Гродзенскі дзяржаўны універсітэт імя Янкі Купалы Кафедра агульнай фізікі Лабараторыя механікі ауд. 408

Лабараторная работа №14

ВЫЗНАЧЭННЕ ХУТКАСЦІ КУЛІ МЕТАДАМ КРУЦІЛЬНАГА БАЛІСТЫЧНАГА МАЯТНІКА

для студэнтаў спецыяльнасці "ФІЗІКА"

Гродна, 2011

ВЫЗНАЧЭННЕ ХУТКАСЦІ КУЛІ МЕТАДАМ КРУЦІЛЬНАГА БАЛІСТЫЧНАГА МАЯТНІКА

Мэта работы:

Доследнае вызначэнне хуткасці палёту кулі, модуля кручэння і модуля зруху матэрыялу дроту з дапамогай круцільнага балістычнага маятніка.

Прылады і абсталяванне:

Круцільны балістычны маятнік, куля, тэхнічныя вагі, штангенцыркуль.

Тэарэтычныя асновы

Балістычны круцільны маятнік уяўляе сабой падвешанае на вертыкальным дроце масіўнае інертнае цела, якое мае адну вярчальную ступень свабоды (адносна вертыкальнай восі). Пры адхіленні маятніка на некаторы вугал ϕ узнікае момант пругкіх сіл M, які імкнецца вярнуць маятнік у становішча раўнавагі:

$$M = -D\varphi. (1)$$

Гэты выраз з'яўляецца законам Гука для дэфармацыі кручэння. Каэфіцыент прапарцыянальнасці D называецца модулем кручэння дрому, а знак "—" азначае, што момант пругкіх сіл, які ўзнікае ў дроце, накіраваны процілегла вуглавому адхіленню φ .

Пры чым неабходна ўлічыць, што ў агульным выпадку на цела дзейнічае некалькі момантаў сіл: $M = \sum M_i$. Аднак, калі сілы супраціўлення малыя, то сума момантаў усіх дзеючых на маятнік сіл адносна восі вярчэння фактычна вызначаецца толькі момантам пругкіх сіл, які вызначаецца выразам (1).

Асноўнае ўраўненне дынамікі вярчальнага руху ў агульным выпадку мае выгляд:

$$I\vec{\epsilon} = \sum \vec{M}_i$$
 (2)

дзе I — момант інерцыі маятніка, а $\varepsilon = \frac{d^2 \varphi}{dt^2}$ — вуглавое паскарэнне.

Перапішам (2) з улікам (1):

$$\frac{d^2\varphi(t)}{dt^2} + \frac{D}{I}\varphi(t) = 0. \tag{3}$$

Атрыманае ўраўненне з'яўляецца дыферэнцыяльным ураўненнем ваганняў маятніка, якое вызначае залежнасць вугла адхілення ад часу. Па сутнасці гэта аналаг дыферэнцыяльнага ўраўнення гарманічных ваганняў спружыннага маятніка:

$$\varphi''(t) + \omega^2 \varphi(t) = 0, \qquad (4)$$

з цыклічнай частатой ваганняў $\omega = \sqrt{\frac{D}{I}}$.

Гэта азначае, што пры малых значэннях сіл трэння і супраціўлення балістычны маятнік будзе ажыццяўляць гарманічныя ваганні па законе:

$$\varphi(t) = \varphi_0 \cos(\omega t + \alpha_0)$$
, з перыядам $T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{I}{D}}$. (5)

Доследная прылада

Круцільны балістычны маятнік, з дапамогай якога выконваецца работа, прадстаўлены на малюнку 1. На аснове 1, якая мае чатыры ножкі з рэгуляванай вышынёй, зманціравана прыборная панель з мілісекундамерам 2. На аснове замацавана калона 3, на якой пры дапамозе заціскальных шрубаў прымацаваны кранштэйны 4, 5, 6. Кранштэйны 4 і 6 маюць заціскі, з дапамогай якіх замацаваны стальны дрот 7. Да дроту прымацавана цела. На кранштэйне 5 пліта, замацавана стальная якая служыць фотаэлектрычнаму датчыку 8 і вуглавой шкале 9, якая нанесена на празрысты экран. Для стральбы служыць спружынны пісталет 10. Канструкцыя маятніка дазваляе замацоўваць два грузы 11 на стрыжні. Куля пасля стрэлу налятае на адну з мішэняў 12, замацаваных на канцах стрыжня.

Мал. 1. Доследная прылада

Практыкаванне 1. Вызначэнне модуля кручэння і модуля зруху матэрыялу дроту круцільнага маятніка

Для вызначэння скорасці палёту кулі выкарыстоўваецца няпругкі яе ўдар з круцільным балістычным маятнікам. Куля трапляе ў маятнік і выклікае яго паварот. Калі сілы супраціўлення, якія дзейнічаюць на маятнік, малыя, то сістэму маятнік-куля можна лічыць ізаляванай. Згодна з законам захавання моманту імпульсу маем:

$$m v l = \left(I_1 + m l^2\right) \omega \tag{6}$$

дзе $m \circ l$ — момант імпульсу кулі непасрэдна перад ударам адносна восі вярчэння маятніка, $(I_1+ml^2)_{00}$ — момант імпульсу мяатніка разам з куляй непасрэдна пасля ўдару. А таксама: $I=I_1+ml^2$ — момант інерцыі сістэмы маятнік-куля, m і υ — маса і хуткасць кулі, l — адлегласць ад пункту, куды трапляе куля, да восі вярчэння, ω — вуглавая скорасць вярчэння маятніка непасрэдна пасля ўдару, I_1 — момант інерцыі маятніка

Пасля ўдару маятнік атрымлівае кінетычную энергію вярчальнага руху, якая пры павароце маятніка пераходзіць у патэнцыяльную энергію закручанага дроту. Згодна з законам захавання механічнай энергіі (разглядаючы сістэму ў полі дзеяння патэнцыяльных сіл) будзем мець:

$$\frac{I\omega^2}{2} = \frac{D\beta^2}{2}\,, (7)$$

дзе β – максімальны вугал закручвання дроту маятніка.

3 выразаў (6) і (7) атрымаем:

$$v^{2} = \frac{D\beta^{2}}{m^{2}l^{2}} (I_{1} + ml^{2}). \tag{8}$$

Так як момант інерцыі кулі значна меншы моманту інерцыі маятніка ($I_1 >> ml^2$), то выраз (8) можна запісаць у выглядзе:

$$v^{2} = \frac{D\beta^{2} I_{1}}{m^{2} l^{2}} \text{ afo } v = \frac{\beta D T_{1}}{2\pi m l}.$$
 (9)

Пры гэтым будзем лічыць, што час узаемадзеяння кулі з маятнікам нашмат меншы за перыяд вагання маятніка ($\tau << T$).

Модуль кручэння матэрыялу дроту D можна знайсці праз даследаванне залежнасці перыяду круцільных ваганняў маятніка ад яго моманту інерцыі. Значэнне моманту інерцыі маятніка

можна змяняць , фіксуючы грузы ў розным становішчы. Момант інерцыі маятніка мае пастаянную складаючую I_0 і пераменную, якая залежыць ад адлегласці паміж цэнтрамі грузаў і воссю:

$$I = I_0 + 2m_0 R^2 \,. {10}$$

Тады выраз (5) з улікам (10) набудзе выгляд:

$$T^{2} = 4\pi^{2} \frac{I}{D} = 4\pi^{2} \frac{I_{0} + 2m_{0}R^{2}}{D} \text{ afo}$$

$$T^{2} = \frac{4\pi^{2}I_{0}}{D} + \frac{8\pi^{2}m_{0}}{D}R^{2}.$$
(11)

Выраз (11) адлюстроўвае лінейную залежнасць $T^2 = f(R^2)$. Такім чынам, для лінейнай залежнасці f(x) = b + kx маем:

$$x = R^2$$
, $f = T^2$, $b = \frac{4\pi^2 I_0}{D}$, $k = \frac{8\pi^2 m_0}{D}$. (12)

Вуглавы каэфіцыент k функцыі (11) роўны тангенсу вугла нахілу графіка лінейнай залежнасці— прамой. Яго можна знайсці, пабудаваўшы графік $T^2 = f(R^2)$ па некалькіх пунктах.

Тады з (12) модуль кручэння

$$D = \frac{8\pi^2 m_0}{k} \,. \tag{13}$$

Модуль зруху G матэрыялу дроту звязаны з модулем кручэння выразам:

$$G = \frac{2LD}{\pi r^4} \,, \tag{14}$$

дзе L і r – даўжыня і радыус дроту адпаведна.

Практыкаванне 2. Вызначэнне хуткасці палёту кулі метадам круцільнага балістычнага маятніка.

1-ы спосаб.

Вызначэнне хуткасці палёту кулі ажыццяўляецца на аснове закона захавання моманту імпульсу (6). Тады, ведаючы модуль кручэння D, можна разлічыць гэтую хуткасць з выразу (9).

2-і спосаб.

Калі перыяд ваганняў круцільнага маятніка вызначыць пры двух становішчах грузаў, то

$$T_1 = 2\pi \sqrt{\frac{I_1}{D}}, \qquad T_2 = 2\pi \sqrt{\frac{I_2}{D}}.$$
 (15)

Адкуль можна атрымаць

$$\frac{T_1^2}{T_2^2} = \frac{I_1}{I_2} \,. \tag{16}$$

Калі пазначыць $\Delta I = I_1 - I_2$, то (16) набудзе выгляд:

$$I_1 = \frac{T_1^2}{T_1^2 - T_2^2} \Delta I \ . \tag{17}$$

Велічыню $\Delta I = I_1 - I_2$ можна вызначыць, карыстаючыся тэарэмай Гюйгенса-Штэйнера:

$$I_1 = I_0 + 2m_0 R_1^2, I_2 = I_0 + 2m_0 R_2^2,$$
 (18)

дзе I_0 — момант інерцыі маятніка без грузаў, I_1 і I_2 — моманты інерцыі маятніка пры двух розных становішчах грузаў адносна восі вярчэння R_1 і R_2 , m_0 — маса кожнага з грузаў.

3 выразу (18) атрымоўваем:

$$\Delta I = I_1 - I_2 = 2m_0 \left(R_1^2 - R_2^2 \right). \tag{19}$$

3 улікам (5), (9), (17), (19) атрымаем

$$\upsilon = \frac{4\pi\beta m_0}{ml} \frac{T_1}{T_1^2 - T_2^2} \left(R_1^2 - R_2^2 \right). \tag{20}$$

Парадак выканання работы:

- 1. Размясціце цыліндры (грузы) на мінімальнай адлегласці ад восі вярчэння і вызначце іх адлегласць ад восі.
- 2. Ажыццявіце стрэл са спружыннага пісталета і вызначце максімальны вугал адхілення маятніка β.
- 3. Паўтарыце стрэлы не менш за 3 разы.
- 4. Вызначце сярэдняе значэнне максімальнага вугла адхілення маятніка пры дадзеным становішчы грузаў.

- 5. Адхіліўшы рукамі маятнік на атрыманы сярэдні вугал, вымерайце час 5 ваганняў.
- 6. Паўтарыце вымярэнні не менш за 3 разы.
- 7. Разлічыце сярэдні перыяд ваганняў пры дадзеным становішчы грузаў.
- 8. Паўтарыце выкананне пп 1–7 для не менш, чым 5 розных становішчаў грузаў.
- 9. Па атрыманых дадзеных пабудуйце графічна залежнасць $T^2 = f(R^2)$ па 5-ці пунктах.
- 10. Вызначце вуглавы каэфіцыент лінейнай функцыі (11) з выразу:

$$k = \frac{\Delta f}{\Delta x} = \frac{\Delta (R^2)}{\Delta (T^2)}.$$

- 11. Вызначце модуль кручэння дроту з выразу (13).
- 12. Вызначце модуль зруху матэрыялу дроту з выразу (14).
- 13. Разлічыце хуткасць кулі з выразу (9), карыстаючыся атрыманым значэннем модуля кручэння.
- 14. З вымярэнняў, якія зроблены раней, вазьміце параметры для двух крайніх становішчаў грузаў і разлічыце хуткасць кулі па выразе (20).
- 15. Параўнайце атрыманыя па (9) і (20) значэнні хуткасці палёту кулі.
- 16. Разлічыце хібнасці вымярэнняў.
- 17. Зрабіце вывад.

Пытанні для самакантролю:

- 1. Вызначце паняцце моманту імпульсу і моманту інерцыі адносна пункту.
- 2. Вызначце паняцце моманту імпульсу і моманту інерцыі адносна восі.
- 3. Запішыце асноўнае ўраўненне дынамікі вярчальнага руху і патлумачце яго.
- 4. Кінетычная энергія вярчальнага руху і патэнцыяльная энергія закручанага дроту.
- 5. Ці залежыць перыяд ваганняў балістычнага маятніка ад становішча грузаў? Калі залежыць, то як?
- 6. Ці залежыць вугал максімальнага адхілення балістычнага маятніка ад становішча грузаў? Калі залежыць, то як?