Teoría de la Computación

Segundo Parcial

Licenciatura en Informática, Universidad Nacional de Quilmes

1er cuatrimestre de 2024

Ejercicio 1. Sea Σ un alfabeto finito. Decimos que una palabra $w \in \Sigma^*$ se descompone en una lista de palabras ℓ si w se escribe reordenando las palabras de ℓ y concatenándolas. Por ejemplo, abracadabra se descompone como [cada, a, bra, bra]. Observemos que cada palabra de ℓ se debe usar una vez (y solamente una vez).

a) Dado el lenguaje:

$$\mathsf{DESC} = \{ \langle w, \ell \rangle \mid w \text{ se descompone en } \ell \}$$

elegir exactamente una de las siguientes afirmaciones y demostrarla:

- (1) DESC está en la clase P.
- (2) DESC está en la clase NP.
- (3) DESC está en la clase NP-hard.

b) Dado un número $k \in \mathbb{N}$ fijo y el siguiente lenguaje:

$$\mathsf{DESC}_k = \{\langle w, \ell \rangle \mid w \text{ se descompone en } \ell, \text{ y además todas las palabras de } \ell \text{ son de longitud } k\}$$

Notamos además $\overline{\mathsf{DESC}}_k$ al complemento de DESC_k . Elegir exactamente una de las siguientes afirmaciones y demostrarla:

- (1) $\overline{\mathsf{DESC}}_k$ está en la clase P.
- (2) $\overline{\mathsf{DESC}}_k$ está en la clase NP. (3) $\overline{\mathsf{DESC}}_k$ está en la clase NP-hard.

Ejercicio 2. Sea Σ un alfabeto finito. Decimos que dos palabras $w_1, w_2 \in \Sigma^*$ se **pegan** si w_1 termina con la misma letra con la que empieza w_2 . Más formalmente, w_1 y w_2 se pegan si $w_1 = w_1'$ a y $w_2 = a w_2'$, donde w_1' , $w_2' \in \Sigma^*$ y

Un conjunto finito X de palabras es **pegable** si X se puede escribir como una lista de la forma w_1, w_2, \ldots, w_n sin repetidos de tal modo que w_i se pega con w_{i+1} para cada $1 \le i \le n-1$. Por ejemplo, el conjunto $\{ojos, ola, arco\}$ es pegable porque sus palabras se pueden acomodar de tal modo que cada una se "enganche" con la siguiente a través de la letra que las conecta: ola_arco_ojos, mientras que el conjunto {ojos, olas, arco} no es pegable.

Definimos el lenguaje:

$$\mathsf{PEGABLE} = \{ \langle X \rangle \mid X \text{ es un conjunto pegable} \}$$

- a) Dar una reducción polinomial HAMPATH \leq_P PEGABLE.
- b) Demostrar que PEGABLE es NP-completo.

Ejercicio 3. Sea $A \subseteq \Sigma^*$ un lenguaje no trivial, es decir, A no es el conjunto vacío ni el conjunto de todas las palabras. Determinar si las siguientes afirmaciones son verdaderas o falsas y demostrar lo que corresponda en cada

- a) Si P = NP entonces $SAT \leq_P A$.
- b) Si $P = NP y SAT <_P A$ entonces $A \in P$.
- c) Si SAT $\leq_P A$ y $A \in P$, entonces P = NP.

Justificar todas las respuestas.