#### **EXAFS Phase Shifts**

#### Bruce Ravel

Synchrotron Science Group National Institute of Standards and Technology

Beamline for Materials Measurements National Synchrotron Light Source II

October 11, 2023

### The EXAFS Phase Shift in Hematite

Here is  $\tilde{\chi}(R)$  for hematite, Fe<sub>2</sub>O<sub>3</sub>.



Hematite has a known crystal structure  $^*$  with Fe in a six-coordinated oxygen octahedron. There are 3 near neighbor oxygen atoms at 1.95 Å and 3 others 2.12 Å.

Why is the first peak in  $\tilde{\chi}(R)$  at about 1.4 Å when the nearest neighbor is at 1.95 Å?

<sup>\*</sup>R.L. Blake, R.E. Hessevick, T. Zoltai, L.W. Finger American Mineralogist 51 (1966) 123-129, Refinement of the hemtatite structure

## **EXAFS** Equation

Here's the EXAFS equation:

$$\chi(k,\Gamma) = \frac{(N_{\Gamma}S_0^2)F_{\Gamma}(k)e^{-2\sigma_{\Gamma}^2k^2}e^{-2R_{\Gamma}/\lambda(k)}}{2kR_{\Gamma}^2}\sin\left(2kR_{\Gamma} + \Phi_{\Gamma}(k)\right) \tag{1}$$

$$\chi_{\text{theory}}(k) = \sum_{\Gamma} \chi(k, \Gamma) \tag{2}$$

$$R_{\Gamma} = R_{0,\Gamma} + \Delta R_{\Gamma} \tag{3}$$

$$k = \sqrt{2m_e(E_0 - \Delta E_0)/\hbar^2} \approx \sqrt{(E_0 - \Delta E_0)/3.81}$$
 (4)

The oscillatory term is a function not of 2kR, but of  $2kR + \Phi(k)$ .

The integral that makes  $\tilde{\chi}(R)$  is usually done over 2k, i.e.  $\tilde{\chi}(R) = \int d(2k) \, k^{kw} \cdot \chi(k)$ . This makes  $\tilde{\chi}(R)$  look somewhat like a radial distribution function with peaks near sensible values of R (half-path-length), rather than 2R (full-path-length).

# Scattering Amplitues and Phase Shifts

Remember that the complex scattering function (for which F(k) is the amplitude and  $\Phi(k)$  is the phase) is structured and Z-dependent. Here are some representative examples for elements from different rows of the periodic table.



Very heavy elements have a discontinuity in  $\Phi(k)$ , like Pb at about 5.5 Å<sup>-1</sup>.

Lighter scatterers, like O and Fe, have fairly smooth phase functions.

## **Examining the Phase Function**

The phase functions for the lighter elements are valued near 0 at  $k=0\,\text{Å}^{-1}$  and decrease to almost 20 at  $k=20\,\text{Å}^{-1}$ . To some level of approximation, these phase functions can be described by a line of slope -1, i.e.  $\Phi(k)\approx -1\cdot k$ 



Using that crude approximation, the oscillatory term of the EXAFS equation is  $\sin(2kR-k)=\sin\left(2k\cdot(R-\frac{1}{2})\right)$ . When the integral is done over d(2k), the first peak in the resulting  $\tilde{\chi}(R)$  shows up around  $(R-\frac{1}{2})$ Å.

# This is why the first peak is shifted inward

Obviously, the approximation of  $\Phi(k)$  as a straight line is inaccurate. The peak shift is not exactly  $\frac{1}{2}$  Å. And for heavier scatterers, the approximation is even worse.

But this explains in a hand-waving sense why the peaks are shifted to lower R in  $\tilde{\chi}(R)$ .

This is yet another reason why  $\tilde{\chi}(R)$  is **NOT** a radial distribution function.