SINGLE IMAGE SUPER-RESOLUTION WITH DILATED CONVOLUTION BASED MULTI-SCALE INFORMATION LEARNING INCEPTION MODULE

Wuzhen Shi, Feng Jiang, Debin Zhao

School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China

ABSTRACT

Traditional works have shown that patches in a natural image tend to redundantly recur many times inside the image, both within the same scale, as well as across different scales. Make full use of these multi-scale information can improve the image restoration performance. However, the current proposed deep learning based restoration methods do not take the multi-scale information into account. In this paper, we propose a dilated convolution based inception module to learn multi-scale information and design a deep network for single image super-resolution. Different dilated convolution learns different scale feature, then the inception module concate-

4.3. Comparisons with State-of-the-Art Methods

We compare our method with five state-of-the-art learning based SR algorithms that rely on external databases, namely the A+ [20], SRF [21], SRCNN [5, 6], FSRCNN [8] and SCN [22]. A+ and SRF are two state-of-the-art traditional methods, while SRCNN, FSRCNN and SCN are three newest popular deep learning based single image super-resolution image methods. In Table 1, we provide a summary of quantitative evaluation on several datasets. The results of other five methods are the same as reported at FSRCNN. Our method outperforms all previous methods in these datasets. Compare with the newest FSRCNN, our method can improve roughly 0.33 dB, 0.22Db and 0.37 dB on average with respect to upsample factor 2, 3 and 4 on Set5 dataset, respectively. Over the three dataset and three up-sample factor, our MSSRNet can improve roughly 2.33 dB, 0.6 dB, 0.46 dB, 0.74 dB, 0.32 dB and 0.25 dB on average, in comparison with Bicubic, A+,

SRF, SRCNN, SCN and FSRCNN, respectively. To get better performance, we can increase the network depth (larger m), which is called deeper is better in the literature, and the network width with larger n. In our experiments, we have implemented the fatter network with n=16 and n=32, and the deeper network with m=10 and m=15. Both the deeper and the fatter networks show PSNR and SSIM gain. The reader can download our test code¹ to get more quantitative and qualitative results.

6. ACKNOWLEDGEMENTS

This work has been supported in part by the Major State Basic Research Development Program of China (973 Program 2015CB351804), the National Science Foundation of China under Grant No. 61572155.

Table 1. The results of average PSNR (dB) and SSIM on the Set5 [15], Set14 [16] and BSD200 [17] dataset

Dataset	Scale	Bicubic	A+	SRF	SRCNN	SCN	FSRCNN	MSSRNet
		PSNR/SSIM						
Set5	$\times 2$	33.66/0.9299	36.55/0.9544	36.87/0.9556	36.34/0.9521	36.76/0.9545	37.00/0.9558	37.33/0.9581
	$\times 3$	30.39/0.9299	32.59/0.9088	32.71/0.9098	32.39/0.9033	33.04/0.9136	33.16/0.9140	33.38/0.9178
	$\times 4$	28.42/0.8104	30.28/0.8603	30.35/0.8600	30.09/0.8503	30.82/0.8728	30.71/0.8657	31.10/0.8777
Set14	$\times 2$	30.23/0.8687	32.28/0.9056	32.51/0.9074	32.18/0.9039	32.48/0.9067	32.63/0.9088	32.89/0.9117
	$\times 3$	27.54/0.7736	29.13/0.8188	29.23/0.8206	29.00/0.8145	29.37/0.8226	29.43/0.8242	29.57/0.8282
	$\times 4$	26.00/0.7019	27.32/0.7471	27.41/0.7497	27.20/0.7413	27.62/0.7571	27.59/0.7535	27.83/0.7631
BSD200	$\times 2$	29.70/0.8625	31.44/0.9031	31.65/0.9053	31.38/0.9287	31.63/0.9048	31.80/0.9074	32.08/0.9118
	$\times 3$	27.26/0.7638	28.36/0.8078	28.45/0.8095	28.28/0.8038	28.54/0.8119	28.60/0.8137	28.78/0.8188
	$\times 4$	25.97/0.6949	26.83/0.7359	26.89/0.7368	26.73/0.7291	27.02/0.7434	26.98/0.7398	27.17/0.7489
Avg.		28.80/0.8151	30.53/0.8491	30.67/0.8505	30.39/0.8474	30.81/0.8542	30.88/0.8537	31.13/0.8596

Average =
$$\frac{37.33 + 33.38 + 31.10 + 32.89 + 29.57 + 27.83 + 32.08 + 28.78 + 27.17}{9} = 31.13$$

¹https://github.com/wzhshi/MSSRNet

0.32 dB SRCNN = 31.13 - 30.39 = 0.74 dB

0.32 dB SCN = 31.13 - 30.81 = 0.32 dB

0.25 dB FSRCNN = 31.13 - 30.88 = 0.25 dB