(1) (1) (1)	$(W_{1},V_{1}),(\omega_{2},V_{2})(\omega_{n},V_{n})$ TOTAL WEIGHT = VV						
W= 30	ITEM	WEIGHT	VALUE				
d Α , Α β	A	15	43	W=21			
15 + 15 530	В	6	18				
43 + 43 = 86	С	7	19				
dA,C,D3	Ŋ	8	23				
15'7 8 <30 43 + 19+23 ~8 9	E	5	14				
49	F	4	9				

KNAPSACK							
(no repetition) INPUT: Sequence of items with weight, value)							
(ω_1, v_1) , (ω_2, v_2) (ω_n, v_n)							
Maximum Total Weight = W							
GOAL: Bundle of items with Maximum total value							
	ITEM	WEIGHT	VALUE				
	A	15	43				
	В	6	18				
	С	7	19				
	Ŋ	8	23				
	E	5	14				
	F	4	9				

DEFINE "SUBPROBLEMS: Imagine the optimal solution break it up into smaller pieces. optimal Knapsack Optimal Optimal unopsach for weight W- WA without uning (A) Trial1: let K[w] = optimal knap sack for weight for each weight w= 1 .. W.

Imagine: In Hem (w, vn) port of it ?? K[w,i] = optimal knapsack with total weight < w that uses only elements from of 1. if

Attempt 2 $K[\omega, F]$ optimal knoppack with total weight $\langle \omega$ and using no forbidden elements. weight, forbidden elements 1... W) · 2 K[w (n)) ~ [~, (n-in])

RECURRENCE RELATION:

K[w,i] = optimal Knapsack with $total weight <math>\leq w$ that uses only elements from g[x,i]

$$K[\omega,^{\dagger}] = \max_{\substack{i \in \mathcal{V} \\ \text{contain} \\ \text{cit}}} V_i + K[\omega - \omega_i, i-1]$$

SUBPROBLEMS: (DAG of Subproblems) K[w, 1) 30pblogger

 $D[i,j] = \min_{K} \left(D(i,K) + D(K,j) \right)$

$$K[0,i] = 0 \qquad \forall \quad i=\{1...n\}$$

$$K[\omega,0] = 0 \qquad \forall \quad \omega=\{1...M\}$$

$$for \quad i = 1 \quad \text{to} \quad n$$

$$for \quad \omega = 1 \quad \text{to} \quad M$$

$$K[\omega,i] = maximum \qquad (K[\omega,i-i] + v; M[\omega,i-i])$$

return K[W,n].