- 1. 2.2.1. Determine which trees have Prufer codes that
 - a) contain only one value,
 - b) contain exactly two values, or
 - c) have distinct values in all positions.

Solution, part a:

Stars have only one value in their Prufer code.

Solution, part b:

Double brooms have exactly two values in their Prufer code.

Solution, part c:

Trees with only two leaves have distinct values in all positions of their Prufer code.

2. 2.2.7. Use Cayley's Formula to prove that the graph obtained from K_n by deleting an edge has $(n-2)n^{n-3}$ spanning trees.

Solution:

Consider the endpoints u and v of the edge that is deleted from K_n . Then d(u) = d(v) = n - 2. Without loss of generality, suppose we delete v. The resulting graph is K_{n-1} , which has 2^{n-3} spanning trees by Cayley's Formula. Adding back v and the n-2 edges incident to it yields the original graph. Hence, since there are n-2 possibilities for connecting v to the spanning trees in K_{n-1} , the original graph has $(n-2)2^{n-3}$ spanning trees.

- **3.** 2.2.8. Count the following sets of trees with vertex set [n], giving two proofs for each: one using the Prufer correspondence and one by direct counting arguments
 - a) trees that have 2 leaves
 - b) trees that have n-2 leaves

Solution, part a:

First, direct counting. A tree with exactly 2 leaves on n vertices is P_n . Thus, there are n! ways to arrange the vertices. Since reversing the order of the vertices produces the same tree, there are n!/2 trees with vertex set [n] that have 2 leaves. Now, the Prufer correspondence counting. Note that all the entries of the Prufer code will be distinct. Then, applying the Prufer code, there are n options for the first entry, then n-1 choices for the next one, and n-3 for the next, etc. This continues until there are 2 vertices left. Hence, there a n!/2 trees that have 2 leaves.

Solution, part b:

First, Prufer correspondence counting. Note that trees that have n-2 leaves are double brooms. Thus, there are exactly two values in the Prufer code. There are n options for the first entry, then n-1 options for the second entry. For the remaining n-4 slots

in the Prufer code, each has 2 choices. Hence, there are $n(n-1)2^{n-4}$ trees that have n-2 leaves. Now we count directly. There are $\binom{n}{2}$ ways to pick the two centers of the double broom. There are n-2 neighboring vertices left to assign. There are 2 choices for each neighbor, either one center or the other. Yet, since flipping the graph over its double center produces the same graph, $\binom{n}{2}2^{n-2}$ overcounts by a factor of 2. Hence, there are $\binom{n}{2}2^{n-3}$ trees that have n-2 leaves, which equivalent to the result from Prufer correspondence.

4. 2.3.2. Prove or disprove: If T is a minimum-weight spanning tree of a weighted graph G, then the u, v-path in T is a minimum-weight u, v-path in G.

Solution:

False. Let G be the graph below. $T = \{vw, ws, st, tu\}$ is a minimum weight spanning tree for G. Yet, on T, d(u, v) = 7 while on G, d(u, v) = 5.

5. 2.3.4. In the graph below, assign weights (1,1,2,2,3,3,4,4) in two ways one way so that the minimum-weight spanning tree is unique, and another way so that the minimum-weight spanning tree is not unique.

Solution:

In the left graph below, $T = \{ab, bc, ce, cd\}$ and $T' = \{ab, bc, cd, de\}$ are distinct minimum weight spanning trees. In the right graph below, $T' = \{ab, bc, cd, de\}$ is the only minimum weight spanning tree.

6. 2.3.9. Let *F* be a spanning forest of a connected weighted graph *G*. Among all edges of *G* having endpoints in different components of *F*, let *e* be one of minimum weight. Prove that among all the spanning trees of *G* that contain *F*, there is one of minimum weight that contains *e*. Use this to give another proof that Kruskal's Algorithm works.

Solution:

Let T be a minimum weight spanning forest containing F. Consider two components, C and C' of F connected by e in G. If T connects C to C' directly, then it either uses eor another edge with the same weight as e. Without loss of generality, suppose in that case that T uses e. Then, to connect C to C', T either uses e or there is a path through other components of F not containing e of equal or lesser weight compared to e. Hence, a path from C to C' in T that doesn't use e must go through other components using connecting edges that have weights equal to or greater than the weight of e. Even if the edges between components of F that T uses are of the same weight as e, T would have to use at least two of them to connect C to C' because it is moving through at least one extra component in F. Hence, this path will be of more weight than a path containing e. Therefore, T is a minimum weight spanning tree containing F that contains e. To show that Kruskal's algorithm works, we consider a spanning forest F of G that has no edges. This is the same start as Kruskal's algorithm. Then, we add an edge e that reduces the number of components in F and is of minimum weight. By the above proof, there must be a minimum weight spanning tree containing e. This will be true for each step of Kruskal's algorithm by the above proof. Hence, Kruskal's algorithm must be true.