Homework3-solution

1 . Suppose all the numbers are 8-bit long. Give the result of the following expressions of C language in full 8-bit 2's complement form and signed decimal form.

Expression	2's-complement	Signed 8-bit Decimal
3+2	0000 0101	5
99/2	0011 0001	49
(-23)/2	1111 0101	-11
-127-1	1000 0000	-128
125+3	1000 0000	-128
125>>3	0000 1111	15

2. The following C code pieces are executed on a typical 32-bit machine with 2's complement encoding. Please give the output and show how you can get the result in detail.

```
int main()
{
  int x = 257;
  char y = -10;
  int z = 128;
  char a = (char)x;
  short b =(short)y;
  unsigned short d = (unsigned short)b;
  char c = (char)z;
  unsigned int e = (c > 0) ? 0 : 1;
  int f = ((unsigned) z<<24)>>24;
  Int g =(z<<24)>>24;
```

```
printf("a=%d,b=%d,d=%x,c=%d,e=%d,f=%d,g=%d\n",a,b,d,c,e,f,g); } a=1,\ b=-10,\ d=fff6,\ c=-128,\ e=1,\ f=128,\ g=-128 3.
```

Consider a **16-bit** floating-point representation based on the IEEE floating-point format, which is illustrated below.

S	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F
	_	_	_	_	_	_		•	•	•	•	•	•		

- 1. Filling the blanks with proper values.
 - 1) The denormalized values can be represented in a form $V = (-1)^{sign} * (0.fraction) * 2^{E}$, where $E = ___[1]___;$
 - 2) The normalized values can be represented in a form $V = (-1)^{sign} * (1.fraction) * 2^{(e-bias)}$, where bias = ___[2]___, and the value of e ranges from ___[3]___ to ___[4]___.
- 2. Give the equivalent value of the following numeric numbers or FP representation.

Numeric value	FP representation (in hex)
(12.625) ₁₀	(0x [1]) ₁₆
(-0.09375) ₁₀	(0x [2]) ₁₆
[3]	(0x4C18)16
[4]	(0x7EB0)16

- Calculate both the sum and multiplication of (12.625)₁₀ and (0x4C18)₁₆, and then round the results to 5 bits to the right of the binary point with Round-to-Even rounding modes. Give your steps detailed.
- 1. (1) E = -30 $bias = 2^{k} - 1$ k = 6 E = 1 - bias(2) bias = 31 (3) $e_{min} = 1$ (4) $e_{max} = 62$ $bias = 2^{k} - 1$ k = 6 E = e - bias

eisneitherallzeros(000000B)norallones(111111B),soerangesfrom 000001B(1D) to 111110B(62D)

2. (1) 4528

```
12.625D 1100.101B

F = 100101000B

E= 3D + 31D = 34D = 100010B

0100010100101000B

(2) B700

-0.09375D -0.00011B

F= 100000000

E = -4D+31D = 27D = 011011B

1011011100000000
```

```
(3) 134
```

0x4C18 0100110000011000B

$$E = 38e = 38 - 31 = 7$$

1000011000*B*1.046875*B*

1000011000B1.046875B

1.046875B * 27 = 134

(4) NaN

E = 1111111 and F is not all zeros

3. Sum:

12.625D + 0x4C18 = 146.625D

10010010.101000000B

 $1.0010010101000000B * 2^6$ after rounding: $1.00101B * 2^7$

$$E = 7D + 31D = 38D100101B$$

F = 00101B

0100101001010000B, Sum: 0x4C50

Mul:

12.625D*0x4C18 = 1691.75D

11010011011.110000000*B*

 $1.1010011011111B*2^{10}$, after rounding: $1.10101B*2^{10}$

E = 10D + 31D = 41D101001B

F = 10101B

0101001101010000B, Mul: 0x5350