(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 18 September 2003 (18.09.2003)

PCT

(10) International Publication Number WO 03/077037 A1

(51) International Patent Classification:

G03F 7/20

- (21) International Application Number: PCT/EP03/01954
- (22) International Filing Date: 26 February 2003 (26.02.2003)
- (25) Filing Language:

English

(26) Publication Language:

English

- (30) Priority Data: 102 10 899.4
- 8 March 2002 (08.03.2002) DE
- (71) Applicant: CARL ZEISS SMT AG [DE/DE]; Carl-Zeiss-Strasse 22, 73447 Oberkochen (DE).
- (72) Inventors: ROSTALSKI, Hans-Jürgen; Albertinenstrasse 56, 13086 Berlin (DE). ULRICH, Wilhelm; Lederackerring 44, 73434 Aalen (DE).
- (74) Agent: PATENTANWÄLTE RUFF, WILHELM, BEIER, DAUSTER & PARTNER; ZUSAMMEN-SCHLUSS NR. 16, Kronenstrasse 30, 70174 Stuttgart (DE).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

[Continued on next page]

(54) Title: REFRACTIVE PROJECTION OBJECTIVE FOR IMMERSION LITHOGRAPHY

(57) Abstract: A purely refractive projection objective suitable for immersion microlithography is designed as a single-waist system with five lens groups, in the case of which a first lens group with a negative refracting power, a second lens group with a positive refracting power at hird lens group with a negative refracting power, a fourth lens group with a positive refracting power and a fifth lens group with a positive refracting power are provided. The system aperture is in the region of maximum beam diameter between the fourth and the fifth lens group. Embodiments of projection objectives according to the invention achieve a very high numerical aperture of NA > 1 in conjunction with a large image field, and are distinguished by a good optical correction state and moderate overall size. Pattern widths substantially below 100 nm can be resolved when immersion fluids are used between the projection objective and substrate in the case of operating wavelengths below 200 nm.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Description

Refractive projection objective for immersion lithography

The invention relates to a refractive projection objective for projecting a pattern arranged in an object plane of the projection objective into an image plane of the projection objective with the aid of an immersion medium which is arranged between a last optical element of the projection objective and the image plane.

10 Photolithographic projection objectives have been in use for several decades for producing semiconductor components and other finely structured structural elements. They serve the purpose of projecting patterns of photomasks or reticles, which are also denoted below as masks or reticles, onto an object coated with a photosensitive layer with very high resolution on a reducing scale.

Three developments running in parallel chiefly contribute to the production of every finer structures of the order of magnitude of 100 nm or below. Firstly, an attempt is being made to increase the image-side numerical aperture (NA) of the projection objective beyond the currently customary values into the region of NA=0.8 or above. Secondly, ever shorter wavelengths of ultraviolet light are being used, preferably wavelengths of less than 260 nm, for example 248 nm, 193 nm, 157 nm or below. Finally, still other measures are being used to increase resolution, for example phase-shifting masks and/or oblique illumination.

In addition, there are already approaches to improving the achievable resolution by introducing an immersion medium of high refractive index into the space between the last optical element of the projection objective and the substrate. This technique is denoted here as immersion lithography. Introducing the immersion medium yields an effective wavelength of

 $\lambda_{\rm eff} = \lambda_0/n$,

 λ_0 being the vacuum operating wavelength and n the refractive index of the immersion medium. This yields a resolution of

5

$$R = k_1 (\lambda_{eff}/NA_0)$$

and a depth of focus (DOF) of

DOF =
$$\pm k_2 (\lambda_{eff}/NA_0^2)$$
,

 NA_0 = sin Θ_0 being the "dry" numerical aperture, and Θ_0 being half the aperture angle of the objective. The empirical constants k_1 and k_2 depend on the process.

15

The theoretical advantages of immersion lithography reside in the reduction of the effective operating wavelength and the resolution improved thereby. This can be achieved in conjunction with an unchanged vacuum wavelength, and so established techniques for producing light for selecting optical materials, for coating technology etc. can be adopted largely without change for the appropriate wavelength. However, measures are required for providing projection objectives with very high numerical apertures in the region of NA = 1 or above. Furthermore, suitable immersion media must be available.

25

The article entitled "Immersion Lithography at 157 nm" by M. Switkes and M. Rothschild, J. Vac. Sci. Technol. Vol. 19 (6), Nov./Dec. 2001, pages 1 ff. presents immersion fluids based on perfluoropolyethers (PFPE) which are sufficiently transparent for a working wavelength of 157 nm and are compatible with some photoresist materials currently being used in microlithography. One tested immersion fluid has a

refractive index of n=1.37 at 157 nm. The publication also describes a lens-free optical system, operating with calcium fluoride elements and silicon mirrors, for immersion interference lithography, which is intended to permit the projection of 60 nm structures and below in conjunction with a numerical aperture of NA = 0.86. The optical system may not be suitable for use in the series production of semiconductors or the like.

Patent Specification US 5,610,683 (corresponding to EP 0 605 103) describes a projection exposure machine, provided for immersion lithography, having devices for introducing immersion fluid between the projection objective and the substrate. No design is specified for the optical projection system.

US Patent US 5,900,354 proposes using a super-critical fluid, for example xenon gas, as immersion medium in immersion lithography. No design is shown for a suitable projection objective.

It is the object of the invention to create a refractive projection objective which is suitable for immersion lithography and which has, in conjunction with a moderate overall size, a high numerical aperture suitable for immersion lithography, an image field which is sufficiently large for practical use in wafer steppers or wafer scanners, and a good correction state.

- This object is achieved by means of a projection objective having the features of Claim 1. Advantageous embodiments are specified in the dependent claims. The wording of all the claims is incorporated in the description by reference.
- In accordance with one aspect of the invention, a refractive projection objective for projecting a pattern arranged in an object plane of the projection objective into the image plane of the projection objective with

the aid of an immersion medium which is arranged between a last optical element of the projection objective and the image plane has a first lens group, following the image plane, with a negative refracting power;

5 a second lens group, following thereupon, with a positive refracting power;

a third lens group, following thereupon, with a negative refracting power; a fourth lens group, following thereupon, with a positive refracting power; a fifth lens group, following thereupon, with a positive refracting power;

a system aperture which is arranged in the region of maximum beam

diameter between the fourth lens group and the fifth lens group.

10

and

This refracting power distribution produces a projection objective having two bellies and a waist therebetween, a good correction of the field curvature thereby being achieved. The system aperture is seated in the region of greatest beam diameter of the belly next to the image plane, preferably at least 90% or 95% of the maximum beam diameter being present in the belly near the image at the location of the system aperture. In certain embodiments, the system aperture can lie between a plane of maximum beam diameter near the image and the image plane, and thus in a region in which the transilluminated diameter of the objective already decreases towards the image plane. This is a substantial difference from conventional, refractive projection objectives in which the system aperture lies on the object side at a relatively large distance in front of the region of maximum beam diameter in the belly near the image.

The design permits image-side numerical apertures NA \geq 0.9, it being possible in the case of preferred embodiments to achieve NA = 1.1 or above. Preferred projection objectives are adapted to an immersion fluid which has a refractive index of n > 1.3 at the operating wavelength. As a

result, a reduction in the effective operating wavelength by 30% or more can be achieved by a comparison with systems without immersion.

The projection objective can advantageously be designed such that the space to be filled up by the immersion medium has an axial thickness which is so small that transmission losses in the immersion medium are no more than 10 to 20% of the penetrating light intensity. Consequently, image-side working distances of less than 200 μ m, in particular less than 100 μ m, are favourable. Since, on the other hand, touch contact between the last optical element and the substrate surface is to be avoided, a lower limit for the working distance of from 10 to 20 μ m should not be undershot. Larger working distances in the region of one or more millimeters are also possible given suitably transparent immersion media.

15

10

Preferred projection objectives are distinguished by a number of favourable structural and optical features which are necessary alone or in combination for the suitability of the objective as an immersion objective.

20

For example, it can be favourable when the refracting powers of the lens groups are of the same order of magnitude on both sides of the system aperture. In particular, it can be provided that a ratio between the focal length of the fourth lens group and the focal length of the fifth lens group is between approximately 0.9 and approximately 1.1. It can likewise be favourable when the focal lengths or refracting powers of the lens groups near the object and lens groups near the image are similar in magnitude. In particular, a ratio of the magnitudes of the focal lengths of the first lens group and the fifth lens group can be between approximately 0.7 and approximately 1.3, preferably between approximately 0.9 and 1.1. Furthermore, it can be favourable for

producing a high image-side numerical aperture when a strong positive refracting power is concentrated in the region near the image. In preferred embodiments, a ratio between the overall length of the projection objective and the focal length of the fifth lens group following the system aperture is greater than five, in particular greater than six, seven or even eight. The axial distance between the object plane and image plane is denoted here as overall length.

In order to achieve a good correction state, it is provided in preferred embodiments that the first lens group includes at least one aspheric surface. Favourably, it is even possible for a plurality of aspherics, for example two, to be provided here. Aspherics in this region make a particularly effective contribution to the correction of distortion and astigmatism. It is favourable, furthermore, for the correction of coma and astigmatism when the third lens group, situated in the region of the waist, has at least one aspheric surface, a plurality of aspherics, for example two aspherics, being preferred. In the case of preferred embodiments, at least one aspheric is provided in each lens group in order to facilitate fine setting of the correction state of the projection objective. With regard to simple production of the lenses, the number of aspherics should be limited, for example to less than nine or less than seven, as in the case of a preferred embodiment.

10

The favourable projection properties of projection objectives according to the invention, particularly the good correction state in the case of a very high numerical aperture, are promoted by some special features relating to the type and arrangement of the lenses used. For example, it is favourable when at least one meniscus lens, convex relative to the object plane, with a negative refracting power is arranged in the near zone of the object plane, in particular in the first lens group. This lens, which can form the third lens of the objective, for example, favours the correction of tangential astigmatism.

The second lens group preferably has at least one, in particular a plurality of meniscus lenses, concave relative to the object plane, with a positive refracting power on its side facing the object plane. These preferably combine with at least one, preferably a plurality of meniscus lenses, convex relative to the object plane, with a positive refracting power on the side, facing the image plane, of the second lens group. At least one biconcave positive lens is favourably situated between the menisci or meniscus groups of the opposing bending. As a result, a sequence of at least one positive meniscus lens, concave relative to the object plane, a biconvex positive lens and at least one positive meniscus lens, concave relative to the image plane, can be formed in the second lens group. This sequence of lenses in the region of relatively large beam diameter of the first belly is favourable for a strong "deformation" of the main ray in this region in conjunction with low areal stresses of the optical surfaces. This is favourable for low total aberrations of the projection objective. A favourable areal stress in the sense of this application occurs whenever the incidence angles of the rays striking an optical surface are as small as possible and do not overshoot a critical limit value. Denoted here as incidence angle is the angle between the impingement direction of a ray on an optical surface and the surface normal of the optical surface at the impingement point of the ray. The smaller the incidence angle and, correspondingly, the lower the areal stress, the easier is the development of suitable antireflection coatings, and the greater is the tolerance of the design to the adjustment.

25

10

15

20

The region of narrowest constriction of the ray is denoted as the waist. The third lens group in the region of the waist has the task of reexpanding the radiation, converging downstream of the first belly, with as few aberrations as possible. It is favourable for this purpose when the third lens group has only lenses with a negative refracting power. It has proved to be particularly advantageous when, with reference to a plane of symmetry lying inside the third lens group, the third lens group is of

substantially symmetrical construction. This is distinguished, in particular, by virtue of the fact that mutually assigned lenses of the same type are arranged on the object side and image side of the plane of symmetry. The symmetry of the lens types preferably also extends into the bordering region of the second and fourth lens groups such that an exit region, facing the third lens group, of the second lens group, and an entry region, following the third lens group, of the fourth lens group can be constructed substantially symmetrically relative to the plane of symmetry lying inside the third lens group. A symmetrical arrangement of negative and positive meniscus lenses will be explained in further detail in conjunction with the embodiments. The symmetry promotes a low areal stress of the lenses in conjunction with few aberrations.

At least one doublet with a biconvex positive lens and a meniscusshaped negative lens, following towards the image, with lens surfaces which are concave towards the object is preferably provided in the region directly upstream of the system aperture, that is to say in the fourth lens group. Particularly favourable are embodiments having two such doublets which can follow one another directly. A positive air lens, convex relative to the image plane, is respectively arranged between the lenses of the doublet. Such doublets composed of a collecting biconvex lens and a diverging meniscus have a positive effect on the correction state and can counteract the aberrations which are introduced by lenses with a strong, positive diffracting power downstream of the system aperture. It can be favourable, moreover, to arrange in the object-side entry region of the fourth lens group at least one meniscus lens, concave towards the object, with a positive refracting power, in order to collect the radiation coming from the waist in conjunction with a low areal stress.

30

10

In order to achieve very high numerical apertures, it is advantageous when the fifth lens group has exclusively positive lenses. It is possible,

for example, to arrange four or more positive lenses between aperture stop and image plane. In this case, favourable surface loads can be achieved whenever at least one meniscus lens, concave towards the image, with a positive refracting power is provided in the fifth lens group. In particular, two or more such lenses can be provided. The last optical element is preferably formed by a plano-convex lens which preferably has a spherical entry surface and a substantially flat exit surface. It is possible thereby, on the one hand, to achieve a good correction of spherical aberration and coma and, on the other hand, a substantially flat exit surface is favourable for immersion lithography. In preferred embodiments, the plano-convex lens is nonhemispherical, the centre of the spherical surface lying outside the lens. Truncated hemispherical lenses of this type can yield a reduced sensitivity to fluctuations in the working distance.

15

By applying some or all of these design principles, success has been achieved in preferred embodiments which keep the surface loads of the lenses so low that despite an aperture of more than NA = 0.9 or 1, incidence angles whose sine is greater than approximately 90% or even approximately 85% of the image-side numerical aperture do not occur at any of the optical surfaces, and this simplifies the coating of the lenses and the adjustment of the objective.

In preferred embodiments, all the lenses of the projection objective consist of the same material. For operating wavelengths of 193 nm, synthetic quartz glass and, for operating wavelengths of 157 nm, calcium fluoride can be used, for example, as material. The use of only one kind of material facilitates production and permits simple adaptation of the objective design to other wavelengths. It is also possible to combine a plurality of kinds of material in order, for example, to support the correction of chromatic aberrations. It is also possible to use other UV-transparent materials such as BaF₂, NaF, LiF, SrF, MgF₂ or the like.

In addition to the claims, the description and the drawings also disclose the preceding and further features, it being possible for the individual features to be implemented on their own or severally in the form of subcombinations in the case of embodiments of the invention and in other fields, and for them to constitute advantageous designs which can be protected per se. In the drawings:

Figure 1 shows a lens section through a first embodiment of a refractive projection objective which is designed for a 193 nm operating wavelength;

Figure 2 shows a lens section through a second embodiment of a projection objective which is designed for a 193 nm operating wavelength;

Figure 3 shows a lens section through a third embodiment of a projection objective which is designed for a 157 nm operating wavelength; and

15

20 Figure 4 shows a lens section through a fourth embodiment of a projection objective which is designed for a 193 nm operating wavelength.

In the following description of preferred embodiments, the term "optical axis" denotes a straight line through the centres of curvature of the optical components. Directions and distances are described as on the image side or towards the image when they are aligned in the direction of the image plane or the substrate, which is to be exposed, located there, and as on the object side or towards the object when they are directed towards the object with reference to the optical axis. In the examples, the object is a mask (reticle) with the pattern of an integrated circuit, but it can also be another pattern, for example a grating. In the

examples, the image is formed on a wafer which serves as a substrate and is provided with a photoresist layer, but other substrates are also possible for example elements for liquid crystal displays or substrates for optical gratings. The focal lengths specified are focal lengths with reference to air.

Identical or mutually corresponding features of the various embodiments are denoted below with the same reference symbols for reasons of clarity.

10

A typical design of an embodiment of a purely refractive reduction objective 1 according to the invention is shown with the aid of Figure 1. It serves the purpose of projecting in conjunction with virtually homogeneous immersion a pattern, arranged in an object plane 2, of a reticle or the like into an image plane 3 to a reduced scale, for example to the scale of 5:1. This is a rotationally symmetrical single-waist system with five lens groups which are arranged along the optical axis 4, which is perpendicular to the object plane and image plane, and form an object-side belly 6, an image-side belly 8 and a waist 7 situated therebetween. The first lens group LG1, following the image plane 2, has a negative refracting power and a focal length of -166 mm. A second lens group LG2, following thereupon, has a positive refracting power with a focal length of 121 mm. A third lens group LG3, following thereupon, has a negative refracting power and a focal length of -33 mm. A fourth lens group LG4, following thereupon, has a positive refracting power with a focal length of 166 mm, which therefore corresponds in terms of magnitude to the focal length of the first lens group. A fifth lens group LG5, following thereupon, has a positive refracting power and a focal length of 170 mm, which is of the order of magnitude of the focal length of the fourth lens group and of the first lens group LG1 in terms of magnitude. The system aperture 5 is arranged between the fourth lens group LG4 and the fifth lens group LG5 in the

region, near the image, of maximum beam diameter, that is to say in the second belly 8 of the objective.

The first lens group LG1, following the object plane 2, is substantially responsible for the expansion of the light bundle into the first belly 6. It comprises three lenses 11, 12, 13 with a negative refracting power, the first lens 11 and the second lens 12 being configured as biconvex negative lenses. The third lens 13 is a diverging meniscus in the case of which as a special feature the concave side is directed not towards the object 2 but towards the image plane 3. This arrangement is very favourable for correcting the tangential astigmatism. Otherwise, the first lens group includes two aspherics, specifically the entry sides of the second and the third lens. The aspherics have a positive influence on the very good correction of the distortion and the astigmatism.

The second lens group LG2 comprises four collecting menisci 14, 15, 16, 17, facing the reticle or the object plane 2 with their concave side, a biconvex positive lens 18 and two collecting menisci 19, 20 facing the wafer or the image plane 3 with their concave side. This design, in which the curvatures of the meniscus surfaces run on the object side and image side of the biconvex lens 18 in opposite directions with concave surfaces averted from one another, ensures small areal stresses for the menisci and the positive lens 18, and thus few aberrations. The biconcave air lens between the biconvex positive lens 18 and the following meniscus lens 19 has with its strong astigmatic undercorrection a favourable influence on the balancing-out of the astigmatism in the front part of the system upstream of the waist 7.

The third lens group LG3 consists exclusively of diverging lenses, specifically a negative meniscus lens 21 with image-side concave surfaces, a biconcave negative lens 22, following thereupon, a further biconcave negative lens, following thereupon, and a negative meniscus lens 24, following thereupon, with object-side concave surfaces. With

reference to a plane of symmetry 9 lying between the lenses 22 and 23, these four lenses are designed with mirror symmetry with regard to lens type (meniscus lens or biconcave lens) and direction of curvature of the optical surfaces. Together with the last two lenses 19, 20 of the second lens group and the first two lenses 25, 26 of the fourth lens group LG4, following thereupon, there is a series of two collecting menisci 19, 20 and one diverging meniscus 21, all three of which have concave surfaces facing the waist or the plane of symmetry 9. In the opposite, mirrored direction, that is to say on the image side of the plane of symmetry 9, the two biconcave negative lenses 22, 23 are again followed at the waist, that is to say in the area of smallest diameter, by a diverging meniscus 24 and two collecting menisci 25, 26 of the fourth lens group. This design having mirror symmetry relative to the plane of symmetry 9 supports a low tensioning or a low areal stress of the optical surfaces, and thus few aberrations.

10

15

20

The third lens group includes, in the form of the exit surface of the smallest lens 22 and the exit surface of the negative meniscus lens 24, two aspherics which make a substantial contribution to the correction of the coma and the astigmatism.

The fourth lens group LG4 comprises on its entry side two positive meniscus lenses 25, 26 which are concave relative to the object plane and are followed by two doublets 27, 28 and 29, 30. Each of the doublets has, on the object side, a collecting biconvex lens 27 and 29, respectively, and downstream thereof a diverging meniscus 28 and 30, respectively, whose concave surfaces point towards the object plane. The two spherically strongly overcorrected, diverging menisci 28 (f' = -728 mm) and 30 (f' = -981 mm) counteract the strongly undercorrected, collecting lenses of the fifth lens group LG5 following downstream of the system aperture 5. The combination of the collecting biconvex lens and the diverging meniscus inside a doublet has a very positive effect on the

correction of image errors in the region of the second belly 8. With their strong overcorrection of the tangential astigmatism, the two menisci 28, 30, in particular the thick meniscus 28, counteract the undercorrection in the fifth lens group LG5.

5

10

15

The fifth lens group LG5, situated downstream of the system aperture 5, is substantially responsible for producing the high numerical aperture. Provided for this purpose are exclusively collecting lenses, specifically a positive meniscus lens 31, arranged in the region of the system aperture 5, with surfaces concave towards the image, a biconvex positive lens 32, following thereupon, with a slightly curved entry side and a more strongly curved exit side, a positive meniscus lens 23, following thereupon, with surfaces concave towards the image, a further positive meniscus lens 24, likewise with surfaces concave towards the image, and a terminating plano-convex lens 35 with a spherical entry side and a flat exit side. The positive lenses 31, 32, 33 and 34 are strongly undercorrected spherically and overcorrected with reference to the coma. In the case of this design, the correction of the spherical aberration and the coma is therefore implemented substantially in conjunction with the configuration of the fourth lens group LG4 which is situated upstream of the system aperture 5 and creates a corresponding offset of these aberrations.

Consequently, the fourth lens group LG4 and the fifth lens group LG5 are responsible in combination for achieving a good correction state of the spherical aberration and of coma. An aspheric surface on the entry side of the biconvex lens 27 of the first doublet substantially supports the correction of the spherical aberration, but also of the coma of third order. An aspheric surface, arranged in the vicinity of the system aperture 5, on the exit side of the positive meniscus lens 31, convex towards the object, at the input of the fifth lens group LG5 chiefly corrects aberrations of higher order and thereby makes a substantial contribution to setting a good aberration compromise. A likewise positive influence on the

correction of aperture aberration and coma is exerted by the spherical, convex entry surface of the plano-convex lens 35. The latter is spherically overcorrected and undercorrected with reference to coma.

- The system has a working distance on the image side of approximately 8.4 mm, which can be filled up by an immersion fluid 10. Deionized water (refractive index n = 1.47) or another suitable transparent liquid, for example, can be used at 193 nm as immersion fluid.
- The correction state of the optical system 1 is excellent. All aberrations are corrected. The RMS value of the wavefront deformation is very low at 4 mλ. The distortion of all field points in the region is below 1 nm. A projection objective is thus created which operates at an operating wavelength of 193 nm, can be produced with the aid of conventional techniques for lens production and coating, and permits a resolution of structures substantially below 100 nm.

The design described is fundamentally suitable for near-field lithography, as well, by the use of a homogeneous immersion. For this purpose, the terminating plano-convex lens 35 is to be combined with the immersion layer 10 to form a lens which can consist, for example, of synthetic quartz glass. In order to permit sufficient light energy of the evanescent field to be coupled in, in this case the working distance between the exit surface of the projection objective and the image plane should be in the region of 100 nm or below.

The specification of the design is summarized in a known way in tabular form in Table 1. Here, column 1 gives the number of a refracting surface, or one distinguished in another way, column 2 gives the radius r of the surface (in mm), column 3 gives the distance d denoted as thickness, of the surface from the following surface (in mm), column 4 gives the material of the optical components, and column 5 gives the refractive

index of the material of the component, which follows the entry surface. The useful, free radii or half the free diameter of the lenses (in mm) are specified in column 6.

In the case of the embodiment, six of the surfaces, specifically the surfaces 4, 6, 15, 29, 34 and 44, are aspheric. Table 2 specifies the corresponding aspheric data, the aspheric surfaces being calculated using the following rule:

10 $p(h)=[((1/r)h^2)/(1+SQRT(1-(1+K)(1/r)^2h^2))]+C1*h^4+C2*h^6+...$

Here, the reciprocal (1/r) of the radius specifies the surface curvature, and h the distance of a surface point from the optical axis.

Consequently, p(h) gives the so-called sagitta, that is to say the distance of the surface point from the surface apex in the z direction, that is to say in the direction of the optical axis. The constants K, C1, C2, ... are reproduced in Table 2.

The optical system 1, which can be reproduced with the aid of these
data, is designed for an operating wavelength of approximately 193 nm,
for which the synthetic quartz glass used for all the lenses has a
refractive index n = 1.56029. The image-side numerical aperture is 1.1.
The system is adapted to a refractive index of the immersion medium 10
of n = 1.56, which permits a virtually ideal coupling of the light into the
immersion layer 10. The objective has an overall length (distance
between image plane and object plane) of 1162 mm. A light
conductance (product of numerical aperture and image size, also
denoted étendue or geometrical flux) of 24.1 mm is achieved given an
image size of 22 mm.

30

A variant of the projection objective shown in Figure 1 is explained with the aid of Figure 2. Lenses or lens groups of the same type or the same function are denoted by the same reference symbols for reasons of clarity. The system 1' is optimized for a refractive index of the immersion medium of n = 1.37, and this corresponds to a value, which has become known from the literature, of 157 nm for the refractive index of an immersion fluid based on perfluoropolyether (PFPE).

The fourth and the fifth lens group differ in terms of design from that in accordance with Figure 1. In LG4, the thick meniscus lens 28 of the first doublet in Figure 1 is split up into an object-side, biconcave negative lens 28' with an only slightly curved exit side and a subsequent biconvex 10 positive lens 28" with a correspondingly only slightly curved entry side. This splitting-up further reduces the areal stress of the optical surfaces in this region. The rim ray of the projection runs in a converging fashion in the air space between the subsequent lenses 29, 30 upstream of the entry surface of the meniscus 30 which is concave towards the object. In the fifth lens group LG5, the entry-side lenses 31, 32, separated in the case of the design in Figure 1 and downstream of the system aperture 5 are combined to form a single, biconvex positive lens 32'. This is situated at a distance downstream of the system aperture 5, which can be accessed particularly easily. A further special feature consists in that the system aperture 5 is situated between a plane, near the image, of maximum beam diameter and the image plane 3, that is to say where the transilluminated diameter of the lenses already decreases towards the image plane. The other lenses correspond with regard to the type and sequence of the lenses of identical reference symbols in Figure 1. In the case of this design, as well, all the lenses consist of synthetic quartz glass. The specification of this design in the notation described is specified in Tables 3 and 4.

30 Shown in Figure 3 is a third embodiment, designed for an operating wavelength of 157 nm, of a projection objective 1" whose specification is given in Tables 5 and 6. It is to be seen from the sequence and the type

of lenses that the design is based on the design principle explained with the aid of Figures 1 and 2, and so the same reference symbols are used for lenses and lens groups with corresponding functions. As in the case of the embodiment in accordance with Figure 1, no further optical element is arranged upstream of the first biconcave negative lenses 11 of the objective. As in the case of the embodiment in accordance with Figure 2, in the fourth lens group LG4 the thick meniscus lens 28, still in one piece in Figure 1, is split up into a biconcave negative lens 28' and a directly following biconvex positive lens 28". Just as in the case of the embodiment in accordance with Figure 2, the function of the entry-side lenses 31, 32 of the embodiment in accordance with Figure 1 is taken over by a single, biconvex positive lens 32' which initiates the ray combination towards the image plane. In a way similar to the case of the embodiment in accordance with Figure 2, the system aperture 5 is situated inside the second belly 8 downstream of the region of maximum beam diameter, that is to say where the beam diameter already decreases again towards the image plane.

10

The refractive index for the immersion medium is set at n = 1.37, which corresponds to a value, which has become known from the literature, for a PFPE-based immersion fluid sufficiently transparent at 157 nm. The image-side working distance is set to approximately 50 µm, which corresponds in practical use to the thickness of the immersion layer. It may be assumed that suitable immersion fluids still have high transmission values of more than 90% in the case of this low thickness, and so only negligible, low transmission losses occur in the region of the immersion, this being favourable for achieving a satisfactory wafer throughput. Pattern widths of less than 70 nm can be resolved with the aid of this purely refractive projection objective, of excellent correction state, which can be implemented using conventional means.

Tables 7 and 8 show the specification of an embodiment (not illustrated pictorially) of a projection objective which is derived from the embodiment in accordance with Figure 3, from which it differs essentially in that the thick meniscus lens 17, concave towards the object, there is replaced by a thinner meniscus lens curved in the same direction. A comparison of Tables 5 and 6 shows that as a result an even more compact design is possible which has smaller lens diameters and a smaller overall length in conjunction with equally good optical properties.

A fourth embodiment of a projection objective 1", which is designed for an operating wavelength of 193 nm and whose specification is given in Tables 9 and 10 is shown in Figure 4. This embodiment has a projection scale of 4:1 and an image-side numerical aperture NA = 0.9. A comparison with the remaining embodiments shows that less lens material is required in conjunction with the same fundamental optical 15 principle. Instead of 25, as in the case of the other embodiments, there is a need for only 23 lenses, and moreover the average and maximum lens diameters are smaller than with the preceding embodiments. In particular, there is provision in the second lens group LG2 for only three menisci 14, 15, 16, concave towards the object, a lens corresponding to 20 the menisci 17 of the other embodiments being absent. In contrast to the other embodiments, in the fourth lens group LG4 only one doublet 27 and 28 is provided, and so a saving of one lens is made in this lens group as well. The symmetrical design of the third lens group LG3 and of the lens pairs bordering thereon, 19, 20, of the second lens group and 25, 26 of the fourth lens group corresponds to that of the other embodiments. The embodiment in accordance with Figure 4 substantiates that it is also possible to implement solutions of favourable design within the scope of the invention for relatively large projection scales and relatively large fields.

The correction state of all the embodiments shown is excellent. All aberrations are corrected. The maximum RMS value of the wavefront deformation is very low and is below 4.5 m λ for the embodiments in accordance with Figures 1 and 2, below 6.5 m λ for the embodiment in accordance with Tables 7 and 8, and below 5.2 m λ for the embodiment in accordance with Figure 4. Within all the systems, the distortion is in the region below 1 nm for all field points.

It can be seen by the person skilled in the art from the examples that
numerous modifications of the designs are possible within the scope of
the invention. For example, individual lenses can be split up into two or
more separate lenses, or separate lenses can be combined to form a
single lens having essentially the same function.

- Embodiments with two or more lens materials are also possible. For example, in the case of embodiments for 193 nm it is possible to provide a combination of lenses made from synthetic quartz glass and calcium fluoride in order to facilitate chromatic correction and in order to avoid changes in refractive index because of compaction in regions of high radiation energy densities by using calcium fluoride lenses. Also possible is the use of other materials transparent to the ultraviolet light used, such as barium fluoride, sodium fluoride, lithium fluoride, strontium fluoride, magnesium fluoride or the like.
- Catadioptric systems for immersion lithography can also be designed using essential configuration features of the embodiments represented here, in particular in the region, near the image, of the second belly and the aperture stop.
- The technical teaching of the invention explained with the aid of various exemplary embodiments shows that a range of design boundary

conditions should be taken into account when the aim is to design an optical system suitable for immersion lithography, particularly one of such compact design. The following features can be beneficial individually or in combination. Immersion objectives for which the image field diameter is greater than approximately 1%, in particular greater than approximately 1.5% of the overall length are favourable. Favourable light conductances (product of image field diameter and numerical aperture) are in the region of above 1%, in particular above 2% of the overall length. Four or more collecting lenses between aperture stop and image plane are favourable, it being preferred for only collecting lenses to be provided in this region. Preferably more than four, five or six consecutive collecting lenses are favourable in the second lens group. In this case, preferably two or more collecting menisci with an object-side concave surface are favourable in the entry region of the second lens group, and two or more collecting menisci with surfaces concave towards the image are favourable at the end of the second lens group. In the region of the first belly or of the second lens group a strong beam expansion is beneficial for which the maximum beam diameter is preferably more than 1.8 times, in particular more than 2 times the object field diameter. The maximum lens diameter in the second lens group 20 can be approximately twice the minimum free lens diameter of the third lens group in the region of the constriction. The maximum lens diameter in the second belly following the constriction is preferably of the same order of magnitude and can, in particular, be greater than twice the minimum free diameter in the third lens group. In the region of the third lens group, that is to say in the region of the waist of the system, two concave surfaces are preferably directly opposite one another and are enclosed by two surfaces curved in the same sense. The lenses respectively adjoining towards the object and towards the image are also 30 preferably designed and arranged in this way.

Particular lens distributions can be favourable. In particular, it is favourable when substantially more lenses are situated upstream of the system aperture than downstream of the aperture. The number of lenses upstream of the aperture is preferably at least four times, in particular more than five times, the number of lenses downstream of the system aperture. Five or more collecting lenses are preferably arranged between the region of narrowest constriction and the system aperture or aperture stop; the axial distance between the region of narrowest constriction and the aperture stop arranged exceptionally near the image is favourably at least 26%, if appropriate more than 30% or 35%, of the overall length of the projection objectives.

10

Further special features relate to the trajectory of and the relationships between principal rays and rim rays of the projection. Denoted here as principal ray is a ray which runs from a rim point of the object field parallel or at an acute angle to the optical axis and which cuts the optical axis in the region of the system aperture. A rim ray in the sense of the present application leads from the middle of the object field to the rim of the aperture stop. The perpendicular distance of these rays from the optical axis yields the corresponding ray height. It can be favourable 20 when the principle ray height is greater in absolute value up to the end of the second lens group than the rim ray height, this relationship preferably not being reversed until in the region of the third lens group. The maximum rim ray height is preferably more than twice, in particular more than 2.3 to 2.5 times, the rim ray height in the region of the 25 narrowest constriction of the third lens group. It is favourable when the diameter of the rim ray is kept small in the region between the fourth and fifth lens groups, that is to say in the region of the system aperture. This corresponds to a smallest possible focal length of the fifth lens group, following the system aperture. The focal length of the fifth lens group is preferably smaller than 15%, in particular smaller than 10% of the overall length. Preferred systems are doubly telecentric, and so the principal ray

plane. In preferred systems, the principal ray coming from the object field should still have a divergent trajectory after at least five lenses, that is to say a trajectory with a still rising principal ray height away from the optical axis. It is favourable, furthermore, when the sine of the maximum principal ray divergence angle in the objective region near the object is more than 50% of the object-side numerical aperture. A plurality of aspheric surfaces are preferably provided in the region near the object in which the rim ray height is greater than the principal ray height, in order to promote a favourable correction state.

The invention also relates to a projection exposure machine for microlithography which is distinguished in that it includes a refractive projection objective in accordance with the invention. The projection exposure machine preferably also has devices intended for introducing and keeping an immersion medium, for example a liquid of suitable refractive index, between the last optical surface of the projection objective and the substrate to be exposed. Also covered is a method for producing semiconductor components and other finely structured structural elements, in the case of which an image of a pattern arranged in the object plane of a projection objective is projected in the region of the image plane, an immersion medium arranged between the projection objective and the substrate to be exposed and transparent to light at the operating wavelength being transilluminated.

10

Table 1

SURFAC	CE RADII	THICKNESSES	LENSES	193.304 nm	1/2 FREE DIAMETER
0	0.00000000	21.960160000		• • • • • • • • • • • • • • • • • • • •	
1	C.000000000	\$ \$69665462			55.000
1 2	-697.373131352	6.839738819	22.00		59.973
3	317.877790816	13.366856184	S102	1.56028900	60.658
4	-389.517361474A	S 6.019967568			63.806
5 6 7	684.978717634	23.693566944	SIO2	1.56028900	65,103
6	612.579041806A	S 13.563639007			70.051
	315.238108546	24.050777166	SIO2	1.56028900	66.338
8	-636.903175512	64.776862854			92.585
9	-304.036729565	1.00000000	SIOZ	1.56028900	95.153
10	-942.407223581	39.153776761	25.00		120.585
11	-317.523154272	1.312033169	\$102	1.56028500	130.798
12	-856.579360710				137.817
13	-222.120764338	53.655176363	\$102	1.56028900	145.587
14	-365.979641333	1.000000000			148.413
15	-300.375347712	16.565547178	S102	1.56028900	148.696
16	622.472470310	1.00000000			150.000
17	-556.306013695	44.791302453	8102	1.56028900	146.389
18	135.290972565	1.620913522			145.384
19	140.238400611	40.672419816	5102	1.56026900	113.552
20	128.146489274	1.607703555		. /	99.382
21	178.301821741	33.605830320	S102	i.56028900	97.047
22	764.210626300	21.367336106			87.913
23	81.619567541	8.040530767	S102	1.56028900	85.346
24	-324.577506735	55.131180427			66.098
25	133.06544050¢AS	8.010204876	S102	1.56028900	63.499
26	-275.984572757	29.116630876			62.507
27	2685.503343355	12.121405585	\$102	1.56026900	63.961
28	-83.024363434	41.843073620 9.216662930			€8.171
25	-271.500870518AS	7.122879020	S102	1.56028900	69.398
30	-234.082816820	34.813633391			90.369
31	-128.679213398	1 33630000	SIO2	1.56028900	93.111
32	-371.070689222	1.375380851 40.964766288			98.648
33	-158.555144143		SIO2	1.56026900	212.720
! <	844.565103125AB	2-142646331 42-656894 <i>6</i> 78			216.033
5	-293.770426726	26 144622602	SIO2	1.56028900	123.022
6	-170.081620687	26.164927G93 40.277028630			123.344
7	-316.315520485		SIGZ	1.56028900	122.713
8	623.625571533	10.943607028 56.708798505			137.139
5	-379.372716473	20.156323351	SIOS	1.56028900	143.361
0	-246.931005408	18.567257168			143.139
1	-460.148730828	16.465394474	SIOZ	1.56028960	142.262
2		15.465394474			145.978
3	506.946830874	18.875460558			144.329
í .	1 A R 1	22.930981004	S102	1.56028900	144.915
5	1760.701259607	42.739861927			144.124
;	-371.926449461		\$102	1.56028900	143.914
•	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1.361397272	454		143.620
•	689.962205932	42.532993341	S102	1.56028900	120.019
	100 0000	1.126753967			114.927
	156.823775540	34.370356665	SIOZ	1.56028900	88.972
	110 000	1.072372528			79.549
	0.00000000	000000000	\$102	1.56028900	73.749
	0.00000000	8.436241391	Immersion	1.56000000	19.439
		0 000000000			* 3 . 7 3 3

44

Table 2

K

Cl

C2

C3

C4 C5

Ce

C?

CC

CD

0.0000

-5.83593306e-009

-4.08253893e-015

-3.40920951e-618

1.36466433e-022

-1.03090955e-026

4.02018916e-031 -9.89543799e-036

0.000000000e+c00

0.00000000e+600

```
ASPHERIC CONSTANTS
   SURFACE NO.
                  4
                                                SURFACE NO.
   K
          0.0000
                                                K
                                                       0.0000
   Cl
          2.13647921e-007
                                                Cl
                                                      -5.18910040e-009
         -3.57933301e-011
   C2
                                                C2
                                                       3.51025484e-013
  C3
          2.93263063e-015
                                                C3
                                                      -5.47716488e-018
         -4.61461071e-015
  C4
                                                       4.43561455e-023
                                               C4
          2.76861570e-023
  C5
                                               C5
                                                       3.42844064e-028
  C6
          1.6274083Ge-027
                                               Ce
                                                      -1.97724021e-032
  C7
         -3.43732853e-031
                                               C7
                                                      2.22456117e-037
  C8
          C.0000000Ce+000
                                               C8
                                                      0.00000000e+000
  C9
          G.00000000e+000
                                                      0.000G0000e+000
                                               .C3
  SURFACE NO.
                 E
  К
          U.0000
  Cl
        -1.14265623e-007
  C2
         2.02166625e-011
  C3
        -1.76403105e-015
  C4
         2.3630534Ge-019
  C5
        -2.55314839e-023
  Cб
         J.35459868e-027
 C7
        -2.70730236e-032
 CB
         0.00000000e+000
 C9
         0.00000000e+000
 SURFACE NO.
               25
 K
         0.0000
 Cl
        -9.78914413e-CO8
 C5
       -4.33168283e-012
 C3
       -8.01001563e-017
 C4
       -1.31611936e-019
 C5
        6.54375176e-023
 C6
       -1.37293557e-026
        1.58764578e-036
 C8
        0.000GD0D0e+C00
        0.00000000e+000
C9
SURFACE NO.
              29
        0.0000
       2.99497807e-008
Cl
C2
       -3.16131943e-012
C3
       -9.61008384e-017
       2.05647555e-020
C4
C5
      -2.56167018e-024
C6
       1.74321022e-028
      -7.59802684e-033
C7
       0.00000000e+000
C8
       0.00000000e+000
CS
SURFACE NO.
             34
```

Table 3

SURFAC	E RADII	THICKNESSES	LENSES	???.?? nm	1/2 FREE DIAMETER
0	0.00000000	21.980160000	L710	0.99958200	F. AAA
1	0.00000000	6.228362492	L710	0.99998200	55.000
2	-603.070624671	9.913063455	SIOSKL	1.56028900	59.974
3	280.91633;78;	13.300217883	HE193	0.99971200	60.690
•	-461.660931347AS	8.606000000	SIO2HL	1.56028900	64.385
5	681.261406487	25.180533824	HE193	0.99971200	65.798
6	421.7967J2825AS	13.410528997	SIC2HL	1.56028900	70.487
7	306.236502978	23.641056301	HE193	0.99971200	89.920
В	-881.743075988	64.144962259	SIO2HI.	1.56028900	95.293
9	-397.616228767	1.032715830	HE193	0.99971200	97.777
10	-1049.995266970	29.473283137	2102HT	1.56028900	123.195
11	-266.549348161	2.251083976	HE193	0.99971200	130.947
12	-659.273684770	52.0B9256568	SIO2HL	1.56028900	136.447
13	-209.207390137	1.608491553	HE193		143.894
14	-565.795559961	15.829681399	SIO2HL	0.99971200 1.56028900	146.415
15	-410.848668817	1.000000613	HE193		145.408
16	809,207497255	37.599045382	SIOZHL	0.99971200	146.045
27	-599.260287529AS	1.000000015	XE193	1.56028900	142.424
18	136.304287826	42.528385200	SIO2HL	0.99971200	141.453
19	157.516637917	1.00000000	RP193	1.56028900	113.454
20	126.013978931	34.051407776		0.99971200	101.084
21	157.519818688	23.554259229	EXOSHT	1.56028900	96,007
22	795.455608357	9.035828932	HE193 SIO2HL	0.99971200	84.914
23 .	78.918295718	30.235934318	HE193	1.56028900	82.369
24	-647.136797738	5.0C0000184	SIOSHF	0.99971200	63.551
25	148.158813477AS	32.440106724	KB193	1.56028900	63.056
26	-197.858636028	9.960377452	SIOSHT	0.99971200	61.486
27	1367.448704100	41.067582498	HE193	1.56028900	62.472
2 E	-87.255013445	8.475217865	SIO2HL	0.99971200	66.716
29	-396.760639119AS	6.471651900	HE193	1.56028900	EB.713
30	-317.095597644	34.300021646	SIOSHF	0.99971200 1.56028900	88.202
31	-136.816156215	1.956487291	RE153	0.99971200	50.935
32	-384.621022314	B. 250891268	SIO2HL	1.56028900	56.054
33	-156.063116797	1.000000006	HE193	0.99971200	107.852
34	607.69013407EAS	41.496271568 .	SIO2HL	1.55028900	111.057
35	-280.685163902	25.354810908	HE193	0.99971200	117.589
	-166.502630134	5.238823967	SIOZHE	1.56028900	117.901
37	988-468038668	6.683211723	HE1 93	0.99971200	117.263
38	1106.583200370	44.085572378	SIO2HL	1.56028900	131.802
39	-353.437766566	1.000000005	HE193	0.99971200	134.587
40	445.624457242	52.624318854	SIO2HL	1.56028900	136.483
41	-460.556866224A9	26.188809880	HE193	0.99971200	142.739
42	-248.318425801	36.706472160	SIO2HL	1.56028900	142.372
43	-340.049722734AS	16.312593082	HE193	0.99971200	141.622
44	0.00000000	12.926710616	HE193	0.99971200	146.673
45	1026.963505660	42.907368082	SIO2HL		142.237
4 6	-417.465602639	1.875432853	HE193	1.56028900	142.523
47	189.031074062	41.889218814	EIOSHT	0.99971200	142.184
48	698.095904560AS	1.076370948	HE193	1.56028900	121.251
49	109.988479121	34.053123871	8103HT	0.99971200	117.434
50	167.347263939	1 034746212		1.56028900	91.356
5)	123.915863411	79 999373259	HE193	0.99971200	84.177
52	0.00000000	10 366030727	SIO2HL	1.56028900	77.713
53	0.00000000	0.000000000	1 MMERS	1.3700000	25.089
		4.4694000000		1.00000000.	11.000

Table 4

C4

C5

C6

C7

C8

C3

1.39699646e-020

-1.51163159e-024

6.569I0089e-029

-3.15414270e-033

0.0000000e+000

9.0000000e+000

ASPHERIC CONSTANTS

```
SURFACE NO.
                                                 SURFACE NO.
                                                              34
  K
         6.0000
                                                K
                                                        0.0000
  C1
         2.26522214e-007
                                                Cl
                                                       -4.23637017e-009
  C2
        -3.59236651e-011
                                                C2
                                                       -3.29710303e-014
  C3
         2.92133725e-015
                                                C3
                                                       -3.52756803e-018
        -3.77696824e-019
  C4
                                                C4
                                                       -4.13266120e-023
  C5
         7.963888586-024
                                                C5
                                                       -2.16653880c-027
  C6
         3.91986385e-027
                                                C6
  C7
                                                        2.27691141e-031
        -4.547113246-031
  CB
         0.0G000000e+000
                                                C7
                                                       -B.70596013e-036
                                                CB
 C9
         0.000000De+0G0
                                                        0.0000000e+000
                                                C9
                                                        0.0000000e+000
  SURFACE NO.
                6
                                                 SURFACE NO.
 K
         0.0000
                                                              41
 Cl
        -1.19063117e-007
                                                K
                                                        0.0000
 CS
        1.54132266e-011
                                                Cl
                                                       3.45855942e-009
 C3
        -1.81962009e-015
                                                       5.47566277e-014
 C4
        2.25193097e-019
                                                C5
 C5
        -2.25566558e-023
                                                C3
                                                       -3.85610770e-018
 C6
        1.19237134e-027
                                                C4
                                                       2.7404113Be-023
 Ç7
       -2.51584924e-032
                                                C5
                                                       1.86632362e-027
 C8
                                                C6
        0.0000000e+000
                                                      -3.44742394e-032
                                                C7
 C9
        0.0000000e+000
                                                       3.29571792e-038
                                                CB
                                                       0.0000000e+000
                                                C9
 SURFACE NO.
               17
                                                       0.00000000e+000
                                                SURFACE NO.
 K
        0.0000
                                                             43
 Cl
        1.74375723e-011
                                               K
 C2
       -2.04139734e-014
                                                       0.0000
                                               Cl
                                                      -3.55873B02e-010
 C3
        7.67656306e-019
C4
       -1.93715606e-023
                                               C2
                                                       9.63322458e-014
                                               C3
                                                      -7.64415866e-C19
 C5
        1.92834024e-027
                                               Ç4
                                                       2.00153471e-023
C<sub>6</sub>
       -7.02565837e-032
                                               C5
                                                      -1.98329358e-027
C7
        1.14576119e-036
                                                       5.52524526e-032
                                               C6
C8
        0.0000000e+000
        0.0000000e+000
                                               C7
                                                      -4.80876507e-037
C9
                                               C8
                                                       0.00000000e+000
SURFACE NO.
                                               C3
                                                       0.00000000e+000
              25
                                               SURFACE NO. .
K
       0.0000
                                                            48
       -6.99705361e-008
CI
                                               K
C2
      -3.25537639e-012
                                                       0.0000
                                               CJ
Ç3
      -2.93013408e-016
                                                      -2.25289484e-009
                                               C2
C4
                                                      2.627118226-013
      -9.1775159Be-020
C5
       4.34261555e-023
                                               C3
                                                      3.12883195e-018
C6
      -1.01961896e-026
                                               C4
                                                      -2.96009757e-022
                                               C5
C7
       1.42841266e-030
                                                      1.93969203e-026
Ç8
                                               C6
       0.00C00006e+050
                                                      -7.02702044e-031
CS
                                               C7
       0.0000000ce+000
                                                      1.40329412e-035
                                               C8
                                                      0.00000000e+000
SURFACE NO.
                                                      0.00000000e+000
                                               C9
             29
K
       0.0000
Ci
       3.01668174e-009
C2
      -4.16186211a-01Z
C3
      -2.10017649e-017
```

--

Table 5

D C.000000000 21.580169000 L710 1.0000000 55.000 1 0.00000000 5.521159992 L710 1.00000000 59.971 2 -653.380113342 10.765637237 CAP2HL 1.55048720 60.652 3 124.066815372 14.192447066 HE193 1.00000000 64.672 4 -541.443785621248 8.76501817 CAP2HL 1.55848720 66.216 6 477.02771237585 8.76501817 CAP2HL 1.55848720 66.216 6 477.02771237585 16.91540580 CAP2HL 1.55848720 68.269 7 115.067933823 22.12212301 HE193 1.00000000 70.663 7 115.067933823 22.12212301 HE193 1.00000000 91.661 9 -400.417777767 1.550157109 HE193 1.00000000 124.495 11 -248.097176786 6.56786793 HE193 1.00000000 124.495 11 -248.097176786 6.56786793 HE193 1.00000000 124.495 12 -667.622933165 58.527118774 CAP2HL 1.55848720 130.520 14 -651.989091493 52.689531957 CAP2HL 1.55848720 136.785 15 -420.897890530 1.00000000 HE193 1.00000000 152.069 16 682.574050518 42.55645096 CAP2HL 1.55848720 155.782 17 -650.60232592888 1.00000000 HE193 1.00000000 152.069 18 143.997853739 39.112156678 CAP2HL 1.55848720 155.201 19 170.361035751 1.000000000 HE193 1.00000000 165.231 19 170.361035751 1.000000000 HE193 1.00000000 165.231 10 149.757517850 27.65865647 HE193 1.00000000 165.231 11 149.757517850 27.65865647 HE193 1.00000000 165.231 12 149.757517850 27.65865647 HE193 1.00000000 165.231 13 13.88777252585 8.000000000 CAP2HL 1.55848720 99.558 13 85.47473309 42.082501866 HE193 1.00000000 88.267 13 138.88777252585 8.000000000 CAP2HL 1.55848720 99.558 14 143.3937331 34.01602471 CAP2HL 1.55848720 99.558 13 13.13255750131 1.000000000 CAP2HL 1.55848720 99.558 14 -677.22715327 8.00000000 CAP2HL 1.55848720 99.558 15 -420.2032656773 8.00000000 CAP2HL 1.55848720 99.558 15 -420.2032656773 8.00000000 CAP2HL 1.55848720 99.560 13 13.83977430 5.704793599 HE193 1.00000000 136.765 14 -680.25776080	SURFA	CE RADII	THICKNESSES	LENSES	PRINCTIVE ISSUED 777.77.70	1/2 FREE DIAMETER
1 0.000000000 5.5.21125992 L710 1.00000000 55.000 2 -653.380115342 10.75637377 CAPZHL 1.55048720 60.652 3 -224.66681576 14.797467066 H1593 1.00000000 64.6773 5 -541.44375652128 3.65051817 CAPZHL 1.55048720 66.652 6 -107.017712373785 16.792467066 H1593 1.00000000 70.663 7 315.647931823 22.72236301 H2193 1.00000000 70.663 8 -1055.166104070 68.21607020 CAPZHL 1.55048720 97.141 10 -831.235736565 45.702998015 CAPZHL 1.55048720 97.141 11 -246.097167928 6.667867993 H2193 1.00000000 124.495 11 -246.097167928 6.667867993 H2193 1.00000000 124.495 12 -667.622933065 58.527118974 CAPZHL 1.55048720 1.00000000 124.495 13 -230.265801422 1.000000000 H2193 1.00000000 155.785 14 -635.989091493 52.569523957 CAPZHL 1.55048720 147.021 16 682.570050318 42.555466996 CAPZHL 1.55848720 151.782 17 -560.6021252888 1.000000000 H2193 1.00000000 155.231 17 -560.6021252888 1.000000000 H2193 1.00000000 155.231 18 143.509355719 39.112156678 CAPZHL 1.5548720 97.5548720 171.562 20 127.366697185 33.064705340 CAPZHL 1.5548720 97.5548720 171.562 21 149.7555171650 27.658658477 H8193 1.00000000 166.663 21 149.7555171650 27.658658477 H8193 1.00000000 165.663 22 149.668778 28.66878 28.66878 28.6880 28.6880 28.6880 28.6880 28.6880 28.6880 28.6880 28.6880 28.6880 28.6880 28.6880 28.6880	Ď	0.00000000	************			•••••
2 -653.380115342 10.755637537 CAPPIL 1.55848720 60.652						· 55.000
124 - 665615372	_	•				59.973
1.541.443725273A	3					60.652
Section Sect	4					
7 115.047913821 22.12211601 E193 1.00000000 70.663 8 -1055.166104073 68.251607282 CAP2HL 1.55848720 93.661 9 -440.417777767 1.550157109 HE193 1.00000000 124.495 110 -833.235756565 45.702998015 CAP2HL 1.55848720 97.341 12 -248.097167968 6.567867993 HE193 1.00000000 136.785 111 -248.097167968 6.567867993 HE193 1.00000000 136.785 112 -667.629313065 58.527118374 CAP2HL 1.55848720 130.520 113 -520.265801432 1.00000000 HE193 1.00000000 152.069 114 -615.989091493 52.889523957 CAP2HL 1.55848720 151.782 115 -620.89798030 1.00000000 HE193 1.00000000 155.201 116 -625.77405018 42.56586966 CAP2HL 1.55848720 151.782 117 -560.60212592883 1.00000000 HE193 1.00000000 155.231 12 -637.36697165 32.6476590 CAP2HL 1.55848720 175.662 12 143.909353719 19.12156678 CAP2HL 1.55848720 175.662 12 149.757517850 27.6586964 CAP2HL 1.55848720 19.5678 12 149.757517850 27.65869647 CAP2HL 1.55848720 19.568 12 149.757517850 27.65869647 CAP2HL 1.55848720 48.6678 12 149.757517850 27.65869647 CAP2HL 1.55848720 48.6678 12 149.757517850 27.65869647 HE193 1.00000000 168.661 149.757517850 27.65869647 CAP2HL 1.55848720 45.687 12 1368.82722556 27.65869647 CAP2HL 1.55848720 45.687 13 13.68777252788 36.097576773 HE193 1.00000000 68.267 13 1368.82722556 39.67029843 HE193 1.00000000 68.267 13 1368.82722556 39.67029843 HE193 1.00000000 69.993 13 -70.658755451388 7.243142706 HE193 1.00000000 69.680 13 -70.57938773 HE193 1.00000000 13.600000 69.680 13 -70.57938773 HE193 1.00000000 13.600000 69.680 13 -70.57938773 HE193 1.00000000 13.6000000 69.680 13 -70.57938773 HE193 1.00000000 12.5588720 70.057 13 -70.5893878 44.6114878 HE193 1.00000000 12.000000 69.680 13 -70.0000000 HE193 1.00000000 12.000000 69.680 13 -70.0000000 HE193 1.00000000 12.0000000 12.0000000 69.680 13 -70.0000000 HE193 1.00000000 12.00000000 12.0000000 12.0000	5				1.55848720	-
8 -1055.04793122] 22.13221303					1.0000000	
8 -1055.166204070 58 .21607282 CAP2HL 1.55848720 97.341 10 -833.235756565 45.702958015 CAP2HL 1.55848720 130.520 11 -748.097167968 6.567867993 HE193 1.00000000 124.495 12 -667.629333065 58.527118374 CAP2HL 1.55848720 130.520 13 -220.265801412 1.00000000 HE193 1.00000000 155.705 14 -635.989091493 52.5689533957 CAP2HL 1.55848720 151.782 15 -420.897960530 1.000000000 HE193 1.00000000 155.782 16 -682.574050318 42.56565096 CAP2HL 1.55848720 151.782 17 -650.60232592883 1.000000000 HE193 1.00000000 149.697 18 163.909793739 39.112156678 CAP2HL 1.55848720 117.562 20 127.266697165 33.064705540 CAP2HL 1.55648720 117.562 21 149.757517850 27.658696477 HE193 1.00000000 166.663 22 893.404652749 8.00000000 CAP2HL 1.55848720 88.267 24 -554.412838227 8.00000000 CAP2HL 1.55848720 88.267 25 133.88777952783 36.697576773 HE193 1.00000000 68.267 27 1368.827225050 39.67029843 HE193 1.00000000 68.267 28 -87.722719327 6.558096477 HE193 1.00000000 68.267 29 1368.827225050 39.670298843 HE193 1.00000000 68.953 30 -770.39379321 34.8120706 HE193 1.00000000 68.953 31 -1313.93577952783 36.697576773 HE193 1.00000000 68.953 30 -770.39379321 34.8120706 HE193 1.00000000 68.993 31 -1313.9357797131 34.812060 HE193 1.00000000 68.953 31 -26.179287139 34.8120706 HE193 1.00000000 68.953 31 -1313.9357797131 34.8120706 HE193 1.00000000 68.953 31 -1313.9357797131 37.8420000000 CAP2HL 1.55848720 70.057 31 -1313.9357797131 34.8120706 HE193 1.00000000 130.010 31 -700.39373121 34.8120706 HE193 1.00000000 130.010 32 -366.379287139 37.2134706 HE193 1.00000000 130.010 33 -700.39373121 34.8120706 HE193 1.00000000 130.010 34 -169.413078226 8.00000000 HE193 1.00000000 130.010 34 -169.55631273 8.00000000 HE193 1.00000000 130.010 34 -169.55631273 8.00000000 HE193 1.00000000 130.000000 130.000000 130.000000 130.000000 130.0000000 130.0000000 130.00000000 130.0000000 130.0000000 130.0000000 130.0000000 130.0000			4 - 4 - 5 - 5 - 6	= '	1.55848720	
1.550.67720 97.141 1.550.67720 97.141 1.550.67720 97.141 1.550.67720 97.141 1.550.67720 97.141 1.550.67720 110.520 127.266.097167968 6.567867993 81.93 1.00000000 136.785 127.260.265801452 1.00000000 121.0520 122.06.097167968 1.00000000 121.0520 122.06.097167968 1.00000000 123.0698 122.06.097167968 1.00000000 123.0698 1.00000000 123.0698 122.0698 1.00000000 123.0698 1.00000000 123.0698 1.00000000 123.0698 1.00000000 123.0698 1.00000000 123.0698 1.00000000 123.0698 1.00000000 123.0698 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000				_	1.00000000	
10833.235756565 11246.097167968 12667.6293330655 12667.6293330655 13240.265801423 13250.265801423 14615.989081493 15620.887960530 16620.887960530 17550.60232592888 18200.265801423 17550.60232592888 18200.265801493 18240.887960530 19240.887960530 10240.0887960530 10240.0887960530 11240.0887960530 11240.0887960530 12555.689533957 13250.60232592888 10.000000000 12458873057 12450.60232592888 10.000000000 12458873057 12450.60232592888 10.000000000 12458873057 12450.60232592888 10.000000000 12458873057 12450.60232592888 10.000000000 12458873057 12450.60232592888 10.000000000 12458873057 12450.60232592888 10.000000000 12458873057 12450.60232592888 10.000000000 12458873057 12450.60232592888 10.000000000 12458873057 12450.60232592888 10.000000000 12458873057 12450.60232592888 10.000000000 12458873057 12450.60232592888 10.000000000 12458873057 12450.60232592888 10.000000000 12450.80287308 10.000000000 12450.80287308 10.000000000 12450.80287308 10.000000000 12450.80287308 12450.60287308 12450.80287308 12450.80287308 12450.80287308 13450.40287308 13450.40287308 14450.40287308 15450.80287308 15450.80287308 16450.80287308 17450.80287308 17450.80287308 17450.80287308 17450.80287308 17450.80287308 17450.80287308 17450.80287308 17450.80287308 17450.80287308 18		· ·			1.55848720	
11 -248.097167968		_			1.00000000	
12		_			1.55848720	
13				HP193	1.00000000	
15 -635.989091493					1.55848720	
15 -420.887980530					1.00000000	
1.000000000 HE193 1.00000000 155.231 17 -650.602325928R8 1.000000000 HE193 1.00000000 149.697 18 143.9099193719 39.112156678 CAF2HL 1.55848720 117.562 19 170.361039751 1.000000000 HE193 1.00000000 149.697 19 170.361039751 1.000000000 HE193 1.00000000 106.663 11 149.757517650 27.658695477 HE193 1.00000000 88.267 121 149.757517650 27.658695477 HE193 1.00000000 88.267 122 893.404652749 8.000000000 CAF2HL 1.55848720 99.558 123 893.404652749 8.000000000 CAF2HL 1.55848720 65.687 124 -554.412838247 8.000000000 CAF2HL 1.55848720 65.687 125 133.887772525A8 16.697576773 HE193 1.00000000 67.021 126 -202.032636775 8.000000000 CAF2HL 1.55848720 66.854 136.827225050 39.67025883 HE193 1.00000000 63.605 17 1368.827225050 39.67025883 HE193 1.00000000 68.993 186 -270.2393973231 34.012062471 CAF2HL 1.55848720 69.993 187 -318675545503AS 7.243122706 HE193 1.00000000 89.680 187 -370.2393973231 34.012062471 CAF2HL 1.55848720 70.057 187 -386.379287278 37.218476588 CAF2HL 1.55848720 192.741 31 -111.925570131 1.000000000 HE193 1.00000000 97.490 32 -386.379287278 37.218476588 CAF2HL 1.55848720 109.741 33 -100.466735217 1.000000000 HE193 1.00000000 97.490 34 -285.991760803 26.777077207 HE193 1.00000000 133.010 37 1233.439177400 5.704473599 HE193 1.00000000 133.010 38 1568.954811160 42.925033480 CAF2HL 1.55848720 120.688 1484.482885926 53.515273929 CAF2HL 1.55848720 120.688 1484.482885926 53.515273929 CAF2HL 1.55848720 120.688 1484.482885926 53.515273929 CAF2HL 1.55848720 136.862 1495.59456041 44.853605417 CAF2HL 1.55648720 142.806 1471.776223591AS 44.955605417 CAF2HL 1.55648720 142.806 1471.756223591AS 44.955605417 CAF2HL 1.55648720 142.806 1471.756223591AS 44.955605417 CAF2HL 1.55648720 142.806 1471.756225512 34.66606302 HE193 1.00000000 145.661 1471.59455000000 HE193 1.00000000 146.219 1481.756284720 148.80606000 HE193 1.00000000 146.219 1491.7562860000000 HE193 1.00000000 146.219 1491.75628600000000 HE193 1.00000000 146.288 1491.75625132 34.666060000000 HE193 1.00000000 146.288 1491.75625132 34.66606000000000 HE193 1.00000000 146.288 1				CAF2HL		
17 -650.60232592883 1.00000000 HE193 1.00000000 149.697 18 143.909393739 39.112156678 CAF2HL 1.55848720 117.562 19 170.361035751 1.000000000 HE193 1.00000000 106.663 21 149.757517850 27.658695477 HE193 1.00000000 68.267 22 893.404652749 8.000000000 CAF2HL 1.55848720 99.558 23 85.474738309 42.082501866 HE193 1.00000000 68.267 24 -554.412838247 8.000000000 CAF2HL 1.55848720 85.687 25 133.88777252585 8.6697576773 HE193 1.00000000 63.605 26 -202.032636773 8.000000000 CAF2HL 1.55848720 65.854 28 -67.7227715327 8.500000000 CAF2HL 1.55848720 64.919 28 -67.7227715327 6.150939605 CAF2HL 1.55848720 70.057 29 -341.867554503AS 7.243142706 HE193 1.00000000 68.600 30 -270.193973231 34.612062471 CAF2HL 1.55848720 70.057 31 -101.525570131 1.00000000 HE193 1.00000000 92.272 32 -356.379287778 37.218470500 HE193 1.00000000 92.272 33 -366.379287378 37.218470500 HE193 1.00000000 133.010 34 728.417353927AS 44.41516365 CAF2HL 1.55848720 109.741 34 728.417353927AS 44.41516365 CAF2HL 1.55848720 109.741 35 -265.991760803 26.777077207 HE193 1.00000000 133.010 36 -169.413078216 8.00000000 CAF2HL 1.55848720 120.698 39 -334.436422428 1.000000000 HE193 1.00000000 135.519 30 -336.35174100 5.704873599 HE193 1.00000000 135.519 34 1268.955811160 42.925033480 CAF2HL 1.55848720 120.698 44 -481.77522151AS 38.64600302 HE193 1.00000000 135.519 36 169.413078216 8.000000000 CAF2HL 1.55848720 120.698 45 1571.538613070 41.393617207 CAF2HL 1.55848720 120.698 46 -395.530196529 4.955628551 HE193 1.00000000 146.219 47 1293.439177410 5.704873599 HE193 1.00000000 145.641 48 -395.530196529 4.955628551 HE193 1.00000000 146.219 48 -395.530196529 4.955628551 HE193 1.00000000 145.641 48 -395.530196529 4.955628551 HE193 1.00000000 146.219 48 -395.530196529 4.9556286551 HE193 1.00000000 146.219 48 -395.530196529 4.9556286551 HE193 1.00000000 146.219 48 -395.530196529 4.9556286551 HE193 1.00000000 147.739				HE193		
16 163.509353719 39.112156678 CAP2HL 1.55848720 117.562 19 170.361035751 1.000000000 HE193 1.00000000 106.663 20 127.366697165 33.064705540 CAF2HL 1.55648720 99.558 21 149.757517850 27.658695477 HR193 1.00000000 88.267 22 893.404652749 8.000000000 CAP2HL 1.55648720 85.687 23 85.474739309 42.082501866 HE193 1.00000000 67.021 24 -554.412838267 8.000000000 CAF2HL 1.55848720 65.854 25 133.687772925A5 8.000000000 CAF2HL 1.55848720 65.854 26 -202.032666775 8.00000000 CAF2HL 1.55848720 65.854 27 1368.827225050 19.67029884] HE193 1.00000000 68.9660 28 +87.722719327 8.1500000000 CAF2HL 1.55848720 64.919 29 -361.867554503A5 7.241142706 HE193 1.00000000 89.660 30 -270.193971331 34.812602471 CAF2HL 1.55848720 70.057 30 -270.193971331 1.000000000 HE193 1.00000000 89.660 31 131.92557031 1.000000000 HE193 1.00000000 97.490 31 131.92557031 1.000000000 HE193 1.00000000 97.490 32 -356.379287178 37.218470508 CAF2HL 1.55848720 109.741 31 -724.417353927A8 44.411515365 CAP2HL 1.55848720 109.741 31 -726.417353927A8 44.411515365 CAP2HL 1.55848720 120.688 35 -285.991766803 26.777077207 HE193 1.00000000 133.010 36 -169.413078226 8.00000000 CAF2HL 1.55848720 121.086 37 1233.439177430 5.704973599 HE193 1.00000000 135.519 38 1568.954811150 42.925033480 CAP2HL 1.55848720 120.688 40 448.482885926 53.515273929 CAP2HL 1.55848720 126.688 41 -481.778222591AS 38.86460302 HE193 1.00000000 135.519 42 -252.351244424AS 8.074724759 HE193 1.00000000 136.799 41 -481.77822591AS 38.86460302 HE193 1.00000000 145.641 43 -252.351244424AS 8.074724759 HE193 1.00000000 145.642 44 -595.530190599 4.955628551 HE193 1.00000000 145.641 45.955455401 44.615666 HE193 1.00000000 145.642 46 -395.530190599 4.955628551 HE193 1.00000000 145.642 47 189.594554041 44.615605417 CAP2HL 1.55848720 126.883 48 196.60000000 8.135112666 HE193 1.00000000 145.642 49 133.57102513 34.166160572 CAP2HL 1.55848720 126.066 40 139.594554041 44.615605417 CAP2HL 1.55848720 126.066 41 139.594554041 44.615605417 CAP2HL 1.55648720 143.060 41 139.594554041 44.615605417 CAP2HL 1.55648720 143.060 41				CAFZHL		
19 170.361035751 1.000000000 HE193 1.00000000 106.663 20 127.366697165 33.064705940 CAF2HL 1.55648720 99.558 21 149.757517850 27.658696477 HE193 1.00000000 88.267 22 893.404652749 8.000000000 CAF2HL 1.55648720 85.687 23 85.474739309 42.082501866 HE193 1.00000000 67.021 24 -554.4128382E7 8.000000000 CAF2HL 1.55848720 85.687 25 133.687772925A5 8.000000000 CAF2HL 1.55848720 65.854 26 -202.032636775 8.000000000 CAF2HL 1.55848720 64.919 28 -87.722719327 8.150939605 CAF2HL 1.55848720 64.919 28 -87.722719327 8.150939605 CAF2HL 1.55848720 70.057 27 1368.827225050 39.67029843 HE193 1.00000000 68.993 28 -87.722719327 8.150939605 CAF2HL 1.55848720 70.057 29 370.379297321 34.8120706 HE193 1.00000000 89.680 30 -270.379297321 1.000000000 HE193 1.00000000 97.490 31 -331.925570131 1.000000000 HE193 1.00000000 97.490 33 -160.4667355217 1.000000000 HE193 1.00000000 133.010 34 728.417251927A8 44.41516365 CAF2HL 1.55848720 109.741 34 728.417251927A8 44.41516365 CAF2HL 1.55848720 120.0000000 133.010 37 1233.439177430 5.704973599 HE193 1.00000000 135.519 38 1568.954811150 42.925033480 CAF2HL 1.55848720 120.698 40 448.482885926 53.515273929 CAF2HL 1.55848720 120.698 41 -481.77522591AS 8.000000000 HE193 1.00000000 135.519 42 -257.207339099 19.651511432 CAF2HL 1.55848720 120.698 43 -352.351244424AS 8.074724759 HE193 1.00000000 135.799 44 -481.75822591AS 8.074724759 HE193 1.00000000 145.641 459.59455001 41.393677207 CAF2HL 1.55848720 120.698 41 -481.77522591AS 8.074724759 HE193 1.00000000 145.641 42.883 42 -257.207339099 19.6515511432 CAF2HL 1.55848720 120.698 43 -352.351244424AS 8.074724759 HE193 1.00000000 145.641 48 199.59455001 41.393677207 CAF2HL 1.55848720 120.698 44 -488.5963207 41.393677207 CAF2HL 1.55848720 120.698 45 1571.538613070 41.393677207 CAF2HL 1.55848720 120.698 46 -395.551050599 45.955628551 HE193 1.00000000 145.641 189.59455001 41.395677207 CAF2HL 1.55648720 141.395 50 186.65032577 92.273773544 CAF2HL 1.55648720 122.058 49 113.571025132 34.156160572 CAR2HL 1.55648720 122.058 49 113.571025132 34.156100572 CAR2HL 1.556				HE193		
1.71.366697165 33.064705540 CAP2HL 1.55648720 99.558 33.064705540 CAP2HL 1.55648720 99.558 39.404652749 8.000000000 CAP2HL 1.55648720 89.5687 RE193 1.00000000 RE193 1.000000000 RE193 1.00000000 RE193 1.000000000 RE193 1.00000000 RE193 1.00000000 RE1			39.312156678	CAF2HL		
21 149.757517850 27.658656477 HR193 1.00000000 88.267 22 893.404652749 8.000000000 CAF2HL 1.55848720 85.687 23 85.474739309 42.082501866 HE193 1.00000000 67.021 25 133.88777252583 36.097576773 HE193 1.00000000 67.021 26 -202.032636775 8.000000000 CAF2HL 1.55848720 65.854 27 1368.827225050 19.670258843 HE193 1.00000000 63.605 28 -87.722718927 8.150892605 CAF2HL 1.55848720 64.919 28 -87.722718927 8.150892605 CAF2HL 1.55848720 70.057 30 -270.19397321 34.0122062471 CAF2HL 1.55848720 92.272 31 -131.525570131 1.000000000 HE193 1.00000000 97.490 33 -160.466735217 1.000000000 HE193 1.00000000 97.490 34 728.41725192788 44.411516365 CAP2HL 1.55848720 109.741 34 728.41725192788 44.411516365 CAP2HL 1.55848720 121.086 36 -169.413078216 8.00000000 CAF2HL 1.55848720 121.086 37 1233.439177430 5.704973599 HE193 1.00000000 135.519 38 1968.954811160 42.925033480 CAF2HL 1.55848720 121.0698 40 448.482885926 53.515273829 CAF2HL 1.55848720 136.862 41 -481.776223591AS 38.864604302 HE193 1.00000000 135.519 42 -257.207339099 39.651511432 CAF2HL 1.55648720 145.983 44 -482885926 53.515273829 CAF2HL 1.55648720 145.983 45 -352.351244424AS 6.074724759 HE193 1.00000000 145.641 46 -395.351246424AS 6.074724759 HE193 1.00000000 145.641 46 -395.351246424AS 6.074724759 HE193 1.00000000 145.641 47 188.55445401 44.893603417 CAF2HL 1.55648720 141.395 46 -395.530190539 4.955628551 HE193 1.00000000 142.803 47 188.55456011 44.893603417 CAF2HL 1.55648720 141.395 48 133.71028112 34.166140572 CAF2HL 1.55648720 142.806 49 133.571028112 34.166140572 CAF2HL 1.55648720 177.739 50 186.560346024 1.00000000 HE193 1.00000000 142.803 51 124.915012572 92.227731544 CAF2HL 1.55648720 177.739 50 186.560346024 1.00000000 HE193 1.00000000 177.739 50 186.5603600000 CAF2HL 1.55648720 143.060 50 185.560000000 CAF2HL 1.55648720 143.060 51 124.915012572 92.227731544 CAF2HL 1.55648720 191.7739 50 186.5603600000 CAF2HL 1.55648720 191.7739 50 186.56036000000000000000000000000000000000			-	HE193		
11 149.757517850						
### ### ### ### ### ### ### ### ### ##			27.658695477			-
24 -556.412838267 8.00000000 CAF2HL 1.55848720 65.854 25 133.887772925A5 8.00000000 CAF2HL 1.55848720 65.854 26 -202.032636775 8.00000000 CAF2HL 1.55848720 64.919 27 1368.827225050 99.67025843 WE193 1.00000000 68.993 28 -87.722715327 6.150928605 CAF2HL 1.55848720 70.057 30 -270.393973311 34.812062471 CAF2HL 1.55848720 92.272 31 131.525970131 1.000000000 WE193 1.00000000 97.490 32 -356.379287279 37.218470508 CAF2HL 1.55848720 109.741 33 -160.486735927 1.000000000 WE193 1.00000000 97.490 34 728.417351927A8 44.411516365 CAF2HL 1.55848720 109.741 35 -285.991766803 26.777077207 WE193 1.00000000 121.404 37 1233.439177430 5.704973599 WE193 1.00000000 121.404 37 1233.439177430 5.704973599 WE193 1.00000000 121.404 38 1968.954811160 42.925033480 CAF2HL 1.55848720 136.862 40 448.482885926 53.515273929 CAF2HL 1.55848720 136.862 40 448.482885926 53.515273929 CAF2HL 1.55848720 136.862 41 -681.775221591AS 38.864604302 WE193 1.00000000 145.641 42 -257.207339099 39.651511432 CAF2HL 1.55848720 136.862 42 -257.207339099 39.651511432 CAF2HL 1.55848720 145.983 44 0.00000000 8.135112666 WE193 1.00000000 145.641 45.95613070 41.393617207 CAF2HL 1.55848720 145.983 47 189.594554041 44.893603417 CAF2HL 1.55848720 145.983 48 196.560340242 1.00000000 WE193 1.00000000 146.219 49 133.571025132 14.66140572 CAF2HL 1.55848720 120.0000000 145.641 577.5073328099 39.651511432 CAF2HL 1.55848720 145.983 47 189.594554041 44.893603417 CAF2HL 1.55648720 143.060 48 1571.538613070 41.393617207 CAF2HL 1.55648720 143.060 49 159.594554041 44.893603417 CAF2HL 1.55648720 120.0000000 142.883 49 133.571025132 14.166140572 CAF2HL 1.55848720 122.058 49 133.571025132 14.166140572 CAF2HL 1.55848720 91.979 50 186.560340242 1.000000000 WE193 1.00000000 177.739 50 186.560340242 1.000000000 WE193 1.00000000 177.739 50 186.560340242 1.000000000 WE193 1.00000000 142.883 51 134.91502572 92.227371544 CAF2HL 1.55848720 91.979 51 124.91502572 92.227371544 CAF2HL 1.55648720 91.979 52 0.0000000000 WE193 1.00000000 WE193 1.00000000 WE193 1.00000000 WE193 1.00000000 WE193 1.0000			8.00000000			
24 -554.4128302E7 8.00000000 CAF2HL 1.55848720 65.854 25 133.887772525AB 36.697576773 HE193 1.00000000 63.605 26 -202.032636775 8.00000000 CAF2HL 1.55848720 64.919 27 1368.827225050 39.67029E843 HE193 1.00000000 62.993 28 -87.722719327 6.150939E05 CAF2HL 1.55848720 70.057 29 -341.867554503AS 7.243142706 HE193 1.00000000 89.680 30 -270.393973321 34.812062471 CAF2HL 1.55848720 92.272 31 -311.925570131 1.000000000 HE193 1.00000000 97.490 32 -356.379287278 37.218470508 CAF2HL 1.55848720 109.741 34 728.4173513927AS 44.41516365 CAF2HL 1.55848720 109.741 34 728.4173513927AS 44.41516365 CAF2HL 1.55848720 121.086 35 -285.991760803 26,777077207 HE193 1.00000000 121.404 37 1233.439177430 5.704973599 HE193 1.00000000 121.404 37 1233.439177430 5.704973599 HE193 1.00000000 121.698 38 1968.954811160 42.925033480 CAF2HL 1.55848720 126.698 40 448.482885926 53.515273929 CAF2HL 1.55848720 136.862 40 448.482885926 53.515273929 CAF2HL 1.55848720 136.862 41 -481.778223591AS 38.864504302 HE193 1.00000000 135.519 42 -257.207339099 39.651511432 CAF2HL 1.55848720 145.983 43 -252.351244424AS 8.074724759 HE193 1.00000000 145.641 45.953.5152000000 8.135112666 HE193 1.00000000 145.864 46 -395.530196529 4.955626551 HE193 1.00000000 142.863 47 189.594554041 44.851603417 CAF2HL 1.55848720 143.060 48 189.594554041 44.853603417 CAF2HL 1.55848720 122.058 49 113.571025132 34.168140572 CAF2HL 1.55848720 122.058 49 113.571025132 34.168140572 CAF2HL 1.55848720 122.058 40 113.571025132 34.168140572 CAF2HL 1.55848720 122.058 41 13.571025132 34.168140572 CAF2HL 1.55848720 122.058 42 -257.20733909 4.955626551 HE193 1.00000000 142.863 43 1571.532613070 41.393617207 CAF2HL 1.55848720 122.058 44 13.571025132 34.168140572 CAF2HL 1.55848720 122.058 45 137.600000000 8.135112666 HE193 1.00000000 142.863 46 1395.594554041 44.853603417 CAF2HL 1.55848720 122.058 47 169.594554041 44.853603417 CAF2HL 1.55848720 122.058 48 113.571025132 34.168140572 CAF2HL 1.55848720 122.058 49 13.571025132 34.168140572 CAF2HL 1.55848720 91.979 50 186.560340024 1.000000000 HE193 1.00			42.082501866		— — — — — — — — — — — — — — — — — — —	
25						
26 -202.032636775 8.0C0000000 CAF2EL 1.55848720 64.919 27 1368.827225050 19.67029E843 HE193 1.00000000 6E.993 28 -87.722719327 8.150939605 CAF2HL 1.55848720 70.057 29 -341.867554503AS 7.243142706 HE193 1.00000000 89.680 30 -270.393973231 34.812062471 CAF2HL 1.55848720 92.272 31 '131.525570131 1.000000000 HE193 1.00000000 97.490 32 -356.379287279 17.218470508 CAF2HL 1.55848720 109.741 34 728.417353927AS 44.411516365 CAF2HL 1.55848720 121.086 35 -285.9917660803 26.777077207 HE193 1.00000000 121.404 37 1233.439177430 5.704973599 HE193 1.00000000 121.404 37 1233.439177430 5.704973599 HE193 1.00000000 125.519 38 1968.954811160 42.925033480 CAF2HL 1.55848720 126.698 40 448.482885926 53.515273929 CAF2HL 1.55848720 136.862 40 448.482885926 53.515273929 CAF2HL 1.55848720 136.862 41 -481.776223591AS 38.864604302 HE193 1.00000000 138.799 41 -481.776223591AS 38.864604302 HE193 1.00000000 145.641 43 -352.351244424AS 8.074724759 HE193 1.00000000 145.641 43 -352.351244424AS 8.074724759 HE193 1.00000000 146.219 45 1571.538613070 41.393617207 CAF2HL 1.55648720 141.355 46 -395.530190529 4.955626551 HE193 1.00000000 142.806 47 189.594554041 44.853603417 CAF2HL 1.55648720 143.060 48 13.571025132 4.166140572 CAF2HL 1.55648720 143.060 49 133.571025132 34.166140572 CAF2HL 1.55648720 122.058 49 113.571025132 34.166140572 CAF2HL 1.55648720 122.058 49 113.571025132 34.166140572 CAF2HL 1.55648720 122.058 40 186.56034024 1.00000000 HE193 1.00000000 146.219 41 1.55848720 122.058 42 12.5725132 34.166140572 CAF2HL 1.55648720 122.058 43 13.571025132 34.166140572 CAF2HL 1.55648720 122.058 44 13.571025132 34.166140572 CAF2HL 1.55648720 122.058 45 1571.598613070 41.393617207 CAF2HL 1.55648720 122.058 46 737.000207118 1.254530428 HE153 1.00000000 147.739 47 189.594554041 44.853605417 CAF2HL 1.55648720 122.058 48 13.571025132 34.166140572 CAF2HL 1.55648720 122.058 49 113.571025132 34.166140572 CAF2HL 1.55648720 91.979 50 186.56034024 1.00000000 HE193 1.00000000 HE193 1.00000000 HE193 1.00000000 HE193 1.00000000 HE193 1.00000000 HE193 1.00000000 HE						
28 -87.722719327						
28 -87.722719327 8.150929605 CAF2HL 1.55848720 70.057 25 -361.867554503AS 7.243142706 HE193 1.00000000 89.680 30 -270.39397321 34.012062471 CAF2HL 1.55848720 92.272 31 -131.925570131 1.000000000 HE193 1.00000000 97.490 32 -356.379287278 37.218470508 CAF2HL 1.55848720 109.741 33 -160.446739217 1.000000000 HE193 1.00000000 113.010 34 728.417351927AS 44.411516365 CAF2HL 1.55848720 121.086 35 -285.99176C803 26,777077207 HE193 1.00000000 121.404 37 1233.439177430 5.704973599 HE193 1.00000000 121.404 37 1233.439177430 5.704973599 HE193 1.00000000 135.519 38 1566.954811160 42.925033480 CAF2HL 1.55848720 120.698 40 448.482885926 53.515273829 CAF2HL 1.55848720 136.862 40 448.48285926 53.515273829 CAF2HL 1.55848720 136.862 41 -481.776223591AS 38.864604302 HE193 1.00000000 138.799 42 -257.207339099 39.651511432 CAF2HL 1.55848720 145.983 44 0.000000000 8.135112666 HE193 1.00000000 146.641 43 -352.351244424AS 8.074724759 HE193 1.00000000 146.219 44 0.000000000 8.135112666 HE193 1.00000000 142.806 45 1571.538613070 41.393617207 CAF2HL 1.55848720 143.060 46 -395.530196529 4.955628551 HE193 1.00000000 142.806 47 189.594584011 44.853603417 CAF2HL 1.55848720 143.060 48 133.971025132 34.168140572 CAF2HL 1.55848720 143.060 49 113.971025132 34.168140572 CAF2HL 1.55848720 91.979 50 186.560340242 1.005000000 HE193 1.00000000 177.739 51 124.915012572 92.227371544 CAF2HL 1.55848720 91.979 51 124.915012572 92.227371544 CAF2HL 1.55848720 76.952 52 0.000000060 0.056000000 HE193 1.00000000 117.739 51 124.915012572 92.227371544 CAF2HL 1.55848720 76.952		·136B.827225050				
30			8.150929605			
30			7.243142706			
31						
32 -356.379287278 37.218470508 CAF2HL 1.55848720 109.741 33 -160.486735217 1.000000000 HE193 1.00000000 113.010 35 -285.99176CBG3 26.777077207 HE193 1.00000000 121.404 36 -169.413078216 8.000000000 CAF2HL 1.55848720 120.698 38 1968.9954811160 42.925033480 CAF2HL 1.55848720 136.862 39 -334.436426428 1.000000000 HE193 1.00000000 135.519 40 448.482885926 53.515273929 CAF2HL 1.55648720 136.862 41 -481.775221591AS 38.864604302 HE193 1.00000000 145.641 42 -257.207339099 39.651511432 CAF2HL 1.55648720 145.983 42 -257.207339099 39.651511432 CAF2HL 1.55648720 141.395 44 0.000000000 8.135112666 HE193 1.00000000 145.641 45 1571.538613070 41.393617207 CAF2HL 1.55648720 142.806 46 -395.530196529 4.955628551 HE193 1.00000000 142.806 47 189.594554041 44.853603417 CAF2HL 1.55648720 143.060 48 737.400220721RS 1.254530428 HE193 1.00000000 142.806 49 113.571025132 34.168140572 CAF2HL 1.55648720 122.058 49 113.571025132 34.168140572 CAF2HL 1.55648720 991.979 186.560340242 1.000000000 HE193 1.00000000 177.739 186.560340242 1.0000000000 HE193 1.00000000 177.739 186.560340242 1.000000000 HE193 1.00000000 177.739						
1-60.486735217 1.000000000 HE193 1.00000000 133.010					•	
728.417353927A8 44.411516365 CAP2HL 1.55848720 121.086 35 -285.99176CBC3 26.777077207 HE193 1.00000000 121.404 36 -169.413078236 8.000000000 CAF2HL 1.55848720 120.698 37 1233.439177430 5.704973599 HE193 1.00000000 135.519 38 1968.954811160 42.925033480 CAF2HL 1.55848720 136.862 40 448.482885926 53.515273929 CAF2HL 1.55848720 136.862 41 -481.776223591AS 38.864604302 HE193 1.00000000 145.641 42.257.207329099 39.651511432 CAF2HL 1.55648720 141.395 43 -257.207329099 39.651511432 CAF2HL 1.55648720 141.395 44 0.000000000 8.135112666 HE193 1.00000000 146.219 45 1571.538613070 41.393617207 CAF2HL 1.55648720 142.806 46 -395.530190529 4.955628551 HE193 1.00000000 142.806 47 189.594584041 44.853603417 CAF2HL 1.55648720 143.060 48 737.400220721RS 1.254530428 HE193 1.00000000 142.806 49 113.571C25132 34.168140572 CAF2HL 1.55848720 122.058 49 113.571C25132 34.168140572 CAF2HL 1.55848720 127.058 49 113.571C25132 34.168140572 CAF2HL 1.55848720 127.058 50 186.560340242 1.00000000 HE193 1.00000000 87.979 51 124.935012572 92.227373544 CAF2HL 1.55848720 76.952 50 0.000000000 0.0000000 HE193 1.00000000 177.739 52 0.000000000 0.0000000 HE193 1.00000000 177.739 52 0.000000000 0.0000000 HE193 1.00000000 177.739 53 124.935012572 92.227373544 CAF2HL 1.55848720 76.952 54 0.000000000 0.00000000 HE193 1.55848720 76.952 55 0.0000000000 0.00000000 HE193 1.55848720 76.952 56 0.0000000000 0.000000000 HE193 1.00000000 11.068		-160.486735217	1.000000000			
35 -285.99176C803		728.417353927AB	44.411516365		·	
169.413078216			26,777077207			
1233.439177430 5.704973599 HE193 1.00000000 135.519 38 1968.954811160 42.925033480 CAF2HL 1.55848720 136.862 40 448.482885926 53.515273929 CAF2HL 1.55648720 145.983 41 -481.776223591AS 38.864604302 HE193 1.00000000 145.641 42 -257.207339099 39.651511432 CAF2HL 1.55648720 141.395 43 -352.351244424AS 8.074724759 HE193 1.00000000 145.641 45 1571.538613070 41.393617207 CAF2HL 1.55648720 142.806 46 -395.530196529 4.955628551 HE193 1.00000000 142.806 47 189.594554041 44.893603417 CAF2HL 1.55648720 143.060 48 737.400220731AS 1.254530428 HE193 1.00000000 177.739 50 186.560340242 1.00000000 HE193 1.00000000 177.739 51 124.925012572 92.227373544 CAF2HL 1.55648720 91.979 52 0.000000066 0.056000000 HE193 1.00000000 B5.029 53 0.000000066 0.056000000 HE193 1.00000000 B5.029 54 0.000000066 0.056000000 HE193 1.00000000 B5.029 55 0.000000066 0.056000000 HE193 1.00000000 B5.029						
136 1562 954811160 42.925033480 CAF2HL 1.55848720 136.862 1.000000000 HE193 1.000000000 138.799 1.000000000 HE193 1.000000000 138.799 1.000000000 138.799 1.000000000 1.05641 1.55648720 1.000000000 1.05.641 1.55648720 1.000000000 1.05.641 1.55648720 1.000000000 1.05.641 1.55648720 1.000000000 1.05.641 1.55648720 1.000000000 1.000000000 1.000000000 1.00000000		1233.439177430				
39 -334.436426428 1.000000000 HE193 1.00000000 138.799 40 448.482885926 53.515273929 CAF2HL 1.55648720 145.983 41 -481.776223591AS 38.864604302 HE193 1.00000000 145.641 42 -257.207339099 39.651511432 CAF2HL 1.55648720 141.395 44 0.000000000 8.135112666 HE193 1.00000000 146.219 45 1571.538613070 41.393617207 CAF2HL 1.55648720 142.806 46 -395.530190529 4.955628551 HE193 1.00000000 142.806 47 189.594554041 44.853603417 CAF2HL 1.55848720 143.060 48 737.400220721AS 1.254530428 HE193 1.00000000 142.883 48 737.400220721AS 1.254530428 HE193 1.00000000 122.058 49 113.571025132 34.168140572 CAF2HL 1.55848720 122.058 49 113.571025132 34.168140572 CAF2HL 1.55848720 91.979 50 186.560340242 1.00000000 HE193 1.00000000 177.739 51 124.935012572 92.227373544 CAF2HL 1.55648720 91.979 52 0.000000000 0.056000000 HE193 1.00000000 12.068						
40 448.482885926 53.515273929 CAF2HL 1.55648720 145.983 41 -481.776223591AS 38.864604302 HE193 1.00000000 145.641 43 -257.207339099 39.651511432 CAF2HL 1.55648720 141.395 44 0.000000000 8.135112666 HE193 1.00000000 146.219 45 1571.538613070 41.393617207 CAF2HL 1.55648720 143.060 46 -395.530196529 4.955628551 HE193 1.00000000 142.806 47 189.594554041 44.853603417 CAF2HL 1.55848720 143.060 48 737.400220721AS 1.254530428 HE193 1.00000000 142.883 49 113.571025132 34.168140572 CAF2HL 1.55848720 122.058 49 113.571025132 34.168140572 CAF2HL 1.55848720 91.979 50 186.560340242 1.000000000 HE193 1.00000000 85.029 51 124.915012572 92.227372544 CAF2HL 1.55848720 76.952 0.0000000666 0.056000006 CAF2HL 1.55848720 76.952 0.0000000666 0.056000006 IMMERS 1.37000000 11.068	39	-334.43642E428				
41 -481.778223591AS 38.864604302 HE193 1.00000000 145.641 42 -257.207339099 39.651511432 CAF2HL 1.55848720 141.395 44 0.000000000 8.135112666 HE193 1.00000000 146.219 45 1571.538613070 41.393617207 CAF2HL 1.55648720 143.060 46 -395.530190529 4.955628551 HE193 1.00000000 142.806 47 189.594554041 44.853603417 CAF2HL 1.55848720 143.060 48 737.400220721AS 1.254530428 HE193 1.00000000 122.058 49 113.971025132 34.168140572 CAF2HL 1.55848720 127.739 50 186.560340242 1.000000000 HE193 1.00000000 85.029 51 124.935012572 92.227373544 CAF2HL 1.55848720 76.952 0.0000000000 0.00000000 11.068	40	448.482885926				
42	41	-481.776223591AS				
43 -352.351244424AS 8.074724759 HE193 1.00000000 146.219 44 0.000000000 8.135112666 HE193 1.00000000 142.806 45 1571.538613070 41.393617207 CAF2HL 1.55648720 143.060 46 -395.530196529 4.955628551 HE193 1.00000000 142.883 47 189.594554041 44.893603417 CAF2HL 1.55848720 122.058 48 737.400220721kS 1.254530428 HE193 1.00000000 117.739 49 113.971025132 34.168140572 CAF2HL 1.55848720 91.979 50 186.560340242 1.005000000 HE193 1.00000000 85.029 51 124.935012572 92.227373544 CAF2HL 1.55848720 76.952 52 0.000000000 0.056000000 HE193 1.55648720 76.952 53 0.0000000000 0.056000000 IMMERS 1.37000000 11.068	42					
44 0.000000000 8.135112666 HE193 1.0000000 142.806 45 1571.538613070 41.393617207 CAF2HL 1.55648720 143.060 46 -395.530190529 4.955628551 HE193 1.00000000 142.883 47 189.594554041 44.853603417 CAF2HL 1.55848720 122.058 48 737.400220731K5 1.254530428 HE153 1.00000000 117.739 49 113.571025132 34.168140572 CAF2HL 1.55848720 91.979 50 186.560340242 1.000000000 IE193 1.00000000 91.979 51 124.935012572 92.227373544 CAF2HL 1.55848720 76.952 52 0.000000000 0.05000000 IMMERS 1.37000000 11.068	43	-352.35124442415	•			141.355
1571.538613070	44	0.000000000		=		146.219
46 -395.530196529	45					142.806
189.594554041 44.853603417 CAFZHL 1.55848720 122.058 48 737.400220721K5 1.254530428 HE153 1.00000000 117.739 49 113.571025132 34.168140572 CAFZHL 1.55848720 91.979 50 186.560340242 1.005000000 HE193 1.00000000 85.029 51 124.935012572 92.227373544 CAFZHL 1.55848720 76.952 0.000000500 0.059000000 HMERS 1.37000000 11.068	46	-395.530190539				143.060
48 737.600220731AS 1.254530428 HE193 1.00000000 117.739 49 113.971025132 34.168140572 CAF2HL 1.55848720 91.979 50 186.560340242 1.000000000 HE193 1.00000000 85.029 51 124.935012572 92.227373544 CAF2HL 1.55848720 76.952 52 0.000000000 0.056000000 HMERS 1.37000000 11.068	47	100 F04F544				
49 113.971025132 34.168140572 CAF2HL 1.55848720 91.979 50 186.560340242 1.005000000 HE193 1.00000000 85.029 51 124.935012572 92.227373544 CAF2HL 1.55848720 76.952 52 0.00000566 0.056000026 IMMERS 1.37000000 11.068	48		_			
50 186.560340242 1.005000000 HE193 1.00000000 85.029 51 124.935012572 92.227373544 CAF2HL 1.55648720 85.029 52 0.00000500 0.050000026 IMMERS 1.37000000 11.068						
1.00000000 85.029 124.935012572 92.227373544 CAF2HL 1.55648720 76.952 0.000000000 0.050000026 IMMERS 1.37000000 11.068						
52 0.00000000 0.05000026 IMMERS 1.37000000 11.068					1.0000000	
53 0.00000556 0.00000026 IMMERS 1.37000000 11.068				CAFZHL	-	
9. 0.00000000 0. 0.00000000				immers		
		0.000000 000	0.000000000			

Table 6

ASPHERIC CONSTANTS

0.000000000000

CS

```
SURFACE NO.
                                                    SURFACE NO. 34
  K
          7.3965
                                                          1..5440
  Cl
          2.19490385e-007
                                                  CJ.
                                                         -3.43367330e-009
  CZ
         -3.18478613e-011
                                                  C2
                                                         -1.34450662e-014
  C3
          2.656992:10-015
                                                         -2.25266384e-016
                                                  C3
         -3.54396715e-019
  C4
                                                  C4
                                                          9.75729676e-023
  C5
          1.309251746-023
                                                  C5
                                                         -1.35202712e-026
  C6
          2.26447806e-027
                                                  C6
                                                          8.80518329e-031
  C7
         -2.544781296-031
                                                  C7
                                                         -2.65068179e-035
  Ca
          0.00000000e+000
                                                  CB
                                                         0.00000000e+000
          0.0000000000+000
  C9
                                                  C9
                                                         0.00000000e+000
   SURFACE NO.
                 €
                                                   SURFACE NO.
                                                                42
  K
          0.6253
                                                  K
  Cl
                                                         0.0872
        -1.14294859e-007
                                                  C1
                                                         3.26909609e-009
  CS
         1.27842380c-011
                                                  C.5
                                                         7.76009100e-014
  C3
        ~1.791640869-015
                                                 C3
                                                        -3.82550397e-018
  C4
         2.34304280e-019
                                                  C4
  C5
                                                         2.28007850e-023
        -2.31194495e-023
                                                 C5
                                                        -2.34153651e-028
  C6
         1.12536497=-027
                                                 C6
  C7
                                                         1.34376005e-032
        ~2.03074756e-032
                                                 C7
                                                        -1.01621932e-036
  C6
         0.000000002+000
                                                 CO
 C9
                                                         0.00000000c+000
         0.0000000000+000
                                                 C9
                                                         0.00000000e+000
  SURFACE NO.
                17 .
                                                  SURFACE NO. 43
 K.
         0.7878
                                                 K
 C1
                                                        .0.0312
        -3.05430457e-010
                                                 C1
                                                       -4.99867832e-010
 C2
        -4.89773136e-014
                                                 C<sub>2</sub>
                                                        1.15316140e-C13
 C3
        1.065231906-016
                                                 C3
                                                       -1.41640795e-018
 C4
        -1.475159546-023
                                                 Cf
                                                        7.053656416-023
 C5
        1.34357246e-027
                                                 C5
                                                       -2.43649494e-027
 C6
        -5.23906245e-032
                                                 CE
                                                        6.83361566e-012
 C7
        B.17069597e-037
                                                 C7
                                                       -6.25588420e-037
 C8
        O.0000000ce+000
        0.000000000e+000
                                                        0.00000000c+00C
                                                        0.00000000e+000
                                                 C9
  SURFACE NO.
              25
                                                 SURFACE NO.
                                                              45
 K
        0.0013
                                                K
                                                       -1.8716
       -6.90183181e-008
 Cl
                                                Cl
                                                       -4.01414746e-009
       -2.08603493e-012
                                                       1.94301708e-013
C3
       -3.48958288e-016
                                                C3
                                                        4.07775084e-018
C4
       -3.58451964e-020
                                                C4
                                                       -4.70574709e-022
C5
        2.162546549-033
                                                C5
                                                        2.42642656e-C26
C6
       -3.58501026e-027
                                                C6
                                                       -8.38949812e-031
C7
        6.60000225=-031
                                                C7
        0.000000002+000
                                                       1.38185311e-035
Cõ
        0.00000000034000
                                                C8
                                                        0.00000000e+000
C9
                                                        C.00000000e+000
                                                C9
 SURFACE NO.
              79
       -0.0334
       3.62609727=-008
Cl
      -3.89225347e-012
C3
      -2.10102538e-017
C3
C
       1.38650354e-620
C5
      -1.75136022a-C24
CE
       5.45164389c-029
C7
      -4.348316212-033
\square \varepsilon
       ©.00000000e±000
```

Table 7

SURTA	CE RADII	Thicknesses	LENSES	157.6 nm	1/2 FREE
0	0.00000000	*************	• • • • • • • • • • • •		DIAMETER
1	0.00000000				55.000
2	-683.677052960	5.694922030			59.974
1	241.504514194	8.000016965	CAP2HL	1.55848720	60.653
4	-561.327374516	13.492175419			64.06C
5	659.454774317	*	CAFZHL	1.55848720	65.556
6	400.792577467	23.282413511			69.867
7	293.284615517		CAFZHL	1.55848720	88.232
8	-1055.962319550	22.385188600			92.835
9	-1033.962319250	71.454692862	CAFZHL	1.55848720	95.242
10	-483.111728442	2.387526569			124.181
11	-967.495111648	48.847817148	CAF2HL	1.55848720	
	-235.896572938	5.659224997			130.362
12	-579.940954244	54.879651202	CAF2HL	1.55848720	136.444
13	-221.637621698	1.000000000		1:35040720	145.324
14	-775.372223325	15.081823940	CAPZHL	1.55848720	149.602
15	-525.9196G±017	1.000000000		1.33648720	147.807
16	660.302511324	38.720317303	CAF2HL	1 55540000	148.157
17	·732.46794=129A	5 1.000000000	CAL EILD	1.55848720	144.440
18	147.955956945	38.541140120	CAF2HL	1 5564000	142.303
19	174.954421407	1.000000000	OUL THE	1.55848720	116.315
20	118.333525649	33.404122786	CAF2HL	3 555,000	105.360
21	140.216192698	28.013496674	CUL SUD	1.55846720	96.491
22	788.027915344	8.657239690	CAF2HL	1 566.000	85.972
23	03.038332631	41.178404325	CAPZAL	1.55848720	83.494
24	-597.356381251	8.00000000	CAF2HL		65.374
25	136.956016017AS	31.536496068	CAPANL	1.55648720	64.284
26	-200.195252002	8.000000000	Cheatir		62.327
27	1650.730497600	43.442178500	CAF2HL	1.55848720	63.210
28	-86.362069271	8.210360232	Chlinia		66.95B
29	-350.17945:570AS	2.567422592	CAF2HL	1.55848720	69.385
30	-280.601605332	34.872981631	G1 701		89.255
31	-132.713547595	1.004709559	CAP2HL	1.55846720	92.027
32	-361.662148157	37.722697596	4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.		97.215
33	-159.165877620	1.050000000	CAFSHL	1.55848720	109.325
34	750.946018427A5	43.541363913	21		112.571
35	-285.800553705	25.930047100	CAF2HL	1.55848720	120.144
36	-169.581349559				120.440
37	1077.130465570	8.030377840	CAFZHL	1.55842720	119.789
38	1605.653205560	5.652989489 43.332820801	* * * * * * * * * * * * * * * * * * *		134.185
39	- 333 . 794563037		CAF2HL	1.55848720	135.539
10	448.584289713	1.000000000			137.425
1	·487.266144069A9	52.027765048	CAF2HL	1.55848720	144.C43
12	-256.GB0121302	37.362F34300	_		143.581
13	-353.759022671AS	40.279714930	Caf2hL	1.55848720	139.838
4	0.000000000	7.564240061			144.656
	1499.148500820	10.832272687			141.334
	394.545474104	42.690870531	Capohl	1.55846720	141.660
7	188.588735108	2.390581943			141.445
8	711 502/11/98	43.117430646	CAF2HL	1.55648720	121.630
9	731.593986095AS	1.000000000			
0	114.385997:39	38.926813476	CAF2HL	1.55848720	117.999
1	184.018635075	1.000000000			92.421
2	123.357013350	93.333990149	CAF2HL	1.55846720	85.48 S
2 3	0.000000000	0.050000000	lamersion	1.37000000	77.332
J	0.000000000	0.00000000		1.3.000000	11.068
					11.000

8 eldsT

ASPHERIC CONSTANTS

-2.84/22511e-033 0.06005000e+060 6.06006000e+000

C6 C9

SUR	FACE NO. 4	SURFA	CE NO.	34 .
ĸ	2.6014	ĸ	1.594	4.3
C1	2.246235R1e-007	Ċı		=
CZ	-3.32"17029e-011	C3	-3.430	875063e-009
C3	2.75319747e-015	C3		207572e-014 370187e-016
C4	-3.79145993e-019	CA		143795e-022
C5	1.61861324e-023	C5		342992e-026
Ce	2.155792776-027	Ce CS		35165e-031
C7	-2.81011737e-031	C7		
CB	0.0000000e+000	CB		557010e-035
C9	0.0000000e4000	C9)50000e+500 00000e+600
sur	FACE NO. 6	SURPAC	Z KO.	41
K	1.5239	κ	0.109	٥
Cl	-1.)2174954e-097	Ċì.		05758e-009
C2	1.85%34618e-011	C5	2.611	48572e-014
C3	-1.79384980e-015	c)	-1 504	6043Se-018
C4	2.32576675e-019	C4		37441e-023
C5	-2.32368876e-023	CS		86202e-028
C6	1.17478944e-027	C6		22698e-032
C7	-2.27644058e-032	C7		
C8	0.0000000e+000	C8		03266e-036
C9	0.0000000e+500	C9		00000e+000
รบล	FACE NO. 17	SURFAC	e no.	43
К	1.6235	K	0 023	
Cl	-4.04184504e-010	Čl	0.033	
CZ	-5.5222230e-014			61761e-010
C3	1.07792813e-018	C2		3739e-013
C4	9 . 66577933e-024	C3		24835e-018
CS	1.9318-487e-027	C4		9756e-023
C6	-7-97233584e-032	C5		0711e-027
C7	1.33745628e-036	C6 C7		76741e-032
Ce	C. 00003000e+000	C8		74674e-037
C9	0.0066000Ge+0GO	C9		0000e+000 0000e+000
SURF.	ACE NO. 25	SURFACE		46
K	0.0696	ĸ	_) G761	•
Cl	-6.7397958Ge-GQ2		-1.6262 -4.0009	
C2	· 2.66L11173e-012	C2		123Ge-009
C3	-4.25361635c-016	c3		1101e-013
C4	-8.5365E144e-020			€393e-018
C\$	3.610276136-023	C5		6284e-022
C6	-7.36£256Z8e-027			9474e-026
C7	1.01936199e-020			1412e-031
C8	0.00C0C000e+000	C7		1993e-035
C9	0.0000000e+000	C6 Ç9		0000e+000 0C00e+000
SURFA	ACE NO. ::9			
K	-0.2765			
C1	3.115358626-008			
C2	-4.0F777758c-012			
C3	-6.2555384e-018			
C4	1.47'6:039e-020			
C5	-1.67736576e-024			
C6	7.45575419e-029			
C7	-2.84/22511e-013			
C6	0.06005060e+063			
	v . v u z u z u u u p a ilita)			

Table 9

SURFA	E RADII	THICKNESSES	LENSES	193.368 nm	1/2 FREE DIAMETER
0	0.000000000	21.980160000		1.00000000	
2	0.000063000	3.246688384	L710	0.99998200	56.080
2	-7758.872975491	8.000000000	SIC2HL	1.56028900	51.197 .
3	355.78918:957	7.529172915	HE193	0.99971200	61.898
4	1890.369849162AS	8.000000000	SIO2HL	1.56028900	63.992
5	266.2:328:606	15.157771412	HE193	0.99971200	65.07B
6	3183.174654849AS	8.000000000	SIO2HL	1.56028900	68.460
7	542.737427521	25.228019508	HE193	0.99971200	72.301
8	-190.186655474	54.303344531	SIO2HL	1.56028900	76.281
5	-200.972554549	1.000000000	HE193	0.99971700	78.244
10	-1181.739114120	41.616051168	SIO2HL		102.934
11	-200.59975,229	1.000000000	HE193	1.56028900	116.315
12	-345.801617038	34.756009233	SIO2HL	0.99971200	119.335
13	-183.035543027	1.00000000	HE193	1.56028900	122.895
14	468.598304219	28.888366130		0.99971200	125.001
15	-1579.330378554A8	1.000000000	· \$102HL	1.56028900	119.583
16	130.622577421	25.607493426	HE193	0.99971200	118.410
17	167.663753664	1.000000000	SIOZHL	1.56028900	101.535
18	109.515011627	33.485629573	HE193	0.99971200	96.903
19	139.897752059	27.284753341	SIO2HL	1.56028900	88.871
20	8434.054206242	B.000000000	HE193	0.99971200	79.284
21	75.280373504	30.508120723	SIO2HL	1.56028900	76.872
22	712.917049547	6.00000000	HE193	0.59971200	50.167
23	137.047956)49AS	41.376149828	SIOZHL	1.56028900	59.980
24	-120.1681;1858	P.000000000	HE193	0.99971200	58.756
25	-335.689995101	26.955101014	SIO2HL	1.56028900	60.070
26	-86.294374443	6.405631441	HE193	0.99971200	64.725
27	-401.2215"6575AS	6.791819241	SIO2HL	1.56028900	65.622
28	-295.528314934	33.017957091	HE193 Sio2hl	0.99971200	82.386
29	-156.211920054	1.000000000	8102HL HE193	1.56028900	84.761
30	-258.579127336	33.049041389	SIO2HL	0.99971200	\$3.276
31	-143.116315961	1.000000000	5102 <i>H</i> L HE193	1.56028900	99.716
32	472.8939E1029AS	41.687451272	SIO2HF	C.99971200	103.445
33	-346.217411641	22.889302349	HE193	1.56026900	115.709
34	-187.601096847	12.645469238	SIO2HL	0.99971200	116.094
35	-359.852656461	1.000000000	HE193	1.56028900	115.710
36	722.017664882	60.459509481	SIO2HL	0.99971200	121.777
37	-1816.4327; 1561AS	24.260456335	HE193	1.56028900	125.218
38	2199.250274610	24.178147653	SIO2HL	0.99971200	125.322
39 .	1512.556721835	E.00000000	HE193	1.56028900	124.815
40	0.000000000	14.309578556	HE193	0.95971200	124.440
41	1738.196399601	35.559449287	S102HL	0.99971200	123.088
42	-429.627570104AS	1.000000000	HE193	1.56028900	124.310
43	179.589103742	59.687793359	SIO2HL	0.99971200	124.575
44	589.027987143AS	10.530033379	HE193	1.56028900	115.507
45		53.097791469	SIOZHL	0.99971200	105.186
46	137.713831680	1.000000000	HE193	1.56028900	89.320
47	04 350	90.505495277	5102HL	0.99971200	67.001
48	0.000000000	1.060000545	IMMERS	1.56028900	62.339
49	0.000030330	0.000000000	4.707663	1.56000000	14.735
				1.00000000	14.020

Table	e 10	
ASP	HERIC CONSTANTS	
SUR	FACE NO. 4	SURFACE NO. 32
ĸ	C.0C00	K 0.0000
Cl	2.815310Cle-007	C1 -2.59168418e-009
C2	-3.99703415e-011	C2 -8.93760219e-014
C3	2.76850090e-015	C3 -4.25486946e-018
Ç4	·4.54887122e-019	C4 3.13097668e-022
C5	-5.66904777e-024	C5 -1.87333640e-026
CE	5.03662466c-027	C6 1.28572875e-030
C7	-4.520E0360e-031	C7 -3.94471730e-035
CG	0.00000000e+000	C8 0.0000000e+000
C9	0.0000000c+000	C9 0.00000000e+000
SUR	FACE NO. 6	SURFACE NO. 37
ĸ	a.occo	K 0.0000
C1	-1.16706261e-007	C1 3.92265908e-009
C2	2.00348321e-011	C2 5.90432031e-014
C3	-1.51130378e-015	C3 -4.61273256e-C18
C4	3.05660955e-019	C4 5.09437288e-023
C5	-1.7865B953e-023	
CE	3.15835636e-027	
C7	-4.23595936e-031	•
CE	0.0G0000C0e+000	
C9	0.0000000e+000	
SURE	PACE NO. 15	
ĸ	0.0000	
Cl	-9.37524970e-010	
C2	-2.58161066e-01J	
C3	-5.12:06559e-018	
C4	1.80598481e-022	
C5	3.605358C0e-027	
C6	3.85878819e-031	
C7	-3.50150744e-037	
CB	0.0000000c+000	
C9	0.00G00000e+000	
SURF.	ACE NO. 23	

SURFACE NO. 23

K 0.0000 C1 -9.05676602e-008 C2 ·7.64727914e-013 C3 -9.31867049e-016 9.20035750e-020 C4 -9.15433014e-023 C5 C6 1.32736186e-026 -9.23872382e-031 **C7** CF 0.0000000e+000 C9 0.0000000e+000

SURFACE NO. 27

0.0000 K Cl 2.51519254e-008 C2 -4.37829106e-012 C3 2.68987386e-017 C4 1.45024261e-020 -1.31152094e-G24 CS CE 1.04857156e-030 C7 ·5.21174549e-634 CS D.09000000e+000 0 5500000000+600 C3

Patent Claims

- 1. Refractive projection objective for projecting a pattern arranged in an object plane of the projection objective into an image plane of the projection objective with the aid of an immersion medium which is arranged between a last optical element of the projection objective and the image plane, comprising:
- a first lens group (LG1), following the image plane, with a negative refracting power;
- a second lens group (LG2), following the first lens group, with a positive refracting power;
- a third lens group (LG3), following the second lens group, with a negative refracting power;
- a fourth lens group (LG4), following the third lens group, with a positive refracting power;
- a fifth lens group (LG5), following the fourth lens group, with a positive refracting power; and
- a system aperture (5) which is arranged in the region of maximum beam diameter between the fourth and the fifth lens group.
- 2. Projection objective according to Claim 1, wherein the system aperture (5) lies between a plane of maximum beam diameter near the image and the image plane (3).
- 3. Projection objective according to Claim 1 or 2 which has an imageside numerical aperture NA \geq 0.9, the image-side numerical aperture preferably being at least NA = 1.0.
- 4. Projection objective according to one of the preceding claims, wherein the projection objective is adapted to an immersion medium (10) which has a refractive index of n > 1.3 at the operating wavelength.

- 5. Projection objective according to one of the preceding claims, wherein the projection objective has an image-side working distance of between approximately 10 μ m and approximately 200 μ m, in particular between approximately 20 μ m and approximately 100 μ m.
- 6. Projection objective according to one of the preceding claims, wherein a ratio between the focal length of the fourth lens group (LG4) and the focal length of the fifth lens group (LG5) is between approximately 0.9 and approximately 1.1.
- 7. Projection objective according to one of the preceding claims, wherein a ratio of the magnitudes of the focal lengths of the first lens group (LG1) and the fifth lens group (LG5) is between approximately 0.7 and approximately 1.3, in particular between approximately 0.9 and approximately 1.1.
- 8. Projection objective according to one of the preceding claims, wherein a ratio between the overall length of the projection objective and the focal length of the fifth lens group (LG5) is greater than five, preferably greater than six, in particular greater than eight.
- 9. Projection objective according to one of the preceding claims, wherein the first lens group (LG1) includes at least one aspheric surface, two aspheric surfaces preferably being provided in the first lens group.
- 10. Projection objective according to one of the preceding claims, wherein at least one aspheric surface is provided in the third lens group (LG3), two aspheric surfaces preferably being provided.
- 11. Projection objective according to one of the preceding claims, wherein at least one aspheric surface is arranged in the first lens group,

and/or wherein not more than nine aspheric surfaces are provided, less than seven aspheric surfaces preferably being provided.

- 12. Projection objective according to one of the preceding claims, wherein at least one meniscus lens (13), convex relative to the object plane, with a negative refracting power is arranged in the near zone of the object plane (2), in particular inside the first lens group (LG1).
- 13. Projection objective according to one of the preceding claims, wherein the second lens group has at least four, preferably at least five or six consecutive lenses (14 to 20) with a positive refracting power.
- 14. Projection objective according to one of the preceding claims, wherein the second lens group (LG2) has at least one, preferably a plurality of meniscus lenses (14, 15, 16, 17), concave relative to the object plane, with a positive refracting power on an entry side facing the object plane (2), and/or wherein the second lens group has at least one, preferably a plurality of meniscus lenses (19, 20), convex relative to the object plane, with a positive refracting power on the exit side facing the image plane.
- 15. Projection objective according to one of the preceding claims, wherein the second lens group (LG2) in this sequence has at least one meniscus lens (14, 15, 16, 17), concave relative to the object plane, with a positive refracting power, a biconvex positive lens (18) and at least one meniscus lens (19, 20), concave relative to the image plane, with a positive refracting power.
- 16. Projection objective according to one of the preceding claims, wherein the third lens group (LG3) has only lenses (21, 22, 23, 24) with a negative refracting power.

- 17. Projection objective according to one of the preceding claims, wherein, with reference to a plane (9) of symmetry lying inside the third lens group (LG3), the third lens group is of substantially symmetrical construction, and/or wherein two oppositely curved, concave surfaces directly opposed to one another in the third lens group (LG3) and are surrounded by two concave surfaces which are concave relative to one another.
- 18. Projection objective according to one of the preceding claims, wherein an exit region, facing the third lens group (LG3), of the second lens group (LG2), and an entry region, following the third lens group, of the fourth lens group (LG4) are constructed substantially symmetrically relative to a plane (9) of symmetry lying inside the third lens group.
- 19. Projection objective according to one of the preceding claims, wherein the fourth lens group (LG4) has at least one doublet (27, 28, 29, 30) with a biconvex positive lens (27, 29) and a downstream negative meniscus lens (28, 30) with lens surfaces which are concave towards the object, at least two doublets preferably being provided.
- 20. Projection objective according to one of the preceding claims, wherein in an object-side entry region the fourth lens group (LG4) has at least one meniscus lens (25, 26), concave relative to the object plane (2), with a positive refracting power, a plurality of such meniscus lenses preferably being provided consecutively.
- 21. Projection objective according to one of the preceding claims, wherein the sine of the maximum incidence angle of the radiation impinging on the optical surfaces is less than 90%, in particular less than 85% of the image-side numerical aperture.

- 22. Projection objective according to one of the preceding claims, wherein the fifth lens group (LG5) has exclusively lenses with a positive refracting power.
- 23. Projection objective according to one of the preceding claims, wherein the fifth lens group has at least four positive lenses (31 to 35).
- 24. Projection objective according to one of the preceding claims, wherein the fifth lens group (LG5) has at least one meniscus lens (33, 34) with a positive refracting power and lens surfaces concave towards the image.
- 25. Projection objective according to one of the preceding claims, wherein as last optical element the fifth lens group (LG5) has a planoconvex lens (35) which preferably has a spherical entry surface and a substantially flat exit surface.
- 26. Projection objective according to Claim 25, wherein the planoconvex lens (35) is constructed in a nonhemispherical fashion.
- 27. Projection objective according to one of the preceding claims, wherein all the lenses consist of the same material, use preferably being made of synthetic quartz glass as lens material for a 193 nm operating wavelength, and/or of calcium fluoride as lens material for a 157 nm wavelength.
- 28. Projection objective according to one of the preceding claims which is a single-waist system with a belly (6) near the object, a belly (8) remote from the object and a waist (7) therebetween.
- 29. Projection objective according to one of the preceding claims, wherein the image field diameter is more than 10 mm, in particular more

than 20 mm and/or wherein the image field diameter is more than 1.0%, in particular more than 1.5%, of the overall length.

- 30. Projection objective according to one of the preceding claims, wherein the light conductance is more than approximately 1%, in particular more than approximately 2% of the overall length.
- 31. Projection objective according to one of the preceding claims, wherein substantially more lenses are arranged upstream of the system aperture (5) than downstream of the system aperture, preferably at least four times as many.
- 32. Projection objective according to one of the preceding claims, wherein at least five lenses with a positive refracting power are arranged between the waist and the system aperture (5).
- 33. Projection objective according to one of the preceding claims, wherein a distance between the waist and the system aperture is at least 26% of the overall length, preferably more than 30% of the overall length.
- 34. Projection objective according to one of the preceding claims, wherein a maximum rim ray height is at least twice as large as the rim ray height at the location of the narrowest constriction.
- 35. Projection exposure machine for microlithography, characterized by a refractive projection objective (1, 1', 1") in accordance with one of the preceding claims.
- 36. Method for producing semiconductor components and other finely structured structural elements, having the following steps: providing a mask with a prescribed pattern;

illuminating the mask with ultraviolet light of a prescribed wavelength; and

projecting an image of the pattern onto a photosensitive substrate, arranged in the region of the image plane of a projection objective, with the aid of a projection objective in accordance with one of the preceding Claims 1 to 34;

an immersion medium arranged between a last optical surface of the projection objective and the substrate being transilluminated during the projection.

• .-

INTERNATIONAL SEARCH REPORT

Internation No PCT/EP 03/01954

A. CLAS	SIFICATION OF SUBJECT MATTER		PCI/EP 03/01954
IPC 7	603F7/20		
Amana	to International Transfer		
A REID	to International Patent Classification (IPC) or to both nation S SEARCHED	nai classification and IPC	
מועמוותוא (locumentation searched (classification materials)		
IPC 7	603F	classification symbols)	
Documenta	ting searched other than art. I		
	stion searched other than minimum documentation to the ex	ident that such documents are incli	uded in the fields searched
Electronic o	tata base consulted during the International search (name	of data hase and when anyther	
EPO-In	ternal	and and wists practical	, search terms used)
	ENTS CONSIDERED TO BE RELEVANT		
Category •	Citation of document, with indication, where appropriate,	of the relevant passages	Date:
			Relevant to dalm N
Y	EP 0 023 231 A (TABARELLI WE	RNER W DR)	1-36
	4 February 1981 (1981-02-04) the whole document		
,		N & & & -	
	KAWATA H ET AL: "FABRICATION FINE PATTERNS USING OPTICAL	PPOJECTION	1-36
	ETIHOGKAPHY WITH AN OTE TMMF	RCTAN I FAICH	
	ANTANESE JUNKWAL OF APPLIED I	PHYCTCC	
	PUBLICATION OFFICE JAPANESE APPLIED PHYSICS. TOKYO, JP,	JOURNAL OF	
	vol. 31, no. 12B, PART 1,		
	1 December 1992 (1992-12-01)	panes	
	41/4-41//, XP000415418	p g . v	
	ISSN: 0021-4922 abstract	•	
	מטזנו מנן		
		-/	
		-/	
Further	documents are threat to the		
	documents are listed in the continuation of box C. ories of cited documents:	X Patent family men	nbers are listed in annex.
		"T" later document publishe	d after the international filing date
	defining the general state of the art which is not:	died to understand the	In conflict with the application but principle or theory underlying the
earlier docu	ment but published on or after the international	-114141811	
document w	hich may throw doubts on priority daim(s) or		elevance; the claimed invention to the considered to
citation or	other special reason (as specified)	"Y" document of particular m	p when the document is taken alone
		document is combined	with one or more other than the
document po tater than the	ublished prior to the international filing date but he priority date daimed	in the art.	in deling covicius to a person skilled
	of the International search	Date of mailing of the int	
25 J	uly 2003	01/08/2003	
e and mailin	g address of the ISA		
E	European Patent Office, P.B. 5818 Patentlaan 2	Authorized officer	
7	6L (+31-70) 340-2040. Tx 31 651 000 pl		
F	ac (+31-70) 340-3016	Daffner, M	

INTERNATIONAL SEARCH REPORT

PCT/EP 03/01954

Category *	Chatlen of document, with indication and		
	Charlon of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
Y	KAWATA H ET AL: "OPTICAL PROJECTION LITHOGRAPHY USING LENSES WITH NUMERICAL APERTURES GREATER THAN UNITY" MICROELECTRONIC ENGINEERING, ELSEVIER PUBLISHERS BV., AMSTERDAM, NL, vol. 9, no. 1 - 4, 1 May 1989 (1989-05-01), pages 31-36, XP000034346 ISSN: 0167-9317 the whole document	1-36	
Y	EP 1 139 138 A (NIPPON KOGAKU KK) 4 October 2001 (2001-10-04) abstract; figures 1,2,10-14; tables 1-11	1-36	
Y	EP 1 094 350 A (ZEISS CARL ; ZEISS STIFTUNG (DE)) 25 April 2001 (2001-04-25) abstract; figure 1; table 1	1-36	
	ULRICH W ET AL: "TRENDS IN OPTICAL DESIGN OF PROJECTION LENSES FOR UV-AND EUV-LITHOGRAPHY" PROCEEDINGS OF THE SPIE, SPIE, BELLINGHAM, VA, US, vol. 4146, 3 August 2000 (2000-08-03), pages 13-24, XP008016224 the whole document	1-36	
	US 2002/005938 A1 (OMURA YASUHIRO) 17 January 2002 (2002-01-17) abstract; figures 7,9	1-36	
	US 5 121 256 A (MANSFIELD SCOTT M ET AL) 9 June 1992 (1992-06-09) the whole document	1-36	
1			

INTERNATIONAL SEARCH REPORT

internation on patent family members

PCT/EP 03/01954

D-44							
Patent document cited in search report		Publication date	Patent family member(s)			Publication date	
EP 0023231	A	04-02-1981	EP	0023231	Al	04-02-1981	
			AT	1462	T	15-08-1982	
			DE	2963537	D1	07-10-1982	
EP 1139138	Α	04-10-2001	NO	0123933		05-04-2001	
			EP	1139138	-	04-10-2001	
			NO	0123935		05-04-2001	
			WO	0123934			
			TW	418343		05-04-2001 11-01-2001	
EP 1094350	Α	25-04-2001	EP	1094350	12	25-04-2001	
			JP	2001141995	A		
			TW	451076	B	25-05-2001 21-08-2001	
			US	6560031	B1	06-05-2003	
US 2002005938	A1	17-01-2002	JP	2001343582	Α	14-12-2001	
US 5121256	A	09-06-1992	NONE	- 42 45 45 45 45 45 45 45 45 45 45 45 45 45			