CS4495/6495 Introduction to Computer Vision

3D-L3 *Projective geometry*

Recall: The projective plane

What is the geometric intuition of using homogenous coordinates?

 A point in the image is a ray in projective space

The projective plane

Each *point* (x,y) on the plane (at z=1) is represented by a *ray* (sx,sy,s)

All points on the ray are equivalent: $(x, y, 1) \cong (sx, sy, s)$

2D Points:

$$p = \begin{bmatrix} x \\ y \end{bmatrix} \longrightarrow p' = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \quad p' = \begin{bmatrix} x \\ y' \\ w' \end{bmatrix} \longrightarrow p = \begin{bmatrix} x'/w' \\ y'/w' \end{bmatrix}$$

2D Lines:
$$ax + by + c = 0$$

$$\begin{bmatrix} a & b & c \end{bmatrix} \begin{vmatrix} x \\ y \end{vmatrix} = 0$$

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} a & b & c \end{bmatrix} \Rightarrow \begin{bmatrix} n_x & n_y & -d \\ 1 \end{bmatrix}$$

Projective lines

What does a line in the image correspond to in projective space?

Projective lines

A line is a *plane* of rays through origin define by the normal l = (a, b, c)

All rays (x,y,z) satisfying:

$$ax + by + cz = 0$$

Projective lines

In vector notation:

$$0 = \begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$l \qquad p$$

A line is also represented as a homogeneous 3-vector!

- A line I is a homogeneous 3-vector
- It is \perp to every point (ray) \mathbf{p} on the line: $\mathbf{l}^T\mathbf{p}=0$

What is the line I spanned by rays $\mathbf{p_1}$ and $\mathbf{p_2}$?

I is \perp to $\mathbf{p_1}$ and $\mathbf{p_2}$

$$\Rightarrow$$
 l = $p_1 \times p_2$

I is the plane normal

What is the intersection of two lines I_1 and I_2 ?

p is
$$\perp$$
 to I_1 and $I_2 \Rightarrow$

$$p = l_1 \times l_2$$

Points and lines are *dual* in projective space

 Given any formula, can switch the meanings of points and lines to get another formula

Line joining two points:

$$p_{1} = \begin{bmatrix} x_{1} & y_{1} & 1 \end{bmatrix}$$

$$p_{2} = \begin{bmatrix} x_{2} & y_{2} & 1 \end{bmatrix}$$

$$l = p_{1} \times p_{2}$$

Intersection between two lines:

$$a_{2}x + b_{2}y + c_{2} = 0$$

Quiz

How can I tell whether a point *p* is on a line *L* in an image?

- a) Check if $p \times L$ is zero.
- b) Check if $p \bullet L$ is zero.
- c) Check if the magnitude of the sum is greater than 1.

Quiz – answer

How can I tell whether a point *p* is on a line *L* in an image?

- a) Check if p x L is zero.
- (b) Check if $p \bullet L$ is zero.
- c) Check if the magnitude of the sum is greater than 1.

What is the line I spanned by rays $\mathbf{p_1}$ and $\mathbf{p_2}$?

I is \perp to $\mathbf{p_1}$ and $\mathbf{p_2}$

$$\Rightarrow$$
 l = $p_1 \times p_2$

I is the plane normal

Ideal points and lines

Ideal point ("point at infinity")

 $p \cong (x, y, 0)$ – parallel to image plane

It has infinite image coordinates

Ideal points and lines

Ideal line

I ≅ (a, b, 0) – normal is parallel to image plane
 Corresponds to a line in the image (finite coordinates)

-goes through image
 origin (principle point)

3D projective geometry

- These concepts generalize naturally to 3D
- Recall the equation of a plane:

$$aX + bY + cZ + d = 0$$

Homogeneous coordinates

Projective 3D points have four coords: p = (wX,wY,wZ,w)

3D projective geometry

- Duality
 - A plane N is also represented by a 4-vector N = (a,b,c,d)
 - Points and planes are dual in 3D: $N^Tp = 0$
- Projective transformations
 - Represented by 4x4 matrices T: P' = TP