- Irrationals in (0,1) are uncountable.
- (0,1) is uncountable (Cantor); $\mathbb{Q} \cap (0,1)$ is countable. If the irrationals $I=(0,1)\setminus \mathbb{Q}$ were countable, then $(0,1)=I\cup (\mathbb{Q}\cap (0,1))$ would be a countable union of countables \Rightarrow countable contradiction.
- **Def (Distance to a set).** $d(x,A) = \inf\{d(x,a) : a \in A\};$ $d(x,A) = 0 \iff x \in \overline{A}.$
- Metric counterexamples. (1) $d(x,y) = |x^2 y^2|$ fails identity of indiscernibles: d(1,-1) = 0 but $1 \neq -1$. (2) d(x,y) = |x-2y| fails symmetry: d(0,1) = 2 but d(1,0) = 1.
- (1) inf $A = -\sup(-A)$ (one-liner). Lower bounds of $A \leftrightarrow$ upper bounds of -A via $x \mapsto -x$. Least \iff greatest.
- (2) $\sup(A+B) = \sup A + \sup B$ ($\varepsilon/2$ template). Let $a^* = \sup A$, $b^* = \sup B$. Then $a+b \le a^*+b^*$ so $\sup(A+B) \le a^*+b^*$. For $\varepsilon > 0$ pick $a > a^*-\varepsilon/2$, $b > b^*-\varepsilon/2$, then $a+b > a^*+b^*-\varepsilon$. Conclude equality.
- (3) \mathbb{N} not bounded above in \mathbb{R} (floor trick). If U bounds \mathbb{N} , then $n = \lfloor U \rfloor \in \mathbb{N}$ and n+1 > U contradicts boundedness.
- (4) Nested open intervals can intersect trivially. $U_n = (0, 1/n)$ are open, $U_{n+1} \subset U_n$, but $\bigcap_n U_n = \emptyset$. (Any x > 0 fails x < 1/n for n large.)
- (5) \mathbb{Q} lacks LUB property (classic hole). $A = \{q \in \mathbb{Q} : q > 0, q^2 < 2\}$ is bounded in \mathbb{Q} but has no $\sup_{\mathbb{Q}}$ (would be $\sqrt{2} \notin \mathbb{Q}$).
- (6) Irrationals in (0,1) are uncountable (nested-intervals proof). Assume a list of irrationals $\{\alpha_n\}$. Build closed $I_1 \supset I_2 \supset \cdots$ with $I_{n+1} \subset I_n$ and $\alpha_n \notin I_n$, lengths $\to 0$. Unique $x \in \bigcap I_n \subset (0,1)$ is irrational and not on the list. Contradiction.
- (7) Finite sets are closed (no limit points). For $F = \{x_1, \ldots, x_k\}$ and $p = x_i$, set $\delta = \frac{1}{2} \min_{j \neq i} d(x_i, x_j) > 0$. Then $B_{\delta}(p) \cap (F \setminus \{p\}) = \emptyset$. Thus F has no limit points \Rightarrow closed.
- (8) $\sup E \in \overline{E}$ (when $E \neq \emptyset$ bounded above in \mathbb{R}). Let $s = \sup E$. For $\varepsilon > 0$ pick $x \in E$ with $s \varepsilon < x \le s$. Then $B_{\varepsilon}(s)$ meets E. Hence $s \in \overline{E}$.
- (9) Discrete metric: every set is clopen. If $d(x,y) = \mathbf{1}_{x \neq y}$, then for $E \subset X$ and $x \in E$, $B_{1/2}(x) = \{x\} \subset E$ so E open. Complement is also open.
- (10) Quick metric checks (failures). (1) $d(x,y) = |x^2 y^2|$ fails $d(x,y) = 0 \Rightarrow x = y$ since d(1,-1) = 0. (2) d(x,y) = |x-2y| fails symmetry: d(0,1) = 2 but d(1,0) = 1.
- (11) Bounded metric inducing usual opens (equivalence idea). $\rho(x,y) = \frac{|x-y|}{1+|x-y|}$ on \mathbb{R} : monotone in |x-y|, so for r>0, $B_r^\rho(x)=\{y:\rho(x,y)< r\}=\{y:|x-y|<\frac{r}{1-r}\}$, an ordinary open ball. Hence same open sets.
- (12) Subspace openness/closedness ($\Leftarrow\Rightarrow$). If $E=Y\cap G$ with G open in X, then for $y\in E$ there is ε with $B_{\varepsilon}^X(y)\subset G$; hence $B_{\varepsilon}^Y(y)=Y\cap B_{\varepsilon}^X(y)\subset E$ so E is open in Y. The converse: if E open in Y, set $G=\bigcup_{y\in E}B_{\varepsilon}^X(y)$ from witnessing balls; then $E=Y\cap G$. Dual statement for closed sets.

- (13) Interior/closure dualities. $(E^{\circ})^c = \overline{E^c}$ and $(\overline{E})^c = (E^c)^{\circ}$. (Take complements and use de Morgan with openness/closedness.)
- (14) Sequential closedness (metric spaces). F is closed \iff whenever $x_n \in F$ and $x_n \to x$, then $x \in F$. (\Rightarrow) Complements of closed sets are open \Rightarrow some ball misses F if $x \notin F$. (\Leftarrow) If $x \notin F$ and F not open at x, build $x_n \in F \cap B_{1/n}(x) \to x$, contradiction.
- (15) Closure/interior algebra (useful equalities). $\overline{A \cup B} = \overline{A} \cup \overline{B}$ and $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$. Proofs: Each inclusion is easy: use monotonicity and openness/closedness definitions.
- (16) When equalities fail (good counterexamples). $\overline{A \cap B} \subsetneq \overline{A} \cap \overline{B}$: take $A = \mathbb{Q}$, $B = \mathbb{R} \setminus \mathbb{Q}$ in \mathbb{R} . LHS = \emptyset , RHS = \mathbb{R} .
- $(A \cup B)^{\circ} \supseteq A^{\circ} \cup B^{\circ}$ can fail: in \mathbb{R} , let A = (0,1) and B = (1,2). LHS = \emptyset , RHS = $(0,1) \cup (1,2)$? (Instead: take A dense open, B dense open disjoint? Use rationals/irrationals by intervals—safe rule is only \subseteq holds.)
- (17) Every nbhd of a limit point contains infinitely many points of E. If some nbhd of p had only finitely many points of E, remove them via $\delta = \frac{1}{2} \min d(p,q)$ over those points; then $B_{\delta}(p)$ misses $E \setminus \{p\}$, contradicting p limit point.
- (18) Bounded \Leftrightarrow contained in some ball. (\Rightarrow) If $\sup\{d(x,y): x,y \in E\} = M < \infty$, then for any fixed $x_0 \in E$, $d(x,x_0) \leq M$ so $E \subset B_M(x_0)$. (\Leftarrow) Trivial.
- (19) Openness via distance-to-boundary (clean trick). In \mathbb{R}^2 , $E = \{(x, y) : x < y\}$. Boundary is the line y = x. For $(x, y) \in E$, distance to line is $\frac{y-x}{\sqrt{2}} > 0$, so the open ball of that radius stays in E; hence E is open.
- (20) Interior is open; E open $\Leftrightarrow E^{\circ} = E$. $E^{\circ} = \bigcup \{B_{\varepsilon}(x) \subset E\}$ is a union of opens \Rightarrow open. If E open, then each $x \in E$ has a ball inside E, so $x \in E^{\circ}$.
- (21) Creative diagonalization (functions). If $\{f_n : \mathbb{N} \to \mathbb{N}\}$ is listed, define $g(n) = f_n(n) + 1$. Then $g \neq f_n$ for all n; hence the set of functions $\mathbb{N} \to \mathbb{N}$ is uncountable. Use bijections $\mathbb{Q} \leftrightarrow \mathbb{N}$ to lift to $\operatorname{Fun}(\mathbb{Q}, \mathbb{Q})$.
- (22) Finite-support sequences are countable. $E = \{(a_n) : \exists N \ \forall n > N, \ a_n = 0\} = \bigcup_{N \geq 0} \mathbb{Z}^{N+1}$ (or countable alphabet) \Rightarrow countable union of countables.
- (23) Bijections between intervals (fast formulas). Affine: $(0,1) \to (a,b)$ by $x \mapsto a + (b-a)x$. Reciprocal: $(0,1) \to (1,\infty)$ by $x \mapsto 1/x$. Compositions yield many cardinality equivalences.
- (24) Sequence test for openness (contrapositive style). G not open $\Rightarrow \exists x \in G$ such that every $B_{1/n}(x)$ meets G^c . Pick $y_n \in G^c \cap B_{1/n}(x)$, then $y_n \to x \in G$. Useful: builds counterexamples by sequences.
- **Key rule:** If A has at least two elements and domain is infinite countable (e.g. \mathbb{N}), then $A^{\mathbb{N}}$ is uncountable.
- **Diag proof:** Suppose $f_1, f_2,...$ lists all $f: \mathbb{N} \to A$. Pick $a_0 \neq a_1 \in A$. Define $g(n) = a_0$ if $f_n(n) \neq a_0$, else a_1 . Then $g \neq f_n$ for all n. Contradiction \Rightarrow uncountable.
- Finite domain \rightarrow countable. If D finite and C countable, then C^D countable ($|C|^{|D|}$ finite power of countable).