Национальный исследовательский институт «МЭИ» Институт Радиотехники и электроники им. В.А. Котельникова

Кафедра ФОРС

Отчёт

по лабораторной работе №5

«Фазовая автоподстройка частоты»

по курсу «Формирование радиосигналов»

Группа: ЭР-11-21

Выполнил: Выскиль С.М.

Проверил: Плутешко А.В.

Дата: 16.03.2025

Оценка:

ЛАБОРАТОРНОЕ ЗАДАНИЕ

1. Построение характеристики $\Phi \coprod E_{\Phi \coprod}(\varphi)$

Рисунок 1 – График зависимости напряжения выходе фазового детектора от фазы

2. Построение характеристики управления частотой ГУН $f_{\Gamma \text{УН}}(E_{\text{упр}})$

Рисунок 2 – Зависимость частоты генератора от управляющего напряжения

3. Заполнение таблицы № 4.

Таблица 3 – Величины, определяющие поведение кольца ФАПЧ

$K_{\Phi extsf{\beta}}$, $\frac{ ext{B}}{ ext{рад}}$	$K_{\Gamma YH}, \frac{M\Gamma \mathfrak{U}}{B}$	$T_{\Phi \Lambda \Pi \Psi}$, мкс
1.59	3.9	0.41

4. Оценка величины γ для конфигураций кольца ФАПС и сравнение с теоретическими значениями.

Таблица 4 – Сравнение рассчитанных и теоретических значений ү

Номер положения переключателя, <i>i</i>	Рассчитанное значение γ	Теоретическое значение γ
4	0.25	0.64
6	0.35	0.39

5. Построение временных зависимостей переходных процессов $E_{\Phi \mathcal{I}}(t)$, $E_{ynp}(t)$

а) Измеренные:

Рисунок 3 — Осциллограммы $E_{\Phi Д}(t)$ и $E_{ynp}(t)$ для переходных процессов по частоте для п.5.4, 5.5, 5.6.

б) Рассчитанные по дифференциальным уравнениям и данным в таблицах:

Рисунок 4 — Переходные процессы $E_{\phi \partial}(t)$ для обновлённых условий в дифф. ур-ях а) тау = 0.198 — зеленый; б) тау = 1.6 — красный; в) тау = 5 — синий.

6. Выводы:

- По теории зависимость частоты f_{zyh} от напряжения E_{ynp} должна быть линейной, но на деле она имеет некую нелинейность в начале. Её можно списать на ручной съём измерений при помощи мультиметра, путем приложения щупа к контактной площадке.
- При определении расчётного значения коэффициента полосы захвата мы столкнулись с расхождениями с теорией. Для переключателя 6 значения приблизительно похожи, однако для переключателя 4 рассчитанное почти в 3 раза меньше теоретического. Стоит отметить, что теоретические значения тоже нельзя назвать как таковыми в силу того, что они определялись с помощью τ_4 и τ_6 , которые рассчитывались через $T_{\phi a \pi \nu}$, а та в свою очередь через K_{ryh} , а тот был получен в ходе эксперимента.
- Графики, построенные по дифф. уравнениям с обновленными условиями, своим видом напоминают осциллограммы, полученные в ходе эксперимента.

ПРИЛОЖЕНИЕ

ДОМАШНЯЯ ПОДГОТОВКА:

Задано:

Таблица 1 – Исходные данные для расчёта ФАПЧ

E_{π} , B	$K_{\Gamma \mathrm{YH}}, \frac{\kappa \Gamma \mathrm{u}}{\mathrm{B}}$
+5	200

Таблица 2 – Постоянные времени ФНЧ Т_і

i	T_i , мкс
1	0.5
2	0.6
3	0.7
4	2.0

Пункт 1. При скачке опорной частоты на +375 кГц, с $\varphi^+ = \frac{\pi}{8}$

$$\omega_{
m on} - \omega_{
m ryh0} = 375 \
m k\Gamma ц$$

$$K_{\Phi Д} = \frac{E_{\pi}}{\pi}$$

$$x = \frac{t}{\mathsf{T}_{\mathsf{фапч}}}$$

$$T_{\Phi^{\Pi^{\mathrm{H}}}} = \frac{P}{2\pi \cdot K_{\Gamma \mathrm{YH}} \cdot K_{\Phi \mathrm{Д}}} = ($$
для $P = 1) = \frac{1}{2\pi \cdot 200 \cdot 10^3 \cdot \frac{5}{\pi}} = 0.5$ мкс

$$\Delta = T_{\varphi a \pi 4} \cdot (\omega_{o \pi} - \omega_{r y + 0})$$

$$\Delta = \frac{3\pi}{8} = \varphi'(0)$$

$$\varphi(0) = \frac{\pi}{8}$$

Уравнение переходного процесса при T -> 0:

$$\frac{d}{dx}\varphi + \varphi = \frac{\pi}{2} + \Delta$$

$$\frac{d}{dx}\varphi + \varphi = \frac{7\pi}{8}$$

Уравнение переходного процесса при $T_2=0.6~{
m MKC}$

$$au = rac{T_2}{T_{
m фапч}} = rac{0.6 \
m mkc}{0.5 \
m mkc} = 12$$

$$\tau \frac{d^2}{dx^2} \varphi + \frac{d}{dx} \varphi + \varphi = \frac{\pi}{2} + \Delta = >$$

$$=>1.2\frac{d^2}{dx^2}\varphi + \frac{d}{dx}\varphi + \varphi = \frac{7\pi}{8}$$

Рисунок 5 — Переходные процессы $E_{\phi \phi}(t)$ при скачке на +375 к Γ ц

Пункт 2. При скачке опорной частоты на -375 кГц, с $\varphi^+ = \frac{\pi}{2}$

$$\omega_{
m on} - \omega_{
m ryh0} = -375 \
m k\Gamma ц$$

$$T_{\phi a \Pi^{q}} = \frac{P}{2\pi K_{ryH} K_{\Phi J}} = 0.5$$
 мкс (см. пункт 1)

$$\Delta = T_{\phi a \pi 4}(\omega_{o \pi} - \omega_{r y H 0})$$

$$\Delta = -\frac{3\pi}{8} = \varphi'(0)$$

$$\varphi(0) = \frac{\pi}{2}$$

Уравнение переходного процесса при T > 0:

$$\frac{d}{dx}\varphi + \varphi = \frac{\pi}{2} + \Delta$$
$$\frac{d}{dx}\varphi + \varphi = \frac{\pi}{8}$$

Уравнение переходного процесса при $T_2=0.6~{
m MKC}$

$$\tau = \frac{T_2}{T_{\phi a \pi \Psi}} = \frac{0.6 \text{ мкс}}{0.5 \text{ мкс}} = 1.4$$

$$\tau \frac{d^2}{dx^2} \varphi + \frac{d}{dx} \varphi + \varphi = \frac{\pi}{2} + \Delta =>$$

$$=> 1.2 \frac{d^2}{dx^2} \varphi + \frac{d}{dx} \varphi + \varphi = \frac{\pi}{8}$$

Уравнение переходного процесса при $T_4 = 2.0$ мкс

$$au = rac{T_4}{T_{\phi a \Pi^4}} = rac{2.0 \ \mathrm{MKC}}{0.5 \ \mathrm{MKC}} = 4$$
 $au rac{d^2}{dx^2} arphi + rac{d}{dx} arphi + arphi = rac{\pi}{2} + \Delta$
 $au rac{d^2}{dx^2} arphi + rac{d}{dx} arphi + arphi = rac{\pi}{8}$

Рисунок 6 — Переходные процессы $E_{\phi o}(t)$ при скачке на -375 кГц

Пункт 3. Ожидаемые осциллограммы в п. 5.2

Пункт 4. Ожидаемые осциллограммы в п. 5.4

К обработке результатов:

Пункт 3. Заполнение таблицы № 4.

$$K_{\Phi \text{Д}} = \frac{E_{\text{п}}}{\pi} = \frac{5}{\pi} = 1.59 \, \frac{\text{B}}{\text{рад}}$$

$$K_{\text{гун}} = \frac{(121 - 118.4) \cdot 10^6}{0.66} = 3.9 \frac{\text{М}\Gamma\text{ц}}{\text{B}}$$

Так как Р = 16, то:

$$T_{\Phi \Lambda \Pi \Psi} = \frac{16}{2\pi \cdot 3.9 \cdot 10^6 \cdot 1.59} = 0.41 \text{ MKC}$$

Таблица 3 – Характеристика управления частотой ГУН

Параметр		Значения											
$f_{ m on}$, М Γ ц	6.9	7.0	7.1	7.2	7.3	7.4	7.5	7.6	7.7	7.8	7.9	8.0	8.1
$f_{\Gamma m YH}$, М Γ ц	110.4	112	113.6	115.2	116.8	118.4	120	121.6	123.2	124.8	126.4	128	129.6
$E_{ m ynp}$, В	0.37	0.8	1.19	1.55	1.89	2.23	2.56	2.89	3.22	3.54	3.86	4.2	4.5

Пункт 4. Заполнение таблицы № 4:

Таблица 6 – Номиналы элементов ФНЧ и рассчитанные значения постоянной времени $\tau_{\Phi H \Psi}$

i	<i>R</i> ₁ , Ом	C_i , п Φ	$ au_{\Phi m HY}$, мкс
4	300	2200	0.66
6	300	6800	2.04

$$\tau_4 = \frac{0.66}{0.41} = 1.61$$

$$\tau_6 = \frac{2.04}{0.41} = 4.97$$

Рисунок 7 — Осциллограммы напряжения на выходе фазового детектора для положений переключателя 4 и 6 (в случае измерения полосы захвата)