Vorlesungsmitschrift (kein offizielles Skript)

Funktionalanalysis

Prof. Dr. Harald Garcke

Version vom 14. November 2013

Gesetzt in \LaTeX von Johannes Prem

Inhaltsverzeichnis

1	Einführung: Wovon handelt die Funktionalanalysis?	1
2	Grundstrukturen der Funktionalanalysis	4
3	Lineare Operatoren	15
4	Der Satz von Hahn-Banach und seine Konsequenzen	20
5	Bairescher Kategoriensatz und seine Konsequenzen	40

1 Einführung: Wovon handelt die Funktionalanalysis?

Zum Beispiel von der Analysis auf Banachräumen (vollständigen normierten Vektorräumen)

1.1. Auf \mathbb{R}^n definiere

$$\forall x \in \mathbb{R}^n \colon \quad \|x\|_2 \coloneqq |x| = \left(\sum_{i=1}^n x_i^2\right)^{\frac{1}{2}}$$

1.2 (Funktionen auf kompakten Teilmengen des \mathbb{R}^n).

Zum Beispiel: $K \subset \mathbb{R}^n$ kompakt, z. B. K = [0, 1].

$$C^0(K) := \{ f \mid f \colon K \to \mathbb{R} \text{ stetig} \}$$

wird Banachraum mit der Norm:

$$||f||_{\infty} \coloneqq \sup_{x \in K} |f(x)| < \infty$$

1.3 (Operatoren auf $C^0([0,1])$).

Definiere

$$L(C^{0}([0,1]), C^{0}([0,1])) := \{T : C^{0}([0,1]) \to C^{0}([0,1]) \mid T \text{ ist linear und stetig}\}$$

Beispiele:

$$(Tf)(x) := g(x) f(x)$$
 wobei $g \in C^0([0,1])$

$$(Tf)(x) := \sum_{i=1}^{n} f(x_i) L_i(x)$$
 wobei $0 \le x_0 < x_1 < \dots < x_n \le 1$

$$L_i$$
: Lagrange-Basis-Fkt.: $L_i(x) = \prod_{\substack{j=0 \ i \neq i}}^n \frac{x - x_j}{x_i - x_j}$

$$(Tf)(x) := \int_0^1 K(x, y) f(y) dy$$
 wobei $K \in C^0([0, 1]^2)$

Bemerkung: $L(C^0([0,1]), C^0([0,1]))$ wird zu einem Banachraum mit der Operatornorm

$$||T||_{L(C^0,C^0)} := \sup_{f \neq 0} \frac{||Tf||_{C^0}}{||f||_{C^0}}$$

- **1.4.** Welche Besonderheiten ergeben sich in unendlich-dimensionalen Räumen?
 - (1) Problem in ∞ -dimensionalen Vektorräumen: Wenig sinnvolle Aussagen ohne Topologie möglich
 - (2) Für $T: \mathbb{R}^n \to \mathbb{R}^n$ linear gilt:

$$T$$
 surjektiv \iff T injektiv

Im ∞ -dim. ist dies i. A. falsch.

Beispiel:

$$c_* \coloneqq \{x = (x_k)_{k \in \mathbb{N}} \mid x_k \in \mathbb{R}, \ \exists \ \bar{k} \in \mathbb{N} \ \forall \ \ell > \bar{k} \colon \ x_\ell = 0\}$$

 c_* modelliert "Folgen, die irgendwann abbrechen". Außerdem enthält c_* den \mathbb{R}^n für $n \in \mathbb{N}$ beliebig groß.

Definiere die sog. Shift-Abbildung wie folgt:

$$T(x_1, x_2, x_3, \dots) := (0, x_1, x_2, x_3, \dots)$$

Dann ist T injektiv, aber nicht surjektiv.

(3) Grundproblem der linearen Algebra: Finde Normalformen für lineare Abbildungen. Ziel: Verallgemeinerung auf ∞ -dim. Räume.

$$\begin{array}{c} \mbox{Diagonalisierbarkeit} \\ \mbox{symmetrischer Matrizen} \end{array} \end{array} \begin{array}{c} \leadsto \end{array} \begin{array}{c} \mbox{Spektralsatz für} \\ \mbox{kompakte, normale Operatoren} \end{array} \\ \mbox{Jordansche} \\ \mbox{Normalform} \end{array} \begin{array}{c} \leadsto \end{array} \begin{array}{c} \mbox{Spektralsatz für} \\ \mbox{kompakte Operatoren} \end{array}$$

(4) Kompaktheit

In ∞ -dim. Banachräumen ist die abgeschlossene Einheitskugel nichtkompakt.

Beispiel c_* : Nutze die Norm

$$||x||_{c_*} \coloneqq \max_{n \in \mathbb{N}} |x_n|$$

und die Einheitsvektoren $e_i = (\delta_{ij})_{j \in \mathbb{N}} = (0, \dots, 0, 1, 0, \dots)$ (wobei die 1 an der *i*-ten Stelle steht). Dann gilt:

$$||e_i||_{c_n} = 1$$
 und $||e_i - e_k||_{c_n} = 1$ für $i \neq k$

Also hat $(e_i)_{i\in\mathbb{N}}$ keine konvergente Teilfolge, woraus folgt, dass die Einheitskugel nicht kompakt ist.

(5) Nicht alle Normen sind zueinander äquivalent.

Beispiel: Betrachte auf $C^0([0,1])$ die Normen

$$||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|$$

$$||f||_{L^2} \coloneqq \sqrt{\int_0^1 (f(x))^2 \, \mathrm{d}x}$$

Es gilt $||f||_{L^2} \leq ||f||_{\infty}$. Aber: Es gibt keine Konstante $c \in \mathbb{R}_{>0}$, so dass für alle $f \in C^0([0,1])$ gilt: $||f||_{\infty} \leq c \, ||f||_{L^2}$. Betrachte dazu:

2

$$1 \xrightarrow{f_{\varepsilon}}$$

Es gilt:
$$||f_{\varepsilon}||_{\infty} = 1$$
, $||f_{\varepsilon}||_{L^{2}} \leq \sqrt{\varepsilon}$.

Außerdem gilt:

$$\left(C^0([0,1]), \|\cdot\|_{\infty}\right)$$
 ist Banachraum $\left(C^0([0,1]), \|\cdot\|_{L^2}\right)$ ist normierter Vektorraum (aber nicht vollständig)

Funktionalanalysis lässt sich sinnvoll nur in vollständigen Räumen entwickeln. Deshalb werden wir nicht vollständige Räume vervollständigen (siehe 2.18).

2 Grundstrukturen der Funktionalanalysis

- **2.1** (Topologie). Sei X eine Menge, \mathcal{T} ein System von Teilmengen. Dann heißt \mathcal{T} Topologie (auf X), falls gilt:
 - (T1) $\emptyset \in \mathcal{T}, X \in \mathcal{T}$
 - $(T2) \mathcal{T}' \subset \mathcal{T} \implies \bigcup \mathcal{T}' \in \mathcal{T}$
 - (T3) $T_1, T_2 \in \mathcal{T} \implies T_1 \cap T_2 \in \mathcal{T}$

Ein topologischer Raum (X, \mathcal{T}) heißt Hausdorff-Raum, falls er zusätzlich das Hausdorffsche Trennungsaxiom erfüllt:

(T4)
$$\forall x_1, x_2 \in X, x_1 \neq x_2 \ \exists U_1, U_2 \in \mathcal{T}: \ U_1 \cap U_2 = \emptyset \land x_i \in U_i$$

Mengen in \mathcal{T} heißen offene Mengen. Komplemente offener Mengen heißen abgeschlossene Mengen.

Eine Menge $W \subset X$ mit $x \in W$ für die eine offene Menge U mit $x \in U$ und $U \subset W$ existiert, heißt $Umgebung\ von\ x$.

Seien (X, \mathcal{T}_X) und (Y, \mathcal{T}_Y) topologische Räume, so heißt $f: X \to Y$ stetig, falls die Urbilder offener Mengen stets offen sind. (Formal: $\forall U' \in \mathcal{T}_Y \colon f^{-1}(U') \in \mathcal{T}_X$)

Eine Abbildung $f: X \to Y$ heißt stetig in $x \in X$, falls

$$f(x) \in V \in \mathcal{T}_Y \implies \exists U \in \mathcal{T}_X \colon x \in U \subset f^{-1}(V)$$

(d. h. $f^{-1}(V)$ ist Umgebung von x).

2.2. Ist X ein \mathbb{K} -Vektorraum mit $\mathbb{K} = \mathbb{R}$ oder $\mathbb{K} = \mathbb{C}$, so heißt (X, \mathcal{T}) topologischer Vektorraum, falls (X, \mathcal{T}) ein topologischer Raum ist und die Abbildungen

$$X \times X \to X$$
, $(x, y) \mapsto x + y$
 $\mathbb{K} \times X \to X$, $(\alpha, x) \mapsto \alpha x$

stetig sind. ("Algebraische und topologische Struktur sind verträglich")

2.3 (Metrik). Ein Tupel (X, d) heißt metrischer Raum, falls X eine Menge ist und $d: X \times X \to \mathbb{R}$ folgende Bedingungen für alle $x, y, z \in X$ erfüllt:

(M1)
$$d(x,y) \ge 0$$
 und $d(x,y) = 0 \iff x = y$

$$(M2) \quad d(x,y) = d(y,x)$$

(M3)
$$d(x,z) \le d(x,y) + d(y,z)$$

Konvergenz:

 $(x_n)_{n\in\mathbb{N}}$ heißt Cauchy-Folge, falls:

$$d(x_k, x_\ell) \to 0$$
 für $k, \ell \to \infty$

x heißt Grenzwert von $(x_n)_{n\in\mathbb{N}}$ (Notation: $x=\lim_{n\to\infty}x_n$ oder: $x_n\to x$ für $n\to\infty$), falls:

$$d(x_n, x) \to 0$$
 für $n \to \infty$

(X,d) heißt vollständig, falls jede Cauchy-Folge einen Grenzwert in X besitzt.

Abstand von Mengen $A, B \subset X$:

$$dist(A, B) := \inf\{d(a, b) \mid a \in A, b \in B\}$$

Für $A \subset X$ und $x \in X$ definieren wir: $dist(x, A) := dist(\{x\}, A)$.

Für $r \in \mathbb{R}_{>0}$ sowie $A \subset X$, $x \in X$ definieren wir:

$$B_r(A) := \{ x \in X \mid \operatorname{dist}(x, A) < r \}$$

$$B_r(x) := B_r(\{x\})$$

$$\operatorname{diam}(A) := \sup \{ d(a_1, a_2) \mid a_1, a_2 \in A \}$$

Wir sagen A ist beschränkt, falls $diam(A) < \infty$.

2.4 (Topologie von Metriken). Sei (X,d) ein metrischer Raum und $A \subset X$.

$$A^{\circ} := \{ x \in X \mid \exists r \in \mathbb{R}_{>0} \colon B_r(x) \subset A \}$$
 ist das Innere von A.

$$\overline{A} := \{x \in X \mid \forall r \in \mathbb{R}_{>0} \colon B_r(x) \cap A \neq \emptyset\}$$
 ist der Abschluss von A.

$$\partial A := \overline{A} \setminus A^{\circ}$$
 ist der Rand von A.

Wir sagen, dass A offen ist, falls $A^{\circ} = A$ gilt, und dass A abgeschlossen ist, falls $\overline{A} = A$ gilt.

Durch die Definition $\mathcal{T} := \{A \subset X \mid A \text{ offen}\}$ wird (X, \mathcal{T}) zu einem hausdorffschen topologischen Raum.

2.5 (Fréchet-Metrik). Sei X ein Vektorraum. Eine Abbildung $d: X \to \mathbb{R}$ heißt Fréchet-Metrik, falls für alle $x, y \in X$ gilt:

(F1)
$$d(x) \ge 0$$
 und $d(x) = 0 \iff x = 0$

$$(F2) \quad d(-x) = d(x)$$

(F3)
$$d(x+y) \le d(x) + d(y)$$

Dann ist $(x, y) \mapsto d(x - y)$ eine Metrik auf X.

Beispiel: Fréchet-Metriken auf \mathbb{R} :

$$x \mapsto |x|^{\alpha} \quad \text{mit } 0 < \alpha \le 1$$

$$x \mapsto \frac{|x|}{1 + |x|}$$

2.6 (Norm). X sei ein \mathbb{K} -Vektorraum (mit $\mathbb{K} = \mathbb{R}$ oder $\mathbb{K} = \mathbb{C}$).

Eine Abbildung $\|\cdot\|: X \to \mathbb{R}$ heißt *Norm*, falls folgende Bedingungen für alle $x, y \in X, \alpha \in \mathbb{K}$ erfüllt sind:

(N1)
$$||x|| \ge 0$$
 und $||x|| = 0 \iff x = 0$

(N2)
$$\|\alpha x\| = |\alpha| \|x\|$$

(N3)
$$||x + y|| \le ||x|| + ||y||$$

Dann ist $x \mapsto ||x||$ eine Fréchet-Metrik. Wir nennen X Banachraum, falls X mit einer gegebenen Norm vollständig ist.

X ist eine Banachalgebra, falls X eine Algebra ist (d. h. es gibt ein Produkt auf X, das dem Assoziativgesetz und Distributivgestz genügt) und $||x \cdot y|| \le ||x|| \cdot ||y||$ für alle $x, y \in X$ gilt.

- **2.7** (Skalarprodukt). Sei X ein \mathbb{K} -Vektorraum.
 - a) $\langle \cdot, \cdot \rangle \colon X \times X \to \mathbb{K}$ heißt Hermitische Form ($\mathbb{K} = \mathbb{R}$ symmetrische Biliniearform, $\mathbb{K} = \mathbb{C}$ symmetrische Sesquilinearform), falls für alle $x, x_1, x_2, y \in X, \alpha \in \mathbb{K}$ gilt:

(S1)
$$\langle x, y \rangle = \overline{\langle y, x \rangle}$$

(S2)
$$\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$$

(S3)
$$\langle x_1 + x_2, y \rangle = \langle x_1, y \rangle + \langle x_2, y \rangle$$

(Es folgt: für alle $x \in X$ gilt $\langle x, x \rangle \in \mathbb{R}$.)

b) $\langle \cdot, \cdot \rangle$ heißt positiv-semidefinit, falls

(S4')
$$\langle x, x \rangle \ge 0$$

und positiv definit, falls

(S4)
$$\langle x, x \rangle \ge 0$$
 und $\langle x, x \rangle = 0 \iff x = 0$

gilt.

c) $\langle \,\cdot\,,\,\cdot\,\rangle$ heißt Skalarprodukt, falls (S1)–(S4) erfüllt sind. Dann ist $\|x\| \coloneqq \sqrt{\langle x,x\rangle}$ eine Norm auf X und wir nennen X dann einen $Pr\ddot{a}$ -Hilbertraum. Falls X zusätzlich vollständig ist, so heißt X Hilbertraum

Beispiele:

i)
$$\mathbb{R}^n$$
 mit $\langle x, y \rangle = \sum_{i=1}^n x_i y_i$, $\|x\|_2 = \sqrt{\sum_{i=1}^n x_i^2}$

ii) $X = C^0(K, \mathbb{R})$ für $K \subset \mathbb{R}^n$ kompakt.

$$\langle f, g \rangle \coloneqq \int_K f(x) g(x) dx$$

Dann ist $(C^0(K), \langle \cdot, \cdot \rangle)$ ein Prä-Hilbertraum (aber kein Hilbertraum!)

Satz 2.8. Sei $\langle \cdot, \cdot \rangle$ ein Skalarprodukt auf einem Vektorraum X. Dann gelten:

- (1) Cauchy-Schwarz-Ungleichung (CSU): $\forall x, y \in X$: $|\langle x, y \rangle| \leq ||x|| \cdot ||y||$. Gleichheit gilt nur, falls y ein Vielfaches von x ist.
- (2) Dreiecksungleichung: $\forall x, y \in X$: $||x + y|| \le ||x|| + ||y||$
- (3) Parallelogrammidentität: $\forall x, y \in X$: $||x+y||^2 + ||x-y||^2 = 2(||x||^2 + ||y||^2)$

Bemerkung: Im Fall $\mathbb{K} = \mathbb{R}$ folgt aus der CSU für $x, y \in X \setminus \{0\}$:

$$\left\langle \frac{x}{\|x\|}, \frac{y}{\|y\|} \right\rangle \in [-1, 1] \tag{*}$$

D. h. es gibt genau ein $\theta \in [0, \pi]$, s. d.

$$\left\langle \frac{x}{\|x\|}, \frac{y}{\|y\|} \right\rangle = \cos \theta.$$

Wir interpretieren θ als den Winkel zwischen x und y.

Beweis von Satz 2.8.

(3)

$$||x + y||^2 = \langle x + y, x + y \rangle$$
$$= \langle x, y \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$$
$$= ||x||^2 + 2 \operatorname{Re}\langle x, y \rangle + ||y||^2$$

Ersetze y durch -y und addiere beide Gleichungen.

(1) Ersetze in (*) y durch $-\frac{\langle x,y\rangle}{\|y\|^2}$ y (o. E. $y\neq 0$). Dann ergibt sich:

$$0 \le \left\langle x - \frac{\left\langle x, y \right\rangle}{\left\| y \right\|^2} y, x - \frac{\left\langle x, y \right\rangle}{\left\| y \right\|^2} y \right\rangle$$
$$= \left\| x \right\|^2 - 2 \frac{\left| \left\langle x, y \right\rangle \right|^2}{\left\| y \right\|^2} + \frac{\left| \left\langle x, y \right\rangle \right|^2}{\left\| y \right\|^2}$$
$$= \left\| x \right\|^2 - \frac{\left| \left\langle x, y \right\rangle \right|^2}{\left\| y \right\|^2}$$

Es folgt die CSU. In der ersten Zeile gilt bei \leq die Gleichheit genau dann, wenn x ein Vielfaches von y ist.

(3)
$$||x+y||^2 = ||x||^2 + ||y||^2 + 2 \underbrace{\operatorname{Re}\langle x, y \rangle}_{\leq |\langle x, y \rangle| \leq ||x|| \, ||y||}^2$$

2.9 (Vergleich von Topologien). Seien $\mathcal{T}_1, \mathcal{T}_2$ zwei Topologien auf einer Menge X. Wir sagen \mathcal{T}_2 ist *stärker* (oder *feiner*) als \mathcal{T}_1 und \mathcal{T}_1 ist *schwächer* (oder *gröber*) als \mathcal{T}_2 , falls $\mathcal{T}_1 \subset \mathcal{T}_2$ gilt.

Sind d_1, d_2 zwei Metriken auf X und $\mathcal{T}_1, \mathcal{T}_2$ die induzierten Topologien (siehe 2.4), so heißt die Metrik d_1 stärker (bzw. schwächer) als d_2 , falls \mathcal{T}_1 stärker (bzw. schwächer) als \mathcal{T}_2 ist. Die Metriken heißen äquivalent, falls $\mathcal{T}_1 = \mathcal{T}_2$. Entsprechend heißt eine Norm stärker bzw. schwächer als eine zweite, wenn dies für die induzierten Metriken gilt. Analog für Äquivalenz von Normen.

- **2.10** (Vergleich von Normen). Seien $\|\cdot\|_1$ und $\|\cdot\|_2$ zwei Normen auf einem \mathbb{K} -Vektorraum X. Dann gilt:
 - (1) $\|\cdot\|_2$ ist stärker als $\|\cdot\|_1$ genau dann, wenn es ein $c \in \mathbb{R}_{>0}$ gibt mit:

$$\forall x \in X \colon \quad \|x\|_1 \le c \|x\|_2$$

(2) Die beiden Normen sind genau dann äquivalent, wenn es $c, C \in \mathbb{R}_{>0}$ gibt mit:

$$\forall x \in X: c \|x\|_2 \le \|x\|_1 \le C \|x\|_2$$

Beweis. (1) Es sei $B_r^i(x) = \{x' \in X \mid \|x - x'\|_i < r\}$ und \mathcal{T}_i sei die von $\|\cdot\|_i$ induzierte Topologie.

Sei $\mathcal{T}_1 \subset \mathcal{T}_2$. Da $B_1^1(0) \in \mathcal{T}_1$ gilt, ist $B_1^1(0)$ offen bezüglich \mathcal{T}_1 und bezüglich \mathcal{T}_2 . Es liegt 0 im Inneren (bezüglich $\|\cdot\|_2$) von $B_1^1(0)$. Somit gilt $B_{\varepsilon}^2(0) \subset B_1^1(0)$ für ein $\varepsilon \in \mathbb{R}_{>0}$. Daher gilt für $x \in X \setminus \{0\}$:

$$\left\| \frac{\varepsilon x}{2\|x\|_2} \right\|_2 = \frac{\varepsilon}{2} < \varepsilon$$

$$\implies \left\| \frac{\varepsilon x}{2\|x\|_2} \right\|_1 < 1 \implies \|x\|_1 < \frac{2}{\varepsilon} \|x\|_2$$

Gilt umgekehrt die Ungleichung in (1) so ist für alle $x \in X$ und $r \in \mathbb{R}_{>0}$

$$B_r^2(x) \subset B_{cr}^1(x)$$

Sei nun $A \in \mathcal{T}_1$. Dann ist $A = A^{\circ}$ bezüglich \mathcal{T}_1 . D. h. zu $x \in A$ existiert ein $\varepsilon \in \mathbb{R}_{>0}$, so dass $B^1_{\varepsilon}(x) \subset A$. Also gilt:

$$B_{\varepsilon/c}^2(x) \subset A$$

Dies zeigt $A \in \mathcal{T}_2$.

(2) Wende den ersten Teil zweimal an.

Satz 2.11. Auf einem endlich-dimensionalen Vektorraum sind alle Normen äquivalent. Endlich-dimensionale Vektorräume sind Banachräume. Endlich-dimensionale Unterräume normierter Räume sind abgeschlossen.

Beweis. Sei X ein endlich-dimensionaler \mathbb{K} -Vektorraum und $\|\cdot\|$ eine Norm. Sei e_1, \ldots, e_n eine Basis von $(X, \|\cdot\|)$. Jedem $x \in X$ mit $x = \sum_{i=1}^n \alpha_i e_i$ ordnen wir den Vektor $\alpha = (\alpha_1, \ldots, \alpha_n)^{\mathsf{t}} \in \mathbb{K}^n$ zu.

Die Abbildungen

$$\mathbb{K}^n \to X \to \mathbb{R}$$
$$\alpha \mapsto x \mapsto ||x||$$

sind stetig.

Daher nimmt ||x|| auf der kompakten Menge

$$S \coloneqq \{\alpha \mid \|\alpha\|_2 = 1\}$$

ein Maximum M und ein Minimum m an. (Dabei gilt m>0, da $\|x\|>0$ für alle $x\in S.$) Damit gilt für x mit $\|\alpha(x)\|_2=1$

$$m \le ||x|| \le M$$
.

Für allgemeine $x \neq 0$ gilt

$$\left\| \alpha \left(\frac{x}{\|\alpha(x)\|_2} \right) \right\|_2 = 1 \quad \text{und somit} \quad m \leq \left\| \frac{x}{\|\alpha(x)\|_2} \right\| \leq M$$

Dies zeigt die Äquivalenz einer beliebigen Norm zur Norm $x \mapsto \|\alpha(x)\|_2$. Damit sind zwei beliebige Normen äquivalent.

Die Vollständigkeit von X folgt aus der Vollständigkeit von $(\mathbb{K}^n, \|\cdot\|_2)$. Die Tatsache, dass endlich-dimensionale Räume abgeschlossen sind, folgt mit Aufgabe 1 von Übungsblatt 2.

2.12 (Folgenräume). Wir bezeichnen mit $\mathbb{K}^{\mathbb{N}}$ die Menge aller Folgen über \mathbb{K} , d. h.

$$\mathbb{K}^{\mathbb{N}} \coloneqq \left\{ x = (x_n)_{n \in \mathbb{N}} \; \middle| \; x_n \in \mathbb{K} \text{ für alle } n \in \mathbb{N} \right\}$$

Es gilt:

1) $\mathbb{K}^{\mathbb{N}}$ ist ein metrischer Raum mit der Fréchet-Metrik

$$\rho(x) := \sum_{n \in \mathbb{N}} 2^{-n} \frac{|x_n|}{1 + |x_n|} \quad \text{für } x = (x_n)_{n \in \mathbb{N}}$$

2) Ist $(x^k)_{k\in\mathbb{N}} = ((x_i)_{i\in\mathbb{N}}^k)_{k\in\mathbb{N}}$ eine Folge in $\mathbb{K}^{\mathbb{N}}$ und ist $x = (x_i)_{i\in\mathbb{N}} \in \mathbb{K}^{\mathbb{N}}$, so gilt:

$$\rho(x^k-x)\to 0 \text{ für } k\to \infty \quad \iff \quad \forall\, i\in \mathbb{N}\colon \ x_i^k\to x_i \text{ für } k\to \infty.$$

(Vergleiche Aufgabe 2 von Blatt 1.)

- 3) $\mathbb{K}^{\mathbb{N}}$ ist mit dieser Metrik vollständig.
- 4) Definiere für $x = (x_i)_{i \in \mathbb{N}} \in \mathbb{K}^{\mathbb{N}}$:

$$||x||_{\ell^p} := \left(\sum_{i \in \mathbb{N}} |x_i|^p\right)^{\frac{1}{p}} \in [0, \infty] \quad \text{für } 1 \le p < \infty$$

$$||x||_{\ell^\infty} := \sup_{i \in \mathbb{N}} |x_i| \in [0, \infty]$$

Wir betrachten für $1 \le p \le \infty$ die Mengen

$$\ell^p(\mathbb{K}) := \left\{ x \in \mathbb{K}^{\mathbb{N}} \mid ||x||_{\ell^p} < \infty \right\}$$

Diese Räume sind normierte Vektorräume und auch vollständig (also Banachräume). (Beweis, siehe später.) Wenn der Körper \mathbb{K} aus dem Kontext klar ist, lassen wir diesen in der Notation auch weg.

5) Interessante Unterräume von ℓ^{∞} sind:

$$c := \left\{ x \in \ell^{\infty} \mid \lim_{i \to \infty} x_i \text{ existiert} \right\} \quad \text{und}$$
$$c_0 := \left\{ x \in \ell^{\infty} \mid \lim_{i \to \infty} x_i = 0 \right\}.$$

Beide Räume versehen wir mit der $\|\cdot\|_{\infty}$ -Norm. Es gilt: $c_0 \subset c \subset \ell^{\infty}$

6) Der Raum ℓ^2 besitzt das Skalarprodukt

$$(x,y) := \sum_{i=1}^{\infty} x_i y_i$$
 für $x, y \in \ell^2$

Lemma 2.13 (Youngsche Ungleichung). Es seien $p, p' \in (1, \infty)$, so dass $\frac{1}{p} + \frac{1}{p'} = 1$ gilt. Dann gilt für alle $a, b \in \mathbb{R}_{>0}$:

$$ab \le \frac{1}{p} a^p + \frac{1}{p'} b^{p'}.$$

Beweis.

$$\log(ab) = \log(a) + \log(b) = \frac{1}{p}\log(a^p) + \frac{1}{p'}\log(b^{p'})$$

$$\leq \log\left(\frac{1}{p}a^p + \frac{1}{p'}b^{p'}\right)$$

Die letzte Ungleichheit folgt daraus, dass der Logarithmus eine konkave Funktion ist. Da außerdem exp monoton ist, folgt hieraus die Behauptung.

Satz 2.14 (Höldersche Ungleichung auf ℓ^p). Es sei $1 \leq p, p' \leq \infty$ mit $\frac{1}{p} + \frac{1}{p'} = 1$. Für $x \in \ell^p$ und $y \in \ell^{p'}$ ist $xy \in \ell^1$ (dabei sei für $x = (x_n)_{n \in \mathbb{N}}$ und $y = (y_n)_{n \in \mathbb{N}}$ das Produkt definiert als: $xy \coloneqq (x_n y_n)_{n \in \mathbb{N}}$) und es gilt:

$$||xy||_{\ell^1} \le ||x||_{\ell^p} \cdot ||y||_{\ell^{p'}}.$$

Beweis. Falls $p=\infty$ setzte p'=1 (und umgekehrt). In diesem Fall ist der Beweis einfach. Sei nun $1 und <math>\|x\|_{\ell^p} > 0$, $\|y\|_{\ell^{p'}} > 0$. Die Youngsche Ungleichung (Lemma 2.13) liefert:

$$\frac{|x_k| |y_k|}{\|x\|_{\ell^p} \|y\|_{\ell^{p'}}} \le \frac{1}{p} \frac{|x_k|^p}{\|x\|_{\ell^p}^p} + \frac{1}{p'} \frac{|y_k|^{p'}}{\|y\|_{\ell^{p'}}^{p'}}$$

Die Reihe über die Terme der rechten Seite ist eine konvergente Reihe und damit folgt aus dem Majorantenkriterium, dass $xy \in \ell^1$ erfüllt sein muss.

Satz 2.15. Der Raum ℓ^p ist für $1 \le p \le \infty$ ein Banachraum.

Beweis. Die Vollständigkeit von ℓ^1 ist eine Übungsaufgabe. Für ℓ^p folgt dies ähnlich (vergleiche mit dem späteren Beweis über $L^p(\mu)$.) Die Normeigenschaften abgesehn von der Δ -Ungleichung ergeben sich einfach. Wir zeigen die Δ -Ungleichung für $p \in (1, \infty)$. Es seien also $p, p' \in (1, \infty)$ mit $\frac{1}{p} + \frac{1}{p'} = 1$. Dann gilt:

$$||x+y||_{\ell^{p}}^{p} = \sum_{k=1}^{\infty} |x_{k} + y_{k}|^{p} \le \sum_{k=1}^{\infty} |x_{k}| |x_{k} + y_{k}|^{p-1} + \sum_{k=1}^{\infty} |y_{k}| |x_{k} + y_{k}|^{p-1}$$

$$\stackrel{(\star)}{\le} \left(\sum_{k=1}^{\infty} |x_{k}|^{p} \right)^{\frac{1}{p}} \left(\sum_{k=1}^{\infty} |x_{k} + y_{k}|^{(p-1)p'} \right)^{\frac{1}{p'}} + \left(\sum_{k=1}^{\infty} |y_{k}|^{p} \right)^{\frac{1}{p}} \left(\sum_{k=1}^{\infty} |x_{k} + y_{k}|^{(p-1)p'} \right)^{\frac{1}{p'}}$$

$$= (||x||_{\ell^{p}} + ||y||_{\ell^{p}}) (||x + y||_{\ell^{p}}^{p-1})$$

Bei (\star) geht die Höldersche Ungleichung ein. Dies zeigt $||x+y||_{\ell^p} \leq ||x||_{\ell^p} + ||y||_{\ell^p}$.

2.16 (Stetige Funktionen auf kompakten Mengen). Ist $K \subset \mathbb{R}^n$ abgeschlossen und beschränkt (also nach Heine-Borel äquivalenterweise kompakt) und Y ein Banachraum über \mathbb{K} , so ist $C^0(K,Y)$ ein Unterraum von B(K,Y). (Vergleiche Aufgabe 1 von Blatt 2.)

Satz: Mit $||f||_{C^0} := ||f||_{\infty} := \sup_{x \in K} |f(x)|$ wird $C^0(K, Y)$ ein Banachraum.

Beweis. Jedes $f \in C^0(K, Y)$ ist beschränkt, denn: Zu $x \in K$ existiert ein $\delta_x \in \mathbb{R}_{>0}$ mit $f(B_{\delta_x}(x)) \subset B_1(f(x))$. Da K kompakt ist, existieren endlich viele Punkte $x_1, \ldots, x_m \in K$ mit

$$K \subset \bigcup_{i=1}^m B_{\delta_{x_i}}(x_i).$$

Es folgt:

$$f(K) \subset \bigcup_{i=1}^{m} B_1(f(x_i)).$$

Die rechte Menge ist beschränkt, also ist auch f beschränkt.

Aufgabe 1 (iv) von Blatt 2 zeigt, dass B(K,Y) ein Banachraum ist. Eine Cauchy-Folge in $C^0(K,Y)$ ist auch eine Cauchy-Folge in B(K,Y). Da B(K,Y) vollständig ist, besitzt jede Cauchy-Folge einen Grenzwert.

Sei jetzt $(f_n)_{n\in\mathbb{N}}$ eine Cauchy-Folge in $C^0(K,Y)$ mit Grenzwert f in B(Y,K). Für $x,y\in K$ gilt:

$$||f(y) - f(x)|| \le \underbrace{||f_i(y) - f_i(x)||}_{\substack{\to 0 \text{ für } y \to x \\ \text{und jedes } i}} + \underbrace{2||f - f_i||_{\infty}}_{\substack{\to 0 \text{ für } i \to \infty}}$$

Dies beweist $f \in C^0(K, Y)$.

2.17 (Räume differenzierbarer Funktionen). Es sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt und $m \in \mathbb{N}_0$. Dann definieren wir:

 $C^m(\overline{\Omega}) \coloneqq \{f \colon \Omega \to \mathbb{R} \mid f \text{ ist } m\text{-mal stetig diffenzierbar auf } \Omega \text{ und für } s \in \mathbb{N}^n \\ \text{mit } |s| \le m \text{ ist } \partial^s f \text{ auf } \overline{\Omega} \text{ stetig fortsetzbar } \}.$

(Dabei ist s ein Multiindex mit $|s| = s_1 + \cdots + s_n$.)

Satz: Der Raum $C^m(\overline{\Omega})$ ist mit der Norm

$$||f||_{C^m(\overline{\Omega})} \coloneqq \sum_{|s| < m} ||\partial^s f||_{C^0(\overline{\Omega})}$$

ein Banachraum.

Beweis. Wir beweisen die Vollständigkeit von $C^1(\overline{\Omega})$. (Der Fall m > 1 folgt induktiv.) Ist $(f_k)_{k \in \mathbb{N}}$ eine Cauchy-Folge in $C^1(\overline{\Omega})$, so sind $(f_k)_{k \in \mathbb{N}}$ und $(\partial_i f_k)_{k \in \mathbb{N}}$ Cauchy-Folgen in $C^0(\overline{\Omega})$ für alle $i \in \{1, \ldots, n\}$.

Daher existieren f und g_i in $C^0(\overline{\Omega})$, so dass $f_k \to f$ sowie $\partial_i f_k \to g_i$ gleichmäßig für $k \to \infty$ in $C^0(\overline{\Omega})$. Für $x \in \Omega$ und y nahe x mit $x_t := (1-t)x + ty$ folgt aus dem HDI:

$$f_k(x_1) - f_k(x_0) = \int_0^1 \frac{\mathrm{d}}{\mathrm{d}t} f_k(x_t) \, \mathrm{d}t = \int_0^1 (y - x) \cdot \nabla f_k(x_t) \, \mathrm{d}t$$

Es folgt (mit $g = (g_1, \ldots, g_n)$):

$$||f_{k}(y) - f_{k}(x) - (y - x) \cdot \nabla f_{k}(x)|| = \left\| \int_{0}^{1} \left((y - x) \cdot \nabla f_{k}(x_{t}) - (y - x) \cdot \nabla f_{k}(x) \right) dt \right\|$$

$$\stackrel{\text{CSU}}{\leq} \int_{0}^{1} ||\nabla f_{k}(x_{t}) - \nabla f_{k}(x)|| dt ||y - x||$$

$$\leq \left(2||\nabla f_{k} - g||_{\infty} + \sup_{t \in [0, 1]} ||g(x_{t}) - g(x)|| \right) ||y - x||$$

Für $k \to \infty$ gilt dann:

$$||f(y) - f(x) - (y - x) \cdot g(x)|| \le \sup_{0 \le t \le 1} ||g(x_t) - g(x)|| ||y - x||$$

$$\to 0 \text{ für } y \to x \text{ wegen Stetigkeit von } g$$

Dies bedeutet f ist in x diff'bar mit $\nabla f(x) = g(x)$.

2.18 (Vervollständigung). Sei (X, d) ein metrischer Raum. Wir definieren

$$\tilde{X} := \{x = (x_i)_{i \in \mathbb{N}} \mid x \text{ ist Cauchy-Folge in } X\}$$

zusammen mit der Äquivalenzrelation

$$(x_i)_{i\in\mathbb{N}} = (y_i)_{i\in\mathbb{N}}$$
 in \tilde{X} : \iff $(d(x_j,y_j))_{j\in\mathbb{N}}$ ist Nullfolge.

Führe Metrik auf \tilde{X} ein: für $(x_i)_{i\in\mathbb{N}}\,,(y_i)_{i\in\mathbb{N}}\in\tilde{X}$ sei

$$\tilde{d}((x_i)_{i\in\mathbb{N}}, (y_i)_{i\in\mathbb{N}}) := \lim_{j\to\infty} d(x_j, y_j).$$

Satz:

- i) Dann ist (\tilde{X}, \tilde{d}) ein vollständiger metrischer Raum.
- ii) Durch $J(x) := (x)_{j \in \mathbb{N}}$ ist eine injektive Abbildung $J : X \to \tilde{X}$ definiert, welche isometrisch ist, d.h. für alle $x, y \in X$ gilt

$$\tilde{d}(J(x), J(y)) = d(x, y).$$

iii) Es liegt J(X) dicht in \tilde{X} .

Beweis. Für $\tilde{x} = (x_i)_{i \in \mathbb{N}}$ und $\tilde{y} = (y_i)_{i \in \mathbb{N}}$ in \tilde{X} gilt (mithilfe der sog. Vierecksungleichung):

$$|d(x_j, y_j) - d(x_i, y_i)| \le d(x_j, x_i) + d(y_j, y_i) \to 0$$
 für $i, j \to \infty$.

Somit existiert $\tilde{d}(\tilde{x}, \tilde{y}) = \lim_{j \to \infty} d(x_j, y_j)$. Für $\tilde{x}^1 = \tilde{x}^2$ und $\tilde{y}^1 = \tilde{y}^2$ in \tilde{X} folgt:

$$|d(x_j^2, y_j^2) - d(x_j^1, y_j^1)| \to 0$$
 für $i \to \infty$.

Dies zeigt, dass \tilde{d} wohldefiniert ist. Außerdem gilt:

$$\tilde{d}(\tilde{x}, \tilde{y}) = 0 \quad \iff \quad \tilde{x} = \tilde{y},$$

was direkt aus der Definition der Äquivalenzrelation folgt. Die \triangle -Ungleichung und Symmetrie übertragen sich direkt.

Zur Vollständigkeit: Es sei $(x^k)_{k\in\mathbb{N}}$ eine Cauchy-Folge in \tilde{X} , mit $x^k=(x^k_j)_{j\in\mathbb{N}}$ für alle $k\in\mathbb{N}$. Zu $k\in\mathbb{N}$ wähle $j_k\in\mathbb{N}$, so dass $d(x^k_i,x^k_j)\leq 1/k$ für alle $i,j\geq j_k$ erfüllt ist. Dann gilt:

$$\begin{split} d(x_{j_k}^k, x_{j_k}^\ell) &\leq d(x_{j_k}^k, x_j^k) + d(x_j^k, x_j^\ell) + d(x_j^\ell, x_{j_\ell}^\ell) \\ &\leq \frac{1}{k} + d(x_j^k, x_j^\ell) + \frac{1}{\ell} \quad \text{für } j \geq j_k, j_\ell \\ &\rightarrow \frac{1}{k} + \tilde{d}(x^k, x^\ell) + \frac{1}{\ell} \quad \text{für } j \rightarrow \infty \\ &\rightarrow 0 \quad \text{für } k, \ell \rightarrow \infty \end{split}$$

Also ist $x^{\infty} \coloneqq (x_{j_{\ell}}^{\ell})_{\ell \in \mathbb{N}}$ in \tilde{X} und es gilt:

$$\begin{split} \tilde{d}(x^\ell, x^\infty) &\longleftarrow d(x_k^\ell, x_k^\infty) & \text{ für } k \to \infty \\ & \leq d(x_k^\ell, x_{j_\ell}^\ell) + d(x_{j_\ell}^\ell, x_{j_k}^k) \\ & \leq \frac{1}{\ell} + d(x_{j_\ell}^\ell, x_{j_k}^k) & \text{ für } k \geq j_\ell \\ & \to 0 & \text{ für } k, \ell \to \infty \end{split}$$

Es gilt also $x^{\ell} \to x^{\infty}$. Da $(x^k)_{k \in \mathbb{N}}$ eine beliebige Cauchy-Folge in \tilde{X} war, hat also jede Cauchy-Folge einen Grenzwert.

Die Aussagen ii) und iii) sind eine einfache Übung.

_

3 Lineare Operatoren

Definition 3.1.

(a) Seien X, Y zwei \mathbb{K} -Vektorräume mit Topologien $\mathcal{T}_X, \mathcal{T}_Y$. Wir definieren

$$L(X,Y) := \{T \colon X \to Y \mid T \text{ ist linear und stetig} \}.$$

Elemente in L(X,Y) heißen lineare Operatoren von X nach Y. (Für $T \in L(X,Y)$ und $x \in X$ schreiben wir auch oft Tx statt T(x).)

(b) Der Dualraum von X ist

$$X' \coloneqq L(X, \mathbb{K})$$

und Elemente aus X' nennen wir lineare Funktionale.

Beispiele 3.2.

1) Gelte $X = C^2(\overline{\Omega})$ und $Y = C^0(\overline{\Omega})$ für $\Omega \subset \mathbb{R}^n$ offen. Betrachte dann $T: X \to Y$ mit

$$(Tu)(x) := -\Delta u(x)$$

für alle $u \in C^2(\overline{\Omega}), x \in \overline{\Omega}$.

2) Sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt und sei $K \colon \overline{\Omega} \times \overline{\Omega} \to \mathbb{R}$ stetig. Sei dann T für alle $u \in C^0(\overline{\Omega}), x \in \overline{\Omega}$ gegeben durch:

$$(Tu)(x) := \int_{\overline{\Omega}} K(x, y) u(y) dy.$$

Lemma 3.3. Seien X, Y normierte Vektorräume und sei $T: X \to Y$ linear. Dann sind die folgenden Aussagen äquivalent:

- (1) T ist stetig, also $T \in L(X, Y)$.
- (2) T ist stetig in x_0 für ein $x_0 \in X$.
- (3) Es gilt für die Operatornorm von T:

$$\|T\|_{L(X,Y)}\coloneqq \sup_{\substack{x\in X\\ \|x\|_{Y}\leq 1}}\|Tx\|_{Y}<\infty$$

(4) Es existiert ein $C \in \mathbb{R}_{\geq 0}$, so dass für alle $x \in X$ gilt: $||Tx||_Y \leq C ||x||_X$. (Bemerkung: $C = ||T||_{L(X,Y)}$ ist die kleinste solche Zahl.)

Beweis. $(1) \Longrightarrow (2)$: klar.

 $(2) \Longrightarrow (3)$: Es gibt ein $\delta \in \mathbb{R}_{>0}$, so dass

$$T(\overline{B_{\delta}(x_0)}) \subset \overline{B_1(T(x_0))}$$

erfüllt ist. Für x mit $||x||_X \le 1$ folgt $x_0 + \delta x \in \overline{B_\delta(x_0)}$ und daraus: $T(x_0 + \delta x) \in \overline{B_1(T(x_0))}$, d. h. es gilt:

$$||T(x_0 + \delta x) - T(x_0)|| \le 1.$$

Wegen der Linearität von T gilt $T(x_0 + \delta x) - T(x_0) = \delta T(x)$, weshalb wir $T(x) \leq 1/\delta$ bekommen

 $(3) \Longrightarrow (4)$: Für $x \neq 0$ gilt $\left\| \frac{x}{\|x\|} \right\| = 1$. Daraus folgt:

$$||Tx|| = \left| ||x|| T\left(\frac{x}{||x||}\right) \right| \le ||T|| ||x||.$$

 $(4) \Longrightarrow (1)$: Für $x, x_0 \in X$ gilt:

$$||Tx - Tx_0|| = ||T(x - x_0)|| \le C ||x - x_0||.$$

Also ist T Lipschitz-stetig und somit auch stetig.

Lemma 3.4.

- (1) X, Y normierte Räume $\implies L(X, Y)$ normiert mit der Operatornorm.
- (2) Y Banachraum $\implies L(X,Y)$ Banachraum
- (3) X Banach
raum $\implies L(X)\coloneqq L(X,X)$ Banachalgebra
- (4) $T \in L(X,Y), S \in L(Y,Z) \implies ST \in L(X,Z) \text{ mit } ||ST|| \le ||S|| ||T||$

Beweis. Zu (1): Wir zeigen nur die \triangle -Ungleichung (der Rest ist klar). Es gilt

$$||T_1 + T_2(x)|| \le ||T_1x|| + ||T_2x|| \le (||T_1|| + ||T_2||) ||x||,$$

woraus folgt:

$$||T_1 + T_2|| \le ||T_1|| + ||T_2||.$$

Zu (2): Es sei $(T_n)_{n\in\mathbb{N}}$ eine Cauchy-Folge in L(X,Y). Für alle $x\in X$ ist dann $(T_nx)_{n\in\mathbb{N}}$ eine Cauchy-Folge in Y. Setzte

$$Tx := \lim_{n \to \infty} T_n x.$$

Da Grenzwertbilden linear ist, ist auch L linear. Wir behaupten, dass $T \in L(X,Y)$ und $||T_n - T|| \to 0$ für $n \to 0$ gelten.

Zu $\varepsilon \in \mathbb{R}_{>0}$ wähle $n_0 \in \mathbb{N}$, so dass für alle $n, m \in \mathbb{N}_{>n_0}$ gilt:

$$||T_n - T_m|| < \varepsilon.$$

Sei $x \in X$ mit $||x|| \le 1$. Wähle $m_0 = m_0(\varepsilon, x) \ge n_0$ mit

$$||T_{m_0}x - Tx|| \le \varepsilon.$$

Für alle $n \in \mathbb{N}_{\geq n_0}$ folgt nun:

$$||T_n x - Tx|| \le ||T_n x - T_{m_0} x|| + ||T_{m_0} x - Tx|| \le ||T_n - T_m|| + \varepsilon \le 2\varepsilon.$$

Damit folgen nun aber $||T|| \le \infty$ sowie $||T_n - T|| \to 0$ für $n \to \infty$.

Zu (3) und (4): Es gilt:

$$||STx|| \le ||S|| \, ||Tx|| \le ||S|| \, ||T|| \, ||x||.$$

Also gilt allgemein: $||ST|| \le ||S|| ||T||$.

Bemerkung 3.5. Es sei $T \in L(X,Y)$ und $(T_n)_{n \in \mathbb{N}}$ eine Folge in L(X,Y) mit $T_k x \to T x$ für $k \to \infty$ und für alle $x \in X$. Dann folgt i. A. $nicht\ T_k \to T$ in L(X,Y).

Beispiel: $X = c_0$ (Raum der Nullfolgen, siehe 2.12(5)) mit der Supremumsnorm, $Y = \mathbb{R}$, $T_k x := x_k$. Dann gilt: $\lim_{k \to \infty} T_k x = \lim_{k \to \infty} x_k = 0 =: Tx$. Offensichtlich gilt $||T_k x|| = 1$ für $x = e_k$. Außerdem gilt $||T_k x|| = ||x_k|| \le 1$ für $||x|| \le 1$. D. h. $||T_k|| = 1$, aber ||T|| = 0.

Definition 3.6. Für $T \in L(X,Y)$ definieren wir den Nullraum (Kern) von T als

$$N(T) := \{x \in X \mid T(x) = 0\} = T^{-1}(\{0\}).$$

Es ist N(T) ein abgeschlossener Unterraum von L(X,Y).

Weiter sei

$$R(T) \coloneqq \{Tx \in Y \mid x \in X\} = T(X)$$

der Bildraum (engl.: "range") von T. Es ist R(T) ein linearer Unterraum von Y, i. A. aber nicht abgeschlossen.

Beispiel: $X = C^0([0, 1]),$

$$T: X \to X, \quad (Tf)(x) := \int_0^x f(\xi) \, d\xi$$

$$R(T) = \{ g \in C^1([0,1]) \mid g(0) = 0 \}$$

Es gilt $T \in L(X,Y)$ aber R(T) ist nicht abgeschlossen in X, denn:

$$\overline{R(T)} = \{ g \in C^0([0,1]) \mid g(0) = 0 \}$$

(denn stetige Funktionen können durch C^1 -Funktionen in der C^0 -Norm approximiert werden, siehe später).

Satz 3.7 (Neumannsche Reihe). Sei X ein Banachraum und sei $A \in L(X)$ mit ||A|| < 1. Es bezeichne Id den Identitätsoperator. Dann liegt $(\operatorname{Id} - A)^{-1}$ in L(X) und es gilt:

$$(\operatorname{Id} - A)^{-1} = \sum_{n=0}^{\infty} A^n$$

Beweis. Sei für alle $n \in \mathbb{N}$:

$$B_n := \sum_{k=0}^n A^k \qquad \in L(X).$$

Mit $||A^k|| \le ||A||^k$ folgt:

$$||B_n x - B_m x|| = \left\| \sum_{k=m+1}^n A^k x \right\| \quad \text{für } n > m$$

$$\leq \sum_{k=m+1}^n ||A||^k ||x|| \to 0 \quad \text{für } n, m \to \infty \text{ für alle } x \text{ mit gleichmäßig } ||x|| \leq 1$$

Also existiert $B \in L(X)$ mit $B = \lim_{n \to \infty} B_n$. Noch zu zeigen: $B(\operatorname{Id} - A) = \operatorname{Id} = (\operatorname{Id} - A)B$. Es gilt:

$$\sum_{k=0}^{n} A^{k} (\operatorname{Id} - A) = \sum_{k=0}^{n} (A^{k} - A^{k+1}) = \operatorname{Id} - A^{n+1} \to \operatorname{Id} \quad \text{für } n \to \infty.$$

Also:

$$B(\operatorname{Id} - A) = \lim_{n \to \infty} B_n (\operatorname{Id} - A) = \lim_{n \to \infty} (\operatorname{id} - A^{n+1}) = \operatorname{Id}$$

3.8 (Invertierbarere Operatoren). Seien X, Y Banachräume. Wir sagen $T \in L(X, Y)$ ist invertierbar, falls T bijektiv ist und $T^{-1} \in L(X, Y)$ gilt.

Satz::

- i) Die Teilmenge $\{T \in L(X,Y) \mid T \text{ invertierbar}\}$ ist offen in L(X,Y).
- ii) Es gilt genauer für $T, S \in L(X, Y)$ mit invertierbarem T:

$$||S|| < ||T^{-1}||^{-1} \implies T - S$$
 invertierbar

Beweis. Es gilt:

$$T - S = T \left(\operatorname{Id}_X - \underbrace{T^{-1}S}_{\in L(X)} \right).$$

Also folgt mit $||S|| < ||T^{-1}||^{-1}$:

$$||T^{-1}S|| \le ||T^{-1}|| \, ||S|| < 1.$$

Mithilfe der Neumannschen Reihe (Satz 3.7) erhalten wir:

 $(\operatorname{Id} - T^{-1}S)$ ist invertierbar.

Also ist auch T-S invertierbar

4 Der Satz von Hahn-Banach und seine Konsequenzen

Problem: Setzte ein Funktional stetig von einem Unterraum auf den gesamten Raum fort.

Bisher wissen wir nicht, ob auf jedem normierten Vektorraum ein (nicht-triviales) stetiges lineares Funktional existiert. Da wir im Folgenden grundlegend das Zorn'sche Lemma verwenden, wiederholen kurz dir Voraussetzungen dafür.

Definition 4.1.

- i) Sei M eine Menge. Eine Teilmenge $H \subset M \times M$ definiert eine Halbordnung (wir sagen $a \leq b$, falls $(a, b) \in H$ erfüllt ist), wenn für alle $a, b \in M$ gilt:
 - a) a < a
 - b) $a \le b \land b \le a \implies a = b$
 - c) $a \le b \land b \le c \implies a \le c$
- ii) Eine Teilmenge $K \subset M$ heißt Kette (oder total geordnete Teilmenge), falls für alle $a,b \in K$ entweder $a \leq b$ oder $b \leq a$ gilt.
- iii) Eine obere Schranke einer Teilmenge $K \subset M$ ist ein Element $s \in M$ mit $a \leq s$ für alle $a \in K$. (Achtung: s muss nicht in K liegen!)
- iv) Wir sagen M ist induktiv geordnet, falls jede Kette in M eine obere Schranke besitzt.
- v) Ein $m \in K$ heißt maximales Element von K, wenn für alle $a \in K$ aus $a \geq m$ schon a = m folgt.
- **4.2** (Zorn'sches Lemma). Jede induktiv geordnete Menge besitzt (mindestens) ein maximales Element.

Bemerkung: Das Zorn'sche Lemma ist äquivalent zum Auswahlaxiom.

Satz 4.3 (Satz von Hahn-Banach). Sei X ein \mathbb{R} -Vektorraum und $Y \subset X$ ein Unterraum. Weiter gelte:

(1) $p: X \to \mathbb{R}$ ist sublinear, d. h. für alle $x, y \in X$ und $\alpha \in \mathbb{R}_{>0}$ gilt:

$$p(x+y) \le p(x) + p(y)$$
 und $p(\alpha x) = \alpha p(x)$.

- (2) $f: Y \to \mathbb{R}$ ist linear.
- (3) $f \leq p$ auf Y.

Dann existiert eine lineare Abbildung $f: X \to \mathbb{R}$ mit $f \leq p$ auf X.

Beweis. Nutze das Zorn'sche Lemma (4.2). Es sei

$$\begin{split} M \coloneqq \big\{ (Z,g) \bigm| Y \subset Z \subset X, \ Z \text{ ist Unterraum,} \\ g \colon Z \to \mathbb{R} \text{ ist linear, } g = f \text{ auf } Y, \ g \leq p \text{ auf } Z \, \big\}. \end{split}$$

Wir definieren eine Halbordnung auf dieser Menge folgendermaßen:

$$(Z_1, g_1) \le (Z_2, g_2)$$
 : \iff $Z_1 \subset Z_2 \land g_2|_{Z_1} = g_1.$

Es ist zunächst zu zeigen, dass es überhaupt ein F gibt, so dass $(X, F) \in M$ gilt. Hierzu brauchen wir folgende Konstruktion:

Sei $(Z,g) \in M, z_0 \in X \setminus Z$. Definiere dann $Z_0 := Z \oplus \text{span}\{z_0\}$. Das Ziel ist es nun, g auf Z_0 fortzusetzen. Ansatz:

$$g_0(z + \alpha z_0) = g(z) + \alpha c$$

für $z \in \mathbb{Z}, \alpha \in \mathbb{R}$. Gesucht ist nun ein geeinetes $c \in \mathbb{R}$.

Es muss für alle $z \in Z$ gelten:

$$g(z) + \alpha c \le p(z + \alpha z_0).$$

Für $\alpha = 0$ ist dies klar. Für $\alpha > 0$ haben wir:

$$c \le \frac{p(z + \alpha z_0) - g(z)}{\alpha} = p\left(\frac{z}{\alpha} + z_0\right) - g\left(\frac{z}{\alpha}\right)$$

und für $\alpha < 0$:

$$c \ge \frac{p(z + \alpha z_0) - g(z)}{\alpha} = -p\left(-\frac{z}{\alpha} - z_0\right) + g\left(-\frac{z}{\alpha}\right).$$

Gesucht ist nun ein c, so dass

$$\sup_{z' \in Z} (g(z') - p(z' - z_0)) \le c \le \inf_{z \in Z} (p(z + z_0) - g(z)) \tag{*}$$

erfüllt ist.

Es gilt für alle $z', z \in Z$:

$$q(z+z') \le p(z+z') = p(z+z_0+z'-z_0) \le p(z+z_0) + p(z'-z_0).$$

Daraus folgt für alle $z', z \in Z$:

$$g(z') - p(z' - z_0) \le p(z + z_0) - g(z),$$

was wiederum bedeutet, dass wir für c einfach den Wert des Supremums in (\star) nehmen können. Somit existiert also ein $c \in \mathbb{R}$, so dass $(Z_0, g_0) \in M$ gilt. Sei nun $N \subset M$ eine Kette. Definiere dann

$$Z_0 \coloneqq \bigcup_{(Z,g)\in N} Z$$

und

$$g_0: Z_0 \to \mathbb{R}, \quad z_0 \mapsto g(z_0) \text{ falls } z_0 \in Z \text{ mit } (Z, g) \in N.$$

Da N eine Kette ist, ist g_0 tatsächlich wohldefiniert. Es folgt also $(Z_0, g_0) \in M$ und für alle $(Z, g) \in N$ gilt $(Z, g) \leq (Z_0, g_0)$.

Das Zorn'sche Lemma liefert nun: Es existiert ein maximales Element $(Z,g) \in M$. Dann muss schon Z = X gelten, denn: Falls $z_0 \in X \setminus Z$ existiert, konstruiere eine Fortsetzung von g auf $Z \oplus \text{span}\{x_0\}$ wie oben. Dies liefert einen Widerspruch zur Maximalität von (Z,g). Damit ist der Satz gezeigt.

Wir wollen nun den Satz von Hahn-Banach auf den komplexen Fall verallgemeinern. Die Frage ist, wie wir " $f \leq p$ " auf \mathbb{C} umgehen. Dazu betrachten wir die Realteilfunktion Re f von f.

Lemma 4.4. Sei X ein \mathbb{C} -Vektorraum.

(a) Sei $\ell: X \to \mathbb{R}$ ein \mathbb{R} -lineares Funktional, d. h.

$$\ell(\lambda_1 x_1 + \lambda_2 x_2) = \lambda_1 \ell(x_1) + \lambda_2 \ell(x_2)$$

für alle $\lambda_1, \lambda_2 \in \mathbb{R}, x_1, x_2 \in X$. Setzten wir

$$\tilde{\ell}(x) \coloneqq f(x) - i \, \ell(ix),$$

so ist $\tilde{\ell} \colon X \to \mathbb{C}$ eine \mathbb{C} -lineare Abbildung mit $\ell = \operatorname{Re} \tilde{\ell}$.

- (b) Ist $h: X \to \mathbb{C}$ eine \mathbb{C} -lineare Abbildung, $\ell = \operatorname{Re} h$ und $\tilde{\ell}$ wie in (a), so ist ℓ eine \mathbb{R} -lineare Abbildung mit $\tilde{\ell} = h$.
- (c) Ist $p: X \to \mathbb{R}$ eine Halbnorm (es gelten die Normaxiome bis auf $p(x) = 0 \implies x = 0$) und ist $\ell: X \to \mathbb{C}$ eine \mathbb{C} -lineare Abbildung, so gilt:

$$\Big(\forall\,x\in X\colon\; |\ell(x)|\le p(x)\Big)\iff \Big(\forall\,x\in X\colon\; |\mathrm{Re}\,\ell(x)|\le p(x)\Big).$$

(d) Ist X ein normierter Vektorraum und ist $\ell \colon X \to \mathbb{C}$ eine \mathbb{C} -lineare Abbildung und stetig, so ist $\|\ell\| = \|\operatorname{Re} \ell\|$.

Bemerkung: $\ell \mapsto \operatorname{Re} \ell$ ist also eine bijektive \mathbb{R} -lineare Abbildung zwischen den \mathbb{C} -linearen und den \mathbb{R} -linearen, \mathbb{R} -wertigen Abbildungen. Im normierten Fall ist die Abbildung sogar eine Isometrie.

Beweis.

(a) Da $x \mapsto ix$ eine \mathbb{R} -lineare Abbildung ist, folgt: $\tilde{\ell}$ ist \mathbb{R} -linear. Die Gleichheit Re $\tilde{\ell} = \ell$ gilt nach Konstruktion. Außerdem gilt:

$$\tilde{\ell}(ix) = \ell(ix) - i\ell(i^2x) = \ell(ix) - i\ell(-x) = i\left(\ell(x) - i\ell(ix)\right) = i\,\tilde{\ell}(x).$$

(b) Natürlich ist $\ell = \text{Re } h$ eine \mathbb{R} -lineare Abbildung. Es gilt für alle $z \in \mathbb{C}$:

$$h(x) = \operatorname{Re} h(x) + i \operatorname{Im} h(x) = \operatorname{Re} h(x) - i \operatorname{Re} (ih(x))$$
$$= \operatorname{Re} h(x) - i \operatorname{Re} h(ix) = \ell(x) - i \ell(ix) = \tilde{\ell}(x)$$

(c) Wegen $|\operatorname{Re} z| \leq |z|$ für alle $z \in \mathbb{C}$ gilt die Hinrichtung. Die Rückrichtung ergibt sich wie folgt: Schreibe $\ell(x) = \lambda |\ell(x)|$ für ein geeignetes $\lambda \in \mathbb{C}$ mit $|\lambda| = 1$. Dann gilt für alle $x \in X$:

$$|\ell(x)| = \lambda^{-1}\ell(x) = \ell(\lambda^{-1}x) = |\text{Re }\ell(\lambda^{-1}x)| \le p(\lambda^{-1}x) = p(x).$$

(d) folgt sofort aus (c).

Satz 4.5. Sei X ein \mathbb{C} -Vektorraum und sei $U \subset X$ ein Unterraum. Weiter sei $p \colon X \to \mathbb{R}$ sublinear und $\ell \colon U \to \mathbb{C}$ linear mit $\operatorname{Re} \ell(x) \leq p(x)$ für alle $x \in U$. Dann existiert eine lineare Fortsetzung $L \colon X \to \mathbb{C}$ mit $L|_U = \ell$ und $\operatorname{Re} L(x) \leq p(x)$ für alle $x \in X$.

Beweis. Wende den Satz von Hahn-Banach (4.3) auf das \mathbb{R} -lineare Funktional Re $\ell \colon U \to \mathbb{R}$ an und erhalte eine \mathbb{R} -lineare Abbildung $F \colon X \to \mathbb{R}$ mit $F|_U = \operatorname{Re} \ell$ und $F(x) \leq p(x)$ für alle $x \in X$. Nach Lemma 4.4 ist $F = \operatorname{Re} L$ für ein \mathbb{C} -lineares Funktional $L \colon X \to \mathbb{C}$. Dann ist L eine geeignete Fortsetzung.

Satz 4.6. Sei X ein normierter Vektorraum und sei $U \subset X$ ein Unterraum. Zu jedem stetigen linearen Funktional $u' \colon U \to \mathbb{K}$ existiert ein lineares Funktional $x' \colon X \to \mathbb{K}$ mit $x'|_U = u'$ und ||x'|| = ||u'||.

Beweis. Sei X zunächst ein \mathbb{R} -Vektorraum. Definiere für alle $x \in X$

$$p(x) \coloneqq \|u'\| \|x\|,$$

womit $p: X \to \mathbb{R}$ sublinear ist. Der Satz von Hahn-Banach (Satz 4.3) liefert: Es existiert eine lineare Abbildung $x': X \to \mathbb{R}$ mit $x'|_U = u'$ und $x'(x) \le p(x)$ für alle $x \in X$. Da auch $x'(-x) \le p(-x) = p(x)$ gilt, folgt

$$|x'(x)| \le ||u'|| ||x||$$
 also $||x'|| \le ||u'||$.

Umgekehrt gilt:

$$||u'|| = \sup_{\substack{u \in U \\ ||u|| \le 1}} |u'(u)| = \sup_{\substack{u \in U \\ ||u|| \le 1}} |x'(u)| \le \sup_{\substack{x \in X \\ ||x|| \le 1}} |x'(x)| = ||x'||.$$

Sei X nun ein \mathbb{C} -Vektorraum. Wir erhalten wie in Satz 4.5 ein lineares Funktional $x' \colon X \to \mathbb{C}$ mit $x'|_U = u'$ und $\|\operatorname{Re} x'\| = \|u'\|$. Lemma 4.4 (d) liefert dann wie gewünscht $\|\operatorname{Re} x'\| = \|x'\|$.

Bemerkung 4.7.

- i) Die Fortsetzung im Satz von Hahn-Banach (Satz 4.3) und seinen Folgerungen sind im Allgemeinen *nicht* eindeutig.
- ii) Für Operatoren (lineare Abbildungen von X nach Y) ist die Aussage in Satz 4.6 im Allgemeinen falsch.

Beispiel: Es gibt keinen stetigen linearen Operator $T: \ell^{\infty} \to c_0$, der die Identität Id: $c_0 \to c_0$ fortsetzt.

iii) Es gibt eine eindeutige stetige Fortsetzung, falls der Unterraum U dicht in X liegt.

Definition 4.8. Eine affine Hyperebene in einem \mathbb{K} -Vektorraum X ist eine Teilmenge $H \subset X$ der Form

$$H = \{ x \in X \mid f(x) = \alpha \}$$

für eine (nicht-trivale) lineare Abbildung $f: X \to \mathbb{K}$ und $\alpha \in \mathbb{K}$. Wir schreiben auch kurz: $H = \{f = \alpha\}$.

Satz 4.9. Sei X ein \mathbb{R} -Vektorraum, sei $f: X \to \mathbb{R}$ linear und sei $\alpha \in \mathbb{R}$. Die Hyperebene $H = \{f = \alpha\}$ ist genau dann abgeschlossen, wenn f stetig ist.

Beweis. Es ist klar, dass H abgeschlossen ist, wenn f stetig ist, denn es gilt $f^{-1}(\{\alpha\}) = H$ und $\{\alpha\}$ ist abgeschlossen in \mathbb{R} . Für die Rückrichtung sei H abgeschlossen in X. Dann ist H^{c} offen und nicht leer. Jetzt sei $x_0 \in H^{\mathsf{c}}$ mit $f(x_0) \neq \alpha$, o. E. $f(x_0) < \alpha$. Sei $r \in \mathbb{R}_{>0}$, so dass $B_r(x_0) = \{x \in X \mid ||x - x_0|| < r\} \subset H^{\mathsf{c}}$. (Abbildung 4.2)

Abbildung 4.1: Zwei Teilmengen A und B eines Vektorraums, getrennt durch eine Hyperebene H (hier eine Gerade im \mathbb{R}^2)

Abbildung 4.2: Hyperebene H und Ball $B_r(x_0)$ um x_0 mit $x \in B_r(x_0)$

Wir behaupten nun, dass dann schon für alle $x \in B_r(x_0)$ die Ungleichung

$$f(x) < \alpha \tag{*}$$

gilt. Angenommen dies gilt nicht und es existiert ein $x_1 \in B_r(x_0)$, so dass $f(x_1) > \alpha$ gilt. Das Segment

$$[x_0, x_1] := \{x_t := (1 - t) x_0 + tx_1 \mid t \in [0, 1]\}$$

ist in $B_r(x_0)$ enthalten (da Bälle in normierten Räumen konvex sind). Somit folgt für alle $t \in [0, 1]$:

$$f(x_t) \neq \alpha$$
.

Andererseits gilt offenbar

$$f(x_t) = \alpha$$
 für $t = \frac{\alpha - f(x_0)}{f(x_1) - f(x_0)}$.

Dies ist ein Widerspruch, also muss doch schon (*) gelten. Wir erhalten, dass für alle $z \in B_1(0)$

$$f(\underbrace{x_0 + rz}) < \alpha$$

gilt, woraus sofort

$$f(z) < \frac{1}{r} \left(\alpha - f(x_0) \right)$$

folgt. Nutze diese Ungleichung für z und -z aus $B_1(0)$, um Folgendes für alle $z \in B_1(0)$ zu erhalten:

$$|f(z)| < \frac{1}{r} \left(\alpha - f(x_0) \right).$$

Insgesamt folgt:

$$||f|| = \sup_{z \in B_1(0)} |f(z)| \le \frac{1}{r} (\alpha - f(x_0)).$$

Definition 4.10. Sei X ein \mathbb{R} -Vektorraum und seien $A, B \subset X$ zwei Teilmengen von X. Die Hyperebene $H = \{f = \alpha\}$ trennt die Mengen A und B, falls für alle $a \in A$ und alle $b \in B$ die Ungleichungen

$$f(a) \le \alpha$$
 und $f(b) \ge \alpha$

gelten.

Abbildung 4.3: Zwei nicht strikt durch H getrennte Mengen; die Mengen aus Abbildung 4.1 sind hingegen strikt durch H getrennt

Die Hyperebene H trennt A und B strikt, falls es ein $\varepsilon \in \mathbb{R}_{>0}$ gibt, so dass für alle $a \in A$ und alle $b \in B$ die Ungleichungen

$$f(a) \le \alpha - \varepsilon$$
 und $f(b) \ge \alpha + \varepsilon$

gelten.

Bemerkung 4.11.

- i) Geometrisch sagt solch eine Trennung aus, dass A auf der einen Seite von H liegt und B auf der anderen Seite. (Siehe Abbildung 4.1 und Abbildung 4.3.)
- ii) Ist X ein \mathbb{C} -Vektorraum, so sagen wir, dass A und B durch eine reelle Hyperebene getrennt werden, $f\colon X\to \mathbb{C}$ und $\alpha\in\mathbb{R}$ existieren, so dass für alle $a\in A$ und alle $b\in B$ die Ungleichungen

$$\operatorname{Re} f(x) \le \alpha$$
 und $\operatorname{Re} f(b) \ge \alpha$

gelten.

iii) Wir nennen $A \subset X$ konvex, falls für alle $x, y \in A$ auch

$$[x, y] = \{(1 - t) x + ty \mid t \in [0, 1]\} \subset A$$

gilt.

Definition: Sei X ein \mathbb{K} -Vektorraum und $K \subset X$. Dann ist das Minkowski-Funktional zu K definiert durch

$$p(x) := \inf \left\{ \alpha \in \mathbb{R}_{>0} \mid \frac{1}{\alpha} x \in K \right\}.$$

Für $K = B_1(0)$ gilt gerade p(x) = ||x||.

Lemma 4.12. Es sei K konvex, offen und $0 \in K$. Dann gilt:

- i) Das Minkowski-Funktional p zu K ist sublinear.
- ii) Es existiert ein $M \in \mathbb{R}_{>0}$, so dass für alle $x \in X$ gilt:

$$0 \le p(x) \le M \|x\|.$$

iii) Zwischen K und p besteht folgender Zusammenhang:

$$K = \{x \in X \mid p(x) < 1\}.$$

Beweis.

i) Seien $\lambda \in \mathbb{R}_{>0}$ und $x \in X$. Dann gilt $p(\lambda x) = \lambda p(x)$, denn:

$$p(\lambda x) = \inf \left\{ \alpha \in \mathbb{R}_{>0} \mid \frac{1}{\alpha} \lambda x \in K \right\} = \inf \left\{ \alpha' \lambda \mid \frac{1}{\alpha' \lambda} \lambda x \in K \right\}$$
$$= \lambda \inf \left\{ \alpha' \in \mathbb{R}_{>0} \mid \frac{1}{\alpha'} x \in K \right\} = \lambda p(x)$$

Die \triangle -Ungleichung zeigen wir später.

ii) Es sei $r \in \mathbb{R}_{>0}$ derart, dass $B_r(0) \subset K$ gilt. Es gilt dann für alle $x \in X$:

$$p(x) \le \frac{1}{r} \|x\|,$$

denn:

$$p(x) = \inf \left\{ \alpha \in \mathbb{R}_{>0} \mid \frac{1}{\alpha} x \in K \right\}$$

$$\leq \inf \left\{ \alpha \in \mathbb{R}_{>0} \mid \frac{1}{\alpha} x \in B_r(0) \right\}$$

$$= \frac{1}{r} \|x\|$$

iii) Es sei $x \in K$. Da K offen ist, folgt $(1 + \varepsilon) x \in K$ für $\varepsilon \in \mathbb{R}_{>0}$ klein genug. Dann gilt:

$$p(x) \le \frac{1}{1+\varepsilon} < 1.$$

Falls p(x) < 1 gilt, muss ein $\alpha \in (0,1)$ geben, so dass $x/\alpha \in K$ erfüllt ist. Damit gilt:

$$x = \alpha \left(\frac{x}{\alpha}\right) + (1 - \alpha) \cdot 0 \in K,$$

denn K ist nach Voraussetzung konvex.

Abbildung 4.4: Links eine konvexe Menge K, getrennt von $\{x_0\}$ durch H; rechts eine nicht konvexe Menge, so dass diese und x_0 nicht durch eine Hyperebene H getrennt werden können

i) Es bleibt die \triangle -Ungleichung zu zeigen. Seien $x, y \in X$ und $\varepsilon \in \mathbb{R}_{>0}$. Aus dem bisher Gezeigten folgt:

$$\frac{x}{p(x)+\varepsilon}\,,\;\frac{y}{p(y)+\varepsilon}\in K.$$

Damit gilt also für alle $t \in [0, 1]$:

$$\frac{tx}{p(x)+\varepsilon} + \frac{(1-t)y}{p(y)+\varepsilon} \in K.$$

Wähle nun $t = \frac{p(x) + \varepsilon}{p(x) + p(y) + 2\varepsilon}$, dann erhalten wir

$$\frac{x+y}{p(x)+p(y)+2\varepsilon}\in K\quad \text{und mit (iii) folgt}\quad p\left(\frac{x+y}{p(x)+p(y)+2\varepsilon}\right)<1.$$

Es folgt:

$$p(x+y) < p(x) + p(y) + 2\varepsilon.$$

Da $\varepsilon \in \mathbb{R}_{>0}$ beliebig war, folgt die Behauptung.

Lemma 4.13. Sei X ein \mathbb{K} -Vektorraum und sei $K \subset X$ nicht-leer, offen und konvex. Sei weiter $x_0 \in K^c$. Dann existiert ein $x' \in X'$, so dass für alle $x \in K$ gilt:

$$\operatorname{Re} x'(x) < \operatorname{Re} x'(x_0).$$

Insbesondere trennt im Fall $\mathbb{K} = \mathbb{C}$ die reelle Hyperebene $\{\operatorname{Re} x' = \operatorname{Re} x'(x_0)\}$ somit $\{x_0\}$ und K.

Beweis. Sei zunächst $\mathbb{K} = \mathbb{R}$. Ohne Einschränkung können wir $0 \in K$ annehmen. Sei p das Minkowski-Funktional zu K. Sei weiter $U \coloneqq \operatorname{span}\{x_0\}$ und $g \colon U \to \mathbb{R}$ sei gegeben durch $g(tx_0) \coloneqq t$ für alle $t \in \mathbb{R}$. Dann gilt für alle $x \in U$:

$$g(x) \le p(x)$$

und für x_0 haben wir $g(x_0) = 1 \le p(x_0)$, da x_0 nicht in K liegt. (Achtung: tx_0 mit t < 0 ist kein Problem, da $g(tx_0) < 0$.)

Wende nun Hahn-Banach (Satz 4.3) an, womit wir ein $x': X \to \mathbb{R}$ erhalten, mit $x'(x) \le p(x)$ für alle $x \in X$ und außerdem $x'|_U = g$. Insbesondere gilt also $x'(x_0) = 1$. Außerdem ist x' stetig (vgl. Lemma 4.12 (ii)). Mit Lemma 4.12 (iii) erhalten wir: für alle $x \in K$ gilt

Der komplexe Fall (also $\mathbb{K} = \mathbb{C}$) folgt aus dem Obigen und Lemma 4.4.

Satz 4.14 (Satz von Hahn-Banach (erste geometrische Formulierung)). Sei X ein normierter \mathbb{K} -Vektorraum und seien $A, B \subset X$ nicht-leer, konvex und disjunkt. Außerdem sei A offen. Dann existiert $x' \in X'$ mit $\operatorname{Re} x'(a) < \operatorname{Re} x'(b)$ für alle $a \in A$ und $b \in B$.

Bemerkung: Ist X ein \mathbb{R} -Vektorraum, so trennt die abgeschlossene Hyperebene $\{x'=\alpha\}$ mit

$$\alpha \in \left[\sup_{a \in A} x'(a), \inf_{b \in B} x'(b)\right]$$

die Mengen A und B.

Beweis. Es sei $C := A - B := \{a - b \mid a \in A, b \in B\}$. Dann ist C konvex (leichte Rechnung) und offen, denn:

$$C = \bigcup_{b \in B} \underbrace{(A - \{b\})}_{\text{offen}}.$$

Da A und B disjunkt sind, liegt 0 nicht in C. Aus Lemma 4.13 folgt die Existenz eines $x' \in X'$, welches für alle $x \in C$ die Ungleichung

$$\operatorname{Re} x'(x) < 0 = \operatorname{Re} x'(0)$$

erfüllt. Das heißt, es gilt für alle $a \in A$ und $b \in b$

$$\operatorname{Re} x'(a-b) < 0$$
 oder äquivalent $\operatorname{Re} x'(a) < \operatorname{Re} x'(b)$.

Satz 4.15 (Satz von Hahn-Banach (zweite geometrische Formulierung)). Sei X ein normierter \mathbb{K} -Vektorraum und seien $A, B \subset X$ nicht-leer, konvex und disjunkt. Weiter sei A abgeschlossen und B kompakt. Dann exisistiert ein $x' \in X'$ sowie ein $\alpha \in \mathbb{R}$ und ein $\varepsilon \in \mathbb{R}_{>0}$, so dass für alle $a \in A$ und $b \in B$ die Ungleichungen

$$\operatorname{Re} x'(a) + \varepsilon \le \alpha \le \operatorname{Re} x'(b) - \varepsilon$$

gelten.

Beweis. Es sei C := A - B wie bei Satz 4.14. Damit ist C konvex und abgeschlossen (siehe unten) und es gilt $0 \notin C$. Damit existiert ein $r \in \mathbb{R}_{>0}$, so dass $B_r(0) \cap C = \emptyset$ gilt. Satz 4.14 liefert: Es existiert ein $x' \in X'$ mit $x' \not\equiv 0$, so dass für alle $a \in A$, $b \in B$ und $z \in B_1(0)$ gilt:

$$\operatorname{Re} x'(a-b) < \operatorname{Re} x'(rz).$$

Also gilt für alle $a \in A$ und $b \in B$:

$$\operatorname{Re} x'(a-b) \le -r \|x'\|.$$

Für $\varepsilon r ||x'||/2 > 0$ ergibt sich, dass für alle $a \in A$ und alle $b \in B$ gilt:

$$\operatorname{Re} x'(a) + \varepsilon \le \operatorname{Re} x'(b) - \varepsilon.$$

Wähle $\alpha \in \mathbb{R}_{>0}$, so dass

$$\sup_{a \in A} (x'(a) + \varepsilon) \le \alpha \le \sup_{b \in B} (x'(b) - \varepsilon)$$

erfüllt ist. Noch zu zeigen: C ist abgeschlossen. Sei $(c_n)_{n\in\mathbb{N}}=(a_n-b_n)_{n\in\mathbb{N}}$ eine Folge in C mit Grenzwert $c\in X$. Da B kompakt ist, existiert eine Teilfolge $(b_{n_k})_{k\in\mathbb{N}}$ von $(b_n)_{n\in\mathbb{N}}$, mit $b_{n_k}\to b\in B$ für $k\to\infty$. Damit ergibt sich:

$$a_{n_k} = c_{n_k} + b_{n_k} \xrightarrow[n \to \infty]{} c + b.$$

Da A abgeschlossen ist, folgt $c + b \in A$ und damit $c = (c + b) - b \in A - B = C$.

Im Allgemeinen lassen sich konvexe Mengen mit $A \cap B = \emptyset$ nicht trennen. Es gibt Beispiele mit A, B zusätzlich abgeschlossen, in denen Trennungen nicht möglich ist. (Siehe Übungen.)

Korollar 4.16. Sei X ein normierter Vektorraum und $U \subsetneq X$ ein Unterraum. Dann existiert ein $x' \in X'$ mit $x' \neq 0$ und $x'|_U = 0$.

Beweis. Es sei $x_0 \in X$ mit $x_0 \notin \overline{U}$. Wende Satz 4.15 auf $A = \overline{U}$ und $B = \{x_0\}$ an. Wir erhalten somit ein $x' \in X'$ und ein $\alpha \in \mathbb{R}$ mit $\operatorname{Re} x'(x) < \alpha < \operatorname{Re} x'(x_0)$ für alle $x \in \overline{U}$. Es folgt für alle $\lambda \in \mathbb{R}$, $x \in \overline{U}$:

$$\operatorname{Re} x'(\lambda x) < \alpha.$$

Also muss schon $\operatorname{Re} x'(x) = 0$ für alle $x \in \overline{U}$ gelten. Wegen $\operatorname{Re} x'(x_0) > \operatorname{Re} x'(x) = 0$ für alle $x \in U$ ist außerdem $x' \neq 0$.

Bemerkung: Korollar 4.16 wird genutzt, um zu zeigen, dass ein Unterraum U dicht in einem umgebenden Raum X liegt. Kann man zeigen, dass für alle $x' \in X'$ aus $x'|_{U} = 0$ schon x' = 0 folgt, so ergibt sich $\overline{U} = X$.

Definition 4.17. Sei $(X, \|\cdot\|)$ ein normierter \mathbb{K} -Vektorraum und X' der Dualraum zu X (Definition 3.1 (b)). Dann ist $X'' \coloneqq (X')'$ der $Bidualraum\ von\ X$.

Wir können auf kanonische Weise eine Abbildung $J_X \colon X \to X''$ wie folgt definieren:

$$x \mapsto \begin{pmatrix} X' \to \mathbb{K} \\ x' \mapsto x'(x) \end{pmatrix}.$$

..

Dann ist J_X linear und stetig, denn es gilt für alle $x' \in X'$ und alle $x \in X$ die Ungleichung $|x'(x)| \le ||x'|| \cdot ||x||$ und damit für alle $x \in X$:

$$||J_X(x)|| \le ||x||.$$
 (*)

Sei

$$\bar{B}_1^{X'} := \overline{B_1^{X'}(0)} = \{ x' \in X' \mid ||x'|| \le 1 \}.$$

Dann gilt sogar

$$||x|| = \sup_{x' \in \bar{B}_1^{X'}} |x'(x)|$$
 für alle $x \in X$.

Sei $x_0 \in X \setminus \{0\}$. Setze dann das Funktional

$$u'$$
: span $\{x_0\} \to \mathbb{K}$, $x \mapsto \lambda \|x_0\|$ falls $\lambda \in \mathbb{K}$ mit $x = \lambda x_0$

normgleich auf X fort. Es gilt dann ||x'|| = ||u'|| = 1 und x'(x) = ||x||. Damit ist in (*) sogar Gleichheit gezeigt. Insgesamt folgt:

Satz 4.18. Die Abbildung J_X ist eine (im Allgemeinen nicht surjektive) lineare Isometrie, d. h. für alle $x \in X$ gilt $||J_X(x)||_{X''} = ||x||_X$. (Insbesondere ist J_X als Isometrie stets injektiv.)

Definition 4.19. Ein Banachraum X ist reflexiv, wenn J_X surjektiv (also bijektiv) ist.

Bemerkung: Da J_X injektiv ist, kann X mit einem Unterraum von X'' identifiziert werden.

Definition 4.20. Sei X ein normierter Raum, $M \subset X$ ein Unterraum und $N \subset X'$ ein Unterraum des Dualraums. Wir definieren dann den Annihilator von M als

$$M^{\perp} := \{ x' \in X' \mid \forall x \in M \colon x'(x) = 0 \}$$
$$= \{ x' \in X' \mid x'|_{M} = 0 \}$$

und den $Annihilator\ von\ N$ als

$$N^{\perp} \coloneqq \big\{ x \in X \mid \forall \, x' \in N \colon \ x'(x) = 0 \big\}.$$

Bemerkung 4.21.

- i) Es ist N^{\perp} eine Teilmenge von X und nicht von X".
- ii) Es sind M^{\perp} und N^{\perp} abgeschlossene Unterräume.

Satz 4.22. Sei X ein normierter Raum und $M \subset X$ ein Unterraum. Dann gilt

$$(M^{\perp})^{\perp} = \overline{M}.$$

Sei außerdem $N \subset X'$ ein Unterraum. Dann gilt

$$(N^{\perp})^{\perp} \supset \overline{N}.$$

(Im Allgemeinen ist diese Inklusion echt.)

Abbildung 4.5: Epigraph einer Funktion φ

Definition 4.23.

i) Es sei E eine Menge und $\varphi \colon E \to (-\infty, \infty] = \mathbb{R} \cup \{\infty\}$ eine Abbildung. Wir definieren dann

$$D(\varphi) := \{ x \in E \mid \varphi(x) < \infty \} = \varphi^{-1}(\mathbb{R}).$$

ii) Der Epigraph von φ (Abbildung 4.5) ist die Menge

$$\mathrm{epi}(\varphi) \coloneqq \{(x,\lambda) \in E \times \mathbb{R} \mid \varphi(x) \leq \lambda\}.$$

Definition 4.24. Sei (E, \mathcal{T}) ein topologischer Raum. Eine Abbildung $\varphi \colon E \to (-\infty, \infty]$ ist *unterhalbstetig*, wenn für alle $\lambda \in \mathbb{R}$ die Menge

$$\{\varphi \le \lambda\} := \{x \in E \mid \varphi(x) \le \lambda\} = \varphi^{-1}(\mathbb{R}_{<\lambda}) \subset E$$

abgeschlossen ist.

Lemma 4.25. Sei (E, \mathcal{T}) ein topologischer Raum und $\varphi \colon E \to (-\infty, \infty]$ eine Abbildung. Dann gelten folgende Aussagen:

- (i) Es ist φ genau dann unterhalbstetig, wenn $\operatorname{epi}(\varphi)$ abgeschlossen in $E \times \mathbb{R}$ (mit der Produkttopologie) ist.
- (ii) Es ist φ genau dann unterhalbstetig, wenn für alle $x \in E$ und alle $\varepsilon \in \mathbb{R}_{>0}$ eine Umgebung V von x existiert, so dass für alle $y \in V$ gilt: $\varphi(y) \geq \varphi(x) \cdot \varepsilon$.

Abbildung 4.6: Die Funktion $\tilde{\pmb{\varphi}}$ ist nicht unterhalbstetig, φ schon

(iii) Ist φ unterhalbstetig, so gilt für jede Folge $(x_n)_{n\in\mathbb{N}}$ in E mit $\lim_{n\to\infty} x_n = x \in E$:

$$\liminf_{n\to\infty} \varphi(x_n) \ge \varphi(x).$$

Falls E ein metrischer Raum ist, so gilt auch die Umkehrung.

- (iv) Sind φ und $\tilde{\varphi} \colon E \to (-\infty, \infty]$ unterhalbstetig, so auch $\varphi + \tilde{\varphi}$.
- (v) Ist $(\varphi_i)_{i\in I}$ eine Familie unterhalbstetiger Abbildungen $E\to (-\infty,\infty]$ mit

$$\varphi(x) = \sup_{i \in I} \varphi_i(x)$$

für alle $x \in E$, so ist auch φ unterhalbstetig.

(vi) Ist $E \neq \emptyset$ folgenkompakt und φ unterhalbstetig, so nimmt die Funktion φ ihr Minimum an, d. h. es existiert ein $x_0 \in E$ mit $\varphi(x_0) = \inf_{x \in E} \varphi(x)$.

Beweis. Siehe Übungen für Teile der Aussagen. Wir beweisen hier nur (vi):

Sei also E folgenkompakt und nicht leer und sei φ unterhalbstetig. Sei dann $(x_n)_{n\in\mathbb{N}}$ eine Folge in E, für welche $(\varphi(x_n))_{n\in\mathbb{N}}$ gegen $\inf_{x\in E}\varphi(x)$ konvergiert. Weil E folgenkompakt ist, existiert dann eine konvergente Teilfolge $(x_{n_k})_{k\in\mathbb{N}}$ und wir definieren $x_0:=\lim_{k\to\infty}x_{n_k}$. Aus (iii) folgt dann:

$$\varphi(x_0) \le \inf_{x \in E} \varphi(x) \le \varphi(x_0).$$

(Dies zeigt auch, dass $\inf_{x \in E} \varphi(x) > -\infty$ gelten muss.)

Definition 4.26. Sei X ein Vektorraum. Eine Funktion $\varphi \colon X \to (-\infty, \infty]$ ist konvex, wenn φ für alle $x, y \in X$ und alle $t \in [0, 1]$ die Ungleichung

$$\varphi(tx + (1-t)y) \leq t\varphi(x) + (1-t)\varphi(y)$$

erfüllt. (Abbildung 4.7)

Abbildung 4.7: Konvexe Funktion links und *nicht* konvexe Funktion rechts

Lemma 4.27. Sei X ein Vektorraum.

- i) Es ist $\varphi \colon X \to (-\infty, \infty]$ genau dann konvex, wenn epi (φ) eine konvexe Teilmenge von $X \times \mathbb{R}$ ist.
- ii) Ist $\varphi \colon X \to (-\infty, \infty]$ konvex, so ist die Menge $\{\varphi \leq \lambda\}$ für alle $\lambda \in \mathbb{R}$ konvex. (Die Umkehrung gilt im Allgemeinen nicht.)
- iii) Sind $\varphi_1, \varphi_2 \colon X \to (-\infty, \infty]$ konvex, so auch $\varphi_1 + \varphi_2$.
- iv) Ist $(\varphi_i)_{i\in I}$ eine Familie konvexer Abbildungen $X\to (-\infty,\infty]$, so ist auch

$$\sup_{i \in I} \varphi_i \coloneqq \left(x \mapsto \sup_{i \in I} \varphi_i(x) \right)$$

konvex.

Ab jetzt betrachten wir vornehmlich normierte \mathbb{R} -Vektorräume.

Definition 4.28. Sei X ein normierter \mathbb{R} -Vektorraum und sei $\varphi \colon X \to (-\infty, \infty]$ eine Funktion mit $D(\varphi) \neq \emptyset$ (d. h. φ ist nicht konstant ∞). Dann ist die *Legendre-Transformation* (oder *konjugierte Funktion*) von φ die Abbildung

$$\varphi^* \colon X' \to (-\infty, \infty]$$
$$f \mapsto \sup_{x \in X} (f(x) - \varphi(x)).$$

Bemerkung 4.29.

(i) Sei $n \in \mathbb{N}$ und $\varphi \colon \mathbb{R}^n \to (-\infty, \infty]$ eine Abbildung. Ist $f \in (\mathbb{R}^n)'$, so gibt es genau einen Vektor $y_f \in \mathbb{R}^n$ mit $f(x) = x \cdot y := \langle x, y \rangle_{\text{eukl}}$ für alle $x \in \mathbb{R}^n$. Wir identifizieren dann $(\mathbb{R}^n)'$ mit \mathbb{R}^n vermöge

$$(\mathbb{R}^n)' \longleftrightarrow \mathbb{R}'$$

$$f \longmapsto y_f$$

$$(x \mapsto x \cdot y) \longleftrightarrow y,$$

und somit gilt für alle $y \in \mathbb{R}^n$:

$$\varphi^*(y) = \sup_{x \in \mathbb{R}^n} (x \cdot y - \varphi(x)).$$

- (ii) Es ist φ^* stets konvex und unterhalbstetig. Dies folgt daraus, dass wir das Supremum betrachten und dass $f \mapsto f(x) \varphi(x)$ konvex und stetig ist (da affin linear).
- (iii) Es gilt für alle $x \in X$ und alle $f \in X'$ die Ungleichung

$$f(x) \le \varphi(x) + \varphi^*(f),$$

was direkt aus der Definiton von φ^* folgt.

Abbildung 4.8: Skizze zum Beweis von Theorem 4.30

(iv) Die Youngsche Ungleichung (Lemma 2.13) ist ein Spezialfall von (iii). Seien $p, p' \in (1, \infty)$ mit $\frac{1}{p} + \frac{1}{p'} = 1$ und setze $\varphi(x) \coloneqq \frac{1}{p} |x|^p$. Dann gilt für alle $y \in \mathbb{R}_{\geq 0}$:

$$\varphi^*(y) = \frac{1}{p'} |y|^{p'}.$$

(Siehe Übungen.)

Theorem 4.30. Sei X ein normierter \mathbb{R} -Vektorraum und $\varphi \colon X \to (-\infty, \infty]$ konvex und unterhalbstetig mit $D(\varphi) \neq \emptyset$. Dann gilt $D(\varphi^*) \neq \emptyset$ und φ ist von unten durch eine affin lineare Funktion beschränkt.

Beweis. Sei $x_0 \in D(\varphi)$ und sei $\lambda_0 \in \mathbb{R}$ mit $\lambda_0 < \varphi(x_0)$. Wende nun die zweite geometrische Form des Satzes von Hahn-Banach (4.15) auf den Raum $X \times \mathbb{R}$, die abgeschlossene Menge $A := \operatorname{epi}(\varphi)$ und die kompakte Menge $B := \{(x_0, \lambda_0)\}$ an. (Abbildung 4.8) Wir erhalten somit ein stetiges lineares Funktional $\Phi \colon X \times \mathbb{R} \to \mathbb{R}$ und ein $\alpha \in \mathbb{R}$, so dass die abgeschlossene Hyperebene $H = \{\Phi = \alpha\} \subset X \times \mathbb{R}$ die Mengen A und B trennt. Die Abbildung

$$f \colon X \to \mathbb{R}$$

 $x \mapsto \Phi((x,0))$

ist stetig und es gilt $f \in X'$. Mit $k := \Phi((0,1))$ gilt für alle $(x,\lambda) \in X \times \mathbb{R}$

$$\Phi((x,\lambda)) = f(x) + k\lambda.$$

Es gilt weiter $\Phi|_A > \alpha$ und $\Phi|_B < \alpha$. Dann gilt also $f(x_0) + k\lambda_0 < \alpha$ und

$$f(x) + k\lambda > \alpha$$

für alle $(x, \lambda) \in \operatorname{epi}(\varphi)$. Somit erhalten wir für alle $x \in D(\varphi)$:

$$f(x) + k\varphi(x) > \alpha \tag{*}$$

und für den Punkt (x_0, λ_0) :

$$f(x_0) + k\varphi(x_0) > \alpha > f(x_0) + k\lambda_0.$$

Dies zeigt k > 0 (da $\varphi(x_0) > \lambda_0$ nach Wahl von λ_0). Aus (\star) folgt, dass für alle $x \in D(\varphi)$ gilt:

$$-\frac{1}{k}f(x) - \varphi(x) < -\frac{\alpha}{k}.$$

Daraus folgt $\varphi^*\left(-\frac{1}{k}f\right) < \infty$ (nach Definition von φ^*) und damit

$$\varphi(x) > -\frac{1}{k}f(x) + \frac{\alpha}{k},$$

aber gerade das wollten wir zeigen.

Wir können auch die Funktion φ^{**} betrachten. Dies wäre eigentlich eine Abbildung von X'' nach \mathbb{R} . Wir schränken diese aber auf X ein (unter der Einbettung von X nach X'' vermöge der Isometrie J_X , siehe Definition 4.17 ff.).

Definition 4.31. Es sei $\varphi \colon X \to (-\infty, \infty]$ mit $D(\varphi) \neq \emptyset$. Wir definieren $\varphi^{**} \colon X \to \mathbb{R}$ für alle $x \in X$ durch

$$\varphi^{**}(x) := \sup_{f \in X'} (f(x) - \varphi^*(f)).$$

Theorem 4.32 (Fenchel-Moreau). Sei $\varphi \colon X \to (-\infty, \infty]$ konvex, unterhalbstetig und $D(\varphi) \neq \emptyset$. Dann gilt $\varphi^{**} = \varphi$.

Beweis. Schritt 1: Wir setzen $\varphi \geq 0$ voraus. Da für alle $x \in X$ und alle $f \in X'$

$$f(x) - \varphi^*(f) \le \varphi(x)$$

gilt, erhalten wir zunächst $\varphi^{**} \leq \varphi$. Angenommen es existiert ein $x_0 \in X$ mit

$$\varphi^{**}(x_0) < \varphi(x_0)$$

(wobei $\varphi(x_0) = \infty$ möglich ist). Nutze wieder den Satz von Hahn-Banach in der zweiten geometrischen Formulierung (4.15) mit $A = \operatorname{epi}(\varphi)$ abgeschlossen und $B = \{(x_0, \varphi^{**}(x_0))\}$ kompakt. (Vgl. Beweis von Theorem 4.30.) Wir erhalten somit ein $f \in X'$ und $k, \alpha \in \mathbb{R}$ mit $f(x_0) + k\varphi^{**}(x_0) < \alpha$ und

$$f(x) + k\lambda > \alpha. \tag{\diamond}$$

für alle $(x, \lambda) \in \operatorname{epi}(\varphi)$. Wähle $x \in D(\varphi)$ und betrachte $\lambda \to \infty$ in der letzten Ungleichung. Es folgt $k \ge 0$. Jetzt sei $\varepsilon \in \mathbb{R}_{>0}$. Da $\varphi \ge 0$ gilt, folgt aus (\diamond) , dass für alle $x \in D(\varphi)$ gilt:

$$f(x) + (k + \varepsilon) \varphi(x) \ge \alpha.$$

Somit erhalten wir für alle $x \in D(\varphi)$:

$$-\frac{1}{k+\varepsilon}f(x) - \varphi(x) \le -\frac{\alpha}{k+\varepsilon}.$$

Dies zeigt:

$$\varphi^* \left(-\frac{f}{k+\varepsilon} \right) \le -\frac{\alpha}{k+\varepsilon}.$$

Die Definition von φ^{**} liefert für $\varphi^{**}(x_0)$:

$$\varphi^{**}(x_0) \ge -\frac{f}{k+\varepsilon}(x_0) - \varphi^*\left(-\frac{f}{k+\varepsilon}\right) \ge -\frac{f}{k+\varepsilon}(x_0) + \frac{\alpha}{k+\varepsilon}.$$

Damit folgt

$$f(x_0) + (k + \varepsilon) \varphi^{**}(x_0) \ge \alpha$$

was aber für $\varepsilon \to 0$ einen Widerspruch zu $f(x_0) + k\varphi^{**}(x_0) < \alpha$ liefert.

Schritt 2 (allgemeiner Fall): Theorem 4.30 sichert uns $D(\varphi^*) \neq \emptyset$. Wähle dann $f_0 \in D(\varphi^*)$ und setze für alle $x \in X$

$$\bar{\varphi}(x) \coloneqq \varphi(x) - f_0(x) + \varphi^*(f_0).$$

Es gilt (wie einfache Rechnungen zeigen), dass $\bar{\varphi}$ konvex und unterhalbstetig ist, und wir haben $\bar{\varphi} \geq 0$ (denn $\varphi^*(f_0) \geq f_0(x) - \varphi(x)$ für $x \in X$). Dann gilt nach Schritt 1: $(\bar{\varphi})^{**} = \bar{\varphi}$. Wir berechnen

$$(\bar{\varphi})^*(f) = \sup_{x \in X} \left(f(x) - \bar{\varphi}(x) \right) = \sup_{x \in X} \left(f(x) - \varphi(x) + f_0(x) - \varphi^*(f_0) \right)$$
$$= \varphi^*(f + f_0) - \varphi^*(f_0)$$

und weiter

$$(\bar{\varphi})^{**} = \sup_{f \in X'} (f(x) - (\bar{\varphi})^*(f)) = \sup_{f \in X'} (f(x) - \varphi^*(f + f_0) + \varphi^*(f_0))$$
$$= \sup_{f \in X'} ((f + f_0)(x) - \varphi^*(f + f_0) - f_0(x) + \varphi^*(f_0))$$
$$= \varphi^{**}(x) - f_0(x) + \varphi^*(f_0).$$

Da $(\bar{\varphi})^{**} = \bar{\varphi}$ gilt, folgt $\varphi^{**} = \varphi$.

Abbildung 4.9: Beispiel 4.33 (i) für $\varphi(x) = |x|$ auf \mathbb{R} mit zugehörigem φ^*

Beispiele 4.33.

(i) Sei $(X, \|\cdot\|)$ ein normierter \mathbb{R} -Vektorraum und $\varphi(x) := \|x\|$ für alle $x \in X$. Dann gilt:

$$\varphi^*(f) = \sup_{x \in X} \left(f(x) - \varphi(x) \right) = \left(f(x) - ||x|| \right) = \begin{cases} 0, & \text{falls } ||f|| \le 1 \\ \infty, & \text{falls } ||f|| > 1. \end{cases}$$

Dies erhalten wir wie folgt. Es gilt:

$$||f|| = \sup_{x \in X \setminus \{0\}} \frac{f(x)}{||x||}.$$

Für ||f|| > 1 existiert ein $x \in X$ mit f(x)/||x|| > 1 und damit f(x) - ||x|| > 0. Ersetze nun x durch αx mit $\alpha \in \mathbb{R}_{>0}$ und betrachte $\alpha \to \infty$. Es folgt:

$$\sup_{x \in X} (f(x) - ||x||) = \infty.$$

Der andere Fall ergibt sich ähnlich. (Abbildung 4.9) Es folgt mit Theorem 4.32:

$$||x|| = \varphi(x) = \varphi^{**}(x) = \sup_{f \in X'} (f(x) - \varphi^{*}(f)) = \sup_{\substack{f \in X', \\ ||f|| \le 1}} f(x).$$

(ii) Sei X ein normierter Raum und $K \subset X$. Wir definieren die sogenannte Indikator funktion von K für alle $x \in X$ durch

$$I_K(x) := \begin{cases} 0, & \text{falls } x \in K \\ \infty & \text{falls } x \notin K. \end{cases}$$

(Achtung: dies ist *nicht* die charakteristische Funktion von K.) Einfache Überlegungen liefern: I_K ist genau dann konvex, wenn K konvex ist und I_K ist genau dann unterhalbstetig, wenn K abgeschlossen ist. Die *Trägerfunktion zu* K ist dann definiert durch die konjugierte Funktion $(I_K)^*$ von I_K . Man kann nun folgende Aussagen zeigen:

– Falls $K = M \subset X$ ein Unterraum ist, so gilt:

$$(I_M)^* = I_{M^{\perp}}, \quad (I_M)^{**} = I_{(M^{\perp})^{\perp}}.$$

– Falls M zusätzlich abgeschlossen ist, so gilt

$$(I_M)^{**} = I_M$$
 und somit $(M^{\perp})^{\perp} = M$.

Für $a, b \in \mathbb{R}$ und $\emptyset \neq K = [a, b] \subset \mathbb{R}$ erhalten wir $(I_K)^*$ als Funktion von \mathbb{R} nach \mathbb{R} :

$$(I_K)^*(y) = \sup_{x \in \mathbb{R}} (x \cdot y - I_K(x)) = \sup_{x \in [a,b]} x \cdot y = \begin{cases} by, & \text{falls } y \ge 0 \\ ay, & \text{falls } y < 0. \end{cases}$$

(Siehe Abbildung 4.10.)

Abbildung 4.10: Beispiel 4.33 (ii) für K = [a, b] mit a = -3 und b = 1

(iii) Sei $g: \mathbb{R} \to \mathbb{R}$ stetig differenzierbar mit

$$\lim_{x \to \pm \infty} \frac{g(x)}{|x|} = \infty.$$

Dann gilt: In

$$\sup_{x \in \mathbb{R}} \left(x \cdot y - g(x) \right)$$

wird das Supremum für ein endliches $x \in \mathbb{R}$ angenommen (da $x \cdot y - g(x) \to -\infty$ für $x \to \pm \infty$). Berechne x maximal als Lösung von y - g'(x) = 0. Falls g' streng monoton ist, gibt es höchstens eine solche Lösung. Für $y \in \mathbb{R}$ gilt dann

$$g^*(y) = (g')^{-1}(y) y - g((g')^{-1}(y)).$$

Falls $g \in \mathbb{C}^2$ gilt, so können wir folgende Rechnung machen:

$$(g^*)'(y) = (g')^{-1}(y) + ((g')^{-1}(y))'y - g'((g')^{-1}(y)) ((g')^{-1}(y))'$$

= $(g')^{-1}(y)$.

Das heißt, dass wir unter geeigneten Voraussetzungen an g die Formel

$$(g^*)'(y) = (g')^{-1}(y)$$

erhalten. In der Theorie erhalten wir dann g^* , indem wir g ableiten, die Umkehrfunktion von g' bestimmen und zu dieser eine Stammfunktion finden.

5 Bairescher Kategoriensatz und seine Konsequenzen

Satz 5.1 (Bairescher Kategoriensatz). Sei (X, d) ein nicht-leerer vollständiger metrischer Raum. Sei $(A_k)_{k\in\mathbb{N}}$ eine Folge von in X abgeschlossenen Mengen und gelte

$$X = \bigcup_{k \in \mathbb{N}} A_k.$$

Dann gibt es ein $k_0 \in \mathbb{N}$, so dass das Innere von A_{k_0} nicht leer ist, d. h. so dass $A_{k_0}^{\circ} \neq \emptyset$ gilt.

Beweis. Angenommen für alle $k \in \mathbb{N}$ gilt $A_k^{\circ} = \emptyset$. Dann ist für alle offenen, nicht-leeren Teilmengen $U \subset X$ und alle $k \in \mathbb{N}$ die Menge $U \setminus A_k$ offen und nicht leer; insbesondere existiert in dieser Situation ein $x \in X$ und ein $\varepsilon \in \mathbb{R}_{>0}$, o. E. $\varepsilon \leq 1/k$, mit

$$\overline{B_{\varepsilon}(x)} \subset (U \setminus A_k).$$

Wir wählen für den ersten Schritt U = X und konstruieren dann auf obige Weise induktiv Folgen $(x_k)_{k \in \mathbb{N}}$ in X und $(\varepsilon_k)_{k \in \mathbb{N}}$ in $\mathbb{R}_{>0}$, so dass für alle $k \in \mathbb{N}$

$$\varepsilon_k \le 1/k$$
 und $\overline{B_{\varepsilon_k}(x_k)} \subset \left(B_{\varepsilon_{k-1}}(x_{k-1}) \setminus A_k\right)$

gilt. Dann ist $(x_k)_{k\in\mathbb{N}}$ eine Cauchy-Folge in X, denn: Zu jedem $\varepsilon\in\mathbb{R}_{>0}$ gibt es nach Konstruktion ein $k\in\mathbb{N}$ mit $\varepsilon_k\leq\varepsilon$ und für alle $\ell\in\mathbb{N}_{\geq k}$ gilt dann

$$x_{\ell} \in B_{\varepsilon_k}(x_k)$$
.

Da X vollständig ist, existiert ein $x \in X$ mit $x = \lim_{n \to \infty} x_n$. Weil für alle $k \in \mathbb{N}$ fast alle Folgenglieder von $(x_k)_{k \in \mathbb{N}}$ im abgeschlossenen ε_k -Ball um x_k liegen, muss dies auch für den Grenzwert x gelten, dh. für alle $k \in \mathbb{N}$ gilt:

$$x \in \overline{B_{\varepsilon_k}(x_k)} \subset X \setminus A_k$$
.

Es folgt der Widerspruch

$$x \in \bigcap_{k \in \mathbb{N}} (X \setminus A_k) = X \setminus \bigcup_{k \in \mathbb{N}} A_k = \emptyset.$$

Bemerkung:

Die Vollständigkeit von X ist hier entscheidend. Als Gegenbeispiel betrachte man $X = \mathbb{Q}$.

Satz 5.2 (Prinzip der gleichmäßigen Beschränktheit). Sei (X, d) ein vollständiger metrischer Raum, Y ein normierter Raum und $\mathcal{F} \subset C^0(X, Y)$. Es gelte für alle $x \in X$:

$$\sup_{f \in \mathcal{F}} \|f(x)\|_{Y} < \infty.$$

Dann existieren ein $x_0 \in X$, ein $\varepsilon_0 \in \mathbb{R}_{>0}$ und ein $C \in \mathbb{R}_{>0}$, so dass gilt:

$$\forall x \in \overline{B_{\varepsilon}(x_0)} \ \forall f \in \mathcal{F} \colon \|f(x)\|_{Y} \le C.$$

Beweis. Die Menge

$$A_k := \bigcap_{f \in \mathcal{F}} \left\{ x \in X \mid \|f(x)\|_Y \le k \right\}$$

ist für alle $k \in \mathbb{N}$ abgeschlossen. Außerdem gibt es nach Voraussetzung für alle $x \in X$ ein $k \in \mathbb{N}$, so dass für alle $f \in \mathcal{F}$ gilt: $||f(x)|| \le k$. Also gilt

$$X = \bigcup_{k \in \mathbb{N}} A_k.$$

Der Bairescher Kategoriensatz (5.1) liefert: es existieren $k_0 \in \mathbb{N}, x_0 \in X, \varepsilon_0 \in \mathbb{R}_{>0}$ mit

$$\overline{B_{\varepsilon_0}(x_0)} \subset A_{k_0}$$
.

Satz 5.3 (Banach-Steinhaus). Sei X ein Banachraum, Y ein normierter Raum und $\mathcal{T} \subset L(X,Y)$. Für alle $x \in X$ gelte: $\sup_{T \in \mathcal{T}} \|Tx\|_Y < \infty$. Dann folgt schon

$$\sup_{T \in \mathcal{T}} \|T\| < \infty.$$

Beweis. Das Prinzip der gleichmäßigen Beschränktheit (Satz 5.2) liefert: es gibt $x_0 \in X$, $\varepsilon_0 \in \mathbb{R}_{>0}$, $C \in \mathbb{R}_{>0}$, so dass für alle $x \in X$ gilt:

$$||x - x_0|| \le \varepsilon_0 \implies \forall T \in \mathcal{T} \colon ||Tx|| \le C.$$

Damit folgt, dass für alle $x \in \overline{B_{\varepsilon_0}(x_0)}$ und alle $T \in \mathcal{T}$ gilt:

$$\left\| T\left(\frac{x - x_0}{\varepsilon_0}\right) \right\| \le \frac{C + \sup_{\tilde{T} \in \mathcal{T}} \|\tilde{T}x_0\|_Y}{\varepsilon_0} =: C_0.$$

Es folgt $||T|| \leq C_0$, denn $\frac{x-x_0}{\varepsilon_0}$ nimmt alle Vektoren der Norm kleiner-gleich eins an.

Bemerkung 5.4.

(i) Der Satz von Banach-Steinhaus (5.3) liefert das erstaunliche Resultat, dass eine punktweise beschränkte Familie von stetigen linearen Operatoren schon beschränkt in der Operatornorm ist.

- (ii) Punktweise Grenzwerte von stetigen Funktionen sind im Allgemeinen nicht stetig. Aus dem Satz von Banach-Steinhaus (5.3) folgt aber, dass dies für lineare Abbildungen doch gilt.
- (iii) Ist $(T_n)_{n\in\mathbb{N}}$ eine Folge von linearen Operatoren mit punktweisem Grenzwert T, so gilt im Allgemeinen nicht $||T_n T|| \to 0$ für $n \to \infty$. Es gilt aber eine etwas schwächere Aussage, siehe Korollar 5.5.

Korollar 5.5. Seien X und Y Banachräume. Sei $(T_n)_{n\in\mathbb{N}}$ eine Folge in L(X,Y), so dass für alle $x\in X$ die Folge $(T_nx)_{n\in\mathbb{N}}$ in Y konvergiert. Setzen wir

$$Tx := \lim_{n \to \infty} T_n x$$

für alle $x \in X$, so gilt:

- (a) $\sup_{n\in\mathbb{N}} ||T_n|| < \infty$
- (b) $T \in L(X,Y)$
- (c) $||T|| \leq \liminf_{n \to \infty} ||T_n||$

Beweis. Zunächst ist aufgrund der Linearität des Grenzwerts klar, dass auch T linear ist. Aussage (a) folgt unmittelbar aus dem dem Satz von Banach-Steinhaus (5.3). Es existiert somit ein $C \in \mathbb{R}_{>0}$, welches $||T_n|| \leq C$ für alle $n \in \mathbb{N}$ erfüllt. Somit gilt für alle $x \in X$ und alle $n \in \mathbb{N}$:

$$||T_n x|| \le ||T_n|| \cdot ||x||$$

$$< C ||x||$$

Aus der unteren Ungleichung erhalten wir im Grenzwert $n \to \infty$ für alle $x \in X$ die Ungleichung $||Tx|| \le C ||x||$, woraus folgt, dass T stetig ist. Damit ist also (b) gezeigt. Aus der oberen Ungleichung erhalten wir

$$\liminf_{n \to \infty} ||T_n x|| \le \liminf_{n \to \infty} ||T_n|| \cdot ||x||,$$

und weil $(T_n x)_{n \in \mathbb{N}}$ für alle $x \in X$ konvergiert, gilt für alle $x \in X$ mit $||x|| \le 1$ (mithilfe der Stetigkeit der Norm):

$$||Tx|| = \lim_{n \to \infty} ||T_n x|| = \liminf_{n \to \infty} ||T_n x|| \le \liminf_{n \to \infty} ||T_n|| \cdot ||x|| \le \liminf_{n \to \infty} ||T_n||.$$

Daraus folgt (c).

Korollar 5.6. Sei Z ein Banachraum über \mathbb{K} und $B \subset Z$ eine Teilmenge von Z. Für alle $f \in Z'$ sei $f(B) \subset \mathbb{K}$ beschränkt. Dann ist B beschränkt in Z.

Beweis. Nutze Banach-Steinhaus (Satz 5.3) mit (in den dortigen Bezeichnern) X=Z', $Y=\mathbb{K}$ und

$$\mathcal{T} = \{J_{Z'}(b) \mid b \in B\} \subset Z''$$

(mit $J_{Z'}$ wie nach Definition 4.17, d. h. für $b \in B$ und $f \in Z'$ gilt $J_{Z'}(b)(f) = f(b)$). Nach Voraussetzung gilt für alle $f \in Z'$:

$$\sup_{b \in B} |J_{Z'}(b)(f)| = \sup_{b \in B} |f(b)| < \infty.$$

Nach dem Satz von Banach-Steinhaus gilt also:

$$\sup_{b \in B} ||J_{Z'}(b)|| = \sup_{T \in \mathcal{T}} ||T|| < \infty.$$

Nach Satz 4.18 ist J_X aber eine Isometrie, also folgt

$$\sup_{b \in B} ||b|| = \sup_{b \in B} ||J_{Z'}(b)|| < \infty,$$

aber dies bedeutet gerade, dass B in Z beschränkt ist.

Bemerkung: Im endlich-dimensionalen besagt dieses Korollar: Eine Menge ist beschränkt, falls die Projektion auf alle Komponenten beschränkt ist. (Das Korollar ist also eine Verallgemeinerung dieser Tatsache.)

Korollar 5.7. Sei Z ein Banachraum über \mathbb{K} und sei $A\subset Z'$ eine Teilmenge des Dualraums. Sei außerdem für alle $x\in Z$ die Menge

$$A(x) := \{ f(x) \mid f \in A \}$$

beschränkt in \mathbb{K} . Dann ist A beschränkt in \mathbb{Z}' .

Beweis. Folgt unmittelbar aus Banach-Steinhaus (Satz 5.3) mit (in den dortigen Bezeichnern) X = Z, $Y = \mathbb{K}$ und $\mathcal{T} = A$.

Definition 5.8. Seien X, Y topologische Räume und $f: X \to Y$ eine Abbildung. Dann ist f offen, wenn Bilder offener Mengen offen sind, d. h. wenn für alle in X offenen Teilmengen $U \subset X$ auch f(U) offen in Y ist.

Bemerkung: Sind X, Y normierte Räume und ist ist f linear, so ist f genau dann offen, wenn es ein $\delta \in \mathbb{R}_{>0}$ gibt mit

$$B_{\delta}(0) \subset f(B_1(0)).$$

Satz 5.9 (Satz von der offenen Abbildung). Seien X und Y Banachräume und sei $T \in L(X,Y)$. Dann ist T genau dann surjektiv, wenn T offen ist.

Beweis. " \Leftarrow ": Es existiert also ein $\delta \in \mathbb{R}_{>0}$ mit

$$B_{\delta}(0) \subset T(B_1(0)).$$

Durch Skalierung erhalten wir für alle $k \in \mathbb{N}$:

$$B_{k\delta}(0) \subset T(B_k(0)).$$

Daraus folgt, dass T surjektiv ist.

" \Rightarrow ": Weil T surjektiv ist, gilt

$$Y = \bigcup_{k \in \mathbb{N}} \overline{T(B_k(0))}_{=:A_k}.$$

Wir wenden den Bairescher Kategoriensatz (5.1) auf die Folge $(A_k)_{k\in\mathbb{N}}$ an und erhalten somit $\varepsilon_0 \in \mathbb{R}_{>0}, \ y_0 \in Y, \ k_0 \in \mathbb{N}$ mit

$$\overline{B_{\varepsilon_0}(y_0)} \subset \overline{T(B_{k_0}(0))}.$$

Sei $y \in \overline{B_{\varepsilon_0}(0)}$, dann gilt $y_0 + y \in \overline{B_{\varepsilon_0}(y_0)}$. Wähle dann eine Folge $(x_n)_{n \in \mathbb{N}}$ in $B_{k_0}(0)$ mit

$$Tx_n \to y_0 + y$$
 für $n \to \infty$.

Sei außerdem $x_0 \in X$ mit $Tx_0 = y_0$. Dann erhalten wir

$$T(x_n - x_0) = Tx_n - y_0 \to y$$
 für $n \to \infty$

Daraus folgt:

$$T\left(\underbrace{\frac{x_n - x_0}{k_0 + \|x_0\|}}_{\in B_1(0)}\right) \to \underbrace{\frac{y}{k_0 + \|x_0\|}}_{\in B_\delta(0)} \quad \text{für } n \to \infty$$

mit $\delta \coloneqq \frac{\varepsilon_0}{k_0 + ||x_0||}$. Das bedeutet aber:

$$B_{\delta}(0) \subset \overline{T(B_1(0))}$$
.

Um die Behauptung zu zeigen, benötigen wir diese Inklusion aber ohne den Abschluss auf der rechten Seite. Sei dazu nun $y \in B_{\delta}(0)$. Dann gibt es ein $x \in B_1(0)$ mit $||y - Tx|| < \delta/2$. Daraus folgt:

$$2(-Tx+y) \in B_{\delta}(0).$$

Indem wir $y_1 := y$ setzen, erhalten wir so induktiv Folgen $(y_k)_{k \in \mathbb{N}}$ in $B_{\delta}(0)$ und $(x_k)_{k \in \mathbb{N}}$ in $B_1(0)$ mit folgender Eigenschaft für alle $k \in \mathbb{N}$:

$$y_{k+1} = 2(y_k - Tx_k).$$

Es folgt für alle $k \in \mathbb{N}$

$$2^{-k}y_{k+1} = 2^{-k+1}y_k - \underbrace{T(2^{-k+1}x_k)}_{=:a_k}$$

oder durch umstellen

$$a_k = 2^{-(k-1)}y_k - 2^{-k}y_{k+1}.$$

Sei $m \in \mathbb{N}$. Dann ist $\sum_{k=1}^{m} a_n$ offenbar eine Teleskopsumme, also gilt:

$$\sum_{k=1}^{m} a_k = y_1 - 2^{-m} y_{m+1}.$$

Da $(y_k)_{k\in\mathbb{N}}$ beschränkt ist, gilt $2^{-m}y_{m+1}\to 0$ für $m\to\infty$. Also erhalten wir:

$$\lim_{m \to \infty} T\left(\sum_{k=1}^{m} 2^{-(k-1)} x_k\right) = \lim_{m \to \infty} \sum_{k=1}^{m} a_k = y_1.$$

Außerdem konvergiert die Reihe $\sum_{k=1}^{\infty} 2^{-(k-1)} x_k$ in X, denn es gilt

$$\sum_{k=1}^{\infty} \|2^{-(k-1)}x_k\| \le \sum_{k=1}^{\infty} 2^{-(k-1)} = \sum_{k=0}^{\infty} \left(\frac{1}{2}\right)^k = 2,$$

womit man leicht zeigt, dass $\left(\sum_{k=1}^{m} 2^{-(k-1)} x_k\right)_{m \in \mathbb{N}}$ eine Cauchy-Folge in X ist (und damit auch konvergent, aufgrund der Vollständigkeit von X). Sei also $\tilde{x} := \sum_{k=1}^{\infty} 2^{-(k-1)} x_k$. Dann gilt wegen der Stetigkeit von T auch $T(\tilde{x}) = y_1 = y$ und aus der obigen Betrachtung folgt außerdem $\|\tilde{x}\| \leq 2 < 3$. Also gilt $B_{\delta}(0) \subset T(B_3(0))$ und durch Skalierung erhalten wie gewünscht:

$$B_{\delta/3}(0) \subset T(B_1(0)).$$

Satz 5.10 (Satz von der inversen Abbildung). Seien X und Y Banachräume und sei $T \in L(X,Y)$ bijektiv. Dann gilt: $T^{-1} \in L(X,Y)$.

Beweis. Weil T surjektiv ist, liefert der Satz von der offenen Abbildung (5.9), dass T offen ist. Daraus folgt unmittelbar, dass T^{-1} stetig ist.

Korollar 5.11. Sei X ein Vektorraum mit zwei Normen $\|\cdot\|_{\widehat{1}}$ und $\|\cdot\|_{\widehat{2}}$. Außerdem gebe es ein $C_1 \in \mathbb{R}_{>0}$, so dass für alle $x \in X$ die Ungleichung $\|x\|_{\widehat{2}} \leq C_1 \|x\|_{\widehat{1}}$ gilt. Sei weiter $(X, \|\cdot\|_{\widehat{1}})$ ein Banachraum. Dann gilt: $(X, \|\cdot\|_{\widehat{2}})$ ist genau dann ein Banachraum, wenn es ein $C_2 \in \mathbb{R}_{>0}$ gibt mit $\|x\|_{\widehat{1}} \leq C_2 \|x\|_{\widehat{2}}$ für alle $x \in X$.

Beweis. "

" ist klar. "

" ist klar. "

" Die Identität

$$id: (X, \|\cdot\|_{\widehat{1}}) \to (X, \|\cdot\|_{\widehat{2}})$$

ist stetig und bijektiv. Der Satz von der inversen Abbildung (5.10) liefert:

$$id^{-1}: (X, \|\cdot\|_{\widehat{2}}) \to (X, \|\cdot\|_{\widehat{1}})$$

ist stetig. Daraus erhalten wir eine Konstante C_2 wie gefordert.

Satz 5.12 (Satz vom abgeschlossenen Graphen). Seien X und Y Banachräume, D(T) ein Unterraum von X und sei $T: D(T) \to Y$ eine lineare Abbildung. Sei

$$graph(T) := \{(x, Tx) \in X \times Y \mid x \in D(T)\}$$

der Graph von T in $X \times Y$. Dabei wird $X \times Y$ zu einem Banachraum bezüglich folgender Norm:

$$\|\cdot\|: X \times Y \to \mathbb{R}_{\geq 0}, \quad (x,y) \mapsto \|x\|_X + \|y\|_Y.$$

Dann gilt: Ist D(T) abgeschlossen, so ist graph(T) genau dann abgeschlossen in $X \times Y$, wenn $T \in L(D(T), Y)$ gilt.

Beweis. " \Leftarrow ": klar, denn: Sei $(x_n, Tx_n)_{n \in \mathbb{N}}$ eine Folge in graph(T), die in $X \times Y$ konvergiert. Sei $x \in X$ der Grenzwert von $(x_n)_{n \in \mathbb{N}}$, so gilt wegen der Stetigkeit von T auch $Tx_n \to Tx$ für $n \to \infty$, aber $(x, Tx) \in \text{graph}(T)$ gilt nach Definition von graph(T).

" \Rightarrow ": Da graph(T) abgeschlossen ist, muss dieser Raum (mit der Einschränkung der Norm von $X \times Y$) ein Banachraum sein. Seien P_X und P_Y die Projektionen $X \times Y \to X$ bzw. $X \times Y \to Y$. Dann sind P_X , P_Y stetig und linear und P_X ist bijektiv von graph(T) auf D(T). Der Satz von der inversen Abbildung (5.10) liefert:

$$P_X^{-1} \in L(D(T), \operatorname{graph}(T)).$$

Daraus folgt: $T = P_Y P_X^{-1} \in L(D(T), Y)$.

5.13 (Projektoren). Sei Z ein Vektorraum und $A \subset Z$. Sei weiter X ein normierter Raum und $Y \subset X$ ein Unterraum.

(1) Eine Abbildung $P: Z \to Z$ ist eine *Projektion auf A*, falls folgende Bedingungen erfüllt sind:

$$P(Z) \subset A$$
 und $P|_A = \operatorname{Id}_A$.

Äquivalent kann man fordern:

$$P(Z) = A$$
 und $P^2 = P \circ P = P$.

Es folgt:

$$P(\operatorname{Id} - P) = (\operatorname{Id} - P)P = 0.$$

Beispiel: orthogonale Projektionen im euklidschen Raum sind Projektionen.

(2) Sei $P: X \to Y$ eine lineare Projektion auf Y. Dann gilt Y = R(P) und $\mathrm{Id} = (\mathrm{Id} - P) + P$ und $(\mathrm{Id} - P)$ ist eine Projektion auf N(P). (Zur Definition des Bildraums $R(\cdot)$ und des Nullraums $N(\cdot)$, siehe Definition 3.6.)

Es gilt $X=N(P)\oplus R(P)=R(\mathrm{Id}-P)\oplus N(\mathrm{Id}-P),\ N(P)=R(\mathrm{Id}-P)$ und $R(P)=N(\mathrm{Id}-P),$ denn:

Für $x \in X$ gilt: x = (x - Px) + Px mit $(x - Px) \in N(P)$ und $Px \in R(P)$. Ist $x \in N(P) \cap R(P)$, so gilt Px = 0 und x = Px, also x = 0. Außerdem gelten folgende Äquivalenzen:

$$x \in N(\operatorname{Id} - P) \iff x - Px = 0 \iff x = Px \iff x \in R(P).$$

Also gilt $N(\operatorname{Id} - P) = R(P)$.

(3) Eine Abbildung $P: X \to X$ ist ein *Projektor auf Y*, falls P eine stetige lineare Projektion auf Y ist. Es sei

$$Pr(X) := \{P : X \to X \mid P \text{ ist Projektor}\}.$$

Falls P ein Projektor ist, so ist klarerweise auch $\mathrm{Id}-P$ ein Projektor und N(P) sowie $R(P)=N(\mathrm{Id}-P)$ sind abgeschlossen.

Satz 5.14 (Satz vom abgeschlossenen Komplement). Sei X ein Banachraum und seien Y und Z Unterräume von X. Außerdem gelte $X = Z \oplus Y$ und Y sei abgeschlossen. Dann gilt: Der Unterraum Z ist genau dann abgeschlossen, wenn es einen stetigen Projektor P auf Y mit N(P) = Z gibt.

Beweis. " \Leftarrow " ist klar, da P stetig ist.

" \Rightarrow ": Sei $\tilde{X} \coloneqq Z \times Y$. Definiere

$$T \colon \tilde{X} \to X, \quad (z, y) \mapsto z + y.$$

Dann ist T linear, bijektiv und stetig (wie man mithilfe der \triangle -Ungleichung einsieht). Weil Y und Z abgeschlossen sind, ist auch \tilde{X} ein abgeschlossener Unterraum von $X \times X$ und damit ein Banachraum. Der Satz von der inversen Abbildung (5.10) liefert $T^{-1} \in L(X, \tilde{X})$. Sei

$$P: X \to Y$$
, $z + y \mapsto y$ (mit $z \in Z$ und $y \in Y$).

Dann ist P eine lineare Projektion auf Y und es gilt N(P) = Z. Außerdem ist P stetig, denn es gilt $P = P_Y T^{-1}$, wobei P_Y die Projektion $\tilde{X} \to Y$ auf die zweite Komponente ist. Damit ist P der gesuchte Projektor.

Definition 5.15. Seien X und Y normierte Vektorräume und $T \in L(X,Y)$. Dann ist der adjungierte Operator T' die Abbildung

$$T': Y' \to X'$$

$$y' \mapsto \begin{pmatrix} X \mapsto \mathbb{K} \\ x \mapsto y'(Tx) \end{pmatrix}.$$

Bemerkung: Es gilt

$$|(T'y')(x)| = |y'(Tx)| \le ||y'|| \cdot ||Tx|| \le ||y'|| \cdot ||T|| \cdot ||x||$$

für alle $y' \in Y'$ und alle $x \in X$. Dies zeigt, dass T' wohldefiniert ist $(T'y' \in X')$ für alle $y' \in Y'$ und dass $||T'y'|| \le ||y'|| \cdot ||T||$ gilt. Daraus folgt $T' \in L(Y', X')$.

Beispiel 5.16 (Shift-Operator). Wir betrachten auf ℓ^2 über \mathbb{R} den Shift-Operator

$$T(x_1, x_2, x_3, \dots) := (x_2, x_3, \dots).$$

Wir möchten nun T' bestimmen. Später zeigen wir: $(\ell^2)'$ kann mit ℓ^2 identifiziert werden. Jedes $x \in \ell^2$ definiert einen linearen Operator auf ℓ^2 durch $x'(y) = (x,y)_{\ell^2} := \sum_{i=1}^{\infty} x_i y_i$ für alle $y \in \ell^2$. Dies liefert schon $(\ell^2)'$. Wir fordern für $y' \in (\ell^2)'$, dargestellt durch $(y_n)_{n \in \mathbb{N}}$:

$$y'(Tx) = \sum_{n=1}^{\infty} x_{n+1} y_n = \sum_{n=2}^{\infty} x_n \tilde{y}_n \stackrel{!}{=} (T'y')(x),$$

wobei $\tilde{y}_n = y_{n-1}$ für alle $n \in \mathbb{N}_{\geq 2}$. Dies zeigt, dass

$$T': Y' \to X', \quad (y_1, y_2, \dots) \mapsto (0, y_1, y_2, \dots)$$

gilt. Dabei haben wir TT' = Id, aber $T'T \neq \text{Id}$.

- **5.17.** Seien X und Y normierte Räume.
 - (i) Die Abbildung

$$': L(X,Y) \to L(Y',X')$$

 $y \mapsto y'$

ist eine lineare Isometrie.

(ii) Sei Z ein weiterer normierter Raum. Dann gilt für alle $T \in L(X,Y)$ und $S \in L(Y,Z)$ gilt (ST)' = T'S'.

Beweis.

(i) Die Linearität rechnet man leicht nach. Sei $T \in L(X,Y)$. Dann gilt für alle $y' \in Y'$:

$$||T'y'|| < ||y'|| \cdot ||T||.$$

Dass wir tatsächlich auch Gleichheit haben, sehen wir wie folgt ein (– um die Notation übersichtlicher zu halten, bezeichne $\bar{B}_1^X \coloneqq \overline{B_1^X(0)}$ die abgeschlossene Einheitskugel in X und $\bar{B}_1^{Y'} \coloneqq \overline{B_1^{Y'}(0)}$ diejenige in Y'):

$$||T|| = \sup_{x \in \bar{B}_1^X} ||Tx|| = \sup_{x \in \bar{B}_1^X} \sup_{y' \in \bar{B}_1^{Y'}} |y'(Tx)|$$
$$= \sup_{y' \in \bar{B}_1^{Y'}} \sup_{x \in \bar{B}_1^X} |y'(Tx)| = \sup_{y' \in \bar{B}_1^{Y'}} ||T'y'|| = ||T'||.$$

(Die zweite Gleichheit gilt dabei nach Satz 4.18.)

(ii) Seien $T \in L(X,Y), S \in L(Y,Z)$ und $z' \in Z'$ sowie $x \in X$. Dann gilt:

$$((ST)'z')(x) = z'(STx) = (S'z')(Tx) = (T'S'z')(x).$$

Es folgt die Behauptung.