Apuntes de Matemática Discreta

Francisco José González Gutiérrez

7 de Octubre de 2015

Contenido

Ι	Ló	gica I	Matemática	1		
1	Lóg	ica de	a de Proposiciones			
	1.1	Propo	siciones y Tablas de Verdad	3		
		1.1.1	Proposición	3		
		1.1.2	Valor de verdad	5		
		1.1.3	Variables de enunciado	5		
		1.1.4	Proposiciones simples	6		
		1.1.5	Proposición compuesta	6		
		1.1.6	Tablas de verdad	6		
	1.2	Conex	ión entre Proposiciones	7		
		1.2.1	Conjunción	7		
		1.2.2	Disyunción	7		
		1.2.3	Disyunción exclusiva	8		
		1.2.4	Negación	8		
		1.2.5	Tautologías y contradicciones	9		
		1.2.6	Proposición condicional	10		
		1.2.7	Proposición recíproca	14		
		1.2.8	Proposición contrarrecíproca	14		
		1.2.9	Proposición bicondicional	15		
	1.3	Implic	ación	22		
		1.3.1	Implicación lógica	22		
		1.3.2	Implicaciones lógicas más comunes	23		
	1.4	Equiv	alencia Lógica	26		

	1.4.1	Proposiciones lógicamente equivalentes	26
	1.4.2	Equivalencia lógica y Bicondicional	26
	1.4.3	Equivalencias lógicas más comunes	26
1.5	Razon	amientos	32
	1.5.1	Razonamiento	32
	1.5.2	Razonamiento Válido	33
	1.5.3	Demostración por Contradicción o Reducción al Absurdo	34
	1.5.4	Demostración por la Contrarrecíproca	35
	1.5.5	Falacia	42

Unidad Temática I

Lógica Matemática

Lección 1

Lógica de Proposiciones

Y ahora llegamos a la gran pregunta del porqué. El robo no ha sido el objeto del asesinato, puesto que nada desapareció. ¿Fue por motivos políticos, o fue una mujer? Esta es la pregunta con que me enfrento. Desde el principio me he inclinado hacia esta última suposición. Los asesinatos políticos se complacen demasiado en hacer su trabajo y huir. Este asesinato, por el contrario, había sido realizado muy deliberadamente, y quien lo perpetró ha dejado huellas por toda la habitación, mostrando que estuvo allí todo el tiempo.

Arthur Conan Doyle. Un Estudio en Escarlata. 1887

La estrecha relación existente entre la matemática moderna y la lógica formal es una de sus características fundamentales. La lógica aristotélica era insuficiente para la creación matemática ya que la mayor parte de los argumentos utilizados en ésta contienen enunciados del tipo "si, entonces", absolutamente extraños en aquella.

En esta primera lección de lógica estudiaremos uno de los dos niveles en los que se desenvuelve la moderna lógica formal: la lógica de enunciados o de proposiciones.

1.1 Proposiciones y Tablas de Verdad

Cuando planteamos cualquier idea o teoría, científica o no, hacemos afirmaciones en forma de frases y que tienen un sentido pleno. Tales afirmaciones, verbales o escritas, las denominaremos enunciados o proposiciones.

1.1.1 Proposición

Llamaremos proposición a cualquier afirmación que sea verdadera o falsa, pero no ambas cosas a la vez.

3

Las siguientes afirmaciones son proposiciones.

- (a) Gabriel García Márquez escribió Cien años de soledad.
- (b) 6 es un número primo.
- (c) 3+2=6
- (d) 1 es un número entero, pero 2 no lo es.
- (e) El resto de dividir -5 entre 2 es 1.

Nota 1.1 Las proposiciones se notan con letras minúsculas, p, q, r, s, t, \ldots

La notación p: Tres más cuatro es igual a siete se utiliza para definir que p es la proposición "Tres más cuatro es igual a siete".

Este tipo de proposiciones se llaman simples, ya que no pueden descomponerse en otras.

Ejemplo 1.2

Las siguientes afirmaciones no son proposiciones.

- (a) x + y > 5
- (b) ¿Te vas?
- (c) Compra cinco manzanas y cuatro peras.
- (d) x = 2

Solución

- (a) x + y > 5. Aunque es una afirmación no es una proposición ya que será verdadera o falsa dependiendo de los valores que tomen x e y.
- (b) ¿Te vas? No es una afirmación y, por tanto, no es una proposición.
- (c) Compra cinco manzanas y cuatro peras. No es una proposición ya que, al igual que la anterior, no es una afirmación.
- (d) x=2. No es una proposición ya que será verdadera o falsa según el valor que tome x.

Desde el punto de vista lógico carece de importancia cual sea el contenido material de los enunciados o proposiciones, solamente nos interesa su valor de verdad.

1.1.2 Valor de verdad

Llamaremos valor verdadero o de verdad de una proposición a su veracidad o falsedad. El valor de verdad de una proposición verdadera es verdad y el de una proposición falsa es falso.

Ejemplo 1.3

Dígase cuáles de las siguientes afirmaciones son proposiciones y determinar el valor de verdad de aquellas que lo sean.

- (a) p: Existe Premio Nobel de informática.
- (b) q: La tierra es el único planeta del Universo que tiene vida.
- (c) r: Teclee Escape para salir de la aplicación.
- (d) s: Cinco más siete es grande.

Solución

- (a) p es una proposición falsa, es decir su valor de verdad es Falso.
- (b) No sabemos si q es una proposición ya que desconocemos si esta afirmación es verdadera o falsa.
- (c) r no es una proposición ya que no es una afirmación, es un mandato.
- (d) s no es una proposición ya que su enunciado, al carecer de contexto, es ambiguo. En efecto, cinco niñas más siete niños es un número grande de hijos en una familia, sin embargo cinco monedas de cinco céntimos más siete monedas de un céntimo no constituyen una cantidad de dinero grande.

1.1.3 Variables de enunciado

Es una proposición arbitraria, p, con un valor de verdad no especificado, es decir, puede ser verdad o falsa.

En el cálculo lógico, prescindiremos de los contenidos de las proposiciones y los sustituiremos por variables de enunciado. Toda variable de enunciado, p, puede ser sustituida por cualquier enunciado siendo sus posibles valores, verdadero o falso. El conjunto de los posibles valores de una proposición p, los representaremos en las llamadas tablas de verdad, ideadas por L.Wittgenstein¹.

¹ Ludwig Wittgenstein (Viena 1889-Cambridge 1951), nacionalizado británico en 1938. Estudió Ingeniería Mecánica en Berlin, posteriormente investigó Aeronáutica en Manchester. La necesidad de entender mejor las matemáticas lo llevó a estudiar sus fundamentos. Dejó Manchester en 1911 para estudiar lógica matemática con Russell en Cambridge. Escribió su primer gran trabajo en lógica, Tractatus logico-philosophicus, durante la primera guerra mundial, primero en el frente ruso y luego en el norte de Italia. Envió el manuscrito a Russell desde un campo de prisioneros en Italia. Liberado en 1919, regaló la fortuna que había heredado de su familia y trabajó en Austria como profesor en una escuela primaria. Volvió a Cambridge en 1929 y fue profesor en esta universidad hasta 1947, año en que renunció. Su segundo gran trabajo, Investigaciones filosóficas fue publicado en 1953, es decir, dos años después de su muerte. Otras obras póstumas de Wittgenstein son: Observaciones filosóficas sobre los principios de la matemática(1956), Cuadernos azul y marrón(1958) y Lecciones y conversaciones sobre estética, sicología y fe religiosa(1966).

1.1.4 Proposiciones simples

Llamaremos de esta forma a aquellas proposiciones que no puedan descomponerse en otras más sencillas.

1.1.5 Proposición compuesta

Si las proposiciones simples p_1, p_2, \ldots, p_n se combinan para formar la proposición P, diremos que P es una proposición compuesta de p_1, p_2, \ldots, p_n .

Ejemplo 1.4

"La Matemática Discreta es mi asignatura preferida y Mozart fue un gran compositor" es una proposición compuesta por las proposiciones "La Matemática Discreta es mi asignatura preferida" y "Mozart fue un gran compositor".

"El es inteligente o estudia todos los días" es una proposición compuesta por dos proposiciones: "El es inteligente" y "El estudia todos los días".

"Si estudio todos los días, aprobaré esta asignatura" es una proposición compuesta por las proposiciones "estudio todos los días" y "aprobaré esta asignatura".

Nota 1.2 La propiedad fundamental de una proposición compuesta es que su valor de verdad está completamente determinado por los valores de verdad de las proposiciones que la componen junto con la forma en que están conectadas.

1.1.6 Tablas de verdad

La tabla de verdad de una proposición compuesta P, enumera todas las posibles combinaciones de los valores de verdad de las proposiciones p_1, p_2, \ldots, p_n que la componen.

Ejemplo 1.5

Por ejemplo, si P es una proposición compuesta por las proposiciones simples p_1, p_2 y p_3 , entonces la tabla de verdad de P deberá recoger los siguientes valores de verdad.

p_1	p_2	p_3
V	V	V
V	V	F
V	F	V
V	F	F
F	V	V
F	V	F
F	F	V
F	F	F

6

1.2 Conexión entre Proposiciones

Estudiamos en este apartado las distintas formas de conectar proposiciones entre sí. Prestaremos especial atención a las tablas de verdad de las proposiciones compuestas que pueden formarse utilizando las distintas conexiones.

1.2.1 Conjunción

Dadas dos proposiciones cualesquiera p y q, llamaremos conjunción de ambas a la proposición compuesta "p y q" y la notaremos $p \land q$. Esta proposición será verdadera únicamente en el caso de que ambas proposiciones lo sean.

Obsérvese que de la definición dada se sigue directamente que si al menos una de las dos, p ó q, es falsa, entonces $p \wedge q$ no puede ser verdad y, consecuentemente, será falsa. Por lo tanto su tabla de verdad vendrá dada por

p	q	$p \wedge q$
V	V	V
V	F	F
\overline{F}	\overline{V}	F
F	F	F

Obsérvese también que el razonamiento puede hacerse a la inversa, es decir si $p \land q$ es verdad, entonces p y q son, ambas, verdad y que si $p \land q$ es falsa, entonces una de las dos, al menos, ha de ser falsa.

1.2.2 Disyunción

Dadas dos proposiciones cualesquiera p y q, llamaremos disyunción de ambas a la proposición compuesta "p ó q" y la notaremos $p \lor q$. Esta proposición será falsa únicamente si ambas proposiciones, p y q, lo son.

De acuerdo con la definición dada se sigue que si una de las dos, p ó q, es verdad entonces $p \lor q$ no puede ser falsa y, consecuentemente, será verdadera. Su tabla de verdad será, por tanto,

p	q	$p \lor q$
V	V	V
V	F	V
F	\overline{V}	V
F	\overline{F}	F

Al igual que en la conjunción, podemos razonar en sentido inverso. En efecto, si $p \lor q$ es verdad, entonces una de las dos, al menos, ha de ser verdad y si $p \lor q$ es falsa, entonces ambas han de ser falsas.

La palabra "o" se usa en el lenguaje ordinario de dos formas distintas. A veces se utiliza en el sentido de "p ó q, ó ambos", es decir, al menos una de las dos alternativas ocurre y, a veces es usada en el sentido de "p ó q, pero no ambos" es decir, ocurre exactamente una de de las dos alternativas.

Por ejemplo, la proposición "El irá a Madrid o a Bilbao" usa "o" con el último sentido. A este tipo de disyunción la llamaremos disyunción exclusiva.

1.2.3 Disyunción exclusiva

Dadas dos proposiciones cualesquiera p y q, llamaremos disyunción exclusiva de ambas a la proposición compuesta "p ó q pero no ambos" y la notaremos $p \veebar q$. Esta proposición será verdadera si una u otra, pero no ambas, son verdaderas.

Según esta definición una disyunción exclusiva de dos proposiciones p y q será verdadera cuando tengan distintos valores de verdad y falsa cuando sus valores de verdad sean iguales. Su tabla de verdad es, por tanto,

p	q	$p \vee q$
V	V	F
V	F	V
F	V	V
F	F	F

Haciendo el razonamiento contrario si $p \vee q$ es verdad, únicamente podemos asegurar que una de las dos es verdad y si $p \vee q$ es falsa, sólo podemos deducir que ambas tienen el mismo valor de verdad.

Nota 1.3 Salvo que especifiquemos lo contrario, "o" será usado en el primero de los sentidos. Esta discusión pone de manifiesto la precisión que ganamos con el lenguaje simbólico: $p \lor q$ está definida por su tabla de verdad y siempre significa p y/ó q.

1.2.4 Negación

Dada una proposición cualquiera, p, llamaremos "negación de p" a la proposición "no p" y la notaremos $\neg p$. Será verdadera cuando p sea falsa y falsa cuando p sea verdadera.

La tabla de verdad de esta nueva proposición, $\neg p$, es:

p	$\neg p$
V	F
F	V

De esta forma, el valor verdadero de la negación de cualquier proposición es siempre opuesto al valor verdadero de la afirmación original.

Estudiar la veracidad o falsedad de las siguientes proposiciones:

 p_1 : El Pentium es un microprocesador.

 p_2 : Es falso que el Pentium sea un microprocesador.

 p_3 : El Pentium no es un microprocesador.

 p_4 : 2+2=5

 p_5 : Es falso que 2+2=5

Solución

 $\checkmark~p_2$ y p_3 son, cada una, la negación de $p_1.$

 $\checkmark p_5$ es la negación de p_4 .

Pues bien, de acuerdo con la tabla de verdad para la negación, tendremos:

✓ p_1 es verdad, luego p_2 y p_3 son falsas.

✓ p_4 es falsa, luego p_5 es verdad.

Ejemplo 1.7

Construir la tabla de verdad de la proposición $\neg (p \land \neg q)$.

Solución

p	q	$\neg q$	$p \land \neg q$	$\neg (p \land \neg q)$
V	V	F	F	V
V	F	V	V	F
F	V	F	F	V
\overline{F}	F	V	F	V

1.2.5 Tautologías y contradicciones

Sea P una proposición compuesta de las proposiciones simples p_1, p_2, \ldots, p_n

P es una Tautología si es verdadera para todos los valores de verdad que se asignen a p_1, p_2, \ldots, p_n .

P es una Contradicción si es falsa para todos los valores de verdad que se asignen a p_1, p_2, \ldots, p_n .

En adelante, notaremos por "C" a una contradicción y por "T" a una tautología.

Una proposición P que no es tautología ni contradicción se llama, usualmente, Contingencia.

Probar que la proposición compuesta $p \vee \neg p$ es una tautología y la $p \wedge \neg p$ es una contradicción.

Solución

Lo resolveremos escribiendo una tabla de verdad. En efecto,

p	$\neg p$	$p \lor \neg p$	$p \land \neg p$
\overline{V}	\overline{F}	\overline{V}	\overline{F}
F	V	V	F

Obsérvese que $p \lor \neg p$ es verdad, independientemente de quienes sean las variables de enunciado, p y $\neg p$ y lo mismo ocurre con la falsedad de $p \land \neg p$.

1.2.6 Proposición condicional

Dadas dos proposiciones p y q, a la proposición compuesta

"si p, entonces q"

se le llama "proposición condicional" y se nota por

$$p \longrightarrow q$$

A la proposición "p" se le llama hipótesis, antecedente, premisa o condición suficiente y a la "q" tesis, consecuente, conclusión o condición necesaria del condicional. Una proposición condicional es falsa únicamente cuando siendo verdad la hipótesis, la conclusión es falsa (no se debe deducir una conclusión falsa de una hipótesis verdadera).

De acuerdo con esta definición se sigue que si la hipótesis, p, es verdadera y la conclusión, q, es falsa, entonces el condicional $p \longrightarrow q$ es falso. En todos los demás casos, la proposición no es falsa y, por lo tanto, ha de ser verdadera. Consecuentemente, su tabla de verdad será:

p	q	$p \longrightarrow q$
V	V	V
V	F	F
\overline{F}	V	V
F	F	V

Obsérvese que si $p \longrightarrow q$ es verdadero, entonces puede deducirse que la conclusión, q, es verdadera, independientemente del valor de verdad que tenga la hipótesis, p, o la hipótesis, p, es falsa, independientemente del valor de verdad que tenga la conclusión, q.

También puede observarse que si el condicional $p \longrightarrow q$ es falso, entonces lo único que puede deducirse es que la hipótesis, p, es verdadera y la conclusión, q, falsa.

Nota 1.4 El esquema siguiente presenta otras formulaciones equivalentes del condicional,

```
p \longrightarrow q \mid q si p
p sólo si q
p es una condición suficiente para q.
q es una condición necesaria para p.
q se sigue de p.
q a condición de p.
q cuando p.
```

Analizaremos con detalle cada uno de los cuatro casos que se presentan en la tabla de verdad.

1.— Antecedente y consecuente verdaderos.

En este caso parece evidente que el condicional "si p, entonces q" se evalúe como verdadero. Por ejemplo,

"Si como mucho, entonces engordo"

es una sentencia que se evalúa como verdadera en el caso de que tanto el antecedente como el consecuente sean verdaderos.

Ahora bien, obsérvese que ha de evaluarse también como verdadero un condicional en el que no exista una relación de causa entre el antecedente y el consecuente. Por ejemplo, el condicional

"Si García Lorca fue un poeta, entonces Gauss fue un matemático"

ha de evaluarse como verdadero y no existe relación causal entre el antecedente y el consecuente. Es por esta razón que no hay que confundir el condicional con la *implicación lógica*.

"García Lorca fue un poeta implica que Gauss fue un matemático"

Es una implicación falsa desde el punto de vista lógico. Más adelante estudiaremos la implicación lógica.

2.— Antecedente verdadero y consecuente falso.

En este caso parece natural decir que el condicional se evalúa como falso. Por ejemplo, supongamos que un político aspirante a Presidente del Gobierno promete:

"Si gano las elecciones, entonces bajaré los impuestos"

Este condicional será falso sólo si ganando las elecciones, el político no baja los impuestos. A nadie se le ocurriría reprochar al político que no ha bajado los impuestos si no ha ganado las elecciones. Obsérvese que el hecho de que p sea verdadero y, sin embargo, q sea falso viene, en realidad, a refutar la sentencia $p \longrightarrow q$, es decir la hace falsa.

3.— Antecedente falso y consecuente verdadero.

Nuestro sentido común nos indica que el condicional $p \longrightarrow q$ no es, en este caso, ni verdadero ni falso. Parece ilógico preguntarse por la veracidad o falsedad de un condicional cuando la condición expresada por el antecedente no se cumple. Sin embargo, esta respuesta del sentido común no nos sirve, estamos en lógica binaria y todo ha de evaluarse bien como verdadero, bien como falso, es decir, si una sentencia no es verdadera, entonces es falsa y viceversa.

Veamos que en el caso que nos ocupa, podemos asegurar que el condicional no es falso. En efecto, como dijimos anteriormente, $p \longrightarrow q$ es lo mismo que afirmar que

"p es una condición suficiente para q"

es decir, p no es la única condición posible, por lo cual puede darse el caso de que q sea verdadero siendo p falso. O sea, la falsedad del antecedente no hace falso al condicional y si no lo hace falso, entonces lo hace verdadero. Por ejemplo,

"Si estudio mucho, entonces me canso"

¿Qué ocurriría si no estudio y, sin embargo, me cansara? Pues que la sentencia no sería inválida, ya que no se dice que no pueda haber otros motivos que me puedan producir cansancio.

4.— Antecedente y consecuente falsos.

La situación es parecida a la anterior. La condición p no se verifica, es decir, es falsa, por lo que el consecuente q puede ser tanto verdadero como falso y el condicional, al no ser falso, será verdadero.

Obsérvese, anecdóticamente, que es muy frecuente el uso de este condicional en el lenguaje coloquial, cuando se quiere señalar que, ante un dislate, cualquier otro está justificado.

"Si tú eres programador, entonces yo soy el dueño de Microsoft"

Ejemplo 1.9

Dadas las proposiciones:

p: El número a es par.

q: Los resultados salen en pantalla.

Si q, entonces p

 $p \sin q$

r: Los resultados se imprimen.

Enunciar las formulaciones equivalentes de las siguientes proposiciones.

- (a) $q \longrightarrow p$.
- (b) $\neg q \longrightarrow r$.
- (c) $r \longrightarrow (p \lor q)$.

Solución

(a) $q \longrightarrow p$.

Formulaciones equivalentes de $q \longrightarrow p$
Si los resultados salen en pantalla, entonces a es par.
a es par si los resultados salen en pantalla.
Los resultados salen en pantalla sólo si el número a es par.

q sólo si p | Los resultados salen en pantalla sólo si el número a es par. q es suficiente para p | Es suficiente que los resultados salgan en pantalla para que a sea par. p es necesaria para q | Para que los resultados salgan en pantalla es necesario que a sea par.

(b) $\neg q \longrightarrow r$.

1	Formulaciones equivalentes de $\neg q \longrightarrow r$			
Si $\neg q$, entonces r	Si los resultados no salen en pantalla, entonces se imprimen.			
$r \sin \neg q$	Los resultados se imprimen si no salen en pantalla.			
$\neg q$ sólo si r	Los resultados no salen en pantalla sólo si se imprimen.			
$\neg q$ es suficiente para r	Es suficiente que los resultados no salgan en pantalla para			
	que se impriman.			
r es necesaria para $\neg q$	Es necesario que los resultados se impriman para que			
	no salgan en pantalla.			

(c) $r \longrightarrow (p \lor q)$.

For	Formulaciones equivalentes de $r \longrightarrow (p \lor q)$				
Si r , entonces $p \vee q$	Si los resultados se imprimen, entonces a es par o los resultados				
	salen en pantalla.				
$(p \lor q)$ si r	a es par o los resultados salen en pantalla si los resultados				
	se imprimen.				
r sólo si $(p \vee q)$	Los resultados se imprimen sólo si salen en pantalla o a es par.				
r es suficiente para $(p \vee q)$	Es suficiente que los resultados se impriman para que a sea par				
	o los resultados salgan en la pantalla.				
$(p \lor q)$ es necesaria para r	Para que los resultados se impriman es necesario que a sea par				
	o que salgan en pantalla.				

Ejemplo 1.10

Sean las proposiciones

p : Está lloviendo.

q: Iré a la playa.

r: Tengo tiempo.

- (a) Escribir, usando conectivos lógicos, una proposición que simbolice cada una de las afirmaciones siguientes:
 - (a.1) Si no está lloviendo y tengo tiempo, entonces iré a la playa.
 - (a.2) Iré a la playa sólo si tengo tiempo.
 - (a.3) No está lloviendo.
 - (a.4) Está lloviendo, y no iré a la ciudad.
- (b) Enunciar las afirmaciones que se corresponden con cada una de las proposiciones siguientes:

(b.1)
$$q \longrightarrow (r \land \neg p)$$

(b.2)
$$r \wedge q$$

(b.3)
$$r \longrightarrow q$$

(b.4)
$$\neg r \land \neg q$$

Solución

- (a) Escribimos en forma simbólica las afirmaciones propuestas.
 - (a.1) $(\neg p \land r) \longrightarrow q$
 - (a.2) $q \longrightarrow r$
 - (a.3) $\neg p$
 - (a.4) $p \wedge \neg q$
- (b) Escribimos en forma de afirmaciones las proposiciones.
 - (b.1) Iré a la playa sólo si tengo tiempo y no está lloviendo.
 - (b.2) Tengo tiempo e iré a la playa.
 - (b.3) Iré a la playa si tengo tiempo.
 - (b.4) Ni tengo tiempo, ni iré a la ciudad.

1.2.7 Proposición recíproca

Dada la proposición condicional $p \longrightarrow q$, su recíproca es la proposición, también condicional, $q \longrightarrow p$.

Por ejemplo, la recíproca de "Si la salida no va a la pantalla, entonces los resultados se dirigen a la impresora" será "Si los resultados se dirigen a la impresora, entonces la salida no va a la pantalla".

1.2.8 Proposición contrarrecíproca

 $Dada\ la\ proposici\'on\ condicional\ p\longrightarrow q,\ su\ contrarrec\'iproca\ es\ la\ proposici\'on\ condicional,\ \neg q\longrightarrow \neg p.$

Por ejemplo, la contrarrecíproca de la proposición "Si María estudia mucho, entonces es buena estudiante" es "Si María no es buena estudiante, entonces no estudia mucho".

Ejemplo 1.11

Escribir la recíproca y la contrarrecíproca de cada una de las afirmaciones siguientes:

- (a) Si llueve, no voy.
- (b) Me quedaré, sólo si tú te vas.
- (c) Si tienes 1 euro, entonces puedes comprar un helado.

Solución

(a) Si llueve, no voy.

Si llamamos p: llueve y q: no voy, la afirmación propuesta es el condicional $p \longrightarrow q$. Pues bien,

14

	$p \longrightarrow q$	Si llueve, entonces no voy.
Recíproca	$q \longrightarrow p$	Si no voy, entonces llueve.
		No voy sólo si llueve.
Contrarrecíproca	$\neg q \longrightarrow \neg p$	Si voy, entonces no llueve.
		No llueve si voy
		Voy sólo si no llueve.

(b) Me quedaré sólo si te vas.

Llamaremos p: me quedaré y q: te vas. Entonces,

	$p \longrightarrow q$	Me quedaré sólo si te vas.
Recíproca	$q \longrightarrow p$	Si te vas, entonces me quedaré.
		Me quedaré si te vas.
Contrarrecíproca	$\neg q \longrightarrow \neg p$	Si no te vas, entonces no me quedaré.
		No me quedaré si no te vas.

(c) Si tienes 1 euro, entonces puedes comprar un helado.

Tomando p: tienes 1 euro y q: puedes comprar un helado.

	$p \longrightarrow q$	Puedes comprar un helado si tienes un euro.	
Recíproca	$q \longrightarrow p$	Si puedes comprar un helado, entonces tienes 1 euro.	
		Tienes 1 euro si puedes comprar un helado.	
		Puedes comprar un helado sólo si tienes un euro.	
Contrarrecíproca	$\neg q \longrightarrow \neg p$	Si no puedes comprar un helado, entonces no tienes 1 euro.	
		No tienes 1 euro si no puedes comprar un helado.	

1.2.9 Proposición bicondicional

Dadas dos proposiciones p y q, a la proposición compuesta

se le llama "proposición bicondicional" y se nota por

$$p \longleftrightarrow q$$

La interpretación del enunciado es:

$$p$$
 sólo si q y p si q

o lo que es igual

si p, entonces q y si q, entonces p

es decir,

$$(p \longrightarrow q) \land (q \longrightarrow p)$$

Por tanto, su tabla de verdad es:

p	q	$p \longrightarrow q$	$q \longrightarrow p$	$p \longleftrightarrow q$
V	V	V	V	V
V	F	F	V	F
\overline{F}	V	V	F	F
\overline{F}	F	V	V	V

Luego la proposición bicondicional $p \longleftrightarrow q$ es verdadera únicamente en caso de que ambas proposiciones, p y q, tengan los mismos valores de verdad.

Obsérvese también que el razonamiento puede hacerse a la inversa, es decir si $p \longleftrightarrow q$ es verdadera, entonces $p \neq q$ han de tener, ambas, el mismo valor de verdad. En cambio, si $p \longleftrightarrow q$ es falsa, lo que puede deducirse es que $p \neq q$ tienen distintos valores de verdad.

Nota 1.5 Obsérvese que la proposición condicional $p \longrightarrow q$, se enunciaba

Si p, entonces q

siendo una formulación equivalente,

Una condición necesaria para p es q

y la proposición condicional $q \longrightarrow p$, se enunciaba

 $Si \ q, \ entonces \ p$

siendo una formulación equivalente,

Una condición suficiente para p es q

Por tanto, una formulación equivalente de la proposición bicondicional en estos términos, sería:

Una condición necesaria y suficiente para p es q

Sean a, b y c las longitudes de los lados de un triángulo T siendo c la longitud mayor. El enunciado

T es rectángulo si, y sólo si $a^2 + b^2 = c^2$

puede expresarse simbólicamente como

$$p \longleftrightarrow q$$

donde p es la proposición "T es rectángulo" y q la proposición " $a^2 + b^2 = c^2$ ".

Observemos lo siguiente: La proposición anterior afirma dos cosas

1 Si T es rectángulo, entonces $a^2 + b^2 = c^2$ o también,

Una condición necesaria para que T sea rectángulo es que $a^2+b^2=c^2$

2 Si $a^2+b^2=c^2,$ entonces ${\cal T}$ es rectángulo

o también,

Una condición suficiente para que T sea rectángulo es que $a^2 + b^2 = c^2$

Consecuentemente, una forma alternativa de formular la proposición dada es

Una condición necesaria y suficiente para que T sea rectángulo es que $a^2 + b^2 = c^2$.

es decir,

"Para que un triángulo sea rectángulo es necesario y suficiente que sus lados verifiquen el teorema de Pitágoras".

Nota 1.6 Los valores de verdad de una proposición compuesta pueden determinarse, a menudo, mediante la construcción de una tabla de verdad abreviada. Por ejemplo, si queremos probar que una proposición es una contingencia, es suficiente con que consideremos dos líneas de su tabla de verdad, una que haga que la proposición sea verdad y otra que la haga falsa. Para determinar si una proposición es una tautología, bastaría considerar, únicamente, aquellas líneas para las cuales la proposición pueda ser falsa. Veamos algún ejemplo para aclarar esta situación.

Ejemplo 1.13

Consideremos el problema de determinar si la proposición $(p \land q) \longrightarrow p$ es una tautología.

Solución

Construimos su tabla de verdad,

p	q	$p \wedge q$	$(p \land q) \longrightarrow p$
V	V	V	V
V	F	F	V
F	V	F	V
F	F	F	V

y, en efecto, $(p \land q) \longrightarrow p$ es una tautología.

Observemos ahora lo siguiente: Una proposición condicional sólo puede ser falsa en caso de que siendo la hipótesis verdadera, la conclusión sea falsa, por tanto si queremos ver si $(p \land q) \longrightarrow p$ es una tautología, bastaría comprobar los casos en que $p \land q$ sea verdad, o aquellos en los que p sea falsa ya que en todos los demás la proposición es verdadera. Lo haremos de las dos formas:

— Supongamos que la hipótesis, $p \land q$, es verdad y veamos que, en tal caso, la conclusión, p, no puede ser falsa. En efecto,

$$\begin{array}{c|cccc}
p & q & p \land q & (p \land q) \longrightarrow p \\
\hline
 & V &
\end{array}$$

Entonces, por definición del valor de verdad del conectivo \land , p y q deben ser, ambas, verdad.

$$\begin{array}{c|cccc} p & q & p \wedge q & (p \wedge q) \longrightarrow p \\ \hline V & V & V & \end{array}$$

Consecuentemente, el condicional $(p \land q) \longrightarrow p$ es verdad.

$$\begin{array}{c|cccc} p & q & p \wedge q & (p \wedge q) \longrightarrow p \\ \hline V & V & V & \hline \end{array}$$

La proposición $(p \land q) \longrightarrow p$ es, por lo tanto, una tautología ya que todos los demás casos son verdad por definición del valor de verdad del condicional.

— También podemos hacerlo partiendo de que la conclusión, p, es falsa. En tal caso veremos que la hipótesis, $p \wedge q$ no puede ser verdad. En efecto,

$$\begin{array}{c|cccc} p & q & p \land q & (p \land q) \longrightarrow p \\ \hline \hline F & & & \\ \hline \end{array}$$

Entonces, $p \wedge q$ es falsa, independientemente del valor de verdad que tenga q.

$$\begin{array}{c|cccc} p & q & p \land q & (p \land q) \longrightarrow p \\ \hline F & F & F & \hline \end{array}$$

Consecuentemente, el condicional $(p \land q) \longrightarrow p$ es verdad.

$$\begin{array}{c|cccc} p & q & p \land q & (p \land q) \longrightarrow p \\ \hline F & F & V & \end{array}$$

Al igual que antes, la proposición $(p \land q) \longrightarrow p$ es una tautología ya que todos los demás casos son verdad por definición del valor de verdad del condicional.

Establecer si las siguientes proposiciones son tautologías, contingencias o contradicciones.

(a)
$$(p \longrightarrow q) \land (q \longrightarrow p)$$

(b)
$$[p \land (q \lor r)] \longrightarrow [(p \land q) \lor (p \land r)]$$

(c)
$$(p \lor \neg q) \longrightarrow q$$

(d)
$$p \longrightarrow (p \lor q)$$

(e)
$$(p \land q) \longrightarrow p$$

(f)
$$[(p \land q) \longleftrightarrow p] \longrightarrow (p \longleftrightarrow q)$$

(g)
$$[(p \longrightarrow q) \lor (r \longrightarrow s)] \longrightarrow [(p \land r) \longrightarrow (q \lor s)]$$

Solución

Haremos, en todos los casos, una tabla de verdad.

(a)
$$(p \longrightarrow q) \land (q \longrightarrow p)$$

p	q	$p \longrightarrow q$	$q \longrightarrow p$	$(p \longrightarrow q) \land (q \longrightarrow p)$
V	V	V	V	V
V	F	F	V	F
F	V	V	F	F
F	F	V	V	V

Luego es una contingencia.

(b)
$$[p \land (q \lor r)] \longrightarrow [(p \land q) \lor (p \land r)]$$

Una proposición condicional sólo es falsa cuando la hipótesis es verdadera y la conclusión es falsa. Comprobaremos que esto no puede ocurrir.

— Veamos que si la hipótesis, $p \land (q \lor r)$, es verdad, la conclusión $(p \land q) \lor (p \land r)$ no puede ser falsa. En efecto, si la hipótesis, $p \land (q \lor r)$ es verdad, entonces $p \lor q \lor r$ serán, ambas, verdad y si $q \lor r$ es verdad, entonces una de las dos, al menos, q o r, ha de ser verdadera. Tenemos, pues, dos opciones:

p es verdad y q es verdad. En tal caso, $p \wedge q$ será verdad y $(p \wedge q) \vee (p \wedge r)$ también, independientemente del valor de verdad que tenga r.

p es verdad y r es verdad. En este caso, será verdad $p \wedge r$ y, por lo tanto, también lo será $(p \wedge q) \vee (p \wedge r)$, independientemente del valor de verdad que tenga q.

Una tabla de verdad que recoja, únicamente, estos casos sería:

								$[p \wedge (q \vee r)]$
								\longrightarrow
p	q	r	$q \vee r$	$p \wedge (q \vee r)$	$p \wedge q$	$p \wedge r$	$(p \land q) \lor (p \land r)$	$[(p \wedge q) \vee (p \wedge r)]$
V	V		V	V	V		V	V
V		V	V			V	V	V

— Ahora veremos que si la conclusión, $(p \land q) \lor (p \land r)$, es falsa, la hipótesis, $p \land (q \lor r)$, no puede ser verdadera.

En efecto, si $(p \land q) \lor (p \land r)$ es falsa, entonces por el valor de verdad de la disyunción (1.2.2), $p \land q$ será falsa y $p \land r$ también. Pues bien,

Si $p \wedge q$ es falsa, entonces por el valor de verdad de la conjunción (1.2.1), una de las dos proposiciones, $p \circ q$, al menos, ha de ser falsa.

- Si p es falsa, entonces la hipótesis, $p \wedge (q \vee r)$, es, por el valor de verdad de la conjunción, (1.2.1), falsa, independientemente de los valores de verdad que puedan tener q y r, por lo tanto hemos terminado.
- Si q es falsa, entonces como $p \wedge r$ es falsa, una de las dos proposiciones, p o r, al menos, ha de ser falsa.
 - El caso en que p sea falsa ya lo hemos estudiado.
 - Si r es falsa, entonces por el valor de verdad de la disyunción (1.2.2), $q \vee r$ será falsa y, por lo tanto, la hipótesis $p \wedge (q \vee r)$ será, por el valor de verdad de la conjunción (1.2.1), falsa, independientemente del valor de verdad de p.

Una tabla de verdad abreviada que recoge, únicamente, estos casos sería:

								$[p \wedge (q \vee r)]$
								\longrightarrow
p	q	r	$q \vee r$	$p \wedge (q \vee r)$	$p \wedge q$	$p \wedge r$	$(p \wedge q) \vee (p \wedge r)$	$[(p \wedge q) \vee (p \wedge r)]$
F				F	F	F	F	V
	F	F	F					V

La proposición será, por tanto, una tautología.

(c)
$$(p \lor \neg q) \longrightarrow q$$

p	q	$\neg q$	$p \vee \neg q$	$(p \vee \neg q) \longrightarrow q$
V	V	F	V	V
V	F	V	V	F
F	V	F	F	V
F	F	V	V	F

luego la proposición es una contingencia.

(d)
$$p \longrightarrow (p \lor q)$$

Un condicional es falso únicamente cuando la hipótesis es verdadera y la conclusión es falsa. Probaremos que esto no puede ocurrir, con lo cual quedará probado que la proposición es una tautología ya que en los demás casos será, por definición, verdadera.

- Veamos que si la hipótesis, p, es verdad, la conclusión, $p \lor q$ no puede ser falsa. En efecto, si p es verdad, entonces, por el valor de verdad de la disyunción, $p \lor q$ será verdadera independientemente del valor de verdad de q.
- Ahora veremos que si la conclusión, $p \lor q$, es falsa, la hipótesis, p, no puede ser verdadera. En efecto, si $p \lor q$ es falsa, entonces, por el valor de verdad de la disyunción, $p \lor q$ serán, ambas, falsas.

una tabla de verdad abreviada será

$$\begin{array}{c|cccc}
p & p \lor q & p \longrightarrow (p \lor q) \\
\hline
V & V & \\
\hline
F & F & V
\end{array}$$

y la proposición es una tautología.

(e) $(p \land q) \longrightarrow p$

Seguiremos un camino análogo al utilizado en el apartado anterior.

- Si la hipótesis, $p \land q$, es verdadera, la conclusión, p, no puede ser falsa. En efecto, si $p \land q$ es verdad, por el valor de verdad de la conjunción, p y q han de ser, ambas, verdaderas.
- Si la conclusión, p, es falsa, la hipótesis, $p \wedge q$ no puede ser verdadera. En efecto, si p es falsa, de nuevo por el valor de verdad de la conjunción, $p \wedge q$ es falsa.

La proposición es, por tanto, una tautología ya que el único caso posible de falsedad del condicional no puede darse.

Una tabla de verdad abreviada sería:

p	q	$p \wedge q$	$(p \land q) \longrightarrow p$
V	V	V	V
\overline{F}		F	V

(f) $[(p \land q) \longleftrightarrow p] \longrightarrow (p \longleftrightarrow q)$.

Haremos una tabla de verdad abreviada. En efecto, $[(p \land q) \longleftrightarrow p] \longrightarrow (p \longleftrightarrow q)$ es falsa cuando $[(p \land q) \longleftrightarrow p]$ sea verdad y $(p \longleftrightarrow q)$ falsa. Pero ésta última es falsa cuando p y q tengan distintos valores de verdad.

p	q	$p \wedge q$	$(p \land q) \longleftrightarrow p$	$p \longleftrightarrow q$	$[(p \land q) \longleftrightarrow p] \longrightarrow (p \longleftrightarrow q)$
V	F	F	F	F	V
F	V	F	V	F	F

La proposición es, por tanto, una contingencia.

(g) $[(p \longrightarrow q) \lor (r \longrightarrow s)] \longrightarrow [(p \land r) \longrightarrow (q \lor s)]$

La proposición condicional únicamente es falsa cuando la hipótesis es verdad y la conclusión falsa. Veamos que es imposible que ocurra este caso.

— Si la hipótesis, $(p \longrightarrow q) \lor (r \longrightarrow s)$, es verdadera, la conclusión, $(p \land r) \longrightarrow (q \lor s)$, no puede ser falsa.

Efectivamente, si $(p \longrightarrow q) \lor (r \longrightarrow s)$ es verdad, entonces, por el valor de verdad de la disyunción, uno de los dos condicionales, $p \longrightarrow q$ o $r \longrightarrow s$, al menos, ha de ser verdadero. Pues bien,

si $p \longrightarrow q$ es verdad, entonces p es falso o q es verdad.

Si p es falso, $p \wedge r$ también lo será y, por lo tanto, $(p \wedge r) \longrightarrow (q \vee s)$ será verdadera independientemente de los valores de verdad de r, q y s.

Si q es verdad, $q \vee s$ también será verdad y, consecuentemente, $(p \wedge r) \longrightarrow (q \vee s)$ será verdadera independientemente de los valores de verdad de p, r y s.

Si $r \longrightarrow s$ es verdad, entonces r es falso o s es verdad.

Si r es falso, $p \wedge r$ también lo será y, por lo tanto, $(p \wedge r) \longrightarrow (q \vee s)$ será verdadera independientemente de los valores de verdad de p, q y s.

Si s es verdad, $q \lor s$ también será verdad y, consecuentemente, $(p \land r) \longrightarrow (q \lor s)$ será verdadera independientemente de los valores de verdad de p, q y r.

– Si la conclusión, $(p \land r) \longrightarrow (q \lor s)$ es falsa, la hipótesis, $(p \longrightarrow q) \lor (r \longrightarrow s)$, no puede ser verdadera.

En efecto, si la conclusión, $[(p \land r) \longrightarrow (q \lor s)]$ es falsa, entonces $(p \land r)$ es verdad y $(q \lor s)$ es falsa de donde se sigue que p y r son, ambas, verdad y q y s son, ambas, falsas. Por lo tanto, por el valor de verdad del condicional, (1.2.6), $p \longrightarrow q$ es falsa y $r \longrightarrow s$, también, de aquí que la disyunción de las dos, $(p \longrightarrow q) \lor (r \longrightarrow s)$, sea falsa.

Haremos una tabla de verdad que recoja únicamente estos casos.

1.3 Implicación

Estudiamos en este apartado la implicación lógica entre dos proposiciones.

1.3.1 Implicación lógica

Sean P y Q dos proposiciones cualesquiera. Diremos que P implica lógicamente Q, y escribiremos $P \Longrightarrow Q$, si la proposición condicional "si P, entonces Q", $(P \longrightarrow Q)$, es una tautología.

Ejemplo 1.15

Probar que la proposición $p \land (p \longrightarrow q)$ implica lógicamente la proposición q, probando que la veracidad de q se sigue de la veracidad de $p \land (p \longrightarrow q)$.

Solución

Probaremos, de acuerdo con la definición dada en el punto anterior, que el condicional $[p \land (p \longrightarrow q)] \longrightarrow q$ es unta tautología. Como ya sabemos, una proposición condicional únicamente es falsa cuando la hipótesis sea verdadera y la conclusión falsa. Veamos que esto no puede ocurrir.

En efecto, si $p \land (p \longrightarrow q)$ es verdad, entonces por el valor de verdad de la conjunción, (1.2.1), $p \lor p \longrightarrow q$ son, ambas, verdaderas, de aquí que por el valor de verdad del condicional, (1.2.6), q tenga que ser verdadera luego

$$[p \land (p \longrightarrow q)] \longrightarrow q$$

es una tautología y, consecuentemente,

$$[p \land (p \longrightarrow q)] \Longrightarrow q$$

Dadas las proposiciones p y q, demostrar que la negación de p ó q implica lógicamente la negación de p.

Solución

Veamos que $\neg(p \lor q) \longrightarrow \neg p$ es una tautología.

En efecto, si $\neg(p \lor q)$ es verdad, entonces $p \lor q$ es falso y, por el valor de verdad de la disyunción, esto significa que $p \vee q$ son, ambas, falsas. Pues bien, si p es falsa, su negación, $\neg p$, será verdadera luego $\neg (p \vee q) \longrightarrow \neg p$ es una tautología y por la la definición (1.3.1) hay implicación lógica, es decir,

$$\neg (p \lor q) \Longrightarrow \neg p$$

y la demostración termina.

Nota 1.7 Ahora podremos entender algo mejor lo que comentábamos en 1. de la nota 1.4. En efecto, de que "García Lorca fue un poeta" sea verdad no puede deducirse que Gauss fuera matemático, aunque lo fue y muy bueno.

De todas formas, es cierto que existe una semejanza entre el símbolo \Longrightarrow para la implicación lógica y el símbolo — para la proposición condicional. Esta semejanza es intencionada y debido a la manera en que se usa el término *implica*, en el lenguaje ordinario es natural leer $p \longrightarrow q$ como "p implica q".

1.3.2 Implicaciones lógicas más comunes

La tabla siquiente presenta alqunas implicaciones lógicas con los nombres que usualmente reciben.

 $Adici\'on \ | \ P \Longrightarrow (P \vee Q)$ Ley del Modus Ponendo Ponens (Modus Ponens) $| [(P \longrightarrow Q) \land P] \Longrightarrow Q$ Ley del Modus Tollendo Tollens (Modus Tollens) $| [(P \longrightarrow Q) \land \neg Q] \Longrightarrow \neg P$ Leyes de los Silogismos Hipotéticos $[(P \longrightarrow Q) \land (Q \longrightarrow R)] \Longrightarrow (P \longrightarrow R)$ $[(P \longleftrightarrow Q) \land (Q \longleftrightarrow R)] \Longrightarrow (P \longleftrightarrow R)$ Leyes de los silogismos disyuntivos $\begin{array}{|c|} [\neg P \land (P \lor Q)] \Longrightarrow Q \\ [P \land (\neg P \lor \neg Q)] \Longrightarrow \neg Q \end{array}$ Ley del Dilema Constructivo $[(P \longrightarrow Q) \land (R \longrightarrow S) \land (P \lor R)] \Longrightarrow (Q \lor S)$ $Contradicción \mid (P \longrightarrow C) \Longrightarrow \neg P$

Verificar la ley del Modus Tollendo Tollens, $[(P \longrightarrow Q) \land \neg Q] \Longrightarrow \neg P$.

Solución

En efecto, si $(P \longrightarrow Q) \land \neg Q$ es verdad, entonces $P \longrightarrow Q$ es verdad y $\neg Q$ es, también, verdad. Así pues, $P \longrightarrow Q$ es verdad y Q es falso, de aquí que por el valor de verdad del condicional, P tiene que ser falso y, consecuentemente, $\neg P$ es verdad. Por lo tanto, hemos llegado a que $\neg P$ es verdad partiendo de que $(P \longrightarrow Q) \land \neg Q$ es verdad, es decir,

$$[(P \longrightarrow Q) \land \neg Q] \longrightarrow \neg P$$

es una tautología y en consecuencia,

$$[(P \longrightarrow Q) \land \neg Q] \Longrightarrow \neg P$$

verificándose la ley del Modus Tollendo Tollens.

Ejemplo 1.18

Verificar las leyes de los silogismos hipotéticos.

(a)
$$(P \longrightarrow Q) \land (Q \longrightarrow R) \Longrightarrow (P \longrightarrow R)$$

(b)
$$(P \longleftrightarrow Q) \land (Q \longleftrightarrow R) \Longrightarrow (P \longleftrightarrow R)$$

Solución

(a)
$$(P \longrightarrow Q) \land (Q \longrightarrow R) \Longrightarrow (P \longrightarrow R)$$

En efecto, si $(P \longrightarrow Q) \land (Q \longrightarrow R)$ es verdad, entonces por el valor de verdad de la conjunción (1.2.1), $P \longrightarrow Q$ es verdad y $Q \longrightarrow R$ también. Por el valor de verdad del condicional, (1.2.6), si $P \longrightarrow Q$ es verdad, entonces P es falsa o Q verdadera. Tendremos, pues, dos opciones:

- * P es falsa y $Q \longrightarrow R$ es verdadera. En este caso, la conclusión, $P \longrightarrow R$, será verdadera independientemente de los valores de verdad de Q y R.
- * Q es verdad y $Q \longrightarrow R$ es verdadera. En tal caso, por el valor de verdad del condicional, (1.2.6), R ha de ser verdadera y la conclusión $P \longrightarrow R$, será verdadera independientemente del valor de verdad que tenga P.

En cualquier caso, el condicional,

$$(P \longrightarrow Q) \land (Q \longrightarrow R) \longrightarrow (P \longrightarrow R)$$

será una tautología y por lo tanto,

$$(P \longrightarrow Q) \land (Q \longrightarrow R) \Longrightarrow (P \longrightarrow R)$$

(b)
$$(P \longleftrightarrow Q) \land (Q \longleftrightarrow R) \Longrightarrow (P \longleftrightarrow R)$$

En efecto, si $(P \longleftrightarrow Q) \land (Q \longleftrightarrow R)$ es verdad, entonces $(P \longleftrightarrow Q)$ es verdad y $(Q \longleftrightarrow R)$ también. Pues bien, si $(P \longleftrightarrow Q)$ es verdad, entonces ambas proposiciones, $P \lor Q$, han de tener el mismo valor de verdad y como $(Q \longleftrightarrow R)$ es verdad, R ha de tener el mismo valor de verdad que Q, por lo tanto $P \lor R$ tienen, ambas, los mismos valores de verdad y, consecuentemente, $(P \longleftrightarrow R)$ es verdad.

Por lo tanto, el condicional

$$(P \longleftrightarrow Q) \land (Q \longleftrightarrow R) \longrightarrow (P \longleftrightarrow R)$$

es una tautología y en consecuencia,

$$(P \longleftrightarrow Q) \land (Q \longleftrightarrow R) \Longrightarrow (P \longleftrightarrow R)$$

Obtener los valores de verdad de las proposiciones P y R que verifican el silogismo hipotético

$$(P \longrightarrow Q) \land (Q \longrightarrow R) \Longrightarrow (P \longrightarrow R)$$

en los casos en que siendo verdadera la hipótesis,

- (a) Q sea verdadera.
- (b) Q sea falsa.

Solución

Como la hipótesis es verdadera, por el valor de verdad de la conjunción, $P \longrightarrow Q$ y $Q \longrightarrow R$ han de ser, ambas, verdaderas.

Por otra parte, al ser el condicional $(P \longrightarrow Q) \land (Q \longrightarrow R) \longrightarrow (P \longrightarrow R)$ una tautología siendo verdadera la hipótesis, la conclusión, $P \longrightarrow R$ también ha de serlo.

(a) Q es verdadera. En este caso, al ser $Q \longrightarrow R$ verdadera, la proposición R no puede ser falsa, luego ha de ser verdadera y, consecuentemente, la conclusión $P \longrightarrow R$ es verdad independientemente del valor de verdad que tenga P.

Por lo tanto, R tiene que ser verdad y P puede tener cualquier valor de verdad.

(b) Q es falsa. La veracidad de $P \longrightarrow Q$ obliga a que P sea falsa y, en tal caso, $P \longrightarrow R$ es verdad, independientemente del valor de verdad que tenga R.

Por lo tanto, P tiene que ser falsa y el valor de verdad de R es indiferente.

Ejemplo 1.20

Verificar la Ley del Dilema Constructivo, $[(P \longrightarrow Q) \land (R \longrightarrow S) \land (P \lor R)] \Longrightarrow (Q \lor S)$.

Solución

En efecto, si la hipótesis $(P \longrightarrow Q) \land (R \longrightarrow S) \land (P \lor R)$ es verdad, entonces por el valor de verdad de la conjunción, (1.2.1), las tres proposiciones, $P \longrightarrow Q$, $R \longrightarrow S$ y $P \lor R$ han de ser verdad. Pues bien, si $P \lor R$ es verdad, una de las dos proposiciones, P ó R, al menos, ha de ser verdad.

- Si P es verdad, como $P \longrightarrow Q$ es verdad, Q tiene que ser verdad y, consecuentemente, $Q \vee S$ será verdadera independientemente del valor de verdad que tenga S.
- Si R es verdad, como $R \longrightarrow S$ es verdad, S tendrá que ser verdad y, por lo tanto, $Q \vee S$ es verdad independientemente del valor de verdad de Q.

En cualquier caso, el condicional,

$$[(P \longrightarrow Q) \land (R \longrightarrow S) \land (P \lor R)] \longrightarrow (Q \lor S)$$

es una tautología y, por lo tanto, se verifica la implicación lógica.

1.4 Equivalencia Lógica

1.4.1 Proposiciones lógicamente equivalentes

Sean P y Q dos proposiciones compuestas cualesquiera. Diremos que las proposiciones P y Q son lógicamente equivalentes, y se escribe $P \iff Q$, cuando se verifica al mismo tiempo que P implica lógicamente Q, $P \implies Q$, y Q implica lógicamente P, $Q \implies P$.

1.4.2 Equivalencia lógica y Bicondicional

Dos proposiciones son lógicamente equivalentes si el bicondicional entre ellas es una tautología.

Demostración

En efecto, sean P y Q proposiciones cualesquiera tales que $P \iff Q$.

Entonces, $P\Longrightarrow Q$ y $Q\Longrightarrow P$ y por 1.3.1, tendremos que $P\longrightarrow Q$ y $Q\longrightarrow P$ son, ambas, tautologías y, consecuentemente, $P\longleftrightarrow Q$ también lo será.

1.4.3 Equivalencias lógicas más comunes

La tabla siguiente presenta algunas equivalencias lógicas con los nombres que usualmente reciben.

$$(P \land P) \iff P \\ (P \lor P) \implies P$$

Probar las leyes de De Morgan.

(a)
$$\neg (P \lor Q) \iff (\neg P \land \neg Q)$$

(b)
$$\neg (P \land Q) \iff (\neg P \lor \neg Q)$$

Solución

Sean P y Q dos proposiciones cualesquiera.

(a)
$$\neg (P \lor Q) \iff (\neg P \land \neg Q)$$
.

1.
$$\neg (P \lor Q) \Longrightarrow (\neg P \land \neg Q)$$
.

Probaremos que el condicional $\neg (P \lor Q) \longrightarrow (\neg P \land \neg Q)$ nunca puede ser falso, para lo cual veremos que la única opción de falsedad de un condicional (hipótesis verdadera y conclusión falsa) no puede darse.

En efecto, si $\neg (P \lor Q)$ es verdad, entonces por 1.2.4, $P \lor Q$ es falso, luego por 1.2.2, $P \lor Q$ serán, ambas, falsas, de aquí que, de nuevo por 1.2.4, $\neg P \lor \neg Q$ sean, las dos, verdaderas y, consecuentemente, $\neg P \land \neg Q$ es verdad (por 1.2.1).

Por tanto,

$$\neg (P \lor Q) \longrightarrow (\neg P \land \neg Q)$$

es una tautología y, consecuentemente.

$$\neg (P \lor Q) \Longrightarrow (\neg P \land \neg Q)$$

2. Recíprocamente, probemos ahora que $(\neg P \land \neg Q) \Longrightarrow \neg (P \lor Q)$

En efecto, si $\neg P \land \neg Q$ es verdad, entonces por 1.2.1 las dos proposiciones, $\neg P$ y $\neg Q$, han de ser verdad luego, por 1.2.4, P y Q tienen de ser, ambas, falsas y por 1.2.2 $P \lor Q$ es falsa de aquí que $\neg (P \lor Q)$ sea verdad.

Hemos probado que el condicional

$$(\neg P \land \neg Q) \longrightarrow \neg (P \lor Q)$$

es una tautología y, de nuevo por 1.3.1,

$$(\neg P \land \neg Q) \Longrightarrow \neg (P \lor Q)$$

De 1. y 2. se sigue que

$$\neg (P \lor Q) \Longleftrightarrow (\neg P \land \neg Q)$$

Veremos ahora que se verifica la equivalencia lógica comprobando que el bicondicional

$$\neg (P \lor Q) \longleftrightarrow (\neg P \land \neg Q)$$

es una tautología, para lo cual probaremos que ambas proposiciones tienen los mismos valores de verdad.

- 1. Si $\neg (P \lor Q)$ es verdad, entonces $P \lor Q$ es falsa, luego $P \lor Q$ son, ambas, falsas, de aquí que $\neg P \lor \neg Q$ sean, ambas, verdaderas y, consecuentemente, $\neg P \land \neg Q$ sea verdadera.
- 2. Si $\neg P \land \neg Q$ es falsa, entonces una de las dos proposiciones, $\neg P$ o $\neg Q$, al menos, ha de ser falsa, con lo que una de las dos proposiciones P o Q, al menos, ha de ser verdadera y, por lo tanto, $P \lor Q$ es verdad y su negación, $\neg (P \lor Q)$, falsa.

Ahora bastaría tener en cuenta 1., 2. y lo dicho en 1.4.2 para concluir que

$$\neg (P \lor Q) \iff (\neg P \land \neg Q)$$

Probaremos ahora lo mismo haciendo una tabla de verdad para comprobar que el bicondicional,

$$\neg (P \lor Q) \longleftrightarrow (\neg P \land \neg Q)$$

es una tautología. En efecto,

P	Q	$P \vee Q$	$\neg (P \lor Q)$	$\neg P$	$\neg Q$	$\neg P \land \neg Q$	$\neg (P \lor Q) \longleftrightarrow (\neg P \land \neg Q)$
V	V	V	F	F	F	F	V
V	F	V	F	F	V	F	V
\overline{F}	V	V	F	V	F	F	V
F	F	F	V	V	V	V	V

(b)
$$\neg (P \land Q) \iff (\neg P \lor \neg Q)$$

1. Veamos que $\neg (P \land Q) \Longrightarrow (\neg P \lor \neg Q)$.

En efecto, si $\neg (P \land Q)$ es verdad, entonces por 1.2.4, $P \land Q$ es falso, luego por 1.2.2, una de las dos proposiciones, P o Q, al menos, ha de ser falsa, de aquí que, de nuevo por 1.2.4, una de las dos, $\neg P$ o $\neg Q$, ha de ser verdad y, consecuentemente, $\neg P \lor \neg Q$ es verdadera (por 1.2.2).

Por lo tanto, el condicional,

$$\neg (P \land Q) \longrightarrow (\neg P \lor \neg Q)$$

es una tautología, y en consecuencia,

$$\neg (P \land Q) \Longrightarrow (\neg P \lor \neg Q)$$

2. Recíprocamente, probemos ahora que $(\neg P \lor \neg Q) \Longrightarrow \neg (P \land Q)$

En efecto, si $\neg P \lor \neg Q$ es verdad, entonces por 1.2.2 al menos una de las dos proposiciones, $\neg P$ o $\neg Q$, han de ser verdad luego, por 1.2.4, al menos una de las dos, P o Q tiene que ser falsa y por 1.2.1 $P \land Q$ es falsa y, consecuentemente, $\neg (P \land Q)$ es verdad.

Hemos probado, nuevamente, que el condicional

$$(\neg P \lor \neg Q) \longrightarrow \neg (P \land Q)$$

es tautología y, por tanto,

$$(\neg P \lor \neg Q) \Longrightarrow \neg (P \land Q)$$

De 1. y 2. se sigue que

$$\neg (P \land Q) \iff (\neg P \lor \neg Q)$$

Ahora veremos que se verifica la equivalencia lógica, comprobando que el bicondicional

$$\neg (P \land Q) \longleftrightarrow (\neg P \lor \neg Q)$$

es una tautología. Probaremos que ambas proposiciones tienen los mismos valores de verdad.

- 1. Si $\neg (P \land Q)$ es verdad, entonces $P \land Q$ es falsa, luego una de las dos proposiciones, P o Q, al menos, ha de ser falsa y, por lo tanto, una de las dos negaciones, $\neg P$ o $\neg Q$, al menos, ha de ser verdadera y, consecuentemente, $\neg P \lor \neg Q$ es verdad.
- 2. Si $\neg (P \land Q)$ es falsa, entonces $P \land Q$ es verdadera, luego $P \lor Q$ han de ser, ambas, verdaderas, sus negaciones $\neg P \lor \neg Q$, falsas y, consecuentemente, su disyunción, $\neg P \lor \neg Q$, será falsa.

Ahora bastaría tener en cuenta 1., 2. y lo dicho en 1.4.2 para concluir que

$$\neg (P \land Q) \iff (\neg P \lor \neg Q)$$

Probaremos ahora lo mismo haciendo una tabla de verdad para comprobar que el bicondicional,

$$\neg (P \land Q) \longleftrightarrow (\neg P \lor \neg Q)$$

es una tautología. En efecto,

P	Q	$P \wedge Q$	$\neg (P \land Q)$	$\neg P$	$\neg Q$	$\neg P \vee \neg Q$	$\neg (P \land Q) \longleftrightarrow (\neg P \lor \neg Q)$
V	V	V	F	F	F	F	V
V	F	F	V	F	V	V	V
F	V	F	V	V	F	V	V
F	F	F	V	V	V	V	V

Ahora bastaría tener en cuenta lo dicho en 1.4.2 para concluir que

$$\neg (P \land Q) \iff (\neg P \lor \neg Q)$$

Probar la equivalencia lógica conocida como contrarrecíproca.

Solución

Sean P y Q dos proposiciones compuestas cualesquiera. Probaremos que $(P \longrightarrow Q) \Longleftrightarrow (\neg Q \longrightarrow \neg P)$.

$$* (P \longrightarrow Q) \Longrightarrow (\neg Q \longrightarrow \neg P).$$

Como siempre, comprobaremos que el condicional $(P \longrightarrow Q) \longrightarrow (\neg Q \longrightarrow \neg P)$ es una tautología. Sabemos la única posibilidad de que un condicional sea falso es que sea verdad la hipótesis y la conclusión falsa. Veamos que esta situación no es posible.

En efecto, si $P \longrightarrow Q$ es verdad, entonces por el valor de verdad del condicional, pueden ocurrir dos cosas:

La hipótesis, P, es falsa, en cuyo caso $\neg P$ será verdadera y, consecuentemente, $\neg Q \longrightarrow \neg P$ es verdadera,

C

la conclusión, Q, es verdadera. En este caso, su negación, $\neg Q$, será falsa y, por lo tanto, $\neg Q \longrightarrow \neg P$ es verdadera.

Por lo tanto el condicional es una tautología y

$$(P \longrightarrow Q) \Longrightarrow (\neg Q \longrightarrow \neg P)$$

También podemos hacer una tabla de verdad abreviada:

$$* (\neg Q \longrightarrow \neg P) \Longrightarrow (P \longrightarrow Q).$$

En efecto, si $\neg Q \longrightarrow \neg P$ es verdad, puede ser por dos cosas:

 $\neg Q$ es falsa. En este caso, Q será verdadera y, por lo tanto, $P \longrightarrow Q$ será verdadera.

o

 $\neg P$ es verdad. En tal caso, P es falsa y el condicional $P \longrightarrow Q$ será verdadero.

Por lo tanto,

$$(\neg Q \longrightarrow \neg P) \Longrightarrow (P \longrightarrow Q)$$

También podemos comprobar que el condicional es una tautología haciendo una tabla de verdad abreviada:

En los ejemplos siguientes utilizaremos las equivalencias lógicas para simplificar una expresión lógica.

Demostrar que $(p \land \neg q) \lor (\neg p \land \neg q) \lor (\neg p \land q) \iff \neg (p \land q).$

Solución

En efecto,

$$(p \wedge \neg q) \vee (\neg p \wedge \neg q) \vee (\neg p \wedge q) \iff [(p \vee \neg p) \wedge \neg q] \vee (\neg p \wedge q) \quad \{\text{Distributividad}\}$$

$$\iff (T \wedge \neg q) \vee (\neg p \wedge q) \quad \{\text{Tautolog\'a}\}$$

$$\iff \neg q \vee (\neg p \wedge q) \quad \{\text{Dominaci\'on}\}$$

$$\iff (\neg q \vee \neg p) \wedge (\neg q \vee q) \quad \{\text{Distributividad}\}$$

$$\iff (\neg p \vee \neg q) \wedge T \quad \{\text{Commutatividad y Tautolog\'a}\}$$

$$\iff \neg p \vee \neg q \quad \{\text{Dominaci\'on}\}$$

$$\iff \neg (p \wedge q) \quad \{\text{De Morgan}\}$$

Ejemplo 1.24

Establecer las siguientes equivalencias simplificando las proposiciones del lado izquierdo.

(a)
$$[(p \land q) \longrightarrow p] \iff T$$

(b)
$$\neg(\neg(p \lor q) \longrightarrow \neg p) \iff C$$

(c)
$$[(q \longrightarrow p) \land (\neg p \longrightarrow q) \land (q \longrightarrow q)] \iff p$$

(d)
$$[(p \longrightarrow \neg p) \land (\neg p \longrightarrow p)] \iff C$$

siendo C una contradicción y T una tautología.

Solución

$$\begin{array}{cccc} (\mathbf{a}) & [(p \wedge q) \longrightarrow p] \iff T \\ & & [(p \wedge q) \longrightarrow p] & \iff \neg (p \wedge q) \vee p & \{ \mathrm{Implicaci\'on} \} \\ & \iff & (\neg p \vee \neg q) \vee p & \{ \mathrm{De\ Morgan} \} \\ & \iff & p \vee (\neg p \vee \neg q) & \{ \mathrm{Conmutatividad\ de\ } \vee \} \\ & \iff & (p \vee \neg p) \vee \neg q & \{ \mathrm{Asociatividad\ de\ } \vee \} \\ & \iff & T \vee \neg q & \{ \mathrm{Tautolog\'ia} \} \\ & \iff & T & \{ \mathrm{Dominaci\'on} \} \end{array}$$

$$(b) \ \neg (\neg (p \lor q) \longrightarrow \neg p) \iff C$$

$$\neg (\neg (p \lor q) \longrightarrow \neg p) \iff \neg (\neg \neg (p \lor q) \lor \neg p) \quad \{\text{Implicación}\}$$

$$\iff \neg ((p \lor q) \lor \neg p) \quad \{\text{Doble negación}\}$$

$$\iff \neg (p \lor q) \land \neg \neg p \quad \{\text{De Morgan}\}$$

$$\iff (\neg p \land \neg q) \land p \quad \{\text{Doble Negación y De Morgan}\}$$

$$\iff (\neg q \land \neg p) \land p \quad \{\text{Commutatividad de } \land \}$$

$$\iff \neg q \land (\neg p \land p) \quad \{\text{Asociatividad de } \land \}$$

$$\iff \neg q \land C \quad \{\text{Contradicción}\}$$

$$\iff C \quad \{\text{Dominación}\}$$

$$(c) \ [(q \longrightarrow p) \land (\neg p \longrightarrow q) \land (q \longrightarrow q)] \iff p$$

$$[(q \longrightarrow p) \land (\neg p \longrightarrow q) \land (q \longrightarrow q)] \iff (\neg q \lor p) \land (\neg \neg p \lor q) \land (\neg q \lor q) \quad \{\text{Implicación}\}$$

$$\iff (\neg q \lor p) \land (p \lor q) \land T \quad \{\text{Tautología}\}$$

$$\iff (p \lor \neg q) \land (p \lor q) \quad \{\text{Commutatividad}\}$$

$$\iff p \lor C \quad \{\text{Contradicción}\}$$

$$\iff p \lor C \quad \{\text{Contradicción}\}$$

$$\iff p \lor C \quad \{\text{Identidad}\}$$

$$(d) \ [(p \longrightarrow \neg p) \land (\neg p \longrightarrow p)] \iff C$$

$$[(p \longrightarrow \neg p) \land (\neg p \longrightarrow p)] \iff C \quad \{\text{Idempotencia y doble negación}\}$$

$$\iff C \quad \{\text{Idempotencia y doble negación}\}$$

$$\iff C \quad \{\text{Contradicción}\}$$

1.5 Razonamientos

Estudiamos en este apartado el significado formal del concepto de "razonamiento" y lo utilizamos para demostrar la veracidad de proposiciones a través de implicaciones y equivalencias lógicas.

Desde un punto de vista genérico, un razonamiento consta de una serie de proposiciones llamadas premisas y que son los "datos" y una proposición que es la conclusión o resultado del mismo. Probar que el razonamiento es válido significa demostrar que la conclusión se sigue lógicamente de las premisas dadas.

1.5.1 Razonamiento

Llamaremos de esta forma a cualquier proposición con la estructura

$$(p_1 \wedge p_2 \wedge \cdots \wedge p_n) \longrightarrow q$$

siendo n un entero positivo.

A las proposiciones p_i , i = 1, 2, ..., n se les llama premisas del razonamiento y a la proposición q, conclusión del mismo.

1.5.2 Razonamiento Válido

Diremos que el razonamiento,

$$(p_1 \wedge p_2 \wedge \cdots \wedge p_n) \longrightarrow q$$

es válido si la conclusión q es verdadera cada vez que la hipótesis, $p_1 \wedge p_2 \wedge \cdots \wedge p_n$, lo sea.

Nota 1.8 Obsérvese que esto significa que si el razonamiento es válido, entonces el condicional,

$$(p_1 \wedge p_2 \wedge \cdots \wedge p_n) \longrightarrow q$$

nunca es falso, es decir es una tautología.

Esto, a su vez, nos permite aceptar como válido el razonamiento en el caso de que alguna de las premisas sea falsa. En efecto, si alguna de las $p_i, i=1,2,\ldots,n$ es falsa, entonces $p_1 \wedge p_2 \wedge \cdots \wedge p_n$ será falsa, luego el condicional $p_1 \wedge p_2 \wedge \cdots \wedge p_n \longrightarrow q$ es verdadero, independientemente del valor de verdad de la conclusión q.

Obsérvese, también, que de acuerdo con la definición de implicación lógica, 1.3.1, un razonamiento será válido cuando

$$(p_1 \wedge p_2 \wedge \cdots \wedge p_n) \Longrightarrow q$$

Ejemplo 1.25

Estudiar la validez del siguiente razonamiento:

$$[p \land ((p \land q) \longrightarrow r)] \longrightarrow (q \longrightarrow r)$$

Solución

Lo haremos de varias formas.

1 Veamos que la veracidad de la conclusión se sigue de la veracidad de la hipótesis.

En efecto, si $p \wedge ((p \wedge q) \longrightarrow r)$ es verdad, entonces p es verdad y $(p \wedge q) \longrightarrow r$ también lo es y la veracidad de ésta última proposición puede ser porque la hipótesis, $p \wedge q$, sea falsa o porque la conclusión, r, sea verdadera. Tenemos, pues, dos opciones:

- -p es verdad y $p \land q$ es falsa. En este caso, por el valor de verdad de la conjunción, (1.2.1), q ha de ser falsa y, consecuentemente, la conclusión $q \longrightarrow r$ es verdadera independientemente del valor de verdad que tenga r.
- p es verdad y r es verdad. En tal caso, la conclusión, $q \longrightarrow r$ es verdadera, independientemente del valor de verdad que tenga q.

Por lo tanto, el razonamiento es válido.

2 Comprobaremos, ahora, que el condicional

$$[p \land ((p \land q) \longrightarrow r)] \longrightarrow (q \longrightarrow r)$$

es una tautología mediante una tabla de verdad abreviada.

p	q	r	$p \wedge q$	$(p \wedge q) \longrightarrow r$	$p \wedge ((p \wedge q) \longrightarrow r)$	$q \longrightarrow r$
V	V	F	V	F	F	F
F					F	F

$$\begin{array}{c} [p \wedge ((p \wedge q) \longrightarrow r)] \longrightarrow (q \longrightarrow r) \\ \hline V \\ \hline V \\ \end{array}$$

3 Comprobaremos, finalmente, que el razonamiento es válido simplificando la hipótesis mediante implicaciones y equivalencias lógicas.

$$\begin{array}{cccc} p \wedge ((p \wedge q) \longrightarrow r) & \Longleftrightarrow & p \wedge (\neg (p \wedge q) \vee r) & \{ \mathrm{Implicaci\acute{o}n} \} \\ & \Longleftrightarrow & p \wedge (\neg p \vee \neg q \vee r) & \{ \mathrm{De\ Morgan} \} \\ & \Longleftrightarrow & p \wedge (\neg p \vee (q \longrightarrow r)) & \{ \mathrm{Implicaci\acute{o}n} \} \\ & \Longleftrightarrow & p \wedge (p \longrightarrow (q \longrightarrow r)) & \{ \mathrm{Implicaci\acute{o}n} \} \\ & \Longrightarrow & q \longrightarrow r & \{ \mathrm{Modus\ Ponendo\ Ponens} \} \end{array}$$

1.5.3 Demostración por Contradicción o Reducción al Absurdo

Este método de demostración de la validez de un razonamiento se basa en la equivalencia lógica conocida como "Reducción al absurdo" (1.4.3),

$$(P \longrightarrow Q) \Longleftrightarrow [(P \land \neg Q) \longrightarrow C]$$

Demostración

Si queremos demostrar la validez del razonamiento, $P \longrightarrow Q$, podemos demostrar, en su lugar, la validez del razonamiento $(P \land \neg Q) \longrightarrow C$ que como hemos visto en 1.4.3, es equivalente al primero.

Ejemplo 1.26

Estudiar la validez del razonamiento:

$$[p \land ((p \land q) \longrightarrow r)] \longrightarrow (q \longrightarrow r)$$

por contradicción.

Solución

Probaremos que

$$[p \land ((p \land q) \longrightarrow r) \land \neg (q \longrightarrow r)] \longrightarrow C$$

es una tautología.

En efecto, si la hipótesis,

$$p \land ((p \land q) \longrightarrow r) \land \neg (q \longrightarrow r)$$

es verdad, por el valor de verdad de la conjunción, (1.2.1), las tres proposiciones han de ser verdaderas, es decir,

- p es verdad.
- $(p \land q) \longrightarrow r$ es verdad.
- $\neg (q \longrightarrow r)$ es verdad.

o lo que es igual,

- p es verdad.
- $(p \land q) \longrightarrow r$ es verdad.
- $q \longrightarrow r$ es falsa.

Por lo tanto, q es verdad y r es falsa y como $(p \land q) \longrightarrow r$ es verdad, siendo falsa la conclusión, r, la hipótesis, $p \land q$, ha de ser, también, falsa, y al ser q verdadera, p deberá ser falsa, es decir $\neg p$ es verdadera. Tendremos, pues, que $p \land \neg p$ es verdad.

Partiendo, pues, de la veracidad de

$$p \wedge ((p \wedge q) \longrightarrow r) \wedge \neg (q \longrightarrow r)$$

hemos llegado a la veracidad de $p \land \neg p$, es decir,

$$[p \land ((p \land q) \longrightarrow r) \land \neg (q \longrightarrow r)] \longrightarrow (p \land \neg p)$$

es una tautología. Como $p \land \neg p \iff C$,

$$[p \land ((p \land q) \longrightarrow r) \land \neg (q \longrightarrow r)] \longrightarrow C$$

será, también, una tautología. Bastaría aplicar la equivalencia lógica conocida como "reducci'on al absurdo", (1.4.3), y tendríamos que

$$[p \land ((p \land q) \longrightarrow r)] \longrightarrow (q \longrightarrow r)$$

es, también, una tautología y el razonamiento, por lo tanto, es válido.

1.5.4 Demostración por la Contrarrecíproca

Este método de demostración de la validez de un razonamiento se basa en la equivalencia lógica conocida como "Contrarrecíproca" (1.4.3),

$$(P \longrightarrow Q) \Longleftrightarrow (\neg Q \longrightarrow \neg P)$$

Demostración

En efecto, supongamos que queremos establecer la validez de un razonamiento de hipótesis P y conclusión Q, es decir probar que $P \Longrightarrow Q$.

Una de las formas de hacerlo es comprobar que $P \longrightarrow Q$ es una tautología y como

$$(P \longrightarrow Q) \Longleftrightarrow (\neg Q \longrightarrow \neg P)$$

lo podremos hacer también comprobando que su contrarrecíproca, $\neg Q \longrightarrow \neg P$, lo es.

Ejemplo 1.27

Estudiar la validez del razonamiento:

$$[p \land ((p \land q) \longrightarrow r)] \longrightarrow (q \longrightarrow r)$$

por la contrarrecíproca.

Solución

Probaremos que el condicional,

$$\neg (q \longrightarrow r) \longrightarrow \neg [p \land ((p \land q) \longrightarrow r)]$$

es una tautología.

Aplicando las equivalencias lógicas correspondientes,

$$\begin{array}{cccc} \neg \left(q \longrightarrow r \right) & \Longleftrightarrow & \neg \left(\neg q \vee r \right) & \{ \text{Implicación} \} \\ & \Longleftrightarrow & \neg \neg \wedge \neg r & \{ \text{De Morgan} \} \\ & \Longleftrightarrow & q \wedge \neg r & \{ \text{Doble negación} \} \end{array}$$

у

$$\neg [p \land ((p \land q) \longrightarrow r)] \iff \neg p \lor \neg [(p \land q) \longrightarrow r] \qquad \{\text{De Morgan}\}$$

$$\iff \neg p \lor \neg [\neg (p \land q) \lor r] \qquad \{\text{Implicación}\}$$

$$\iff \neg p \lor \neg \neg (p \land q) \land \neg r \qquad \{\text{De Morgan}\}$$

$$\iff \neg p \lor (p \land q \land \neg r) \qquad \{\text{Doble Negación}\}$$

Probaremos, por tanto, que el condicional

$$(q \land \neg r) \longrightarrow [\neg p \lor (p \land q \land \neg r)]$$

es tautología.

En efecto, si $q \wedge \neg r$ es verdad, entonces el valor de verdad de la conclusión, $\neg p \vee (p \wedge q \wedge \neg r)$, dependerá del valor de verdad de p y, por tanto, habrá dos opciones:

- * Si p es verdad, entonces $p \wedge q \wedge \neg r$ será verdad y, consecuentemente, la conclusión, $\neg p \vee (p \wedge q \wedge \neg r)$ también lo será.
- * Si p es falsa, entonces $\neg p$ será verdadera y, por lo tanto, la conclusión, $\neg p \lor (p \land q \land \neg r)$ será verdad.

Como la veracidad de la conclusión se deduce de la veracidad de la hipótesis habremos probado que el razonamiento (el contrarrecíproco) es válido o lo que es igual el condicional,

$$(q \land \neg r) \longrightarrow [\neg p \lor (p \land q \land \neg r)]$$

es una tautología. Esto equivale a decir, por 1.4.3, que

$$[p \land ((p \land q) \longrightarrow r)] \longrightarrow (q \longrightarrow r)$$

es, también, una tautología y, por lo tanto, el razonamiento propuesto es válido.

Ejemplo 1.28

Sean p, q y r las proposiciones,

p: Torcuato se casa.

q: Florinda se tira al tren.

r: Torcuato se hace cura.

Estudiar la validez del siguiente razonamiento:

$$[(p \longrightarrow q) \land (q \longleftrightarrow \neg r)] \longrightarrow (p \longrightarrow \neg r)$$

Solución

Tenemos que comprobar que la veracidad de la conclusión se sigue de la veracidad de la hipótesis, es decir,

$$[(p \longrightarrow q) \land (q \longleftrightarrow \neg r)] \longrightarrow (p \longrightarrow \neg r).$$

es una tautología.

Lo haremos de varias formas.

1 Aplicando directamente la definición de implicación lógica.

En efecto, si $(p \longrightarrow q) \land (q \longleftrightarrow \neg r)$ es verdad, entonces $p \longrightarrow q$ ha de ser verdad y $q \longleftrightarrow \neg r$ también. Ahora bien, la veracidad del condicional $p \longrightarrow q$ puede deberse a que p sea falsa o a que q sea verdadera. Así pues, tendremos dos opciones:

- * p es falsa y $q \longleftrightarrow \neg r$ verdadera. En este caso, la conclusión $p \longrightarrow \neg r$ es verdadera, independientemente del valor de verdad que tenga r.
- ** q es verdadera y $q \longleftrightarrow \neg r$ también. En tal caso, $\neg r$ ha de ser verdad y, consecuentemente, $p \longrightarrow \neg r$ es verdadera sin importar el valor de verdad de p.

Así pues, y en cualquier caso, la veracidad de la conclusión, $p \longrightarrow \neg r$ se sigue de la veracidad de la hipótesis, $(p \longrightarrow q) \land (q \longleftrightarrow \neg r)$, lo cual significa que

$$[(p \longrightarrow q) \land (q \longleftrightarrow \neg r)] \longrightarrow (p \longrightarrow \neg r)$$

es una tautología y el razonamiento es válido.

Probemos ahora lo mismo pero partiendo de la falsedad de la conclusión.

En efecto, si la conclusión, $p \longrightarrow \neg r$, es falsa, entonces p es verdad y $\neg r$ es falso y el valor de verdad de $p \longrightarrow q$ y $q \longleftrightarrow \neg r$ dependerá del valor de verdad que tenga q. Habrá pues dos opciones:

- $\#\ q$ es verdad. En tal caso, $p \longrightarrow q$ será verdad y $q \longleftrightarrow \neg r$ falso.
- * qes falso. En este caso, $p \longrightarrow q$ será falso y $q \longleftrightarrow \neg r$ verdad.

Por lo tanto y en ambos casos, la hipótesis, $(p \longrightarrow q) \land (p \longleftrightarrow \neg r)$, es falsa.

La tabla de verdad siguiente refleja los pasos que hemos dado.

						$(p \longrightarrow q) \land (p \longleftrightarrow \neg r)$	$p \longrightarrow \neg r$
	V	V	F	V	F	F	F
Ì	V	F	F	F	V	F	F

Consecuentemente, el condicional,

$$[(p \longrightarrow q) \land (q \longleftrightarrow \neg r)] \longrightarrow (p \longrightarrow \neg r)$$

es verdadero y, por lo tanto, el razonamiento es válido.

2 Utilizaremos, ahora, el método de demostración por contradicción (1.5.3).

Probaremos que

$$[(p \longrightarrow q) \land (q \longleftrightarrow \neg r) \land \neg (p \longrightarrow \neg r)] \longrightarrow C$$

es una tautología.

En efecto, si la hipótesis, $(p \longrightarrow q) \land (q \longleftrightarrow \neg r) \land \neg (p \longrightarrow \neg r)$ es verdad, por el valor de verdad de la conjunción, (1.2.1), las tres proposiciones que la integran han de ser verdaderas, es decir,

 $p \longrightarrow q$ es verdad.

 $q \longleftrightarrow \neg r$ es verdad.

 $\neg (p \longrightarrow \neg r)$ es verdad, o sea $p \longrightarrow \neg r$ es falsa.

Pues bien, si $p \longrightarrow \neg r$ es falsa, entonces, por el valor de verdad del condicional, (1.2.6), p ha de ser verdad y $\neg r$, falsa. Como $q \longleftrightarrow \neg r$ es verdad, por el valor de verdad del bicondicional, (1.2.9), q ha de ser falsa y, al ser $p \longrightarrow q$ verdadera, nuevamente por el valor de verdad del condicional, p ha de ser falsa y, por lo tanto, $\neg p$ es verdadera. Tendremos, pues, que $p \land \neg p$ es verdadera.

Partiendo de la veracidad de

$$(p \longrightarrow q) \land (q \longleftrightarrow \neg r) \land \neg (p \longrightarrow \neg r)$$

hemos llegado a que $p \land \neg p$ es verdad, luego,

$$[(p \longrightarrow q) \land (q \longleftrightarrow \neg r) \land \neg (p \longrightarrow \neg r)] \longrightarrow (p \land \neg p)$$

es una tautología. Como $p \wedge \neg p$ es una contradicción, tendremos que

$$[(p \longrightarrow q) \land (q \longleftrightarrow \neg r) \land \neg (p \longrightarrow \neg r)] \longrightarrow C$$

también será una tautología. Aplicamos la equivalencia lógica conocida como "reducción al absurdo", (1.4.3), y

$$[(p \longrightarrow q) \land (q \longleftrightarrow \neg r) \land \neg (p \longrightarrow \neg r)] \longrightarrow (p \longrightarrow \neg r)$$

es una tautología y, consecuentemente, el razonamiento es válido.

[3] Probaremos, una vez más, que el razonamiento es válido utilizando el método de demostración por la contrarrecíproca, (1.5.4).

Veamos que

$$\neg (p \longrightarrow \neg r) \longrightarrow \neg [(p \longrightarrow q) \land (q \longleftrightarrow \neg r)]$$

es tautología.

Utilizando las equivalencias lógicas correspondientes,

$$\neg (p \longrightarrow \neg r) \iff \neg (\neg p \vee \neg r) \quad \{\text{Implicación}\}$$

$$\iff \neg \neg p \wedge \neg \neg r \quad \{\text{De Morgan}\}$$

$$\iff p \wedge r \quad \{\text{Doble negación}\}$$

у

$$\neg [(p \longrightarrow q) \land (q \longleftrightarrow \neg r)] \iff \neg (p \longrightarrow q) \lor \neg (q \longleftrightarrow \neg r) \qquad \{\text{De Morgan}\} \\ \iff \neg (p \longrightarrow q) \lor \neg [(q \longrightarrow \neg r) \land (\neg r \longrightarrow q)] \qquad \{\text{Def. Bicondicional}\} \\ \iff \neg (p \longrightarrow q) \lor \neg (q \longrightarrow \neg r) \lor \neg (\neg r \longrightarrow q) \qquad \{\text{De Morgan}\} \\ \iff \neg (\neg p \lor q) \lor \neg (\neg q \lor \neg r) \lor \neg (\neg \neg r \lor q) \qquad \{\text{Implicación}\} \\ \iff (\neg \neg p \land \neg q) \lor (\neg \neg q \land \neg \neg r) \lor (\neg \neg \neg r \land \neg q) \qquad \{\text{De Morgan}\} \\ \iff (p \land \neg q) \lor (q \land r) \lor (\neg r \land \neg q) \qquad \{\text{Doble Negación}\}$$

Probaremos, pues, que

$$(p \wedge r) \longrightarrow [(p \wedge \neg q) \vee (q \wedge r) \vee (\neg r \wedge \neg q)]$$

es tautología.

En efecto, si la hipótesis, $p \wedge r$ es verdad, entonces por el valor de verdad de la conjunción, (1.2.1), p y r serán, ambas, verdaderas. El valor de verdad de la conclusión dependerá, por tanto, de q y tendremos, pues, dos opciones:

- * q es verdad. En este caso, la proposición $q \wedge r$ será verdadera y, por el valor de verdad de la disyunción, (1.2.2), la conclusión, $(p \wedge \neg q) \vee (q \wedge r) \vee (\neg r \wedge \neg q)$, será verdadera.
- * q es falsa. En tal caso, $\neg q$ será verdad, la proposición $p \land \neg q$ también y, nuevamente, por el valor de verdad de la disyunción, (1.2.2), la conclusión, $(p \land \neg q) \lor (q \land r) \lor (\neg r \land \neg q)$, será verdadera.

Como la veracidad de la conclusión se sigue de la veracidad de la hipótesis hemos comprobado que el condicional,

$$(p \wedge r) \longrightarrow [(p \wedge \neg q) \vee (q \wedge r) \vee (\neg r \wedge \neg q)]$$

es decir,

$$\neg (p \longrightarrow \neg r) \Longrightarrow \neg [(p \longrightarrow q) \land (q \longleftrightarrow \neg r)]$$

es una tautología. Utilizando la equivalencia lógica "contrarrecíproca", 1.4.3,

$$[(p \longrightarrow q) \land (q \longleftrightarrow \neg r)] \longrightarrow (p \longrightarrow \neg r)$$

será, también, tautología y, consecuentemente, el razonamiento es válido.

Finalmente, escribimos el razonamiento con palabras,

Si Torcuato se casa, entonces Florinda se tira al tren.

Florinda se tira al tren siempre y cuando Torcuato no se haga cura.

Por lo tanto, si Torcuato se casa, entonces no se hace cura.

Ejemplo 1.29

Estudiar la validez del siguiente razonamiento:

Si Florinda resuelve los ejercicios, entonces aprobará Lógica Matemática.

Si Florinda no se va de fiesta, entonces resolverá los ejercicios.

Florinda no aprobó Lógica Matemática.

Por lo tanto, Florinda se fue de fiesta.

Solución

Llamando,

p: Florinda resuelve los ejercicios.

q: Florinda aprueba Lógica Matemática.

r: Florinda se va de fiesta.

El razonamiento escrito en notación simbólica será:

$$[(p \longrightarrow q) \land (\neg r \longrightarrow p) \land \neg q] \longrightarrow r$$

Veamos si la veracidad de la conclusión se sigue de la veracidad de la hipótesis.

In En efecto, si $(p \longrightarrow q) \land (\neg r \longrightarrow p) \land \neg q$ es verdad, entonces, las tres proposiciones que la componen han de ser verdaderas. Pues bien, si $\neg q$ es verdad, entonces q ha de ser falsa, y como $p \longrightarrow q$ es verdad, la proposición p tendrá que ser falsa. Por otra parte, si $\neg r \longrightarrow p$ es verdad, al ser p falsa, la proposición $\neg r$ tendrá que ser falsa también y, consecuentemente, r será verdad.

La siguiente tabla de verdad recoge los pasos anteriores en el orden en que se producen.

	p	q	r	$\neg r$	$p \longrightarrow q$	$\neg r \longrightarrow p$	$\neg q$	$(p \longrightarrow q) \land (\neg r \longrightarrow p) \land \neg q$
								V
					V	V	V	
		F			V	V		
Ī	F					V		
ſ				F				
ſ			V					

El razonamiento propuesto es, por tanto, válido.

2 Simplificando la hipótesis mediante implicaciones y equivalencias lógicas.

$$\begin{array}{lll} (p\longrightarrow q)\wedge (\neg r\longrightarrow p)\wedge \neg q &\iff & [(p\longrightarrow q)\wedge \neg q]\wedge (\neg r\longrightarrow p) & \{\text{Conmutatividad}\}\\ &\Longrightarrow & \neg p\wedge (\neg r\longrightarrow p) & \{\text{Modus tollendo tollens}\}\\ &\iff & (\neg r\longrightarrow p)\wedge \neg p & \{\text{Conmutatividad}\}\\ &\Longrightarrow & \neg \neg r & \{\text{Modus tollendo tollens}\}\\ &\iff & r & \{\text{Doble negación}\} \end{array}$$

Con lo cual hemos probado, también, que el razonamiento es válido.

3 Demostración por contradicción.

Probaremos que

$$[(p \longrightarrow q) \land (\neg r \longrightarrow p) \land \neg q \land \neg r] \longrightarrow C$$

es una tautología.

En efecto, si la hipótesis, $(p \longrightarrow q) \land (\neg r \longrightarrow p) \land \neg q \land \neg r$ es verdad, entonces por el valor de verdad de la conjunción, (1.2.1), las cuatro proposiciones que la integran han de ser verdaderas, es decir,

- $p \longrightarrow q$ es verdad.
- $\neg r \longrightarrow p$ es verdad.

- $\neg q$ es verdad, o sea q es falsa.
- $\neg r$ es verdad.

Pues bien, si q es falsa, al ser verdad $p \longrightarrow q$, por el valor de verdad del condicional, (1.2.6), p ha de ser falsa, es decir $\neg p$ es verdadera.

Por otra parte, si $\neg r$ es verdad y $\neg r \longrightarrow p$ también, nuevamente por el valor de verdad del condicional, (1.2.6), tendremos que p ha de ser verdad.

Hemos llegado, por tanto, a que $p \land \neg p$ es verdad, luego el condicional,

$$[(p \longrightarrow q) \land (\neg r \longrightarrow p) \land \neg q \land \neg r] \longrightarrow (p \land \neg p)$$

es una tautología y, como $p \wedge \neg p$ es una contradicción,

$$[(p \longrightarrow q) \land (\neg r \longrightarrow p) \land \neg q \land \neg r] \longrightarrow C$$

también lo será.

Aplicamos "reducción al absurdo", (1.4.3), y

$$[(p \longrightarrow q) \land (\neg r \longrightarrow p) \land \neg q] \longrightarrow r$$

es una tautología y, consecuentemente, el razonamiento propuesto es válido.

4 Demostración por la contrarrecíproca.

Probaremos que

$$\neg r \longrightarrow \neg [(p \longrightarrow q) \land (\neg r \longrightarrow p) \land \neg q]$$

es una tautología.

Utilizando las equivalencias lógicas correspondientes,

$$\neg [(p \longrightarrow q) \land (\neg r \longrightarrow p) \land \neg q] \iff \neg (p \longrightarrow q) \lor \neg (\neg r \longrightarrow p) \lor \neg \neg q \quad \{\text{De Morgan}\} \\ \iff \neg (\neg p \lor q) \lor \neg (\neg \neg r \lor p) \lor \neg \neg q \quad \{\text{Implicación}\} \\ \iff (\neg \neg p \land \neg q) \lor (\neg \neg \neg r \land \neg p) \lor \neg \neg q \quad \{\text{De Morgan}\} \\ \iff (p \land \neg q) \lor (\neg r \land \neg p) \lor q \quad \{\text{Doble Negación}\}$$

Probaremos, pues, que

$$\neg r \longrightarrow [(p \land \neg q) \lor (\neg r \land \neg p) \lor q]$$

es una tautología.

En efecto, si $\neg r$ es verdad, entonces el valor de verdad de $\neg r \land \neg p$ dependerá de $\neg p$. Habrá, por tanto, dos opciones:

- 1. $\neg p$ es verdad. En este caso, $\neg r \land \neg p$ será verdadera y, por el valor de verdad de la disyunción, (1.2.2), la conclusión, $(p \land \neg q) \lor (\neg r \land \neg p) \lor q$ será verdadera.
- 2. $\neg p$ es falsa. p será verdad y el valor de verdad de $p \land \neg q$ dependerá de $\neg q$. Tendremos, pues, dos opciones:
 - 2.1 $\neg q$ es verdad. En este caso, $p \wedge \neg q$ será verdad y, al igual que antes, la conclusión será verdadera.
 - $2.2 \neg q$ es falsa. En tal caso, q será verdad y, nuevamente, por el valor de verdad de la disyunción, (1.2.2), la conclusión será verdadera.

Por lo tanto, y en cualquier caso, la veracidad de la conclusión se sigue de la veracidad de la hipótesis, es decir el condicional,

$$\neg r \longrightarrow [(p \land \neg q) \lor (\neg r \land \neg p) \lor q]$$

es una tautología, luego

$$\neg r \longrightarrow \neg \left[(p \longrightarrow q) \land (\neg r \longrightarrow p) \land \neg q \right]$$

también lo será y en virtud de la equivalencia entre un condicional y su contrarrecíproco, (1.4.3),

$$[(p \longrightarrow q) \land (\neg r \longrightarrow p) \land \neg q] \longrightarrow r$$

también será una tautología y, consecuentemente, el razonamiento propuesto será válido.

Ejemplo 1.30

Consideremos el siguiente razonamiento:

Florinda está en una fiesta.

- Si Florinda está en una fiesta, entonces no está resolviendo los ejercicios de Lógica.
- Si Florinda no está resolviendo los ejercicios de Lógica, entonces no aprobará Lógica.

¿Cuál es la conclusión (distinta de las premisas) para que el razonamiento sea válido?

Solución

Sean:

p: Florinda está en una fiesta.

q: Florinda está haciendo los ejercicios de Lógica.

r: Florinda aprueba lógica.

La hipótesis será:

$$p \land (p \longrightarrow \neg q) \land (\neg q \longrightarrow \neg r)$$

Pues bien,

$$\begin{array}{cccc} p \wedge (p \longrightarrow \neg q) \wedge (\neg q \longrightarrow \neg r) & \Longrightarrow & p \wedge (p \longrightarrow \neg r) & \{ \text{Silogismo Hipótetico} \} \\ & \Longrightarrow & \neg r & \{ \text{Modus Ponendo Ponens} \} \end{array}$$

Por lo tanto, para que el razonamiento sea válido la conclusión debe ser "Florinda no aprobará Lógica".

1.5.5 Falacia

Llamaremos de esta forma a un razonamiento que no es válido

Ejemplo 1.31

Estudiar la validez del siguiente razonamiento:

Si el mayordomo es el asesino, se pondrá nervioso cuando lo interroguen.

El mayordomo se puso muy nervioso cuando lo interrogaron.

Por lo tanto, el mayordomo es el asesino.

Solución

Sean:

p: El mayordomo es el asesino.

q: El mayordomo se puso muy nervioso cuando lo interrogaron.

El razonamiento escrito en forma simbólica sería:

$$[(p \longrightarrow q) \land q] \longrightarrow p$$

Veamos si es una tautología.

La proposición anterior es falsa, únicamente si siendo verdad la hipótesis, $(p \longrightarrow q) \land q$, es falsa la conclusión p. Pero, si $(p \longrightarrow q) \land q$ es verdad, entonces $p \longrightarrow q$ es verdad y q también lo es, de aquí que p pueda ser verdadero o falso, luego una de las líneas de su tabla de verdad sería:

$$\begin{array}{c|cccc} p & q & p \longrightarrow q & (p \longrightarrow q) \land q & [(p \longrightarrow q) \land q] \longrightarrow p \\ \hline F & V & V & V & F & \hline \end{array}$$

Por tanto, $[(p \longrightarrow q) \land q] \longrightarrow p$ no es una tautología y el argumento no sería válido, es decir, es una falacia.

El nerviosismo del mayordomo pudo estar no en su culpabilidad sino en cualquier otra causa.

Ejemplo 1.32

Estudiar la validez del siguiente razonamiento:

Si las manos del mayordomo están manchadas de sangre, entonces es culpable.

El mayordomo está impecablemente limpio.

Por lo tanto, el mayordomo es inocente.

Solución

Sean

p: El mayordomo tiene las manos manchadas de sangre.

q: El mayordomo es culpable.

En forma simbólica, el razonamiento puede representarse en la forma:

$$[(p \longrightarrow q) \land \neg p] \longrightarrow \neg q$$

Veamos si es una tautología.

Razonando igual que en el ejercicio anterior, una tabla de verdad abreviada sería:

Luego no es una tautología y, consecuentemente, el razonamiento no es válido.

El razonamiento ignora la obsesión compulsiva del mayordomo por la limpieza, lo cual le lleva siempre a lavarse las manos inmediatamente después de cometer un crimen.