Spark the Definitive Guide 2nd Edition

Chapter 05

Basic Structured Operations

Basic Structured Operations

Text Book

Bill Chambers & Matei Zaharia

Objectives and Outcomes

- Introduce the tools we will use to manipulate DataFrames
- Focus on fundamental DataFrame operations
 - Understand what an expression is
 - Understand the difference between Select and SelectExpr
 - Understand how to add columns and rows to a DataFrame
 - Understand how to take random samples from DataFrames

Review

So far:

- We were introduced to Spark's Structured APIs, Datasets, DataFrames, and SQL Views
- ► We learned how Spark transforms a logical plan into a physical execution plan on a cluster
- Learned how DataFrames consist of a series of records
- Learned how DataFrames are of type Row and have a number of columns
- Learned that schemas define the name and type of data in each column
- Learned that Partitioning of the DataFrame defines the layout of the DataFrames physical distribution on the cluster

Create a DataFrame

```
df = spark.read.format("json").load("Spark-The-Definitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Offinitive-Off
```

- ► JSON
 - is a lightweight, text-based data interchange format.

Schemas

- Schemas tie everything together
- Schema defines the column names and column types of a DataFrame
 - Schema can be applied on read or inferred or declared
- For Ad-hoc data usually schema-on-read is good enough
 - Though it can be a bit slow when dealing with text-based file formats like:
 - CSV
 - JSON
- Schema-on-read can lead to precision problems
 - ▶ If a column is really of type LONG but the numbers are smaller and interpreted as type INT
- Spark can be used for ETL:
 - Extraction
 - Transform
 - Load In these cases it is best to provide the schema to ensure type matches

JSON Object

spark.read.format("json").load("Spark-The-Definitive-Guide,

```
# This datatype is returned from the previous command
# StructType(List(StructField
# (DEST_COUNTRY_NAME,StringType,true),
# StructField
# (ORIGIN_COUNTRY_NAME,StringType,true),
# StructField(count,LongType,true)))
```

- A schema is a StructType made up of a number of fields
 - StructFields have a name, type, and b a Boolean flag indicating if they take nulls
 - If types in the data at run-time do not match the schema, Spark will thrown and error

Declare a Schema

```
from pyspark.sql.types import StructField, StructType, StructType
myManualSchema = StructType([StructField("DEST_COUNTRY_NAME", StructField("ORIGIN_COUTNRY_NAME", StringType(), True), StructField("ORIGIN_COUTNRY_NAME", StringType(), True)
```

.load("Spark-The-Definitive-Guide/data/flight-data/json/20

df = spark.read.format("json").schema(myManualSchema)

Columns and Expressions

- Columns can be selected, manipulated, and removed from DataFrames
 - ▶ These operations are referred to as *expressions*
 - Must use Spark to manipulate Rows (logical collection of Rows is a column)
 - ▶ Must be in the context of a DataFrame
 - ► To work on columns use the *col* or *column* functions
 - We will stick to using the col function
 - Columns are not resolved until compared to the catalog at run-time
 - Column and table resolution happen in the analyzer phase

from pyspark.sql.functions import col, column

```
col("someColumnName")
column("someColumnName")
```

Column Reference

- If you need to explicitly reference a column you can
- ► Think of it as a namespace way to reference columns in different DataFrames that have the same name
 - df.col("count")

Columns as Expressions

- What is an expression?
 - A set of transformations on one or more values in a record in a DataFrame
- You can use a col() and perform a transformation on a column
- ➤ You can use an expr() to parse transformations and column references
 - These references can subsequently be passed into further transformations
 - expr("someCol 5") and col("someCol") 5 and expr("someCol") - 5 all evaluate the same
 - ► Spark compiles these to the same logic tree
- Columns are just expressions
- Columns and transformations of those columns compile to the same logical plan

```
► (((col("someCol") + 5 ) * 200 ) - 6 ) <
col("otherCol")</pre>
```

Directed Acyclic Graph

- ▶ This is also represented by in Python (64):
 - from pyspark.sql.functions import expr expr("(((someCol
 - Previous expression is actually valid SQL code
- ► This means you can write your expressions as DataFrame code or as SQL expressions and get the same performance characteristics

Accessing a DataFrames Columns

► How can you see a DataFrame's columns? spark.read.format("json").load("The-Definitive-Guide-To

Records and Rows 65

- Review: Each row in a DataFrame is a single record
 - Represented as an object of type Row
- How to read the first row of a DataFrame:
 - df.first()
- Only DataFrames have schemas, Rows do not have a schema
- ➤ To create a Row you must append values in the correct "schema"
 - from pyspark.sql import Row
 - myRow = Row("Hello", None, 1, False)
- ▶ To access Rows, Python and R will autodetect the datatype
 - myRow2
 - ► myRow0
- Scala and Java will require casting or coercing the values
 - myRow(0).asInstanceOf[String] // String
 - myRow.getInt(2)

DataFrame Transformations

- When working with individual DataFrames:
 - We can add rows or columns
 - We can remove rows or columns
 - ▶ We can transform a row into a column
 - We can change the order of rows based on the values of columns

Figure 5-2. Different kinds of transformations

Creating DataFrames

- ► We can create DataFrames from raw sources
 - ► Chapter 9 will cover this in more detail
 - ► We can register raw data as a temporary view
 - Query it with SQL
- We can create a DataFrame on the fly by taking a set of rows and converting them to a DataFrame

Code Example 65 df = spark.read.format("json").load("data/flight-data/json,")

df.createOrReplaceTempView("dfTable") import org.apache.spark.sql.Row import org.apache.spark.sql.types{StructField, StructType,

val myManualSchema = new StructType(Array(new StructField()) val myRows = Seq(Row("Hello", null, 1L)) val myRDD = spark.sparkContext.parallelize(myRows) val myDf = spark.createDataFrame(myRDD, myManualSchema) myDf.show()

// use can map Scala Seq directly to DataFrames, but Seq d val myDf = Seq(("Hello",2,1L)).toDf("col1","col2","col3")

from pyspark.sql import Row from pyspark.sql.types import StructField, StructType, Str

StructField("col" StringType() True)

myManualSchema = StructType([StructField("some", StringType(), True),

Select and selectExpr

- Use the select method when working with columns or expressions
- Use the selectExpr method when working with expressions in strings
- Both are found in org.apache.spark.sql.functions
 - select and selectExpr allow you to execute SQL queries on a DataFrame
 - ▶ df.select("DEST_COUNTRY_NAME").show(2)
 - ► SELECT DEST COUNTRY NAME FROM dfTable LIMIT 2
- You can select multiple columns by using a comma

```
from pyspark.sql.functions import expr, col, column
df.select(
  expr("DEST_COUNTRY_NAME"),
  col("DEST_COUNTRY_NAME"),
  column("DEST_COUNTRY_NAME")
).show(2)
```

selectExpr

- ▶ If you find yourself typing a bunch of *select* then *expr* statements:
 - Then selectExpr is the convenient interface you want
 - ▶ We can add new columns to a DataFrame
- We can use selectExpr to build up complex expressions and create new DataFrames

```
df.selectExpr("*",("DEST_COUNTRY_NAME = ORIGIN_COUNTRY_N

SELECT *, (DEST_COUNTRY_NAME = ORIGIN_COUNTRY_NAME) as well...
```

- ▶ We can specify aggregations over an entire DataFrame
 - df.selectExpr("avg(count"), "count(distinct(DEST_COUNTRY))
 - SELECT avg(count), count(distinct(DEST_COUNTRY_NAME)) FF

Spark Literals

- ► Sometimes we need to pass a literal value, such as a constant
 - ▶ from pyspark.sql.functions import lit
 - df.selectExpr(expr("*"), lit(1).alias("One")).show(2)
 - ► This will come up when you need to check a Row value against a predetermined constant value
 - Adding additional columns is possible: .withColumn()
 - df.withColumn("withinCountry", expr("ORIGIN_COUNTRY_NAME
 This creates a column with a Boolean if the ORIGIN and DEST Country name match.
 - ► This can save much time in a lookup later on as you will not have to do String comparison
 - Columns can be dropped as well
 - df.drop("ORIGIN_COUNTRY_NAME").columns
 - You can cast columns as well
 - ▶ df.withColumn("count2", col("count").cast("long"))
 - Renaming a column is possible using the .withColumnRenamed("existingColumnName", "newColumnName")

Filter and Where Clauses 72

- ► In working with Spark DataFrames, you can use both where and filter on a DataFrame
 - df.filter(col("count") < 2).show(2)</pre>
 - ▶ df.where("count < 2").show(2)
 - ► More details in Chapter 11
- ▶ Both statements have the same output, where is a familiar term from SQL so the book will use that
- You can chain multiple where statements together, Spark will handle the expressions at run time
 - df.where(col("count") < 2).where(col("ORIGIN_COUNTRY_NAM</pre>
- SELECT * FROM dfTable WHERE count < 2 AND ORIGIN_COUNTRY
- You can access distinct results as we saw earlier in the chapter
 - df.select("ORIGIN_COUNTRY_NAME", "DEST_COUNTRY_NAME").di

Random Samples and Splits

- Sometimes you want to select a random sample of data for running a test on a small representative set
 - You can use the sample method on a DataFrame

```
seed = 5
withReplacement = False
fraction = 0.5
df.sample(withReplacement, fraction, seed).count()
```

- ► You can split a DataFrame
 - ▶ The seed definition is how the random selection is begun
 - dataFrames = df.randomSplit([0.25, 0.75], seed)
 dataFrames[0].count() > dataFrames[1].count()

Concatenating and Appending Rows (Union)

- ▶ Previously we learned that DataFrames are **immutable**
 - ► How then can we append to a DataFrame?
 - ► In order to append to a DataFrame, you must **union** the original DataFrame along with the new DataFrame
 - ▶ Both DataFrames need to have the same schema and number of columns, otherwise the operation fails
 - ► The new DataFrame union can be assigned to a view or registered as a table to allow your code to reference it

```
from pyspark.sql import Row
schema = df.schema
newRows = [
   Row("New Country", "Other Country", 5L),
   Row("New Country 2", "Other Country 3", 1L)
]
parallelizedRows = spark.sparkContext.parallelize(newRows)
newDF = spark.createDataFrame(parallelizedRows, schema)
df.union(newDF).where("count = 1").where(col("ORIGIN_COUNT))
```

Sorting Rows

- You can sort the output of a DataFrame
 - You can use the sort and orderBy, they work exactly the same
 - They accept both column expressions and strings as well as multiple columns
 - Default is to sort ascending
 - You can sort nulls, asc_nulls_first, desc_nulls_first, asc_nulls_last, desc_nulls_last

```
df.sort("count").show(5)
df.orderBy("count", "DEST_COUNTRY_NAME").show(5)
df.orderBy(col("count"), col("DEST_COUNTRY_NAME")).show(5)
from pyspark.sql.functions import desc, asc
df.orderBy(expr("count desc")).show(2)
df.orderBy(col("count").desc(),col("DEST_COUNTRY_NAME").asc
SELECT * FROM dfTable ORDER BY count DESC, DEST COUNTRY NAME
```

Repartition and Coalesce

- An important optimization opportunity is to partition the data according to a frequently filtered column
 - ▶ This controls the physical layout of data across the cluster
 - ▶ Including the partitioning scheme and the number of partitions
- Repartitioning will incur a full shuffle
 - This means you should only repartition when future number of partitions is greater than your current number of partitions
 - Or when you are looking to partition by a set of columns
 - df.rdd.getNumPatitions()
 - df.repartitions(5)
- ▶ If you know you will be filtering by a certain column often, you can repartition based on that column:
 - df.repartition(col("DEST_COUNTRY_NAME"))
 - You can specify how many partitions you want
 - df.repartition(5, col("DEST_COUNTRY_NAME"))

Conclusion

- This chapter covered basic DataFrame operations.
 - ► We learned the simple concepts and tools that you will need to be successful with Spark DataFrames
 - We learned what an expression is
 - ▶ We learned the difference between Select and SelectExpr
 - ▶ We learned how to add columns and rows to a DataFrame
 - We learned how to take random samples from DataFrames

Questions

- ► Any questions?
- ▶ Read Chapter 06 and do any exercises in the book.