离散数学Chapter 6: 格和布尔代数

• 6.1 格及其性质

• 一、格的偏序集定义

- 给定偏序集,>为偏序<的逆偏序,则 $\forall l_1, l_2 \in L$,有
 - $l_1 \leq l_2$ 当且仅当 $l_2 \geq l_1$
- 最小上界,最大下界

GLB: Greatest Lower Bound // LUB: Least Upper Bound

- 设l1和l2是偏序集中的两个元素,
 - 元素a∈L, 若满足a≤l1, a≤l2, 则称a是l1和l2的下界。
 - 如果元素a是l1和l2的下界,且对任意的a'∈L,只要有a'也是l1和l2的下界便有a'≤a,则称a是l1和l2的最大下界,简记作a=glb(l1, l2)。
 - 元素b∈L, 若满足l1≤b, l2≤b, 则称b是l1和l2的上界。
 - 如果元素b是l1和l2的上界,且对任意的b'∈L,只要有b'也是l1和l2的上界便有b≤b',则称b是l1和l2的最小上界,简记作b=lub(l1, l2)。
- 注意:从偏序集<L; <>的次序图来看:
 - 元素(1和)(2有最大下界: 从结点(1和)(2出发, 经过向下的路径至少可以共同到达次序图的一个结点, 这些结点中最上面的那一个就代表(1和)(2的最大下界。
 - 元素l1和l2有最小上界: 从结点l1和l2出发, 经过向上的路径至少可以共同到达次序图的一个结点, 这些结点中最下面的那一个就代表l1和l2的最小上界。
 - 例题:

例如 设集合 $A = \{1, 2, 3, 6, 9, 12, 18, 27\}$,"整除"关系是 A 上的偏序关系,其次序图如右,它们构成一个偏序集 < A; <>>。 lub(2, 3) =? lub(12, 18) =? glb(12, 18) =? 显然,2 < 6, 3 < 6, 2 < 12, 3 < 12, 2 < 18, 3 < 18. 由于 6 < 12, 6 < 18, 因此 lub(2, 3) = 6 < 但 lub(12, 18) 不存在(无上界)。 6 < 12, 6 < 18, 2 < 12, 2 < 18; 3 < 12, 3 < 18; 1 < 12, 1 < 18。 因为 1 < 6, 2 < 6, 3 < 6, 所以 glb(12, 18) = 6 < 因此,偏序集中并非任意两个元都有最小上界和最大下界存在。

• 偏序集中并非任意两个元都有最小上界和最大下界存在

• 格

- 设<L; <> 是一个偏序集,如果L中任意两个元素l1,l2都存在着最小上界和最大下界,分别记为lub(l1,l2)和glb(l1,l2),则称<L; <> 是格。
- 设<L; ∨, ∧>是一个代数系统, ∨和∧是L上的两个二元运算, 如果这两个运算满足交换律、结合律和吸收律, 则称<L; ∨, ∧>是格。
- 并运算,交运算,由格<L: <> 导出的代数系统

- 偏序集<L; <>是格,对任意的l1,l2∈L,引入记号
 - $ullet \ l_1 ee l_2 = lub(l_1, \ l_2), \ l_1 \wedge l_2 = glb(l_1, \ l_2)$
- 则∨和∧均是集合L上的二元运算,分别称为并运算和交运算,构成的代数系统
统<L; ∨, ∧>称为由格<L; <>导出的代数系统。
- 注:
 - 这里出现的符号 > , ^ 只代表格中的运算, 不再有其它的含义。
 - 交运算也称保交运算,并运算也称保联运算
- 如果<L; <> 是格, 则<L; >> 也是格, 且对任意的l1, l2, l3∈L, 有以下关系 式成立:

• 十大关系式

- <
 - l1≤l1 (6.1)
 - 若l1≤l2, l2≤l1, 则l1=l2 (6.2)
 - 若l1≤l2, l2≤l3, 则l1≤l3 (6.3)
 - l1∧l2≤l1, l1∧l2≤l2 (6.4)
 - 若l3≤l1, l3≤l2, 则l3≤l1∧l2 (6.5)
- >
 - l1≥l1 (6.1')
 - 若l1≥l2, l2≥l1, 则l1=l2 (6.2')
 - 若l1≥l2, l2≥l3, 则l1≥l3 (6.3')
 - l1∨l2≥l1, l1∨l2≥l2 (6.4′)
 - l3≥l1, l3≥l2, 则l3≥l1∨l2 (6.5′)

• 注意:

- 式 (6.1) ~ (6.5) 及式 (6.1') ~ (6.5') 这十个关系式代表了格的定义, 是后面推理的基础。
- 可以按照这些关系式所代表的意义来记忆,如关系式(6.4)说明最大下界的"下界"意义,关系式(6.5)说明最大下界的"最大"意义。
- 由 (6.4) 和 (6.4) , 有 $l_1 \wedge l_2 \preccurlyeq l_1 \vee l_2$ 。

• 二、格的性质

• 定理6.1

- 在格中,对任意的 l_1 , $l_2\in L$,以下三式中若任意一式成立,那么其它两式也成立。
 - (1) $l_1 \vee l_2 = l_1$;
 - (2) $l_1 \wedge l_2 = l_2$;
 - (3) $l_2 \preccurlyeq l_1$
- **定理表明**:在格的偏序关系的次序图中,如果两个不同的结点有边相连或通过可传递的第三边相连,则它们的并为连线上方的结点,而它们的交为连线

下方的结点,可简单记忆为"并取大,交取小"。

• 对偶命题,对偶

- 设<L; <> 是格,P是包含格的元素和符号=、<、>、 \wedge 、 \wedge 的命题,将P中的 <、>、 \wedge 和 \wedge 分别替换成>、<、 \wedge 和 \wedge 所得的命题称为P的对偶命题,简称对 偶,记为 P^D 。
 - 注: 若 P^D 是P的对偶,则P也是 P^D 的对偶,即互为对偶。

• 对偶原理

• 对于格上的任一真命题P,其对偶 P^D 亦为格<L;<>上的真命题。

• 定理 6.3

- 设<L; <> 是格,则运算∨和∧满足交换律、结合律、吸收律和幂等律,即对任意的l1,l2,l3∈L,有
 - (1) $l_1 \lor l_2 = l_2 \lor l_1$, $l_1 \land l_2 = l_2 \land l_1$.
 - (2) $l_1 \lor (l_2 \lor l_3) = (l_1 \lor l_2) \lor l_3$, $l_1 \land (l_2 \land l_3) = (l_1 \land l_2) \land l_3$.
 - (3) $l_1 \vee (l_1 \wedge l_2) = l_1$, $l_1 \wedge (l_1 \vee l_2) = l_1$.
 - (4) $l_1 \vee l_1 = l_1$, $l_1 \wedge l_1 = l_1$
 - 即格导出的代数系统具有交换律、结合律、吸收律和幂等律

• 注:

- 由于有结合律,常将 $l_1 \lor (l_2 \lor l_3)$, $(l_1 \lor l_2) \lor l_3$ 记为 $l_1 \lor l_2 \lor l_3$;将 $l_1 \land (l_2 \land l_3)$, $(l_1 \land l_2) \land l_3$ 记为 $l_1 \land l_2 \land l_3$ 。
- 利用归纳法可以证明,对于任意n个元素 l_1 , l_2 ,…, $l_n \in L$,结合律也是成立的,即不加括号的表达式
- $l_1 \lor l_2 \lor \dots \lor l_n$ (简记为 $\bigvee_{i=1}^n l_i$) 和 $l_1 \land l_2 \land \dots \land l_n$ (简记为 $\bigwedge_{i=1}^n l_i$) 分别唯一地表示L中的一个元素。

• 格的保序性

- 设<L; <>是格, 对任意的 l_1 , l_2 , l_3 , $l_4 \in L$, 有

• 定理 6.5

- 设<L; <>是格,则对任意 l_1 , l_2 , $l_3 \in L$, 有
 - (1) $l_1 \lor (l_2 \land l_3) \le (l_1 \lor l_2) \land (l_1 \lor l_3)$.
 - (2) $l_1 \wedge (l_2 \vee l_3) \ge (l_1 \wedge l_2) \vee (l_1 \wedge l_3)$.
 - 可简单记忆为"先并大,后并小"或"先并大,先交小"。
 - 在格<L; <>中, 运算∨和∧一般不满足分配律。

• 三、格的代数系统定义

• 定理 6.6

● 设<L; ∨, ∧>是一个代数系统,其中∨和∧都是二元运算且满足交换律、结合律和吸收律,则在L上必存在一偏序关系≼,使得<L; ≼>是一个格。

• 代数格

● 设<L; ∨, ∧>是一个代数系统, ∨和∧是L上的两个二元运算, 如果这两个运算满足交换律、结合律和吸收律, 则称<L; ∨, ∧>是格。

• 偏序格, 代数格

• 格既可以看作是一个偏序集<L; <> (L中任意两个元素都存在最大下界和最小上界),一般称为偏序格,也可以看作是一个代数系统<L; v, ^> (两个二元运算满足交换律、结合律和吸收律),一般称为代数格。

四、子格

子格

- 设<L; 人人<l>人人人人人人</li
- 注意:
 - 子格也是一个格。因为当运算∨和∧限制在S上时,交换律、结合律和吸收律也是成立的。
 - $ullet \ orall a,b\in S(\subseteq L) o aee b,a\wedge b\in S$
 - 格是其自身的一个子格。

• 五、格的同态

• 定理6.7

- 设h 是从代数系统V1= <L1; ∨1, ∧1> 到代数系统V2= <L2; ∨2, ∧2> 的满同态,其中∨1, ∧1, ∨2, ∧2都是二元运算,若V1是格,则V2也是格。
- 格的同态像是格

• 定理6.8

• 设h 是从格<L1; \leq 1>到格<L2; \leq 2>的同态,则对任意的x, y \in L1, 如果 $x \leq_1 y$,则 $h(x) \leq_2 h(y)$ 。

• 定理6.9

• 给定代数系统V1=<L1; \lor_1 , \land_1 >, V2=<L2; \lor_2 , \land_2 >, 其中 \lor_1 , \land_1 , \lor_2 , \land_2 都是二元运算,若V1和V2是格,则V1×V2 也是格。

• 6.2 分配格和有补格

• 一、分配格

• 1. 分配格的定义

分配格

- 设<L; ∨, ∧>是一个格, 若对任意的l1, l2, l3∈L, 有
- $l_1 \wedge (l_2 \vee l_3) = (l_1 \wedge l_2) \vee (l_1 \wedge l_3)$
- $l_1 \vee (l_2 \wedge l_3) = (l_1 \vee l_2) \wedge (l_1 \vee l_3)$,
- 则称<L; <, <>是分配格。

【例 6.9】对任意的集合 $A_1 < 2^A_1 : \cup_{1} \cap 1 >$ 是一个分配格。

【例 6.10】图中给出的格(称为五角格)不是分配格。

因为

$$b = b \lor (d \land c) \neq (b \lor d) \land (b \lor c) = d$$
$$d = d \land (b \lor c) \neq (d \land b) \lor (d \land c) = b$$

所以运算不满足分配律。

【例 6.11】图中给出的格(称为钻石格)不是分配格。

因为 $b \wedge (c \vee d) = b \wedge e = b$,

 $\overrightarrow{\text{m}}$ $(b \land c) \lor (b \land d) = a \lor a = a$,

所以 $b \wedge (c \vee d) \neq (b \wedge c) \vee (b \wedge d)$ 。

• 2. 分配格的判别

• 定理6.10

• 在格<L; <, <>中, 如果交运算对并运算是可分配的,则并运算对交运 算也是可分配的;如果并运算对交运算是可分配的,则交运算对并运算 也是可分配的。

如果 < L; \lor , \land > 是分配格,则对任意的 l, a_1 , a_2 , ..., $a_n \in L$, 有

$$l \vee (\bigwedge_{i=1}^{n} a_i) = \bigwedge_{i=1}^{n} (l \vee a_i)$$

$$l \wedge (\bigvee_{i=1}^{n} a_i) = \bigvee_{i=1}^{n} (l \wedge a_i)$$

更一般地,对任意的 l_1 , l_2 , ..., l_m , a_1 , a_2 , ..., $a_n \in L$, 有

$$(\bigwedge_{i=1}^{m} l_i) \vee (\bigwedge_{i=1}^{n} a_i) = \bigwedge_{i=1}^{m} \bigwedge_{i=1}^{n} (l_i \vee a_i)$$

$$(\bigvee_{i=1}^{m} l_i) \wedge (\bigvee_{j=1}^{n} a_j) = \bigvee_{i=1}^{m} \bigvee_{j=1}^{n} (l_i \wedge a_j)$$

• 定理6.11

格为分配格的充分必要条件是,格中不存在与钻石格或五角格同构的子格。

例如下图给出的格都不是分配格。

• 推论6.2

• 任何小于5个元素的格均为分配格。

• 链

- 设<L; <>是一个偏序集,若对任意的 l_1 , $l_2 \in L$,或者 $l_1 < l_2$ 或者 $l_2 < l_1$,即 l_1 , l_2 可比,则称<L; <>是一个链。
- 此时的偏序称为全序或线序。

● 每一个链<L; <>都是一个分配格。

• 定理6.12

- 设 l_1 , l_2 , l_3 是分配格<L; \vee , \wedge >中的任意三个元素,那么当且仅当 l_1 $\vee l_2 = l_1 \vee l_3$, $l_1 \wedge l_2 = l_1 \wedge l_3$ 时,有 $l_2 = l_3$ 。
- 注:对于非分配格,定理6.12不成立。可用于反证一个格不是分配格。

二、有补格

• 1. 有界格

• 全上界,全下界

- 如果格<L; <>中存在一个元素a,对任何元素l∈L,均有l≤a (a≤l),则
 称a 为格的全上界(全下界)。
- 一个格若有全上界(全下界),则是唯一的。
- 通常将全上界记为"1",而将全下界记为"0"。

• 有界格

- 既有全下界又有全上界的格称为有界格。
- 在有界格中,对任意的l ∈L,有
- (1) 0 ≤l, l≤1_o
- (2) $| \lor 1 = 1$, $| \lor 0 = |$, $| \land 1 = |$, $| \land 0 = 0$.
- 注:在有界格的次序图中,必有唯一一个称为"1"的结点位于图的最上层,也必有唯一一个称为"0"的结点位于图的最下层,并且从任一其它结点出发经过向上的路径都可以到达结点1,而从任一其它结点出发经过向下的路径都可以到达结点0。

• 定理6.14

- 每个有限格都是有界格。
- 对于无限格L来说,有些是有界格,有些不是有界格。
 - 例如
 - (1) 格<Z; <> 既无全下界,又无全上界,不是有界格。
 - (2) 格 <N; ≤>有全下界0, 但没有全上界, 也不是有界格。
 - (3) 在格 $< 2^U$; $\subseteq >$ 中,无论U 是什么样的集合,均有全下界 Φ 和全上界U,因此是有界格。

• 2. 补元素

补元素

- 设<L; ∨, ∧>是一个有界格, a∈L, 若存在元素b∈L, 使得a∨b=1, a∧b=0, 则称b是a的补元素。
- 若b是a的补元素,则a也是b的补元素。因此a和b互为补元素。
- 在任一有界格中, 0和1互为补元素。
- 例子表明,在有界格中,
 - 并非每一个元素都有补元素。

• 若某元素有补元素,则其补元素不一定唯一。

• 3. 有补格

有补格

设<L; V, A>是一个有界格,如果L中每一个元素都有补元素,则称
 L; V, A>是有补格。

【例 6.17】考虑下图所示的四个格。

 L_1 中的a与c互为补元,其中a,c分别为全下界和全上界,b没有补元。 L_1 不是有补格。

 L_2 中的a与d互为补元,其中a,d分别为全下界和全上界,b与c也 互为补元。 L_2 是有补格。

 L_3 中的a与e互为补元,其中a,e分别为全下界和全上界,b的补元是c和d,c的补元是b和d,d的补元是b和c。 L_3 是有补格。

 L_4 中的a与e互为补元,其中a,e分别为全下界和全上界,b的补元是c和d,c的补元是b,d的补元是b。 L_4 是有补格。

• 三、有补分配格

- 有补分配格, 布尔格
 - 既是有补格又是分配格的格称为有补分配格,也称为布尔格。
 - 性质:
 - 在有补分配格<L; v, ^>中,任一元素的补元素是唯一的。
 - 记的补元素为l'或 \bar{l} 。
 - (对合律) 在有补分配格<L; ∨, ∧>中, 对每一个l∈L, 有(l')'=l。
 - (德·摩根定律) 在有补分配格< L; \lor , \land >中,对于任意的 l_1 , l_2 \in L, 有
 - (1) $(l_1 \lor l_2)' = l_1' \land l_2';$
 - (2) $(l_1 \wedge l_2)' = l_1' \vee l_2'$.
 - 在有补分配格< L; \vee , \wedge >中,对任意的 l_1 , l_2 \in L, $l_1 \leq l_2$ 当且仅当 l_2 $' \leq l_1$ '当且仅当 $l_1 \wedge l_2$ ' = 0 当且仅当 l_1 \vee l_2 = 1

• 6.3 布尔代数

• 一、布尔代数的基本概念

• 布尔代数

- 如果一个格是有补分配格,则称其为布尔代数。一般记作<B; v, A, '>, 其中'为求补运算(一元运算)。
- 设<B; v, ^, '>是一个代数系统, v和 ^是B上的二元运算, '是一元运算, 若这些运算满足交换律、分配律、同一律和互补律,则称<B; v, ^, '>是布尔代数。
- 布尔代数 < B; ∨, ∧, '> 具有如下基本性质: 对于B中任意元素x, y, z, 有

- (1) 交换律: x∨y=y∨x, x∧y=y∧x
- (2) 结合律:
 - $x \lor (y \lor z) = (x \lor y) \lor z$
 - $x \wedge (y \wedge z) = (x \wedge y) \wedge z$
- (3) 幂等律: x∨x=x, x∧x=x
- (4) 吸收律: x∨(x∧y)=x, x∧(x∨y)=x
- (5) 分配律:
 - $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$
 - $x \lor (y \land z) = (x \lor y) \land (x \lor z)$
- (6) 同一律: x∨0=x, x∧1=x
- (7) 零一律: x∨1=1, x∧0=0
- (8) 互补律: x∨x′=1, x∧x′=0
- (9) 对合律: (x')'= x
- (10) 德·摩根定律:
 - $(x \lor y)' = x' \land y'$
 - $(x \wedge y)' = x' \vee y'$

注意:

- 以上十条性质均可由交换律、分配律、同一律和互补律这四条基本定律 导出(课后练习)。
- 这四条基本定律中每一条都包含了互为对偶的两个关系式,即将一个关系式中的 v, A, 0, 1分别改为 A, v, 1, 0,则可得到另一个关系式。
- 布尔代数的任一由这些基本关系式所导出的关系式的对偶,亦可由这些基本关系式的对偶导出。
- 单位元,零元
 - 对运算 >: 0 是单位元, 1 是零元;
 - 对运算 ∧: 1 是单位元, 0是零元。
 - 单位元和零元都唯一。

• 代数系统的格:

• 布尔代数

• 设<B; <, <, <, '>是一个代数系统, <和 < 是B上的二元运算, '是一元运算, 若这些运算满足交换律、分配律、同一律和互补律,则称 < B; <, <, <, '>是布尔代数。

• 子布尔代数

设<B; v, A, '>是一个布尔代数, <S; v, A, '>是<B; v, A, '>的子代数,则称<S; v, A, '>为<B; v, A, '>的子布尔代数。

注:

• 布尔代数的子代数也是一个布尔代数。

• 布尔代数是其自身的一个子布尔代数。

• 定理6.19

• 设h 是从代数系统V1= <L1; <1, <1, '1> 到代数系统V2= <L2; <2, <2, '2> 的满同态,其中 <1, <1, <2, <2都是二元运算,'1,'2都是一元运算,若V1是布尔代数,则V2也是布尔代数。

满同态传递运算性质

• 推论6.3

• 布尔代数的同态像是布尔代数。

• 定理6.20

• 给定代数系统V1=<L1; V1, A1, '1>和V2=<L2; V2, A2, '2>, 其中V1, A1, V2, A2都是二元运算, '1, '2都是一元运算, 若V1和V2是布尔代数,则V1×V2也是布尔代数。

• 二、布尔代数的性质

• 元素a盖住b

- 设a, b是格<L; <>中的两个元素,如果b≤a且b≠a(记为b<a),以及格中无其它别的元素c,使得b<c和c<a(记为b<c<a),则称元素a盖住b。
- 若a 为原子,则不存在元素c∈L,使得0 <c<a。
- 从关系≼的次序图上看,从全下界结点0出发经过一条边就能够到达的结点就是原子。
- 格中的原子不一定唯一。
- 定理6.21
 - 若格中有原子a, b, 且a≠b, 则必有a∧b=0。

• 定理6.22

- 对于布尔代数,原子具有如下性质:
 - (1) 元素a 是原子当且仅当0 <a, 且对任意的x∈B, 有x∧a=a 或 x∧a=0。
 - (2) 若元素a 是原子,则对任意的x,y∈B, a≤x∨y 当且仅当a≤x 或a≤y。
 - (3) 若元素a, b是原子,则有a=b或a∧b=0。
 - (4) 对有限布尔代数中任意非零元素b,总有一个原子a,使得a≤b。
 - (5) 对有限布尔代数中任意元素b,设 $A(b)=\{x|x\in B,\;x$ 是原子且 $x\preccurlyeq b\}=\{a_1,\;a_2,\;\dots,\;a_m\}$,则 $b=a1\lora2\lor\dots\loram$ 且表达式唯一。

• 定理6.23

• 设<B; \lor , \land , '>是有限布尔代数, S是其所有原子的集合,则<B; \lor , \land , '>和< 2^S ; \cup , \cap , \rightarrow 同构, 这里将集合的补运算记为~以示区别。

• 推论6.4

• 任何有限布尔代数的域的基数必定等于 2^n ,其中n 是该布尔代数中所有原子的个数。

• 推论6.5

• 任何等势的有限布尔代数都是同构的。

以上内容整理于 幕布文档

