Simulation of a Quantum Annealer for Solving the 2-Satisfiability Problem at Zero and Finite Temperature

Ting-Jui Hsu

Quantum Information Group

27.06.2017

Table of Contents

Inroduction of the Quantum Annealing

The 2-Satisfiability Problem

Simulation of a Quantum Annealer at Zero Temperature

Simulation of a Quantum Annealer at Finite Temperature

Table of Contents

Inroduction of the Quantum Annealing

The 2-Satisfiability Problem

Simulation of a Quantum Annealer at Zero Temperature

Simulation of a Quantum Annealer at Finite Temperature

Introdution of the Quantum Annealing

- The goal of the quantum annealing is to find the ground state of a given Hamiltonian.
- ► The Hamiltonian used by a quantum annealing process can be written as follow

$$\begin{split} H(t) &= (1 - \frac{t}{T}) H_{init} + (\frac{t}{T}) H_{problem} \\ H_{init} &= -\sum_{i=1}^{N} h_{i}^{x} \sigma_{i}^{x} \\ H_{problem} &= -\sum_{i=1}^{N} J_{ij}^{z} \sigma_{i}^{z} \sigma_{j}^{z} - \sum_{i}^{N} h_{i}^{z} \sigma_{i}^{z}, \end{split}$$

where t is the current time step and T is the total annealing time.

The Difference between the Quantum Annealing and the Simulated Annealing

Adiabatic Theorem

If a quantum system stays in an eigenstate of a slowly varying Hamiltonian at one time, it will remain in an eigenstate at later times, while its eigenenergy evolves continuously.

Landau-Zener Transition

The Landau-Zener formula gives out the probability of a diabatic transition from a lower energy eigenstate to a higher energy eigenstate.

The probability of an adiabatic transition, $P_{adiabatic}$, can be described by

$$P_{adiabatic}(T) = 1 - P_{diabatic}(T)$$

 $P_{diabatic}(T) = \exp(-c \cdot \Delta_{min}^2).$

Table of Contents

Inroduction of the Quantum Annealing

The 2-Satisfiability Problem

Simulation of a Quantum Annealer at Zero Temperature

Simulation of a Quantum Annealer at Finite Temperature

The 2-Satisfiability Problem

A *k*-SAT problem is a problem with *k* as the upper limit of the number of variables in one clause.

An example 2-SAT problem with 8 boolean variables is shown below:

Example

$$(x_1 \vee x_2) \wedge (x_3 \vee \neg x_4) \wedge (\neg x_5 \vee x_4) \wedge (\neg x_6 \vee \neg x_7) \wedge (\neg x_3 \vee \neg x_8),$$

where $\land,\lor,$ and \neg state for logical and, logical or, and logical not respectively.

The 2-Satisfiability Problem

$$(x_1 \lor x_2) \land (x_3 \lor \neg x_4) \land (\neg x_5 \lor x_4) \land (\neg x_6 \lor \neg x_7) \land (\neg x_3 \lor \neg x_8)$$

A key question is how to map a given problem into the Hamiltonian. For example, a possible mapping is as follows:

2-SAT Variables

	Т	Т	Т	F
<i>X</i> ₁	1	1	0	0
<i>X</i> ₂	1	0	1	0

	T	T	T	F
<i>X</i> ₃	1	1	0	0
XΛ	0	1	0	1

Ising variables

ionig variables					
	Т	Т	Т	F	
σ_1	1	1	-1	-1	
σ_2	1	-1	1	-1	
$m = \sigma_1 + \sigma_2$	2	0	0	-2	

	Т	Т	Т	F
σ_3	1	1	-1	-1
σ_4	-1	1	-1	1
$m = \sigma_3 - \sigma_4$	2	0	0	-2

The 2-Satisfiability Problem

To encode the solution of the 2-SAT problem, the Hamiltonian can be designed for the first clause as

	Т	Т	Т	F
$m = \sigma_1 + \sigma_2$	2	0	0	-2

$$H = m \cdot (m-2)$$

= $\sigma_1^2 + \sigma_2^2 + 2\sigma_1\sigma_2 - 2\sigma_1 - 2\sigma_2$
= $2\sigma_1\sigma_2 - 2\sigma_1 - 2\sigma_2 + const$.

Then one can correspond h_1^z , h_2^z , and J_{12} in $H_{problem}$ to 2, 2, and -2 respectively, and repeat this procedure for all clauses.

$$H_{problem} = -\sum_{i,j}^{N} J_{ij}^{z} \sigma_{i}^{z} \sigma_{j}^{z} - \sum_{i}^{N} h_{i}^{z} \sigma_{i}^{z}$$

The Quantum Annealing Algorithm

Quantum Annealing Algorithm

Set up $H_{problem}$ according to a given problem. Combine H_{init} and $H_{problem}$ to build H(t).

- 1. Initialise the system to the ground state of H_{init} .
- 2. Evolve the system by computing time-dependent Schrödinger equation for time *t* according to a given time scheme.
- 3. The system will end up in the ground state of $H_{problem}$, if the total annealing time T is long enough.

Table of Contents

Inroduction of the Quantum Annealing

The 2-Satisfiability Problem

Simulation of a Quantum Annealer at Zero Temperature

Simulation of a Quantum Annealer at Finite Temperature

Time-Dependent Schrödinger Equation

 The quantum annealing process can be described by time-dependent Schrödinger equation with the Hamiltonian given as

$$H(t) = (1 - \frac{t}{T})H_{init} + (\frac{t}{T})H_{problem}$$

► The solution of this is

$$\Psi(t+\tau) = U(t+\tau,t)\Psi(t)$$

$$= \exp\left(-i\int_t^{t+\tau} H(\frac{t+\tau}{2})d\tau\right)\Psi(t),$$

where τ is the time step, and $U(t+\tau)$ is a unitary matrix that transform system from t to $t+\tau$.

▶ The time step should be small enough to keep H(t) piecewise constant, and the solution can be rewritten as

$$\Psi(t+ au) = \expigg(-iH(rac{t+ au}{2}) auigg)\Psi(t).$$

The Suzuki-Trotter Product Formula Approach

$$\begin{split} H(t) &= (1 - \frac{t}{T}) H_{init} + (\frac{t}{T}) H_{problem} \\ H_{init} &= -\sum_{i=1}^{N} h_{i}^{x} \sigma_{i}^{x} , \ H_{problem} = -\sum_{i}^{N} h_{i}^{z} \sigma_{i}^{z} - \sum_{i,j}^{N} J_{ij}^{z} \sigma_{i}^{z} \sigma_{j}^{z} \end{split}$$

Based on the Hamiltonian used above, one way to construct the approximation is

$$\begin{split} &\Psi(t+\tau) = \tilde{U}(t)\Psi(t) \\ &\tilde{U}(t) = \exp\biggl(\frac{-i\tau H_{\sigma^{x,z}}}{2}\biggr) \exp\bigl(-i\tau H_{\sigma_z\sigma_z}\bigr) \exp\biggl(\frac{-i\tau H_{\sigma^{x,z}}}{2}\biggr). \end{split}$$

Simulation Result: Ground State Energy

Figure: A result with total annealing time = 1000

Simulation Result: Success Probability

Figure: A result with total annealing time = 1000

Simulation Result: Spin Value

$$H_{init} = -\sum_{i=1}^N h_i^{\mathsf{x}} \sigma_i^{\mathsf{x}} \;,\;\; H_{problem} = -\sum_i^N h_i^{\mathsf{z}} \sigma_i^{\mathsf{z}} - \sum_{i,j}^N J_{ij}^{\mathsf{z}} \sigma_i^{\mathsf{z}} \sigma_j^{\mathsf{z}}$$

0.6

8.0

Effect of Total Annealing Time

The Energy Spectrum and the Minimum Gap

Effect of Minimum Gap

Figure: A plot with 100 different 2-SAT problems.

Table of Contents

Inroduction of the Quantum Annealing

The 2-Satisfiability Problem

Simulation of a Quantum Annealer at Zero Temperature

Simulation of a Quantum Annealer at Finite Temperature

Hamiltonian for a System at Finite Temperature

In order to simulate a system at finite temperature, the quantum system S is coupled to a heat bath B and the Hamiltonian of the entire system (i.e. S+B) is defined as

$$H = H_S + H_B + gH_{SB},$$

where H_S is the Hamiltonian of the system, H_B is the Hamiltonian of the heat bath, and H_{SB} is the interaction between the subsystem S and the heat bath B with g indicates the global coupling strength between S and B.

Figure: A result at Temperature = 0.02

Figure: A result at Temperature = 1

Figure: A result at Temperature = 1000

^{*}Amin, M. H. (2015). Searching for quantum speedup in quasistatic quantum annealers. Physical Review A - Atomic, Molecular, and Optical Physics, 92(5), 1–5. https://doi.org/10.1103/PhysRevA.92.052323

Temperature = 1000

^{*}Amin, M. H. (2015). Searching for quantum speedup in quasistatic quantum annealers. Physical Review A - Atomic, Molecular, and Optical Physics, 92(5), 1–5. https://doi.org/10.1103/PhysRevA.92.052323

Effect of Minimum Gap under different Coupling Strength

Effect of Minimum Gap under different Temperature

Conclusion

- ► The quantum annealing does provide a different approach to solve the 2-SAT problem.
- A quantum annealing process at finite temperature will go through a coherent state, non-equlibrium state, and finally a quasistatic state as mentioned in a previous paper.
- The quantum annealing process can be influenced not only by the total annealing time, the minimum gap value, but also the temperature.
- The simulation done in this study can be tested on a D-Wave quantum annealer.

Appendix

Appendix: Computational Basis

- Ψ is defined as a direct product state of the N single spin states in z-basis.
- Each single spin has two possible states, |↑⟩ or |↓⟩, which ,for convenience, are corresponded to |0⟩ or |1⟩. The relation is defined as

$$\left|\uparrow\right\rangle \equiv\left|0\right\rangle ,\left|\downarrow\right\rangle \equiv\left|1\right\rangle$$

Thus, the single spin state can be written as a linear superposition of theses two basis state,

$$|\psi\rangle = a(0)|0\rangle + a(1)|1\rangle$$
,

where a(0) and a(1) are the coefficient of the amplitude of each state.

► Furthermore, a N-spin system is made up of 2^N state vectors and it can be written as

$$|\Psi\rangle = a(00...0)|00...0\rangle + a(00...1)|00...1\rangle \cdots + a(11...1)|11...1\rangle$$

Appendix: The Full Diagonalisation method

$$\Psi(t+ au) = \expigg(-iH(rac{t+ au}{2}) auigg)\Psi(t).$$

By diagonalisation, the time evolution can be calculated as

$$U(\tau) = exp(-i\tau H) = Vexp(-i\tau \Lambda)V^{\dagger}.$$

- ► The main limitation comes from the size of the quantum system.
- This approach serves mostly as a tool to validate the correctness of other algorithm when solving a time-dependent Schrödinger equation.

Appendix: The Suzuki-Trotter Product Formula Approach

- ► The Suzuki-Trotter product formula approach can handle a larger quantum system than the full diagonalisation method does.
- Suzuki-Trotter product formula approximate a unitary matrix exponentials by decomposing the matrix properly, that is

$$U(t) = \exp(-itH)$$

$$= \exp(-it(H_1 + H_2 + \dots + H_K))$$

$$= \lim_{m \to \infty} (\prod_{k=1}^K \exp(-itH_k/m))^m$$

► The crucial step of this approach is to choose H_k properly in a way that it is easy enough to calculate there matrix exponential efficiently.

Appendix: The Suzuki-Trotter Product Formula Approach and The Full Diaganolisation Method

Appendix: The Suzuki-Trotter Product Formula Approach and the Full Diaganolisation Method

Appendix: The Energy Spectrum and the Effect of Minimum Gap

Appendix: Canonical Ensemble

An observable A can be calculated by going through all energy eigenstate of the heat bath as following:

$$\ket{\Psi(t)} = e^{-iHt} \ket{E_B} \ket{S'}$$
 $\langle A(t)
angle = \operatorname{Tr} A(t)
ho_B
ho_S = \sum_B rac{e^{(\beta E_B)}}{Z} raket{\Psi(t)} A \ket{\Psi(t)}$

Appendix: The Random Sampling Method

Based on the hypothesis that with random sampling one can approximate the solution of a time-dependent Schrödinger Equation by solving a sample of randomly chosen initial state.

$$\mathbf{Tr} A = \sum_{n=1}^{D} \langle \Psi_n | A | \Psi_n \rangle$$

Then a random vector $|\phi\rangle$ can be constructed by choosing D complex random numbers with which mean is 0.

$$|\phi\rangle = \sum_{n=1}^{D} c_n |\Psi_n\rangle$$
, with $c_n \equiv f_n + ig_n$

Appendix: The Random Sampling Method

It follows that

$$\langle \phi | A | \phi
angle = \sum_{m,n=1}^{D} c_{m}^{\star} c_{n} \langle \Psi_{m} | A | \Psi_{n}
angle$$

It is possible to increase the accuracy by generate several samplings. If S realisations are sampled and then averaged out, it yields

$$\frac{1}{S}\sum_{p=1}^{S}\left\langle \phi_{p}|A|\phi_{p}\right\rangle = \frac{1}{S}\sum_{p=1}^{S}\sum_{m,n=1}^{D}c_{m,p}^{\star}c_{n,p}\left\langle \Psi_{m,p}|A|\Psi_{n,p}\right\rangle$$

Appendix: The Random Sampling Method

If there is no correlation between the random numbers in different realisation, and the random number f_n and g_n are drawn from an even and symmetric probability distribution, the argument can further be made as

$$\lim_{S \to \infty} \frac{1}{S} \sum_{\rho=1}^{S} \langle \phi_{\rho} | A | \phi_{\rho} \rangle = E(|c|^{2}) \sum_{n=1}^{D} \langle \Psi_{n} | A | \Psi_{n} \rangle$$

$$= E(|c|^{2}) Tr A,$$

where $E(\cdot)$ is the expectation value based on the probability distribution used to draw c_n .

