn| < \in |am-an|+|bm-bn| < |am-an|+|bm-bn|+|bm-bn| < |am-an|+|bm-bn|+|bm$

C. Add is well-defined.

Pf - Consider (An) ~ (an) & (Bn) ~ (bn)

We need to prove that

(An+Bn) ~ (an+bn)

So,
$$\forall \in >0$$
, $\exists N_1$ and N_2 s.t

 $\forall n > N_1$, $|An-an| < \in /2$
 $\forall n > N_2$, $|Bn-bn| < \in /2$

Consider $N = \max\{N_1, N_2\}$

So, $\forall n > N$

 $|(A_n + B_n) - (a_n + b_n)| = |(A_n - a_n) + (B_n - b_n)|$

{ [An-an] + [Bn-bn] (E |

Given Cauchy seq. (an) & (bn) $(an) \times (bn) := (anbn)$ C: (anbn) is cauchy Pf - :: (an) and (bn) one cauchy i. L. 3 a, b s.t |an| &a , |bn| & b Y ne Z 2. 4 6 > 0, 3 N, and N2 s.t Vm,n>N1, 1am-an1 < 6/2b Vm,n>N2, 16m-bn/ < 6/2a $N = \max\{N_1, N_2\}$ Consider So, ym,n ?N | ambm - anbn | = | ambm - anbm + anbm - anbn |

: (An) and (Bn) one Cauchy

y ne Z

Ym,n>N1,

Vm,n>N2,

.. JA, B s.t |Anl & A, |Bnl & B

2. 4E>0, 3 N1 and N2 s.t

1am-an1 < 6/2b

16m-bn/ < 6/2a

There is a natural injective map from Nationals to the Nals.

R C. R

Q C, R q m (9,9,9...)

Pf - Let $a,b \in \mathbb{Q}$, $a \neq b$: Both (an) k (bn) are const. seq. |an-bn| = |a-b|

Consider $E = \frac{|a-b|}{2}$ $\Rightarrow |an-bn| > E$

:. (an) + (bn)

Inverse

Given $x \in \mathbb{R}$, $x \neq 0$, we would like to define its inverse x^{-1} as follows

$$\chi = (\chi_1, \chi_2, \dots)$$

$$\chi^{-1} = (\chi_1^{-1}, \chi_2^{-1}, \dots)$$

But, one of the xi might be 0.

So, first, we need to modify
fruitely many terms of the seq.

s.t this does <u>NOT</u> occur.

Then ICEQ & NEN s.t YnzN |2012C

Consider
$$E=2C$$

The hypothesis does NOT hold

 $|x_{n_0}| < C \Rightarrow |x_{n_0}| < E/2$

So, $\forall n > N$,

 $|x_{n_1}| = |x_{n_0} - x_{n_0} + x_{n_0}|$
 $|x_{n_0}| < |x_{n_0}| + |x_{n_0}|$
 $|x_{n_0}| - |x_{n_0}| + |x_{n_0}|$

VE>0, JNEN SE Ym,n>N

|2m-2n| < E/2

Pf - Suppose \$ such c.

: (xn) is cauchy

$$\Rightarrow x = 0$$
Contdⁿ

As stated previously, we will modify the first (n_0-1) terms of the seq.

$$\chi^{\prime} = (1, 1, \dots, 1) \chi_{n_0, \chi_{n_0+1}, \dots})$$

$$\therefore (xn) \sim (xn)$$

$$\therefore x = x^{2}$$

Hence, we can now define
$$x^{-1}$$
 as $x^{-1} = (1, 1, \dots, 1, x_0^{-1}, x_{0+1}^{-1}, \dots)$

be Cauchy. Q Let 2 = (an) Let NEZZI and $\chi^{7} = (b_{1}, b_{2}, \dots, b_{N-1}, a_{N}, a_{N+1}, \dots)$ bi E Q Show that x' u cauchy Pf 1. Let sin be the nth term of the seq. corresponding to n? : (an) is Cauchy .. YEO, 3 NOEZ, At Vm,n>No lam-anl < E $\therefore \forall n \gg N, x = an$. \ \ m, n > max{N, No}, |xm-xn| < € Hence, x' is Cauchy.

2. Let nû be the nth term of the seq. corresponding to n'.

 $\therefore \forall n \geqslant N, \quad x'n = an$

. $\forall \epsilon > 0$, $\forall n > N$ $|x_n^2 - a_n| = 0 < \epsilon$

Hence, x1 ~ x