Connection and Curvature

Hu Zheng Department of Mathematics, Zhejiang University

April 22, 2015

Contents

1	Affine Connections	1
2	Riemannian Connections	1
3	Curvature	1
4	Harmonic Forms	1
	Affine Connections roblem 1.1.	
2	Riemannian Connections	
3	Curvature	
4	Harmonic Forms	
Problem 4.1. Suppose $\alpha \in A^1(M)$, then		
	$\int_M (\delta\alpha)\eta = 0$	
•		
Pr	roof.	

Problem 4.2. Suppose M is compact smooth Riemannian manifold without boundary, $h, f \in C^2(M)$. Prove the follow Green formula:

$$\int_{M} (h\Delta f - f\Delta h)\eta = 0$$

.

Proof. \Box

Problem 4.3. Take the geodesic polar coordinates on (M,g):

$$g = (\mathrm{d}r)^2 + g_{ij}(r,\theta)\mathrm{d}\theta^i\mathrm{d}\theta^j, 1 \le i, j, k \le m - 1$$

. Suppose f = f(r) is independent from $\{\theta^i\}$, prove that

$$\Delta f = f'' + \frac{m-1}{r}f' + f'\frac{\partial}{\partial r}\log\sqrt{G}$$

, where $G = \det(g_{ij})$ and ' denotes ordinary differentiation with respect to r.

Proof. \Box