



MSIN0095: Operations Analytics

## Class 1: Introduction to OM and Process Analysis I

- » OM as Managing Transformation Processes
- » Operations Strategy Meets Corporate Strategy

## Class 2: Process Analysis I

» Introduction to Process Analysis I, Utilization, Little's Law

1

## **Learning Objectives: Class 2**

- Introduction to Process Analysis I
- Utilization and Bottleneck
- Little's Law: Inventory, Throughput and Time

avg. Lead Time =  $\frac{avg. Work in Progress}{avg. Throughput}$ 

-ittle s Law





## **Examples of Processes**

| Organization | Inputs                         | Process                           | Outputs                                     |
|--------------|--------------------------------|-----------------------------------|---------------------------------------------|
| Auto Factory | Auto parts, raw materials      | Fabrication and assembly          | Automobiles                                 |
| Restaurant   | Hungry customers<br>(Raw food) | Serving customers<br>(Cooking)    | Satisfied customers<br>(Prepared food)      |
| MSIN0095     | Students want to learn OM      | Learning, teaching and practicing | Future [?]<br>equipped with OM<br>knowledge |

Note: The process depends on the perspective you take

5

5

## **Basic Process Measures**



Flow time is time a unit takes from entering to leaving the process Cycle time is the time between consecutive units leaving process Capacity is the maximum output rate when working at full speed

### Warnings:

- · Cycle time vs. flow time
- · In process analysis, capacity is a rate not a number













## **Identifying Bottleneck: Example 2**



- Validator capacity = 12 units/hr
   Server capacity = 10 units/hr
- Max output from Validator = 12 units/hr
   Max output from Server = 12 x 75% = 9 units/hr < 10 units/hr</li>
- Bottleneck is Validator
- Bottleneck is not necessarily the station with the smallest capacity.

13

13



## Key steps in analyzing a process

- Step 1: Draw a process flow diagram (define the process)
  - Determine the process boundary and flow unit
  - Determine the activities, their sequence, and the resources required for each activity
  - Determine the buffers in the process
- Step 2: Bottleneck Analysis
  - Determine the capacity of each activity, of the resource, and of the process
  - Bottleneck is always a resource!

15

15

## **Practice: Zingerman's Aged Chelsea**

- Mold ripened and aged for 4 weeks, it has a thicker rind that gives the insides a hint of mushroom flavor.
- Smooth, creamy, intense without being "overly goaty." (www.zingermans.com)



## **Practice: Zingerman's Aged Chelsea**

- Scenario 1: Creamery starts 1 batch of cheese every day.
  - What is the cycle time of the cheese batch? 1 day
  - What is the flow time of the cheese batch? 4 weeks
- Scenario 2: Creamery starts 1 batch of cheese every 12 hours.
  - What is the cycle time of the cheese batch? 12 hrs
  - What is the flow time of the cheese batch?4 weeks
- Scenario 3: Creamery starts 1 batch of cheese every day, but make Chelsea Select which requires 6 weeks aging.
  - What is the cycle time of the Chelsea Select cheese batch?
     1 day
  - What is the flow time of the Chelsea Select cheese batch?
     6 weeks

17

17

## **Learning Objectives: Class 2**

- Introduction to Process Analysis II
- Utilization and Bottleneck
- Little's Law: Inventory, Throughput and Time

avg. Lead Time = avg. Work in Progress
avg. Throughput

ittle s Law

## **Utilization and Bottleneck**

- Utilization = Throughput rate (how much does it produce)
   Capacity (how much it can produce)
- Bottleneck is always station with highest utilization





20

20

## **Actual vs. Implied Utilization**

- Actual Utilization = Throughput rate / Capacity
- Implied Utilization = Demand rate / Capacity



**Actual utilization** 

8/8 = 100%

8/16 = 50%

**Implied utilization** 

12/8 = 150%

12/16 = 75%

Can this process keep up with demand? No!

What is the maximum rate the line can handle?

8/hr (rate of bottleneck)

## Identifying a bottleneck: Multi-flow Process

Implied Utilization = Demand rate / Capacity rate, may>100%

Bottleneck is always resource with highest implied utilization



22

## Identifying a bottleneck: Multi-flow Process

- Implied Utilization = Demand rate / Capacity rate, may>100%
- Actual Utilization = Throughput rate / Capacity rate, always ≤100%



## **Learning Objectives: Class 2**

- Introduction to Process Analysis II
- Utilization and Bottleneck
- Little's Law: Inventory, Throughput and Time -ittle's Law

avg. Lead Time =  $\frac{\text{avg. Work in Progress}}{\text{avg. Throughput}}$ 

24

## Little's Law

Inventory = Throughput Rate × Flow Time



## Little's Law: I = R × T Inventory = Throughput Rate × Flow Time Input rate: 2 customers per sec Process

26

## **Example 1: Walmart's Supply Chain**

 Wal-Mart imports 3000 sweatshirts from an overseas supplier every month. The products go through several stages before arriving at Wal-Mart stores:



- How many sweatshirts in each stage, and in the entire supply chain?
- Little's Law can be applied to any part of the process.

## **Example 2: Insurance Company**

- An insurance company processes 10,000 claims per year.
   The average processing time is 3 weeks. How many claims are in the system on average? (Assuming 50 weeks in a vear)
- R= 200 claims / week, T = 3 Weeks, I = 600 claims
- Now, the company reduces its processing time by 80%. How many claims are in the system on average?
- R= 200 claims / week, T = 0.6 Weeks, I = 120 claims
- A manager can influence any one of these measures by controlling the other two.

28

## Example 3: Days of Inventory and Inventory Turnover



## **Example 3: PC Industry**

|                         | Dell    | Lenovo  | Apple    | HP       |
|-------------------------|---------|---------|----------|----------|
| Revenue (billion \$)    | \$56.94 | \$33.87 | \$170.91 | \$111.85 |
| Net income (billion \$) | \$2.37  | \$0.64  | \$37.04  | \$5.11   |
| Inventory (billion \$)  | \$1.38  | \$1.96  | \$1.76   | \$6.05   |
| COGS (billion \$)       | \$44.75 | \$29.80 | \$106.61 | \$85.79  |
| Days of inventory       |         |         |          |          |

Source: finance.yahoo.com

30

## **Example 3: PC Industry**

|                         | Dell    | Lenovo  | Apple    | HP       |
|-------------------------|---------|---------|----------|----------|
| Revenue (billion \$)    | \$56.94 | \$33.87 | \$170.91 | \$111.85 |
| Net income (billion \$) | \$2.37  | \$0.64  | \$37.04  | \$5.11   |
| Inventory (billion \$)  | \$1.38  | \$1.96  | \$1.76   | \$6.05   |
| COGS (billion \$)       | \$44.75 | \$29.80 | \$106.61 | \$85.79  |
| Days of inventory       | 11.25   | 24.00   | 6.02     | 25.74    |

Source: finance.yahoo.com

## **Practice Example 4: Days Sales Outstanding**

- DSO measures how quickly a company collects revenue after a sale has been made.
- Samsung sells \$300 million worth of cellular equipment per year. The average accounts receivable in the cellular group is \$45 million. What is the average DSO?
- R = \$300 million/yearI = \$45 millionT = I / R = 0.15 year = 55 days



## Three Measures of Process Performance Example

|                      | US Immigration                                      | Champaign<br>Industry       | Masters of BA<br>Program | Large PC<br>Manufacturer |
|----------------------|-----------------------------------------------------|-----------------------------|--------------------------|--------------------------|
| Flow Unit            | Immigration applications                            | Bottle of champagne         | Masters Student          | Computer                 |
| Flow rate/throughput | 6.3 million/year<br>(approved or<br>rejected cases) | 260 million<br>bottles/year | 600 students/year        | 5000 units/day           |
| Flow time            | 7.6 months<br>(average<br>processing time)          | 3.46 years                  | 3 years                  | 10 days                  |
| Inventory            | 4.0 million cases (pending)                         | 900 million bottles         | 1800 students            | 50000 computers          |



- Decrease Flow time
- Increase Throughput rate (Capacity)
- Decrease Inventory

42

## 1. Increase Process Capacity Rate

- Be more productive, i.e., produce/serve more within a certain time period
- Why is it important?

Nearly two years after the Wii's launch, U.S. consumers still can't walk into a retailer such as Best Buy or Wal-Mart and pick one up off the shelf. Online retailers haven't done much better, though secondary market sites like eBay have Wii consoles in stock—for a price jacked up from the \$249.99 retail cost of the console. (Other sites, like Newegg, require customers to buy Wii "bundles," which can total nearly \$500.)

 Among several speculative explanations of shortage:

packaging problems





## **Practical Ways to Increase Capacity**

|               | Labor                                                     | Machine                                                                             |
|---------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------|
| Long - term   | Cross-train workers<br>Hire or lay off workers            | Invest in new equipment Outsourcing Develop the flexibility Improve the reliability |
| Medium - term | Subcontracting<br>Flexible time                           | Reduce setup time Preventive maintenance Subcontracting                             |
| Short - term  | Employ part-time<br>workers<br>Use overtime<br>Add Shifts | Priority management                                                                 |

44

## 2. Reduce Process Flow Time

 Be more responsive, i.e., produce/serve a unit within a short time period

ZARA

How responsiveness can contribute?

## Something (you might not know) about ZARA

- Zara was described by Louis Vuitton fashion director Daniel Piette as "possibly the most innovative and devastating retailer in the world."
- Zara can offer considerably more products than similar companies. It produces about 11,000 distinct items annually compared with 2,000 to 4,000 items for its key competitors
- The company can design a new product and have finished goods in its stores in four to five weeks; it can modify existing items in as little as two weeks, compared to a six-month industry average

46

# 3. Reduce Inventories Example: Cross Docking at Walmart Distribution Center Suppliers Surpliers Sarving Shipping Cross-Docking Fit Cross-Docking

## **Little's Law and Business Functions**

|                         | Performance Measures          | Effects seen in         |
|-------------------------|-------------------------------|-------------------------|
| Inventory               | Use of Working Capital        | Balance Sheet           |
| Throughput <b>R</b> ate | Rate of Revenue<br>Generation | Income Statement        |
| Flow <b>T</b> ime       | Responsiveness<br>Lead time   | Operations<br>Marketing |