Chương 3: Không gian véctơ

Giảng viên: PGS. TS. Nguyễn Duy Tân email: tan.nguyenduy@hust.edu.vn

Viện Toán ƯDTH, HUST

Tháng 10, 2021

Nội dung

- 1 3.1. Khái niệm không gian véctơ
 - 3.1.1. Định nghĩa, ví dụ
 - 3.1.2. Tính chất cơ bản
- 3.2. Không gian véctơ con
 - 3.2.1. Định nghĩa
 - 3.2.2. Không gian con sinh bởi hệ véctơ
- 3.3. Cơ sở và số chiều
 - 3.3.1. Độc lập tuyến tính, phụ thuộc tuyến tính
 - 3.3.2. Cơ sở và số chiều
 - 3.3.3. Tọa độ của véc tơ đối với một cơ sở
 - 3.3.4. Hạng của hệ véctơ

3.1.1. Định nghĩa, ví dụ

Cho K là trường số thực $\mathbb R$ hoặc trường số phức $\mathbb C$.

Định nghĩa

Cho V là một tập khác rỗng, cùng với hai phép toán:

Phép cộng véctơ:

$$+: V \times V \to V$$

 $(u, v) \mapsto u + v$

Phép nhân véctơ với vô hướng:

$$\cdot: K \times V \to V$$

 $(a, v) \mapsto av$

Tập V cùng với hai phép toán này được gọi là một không gian véctơ trên K, hay K-không gian véctơ nếu các điều kiện (tiên đề) sau đây được thỏa mãn.

Với mọi $u, v, w \in V$, với mọi $a, b \in K$:

- **2** \exists **0** \in *V*: v + **0** = **0** + v = v,
- **3** $\forall v \in V$, $\exists v' \in V$: $v + v' = v' + v = \mathbf{0}$,
- u + v = v + u,
- (a+b)v = av + bv,
- $oldsymbol{a}$ a(bv) = (ab)v,
- **3** 1v = v.
- Phần tử của không gian vécto V được gọi là vécto. Phần tử thuộc K được gọi là vô hướng.
- ullet Các điều kiện 1-4 nói rằng V với phép cộng là một nhóm giao hoán.
- ullet Phần tử $oldsymbol{0}$ trong đk 2 được gọi là véctơ không. (Giáo trình: ký hiệu heta.)
- Phần tử v' trong đk 3 được gọi là vécto đối của v, ký hiệu -v.

- Xét $\mathbb{R}^n = \{(x_1, \dots, x_n) \mid x_1, \dots, x_n \in \mathbb{R}\}.$
- Trang bị hai phép toán:

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n),$$

 $a(x_1,\ldots,x_n)=(ax_1,\ldots,ax_n).$

- ullet Tập \mathbb{R}^n cùng với hai phép toán ở trên là một không gian véctơ trên \mathbb{R} .
- Véctơ không là $\mathbf{0} = (0, 0, \dots, 0)$.
- Véc tơ đối của $v=(x_1,\ldots,x_n)$ là $-v=(-x_1,\ldots,-x_n)$.

- Tập hợp $\mathcal{M}_{2,2}(\mathbb{R})$ gồm tất cả các ma trận thực cỡ 2×2 , với phép cộng ma trận và phép nhân với một số thực, là một không gian véctơ thực (trên \mathbb{R}).
 - Các tính chất giao hoán, kết hợp, phân phối, ...được thừa hưởng từ phép cộng ma trận và phép nhân với số thực;
 - Véctơ không là ma trận \mathcal{O}_2 ;
 - Véctơ đối của của véctơ $A=\left(\begin{array}{cc} a & b \\ c & d \end{array} \right)$ là $-A=\left(\begin{array}{cc} -a & -b \\ -c & -d \end{array} \right).$
- Tập hợp $\mathcal{M}_{m,n}(\mathbb{R})$ gồm tất cả các ma trận thực cỡ $m \times n$, với phép cộng ma trận và phép nhân với số thực là một không gian véctơ thực.

• Tập hợp $P_2[x] = \{a_2x^2 + a_1x + a_0|a_0, a_1, a_2 \in \mathbb{R}\}$ các đa thức hệ số thức với bậc *không quá 2* với hai phép toán:

$$(a_2x^2 + a_1x + a_0) + (b_2x^2 + b_1x + b_0) = (a_2 + b_2)x^2 + (a_1 + b_1)x + (a_0 + b_0)$$
$$c(a_2x^2 + a_1x + a_0) = ca_2x^2 + ca_1x + ca_0$$

là một không gian véctơ trên \mathbb{R} .

- Tính đóng của các phép toán: từ định nghĩa trên.
- Các tính chất giao hoán, kết hợp, phân phối, ...: thừa hưởng từ các phép cộng đa thức và phép nhân của đa thức với một số.
- Véc tơ không là đa thức không $\mathbf{0} = 0 \cdot x^2 + 0 \cdot x + 0$.
- Vécto đối của $a_2x^2 + a_1x + a_0$ là $-a_2x^2 a_1x a_0$.
- Tập hợp $P_n[x]$ các đa thức thực với bậc *không quá n* cùng với phép cộng đa thức và phép nhân đa thức với số thực được định nghĩa tương tự như trên là một không gian véctơ trên \mathbb{R} .

• Tập hợp $\mathcal{C}[a,b]$ gồm tất cả các hàm thực liên tục trên đoạn [a,b] là một không gian vectơ trên \mathbb{R} với hai phép toán thông thường

$$(f+g)(x) = f(x) + g(x)$$
$$(cf)(x) = cf(x).$$

- Tính đóng của các phép toán: do tính chất của hàm liên tục.
- Các tính chất giao hoán, kết hợp, phân phối, . . .: thừa hưởng từ các phép cộng và phép nhân trong R.
- Véctơ không là hàm $f_0 \equiv 0$
- Véctơ đối hàm f là hàm -f được xác định bởi (-f)(x) = -f(x) với mọi $x \in \mathbb{R}$.
- Tương tự, các tập hợp sau cùng với các phép toán thông thường cũng là các không gian vecto:
 - Tập hợp các hàm liên tục trên một miền $D \subset \mathbb{R}$ (khoảng nửa đóng, khoảng mở, ...).
 - Tập hợp các hàm khả vi trên một miền $D \subset \mathbb{R}$.
 - ullet Tập hợp các hàm khả tích trên một miền $D\subset \mathbb{R}.$

- Tập hợp $\mathbb Z$ các số nguyên với hai phép toán thông thường không phải một không gian véc tơ trên $\mathbb R.$
- Tập hợp \mathbb{R}^+ gồm các số thực dương cùng với hai phép toán thông thường không phải một không gian véctơ thực.
- Tập hợp các đa thức hệ số thực với bậc 2 cùng với hai phép toán thông thường không phải một không gian véctơ trên \mathbb{R} .
- ullet Tập hợp \mathbb{R}^2 với phép cộng thông thường và phép nhân sau:

$$c(x_1,x_2)=(cx_1,0)$$

không phải một không gian véctơ.

3.1.2. Một số tính chất cơ bản

Tính chất

Cho V là một không gian véctơ trên K. Với mọi $u, v \in V$ và $c \in K$, ta có các khẳng định sau.

- Véc tơ không 0 là duy nhất
- ② Vécto đối (-v) của vécto v là duy nhất.
- (-1)v = -v.
- **4** 0v = 0.
- **5** c**0** = **0**.
- **1** Nếu $cv = \mathbf{0}$ thì c = 0 hoặc $v = \mathbf{0}$.

3.2.1. Định nghĩa

Cho V là một không gian véctơ trên K.

Không gian véctơ con

Một tập con khác rỗng W của V được gọi là một không gian véctơ con của V nếu W đóng kín (khép kín) với hai phép toán trên V, nghĩa là nếu

$$\begin{cases} u + v \in W, & \forall u, v \in W \\ cv \in W, & \forall c \in K, v \in W, \end{cases}$$

và cùng với hai phép toán này thì W trở thành một không gian véctơ trên K.

Tiêu chuẩn không gian con

Một tập con khác rỗng W của V là một không gian véctơ con của V nếu và chỉ nếu W đóng kín (khép kín) với hai phép toán trên V, nghĩa là

$$\begin{cases} u + v \in W, & \forall u, v \in W \\ cv \in W, & \forall c \in K, v \in W. \end{cases}$$

Ví dụ: Xét V là một không gian véctơ bất kỳ. Khi đó

- $\{0\}$ (tập con của V chỉ gồm vectơ không) là một không gian con của V.
- ullet Bản thân V là một không gian con của V.

Nhận xét: Nếu W là không gian véc tơ con của V thì $\mathbf{0} \in W$.

Ví du

Xét không gian véctơ $V=\mathbb{R}^3$ (với hai phép toán thông thường). Tập hơp con $W=\{(x,y,z)\in\mathbb{R}^3\mid x+2y+3z=0\}$ là một không gian véctơ con của \mathbb{R}^3 .

- Vì $\mathbf{0} = (0,0,0)$ thuộc W nên $W \neq \emptyset$.
- Xét $u=(x_1,y_1,z_1)\in W$ và $v=(x_2,y_2,z_2)\in W$, và $c\in\mathbb{R}$ bất kỳ.
- Khi đó $u + v = (x_1 + x_2, y_1 + y_2, z_1 + z_2) \in W$ vì

$$(x_1 + x_2) + 2(y_1 + y_2) + 3(z_1 + z_2) = (x_1 + 2y_1 + 3z_1) + (x_2 + 2y_2 + 3z_2)$$

= 0 + 0 = 0.

- Như vậy W đóng kín với phép cộng véctơ.
- Ta có $cv = (cx_2, cy_2, cz_2) \in W$ vì

$$cx_2 + 2cy_2 + 3cz_2 = c(x_2 + 2y_2 + 3z_2) = c \cdot 0 = 0.$$

- Như vậy W đóng kín với phép nhân với số thực.
- Vậy W là không gian véc tơ con của \mathbb{R}^3 .

Không gian nghiệm của hệ pttt thuần nhất

Xét không gian vécto \mathbb{R}^n (với phép toán thông thường). Tập hợp con W của \mathbb{R}^n gồm tất cả các nghiệm của hệ pttt thuần nhất

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &= 0 \\ \dots & \dots & \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n &= 0 \end{cases}$$

là một không gian véctơ con của \mathbb{R}^n .

Giao của hai không gian con

Tính chất

Nếu U và W là hai không gian véc tơ con của không gian véc tơ V thì $U \cap W$ cũng là một không gian véc tơ con của V.

Chú ý:

- Kết quả trên có thể mở rộng cho giao của một số hữu hạn (hoặc vô hạn) các không gian véc tơ con.
- Hợp của hai không gian véc tơ con nói chung không phải là một không gian véc tơ con.
 - (Ví dụ: $V = \mathbb{R}^2$, U là trục hoành, W là trục tung, $U \cup W$ không đóng với phép cộng)

3.2.2. Không gian con sinh bởi hệ véctơ

Cho không gian véc tơ V trên trường K. (Nếu viết $V=\mathbb{R}^n$ thì ta ngầm hiếu phép cộng và phép nhân với vô hướng là hai phép toán thông thường trên \mathbb{R}^n .)

Định nghĩa (Tổ hợp tuyến tính)

Cho các véc tơ v_1, v_2, \ldots, v_n thuộc V. Một véctơ $v \in V$ có dạng

$$v = c_1 v_1 + c_2 v_2 + \cdots + c_n v_n$$
, với $c_1, c_2, \ldots, c_n \in K$,

được gọi là một $t \hat{o}$ hợp tuyến tính của các véctơ v_1, v_2, \ldots, v_n .

Trong trường hợp này ta cũng nói:

- Vécto v là một tổ hợp tuyến tính của hệ vécto $\{v_1, v_2, \dots, v_n\}$,
- Vécto v biểu thị tuyến tính được qua v_1, \ldots, v_n (hoặc qua hệ vécto $\{v_1, v_2, \ldots, v_n\}$).

Ví dụ:
$$V = \mathbb{R}^2$$
, $v_1 = (3,4)$, $v_2 = (1,1)$ và $v = (1,2)$. Khi đó

$$v = (1,2) = (3,4) - 2(1,1) = v_1 - 2v_2$$

và v là một tổ hợp tuyến tính của v_1 và v_2 .

Ví du

 $V=\mathbb{R}^3$, $v_1=(1,2,3), v_2=(0,1,2), v_3=(-1,0,1)$ và v=(1,1,1). Hỏi v có phải là một tổ hợp tuyến tính của v_1,v_2,v_3 ?

- Véc tơ v là một tổ hợp tuyến tính của v_1, v_2, v_3 khi và chỉ khi tồn tại các số thực c_1, c_2, c_3 sao cho $c_1v_1 + c_2v_2 + c_3v_3 = v$.
- ullet Việc này tương đương với hệ pttt sau có nghiệm (ẩn c_1,c_2,c_3)

$$\begin{cases} c_1 & -c_3 = 1 \\ 2c_1 + c_2 & = 1 \\ 3c_1 + 2c_2 + c_3 = 1 \end{cases}$$

- Hệ có vô số nghiệm: $c_1=1+t, c_2=-1-2t, c_3=t$ $(t\in\mathbb{R})$. Do vậy v là một tổ hợp tuyến tính của v_1,v_2,v_3 .
- Chọn chẳng hạn t=1, ta được một biểu diễn của v dưới dạng tổ hợp tuyến tính của v_1, v_2, v_3 :

$$v = 2v_1 - 3v_2 + v_3$$
.

Ví du

 $V=\mathbb{R}^3$, $v_1=(1,2,3), v_2=(0,1,2), v_3=(-1,0,1)$ và v=(1,-2,2). Hỏi v có phải là một tổ hợp tuyến tính của v_1,v_2,v_3 ?

- Véc tơ v là một tổ hợp tuyến tính của của v_1, v_2, v_3 khi và chỉ khi tồn tại các số thực c_1, c_2, c_3 sao cho $c_1v_1 + c_2v_2 + c_3v_3 = v$.
- ullet Việc này tương đương với hệ pttt sau có nghiệm (ẩn c_1,c_2,c_3)

$$\begin{cases} c_1 & -c_3 = 1 \\ 2c_1 + c_2 & = -2 \\ 3c_1 + 2c_2 + c_3 = 2 \end{cases}$$

ullet Hệ này vô nghiệm. Do vậy v không là một tổ hợp tuyến tính của $v_1, v_2, v_3.$

Cho $S = \{v_1, v_2, \dots, v_n\}$ là một hệ véctơ trong K-kgvt V.

Dinh nghĩa

Tập hợp tất cả các tổ hợp tuyến tính của các vécto của S được gọi là bao tuyến tính của S và ký hiệu là span(S) hoặc span $\{v_1, v_2, \dots, v_n\}$:

$$\mathrm{span}(S) = \{c_1v_1 + c_2v_2 + \cdots + c_nv_n \mid c_1, c_2, \dots, c_n \in K\} \subset V.$$

Dinh lý

Tập con $\mathrm{span}(S)$ là một không gian véc tơ con của V. Nó là không gian véc tơ con nhỏ nhất của V mà chứa S.

Dinh nghĩa

Không gian véc tơ span(S) được gọi là không gian véc tơ con sinh bởi hệ véc tơ S.

Ví dụ:
$$V = \mathbb{R}^2$$
, $v_1 = (1,1)$, $v_2 = (1,2)$. Khi đó $\operatorname{span}\{v_1\} = \{c(1,1) \mid c \in \mathbb{R}\} = \{(c,c) \mid c \in \mathbb{R}\}.$ $\operatorname{span}\{v_1,v_2\} = \{a(1,1) + b(1,2) \mid a,b \in \mathbb{R}\} = \{(a+b,a+2b) \mid a,b \in \mathbb{R}\} = \mathbb{R}^2.$

Hệ sinh

Cho $S = \{v_1, v_2, \dots, v_n\}$ là một hệ véctơ trong K-kgvt V.

Định nghĩa

Nếu $\operatorname{span}(S) = V$ thì S được gọi một hệ sinh của V, hay không gian V sinh bởi S.

Như vậy, $S=\{v_1,v_2,\ldots,v_n\}$ là một hệ sinh của V nếu và chỉ nếu với mọi $v\in V$ đều tồn tại $c_1,\ldots,c_n\in K$ sao cho

$$v=c_1v_1+\cdots+c_nv_n.$$

- $\{(1,1),(1,2)\}$ là một hệ sinh của \mathbb{R}^2 .
- $\{(1,1),(1,2),(1,3)\}$ là một hệ sinh của \mathbb{R}^2 .
- $\{(1,1)\}$ không là một hệ sinh của \mathbb{R}^2 .
- $\{(1,0),(0,1)\}$ là một hệ sinh của \mathbb{R}^2 .
- $\{(1,0,0),(0,1,0),(0,0,1)\}$ là một hệ sinh của \mathbb{R}^3 .
- $\{1, x, x^2\}$ là một hệ sinh của $P_2[x]$.
- Hệ véc tơ gồm

$$e_1 = (1,0,0,\dots,0), e_2 = (0,1,0,\dots,0),\dots, e_n = (0,0,\dots,0,1)$$

là một hệ sinh của \mathbb{R}^n .

• Hệ $\{1, x, \dots, x^n\}$ là một hệ sinh của $P_n[x]$.

Ví du

Cho $v_1=(1,2,3), v_2=(0,1,2), v_3=(-1,1,1).$ Hỏi $S=\{v_1,v_2,v_3\}$ có phải là một hệ sinh của \mathbb{R}^3 ?

• Xét $v=(a,b,c)\in\mathbb{R}^3$ tùy ý. Xét hệ thức $v=c_1v_1+c_2v_2+c_3v_3$. Hệ thức này tương đương với

$$(a,b,c) = c_1(1,2,3) + c_2(0,1,2) + c_3(-1,1,1) \Leftrightarrow \begin{cases} c_1 - c_3 = a \\ 2c_1 + c_2 + c_3 = b \\ 3c_1 + 2c_2 + c_3 = c \end{cases}$$

- Hệ này (với ẩn c_1, c_2, c_3) có định thức ma trận hệ số $\begin{vmatrix} 1 & 0 & -1 \\ 2 & 1 & 1 \\ 3 & 2 & 1 \end{vmatrix} \neq 0$. Do đó hệ này luôn có nghiệm với mọi a,b,c.
- Như vậy với mọi $v \in \mathbb{R}^3$, ta luôn tìm được c_1, c_2, c_3 sao cho $v = c_1 v_1 + c_2 v_2 + c_3 v_3$.
- Vậy $S = \{v_1, v_2, v_3\}$ là một hệ sinh của \mathbb{R}^3 .

Ví du

Cho $v_1 = (1,2,3), v_2 = (0,1,2), v_3 = (-1,0,1)$. Hỏi $S = \{v_1, v_2, v_3\}$ có phải là một hệ sinh của \mathbb{R}^3 ?

KHÔNG

3.3.1. Độc lập tuyến tính, phụ thuộc tuyến tính

Cho $S = \{v_1, v_2, \dots, v_n\}$ là một hệ véctơ trong K-kgvt V.

Định nghĩa

• Hệ S được gọi là phụ thuộc tuyến tính nếu tồn tại các số c_1, c_2, \ldots, c_n không đồng thời bằng 0 sao cho

$$c_1v_1+c_2v_2+\cdots+c_nv_n=\mathbf{0}.$$

Hệ S được gọi là độc lập tuyến tính nếu nó không phụ thuộc tuyến tính. Như vậy S là độc lập tuyến tính nếu điều kiện

$$c_1v_1 + c_2v_2 + \cdots + c_nv_n = \mathbf{0}$$
 (với $c_1, c_2, \dots, c_n \in K$)

xẩy ra khi và chỉ khi $c_1 = c_2 = \cdots = c_n = 0$.

• $S = \{(1,1),(2,2)\} \subset \mathbb{R}^2$ là phụ thuộc tuyến tính vì

$$2 \cdot (1,1) + (-1) \cdot (2,2) = \mathbf{0} = (0,0).$$

• $S = \{(1,0),(0,1),(-2,4)\} \subset \mathbb{R}^2$ là phụ thuộc tuyến tính vì 2(1,0) - 4(0,1) + (-2,4) = (0,0).

• $S = \{(1,1),(1,2)\} \subset \mathbb{R}^2$ là độc lập tuyến tính. Thật vậy, hệ thức $c_1(1,1) + c_2(1,2) = \mathbf{0}$ xẩy ra khi và chỉ khi

$$(c_1+c_2,c_1+2c_2)=(0,0)\Leftrightarrow egin{cases} c_1+c_2=0 \ c_1+2c_2=0 \end{cases} \Leftrightarrow egin{cases} c_1=0 \ c_2=0 \end{cases}$$

• $S = \{(1,1), (1,2), (1,3)\} \subset \mathbb{R}^2$ là phụ thuộc tuyến tính. Thật vậy, hệ thức $c_1(1,1) + c_2(1,2) + c_3(1,3) = \mathbf{0}$ xẩy ra khi và chỉ khi

$$(c_1 + c_2 + c_3, c_1 + 2c_2 + 3c_3) = (0, 0) \Leftrightarrow \begin{cases} c_1 + c_2 + c_3 = 0 \\ c_1 + 2c_2 + 3c_3 = 0 \end{cases}$$

 $\Leftrightarrow \begin{cases} c_1 + c_2 + c_3 = 0 \\ c_2 + 2c_3 = 0 \end{cases}$

Hệ này có nghiệm không tầm thường, chẳng han $c_1 = 1$, $c_2 = -2$, $c_3 = 1$. Như vậy S là phụ thuộc tuyến tính.

• Trong \mathbb{R}^n , hệ véc tơ gồm

$$e_1 = (1,0,0,\dots,0), e_2 = (0,1,0,\dots,0),\dots, e_n = (0,0,\dots,0,1)$$

là độc lập tuyến tính.

• Trong $P_n[x]$, hệ $\{1, x, \dots, x^n\}$ là độc lập tuyến tính.

Ví du

Trong \mathbb{R}^3 , xác định sự phụ thuộc tuyến tính và độc lập tuyến tính của hệ sau: $S = \{v_1, v_2, v_3\}$, với $v_1 = (1, 2, 3)$, $v_2 = (1, 1, -2)$, $v_3 = (2, 3, 2)$.

• Hệ thức $c_1v_1+c_2v_2+c_3v_3=\mathbf{0}$ xấy ra khi và chỉ khi

$$c_1(1,2,3) + c_2(1,1,-2) + c_3(2,3,2) = (0,0,0) \Leftrightarrow \begin{cases} c_1 + c_2 + 2c_3 = 0 \\ 2c_1 + c_2 + 3c_3 = 0 \\ 3c_1 - 2c_2 + 2c_3 = 0 \end{cases}$$

- Hệ thuần nhất này có định thức của ma trận hệ số $\begin{vmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & -2 & 2 \end{vmatrix}
 eq 0.$
- Do vậy hệ có nghiệm chỉ có tầm thường $(c_1, c_2, c_3) = (0, 0, 0)$.
- Như vậy hệ S là độc lập tuyến tính.

Ví du

Trong \mathbb{R}^3 , xác định sự phụ thuộc tuyến tính và độc lập tuyến tính của hệ sau: $S = \{v_1, v_2, v_3\}$, với $v_1 = (1, 2, 3)$, $v_2 = (1, 1, -2)$, $v_3 = (2, 3, 1)$.

• Hệ thức $c_1v_1+c_2v_2+c_3v_3=\mathbf{0}$ xẩy ra khi và chỉ khi

$$c_1(1,2,3) + c_2(1,1,-2) + c_3(2,3,1) = (0,0,0) \Leftrightarrow \begin{cases} c_1 + c_2 + 2c_3 = 0 \\ 2c_1 + c_2 + 3c_3 = 0 \\ 3c_1 - 2c_2 + 1c_3 = 0 \end{cases}$$

- Hệ thuần nhất này có định thức của ma trận hệ số $\begin{vmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & -2 & 1 \end{vmatrix} = 0.$
- Do vậy hệ có nghiệm không tầm thường $(c_1, c_2, c_3) \neq (0, 0, 0)$. (Ví dụ $c_1 = 1, c_2 = 1, c_3 = -1$.)
- Như vậy hệ S là phụ thuộc tuyến tính.

Tính chất

- Hệ con (khác rỗng) của hệ độc lập tuyến tính là độc lập tuyến tính.
- Hệ chứa hệ phụ thuộc tuyến tính là phụ thuộc tuyến tính.
- **1** Hệ gồm một véctơ $\{v\}$ là độc lập tuyến tính nếu và chỉ nếu $v \neq \mathbf{0}$.
- Hệ gồm hai véctơ là phụ thuộc tuyến tính nếu và chỉ nếu một vectơ này là bội của vec tơ kia.

Nhận xét: Một hệ chứa vectơ không luôn phụ thuộc tuyến tính.

Mênh đề

Hệ véctơ $S = \{v_1, \dots, v_k\}$, $k \geq 2$, là phụ thuộc tuyến tính nếu và chỉ nếu một trong các vectơ v_j có thể viết là tổ hợp tuyến tính của các véctơ còn lại.

Định lý

Cho V là một không gian véctơ. Giả sử $\{v_1,\ldots,v_n\}$ là một hệ vec tơ trong V độc lập tuyến tính và $\{w_1, \ldots, w_m\}$ là một hệ sinh của V. Khi đó $n \leq m$.

3.3.2. Cơ sở và số chiều

Định nghĩa (cơ sở)

Một hệ véctơ $\mathcal{B} = \{v_1, \dots, v_n\}$ trong KGVT V được gọi là một $c\sigma$ sở nếu nó thỏa mãn hai điều kiện:

- B là độc lập tuyến tính.
- $oldsymbol{2}$ \mathcal{B} là một hệ sinh của V.

Ví dụ:

- $\{(1,1),(1,2)\}$ là một cơ sở của \mathbb{R}^2 .
- $\{(1,0),(0,1)\}$ là một cơ sở của \mathbb{R}^2 .
- $\{(1,1),(1,2),(1,3)\}$ không là một cơ sở của \mathbb{R}^2 .

• Hệ $\{e_1,\ldots,e_n\}$ trong \mathbb{R}^n gồm các vectơ

$$e_1 = (1, 0, 0, \dots, 0), e_2 = (0, 1, 0, \dots, 0), \dots, e_n = (0, 0, \dots, 0, 1)$$

là một cơ sở của \mathbb{R}^n . Cơ sở này được gọi là cơ sở *chính tắc* (hay chuẩn tắc) của \mathbb{R}^n .

- Hệ $\{1, x, x^2, \dots, x^n\}$ là một cơ sở của $P_n[x]$. Cơ sở này được gọi là cơ sở chính tắc của $P_n[x]$.
- ullet Một cơ sở của $\mathcal{M}_{2 imes2}(\mathbb{R})$ là

$$\left\{\begin{bmatrix}1 & 0\\ 0 & 0\end{bmatrix},\begin{bmatrix}0 & 1\\ 0 & 0\end{bmatrix},\begin{bmatrix}0 & 0\\ 1 & 0\end{bmatrix},\begin{bmatrix}0 & 0\\ 0 & 1\end{bmatrix}\right\}$$

Định lý

Nếu V có một cơ sở gồm n vectơ, thì mọi cơ sở của V cũng có n vectơ

Định nghĩa (số chiều)

Nếu V có một cơ sở gồm n vectơ thì n được gọi là số chiều của V, ký hiệu dim V=n, và V là không gian vectơ n chiều.

Chú ý:

- Nếu $V = \{\mathbf{0}\}$, thì ta quy ước dim V = 0, và \emptyset là cơ sở của V.
- Nếu $V \neq \{\mathbf{0}\}$ và V không có một cơ sở gồm hữu hạn véc tơ thì ta nói V là vô hạn chiều, ký hiệu dim $V = \infty$.

Trường hợp dim V = n hoặc dim V = 0 thì ta nói V là hữu hạn chiều.

- dim $\mathbb{R}^n = n$.
- dim $P_n[x] = n + 1$.
- Gọi P[x] là không gian véc tơ các đa thức hệ số thực. Khi đó dim $P[x] = \infty$.
- dim $\mathcal{M}_{m\times n}(\mathbb{R})=mn$.

Ví dụ

Tìm số chiều của không gian véctơ con sau của \mathbb{R}^3 :

$$W = \{(a, a+b, b) \mid a, b \in \mathbb{R}\}.$$

- Xét $v = (a, a + b, b) \in W$ bất kỳ. Ta có (a, a + b, b) = (a, a, 0) + (0, b, b) = a(1, 1, 0) + b(0, 1, 1).
- Như vậy W sinh bởi $S = \{(1,1,0), (0,1,1)\}.$
- Chỉ ra được S là ĐLTT.
- Do vậy S là một cơ sở của W và dim W=2.

Định lý (Số chiều không gian nghiệm thuần nhất)

Gọi V là không gian nghiệm của hệ phương trình tuyến tính thuần nhất $A\mathbf{x}=\mathbf{0}$, với n=số ẩn=số cột của A. Khi đó

$$\dim V = n - \operatorname{rank}(A).$$

Ví dụ (CK20151)

Tìm m để không gian nghiệm của hệ sau có số chiều là 2:

$$\begin{cases} 2x_1 + x_2 - x_3 + 3x_4 - 2x_5 &= 0 \\ x_1 - 2x_2 + 3x_3 + mx_4 + x_5 &= 0 \\ 3x_1 - x_2 + 2x_3 + 4x_4 - x_5 &= 0 \end{cases}$$

Tính chất

Cho V là một không gian véc tơ chiều n.

- Hệ bất kỳ gồm ít hơn n véc tơ đều không là hệ sinh của V.
- ullet Hệ bất kỳ gồm nhiều hơn n đều phụ thuộc tuyến tính.

Nói riêng, mọi hệ véc tơ V mà có số véc tơ khác n đều không là cơ sở của V.

Định lý

Cho V là một không gian véc tơ chiều n.

- ullet Hệ bất kỳ gồm đúng n véctơ và độc lập tuyến tính đều là một cơ sở của V.
- ullet Hệ bất kỳ gồm đúng n véctơ mà là hệ sinh đều là một cơ sở của V.

Định lý (Bổ sung vào hệ ĐLTT)

Cho V là KGVT chiều n. Cho $S=\{v_1,\ldots,v_k\}\subset V$ là một hệ ĐLTT gồm k véctơ. Khi đó $k\leq n$. Nếu k< n thì ta có thể tìm được n-k véctơ v_{k+1},\ldots,v_n sao cho hệ $\{v_1,\ldots,v_k,v_{k+1},\ldots,v_n\}$ là một cơ sở của V.

Định lý (Bỏ bớt từ hệ sinh)

Cho V là KGVT chiều n. Cho $S=\{v_1,\ldots,v_m\}\subset V$ là một hệ sinh gồm m véctơ. Khi đó $m\geq n$. Ta có thể bỏ đi m-n véctơ trong S sao cho hệ n véctơ còn lại là một cơ sở của V.

3.3.3. Tọa độ của véc tơ đối với một cơ sở

Cho $\mathcal{B} = \{v_1, \dots, v_n\}$ là một cơ sở của K-không gian véc tơ V.

Định lý - Định nghĩa

Cho $v \in V$. Khi đó tồn tại duy nhất bộ số $(c_1, c_2, \dots, c_n) \in K^n$, sao cho

$$v=c_1v_1+c_2v_2+\cdots+c_nv_n.$$

Các số c_1, c_2, \ldots, c_n được gọi là các tọa độ của v đối với cơ sở \mathcal{B} . Bộ số (c_1, c_2, \ldots, c_n) được gọi là vectơ tọa độ của v đối với cơ sở \mathcal{B} , ký hiệu

$$(v)_{\mathcal{B}}=(c_1,c_2,\ldots,c_n).$$

Ta cũng dùng ký hiệu
$$[v]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$$
, gọi là ma trận (cột) tọa độ của v đối với cơ

sở \mathcal{B} .

Chú ý: Tọa độ của v phụ thuộc vào thứ tự các véc tơ trong cơ sở.

Ví dụ

Trong \mathbb{R}^2 tìm tọa độ của v=(1,4) đối với cơ sở $\mathcal{B}=\{v_1=(1,1,),v_2=(-1,2)\}.$

•
$$(v)_{\mathcal{B}} = (c_1, c_2) \Leftrightarrow v = c_1v_1 + c_2v_2 \Leftrightarrow (1, 4) = c_1(1, 1) + c_2(-1, 2) \Leftrightarrow$$

$$\begin{cases} c_1 - c_2 = 1 \\ c_1 + 2c_2 = 4 \end{cases} \Leftrightarrow \begin{cases} c_1 = 2 \\ c_2 = 1 \end{cases}$$

$$ullet$$
 $(v)_{\mathcal{B}}=(2,1)$, hoặc $[v]_{\mathcal{B}}=egin{bmatrix} 2 \\ 1 \end{bmatrix}$.

Đổi cơ sở

Bài toán

Cho V là một K-KGVT. Giả sử có hai cơ sở $\mathcal{B} = \{v_1, v_2, \dots, v_n\}$ và $\mathcal{B}' = \{v_1', v_2', \dots, v_n'\}$. Ta muốn tìm mối liên hệ giữa $[v]_{\mathcal{B}}$ và $[v]_{\mathcal{B}'}$.

Với mỗi j, ta biểu diễn v'_i theo cơ sở \mathcal{B} :

$$v'_{1} = p_{11}v_{1} + p_{21}v_{2} + \dots + p_{n1}v_{n}$$

$$v'_{2} = p_{12}v_{1} + p_{22}v_{2} + \dots + p_{n2}v_{n}$$

$$\dots$$

$$v'_{n} = p_{1n}v_{1} + p_{2n}v_{2} + \dots + p_{nn}v_{n}.$$

Tức là

$$[v'_{1}]_{\mathcal{B}} = \begin{bmatrix} p_{11} \\ p_{21} \\ \vdots \\ p_{n1} \end{bmatrix}, [v'_{2}]_{\mathcal{B}} = \begin{bmatrix} p_{12} \\ p_{22} \\ \vdots \\ p_{n2} \end{bmatrix}, \dots, [v'_{n}]_{\mathcal{B}} = \begin{bmatrix} p_{1n} \\ p_{2n} \\ \vdots \\ p_{nn} \end{bmatrix}.$$

Định nghĩa (Ma trận chuyển cơ sở)

Ma trận
$$P = [[v'_1]_{\mathcal{B}} [v'_2]_{\mathcal{B}} \cdots [v'_n]_{\mathcal{B}}] = \begin{bmatrix} p_{11} & p_{12} & \dots & p_{1n} \\ p_{21} & p_{22} & \dots & p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1} & p_{n2} & \dots & p_{nn} \end{bmatrix}$$
 được gọi là *ma trận*

chuyển từ cơ sở \mathcal{B} sang cơ sở \mathcal{B}' .

Ta có

$$[v]_{\mathcal{B}} = P[v]_{\mathcal{B}'}, \quad \forall v \in V.$$

Hơn nữa nếu Q là ma trận sao cho $[v]_{\mathcal{B}} = Q[v]_{\mathcal{B}'}, \forall v \in V$, thì Q = P.

Tính chất

Nếu P là ma trận chuyển từ cơ sở $\mathcal B$ sang $\mathcal B'$ thì P khả nghịch và P^{-1} là ma trận chuyển từ cơ sở $\mathcal B'$ sang $\mathcal B$, và

$$[v]_{\mathcal{B}'} = P^{-1}[v]_{\mathcal{B}}, \quad \forall v \in V.$$

Ví du

Cho $\mathcal{B}=\{(1,1),(-1,2)\}$ và $\mathcal{B}'=\{(1,4),(-2,1)\}$ là hai cơ sở của \mathbb{R}^2 . Tìm ma trận chuyển P từ \mathcal{B} sang \mathcal{B}' .

Với v=(-1,5), so sánh $[v]_{\mathcal{B}}$ và $P[v]_{\mathcal{B}'}$.

- $v_1' = (1,4), [v_1']_{\mathcal{B}} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}.$
- $v_2' = (-2, 1), [v_2']_{\mathcal{B}} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$
- Ma trận chuyển từ \mathcal{B} sang \mathcal{B}' :

$$P = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}$$

• $[v]_{\mathcal{B}} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $[v]_{\mathcal{B}'} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ và

$$P[v]_{\mathcal{B}'} = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} = [v]_{\mathcal{B}}.$$

3.3.4. Hạng của hệ véctơ

BT1. Tim co so và so chien une Kanghiem me he thran what.

Cho hệ véc tơ $S = \{v_1, v_2, \dots, v_m\}$ trong KGVT V. BTZ, Tim có số và số chiến của TKG sinh he vecto span(S). Dinh nghĩa

Một tập con T của hệ véc tơ S được gọi là độc lập tuyến tính tối đại (hay cực dai) (trong S) nếu T là độc lập tuyến tính và nếu bố sung bất kỳ véc tơ nào của S vào hệ T thì ta được hệ phụ thuộc tuyến tính.

Xét $S = \{v_1, v_2, v_3, v_4\}$ với $v_1 = (1, 1, 1), v_2 = (1, 2, 3), v_3 = (2, 3, 4),$ $v_4 = (0,1,2)$. Khi đó $T = \{v_1, v_2\}$ là một tập con ĐLTT cực đại trong S. Vì

- $\{v_1, v_2\}$ DLTT, và
- $\{v_1, v_2\}$ ĐLTT, và nếu bổ sung v_3 vào T thì tập $\{v_1, v_2, v_3\}$ không ĐLTT, và $\begin{pmatrix} 1 & 4 & 4 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$
- nếu bố sung v_4 vào T thì tập $\{v_1, v_2, v_4\}$ không ĐLTT.

Tương tự $\{v_1, v_3\}$ cũng là một tập con ĐLTT cực đại.

V'= (1,1,1) {V', v'2} Vy'= (0,1,2) in co

Nếu T là một tập con DLTT tối đại trong S thì T là một cơ sở của $\mathrm{span}(S)$.

Hệ quả

Hai tập con độc lập tuyến tính tối đại của S đều có số véc tơ bằng nhau.

Định nghĩa (Hạng của hệ véctơ)

Số véc tơ trong một tập con độc lập tuyến tính tối đại của $S=\{v_1,\ldots,v_m\}$ được gọi là hạng của S, ký hiệu

$$rank(S) = rank\{v_1, \ldots, v_m\}.$$

Nhân xét:

- $rank\{v_1, ..., v_m\} = r$ có nghĩa là trong hệ có r véc tơ độc lập tuyến tính, và mọi tập con của hệ gồm r+1 véc tơ đều phụ thuộc tuyến tính.
- $\operatorname{rank}\{v_1,\ldots,v_m\}=m \Leftrightarrow \operatorname{h\hat{e}}\{v_1,\ldots,v_m\}$ độc lập tuyến tính.
- Số chiều của không gian sinh bởi hệ véctơ

$$\dim \operatorname{span}(S) = \operatorname{rank}(S).$$

Ma trận tọa độ hàng (cột) của hệ véctơ

- \mathcal{B} là một cơ sở của V, dim V = n, $S = \{v_1, \dots, v_m\}$ là một hệ véctơ trong V.
- Giả sử

$$(v_1)_{\mathcal{B}} = (a_{11}, a_{12}, \dots, a_{1n})$$

 $(v_2)_{\mathcal{B}} = (a_{21}, a_{22}, \dots, a_{2n})$
 \dots
 $(v_m)_{\mathcal{B}} = (a_{m1}, a_{m2}, \dots, a_{mn})$

$$\bullet \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} = ma \ trận tọa độ hàng của hệ S đối với cơ sở \mathcal{B} .$$

 $\begin{bmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{bmatrix} : \text{ma trận tọa độ cột của hệ } S \text{ đối với cơ sở } \mathcal{B}.$

Mệnh đề (Tính hạng của hệ véctơ)

Cho V là kgvt n chiều, \mathcal{B} là một cơ sở của V, và $S = \{v_1, \dots, v_m\}$ là một hệ véctơ trong V. Gọi A là ma trận tọa độ hàng của hệ S đối với cơ sở \mathcal{B} . Khi đó

$$rank(S) = rank(A).$$

Chú ý (Tìm một cơ sở của span(S)):

A'= (a'i ... a'in) toac thany

- ullet Viết ma trận tọa độ hàng A của hệ S đối với cơ sở ${\mathcal B}$ nào đó.
- Sử dụng các phép biến đổi sơ cấp trên hàng đưa A về ma trận bậc thang A'.
 Ma trận A' có r hàng khác 0.
- Gọi v'_1, \ldots, v'_r là các véctơ trong V mà nhận r hàng khác 0 này của A' làm các hàng toa đô (đối với cơ sở \mathcal{B}).
- Khi đó $\{v_1',\ldots,v_r'\}$ lập thành một cơ sở của $\mathrm{span}(S)$.

46 / 52

3.3.4. Hạng của hệ véctơ

Thường up dụng cho V=RM B= có sử chính tác P. (x)

Hê quả (Môt tiêu chuẩn kiếm tra cơ sở)

Cho V là kgyt n chiều, \mathcal{B} là một cơ sở của V, và $S = \{v_1, \dots, v_n\}$ là một hệ gồm n véctơ trong V. Gọi A là ma trận tọa độ hàng của hệ S đối với cơ sở \mathcal{B} . Khi đó

S là cơ sở của $V \Leftrightarrow \det(A) \neq 0$.

B PTTT (=> rank(B) (3 (=> rank(A) < 3 (=> dut(A) = 0. $A = \begin{bmatrix} 2 & 1 & 1 \\ 2 & m & -1 \\ 4 & \zeta & 1 \end{bmatrix}$ A = MT hang was B du co sò B não do. chan B= {1, x, x2} (is so chinh taic.

Trong không gian $P_2[x]$ cho các vécto $v_1 = 1 + x + x^2$, $v_2 = 2 + mx - x^2$, $v_3 = 4 + 5x + x^2$, $v = 10 + 11x - 5x^2$.

- a) Xác định m để hệ $B = \{v_1, v_2, v_3\}$ phụ thuộc tuyến tính.
- b) Với m=2, chứng minh B lập thành cơ sở của không gian $P_2[x]$. Tìm tọa độ của véctơ *v* đối với cơ sở *B*.
 - Ma trận tọa độ hàng của B đối với cơ sở chính tắc $\{1, x, x^2\}$ là

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & m & -1 \\ 4 & 5 & 1 \end{bmatrix}.$$

• B phụ thuộc tuyến tính $\Leftrightarrow \operatorname{rank}(B) < 3 \Leftrightarrow \operatorname{rank}(A) < 3 \Leftrightarrow \det(A) = 0$.

•
$$det(A) = \begin{vmatrix} 1 & 1 & 1 \\ 2 & m & -1 \\ 4 & 5 & 1 \end{vmatrix} = \underline{9 - 3m}.$$

• B phụ thuộc tuyến tính $\Leftrightarrow 9 - 3m = 0 \Leftrightarrow m = 3$.

• Với
$$m=2$$
, $\det(A)\neq 0$, do đó B là một cơ sở của $P_2[x]$.

• Gọi
$$(v)_B = (c_1, c_2, c_3)$$
 là tọa độ của v đối với cơ sở B .

• Khi đó
$$v = c_1v_1 + c_2v_2 + c_3v_3 \Leftrightarrow \begin{cases} c_1 + 2c_2 + 4c_3 &= 10 \\ c_1 + 2c_2 + 5c_3 &= 11 \\ c_1 - c_2 + c_3 &= -5 \end{cases} \Leftrightarrow \begin{cases} c_1 = -2 \\ c_2 = 4 \\ c_3 = 1 \end{cases}.$$

•
$$(v)_B = (-2, 4, 1).$$

$$(V)_{B} = (-2,4,1).$$

$$(V)_{B} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$$

Tông và giao của các không gian con

$$\begin{bmatrix} 10 \\ 11 \\ -5 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 4 \\ 1 & 2 & 5 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$$

Cho V_1 và V_2 là hai không con của kgvt V.

Tập hợp $V_1 + V_2 = \{v = v_1 + v_2 \mid v_1 \in V_1, v_2 \in V_2\}$ là một không con của V, được gọi là tống của V_1 và V_2 .

Định lý

Nếu V_1 và V_2 có số chiều hữu hạn thì $V_1 + V_2$ cũng hữ hạn chiều và

$$\dim(V_1 + V_2) = \dim(V_1) + \dim(V_2) - \dim(V_1 \cap V_2).$$

Ví dụ (CK20181)

Trong không gian $P_3[x]$, cho hệ véctơ $u_1=1+2x-x^3$, $u_2=2-x+x^2+2x^3$, $u_3=-1+x-x^2+x^3$, $u_4=4+2x^2$ và các không gian véctơ con $V_1=\mathrm{span}\{u_1,u_2\}$, $V_2=\mathrm{span}\{u_3,u_4\}$. Tìm số chiều và cơ sở của các không gian con V_1+V_2 và $V_1\cap V_2$.

Môt số bài tập

- (CK20151) Trong \mathbb{R}^4 cho các vécto $u_1=(1,3,-2,1),\ u_2=(-2,3,1,1),$ $u_3 = (2, 1, 0, 1), u = (1, -1, -3, m).$ Tìm m để $u \in \text{span}\{u_1, u_2, u_3\}.$
- (CK20151-Đề 7) Trong \mathbb{R}^4 cho các vécto $u_1 = (1, 0, 1, 1)$, $u_2 = (-3, 2, 1, -1), u_3 = (2, 1, 0, 2), u = (1, 2, 1, m).$ Tim m để $S = \{u_1, u_2, u_3, u_4\}$ phu thuộc tuyến tính.
- (CK20151) Trong không gian $P_3[x]$ các đa thức bậc không quá 3, cho các véc to $v_1 = 1 + x + x^2$, $v_2 = x - x^2 + x^3$, $v_3 = 1 + 2x + x^2 + x^3$. $v_4 = 2 + 2x + 4x^2$, $V_1 = \text{span}\{v_1, v_2\}$, $V_2 = \text{span}\{v_3, v_4\}$. Tìm số chiều và môt cơ sở của $V_1 + V_2$.
- (CK20181-N3) Cho các véc to $v_1 = (2, 1, 5, 8), v_2 = (1, -1, 3, 5), v_3 = (0, 2, 1, 6), v_4 = (-3, 5, 2, 1)$
 - a) Chứng minh v_1, v_2, v_3, v_4 lập thành một cơ sở của không gian \mathbb{R}^4 .
 - b) Tìm tọa độ của véc tơ v = (-5, 15, 15, 13) đối với cơ sở trên.
- (CK20193-N2) Cho các véc to $u_1 = (2, -1, 3, 0, 2), u_2 = (1, -4, 2, 5, -1),$ $u_3 = (3, 2, 4, 6, 0), u_4 = (7, 0, 10, 6, 4)$ trong không gian \mathbb{R}^5 . Tìm số chiều và một cơ sở của không gian sinh bởi các véctơ này.