

Data Analysis & Visualisation

CSC3062

BEng (CS & SE), MEng (CS & SE), BIT & CIT

Dr Reza Rafiee

Semester 1 2019

Missingness and multiple imputation

What is **multiple** imputation?

• This statistical technique (algorithm) takes the incomplete dataset (i.e., including missing data) and returns m imputed datasets with no missing values.

m is a user-selected parameter

Principal component analysis (PCA)

PCA analysis using *prcomp()* package

	England	N Ireland	Scotland	Wales
Alcoholic drinks	375	135	458	475
Beverages	57	47	53	73
Carcase meat	245	267	242	227
Cereals	1472	1494	1462	1582
Cheese	105	66	103	103
Confectionery	54	41	62	64
Fats and oils	193	209	184	235
Fish	147	93	122	160
Fresh fruit	1102	674	957	1137
Fresh potatoes	720	1033	566	874
Fresh Veg	253	143	171	265
Other meat	685	586	750	803
Other Veg	488	355	418	570
Processed potatoes	198	187	220	203
Processed Veg	360	334	337	365
Soft drinks	1374	1506	1572	1256
Sugars	156	139	147	175

PCA

	England	N Ireland	Scotland	Wales
PC1	-144.993	477.3916	-91.8693	-240.529
PC2	2.532999	58.90186	-286.082	224.6469
РС3	105.7689	-4.8779	-44.4155	-56.4756

Reduced dataset

Summarises of features

Input_dataset

The horizontal line is therefore the principal component in this example.

The direction of this line is called **eigenvector**.

An **eigenvalue** is a number telling us how spread out the data is on the line.

Non-negative matrix factorisation (NMF)

Assume a system: measurement & observation

- A fish packing factory aims to automate the process of sorting incoming fish on a conveyor belt according to species.
- Pilot project: separating sea bass from salmon using optical sensing

Assume a system: measurement & observation

- A fish packing factory aims to automate the process of sorting incoming fish on a conveyor belt according to species.
- Pilot project: separating sea bass from salmon using optical sensing

Pilot project: separating sea bass from salmon using optical sensing

Think and discuss about the three first stages of this pattern recognition system. What would you suggest for selecting features from an image?

- One fish per image (using a Segmentation technique a single fish extracted)
- No colouring information
- In our measurement using the camera, we could get different parameters of an image object such as the size and the lightness
- We know that there are two classes (groups) for each observation/object (i.e., fish): salmon vs. sea bass

Supervised classification or classification

How to choose a feature?

No single threshold value of the *length* will serve to unambiguously discriminate between the two categories

There would be some errors if we use only *length* property as a feature

Histograms for the fish length for the two categories

How to choose a feature?

No single threshold value of the *lightness* will serve to unambiguously discriminate between the two categories

There would be some errors if we use only *lightness* property as a feature

Histograms for the fish lightness for the two categories

How to choose a feature?

Histograms for the fish length for the two categories

Histograms for the fish lightness for the two categories

Suppose that we measure the feature vectors for our samples

Feature space; lightness & width

 x_1 : lightness

 x_2 : width

$$X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Decision boundary (line)

Linear decision boundary

 x_1 : lightness x_2 : width

$$X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

This plot suggests the following rule for categorising (separating) a fish: Classify a fish as <u>salmon</u> if the feature vector of this fish **falls below** the line (this line is called decision boundary)

Classification error

Linear decision boundary

 x_1 : lightness x_2 : width

$$X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

This plot suggests the following rule for categorising (separating) a fish: Classify a fish as <u>sea bass</u> if the feature vector of this fish **falls above** the line (this line is called decision boundary)

Linear decision boundary

 x_1 : lightness

 x_2 : width

$$X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Any suggestions to reduce the classification error (i.e., to improve the accuracy of the classification)?

Linear decision boundary

 x_1 : lightness x_2 : width

$$X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

- Include extra features such as the shape parameters of the fish
 - E.g., the placement of the eyes (as expressed as a proportion of the mouth-to-tail distance)
 - Some features might be redundant
- Choose a non-linear decision boundary instead of using a simple straight line!?

 x_1 : lightness

 x_2 : width

$$X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

- Include extra features such as the shape parameters of the fish
 - E.g., the placement of the eyes (as expressed as a proportion of the mouth-to-tail distance)
 - Some features might be redundant
- Choose a complex or non-linear decision boundary instead of using a simple straight line!?

There is an issue of *generalisation* when we are using a complex decision boundary to perfectly separate the objects

 x_1 : lightness

 x_2 : width

$$X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

- Include extra features such as the shape parameters of the fish
 - E.g., the placement of the eyes (as expressed as a proportion of the mouth-to-tail distance)
 - Some features might be redundant
- Choose a complex or non-linear decision boundary instead of using a simple straight line!?

There is an issue of *generalisation* when we are using a complex decision boundary to perfectly separate the objects

Classification vs. clustering

It's called model training or classifier training stage

Clustering

Unsupervised learning

What is clustering?

Clustering concept

In case of applying an appropriate clustering method (with well-adjusted parameters/initialisation, bootstrapping and cross-validation techniques), we could have distinct groups (with possibly different number of clusters) but they might be meaningless!

What is clustering?

The aim of clustering is to group objects into meaningful groups/classes

In case of applying an appropriate clustering method (with well-adjusted parameters/initialisation, bootstrapping and cross-validation techniques), we could have distinct groups (with possibly different number of clusters) but they might be meaningless!

Any Questions?