# KINTEX-7 开发平台 用户手册

**AX7325B** 开发板





# 一、文档版本控制

| 文档版本   | 修改内容记录 |
|--------|--------|
| REV1.0 | 创建文档   |
|        |        |
|        |        |
|        |        |
|        |        |
|        |        |
|        |        |



# 目录

| —,  | 文档版本控制       | 2  |
|-----|--------------|----|
| _、  | 开发板简介        | 5  |
| _、  | FPGA 芯片      | 8  |
| 三、  | DDR3 DRAM    | 9  |
| 四、  | SODIMM 内存条接口 | 14 |
| 五、  | QSPI Flash   | 20 |
| 六、  | 时钟配置         | 21 |
| 七、  | USB 转串口      | 22 |
| 八、  | SFP 光纤接口     | 23 |
| 九、  | QSFP+光纤接口    | 26 |
| 十、  | PCIe 插槽      | 28 |
| +-, | 温度传感器        | 30 |
| +=、 | SD 卡槽        | 31 |
| 十三、 | FMC 连接器      | 32 |
| 十四、 | 40 针扩展口      | 36 |
| 十五、 | LED 灯        | 37 |
| 十六、 | 复位按键和用户按键    | 39 |
| 十七、 | JTAG 调试口     | 40 |
| 十八、 | 电源           | 41 |
| 十九、 | 风扇           | 42 |
| -+  | 结构尺寸图        | 43 |



芯驿电子科技(上海)有限公司基于 XILINX KINTEX-7 开发平台的开发板(型号: AX7325B)2022款正式发布了正式发布了,为了让您对此开发平台可以快速了解,我们编写了此用户手册。

这款 AX7325B FPGA 开发平台使用 XILINX 的 KINTEX-7 芯片 XC7K325 的解决方案, FPGA 开发板挂载了 4 片 512MB 的高速 DDR3 SDRAM 芯片,另外板上带有一个 SODIMM 接口用于扩展 DDR3 的内存条。FPGA 芯片配置使用 1 片 128Mb 的 QSPI FLASH 芯片。

外围电路方面我们为用户扩展了丰富的接口,比如1个PCIex8接口、4路10GSFP光纤接口、1路40G的QSPF+光纤接口、1路UART串口接口、1路SD卡接口、1个FMC扩展接口、一个40针的扩展口等等。满足用户各种高速数据交换,数据存储,视频传输处理以及工业控制的要求,是一款"专业级"的FPGA开发平台。为高速数据传输和交换,数据处理的前期验证和后期应用提供了可能。相信这样的一款产品非常适合从事FPGA开发的学生、工程师等群体。





## 一、 开发板简介

在这里,对这款 AX7325B FPGA 开发平台进行简单的功能介绍。

AX7325B 开发板主要由 KINTEX-7 的主芯片,4个 DDR3,1个内存条 SODIMM 接口,1个 QSPI FLASH 和一些外设接口组成。开发板采用 Xilinx 公司的 KINTEX-7 系列的芯片,型号为 XC7K325TFFG900。在 FPGA 芯片的 HP 端口上连接了4片 DDR3 存储芯片,每片 DDR3 容量高达 512M 字节,组成 64位的数据带宽。在 FPGA 的 HR 端口上连接了一个 SODIMM 接口,可以装配 64位的 DDR3 内存条。1个128Mb的 QSPI FLASH 用来静态存储 FPGA 芯片的配置文件或者其它用户数据。

AX7325B 开发板扩展了丰富的外围接口 其中包含 1 个 PCIex8 接口、4 路 10G 光纤 SFP接口、1 路 40G 光纤 QSFP+接口、1 路 UART 串口接口、1 路 SD 卡接口、1 个 FMC 扩展接口、1 个 40 针扩展口和一些按键 LED。

下图为整个开发系统的结构示意图:





通过这个示意图,我们可以看到,我们这个开发平台所能含有的接口和功能。

- Xilinx KINTEX-7 FPGA 芯片 XC7K325TFFG900。
- DDR3

带有四片大容量的 512M 字节 (共 2GB) 高速 DDR3 SDRAM。可作为 FPGA 的数据存储,图像分析缓存,数据处理。

- QSPI FLASH
- 一片 128Mbit 的 QSPI FLASH 存储芯片, 可用作 FPGA 芯片配置文件和用户数据的存储;
- PCIe x8 接口
- 一路标准的 PCIEx8 接口用于和电脑主板的 PCIE 通信, 支持 PCI Express 2.0 标准,单通道通信速率可高达 5Gbps。
  - 4 路 SFP 光纤接口

FPGA 的 GTX 收发器的 4 路高速收发器连接到 4 个光模块的发送和接收,实现 4 路高速的光纤通信接口。每路的光纤数据通信接收和发送的速度高达 10Gb/s。

● 1 路 QSFP+光纤接口

FPGA的GTX收发器的4路高速收发器连接到1个QSPF+的光模块接口,实现QSFP+的光纤通信接口。光纤数据通信接收和发送的速度高达40Gb/s。

● DDR3 内存条接口

1 个 SODIMM 内存条接口用于装配 DDR3 内存条,接口的 DDR3 数据宽度为 64 位。内存条 SODIMM 接口为开发板扩展更高的存储空间和数据带宽。

● USB Uart 接口

1 路 Uart 转 USB 接口,用于和电脑通信,方便用户调试。串口芯片采用 Silicon Labs CP2102GM 的 USB-UAR 芯片, USB 接口采用 MINI USB 接口。

● Micro SD 卡座

1路 Micro SD 卡座,用于 FPGA 对 SD 卡的数据读写和存储。

●温湿度传感器

板载一片温湿度传感器芯片 LM75,用于检测板子周围环境的温度和湿度。

● FMC 扩展口

1 个标准的 FMC LPC 的扩展口,可以外接 XILINX 或者我们黑金的各种 FMC 模块(HDMI输入输出模块,双目摄像头模块,高速 AD 模块等等)。

● JTAG 调试口

1个10针2.54mm标准的JTAG口,用于FPGA程序的下载和调试,用户可以通过XILINX下载器对FPGA进行调试和下载。

● 时钟



板载总共 4 个差分晶振, 2 个为 200Mhz 的差分晶振, 1 个为 156.25Mhz, 另一个为 125Mhz。

- LED灯
- 6 个发光二极管 LED, 1 个电源指示灯; 1 个 DONE 配置指示灯; 4 个 FPGA 控制指示灯。
- 按键
- 2个用户按键,连接到FPGA的普通IO。



## 二、 FPGA 芯片

开发板使用的是 Xilinx 公司的 KINTEX-7 FPGA 芯片,型号为 XC7K325T-2FFG900I。速度等级为 2,温度等级为工业级。此型号为 FGG900 封装,900 个引脚,引脚间距为 1.0mm。 Xilinx KINTEX-7 FPGA 的芯片命名规则如下图 2-1 所示:



图2-1 KINTEX-7 FPGA型号命名规则定义





图2-3 KINTEX-7 FPGA芯片实物

#### 其中 FPGA 芯片 XC7K325T 的主要参数如下所示:

| 名称                  | 具体参数    |
|---------------------|---------|
| 逻辑单元 Logic Cells    | 326,080 |
| 查找表(Slices)         | 50,950  |
| 触发器(CLB flip-flops) | 407,600 |



| Block RAM ( kb ) 大小       | 16,020             |
|---------------------------|--------------------|
| DSP 处理单元 ( DSP48 Slices ) | 840                |
| PCIe Gen2                 | 1                  |
| 模数转换/XADC                 | 1个12bit, 1Mbps AD  |
| GTP Transceiver           | 16个 , 12.5Gb/s max |
| 速度等级                      | -2                 |
| 温度等级                      | 工业级                |

#### FPGA 供电系统

KINTEX-7 FPGA 电源有 Vccint, Vccbram, Vccaux, Vccaux, o Vcco, Vmgtavcc和 Vmgtavtt。Vccint为 FPGA 内核供电引脚 需接 1.0V;Vccbram,为 FPGA Block RAM 的供电引脚 接 1.0V;Vccaux和 Vccaux」可为 FPGA 辅助供电引脚,接 1.8V; VCCO为 FPGA 的各个 BANK 的电压,包含BANK0,BANK12~18, BANK32~34,在 AX7325B 开发板上,BANK12~13 是连接到 FMC连接器,VCCO的默认电压为 2.5V,使得 IO 支持 LVDS 接口。BANK16~18,BANK33~35因为需要连接 DDR3 内存条和 DDR3 芯片,BANK 的电压连接的是 1.5V,其它 BANK 的电压都是 3.3V。Vmgtavcc为 FPGA 内部 GTP 收发器的供电电压,接 1.0V,Vmgtavtt 为 GTP 收发器的端接电压,接 1.2V。

KINTEX-7 FPGA 系统要求上电顺序分别为先 Vccint 供电,再是 Vccbram,然后是 Vccaux,最后为 Vcco。如果 VCCINT 和 VCCBRAM 的电压一样,可以同时上电。断电的顺序则相反。GTP 收发器的上电顺序为 Vccint,再是 Vmgtavcc,然后是 Vmgtavtt。如果 VCCINT 和 Vmgtavcc的电压一样,可以同时上电。断电顺序刚好和上电顺序相反。

## 三、 DDR3 DRAM

AX7325B开发板上配有四片Micron(美光)的512MB的DDR3芯片,型号为MT41K256M16HA-125(兼容MT41J256M16HA-125)。四片DDR3 SDRAM组成64bit的总线宽度。因为4片DDR3芯片连接到FPGA的HP口,DDR3 SDRAM的最高运行速度可达800MHz(数据速率1600Mbps),四片DDR3存储系统直接连接到了FPGA的BANK32,BANK33,BANK34的接口上。DDR3 SDRAM的具体配置如下表3-1所示。

表3-1 DDR3 SDRAM配置

| 位号             | 芯片型号              | 容量           | 厂家     |
|----------------|-------------------|--------------|--------|
| U9,U12,U17,U19 | MT41K256M16HA-125 | 256M x 16bit | Micron |



| 或                 |  |
|-------------------|--|
| MT41J256M16HA-125 |  |

DDR3 的硬件设计需要严格考虑信号完整性,我们在电路设计和 PCB 设计的时候已经充分考虑了匹配电阻/终端电阻,走线阻抗控制,走线等长控制, 保证 DDR3 的高速稳定的工作。 FPGA 和 DDR3 DRAM 的硬件连接方式如图 3-1 所示:



图3-1 DDR3 DRAM原理图部分

图 3-2 为开发板的 4 片 DDR3 DRAM 实物图





图 3-2 4 片 DDR3 DRAM 实物图

## 4片 DDR3 DRAM 引脚分配:

| 信号名称     | FPGA 引脚名           | FPGA 引脚号 |
|----------|--------------------|----------|
| DDR3_D0  | IO_L13P_T2_MRCC_32 | AD18     |
| DDR3_D1  | IO_L16N_T2_32      | AB18     |
| DDR3_D2  | IO_L14P_T2_SRCC_32 | AD17     |
| DDR3_D3  | IO_L17P_T2_32      | AB19     |
| DDR3_D4  | IO_L14N_T2_SRCC_32 | AD16     |
| DDR3_D5  | IO_L17N_T2_32      | AC19     |
| DDR3_D6  | IO_L13N_T2_MRCC_32 | AE18     |
| DDR3_D7  | IO_L18P_T2_32      | AB17     |
| DDR3_D8  | IO_L8P_T1_32       | AG19     |
| DDR3_D9  | IO_L7N_T1_32       | AK19     |
| DDR3_D10 | IO_L10P_T1_32      | AD19     |
| DDR3_D11 | IO_L7P_T1_32       | AJ19     |
| DDR3_D12 | IO_L11P_T1_SRCC_32 | AF18     |
| DDR3_D13 | IO_L8N_T1_32       | AH19     |



| DDR3_D14     | IO_L10N_T1_32      | AE19 |
|--------------|--------------------|------|
| <br>DDR3_D15 | IO_L11N_T1_SRCC_32 | AG18 |
| <br>DDR3_D16 | IO_L1N_T0_32       | AK15 |
| DDR3_D17     | IO_L5N_T0_32       | AJ17 |
| DDR3_D18     | IO_L2N_T0_32       | AH15 |
| DDR3_D19     | IO_L4P_T0_32       | AF15 |
| DDR3_D20     | IO_L4N_T0_32       | AG14 |
| DDR3_D21     | IO_L5P_T0_32       | AH17 |
| DDR3_D22     | IO_L2P_T0_32       | AG15 |
| DDR3_D23     | IO_L1P_T0_32       | AK16 |
| DDR3_D24     | IO_L19P_T3_32      | AE15 |
| DDR3_D25     | IO_L24P_T3_32      | Y16  |
| DDR3_D26     | IO_L22P_T3_32      | AC14 |
| DDR3_D27     | IO_L20P_T3_32      | AA15 |
| DDR3_D28     | IO_L23P_T3_32      | AA17 |
| DDR3_D29     | IO_L22N_T3_32      | AD14 |
| DDR3_D30     | IO_L23N_T3_32      | AA16 |
| DDR3_D31     | IO_L20N_T3_32      | AB15 |
| DDR3_D32     | IO_L22N_T3_34      | AK6  |
| DDR3_D33     | IO_L23P_T3_34      | AJ8  |
| DDR3_D34     | IO_L22P_T3_34      | AJ6  |
| DDR3_D35     | IO_L19P_T3_34      | AF8  |
| DDR3_D36     | IO_L24N_T3_34      | AK4  |
| DDR3_D37     | IO_L23N_T3_34      | AK8  |
| DDR3_D38     | IO_L24P_T3_34      | AK5  |
| DDR3_D39     | IO_L20N_T3_34      | AG7  |
| DDR3_D40     | IO_L10P_T1_34      | AE4  |
| DDR3_D41     | IO_L8N_T1_34       | AF1  |
| DDR3_D42     | IO_L11P_T1_SRCC_34 | AE5  |
| DDR3_D43     | IO_L8P_T1_34       | AE1  |
| DDR3_D44     | IO_L12P_T1_MRCC_34 | AF6  |
| DDR3_D45     | IO_L10N_T1_34      | AE3  |
| DDR3_D46     | IO_L11N_T1_SRCC_34 | AF5  |
| DDR3_D47     | IO_L7N_T1_34       | AF2  |
| DDR3_D48     | IO_L13P_T2_MRCC_34 | AH4  |



| DDR3_D49     | IO_L16N_T2_34      | AJ2  |
|--------------|--------------------|------|
| DDR3_D50     | IO_L14N_T2_SRCC_34 | AH5  |
| DDR3_D51     | IO_L13N_T2_MRCC_34 | AJ4  |
| DDR3_D52     | IO_L16P_T2_34      | AH2  |
| DDR3_D53     | IO_L17N_T2_34      | AK1  |
| DDR3_D54     | IO_L14P_T2_SRCC_34 | AH6  |
| DDR3_D55     | IO_L17P_T2_34      | AJ1  |
| DDR3_D56     | IO_L2P_T0_34       | AC2  |
| DDR3_D57     | IO_L4P_T0_34       | AC5  |
| DDR3_D58     | IO_L1N_T0_34       | AD3  |
| DDR3_D59     | IO_L6P_T0_34       | AC7  |
| <br>DDR3_D60 | IO_L5N_T0_34       | AE6  |
| DDR3_D61     | IO_L5P_T0_34       | AD6  |
| DDR3_D62     | IO_L2N_T0_34       | AC1  |
| DDR3_D63     | IO_L4N_T0_34       | AC4  |
| DDR3_DM0     | IO_L16P_T2_32      | AA18 |
| DDR3_DM1     | IO_L12P_T1_MRCC_32 | AF17 |
| DDR3_DM2     | IO_L6P_T0_32       | AE16 |
| DDR3_DM3     | IO_L24N_T3_32      | Y15  |
| DDR3_DM4     | IO_L20P_T3_34      | AF7  |
| DDR3_DM5     | IO_L7P_T1_34       | AF3  |
| DDR3_DM6     | IO_L18P_T2_34      | AJ3  |
| DDR3_DM7     | IO_L1P_T0_34       | AD4  |
| DDR3_DQS0_P  | IO_L15P_T2_DQS_32  | Y19  |
| DDR3_DQS0_N  | IO_L15N_T2_DQS_32  | Y18  |
| DDR3_DQS1_P  | IO_L9P_T1_DQS_32   | AJ18 |
| DDR3_DQS1_N  | IO_L9N_T1_DQS_32   | AK18 |
| DDR3_DQS2_P  | IO_L3P_T0_DQS_32   | AH16 |
| DDR3_DQS2_N  | IO_L3N_T0_DQS_32   | AJ16 |
| DDR3_DQS3_P  | IO_L21P_T3_DQS_32  | AC16 |
| DDR3_DQS3_N  | IO_L21N_T3_DQS_32  | AC15 |
| DDR3_DQS4_P  | IO_L21P_T3_DQS_34  | AH7  |
| DDR3_DQS4_N  | IO_L21N_T3_DQS_34  | AJ7  |
| DDR3_DQS5_P  | IO_L9P_T1_DQS_34   | AG4  |
| DDR3_DQS5_N  | IO_L9N_T1_DQS_34   | AG3  |



| DDR3_DQS6_P | IO_L15P_T2_DQS_34  | AG2  |
|-------------|--------------------|------|
| DDR3_DQS6_N | IO_L15N_T2_DQS_34  | AH1  |
| DDR3_DQS7_P | IO_L3P_T0_DQS_34   | AD2  |
| DDR3_DQS7_N | IO_L3N_T0_DQS_34   | AD1  |
| DDR3_A0     | IO_L1P_T0_33       | AA12 |
| DDR3_A1     | IO_L1N_T0_33       | AB12 |
| DDR3_A2     | IO_L2P_T0_33       | AA8  |
| DDR3_A3     | IO_L2N_T0_33       | AB8  |
| DDR3_A4     | IO_L3P_T0_DQS_33   | AB9  |
| DDR3_A5     | IO_L3N_T0_DQS_33   | AC9  |
| DDR3_A6     | IO_L6N_T0_VREF_33  | AB13 |
| DDR3_A7     | IO_L4N_T0_33       | Y10  |
| DDR3_A8     | IO_L5P_T0_33       | AA11 |
| DDR3_A9     | IO_L5N_T0_33       | AA10 |
| DDR3_A10    | IO_L6P_T0_33       | AA13 |
| DDR3_A11    | IO_L8P_T1_33       | AD8  |
| DDR3_A12    | IO_L7P_T1_33       | AB10 |
| DDR3_A13    | IO_L7N_T1_33       | AC10 |
| DDR3_A14    | IO_L15P_T2_DQS_33  | AJ9  |
| DDR3_BA0    | IO_L8N_T1_33       | AE8  |
| DDR3_BA1    | IO_L9P_T1_DQS_33   | AC12 |
| DDR3_BA2    | IO_L9N_T1_DQS_33   | AC11 |
| DDR3_WE     | IO_L10P_T1_33      | AD9  |
| DDR3_RAS    | IO_L10N_T1_33      | AE9  |
| DDR3_CAS    | IO_L11P_T1_SRCC_33 | AE11 |
| DDR3_S0     | IO_L11N_T1_SRCC_33 | AF11 |
| DDR3_CKE0   | IO_L12P_T1_MRCC_33 | AD12 |
| DDR3_ODT    | IO_L12N_T1_MRCC_33 | AD11 |
| DDR3_CLK0_P | IO_L13P_T2_MRCC_33 | AG10 |
| DDR3_CLK0_N | IO_L13N_T2_MRCC_33 | AH10 |
| DDR3_RESET  | IO_L4P_T0_33       | Y11  |

# 四、 SODIMM 内存条接口

AX7325B 开发板上有一个 204PIN 的 SODIMM 内存条插座,用来扩展开发板的存储空



间和数据带宽,支持最高 8GB 的 Micron(美光) SODIMM DDR3 内存条。FPGA 和 SODIMM DDR3 内存条的数据宽度为 64bit 的总线宽度,最高运行速度可达 400MHz(数据速率 800Mbps)。默认开发板没有送 SODIMM 内存条,用户测试的话,需要自己准备,下图为我们测试用的 2GB 的 Micron(美光) SODIMM 内存条



图 4-1 SODIMM 内存条测试样品

SODIMM 内存条接口直接连接到了 FPGA 的 BANK16, BANK17, BANK18 的接口上, FPGA 和 SODIMM DDR3 的硬件连接方式如图 4-2 所示:



图 4-2 SODIMM 接口连接示意图





## 图 4-3 为开发板的 SODIMM 插槽的接口实物图

图 4-3 SODIMM 插槽实物图

## SODIMM 插槽 FPGA 引脚分配:

| 信号名称          | FPGA 引脚名           | FPGA 引脚号 |
|---------------|--------------------|----------|
| DIMM_DDR3_D0  | IO_L2P_T0_18       | L15      |
| DIMM_DDR3_D1  | IO_L5P_T0_18       | K14      |
| DIMM_DDR3_D2  | IO_L5N_T0_18       | J14      |
| DIMM_DDR3_D3  | IO_L6P_T0_18       | L11      |
| DIMM_DDR3_D4  | IO_L2N_T0_18       | K15      |
| DIMM_DDR3_D5  | IO_L1P_T0_18       | L16      |
| DIMM_DDR3_D6  | IO_L4N_T0_18       | J13      |
| DIMM_DDR3_D7  | IO_L1N_T0_18       | K16      |
| DIMM_DDR3_D8  | IO_L8N_T1_18       | J12      |
| DIMM_DDR3_D9  | IO_L8P_T1_18       | J11      |
| DIMM_DDR3_D10 | IO_L7P_T1_18       | H15      |
| DIMM_DDR3_D11 | IO_L11N_T1_SRCC_18 | G14      |
| DIMM_DDR3_D12 | IO_L10P_T1_18      | H11      |
| DIMM_DDR3_D13 | IO_L10N_T1_18      | H12      |



| DIMM_DDR3_D14 | IO_L12P_T1_MRCC_18 | G13 |
|---------------|--------------------|-----|
| DIMM_DDR3_D15 | IO_L7N_T1_18       | G15 |
| DIMM_DDR3_D16 | IO_L13P_T2_MRCC_18 | D12 |
| DIMM_DDR3_D17 | IO_L17P_T2_18      | A11 |
| DIMM_DDR3_D18 | IO_L13N_T2_MRCC_18 | D13 |
| DIMM_DDR3_D19 | IO_L14N_T2_SRCC_18 | E13 |
| DIMM_DDR3_D20 | IO_L16P_T2_18      | F11 |
| DIMM_DDR3_D21 | IO_L16N_T2_18      | E11 |
| DIMM_DDR3_D22 | IO_L17N_T2_18      | A12 |
| DIMM_DDR3_D23 | IO_L14P_T2_SRCC_18 | F12 |
| DIMM_DDR3_D24 | IO_L22P_T3_18      | B13 |
| DIMM_DDR3_D25 | IO_L22N_T3_18      | A13 |
| DIMM_DDR3_D26 | IO_L23N_T3_18      | B15 |
| DIMM_DDR3_D27 | IO_L23P_T3_18      | C15 |
| DIMM_DDR3_D28 | IO_L24P_T3_18      | B14 |
| DIMM_DDR3_D29 | IO_L24N_T3_18      | A15 |
| DIMM_DDR3_D30 | IO_L20N_T3_18      | E15 |
| DIMM_DDR3_D31 | IO_L19P_T3_18      | F15 |
| DIMM_DDR3_D32 | IO_L1N_T0_16       | A23 |
| DIMM_DDR3_D33 | IO_L4N_T0_16       | D24 |
| DIMM_DDR3_D34 | IO_L4P_T0_16       | E24 |
| DIMM_DDR3_D35 | IO_L5N_T0_16       | E26 |
| DIMM_DDR3_D36 | IO_L2P_T0_16       | E23 |
| DIMM_DDR3_D37 | IO_L1P_T0_16       | B23 |
| DIMM_DDR3_D38 | IO_L2N_T0_16       | D23 |
| DIMM_DDR3_D39 | IO_L6P_T0_16       | G23 |
| DIMM_DDR3_D40 | IO_L8N_T1_16       | B24 |
| DIMM_DDR3_D41 | IO_L8P_T1_16       | C24 |
| DIMM_DDR3_D42 | IO_L11N_T1_SRCC_16 | C26 |
| DIMM_DDR3_D43 | IO_L7N_T1_16       | A27 |
| DIMM_DDR3_D44 | IO_L10P_T1_16      | A25 |
| DIMM_DDR3_D45 | IO_L10N_T1_16      | A26 |
| DIMM_DDR3_D46 | IO_L7P_T1_16       | B27 |
| DIMM_DDR3_D47 | IO_L11P_T1_SRCC_16 | D26 |
| DIMM_DDR3_D48 | IO_L13P_T2_MRCC_16 | D27 |
|               |                    |     |



| DIMM_DDR3_D49    | IO_L17N_T2_16      | A30 |
|------------------|--------------------|-----|
| DIMM_DDR3_D50    | IO_L16N_T2_16      | C30 |
| DIMM_DDR3_D51    | IO_L16P_T2_16      | D29 |
| DIMM_DDR3_D52    | IO_L13N_T2_MRCC_16 | C27 |
| DIMM_DDR3_D53    | IO_L17P_T2_16      | B30 |
| DIMM_DDR3_D54    | IO_L18P_T2_16      | E29 |
| DIMM_DDR3_D55    | IO_L14P_T2_SRCC_16 | E28 |
| DIMM_DDR3_D56    | IO_L20N_T3_16      | F28 |
| DIMM_DDR3_D57    | IO_L22N_T3_16      | F30 |
| DIMM_DDR3_D58    | IO_L24P_T3_16      | H30 |
| DIMM_DDR3_D59    | IO_L20P_T3_16      | G28 |
| DIMM_DDR3_D60    | IO_L19P_T3_16      | H24 |
| DIMM_DDR3_D61    | IO_L22P_T3_16      | G29 |
| DIMM_DDR3_D62    | IO_L23N_T3_16      | H27 |
| DIMM_DDR3_D63    | IO_L23P_T3_16      | H26 |
| DIMM_DDR3_DM0    | IO_L4P_T0_18       | K13 |
| DIMM_DDR3_DM1    | IO_L11P_T1_SRCC_18 | H14 |
| DIMM_DDR3_DM2    | IO_L18P_T2_18      | D11 |
| DIMM_DDR3_DM3    | IO_L20P_T3_18      | E14 |
| DIMM_DDR3_DM4    | IO_L5P_T0_16       | F26 |
| DIMM_DDR3_DM5    | IO_L12P_T1_MRCC_16 | C25 |
| DIMM_DDR3_DM6    | IO_L14N_T2_SRCC_16 | D28 |
| DIMM_DDR3_DM7    | IO_L24N_T3_16      | G30 |
| DIMM_DDR3_DQS0_P | IO_L3P_T0_DQS_18   | L12 |
| DIMM_DDR3_DQS0_N | IO_L3N_T0_DQS_18   | L13 |
| DIMM_DDR3_DQS1_P | IO_L9P_T1_DQS_18   | J16 |
| DIMM_DDR3_DQS1_N | IO_L9N_T1_DQS_18   | H16 |
| DIMM_DDR3_DQS2_P | IO_L15P_T2_DQS_18  | C12 |
| DIMM_DDR3_DQS2_N | IO_L15N_T2_DQS_18  | B12 |
| DIMM_DDR3_DQS3_P | IO_L21P_T3_DQS_18  | D14 |
| DIMM_DDR3_DQS3_N | IO_L21N_T3_DQS_18  | C14 |
| DIMM_DDR3_DQS4_P | IO_L3P_T0_DQS_16   | F25 |
| DIMM_DDR3_DQS4_N | IO_L3N_T0_DQS_16   | E25 |
| DIMM_DDR3_DQS5_P | IO_L9P_T1_DQS_16   | B28 |
| DIMM_DDR3_DQS5_N | IO_L9N_T1_DQS_16   | A28 |



| DIMM_DDR3_DQS6_P | IO_L15P_T2_DQS_16  | C29 |
|------------------|--------------------|-----|
| DIMM_DDR3_DQS6_N | IO_L15N_T2_DQS_16  | B29 |
| DIMM_DDR3_DQS7_P | IO_L21P_T3_DQS_16  | G27 |
| DIMM_DDR3_DQS7_N | IO_L21N_T3_DQS_16  | F27 |
| DIMM_DDR3_A0     | IO_L11P_T1_SRCC_17 | F21 |
| DIMM_DDR3_A1     | IO_L8P_T1_17       | D21 |
| DIMM_DDR3_A2     | IO_L11N_T1_SRCC_17 | E21 |
| DIMM_DDR3_A3     | IO_L16N_T2_17      | F18 |
| DIMM_DDR3_A4     | IO_L3N_T0_DQS_17   | H17 |
| DIMM_DDR3_A5     | IO_L17N_T2_17      | B17 |
| DIMM_DDR3_A6     | IO_L4P_T0_17       | J19 |
| DIMM_DDR3_A7     | IO_L17P_T2_17      | C17 |
| DIMM_DDR3_A8     | IO_L1N_T0_17       | J18 |
| DIMM_DDR3_A9     | IO_L15N_T2_DQS_17  | C16 |
| DIMM_DDR3_A10    | IO_L6P_T0_17       | K19 |
| DIMM_DDR3_A11    | IO_L16P_T2_17      | G18 |
| DIMM_DDR3_A12    | IO_L1P_T0_17       | K18 |
| DIMM_DDR3_A13    | IO_L9P_T1_DQS_17   | G22 |
| DIMM_DDR3_A14    | IO_L15P_T2_DQS_17  | D16 |
| DIMM_DDR3_A15    | IO_L5N_T0_17       | L18 |
| DIMM_DDR3_BA0    | IO_L4N_T0_17       | H19 |
| DIMM_DDR3_BA1    | IO_L2P_T0_17       | H20 |
| DIMM_DDR3_BA2    | IO_L3P_T0_DQS_17   | J17 |
| DIMM_DDR3_WE     | IO_L7P_T1_17       | H21 |
| DIMM_DDR3_RAS    | IO_L2N_T0_17       | G20 |
| DIMM_DDR3_CAS    | IO_L6N_T0_VREF_17  | K20 |
| DIMM_DDR3_S0     | IO_L9N_T1_DQS_17   | F22 |
| DIMM_DDR3_S1     | IO_L8N_T1_17       | C21 |
| DIMM_DDR3_CKE0   | IO_L5P_T0_17       | L17 |
| DIMM_DDR3_CKE1   | IO_L18P_T2_17      | G17 |
| DIMM_DDR3_ODT0   | IO_L10P_T1_17      | D22 |
| DIMM_DDR3_ODT1   | IO_L7N_T1_17       | H22 |
| DIMM_DDR3_CLK0_P | IO_L12P_T1_MRCC_17 | D17 |
| DIMM_DDR3_CLK0_N | IO_L12N_T1_MRCC_17 | D18 |
| DIMM_DDR3_CLK1_P | IO_L14P_T2_SRCC_17 | E19 |
|                  |                    |     |



| DIMM_DDR3_CLK1_N | IO_L14N_T2_SRCC_17 | D19 |
|------------------|--------------------|-----|
| DIMM_DDR3_RESET  | IO_L18N_T2_17      | F17 |

# 五、 QSPI Flash

开发板配有一片 128MBit 大小的 Quad-SPI FLASH 芯片,型号为 N25Q128A,它使用 3.3V CMOS 电压标准。由于 QSPI FLASH 的非易失特性,在使用中,它可以存储 FPGA 的配置 Bin 文件以及其它的用户数据文件。QSPI FLASH 的具体型号和相关参数见表 5-1。

| 位 <del>号</del> | 芯片类型     | 容量      | 厂家      |
|----------------|----------|---------|---------|
| U7             | N25Q128A | 128Mbit | Numonyx |

表5-1 QSPI Flash的型号和参数

QSPI FLASH 连接到 FPGA 芯片的 BANK0 和 BANK14 的专用管脚上,其中时钟管脚连接到 BANK0 的 CCLK0 上,其它数据和片选信号分别连接到 BANK14 的 D00~D03 和 FCS管脚上。图 5-1 为 QSPI Flash 和 FPGA 芯片的连接示意图。

FPGA

BANK
14

FPGA\_CCLK

QSPI FLASH
(N25Q128A)

FLASH\_D0~FLASH\_D3

图 5-1 QSPI Flash 连接示意图

图 5-2 为 QSPI Flash 的实物图



5-2 为 QSPI Flash 的实物图

#### 配置芯片引脚分配:

| 信号名称       | FPGA 引脚名              | FPGA 引脚号 |
|------------|-----------------------|----------|
| FPGA_CCLK  | CCLK_0                | B10      |
| FLASH_CE_B | IO_L6P_T0_FCS_B_14    | U19      |
| FLASH_D0   | IO_L1P_T0_D00_MOSI_14 | P24      |
| FLASH_D1   | IO_L1N_T0_D01_DIN_14  | R25      |
| FLASH_D2   | IO_L2P_T0_D02_14      | R20      |
| FLASH_D3   | IO_L2N_T0_D03_14      | R21      |

## 六、 时钟配置

AX7325B 开发板上为 FPGA 系统提供了 4 路差分有源时钟。 2 路 200Mhz 差分时钟分别连接到 BANK17,BANK33,为 DDR 控制器提供参考时钟。另外 2 路分别为 125Mhz 和 156.25Mhz 差分时钟连接到 BANK117 和 BANK118,为高速收发器 GTX 部分提供差分时钟源。时钟电路设计的示意图如下图 6-1 所示:





#### 图 6-1 时钟源设计

#### 时钟源 FPGA 引脚分配:

| 信号名称       | FPGA 引脚 |
|------------|---------|
| SYS_CLK_P  | AE10    |
| SYS_CLK_N  | AF10    |
| CLK0_P     | F20     |
| CLK0_N     | E20     |
| SFP_CLK0_P | G8      |
| SFP_CLK0_N | G7      |
| QSFP_CLK_P | C8      |
| QSFP_CLK_N | C7      |

# 七、 USB 转串口

开发板上配备了一个 Uart 转 USB 接口,用于开发板串口通信和调试。转换芯片采用 Silicon Labs CP2102GM 的 USB-UAR 芯片, CP2102 串口芯片和 FPGA 之间用一个电平转换 芯片连接,来适应不同的 FPGA BANK 电压。USB 接口采用 MINI USB 接口,可以用一根 USB



线将它连接到上 PC 的 USB 口进行开发板的串口数据通信 。 USB Uart 电路设计的示意图如下图所示:



7-1 USB 转串口示意图

#### 下图为 USB 转串口的实物图



7-2 USB 转串口实物图

#### USB 转串口的 FPGA 引脚分配:

| 信号名称    | FPGA 引脚名     | FPGA 引脚号 | 备注       |
|---------|--------------|----------|----------|
| UART_RX | PS_MIO13_500 | AJ26     | Uart数据输入 |
| UART_TX | PS_MIO12_500 | AK26     | Uart数据输出 |

## 八、 SFP 光纤接口

AX7325B 开发板上有 4 路 SFP 光纤接口 ,用户可以购买 SFP 光模块(市场上 1.25G ,2.5G , 10G 光模块)插入到这 4 个光纤接口中进行光纤数据通信。4 路光纤接口分别跟 FPGA 的 BANK117 的 GTX 收发器的 4 路 RX/TX 相连接 ,TX 信号和 RX 信号都是以差分信号方式通过隔直电容连接 FPGA 和光模块 ,每路 TX 发送和 RX 接收数据速率高达 10Gb/s。BANK117 的 GTX 收发器的参考时钟由是 156.25Mhz 差分晶振提供。

FPGA和SFP光纤设计示意图如下图8-1所示:





图 8-1 光纤设计示意图

四路光纤接口在扩展板的实物图如下图 8-2 所示:



图 8-2 四路光纤通信接口实物图

#### 第1路光纤接口 FPGA 引脚分配如下:

| 网络名称 FPGA | 引脚 |
|-----------|----|
|-----------|----|



| SFP1_TX_P   | K2  | SFP 光模块数据发送 Positive    |
|-------------|-----|-------------------------|
| SFP1_TX_N   | K1  | SFP 光模块数据发送 Negative    |
| SFP1_RX_P   | K6  | SFP 光模块数据接收 Positive    |
| SFP1_RX_N   | K5  | SFP 光模块数据接收 Negative    |
| SFP1_TX_DIS | T28 | SFP 光模块光发射禁止,高有效        |
| SFP1_LOSS   | R28 | SFP 光接收 LOSS 信号 , 高表示没有 |
|             |     | 接收到光信号                  |

## 第 2 路光纤接口 FPGA 引脚分配如下:

| 网络名称        | FPGA 引脚 | 备注                      |
|-------------|---------|-------------------------|
| SFP2_TX_P   | J4      | SFP 光模块数据发送 Positive    |
| SFP2_TX_N   | J3      | SFP 光模块数据发送 Negative    |
| SFP2_RX_P   | Н6      | SFP 光模块数据接收 Positive    |
| SFP2_RX_N   | H5      | SFP 光模块数据接收 Negative    |
| SFP2_TX_DIS | T28     | SFP 光模块光发射禁止,高有效        |
| SFP2_LOSS   | T26     | SFP 光接收 LOSS 信号 , 高表示没有 |
|             |         | 接收到光信号                  |

## 第 3 路光纤接口 FPGA 引脚分配如下:

| 网络名称        | FPGA 引脚 | 备注                      |
|-------------|---------|-------------------------|
| SFP3_TX_P   | H2      | SFP 光模块数据发送 Positive    |
| SFP3_TX_N   | H1      | SFP 光模块数据发送 Negative    |
| SFP3_RX_P   | G4      | SFP 光模块数据接收 Positive    |
| SFP3_RX_N   | G3      | SFP 光模块数据接收 Negative    |
| SFP3_TX_DIS | U28     | SFP 光模块光发射禁止,高有效        |
| SFP3_LOSS   | U27     | SFP 光接收 LOSS 信号 , 高表示没有 |
|             |         | 接收到光信号                  |

#### 第 4 路光纤接口 FPGA 引脚分配如下:

| 网络名称      | FPGA 引脚 | 备注                   |
|-----------|---------|----------------------|
| SFP4_TX_P | F2      | SFP 光模块数据发送 Positive |
| SFP4_TX_N | F1      | SFP 光模块数据发送 Negative |



| SFP4_RX_P   | F6  | SFP 光模块数据接收 Positive   |  |
|-------------|-----|------------------------|--|
| SFP4_RX_N   | F5  | SFP 光模块数据接收 Negative   |  |
| SFP4_TX_DIS | U25 | SFP 光模块光发射禁止,高有效       |  |
| SFP4_LOSS   | A18 | SFP 光接收 LOSS 信号, 高表示没有 |  |
|             |     | 接收到光信号                 |  |

# 九、 QSFP+光纤接口

AX7325B 开发板上有一个四小体积可插入 QSFP+的光纤接口。光纤收发器集成了 4 传送通道和 4 接收通道,这种 4 通道的可插拔接口传输速率达到了 40Gbps。满足用户对更高密度的高速可插拔光纤通信解决方案。

QSFP+的光纤接口的收发信号直接跟 FPGA 的 BANK118 的 GTX 收发器相连接,光纤的 4 路 TX 信号和 RX 信号都是直接跟 GTX 的收发器连接,因为单路 GTX 的速率高达 10Gbps 带宽,所以 4 路 GTX 的速度可以高达 40Gbps。BANK118 的 GTX 收发器的参考时钟由 125M hz 差分晶振提供。

开发板的 QSFP+的光纤设计示意图如下图 9-1 所示, 其中光纤的控制信号连接到 FPGA的 BANK14。



图 9-1 QSFP+光纤设计示意图

QSFP+光纤接口在开发板上的实物图如下图 9-2 所示:



图 9-2 QSFP+光纤通信接口实物图

## QSFP+光纤接口 FPGA 引脚分配如下:

| 网络名称         | FPGA 引脚 | 备注                    |
|--------------|---------|-----------------------|
| QSFP1_TX_P   | D2      | QSFP+第一路数据发送 Positive |
| QSFP1_TX_N   | D1      | QSFP+第一路数据发送 Negative |
| QSFP2_TX_P   | B2      | QSFP+第二路数据发送 Positive |
| QSFP2_TX_N   | B1      | QSFP+第二路数据发送 Negative |
| QSFP3_TX_P   | C4      | QSFP+第三路数据发送 Positive |
| QSFP3_TX_N   | C3      | QSFP+第三路数据发送 Negative |
| QSFP4_TX_P   | A4      | QSFP+第四路数据发送 Positive |
| QSFP4_TX_N   | A3      | QSFP+第四路数据发送 Negative |
| QSFP1_RX_P   | E4      | QSFP+第一路数据接收 Positive |
| QSFP1_RX_N   | E3      | QSFP+第一路数据接收 Negative |
| QSFP2_RX_P   | В6      | QSFP+第二路数据接收 Positive |
| QSFP2_RX_N   | B5      | QSFP+第二路数据接收 Negative |
| QSFP3_RX_P   | D6      | QSFP+第三路数据接收 Positive |
| QSFP3_RX_N   | D5      | QSFP+第三路数据接收 Negative |
| QSFP4_RX_P   | A8      | QSFP+第四路数据接收 Positive |
| QSFP4_RX_N   | A7      | QSFP+第四路数据接收 Negative |
| QSFP_MODSELL | R30     | 模式选择,低电平 I2C 有效       |
| QSFP_RESETL  | U30     | 复位信号, 低电平复位           |
| QSFP_MODPRSL | U22     | 光模块存在信号,低电平有效         |



| QSFP_INTL   | R24 | 中断信号, 低电平有效 |  |  |
|-------------|-----|-------------|--|--|
| QSFP_LPMODE | V26 | 低功耗模式选择     |  |  |
| QSFP_SCL    | A20 | I2C 时钟信号    |  |  |
| QSFP_SDA    | A21 | I2C 数据信号    |  |  |

## 十、 PCIe 插槽

AX7325B 开发板上有一个 PCIe x8 的接口, PCIE 卡的外形尺寸符合标准 PCIe 卡电气规范要求,可直接在普通 PC 的 x8 PCIe 插槽上使用。开发板和电脑之间能实现 PCIEex8,PCIEex4, PCIex2, PCIex1 的数据通信。

PCIe 接口的收发信号直接跟 FPGA BANK115, BANK116的 GTX 收发器相连接, 8路 TX信号和RX信号都是以差分信号方式连接到BANK115, BANK116上, 支持PCI Express 2.0标准,单通道通信速率可高达5Gbps。

开发板的 PCIe 接口的设计示意图如下图 10-1 所示,其中 TX 发送信号用 AC 耦合模式连接。



图 10-1 PCIe x 8 接口设计示意图

PCIex8 接口在的实物图如下图所示:





PCIe x8 接口实物图

## PCIe x8 接口 FPGA 引脚分配如下:

| 网络名称       | FPGA 引脚 | 备注                      |
|------------|---------|-------------------------|
| PCIE_RX0_P | M6      | PCIE 通道 0 数据接收 Positive |
| PCIE_RX0_N | M5      | PCIE 通道 0 数据接收 Negative |
| PCIE_RX1_P | P6      | PCIE 通道 1 数据接收 Positive |
| PCIE_RX1_N | P5      | PCIE 通道 1 数据接收 Negative |
| PCIE_RX2_P | R4      | PCIE 通道 2 数据接收 Positive |
| PCIE_RX2_N | R3      | PCIE 通道 2 数据接收 Negative |
| PCIE_RX3_P | Т6      | PCIE 通道 3 数据接收 Positive |
| PCIE_RX3_N | T5      | PCIE 通道 3 数据接收 Negative |
| PCIE_RX4_P | V6      | PCIE 通道 4 数据接收 Positive |
| PCIE_RX4_N | V5      | PCIE 通道 4 数据接收 Negative |
| PCIE_RX5_P | W4      | PCIE 通道 5 数据接收 Positive |
| PCIE_RX5_N | W3      | PCIE 通道 5 数据接收 Negative |
| PCIE_RX6_P | Y6      | PCIE 通道 6 数据接收 Positive |
| PCIE_RX6_N | Y5      | PCIE 通道 6 数据接收 Negative |
| PCIE_RX7_P | AA4     | PCIE 通道 7 数据接收 Positive |
| PCIE_RX7_N | AA3     | PCIE 通道 7 数据接收 Negative |
| PCIE_TX0_P | L4      | PCIE 通道 0 数据发送 Positive |
| PCIE_TX0_N | L3      | PCIE 通道 0 数据发送 Negative |
| PCIE_TX1_P | M2      | PCIE 通道 1 数据发送 Positive |
| PCIE_TX1_N | M1      | PCIE 通道 1 数据发送 Negative |
| PCIE_TX2_P | N4      | PCIE 通道 2 数据发送 Positive |
| PCIE_TX2_N | N3      | PCIE 通道 2 数据发送 Negative |
| PCIE_TX3_P | P2      | PCIE 通道 3 数据发送 Positive |



| PCIE_TX3_N | P1  | PCIE 通道 3 数据发送 Negative |
|------------|-----|-------------------------|
| PCIE_TX4_P | T2  | PCIE 通道 4 数据发送 Positive |
| PCIE_TX4_N | T1  | PCIE 通道 4 数据发送 Negative |
| PCIE_TX5_P | U4  | PCIE 通道 5 数据发送 Positive |
| PCIE_TX5_N | U3  | PCIE 通道 5 数据发送 Negative |
| PCIE_TX6_P | V2  | PCIE 通道 6 数据发送 Positive |
| PCIE_TX6_N | V1  | PCIE 通道 6 数据发送 Negative |
| PCIE_TX7_P | Y2  | PCIE 通道 7 数据发送 Positive |
| PCIE_TX7_N | Y1  | PCIE 通道 7 数据发送 Negative |
| PCIE_PERST | B18 | PCIE 板卡的复位信号            |

## 十一、温度传感器

AX7325B 开发板上安装了一个高精度、低功耗、数字温度传感器芯片,型号为 ON Semiconductor 公司的 LM75。LM75 芯片的温度精度为 0.5 度,传感器和 FPGA 直接为 I2C 数字接口, FPGA 通过 I2C 接口来读取当前开发板附近的温度。下图 11-1 为 LM75 传感器 芯片的设计示意图

U15



图 11-1 LM75 传感器原理图部分

下图为 LM75 传感器实物图





图 11-2 LM75 传感器实物图

#### LM75 传感器引脚分配:

| 引脚名称    | FPGA 引脚 |
|---------|---------|
| PLL_SCL | P23     |
| PLL_SDA | N25     |

## 十二、SD 卡槽

AX7325B开发板包含了一个Micro型的SD卡接口,以提供用户访问SD卡存储器,用于存储图片,音乐或者其他用户数据文件。

SDIO信号与FPGA的 BANK12的IO信号相连,因为该BANK的VCCIO是VADJ,默认是+2.5V。但SD卡的数据电平为3.3V,我们这里通过TXS02612电平转换器来连接。FPGA和SD卡连接器的原理图如图12-1所示。



图 12-1 SD 卡连接示意图

图 12-2 为开发板上 SD 卡槽实物图





图 12-2 SD 卡槽实物图

#### SD 卡槽引脚分配

| 信号名称   | FPGA 引脚名          | FPGA 引脚号 | 备注        |
|--------|-------------------|----------|-----------|
| SD_CLK | IO_L23P_T3_12     | AH21     | SD时钟信号    |
| SD_CMD | IO_L23N_T3_12     | AJ21     | SD命令信号    |
| SD_D0  | IO_L21P_T3_DQS_12 | AJ22     | SD数据Data0 |
| SD_D1  | IO_L21N_T3_DQS_12 | AJ23     | SD数据Data1 |
| SD_D2  | IO_L22P_T3_12     | AG20     | SD数据Data2 |
| SD_D3  | IO_L22N_T3_12     | AH20     | SD数据Data3 |
| SD_CD  | IO_25_12          | AE20     | SD卡插入信号   |

## 十三、FMC 连接器

AX7325B 开发板带有一个标准的 FMC LPC 的扩展口,可以外接 XILINX 或者我们黑金的各种 FMC 模块(HDMI 输入输出模块,双目摄像头模块,高速 AD 模块等等)。FMC 扩展口包含 34 对差分 IO 信号和一路 I2C 总线信号。

FMC扩展口的 33 对差分信号连接到 FPGA 芯片的 BANK12, BANK13 的 IO 上 ,BANK12 和 BANK13 的 IO 电平标准是由 BANK 的电压 VADJ 决定的,默认为+2.5V,使得连接 FMC 的 34 对差分信号支持 LVDS 数据通信。FPGA 和 FMC 连接器的原理图如图 13-1 所示。



图 13-1 FMC 连接器连接示意图

## 图 13-2 为开发板上 FMC 连接器实物图



图 13-2 FMC 连接器实物图

#### FMC 连接器引脚分配

| 信号名称 | FPGA 引脚名 | FPGA | 备注 |
|------|----------|------|----|
|      |          | 引脚号  |    |



| 5) 46, 61 1/0 B | 10 140D T4 NDCC 40 | 4500 |                 |  |
|-----------------|--------------------|------|-----------------|--|
| FMC_CLK0_P      | IO_L12P_T1_MRCC_12 | AD23 | FMC参考第1路参考时钟P   |  |
| FMC_CLK0_N      | IO_L12N_T1_MRCC_12 | AE24 | FMC参考第1路参考时钟N   |  |
| FMC_CLK1_P      | IO_L13P_T2_MRCC_13 | AG29 | FMC参考第2路参考时钟P   |  |
| FMC_CLK1_N      | IO_L13N_T2_MRCC_13 | AH29 | FMC参考第2路参考时钟N   |  |
| FMC_LA00_CC_P   | IO_L13P_T2_MRCC_12 | AF22 | FMC参考第0路数据(时钟)P |  |
| FMC_LA00_CC_N   | IO_L13N_T2_MRCC_12 | AG23 | FMC参考第0路数据(时钟)N |  |
| FMC_LA01_CC_P   | IO_L14P_T2_SRCC_12 | AG24 | FMC参考第1路数据(时钟)P |  |
| FMC_LA01_CC_N   | IO_L14N_T2_SRCC_12 | AH24 | FMC参考第1路数据(时钟)N |  |
| FMC_LA02_P      | IO_L17P_T2_12      | AK23 | FMC参考第2路数据P     |  |
| FMC_LA02_N      | IO_L17N_T2_12      | AK24 | FMC参考第2路数据N     |  |
| FMC_LA03_P      | IO_L15P_T2_DQS_12  | AJ24 | FMC参考第3路数据P     |  |
| FMC_LA03_N      | IO_L15N_T2_DQS_12  | AK25 | FMC参考第3路数据N     |  |
| FMC_LA04_P      | IO_L18P_T2_12      | AG25 | FMC参考第4路数据P     |  |
| FMC_LA04_N      | IO_L18N_T2_12      | AH25 | FMC参考第4路数据N     |  |
| FMC_LA05_P      | IO_L11P_T1_SRCC_12 | AE23 | FMC参考第5路数据P     |  |
| FMC_LA05_N      | IO_L11N_T1_SRCC_12 | AF23 | FMC参考第5路数据N     |  |
| FMC_LA06_P      | IO_L20P_T3_12      | AG22 | FMC参考第6路数据P     |  |
| FMC_LA06_N      | IO_L20N_T3_12      | AH22 | FMC参考第6路数据N     |  |
| FMC_LA07_P      | IO_L9P_T1_DQS_12   | AC24 | FMC参考第7路数据P     |  |
| FMC_LA07_N      | IO_L9N_T1_DQS_12   | AD24 | FMC参考第7路数据N     |  |
| FMC_LA08_P      | IO_L16P_T2_12      | AE25 | FMC参考第8路数据P     |  |
| FMC_LA08_N      | IO_L16N_T2_12      | AF25 | FMC参考第8路数据N     |  |
| FMC_LA09_P      | IO_L8P_T1_12       | AC22 | FMC参考第9路数据P     |  |
| FMC_LA09_N      | IO_L8N_T1_12       | AD22 | FMC参考第9路数据N     |  |
| FMC_LA10_P      | IO_L10P_T1_12      | AD21 | FMC参考第10路数据P    |  |
| FMC_LA10_N      | IO_L10N_T1_12      | AE21 | FMC参考第10路数据N    |  |
| FMC_LA11_P      | IO_L3P_T0_DQS_12   | AB22 | FMC参考第11路数据P    |  |
| FMC_LA11_N      | IO_L3N_T0_DQS_12   | AB23 | FMC参考第11路数据N    |  |
| FMC_LA12_P      | IO_L7P_T1_12       | AB24 | FMC参考第12路数据P    |  |
| FMC_LA12_N      | IO_L7N_T1_12       | AC25 | FMC参考第12路数据N    |  |
| FMC_LA13_P      | IO_L5P_T0_12       | AC20 | FMC参考第13路数据P    |  |
| FMC_LA13_N      | IO_L5N_T0_12       | AC21 | FMC参考第13路数据N    |  |



| FMC_LA14_P    | IO_L2P_T0_12       | Y21  | FMC参考第14路数据P     |  |
|---------------|--------------------|------|------------------|--|
| FMC_LA14_N    | IO_L2N_T0_12       | AA21 | FMC参考第14路数据N     |  |
| FMC_LA15_P    | IO_L1P_T0_12       | Y23  | FMC参考第15路数据P     |  |
| FMC_LA15_N    | IO_L1N_T0_12       | Y24  | FMC参考第15路数据N     |  |
| FMC_LA16_P    | IO_L4P_T0_12       | AA22 | FMC参考第16路数据P     |  |
| FMC_LA16_N    | IO_L4N_T0_12       | AA23 | FMC参考第16路数据N     |  |
| FMC_LA17_CC_P | IO_L14P_T2_SRCC_13 | AE28 | FMC参考第17路数据(时钟)P |  |
| FMC_LA17_CC_N | IO_L14N_T2_SRCC_13 | AF28 | FMC参考第17路数据(时钟)N |  |
| FMC_LA18_CC_P | IO_L12P_T1_MRCC_13 | AB27 | FMC参考第18路数据(时钟)P |  |
| FMC_LA18_CC_N | IO_L12N_T1_MRCC_13 | AC27 | FMC参考第18路数据(时钟)N |  |
| FMC_LA19_P    | IO_L15P_T2_DQS_13  | AK29 | FMC参考第19路数据P     |  |
| FMC_LA19_N    | IO_L15N_T2_DQS_13  | AK30 | FMC参考第19路数据N     |  |
| FMC_LA20_P    | IO_L20P_T3_13      | AJ27 | FMC参考第20路数据P     |  |
| FMC_LA20_N    | IO_L20N_T3_13      | AK28 | FMC参考第20路数据N     |  |
| FMC_LA21_P    | IO_L18P_T2_13      | AG30 | FMC参考第21路数据P     |  |
| FMC_LA21_N    | IO_L18N_T2_13      | AH30 | FMC参考第21路数据N     |  |
| FMC_LA22_P    | IO_L17P_T2_13      | AJ28 | FMC参考第22路数据P     |  |
| FMC_LA22_N    | IO_L17N_T2_13      | AJ29 | FMC参考第22路数据N     |  |
| FMC_LA23_P    | IO_L5P_T0_13       | AA27 | FMC参考第23路数据P     |  |
| FMC_LA23_N    | IO_L5N_T0_13       | AB28 | FMC参考第23路数据N     |  |
| FMC_LA24_P    | IO_L9P_T1_DQS_13   | AD29 | FMC参考第24路数据P     |  |
| FMC_LA24_N    | IO_L9N_T1_DQS_13   | AE29 | FMC参考第24路数据N     |  |
| FMC_LA25_P    | IO_L16P_T2_13      | AE30 | FMC参考第25路数据P     |  |
| FMC_LA25_N    | IO_L16N_T2_13      | AF30 | FMC参考第25路数据N     |  |
| FMC_LA26_P    | IO_L3P_T0_DQS_13   | Y28  | FMC参考第26路数据P     |  |
| FMC_LA26_N    | IO_L3N_T0_DQS_13   | AA28 | FMC参考第26路数据N     |  |
| FMC_LA27_P    | IO_L1P_T0_13       | Y26  | FMC参考第27路数据P     |  |
| FMC_LA27_N    | IO_L1N_T0_13       | AA26 | FMC参考第27路数据N     |  |
| FMC_LA28_P    | IO_L7P_T1_13       | AC29 | FMC参考第28路数据P     |  |
| FMC_LA28_N    | IO_L7N_T1_13       | AC30 | FMC参考第28路数据N     |  |
| FMC_LA29_P    | IO_L11P_T1_SRCC_13 | AD27 | FMC参考第29路数据P     |  |
| FMC_LA29_N    | IO_L11N_T1_SRCC_13 | AD28 | FMC参考第29路数据N     |  |



| FMC_LA30_P | IO_L8P_T1_13  | Y30  | FMC参考第30路数据P |
|------------|---------------|------|--------------|
| FMC_LA30_N | IO_L8N_T1_13  | AA30 | FMC参考第30路数据N |
| FMC_LA31_P | IO_L10P_T1_13 | AB29 | FMC参考第31路数据P |
| FMC_LA31_N | IO_L10N_T1_13 | AB30 | FMC参考第31路数据N |
| FMC_LA32_P | IO_L2P_T0_13  | W27  | FMC参考第32路数据P |
| FMC_LA32_N | IO_L2N_T0_13  | W28  | FMC参考第32路数据N |
| FMC_LA33_P | IO_L4P_T0_13  | W29  | FMC参考第33路数据P |
| FMC_LA33_N | IO_L4N_T0_13  | Y29  | FMC参考第33路数据N |
| FMC_SCL    | IO_L20P_T3_17 | A16  | FMC I2C总线时钟  |
| FMC_SDA    | IO_L20N_T3_17 | A17  | FMC I2C总线数据  |

## 十四、40针扩展口

AX7325B 开发板预留了 1 个 2.54mm 标准间距的 40 针的扩展口 J16,用于连接黑金的各个模块或者用户自己设计的外面电路,扩展口有 40 个信号,其中,5V 电源 1 路,3.3V 电源 2 路,地 3 路,IO 口 34 路。切勿 IO 直接跟 5V 设备直接连接,以免烧坏 FPGA 芯片。如果要接 5V 设备,需要接电平转换芯片。

扩展口(J16)的电路如下图 14-1 所示



图 14-1 扩展口 J2 原理图

下图为 J2 扩展口实物图,扩展口的 Pin39, Pin40 已经在板上标示出。





图 14-2 扩展口 J2 实物图

## J2 扩展口 FPGA 的引脚分配

| 引脚编号 | FPGA 引脚    | 引脚编 <del>号</del> | FPGA 引脚   |
|------|------------|------------------|-----------|
| 1    | GND        | 2                | +5V(输出)   |
| 3    | J24        | 4                | J23       |
| 5    | J22        | 6                | J21       |
| 7    | J26        | 8                | K26       |
| 9    | K30        | 10               | L30       |
| 11   | L28        | 12               | M28       |
| 13   | M27        | 14               | N27       |
| 15   | N30        | 16               | N29       |
| 17   | L27        | 18               | L26       |
| 19   | J28        | 20               | J27       |
| 21   | H29        | 22               | J29       |
| 23   | K29        | 24               | K28       |
| 25   | L20        | 26               | M20       |
| 27   | K21        | 28               | L21       |
| 29   | L23        | 30               | L22       |
| 31   | K24        | 32               | K23       |
| 33   | K25        | 34               | L25       |
| 35   | M30        | 36               | M29       |
| 37   | GND        | 38               | GND       |
| 39   | +3.3V (输出) | 40               | +3.3V(输出) |

# 十五、LED 灯

AX7325B 开发板上有 6 个发光二极管 LED, 1 个电源指示灯; 4 个 FPGA 控制指示灯。当



开发板上电后电源指示灯会亮起;当 FPGA 配置程序后,配置 LED 灯会亮起。4 个用户 LED 灯连接到 FPGA BANK17 的 IO 上,用户可以通过程序来控制亮和灭,当连接用户 LED 灯的 IO 电压为低时,用户 LED 灯熄灭,当连接 IO 电压为高时,用户 LED 会被点亮。因为 BANK17 的电平为 1.5V,这里我们增加了三级管来驱动 LED 的亮灭。用户 LED 灯硬件连接的示意图如图 15-1 所示:



图 15-1 用户 LED 灯硬件连接示意图







#### 图 15-2 开发板的 LED 灯实物图

#### 用户 LED 灯的引脚分配

| 信号名称 | FPGA 引脚名      | FPGA 管脚号 | 备注      |
|------|---------------|----------|---------|
| LED1 | IO_L23N_T3_17 | A22      | 用户LED1灯 |
| LED2 | IO_L24P_T3_17 | C19      | 用户LED2灯 |
| LED3 | IO_L24N_T3_17 | B19      | 用户LED3灯 |
| LED4 | IO_25_17      | E18      | 用户LED4灯 |

## 十六、复位按键和用户按键

AX7325B 开发板上有 2 个用户按键。2 个用户按键中连接到 FPGA BANK13 的 IO 上。 用户按键都是低电平有效,用户按键的连接示意图如图 16-1 所示:

U1



图 16-1 复位按键连接示意图

## 图 15-2 为复位按键和用户按键的实物图





图 16-2 按键实物图

#### 按键的 FPGA 管脚分配

| 信号名称 | FPGA 引脚名          | FPGA 引脚号 | 备注      |
|------|-------------------|----------|---------|
| KEY1 | IO_L21P_T3_DQS_13 | AG27     | 用户按键1输入 |
| KEY2 | IO_L21N_T3_DQS_13 | AG28     | 用户按键2输入 |

# 十七、JTAG 调试口

在 AX7325B 开发板上预留了一个 JTAG 接口,用于下载 FPGA 程序或者固化程序到 FLASH。为了带电插拔造成对 FPGA 芯片的损坏,我们在 JTAG 信号上添加了保护二极管来保证信号的电压在 FPGA 接受的范围,避免 FPGA 的损坏。



图 17-1 JTAG 接口原理图

下图为扩展板上JTAG接口实物图 ,用户可以通过我们提供的 USB 下载器连接 PC 和 JTAG接口进行 FPGA 的调试 JTAG 线插拔的时候注意不要热插拔。



图 17-2 JTAG 接口实物图



## 十八、电源

开发板的电源输入电压为 DC12V,外接+12V 电源给板子供电。外接电源供电时请使用 开发板自带的电源,不要用其他规格的电源,以免损坏开发板。+12V 输入电源通过 DCDC 电源芯片 MYMGK1R820ERSR 产生+1.0V 的 FPGA 核心电源,MYMGK1R820ERSR 输出电流 高达 20A,满足 FPGA 的核心电压的电流需求。另外+12V 通过 DC/DC 电源芯片 ETA8156FT2G 产生+1.5V 和 MGTAVCC 电源,通过 DCDC 芯片 ETA1471FT2G 来产生其它的电源。DDR3 和 SODIMM 的 VTT 和 VREF 电压由 TPS51200 芯片来产生。

板上的电源设计示意图如下图 18-1 所示:



图 18-1 原理图中电源接口部分

#### 各个电源分配的功能如下表所示:

| 电源      | 功能                                |  |
|---------|-----------------------------------|--|
| +1.0V   | FPGA 的内核电压                        |  |
| . 2.21/ | FPGA Bank0,Bank14 , Bank15 , QSIP |  |
| +3.3V   | FLASH, Clock 晶振, SD 卡, SFP 光模块    |  |

| +1.8V                | FPGA 辅助电压                       |
|----------------------|---------------------------------|
| +1.5V                | DDR3, SODIMM ,                  |
|                      | FPGA Bank33,Bank34 , Bank35     |
| VADJ(+2.5V)          | FPGA Bank12, Bank13, FMC        |
| VREF, VTT ( +0.75V ) | DDR3, SODIMM                    |
| MGTAVCC(+1.0V)       | FPGA Bank115, Bank116, Bank117, |
|                      | Bank118                         |
| MGTAVTT(+1.2V)       | FPGA Bank115, Bank116, Bank117, |
|                      | Bank118                         |
| MGT_1.8V (+1.2V)     | FPGA GTX 辅助电压                   |

因为 FPGA 的电源有上电顺序的要求,在电路设计中,我们已经按照 芯片的电源要求设计,上电依次为+1.0V->+1.8V->(+1.5 V、+3.3V、VCCIO)的电路设计,保证芯片的正常工作。

# 十九、风扇

因为 FPGA 正常工作时会产生大量的热量,我们在板上为芯片增加了一个散热片和风扇,防止芯片过热。风扇的控制由 FPGA 芯片来控制,控制管脚连接到 BANK13 的 IO 上,如果 IO 电平输出为低,MOSFET 管导通,风扇工作,如果 IO 电平输出为高,风扇停止。板上的风扇设计图如下图 19-1 所示:



图 19-1 开发板原理图中风扇设计



风扇出厂前已经用螺丝固定在开发板上,风扇的电源连接到了J11的插座上,红色的为正极,黑色的为负极。图 18-2 为风扇在开发板上的实物图



图 18-2 板上风扇实物图

## 二十、结构尺寸图



正面图 (Top View)