Unité d'enseignement Mathématiques et informatique

Apprentissage Par Projet

Entraîner un réseau de neurones à classifier des images

Acquis d'apprentissage visés

À la fin de cet apprentissage par projet de 3 séances de 3 heures, chaque étudiant saura :

- ▷ Programmer en langage Python un réseau de neurones (dense ou convolutif) dédié à la classification d'images en utilisant les modules tensorflow2 et keras.
- ▷ Constituer une banque de données d'entraînement et de test.
- ⊳ Conduire l'entraînement supervisé d'un réseau de neurones en utilisant une banque de données spécifique.
- > Exploiter en situation opérationnelle un réseau de neurones entraîné.

→ Planification suggérée des 3 séances d'APP

Au cours des 3 séances, les étudiants travaillent en autonomie par équipe de 3 ou 4 avec leurs ordinateurs portables, dans un **Environnement Virtuel Python** (EVP) minfo_ml spécialement créé pour cet APP.

- → Travail préliminaire : à faire avant les 3 séances avec un accès Internet haut-débit
 - ▷ Télécharger les documents de travail depuis l'ENT SAVOIR.
 - ▷ Créer l'EVP minfo_ml puis installer les modules Python nécessaires au Machine Learning (détails page suivante).
- → Séance 1 : auto-formation
 - b travail personnel avec les trois notebooks ML1_MNIST.ipynb, ML2_DNN.ipynb, et ML3_DNN_suite.ipynb pour apprendre à charger les images MNIST, construire un réseau de neurones dense et l'entraîner à reconnaître les images du MNIST.
 - ⊳ travail personnel avec le *notebook* ML4_CNN.ipynb pour apprendre à construire un réseau de neurones convolutif et à l'entraîner à reconnaître les images du MNIST.
- → Séance 2 : fin auto-formation, début projet
 - > suite et fin du travail avec les *notebooks*.
 - ⊳ **Projet** : Recherche d'une banque de données (images ou autre) propre à l'équipe, entraînement supervisé d'un réseau de neurones à classifier les données choisies, exploitation en situation opérationnelle du réseau de neurones entraîné.
- → Séance 3 : fin du projet
 - > suite et fin du projet. Préparation du rendu.
 - Dernière heure : Évaluation finale, rendu du projet par équipe.

→ Travail péliminaire – Télécharger les documents, configurer l'EVP minfo_ml, s'auto-former aux réseaux de neurones

Télécharge l'archive APP-ML···. zip depuis la plate-forme SAVOIR et extrait le dossier APP-ML sur ton ordinateur portable. Une fois extrait, le contenu du dossier APP-ML est le suivant :

Possier Cours: contient le fichier PDF de l'amphi "Comprendre et utiliser le *Machine Learning*".

Dossier Notebook: contient les *notebooks* d'auto-formation ML···.ipynb.

Fichier Consignes.pdf: le présent document.

Fichier requirements.txt: liste les modules Python nécessaires au travail de l'APP.

Créer et configurer l'Environnement Virtuel Python minfo_ml

- ▷ Ouvre une console "Anaconda Prompt" (Windows) ou un terminal (Mac ou Linux).
- ▷ Créé l'EVP minfo_ml en tapant la commande : conda create -n minfo_ml python=3.8 puis réponds aux questions pour télécharger et installer les paquets Python...
- □ Active l'EVP minfo_ml en tapant la commande : conda activate minfo_ml

Les modules nécessaires à l'APP sont ensuite installés en utilisant le fichier requirements.txt:

- Positionne-toi dans le dossier APP-ML: (Windows) → cd C:\<chemin du dossier APP-ML copié-collé avec le navigateur de fichiers> (Mac/Linux) → cd /home/···/APP-ML
- ▷ Charge les modules en tapant la commande : pip install -r requirements.txt Les modules et leurs dépendances sont téléchargés et installés...
- ▷ Complèter l'installation en tapant la commande :conda install numpy pydot pydotplus

→ Séance 1 – Auto-formation au Machine Learning

Auto-formation: travail personnel avec les notebooks de l'APP

Les *notebooks* de l'APP permettent d'acquérir les savoir-faire nécessaires à la construction de réseaux de neurones dense et convolutif, et à les entraîner à classifier les images de la banque MNIST (chiffres écrits à la main).

Chaque étudiant doit s'auto-former en travaillant les *notebooks* avec un processus *jupyter notebook* lancé dans l'EVP minfo_ml.

Les 3 premiers *notebooks* doivent être travaillés dans cette séance de travaille et le *notebook* ML4_CNN.ipynb devrait être largement entamé...

→ Séance 2 – Fin de l'auto-formation, début du projet

Fin de l'auto-formation personnelle avec les notebooks

Fin du travail personnel avec le *notebook* ML4 CNN.ipynb.

Projet : Entraîner un réseau de neurone avec une banque de données spécifique

Pour ce projet d'équipe, les étapes sont :

- 1. Choix d'une banque de données spécifique à votre projet à trouver sur Internet (images ou autre...).
- 2. Choix du réseau (dense ou convolutif) à entraîner, en utilisant les acquis d'apprentissage de votre auto-formation.
- 3. Entraînement supervisé du réseau de neurones avec la banque de données choisie, évaluation avec des données de test des performances du réseau entraîné.
- 4. Si possible, performance du réseau à classifier de nouvelles données (hors banque de données de test).

Le projet est conduit par l'équipe qui doit répartir entre ses membres les tâches à réaliser pour le projet.

→ Séance 3 : projet et rendu

Projet : Entraîner un réseau de neurone avec une banque de données spécifique Suite et fin du projet.

Préparation du notebook de rendu du projet

L'équipe prépare un rendu sous la forme d'un *notebook* qui pourra être créé par "copié/collé/modifié" de cellules des *notebooks* travaillés. Le fichier template.ipynb donne des exemples de mise en forme en utilisant des cellules *Markdown*.

Le notebook rendu devra à minima présenter les points suivants :

- > Structure et contenu de la banque de données choisie.
- > Structure et entraînement du réseau de neurones choisi : stratégie d'entraînement et d'évaluation, résultats (courbes de performance...).
- ▷ Si possible, performance du réseau à classifier de nouvelles données (hors banque de données d'entraînement ou de test).

En fonction de l'état sanitaire à la date de la dernière séance, le *notebook* de l'équipe sera présenté à l'oral à l'enseignant sur une durée de 20 minutes dans la dernière heure de la dernière séance, ou bien envoyé à l'enseignant au plus tard une semaine après la dernière séance.

Critères d'évaluation du rendu :

- aptitude à mettre en oeuvre les acquises d'apprentissage visés;
- aptitude à présenter le contenu du projet;
- aptitude à présenter et critiquer les résultats obtenus.