MAT02023 - Inferência A

Lista 2 - Continuação de Conceitos de Probabilidade

Amostra Aleatória

Exercício 1 Um dado é lançado n vezes, independentemente. Seja X_1, \dots, X_n os sucessivos valores das faces. É razoável se pensar que X_1, \dots, X_n é uma a.a. de uma v.a. X.

- (a) Qual o modelo probabilístico para a v.a. X?
- (b) Qual o modelo estatístico para o experimento?
- (c) Mostre que $\mathbb{E}X = \mu_1 = 3, 5, \mathbb{E}X^2 = \mu_2 = 91/6$ e $\mathbb{E}X^4 = \mu_4 = 2275/6$.
- (d) Obtenha uma distribuição aproximada para \overline{X} e $M_2 = \frac{1}{n} \sum_{i=1}^n X_i^2$.
- (e) Assuma n = 12 e calcule aproximadamente $P(40 \le \sum_{i=1}^{n} X_i \le 45)$ e $P(170 \le \sum_{i=1}^{n} X_i^2 \le 190)$.
- (f) Seja N_i = "num. de vezes em que ocorre a face i". Qual a distribuição de N_i ? Obtenha uma distribuição aproximada para N_i .

Exercício 2 Bolas são sorteadas com reposição de uma urna contendo 1 bola branca e 2 bolas pretas. Denote $X_i = 0$ se a bola retirada no i-ésimo sorteio for branca e $X_i = 1$ se for preta. Considere a amostra aleatória X_1, \ldots, X_9 :

- a) Qual a distribuição conjunta destas nove variáveis aleatórias?
- b) Qual a distribuição da soma destas variáveis?
- c) Encontre o valor esperado da média amostral.
- d) Encontre o valor esperado da variância amostral S^2 .

Exercício 3 Seja X_1, X_2, \ldots, X_n uma amostra aleatória de uma população Exponencial (λ) . Especificamente, X_i poderia representar o tempo até a falha (medida em anos) para n equipamentos idênticos colocados em teste.

- a) Encontre a distribuição conjunta das variáveis nesta amostra aleatória.
- b) Qual é a probabilidade de que todos os equipamentos durem mais de 2 anos?

Exercício 4 Seja X_1, \dots, X_n uma a.a. de uma população X com distribuição Bernoulli com parâmetro p.

- (a) Qual a distribuição conjunta da a.a.?
- (b) Qual a distribuição de $X_1 + \cdots + X_n$?
- (c) Qual a distribuição de \overline{X} ?
- (d) Para n=2, qual a distribuição de $\sum_{i=1}^{n} (X_i-p)^2$?

Exercício 5 Seja X_1, X_2, \ldots, X_n uma a.a. tal que $X_1 \sim f_{\theta}$. Determine a distribuição amostral de \overline{X} , quando

- (a) $X_1 \sim \text{Poisson}(\lambda)$;
- (b) $X_1 \sim \text{Exponencial}(\lambda)$.

Exercício 6

Calcule a variância e esperança dos seguintes estimadores:

- a) \overline{X} .
- b) S^2 .

Função Geradora de Momentos

Exercício 7 Encontre a função geradora de momentos de uma variável aleatória $X \sim Poisson(\lambda)$.

Exercício 8 Encontre a função geradora de momentos de uma variável aleatória $X \sim Exp(\lambda)$.

Exercício 9 Seja X uma variável aleatória com distribuição de probabilidade $Gama(\alpha, \beta)$. Determine a função geradora de momentos de X.

Exercício 10 Suponha que X tem distribuição χ_n^2 . Mostre que E(X) = n e Var(X) = 2n. Sugestão: Use a função geradora de momentos.

Exercício 11 Considere que X e Y são variáveis aleatórias independentes com distribuição normal padrão. Encontre a função geradora de momentos conjunta de X e Y.

Teoremas Limite

Exercício 12 Suponha que uma população tem $\sigma=2$ e \overline{X} é a média de amostras de tamanho 100. Encontre l tal que $P(-l<\overline{X}-\mu< l)=0.9$.

Exercício 13 Um pesquisador deseja estimar a média de uma população usando uma amostra grande o suficiente, tal que temos probabilidade de 0.95 que a média amostral não difira da média populacional por mais de 25% do desvio padrão. Qual deve ser o tamanho da amostra?

Exercício 14 Seja \overline{X} a média de uma amostra aleatória de tamanho 75 com a seguinte função densidade f(x) = I(0;1)(x). Calcule um valor aproximado para a seguinte probabilidade $P(0.45 < \overline{X} < 0.55)$.

Exercício 15 Considere X_1, X_2, \dots, X_n uma amostra aleatória da distribuição Bernoulli(p). Defina $Y = \sum_{i=1}^{n} X_i$.

- a) Qual é a distribuição de Y.
- b) Seja n = 100 e p = 0.5, utilize o Teorema Central do Limite para calcular uma aproximação para a seguinte probabilidade P(47, 5 < Y < 52, 5).

Exercício 16 Seja $Y \sim Binomial(400, 1/5)$, calcule um valor aproximado para a probabilidade P(Y/n > 0.25).

Exercício 17 Seja $f(x) = \frac{1}{x^2}I_{(1,\infty)}(x)$ a densidade de uma variável aleatória X. Considere uma amostra aleatória de tamanho 72 de uma população ue segue esta distribuição. Calcule, aproximadamente, a probabilidade de que mais de 50 observações da amostra aleatória sejam menores que 3.

Exercício 18 Prove os seguintes teoremas e corolários:

a) Teorema: Sejam X_1, X_2, \ldots variáveis aleatórias i.i.d. com $E(X_i) = \mu$ e $Var(X_i) = \sigma^2 < \infty$. Então para todo $\epsilon > 0$ temos que

$$\lim_{n \to \infty} P(|\overline{X}_n - \mu| < \epsilon) = 1.$$

Isto é, \overline{X}_n converge em probabilidade para μ .

b) Teorema: Seja f(...) uma densidade com média μ e variância finita σ^2 . Considere \overline{X}_n a média amostral de uma amostra aleatória com tamanho n obtida a partir de $f(\cdot)$. Seja Z_n a seguinte variável aleatória

$$Z_n = \frac{\overline{X}_n - E(\overline{X}_n)}{\sqrt{Var(\overline{X}_n)}}$$

A distribuição de Z_n se aproxima da N(0,1) conforme n tende ao infinito.

c) Teorema: Seja X_1, X_2, \ldots, X_n uma amostra aleatória de uma população com densidade $f(\cdot)$ com média μ e variância σ^2 então

$$E(\overline{X}) = \mu \, e \, Var(\overline{X}) = \frac{1}{n} \sigma^2$$

d) Teorema: Se X_1, X_2, \ldots, X_n são variáveis aleatórias Normais independentes com médias μ_i e variâncias σ_i^2 . Então

$$U = \sum_{i=1}^{k} \left(\frac{X_i - \mu_i}{\sigma_i} \right)^2$$

possui distribuição χ_k^2

- e) Corolário: Se X_1, X_2, \ldots, X_n é uma amostra aleatória da distribuição Normal com média μ e variância σ^2 então $U = \sum_{i=1}^n \frac{(X_i \mu)^2}{\sigma^2}$ tem distribuição χ_n^2 .
- f) Teorema: Se Z_1, Z_2, \ldots, Z_n é uma amostra aleatória da distribuição N(0,1), então:
 - i) $\overline{Z} \sim N(0, 1/n)$
 - ii) \overline{Z} e $\sum_{i=1}^{n} (Z_i \overline{Z})^2$ são independentes
 - iii) $\sum_{i=1}^{n} (Z_i \overline{Z})^2 \sim \chi_{n-1}^2$
- g) Teorema: Se $Z \sim N(0,1)$ e
 $U \sim \chi_k^2$ são variáveis aleatórias independentes, então

$$\frac{Z}{\sqrt{U/k}} \sim t_k.$$