Enabling Practical Backscatter Communication for On-body Sensors

Pengyu Zhang, Mohammad Rostami, Pan Hu, Deepak Ganesan

UMass Amherst

Ubiquitous deployment of on-body sensors

How should we communicate with on-body sensors which have a limited energy budget?

Current state of wireless radio power consumption

Wireless radios consume an order of magnitude higher power compared to low power sensors

Technology trends in wireless radio power consumption

Wireless radio power reduction is slow...

Backscatter — an ultra low power communication primitive

Backscatter enables ultra low-power wireless communication

Problem: NO reader infrastructure in mobile environment

Related work: leveraging WiFi signals for backscatter

Infrastructure-less backscatter

WiFi Backscatter (Sigcomm14)

Infrastructure-assisted backscatter

Passive WiFi (NSDI16)

WiFi Backscatter (Sigcomm 14) — backscatter WiFi signals

Limitation: WiFi signal is much louder than the backscatter signal

WiFi Backscatter (Sigcomm 14) — backscatter WiFi signals

Limitation: WiFi signal is much louder than the backscatter signal

Passive WiFi (NSDI 16) — independent carrier transmitter

Limitation: needs a new device to be carried

Can we leverage multiple WiFi/Bluetooth radios on mobile devices to enable backscatter?

How do we deal with interference?

Strong interference because backscatter channel and WiFi/Bluetooth channel are same.

How do we deal with interference?

Interference reduces if backscatter channel is shifted away from WiFi/Bluetooth channel

Why does interference reduce?

Filters on commodity radios help interference reduction

How to frequency-shift backscattered signals?

backscatter(t) = wifi(t) * tag(t)

Spectrum when tag backscatters Bluetooth signals

Packet-level Encoding

Bit-level Encoding

Packet-level Encoding

Bit-level Encoding

packet packet packet packet

1 0 1 0

Packet-level Encoding

packet packet packet packet

1 0 1 0

Longer communication range but lower bitrate

Bit-level Encoding

Higher data rate but shorter communication range

Packet-level Encoding

- 400 bps throughput
- 5m communication range

Bit-level Encoding

- 48kbps throughput
- 3.6m communication range

What about the tag power consumption?

Can we perform 20MHz frequency shifting at a few uWs?

Oscillator Frequency	Power Consumption
32kHz	1.48µW
1MHz	326µW
10MHz	2.04mW

Leverage low power ring oscillator

Use the smallest number of gates to produce the desired frequency shift.

Disadvantages — sensitive to temperature variations

Disadvantages — sensitive to temperature variations

FS-Backscatter performance in mobile deployment

FS-Backscatter achieves around 22kbps in mobile deployment

Conclusion

Enable backscatter for wearables by leveraging multiple Bluetooth and WiFi radios on mobile devices.