Lógica de programação 1º Info

1º Trimestre

Professor: Bernhard Ferraz Weprajetzky

Professor Bernhard Ferraz Weprajetzky

<u>bernhard.ferraz@ifgoiano.edu.br</u>

Técnico em Informática – CEMI Gama-DF Tecnólogo em Análise e Desenvolvimento de Sistemas - IFG Especialização (lato-sensu) Big Data e Analytics –Universidade Pitágoras

Mestrado em andamento – Educação Profissional e Tecnológica Técnico de Tecnologia da Informação (2018) – IFG Professor Substituto/temporário (2022) - Ciência da Computação – IFG Câmpus Formosa Professor de Tecnologia da Informação (2023) - SEDUC-GO Professor de Informática (2024) – IFGoiano – Campos Belos

1º trimestre

Introdução aos algoritmos

- Definição de algoritmo e suas características.
- Técnicas para construção de algoritmos: decomposição, abstração e reconhecimento de padrões.
- Formas de representação de algoritmos: descrição narrativa, fluxograma e pseudocódigo.
- Conceitos básicos de programação: variáveis, tipos de dados e operadores.

2º trimestre

Estruturas algorítmicas

- Estrutura de atribuição: atribuição de valores a variáveis.
- Estrutura de seleção: desvio condicional (if-else) e seleção múltipla (switch-case).
- Estrutura de repetição: repetição com teste no início (while), repetição com teste no final (do-while) e repetição contada (for).

3º trimestre

Abstração e modularização

- Módulos, blocos, procedimentos e funções: definição e utilização.
- Tempo de vida de variáveis: variáveis locais e variáveis globais.

Arrays

 Tipos de dados estruturados: agregados homogêneos unidimensionais (vetores) e agregados homogêneos multidimensionais (matrizes).

Ementa

Definição de algoritmos; Técnicas para construção de algoritmos e programação; Formas de representação de algoritmos; Definição de objetos de entrada, saída e auxiliares; Refinamentos sucessivos; Estruturas algorítmicas: atribuição, seleção, repetição, entrada e saída; abstrações em nível de módulos, blocos, procedimentos e funções, passagem de parâmetros, tempo de vida, tipos básicos e estruturados, agregados homogêneos unidimensionais, agregados homogêneos multidimensionais, operações sobre dados, operadores e expressões aritméticas e lógicas.

Geral

Compreender os conceitos de lógica de programação e de algoritmos.

- Desenvolver habilidades para construir algoritmos e programas computacionais.
- Conhecer as diferentes formas de representação de algoritmos.
- Dominar as estruturas algorítmicas fundamentais.
- Compreender os conceitos de abstração e modularização em programação.
- Conhecer os tipos de dados básicos e estruturados, bem como as operações sobre dados.
- Aplicar os conhecimentos adquiridos na resolução de problemas práticos.

Metodologias de ensino

- Aulas expositivas;
- Aulas práticas (laboratório);
- Atividades a distância em sábados letivos (Moodle);

- Avaliação I: 4 pontos
- Avaliação II: 4 pontos
- Assiduidade/participação: 2 pontos

• Presencial: 62h

• EaD: 12h

- 16/04: Avaliação I
- 22 a 25/04: Semana do projeto integrador
- 24 e 31/05: sábado letivo (entrega de atividades no Moodle)
- 21/05: Avaliação II
- 28/05: Conselho de classe

Lógica de Programação

O que é Lógica?

- De acordo com a filosofia a lógica procura compreender a forma como pensamos, do ponto de vista técnico nos ensina a usar as leis do pensamento de forma correta.
- O filósofo grego Aristóteles é considerado o criador da lógica, em sua época denominava-se razão, depois que a palavra lógica começou a ser utilizada, esta tem origem do grego logos que significa linguagem racional.

O que é Lógica?

 Lógica é ciência que coloca a cabeça para funcionar corretamente.

Imagens de situações sem lógica

Imagens de situações sem lógica

Imagens de situações sem lógica

O que é Lógica?

- As pessoas utilizam a lógica no cotidiano sem perceber; chegam mesmo a citá-la, sem entender direito o seu significado.
- Segundo o dicionário Aurélio, a lógica é a "coerência de raciocínio, de idéias", ou ainda a "seqüência coerente, regular e necessária de acontecimentos, de coisas".
- Você pode perceber isso, nos exemplos a seguir:
 - O número 3 é menor que o número 5. O número 7 é maior que o número 5. Logo, o número 3 é menor que os números 5 e 7.
 - Quando chove, não é preciso regar as plantas do jardim. Hoje choveu. Logo, hoje não é preciso regar as plantas do jardim.
 - O Brasil fica na América do Sul. A América do sul fica no continente americano. Logo, os brasileiros são americanos.

O QUE É UM ALGORITMO?

 Algoritimos são uma sequencia de passos finitos e organizados que, quando executados resolvem um determinado problema

Algoritmos Computacionais

- Algoritmo é a base da ciência da computação e da programação. Quando falamos em programar, falamos, basicamente, em construir um algoritmo.
- Todo programa de um computador(tablets, smartphones etc), é montado por algoritmos que resolvem problemas matemáticos lógicos com objetivos específicos.
- Mesmo pessoas que usam uma linguagem de programação para fazer seus programas de computadores estão, na realidade, elaborando algoritmos computacionais em suas mentes.

Algoritmos Computacionais

Como criar um Algoritmo?

Lógica de programação

Linguagem de programação

Programas ou aplicativos

Maldição do "Alo Mundo!"

- Reza a lenda que que o programador que não fizer no seu primeiro código com as instruções que escreva na tela o simples Hello Word ou Olá Mundo.. Não conseguirá e entender ou mesmo não será um bom profissional na área da programação....
- Na minha opinião foi somente uma Lenda Urbana criada no mundo da informática por quem não tem o que fazer.... Mas por via das duvidadas.... Melhor não duvidar...

Aplicabilidade da Programação

- Presente em todas as áreas da computação:
 - Hardware;
 - Sistemas Operacionais;
 - Análise de Sistemas;
 - Banco de Dados;
 - Desenvolvimento Web;
 - Redes de Computadores;
 - Etc.

SEQUÊNCIA LÓGICA:

- Estes pensamentos devem ser descritos como uma sequência de instruções, que devem ser seguidas em ordem para se cumprir uma determinada tarefa;
- Passos executados até se atingir um objetivo ou solução de um problema

INSTRUÇÃO:

- Cada um dos passos, cada uma das ações a tomar (obedecendo a sequência lógica) para ir resolvendo o problema, ou para ir executando a tarefa;
- Uma só instrução não resolve problemas.

EXEMPLO: para "fazer omelete"

- Instruções: "quebrar ovos", "bater ovos", "pôr sal", "ligar fogão", "pôr óleo na frigideira", "pôr frigideira no fogo", "fritar ovos batidos", etc...
- Quanto às instruções isoladas:
 - Só "quebrar ovos", ou só "pôr óleo na frigideira", não é suficiente para cumprir a tarefa "fazer omelete"
- Quanto à sequência lógica:
 - Se executarmos "fritar ovos batidos" antes de "bater ovos", ou pior, antes de "quebrar ovos", não iremos cumprir a tarefa "fazer omelete"

ALGORITMO:

- Sequência finita de passos, seguindo uma sequência lógica que levam à execução de uma tarefa;
- Claro e preciso.

Exemplo de algoritmo

Quando uma dona de casa prepara um bolo, segue uma receita, que nada mais é do que um algoritmo em que cada instrução é um passo a ser seguido para que o prato fique pronto com sucesso:

- 1.Bata 4 claras em neve
- 2. Adicione 2 xícaras de açúcar
- 3. Adicione 2 colheres de farinha de trigo, 4 gemas, uma colher de fermento e duas colheres de chocolate
- 4.Bata por 3 minutos
- 5. Unte uma assadeira com margarina e farinha de trigo
- 6. Coloque o bolo para assar por 20 minutos

FASES para desenvolver o algoritmo:

- Determinar o problema.
- Dividir a solução nas três fases:

- Exemplo:
 - Problema: calcular a média de dois números
 - Dados de entrada: os números, N1, N2
 - Processamento: somar os dois números e dividir a soma por 2

N1 + N2

2

Algoritmo:

- 1. Receber o primeiro número
- 2. Receber o segundo número
- 3. Somar todos os números
- 4. Dividir a soma por 2
- 5. Mostrar o resultado da divisão

Formas de representação de algoritmos:

Descrição Narrativa;

Fluxograma;

Pseudocódigo.

Descrição Narrativa

Caso 01 – Lavar o cabelo:

- 1.Molhar o cabelo;
- 2. Aplicar o xampú;
- 3.Massagear;
- 4.Enxaguar.

Descrição Narrativa

Caso 02 – Trocar uma lâmpada queimada.

Descrição Narrativa
 Caso 03 – Trocar o pneu furado de um carro.

Fluxograma

Representação gráfica, onde formas geométricas diferentes implicam ações distintas

Fluxograma

Principais Formas:

= Início e Fim do Fluxograma

= Fluxo de Dados

= Operação de Entrada de Dados

= Operação de Saída de Dados

= Operação de Atribuição (Processamento)

Fluxograma

Exemplo:

- Desenvolvam um algoritmo em linguagem natural e depois passem para fluxograma para os seguintes problemas
- Trocar o pneu de um carro;
- Calcular a média de três notas;
- Calcular a área de um quadrado. onde: Área Quadrado = b * h. (Obs.: b = base; h = altura)
- Calcular a área de um círculo qualquer onde: Área = π * r2 (obs.: r = raio da circunferência)

Pseudocódigo ou Português Estruturado Exemplo:

```
Var
n1, n2, S: Inteiro
Início
Escreva ("Entre com o primeiro valor: ")
Leia (N1)
Escreva ("Entre com o segundo valor: ")
Leia (N2)
S <- N1 + N2
Escreva ("Soma =", S)
Fim.
```


Pseudocódigo ou Português Estruturado

Comandos de Entrada e Saída de Dados:

Entrada de Dados

Ex: Leia (X); Leia (A, XPTO, Nota);

Saída de Dados

Ex: Escreva (Y); Escreva ("Bom Dia", Nome);

Pseudocódigo ou Português Estruturado

Representação de Algoritmo na forma Estruturada:

```
Algoritmo<nome_do_algoritmo>;
Var

<declaração_de_variáveis>;
Inicio

<corpo_do_algoritmo>;
Fim.
```

Onde:

Programa: É uma forma que indica o início da definição de um algoritmo em forma de pseudocódigo.

<nome_do_algoritmo> : É um nome simbólico dado ao algoritmo com a finalidade de distingui-lo dos demais.

<declaração_de_variávei> : Consiste no campo de declaração das variáveis utilizadas no algoritmo.

Início e Fim: Palavras que delimitam o começo e o término do conjunto de instruções do corpo do algoritmo.

Variável

- Representa uma posição na memória, onde pode ser armazenado um dado;
- Possui um nome e um valor;
- Durante a execução do algoritmo, pode ter seu valor alterado.

Exemplo:

"Calcular a média de quatro números"

■ PSEUDOCÓDIGO:

VARIÁVEIS:

mais <u>clareza</u> no pseudocódigo

- Leia (N1)
- Leia (N2)
- MEDIA <- (N1+N2) / 2</p>
- Escreva (MEDIA)

VARIÁVEL

Pseudocódigo ou Português Estruturado Uso de Variáveis

- O primeiro caractere do nome de uma variável não poderá ser, em hipótese alguma, um número. Sempre deverá ser uma letra;
- O nome de uma variável não poderá possuir espaços em branco;
- Não poderá ser nome de uma variável uma palavra reservada;
- Não poderão ser utilizados outros caracteres a não ser letras e números, com exceção do caractere underline "_".

Atribuição

- Atribui o valor da direita à variável da esquerda
 - MEDIA <- (N1+N2) / 4(Lê-se media recebe N1+...)
 - Neste caso, estamos atribuindo o resultado da fórmula à variável média;
- Outros Exemplos:
 - **a** <- 3;
 - a <- x;

Operadores Aritméticos

OPERAÇAO	SIMBOLO
Adição	+
Subtração	-
Multiplicação	*
Divisão	/
Exponenciação	**

Exemplos:

Hierarquia das Operações Aritméticas

- 1° () Parênteses
- 2º Exponenciação
- 3 º Multiplicação, divisão (o que aparecer primeiro)
- 4° + ou (o que aparecer primeiro)

MEDIA = (N1+N2+N3+N4)/4

Pseudocódigo ou Português Estruturado

Métodos para Construção de Algoritmo:

- Ler atentamente o enunciado;
- Retirar do enunciado a relação das entradas de dados;
- Retirar do enunciado a relação das saídas de dados;
- Determinar o que deve ser feito para transformar as entradas determinadas nas saídas especificadas.
- Construção do algoritmo.

Exercício

Tendo como entrada o total vendido por um funcionário no mês de abril, faça um algoritmo que mostre a sua comissão e salário bruto neste mês, sabendo que o seu salário base é R\$1.200,00 e sua comissão é de 10% sobre o total vendido

Operadores relacionais são muito usados quando temos que tomar <u>decisões</u> nos algoritmos. Com eles fazemos testes, comparações, que resultam em valores lógicos (verdadeiro ou falso):

Descrição	Símbolo
Igual a	=
Diferente de	<> ou #
Maior que	>
Menor que	<
Maior ou igual a	>=
Menor ou igual a	<=

Exemplo:

tendo duas variáveis, A = 5 e B = 3:

Expressão	Resultado
A = B	Falso
A <> B	Verdadeiro
A > B	Verdadeiro
A < B	Falso
A >= B	Verdadeiro
A <= B	Falso

Exercícios

4) Tendo as variáveis SALARIO, IR e SALLIQ, e considerando os valores abaixo. Informe se as expressões são verdadeiras ou falsas.

SALARIO	IR	SALLIQ	EXPRESSAO	V ou F
100,00	0,00	100	(SALLIQ >= 100,00)	
200,00	10,00	190,00	(SALLIQ < 190,00)	
300,00	15,00	285,00	SALLIQ = SALARIO - IR	

- 5) Sabendo que A=3, B=7 e C=4, informe se as expressões abaixo são verdadeiras ou falsas.
- a) (A+C) > B ()
- b) B >= (A + 2) ()
- c) C = (B A) ()
- d) (B + A) <= C

 Operadores lógicos combinam resultados lógicos, gerando novos valores lógicos (verdadeiro ou falso). A "tabela-verdade" abaixo mostra todos os valores possíveis de se obter com operadores lógicos:

			Resultado
T	AND	T	T
T	AND	F	F
F	AND	T	F
F	AND	F	F
T	OR	T	Т
T	OR	F	T
F	OR	T	Т
F	OR	F	F
	NOT	T	F
	NOT	F	Т

T = Verdadeiro F = Falso AND = E OR = OU NOT = NÃO

□ Pseudocódigo ou Português Estruturado

Expressões Lógicas

Operadores Lógicos:

E (^) Conjunção

Ou (v) Disjunção

Não (!) Negação

Combinando operadores relacionais e operadores lógicos criamos operações lógicas, que produzirão resultados lógicos (verdadeiro ou falso). Por exemplo, se A = 5, B = 8 e C = 1:

$$\blacksquare$$
 (A = B) E (B > C)

■ (A <> B) OU (B < C)

■ NÃO (A > B)

 \blacksquare (A < B) E (B > C)

■ (A >= B) OU (B = C)

■ NÃO (A <= B)

é falso (fev)

é verdadeiro (v ou f)

é verdadeiro (não f)

é verdadeiro (v e v)

é falso (f ou f)

é falso (não v)

Exercícios

6) Considere a seguinte atribuição de valores para as variáveis: **A=3**, **B=4**, **C=8**. Avalie as expressões a seguir indicando o resultado final: verdadeiro ou falso.

a)
$$A > 3 E C = 8$$

c)
$$A = 3 \text{ OU } B >= 2 \text{ E } C = 8$$

d)
$$A = 3 E NÃO B <= 4 E C = 8$$

e) A
$$<>$$
 8 **OU** B = 4 **E** C $>$ 2 ()

$$f) B > A E C <> A$$
 ()

g)
$$A > B OU B < 5$$

Dúvidas?

Bernhard.ferraz@ifgoiano.edu.br

