DETERMINAÇÃO DO COEFICIENTE DE DIFUSÃO EM UMA CÉLULA DE FLUXO PELO MÉTODO DE FICK USANDO A TÉCNICA DE ELEMENTOS FINITOS

A. G. S. Barreto Neto*1,2; A. M. N. Lima¹; C. S. Moreira¹,3, F.C.C.L. Loureiro¹

¹Universidade Federal de Campina Grande, Electrical Engineering Department

*²IF-PB, Electromechanics Department, Cajazeiras, Brazil, e-mail: arlindo.neto@ee.ufcg.edu.br

³IF-AL, Electronic Department, Maceio, Brazil

RESUMO

Este trabalho apresenta a investigação de efeitos internos (interação superfície/fluido) e externos (variação da temperatura e reações químicas) para a determinação do coeficiente de difusão, D, usando simulações em um programa baseado em elementos finitos. O modelo numérico utiliza de forma acoplada as equações de Navier-Stokes (ENS) e Convecção-Difusão (ECD), permitindo investigar cada efeito de forma individual ou acoplada, com o objetivo de melhorar o desempenho de uma configuração experimental usando o princípio de ressonância de plasmos de superfície.

Palavras-chave: coeficiente de difusão, simulação númerica, método de Fick.

1 INTRODUÇÃO

Difusividade molecular é um parâmetro importante utilizado no transporte físico-químico e em muitos processos fisiológicos (RAUCH et al, 2005), é também usado na determinação do peso molecular das susbtâncias. O coeficiente de difusão ou difusidade (*D*) é bastante afetado pela composição química dos solventes, temperatura e concentração do soluto. Para soluções aquosas, *D* varia da ordem de 10^{-5} cm²/s para substâncias de baixo peso molecular até a ordem de 10^{-8} cm²/s para substâncias de alto peso molecular (biomoléculas). Para alguns materiais, esta medida é extremamente difícil de ser realizada, provocando incerteza na estimativa do coeficiente de difusão.

Neste trabalho será simulado o método experimental desenvolvido no Laboratório de Biosensores (LBIO) da UFCG baseados nas técnicas de Fick (LOUREIRO at al, 2010), usando o programa comercial Comsol Multiphysics. A configuração do set-up experimental ilustrado na Figura 1 é composto por um instrumento analítico, baseado no princípio de ressonância de plásmons de superfície ou SPR, acoplado a um sistema microfluídico (bomba peristáltica e célula de fluxo) e um micro computador PC. A célula de fluxo é o meio físico na qual o fluido é conduzido desde a entrada (inlet), passando pelo elemento sensível até a saída (waste). A geometria da célula de fluxo é um fator importante no desempenho do sensor (CELATA, 2006), afinal pontos de estrangulamento/redução provocam uma variação brusca da velocidade, ocasionando pontos de recirculação de fluxo e mesmo mudança no regime de transporte, laminar para turbulento, (BIRD, 2001). O material usado na confecção da célula de fluxo e as imperfeições na superficies também influenciam na hidrodinâmica, formando superfícies hidrofóbicas ou hidrofilicas (TRETHEWAY, 1995; ZHU, 2005). Segundo Zhu (2005) estas superfícies estão associadas ao surgimento de um novo fenômeno denominado de "deslizamento de fluxo na superfície" (slip flow). De uma forma geral, o estudo da célula de fluxo e suas variantes (dimensional, forma geométrica, material) em micro dispositivos são importantes para caracterizar o comportamento dinâmico do fluxo no dispositivo, permitindo encontrar uma relação ótima para o desempenho da célula.

A célula de fluxo possui as seguintes dimensões: 11mm de comprimento, 0.5mm de altura, 1.0mm de largura, e o diâmetro do tubo de entrada de 0.38mm perfazendo um volume de $5\mu l$ de solução, com um volume morto de $1\mu l$.

Figura 1: Set-up experimental: bomba peristáltica+ sensor spr+célula de fluxo

2 ASPECTOS TEÓRICOS E EXPERIMENTAIS

A abordagem experimental é baseada no método de Fick. Esse método corresponde a resposta ao degrau de concentração, na qual o tempo de regime permanente (Δt_{RP}) ou o tempo total de transporte, é a soma das contribuições temporal da parcela convectiva (Δt_{C}) e difusiva (Δt_{D}). Segundo Loureiro (2010) variando-se a velocidade do fluxo é possível montar um gráfico da velocidade em função do tempo de resposta do sistema ($\Delta t_{RP} = \Delta t_{C} + \Delta t_{D}$), assim no limite assintótico ($\mathbf{u} \rightarrow 0$), o ECD reduz para a equação de Fick (1), onde a altura da célula, h, é conhecida e o tempo de difusão pode ser determinado graficamente (ver Figura 2).

Figura 2: Determinação do coeficiente de difusão por extrapolação linear.

Os pontos "1", "2", "3" representados na Figura 2 são obtidos através da resposta ao degral de concentração para uma taxa de fluxo variável, conforme pode ser observado no gráfico interno da Figura 2 na qual o ponto "3" é obtido. Através da estrapolação do gráfico é obtido um valor para $\Delta c/\Delta t_D$, de onde se obtem o valor de Δt_D já que o valor da concentração é conhecida.

Para uma solução aquosa de etanol a 5% v/v ($\Delta c = 0.852346$ mol/l), Loureiro (2010) montou um gráfico semelhante ao apresentado na Figura 2 usando o set-up experimental da Figura 1. Desta forma com a altura da célula de fluxo h=0.5mm, e extraindo parâmetro Δt_D via extrapolação a substituição destes valores na equação (1) para o cálculo do coeficiente de difusão, obtendo-se: $D = 0.65 \times 10^{-9} m^2/s$ em uma temperatura de 26°C.

Um procedimento análogo usado para obter o gráfico da Figura 2, será feito neste trabalho usando um modelo de simulação em 3D com o software Comsol Multiphysics baseado em elementos finitos, este

modelo tem como base as equações de Navier-Stokes acoplada com a equação de convecção-difusão aplicadas a célula de fluxo.

SIMULAÇÕES E RESULTADOS

A equação de Navier-Stokes (ENS) e convecção-difusão (ECD) são usadas em modo acoplado, equação (2)-(4), para um modelo da célula de fluxo em 3D.

$$\rho \frac{\partial \mathbf{u}}{\partial t} - \eta \nabla^2 \mathbf{u} + \rho (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla \mathbf{p} = \mathbf{F}$$

$$\nabla \mathbf{u} = \mathbf{0}$$

$$\frac{\partial c}{\partial t} + \mathbf{u} \cdot \nabla c = D \nabla^2 c$$
(4)

$$\nabla \mathbf{u} = \mathbf{0} \tag{3}$$

$$\frac{\partial c}{\partial t} + \mathbf{u} \cdot \nabla c = D \nabla^2 c \tag{4}$$

onde ρ (kg/m³) é a densidade do fluido, \mathbf{u} é o vetor velocidade, \mathbf{p} é vetor pressão, e \mathbf{F} representa as forças de corpo extenas e internas agindo sobre a massa fluidica.

As especificações para as condições de fronteira são:

- Para o ENS, é especificado no inlet um valor de velocidade, u_{in} , e na saída o fluxo é normal a superfície com o valor de pressão posto livre, $p_{out} = 0$ Pa, e em todas as outras paredes da célula de fluxo é posto a condição de não deslizamento na fronteira (no-slip boundary). Para ECD, o inlet recebe o valor de concentração da substância, c_0 , na saída a condição de contorno é fluxo convectivo, e para todas as outras fronteiras a condição é, não há fluxo saindo/entrando nas paredes, $\mathbf{n} \cdot \nabla c = 0$, onde **n** é o vetor normal à fronteira.
- A condição inicial é assumido como $u_i = 0$, $c_i = 0$ e $p_i = 0$, onde todos os i-nos da geometria discretizada formam o domínio computacional.

3.1 Simulação para o método de Fick

O método de Fick usado neste trabalho é baseado no comportamento unidimensional da difusão (KAMHOLZ, 2002). Um degrau de concentração, 5% v/v de etanol-água, é posto como entrada para o modo de convecção-difusão. Em virtude da quantidade do etanol ser muito menor que a água, as propriedades do fluido considerado neste módulo será as da água, densidade e viscosidade, que por sua vez são variáveis com a temperatura (ver Figura 3). A temperatura usada inicialmente na simulação foi de 25°C, o que corresponde a $\rho = 997,13 \text{ (kg/m}^3) \text{ e } \eta = 0,00089191 \text{ (Pa·s)}.$

Figura 3:Gráfico da densidade e viscosidade da água em função da temperatura.

O perfil de concentração em relação a altura da célula de fluxo, apresenta um comportamento inicial aproximadamente gaussiano (ver Figura 4-a) para um tempo de 8s. Ao longo do tempo o perfil de concentração nas paredes irá aumentar conforme observado no inset da Figura 4-a para os tempos de 15s e 25s. O processo de difusão vai distorcendo o perfil de concentração, pois a difusão acontece do centro para as paredes. O valor pontual da concentração nas paredes aumentem até um valor correspondente a concentração de entrada (para o regime permanente).

Figura 4: a)-Perfil de concentração em relação a altura, b)-Perfil de concentração na célula de fluxo.

Usando o conjunto de equações do ENS e ECD para o modelo da célula de fluxo no Comsol, é calculado o tempo de resposta total (convecção+difusão) para uma entrada em degrau de concentração, $\Delta c = 0.852346$ mol/l, na Figura 4-b é ilustrado o deslocamento do perfil de concentração nos tempos (4,05s; 15,02s; e 26,0s) ao longo da célula de fluxo .

Simulando o procedimento experimental para obter um grafico conforme a Figura 2, varia-se o valor da velocidade do fluido na entrada da célula mantendo-se o mesmo valor de concentração. Desta forma é calculado o tempo total até o regime permanente, ou seja, Δt_{RP} , conforme apresentado na Tabela 1.

Usando os dados da Tabela 1 é plotado o gráfico do tempo de resposta ao degrau (Δt_{RP}) como função da velocidade na entrada da célula (Figura 5-a), e aplicando técnicas de mínimos quadrados é feita a regressão linear dos dados, obtendo um polinômio de segundo grau $\Delta t_{RP} = 0.328v^2 - 4.285v + 24.597$. O comportamento não linear apresentado por Δt_{RP} impossibilita sua extrapolação até o eixo das ordenadas (v = 0), desta forma aplicando a mudança de variável ($\Delta c/\Delta t_{RP}$, com $\Delta c = 0.852346$) no eixo das ordenadas, obtemos uma curva com um comportamento linear (Figura 5-b).

Velocidade	5,0	4,75	4,5	4,0	3,55	3,5	3,25	3,0	2,75	2,5
(mm/s)										
$\Delta t_{RP}(s)$	11,40	11,70	11,80	12,57	13,55	13,16	14,88	14,12	15,36	15,80

Tabela 1: Resposta ao degrau de concentração variando a velocidade do fluido (T = 25°C)

Figura 5: a) Gráfico da tabela 1 (não linear); b) Grafico da Tabela 1 linearizado.

Da Figura 5-b tem-se:

$$\frac{\Delta c}{\Delta t_{RP}} = 0.00033 f + 0.0321 :: f = 0 \Rightarrow \frac{\Delta c}{\Delta t_D} = 0.0321 \Rightarrow (\Delta t_D = 26.54 s)$$

Substituindo $\Delta t_D = 26,54$ s e h = 0,5mm (altura da célula) na equação de Fick (1), o coeficiente de difusão para o etanol a 5% v/v é:

$$D = 0.59 \times 10^{-9} m^2 / s \tag{5}$$

O coeficiente de difusão obtido na simulação numérica foi considerado para uma temperatura fixada em T = 25°C.

3.2 Efeito da variação de temperatura sobre o coeficiente de difusão

A temperatura média no ambiente do set-up experimental foi aproximadamente de T=26°C, desta forma o mesmo procedimento usado anteriormente na simulação numérica será repetido, agora considerando uma variação de temperatura. Os valores das propriedades físicas da solução variam de acordo com a Figura 3, ou seja, densidade (ρ) e viscosidade (η) serão consideradas. Para uma temperatura de T=26°C, $\rho=996$, 86 Kg/m³ e $\eta=0,00087$ Pa·s, o tempo de resposta para o degral de concentração (Δ c=0,852346 mol/l) em função da variação de fluxo é dado na Tabela 2.

<u> </u>										
Velocidade	5,0	4,75	4,5	4,0	3,55	3,75	3,25	3,0	2,75	2,5
(mm/s)										
$\Delta t_{RP}(s)$	10,90	11,22	11,61	11,99	13,55	12,30	12,87	13,29	14,10	14,70

Tabela 2: Resposta ao degrau de concentração variando a velocidade do fluido (T = 26°C)

Procedendo de forma análoga aos dados apresentados na Tabela 1, o gráfico linearizado referente a Tabela 2 é apresentado na Figura 6.

Figura 6: Resposta ao degrau de concentração variando a velocidade do fluido (T = 26°C)

No limite quando, $f \rightarrow 0$ tem-se:

$$\frac{\Delta c}{\Delta_{RP}} = 0.000338f + 0.0334 : f = 0 \Rightarrow \frac{\Delta c}{\Delta t_D} = 0.0334 \Rightarrow (\Delta t_D = 25.51s)$$

e substituindo na equação de Fick $\,$ (1), o coeficiente de difusão para o etanol a 5% v/v na temperatura de 26° C $\,$ é:

$$D = 0,613 \times 10^{-9} m^2 / s \tag{6}$$

Na temperatura de 27°C o coeficiente de difusão simulado para 5% v/v de etanol-água usando a mesma metodologia é

$$D = 0,649 \times 10^{-9} m^2 / s \tag{7}$$

Os resultados de simulação e o valor experimental são agrupados na Tabela 3 abaixo:

Procedimento	$\Delta t_{D}(s)$	$D(m^2/s)$
Experimental (Loureiro el al)	24,0	$0,65 \times 10^{-9}$
Simulado (T=25°C)	26,54	0.59×10^{-9}
Simulado (T=26°C)	25,51	$0,613 \times 10^{-9}$
Simulado (T=27°C)	24,13	$0,648 \times 10^{-9}$

A variação de 1°C na temperatura do fluido geram uma variação aproximadamente de 3,89% no coeficiente de difusão simulado.

4 CONCLUSÃO

A forte influencia da variação de temperatura para o método proposto de estimação do coeficiente de difusão, nos leva a concluir que para uma melhor exatidão entre os dados experimentais e os simulados é necessário fazer a compensação da temperatura no set-up (controle de temperatura), como também acrescentar no modelo de simulação o efeito da temperatura (trasferencia de calor externo e gerado internamente pelos eletrônica embarcada). De forma geral o modelo de simulação para a célula de fluxo usando as equações de Navier-Stokes e transferência de massa em modo acoplado, resulta em uma boa concordância entre os resultados experimentais e os simulados.

A importância desta modelagem está no fato da possibilidade em se investigar outras grandezas físicas (reações químicas com liberação de calor, contaminantes) em substâncias diferentes que irão da mesma forma que a temperatura influenciar na resposta do sensor, e desta forma ajudar a entender ou a melhorar a configuração do experimento a ser realizado.

REFERÊNCIAS

- A.E. Kamholz, P. Yager. Molecular difusive scaling laws in pressure-driven micro fluidic channels: **Deviation from one-dimensional einstein approximations**. Sensors and Actuators, B: Chemical, 80(1):117-121, 2002.
- D. C. Tretheway, Xiaojun Liu, C. D. Meinhart. **Analysis of slip fow in microchannels**. In Proceedings of 11th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisboa, Portugual, June 1995.
- F.C.C.L. Loureiroa, A.G.S. Barreto Neto, A.M.N. Lima, C.S. Moreiraa, and H. Neff. **A method for determining the mutual difusion coeficient of molecular solutes based on surface plasmon resonance spectroscopy**. Sensors and Actuators B: Chemical.
- G.P. Celata, M. Cumo, S. McPhail, G. Zummo. Characterization of fuid dynamic behaviour and channel wall efects in microtube. International Journal of Heat and Fluid Flow, 27(1):135 143, 2006.
- J. Rauch, W. Köhler. A on the molar mass dependence of the thermal difusion coeficient of polymer solutions. Macromolecules, 38 (9):3571-3573, 2005.

Luoding Zhu, Derek Tretheway, Linda Petzold, and Carl Meinhart. Simulation of fuid slip at 3d hydrophobic microchannel walls by the lattice boltzmann method. J. Comput. Phys., 202(1):181-195, 2005.

R. Bird, W. Stewart, E. Lightfoot. **Transport phenomena**. John Wiley and Sons, New York, 2^{nd} edition, 2001.