Cheat Sheet

Anton Chen April 23, 2022

MATH 321 Real Variables II The University of British Columbia Vancouver, B.C.

Part I Definitions

6 The Riemann-Stieltjes Integral

Definition 6.1 (Partition). A partition P of [a, b] is:

$$P = \{x_0 = a, \cdots, x_n = b\}$$

such that $x_{i-1} \leq x_i$.

Definition 6.2 (Upper Riemann Integral).

$$\int_{a}^{b} f \, dx = \inf_{P} U(P, f),$$

over all partitions P of [a, b].

Definition 6.2 (Riemann-Stieltjes Integral). Suppose

- 1. $\alpha : [a, b] \to \mathbb{R}$ is monotonically increasing.
- 2. $f: [a, b] \to \mathbb{R}$.

We say f is Riemann-Stieltjes integrable on [a,b] (i.e. $f \in \mathcal{R}_{\alpha}[a,b]$) if:

$$\overline{\int_a^b} f \, d\alpha = \int_a^b f \, d\alpha.$$

Definition 6.3 (Refinement). Let P_1, P_2, P^* be partitions of [a, b].

- 1. P^* is a refinement of P_1 if $P_1 \subset P^*$.
- 2. P^* is the common refinement of P_1 and P_2 if $P^* = P_1 \cup P_2$.

Definition 6.14 (Step Function).

$$I(x) = \begin{cases} 0 & \text{if } x \le 0\\ 1 & \text{else.} \end{cases}$$

Definition 6.23 (Improper Integral). Suppose $f: [a, b] \to \mathbb{R} \in \mathcal{R}_{\alpha}[a, b] \ \forall b > a$. The improper integral is defined as:

$$\int_{a}^{\infty} f(x)dx = \lim_{b \to \infty} \int_{a}^{b} f(x)dx.$$

7 Sequences and Series of Functions

Definition 7.7 (Uniform Convergence). For functions $f_n : E \to \mathbb{R}$, A sequence of functions $\{f_n\}$ converges uniformly to f if

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } \forall x \in E, n > N, |f_n(x) - f(x)| < \varepsilon.$$

Definition 7.9 (Uniform Convergence for Series). The series $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly if for partial sums

$$S_n = \sum_{k=1}^n f_k(x),$$

 $\{S_n\}$ converges uniformly.

Definition 7.14 (Supremum Norm). Let $f \in \mathcal{C}(X)$, where $\mathcal{C}(X) = \{f : X \to \mathbb{R} : f \text{ is bounded and continuous on } X\}$. The supremum (or infinity) norm of f is

$$||f|| = \sup\{f(x) \colon x \in X\}.$$

Definition 7.19 (Pointwise Bounded). A sequence of functions $\{f_n\}$ (with $f_n \colon E \to \mathbb{R}$) is pointwise bounded if $\exists \phi \colon E \to \mathbb{R}$ s.t. $|f_n(x)| < \phi(x) \ \forall x \in E, n \in \mathbb{N}$.

Definition 7.20 (Uniform Bounded). $\{f_n\}$ is uniform bounded if the sequence is pointwise bounded for some $\phi(x) = M \ \forall x \in E$.

Definition 7.22 (Equicontinuity). A set of functions \mathcal{F} (with $f: E \to \mathbb{R}$ for $f \in \mathcal{F}$) is equicontinuous on E if

$$\forall \varepsilon > 0, \ \exists \delta > 0 \text{ s.t. } \forall x, y \in E, \ f \in \mathcal{F}, d(x, y) < \delta \implies |f(x) - f(y)| < \varepsilon$$

Definition 7.28 (Algebra). An algebra \mathcal{A} satisfies: $\forall f, g \in \mathcal{A}$,

- 1. $f + g \in \mathcal{A}$,
- 2. $cf \in \mathcal{A}$ for $c \in \mathbb{R}$,
- 3. $fg \in \mathcal{A}$.

A set of functions which are closed under addition, scalar multiplication, and regular multiplication.

Definition 7.29 (Uniform Closure).

$$\overline{\mathcal{A}} = \{ f \colon E \to \mathbb{R} \mid \exists \{ f_n \} \subset \mathcal{A} \text{ s.t. } f_n \to f \text{ uniformly.} \}$$

The set of functions that an algebra can uniformly approximate. Or the set of limit points of an algebra w.r.t. the supremum norm.

Definition 7.30 (Separates points). An algebra \mathcal{A} on X separates points if

$$\forall x, y \in X \text{ s.t. } x \neq y, \exists f \in \mathcal{A} \text{ s.t. } f(x) \neq f(y).$$

(We can choose functions from the algebra to make an injection)

Definition 7.31 (Vanishes at no point). An algebra $\mathcal A$ on X vanishes at no point if

$$\forall x \in X \,\exists f \in \mathcal{A} \text{ s.t. } f(x) \neq 0.$$

(Every point is non-zero at least for one function)

8 Power Series, etc.

Definition 8.1 (Exponential function). For $z \in \mathbb{C}$,

$$\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}.$$

Note that we can choose any z since the series has infinite radius of convergence.

Definition 8.2 (Logarithm). Define $\log: (0, \infty) \to \mathbb{R}$ such that

$$\log(\exp(x)) = x \qquad (For \ x \in \mathbb{R})$$

and

$$\exp(\log(y)) = y. (For y > 0)$$

Definition 8.3 (Inner product of functions). For $f, g: [a, b] \to \mathbb{C}$ where $f, g \in \mathcal{R}[a, b]$, the inner product is defined as

$$\langle f, g \rangle = \int_{a}^{b} f(x) \overline{g(x)} dx.$$

Note that a metric defined with the inner product is valid, but only on C([a, b]).

Definition 8.4 (Orthogonality of functions). Normal definition of orthogonality w.r.t. our definition of the inner product between functions.

A set of functions is orthogonal if all pairs of distinct functions are orthogonal.

Definition 8.5 (Fourier basis). $\{\phi_n\}$ is the Fourier basis where

$$\phi_n(x) = \frac{1}{\sqrt{2\pi}}e^{inx}.$$

Definition 8.6 (Fourier coefficient). For $f \in \mathcal{R}$, and an orthonormal basis $\{\phi_n\}$, the *n*th Fourier coefficient c_n is defined as:

$$c_n = \langle f, \phi_n \rangle.$$

Definition 8.7 (Fourier series). The fourier series of $f \in \mathcal{R}$ is:

$$\sum_{n=-\infty}^{\infty} c_n \phi_n$$

Definition 8.8 (Inner product between sequences). Let $\{c_n\}_{n\in\mathbb{Z}}$ and let $\{\gamma_n\}_{n\in\mathbb{Z}}$. Then

$$(c_n, y_n) = \sum_{n = -\infty}^{\infty} c_n \overline{\gamma}_n$$

9 Functions of Multiple Variables

Definition 9.11 (Differentiability of multi-variable function.). Let $E \subset \mathbb{R}^n$ be open, and let $f: E \to \mathbb{R}^m$ be differentiable on E. f is differentiable at x if \exists a linear map $A: E \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ s.t.

$$\lim_{h \to 0} \frac{|f(x+h) - f(x) - Ah|}{|h|} \to 0.$$

Definition 9.16 (Partial derivative). For $f: \mathbb{R}^n \to \mathbb{R}^m$,

$$\frac{\partial f_j}{\partial x_i}(x) = \lim_{h \to \infty} \frac{f_j(x + e_i h) - f_j(x)}{h}.$$

Definition 9.17 (Gradient). Applies to $f: \mathbb{E} \to \mathbb{R}$ where $E \subset \mathbb{R}^n$.

$$\nabla f(x) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(x)e_i.$$

${f Part~II}$ Theorems

6 The Riemann-Stieltjes Integral

Theorem 6.1 (Riemann Integrability). $f:[a,b] \to \mathbb{R}$ is Riemann integrable if

$$\overline{\int_a^b} f \, dx = \underline{\int_a^b} f \, dx.$$

Theorem 6.4 (Refinement Improves Integral). If P^* refines P, then

$$L(P, f, \alpha) \le L(P^*, f, \alpha) \le U(P^*, f, \alpha) \le U(P, f, \alpha).$$

Theorem 6.5 (Upper RS Integral Bounds Lower RS Integral).

$$\int_{a}^{b} f \, d\alpha \le \overline{\int_{a}^{b}} f \, d\alpha.$$

Theorem 6.6 (Characterization of RS Integrability). The following are equivalent:

- 1. $f \in \mathcal{R}_{\alpha}[a,b]$,
- 2. $\forall \varepsilon > 0 \ \exists P_{\varepsilon} \ such that \ U(P, f, \alpha) L(P, f, \alpha) < \epsilon$.

Theorem 6.8 (Continuous f Entails Integrability). Suppose

- 1. $f: [a,b] \to \mathbb{R} \in \mathcal{C}_0[a,b],$
- 2. $\alpha: [a,b] \to \mathbb{R}$ is monotonically increasing.

Then $f \in \mathcal{R}_{\alpha}[a,b]$.

Theorem 6.9 (Continuous α Entails Integrability). Suppose

- 1. f is monotonically increasing.
- 2. $\alpha \in \mathcal{C}_0[a,b]$,

Then $f \in \mathcal{R}_{\alpha}[a,b]$.

Theorem 6.10 (Continuous f or α Entails Integrability). Let $S = \{s_1, \dots, s_k\} \subset [a, b]$ be finitely many points.

- 1. f is continuous except for at $s_i \in S$.
- 2. α is monotonically increasing, and continuous at each s_i .

Then $f \in \mathcal{R}_{\alpha}[a,b]$.

 $\begin{array}{ll} \textbf{Theorem 6.11} \ \ (\textbf{Continuous Mapping On Function Preserves Integrability}). \\ Suppose \end{array}$

- 1. $f \in \mathcal{R}_{\alpha}[a,b]$,
- 2. $m \le f(x) \le M$ for $a \le x \le b$,
- 3. $\phi: [m, M] \to \mathbb{R} \in \mathcal{C}_0$,

Then $\phi \circ f \in \mathcal{R}_{\alpha}[a,b]$.

Theorem 6.12 (Linearity and Related Properties). Suppose $f, f_1, f_2 \in \mathcal{R}_{\alpha}[a, b]$.

- 1. Linearity of f.
 - (a) $f_1 + f_2 \in \mathcal{R}_{\alpha}[a, b]$.
 - (b) $cf \in \mathcal{R}_{\alpha}[a,b]$ (for $c \in \mathcal{R}$).
- 2. Integral preserves order.
 - If $f_1 \leq f_2$ on [a,b], then

$$\int_{a}^{b} f_1 \, d\alpha \le \int_{a}^{b} f_2 \, d\alpha$$

- 3. Limits of integration can be split.
 - $f \in \mathcal{R}_{\alpha}[a,c]$ and $f \in \mathcal{R}_{\alpha}[c,b]$. Particularly,

$$\int_{a}^{b} f \, d\alpha = \int_{a}^{c} f \, d\alpha + \int_{a}^{b} f \, d\alpha. \qquad (\text{Where } c \in (a, b))$$

4. Upper bound on integral.

$$\left| \int_{a}^{b} f \, d\alpha \right| \le M(\alpha(b) - \alpha(a)) \qquad \text{(Where } M = \sup\{f(x) \colon a \le x \le b\}\text{)}$$

- 5. Linearity of α .
 - Suppose $f \in \mathcal{R}_{\alpha_1}$ and $f \in \mathcal{R}_{\alpha_2}$.
 - Then $f \in \mathcal{R}_{\alpha_1 + \alpha_2}$ and

$$\int_a^b f d(\alpha_1 + \alpha_2) = \int_a^b f d\alpha_1 + \int_a^b f d\alpha_2.$$

Theorem 6.13 (Triangle inequality). For $f \in \mathcal{R}_{\alpha}[a, b]$,

$$\left| \int_a^b f \, d\alpha \right| \le \int_a^b |f| d\alpha.$$

Theorem 6.14 (Product of two integrable functions is integrable). If $f, g \in \mathcal{R}_{\alpha}[a, b]$, then $fg \in \mathcal{R}_{\alpha}[a, b]$.

Theorem 6.15 (Integrator step at continuous point extracts value). Suppose

- 1. f is bounded,
- 2. f is continuous,
- 3. $s \in (a, b)$,
- 4. $\alpha(x) = I(x-s)$.

Then,

$$\int_{a}^{b} f \, d\alpha = f(s).$$

Theorem 6.16 (Infinite step integrator). Suppose

- 1. $\alpha(x) = \sum_{i=1}^{\infty} c_i I(x s_i)$
 - Where $c_n \geq 0$ such that $\sum_{i=1}^{\infty} c_i < \infty$,
 - and $\{s_i\}$ are distinct points,
- 2. f is continuous.

Then

$$\int_{a}^{b} f \, d\alpha = \sum_{i=1}^{\infty} c_{i} f(s_{i}).$$

Theorem 6.17 (Explicit Form of Integrator). Suppose

- 1. $\alpha \in C_1[a,b]$ and monotone.
- 2. $\alpha' \in \mathcal{R}_{\alpha}[a,b]$.

Then,

$$\int_{a}^{b} f \, d\alpha = \int_{a}^{b} f(x)\alpha'(x)dx$$

Theorem 6.19 (Change of Variables). Suppose

- 1. ϕ is
 - (a) Strictly increasing on [a, b],
 - (b) Continuous on [a, b],
 - (c) Onto on [a, b].
- 2. $f \in \mathcal{R}_{\alpha}[a,b]$.

Then,

$$\int_a^b f \, d\alpha = \int_{\phi^{-1}(a)}^{\phi^{-1}(b)} (f \circ \phi) \, d(\alpha \circ \phi).$$

Theorem 6.20 (Continuity and Differentiability of Antiderivative). Let $f \in \mathcal{R}_{\alpha}[a,b]$ with $x \in [a,b]$. If we define

$$F(x) = \int_{a}^{x} f(t)dt,$$

then

- 1. F is continuous on [a, b],
- 2. For x_0 where f is continuous at x_0 , $F'(x_0) = f(x_0)$.

Theorem 6.21 (Fundamental Theorem of Calculus). If there exists F such that:

- 1. F is differentiable on [a, b]
- 2. F' = f,

$$F(b) - F(a) = \int_{a}^{b} f(x)dx$$

Theorem 6.22 (Integration By Parts). For differentiable F, G such that F' = f and G' = g,

$$\int_a^b F(x)g(x)dx = F(b)G(b) - F(a)G(a) - \int_a^b f(x)G(x)dx.$$

7 Sequences and Series of Functions

Theorem 7.8 (Cauchy Criterion for Uniform Convergence). $\{f_n\}$ converges uniformly with the Cauchy Criterion, i.e.

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } \forall n > m > N, x \in E, |f_m(x) - f_n(x)| < \varepsilon.$$

Theorem 7.10 (Weierstrass M Test). If $|f_n(x)| \leq M_n$ for all n > N and $x \in E$, where $\sum_{n=1}^{\infty} M_n$ is convergent. then $\{f_n\}$ converges uniformly.

Theorem 7.11 (Interchange of Limits with Uniform Convergence).

- 1. Suppose X is a metric space where $E \subseteq X$ and $f_n : E \to \mathbb{R}$ converges uniformly to $f : E \to \mathbb{R}$.
- 2. Also suppose that x is a limit point of E.
- 3. Finally, suppose $\lim_{t\to x} f_n(t)$ exists $\forall n$.

Then the limits can be interchanged, i.e.

$$\lim_{n \to \infty} \lim_{t \to x} f_n(x) = \lim_{t \to x} \lim_{n \to \infty} f_n(t)$$

Theorem 7.12 (Continuity preserved by uniform convergence). If

- 1. $f_n: E \to \mathbb{R}$ is continuous,
- 2. $f_n \to f$ uniformly,

then f is continuous on E.

Theorem 7.13 (Uniform convergence on a compact set). If K is compact and

- 1. $f_n: K \to \mathbb{R}$ is continuous,
- 2. $f_n \to f$ pointwise on K,
- 3. f is continuous,
- 4. $f_{n+1}(x) \le f_n(x) \text{ for } x \in K$,

then $f_n \to f$ uniformly on K.

In other words, on a compact domain, a decreasing sequence of continuous functions which converge to a continuous function converges uniformly.

Theorem 7.15 (C(X) is a complete metric space).

Theorem 7.16 (Integrability is preserved by uniform convergence). Suppose

- 1. $f_n \in \mathcal{R}[a,b]$,
- 2. $f_n \to f$ uniformly,

Then $f \in \mathcal{R}[a,b]$, and in particular,

$$\lim_{n \to \infty} \int_a^b f_n(x) dx = \int_a^b \lim_{n \to \infty} f_n(x) dx.$$

Corollary is that this works for when a series of functions converges uniformly.

Theorem 7.17 (Differentiability is preserved by uniform convergence). Suppose

- 1. f_n is differentiable on [a, b],
- 2. $f_n \to f$ uniformly for some f
- 3. $\frac{d}{dx}f_n(x_0) \to \frac{d}{dx}f(x_0)$ for some $x_0 \in [a,b]$ (anchor)

$$\lim_{n \to \infty} \frac{d}{dx} f_n(x) = \frac{d}{dx} \left(\lim_{n \to \infty} f_n(x) \right)$$

Theorem 7.18 (Existence of continuous but nowhere differentiable function). \exists continuous $f: \mathbb{R} \to \mathbb{R}$ s.t. f'(x) does not exist $\forall x \in \mathbb{R}$.

- Idea is that you keep adding spikes of increasing period, have the heights follow a geometric series so it converges.
- Then the f_n 's converge uniformly by M test.

Theorem 7.23 (Selection Theorem). Suppose

- 1. E is countable,
- 2. $f_n: E \to \mathbb{C}$ is pointwise bounded

Then $\exists \{f_{n_k}\}\$ that is pointwise convergent.

Bounded implies convergent subsequence applied to entire function.

Theorem 7.24 (Uniform convergence implies Equicontinuity on a compact domain). Suppose

- 1. K is compact,
- 2. $f_n: K \to \mathbb{R}$ is continuous,
- 3. $f_n \to f$ uniformly,

then $\{f_n\}$ is equicontinuous.

Theorem 7.25 (Arzelà-Ascoli Theorem). Suppose

- 1. K is compact,
- 2. $f_n: K \to \mathbb{R}$ where $\{f_n\}$ is pointwise bounded and equicontinuous, then
 - 1. $\{f_n\}$ is uniformly bounded,
 - 2. $\{f_n\}$ has a uniformly convergent subsequence $\{f_{n_k}\}$.

An equicontinuous and pointwise bounded sequence of functions on a compact domain has a uniformly continuous subsequence (and is also uniformly bounded).

Theorem 7.26 (Weierstrass Theorem). Suppose $f:[a,b] \to \mathbb{R}$ is continuous. Then \exists polynomials $\{P_n\}$ s.t.

$$\forall \varepsilon > 0, \exists N \text{ s.t. } n \geq N \implies ||P_n - f|| < \varepsilon.$$

(Any continuous function can be uniformly approximated by a sequence of polynomials on a closed interval.)

Theorem 7.27 (Uniform Closure of an Algebra is an Algebra).

Theorem 7.31 (We can find a function that goes through two points). Let A be an algebra that separates points and vanishes at no point. Then

$$\forall x, y \in \mathcal{K} \ (x \neq y), \ \forall c, d \in \mathbb{R}, \ \exists f \in \mathcal{A} \ s.t. \ f(x) = c \ and \ f(y) = d.$$

Theorem 7.32 (Stone-Weierstrass Theorem). The uniform closure of any algebra of continuous functions on a compact set K which:

- 1. Separates points,
- 2. Vanishes at no points,

is C(K). The complex case also requires the algebra to be self-adjoint $(f \in \mathcal{A} \implies \overline{f} \in \mathcal{A})$.

(optimality of C(K))

8 Power Series

Theorem 8.1 (Convergent power series converges uniformly). If $f(x) = \sum c_n x^n$ converges on |x| < R, then $f_n : [-R + \varepsilon, R - \varepsilon]$ converges uniformly $\forall \varepsilon > 0$ (partial sum).

Furthermore, the derivative is well-defined for |x| < R,

$$f'(x) = \sum nc_n x^{n-1}.$$

Theorem 8.2 (Abel's Theorem). Suppose

- 1. $\sum c_n$ converges,
- 2. $f(x) = \sum c_n x^n$ has radius of convergence 1.

Then

$$\lim_{x \to 1^{-}} f(x) = \sum c_n.$$

(Consistent behavior as we approach radius of convergence).

Theorem 8.3 (Interchange of summation order). If

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |a_{ij}| < \infty,$$

then

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij} = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{ij}.$$

Theorem 8.4 (Taylor Series). If $\sum c_n x^n$ converges on |x| < R, then $\forall |a| < R$,

$$f(x) = \sum_{i=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

at least on |x-a| < R - |a|.

(We can center a Taylor series within the radius of convergence).

Theorem 8.5 (Series on limiting sequence uniquely identifies sequence.). Let $\sum a_n x^n$ and $\sum b_n x^n$ have the same radius of convergence $\geq R$. Also suppose that $D \subset (-R, R)$ has a limit point in (-R, R). If $\sum a_n x^n = \sum b_n x^n \ \forall x \in D$, then $a_n = b_n$.

Theorem 8.8 (Fundamental Theorem of Algebra). All complex polynomials have a root.

Theorem 8.11 (Optimality of partial Fourier series coefficients). Suppose $f \in \mathcal{R}[a,b]$ and $\{\phi_n\}$ is orthonormal. Then let $S_n = \sum_{m=1}^n c_m \phi_m$ and let $T_n = \sum_{m=1}^n a_m \phi_m$. Then

$$||f - S_n||_2 \le ||f - T_n||_2$$

 $\forall n.$ Equality only holds if $a_m = c_m \ \forall m.$ Note this is w.r.t. L2 norm (defined with inner product), and not infinity norm.

Corollaries:

• $||S_n||_2^2 \le ||f||_2^2$.

Theorem 8.12 (Changes in definition). *Now*

- 1. We only consider functions $f: [-\pi, \pi] \to \mathbb{C}$.
- 2. $\langle f, g \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \bar{g}(x) dx$.

Theorem 8.14 (Lipchitz continuity implies convergence of Fourier series). Suppose $x \in [-\pi, \pi]$, and $f: [-\pi, \pi] \to \mathbb{C}$. If $\exists \delta, M > 0$ s.t.

$$|f(x+t) - f(x)| \le M|t|$$

 $\forall |t| < \delta$, then

$$\lim_{N \to \infty} S_N(x) = f(x).$$

Theorem 8.15 (Trig polynomial approximation). All 2π -periodic continuous functions can be uniformly approximated by a trig polynomial.

Let $f: \mathbb{R} \to \mathbb{C}$ be 2π -periodic. Then $\forall \varepsilon > 0, \exists a \text{ trig polynomial in the form}$

$$p_N(x) = \sum_{n=-N}^{N} a_n e^{inx}$$

s.t. $||p_N - f|| < \varepsilon$.

Theorem 8.16 (Convergence of Fourier series in L2). For $f \in \mathcal{R}[-\pi, \pi] \to \mathbb{C}$,

- 1. $\lim_{N\to\infty} ||f S_N(f)||_2 = 0$.
- 2. Parseval relation: $\langle f, g \rangle = (c, \gamma)$.
 - Bessel's inequality follows from this: $||f||_2^2 = (c,c) = \sum_{n=-\infty}^{\infty} |c_n|^2$.

9 Functions of Multiple Variables

Theorem 9.1 (Banach fixed-point/contraction mapping theorem). A contraction mapping theorem has a unique fixed point.

Let (X,d) be a complete metric space. If the map $\varphi \colon X \to X$ satisfies $d(\varphi(x), \varphi(y)) \le cd(x,y)$ for some c < 1 and $\forall x \in X$, then $\exists ! x \in X$ s.t. $\varphi(x) = x$.

Theorem 9.12 (Uniqueness of derivative A).

Theorem 9.15 (Chain rule). Let $f: E \to \mathbb{R}^m$ where $E \subset \mathbb{R}^n$ is open, and let $g: V: \mathbb{R}^k$ where $V \subset \mathbb{R}^m$ is open s.t. $f(E) \subset V$. Let f be differentiable at x and let x be differentiable at x, where

$$(g \circ f)'(x) = g'(f(x))f'(x).$$

Theorem 9.16 (Derivative linear map is defined by the Jacobian). Suppose $f: E \to \mathbb{R}^m$ where $E \subset \mathbb{R}^n$ is open. If f is differentiable, then $\frac{\partial f_j}{\partial x_i}$ exists and $A = the\ Jacobian\ of\ f$.

Theorem 9.17 (Lipchitz continuity defined by bounded derivative). Suppose $f: E \to \mathbb{R}^m$ where $E \subset \mathbb{R}^n$ is convex. Also suppose that f is differentiable and ||f'(x)|| < M for some M and for all x. Then f is Lipchitz continuous on E, and in particular

$$||f(a) - f(b)|| \le M|a - b|$$

 $\forall a, b \in E$.

Theorem 9.18 (Inverse function theorem in one dimension). If $f: \mathbb{R} \to \mathbb{R}$ is strictly monotone and differentiable, then $g = f^{-1}$ is also differentiable, where $g'(f(x)) = \frac{1}{f'(x)}$. In particular, $f'(x) \neq 0 \ \forall x$.

Theorem 9.19 (Inverse Function Theorem (multiple variables)). Let $f: E \to \mathbb{R}^n$ where $E \subset \mathbb{R}^n$ is open. Also suppose f is continuously differentiable and f'(x) is invertible $\forall x \in E$.

Then \exists an open $V \subset f(E)$ s.t. f is a bijection. If we define $g: V \to E$ to be the inverse, g is also continuously differentiable where g'(f(x))f'(x) = I.