ESTUDOS PARA SEGMENTAÇÃO E EXTRAÇÃO DE CARACTERÍSTICAS EM IMAGENS DE TCAR DE TÓRAX DE PACIENTES COM DOENÇA PULMONAR INTERSTICIAL

Exame de Qualificação

Mariana Araujo Mioto 1

Orientador: Prof. Dr. Paulo Mazzoncini de Azevedo-Marques 2

Co-orientador: Prof. Dr. Marcel Koenigkam-Santos 3

- 1. Programa de Pós Gradruação Interunidades em Bioengenharia USP
 - 2. Faculdade de Medicina de Ribeirão Preto USP
 - 3. Hospital das Clínicas de Ribeirão Preto FMRP

Sumário

1 Introdução

Doenças Pulmonares Intersticiais

Contextualização

Objetivo

2 Material e Métodos

Linguagem Python

Bases de Imagens

Segmentação do Pulmão

Estudo 1

Estudo 2

3 Resultados Preliminares

Reorganização da Base Local

Pré-processamento

Etapas da Segmentação

Teste de Avaliação da Segmentação

RNU

Conclusão

4 Cronograma

5 Agradecimentos

Sumário

1 Introdução

Doenças Pulmonares Intersticiais

Contextualização

Objetivo

2 Material e Métodos

Linguagem Python

Bases de Imagens

Segmentação do Pulmão

Estudo 1

Estudo 2

3 Resultados Preliminares

Reorganização da Base Local

Pré-processamento

Etapas da Segmentação

Teste de Avaliação da Segmentação

RNU

Conclusão

4 Cronograma

5 Agradecimentos

Introdução - Doenças Pulmonares Intersticiais (DPIs)

Introdução às Doenças Pulmonares Intersticiais

- As DPIs podem ser classificadas por:
 - o Etiologia
 - Evolução
 - Progressão
 - Prognóstico

Introdução - Doenças Pulmonares Intersticiais (DPIs)

- Podemos destacar como doenças pulmonares intersticiais:
 - Fibrose Pulmonar Idiopática
 - Pneumonite de Hipersensibilidade
 - Sarcoidose
 - Colagenoses

Introdução - Pneumonia Intersticial Usual (PIU)

- Padrão histológico e radiográfico, associado à doenças pulmonares intersticiais
 - Apresentam características que são visíveis em exames de Tomografia Computadorizada de Alta Resolução (TCAR).
- A presença da doença associada ao PIU:
 - Prognóstico mais grave
 - Hipotéticas infecções
 - Substituição de tecido normal por fibrose

Introdução - Pneumonia Intersticial Usual (PIU)

- Depeursinge, 2015
- PIU Padrão anatomopatológico
- Na pratica clínica, é observado nos exames de TCAR:
 - Características de compatibilidade
 - Predomínio de achados na região basal e periférica
 - Anormalidade Reticular
 - Faveolamento
 - Características de inconsistencia
 - Consolidação
 - Micronódulos
 - Achados, principalmente, na região superior do pulmão

Introdução - Contexto

Contexto Clínico - Análise da TCAR fornece ao radiologista:

- Martinez, 1998
 - Grau de inflamação do tecido e suas lesões por meio de padrões radiológicos
 - Reduz a realização de biopsias
- Zhao, 2013 e Depeursinge, 2015
 - Quantidade de exames gerados em um exame
 - Baixa reprodutibilidade
 - Interpretação do exame
 - Variação Inter e Intrapessoal

Introdução - Contexto

Contexto Computacional

- Bagci, 2012
 - o Dificuldade em processar computacionalmente imagens de pulmão
 - Demora no processamento

Introdução - Objetivo

Proposta: Reconhecer computacionalmente o padrão radiológico de Pneumonia Intersticial Usual (PIU) em imagens de TCAR, e também reconhecer nestas imagens de TCAR características que descartariam a indicação de compatível com PIU.

Introdução - Metas

- Investigar e avaliar abordagens que realizem a segmentação das imagens de TCAR de tórax.
- Avaliar métodos de extração de características com o intuito de identificar os padrões radiológicos na TCAR de tórax que melhor caracterizam PIU.
- Classificar os padrões dos achados radiológicos que são encontrados.

Sumário

1 Introdução

Doenças Pulmonares Intersticiais

Contextualização

Objetivo

2 Material e Métodos

Linguagem Python

Bases de Imagens

Segmentação do Pulmão

Estudo 1

Estudo 2

3 Resultados Preliminares

Reorganização da Base Local

Pré-processamento

Etapas da Segmentação

Teste de Avaliação da Segmentação

RNU

Conclusão

4 Cronograma

5 Agradecimentos

Material e Métodos

- Linguagem: Python
 - Bibliotecas:
 - Scikit-image
 - Numpy
 - Pydicom
 - Matplotlib

Material e Métodos

- Bases de imagens de TCAR Características:
 - o Base Pública
 - Depeursinge, 2011 Hospital de Genebra
 - Formato DICOM
 - 128 pacientes / exames ~ 11 a 61 cortes tomográficos
 - Resolução: 512x512 pixels
 - Exames de pacientes saudáveis e com DPI
 - Conjunto de testes para algoritmos de pré-processamento e segmentação

Material e Métodos

- Bases de imagens de TCAR Características:
 - Base Local
 - Hospital das Clínicas de Ribeirão Preto FMRP
 - Formato DICOM
 - 31 pacientes / exames ~380 a 480 cortes tomográficos
 - Resolução: 512x512 pixels
 - Várias doenças intersticiais diagnosticadas associadas ao padrão de PIU
 - Conjunto de teste local

Material e Métodos - Métodologia Geral

- Método de Otsu
 - É um método de Binarização Global para escolher o melhor threshold.
 - Este baseia-se no histograma normalizado, como uma função de densidade de probabilidade probabilidade discreta:

$$\sigma_{\omega}^2(t) = \omega_0(t)\sigma_0^2(t) + \omega_1(t)\sigma_1^2(t)$$

- Método Adaptativo
 - É um método de Binarização Local para escolher o melhor threshold.
 - Este baseia-se em uma função que calcula a média da intensidade do pixel em uma vizinhança de tamanho pré-determinado circundante de cada pixel (vizinhanças

$$T(x,y) = \frac{(PMenor + PMaior)}{2}$$

Resultados Visuais - Estudo 1

- Resultados visuais para Método Otsu e Adaptativo
 - 902 imagens binarizadas 21 exames da base pública

Método de contorno: Marching Squares

Resultados Visuais - Estudo 1

- Resultados para *Marching Squares*
 - Ruídos foram contornados

Transformada de Watershed

Consiste em considerar a imagem como sendo um relevo topográfico onde cada altura deste relevo é associada a uma intensidade de cinza.

- a. Superfície topográfica, com alguns vales, onde os mínimos locais se destacam
- b. Vista superior da superficie com a inundação em andamento
- Crescimento das áreas
- d. Crescimento das áreas
- e. Crescimento das áreas
- f. Objetos segmentados

Fonte: Pinheiro et.al, 2010

- Algoritmo para Transformada de Watershed
 - Mapa de elevação
 - Operador Sobel: Cálculo da matriz de magnitude
 - Calcula o gradiente matriz 3x3
 - Representação topográfica

Resultados Visuais - Estudo 2

- Resultados Transformada de Watershed
 - Operador Sobel Mapa de Elevação

- Algoritmo para Transformada de Watershed
 - Construção das Máscaras
 - Estudo do histograma
 - Binarização da Imagem original

Resultados Preliminares - Estudo 2

- Avaliação da Segmentação Estudo 2
 - Resultados Transformada de Watershed
 - Estudo de histogramas máscaras binárias
 - Remoção dos pequenos ruídos: métodos morfológicos

Resultados Visuais - Estudo 2

- Resultados Transformada de Watershed
 - 451 imagens resultantes contendo a segmentação anatômica do pulmão.

Sumário

1 Introdução

Doenças Pulmonares Intersticiais

Contextualização

Objetivo

2 Material e Métodos

Linguagem Python

Bases de Imagens

Segmentação do Pulmão

Estudo 1

Estudo 2

3 Resultados Preliminares

Reorganização da Base Local

Pré-processamento

Teste de Avaliação da Segmentação

RNU

Conclusão

4 Cronograma

5 Agradecimentos

- Reorganização das bases de imagens de TCAR
 - Tipo de imagem
 - Diminuição do número de imagens
 - Retirada das imagens que não apresentavam estrutura do pulmão

Região do diafragma

- Pré-processamento
 - Diminuição da escala de cinza das imagens originais em 21 exames da base pública
 - Níveis de cinza de 0 a 65535 para 0 a 255
 - Caracterização de textura

Imagem de TCAR uint16

Imagem uint8

Imagem uint8

- Teste: Avaliação da Segmentação
 - Inspeção visual de 21 exames
 - Análise semi-quantitativa

- Teste: Avaliação da Segmentação
 - Escala da Qualidade da Segmentação Anatômica
 - Ótima, segmentação sem falhas
 - Boa, segmentação com falhas pontuais
 - Adequada, segmentação com poucas falhas
 - Regular, com falhas que podem comprometer o estudo
 - Ruim, falhas que comprometeriam o estudo
 - o 19 exames: boa e adequada
 - o 1 exame: ótima
 - 1 exame: regular

- Teste estatístico: Região Não Uniforme
 - Medida
 - Calculo estatístico que leva em consideração a área da imagem alvo binarizada em relação à área do fundo da imagem:

$$RNU = \left(\frac{A_1}{A_1 + A}\right) \times \left(\frac{\sigma_{A_1}^2}{\sigma^2}\right)$$

	Otsu	Adaptativo	Watershed	
Exame 1	0.1955	0.2159	0.1345	
Exame 2	0.1136	0.2596	0.1126	
Exame 3	0.1167	0.1675	0.1100	
Exame 4	0.1372	0.1846	0.1282	
Exame 5	0.2377	0.2793	0.2347	
Exame 6	0.1371	0.2341	0.1231	
Exame 7	0.1348	0.2512	0.1278	
Exame 8	0.1229	0.2880	0.1217	
Exame 9	0.2125	0.2154	0.1125	
Exame 10	0.1379	0.2126	0.1219	
Exame 11	0.1260	0.2095	0.1190	

	Otsu	Adaptativo	Watershed	
Exame 12	0.1888	0.193	0.1698	
Exame 13	0.2196	0.225	1 0.1876	
Exame 14	0.1664	0.177	7 0.1234	
Exame 15	0.1785	0.211	0 0.1455	
Exame 16	0.1323	0.141	0 0.1239	
Exame 17	0.2178	0.227	0 0.1568	
Exame 18	0.1827	0.189	9 0.1347	
Exame 19	0.1846	0.205	2 0.1656	
Exame 20	0.1217	0.133	3 0.1017	
Exame 21	0.1685	0.189	9 0.1235	

Conclusão

- A técnica empregada no segundo Estudo 2:
 - Retorna uma segmentação anatômica dos pulmões de boa qualidade
 - Obtivemos a separação da área do pulmão das outras estruturas encontradas no TCAR
 - Permite a avaliação do parênquima pulmonar etapa de extração de características por atributos de textura

Sumário

1 Introdução

Doenças Pulmonares Intersticiais

Contextualização

Objetivo

2 Material e Métodos

Linguagem Python

Bases de Imagens

Segmentação do Pulmão

Estudo 1

Estudo 2

3 Resultados Preliminares

Reorganização da Base Local

Pré-processamento

Etapas da Segmentação

Teste de Avaliação da Segmentação

RNU

Conclusão

4 Cronograma

5 Agradecimentos

Cronograma

Atividades	2015		2016		2017	
	1º Sem	2º Sem	1º Sem	2º Sem	Janeiro	Fevereiro
1- Disciplinas	х	x	х	3		
2- Qualificação			х			
3- Revisão Bibliográfica	x	х	x	3		
4- Codificação		x	x	х		
5- Validação			х	x		
6- Artigo			x	x	x	
7- Dissertação Final				x	x	х

Sumário

1 Introdução

Doenças Pulmonares Intersticiais

Contextualização

Objetivo

2 Material e Métodos

Linguagem Python

Bases de Imagens

Segmentação do Pulmão

Estudo 1

Estudo 2

3 Resultados Preliminares

Reorganização da Base Local

Pré-processamento

Etapas da Segmentação

Teste de Avaliação da Segmentação

RNU

Conclusão

4 Cronograma

5 Agradecimentos

Agradecimentos

- Prof. Dr. Paulo Mazzoncini de Azevedo-Marques
- Ao Prof. Dr. Marcel Koenigkam-Santos
- Aos membros da banca
- Às agências financiadoras: CAPES, FAPESP e CNPq