

What Matters

```
So far
       coins, dice, cards, dominoes, marbles, ....
                                             weight
       subscribers clicks
                                                      sales
                                        yield
ften
                           viewers
                                       age temperature heart rate
             congestion
                          delay
       time
       GPA
               tuition
                       assignment
                                        income
                                                 cost
```

Numbers!

Random variable Number-valued random outcome

Xtra with Numbers

Distribution

p(x)

View on a line

Express as function

Consider properties

$$p(x)=1/x^2$$

Decreasing

concentrated

Random Variable

X

Perform operations

X+1

X2

Combine variables

Consider properties

X+Y

average value of X

Two Types

Size of sample space Ω

 Ω is finite $\{1, 2, 3\}$ $\{e, \pi\}$ or countably infinite \mathbb{N} \mathbb{Z} Discrete

 Ω is uncountably infinite [0,2] (-1,3) \cup [4,5) \mathbb{R} Continuous

Combination $[0,2] \cup \{e, \pi\}$ Mixed

Begin with discrete

Been There

Several past examples had number outcomes

Outcome of a die roll {1,...,6}

Number of heads in 3 coin tosses {0,...,3}

Values of a domino tile {0,...,6}

Did not use numerical features → Use extensively

Familiar and new examples General formulation

Heads

3 fair coins

# hea	X	
# hea	X	

X	Outcomes	p(x)
0	ttt	1/8
1	tth, tht, htt	3/8
2	thh, hth, hht	3/8
3	hhh	1/8

Specification

As before

$$p(1)=.1$$
 $p(2)=.2$ $p(3)=.3$ $p(4)=.4$

Table

X	1	2		
p(x)	.1	.2	.3	.4

With numbers

$$p(x) = x / 10$$

Stem plot

$$x \in \{1,2,3,4\}$$

Plot

Probability Mass Function

As before
$$pmf$$
 $p: \Omega \rightarrow \mathbb{R}$

Specify Ω and p

Random variable → ⊆ R

Discrete → finite or countably infinite

$$p(x) \ge 0 \quad \forall x \in \Omega$$

$$\sum_{x \in \Omega} p(x) = 1$$

If X is distributed according to p, we write X ~ p

Alternative Notation

Discrete

Often
$$\mathbb{Z}$$
 \mathbb{N} \mathbb{P} $\{1,...n\}$

$$p(x) \rightarrow p_x$$

$$\rightarrow$$

$$p_x$$

$$p_i \ge 0$$

$$\sum_{i} p_i = 1$$

Types of Discrete Distributions

Finite

$$|\Omega| = n \in \mathbb{P}$$

Infinite

$$|\Omega| = \infty = \aleph_0$$

Finite Distributions

$$|\Omega| = n$$
 Specify pmf

$$p_1, p_2, ..., p_n$$

$$p_{1 \leq i \leq n} \quad p_i \geq 0$$

$$p_1, p_2, ..., p_n$$
 $\forall_{1 \leq i \leq n} \quad p_i \geq 0$ $\sum_{i=1}^n p_i = 1$

$$p_1 = p_2 = \dots = p_n = 1/n$$

Increasing
$$p_1 \le p_2 \le ... \le p_n$$

Decreasing
$$p_1 \ge p_2 \ge ... \ge p_n$$

Infinite Distributions

$$|\Omega| = \infty$$

One-sided infinite p₁, p₂, p₃, ...

Cannot be uniform
$$p = 0 \rightarrow \Sigma = 0$$
 $p > 0 \rightarrow \Sigma = \infty$

$$p = 0 \rightarrow \Sigma = 0$$

$$p > 0 \rightarrow \sum = \infty$$

Cannot increase

$$p_i > 0 \rightarrow p_{i+1}, p_{i+2}, \dots > 0 \rightarrow \Sigma = \infty$$

Can decrease

$$\sum_{i=1}^{n} \frac{1}{2^{i}} = 1 - \frac{1}{2^{n}}$$

$$\sum_{i=1}^{\infty} \frac{1}{2^i} = 1$$

Doubly infinite

$$\dots$$
, p_{-2} , p_{-1} , p_0 , p_1 , p_2 , \dots

$$\dots$$
, $\frac{1}{8}$, $\frac{1}{4}$, 0 , $\frac{1}{4}$, $\frac{1}{8}$, \dots

Formal Definition

Random variable is a mapping $f: \Omega \rightarrow \mathbb{R}$

Simplify terminology, focus on math

Number-valued random experiment

Random Variables

Motivation

Numbers

Operations

Examples

Definitions

pmf

Visualization

Histogram Plot Stem

