INDEX BCA 507(C):- PRACTICAL ON DATA MINING USING PYTHON

SR.NO	TITLE	REMARK	SIGN
1.	Calculate the mean and standard deviation.		
2.	Read the CSV file.		
3.	Perform data filtering and calculate aggregate statistics.		
4.	Calculate total sales by month.		
5.	Implement the Clustering using K-means.		
6.	Classification using Random Forest.		
7.	Regression Analysis using Linear Regression.		
8.	Association Rule Mining using Apriori.		
9.	Visualize the result of the clustering and compare.		
10.	Visualize the correlation matrix using a pseudocolor plot.		
11.	Use of degrees distribution of a network.		
12.	Graph visualization of a network using maximum, minimum, median, first quartile and third quartile.		

Pract no 1: Calculate the mean and standard deviation.

import numpy as np
data=[10,20,30,40,50,60]
mean=np.mean(data)
print(mean)
std_dev=np.std(data)
print(std_dev)

Output: 35.0

17.07825127659933

Pract 2: Read the CSV file.

```
import pandas as pd
import statistics
cf=pd.read_csv('E:\screentime_analysis.csv')
print(cf)
mv=cf[['Noti','time']].mean()
mv1=cf[['Noti','time']].mode()
print("_______")
print("mean :",mv)
print("mode :",mv1)
print("_____")
sd=cf[['Noti','time']].std()
print( "standard deviation :",sd)
```

Output:

Pract no 3: Perform data filtering and calculate aggregate statistics.

```
import pandas as pd
data={'name':['alice','bob','charlie','david','eve'],
'age':[20,22,32,21,19], 'salary':[3000,4000,2000,5000,3500]}
df=pd.DataFrame(data)
f d=df[df['age']>20]
ave sal=f d['salary'].mean()
ave_sal1=f_d['salary'].sum()
print(f_d)
print(' ')print(f'Averege salary of employees
older than 25:{ave sal,ave sal1}')
Output: name age salary
     1
          bob 22 4000
     2 charlie 32 2000
     3
        david 21 500
Averege salary of employees older than 25:(3666.66666666665,
```

11000)

Pract no 4 : Calculate total sales by month.

```
month_data= { 'jan':1000, 'feb':300, 'march':100, 'apl':350, 'may':750,
'june':400, 'jully':500, 'aug':300, 'sep':200, 'oct':400, 'nove':700,
'dec':800,
}
total_sale=sum(month_data.values())
for month, sales in month data.items():
print(f'Sales in {month}: {sales}')
print('_____')
print("TOTLE SALE CALCULATE FOR YEAR:",total sale)
Output:
Sales in jan: 1000
Sales in feb: 300
Sales in march: 100
Sales in apl: 350
Sales in may: 750
Sales in june: 400
Sales in jully: 500
Sales in aug: 300
Sales in sep: 200
Sales in oct: 400
Sales in nove: 700
Sales in dec: 800
```

TOTLE SALE CALCULATE FOR YEAR: 5800

Pract no 5: Implement the clustering using K-means.

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
np.random.rand(0)
x=np.random.rand(100,2)
kmeans=KMeans(n_clusters=3)
kmeans.fit(x)
center=kmeans.cluster_centers_
labels=kmeans.labels
plt.scatter(x[:,0],x[:,1],c=labels,s=50,cmap='viridis')
plt.scatter(center[:,0],center[:,1],c='red',s=200,alpha=0.75)
plt.title('K-means Clustering')
plt.xlabel('x-axis')
plt.ylabel('y-axis')
plt.show()
Output:
```


Pract no 6: Classification using Random Forest.

```
import numpy as np
import pandas as pd
from sklearn.model selection import train test split
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import
accuracy score, classification report, confusion matrix
iris=load iris()
X=iris.data
Y=iris.target
X train,X test,Y train,Y test=train test split(X,Y,test size=0.2,rando
m state=42)
model=RandomForestClassifier(n_estimators=100,random_state=42)
model.fit(X train,Y train)
Y pred=model.predict(X test)
accuracy=accuracy score(Y test,Y pred)
confusion=confusion matrix(Y test,Y pred)
report=classification report(Y test,Y pred)
print(f'Accuracy:{accuracy:.2f}')
print('Confusion Matrix:')
print(confusion)
print('Classification Report')
print(report)
```

Output:

Accuracy:1.00

Confusion Matrix:

[[10 0 0]

[0 9 0]

[0 0 11]]

Classification Report

precision recall f1-score support

0 1.00 1.00 1.00 10

1 1.00 1.00 1.00 9

2 1.00 1.00 1.00 11

accuracy 1.00 30

macro avg 1.00 1.00 1.00 30

weighted avg 1.00 1.00 1.00 30

Pract no 7: Regression Analysis using Linear Regression.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear model import LinearRegression
np.random.seed(0)
x=np.random.rand(100,1)*10
y=2.5*x+np.random.randn(100,1)
data=pd.DataFrame(np.hstack((x,y)),
columns=['Feature','Target'])
model=LinearRegression()
model.fit(data[['Feature']],data[['Target']])
y_pred=model.predict(data[['Feature']])
plt.scatter(data['Feature'],data['Target'],color='red',label='Data_line')
plt.plot(data['Feature'],y_pred,label='Regression_line')
plt.xlabel('Features')
plt.ylabel('Target')
plt.title('Regression Analysis using Linear Regression')
plt.legend()
plt.show()
Output:
```


Pract no 8: Association rule mining using apriori.

```
import pandas as pd
from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent patterns import apriori
from mlxtend.frequent patterns import association rules
d S=[['Milk','Bread'],
   ['Bread', 'Beer', 'Eggs'],
   ['Milk','Beer','Cola'],
   ['Bread','Milk','cola']]
encoder=TransactionEncoder()
onehot=encoder.fit(d S).transform(d S)
df=pd.DataFrame(onehot,columns=encoder.columns)
f i=apriori(df,min support=0.4,use colnames=True)
print(f i)
rules = association_rules(f_i, num_itemsets=len(f_i), metric="lift",
min threshold=1)
print("\nAssociation Rules:")
print(rules)
Output:-
           itemsets
   support
    0.50
            (Beer)
    0.75
            (Bread)
   0.75
            (Milk)
    0.50 (Bread, Milk)
 Association Rules:
 Columns: [antecedents, consequents, antecedent support, consequent support, support, confidence, lift, representativity, leverage, conviction, zhangs_met
 ric, jaccard, certainty, kulczynski]
 Index: []
```

Pract no 9: Visualize the result of the clustering and compare.

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
from sklearn.cluster import KMeans
data=np.random.rand(100,2)
df=pd.DataFrame(data,
columns=['feature1','feature2'])
kmeans=KMeans(n clusters=3)
df['cluster']=kmeans.fit_predict(df[['feature1','feature2']])
plt.figure(figsize=(10,6))
sns.scatterplot(data=df,x='feature1',y='feature2',palette='viridis',hue
='cluster',s=100)
plt.title('KMEANS CLUSTERING RESULT')
plt.legend(title='cluster')
plt.show()
```

Output:

<u>Pract no 10: Visualize the Correlation matrix using a pseudocolor plot.</u>

import numpy as np

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

data={ 'A':np.random.rand(10), 'B':np.random.rand(10),
'C':np.random.rand(10), 'D':np.random.rand(10)}

df=pd.DataFrame(data)

corr=df.corr()

plt.figure(figsize=(8,6))

sns.heatmap(corr,annot=True,fmt='.2f',cmap='coolwarm',square=True,

cbar_kws={"shrink":.8})

print(data)

plt.title('Correlation matrix using a pseudocolor plot')

plt.show()

Output:

Practical 11: Use of degree distributon of a network.

```
import networkx as nx
import matplotlib.pyplot as plt
import numpy as np
n=100
p = 0.1
g=nx.erdos_renyi_graph(n,p)
degree sequence=[d for n, d in g.degree()]
degree_count=np.bincount(degree_sequence)
degrees=np.arange(len(degree_count))
plt.figure(figsize=(10,6))
plt.bar(degrees,degree count,width=0.8,color='b',alpha=0.7)
plt.title('Degree Distribution')
plt.xlabel('Degree')
plt.ylabel('Number of Nodes')
plt.xticks(degrees)
plt.grid()
plt.show()
Output:
```


<u>Practical 12 :Graph visulization of a network using</u> maximum, minimum, median, first qurtile and third qurtile.

```
import networkx as nx
import matplotlib.pyplot as plt
import numpy as np
n=100
p = 0.1
G=nx.erdos renyi graph(n,p)
degree sequence=[d for n,d in G.degree()]
degree min=np.min(degree sequence)
degree max=np.min(degree sequence)
degree median=np.median(degree sequence)
degree q1=np.percentile(degree sequence,25)
degree q3=np.percentile(degree sequence,75)
print(f"Minimum Degree:{degree_min}")
print(f"Maximum Degree:{degree max}")
print(f"Median Degree:{degree median}")
print(f"First Quartile(Q1):{degree q1}")
print(f"Third Quartile(Q3):{degree q3}")
plt.figure(figsize=(12,8))
pos=nx.spring layout(G)
nx.draw(G,pos,node_size=50,with_labels=False,alpha=0.7)
plt.title('Network Visualization with Degree Statistics')
plt.text(-
1.5,1.5,f'Min:{degree min}\nMax:{degree max}\nMedian:{degree
```

 $median \nQ1: \{degree_q1\} \nQ3: \{degree_q3\}', fontsize=10, bbox=dict(facecolor='white', alpha=0.5)\}$

plt.show()

Output:

Minimum Degree:4

Maximum Degree:4

Median Degree:10.0

First Quartile(Q1):8.0

Third Quartile(Q3):11.0

