BLG 506E – COMPUTER VISION

Final Project Presentation

BURAK BOZDAĞ - 504211552

About the Project

Classifying Chest X-Ray Images Using CNN and Transformer Based Architectures

Comparing CNN and transformer models for classifying patients as normal or infected

Motivation

- >CNN is a standard in CV
- Transformer based models in NLP

- A. Dosovitsky et al., "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", 2021. Available: https://openreview.net/forum?id=YicbFdNTTy.
- Transformers applied directly to image patches and pre-trained on large datasets work really well on image classification.

Find out which is better for classifying x-ray images

Applied Processes and Methods

- ➤ TensorFlow, Keras
- > Examining Dataset
- ➤ Data Augmentation
- **►** ViT Evaluation
- > CNN Evaluation

Dataset

- Chest X-Ray Images (Pneumonia) [1]
- > 5856 JPEG images (1.15 GB)
- >5216 train
- ≥16 validation
- >624 test

```
(amd_gpu) PS C:\Users\Burak\Desktop\BLG506E-CV\Project> python .\chest_xray.py
2022-12-04 12:27:44.250691: I tensorflow/c/logging.cc:34] Successfully opened of
2022-12-04 12:27:44.250771: I tensorflow/c/logging.cc:34] Successfully opened of
2022-12-04 12:27:44.252886: I tensorflow/c/logging.cc:34] Successfully opened of
2022-12-04 12:27:44.391692: I tensorflow/c/logging.cc:34] DirectML device enume
Found 5216 images belonging to 2 classes.
Found 16 images belonging to 2 classes.
Found 624 images belonging to 2 classes.
```


Data Augmentation

- \triangleright Rescale = 1/255
- ► Zoom Range = 0.1
- ➤ Rotation Range = 0.2
- ➤ Horizontal-Vertical Flip
- >224x224 WxH

Model Evaluations

- ➤ Callbacks:
 - ➤ Monitoring Validation Loss
 - ► Reduce LR
 - **≻** Early Stopping
 - ➤ Model Checkpoint
- ➤ ViT-B/16 and AlexNet architectures
- ➤ AlexNet Layers: Input, 2 x Conv2D-MaxPool2D, 3 x Conv2D, MaxPool2D, Flatten, 3 x Dense
- ► ViT Layers: Input, Conv2D, Reshape, 12 x Transformer Encoders, Normalization, Lambda, Dense

Model Evaluations

➤ Optimizer: Adam

Loss: Binary Cross-Entropy

➤ Max. # of 50 Epochs

$$H_p(q) = -\frac{1}{N} \sum_{i=1}^{N} y_i \cdot log(p(y_i)) + (1 - y_i) \cdot log(1 - p(y_i))$$

AlexNet CNN

```
Epoch 2/50
Epoch 3/50
Epoch 4/50
Epoch 5/50
Epoch 6/50
Epoch 7/50
Epoch 8/50
Epoch 9/50
Epoch 10/50
Epoch 11/50
Epoch 11: ReduceLROnPlateau reducing learning rate to 2.499999936844688e-05.
Epoch 12/50
Epoch 13/50
Epoch 14/50
Epoch 15/50
Epoch 15: early stopping
```

Vision Transformer

```
Epoch 2/50
Epoch 3/50
Epoch 4/50
Epoch 5/50
Epoch 6/50
Epoch 7/50
Epoch 8/50
Epoch 9/50
Epoch 10/50
Epoch 11/50
652/652 [==========================] - ETA: 0s - loss: 0.0785 - accuracy: 0.9688
Epoch 11: ReduceLROnPlateau reducing learning rate to 2.499999936844688e-05.
Epoch 12/50
Epoch 13/50
Epoch 14/50
Epoch 15/50
Epoch 15: early stopping
```

Results

➤0: Healthy

▶1: Pneumonia

>AlexNet: 0.89

➤ViT: 0.93

	precision	recall	f1-score	support
0 1	0.92 0.88	0.78 0.96	0.84 0.92	234 390
accuracy macro avg weighted avg	0.90 0.90	0.87 0.89	0.89 0.88 0.89	624 624 624

AlexNet CNN

	precision	recall	f1-score	support
0 1	0.97 0.91	0.83 0.98	0.89 0.94	234 390
accuracy macro avg weighted avg	0.94 0.93	0.91 0.93	0.93 0.92 0.93	624 624 624

Vision Transformer

Conclusion

- ➤ Setting up AlexNet and ViT models
- ➤ Data augmentation
- ➤ Model evaluations
- ➤ Comparing CNN and ViT
 - ➤ Faster training: AlexNet
 - ➤ More accurate: ViT

References

[1] D. S. Kermany, et al., *Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning*, 2018. [Online]. Available: https://www.cell.com/cell/fulltext/S0092-8674(18)30154-5.