MATH 0450: HOMEWORK 9

TEOH ZHIXIANG

Instructions: Submit solutions for 5 of the 8 problems below (not counting extra credit problems).

Problem 1. (Ex. 4.2.7) Let $g: A \to \mathbb{R}$ and assume that f is a bounded function on A in the sense that there exists M > 0 satisfying $|f(x)| \le M$ for all $x \in A$.

Show that if $\lim_{x\to c} g(x) = 0$, then $\lim_{x\to c} g(x)f(x) = 0$ as well.

Proof. We want to show $\lim_{x\to c} g(x)f(x) = 0$, which means for all $\epsilon > 0$, there exists a $\delta > 0$ such that $|g(x)f(x) - 0| < \epsilon$. Fix $\epsilon_0 = \epsilon/M$. By definition of functional limit, $\lim_{x\to c} g(x) = 0$ means that for this ϵ_0 there exists a $\delta > 0$ such that $0 < |x - c| < \delta$ implies

$$|g(x) - 0| < \epsilon_0 = \epsilon/M.$$

Then because $|f(x)| \leq M$, where M > 0, for all $x \in A$,

$$|g(x)f(x) - 0| = |g(x)f(x)| < \epsilon_0 \cdot M = \frac{\epsilon}{M} \cdot M = \epsilon,$$

which is what we wanted to show.

Problem 2. (Ex. 4.2.11) (Squeeze Theorem). Let f, g, and h satisfy $f(x) \leq g(x) \leq h(x)$ for all x in some common domain A. If $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} h(x) = L$ at some limit point c of A, show $\lim_{x\to c} g(x) = L$ as well.

Proof. Given $f(x) \leq g(x) \leq h(x)$ for all x in a common domain A, we can rewrite as

$$f(x) - L < g(x) - L < h(x) - L$$
.

Using $|f(x) - L| < \epsilon$ and $|h(x) - L| < \epsilon$, whenever $|x - c| < \delta$, we want to show $|g(x) - L| < \epsilon$ as well, where $\epsilon > 0$, arbitrary. Now to take absolute value on the individual terms in $f(x) - L \le g(x) - L \le h(x) - L$, we examine cases (varying the signs of the terms) and resolve it to

$$|g(x) - L| \le |f(x) - L| < \epsilon$$

or

$$|g(x) - L| \le |h(x) - L| < \epsilon$$

or both. Whichever the case we have shown $|g(x) - L| < \epsilon$ whenever $|x - c| < \delta$, where $\delta > 0$ as chosen for f(x) and h(x).

Problem 3. (Ex. 4.3.3)

(a) Supply a proof for Theorem 4.3.9 using the ϵ - δ characterization of continuity.

Date: April 2, 2020.

Theorem 1 (4.3.9 Composition of Continuous Functions). Given $f: A \to \mathbb{R}$ and $g: B \to \mathbb{R}$, assume that the range $f(A) = \{f(x) : x \in A\}$ is contained in the domain B so that the composition $g \circ f(x) = g(f(x))$ is defined on A.

If f is continuous at $c \in A$, and if g is continuous at $f(c) \in B$, then $g \circ f$ is continuous at c.

(b) Give another proof of this theorem using the sequential characterization of continuity (from Theorem 4.3.2(iii)).

Theorem 2 (4.3.2(iii) Characterizations of Continuity). For all $(x_n) \to c$ (with $x_n \in A$), it follows that $f(x_n) \to f(c)$.

Proof. (a) Fix $\epsilon > 0$, arbitrary. Given that g is defined on A and continuous at $f(c) \in B$, for this ϵ there exists a $\delta_1 > 0$ such that for all $y \in B$,

$$|y - f(c)| < \delta_1 \Rightarrow |g(y) - g(f(c))| < \epsilon.$$

Because f is continuous at $c \in A$, for an $\epsilon_0 = \delta_1 > 0$, there exists a δ such that

$$|x-c| < \delta \Rightarrow |f(x) - f(c)| < \epsilon_0 = \delta_1.$$

Combining the two statements gives us for this arbitrary $\epsilon > 0$, there exists $\delta > 0$ such that

$$|x-c| < \delta \Rightarrow |f(x) - f(c)| < \delta_1 \Rightarrow |g(f(x)) - g(f(c))| < \epsilon$$

which by definition means that $g \circ f$ is continuous at c.

(b) Because f is continuous at $c \in A$, for all $(x_n) \to c$ (with $x_n \in A$), it follows that $f(x_n) \to f(c)$. Similarly, g is continuous at $f(c) \in B$ so for all $f(x_n) \to f(c)$ (with $f(x_n) \in B$), $g(f(x_n)) \to g(f(c))$.

Combining the two statements, we get for all $(x_n) \to c$ (with $x_n \in A$),

$$g(f(x_n)) \to g(f(c)),$$

which by sequential characterization of continuity means $g \circ f$ is continuous at c.

Problem 4. (Ex. 4.3.9) Assume $h: \mathbb{R} \to \mathbb{R}$ is continuous on \mathbb{R} and let $K = \{x: h(x) = 0\}$. Show that K is a closed set.

Proof. To prove K is closed, it is enough to prove K contains all its limit points, by following Lemma.

Lemma 3 (Definition 3.2.7). A set $F \subseteq \mathbb{R}$ is closed if it contains its limit points.

Let x_0 be an arbitrary limit point of K. By definition of limit point, there exists a sequence $(x_n) \in K$ such that $(x_n) \to x_0$. Since $x_n \in K$ for all $n \in \mathbb{N}$, we have

$$h(x_n) = 0$$

for all $n \in \mathbb{N}$. Now, h is continuous, so

$$(x_n) \to x_0 \Rightarrow (h(x_n)) \to h(x_0).$$

Since $(h(x_n))$ is the constant sequence with each $h(x_n) = 0$, it converges to 0. So $h(x_0) = 0$, which implies that $x_0 \in K$. Therefore K contains all its limit points, and thus is closed.

Problem 5. (Ex. 4.3.11*) (Contraction Mapping Theorem). Let f be a function defined on all of \mathbb{R} , and assume there is a constant c such that 0 < c < 1 and

$$|f(x) - f(c)| \le c|x - y|$$

for all $x, y \in \mathbb{R}$.

- (a) Show that f is continuous on \mathbb{R} .
- (b) Pick some point $y_1 \in \mathbb{R}$ and construct the sequence

$$(y_1, f(y_1), f(f(y_1), \ldots).$$

In general, if $y_{n+1} = f(y_n)$, show that the resulting sequence (y_n) is a Cauchy sequence. Hence we may let $y = \lim y_n$.

- (c) Prove that y is a fixed point of f (i.e., f(y) = y) and that it is unique in this regard.
- (d) Finally, prove that if x is any arbitrary point in \mathbb{R} , then the sequence $(x, f(x), f(f(x)), \ldots)$ converges to y defined in b.

Proof. (a) Fix $\epsilon > 0$, arbitrary. For this ϵ , set $\delta = \epsilon/c$. Now, whenever $|x - y| < \delta = \epsilon/c$, we have

$$|f(x) - f(y)| \le c|x - y| < c \cdot \frac{\epsilon}{c} = \epsilon$$

for all $x, y \in \mathbb{R}$, with 0 < c < 1, and so f continuous on \mathbb{R} .

(b) In general $y_{n+1} = f(y_n)$. For any two elements $f^n(y_1), f^m(y_1)$ of the sequence, with n > m,

$$|f^{n}(y_{1}) - f^{m}(y_{1})| \le c|f^{n-1}(y_{1}) - f^{m-1}(y_{1})| \le c^{2}|f^{n-2}(y_{1}) - f^{m-2}(y_{1})|$$

$$\le \cdots$$

$$\le c^{m}|f^{n-m}(y_{1}) - y_{1}|.$$

Given f defined on all of \mathbb{R} , $f^{n-m}(y_1)$ is defined and so there exists some $N \in \mathbb{N}$ such that for all $m \geq N$,

$$c^m|f^{n-m}(y_1) - y_1| \le \epsilon$$

for all $\epsilon > 0$. Thus the sequence (y_n) as defined is Cauchy. Hence we may let $y = \lim y_n$.

(c) By $y = \lim y_n$ as defined in (b), notice that

$$f(y) = f(\lim y_n) = f(\lim f^{n-1}(y_1)) = f(\lim f^{n-2}(y_1))$$

since limit of sequence not dependent on first (finitely many) term y_1 . Furthermore, by f continuous we have that

$$f(\lim f^{n-2}(y_1)) = \lim f(f^{n-2}(y_1)) = \lim f^{n-1}(y_1) = \lim y_n = y$$

again by $y = \lim y_n$. So f(y) = y. Assume for contradiction y is not unique in its fixed point property, i.e. there exists an $x \in \mathbb{R}$ such that f(x) = x (x is a fixed point). Then

$$|f(x) - f(y)| = |x - y| \le c|x - y|$$

which implies that $c \ge 1$. But this contradicts our initial fundamental assumption that 0 < c < 1. So our assumption that f(x) = x is false, and so y is the only fixed point.

(d) Assume $x \in \mathbb{R}$, arbitrary. Because y is a fixed point (f(y) = y), observe that

$$|f^{n}(x) - y| = |f^{n}(x) - f^{n}(y)| \le c|f^{n-1}(x) - f^{n-1}(y)|$$

 $\le \cdots$
 $< c^{n}|x - y|$

for any $n \in \mathbb{N}$. Because 0 < c < 1, $(c^n|x-y|)$ converges to 0, $(|f^n(x)-y|)$ also converges to 0, i.e. $\lim |f^n(x)-y| = 0$. In other words

$$\lim f^n(x) = y$$

and the proof is complete.

Problem 6. (Ex. 4.3.12*) Let $F \subseteq \mathbb{R}$ be a nonempty closed set and define $g(x) = \inf\{|x-a| : a \in F\}$. Show that g is continuous on all of \mathbb{R} and $g(x) \neq 0$ for all $x \notin F$.

Proof. Fix $\epsilon > 0, c \in \mathbb{R}$, arbitrary. Let $\delta = \epsilon$. Our aim is to show that $|f(x) - g(c)| \le |x - c| < \delta = \epsilon$. For $a \in F$, notice that

$$|x - a| \le |x - c| + |c - a|$$

and

$$|c-a| \le |c-x| + |x-a| = |x-c| + |x-a|$$

 $\Rightarrow -|x-c| + |c-a| \le |x-a|.$

Combining the two inequalities we have

$$|c-a| - |x-c| \le |x-a| \le |c-a| + |x-c|$$
.

Taking inf,

$$\inf\{|c - a| - |x - c| : a \in F\} \le \inf\{|x - a| : a \in F\} \le \inf\{|c - a| + |x - c|\}$$

which is equivalent to

$$\inf\{|c-a|: a \in F\} - |x-c| \le \inf\{|x-a|: a \in F\} \le \inf\{|c-a|: a \in F\} + |x-c|$$

By definition of g, we can resolve to above to

$$|g(c) - |x - c| \le g(x) \le g(c) + |x - c|$$

which in other words means

$$|g(x) - g(c)| \le |x - c| < \delta = \epsilon$$

and we have shown q continuous on \mathbb{R} since the original $c \in \mathbb{R}$ we picked is arbitrary.

Given F closed, we prove for all $x \notin F$, $g(x) \neq 0$. Suppose for contradiction that g(x) = 0. Then there exists a sequence $(a_n) \subseteq F$ such that $|x - a_n| = |a_n - x| \to \inf\{|x - a| : a \in F\} = g(x) = 0$. This implies $(a_n) \to x$, a limit point outside F. But this contradicts assumption that F closed and so contains all its limit points. Thus our assumption that g(x) = 0 is false, i.e. $g(x) \neq 0$ for all $x \notin F$.

Problem 7. (Ex. 4.3.14*)

- (a) Let F be a closed set. Construct a function $f: \mathbb{R} \to \mathbb{R}$ such that the set of points where f fails to be continuous is precisely F. (The concept of the interior of a set, discussed in Exercise 3.2.14, may be useful.)
- (b) Now consider an open set O. Construct a function $g: \mathbb{R} \to \mathbb{R}$ whose set of discontinuous points is precisely O. (For this problem, the function in Exercise 4.3.12 may be useful.)

Lemma 4 (Function in Exercise 4.3.12).

$$g(x) = \inf\{|x - a| : a \in F\},\$$

where $F \subseteq \mathbb{R}$ is a nonempty closed set, g continuous on all of \mathbb{R} and $g(x) \neq 0$ for all $x \notin F$.

Proof. (a) Consider the function f defined by

$$f(x) = \begin{cases} D(x) & \text{for } x \in [a, b] \subseteq F \\ x & \text{if } x \notin F \\ 0 & \text{if } x \in F \end{cases}$$

for some $a, b \in \mathbb{R}$, where D(x) is defined as the Dirichlet's function, i.e.

$$D(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}.$$

(b) We use the function in Exercise 4.3.12

Lemma 5 (Function in Exercise 4.3.12).

$$g(x) = \inf\{|x - a| : a \in F\},\$$

where $F \subseteq \mathbb{R}$ is a nonempty closed set, g continuous on all of \mathbb{R} and $g(x) \neq 0$ for all $x \notin F$.

With this idea, O open implies $\mathbb{R} \setminus O = O^c$ closed; let function g be defined as

$$g(x) = \begin{cases} \inf\{|x - a| : a \in \mathbb{R} \setminus O\} & \text{if } x \notin O \\ D(x) & \text{if } x \in O \end{cases}.$$

Problem 8. (Ex. 4.4.5) Assume that g is defined on an open interval (a, c) and it is known to be uniformly continuous on (a, b] and [b, c), where a < b < c. Prove that g is uniformly continuous on (a, c).

Proof. Fix $\epsilon_0 = \epsilon/2 > 0$, arbitrary. Because g is uniformly continuous on (a, b], there exists a $\delta_1 > 0$ such that for all $p, q \in (a, b]$,

$$|p-q| < \delta_1 \Rightarrow |g(p) - g(q)| < \epsilon_0.$$

Similarly, because f is uniformly continuous on [b, c), for this same ϵ , there exists a $\delta_2 > 0$ such that for all $r, s \in [b, c)$,

$$|r-s| < \delta_2 \Rightarrow |g(r) - g(s)| < \epsilon_0.$$

We want to show there exists a $\delta > 0$ such that for all $x, y \in (a, c), |x - y| < \delta \Rightarrow |g(x) - g(y)| < \epsilon$.

Let $\delta = \min\{\delta_1, \delta_2\}$. As the most general (worst case), assume $x \in (a, b]$ and $y \in [b, c)$. Then

$$|x-y|<\delta \Rightarrow |g(x)-g(y)|\leq |g(x)-g(b)|+|g(b)-g(y)|<\epsilon_0+\epsilon_0=2\frac{\epsilon}{2}=\epsilon$$

which by definition means g is uniformly continuous on (a, c).

Problem 9. (Ex. 4.5.3) A function f is increasing on A if $f(x) \leq f(y)$ for all x < y in A. Show that if f is increasing on [a, b] and satisfies the intermediate value property (Definition 4.5.3), then f continuous on [a, b].

Definition 6 (4.5.3 Intermediate Value Property). A function f has the intermediate value property on an interval [a,b] if for all x < y in [a,b] and all L between f(x) and f(y), it is always possible to find a point $c \in (x,y)$ where f(c) = L.

Proof. Fix $\epsilon > 0$. Our aim is to show that there exists $\delta > 0$ such that for $c \in [a, b]$, $|x - c| < \delta \Rightarrow |f(x) - f(y)| < \epsilon$. First pick $c \in (a, b)$ such that a < c < b. By the intermediate value property, we can find a point $d \in (a, c)$, satisfying a < d < c, where $f(d) = L_1 = f(c) - \epsilon$. Let $\delta_1 = c - d$. Given f strictly increasing, for all $x \in [d, c]$ such that $|x - c| < c - d = \delta_1$, we have

$$f(c) - \epsilon = f(d) \le f(x) \le f(c).$$

Similarly, by the intermediate value property of f we can pick another point $e \in (c, b)$ satisfying c < e < b, where $f(e) = L_2 = f(c) + \epsilon$. Let $\delta_2 = e - c$. Given f strictly increasing, for all $x \in [c, e]$ such that $|x - c| < e - c = \delta_2$, we have

$$f(c) \le f(x) \le f(e) = f(c) + \epsilon$$

Next we consider the case when c=a. For our particular ϵ , for x>a=c, we can find a $\delta_3>0$ such that whenever $|x-c|<\delta_3$ we have that $|f(x)-f(c)|<\epsilon$. Similarly for c=b, for x< b=c we can find a $\delta_4>0$ such that whenever $|x-c|<\delta_4$ we have that $|f(x)-f(c)|<\epsilon$. Let $\delta=\min\{\delta_1,\delta_2,\delta_3,\delta_4\}$. For all $\epsilon>0$, $|x-c|<\delta$ implies

$$|f(x) - f(c)| < \epsilon,$$

and we have shown f continuous at c.

Problem 10. (Ex. 4.5.4) Let g be continuous on an interval A and let F be the set of points where g fails to be one-to-one; that is,

$$F = \{x \in A : f(x) = f(y) \text{ for some } y \neq x \text{ and } y \in A\}.$$

Show F is either empty or uncountable.

Proof. If F empty, we are done. If F not empty, because g is continuous on interval $F \subseteq A$, then by definition of F there exist at least two points $x, y \in F$. So g(x) = g(y) on this interval F. Now there are two cases: either g is constant on the interval [x, y] or g not constant on this interval. If g is constant on [x, y], $[x, y] \subseteq F$ and therefore F is uncountable.

If g not constant on this interval, then because g continuous on this compact set $[x, y] \subseteq \mathbb{R}$, by Extreme Value Theorem it attains a minimum and maximum value, $g(x_{\min})$ and $g(x_{\max})$ respectively. Because g not constant on this interval, either $x_{\max} \in (x, y)$ or $x_{\min} \in (x, y)$. Assume the former. Then consider the interval of range $[g(x), g(x_{\max})]$. By the Intermediate Value Theorem applied to $g: [x, x_{\max}] \to \mathbb{R}$ and $g: [x_{\max}, y] \to \mathbb{R}$, g obtains every value in the interval $[g(x), g(x_{\max})]$ at least twice, which proves g fails to be one-to-one on the interval $[x, y] = [x, x_{\max}] \cup [x_{\max}, y] \subseteq F$ which is uncountable. We have proven F is either empty or, if it's not empty, uncountable.

Problem 11. (Ex. 4.5.8) (Inverse functions). If a function $f: A \to \mathbb{R}$ is one-to-one, then we can define the inverse function f^{-1} on the range f in the natural way: $f^{-1}(y) = x$ where y = f(x).

Show that if f is continuous on an interval [a, b] and one-to-one, then f^{-1} is also continuous.

Proof. We begin by proving the following for our continuous one-to-one function $f:[a,b]\to\mathbb{R}$.

Theorem 7. A function f is monotone if it is one-to-one.

f one-to-one means that for $x, y \in [a, b]$, $f(x) = f(y) \Rightarrow x = y$. For contradiction assume f is not monotone, i.e. there exists x < y < z in [a, b] for which (f(x) < f(y)) and f(y) > f(z), or (f(x) > f(y)) and f(y) < f(z). Suppose f(y) > f(x) and f(y) > f(z) (the other case is proved similarly). Because f continuous, by intermediate value theorem, there exist $x_1 \in [x, y)$ and $x_2 \in (y, z]$ such that $f(x_1) = f(x_2)$. Since $x_1 < y < x_2$, $x_1 \ne x_2$ and this contradicts our assumption that f is one-to-one. By contradiction we have proven f is monotone.

We know f is monotone. Suppose, without loss of generality, that f is strictly increasing. Fix $\epsilon > 0$, arbitrary. Let $y_1 \in f(A)$. Let $x_1 = f^{-1}(y_1) \in (a,b)$. There exist $c,d \in [a,b]$ with

$$x_1 - \epsilon < c < x_1 < d < x_1 + \epsilon.$$

Then

$$f(c) < f(x_1) < f(d),$$

that is,

$$f(c) < y_1 < f(d)$$
.

Set $\delta = \min\{y_1 - f(c), f(d) - y_1\}$. We pick a $y \in f(A)$ such that $|y - y_1| < \delta$. For this y, we see that

$$|y - y_1| < \delta \Rightarrow y_1 - \delta < y < y_1 + \delta$$

and so

$$f(c) < y < f(d).$$

Then taking f^{-1} ,

$$c < f^{-1}(y) < d.$$

With this, because $x_1 = f^{-1}(y_1)$ and $c - \epsilon < x_1 < d + \epsilon$, it follows that

$$|f^{-1}(y) - f^{-1}(y_1)| < \epsilon,$$

and we have proven for $\epsilon > 0$, there exists a $\delta > 0$ such that $|y - y_1| < \delta \Rightarrow |f^{-1}(y) - f^{-1}(y_1)| < \epsilon$, which is exactly the statement that f^{-1} is continuous on (a, b).

Now we just have to prove f^{-1} continuous on endpoints a and b. Consider case when $x_1 = f^{-1}(y_1) = a$. For $\epsilon > 0$ we have that

$$x_1 < e < x_1 + \epsilon$$

for some $e > a = x_1$. Then $f(x_1) = y_1 < f(e) \Leftrightarrow x_1 = f^{-1}(y_1) < e$. Set $\delta = f(e) - y_1$. For $y \in f(A)$ such that $|y - y_1| < \delta$, $|f^{-1}(y) - f^{-1}(y_1)| < \epsilon$ because $|e - x_1| = |x_1 - e| < \epsilon$. A very similar argument follows for case when $x_1 = b$.

Extra practice

Problem 12. (Ex. 4.2.6**) Decide if the following claims are true or false, and give short justifications for each conclusion.

- (a) If a particular δ has been constructed as a suitable response to a particular ϵ challenge, then any smaller positive δ will also suffice.
- (b) If $\lim_{x\to a} f(x) = L$ and a happens to be in the domain of f, then L = f(a).
- (c) If $\lim_{x\to a} f(x) = L$, then $\lim_{x\to a} 3|f(x) 2|^2 = 3(L-2)^2$.
- (d) If $\lim_{x\to a} f(x) = 0$, then $\lim_{x\to a} f(x)g(x) = 0$ for any function g (with domain equal to the domain of f.)

- Proof. (a) True. A particular $\delta > 0$ suitable for a particular $\epsilon > 0$ means that $|f(x) L| < \epsilon$ whenever $0 < |x c| < \delta$, where c is a limit point of domain. Let the smaller positive δ be δ' such that $\delta > \delta' > 0$. Then by definition of functional limit, this δ' is also a suitable response to ϵ since $0 < |x c| < \delta' < \delta$ for $|f(x) L| < \epsilon$ to still hold.
 - (b) False. The idea is that the limit of a limit point a in the domain of f can be different from the image f(a) of a. Consider Thomae's Function as a counterexample:

$$t(x) = \begin{cases} 1 & \text{if } x = 0\\ 1/n & \text{if } x = m/n \in \mathbb{Q} \setminus \{0\} \text{ is in lowest terms with } n > 0\\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}$$

For this function note that $\lim_{x\to 1} t(x) = 0 = L \neq 1 = t(1)$.

(c) True. Define a constant function g(x) = 2 on the domain of f. We observe that $\lim_{x\to a} g(x) = 2$, so we have

$$\lim_{x \to c} |f(x) - 2| = \begin{cases} f(x) - 2 = f(x) - g(x) = L - 2 & \text{if positive} \\ -(f(x) - 2) = -1 \cdot (f(x) - g(x)) = -(L - 2) & \text{if negative} \end{cases}$$

$$= |L - 2|$$

by Algebraic Limit Theorem for Functional Limits. Then

$$\lim_{x \to c} 3|f(x) - 2|^2 = \lim_{x \to c} 3 \cdot |f(x) - 2| \cdot |f(x) - 2| = 3|L - 2|^2.$$

(d) False. Consider the function f defined by

$$f(x) = x - a$$

on the domain $\mathbb{R} \setminus \{a\}$, and the function g defined by

$$g(x) = \frac{1}{x - a}$$

on the same domain. Then

$$\lim_{x \to a} f(x) = 0,$$

but

$$\lim_{x \to a} f(x)g(x) = \lim_{x \to a} (x - a) \cdot \frac{1}{x - a} = 1 \neq 0.$$

Problem 13. (Ex. 4.3.2**) To gain a deeper understanding of the relationship between ϵ and δ in the definition of continuity, let's explore some modest variations of Definition 4.3.1. In all of these, let f be a function defined on all of \mathbb{R} .

- (a) Let's say f is onetinuous at c if for all $\epsilon > 0$ we can choose $\delta = 1$ and it follows that $|f(x) f(c)| < \epsilon$ whenever $|x c| < \delta$. Find an example of a function that is onetinuous on all of \mathbb{R} .
- (b) Let's say f is equaltinuous at c if for all $\epsilon > 0$ we can choose $\delta = \epsilon$ and it follows that $|f(x) f(c)| < \epsilon$ whenever $|x c| < \delta$. Find an example of a function that is equaltinuous on \mathbb{R} that is nowhere onetinuous, or explain why there is no such function.
- (c) Let's say f is lesstinuous at c if for all $\epsilon > 0$ we can choose $0 < \delta < \epsilon$ and it follows that $|f(x) f(c)| < \epsilon$ whenever $|x c| < \delta$. Find an example of a function that is lesstinuous on \mathbb{R} that is nowhere equaltinuous, or explain why there is no such function.
- (d) Is every less tinuous function continuous? Is every continuous function less tinuous? Explain.

Proof. (a) Consider the function f defined by

$$f(x) = 0.$$

Let $c \in \mathbb{R}$, arbitrary. Observe that for all $\epsilon > 0$, $|f(x) - f(c)| = 0 < \epsilon$ whenever $|x - c| < 1 = \delta$.

(b) Consider the function f defined by

$$f(x) = x$$
.

Let $c \in \mathbb{R}$, arbitrary. Observe that for all $\epsilon > 0$, $|f(x) - f(c)| = |x - c| < \delta = \epsilon$ whenever $1 \le |x - c| < \delta$, but for |x - c| < 1 if we pick $\epsilon = 2$ then $|f(x) - f(c)| > 2 = \epsilon$ so f nowhere onetinuous.

(c) Consider the function f defined by

$$f(x) = 2x.$$

Let $c \in \mathbb{R}$, arbitrary. Observe that for all $\epsilon > 0$, |f(x) - f(c)| = |2x - 2c| = 2|x - c|. We can set $\delta = \epsilon/2$, which gives us

$$|f(x) - f(c)| = 2|x - c| < 2 \cdot \frac{\epsilon}{2} = \epsilon$$

whenever $|x-c| < \delta = \epsilon/2$, where $0 < \delta < \epsilon$. If $\delta = \epsilon$ then if we pick $\epsilon = 2$, $|f(x) - f(c)| = 2|x-c| < 4 > \epsilon$ whenever $|x-c| < 2 = \delta = \epsilon$; so by contradiction f is nowhere equaltinuous.

(d) Yes, every less tinuous function is continuous. From definition of less tinuous function, $\delta > 0$ where $\delta < \epsilon$, and whenever $|x - c| > \delta$, $|f(x) - f(c)| < \epsilon$ which is exactly the definition of continuity.

Yes, every continuous function is less tinuous. Definition of continuity is that for all $\epsilon > 0$, there exists a $\delta > 0$ such that $|f(x) - f(c)| < \epsilon$ whenever $|x - c| < \delta$. If $\delta \ge \epsilon$, we can always choose $\delta' < \epsilon$ such that $|f(x) - f(c)| < \epsilon$ whenever $|x - c| < \delta' < \epsilon < \delta$.

Problem 14. (Ex. 4.3.4**) Assume f and g are defined on all of \mathbb{R} and that $\lim_{x\to p} f(x) = q$ and $\lim_{x\to q} g(x) = r$.

(a) Give an example to show that it may not be true that

$$\lim_{x \to p} g(f(x)) = r.$$

- (b) Show that the result in (a) does follow if we assume f and g are continuous.
- (c) Does the result in (a) hold if we only assume f is continuous? How about if we only assume that g is continuous?

Proof. (a) Let f(x) = 0 constant function, and g defined by

$$g(x) = \begin{cases} x^2 & \text{if } x \neq 0\\ 1 & \text{if } x = 0 \end{cases}$$

Then

$$\lim_{x \to 0=q} g(x) = 0 = r$$

but

$$\lim_{x\to 0}g(f(x)) = \lim_{x\to 0}g(0=p) = \lim_{x\to 0}1 = 1 \neq 0 = r$$

(b) Assuming f and g are continuous, the conditions of Theorem 4.3.9 Composition of Continuous Functions are fulfilled, thus by the same theorem $g \circ f$ is continuous at p and so $\lim_{x\to p} g(f(x)) = r$ follows by

$$\lim_{x\to p}g(f(x))=g(\lim_{x\to p}f(x))=g(f(p))=g(q)=r.$$

Theorem 8 (4.3.9 Composition of continuous Functions). Given $f: A \to \mathbb{R}$ and $g: B \to \mathbb{R}$, assume that the range $f(A) = \{f(x) : x \in A\}$ is contained in the domain B so that the composition $g \circ f = g(f(x))$ is defined on A.

If f is continuous at $c \in A$, and if g is continuous at $f(c) \in B$, then $g \circ f$ is continuous at c.

(c) No, result doesn't hold if we only assume f is continuous, and that was the result shown in (a).

If we only assume g is continuous,

$$\lim_{x \to q} g(x) = g(q) = r.$$

But we know $\lim_{x\to p} f(x) = q$, so

$$\lim_{x\to p}g(f(x))=\lim_{f(x)\to q}g(f(x))=g(q)=r.$$

Problem 15. (Ex. 4.3.8**) Decide if the following claims are true or false, providing either a short proof or counterexample to justify each conclusion. Assume throughout that g is defined and continuous on all of \mathbb{R} .

- (a) If $g(x) \ge 0$ for all x < 1, then $g(1) \ge 0$ as well.
- (b) If g(r) = 0 for all $r \in \mathbb{Q}$, then g(x) = 0 for all $x \in \mathbb{R}$.
- (c) If $g(x_0) > 0$ for a single point $x_0 \in \mathbb{R}$, then g(x) is in fact strictly positive for uncountably many points.
- *Proof.* (a) True. Assume for contradiction g(1) < 0. Pick $\epsilon = |g(1)| > 0$. Then we observe that for all x such that $|x 1| < \delta$, $|g(x) g(1)| \ge |g(1)| = \epsilon$, which contradicts fundamental assumption that g is continuous. So $g(1) \ge 0$.
 - (b) True. By Density of \mathbb{Q} in \mathbb{R} we know that there exists $r \in \mathbb{Q}$ such that $r \in V_{\delta}(x)$ for some $\delta > 0$, for all $x \in \mathbb{R}$. For all $\epsilon > 0$, there exists such a δ -neighborhood such that whenever, $|x r| < \delta \Leftrightarrow r \in V_{\delta}(x), |g(x) g(r)| < \epsilon$ implies g(x) = g(r) = 0.
 - (c) True. By continuity of g, for all $\epsilon > 0$, whenever $|x x_0| < \delta$ we have that

$$|g(x) - g(x_0)| < \epsilon$$
.

Picking $\epsilon = |g(x_0)|$, notice that for the above to hold, it must be that

$$g(x) > 0,$$

i.e. g(x) strictly positive. Lastly note that the length $|x - x_0| < \delta$ is uncountable in \mathbb{R} for all $x \in \mathbb{R}$.

Problem 16. (Ex. $4.4.2^{**}$)

(a) Is f(x) = 1/x uniformly continuous on (0,1)?

- (b) Is $g(x) = \sqrt{x^2 + 1}$ uniformly continuous on (0, 1)?
- (c) Is $h(x) = x \sin(1/x)$ uniformly continuous on (0,1)?

Proof. (a) No. Assume f(x) = 1/x continuous. Observe that given $\epsilon > 0$

$$\left|\frac{1}{x} - \frac{1}{y}\right| = \left|\frac{x - y}{xy}\right| < \epsilon$$

whenever $|x-y| < \delta$. This means that

$$|xy| \ge \frac{\delta}{\epsilon} \Rightarrow \delta \le \epsilon |xy|$$

which shows that f not uniformly continuous on (0,1).

Alternatively, define two sequences (x_n) and (y_n) by $x_n = 1/n$ and $y_n = 1/2n$. Then for $\epsilon_0 = 1$,

$$|x_n - y_n| = \left|\frac{1}{n} - \frac{1}{2n}\right| = \left|\frac{1}{2n}\right| \to 0,$$

but

$$|f(x_n) - f(y_n)| = |n - 2n| = |n| \ge 1 = \epsilon_0$$

so by Theorem 4.4.5 f is not uniformly continuous on (0,1).

(b) Yes. Let $x, y \in (0, 1)$, then

$$|g(x) - g(y)| = \left| \frac{(\sqrt{x^2 + 1} - \sqrt{y^2 + 1})(\sqrt{x^2 + 1} + \sqrt{y^2 + 1})}{\sqrt{x^2 + 1} + \sqrt{y^2 + 1}} \right|$$

$$= \left| \frac{x^2 + 1 - y^2 - 1}{\sqrt{x^2 + 1} + \sqrt{y^2 + 1}} \right|$$

$$= \frac{|x^2 - y^2|}{\sqrt{x^2 + 1} + \sqrt{y^2 + 1}}$$

$$\leq |x - y| \frac{|x + y|}{2}$$

$$< |x - y|$$

since $\sqrt{x^2+1} \ge 1$ and $\sqrt{y^2+1} \ge 1$ given $x,y \in (0,1)$, and |x+y|/2 < 1. Set $\delta = \epsilon$, and we have that

$$|g(x) - g(y)| < |x - y| < \delta = \epsilon$$

for all $\epsilon > 0$ whenever $|x - y| < \delta$. Therefore g is uniformly continuous on (0, 1).

(c) Yes. Consider a modified h'(x) defined by

$$h'(x) = \begin{cases} x \sin(1/x) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

We will prove h(x) uniformly continuous by first proving that h'(x) is continuous on the compact set [0,1] and consequently is uniformly continuous on [0,1], and the open interval (0,1), and use this to show h(x) uniformly continuous on (0,1).

Given $\epsilon > 0$, for some $c \neq 0$ we can estimate

$$\begin{split} |h(x)-h(c)| &= |x\sin(\frac{1}{x})-c\sin(\frac{1}{c})| \\ &\leq |x\sin(\frac{1}{x})-x\sin(\frac{1}{c})| + |x\sin(\frac{1}{c})-c\sin(\frac{1}{c})| \\ &= |x||\sin(\frac{1}{x})-\sin(\frac{1}{c})| + |x-c||\sin(\frac{1}{c})| \\ &= |x||2\sin(\frac{1/x-1/c}{2})cos(\frac{1/x-1/c}{2})| + |x-c||\sin(\frac{1}{c})| \\ &= 2|x||\sin(\frac{c-x}{2cx})cos(\frac{x+c}{2cx})| + |x-c||\sin(\frac{1}{c})| \\ &= 2|x||\sin(\frac{c-x}{2cx})| + |x-c||\sin(\frac{1}{c})| \\ &= 2|x||\frac{c-x}{2cx}| + |x-c||\sin(\frac{1}{c})| \\ &= |x||\frac{c-x}{cx}| + |x-c||\sin(\frac{1}{c})| \\ &\leq |\frac{x-c}{c}| + |\frac{x-c}{c}| \\ &= 2|\frac{x-c}{c}|. \end{split}$$

We can find $\delta = |c|\epsilon/2$ such that

$$|f(x) - f(c)| \le 2|\frac{x - c}{c}| < 2\frac{|c|\epsilon/2}{|c|} < \epsilon$$

whenever $|x-a| < \delta$. For h'(0) = 0 see Example 4.3.6. So we have shown h'(x) continuous on [0,1], by Theorem 4.4.7 Uniform Continuity on Compact Sets, h'(x) is uniformly continuous on [0,1], meaning h'(x) also uniformly continuous on (0,1). Given h'(x) is just h(x) extended to be defined on 0, it follows that naturally h(x) is also uniformly continuous on (0,1).

Problem 17. (Ex. 4.4.4**) Decide whether each of the following statements is true or false, justifying each conclusion.

- (a) If f is continuous on [a, b] with f(x) > 0 for all $a \le x \le b$, then 1/f is bounded on [a, b] (meaning 1/f has bounded range).
- (b) If f is uniformly continuous on a bounded set A, then f(A) is bounded.
- (c) If f is defined on \mathbb{R} and f(K) is compact whenever K is compact, then f is continuous on \mathbb{R} .

Proof. (a) True. f is continuous on the compact set [a,b], so by Theorem 4.4.2 Extreme Value Theorem, we know f attains a maximum and minimum value. In particular, there exists $x_0, x_1 \in [a,b]$ such that

$$f(x_0) \le f(x) \le f(x_1)$$

for all $x \in [a, b]$. Given f(x) > 0 for all $a \le x \le b$, $f(x_0) > 0$,

$$\frac{1}{f(x_1)} \le \frac{1}{f(x)} \le \frac{1}{f(x_0)}$$

and we have shown 1/f is bounded on [a, b].

(b) True. Assume for contradiction that f(A) is unbounded. This means that for all $a \in A$, $|f(a)| \ge N$ for some $N \in \mathbb{N}$. In particular, for the sequence $(a_n) \subseteq A$, $|f(a_n)| \ge N$. Then because A bounded, we know by Bolzano-Weierstrass Theorem that every bounded sequence contains a convergent subsequence, i.e. for some $(a_n) \subseteq A$ there exists a convergent subsequence (a_{n_k}) . Then we know $(a_{n_{k+1}})$ also converges to the same limit as (a_{n_k}) because the limit of a convergent sequence is not dependent on first finitely many terms. So with this, we have

$$|a_{n_k} - a_{n_{k+1}}| \to 0.$$

But

$$|f(a_{n_k} - f(a_{n_{k+1}}))| \ge |f(a_{n_k})| - |f(a_{n_{k+1}})| \ge N_1 - N_2 \in \mathbb{R},$$

and by Theorem 4.4.5 Sequential Criterion for Absence of Uniform Continuity, f fails to be uniformly continuous on A; which contradicts the stipulation that f is uniformly continuous on A. So our assumption was false, and therefore f(A) is bounded.

(c) False. Consider the counterexample given by Dirichlet's function:

$$d(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}$$

that is defined on \mathbb{R} , with f(K) = [0,1] whenever K compact (closed and bounded), but f evidently not continuous on \mathbb{R} .

Problem 18. (Ex. 4.4.6**) Give an example of each of the following, or state that such a request is impossible. For any that are impossible, supply a short explanation for why this is the case.

- (a) A continuous function $f:(0,1)\to\mathbb{R}$ and a Cauchy sequence (x_n) such that $f(x_n)$ is not a Cauchy sequence;
- (b) A uniformly continuous function $f:(0,1)\to\mathbb{R}$ and a Cauchy sequence (x_n) such that $f(x_n)$ is not a Cauchy sequence;
- (c) A continuous function $f:[0,\infty)\to\mathbb{R}$ and a Cauchy sequence (x_n) such that $f(x_n)$ is not a Cauchy sequence.

Proof. (a) Consider the function f given by

$$f(x) = \frac{1}{x}.$$

Let $x_n = 1/n$ for all $n \in \mathbb{N}$, then

$$f(x_n) = \frac{1}{1/n} = n$$

is an unbounded sequence and therefore not convergent, i.e. not Cauchy.

(b) Impossible request. Given f uniformly continuous, we know for all $\epsilon > 0$, there exists a $\delta > 0$ such that for all $x, y \in (0, 1)$,

$$|x - y| < \delta \Rightarrow |f(x) = f(y)| < \epsilon.$$

Given $(x_n) \subseteq (0,1)$ Cauchy, by definition for all $\delta > 0$ there exist $N \in \mathbb{N}$ such that for all $n, m \geq N$,

$$|x_n - x_m| < \delta \Rightarrow |f(x_n) - f(y_n)| < \epsilon.$$

(c) Impossible request. Note that the domain $[0, \infty)$ is closed (complement $(-\infty, 0)$ is open), and so it contains all its limit points. So, for (x_n) convergent (implied by Cauchy criterion) with $(x_n) \to x \in [0, \infty)$, given f continuous,

$$f(x_n) \to f(x)$$

which means $f(x_n)$ Cauchy.

Problem 19. (Ex. 4.4.8**) Give an example of each of the following, or provide a short argument for why the request is impossible.

- (a) A continuous function defined on [0,1] with range (0,1).
- (b) A continuous function defined on (0,1) with range [0,1].
- (c) A continuous function defined on (0,1] with range (0,1).

Proof. (a) Impossible request. [0,1] is compact. By Theorem 4.4.1 Preservation of Compact Sets, f([0,1]) (range of f) is compact as well, and so cannot be (0,1).

(b) Consider the function f given by

$$f(x) = |\cos(2\pi x)|$$

that is continuous on domain (0,1), given $\cos(x)$ continuous on \mathbb{R} , with range [0,1].

(c)

Problem 20. (Ex. 4.5.2**) Provide an example of each of the following, or explain why the request is impossible.

- (a) A continuous function defined on an open interval with range equal to a closed interval.
- (b) A continuous function defined on a closed interval with range equal to an open interval.
- (c) A continuous function defined on an open interval with range equal to an unbounded closed set different from \mathbb{R} .
- (d) A continuous function defined on all of \mathbb{R} with range equal to \mathbb{Q} .

Proof. (a) Consider the function $f:(0,1)\to[0,1]$ given by

$$f(x) = |\cos(2\pi x)|$$

for 0 < x < 1, that is continuous on domain (0,1), given $\cos(x)$ is continuous on \mathbb{R} , with range [0,1].

- (b) Impossible request. A closed interval is closed and bounded, and therefore, by Heine-Borel Theorem, compact. By Preservation of Compact Sets, a continuous function defined on a compact set has range that is compact as well, but open interval is not closed therefore not compact.
- (c) Consider the function $f:(-\pi/2,\pi/2)$ given by

$$f(x) = \begin{cases} -x & \text{if } x < 0\\ \tan(x) & \text{if } x \ge 0 \end{cases}$$

and observe that for the restricted open interval domain $(-\pi/2, \pi/2) \subseteq \mathbb{R}$, the range $f((-\pi/2, \pi/2)) = [0, \infty)$ is an unbounded closed set (since $[0, \infty)^c = (-\infty, 0)$ is open) different from \mathbb{R} .

(d) Impossible request. \mathbb{R} is a connected set, by definition, so by Preservation of Connected Sets, a continuous function on \mathbb{R} must have a range that is connected as well, but \mathbb{Q} not connected since (letting $A = (\mathbb{Q} \cap (-\infty, \sqrt{2}))$, $B = (\mathbb{Q} \cap (\sqrt{2}, \infty))$),

$$\overline{A} = (-\infty, \sqrt{2}],$$

and

$$\overline{B} = [\sqrt{2}, \infty)$$

but

$$\overline{A} \cap B = \emptyset = A \cap \overline{B}$$

and we have

$$\begin{cases} \mathbb{Q} = A \ \cup \ B \\ A \neq \emptyset \neq B \\ \overline{A} \cap B = \emptyset = A \cap \overline{B} \end{cases}.$$

We have proven \mathbb{Q} not connected, and since g continuous on compact set \mathbb{R} , such a continuous function with range equal to \mathbb{Q} (disconnected set) does not exist.

Problem 21. (Ex. 4.5.7**) Let f be a continuous function on the closed interval [0,1] with range also contained in [0,1]. Prove that f must have a fixed point; that is, show f(x) = x for at least one value of $x \in [0,1]$.

Proof. If either f(0) = 0 or f(1) = 1, we are done.

Assume $f(0) \neq 0$ and $f(1) \neq 1$. Because range is also contained in [0,1],

$$f(0) > 0 \Rightarrow f(0) - 0 > 0$$

and

$$f(1) < 1 \Rightarrow f(1) - 1 < 0.$$

We define $g:[0,1]\to [-1,1]$ as g(x)=f(x)-x which is continuous. Note that $-1\le f(x)-x\le 1$. By the Intermediate Value Theorem, g continuous on [0,1] so

$$[g(1),g(0)]\subseteq g([0,1]).$$

Since

$$g(1) = f(1) - 1 < 0 < f(0) - 0 < g(0),$$

we have $0 \in [g(1), g(0)] \subseteq g([0, 1])$. So there exists $x \in [0, 1]$ such that g(x) = 0, i.e. $f(x) - x = 0 \Rightarrow f(x) = x$.