

UNIVERSITY MASTER'S DEGREE

PHYSICAL TECHNOLOGY: RESEARCH AND APPLICATIONS

MASTER'S THESIS

Exploring the relationship between Hawkes processes and self-organized criticality in living systems

Antonio Rivas Blanco

Tutor(s): Jorge Hidalgo Aguilera and Serena di Santo

Line of research: Modelling of complex systems and their interdisciplinary applications

Córdoba, 07/2024

Autorización de defensa del Trabajo Fin de Máster

Tutor 1: Jorge Hidalgo Aguilera

Tutor 2: Serena di Santo

INFORMAN: Que el presente trabajo titulado Exploring the relationship between Hawkes processes and self-organized criticality in living systems que constituye la memoria del Trabajo Fin de Máster ha sido realizado por Antonio Rivas Blanco y AUTORIZA/N su presentación para que pueda ser defendido en la convocatoria 1ª con fecha 23/07/2024.

Firmado en Córdoba a X de julio de 2024

Tutor 1: Jorge Hidalgo Aguilera

Tutor 2: Serena di Santo

Declaración de autoría

Nombre y apellidos: Antonio Rivas Blanco

DNI: 49832223D

DECLARA

- 1. Que el trabajo que presenta es totalmente original y que se hace responsable de todo su contenido.
- 2. Que no ha sido publicado no total ni parcialmente.
- 3. Que todos los aportes de otros autores/as han sido debidamente referenciados.
- 4. Que no ha incurrido en fraude científico, plagio o vicios de autoría.
- 5. Que, en caso de no cumplir los requerimientos anteriores, aceptará las medidas disciplinarias sancionadoras que correspondan.

Firmado en Córdoba a, X de julio de 2024

Cambiar encabezado y pie de página en .sty

Contents

C	ontents	IV						
Li	ist of Figures	V						
Li	ist of Tables	VI						
A	bstract. Keywords	1						
1	Introduction	2						
2	Objectives	3						
3 Methodology								
4	Results4.1 Results from the original paper4.2 Results for n=24.3 Inhibitory and excitatory neurons coupled	5 5 7 9						
5	Conclusions	10						

List of Figures

4.1	Percolation phase diagrams for different event number K taking average values of $R =$	
	1000 realizations	5
4.2	Avalanche statistics for a self-exciting Hawkes process with $n=1$ for $K=10^5$ events	
	averaged over $R = 1000$ realizations	6
4.3	Time series for $n = 1$ and $n = 2$	7
4.4	Percolation phase diagrams for a Hawkes process with $n = 2, \dots, \dots$	7
4.5	Avalanche statistics for a self-exciting Hawkes process with $n=2$ for $K=10^5$ events	
	averaged over $R = 1000$ realizations	8

List of Tables

Abstract

Introduction

Hawkes processes are a class of point processes that are widely used in the modeling of self-exciting events. They have been applied to a variety of fields, such as seismology, neuroscience, finance, and social networks. The main feature of Hawkes processes is that the intensity or rate of the process is not constant, but depends on the history of the process itself.

Objectives

Ordenar los objetivos una vez escrito el trabajo para que coincidan con como se presenta.

The main objectives of this Master's thesis are:

- To understand what Hawkes processes are, where we can find them, how to generate them computationally and relate them with neuroscience.
- To understand the importance of time binning and reproduce the results of the original paper [1] and compare them with the results obtained in this work.
- ¿Criticality?
- To study the behaviour of a self-exciting process with n=2 and compare it with the case n=1.
- To study the behaviour of an inhibitory and excitatory neuron coupled.

Methodology

Results

This section provides the main results of the investigation. First, the results reproduced from the original paper [1] are presented. Then, the results of the analysis with n=2 are shown. Finally, we have studied the behaviour of an inhibitory and excitatory neuron coupled.

4.1 Results from the original paper

The first result is the percolation phase diagram is shown in Figure 4.1. It displays the percolation strength P_{∞} versus the resolution parameter Δ .

Figure 4.1. Percolation phase diagrams for different event number K taking average values of R = 1000 realizations.

The first plot configuration is a Markovian (n=0) Poisson process with rate μ . This is the simplest case, where the inter-event time $x=t_i-t_{i-1}$ follows an exponential distribution $P(x_i)=\mu e^{\mu x_i}$. The other two plots are Hawkes processes for $\mu\ll 1$ and $\mu\gg 1$ that are also Markovian as we have chosen an exponential kernel (REFERENCIAR AQUÍ A LA PARTE EN LA QUE SE EXPLICA EN METODOLOGÍA.) . In one hand, a double transition is observed when $\mu=10^{-4}$, in the other hand, a single transition occurs when $\mu=10^2$.

Once we have the phase diagram, we can study avalanche statistics. Given a resolution parameter Δ , we can spot clusters or avalanches of activity. A cluster starts when a neuron fires and ends if the neuron does not fire for a time greater than Δ . We define the size of a cluster as the number of spikes it contains and the duration as the time between the first and last spike. We have studied the

avalanches for $K = 10^5$ events and R = 1000 realizations to obtain the average values since the process is highly not stationary. We will study the size and duration of the avalanches for the three different regions of the phase diagram for $\mu = 10^{-4}$ and the two regions of the phase diagram for $\mu = 10^2$. These regions are separated by two thresholds, a pseudocritical threshold Δ_1^* and the threshold of the second transition at Δ_2^* . We can compute these with the following formulas [1]:

$$\Delta_1^* \simeq \frac{\log(K)}{\langle \lambda \rangle} = \frac{\log(K)}{\mu + \sqrt{2\mu K}}$$

$$\Delta_2^* = \frac{\log(K)}{\mu}$$
(4.1)

$$\Delta_2^* = \frac{\log(K)}{\mu} \tag{4.2}$$

Once we have the thresholds, we can study the avalanches for the different regions of the diagram. The results are shown in Figure 4.2.

Figure 4.2. Avalanche statistics for a self-exciting Hawkes process with n = 1 for $K = 10^5$ events averaged over R = 1000 realizations.

For $\mu = 10^{-4}$, the results show a power-law distribution for the size and duration of the avalanches. In the case of duration, the exponent is $\tau = 2$ and for the size, we can notice a transition of the exponent from $\alpha = 2$ to $\alpha = 3/2$ as we increase the resolution parameter Δ . The first exponent corresponds to the universality class of 1D percolation, whereas the second is compatible with the universality class of mean-field branching process. However, if $\Delta \ll \Delta_1^*$, the behaviour is subcritical for the size and duration of the avalanches.

For $\mu = 10^2$, the result shows another powerlaw distribution for both size and duration of the avalanches unless Δ « Δ_2^* , where the behaviour is subcritical. . In this case, the exponents are $\alpha = \tau =$ 2 corresponding to the uni-

versality class of 1D percolation.

HABLAR AQUÍ DE LA INFLUENCIA DEL MENOR NÚMERO DE EVENTOS, SE SIGUE PRO-DUCIENDO LA TRANSICIÓN, PERO PARA OTROS VALORES DE DELTA

4.2 Results for n=2

In the article, the authors have studied a process which is critical itself because the parameter n is fixed to n = 1. We have studied the case n = 2 to see if the process is still critical. In the Figure 4.3 two time series for n = 1 and n = 2 are shown.

Figure 4.3. Time series for n = 1 and n = 2.

Similarly to the previous section, first we obtain the phase diagram in order to observe the transitions. In this case, Eqs 4.1-4.2 are not valid. Therefore, we will obtain this parameter graphically from the phase diagrams shown in Figure 4.4.

Figure 4.4. Percolation phase diagrams for a Hawkes process with n=2.

As we can see, now we have a single transition for $\mu=10^{-4}$ and $\mu=10^2$ corresponding to 1D percolation, consequently, the exponents for the size and duration should be $\alpha=\tau=2$. In a similar way, we have studied the avalanches for $K=10^5$ events and R=1000 realizations to obtain the average values. The statistics of the avalanches are shown in Figure 4.5.

Figure 4.5. Avalanche statistics for a self-exciting Hawkes process with n=2 for $K=10^5$ events averaged over R=1000 realizations.

4.3	Inhibitory	and	excitatory	neurons	coupled

Conclusions

Bibliography

[1] Daniele Notarmuzi et al. "Percolation theory of self-exciting temporal processes". In: Physical Review E 103.2 (2021), p. L020302.

Anexo

REVISAR LOS CÓDIGOS PARA QUE ESTÉN ACTUALIZADOS

Script 5.1. Script Python con todas las funciones.

```
1 import numpy as np
  import matplotlib.pyplot as plt
  def algorithm (rate, mu, n):
       Algorithm that computes interevent times and Hawkes intensity for a self-exciting
6
      process
      \#Output: rate x_k, x_k
8
9
      # 1st step
      u1 = np.random.uniform()
11
       if mu == 0:
12
           F1 = np.inf
       else:
          F1 = -np.\log(u1) / mu
16
      \# 2nd step
17
      u2 = np.random.uniform()
18
       if (rate - mu) == 0:
19
           G2 = 0
20
21
           G2 = 1 + np.log(u2) / (rate - mu)
22
23
      # 3rd step
       if G2 \ll 0:
26
           F2 = np.inf
       else:
28
          F2 = -np \cdot log(G2)
29
30
      # 4th step
31
      xk = \min(F1, F2)
32
33
      # 5th step
      rate_tk = (rate - mu) * np.exp(-xk) + n + mu
      return rate_tk, xk
37
  def generate_series(K, n, mu):
38
39
       Generates temporal series for K Hawkes processes
40
41
```

```
42
       ##Inputs:
       K: Number of events
43
       n: Strength of the Hawkes process
44
       mu: Background intensity
45
46
       ##Output:
47
       times: time series the events
48
       rate: time series for the intensity
49
50
       times\_between\_events = [0]
51
       rate = [mu]
        for _ in range(K):
53
            rate_tk, xk = algorithm(rate[-1], mu, n)
54
            rate.append(rate_tk)
56
            times_between_events.append(xk)
       times = np.cumsum(times_between_events)
57
58
       return times, rate
59
   def identify_clusters(times, delta):
60
61
        Identifies clusters in a temporal series given a resolution parameter delta
62
63
       ## Inputs:
64
       times: temporal series
65
       delta: resolution parameter
66
67
68
       ## Output:
       clusters: list of clusters
69
70
       clusters = []
71
       current_cluster = []
72
        for i in range (len(times) - 1):
73
            if times[i + 1] - times[i] \le delta:
74
                if not current_cluster:
75
                     current_cluster.append(times[i])
76
                current\_cluster.append(times[i + 1])
78
            else:
79
                if current_cluster:
                     clusters.append(current_cluster)
80
                     current_cluster = []
81
82
       return clusters
83
   def generate_series_perc(K, n, mu):
84
85
        Generates temporal series for K Hawkes processes
86
87
       ##Inputs:
       K: Number of events
89
       n: Strength of the Hawkes process
90
       mu: Background intensity
91
92
       ##Output:
93
       times_between_events: time series the interevent times
94
       times: time series the events
95
       rate: time series for the intensity
96
97
       times\_between\_events = [0]
       rate = [mu]
99
        for \underline{\quad} in range(K):
100
            rate_tk, xk = algorithm(rate[-1], mu, n)
101
            rate.append(rate_tk)
            times_between_events.append(xk)
103
```

```
times = np.cumsum(times_between_events)
104
105
        return times_between_events, times, rate
106
   def calculate_percolation_strength(times_between_events, deltas):
107
108
        Calculate the percolation strength for a given set of deltas (resolution parameters)
109
110
       ## Inputs:
       {\tt times\_between\_events} \colon \; {\tt time} \; \; {\tt series} \; \; {\tt of} \; \; {\tt interevent} \; \; {\tt times}
        deltas: list of resolution parameters
113
114
       ## Output:
115
        percolation_strengths: list of percolation strengths
116
117
        percolation\_strengths = []
119
120
        for delta in deltas:
121
            cluster_sizes = []
            current_cluster_size = 1 # The first event is always a cluster
123
124
            for time in times_between_events:
                if time < delta:
126
                     current_cluster_size += 1
127
                else:
128
                     if current_cluster_size > 1: # Only consider clusters with more than one
129
       event
130
                         cluster_sizes.append(current_cluster_size)
                     current_cluster_size = 1 # The next event is always a cluster
132
            if current_cluster_size > 1: # Consider the last cluster if it ends at the last
       event
                cluster_sizes.append(current_cluster_size)
134
135
            if len(cluster_sizes) != 0: # Check if cluster_sizes is not empty to avoid
136
       errors
                max_cluster_size = max(cluster_sizes)
            else:
                max\_cluster\_size = 0
139
140
            percolation_strengths.append(max_cluster_size / len(times_between_events))
141
        return percolation_strengths
143
144
145
   """def calculate_percolation_strength(times_between_events, deltas):
146
        percolation\_strengths = []
147
148
        for delta in deltas:
149
            cluster_sizes = []
            # Initialize the size of the current cluster
            current_cluster_size = 1 # The first event is always a cluster
152
            for i in range(len(times_between_events)):
154
                if times_between_events[i] <= delta:
155
156
                     current_cluster_size += 1
                else:
                     if current_cluster_size > 1: # Only consider clusters with more than one
       event
                         cluster_sizes.append(current_cluster_size)
159
                    # Reset the size of the current cluster
160
                     current_cluster_size = 1 # The next event is always a cluster
161
```

```
162
            # Add the size of the last cluster
163
            if current_cluster_size > 1: # Only consider clusters with more than one event
164
                cluster_sizes.append(current_cluster_size)
            max_cluster_size = max(cluster_sizes)
167
168
            percolation_strengths.append(max_cluster_size / len(times_between_events))
169
        return percolation_strengths"""
170
171
   def model(n_max, mu_E, mu_I, tau, n_EE, n_IE, n_EI, n_II, dt):
172
173
       Solve the equations of the mena field model for a given number of iterations n_max
174
       Inputs:
       n_max: number of iterations
       mu_E: Poisson rate of excitatory neurons
       mu_I: Poisson rate of inhibitory neurons
179
       tau: characteristic time of the system
180
       n_EE: influence of excitatory neurons on excitatory neurons
181
       n_IE: influence of excitatory neurons on inhibitory neurons
182
       n_EI: influence of inhibitory neurons on excitatory neurons
183
       n_II: influence of inhibitory neurons on inhibitory neurons
184
       dt: time step
185
186
       Outputs:
187
       time: time series
188
189
       t_events_E: times of events of excitatory neurons
        t_events_I: times of events of inhibitory neurons
190
191
       rates_E: rates of excitatory neurons
        rates_I: rates of inhibitory neurons
       n_E = n_I = n = 0
194
       t_{events} = [0]
195
        t_events_I = [0]
196
       rates_E = [mu_E]
       rates_I = [mu_I]
198
        time = [0]
199
        while n \le n_max:
200
            # Excitation neurons
201
            l\_Enew = rates\_E[-1] + dt * (mu\_E- rates\_E[-1])/tau
202
            if np.random.uniform() < rates_E[-1]*dt:
203
                l_Enew += n_EE
204
                t_{events} E.append (time [-1] + dt*np.random.uniform())
205
                n_E += 1
206
            if np.random.uniform() < rates_I[-1]*dt:
                l_Enew -= n_IE
                t_{\text{events}} E. append (time[-1] + dt*np.random.uniform())
209
                n_E += 1
210
211
            # Inhibition neurons
212
            l\_Inew \, = \, rates\_I \, [-1] \, + \, dt \, * \, (mu\_I \!\! - \, rates\_I \, [-1]) / tau
213
            if np.random.uniform() < rates_E[-1]*dt:
214
215
                l\_Inew += n\_EI
216
                t_{events}I.append(time[-1]+dt*np.random.uniform())
217
                n_I += 1
            if np.random.uniform() < rates_I[-1]*dt:
                l\_Inew = n\_II
219
                t_{events}I.append(time[-1]+dt*np.random.uniform())
220
221
                n_I += 1
            rates_E.append(l_Enew)
222
            rates_I.append(l_Inew)
223
```

```
time.append(time[-1]+dt)
224
225
            n = n\_E + n\_I
226
        return time, t_events_E, t_events_I, rates_E, rates_I
227
228
   def identify_clusters_model(times, delta):
229
230
       Identifies clusters in a temporal series given a resolution parameter delta
231
       Computes the size and duration of clusters
232
233
       ## Inputs:
234
       times: temporal series
235
       delta: resolution parameter
236
237
       ## Output:
       clusters: list of clusters
239
       clusters_sizes: list of sizes of clusters
240
       clusters_times: list of durations of clusters
241
242
       clusters = []
243
       current_cluster = []
244
        for i in range (len (times) -1):
245
            if times[i + 1] - times[i] \ll delta:
246
                if not current_cluster:
247
                    current_cluster.append(times[i])
248
                current\_cluster.append(times[i + 1])
            else:
250
251
                if current_cluster:
                    clusters.append(current_cluster)
252
253
                    current_cluster = []
254
       clusters_sizes = [len(cluster) for cluster in clusters]
255
       clusters\_times = [cluster[-1] - cluster[0]] for cluster[in] clusters]
256
       return clusters, clusters_sizes, clusters_times
257
258
   def bivariate_algorithm(rate1, rate2, muE, muI, nEE, nII, nEI, nIE):
260
       Algorithm that computes interevent times and Hawkes intensity for a bivariate Hawkes
261
       process
262
       #Inputs:
263
       rate1: Previous excitation rate
264
       rate2: Previous inhibition rate
265
       nEE: "Strength" of the autoexcitation process
266
       nII: "Strength" of the autoinhibition process
267
       nEI: "Strength" of the excitation to the inhibition
       nIE: "Strength" of the inhibition to the excitation
       muE: Background intensity of the excitation
270
       muI: Background intensity of the inhibition
271
272
273
       #Output: rate x_k, x_k
274
275
       _{-}, xk1 = algorithm (rate1, muE, nEE)
276
       _{-}, xk2 = algorithm(rate2, muI, nII)
277
278
       xks = [xk1, xk2]
280
        if xk1 < 0:
281
            print (xk1)
282
            xk1 = 0
283
        if xk2 < 0:
284
```

```
print (xk2)
285
                        xk2 = 0
286
                reaction = np.argmin(xks)
287
                if reaction = 0:
                        rate1_tk = (rate1 - muE) * np.exp(-xk1) + nEE + muE
290
                        rate2\_tk = (rate2 - muI) * np.exp(-xk1) + nEI + muI
291
                else:
292
                        rate1_tk = (rate1 - muE) * np.exp(-xk2) + nIE + muE
293
                        rate2\_tk = (rate2 - muI) * np.exp(-xk2) + nII + muI
294
295
                if rate1_tk <= muE:</pre>
296
                        rate1\_tk = muE
297
298
                if rate2_tk <= muI:</pre>
                        rate2\_tk = muI
               xk = xks[reaction]
301
302
               return rate1_tk, rate2_tk, xk, reaction
303
304
       def generate_series_bivariate(K, nEE, nII, nEI, nIE, muE, muI):
305
306
                Generates temporal series for K bivariate Hawkes processes
307
308
               ##Inputs:
               K: Number of events
               nEE: "Strength" of the autoexcitation process
311
               nII: "Strength" of the autoinhibition process
312
               nEI: "Strength" of the excitation to the inhibition
313
               nIE: "Strength" of the inhibition to the excitation
314
               muE: Background intensity of the excitation
315
               muI: Background intensity of the inhibition
316
317
               ##Output:
318
               times_between_events: time series the interevent times
319
                times: time series the events
                ratel: time series for the intensity of process 1
                rate2: time series for the intensity of process 2
323
               times\_between\_events = [0]
324
               rate1 = [muE]
325
               rate2 = [muI]
326
                for _ in range(K):
327
                        rate1_tk, rate2_tk, rate
328
              nEE, nII, nEI, nIE)
                        rate1.append(rate1_tk)
                        rate2.append(rate2_tk)
                        times_between_events.append(xk)
331
                times = np.cumsum(times_between_events)
332
               return times_between_events, times, rate1, rate2
```