Summer 2018 MSAN 502 Homework 3, due 7/27 9am

- 1. (a) Determine whether the vectors are linearly independent/dependent in \mathbb{R}^3 .
 - (a) (-3,0,4), (5,-1,2), (1,1,3)
 - (b) (-2,0,1), (3,2,5), (6,-1,1), (7,0,-2)
 - (b) In the vector space P_2 =all polynomials whose degree is less than or equal to 2. Use Theorem 4.3.1 to check whether the 3 polynomials are independent.

$$p_1(x) = -3 + 4x^2$$
, $p_2(x) = 5 - x + 2x^2$, $p_3(x) = 1 + x + 3x^2$.

- 2. Find a basis for the given subspace, and state its dimension.
 - (a) All vectors of the form (a, b, c, d) where d = a + b and c = a b
 - (b) The plane x 2y + 3z = 0.
 - (c) The intersection of the plane from (b) with the xy plane.
 - (d) All vectors perpendicular to the plane from (b).
- 3. Given $v_1 = (1, 2, -1), v_2 = (4, 1, 3), v_3 = (5, 3, 2), v_4 = (2, 0, 2).$
 - (a) Find the largest possible number of independent vectors among these 4 vectors.
 - (b) Find a subset of the given vectors that forms a basis for the space spanned by and then express each vector that is not in the basis as a linear combination of the basis vectors.
- 4. Find bases for row space and null space of $A = \begin{bmatrix} 1 & 4 & 5 & 2 \\ 2 & 1 & 3 & 0 \\ -1 & 3 & 2 & 2 \end{bmatrix}$.
- 5. U comes from A by subtracting row 1 from row 3:

$$A = \begin{bmatrix} 1 & 3 & 2 \\ 0 & 1 & 1 \\ 1 & 3 & 2 \end{bmatrix}, U = \begin{bmatrix} 1 & 3 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

- (a) How are the column space, row space, and null space changed from A to U?
- (b) Is your conclusion true in general? Explain your answer.
- 6. Construct a matrix or state why it does not exist.
 - (a) Column space contains $\begin{bmatrix} 1\\1\\2 \end{bmatrix}$, $\begin{bmatrix} 0\\1\\1 \end{bmatrix}$. Row space contains $\begin{bmatrix} 1\\2 \end{bmatrix}$, $\begin{bmatrix} 2\\5 \end{bmatrix}$.
 - (b) Column space has basis $\left\{ \begin{bmatrix} 1\\1\\2 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}$. Row space has basis $\left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 2\\5 \end{bmatrix} \right\}$.
 - (c) Column space has basis $\begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$, null space has basis $\begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}$.
 - (d) Row space contains $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\0\\1 \end{bmatrix}$. Null space contains $\begin{bmatrix} 1\\-1\\1 \end{bmatrix}$.
 - (e) Its null space consists of all linear combinations of $v_1 = (1, -1, 3, 2), v_2 = (2, 0, -2, 4).$

- (f) A 3 by 3 matrix whose null space equals its column space.
- (g) Row space equals column space, not symmetric, singular.
- 7. Suppose S is spanned by the vectors (1, -1, 3, 2), (2, 0, -2, 4). Find two vectors that span S^{\perp} . This is the same as solving Ax = 0 for which A?
- 8. These problems have a quick answer.
 - (a) If we add an extra column b to the matrix A, then the column space gets larger unless _____. Give an example where the column space gets larger and an example where it doesn't. Why is Ax = b solvable exactly when the column space doesn't get larger?
 - (b) As an operator, the range or image of an $m \times n$ matrix A is $\{Ax : x \in \mathbb{R}^n\}$. The image of A is _____ (row space or column space or null space of A). Explain.
 - (c) Is $\{u_1 = (1, 2), u_2 = (0, 3), u_3 = (1, 5)\}$ a basis for \mathbb{R}^2 ? Why?
 - (d) Is $\{u_1 = (-1, 3, 2), u_2 = (6, 1, 1)\}$ a basis for \mathbb{R}^3 ? Why?
 - (e) Let A be a 7×6 matrix such that Ax = 0 has only the trivial solution. Find the rank and nullity of A.
- 9. Let A be a 5×7 matrix with rank 4.
 - (a) What is the dimension of the solution space of Ax = 0?
 - (b) Is Ax = b consistent for all vectors b in \mathbb{R}^5 ? Explain.
- 10. Verify that the vectors $v_1 = (1, -1, 2, -1)$, $v_2 = (-2, 2, 3, 2)$, $v_3 = (1, 2, 0, -1)$, $v_4 = (1, 0, 0, 1)$ form an orthogonal basis for \mathbb{R}^4 , and then express u = (1, 1, 1, 1) as a linear combination of v_i 's.
- 11. Projection onto a line.
 - (a) Find the orthogonal projection of b = (1, 2, 2) onto span $\{a = (1, 1, 1)\}$. Verify that e = b p is orthogonal to a. What is the projection matrix that represents projection onto span $\{(1, 1, 1)\}$? What is the rank of this projection matrix?
 - (b) Project the vector b = (1, 1) onto span $\{a_1 = (1, 0)\}$ and span $\{a_2 = (1, 2)\}$ respectively. Call the projections p_1, p_2 and draw them. Does $p_1 + p_2 = b$? Change a_1 and play with your drawing to figure out when the two projections will add up to b.
- 12. Prove that if a vector v is orthogonal to each basis vector for a subspace W, then v is orthogonal to W.
- 13. True or False
 - (a) If $V = \text{span}\{v_1, \dots, v_n\}$, then $\{v_1, \dots, v_n\}$ is a basis for V.
 - (b) Any set of n independent vectors is a basis for \mathbb{R}^n .
 - (c) If $A = -A^T$, then the row space of A equals its column space.
 - (d) If $P_{a_1}(b) = P_{a_2}(b)$ for every vector b, then $a_1 = a_2$.
 - (e) If $\dim\{\operatorname{span}\{v_1,\cdots,v_n\}\} = n-1$, then at least one vector v_k is a unique linear combination of the rest n-1 vectors.
 - (f) If $rank(A) = rank(A^T)$, then A is square.
 - (g) Let $\{v_1, \dots, v_n\}$ be an orthonormal basis of \mathbb{R}^n , and let $A = [v_1, \dots, v_n]$, then $AA^T = I_n$.
 - (h) Let $\{v_1, \dots, v_n\}$ be an orthonormal set of \mathbb{R}^m , and let $A = [v_1, \dots, v_n]$, then $AA^T = I_m$.

We are taking a break from Python this week.