Analogia układów cieplnych i hydraulicznych

$$C_{v}\dot{T}_{wew}(t) = q_{g}(t) - K_{c}\left(T_{wew}(t) - T_{zew}(t)\right)$$

$$C_{v}sT_{wew}(s) + K_{c}T_{wew}(s) = q_{g}(s) + K_{c}T_{zew}(s)$$

$$T_{wew}(s) = \frac{1}{C_v s + K_c} q_g(s) + \frac{K_c}{C_v s + K_c} T_{zew}(s)$$

$$A\dot{h}(t) = f_{we}(t) - ah(t)$$

$$Ash(s) + ah(s) = f_{we}(s)$$

$$h(s) = \frac{1}{As + a} f_{we}(s)$$

$$\begin{cases} C_1 \dot{T}_1 = q_e - k_{12} (T_1 - T_2) \\ C_2 \dot{T}_2 = k_{12} (T_1 - T_2) - k_f T_2 + k_f T_0 \end{cases}$$

$$k_f = c_p \rho f_0$$

$$\begin{cases} S_1 \dot{h}_1 = f_{we} - k_{12}(h_1 - h_2) \\ S_2 \dot{h}_2 = k_{12}(h_1 - h_2) - k_2 h_2 \end{cases}$$

Samowyrównywanie, inercja, opóźnienie, unilateralność

całkowanie

$$A\dot{h}(t) = f_{we}(t)$$

$$h_1(s) = \frac{1}{As} f_{we}(s)$$

inercja (samowyrównywanie)

$$A\dot{h}(t) = f_{we}(t) - ah(t)$$

opóźnienie

$$T_{wy}(t) = T_{we}(t - T_0)$$

$$T_{wy}(s) = e^{-sT_0}T_{we}(s)$$

Elementy elektryczne i mechaniczne

Tab. I-6. Stosowane opisy podstawowych elementów elektrycznych

	u((i)	i(u)	u(q)	Z(s)	
rezystor (R)	u(t) = Ri(t)	u(s) = Ri(s)	i(t) = Gu(t)	$u(t) = R\dot{q}(t)$	R	
kondensator (C)	$u(t) = \frac{1}{C} \int i(t)dt$	$u(s) = \frac{1}{sC}i(s)$	$i(t) = C \frac{du(t)}{dt}$	$u(t) = \frac{1}{C}q(t)$	$\frac{1}{sC}$	
cewka (L)	$e_L(t) = -L \frac{di(t)}{dt}$	u(s) = sLi(s)	$i(t) = \frac{1}{L} \int u(t) dt$	$u(t) = L\ddot{q}(t)$	sL	

$$F_{cA}(t) = c(x_A(t) - x_B(t))$$

$$F_{cR}(t) = c(x_R(t) - x_A(t))$$

$$F_{bA}(t) = b(\dot{x}_A(t) - \dot{x}_B(t))$$

$$F_{bB}(t) = b(\dot{x}_B(t) - \dot{x}_A(t))$$

$$F_m(t) = m\ddot{x}(t)$$

Układy elektryczne i mechaniczne

$$j\omega LI + RI + \frac{1}{j\omega C}I = U$$

$$sLi(s) + Ri(s) + \frac{1}{sC}i(s) = u(s)$$

$$L\frac{di(t)}{dt} + Ri(t) + \frac{1}{C}\int i(t)dt = u(t)$$

$$L\ddot{q}(t) + R\dot{q}(t) + \frac{1}{C}q(t) = u(t)$$

$$m\ddot{x}(t) + b\dot{x}(t) + cx(t) = F(t)$$

$$ms^2x(s) + bsx(s) + cx(s) = F(s)$$

$$b\dot{x}(t) + cx(t) = F(t)$$

$$bsx(s) + cx(s) = F(s)$$

$$x(s) = \left(\frac{1}{sb+c}\right)F(s)$$

$$sLi(s) + Ri(s) = u(s)$$

$$i(s) = \left(\frac{1}{sL+R}\right)u(s)$$

Analogia układów mechanicznych i elektrycznych

$$\begin{cases} F = m_2 \ddot{x}_2 + b_2 \dot{x}_2 + c_2 (x_2 - x_1) \\ 0 = m_1 \ddot{x}_1 + b_1 \dot{x}_1 + c_1 x_1 + c_2 (x_1 - x_2) \end{cases}$$

$$\begin{cases}
F = s^2 m_2 x_2 + s b_2 x_2 + c_2 (x_2 - x_1) \\
0 = s^2 m_1 x_1 + s b_1 x_1 + c_1 x_1 + c_2 (x_1 - x_2)
\end{cases}$$

$$\begin{cases} e = sL_2i_2 + R_2i_2(s) + \frac{i_2 - i_1}{sC_2} \\ 0 = sL_1i_1 + R_1i_1 + \frac{i_1}{sC_1} + \frac{i_1 - i_2}{sC_2} \end{cases}$$

$$\begin{cases} e = L_2 \ddot{q}_2 + R_2 \dot{q}_2 + \frac{q_2 - q_1}{C_2} \\ 0 = L_1 \ddot{q}_1 + R_1 \dot{q}_1 + \frac{q_1}{C_1} + \frac{q_1 - q_2}{C_2} \end{cases}$$

Analogie układów cieplnych, elektrycznych, mechanicznych, hydraulicznych

Tab.I-7. Przykłady analogii

140.1-7.112yk	obiekty cieplne	obwody elektryczne			układy med	chaniczne	układy hydrauliczne		
						zamknięte		otwarte	
	$Q = C_{V}T$	q = Cu		$u = \frac{1}{C}q$		F = cx			V = Ah
magazyn	$\frac{dQ}{dt} = C_V \frac{dT}{dt}$	$\frac{dq}{dt} = C\frac{du}{dt}$							$\frac{dV}{dt} = A \frac{dh}{dt}$
		$i = C \frac{du}{dt}$	$u = \frac{1}{C} \int i dt$	4	$F = c \int v dt$		$\Delta p = \frac{K}{V} \int f dt$	$f = \frac{V}{K} \frac{d\Delta p}{dt}$	
przewodność (lub opór)	$q = K_c T$	$i = \frac{1}{R}u$	u = Ri	$u = R \frac{dq}{dt}$	F = bv	$F = b \frac{dx}{dt}$	$\Delta p \approx Rf$ (*1)	$f = \frac{1}{R} \Delta p$	$f \approx ah$ (*2)
bezwładność		$i = \frac{1}{L} \int u dt$	$u = L \frac{di}{dt}$	$u = L \frac{d^2q}{dt^2}$	$F = m \frac{dv}{dt}$	$F = m \frac{d^2x}{dt^2}$	$\Delta p = m \frac{df}{dt}$	8	
źródła	q	i	и		F		Δp	f	f
funkcje czasu	Q(t), q(t), T(t)	q(t), i(t), u(t)			x(t), v(t), F(t)		$\Delta p(t), f(t)$		V(t), f(t), h(t)
bilans	$\sum q$	$\sum i$, $\sum u$			$\sum F$		$\sum q, \sum f$ $\sum f$		$\sum f$

Uwaga: W tabeli pomięto oznaczenie funkcji czasu, na przykład jest T zamiast T(t)

Analogie dotyczą opisu liniowego, natomiast zależności dokładne to: (*1) $\Delta p = Rf^2$, (*2) $f = k\sqrt{h}$

Zmienne i jednostki:

- obiekty cieplne: Q(t) ciepło [J], q(t) moc, strumień ciepła [W], T(t) temperatura [K], [°C];
- obwody elektryczne: q(t) ładunek elektryczny [C], i(t) natężenie prądu [A], u(t) napięcie, różnica potencjałów [V];
- układy mechaniczne: x(t) przesunięcie [m], v(t) prędkość [m/s], F(t) siła [N];
- układy hydrauliczne: V(t) objętość $[m^3]$, f(t) przepływ, strumień $[m^3/s]$, $\Delta p(t)$ ciśnienie $[Pa=N/m^2]$.

Układy hydrauliczne i pneumatyczne (bez przemian gazowych)

$$\Delta p(t) = R f(t)$$

$$dp(t) = K \frac{dV(t)}{V}$$

$$F(t) = m \, a(t)$$

lub

$$\Delta p(t) = Rf^{2}(t)$$

$$dV(t) = f(t) dt$$

$$\Delta p(t)A = \rho lA \frac{dv(t)}{dt}$$

$$\frac{V}{K}\frac{dp(t)}{dt} = f(t)$$

$$\Delta p(t) = m \frac{df(t)}{dt}$$

$$m = \rho l/A$$

Analogia pneumatyczno-elektryczna

Analogia cieplno-elektryczna

$$q(s) = \left(\frac{1}{sR + 1/C}\right)u(s)$$

 $R = \left(\frac{1}{sL + R}\right)u(s)$

$$C_{v}\dot{T}_{wew}(t) = q_{g}(t) - K_{c}\left(T_{wew}(t) - T_{zew}(t)\right)$$

$$C_{v}sT_{wew}(s) + K_{c}T_{wew}(s) = q_{g}(s) + K_{c}T_{zew}(s)$$

$$T_{wew}(s) + T_{wew}(s) = \frac{1}{C_v s + K_c} q_g(s) + \frac{K_c}{C_v s + K_c} T_{zew}(s)$$

$$\begin{cases} C_{v1}\dot{T}_{1}(t) = q_{g}(t) - K_{c}(T_{1}(t) - T_{2}(t)) \\ C_{v2}\dot{T}_{2}(t) = K_{c}(T_{1}(t) - T_{2}(t)) \end{cases}$$

$$\begin{cases} R_1 \dot{q}_1(t) + \frac{1}{C} (q_1(t) - q_2(t)) = u(t) \\ R_2 \dot{q}_2(t) + \frac{1}{C} (q_2(t) - q_1(t)) = 0 \end{cases}$$

Analogie układów cieplnych, elektrycznych, mechanicznych, hydraulicznych

Tab.I-7. Przykłady analogii

1ab.1-7.112yk	obiekty cieplne	obwody elektryczne			układy med	haniczne	układy hydrauliczne		
						zamknięte		otwarte	
	$Q = C_V T$	q = Cu		$u = \frac{1}{C}q$		F = cx			V = Ah
maga <i>z</i> yn	$\frac{dQ}{dt} = C_V \frac{dT}{dt}$	$\frac{dq}{dt} = C\frac{du}{dt}$							$\frac{dV}{dt} = A \frac{dh}{dt}$
		$i = C \frac{du}{dt}$	$u = \frac{1}{C} \int i dt$		$F = c \int v dt$		$\Delta p = \frac{K}{V} \int f dt$	$f = \frac{V}{K} \frac{d\Delta p}{dt}$	
przewodność (lub opór)	$q = K_c T$	$i = \frac{1}{R}u$	u = Ri	$u = R \frac{dq}{dt}$	F = bv	$F = b \frac{dx}{dt}$	$\Delta p \approx Rf$ (*1)	$f = \frac{1}{R} \Delta p$	$f \approx ah$ (*2)
bezwładność		$i = \frac{1}{L} \int u dt$	$u = L \frac{di}{dt}$	$u = L \frac{d^2q}{dt^2}$	$F = m \frac{dv}{dt}$	$F = m \frac{d^2x}{dt^2}$	$\Delta p = m \frac{df}{dt}$	3	
źródła	q	i	и		F		Δр	f	f
funkcje czasu	Q(t), q(t), T(t)	q(t), i(t), u(t)			$x(t), v(t), F(t)$ $\Delta p(t), f(t)$		V(t), f(t), h(t)		
bilans	$\sum q$	$\sum i$, $\sum u$			$\sum F$		$\sum q, \sum f$ $\sum f$		$\sum f$

Uwaga: W tabeli pomięto oznaczenie funkcji czasu, na przykład jest T zamiast T(t)

Analogie dotyczą opisu liniowego, natomiast zależności dokładne to: (*1) $\Delta p = Rf^2$, (*2) $f = k\sqrt{h}$

Zmienne i jednostki:

- obiekty cieplne: Q(t) ciepło [J], q(t) moc, strumień ciepła [W], T(t) temperatura [K], [°C];
- obwody elektryczne: q(t) ładunek elektryczny [C], i(t) natężenie prądu [A], u(t) napięcie, różnica potencjałów [V];
- układy mechaniczne: x(t) przesunięcie [m], v(t) prędkość [m/s], F(t) siła [N];
- układy hydrauliczne: V(t) objętość $[m^3]$, f(t) przepływ, strumień $[m^3/s]$, $\Delta p(t)$ ciśnienie $[Pa=N/m^2]$.

Podstawowe obiekty dynamiki (człony dynamiki)

obiekt (człon)	G(s)	odp.skokowa	$M(\omega), \varphi(\omega)$
proporcjonalny $x(t) = b_0 u(t)$	K	$x \downarrow t$	<i>M</i> 201g <i>K</i> ω
całkujący	$\frac{K}{T_i s}$	$x \uparrow$	$M = 20 \lg K$
$a_1\dot{x}(t) = b_0u(t)$	$T_i s$ $T_i > 0$	t	φ $-\pi/2$ ω
różniczkujący	$T_d s$	<i>u</i> ↑ <i>t</i>	$M \uparrow 1/T_d$
$a_0 x(t) = b_1 \dot{u}(t)$	$T_d > 0$		φ $\pi/2$ ω
inercyjny	$\frac{K}{Ts+1}$	x	$M = 20 \lg K$ K/T $1/T = \omega$
$a_1\dot{x}(t) + a_0x(t) = b_0u(t)$	T > 0		φ -π/2
inercyjny 2 rzędu	$\frac{K}{(T_1s+1)(T_2s+1)}$	x t	M O
$a_2\ddot{x}(t) + a_1\dot{x}(t) + a_0x(t) = b_0u(t)$	$T_1 > 0, T_2 > 0$		-π
oscylacyjny	$\frac{K}{s^2 + 2\xi\omega Ts + \omega^2}$	x	M K/T
$a_2\ddot{x}(t) + a_1\dot{x}(t) + a_0x(t) = b_0u(t)$	$\frac{K}{T^2s^2 + 2\xi Ts + 1}$	t	φ $1/T$ ω
	$\omega > 0, T > 0$		