Arnaud Malapert, Gilles Menez, Marie Pelleau

Master Informatique, Université Côte d'Azur

Tree 1 / 11

In graph theory, a tree is an undirected, acyclic, connected graph

In graph theory, a tree is an undirected, acyclic, connected graph

In graph theory, a tree is an undirected, acyclic, connected graph

In graph theory, a tree is an undirected, acyclic, connected graph

In graph theory, a tree is an undirected, acyclic, connected graph

107107127127 2 1040

In graph theory, a tree is an undirected, acyclic, connected graph

In graph theory, a tree is an undirected, acyclic, connected graph

In graph theory, a tree is an undirected, acyclic, connected graph

2/11

In graph theory, a tree is an undirected, acyclic, connected graph

Tree $\implies n$ vertices, n-1 edges

In graph theory, a tree is an undirected, acyclic, connected graph

Tree \implies *n* vertices, n-1 edges

Search

- Breadth-first search
- Depth-first search
 - Pre-order
 - In-order
 - Post-order

For binary trees

Three steps:

- (L) Visit the left sub-tree
- (R) Visit the right sub-tree
- (N) Visit the node

For binary trees

Three steps:

- (L) Visit the left sub-tree
- (R) Visit the right sub-tree
- (N) Visit the node

Pre-order(v) [NLR]

```
display v
Pre—order(left child of v)
Pre—order(right child of v)
```

For binary trees

Three steps:

- (L) Visit the left sub-tree
- (R) Visit the right sub-tree
- (N) Visit the node

In-order(v) [LNR]

```
In-order(left child of v)
display v
In-order(right child of v)
```

4□ > 4□ > 4 = > 4 = > = 90

For binary trees

Three steps:

- (L) Visit the left sub-tree
- (R) Visit the right sub-tree
- (N) Visit the node

Post-order(v) [LRN]

```
Post-order(left child of v)
Post-order(right child of v)
display v
```


Pre-order (NLR)

Pre-order (NLR) 1

Pre-order (NLR) 1

Pre-order (NLR) 12

Pre-order (NLR) 12

Pre-order (NLR) 124

Pre-order (NLR) 124

Pre-order (NLR) 1 2 4 5

Pre-order (NLR) 1245

Pre-order (NLR) 1 2 4 5 7

Pre-order (NLR) 1 2 4 5 7

Pre-order (NLR) 1 2 4 5 7 8

Pre-order (NLR) 1 2 4 5 7 8

Pre-order (NLR) 1 2 4 5 7 8 3

Pre-order (NLR) 1 2 4 5 7 8 3

Pre-order (NLR) 1 2 4 5 7 8 3 6

Pre-order (NLR) 1 2 4 5 7 8 3 6

Pre-order (NLR) 1 2 4 5 7 8 3 6 9

Pre-order (NLR) 1 2 4 5 7 8 3 6 9

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR)

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR)

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR)

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 **7**

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 **5**

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - 夕 Q (で

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6 Post-order (LRN)

◆ロト ◆個ト ◆ 恵ト ◆恵ト ・恵 ・ 夕へで

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6 Post-order (LRN)

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6 Post-order (LRN)

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6 Post-order (LRN) 4

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - 夕 Q (で

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6 Post-order (LRN) 4

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - 夕 Q (で

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6 Post-order (LRN) 4

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6 Post-order (LRN) 4 7

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6 Post-order (LRN) 4 7

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6 Post-order (LRN) 4 7 8

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6 Post-order (LRN) 4 7 8 5

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6 Post-order (LRN) 4 7 8 5 2

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6 Post-order (LRN) 4 7 8 5 2

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6 Post-order (LRN) 4 7 8 5 2

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - 夕 Q (で

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6 Post-order (LRN) 4 7 8 5 2

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6 Post-order (LRN) 4 7 8 5 2 9

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6 Post-order (LRN) 4 7 8 5 2 9 6

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6 Post-order (LRN) 4 7 8 5 2 9 6 3

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6 Post-order (LRN) 4 7 8 5 2 9 6 3 1

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6 Post-order (LRN) 4 7 8 5 2 9 6 3 1

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - 夕 Q (で

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6 Post-order (LRN) 4 7 8 5 2 9 6 3 1

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - 夕 Q (~

Tree 4 / 11

Given two traversals can a tree be retrieved?

Given two traversals can a tree be retrieved?

• Pre-order and In-order

Given two traversals can a tree be retrieved?

Pre-order and In-order

Given two traversals can a tree be retrieved?

Pre-order and In-order

```
Pre-order (NLR) 124578369
In-order (LNR) 427581396
```

Given two traversals can a tree be retrieved?

Pre-order and In-order

```
Pre-order (NLR) 124578369
In-order (LNR) 427581396
```


Given two traversals can a tree be retrieved?

Pre-order and In-order

Given two traversals can a tree be retrieved?

Pre-order and In-order

Given two traversals can a tree be retrieved?

Pre-order and In-order

Given two traversals can a tree be retrieved?

Pre-order and In-order

Given two traversals can a tree be retrieved?

Pre-order and In-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6

Given two traversals can a tree be retrieved?

Pre-order and In-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6

Given two traversals can a tree be retrieved?

Pre-order and In-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6

Given two traversals can a tree be retrieved?

Pre-order and In-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6

Given two traversals can a tree be retrieved?

Pre-order and In-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6

Given two traversals can a tree be retrieved?

Pre-order and In-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6

Given two traversals can a tree be retrieved?

Pre-order and In-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6

Given two traversals can a tree be retrieved?

Pre-order and In-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6

Given two traversals can a tree be retrieved?

Pre-order and In-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6

Given two traversals can a tree be retrieved?

Pre-order and In-order

Pre-order (NLR) 1 2 4 5 **7 8 3** 6 9 In-order (LNR) 4 2 **7** 5 **8** 1 **3** 9 6

Given two traversals can a tree be retrieved?

Pre-order and In-order

Pre-order (NLR) 1 2 4 5 **7 8 3** 6 9 In-order (LNR) 4 2 **7** 5 **8** 1 **3** 9 6

Given two traversals can a tree be retrieved?

Pre-order and In-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6

Given two traversals can a tree be retrieved?

Pre-order and In-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6

Given two traversals can a tree be retrieved?

Pre-order and In-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6

5/11

Given two traversals can a tree be retrieved?

Pre-order and In-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6

Given two traversals can a tree be retrieved?

Pre-order and In-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6

Given two traversals can a tree be retrieved?

Pre-order and In-order

Pre-order (NLR) 124578,369, In-order (LNR) 4275813,96,

Given two traversals can a tree be retrieved?

Pre-order and In-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6

Given two traversals can a tree be retrieved?

Pre-order and In-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6

Given two traversals can a tree be retrieved?

Pre-order and In-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6

Given two traversals can a tree be retrieved?

Pre-order and In-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6

Given two traversals can a tree be retrieved?

Pre-order and In-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9. In-order (LNR) 4 2 7 5 8 1 3 9 6

Given two traversals can a tree be retrieved?

Pre-order and In-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4275813**9**6

5/11

Given two traversals can a tree be retrieved?

Pre-order and In-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6

Given two traversals can a tree be retrieved?

Pre-order and In-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 In-order (LNR) 4 2 7 5 8 1 3 9 6

Given two traversals can a tree be retrieved?

- Pre-order and In-order
- Post-order and In-order

Given two traversals can a tree be retrieved?

- Pre-order and In-order
- Post-order and In-order

Post-order (LRN) 4 7 8 5 2 9 6 3 1 In-order (LNR) 4 2 7 5 8 1 3 9 6

Given two traversals can a tree be retrieved?

- Pre-order and In-order
- Post-order and In-order
- Pre-order and Post-order

Given two traversals can a tree be retrieved?

- Pre-order and In-order
- Post-order and In-order
- Pre-order and Post-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 Post-order (LRN) 4 7 8 5 2 9 6 3 1

Given two traversals can a tree be retrieved?

- Pre-order and In-order
- Post-order and In-order
- Pre-order and Post-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 Post-order (LRN) 4 7 8 5 2 9 6 3 1

Given two traversals can a tree be retrieved?

- Pre-order and In-order
- Post-order and In-order
- Pre-order and Post-order

```
Pre-order (NLR) 1 2 4 5 7 8 3 6 9
Post-order (LRN) 4 7 8 5 2 9 6 3 1
```

Given two traversals can a tree be retrieved?

- Pre-order and In-order
- Post-order and In-order
- Pre-order and Post-order

```
Pre-order (NLR) 1 2 4 5 7 8 3 6 9
Post-order (LRN) 4 7 8 5 2 9 6 3 1
```


Given two traversals can a tree be retrieved?

- Pre-order and In-order
- Post-order and In-order
- Pre-order and Post-order

```
Pre-order (NLR) 1 2 4 5 7 8 3 6 9
Post-order (LRN) 4 7 8 5 2 9 6 3 1
```

 $\widehat{1}$

Given two traversals can a tree be retrieved?

- Pre-order and In-order
- Post-order and In-order
- Pre-order and Post-order

```
Pre-order (NLR) 1 2 4 5 7 8 3 6 9
Post-order (LRN) 4 7 8 5 2 9 6 3 1
```

 \bigcirc

Given two traversals can a tree be retrieved?

- Pre-order and In-order
- Post-order and In-order
- Pre-order and Post-order

```
Pre-order (NLR) 1 2 4 5 7 8 3 6 9
Post-order (LRN) 4 7 8 5 2 9 6 3 1
```

Given two traversals can a tree be retrieved?

- Pre-order and In-order
- Post-order and In-order
- Pre-order and Post-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 Post-order (LRN) 4 7 8 5 2 9 6 3 1

Given two traversals can a tree be retrieved?

- Pre-order and In-order
- Post-order and In-order
- Pre-order and Post-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 Post-order (LRN) 4 7 8 5 2 9 6 3 1

ee 5 / 11

Given two traversals can a tree be retrieved?

- Pre-order and In-order
- Post-order and In-order
- Pre-order and Post-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 Post-order (LRN) 4 7 8 5 2 9 6 3 1

ee 5 / 11

Given two traversals can a tree be retrieved?

- Pre-order and In-order
- Post-order and In-order
- Pre-order and Post-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 Post-order (LRN) 4 7 8 5 2 9 6 3 1

Given two traversals can a tree be retrieved?

- Pre-order and In-order
- Post-order and In-order
- Pre-order and Post-order

Given two traversals can a tree be retrieved?

- Pre-order and In-order
- Post-order and In-order
- Pre-order and Post-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 Post-order (LRN) 4 7 8 5 2 9 6 3 1

ee 5 / 11

Given two traversals can a tree be retrieved?

- Pre-order and In-order
- Post-order and In-order
- Pre-order and Post-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 Post-order (LRN) 4 7 8 5 2 9 6 3 1

Given two traversals can a tree be retrieved?

- Pre-order and In-order
- Post-order and In-order
- Pre-order and Post-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 Post-order (LRN) 4 7 8 5 2 9 6 3 1

Given two traversals can a tree be retrieved?

- Pre-order and In-order
- Post-order and In-order
- Pre-order and Post-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 Post-order (LRN) 4 7 8 5 2 9 6 3 1

Given two traversals can a tree be retrieved?

- Pre-order and In-order
- Post-order and In-order
- Pre-order and Post-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 Post-order (LRN) 4 7 8 5 2 9 6 3 1

ee 5 / 11

Given two traversals can a tree be retrieved?

- Pre-order and In-order
- Post-order and In-order
- Pre-order and Post-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 Post-order (LRN) 4 7 8 5 2 9 6 3 1

ee 5 / 11

Given two traversals can a tree be retrieved?

- Pre-order and In-order
- Post-order and In-order
- Pre-order and Post-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 Post-order (LRN) 4 7 8 5 2 9 6 3 1

Given two traversals can a tree be retrieved?

- Pre-order and In-order
- Post-order and In-order
- Pre-order and Post-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 Post-order (LRN) 4 7 8 5 2 9 6 3 1

Given two traversals can a tree be retrieved?

- Pre-order and In-order
- Post-order and In-order
- Pre-order and Post-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 Post-order (LRN) 4 7 8 5 2 9 6 3 1

Given two traversals can a tree be retrieved?

- Pre-order and In-order
- Post-order and In-order
- Pre-order and Post-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 Post-order (LRN) 4 7 8 5 2 9 6 3 1

Given two traversals can a tree be retrieved?

- Pre-order and In-order
- Post-order and In-order
- Pre-order and Post-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 Post-order (LRN) 4 7 8 5 2 9 6 3 1

Given two traversals can a tree be retrieved?

- Pre-order and In-order
- Post-order and In-order
- Pre-order and Post-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 Post-order (LRN) 4 7 8 5 2 9 6 3 1

ee 5 / 11

Given two traversals can a tree be retrieved?

- Pre-order and In-order
- Post-order and In-order
- Pre-order and Post-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 Post-order (LRN) 4 7 8 5 2 9 6 3 1

Given two traversals can a tree be retrieved?

- Pre-order and In-order
- Post-order and In-order
- Pre-order and Post-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 Post-order (LRN) 4 7 8 5 2 9 6 3 1

Given two traversals can a tree be retrieved?

- Pre-order and In-order
- Post-order and In-order
- Pre-order and Post-order

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 Post-order (LRN) 4 7 8 5 2 9 6 3 1

Given two traversals can a tree be retrieved?

- Pre-order and In-order
- Post-order and In-order
- Pre-order and Post-order X

Pre-order (NLR) 1 2 4 5 7 8 3 6 9 Post-order (LRN) 4 7 8 5 2,9 6 3 1

Statement

Given N the number of nodes, M the number of edges and the list of edges, check if an unweighted, undirected graph is a tree

Statement

Given N the number of nodes, M the number of edges and the list of edges, check if an unweighted, undirected graph is a tree

Example

Input:

3 2

1 2

2 3

Output:

YES

Statement

Given N the number of nodes, M the number of edges and the list of edges, check if an unweighted, undirected graph is a tree

What problems can arise?

• What do we know of N?

Statement

Given N the number of nodes, M the number of edges and the list of edges, check if an unweighted, undirected graph is a tree

What problems can arise?

- What do we know of *N*?
- Of M?

Solution 1: Build the graph

Build the graph with the list of edges

Check using BFS that all the nodes are visited once

Tree 7 / 11

Solution 1: Build the graph

Build the graph with the list of edges

Check using BFS that all the nodes are visited once

Solution 2: Check on the list

if it can be a tree then
 Maintain a visit array
 Check that all the nodes are visited exactly once

Tree 7 / 11

More test cases

Input:	Input:	Input:	Input:
5 4	5 5	5 3	5 4
1 3	1 3	1 3	1 3
1 4	1 4	1 4	1 4
4 2	4 2	2 5	2 5
2 5	2 5	Output:	3 4
Output:	3 4	NO	Output:
YES	Output:		NO
	NO		

4□ > 4□ > 4 = > 4 = > = 90

Tree 8 / 11

Statement

Given pre-order, post-order, and in-order traversals, determine if they can be of the same binary tree

Tree 9 / 11

Statement

Given pre-order, post-order, and in-order traversals, determine if they can be of the same binary tree

Example

Input:

6

124536

452631

425136

Output:

yes

Tree 9 / 11

Solution 1: Build the tree

Given two traversals build the tree

Generate the third traversal Check that it matches the given one

Tree 10 / 11

Solution 1: Build the tree

Given two traversals build the tree

Generate the third traversal Check that it matches the given one

Solution 2: Check the orders

Check the three traversals all at once

Tree 10 / 11

More test cases

yes

```
Input: 9 9 9 9 1 2 4 5 7 8 3 6 9 4 7 8 5 2 9 6 3 1 4 2 7 5 8 1 3 9 6 Output: Output: Output:
```

no

Tree 11 / 11