

Radar Systems

Lecture 2. The Radar Equation

구 자 열

Introduction – The Radar Range Equation

The Radar Range Equation Connects:

- 1. Target Properties e.g. Target Reflectivity (radar cross section)
- 2. Radar Characteristics e.g. Transmitter Power, Antenna Aperture
- 3. Distance between Target and Radar e.g. Range
- 4. Properties of the Medium e.g. Atmospheric Attenuation.

차 례

- Introduction
- Introduction to Radar Equation
- Surveillance Form of Radar Equation
- Radar Losses
- Example

Radar Range Equation

Power density from uniformly radiating antenna transmitting spherical wave

$$\frac{P_t}{4 \pi R^2}$$

P_t = peak transmitter power R = distance from radar

Radar Range Equation (continued)

Power density from isotropic antenna

P_t = peak transmitter power R = distance from rada

Power density from directive antenna

$$\frac{\mathsf{P_t\,G_t}}{\mathsf{4}\,\pi\,\mathsf{R}^2}$$

G, = transmit gain

Gain is the radiation intensity of the antenna in a given direction over that of an isotropic (uniformly radiating) source

Gain =
$$4 \pi A / \lambda^2$$

Definition of Radar Cross Section (RCS or σ)

Radar Cross Section (RCS or σ) is a measure of the energy that a radar target intercepts and scatters back toward the radar

Power of reflected signal at target

$$P_t G_t \sigma$$

σ = radar cross section units (meters)²

Power density of reflected signal at the radar

$$\frac{P_t G_t}{4 \pi R^2} \frac{\sigma}{4 \pi R^2}$$

Power density of reflected signal falls off as (1/R²)

Radar Range Equation (continued)

The received power = the power density at the radar times the area of the receiving antenna

Power of reflected signal from target and received by radar

$$P_r = {P_t G_t \over 4 \pi R^2} {\sigma A_e \over 4 \pi R^2}$$
 ${P_r = power received \over A_e = effective area of }$

 P_r = power received

receiving antenna

Sources of Noise Received by Radar

Radar Range Equation (continued)

Signal Power reflected from target and received by radar

$$P_r = \frac{P_t G_t}{4 \pi R^2} \frac{\sigma A_e}{4 \pi R^2}$$

Average Noise Power

$$N = k T_s B_n$$

Signal to Noise Ratio

$$S/N = P_r/N$$

$$S/N = \frac{P_t G^2 \lambda^2 \sigma}{(4 \pi)^3 R^4 k T_s B_n L}$$

Assumptions:

G_t = G_r L = Total System Losses T_o = 290° K

Signal to Noise Ratio (S/N or SNR) is the standard measure of a radar's ability to detect a given target at a given range from the radar

"S/N = 13 dB on a 1 m2 target at a range of 1000 km"

radar cross section of target

System Noise Temperature

The System Noise Temperature, T_s, is divided into 3 components:

$$T_s = T_a + T_r + L_r T_e$$

- T_a is the contribution from the antenna
 - Apparent temperature of sky (from graph)
 - Loss within antenna
- T_r is the contribution from the RF components between the antenna and the receiver
 - Temperature of RF components
- L_r is the loss of input RF components
- T_e is the temperature of the receiver
 - Noise factor of receiver

차 례

- Introduction
- Introduction to Radar Equation
- Surveillance Form of Radar Equation
- Radar Losses
- Example

Track Radar Range Equation

Track Radar Equation

$$S/N = \frac{P_t G^2 \lambda^2 \sigma}{(4 \pi)^3 R^4 k T_s B_n L}$$

 When the location of a target is known and the antenna is pointed toward the target.

Track & Search Radar Range Equations

Track Radar Equation

$$S/N = \frac{P_t G^2 \lambda^2 \sigma}{(4 \pi)^3 R^4 k T_s B_n L}$$

When the location of a target is known and the antenna is pointed toward the target.

Search Radar Equation

$$S/N = \frac{P_{av} A_e t_s \sigma}{4 \pi \Omega R^4 k T_s L}$$

When the target's location is unknown, and the radar has to search a large angular region to find it.

Search Radar Range Equation

$$S/N = \frac{P_{av} A_e t_s \sigma}{4 \pi \Omega R^4 k T_s L}$$

Re-write as:

f (design parameters) = g (performance parameters)

Scaling of Radar Equation

$$\frac{S}{N} = \frac{P_{av} A_e t_s \sigma}{4\pi R^4 \Omega k T_s L} \qquad \qquad P_{av} = \frac{4\pi R^4 \Omega k T_s L (S/N)}{A_e t_s \sigma}$$

- Power required is:
 - Independent of wavelength
 - A very strong function of R
 - A linear function of everything else

Example Radar Can Perform Search at 1000 km Range How Might It Be Modified to Work at 2000 km?

Solutions Increasing R by 3 dB (x 2) Can Be Achieved by:

- 1. Increasing P_{av} by 12 dB (x 16)
- or 2. Increasing Diameter by 6 dB (A by 12 dB)
- or 3. Increasing t_s by 12 dB
- or 4. Decreasing Ω by 12 dB
- or 5. Increasing σ by 12 dB
- or 6. An Appropriate Combination of the Above

ASDE- 3
Airport Surface Detection
Equipment

Courtesy Lincoln Laboratory

ARSR- 4
Air Route Surveillance Radar

ARSR- 4 Antenna (without Radome)

Courtesy of Northrop Grumman.
Used with permission.

WSR-88D / NEXRAD

Courtesy of NOAA.

차 례

- Introduction
- Introduction to Radar Equation
- Surveillance Form of Radar Equation
- Radar Losses 📛
- Example

Loss Terms for Radar Equation

Transmit Losses

Radome

Waveguide Feed

Waveguide

Circulator

Low Pass Filters

Rotary Joints

Antenna Efficiency

Beam Shape

Scanning

Quantization

Atmospheric

Field Degradation

Receive Losses

Radome

Waveguide Feed

Waveguide

Combiner

Rotary Joints

Receiver Protector

Transmit / Receive Switch

Antenna Efficiency

Beam Shape

Scanning

Quantization

Weighting

Non-Ideal Filter

Doppler Straddling

Range Straddling

CFAR

Atmospheric

Field Degradation

Examples of Losses in Radar Equation

Beam Shape Loss

 Radar return from target with scanning radar is modulated by shape of antenna beam as it scans across target. Can be 2 to 4 dB

Scanning Antenna Loss

- For phased array antenna, gain of beam off boresight less than that on boresight
- Plumbing Losses
 - Transmit waveguide losses
 - Rotary joints, circulator, duplexer
- Signal Processing Loss
 - A /D Quantization Losses
 - Adaptive thresholding (CFAR) Loss
 - Range straddling Loss
 - Range and Doppler Weighting

Examples of Losses in Radar Equation

- Atmospheric Attenuation Loss
 - Radar beam attenuates as it travels through atmosphere (2 way loss)
- Integration Loss
 - Non coherent integration of pulses not as efficient as coherent integration
- Margin (Field Degradation) Loss
 - Characteristics of radar deteriorates over time.(3 dB not unreasonable
 - Water in transmission lines
 - · Deterioration in receiver noise figure
 - Weak or poorly tuned transmitter tubes

차 례

- Introduction
- Introduction to Radar Equation
- Surveillance Form of Radar Equation
- Radar Losses
- Example \leftarrow

Example - Airport Surveillance Radar

 Problem: Show that a radar with the parameters listed below, will get a reasonable S / N on an small aircraft at 60 nmi.

Radar Parameters

Range
Aircraft cross section
Peak Power
Duty Cycle
Pulsewidth
Bandwidth
Frequency
Antenna Rotation Rare
Pulse Repetition Rate
Antenna Size

Azimuth Beamwidth System Noise Temp. 60 nmi 1 m²

1.4 Megawatts 0.000525

.6 microseconds

1.67 MHz 2800 MHz

12.8 RPM

1200 Hz

4.9 m wide by

2.7 m high

1.35 ° 950 ° K $\lambda = c / f = .103 m$

G = $4 \pi A / \lambda^2 = 15670 \text{ m}^2$ = 42 dB, (actually 33 dB with beam shaping losses)

Number of pulses per beamwidth = 21

Assume Losses = 8dB

Example - Airport Surveillance Radar

$$S/N = \frac{P_t G^2 \lambda^2 \sigma}{(4 \pi)^3 R^4 k T_s B_n L}$$

```
\begin{array}{lll} P_t = 1.4 \; \text{Megawatts} & R = 111, \, 000 \; \text{m} \\ G = 33 \; \text{dB} = 2000 & T_s = 950 \; ^{\circ}\text{K} \\ \lambda = .1 \; \text{m} & B_n = 1.67 \; \text{MHz} \\ \sigma = 1 \; \text{m}^2 & L = 8 \text{dB} = 6.3 \\ k = 1.38 \; \text{x} \; 10^{-23} \; \text{w} \, / \; \text{Hz} \; ^{\circ}\text{K} & (4 \; \pi \,)^3 = 1984 \end{array}
```

(1.4 x 10⁶ w)(2000)(2000)(.1m)(.1m)(1m²)

(1984) (1.11 X 10⁵ m)⁴ (1.38 x 10 -23 w / Hz ° K) (950 ° K) (6.3) (1.67 x 10⁶ Hz)

$$\frac{5.6 \times 10^{+6+3+3-1-1}}{415 \times 10^{+3+20-23+2+6}} = \frac{5.6 \times 10^{+10}}{4.15 \times 10^{+2+3+20-23+2+6}} = \frac{5.6 \times 10^{+10}}{4.15 \times 10^{+10}} = 1.35 = 1.3 \text{ dB}$$

S / N = 1.3 dB per pulse (21 pulses integrated) => S / N per dwell = 14.5 dB + 13.2 dB

Example - Airport Surveillance Radar

dB Method

		(+)	(-)
Peak Power	1.4 MW	61.5	
(Gain) ²	33 db	66	
(Wavelength) ²	.1 m		20
Cross section	1 m ²	0	
$(4 \pi)^3$	1984		33
(Range) ⁴	111 km		201.8
k	1.38 x 10 -23 w / Hz o K	228.6	
System temp	950		29.8
Losses	8 dB		8
Bandwidth	1.67 MHz	<u> </u>	62.2
		+ 356.1	- 354.8
		+ 1.3 dB	

S / N = 1.3 dB per pulse (21 pulses integrated) => S / N per dwell = 14.5 dB (+ 13.2 dB)

Cautions in Using the Radar Equation

- The radar equation is simple enough that everybody can learn to use it
- The radar equation is complicated enough that anybody can mess it up if you are not careful

Radar Equation and Detection Process

Q & A

