Modelagem de um tubo de Venturi através de Modelagem Bifocal

Julio Patron Witwytzkyj Symon Nickson Santana Victor Miguel Canto

Tubo de venturi

Função

 Calcular a velocidade e vazão no tubo através da medição da diferença de pressão

Modelagem

• A equação de Bernoulli descreve o comportamento do fluido

$$\frac{p_1}{\rho g} + \frac{v_1^2}{2g} + z_1 = \frac{p_2}{\rho g} + \frac{v_2^2}{2g} + z_2 \qquad \qquad Q = \sqrt{2g(h_1 - h_2)} \frac{A_1}{\sqrt{\left(\frac{A_1}{A_2}\right)^2 - 1}}$$

O tubo modelado

O tubo modelado

Comparação entra os valores de vazão obtidos

1200 rpm 1800 rpm 2500 rpm

Velocidade nas seções do tubo

Dados de entrada primários

• Diâmetro maior e menor do tubo

• Diferença de pressão

Variável "C"
 (relacionada a perda de carga)

Dados de saída

• Vazão através da equação de Bernoulli

Áreas das seções da tubulação

Vazão (m3/min) 0.021503

Dados de saída

- Colisão das partículas com as paredes
- Velocidade media das partículas em cada seção

Area maior

1699

Área menor

Dados de refinamento do modelo

Entrada

- Ângulo e distancia de colisão
- Permitir ou não que partículas colidam
- Tamanho das partículas
- Quantidade de partículas criadas por tick

Saída

• Número de partículas na simulação

Quantidade de partículas 28743

Pontos chave da programação

```
;(0, 150)_____
                                                    (1000, 150)
;(0, 0)
                  Sistema de coordenadas
                                                    (1000, 0)
;(0, -150)
                                                    (1000, -150)
```

```
;Variáveis globais
globals[
  ;Variável que guarda a vazão total.
 vazao
  ¡Variáveis que guardam a área das seções de maior (1) e menor (2) diâmetro.
 area1
 area2
  ;Variáveis que guardam as coordenadas da rampa (apenas no fluxo sem colisão).
  inicio rampa 1 x
 fim rampa 1 x
  inicio rampa 1 y max
 fim rampa 1 y max
  ;variáveis que guardam a média de deslocamento em cada seção do tubo
 deslocamento secao 1
 deslocamento secao 2
  colisoes secao 1
  colisoes secao 2
 quantidade-particulas
```

```
;As partículas de água são do tipo água.
breed [ aguas agua ]
;Essas pastículas possuem:
aguas-own
 ;Velocidade da partícula
 velocidade.
 ¡Variável auxiliar para que o loop não continue direcionando as partículas (apenas no fluxo sem colisão).
 direcionado
  ¡Variáveis auxiliares para medida do deslocamento no sentido da coordenada x.
 posicao-antiga
 posicao-atual
  ;Variável que guarda o deslocamento da partícula.
 deslocamento
  ;Variável auxiliar para indicar colisão com paredes
 numero-colisoes-paredes
```

Colisão com paredes

```
;Verifica se há uma parede acima da partícula
if ([pcolor] of patch-at dy 3 != 87.1) [
  ;Se sim, muda sua direção levemente para baixo
  set heading (120)
  ;Aumenta o contador de colisões com as paredes
  set numero-colisoes-paredes numero-colisoes-paredes + 1
;Verifica se há uma parede abaixo da partícula
if ([pcolor] of patch-at dy -3 != 87.1) [
  ;Se sim, muda sua direção levemente para cima
  set heading (60)
  ;Aumenta o contador de colisões com as paredes
  set numero-colisoes-paredes numero-colisoes-paredes + 1
```

Deslocamento das partículas

```
;Calcula o deslocamento na direção da coordenada X para cada partícula
to calcula deslocamento particula
  ;Guarda a posição atual
  set posicao-atual pxcor
  ;Calcula o deslocamento em X da partícula
  set deslocamento (posicao-atual - posicao-antiga)
  ;Guarda a posição anterior para o próximo cálculo
 set posicao-antiga posicao-atual
end
```

Resultados

O que podemos melhorar

Comportamento das partículas

Comportamento do fluido

• Algumas variáveis ficaram de lado

Comportamento das partículas

 As partículas são grandes demais para representar o comportamento das moléculas de um fluido (mesmo com 1px)

 Modelo permite compressão, geralmente pode-se considerar que água é incompressível

 Em altas velocidades algumas partículas escapam do tubo (consideramos isso como uma característica do programa, que trabalha com movimentos discretos)

Vantagens do Modelamento por partículas

Fácil entendimento

Modelagem fica dinâmica

 Fácil de visualizar as informações e fazer a mudança para a comparação

Conclusão dos alunos

 Os testes de modelagem representam o que foi observado no experimento físico

• Modelando podemos ver o passo a passo do experimento e assim ter um estudo mais aprofundado sobre ele

 Podemos realizar vários teste com materiais, tamanhos, fluidos diferentes e obter os resultados mais facilmente