Analyse du protéome et de l'interactome : Exercices série 3

Anaïs Barray. M2 BCD

Le but de cette série d'exercice est d'analyser un réseau d'interaction donné à l'aide de Cytoscape et DAVID afin d'en ressortir les tendances et clusters majeurs ayant un impact dans ce réseau. Nous analyserons notamment quelques uns de ces clusters afin d'identifier leur fonction.

Pour cela nous utilisons un fichier d'interaction de protéines et un deuxième fichier attribuant un nom d'accession UNIPROT à ces protéines.

1. Exercice 1 : Analyse d'un réseau d'interaction de protéines avec Cytoscape.

Paramètres utilisés:

-layout : organic

-node: symbol

-node color : betweenness

-size: node

Ci-dessous figurent deux captures d'écran du réseau après la Network Analysis.

Nous distinguons des nœuds de tailles et couleurs différentes, qui dépendent de leur implication dans le réseau :

- La betweenness centrality d'un nœud équivaut au nombre de plus courts chemins allant d'un sommet à un autre passant par ce nœud. Les nœuds oranges/rouges signifient que de nombreux chemins y passent, nous déduisons que ces protéines ont une grande influence dans les interactions du réseau.
- Il s'agit d'un graphe orienté, et nous nous sommes ensuite intéressés au *out-degree*, c'est-à-dire au nombre d'arêtes partant d'un nœud. Le out-degree reflète le nombre d'interaction qu'une protéine crée avec d'autres, interactions venant d'elle. Dans nos précédentes images, plus un nœud a un grand out-degree, plus il sera gros.

Les deux graphes suivants mettent en évidence que peu de nœuds se distinguent selon ces critères.

2. Exercice 2 : Analyse de clusters avec ClusterOne et DAVID

Avec le plugin ClusterOne, nous obtenons une prédiction de 716 clusters. Ces clusters sont ensuite triés par p-value croissante : ce score représente la probabilité d'obtenir un résultat au hasard, plus la valeur est proche de 0 plus l'obtention de ce résultat est significative.

La capture d'écran suivante montre l'interface Cytoscape suite à l'analyse ClusterOne avec les paramètres par défaut et avec un tri par p-value croissante.

						# >
Network Statistics of enet-edges.tx 716 clusters	(directed) ClusterONE result I					<u> </u>
Cluster Nodes	Density	In-weight	Out-weight	Quality	P-value	<u> </u>
*	207	0.508	10,834	3,339	0.764	0.000
	119	0.67	4,706	2,735	0.632	0.000
*	52	0.63	836	541	0.607	0.000
	38	0.973	684	44	0.94	0.000
	24	0.699	193	175	0.524	1.823 × 10 ^{.5}
	9	1	36	15	0.706	7.423 x 10 ⁻⁵
	9	0.528	19	3	0.864	1.816 × 10 ⁻⁴
*	8	0.643	18	6	0.75	0.002
*	17	0.691	94	88	0.516	0.002
\Diamond	5	0.9	9	3	0.75	0.005
*	9	0.667	24	23	0.511	0.006
*	8	0.643	18	14	0.562	0.009
V	5	0.7	7	3	0.7	0.011
*	36	0.563	355	524	0.404	0.013
*	13	0.5	39	40	0.494	0.022
	6	1	15	11	0.577	0.024

La prochaine étape est de sélectionner la liste de gènes correspondant à chaque cluster et de prédire leur fonction à l'aide de DAVID. Nous nous intéressons ici à la fonction Biological Process définie dans la Gene Ontology.

Les deux tables suivantes correspondent à l'analyse DAVID selon ces critères pour les deux premiers clusters. Les résultats sont ici aussi ordonnés par p-value croissante.

DAVID Bioinformatics Resources 6.7

National Institute of Allergy and Infectious Diseases (NIAID), NIH $\,$

Functional Annotation Chart

Current Gene List: clusterone_converted **Current Background: Homo sapiens** 207 DAVID IDs **⊞** Options

Rerun Using Options Create Sublist 78 chart records

Download File

Help and Manual

Sublist	<u>Category</u>	<u>Term</u>	⇔ RT	Genes	Count	%	Benjamini
	GOTERM_BP_ALL	RNA splicing	RT =		163	78,7 2,8E-263	3 1,7E-260
	GOTERM_BP_ALL	mRNA processing	RT =		165	79,7 2,8E-256	8,7E-254
	GOTERM_BP_ALL	mRNA metabolic process	RT =		165	79,7 1,3E-242	2 2,7E-240
	GOTERM_BP_ALL	RNA processing	RT =		170	82,1 1,2E-219	1,8E-217
	GOTERM_BP_ALL	RNA metabolic process	RT =		171	82,6 8,3E-177	7 1,0E-174
	GOTERM_BP_ALL	RNA splicing, via transesterification reactions with bulged adenosine as nucleophile	RT =		106	51,2 5,4E-171	5,5E-169
	GOTERM_BP_ALL	nuclear mRNA splicing, via spliceosome	RT =		106	51,2 5,4E-17	5,5E-169
	GOTERM_BP_ALL	RNA splicing, via transesterification reactions	RT =		106	51,2 5,4E-171	5,5E-169
	GOTERM_BP_ALL	gene expression	RT =		177	85,5 9,2E-97	8,1E-95
	GOTERM_BP_ALL	nucleobase, nucleoside, nucleotide and nucleic acid metabolic process	RT =		177	85,5 5,3E-87	4,1E-85
	GOTERM_BP_ALL	cellular nitrogen compound metabolic process	RT =		177	85,5 2,0E-81	1,4E-79
	GOTERM_BP_ALL	nitrogen compound metabolic process	RT =		177	85,5 3,1E-79	1,9E-77
	GOTERM_BP_ALL	cellular macromolecule metabolic process	RT =		182	87,9 1,1E-61	5,9E-60
	GOTERM_BP_ALL	macromolecule metabolic process	RT =		182	87,9 8,7E-55	4,5E-53
	GOTERM_BP_ALL	ribonucleoprotein complex assembly	RT =		38	18,4 1,4E-51	6,6E-50
	GOTERM_BP_ALL	cellular metabolic process	RT =		182	87,9 1,7E-43	7,3E-42
	GOTERM_BP_ALL	primary metabolic process	RT =		182	87,9 2,3E-40	9,3E-39

DAVID Bioinformatics Resources 6.7

National Institute of Allergy and Infectious Diseases (NIAID), NIH $\,$

Functional Annotation Chart

Current Gene List: clusterone_2_converted Current Background: Homo sapiens 122 DAVID IDs

⊞ Options

Rerun Using Options Create Sublist

Help and Manual

96 chart records					Download File		
Sublist	Category \$	<u>Term</u>	≑ RT	Genes	Count	%¢ P-Value\$	Benjamin‡
	GOTERM_BP_ALL translational elongation		RT		83	68,0 1,3E-167	6,7E-165
	GOTERM_BP_ALL translation		RT		85	69,7 4,0E-113	1,0E-110
	GOTERM_BP_ALL gene expression		RT		104	85,2 1,4E-53	2,4E-51
	GOTERM_BP_ALL cellular protein metabolic process		RT		90	73,8 2,9E-45	3,7E-43
	GOTERM_BP_ALL cellular macromolecule biosynthetic	<u>c process</u>	RT ====		94	77,0 2,4E-43	2,4E-41
	GOTERM_BP_ALL macromolecule biosynthetic process	<u>ss</u>	RT		94	77,0 4,4E-43	3,8E-41
	GOTERM_BP_ALL protein metabolic process		RT		90	73,8 8,6E-39	6,3E-37
	GOTERM_BP_ALL cellular macromolecule metabolic p	process	RT		109	89,3 1,0E-35	6,4E-34
	GOTERM_BP_ALL cellular biosynthetic process		RT		94	77,0 1,1E-35	6,3E-34
	GOTERM_BP_ALL biosynthetic process		RT		94	77,0 1,3E-34	6,6E-33
	GOTERM_BP_ALL ribosome biogenesis		RT		29	23,8 3,4E-33	1,6E-31
	GOTERM_BP_ALL macromolecule metabolic process		RT		109	89,3 1,1E-31	4,9E-30
	GOTERM_BP_ALL ribonucleoprotein complex biogene	<u>esis</u>	RT ====		30	24,6 1,3E-29	5,3E-28
	GOTERM_BP_ALL cellular metabolic process		RT		109	89,3 4,5E-25	1,7E-23
	GOTERM_BP_ALL rRNA processing		RT ====		22	18,0 6,2E-25	2,1E-23
	GOTERM_BP_ALL rRNA metabolic process		RT		22	18,0 1,7E-24	5,3E-23
	GOTERM_BP_ALL primary metabolic process		RT ====		109	89,3 3,1E-23	9,4E-22
	GOTERM BP ALL ncRNA processing		RT ===		23	18,9 1,8E-19	5,3E-18

Nous pouvons interpréter que les gènes du premier cluster (207 gènes) sont très probablement impliqués dans des fonctions liées à l'ARN tel que l'épissage ou le traitement de l'ARNm. Le second cluster (122 gènes) est constitué de nombreux gènes impliqués dans des mécanismes de traduction et de biosynthèse.