চতুর্ভুজ:

চারটি রেখাংশ দ্বারা আবদ্ধ চিত্র একটি চতুর্ভুজ। উপরের চিত্র দ্বারা আবদ্ধ ক্ষেত্রটি একটি চতুর্ভুজক্ষেত্র। চতুর্ভুজের চারটি বাহু আছে। যে চারটি রেখাংশ দ্বারা ক্ষেত্রটি আবদ্ধ হয়, এ চারটি রেখাংশই চতুর্ভুজের বাহু।

A, B, C ও D বিন্দু চারটির যেকোনো তিনটি সমরেখা নয় AB, BC, CD ও DA রেখাংশ চারটি সংযোগে ABCD চতুর্ভুজ গঠিত হয়েছে। AB, BC, CD ও DA চতুর্ভুজটির চারটি বাহু। A, B, C ও D চারটি কৌণিক বিন্দু বা শীর্ষবিন্দু। ∠ABC, ∠BCD, ∠CDA ও ∠DAB চতুর্ভুজের চারটি কোণ। A ও B শীর্ষবিন্দু যথাক্রমে C ও D শীর্ষের বিপরীত শীর্ষবিন্দু। AB ও CD পরস্পর বিপরীত বাহু এবং AD ও BC পরস্পর বিপরীত বাহু এক শীর্ষবিন্দুতে যে দুইটি বাহু মিলিত হয়, এরা সন্নিহিত বাহু। যেমন, AB ও BC বাহু দুইটি সন্নিহিত বাহু। AC ও BD রেখাংশদয় ABCD চতুর্ভুজের দুইটি কর্ণ। চতুর্ভুজের বাহুগুলোর দৈর্ঘ্যের সমষ্টিকে এর পরিসীমা বলে। চতুর্ভুজের পরিসীমা (AB + BC + CD + DA) এর দৈর্ঘ্যের সমান। চতুর্ভুজকে অনেক সময়

' □ ' প্রতীক দারা নির্দেশ করা হয়।

চতুর্ভুজের প্রকারভেদ সামন্তরিক: চিত্রঃ সামান্তরিক

সামান্তরিক: যে চতুর্ভুজের বিপরীত বাহুগুলো পরস্পর সমান্তরাল, তা সামন্তরিক। সামান্তরিকের সীমাবদ্ধ ক্ষেত্রকে সামান্তরিকক্ষেত্র বলে।

আয়ত:

আয়ত: যে সামান্তরিকের একটি কোণ সমকোণ, তাই আয়ত আয়তের চারটি কোণ সমকোণ। আয়তের সীমাবদ্ধ ক্ষেত্রকে আয়তক্ষেত্র বলে। উপরের চিত্রে কখগঘ একটি আয়ত।

বৰ্গ :

বর্গ: বর্গ এমন একটি আয়ত যার সন্নিহিত বাহুগুলো সমান। অর্থাৎ, বর্গ এমন একটি সামান্তরিক যার প্রত্যেকটি কোণ সমকোণ এবং বাহুগুলো সমান। বর্গের সীমাবদ্ধ ক্ষেত্রকে বর্গক্ষেত্র বলে। উপরের চিত্রে, কখগঘ একটি বর্গ।

রম্বস:

রম্বস: রম্বস এমন একটি সামান্তরিক যার সন্নিহিত বাহুগুলোর দৈর্ঘ্য সমান। অর্থাৎ রম্বসের বিপরীত বাহুগুলো সমান্তরাল এবং চারটি বাহু সমান। রম্বসের সীমাবদ্ধ ক্ষেত্রকে রম্বসক্ষেত্র বলে। চিত্রে, কখগঘ একটি রম্বস।

ট্রাপিজিয়াম:

ট্রাপিজিয়াম: যে চতুর্ভুজের এক জোড়া বিপরীত বাহু সমান্তরাল, একে ট্রাপিজিয়াম বলা হয়। ট্রাপিজিয়ামের সীমাবদ্ধ ক্ষেত্রকে ট্রাপিজিয়ামক্ষেত্র বলে। উপরের চিত্রের কখগঘ একটি ট্রাপিজিয়াম।

ঘুড়ি:

ষুড়ি: যে চতুর্ভুজের দুইজোড়া সন্নিহিত বাহু সমান, একে ঘুড়ি বলা হয়। উপরের চিত্রে একটি ঘুড়ি।

উপপাদ্য ১

চতুর্ভুজের চারটি কোণের সমষ্টি চার সমকোণ।

বিশেষ নির্বচন:

মনে করি, ABCD একটি চতুর্ভুজ এবং AC এর একটি কর্ণ।

প্রমাণ করতে হবে যে, $\angle A + \angle B + \angle C + \angle D = 4$ সমকোণ।

অঙ্কন :

A ও C যোগ করি। AC কর্ণটি চতুর্ভুজটিকে ΔABC ও ∆ADC দুইটি ত্রিভুজে বিভক্ত করেছে।

প্রমাণ •

ধাপ	যথাৰ্থতা
১। AABC এ	[ত্রিভুজের তিন কোণের সমষ্টি ২ সমকোণ]
∠BAC +∠ACB + ∠B = 2 সমকোণ।	
২। অনুরূপভাবে, ∆DAC এ	[ত্রিভুজের তিন কোণের সমষ্টি ২ সমকোণ]
∠DAC +∠ACD + ∠D = 2 সমকোণ।	50
৩। অতএব, ∠BAC +∠ACB + ∠B +	[(১) ও (২) থেকে]
\angle DAC + \angle ACD + \angle D = (2+2) সমকোণ।	
8। ∠DAC + ∠BAC = ∠A এবং	[সন্নিহিত কোণের যোগফল]
$\angle ACD + \angle ACB = \angle C$.	[সন্নিহিত কোণের যোগফল]
	[(৩) নং থেকে]
সমকোণ। (প্রমাণিত)	

উপপাদ্য ২

সামান্তরিকের বিপরীত বাহু ও কোণগুলো পরস্পর সমান।

বিশেষ নির্বচন:

মনে করি, ABCD একটি সামান্তরিক এবং AC ও BD তার দুইটি কর্ণ।

প্রমাণ করতে হবে যে,

(ক) AB বাহু = CD বাহু, AD বাহু = BC বাহু

(₹) \angle BAD = \angle BCD, \angle ABC = \angle ADC

প্রমাণ:

ধাপ	যথাথতা
(১) AB।। DC এবং AC তাদের ছেদক,	[একান্তর কোণ সমান]
সুতারাং ∠BAC = ∠ACD	
(১) BC ।। AD এবং AC তাদের ছেদক, সুতারাং ∠ACB = ∠DAC	্রিকান্তর কোণ সমান]
(৩) এখন Δ ABC ও Δ ADC এ ∠BAC =∠ACD ∠ACB =∠DAC এবং AC বাহু সাধারণ।	[ত্রিভুজের কোণ- বাহু- কোণ উপপাদ্য]
$\therefore \Delta ABC \cong \Delta ADC$	
অতএব, AB = CD, BC = AD ও ∠ABC = ∠ADC	
অনুরূপভাবে,	
প্রমাণ করা যায় যে, ΔBAD≅ ΔBCD	
সুতারাং, $\angle BAD = \angle BCD$. (প্রমাণিত)	

কাজ:

- ১। প্রমাণ কর যে, চতুর্ভুজের এক জোড়া বিপরীত বাহু পরস্পর সমান ও সমান্তরাল হলে, তা একটি সামান্তরিক।
- ২। দেওয়া আছে, ABCD চতুর্ভুজে AB = CD এবং ∠ ABD =∠BDC প্রমাণ করতে হবে যে, ABCD একটি সামান্তরিক।
 - www.facebook.com/tanbir.cox

В

(১) সমাধান:

বিশেষ নির্বচন:

মনে করি, ABCD একটি চতুর্ভুজ এর

AB = CD, AD = BC এবং AB || CD, AD || BC

প্রমাণ করতে হবে যে, ABCD একটি সামান্তরিক।

ধাপ	যথাৰ্থতা
(১) ABও CD রেখাদ্বয় সমান্তরাল এবং	
AC তাদের ছেদক,	
অতএব, ∠BAC = ∠ACD	[একান্তর কোণ সমান]
(1) ADIO CD. GONDON WITHOUTH OFF	
(১) ABও CD রেখাদ্বয় সমান্তরাল এবং BD তাদের ছেদক,	[একান্তর কোণ সমান]
অতএব, ∠BDC = ∠ABD	
4041, ZBBC - ZIBB	
(৩) এখন AAOB ও AOCD এ	[(১) ও (২) থেকে]
∠OAB =∠OCD, ∠OBA =∠ODC	
এবং AB = DC	[কল্পনা]
$\therefore \Delta ABC \cong \Delta ADC$	
া. এ ABC = AADC তাহলে, OA = OC এবং OB = OD	
(৪) অতএব, ABCD চতুর্ভুজ	
AB CD, AD BC	[কল্পনা]
AD = BC, AB = CD	[কর্ণদ্বয় পরস্পরকে সমদ্বিখণ্ডিত করে]
এবং OA = OC, OB = OD	
সুতারাং, ABCD চতুর্ভুজটি সামান্তরিক (প্রমাণিত)	

উপপাদ্য ৩

সামান্তরিকের কর্ণদ্বয় পরস্পরকে সমদিখণ্ডিত করে।

বিশেষ নির্বচন:

মনে করি, ABCD একটি সামান্তরিকের

AC ও BD কর্ণদ্বয় পরপস্পরকে O বিন্দুতে ছেদ করে।

প্রমাণ করতে হবে যে, OA = CO, BO = DO.

প্রমাণ:

ৰাপ	যথাখতা
(১) AB ও DC রেখাদ্বয় সমান্তরাল এবং AC এদের	[একান্তর কোণ সমান]
ছেদক। অতএব,∠BAC = একান্তর ∠DAC	
(২) AD ও BC রেখাদ্বয় সমান্তরাল এবং BD এদের ছেদক। সুতারাং,∠ BDC = একান্তর ∠ABD	্রিকান্তর কোণ সমান]
(৩) এখন ∆AOB ও ∆COD এ ∠BAC =∠ACD, ∠OBA =∠ODC এবং AB=DC	[ত্রিভুজের কোণ- বাহু- কোণ উপপাদ্য]
$\therefore \Delta ABC \cong \Delta ADC$	
অতএব, AO = CO, BO = DO. (প্রমাণিত)	

 \mathbb{P}

উপপাদ্য ৪

আয়তের কর্ণদ্বয় সমান ও পরস্পরকে সমদ্বিখণ্ডিত করে।

বিশেষ নির্বচন:

মনে করি, ABCD একটি আয়তের

AC ও BD কর্ণদ্বয় পরপস্পরকে O বিন্দুতে ছেদ করে।

প্রমাণ করতে হবে যে,

- (i) AC = BD
- (ii) OA = CO, BO = DO.

প্রমাণ:

ধাপ	যথাৰ্থতা
(১) আয়ত একটি সামান্তরিক। সুতারাং	[সামান্তরিকের কর্ণদ্বয় পরস্পরকে সমদ্বিখণ্ডিত করে]
AO = CO, BO = DO.	
(২) এখন ∆ABD ও ∆ACD এ ∠DAB =∠ADC, AB = DC AD = AD	[প্রত্যেক কোণ সমকোণ] [সামান্তরিকের বিপরীত বাহু পরপস্পর সমান] [সাধারণ বাহু]
∴ ∆ABD ≅ ∆ ACD	 [ত্রিভুজের বাহু- কোণ - বাহু উপপাদ্য]
অতএব, AC = BD. (প্রমাণিত)	

উপপাদ্য ৫

রম্বসের কর্ণদ্বয় পরস্পরকে সমকোণে সমদ্বিখণ্ডিত করে।

বিশেষ নির্বচন:

মনে করি, ABCD একটি রম্বসের

AC ও BD কর্ণদ্বয় পরপস্পরকে O বিন্দুতে ছেদ করে।

প্রমাণ করতে হবে যে,

- (i) ∠AOB = ∠BOC = ∠COD = ∠DOA =1 সমকোণ
- (ii) OA = CO, BO = DO.

-1 11 1 *	
ধাপ	যথাৰ্থতা
(১) রম্বস একটি সামান্তরিক। সুতারাং	[সামান্তরিকের কর্ণদ্বয় পরস্পরকে সমদ্বিখণ্ডিত করে]
AO = CO, BO = DO.	
(২) এখন ΔAOB ও ΔBOC এ	
AB = BC	[রম্বসের বাহুগুলো সমান]
AB = DC	[(১) থেকে]
এবং OB = OB	[সাধারণ বাহু]
~	
অতএব, AAOB = ABOC	[নিভাজেব বাহু - বাহু - বাহু উপপাদ্য]

সুতারাং, ∠AOB =∠BOC $\angle AOB+\angle BOC=1$ সরলকোণ = 2 সমকোণ। ∠AOB=∠BOC = 1 সমকোণ। অনুরূপভাবে, প্রমাণ করা যায় যে, \angle COD= \angle DOA = 1 সমকোণ। (প্রমাণিত)

কাজ:

- ১। দেখাও যে, বর্গের কর্ণদ্বয় পরস্পর সমান ও সমদ্বিখণ্ডিত করে।
- ২। একজন রাজমিস্ত্রী একটি আয়তকার কংক্রিট স্ল্যাব তৈরি করেছেন। তিনি কত বিভিন্ন ভাবে নিশ্চিত হতে পারেন যে তাঁর স্ল্যাবটি সত্যিই আয়তকার?

(১) সমাধান:

বিশেষ নির্বচন:

মনেকরি, ABCD বর্গের AC ও BD কর্ণদ্বয় পরস্পরকে O বিন্দুতে ছেদ করে।

প্রমাণ করতে হবে যে, AC = BD এবং OA = OC, OB = OD

ধাপ	যথাৰ্থতা
(১) বর্গ একটি সামান্তরিক সুতারাং AO = CO, BO = DO	[সামান্তরিকের কর্ণদ্বয় পরস্পরকে সমদ্বিখণ্ডিত করে]
(২) এখন, ∆ABD ও ∆ACD এ ∠DAB =∠ADC AB = DC এবং AD = AD	[প্রত্যেকে সমকোণ] [সামান্তরিকের বিপরীত বাহু পরস্পর সমান] [সাধারণ বাহু]
সুতারাং, ∆ABD ≃ ∆ACD অতএব, AC = BD (প্রমাণিত)	[ত্রিভুজের বাহু- কোণ- বাহু উপপাদ্য]

অনুশীলনী ৮.১

- সামান্তরিকের জন্য নিচের কোনটি সঠিক?
 - (ক) বিপরীত বাহুগুলো অসমান্তরাল
- (খ) একটি কোণ সমকোণ হলে, তা আয়ত
- (গ) বিপরীত বাহুদ্বয় অসমান
- (ঘ) কর্ণদ্বয় পরস্পর সমান

- নিচের কোনটি রম্বসের বৈশিষ্ট্য?
 - (ক) কর্ণদ্বয় পরস্পর সমান

- (খ) প্রত্যেক কোণই সমকোণ
- (গ) বিপরীত কোণদ্বয় অসমান
- (ঘ) প্রত্যেকটি বাহুই সমান
- ৩। i. চতুর্ভুজের চার কোণের সমষ্টি চার সমকোণ।
 - ii. আয়তের দুইটি সন্নিহিত বাহু সমান হলে তা একটি বর্গ।
 - iii প্রত্যেকটি রম্বস একটি সামান্তরিক।

উপরের তথ্য অনুসারে নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) i ও iii

(গ) ii ও iii

(ঘ) i, ii ও iii

8 । PAQC চতুর্ভুজের PA = CQ এবং PA । CQ.

✓ A ও∠C সমদ্বিখণ্ডক যথাক্রেমে AB ও CD হলে

ABCD ক্ষেত্রটির নাম কী?

- (ক) সামান্তরিক
- (খ) রম্বস
- (গ) আয়ত
- (ঘ) বর্গ

৫। দেওয়া আছে ∆ABC এর মধ্যমা BO কে D পর্যন্ত এমনভাবে বর্ধিত করি যেন BO = OD হয়। প্রমাণ করতে হবে যে, ABCD একটি সামান্তরিক।

সমাধান:

বিশেষ নির্বচন:

দেওয়া আছে, ΔABC এর মধ্যমা BO কে D পর্যন্ত এমনভাবে বর্ধিত করি যেন BO = OD হয়। প্রমাণ করতে হবে যে,

ABCD একটি সামান্তরিক।

প্রমাণ:

ertat	Nottobet
ধাপ	য থা খভা
(১) $\triangle AOB$ ও $\triangle COD$ এর মধ্যে	
BO = OD	[কম্পনা]
OA = OC	[O, AC এর মধ্যবিন্দু]
∠AOB = বিপরীত∠COD	
∴ ∆AOB ≅ ∆ COD	 [ত্রিভুজের বাহু - কোণ - বাহু উপপাদ্য]
সুতারাং, AB = CD	
(২) অনুরূপভাবে প্রমাণ করা যায়	
AD = BC	
: ABCD একটি সামান্তরিক	
(প্রমাণিত)	

৬। প্রমাণ কর যে, সামান্তরিকের একটি কর্ণ একে দুইটি সর্বসম ত্রিভুজে বিভক্ত করে।

সমাধান:

বিশেষ নির্বচন:

মনেকরি, ABCD একটি সামান্তরিক। এর একটি কর্ণ AC। প্রমাণ করতে হবে যে, AC কর্ণটি ABCD সামান্তরিকটিকে সমান দুই ভাগে ভাগ করে। অর্থাৎ ΔABC ≅ Δ ADC।

ধাপ	যথাৰ্থতা
(১) যেহেতু AB।। CD এবং AC তাদের ছেদক ∴ ∠ BAC =∠ACD	[একান্তর কোণ সমান]
(২) আবার, BC ।। AD এবং AC তাদের ছেদক ∴ ∠ACB = ∠DAC	[একান্তর কোণ সমান]
(৩) এখন, ΔABC ও ΔADC এ	
∠BAC =∠ACD	
∠ACB =∠DAC	
AC = AC	[সাধারণ বাহু]

 $\therefore \triangle ABC \cong \triangle ADC$ [ত্রিভুজের কোণ - বাহু - কোণ উপপাদ্য] অর্থাৎ সামান্তরিকের কর্ণ সামান্তরিকটিকে সমান দুই ভাগে ভাগ করে। (প্রমাণিত)

৭। প্রমাণ কর যে, চতুর্ভুজের বিপরীত বাহুগুলো পরস্পর সমান ও সমান্তরাল হলে তা একটি সামান্তরিক।

সমাধান:

বিশেষ নির্বচন:

মনেকরি, ABCD একটি চতুর্ভুজ। এর AD = BC, AB = CD এবং AD II BC, AB II CD হলে

প্রমাণ করতে হবে যে, চতুর্ভুজটি একটি সামান্তরিক। D \mathbf{C} В

অঙ্কন : চতুর্ভুজটির কর্ণ AC অঙ্কন করি।

4411:	
ধাপ	যথাৰ্থতা
(১) যেহেতু AD ।। BC এবং AC তাদের ছেদক ∴ ∠ACB =∠CAD	[একান্তর কোণ সমান]
(২) অনুরূপভাবে, BC।। AD এবং AC তাদের ছেদক ∴ ∠BAC =∠ACD	[একান্তর কোণ সমান]
(৩) এখন, ∆ABC ও ∆ADC এ ∠ACB =∠CAD ∠BAC =∠ACD AC = AC	[সাধারণ বাহু]
∴ ΔABC ≅ Δ ADC ∴ ∠ABC = ∠ADC	[ত্রিভুজের কোণ - বাহু - কোণ উপপাদ্য]
(৪) অনুরূপভাবে, ∠BAC =∠BCD ∴ ABCD একটি সামান্তরিক (প্রমাণিত)	

৮। প্রমাণ কর যে, সামান্তরিকের কর্ণদ্বয় পরস্পর সমান হলে, তা একটি আয়ত।

সমাধান:

বিশেষ নির্বচন:

মনেকরি, ABCD সামান্তরিকের কর্ণ AC = কর্ণ BD

প্রমাণ করতে হবে যে,

ABCD একটি আয়ত।

প্রমাণ:

ধাপ	যথাৰ্থতা
(১) AABC ও A ADBএর মধ্যে BC = AD	[সামান্তরিকের বিপরীত বাহু পরস্পর সমান]
AC = BD $AB = AB$	[কল্পনা] [সাধারণ বাহু]
∴ ΔABC ≅ ΔADB ∴ ∠ABC = ∠BAD	[কোণ- বাহু- বাহু উপপাদ্য]
(২) আবার, যেহেতু AD ।। BC এবং AB তাদের ছেদক ∠ABC +∠BAD = 2 সমকোণ	[ছেদকের একই পাশের অন্তঃস্থ কোণ সমান]
∴ ∠ ABC =∠BAD = 1 সমকোণ ∴ ABCD একটি আয়ত (প্রমাণিত)	

৯। প্রমাণ কর যে, চতুর্ভুজের কর্ণদ্বয় পরস্পর সমান হলে এবং পরস্পরকে সমকোণে সমদ্বিখণ্ডিত করলে, তা একটি বর্গ।

সমাধান:

বিশেষ নির্বচন:

মনেকরি, ABCD চতুর্ভুজের AC ও BD কর্ণ পরস্পর সমান এবং পরস্পরকে O বিন্দুতে সমকোণে সমদ্বিখণ্ডিত করেছে।

প্রমাণ করতে হবে যে, ABCD একটি বর্গ।

প্রমাণ:

ধাপ	যথাৰ্থতা
(১) AAOB ও AAOD এতে	
OB = OD	[কল্পনা]
অন্তর্ভুক্ত ∠AOB = অন্তর্ভুক্ত ∠AOD	[সমকোণ]
AO = AO	[সাধারণ বাহু]
∴ ΔAOB ≅ ΔAOD	[ত্রিভুজের বাহু- কোণ - বাহু উপপাদ্য]
AB = AD	
(২) অনুরূপভাবে, ΔΑΟΒ ও ΔΒΟC এ	
প্রমাণ করা যায় যে,	
AB = BC	
(৩) এবং ১BOC ও ১COD এ	
প্রমাণ করা যায় যে,	
BC = CD	01/1
∴ ABCD চতুর্জ	X.
AB = BC = CD = AD	
(8) আবার, $\triangle AOB$ এ $\angle AOB = 90^{\circ}$	[(১), (২) ও (৩) থেকে]
	[কল্পনা]
এবং OA = OB ∴ ∠OAB =∠OBA = 45 ⁰	[সমান সমান বাহুর বিপরীত কোণ সমান]
(৫) অনুরূপভাবে, ∆AOD এ	
$\angle OAD = \angle ODA = 45^{\circ}$	
$\therefore \angle BAD = \angle OAB + \angle OAD$ $= 45^{0} + 45^{0}$	
= 43 + 45 = 90°	
∴ ABCD একটি বর্গ। (প্রমাণিত)	

১০। প্রমাণ কর যে, আয়তের সন্নিহিত বাহুর মধ্যবিন্দুসমূহের যোগে যে চতুর্ভুজ হয়, তা একটি রম্বস।

সমাধান:

বিশেষ নির্বচন:

মনেকরি, ABCD আয়ত। P, Q, R ও S যথাক্রমে AB, BC, CD ও AD এর মধ্যবিন্দু। P, Q; Q, R; R, S ও S, P যোগ করি।

প্রমাণ করতে হবে যে, PQRS একটি রম্বস।

A S Q D R

অঙ্কন: A, C; B, D; এবং S, Q; P, R যোগ করি।

№ www.facebook.com/tanbir.cox

ধাপ	যথাৰ্থতা
(১) \triangle ABD ও \triangle BCD এর সন্নিহিত বাহুর	
মধ্যবিন্দুর সংযোগ রেখাংশ যথাক্রমে	
PS ও QR।	
সুতারাং, PS ।। BD এবং QR ।। BD	 [ত্রিভুজের দুই বাহুর মধ্যবিন্দুর সংযোজক
আবার, $PS = \frac{5}{2}BD$	সরল রেখা তৃতীয় বাহুর সমান্তরাল এবং দৈর্ঘ্য
2	তার অর্ধেক]
আবার, $QR = \frac{\lambda}{2} BD$	
∴ PS = QR এবং PS ।। QR	[সমান্তরাল রেখার সমান্তরাল রেখা পরস্পর
	সমান্তরাল]
(২) অনুরূপভাবে, ΔABC ও ΔADC নিয়ে	
প্রমাণ করা যায় যে, PQ = SR	
এবং PQ ।। SR	
∴ PQRS একটি রম্বস (প্রমাণিত)	×

১১। প্রমাণ কর যে, সামান্তরিকের যেকোনো দুইটি বিপরীত কোণের সমদ্বিখণ্ডক পরস্পর সমান্তরাল। সমাধান:

বিশেষ নির্বচন:

মনেকরি, ABCD একটি সামান্তরিক। ∠A ও ∠C এর সমদ্বিখণ্ডক AE ও CF যথাক্রমে DC ও AB কে E ও F বিন্দুতে ছেদ করে

প্রমাণ করতে হবে যে, AE ।। CF।

ধাপ	যথাৰ্থতা
(১) যেহেতু AE, ∠BAD এর সমদ্বিখণ্ডক	[কল্পনা]
$\therefore \angle EAF = \frac{5}{5} \angle BAD$	
(2) অনুরূপভাবে, $\angle ECF = \frac{5}{5} \angle BCD$	[কল্পনা]
∴∠EAF = ∠ECF	
(৩) আবার, AB ।। CD এবং AE এদের ছেদক	[সামান্তরিকের বিপরীত বাহু পরস্পর সমান্তরাল]
∠ AED =∠EAF ∴∠ AED =∠ ECF	[একান্তর কোণ] [(২) থেকে]
কিন্তু, এরা অনুরূপ কোণ।	[(<) 6464.]
∴ AECF একটি সামান্তরিক।	
∴ AE II FC (প্রমাণিত)	

১২। প্রমাণ কর যে, সামান্তরিকের যেকোনো দুইটি সন্নিহিত কোণের সমদ্বিখণ্ডক পরস্পর লম্ব।

সমাধান:

বিশেষ নির্বচন:

মনেকরি, ABCD একটি সামান্তরিক। এর ∠BAD ও∠ABC এর সমদ্বিখণ্ডকদ্বয় পরস্পর O বিন্দুতে ছেদ করেছে।

প্রমাণ করতে হবে যে, AO ও BO পরস্পরের উপর লম্ব।

প্রমাণ:

ধাপ	যথাৰ্থতা
(১) যেহেতু AO,∠BAD এর সমদ্বিখণ্ডক	
$\angle OAB = \frac{3}{2} \angle BAD$ (২) অনুরূপভাবে, $\angle OBA = \frac{3}{2} \angle ABC$	[কল্পনা]
্র (৩) আবার, যেহেতু AD।। BC এবং AB	>
ছেদক। ∴∠BAD +∠ ABC = দুই সমকোণ	[ছেদকের একই পাশে অন্তঃস্থ কোণ বলে] [(১) ও (২) থেকে]
বা <mark>২</mark> ∠BAD + <mark>২</mark> ∠ABC = এক সমকোণ।	
বা, ∠OAB +∠OBA = এক সমকোণ।	
(8) এখন, ΔΑΟΒ এ, ∠OAB + ∠OBA +∠AOB = 2 সমকোণ। বা, ∠AOB + 1 সমকোণ = 2 সমকোণ।	[ত্রিভুজের তিনটি কোণের সমষ্টি দুই সমকোণ]
বা, $\angle AOB = 2$ সমকোণ -1 সমকোণ।	
∴ ∠AOB = 1 সমকোণ।	
অর্থাৎ, AO ও BO পরস্পরের উপর লম্ব (প্রমাণিত)	

A

১৩। চিত্রে, ABC একটি সমবাহু ত্রিভুজ। D, E ও F যথাক্রমে AB, BC ও AC এর মধ্যবিন্দু।

(ক) প্রমাণ কর যে,

সমাধান:

বিশেষ নির্বচন:

মনেকরি, চিত্রে ABC একটি একটি সমবাহু ত্রিভুজ। D, E, F যথাক্রমে AB, BC ও AC এর মধ্যবিন্দু।

ধাপ	যথাৰ্থতা
(১) ΔBDE এ,	
∠BDE +∠BED +∠EBD = দুই সমকোণ	[ত্রিভুজের তিন কোণের সমষ্টি 2 সমকোণ]
(২) ΔDEF এ,	14C414]
∠DEF +∠DFE + ∠EDF = দুই সমকোণ	[ত্রিভুজের তিন কোণের সমষ্টি 2
(∠BDE +∠BED +∠EBD +	সমকোণ]
∠DEF +∠DFE +∠EDF) = চার সমকোণ	[(১) ও (২) থেকে]
$\angle BDF + \angle DFE + \angle FEB + \angle EBD =$	
চার সমকোণ। প্রমাণিত)	

(খ) প্রমাণ কর যে, DF II BC এবং DF = \$\frac{5}{5}\text{BC}

সমাধান:

বিশেষ নির্বচন:

মনেকরি, ΔABC এর D ও F যথাক্রমে AB ও AC এর মধ্য বিন্দু। D ও F যোগকরে G পর্যন্ত এমনভাবে বর্ধিত করি যেন DF = FG হয়। G, C যোগকরি।

প্রমাণ করতে হবে যে,

DF II BC এবং DF =
$$\frac{2}{2}$$
 BC

ধাপ	যথাৰ্থতা
(\$) ΔADF ও ΔCGF ④,	
DF = FG	[অঙ্কনানুসারে]
AF = CF	[কল্পনা]
এবং অন্তভুক্ত ∠DFA = অন্তভুক্ত ∠CFG	[বিপ্রতীপ কোণ সমান]
∴ ΔDEF ≅ ΔCGF	[বাহু- কোণ- বাহু উপপাদ্য] [কল্পনা]
(২) AD = CG	-
এবং∠DAF =∠FCG	[একান্তর কোণ সমান]
বা, BD = CG	
বা, ∠DAC =∠ACG	
কিন্তু কোণদ্বয় AD ও CG বাহুর AC	
ছেদক দ্বারা উৎপন্ন একান্তর কোণ।	
∴ DA CG	
বা, BA ।। CG	
(৩) এখন BCGD চতুর্ভুজের BD = CG এবং BD ।। CG ∴ BCGD একটি সামান্তরিক। ∴ DG ।। BC এবং DG = BC	[সামান্তরিকের বিপরীত বাহুদ্বয় পরস্পর সমান ও সমান্তরাল]

(8) $DF + FG = BC$		[(১) থেকে]
বা, $DF + DF = BC$		
বা, 2DF = BC		
$\therefore DF = \frac{3}{3}BC$		
সুতারাং, DF ।। BC		
এবং DF = $\frac{5}{2}$ BC	(প্রমাণিত)	

১৪. দেওয়া আছে, ABCD সামান্তরিকের AM ও CN, DB এর উপর লম্ব। প্রমাণ কর যে, ANCM একটি সামান্তরিক।

সমাধান:

বিশেষ নির্বচন:

দেওয়া আছে, ABCD সামান্তরিক AM ও CN, BD উপর লম্ব।

প্রমাণ করতে হবে যে, ANCM একটি সামান্তরিক।

ধাপ	যথাৰ্থতা
(১) △ADM ও △BCN এর, ∠ADM =∠NBC ∠AMD =∠BNC এবং AD = BC ∴ △ADM ≅ △BCN ∠MAD = ∠BCN	[একান্তর কোণ] [AM [⊥] BD, CN [⊥] BD] [সামান্তরিকের বিপরীত বাহু পরস্পর সমান] [কোণ - বাহু - কোণ উপপাদ্য]
(২) অনুরূপভাবে, △ABN ও △CDM এর মধ্যে ∠ BAN = ∠ MCD ∴ ∠ BAD – (∠DAM + ∠BAN) =∠BCD – (∠NCB + ∠MCD) ∴ ∠MAN =∠MCN ∴ ∠AMC = ∠ANC	
(৩) অর্থাৎ ANCM চতুর্ভুজের ∠MAN =∠MCN ∠AMC = ∠ANC ∴ NCMA একটি সামান্তরিক। (প্রমাণিত)	্র [(১) থেকে]

वष्ट्रम वशारा 8-2 ठेवू बुं क वक्षन

সম্পাদ্য

সম্পাদ্য ১

কোনো চতুর্ভুজের চারটি বাহুর দৈর্ঘ্য ও একটি কোণ দেওয়া আছে। চতুর্ভুজটি আঁকতে হবে। মনে করি,

একটি চতুর্ভুজের চার বাহুর দৈর্ঘ্য a, b, c, d এবং a ও b বাহুদ্বয়ের অন্তভুক্ত কোণ $\angle x$ দেওয়া আছে। চতুর্ভুজটি আঁকতে হবে।

অঙ্কনের বিবরণ:

- (১) যে কোনো রশ্মি BE থেকে BC = a নিই। B বিন্দুতে $\angle EBF = \angle x$ আঁকি।
- (২) BF থেকে BA = b নিই। A ও C কে কেন্দ্র করে যথাক্রমে c ও d এর সমান ব্যাসার্ধ নিয়ে ∠ABC এর অভ্যন্তরে দুইটি বৃত্তচাপ আঁকি। তারা পরষ্পর D বিন্দুতে ছেদ করে।
- (৩) A ও B এবং C ও D যোগ করি। তাহলে, ABCD ই উদ্দিষ্ট চতুর্ভুজ।

প্রমাণ:

অঙ্কন অনুসারে, AB=b , BC=a , AD=c , CD=d এবং $\angle ABC=\angle x$ $\therefore ABCD$ - ই নির্ণেয় চতুর্ভুজ।

কোনো চতুর্ভুজের চারটি বাহুর দৈর্ঘ্য ও একটি কর্ণের দৈর্ঘ্য দেওয়া আছে। চতুর্ভুজটি আঁকতে হবে। মনে করি.

একটি চতুর্ভুজের চারটি বাহুর দৈর্ঘ্য a,b,c,d এবং একটি কর্ণের দৈর্ঘ্য e দেওয়া আছে, যেখানে a+b > e এবং c + d > e

Δ_		
a -		
b_		_
c_		
d		

অঙ্কনের বিবরণ :

- (১) যেকোনো রশ্মি BE থেকে BD = e নিই। $B \otimes D$ কে কেন্দ্র করে যথাক্রমে $a \otimes b$ এর সমান ব্যাসার্ধ নিয়ে BD এর একই পাশে দুইটি বৃত্তচাপ আঁকি। বৃত্তচাপদ্বয় A বিন্দুতে ছেদ করে।
- (২) আবার, B ও D কে কেন্দ্র করে যথাক্রমে d ও c এর সমান ব্যাসার্ধ নিয়ে BD এর যেদিকে Aআছে তার বিপরীত দিকে আরও দুইটি বৃত্তচাপ আঁকি। এই বৃত্তচাপদ্বয় পরস্পর C বিন্দুতে ছেদ করে।
- (৩) A ও B, A ও D, B ও C এবং C ও D যোগ করি। তাহলে, ABCD- ই উদ্দিষ্ট চতুর্ভুজ। প্রমাণ :

অঙ্কন অনুসারে, AB = a, AD = b, BC = d, CD = c এবং কর্ণ BD = eসূতারাং, ABCD- ই নির্ণেয় চতুর্ভুজ।

কোনো চতুর্ভুজের তিনটি বাহু ও দুইটি কর্ণের দৈর্ঘ্য দেওয়া আছে। চতুর্ভুজটি আঁকতে হবে।

মনে করি.

একটি চতুর্ভুজের তিনটি বাহুর দৈর্ঘ্য a, b, c এবং দুইটি কর্ণের দৈর্ঘ্য d, e দেওয়া আছে। যেখানে a+b>e এবং b+c>d। চতুর্ভুজটি আঁকতে হবে।

e —			
a —— b ——		-	
c d			
	A	В	D E
		a	b
B		D E B	e D E
		. 1002.	c

অঙ্কনের বিবরণ :

- (১) যেকোনো রশ্মি BE থেকে BD =e নিই। B ও D কে কেন্দ্র করে যথাক্রমে a ও b এর সমান ব্যাসার্ধ নিয়ে BD এর একই পাশে দুইটি বৃত্তচাপ আঁকি। বৃত্তচাপদ্বয় A বিন্দুতে ছেদ করে।
- (২) আবার, D ও A কে কেন্দ্র করে যথাক্রমে c ও d এর সমান ব্যাসার্ধ নিয়ে BD এর যেদিকে A রয়েছে এর বিপরীত দিকে আরও দুইটি বৃত্তচাপ আঁকি। এই বৃত্তচাপদ্বয় পরস্পর C বিন্দুতে ছেদ করে।
- (৩) A ও B, A ও D, B ও C এবং C ও D যোগ করি। তাহলে, ABCD ই উদ্দিষ্ট চতুর্ভুজ।

প্রমাণ:

অঙ্কন অনুসারে, $AB=a,\,AD=b,\,CD=c$ এবং কর্ণ BD=e ও AC=dসূতারাং, ABCD - ই নির্ণেয় চতুর্ভুজ।

কোনো চতুর্ভুজের তিনটি বাহুর দৈর্ঘ্য ও দুইটি অন্তর্ভুক্ত কোণ দেওয়া আছে। চতুর্ভুজটি আঁকতে হবে। মনে করি.

একটি চতুর্ভুজের তিনটি বাহু a, b, c এবং a ও b বাহুর অন্তর্ভুক্ত কোণ $\angle x$ এবং a ও c বাহুর অন্তরভুক্ত কোণ $\angle y$ দেওয়া আছে। চতুর্ভুজটি আঁকতে হবে।

অঙ্কনের বিবরণ:

যেকোনো রশ্মি BE থেকে BC=a নিই। B ও C বিন্দুতে $\angle x$ ও $\angle y$ এর সমান করে যথাক্রমে $\angle CBF$ ও $\angle BCG$ অঙ্কন করি। BF থেকে BA = b এবং CG থেকে CD = c নিই। A, D যোগ করি। তাহলে, ABCD - ই উদ্দিষ্ট চতুর্ভুজ।

প্রমাণ:

অঙ্কন অনুসারে, AB = b, BC = a, CD = c, $\angle ABC = \angle x$ ও $\angle DCB = \angle y$ সূতারাং, ABCD - ই নির্ণেয় চতুর্ভুজ।

কোনো চতুর্ভুজের দুইটি সন্নিহিত বাহুর দৈর্ঘ্য ও তিনটি কোণ দেওয়া আছে। চতুর্ভুজটি আঁকতে হবে। মনে করি,

একটি চতুর্জের দুইটি সন্নিহিত বাহু a, b এবং তিনটি কোণ $\angle x$, $\angle y$, $\angle z$ দেওয়া আছে। চতুর্জুটি আঁকতে হবে।

অঙ্কনের বিবরণ:

যেকোনো রশ্মি BE থেকে BC = a নিই। B ও C $\angle x$ ও $\angle y$ এর সমান করে যথাক্রমে $\angle CBF$ ও $\angle BCG$ অঙ্কন করি। BF থেকে BA = b নিই। A বিন্দুতে $\angle z$ এর সমান করে $\angle BAH$ অঙ্কন করি। AH ও CG পরম্পারকে D ছেদ করে। তাহলে, ABCD - ই উদ্দিষ্ট চতুর্ভুজ।

প্রমাণ:

অঙ্কন অনুসারে, AB = b, BC = a, $\angle ABC = \angle x$ $\angle DCB = \angle y$ ও $\angle BAD = \angle z$ সুতারাং, ABCD -ই নির্ণেয় চতুর্ভুজ।

কোনো সামন্তরিকের সন্নিহিত দুইটি বাহুর দৈর্ঘ্য এবং বাহুদ্বয়ের অন্তর্ভুক্ত কোণ দেওয়া আছে। সামন্তরিকটি আঁকতে হবে।

মনে করি, একটি সামান্তরিকের দুইটি সন্নিহিত বাহু a ও b এবং এদের অন্তর্ভুক্ত কোণ $\angle x$ দেওয়া আছে। সামান্তরিকটি আঁকতে হবে।

অঙ্কনের বিবরণ:

যেকোনো রশ্মি BE থেকে BC = a নিই। B বিন্দুতে $\angle EBF = \angle x$ অঙ্কন করি। BF থেকে b এর সমান BA নিই। A ও C বিন্দুকে কেন্দ্র করে যথাক্রমে a ও b এর সমান ব্যাসার্ধ নিয়ে $\angle ABC$ এর অভ্যন্তরে দুইটি বৃত্তচাপ আঁকি। এরা পরস্পারকে D বিন্দুতে ছেদ করে। A, D ও C, D যোগ করি। তাহলে ABCD - ই উদ্দিষ্ট সামান্তরিক।

প্রমাণ:

A,C যোগ করি। ΔABC ও ΔADC এ AB=CD=b, AD=BC=a এবং AC বাহু সাধারণ। $\triangle ABC\equiv \Delta DCA$

অতএব, $\angle BAC = \angle DCA$ কিন্তু, কোন দুইটি একান্তর কোণ।

∴ ABII CD অনুরূপভাবে প্রমাণ করা যায় যে, BC । I AD সুতারাং ABCD একটি সামান্তরিক। আবার অঙ্কন অনুসারে ∠ABC = ∠x অতএব, ABCD - ই নির্ণেয় সামান্তরিক।

কোনো বর্গের একটি বাহুর দৈর্ঘ্য দেওয়া আছে, বর্গটি আঁকতে হবে।

মনে করি, a কোনো বর্গের একটি বাহুর দৈর্ঘ্য। বর্গটি আঁকতে হবে।

অঙ্কনের বিবরণ:

যেকোনো রশ্মি BE থেকে BC = a নিই। B বিন্দুতে BF [⊥] BC আঁকি। BF থেকে BA = a নিই। A ও C কে কেন্দ্র করে a এর সমান ব্যাসার্ধ নিয়ে $\angle ABC$ এর অভ্যন্তরে দুইটি বৃত্তচাপ আঁকি। ব্রুচাপদ্বয় পরস্পরকে D বিন্দুতে ছেদ করে। A ও D এবং C ও D যোগ করি। তাহলে ABCD - ই উদ্দিষ্ট বর্গ।

প্রমাণ:

ABCD চতুর্ভুজের AB=BC=CD=DA=a এবং $\angle ABC=$ এক সমোকোণ। সুতারাং, এটি একটি বর্গ। অতএব ABCD - ই নির্ণেয় বর্গ।

 \mathbb{P}

অনুশীলনী ৮.২

- ১। একটি চতুর্ভুজ আঁকতে কয়টি অনন্য নিরপেক্ষ উপাত্তের প্রয়োজন?
 - (ক) 3টি
- (খ) 4টি
- (গ) 5টি
- (ঘ) 6টি
- ২। i দুইটি সন্নিহিত বাহু দেওয়া থাকলে আয়ত আঁকা যায়।
 - ii চারটি কোণ দেওয়া থাকলে একটি চতুর্ভুজ আঁকা যায়।
 - iii বর্গের একটি বাহু দেওয়া থাকলে বর্গ আঁকা যায়। উপরের তথ্যের আলোকে নিচের কোনটি সঠিক?
 - (ক) i ও ii
- (খ) i ও iii
- (গ) ii ও iii
- (ঘ) i, ii ও iii

- ৩। নিম্নের প্রদত্ত উপাত্ত নিয়ে চতুর্ভুজ অঙ্কন কর:
 - (ক) চারটি বাহুর দৈর্ঘ্য 3 সে.মি., 3.5 সে.মি., 2.8 সে.মি., ও 3 সে.মি. এবং কোণ 45°।

a –	3 সে.মি.	
a h-	3.5 সে.মি.	
0-	2.8 সে.মি.	
c –	3 সে.মি.	-
d _	J 671.174.	

সমাধান :

বিশেষ নির্বচন : মনেকরি, চতুর্ভুজের চারটি বাহু a, b, c ও d এর দৈর্ঘ্য যথাক্রমে 3 সে.মি., 3.5 সে.মি., 2.8 সে.মি. ও 3 সে.মি. এবং a ও b এর অন্তরভুক্ত $\angle x = 45^0$ দেওয়া আছে। চতুর্ভুজটি আঁকতে হবে।

অঙ্কনের বিবরণ:

(১) যেকোনো রেখা BE থেকে BC=a কেটে নিই। B বিন্দুতে $\angle EBF = \angle x$ আঁকি। BF থেকে BA = b নিই।

(২) এখন A ও C বিন্দুদ্বয়কে কেদ্র করে c ও d এর সমান ব্যাসার্ধ নিয়ে ABC এর অভ্যন্তরে দুইটি বৃত্তচাপ আঁকি। বৃত্তদ্বয় পরস্পর D বিন্দুতে ছেদ করে। A, D এবং C, D যোগ করি। তাহলে ABCD- ই উদ্দিষ্ট চতুর্ভুজ।

(খ) চারটি বাহুর দৈর্ঘ্য 4 সে.মি., 3 সে.মি., 3.5 সে.মি., ও 4.5 সে.মি. এবং কোণ 60° ।

a	4 সে.মি.	
a L	3 সে.মি.	
0-	3.5 সে.মি.	_
4	4.5 সে.মি.	
u –		

সমাধান:

বিশেষ নির্বচন : মনেকরি, চতুর্ভুজের চারটি বাহু a, b, c ও d এর দৈর্ঘ্য যথাক্রমে 4 সে.মি., 3 সে.মি., 3.5 সে.মি. ও 4.5 সে.মি. এবং a ও b এর অন্তরভুক্ত $\angle x = 60^{\circ}$ দেওয়া আছে। চতুর্ভুজটি আঁকতে হবে।

অঙ্কনের বিবরণ:

(১) যেকোনো রেখা BE থেকে BC=a কেটে নিই। B বিন্দুতে ∠EBF = ∠x আঁকি। BF থেকে BA = b নিই।

(২) এখন A ও C বিন্দুদ্বয়কে কেদ্র করে c ও d এর সমান ব্যাসার্ধ নিয়ে ABC এর অভ্যন্তরে দুইটি বৃত্তচাপ আঁকি। বৃত্তদ্বয় পরস্পর D বিন্দুতে ছেদ করে। A, D এবং C, D যোগ করি। তাহলে ABCD- ই উদ্দিষ্ট চতুর্ভুজ।

(গ) চারটি বাহুর দৈর্ঘ্য 3.2 সে.মি., 3.5 সে.মি., 2.5 সে.মি., ও 2.8 সে.মি. এবং কর্ণ 5 সে.মি. । সমাধান:

বিশেষ নির্বচন :

মনেকরি, চতুর্ভুজের চারটি বাহু a, b, c ও d এর দৈর্ঘ্য যথাক্রমে 3.2 সে.মি., 3.5 সে.মি., 2.5 সে.মি. ও 2.8 সে.মি. এবং কর্ণ k এর দৈর্ঘ্য 5 সে.মি. দেওয়া আছে। চতুর্ভুজটি আঁকতে হবে।

0.	3.2 সে.মি.	
a h	3.5 সে.মি.	
C	2.5 সে.মি.	
4	2.8 সে.মি.	<u> </u>
u k	5 সে.মি.	>.
17 .		

অঙ্কনের বিবরণ :

- (১) যেকোনো রশ্মি BE হতে BD = k নিই। B ও D বিন্দুদ্বয়কে কেন্দ্র করে যথাক্রমে a ও b এর সমান ব্যাসার্ধ নিয়ে BD এর এক পাশে দুইটি বৃত্তচাপ আঁকি। এই বৃত্তচাপদ্বয় পরস্পর A বিন্দুতে ছেদ করে।
- (২) আবার B ও D বিন্দুদ্বয়কে কেন্দ্র করে যথাক্রমে c ও d এর সমান ব্যাসার্ধ নিয়ে BD এর যে পাশে A আছে তার বিপরীত পাশে আরো দুইটি বৃত্তচাপ আঁকি। এ বৃত্তচাপদ্বয় পরস্পরকে C বিন্দুতে ছেদ করে। A, B; A, D; C, D এবং B, C যোগ করি। তাহলে ABCD- ই নির্ণেয় চতুর্ভুজ।

(ঘ) চারটি বাহুর দৈর্ঘ্য 3.2 সে.মি., 3 সে.মি., 3.5 সে.মি., ও 2.8 সে.মি. এবং কর্ণ 5 সে.মি.। সমাধান:

বিশেষ নির্বচন:

মনেকরি, চতুর্ভুজের চারটি বাহু a, b, c ও d এর দৈর্ঘ্য যথাক্রমে 3.2 সে.মি., 3 সে.মি., 3.5 সে.মি. ও 2.8 সে.মি. এবং কর্ণ k এর দৈর্ঘ্য 5 সে.মি. দেওয়া আছে। চতুর্ভুজটি আঁকতে হবে।

0 —	3.2 সে.মি.	
a – h_	3 সে.মি.	_
о С –	3.5 সে.মি.	
d -	2.8 সে.মি.	_
u k	5 সে.মি.	
\mathbf{r} –		

অঙ্কনের বিবরণ:

- (১) যেকোনো রশ্মি BE হতে BD = k নিই। B ও D বিন্দুদ্বয়কে কেন্দ্র করে যথাক্রমে a ও b এর সমান ব্যাসার্ধ নিয়ে BD এর এক পাশে দুইটি বৃত্তচাপ আঁকি। এই বৃত্তচাপদ্বয় পরস্পর A বিন্দুতে ছেদ করে।
- (২) আবার B ও D বিন্দুদ্বয়কে কেন্দ্র করে যথাক্রমে c ও d এর সমান ব্যাসার্ধ নিয়ে BD এর যে পাশে A আছে তার বিপরীত পাশে আরো দুইটি বৃত্তচাপ আঁকি। এ বৃত্তচাপদ্বয় পরস্পরকে C বিন্দুতে ছেদ করে। A, B; A, D; C, D এবং B, C যোগ করি। তাহলে ABCD- ই নির্ণেয় চতুর্ভুজ।

(ঙ) তিনটি বাহুর দৈর্ঘ্য 3 সে.মি., 3.5 সে.মি., 2.5 সে.মি., এবং কোণ 60° ও 45° । সমাধান :

বিশেষ নির্বচন : মনে করি, চতুর্ভুজের তিনটি বাহু a,b ও c এর দৈর্ঘ্য যথাক্রমে 3.2 সে.মি., 3 সে.মি. 3.5 সে.মি. ও 2.5 সে.মি. এবং b বাহু সংলগ্ন দুইটি কোণ $\angle x=60^{\circ}$ ও $\angle y=45^{\circ}$ দেওয়া আছে। চতুর্ভুজটি আঁকতে হবে।

অঙ্কনের বিবরণ:

- (১) যেকোনো রেখা BE থেকে BC = b নিই।
- (২) B ও C বিন্দুতে $\angle x$ ও $\angle y$ এর সমান করে যথাক্রমে $\angle CBF$ ও $\angle BCG$ অঙ্কন করি।
- (৩) BF থেকে BA = a এবং CG থেকে CD = c নিই।
- (8) A ও D যোগ করি। তাহলে, ABCD ই উদ্দিষ্ট চতুর্ভুজ।

(চ) তিনটি বাহুর দৈর্ঘ্য 3 সে.মি., 4 সে.মি., 4.5 সে.মি., এবং দুইটি কর্ণ 5.2 সে.মি. ও 6 সে.মি. । সমাধান:

বিশেষ নির্বচন: মনে করি, চতুর্ভুজের তিনটি বাহু a,b ও c এর দৈর্ঘ্য যথাক্রমে 3 সে.মি., 4 সে.মি., ও 4.5 সে.মি., এবং কর্ণ d ও e - এর দৈর্ঘ্য যথাক্রমে 5.2 সে.মি. ও 6 সে.মি. দেওয়া আছে। চতুর্ভুজটি আঁকতে হবে।

2	3 সে.মি.	
h.	4 সে.মি.	
0	4.5 সে.মি.	
4	5.2 সে.মি.	326
u a	<u> </u>	10 p
C ·		

অঙ্কনের বিবরণ:

(১) যেকোনো রেখা BE থেকে BD = d নিই। B ও D বিন্দুদ্বয়কে কেন্দ্র কর যথাক্রমে c ও b এর সমান ব্যাসার্ধ নিয়ে BD এর একই পাশে দুইটি বৃত্তচাপ আঁকি। বৃত্তচাপদ্বয় পরস্পর A বিন্দুতে ছেদ করে। A, B ও A, D যোগ করি।

- (২) আবার, B ও A কে কেন্দ্র করে যথাক্রমে a ও e এর সমান ব্যাসার্ধ নিয়ে BD- এর যে দিকে A আছে তার বিপরীত দিকে আরও দুইটি বৃত্তচাপ আঁকি। এই বৃত্তচাপদ্বয় পরস্পর C বিন্দুতে ছেদ করে।
- (৩) এখন B, C; D, C ও A, C যোগকরি। তাহলে ABCD- ই উদ্দিষ্ট চতুর্ভুজ।

৪। একটি বর্গের বাহুর দৈর্ঘ্য 4 সে.মি. বর্গটি আঁক।

সমাধান:

বিশেষ নির্বচন : মনে করি, একটি বর্গের বাহুর দৈর্ঘ্য a=4 সে.মি. দেওয়া আছে। বর্গটি আঁকতে হবে।

অঙ্কনের বিবরণ :

(১) যেকোনো রেখা BE থেকে BC = a নিই। B বিন্দুতে BF [⊥] BC আঁকি। BF থেকে BA = a নিই।

(২) A ও C বিন্দুদ্বয়কে কেন্দ্র করে a এর সমান ব্যাসার্ধ নিয়ে $\angle ABC$ - এর অভ্যন্তরে দুইটি বৃত্তচাপ আঁকি। তারা পরস্পর D বিন্দুতে ছেদ করে। এখন A ও D এবং C ও D যোগ করি। তাহলে, ABCD- ই উদ্দিষ্ট বর্গ।

৫। রম্বসের একটি বাহুর দৈর্ঘ্য 3.5 সে.মি. 75° রম্বসটি আঁক।

সমাধান:

বিশেষ নির্বচন : মনে করি, রম্বসের একটি বাহুর দৈর্ঘ্য a = 3.5 সে.মি. এবং একটি কোণ $\angle x = 75^\circ$ দেওয়া আছে। রম্বসটি আঁকতে হবে।

অঙ্কনের বিবরণ :

(১) যেকোনো রেখা BE থেকে BC = a নিই। B বিন্দুতে $\angle EBF = \angle x$ আঁকি । BF থেকে BA =a নিই।

(২) A ও C বিন্দুদ্বয়কে কেন্দ্র করে a এর সমান ব্যাসার্ধ নিয়ে $\angle ABC$ - এর অভ্যন্তরে দুইটি বৃত্তচাপ আঁকি। এই বৃত্ত চাপদ্বয় পরস্পর D বিন্দুতে ছেদ করে। এখন A, D এবং C, D যোগ করি। তাহলে ABCD- ই উদ্দিষ্ট রম্বস।

৬। আয়তের দুইটি বাহুর দৈর্ঘ্য 3 সে.মি. ও 4 সে.মি.; আয়টি আঁক।

সমাধান:

বিশেষ নির্বচন: মনে করি, একটি আয়তের সন্নিহিত বাহু a ও b- এর দৈর্ঘ্য যথাক্রমে 3 সে.মি. ও 4 সে.মি. দেওয়া আছে। আয়তটি আঁকতে হবে।

	3 সে.মি.	
a <u> </u>	1.55	
h	4 সে.মি.	

অঙ্কনের বিবরণ:

(১) যেকোনো রেখা BE থেকে BC = b নিই। B বিন্দুতে BF [⊥] BC আঁকি। BF থেকে BA = a নিই।

অঙ্কনের বিবরণ:

- (২) A ও C বিন্দুদ্বয়কে কেন্দ্র করে যথাক্রমে b ও a এর সমান ব্যাসার্ধ নিয়ে $\angle ABC$ এর অভ্যন্তরে দুইটি বৃত্তচাপ আঁকি। এই বৃত্ত চাপদ্বয় পরস্পর D বিন্দুতে ছেদ করে। এখন A, D এবং C, D যোগ করি। তাহলে ABCD- ই উদ্দিষ্ট আয়ত।
- ৭। চতুর্ভুজের কর্ণ দুইটির ছেদবিন্দুতে কর্ণ দুইটির চারটি খন্ডিত অংশ এবং তাদের অন্তর্ভুক্ত কোণ দেওয়া আছে। চতুর্ভুজটি আঁক। OA=4.2 সে.মি., OB=5.8 সে.মি., OC=3.7 সে.মি., OD=4.5 সে.মি. ও $\angle AOB=100^{\circ}$

সমাধান:

বিশেষ নির্বচন : মনে করি, একটি চতুর্ভুজের কর্ণ দুইটি পরস্পরকে a = OA = 4.2 সে.মি. ও c = OC = 3.7 সে.মি. এবং b = OB = 5.8 সে.মি. ও d = OD = 4.5 সে.মি. অংশে বিভক্ত করে এবং কর্ণ দুইটির ছেদবিন্দুতে উৎপন্ন একটি কোণ $\angle x = \angle AOB = 100^\circ$ দেওয়া আছে। চতুর্ভুজটি আঁকতে হবে।

	4.2 সে.মি.	
a –	5.8 সে.মি.	
0-	3.7 সে.মি.	55
d –	4.5 সে.মি.	
u –		

(১) যেকোনো রেখা FH-এর একটি বিন্দু O নিই এবং O বিন্দুতে ∠ $FOE = \angle x$ আঁকি EO রেখাকে G বর্ধিত করি।

(২) FH রেখার O বিন্দুর দুই পাশে Bও D বিন্দু নিই যেন OB = b, OD = d হয় এবং OE রেখা হতে OA = a এবং OG হতে OC = c নিই। A ও B, B ও C, C ও D এবং D ও A যোগ করি। তাহলে ABCD- ই উদ্দিষ্ট চতুর্ভুজ।

৮। দুইটি সন্নিহিত বাহুর দৈর্ঘ্য দেওয়া আছে। আয়টি আঁক।

সমাধান:

বিশেষ নির্বচন: মনে করি, একটি আয়তের দুইটি সন্নিহিত বাহুর দৈর্ঘ্য যথাক্রমে a ও b দেওয়া আছে। আয়তটি আঁকতে হবে।

a	 _
b	

অঙ্কনের বিবরণ:

(১) যেকোনো রেখা BE থেকে BC = b নিই। B বিন্দুতে BF [⊥] BC আঁকি। BF থেকে BA = a নিই।

(২) A ও C কে কেন্দ্র করে যথাক্রমে b ও a এর সমান ব্যাসার্ধ নিয়ে $\angle ABC$ - এর অভ্যন্তরে দুইটি বৃত্তচাপ আঁকি। এই বৃত্তচাপদ্বয় পরস্পর D বিন্দুতে ছেদ করে। এখন A, D এবং C, D যোগ করি। তাহলে ABCD - ই উদ্দিষ্ট আয়ত।

৯। কর্ণ এবং একটি বাহুর দৈর্ঘ্য দেওয়া আছে। আয়ুতটি আঁকতে হবে।

সমাধান:

বিশেষ নির্বচন : মনে করি, একটি আয়তের কর্ণ ও একটি বাহুর দৈর্ঘ্য যথাক্রমে e ও a দেওয়া আছে। আয়তটি আকতে হবে।

অঙ্কনের বিবরণ:

যেকোনো রেখা BE থেকে BC = a নিই। B বিন্দুতে BF [⊥] BC আঁকি।

- (২) C বিন্দুকে কেন্দ্র করে e- এর সমান ব্যাসার্ধ নিয়ে একটি বৃত্তচাপ আঁকি। এটি BF কে A বিন্দুতে ছেদ করে।
- (৩) এখন A ও B বিন্দুকে কেন্দ্র করে যথাক্রমে a ও e- এর সমান ব্যাসার্ধ নিয়ে $\angle ABC$ এর অভ্যন্তরে দুইটি বৃত্তচাপ আঁকি। বৃত্তচাপদ্বয় পরস্পর D বিন্দুতে ছেদ করে।
- (8) A ও D এবং C ও D যোগ করি। তাহলে ABCD উদ্দিষ্ট আয়ত।

১০। একটি বাহু এবং একটি কর্ণের দৈর্ঘ্য দেওয়া আছে। সামান্তরিকটি আঁকতে হবে।

সমাধান:

বিশেষ নির্বচন : মনে করি, সামান্তরিকের একটি বাহু a এবং দুইটি কর্ণের দৈর্ঘ্য d ও e দেওয়া আছে, সামান্তরিকটি আঁকতে হবে।

অঙ্কনের বিবরণ:

(১) যেকোনো রেখা BE থেকে e- এর সমান করে BD অংশ কেটে নিই।

(২) BD - এর মধ্যবিন্দু O নির্ণয় করি।

- (৩) B ও D বিন্দুকে কেন্দ্র করে a এর সমান ব্যাসার্ধ নিয়ে BD- এর উভয় পাশে দুইটি বৃত্তচাপ আঁকি।
- (8) আবার O- কে কেন্দ্র করে d-এর অর্ধেকের সমান ব্যাসার্ধ নিয়ে BD এর উভয় পাশে আরও দুইটি বৃত্তচাপ আঁকি। এই চাপদ্বয় পূর্বের চাপদ্বয়কে যথাক্রমে A ও C বিন্দুতে ছেদ করে।
- (৫) এখন A ও B, A ও D, B ও C এবং C ও D যোগ করি। তাহলে, ABCD- ই উদ্দিষ্ট সামান্তরিক।

১১। একটি বাহু এবং একটি কর্ণের দৈর্ঘ্য দেওয়া আছে। রম্বসটি আঁক।

সমাধান:

বিশেষ নির্বচন: মনে করি, একটি রম্বসের একটি বাহু a ও একটি কর্ণের দৈর্ঘ্য e দেওয়া আছে, রম্বসটি আঁকতে হবে।

অঙ্কনের বিবরণ :

- (১) যেকোনো রেখা BE থেকে e-এর সমান করে BD অংশ কেটে নিই।
- (২) এখন B বিন্দুকে কেন্দ্র করে a এর সমান ব্যাসার্ধ নিয়ে BD- এর উভয় পাশে দুইটি বৃত্তচাপ আঁকি।

- (৩) আবার, D বিন্দুকে কেন্দ্র করে ঐ একই ব্যাসার্ধ নিয়ে BD- এর উভয় পাশে আরো দুইটি বৃত্তচাপ আঁকি। এই চাপদ্বয় পূর্বের চাপদ্বয়কে যথাক্রমে A ও C বিন্দুতে ছেদ করে।
- (8) এখন, A ও B, B ও C, C ও D এবং D ও A বিন্দুগুলো যোগ করি। তাহলে ABCD- ই উদ্দিষ্ট রম্বস।

১২। দুইটি কর্ণের দৈর্ঘ্য দেওয়া আছে। রম্বসটি আঁক্।

সমাধান:

বিশেষ নির্বচন : মনে করি, একটি রম্বসের দুটি কর্ণের দৈর্ঘ্য p ও q দেওয়া আছে। রম্বসটি আঁকতে হবে।

n	
Ρ	
~	
q —	

অঙ্কনের বিবরণ:

- (১) যেকোনো রেখা BE থেকে কর্ণ p- এর সমান করে BD অংশ কেটে নিই।
- (২) BD রেখাকে O বিন্দুতে GH রেখা দারা সমদ্বিখন্ডিত করি। এখন O কে কেন্দ্র করে q এর অর্ধেকের সমান ব্যাসার্ধ নিয়ে BD এর উভয় পাশে দুইটি বৃত্তচাপ আঁকি।
- (৩) এই বৃত্ত চাপদ্বয় GH রেখাকে যথাক্রমে A ও C বিন্দুতে ছেদ করে।
- (8) এখন A ও B, B ও C, C ও D এবং D ও A বিন্দুগুলো যোগ করি। তাহলে ABCD ই উদ্দিষ্ট রম্বস।

ন্ব্য অধ্যায় ৯ পিথাগোরাসের উপপাদ্য

৯.২ পিথাগোরাসের উপপাদ্য

একটি সমকোণী ত্রিভুজের অতিভুজের উপর অঙ্কিত বর্গক্ষেত্র অপর দুই বাহুর উপর অঙ্কিত বর্গক্ষেত্রদ্বয়ের সমষ্টির সমান। 💮 🛕 (দুইটি সমকোণী ত্রিভুজের সাহায্যে)

বিশেষ নির্বচন : মনে করি, ABC সমকোণী ত্রিভুজের $\angle B = 90^0$ অতিভুজ AC = b, AB = c ও BC = a। প্রমাণ করতে হবে যে, $AC^2 = AB^2 + BC^2$ অর্থাৎ $b^2 = c^2 + a^2$

অঙ্কন : BC কে D পর্যন্ত বর্ধিত করি যেন CD = AB = c হয়। D বিন্দুতে বর্ধিত BC এর উপর DE লম্ব আঁকি, যেন DE = BC = a হয়। C, E ও A, E যোগ করি।

ধাপ	যথাৰ্থতা
(3) $\triangle ABC \otimes \triangle CDE \triangleleft AB = CD = c, BC = DE$	
$=a$ এবং অন্তর্ভুক্ত \angle ABC $=$ অন্তত্তুক্ত \angle CDE [
প্রত্যেকে সমকোণ]	 [বাহু- কোণ- বাহু উপপাদ্য]
সুতারাং, $\Delta ABC = \Delta CDE$	[415- 241 1- 415 0 1 1140]
∴ AC = CE = b এবং ∠BAC = ∠ECD	
(২) আবার, AB⊥ BD এবং ED⊥BD বলে AB।। ED সুতারাং, ABDE একটি ট্রাপিজিয়াম।	[ছেদকের দুই অন্তঃস্থ কোণের সমষ্টি 2 সমকোণ]
(৩) তদুপরি, ∠ACB +∠BAC = ∠ACB + ∠ECD = এক সমকোণ।	
∴ ∠ACE = এক সমকোণ। ∆ACE সমকোণী ত্রিভুজ।	
এখন ABDE ট্রাপিজিয়াম ক্ষেত্রের ক্ষেত্রফল	
$= (\Delta$ ক্ষেত্র $ABC + \Delta$ ক্ষেত্র $CDE + \Delta$ ক্ষেত্র ACE $)$	[ট্রাপিজিয়াম ক্ষেত্রের ক্ষেত্রের ক্ষেত্রফল
বা, $\frac{1}{2}$ BD(AB + DE) = $\frac{1}{2}$ ac + $\frac{1}{2}$ ac + $\frac{1}{2}$ b ²	= $\frac{1}{2}$ সমান্তরাল বাহুদ্বয়ের যোগফল $ imes$

বা,
$$\frac{1}{2}$$
(BC+CD)(AB+DE) = $\frac{1}{2}$ [2ac + b²]

বা, $(a+c)(a+c)=2ac+b^2$ [2 দারা গুণ করে] বা, $a^2+2ac+c^2=2ac+b^2$

বা,
$$a^2 + 2ac + c^2 = 2ac + b^2$$

বা,
$$a^2 + c^2 = b^2$$
 (প্রমাণিত)

সমান্তরাল বাহুদ্বয়ের মধ্যবর্তী দূরত্ব]

৯.৩ পিথাগোরাসের উপপাদ্যের বিপরীত উপপাদ্য

যদি কোনো ত্রিভুজের একটি বাহুর উপর অঙ্কিত বর্গক্ষেত্র অপর দুই বাহুর উপর অঙ্কিত বর্গক্ষেত্রদ্বয়ের সমষ্টির সমান হয়, তবে শেষোক্ত বাহুদ্বয়ের অন্তর্ভুক্ত কোণটি সমকোণ হবে।

বিশেষ নির্বচন : মনে করি, $\triangle ABC$ এর $AB^2 = AC^2 + BC^2$. প্রমাণ করতে হবে যে, $\angle C = \emptyset$ ক সমকোণ।

অঙ্কন : এমন একটি ত্রিভুজ DEF আঁকি, যেন \angle F এক সমকোণ, EF = BC এবং DF = AC হয়।

ধাপ	যথাৰ্থতা
$(5) DE^2 = EF^2 + DF^2$ $= BC^2 + AC^2$	[কারণ ΔDEFএক সমকোণ]
$=AB^2$ এখন $\triangle ABC$ ও $\triangle DEF$ এ $BC=EF$, $AC=DF$ AB=DE	[কম্পনা]
∴ ΔABC≅ ΔDEF∴ ∠C = ∠F	[বাহু- বাহু- বাহু সর্বসমতা]
∴ ∠F = এক সমকোণ ∴ ∠C = এক সমকোণ। (প্রমাণিত)	

অনুশীলনী ৯

১। ABCD সামান্তরিকের অভ্যন্তরে O যেকোনো একটি বিন্দু 🛔 প্রমাণ করতে হবে যে, Δ ক্ষেত্র $AOB + \Delta$ ক্ষেত্র $COD = \frac{1}{2}$ (সামান্তরিকক্ষেত্রে ABCD) সমাধান:

বিশেষ নির্বচন:

দেওয়া আছে, ABCD সামান্তরিকের অভ্যন্তরে O যেকোনো একটি বিন্দু। O, A; O, B; O, C এবং

O,D যোগ করি। প্রমাণ করতে হবে যে, Δ ক্ষেত্র $AOB + \Delta$ ক্ষেত্র $COD = \frac{1}{2}$ (সামান্তরিকক্ষেত্রে ABCD)

অঙ্কন : O বিন্দু হতে AB- এর উপর OF লম্ব টানি। FO কে E পর্যন্ত এমনভাবে বর্ধিত করি যেন তা CD কে E বিন্দুতে ছেদ করে।

ধাপ	যথাৰ্থতা
(১) যেহেতু AB।। CD এবং EF তাদের ছেদক।	
∴ ∠DEF = ∠ EFB = এক সমকোণ	[একান্তর কোণ এবং EF⊥ AB বলে]
: ABCD সামান্তরিকের উচ্চতা EF	
সুতারাং ABCD = AB × EF	[যেহেতু সামান্তরিক ক্ষেত্র = ভুমি ×
এখানে, ΔΑΟΒ এ ভূমি AB এবং উচ্চতা OF	উচ্চতা]
1	
$\therefore \Delta$ কেবে $AOB = \frac{1}{2} \times AB \times OF$	[·· ∠OFB = এক সমকোণ]
(ξ) অনুরূপভাবে, Δ ক্ষেত্র $COD = \frac{1}{2} \times CD \times OE$	[∵ ∠OED = এক সমকোণ তাই OF
2	উচ্চতা]
$=\frac{1}{2}\times AB\times OE$	[সামান্তরিকের বিপরীত বাহু পরস্পর
2	সমান]
(3) A C 本面 AOB + A C 本面 COD	[(১) ও (২) থেকে]

$$= \frac{1}{2} \times AB \times OF + \frac{1}{2} \times AB \times OE$$

$$= \frac{1}{2} AB(OF + OE)$$

$$= \frac{1}{2} AB.EF$$

$$= \frac{1}{2} (সামান্তরিক ক্ষেত্র ABCD)$$
(প্রমাণিত)

২। প্রমাণ কর যে, ত্রিভুজের যেকোনো মধ্যমা ত্রিভুজক্ষেত্রটিকে সমান ক্ষেত্রফলবিশিষ্ট দুইটি ত্রিভুজক্ষেত্রে বিভক্ত করে।

সমাধান:

বিশেষ নির্বচন : মনে করি, ΔABC - এ AD একটি মধ্যমা। প্রমাণ করতে হবে যে, Δ ক্ষেত্র ABD=Δ ক্ষেত্র ACD

অঙ্কন : A বিন্দু থেকে BC - এর উপর AE লম্ব আঁকি।

ধাপ	যথাৰ্থতা
(১) যেহেতু AD মধ্যমা, সেহেতু BD = CD	
Δ ক্ষেত্র ABD - এর ক্ষেত্রফল $==rac{1}{2} imes BD imes AE$	[ত্রিভুজের ক্ষেত্রফল = $\frac{1}{2} \times$ ভুমি×উচ্চতা]
(২) আবার, Δ ক্ষেত্র ACD- এর ক্ষেত্রফল	
$= \frac{1}{2} \times CD \times AE$	
$=\frac{1}{2} \times BD \times AE$	
$\therefore \Delta$ ক্ষেত্র $\operatorname{ABD} = \Delta$ ক্ষেত্র ACD ।	
(अंद्राविष्ट)	[(১) থেকে]

৩। ΛΑΒC এ AB ও AC বাহুদ্বয়ের মধ্যবিন্দু যথাক্রমে D ও E. প্রমাণ করতে হবে যে, Δক্ষেত্র CDE = $\frac{1}{2}$ (Δ ক্ষেত্র ABC).

সমাধান:

বিশেষ নির্বচন : দেওয়া আছে, ΔABC - এর AB ও AC বাহুদ্বয়ের মধ্যবিন্দু যথাক্রমে D ও E। প্রমাণ করতে হবে যে, Δ ক্ষেত্র $CDE = \frac{1}{4} (\Delta$ ক্ষেত্র ABC)

অঙ্কন: C, D এবং D, E যোগ করি।

(১) যেহেতু, D, AB- এর মধ্যবিন্দু। সেহেতু CD, ΔABC- এর মধ্যমা। ∴ Δ ক্ষেত্র CDE = \frac{1}{2} (Δ ক্ষেত্র ABC) (২) আবার, যেহেতু ΔACD- এর AC বাহুর মধ্যবিন্দু E সুতারাং DE, ΔACD- এর মধ্যমা ∴ Δ ক্ষেত্র CDE = \frac{1}{2} (Δ ক্ষেত্র ACD) = \frac{1}{2} \times \frac{1}{2} (Δ ক্ষেত্র ABC) = \frac{1}{4} (Δ ক্ষেত্র ABC) অর্থাৎ Δক্ষেত্র CDE = \frac{1}{4} (Δ ক্ষেত্র ABC) (প্রমাণিত)

8। ΔABC এ BC ভূমির সামান্তরাল যেকোণ সরলরেখা AB ও AC বাহুকে যথাক্রমে D ও E বিন্দুতে ছেদ করে। প্রমাণ করতে হবে যে, Δ ক্ষেত্র $DBE = \Delta$ ক্ষেত্র EBC এবং $= \Delta$ ক্ষেত্র CDE

সমাধান:

বিশেষ নির্বচন: দেওয়া আছে, ΔABC - এর ভূমি BC - এর সমান্তরাল যেকোনো সরলরেখা AB ও AC বাহুকে যথাক্রমে D ও E বিন্দুতে ছেদ করে। প্রমাণ করতে হবে যে, Δক্ষেত্র DBC = Δক্ষেত্র EBC এবং ১ক্ষেত্র BDE = ১ক্ষেত্র CDE

অঙ্কন :

ুধাপ	যথাৰ্থতা
(১) ΔDBC ও ΔEBC - এ ভূমি BC = ভূমি BC, BD = CE এবং ∠EBC = ∠DCB ∴ একেত্র DBC = একেত্র EBC	[ত্রিভুজদ্বয় একই ভূমি BC এর ওপর এবং একই সমান্তরাল রেখাযুগল BC ও DE এর মধ্যে অবস্থিত]
(২) ΔBDE ও ΔCDE- এ ভুমি DE = ভুমি DE, BD = CE এবং ∠BED= ∠CDE অতএব, Δক্ষেত্র BDE = Δক্ষেত্র CDE (প্রমাণিত)	[ত্রিভুজদ্বয় একই ভূমি DE এর ওপর এবং একই সমান্তরাল রেখাযুগল DE ও BC এর মধ্যে অবস্থিত।]

ে। $\triangle ABC$ এর AB ও AC বাহুদ্বয়ের মধ্যবিন্দু যথাক্রমে D ও E । প্রমাণ কর যে, \triangle ক্ষেত্র $ADE \frac{1}{2}$ (\triangle কেত্ৰ ABC)

সমাধান:

বিশেষ নির্বচন : দেওয়া আছে, $\triangle ABC$ - এর AB ও AC বাহুদ্বয়ের মধ্যবিন্দু যথাক্রমে D ও E। প্রমাণ করতে হবে যে, Δ ক্ষেত্র $ADE = \frac{1}{4} (\Delta$ ক্ষেত্র ABC)

অঙ্কন: C, D এবং D, E যোগ করি

ধাপ	যথাৰ্থতা
(১) যেহেতু, D, AB- এর মধ্যবিন্দু সেহেতু CD,	[ত্রিভুজের মধ্যমা ত্রিভুজকে সমান ক্ষেত্রফল বিশিষ্ট দুইটি অংশে ভাগ করে] [ত্রিভুজের মধ্যমা ত্রিভুজকে সমান ক্ষেত্রফল বিশিষ্ট দুইটি অংশে ভাগ করে] [(১) থেকে]

৬। প্রমাণ কর যে, সামান্তরিকের কর্ণদ্বয় সামান্তরিকক্ষেত্রটিকে চারটি সমান ত্রিভুজক্ষেত্রে বিভক্ত করে। সমাধান:

বিশেষ নির্বচন: মনে করি, ABCD একটি সামান্তরিক। এর AC ও BD কর্ণদ্বয় পরস্পর O বিন্দুতে ছেদ করেছে। প্রমাণ করতে হবে যে, Δ ক্ষেত্র $\Delta AOB = \Delta$ ক্ষেত্র $BOC = \Delta$ ক্ষেত্র $COD = \Delta$ ক্ষেত্র AOD.

ধাপ ১৯	যথাৰ্থতা
(১) AO = CO এবং BO = DO	[সামান্তরিকের কর্ণদ্বয় পরস্পরকে সমদ্বিখন্ডিত করে]
 (২) এখন, ΔΑΒC- এ BO মধ্যমা ∴ Δেক্ষেত্র AOB = Δেক্ষেত্র BOC = 1/2 Δেক্ষেত্র ABC (৩) ΔΑDC- এ DO মধ্যমা ∴ Δেক্ষেত্র COD = Δেক্ষেত্র AOD = 1/2 Δেক্ষেত্র ADC 	[ত্রিভুজের মধ্যমা ত্রিভুজকে সমান ক্ষেত্রফলবিশিষ্ট দুইটি অংশে বিভক্ত করে] [সামান্তরিকের কর্ণ সামান্তরিক ক্ষেত্রকে দুইটি সর্বসম ত্রিভুজে বিভক্ত করে]
∴ ΔABC≅ ΔADC বা, Δকেত্র ABC = Δকেত্র ADC ∴ $\frac{1}{2}$ Δকেত্র ABC = $\frac{1}{2}$ Δকেত্র ADC (8) Δকেত্র AOB = Δকেত্র BOC = Δকেত্র COD = Δকেত্র AOD	[সর্বস্ব ত্রিভুজদ্বয়ের ক্ষেত্রফল সমান] [ধাপ (২) ও (৩) হতে]
(প্রমাণিত)	

৭। প্রমাণ কর যে, কোনো বর্গক্ষেত্র তার কর্ণের উপর অঙ্কিত বর্গক্ষেত্রের অর্ধেক। সমাধান:

বিশেষ নির্বচন : মনে করি, ABCD একটি বর্গক্ষেত্র। এর AC কর্ণ। প্রমাণ করতে হবে যে, $AB^2=rac{1}{2}AC^2$

ধাপ ১৯	যথাৰ্থতা
(১) △ABC- এ ∠B = এক সমকোণ	[বর্গক্ষেত্রের সকল কোণ সমকোণ]
∴ ∆ABC সমকোণী এবং AC এর অতিভুজ।	
(২) এখন, $\triangle ABC$ - এ $AC^2 = AB^2 + BC^2$	[পীথাগোরাসের উপপাদ্য অনুযায়ী]
বা, $AC^2 = AB^2 + AB^2$	[বর্গক্ষেত্রের বাহুগুলো পরস্পর সমান]
বা, $2AB^2 = AC^2$	
$\therefore AB^2 = \frac{1}{2}AC^2$ (প্রমাণিত)	

৮। ABC ত্রিভুজের ∠A = এক সমকোণ। D, AC এর উপরস্থ একটি বিন্দু। প্রমাণ কর যে, $BC^2 + AD^2 = BD^2 + AC^2$ সমাধান:

বিশেষ নির্বচন: দেওয়া আছে, ABC ত্রিভুজের ∠A = এক সমকোণ এবং D, AC- এর উপস্থ একটি বিন্দু। প্রমাণ করতে হবে যে, $BC^2 + AD^2 = BD^2 + AC^2$

ধাপ 🎺	যথাৰ্থতা
(১) যেহেতু, ABC সমকোণী ত্রিভুজে ∠A = এক সমকোণ এবং BC এর অতিভুজ। $BC^2 = AB^2 + AC^2$ (২) অনুরূপভাবে, ABD সমকোণী ত্রিভুজের অতিভুজ	[পিথাগোরাসের উপপাদ্য অনুযায়ী]
BD ∴ $AB^2 + AD^2 = BD^2$ বা, $AD^2 = BD^2 - AB^2$	[পিথাগোরাসের উপপাদ্য অনুযায়ী]
(৩) এখানে, $BC^2 + AD^2$ $= AB^2 + AC^2 + BD^2 - AB^2$ সুতারাং, $BC^2 + AD^2 = BD^2 + AC^2$ (প্রমাণিত)	[(১) ও (২) থেকে]
(લગાગગ)	

৯। $\triangle ABC$ ত্রিভুজের $\angle A$ = একসমকোণ D ও E যথাক্রমে AB ও AC এর মধ্যবিন্দু হলে, প্রমাণ কর যে, $DE^2 = CE^2 + BD^2$

সমাধান:

বিশেষ নির্বচন : দেওয়া আছে, △ABC- এর ∠A = এক সমকোণ। D ও E যথাক্রমে AB ও AC-এর মধ্যবিন্দু। প্রমাণ করতে হবে যে, $DE^2 = CE^2 + BD^2$

ধাপ ্র	যথাৰ্থতা
(১) এখানে, AD = BD এবং AE = CE	[D ও E যথাক্রমে AB ও AC- এর
(২) এখন ADE সমকোণী ত্রিভুজে,	মধ্যবিন্দু।]
$DE^2 = AE^2 + AD^2$	[পিথাগোরাসের উপপাদ্য অনুসারে]
$\therefore DE^2 = CE^2 + BD^2 \qquad \text{(প্রমাণিত)}$	[(১) থেকে]

১০। $\Delta { m ABC}$ এ ${ m BC}$ এর উপর লম্ব ${ m AD}$ এবং ${ m AB}>{ m AC}$ প্রমাণ কর যে, ${ m AB}^2-{ m AC}^2={ m BD}^2-{ m CD}^2$ সমাধান:

বিশেষ নির্বচন : দেওয়া আছে, ΔABC - এ BC এর উপর লম্ব AD এবং AB > AC প্রমাণ করতে হবে যে, $AB^2 - AC^2 = BD^2 - CD^2$

ধাপ ্র	যথাৰ্থতা
(১) ∆ABC এ AD, BC- এর উপর লম্ব।	
∴ △ABC ও △ACD উভয়ই সমকোণী ত্রিভুজ।	
(২) এখন ABD সমকোণী ত্রিভুজে AB অতিভুজ	[foldbroken and a state of the
$\therefore BD^2 + AD^2 = AB^2$	[পিথাগোরাসের উপপাদ্য অনুযায়ী]
বা, $AD^2 = AB^2 - BD^2$	
(৩) আবার, ACD সমকোণী ত্রিভুজে	
$AD^2 + CD^2 = AC^2$	[পিথাগোরাসের উপপাদ্য অনুযায়ী]
বা, $AD^2 = AC^2 - CD^2$	·
(8) $AB^2 - BD^2 = AC^2 - CD^2$	[(২) ও (৩) থেকে]
$AB^2 - AC^2 = BD^2 - CD^2$ (প্রমাণিত)	

১১। ΔABC এ BC এর উপর AD লম্ব এবং AD এর উপর P যেকোনো বিন্দু ও AB > AC প্রমাণ কর যে, $AB^2 - PC^2 = AB^2 - AC^2$

সমাধান:

বিশেষ নির্বচন : দেওয়া আছে, $\triangle ABC$ - এ BC- এর উপর লম্ব AD এবং AD- এর উপর P যেকোনো বিন্দু ও AB > AC | P, B ও P, C যোগ করি। প্রমাণ করতে হবে যে $AB^2 - PC^2 = AB^2 - AC^2$

প্রমাণ:

~ ~111•		
	ধাপ	যথাৰ্থতা
(১) ΔABC - এ AD⊥ B এবং ΔCPD প্রত্যেকেই (২) এখন ΔABD- এ, A (৩) ΔACD- এ $AC^2 =$ (৪) $AB^2 - AC^2 = BD$ (৫) আবার, ΔBPD - এ (৬) ΔPCD - এ $PC^2 =$	$B^{2} = BD^{2} + AD^{2}$ $AD^{2} + CD^{2}$ $B^{2} - CD^{2}$ $AD^{2} + CD^{2}$ $AD^{2} + CD^{2}$ $AD^{2} + CD^{2}$ $AD^{2} + CD^{2}$	[সমকোণী ত্রিভুজের অতিভুজের উপর বর্গক্ষেত্র অপর দুই বাহুর উপর বর্গক্ষেত্রের সমষ্টির সমান] [একই কারণে] [(২) ও (৩) থেকে] [সমকোণী ত্রিভুজের অতিভুজের উপর বর্গক্ষেত্র অপর দুই বাহুর উপর বর্গক্ষেত্রর সমষ্টির সমান]
(9) $PB^2 - PC^2 = BD$ $PB^2 - PC^2 = AB$		[একই কারণে] [(৫) ও (৬) থেকে] [(৪) থেকে]

Jm)

১২। ABCD বহুভুজে AE || BC, CF \perp AE এবং DQ \perp CF, ED =10 মি.মি. EF = 2 মি.মি. BC = 8 মি.মি. AB = 12 মি.মি.

উপরের তথ্যের ভিত্তিতে নিচের (১- ৪) নম্বর প্রশ্নের উত্তর দাও:

- ১। ABCD চতুর্ভুজের ক্ষেত্রফল কত বর্গ মি.মি.?
 - (ক) 64
- (খ) 96
- (গ) 100
- (ঘ) 144
- ২। নিচের কোনটি FPC ত্রিভুজের ক্ষেত্রফল নির্ণয় কর?
 - (ক) 32
- (খ) 48
- (গ) 72
- (ঘ) 60

- ৩। CD এর দৈর্ঘ্য নিচের কোনটিতে প্রকাশ পায়?
 - **(ক)** 2√2
- (খ) 4

- (গ) 4√2
- (ঘ) 8
- 8। নিচের কোনটিতে ΔFPC ও ΔDQC এর ক্ষেত্রফলের অন্তর নির্দেশ কর?
 - **(ক)** 46 বৰ্গ একক (খ) 48 বৰ্গ একক
- (গ) 50 বর্গ একক
- (ঘ) 52 বর্গ একক

701

- (ক) PQST কী ধরনের চতুর্ভুজ? স্বপক্ষে যুক্তি দাও।
- (খ) দেখাও যে, ∆PRT সমকোণী।
- (গ) প্রমাণ কর যে, $PR^2 = PQ^2 + QR^2$

সমাধান:

- (ক) PQST চতুর্ভজটি ট্রাপিজিয়াম। কারণ PQST চতুর্ভুজের বিপরীত বাহু PQ ও TS বাহুদ্বয় সমান্তরাল এবং অপর বিপরীত PT ও QS বাহুদ্বয় অসমান্তরাল।
- (খ) $\triangle PQR$ ও $\triangle RST$ এ PQ = RS = b, QR = ST = a এবং $\angle PQR = \angle RST$ [প্রত্যেক 90^0] $\triangle PQR = \triangle RST$ ∴ PR = RT = c এবং QPR = TRS আবার, PQ_{\perp} QS এবং TS_{\perp} QS বলে, PQ_{\parallel} TS সুতারাং, PQST একটি ট্রাপিজিয়াম. এখন, $\angle PRO + \angle QPR = \angle PRO + \angle TRS = 1$ সমকোণ ∴ $\angle PRT = এক সমকোণ। সুতারাং <math>\triangle PQR$ সমকোণী ত্রিভুজ। (দেখানো হলো)
- (গ) এখন, PQST ট্রাপিজিয়াম ক্ষেত্রের ক্ষেত্রফল = Δ ক্ষেত্র PQR + Δ ক্ষেত্র RST Δ ক্ষেত্র PRT বা, $\frac{1}{2}QS(PQ+TS)=\frac{1}{2}ab+\frac{1}{2}ab+\frac{1}{2}c^2$ বা, $\frac{1}{2}(QR+RS)(PQ+TS)=\frac{1}{2}(2ab+c^2)$ বা, $\frac{1}{2}(a+b)(b+a)=\frac{1}{2}(2ab+c^2)$ বা, $a^2+2ab+b^2=2ab+c^2$ বা, $a^2+b^2=c^2$ বা, $c^2=b^2+a^2$

 $\therefore PR^2 = PQ^2 + QR^2$ (প্রমাণিত)

উপপাদ্য ১। বৃত্তের কেন্দ্র ও ব্যাস ভিন্ন কোনো জ্যা- এর মধ্যবিন্দুর সংযোজক রেখাংশ ঐ জ্যা- এর উপর লম্ব।

মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে AB ব্যাস নয় এমন একটি জ্যা এবং M এই জ্যা- এর মধ্যবিন্দু। O, M যোগ করি। প্রমাণ করতে হবে যে, OM রেখাংশ AB জ্যা- এর উপর লম্ব।

অঙ্কন : O, A এবং O, B যোগ করি।

ধাপ	যথাৰ্থতা
(১) ΔΟΑΜ এবং ΔΟΒΜ এ AM = BM OA = OB এবং OM = OM ΔΟΑΜ ≅ ΔΟΒΜ ∴ ∠ΟΜΑ= ∠ΟΜΒ (২) যেহেতু কোণদ্বয় রৈখিক যুগল কোণ এবং এদের পরিমাপ সমান, সুতারাং ∠ΟΜΑ =∠ΟΜΒ = 1 সমকোণ। অতএব, ΟΜ⊥ ΑΒ(প্রমাণিত)	M, AB এর মধ্যবিন্দু] [উভয় একই বৃত্তের ব্যাসার্ধ] [সাধারণ বাহু] [বাহু - বাহু - বাহু উপপাদ্য]

जनूशीलनी ५०.५

১। প্রমাণ কর যে, কোনো বৃত্তের দুইটি জ্যা পরস্পরকে সমদ্বিখণ্ডিত করলে তাদের ছেদবিন্দু বৃত্তটির কেন্দ্র হবে।

সমাধান:

বিশেষ নির্বচন: মনে করি O কেন্দ্রবিশিষ্ট বৃত্তের AB ও CD দুইটি জ্যা পরস্পরকে O বিন্দুতে সমদ্বিখন্ডিত করে। অর্থাৎ AO = BO এবং CO = DO। প্রমাণ করতে হবে যে, O বিন্দুই বৃত্তের কেন্দ্র।

অঙ্কন: A, D এবং B, C যোগ করি।

ধাপ	যথাৰ্থতা
(\$) ΔBOC- 4, CO = BO	
এবং ΔAOD - এ, $DO = AO$	
\therefore AO = BO = CO = DO	[AB ও CD রেখা O বিন্দুতে
অর্থাৎ O বিন্দু থেকে বৃত্তের পরিধিস্থ A, B, C, D	সমদ্বিখন্ডিত হয়েছে।]
বিন্দুর দূরত্ব সমান। তাই বলা যায় O বিন্দু থেকে	
বৃত্তের পরিধিস্থ যেকোনো বিন্দুর দূরত্ব সমান	
े O বিন্দুই বৃত্তের কেন্দ্র। (প্রমাণিত)	
, ·	

২। প্রমাণ কর যে, দুইটি সমান্তরাল জ্যা- এর মধ্যবিন্দুর সংযোজক সরলরেখা কেন্দ্রগামী এবং জ্যাদ্বয়ের উপর লম্ব।

সমাধান:

বিশেষ নির্বচন: মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তের AB ও CD দুইটি সমান্তরাল জ্যা। AB ও CD এর মধ্যবিন্দু যথাক্রমে P ও Q। প্রমাণ করতে হবে যে P, Q এর সংযোজক সরলরেখা O বিন্দুগামী। অর্থাৎ P, O, Q একই সরলরেখয় অবস্থিত প্রমাণ করাই যথেষ্ট হবে।

অঙ্কন: P. O যোগ করি।

ধাপ	যথাৰ্থতা
(১) AAOP ও ABOP এর মধ্যে	
AO = BO	[একই বৃত্তের ব্যাসার্ধ]
BP = AP	[P, AB এর মধ্যবিন্দু]
এবং OP সাধারণ বাহু	
$\therefore \Delta AOP \stackrel{\sim}{=} \Delta BOP$	[বাহু- বাহু- বাহু উপপাদ্য]
(২) ∠APO =∠BPO = 1 সমকোণ	[রৈখিক যুগল কোণ বলে]
∴ OP ⊥ AB	
অনুরূপে \angle CQO = \angle DQO = 1 সমকোণ	[রৈখিক যুগল কোণ বলে]
∴ OQ⊥CD	,
(৩) আবার, OP = OQ	
$\therefore AO = BO = CO = DO$	
অর্থাৎ P, Q, O বিন্দুগামী (প্রমাণিত)	

৩। কোনো বৃত্তের AB ও AC জ্যা দুইটি A বিন্দুগামী ব্যাসার্ধের সাথে সমান কোণ উৎপন্ন করে। প্রমাণ কর যে, AB = AC.

সমাধান:

বিশেষ নির্বচন : মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে AB ও AC জ্যা দুইটি A বিন্দুগামী ব্যাসার্ধের সাথে সমান কোণ উৎপন্ন করে। প্রমাণ করতে হবে যে, AB = AC

ধাপ	যথাৰ্থতা
(১) AAOB ও AAOC এর মধ্যে	0
BO = CO	[একই বৃত্তের ব্যাসার্ধ]
∠BAO = ∠CAO	[কম্পনা]
এবং OA = OA	[সাধারণ বাহু]
∴ ΔAOB ≃ ΔAOC	বাহু - বাহু- বাহু উপপাদ্য
∴ AB = AC (প্রমাণিত)	

8। চিত্রে, O বৃত্তের কেন্দ্র এবং জ্যা AB= জ্যা AC.প্রমাণ কর যে, ∠BAØ =∠CAØ

সমাধান:

বিশেষ নির্বচন : O বৃত্তের কেন্দ্র এবং জ্যা AB = জ্যা AC প্রমাণ করতে হবে যে, ∠BAO =∠CAO

অঙ্কন: O,B এবং O,C যোগ করি।

ধাপ	যথাৰ্থতা
(১) AAOB ও AAOC এর মধ্যে	Y
AB = AC	[কল্পনা]
OB = OC	[একই বৃত্তের ব্যাসার্ধ বলে]
এবং OA = OA	[সাধারণ বাহু]
∴ ΔAOB ≅ ΔAOC	্বাহু- বাহু- বাহু উপপাদ্য]
∴ ∠BAO = ∠CAO (প্রমাণিত)	

৫। কোনো বৃত্ত একটি সমকোণী ত্রিভুজের শীর্ষবিন্দু দিয়ে যায়। দেখাও যে, বৃত্তটির কেন্দ্র অতিভুজের মধ্যবিন্দু।

সমাধান:

বিশেষ নির্বচন : মনে করি, বৃত্তটি ABC সমকোণী ত্রিভুজের শীর্ষবিন্দু A দিয়ে যায়। AB এর মধ্যবিন্দু O বৃত্তটির কেন্দ্র অর্থাৎ $BO = \frac{1}{2}AC$

অঙ্কন: O, B যোগ করি।

ধাপ ১৯%	যথাৰ্থতা
(১) যেহেতু AC বৃত্তের ব্যাস এবং ∠ ABC = এক সমকোণ।	[অর্ধবৃত্তস্থ কোণ এক- সমকোণ]
সুতারাং A, B, C শীর্ষবিন্দু তিনটি বৃত্তস্থ হবে। অর্থাৎ A, B, C বৃত্তের পরিধির উপর তিনটি বিন্দু। O বৃত্তের কেন্দ্র হওয়ায় BO = CO = AO	
(২) এখন, AO + CO = AC বা, BO + BO = AC	[একই বৃত্তের ব্যাসার্ধ বলে]
বা, 2BO = AC ∴ BO = AC (প্রমাণিত)	[(১) থেকে]
DO = AC (441110)	

৬। দুইটি সমকেন্দ্রিক বৃত্তের একটির AB জ্যা অপর বৃত্তকে C ও D বিন্দুতে ছেদ করে। প্রমাণ কর যে, AC = BD.

সমাধান:

বিশেষ নির্বচন : মনে করি, O কেন্দ্রবিশিষ্ট দুইটি বৃত্ত ABH ও CDR। ABH বৃত্তের একটি জ্যা AB, CDR বৃত্তকে C ও D বিন্দুতে ছেদ করে। প্রমাণ করতে হবে যে, AC = BD

অঙ্কন: A, O; C, O; D, O ও B, O যোগ করি।

ধাপ্ ্রী	যথাৰ্থতা
(১) △AOC ও △BOD-এ AO = BO, CO = DO এবং∠OAC =∠OBD	[একই বৃত্তের ব্যাসার্ধ বলে] [একই বৃত্তের ব্যাসার্ধ বলে]
∴ ΔAOC ≅ ΔBOD ∴ AC = BD (প্রমাণিত)	[বাহু- কোণ- বাহু উপপাদ্য]

উপপাদ্য ২। বৃত্তের সকল সমান জ্যা কেন্দ্র থেকে সমদূরবর্তী।

মনে করি, O বৃত্তের কেন্দ্র এবং AB ও CD বৃত্তের দুইটি সমান জ্যা। প্রমাণ করতে হবে যে, O থেকে AB এবং CD জ্যাদ্বয় সমদূরবর্তী।

অঙ্কন: O থেকে AB এবং CD জ্যা- এর উপর যথাক্রমে OE এবং OF লম্ব রেখাংশ আঁকি। O, A এবং O,C যোগ করি।

ধাপ 🛒	যথাৰ্থতা
(\$) OE⊥AB	[কেন্দ্র থেকে ব্যাস ভিন্ন যেকোনো
ଓ OF ⊥ CD	জ্যা- এর উপর অঙ্কিত লম্ব জ্যাকে
সুতারাং, AE = BE এবং CF = DF	সমদ্বিখণ্ডিত করে]
$AE = \frac{3}{2}AB$ এবং $CF = \frac{3}{2}CD$	
(২) কিন্তু AB = CD	[কল্পনা]
\therefore AE = CF	
(৩) এখন ∆OAE এবং ∆OCF সমকোণী ত্রিভুজদ্বয়ের	
মধ্যে।	
অতিভুজে OA = অতিভুজ OC এবং AE = CF ∴∆OAE ≅ ∆OCF ∴ OE = OF	[উভয় একই বৃত্তের ব্যাসার্ধ] [ধাপ ২] [সম্কোণী ত্রিভুজের অতিভুজ- বাহু
(8) কিন্তু OE এবং OF কেন্দ্ৰ O থেকে যথাক্ৰমে	সর্মসমতা উপপাদ্য]
AB জ্যা এবং CD জ্যা- এর দূরত্ব।	
সুতারাং, AB এবং CD জ্যাদ্বয় বৃত্তের কেন্দ্র থেকে	
সমদূরবর্তী। (প্রমাণিত)	

উপপাদ্য ৩। বৃত্তের কেন্দ্র থেকে সমদূরবর্তী সকল জ্যা পরস্পর সমান।

সমাধান:

মনে করি, O বৃত্তের কেন্দ্র এবং AB ও CD দুইটি জ্যা। O থেকে AB ও CD এর উপর যথাক্রমে ও OE ও OF লম্ব। তাহলে OE ও OF কেন্দ্র থেকে যথাক্রমে AB ও CD জ্যা- এর দূরত্ব নির্দেশ করে। OE = OF হলে প্রমাণ করতে হবে যে, AB = CD.

অঙ্কন: O, A এবং O,C যোগ করি।

প্রয়াধ •

\Leftrightarrow	
ধাপ 🛒	যথাৰ্থতা
(১) যেহেতু OE ⊥AB ও OF ⊥ CD	[সমকোণ]
সুতারাং,∠OEA =∠OFC = এক সমকোণ	
(২) এখন, ΔOAE এবং ΔOCF সমকোণী ত্রিভুজদ্বয়ের	
মধ্যে	
অতিভুজ $\mathbf{OA}=$ অতিভুজ \mathbf{OC} এবং	[উভয় একই বৃত্তের ব্যাসার্ধ]
OE = OF	[কল্পনা]
$\triangle OAE \cong \triangle OCF$	[সমকোণী ত্রিভুজের অতিভুজ- বাহু
\therefore AE = CF	সর্মসমতা উপপাদ্য]
(৩) $AE = \frac{3}{3}AB$ এবং $CF = \frac{3}{3}CD$ ।	[কেন্দ্র থেকে ব্যাস ভিন্ন যেকোনো জ্যা- এর উপর অঙ্কিত লম্ব জ্যাকে
(৪) সুতারাং $\frac{5}{2}$ AB = $\frac{5}{2}$ CD	সমদ্বিখন্ডিত করে]
অর্থাৎ $AB = CD$	

উদাহরণ ৪। প্রমাণ কর যে, বৃত্তের ব্যাসই বৃহত্তম জ্যা।

সমাধান:

মনে করি, O কেন্দ্রবিশিষ্ট ABCD একটি বৃত্ত। AB ব্যাস এবং CD ব্যাস ভিন্ন যেকোনো একটি জ্যা। প্রমাণ করতে হবে যে, AB CD > CD

অঙ্কন: O, C এবং O, D যোগ করি।

প্রমাণ:

OA = OB = OC = OD [একই বৃত্তের ব্যাসার্ধ] এখন ΔOCD এ OC + CD > CDবা, OA + OB > CDঅর্থাৎ AB > CD

অনুশীলনী ১০.২

১। বৃত্তের দুইটি সমান জ্যা পরস্পরকে ছেদ করলে দেখাও যে, এদের একটি অংশদ্বয় অপরটির অংশদ্বয়ের সমান।

সমাধান:

বিশেষ নির্বচন : মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে দুইটি সমান জ্যা AB ও CD পরস্পর P বিন্দুতে ছেদ করে। প্রমাণ করতে হবে যে, PA = PD এবং PB = PC

অঙ্কন: কেন্দ্র O থেকে AB ও CD এর উপর যথাক্রমে OM এবং ON লম্ব অঙ্কন করি। O, P যোগ করি।

ধাপ	যথাৰ্থতা
(১) Δ MOP ও Δ NOP সমকোণী ত্রিভুজ দুইটির	
মধ্যে	
OM = ON	[সমান সমান জ্যা কেন্দ্র হতে সমদূরবতী]
OP = OP	[সাধারণ বাহু]
$\Delta MOP \stackrel{\sim}{=} \Delta NOP$	[অতিভুজ- বাহু উপপাদ্য]
$\therefore PM = PN$	
(২) এখন, OM, AB এর উপর লম্ব হওয়ায়,	<u>-</u>
$AM = \frac{\lambda}{AB}$	[কেন্দ্ৰ হতে অঙ্কিত লম্ব জ্যাকে
AIVI – AB	সমদ্বিখন্ডিত করে]
এবং ON, CD এর উপর লম্ব হওয়ায়,	>
$DN = \frac{3}{2}CD$	[কেন্দ্ৰ হতে অঙ্কিত লম্ব জ্যাকে
DN - CD	সমদ্বিখন্ডিত করে]
(৩) যেহেতু AB = CD	[কম্পনা]
\therefore AM = DN	[ধাপ- ২ হতে]
$\therefore PM + AM = PN + DN$	
সুতারাং PA = PD	
(৪) আবার, AB = CD	[
বা, AB – PA = CD – PD	[ধাপ- ৩ হতে]
$\therefore PB = PC$	
অতএব, PA = PD এবং PB = PC	
(প্রমাণিত)	
সুতারাং ∠OMA =∠OMB = 1 সমকোণ।	
অতএব, OM⊥AB (প্রমাণিত)	

২। প্রমাণ কর যে, বৃত্তের সমান জ্যা- এর মধ্যবিন্দুগুলো সমবৃত্ত। সমাধান:

সাধারণ নির্বচন: প্রমাণ করতে হবে যে, বৃত্তের সমান জ্যা এর মধ্যবিন্দুগুলো সমবৃত্ত।

বিশেষ নির্বচন : মনে করি, ABCD বৃত্তের কেন্দ্র O। AB, CD ও EF তিনটি পরস্পর সমান জ্যা। M, N এবং P যথাক্রমে AB, EF ও CD এর মধ্যবিন্দু। প্রমাণ করতে হবে যে, M, N এবং P সমবৃত্ত।

অঙ্কন : O, M; O, N এবং O, P যোগ করি।

ধাপ	যথাৰ্থতা
(১) যেহেতু M, AB এর মধ্যবিন্দু এবং OM কেন্দ্রগামী রেখাংশ। ∴ OM, AB এর উপর লম্ব। OP, CD এর উপর লম্ব এবং ON, EF এর উপর লম্ব। সেহেতু OM = OP = ON	[বৃত্তের কেন্দ্র ও ব্যাস ভিন্ন যেকোনো জ্যা- এর মধ্যবিন্দুর সংযোজক রেখাংশ ঐ জ্যা- এর উপর লম্ব] [উপপাদ্য - ২] [বৃত্তের সকল সমান জ্যা কেন্দ্র হতে সমদূরবর্তী]
(২) সুতারাং O কে কেন্দ্র করে OM বা OP বা ON এর সমান ব্যাসার্ধ নিয়ে বৃত্ত অঙ্কন করলে M, N ও P বিন্দু দিয়ে যাবে। অতএব, M, N ও P সমবৃত্ত। (প্রমাণিত)	

৩। দেখাও যে, ব্যাসের দুই প্রান্ত থেকে এর বিপরীত দিকে দুইটি সমান জ্যা অঙ্কন করলে এরা সমান্তরাল হয়।

সমাধান:

সাধারণ নির্বচন: দেখতে হবে যে, ব্যাসের দুই প্রান্ত থেকে তার বিপরীত দিকে দুইটি সমান জ্যা অঙ্কন করলে তারা সমান্তরাল হয়।

বিশেষ নির্বচন : মনে করি, O কেন্দ্র বিশিষ্ট বৃত্তের AB ব্যাস। AB ব্যাসের A প্রান্ত থেকে AD জ্যা এবং B প্রান্ত থেকে BC জ্যা অঙ্কন করা হয়েছে। প্রমাণ করতে হবে যে, AD।। BC

ধাপ	যথাৰ্থতা
(১) যেহেতু AD = BC	[কল্পনা]
এবং AB তাদের ছেদক	
∴ ∠ BAD =∠ABC	[একান্তর কোণ বলে]
(5) CHARLE THE OHYDER CATOLOGICAL	
(২) ছেদকের উভয় পাশের একান্তর কোণগুলো	
সমান হলে রেখাদ্বয় সমান্তরাল।	
∴ AD BC (প্রমাণিত)	

৪। দেখাও যে, ব্যাসের দুই প্রান্ত থেকে এর বিপরীত দিকে দুইটি সমান্তরাল জ্যা আঁকলে এরা সমান হয়। সমাধান:

বিশেষ নির্বচন : মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে AB ব্যাস। AB এর A প্রান্ত থেকে AD জ্যা আঁকা হল এবং B প্রান্ত থেকে BC জ্যা আঁকা হল এবং AD|| BC। প্রমাণ করতে হবে যে, AD = BC

অঙ্কন : কেন্দ্র O থেকে AD ও BC এর উপর যথাক্রমে OM ও ON লম্ব আঁকি।

7.11	
ধাপ	যথাৰ্থতা
(১) সমকোণী $\triangle AOM$ ও $\triangle BON$ এ, $AO = BO$	[কল্পনা]
এবং AM = BN ∴ ΔAOM = ΔBON ∴ OM = ON	[অতিভুজ- বাহু উপপাদ্য]
(২) সুতারাং AD = BC (প্রমাণিত)	[বৃত্তের কেন্দ্র হতে সমদূরবর্তী সকল জ্যা সমান]

৫। দেখাও যে, বৃত্তের দুইটি জ্যা- এর মধ্যে বৃহত্তম জ্যা- টি ক্ষুদ্রতর জ্যা অপেক্ষা কেন্দ্রের নিকটতর। সমাধান:

বিশেষ নির্বচন : মনে করি, O কেন্দ্র বিশিষ্ট বৃত্তে AB ও CD দুইটি জ্যা এবং AB > CD। AB ও CD এর উপরে লম্বদ্ধয় যথাক্রমে OE ও OF। দেখাতে হবে যে, OE < OF

অঙ্কন: O, A ও O, C যোগ করি।

প্রয়াণ •

વૈશ્વાં :	
ধাপ 💉	যথাৰ্থতা
(১) যেহেতু OE⊥AB এবং OF⊥CD AE = \(\frac{5}{2} \) AB, CF = \(\frac{5}{2} \) CD বৃত্তের (২) কিন্তু AB > CD ∴ AE > CF	[বৃত্তের কেন্দ্র থেকে ব্যাস ভিন্ন জ্যা এর উপর অঙ্কিত জ্যাকে সমদ্বিখণ্ডিত করে]
(৩) এখন, $\triangle OAE$ ও $\triangle OCF$ এর মধ্যে $OA^2 = AE^2 + OE^2$ এবং $OC^2 = CF^2 + OF^2$ কিন্তু $OA = OC$ $\therefore OA^2 = OC^2$ $\therefore AE^2 + OE^2 = CF^2 + OF^2$	[অতিভুজ উপর অঙ্কিত বর্গ অপর দুই বাহুর উপর অঙ্কিত বর্গের সমষ্টির সমান] [একই বৃত্তের ব্যাসার্ধ]
(8) এখন, AE > CF হওয়ায় AE² > CF² ∴ OE² < OF² বা, OE < OF অর্থাৎ বৃহত্তর জ্যাটি ক্ষুদ্রতর জ্যা অপেক্ষা কেন্দ্রের নিকটতর। (দেখানো হলো)	[ধাপ (৩) হতে]

