Planche 1.

Question de cours. Si $(e_n)_{n\geq 0}$ est totale, la suite des projetés orthogonaux de x sur $\text{vect}(e_0,\ldots,e_n)$ converge vers x.

Exercice 1. Montrer que la limite simple d'une suite de fonctions de I vers \mathbb{R} convexe est convexe.

Planche 2.

Question de cours. Montrer que la fonction ζ est C^{∞} .

Exercice 1. On pose $u_n(x) = x^n \ln(x)$ sur]0,1] et $u_n(0) = 0$. Étudier la convergence ou non de cette suite de fonctions sur [0,1].

Planche 3.

Question de cours. Théorème de continuité.

Exercice 1. On pose $f(x) = \sum_{n \ge 1} \frac{x^n}{1-x^n} \text{ sur }]-1,1[$. Montrer que f est continue puis C^1 sur]-1,1[.

Planche 1 - Solutions.

Exercice 1. Soit (f_n) une suite de fonctions convexes qui converge vers f. Soit a < b et $\lambda \in [0, 1]$. Alors pour tout n

$$f_n(\lambda a + (1 - \lambda)b) \le \lambda f_n(a) + (1 - \lambda)f_n(b)$$

Par passage à la limite lorsque n tend vers $+\infty$ on obtient

$$f(\lambda a + (1 - \lambda)b) \le \lambda f(a) + (1 - \lambda)f(b)$$

D'où f est convexe.

Planche 2 - Solutions.

Exercice 1. Les fonctions u_n sont continues. Soit $x \in]0,1]$. Alors $u_n(x) = x^n \ln(x) \to 0$ lorsque $n \to +\infty$. Donc la limite simple est 0. Montrons la convergence uniforme. u_n est dérivable sur]0,1] et $u'_n(x) = x^{n-1}(1 + n \ln(x))$. D'où le maximum est atteint lorsque x est telle que $1 + n \ln(x) = 0$. Donc lorsque $x = e^{-1/n}$. On en déduit que

$$||u_n||_{\infty} = |u_n(e^{-1/n})| = 1/(ne) \to 0$$

D'où (u_n) converge uniformément vers 0.

Planche 3 - Solutions.

Exercice 1. On pose $u_n(x) = \frac{x^n}{1-x^n}$ sur]-1,1[. Essayons de montrer une convergence normale. On ne peut le faire sur]-1,1[car on aura des problèmes pour majorer. Du coup on utilise la méthode de la restriction à un compact [-a,a]. Soit 0 < a < 1, sur [-a,a] on a la majoration suivante

$$|u_n(x)| \le \frac{a^n}{1 - a^n}$$

La majoration est indépendante de x et la série des $\frac{a^n}{1-a^n}$ converge car le terme général (positif) est équivalent à a^n . On en déduit que f est continue sur [-a,a] pour tout a<1. D'où f est continue sur]-1,1[.

On dérive et on refait pareil. $u'_n(x) = \frac{nx^{n-1}}{(1-x^n)^2}$. D'où sur [-a,a] on a la majoration

$$|u_n'(x)| \le \frac{na^{n-1}}{(1-a^n)^2}$$

qui nous permet encore de montrer que la série de fonction u'_n converge uniformément sur [-a, a] pour tout a < 1. On en déduit que f est C^1 sur]-1,1[.