NASA Technical Paper 1493 AVRADCOM Technical Report 78-49

TECH LIBRARY KAFB, NM

LOAN COPY: RETURN TO AFWL TECHNICAL LINE KIRTLAND AFR. N. M.

Performance of Two-Stage Fan Having Low-Aspect-Ratio, First-Stage Rotor Blading

Donald C. Urasek, William T. Gorrell, and Walter S. Cunnan

AUGUST 1979







# NASA Technical Paper 1493

## AVRADCOM Technical Report 78-49

Performance of Two-Stage Fan Having Low-Aspect-Ratio, First-Stage Rotor Blading

Donald C. Urasek Lewis Research Center Cleveland, Ohio

William T. Gorrell
Propulsion Laboratory, AVRADCOM Research and Technology Laboratories
Lewis Research Center
Cleveland, Ohio

Walter S. Cunnan Lewis Research Center Cleveland, Ohio

# NASA

National Aeronautics and Space Administration

Scientific and Technical Information Branch

1979

#### SUMMARY

A new first-stage rotor for the NASA two-stage fan incorporated low-aspect-ratio blading, which eliminated the need for midspan dampers. Although the overall aero-dynamic design parameters for the rotor remained essentially unchanged, the blading is markedly different because of several design changes, which, in addition to the 1.56-aspect-ratio blading and the elimination of part span dampers, included increased flow-path convergence, end-wall bend to account for inlet boundary layer, smaller blade-leading-edge wedge angle, increased flow passage choke margin, reduced leading- and trailing-edge thicknesses, and a different approach to setting suction-surface incidence angle over the supersonic portion of the blade.

The fan was tested at speeds from 50 to 100 percent of design speed and detailed surveys of the flow conditions were made over the entire operating flow range. Test results showed that at design speed the fan achieved its design efficiency while exceeding its design pressure ratio and that the first-stage rotor achieved a peak adiabatic efficiency of 0.906 (2 percentage points greater than design) at a total-pressure ratio of 1.686; at part speeds, first-stage rotor efficiencies in excess of 0.91 were achieved. At design speed the first-stage efficiency was 0.870, 2.2 percentage points greater than design at a total-pressure ratio of 1.655; at part speeds first-stage efficiencies in excess of 0.88 were recorded. At design speed fan peak efficiency occurred very close to the stall line; however stall margin increased to a value of 8 percent with stator resets. The circumferentially grooved casing had no effect on fan performance and stall margin. Analysis of data indicated the flow range was being limited by a drop in flow in the hub region of the second stator.

#### INTRODUCTION

Low-aspect-ratio, turbomachinery blading offers the advantages of fewer blades and lower fabrication cost. Further, the blading is inherently more rugged because of its longer chord, thus eliminating the need for dampers that are so often required on higher-aspect-ratio blading. The aerodynamic loss associated with dampers can be very high, hampering the achievement of good efficiencies.

The overall efficiency of a previously tested NASA two-stage fan (with dampers on the first-stage rotor) was approximately 5 percentage points less than its design value (ref. 1). Analysis of the test results indicated that the first-stage stator and the second stage had potential for good performance but were hampered mainly by the dampered first-stage rotor. The dampers were responsible for large radial gradients of total pressure and deviation angle across a large portion of the blade height, resulting in mismatches in later blade rows.

In an effort to improve performance of the first stage as well as the stage matching, the original two-stage fan was reconfigured with a newly designed first-stage rotor. Lower-aspect-ratio blading was selected for the rotor to eliminate both the need of part span dampers and their associated penalties on aerodynamic performance. In addition, low-aspect-ratio blading has shown good performance. The two-stage fan with the new first-stage rotor was tested in the multistage-compressor test facility at Lewis. The performance is presented in both tabular and plotted form. The symbols and equations are defined in appendixes A and B. The definitions and units used for the tabular data are presented in appendix C.

#### AERODYNAMIC DESIGN

Only the low-aspect-ratio first-stage rotor is discussed herein. The other blade rows were unchanged (see ref. 2). The flow path of this fan, also unchanged, is shown in figure 1, and an assembly photograph of it is shown in figure 2. All significant blade design parameters for all four blade rows are listed in tables I to III.

The overall aerodynamic design parameters of the first-stage rotor are essentially unchanged. Although multiple-circular-arc blade sections were used throughout, the blading is markedly different from that in the earlier fan because of several interrelated design changes. Radial distributions of several blade and performance parameters for both the original design (ref. 2) and the low-aspect-ratio rotor are compared in figure 3.

To eliminate the need for part span dampers, the blade aspect ratio was decreased from 2.94 to 1.56. The axial position of the blade stacking line was unchanged from the original design but, because of increased blade chord, the leading and trailing edges of the rotor moved fore and aft, respectively. Because of the flow-path contour (see fig. 1), the rotor-inlet hub-tip ratio decreased from 0.400 to 0.375, and the exit hub-tip ratio increased from 0.461 to 0.478. The resulting change in flow-path convergence across the blade resulted in higher meridional velocity ratios across the entire blade span except in the tip region (fig. 3).

An inlet tip boundary-layer total pressure, based on unreported boundary-layer survey data taken with the configuration of reference 1, was incorporated into the new design, resulting in the rotor blading having leading-edge endwall bend. The design

specified a radially constant total pressure at the rotor outlet, thus the design total-pressure ratio is greater in the tip region to account for the boundary-layer defect (fig. 3).

To reduce shock losses, the blade maximum thickness was moved rearward to minimize supersonic turning on the suction surface (fig. 3).

The original rotor had a 4 percent choke margin which appeared marginal for achieving design flow. The intent of present design was to achieve about 6 percent choke margin, a value which does not account for blade surface boundary layers. Actual values ranged from 3.6 to 6.5 percent (fig. 3).

To increase the blade natural frequency and to eliminate a potential resonant condition, the distribution of blade thickness to chord was described by a third-order polynomial from tip to hub (fig. 3). Both leading- and trailing-edge radii have been significantly reduced (fig. 3).

Deviation angles (fig. 3) for the both higher-aspect-ratio blading (ref. 2) and this low-aspect-ratio blading were computed using Carter's Rule along with modifiers. The modifiers for the high-aspect-ratio blading were based on the results obtained from several Lewis tested rotors. Those for the low-aspect-ratio blading were largely based on reference 3.

Incidence angles from tip to 58 percent of span were determined by the method described in reference 4. The method minimizes the expansion and compression system at the leading edge of a transonic rotor by setting the suction-surface blade angle at a point midway between the leading edge and the location of the first captured Mach wave on the blade. The suction-surface blade angle at this midway point is set equal to the free-stream relative flow angle, minus an adjustment to account for boundary-layer and blade blockage. This adjustment was approximately 1.6° from the tip to 58 percent of span. For the remainder of the passage (59 percent to hub), the suction-surface incidence angle was set equal to 0° at the blade inlet. The variation of suction-surface incidence angle was smooth through the transition region.

Because of the change in flow-path convergence, resulting in higher meridional velocity ratios across the entire blade span, the blade loadings (D-factors) are lower except locally at the tip. The D-factor loss correlation used in the design of the original rotor (ref. 2) was also used in the design of this low-aspect-ratio rotor. The radial distributions of D-factor and loss-coefficient for the original and redesigned first-stage rotor are also compared in figure 3.

#### APPARATUS AND PROCEDURE

#### Compressor Test Facility

The two-stage fan was tested in the multistage compressor test facility (ref. 2; and fig. 4). Atmospheric air enters the test facility at an inlet located on the roof of the building and flows through the flow-measuring orifice, through the inlet butterfly throttle valves, and into the plenum chamber upstream of the test compressor. The air then passes through the test fan into the collector and is exhausted either to the atmosphere or to an altitude exhaust system. Mass flow is controlled with a sleeve valve in the collector. For this series of tests the large inlet butterfly throttle valve remained fully open with the small valve fully closed, and the air was exhausted to the atmosphere. The rotating radial tip clearances for both rotors were calculated to be 0.04 centimeter.

#### Instrumentation

Radial surveys of the flow conditions were made at the fan inlet and behind the two stator-blade rows (see fig. 1). Total pressure, total temperature, and flow angle were measured with a combination probe (fig. 5). Each probe was positioned with a null-balancing, stream-direction-sensitive control system that automatically alined the probe to the direction of flow. The thermocouple material was Chromel-constantan. All pressures were measured with calibrated transducers. Two combination probes were used at the compressor inlet and behind the first-stage stator, and four combination probes were used behind the second-stage stator. The circumferential locations of the probes at each measuring station are shown in figure 6. The probes behind the stators were circumferentially traversed one stator-blade passage clockwise from the nominal values shown.

The fan mass flow was determined by means of a calibrated thin-plate orifice. An electronic speed counter in conjunction with a magnetic pickup was used to measure rotative speed (rpm).

The estimated errors of the data based on inherent accuracies of the instrumentation and recording system are as follows:

| Mass flow, kg/sec                   |      | <br> | <br> | <br> | <br> |  |  | <br> | • |     | ±0.3         |
|-------------------------------------|------|------|------|------|------|--|--|------|---|-----|--------------|
| Rotative speed, rpm                 |      | <br> | <br> | <br> | <br> |  |  | <br> |   |     | . ±30        |
| Flow angle, deg                     |      | <br> | <br> | <br> | <br> |  |  | <br> |   |     | . ±1         |
| Temperature, K                      |      | <br> | <br> | <br> | <br> |  |  | <br> |   |     | .±0.6        |
| Total pressure, N/cm <sup>2</sup> , | at - |      |      |      |      |  |  |      |   |     |              |
| Station 1                           |      | <br> | <br> | <br> | <br> |  |  | <br> |   | . ± | ±0.07        |
| Station 2                           |      | <br> | <br> | <br> | <br> |  |  | <br> |   | . = | <b>⊕.1</b> 0 |
| Station 3                           |      | <br> | <br> | <br> | <br> |  |  | <br> |   | . : | -0.17        |

#### Test Procedure

The data were taken over a mass-flow range from maximum flow to near-stall conditions at equivalent rotative speeds of 50, 70, 80, 90, and 100 percents of design speed. At each selected flow data were recorded at 11 radial positions. At each radial position the combination probes behind the stators (stations 2 and 3) were circumferentially traversed to 10 equally spaced locations across a stator-blade gap. Pressure, temperature, and flow angle were measured at each circumferential position. At the fan inlet (station 1) radial traverses were made to measure pressure, temperature, and flow angle at each radial position.

#### Calculation Procedure

At each radial position behind the two stationary blade rows, circumferential arrays of total pressure, total temperature, and flow angle were generated across a stator-blade gap by arithmetically averaging the measurements from the two combination probes at each circumferential position.

At each radial position the averaged values making up the circumferential arrays of total pressure, total temperature, and flow angle across one blade gap were again averaged as follows to obtain the representative value behind the two stator-blade rows at each radial position: The total-pressure array was energy averaged, the total-temperature array was mass averaged, and the flow-angle array was arithmetically averaged. These values are reported herein.

Representative radial values of total pressure and total temperature between the rotor- and stator-blade rows (necessary for individual rotor and stator performance evaluation) were obtained from the averaged circumferential arrays of total pressure and total temperature obtained downstream of the adjoining stator and translated upstream of the stator along design streamlines as follows: At each radial position total temperature was selected as the mass-averaged value of the averaged values making

up the circumferential array, and the highest value of total pressure was selected from the averaged values making up the circumferential array.

Data were reduced using a computer program that calculates the radial distributions of static pressure at each measuring station and the radial distributions of flow angle at stations behind the rotors. Radial distributions of static pressure are calculated within the program from equations of continuity of mass flow and full radial equilibrium, which include gradients of entropy and enthalpy and uses design streamline curvature, slope, and endwall blockage. Inputs to this program include equivalent mass flow, corrected speed, radial distributions of total pressure and total temperature behind a rotating blade row, and equivalent mass flow along with radial distributions of total pressure, total temperature, and flow angle behind a fixed blade row.

To obtain overall performance for each rotor and stage, the radial values of total temperature were mass averaged, and the radial values of total pressure were energy averaged.

All data herein have been translated to the leading and trailing edges of each blade row by the method of reference 5. All pressures and temperatures were corrected to sea-level conditions based on the inlet conditions of the first-stage rotor. Orifice mass flow was corrected to sea-level conditions based on the inlet conditions of each stage.

#### RESULTS AND DISCUSSION

The experimental results of the two-stage fan with a low-aspect-ratio first-stage rotor is presented in three main sections: Overall Performance, Radial Distributions of Performance Parameters, and Fan Performance with Stator Reset and Casing Treatment. The plotted data, along with several parameters not shown in the figures, are also presented in tabular form. The overall performance is presented in tables IV to VIII. The blade-element data are presented in tables IX to XII. (The definitions and units used for the tabular data are presented in appendix C.)

#### Overall Performance

Two-stage fan. - The overall performance of the two-stage fan is presented in figure 7 where total-pressure ratio, total-temperature ratio, and adiabatic efficiency are plotted as functions of equivalent mass flow at 50, 70, 80, 90, and 100 percent of design speed. The fan achieved its design efficiency of 0.849 and exceeded its design total-pressure ratio at design speed (fig. 7). A peak efficiency value of 0.846 occurred at an equivalent mass flow of 34.03 kilograms per second (design mass flow

was 33.248 kg/sec). The corresponding value of total-pressure ratio was 2.471; the design value was 2.399. At design speed the fan stalled at a greater-than-design mass flow. A sophisticated Nastran finite-element structural analysis program was used to restudy the untwist and uncambering of the low-aspect-ratio blading. Results showed that the blade leading edge was uncambering (opening) locally in the tip region approximately 1.20 more than had been allowed for in the original, beam-analysis design. This off-design uncambering may have allowed the fan to overflow. Peak efficiency occurred near stall, which resulted in a stall margin of only 2 percent when based on the peak efficiency mass flow of 34.03 kilograms per second. However, stall margin increases to a value of 10 percent when based on a mass flow of 34.3 kilograms per second, which corresponds to an efficiency that is 1 percentage point less than the peak value. At part speeds efficiencies in excess of 0.86 were obtained.

<u>First stage</u>. - The overall performance of the first stage is significantly better than design (fig. 8(a)). At design speed peak efficiency occurred at an equivalent mass flow of 34.03 kilograms per second; the design flow was 33.248 kilograms per second. The peak adiabatic efficiency of 0.870 was 2.2 percentage points greater than design. The corresponding value of total-pressure ratio was 1.655 (design value of 1.590). At the design pressure ratio the stage adiabatic efficiency was 0.865.

At the part speeds efficiencies in excess of 0.88 were demonstrated. The high-flow side of all part-speed performance curves were limited by choking in the second stage (see nondimensional stage performance), thus it appears that the maximum efficiencies for the first stage were not obtained.

The performance of the first-stage rotor (fig. 8(b)) exceeded its design values of total-pressure ratio and efficiency. At design speed peak adiabatic efficiency occurred at an equivalent mass flow of 34.03 kilograms per second; the design mass flow was 33.248 kilograms per second. The peak efficiency value of 0.906 was 1.0 percentage points greater than design. And the corresponding value of total-pressure ratio of 1.686 was also greater than design (1.629). At design pressure ratio the rotor adiabatic efficiency was 0.896.

At the part speeds the high-flow side of the performance curves were limited, and it appears that, although efficiencies in excess of 0.91 were recorded at all part speeds, the maximum first-stage rotor efficiencies for each part speed were not achieved.

Nondimensional stage performance. - The nondimensional performance parameters of the stages and rotors are presented in figure 9 for 50, 70, 80, 90, and 100 percents of design speed. The spread in the data, with respect to the speed lines, is attributed to compressibility effects.

First stage: The nondimensional performance curves for the first stage and rotor (figs. 9(a) and (b)) show characteristics similar to the dimensional performance curves (fig. 8).

Second stage: The second stage (figs. 9(b) and (c)) appears to be controlling choke and limiting the first-stage flow range, particularly at part speeds (as mentioned earlier). For both stage and rotor flow coefficient range and efficiency increase with decreasing rotative speed. For all rotative speeds peak efficiency occurred at a flow coefficient value of approximately 0.47 for both stage and rotor. At design speed the peak efficiency for the second stage was 0.842, and the design stage efficiency was 0.870. Efficiencies in excess of 0.86 at 90 percent of design speed to 0.91 at 50 percent of design speed were recorded.

At design speed the peak efficiency for the second-stage rotor was 0.877. Design rotor efficiency was 0.911. At all part speeds efficiencies in excess of 0.90 were achieved.

#### Radial Distribution of Performance Parameters

The radial distribution of selected flow and performance parameters are shown for the rotors and stators in figures 10 to 13 for three equivalent mass flows at design speed. These data represent the flow condition of the fan at near stall, peak efficiency, and near choke. (Design values are shown by the dashed lines.) In this section the performance at a mass flow of 34.0 kilograms per second (near peak efficiency) are compared with design values.

First stage. - Rotor total-pressure ratio met design in the hub region and exceeded design over the remainder of the blade (fig. 10). A sharp gradient in total-pressure ratio in the tip region reflects the added camber (end bend) incorporated at the rotor inlet as discussed earlier in the Aerodynamic Design section. Energy addition, as reflected in total-temperature ratio, was greater than design across the entire blade span. Adiabatic efficiency met or exceeded design over the outer 80 percent of span but deteriorated slightly in the hub region. Blade loading, as measured by D-factor, was slightly higher than design across the entire blade span. Loss-coefficient values met or were lower than design over the outer 70 percent of blade span but were significantly greater than design in the hub region of the blade, which reflects the low adiabatic efficiency in this region. Incidence angles may be higher than indicated because of the uncambering of the blade as discussed earlier in the Overall Performance section. In general, the deviation angles were lower than design over the entire rotor-blade span.

Stator incidence angles, blade loading (D-factor), and deviation angles were, in general, all greater than design values (fig. 11). However, loss-coefficient values met design values in the tip region and were lower than design over the remainder of the blade, particularly in the midregion of the blade.

Second stage. - The rotor radial distributions of total-pressure ratio and total-temperature ratio were close to design values across the entire blade (fig. 12). Meridional velocity ratio was close to design across 90 percent of span and was appreciably higher than design at the hub. This high meridional velocity at the hub locally unloaded the blade as reflected in D-factor. Values of total-loss coefficient are greater than design across the entire span, except at 5 percent of span.

#### Fan Performance with Stator Reset and Casing Treatment

In an attempt to increase the flow range and stall margin of the fan, additional tests with stator resets and casing treatment were conducted.

Performance with stator reset. - The performance of the fan was determined with several combinations of off-design stator blade settings. Both stators were indexed ±10° from design values, in 5° increments. The purpose of these tests was to determine the optimum combination of stator-blade setting angles for maximum flow range and stall margin. The tests were conducted at 70 and 100 percent of design speed. Several stator setting combinations did significantly improve the flow range and stall margin at design speed. The maximum flow range and stall margin was obtained with the first-stage stator opened 10° and the second-stage stator closed 5° from their respective design settings. The overall performance at these stator settings are compared with the overall performance at design stator settings in figure 14. At design speed with stator reset, the maximum mass flow of approximately 34.5 kilograms per second remained unchanged, but, the stall mass flow decreased to 32.2 kilograms per second as opposed to 33.6 kilograms per second at design settings. Based on peak efficiency mass flows of 34.0 kilograms per second for design settings and 34.2 kilograms for stator resets, the fan stall margin increased from 2 percent with design settings to 8 percent with reset. Fan total-pressure ratio significantly increased with reset, which was attributed to the higher pressure ratio of the second-stage rotor. With reset the second-stage rotor operated at increased incidence angles that increased the level of blade loading (D-factor) resulting in higher pressure ratios. However, the higher loadings resulted in higher loss coefficients and corresponding lower efficiencies. As a result the fan overall peak efficiency deteriorated 5 percentage points with stator reset. An examination of the plots of the blade-element performance of each blade row (not shown herein) did not reveal which element was critical, although the hub was suspected because of the deterioration in meridional velocity ratio.

<u>Fan performance with casing treatment</u>. - The use of casing treatment can reveal which elements may be controlling the flow range. If the rotors are tip critical, that is, if the blade elements in the tip region reach a critical operating condition and stall before the remaining elements, the fan should respond to casing treatment with improved flow range, stall margin, and in some cases, pressure ratio and efficiency (refs. 6 to 8). However, if the stators are hub critical, then essentially, no improvement in fan performance should be expected.

Circumferential grooves (casing treatment) were inserted over the tips of both fan rotors. The grooves extended over approximately 70 percent of the rotor tip projected aerodynamic chord and were centrally located between the blade leading and trailing edges. The groove width was 0.249 centimeter. The ratio of groove width to land width was 2.0, and the ratio of groove depth to land width was 6.0. The fan was then retested at 80 and 100 percent of design speed. Results showed that this casing treatment had no measurable effect on fan flow range and stall margin. That casing treatment did not affect the flow range is further evidence that a stator is controlling range.

#### CONCLUDING REMARKS

The present NASA two-stage fan showed a gain of 5 percentage points in overall efficiency with the new low-aspect-ratio first-stage rotor in place of the large-dampered, higher aspect-ratio rotor (see ref. 1). The efficiency of the low-aspect-ratio rotor was 9 percentage points higher than the large-dampered, higher aspect-ratio rotor. Several design factors may have contributed to this marked improvement:

- (1) Elimination of the damper
- (2) Lower aspect ratio blading
- (3) Moving blade-element maximum thickness rearward
- (4) The method of setting suction-surface incidence angle
- (5) Allowance for inlet tip boundary layer
- (6) Higher convergence between leading and trailing edges.

While the new low-aspect-ratio rotor was being designed, the higher-aspect-ratio rotor was being redesigned to better account for the effects of the damper and to reduce the associated losses. This redesigned rotor (build 3 of rotor one) incorporated design factors (3), (4), and (5). It was then retested with this redesigned, higher-aspect-ratio, large-dampered, first-stage rotor and reported in reference 9. The redesigned rotor showed an improvement in efficiency of only 2 percentage points. Therefore, it was concluded that these design factors did not have a great effect on improving the efficiency of the dampered configurations. From an examination of the blade-element

data of the higher-aspect-ratio rotor (ref. 9) and the low-aspect-ratio rotor, it is apparent that the elimination of the damper and its associated losses, did have a significant effect on performance. It cannot, however, be established how much of the improvement was due to the low-aspect-ratio blading and how much to the higher meridional velocity ratio across the low-aspect-ratio rotor due to the flow-path convergence. It is noteworthy that eliminating the damper and smoothing the radial-flow gradients entering the downstream blade rows increased the efficiency of the second stage 2 percentage points.

Maximum mass flow with the low-aspect-ratio first-stage rotor increased significantly. This, most likely, can be attributed to three factors: (1) increasing the design throat area margin to 6 percent, (2) overcompensation of inlet boundary-layer blockage by adding a measured boundary-layer profile in addition to a reduced effective flow area in the design, and (3) the untwist-uncambering of the low-aspect-ratio blade. The 6 percent throat-area margin along with overcompensation of inlet boundary-layer blockage were also incorporated into the redesigned dampered rotor (ref. 9) resulting in only a small gain in maximum flow.

#### SUMMARY OF RESULTS

The NASA two-stage fan was tested with a new first-stage rotor having an aspect ratio of 1.56, which eliminated the need for part span dampers. Detailed surveys of the flow conditions were made over the entire fan operating flow range at speeds from 50 to 100 percent of design. This investigation yielded the following principal results:

- 1. The fan achieved an overall adiabatic efficiency of 0.846 at design speed (design value, 0.849).
- 2. At design speed the low-aspect-ratio first-stage rotor achieved a peak efficiency of 0.906 (2 percentage points greater than design) at a total-pressure ratio of 1.686. At part speeds first-stage rotor efficiencies in excess of 0.91 were achieved.
- 3. At design speed the first stage achieved an efficiency of 0.870 (2.2 percentage points greater than design) at a total-pressure ratio of 1.655. At part speeds first-stage efficiencies in excess of 0.88 were achieved.
- 4. At design speed the first-stage stator opened  $10^{\circ}$  and the second stator closed  $5^{\circ}$  from their respective design settings, fan stall margin increased from 2 to 8 percent at design stator settings. However, fan overall adiabatic efficiency deteriorated 5 percentage points.

5. The casing treatment (circumferential grooves over the tips of both rotors) had no measurable effect on fan flow range and stall margin; thus it appears that the fan may be hub critical.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, March 30, 1979,
505-04.

#### APPENDIX A

#### SYMBOLS

annulus area at rotor leading edge. m<sup>2</sup>  $A_{an}$ frontal area at rotor leading edge, m<sup>2</sup>  $\mathbf{A_f}$  $C_{\mathbf{p}}$ specific heat at constant pressure, 1004 (J/kg) K  $\mathbf{D}$ diffusion factor mean incidence angle, angle between inlet-air direction and line tangent to blade imc mean camber line at leading edge, deg suction-surface incidence angle, angle between inlet-air direction and line tangent i<sub>ss</sub> to blade suction surface at leading edge, deg rotative speed, rpm Ν total pressure, N/cm<sup>2</sup>  $\mathbf{P}$ static pressure, N/cm<sup>2</sup> р radius, cm  $\mathbf{r}$ SMstall margin  $\mathbf{T}$ total temperature, K  $\mathbf{U}$ wheel speed, m/sec  $\mathbf{v}$ air velocity, m/sec W weight flow, kg/sec  ${f z}$ axial distance referenced from first-stage rotor-blade-hub leading edge, cm cone angle, deg  $\alpha_c$ slope of streamline, deg  $\alpha_{\mathbf{s}}$ air angle, angle between air velocity and axial direction, deg β relative meridional air angle based on cone angle,  $\arctan (\tan \beta_{\rm m}^{\rm i} \cos \alpha_{\rm c}/\cos \alpha_{\rm s})$ ,  $\beta_{\mathbf{c}}^{\prime}$ deg ratio of specific heats (1.40) γ

ratio of rotor-inlet total pressure to standard pressure of 10.13  $\mathrm{N/cm}^2$ 

δ

| $\delta^{0}$                     | deviation angle, angle between exit-air direction and tangent to blade mean camber line at trailing edge, deg      |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------|
| η                                | efficiency                                                                                                         |
| heta                             | ratio of rotor-inlet total temperature to standard temperature of 288.2 K                                          |
| $^{\kappa}$ me                   | angle between blade-element mean camber line on the conical surface and meridional plane, deg                      |
| $\kappa_{	t ss}$                 | angle between blade-element suction-surface leading edge tangent line on conical surface and meridional plane, deg |
| σ                                | solidity, ratio of chord to spacing                                                                                |
| arphi                            | flow coefficient                                                                                                   |
| $\psi^{\cdot}_{\mathbf{D}}$      | head-rise coefficient                                                                                              |
| $\psi_{\mathbf{T}}$              | temperature-rise coefficient                                                                                       |
| $\overline{\omega}$              | total-loss coefficient                                                                                             |
| $\overline{\omega}_{\mathbf{p}}$ | profile-loss coefficient                                                                                           |
| $\overline{\omega}_{\mathbf{s}}$ | shock-loss coefficient                                                                                             |
| Subscrip                         | ots:                                                                                                               |
| ad                               | adiabatic (temperature rise)                                                                                       |
| id                               | ideal                                                                                                              |
| LE                               | blade leading edge                                                                                                 |
| m                                | meridional direction                                                                                               |
| mom                              | momentum rise                                                                                                      |
| p                                | polytropic                                                                                                         |
| TE                               | blade trailing edge                                                                                                |
| $\mathbf{z}$                     | axial direction                                                                                                    |
| $\theta$                         | tangential direction                                                                                               |
| 1                                | instrumentation plane upstream of first rotor                                                                      |
| 2                                | instrumentation plane between first stator and second rotor                                                        |
| 3                                | instrumentation plane downstream of second stator                                                                  |
| Superscr                         | ript:                                                                                                              |
| Ť                                | relative to blade                                                                                                  |

#### APPENDIX B

### EQUATIONS FOR CALCULATING OVERALL AND BLADE-ELEMENT

#### PERFORMANCE PARAMETERS

Suction-surface incidence angle -

$$i_{ss} = (\beta'_c)_{LE} - \kappa_{ss}$$
 (B1)

Mean incidence angle -

$$i_{mc} = (\beta_c^{\dagger})_{LE} - (\kappa_{mc})_{LE}$$
(B2)

Deviation angle -

$$\delta^{O} = (\beta_{c}^{'})_{TE} - (\kappa_{mc})_{TE}$$
 (B3)

Diffusion factor -

$$D = 1 - \frac{\mathbf{V_{TE}'}}{\mathbf{V_{LE}'}} + \left| \frac{(\mathbf{rV_{\theta}})_{TE} - (\mathbf{rV_{\theta}})_{LE}}{(\mathbf{r_{TE} + r_{LE}})\sigma(\mathbf{V_{LE}'})} \right|$$
(B4)

Total-loss coefficient -

$$\overline{\omega} \approx \frac{(P'_{id})_{TE} - P'_{TE}}{P'_{LE} - P_{LE}}$$
(B5)

Profile-loss coefficient -

$$\overline{\omega}_{\mathbf{p}} = \overline{\omega} - \overline{\omega}_{\mathbf{S}}$$
 (B6)

Total-loss parameter -

$$\frac{\overline{\omega}\cos\left(\beta_{\mathrm{m}}^{'}\right)_{\mathrm{TE}}}{2\sigma}\tag{B7}$$



Profile-loss parameter -

$$\frac{\overline{\omega}_{p} \cos (\beta'_{m})_{TE}}{2\sigma}$$
 (B8)

Adiabatic (temperature rise) efficiency -

$$\eta_{\text{ad}} = \frac{\left(\frac{P_{\text{TE}}}{P_{\text{LE}}}\right)^{(\gamma-1)/\gamma} - 1}{\frac{T_{\text{TE}}}{T_{\text{LE}}} - 1}$$
(B9)

Equivalent weight flow -

$$\frac{\mathbf{w}\sqrt{\theta}}{\delta}$$
 (B10)

Equivalent rotative speed -

$$\frac{N}{\sqrt{\theta}}$$
 (B11)

Weight flow per unit annulus area -

$$\frac{\underline{\mathbf{w}}\sqrt{\theta}}{\delta}$$
(B12)

Weight flow per unit frontal area -

$$\frac{\mathbf{W}\sqrt{\theta}}{\delta}$$

$$\frac{\mathbf{A_f}}{\mathbf{A_f}}$$
(B13)

Head-rise coefficient -

$$\psi_{\mathbf{P}} = \frac{C_{\mathbf{p}}^{\mathbf{T}}_{\mathbf{LE}}}{U_{\mathbf{tip}}^{2}} \left[ \left( \frac{\mathbf{P}_{\mathbf{TE}}}{\mathbf{P}_{\mathbf{LE}}} \right)^{(\gamma-1)/\gamma} - 1 \right]$$
(B14)

Flow coefficient -

$$\varphi = \left(\frac{\mathbf{V_z}}{\mathbf{U_{tip}}}\right)_{\mathbf{LE}} \tag{B15}$$

Temperature-rise coefficient -

$$\psi_{\mathbf{T}} = \frac{\mathbf{C_p}}{\mathbf{U_{tip}^2}} (\mathbf{T_{TE}} - \mathbf{T_{LE}})$$
 (B16)

Stall margin -

$$SM = \left[ \frac{\left( \frac{P_{TE}}{P_{LE}} \right)_{stall}}{\left( \frac{P_{TE}}{P_{LE}} \right)_{ref}} \times \frac{\left( \frac{W\sqrt{\theta}}{\delta} \right)_{ref}}{\left( \frac{W\sqrt{\theta}}{\delta} \right)_{stall}} - 1 \right] \times 100$$
(B17)

Polytropic efficiency -

$$\eta_{\rm p} = \frac{\ln\left(\frac{P_{\rm TE}}{P_{\rm LE}}\right)^{(\gamma-1)/\gamma}}{\ln\left(\frac{T_{\rm TE}}{T_{\rm LE}}\right)}$$
(B18)

#### APPENDIX C

#### DEFINITIONS AND UNITS USED IN TABLES

ABS absolute

AERO CHORD aerodynamic chord, cm

BETAM meridional air angle, deg

CHOKE MARGIN ratio of flow area greater than critical area to critical area

CONE ANGLE angle between axial direction and conical surface representing

blade element, deg

DELTA INC difference between mean camber blade angle and suction-surface

blade angle at leading edge, deg

DEV deviation angle (defined by eq. (B3)), deg

D-FACT diffusion factor (defined by eq. (B4))

EFF adiabatic efficiency (defined by eq. (B9))

IN inlet (leading edge of blade)

INCIDENCE incidence angle (suction surface defined by eq. (Bl) and mean

by eq. (B2)), deg

KIC angle between blade-element mean camber line on conical surface

at leading edge and meridional plane, deg

KOC angle between blade-element mean camber line on conical surface

at trailing edge and meridional plane, deg

KTC angle between blade-element mean camber line on conical surface

at transition point and meridional plane, deg

LOSS COEFF loss coefficient (total defined by eq. (B5) and profile by eq. (B6))

LOSS PARAM loss parameter (total defined by eq. (B7) and profile by eq. (B8))

MERID meridional

MERID VEL R meridional velocity ratio

OUT outlet (trailing edge of blade)

PERCENT SPAN percent of blade span from tip referenced to first-stage-rotor outlet

PHISS suction-surface camber ahead of assumed shock location, deg

PRESS pressure, N/cm<sup>2</sup>

PROF profile

RADII radius, cm

REL relative to blade

RI inlet radius (leading edge of blade), cm

RO outlet radius (trailing edge of blade), cm

RP radial position

RPM equivalent rotative speed, rpm

SETTING ANGLE angle between blade-element aerodynamic chord on conical surface

and meridional plane, deg

SOLIDITY ratio of aerodynamic chord to blade spacing

SPEED speed, m/sec

SS suction surface

STREAMLINE

slope of streamline, deg

TANG tangential

TEMP temperature, K

TI thickness of blade at leading edge, cm

TM thickness of blade at maximum thickness, cm

TO thickness of blade at trailing edge, cm

TOT total

TOTAL CAMBER difference between inlet and outlet blade-element angles on mean

camber lines, deg (KIC-KOC)

TURNING RATIO ratio of mean camber line curvatures upstream and downstream of

transition point

VEL velocity, m/sec

WT FLOW equivalent weight flow, kg/sec

ZI axial distance to blade leading edge, cm

ZMC axial distance to blade maximum thickness point, cm

ZO axial distance to blade trailing edge, cm

ZTC axial distance to transition point, cm

# REFERENCES

- Urasek, Donald C.; Cunnan, Walter S.; and Stevens, William: Performance of a Two-Stage Fan with Larger Dampers on First-Stage Rotor. NASA TP-1399, 1979.
- 2. Cunnan, Walter S.; Stevens, William; and Urasek, Donald C.: Design and Performance of a 427 Meter Per Second Tip Speed Two-Stage Fan Having a 2.40 Pressure Ratio. NASA TP-1314, 1978.
- 3. Ruggeri, R. S.; and Benser, W. A.: Performance of a Highly Loaded Two-Stage Axial-Flow Fan. NASA TM X-3076, 1974.
- 4. Monsarrat, N. T.; Keenan, M. J.; and Tramm, P. C.: Single Stage Evaluation of Highly-Loaded High-Mach-Number Compressor Stages. (PWA-3546, Pratt and Whitney Aircraft; NASA Contract NAS3-10482.) NASA CR-72562, 1969.
- 5. Ball, Calvin L.; Janetzke, David C.; and Reid, Lonnie: Performance of 1380-Foot-Per-Second-Tip-Speed Axial Flow Compressor Rotor with Blade Tip Solidity of 1.5. NASA TM X-2379, 1972.
- 6. Moore, Royce D.; Kovich, George; and Blade, Robert J.: Effect of Casing Treatment on Overall and Blade Element Performance of a Compressor Rotor. NASA TN D-6538, 1971.
- 7. Urasek, Donald C.; Lewis, George W.; and Moore, Royce D.: Effect of Casing Treatment on Performance of an Inlet Stage For a Transonic Multistage Compressor. NASA TM X-3347, 1976.
- 8. Urasek, Donald C.; and Cunnan, Walter S.: Effect of Casing Treatment on Performance of a Two-Stage High Pressure Ratio Fan. NASA TP-1409, 1978.
- 9. Gorrell, W. T.; and Urasek, Donald C.: Performance of Two-Stage Fan with a First-Stage Rotor Redesigned to Account for the Presence of a Part-Span Damper. NASA TP-1482, 1979.

#### TABLE I. - DESIGN OVERALL PARAMETERS

## (a) Two-stage fan

| FAN TOTAL PRESSURE RATIO                    |
|---------------------------------------------|
| (b) First stage                             |
| ROTOR TOTAL PRESSURE RATIO                  |
| EQUIVALENT VALUES BASED ON COMPRESSOR INLET |
| WT FLOW PER UNIT FRONTAL AREA               |
| (c) Second stage                            |
|                                             |
| ROTOR TOTAL PRESSURE RATIO                  |
| EQUIVALENT VALUES BASED ON COMPRESSOR INLET |
| WT FLOW PER UNIT FRONTAL AREA               |
| WT FLOW PER UNIT FRONTAL AREA               |



TABLE II. - DESIGN BLADE-ELEMENT PARAMETERS

## (a) First-stage rotor

|                                                                           |                                                                                                                                                                                                   |                                                                                                               | () -                                                                                                 |                                                                                                                         | _                                                                                                               |                                                                                                                      |                                                                                                                                   |                                                                                                                         |                                                                                                                                   |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| RP<br>TIP<br>1<br>23<br>44<br>56<br>7<br>8<br>9<br>10<br>11<br>HUB        | RADII IN 0UT 25.530 24.773 24.880 24.172 24.178 23.478 22.753 22.184 21.294 20.889 19.810 19.595 18.291 18.301 16.723 17.006 15.081 15.712 13.349 14.418 11.493 13.123 10.503 12.476 9.583 11.829 | 1 N . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0                                                                       | BETAM<br>OUT<br>45.3<br>42.4<br>40.3<br>40.3<br>41.4<br>42.5<br>43.8<br>45.7<br>48.5<br>49.2         | REL<br>IN<br>69.3<br>67.4<br>65.8<br>63.8<br>62.1<br>60.2<br>58.3<br>56.1<br>53.7<br>51.0<br>48.0<br>44.5               | BETAM<br>0UT<br>62.2<br>60.7<br>59.1<br>52.8<br>48.5<br>43.4<br>27.9<br>17.2<br>4.6<br>-2.0<br>-8.4             | TOTA<br>IN<br>288.2<br>288.2<br>288.2<br>288.2<br>288.2<br>288.2<br>288.2<br>288.2<br>288.2<br>288.2                 | L TEMP<br>RATIO<br>1.208<br>1.192<br>1.182<br>1.174<br>1.168<br>1.164<br>1.162<br>1.159<br>1.159<br>1.157<br>1.157<br>1.156       | TOTAL IN 9.70 9.90 10.13 10.14 10.14 10.14 10.14 10.14 10.14 10.15 10.15 10.15 10.15 10.15 10.15 10.15                  | PRESS<br>RAT10<br>1.659<br>1.655<br>1.627<br>1.627<br>1.627<br>1.627<br>1.627<br>1.627<br>1.627<br>1.628<br>1.630                 |
| RP<br>TIP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>HUB | ABS VEL IN OUT 161.7 203.4 173.8 203.8 182.9 205.2 188.2 209.2 189.3 212.8 190.3 218.1 190.0 224.9 188.5 233.4 185.8 245.4 174.0 274.8 169.0 285.4 164.0 296.4                                    | IN<br>458.4                                                                                                   | VEL<br>QUT<br>306.9<br>307.4<br>285.9<br>266.7<br>227.1<br>209.4<br>194.7<br>184.7<br>182.8<br>186.5 | HERII<br>1N<br>161.7<br>173.8<br>182.9<br>188.0<br>189.3<br>190.0<br>188.5<br>185.5<br>185.3<br>174.0<br>169.0<br>164.0 | D VEL<br>0UT<br>143.0<br>150.6<br>156.5<br>161.4<br>163.6<br>165.5<br>172.1<br>176.4<br>182.2<br>186.4<br>190.9 | TAN IN .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0                                                                        | G VEL<br>QUT<br>144.6<br>137.4<br>133.4<br>135.4<br>139.6<br>144.3<br>152.1<br>161.4<br>172.9<br>187.5<br>205.7<br>216.1<br>226.8 | HHEEL<br>IN<br>428.9<br>418.0<br>406.2<br>382.2<br>357.7<br>332.8<br>307.3<br>280.9<br>253.4<br>224.3<br>193.1<br>176.4 | SPEED<br>0UT<br>416.2<br>405.3<br>394.4<br>372.7<br>350.9<br>329.2<br>307.5<br>285.7<br>264.0<br>242.2<br>220.5<br>209.6<br>198.7 |
| RP<br>TIP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>HUB | ABS HACH NO IN OUT .486 .561 .525 .566 .554 .579 .579 .578 .616 .577 .638 .572 .665 .563 .693 .549 .741 .525 .797 .509 .832 .494 .869                                                             | REL M<br>1.379<br>1.367<br>1.349<br>1.292<br>1.228<br>1.164<br>1.097<br>1.026<br>.952<br>.873<br>.785<br>.736 | ACH NO<br>0UT<br>-846<br>-853<br>-802<br>-751<br>-698<br>-596<br>-532<br>-532<br>-544<br>-566        | HERID H/<br>IN . 486<br>.525<br>.554<br>.570<br>.574<br>.577<br>.577<br>.572<br>.549<br>.525<br>.509                    | ACH NO<br>OUT<br>.394<br>.418<br>.435<br>.447<br>.454<br>.462<br>.470<br>.480<br>.493<br>.508<br>.529           | STREAMLII<br>IN -8.52<br>-7.26<br>-6.10<br>-4.40<br>-2.66<br>-90<br>2.81<br>4.92<br>7.38<br>10.41<br>112.22<br>13.96 | NE SLOFE OUT -8.08 -6.68 -5.47 -3.63 -1.9327 1.38 3.00 4.18 7.61 8.42 9.25                                                        | HERID VEL R .885 .866 .853 .848 .853 .860 .872 .973 1.013 1.164                                                         | PEAK SS<br>MACH ND<br>1.535<br>1.540<br>1.541<br>1.525<br>1.491<br>1.462<br>1.447<br>1.448<br>1.423<br>1.319<br>1.151<br>1.053    |
| RP<br>TIP<br>1<br>23<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>HUB     | SPAN MEA<br>.00 2.<br>5.00 2.<br>10.00 2.                                                                                                                                                         | 6 .3<br>7 .4<br>8 .4<br>9 .3<br>1 .3<br>4 .3<br>0 .2<br>2<br>7 .2<br>3 .1<br>30<br>90                         | B.0<br>7.3<br>6.5<br>4.4<br>4.4<br>5.2<br>6.5<br>7.4<br>8.4<br>9.6<br>11.9                           | D-FACT . 451 . 434 . 425 . 437 . 451 . 470 . 506 . 513 . 503 . 455 . 403 . 336                                          | EFF<br>.787<br>.805<br>.822<br>.855<br>.888<br>.909<br>.923<br>.936<br>.946<br>.951<br>.954<br>.958             | LOSS<br>TOT<br>.172<br>.151<br>.134<br>.111<br>.090<br>.077<br>.070<br>.063<br>.059<br>.062<br>.069                  | COEFF<br>PROF<br>.088<br>.0653<br>.042<br>.036<br>.036<br>.039<br>.040<br>.046<br>.059<br>.069                                    | LOSS<br>TOT<br>.031<br>.028<br>.025<br>.021<br>.014<br>.013<br>.012<br>.013<br>.012                                     | .007<br>.008                                                                                                                      |

TABLE II. - Continued. DESIGN BLADE-ELEMENT PARAMETERS

| (b) First-stage stat | tor | r | ator | st | œ | tag | -8 | ŧt- | rs | 'n | F | b١ | í |
|----------------------|-----|---|------|----|---|-----|----|-----|----|----|---|----|---|
|----------------------|-----|---|------|----|---|-----|----|-----|----|----|---|----|---|

| RP<br>TIP                                                                                                       | RADII<br>IN<br>24.384 24                                                                                                                                                                                                                                                    | I<br>OUT                                                                                                                                      | ABS<br>IN<br>41.7                                                                                | BETAM<br>OUT<br>.0                                                                                       | IN                                                                                                             | BETAM<br>OUT<br>.0                                                                                                                         | TOTA<br>In<br>348.2                                | L TEMP<br>RATIO<br>1.001                                                                                       | TOTAL<br>IN<br>16.49                                                                                                                                     | PRESS<br>RATIO<br>.979                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3                                                                                                     | 23.786 23<br>23.209 23<br>22.033 22                                                                                                                                                                                                                                         | 3.796<br>3.251<br>2.122                                                                                                                       | 39.1<br>37.4<br>37.3                                                                             | .0                                                                                                       | 39.1<br>37.4<br>37.3                                                                                           | . 0<br>. 0<br>. 0                                                                                                                          | 343.6<br>340.5<br>338.4                            | 1.000<br>1.000<br>1.000                                                                                        | 16.49<br>16.49<br>16.49                                                                                                                                  | .98 <b>0</b><br>.981<br>.982                                                                                                                                  |
| 4<br>5<br>6<br>7                                                                                                | 20.848 20<br>19.659 19<br>18.460 18<br>17.250 17                                                                                                                                                                                                                            | 9.847<br>8.712                                                                                                                                | 37.7<br>38.5<br>39.8<br>41.2                                                                     | . D<br>. O                                                                                               | 37.7<br>38.5<br>39.8                                                                                           | .0<br>.0<br>.0                                                                                                                             | 336.6<br>335.4<br>334.7<br>334.1                   | 1.000<br>1.000<br>1.000<br>1.000                                                                               | 16.49<br>16.49<br>16.49<br>16.49                                                                                                                         | .982<br>.982<br>.980                                                                                                                                          |
| 8<br>9<br>10                                                                                                    | 16.021 16<br>14.777 15<br>13.519 14                                                                                                                                                                                                                                         | 6.432<br>5.291<br>4.157                                                                                                                       | 43.0<br>45.3                                                                                     | .0                                                                                                       | 39.8<br>41.2<br>47.0<br>45.3<br>48.2<br>50.0<br>51.9                                                           | .0                                                                                                                                         | 333.6<br>333.3<br>333.3                            | 1.000<br>1.000<br>1.000                                                                                        | 16.49<br>16.49<br>16.49                                                                                                                                  | .973<br>.965<br>.952                                                                                                                                          |
| 11<br>HUB                                                                                                       | 12.883 13<br>12.189 12                                                                                                                                                                                                                                                      | 3.595                                                                                                                                         | 50.0<br>51.9                                                                                     | .0                                                                                                       |                                                                                                                |                                                                                                                                            | 333.2<br>333.2                                     | 1.000                                                                                                          | 16.49                                                                                                                                                    | .943<br>.932                                                                                                                                                  |
| RP<br>TIP                                                                                                       | ABS 1<br>IN<br>221.3                                                                                                                                                                                                                                                        | 1/4.0                                                                                                                                         | REL<br>IN<br>221.3                                                                               | 0UT<br>174.8                                                                                             | 165.1                                                                                                          | VEL<br>0UT<br>174.8                                                                                                                        | TAN<br>IN<br>147.4                                 | กนา                                                                                                            | HHEEL<br>IN<br>.0                                                                                                                                        | กมT                                                                                                                                                           |
| 1<br>2<br>3<br>4                                                                                                | 221.2 1<br>221.9 1<br>224.9 1                                                                                                                                                                                                                                               | 174.1<br>173.8<br>174.3<br>175.0                                                                                                              | 221.2<br>221.9<br>224.9<br>227.3                                                                 | 174.1<br>173.8<br>174.3<br>175.0                                                                         | 171.7<br>176.2<br>178.8<br>179.9                                                                               | 174.1<br>173.8<br>174.3<br>175.0                                                                                                           | 139.4<br>134.9<br>136.3                            | . 0<br>. 0<br>. 0                                                                                              | . 0<br>. 0<br>. 0                                                                                                                                        | .0<br>.0<br>.0                                                                                                                                                |
| 5<br>6<br>7                                                                                                     | 231.0 1<br>235.7 1<br>241.6 1                                                                                                                                                                                                                                               | 175.4<br>175.3<br>174.7                                                                                                                       | 231.0<br>235.7<br>241.6                                                                          | 175.4<br>175.3<br>174.7                                                                                  | 180.8<br>181.2<br>181.7                                                                                        | 175.4<br>175.3<br>174.7                                                                                                                    | 143.8<br>150.8<br>159.2                            | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                         | .0<br>.0<br>.0                                                                                                                                           | .0<br>.0<br>.0                                                                                                                                                |
| 8<br>9<br>10<br>11                                                                                              | 257.4 1<br>267.7 1                                                                                                                                                                                                                                                          | 173.7<br>171.7<br>168.9                                                                                                                       | 248.6<br>257.4<br>267.7<br>273.3                                                                 | 173.7<br>171.7<br>168.9<br>167.6                                                                         | 181.9<br>181.1<br>178.4<br>175.8                                                                               | 173.7<br>171.7<br>168.9                                                                                                                    | 169.6<br>182.9<br>199.6                            | . 0<br>. 0<br>. 0                                                                                              | . 0<br>. 0<br>. 0                                                                                                                                        | .0<br>.0<br>.0                                                                                                                                                |
| HUB                                                                                                             | 279.7                                                                                                                                                                                                                                                                       | 167.6<br>166.1                                                                                                                                | 279.7                                                                                            | 166.1                                                                                                    | 172.7                                                                                                          | 167.6<br>166.1                                                                                                                             | 220.0                                              | . 0                                                                                                            | .0                                                                                                                                                       | . 0                                                                                                                                                           |
|                                                                                                                 |                                                                                                                                                                                                                                                                             |                                                                                                                                               |                                                                                                  |                                                                                                          |                                                                                                                |                                                                                                                                            |                                                    |                                                                                                                |                                                                                                                                                          |                                                                                                                                                               |
| RP<br>TIP                                                                                                       | ABS HAG<br>IN<br>.614                                                                                                                                                                                                                                                       | OUT                                                                                                                                           | I N                                                                                              | 4CH NO<br>OUT<br>.478                                                                                    | IN<br>.458                                                                                                     | OUT<br>.478                                                                                                                                | IN<br>96                                           | NE SLOPE<br>OUT<br>.42                                                                                         | VEL R<br>1.058                                                                                                                                           | MACH NO<br>1.101                                                                                                                                              |
| TIP<br>1<br>2<br>3<br>4                                                                                         | IN<br>.614<br>.618<br>.623<br>.634<br>.643                                                                                                                                                                                                                                  | OUT                                                                                                                                           | IN<br>.614<br>.618<br>.623<br>.634<br>.643                                                       | 0UT<br>.478<br>.479<br>.481<br>.484                                                                      | IN<br>.458<br>.480<br>.495<br>.504                                                                             | OUT<br>.478<br>.479<br>.481<br>.484<br>.487                                                                                                | IN<br>96<br>64<br>34<br>.23<br>.88                 | 0UT<br>.42<br>.50<br>.59<br>.83                                                                                | VEL R<br>1.058<br>1.014<br>.987<br>.975<br>.972                                                                                                          | HACH NO                                                                                                                                                       |
| TIP<br>1<br>2<br>3<br>4<br>5<br>6<br>7                                                                          | IN<br>.614<br>.618<br>.623<br>.634<br>.643<br>.656<br>.671                                                                                                                                                                                                                  | OUT<br>.478<br>.479<br>.481<br>.484<br>.487<br>.489<br>.489                                                                                   | IN<br>.614<br>.618<br>.623<br>.634<br>.643<br>.656<br>.671                                       | OUT<br>.478<br>.479<br>.481<br>.484<br>.487<br>.489<br>.489                                              | IN<br>.458<br>.480<br>.495<br>.504<br>.509<br>.513<br>.516                                                     | OUT<br>.478<br>.479<br>.481<br>.484<br>.487<br>.489                                                                                        | IN<br>96<br>64<br>34<br>.23<br>.85<br>1.59<br>2.38 | 0UT<br>.42<br>.50<br>.59<br>.83<br>1.22<br>1.72<br>2.31                                                        | VEL R<br>1.058<br>1.014<br>.987<br>.975<br>.972<br>.970<br>.967                                                                                          | MACH NO<br>1.101<br>1.043<br>1.009<br>1.000<br>1.001<br>1.013<br>1.035<br>1.064                                                                               |
| TIP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                | IN .614 .618 .623 .634 .643 .656 .671 .690 .713 .741                                                                                                                                                                                                                        | OUT<br>.478<br>.479<br>.481<br>.487<br>.489<br>.489<br>.488<br>.485                                                                           | IN .614 .618 .623 .634 .656 .671 .690 .713 .741 .774                                             | OUT<br>.478<br>.479<br>.481<br>.484<br>.487<br>.489<br>.489<br>.489                                      | 1N<br>.458<br>.480<br>.495<br>.504<br>.509<br>.513<br>.516<br>.519<br>.521<br>.521                             | OUT<br>.478<br>.479<br>.481<br>.484<br>.487<br>.489<br>.488<br>.485<br>.472                                                                | IN96643488 1.59 2.38 3.25 4.18 5.20 6.21           | OUT<br>.42<br>.50<br>.83<br>1.22<br>1.72<br>2.731<br>2.74<br>3.57<br>4.10                                      | VEL R<br>1.058<br>1.014<br>.987<br>.975<br>.972<br>.970<br>.967<br>.961<br>.955<br>.948                                                                  | HACH NO<br>1.101<br>1.043<br>1.009<br>1.000<br>1.001<br>1.013<br>1.035<br>1.064<br>1.101<br>1.151                                                             |
| TIP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                | IN .614 .618 .623 .634 .643 .656 .671 .690 .713 .741                                                                                                                                                                                                                        | OUT<br>.478<br>.479<br>.481<br>.484<br>.487<br>.489<br>.489<br>.488<br>.485                                                                   | IN .614 .618 .623 .634 .643 .656 .671 .670 .713 .741                                             | OUT<br>.478<br>.479<br>.481<br>.484<br>.487<br>.489<br>.489<br>.488                                      | IN .458 .480 .495 .504 .513 .516 .519 .521 .521                                                                | OUT<br>.478<br>.479<br>.481<br>.484<br>.487<br>.489<br>.488<br>.485                                                                        | IN96643488 1.59 2.38 3.25 4.18 5.20 6.21           | OUT<br>.42<br>.50<br>.59<br>.83<br>1.22<br>1.72<br>2.31<br>2.74<br>3.57<br>4.10                                | VEL R<br>1.058<br>1.014<br>.987<br>.975<br>.972<br>.970<br>.967<br>.961<br>.955                                                                          | HACH NO<br>1.101<br>1.043<br>1.009<br>1.000<br>1.001<br>1.013<br>1.035<br>1.064<br>1.101<br>1.151                                                             |
| TIP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>HUB                                             | IN .614 .618 .623 .634 .643 .656 .671 .690 .713 .741 .774 .813                                                                                                                                                                                                              | OUT .478 .479 .481 .484 .487 .489 .489 .485 .486 .464  INCI MEAN 2.9                                                                          | IN .614 .618 .623 .6343 .6566 .671 .774 .792 .813                                                | OUT<br>.478<br>.479<br>.481<br>.484<br>.489<br>.489<br>.489<br>.480<br>.472<br>.480<br>.472<br>.468      | IN .458 .480 .495 .504 .509 .513 .516 .521 .516 .510 .502                                                      | OUT<br>.478<br>.479<br>.481<br>.484<br>.487<br>.489<br>.488<br>.485<br>.472<br>.468<br>.464                                                | IN9643423                                          | OUT .42 .50 .59 .83 1.72 2.73 1 2.74 3.57 4.10 4 .31 COEFF PROF .102                                           | VEL R<br>1.058<br>1.014<br>.987<br>.975<br>.975<br>.970<br>.967<br>.955<br>.948<br>.947<br>.953<br>.962                                                  | HACH NO<br>1.101<br>1.043<br>1.009<br>1.000<br>1.001<br>1.013<br>1.035<br>1.064<br>1.101<br>1.218<br>1.258<br>1.303                                           |
| TIP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>HUB                                             | IN .614 .618 .623 .634 .656 .671 .670 .713 .741 .772 .813 .781 .792 .813                                                                                                                                                                                                    | OUT<br>.478<br>.481<br>.484<br>.487<br>.489<br>.489<br>.485<br>.485<br>.460<br>.464<br>INCI<br>MEAN<br>2.9<br>3.0<br>3.0<br>3.9               | IN .614 .618 .623 .6343 .6456 .6713 .741 .7792 .813 DENCE SS -3.0 -3.0 -3.0                      | OUT<br>479<br>481<br>481<br>487<br>489<br>489<br>489<br>485<br>468<br>462<br>468<br>17.0<br>14.1<br>12.0 | IN .458 .480 .495 .509 .513 .516 .519 .521 .516 .510 .502 D-FACT .472 .455 .444                                | OUT<br>.478<br>.479<br>.481<br>.487<br>.489<br>.485<br>.485<br>.468<br>.472<br>.468<br>.464                                                | IN9643423                                          | OUT .42 .50 .59 .83 1.72 2.91 .72 2.91 4.35 4.30 4.21 COEFF PROF .102 .087 .081 .077                           | VEL R<br>1.054<br>1.014<br>1.987<br>.972<br>.970<br>.961<br>.955<br>.948<br>.947<br>.953<br>.962<br>LOSS<br>TOTO<br>.033<br>.030                         | HACH NO<br>1.101<br>1.043<br>1.009<br>1.001<br>1.013<br>1.035<br>1.064<br>1.101<br>1.151<br>1.218<br>1.258<br>1.303<br>PARAM<br>PROF<br>.040<br>.033<br>.0327 |
| TIP<br>1<br>23<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>HUB<br>RP<br>TIP<br>1<br>2<br>3<br>4<br>5<br>6<br>7 | IN .614 .618 .623 .634 .643 .656 .671 .741 .774 .7792 .813 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0                                                                                                                                                                           | OUT<br>.478<br>.479<br>.481<br>.484<br>.487<br>.489<br>.485<br>.485<br>.468<br>.464<br>INCI<br>MEAN<br>2.9<br>3.0<br>2.9<br>2.8<br>2.8<br>2.6 | IN .614 .618 .623 .6343 .656 .6710 .741 .7742 .813 DENCE \$\$ -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 | OUT .478 .479 .481 .484 .487 .489 .485 .480 .472 .468 .464 .472 .112 .0 10 .13 8 .9 8 .7                 | IN .458 .480 .495 .504 .509 .513 .516 .519 .521 .521 .516 .502 D-FACT .472 .455 .444 .440 .436 .438 .447 .4460 | OUT<br>.478<br>.479<br>.481<br>.484<br>.489<br>.489<br>.489<br>.480<br>.472<br>.468<br>.464<br>EFF<br>.000<br>.000<br>.000<br>.000<br>.000 | IN96434343835353535353535                          | OUT .42 .50 .59 .83 1.72 2.31 4.72 2.37 4.10 4.35 4.30 4.21 CDEFF PROF .102 .087 .087 .087 .073 .072 .076 .084 | VEL R<br>1.058<br>1.014<br>1.987<br>.975<br>.972<br>.970<br>.967<br>.948<br>.947<br>.953<br>.962<br>LOSS<br>TOT<br>.040<br>.033<br>.030<br>.025<br>.023  | HACH NO 1.101 1.043 1.009 1.001 1.013 1.035 1.064 1.101 1.151 1.258 1.303 PARAM PROF .040 .033 .030 .027 .023 .023                                            |
| TIP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>HUB<br>RP<br>TIP<br>1<br>2<br>3<br>4<br>5       | EN .614 .618 .623 .634 .656 .671 .670 .713 .741 .792 .813 .794 .792 .813 .794 .792 .813 .794 .792 .813 .794 .792 .813 .794 .792 .813 .794 .792 .813 .794 .792 .813 .794 .792 .813 .794 .795 .00 .795 .00 .795 .00 .795 .00 .795 .00 .795 .795 .795 .795 .795 .795 .795 .795 | OUT<br>478<br>479<br>481<br>484<br>487<br>489<br>489<br>485<br>485<br>472<br>468<br>464<br>INCI<br>MEAN<br>2.9<br>2.9<br>2.8<br>2.8<br>2.8    | IN .614 .618 .623 .6343 .6566 .6713 .741 .792 .813 DENCE \$5 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0  | OUT .4789 .481 .4847 .489 .489 .485 .468 .464 .464 .DEV                                                  | IN .458 .480 .495 .509 .513 .516 .519 .521 .516 .510 .502 D-FACT .472 .455 .444 .440 .436 .438 .4447           | OUT                                                                                                                                        | IN96434343434343434                                | OUT .42 .50 .59 .83 1.72 1.72 2.374 .10 4.30 4 .21 CDEFF FROT .087 .087 .077 .084 .074 .094 .114 6             | VEL R<br>1.054<br>1.014<br>1.987<br>.972<br>.970<br>.961<br>.955<br>.948<br>.947<br>.953<br>.962<br>LOSS<br>TOTO<br>.033<br>.030<br>.037<br>.025<br>.023 | HACH NO 1.101 1.043 1.009 1.001 1.013 1.035 1.064 1.101 1.151 1.218 1.258 1.303  PARAM PROF 0440 0333 0327 025 0223                                           |

A CONTRACTOR

TABLE II. - Continued. DESIGN BLADE-ELEMENT PARAMETERS

## (c) Second-stage rotor

| 10 .451<br>11 .417<br>HUB .376                                                                                         |
|------------------------------------------------------------------------------------------------------------------------|
| .555 1.<br>.553 1.<br>.554 1.<br>.559 1.<br>.568 1.<br>.580 1.<br>.580 1.<br>.596 1.                                   |
| 222 .800<br>213 .79<br>202 .77<br>168 .74<br>131 .70<br>090 .66<br>047 .62<br>000 .58<br>949 .54<br>890 .51<br>818 .47 |
| .523<br>.534<br>.545<br>.552<br>.553<br>.540<br>.524<br>.497                                                           |
| .427                                                                                                                   |
| IN -8.40 -6.96 -5.75 -3.69 -1.8821 1.40 3.04 4.79 6.66 8.65                                                            |
| OUT -6.29 -5.15 -4.20 -2.61 -1.16 .25 1.65 3.10 4.67 6.36 8.22                                                         |
| .926<br>.889<br>.864<br>.838<br>.828<br>.826<br>.833<br>.851<br>.930                                                   |
| HACH NO<br>1.514<br>1.485<br>1.465<br>1.443<br>1.433<br>1.441<br>1.465<br>1.433<br>1.465<br>1.430<br>1.387<br>1.329    |

TABLE II. - Concluded. DESIGN BLADE-ELEMENT PARAMETERS

#### (d) Second-stage stator

| RP<br>TIP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>HUB | 22.698 2<br>21.789 2<br>20.888 2<br>20.003 2<br>19.129 1<br>18.267 1<br>17.415 1<br>16.576 1                             | OUT<br>3.622<br>3.159<br>22.731<br>1.731<br>10.972<br>10.108<br>9.258<br>8.422<br>7.599<br>6.800<br>6.036<br>5.669 | ABS<br>IN<br>38.3<br>37.7<br>37.7<br>37.3<br>38.4<br>40.6<br>42.1<br>44.4<br>47.8<br>50.0<br>52.5                              | BETAM<br>OUT<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                           | REL<br>IN<br>38.3<br>37.7<br>37.7<br>37.8<br>38.4<br>40.6<br>42.1<br>44.4<br>47.8<br>50.0<br>52.5                                | BETAM<br>OUT<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                      | TOTA<br>IN<br>401.5<br>395.9<br>387.3<br>384.1<br>381.2<br>380.4<br>380.4<br>380.5<br>382.0<br>382.9<br>384.1                         | RATIO<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000            | TOTAL<br>IN<br>24.73<br>24.73<br>24.73<br>24.73<br>24.73<br>24.73<br>24.73<br>24.73<br>24.73<br>24.73       | - PRESS<br>RATIO<br>.983<br>.984<br>.984<br>.985<br>.985<br>.989<br>.975<br>.968<br>.958                      |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| RP<br>TIP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>HUB | IN<br>217.8<br>217.7<br>218.1<br>220.4<br>222.7<br>225.8<br>229.6<br>233.9<br>238.6<br>244.1<br>250.5<br>254.0           | VEL DUT 170.8 170.2 169.9 169.8 169.6 169.2 168.7 167.6 166.3 165.8 165.3                                          | REL<br>1N<br>217.8<br>217.7<br>218.1<br>220.4<br>222.7<br>225.8<br>229.6<br>233.9<br>238.6<br>244.1<br>250.5<br>254.0<br>258.5 | VEL<br>0UT<br>170.2<br>169.9<br>169.8<br>169.8<br>169.6<br>169.6<br>169.2<br>168.3<br>165.3            | MERII<br>IN<br>170.8<br>171.7<br>172.5<br>174.5<br>175.9<br>176.9<br>177.3<br>177.5<br>176.9<br>174.4<br>168.2<br>163.4<br>157.5 | O VEL<br>0UT<br>170.8<br>170.2<br>169.9<br>169.9<br>169.8<br>169.6<br>169.6<br>169.6<br>169.6<br>169.6<br>169.6<br>169.6<br>169.6 | TAN<br>1N<br>135.2<br>133.9<br>133.4<br>134.9<br>134.9<br>152.3<br>160.0<br>170.8<br>185.7<br>194.5<br>204.9                          | G VEL OUT -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0                                                                                      | HHEEL<br>IN .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                        | SPEED OUT .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0                                                              |
| RP<br>TIP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>HUB | ABS MA IN .559 .564 .568 .577 .587 .597 .608 .621 .635 .651 .668 .677                                                    | CH NO<br>OUT<br>- 433<br>- 436<br>- 437<br>- 439<br>- 441<br>- 442<br>- 441<br>- 440<br>- 437<br>- 433<br>- 429    | REL M.<br>1N .559<br>.564<br>.577<br>.587<br>.587<br>.608<br>.621<br>.635<br>.661<br>.668                                      | ACH NO<br>OUT<br>.433<br>.436<br>.437<br>.439<br>.441<br>.442<br>.442<br>.441<br>.4437<br>.433<br>.431 | MERID M/<br>IN .439<br>.445<br>.449<br>.456<br>.463<br>.468<br>.470<br>.471<br>.471<br>.465<br>.448<br>.436                      | ACH NO<br>0UT<br>.433<br>.436<br>.437<br>.439<br>.441<br>.442<br>.441<br>.440<br>.437<br>.433<br>.431                             | STREAMLI<br>IN - 10<br>- 16<br>- 38<br>- 75<br>1 - 12<br>1 - 50<br>1 - 92<br>2 - 38<br>2 - 90<br>3 - 49<br>4 - 22<br>4 - 68<br>5 - 21 | NE SLOPE<br>OUT<br>v3<br>. 17<br>. 34<br>. 66<br>. 92<br>1 . 15<br>1 . 34<br>1 . 51<br>1 . 65<br>1 . 76<br>1 . 85<br>1 . 88<br>1 . 92 |                                                                                                             | PEAK SS<br>MACH NO<br>.956<br>.943<br>.935<br>.930<br>.930<br>.941<br>.961<br>.984<br>1.057<br>1.125<br>1.125 |
| RP<br>TIP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>HUB | PERCENT<br>SPAN<br>.00<br>5.00<br>10.00<br>20.00<br>30.00<br>40.00<br>50.00<br>60.00<br>70.00<br>80.00<br>90.00<br>95.00 | INCII<br>MEAN<br>2.8<br>2.7<br>2.6<br>2.5<br>2.4<br>2.3<br>2.1<br>1.9                                              | DENCE<br>\$5<br>-3.0<br>-3.0<br>-3.0<br>-3.0<br>-3.0<br>-3.0<br>-3.0<br>-3.0<br>-3.0<br>-3.0<br>-3.0                           | DEV<br>16.2<br>14.2<br>12.6<br>10.5<br>9.6<br>9.2<br>9.1<br>9.5<br>10.4<br>12.7<br>17.0                | D-FACT .464 .459 .456 .455 .454 .458 .467 .477 .477 .509 .533 .559                                                               | EFF<br>.000<br>.000<br>.000<br>.000<br>.000<br>.000<br>.000                                                                       | LOSS<br>TOT<br>.090<br>.084<br>.079<br>.073<br>.069<br>.072<br>.077<br>.085<br>.101<br>.125                                           | COEFF<br>PROF<br>.090<br>.084<br>.079<br>.073<br>.068<br>.072<br>.077<br>.101<br>.125<br>.138<br>.154                                 | LOSS<br>TOT<br>.036<br>.033<br>.020<br>.027<br>.024<br>.023<br>.024<br>.025<br>.028<br>.033<br>.036<br>.039 | PARAM<br>PROF<br>.036<br>.033<br>.030<br>.027<br>.024<br>.023<br>.023<br>.025<br>.028<br>.033<br>.036<br>.039 |

#### TABLE III. - BLADE GEOMETRY

## (a) First-stage rotor

| RP<br>T1P<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>HUB | PERCENT RASPAN RI  0. 25.530 5. 24.880 10. 24.178 20. 22.753 30. 21.294 40. 19.810 50. 18.291 60. 16.723 70. 15.081 80. 13.345 90. 11.493 95. 10.503 100. 9.583                                                | 24.125<br>323.478<br>322.184<br>420.889<br>19.595<br>18.301<br>317.006<br>15.712<br>914.418<br>313.123                 | BLA<br>KIC<br>66.61<br>64.56<br>62.83<br>60.85<br>59.01<br>56.81<br>54.27<br>51.40<br>47.44<br>43.79<br>41.40<br>39.35 | DE ANGL<br>KTC<br>64.39<br>60.14<br>53.98<br>50.88<br>47.47<br>39.04<br>34.97<br>31.81<br>30.69<br>29.60                            | ES<br>54.06<br>53.15<br>52.50<br>48.25<br>43.24<br>36.70<br>19.53<br>7.60<br>19.53<br>7.63<br>7.63<br>7.33<br>21.38        | DELTA<br>INC<br>2.30<br>2.36<br>2.42<br>2.58<br>2.74<br>3.13<br>3.79<br>4.56<br>6.24<br>7.28<br>6.56<br>5.93<br>5.24 | CONE<br>ANGLE<br>10.639<br>-9.797<br>-8.542<br>-6.433<br>-4.239<br>-2.073<br>.086<br>2.299<br>4.679<br>7.330<br>10.521<br>12.427<br>13.854 |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| RP<br>TIP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>HUB | BLADE THICK<br>TI TH<br>.033 .272<br>.034 .279<br>.038 .309<br>.044 .366<br>.050 .423<br>.057 .496<br>.057 .653<br>.082 .725<br>.082 .725<br>.089 .781                                                         | 2 .034<br>2 .035<br>2 .039<br>3 .046<br>3 .053<br>5 .061<br>1 .070<br>8 .078<br>6 .084<br>1 .089                       | A<br>21<br>2.578<br>2.397<br>2.236<br>2.013<br>1.798<br>1.573<br>1.335<br>1.335<br>5.28<br>805<br>.528<br>.236<br>.110 | XIAL DI<br>ZHC<br>4.987<br>4.999<br>5.002<br>4.973<br>4.973<br>4.843<br>4.732<br>4.616<br>4.441<br>4.329<br>4.336<br>4.332<br>4.332 | MENSION<br>ZTC<br>5.239<br>5.159<br>5.064<br>4.838<br>4.529<br>3.867<br>3.418<br>2.896<br>2.337<br>1.785<br>1.531<br>1.305 | ZO<br>6.607<br>6.767<br>6.896<br>7.250<br>7.500<br>7.500<br>8.128<br>8.514<br>8.837<br>9.014<br>9.065<br>9.104       |                                                                                                                                            |
| RP<br>TIP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>HUB | AERU SETTIN<br>CHORD ANGLE<br>9.264 63.86<br>9.283 61.59<br>9.285 59.63<br>9.279 56.03<br>9.270 54.01<br>9.263 50.35<br>9.260 45.84<br>9.276 33.65<br>9.310 25.98<br>9.385 18.02<br>9.385 18.02<br>9.385 18.02 | CAMBER<br>12.55<br>11.41<br>3 10.34<br>1 9.25<br>10.76<br>13.57<br>117.57<br>22.35<br>27.92<br>36.19<br>47.79<br>54.12 | SOLIDITY 1.290 1.327 1.364 1.446 1.539 1.646 1.772 2.110 2.348 2.670 2.879 3.114                                       | TURNING<br>RATIO<br>.065<br>.107<br>.197<br>.512<br>.745<br>.828<br>.854<br>.934<br>.984<br>.993<br>1.003<br>1.003                  | PHISS<br>4.26<br>4.69<br>5.21<br>6.39<br>7.07<br>7.82<br>8.86<br>10.02<br>11.67<br>12.27<br>10.85<br>8.69                  | CHOKE<br>MARGII<br>.036<br>.042<br>.049<br>.061<br>.057<br>.058<br>.059<br>.055<br>.059                              | N                                                                                                                                          |

## TABLE III. - Continued. BLADE GEOMETRY

### (b) First-stage stator

|     |                                                                  |                                                                                                                  |                                                                                                                              | (~/ -                                                                                                                      |                                                                                                                         | ,0 0000                                                                                                            | •                                                                                                                 |                                                                                                       |                                                                                                                      |
|-----|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 1 1 | PIP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>1<br>UB | PERCENT<br>SPAN<br>0.<br>5.<br>10.<br>20.<br>30.<br>40.<br>50.<br>60.<br>70.<br>90.                              | RI<br>24.384<br>23.786<br>23.209<br>20.033<br>20.848<br>19.659<br>18.460<br>17.250<br>16.021<br>14.777<br>13.519             | RO<br>24.384<br>23.796<br>23.251<br>22.122<br>20.983<br>19.847<br>18.712<br>17.575<br>16.432<br>15.291<br>14.157<br>13.595 | 81.4<br>KIC<br>38.83<br>36.11<br>34.40<br>34.81<br>35.73<br>37.09<br>38.65<br>40.55<br>40.97<br>46.08<br>47.94<br>50.04 | ADE ANGU<br>KTC<br>19.39<br>19.51<br>20.75<br>21.67<br>24.06<br>25.48<br>27.13<br>29.07<br>31.32<br>32.58<br>33.99 | KOC -16.98 -14.10 -12.04 -10.11 -9.34 -8.63 -8.73 -8.95 -9.68 -11.60 -13.12 -15.04                                | DELTA<br>1.02<br>5.92<br>5.95<br>5.96<br>5.92<br>5.85<br>5.67<br>5.67<br>5.56<br>5.30<br>5.12<br>4.89 | CONE<br>ANGLE<br>-05-1<br>102<br>-434<br>-907<br>1 .375<br>1 2.592<br>3 .366<br>4 .268<br>5 .353<br>6 -643<br>7 .755 |
| 1 1 | IP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0             | BLADE<br>TI<br>-150<br>-146<br>-141<br>-132<br>-123<br>-1104<br>-095<br>-085<br>-086<br>-066<br>-061             | THICKN TM                                                                                                                    | ESSES<br>TO .150<br>.146<br>.141<br>.131<br>.122<br>.112<br>.103<br>.094<br>.074<br>.065<br>.060                           | ZI<br>12.635<br>12.626<br>12.623<br>12.636<br>12.646<br>12.661<br>12.680<br>12.722<br>12.750<br>12.779                  | 15.320<br>15.322<br>15.323                                                                                         | ZTC<br>14.475<br>14.375<br>14.306<br>14.260<br>14.212<br>14.176<br>14.146<br>14.071<br>14.034<br>13.987<br>13.960 | Z0<br>18.261<br>18.251<br>18.244<br>18.241<br>18.237<br>18.235<br>18.235<br>18.233<br>18.233          |                                                                                                                      |
| 1 1 | IP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0             | AERO<br>CHORD<br>5.728<br>5.727<br>5.728<br>5.731<br>5.730<br>5.732<br>5.735<br>5.741<br>5.749<br>5.768<br>5.768 | SETTING<br>ANGLE<br>10.97<br>10.98<br>11.23<br>12.16<br>12.75<br>13.46<br>14.27<br>15.90<br>16.79<br>17.47<br>17.47<br>17.84 |                                                                                                                            | SOLIDITI 1.271 1.303 1.334 1.405 1.483 1.570 1.670 1.783 1.915 2.069 2.252 2.358                                        | TURNIN<br>RATIO<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000          | PHISS<br>23.57<br>20.50<br>18.44<br>17.22<br>16.56<br>16.15<br>16.15<br>16.22<br>16.49<br>17.09<br>17.09          | .107<br>.109                                                                                          | ſ                                                                                                                    |

## TABLE III. - Continued. BLADE GEOMETRY

#### (c) Second-stage rotor

|                                                                           |                                                                                             |                                                                                                                                             | (0) 50                                                                                                                           |                                                                                                                            | 0                                                                                                        |                                                                                                                      |                                                                                                                  |                                                                                                                   |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB                                        | 5.<br>10.<br>20.<br>30.<br>40.<br>50.<br>80.<br>95.                                         | 23.566 2:<br>23.051 2:<br>22.002 2:<br>20.957 2:<br>19.917 1:<br>18.878 1:<br>17.832 1:<br>16.769 1:<br>15.685 1:<br>14.558 1:<br>14.558 1: | RO<br>3.719<br>3.223<br>2.767<br>1.814<br>0.856<br>9.908<br>8.968<br>8.968<br>8.039<br>7.123<br>6.230<br>6.230<br>4.945<br>4.453 | BL.6<br>62.87<br>61.97<br>61.15<br>59.49<br>57.73<br>55.95<br>54.22<br>52.62<br>51.29<br>50.59<br>51.20<br>53.75           | DE ANGL<br>KTC<br>58.21<br>57.73<br>55.28<br>53.15<br>50.84<br>48.39<br>45.81<br>40.72<br>38.64<br>37.93 | K0C<br>54.40<br>54.16<br>53.69<br>51.76<br>49.27<br>46.04<br>41.93<br>36.91<br>22.89<br>12.36<br>5.83<br>-2.08       | DELTA<br>INC<br>2.58<br>2.51<br>2.50<br>2.67<br>3.05<br>3.55<br>4.12<br>4.69<br>5.40<br>5.45<br>5.45             | CONE<br>ANGLE<br>-8.87-7.289<br>-5.915<br>-3.720<br>-1.889<br>-148<br>1.251<br>5.240<br>7.593<br>10.614<br>14.340 |
| RP<br>TIP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>HUB | BLADE<br>TI<br>.060<br>.065<br>.078<br>.087<br>.105<br>.115<br>.125<br>.135<br>.146<br>.152 | THICKNE<br>TM<br>.173<br>.175<br>.175<br>.195<br>.221<br>.252<br>.287<br>.322<br>.356<br>.406<br>.413                                       | SSES<br>TO .060<br>.065<br>.069<br>.079<br>.089<br>.109<br>.119<br>.128<br>.138<br>.147<br>.159                                  | ZI<br>24.192<br>24.162<br>24.132<br>24.064<br>23.986<br>23.903<br>23.819<br>23.731<br>23.639<br>23.547<br>23.458<br>23.414 | 25.432<br>25.436<br>25.441<br>25.442<br>25.441<br>25.439<br>25.435<br>25.425<br>25.412                   | 25.871<br>25.836<br>25.801<br>25.717<br>25.612<br>25.489<br>25.352<br>25.201<br>25.033<br>24.679<br>24.679<br>24.587 | Z0<br>26.811<br>26.871<br>26.955<br>27.046<br>27.147<br>27.258<br>27.379<br>27.503<br>27.634<br>27.768<br>27.831 |                                                                                                                   |
| RP 11 2 3 4 5 6 7 8 9 10 11 HUB                                           | AERO CHORD 5.109 5.109 5.109 5.099 5.099 5.118 5.144 5.103                                  | 59.14<br>58.49<br>57.77<br>55.83<br>53.57<br>51.00<br>48.10<br>44.80<br>41.09<br>36.85<br>32.00<br>29.36                                    | TOTAL<br>AMBER<br>8.47<br>7.81<br>7.46<br>7.73<br>8.46<br>9.91<br>12.29<br>15.71<br>20.53<br>30.54<br>30.54<br>46.48<br>55.83    | SOL IDIT<br>1.292<br>1.320<br>1.347<br>1.407<br>1.548<br>1.628<br>1.719<br>1.822<br>1.940<br>2.079<br>2.162<br>2.268       | TURNIN<br>RATIO<br>.599<br>.629<br>.671<br>.806<br>.941<br>1.003<br>1.000<br>1.000<br>1.000<br>1.000     | PHISS<br>8.23<br>7.60<br>7.27<br>7.44<br>8.00<br>8.78<br>9.75<br>10.88<br>12.14<br>13.69<br>15.83<br>17.24<br>18.91  | -104                                                                                                             |                                                                                                                   |

## TABLE III. - Concluded. BLADE GEOMETRY

## (d) Second-stage stator

|                                                                           |                                                                                                                                            | (4) 20                                                                                                                |                                                                                                                      | 6                                                                                                                                |                                                                                                                                                    |                                                                                                       |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| RP<br>TIP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>HUB | 60. 18.267<br>70. 17.415<br>80. 16.576<br>90. 15.751<br>95. 15.342                                                                         | 23.622<br>23.159<br>22.731<br>21.850<br>20.972<br>20.108<br>19.258<br>18.422<br>17.599<br>16.800                      | BL/<br>K1C<br>35.59<br>35.19<br>35.05<br>35.05<br>36.95<br>38.22<br>39.22<br>39.42.18<br>45.71<br>47.94<br>50.60     | 22.99 -9<br>24.02 -9<br>25.18 -9<br>26.59 -10<br>28.26 -12<br>29.17 -14                                                          | .16 5.76<br>.16 5.75<br>.58 5.75<br>.45 5.70<br>.56 5.64<br>.23 5.57<br>.11 5.50<br>.23 5.42                                                       | CONE<br>ANGLE<br>.057<br>.230<br>.4323<br>1.111<br>1.400<br>1.725<br>2.469<br>3.016<br>3.844<br>4.971 |
| RP<br>TIP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>HUB | BLADE THICKY TI TM .125 .356 .121 .351 .117 .346 .109 .336 .102 .327 .095 .317 .088 .308 .080 .299 .073 .290 .066 .290 .059 .273 .055 .269 | NESSES<br>TO<br>.125<br>.121<br>.117<br>.109<br>.102<br>.094<br>.087<br>.079<br>.079<br>.075<br>.058                  | 21<br>32.281<br>32.294<br>32.306<br>32.314<br>32.331<br>32.344<br>32.359<br>32.379<br>32.403<br>32.415<br>32.429     | 34.380 33.<br>34.379 33.<br>34.378 33.<br>34.377 33.<br>34.378 33.<br>34.376 33.                                                 | TC ZD<br>661 36.647<br>648 36.643<br>636 36.639<br>611 36.634<br>5583 36.632<br>557 36.630<br>542 36.632<br>527 36.631<br>515 36.633<br>513 36.636 |                                                                                                       |
| RP<br>T1P<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>HUB |                                                                                                                                            | G TOTAL<br>CAHBER<br>51.74<br>49.35<br>47.56<br>44.75<br>45.08<br>46.06<br>47.45<br>49.31<br>52.58<br>58.460<br>67.64 | SDL IDIT<br>1.253<br>1.278<br>1.303<br>1.356<br>1.414<br>1.476<br>1.542<br>1.614<br>1.691<br>1.775<br>1.865<br>1.913 | 1.000 21<br>1.000 20<br>1.000 19<br>1.000 17<br>1.000 17<br>1.000 17<br>1.000 17<br>1.000 17<br>1.000 17<br>1.000 18<br>1.000 20 | CHOKE ISS MARGI .08 .299 .02 .285 .21 .273 .18 .256 .45 .242 .19 .230 .23 .221 .39 .212 .72 .204 .59 .201 .35 .213 .60 .227 .11 .245               |                                                                                                       |



TABLE IV. - OVERALL PERFORMANCE AT 100 PERCENT OF DESIGN SPEED

| (a) Two-stage fan                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                  |                                                                                                     |                                                                                                  |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| READING NUMBER. TOTAL PRESSURE RATIO. TOTAL TEMPERATURE RATIO. ADIABATIC EFFICIENCY. POLYTROPIC EFFICIENCY HASS FLOH.                                                                                                                                                                                                                                                                                                                                                               | .864<br>34.030                                                                                   | 1382<br>1.888<br>1.276<br>.721<br>.745<br>34.512<br>16090.0                                         | 1393<br>2.089<br>1.293<br>.795<br>.815<br>34.456<br>16056.0                                      | 1415<br>2.343<br>1.327<br>.839<br>.857<br>34.382<br>16061.3                                              | 1426<br>2.406<br>1.337<br>.841<br>.859<br>34.266                                                         | 1437<br>2.439<br>1.342<br>.843<br>.861<br>34.166                                                         | 1461<br>2.477<br>1.350<br>.839<br>.858<br>33.603<br>16073.0                                                      |
| WHEEL SPEED, RPM. PERCENT OF DESIGN SPEED. DELTA. THETA.                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.3<br>.893<br>.933                                                                            | 100.3<br>.913<br>.926                                                                               | 100.1<br>.913<br>.925                                                                            | 100.1<br>.910<br>.935                                                                                    | 16087.1<br>100.3<br>.910<br>.933                                                                         | 16101.3<br>100.4<br>.909<br>.934                                                                         | 100.2<br>.909<br>.931                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (b) Firs                                                                                         | t stage                                                                                             |                                                                                                  |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                                  |
| READING NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .870<br>.913<br>.879<br>.268<br>.257<br>.295<br>.296                                             | 1382<br>1.588<br>1.564<br>1.159<br>1.159<br>1.855<br>.895<br>.895<br>.226<br>.235<br>.2265<br>.2451 | 1393<br>1.589<br>1.564<br>1.159<br>1.159<br>.891<br>.859<br>.868<br>.236<br>.228<br>.265<br>.265 | 1415<br>1.614<br>1.589<br>1.163<br>1.163<br>.896<br>.865<br>.903<br>.874<br>.244<br>.236<br>.273<br>.273 | 1426<br>1.637<br>1.612<br>1.168<br>1.168<br>.899<br>.868<br>.906<br>.876<br>.251<br>.243<br>.280<br>.446 | 1437<br>1.656<br>1.630<br>1.172<br>1.172<br>.902<br>.870<br>.908<br>.878<br>.257<br>.249<br>.285<br>.286 | 1461<br>1.694<br>1.666<br>1.180<br>1.181<br>-902<br>-868<br>-909<br>-877<br>-271<br>-261<br>-300<br>-301<br>-434 |
| MASS FLOH PER UNIT ANNULUS AREA                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 34. <b>03</b><br>193.44                                                                          | 34.51<br>196.18<br>16090.0<br>430.2<br>100.3                                                        | 34.46<br>195.86<br>16056.0<br>429.2<br>100.1                                                     | 34.38<br>195.44<br>16061.3<br>429.4<br>100.1                                                             | 34.27<br>194.78<br>16087.1<br>430.1<br>100.3                                                             | 34.17<br>194.21<br>16101.3<br>430.5<br>100.4                                                             | 33.60<br>191.01<br>16073.0<br>429.7<br>100.2                                                                     |
| (c) Second stage                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                  |                                                                                                     |                                                                                                  |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                                  |
| READING NUMBER ROTOR TOTAL PRESSURE RATIO STAGE TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY. STAGE ADIABATIC EFFICIENCY. STAGE POLYTROPIC EFFICIENCY. STAGE POLYTROPIC EFFICIENCY. ROTOR HEAD RISE COEFFICIENT. ROTOR TEMPERATURE RISE COEFFICIENT STAGE HEAD RISE COEFFICIENT. STAGE TEMPERATURE RISE COEFFICIENT STAGE TEMPERATURE RISE COEFFICIENT FLOH COEFFICIENT.  **EQUIVALENT VALUES BASED ON STAGE INLET** | 1283<br>1.518<br>1.494<br>1.144<br>1.144<br>.877<br>.842<br>.851<br>.270<br>.260<br>.308<br>.308 | 1382<br>1.281<br>1.208<br>1.100<br>1.100<br>.552<br>.738<br>.563<br>.154<br>.117<br>.211<br>.498    | 1393<br>1.368<br>1.336<br>1.116<br>.802<br>.739<br>.810<br>.749<br>.197<br>.197<br>.246<br>.246  | 1415<br>1.498<br>1.475<br>1.140<br>1.140<br>.868<br>.834<br>.875<br>.843<br>.259<br>.249<br>.298<br>.487 | 1426<br>1.516<br>1.494<br>1.145<br>1.145<br>.868<br>.836<br>.876<br>.845<br>.267<br>.257<br>.308<br>.308 | 1437<br>1.520<br>1.497<br>1.145<br>1.145<br>.871<br>.836<br>.845<br>.270<br>.259<br>.310<br>.470         | 1461<br>1.512<br>1.488<br>1.144<br>1.144<br>.867<br>.831<br>.874<br>.841<br>.269<br>.258<br>.310<br>.453         |
| MASS FLOW. MASS FLOW PER UNIT ANNULUS AREA. WHEEL SPEED, RPM. TIP SPEED. PERCENT OF DESIGN SPEED.                                                                                                                                                                                                                                                                                                                                                                                   | 22.32<br>175.i9                                                                                  | 23.76<br>186.53<br>14944.5<br>377.6<br>100.6                                                        | 23.71<br>186.08<br>14916.5<br>376.9<br>100.4                                                     | 23.34<br>183.19<br>14890.6<br>376.2<br>100.3                                                             | 22.98<br>180.36<br>14883.9<br>376.1<br>100.2                                                             | 22.69<br>178.08<br>14872.2<br>375.8<br>100.1                                                             | 21.92<br>172.03<br>14792.0<br>373.7<br>99.6                                                                      |
| **CUMULATIVE VALUES** COMPRESSOR TOTAL PRESSURE RATIO COMPRESSOR TOTAL TEMPERATURE RATIO COMPRESSOR ADIABATIC EFFICIENCY COMPRESSOR POLYTROPIC EFFICIENCY                                                                                                                                                                                                                                                                                                                           | 2.471<br>1.347<br>.846<br>.864                                                                   | 1.888<br>1.276<br>.721<br>.745                                                                      | 2.089<br>1.293<br>.795<br>.815                                                                   | 2.343<br>1.327<br>.839<br>.857                                                                           | 2.406<br>1.337<br>.841<br>.859                                                                           | 2.439<br>1.342<br>.843<br>.861                                                                           | 2.477<br>1.350<br>.839<br>.858                                                                                   |

TABLE V. - OVERALL PERFORMANCE AT 90 PERCENT OF DESIGN SPEED

| (a) Two-stage fan                                                                                                                                                                                                          |                                                                                                           |                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| READING NUMBER 1310 TOTAL PRESSURE RATIO 1.805 TOTAL TEMPERATURE RATIO 1.229 ADIABATIC EFFICIENCY 801 POLYTROPIC EFFICIENCY 817 MASS FLOM 31.046 HHEEL SPEED, RPM 14488.2 PERCENT OF DESIGN SPEED 90.3 DELTA 902 THETA 910 | 1321<br>2.079<br>1.269<br>.862<br>.876<br>29.927<br>14504.5<br>90.4<br>.905                               | 1332<br>2.132<br>1.286<br>.840<br>.856<br>28.043<br>14505.3<br>90.4<br>.911                      |
| the First stage                                                                                                                                                                                                            |                                                                                                           |                                                                                                  |
| (b) First stage                                                                                                                                                                                                            |                                                                                                           |                                                                                                  |
| READING NUMBER                                                                                                                                                                                                             | 1321<br>1.526<br>1.506<br>1.142<br>1.142<br>.905<br>.877<br>.911<br>.884<br>.263<br>.254<br>.290          | 1332<br>1.559<br>1.559<br>1.152<br>1.152<br>-891<br>.848<br>.897<br>.276<br>-264<br>.310<br>.311 |
| MASS FLOW                                                                                                                                                                                                                  | 29.93<br>170.12<br>14504.5<br>387.8<br>90.4                                                               | 28.04<br>159.41<br>14505.3<br>387.8<br>90.4                                                      |
| (c) Second stage                                                                                                                                                                                                           |                                                                                                           |                                                                                                  |
| READING NUMBER                                                                                                                                                                                                             | 1321<br>1.400<br>1.381<br>1.111<br>1.111<br>2.904<br>.904<br>.908<br>.870<br>.257<br>.246<br>.285<br>.284 | 1332<br>1.417<br>1.395<br>1.116<br>.894<br>.853<br>.899<br>.269<br>.269<br>.256<br>.301          |
| MASS FLOW       22.43         MASS FLOW PER UNIT ANNULUS AREA       176.06         HHEEL SPEED, RPM       13612.2         TIP SPEED       343.9         PERCENT OF DESIGN SPEED       91.7                                 | 21.23<br>166.62<br>13575.5<br>343.0<br>91.4                                                               | 19.68<br>154.50<br>13515.2<br>341.5<br>91.0                                                      |
| COMPRESSOR TOTAL PRESSURE RATIO                                                                                                                                                                                            | 2.079<br>1.269<br>.862<br>.876                                                                            | 2.132<br>1.286<br>.840<br>.856                                                                   |

#### TABLE VI. - OVERALL PERFORMANCE AT 80 PERCENT OF DESIGN SPEED

| (a) Two                                                                                                                                                                                                                                                                                                                                                                                                                                                                | o-stage fan                                                                                              |                                                                                                                  |                                                                                                                  |                                                                                                                   |                                                                                                          |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|
| READING NUMBER TOTAL PRESSURE RATIO TOTAL TEMPERATURE RATIO ADIABATIC EFFICIENCY POLYTROPIC EFFICIENCY MASS FLOM HHEEL SPEED, RPM PERCENT OF DESIGN SPEED DELTA THETA                                                                                                                                                                                                                                                                                                  | 1.163<br>.763<br>.776<br>27.185                                                                          | 1358<br>1.763<br>1.202<br>.871<br>.881<br>25.381<br>12834.8<br>80.0<br>.934<br>.929                              | 1369<br>1.821<br>1.227<br>.819<br>.834<br>22.625<br>12841.6<br>80.0<br>.943<br>.936                              | 1544<br>1.710<br>1.191<br>.867<br>26.511<br>12849.5<br>80.1<br>.915<br>.947                                       | 1555<br>1.811<br>1.216<br>.852<br>.864<br>24.511<br>12897.0<br>80.4<br>.921<br>.945                      |  |
| (b) F:                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | irst stage                                                                                               |                                                                                                                  |                                                                                                                  |                                                                                                                   |                                                                                                          |  |
| READING NUMBER ROTOR TOTAL PRESSURE RATIO STAGE TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY STAGE ADIABATIC EFFICIENCY ROTOR POLYTROPIC EFFICIENCY ROTOR HEAD RISE COEFFICIENT STAGE HEAD RISE COEFFICIENT STAGE TEMPERATURE RISE COEFFICIENT STAGE TEMPERATURE RISE COEFFICIENT STAGE TEMPERATURE RISE COEFFICIENT FLOW COEFFICIENT                                     | 1.349<br>1.100<br>1.100<br>.917<br>.890<br>.920<br>.895<br>.239<br>.232<br>.261                          | 1358<br>1.395<br>1.380<br>1.110<br>1.110<br>.909<br>.879<br>.914<br>.884<br>.261<br>.252<br>.287<br>.379         | 1369<br>1.421<br>1.393<br>1.121<br>1.122<br>.870<br>.815<br>.875<br>.275<br>.259<br>.316<br>.318                 | 1544<br>1.376<br>1.363<br>1.105<br>1.105<br>1.105<br>.912<br>.885<br>.916<br>.890<br>.249<br>.241<br>.273<br>.398 | 1555<br>1.410<br>1.392<br>1.115<br>1.115<br>1.115<br>.857<br>.894<br>.267<br>.256<br>.298<br>.299        |  |
| **EQUIVALENT VALUES BASED ON STAGE INLET** MASS FLOH. MASS FLOH PER UNIT ANNULUS AREA                                                                                                                                                                                                                                                                                                                                                                                  | 12850.0                                                                                                  | 25.38<br>144.27<br>12834.8<br>343.1<br>80.0                                                                      | 22.63<br>128.61<br>12841.6<br>343.3<br>80.0                                                                      | 26.51<br>150.70<br>12849.5<br>343.5<br>80.1                                                                       | 24.51<br>139.33<br>12899.0<br>344.8<br>80.4                                                              |  |
| (c) Second stage                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                          |                                                                                                                  |                                                                                                                  |                                                                                                                   |                                                                                                          |  |
| READING NUMBER. ROTOR TOTAL PRESSURE RATIO. STAGE TOTAL PRESSURE RATIO. ROTOR TOTAL TEMPERATURE RATIO. STAGE TOTAL TEMPERATURE RATIO. STAGE TOTAL TEMPERATURE RATIO. STAGE ADIABATIC EFFICIENCY. STAGE ADIABATIC EFFICIENCY. ROTOR POLYTROPIC EFFICIENCY. STAGE POLYTROPIC EFFICIENCY. STAGE POLYTROPIC EFFICIENT. STAGE HEAD RISE COEFFICIENT. STAGE HEAD RISE COEFFICIENT. STAGE TEMPERATURE RISE COEFFICIENT. STAGE TEMPERATURE RISE COEFFICIENT. FLOW COEFFICIENT. | 1347<br>1.173<br>1.118<br>1.057<br>1.057<br>.816<br>.568<br>.820<br>.575<br>.146<br>.101<br>.178<br>.178 | 1358<br>1.294<br>1.278<br>1.083<br>1.083<br>-921<br>.875<br>.923<br>.880<br>.242<br>.230<br>.263<br>.262<br>.463 | 1369<br>1.326<br>1.308<br>1.094<br>1.094<br>.887<br>.844<br>.891<br>.850<br>.268<br>.254<br>.302<br>.301<br>.406 | 1544<br>1.275<br>1.255<br>1.078<br>1.078<br>.921<br>.859<br>.923<br>.226<br>.211<br>.245<br>.245                  | 1555<br>1.319<br>1.302<br>1.091<br>1.091<br>2.06<br>.863<br>.909<br>.868<br>.259<br>.246<br>.286<br>.285 |  |
| MASS FLOW MASS FLOW PER UNIT ANNULUS AREA WHEEL SPEED. RPM TIP SPEED. PERCENT OF DESIGN SPEED **CUMULATIVE VALUES**                                                                                                                                                                                                                                                                                                                                                    | 21.14<br>165.94<br>12256.3<br>309.7<br>82.5                                                              | 19.37<br>152.06<br>12183.7<br>307.8<br>82.0                                                                      | 17.21<br>135.06<br>12124.8<br>306.3<br>81.6                                                                      | 20.44<br>160.45<br>12225.9<br>308.9<br>82.3                                                                       | 18.60<br>146.02<br>12213.1<br>308.6<br>82.2                                                              |  |
| COMPRESSOR TOTAL PRESSURE RATIO. COMPRESSOR TOTAL TEMPERATURE RATIO COMPRESSOR ADIABATIC EFFICIENCY. COMPRESSOR POLYTROPIC EFFICIENCY.                                                                                                                                                                                                                                                                                                                                 | 1.508<br>1.163<br>.763<br>.776                                                                           | 1.763<br>1.202<br>.871<br>.881                                                                                   | 1.821<br>1.227<br>.819<br>.834                                                                                   | 1.710<br>1.191<br>.867<br>.877                                                                                    | 1.811<br>1.216<br>.852<br>.864                                                                           |  |

TABLE VII. - OVERALL PERFORMANCE AT 70 PERCENT OF DESIGN SPEED

| (a) Two-stage fan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| READING NUMBER 1475 TOTAL PRESSURE RATIO 1.395 TOTAL TEMPERATURE RATIO 1.124 ADIABATIC EFFICIENCY 807 POLYTROPIC EFFICIENCY 816 MASS FLOH 23.894 HHEEL SPEED, RPM 11251.7 PERCENT OF DESIGN SPEED 70.1 DELTA 928 THETA 947                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1486<br>1.540<br>1.152<br>.863<br>.871<br>21.372<br>11189.5<br>69.7<br>.935<br>.945                                                                               | 1497<br>1.579<br>1.169<br>.821<br>.832<br>19.419<br>11191.0<br>69.8<br>.941<br>.947                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| (b) First stage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| READING NUMBER  ROTOR TOTAL PRESSURE RATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1486<br>1.289<br>1.277<br>1.084<br>1.084<br>1.089<br>2.857<br>.896<br>.262<br>.258<br>.248<br>.248<br>.289<br>.290<br>.357<br>21.37<br>121.49<br>11189.5<br>299.7 | 1497 1.308 1.286 1.092 1.092 1.092 1.092 1.092 1.093 1.093 1.091 1.092 1.092 1.092 1.092 1.092 1.092 1.092 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1.093 1 |  |  |  |
| (c) Second stage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| READING NUMBER  ROTOR TOTAL PRESSURE RATIO  \$1.157  STAGE TOTAL PRESSURE RATIO  ROTOR TOTAL PRESSURE RATIO  \$1.117  ROTOR TOTAL TEMPERATURE RATIO  \$1.046  ROTOR ADIABATIC EFFICIENCY  \$716  STAGE ADIABATIC EFFICIENCY  \$716  STAGE ADIABATIC EFFICIENCY  \$716  STAGE ADIABATIC EFFICIENCY  \$716  STAGE POLYTROPIC EFFICIENCY  \$716  ROTOR HEAD RISE COEFFICIENT  \$716  ROTOR HEAD RISE COEFFICIENT  \$716  ROTOR TEMPERATURE RISE COEFFICIENT  \$716  \$716  ROTOR TEMPERATURE RISE COEFFICIENT  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716  \$716 | 1486<br>1.220<br>1.207<br>1.062<br>1.062<br>1.062<br>.934<br>.884<br>.936<br>.887<br>.237<br>.2254<br>.253<br>.463                                                | 1497<br>1.242<br>1.228<br>1.071<br>1.070<br>903<br>.855<br>.906<br>.859<br>.261<br>.247<br>.289<br>.415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| MASS FLOW PER UNIT ANNULUS AREA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17.43<br>136.83<br>10745.2<br>271.5<br>72.4                                                                                                                       | 15.78<br>123.86<br>10706.9<br>270.5<br>72.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| ##CUHULATIVE VALUES## COMPRESSOR TOTAL PRESSURE RATIO 1.395 COMPRESSOR TOTAL TEMPERATURE RATIO 1.124 COMPRESSOR ADIABATIC EFFICIENCY 807 COMPRESSOR POLYTROPIC EFFICIENCY 816                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.540<br>1.152<br>.863<br>.871                                                                                                                                    | 1.579<br>1.169<br>.821<br>.832                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |

TABLE VIII. - OVERALL PERFORMANCE AT 50 PERCENT OF DESIGN SPEED

| (a) Two-stage fan  READING NUMBER TOTAL PRESSURE RATIO TOTAL TEMPERATURE RATIO ADIABATIC EFFICIENCY POLYTROPIC EFFICIENCY MASS FLOW WHEEL SPEED, RPM PERCENT OF DESIGN SPEED DELTA THETA                                                                                                                                                                                                                                                                                                                                                                                                                       | 1510<br>1.181<br>1.059<br>.830<br>.834<br>16.550<br>8031.0<br>50.1<br>.945<br>.948      | 1521<br>1.238<br>1.072<br>.875<br>.878<br>14.721<br>8050.2<br>.948<br>.948                                                                                | 1533<br>1.261<br>1.082<br>.836<br>.842<br>13.157<br>8017.2<br>50.0<br>.950                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (b) First stage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                                                                                                                                                           |                                                                                                                                                                       |
| READING NUMBER ROTOR TOTAL PRESSURE RATIO STAGE TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR POLYTROPIC EFFICIENCY STAGE ADIABATIC EFFICIENCY STAGE POLYTROPIC EFFICIENCY STAGE HEAD RISE COEFFICIENT STAGE HEAD RISE COEFFICIENT ROTOR TEMPERATURE RISE COEFFICIENT STAGE TEMPERATURE RISE COEFFICIENT FLOM COEFFICIENT 44EQUIVALENT VALUES BASED ON STAGE INLET** MASS FLOM HASS FLOM PER UNIT ANNULUS AREA HHEEL SPEED. PERCENT OF DESIGN SPEED.                                                         | 1.037<br>1.037<br>1.037<br>.914<br>.886<br>.916<br>.888<br>.225<br>.218<br>.246<br>.377 | 1521<br>1.139<br>1.134<br>1.043<br>1.043<br>1.043<br>1.043<br>1.051<br>.857<br>.251<br>.242<br>.283<br>.283<br>.332<br>14.72<br>83.68<br>8050.2<br>215.2  | 1533<br>1.149<br>1.139<br>1.047<br>1.047<br>1.047<br>866<br>.801<br>.869<br>.804<br>.271<br>.254<br>.313<br>.317<br>.297<br>13.16<br>74.79<br>8017.2<br>214.3<br>50.0 |
| (c) Second stage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |                                                                                                                                                           |                                                                                                                                                                       |
| READING NUMBER. ROTOR TOTAL PRESSURE RATIO STAGE TOTAL PRESSURE RATIO. ROTOR TOTAL TEMPERATURE RATIO. STAGE TOTAL TEMPERATURE RATIO. STAGE TOTAL TEMPERATURE RATIO. STAGE ADIABATIC EFFICIENCY. STAGE ADIABATIC EFFICIENCY. ROTOR POLYTROPIC EFFICIENCY. ROTOR HEAD RISE COEFFICIENT. STAGE HEAD RISE COEFFICIENT. STAGE HEAD RISE COEFFICIENT. STAGE TEMPERATURE RISE COEFFICIENT. STAGE TEMPERATURE RISE COEFFICIENT. ##EQUIVALENT VALUES BASED ON STAGE INLET## HASS FLOM. HASS FLOM. HASS FLOM. TIP SPEED. RPM. TIP SPEED. PERCENT OF DESIGN SPEED. ##CUMULATIVE VALUES## COMPRESSOR TOTAL PRESSURE RATIO. | .158<br>.158<br>.536<br>15.06<br>118.21<br>7886.8<br>199.3<br>53.1                      | 1521<br>1.10093<br>1.028<br>1.028<br>1.028<br>-986<br>-913<br>-986<br>-914<br>-209<br>-193<br>-212<br>-2465<br>13.26<br>104.09<br>7883.6<br>199.2<br>53.1 | 1533<br>1.114<br>1.107<br>1.033<br>1.033<br>1.033<br>.950<br>.951<br>.897<br>.226<br>.253<br>.414<br>11.82<br>92.79<br>7833.8<br>197.9<br>52.8                        |
| COMPRESSOR ADIABATIC EFFICIENCY<br>COMPRESSOR POLYTROPIC EFFICIENCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .83 <b>0</b><br>.83 <b>4</b>                                                            | .875<br>.878                                                                                                                                              | .838<br>.842                                                                                                                                                          |

(a) 100 Percent of design speed; reading 1283

| RP                 | RADI                                               |                              |                              | L VELOC                                 |                              | HERIDIO                      |                                         |                                       | TANG V                        |                                          | RADIAL VI                                |                              | ABS VEL                          |                                                 | VEL                  |
|--------------------|----------------------------------------------------|------------------------------|------------------------------|-----------------------------------------|------------------------------|------------------------------|-----------------------------------------|---------------------------------------|-------------------------------|------------------------------------------|------------------------------------------|------------------------------|----------------------------------|-------------------------------------------------|----------------------|
| 2<br>3             | IN<br>24.879 2<br>24.178 2<br>22.753 2<br>21.293 2 | 3.477<br>2.184               | 184.6<br>196.0               | DUT<br>140.5<br>154.3<br>169.2<br>172.8 | .832<br>.836<br>.863<br>.875 | 196.6                        | OUT<br>141.5<br>155.0<br>169.5<br>172.9 | RATIO<br>.831<br>.835<br>.862<br>.875 | 3.3 1<br>2.1 1                | 55.2 -<br>49.7 -                         | 21.5 -16<br>19.7 -16<br>15.1 -16         | 5.5 1<br>1.8 1<br>0.7 1      | 70.2 21<br>85.7 21<br>96.6 22    |                                                 | 290.<br>285.         |
| 5<br>6<br>7        | 19.809 1<br>18.291 1<br>16.723 1                   | 9.596<br>8.301<br>7.005      | 198.1<br>197.3<br>195.4      | 171.8<br>169.1<br>166.4                 | .867<br>.857<br>.852         | 198.1<br>197.3<br>195.6      | 171.8<br>169.1<br>166.6                 | .867<br>.857<br>.852                  | 6 1<br>3 1<br>3.8 1           | 51.7<br>56.9<br>69.8                     | -3.1<br>3.1<br>9.6                       | 8 1<br>1.1 1<br>3.7 1        | 98.1 22<br>97.3 23<br>95.6 23    | 9.2 388.5<br>0.7 366.1<br>7.9 339.8             | 247.<br>227.<br>203. |
| 9                  | 15.080 1<br>13.348 1<br>11.493 1<br>10.503 1       | 4.417<br>3.124               |                              |                                         | .876<br>.922<br>.961<br>.971 | 188.3<br>181.1               | 168.8<br>173.2<br>172.7<br>169.1        | .875<br>.920<br>.954<br>.959          | 2.2                           | 183. <b>4</b><br>197.9<br>215.9<br>230.1 | 24.2 18<br>32.7 23                       | 3.6 1<br>2.9 1               | 88.3 26<br>81.1 27               | 3.0 291.5                                       | 178.<br>172.         |
| RP<br>1            | ABS MAC<br>IN<br>.512                              | H NO<br>OUT<br>.578          | REL MA<br>IN<br>1.351        | CH NO<br>OUT<br>.793                    | AXIAL M.<br>IN<br>.508       | ACH NO 1<br>OUT<br>.386      | MERID<br>IN<br>.512                     | MACH NO<br>OUT<br>.389                |                               | JUT I                                    | S BETAM<br>N QUT<br>.1 47.7              | REL<br>IN<br>67.9            | BETAZ<br>OUT<br>60.8             | REL BETAM<br>IN OUT<br>67.7 60.6                |                      |
| 2<br>3<br>4        | .562<br>.598<br>.601                               | .597<br>.623<br>.640         | 1.348<br>1.307<br>1.245      | .805<br>.799<br>.753                    | .558<br>.596<br>.601         | -428<br>-474<br>-486         | .562<br>.598<br>.601                    | .430<br>.475                          | .6 4<br>.2 4                  | 14.1<br>10.4<br>10.5                     | .6 44.0<br>.2 40.4<br>.1 40.5            | 65.5<br>62.9<br>61.1         | 57.9<br>53.6                     | 65.4 57.8<br>62.8 53.5<br>61.1 49.7             |                      |
| 5<br>6<br>7        | .603<br>.601<br>.595                               | .647<br>.654<br>.677         | 1.183<br>1.114<br>1.034      | .700<br>.643<br>.579                    | .603<br>.600<br>.594         | .485<br>.479<br>.474         | .603<br>.601<br>.595                    | .479<br>.474                          | 1 4<br>1.1 4                  | 12.9<br>15.6 1                           | .2 41.4<br>.1 42.9<br>.1 45.5            | 59.3<br>57.4<br>54.9         | 41.8<br>35.0                     | 59.3 46.1<br>57.4 41.8<br>54.9 35.0             |                      |
| 8<br>9<br>10<br>11 | .586<br>.571<br>.549<br>.533                       | .713<br>.757<br>.801<br>.830 | .959<br>.885<br>.799<br>.753 | .536<br>.515<br>.501<br>.495            | .584<br>.567<br>.539<br>.521 | .481<br>.495<br>.496<br>.486 | .586<br>.571<br>.549<br>.533            | .498<br>.500                          | .7<br>.5                      | 47.5 1<br>49.0<br>51.6<br>54.0           | .2 47.4<br>.7 48.8<br>.5 51.3<br>.3 53.7 | 52.5<br>50.0<br>47.1<br>45.6 | 14.6<br>1.7                      | 52.4 25.7<br>49.8 14.5<br>46.7 1.7<br>44.9 -6.7 |                      |
| RP                 | TOTA                                               | AL PRESS                     | SURE                         | TOTAL                                   | TEMPERA                      | TURE                         | STATIC                                  | PRESS                                 | STATIC                        | DENSITY                                  | STATI                                    | C TEMP                       | HHEEL                            | SPEED                                           |                      |
| 1 2                | 10.09                                              | 17.23                        | RATIO<br>1.741<br>1.708      | IN<br>289.5<br>289.1                    | 350.9<br>347.2               | RATIO<br>1.212<br>1.201      | 8.14                                    | 0UT<br>13.58<br>13.54                 | IN<br>1.03587<br>1.04372      | 1.45573                                  | 271.9                                    | 324.0                        | 407.2                            |                                                 |                      |
| 3<br>4<br>5        | 10.18<br>10.17                                     | 17.43<br>17.20               | 1.713<br>1.713<br>1.691      | 288.5<br>288.1<br>287.9                 | 339. <b>7</b><br>337.9       |                              | 7.97<br>7.95                            | 13.42<br>13.23<br>12.98               | 1.03444<br>1.03359<br>1.03273 | 1.4740<br>1.4681<br>1.4503               | 268.6<br>268.3                           | 314.0<br>311.7               | 358.6<br>333.7                   | 351.8<br>330.1                                  |                      |
| 6<br>7<br>8        | 10.16<br>10.16                                     | 16.82<br>16.86               | 1.671<br>1.655<br>1.659      | 287.9<br>287.8<br>287.8                 | 335.1<br>335.1               | 1.168<br>1.165<br>1.164      | 7.99<br>8.05                            | 12.74<br>12.37<br>12.02               | 1.03284<br>1.03664<br>1.04176 | 1.37613                                  | 268.7<br>269.3                           |                              | 281.7<br>254.0                   | 286.4<br>264.6                                  |                      |
| 9<br>10<br>11      | 10.16                                              | 16.84<br>16.70<br>16.58      | 1.657<br>1.643<br>1.631      | 287.6<br>287.4<br>287.3                 |                              | 1.165<br>1.164<br>1.167      | 8.28                                    | 11.52<br>10.94<br>10.55               | 1.05121<br>1.06453<br>1.07364 | 1.33572<br>1.28552<br>1.24772            | 271.1                                    | 300.5<br>296.6<br>294.7      | 193.6                            | 221.1                                           |                      |
| RP<br>1            | PERCENT<br>SPAN<br>5.0                             | INC<br>MEAN<br>3.2           | IDENCE<br>SS<br>.8           | DEVIA<br>7.5                            |                              |                              | TO                                      | DSS COEF<br>T PRO<br>61 .08           | F SHOCK                       | LOS<br>TOT<br>.030                       | S PARAME<br>PROF<br>.015                 |                              | PEAK SS<br>MACH ND<br>1.540      |                                                 |                      |
| 2<br>3<br>4        | 10.0<br>20.0<br>30.0                               | 2.5<br>2.0<br>2.1            | .1<br>6<br>6                 | 5.3<br>1.9<br>1.5                       | .468<br>.451                 | .822<br>.899                 | .1                                      | 45 .06<br>82 .01<br>61 .00            | 6 .079<br>4 .068              | .028<br>.017<br>.013                     | .013<br>.003<br>.002                     | .015<br>.014<br>.011         | 1.532<br>1.508<br>1.474          |                                                 |                      |
| 5<br>6<br>7        | 40.0<br>50.0<br>60.0                               | 2.5<br>3.1<br>3.5            | 6<br>7<br>-1.1               | 2.8<br>5.1<br>5.9                       | .481<br>.501<br>.530         | .932<br>.942<br>.940         | .0                                      | 60 .01<br>53 .02<br>60 .04            | 4 .030                        | .013<br>.011<br>.013                     | .004<br>.005<br>.009                     | .009<br>.006<br>.004         | 1.447<br>1.428<br>1.407          |                                                 |                      |
| 8<br>9<br>10<br>11 | 70.0<br>80.0<br>90.0<br>95.0                       | 4.9<br>6.0<br>5.5<br>4.6     | -1.3<br>-1.3<br>-1.3         | 6.2<br>6.9<br>8.1<br>7.1                | .535<br>.507                 | .942<br>.927                 | .0                                      | 60 .04<br>74 .07<br>10 .11<br>73 .17  | 2 .002<br>0 .000              | .013<br>.015<br>.021<br>.030             | .010<br>.015<br>.021<br>.030             | .002<br>.000<br>.000         | 1.388<br>1.299<br>1.137<br>1.043 |                                                 |                      |

(b) 100 Percent of design speed; reading 1382

| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | RADII IN 0UT 24.879 24.125 24.178 23.477 22.753 22.184 21.293 20.889 19.809 19.596 18.291 18.301 16.723 17.005 15.080 15.712 13.348 14.417 11.493 13.124 10.503 12.476 | AXIAL VE<br>IN 00<br>181.8 137<br>190.4 156<br>198.2 173<br>200.1 177<br>201.1 179<br>200.6 181<br>198.6 183<br>195.2 189<br>189.5 192<br>180.7 189<br>174.7 180 | T RATIO  .3 .7558 .8246 .8762 .8853 .8913 .9049 .9268 .9620 1.013                                                                                                          | MERIDIONAL VI<br>1N OUT<br>183.3 138.2<br>191.5 157.5<br>198.8 173.9<br>200.4 177.3<br>201.1 179.3<br>200.6 181.4<br>198.8 184.2<br>195.9 188.4<br>191.1 193.1<br>183.7 190.7<br>178.8 182.8 | .875<br>.885<br>.891<br>.904                                                                                                                                                    | TANG VEL<br>IN OUT<br>2.9 136.9<br>1.8 131.7<br>1.6 127.6<br>1.5 129.8<br>1.3 135.9<br>2 142.6<br>1 166.7<br>2 185.0<br>1 203.3<br>.0 215.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RADIAL VEL<br>IN OUT<br>-23.2 -16.1<br>-20.3 -15.0<br>-15.3 -11.0<br>-9.3 -6.0<br>-3.28<br>3.2 4.4<br>9.7 9.6<br>16.8 15.3<br>24.6 20.8<br>33.2 25.2<br>37.8 26.8                                                | ABS VEL IN 0UT 183.3 194.5 191.5 205.3 198.8 215.7 200.4 219.7 201.1 224.9 200.6 230.7 198.8 238.5 195.9 251.6 191.1 267.4 183.7 278.7 178.8 282.2                                                        | REL VEL<br>IN 0UT<br>454.9 302.9<br>448.5 307.3<br>430.4 301.4<br>409.6 284.2<br>388.6 264.4<br>367.8 245.7<br>345.0 228.3<br>320.9 212.4<br>295.3 201.6<br>267.0 191.5<br>251.5 182.8 |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | ABS MACH NO IN OUT .554 .539 .580 .573 .605 .609 .610 .623 .613 .640 .611 .658 .606 .684 .596 .724 .557 .812 .541 .823                                                 | IN 0U<br>1.375 .8<br>1.360 .8<br>1.309 .8<br>1.248 .8<br>1.184 .7<br>1.120 .7<br>1.051 .6                                                                        | NO AXIAL NIN 139 .550 .577 .603 .610 .611 .554 .605 .576 .558 .548 .533 .529                                                                                               | .490 .60<br>.503 .61<br>.510 .61<br>.517 .61<br>.527 .60<br>.541 .59<br>.556 .58                                                                                                             | 0UT<br>.383<br>0 .440<br>5 .491<br>0 .503<br>3 .518<br>6 .528<br>6 .542<br>7 .555                                                                                               | 1N OUT<br>.9 44.9<br>.5 40.0<br>.5 36.3<br>.4 36.2<br>.4 37.2<br>0 38.2<br>1 39.5<br>0 41.6<br>1 43.9<br>0 47.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IN OUT 1<br>.9 44.7 66<br>.5 39.9 67<br>.5 36.2 66<br>.4 37.2 56<br>.0 38.2 55<br>.1 39.5 5<br>.1 39.5 5<br>.1 43.8 45                                                                                           | IN OUT IN                                                                                                                                                                                                 | 54.8<br>51.4<br>3 47.3<br>42.4<br>3 36.2<br>1 27.5                                                                                                                                     |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | 10.10 15.85<br>10.15 16.14<br>10.16 16.14<br>10.16 16.12<br>10.16 16.11<br>10.16 16.26<br>10.16 16.39                                                                  | RATIO II<br>1.555 293<br>1.570 288<br>1.590 288                                                                                                                  | TEMPER/<br>0UT<br>9.0 343.2<br>8.8 340.0<br>8.6 335.5<br>8.1 333.1<br>8.1 332.4<br>8.1 331.9<br>7.8 331.9<br>7.9 331.9<br>7.9 331.9<br>7.9 331.9<br>7.6 332.4<br>7.3 332.1 |                                                                                                                                                                                              | C PRESS OUT 12.66 12.68 12.57 12.42 12.25 12.05 11.78 11.03 10.54 10.18                                                                                                         | STATIC DENSI<br>IN OUT<br>1.02981 1.35<br>1.03495 1.38<br>1.02760 1.40<br>1.02622 1.35<br>1.02506 1.36<br>1.02590 1.37<br>1.02990 1.35<br>1.03531 1.33<br>1.03531 1.33<br>1.03531 1.33<br>1.035940 1.25<br>1.05940 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TY STATIC TE<br>IN 01<br>1949 272.2 32<br>1540 270.5 31<br>1213 268.9 31<br>1979 268.1 30<br>1946 267.9 30<br>1443 268.0 30<br>1540 268.1 30<br>1073 268.8 30<br>1440 269.4 29<br>1190 270.5 29<br>1240 271.4 29 | MP WHEEL SPEE<br>UT IN OU<br>4.4 419.2 404<br>9.0 407.4 398<br>2.3 383.4 37<br>9.1 358.8 35<br>7.2 333.8 331<br>5.4 308.2 30<br>2.8 281.8 284<br>0.3 254.1 26<br>6.8 224.9 24<br>193.7 22<br>2.6 177.0 21 | UT<br>5.5<br>5.6<br>3.8<br>2.0<br>1.2<br>3.4<br>4.7<br>2.9                                                                                                                             |
| RP<br>123456789                                       | SPAN MEAN 5.0 1.7 10.0 1.9 20.0 1.6 30.0 1.7 40.0 2.0 50.0 2.7 60.0 3.4 70.0 4.5                                                                                       | IDENCE<br>5S D<br>7<br>5<br>9<br>-1.0<br>-1.1<br>-1.1<br>-1.2<br>-1.3<br>-1.4<br>-1.4                                                                            |                                                                                                                                                                            | R EFFIC 1<br>3 .717<br>0 .776<br>9 .872<br>7 .906<br>4 .921<br>2 .927<br>4 .936                                                                                                              | LOSS COEFF<br>FOT PROP<br>209 .130<br>162 .083<br>.092 .025<br>.070 .019<br>.062 .024<br>.061 .032<br>.058 .03<br>.059 .044<br>.072 .063<br>.072 .063<br>.072 .063<br>.072 .063 | ICIENT SHOCK TO 079 079 08 079 08 051 051 051 029 029 021 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 015 | LOSS PARAMETER OT PROF SHOC 136 .022 .01 330 .016 .01 018 .005 .01 014 .004 .01 013 .005 .00 012 .007 .00 012 .009 .00 015 .014 .00 010 .020 .00                                                                 | PEAK SS<br>K MACH NO<br>1 .512<br>5 1.521<br>3 1.499<br>0 1.469<br>8 1.431<br>6 1.418<br>4 1.413<br>3 1.413<br>1 1.314                                                                                    |                                                                                                                                                                                        |

(c) 100 Percent of design speed; reading 1393

| RP                                              | RADII                                                                                                                      | AXIA                                                           | L VELOC                                                                                                               | ITY                                                                                                                 | MERIDIO                                                                                                                                               | NAL_VE                                                                                                 | LOCITY                                                                                                                                                                                             | TANG                                                                                                                                                          | VEL_                                                                                                                                               | RADIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AL VEL                                                                                                                         |                                                                                                                                            | ABS V                                                                                              | /EL                                                                                             | REL                                                                                          | VEL                                       |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | IN 0UT 24.879 24.12 24.178 23.47 22.753 22.18 21.293 20.88 19.80 19.59 18.291 17.00 15.080 15.71 13.348 14.41 11.493 12.47 | 5 181.0<br>7 189.9                                             | OUT<br>139.4<br>156.7<br>172.9<br>176.9<br>178.8<br>180.4<br>182.7<br>186.4<br>190.3<br>186.6<br>177.1                | .770<br>.825                                                                                                        | IN<br>182.5<br>191.0<br>193.4<br>199.9<br>200.7<br>200.1<br>198.4<br>195.4<br>195.4<br>178.3                                                          | DUT<br>140.3<br>157.4<br>173.3<br>177.0<br>178.8<br>180.5<br>182.9<br>187.0<br>191.4<br>188.2<br>179.0 | RATIO<br>.769<br>.824<br>.873<br>.886<br>.891<br>.902<br>.922<br>.957<br>1.004                                                                                                                     | IN<br>2.7<br>2.5<br>1.3<br>1.5<br>-7<br>4<br>3<br>1<br>2                                                                                                      | VEL 0UT 136.2 132.1 127.2 130.0 141.6 151.0 166.4 185.3 203.0 215.5                                                                                | -23.1<br>-20.3<br>-15.2<br>-9.3<br>-3.2<br>3.1<br>9.7<br>16.8<br>24.5<br>33.1<br>37.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OUT<br>-16.<br>-15.<br>-11.<br>-6.<br>-20.<br>24.<br>26.                                                                       | 0 1<br>0 1<br>8 2<br>3 2<br>6 1                                                                                                            | 98.4<br>99.9<br>00.7<br>00.1<br>98.4                                                               | VEL 0UT 195.6 205.5 215.0 219.6 224.1 229.4 237.2 250.3 266.4 276.8 280.2                       | 1N<br>453.9<br>446.9<br>429.8<br>408.7<br>387.3<br>344.4<br>320.2<br>294.7<br>266.6<br>250.8 | 300.8<br>283.3<br>264.2<br>245.3<br>227.3 |
| RP                                              | ABS MACH NO                                                                                                                | REL MA                                                         |                                                                                                                       |                                                                                                                     |                                                                                                                                                       |                                                                                                        | MACH NO                                                                                                                                                                                            | ADC DE                                                                                                                                                        |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                | RFI                                                                                                                                        | RFTA7                                                                                              | RFI                                                                                             | BETAM                                                                                        |                                           |
| 1                                               | IN OUT .552 .54 .579 .57                                                                                                   | IN<br>2 1.372<br>4 1.355                                       | .842<br>.854                                                                                                          | 1N<br>.547                                                                                                          | .386                                                                                                                                                  | IN<br>.552                                                                                             | OUT<br>.389                                                                                                                                                                                        | 1 M<br>- 9<br>7                                                                                                                                               | 44.3                                                                                                                                               | .8 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44.1                                                                                                                           | 66.5                                                                                                                                       | 0UT<br>62.<br>59.                                                                                  | 1N<br>6 66.3<br>2 64.7                                                                          | 62 5                                                                                         |                                           |
| 3                                               | . 603 . 60                                                                                                                 | 6 1.306                                                        | .849<br>.804                                                                                                          | .601                                                                                                                | .488<br>.502                                                                                                                                          | .552<br>.579<br>.603<br>.609                                                                           | .440<br>.489<br>.502                                                                                                                                                                               | .4<br>.4                                                                                                                                                      | 36.3<br>36.3                                                                                                                                       | .4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 36.3<br>36.3                                                                                                                   | 62.6                                                                                                                                       | 54.<br>51.<br>47.                                                                                  | 62.5<br>4 60.7                                                                                  | 54.8<br>51.3                                                                                 |                                           |
| 5<br>6                                          | -610 -65                                                                                                                   | 5 1.119                                                        | .752<br>.700                                                                                                          | .611<br>.610                                                                                                        | .509<br>.515                                                                                                                                          | .611<br>.610                                                                                           | עור.                                                                                                                                                                                               | .9<br>.7<br>.4<br>.4<br>.2<br>1                                                                                                                               | 37.1<br>38.1                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 37.1<br>38.1                                                                                                                   | 58.9<br>57.0                                                                                                                               | 47.<br>42.                                                                                         | 6 5/.U                                                                                          | 47.4<br>42.6                                                                                 |                                           |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9       | .604 .68<br>.594 .72<br>.579 .77                                                                                           | 0 .974                                                         | .607<br>.607                                                                                                          | .603<br>.592<br>574                                                                                                 | OUT .386 .438 .488 .502 .509 .515 .523 .536                                                                                                           | .604<br>.594<br>.579<br>.556                                                                           | .538<br>554                                                                                                                                                                                        |                                                                                                                                                               | 39.6<br>41.8<br>44.2                                                                                                                               | 1<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 39.5<br>41.7<br>44.1                                                                                                           | 62.6<br>60.7<br>58.9<br>57.0<br>54.9<br>52.5<br>49.9                                                                                       | 36.<br>27.<br>16.                                                                                  | 4 54.8<br>7 52.4<br>7 49 7                                                                      | 36.4<br>27.6<br>16.6                                                                         |                                           |
| 1 Ó<br>1 1                                      | .556 .80<br>.540 .81                                                                                                       | 5 .808                                                         | .550<br>.522                                                                                                          | .592<br>.574<br>.547<br>.527                                                                                        | .543                                                                                                                                                  | .556<br>.540                                                                                           | .547<br>.521                                                                                                                                                                                       | i                                                                                                                                                             | 47.4<br>50.6                                                                                                                                       | ABS BE<br>IN (<br>.8 .7 .4 .2111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 47.2<br>50.3                                                                                                                   | 47.0<br>45.4                                                                                                                               | J                                                                                                  | 4 46.5<br>9 44.7                                                                                | 5.4<br>-1.8                                                                                  |                                           |
| RP                                              | TOTAL PR                                                                                                                   | ESSURE                                                         | TOTAL<br>IN                                                                                                           | TEMPERA                                                                                                             | TURE                                                                                                                                                  | STATIC                                                                                                 | PRESS                                                                                                                                                                                              | STATIO                                                                                                                                                        |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                | TEMP                                                                                                                                       | ни                                                                                                 | EEL SPEE<br>N OU                                                                                | D                                                                                            |                                           |
| 1<br>2<br>3                                     | IN OUT<br>9.91 15.4<br>10.10 15.8                                                                                          | 9 1.563<br>8 1.572                                             | 288.7<br>288.9                                                                                                        | 342.6<br>339.8                                                                                                      | 1.187                                                                                                                                                 | 8.06<br>8.05                                                                                           | 12.69<br>12.70                                                                                                                                                                                     | 1.03178                                                                                                                                                       | B 1.365<br>6 1.387                                                                                                                                 | 79 2<br>83 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 72.1<br>70.7                                                                                                                   | 323.6<br>318.7                                                                                                                             | 41                                                                                                 | 8.3 405<br>6.5 394                                                                              | .6<br>.7                                                                                     |                                           |
| 3<br>4                                          | 10.15 16.1                                                                                                                 | 5 1.591                                                        | 288 8                                                                                                                 | 335 5                                                                                                               | 1 162                                                                                                                                                 |                                                                                                        |                                                                                                                                                                                                    |                                                                                                                                                               | A 1 404                                                                                                                                            | - 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                |                                                                                                                                            | 40                                                                                                 |                                                                                                 |                                                                                              |                                           |
|                                                 | 10.16 16.1                                                                                                                 | 8 1.593                                                        | 288.2                                                                                                                 | 333.1                                                                                                               | 1.156                                                                                                                                                 | 7.94                                                                                                   | 12.60<br>12.45                                                                                                                                                                                     | 1.02774                                                                                                                                                       | 3 1.403                                                                                                                                            | 57 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 69.1<br>68.2                                                                                                                   | 312.5                                                                                                                                      | 38                                                                                                 | 2.6 373<br>8.0 351                                                                              | .0<br>.2                                                                                     |                                           |
| 5<br>6                                          | 10.16 16.1                                                                                                                 | 8 1.593<br>4 1.589<br>2 1.587                                  | 288.2<br>288.2<br>288.0                                                                                               | 333.1<br>332.2<br>331.5                                                                                             | 1.156<br>1.153<br>1.151                                                                                                                               | 7.94<br>7.91<br>7.89<br>7.90                                                                           | 12.60<br>12.45<br>12.28<br>12.08                                                                                                                                                                   | 1.02774<br>1.02701<br>1.02581<br>1.02701                                                                                                                      | 3 1.403<br>7 1.392<br>1 1.378                                                                                                                      | 54 26<br>57 26<br>50 26<br>70 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 69.1<br>68.2<br>68.1<br>68.0                                                                                                   | 312.5<br>309.1<br>307.2<br>305.3                                                                                                           | 38:<br>35:<br>33:<br>30:<br>28:                                                                    | 2.6 373<br>8.0 351<br>3.1 329                                                                   | .0<br>.2<br>.5                                                                               |                                           |
| 5                                               | 10.16 16.1<br>10.16 16.1<br>10.16 16.0<br>10.16 16.2                                                                       | 2 1.587<br>9 1.584<br>7 1.602<br>8 1.613                       | 288.2<br>288.2<br>288.0<br>287.8<br>287.6<br>287.7                                                                    | 333.1<br>332.2<br>331.5<br>330.9<br>331.4<br>332.5                                                                  | 1.156<br>1.153<br>1.151<br>1.150<br>1.152<br>1.156                                                                                                    | 7.94<br>7.91<br>7.89<br>7.90<br>7.94<br>8.00<br>8.09                                                   | 12.60<br>12.45<br>12.28<br>12.08<br>11.81<br>11.51<br>11.05                                                                                                                                        | 1.02774<br>1.02703<br>1.02583<br>1.02703<br>1.03086<br>1.03706                                                                                                | 1.404<br>1.403<br>7 1.392<br>1 1.378<br>8 1.358<br>6 1.335<br>4 1.296                                                                              | 54 26<br>57 26<br>50 26<br>70 26<br>17 26<br>67 26<br>35 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 69.1<br>68.2<br>68.1<br>68.0<br>68.2<br>68.6<br>69.5                                                                           | 312.5<br>309.1<br>307.2<br>305.3<br>302.9<br>300.2<br>297.1                                                                                | 38<br>35<br>33<br>33<br>30<br>28<br>22<br>25<br>22                                                 | 2.6 373<br>8.0 351<br>3.1 329<br>7.5 307<br>1.2 285                                             | .0<br>.2<br>.5<br>.7                                                                         |                                           |
| 5<br>6<br>7<br>8                                | 10.16 16.1<br>10.16 16.1<br>10.16 16.0<br>10.16 16.2<br>10.16 16.3<br>10.16 16.3                                           | 2 1.587<br>9 1.584<br>7 1.602<br>8 1.613<br>3 1.598<br>5 1.561 | 288.2<br>288.2<br>288.0<br>287.8<br>287.6<br>287.7<br>287.6<br>287.3                                                  | 333.1<br>332.2<br>331.5<br>330.9<br>331.4<br>332.5<br>332.3<br>332.3                                                | 1.156<br>1.153<br>1.151<br>1.150<br>1.152<br>1.156<br>1.155<br>1.155                                                                                  | 7.94<br>7.91<br>7.89<br>7.90<br>7.94<br>8.00<br>8.09<br>8.23<br>8.33                                   | 12.60<br>12.45<br>12.28<br>12.08<br>11.81<br>11.51<br>11.05<br>10.59<br>10.23                                                                                                                      | 1.02774<br>1.02701<br>1.0258<br>1.02701<br>1.03088<br>1.03706<br>1.04564<br>1.05922                                                                           | 1 .403<br>7 1.392<br>1 1.378<br>8 1.358<br>6 1.335<br>4 1.296<br>2 1.254<br>4 1.215                                                                | 54 27<br>57 27<br>50 27<br>70 27<br>117 27<br>67 27<br>35 27<br>39 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 69.1<br>68.2<br>68.1<br>68.0<br>68.2<br>68.6<br>69.5<br>70.8                                                                   | 312.5<br>309.1<br>307.2<br>305.3<br>302.9<br>300.2<br>297.1<br>294.1                                                                       | 38<br>35<br>33<br>30<br>28<br>22<br>25<br>22<br>19                                                 | 2.6 373<br>8.0 351<br>3.1 329<br>7.5 307<br>1.2 285<br>3.6 264<br>4.4 242<br>3.3 220<br>6.6 209 | .0<br>.2<br>.5<br>.7<br>.9<br>.4<br>.7                                                       |                                           |
| 5<br>6<br>7<br>8<br>9<br>10                     | 10.16 16.1<br>10.16 16.1<br>10.16 16.0<br>10.16 16.2<br>10.16 16.3<br>10.16 16.3                                           | 2 1.587<br>9 1.584<br>7 1.602<br>8 1.613<br>3 1.598<br>5 1.561 | 288.2<br>288.2<br>288.0<br>287.8<br>287.6<br>287.7<br>287.6<br>287.3                                                  | TEMPERA<br>042.6<br>339.8<br>335.5<br>333.1<br>331.2<br>331.5<br>331.4<br>332.5<br>D                                | 1.156<br>1.153<br>1.151<br>1.150<br>1.152<br>1.156<br>1.155<br>1.157                                                                                  | 7.94<br>7.91<br>7.89<br>7.90<br>7.94<br>8.00<br>8.09<br>8.23<br>8.33                                   | PRESS<br>0UT<br>12.69<br>12.70<br>12.60<br>12.45<br>12.08<br>11.81<br>11.51<br>11.55<br>10.59<br>10.23<br>OSS COEF                                                                                 | 1.02774<br>1.02702<br>1.02583<br>1.02703<br>1.03704<br>1.03704<br>1.04564<br>1.05922<br>1.06514                                                               | 1 .403<br>7 1.403<br>7 1.378<br>8 1.358<br>6 1.335<br>4 1.296<br>2 1.254<br>4 1.215                                                                | 54 2:<br>57 2:<br>50 2:<br>70 2:<br>17 2:<br>67 2:<br>35 2:<br>39 2:<br>84 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 69.1<br>68.2<br>68.1<br>68.0<br>68.2<br>69.5<br>70.8<br>71.4<br>RAMETE                                                         | 312.5<br>309.1<br>307.2<br>305.3<br>302.9<br>300.2<br>297.1<br>294.1<br>293.2                                                              | 38<br>35<br>33<br>30<br>28<br>25<br>22<br>19<br>17<br>PEAK                                         | 2.6 373<br>8.0 351<br>3.1 329<br>7.5 307<br>1.2 285<br>3.6 264<br>4.4 242<br>3.3 220<br>6.6 209 | .0<br>.2<br>.5<br>.7<br>.9<br>.4<br>.7                                                       |                                           |
| 5<br>6<br>7<br>8<br>9<br>10<br>11<br>RP         | 10.16 16.1<br>10.16 16.1<br>10.16 16.0<br>10.16 16.2<br>10.16 16.3<br>10.16 16.3                                           | 2 1.587<br>9 1.584<br>7 1.602<br>8 1.613<br>3 1.598<br>5 1.561 | 288.2<br>288.2<br>288.0<br>287.8<br>287.6<br>287.7<br>287.6<br>287.3                                                  | 333.1<br>332.2<br>331.5<br>330.9<br>331.4<br>332.5<br>332.3<br>332.3<br>D<br>FACTOR<br>.419                         | 1.156<br>1.153<br>1.151<br>1.150<br>1.152<br>1.156<br>1.155<br>1.157                                                                                  | 7.94<br>7.91<br>7.90<br>7.90<br>7.94<br>8.00<br>8.09<br>8.23<br>8.33                                   | 12.60<br>12.45<br>12.28<br>12.08<br>11.81<br>11.51<br>10.59<br>10.23<br>0SS COEF<br>T PRO<br>00 .12                                                                                                | 1.02774<br>1.02702<br>1.0258<br>1.02703<br>1.03704<br>1.03706<br>1.04564<br>1.05922<br>1.06914<br>FICIENT<br>F SHOCI                                          | 1 . 403<br>7 1 . 392<br>1 1 . 378<br>8 1 . 358<br>6 1 . 335<br>4 1 . 254<br>4 1 . 215<br>K TOT<br>9 . 03                                           | 54 21<br>57 21<br>50 22<br>70 22<br>17 21<br>667 22<br>335 22<br>384 2<br>0SS PA<br>PRI<br>50 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 69.1<br>68.2<br>68.1<br>68.0<br>68.2<br>68.5<br>70.8<br>71.4<br>RAME TE<br>0F<br>SF                                            | 312.5<br>309.1<br>307.2<br>305.3<br>302.9<br>300.2<br>297.1<br>294.1<br>293.2<br>R<br>00CK<br>014                                          | 38<br>35<br>33<br>33<br>30<br>28<br>25<br>22<br>19<br>17<br>PEAK<br>HACH<br>1.51                   | 2.6 373<br>8.0 351<br>3.1 329<br>7.5 307<br>1.2 285<br>3.6 264<br>4.4 242<br>3.3 220<br>6.6 209 | .0<br>.2<br>.5<br>.7<br>.9<br>.4<br>.7                                                       |                                           |
| 5<br>6<br>7<br>8<br>9<br>10<br>11<br>RP         | 10.16 16.1<br>10.16 16.1<br>10.16 16.0<br>10.16 16.2<br>10.16 16.3<br>10.16 16.3                                           | 2 1.587<br>9 1.584<br>7 1.602<br>8 1.613<br>3 1.598<br>5 1.561 | 288.2<br>288.2<br>288.0<br>287.8<br>287.6<br>287.7<br>287.6<br>287.3<br>DEVIA<br>9.3<br>6.6<br>3.2                    | 333.1<br>332.2<br>331.5<br>330.9<br>331.4<br>332.5<br>332.3<br>332.3<br>D<br>FACTOR<br>.4400<br>.400                | 1.156<br>1.153<br>1.151<br>1.150<br>1.152<br>1.156<br>1.155<br>1.157<br>2.729<br>2.782<br>2.782<br>3.912                                              | 7.94<br>7.91<br>7.90<br>7.90<br>8.00<br>8.00<br>8.23<br>8.33                                           | 12.60<br>12.45<br>12.45<br>12.08<br>11.81<br>11.51<br>11.51<br>11.59<br>10.59<br>10.23<br>0SS COEF<br>7 PRO<br>957 .08                                                                             | 1.02774<br>1.02702<br>1.0258<br>1.02703<br>1.03704<br>1.03704<br>1.05922<br>1.06514<br>FICIENT<br>F SHOCK<br>1.0773<br>1.0763                                 | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                                                                                                            | 54 22<br>550 22<br>770 22<br>167 22<br>339 22<br>339 22<br>84 2 2<br>0SS PAR<br>50 0<br>8 0<br>0 8 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 69.1<br>68.2<br>68.0<br>68.6<br>69.5<br>70.8<br>71.4<br>RAME TE<br>021                                                         | 312.5<br>3309.1<br>3307.2<br>3305.3<br>3302.9<br>3300.2<br>297.1<br>2297.1<br>014<br>014<br>0110                                           | 38<br>35<br>33<br>30<br>28<br>22<br>19<br>17<br>PEAK<br>MACH<br>1.51<br>1.51<br>1.49               | 2.6 373<br>8.0 351<br>3.1 329<br>7.5 307<br>1.2 285<br>3.6 264<br>4.4 242<br>3.3 220<br>6.6 209 | .0<br>.2<br>.5<br>.7<br>.9<br>.4<br>.7                                                       |                                           |
| 5<br>6<br>7<br>8<br>9<br>10<br>11<br>RP         | 10.16 16.1<br>10.16 16.1<br>10.16 16.0<br>10.16 16.2<br>10.16 16.3<br>10.16 16.3                                           | 2 1.587<br>9 1.584<br>7 1.602<br>8 1.613<br>3 1.598<br>5 1.561 | 288.2<br>288.2<br>288.0<br>287.6<br>287.7<br>287.6<br>287.3<br>DEVIA<br>9.3<br>6.6<br>3.1<br>4.2<br>57.4              | 333.1<br>332.2<br>331.5<br>331.4<br>332.5<br>331.4<br>332.5<br>332.3<br>D<br>FACTOR<br>.410<br>.408<br>.408<br>.408 | 1.156<br>1.153<br>1.151<br>1.150<br>1.152<br>1.156<br>1.155<br>1.157<br>2.729<br>2.782<br>2.933<br>2.933<br>2.933                                     | 7.94<br>7.91<br>7.90<br>7.90<br>7.94<br>8.09<br>8.23<br>8.33<br>10<br>22<br>.00<br>.00                 | 12.60<br>12.45<br>12.48<br>12.08<br>11.81<br>11.51<br>10.59<br>10.23<br>0SS COEF<br>PRO<br>0 .12<br>57 .08<br>89 .02<br>565 .01                                                                    | 1.02774<br>1.02702<br>1.0258<br>1.0270<br>1.0308<br>1.03706<br>1.0456<br>1.05922<br>1.06\$14<br>FICIENT<br>F SHOCK<br>11 .077<br>13 .066<br>5 .056<br>14 .032 | 1 1 403<br>7 1 378<br>1 1 378<br>8 1 1 338<br>6 1 1 335<br>4 1 2254<br>4 1 225<br>4 1 225<br>7 1 03<br>6 01<br>0 01<br>0 01                        | 547 22.550 22.550 22.550 22.550 22.550 22.550 22.550 22.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.550 20.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 69.1<br>68.2<br>668.0<br>668.2<br>668.6<br>6771.4<br>RAMETE<br>21<br>1055.0<br>004<br>007                                      | 312.5<br>3309.1<br>3307.2<br>3305.9<br>2377.1<br>3300.9<br>297.1<br>2994.1<br>2014<br>014<br>013<br>010<br>010<br>000<br>000<br>000<br>000 | 38<br>35<br>33<br>30<br>28<br>29<br>22<br>19<br>17<br>PEAK<br>HACH<br>1.51<br>1.49<br>1.43<br>1.41 | 2.6 373<br>8.0 351<br>3.1 329<br>7.5 307<br>1.2 285<br>3.6 264<br>4.4 242<br>3.3 220<br>6.6 209 | .0<br>.2<br>.5<br>.7<br>.9<br>.4<br>.7                                                       |                                           |
| 5<br>6<br>7<br>8<br>9<br>10<br>11<br>RP         | 10.16 16.1<br>10.16 16.1<br>10.16 16.0<br>10.16 16.2<br>10.16 16.3<br>10.16 16.3                                           | 2 1.587<br>9 1.584<br>7 1.602<br>8 1.613<br>3 1.598            | 288.2<br>288.2<br>288.2<br>287.8<br>287.6<br>287.7<br>287.3<br>DEVIA<br>9.3<br>6.6<br>3.2<br>3.1<br>4.2<br>5.9<br>7.4 | 333.1<br>332.2<br>331.5<br>330.9<br>331.4<br>332.5<br>332.3<br>332.3<br>D<br>FACTOR<br>.440<br>.449<br>.441<br>.457 | 1.156<br>1.153<br>1.151<br>1.150<br>1.152<br>1.156<br>1.155<br>1.157<br>2.729<br>2.783<br>2.783<br>2.783<br>2.933<br>2.933<br>2.933<br>2.934<br>2.944 | 7.94<br>7.91<br>7.90<br>7.90<br>8.00<br>8.23<br>8.33<br>10<br>20<br>.00<br>.00<br>.00                  | 12.60<br>12.45<br>12.28<br>12.08<br>11.81<br>11.51<br>10.59<br>10.23<br>0SS COEF<br>10.23<br>0SS COEF<br>10.23<br>0SS COEF<br>10.23<br>0SS COEF<br>10.23<br>0SS COEF<br>10.23<br>0SS COEF<br>10.23 | 1.02774 1.02702 1.0258 1.02702 1.0308 1.03708 1.0456 1.05922 1.06514 FICIENT F SHOCK 1.077 1.077 1.077 1.073 1.088 1.029 1.031 1.089 1.090                    | 1 . 403<br>7 1 . 378<br>8 1 . 378<br>8 1 . 338<br>6 1 . 338<br>6 4 1 . 254<br>4 1 . 215<br>K TOT<br>9 . 03<br>6 . 01<br>1 . 01<br>1 . 01<br>1 . 01 | 54 22<br>550 22<br>570 22<br>570 22<br>67 22<br>635 22<br>6339 22<br>60 00<br>60 | 69.1<br>68.2<br>668.0<br>668.2<br>668.6<br>670.8<br>71.4<br>RDF<br>RDF<br>RDF<br>RDF<br>RDF<br>RDF<br>RDF<br>RDF<br>RDF<br>RDF | 312.51<br>3309.12<br>33052.92<br>33052.92<br>33052.92<br>93.297.11<br>20014<br>0014<br>0014<br>0014<br>0008<br>0004<br>0004                | 38<br>35<br>33<br>30<br>28<br>25<br>22<br>22<br>17<br>PEAK<br>HACH<br>1.51<br>1.41<br>1.41<br>1.41 | 2.6 373<br>8.0 351<br>3.1 329<br>7.5 307<br>1.2 285<br>3.6 264<br>4.4 242<br>3.3 220<br>6.6 209 | .0<br>.2<br>.5<br>.7<br>.9<br>.4<br>.7                                                       |                                           |

(d) 100 Percent of design speed; reading 1415

| RP 1 2 3 4 5 6 7 8 9 10                                                         | RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                                         | RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                                                       | 2 2 2 2 2 3 4 5 1 5 6 1 7 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                      |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| PERCENT<br>SPAN<br>5.0<br>10.0<br>20.0<br>30.0<br>40.0<br>50.0<br>60.0<br>70.0  | 9.92<br>10.10<br>10.15<br>10.16<br>10.16<br>10.15<br>10.15<br>10.15                                                                     | ABS MAC<br>IN .551<br>.577<br>.601<br>.609<br>.607<br>.602<br>.592<br>.577<br>.554                                                                    | RADI<br>IN<br>24.879 2<br>24.178 2<br>22.753 2<br>21.293 2<br>19.809 1<br>18.291 1<br>16.723 1<br>15.080 1<br>11.493 1<br>10.503 1 |
| INCI<br>HEAN<br>1.8<br>1.6<br>1.7<br>2.1<br>2.7<br>3.4<br>5.0                   | 15.91<br>16.27<br>16.48<br>16.50<br>16.41<br>16.35<br>16.27<br>16.41<br>16.48<br>16.34                                                  | H NO<br>OUT<br>-554<br>-585<br>-613<br>-629<br>-642<br>-657<br>-680<br>-719<br>-766<br>-804<br>-817                                                   | 0UT<br>4.125<br>3.477<br>2.184<br>0.889<br>9.596<br>8.301<br>7.005<br>5.712<br>4.417<br>3.124                                      |
| DENCE<br>SS<br>6<br>9<br>-1.0<br>-1.1<br>-1.1<br>-1.3                           | URE<br>RATIO<br>1.604<br>1.611<br>1.623<br>1.625<br>1.616<br>1.610<br>1.602<br>1.616<br>1.623<br>1.609<br>1.573                         | REL MAI<br>1N<br>1.373<br>1.347<br>1.300<br>1.240<br>1.179<br>1.115<br>1.045<br>.971<br>.893<br>.806<br>.759                                          | IN<br>180.8<br>189.3<br>197.1<br>199.0<br>200.0<br>199.4<br>197.4<br>197.4<br>188.5<br>179.7                                       |
| DEVIA<br>8.6<br>6.0<br>2.5<br>3.7<br>5.5<br>7.0                                 | TOTAL<br>IN<br>288.7<br>288.9<br>288.8<br>287.9<br>287.9<br>287.7<br>287.7<br>287.7                                                     | CH NO<br>DUT<br>-832<br>-836<br>-829<br>-785<br>-736<br>-687<br>-637<br>-594<br>-533<br>-507                                                          | VELOCI<br>OUT<br>141.3<br>156.2<br>171.1<br>175.4<br>177.1<br>178.2<br>179.8<br>183.1<br>186.3<br>181.4<br>172.0                   |
| .451<br>.435<br>.416<br>.425<br>.439                                            | 344.6<br>341.8<br>337.3<br>335.1<br>333.7<br>333.4<br>331.8<br>332.2<br>333.0                                                           | AXIAL M<br>1N .547 .574 .599 .606 .609 .607 .601 .590 .572 .545 .526                                                                                  | TY<br>RATIO<br>-781<br>-825<br>-868<br>-881<br>-886<br>-894<br>-910<br>-944<br>-989<br>1.009                                       |
| .746<br>.798<br>.883<br>.915<br>.928<br>.942                                    | TURE<br>RATIO<br>1.194<br>1.183<br>1.168<br>1.168<br>1.158<br>1.155<br>1.153<br>1.154<br>1.154<br>1.159<br>1.161                        | ACH NO 10 0 10 10 10 10 10 10 10 10 10 10 10 1                                                                                                        | 190.4<br>197.7<br>199.2<br>200.0<br>199.4<br>197.7<br>194.7<br>190.0<br>182.7                                                      |
| TOT<br>.193<br>.152<br>.087<br>.066<br>.058                                     | 8.07 1<br>8.06 1<br>7.95 1<br>7.92 1<br>7.91 1<br>7.91 1<br>7.95 1<br>8.01 1<br>8.10 1                                                  | MERID MA IN .551 .577 .601 .609 .607 .602 .592 .577 .538                                                                                              | 0UT R.<br>142.2<br>156.9<br>171.5<br>175.5<br>177.1<br>178.3<br>180.0<br>183.7                                                     |
| 3 .114<br>2 .078<br>7 .023<br>5 .017<br>8 .021<br>0 .022<br>8 .032              | OUT<br>2.91<br>2.90<br>2.79<br>2.64<br>2.44<br>1.94<br>1.63<br>1.17<br>0.67                                                             | CH NO<br>OUT<br>.394<br>.437<br>.483<br>.497<br>.508<br>.515<br>.528<br>.542<br>.532                                                                  |                                                                                                                                    |
| ICIENT<br>SHOCK<br>.079<br>.074<br>.064<br>.049<br>.037<br>.028<br>.020         | 1.03659<br>1.02896<br>1.02799<br>1.02723<br>1.02874<br>1.03211<br>1.03785<br>1.04673                                                    | 1.5 41<br>.9 38<br>.7 37<br>.4 38<br>.2 39<br>.2 40<br>.2 42<br>0 48                                                                                  | 2.5 14<br>4.9 13<br>3.2 13<br>2.6 13<br>1.5 14<br>.6 14<br>.7 15<br>.8 16<br>.1 20                                                 |
| LOSS<br>TOT<br>.034<br>.029<br>.017<br>.014<br>.012<br>.010<br>.011             | DENSITY<br>OUT<br>1.38584<br>1.40533<br>1.42040<br>1.41790<br>1.40573<br>1.39321<br>1.36945<br>1.34620<br>1.30630<br>1.26093<br>1.22054 |                                                                                                                                                       | IUT IN<br>11.0 -23<br>89.4 -20<br>83.9 -15<br>86.6 -9<br>10.4 -3<br>86.0 3<br>855.1 9<br>859.6 16                                  |
| .020 .015 .005 .003 .004 .005 .007 .007                                         | 270.9<br>269.3<br>268.4<br>268.2<br>268.0<br>268.3<br>268.3<br>269.7<br>270.7                                                           | OUT<br>44.7<br>41.6<br>38.0<br>37.9<br>38.4<br>39.3<br>40.7<br>42.7<br>45.0<br>48.6                                                                   | .2 -15.0<br>.2 -10.9<br>.2 -5.9<br>.18<br>.1 4.3<br>.7 9.4<br>.7 14.9<br>.4 20.2<br>.0 24.2                                        |
| DCK M/<br>014<br>014<br>013<br>010<br>008<br>006                                | TEMP<br>0UT<br>324.6<br>319.8<br>313.8<br>310.5<br>308.3<br>308.7<br>301.0<br>298.0<br>294.8<br>294.1                                   | 66.5<br>64.8<br>62.6<br>60.8<br>58.9<br>57.0                                                                                                          | IN<br>182<br>190<br>197<br>199<br>200<br>199<br>197<br>194                                                                         |
| EAK SS<br>ACH NO<br>1.514<br>1.506<br>1.490<br>1.457<br>1.430<br>1.415<br>1.411 | HHEEL<br>IN<br>418.5<br>406.7<br>382.7<br>353.2<br>307.6<br>281.3<br>253.6<br>224.3<br>176.7                                            | TAZ<br>OUT<br>61.9<br>58.6<br>54.4<br>50.8<br>46.9<br>42.2<br>36.1<br>27.3<br>16.4<br>4.1<br>-3.5                                                     | 2.3 200<br>2.4 209<br>2.7 217<br>2.2 222<br>2.0 226<br>2.4 230<br>2.7 237<br>2.7 250<br>2.0 265<br>2.7 276                         |
|                                                                                 | SPEED<br>OUT<br>405.8<br>394.9<br>373.1<br>351.3<br>329.6<br>307.8<br>286.0<br>264.3<br>242.5<br>220.7<br>209.8                         | REL BETAM<br>IN OUT<br>66.3 61.8<br>64.6 58.5<br>62.5 54.4<br>60.7 50.7<br>58.9 46.9<br>57.0 42.2<br>54.8 36.0<br>52.4 27.3<br>49.8 16.3<br>44.9 -3.5 | .2 454.1<br>.8 444.6<br>.6 427.9<br>.4 407.6<br>.0 387.3<br>.4 366.1<br>.6 343.2<br>.0 319.1<br>.2 294.2                           |
|                                                                                 |                                                                                                                                         |                                                                                                                                                       | VEL 0UT 300.6 299.8 294.3 277.3 259.2 240.8 226.7 195.3 183.5 174.2                                                                |



(e) 100 Percent of design speed; reading 1426

| RP<br>1<br>2                                          | RADII<br>IN OUT<br>24.879 24.125<br>24.178 23.477                                                                                                                | IN<br>179.8 1<br>188.3 1                                                                                      | 15 <b>5.1</b> .8                                                                                      | TIO IN<br>769 181.3<br>824 189.4                                                                                                                                                  | 155.8 .82                                                                                                             | 0 IN<br>8 2.9 1<br>3 2.1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DUT IN<br>47.0 -22<br>41.3 -20                                                                                    | 2.9 -16.2<br>1.1 -14.9                                                                                                                                | ABS VEL<br>IN OUT<br>181.3 202.5<br>189.4 210.4<br>196.6 219.0                                                                                                      | REL VE<br>IN<br>454.0 2<br>447.3 2<br>429.0 2                                        |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                 | 22.753 22.184<br>21.293 20.889<br>19.809 19.596<br>18.291 18.301<br>16.723 17.005<br>15.080 15.712<br>13.348 14.417<br>11.493 13.124<br>10.503 12.476            | 198.0 1<br>199.0 1<br>198.4 1<br>196.4 1<br>193.0 1<br>187.5 1                                                | 174.1 .8<br>176.2 .8<br>175.9 .8<br>176.8 .9<br>179.7 .9<br>181.5 .9                                  | 887 198.4<br>900 196.7<br>931 193.7<br>968 189.0                                                                                                                                  | 170.3 .86<br>174.2 .87<br>176.2 .88<br>176.0 .88<br>177.1 .90<br>180.3 .93<br>182.6 .96<br>177.2 .97<br>167.0 .94     | 9 2.0 1<br>51 1<br>72 1<br>03 1<br>14 1<br>53 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 142.7 -3<br>148.3 3<br>156.7 9<br>171.0 16<br>189.5 24<br>210.2 32                                                | 7.2 -5.9<br>3.18<br>3.1 4.2<br>7.6 9.3<br>3.6 14.6                                                                                                    | 196.6 219.0<br>198.2 223.9<br>199.0 226.7<br>198.4 230.2<br>196.7 236.4<br>193.7 248.5<br>189.0 263.1<br>181.8 274.9<br>176.8 279.8                                 | 408.0 2<br>388.6 2<br>366.7 2<br>343.8 2<br>319.8 2<br>294.2 1<br>265.8 1<br>250.5 1 |
| RP 1 2 3 4 5 6 7 8 9 10 11                            | ABS HACH NO IN OUT .548 .559 .574 .585 .615 .603 .633 .604 .655 .598 .675 .599 .713 .574 .759 .551 .797 .535 .812                                                | REL MACH<br>IN<br>1.372<br>1.355<br>1.304<br>1.241<br>1.183<br>1.116<br>1.046<br>.972<br>.893<br>.805<br>.758 | 0UT<br>.812<br>.829<br>.818<br>.773<br>.729<br>.677<br>.627<br>.583<br>.549                           | IAL MACH NO IN OUT .543 .382 .571 .432 .596 .478 .602 .492 .606 .499 .604 .501 .598 .505 .587 .516 .569 .523 .542 .509 .523 .479                                                  | .574 .4<br>.597 .4<br>.603 .4<br>.604 .5<br>.598 .599 .574 .551 .5                                                    | NO ABS BETT IN (84 9 4 9 6 9 6 9 6 9 6 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | TAZ ABS<br>DUT IN<br>46.8 .9<br>42.3 .6<br>39.0 .6<br>39.06<br>39.01<br>40.11<br>41.51<br>43.61<br>43.61<br>53.72 | BETAM REL<br>OUT 11<br>9 46.6 66<br>6 42.2 65<br>6 38.9 62<br>6 38.9 61<br>6 39.0 59<br>1 40.1 57<br>1 41.5 55<br>1 43.5 52<br>2 46.1 50<br>1 49.9 47 | NOUT IN 66.5 1 58.6 65.0 8 54.2 62.7 10 50.5 60.2 2 46.8 59.2 2 42.3 57.2 1 36.3 55.1 3 16.4 50.3 3 16.4 50.3                                                       | BETAM<br>OUT<br>61.8<br>58.5<br>54.2<br>1.46.8<br>42.3<br>2.42.3<br>2.16.3<br>3.5    |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9       | TOTAL PRES IN OUT 9.92 16.26 10.10 16.58 10.15 16.78 10.16 16.81 10.16 16.70 10.15 16.55 10.16 16.44 10.15 16.58 10.15 16.45 10.15 16.45 10.15 16.45 10.15 16.45 | RATIO<br>1.639<br>1.642<br>1.653<br>1.655<br>1.644<br>1.629<br>1.619<br>1.632<br>1.633<br>1.620               | IN 01<br>288.8 34<br>288.6 33<br>288.2 33<br>288.2 33<br>289.2 33<br>287.9 33<br>287.8 33<br>287.6 33 | MPERATURE<br>UT RATIO<br>7.1 1.202<br>3.6 1.190<br>9.0 1.175<br>6.8 1.169<br>5.1 1.163<br>3.6 1.158<br>2.7 1.158<br>2.7 1.156<br>3.0 1.157<br>3.6 1.160<br>3.9 1.161<br>4.5 1.164 | STATIC PRESIN DUT 8.09 13.1 8.08 13.1 7.97 12.5 7.99 12.6 7.93 12.6 7.93 12.6 7.93 12.6 8.12 11.5 8.26 10.8 8.36 10.4 | 1 N<br>1 03480<br>1 1 03921<br>29 1 03171<br>33 1 03011<br>55 1 02907<br>40 1 03007<br>41 1 03382<br>31 1 03931<br>32 1 04857<br>33 1 06189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.42498<br>1.43676<br>1.43410<br>1.42382<br>1.40662<br>1.38438<br>1.36101<br>1.31856<br>1.27345                   | STATIC TEMIN OUT 272.4 326 270.9 321 268.6 311 268.4 307 268.6 304 269.1 302 269.8 299 271.1 296 271.8 295                                            | I N OU<br>7 419.1 406<br>.5 407.3 399<br>.1 383.3 373<br>.8 358.7 35<br>.5 333.7 336<br>.2 308.1 300<br>.8 281.7 286<br>.2 254.0 266<br>.1 224.9 244<br>.1 193.6 22 | JT<br>5.4<br>5.5<br>3.7<br>1.1<br>3.3<br>5.5<br>4.7<br>2.9                           |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | PERCENT INC<br>SPAN MEAN<br>5.0 1.9<br>10.0 2.1<br>20.0 1.9<br>30.0 1.9<br>40.0 2.4<br>50.0 3.7<br>70.0 5.3<br>80.0 6.2<br>90.0 5.5                              | 4<br>3<br>7<br>8<br>7<br>8<br>-1.0<br>-1.1                                                                    | DEVIA F 8.6 6.0 2.6 2.2 3.5 5.6 7.2 7.9 8.7 9.9 8.9                                                   | D<br>ACTOR EFFI<br>.469 .75<br>.446 .80<br>.429 .88<br>.438 .91<br>.449 .93<br>.466 .94<br>.481 .94<br>.494 .95<br>.496 .94<br>.490 .91                                           | C TOT<br>1 .197<br>1 .153<br>3 .090<br>8 .065<br>7 .053<br>5 .048<br>9 .049<br>17 .046<br>11 .073<br>7 .121           | COEFFICIENT PROF SHOCK .117 .080 .075 .079 .024 .066 .015 .019 .029 .027 .022 .031 .015 .070 .013 .015 .070 .003 .121 .000 .224 .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TOT<br>.035<br>.029<br>.018<br>.014<br>.011<br>.010<br>.010<br>.015                                               | PARAMETER PROF SHOCK .021 .014 .014 .015 .003 .010 .003 .008 .004 .006 .006 .005 .007 .001 .014 .001 .023 .000                                        | 1.517<br>1.524<br>1.502<br>1.465<br>1.442<br>1.424<br>1.421<br>1.419<br>1.319<br>1.319                                                                              |                                                                                      |

TABLE IX. - Continued. BLADE-ELEMENT PERFORMANCE AT BLADE EDGES FOR FIRST-STAGE ROTOR

(f) 100 Percent of design speed; reading 1437

| RP            | RADII<br>IN OUT                                 |                          | L VELOCI                |                      | MERIDION<br>IN                       | AL VEL                                  | OCITY<br>RATIO          | TANG<br>IN                 | VEL<br>OUT              | RAD<br>I N           | IAL VEL                   |                         | ABS VEL                          | REL<br>IT IN                        | VEL<br>OUT              |
|---------------|-------------------------------------------------|--------------------------|-------------------------|----------------------|--------------------------------------|-----------------------------------------|-------------------------|----------------------------|-------------------------|----------------------|---------------------------|-------------------------|----------------------------------|-------------------------------------|-------------------------|
| 1<br>2<br>3   | 24.879 24.125<br>24.178 23.477<br>22.753 22.186 | 7 187.4                  | 138.3<br>155.2<br>169.8 | .828                 |                                      | 139.3<br>155.9<br>170.1                 | .772<br>.827<br>.869    | 1.4                        | 150.7<br>145.0<br>140.3 | -22.<br>-20.<br>-15. | 0 -14                     | .9 18                   | 80.4 205<br>88.5 212<br>75.7 220 | 2.9 447.9                           | 291.5<br>295.4<br>289.1 |
| 4 5           | 21.293 20.889<br>19.809 19.596                  | 9 197.1<br>5 198.2       | 172.7<br>174.1          | .876<br>.878         | 197.4<br>198.2                       | 172.8<br>174.1                          | .876<br>.878            | 1.8                        | 143.5<br>146.0          | -9.<br>-3.           | 2 -5                      | .8 19<br>.8 19          | 77.4 224<br>78.2 227             | 1.6 408.1<br>1.2 388.2              | 271.0<br>253.6          |
| 6<br>7<br>8   | 18.291 18.301<br>16.723 17.001<br>15.080 15.71  | 5 195.5<br>2 192.2       | 173.5<br>173.5<br>176.2 | .887<br>.917         | 195.8<br>192.9                       | 173.5<br>173.8<br>176.8                 | .878<br>.888<br>.917    | <b>1</b><br>9              | 150.9<br>159.8<br>172.9 | 3.<br>9.<br>16.      | 6 9<br>5 14               | .1 19<br>.4 19          | 77.5 229<br>75.8 236<br>72.9 247 | 343.4                               | 234.5<br>215.2<br>199.3 |
| 9<br>10<br>11 | 13.348 14.413<br>11.493 13.124<br>10.503 12.476 | 7 186.7<br>4 178.0       | 177.8<br>171.2<br>160.5 | .952<br>.962         | 188.2<br>181.0                       | 178.8<br>172. <b>7</b><br>162. <b>3</b> | .950<br>.954<br>.921    | 5                          | 191.5<br>212.4<br>227.8 | 24.<br>32.<br>37.    | 7 22                      | .3 18<br>.9 18          | 38.2 262<br>31.0 273<br>76.1 279 | 3.7 265.5                           | 186.1<br>173.0<br>163.2 |
| RP            | ABS MACH NO                                     | REL MA                   |                         | AXIAL HA             |                                      |                                         | IACH NO<br>OUT          | ABS BE                     |                         | ABS E                |                           |                         | BETAZ<br>OUT                     | REL BETAM                           |                         |
| 1 2           | .545 .56<br>.571 .59                            | 5 1.373<br>1 1.357       | .803<br>.820            | .541<br>.568         | .381<br>.431                         | .545<br>.571                            | .384                    | .7                         | 47.4<br>43.0            | .7                   | 47.2<br>42.9              | 66.8<br>65.2            | 61.6<br>58.3                     | 66.6 61.5<br>65.1 58.1              |                         |
| 3<br>4<br>5   | .595 .61<br>.600 .63<br>.603 .64                | 3 1.241<br>3 1.181       | .811<br>.764<br>.718    | .593<br>.600<br>.603 | .476<br>.487<br>.493                 | .595<br>.600<br>.603                    | .477<br>.487<br>.493    | - 1                        | 39.6<br>39.7<br>40.0    | .3<br>.5<br>.1       | 39.5<br>39.7<br>40.0      | 63.0<br>61.1<br>59.3    | 54.0<br>50.4<br>46.7             | 62.9 54.0<br>61.1 50.4<br>59.3 46.7 |                         |
| 6<br>7<br>8   | .601 .65<br>.596 .67<br>.586 .70                | 3 1.045                  | .666<br>.614<br>.571    | .601<br>.595<br>.584 | .49 <b>3</b><br>.495<br>.50 <b>5</b> | .601<br>.596<br>.586                    | .493<br>.496<br>.506    | 2<br>0<br>3                | 41.0<br>42.6<br>44.5    | 2<br>0<br>3          | 41.0<br>42.6<br>44.4      | 57.4<br>55.3<br>53.0    | 36.2                             | 57.4 42.3<br>55.2 36.2<br>52.9 27.5 |                         |
| 9<br>10<br>11 | .571 .75<br>.548 .79<br>.533 .81                | 4 .892<br>2 .804         | .536<br>.500<br>.473    | .566<br>.539<br>.521 | .512<br>.495<br>.465                 | .571<br>.548<br>.533                    | .515<br>.500<br>.470    | 2<br>2                     | 47.1<br>51.1<br>54.8    | 2<br>2<br>1          |                           | 50.4<br>47.5<br>45.9    | 16.2<br>3.0                      | 50.2 16.1<br>47.0 3.0<br>45.2 -6.1  |                         |
| RP            | TOTAL PR                                        | ESSURE                   | TOTAL                   | TEMPERAT             | URE                                  | STATIC                                  | PRESS                   | STATIO                     | C DENSI                 | ΤΥ                   | STATIC                    | TEMP                    | WHEEL                            | SPEED                               |                         |
| 1 2           | IN 0UT<br>9.92 16.5<br>10.10 16.9               | 8 1.670                  |                         | 348.7 1              | ATIO<br>.208<br>.196                 | IN<br>8.11<br>8.10                      | DUT<br>13.35<br>13.34   | IN<br>1.0369<br>1.0408     | บบT<br>2 1.41<br>2 1.43 | የለን                  | IN<br>272.4<br>271.0      | 0UT<br>327.7<br>322.8   |                                  |                                     |                         |
| 3<br>4<br>5   | 10.15 17.0<br>10.16 17.0                        | 7 1.681<br>2 1.676       | 288.6<br>288. <b>2</b>  | 340.4 1<br>337.9 1   | .180<br>.172                         | 7.99<br>7.96                            | 13.19<br>12.99          | 1.0332<br>1.0317           | 5 1.45<br>4 1.44        | 6//                  | 269.5<br>268.8            | 316.2<br>312.8          | 383. <b>7</b><br>359. <b>0</b>   | 374.1<br>352.2                      |                         |
| 6             | 10.16 16.9<br>10.15 16.7<br>10.15 16.5          | 2 1.646<br>9 1.633       | 288.1<br>287.7          | 334.7 1<br>333.4 1   | .166<br>.161<br>.159                 | 7.9 <b>5</b><br>7.9 <b>9</b>            | 12.80<br>12.55<br>12.24 | 1.0308<br>1.0312<br>1.0357 | 8 1.41<br>9 1.39        | 813<br>500           | 268.6<br>268.7<br>268.6   | 310.4<br>308.3<br>305.6 | 30 <b>8.4</b><br>28 <b>2.0</b>   | 308.6<br>286.7                      |                         |
| 8<br>9<br>10  | 10.15 16.6<br>10.15 16.6<br>10.15 16.5          | 8 1.643                  | 287.8<br>287.8<br>287.6 |                      | .159<br>.162<br>163                  | 8.14                                    | 11.93<br>11.44<br>10.93 | 1.0411<br>1.0493<br>1.0630 | 4 1.32                  | 76 <b>3</b>          | 269.2<br>270.1<br>271.2   | 303.1<br>300.1<br>297.1 | 225.1                            | 243.1                               |                         |
| 11            | 10.15 16.2                                      | 5 1.601                  | 287.3                   | 335.1 1              | .166                                 | 8.37                                    | 10.55                   | 1.0725                     | 2 1.24                  | 112                  | 271.2<br>271.8            |                         |                                  | 210.4                               |                         |
| RP<br>1       | SPAN ME                                         | NCIDENCE<br>AN SS<br>.13 | DEVIA<br>8.3            | D<br>FACTOR<br>.480  | EFF1 <b>C</b><br>.75 <b>8</b>        | TO                                      | T PRO                   |                            | K TO                    | T :                  | PARAMET<br>PROF S<br>.021 |                         | PEAK SS<br>MACH NO<br>1.524      |                                     |                         |
| 2             | 10.0 2<br>20.0 2                                | .31<br>.15               | 5.6<br>2.4              | .456<br>.438         | .80 <b>8</b><br>.89 <b>1</b>         | .1                                      | 52 .07<br>85 .01        | 2 .08<br>7 .06             | 0.0<br>8.0              | 29<br>17             | .014<br>.004              | .016                    | 1.531<br>1.509                   |                                     |                         |
| 4<br>5<br>6   | 40.0 2                                          | .17<br>.56<br>.17        | 5.6                     | .448<br>.460<br>.477 | .922<br>.941<br>.948                 | .0:                                     | 50 .01                  | .04                        | 0 .0                    | 10                   | .003<br>.002<br>.003      | .011<br>.008<br>.006    | 1.469<br>1.445<br>1.430          |                                     |                         |
| 7<br>8<br>9   | 60.0 3<br>70.0 5                                | .87<br>.58<br>.49        | 7.1<br>8.0              | .495<br>.508<br>.511 | .948<br>.956<br>.943                 | .0.                                     | 50 .02<br>48 .03        | 28 .02<br>3 <b>2</b> .01   | 2 .0<br>6 .0            | 10<br>10             | .006<br>.007<br>.014      | .005<br>.003<br>.001    | 1.425<br>1.425<br>1.322          |                                     |                         |
| 10<br>11      | 90.0                                            |                          | 9.3                     | .509                 | .917                                 | .1.                                     | 24 .12                  | 24 .00                     | 0 .0                    | 23                   | .023                      | .000                    | 1.154                            |                                     |                         |



(g) 100 Percent of design speed; reading 1461

| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                 | RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                                       | RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                                                                   | RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                                                                                              |
|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| PERCENT SPAN 5.0 10.0 20.0 30.0 40.0 50.0 60.0 90.0 95.0                                        | IN<br>9.93<br>10.10<br>10.15<br>10.16                                                                                                 | ABS MA 1N .529 .555 .579 .585 .587 .585 .580 .571 .535                                                                                                            | RAD<br>1N<br>24.879<br>24.178<br>22.753<br>21.293<br>19.809<br>18.291<br>16.723<br>15.080<br>13.348<br>11.493<br>10.503                            |
| INC<br>HEAN<br>2.57<br>2.67<br>2.67<br>3.8<br>4.5<br>6.10<br>6.3                                | 17.47<br>17.50<br>17.42<br>17.32<br>17.09<br>16.90<br>16.96<br>16.91                                                                  | CH NO OUT -580 -601 -620 -634 -643 -655 -671 -707 -749 -785 -805                                                                                                  | OUT<br>24.125<br>23.477<br>22.184<br>20.889<br>19.596<br>18.301<br>17.005<br>15.712<br>14.417<br>13.124                                            |
| .2<br>.3<br>0<br>1<br>0<br>1<br>2<br>3                                                          | RATIO<br>1.738<br>1.730<br>1.723<br>1.714<br>1.705<br>1.683<br>1.665<br>1.665<br>1.665<br>1.665                                       | REL MA<br>IN<br>1.360<br>1.341<br>1.294<br>1.233<br>1.172<br>1.105<br>1.036<br>.961<br>.795<br>.747                                                               | IN<br>174.0<br>182.4<br>190.3<br>192.3<br>193.7<br>191.0<br>187.7<br>182.3                                                                         |
| DEVIA<br>7.6<br>5.2<br>2.1<br>1.3<br>3.1<br>5.0<br>6.8<br>7.4<br>7.9                            | TOTAL<br>IN<br>288.6<br>288.8<br>288.5<br>288.1<br>298.2<br>288.1<br>287.8<br>287.8<br>287.8<br>287.3                                 | CH NO<br>OUT<br>-775<br>-781<br>-770<br>-732<br>-695<br>-644<br>-594<br>-594<br>-509<br>-474<br>-448                                                              | 150.4<br>162.8<br>167.2<br>170.2<br>169.7<br>169.1<br>170.3<br>170.2<br>162.6                                                                      |
| .488<br>.473<br>.477<br>.481<br>.498<br>.515<br>.535                                            | 351.9<br>349.1<br>344.1<br>340.8<br>338.2<br>335.4<br>335.3<br>335.3                                                                  | AXIAL N<br>IN .525<br>.552<br>.577<br>.584<br>.587<br>.585<br>.580<br>.569<br>.552<br>.526<br>.508                                                                | ITY<br>RATIO<br>.787<br>.824<br>.855<br>.681<br>.880<br>.885<br>.907<br>.935<br>.903                                                               |
| .780<br>.813<br>.873<br>.910<br>.949<br>.955<br>.960<br>.958                                    | RATIN                                                                                                                                 | ACH NO<br>OUT<br>.376<br>.416<br>.454<br>.470<br>.480<br>.481<br>.481<br>.487<br>.489<br>.489                                                                     | 183.5<br>190.8<br>192.5<br>193.3<br>192.7<br>191.2<br>188.4<br>183.8<br>176.8                                                                      |
| TOT<br>.18<br>.15<br>.10<br>.07<br>.04<br>.04<br>.04                                            | 8.19<br>8.09<br>8.06<br>8.04<br>8.05<br>8.08                                                                                          | MERID M<br>IN .529<br>.555<br>.579<br>.585<br>.587<br>.585<br>.580<br>.571<br>.557<br>.535<br>.520                                                                | NAL VEL<br>0UT<br>137.9<br>151.1<br>163.1<br>167.3<br>170.2<br>169.7<br>169.3<br>170.9<br>171.2<br>164.0<br>153.4                                  |
| 7 .107<br>8 .080<br>6 .038<br>7 .024<br>5 .004<br>2 .011<br>8 .032<br>1 .068<br>3 .133          | OUT<br>13.73<br>13.69<br>13.50<br>13.29<br>13.11<br>12.81<br>12.50<br>11.65<br>11.10                                                  | ACH NO<br>OUT<br>.379<br>.418<br>.455<br>.470<br>.480<br>.481<br>.482<br>.488<br>.492<br>.474                                                                     | OCITY<br>RATIO<br>.786<br>.823<br>.855<br>.869<br>.881<br>.881<br>.907<br>.931<br>.928<br>.892                                                     |
| SHOCK<br>7 .080<br>1 .078<br>8 .068<br>4 .053<br>4 .041<br>7 .024<br>2 .015<br>8 .003           | STATIC<br>IN<br>1.04558<br>1.04913<br>1.04234<br>1.04128<br>1.03947<br>1.04044<br>1.04370<br>1.05754<br>1.05754<br>1.07091<br>1.37977 | 1.1<br>1.0<br>.4<br>.3<br>1<br>2<br>3<br>3                                                                                                                        | 3.3<br>3.3<br>1.5<br>1.0<br>8<br>-1.0<br>-1.0                                                                                                      |
| TO1<br>.02<br>.02<br>.01<br>.00<br>.00                                                          | 0UT<br>1.451<br>1.464<br>1.471<br>1.462<br>1.440<br>1.417<br>1.388<br>1.345                                                           | OUT                                                                                                                                                               | OUT<br>159.8<br>156.5<br>151.0<br>151.5<br>151.7<br>156.8<br>164.0<br>179.2                                                                        |
| 34 .020<br>31 .016<br>22 .008<br>16 .005<br>19 .001<br>19 .004<br>10 .007<br>15 .014<br>25 .025 | 146 273<br>486 273<br>486 275<br>769 269<br>239 269<br>074 269<br>743 269<br>380 270<br>555 271                                       | .4 42<br>.3 42<br>1 41<br>2 42<br>3 44<br>3 46<br>2 45<br>3 52                                                                                                    | -19.5                                                                                                                                              |
| SHOCK<br>015<br>015<br>014<br>0011<br>0005<br>0005<br>0005<br>0005                              | 3.3 329<br>2.0 325<br>3.4 319<br>7.6 315<br>7.5 307<br>7.7 307<br>3.1 304<br>3.9 298                                                  | JT I<br>2.2 67<br>3.0 65<br>2.8 63<br>2.2 61<br>1.7 59<br>2.7 58                                                                                                  | VEL 0UT -16.0 -14.4 -10.3 -5.68 4.1 8.9 13.9 18.4 21.7 22.5                                                                                        |
| 1.531<br>1.516<br>1.483<br>1.459<br>1.444<br>1.444<br>1.429<br>1.325<br>1.159                   | T 1N 418.8 407.0 5 407.0 5 383.0 4 358.4 4 3 307.9 3 281.5 7 253.8 6 224.7 5 193.5                                                    | .3 60.9<br>.7 57.8<br>.5 53.8<br>.7 50.1<br>.9 46.3<br>.0 41.7<br>.9 35.9<br>.6 26.6<br>.0 15.1<br>.2 1.5                                                         | 175.5 21<br>183.5 21<br>190.8 22<br>192.5 22<br>193.3 22<br>192.7 23<br>191.2 23<br>188.4 24<br>183.8 26<br>176.8 27                               |
|                                                                                                 | 395.2<br>373.4<br>373.6<br>329.8<br>308.0<br>286.2<br>264.5<br>242.7<br>220.9                                                         | REL BETAM<br>IN OUT<br>67.1 60.8<br>65.6 57.7<br>63.4 53.7<br>61.7 50.1<br>59.9 46.3<br>58.0 41.7<br>55.9 35.8<br>53.5 26.5<br>50.8 15.0<br>47.7 1.5<br>45.9 -8.3 | REL<br>1 1 450.9<br>7.5 443.4<br>2.2 426.6<br>5.7 406.0<br>8.0 385.8<br>1.1 363.9<br>5.7 341.1<br>7.6 316.9<br>0.9 290.9<br>1.8 262.7<br>8.4 247.3 |
|                                                                                                 |                                                                                                                                       |                                                                                                                                                                   | 282.<br>275.<br>260.<br>246.<br>227.<br>208.<br>191.<br>177.                                                                                       |

(h) 90 Percent of design speed; reading 1310

| RP<br>1<br>2<br>3<br>4<br>5<br>6                      | RADII<br>IN OUT<br>24.879 24.125<br>24.178 23.477<br>22.753 22.184<br>21.293 20.889<br>19.809 19.596<br>18.291 18.301<br>16.723 17.005               | AXIAL VELOC<br>1N OUT<br>150.5 131.5<br>161.1 147.3<br>170.2 159.6<br>172.4 161.2<br>173.7 161.8<br>173.5 161.5<br>172.1 162.3                  | RATID IN .874 151.                                                                                | 6 161.3 .935<br>7 161.8 .931<br>5 161.5 .931                                                                                                                                                        | 1N DUT .6 121.21 117.79 114.18 116.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IN DUT 19.2 -15.4 17.2 -14.1 13.1 -10.1 -8.0 -5.4 -2.78                                                           | ABS VEL IN                                                                                                                                    | REL VEL 1N 0UT 406.3 278.3 400.9 280.7 385.9 274.0 367.0 257.4 348.5 239.1 329.1 219.2 308.2 200.5 |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| 8<br>9<br>10<br>11                                    | 15.080 15.712<br>13.348 14.417<br>11.493 13.124<br>10.503 12.476                                                                                     | 169.2 166.5<br>164.4 170.3<br>156.9 166.9<br>151.8 161.5                                                                                        | .984 169.<br>1.036 165.<br>1.064 159.                                                             | 8 167.1 .984<br>8 171.3 1.033<br>6 168.4 1.055                                                                                                                                                      | -1.9 155.8<br>-2.4 174.3<br>-2.6 194.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.6 13.6<br>21.3 18.4<br>28.8 22.3<br>32.9 23.9                                                                  | 169.8 228.5<br>165.8 244.4<br>159.6 257.5<br>155.3 263.5                                                                                      | 286.4 186.4<br>263.5 177.0<br>238.3 168.4<br>224.3 164.2                                           |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | ABS MACH NO IN OUT .453 .501 .486 .532 .514 .558 .521 .568 .524 .578 .524 .594 .520 .617 .512 .659 .500 .708 .480 .750 .467 .769                     | REL MACH NO IN OUT 1.213 .778 1.201 .779 1.162 .779 1.107 .735 1.052 .684 .994 .628 .931 .578 .864 .538 .795 .513 .717 .491                     | .524 .46<br>.520 .46<br>.511 .48<br>.496 .49<br>.473 .48                                          | IN OUT 7 .453 .370 5 .486 .417 4 .514 .454 0 .521 .460 3 .524 .463 .3 .524 .463 .7 .520 .467 .0 .512 .482 .44 .500 .497                                                                             | 1N OUT 1 .2 42.7 .0 38.63 35.63 35.85 36.87 38.76 40.86 43.18 45.79 49.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N OUT 1.2 42.5 68.0 38.5 66.3 35.5 63.3 35.8 62.5 36.8 60.7 38.7 58.7 56.40.7 56                                  | N OUT IN .2 61.8 68.3 .3 58.3 66.3 .8 54.3 630 51.2 61.1 .1 47.4 602 42.5 58.3 .1 36.0 56.1 .7 26.4 533 14.6 514 1.5 48.                      | 7 54.3<br>9 51.2<br>1 47.4<br>2 42.5<br>36.0<br>6 26.3<br>0 14.5<br>0 1.5                          |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | TOTAL PRES IN QUT 9.88 14.70 10.07 15.03 10.14 15.15 10.16 15.13 10.16 15.08 10.17 15.04 10.17 15.02 10.17 15.39 10.17 15.30 10.17 15.30 10.17 15.31 | RATIO IN<br>1.487 290.6<br>1.493 290.0<br>1.494 288.7<br>1.490 288.1<br>1.483 287.8<br>1.480 287.6<br>1.478 287.4<br>1.514 287.4<br>1.505 287.0 | 327.3 1.134<br>325.1 1.125<br>324.2 1.126<br>324.0 1.12<br>323.9 1.12<br>324.8 1.13<br>325.8 1.13 | N OUT<br>8.59 12.38<br>8.57 12.39<br>1 8.47 12.26<br>9 8.44 12.16<br>6 8.42 12.02<br>7 8.43 11.85<br>7 8.45 11.62<br>8.50 11.37<br>4 8.57 11.01<br>8.68 10.53                                       | STATIC DENSITY IN OUT 1.07153 1.3539. 1.07825 1.3756 1.07628 1.3868 1.07592 1.3777 1.07753 1.3644 1.08006 1.3454 1.08450 1.3254 1.09108 1.2959 1.10243 1.2521 1.10909 1.2197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 276.9 313<br>274.1 308<br>4 273.2 305<br>5 272.8 303<br>8 272.5 302<br>1 272.6 301<br>273.6 296<br>3 274.3 293  | T IN 0<br>.6 377.5 36<br>.9 366.8 35<br>.0 345.2 33<br>.4 323.1 31<br>.9 300.6 29<br>.6 277.5 27<br>.0 253.7 25<br>.8 228.8 23<br>.0 202.5 21 | UT<br>6.0<br>6.2<br>6.6<br>6.9<br>7.3<br>7.7<br>8.0<br>8.4<br>8.7                                  |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | PERCENT INC SPAN MEAN 5.0 3.5 10.0 3.5 20.0 2.5 30.0 2.5 40.0 3.5 50.0 4.6 70.0 6.8 80.0 7.2 90.0 6.9                                                | 1.2 8.<br>3 .9 5.<br>2 .3 2.<br>3 .2 4.<br>3 .1 5.<br>5 .1 6.<br>20 6.<br>21 6.                                                                 | .5 .425<br>.7 .406<br>.7 .392<br>.9 .402<br>.2 .420<br>.8 .447<br>.9 .469<br>.8 .482<br>.9 .477   | LOSS COEF<br>FFIC TOT PRO<br>.794 .148 .10<br>.843 .111 .07<br>.909 .063 .03<br>.938 .045 .02<br>.935 .054 .04<br>.931 .064 .03<br>.938 .066 .00<br>.940 .075 .05<br>.940 .075 .05<br>.910 .136 .13 | RF SHOCK TOT 18 040 027 12 039 021 131 033 013 11 024 009 125 018 009 10 014 011 158 006 013 155 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 015 156 000 0 | .019 .007<br>.014 .008<br>.006 .007<br>.004 .005<br>.005 .004<br>.008 .002<br>.012 .000<br>.014 .000<br>.015 .000 | 1.425<br>3.1.425<br>1.413<br>5.1.391<br>1.383<br>3.1.392<br>1.339<br>1.289<br>0.1.200<br>0.1.052                                              |                                                                                                    |

(i) 90 Percent of design speed; reading 1321

| RP           | RADII<br>IN OUT                                 | AXIA<br>IN              | L VELC                  | TY<br>Naf10                  | MERIDIO<br>IN           | NAL VEL                 | OCITY<br>RATIO       | TANG V                        | /EL R<br>OUT I                   | ADIAL VE                  |                         | ABS VEL                   | REL<br>UT IN                        | VEL<br>OUT     |
|--------------|-------------------------------------------------|-------------------------|-------------------------|------------------------------|-------------------------|-------------------------|----------------------|-------------------------------|----------------------------------|---------------------------|-------------------------|---------------------------|-------------------------------------|----------------|
| 1 2          | 24.879 24.125<br>24.178 23.477                  | 142.1<br>151.7          | 133.9<br>143.1          | .942<br>.943                 | 143.2<br>152.6          | 134.8<br>143.8          | .941<br>.942         | -5.4 1<br>-4.9 1              | 125.5 -1<br>123.5 -1             | 8.1 -15<br>6.2 -13        | .7 14<br>.7 15          | 3.3 18<br>2.6 18          | 4.2 409.2<br>9.5 402.2              | 276.1<br>273.9 |
| 3<br>4       | 22.753 22.184<br>21.293 20.889                  | 161.0<br>164.6          |                         | .918                         | 164.8                   | 149.9                   | .928<br>.917<br>.915 |                               | 124.1 -                          | 2.4 -9<br>7.6 -5<br>2.6 - | .1 16                   | 4.8 19                    | 4.5 381.4<br>5.5 364.0<br>8.9 346.3 | 245.3          |
| 5<br>6<br>7  | 19.809 19.596<br>18.291 18.301<br>16.723 17.005 | 166.2<br>165.9<br>164.6 | 151.6                   | .915<br>.914<br>.922         | 165.9                   | 152.1<br>151.7<br>152.0 | .914<br>.922         | -4.5 1                        | 133.8                            | 2.6 3                     | .7 16                   | 6.0 20                    | 2.3 327.5<br>0.7 306.5              | 209.2          |
| 8            | 15.080 15.712<br>13.348 14.417                  | 161.8<br>157.4          | 155.2<br>158.2          | .959<br>1.005                | 162.4<br>158.7          | 155.7<br>159.1          | .959<br>1.003        | -4.4 1                        | 178.0 2                          | 3.9 12<br>0.4 17          | .1 15                   | 8.8 23                    | 4.4 284.5<br>8.7 260.9              | 173.8<br>164.3 |
| 10<br>11     | 11.493 13.124<br>10.503 12.476                  | 150.3<br>145.4          |                         | 1.013<br>.995                |                         | 153.7<br>146.3          | 1.006<br>.983        | -4.2 1<br>-4.2 2              |                                  | 7.6 20<br>1.5 21          |                         | 2.9 25<br>8.9 25          | 1.4 235.2<br>8.8 221.2              |                |
| RP           | ABS MACH NO                                     | REL MA                  | CH NO<br>OUT            | AXIAL MA                     | CH NO<br>OUT            | MERID N                 | MACH NO<br>OUT       |                               | NI TUC                           |                           | REL B<br>IN             | OUT                       | REL BETAM<br>IN OUT                 |                |
| 1 2          | .427 .512<br>.456 .530                          | 1.218                   | .768<br>.766            | . 423<br>. 453               | .372<br>.400            | .426                    | .375<br>.402         | -1.8 4                        | 13.2 -2.<br>10.8 -1.             | 8 40.7                    | 69.7<br>67.8            | 60.9<br>58.5              | 69.5 60.8<br>67.7 58.3              | }              |
| 3<br>4<br>5  | .484 .549<br>.496 .555<br>.501 .567             | 1.144<br>1.096<br>1.044 | .736<br>.696<br>.649    | .483<br>.495<br>.501         | .422<br>.429<br>.433    | .484<br>.496<br>.501    | .423<br>.429<br>.433 | 4 3                           | 39.6 .<br>39.4<br>40.1 -1.       |                           | 65.0<br>63.1<br>61.3    | 54.9<br>52.0<br>48.1      | 65.0 54.9<br>63.1 52.0<br>61.3 48.1 | 1              |
| 67           | .500 .577<br>.497 .603                          | .987<br>.924            | .597<br>.541            | .50 <b>0</b><br>.49 <b>6</b> | .433                    | .50 <b>0</b><br>.497    | . 433<br>. 435       | -1.6 4<br>-1.5 4              | 41.4 -1.<br>43.9 -1.             | 6 41.4<br>5 43.8          | 59.6<br>57.5            | 43.5<br>36.5              | 59.6 43.5<br>57.5 36.5              |                |
| 8<br>9       | .490 .644<br>.478 .689                          | .857<br>.785            | .499<br>.474<br>.446    | .488<br>.474<br>.452         | .446<br>.457<br>.442    | .489<br>.478<br>.459    | .447<br>.459<br>.446 | -1.6                          | 46.1 -1.<br>48.4 -1.<br>52.6 -1. | 6 48.2                    | 55.3<br>52.8<br>50.0    | 26.4<br>14.5              | 55.2 26.4<br>52.5 14.5<br>49.5 .1   | i              |
| 10<br>11     | .459 .729<br>.447 .752                          | .707<br>.664            | .431                    | .437                         | .421                    | .447                    | .425                 |                               | 55.9 -1.                         |                           | 48.4                    | -9.4                      | 47.7 -9.3                           |                |
| RP           | TOTAL PRES                                      | RATIO                   | ΙN                      |                              | RATIO                   | STATIC                  | OUT                  | IN                            | DENSITY                          | STATIC                    | DUT                     | IN                        | SPEED<br>OUT                        |                |
| 1<br>2<br>3  | 9.88 15.41<br>10.04 15.55<br>10.11 15.56        | 1.559<br>1.549<br>1.539 | 290.7<br>290.5<br>289.2 |                              | 1.165<br>1.157<br>1.144 | 8.71                    | 12.85                | 1.08753                       |                                  | 280.5<br>278.9<br>276.2   | 321.7<br>318.3<br>312.0 | 377.9<br>367.2<br>345.6   | 356.6                               |                |
| 4 5          | 10.17 15.50<br>10.17 15.44                      | 1.525                   | 288.1<br>287.4          | 327.7<br>326.3               | 1.138<br>1.135          | 8.59<br>8.57            | 12.57<br>12.41       | 1.09052                       | 1.41921<br>1.41090               | 274.5<br>273.6            | 308.6<br>306.6          | 323.4<br>300.9            | 317.3<br>297.6                      |                |
| 6<br>7       | 10.18 15.34<br>10.17 15.34                      | 1.508                   | 287.4<br>287.2          | 325.9                        | 1.133                   | 8.59                    | 11.99                | 1.09165<br>1.09401<br>1.09807 | 1.37550                          | 273.7<br>273.7<br>274.0   | 305.3<br>303.8<br>301.5 | 277.8<br>254.0<br>229.1   | 258.3                               |                |
| 8<br>9<br>10 | 10.18 15.49<br>10.17 15.60<br>10.17 15.45       | 1.522<br>1.533<br>1.519 | 287.2<br>287.2<br>287.1 | 326.9                        | 1.137<br>1.138<br>1.140 | 8.70                    | 11.35                | 1.10405                       |                                  | 274.6<br>275.5            | 298.5<br>295.9          | 202.7<br>174.6            | 219.0                               |                |
| 11           | 10.17 15.32                                     | 1.505                   | 287.1                   | 328.0                        | 1.143                   | 8.87                    | 10.53                | 1.11972                       | 1.24455                          | 276.0                     | 294.7                   | 159.5                     | 189.5                               |                |
| RP           | PERCENT INC<br>SPAN MEAN<br>5.0 5.0             |                         | DEVIA<br>7.6            |                              | EFF10<br>.821           | : TO                    |                      | SHOCK                         |                                  | PARAMET<br>PROF S<br>.016 | HOCK M                  | EAK SS<br>ACH NO<br>1.479 |                                     |                |
| 1<br>2<br>3  | 10.0 4.0<br>20.0 4.                             | 9 2.5                   | 5.8<br>3.3              | .434                         | .848                    | 3 .1                    | 16 .068<br>67 .032   | .048                          | .022                             | .013<br>.006              | .009                    | 1.478<br>1.441            |                                     |                |
| 4<br>5       | 30.0 4.<br>40.0 4.                              | 5 1.4                   | 3.7<br>4.9              | .457                         | .931<br>.935            | 5 .0:                   | 53 .031              | .022                          | .011                             | .005                      | .004                    | 1.423<br>1.421<br>1.429   |                                     |                |
| 6<br>7<br>8  | 50.0 5.3<br>60.0 6.<br>70.0 7.                  | 1 1.5                   | 6.8<br>7.4<br>6.8       | .512                         | .933<br>.923<br>.929    | 3 .0                    | 75 .067              | .008                          | .012<br>.016<br>.017             | .008<br>.014<br>.017      | .002                    | 1.374                     |                                     |                |
| 9<br>10      | 80.0 8.<br>90.0 8.                              | 7 1.5<br>1 1.5          | 6.9<br>6.5              | .525<br>.519                 | .939<br>.905            | .01                     | 80 .080<br>51 .151   | .000                          | .016<br>.028                     | .016<br>.028              | .000                    | 1.227                     |                                     |                |
| 11           | 95.0 7.                                         | 4 1.5                   | 4.5                     | .515                         | .868                    | 3 .2                    | 34 .234              | .000                          | .040                             | .040                      | .000                    | .984                      |                                     |                |

(j) 90 Percent of design speed; reading 1332

|         |                                |                          | /3                             |                          |                              | , 2002                           |                                    |                                      |
|---------|--------------------------------|--------------------------|--------------------------------|--------------------------|------------------------------|----------------------------------|------------------------------------|--------------------------------------|
| RP      | RADII                          | AXIAL VEL                | DCITY MER                      | IDIONAL VELOC            | ITY TANG V                   |                                  | EL ABS VEL                         | REL VEL                              |
|         | IN OUT                         | IN DUT                   | RATIO IN                       | OUT RA                   | TIO IN                       | OUT IN O                         | UT IN OUT                          | IN OUT                               |
| 1 2     | 24.879 24.125<br>24.178 23.477 | 128.5 128.<br>137.6 134. |                                |                          | 998 -10.5 1<br>978 -8.5 1    | 35.5 -16.4 -1.<br>34.5 -14.7 -1  | 5.0 130.0 187.2<br>2.9 138.6 190.8 | 2 409.5 264.7<br>3 400.4 260.1       |
| 3       | 22.753 22.184                  | 147.0 137.               |                                |                          | 936 -2.5 1                   | 33.9 -11.3 -                     | 8.7 147.4 192.3                    |                                      |
| 4       | 21.293 20.889                  | 151.8 137.               | 1 .904 151                     | .9 137.2 .               | 903 -1.4 1                   | .32.5 -7.1 -                     | 4.6 151.9 190.7                    | 358.6 230.2                          |
| 5       | 19.809 19.596                  | 154.0 136.               | 8 .889 154                     |                          | 889 -4.9 1                   | 32.1 -2.4                        | 6 154.1 190.2<br>3.3 153.9 194.8   | 342.4 214.8                          |
| 6<br>7  | 18.291 18.301                  | 153.7 137.<br>152.5 140. |                                |                          | 893 -7.0 1                   | 38.2 2.4                         | 3.3 153.9 194.8<br>7.4 152.8 207.5 | 3 323.6 195.9<br>3 302.3 176.0       |
| 8       | 16.723 17.005<br>15.080 15.712 | 150.0 144.               |                                |                          | 922 -6.9 1<br>962 -6.8 1     | 52.6 7.5<br>67.0 12.9 1          | 1.8 150.7 221.1                    |                                      |
| ğ       | 13.348 14.417                  | 145.9 145.               | 0 .994 147                     | .2 145.8 .               | 991 -6.7 1                   | .80.9 18.9 1                     | 5.7 147.3 232.4                    | 255.9 150.7                          |
| 10      | 11.493 13.124                  | 139.4 135.               | 8 .974 141                     |                          | 966 -6.4 2                   | 200.8 25.6 1                     | 8.1 141.9 243.1                    | 229.9 137.0                          |
| 11      | 10.503 12.476                  | 135.0 125.               | 4 .929 138                     | .1 126.8 .               | 918 -6.1 2                   | 215.2 29.2 1                     | 8.6 138.3 249.7                    | 7 215.7 129.4                        |
| RP      | ABS MACH NO                    | REL MACH NO              | AXIAL MACH                     | NO MERID MAC             | H NO ABS BET                 | TAZ ABS BETAM                    | REL BETAZ RE                       | EL BETAN                             |
|         | IN OUT                         | IN OUT                   |                                | T IN                     | OUT IN O                     | TUD IN OUT                       |                                    | IN OUT                               |
| 1 2     | .385 .516<br>.412 .529         | 1.214 .73<br>1.190 .72   | 0 .381 .3<br>1 .409 .3         | 54 .384<br>73 .411       | .356 -4.7 4<br>.375 -3.5 4   | 16.5 -4.6 46.3<br>15.0 -3.5 44.8 | 71.7 60.9 71<br>69.9 58.8 69       | 1.6 6 <b>0.8</b><br>7.8 58. <b>7</b> |
| 3       | .440 .538                      | 1.129 .68                | 8 .439 .3                      | 86 .440                  | .386 -1.0                    | 14.2 -1.0 44.1                   |                                    | 7.1 55.8                             |
| 4       | .456 .538                      | 1.075 .65                | 0 .455 .3                      | 87 .456                  | .3875 4                      | 14.05 44.0                       | 65.0 53.4 64                       | 4.9 53.4                             |
| 5<br>6  | .463 .539<br>.462 .553         | 1.029 .60<br>.973 .55    | 8 .463 .3<br>6 .462 .3         | 88 .463<br>90 .462       | .388 -1.8 4<br>.390 -2.6 4   | 14.0 -1.8 44.0<br>15.2 -2.6 45.2 |                                    | 3.3 50.4<br>1.6 45.5                 |
| ž       | .459 .591                      | .908 .50                 | 1 .458 .4                      | 00 .459                  |                              | 47.4 -2.6 47.3                   | 59.7 37.0 59                       | 9.7 36.9                             |
| 8       | .453 .632                      | .840 .46                 | 2 .450 .4                      | 13 .452                  | .414 -2.6                    | 49.2 -2.6 49.1                   | 57.5 26.4 5                        | 7.4 26.3                             |
| 9<br>10 | .442 .668<br>.426 .702         | .768 .43<br>.689 .39     | 3 .438 .4<br>6 .418 .3         | 17 .442<br>92 .425       |                              | 51.3 -2.6 51.1<br>55.9 -2.6 55.7 | 55.1 14.7 56<br>52.46 5            | 4.9 14.6<br>1.96                     |
| 11      | .414 .723                      | .646 .37                 |                                |                          | .367 -2.6 5                  |                                  |                                    | 0.2 -11.4                            |
| D D     |                                |                          |                                |                          |                              |                                  |                                    | ncen                                 |
| RP      | TOTAL PRES                     | RATIO IN                 | AL TEMPERATURE                 | STATIC PR                | UT IN                        | DENSITY STATI                    | C TEMP WHEEL SI                    | OUT                                  |
| 1       | 9.89 16.05                     | 1.623 291.               | 3 344.7 1.18                   | 3 8.92 13                | 3.38 1.09916                 | 1.42469 282.9                    | 327.3 377.9                        | 366.5                                |
| 2<br>3  |                                | 1.609 291.<br>1.586 289  |                                | 5 8.91 13                | 3.32 1.10343                 | 1.43335 281.4                    | 323.7 367.3<br>317.2 345.6         | 356. <b>6</b>                        |
| 4       | 10.17 15.81                    | 1.556 288                |                                | 68 8.83 13<br>17 8.82 12 | 2.98 1.110232                | 1.44230 279.0<br>1.44857 276.5   | 312.2 323.4                        | 317. <b>3</b>                        |
| 5       | 10.18 15.63                    | 1.535 287                | 3 328.0 1.14                   | 12 8.79 12               | 2.83 1.11158                 | 1.44179 275.5                    | 309.9 30 <b>0.9</b>                | 297. <b>7</b>                        |
| 6<br>7  | 10.18 15.52<br>10.18 15.71     | 1.524 287                |                                | 8.79 12                  | 2.61 1.11291                 | 1.42422 275.3<br>1.40946 275.4   | 308.4 277.8<br>306.5 254.0         | 278.0                                |
| 8       | 10.18 15.80                    | 1.543 287<br>1.552 287   | .0 328.0 1.14<br>.1 328.4 1.14 | 13 8.81 12<br>14 8.85 12 | 2.40 1.11461<br>2.07 1.11742 | 1.40946 275.4<br>1.38322 275.8   |                                    |                                      |
| 9       | 10.18 15.79                    | 1.550 287                | .0 327.8 1.1                   | 12 8.90 11               | 1.70 1.12310                 | 1.35483 276.1                    | 300.9 202.8                        | 219. <b>0</b>                        |
| 10      | 10.18 15.55                    | 1.527 286                | 6 327.6 1.1                    | 8.99 11                  | 1.19 1.13236                 | 1.30718 276.6                    | 298.2 174.6                        |                                      |
| 11      | 10.18 15.38                    | 1.511 286                | .6 328.2 1.1                   | 15 9.05 10               | 0.86 1.13/4/                 | 1.27362 277.1                    | 297.2 159.5                        | 189.5                                |
| RP      |                                | IDENCE                   | D                              | LOSS                     | S COEFFICIENT                | LOSS PARAME                      | TER PEAK SS                        |                                      |
| 1       | SPAN MEAN<br>5.0 7.0           |                          | /IA FACTOR  <br>7.6 .486       | FFIC TOT .809 .161       | PROF SHOCK<br>.099 .062      | TOT PROF<br>.030 .018            | SHOCK MACH NO<br>.011 1.545        |                                      |
| 2       | 10.0 7.0                       | 4.5                      | 5.2 .480                       | .831 .141                | .083 .058                    | .027 .016                        | .011 1.540                         |                                      |
| 3       | 20.0 6.2                       | 3.6                      | .2 .474                        | .891 .091                | .048 .042                    | .018 .009                        | .008 1.501                         |                                      |
| 4<br>5  | 30.0 5.9<br>40.0 6.5           |                          | 5.2 .478<br>7.2 .494           | .915 .071<br>.921 .069   | .039 .032<br>.041 .028       | .014 .008<br>.013 .008           | .006 1.474<br>.005 1.432           |                                      |
| 6       | 50.0 7.4                       | 3.6                      | 3.8 .521                       | .914 .081                | .059 .022                    | .016 .012                        | .004 1.477                         |                                      |
| 7       | 60.0 8.3                       | 3.7                      | 7.9 .556                       | .924 .081                | .071 .010                    | .017 .015                        | .002 1.419                         |                                      |
| 8<br>9  | 70.0 10.0<br>80.0 11.1         | 3.8<br>3.8               | 5.8 .572<br>7.0 .573           | .931 .083<br>.938 .086   | .080 .003<br>.086 .000       | .018 .017<br>.018 .018           | .001 1.361<br>.000 1.261           |                                      |
| 10      | 90.0 10.5                      | 4.0                      | 5.8 .583                       | .899 .169                | .169 .000                    | .032 .032                        | .000 1.104                         |                                      |
| 11      | 95.0 9.9                       | 3.9                      | 5.8 .583<br>2.4 .593           | .862 .260                |                              | .044 .044                        | .000 1.010                         |                                      |
|         |                                |                          |                                |                          |                              |                                  |                                    |                                      |



## TABLE IX. - Continued. BLADE-ELEMENT PERFORMANCE AT BLADE EDGES FOR FIRST-STAGE ROTOR

(k) 80 Percent of design speed; reading 1347

| RP                                     | RADII<br>IN OUT                                                                                                             |                                                                               | L VELOC                                                                                      |                                                                                             | MERIDIO                                                                      |                                                                      |                                                                                                            | TANG V                                                                             |                                                                                                                                         | RADIAL VE                                                                                              |                                                                                                       | ABS VEL                                                                                                             |                                                                                                   |                                                           |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6             | 24.879 24.125<br>24.178 23.477<br>22.753 22.184<br>21.293 20.889<br>19.809 19.596<br>18.291 18.301                          | 136.2<br>143.7<br>145.5<br>146.3<br>146.2                                     | OUT<br>119.6<br>131.0<br>141.2<br>143.9<br>144.6<br>144.2                                    | RATIO<br>.934<br>.962<br>.983<br>.989<br>.988                                               | 136.9<br>144.1<br>145.7<br>146.3                                             | OUT<br>120.4<br>131.6<br>141.5<br>144.0<br>144.6<br>144.3            | RAT10<br>.933<br>.961<br>.982<br>.988<br>.988                                                              | 2.1<br>2.0<br>.5<br>-2.5<br>-2.2 1                                                 | 99.4 -1<br>98.2 -1<br>94.1 -1<br>95.0                                                                                                   | 6.3 -14<br>4.6 -12<br>1.1 -9<br>6.8 -4                                                                 | 1.0 12<br>2.5 13<br>2.0 14<br>1.8 14                                                                  | 29.1 15<br>36.9 16<br>44.1 16<br>45.7 17<br>46.3 17                                                                 | UT IN<br>6.1 357.0<br>4.2 351.3<br>9.9 338.1<br>2.5 323.8<br>7.3 306.1<br>2.3 287.5               | 0UT<br>255.6<br>254.5<br>248.7<br>235.4<br>216.6<br>197.6 |
| 7<br>8<br>9<br>10<br>11                | 16.723 17.005<br>15.080 15.712<br>13.348 14.417<br>11.493 13.124<br>10.503 12.476                                           | 142.7<br>138.8<br>132.5                                                       | 146.3<br>151.7<br>155.8<br>153.3<br>148.4                                                    | 1.008<br>1.063<br>1.122<br>1.157<br>1.156                                                   | 143.2<br>142.0<br>134.7                                                      | 152.2<br>156.7<br>154.6                                              | 1.009<br>1.062<br>1.119<br>1.148<br>1.142                                                                  | -1.4 1<br>-1.3 1<br>-1.2 1                                                         | .55.5 1<br>.75.2 2                                                                                                                      | 7.1 7.1 7.2.3 12.8.0 16.24.3 20                                                                        | 7.7 14<br>2.4 14<br>5.9 14<br>0.5 13                                                                  | 45.2 19<br>43.3 20<br>40.0 22<br>34.7 23                                                                            | 0.5 268.9<br>5.3 249.6<br>0.8 228.8<br>3.7 206.1<br>8.7 193.8                                     | 181.4<br>169.1<br>161.3<br>154.7<br>151.1                 |
| RP<br>1<br>2<br>3<br>4<br>5            | ABS MACH NO<br>IN OUT<br>.383 .442<br>.408 .468<br>.431 .488<br>.436 .496<br>.439 .511<br>.438 .526                         | 1.046<br>1.011<br>.970<br>.918<br>.861                                        | 0UT<br>.724<br>.725<br>.714<br>.677<br>.624                                                  | AXIAL MA<br>IN<br>.380<br>.405<br>.430<br>.436<br>.439<br>.438                              | OUT<br>.339<br>.373<br>.405<br>.414<br>.417                                  | IN<br>.383<br>.408<br>.431<br>.436<br>.439                           | MACH NO<br>OUT<br>.341<br>.375<br>.406<br>.414<br>.417                                                     | 1.0 3<br>.8 3<br>.2 3<br>-1.0 3<br>8 3<br>5 3                                      | 0UT I1<br>39.7<br>36.9<br>33.7<br>33.4 -1<br>35.4 -                                                                                     | 9 39.5<br>8 36.7<br>2 33.6<br>0 33.4<br>8 35.4<br>5 37.7                                               | REL E<br>IN<br>69.0<br>67.2<br>64.8<br>63.3<br>61.4<br>59.4                                           | OUT<br>62.1<br>59.0<br>55.4<br>52.3<br>48.1<br>43.1                                                                 | REL BETAM<br>IN OUT<br>68.8 61.9<br>67.1 58.9<br>64.8 55.3<br>63.3 52.3<br>61.4 48.1<br>59.4 43.1 |                                                           |
| 7<br>8<br>9<br>10<br>11                | .435 .551<br>.429 .595<br>.419 .643<br>.403 .683<br>.392 .699                                                               | .685<br>.616<br>.579                                                          | .525<br>.490<br>.470<br>.452<br>.442                                                         | .435<br>.427<br>.415<br>.396<br>.383                                                        | .423<br>.440<br>.453<br>.448<br>.434                                         | .435<br>.427<br>.419<br>.403<br>.392                                 | .424<br>.441<br>.456<br>.452<br>.439                                                                       | 6 4<br>5 4<br>5 4                                                                  | 12.3 -<br>15.0 -<br>18.8 -                                                                                                              | .5 39.8<br>.6 42.2<br>.5 44.8<br>.5 48.6<br>.5 51.1                                                    | 57.3<br>55.1<br>52.5<br>49.6<br>48.0                                                                  | 36.2<br>25.9<br>13.9<br>.6<br>-6.8                                                                                  | 57.3 36.2<br>55.0 25.8<br>52.3 13.8<br>49.2 .6<br>47.3 -6.7                                       |                                                           |
| RP<br>1 2 3 4 5 6 7 8 9 10 11          | TOTAL PRE IN OUT 9.97 13.39 10.09 13.60 10.15 13.70 10.15 13.72 10.15 13.72 10.15 13.74 10.15 14.00 10.15 14.16 10.15 14.16 | RATIO<br>1.343<br>1.349<br>1.349<br>1.352<br>1.351<br>1.355<br>1.379<br>1.395 | TOTAL<br>1N<br>290.9<br>289.8<br>287.9<br>287.4<br>287.5<br>287.5<br>287.7<br>287.5<br>287.3 | 322.3<br>320.1<br>316.2<br>315.2<br>315.0<br>315.4<br>317.1<br>317.8<br>318.3               | TURE RATIO 1.108 1.105 1.097 1.095 1.096 1.096 1.096 1.098 1.102 1.105 1.108 | 9.00<br>8.93<br>8.91<br>8.89<br>8.90<br>8.91<br>8.94<br>9.00<br>9.07 | OUT<br>11.71<br>11.71<br>11.63<br>11.57<br>11.48<br>11.36<br>11.19<br>11.02<br>10.72                       | IN 1.11118 1.11811 1.11923 1.11931 1.11938 1.11854 1.12081 1.12295 1.12855 1.13639 | DENSITY<br>OUT<br>1.31535<br>1.33021<br>1.34246<br>1.34243<br>1.33590<br>1.32429<br>1.31062<br>1.29628<br>1.27258<br>1.23934<br>1.21250 | STATIC<br>IN<br>282.6<br>280.4<br>277.3<br>276.8<br>277.1<br>277.0<br>277.5<br>277.7<br>278.2<br>278.7 | TEMP<br>0UT<br>310.2<br>306.6<br>301.9<br>299.3<br>298.9<br>297.5<br>296.5<br>293.5<br>291.1<br>290.2 | WHEEL<br>IN<br>334.9<br>325.5<br>306.3<br>286.7<br>246.2<br>225.1<br>203.0<br>179.7<br>154.7                        | 316.1<br>298.7<br>281.2<br>263.8<br>246.4<br>228.9<br>211.5<br>194.1<br>176.7                     |                                                           |
| RP<br>12<br>34<br>55<br>67<br>89<br>10 | PERCENT IN SPAN MEA 5.0 4.10.0 4.20.0 3.30.0 4.40.0 50.0 5.60.0 5.70.0 7.80.0 8.90.0 7.95.0 7.                              | 2 1.9<br>2 1.8<br>9 1.3<br>2 1.5<br>6 1.5<br>2 1.4<br>5 1.3<br>5 1.2<br>8 1.2 | DEVIA<br>8.7<br>6.4<br>3.7<br>4.9<br>6.4<br>7.1<br>6.2<br>7.0                                | D<br>FACTOR<br>.385<br>.374<br>.359<br>.370<br>.396<br>.423<br>.445<br>.446<br>.420<br>.402 | .814<br>.852<br>.924<br>.941<br>.932<br>.935<br>.930<br>.944<br>.946         | TO .1                                                                | 19 .105<br>94 .080<br>47 .035<br>39 .031<br>44 .041<br>52 .051<br>63 .063<br>60 .069<br>69 .069<br>21 .121 | SHOCK .014 .014 .012 .008 .003 .000 .000 .000                                      | LOSS<br>TOT<br>.021<br>.018<br>.009<br>.009<br>.011<br>.013<br>.014<br>.023                                                             | PARAMET PROF .019 .015 .007 .006 .008 .011 .013 .013 .014 .023 .035                                    |                                                                                                       | PEAK SS<br>MACH NO<br>1.337<br>1.346<br>1.358<br>1.344<br>1.295<br>1.243<br>1.194<br>1.148<br>1.064<br>.930<br>.850 |                                                                                                   |                                                           |

(1) 80 Percent of design speed; reading 1358

| RP            | RADII<br>IN OUT                                 | AXIAL VE<br>IN DU                   |                                          | RIDIONAL VEL                           |                                  | TANG VEL<br>IN DUT                                | RADIAL VEL                          | ABS VEL<br>IN OUT                   | REL VEL<br>IN OUT                      |
|---------------|-------------------------------------------------|-------------------------------------|------------------------------------------|----------------------------------------|----------------------------------|---------------------------------------------------|-------------------------------------|-------------------------------------|----------------------------------------|
| 1 2           | 24.879 24.125<br>24.178 23.477                  | 116.5 115<br>124.3 123              | .6 .993 1<br>.0 .989 1                   | 7.4 116.4<br>25.0 123.5                | .992<br>.988                     | -1.3 111.6<br>-1.3 110.4                          | -14.8 -13.5<br>-13.3 -11.8          | 117.4 161.3<br>125.0 165.7          | 3 355.7 242. <b>4</b><br>7 349.4 239.5 |
| 3<br>4<br>5   | 22.753 22.184<br>21.293 20.889<br>19.809 19.596 | 132.4 129<br>134.6 131<br>135.1 129 | .2 .974 1                                | 32.8 130.1<br>34.7 131.2<br>35.1 129.5 | .974                             | -1.1 106.2<br>-4.1 104.4<br>-4.2 110.1            | -10.2 -8.2<br>-6.3 -4.4<br>-2.16    | 134.8 167.7                         | 7 320.0 219.8                          |
| 6<br>7        | 18.291 18.301<br>16.723 17.005                  | 134.9 129<br>133.8 133              | .2 .958 1<br>.3 .996 1                   | 34.9 129.3<br>34.0 133.5               | .958<br>.996                     | -2.7 118.2<br>-3.0 129.3                          | 2.1 3.1<br>6.6 7.0                  | 134.9 175.2<br>134.0 185.3          | 2 282.8 181.7<br>2 264.2 166.3         |
| 8<br>9<br>10  | 15.080 15.712<br>13.348 14.417<br>11.493 13.124 | 131.7 137<br>128.2 140<br>122.5 134 | .2 1.094 1                               |                                        | 1.091                            | -2.9 144.9<br>-2.8 160.1<br>-2.6 178.4            | 11.3 11.3<br>16.6 15.3<br>22.5 18.4 | 2 129.3 213.3                       | 3 223.4 145.0                          |
| 11            | 10.503 12.476                                   | 118.5 126                           | 1.070 1                                  | 21.3 128.2                             | 1.058                            | -2.7 191.0                                        | 25.7 18.                            | 3 121.3 230.                        | 0 188.1 130.3                          |
| RP.           | ABS MACH NO<br>IN OUT                           | REL MACH N                          | IT IN "                                  | או זעכ                                 | MACH NO<br>OUT<br>.327           | ABS BETAZ<br>IN OUT<br>7 44.0                     | ABS BETAM<br>IN OUT<br>7 43.8       | IN OUT                              | EL BETAM<br>IN OUT                     |
| 1<br>2<br>3   | .347 .453<br>.371 .468<br>.396 .479             | 1.037 .6                            | .369                                     | .325 .347<br>.347 .371<br>.370 .396    | .349                             | 7 44.0<br>6 41.9<br>5 39.3                        | 6 41.8<br>5 39.2                    | 69.1 59.1 6                         | 0.7 61.3<br>9.0 58.9<br>6.6 55.9       |
| 4<br>5        | .403 .480<br>.404 .487                          | .904 .5                             |                                          | .375 .403<br>.371 .404                 | .375<br>.371                     | -1.7 38.5<br>-1.8 40.4                            | -1.7 38.5<br>-1.8 40.4              | 63.5 49.8 6                         | 5.1 53.4<br>3.5 49.8                   |
| 6<br>7<br>8   | .403 .503<br>.400 .535<br>.395 .578             | .790 .4                             | 522 .403<br>179 .400<br>142 .393         | .371 .403<br>.384 .400<br>.397 .395    | .384                             | -1.1 42.5<br>-1.3 44.1<br>-1.3 46.5               | -1.1 42.5<br>-1.3 44.1<br>-1.3 46.4 | 59.6 36.7 5                         | 1.5 44.7<br>9.5 36.6<br>7.3 25.7       |
| 9<br>10<br>11 | .386 .618<br>.371 .652<br>.362 .670             | .598 .3                             | 120 .383<br>396 .365<br>380 .353         | .426 .386<br>.392 .371<br>.370 .361    | .396                             | -1.2 48.8<br>-1.2 52.9<br>-1.3 56.4               | -1.2 48.6<br>-1.2 52.7<br>-1.3 56.1 | 52.19 5                             | 4.7 13.4<br>1.68<br>9.9 -10.3          |
| RP            | TOTAL PRES                                      |                                     | TAL TEMPERATU                            | RE STATIC                              | PRES <b>S</b>                    | STATIC DENSI                                      | TY STATIC                           |                                     |                                        |
| 1             | IN OUT<br>9.97 14.08                            |                                     | N OUT RA<br>1.4 327.9 1.<br>0.2 325.4 1. |                                        | 12.23 1                          | IN OUT<br>.12346 1.35<br>.13028 1.36              | 290 284.5                           |                                     | OUT<br>324.3<br>315.5                  |
| 2<br>3<br>4   | 10.08 14.17<br>10.15 14.16<br>10.16 14.07       | 1.395 288                           | 3.4 320.3 1.<br>7.7 318.1 1.             | 111 9.11                               | 12.11 1                          | 13525 1.37<br>13598 1.37                          | 765 279.6                           | 306.2 305.8                         | 298.2<br>280.8                         |
| 5             |                                                 | 1.376 287                           | 7.5 317.5 1.<br>7.6 317.2 1.             | 103 9.07                               | 11.91 1<br>11.75 1               | .13533 1.36<br>.13524 1.35                        | 601 278.5                           | 301.9 245.8                         | 263.4<br>246.0                         |
| 7<br>8<br>9   | 10.15 14.14<br>10.15 14.26<br>10.15 14.38       | 1.405 287                           | 7.5 318.6 1.                             | 105 9.09<br>108 9.11<br>109 9.16       | 11.37 1                          | .13697   1.34<br> .13893   1.32<br> .14351   1.30 | 646 278.8                           | 298.6 202.7                         | 228.6<br>211.2<br>193.8                |
| 1 0<br>1 1    | 10.15 14.25                                     | 1.404 28                            |                                          | 111 9.23                               | 10.71 1                          | 1.14971 1.26<br>1.15419 1.24                      | 857 279.6                           | 294.0 154.5                         | 176.4<br>167.7                         |
| RP            | PERCENT INC                                     | IDENCE<br>SS DI                     | D<br>EVIA FACTOR                         | L<br>EFFIC TO                          | OSS COEFFI                       | ICIENT<br>SHOCK TO                                | LOSS PARAMETE<br>T PROF SH          | R PEAK SS<br>OCK MACH NO            |                                        |
| 1 2           | 5.0 6.2<br>10.0 6.2                             | 3.8<br>3.8                          | 8.1 .436<br>6.4 .430                     | .827 .1<br>.845 .1                     | 27 .107<br>13 .093               | .020 .0<br>.020 .0                                | 23 .019 .<br>21 .018 .              | 004 1.401<br>004 1.411              |                                        |
| 3<br>4<br>5   | 20.0 5.7<br>30.0 6.1<br>40.0 6.7                | 3.4                                 | 4.3 .416<br>5.1 .422<br>6.6 .450         | .924 .0                                | 169 .052<br>156 .045<br>160 .055 | .011 .0                                           | 11 .009 .                           | 003 1.416<br>002 1.386<br>001 1.338 |                                        |
| 6<br>7        | 50.0 7.2<br>60.0 8.1                            | 3.4<br>3.6                          | 8.0 .478<br>7.6 .502                     | .92 <b>7</b> .0                        | 064 .063<br>052 .052             | .001 .0                                           | 13 .013 .<br>11 .011 .              | 000 1.279<br>000 1.230              |                                        |
| 8<br>9<br>10  | 70.0 9.8<br>80.0 10.9<br>90.0 10.2              | 3.6                                 | 6.1 .519<br>5.8 .512<br>5.5 .501         | .957 .0                                | 065 .065<br>059 .059<br>131 .131 | .000 .0                                           | 12 .012 .                           | 000 1.178<br>000 1.089<br>000 .951  |                                        |
|               |                                                 |                                     | J.J .JUL                                 |                                        |                                  |                                                   |                                     |                                     |                                        |

TABLE IX. - Continued. BLADE-ELEMENT PERFORMANCE AT BLADE EDGES FOR FIRST-STAGE ROTOR

(m) 80 Percent of design speed; reading 1369

| RP          | RADII<br>IN QU                      |                               | NL VELOC                | ITY<br>RATIO         | MERIDIO<br>IN           | NAL VEI<br>OUT       | LOCITY<br>RATIO            | TANG V<br>IN                  |                                  | ADIAL VE<br>N OU        |                         | ABS VEL                 | REL<br>UT IN                        | VEL<br>OUT |
|-------------|-------------------------------------|-------------------------------|-------------------------|----------------------|-------------------------|----------------------|----------------------------|-------------------------------|----------------------------------|-------------------------|-------------------------|-------------------------|-------------------------------------|------------|
| 1 2         | 24.879 24.1<br>24.178 23.4          | 25 102.1                      | 104.8<br>105.0          | 1.026                | 102.9                   | 105.5                | 1.025                      | -2.2 1                        | 25.4 -1                          | 3.0 -12<br>1.6 -10      | .3 10                   | 3.0 16:<br>19.5 16:     | 3.9 352.1                           | 225.2      |
| 3<br>4      | 22.753 22.1<br>21.293 20.8          | 84 116.2                      |                         | .891<br>.891         | 116.5                   | 103.7                | .890<br>.891               | -3.7 1                        | 26.4 -                           | 8.9 -6<br>5.5 -3        | .6 11                   | 6.6 16<br>8.4 16        | 3.5 330.9                           | 200.8      |
| 5<br>6      | 19.809 19.5<br>18.291 18.3          | 96 118.3                      | 111.6<br>119.1          | .944<br>1.011        | 118.3                   | 111.6<br>119.2       | .944<br>1.011              | -3.5 1                        | 24.0 -                           | 1.9 -                   | .5 11                   | 8.3 16<br>7.9 17        | 6.8 294.7                           | 178.7      |
| 7<br>8      | 16.723 17.0<br>15.080 15.7          |                               | 126.2<br>130.0          | 1.079<br>1.128       |                         | 126.4<br>130.4       | 1.079<br>1.128             |                               |                                  | 5.7 6<br>9.9 10         | .6 11                   | 7.2 18                  |                                     | 155.2      |
| 9<br>10     | 13.348 14.4<br>11.493 13.1          |                               |                         | 1.159<br>1.137       |                         |                      | 1.157<br>1.128             |                               | 63.7 1<br>79.6 1                 | 4.5 14<br>9.7 16        | .3 10                   | 9.0 21                  | 9.5 214.5<br>7.7 191.1              | 134.3      |
| 11          | 10.503 12.4                         |                               |                         | 1.080                |                         | 113.2                |                            | -2.4 1                        |                                  | 2.5 16                  |                         | 06.1 22                 |                                     | 115.5      |
| RP          | ABS MACH N                          | T IN                          | OUT                     | AXIAL M              | OUT                     | ΙN                   | MACH NO<br>OUT             |                               | IUT IN                           |                         | REL E                   | OUT                     | REL BETAM                           |            |
| 1 2         | .324 .4                             | 58 1.038<br>54 1.029          | .629<br>.614            | .301                 | .292<br>.294            | .303                 | .294                       | -2.7 4                        | 0.1 -1.<br>19.6 -2.              | 7 49.4                  | 73.1<br>71.8            | 62.2<br>61.4            | 73.0 62.1<br>71.7 61.3              |            |
| 3<br>4      | .353 .4                             | 60 .983<br>63 .933            | .565<br>.534            | .345                 | .291                    | .346<br>.353<br>.352 | .292                       | -1.8 4                        | 50.7 -1.<br>19.8 -1.             | 7 49.8                  | 69.4<br>67.8            | 58.9<br>56.0            | 69.4 58.9<br>67.8 56.0              |            |
| 5<br>6<br>7 | .351 .5                             | 75 .877<br>01 .819<br>38 .762 | .509<br>.480<br>.445    | .352<br>.351<br>.348 | .318<br>.341<br>.362    | .351                 | .318<br>.341<br>.363       | -1.2 4                        | 18.0 -1.<br>17.1 -1.<br>17.7 -1. | 2 47.1                  | 66.3<br>64.6<br>62.8    | 51.3<br>44.7<br>35.5    | 66.3 51.3<br>64.6 44.7<br>62.7 35.5 |            |
| 8<br>9      | .344 .5                             | 77 .702<br>06 .638            | .413                    | .343                 | .374                    | .344                 | .376                       | -1.3 4                        | 19.5 -1.<br>51.5 -1.             | 3 49.4                  | 60.7<br>58.4            | 24.5<br>13.1            | 60.6 24.4<br>58.2 13.0              |            |
| 1 Ó<br>1 1  | .324 .6                             | 32 .568<br>44 .531            | .357                    | .319                 | .354                    | .324                 | .357                       | -1.3 5                        | 55.8 -1.<br>59.6 -1.             | 3 55.6                  | 55.7                    | -1.5<br>-11.6           | 55.2 -1.5<br>53.5 -11.4             |            |
| RP          |                                     | RESSURE                       |                         | TEMPERA              |                         | STATIC               |                            |                               | DENSITY                          | STATIC                  |                         |                         | SPEED                               |            |
| 1           | IN 0U<br>10.01 14.                  | 61 1.459                      |                         | 332.7                | RATIO<br>1.142          |                      | 0UT<br>12.65               | IN<br>1.14326                 | OUT<br>1.38052                   | IN<br>286.2             | 0UT<br>319.3            | IN<br>334.6             |                                     |            |
| 2<br>3<br>4 | 10.09 14.<br>10.15 14.<br>10.16 14. | 39 1.418                      | 290.4<br>288.6<br>287.4 | 327.3                | 1.139<br>1.134<br>1.125 | 9.34                 | 12.58<br>12.45<br>12.31    | 1.14902<br>1.15521<br>1.15814 | 1.37904<br>1.38127<br>1.38305    | 284.5<br>281.8<br>280.4 | 317.8<br>314.0<br>310.1 | 325.1<br>306.0<br>286.3 | 298.3                               |            |
| 5           | 10.16 14.<br>10.15 14.<br>10.14 14. | 25 1.404                      | 287.5<br>287.3          | 321.0                | 1.116                   | 9.31                 | 12.21                      | 1.15631                       | 1.38511                          | 280.5<br>280.4          | 307.1<br>304.1          | 266.4<br>246.0          | 263.5                               |            |
| 7           | 10.14 14.<br>10.14 14.              | 48 1.428                      | 287.5<br>287.5          | 319.7                | 1.112                   | 9.32                 | 11.89                      | 1.15722                       | 1.37073                          | 280.7                   | 302.2<br>300.1          | 224.9                   | 228.7                               |            |
| 9<br>10     | 10.14 14.                           | 50 1.429                      | 287.4<br>287.2          | 319.5                | 1.112                   | 9.38                 | 11.31                      | 1.16269                       |                                  | 281.0<br>281.3          | 297.6<br>295.6          | 179.5<br>154.6          | 193.9                               |            |
| 11          | 10.14 14.                           | 09 1.389                      | 287.3                   |                      | 1.112                   | 9.47                 | 10.66                      | 1.17089                       | 1.25924                          | 281.6                   | 295.0                   | 141.2                   | 167.8                               |            |
| RP          |                                     | INCIDENCE<br>EAN SS           | DEVIA                   |                      |                         | : To                 |                            | F SHOCK                       | TOT                              |                         | HOCK I                  | PEAK SS<br>MACH NO      |                                     |            |
| 1 2         | 5.0<br>10.0                         | 8.4 6.1<br>8.9 6.4            | 8.9<br>8.8              | .503                 | .782                    | .1                   |                            | 8 .030                        | .028<br>.031                     | .023                    | .005                    | 1.473                   |                                     |            |
| 3           | 20.0<br>30.0                        | 8.5 6.0<br>8.8 6.0            | 7.3<br>7.7              | .530                 | .813                    | .1                   | 85 .16<br>63 .14           | 9 .014                        | .033                             | .029<br>.027            | .004                    | 1.489                   |                                     |            |
| 5           |                                     | 9.5 6.4<br>0.3 6.6            | 8.1<br>8.0              | .525                 | .922                    | . 0                  | 13 .10<br>76 .07<br>47 .04 | 5 .001                        | .021<br>.015<br>.010             | .020<br>.015<br>.010    | .001<br>.000<br>.000    | 1.385<br>1.326<br>1.269 |                                     |            |
| 7<br>8<br>9 | 70.0 1                              | 1.3 6.8<br>3.2 6.9<br>4.4 7.1 | 4.9                     | .551                 | .959                    | .0                   | 53 .05<br>59 .05           | 3 .000                        | .011                             | .011                    | .000                    | 1.212                   |                                     |            |
| 10          | 90.0                                | 3.8 7.3<br>3.2 7.3            | 4.9                     | .546                 | .923                    | .1                   | 42 .14<br>53 .25           | 2 .000                        | .027                             | .027                    | .000                    | .974<br>.890            |                                     |            |

(n) 80 Percent of design speed; reading 1544

| RP 1 2 3 4 5 6 7 8 9 10 11                            | RADII<br>IN 0UT<br>24.879 24.125<br>24.178 23.477<br>22.753 22.184<br>21.293 20.889<br>19.809 19.596<br>18.291 18.301<br>16.723 17.005<br>15.080 15.712<br>13.348 14.417<br>11.493 13.124<br>10.503 12.476 | AXIAL VEL<br>IN OUT<br>123.4 118.<br>131.7 129.<br>139.5 137.<br>141.4 138.<br>142.1 138.<br>141.8 137.<br>140.8 140.<br>138.5 148.<br>128.8 144.<br>124.7 139. | RATIO IN<br>1 .957 124.<br>3 .982 132.<br>8 .988 139.<br>8 .981 141.<br>3 .974 142.<br>9 .972 141.                          | 9 138.1 .987<br>1 138.9 .981<br>1 138.3 .974<br>9 138.0 .973<br>9 141.1 1.001<br>0 146.3 1.052<br>9 149.5 1.100<br>9 146.1 1.116             | TANG VEL IN OUT -1.5 103.5 -2 102.2 -5 98.5 -3.4 99.2 -3.3 106.2 -2.4 114.0 -2.4 124.9 -2.2 141.8 -2.5 157.9 -2.2 177.3 -2.2 189.3                                                                  | PADIAL VEL<br>1N OUT<br>-15.7 -13.8<br>-14.1 -12.4<br>-10.7 -8.7<br>-6.6 -4.7<br>-2.27<br>2.2 3.3<br>6.9 7.4<br>11.9 11.9<br>17.5 16.1<br>23.7 19.4<br>27.0 20.7                       | 132.5 165.3<br>139.9 169.6<br>141.6 170.7<br>142.1 174.4<br>141.9 178.9                                                                                  | REL VEL IN 0UT 358.6 251.1 351.1 250.1 337.1 243.0 322.6 228.8 305.0 209.6 286.2 191.1 267.5 175.2 247.8 162.0 227.3 153.8 204.3 146.1 192.0 142.7 |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| RP 1 2 3 4 5 6 6 7 8 9 10 11                          | ABS MACH NO IN OUT .369 .445 .394 .469 .418 .486 .424 .470 .425 .501 .425 .515 .422 .544 .416 .632 .391 .670 .381 .690                                                                                     | REL HACH NO IN 0UT 1.063 .70 1.044 .71 1.007 .65 .65 .913 .60 .857 .55 .801 .44 .679 .44 .610 .42 .573 .45                                                      | IN 0U1<br>9 .366 .37<br>0 .392 .36<br>6 .417 .39<br>12 .425 .39<br>12 .425 .39<br>16 .421 .44<br>17 .403 .44<br>17 .403 .44 | 22 .416 .423<br>32 .406 .434<br>22 .391 .426                                                                                                 | IN OUT7 41.2 .1 38.32 35.6 -1.4 35.6 -1.3 37.5 -1.0 39.6 -1.0 41.69 44.2                                                                                                                            | IN OUT II                                                                                                                                                                              | .8 61.9 69.7<br>.9 58.8 67.8<br>.5 55.4 65.5<br>.0 52.7 64.0<br>.2 48.7 64.2<br>.3 43.8 60.3<br>.2 36.4 58.2<br>.0 25.5 55.9<br>.6 -3 50.2               | ETAM<br>OUT<br>61.7<br>58.7<br>55.4<br>52.6<br>48.7<br>43.8<br>36.4<br>25.4<br>13.6<br>3<br>-8.6                                                   |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | TOTAL PRES IN OUT 9.97 13.68 10.09 13.88 10.15 13.91 10.16 13.87 10.15 13.82 10.15 13.91 10.15 14.13 10.15 14.13 10.15 14.18 10.15 14.08                                                                   | RATIO 1N<br>1.372 290<br>1.376 290<br>1.376 288<br>1.365 287<br>1.364 287<br>1.362 287<br>1.371 287<br>1.371 287                                                | .7 324.6 1.11<br>.0 322.1 1.11<br>.7 316.5 1.10<br>.7 316.5 1.10<br>.7 316.5 1.10<br>.6 316.1 1.09<br>.6 317.9 1.10         | 1N OUT 7 9.08 11.94 1 9.06 11.94 2 9.00 11.83 0 8.98 11.77 0 8.96 11.66 9 8.96 11.53 1 8.98 11.38 9 9.01 11.17                               | STATIC DENSI<br>IN 0VI<br>1.11763 1.33<br>1.12282 1.34<br>1.12539 1.33<br>1.12599 1.33<br>1.12468 1.3<br>1.12523 1.33<br>1.12675 1.33<br>1.12940 1.3<br>1.13393 1.20<br>1.14114 1.2<br>1.14593 1.23 | TY STATIC TEM:  1 N OU  3259 282.9 312  4821 281.3 308  5764 277.7 302  4857 277.6 301  3814 277.6 301  2658 277.6 298  0950 277.9 297  3580 278.3 295  4968 278.8 292  2356 279.2 291 | P HHEEL SPEEL IN DUT 18 334.8 324.5 325.3 315.5 306.2 298 .0 286.5 281.3 266.6 263.2 246.1 246.9 225.0 228 202.9 211.0 179.6 194.6 154.7 176.5 141.3 167 | .6<br>.9<br>.5<br>.7<br>.3<br>.8<br>.4<br>.4                                                                                                       |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9       | PERCENT INC<br>SPAN MEAN<br>5.0 5.1<br>10.0 5.0<br>20.0 4.6<br>30.0 5.0<br>40.0 5.4<br>50.0 6.0<br>60.0 6.8<br>70.0 8.4<br>80.0 9.5<br>90.0 8.8                                                            | 2.8<br>2.6<br>2.1<br>2.3<br>2.3<br>2.3<br>2.3<br>2.2                                                                                                            | 6.2 .393 3.8 .379 4.4 .393 5.5 .421 7.1 .447 7.3 .470 5.9 .487 6.0 .479 6.1 .460                                            | .809 .129 .1<br>.863 .091 .0<br>.921 .052 .0<br>.931 .047 .0<br>.928 .054 .0<br>.929 .059 .1<br>.936 .060 .0<br>.941 .065 .1<br>.943 .074 .1 | FFFICIENT TOF SHOCK TU 112 .018 .175 .016 .038 .014 .038 .009 .051 .004 .051 .004 .000 .000 .000 .000 .000 .000 .00                                                                                 | LOSS PARAMETER DT PROF SHOCK 023 .020 .003 017 .014 .003 010 .007 .003 009 .008 .002 011 .010 .001 012 .012 .000 013 .013 .000 014 .014 .000 015 .015 .000 026 .026 .000               | PEAK SS<br>MACH NO<br>1.371<br>1.372<br>1.382<br>1.362<br>1.314<br>1.261<br>1.211<br>1.161<br>1.161<br>1.078                                             |                                                                                                                                                    |



(o) 80 Percent of design speed; reading 1555

| 2 24.178 23.477 119.0 117.3 .985 119.7 117.8 .984 -3.3 114.8 -12.7 -11.2 119.7 164.5 35 32 753 22.184 127.2 122.0 .959 127.5 122.2 .958 -2.2 112.6 -9.8 -7.7 127.6 166.2 33 4 21.293 20.889 129.4 122.8 .949 129.5 122.9 .949 -3.7 110.4 -6.0 -4.1 129.6 165.2 31 5 19.809 19.596 129.7 123.0 .948 129.8 123.0 .948 -4.3 115.0 -2.06 129.8 168.3 36 6 18.291 18.301 129.5 125.9 .972 129.6 125.9 .972 -3.4 123.0 2.0 3.0 129.6 176.0 28 7 16.723 17.005 128.6 130.4 1.014 128.7 130.6 1.014 -3.1 135.5 6.3 6.8 128.8 188.2 26 8 15.080 15.712 126.5 134.4 1.063 127.0 134.9 1.062 -2.9 150.1 10.9 11.0 127.0 201.8 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.4 236.<br>0.9 234.<br>4.8 223.<br>8.8 211.<br>1.2 193.<br>2.0 176.<br>1.5 148.<br>1.5 140.<br>8.4 131.<br>6.0 126. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 6 18.291 18.301 129.5 125.9 .972 129.6 125.9 .972 -3.4 123.0 2.0 3.0 129.6 176.0 28<br>7 16.723 17.005 128.6 130.4 1.014 128.7 130.6 1.014 -3.1 135.5 6.3 6.8 128.8 188.2 26<br>8 15.080 15.712 126.5 134.4 1.063 127.0 134.9 1.062 -2.9 150.1 10.9 11.0 127.0 201.8 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.2 193.<br>2.0 176.<br>2.7 161.<br>2.5 148.<br>1.5 140.<br>8.4 131.<br>6.0 126.                                     |
| 8 15.080 15.712 128.5 134.4 1.063 127.0 134.9 1.062 -2.9 150.1 10.9 11.0 127.0 201.8 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.5 140.<br>8.4 131.<br>6.0 126.                                                                                     |
| - 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                      |
| RP ABS MACH NO REL MACH NO AXIAL MACH NO MERID MACH NO ABS BETAZ ABS BETAM REL BETAZ REL BET<br>IN OUT IN OUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                      |
| 1 .331 .456 1.052 .663 .329 .314 .331 .316 -1.2 46.4 -1.1 46.2 71.8 61.7 71.7 6 2 .355 .463 1.040 .659 .353 .330 .355 .331 -1.6 44.4 -1.6 44.3 70.2 59.9 70.1 5 3 .380 .472 .997 .634 .379 .346 .380 .347 -1.0 42.7 -1.0 42.7 67.7 56.9 67.6 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.6<br>9.8<br>6.8                                                                                                    |
| 4 .387 .471 .951 .602 .386 .350 .387 .350 -1.6 42.0 -7.6 41.9 66.1 54.4 66.0 5<br>5 .388 .481 .899 .554 .387 .351 .387 .351 -1.9 43.1 -1.9 43.1 64.5 50.6 64.5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.4<br>0.6                                                                                                           |
| 6 .387 .504 .842 .507 .387 .361 .387 .361 -1.5 44.3 -1.5 44.3 62.7 44.6 62.7 4 7 .384 .540 .784 .463 .384 .375 .384 .375 -1.4 46.1 -1.4 46.0 60.7 35.9 60.7 3 8 .379 .581 .724 .428 .377 .387 .379 .389 -1.3 48.1 -1.3 48.1 58.5 24.8 58.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.6<br>5.8<br>4.8                                                                                                    |
| 9 .370 .615 .660 .407 .367 .394 .370 .396 -1.5 50.1 -1.5 49.9 56.2 13.2 55.9 1 10 .357 .649 .591 .380 .351 .377 .356 .380 -1.5 54.3 -1.4 54.1 53.4 -1.6 52.9 - 11 .348 .670 .554 .369 .340 .357 .348 .361 -1.5 57.7 -1.5 57.4 51.8 -11.7 51.1 -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.6                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                      |
| IN OUT RATIO IN OUT RATIO IN OUT IN OUT IN OUT I. OUT IN OUT 1 9.98 14.33 1.436 291.6 330.5 1.133 9.25 12.42 1.12921 1.36400 285.3 317.3 336.1 325.9 2 10.08 14.33 1.422 290.4 327.7 1.129 9.24 12.37 1.13627 1.37198 283.2 314.2 326.6 317.1 3 10.15 14.29 1.407 288.5 322.8 1.119 9.19 12.27 1.14179 1.38309 280.4 309.0 307.3 299.7 4 10.16 14.18 1.395 287.6 319.7 1.112 9.16 12.10 1.14350 1.38623 279.2 306.1 287.6 282.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                      |
| 3     10.15     14.29     1.407     288.5     322.8     1.119     9.19     12.27     1.14179     1.38309     280.4     309.0     307.3     299.7       4     10.16     14.18     1.395     287.6     319.7     1.112     9.16     12.10     1.14350     1.38623     279.2     306.1     287.6     282.2       5     10.15     14.11     1.390     287.4     318.8     1.109     9.15     12.04     1.14274     1.37687     279.0     304.7     267.6     264.7       6     10.15     14.18     1.397     287.5     318.6     1.108     9.15     11.92     1.14269     1.36977     279.1     303.1     247.1     247.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                      |
| 6 10.15 14.18 1.397 287.5 318.6 1.108 9.15 11.92 1.14269 1.36977 279.1 303.1 247.1 247.2 7 10.15 14.33 1.412 287.5 319.2 1.110 9.17 11.74 1.14364 1.35690 279.2 301.5 225.9 229.7 8 10.15 14.45 1.424 287.5 319.8 1.112 9.19 11.49 1.14596 1.33678 279.4 299.5 203.7 212.2 9 10.15 14.47 1.426 287.4 319.6 1.112 9.23 11.20 1.14959 1.31390 279.8 297.1 180.3 194.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                      |
| TOTAL PRESSURE TOTAL TEMPERATURE STATIC PRESS STATIC DENSITY STATIC TEMP WHEEL SPEED IN OUT RATIO IN OUT RATIO IN OUT RATIO IN OUT RATIO TAX OUT |                                                                                                                      |
| RP PERCENT INCIDENCE D LOSS COEFFICIENT LOSS PARAMETER PEAK SS<br>SPAN HEAN SS DEVIA FACTOR EFFIC TOT PROF SHOCK TOT PROF SHOCK MACH NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                      |
| <b>1</b> 5.0 7.1 4.7 8.4 .460 .816 .142 .118 .024 .025 .021 .004 1.433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                      |
| 2       10.0       7.2       4.8       7.3       .455       .823       .134       .110       .024       .025       .020       .005       1.448         3       20.0       6.8       4.2       5.2       .450       .863       .104       .084       .021       .020       .016       .004       1.450         4       30.0       7.0       4.3       6.2       .453       .895       .081       .069       .012       .015       .013       .002       1.409         5       40.0       7.7       4.5       7.4       .476       .902       .081       .076       .006       .016       .015       .001       1.363         6       50.0       8.4       4.6       7.9       .499       .926       .068       .067       .001       .014       .013       .000       1.307         7       60.0       9.3       4.7       6.8       .525       .939       .064       .064       .000       .013       .013       .000       1.251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                      |
| 6 50.0 8.4 4.6 7.9 .499 .926 .068 .067 .001 .014 .013 .000 1.307 7 60.0 9.3 4.7 6.8 .525 .939 .064 .064 .000 .013 .013 .000 1.251 8 70.0 11.0 4.7 5.2 .540 .945 .067 .067 .000 .014 .014 .000 1.196 9 80.0 12.1 4.9 5.6 .531 .954 .066 .066 .000 .014 .014 .000 1.107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                      |
| 9 80.0 12.1 4.9 5.6 .531 .954 .066 .066 .000 .014 .014 .000 1.107 10 90.0 11.5 5.0 4.8 .525 .915 .148 .148 .000 .028 .028 .000 .967 11 95.0 10.8 4.9 2.3 .518 .881 .236 .236 .000 .040 .040 .000 .884                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                      |

(p) 70 Percent of design speed; reading 1475

|                                                       |                                                                                                                                                                        |                                                                                                                    |                                                                                                                                                                             | (P) 1                                                                                                                          | o Fercent o                                                                                                                                   | r design sp                                                                                                     | eeu; reaumg                                                                                                                             |                                                                                                                             |                                                                                                               |                                                                                                                                                                   |                                                                                                                                                      |                                                                             |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | RADII IN 0UT 24.879 24.125 24.178 23.477 22.753 22.184 21.293 20.889 19.809 19.596 18.291 18.301 16.723 17.005 15.080 15.712 13.348 14.417 11.493 13.124 10.503 12.476 | IN<br>111.1<br>117.6<br>123.0<br>124.4                                                                             | VELOCITY<br>OUT RATI<br>102.7 .92<br>115.2 .97<br>125.0 1.01<br>126.8 1.01<br>128.6 1.02<br>131.1 1.04<br>135.5 1.09<br>140.4 1.1<br>140.3 1.20<br>142.1 1.24<br>137.3 1.24 | MERIDI<br>IN<br>5 112.0<br>9 118.3<br>123.4<br>9 124.5<br>125.4<br>6 125.3<br>124.5<br>7 122.9<br>8 120.1<br>9 115.7           | ONAL VELI<br>ONAL VELI<br>103.4<br>115.7<br>125.2<br>126.9<br>128.6<br>131.2<br>135.7<br>140.9<br>144.8<br>143.4<br>138.8                     | OCITY<br>RATIO<br>.924<br>.978<br>1.015<br>1.019<br>1.026<br>1.047<br>1.090<br>1.147<br>1.205<br>1.239<br>1.232 | TANG VEIN 01 1.0 7 8 1.0 7 7 8 88 9 -1.0 108 109 15 -1.0 16                                                                             | 2.6 23                                                                                                                      | .9 20.3                                                                                                       | ABS VEL<br>IN 0<br>112.0 13<br>118.3 14<br>123.4 14<br>124.5 15<br>125.4 15<br>125.3 16<br>124.5 17<br>122.9 16<br>120.1 15<br>115.7 20<br>112.7 21               | UT IN 1.8 313.2 1.2 307.6 7.6 294.3 0.4 280.3 4.8 265.7 1.4 250.0 0.4 234.0 13.1 216.7 77.0 198.7                                                    | OUT<br>227.5<br>227.4<br>221.9<br>208.5<br>193.6<br>178.9<br>167.0<br>156.5 |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | ABS MACH NO IN OUT .332 .377 .352 .406 .367 .427 .371 .435 .374 .449 .374 .468 .371 .495 .366 .534 .358 .576 .344 .613 .335 .627                                       | REL MACI<br>1 N<br>- 928<br>- 914<br>- 876<br>- 835<br>- 792<br>- 745<br>- 697<br>- 645<br>- 591<br>- 532<br>- 500 | H NO AXIA OUT IN .651 .3 .654 .3 .604 .3 .504 .3 .519 .3 .486 .3 .456 .3 .420 .3 .410 .3                                                                                    | L MACH NO<br>QUT<br>29 .294<br>50 .331<br>66 .361<br>70 .367<br>74 .373<br>73 .381<br>71 .394<br>65 .409<br>55 .421<br>39 .417 |                                                                                                                                               | ACH NO<br>OUT<br>.296<br>.333<br>.362<br>.367<br>.373<br>.381<br>.395<br>.411<br>.423<br>.420                   | ABS BETA<br>1N QU<br>.3 38<br>.5 35<br>.4 32<br>4 33<br>4 33<br>4 39<br>5 49<br>5 49                                                    | Z ABS<br>T IN .5<br>.5 .1 .5<br>.5 -1<br>.5 -1<br>.64<br>.64<br>.25<br>.84                                                  | OUT<br>38.3<br>34.9<br>32.0<br>32.5<br>33.8<br>35.6<br>37.2<br>39.7<br>42.7<br>46.7<br>49.5                   | REL BETAZ<br>IN QUT<br>69.2 63.1<br>67.5 59.5<br>65.3 55.7<br>63.7 52.5<br>61.8 48.4<br>59.9 42.9<br>57.9 35.7<br>55.6 25.9<br>53.0 14.2<br>50.1 1.0<br>48.6 -6.5 | REL BETAM<br>IN OUT<br>69.1 63.0<br>67.4 59.4<br>65.2 55.6<br>63.6 48.4<br>59.9 42.8<br>57.8 35.7<br>55.5 25.8<br>52.8 14.1<br>49.7 1.0<br>47.9 -6.4 |                                                                             |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | TOTAL PRESS IN OUT 10.04 12.32 10.12 12.52 10.14 12.59 10.14 12.64 10.14 12.71 10.14 12.80 10.14 12.98 10.14 13.11 10.14 13.16 10.14 13.05                             | SURE<br>RATIO<br>1.227<br>1.227<br>1.242<br>1.244<br>1.246<br>1.253<br>1.263<br>1.263<br>1.280<br>1.292<br>1.297   | TOTAL TEMP<br>1N 0UI<br>289.4 312<br>288.6 310<br>288.3 308<br>288.0 307<br>287.9 307<br>287.9 308<br>287.9 308<br>287.9 310<br>287.9 311<br>287.9 311<br>287.6 311         | RATIOR<br>RATIO<br>3 1.070<br>9 1.070<br>9 1.069<br>9 1.070<br>9 1.071<br>7 1.072<br>6 1.075<br>7 1.082<br>5 1.083             | STATIC<br>IN<br>9.30<br>9.29<br>9.24<br>9.22<br>9.21<br>9.21<br>9.22<br>9.25<br>9.38                                                          | PRESS OUT 11.17 11.18 11.11 11.07 11.01 10.93 10.83 10.47 10.21 10.01                                           | STATIC D<br>IN<br>1.14452<br>1.14890<br>1.14623<br>1.14601<br>1.14574<br>1.14573<br>1.14578<br>1.14880<br>1.15235<br>1.15848<br>1.16221 | ENSITY<br>DUT<br>1.28139<br>1.29449<br>1.30062<br>1.30031<br>1.29581<br>1.28208<br>1.27158<br>1.25227<br>1.25227<br>1.20880 | STATIC 1N 283.1 281.8 280.3 280.0 280.1 280.4 280.7 281.0 281.0 281.0 281.0 281.0 281.0 281.3                 | TEMP HHEEL OUT IN 303.6 293.300.8 284.2297.6 2508.2296.0 233.2295.3 215.2294.2 197.2291.3 157.2299.4 135.2288.8 123.                                              | SPEED<br>0UT<br>1 284.3<br>9 274.6<br>1 261.4<br>9 246.1<br>4 230.9<br>5 215.6<br>0 200.4<br>7 169.9<br>4 154.6<br>8 147.0                           |                                                                             |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | PERCENT INC SPAN MEAN 5.0 4.5 10.0 4.5 20.0 4.4 30.0 4.6 40.0 5.0 50.0 5.6 60.0 6.4 70.0 80.0 9.0 90.0 8.3 95.0 7.6                                                    | IDENCE<br>SS<br>2.1<br>2.1<br>1.8<br>1.9<br>1.9<br>1.9<br>1.7<br>1.7                                               | DEVIA FAC<br>9.8<br>6.9<br>4.0<br>4.3<br>5.1<br>6.1<br>6.6<br>6.3<br>6.5<br>7.4                                                                                             | TOR EFF<br>369 .70<br>354 .91<br>334 .91<br>370 .91<br>371 .91<br>403 .91<br>409 .91<br>369 .91<br>369 .91<br>352 .81          | LO TOT 161 .1323 .104 .044 .1333 .044 .044 .134 .045 .055 .055 .056 .056 .056 .13 .08 .13 .08 .13 .08 .15 .15 .15 .15 .15 .15 .15 .15 .15 .15 | SS COEFF<br>PROF<br>37 .136<br>11 .106<br>14 .046<br>14 .044<br>14 .044<br>18 .038                              | SHOCK .001 .000 .000 .000 .000 .000 .000 .00                                                                                            | LOSS<br>TOT<br>.023<br>.019<br>.009<br>.008<br>.009<br>.009<br>.009                                                         | PARAMETER<br>PROF SHO<br>.023<br>.019<br>.009<br>.008<br>.009<br>.009<br>.009<br>.007<br>.008<br>.007<br>.010 | R PEAK SS<br>DOCK MACH NO<br>000 1.226<br>000 1.226<br>000 1.201<br>000 1.129<br>000 1.129<br>000 1.087<br>000 1.087<br>000 1.097<br>000 1.743                    |                                                                                                                                                      |                                                                             |



(q) 70 Percent of design speed; reading 1486

| RP 1 2 3 4 5 6 7 8 9 1 G 1 1                          | RADII<br>IN 0U'<br>24.879 24.1.<br>24.178 23.4<br>22.753 22.1<br>21.293 20.8<br>19.609 19.5<br>18.291 18.3<br>16.723 17.0<br>15.080 15.7<br>13.348 14.4<br>11.493 13.1<br>10.503 12.4 | T IN 97.8 77.8 103.7 108.6 89 109.7 110.5 109.5 112 107.8 117 105.0 124 100.4                                          | 92.0<br>98.3<br>105.7<br>110.3<br>113.9<br>116.9<br>120.5<br>124.8<br>126.9<br>122.6         | RATIO<br>.940<br>.947<br>.973                                                                       | 108.9 1<br>109.8 1<br>110.5 1<br>110.4 1<br>109.6 1<br>108.2 1<br>105.9 1                | 0UT<br>92.6<br>98.7<br>105.9<br>110.3<br>113.9<br>116.9<br>120.6<br>125.2                           | RATIO<br>.939<br>.946<br>.972<br>1.004<br>1.031<br>1.059<br>1 1.05<br>1 1.157<br>1.206<br>1.211                                           | .1 1<br>.3 1<br>9<br>-1.0<br>-1.6<br>-2.1 1<br>-2.1 1<br>-2.1 1<br>-1.9 1                                                             | OUT IN 01.9 -12 00.8 -11 995.9 -6 998.9 -1 12.8 26.7 40.8 15 56.7                                                                       | 2.5 -10.                                                                                               | IN 98<br>4 104<br>7 108<br>7 109<br>5 110<br>8 110<br>3 109<br>1 105<br>4 102                    | 3 141.1<br>9 142.8<br>8 145.8<br>5 150.8<br>4 155.7<br>7 165.1<br>3 1,8.1<br>9 190.1<br>1 199.6                                          | REL<br>IN<br>307.7<br>301.6<br>288.8<br>273.5<br>242.9<br>226.3<br>209.6<br>170.5<br>159.6 | VEL<br>0UT<br>203.<br>200.<br>195.<br>185.<br>173.<br>161.<br>148.<br>137.<br>130.<br>123. |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | ABS MACH N IN OU .292 .3 .309 .4 .323 .4 .326 .4 .328 .4 .323 .4 .321 .5 .314 .5 .303 .5                                                                                              | T IN .910 .920 .894 .857 .748 .49 .721 .672 .566 .82 .506                                                              | CH NO<br>OUT<br>.577<br>.571<br>.559<br>.534<br>.500<br>.467<br>.429<br>.380<br>.361<br>.353 | AXIAL M/<br>IN .289<br>.307<br>.322<br>.326<br>.328<br>.328<br>.325<br>.320<br>.312<br>.298<br>.288 | OUT .261 .280 .303 .317 .328 .338 .349 .362 .369 .358 .343                               | HERID<br>IN<br>.292<br>.309<br>.323<br>.326<br>.328<br>.328<br>.326<br>.321<br>.314<br>.303<br>.295 | MACH NO<br>OUT<br>.263<br>.281<br>.303<br>.317<br>.328<br>.338<br>.349<br>.363<br>.371<br>.361                                            | -0 4<br>-2 4<br>5 4<br>8 4<br>-1.1 4<br>-1.1 4<br>-1.1 5                                                                              | AZ ABS<br>UT IN<br>7.9<br>5.7<br>2.2<br>0.8<br>1.0<br>1.3<br>1.3<br>1.3<br>3.4<br>8.0<br>2.0<br>1.5.0                                   | 47.7<br>45.6<br>42.2<br>40.8<br>41.0<br>41.3<br>43.1<br>45.3<br>47.8<br>1.47.8                         | 71.4 6<br>69.9 6<br>67.9 5<br>66.3 5<br>64.7 4<br>63.0 4<br>61.1 3<br>58.5 1<br>53.7 -           | AZ REL<br>UT IN<br>3.0 71.<br>0.6 69.<br>7.2 67.<br>3.6 66.<br>8.9 64.<br>3.7 63.<br>5.7 61.<br>4.7 58.<br>2.5 56.<br>1.4 53.<br>0.3 51. | 3 62.9<br>8 60.5<br>9 57.2<br>3 53.6<br>7 48.9<br>0 43.7<br>6 24.6<br>3 12.4<br>-1.4       |                                                                                            |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | TOTAL P<br>IN OU<br>10.06 12.<br>10.13 12.<br>10.14 12.<br>10.14 12.<br>10.14 12.<br>10.14 13.<br>10.14 13.<br>10.14 13.<br>10.14 13.                                                 | T RATIO<br>93 1.286<br>98 1.282<br>95 1.277<br>96 1.278<br>99 1.281<br>08 1.291<br>22 1.304<br>30 1.312<br>21 1.303    | IN<br>289.0<br>288.6<br>288.0<br>288.0<br>288.1<br>287.9<br>288.0<br>287.9                   | 317.7<br>316.2<br>313.3<br>311.5<br>311.0<br>310.5<br>310.7<br>311.6<br>311.9<br>312.1              | TURE RATIO 1.099 1.099 1.095 1.087 1.082 1.080 1.078 1.078 1.079 1.082 1.083 1.084 1.086 | IN<br>9.48<br>9.48<br>9.43<br>9.42<br>9.41<br>9.41<br>9.42<br>9.44<br>9.47                          | PRESS<br>OUT<br>11.64<br>11.61<br>11.54<br>11.48<br>11.41<br>11.31<br>11.19<br>11.02<br>10.81<br>10.50<br>10.30                           | STATIC<br>1N<br>1.16249<br>1.16572<br>1.16379<br>1.16363<br>1.16291<br>1.16269<br>1.16389<br>1.16537<br>1.16853<br>1.17266<br>1.17545 | DEMSITY<br>OUT<br>1.31532<br>1.32645<br>1.32641<br>1.32940<br>1.32637<br>1.32050<br>1.31197<br>1.29806<br>1.28111<br>1.25126<br>1.23115 | STATIC<br>1N<br>284.2<br>283.2<br>282.3<br>282.0<br>281.9<br>282.0<br>281.9<br>282.7<br>282.7<br>282.9 | 0UT<br>308-3<br>308-3<br>303-1<br>299-6<br>298-4<br>297-1<br>295-8<br>295-8<br>292-3             | 291.5 28<br>283.3 27<br>266.6 25<br>249.5 24<br>232.1 22<br>214.3 21<br>176.7 18<br>176.7 18<br>134.7 15                                 | ED<br>UT<br>2.7<br>5.1<br>9.9<br>4.8<br>9.6<br>4.4<br>9.3<br>4.1<br>8.9<br>3.8<br>6.2      |                                                                                            |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | SPAN 5.0<br>10.0<br>20.0<br>30.0<br>40.0<br>50.0<br>60.0<br>70.0<br>1                                                                                                                 | INCIDENCE<br>EAN SS<br>6.7 4.4<br>6.9 4.5<br>7.0 4.4<br>7.3 4.8<br>8.7 4.9<br>9.6 5.1<br>1.4 5.1<br>1.5 5.2<br>1.8 5.2 | DEVIA<br>y.7<br>8.0<br>5.6<br>5.3<br>7.0<br>6.6<br>5.1<br>4.8<br>5.0<br>3.6                  | D<br>FACTUR<br>.463<br>.456<br>.434<br>.447<br>.456<br>.477<br>.490<br>.480<br>.443                 | .833<br>.890<br>.919<br>.945<br>.955<br>.961<br>.967                                     | TO .1 .1 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .1                                                           | OSS COEF<br>T PRO<br>80 .17<br>65 .16<br>19 .11<br>80 .08<br>64 .06<br>45 .04<br>44 .04<br>44 .04<br>44 .04<br>45 .04<br>46 .04<br>20 .12 | F SHOCK<br>8 .002<br>3 .000<br>8 .000<br>4 .000<br>4 .000<br>6 .000<br>0 .000                                                         | LOSS<br>TOT<br>.031<br>.030<br>.022<br>.015<br>.013<br>.010<br>.009<br>.010<br>.022<br>.034                                             | .031<br>.029<br>.022<br>.015<br>.013<br>.010<br>.009<br>.010                                           | HOCK MAC<br>1000 1.<br>1000 1.<br>1000 1.<br>1000 1.<br>1000 1.<br>1000 1.<br>1000 1.<br>1000 1. | K SS<br>H NO<br>277<br>274<br>2254<br>2211<br>169<br>128<br>081<br>084<br>9755<br>832<br>761                                             |                                                                                            |                                                                                            |

(r) 70 Percent of design speed; reading 1497

|                                                       |                                                                                                                                                |                                                                                                      |                                                                                                         |                                                                                              |                                                                                                            | (1) 10                                                                                                 | Percent                                                                          | or design                                                                                            | apee                                                                              | u, reaur                                                                                                                   | 16 1491                                       |                                                                                   |                                                                                                   |                                                                                                       |                                                                                                  |                                                                                          |                                                                                              |                                              |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------|
| RP 1 2 3 4 5 6 7 8 9 10 11                            | RADI<br>IN<br>24.879 2<br>24.178 2<br>24.178 2<br>21.293 2<br>19.809 1<br>18.291 1<br>16.723 1<br>15.080 1<br>13.348 1<br>11.493 1<br>10.503 1 | OUT<br>4.125<br>3.477<br>2.184<br>0.889<br>9.596<br>8.301<br>7.005<br>5.4.417                        | 1N<br>87.3<br>93.1<br>97.7<br>98.8<br>99.5<br>99.5<br>98.8<br>97.1                                      | 75.6<br>81.5<br>88.0<br>95.6<br>104.3<br>110.8<br>114.9<br>118.3<br>120.1<br>114.3           | TY<br>RATIO<br>.866<br>.875<br>.901<br>.967<br>1.048<br>1.114<br>1.164<br>1.218<br>1.270<br>1.263<br>1.210 | 99.5<br>98.9<br>97.5<br>95.4<br>92.0                                                                   | 0UT<br>76.2<br>81.9<br>88.2<br>95.6<br>104.3<br>110.8<br>115.1                   | RATIO<br>-865<br>-874<br>-900<br>-966<br>1.048<br>1.114<br>1.164<br>1.217<br>1.267<br>1.254<br>1.196 | -                                                                                 | 2.0 1<br>2.4 1<br>2.2 1<br>2.2 1<br>2.1 1<br>2.0 1                                                                         | OUT<br>18.7<br>16.5<br>13.3<br>08.7<br>06.8   | IN -1197411. 4. 8. 12. 16. 18.                                                    | 9 -7.<br>-5.<br>66 -3.<br>66 2.<br>88 6.<br>4 9.<br>13.<br>6 15.                                  | 9<br>8<br>6<br>2<br>5<br>7<br>0<br>6<br>0<br>3<br>7                                                   | 88.0 1<br>93.6 1<br>98.0 1<br>99.0 1<br>99.6 1<br>99.5 1<br>99.5 1<br>99.5 1                     | 0UT<br>41.0<br>42.4<br>43.6<br>44.8<br>49.3<br>155.6<br>165.9<br>177.9<br>187.6<br>194.7 | IN<br>303.7<br>298.5<br>285.0<br>270.1<br>254.4<br>238.4<br>221.5<br>203.8<br>185.0<br>164.8 | 178.<br>171.<br>166.<br>161.<br>152.<br>140. |
| RP 1 2 3 4 5 6 7 8 9 10 11                            | ABS MAC<br>IN<br>.260<br>.277<br>.290<br>.293<br>.295<br>.295<br>.293<br>.289<br>.283<br>.273<br>.265                                          | CH NO<br>OUT<br>-398<br>-403<br>-408<br>-414<br>-429<br>-448<br>-479<br>-515<br>-545<br>-567<br>-580 | REL MAN<br>1N .897<br>.883<br>.844<br>.707<br>.657<br>.667<br>.648<br>.488                              | CH NO<br>OUT<br>.510<br>.505<br>.487<br>.475<br>.463<br>.440<br>.404<br>.375<br>.359<br>.336 | AXIAL M. 1N .258 .275 .290 .293 .295 .295 .295 .293 .288 .280 .268 .259                                    | ACH NO<br>OUT<br>.213<br>.250<br>.273<br>.300<br>.319<br>.332<br>.349<br>.333<br>.309                  | MERID<br>IN .260<br>.277<br>.290<br>.295<br>.295<br>.205<br>.237<br>.237<br>.265 | .273<br>.300<br>.319<br>.332<br>.344<br>3 .351<br>2 .338                                             | 3                                                                                 | -6 5<br>1 5<br>6 5<br>-1.0 4<br>-1.1 4<br>-1.3 4<br>-1.3 5<br>-1.3 5                                                       | ıut                                           | ABS E<br>IN .6<br>1 .6<br>-1.1 -1.4<br>-1.3 -1.3<br>-1.3 -1.3                     | SETAM<br>OUT<br>57.3<br>54.9<br>52.1<br>48.7<br>45.7<br>46.1<br>49.9<br>57.5                      | 19<br>73.3<br>71.8<br>69.9<br>68.5<br>67.0<br>65.3<br>63.5<br>61.5<br>59.2                            | 49.7<br>43.5<br>34.8                                                                             | 73.2<br>71.7<br>69.9<br>68.5<br>67.0<br>65.3<br>61.4<br>59.0                             | 49.7<br>43.5<br>34.7<br>23.5                                                                 |                                              |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | IN<br>10.07<br>10.13<br>10.14<br>10.14<br>10.14<br>10.14                                                                                       | 13.28<br>13.19<br>13.15<br>13.16<br>13.21<br>13.29<br>13.40<br>13.39                                 | GURE<br>RATIO<br>1.320<br>1.312<br>1.300<br>1.297<br>1.298<br>1.303<br>1.311<br>1.312<br>1.321<br>1.321 | TOTAL<br>IN<br>289.1<br>288.6<br>288.1<br>288.0<br>287.9<br>287.9<br>287.8<br>287.8<br>287.9 | 322.3<br>320.6<br>317.8<br>315.1<br>312.9<br>311.8<br>312.2<br>312.6<br>312.3<br>312.1                     | TURE<br>RATIO<br>1.115<br>1.111<br>1.03<br>1.094<br>1.086<br>1.083<br>1.086<br>1.085<br>1.084<br>1.086 | STATION 9.61 9.56 9.55 9.55 9.55 9.57 9.63 9.65                                  | PRESS OUT 11.92 11.88 11.75 11.69 11.30 11.36 11.10 11.36 11.36 11.36 10.46                          | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                         | STATIC<br>IN<br>.17335<br>.17656<br>.17533<br>.17473<br>.17461<br>.17461<br>.17541<br>.17693<br>.17947<br>.18288<br>.18481 | 1.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3 | T<br>2942<br>3249<br>3137<br>3660<br>3873<br>3710<br>2564<br>1200<br>9301<br>6567 | STATIC<br>IN<br>285.2<br>284.3<br>283.4<br>283.1<br>283.0<br>283.1<br>283.2<br>283.3<br>283.3     | TEHP<br>0UT<br>312.3<br>310.5<br>307.6<br>304.7<br>301.8<br>299.7<br>298.4<br>294.8<br>293.2<br>292.8 | IN<br>291<br>283<br>266<br>249<br>3 232<br>7 214<br>1 196<br>3 176<br>3 156                      | .6 282<br>.4 273<br>.7 266<br>.5 246<br>.2 229<br>.4 216<br>.7 186<br>.7 155             | 17<br>2.7<br>5.1<br>1.0<br>1.8<br>7.7<br>4.5<br>7.3<br>4.1<br>9.0                            |                                              |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9       | PERCENT<br>SPAN<br>5.0<br>10.0<br>20.0<br>30.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>95.0                                                 | INC<br>MEAN<br>8.6<br>8.9<br>9.05<br>10.2<br>11.1<br>12.1<br>14.7<br>14.7                            | 6.2<br>6.5<br>6.8<br>7.0<br>7.5<br>7.7<br>7.9<br>8.1                                                    | DEVIA<br>11.9<br>10.2<br>7.4<br>6.7<br>6.4<br>6.8<br>5.7<br>4.0<br>4.3                       | .548<br>.543<br>.537<br>.516<br>.496<br>.491<br>.512                                                       | 3 .72<br>3 .72<br>7 .75<br>6 .82<br>8 .89<br>.94<br>.95                                                | C TO                                                                             | 233 .<br>225 .<br>201 .<br>148 .<br>092 .<br>049 .<br>046 .                                          | EFFI<br>ROF<br>230<br>222<br>200<br>148<br>092<br>049<br>046<br>043<br>042<br>109 | CIENT<br>SHOCK<br>.003<br>.003<br>.001<br>.000<br>.000<br>.000<br>.000                                                     |                                               | 01<br>037<br>038<br>036<br>028<br>018<br>010<br>010<br>009                        | PARAMET<br>PROF S<br>.036<br>.037<br>.036<br>.028<br>.018<br>.010<br>.010<br>.009<br>.009<br>.020 | ER<br>HOCK<br>.000<br>.000<br>.000<br>.000<br>.000<br>.000<br>.000                                    | PEAK S<br>MACH N<br>1.315<br>1.318<br>1.293<br>1.252<br>1.206<br>1.162<br>1.110<br>1.060<br>.977 |                                                                                          |                                                                                              |                                              |

(s) 60 Percent of design speed; reading 1510

| RP 12344566788910111       | RADII IN 0UT 24.879 24.125 24.178 23.477 22.753 22.184 21.293 20.889 19.809 19.596 18.291 18.301 16.723 17.005 15.080 15.712 13.348 14.417 11.493 13.124 10.503 12.476 | IN<br>73.6<br>78.3<br>82.2<br>83.8<br>83.8<br>83.2<br>81.7                             | 71.6<br>80.8<br>88.2<br>89.1<br>90.9<br>93.5<br>100.8<br>103.9<br>101.5    | RATIO<br>.973<br>1.032<br>1.073<br>1.073<br>1.071<br>1.084<br>1.116<br>1.159<br>1.230<br>1.304<br>1.331<br>1.307 | 80.4                                                                                          | 0UT<br>72.1<br>81.2<br>88.4<br>89.1<br>90.9<br>93.5<br>93.5<br>101.1<br>104.5              | RATIO<br>.972<br>1.031<br>1.072<br>1.071                                                       | TANG IN 1.5 1.3 1.2 1.2 1.3 .5 .5 .5 .3 .4 .3            | 0UT<br>58.2<br>57.0<br>54.6<br>57.3                                                 | -9.4 -<br>-8.4 -<br>-6.3 -<br>-3.9 -<br>-1.3<br>1.3<br>4.1<br>7.1<br>10.3 1                                         | UT<br>8.4<br>7.7<br>5.6<br>3.0<br>2.3<br>5.1<br>8.2<br>1.6           | 74.2 9:                                                                                    | UT IN<br>2.7 220.6<br>9.2 215.9<br>3.9 207.2<br>6.9 196.3<br>9.9 185.7<br>4.8 174.7<br>0.9 163.0<br>0.7 150.9<br>1.4 137.7                                      | VEL<br>0UT<br>161.6<br>162.2<br>158.9<br>148.2<br>137.4<br>128.0<br>112.5<br>107.7<br>102.4<br>98.8 |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| RP 1 2 3 4 5 6 7 8 9 10 11 | ABS MACH NO IN OUT .219 .268 .232 .288 .244 .303 .246 .309 .248 .321 .248 .335 .246 .354 .243 .383 .238 .415 .229 .441                                                 | .640<br>.612<br>.580<br>.549<br>.517<br>.482<br>.446<br>.407                           | CH ND OUT .468 .471 .463 .432 .401 .374 .349 .329 .316 .300                | AXIAL M/<br>IN .217<br>.231<br>.243<br>.246<br>.248<br>.248<br>.246<br>.248<br>.246<br>.225<br>.219              | ACH NO<br>DUT<br>.207<br>.235<br>.257<br>.260<br>.265<br>.273<br>.282<br>.295<br>.305<br>.298 | HERID H<br>IN .219<br>.232<br>.244<br>.246<br>.248<br>.248<br>.248<br>.238<br>.238<br>.229 | 1ACH NO<br>OUT<br>-209<br>-236<br>-258<br>-260<br>-265<br>-273<br>-282<br>-296<br>-306<br>-300 | 1.1<br>.9<br>.8<br>.9<br>.6<br>.3                        | DUT I<br>39.1 1<br>35.2<br>31.7<br>32.8<br>34.2<br>35.4                             | S BETAM<br>N OUT<br>.1 38.9<br>.9 35.1<br>.8 31.7<br>.6 34.2<br>.3 35.4<br>.4 37.0<br>.2 39.3<br>.4 47.0<br>.2 50.7 | IN                                                                   | 56.2<br>53.0<br>48.6<br>43.1<br>36.1<br>26.1<br>14.0                                       | REL BETAM<br>IN OUT<br>70.4 63.5<br>68.7 60.0<br>66.6 56.2<br>64.9 53.0<br>63.2 48.6<br>61.3 43.1<br>59.3 36.0<br>57.0 26.0<br>54.3 13.9<br>51.2 3<br>49.3 -8.4 |                                                                                                     |
| RP 1 2 3 4 5 6 7 8 9 10 11 | TOTAL PRE IN OUT 10.09 11.16 10.13 11.25 10.14 11.29 10.14 11.32 10.14 11.39 10.14 11.58 10.14 11.58 10.14 11.58 10.14 11.58 10.14 11.56                               | RATIO<br>1-107<br>1-111<br>1-114<br>1-117<br>1-121<br>1-124<br>1-134<br>1-142<br>1-144 | IN<br>289-1<br>288-6<br>288-4<br>288-1<br>287-9<br>287-9<br>287-9<br>287-9 | 300.6<br>299.6<br>298.3<br>298.0<br>297.9<br>297.9<br>298.7<br>298.7<br>298.7<br>299.3                           | RATIO                                                                                         | 9.73<br>9.72<br>9.71<br>9.71<br>9.72<br>9.73<br>9.75<br>9.77                               | DUT<br>10.62<br>10.62<br>10.60<br>10.57<br>10.54                                               | IN<br>1.18694<br>1.18992<br>1.18880                      | 1.25552<br>1.26009<br>1.25937<br>1.25812<br>1.25694<br>1.2513<br>1.24758<br>1.23838 | IN 286.4<br>285.5<br>285.0<br>284.7<br>284.3<br>284.3<br>284.5<br>284.6                                             | 294.7<br>293.0<br>292.4<br>291.9<br>291.4<br>290.9<br>290.2          | IN<br>209.2<br>203.3<br>191.4<br>179.1<br>166.6<br>153.8<br>140.6<br>126.8<br>112.3        | 197.4<br>186.6<br>175.7<br>164.8<br>153.9<br>143.0                                                                                                              |                                                                                                     |
| RP<br>1234567891011        | PERCENT IN SPAN MEA 5.0 5.10.0 5.20.0 5.30.0 6.50.0 7.60.0 7.70.0 9.80.0 90.0 95.0 9.50.0                                                                              | 8 3.4<br>9 3.5<br>7 3.1<br>9 3.2<br>1 3.3<br>9 3.3<br>5 3.3<br>3.2<br>8 3.2            | DEVIA<br>10.4<br>7.5<br>4.6<br>4.8<br>5.4<br>7.0<br>6.5<br>6.3<br>5.5      | D<br>FACTOR<br>.363<br>.345<br>.321<br>.337<br>.359<br>.374<br>.383<br>.387<br>.371<br>.349                      | EFF1C<br>.740<br>.805<br>.912<br>.924<br>.944<br>.951<br>.971<br>.978<br>.938                 | TOT .13 .10 .04 .04 .04 .04 .04 .04 .04 .04 .04 .0                                         | RRD PRD 137 .137 .104 .104 .104 .104 .104 .104 .104 .104                                       | 1 .000<br>5 .000<br>8 .000<br>0 .000<br>9 .000<br>5 .000 | TOT<br>.023<br>.019<br>.009<br>.009<br>.010<br>.008<br>.008<br>.006                 | S PARAME<br>PROF<br>-023<br>-019<br>-009<br>-010<br>-008<br>-008<br>-006<br>-019<br>-037                            | TER<br>SHOCK<br>-000<br>-000<br>-000<br>-000<br>-000<br>-000<br>-000 | PEAK SS<br>HACH NO<br>.891<br>.889<br>.868<br>.838<br>.779<br>.746<br>.715<br>.660<br>.576 |                                                                                                                                                                 |                                                                                                     |

(t) 60 Percent of design speed; reading 1521

| 1 5.<br>2 10.<br>3 20.<br>4 30.<br>5 40.<br>6 50.<br>7 60.<br>8 70. | RP PERCE | RP IN 1 10.1 2 10.1 3 10.1 4 10.1 5 10.1 6 10.1 7 10.1 8 10.1 9 10.1 10 10.1 10.1 10.1 10.1                               | RP ABS 1<br>1 .192<br>2 .200<br>3 .211<br>4 .211<br>5 .211<br>6 .211<br>7 .211<br>8 .211<br>9 .210<br>10 .200<br>11 .19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 24.879<br>2 24.175<br>3 22.755<br>4 21.293<br>5 19.803<br>6 18.299<br>7 16.725<br>8 15.086<br>9 13.344<br>10 11.493                    |
|---------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| AN MEAN<br>.0 8.1<br>.0 8.3<br>.0 8.2                               | NT INC   | 0 11.45<br>3 11.46<br>4 11.49<br>4 11.50<br>4 11.50<br>4 11.64<br>4 11.65                                                 | 5 .286<br>.294<br>7 .302<br>9 .310<br>9 .323<br>8 .346<br>5 .376<br>0 .403<br>2 .426                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ADII<br>9 24.125<br>8 23.477<br>3 20.184<br>3 20.889<br>9 19.596<br>1 18.301<br>3 17.005<br>0 15.712<br>8 14.417<br>3 13.124<br>3 12.476 |
| 5.7<br>5.8<br>5.7<br>5.9<br>6.1                                     | DENCE    | URE<br>RATIO<br>1.134<br>1.131<br>1.134<br>1.133<br>1.133<br>1.134<br>1.141<br>1.148<br>1.154<br>1.154<br>1.149           | REL MAC<br>IN -644<br>-632<br>-502<br>-571<br>-539<br>-506<br>-470<br>-433<br>-394<br>-351<br>-328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AXIAL<br>IN<br>64.8<br>69.1<br>72.7<br>73.6<br>74.1<br>74.1<br>73.6<br>72.4<br>70.6<br>67.5<br>65.3                                      |
| DEVIA<br>10.5<br>7.2<br>6.1<br>5.7<br>6.6                           |          | IN<br>288.7<br>288.5<br>288.3<br>288.1<br>288.0<br>288.0<br>287.9<br>288.0                                                | CH NO OUT .424 .413 .406 .389 .362 .337 .313 .294 .280 .251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 64.7<br>67.5<br>74.6<br>78.8<br>80.3<br>82.9<br>86.9<br>91.2<br>92.9<br>87.8                                                             |
| FACTOR<br>.449<br>.452<br>.427                                      | מ        | 303.1<br>302.5<br>300.9<br>299.9<br>299.5<br>299.5<br>300.3                                                               | AXIAL M<br>IN<br>.191<br>.204<br>.214<br>.217<br>.219<br>.217<br>.214<br>.208<br>.199<br>.193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RATIO<br>.999<br>.977<br>1.027<br>1.071<br>1.084<br>1.118<br>1.181<br>1.260                                                              |
| .737<br>.740<br>.837                                                |          | TURE<br>RATIO<br>1.050<br>1.048<br>1.044<br>1.041<br>1.040<br>1.039<br>1.040<br>1.042<br>1.042<br>1.043<br>1.044<br>1.045 | ACH NO POLY NO | 69.5<br>72.9<br>73.7<br>74.1                                                                                                             |
| TO .1 .1 .1 .0                                                      | L        | 9.84<br>9.83<br>9.81<br>9.80<br>9.80<br>9.81<br>9.83<br>9.85                                                              | MERID  <br>IN .192<br>.205<br>.215<br>.217<br>.219<br>.219<br>.219<br>.210<br>.202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0UT<br>65.1<br>67.8<br>74.7<br>78.8<br>80.3                                                                                              |
|                                                                     | OSS COEF | 10.82<br>10.78                                                                                                            | .196<br>.217<br>.229<br>.234<br>.242<br>.254<br>.267<br>.273<br>.259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | COCITY RATIO .997 .976 1.026 1.070 1.084 1.119 1.181 1.259 1.314 1.291 1.256                                                             |
| F SHOCK<br>4 .000<br>3 .000<br>8 .000<br>5 .000                     |          | STATIC<br>IN<br>1.19583<br>1.19762<br>1.19677<br>1.19734<br>1.19708<br>1.19781<br>1.19830<br>1.19965<br>1.20157           | .9 4<br>.9 4<br>.5 4<br>.2 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.0<br>1.0<br>1.1<br>.7<br>.2<br>1<br>1                                                                                                  |
| TOT<br>.029<br>.030<br>.020                                         |          | 1.2744<br>1.2754<br>1.2738<br>1.2707<br>1.2678<br>1.2604<br>1.2530                                                        | DUT<br>18.0<br>16.9<br>12.6<br>10.7<br>11.1<br>11.6<br>12.9<br>14.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OUT<br>71.8<br>72.0<br>68.6<br>67.8<br>70.1<br>73.6<br>80.7                                                                              |
| PROF<br>.029<br>.030<br>.020<br>.014                                | SS PARAM | IN<br>7 286.<br>1 286.<br>2 285.<br>2 285.<br>2 285.<br>8 285.<br>8 285.<br>4 285.                                        | SS BETAM<br>N OUT<br>.8 47<br>.9 46<br>.8 42<br>.5 40<br>.2 41<br>-1 41<br>-1 42<br>-1 44<br>-1 52<br>-2 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -8.3<br>-7.4<br>-5.6<br>-3.4<br>-1.2<br>1.2<br>3.6<br>6.2<br>9.1                                                                         |
|                                                                     |          | 1 297.<br>7 295.<br>4 294.<br>3 293.<br>2 293.<br>2 292.<br>4 291.<br>4 290.<br>6 290.                                    | IN<br>72.8<br>77.1.3<br>66.69.3<br>7.67.6<br>1.66.1<br>64.3<br>7.60.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | )UT<br>-7.6<br>-6.5                                                                                                                      |
| MACH NO<br>.934<br>.930<br>.907<br>.876<br>.845                     | PEAK SS  | IN. 7 209.7 203.8 191.8 191.5 167.0 2 154.2 141.0 127.1 112.5 1 96.9                                                      | DUT<br>3 63.8<br>61.8<br>1 57.8<br>5 4.0<br>0 49.8<br>3 44.2<br>4 35.8<br>4 35.8<br>0 12.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ABS VEL<br>IN 0U<br>65.3 96<br>69.5 98<br>72.9 101<br>73.7 104<br>74.1 110<br>73.7 118<br>72.7 128<br>71.2 137<br>68.6 145<br>66.8 148   |
|                                                                     | 103.2    | SPEED<br>00T<br>203.4<br>197.9<br>187.0<br>176.1<br>165.2<br>154.3<br>143.4<br>132.5<br>121.5<br>110.6<br>105.2           | REL BETAM<br>IN OUT<br>72.6 63.7<br>71.1 61.7<br>69.1 57.7<br>67.6 53.9<br>64.3 44.2<br>62.4 35.7<br>60.3 24.6<br>57.7 12.3<br>54.7 -3.0<br>53.0 -11.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T IN 218.7 214.3 204.2 182.5 182.5 159.2 146.6 7 133.8 118.8                                                                             |
|                                                                     |          |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VEL<br>146.8<br>143.0<br>140.0<br>133.9<br>124.5<br>115.7<br>107.2<br>108.7<br>88.7<br>85.7                                              |

TABLE IX. - Concluded. BLADE-ELEMENT PERFORMANCE AT BLADE EDGES FOR FIRST-STAGE ROTOR

(u) 60 Percent of design speed; reading 1533

| RP                                              | RADII                                                                                                                                                             | AXIAL VELD                                                                                                                               | CITY MERII                                                                                                                          | IONAL VELOCITY                                                                                                                           | TANG VEL                                                                                                                                                                     | RADIAL VEL                                                                                         | ABS VEL                                                                                                                                                | REL VEL                                                                                                                                                                  |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | IN 20UT 24.879 24.125 24.178 23.477 22.753 22.184 21.293 20.889 19.809 19.596 18.291 18.301 16.723 17.005 15.080 15.712 13.348 14.417 11.493 13.124 10.503 12.476 | 1N 901<br>56.9 55.6<br>61.3 57.4<br>64.7 59.7<br>65.5 65.1<br>66.0 72.0<br>66.0 82.3<br>64.6 85.9<br>62.9 85.9<br>60.1 80.3<br>58.2 74.9 |                                                                                                                                     | 82.4 1.256<br>86.2 1.330<br>86.4 1.342<br>81.0 1.325                                                                                     | .7 84.3<br>.7 84.6<br>.5 82.6<br>.1 79.4<br>3 76.9<br>7 85.5<br>8 95.0<br>7 103.6<br>7 112.8                                                                                 | 3.2 4.3<br>5.6 7.0<br>8.1 9.3                                                                      | 57.4 101.2<br>61.6 102.3<br>64.9 102.0<br>65.6 102.7<br>66.0 105.3<br>66.0 110.2<br>65.6 118.7<br>64.8 128.3<br>63.4 134.9<br>61.1 140.5<br>59.5 144.3 | IN 0UT<br>215.9 130.9<br>211.4 126.4<br>201.3 119.7<br>190.3 116.0<br>179.2 113.5<br>167.8 107.8<br>155.6 100.4<br>142.9 93.8<br>129.3 88.1<br>114.8 88.1<br>2107.0 77.8 |
| RP                                              | ARS MACH NO                                                                                                                                                       | REI MACH NO                                                                                                                              | AXIAL MACH NO                                                                                                                       | MERID MACH NO                                                                                                                            | ABS BETAZ                                                                                                                                                                    | ABS BETAM REL                                                                                      | BETAZ REL                                                                                                                                              | BETAM                                                                                                                                                                    |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | IN OUT -169 .291 -182 .295 -191 .294 -193 .297 -195 .306 -195 .320 -194 .346 -191 .374 -187 .394 -180 .411 -175 .422                                              | IN OUT .635 .376 .623 .364 .593 .345 .561 .336 .529 .329 .495 .314 .459 .292 .422 .274 .381 .257 .339 .237 .315 .228                     | IN OUT .167 .16 .180 .16 .191 .17 .193 .18 .195 .20 .195 .22 .193 .24 .190 .25 .186 .25 .177 .23                                    | IN OUT 1.169 .161 2.181 .166 2.191 .173 3.189 3.195 .209 3.195 .225 3.194 .240 4.191 .251 4.187 .252                                     | IN DUT .7 56.6 .7 55.8 .4 54.2 .1 50.62 46.96 45.46 46.17 47.96 50.46 55.0                                                                                                   | IN OUT IN .7 56.4 747 55.7 734 54.1 711 50.6 692 46.9 686 45.4 666 46.0 657 47.8 636 50.2 60.2     | OUT IN 74.6 2 63.0 73.1 2 60.1 71.2 9 55.8 69.8 44.2 66.8 1 34.8 65.1 1 23.3 63.0 11.5 60.6 11.5 60.6 13.3 -3.2 57.6 3.3 -3.2 57.6                     | OUT<br>64.7<br>62.9<br>60.0<br>8 55.8<br>1 50.6<br>3 44.2<br>34.8<br>23.2<br>11.4                                                                                        |
| RP                                              | TOTAL PRESS                                                                                                                                                       | SURE TOTA<br>RATIO IN                                                                                                                    | L TEMPERATURE<br>OUT RATIO                                                                                                          | STATIC PRESS                                                                                                                             | STATIC DENSI                                                                                                                                                                 | TY STATIC TEMP                                                                                     | WHEEL SPEE                                                                                                                                             |                                                                                                                                                                          |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | 10.10 11.68<br>10.13 11.67<br>10.13 11.61<br>10.14 11.58<br>10.14 11.59<br>10.14 11.59<br>10.14 11.66<br>10.14 11.73<br>10.14 11.73                               | 1.153 288.5<br>1.145 288.3<br>1.143 288.0<br>1.144 288.0<br>1.151 287.9<br>1.157 288.0<br>1.156 287.9<br>1.156 287.9                     | 305.8 1.058<br>304.9 1.057<br>303.6 1.053<br>301.9 1.048<br>300.7 1.044<br>300.1 1.044<br>300.2 1.043<br>300.6 1.044<br>300.5 1.044 | 9.90 11.02<br>9.90 10.99<br>9.88 10.93<br>9.87 10.89<br>9.87 10.80<br>9.87 10.74<br>9.88 10.65<br>9.89 10.53<br>9.91 10.37<br>9.92 10.27 | 1.20068 1.27<br>1.20314 1.27<br>1.20243 1.27<br>1.20315 1.27<br>1.20306 1.28<br>1.20307 1.27<br>1.20366 1.28<br>1.20400 1.20<br>1.20528 1.25<br>1.20666 1.24<br>1.20798 1.23 | 7606 285.8 293.<br>5857 285.9 292.<br>5881 285.9 291.<br>5267 286.1 290.                           | .1 133.6 13.<br>.2 140.4 142.<br>.4 126.6 131.<br>.4 112.1 121.<br>.8 96.5 110                                                                         | 2.5<br>7.1<br>3.3<br>5.4<br>4.5<br>3.6<br>2.8<br>1.9                                                                                                                     |
| RP                                              | SPAN MEAN                                                                                                                                                         | SS DEVI                                                                                                                                  | A FACTOR EF                                                                                                                         | FIC TOT PR                                                                                                                               | ብ <b>ሮ</b> ፍዛብ <b>ሮ</b> ሄ ፕና                                                                                                                                                 | LOSS PARAMETER T PROF SHOCK                                                                        | MACH NO                                                                                                                                                |                                                                                                                                                                          |
| 1<br>23<br>4<br>5<br>6<br>7<br>8<br>9<br>10     | 5.0 10.0<br>10.0 10.2<br>20.0 10.3<br>30.0 10.8<br>40.0 11.6<br>50.0 12.6<br>60.0 13.7<br>70.0 16.8                                                               | 7.7 11.<br>7.8 10.<br>7.8 8.<br>8.1 7.                                                                                                   | 5 .538 .<br>4 .545 .<br>4 .545 .<br>6 .524 .                                                                                        | 728 .213 .2<br>726 .217 .2<br>749 .203 .2<br>308 .157 .1                                                                                 | 13 .000 .0<br>17 .000 .0<br>03 .000 .0<br>57 .000 .0                                                                                                                         | 136 .036 .000<br>135 .035 .000<br>129 .029 .000<br>119 .019 .000<br>113 .013 .000<br>107 .007 .000 | .958<br>.935<br>.904<br>.871<br>.838<br>.801<br>.763<br>.701                                                                                           |                                                                                                                                                                          |

(a) 100 Percent of design speed; reading 1283

| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | RADII IN OUT 23.787 23.797 23.208 23.251 22.032 22.121 20.848 20.983 19.660 19.848 18.461 18.712 17.249 17.574 16.020 16.431 14.778 15.291 13.520 14.158 12.883 13.594 | AXIAL VELUTIN 0UT 163.9 168.2 177.4 174.4 191.9 181. 193.5 181. 189.7 178.2 178.2 169. 176.9 169. 177.1 164. 169.4 152. 160.2 143.            | RATIO IN<br>1.026 164.0<br>.981 177.4<br>.944 191.9<br>.940 193.6<br>.941 189.8<br>.940 184.1<br>.953 178.5<br>.959 177.8<br>.959 177.8     | 174.0 .981<br>181.1 .944<br>182.0 .940<br>178.6 .941<br>173.1 .940<br>170.0 .952<br>169.9 .958<br>164.9 .927<br>153.0 .898                                          | TANG VEL IN DUT 157.4 6.0 151.5 4.4 145.2 5.3 148.0 2.9 151.2 2.9 155.56 167.42 179.9 4.8 193.1 13.9 209.6 9.8 222.9 -11.4                                                             | RADIAL VEL<br>IN OUT<br>-1.8 1.5<br>-1.1 1.8<br>.8 2.6<br>3.0 3.9<br>5.3 5.4<br>7.6 7.0<br>10.1 8.7<br>12.9 10.6<br>16.1 11.8<br>18.4 11.6<br>18.6 10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ABS VEL IN 0UT 227.3 168.4 233.3 174.1 240.6 181.2 243.7 182.0 242.6 178.7 241.0 173.1 244.7 170.0 252.6 170.0 262.5 165.4 270.1 153.3 275.1 144.8 | REL VEL IN 0UT 227.3 168.4 233.3 174.1 240.6 181.2 243.7 182.0 242.6 178.7 241.0 173.1 244.7 170.0 252.6 170.0 252.6 165.4 270.1 153.3 275.1 144.8 |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| RP 1 2 3 4 5 6 7 8 9 1 0 1 1                          | ABS MACH NO IN OUT .629 .458 .650 .477 .678 .501 .690 .505 .689 .497 .686 .482 .699 .473 .724 .474 .755 .460 .780 .426                                                 | REL MACH NO<br>IN OUT<br>.629 .45<br>.650 .47<br>.678 .50<br>.690 .50<br>.689 .49<br>.686 .48<br>.699 .47<br>.724 .47<br>.755 .46<br>.780 .42 | 7 .495 .476<br>.541 .501<br>.548 .505<br>.539 .496<br>.524 .481<br>.509 .473<br>.507 .472<br>.509 .456<br>.489 .425                         | 1N 0UT .454 .457 .495 .476 .541 .591 .548 .505 .539 .497 .524 .482 .509 .473 .508 .473 .512 .459 .492 .425                                                          | ABS BETAZ<br>IN OUT<br>43.8 2.0<br>40.5 1.5<br>37.1 1.7<br>37.4 .9<br>38.6 .9<br>40.22<br>43.21<br>45.5 1.6<br>47.5 4.8<br>51.1 3.7<br>54.3 -4.5                                       | 1N OUT 143.8 2.0 43.40.5 1.5 40.37.1 1.7 33.8.5 .9 38.5 .9 38.5 40.22 41.43.21 41.45.4 11.6 44.5 45.9 3.7 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L BETAZ REL N OUT IN 3.8 2.0 43.1 5.5 1.5 40.2 7.1 1.7 37.1 4.9 37.1 4.9 37.2 40.2 40.2 6.5 1.6 45.4 7.5 4.8 47.1 3.7 50.4 3.4 5.5 54.             | 8 2.0<br>5 1.5<br>1 .7<br>4 .9<br>5 .9<br>22<br>21<br>4 1.6<br>4 4.8<br>9 3.7                                                                      |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | TOTAL PRESS IN QUT 17.02 16.68 17.23 16.88 17.44 17.14 17.20 17.01 16.97 16.77 16.82 16.63 16.86 16.64 16.84 16.44 16.70 15.97 16.58 15.71                             | SURE TOT IN                                                                                                                                   | 2 347.2 1.000<br>341.9 1.000<br>339.7 1.000<br>9 337.9 1.000<br>2 336.2 1.000<br>1 335.1 1.000<br>335.1 1.000<br>335.0 1.000<br>334.6 1.000 | STATIC PRESS IN OUT 13.04 14.45 12.97 14.45 12.82 14.44 12.68 14.40 12.52 14.37 12.39 14.31 12.14 14.27 11.54 14.27 11.54 14.27 11.54 14.21 11.17 14.10 10.92 14.06 | STATIC DENSI<br>IN 0UT<br>1.39743 1.49<br>1.41155 1.51<br>1.42620 1.55<br>1.42402 1.55<br>1.41391 1.55<br>1.40481 1.55<br>1.38500 1.54<br>1.38653 1.56<br>1.33713 1.54<br>1.30455 1.55 | 1N 01469 325.2 33.579 320.1 33.1549 313.1 32.1224 310.2 32.1483 308.6 32.1958 305.3 32.1958 305.3 32.1958 305.3 32.1958 305.3 32.1958 305.3 32.1958 305.3 32.1958 305.3 32.1958 305.3 32.1958 305.3 32.1958 305.3 32.1958 305.3 32.1958 305.3 32.1958 305.3 32.1958 305.3 32.1958 305.3 32.1958 305.3 32.1958 305.3 32.1958 305.3 32.1958 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 305.4 | JT IN 0<br>0.8 8.3                                                                                                                                 | ED<br>UT<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                                                 |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | PERCENT INC SPAN HEAN 5.0 8.3 10.0 6.6 20.0 3.3 30.0 3.1 40.0 3.4 50.0 5.1 70.0 5.4 80.0 4.9 90.0 5.4 95.0 6.7                                                         | 5<br>0<br>4<br>.2                                                                                                                             | .7 .515                                                                                                                                     | 000 .083 .0<br>000 .065 .0<br>000 .061 .0<br>000 .041 .0<br>000 .043 .0<br>000 .039 .0<br>000 .044 .0<br>000 .076 .0                                                | OF SHOCK TO 886 .000 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .                                                                                                                                | LOSS PARAMETER OT PROF SHOC 033 .033 .00 031 .031 .00 023 .023 .00 021 .021 .00 013 .013 .00 011 .011 .00 011 .011 .00 018 .018 .00 029 .029 .00 033 .032 .00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 1.178<br>0 1.133<br>0 1.078<br>0 1.081<br>0 1.080<br>0 1.137<br>0 1.137<br>0 1.190<br>0 1.240<br>0 1.313                                         |                                                                                                                                                    |

TABLE X. - Continued. BLADE-ELEMENT PERFORMANCE AT BLADE EDGES FOR FIRST-STAGE STATOR

(b) 100 Percent of design speed; reading 1382

| RP                                                    | RADII                                                                                                                                                             | AXIAL VEL                                                                                                 |                                                                                                         | MERIDIONAL V                                                                                                                                                                                                                 |                                                                                                                     | TANG VEL                                                                                                             | RADIAL VEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                              | REL VEL                                                                                                                                                      |                                                     |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10       | IN 0UT 23.787 23.797 23.208 23.251 22.032 22.121 20.848 20.983 19.660 19.848 18.461 18.712 17.249 17.574 16.020 16.431 14.778 15.291 13.520 14.158 12.883 13.594  | 1N OUT 159.9 163. 180.5 174. 197.4 185. 199.0 187. 198.4 188. 198.3 189. 198.8 194. 198.8 197. 173.1 166. | 7 1.024<br>6 .968<br>7 .940<br>7 .944<br>5 .950<br>7 .956<br>7 .977<br>0 .999<br>1 1.000                | IN OUT 159.9 163.1 180.5 174 197.4 185 199.0 187 198.9 187.6 188 198.6 189.6 189.1 199.1 198.1 198.1 198.1 198.1 198.1 198.1 198.1 198.1 198.1 198.1 198.1 198.1 198.1 198.1 197.1 198.1 197.1 198.1 188.2 187.4 174.3 167.4 | 7 .968<br>7 .940<br>2 .941<br>8 .944<br>9 .950<br>9 .956<br>-976<br>-997<br>-997                                    | IN OUT 138.9 -3.1 133.3 -3.1 128.5 -4.1 130.1 -7.1 135.4 -5.4 141.4 -6.1 163.5 -4.8 180.5 1.1 197.4 2.2 208.2 -11.4  | -1.1 1.3 2.3 1.1 4.5 5.5 5.5 8.2 7.3 11.3 9.1 14.5 12.1 18.0 14.2 19.4 14.2 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 14.2 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 | .4 211.8 163<br>.8 224.4 174<br>.7 235.6 185<br>.0 237.8 187<br>.6 240.6 187<br>.6 243.8 188<br>.7 248.6 190<br>.1 257.8 194<br>.2 268.7 198<br>.2 272.7 187 | 2.8 211.8 16<br>1.7 224.4 17<br>1.7 235.6 18<br>1.4 237.8 18<br>1.9 240.6 18<br>1.8 243.8 18<br>1.0 248.6 19<br>1.5 257.8 19<br>1.5 268.7 19<br>1.6 272.7 18 | 3.87<br>4.77<br>5.74<br>7.98<br>8.0<br>94.5<br>17.8 |
| RP                                                    | ABS MACH NO                                                                                                                                                       | REL MACH NO                                                                                               |                                                                                                         |                                                                                                                                                                                                                              | MACH NO                                                                                                             | ABS BETAZ                                                                                                            | ABS BETAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                              | REL BETAM                                                                                                                                                    |                                                     |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10       | IN OUT .550 .450 .450 .631 .484 .670 .519 .526 .689 .528 .715 .536 .744 .548 .778 .560 .792 .528 .788 .469                                                        | IN OUT .590 .45 .631 .48 .670 .51 .679 .52 .689 .53 .715 .53 .744 .778 .54 .792 .52 .788 .46              | 0 .445<br>.507<br>.567<br>.568<br>.569<br>1 .569<br>.571<br>.571<br>8 .574<br>8 .543                    | OUT 1N .450 .44 .483 .50 .519 .56 .525 .528 .56 .531 .55 .55 .55 .55 .558 .55 .558 .558 .55                                                                                                                                  | 45 .450<br>107 .483<br>151 .519<br>158 .526<br>159 .528<br>170 .531<br>172 .535<br>175 .548<br>177 .560<br>146 .528 | IN OUT 41.0 -1.3 36.4 -1.1 33.1 -1.4 33.2 -2.4 34.3 -1.6 35.5 -1.7 37.0 -1.9 39.4 -1.4 42.3 .3 46.5 .7 50.3 -3.9     | IN OUT<br>41.0 -1.3<br>36.4 -1.1<br>33.1 -1.4<br>33.2 -2.4<br>34.3 -1.6<br>35.4 -1.7<br>37.0 -1.9<br>39.4 -1.4<br>42.2 .3<br>46.4 .7<br>50.1 -3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33.2 -2.4<br>34.3 -1.6<br>35.5 -i.7<br>37.0 -1.9<br>39.4 -1.4<br>42.3 .3<br>46.5 .7<br>50.3 -3.9                                                             | IN OUT 41.0 -1.3 36.4 -1.1 33.1 -1.4 33.2 -2.4 34.3 -1.6 35.4 -1.7 37.0 -1.9 39.4 -1.4 42.2 .3 46.4 .7 50.1 -3.9                                             |                                                     |
| RP                                                    | TOTAL PRESS                                                                                                                                                       | SURE TOT<br>RATIO IN                                                                                      | AL TEMPERA                                                                                              | TURE STATE                                                                                                                                                                                                                   | IC PRESS<br>OUT                                                                                                     | STATIC DENS                                                                                                          | IN TU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OUT IN                                                                                                                                                       | SPEED<br>OUT                                                                                                                                                 |                                                     |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10       | 15.42 15.25<br>15.85 15.58<br>16.14 15.95<br>16.14 15.95<br>16.12 15.95<br>16.12 15.95<br>16.11 15.95<br>16.26 16.05<br>16.39 16.13<br>16.26 15.63<br>15.88 15.01 |                                                                                                           | 2 343.2<br>0 340.0<br>1 335.5<br>1 333.1<br>4 332.4<br>9 331.9<br>9 331.9<br>4 332.4<br>1 332.1         | 1.000 12.1<br>1.000 12.1<br>1.000 11.9<br>1.000 11.8<br>1.000 11.7<br>1.000 11.6<br>1.000 11.4<br>1.000 11.2<br>1.000 10.7                                                                                                   | 7 13.27<br>3 13.27<br>5 13.27<br>5 13.20<br>13.19<br>5 13.16<br>5 13.08<br>13.08<br>13.04<br>5 12.93                | 1.32328 1.4<br>1.34160 1.4<br>1.35267 1.4<br>1.35377 1.4<br>1.34883 1.4<br>1.33998 1.4<br>1.32836 1.4<br>1.31345 1.4 | 10198 320.9<br>12392 314.9<br>15303 307.8<br>15670 305.0<br>15994 303.5<br>15975 302.3<br>15933 300.4<br>15610 298.8<br>15196 296.4<br>13185 295.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 329.9 .0<br>324.8 .0<br>318.3 .1<br>315.7 .0<br>314.8 .0<br>314.2 .0<br>313.2 .0<br>313.2 .0<br>312.8 .0<br>314.6 .0<br>318.3 .0                             | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                                                                       |                                                     |
| RP                                                    | SPAN MEAN                                                                                                                                                         |                                                                                                           | D PACTOR                                                                                                | EFFIC                                                                                                                                                                                                                        | LOSS COEF                                                                                                           | OF SHOCK                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HOCK MACH NO                                                                                                                                                 |                                                                                                                                                              |                                                     |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11 | 5.0 5.2<br>10.0 2.3<br>20.0 -1.0<br>30.0 -1.3<br>40.0 -1.1<br>50.0 -1.3<br>60.0 -1.3<br>70.08<br>80.04<br>90.0 .4<br>95.0 2.5                                     | -3.6 11<br>-6.9 -7.0 -6.9 -6.3 -6.3 -5.7 10<br>-4.5 11                                                    | .1 .485<br>.2 .450<br>.1 .412<br>.3 .407<br>.6 .405<br>.2 .405<br>.2 .410<br>.9 .414<br>.4 .420<br>.549 | .000<br>.000<br>.000<br>.000<br>.000<br>.000                                                                                                                                                                                 | .053 .053 .053 .074 .074 .074 .075 .075 .075 .075 .075 .075 .075 .075                                               | 74 .000<br>45 .000<br>47 .000<br>43 .000<br>37 .000<br>43 .000<br>43 .000                                            | .028 .028<br>.016 .016<br>.016 .016<br>.014 .014<br>.011 .011<br>.010 .010<br>.011 .011<br>.012 .012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .000 1.042<br>.000 1.008<br>.000 .968<br>.000 .973<br>.000 .984<br>.000 1.008<br>.000 1.066<br>.000 1.138<br>.000 1.266                                      |                                                                                                                                                              |                                                     |

(c) 100 Percent of design speed; reading 1393

|                  | 242                                  |                            |                                  |                                  |                                | (-,                             |                                  |                               |                                  | _                                         |                               | _                           |                                |                              |                              |                                  |                                  |                            |
|------------------|--------------------------------------|----------------------------|----------------------------------|----------------------------------|--------------------------------|---------------------------------|----------------------------------|-------------------------------|----------------------------------|-------------------------------------------|-------------------------------|-----------------------------|--------------------------------|------------------------------|------------------------------|----------------------------------|----------------------------------|----------------------------|
| RP<br>1<br>2     | RAD1<br>1N<br>23.787 2<br>23.208 2   | 0UT<br>23.797              | IN                               |                                  | RATIO<br>1.006<br>.968         | MERIDII<br>IN<br>162.5<br>180.4 | ONAL VE<br>OUT<br>163.5<br>174.7 | RATIO<br>1.006                | TAN<br>IN<br>138.1<br>133.6      | ı -:                                      | UT                            | RADIA<br>IN<br>-1.8<br>-1.1 | L VEL<br>OUI<br>1.             | r<br>.4 2                    |                              | EL<br>OUT<br>163.6<br>174.7      | REL<br>IN<br>213.3<br>224.5      | VEL<br>0UT<br>163.<br>174. |
| 3<br>4<br>5<br>6 | 22.032<br>20.848<br>19.660<br>18.461 | 22.121<br>20.983<br>19.848 | 196.6<br>198.7<br>198.2<br>197.4 | 185.7<br>187.1<br>187.3<br>187.5 | .944<br>.942<br>.945           | 196.6<br>198.7<br>198.3         | 185.7<br>187.2<br>187.4          | .944<br>.942<br>.945          | 128.1<br>130.2<br>134.6          | 2 -                                       | 4.3<br>7.3<br>5.4             | .8<br>3.1<br>5.5            | 2<br>4<br>5                    | .7 2:<br>.0 2:               | 34.6<br>37.6<br>39. <b>7</b> | 185.7<br>187.3<br>187.5          | 234.6<br>237.6<br>239.7          | 185.<br>187.<br>187.       |
| 7<br>8<br>9      | 17.249 1<br>16.020 1<br>14.778       | 17.574<br>16.431<br>15.291 | 196.9<br>197.1<br>196.5          | 188.5<br>193.2<br>197.0          | .950<br>.957<br>.980<br>1.003  | 197.2<br>197.7<br>197.3         | 187.7<br>188.7<br>193.5<br>197.5 | .950<br>.957<br>.979<br>1.001 | 140.4<br>148.5<br>163.2<br>180.8 | ? -<br>2 -<br>3                           | 4.8<br>1.1                    | 8.2<br>11.2<br>14.4<br>17.9 | 7<br>9<br>12<br>14             | .7 2<br>.1 2                 | 47.1<br>56.3<br>67.6         | 187.7<br>188.8<br>193.6<br>197.5 | 242.4<br>247.1<br>256.3<br>267.6 | 187.<br>188.<br>193.       |
| 10<br>11         | 13.520 1<br>12.883 1                 |                            | 184.7<br>169.7                   | 185.4<br>164.2                   | 1.004<br>.968                  | 185.8<br>170.8                  | 185.9<br>164.7                   | 1.001                         | 197.<br>208.                     | 1<br>7 -1                                 | 2.2<br>1.5                    | 20.1<br>19.7                | 14<br>12                       | .1 2<br>.3 2                 | 70.8                         | 185.9<br>165.1                   | 270.8<br>269.7                   | 185<br>165                 |
| RP               | ABS MAG                              | OUT                        | REL MA<br>IN                     | ΩUT                              | AXIAL M                        | TUO                             | IN                               | MACH NO                       | IN                               | BETA<br>DU                                |                               | S BET                       | TAM                            | REL<br>In                    | BETAZ<br>DUT                 | REL<br>IN                        | BETAM<br>OUT                     |                            |
| 1<br>2<br>3      | .595<br>.631<br>.667                 | .450<br>.484               | .595<br>.631<br>.667             | .450<br>.484                     | .453                           | .449<br>.48 <b>4</b>            | .453<br>.507                     | 3 .449<br>7 .484              | 36.                              | 4 -1<br>5 -1                              | .2 40                         | 5.5                         | -1.2<br>-1.2                   | 40.4                         | -1.2<br>-1.2                 | 40.4                             | -1.2                             |                            |
| 4 5              | .679<br>.686                         | .519<br>.526<br>.527       | .679<br>.686                     | .519<br>.526<br>.527             | .559<br>.567<br>.567           | .519<br>.525<br>.527            | .559<br>.568<br>.568             | 3 .525<br>3 .527              | 33.:<br>34.:                     | 2 -2                                      | .3 3.<br>.2 3.<br>.7 3.       | 3.1<br>3.2<br>1.2           | -1.3<br>-2.2<br>-1.7           | 33.1<br>33.2<br>34.2         | -1.3<br>-2.2<br>-1.7         | 33.2                             | 2 -2.2                           |                            |
| 6<br>7<br>8      | .695<br>.711<br>.740                 | .528<br>.532<br>.546       | .695<br>.711<br>.740             | .528<br>.532<br>.546             | .566<br>.566<br>.569           | .528<br>.531<br>.545            | .567<br>.567<br>.570             | 7 .528<br>7 .532              | 35.<br>37.                       | 4 -1<br>1 -1                              | .7 3                          | 5.4<br>7.1                  | -1.7<br>-1.9<br>-1.4           | 35.4<br>37.1<br>39.6         | -1.7<br>-1.9                 | 35.4<br>37.1                     | 1 -1.7                           |                            |
| 9<br>10<br>11    | .775<br>.786<br>.782                 | .557<br>.522<br>.461       | .775<br>.786<br>.782             | .557<br>.522<br>.461             | .569<br>.536<br>.492           | .556<br>.521<br>.459            | .571<br>.539<br>.499             | 1 .557<br>9 .52 <b>2</b>      | 42.<br>46.                       | 6<br>9                                    | .3 42                         | 2.5<br>3.7                  | .3<br>.7                       | 42.6<br>46.9                 | .3                           | 42.                              | 5 .3<br>7 .7                     |                            |
| RP               |                                      | AL PRESS                   |                                  |                                  | TEMPERA                        |                                 |                                  | 5 .460<br>C PRESS             |                                  |                                           | ENSITY                        |                             | -4.0<br>TATIC                  | 50.9<br>TEMP                 |                              | EL SPE                           |                                  |                            |
| 1                | IN<br>15.49<br>15.88                 | 0UT<br>15.28<br>15.61      | .986<br>.983                     | IN<br>342.6<br>339.8             | OUT<br>342.6                   | RATIO<br>1.000                  | IN<br>12.20<br>12.14             | 0UT<br>13.30                  | IN<br>1 32                       | S 11 4                                    | DUT<br>1.4071                 | <b>B</b> 3                  | IN<br>20.0                     | 0U <b>T</b><br>329. <b>3</b> | IN                           | .0<br>.0                         | .0                               |                            |
| 2<br>3<br>4      | 16.15<br>16.18                       | 15.98<br>15.97             | .989<br>.987                     | 335.5<br>333.1<br>332.2          | 335. <b>5</b><br>333 <b>.1</b> | 1.000<br>1.000<br>1.000         | 11.99<br>11.88                   | 13.30                         | 1.34<br>1.35<br>1.35             | 762                                       | 1.4278:<br>1.4549:<br>1.4597: | 2 3<br>5 3                  | 14.7<br>08.1<br>05.0           | 324.6<br>318.4<br>315.6      | ļ                            | .0<br>.0<br>.0                   | .0<br>.0<br>.0                   |                            |
| 5<br>6<br>7      | 16.14<br>16.12<br>16.09              | 15.97<br>15.95<br>15.93    | .989<br>.989<br>.99 <b>0</b>     | 332.2<br>331.5<br>330.9          | 331.5                          | 1.000<br>1.000<br>1.000         | 11.78<br>11.67<br>11.49          | 13.22<br>13.18                | 1.35                             | 208<br>459                                | 1 4630<br>1.4628              | 0 3<br>4 3                  | 03.6                           | 314.7<br>314.0               | ,<br>                        | .0                               | . 0                              |                            |
| 8                | 16.27<br>16.38                       | 16.06                      | .987<br>.984                     | 331.4<br>332.5                   | 331.4<br>332.5                 | 1.000                           | 11.31<br>11.01                   | 13.11<br>13.06                | 1.33<br>1.31<br>1.29             | 881<br>296                                | 1.4612<br>1.4602<br>1.4533    | 5 2<br>1 2                  | 00.5<br>98.7<br>96.8           | 313.2<br>312.8<br>313.0      | }                            | .0<br>.0<br>.0                   | .0                               |                            |
| 10<br>11         | 16.23<br>15.85                       | 15.61<br>14.98             | .962<br>.945                     | 332.3<br>332.3                   |                                | 1.000                           | 10.80<br>10.58                   | 12.96<br>12.94                | 1.27<br>1.24                     | 193                                       | 1.4332<br>1.4148              | 2 2<br>5 2                  | 95.7<br>96.0                   | 315.0<br>318.7               | 1                            | .0                               | .0                               |                            |
| RP               | PERCENT<br>SPAN                      | HEAN                       | IDENCE<br>SS                     | DEVIA                            |                                | R EFF!                          | C T                              |                               | :0F SH                           | NT<br>CCK                                 | TOT                           | SS PA<br>PR                 | RAHET<br>OF S                  |                              | PEAK S                       |                                  |                                  |                            |
| 1<br>2<br>3      | 5.0<br>10.0<br>20.0                  | 4.6<br>2.4<br>-1.u         | -1.3<br>-3.6<br>-6.9             | 13.2<br>11.2<br>9.1              | .451                           | .00                             | 00.                              | 071 .0                        | 171 .                            | 000<br>000<br>000                         | .025<br>.027<br>.015          | . მ                         | 25<br>2 <b>7</b><br>1 <b>5</b> | .000<br>.000<br>.000         | 1.038                        | 0                                |                                  |                            |
| 4 5              | 30.0<br>40.0                         | -1.2<br>-1.2               | -7.1<br>-7.0                     | 7.5<br>7.6                       | .408                           | .00<br>.00                      | 00 .                             | 049 .(<br>040 .(              | ) 49<br>) 40 .                   | 000                                       | .017<br>.013                  | .0                          | 17<br>13                       | .000<br>.000                 | .962<br>.967                 | 2<br>7                           |                                  |                            |
| 7<br>8           | 50.0<br>60.0<br>70.0                 | -1.3<br>-1.2<br>6          | -7.0<br>-6.8<br>-6.1             | 7.3<br>7.2<br>7.9                | .410                           | .00                             | 00.                              | 035 .0                        | )35 .                            | 00 <b>0</b><br>00 <b>0</b><br>00 <b>0</b> | .011<br>.010<br>.011          | .0                          | 11<br>10<br>11                 | .000                         | .977<br>1.004<br>1.065       | 4                                |                                  |                            |
| 9<br>10<br>11    | 80.0<br>90.0                         | 1<br>1.0                   | -5.4<br>-4.1                     | 10.4<br>12.6                     | .421                           | l .00                           | 00 .                             | 0.48 . (<br>113 . 1           | ) 48 .<br>113 .                  | 0 0 <b>0</b><br>0 0 <b>0</b>              | .012<br>.025                  | .0                          | 12<br>25                       | .000                         | 1.140                        | 0                                |                                  |                            |
| 1.1              | 95.0                                 | 3.1                        | -1.9                             | 9.5                              | .557                           | 7 .00                           | . 01                             | 166 .                         | 166 .                            | 000                                       | .035                          | . 0                         | 35                             | .000                         | 1.27                         | 1                                |                                  |                            |



TABLE X. - Continued. BLADE-ELEMENT PERFORMANCE AT BLADE EDGES FOR FIRST-STAGE STATOR

(d) 100 Percent of design speed; reading 1415

| RP                                              | RADII                                                                                                                                                             | AXIAL VELO                                                                                                                                  | CITY HERI                                                                                                                                          | DIONAL_VELOC                                                                                                         |                                                                                                                                                |                                                                                                                           | ADIAL VEL                                                                                                                                              | ABS VEL                                                                                                                                    | REL VEL                                                                                                                                   |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | IN OUT 23.787 23.797 23.208 23.251 22.032 22.121 20.848 20.983 19.660 19.848 18.461 18.712 17.249 17.574 16.020 16.431 14.778 15.291 13.520 14.158 12.883 13.594  | IN OUT 164.9 165.2 179.8 174.9 194.4 184.8 196.8 185.8 196.1 184.9 194.8 183.3 193.5 182.9 193.5 186.3 192.2 188.3 179.5 176.1 164.9 156.2  | RATIO IN<br>1.002 164.<br>973 179.<br>951 194.<br>944 196.<br>943 196.<br>945 193.<br>963 194.<br>980 193.<br>981 180.<br>948 166.                 | 9 165.2 1.8<br>8 174.9 4<br>184.8<br>8 185.9<br>9 183.4<br>9 183.1<br>0 186.6<br>0 176.6                             | TIO IN<br>002 143.0<br>973 141.0<br>951 134.8<br>944 136.9<br>943 139.9<br>941 144.7<br>945 152.9<br>962 166.3<br>978 201.7<br>944 213.5       | 8<br>-1.2<br>-1.7<br>-4.0<br>-3.2<br>-4.4<br>-4.7 1<br>-2.7 1<br>3.9 1<br>4.5 1                                           | 1.1 1.8<br>.8 2.7<br>3.0 4.0<br>5.4 5.6<br>8.1 7.4<br>1.0 9.4<br>4.1 !1.6<br>7.5 13.5<br>9.5 13.4                                                      | IN OUT 218.2 165.2 228.4 175.0 236.5 184.8 239.7 185.9 241.0 185.0 242.8 183.5 246.8 183.5 246.8 183.5 266.0 188.8 270.7 176.7 270.4 156.9 | IN 0UT 218.2 165.2 228.4 17.2 236.5 184.8 239.7 185.0 241.0 185.0 242.8 183.5 246.8 183.2 246.8 183.2 255.5 186.6 270.7 176.7 270.4 156.9 |
| RP                                              | ABS MACH NO IN OUT                                                                                                                                                | REL MACH NO<br>IN OUT                                                                                                                       | AXIAL MACH N                                                                                                                                       | IN (                                                                                                                 | OUT IN                                                                                                                                         | OUT IN                                                                                                                    | OUT IN                                                                                                                                                 | BETAZ REL<br>OUT IN                                                                                                                        | BETAM<br>OUT                                                                                                                              |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | .608 .453<br>.641 .483<br>.671 .515<br>.683 .520<br>.688 .519<br>.696 .515<br>.709 .515<br>.736 .525<br>.736 .525<br>.769 .531<br>.784 .495<br>.783 .437          | .608 .453<br>.641 .483<br>.671 .515<br>.683 .520<br>.688 .519<br>.696 .515<br>.709 .515<br>.736 .525<br>.769 .531<br>.784 .495<br>.783 .437 | .459 .459 .505 .48 .505 .551 .551 .5561 .52 .558 .51 .557 .557 .556 .520 .49 .477 .43                                                              | 3 .505<br>5 .551<br>8 .561<br>5 .569<br>4 .557<br>4 .557<br>9 .558<br>3 .523                                         | .453 40.9<br>.483 38.1<br>.515 34.7<br>.520 34.8<br>.519 35.5<br>.515 36.6<br>.515 38.3<br>.525 40.7<br>.530 43.6<br>.495 48.3<br>.436 52.3    | 3 40.<br>4 38.<br>5 34.<br>-1.2 34.<br>-1.0 35.<br>-1.4 36.<br>-1.5 38.<br>8 40.<br>1.2 43.<br>1.4 48.<br>-3.3 52.        | 93 40.<br>14 38.<br>75 34.<br>8 -1.2 34.<br>5 -1.0 35.<br>6 -1.4 36.<br>3 -1.5 38.<br>6 -8 40.<br>5 1.2 43.<br>2 1.4 48.                               | 9 -3 40.1<br>1 -4 38.7<br>7 -5 34.1<br>5 -1.0 35<br>6 -1.4 36<br>3 -1.5 38<br>7 -8 40<br>6 1.2 43                                          | 93<br>14<br>8 -1.2<br>5 -1.0<br>6 -1.4<br>3 -1.5<br>8<br>5 1.2<br>2 1.4                                                                   |
| RP                                              | TOTAL PRESS                                                                                                                                                       | SURE TOTAL<br>RATIO IN                                                                                                                      | TEMPERATURE<br>OUT RATIO                                                                                                                           | STATIC PRI                                                                                                           | ESS STATIO                                                                                                                                     | DENSITY                                                                                                                   | STATIC TEMP                                                                                                                                            |                                                                                                                                            | E <b>D</b><br>UT                                                                                                                          |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | 15.91 15.68<br>16.27 15.98<br>16.48 16.32<br>16.50 16.29<br>16.41 16.26<br>16.35 16.18<br>16.27 16.11<br>16.41 16.20<br>16.48 16.20<br>16.34 15.72<br>15.97 15.14 | .985 344.6<br>.982 341.8<br>.990 337.3<br>.987 335.1<br>.991 333.7<br>.989 332.4<br>.990 331.8<br>.987 332.2<br>.983 333.0<br>.962 333.0    | 344.6 1.000<br>341.8 1.000<br>337.3 1.000<br>335.1 1.000<br>339.7 1.000<br>331.8 1.000<br>332.2 1.000<br>333.0 1.000<br>333.0 1.000<br>333.4 1.000 | 12.40 13<br>12.34 13<br>12.19 13<br>12.08 13<br>11.95 13<br>11.83 13<br>11.63 13<br>11.44 13<br>11.14 13<br>10.88 13 | .62 1.3462<br>.62 1.36119<br>.62 1.37238<br>.55 1.3728<br>.54 1.36639<br>.50 1.36029<br>.44 1.34444<br>.43 1.3307<br>.37 1.3039<br>.30 1.27899 | 2 1.43340<br>1.45313<br>1.48085<br>4 1.48468<br>1.48961<br>1.48962<br>1.48656<br>1.48664<br>1.47783<br>1.47783<br>1.47783 | 320.9 331.<br>315.8 326.<br>309.5 320.<br>306.5 317.<br>304.8 316.<br>303.1 315.<br>301.4 315.<br>297.6 314.<br>297.8 315.<br>296.5 317.<br>297.0 321. | 0 .0<br>5 .0<br>3 .0<br>9 .0<br>7 .0<br>7 .0<br>1 .0<br>8 .0<br>2 .0                                                                       | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                                                    |
| RP<br>1                                         | PERCENT INCI<br>SPAN MEAN<br>5.0 4.8                                                                                                                              | IDENCE<br>SS DEVI<br>-1.1 13.                                                                                                               |                                                                                                                                                    | LOSS<br>FIC TOT<br>000 .066                                                                                          | COEFFICIENT<br>PROF SHOCK<br>.066 .000                                                                                                         | C TOT                                                                                                                     | PARAMETER<br>PROF SHOCK<br>.026 .000                                                                                                                   | PEAK SS<br>HACH NO<br>1.066                                                                                                                |                                                                                                                                           |
| 2<br>3<br>4                                     | 10.0 3.7<br>20.0 .4<br>30.0 .0                                                                                                                                    | -2.3 11.<br>-5.5 9.<br>-5.8 8.                                                                                                              | 7 .467<br>6 .424                                                                                                                                   | 000 .075<br>000 .038<br>000 .048                                                                                     | .075 .001<br>.038 .001                                                                                                                         | 0.028<br>0.014                                                                                                            | .028 .000<br>.014 .000<br>.016 .000                                                                                                                    | 1.054<br>1.001<br>.997                                                                                                                     |                                                                                                                                           |
| 5                                               | 40.02<br>50.05                                                                                                                                                    | -6.0 7.1<br>-6.1 7.1                                                                                                                        | 9 .421<br>3 .427                                                                                                                                   | 000 .034                                                                                                             | .034 .001                                                                                                                                      | 0 .011<br>0 .012                                                                                                          | .011 .000<br>.012 .000                                                                                                                                 | .99 <b>4</b><br>.99 <b>8</b>                                                                                                               |                                                                                                                                           |
| 7<br>8<br>9                                     | 70.04<br>70.0 .1<br>80.0 .5                                                                                                                                       | -5.9 7.1<br>-5.4 8.<br>-4.8 10.1                                                                                                            | 1 .440<br>9 .450                                                                                                                                   | 000 .035<br>000 .042<br>000 .053                                                                                     | .035 .000<br>.042 .000<br>.053 .000                                                                                                            | 0 .011<br>0 .013                                                                                                          | .010 .000<br>.011 .000<br>.013 .000                                                                                                                    | 1.023<br>1.078<br>1.148                                                                                                                    |                                                                                                                                           |
| 10                                              | 90.0 2.1<br>95.0 4.2                                                                                                                                              | -3.0 13.<br>8 9.                                                                                                                            | <b>1</b> .50 <b>5</b> .                                                                                                                            | 000 .114<br>000 .157                                                                                                 | .114 .000<br>.157 .000                                                                                                                         |                                                                                                                           | .025 .000<br>.033 .000                                                                                                                                 | 1.234<br>1.302                                                                                                                             |                                                                                                                                           |

(e) 100 Percent of design speed; reading 1426

| 23456789                                              | RADII<br>IN OUT<br>23.787 23.797<br>23.208 23.251<br>22.032 22.121<br>20.848 20.983<br>19.660 19.848<br>18.461 18.712<br>17.249 17.574<br>16.020 16.431                                    | IN 0U<br>161.1 166<br>178.5 178.5<br>192.9 183<br>195.2 184<br>195.0 182<br>192.0 179<br>190.1 178<br>139.7 188 | RATIO 1 1.033 1 977 1 951 1 946 1 938 1 938 1 938 1 938                                                                                             | MERIDIONAL VE<br>IN 0UT<br>161.1 166.4<br>178.5 174.4<br>192.9 183.5<br>195.2 184.6<br>195.0 182.9<br>192.2 179.9<br>190.2 180.7<br>187.8 180.3                          | RATIO<br>1.033<br>.977<br>.951<br>.946<br>.938<br>.936<br>.937<br>.950               | TANG VEL 1N GUT 149.1 1.0 143.01 138.68 141.0 -3.1 142.3 -2.2 147.1 -4.4 154.5 -4.0 167.7 -1.7 184.9 5.7 204.1 6.5                                                         | 3.0 3.<br>5.4 5.<br>8.0 7.<br>10.8 9.                                                                                                                                                 | IN OUT<br>219.5 166.4<br>228.7 174.4<br>7 237.5 183.5<br>9 240.8 184.7<br>6 241.4 182.9<br>3 242.0 179.9<br>245.2 178.5<br>3 253.5 180.7                                                          | 219.5 166.4<br>228.7 174.4<br>237.5 183.5<br>240.8 184.7<br>241.4 182.9<br>242.0 179.9<br>245.2 178.5<br>253.5 180.7<br>263.5 180.4                               |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10<br>11<br>RP<br>12<br>34<br>56<br>7<br>89<br>10     | 13.520 14.158 12.883 13.594  ABS HACH NO IN OUT .609 -455 .640 .480 .672 .510 .685 .515 .688 .511 .692 .504 .703 .500 .729 .506 .760 .505 .777 .468 .779 .417                              | REL MACH N 1N OU .609 .4 .640 .4 .672 .5 .685 .5 .688 .5 .703 .5 .729 .5 .777 .4                                | AXIAL MA T IN 55 .447 80 .500 10 .546 15 .555 11 .556 04 .549 00 .545                                                                               | 174.8 167.7<br>159.5 150.2<br>CH NO MERID<br>OUT IN<br>.455 .447<br>.480 .546<br>.515 .556<br>.511 .556<br>.503 .547<br>.500 .547<br>.504 .542<br>.466 .503<br>.415 .461 | 7 .455<br>1 .480<br>2 .510<br>5 .515<br>5 .511<br>5 .504<br>7 .506<br>7 .505<br>1468 | 204.1 6.5<br>217.4 -9.1<br>ABS BETAZ<br>IN OUT<br>42.8 .3<br>38.72<br>35.8 -1.0<br>36.17<br>37.4 -1.4<br>39.1 -1.3<br>41.55<br>44.7 1.8<br>49.6 2.2<br>53.9 -3.5           | 17.0 12.1<br>18.9 12.1<br>18.4 11.2<br>ABS BETAM<br>IN OUT<br>42.8 .3<br>38.70<br>35.72<br>35.8 -1.0<br>36.17<br>37.4 -1.4<br>39.1 -1.3<br>41.45<br>44.5 1.8<br>49.4 2.2<br>53.7 -3.5 | 7 208.7 107.6<br>3 269.6 150.4<br>REL BETAZ RE<br>IN OUT I<br>42.8 .3 42.<br>38.70 38.<br>35.72 35.<br>35.8 -1.0 35.<br>36.17 36.<br>37.4 -1.4 37.<br>37.4 -1.4 37.<br>37.4 -1.4 37.<br>41.55 41. | 268.7 167.8<br>269.6 150.4<br>IL BETAM<br>N OUT<br>1.8 .3<br>1.70<br>1.72<br>1.8 -1.0<br>1.17<br>1.4 -1.4<br>1.1 -1.3<br>1.4 -5<br>1.5 1.8<br>1.4 2.2<br>1.7 -3.5 |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | TOTAL PRESS<br>IN DUT<br>16.26 16.03<br>16.58 16.28<br>16.78 16.61<br>16.81 16.60<br>16.70 16.53<br>16.55 16.39<br>16.44 16.29<br>16.57 16.36<br>16.58 16.27<br>16.45 15.79<br>16.13 15.30 |                                                                                                                 | TAL TEMPERAT  OUT R  1 347.1 1  6 343.6 1  0 339.0 1  8 336.8 1  1 335.1 1  6 333.6 1  7 332.7 1  0 333.0 1  6 333.6 1  9 333.9 1  5 334.5 1        |                                                                                                                                                                          |                                                                                      | STATIC DENS<br>IN OU<br>1.36479 1.4<br>1.38913 1.4<br>1.38926 1.5<br>1.38969 1.5<br>1.37497 1.5<br>1.36070 1.5<br>1.34675 1.5<br>1.31733 1.5<br>1.29158 1.4<br>1.26174 1.4 |                                                                                                                                                                                       |                                                                                                                                                                                                   | EED                                                                                                                                                               |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9       | PERCENT INC SPAN MEAN 5.0 6.7 10.0 4.3 20.0 1.3 30.0 1.1 40.0 .4 50.0 .4 60.0 .4 70.0 .9 80.0 1.6 90.0 3.4 95.0 5.8                                                                        | IDENCE<br>SS DE<br>.8 1<br>-1.7 1<br>-4.6<br>-4.8<br>-5.3<br>-5.3<br>-5.1<br>-4.6<br>-3.7 1                     | D<br>VIA FACTOR<br>4.5 .501<br>2.1 .471<br>9.9 .436<br>8.4 .434<br>8.2 .432<br>7.3 .443<br>7.5 .452<br>8.4 .460<br>1.5 .477<br>3.9 .535<br>9.7 .616 | EFFIC TO                                                                                                                                                                 |                                                                                      | FICIENT OF SHOCK T S .000 .                                                               | LOSS PARAMETE<br>OT PROF SH<br>025 .025<br>028 .028 .<br>014 .014<br>016 .016 .<br>012 .012 .<br>010 .010<br>009 .009 .<br>011 .011 .<br>014 .014 .<br>014 .                          | R PEAK SS<br>OCK MACH NO<br>000 1.108<br>000 1.065<br>000 1.023<br>000 1.023<br>000 1.013<br>000 1.033<br>000 1.033<br>000 1.163<br>000 1.255<br>000 1.338                                        |                                                                                                                                                                   |

(f) 100 Percent of design speed; reading 1437

| RP                 | RADII<br>IN OUT                                                  | AXIAL VELO                                               | RATIO IN                                         | DIONAL VELOCITY OUT RATIO                                | IN OUT                                           | RADIAL VEL                                       |                                                 | RE!                          |
|--------------------|------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-------------------------------------------------|------------------------------|
| 1<br>2<br>3<br>4   | 23.787 23.797<br>23.208 23.251<br>22.032 22.121<br>20.948 20.983 | 161.3 168.6<br>178.5 175.4<br>192.6 182.9<br>193.4 183.1 | .982 178.<br>.950 192.<br>.947 193.              | 6 175.4 .982<br>6 182.9 .950<br>5 183.2 .947             | 152.8 2.8<br>146.7 1.1<br>141.2 .5<br>143.8 -2.0 | -1.8 1.5<br>-1.1 1.8<br>.8 2.6<br>3.0 3.9        | 231.1 175.4 2<br>238.8 182.9 2                  | 22.<br>31.<br>38.<br>41.     |
| 5<br>6<br>7        | 19.660 19.848<br>18.461 18.712<br>17.249 17.574                  | 192.4 180.4<br>189.1 176.7<br>186.3 174.5                | .938 192.<br>.934 189.<br>.936 186.              | 5 180.5 .938<br>3 176.9 .934<br>6 174.7 .936             | 145.5 -1.8<br>149.6 -3.8<br>157.5 -3.8           | 5.3 5.4<br>7.9 7.1<br>10.6 9.0                   | 241.3 180.5 2<br>241.3 176.9 2<br>244.2 174.8 2 | 41<br>41<br>44               |
| 8<br>9<br>10<br>11 | 16.020 16.431<br>14.778 15.291<br>13.520 14.158<br>12.883 13.594 | 185.8 175.2<br>183.1 172.7<br>169.4 159.6<br>154.0 144.7 | .943 186.<br>.943 183.<br>.942 170.<br>.940 155. | 9 173.2 .942<br>4 160.1 .939                             | 169.66<br>186.8 7.1<br>206.1 7.5<br>220.6 -9.3   | 13.6 10.9<br>16.7 12.4<br>18.4 12.1<br>17.9 10.9 | 262.1 173.3 2<br>267.5 160.3 2                  | 51.<br>62.<br>67.<br>69.     |
| RP                 | ABS MACH NO                                                      | REL MACH NO                                              | AXIAL MACH N                                     | IN OUT                                                   | IN BUT                                           | IN DUT I                                         |                                                 | DUT                          |
| 1 2 3              | .615 .460<br>.646 .482<br>.674 .507                              | .615 .460<br>.646 .482<br>.674 .507                      | .499 .48<br>.544 .50                             | 2 .49 <b>9 .</b> 483<br>7 .544 .50                       | 2 39.4 .3<br>7 36.3 .2                           | 39.4 .3 39<br>36.3 .2 36                         | .3 .2 36.3                                      | 1.                           |
| 4<br>5<br>6        | .684 .510<br>.687 .504<br>.688 .494                              | .684 .510<br>.687 .504<br>.688 .494                      | .540 .49                                         | 3 .548 .500<br>3 .540 .490                               | 4 37.16<br>4 38.3 -1.2                           | 37.16 37<br>38.3 -i.2 38                         | .3 -1.2 38.3                                    | - <u>-</u> :<br>- <u>1</u> : |
| 7<br>8<br>9        | .699 .489<br>.723 .491<br>.755 .484                              | .699 .489<br>.723 .491<br>.755 .484                      | .533 .48<br>.533 .49<br>.527 .48                 | 0 .53 <b>5 .</b> 49°<br>2 .52 <b>9 .</b> 48°             | 1 42.42<br>3 45.6 2.4                            |                                                  | .42 42.3<br>.6 2.4 45.5                         | -1.<br>-2.                   |
| 10<br>11           | .772 .446<br>.778 .403                                           | .772 .446<br>.778 .403                                   | .489 .44<br>.444 .40                             | 1 .447 .40                                               | 2 55.1 -3.7                                      | 54.9 -3.7 55                                     |                                                 | 2.<br>-3.                    |
| RP<br>1            | TOTAL PRESS<br>IN OUT<br>16.58 16.35                             | SURE TOTA<br>RATIO IN<br>.986 348.7                      | L TEMPERATURE<br>OUT RATIO<br>348.7 1.000        | STATIC PRESS<br>IN OUT<br>12.84 14.15                    | STATIC DENS<br>IN OU<br>1.37990 1.4              | T IN OU                                          | T IN OUT                                        |                              |
| 2<br>3<br>4        | 16.90 16.58<br>17.07 16.86<br>17.02 16.82                        | .788 345.3<br>.988 340.4<br>.988 337.9                   |                                                  | 12.84 14.15<br>12.77 14.14<br>12.58 14.15<br>12.44 14.09 | 1.39532 1.4<br>1.40529 1.5<br>1.40317 1.5        | 9321 318.7 330                                   | .0 .0 .0<br>.7 .0 .0                            |                              |
| 5                  | 16.91 16.72<br>16.72 16.56<br>16.59 16.45                        | .989 336.1<br>.991 334.7<br>.992 333.4                   | 336.1 1.000<br>334.7 1.000                       | 12.33 14.06<br>12.18 14.02<br>11.97 13.97                | 1.39932 1.53<br>1.38780 1.53<br>1.37286 1.53     | 31/3 30/.1 319<br>3046 305. <b>7</b> 319         | .9 .0 .0                                        |                              |
| 8<br>9<br>10       | 16.68 16.46<br>16.68 16.32<br>16.53 15.84                        | .987 333.6<br>.979 334.3<br>.958 334.4                   | 333.6 1.000<br>334.3 1.000                       | 11.77 13.96<br>11.43 13.91<br>11.15 13.82                | 1.35805 1.55<br>1.32728 1.5                      | 2841 302. <b>0</b> 318<br>1707 300.1 319         | .3 .0 .0<br>.4 .0 .0                            |                              |
| 11                 | 16.25 15.43                                                      | .949 335.1                                               | 335.1 1.000                                      | 10.90 13.80                                              | 1.27008 1.4                                      | 8097 298 <b>.9 324</b>                           | .6 .0 .0                                        |                              |
| RP<br>1            | PERCENT INC<br>SPAN MEAN<br>5.0 7.4                              | IDENCE<br>SS DEVI<br>1.4 15.                             |                                                  | FIC TOT PI                                               |                                                  | LOSS PARAMETER<br>DT PROF SHOCK<br>D23 .023 .000 |                                                 |                              |
| 2<br>3<br>4        | 10.0 5.0<br>20.0 1.9<br>30.0 1.9                                 | -1.0 12.<br>-4.0 10.<br>-4.0 8.                          | 4 .477 .<br>3 .443 .                             | 000 .077 .<br>000 .046 .                                 | 077 .000 .0<br>046 .000 .0                       | 029 .029 .000<br>016 .016 .000<br>015 .015 .000  | 1.089<br>1.041                                  |                              |
| 5<br>6<br>7        | 40.0 1.4<br>50.0 1.3<br>60.0 1.6                                 | -4.4 8.<br>-4.4 7.<br>-4.0 7.                            | 3 .445 .<br>4 .456 .                             | 000 .042 .<br>000 .034 .                                 | 042 .000 .:<br>034 .000 .:                       | 013                                              | 1.030                                           |                              |
| 8<br>9<br>10       | 70.0 1.8<br>80.0 2.5<br>90.0 4.4                                 | -3.6 8.<br>-2.8 12.<br>7 14.                             | 8 .477 .<br>1 .501 .                             | 000 .043 .<br>000 .068 .<br>000 .129 .                   | 043 .000 .0<br>068 .000 .0<br>129 .000 .0        | 011 .011 .000<br>016 .016 .000<br>029 .029 .000  | 1.101<br>1.178<br>1.274                         |                              |
| 11                 | 95.0 7.0                                                         | 2.0 9.                                                   | 5 .637 .                                         | 000 .154 .                                               | 153 .001 .                                       | 033 .032 .000                                    | 1.367                                           |                              |

(g) 100 Percent of design speed; reading 1461

|                                                 |                                                                                                                                       |                                                                                                                                                    | (8/                                                                                                                          |                                                                                                                                            | -,,                                                                                                                                       |                                                                                                                                |                                                                                                                                                    |                                                                                                                                                                   |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RP                                              | RADII<br>IN OUT                                                                                                                       | AXIAL VELOC<br>IN OUT                                                                                                                              | RATIO IN                                                                                                                     | OVAL VELOCITY OUT RATIO                                                                                                                    | TANG VEL                                                                                                                                  | RADIAL VEL<br>IN OUT                                                                                                           | ABS VEL<br>IN OUT                                                                                                                                  | REL VEL<br>IN OUT                                                                                                                                                 |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | 23.787 23.797 23.208 23.251 22.923 20.2121 20.648 20.983 19.640 19.848 18.461 18.712 17.297 14.778 15.291 13.520 14.158 12.883 13.594 | 159.6 169.8<br>172.6 175.6<br>183.9 179.6<br>187.8 175.3<br>184.7 169.8<br>181.2 165.9<br>179.3 163.6<br>175.1 156.6<br>160.9 143.3<br>145.7 131.0 | 1.064 159.6<br>1.017 172.6<br>.977 186.8<br>.933 187.9<br>.916 181.5<br>.913 179.7<br>.894 175.8<br>.891 161.9<br>.899 146.7 | 169.8 1.064<br>175.6 1.017<br>179.8 .977<br>178.7 .957<br>175.3 .933<br>169.9 .919<br>166.2 .915<br>163.9 .912<br>157.0 .893<br>143.7 .888 | 162.1 5.6<br>158.3 4.9<br>152.0 4.3<br>151.8 1.0<br>151.25<br>155.5 -1.6<br>161.77<br>175.7 5.0<br>192.0 13.5<br>210.4 10.2<br>225.0 -8.9 | -1.8 1.5<br>-1.0 1.8<br>.7 2.6<br>2.9 3.8<br>5.2 5.3<br>7.7 6.8<br>10.3 8.5<br>13.1 10.2<br>15.9 11.2<br>17.5 10.9<br>16.9 9.9 | 227.5 169.9<br>234.2 175.7<br>238.6 179.8<br>240.7 178.7<br>241.1 175.3<br>241.5 169.9<br>243.1 166.2<br>251.4 164.0<br>260.3 157.6<br>265.4 144.1 | 227.5 169.9<br>234.2 175.7<br>238.6 179.8<br>240.7 178.7<br>241.1 175.3<br>241.5 169.9<br>243.1 166.0<br>251.4 164.0<br>260.3 157.6<br>265.4 144.1<br>268.6 131.7 |
| R <b>P</b>                                      | ABS MACH NO<br>IN OUT                                                                                                                 | REL MACH NO<br>IN OUT                                                                                                                              | AXIAL MACH NO                                                                                                                | IN OUT                                                                                                                                     | ABS BETAZ<br>IN OUT                                                                                                                       | ABS BETAM<br>IN OUT                                                                                                            | REL BETAZ REL<br>IN OUT IN                                                                                                                         | BETAM<br>OUT                                                                                                                                                      |
| 1<br>2                                          | .628 .461<br>.651 .480                                                                                                                | .628 .461<br>.651 .480                                                                                                                             | .441 .461<br>.480 .480                                                                                                       | .441 .461<br>.480 .480                                                                                                                     | 45.4 1.9<br>42.5 1.6                                                                                                                      | 45.4 1.9<br>42.5 1.6                                                                                                           | 45.4 1.9 45.<br>42.5 1.6 42.                                                                                                                       | 4 1.9<br>5 1.6                                                                                                                                                    |
| 3                                               | .670 .495<br>.680 .494                                                                                                                | .670 .495<br>.680 .494                                                                                                                             | .516 .495<br>.527 .494                                                                                                       | .516 .495<br>.527 .494                                                                                                                     | 39.6 1.4<br>39.1 .3                                                                                                                       | 39.6 1.4<br>39.1 .3                                                                                                            | 39.6 1.4 39.<br>39.1 .3 39.                                                                                                                        | 1 .3                                                                                                                                                              |
| 5                                               | .684 .487<br>.687 .472                                                                                                                | .684 .497<br>.687 .472                                                                                                                             | .533 .487<br>.525 .472<br>.517 .462                                                                                          | .526 .472                                                                                                                                  | 40.15                                                                                                                                     | 38.82<br>40.15<br>41.72                                                                                                        | 38.82 38.<br>40.15 40.<br>41.72 41.                                                                                                                | 15                                                                                                                                                                |
| 8<br>9                                          | .694 .462<br>.719 .456<br>.748 .437                                                                                                   | .694 .462<br>.719 .456<br>.748 .437                                                                                                                | .517 .462<br>.513 .455<br>.503 .435                                                                                          | .514 .456                                                                                                                                  | 44.4 1.8                                                                                                                                  | 41.72<br>44.4 1.7<br>47.5 4.9                                                                                                  | 41.72 41.<br>44.4 1.8 44.<br>47.6 4.9 47.                                                                                                          | 4 1.7                                                                                                                                                             |
| 10<br>11                                        | .764 .399<br>.773 .363                                                                                                                | .764 .399<br>.773 .363                                                                                                                             | .463 .397<br>.420 .361                                                                                                       | .466 .398                                                                                                                                  | 52.6 4.1                                                                                                                                  | 52.4 4.1<br>56.9 -3.9                                                                                                          | 52.6 4.1 52.<br>57.1 -3.9 56.                                                                                                                      | 4 4.1                                                                                                                                                             |
| RP                                              | TOTAL PRES                                                                                                                            | SURE TOTAL                                                                                                                                         | L TEMPERATUR <b>E</b><br>OUT RATIO                                                                                           | STATIC PRESS                                                                                                                               | STATIC DENS                                                                                                                               |                                                                                                                                |                                                                                                                                                    | ED<br>IUT                                                                                                                                                         |
| 1 2                                             | 17.25 16.96<br>17.47 17.16                                                                                                            | .983 351.9<br>.982 349.1                                                                                                                           | 351.9 1.000                                                                                                                  | 13.22 14.66<br>13.14 14.66                                                                                                                 | 1.41244 1.5                                                                                                                               | 1296 326.1 :                                                                                                                   | 337.5 .0<br>333.7 .0                                                                                                                               | .0                                                                                                                                                                |
| 3<br>4                                          | 17.50 17.27<br>17.42 17.23                                                                                                            | .987 344.1<br>.989 340.8                                                                                                                           | 344.1 1.000<br>340.8 1.000                                                                                                   | 12.95 14.61<br>12.78 14.58                                                                                                                 | 1.42885 1.5<br>1.42764 1.5                                                                                                                | 5143 315.7 (<br>6333 312 0                                                                                                     | 328.0 .0<br>324.9 .0                                                                                                                               | .0                                                                                                                                                                |
| 5<br>6                                          | 17.32 17.11<br>17.09 16.89                                                                                                            | .988 338.2<br>.989 336.4                                                                                                                           | 336.4 1.00 <b>0</b>                                                                                                          | 12.66 14.55<br>12.46 14.50                                                                                                                 | 1.41233 1.5                                                                                                                               | 6870 307.3                                                                                                                     | 322.8 .0<br>322.0 .0                                                                                                                               | .0                                                                                                                                                                |
| 7<br>8<br>9                                     | 16.90 16.73<br>16.96 16.68<br>16.91 16.39                                                                                             | .990 335.0<br>.983 335.3<br>.970 335.5                                                                                                             | 335. <b>3 1.</b> 00 <b>0</b>                                                                                                 | 12.25 14.45<br>12.02 14.46<br>11.67 14.37                                                                                                  | 1.37811 1.5                                                                                                                               | 6557 303.8                                                                                                                     | 321.2 .0<br>321.9 .0<br>323.1 .0                                                                                                                   | .0<br>.0<br>.0                                                                                                                                                    |
| 10<br>11                                        | 16.67 15.99<br>16.42 15.67                                                                                                            | .959 335.3<br>.955 336.0                                                                                                                           | 335.3 1.000                                                                                                                  | 11.32 14.33<br>11.05 14.31                                                                                                                 | 1.31411 1.5                                                                                                                               | 3617 300.2                                                                                                                     | 325.0 .0<br>327.4 .0                                                                                                                               | .0<br>.0                                                                                                                                                          |
| RP                                              |                                                                                                                                       | IDENCE                                                                                                                                             | D                                                                                                                            | Loss co                                                                                                                                    | EFFICIENT                                                                                                                                 | LOSS PARAMETE                                                                                                                  | R PEAK SS                                                                                                                                          |                                                                                                                                                                   |
| 1 2                                             | SPAN MEAN<br>5.0 9.3<br>10.0 8.0                                                                                                      | 3.3 15.                                                                                                                                            |                                                                                                                              | 100 072                                                                                                                                    | 072 .00 <b>0</b> .                                                                                                                        |                                                                                                                                | OCK MACH NO<br>000 1.199<br>000 1.167                                                                                                              |                                                                                                                                                                   |
| 3                                               | 20.0 5.1<br>30.0 4.3                                                                                                                  | 8 11.                                                                                                                                              | 4 .466 .0                                                                                                                    | 00 <b>0</b> .049 .<br>00 <b>0</b> .040 .                                                                                                   | 049 .000 .<br>040 .000 .                                                                                                                  | 017 .017 .                                                                                                                     | 000 1.107<br>000 1.090                                                                                                                             |                                                                                                                                                                   |
| 5<br>6                                          | 40.0 3.1<br>50.0 2.9                                                                                                                  | -2.7 8.<br>-2.7 8.                                                                                                                                 | 7 .472 .1<br>0 .490 .1                                                                                                       | 000 .046 .<br>000 .042 .                                                                                                                   | 046 .000 .<br>042 .000 .                                                                                                                  | 015 .015 .<br>013 .013 .                                                                                                       | 000 1.063<br>000 1.066                                                                                                                             |                                                                                                                                                                   |
| 7                                               | 60.0 3.0<br>70.0 3.8                                                                                                                  | -1.7 10.                                                                                                                                           | 7 .522 .                                                                                                                     | 00 <b>0 .</b> 057 .                                                                                                                        | 057 .000 .                                                                                                                                | .015 .015 .                                                                                                                    | 000 1.080<br>000 1.143                                                                                                                             |                                                                                                                                                                   |
| 9<br>10<br>11                                   | 80.0 4.5<br>90.0 6.3<br>95.0 8.9                                                                                                      | 1.2 15.                                                                                                                                            | 6 .620 .                                                                                                                     | 000 .127 .                                                                                                                                 | 127 .000 .                                                                                                                                | .028 .028 .                                                                                                                    | 000 1.217<br>000 1.311<br>001 1.411                                                                                                                |                                                                                                                                                                   |
|                                                 | 75.0 0.7                                                                                                                              | 2.7                                                                                                                                                | 2 .070 .                                                                                                                     |                                                                                                                                            | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                   |                                                                                                                                |                                                                                                                                                    |                                                                                                                                                                   |



(h) 90 Percent of design speed; reading 1310

| RP                                                    | RADII<br>IN DUT                                                                                                                                                                            | AXIAL VELDO                                                                                                                      | CITY MER<br>RATIO IN                                                                                                                          | IDIONAL VELD:                                                                                                                        | CITY TAN                                                                                                                                                     |                                                                                                        | RADIAL VEL                                                                                                                                                                      | ABS VEL<br>IN OUT                                                                                            | REL VEL<br>IN OUT                                                                                     |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6                            | 23.787 23.797<br>23.208 23.251<br>22.032 22.121<br>20.848 20.983<br>19.660 19.848<br>18.461 18.712                                                                                         | 152.7 151.8<br>168.8 161.5<br>180.2 170.2<br>179.6 170.9<br>178.1 170.2<br>175.5 169.3                                           | .994 152<br>.957 168<br>.944 180<br>.951 179<br>.955 178<br>.964 175                                                                          | .8 161.5<br>.2 170.2<br>.8 170.9<br>.2 170.2                                                                                         | .994 122.9<br>.957 119.1<br>.944 114.9<br>.951 116.6<br>.955 120.9<br>.964 128.4                                                                             | 5.4<br>2.1<br>-4.0<br>-2.2                                                                             | 1.0 1.7<br>.7 2.5<br>2.8 3.6<br>4.9 5.1                                                                                                                                         | 196.1 151.9<br>206.6 161.6<br>213.8 170.2<br>214.3 171.0<br>215.3 170.2<br>217.6 169.5                       | 196.1 151.9<br>206.6 161.6<br>213.8 170.2<br>214.3 171.0<br>215.3 170.2<br>217.6 169.5<br>222.2 170.7 |
| 7<br>8<br>9<br>10                                     | 17.249 17.574<br>16.020 16.431<br>14.778 15.291<br>13.520 14.158<br>12.883 13.594                                                                                                          | 174.0 170.5<br>175.5 175.9<br>175.6 182.4<br>165.6 176.1<br>155.3 157.9                                                          | .980 174<br>1.003 176<br>1.039 176<br>1.064 166<br>1.017 156                                                                                  | .2 170.7<br>.0 176.3 1<br>.3 182.9 1<br>.5 176.6 1                                                                                   | .980 138.0<br>.002 152.8<br>.037 170.1<br>.060 189.1<br>.013 200.3                                                                                           | -3.8<br>-1.6 1<br>4.1 1<br>3.1 1                                                                       | 9.9 8.8<br>2.8 11.0<br>6.0 13.1<br>8.0 13.4                                                                                                                                     | 217.6 167.5<br>222.2 170.7<br>233.1 176.3<br>245.0 183.0<br>252.0 176.6<br>254.1 158.5                       | 222.2 170.7<br>233.1 176.3<br>245.0 183.0<br>252.0 176.6<br>254.1 158.5                               |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | ABS MACH NO IN OUT .551 .422 .585 .452 .611 .480 .615 .484 .619 .482 .626 .480 .641 .484 .674 .500 .710 .519 .732 .500 .739 .446                                                           | REL MACH ND 1N DUT .551 .422 .585 .452 .611 .480 .615 .484 .619 .482 .626 .480 .641 .484 .674 .500 .710 .519 .732 .500 .739 .446 | AXIAL MACH<br>IN 0U<br>.429 .4<br>.478 .4<br>.515 .4<br>.512 .4<br>.505 .4<br>.507 .4<br>.507 .4<br>.509 .5<br>.481 .4                        | IN 21 .429 .429 .515 .478 .516 .32 .512 .30 .506 .33 .502 .509 .509 .509 .88 .511 .484                                               | CH NO ABS<br>OUT IN<br>.421 38.6<br>.451 35.2<br>.480 32.5<br>.484 33.0<br>.482 34.2<br>.480 36.2<br>.484 38.4<br>.500 41.1<br>.519 44.1<br>.500 48.8        | DUT 18 2.6 38 1.9 35 32 33 8 34 34 38 38 31 34 4 1.0 48                                                | NOUT IN 18 2.6 38. 2 1.9 35. 5 .7 32. 0 -1.4 33. 18 34. 2 -1.1 36. 4 -1.3 38. 05 41. 0 1.3 44. 6 1.0 48.                                                                        | OUT IN 8 2.6 38.8 5 1.9 35.2 57 32.5 0 -1.4 33.6 28 34.2 -1.1 36.2 4 -1.3 38.4 15 41.1 1 1.3 44.6 8 1.0 48.6 | 2 1.9<br>-7<br>1 -1.4<br>-8<br>2 -1.1<br>4 -1.3<br>-5<br>1 1.3<br>5 1.0                               |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9       | TOTAL PRESS<br>1N OUT<br>14.70 14.53<br>15.03 14.79<br>15.15 15.01<br>15.13 15.01<br>15.08 14.97<br>15.04 14.92<br>15.02 14.90<br>15.22 15.06<br>15.39 15.18<br>15.30 14.94<br>15.11 14.41 |                                                                                                                                  | TEMPERATURE OUT RATI 334.6 1.00 331.7 1.00 327.3 1.00 325.1 1.00 324.2 1.00 324.0 1.00 323.9 1.00 324.8 1.00 325.8 1.00 326.1 1.00 326.4 1.00 | STATIC P IN 11.96 1 11.92 1 11.78 1 11.72 1 11.64 1 11.55 1 0 11.40 1 11.23 1 0 10.99 1                                              | RESS STAT<br>DUT IN<br>2.86 1.321<br>2.86 1.338<br>2.82 1.34<br>2.79 1.35<br>2.76 1.34<br>2.74 1.339<br>2.70 1.320<br>2.69 1.310<br>2.63 1.294<br>2.63 1.265 | IC DENSITY 0UT 22 1.38666 13 1.40608 52 1.42819 26 1.43531 49 1.43321 67 1.42968 82 1.42935 12 1.41309 | STAT1C TEMP<br>1N 001<br>315.5 323.<br>310.4 318.<br>304.5 312.<br>302.2 310.<br>301.1 309.<br>300.4 309.<br>299.3 309.<br>297.8 309.<br>297.8 309.<br>294.4 310.<br>294.2 313. | HHEEL SPEC<br>IN OV<br>7 -0<br>8 -0<br>5 -0<br>8 -0<br>7 -0<br>4 -0<br>3 -0<br>1 -0<br>6 -0                  |                                                                                                       |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9       | PERCENT INC<br>SPAN MEAN<br>5.0 3.0<br>10.0 1.1<br>20.0 -1.5<br>30.0 -1.5<br>40.0 -1.3<br>50.06<br>60.0 .1<br>70.0 8<br>80.0 1.3<br>90.0 2.9<br>95.0 4.4                                   | TDENCE  SS DEVI  -2.9 17.4  -4.9 14.  -7.5 11.  -7.4 8.  -7.0 8.  -6.3 7.  -5.5 7.  -4.7 8.  -4.0 11.  -2.2 12.  -6 11.          | 0 .452<br>3 .424<br>.391<br>.391<br>4 .391<br>.401<br>8 .409<br>8 .414<br>.459                                                                | LOS<br>FFIC TOT<br>.000 .061<br>.000 .076<br>.000 .035<br>.000 .035<br>.000 .036<br>.000 .033<br>.000 .041<br>.000 .050<br>.000 .050 | 076 .0<br>041 .0<br>035 .0<br>032 .0<br>032 .0<br>033 .0<br>041 .0<br>050 .0                                                                                 |                                                                                                        | 5 PARAMETER PROF SHOCK .023 .000 .029 .000 .015 .000 .012 .000 .011 .000 .011 .000 .009 .000 .011 .000 .011 .000 .011 .000 .012 .000 .012 .000 .013 .000                        | PEAK SS<br>MACH ND<br>.932<br>.909<br>.871<br>.865<br>.871<br>.896<br>.933<br>1.002<br>1.080<br>1.172        |                                                                                                       |

(i) 90 Percent of design speed; reading 1321

| RP           | RADII<br>IN OUT                                 | AXIAL VEI                           |                                  | OTONAL VELOCITY OUT RATIO     | TANG VEL                                     | RADIAL VEL                                   | ABS VEL REL VEL                                                               |
|--------------|-------------------------------------------------|-------------------------------------|----------------------------------|-------------------------------|----------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------|
| 1 2          | 23.787 23.797<br>23.208 23.251                  | 155.7 150<br>163.7 157              | .6 .968 155.                     | 7 150.6 .968                  | IN OUT<br>127.3 10.8<br>124.9 7.9            | IN OUT<br>-1.7 1.3<br>-1.0 1.6               | IN OUT IN OUT<br>201.1 151.0 201.1 151.0<br>205.9 157.2 205.9 157.2           |
| 3<br>4       | 22.032 22.121<br>20.848 20.983                  | 168.1 162<br>167.7 161              | .1 .964 168.<br>.8 .965 167.     | l 162.1 .964<br>7 161.9 .965  | 124.8 4.9<br>124.3 -2.8                      | .7 2.3<br>2.6 3.4                            | 209.4 162.2 209.4 162.2<br>208.7 161.9 208.7 161.9                            |
| 5<br>6<br>7  | 19.660 19.848<br>18.461 18.712<br>17.249 17.574 | 166.8 159<br>164.3 157<br>162.1 158 | .6 .959 164.                     | 1 157.7 .959                  | 127.7 -2.1<br>132.7 -2.8<br>143.9 -1.8       | 4.6 4.8<br>6.8 6.4<br>9.2 8.1                | 210.2 160.0 210.2 160.0<br>211.3 157.7 211.3 157.7<br>217.0 158.6 217.0 158.6 |
| 8<br>9       | 16.020 16.431<br>14.778 15.291                  | 163.1 163<br>162.8 164              | .0 .999 163.<br>.8 1.012 163.    | 5 163.4 .999<br>5 165.2 1.010 | 158.4 2.0<br>173.6 8.9                       | 11.9 10.2<br>14.8 11.8                       | 227.7 163.4 227.7 163.4<br>238.5 165.4 238.5 165.4                            |
| 10<br>11     | 13.520 14.158<br>12.883 13.594                  | 151.1 153<br>139.4 137              |                                  |                               | 193.1 7.0<br>206.7 -5.0                      | 16.4 11.7<br>16.2 10.4                       | 245.8 154.3 245.8 154.3<br>249.9 138.3 249.9 138.3                            |
| RP           | ABS MACH NO                                     | REL MACH N<br>IN DU                 |                                  |                               | ABS BETAZ<br>IN DUT                          | ABS BETAM REL                                | BETAZ REL BETAM<br>OUT IN OUT                                                 |
| 1 2          | .562 .416<br>.579 .436                          | .562 .4<br>.579 .4                  | 16 .435 .41<br>36 .460 .43       | 5 .435 .415<br>5 .460 .435    | 39.3 4.1<br>37.4 2.9                         | 39.3 4.1 39.<br>37.4 2.9 37.                 | 3 4.1 39.3 4.1                                                                |
| 3<br>4<br>5  | .594 .454<br>.595 .455<br>.601 .451             | .594 .4<br>.595 .4<br>.601 .4       | 55 .478 .45                      | 5 .478 .455                   | 36.6 1.7<br>36.6 -1.0                        | 36.6 1.7 36.<br>36.6 -1.0 36.                | 6 -1.0 36.6 -1.0                                                              |
| 6<br>7       | .605 .444<br>.622 .447                          | .605 .4<br>.622 .4                  | 44 .470 .44                      | 4 .471 .444                   | 37.47<br>38.9 -1.0<br>41.66                  | 37.47 37.<br>38.9 -1.0 38.<br>41.56 41.      | 9 -1.0 38.9 -1.0                                                              |
| 8            | .655 .460<br>.688 .466                          | .655 .4<br>.688 .4                  | 60 .469 .45<br>66 .470 .46       | 9                             | 44.2 .7<br>46.8 3.1                          | 44.1 .7 44<br>46.7 3.1 46                    | 2 .7 44.1 .7<br>8 3.1 46.7 3.1                                                |
| 10<br>11     | .711 .433<br>.723 .387                          | .711 .4<br>.723 .3                  |                                  |                               | 52.0 2.6<br>56.0 -2.1                        | 51.8 2.6 52<br>55.8 -2.1 56                  |                                                                               |
| RP           | TOTAL PRESS                                     | RATIO IN                            | TAL TEMPERATURE<br>DUT RATIO     | STATIC PRESS IN OUT           | STATIC DENSI                                 | IN DU                                        | T IN DUT                                                                      |
| 1<br>2<br>3  | 15.41 15.12<br>15.55 15.29<br>15.56 15.41       | .982 338<br>.983 336<br>.990 330    | .2 336.2 1.000                   | 12.40 13.42                   | 1.36019 1.42<br>1.37095 1.44                 | 371 315.0 323                                | .8 .0 .0                                                                      |
| 4 5          | 15.50 15.39<br>15.44 15.32                      | .993 327<br>.992 326                | .7 327.7 1.000                   | 12.20 13.35                   | 1.38202 1.46<br>1.38889 1.47<br>1.38464 1.48 | 867 306.0 314                                | .6 .0 . <b>0</b>                                                              |
| 6<br>7       | 15.34 15.23<br>15.34 15.21                      | .993 325<br>.992 325                | .7 325.7 1.000<br>.9 325.9 1.000 | 11.98 13.30<br>11.81 13.26    | 1.37525 1.47<br>1.36045 1.47                 | 831 303.5 313<br>424 302.5 313               | .3 .0 .0<br>.4 .0 .0                                                          |
| 8<br>9<br>10 | 15.49 15.34<br>15.60 15.35<br>15.45 14.98       | .991 326<br>.984 326<br>.969 327    | .9 326.9 1.000                   | 11.36 13.23                   | 1.34489 1.47<br>1.32595 1.47                 | 095 298.5 313                                | .2 .0 .0                                                                      |
| 11           | 15.32 14.57                                     | .951 328                            |                                  |                               | 1.29257 1.45<br>1.26854 1.43                 |                                              |                                                                               |
| RP.          | SPAN MEAN                                       |                                     |                                  |                               | OF SHOCK TO                                  |                                              | PEAK SS<br>MACH NO                                                            |
| 1<br>2<br>3  | 5.0 3.5<br>10.0 3.2<br>20.0 2.5                 | -2.7 1                              | 5.2 .450                         | 000 .084 .0                   | 84 .000 .0                                   | 37 .037 .000<br>31 .031 .000<br>16 .016 .000 | .960<br>.942<br>.929                                                          |
| 4 5          | 30.0 2.1<br>40.0 2.0                            | -3.8<br>-3.7                        | 3.7 .429                         | 000 .032 .0                   |                                              | 11 .011 .000                                 | .910<br>.913                                                                  |
| 6<br>7       | 50.0 2.1<br>60.0 3.2                            | -2.3                                | 8.4 .456                         | 000 .036 .0                   | 36 .000 .0                                   | 10 .010 .000<br>10 .010 .000                 | .922<br>.973                                                                  |
| 8<br>9<br>10 | 70.0 3.9<br>80.0 4.1<br>90.0 6.0                | -1.2 1                              | 3.1 .470                         | 000 .059 .0                   | 59 .000 .0                                   | 10 .010 .000<br>14 .014 .000<br>24 .024 .000 | 1.043<br>1.111<br>1.213                                                       |
| 11           | 95.0 8.2                                        |                                     |                                  |                               |                                              | 35 .035 .00 <b>0</b>                         | 1.302                                                                         |



TABLE X. - Continued. BLADE-ELEMENT PERFORMANCE AT BLADE EDGES FOR FIRST-STAGE STATOR

(j) 90 Percent of design speed; reading 1332

| RP                                                    | RADII                                                                                                                                                 |                                                                                                                                | L VELOCIT                                                                                    |                                                                                                                                                            | IDIONAL_V                                                                                                            |                                                                                                                                   | TANG V                                                                                  |                                                                                                                                               | DIAL VEL                                                                                                                                     | ABS VEL                                                                                                              |                                                                                                                                         |                                                                                                        |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>6<br>9<br>10       | IN OUT 23.787 23.79 23.208 23.25 22.032 22.12 20.848 20.98 19.660 19.84 18.461 18.71 17.249 17.57 16.020 16.43 14.778 15.29 13.520 14.15 12.883 13.59 | 7 148.9<br>1 153.5<br>1 154.5<br>8 149.4<br>2 148.1<br>149.7<br>11 149.0<br>8 134.8                                            | 152.6 1<br>154.8 1<br>154.1 1<br>150.0<br>144.6<br>141.8<br>144.9<br>146.1<br>138.7<br>127.0 | RATIO IN<br>1.025 148<br>1.009 153<br>1.000 154<br>.990 151<br>.968 149<br>.958 148<br>.968 149<br>.965 151<br>.931 149<br>.942 135<br>.969 121            | .9 152.7<br>.5 154.8<br>.1 154.1<br>.5 150.0<br>.4 144.7<br>.2 141.9<br>.9 145.1<br>.8 146.4<br>.6 139.1<br>.6 127.4 | RAT10<br>1.025<br>1.009<br>1.000<br>.990<br>.968<br>.958<br>.964<br>.929<br>.940<br>.965                                          | 137.4<br>136.1<br>134.8<br>132.8<br>131.7<br>137.0<br>150.4<br>163.8<br>176.5<br>195.0  | 7.4<br>9.2<br>-1.0<br>-2.3<br>-2.5<br>3.4<br>7.8<br>116.4<br>6.0                                                                              | UT .7 1.3 .9 1.6 .6 2.2 .1.3 3.2 .1.1 4.3 .1.2 5.7 .1.5 7.4 .1.1 9.1 .1.6 9.9 .1.7 9.7 .1.0 8.8                                              | IN OUT 202.6 153. 205.1 155. 204.7 154. 201.4 150. 199.2 144. 201.8 142. 212.4 145. 223.4 146. 237.5 127. 241.4 118. | 1 202.6<br>0 205.1<br>4 204.4<br>7 199.2<br>0 201.8<br>2 212.4<br>6 223.4<br>5 237.5                                                    | 0UT<br>153.1<br>155.0<br>154.4<br>150.0<br>144.7<br>142.0<br>145.2<br>146.6<br>140.0<br>127.5<br>118.5 |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | ABS MACH NO IN OUT .561 .41 .571 .42 .575 .41 .566 .40 .574 .39 .606 .40 .639 .41 .665 .39 .684 .35                                                   | 8 .561<br>6 .571<br>9 .575<br>5 .566<br>8 .574<br>6 .606<br>0 .639<br>2 .665<br>6 .684                                         | CH NO A OUT .418 .426 .428 .419 .405 .398 .406 .410 .392 .356                                | . 427 . 4<br>. 433 . 4<br>. 429 . 4<br>. 421 . 3<br>. 427 . 4<br>. 427 . 4<br>. 428 . 3<br>. 388 . 3                                                       |                                                                                                                      | 7 .425<br>3 .427<br>9 .419<br>5 .405<br>2 .398<br>8 .406<br>5 .410<br>0 .389<br>1 .355                                            | 42.7<br>41.6<br>41.2<br>41.2<br>41.4<br>42.8 -<br>45.1<br>47.3<br>49.8<br>55.3          | AZ ABS<br>UT IN<br>4.2 42.7<br>2.7 41.6<br>3.4 41.2<br>9 41.4<br>9 41.4<br>9 42.6<br>1.0 42.6<br>1.3 45.1<br>3.1 47.2<br>6.8 49.7<br>7.0 59.7 | OUT 1<br>4.2 42<br>6.2.7 41<br>6.3.4 41<br>7.49 41<br>81.0 42<br>8. 1.3 45<br>9. 6.7 47<br>9. 6.7 55                                         | N DUT 1.7 4.2 4 1.6 2.7 4 1.2 3.4 4 1.24 4 1.49 4 1.8 -1.0 4 1.3 3.1 4 1.8 6.8 4 1.3 2.7 5                           | EL BETAM<br>IN OUT<br>2.7 4.2<br>1.6 2.7<br>1.2 3.4<br>1.24<br>1.49<br>2.8 -1.0<br>5.1 1.3<br>7.2 3.1<br>9.7 6.7<br>5.2 2.7<br>9.7 -6.9 |                                                                                                        |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | TOTAL PR IN OUT 16.05 15.7 16.12 15.7 16.00 15.7 15.81 15.6 15.63 15.4 15.52 15.3 15.71 15.4 15.80 15.7 15.79 15.2 15.55 14.9 15.38 14.7              | RATIO<br>978<br>978<br>3 984<br>3 989<br>7 990<br>6 990<br>5 983<br>0 981<br>4 965<br>5 961                                    | 1N<br>344.7<br>341.9<br>335.6<br>330.3<br>328.0<br>327.3<br>328.0<br>328.4<br>327.8<br>327.8 | TEMPERATURE  OUT RATI  344.7 1.00  334.9 1.00  335.6 1.00  3328.0 1.00  328.0 1.00  328.0 1.00  328.0 1.00  328.0 1.00  328.0 1.00  327.3 1.00  328.0 1.00 | 0 IN<br>0 12.96<br>0 12.92<br>0 12.78<br>0 12.68<br>0 12.58<br>0 12.41<br>0 12.26<br>0 12.30<br>0 11.73              | 13.92<br>13.87<br>13.86<br>13.82<br>13.78<br>13.79                                                                                | 1.40229<br>1.41451<br>1.42449<br>1.42166<br>1.40821<br>1.39787<br>1.37753               | 0UT<br>1.45632<br>1.47010<br>1.49262<br>1.51262<br>1.51637<br>1.51306<br>1.51296<br>1.51380<br>1.50190<br>1.49325                             | STATIC TEN 1N 0L 324.3 33.3 320.9 329 314.8 329 317 307.0 317 305.5 317 303.5 319 301.1 318 299.5 319 299.2 321                              | T IN -1 .0 -9 .0 -8 .0 -1 .0 -5 .0 -3 .0 -7 .0 -0 .5 .0 -5 .0                                                        | PEED<br>OUT<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                                   |                                                                                                        |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | SPAN ME 5.0 6 10.0 7 20.0 7 30.0 6 40.0 6 50.0 6 70.0 6 80.0 7 90.0 9                                                                                 | NCIDENCE<br>AN SS<br>.9 .9 .9<br>.4 1.4<br>.1 1.2<br>.7 .9<br>.0 .2<br>.0 .3<br>.8 1.2<br>.9 1.5<br>.1 1.8<br>.4 4.3<br>.0 7.0 | DEVIA<br>18.6<br>15.1<br>13.8<br>9.3<br>8.3<br>7.9<br>10.4<br>12.3<br>16.7<br>14.6<br>6.5    |                                                                                                                                                            | FF1C T0                                                                                                              | LOSS COEF<br>DT PRO<br>112 .11<br>108 .10<br>082 .08<br>057 .05<br>051 .05<br>050 .05<br>076 .07<br>080 .08<br>135 .13<br>144 .14 | F SHOCK<br>2 .000<br>8 .000<br>7 .000<br>1 .000<br>0 .000<br>6 .000<br>5 .000<br>4 .000 | LOSS<br>TOT<br>.043<br>.041<br>.029<br>.019<br>.016<br>.015<br>.021<br>.021<br>.032<br>.032                                                   | PARAMETER<br>PROF SHOCK<br>.043 .000<br>.041 .000<br>.029 .000<br>.019 .000<br>.015 .000<br>.021 .000<br>.021 .000<br>.032 .000<br>.032 .000 | 1.024<br>1.011<br>.990<br>.962<br>.936<br>.950<br>1.020<br>1.085<br>1.140<br>1.247                                   |                                                                                                                                         |                                                                                                        |

(k) 80 Percent of design speed; reading 1347

| RP 1 2 3 4 5 6 7 8 9 1 0 1 1 1                        | RADII 1N 0UT 23.787 23.797 23.208 23.251 22.032 22.121 20.848 20.983 19.660 19.848 18.461 18.712 17.249 17.574 16.020 16.431 14.778 15.291 13.520 14.158 12.883 13.594 | AXIAL VELOC<br>IN QUT<br>138.3 134.7<br>149.1 143.7<br>158.3 150.8<br>159.4 152.0<br>158.3 153.4<br>156.1 154.2<br>156.3 157.6<br>159.6 165.2<br>160.6 174.0<br>152.4 170.9<br>143.3 154.3 | ITY MERI<br>RATIO 1                                                                                                                | 3 134.7                                                                                                                                    | T10 IN 074 100.8 964 99.3 94.8 95.2 969 102.2 988 110.4 008 120.1 035 135.2 082 151.7 117 170.0                                                        | EL RADIA DUT IN -1 -1.5 -2.89 -8.5 .6 -8.8 2.4 -5.5 4.4 -5.1 6.5 -4.5 8.9 -2.4 11.7 -1.1 14.6 -1.4 16.6 -8.8 16.6    | 1.2 17<br>1.5 16<br>2.2 18<br>3.2 18<br>4.6 19<br>6.2 11<br>8.1 11<br>10.3 2<br>12.5 2<br>13.0 2                                                                 | ABS VEL IN OUT 71.1 134.7 79.2 143.8 84.5 151.1 85.7 152.3 88.5 153.6 91.3 154.4 97.3 157.9 09.5 165.5 21.4 174.5 29.0 171.4 30.6 154.9 | REL VEL  IN 0UT  171.1 134.7  179.2 143.8  184.5 151.1  185.7 152.3  188.5 153.6  191.3 154.4  197.3 157.9  209.5 165.5  221.4 174.5  229.0 171.4  230.6 154.9 |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | ABS MACH NO IN OUT .487 .380 .513 .407 .532 .432 .536 .436 .545 .440 .553 .442 .572 .452 .608 .474 .645 .500 .668 .490 .673 .441                                       | REL MACH NO IN OUT .487 .380 .513 .407 .532 .432 .536 .440 .553 .442 .572 .452 .608 .474 .645 .500 .668 .490 .673 .441                                                                     | AXIAL MACH IN OUT .393 .31 .427 .4456 .44 .458 .44 .453 .44 .463 .44 .468 .44 .445 .44 .418 .44                                    | IN 393 397 427 456 35 461 39 458 42 452 51 454 499 447                                                                                     | OUT IN 0<br>.380 36.1<br>.407 33.7 -<br>.431 30.9 -<br>.445 30.8 -<br>.440 32.9 -<br>.442 35.3 -<br>.452 37.6 -<br>.474 40.3<br>.500 43.4<br>.490 48.1 | UT IN .1 36.1<br>1.1 33.7<br>3.2 30.9<br>3.3 30.8<br>2.0 32.8<br>1.9 35.3<br>1.6 37.5<br>-8 40.2<br>4 43.3<br>5 48.0 | TAM REL OUT IN .1 36.1 1 -1.1 33.7 -3.2 30.9 -3.3 30.8 -2.0 32.9 -1.9 35.3 -1.6 37.6 37.6 3.4 3.4 -5 48.1 -3.3 51.4                                              | OUT 1N                                                                                                                                  | 7 -1.1<br>9 -3.2<br>9 -3.3<br>3 -2.0<br>3 -1.9<br>5 -1.6<br>8<br>33<br>05                                                                                      |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9       | TOTAL PRESS IN OUT 13.39 13.27 13.60 13.47 13.69 13.61 13.70 13.61 13.72 13.64 13.72 13.62 13.76 13.68 14.00 13.86 14.16 14.03 14.15 13.93 14.00 13.47                 | SURE TOTAL RATIO IN .991 322.3 .991 320.1 .994 316.2 .994 315.0 .993 315.4 .994 315.6 .994 317.6 .990 317.6 .990 317.8 .994 318.3 .962 318.5                                               | TEMPERATURE OUT RATI 322.3 1.00 320.1 1.00 315.2 1.00 315.0 1.00 315.4 1.00 315.6 1.00 317.1 1.00 317.8 1.00 318.3 1.00 318.5 1.00 | 0 11.39 12<br>0 11.37 12<br>0 11.29 11<br>0 11.26 11<br>0 11.21 11<br>0 11.14 11<br>0 11.02 11<br>0 10.91 11<br>0 10.49 11                 | JUT IN<br>2.02 1.28959<br>2.02 1.30258<br>1.98 1.31412                                                                                                 | OUT 1.33645 3 1.35154 3 1.36845 2 1.37018 2 1.37198 2 1.36668 2 1.36606 2 1.36484 2 1.36145 2 1.35579 2              | TATIC TEMP<br>IN OUT<br>07.7 313.3<br>04.1 309.8<br>99.3 304.9<br>98.0 303.6<br>97.3 303.2<br>97.2 303.6<br>95.2 303.2<br>95.2 303.2<br>95.2 303.7<br>92.1 306.6 | .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .                                                                                                | ED<br>UT<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                                                       |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9       | PERCENT INC SPAN MEAN 5.01 10.09 20.0 -3.6 30.0 -4.1 40.0 -3.0 50.0 -1.9 60.0 -1.3 70.05 80.0 .2 90.0 1.8 95.0 3.2                                                     | -9.5 6.<br>-9.9 5.<br>-8.8 6.<br>-7.6 6.<br>-6.8 7.<br>-5.9 8.<br>-5.1 9.<br>-3.4 11.                                                                                                      | 0 .438<br>8 .411<br>9 .380<br>7 .367<br>6 .372<br>0 .376<br>0 .379<br>2 .376<br>0 .414                                             | FFIC TOT<br>.000 .059<br>.000 .057<br>.000 .032<br>.000 .036<br>.000 .038<br>.000 .029<br>.000 .044<br>.000 .036<br>.000 .046<br>.000 .036 | .032 .000<br>.036 .000<br>.031 .000<br>.038 .000<br>.029 .000<br>.044 .000<br>.036 .000                                                                | TOT PR .023 .0 .022 .0 .011 .0 .012 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0                                           | RAMETER OF SHOCK 23 .000 22 .000 11 .000 110 .000 111 .000 101 .000 101 .000 101 .000 101 .000 101 .000 101 .000 101 .000 102 .000 103 .000                      | PEAK SS<br>MACH NO<br>.771<br>.763<br>.721<br>.706<br>.734<br>.766<br>.808<br>.879<br>.955<br>1.043<br>1.096                            |                                                                                                                                                                |



(1) 80 Percent of design speed; reading 1358

| RP                                              | RAD11                                                                                                                                                                                     | ΔΧΙΔΙ VF                                                                                                            | LOCITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MERIDIONAL                                                                                                               | VELOCITY                                                                                                                 | TANG VEL                                                                                                                                                 | RADIA                                                                                                                                   | AL VEL                                                                                                                                                           | ABS VEL                                                                                                                         | REL VEL                                                                                                                                                |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9       | 1N 0UT 23.787 23.797 23.208 23.251 22.032 22.121 20.848 20.983 19.660 19.848 18.461 18.712 17.249 17.574 16.020 16.431 14.778 15.291 13.520 14.158 12.893 13.594                          | IN 0U 133.5 133 139.6 138 144.9 141 144.7 135 141.2 136 139.3 136 142.0 140 144.4 147 144.3 150 134.1 142 122.7 125 | T RATIO<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002<br>1.002 | IN 0UT 133.6 133.1 139.6 138.1 144.9 141.2 136.1 139.4 136.1 142.2 140.1 144.8 147.1 144.9 151.1 134.9 142.1 123.6 127.  | RATIO<br>9 1.002<br>.989<br>3 .975<br>1 .961<br>2 .965<br>1 .976<br>6 .988<br>6 1.019<br>2 1.044<br>4 1.056              | 1N 0U 113.2 6 111.7 3 106.9 -3 104.6 -6 109.7 -3 117.2 -3 127.5 - 142.1 1 156.2 6 173.2 4                                                                | IT IN 1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5                                                                                            | 0UT 1.2 1.1 1.4 1.2 1.0 1.6 1.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6                                                                                          | N GUT 75.1 134.1 78.8 138.0 80.1 141.4 78.5 139.3 78.8 136.3 82.2 136.1 91.5 140.6 02.9 147.6 133.0 151.4 15.5 142.5 22.4 127.9 | IN 0UT 175.1 134.1 178.8 138.0 180.1 141.4 178.5 139.3 179.8 136.3 132.2 136.1 191.0 140.6 232.9 147.6 232.9 147.6 213.0 151.4 219.5 142.5 222.4 127.9 |
| RP 1 2 3 4 5 6 7 8 9 10 11                      | ABS MACH NO IN OUT .494 .374 .507 .387 .515 .400 .512 .396 .514 .387 .524 .387 .524 .387 .551 .400 .586 .420 .617 .431 .637 .404 .646 .361                                                | .494<br>.507<br>.515<br>.512<br>.514<br>.524<br>.551<br>.586<br>.617<br>.637                                        | AXIAL IN IN 1874 .377 .396 .396 .415 .396 .415 .387 .405 .401 .400 .400 .400 .417 .331 .418 .418 .389 .356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OUT IN .374 .3 .387 .4 .395 .4 .387 .4 .386 .4 .399 .4 .419 .4 .403 .3                                                   | 77 .374<br>96 .387<br>15 .400                                                                                            | ABS SETAZ IN OUT 40.3 3.38.7 1.36.4 -1.35.9 -2.37.9 -1.40.1 -1.41.9 -44.5 47.3 2.52.3 1.56.4 -2.                                                         | IN 40.3<br>4 38.7<br>4 38.7<br>6 36.4<br>8 35.9<br>6 37.9<br>5 40.1<br>3 41.9<br>6 44.5<br>6 47.1<br>7 52.1                             | TAM REL 1 0UT IN 3.0 40.3 1.4 38.7 -1.6 36.4 -2.8 35.9 -1.6 37.9 -1.5 40.1 -3 41.9 2.6 47.3 1.7 52.3 -2.4 56.4                                                   | OUT IN 3.0 40.5 1.4 38.7 -1.6 36.6 -2.8 35.5 -1.5 40.1 -3 41.5 -3 44.5 2.5 47.1                                                 | 3 3.0<br>7 1.4<br>4 -1.6<br>9 -2.8<br>9 -1.6<br>1 -1.5<br>93<br>1 2.6<br>1 2.6                                                                         |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | TOTAL PRES<br>IN OUT<br>14.08 13.89<br>14.17 13.98<br>14.16 14.08<br>14.07 13.99<br>14.01 13.91<br>13.97 13.87<br>14.14 13.98<br>14.25 14.12<br>14.39 14.19<br>14.25 13.92<br>14.12 13.60 | RATIO 11<br>.987 32<br>.987 32<br>.994 32<br>.994 31<br>.993 31<br>.993 31<br>.999 31<br>.987 31<br>.987 31         | 7.9 327.9<br>5.4 325.4<br>0.3 320.3<br>8.1 318.1<br>7.5 317.5<br>7.2 317.5<br>8.6 318.6<br>8.8 318.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RATIO IN<br>1.000 11.9<br>1.000 11.8<br>1.000 11.8<br>1.000 11.7<br>1.000 11.7<br>1.000 11.5<br>1.000 11.3<br>1.000 11.3 | IC PRESS<br>OUT<br>2 12.61<br>9 12.61<br>7 12.56<br>0 12.55<br>8 12.51<br>0 12.55<br>12.51<br>12.51<br>12.49<br>44 12.44 | 1.32826<br>1.33867<br>1.35864<br>1.35644<br>1.35214<br>1.34213<br>1.33878<br>1.320782                                                                    | OUT<br>1.37754 3<br>1.39050 3<br>1.41527 3<br>1.41855 3<br>1.41819 3<br>1.41555 3<br>1.41758 2<br>1.41606 2<br>1.416566 2<br>1.416566 2 | TATIC TEMP<br>IN OUT<br>12.6 318.9<br>09.5 315.9<br>04.1 310.3<br>02.2 308.4<br>01.5 308.2<br>00.7 308.0<br>99.3 307.7<br>98.1 307.4<br>95.1 309.0<br>94.9 311.4 | .0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                                                | ED<br>UT<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                                               |
| RP<br>123455677891011                           | PERCENT INC SPAN MEAN 5.0 4.1 10.0 4.1 20.0 1.9 30.0 .9 40.0 2.0 50.0 2.9 60.0 3.1 70.0 3.8 80.0 4.1 90.0 5.9 95.0 8.2                                                                    | -1.9<br>-1.9<br>-4.0<br>-4.9<br>-3.8<br>-2.8<br>-2.4<br>-1.6                                                        | DEVIA FACTO<br>17.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R EFFIC<br>7 .000<br>5 .000<br>3 .000<br>9 .000<br>9 .000<br>1 .000<br>1 .000<br>1 .000                                  | .087 .0<br>.082 .0<br>.037 .0<br>.037 .0<br>.043 .0<br>.039 .0<br>.061 .0<br>.046 .0<br>.058 .0                          | FFICIENT<br>OF SHOOK<br>87 2000<br>82 2000<br>37 2000<br>37 2000<br>43 2000<br>43 2000<br>46 2000<br>56 2000<br>56 2000<br>56 2000<br>56 2000<br>56 2000 | .033 .0<br>.031 .0<br>.013 .0<br>.012 .0<br>.014 .0<br>.017 .0<br>.017 .0<br>.012 .0                                                    | RAMETER OF SHOCK 133 .000 131 .000 113 .000 114 .000 117 .000 117 .000 118 .000 119 .000 110 .000 110 .000 110 .000 110 .000 110 .000 110 .000 110 .000          | PEAK SS<br>MACH NO<br>.853<br>.840<br>.795<br>.784<br>.780<br>.511<br>.859<br>.932<br>.932<br>.935<br>1.163                     |                                                                                                                                                        |

(m) 80 Percent of design speed; reading 1369

| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8            | RADII<br>IN OUT<br>23.787 23.797<br>23.208 23.251<br>22.032 22.121<br>20.848 20.983<br>19.460 19.848<br>18.461 18.712<br>17.249 17.574<br>16.020 16.431 | AXIAL VELC<br>IN CUT<br>120.6 128.0<br>118.6 125.5<br>114.8 121.3<br>115.5 119.8<br>121.2 120.3<br>128.2 122.6<br>134.3 127.3 | RATIO IN<br>1.062 120.6<br>1.058 118.6<br>1.057 114.6<br>1.037 115.6<br>1.037 121.2<br>.992 121.2<br>.957 128.3<br>.951 134.5                        | 125.5 1.058<br>121.3 1.057<br>119.8 1.037<br>120.3 .992<br>122.7 .957<br>127.9 .951                                                                     | TANG VEL<br>IN OUT<br>127.2 5.4<br>124.6 .9<br>127.3 4.4<br>124.9 .5<br>123.6 .9<br>127.1 -1.4<br>136.6 1.9<br>149.2 8.0                                                                                                                                                                                                                                                                                      | RADIAL VEL<br>IN OUT<br>-1.3 1.1<br>-7 1.3<br>.5 1.8<br>1.8 2.6<br>3.4 3.6<br>5.3 4.9<br>7.6 6.6<br>10.0 8.1                                                                    | ABS VEL<br>IN OUT<br>175.3 128.2<br>172.0 125.5<br>171.4 121.4<br>170.2 119.8<br>173.1 120.3<br>180.6 122.8<br>191.7 127.9<br>202.2 130.8 | REL VEL IN 0UT 175.3 128.2 172.0 125.5 171.4 121.4 170.2 119.8 173.1 120.3 180.6 122.8 191.7 127.9 202.2 130.8 |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 9<br>10<br>11                                         | 14.778 15.291<br>13.520 14.158<br>12.883 13.594                                                                                                         | 133.7 124.9<br>121.3 112.4<br>108.5 101.2                                                                                     | .927 122.0                                                                                                                                           | 112.7 .924                                                                                                                                              | 159.7 14.5<br>174.4 7.2<br>184.7 -10.1                                                                                                                                                                                                                                                                                                                                                                        | 12.2 8.9<br>13.2 8.5<br>12.6 7.6                                                                                                                                                | 208.6 126.0<br>212.8 112.9<br>214.5 102.0                                                                                                 | 208.6 126.0<br>212.8 112.9<br>214.5 102.0                                                                      |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9       | ABS MACH NO IN OUT .491 .355 .483 .348 .484 .339 .483 .336 .494 .339 .517 .347 .551 .361 .583 .370 .603 .356 .616 .319 .621 .287                        | REL MACH NO IN OUT .491 .355 .483 .344 .335 .494 .335 .517 .34 .551 .36 .583 .37 .603 .35 .616 .31 .621 .28                   | 333 .346 .334<br>324 .338<br>328 .338<br>328 .336<br>346 .337<br>347 .346 .361<br>386 .363<br>393 .361<br>393 .361<br>393 .361                       | IN OUT 338 .355 .333 .348 .324 .338 .328 .336 .346 .339 .346 .347 .386 .361 .394 .369 .388 .354 .353 .318                                               | ABS BETAZ IN OUT 46.5 2.4 46.4 .4 48.0 2.1 47.2 .2 45.6 .4 44.87 45.5 .9 47.6 3.5 50.1 6.6 55.2 3.7 59.6 -5.7                                                                                                                                                                                                                                                                                                 | IN OUT 46.5 2.4 4 46.4 .4 4 48.0 2.1 4 47.2 .2 4 45.6 .4 4 44.77 4 45.5 .9 4 47.5 3.5 4 49.9 6.6 5 55.0 3.6 5                                                                   | EL BETAZ REL IN OUT IN 6.5 2.4 46.64 .4 46.68.0 2.1 48.7.2 .2 47.5.6 .4 45.48 -7 44.5 .5.5 .9 45.6 16.6 49.6 5.2 3.7 55.9 .6 -5.7 59.6    | 5 2.4<br>4 .4<br>0 2.1<br>2 .2<br>6 .4<br>77<br>5 .9<br>5 3.5<br>9 6.6<br>0 3.6                                |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | TOTAL PRESS IN OUT 14.61 14.23 14.49 14.18 14.39 14.09 14.25 14.06 14.25 14.07 14.29 14.10 14.48 14.21 14.55 14.27 14.50 14.12 14.28 13.85 14.09 13.66  | GURE TOT IN                                                                                                                   | 7 330.9 1.000<br>3 327.3 1.000<br>0 323.4 1.000<br>0 321.0 1.000<br>4 319.4 1.000<br>7 319.7 1.000<br>1320.1 1.000<br>5 319.5 1.000<br>2 319.2 1.000 | STATIC PRESS IN OUT 12.39 13.04 12.35 13.04 12.27 13.01 12.15 13.00 12.06 12.99 11.70 12.98 11.78 12.98 11.56 12.99 11.34 12.94 11.05 12.91 10.86 12.90 | STATIC DENSI<br>IN 0UT<br>1.35961 1.39<br>1.36134 1.40<br>1.36687 1.41<br>1.37036 1.43<br>1.37312 1.44<br>1.36822 1.44<br>1.36193 1.45<br>1.34377 1.45<br>1.32618 1.44<br>1.29803 1.43<br>1.27599 1.43                                                                                                                                                                                                        | IN 0<br>984 317.4 32<br>9588 316.1 32<br>9583 316.1 32<br>9253 308.9 31<br>1282 306.0 31<br>1945 303.1 31<br>15159 301.4 31<br>15238 299.7 31<br>1635 297.8 31<br>3784 296.6 31 |                                                                                                                                           | EED<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | PERCENT INC SPAN MEAN 5.0 10.3 10.0 11.9 20.0 13.4 30.0 12.3 40.0 9.7 50.0 7.5 60.0 6.7 70.0 6.9 90.0 8.8 95.0 11.4                                     | 4.0 9<br>1.9 7<br>1.1 9<br>1.4 12<br>1.6 16<br>3.7 15                                                                         | .4 .536 .<br>.4 .540 .<br>.1 .546 .<br>.4 .542 .<br>.2 .530 .<br>.8 .532 .<br>.5 .528 .<br>.4 .533 .<br>.2 .561 .<br>.1 .639 .                       | 000                                                                                                                                                     | OF         SHOCK         TO           72         .000         .0           46         .000         .0           43         .000         .0           93         .000         .0           82         .000         .0           79         .000         .0           91         .000         .0           92         .000         .0           19         .000         .0           33         .000         .0 | LOSS PARAMETER OT PROF SHOO 066 .066 .00 055 .055 .00 051 .051 .00 031 .031 .00 026 .026 .00 024 .024 .00 028 .028 .00 029 .029 .00 029 .029 .00 029 .029 .00                   | 0 .955<br>0 .930<br>0 .938<br>0 .908<br>0 .879<br>0 .883<br>0 .926<br>0 .987<br>0 1.030<br>0 1.111                                        |                                                                                                                |



TABLE X. - Continued. BLADE-ELEMENT PERFORMANCE AT BLADE EDGES FOR FIRST-STAGE STATOR

(n) 80 Percent of design speed; reading 1544

| RP                                                    | RADII<br>IN OUT<br>23.787 23.797<br>23.208 23.251                                                                                                                    | AXIAL VELOO<br>IN OUT<br>136.5 135.4<br>147.1 141.5                                                                                 | RATIO I<br>.992 13<br>.962 14                                                                                | 6.5 135.4<br>7.1 141.6                                                                                            | RATIO<br>.992<br>.962                                                                                                                        | 105.0<br>103.4                                                                                  | OUT IN<br>3.3 -1<br>4 -                                                                                                           | .5 1.2<br>.9 1.5                                                                                                                                          | ABS VEL<br>IN OUT<br>172.2 135.4<br>179.8 141.6                                                                                     | REL VE<br>IN<br>172.2 1<br>179.8 1                                                              |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                 | 22.032 22.121<br>20.848 20.983<br>19.660 19.848<br>18.461 18.712<br>17.249 17.574<br>16.020 16.431<br>14.778 15.291<br>13.520 14.158<br>12.883 13.594                | 154.2 147.1<br>153.5 147.3<br>151.2 146.6<br>149.0 146.4<br>150.3 150.1<br>153.2 158.0<br>153.1 164.7<br>144.1 158.7<br>134.9 142.4 | .954 15<br>.960 15<br>.970 15<br>.982 14<br>.989 15<br>1.031 15<br>1.076 15<br>1.101 14                      | 4.2 147.1<br>3.5 147.4<br>1.2 146.6<br>9.1 146.5<br>3.6 150.3<br>3.6 158.3<br>3.8 165.2<br>4.9 159.1<br>5.8 142.8 | .954<br>.960<br>.970<br>.982<br>.998<br>1.030<br>1.074<br>1.098<br>1.052                                                                     | 99.2<br>99.4<br>105.8<br>113.0<br>123.1<br>139.1<br>154.1<br>172.2                              | -7.7<br>-9.1<br>-5.9<br>-5.7<br>-4.3<br>-1.4<br>1.4<br>0                                                                          | 2.6 2.1<br>2.4 3.1<br>1.2 4.4<br>1.2 5.9<br>1.5 7.7<br>1.2 9.9<br>1.9 11.8<br>1.7 12.1<br>1.7 10.7                                                        | 183.4 147.3<br>182.9 147.6<br>184.6 146.7<br>187.1 146.6<br>194.5 150.4<br>207.3 158.3<br>217.7 165.2<br>225.0 159.1<br>228.2 143.1 | 183.4 1<br>182.9 1<br>184.6 1<br>187.1 1<br>194.5 1<br>207.3 1<br>217.7 1<br>225.0 1<br>228.2 1 |
| RP<br>12345567891011                                  | ABS MACH NO 1N OUT .488 .380 .513 .400 .527 .419 .527 .419 .540 .418 .562 .429 .600 .452 .632 .472 .655 .454 .665 .406                                               | REL MACH NO IN OUT .488 .380 .513 .400 .527 .419 .527 .421 .532 .419 .540 .418 .562 .429 .600 .452 .632 .472 .655 .454 .665 .406    | .387 .<br>.419 .<br>.443 .<br>.442 .<br>.436 .<br>.436 .<br>.435 .<br>.444 .<br>.445 .                       | NO MERID UT IN 380 .387 400 .415 419 .443 420 .442 418 .436 428 .435 421 .447 451 .447 452 .422 404 .396          | 400<br>419<br>420<br>418<br>418<br>418<br>429<br>452<br>472<br>454                                                                           | 37.6<br>35.1<br>32.8<br>32.9<br>35.0<br>37.2<br>39.3<br>42.2<br>45.2<br>50.1                    | AZ ABS<br>UT IN<br>1.4 37.6<br>2 35.1<br>3.0 32.8<br>3.5 32.8<br>2.3 35.0<br>2.2 37.1<br>1.7 39.2<br>5 42.1<br>0 49.5<br>3.5 53.6 | OUT 1.4 37 37 37 32 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5                                                                                               | N OUT IN .6 1.4 37.                                                                                                                 | 6 1.4<br>12<br>8 -3.0<br>9 -3.3<br>1 -2.2<br>3 -1.7<br>25<br>190                                |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | TOTAL PRESS IN QUT 13.68 13.56 13.88 13.70 13.91 13.82 13.85 13.76 13.82 13.73 13.91 13.80 14.13 13.99 14.24 14.11 14.18 13.92 14.08 13.52                           | SURE TOTAL RATIO IN .991 324.6 .987 322.1 .994 317.9 .996 316.5 .994 316.1 .991 316.6 .991 318.5 .982 318.9 .960 319.3              | TEMPERATUR 0UT RAT 324.6 1.0 322.1 1.0 317.9 1.0 316.5 1.0 316.5 1.0 316.6 1.0 316.6 1.0 318.9 1.0 319.3 1.0 | 10 IN<br>00 11.63<br>00 11.51<br>00 11.55<br>00 11.48<br>00 11.33<br>00 11.23<br>00 11.08<br>00 10.88             | 12.27<br>12.25<br>12.22<br>12.20                                                                                                             | 1.32111                                                                                         | DENSITY<br>0UT<br>1.35527<br>1.36980<br>1.38964<br>1.39922<br>1.38071<br>1.38697<br>1.38737<br>1.38408<br>1.37527<br>1.35995      | STATIC TER<br>IN OU<br>309.9 315<br>306.0 312<br>301.1 307<br>299.5 305<br>299.5 305<br>298.7 305<br>297.7 305<br>294.9 304<br>293.7 306<br>293.4 309     | T IN 0 .5 .0 .0 .1 .0 .0 .6 .0 .7 .4 .0 .3 .0 .4 .0 .9 .0 .3 .0                                                                     | EED<br>UT<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0<br>-0                           |
| RP<br>12345567891011                                  | PERCENT INCI<br>SPAN MEAN<br>5.0 1.6<br>10.0 .7<br>20.0 -1.5<br>30.0 -1.8<br>40.06<br>50.0 .2<br>60.0 .7<br>70.0 1.7<br>70.0 1.7<br>80.0 2.2<br>90.0 3.9<br>95.0 5.6 | IDENCE SS DEVI4.4 15.4 -5.2 127.5 77.6 5.4 -6.4 65.5 6.4 -4.8 73.7 83.1 101.2 11.                                                   | 440<br>429<br>404<br>2 404<br>392<br>7 397<br>405<br>2 409<br>411<br>3 408<br>459                            | EFFIC TO                                                                                                          | OSS COEF-<br>DT PRO<br>159 .05<br>180 .08<br>135 .03<br>126 .02<br>133 .03<br>134 .03<br>144 .04<br>147 .04<br>140 .04<br>173 .07<br>155 .15 | F SHOCK<br>-000<br>-000<br>5 .000<br>6 .000<br>3 .000<br>4 .000<br>-000<br>-000<br>-000<br>-000 | LOSS<br>TOT<br>.023<br>.030<br>.012<br>.009<br>.011<br>.010<br>.012<br>.012<br>.010<br>.016                                       | PARAMETER<br>PROF SHOCK<br>.023 .000<br>.030 .000<br>.012 .000<br>.011 .000<br>.011 .000<br>.012 .000<br>.012 .000<br>.010 .000<br>.016 .000<br>.033 .000 | .801<br>.792<br>.752<br>.736<br>.760<br>.787<br>.832<br>.912<br>.980                                                                |                                                                                                 |

(o) 80 Percent of design speed; reading 1555

| RP 1 2 3 4 5 6 7 8 9 10                                     | RADII IN 0UT 23.787 23.797 23.208 23.251 22.032 22.121 20.948 20.983 19.660 19.848 18.461 18.712 17.249 17.574 16.020 16.431 14.778 15.291 | IN<br>129.2<br>132.9<br>135.8<br>135.1<br>133.9<br>135.6<br>138.8<br>140.9                  | 134.6<br>134.6<br>131.6<br>129.2<br>130.9<br>136.2<br>141.7<br>139.7                | RATIO<br>1.042<br>1.014<br>.991<br>.973<br>.965<br>.965<br>.981<br>1.005 | 135.8<br>135.2<br>133.9<br>135.7<br>139.0<br>141.3<br>140.5<br>129.8 | 0UT<br>134.6<br>134.8<br>134.6<br>131.6<br>129.3<br>131.0<br>136.4<br>141.9<br>140.0<br>128.9 | RATIO<br>1.042<br>1.014<br>.991<br>.974<br>.965<br>.965<br>.965<br>1.004<br>.996                                | TANG<br>IN<br>119.2<br>116.2<br>113.4<br>110.6<br>114.6<br>121.9<br>133.5<br>147.2<br>158.8                               | OUT<br>6.0<br>1.7<br>-2.2<br>-7.2<br>-4.8<br>-4.1<br>6<br>2.6<br>9.2<br>6.3                                                      | RADIAL<br>IN<br>-1.4<br>8<br>5<br>2.1<br>3.7<br>5.6<br>7.9<br>10.3<br>12.7                                       | OUT 1.2 1 1.4 1 1.9 1 2.8 1 3.9 1 5.3 1 7.0 1 8.8 2 10.0 2 9.8 2                | ABS VEL IN OUT 75.8 134. 76.5 134. 76.9 134. 74.7 131. 76.3 129. 82.4 131. 92.8 136. 04.0 142. 12.0 140.      | IN<br>8 175.8<br>8 176.9<br>8 176.9<br>8 174.7<br>4 176.9<br>0 182.4<br>4 192.8<br>0 204.0<br>3 212.0<br>1 218.4 | 0UT<br>134.1<br>134.1<br>131.1<br>129.1<br>131.1<br>136.1<br>142.1<br>140.1 |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 11<br>RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | ABS MACH NO IN OUT .494 .375 .498 .377 .504 .379 .499 .373 .505 .366 .524 .371 .555 .386 .589 .402 .613 .398 .633 .365                     | REL MA 1 N 494 -498 -504 -499 -505 -524 -555 -589 -613                                      | CH NO                                                                               | 1.016  AXIAL M/ IN .363 .375 .387 .386 .389 .399 .407 .405 .374 .345     |                                                                      |                                                                                               | .377<br>.379<br>.372<br>.366<br>.371<br>.386<br>.402<br>.397                                                    | 42.7<br>41.2<br>39.3<br>40.6<br>42.0<br>43.9<br>46.6<br>53.7                                                              | OUT<br>2.5<br>.7<br>9<br>-3.1<br>-2.1<br>-1.8<br>3<br>1.1<br>3.8                                                                 | 41.2<br>39.9<br>39.3 -3<br>40.6 -2<br>41.9 -1<br>43.8 -46.2 1                                                    | M REL                                                                           | OUT<br>2.5 4<br>2 -7 4<br>3 -2.1 4<br>3 -2.1 4<br>4 -1.8 4<br>2 1.1 4<br>5 3.8 4                              | 3 222.6  REL BETAM IN OUT 12.7 2.5 11.2 .7 19.99 19.3 -3.1 11.9 -1.8 13.83 16.2 1.1 148.5 3.7 53.5 2.8 57.5 -3.0 | 121.                                                                        |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10       | TOTAL PRE IN OUT 14.33 14.14 14.33 14.14 14.29 14.18 14.03 14.18 14.03 14.18 14.03 14.18 14.03 14.33 14.15 14.24 14.21 13.85 14.22 13.65   | RATIO<br>-987<br>-987<br>-993<br>-993<br>-989<br>-987<br>-987<br>-987<br>-969               | IN<br>330.5<br>327.7<br>322.8<br>319.7<br>318.8<br>319.2<br>319.8<br>319.8<br>319.7 | 330.5<br>327.7<br>322.8<br>319.7<br>318.8<br>319.2<br>319.6<br>319.6     | RATIO<br>1.000<br>1.000                                              | IN<br>12.13<br>12.10<br>12.01<br>11.96<br>11.86<br>11.76<br>11.62<br>11.62<br>11.62           | PRESS<br>0UT<br>12.83<br>12.82<br>12.84<br>12.79<br>12.76<br>12.76<br>12.76<br>12.76<br>12.76<br>12.65<br>12.63 | STATIC<br>IN<br>1.34073<br>1.34986<br>1.36263<br>1.36814<br>1.3558<br>1.34706<br>1.33164<br>1.31532<br>1.28628<br>1.26636 | 3 1.390<br>5 1.402<br>3 1.425<br>4 1.432<br>7 1.432<br>6 1.432<br>6 1.434<br>1 1.434<br>1 1.434<br>1 1.434<br>1 1.434<br>1 1.434 | 11<br>044 31<br>215 31<br>228 30<br>228 30<br>365 30<br>347 30<br>453 30<br>453 30<br>453 29<br>277 29<br>515 29 | 5.1 321.5<br>2.2 318.7<br>7.2 313.8<br>4.5 311.6<br>3.4 310.5                   | IN .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0                                                                     | OPEED<br>OUT<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                     |                                                                             |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10       | SPAN MEA<br>5.0 6<br>10.0 6<br>20.0 5<br>30.0 4<br>40.0 4<br>50.0 5<br>70.0 5<br>80.0 5                                                    | RCIDENCE<br>NN SS<br>.7 .7 .8<br>.8 .8<br>.6 -1.3<br>.98<br>.97<br>.33<br>.7 .3<br>.5 .2 .4 | 16.7<br>12.9<br>9.3<br>6.3<br>6.8<br>6.9<br>8.6<br>10.1<br>13.5<br>14.5             | .472<br>.481<br>.487<br>.486<br>.487<br>.505                             | .00                                                                  | C TC 0                                                                                        | OSS COE T PR 087 .0 084 .0 049 .0 049 .0 041 .0 062 .0 062 .0 062 .0 062 .0 062 .0 062 .0 062 .0 062 .0         | 84 .000<br>49 .000<br>46 .000<br>41 .000<br>62 .000<br>67 .000<br>62 .000<br>80 .00                                       | X TO .00 .00 .00 .00 .00 .00 .00 .00 .00 .0                                                                                      | 33 .03<br>32 .03<br>17 .01<br>16 .01                                                                             | SHOCK<br>.000<br>.000<br>.000<br>6 .000<br>8 .000<br>9 .000<br>9 .000<br>9 .000 | PEAK SS<br>MACH NO<br>.898<br>.872<br>.840<br>.806<br>.817<br>.848<br>.906<br>.974<br>1.022<br>1.113<br>1.195 |                                                                                                                  | ,                                                                           |

TABLE X. - Continued. BLADE-ELEMENT PERFORMANCE AT BLADE EDGES FOR FIRST-STAGE STATOR

(p) 70 Percent of design speed; reading 1475

|                                                       |                                                                                                                                                                                            |                                                                                                                                                       | (P                                                                                                                   | ,                                                                                            | or gonten ph                                                                                    | ccu, reading 1                                                                                                                                                  |                                                                                                                                   |                                                                                               |                                                                                                   |                                                                                                                                                    |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | RADII IN OUT 23.787 23.797 23.208 23.251 22.032 22.121 20.848 20.983 19.660 19.848 18.461 18.712 17.249 17.574 16.020 16.431 14.778 15.291 13.520 14.158 12.883 13.594                     | AXIAL VELOUIN OUT 118.1 116.9 130.5 127.2 139.3 135.0 139.8 136.5 140.2 139.0 141.5 142.3 144.6 147.2 147.6 153.7 148.4 162.6 141.7 162.3 133.1 147.3 | RATIO IN<br>.990 118.<br>.975 130.<br>.969 139.<br>.977 139.<br>.991 140.<br>1.005 141.<br>1.018 144.                | 3 135.0<br>8 136.6<br>3 139.1<br>7 142.4<br>8 147.3<br>0 154.0<br>1 163.0<br>6 162.7         | RATIO<br>.990<br>.975<br>.969<br>.977<br>.991<br>1.005<br>1.018<br>1.040<br>1.094               | TANG VEL IN OUT 82.8 -5. 81.8 -5. 78.7 -10. 80.9 -10. 86.0 -8. 93.2 -7. 101.6 -7. 114.7 -6. 130.3 -5. 147.7 -6.                                                 | IN<br>3 -1.3<br>6 .6<br>4 2.1<br>4 3.9<br>5.9<br>8.2<br>10.8<br>13.5                                                              | OUT 1.0 144<br>1.3 15<br>2.9 16<br>4.2 16<br>5.7 16<br>7.6 17<br>9.6 18<br>11.7 19<br>12.3 20 | ABS VEL<br>N                                                                                      | REL VEL 1N OUT 144.3 117.0 154.0 127.4 160.0 135.4 161.5 137.0 164.5 139.3 169.6 142.6 176.9 147.5 187.3 154.1 198.0 163.1 205.3 162.8 206.8 148.2 |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | ABS HACH NO IN OUT .414 .334 .444 .365 .464 .390 .469 .395 .478 .402 .493 .412 .515 .426 .546 .445 .579 .472 .601 .470 .605 .426                                                           | REL MACH NO<br>IN OUT<br>.414 .334<br>.444 .365<br>.464 .390<br>.469 .395<br>.478 .402<br>.493 .412<br>.515 .445<br>.579 .472<br>.601 .470            | .404 .38<br>.406 .39<br>.408 .40<br>.412 .41<br>.421 .42<br>.431 .44                                                 | IN<br>4 -339<br>5 -376<br>4 -404<br>1 -408<br>1 -412<br>5 -422<br>4 -432<br>0 -436<br>9 -417 | OUT<br>.334<br>.365<br>.389<br>.402<br>.411<br>.426<br>.445<br>.471                             | ABS BETAZ<br>IN OUT<br>35.0 -2.6<br>32.1 -2.7<br>29.5 -4.5<br>20.1 -4.5<br>31.5 -3.5<br>33.4 -3.0<br>35.1 -2.8<br>37.8 -2.0<br>46.2 -2.2<br>49.8 -4.7           | 29.5 -4<br>30.0 -4<br>31.5 -3<br>33.3 -3<br>35.0 -2<br>41.2 -2                                                                    | IN<br>.6 35.0<br>.7 32.1<br>.5 29.5<br>.4 30.1<br>.5 31.5<br>.0 33.4<br>.8 35.1<br>.8 37.8    | OUT IN                                                                                            | -2.7<br>-4.5<br>-4.4<br>-3.5<br>-3.0<br>-2.8<br>-2.8<br>-2.3                                                                                       |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9       | TOTAL PRESS<br>IN OUT<br>12.32 12.25<br>12.52 12.54<br>12.55 12.56<br>12.61 12.56<br>12.64 12.58<br>12.71 12.64<br>12.80 12.73<br>12.98 12.87<br>13.11 13.00<br>13.16 13.02<br>13.05 12.64 | RATIO IN<br>.994 312.3<br>.993 310.8<br>.995 308.5<br>.996 307.9<br>.995 308.3<br>.994 308.7<br>.991 309.6<br>.992 310.7<br>.990 311.2                | 310.8 1.000<br>308.5 1.000<br>307.9 1.000<br>307.9 1.000<br>308.3 1.000<br>308.7 1.000<br>309.6 1.000<br>310.7 1.000 | 10.95<br>10.94<br>10.86<br>10.85                                                             | OUT<br>11.34<br>11.34<br>11.28<br>11.27<br>11.26<br>11.25<br>11.23<br>11.23<br>11.16            | STATIC DEN<br>1N 0<br>1.26336 1.<br>1.27432 1.<br>1.27997 1.<br>1.28148 1.<br>1.27519 1.<br>1.26990 1.<br>1.26926 1.<br>1.26326 1.<br>1.253716 1.<br>1.22300 1. | UT IN 29336 301 30535 295 31345 295 31477 294 31473 294 31277 293 31366 292 30768 291                                             | .9 305.5<br>.0 302.7<br>.7 299.3<br>.9 298.6<br>.4 298.2<br>.0 298.1<br>.1 297.8              | WHEEL SPEE<br>IN OU<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                     |                                                                                                                                                    |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9       | PERCENT INCI<br>SPAN HEAN<br>5.0 -1.1<br>10.0 -2.4<br>20.0 -4.9<br>30.0 -4.8<br>40.0 -4.2<br>50.0 -3.8<br>60.0 -3.6<br>70.0 -2.8<br>80.0 -1.8<br>90.0 -1.1<br>95.0 1.7                     | -7.0 11<br>-8.4 9<br>-10.9 5<br>-10.6 5<br>-9.4 5<br>-9.2 5<br>-8.2 6                                                                                 | 6 .352 . 0 .342 . 4 .335 . 7 .335 . 7 .344 . 7 .340 .                                                                | F1C TO 000 .0 000 .0 000 .0 000 .0 000 .0 000 .0 000 .0 000 .0 000 .0 000 .0 000 .0 000 .0   | 51 .051<br>54 .054<br>33 .033<br>31 .031<br>31 .031<br>32 .032<br>37 .037<br>47 .047<br>40 .040 | .000<br>.000<br>.000<br>.000<br>.000<br>.000<br>.000                                                                                                            | LOSS PARAI TOT PROF .019 .019 .020 .020 .012 .011 .011 .011 .010 .010 .009 .009 .010 .010 .012 .012 .011 .011 .011 .011 .011 .011 | .000<br>.000<br>.000<br>.000<br>.000                                                          | EAK SS<br>IACH NO<br>.643<br>.638<br>.607<br>.606<br>.623<br>.651<br>.685<br>.746<br>.818<br>.901 |                                                                                                                                                    |

(q) 70 Percent of design speed; reading 1486

| RP 1 2 3 4 5 6 7 8 9 10 11                            | RADII IN 0UT 23.787 23.797 23.208 23.251 22.032 22.121 20.848 20.983 19.660 19.848 18.461 18.712 17.249 17.574 16.020 16.431 14.778 15.291 13.520 14.158 12.883 13.594 | IN 01<br>105.5 114<br>110.8 116                                                                  | 8.3 1.009                                                                                                                                                                  | HERIDION<br>IN<br>105.5 1<br>110.8 1<br>117.2 1<br>121.0 1<br>123.9 1<br>125.9 1<br>128.3 1<br>131.2 1<br>131.2 1<br>122.9 1<br>114.9 1 | 116.2 1.049                                                                                                                                               | TANG VEL<br>IN OUT<br>103.4 2.4<br>102.02<br>96.5 -4.5<br>95.5 -7.2<br>98.6 -3.7<br>101.8 -4.8<br>111.2 -3.5<br>124.26<br>137.4 3.5<br>152.1 1.0<br>162.3 -7.3                                 | RADIAL VEL<br>IN OUT<br>-1.2 1.0<br>7 1.2<br>.5 1.7<br>1.9 2.5<br>3.4 3.6<br>5.2 4.9<br>7.3 6.4<br>9.6 8.2<br>11.9 9.7<br>13.3 9.7                                                      | ABS VEL IN 0UT 147.7 114.4 150.6 116.2 151.8 118.4 154.2 119.6 158.3 120.6 161.9 121.2 169.8 124.9 180.7 132.0 190.0 136.2 195.6 128.4 198.8 115.9 | REL VEL IN 0UT 147.7 114.4 150.6 116.2 151.8 118.4 154.2 119.6 158.3 120.6 161.9 121.2 169.8 124.9 180.7 132.0 190.0 136.2 195.6 128.4 198.8 115.9 |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| RP 1 2 3 4 5 6 7 8 9 10 11                            | ABS MACH NO IN OUT .421 .324 .430 .330 .436 .337 .444 .342 .457 .345 .468 .347 .492 .358 .524 .378 .553 .391 .570 .367 .579 .331                                       | REL MACH<br>IN 0<br>.421 .430 .<br>.436 .<br>.444 .<br>.457 .<br>.468 .<br>.492 .<br>.524 .      |                                                                                                                                                                            | ACH NO POUT .323 .330 .337 .341 .345 .347 .357 .378 .389 .366 .329                                                                      | MERID MACH NO<br>IN OUT<br>.300 .323<br>.317 .330<br>.336 .337<br>.349 .341<br>.358 .347<br>.372 .358<br>.381 .378<br>.381 .378<br>.382 .390<br>.358 .367 | ABS BETAZ<br>IN OUT<br>44.4 1.2<br>42.6 - 1<br>39.5 -2.2<br>38.3 -3.4<br>38.5 -1.8<br>39.0 -2.3<br>40.9 -1.6<br>43.5 -3<br>46.4 1.5<br>51.2 .5                                                 | ABS BETAM RE IN OUT 1 44.4 1.2 44 42.61 42 39.5 -2.2 33 8.3 -3.4 36 38.5 -1.8 38.5 -1.8 39.0 -2.3 34 40.9 -1.6 44 44.4 1.5 1.5 4.5 1.1 5.5 54.7 -3.6 5                                  | EL BETAZ REL N OUT IN 1.4 1.2 44. 2.61 42. 39. 38. 3 -3.4 38. 38.5 -1.8 38. 9.0 -2.3 39. 31.5 -1.6 40. 3.53 43. 43. 43. 43. 43. 44. 493 6 54.      | BETAM<br>OUT<br>4 1.2<br>61<br>5 -2.2<br>3 -3.4<br>5 -1.8<br>0 -2.3<br>9 -1.6<br>3<br>3 1.5                                                        |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | TOTAL PRES IN OUT 12.93 12.82 12.98 12.85 12.95 12.89 12.96 12.89 12.99 12.92 12.99 12.99 13.08 12.96 13.22 13.09 13.21 12.96 13.21 12.96 13.14 12.72                  | SURE T RATIO I I .991 31 .990 31 .995 31 .994 31 .992 31 .990 31 .989 31 .989 31 .981 31 .968 31 | OTAL TEMPERA<br>N OUT<br>7.7 317.7<br>6.2 316.2<br>33.3 313.3<br>1.5 311.5<br>1.0 311.0<br>0.5 310.5<br>10.7 310.5<br>11.6 311.6<br>11.9 311.9<br>12.1 312.1<br>12.5 312.5 | TURE RATIO 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000                        | STATIC PRESS IN OUT 11.45 11.93 11.43 11.92 11.37 11.91 11.32 11.89 11.26 11.89 11.18 11.86 11.09 11.86 10.96 11.86 10.81 11.85 10.60 11.81 10.46 11.79   | STATIC DENS<br>IN OU<br>1.30025 1.33<br>1.30583 1.34<br>1.31200 1.33<br>1.31562 1.3<br>1.31375 1.30<br>1.30956 1.3<br>1.30956 1.3<br>1.29300 1.3<br>1.29311 1.3<br>1.295779 1.3<br>1.24522 1.3 | TY STATIC TELL IN 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                 | MP HHEEL SPE<br>UT IN 0<br>1.2 .0<br>9.5 .0<br>6.3 .0<br>4.4 .0<br>3.7 .0<br>3.1 .0<br>3.0 .0<br>2.9 .0<br>2.9 .0<br>2.6 .0<br>3.9 .0<br>5.8 .0    | ED<br>UT<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                                                 |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | SPAN MEAN 5.0 8.3 10.0 8.2 20.0 5.1 30.0 2.8 50.0 1.9 60.0 2.3 70.0 2.9 80.0 3.4                                                                                       | IDENCE<br>SS [<br>2.4<br>8<br>-2.4<br>-2.9<br>-3.8<br>-3.3<br>-2.5<br>-1.9                       | DEVIA FACTOR<br>15.4 .48<br>12.0 .48<br>8.0 .45<br>5.9 .44<br>7.1 .44<br>6.4 .44<br>7.2 .45<br>8.7 .44<br>11.2 .45<br>12.1 .59                                             | R EFFIC<br>2 .000<br>2 .000<br>3 .000<br>8 .000<br>8 .000<br>9 .000<br>1 .000                                                           | 0 .039 .0<br>0 .041 .0<br>0 .043 .0<br>0 .054 .0<br>0 .057 .0<br>0 .056 .0                                                                                | FFICIENT<br>10F SHOCK T<br>176 .000 .<br>180 .000 .<br>139 .000 .<br>141 .000 .                                                                                                                | LOSS PARAMETER DT PROF SHOC 029 .029 .00 030 .030 .00 014 .014 .00 014 .014 .00 016 .016 .00 017 .017 .00 015 .015 .00 014 .014 .00 014 .014 .00 017 .017 .00 015 .015 .00 014 .014 .00 | PEAK SS<br>MACH NO<br>0 .789<br>0 .773<br>0 .720<br>0 .707<br>0 .707<br>0 .710<br>0 .754<br>0 .819<br>0 .879                                       |                                                                                                                                                    |

(r) 70 Percent of design speed; reading 1497

| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9       | RADII<br>IN 0U'<br>23.787 23.7'<br>23.208 23.2'<br>22.032 22.1'<br>20.848 20.9'<br>19.660 19.8'<br>18.461 18.7'<br>17.249 17.5'<br>16.020 16.4'<br>14.778 15.2'<br>13.520 14.1' | T IN 86.5 91.6 921 97.3 104.6 448 113.2 119.1 74 122.1 123.6 114.0                                                             | 107.1<br>107.1<br>105.3<br>106.3<br>108.2<br>109.3<br>114.4<br>120.3<br>118.0<br>106.7                        | RATIO<br>1.238<br>1.:69<br>1.082<br>1.016<br>.956<br>.918<br>.936                                          | 86.5 10<br>91.6 10<br>97.3 10<br>104.6 10<br>113.2 10<br>119.2 10<br>122.3 11<br>124.2 12<br>124.1 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OUT<br>07.1<br>07.1<br>06.3<br>08.3<br>09.4<br>14.5<br>20.6<br>18.3 | RATIO<br>1.238<br>1.169<br>1.082<br>1.016<br>.956<br>.918<br>.936<br>.570<br>.953                    | TANG \ IN 120.4 117.8 114.1 109.0 106.5 108.3 117.8 130.0 140.1                                                  | OUT<br>-4.9<br>-7.0<br>3.8<br>1.9<br>.3<br>-4.0<br>-2.0<br>2.0<br>6.7<br>3.8                                 | 5 1<br>1.6 2<br>3.1 3<br>4.9 6.9 5<br>9.1 1<br>11.2 8                                              | 17 1 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15    | ABS VEL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.                                                      | IN 148.2 149.2 150.0 151.0 155.4 159.8 169.8 179.8 187.1 190.6                                                          | 0UT<br>107.<br>107.<br>105.<br>108.<br>109.<br>114.<br>120.<br>118. |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| 11<br>RP<br>12345<br>6789<br>1011                     | 12.883 13.5  ABS MACH NI IN OU .419 .3 .423 .3 .427 .2 .432 .3 .447 .3 .465 .3 .491 .3 .521 .3 .544 .3 .554 .3 .560 .2                                                          | REL MA T IN 01 .419 02 .423 98 .427 02 .432 08 .447 12 .465 27 .491 44 .521 38 .544                                            | 10).3<br>CH NO<br>OUT<br>.301<br>.302<br>.298<br>.302<br>.308<br>.312<br>.327<br>.344<br>.338<br>.305<br>.287 | .975  AXIAL MA IN .244 .260 .277 .399 .325 .343 .359 .359 .359                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OO.6  ERID M .244 .260 .277 .299 .326 .344 .3500 .360 .334          | .971 ACH NO OUT .300 .301 .297 .301 .308 .312 .327 .344 .338 .305 .286                               | 54.3<br>52.1<br>49.5<br>46.2<br>43.2<br>42.3<br>44.0<br>46.4<br>48.6<br>53.2                                     | TAZ AB<br>JUT 1<br>-2.6 54<br>-3.8 52<br>2.0 49<br>1.0 46<br>.2 43<br>-2.1 42<br>-1.0 43<br>3.3 48<br>2.1 53 | S BETAM<br>N OUT<br>.3 -2.6<br>.1 -3.8<br>.5 2.0<br>.2 1.0<br>.2 .2<br>.3 -2.1<br>.9 -1.0<br>.3 .9 | REL E IN 54.3 52.1 49.52 43.3 44.0 46.4 48.6 57.7    | 0UT<br>-2.6<br>-3.8<br>2.8<br>1.0<br>-2.1<br>-1.0<br>9                                             | .9 192.7  REL BETAM IN OUT 54.3 -2.6 52.1 -3.8 49.5 2.0 46.2 1.0 43.2 .2 42.3 -2.1 43.9 -1.0 46.3 .9 46.3 3.2 57.5 -4.5 | 100.                                                                |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | TOTAL P<br>IN 0U<br>13.29 13.<br>13.28 13.<br>13.19 12.<br>13.15 12.<br>13.16 13.<br>13.21 13.<br>13.29 13.<br>13.40 13.<br>13.39 13.<br>13.25 12.                              | T RATIO<br>01 -979<br>02 -980<br>96 -983<br>98 -987<br>02 -989<br>01 -985<br>10 -986<br>21 -986<br>17 -983<br>90 -973          | IN<br>322.3<br>320.6<br>317.8<br>312.9<br>311.8<br>312.6<br>312.6<br>312.6<br>312.1                           | 322.3 1<br>320.6 1<br>317.8 1<br>315.1 1<br>312.9 1<br>311.8 1<br>312.2 1<br>312.6 1<br>312.3 1<br>312.1 1 | ATIO .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: .000 1: . | 1.74<br>1.63<br>1.57<br>1.47<br>1.39<br>1.27<br>1.13<br>0.95        | OUT<br>12.22<br>12.22<br>12.18<br>12.19<br>12.19<br>12.16<br>12.17<br>12.17                          | IN<br>1.31843<br>1.32182<br>1.32132<br>1.32654<br>1.32850<br>1.32762<br>1.31340<br>1.30326<br>1.29405<br>1.27414 | 1.35226<br>1.35920<br>1.37238<br>1.38307<br>1.38512<br>1.38712<br>1.38876                                    | IN<br>311.3<br>309.5<br>306.7<br>300.9<br>298.9<br>297.8<br>296.5<br>294.0                         | TEMP 314.5 314.9 312.3 307.1 305.6 305.4 305.4 307.5 | .00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00                                                      | SPEED<br>OUT<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                        |                                                                     |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | SPAN H 5.0 1 10.0 1 20.0 1 30.0 1 40.0 50.0 60.0 70.0 80.0                                                                                                                      | INCIDENCE<br>EAN SS<br>8.5 12.5<br>8.0 12.0<br>12.7 5.8<br>1.7 5.8<br>1.7 5.8<br>2.0<br>5.5 - 2<br>6.1 .6<br>5.8 .5<br>7.8 2.1 | DEVIA<br>11.8<br>8.6<br>12.5<br>10.6<br>9.3<br>6.8                                                            | D<br>FACTOR<br>.601<br>.594<br>.559<br>.534<br>.527<br>.522<br>.513<br>.536<br>.607<br>.659                | EFF1C<br>.000<br>.000<br>.000<br>.000<br>.000<br>.000<br>.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LO<br>TOT<br>.18<br>.17<br>.14<br>.10<br>.08<br>.09<br>.08          | 35 .185<br>72 .172<br>147 .147<br>15 .105<br>32 .082<br>108 .108<br>172 .092<br>183 .081<br>194 .092 | SHUCK .000 .000 .000 .000 .000 .000 .000 .0                                                                      | TOT<br>.071<br>.054<br>.052<br>.035<br>.026<br>.032<br>.026<br>.021                                          | S PARAME<br>PROF<br>.071<br>.064<br>.035<br>.026<br>.032<br>.021<br>.021                           | FER K SHOOO                                          | PEAK SS<br>HACH NO<br>-943<br>-910<br>-860<br>-803<br>-767<br>-760<br>-807<br>-868<br>-909<br>-909 |                                                                                                                         |                                                                     |

(s) 60 Percent of design speed; reading 1510

| RP<br>12345678910                                                                      | RP 1 2 3 4 5 6 7 8 9 10 11                                                                                                                     | RP 1 2 3 4 5 6 7 8 9 10 11                                                                                                                                         | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                                                                                   |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SPAN ME. 5.0 - 10.0 -2 20.0 -5 30.0 -4 40.0 -3 50.0 -3 60.0 -3 70.0 -3 80.0 -2         | TOTAL PRE IN OUT 11.16 11.12 11.25 11.29 11.29 11.21 11.36 11.33 11.36 11.37 11.50 11.44 11.58 11.50 11.56 11.56 11.56 11.56 11.56 11.56 11.56 | ABS MACH NO IN OUT .292 .239 .313 .261 .327 .279 .330 .283 .339 .291 .351 .306 .316 .391 .325 .417 .344 .433 .345 .439 .315                                        | RADII IN 0UT 23.787 23.797 23.208 23.251 22.032 22.121 20.848 20.983 19.660 19.848 18.461 18.712 17.249 17.574 16.020 16.431 14.778 15.291 13.520 14.158 12.883 13.594 |
| .3 -6.2<br>.1 -8.0<br>.0 -10.9<br>.3 -10.2<br>.7 -9.5<br>.8 -9.5<br>.7 -9.3<br>.1 -8.5 | RATIO<br>.997<br>.997<br>.997<br>.998<br>.998<br>.997<br>.998<br>.995<br>.995<br>.995                                                          | .313<br>.327<br>.330<br>.339<br>.351<br>.366<br>.391<br>.417                                                                                                       | IN<br>81.7<br>90.7<br>97.5<br>97.4<br>98.4<br>100.3<br>102.4<br>105.6<br>101.5                                                                                         |
| 6.9<br>7.1<br>7.8<br>8.7                                                               | TOTAL<br>IN<br>300.6<br>298.3<br>298.0<br>297.9<br>297.9<br>298.2<br>298.7<br>299.3<br>299.3                                                   | OCH NO<br>OUT<br>-239<br>-261<br>-279<br>-283<br>-291<br>-300<br>-310<br>-325<br>-345<br>-345<br>-315                                                              | 82.6<br>90.0<br>95.7<br>97.1<br>99.8<br>102.7<br>106.1<br>111.2<br>118.1                                                                                               |
| .415<br>.376<br>.338<br>.326<br>.318<br>.315<br>.316                                   | 300.6 1<br>299.6 1<br>298.3 1<br>298.0 1<br>297.9 1<br>297.9 1<br>298.2 1<br>298.7 1<br>299.3 1                                                | AXIAL MA<br>IN .237<br>.264<br>.285<br>.284<br>.288<br>.293<br>.300<br>.309<br>.314<br>.298<br>.277                                                                | RATIO<br>1.011<br>.992<br>.981<br>.997<br>1.014<br>1.024<br>1.036<br>1.053<br>1.102                                                                                    |
| EFFIC<br>.000<br>.000<br>.000<br>.000<br>.000<br>.000                                  | URE STAT IN                                                                                                                                    | OUT .239 .2<br>.261 .2<br>.278 .2<br>.283 .2<br>.291 .2<br>.299 .2<br>.309 .3<br>.324 .3<br>.344 .3                                                                | HERIDIONAL TIN OUT 81.7 82 90.8 90. 97.5 95. 97.4 97. 100.4 102.102.6 106.105.9 111.107.5 118.102.1 118.95.0 108.                                                      |
| .051 .0<br>.043 .0<br>.029 .0<br>.030 .0<br>.031 .0<br>.028 .0                         | 1 10.69<br>9 10.66<br>7 10.65<br>5 10.65<br>10.65<br>9 10.63<br>15 10.64<br>17 10.61                                                           | 37 .239<br>64 .261<br>85 .278<br>85 .283                                                                                                                           | RATIO<br>6 1.011<br>7.981<br>2 .987<br>8 1.014<br>8 1.024<br>3 1.036<br>4 1.052<br>4 1.159                                                                             |
| FFICIENT OF SHOCK 54 .000 51 .000 29 .000 30 .000 31 .000 45 .000 44 .000 42 .000      | STATIC<br>IN<br>1.23994<br>1.24641<br>1.25082<br>1.25103<br>1.25059<br>1.25022<br>1.24583<br>1.24371<br>1.23730<br>1.22960                     | 35.9 32.4 32.5 33.3 35.0 416.4 46.4                                                                                                                                | 59.1<br>57.7<br>54.9<br>57.4<br>61.6<br>65.9<br>71.7<br>81.3<br>93.0<br>106.6                                                                                          |
| TOT<br>.021<br>.019<br>.015<br>.010<br>.010<br>.009<br>.008                            | DENSITY<br>OUT<br>1.25345<br>1.26044<br>1.26479<br>1.26612<br>1.26670<br>1.26671<br>1.26695<br>1.26418<br>1.26419<br>1.25499                   | AZ ABS<br>UT IN<br>1.9 35.<br>2.5 32.<br>3.8 29.<br>3.0 30.<br>2.1 32.<br>1.7 33.<br>1.6 35.<br>1.1 40.<br>1.8 46.<br>-4.1 50.                                     | OUT -2.7<br>-3.9<br>-6.4<br>-5.1<br>-3.7<br>-3.0<br>-3.0<br>-2.2<br>-2.0<br>-3.8                                                                                       |
| .019 .0<br>.015 .0<br>.010 .0<br>.010 .0<br>.009 .0<br>.008 .0<br>.012 .0              | 295.5<br>293.8<br>292.1<br>291.6<br>2291.6<br>2290.8<br>290.4<br>289.9<br>289.9<br>289.0                                                       | OUT<br>9 -1.9<br>4 -2.5<br>5 -3.0<br>0 -2.1<br>3 -1.7<br>0 -1.6<br>5 -1.1<br>8 -1.8                                                                                | ADIAL VEL<br>1 0UT<br>- 9 .7<br>- 5 .9<br>.4 1.4<br>1.5 2.1<br>2.7 3.0<br>4.2 4.1<br>5.8 5.5<br>7.7 6.9<br>9.7 8.5<br>1.0 9.0<br>1.0 8.1                               |
|                                                                                        | OUT IN<br>197.2<br>195.5<br>193.7<br>193.2<br>193.0                                                                                            | REL BETAZ<br>IN OUT<br>35.9 -1.9<br>32.4 -2.5<br>29.4 -3.8<br>30.5 -3.0<br>32.0 -2.1<br>33.3 -1.7<br>35.0 -1.6<br>41.0 -1.0<br>46.4 -1.8<br>50.8 -4.1              | 120.1<br>125.1<br>133.5<br>142.2<br>147.6                                                                                                                              |
| 0                                                                                      | EL SPEED                                                                                                                                       | REL BETAM<br>IN OUT<br>35.9 -1.9<br>32.4 -2.5<br>29.4 -3.8<br>30.5 -3.0<br>32.0 -2.1<br>33.3 -1.7<br>35.0 -1.6<br>37.5 -1.1<br>40.8 -1.0<br>46.2 -1.8<br>50.6 -4.1 | REL OUT IN 82.7 100.8 90.1 107.5 95.9 111.9 97.3 113.1 99.9 116.1 102.8 120.1 106.3 125.1 111.4 133.5 118.4 142.2 118.4 147.6 108.4 149.6                              |
|                                                                                        |                                                                                                                                                |                                                                                                                                                                    | VEL<br>0UT<br>82.7<br>90.1<br>95.9<br>97.3<br>99.9<br>102.8<br>106.3<br>111.4<br>118.4<br>108.4                                                                        |

(t) 60 Percent of design speed; reading 1521

| RP                                                     | RADII<br>IN OUT                                                                                                                                                  | AXIAL VELO                                                                                                         | CITY MERIDI                                                                                                                                                     | ONAL VELOCITY                                                                                                                                                     | TANG VEL                                                                                                                                                                                                                                                        | RADIAL VEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ABS VEL REL                                                                                                                                                                                           | /EL                                                                                          |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10        | IN 0UT 23.787 23.797 23.208 23.251 22.032 22.121 20.848 20.983 19.660 19.848 18.461 18.712 17.249 17.574 16.020 16.431 14.778 15.291 13.520 14.158 12.883 13.594 | 82.3 85.0<br>86.0 86.4<br>86.8 86.7<br>88.8 87.9<br>92.1 91.6<br>95.5 97.2                                         | RATIO IN<br>1.086 73.7<br>1.080 75.6<br>1.033 82.3<br>1.004 86.1<br>.998 86.9<br>.990 88.9<br>.995 92.3<br>1.018 95.7<br>1.059 96.1<br>1.093 88.3<br>1.038 81.5 | OUT RATIO<br>80.1 1.086<br>81.7 1.080<br>85.0 1.033<br>86.4 1.005<br>86.7 .998<br>88.0 .990<br>91.8 .994<br>97.4 1.017<br>101.6 1.058<br>96.2 1.089<br>84.3 1.034 | 72.8 4.1<br>72.8 1.6<br>69.1 -2.0<br>67.9 -3.3<br>69.9 -1.2<br>72.9 -1.6<br>79.67<br>88.8 1.2<br>98.7 3.2<br>112.0 .2<br>118.8 -4.9                                                                                                                             | 8 .7<br>4 .8<br>.3 1.2<br>1.3 1.8<br>2.4 2.6<br>3.7 3.5<br>5.2 4.7<br>7.0 6.1<br>8.7 7.3<br>9.6 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IN OUT IN 103.7 80.2 103.7 105.0 81.7 105.0 107.5 85.0 107.5 109.6 86.5 109.6 111.5 86.7 111.5 115.0 88.0 115.0 121.8 91.8 121.8 130.6 97.4 130.6 137.8 101.7 137.8 142.6 96.2 142.6 144.1 84.4 144.1 | 0UT<br>80.2<br>81.7<br>85.0<br>86.5<br>86.7<br>88.0<br>91.8<br>97.4<br>101.7<br>96.2<br>84.4 |
| RP                                                     | ABS HACH NO<br>IN OUT                                                                                                                                            | IN OUT                                                                                                             | AXIAL MACH NO                                                                                                                                                   | MERID MACH NO                                                                                                                                                     | ABS BETAZ A                                                                                                                                                                                                                                                     | ABS BETAM REL<br>IN OUT IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BETAZ REL BETAM<br>OUT IN OUT                                                                                                                                                                         |                                                                                              |
| 1 2                                                    | 300 231                                                                                                                                                          | .300 .231<br>.304 .236                                                                                             | .213 .231<br>.219 .235                                                                                                                                          | .213 .231<br>.219 .235                                                                                                                                            | 44.7 3.0 4<br>43.9 1.1 4                                                                                                                                                                                                                                        | 4.7 3.0 44.<br> 3.9 1.1 43.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7 3.0 44.7 3.0<br>9 1.1 43.9 1.1                                                                                                                                                                      |                                                                                              |
| 2<br>3<br>4<br>5                                       | .304 .236<br>.312 .246<br>.319 .251<br>.325 .252<br>.335 .255                                                                                                    | .312 .246<br>.319 .251<br>.325 .252                                                                                | .239 .246<br>.250 .250                                                                                                                                          | .239 .246<br>.250 .251                                                                                                                                            | 40.0 -1.4 4<br>38 3 -2 2 3                                                                                                                                                                                                                                      | 10.0 -1.4 40.<br>18.3 -2.2 38.<br>18.88 38.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 -1.4 40.0 -1.4<br>3 -2.2 38.3 -2.2<br>88 38.88                                                                                                                                                      |                                                                                              |
| 5<br>6<br>7                                            | .356 266                                                                                                                                                         | .335 .255                                                                                                          | .253 .251<br>.259 .255<br>.269 .266<br>.279 .282                                                                                                                | IN OUT .213 .231 .219 .235 .239 .246 .250 .251 .253 .252 .259 .265 .269 .266 .280 .283 .281 .295 .258 .279                                                        | 38.88 3<br>39.4 -1.0 3<br>40.84 4<br>42.9 .7 4                                                                                                                                                                                                                  | 89.4 -1.0 39.<br>10.84 40.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4 -1.0 39.4 -1.0<br>84 40.84                                                                                                                                                                          |                                                                                              |
| 8<br>9                                                 | .403 .295                                                                                                                                                        | .381 .283<br>.403 .295                                                                                             | .280 .294                                                                                                                                                       | .280 .283<br>.281 .295                                                                                                                                            | 42.9 .7 4<br>45.9 1.8 4                                                                                                                                                                                                                                         | 12.8 .7 42.<br>15.8 1.8 45.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9 .7 42.8 .7<br>9 1.8 45.8 1.8                                                                                                                                                                        |                                                                                              |
| 10<br>11                                               | .417 .279<br>.422 .244                                                                                                                                           | .417 .279<br>.422 .244                                                                                             | .257 .278<br>.237 .243                                                                                                                                          | .258 .279<br>.239 .244                                                                                                                                            | 51.9 .1 5<br>55.7 -3.4 5                                                                                                                                                                                                                                        | 51.7 .1 51.<br>55.5 -3.4 55.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9 .1 51.7 .1<br>7 -3.4 55.5 -3.4                                                                                                                                                                      |                                                                                              |
| RP                                                     | TOTAL PRES                                                                                                                                                       | DATIN IN                                                                                                           | TEMPERATURE DUT RATIO                                                                                                                                           | STATIC PRESS<br>IN OUT<br>10.76 10.98                                                                                                                             | STATIC DENSITY<br>IN OUT                                                                                                                                                                                                                                        | STATIC TEMP<br>IN OUT<br>12 297.8 299.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HHEEL SPEED<br>IN OUT                                                                                                                                                                                 |                                                                                              |
| 1<br>2<br>3                                            | 11.45 11.39<br>11.46 11.41<br>11.49 11.45                                                                                                                        |                                                                                                                    | 303.1 1.000<br>302.5 1.000                                                                                                                                      | 10.76 10.98<br>10.75 10.98                                                                                                                                        | 1.25879 1.2754<br>1.26042 1.2782<br>1.26773 1.2865<br>1.26898 1.2902<br>1.26808 1.2901                                                                                                                                                                          | IN 0UT<br>12 297.8 299.<br>26 297.0 299.<br>37 295.2 297.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9 .0 .0                                                                                                                                                                                               |                                                                                              |
| 4 5                                                    | 11.49 11.46<br>11.49 11.46                                                                                                                                       | .997 299.9<br>.997 299.5                                                                                           | 299.9 1.000<br>299.5 1.000                                                                                                                                      | 10.75 10.98<br>10.74 10.98<br>10.70 10.97<br>10.68 10.96                                                                                                          | 1.26898 1.2902<br>1.26808 1.2911                                                                                                                                                                                                                                | 25 293.9 296.<br>8 293.3 295.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .1 .U .U<br>8 .O .G                                                                                                                                                                                   |                                                                                              |
| 6<br>7                                                 | 11.50 11.46                                                                                                                                                      | .997 299.3                                                                                                         | 299 3 1 000                                                                                                                                                     | 10.64 10.95                                                                                                                                                       |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                       |                                                                                              |
| _                                                      | 11.56 11.51                                                                                                                                                      | .995 299.5                                                                                                         | 299.5 1.000                                                                                                                                                     | 10.60 10.95                                                                                                                                                       | 1.26574 1.2914<br>1.26379 1.2920                                                                                                                                                                                                                                | 10 272.1 273.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 .0 .0                                                                                                                                                                                               |                                                                                              |
| 8<br>9<br>10                                           | 11.64 11.57<br>11.70 11.63                                                                                                                                       | .775 300.0                                                                                                         | 500.U 1.00U                                                                                                                                                     | 10.60 10.95<br>10.52 10.95                                                                                                                                        | 1.26379 1.2920                                                                                                                                                                                                                                                  | 77 292.1 295.<br>16 291.5 295.<br>17 290.8 295.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 .0 .0<br>3 .0 .0<br>2 .0 .0<br>1 .0 .0                                                                                                                                                              |                                                                                              |
| 9<br>10<br>11                                          | 11.64 11.57<br>11.70 11.63<br>11.65 11.55<br>11.60 11.40                                                                                                         | .994 300.3<br>.991 300.7<br>.983 300.8                                                                             | 300.0 1.000<br>300.3 1.000<br>300.7 1.000<br>300.8 1.000                                                                                                        | 10.60 10.95<br>10.52 10.95<br>10.46 10.94<br>10.33 10.94<br>10.26 10.93                                                                                           | 1.26379 1.2920<br>1.25788 1.2921<br>1.25301 1.2919<br>1.23913 1.2874<br>1.23076 1.2815                                                                                                                                                                          | 272.7 273.7<br>107 292.1 295.1<br>166 291.5 295.2<br>13 290.8 295.3<br>15 290.6 296.5<br>17 290.5 297.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 .0 .0<br>2 .0 .0<br>1 .0 .0<br>1 .0 .0<br>2 .0 .0                                                                                                                                                   |                                                                                              |
| 9<br>10<br>11<br>RP                                    | 11.64 11.57<br>11.70 11.63<br>11.65 11.55<br>11.60 11.40<br>PERCENT INC<br>SPAN MEAN                                                                             | .994 300.3<br>.991 300.7<br>.983 300.8<br>IDENCE<br>SS DEVI                                                        | 300.3 1.000<br>300.7 1.000<br>300.8 1.000<br>D<br>A FACTOR EFF                                                                                                  | 10.60 10.95<br>10.52 10.95<br>10.46 10.94<br>10.33 10.94<br>10.26 10.93                                                                                           | 1.26379 1.2920<br>1.26379 1.2920<br>1.25788 1.2921<br>1.25301 1.2915<br>1.23913 1.2874<br>1.23076 1.2815                                                                                                                                                        | 19 272.7 273.<br>17 292.1 295.<br>16 291.5 295.<br>13 290.8 295.<br>15 290.6 296.<br>17 290.5 297.<br>10SS PARAMETER PROF SHOCK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 .0 .0<br>3 .0 .0<br>2 .0 .0<br>1 .0 .0<br>1 .0 .0<br>2 .0 .0                                                                                                                                        |                                                                                              |
| 9<br>10<br>11<br>RP                                    | 11.64 11.57<br>11.70 11.63<br>11.65 11.55<br>11.60 11.40<br>PERCENT INC<br>SPAN HEAN<br>5.0 8.5                                                                  | .994 300.3<br>.991 300.7<br>.983 300.8<br>IDENCE<br>SS DEVI<br>2.6 17.1                                            | 300.0 1.000<br>300.3 1.000<br>300.7 1.000<br>300.8 1.000<br>D<br>A FACTOR EFF<br>0 .481 .01<br>2 .476 .01                                                       | 10.60 10.95<br>10.52 10.95<br>10.46 10.94<br>10.33 10.94<br>10.26 10.93<br>LDSS COEF<br>10 .080 .080<br>10 .066 .08                                               | 1.26379 1.2920<br>1.26788 1.2921<br>1.25788 1.2921<br>1.25301 1.2915<br>1.23913 1.2874<br>1.23076 1.2815<br>FICIENT LC<br>F SHOCK TOT<br>10 .000 .031                                                                                                           | 272.7 273.<br>17 292.1 295.<br>16 291.5 295.<br>13 290.8 295.<br>15 290.6 296.<br>16 290.5 297.<br>18S PARAMETER<br>PROF SHOCK<br>1031 .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0                                                                                                                                                              |                                                                                              |
| 9<br>10<br>11<br>RP<br>1<br>2<br>3<br>4<br>5           | 11.64 11.57<br>11.70 11.63<br>11.65 11.55<br>11.60 11.40<br>PERCENT INC<br>SPAN HEAN<br>5.0 8.5                                                                  | .994 300.3<br>.991 300.7<br>.983 300.8<br>IDENCE<br>SS DEVI<br>2.6 17.1                                            | 300.0 1.000<br>300.3 1.000<br>300.7 1.000<br>300.8 1.000<br>D<br>A FACTOR EFF<br>0 .481 .01<br>2 .476 .01                                                       | 10.60 10.95<br>10.52 10.95<br>10.46 10.94<br>10.33 10.94<br>10.26 10.93<br>LDSS COEF<br>10 .080 .080<br>10 .066 .08                                               | 1.26379 1.2920 1.25788 1.2921 1.25788 1.2921 1.25301 1.2931 1.23913 1.2874 1.23076 1.2815 FICIENT LC F SHOCK TOT 0.000 .031 6.000 .025 2.000 .016 7.000 .018                                                                                                    | 272.7 273.<br>17 292.1 295.<br>18 291.5 295.<br>18 290.8 295.<br>19 290.6 296.<br>19 290.5 297.<br>10 290.<br>10 290.5 297.<br>10 290.5 297. | 5 .0 .0 .0 .0 .0 .0 .0 .0 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0                                                                                                                                   |                                                                                              |
| 9<br>10<br>11<br>RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7 | 11.64 11.57<br>11.70 11.63<br>11.65 11.55<br>11.60 11.40<br>PERCENT INC<br>SPAN HEAN<br>5.0 8.5<br>10.0 9.4<br>20.0 5.6<br>30.0 3.5<br>40.0 3.5                  | .994 300.3<br>.991 300.7<br>.983 300.8<br>IDENCE<br>SS DEVI<br>2.6 17.1<br>3.5 13.:<br>3 8.<br>-2.4 7.:<br>-2.7 8. | 300.0 1.000<br>300.3 1.000<br>300.8 1.000<br>D FACTOR EFF<br>0 .481 .00<br>2 .476 .00<br>7 .444 .00<br>7 .444 .00<br>8 .424 .00                                 | 10.60 10.95<br>10.52 10.95<br>10.46 10.94<br>10.33 10.94<br>10.26 10.93<br>LOSS COEF<br>10.080 .080<br>10.066 .06<br>10.052 .05<br>10.037 .03<br>10.038 .03       | 1.26379 1.2920 1.25788 1.2921 1.25788 1.2921 1.25301 1.2915 1.23973 1.2874 1.23076 1.2815 FICIENT LC F SHOCK TOT OUT .000 .031 6000 .025 1000 .012 1000 .012 1000 .012 1000 .012 1000 .012                                                                      | 272.7 273.<br>17 292.1 295.<br>16 291.5 295.<br>13 290.8 295.<br>15 290.6 296.<br>16 290.5 297.<br>18S PARAMETER<br>PROF SHOCK<br>0.011 .000<br>0.012 .000<br>0.012 .000<br>0.012 .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 .0 .0 .0 .0 .2 .0 .0 .0 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0                                                                                                                                   |                                                                                              |
| 9<br>10<br>11<br>RP<br>1<br>2<br>3<br>4<br>5           | 11.64 11.57<br>11.70 11.63<br>11.65 11.55<br>11.60 11.40<br>PERCENT INC<br>SPAN MEAN<br>5.0 8.5<br>10.0 9.4<br>20.0 5.6<br>30.0 3.5<br>40.0 3.1<br>50.0 2.3      | .994 300.3<br>.991 300.7<br>.983 300.8<br>IDENCE<br>SS DEVI<br>2.6 17.1<br>3.5 13.:<br>3 8.<br>-2.4 7.:<br>-2.7 8. | 300.0 1.000<br>300.3 1.000<br>300.8 1.000<br>D                                                                                                                  | 10.60 10.95 10.52 10.95 10.46 10.94 10.33 10.94 10.26 10.93  LOSS COEF TOT PRO 00 .066 .06 00 .052 .05 00 .037 .03 00 .038 .03 00 .040 .04 00 .054 .05            | 1.26379 1.2920 1.26379 1.2920 1.25788 1.2921 1.253913 1.2874 1.23913 1.2874 1.23976 1.2815 FICIENT LC F SHOCK TOT 10 000 .031 66 .000 .025 12 .000 .012 18 .000 .012 18 .000 .012 18 .000 .012 18 .000 .012 17 .000 .012 18 .000 .012 17 .000 .012 17 .000 .012 | 272.7 273. 17 292.1 295. 16 291.5 295. 13 290.8 295. 15 290.6 296. 16 290.5 297. 18 PARAMETER PROF SHOCK 2031 .000 2 .012 .000 2 .012 .000 2 .012 .000 2 .012 .000 2 .012 .000 3 .014 .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 .0 .0 .0 .0 .0 .0 .0 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0                                                                                                                                      |                                                                                              |

(u) 60 Percent of design speed; reading 1533

| RP           | RADII                                           | AXIAL                        | VELOCI                  | ΤΥ                   | MERIDIO                                 | NAL VEL                 | OCITY                         | TANG                       |                            | RAI                  | IAL VEL                 |                         | ABS VEL              |                                     |                      |
|--------------|-------------------------------------------------|------------------------------|-------------------------|----------------------|-----------------------------------------|-------------------------|-------------------------------|----------------------------|----------------------------|----------------------|-------------------------|-------------------------|----------------------|-------------------------------------|----------------------|
| 1            | IN DUT<br>23.787 23.797                         | IN<br>63.3                   | 76.7                    | RATIO<br>1.212       | IN<br>63.3                              | 0UT<br>76.7             | RATIO<br>1.212<br>1.195       | IN<br>85.5                 | 0UT<br>1.8                 |                      | .7                      | .7 10                   | 6.4 7                | UT IN<br>6.8 106.4                  | 0U <b>T</b><br>76.8  |
| 2            | 23.208 23.251<br>22.032 22.121                  | 64.2<br>65.7                 | 75.2                    | 1.195                | 64.2<br>65.7                            | 76.8<br>75.2<br>75.3    | 1.144                         | 85.5<br>83.2<br>79.5       | 5<br>4 . 1                 |                      | .31.                    | .1 10                   | 60 7                 | 6.8 107.0<br>5.3 106.0              | 76.8<br>75.3         |
| 5            | 20.848 20.983<br>19.660 19.848                  | 71.0<br>77.8                 | 76.3                    | 1.060<br>.981        | 71.0<br>77.8                            | 76.4<br>77.8            | 1.060                         | 76.6<br>77.8               | 1.5<br>1.0<br>5            |                      | .2 2                    | .3 10                   | 9.2 7                | 5.3 106.6<br>6.4 109.2<br>7.8 113.7 | 75.3<br>76.4<br>77.8 |
| 6<br>7       | 18.461 18.712<br>17.249 17.574<br>16.020 16.431 | 82.8<br>87.2<br>89.9         | 77.8<br>82.0<br>87.2    | .940<br>.941<br>.971 | 82.8<br>87.3<br>90.1                    | 82.2<br>87.4            | .940<br>.941<br>.970          | 84.3<br>93.2               | 5<br>.9<br>3.6             | 5                    | .0 4                    | .2 12                   | 1.4 8                | 7.5 121.4<br>7.5 129.6              | 82.2<br>87.5         |
| 8<br>9<br>10 | 14.778 15.291<br>13.520 14.158                  | 88.4<br>80.3                 | 86.5<br>78.0            | .979<br>.971         | 88.8<br>80.8                            | 86.7<br>78.2            | .977<br>.968                  | 101.1                      | 6.8<br>3.3                 | 8                    | .0 6<br>.7 5            | .2 13                   | 4.5 8                | 7.0 134.5<br>8.3 137.6              | 87.0<br>78.3         |
| 11           | 12.883 13.594                                   | 73.1                         | 72.7                    | .995                 | 73.6                                    | 73.0                    | .991                          | 118.9                      | -2.5                       | ĕ                    | . <b>5</b> 5            | .5 13                   | 9.9 7                | 3.0 139.9                           | 73.0                 |
| RP           | ABS MACH NO                                     | REL MAC                      | ON H:<br>TUO            | AXIAL MA             | CH NO<br>OUT                            | MERID I                 | MACH NO<br>OUT                | ABS BE                     | ETAZ<br>OUT                | ABS<br>In            | BETAM<br>OUT            | REL B<br>IN             | ETAZ                 | REL BETAM<br>IN OUT                 |                      |
| 1 2          | .306 .220<br>.308 .220                          | .306<br>.308                 | .220<br>.220            | .182<br>.185         | .220<br>.220                            | .182<br>.185            | .220<br>.220                  | 53.5<br>53.1               | 1.4<br>4                   | 53.5<br>53.1         | 1.4                     | 53.5<br>53.1            | 1.4<br>4             | 53.5 1.4<br>53.14                   |                      |
| 3<br>4       | .306 .217<br>.309 .217                          | .306<br>.309                 | .217<br>.217            | .190<br>.206         | .216<br>.217                            | .190<br>.206            | .216                          | 51.7<br>48.2               | 3.1<br>1.2                 | 51.7<br>48.2         | 1 2                     | 51.7<br>48.2            | 3.1<br>1.2           | 51.7 3.1<br>48.2 1.2                |                      |
| 5<br>6       | .317 .221<br>.331 .225                          | .317<br>.331                 | .221<br>.225            | .226                 | .221                                    | .226                    | .225                          | 44.6<br>43.2               | .8<br>4                    | 44.6<br>43.2         | 4                       | 44.6<br>43.2            | 4                    | 44.6 .8<br>43.24                    |                      |
| 7<br>8<br>9  | .354 .238<br>.378 .253<br>.393 .252             | .354<br>.378<br>.393         | .238<br>.253<br>.252    | .254<br>.262<br>.258 | .238<br>.253<br>.250                    | .255                    | .253                          | 44.0<br>46.0<br>48.8       | .6<br>2.4<br>4.5           | 44.0<br>46.0<br>48.7 | 2.3                     | 44.0<br>46.0<br>48.8    | .6<br>2.4<br>4.5     | 44.0 .6<br>46.0 2.3<br>48.7 4.5     |                      |
| 10<br>11     | .393 .252<br>.402 .226<br>.409 .211             | .402<br>.409                 | .226                    | .235                 | .225                                    | .259<br>.236<br>.215    | .226                          | 54.2<br>58.4               | 2.5<br>-2.0                | 54.0<br>58.2         | 2.5                     | 54.2<br>58.4            | 2.5<br>-2.0          | 54.0 2.5<br>58.2 -2.0               |                      |
| RP           | TOTAL PRESS                                     | SURE                         | TOTAL                   | TEMPERA              | TURE                                    | STATIC                  | PRES <b>S</b>                 | STATI                      | C DENSI                    | TY                   | STATIC                  |                         | WHEEL                | SPEED                               |                      |
| 1            | IN OUT<br>11.68 11.54                           | .987                         | IN<br>305.8             | 305.8                | RATIO<br>1.000                          | IN<br>10.95             | OUT<br>11.15                  | IN<br>1.2707               | 0UT<br>0 1.28              | 318                  | IN<br>300.1             | OUT<br>302.8            | IN<br>.o             | OUT<br>O.Q                          |                      |
| 2            | 11.67 11.54<br>11.61 11.50                      | .98 <b>8</b><br>.99 <b>1</b> | 303.6                   | 303.6                | 1.000                                   | 10.93<br>10.88          | 11.15<br>11.13                | 1.2723<br>1.2717<br>1.2746 | 0 1.28<br>4 1.28           | 1948                 | 299.2<br>298.0          | 302.0<br>300.8          | . 0<br>0 .           | 0_0                                 |                      |
| 5            | 11.58 11.51<br>11.58 11.52                      | .994<br>.994                 | 300.7                   | 300.7                | 1.000                                   | 10.84                   | 11.14                         | 1.2768                     | 9 1.30                     | 240                  | 296.2<br>294.7          | 299.1<br>297.7          | 0.<br>0.<br>0.       | .0                                  |                      |
| 6<br>7<br>8  | 11.59 11.52<br>11.66 11.57<br>11.73 11.63       | .994<br>.992<br>.992         | 300.1<br>300.2<br>300.6 | 300.2                | 1.00 <b>0</b><br>1.00 <b>0</b><br>1.000 | 10.75<br>10.70<br>10.62 | 11.12<br>11.12<br>11.13       | 1.2746<br>1.2726<br>1.2667 | 9 1.30<br>5 1.30<br>0 1.30 | 1550                 | 293.7<br>292.9<br>292.2 | 297.1<br>296.8<br>296.8 | . 0<br>. 0           | 0.0                                 |                      |
| 9<br>10      | 11.72 11.63<br>11.65 11.49                      | .992<br>.986                 |                         | 300.5                | 1.000                                   | 10.54                   | 11.13                         | 1.2593                     | 6 1.30                     | 637                  | 291.5<br>291.2          | 296.7<br>297.5          | .0                   | .0<br>.0                            |                      |
| ii           | 11.61 11.43                                     | .985                         | 300.7                   | 300.7                | 1.000                                   | 10.35                   | 11.08                         | 1.2387                     | 6 1.29                     | 524                  | 291.0                   | 298.1                   | .0                   |                                     |                      |
| RP           | SPAN MEAN                                       | IDENCE<br>SS.                | DEVIA                   |                      | EFFI                                    | C TO                    |                               | OF SHOC                    | K TO                       | ) T                  |                         | HOCK I                  | PEAK SS<br>MACH NO   |                                     |                      |
| 1 2          | 5.0 17.3<br>10.0 18.6                           | 11.4<br>12.7                 | 15.5<br>11.7            | .580<br>.584         | .00                                     | 0 .1                    | 99 -19                        | 34.00                      | 0 .0                       | 76<br>69             | .076                    | .000                    | .676<br>.671         |                                     |                      |
| 3            | 20.0 17.3<br>30.0 13.4                          | 11.4<br>7.6                  | 13.2<br>10.5            | .555<br>.540         | .00                                     | .0 .0                   | 47 .14<br>197 .01             | 97 .00                     | 0 .0                       | )52<br>)33           | .052                    | .000                    | .637<br>.59 <b>3</b> |                                     |                      |
| 5<br>6<br>7  | 40.0 8.8<br>50.0 6.1<br>60.0 5.3                | 3.1<br>.4<br>2               | 9.6<br>8.2<br>9.4       | .520<br>.520         | .00.                                    | 0 .0                    | 086 .01<br>083 .01<br>098 .01 | 83 .00                     | 0 .0                       | )27<br>)25<br>)28    | .027<br>.025<br>.028    | .000<br>.000<br>.000    | .555<br>.549<br>.579 |                                     |                      |
| 8<br>9       | 60.0 5.3<br>70.0 5.4<br>80.0 5.7                | 2<br>0<br>.4                 | 11.3<br>14.1            | .514<br>.503<br>.519 | .00<br>.00<br>.00                       | 0 .(                    | 984 .01<br>978 .0             | 84 .00                     | 0 .1                       | )22<br>)19           | .022                    | .000                    | .622<br>.656         |                                     |                      |
| 10<br>11     | 90.0 7.9<br>95.0 10.3                           | 2.8                          | 14.0<br>11.1            | .601<br>.658         | .00                                     | 0 .1                    | 129 .1:<br>142 .1:            | 29 .00                     | ا. 0ا                      | 029<br>030           | .029<br>.030            | .000                    | .713<br>.766         |                                     |                      |

## TABLE XI. - BLADE-ELEMENT PERFORMANCE AT BLADE EDGES FOR SECOND-STAGE ROTOR

(a) 100 Percent of design speed; reading 1283

| RP            | RADII<br>IN OUT                                 | AXIA<br>IN            | VE VELOC                |                               | MERIDIC                |                         |                              | TANG                          |                             |                      | L VEL                 | ABS V                            |                      | REL V                   |                         |
|---------------|-------------------------------------------------|-----------------------|-------------------------|-------------------------------|------------------------|-------------------------|------------------------------|-------------------------------|-----------------------------|----------------------|-----------------------|----------------------------------|----------------------|-------------------------|-------------------------|
| 1 2           | 23.566 23.223<br>23.050 22.768                  | 181.3<br>191.3        | 171.8<br>167.8          | .948<br>.877                  | 182.6<br>192.2         | 168.2                   | RATID<br>.944<br>.875        |                               | 142.8                       | 1N<br>-22.1<br>-19.3 | DUT<br>-15.5<br>-12.3 |                                  | 219.8                | IN<br>131.4<br>129.2    | DUT<br>307.8<br>293.6   |
| 3<br>4<br>5   | 22.001 21.814<br>20.958 20.856<br>19.916 19.909 | 205.4                 | 166.2<br>169.4<br>170.1 | .825                          | 205.5                  | 166.4<br>169.4<br>170.1 | .817<br>.824<br>.847         | 2.9                           | 147.5<br>141.6<br>143.2     | -13.1<br>-6.7<br>7   | -7.6<br>-3.4<br>.7    | 205.5                            | 220.8                | 118.2<br>106.0<br>388.5 | 275.7<br>269.5<br>256.6 |
| 6<br>7<br>8   | 18.877 18.969<br>17.831 18.039                  | 192.7                 | 169.3<br>166.9          | .879<br>.895                  | 192.7<br>186.7         | 169.4<br>167.1          | .87 <b>9</b><br>.89 <b>5</b> | 6<br>2                        | 146.6<br>152.4              | 4.7                  | 4.9<br>9.0            | 192.7<br>186.7                   | 224.0<br>226.2       | 372.3<br>353.8          | 242.0<br>225.5          |
| 9             | 16.769 17.122<br>15.684 16.231<br>14.559 15.367 | 169.3                 | 160.1<br>149.6<br>154.8 | .884                          | 170.5                  | 160.7<br>150.5<br>156.4 | .880<br>.883<br>1.066        | 4.7<br>13.5<br>9.5            | 166.2<br>191.5<br>205.8     | 15.2<br>19.8<br>22.1 | 13.1<br>16.7<br>22.4  |                                  | 243.6                | 332.4<br>303.1<br>277.7 | 201.9<br>171.4<br>165.2 |
| 11            | 13.967 14.945                                   | 128.1                 | 172.7                   | 1.348                         | 130.0                  | 175.0                   | 1.346                        | -11.1                         | 193.1                       | 21.9                 | 28.1                  | 130.5                            | 260.6                | 278.5                   | 184.5                   |
| RP<br>1       | ABS MACH NO<br>IN OUT<br>.499 .565              | REL MA<br>IN<br>1.177 | OUT<br>.791             | AXIAL MA<br>IN<br>.495        | CH ND 1<br>OUT<br>.441 | MERID N<br>IN<br>.498   | 1ACH NO<br>OUT<br>.443       | ABS BE<br>IN<br>1.9           | DUT                         |                      | IJΤ                   | EL BETAZ<br>IN DUT<br>5.1 56.0   |                      | TUG                     |                         |
| 2             | .529 .568<br>.567 .578                          | 1.161                 | ./56<br>.716            | .526                          | .432                   | .529<br>.567            | .433                         | 1.3                           | 40.4<br>41.6                | 3                    | 0.3 6                 | 3.5 55.1<br>0.9 52.9             |                      | 55.9<br>55.0<br>52.9    |                         |
| 4<br>5<br>6   | .574 .578<br>.562 .585<br>.539 .591             | 1.087                 | .705<br>.675<br>.638    | .574<br>.562<br>.539          | .443<br>.447<br>.447   | .574<br>.562<br>.539    | .443<br>.447<br>.447         | .8                            | 39.9<br>40.1                | .8 4                 | 0.1 5                 | 9.6 51.1<br>8.9 48.5             | 58.9                 | 51.1<br>48.5            |                         |
| 7<br>8        | .522 .598<br>.510 .612                          | .990                  | .597<br>.535            | .522<br>.509                  | .442<br>.424           | .522                    | .442                         | 1                             | 40.9<br>42.4<br>46.1        | 1 4                  | 2.4 5                 | 8.8 45.6<br>8.2 42.2<br>6.8 37.4 | 58.2                 | 45.6<br>42.2<br>37.3    |                         |
| 9<br>10<br>11 | .477 .646<br>.408 .688<br>.360 .693             | .770                  | .455<br>.439<br>.490    | .472<br>.402<br>.354          | .397<br>.412<br>.459   | .475<br>.407<br>.359    | .399<br>.416<br>.46 <b>5</b> | 4.6<br>3.7                    | 52.0<br>53.0<br>48.2        | 3.7 5                | 2.8 5                 | 6.0 28.7<br>8.4 18.9<br>2.5 18.7 | 58.1                 | 28.5<br>18.7<br>18.5    |                         |
| RP            | TOTAL PRE                                       | SSURE                 |                         | TEMPERAT                      | URE !                  | STATIC                  |                              |                               | DENSIT                      |                      | ATIC TE               |                                  | EL SPEED             | 10.5                    |                         |
| 1 2           | IN DUT<br>16.68 25.48<br>16.88 25.59            |                       | IN<br>350.9<br>347.2    | 401.4 1                       | 144                    | IN<br>14.08             | 0UT<br>20.52                 | IN<br>1.46701                 | DUT<br>1.894                | 42 33                | N 0                   | UT IN<br>7.4 396                 | .9 391.1             |                         |                         |
| 3             | 17.14 25.65<br>17.14 25.70                      | 1.496                 | 341.9                   | 393.8 1<br>388.1 1            | .152                   | 13.79                   | 20.56<br>20.46<br>20.50      | 1.49492                       | 1.906<br>2 1.930<br>2 1.962 | 86 32                | 1.3 36                | 5.6 388<br>9.2 370<br>3.9 353    | .6 367.4             | \$                      |                         |
| 5             | 17.01 25.58<br>16.77 25.51                      | 1.521                 | 337.9<br>336.2          | 384.6 1<br>382.9 1            | .138                   | 13.73<br>13.76          | 20.29<br>20.14               | 1.50461                       | 1.963<br>1.960              | 48 31<br>30 31       | 7.8 36<br>7.7 35      | 0.1 335<br>8.0 317               | .4 335.3<br>.9 319.5 | 3                       |                         |
| 7<br>8<br>9   | 16.63 25.34<br>16.64 25.14<br>16.44 25.26       | 1.511                 | 335.1<br>335.1<br>335.0 | 381.2 1<br>381.4 1<br>383.4 1 | .138                   | 13.81<br>13.93<br>14.07 | 19.89<br>19.53               | 1.51395<br>1.52366<br>1.52976 | 3 1.917                     | 01 31                | 8.5 35                | 5.8 300<br>4.6 282<br>3.9 264    | .4 288.4             | !                       |                         |
| 1 0<br>1 1    | 15.97 25.15<br>15.71 24.85                      | 1.575                 | 334.6<br>335.3          |                               | .151                   | 14.24<br>14.36          | 18.34                        | 1.53155                       |                             | 88 32                | 3.9 35                | 2.0 245<br>2.4 235               | .2 258.8             | 3                       |                         |
| RP            | PERCENT IN                                      | CIDENCE<br>N SS       | DEVIA                   | D<br>FACTOR                   | EFFIC                  | L0<br>101               | SS COEF                      | FICIENT<br>F SHOCK            | ,<br>101 )                  | OSS PAR              |                       | PEAK S                           |                      |                         |                         |
| 1 2           | 5.0 3.<br>10.0 2.                               | .0 .5<br>.23          | 1.8<br>1.4              | .400<br>.43 <b>5</b>          | .889<br>.829           | .08                     | 32 .03<br>31 .09             | 8 .044<br>3 .039              | 4 .01                       | 7 .00                | 8 .00<br>0 .00        | 9 1.472<br>8 1.438               |                      |                         |                         |
| 3<br>4<br>5   | 20.0 1.<br>30.0 1.<br>40.0 2.                   | 9 -1.2                | 1.1<br>1.8<br>2.4       | .461<br>.452<br>.456          | .801<br>.858<br>.890   | .11                     | 10 ,98                       | 3 .027                        | 7.02                        | 3 .01                | 8 .00                 | 6 1.395                          |                      |                         |                         |
| 67            | 50.0 4.<br>60.0 5.                              | 6 .5                  | 3.7<br>5.3              | .472<br>.489                  | .912<br>.926           | .07                     | 75 .05<br>57 .04             | 0 .026<br>4 .024              | s .01<br>4 .01              | 6 .01                | 1 .00                 | 6 1.456                          |                      |                         |                         |
| 8<br>9<br>10  | 70.0 5.80.0 5.90.0 6.                           | 23                    | 6.5<br>5.6<br>6.4       | .589                          | .903<br>.900<br>.914   | .12                     | 20 .11                       | 9 .001                        | .02<br>.02                  | 1 .01<br>7 .02       | 7 .00                 | 0 1.310                          |                      |                         |                         |
| 11            | 95.0 9                                          |                       | 12.7                    |                               | .923                   |                         | 13 .11                       |                               | 3 .02                       | 5 .02                |                       |                                  |                      |                         |                         |

(b) 100 Percent of design speed; reading 1382

| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | RADII IN OUT 23.566 23.223 23.050 22.766 22.001 21.814 20.958 20.856 19.916 19.909 18.877 18.969 17.831 18.039 16.769 17.122 15.684 16.231 14.559 15.367 13.967 14.945 | IN 176.3 17: 192.1 18: 209.1 19: 212.3 19: 212.4 19: 212.1 19: 210.1 20: 210.2 22: 205.0 23: 177.1 23 | ELOCITY UT RATIO 2.0 .976 4.4 .960 7.3 .944 8.8 .936 6.7 .925 6.4 .926 5.9 .978 2.2 1.057 4.7 1.145 3.1 1.316 6.5 1.467                        | HERIDIONAL VI<br>IN OUT<br>177.6 172.7<br>193.1 184.9<br>209.5 197.5<br>212.4 198.8<br>212.6 196.7<br>212.1 196.5<br>210.8 206.2<br>210.9 222.9<br>206.4 236.2<br>179.1 235.5<br>149.7 219.4 | RATIO<br>.972                                                                                                                      | TANG VEL IN OUT -3.8 64.8 -3.5 72.7 -4.5 76.9 -7.7 74.3 -5.3 80.5 -5.6 91.3 -6.2 107.7 -4.7 130.0 1.1 158.9 2.3 171.8 -11.1 173.7                                                         | RADIAL VEL<br>IN OUT<br>-21.5 -15.5<br>-19.3 -13.5<br>-7.0 -4.0<br>-8 .9<br>5.2 5.7<br>11.2 11.1<br>17.6 18.1<br>23.9 26.2<br>26.9 33.7<br>25.2 35.2 | IN OUT 177.6 184.4 193.1 198.7 209.6 212.0 212.5 212.2 212.7 212.5 212.2 216.7 210.8 232.6 210.9 258.1 206.4 284.6 179.1 291.5                                          | 438.4 369.4<br>436.9 361.7<br>429.8 351.4<br>418.7 341.1<br>401.8 322.0<br>387.0 301.2<br>372.1 284.7<br>356.4 273.5<br>334.4 262.5<br>301.9 251.1                |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RP 123455677891011                                    | ABS MACH NO IN OUT .490 .490 .537 .530 .571 .602 .575 .603 .576 .602 .587 .598 .631 .598 .701 .584 .776 .503 .796 .418 .758                                            | 1.208 .<br>1.216 .<br>1.211 .<br>1.185 .<br>1.139 .<br>1.097 .<br>1.056 .<br>1.010 .<br>.946 .        | NO AXIAL M<br>981 -486<br>965 -535<br>947 -589<br>924 -601<br>873 -602<br>816 -601<br>772 -597<br>743 -596<br>716 -580<br>686 -497<br>631 -411 | ACH NO MERID OUT IN .457 .489 .532 .599 .538 .60 .533 .60 .532 .60 .558 .59 .604 .58 .640 .58 .637 .50 .586 .41                                                                              | 9 .458<br>7 .493<br>0 .532<br>1 .538<br>2 .533<br>1 .539<br>8 .606<br>4 .644<br>2 .643                                             | ABS BETAZ<br>IN OUT<br>-1.2 20.6<br>-1.0 21.5<br>-1.2 21.3<br>-2.1 20.5<br>-1.4 22.2<br>-1.5 24.9<br>-1.7 27.6<br>-1.3 30.3<br>.3 34.1<br>.7 36.4<br>-4.3 38.7                            | IN OUT                                                                                                                                               | IN OUT 166.3 62.2 646.3 62.2 65.3 65.3 65.3 65.3 65.3 65.3 65.3 65.3                                                                                                    | EL BETAM<br>N OUT<br>1.1 62.1<br>1.8 59.3<br>1.8 55.8<br>1.5 54.3<br>1.1 52.4<br>1.8 49.3<br>1.9 43.6<br>1.9 25.9<br>1.9 25.9<br>1.9 25.9<br>1.9 25.9<br>1.9 25.9 |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | 15.58 18.76<br>15.95 19.55<br>15.94 19.69<br>15.95 19.67<br>15.95 19.79<br>15.95 20.30<br>16.05 21.74<br>16.13 22.64                                                   | RATIO I<br>1.188 34<br>1.204 34<br>1.225 33                                                           | 43.2 369.9<br>40.0 369.1<br>35.5 365.2                                                                                                         | RATIO IN<br>1.078 12.95<br>1.086 12.80<br>1.089 12.60                                                                                                                                        | 15.68<br>15.53<br>15.66<br>15.21                                                                                                   | STATIC DENS<br>IN OU<br>1.37714 1.5<br>1.38723 1.5<br>1.40007 1.5<br>1.39958 1.6<br>1.40330 1.6<br>1.40604 1.6<br>1.41145 1.5<br>1.41793 1.6<br>1.43366 1.5<br>1.44955 1.5<br>1.44365 1.4 | T IN<br>1738 327.5<br>4442 321.4<br>9197 313.6<br>1548 310.6<br>1667 309.8<br>0915 309.5<br>9803 309.0<br>1726 309.7<br>8194 311.2<br>5552 316.1     | OUT IN<br>353.0 397.1<br>349.5 388.4<br>342.9 370.7<br>339.4 353.1<br>338.5 335.6<br>339.4 318.1<br>338.6 300.4<br>337.4 282.6<br>335.0 264.3<br>333.5 245.3            | PEED<br>OUT<br>391.3<br>383.6<br>387.5<br>351.4<br>335.4<br>319.6<br>303.9<br>288.5<br>273.5<br>258.9                                                             |
| RP<br>123455677891011                                 | PERCENT INC<br>SPAN MEAN<br>5.0 4.1<br>10.0 2.6<br>20.0 1.3<br>30.0 1.6<br>40.0 2.1<br>50.0 2.5<br>60.0 2.5<br>60.0 2.2<br>80.0 1.3<br>90.0 2.4                        | IDENCE<br>SS 1.6<br>.1.3<br>-1.3<br>-1.4<br>-1.6<br>-1.6<br>-1.8<br>-2.7<br>-4.1<br>-3.0              | DDEVIA FACTOR 8.0 .21. 5.6 .23 4.0 .24 5.1 .25 6.3 .26 7.3 .29 6.7 .32 4.6 .33 3.0 .33 8.0 .33 8.0 .30 13.8 .34                                | R EFFIC 1<br>6 .646<br>7 .636<br>8 .671<br>9 .721<br>7 .715<br>9 .682<br>4 .686<br>7 .776<br>9 .787<br>7 .844                                                                                | LOSS COEF<br>OT PRO<br>144 .00<br>161 .1<br>152 .1<br>129 .0<br>139 .1<br>173 .1<br>200 .1<br>169 .1<br>194 .1<br>171 .1<br>319 .3 | OF SHOCK T<br>11 .050<br>11 .051<br>11 .041<br>11 .038<br>10 .031<br>147 .026<br>177 .023<br>187<br>197                                                                                   | 025 .015 .030 .021 .030 .022 .018 .027 .021 .035 .030 .042 .037 .038 .034 .035 .039 .038 .038 .038 .038 .038 .038 .038 .038                          | R PEAK SS<br>OCK MACH NO<br>011 1.537<br>010 1.480<br>008 1.432<br>008 1.433<br>006 1.416<br>005 1.416<br>005 1.422<br>004 1.415<br>002 1.342<br>000 1.297<br>001 1.382 |                                                                                                                                                                   |



TABLE XI. - Continued. BLADE-ELEMENT PERFORMANCE AT BLADE EDGES FOR SECOND-STAGE ROTOR

(c) 100 Percent of design speed; reading 1393

| RP                | RADII                                                        | AXI                              | L VELOCI                         |                                | MERIDIO                 |                                  |                                |                            | VEL                              |                         | DIAL VE                 |                      | ABS VE                  |                                  | REL                              |                          |
|-------------------|--------------------------------------------------------------|----------------------------------|----------------------------------|--------------------------------|-------------------------|----------------------------------|--------------------------------|----------------------------|----------------------------------|-------------------------|-------------------------|----------------------|-------------------------|----------------------------------|----------------------------------|--------------------------|
| 1<br>2<br>3       | IN OUT 23.566 23.22 23.050 22.76 22.001 21.81                | 3 176.0<br>6 192.1               | 0UT<br>163.5<br>175.3<br>184.3   | RATIO<br>.929<br>.912<br>.881  | 193.1<br>209.5          | 0UT<br>164.2<br>175.7<br>184.5   | .926<br>.910<br>.880           | IN<br>-3.5<br>-3.6<br>-4.4 | 0UT<br>91.1<br>96.9<br>98.5      | IN<br>-21<br>-19<br>-13 | .5 -14<br>.3 -12        | .7<br>.9             | 193.2 2<br>209.6 2      | 0UT<br>87.8<br>00.7              | IN<br>437.3<br>436.2<br>428.9    | 341<br>335<br>325        |
| 4<br>5<br>6       | 20.958 20.85<br>19.916 19.90<br>18.877 18.96                 | 6 212.2<br>9 212.1<br>9 210.8    | 184.7<br>182.9<br>183.7          | .871<br>.862<br>.872           | 212.3<br>212.1<br>210.8 | 184.8<br>182.9<br>183.8          | .87 <b>0</b><br>.862<br>.872   | -7.3<br>-5.4<br>-5.4       | 94.1<br>100.0<br>110.6           | 5                       | .0 -3<br>.8<br>.2 5     | .7<br>.8             | 212.2 2                 | 207.4<br>208.5<br>214.5<br>230.3 | 417.7<br>401.0<br>385.6          | 316<br>297<br>277        |
| 7<br>8<br>9<br>10 | 17.831 18.03<br>16.769 17.12<br>15.684 16.23<br>14.559 15.36 | 2 209.1<br>1 203.9               | 194.2<br>208.5<br>213.6<br>215.4 | .929<br>.997<br>1.047<br>1.228 | 209.3<br>209.8<br>205.3 | 194.5<br>209.2<br>214.9<br>217.7 | .929<br>.997<br>1.047<br>1.226 | -6.1<br>-4.7<br>1.0<br>2.1 | 123.3<br>138.3<br>160.2<br>181.3 | 23                      | .5 17<br>.8 23          | 7.0<br>3.8           | 209.8 2<br>205.3 2      | 250.8<br>268.0<br>283.3          | 370.7<br>355.2<br>333.4<br>300.7 | 265<br>257<br>242<br>230 |
| ii                | 13.967 14.94                                                 | 5 145.4                          | 222.5                            | 1.531                          | 177.5<br>147.5          | 225.4                            | 1.528                          | -11.2                      | 177.9                            |                         | .8 3                    | 3.2                  |                         | 87.1                             | 286.9                            | 237                      |
| RP                | ABS MACH NO                                                  | IN                               | CH NO<br>OUT                     | AXIAL M                        | DUT                     | IN                               | MACH NO<br>OUT                 | ABS E                      | อยา                              | IN                      | BETAM<br>OUT            | IN                   |                         | IN                               | MAT38<br>TUO                     |                          |
| 1 2               | .489 .49<br>.538 .52                                         | 9 1.214                          | .896<br>.885                     | .486<br>.535                   | .429                    | - 489<br>- 537                   | .463                           | -1.2<br>-1.1               | 29.1<br>28.9                     | -1.1<br>-1.1            | 28.9                    | 66.<br>63.           | 8 58.5                  | 66.1<br>63.7                     | 61.3<br>58.4                     |                          |
| 3<br>4<br>5       | .590 .55<br>.601 .55<br>.601 .55                             | 5 1.182                          | .867<br>.847<br>.79 <b>9</b>     | .589<br>.601<br>.601           | .491<br>.495<br>.491    | .590<br>.601<br>.601             | .495                           | -1.2<br>-2.0<br>-1.5       | 28.1<br>27.0<br>28.7             | -1.2<br>-2.0<br>-1.5    | 27.0                    | 60.<br>59.<br>58.    | 5 54.2                  | 60.8<br>59.4<br>58.1             | 55.5<br>54.2<br>52.1             |                          |
| 6<br>7            | .598 .57<br>.594 .62                                         | 6 1.093                          | .746<br>.713                     | .598<br>.593                   | .493                    | .598                             | .493                           | -1.5<br>-1.7               | 31.1<br>32.4                     | -1.5<br>-1.7            | 31.1<br>32.4            | 56.<br>55.           | 9 48.6<br>7 42.8        | 56.9<br>55.6                     | 48.6<br>42.8                     |                          |
| 8                 | .59 <b>5</b> .67                                             | .942                             | .695<br>.657                     | .593                           | .563<br>.578            | .595<br>.580                     | .581                           | -1.3<br>.3                 | 33.6<br>36.9                     | -1.3<br>.3              | 36.7                    | 53.<br>52.           | 2 27.8                  | 53.8<br>52.0                     | 35.6<br>27.7                     |                          |
| 10<br>11          | .498 .78<br>.412 .77                                         |                                  | .626<br>.643                     | .492<br>.404                   | .584<br>.604            | .498<br>.410                     |                                | .7<br>-4.4                 | 40. <b>1</b><br>38. <b>6</b>     | .7<br>-4.4              |                         | 54.<br>59.           |                         | 53.8<br>59.1                     | 19.5<br>18.0                     |                          |
| RP                | TOTAL PR                                                     |                                  | TOTAL<br>In                      | TEMPERA<br>OUT                 | TURE                    | STATIC                           | PRESS                          | STAT:                      | C DENS                           |                         | STATI                   | TEMP                 |                         | EL SPEE                          |                                  |                          |
| 1<br>2<br>3       | 15.28 19.9<br>15.61 20.6                                     | 8 1.308                          | 342.6<br>339.8                   | 379.4<br>378.0                 | 1.107                   | 12.97<br>12.82                   | 16.93<br>17.03                 | 1.3822                     | 28 1.6<br>01 1.6                 | 2994<br>5703            | 327.0<br>321.2<br>313.7 | 361.<br>358.         | 9 396<br>0 387          | .2 390<br>.6 382                 | .5<br>.8                         |                          |
| 4                 | 15.98 21.0<br>15.97 21.1                                     | 0 1.322                          | 335.5<br>333.1                   | 368.4                          | 1.112                   | 12.62<br>12.50                   | 17.06<br>17.12                 | 1.401                      | 56 1.7                           | 9159                    | 310.6                   | 351.<br>347.         | 1 352                   | .4 350                           | .7                               |                          |
| 5<br>6<br>7       | 15.97 21.1<br>15.95 21.2<br>15.93 21.8                       | 22 1.330                         | 332.2<br>331.5<br>330.9          | 368.3                          | 1.106<br>1.111<br>1.118 | 12.51<br>12.52<br>12.55          | 17.06<br>16.95<br>16.88        | 1.406<br>1.409<br>1.414    | B7 1.7                           | 1968<br>10911<br>1160   | 309.8<br>309.4<br>309.1 | 345.<br>345.<br>343. | 4 317                   | .4 318                           | .9                               |                          |
| 8 9               | 16.06 22.8<br>16.12 23.4                                     | 38 1.425                         | 331.4                            | 372.3<br>375.7                 | 1.123                   | 12.64<br>12.83                   | 16.83                          | 1.422                      | 48 1.7<br>28 1.6                 | 1918<br>9072            | 309.5<br>311.5          | 341.<br>339.         | 0 282<br>9 263          | .0 287<br>.7 272                 | .9                               |                          |
| 10<br>11          | 15.61 23.2<br>14.98 22.5                                     |                                  | 332.5<br>332.3<br>332.3          |                                | 1.139<br>1.142          | 13.18<br>13.33                   | 15.75<br>15.38                 | 1.450<br>1.444             |                                  | 32138<br>3842 <b>5</b>  | 316.6<br>321.4          |                      |                         |                                  |                                  |                          |
| RP                |                                                              | INCIDENCE<br>AN SS               | DEVIA                            | D<br>FACTOR                    | effi                    |                                  | LOSS COE                       |                            |                                  |                         | PARAME<br>PROF          | TER<br>SHOCK         | PEAK S<br>MACH N        |                                  |                                  |                          |
| 1 2               | 5.0                                                          | 1.1 1.6<br>2.6 .1                |                                  | .301                           | .74                     | 0 .1                             | 142 .0<br>153 .1               | 83 .0:                     | 59 .<br>49 .                     | .026<br>.03 <b>0</b>    | .015                    | .011                 | 1.534                   |                                  |                                  |                          |
| 3                 | 20.0<br>30.0                                                 | l.3 -1.4<br>l.7 -1.3             | 3.7<br>5.0                       | .326                           | .73<br>.77              | 9 .                              | 154 .1<br>125 .0               | 13 .0<br>87 .0             | 37.                              | .031<br>.025            | .023                    | .008                 | 1.428<br>1.427          |                                  |                                  |                          |
| 5                 | 50.0                                                         | 2.1 -1.4<br>2.6 -1.5<br>3.0 -1.7 | 6.0<br>6.6<br>5.9                | .372                           | .76                     | 4 .                              | 129 .0<br>153 .1<br>144 .1     | 2 <b>7</b> .0.             | 26.                              | .026<br>.031<br>.031    | .020<br>.026<br>.026    | .006<br>.005         | 1.415<br>1.417<br>1.425 |                                  |                                  |                          |
| 8<br>9            | 70.0                                                         | 2.5 -2.7<br>1.4 -4.1             | 4.8<br>4.8                       | .387                           | 7.86                    | 1 .                              | 112 .0<br>127 .1               | 94 .0<br>21 .0             | 18.                              | .025                    | .021                    | .004                 | 1.418                   |                                  |                                  |                          |
| 1 0<br>1 1        | 90.0                                                         | 2.6 -2.8<br>5.8 1.6              | 7.1                              | .379                           | .86                     | 9 .                              | 152 .1<br>111 .1               | 5 <b>1</b> .0              | 01 .                             | .034<br>.024            | .034                    | .000                 | 1.297                   |                                  |                                  |                          |

(d) 100 Percent of design speed; reading 1415

| RP                                              | RADI!                                                                                                                                       | I<br>DUT                                                                               | AXIAI<br>IN                                                                            | VELOCI                                                                                        | TY                                                                                              | MERIDIO                                                     | NAL_VE                                                      | LOCITY                                                                                  | TANG                                                       |                                                                                                        |                                                             | DIAL VE                                                                    |                                                                             | ABS VE                                                                                           | L                                                                                                  | EL V                                   |                                                                                                        |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | 23.566 2:<br>23.050 2:<br>22.001 2:<br>20.958 2:<br>19.916 1:<br>18.877 1:<br>17.831 1:<br>16.769 1:<br>15.684 1:<br>14.559 1:<br>13.967 1: | 3.223<br>2.766<br>1.814<br>0.856<br>9.909<br>8.969<br>8.039<br>7.122<br>6.231<br>5.367 | 177.9<br>192.4<br>207.9<br>210.5<br>209.0<br>205.5<br>202.1<br>201.0<br>194.6<br>167.0 | 0UT<br>167.2<br>167.9<br>170.3<br>173.4<br>176.6<br>180.0<br>180.3<br>174.3<br>174.9<br>183.6 | RATIO<br>.940<br>.872<br>.819<br>.824<br>.838<br>.860<br>.891<br>.897<br>.896<br>1.047<br>1.325 | 208.4<br>210.6<br>209.0<br>205.5<br>202.4<br>201.7<br>195.9 | 168.3<br>170.5<br>173.4<br>175.0<br>176.7<br>180.3<br>180.9 | RATIO<br>.937<br>.870<br>.818<br>.823<br>.838<br>.860<br>.891<br>.895<br>1.046<br>1.323 | -1.7<br>-4.0<br>-3.2<br>-4.4<br>-4.6<br>-2.7<br>3.8<br>4.3 | 0UT<br>126.3<br>131.0<br>133.0<br>130.3<br>134.1<br>139.9<br>145.4<br>153.7<br>173.8<br>194.2<br>190.5 | -21<br>-19<br>-13<br>-6<br>-5<br>10<br>16<br>22<br>25<br>23 | .7 -15<br>.4 -12<br>.4 -7<br>.9 -3<br>.8<br>.0 5<br>.7 9<br>.8 14<br>.7 19 | 1 1<br>1.3 1<br>1.8 2<br>1.5 2<br>1.5 2<br>1.7 2<br>1.7 2<br>1.7 2<br>1.7 2 | 79.3 2<br>93.4 2<br>08.4 2<br>10.6 2<br>09.0 2<br>05.6 2<br>02.5 2<br>01.7 2<br>95.9 2<br>69.0 2 | 13.3 434<br>16.2 420<br>16.9 411<br>20.5 39<br>25.4 38<br>31.6 36<br>37.4 34<br>46.9 32<br>62.6 29 | 7.7<br>1.4<br>1.0<br>1.5<br>1.6<br>1.0 | 0UT<br>313.1<br>303.0<br>289.4<br>280.5<br>266.3<br>251.6<br>239.7<br>225.2<br>201.5<br>188.0<br>195.7 |
| RP                                              | ABS MAC                                                                                                                                     | OUT                                                                                    | REL MA                                                                                 | OUT                                                                                           | AXIAL M                                                                                         | OUT                                                         | IN                                                          | MACH NO<br>OUT                                                                          | ABS B                                                      | OUT                                                                                                    | ΙN                                                          | BETAM<br>OUT                                                               | IN                                                                          | BETAZ<br>OUT                                                                                     |                                                                                                    | JT                                     |                                                                                                        |
| 1<br>2<br>3                                     | .493<br>.537<br>.585                                                                                                                        | .544<br>.554<br>.566                                                                   | 1.199<br>1.205<br>1.196                                                                | .810<br>.787<br>.758                                                                          | .490<br>.534<br>.584                                                                            | .433<br>.436<br>.446                                        | .49 <b>3</b><br>.53 <b>7</b><br>.58 <b>5</b>                | .437                                                                                    | 3<br>4<br>5                                                | 37.1<br>38.0<br>38.0                                                                                   | 3<br>4<br>5                                                 | 37.0<br>37.9<br>38.0                                                       | 65.9<br>63.7<br>60.8                                                        | 56 <b>.3</b>                                                                                     | 63.6 5                                                                                             | 7.6<br>6.2<br>3.9                      |                                                                                                        |
| 4<br>5                                          | .59 <b>4</b><br>.59 <b>0</b>                                                                                                                | .572<br>.584                                                                           | 1.167                                                                                  | .739<br>.70 <b>5</b>                                                                          | .59 <b>3</b><br>.59 <b>0</b>                                                                    | .457<br>.463                                                | .59 <b>4</b><br>.59 <b>0</b>                                | .457<br>.463                                                                            | -1.1<br>9                                                  | 36.9<br>37.5                                                                                           | -1.1<br>9                                                   | 36.9<br>37.5                                                               | 59.4<br>58.3                                                                | 51.8<br>48.9                                                                                     | 59.4 5<br>58.3 4                                                                                   | 1.8                                    |                                                                                                        |
| 6<br>7<br>8                                     | .581<br>.572<br>.570                                                                                                                        | .599<br>.618<br>.634                                                                   | 1.080<br>1.034<br>.986                                                                 | .668<br>.639<br>.602                                                                          | .581<br>.571<br>.568                                                                            | .469<br>.480<br>.482                                        | .581<br>.572<br>.570                                        | .469<br>.481<br>.483                                                                    | -1.2<br>-1.3<br>8                                          | 38.4<br>38.9<br>40.5                                                                                   | -1.2<br>-1.3<br>8                                           | 38.4<br>38.9<br>40.4                                                       | 57.4<br>56.4<br>54.8                                                        | 41.3                                                                                             | 56.4 4                                                                                             | 5.4<br>1.2<br>5.6                      |                                                                                                        |
| 9<br>10<br>11                                   | .552<br>.472<br>.391                                                                                                                        | .66 <b>0</b><br>.70 <b>3</b><br>. <b>712</b>                                           | -917<br>-821<br>-780                                                                   | .538<br>.503<br>.524                                                                          | .548<br>.467<br>.384                                                                            | .466<br>.468<br>.491                                        | .552<br>.472<br>.390                                        | .469<br>.473                                                                            | 1.1<br>1.5                                                 | 44.9<br>48.0<br>46.0                                                                                   | 1.1<br>1.5<br>-3.5                                          | 44.7<br>47.7                                                               | 54.8<br>53.2<br>55.2<br>60.4                                                | 20.2                                                                                             | 53.0 2<br>54.9 2                                                                                   | 9.5<br>0.0<br>8.1                      |                                                                                                        |
| RP                                              | TOTA                                                                                                                                        | L PRESS                                                                                | URE                                                                                    | TOTAL                                                                                         | TEMPERA                                                                                         | TURE                                                        | STATIC                                                      | PRESS                                                                                   | STATI                                                      | C DENSI                                                                                                | TY                                                          | STATIO                                                                     | TEMP                                                                        |                                                                                                  | L SPEED                                                                                            |                                        |                                                                                                        |
| 1 2                                             |                                                                                                                                             | 23.54                                                                                  | FATIO<br>1.501<br>1.488                                                                | IN<br>344.6<br>341.8                                                                          | 393 <b>.9</b>                                                                                   | RATIO<br>1.143<br>1.147                                     | IN<br>13.28<br>13.13                                        | 0UT<br>19.25<br>19.30                                                                   | IN<br>1.4075<br>1.4157                                     | 0UT<br>0 1.80<br>9 1.82                                                                                | 336                                                         | IN<br>328.6<br>323.1                                                       | 0UT<br>372.0<br>369.5                                                       | IN<br>396.<br>387.                                                                               | 0UT<br>4 390.6<br>7 382.9                                                                          |                                        |                                                                                                        |
| 3<br>4<br>5                                     | 16.32<br>16.29                                                                                                                              | 23.97<br>24.07                                                                         | 1.469<br>1.477                                                                         | 337.3<br>335.1                                                                                | 386.4<br>381.9                                                                                  | 1.145<br>1.140                                              | 13.13<br>12.94<br>12.83                                     | 19.28<br>19.29                                                                          | 1.4157<br>1.4281<br>1.4283<br>1.4344                       | 9 1.82<br>4 1.84<br>7 1.87                                                                             | 432                                                         | 323.1<br>315.7<br>313.0                                                    | 358.5                                                                       | 370.<br>352.                                                                                     | 1 366.9<br>5 350.8                                                                                 |                                        |                                                                                                        |
| 6<br>7                                          | 16.18                                                                                                                                       | 24.23                                                                                  | 1.485<br>1.498<br>1.513                                                                | 333.7<br>332.4<br>331.8                                                                       | 379.4<br>378.1<br>377.0                                                                         | 1.137<br>1.137<br>1.136                                     | 12.83<br>12.84<br>12.87<br>12.90                            | 19.18<br>19.02<br>18.84                                                                 | 1.4370                                                     | 1 1 0/                                                                                                 | 750                                                         | 312.0<br>311.4<br>311.4                                                    | 355.2<br>352.9<br>350.3                                                     | 317.                                                                                             | 5 319.0                                                                                            |                                        |                                                                                                        |
| 8<br>9                                          | 16.20<br>16.20                                                                                                                              | 24.37<br>24.28                                                                         | 1.504<br>1.499                                                                         | 332.2<br>333.0                                                                                | 376.9<br>379.1                                                                                  | 1.135                                                       | 13.00                                                       | 18.59                                                                                   | 1.4432<br>1.4522<br>1.4619                                 | 8 1.85<br>5 1.81                                                                                       | 66 <b>5</b><br>09 <b>0</b>                                  | 311.9<br>313.9                                                             | 348.9<br>348.8                                                              | 282.<br>3 263.                                                                                   | 0 288.0<br>8 273.0                                                                                 |                                        |                                                                                                        |
| 10<br>11                                        | 15.14                                                                                                                                       | 24.35<br>24.13                                                                         | 1.549<br>1.594                                                                         | 333.0<br>333.4                                                                                | 381.8<br>383.0                                                                                  | 1.147<br>1.149                                              | 13.49<br>13.62                                              | 17.51                                                                                   | 1.4743<br>1.4672                                           | 5 1.75<br>2 1.72                                                                                       | 38 <b>5</b>                                                 | 318.8<br>323.5                                                             | 347.5<br>347.7                                                              | 244.<br>234.                                                                                     | 9 258.5<br>9 251.4                                                                                 |                                        |                                                                                                        |
| RP<br>1                                         | PERCENT<br>SPAN<br>5.0                                                                                                                      | INCI<br>MEAN<br>3.7                                                                    | DENCE<br>SS<br>1.2                                                                     | DEVIA<br>3.4                                                                                  |                                                                                                 |                                                             | C TO                                                        |                                                                                         | F SHOC                                                     | K TO                                                                                                   | T                                                           |                                                                            | SHOCK                                                                       | PEAK SS                                                                                          |                                                                                                    |                                        |                                                                                                        |
| 2                                               | 10.0<br>20.0                                                                                                                                | 2.4                                                                                    | 1<br>-1.4                                                                              | 2.6<br>2.2                                                                                    | .391<br>.415<br>.433                                                                            | .81<br>.79                                                  | 4 .1<br>5 .1                                                | 03 .04<br>36 .09<br>50 .11                                                              | 0 .04<br>3 .03                                             | 6 .0                                                                                                   | 28<br>31                                                    | .010<br>.018<br>.024                                                       | .011<br>.009<br>.008                                                        | 1.515<br>1.464<br>1.417                                                                          | •                                                                                                  |                                        |                                                                                                        |
| 4<br>5<br>6                                     | 30.0<br>40.0<br>50.0                                                                                                                        | 1.7<br>2.3<br>3.2                                                                      | -1.4<br>-1.2<br>9                                                                      | 2.6<br>2.9<br>3.5                                                                             | .432<br>.441<br>.457                                                                            | .87                                                         | 1 .0                                                        | 16 .08<br>98 .06<br>92 .06                                                              | 5 <b>9</b> .02                                             | 8 .0                                                                                                   | 21                                                          | .017<br>.015<br>.014                                                       | .007<br>.006<br>.006                                                        | 1.415<br>1.412<br>1.428                                                                          |                                                                                                    |                                        |                                                                                                        |
| 7<br>8                                          | 60.0<br>70.0                                                                                                                                | 3.8<br>3.4                                                                             | 9<br>-1.8                                                                              | 4.3<br>5.8                                                                                    | .464<br>.479                                                                                    | .91<br>.91                                                  | 8 .0<br>5 .0                                                | 70 .04<br>77 06                                                                         | 17 .02<br>5 <b>0</b> .01                                   | 3 .0<br>7 .0                                                                                           | 15<br>17                                                    | .010<br>.013                                                               | .005<br>.004                                                                | 1.442<br>1.426                                                                                   |                                                                                                    |                                        |                                                                                                        |
| 9<br>10<br>11                                   | 80.0<br>90.0<br>95.0                                                                                                                        | 2.4<br>3.7<br>7.7                                                                      | -3.0<br>-1.7<br>2.5                                                                    | 6.6<br>7.6<br>12.3                                                                            | .518<br>.520<br>.473                                                                            | .90                                                         | 6.1                                                         | 21 .11<br>20 .12<br>64 .06                                                              | 20 .00                                                     | 1 .0                                                                                                   | 27                                                          | .026<br>.027<br>.014                                                       | .001<br>.000<br>.000                                                        | 1.336<br>1.294<br>1.377                                                                          |                                                                                                    |                                        |                                                                                                        |

(e) 100 Percent of design speed; reading 1426

| RP            | RAD<br>In                    | I I<br>OUT           | AXIA<br>IN              | L VELOC                 | ITY<br>RATIO                 | MERIDIO<br>IN        | NAL VE                  | LOCITY<br>RATIO              | TANG<br>I N                   | VEL<br>OUT                 | RAD:<br>IN     | IAL VEI                 |                         | ABS V                    | EL<br>OUT                      | REL<br>IN               | VEL<br>DUT                     |
|---------------|------------------------------|----------------------|-------------------------|-------------------------|------------------------------|----------------------|-------------------------|------------------------------|-------------------------------|----------------------------|----------------|-------------------------|-------------------------|--------------------------|--------------------------------|-------------------------|--------------------------------|
| 1 2           | 23.566<br>23.050             | 23.223<br>22.766     | 179.2<br>191.8          | 165.8<br>165.7          | .92 <del>5</del><br>.864     | 180.6<br>192.8       | 166.4<br>166.2          | .922<br>.862                 | 1.0<br>1                      | 131.6<br>137.8             | -21.<br>-19.   | 9 -14<br>3 -12          | .9 1<br>.2 1            | 80.6<br>92.8             | 212. <b>2</b><br>215. <b>9</b> | 435.3<br>433.6          | 308.<br>296.                   |
| 4             | 22.001<br>20.958<br>19.916   | 20.856               | 206.2<br>208.9<br>206.3 | 168.9<br>172.0<br>172.6 | .819<br>.824<br>.837         | 209.0                | 169.1<br>172.0<br>172.6 | .818<br>.823<br>.837         | -3.1                          | 140.6<br>137.3<br>139.6    | -13.:<br>-6.:  | 3 -7<br>9 -3            | .7 2<br>.5 2            | 09.0                     | 219.9<br>220.1                 | 425.0<br>412.9<br>395.7 | 28 <b>3</b> .<br>27 <b>4</b> . |
| 6<br>7        | 18.877<br>17.831             | 18.969<br>18.039     | 201.1<br>196.6          | 174.3<br>175.6          | .867<br>.895                 | 201.1<br>196.8       | 174.4<br>176.1          | .867<br>.89 <b>5</b>         | -4.3<br>-4.0                  | 144.9<br>150.7             | 4.             | 9 5                     | .0 2                    | 01.2                     | 222.0<br>226.7<br>231.8        | 379.9<br>362. <b>5</b>  | 261.<br>246.<br>233.           |
| 8<br>9        | 16.769                       | 16.231               | 194.1<br>185.6          | 172.6<br>165.1          | .889<br>.890                 | 194.8<br>186.9       | 173.2                   | .88 <b>9</b><br>.88 <b>9</b> | 5.6                           | 159.0<br>179.7             | 16.;<br>21.    | 3 14<br>7 18            | .1 1<br>.4 1            | 94.8<br>86.9             | 235.1<br>244.7                 | 344.6<br>319.1          | 216.<br>190.                   |
| 10            | 14.559<br>13.967             |                      | 158.8<br>133.1          | 166.3<br>176.1          | 1.047<br>1.323               |                      | 168.0<br>178.4          | 1.046<br>1.321               |                               | 197.5<br>190.1             | 24 .:<br>22 .: | 2 24<br>8 28            | .6 1                    | 60.7<br>35.3             | 259. <b>3</b><br>260. <b>7</b> | 287.9<br>279.0          | 178.<br>188.                   |
| RP            | ABS HA                       | QUŤ                  | REL HA                  | OUT                     | AXIAL M                      | DUT                  | IN                      | MACH NO<br>DUT               | ABS BE                        | OUT                        | ABS BI         | OUT                     | IN                      | BETAZ<br>QUT             | 1 N                            | BETAM<br>QUT            |                                |
| 1<br>2<br>3   | .49 <b>5</b><br>.533<br>.578 | .546<br>.558<br>.573 | 1.194<br>1.200<br>1.189 | .794<br>.767<br>.738    | .492<br>.531<br>.577         | .427<br>.428<br>.440 | .495<br>.533<br>.578    | .429                         | .3<br>0<br>2                  | 38.4<br>39.7<br>39.8       | .3<br>0<br>2   | 38.3<br>39.7<br>39.7    | 65.7<br>63.7<br>61.0    | 56.0                     | 63.6                           | 55.9                    |                                |
| 4<br>5        | .587<br>.581                 | .578<br>.586         | 1.161<br>1.114          | .721<br>.688            | .58 <b>7</b><br>.58 <b>1</b> | .451<br>.45 <b>5</b> | .587<br>.581            | .451<br>.455                 | 8<br>6                        | 38.6<br>39.0               | 8<br>6         | 38.6<br>39.0            | 59.6<br>58.6            | 51.2<br>48.6             | 59.6<br>58.6                   | 51.2<br>48.6            |                                |
| 6<br>7<br>8   | .567<br>.555<br>.548         | .600<br>.616<br>.626 | 1.070<br>1.021<br>.970  | .653<br>.620<br>.576    | .566<br>.554<br>.546         | .461<br>.467<br>.460 | .567<br>.555<br>.548    | .468                         | -1.2<br>-1.2<br>5             | 39.7<br>40.6<br>42.6       | -1.2           | 39.7<br>40.6<br>42.6    | 58.0<br>57.1<br>55.7    | 41.1                     | 58.0<br>57.1<br>55.6           | 41.0                    |                                |
| 9<br>10       | .52 <b>4</b><br>.447         | .652<br>.692         | .895<br>.802            | .508<br>.477            | .521<br>.442                 | .440<br>.444         | .524<br>.447            | .442<br>.448                 | 1.7<br>2.3                    | 47.4<br>49.9               | 1.7<br>2.3     | 47.3<br>49.6            | 54.3<br>56.4            | 29.6<br>20.3             | 54.2<br>56.1                   |                         |                                |
| 11<br>RP      | .374                         | .695<br>AL PRESS     | .772                    | .503                    | .368                         | .470                 | .37 <b>3</b>            | .476<br>• PRESS              | -3.8                          | 47.2                       | -3.8           | 46.8<br>STATIC          | 61.4                    |                          |                                | 19. <b>1</b>            |                                |
| 1             | IN<br>16.03                  | DUT                  | RATIO<br>1.516          | IN<br>347.1             |                              | RATIO                | IN<br>13.55             | DUT<br>19.84                 | IN<br>1.42727                 | DENSI<br>OUT<br>7 1.84     | ſ              | IN<br>330.8             | 0UT<br>375.4            | IN                       |                                | Ť                       |                                |
| 2             | 16.28<br>16.61               | 24.55<br>24.81       | 1.508<br>1.494          | 343.6<br>339.0          | 396.1<br>390.6               | 1.153<br>1.152       | 13.42<br>13.24          | 19.87<br>19.86               | 1.4378 <i>6</i><br>1.4521     | 5 1.85<br>1 1.88           | 666 <b>8</b> : | 325.1<br>317.7          | 372.9<br>366.6          | 388<br>370               | .3 383<br>.6 367               | .5<br>.5                |                                |
| 4<br>5<br>6   | 16.60<br>16.53<br>16.39      | 24.82                | 1.499<br>1.501<br>1.520 | 336.8<br>335.1<br>333.6 | 382.4                        | 1.141                | 13.14<br>13.16          | 19.85<br>19.68<br>19.54      | 1.45311<br>1.4598<br>1.46520  | 1 1.91<br>5 1.91<br>0 1.91 | 1 <b>577</b> : | 315.0<br>313.9<br>313.5 | 361.7<br>357.9<br>355.4 | 335                      | <b>.5</b> 335                  | .4                      |                                |
| 7             | 16.29<br>16.36               | 24.98<br>24.75       | 1.533                   | 332.7<br>333.0          | 379.3<br>379.0               | 1.138                | 13.22<br>13.33          | 19.34<br>19.01               | 1.46974<br>1.47908<br>1.48603 | 4 1.91                     | 109 <b>3</b> : | 313.4<br>314.1          | 352.6<br>351.5          | 300<br>282               | .4 303<br>.5 288               | .9                      |                                |
| 9<br>10<br>11 | 16.27<br>15.79<br>15.30      | 24.68                | 1.519<br>1.563<br>1.592 | 333.6<br>333.9<br>334.5 | 383.1                        | 1.147                | 13.76                   | 18.57<br>17.93<br>17.64      | 1.48603<br>1.49365<br>1.48732 | 5 1.78                     | 358 <b>8</b> : | 316.2<br>321.0<br>325.4 | 351.1<br>349.7<br>350.3 | 245                      | .3 258                         | .9                      |                                |
| RP            | PERCENT                      | INC                  | IDENCE                  |                         | D                            |                      | L                       | oss coe                      | FFICIENT                      |                            | LOSS PA        | ARAMET                  | ER                      | PEAK S                   | S                              |                         |                                |
| 1             | SPAN<br>5.0<br>10.0          | MEAN<br>3.5<br>2.5   | SS<br>1.0<br>0          | DEVIA<br>3.2<br>2.2     | .404                         | .860                 | .1                      | T PR:<br>03 .0<br>43 .0      | 52 .05                        | 1.0                        | 21 .           | 011                     | HDCK<br>.010<br>.009    | MACH N<br>1.503<br>1.461 |                                |                         |                                |
| 3             | 20.0                         | 1.4                  | -1.2<br>-1.2            | 1.5                     | .452                         | .795                 | .1                      | 57 .1<br>22 .0               | 20 .031<br>89 .031            | 7.0                        | 33 .<br>26 .   | 02 <b>5</b><br>019      | .008<br>.007            | 1.417                    |                                |                         |                                |
| 5             | 40.0<br>50.0                 | 2.6<br>3.8           | 9<br>3                  | 2.6<br>3.1              | .471                         | .89 <b>2</b>         | 0                       | 03 .0<br>90 .0               | 63 .027                       | 7.0                        | 120 .          | 014                     | .006                    | 1.417                    |                                |                         |                                |
| 7<br>8<br>9   | 60.0<br>70.0<br>80.0         | 4.5<br>4.3<br>3.6    | 2<br>9<br>-1.9          | 4.1<br>6.0<br>6.5       | .481<br>.502<br>.545         | .905                 | 0                       | 70 .0<br>90 .0<br>19 .1      | 74 .016                       | <b>5</b> .0                | 120 .          | 016                     | .005<br>.004<br>.001    | 1.462<br>1.433<br>1.339  |                                |                         |                                |
| 10            | 90.0                         | 4.9                  |                         | 7.7                     | .543                         | .919                 |                         |                              |                               |                            |                |                         |                         | 1.295                    |                                |                         |                                |

(f) 100 Percent of design speed, reading 1437

| RP       | RADII<br>IN QUT                           | AXIAL VEL<br>IN OUT      | T RATIO IN                       | IDIONAL VELOCII<br>OUT RAT   | TY TANG VE<br>IO IN O               | L RADIAL VE<br>UT IN DU                                          |                                 | REL VEL<br>IN OUT              |
|----------|-------------------------------------------|--------------------------|----------------------------------|------------------------------|-------------------------------------|------------------------------------------------------------------|---------------------------------|--------------------------------|
| 1 2      | 23.566 23.223<br>23.050 22.766            | 181.7 167.               | .6 .922 183                      | . <b>0 168.2 .</b> 9:        | 19 2.9 13                           | 4.9 -22.2 -15                                                    | .1 183.1 215.0                  | 6 434.9 306 <b>.9</b>          |
| 3        | 22.001 21.814                             | 192.9 166.<br>205.5 166. | .8 .812 205                      | .9 167.0 .8                  | 11 .5 14                            | 0.3 -19.4 -12<br>2.5 -13.3 -7                                    | .6 205.9 219.5                  | 5 423.8 280.4                  |
| 4<br>5   | 20.958 20.856<br>19.916 19.909            | 207.0 169.<br>203.3 171. | .6 .82 <b>0</b> 207              | .1 169.7 .8°                 | 19 -2.0 13<br>42 -1.8 14            | 7.1 -6.8 -3<br>0.67                                              | .4 207.1 218.7<br>.7 203.3 221. | 1 411.3 273.5                  |
| 6        | 18.877 18.969                             | 197.3 172.               | .5 .875 197<br>.8 .900 192       | .4 172.6 .8                  | 75 -3.8 14                          | .7 R & R 5                                                       | .0 197.4 227.3                  | 2 377.8 24 <b>3.7</b>          |
| 7<br>8   | 17.831 18.039<br>16.769 17.122            | 192.1 172<br>188.3 167   | .8 .891 189                      | .3 173.0 .9<br>.0 168.4 .8   | 91 - 6 16                           | 17 15 8 13                                                       | .4 192.4 231.<br>.7 189.0 233.  | 7 360.1 229.0<br>4 340.6 210.9 |
| 9<br>10  | 15.684 16.231                             | 178.0 158                | 2 888 179                        | .3 159.2 .8:                 | 8 <b>8 6.9 1</b> 8                  | 2.4 20.8 17                                                      | .6 179.4 242.                   | 1 313.8 183.5                  |
| 11       | 14.559 15.367<br>13.967 14.945            | 151.8 159<br>128.8 172   | .5 1.051 153<br>.0 1.336 130     | .5 161.2 1.0<br>.7 174.3 1.3 | 34 -9.0 19                          | 9.5 23.1 23<br>0.0 22.0 28                                       | .0 153.7 256.<br>.0 131.0 257.  | 5 283.4 171.9<br>9 277.3 185.0 |
| RP       | ABS MACH NO                               | REL MACH NO              |                                  | NO MERID MACH                | NO ABS BETA                         | Z ABS BETAM                                                      |                                 | EL BETAM                       |
| 1        | IN OUT<br>.501 .554                       | IN 00°<br>1.191 .78      | T IN OU<br>R <b>9</b> .497 .4    | T IN 0<br>31 .501 .          | UT IN DU<br>432 -9 38               | JT IN OUT<br>1.8 .9 38.7                                         |                                 | IN OUT<br>5.1 56.8             |
| 3        | .535 .561                                 | 1.196 .7                 | 41 532 4                         | 28 .535 .<br>34 .575 .       | 432 .9 38<br>430 .3 40<br>434 .1 40 | 3.8 .9 38.7<br>1.2 .3 40.1                                       | 63.5 55.7 6                     | 3.4 55.6                       |
| 4        | .575 .571<br>.581 .571                    | 1.183 .73<br>1.153 .7    | 1 <b>7 .</b> 580 .4              | 44 .581 .                    | 444 6 38                            | 9 - 6 38 9                                                       | 59.8 51.7 5                     | 9.8 51.7                       |
| 5<br>6   | .571 .583<br>.555 .600                    | 1.107 .69<br>1.061 .69   | 44 554 4                         | 50 .5/1 .                    | 4515 39                             | 9.45 39.4<br>3.6 -1.1 40.6                                       | 58.9 48.8 5<br>58.5 44.9 5      | 8.9 48.8<br>8.5 44.9           |
| 7        | .541 .614                                 | 1.012 .6                 | 07 .540 .4                       | 58 .541 .                    | 459 -1.1 41                         | 17 -11 417                                                       | 57.8 41.0 5                     | 7.7 40.9<br>6.3 37.0           |
| 8<br>9   | 502 643                                   | .877 .4                  | 87 - 498 - 4                     | 20 .501 .                    | 423 2.2 49                          | 7.1 2.2 48.9                                                     | 55.3 30.0 5                     | 5.2 29.8                       |
| 10<br>11 | .427 .683<br>.362 .686                    | .787 .4<br>.765 .4       | 58 .421 .4<br>9 <b>2</b> .356 .4 | 25 .426 .                    | 429 2.8 51                          | 1.4 2.7 51.1<br>7.8 -3.9 47.5                                    | 57.5 20.5 5<br>62.2 19.8 6      | 7.2 20.3<br>51.9 19.6          |
| RP       | TOTAL PRES                                |                          | TAL TEMPERATURE                  | STATIC PRE                   |                                     | DENSITY STATIO                                                   |                                 |                                |
|          | IN QUT<br>16.35 24.90                     | RATIO IN                 | OUT RATE<br>.7 400.0 1.14        | <b>n in</b> nu               | IT IN                               | OUT IN                                                           | OUT IN                          | 00T<br>391.6                   |
| 1 2      | 16.58 25.08                               | 1.513 345                | .3 398.4 1.15                    | 4 13.64 20.                  | 21 1.44535<br>25 1.45511            | 1.88241 326.6                                                    | 374.8 388 <b>.7</b>             | 38 <b>3.9</b>                  |
| 3<br>4   | 16.86 25.18<br>16.82 25.20<br>16.72 25.22 | 1.494 340<br>1.498 337   | .9 386.5 1.14                    | 4 13.39 20.                  | 19 1.47072<br>19 1.47328            | 1.91022 319.3<br>1.93890 316.6                                   | 368.3 371.0<br>362.9 353.4      | 367.8<br>351.7                 |
| 5<br>6   | 16.72 25.22<br>16.56 25.35                | 1.508 336<br>1.530 334   | .1 383.5 1.14<br>.7 382.8 1.14   | 1 13.41 20.                  | 03 1.48021<br>87 1.48506            | 1.93890 316.6<br>1.94316 315.5<br>1.93878 315.3<br>1.93320 315.0 | 359.2 335.8<br>357.1 318.3      | 335.7<br>319.8                 |
| 7        | 16.45 25.36                               | 1.542 333                | .4 381.0 1.14                    | :3    13.48   19.            | 66 1.49116                          | 1.93320 315.0                                                    | 354.4 300. <b>7</b>             | 304.2                          |
| 8<br>9   | 16.46 25.01<br>16.32 24.91                | 1.519 333<br>1.526 334   | .3 382.1 1.14                    | 3 13.75 18.                  | .87 1.50447                         | 1.90442 315.8<br>1.86252 318.3                                   | 353.1 282.7<br>352.9 264.5      | 288.7<br>273.7                 |
| 10<br>11 | 15.84 24.84<br>15.43 24.53                | 1.568 334<br>1.590 335   | .4 384.0 1.1                     | l8 13.97 18.                 | .18 1.50879                         | 1.80293 322.7<br>1.77346 326.6                                   | 351.3 245.5<br>351.7 235.5      | 259.1<br>252.0                 |
| RP       |                                           | IDENCE                   | D                                |                              | COEFFICIENT                         | LOSS PARAME                                                      |                                 | 232.0                          |
|          | SPAN MEAN                                 | I S <b>S</b> DE          | VIA FACTOR                       | FFIC TOT                     | PROF SHOCK                          | TOT PROF                                                         | SHOCK MACH NO                   |                                |
| 1 2      | 5.0 3.1<br>10.0 2.3                       | . 6<br>2                 | 2.6 .408<br>1.9 .437             | .864 .101<br>.814 .142       | .053 .048<br>.099 .043              | .021 .011<br>.030 .021                                           | .010 1.488<br>.009 1.452        |                                |
| 3        | 20.0 1.4<br>30.0 2.0                      | -1.2                     | 1./ .45/                         | .794 .159<br>.348 .116       | .123 .035<br>.084 .032              | .034 .026<br>.024 .018                                           | .007 1.413<br>.007 1.416        |                                |
| 5        | 40.0 3.0                                  | 6                        | 2.7 .458                         | .878 .09 <b>7</b>            | .069 .028                           | .021 .015                                                        | .006 1.424                      |                                |
| 6<br>7   | 50.0 4.3<br>60.0 5.1                      | .2                       | 3.0 .478<br>4.0 .492             | .895 .090<br>.917 .076       | .050 .026                           | .017 .011                                                        | .006 1.454<br>.006 1.480        |                                |
| 8        | 70.0 5.0<br>80.0 4.6                      | 2                        | 6.3 .513<br>6.9 .562             | .906 .091<br>.896 .117       | .076 .015<br>.114 .004              | .020 .017<br>.026 .025                                           | .003 1.436<br>.001 1.342        |                                |
| 10       | 90.0 6.0                                  | ) .6                     | 7.9 .561                         | .922 .108                    | .108 .000                           | .024 .024                                                        | .000 1.300                      |                                |
| 11       | 95.0 9.8                                  | 9 4.4 1                  | 3.7 .504                         | .952 .070                    | .068 .002                           | .015 .015                                                        | .000 1.400                      |                                |



- वर्ध

(g) 100 Percent of design speed; reading 1461

| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9       | IN OUT 23.566 23.223 23.056 22.766 22.001 21.814 20.958 20.856 19.916 19.909 18.877 18.969 17.831 18.039 16.769 17.122 15.684 16.231                         | IN<br>183.0 1<br>193.0 1<br>201.5 1<br>201.2 1<br>196.8 1<br>188.9 1<br>182.0 1<br>175.2 1                    | 169.1 .876<br>167.3 .830<br>168.6 .838<br>169.9 .863<br>167.8 .888<br>161.0 .884<br>151.8 .866<br>142.6 .885                          | IN 184.3 1 194.3 1 195.8 1 196.8 1 189.0 1 182.3 1 175.8 1 162.2 1 162.2                                    | 67.4 .829<br>68.7 .838<br>69.9 .863<br>67.9 .888<br>61.2 .885<br>52.3 .846<br>43.4 .884                                                      | TANG VEL<br>IN OUT<br>5.7 136.5<br>4.9 142.6<br>4.3 144.5<br>1.0 139.8<br>5 142.5<br>-1.6 148.8<br>-7 156.4<br>4.9 168.4                                                  | -22.3 -15.4<br>-19.4 -12.4<br>-13.0 -7.6<br>-6.6 -3.4<br>-7.7 -7<br>4.6 4.8<br>9.7 8.7<br>14.7 12.4                                          | 184.4 219.3<br>194.1 221.1<br>201.9 221.2<br>201.3 219.1<br>196.8 221.7<br>189.0 224.4<br>182.3 224.6<br>175.9 227.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 432.3 306.8<br>429.4 294.9<br>418.0 278.6<br>405.3 270.3<br>389.1 256.9                                                                   |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 10                                                    | 14.559 15.367<br>13.967 14.945                                                                                                                               |                                                                                                               | 149.2 1.093<br>165.6 1.415                                                                                                            | 138.1 1                                                                                                     | 50.8 1.092<br>67.8 1.413                                                                                                                     | -8.7 190.                                                                                                                                                                 | 3 20.8 21.6<br>3 20.0 26.9                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 298.7 165.1<br>272.7 160.8<br>271.2 178.5                                                                                                 |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | ABS HACH NO IN OUT .503 .562 .573 .561 .572 .550 .582 .591 .509 .593 .491 .600 .452 .633 .383 .671 .327 .674                                                 | REL MACH<br>IN<br>1.178<br>1.179<br>1.159<br>1.129<br>1.087<br>1.087<br>1.037<br>.983<br>.916<br>.830<br>.754 | 1 NO AXIAL OUT IN -787 .499 -758 .530 -722 .558 -706 .561 -674 .550 -512 .489 -437 .446 -427 .377 -474 .322                           | 0VT<br>.438<br>.435<br>.4433<br>.440<br>.446<br>.442<br>.425<br>.401<br>.377                                | ERID MACH NO IN OUT .502 .440 .533 .436 .560 .434 .561 .440 .558 .442 .509 .426 .490 .403 .451 .380 .382 .400 .327 .445                      | ABS BETAZ<br>IN OUT<br>1.8 38.6<br>1.5 40.0<br>1.2 40.8<br>.3 39.7<br>1 40.0<br>5 41.6<br>2 44.2<br>1.6 48.0<br>4.7 53.7<br>-4.3 49.0                                     | IN OUT<br>1.8 38.5<br>1.5 39.9<br>1.2 40.8                                                                                                   | IN OUT I<br>64.9 56.1 64<br>63.3 55.0 63<br>61.2 53.1 61<br>60.2 51.4 60<br>59.6 48.6 59<br>59.4 45.4 58<br>57.7 38.3 57<br>57.3 29.8 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EL BETAM<br>N OUT<br>1.8 56.0<br>1.1 54.9<br>1.1 53.1<br>1.2 51.4<br>1.6 48.6<br>1.4 45.4<br>8.8 42.4<br>1.6 38.2<br>1.1 29.7<br>1.6 20.3 |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | 17.16 25.80<br>17.27 25.77<br>17.23 25.74<br>17.11 25.73<br>16.89 25.72<br>16.73 25.33<br>16.68 25.04<br>16.39 25.11<br>15.99 25.03                          | RATIO<br>1.512<br>1.504<br>1.492<br>1.494<br>1.504<br>1.523<br>1.515<br>1.501                                 | TOTAL TEMPER IN OUT 351.9 402.6 349.1 401.1 345.2 340.8 389.2 385.7 336.4 384.1 335.0 382.3 335.3 382.1 335.5 384.0 335.3 385.0 385.6 | RATIO<br>1.144 1<br>1.149 1<br>1.142 1<br>1.141 1<br>1.142 1<br>1.141 1<br>1.140 1                          | TATIC PRESS IN OUT 4.27 20.68 4.14 20.73 3.96 20.62 3.93 20.46 3.97 20.31 4.01 19.67 4.15 19.63 4.24 19.17 4.45 18.52 4.55 18.25             | STATIC DEN<br>IN 01<br>1.48435 1.1<br>1.50227 1.5<br>1.51225 1.1<br>1.52178 1.1<br>1.52763 1.1<br>1.53290 1.1<br>1.54122 1.1<br>1.53973 1.1<br>1.54560 1.1<br>1.54135 1.1 | JT IN<br>90283 334.9<br>91615 330.3<br>93748 323.8<br>96664 320.6<br>977294 318.9<br>977093 318.6<br>94780 318.5<br>91829 319.9<br>97829 323 | OUT IN 786.7 396.7 388.0 388.0 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 386.5 | PEED<br>OUT<br>1990.9<br>1893.2<br>1867.2<br>1851.0<br>1819.3<br>1819.3<br>1803.6<br>1888.2<br>1873.2                                     |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | PERCENT INC<br>SPAN HEAN<br>5.0 2.8<br>10.0 2.0<br>20.0 1.6<br>30.0 2.5<br>40.0 3.7<br>50.0 5.2<br>60.0 6.2<br>70.0 6.3<br>80.0 6.5<br>90.0 8.4<br>95.0 11.7 | .3<br>5<br>-1.0<br>6<br>.1<br>1.0<br>1.5<br>1.2                                                               | DEVIA FACTO<br>1.8 .41<br>1.2 .4<br>1.3 .4<br>2.1 .4<br>2.5 .4<br>3.5 .4<br>3.5 .5<br>5.5 .5<br>7.4 .5<br>6.8 .6<br>8.0 .5<br>14.1 .5 | 04 .865<br>81 .825<br>52 .812<br>19 .852<br>69 .876<br>80 .896<br>10 .887<br>18 .877<br>104 .893<br>36 .919 | LOSS COEF<br>TOT PRO<br>.100 .05<br>.133 .09<br>.146 .11<br>.115 .08<br>.100 .07<br>.090 .08<br>.106 .08<br>.126 .11<br>.131 .13<br>.120 .12 | 6 .037<br>5 .030<br>5 .029<br>3 .028<br>3 .028<br>1 .024<br>6 .010                                                                                                        | .028 .021 .0<br>.031 .025 .0<br>.024 .018 .0<br>.021 .016 .0<br>.019 .014 .0<br>.023 .017 .0<br>.027 .025 .0<br>.029 .029 .0                 | R PEAK SS<br>CK HACH NO<br>109 1.466<br>108 1.428<br>107 1.400<br>106 1.413<br>106 1.472<br>105 1.487<br>100 1.324<br>100 1.306<br>100 1.421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                           |

(h) 90 Percent of design speed; reading 1310

|                                                       |                                                                                                                                   |                                                                                                                                        |                                                                                              |                                                                                                     | ( )                                                                                                      |                                                                                                   | - 81                                                                                                                                      | .,                                                                                         |                                                                                     |                                                                                                                                              |                                                                              |                                                                                                              |                                                                                                                                                         |                                           |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| RP<br>1<br>2<br>3<br>4<br>5<br>6                      | RADII<br>IN 0U<br>23.566 23.22<br>23.050 22.7<br>22.001 21.8<br>20.958 20.8<br>19.916 19.9<br>18.877 18.9                         | T !N 23 163.0 66 176.9 14 190.2 56 192.1 09 190.9                                                                                      | 151.0<br>163.2<br>172.8<br>175.5<br>176.8                                                    | ATIO<br>.926 1<br>.922 1<br>.909 1<br>.914 1                                                        | 64.2 1: 77.8 1: 90.6 1: 92.2 1                                                                           | DUT<br>51.6<br>63.6<br>73.0<br>75.5<br>76.8                                                       | RATIC                                                                                                                                     | 6.8<br>5.5<br>2.1<br>-4.0<br>-2.2                                                          | 0UT<br>71.6                                                                         | -19.9<br>-17.8<br>-12.3<br>-6.3                                                                                                              | DUT I<br>13.6 16<br>12.0 17<br>-7.9 19<br>-3.6 19                            | ABS VEL<br>N 09<br>14.3 167<br>7.9 180<br>0.6 190<br>2.3 190<br>0.9 193<br>18.7 201                          | IT IN 387.2<br>1.8 387.3<br>1.0 382.4<br>1.2 375.4<br>3.9 359.3                                                                                         | 306.0<br>300.0<br>3284.1                  |
| 7<br>8<br>9<br>10<br>11                               | 17.831 18.0<br>16.769 17.1<br>15.684 16.2<br>14.559 15.3<br>13.967 14.9                                                           | 39 187.5<br>22 189.3<br>31 188.4<br>67 167.0                                                                                           | 190.8 1<br>201.2 1<br>208.6 1<br>212.5 1                                                     | .018 1<br>.063 1<br>.107 1                                                                          | 187.8 1<br>189.9 2<br>189.7 2<br>168.9 2                                                                 | 91.1<br>01.8<br>09.9<br>14.7                                                                      | 1.018<br>1.063<br>1.107<br>1.271<br>1.508                                                                                                 | -3.7<br>-1.5<br>4.0<br>3.0<br>-6.4                                                         | 101.4<br>114.8<br>139.8<br>157.1                                                    | 10.0<br>15.9<br>22.0<br>25.4                                                                                                                 | 10.3 18<br>16.4 19<br>23.3 18<br>30.7 16                                     | 37.8 216<br>20.0 233<br>39.7 252<br>38.9 266<br>12.2 266                                                     | 3.3 332.4<br>2.2 318.2<br>2.2 301.3<br>3.1 275.6                                                                                                        | 1 257.3<br>7 248.5<br>2 235.3<br>5 227.8  |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | ABS MACH N<br>IN OU<br>.457 .4<br>.499 .4<br>.541 .5<br>.548 .5<br>.544 .5<br>.538 .5<br>.535 .5<br>.531 .6<br>.539 .6<br>.477 .7 | IN<br>51 1.078<br>89 1.087<br>108 1.085<br>21 1.068<br>32 1.024<br>53 .985<br>95 .947<br>40 .908<br>95 .856<br>34 .778                 |                                                                                              | .454<br>.496                                                                                        | CH NO M<br>OUT .406<br>.441<br>.471<br>.481<br>.485<br>.496<br>.525<br>.554<br>.575<br>.587              | ERID 1<br>IN -457<br>-499<br>-541<br>-547<br>-544<br>-538<br>-535<br>-541<br>-539<br>-477<br>-398 | .443<br>.472<br>.481<br>.485<br>.496<br>.525<br>.556<br>.579                                                                              | ABS BE IN 2.4 1.8 .6 -1.27 -1.0 -1.15 1.2 1.0 -2.6                                         | OUT<br>25.4<br>25.2<br>24.5<br>22.6<br>24.3<br>26.2<br>28.0<br>29.7<br>33.8<br>36.5 | ABS BETAM<br>IN OUT<br>2.4 25.<br>1.8 25.<br>6 24.<br>-1.2 22.<br>-7 24.<br>-1.0 26.<br>-1.1 27.<br>-5 29.<br>1.2 33.<br>1.0 36.<br>-2.6 36. | 1N<br>65.1<br>2 62.8<br>60.2<br>3 59.2<br>3 56.9<br>9 55.6<br>53.5<br>2 52.5 | DUT<br>61.7<br>58.7<br>55.6<br>54.2<br>51.5<br>47.7<br>42.1                                                  | REL BETAM<br>IN OUT<br>64.9 61.<br>62.7 58.<br>60.1 55.<br>59.2 54.<br>57.9 51.<br>56.9 47.<br>55.6 42.<br>53.4 35.<br>51.0 26.<br>52.2 19.<br>57.0 17. | 6<br>6<br>2<br>5<br>7<br>0<br>7<br>9<br>5 |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | IN OU 14.53 17. 14.79 17. 15.01 18. 15.01 18. 14.97 18. 14.92 18. 14.90 19.                                                       | 36 1.194<br>88 1.208<br>24 1.214<br>39 1.225<br>52 1.237<br>73 1.255<br>33 1.297<br>92 1.323<br>50 1.351<br>70 1.385                   | IN<br>334.6<br>331.7<br>327.3<br>325.1<br>324.2<br>324.0<br>323.9<br>324.8<br>325.8<br>326.1 | 357.3 1<br>356.3 1<br>352.5 1<br>349.4 1<br>348.9 1<br>350.4 1<br>352.5 1<br>354.9 1                | ATIO<br>.068 1<br>.074 1<br>.077 1<br>.075 1<br>.076 1<br>.082 1<br>.088 1<br>.093 1<br>.102 1<br>.110 1 | IN<br>2.59<br>2.48<br>2.31<br>2.24<br>2.23<br>2.25<br>2.26<br>2.34<br>2.45<br>2.79                | PRESS<br>BUT<br>15.09<br>15.18<br>15.18<br>15.28<br>15.27<br>15.21<br>15.22<br>15.31<br>14.84<br>14.46<br>14.13                           | IN<br>1.36589<br>1.37602<br>1.38679<br>1.39263<br>1.39263<br>1.39394<br>1.39473<br>1.40898 | 1.6049<br>1.6103<br>1.6063<br>1.5793                                                | IN<br>60 321.<br>47 315.<br>49 309.<br>18 306.<br>92 306.<br>83 306.<br>29 306.<br>35 306.<br>24 307.                                        | 3 330.2<br>3 329.2                                                           | 349.7<br>333.8<br>318.0<br>302.2<br>286.4                                                                    | DUT<br>352.3<br>345.4<br>331.0<br>316.4<br>302.1<br>287.8<br>273.7<br>259.8<br>246.3<br>233.2                                                           |                                           |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | SPAN M<br>5.0<br>10.0<br>20.0<br>30.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0                                             | INCIDENCE<br>EAN SS<br>2.9 .4<br>1.5 -1.0<br>.6 -2.0<br>1.4 -1.6<br>2.0 -1.6<br>2.7 -1.4<br>3.0 -1.7<br>2.1 -3.0<br>1.0 -4.4<br>4.7 -5 | 7.5<br>5.0<br>3.8<br>4.9<br>5.5<br>5.8<br>5.1<br>4.0<br>7.1                                  | D<br>FACTOR<br>.239<br>.257<br>.271<br>.270<br>.283<br>.305<br>.318<br>.322<br>.337<br>.312<br>.286 | EFFIC<br>.766<br>.750<br>.740<br>.796<br>.824<br>.821<br>.871<br>.897<br>.897                            | TO<br>.0<br>.1<br>.1<br>.0<br>.0<br>.1<br>.0                                                      | OSS COEF<br>T PRO<br>97 .07<br>11 .09<br>21 .10<br>95 .08<br>88 .07<br>01 .09<br>63 .07<br>74 .07<br>74 .07<br>07 .10<br>20 .12<br>29 .12 | F SHOCK<br>5 .022<br>5 .017<br>7 .013<br>1 .014<br>7 .016<br>7 .006<br>7 .006<br>0 .006    | 7 .01<br>7 .02<br>8 .02<br>4 .01<br>2 .01<br>0 .02<br>5 .01<br>0 .02                | 7 .013<br>2 .018<br>4 .022<br>9 .016<br>8 .015<br>1 .019<br>7 .016<br>4 .024<br>7 .027                                                       | SHOCK 1 .004 .003 .003 .002 .002 .001 .000 .000                              | PEAK SS<br>MACH NO<br>1.399<br>1.344<br>1.311<br>1.335<br>1.343<br>1.357<br>1.357<br>1.374<br>1.187<br>1.155 |                                                                                                                                                         |                                           |

(i) 90 Percent of design speed; reading 1321

| RP            | RADII<br>IN QUT                     | AXIAL VELO                                |                                           | OIDWAL VELOCITY                           |                          | RADIAŁ VEL                                         | ABS VEL                                         | REL VEL                            |
|---------------|-------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------|----------------------------------------------------|-------------------------------------------------|------------------------------------|
| 1 2           | 23.566 23.223<br>23.050 22.766      | IN OUT<br>161.6 147.0<br>171.6 152.0      | RATIO IN<br>.909 162.8<br>.886 172.4      |                                           | 10.9 115.2               |                                                    | IN OUT<br>163.2 187.2<br>172.6 192.2            | IN DUT<br>383.4 279.<br>383.2 274. |
| 3             | 22.001 21.814<br>20.958 20.856      | 180.4 155.5<br>181.0 158.1                | .862 180.8<br>.873 181.1                  | 3 155.7 .861                              | 4.9 119.1                | -11.6 -7.1                                         | 180.9 196.0<br>181.2 194.8                      | 375.6 263.<br>368.7 257.           |
| 5<br>6        | 19.916 19.909<br>18.877 18.969      | 178.5 160.1<br>174.6 162.4                | .897 178.5<br>.930 174.7                  | 6 160.1 .897<br>7 162.5 .930              | -2.1 117.9<br>-2.8 123.9 | 7 .7<br>4.3 4.7                                    | 178.5 198.8<br>174.7 204.3                      | 353.0 244.<br>338.1 231.           |
| 7<br>8        | 17.831 18.039<br>16.769 17.122      | 173.3 167.1<br>174.7 166.4                | .964 173.6<br>.952 175.3                  | 3 166.9 .952                              | 2.0 139.0                | 14.6 13.6                                          | 173.6 211.1<br>175.3 217.2                      | 323.2 221.<br>307.6 206.           |
| 9<br>10       | 15.684 16.231<br>14.559 15.367      | 169.7 159.5<br>146.2 163.4                |                                           | 165.1 1.117                               | 6.9 173.9                | 22.2 23.6                                          | 171.0 226.2<br>148.0 239.8                      | 286.2 182.<br>260.4 175.           |
| 11<br>RP      | 13.967 14.945<br>ABS MACH ND        | 122.9 172.6<br>REL MACH NO                | 1.404 124.7<br>AXIAL MACH NO              |                                           |                          |                                                    | 124.8 242.7<br>EL BETAZ REL                     | 250.3 184.<br>BETAM                |
| 1             | IN DUT<br>.451 .494                 | IN DUT<br>1.060 .738                      | IN DUT<br>.447 .388                       | IN OUT                                    | IN BUT                   | IN DUT                                             | IN DUT IN<br>5.0 58.3 64.9                      | 0UT                                |
| 2<br>3        | .480 .509<br>.509 .523              | 1.066 .727<br>1.056 .703                  | .477 .401<br>.507 .415                    | .480 .40                                  | 3 2.6 37.6               | 2.6 37.6 63                                        | 3.4 56.4 63.1<br>1.3 53.8 61.2                  | 3 56.3                             |
| <b>4</b><br>5 | .512 .523<br>.505 .536              | 1.042 .690<br>.999 .658                   | .512 .424<br>.505 .431                    | .505 .43                                  | 17 36.4                  | 7 36.4 5                                           | 0.6 52.1 60.6<br>9.6 49.1 59.6                  | 49.1                               |
| 6<br>7        | .494 .552<br>.491 .572              | .957 .624<br>.914 .600                    | .494 .439<br>.490 .453                    | .491 .45                                  | 36 37.6                  | 6 37.5 5                                           | 8.9 45.3 58.9<br>7.5 41.0 57.5                  | 5 41.0                             |
| 9<br>9<br>10  | .496 .589<br>.483 .613<br>.415 .651 | .869 .559<br>.808 .495<br>.730 .477       | .494 .451<br>.479 .433<br>.410 .444       | .482 .43                                  | 5 2.9 45.0               | 2.9 44.8 53                                        | 5.3 36.0 55.3<br>3.5 28.6 53.3<br>5.7 20.0 55.4 | 3 28 <b>.5</b>                     |
| 11            | .348 .659                           | .698 .501                                 | .342 .469                                 |                                           |                          |                                                    | 0.5 18.8 60.1                                   |                                    |
| RP            | TOTAL PRES                          | SURE TOTA<br>RATIO IN                     | L TEMPERATURE<br>OUT RATIO                | STATIC PRESS                              | טם או                    | T IN DI                                            | JO NI TL                                        |                                    |
| 1 2           | 15.29 21.11                         | 1.379 338.6<br>1.381 336.2                | 373.7 1.112                               | 13.15 17.65<br>13.06 17.69                | 1.41565 1.7              |                                                    | 5.3 350.1 345                                   | 5.8                                |
| 3             | 15.39 21.26                         | 1.376 330.8<br>1.381 327.7                | 364.4 1.112                               | 12.91 17.59<br>12.87 17.65                | 1.44030 1.7              |                                                    | 5.6 318.3 316                                   | 5.8                                |
| 5<br>6<br>7   | 15.23 21.45                         | 1.392 326.3<br>1.409 325.7<br>1.420 325.9 | 362.3 1.111<br>362.0 1.111<br>361.4 1.109 | 12.87 17.54<br>12.88 17.44<br>12.90 17.31 | 1.44546 1.7              | 8072 310.4 34:<br>8072 310.5 34:<br>7744 310.9 33: | 1.3 286.7 288                                   | 3.1                                |
| 8<br>9        | 15.34 21.69                         | 1.414 326.6<br>1.402 326.9                | 362.1 1.109<br>363.9 1.113                | 12.97 17.15<br>13.09 16.69                | 1.45180 1.7              | 6512 311.3 331<br>1812 312.3 331                   | 3.6 254.7 260                                   | 1.1                                |
| 10<br>11      | 14.98 21.69                         | 1.448 327.4<br>1.476 328.0                | 366.3 1.119                               | 13.30 16.31<br>13.40 16.07                | 1.46437 1.6              | 8323 316.5 33<br>5771 320.3 33                     | 7.7 221.1 233                                   |                                    |
| RP            |                                     | IDENCE                                    | D                                         |                                           | EFFICIENT                | LOSS PARAMETER                                     | PEAK SS                                         |                                    |
| 1 2           | 5PAN MEAN<br>5.0 2.9<br>10.0 2.1    | SS DEVI.<br>.4 4.<br>4 2.                 | 0 .373 .8                                 | 87 .074 .                                 | 054 .019 .               | OT PROF SHOCK<br>015 .011 .004<br>019 .016 .33     | 1.387                                           |                                    |
| 3             | 20.0 1.7<br>30.0 2.8                | 9 2.                                      | <b>0 .</b> 407 .8                         | 38 .112 .                                 | 098 .013 .               | 023 .021 .003<br>020 .017 .003                     | 3 1.333                                         |                                    |
| 5             | 40.0 3.7<br>50.0 4.7                |                                           | 0.418.8                                   |                                           | 063 .015 .<br>052 .011 . | 017 .013 .003<br>014 .u11 .003                     | 3 1.396                                         |                                    |
| 7<br>8        | 60.0 4.9<br>70.0 4.0                | .2 4.<br>-1.2 5.                          | 2 .453 .9                                 | 55 .040 .                                 | 039 .001 .               | 006 .005 .001<br>009 .009 .000                     | 1.275                                           |                                    |
| 9<br>10       | 80.0 2.8<br>90.0 4.2                |                                           | 5 .485 .9                                 | 37 .080 .                                 | 080 .000 .               | 025 .025 .000<br>018 .018 .000<br>004 .004 .001    | 1.162                                           |                                    |
| 11            | 95.0 7.8                            | 2.6 12.                                   | 7 .428 .9                                 | 86 .020 .                                 | 020 .000 .               | 004 .004 .001                                      | . 1.227                                         |                                    |

(j) 90 Percent of design speed; reading 1332

| RP 1 2 3 4 5 6 7 8 9 10 11                            | RADII IN OUT 23.566 23.223 23.050 22.766 22.001 21.814 20.958 20.856 19.916 19.909 18.877 18.969 17.831 18.039 16.769 17.122 15.684 16.231 14.559 15.367 13.967 14.945 | AXIAL VELOU<br>IN OUT<br>163.8 151.2<br>169.0 151.5<br>170.9 147.4<br>166.9 147.6<br>160.5 149.9<br>156.3 148.2<br>158.0 144.4<br>155.9 138.9<br>142.5 132.6<br>121.1 144.2<br>105.0 161.0 | RATIO IN .923 165897 169862 171884 167934 160948 156914 158891 156931 143.                            | OUT RATIO 151.8 .920 152.0 .894 2 147.5 .862 0 147.6 .884 5 149.9 .934 3 148.3 .948 2 144.6 .914 4 139.3 .891 4 133.4 .930 5 145.7 1.189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TANG VEL IN OUT 11.4 117.8 7.5 119.0 9.3 129.1 -1.0 126.4 -2.3 129.5 -2.5 133.4 3.3 139.5 7.7 151.0 16.0 174.8 5.8 181.0 -13.9 168.6 | RADIAL VEL<br>IN OUT<br>-20.0 -13.6<br>-17.0 -11.1<br>-11.0 -6.7<br>-5.5 -3.0<br>6 .7<br>3.8 4.3<br>8.4 7.8<br>13.1 11.3<br>16.6 14.8<br>18.4 20.8<br>17.9 26.2                  | ABS VEL IN 0UT 165.4 192.2 170.1 193.0 171.5 196.0 167.0 194.3 160.5 198.1 156.3 199.5 158.2 200.9 156.6 205.5 144.3 219.9 122.7 232.4 107.4 234.6          | REL VEL IN 0UT 383.9 279.8 382.5 273.0 367.3 250.3 360.4 240.5 228.8 328.7 214.3 310.8 197.5 292.4 177.5 292.4 177.5 247.8 154.8 249.9 173.3 |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9       | ABS MACH NO IN OUT .453 .503 .469 .506 .477 .518 .468 .517 .451 .530 .439 .535 .444 .540 .439 .552 .404 .593 .342 .627 .298 .633                                       | REL MACH ND IN OUT 1.052 .732 1.054 .716 1.023 .662 1.011 .641 .968 .612 .924 .574 .873 .530 .820 .476 .741 .408 .691 .418 .694 .468                                                       | .449 .39<br>.466 .39<br>.476 .39<br>.468 .39<br>.451 .40<br>.439 .39<br>.444 .38<br>.437 .37          | IN OUT 6 .452 .397 8 .468 .399 0 .477 .390 3 .468 .393 1 .451 .401 7 .439 .397 8 .444 .388 3 .439 .375 7 .402 .360 9 .342 .393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IN OUT 4.0 37.9 2.5 38.1 3.1 41.23 40.68 40.89 42.0 1.2 44.0 2.8 47.4 6.4 52.8 2.7 51.5                                              | 1N OUT 3.9 37.8 64 2.5 38.1 62 3.1 41.2 668 40.8 669 42.0 6 1.2 44.0 5 2.8 47.3 5 6.4 52.7 5 2.7 51.2 6                                                                          | IN OUT IN 4.7 57.2 64.5 3.7 56.2 63.6 2.3 53.9 62.2 2.4 52.2 62.4 2.2 49.1 62.2 1.6 46.2 61.6 9.4 43.0 59.4 7.8 38.2 57.7 7.8 38.2 57.7                     | 57.1<br>556.2<br>53.9<br>4 52.2<br>2 49.1<br>5 46.2<br>4 42.9<br>7 38.1<br>2 28.3                                                            |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | 15.77 22.05<br>15.73 22.01<br>15.63 22.05<br>15.47 22.07<br>15.36 22.03<br>15.45 21.78                                                                                 | RATIO IN<br>1.398 344.7<br>1.399 341.9<br>1.399 335.6<br>1.411 330.3<br>1.426 328.0<br>1.434 327.3<br>1.410 328.0<br>1.404 328.4<br>1.435 327.8<br>1.468 327.6                             | 375.1 1.118<br>370.5 1.122<br>367.6 1.121<br>366.2 1.115<br>365.1 1.113<br>365.5 1.113<br>366.8 1.115 | IN OUT 13.64 18.47 13.56 18.51 13.46 18.33 13.45 18.38 13.46 18.23 13.46 18.13 13.49 17.86 13.58 17.69 13.62 17.25 13.79 16.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.43500 1.76<br>1.44315 1.76<br>1.46092 1.76<br>1.48105 1.86<br>1.48793 1.86<br>1.48774 1.86<br>1.48957 1.86                         | T IN 0<br>6969 331.1 36<br>8343 327.5 36<br>9350 321.0 35<br>2070 316.4 35<br>2446 315.1 34<br>2375 315.1 34<br>0365 315.5 34<br>8879 316.2 34<br>5279 317.4 34<br>1721 320.1 34 | UT 1N 01 3.6 358.0 35: 1.7 350.1 34: 6.0 334.2 33 1.7 318.3 31: 8.1 302.5 30: 6.4 286.7 28 5.1 270.9 27 4.5 254.7 26 4.5 254.7 26 2.8 238.2 24 1.5 221.2 23 | UT<br>2.8<br>5.8<br>6.8<br>6.8<br>2.4<br>8.1<br>4.0<br>0.1<br>6.5                                                                            |
| RP<br>1 2 3 4 5 6 7 8 9 1 0 1 1 1                     | PERCENT INC<br>SPAN MEAN<br>5.0 2.6<br>10.0 2.5<br>20.0 2.7<br>30.0 4.7<br>40.0 6.3<br>50.0 7.4<br>60.0 6.8<br>70.0 6.4<br>80.0 6.6<br>90.0 9.2<br>95.0 12.5           | .1 3.<br>0 2.<br>.1 2.<br>1.6 2.<br>3 2.7 3.<br>3 3.3 4.<br>3 2.1 6.<br>1 1.2 7.<br>5 1.1 5.                                                                                               | 0 .375<br>5 .394<br>1 .434<br>9 .451<br>0 .459<br>3 .475<br>0 .493<br>3 .531<br>4 .585<br>4 .550      | F1C TOT PF 926 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 .0 .049 | ROF SHOCK T                                                                                                                          | LOSS PARAMETER OT PROF SHOC 010 .007 .00 015 .012 .00 023 .020 .00 021 .017 .00 017 .015 .00 018 .017 .00 022 .022 .00 025 .022 .00 025 .023 .00 019 .019 .00                    | 3 1.372<br>3 1.358<br>3 1.353<br>4 1.423<br>4 1.429<br>2 1.420<br>1 1.340<br>0 1.270<br>0 1.183<br>0 1.216                                                  |                                                                                                                                              |



(k) 80 Percent of design speed; reading 1347

|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |                                                                                                                |                                                                                              |                                                                                            | (, -                                                                                                  |                                                                                              | . 02 00018                                                                                                    | Specu, rec                                                                         |                                                                                                     | •                                                                                 |                                                                             |                                                                                      |                                                                                                              |                                                                                                  |                                                                               |                                                                                  |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| RP 1 2 3 4 5 6 7 8 9 10 11                            | RADII<br>IN C<br>23.566 23.<br>23.050 22.<br>22.001 21.<br>20.958 20.<br>19.916 19.<br>18.877 18.<br>17.831 18.<br>16.769 17.<br>15.684 16.<br>14.559 15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DUT<br>.223<br>.766<br>.814<br>.856<br>.909<br>.969<br>.039<br>.122<br>.231               | IN<br>144.1<br>156.6<br>167.3<br>169.6<br>171.0<br>170.8<br>172.6<br>177.2<br>179.5                            | 141.0<br>152.9<br>163.7<br>166.3<br>169.9<br>177.3<br>187.4<br>196.0<br>207.3<br>212.2       | RATIO<br>.978<br>.976<br>.979<br>.981<br>.994<br>1.038<br>1.086<br>1.106                   | 167.6<br>169.7<br>171.0<br>170.9<br>172.9<br>177.9<br>180.7                                           | OUT<br>141.6<br>153.3<br>163.9<br>166.3<br>169.9<br>177.3<br>187.7<br>196.6<br>208.6         | LOCITY<br>RATIO<br>.975<br>.974<br>.978<br>.980<br>.994<br>1.038<br>1.086<br>1.105<br>1.154<br>1.308<br>1.449 |                                                                                    | VEL<br>0UT<br>36.6<br>38.9<br>39.4<br>41.1<br>51.3<br>637.0<br>90.6<br>111.4<br>126.1<br>133.5      | RAE<br>IN<br>-17.<br>-15.<br>-10.<br>-5.<br>-14.<br>21.<br>24.<br>23.             | 8 -11.<br>8 -7.<br>6 -3.<br>6 .<br>2 5.<br>2 10.<br>9 16.<br>0 23.<br>7 30. | 7 14<br>2 15<br>5 16<br>4 16<br>7 17<br>1 17<br>2 17<br>0 17<br>1 18<br>7 16         | 5.2 14<br>7.4 15<br>7.9 16<br>9.9 17<br>1.1 17<br>1.0 18<br>2.9 20<br>7.9 21                                 | UT 156.2 34488.2 358.6 341.3 33.7.5 322.9 29.6.5 28.6 27.8 25.8                                  | 8.8 3<br>0.5 3<br>7.8 3<br>6.8 2<br>6.8 2<br>0.4 2<br>9.4 2<br>9.3 2<br>9.7 2 | L<br>0UT<br>10.2<br>08.4<br>02.5<br>91.7<br>75.4<br>61.2<br>50.5<br>41.3<br>29.1 |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | .410<br>.448<br>.482<br>.489<br>.492<br>.492<br>.497<br>.511<br>.519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NO<br>JUT<br>.406<br>.441<br>.473<br>.482<br>.499<br>.529<br>.570<br>.608<br>.665<br>.701 | REL MAC<br>IN .985<br>.996<br>.998<br>.969<br>.928<br>.893<br>.861<br>.831<br>.801                             | CH NO<br>OUT<br>.861<br>.859<br>.849<br>.821<br>.775<br>.734<br>.704<br>.678<br>.660<br>.645 | AXIAL M<br>IN .407<br>.445<br>.485<br>.492<br>.491<br>.497<br>.509<br>.516<br>.463<br>.388 | ACH NO<br>OUT<br>.391<br>.426<br>.459<br>.468<br>.478<br>.498<br>.527<br>.551<br>.583<br>.598<br>.555 | MERID<br>IN .410<br>.448<br>.481<br>.482<br>.492<br>.491<br>.491<br>.511<br>.519<br>.468     | .427<br>.460<br>.468<br>.479<br>.528<br>.552<br>.552<br>.587                                                  | -1.0<br>-2.9<br>-3.0<br>-1.8<br>-1.7<br>-1.5                                       | ETAZ<br>OUT<br>14.6<br>14.3<br>13.5<br>13.9<br>16.8<br>19.7<br>22.3<br>24.8<br>28.3<br>30.7<br>33.9 | -1.0<br>-2.9<br>-3.0<br>-1.8<br>-1.7                                              | 0UT<br>14.5<br>14.3<br>13.5<br>13.9<br>16.8<br>19.7<br>22.3<br>24.7<br>28.1 | ELN 6<br>63.4<br>63.4<br>59.0<br>63.5<br>55.2<br>8<br>55.2<br>8<br>55.2<br>8<br>55.2 | OUT                                                                                                          | 65.4 6<br>63.3 5<br>61.2 5<br>59.7 5<br>58.0 5<br>56.6 4<br>54.7 4<br>52.1 3<br>49.6 2<br>50.3 2 | UT                                                                            |                                                                                  |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | IN (13.27 1-13.47 1-13.61 1-13.64 1-13.62 1-13.68 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13.86 1-13 | 4.46 1<br>4.84 1<br>5.22 1<br>5.37 1<br>5.58 1<br>5.95 1<br>6.41 1<br>6.00 1<br>7.29 1    | RE<br>RATIO<br>- 089<br>- 101<br>- 119<br>- 130<br>- 142<br>- 171<br>- 200<br>- 218<br>- 232<br>- 282<br>- 282 | IN<br>322.3<br>320.1<br>316.2<br>315.2<br>315.4<br>315.4<br>317.1<br>317.8<br>318.3          | 333.7<br>332.8<br>330.3<br>329.1<br>330.1<br>332.9<br>335.3<br>338.4<br>342.3              | RATIO<br>1.035<br>1.040<br>1.044<br>1.044<br>1.048<br>1.055<br>1.062<br>1.067<br>1.077                | 13<br>11.92<br>11.74<br>11.61<br>11.56<br>11.56<br>11.54<br>11.55<br>11.60<br>11.68<br>11.99 | 13.06<br>13.11<br>13.14<br>13.18                                                                              | IN<br>1.3209<br>1.3293<br>1.3387<br>1.3402<br>1.3367<br>1.3482<br>1.3490<br>1.3696 | 3 1.3<br>2 1.4<br>4 1.4<br>9 1.4<br>7 1.4<br>6 1.4<br>80 1.4<br>19 1.4                              | T<br>9221<br>1185<br>3943<br>5263<br>5564<br>5623<br>5681<br>5397<br>2337<br>2868 | 307.7<br>302.2<br>300.8<br>300.4<br>300.9<br>300.7<br>301.3                 | TEMP 0UT 323.0 320.4 316.1 314.5 314.4 315.2 314.4 315.2 314.4 313.7 317.9           | WHEEL<br>IN<br>317.3<br>310.3<br>296.2<br>282.1<br>268.1<br>254.1<br>249.1<br>221.8<br>211.2                 | 306.5<br>293.7<br>280.8<br>268.0<br>255.4<br>242.9<br>3 230.5<br>218.5<br>206.9                  |                                                                               |                                                                                  |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | PERCENT<br>SPAN<br>5.0<br>10.0<br>20.0<br>30.0<br>40.0<br>50.0<br>60.0<br>70.0<br>90.0<br>95.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | INCIE<br>MEAN<br>3.4<br>2.2<br>1.7<br>2.0<br>2.0<br>2.4<br>2.1<br>.8<br>-1.0<br>9         | DENCE<br>SS<br>.9<br>-1.0<br>-1.5<br>-1.7<br>-2.6<br>-4.4<br>-6.5<br>-6.3<br>-2.7                              | DEVIA<br>8.7<br>6.5<br>5.4<br>6.0<br>5.9<br>5.3<br>4.6<br>4.7<br>4.3<br>8.3                  | .150<br>.164<br>.173<br>.184<br>.203<br>.227<br>.242<br>.255<br>.264                       | 0 .70<br>4 .70<br>7 .73<br>4 .80<br>3 .80<br>7 .83<br>7 .85<br>.85<br>.86<br>4 .79                    | C T(1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                  | 065 .0<br>073 .0<br>076 .0<br>077 .0<br>085 .0<br>147 .1                                                      | OF SHOO<br>64 .01<br>75 .00<br>76 .00<br>60 .00<br>71 .00                          | 11                                                                                                  | 013<br>015<br>016<br>012<br>014<br>016<br>017<br>019<br>034<br>022                | .011<br>.014<br>.015<br>.012<br>.014<br>.016<br>.017<br>.019<br>.034        | HOCK F<br>.002<br>.001<br>.001<br>.000<br>.000<br>.000<br>.000                       | PEAK SS<br>MACH NO<br>1.363<br>1.323<br>1.308<br>1.244<br>1.219<br>1.185<br>1.127<br>1.071<br>1.040<br>1.085 |                                                                                                  |                                                                               |                                                                                  |

(m) 80 Percent of design speed; reading 1369

| RADII                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            |                                                                                                                      | ABS VEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | REL VEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IN OUT 23.566 23.223 23.050 22.766 22.001 21.814 20.958 20.856 19.916 19.909 18.877 18.969 17.831 18.039 16.769 17.122 15.684 16.231 14.559 15.367 13.967 14.945 | 136.8 128.2<br>136.0 128.1<br>133.3 126.3<br>132.1 126.3<br>132.6 127.3<br>134.5 130.1<br>138.7 131.3<br>138.6 128.8<br>128.1 124.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .937<br>.942<br>.953<br>.956<br>.960<br>.967<br>.947<br>.947<br>.929<br>.975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 137.8 128.<br>136.7 128.<br>133.5 127.<br>132.2 126.<br>132.6 127.<br>134.5 130.<br>138.9 131.<br>139.1 129.<br>129.0 125.<br>108.5 133.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7 .934<br>4 .939<br>1 .952<br>3 .955<br>3 .960<br>1 .967<br>5 .947<br>3 .929<br>7 .975<br>3 1.228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.5 1<br>.9 1<br>4.4 1<br>.5 1<br>.9 1<br>-1.4 1<br>1.9 1<br>7.9 1<br>14.1 1<br>7.0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 05.3 -1<br>05.0 -1<br>13.4 -<br>14.0 -<br>17.0<br>16.6<br>19.9<br>30.7 1<br>51.7 1<br>60.6 1               | 6.7 -11.6<br>3.7 -9.4<br>8.6 -5.8<br>4.3 -2.6<br>5 .6<br>3.3 3.7<br>7.4 7.1<br>10.5<br>5.0 13.9<br>19.1              | IN QUT<br>137.9 166.3<br>136.7 165.9<br>133.6 170.3<br>132.2 170.2<br>132.6 172.9<br>134.5 174.7<br>138.9 177.9<br>139.4 183.8<br>129.8 197.1<br>108.8 208.7<br>92.7 209.1                                                                                                                                                                                                                                                                                              | IN 0UT 340.6 243. 337.9 238. 320.6 220. 310.9 208. 298.0 197. 288.6 190. 275.4 179. 258.3 142. 217.8 141. 218.1 153.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ABS MACH NO                                                                                                                                                      | REL MACH NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BETAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 383 .443<br>.380 .443<br>.374 .458<br>.372 .460<br>.374 .470<br>.381 .477<br>.393 .487<br>.395 .504<br>.367 .541<br>.307 .574<br>.260 .575                       | .945 .656<br>.940 .637<br>.896 .592<br>.874 .565<br>.841 .536<br>.817 .519<br>.780 .492<br>.731 .447<br>.665 .391<br>.614 .388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .379<br>.378<br>.373<br>.372<br>.374<br>.381<br>.393<br>.393<br>.362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .342 .3<br>.342 .3<br>.341 .3<br>.346 .3<br>.355 .3<br>.359 .3<br>.359 .3<br>.343 .3<br>.343 .3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 82 .343<br>80 .343<br>73 .341<br>72 .341<br>74 .346<br>81 .355<br>93 .360<br>94 .354<br>65 .345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.3 3<br>.4 3<br>1.9 4<br>.2 4<br>.4 4<br>.5 4<br>3.2 4<br>6.3 5<br>3.7 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.4 2.<br>9.3 .<br>1.8 1.<br>2.1 .<br>2.6 .<br>11.9 -<br>2.2.4 .<br>3.0.5 6.<br>0.6 3.                     | 3 39.3 6<br>4 39.3 6<br>9 41.8 6<br>9 42.1 6<br>6 41.9 6<br>6 41.9 6<br>8 42.4 5<br>3 50.4 5<br>7 50.3 6             | 6.3 58.2 66.<br>6.2 57.5 66.<br>5.4 54.8 65.<br>4.8 52.8 64.<br>3.6 49.8 63.<br>2.2 46.8 62.<br>9.8 43.1 59.<br>77.5 37.7 57.<br>6.9 28.0 56.<br>0.4 19.2 60.                                                                                                                                                                                                                                                                                                           | 1 58.1<br>1 57.5<br>4 54.8<br>8 52.8<br>6 49.8<br>2 46.8<br>7 43.0<br>4 37.6<br>8 27.9<br>1 19.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ED<br>UT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 14.23 18.59<br>14.18 18.61<br>14.09 18.70<br>14.06 18.71<br>14.07 18.68<br>14.10 18.71<br>14.21 18.66<br>14.27 18.69<br>14.12 18.85<br>13.85 18.89               | 1.307 332.7<br>1.312 330.5<br>1.328 327.1<br>1.328 321.6<br>1.327 319.6<br>1.314 319.7<br>1.309 320.7<br>1.315 319.6<br>1.364 319.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 363.7<br>362.6<br>359.1<br>355.1<br>351.9<br>348.2<br>348.2<br>349.5<br>349.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.093 12.8<br>1.096 12.8<br>1.097 12.8<br>1.098 12.7<br>1.094 12.7<br>1.089 12.7<br>1.089 12.7<br>1.089 12.8<br>1.099 12.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6 16.24<br>3 16.26<br>0 16.20<br>8 16.19<br>7 16.06<br>16.02<br>7 15.87<br>2 15.71<br>7 15.45<br>8 15.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.38601<br>1.39002<br>1.40010<br>1.41497<br>1.42519<br>1.43197<br>1.43467<br>1.43902<br>1.44083<br>1.44314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.61703<br>1.62382<br>1.63773<br>1.65535<br>1.66015<br>1.66996<br>1.66338<br>1.65192<br>1.62979<br>1.59947 | 323.3 35<br>321.6 34<br>318.4 34<br>314.7 34<br>312.2 33<br>310.4 33<br>310.4 33<br>310.4 33<br>311.1 33<br>313.3 32 | 10.0 316.9 31<br>18.9 310.0 30<br>14.7 295.9 29<br>10.6 281.8 28<br>17.0 267.8 26<br>14.1 253.9 25<br>12.4 239.8 24<br>11.4 225.5 23<br>11.4 225.5 23<br>10.2 210.9 21<br>195.8 20                                                                                                                                                                                                                                                                                      | 2.3<br>6.2<br>3.3<br>0.5<br>7.7<br>5.1<br>2.6<br>0.3<br>8.3<br>6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SPAN MEAN<br>5.0 4.2<br>10.0 5.0<br>20.0 5.9<br>30.0 7.1<br>40.0 7.6<br>50.0 8.0<br>60.0 7.1<br>70.0 6.1                                                         | SS DEV<br>2 1.7 4<br>2.5 3<br>2 3.2 3<br>4.1 3<br>5 4.1 3<br>3.9 4<br>2.4 6<br>1.0 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 .394<br>8 .407<br>0 .433<br>5 .452<br>8 .464<br>1 .472<br>8 .500<br>0 .549                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TOT PRO .099 .05 .109 .10 .100 .09 .105 .10 .103 .10 .087 .08 .079 .07 .088 .08 .101 .101 .10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F SHOCK<br>.006<br>.006<br>.003<br>.002<br>.002<br>.001<br>.000<br>.000<br>.000<br>.000<br>.000<br>.000<br>.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TOT<br>.020<br>.022<br>.021<br>.021<br>.022<br>.018<br>.017<br>.019                                        | PROF SHOC<br>.019 .00<br>.020 .00<br>.021 .00<br>.021 .00<br>.018 .00<br>.017 .00<br>.019 .00<br>.023 .00            | 1 1.331<br>1 1.341<br>1 1.306<br>0 1.315<br>0 1.269<br>0 1.273<br>0 1.207<br>0 1.126<br>0 1.054                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                  | IN OUT 23.566 23.223 23.050 22.766 22.001 21.814 20.958 20.856 19.916 19.909 18.877 18.969 17.831 18.039 16.769 17.122 15.684 16.231 14.559 15.367 13.967 14.945  ABS MACH NO IN OUT .383 .443 .374 .458 .372 .460 .374 .470 .381 .477 .393 .487 .395 .504 .307 .574 .260 .575  TOTAL PRES IN OUT 14.23 18.59 14.18 18.61 14.09 18.70 14.06 18.71 14.07 18.68 14.10 18.71 14.07 18.68 14.10 18.71 14.21 18.66 14.27 18.69 14.18 18.61 14.09 18.70 14.06 18.71 14.07 18.68 14.10 18.71 14.07 18.68 14.10 18.71 14.07 18.68 14.10 18.71 14.07 18.68 14.10 18.71 14.07 18.68 14.10 18.71 14.07 18.68 14.10 18.71 14.07 18.68 14.10 18.71 14.07 18.68 14.10 18.71 14.07 18.68 14.10 18.71 14.07 18.68 14.10 18.71 14.07 18.68 | IN OUT IN OUT 23.566 23.223 136.8 128.2 23.050 22.766 136.0 128.1 22.001 21.814 133.3 126.9 20.958 20.856 132.1 126.3 19.916 19.909 132.6 127.3 18.877 18.969 134.5 130.1 17.831 18.039 138.7 131.3 16.769 17.122 138.6 128.8 15.684 16.231 128.1 124.9 14.559 15.367 107.3 131.9 13.967 14.945 90.9 143.3  ABS MACH NO REL MACH NO IN OUT | IN OUT IN OUT RATIO 23.566 23.223 136.8 128.2 .937 23.050 22.766 136.0 128.1 .942 22.001 21.814 133.3 126.9 .953 20.958 20.856 132.1 126.3 .956 19.916 19.909 132.6 127.3 .960 18.877 18.969 134.5 130.1 .967 17.831 18.039 138.7 131.3 .947 16.769 17.122 138.6 128.8 .929 15.684 16.231 128.1 124.9 .975 14.559 15.367 107.3 131.9 1.230 13.967 14.945 90.9 143.3 1.578  ABS MACH NO REL MACH NO AXIAL MOUT IN OUT IN | IN OUT IN OUT RATIO IN OUT 23.566 23.223 136.8 128.2 .937 137.8 128.2 23.050 22.766 136.0 128.1 .942 136.7 128.2 22.001 21.814 133.3 126.9 .953 133.5 127.2 129.58 20.856 132.1 126.3 .956 132.2 126.1 129.916 19.909 132.6 127.3 .960 132.6 127.3 18.877 18.969 134.5 130.1 .967 134.5 130.1 17.831 18.039 138.7 131.3 .947 138.9 131.1 16.769 17.122 138.6 128.8 .929 139.1 129.15.684 16.231 128.1 124.9 .975 129.0 125.14.559 15.367 107.3 131.9 1.230 108.5 133.13.967 14.945 90.9 143.3 1.578 92.2 145.3 13.967 14.945 90.9 143.3 1.578 92.2 145.3 13.967 14.945 90.9 143.3 1.578 92.2 145.3 13.3 1.578 92.2 145.3 13.3 1.578 92.2 145.3 13.3 1.578 92.2 145.3 13.3 1.578 92.2 145.3 13.3 1.578 92.2 145.3 13.3 1.578 92.2 145.3 13.3 1.578 92.2 145.3 13.3 13.3 13.3 1.578 92.2 145.3 13.3 13.3 13.3 13.3 1.578 92.2 145.3 13.3 13.3 13.3 13.3 13.3 13.3 13.3 1 | IN OUT IN OUT RATIO IN OUT RATIO 23.566 23.223 136.8 128.2 .937 137.8 128.7 .934 22.001 21.814 133.3 126.9 .955 133.5 127.1 .952 20.958 20.856 132.1 126.3 .956 132.2 126.3 .955 19.916 19.909 132.6 127.3 .960 132.6 127.3 .960 18.877 18.969 134.5 130.1 .967 134.5 130.1 .967 17.831 18.039 138.7 131.3 .947 138.9 131.5 .947 16.769 17.122 138.6 128.8 .929 139.1 129.3 .929 15.684 16.231 128.1 124.9 .975 129.0 125.7 .975 14.559 15.367 107.3 131.9 1.230 108.5 133.3 1.228 13.967 14.945 90.9 143.3 1.578 92.2 145.2 1.575 13.3 .947 138.9 131.5 .947 14.559 15.367 107.3 131.9 1.230 108.5 133.3 1.228 13.967 14.945 90.9 143.3 1.578 92.2 145.2 1.575 13.3 .947 13.3 .947 13.3 .947 13.3 .947 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 .949 13.3 . | 1N                                                                                                         | 18                                                                                                                   | 1N 0UT 1N 0UT 23.566 29.273 136.8 128.2 937 137.8 128.7 934 5.5 105.3 -16.7 -11.6 23.050 22.766 136.0 128.1 .942 136.7 128.4 .939 .9 105.0 -13.7 -9.4 .02.001 21.814 133.3 126.9 .955 133.5 127.1 .952 .4.4 133.7 -9.4 .4.6 13.6 -6.8 .8 .20.958 20.856 132.1 126.3 .956 132.2 126.3 .955 .5 114.0 -4.3 -2.6 .6 .9.916 19.909 132.6 127.3 .960 132.6 127.3 .960 .9 11.6 .9 11.6 .6 .3 .3 .3 .3 .7 .1 .952 .4 .4.4 13.8 .9 .9 1.4 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 | 1 N 0UT 1N 0UT 1 |

(n) 80 Percent of design speed; reading 1544

| RP                         | RADII                                                                                                    | AXIAL V                                                                                                                                   | ELOCITY                                                                                                      | HERIDIO                      | NAL VELO                                                             | CITY                                                 | TANG VE                                                           | EL RA<br>J <b>üt in</b>                                                          | DIAL VEL                                      | ABS                                      | VEL                                       | REL 1                                                             |                                                                    |
|----------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------|
| 2<br>3<br>4<br>5<br>6<br>7 | IN OUT 23.566 23.223 23.050 22.766 22.001 21.814 20.958 20.856 19.916 19.909 18.877 18.969 17.831 18.039 | 162.9 15<br>161.7 15<br>164.0 16                                                                                                          | 12.4 .924<br>51.2 .928<br>53.5 .936<br>54.6 .949<br>56.8 .970                                                | 164.2                        | 142.8<br>151.4<br>153.5<br>154.6<br>156.9<br>162.5                   | ATIO<br>.902<br>.922<br>.928<br>.935<br>.949<br>.970 | 3.4 7<br>4 7                                                      | 76.4 -17<br>79.1 -15                                                             | .7 -11.5<br>.5 -10.5<br>.5 -6.<br>.4 -3.      | 9 163.4<br>1 164.4<br>7 163.0<br>5 161.8 | 152.2<br>163.2<br>170.1<br>171.2<br>175.4 | IN<br>346.0<br>347.1<br>344.9<br>334.2<br>318.7<br>305.9<br>294.3 | OUT<br>270.3<br>268.3<br>263.7<br>256.0<br>241.2<br>227.5<br>218.7 |
| 8<br>9<br>10<br>11         | 16.769 17.122<br>15.684 16.231<br>14.559 15.367<br>13.967 14.945                                         | 169.7: 17                                                                                                                                 | 17.0 I.UUJ                                                                                                   | 170.9<br>152.5               | 176.2 1                                                              | .003<br>.031<br>.192<br>.454                         | 1.4 12<br>0 14<br>-8.4 14                                         | 23.1 19<br>41.6 22<br>41.5 21                                                    | .7 8.<br>.2 13.<br>.8 19.<br>.9 26.<br>.7 30. | 5 170.9<br>0 152.5                       | 214.9                                     | 283.5<br>270.5<br>248.3<br>234.7                                  | 211.8<br>200.3<br>193.2<br>196.2                                   |
| RP                         | ABS MACH NO<br>IN OUT                                                                                    | REL MACH<br>IN E                                                                                                                          | NO AXIAL I                                                                                                   | 1ACH NO<br>OUT               | MERID HA                                                             | CH NO                                                | ABS BETA                                                          | AZ ABS                                                                           | BETAM<br>OUT                                  | REL BETA                                 | Z REL                                     | BETAM<br>OUT                                                      |                                                                    |
| 1 2                        | A11 A1A                                                                                                  | 003                                                                                                                                       | .736 .408<br>.733 .436                                                                                       | .35 <b>7</b>                 | .411                                                                 | BUT<br>.358<br>.390<br>.417<br>.424<br>.428<br>.435  | 1.3 31<br>2 29<br>-2.7 2<br>-3.2 2<br>-2.1 29<br>-2.0 3<br>-1.5 3 | 0.2 1.3<br>9.12                                                                  | 30.1<br>29.0<br>27.1<br>26.3<br>28.2          | 65.2 61<br>63.6 5                        | .0 65.<br>7.9 63.                         | 1 60.9                                                            |                                                                    |
| 2<br>3<br>4                | .467 .468<br>471 473                                                                                     | .986<br>.957                                                                                                                              | .726 .466<br>708 470                                                                                         | .416<br>.424                 | .467<br>470                                                          | .417<br>.424                                         | -2.7 2<br>-3.2 2                                                  | 7.2 -2.7<br>6.3 -3.2                                                             | 27.1<br>26.3                                  | 61.8 55                                  | 5.0 61.<br>3.2 60.                        | 8 55. <b>0</b><br>6 53. <b>2</b>                                  |                                                                    |
| 5<br>6<br>7                | .467 .486<br>.464 .502<br>.471 .524                                                                      | <b>.</b> 876 .                                                                                                                            | .668 .467<br>.630 .463<br>.607 .470                                                                          | .416<br>.424<br>.428<br>.435 | .467<br>.463<br>.470                                                 | .428                                                 | -2.1 2<br>-2.0 3                                                  | 8.2 -2.1<br>0.0 -2.0<br>0.7 -1.5                                                 | 28.2<br>30.0<br>30.7                          | 58.1 4/                                  | 0.1 59.<br>6.4 58.<br>2.0 56.             | 1 46.4                                                            |                                                                    |
| 8<br>9                     | .486 .555<br>489 598                                                                                     | -811                                                                                                                                      | .589 .484<br>557 486                                                                                         | .471<br>.487<br>.501         | .486<br>.48 <b>9</b>                                                 | .473<br>.490<br>.506                                 |                                                                   |                                                                                  | 31.5<br>34.9                                  | 53.3 36<br>51.0 28                       | 5.6 53.<br>3.6 50.                        | 2 36.5                                                            |                                                                    |
| 10<br>11                   | .434 .641<br>.364 .652                                                                                   | .706                                                                                                                                      | .537 .429<br>.546 .359                                                                                       | .501<br>.513                 | .434<br>.364                                                         | .506<br>.520                                         | 0 3<br>-3.8 3                                                     | 5.1 .5<br>8.20<br>7.5 -3.7                                                       | 37.9                                          | 52.4 15                                  | 7.9 52.<br>7.9 56.                        | 1 19.7                                                            |                                                                    |
| RP                         | TOTAL PRES                                                                                               | SURE<br>RATIO                                                                                                                             | TOTAL TEMPER                                                                                                 | ATURE<br>RATIO               | STATIC P                                                             | RESS                                                 | STATIC                                                            | DENSITY                                                                          | STATIC                                        |                                          | HEEL SPE                                  | ED<br>UT                                                          |                                                                    |
| 1 2                        | 13 56 16 61                                                                                              | 1.224 32                                                                                                                                  | 22 1 346 4                                                                                                   | 1.070                        | 12.07 1<br>12.00 1                                                   | 4.76<br>4.81                                         | 1.33948                                                           | 1.53080                                                                          | IN<br>314.0<br>310.2<br>304.5                 | 335.8<br>333.1                           | 317.1 31                                  | 2.5<br>6.3                                                        |                                                                    |
| 3<br>4<br>5                | 13.80 17.32                                                                                              |                                                                                                                                           | 240 2                                                                                                        | 1.079                        | 11.90 1<br>11.86 1                                                   | 4.79                                                 | 1.36160                                                           | 1.56910                                                                          | 304.5<br>303.0<br>303.2                       | 328.4<br>325.6                           | 282.0 28                                  | 3.5<br>0.6                                                        |                                                                    |
| 6<br>7                     | 13.76 17.40<br>13.73 17.56<br>13.80 17.74                                                                | 1.264 3<br>1.278 3<br>1.286 3                                                                                                             | 16.1 340.6<br>16.6 340.8                                                                                     | 1.075                        | IN<br>12.07 1<br>12.00 1<br>11.90 1<br>11.86 1<br>11.85 1<br>11.85 1 | 4.81                                                 | 1.36199                                                           | 0UT<br>1.53080<br>1.54919<br>1.56910<br>1.58952<br>1.58887<br>1.58842<br>1.58635 | 4114 1                                        | 374 7                                    | 25 <b>4.0 2</b> 5                         | 7.9<br>5.2<br>2.7                                                 |                                                                    |
| 8                          | 13.99 18.03<br>14.11 18.40                                                                               | 1.289 3<br>1.304 3                                                                                                                        | 17.9 342.1<br>18.5 345.0                                                                                     | 1.076                        | 11.90 1<br>11.98 1<br>12.23 1                                        | 4.63                                                 | 1.37328                                                           | 1.56375                                                                          | 3 n & n                                       | 322.3<br>322.0                           | 225.6 23<br>211.1 21                      | 0.4<br>8.4                                                        |                                                                    |
| 10<br>11                   | 13.92 18.59<br>13.52 18.47                                                                               | 1.335 3<br>1.367 3                                                                                                                        | 16.5 340.2<br>16.5 340.1<br>16.1 340.6<br>16.6 340.8<br>17.9 342.1<br>18.5 345.0<br>18.9 348.1<br>19.3 349.2 | 1.091<br>1.094               | 12.23 1<br>12.33 1                                                   | 4.10                                                 | 1.386/9                                                           | 1.52776                                                                          | 307.3                                         | 321.6                                    |                                           | 6.8<br>1.1                                                        |                                                                    |
| RP                         | PERCENT INC                                                                                              | CIDENCE<br>SS                                                                                                                             | D<br>DEVIA FACTO                                                                                             | R EFFI                       | LOS<br>C TOT                                                         | SS COEFF                                             | ICIENT<br>SHOCK                                                   | LOSS<br>TOT                                                                      | PARAMETE<br>PROF SH                           | R PEA                                    | K SS<br>H NO                              |                                                                   |                                                                    |
| 1<br>2<br>3                | 5.0 3.1<br>10.0 2.3                                                                                      | .6<br>32                                                                                                                                  | 6.7 .29<br>4.2 .31                                                                                           | 8 .85<br>1 .83               | 1 .073<br>9 .084                                                     | .065                                                 | .008<br>.007                                                      | .013                                                                             | .012 .                                        | 001 1.<br>001 1.                         | 336<br>311                                |                                                                   |                                                                    |
| 4<br>5                     | 20.0 2.3<br>30.0 2.3<br>40.0 3.3                                                                         | 4<br>2<br>2                                                                                                                               | 3.2 .32<br>3.9 .32                                                                                           | N 89                         | 7 .098<br>2 .058<br>7 043                                            | 3 .091<br>3 .053<br>3 .041                           | .005                                                              | .020<br>.012<br>.009<br>.008                                                     | .011 .                                        | .001 1.                                  | 31 <b>2</b><br>301<br>264                 |                                                                   |                                                                    |
| 6<br>7                     | 5 n n 2 (                                                                                                | 3<br>5 -1.2                                                                                                                               | 4.1 .33<br>4.5 .35<br>5.1 .35                                                                                | 797                          | 0.020                                                                | 3 .038<br>0 .020                                     | .001                                                              | . 11 0 4                                                                         | .008 .                                        | .000 1.                                  | 242<br>200                                |                                                                   |                                                                    |
| 8<br>9                     | 70.0 1.9<br>80.0                                                                                         | 352<br>334<br>2<br>332<br>3<br>3<br>3<br>3<br>3<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 5.8 .35<br>5.5 .37                                                                                           | 6 .98                        | 5 .011<br>7 .044                                                     | l .U11<br>4 .044                                     | .000                                                              | .002<br>.010                                                                     | .002                                          | .00 <b>0 1.</b><br>.00 <b>0 1.</b>       | 134<br>069                                |                                                                   |                                                                    |
| 10<br>11                   | 90.0<br>95.0 4.                                                                                          | 57                                                                                                                                        | 7.4 .36<br>11.9 .31                                                                                          | 3 .94<br>6 .99               | 2 .061<br>6 .004                                                     | 1 .061                                               | .000                                                              | .014                                                                             |                                               |                                          | 046<br>099                                |                                                                   |                                                                    |

....

(o) 80 Percent of design speed; reading 1555

| 00          | DADIT                                |                                  | 51 001TV                                     |                                       |                               |                                           |                                     |                                               | 251                                       |
|-------------|--------------------------------------|----------------------------------|----------------------------------------------|---------------------------------------|-------------------------------|-------------------------------------------|-------------------------------------|-----------------------------------------------|-------------------------------------------|
| RP<br>1     | RADII<br>IN OUT<br>23.566 23.223     | AXIAL V<br>IN 0<br>144.0 13      | ELOCITY<br>UT RATIO<br>5.0 .938              | MERIDIONAL<br>IN OU<br>145.1 135      | T RATIO                       | TANG VEL<br>IN DUT<br>6.0 96.2            | RADIAL VEL<br>IN DUT<br>-17.6 -12.2 | ABS VEL<br>IN OUT<br>145.2 166.2              | REL VEL<br>IN OUT<br>344.4 256.3          |
| 2           | 23.050 22.766<br>22.001 21.814       | 146.4 13<br>148.4 13             | 4.9 <i>.</i> 921                             | 147.2 135<br>148.7 135                | .3 .919                       | 1.7 97.1                                  | -14.7 -9.9                          | 147.2 166.5<br>148.7 168.8                    | 344.4 256.3<br>342.8 250.2<br>334.3 236.2 |
| 4 5         | 20.958 20.856<br>19.916 19.909       | 145.6 13                         | 6.0 .934<br>7.6 .964                         | 145.7 136<br>142.8 137                | .0 .933                       | -2.2 101.0<br>-7.2 100.7<br>-4.8 105.0    | -4.8 -2.8<br>-5 -6                  | 145.9 169.2                                   | 324.8 226.4<br>308.8 214.0                |
| 6           | 18.877 18.969<br>17.831 18.039       | 143.8 14<br>148.2 14             | 0.2 .975                                     | 143.9 140<br>148.4 144                | .3 .975                       | -4.1 109.5<br>6 114.5                     | 3.5 4.0                             | 143.9 178.0<br>148.4 184.2                    | 296.3 202.9<br>283.4 193.7                |
| 8<br>9      | 16.769 17.122<br>15.684 16.231       | 151.1 14<br>143.5 14             | 4.5 .957<br>0.4 .979                         | 151.6 145<br>144.5 141                | .0 .956<br>.3 .978            | 2.6 122.0<br>8.9 143.5                    | 12.7 11.8<br>16.8 15.7              | 151.6 189.5<br>144.7 201.4                    | 270.4 181.6<br>249.1 160.3                |
| 10<br>11    | 14.559 15.367<br>13.967 14.945       | 122.6 14<br>108.0 15             | 6.7 1.196                                    | 124.0 148<br>109.6 159                | .2 1.195                      | 6.1 157.2<br>-6.3 150.5                   | 18.6 21.2                           | 124.1 216.0<br>109.7 219.5                    | 227.3 156.5<br>223.6 167.9                |
| RP          | ABS MACH NO                          | REL MACH                         |                                              | ACH NO MER                            |                               |                                           |                                     |                                               | BETAM                                     |
| 1 2         | IN DUT<br>.405 .447<br>.412 .448     | .960 .                           | UT IN<br>688 .402<br>674 .410                | .363                                  | N OUT<br>404 .364<br>412 .364 | IN OUT<br>2.4 35.5<br>.7 35.7             | 2.4 35.4                            | IN OUT IN<br>65.2 58.2 65.1<br>64.7 57.3 64.6 | OUT<br>58.1<br>5 57.3                     |
| 3           | .420 .458<br>.414 .461               | .944                             | 640 .419<br>617 .413                         | .366 .                                | 420 .367<br>413 .370          | 8 36.8<br>-2.8 36.5                       | 8 36.7                              | 63.6 55.1 63.6<br>63.4 53.1 63.3              | 55.1                                      |
| 5           | .406 .473<br>.409 .487               | <b>.877</b>                      | 585 .405<br>556 .409                         | .376 .                                | 405 .376<br>409 .384          | -1.9 37.4<br>-1.6 38.0                    | -1.9 37 <b>.</b> 4                  | 62.5 50.0 62.5<br>61.0 46.3 61.0              | 5 50.0                                    |
| 7<br>8      | .422 .506<br>.431 .521               | .805 .:<br>.768 .:               | 532 .421<br>499 .429                         | .396 .<br>.397 .                      | 422 .396<br>431 .398          | 2 38.5<br>1.0 40.2                        | 2 38.4<br>1.0 40.1                  | 58.5 41.9 58.4<br>56.0 37.1 55.9              | 41.8<br>7 37.0                            |
| 9<br>10     | .411 .554<br>.351 .595               | .707<br>.642                     | 441 .407<br>431 .346                         | .386 .<br>.404 .                      | 410 .389<br>350 .408          | 3.6 45.6<br>2.9 47.0                      | 2.8 46.7                            | 54.7 28.3 54.6<br>57.2 18.9 56.9              | 18.8                                      |
| 11          | .309 .605                            | •                                | 463 .304                                     |                                       | 308 .441                      | -3.3 43.6                                 |                                     | 61.0 18.0 60.7                                |                                           |
| RP.         | TOTAL PRESI<br>IN OUT<br>14.14 18.28 | RATIN I                          | DTAL TEMPERA<br>N OUT<br>0.5 358.6           | RATIO IN                              |                               | STATIC DENS<br>IN OU<br>1.37481 1.6       | T IN                                | EMP WHEEL SPEE<br>DUT IN OL<br>44.9 318.3 313 | ĴΤ                                        |
| 1<br>2<br>3 | 14.14 18.34                          | 1.293 33<br>1.296 32<br>1.301 32 | 7.7 356.9                                    | 1.085 12.<br>1.089 12.<br>1.094 12.   | 58 15.97<br>55 15.97          | 1.38311 1.6<br>1.40292 1.6                | 2202 316.9 3                        | 43.1 311.4 307<br>38.8 297.2 294              | '.5                                       |
| 4           | 14.07 18.45                          | 1.311 31<br>1.322 31             | 9.7 349.9                                    | 1.095 12.<br>1.092 12.                | 51 15.95                      | 1.40994 1.6                               | 5527 309.1 3                        | 35.7 283.1 281<br>33.3 269.0 268              | .7                                        |
| 6<br>7      | 14.03 18.61                          | 1 326 319                        | R 6 347 5                                    | 1.091 12.<br>1.087 12.                | 50 15.82                      | 1.41318 1.6<br>1.41490 1.6                | 6071 308.3 3                        | 31.8 255.0 256<br>30.2 240.9 243              | 5.2                                       |
| 8<br>9      | 14.26 18.77<br>14.21 18.85           | 1.316 31<br>1.327 31             | 9.8 347.3<br>9.6 349.0                       | 1.086 12.                             | 56 15.60<br>65 15.30          | 1.41860 1.6                               | 4975 308.3 3<br>2140 309.2 3        | 29.4 226.5 231<br>28.8 211.9 219              | .3                                        |
| 10<br>11    | 13.87 19.03<br>13.69 18.95           | 1.3/2 31                         | 9.7 351.0<br>0.2 351.6                       | 1.098 12.                             | 74 14.98<br>81 14.80          | 1.42555 1.6<br>1.42223 1.5<br>1.42094 1.5 | 9198 312.0 3                        | 27.7 196.7 207<br>27.6 188.7 201              |                                           |
| RP          |                                      | IDENCE                           | D<br>EVIA FACTOR                             | , , , , , , , , , , , , , , , , , , , | LOSS COEL                     | FFICIENT                                  | LOSS PARAMETER<br>OT PROF SHO       | PEAK SS<br>CK HACH NO                         |                                           |
| 1<br>2      | SPAN MEAN<br>5.0 3.1<br>10.0 3.4     | .6                               | 3.9 .354                                     | . 894                                 | .063 .0                       | 57.006.                                   | 013 .012 .0<br>017 .016 .0          | 01 1.318                                      |                                           |
| 3           | 20.0 4.1<br>30.0 5.6                 | 1.4<br>2.6                       | 3.6 .37.<br>3.3 .40.<br>3.8 .41.<br>3.9 .42. | .831                                  | .113 .1                       | 08 .005 .                                 | 023 .022 .0<br>022 .021 .0          | 01 1.318                                      |                                           |
| 5           | 40.0 6.5<br>50.0 6.7                 | 3.0                              | 3.9 .422<br>4.4 .433                         | 900                                   | .075 .0                       | 72 .002 .                                 | 015 .015 .0                         |                                               |                                           |
| 7<br>8      | 60.0 5.8<br>70.0 4.6                 | 1.1                              | 4.9 .435                                     | 953                                   | .038 .0                       | 38 .000 .<br>46 .000 .                    | 008 .008 .0<br>010 .010 .0          | 00 1.210                                      |                                           |
| 9<br>10     | 80.0 4.0<br>90.0 5.7                 | -1.5<br>.3                       | 6.2 .455<br>5.3 .498<br>6.4 .476             | .913                                  | .092 .09                      | 92 .000 .<br>45 .000 .                    |                                     | 00 1.067                                      |                                           |
| 11          | 95.0 8.4                             | 3.2                              | 12.0 .416                                    | .991                                  | .013 .0                       | 13 .000 .                                 | 003 .003 .0                         | 00 1.125                                      |                                           |

(p) 70 Percent of design speed; reading 1475

|               |                                     |                      |                                      |                                 |                                                  | (17)                    |                         |                                           | •                  |                                                      |                              |                      |                         |                         |                              |                      |                              |                                      |
|---------------|-------------------------------------|----------------------|--------------------------------------|---------------------------------|--------------------------------------------------|-------------------------|-------------------------|-------------------------------------------|--------------------|------------------------------------------------------|------------------------------|----------------------|-------------------------|-------------------------|------------------------------|----------------------|------------------------------|--------------------------------------|
| RP            | RADII                               | JUT                  | AXIAL<br>IN<br>124.7                 | VELOCI                          | TY<br>RATIO                                      | MERIDIO<br>IN<br>125.6  | ONAL VE                 | LOCITY<br>RATIO                           | IJ                 | TANG V<br>1<br>5.4                                   | OUT ,                        | IN                   | IAL VEL                 |                         | ABS VEL                      | UT                   | REL                          | กมา                                  |
| 1<br>2<br>3   | 23.566 23<br>23.050 22<br>22.001 21 | .766                 | 138.1                                | 138.7                           | 1.005                                            | 138.8                   | 125.6<br>139.1<br>149.2 | 1.000                                     | - 6                | 5.4<br>5.0<br>0.7                                    | 0UT<br>31.4<br>35.5<br>33.8  | -15.<br>-13.         | 9 -10.                  | .2 13                   | 38.9 14                      | 3.6 3                | 09.7<br>10.3<br>108.4        | 272.9<br>271.1                       |
| 4<br>5        | 20.958 20<br>19.916 19              | .856                 | 151 5                                | 151.0<br>153.9                  | 997                                              | 151 6                   | 151.1<br>153.9          | .997<br>.998                              | -10                | 1 4                                                  | 36.4                         | -9.<br>-5.           | 0 -3                    | .1 15                   | 51.9 15                      | 5.4 2                | 98. <b>7</b><br>987.8        | 268.258.2<br>244.2<br>234.4<br>225.1 |
| 6<br>7        | 18.877 18<br>17.831 18              | .969<br>.039         | 157.0<br>160.7                       | 160.5<br>168.7                  | 1.050                                            | 157.1<br>160.9          | 160.6<br>168.9          | 1.022<br>1.050                            | -                  | 7.1                                                  | 44.3<br>52.7<br>63.8         | 3.<br>8.             | .8 4.<br>.5 9.          | .6 15<br>.1 17          | 57.3 16<br>51.1 18           | 9.0 2<br>0.6 2       | 278.3<br>270.3               | 234.4                                |
| 8<br>9        | 16.769 17<br>15.684 16              | .231                 | 164.4<br>167.5<br>154.1              | 176 N                           | 1.070                                            | 165.0                   | 176.6                   | 1.070<br>1.107<br>1.253                   | - (<br>- (         | 5.0<br>5.5                                           | 75.5<br>92.0                 | 13.<br>19.           | 8 14                    | .4 16<br>.7 16          | 65.1 19<br>68.7 20           | 2.1 - 2              | 262.1<br>254.3<br>236.2      | 21/1                                 |
| 10<br>11      | 14.559 15<br>13.967 14              | .367<br>.94 <b>5</b> | 154.1                                | 193.3                           | 1.25-1                                           | 155.8                   | 195.3                   | 1.253                                     | -1                 | 5.0 1<br>1.9 1                                       | 09.6<br>14.3                 | 23 .<br>22 .         | 4 27<br>4 31            | .9 1:                   | 56.0 22<br>33.3 22           | 3.9 2<br>6.1 2       | 236.2                        | 211.4<br>207.5<br>204.5              |
| RP            | ABS MACH                            | υŤ                   | REL MAG                              | 04 HC<br>TUD                    | AXIAL M.                                         | กบт                     | MERID<br>IN             | MACH NO                                   | A1                 | BS BET                                               | 1U <b>T</b>                  | IN                   | SETAM<br>OUT            | ΪN                      | BETAZ<br>OUT                 | REL BE               | HAT<br>TUO                   |                                      |
| 1<br>2<br>3   | .359<br>.399                        | .364<br>.405         | .88 <b>5</b><br>.892                 | 0UT<br>.768<br>.766             | .356<br>.397                                     | .352<br>.392            | .359                    | 0UT<br>.354<br>.393                       | -                  | 2.5 1<br>2.5 1                                       | 4.1                          | -2.5<br>-2.5         | 14.0<br>14.3            | 66.2<br>63.5            | 62. <b>7</b><br>59. <b>2</b> | 66.1<br>63.4         | 62. <b>6</b><br>59. <b>1</b> |                                      |
| 4             | .440                                | .435                 | .892<br>.865                         | .763<br>.735                    | .431<br>.439<br>.447                             | .423                    | .432<br>.439<br>.447    | 474                                       |                    | 3.9 1                                                | 2.8                          | -4.1<br>-3.9         | 12.8<br>13.5            | 61.1<br>59.5            | 56.3<br>54.2                 | 59.5                 | 56.2                         |                                      |
| 5<br>6<br>7   | .456                                | .456<br>.481<br>.514 | .834<br>.807<br>.784                 | .696<br>.667<br>.640            | .447<br>.455<br>.466                             | .438<br>.457<br>.480    | .455                    | 5.457                                     | -                  | 2.7 1                                                | 6.1<br>8.2<br>20.7           | ~3.1<br>-2.7<br>-2.5 | 16.1<br>18.2<br>20.7    | 57.6<br>55.6<br>53.5    | 46.8                         | 57.6<br>55.6<br>53.5 | 51.0<br>46.8<br>41.4         |                                      |
| 8<br>9        | .479<br>.489                        | .546                 | .76 <b>0</b><br>.73 <b>7</b>         | .617                            | . 477                                            | .501                    | .478                    | 3 .502<br>3 .531                          | <u> </u>           | $\begin{array}{cccc} 2.1 & 2 \\ 1.9 & 2 \end{array}$ | 23. <b>2</b><br>26. <b>4</b> | -2.1<br>-1.9         | 23.1<br>26.2            | 51.1<br>48.6            | 35.7                         | 51.0                 | 35.6<br>28.0                 |                                      |
| 10<br>11      | .450<br>.382                        | .637<br>.643         | .681<br>.63 <b>3</b>                 | .592<br>.582                    | .485<br>.444<br>.375                             | .550<br>.547            | .449                    | 9 .556<br>0 .555                          | ; -<br>; -         | 2.2 - 2                                              | 29.6<br>30.7                 | -2.2<br>-5.1         | 29.3<br>30.4            | 49.0<br>53.4            | 20.3                         | 48.7                 | 20.1<br>17.6                 |                                      |
| RP            | TOTAL                               | PRESS                | URE<br>PATIO                         | TOTAL                           | TEMPERA                                          | TURE                    | STATIO                  | C PRESS                                   | S                  | TATIC                                                | DENS                         | ΙΤΥ                  | STATIC                  | TEMP                    | WHEEL<br>In                  | . SPEED<br>DUT       |                              |                                      |
| 1 2           | IN<br>12.25 1<br>12.44 1            | 3.45<br>3.81         | 1.098                                | 312.3<br>310.8                  | 322.3<br>321.9                                   | 1.032                   | 11.20                   | 0UT<br>12.27<br>12.33                     | 1.                 | IN<br>28226<br>28892                                 | 1.3                          | 6171<br>7896         | IN<br>304.4<br>301.2    | 311.6                   | 271.6                        | 273.<br>268.         |                              |                                      |
| 2<br>3<br>4   | 12.56 1                             | 4.20                 | 1.121                                | 308.5<br>307.9                  | OUT<br>322.3<br>321.9<br>319.9<br>319.4<br>320.2 | 1.037                   | 11.02<br>10.99          | 12.34<br>12.42                            | 1.                 | 29137<br>29198<br>29064                              | 1.3                          | 7541<br>077 <b>7</b> | 301.2<br>297.3<br>296.4 | 308.2<br>307.3          | 259.2<br>246.9               | 245.                 | 7                            |                                      |
| 5<br>6<br>7   | 12.64 1                             | 4.59                 | 1.137                                | 307.9<br>308.3<br>308.7         | 221.0                                            | 1.043                   | 10.97                   | 12.34<br>12.42<br>12.41<br>12.45<br>12.39 | 1.                 | 29064<br>29067                                       | 1.4                          | 0598<br>1127         | 296.0<br>296.0<br>295.7 | 307.5                   | 234.7                        | 223.                 | 5                            |                                      |
| 8<br>9        | 12.87 1                             | 5.18                 | 1.171<br>1.179<br>1.195              | 309.6<br>310.7                  | 326 0                                            | 1.049<br>1.053<br>1.060 | 11.00                   | 12.45                                     | 1.                 | 29067<br>29067<br>29091<br>29447<br>29751<br>31998   | 1.4                          | 1127<br>1049<br>0319 | 296. <b>1</b>           | 307.4<br>307.6<br>307.6 | 197.                         | 5 201.               | 7                            |                                      |
| 10<br>11      | 13.02 1                             | 5.92                 | 1.223                                | 311.2<br>311.5                  | 332.0                                            | 1.067                   | 11.33                   | 12.26<br>12.11<br>11.90                   | i .<br>1 .         | 31998<br>31516                                       | 1.3                          | 7425                 | 299.1<br>302.7          | 307.1<br>308.1          | 171.5                        | 5 181.               | 1                            |                                      |
| RP            | PERCENT                             |                      | DENCE                                |                                 | D                                                |                         |                         | LUSS COE                                  |                    |                                                      |                              | LOSS                 | PARAMET                 | ER                      | PEAK SS                      |                      |                              |                                      |
| 1 2           | SPAN<br>5.0<br>10.0                 | MEAN<br>4.1<br>2.3   | SS<br>1.6<br>2                       | 8.4<br>5.4                      | FACTOR<br>.163<br>.176                           | .87                     | 12 .                    | 042 .:<br>043 .:                          | 0.41               | .001                                                 |                              | 007                  | .007                    | .000<br>.000            | HACH NO<br>1.246<br>1.188    |                      |                              |                                      |
| 3             | 20.0<br>30.0                        | 1.6                  | -1.1                                 | 4.5                             | .181                                             | .89                     | 99 .<br>62 .            | 03 <b>1</b> .4                            | 03 <b>1</b><br>012 | .000                                                 |                              | 003                  | .006                    | .000                    | 1.165                        |                      |                              |                                      |
| 5<br><u>6</u> | 40.0<br>50.0                        | 1.8<br>1.7<br>1.4    | -1.9<br>-2.7                         | 8.4<br>5.4<br>4.5<br>4.9<br>5.0 | .189<br>.209<br>.224                             | .9                      | (')                     | 024                                       | 024<br>016         | .000                                                 |                              | 003                  | .005                    | .000                    | 1.106                        |                      |                              |                                      |
| 7<br>8<br>9   | 60.0<br>70.0<br>80.0                | .8<br>3<br>-2.1      | -1.9<br>-2.7<br>-3.9<br>-5.5<br>-7.6 | 4.4                             | .244                                             | .9                      | 49 .<br>14 .            | 048 .                                     | 025<br>048<br>082  | .000                                                 |                              | 005<br>011<br>019    | .005<br>.011<br>.019    | .000<br>.000<br>.000    | 1.043<br>1.001<br>.956       |                      |                              |                                      |
| 10            | 90.0                                | -2.5<br>-2.5         | -/ 9                                 | 5.1<br>7.7<br>11.8              | .240                                             | 9 .9                    | 85 .<br>10 .            | 095 .                                     | 082<br>095<br>089  | .00 <b>0</b>                                         |                              | 022                  | .022                    | .000                    | .92 <b>9</b><br>.96 <b>8</b> |                      |                              |                                      |
|               |                                     |                      |                                      |                                 |                                                  | -                       | -                       |                                           |                    |                                                      | -                            |                      |                         |                         |                              |                      |                              |                                      |

TABLE XI. - Continued. BLADE-ELEMENT PERFORMANCE AT BLADE EDGES FOR SECOND-STAGE ROTOR

(q) 70 Percent of design speed; reading 1486

| RP F                                                                     | 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                                                                                      | RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                                               | 2 2<br>4 2<br>5 1<br>6 1<br>7 1<br>8 1<br>9 1                                                                                     |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| PERCENT<br>SPAN<br>5.0<br>10.0<br>20.0<br>30.0<br>40.0<br>50.0<br>70.0   | IN<br>12.82<br>12.85<br>12.89<br>12.89<br>12.92<br>12.96<br>13.09<br>13.16<br>12.96                                        | ABS MACI<br>IN .348<br>.359<br>.372<br>.379<br>.381<br>.381<br>.389<br>.404<br>.403<br>.353<br>.299 | RADII<br>IN<br>23.566 23<br>23.050 22<br>22.001 21<br>20.958 20<br>19.916 15<br>17.831 18<br>16.769 15<br>16.5684 16<br>14.559 15 |
| INCI<br>MEAN<br>3.9<br>3.1<br>4.7<br>4.4<br>4.8<br>3.2                   | 15.22<br>15.41<br>15.51<br>15.54<br>15.63<br>15.73<br>15.88<br>16.05<br>16.27<br>16.38                                     | 0 U T                                                                                               | 0UT<br>3.223<br>2.766<br>1.814<br>0.856<br>9.909<br>3.969<br>8.039<br>7.122<br>6.231<br>5.367                                     |
| DENCE<br>5S<br>1.3<br>1.3<br>1.5<br>1.7<br>1.2<br>1.2<br>-2.0<br>-3.9    | RATIO<br>1.187<br>1.198<br>1.203<br>1.205<br>1.210<br>1.220<br>1.226<br>1.226<br>1.226<br>1.236<br>1.263<br>1.283          | REL MAI<br>IN .850<br>.848<br>.837<br>.817<br>.780<br>.753<br>.724<br>.695<br>.656<br>.570          | 129.9<br>131.8<br>132.8<br>132.7<br>135.3<br>140.3                                                                                |
| DEVIA<br>6.0<br>4.1<br>3.5<br>4.3<br>4.3<br>5.1<br>5.8                   | IN<br>317.7<br>316.2<br>313.3<br>311.5<br>310.5<br>310.7                                                                   | CH NO<br>OUT<br>.640<br>.633<br>.618<br>.600<br>.567<br>.541<br>.522<br>.502<br>.455<br>.468        | DUT<br>115.1<br>121.6<br>126.6<br>127.7<br>129.4<br>132.6<br>137.9<br>143.2                                                       |
| .338                                                                     | 336.2<br>335.6<br>332.9<br>330.6<br>329.7<br>329.6<br>329.7<br>330.5<br>332.3<br>334.3<br>335.1                            | AXIAL M. IN .345 .357 .371 .378 .381 .381 .389 .403 .403 .349 .294                                  | RATIO<br>.944<br>.966<br>.975<br>.969<br>.974<br>.999<br>1.019                                                                    |
| .861<br>.864<br>.895<br>.928                                             | RATIO<br>1.058<br>1.061<br>1.063<br>1.061<br>1.060<br>1.062<br>1.061<br>1.061<br>1.065<br>1.071                            | ACH NO<br>OUT<br>.318<br>.336<br>.356<br>.362<br>.371<br>.387<br>.402<br>.411<br>.423               | 130.2<br>131.9<br>132.8<br>132.8<br>135.5<br>140.8                                                                                |
| .0<br>1 .0<br>1 .0<br>5 .0                                               | IN<br>11.79<br>11.76<br>11.71<br>11.68<br>11.68<br>11.66<br>11.67<br>11.70<br>11.77<br>11.79                               | MERID<br>IN<br>.348<br>.359<br>.372<br>.378<br>.381<br>.381<br>.404<br>.403<br>.353<br>.298         | 0UT<br>115.6<br>121.9<br>126.7<br>127.7<br>129.4<br>132.7<br>138.1<br>143.7                                                       |
| 70 .07<br>72 .07<br>75 .07<br>59 .05<br>43 .04<br>34 .03                 |                                                                                                                            | .319<br>.337<br>.352<br>.356<br>.362<br>.371<br>.387<br>.403<br>.413                                | RATIO<br>.941<br>.964<br>.974<br>.969<br>.974<br>.999<br>1.019                                                                    |
| SHOCK<br>0 .000<br>2 .000<br>5 .000<br>9 .000<br>3 .000                  | STATIC<br>IN<br>1.32435<br>1.32892<br>1.33879<br>1.34333<br>1.34692<br>1.34677<br>1.34839<br>1.35054<br>1.35054<br>1.35088 | -1.6<br>-2.1<br>-1.4<br>2                                                                           | -3.7<br>-4.8<br>-3.4                                                                                                              |
| . 0<br>. 0<br>. 0<br>. 0                                                 | 0UT<br>1.47<br>1.48<br>1.49<br>1.50<br>1.51<br>1.51<br>1.51<br>1.49<br>1.47                                                | OUT<br>31.6<br>30.9<br>29.9<br>29.1<br>30.8<br>31.7                                                 | 0UT<br>70.8<br>72.9<br>72.6<br>71.1<br>77.1<br>81.8<br>86.8<br>94.0                                                               |
| 13 .01<br>14 .01<br>15 .01<br>12 .01                                     | 189 31<br>229 30<br>648 30<br>8895 30<br>376 30<br>472 30<br>494 30<br>693 30<br>104 30<br>513 30                          | -1.6 3<br>-2.1 3<br>-1.4 3<br>2 3<br>1.4 3                                                          | RADIA<br>IN<br>-14.9<br>-12.7<br>-8.4<br>-4.3<br>5<br>7.2<br>11.8<br>16.6<br>17.7                                                 |
| 3                                                                        | 0.2<br>8.2<br>4.8<br>2.8<br>2.2<br>1.7<br>1.6<br>1.7<br>2.1<br>4.5<br>7.0                                                  | UT<br>1.5<br>0.9<br>9.8<br>9.1                                                                      | 0UT<br>-10.4<br>-8.9<br>-5.8<br>-2.6<br>3.8<br>7.5<br>11.7                                                                        |
| 00 <b>0</b><br>0 <b>00</b><br>00 <b>0</b><br>000                         | 0UT<br>327.1<br>325.6<br>322.3<br>319.9<br>318.5<br>317.5<br>316.5<br>315.8<br>315.4                                       | IN<br>66.0<br>65.0                                                                                  | 1 12<br>1 12<br>1 13<br>1 13<br>1 13<br>1 13<br>1 14<br>1 14                                                                      |
| PEAK SS<br>MACH NO<br>1.188<br>1.174<br>1.168<br>1.163<br>1.120<br>1.105 | IN<br>276.<br>270.<br>257.<br>245.<br>233.<br>221.<br>208.<br>196.<br>183.<br>170.                                         | &S 7                                                                                                | 22.9 12<br>26.5 1<br>30.2 1<br>32.1 1<br>32.9 1<br>32.8 1<br>35.5 1<br>40.8 1<br>40.5 1<br>23.5 1                                 |
|                                                                          | 1 272.1<br>1 266.8<br>8 255.6<br>4 244.4<br>2 222.3<br>9 211.4<br>5 200.6<br>8 190.2<br>6 180.1<br>7 175.1                 | 65.8<br>64.9<br>63.6<br>62.4<br>60.7<br>57.6<br>57.5<br>54.5<br>52.1                                | 42.0 2<br>46.1 2<br>46.2 2<br>50.6 2<br>55.8 2<br>63.1 2<br>71.7 2                                                                |
|                                                                          |                                                                                                                            | 0UT<br>60.1                                                                                         | 00.0<br>98.4<br>92.8<br>85.1<br>71.3<br>62.1<br>51.9<br>42.2<br>28.6<br>09.8                                                      |
|                                                                          |                                                                                                                            |                                                                                                     | 232.<br>229.<br>222.<br>215.<br>202.<br>193.<br>186.<br>178.                                                                      |

(r) 70 Percent of design speed; reading 1497

| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>RP | RADI<br>IN<br>23.566 2<br>23.050 2<br>22.058 2<br>22.0958 2<br>19.916 1<br>18.877 1<br>17.831 1<br>16.769 1<br>15.684 1<br>14.559 1<br>13.967 1 | OUT<br>3.223<br>2.766<br>1.814<br>0.856<br>9.909<br>8.939<br>7.122<br>6.231<br>5.367<br>4.945 | 115.7<br>115.3<br>117.0<br>119.6<br>123.9<br>127.9<br>121.0<br>101.9<br>90.0                            | OUT<br>112.3<br>114.4<br>111.7<br>110.7<br>115.1<br>120.5<br>125.6<br>127.1<br>124.3<br>128.6<br>136.5 | RATIO<br>.985<br>.989<br>.969<br>.947<br>.968<br>1.008<br>1.014<br>.994<br>1.027<br>1.261<br>1.517 | 115.6<br>117.0<br>119.0<br>119.6<br>124.0<br>128.3<br>121.8<br>103.1<br>91.3 | OUT<br>112.8<br>114.7<br>111.8<br>110.8<br>115.1<br>120.6<br>125.8<br>127.5<br>125.0<br>129.9<br>138.3 | .982<br>.986<br>.968<br>.946<br>.968<br>1.008<br>1.014<br>.993<br>1.026<br>1.260                               | ARS R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 78.0<br>79.2<br>94.5<br>96.2<br>97.6<br>95.7<br>97.7<br>104.7<br>122.0<br>134.6<br>128.1 | -13.<br>-11.<br>-7.<br>-3.<br>2<br>6<br>10<br>14<br>15<br>15                                  | 9 -10.<br>6 -8.<br>4 -5.<br>8 -2.<br>4 .<br>9 3.<br>6 6.<br>7 10.<br>1 13.<br>5 19.<br>4 22.                    | 1 11<br>4 11<br>1 11<br>2 11<br>5 11<br>5 11<br>8 12<br>4 12<br>6 16         | 15.0 13<br>15.6 14<br>15.6 14<br>17.0 14<br>19.0 15<br>19.7 15<br>24.1 15<br>28.3 16<br>22.0 17<br>23.2 18 | 7.1<br>19.4<br>16.4<br>16.7<br>10.9<br>13.9<br>19.3<br>14.7<br>187.0<br>188.5 |                                                                              |  |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                   | IN<br>.323<br>.328<br>.327<br>.333<br>.339<br>.342<br>.355<br>.367<br>.349<br>.294                                                              | 0UT<br>-374<br>-380<br>-402<br>-405<br>-418<br>-428<br>-444<br>-460<br>-488<br>-523<br>-527   | 1N<br>-853<br>-846<br>-789<br>-768<br>-746<br>-729<br>-699<br>-666<br>-614<br>-559<br>-552              | .612<br>.600<br>.538<br>.510<br>.493<br>.486<br>.473<br>.445<br>.398<br>.385<br>.408                   | IN .320 .326 .326 .339 .342 .354 .366 .346 .349 .256                                               | .347<br>.360<br>.382                                                         | IN<br>.322<br>.327<br>.327<br>.339<br>.342<br>.355<br>.367<br>.259                                     | 2 .307<br>.313<br>.307<br>.307<br>.305<br>.319<br>.325<br>.355<br>.351<br>.356<br>.349<br>.349<br>.363<br>.387 | 1.9<br>.9<br>.2<br>-1.9<br>9<br>.9<br>3.1<br>2.1<br>-4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                          | -3.5<br>1.9<br>.9<br>.2<br>-1.9<br>9<br>3.1<br>2.1<br>-4.8                                    | 46.0<br>42.8                                                                                                    | 67.3<br>65.6<br>64.4<br>63.0<br>62.0<br>59.6<br>56.7<br>55.7<br>58.6<br>62.3 | 55.3<br>53.2<br>49.7<br>46.4<br>42.2<br>37.1<br>29.8<br>19.0                                               | 67.2<br>65.5<br>64.4<br>63.0<br>62.0<br>59.5<br>56.6<br>55.5<br>58.3<br>62.0  | 59.8<br>58.6<br>55.2<br>53.2<br>49.7<br>46.4<br>42.1<br>37.0<br>28.6<br>19.3 |  |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10             | IN<br>13.01<br>13.02<br>12.96<br>12.98<br>13.02<br>13.01<br>13.10<br>13.21<br>13.21                                                             | DUT<br>15.88<br>15.96<br>16.06<br>16.08<br>16.14<br>16.19<br>16.25<br>16.34<br>16.38<br>16.51 | SURE<br>RATIO<br>1.220<br>1.226<br>1.239<br>1.239<br>1.239<br>1.245<br>1.240<br>1.240<br>1.240<br>1.280 | IN<br>322.3<br>320.6<br>317.8<br>315.1<br>312.9<br>311.8<br>312.2<br>312.6<br>312.3<br>312.1           | 344.8<br>343.5<br>340.9<br>338.1<br>335.5<br>333.8<br>333.1<br>334.2<br>335.6                      | RATIO                                                                        | IN<br>12.11<br>12.08<br>12.03<br>12.03<br>12.02<br>12.00<br>12.01<br>12.04<br>12.11                    | PRESS<br>047<br>14.42<br>14.44<br>14.37<br>14.31<br>14.28<br>14.20<br>14.13<br>13.70<br>13.58                  | STATI<br>IN<br>1.3346<br>1.3413<br>1.3469<br>1.3592<br>1.3770<br>1.3771<br>1.383<br>1.3779<br>1.378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 01<br>25 1.4<br>31 1.3<br>29 1.3<br>24 1.3<br>46 1.3<br>33 1.3<br>38 1.3<br>18 1.3       | JT<br>49759<br>50706<br>51561<br>52899<br>53785<br>54473<br>54473<br>544052<br>52023<br>50016 | STATIC<br>IN<br>315.7<br>313.8<br>311.2<br>308.3<br>305.9<br>304.7<br>304.5<br>304.4<br>304.9<br>306.8<br>308.4 | 0UT<br>335.4<br>333.9<br>330.3<br>327.3<br>324.1<br>322.1<br>320.5           | 1N<br>276.<br>270.<br>257.<br>245.<br>233.<br>221.<br>209.<br>183.<br>170.                                 | 1 266<br>8 255<br>6 244<br>4 233<br>2 222<br>0 211<br>5 200<br>8 190<br>6 180 | T .2 .8 .6 .4 .3 .3 .4 .7 .2 .1                                              |  |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10             | 40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0                                                                                                    | INC<br>MEAN<br>5.8<br>6.1<br>6.0<br>6.0<br>7.8<br>6.9<br>5.3<br>4.1<br>9.7                    | 3.3<br>3.6<br>3.4<br>3.5<br>3.7<br>2.2                                                                  | 5.7<br>4.9<br>3.5<br>4.0<br>3.7<br>4.5<br>5.2<br>5.7                                                   | .41<br>.43<br>.44<br>.43<br>.42<br>.43<br>.47                                                      | 4 .83<br>4 .83<br>2 .87<br>4 .86<br>0 .87<br>5 .91                           | . C T(<br>36                                                                                           | 097 .0<br>100 .1<br>090 .0<br>099 .0<br>094 .0<br>068 .0<br>044 .0<br>040 .0                                   | OF SHOWN SHO | CK<br>000<br>000<br>000<br>000<br>000<br>000                                             | LOSS<br>TOT<br>.018<br>.019<br>.018<br>.020<br>.020<br>.014<br>.010<br>.009<br>.019<br>.009   | .018                                                                                                            | .000<br>.000                                                                 | PEAK SS<br>MACH NO<br>1.250<br>1.240<br>1.154<br>1.128<br>1.131<br>1.078<br>1.0946<br>.944<br>1.012        |                                                                               |                                                                              |  |



TABLE XI. - Continued. BLADE-ELEMENT PERFORMANCE AT BLADE EDGES FOR SECOND-STAGE ROTOR

(s) 60 Percent of design speed; reading 1510

| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7                 | RADII<br>IN<br>23.566 23<br>23.050 22<br>22.001 21<br>20.958 20<br>19.916 15<br>18.877 16      | 0UT<br>3.223<br>2.766<br>1.814<br>0.856<br>2.909<br>3.969                         | AXIA<br>IN<br>87.7<br>97.1<br>104.6<br>106.8<br>109.6<br>112.3<br>114.8                                | VELOC<br>OUT<br>90.7<br>102.1<br>108.8<br>110.9<br>114.9<br>119.7<br>126.5                                  | RATIO<br>1.033<br>1.052<br>1.040<br>1.039<br>1.048<br>1.066<br>1.102          | 104.9<br>106.8<br>109.6<br>112.3                                                                | ONAL VE<br>OUT<br>91.0<br>102.4<br>108.9<br>110.9<br>114.9<br>119.8<br>126.7                | LOCITY<br>RATIO<br>1.030<br>1.049<br>1.039<br>1.038<br>1.048<br>1.047<br>1.102                | TANG<br>1N<br>-2.7<br>-4.0<br>-6.4<br>-5.1<br>-3.7<br>-3.0<br>-3.0                                                         | VEL<br>0UT<br>17.2<br>20.1<br>19.0<br>21.0<br>25.5<br>32.0<br>40.2                                | -10.7<br>-9.8<br>-6.7                                                                                                                                | OUT -8.2 -7.5 -5.0 1 -2.2 1 .5 1 3.4                                                   | ABS VEL<br>IN OUT<br>88.4 92.6<br>97.6 104.3<br>05.1 110.6<br>06.9 112.9<br>09.7 117.7<br>12.3 124.0<br>15.0 132.9 | 220.6<br>218.3<br>210.5<br>203.2<br>196.9                                                       | VEL<br>0UT<br>200.<br>199.<br>197.<br>190.<br>182.<br>174.<br>168. |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 8<br>9<br>10<br>11                                    | 16.769 17<br>15.684 16<br>14.559 15<br>13.967 14                                               | 7.122<br>5.231<br>5.367                                                           | 118.0<br>121.1<br>112.5                                                                                | 132.3<br>138.4<br>148.1<br>154.0                                                                            | 1.121<br>1.143<br>1.316<br>1.594                                              | 118.4<br>121.9<br>113.8                                                                         | 132.8<br>139.2                                                                              | 1.121<br>1.142<br>1.315<br>1.592                                                              | -2.1<br>-2.0<br>-3.7<br>-7.6                                                                                               | 48.4<br>60.4<br>74.0<br>78.2                                                                      | 9.9<br>14.1<br>17.1                                                                                                                                  | 10.8 1<br>15.4 1<br>21.4 1                                                             | 18.5 141.3<br>22.0 151.8<br>13.9 167.0<br>98.3 174.6                                                               | 185.8<br>181.1<br>169.9                                                                         | 163.<br>158.<br>159.<br>163.                                       |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | ABS MACH<br>IN .256<br>.284<br>.312<br>.320<br>.328<br>.336<br>.346<br>.356<br>.356<br>.356    | NO<br>OUT<br>.267<br>.301<br>.320<br>.327<br>.341<br>.360<br>.440<br>.440<br>.484 | REL MA<br>IN .636<br>.641<br>.636<br>.514<br>.593<br>.575<br>.559<br>.543<br>.529<br>.495              | CH ND<br>OUT<br>-576<br>-576<br>-571<br>-551<br>-529<br>-507<br>-489<br>-460<br>-463<br>-473                | AXIAL M. 1N .254 .282 .305 .311 .320 .328 .335 .345 .328 .280                 | ACH NO<br>OUT<br>.261<br>.295<br>.315<br>.321<br>.333<br>.347<br>.367<br>.384<br>.401<br>.429   | MERID<br>IN<br>.256<br>.283<br>.306<br>.312<br>.320<br>.328<br>.336<br>.346<br>.356<br>.331 | .295<br>.315<br>.321<br>.333<br>.347<br>.367<br>.385<br>.403                                  | -1.8<br>-2.3<br>-3.5<br>-2.7<br>-1.9<br>-1.5<br>-1.0<br>9<br>-1.9                                                          | TAZ<br>OUT<br>10.7<br>11.1<br>9.9<br>10.7<br>12.5<br>15.0<br>15.0<br>20.1<br>23.6<br>26.5<br>26.9 | ABS BETAM<br>IN OUT<br>-1.8 10.<br>-2.3 11.<br>-3.5 9.<br>-2.7 10.<br>-1.9 12.<br>-1.5 15.<br>-1.5 17.<br>-1.0 20.<br>-9 23.<br>-1.8 26.<br>-4.4 26. | 7 66.4<br>1 63.9<br>9 61.3<br>5 57.4<br>0 55.2<br>6 53.1<br>0 50.5<br>4 47.9<br>3 48.3 | 0UT I<br>63.0 66<br>59.2 63<br>56.5 61<br>54.3 59<br>51.0 57<br>46.8 55<br>41.4 53<br>35.9 50<br>28.8 47           | .3 62.9<br>.8 59.1<br>.3 56.5<br>.5 54.3<br>.4 51.0<br>.2 46.8<br>.1 41.3<br>.4 35.8<br>.7 28.7 |                                                                    |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | IN 11.13 1 11.21 1 11.26 1 11.27 1 11.29 1 11.34 1 11.37 1 11.45 1 11.52 1 11.54 1             | 1.56<br>1.75<br>1.82<br>1.90<br>2.00<br>2.10<br>2.28<br>2.41<br>2.54              | URE<br>RATIO<br>1.039<br>1.048<br>1.050<br>1.056<br>1.062<br>1.067<br>1.080<br>1.089<br>1.109<br>1.133 | TOTAL<br>1N 300.6<br>299.6<br>298.3<br>297.9<br>297.9<br>297.9<br>297.9<br>298.7<br>299.3<br>299.9<br>300.3 | 304.5<br>304.2<br>303.0<br>302.5<br>302.8<br>303.5<br>304.0<br>307.8<br>309.9 | RATIO<br>1.(13<br>1.(15<br>1.015<br>1.015<br>1.016<br>1.019<br>1.022<br>1.024<br>1.028<br>1.033 | 10.60<br>10.55<br>10.53<br>10.52<br>10.52<br>10.51<br>10.54                                 | 0UT<br>11.00<br>11.03<br>11.01<br>11.05<br>11.07<br>11.07<br>11.08<br>11.08<br>10.98<br>10.90 | STATIO<br>IN<br>1.24829<br>1.25297<br>1.25556<br>1.25543<br>1.25673<br>1.25673<br>1.25825<br>1.25926<br>1.26976<br>1.26611 | 0UT<br>7 1.27<br>7 1.28<br>5 1.29<br>8 1.30<br>8 1.30<br>6 1.30<br>6 1.30<br>6 1.29               | IN<br>672 296.<br>1651 294.<br>1651 294.<br>1971 292.<br>19325 291.<br>1301 291.<br>1435 291.<br>1121 291.<br>1133 291.<br>1133 293.                 | 8 298.8<br>8 296.9<br>3 296.2<br>9 295.9<br>7 295.9<br>6 296.0<br>7 296.3<br>4 296.0   | 198.2 1<br>193.9 1<br>185.0 1<br>176.3 1<br>167.5 1<br>158.8 1<br>150.0 1<br>141.0 1<br>131.9 1<br>122.4 1         | EED<br>OUT<br>95.3<br>91.5<br>83.5<br>467.4<br>67.4<br>59.5<br>51.7<br>36.5<br>29.2             |                                                                    |
| RP<br>123455679910                                    | PERCENT<br>SPAN<br>5.0<br>10.0<br>20.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0<br>95.0 | INCI<br>MEAN<br>4.3<br>2.6<br>1.8<br>1.4<br>1.0<br>9<br>-2.9                      | DENCE<br>55<br>1.8<br>-1.9<br>-1.3<br>-2.1<br>-3.1<br>-4.2<br>-6.1<br>-8.4<br>-8.7<br>-5.6             | DEVIA<br>8.8<br>5.5<br>4.7<br>5.0<br>4.9<br>4.4<br>5.8<br>7.9                                               | .123<br>.135                                                                  | .848<br>.875<br>.901<br>1.024<br>1.066<br>1.008<br>1.017<br>.965<br>.870                        | TO                                                                                          | 28 .02<br>27 .02<br>22 .02<br>0600<br>1801<br>0300<br>0700<br>16 .01<br>72 .07                | F SHOCK<br>8 .000<br>7 .000<br>2 .000<br>6 .000<br>8 .000<br>7 .000<br>6 .000<br>2 .000<br>1 .000                          | 70<br>0 .0<br>0 .0<br>00<br>00<br>00                                                              | 05 .005<br>05 .005<br>04 .004<br>01001<br>04001<br>001<br>01001<br>01001<br>01001<br>01001                                                           |                                                                                        | PEAK SS<br>HACH NO<br>.898<br>.861<br>.836<br>.811<br>.782<br>.757<br>.736<br>.704<br>.671<br>.661                 |                                                                                                 |                                                                    |

(t) 60 Percent of design speed; reading 1521

| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | RADII IN OUT 23.5666 23.223 23.050 22.766 22.001 21.814 20.958 20.856 19.916 19.909 18.877 18.969 17.831 18.039 16.769 17.122 15.684 16.231 14.559 15.367 13.967 14.945 | 1N 0<br>85.0 8<br>87.9 9<br>92.8 9<br>94.8 9<br>95.0 9<br>95.8 10<br>98.9 10<br>103.0 11<br>103.0 11      | VELOCITY OUT RATIO 82.2 .968 90.2 1.026 95.2 1.026 95.9 1.012 97.7 1.028 00.7 1.050 06.5 1.077 12.4 1.092 17.6 1.32 23.5 1.347 25.3 1.658                         | HERIDIONAL VE<br>IN OUT<br>85.6 82.6<br>88.4 90.5<br>93.0 95.3<br>94.8 95.9<br>95.0 97.7<br>95.9 100.7<br>99.1 106.7<br>103.3 112.8<br>104.6 118.3<br>92.7 124.8<br>76.7 127.0 | RATIO                                                                                                                         | TANG VEL IN OUT 4.2 39.9 1.6 40.7 -2.0 41.7 -3.3 42.4 -1.2 46.8 -1.6 50.57 54.9 1.1 60.8 3.1 72.1 .2 80.9 -4.8 81.9                                                                                                    | RADIAL VEL<br>IN OUT<br>-10.4 -7.4<br>-8.9 -6.6<br>-6.0 -4.3<br>-3.1 -1.9<br>-3.3 2.9<br>5.3 5.8<br>8.6 9.2<br>12.1 13.1<br>13.9 17.8<br>12.9 20.4                    | ABS VEL IN 0UT 85.7 91.7 88.4 99.2 93.0 104.0 94.9 104.9 95.0 108.3 95.9 112.6 99.1 120.0 103.3 128.1 104.6 138.5 92.7 148.7 76.8 151.1                                            | REL VEL IN 0UT 212.5 176.4 212.0 176.2 209.3 171.2 203.4 174.2 180.6 144.3 174.2 146.2 134.5 153.7 134.6 |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | ABS MACH NO IN OUT .247 .261 .255 .283 .269 .275 .301 .276 .311 .279 .324 .288 .345 .300 .369 .304 .399 .269 .428 .222 .435                                             | .612<br>.612<br>.606<br>.590<br>.563<br>.544<br>.525<br>.506                                              | NO AXIAL MOUT IN .503 .245 .503 .254 .490 .269 .471 .275 .447 .276 .427 .278 .415 .287 .404 .299 .388 .302 .386 .266 .387 .218                                    | ACH NO MERID OUT IN .235 .241 .258 .255 .261 .275 .275 .275 .275 .289 .275 .306 .323 .300 .339 .356 .266 .361 .222                                                             | 5 .258<br>9 .273<br>5 .275<br>6 .280<br>9 .307<br>0 .325<br>4 .341<br>9 .359                                                  | ABS BETAZ<br>IN OUT<br>2.8 25.9<br>1.1 24.3<br>-1.3 23.7<br>-2.0 23.9<br>7 25.6<br>9 26.6<br>4 27.3<br>1.7 31.5<br>1.1 33.2<br>-3.6 33.2                                                                               | IN OUT 2.8 25.8 6.1 1.1 24.2 -1.3 23.6 62.0 23.9 67 25.6 6 -9 26.6 6 -4 27.2 5 .6 28.3 5 1.7 31.3 5                                                                   | IN OUT IN                                                                                                                                                                          | 5 56.2<br>2 54.3<br>7 51.1<br>2 47.4<br>7 42.3<br>6 36.5<br>0 28.7<br>7 21.3                             |
| RP<br>1234<br>567<br>8910                             | TOTAL PRES IN OUT 11.39 12.26 11.41 12.38 11.45 12.44 11.46 12.52 11.46 12.58 11.51 12.69 11.57 12.82 11.63 12.93 11.55 13.08 11.40 13.05                               | RATIO<br>1.076 3<br>1.085 3<br>1.086 3<br>1.098 2<br>1.093 2<br>1.109 2<br>1.108 3<br>1.112 3<br>1.1133 3 | 803.1 310.1<br>802.5 310.0<br>809.9 308.9<br>899.9 307.5<br>899.3 307.6<br>899.5 307.6<br>899.3 307.6<br>899.3 307.6<br>899.3 307.6<br>899.3 307.6<br>899.3 311.1 | TURE STATIO IN 1.023 10.92 1.025 10.90 1.027 10.89 1.027 10.87 1.027 10.87 1.028 10.86 1.028 10.86 1.029 10.87 1.031 10.90 1.035 10.98 1.036 11.01                             | 11.71<br>11.70<br>11.71<br>11.71<br>11.70<br>11.69<br>11.67<br>11.59<br>11.59                                                 | STATIC DENSI<br>IN OUT<br>1.27055 1.33<br>1.27220 1.33<br>1.27820 1.34<br>1.28202 1.34<br>1.28306 1.35<br>1.28362 1.35<br>1.28450 1.35<br>1.28450 1.35<br>1.28565 1.35<br>1.28861 1.34<br>1.29101 1.33<br>1.28816 1.32 | 1N 0<br>156 299.4 30<br>738 298.6 30<br>267 296.6 30<br>2935 295.4 30<br>237 295.0 30<br>284 294.7 30<br>378 294.6 30<br>412 294.6 30<br>412 294.8 30<br>893 296.4 30 | UT IN OU<br>5.9 198.7 199<br>5.1 194.3 193<br>3.5 185.5 183<br>2.4 176.7 179<br>1.7 167.9 167<br>1.3 159.1 159<br>0.7 150.3 150<br>0.4 141.4 144<br>0.4 132.2 133<br>0.1 122.7 129 | JT<br>5.8<br>3.9<br>5.8<br>7.8<br>9.9<br>2.1<br>4.3                                                      |
| RP<br>12345567789110111                               | PERCENT INC<br>SPAN MEAN<br>5.0 4.3<br>10.0 4.2<br>20.0 4.1<br>30.0 4.7<br>50.0 5.0<br>60.0 4.7<br>70.0 2.3<br>80.0 4.7<br>90.0 1.7                                     | 1.8<br>1.7<br>1.5<br>1.4<br>1.2<br>.8<br>6<br>3 -2.8<br>-2.8                                              | DDEVIA FACTOR 7.9 .233 4.4 .256 5.0 .268 5.1 .278 5.5 .291 5.8 .289 5.8 .29 8.8 .29 8.8 .29 8.3 .251 13.3 .211                                                    | EFFIC T .922958                                                                                                                                                                | LOSS COEFF<br>OT PROF<br>027 .027<br>016 .016<br>041 .041<br>035 .035<br>017 .017<br>013 .013<br>006006<br>024024<br>011 .011 | SHOCK TO                                                                                                                                                                                                               | 05 .005 .00<br>03 .003 .00<br>08 .008 .00<br>07 .007 .00<br>03 .003 .00<br>01001 .00<br>05005 .00<br>03 .003 .00<br>10010 .00                                         | 0 .865<br>0 .856<br>0 .847<br>0 .835<br>0 .807<br>0 .791<br>0 .758<br>0 .714<br>0 .670<br>0 .671                                                                                   |                                                                                                          |

(u) 60 Percent of design speed; reading 1533

|                                                       |                                                                                                                                                                                      |                                                                                                         |                                                                                              |                                                                                      | (-, 00                                                                                        |                                                                                      | D-B.                                                                                                     | poou, roud                                                                                                                            | T000                                                                                |                                                                                                                             |                                                              |                                                                                                                                                    |                                                                                                                              |                                                                                                      |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | RADII IN OUT 23.566 23.223 23.050 22.766 22.001 21.814 20.958 20.856 19.916 19.909 18.877 18.969 17.831 18.969 17.831 18.939 16.769 17.122 15.684 16.231 14.559 15.367 13.967 14.945 | IN<br>81.4<br>82.6<br>82.4<br>83.5<br>84.7<br>88.3<br>92.3<br>874.6                                     | 82.9<br>84.3<br>84.5<br>84.8<br>86.2<br>89.1<br>97.2<br>97.4                                 | RATIO<br>1.019<br>1.021<br>1.032<br>1.029<br>1.033<br>1.052                          |                                                                                               | 0UT<br>83.3<br>84.5<br>84.6<br>84.8<br>86.2<br>89.1<br>94.0<br>97.5<br>98.0<br>101.7 | RATIO<br>1.015<br>1.019<br>1.031<br>1.029<br>1.033<br>1.052<br>1.052<br>1.052<br>1.059<br>1.349<br>1.601 | TANG IN 1.95 4.1 1.5 1.05 3.5 6.6 3.3                                                                                                 | VEL<br>49.0<br>49.9<br>58.8<br>59.7<br>62.1<br>62.2<br>64.7<br>70.4<br>82.3<br>90.5 | -9.9 -<br>-8.3 -<br>-5.3 -<br>-2.7 -<br>3 2.1<br>4.7 7.7 10.3 1                                                             | UT 7.5 8 8 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9                 | ABS VEL<br>N 001<br>12.0 96<br>13.0 98<br>12.2 103<br>12.5 103<br>13.5 106<br>14.7 108<br>18.6 114<br>12.7 120<br>19.4 128<br>15.5 136<br>16.5 139 | T IN<br>.6 212.5<br>.2 211.0<br>.0 198.4<br>.7 192.9<br>.3 186.0<br>.7 180.1<br>.1 173.2<br>.3 165.6<br>.0 153.6<br>.1 140.9 | VEL<br>0UT<br>168.0<br>164.6<br>150.4<br>143.2<br>135.9<br>127.9<br>122.0<br>111.9<br>108.8<br>112.0 |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | ABS HACH NO IN OUT .235 .274 .238 .278 .293 .293 .242 .303 .245 .311 .257 .327 .269 .345 .259 .367 .218 .390 .192 .401                                                               | REL MAN<br>IN .609<br>.606<br>.571<br>.557<br>.538<br>.522<br>.502<br>.445<br>.407<br>.395              | CH NO<br>OUT<br>.476<br>.467<br>.427<br>.408<br>.388<br>.377<br>.366<br>.350<br>.321<br>.312 | AXIAL HA<br>IN .234<br>.237 .236<br>.238 .242<br>.245 .256<br>.268 .257 .216<br>.189 | ACH NO<br>OUT<br>.235<br>.239<br>.240<br>.241<br>.246<br>.255<br>.269<br>.278<br>.279<br>.289 | MERID IN .235 .238 .236 .238 .242 .245 .257 .269 .258 .218 .192                      | 0UT<br>.236<br>.240<br>.240<br>.242<br>.246<br>.255<br>.269<br>.279<br>.281                              | ABS BE IN 1.33 2.9 1.173 6.2 2.4 .3 2.5 -2.2                                                                                          | OUT<br>30.6<br>30.6<br>34.8<br>35.2<br>35.8<br>34.9<br>34.6<br>35.9                 | ABS BETAM<br>IN OUT<br>1.3 30.5<br>3 30.5<br>2.9 34.8<br>1.1 35.8<br>3 34.9<br>.6 34.6<br>2.2 40.0<br>2.5 41.6<br>-2.1 40.4 | 66.9<br>65.6<br>64.7<br>63.3<br>62.0<br>59.3<br>56.1<br>54.7 | DUT<br>60.4<br>59.2<br>55.8<br>50.6<br>47.5<br>42.7<br>37.0<br>21.0                                                                                | REL BETAM IN OUT 67.3 60.3 66.8 59.1 65.6 55.8 64.7 53.7 63.3 50.6 62.0 47.5 66.0 36.9 64.5 28.8 67.6 20.8                   |                                                                                                      |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | TOTAL PRES IN OUT 11.54 12.68 11.54 12.71 11.50 12.77 11.51 12.79 11.52 12.80 11.52 12.83 11.57 12.89 11.63 12.98 11.63 13.01 11.49 13.08 11.43 13.08                                | SURE<br>RATIO<br>1.099<br>1.102<br>1.110<br>1.112<br>1.112<br>1.114<br>1.114<br>1.115<br>1.119<br>1.138 | IN<br>305.8<br>304.9<br>303.6<br>301.9<br>300.7<br>300.1<br>300.6<br>300.6                   | 314.9<br>314.5<br>313.6<br>312.1<br>310.8<br>310.1<br>309.8<br>310.2<br>310.2        | RATIO<br>1.030<br>1.031<br>1.033<br>1.034<br>1.033<br>1.032<br>1.032<br>1.032                 | 11.06<br>11.06<br>11.06<br>11.05                                                     | 0UT<br>12.03<br>12.05<br>12.03<br>12.04<br>12.01<br>12.00<br>11.97<br>11.95<br>11.86<br>11.77            | STATIC<br>IN<br>1.27876<br>1.28126<br>1.28367<br>1.29113<br>1.29620<br>1.29805<br>1.29951<br>1.30104<br>1.30402<br>1.30063<br>1.30015 | 0UT<br>1.35<br>1.35<br>1.36<br>1.37<br>1.37<br>1.37<br>1.37                         | IN<br>302.4<br>301.5<br>957 300.2<br>765 298.5<br>1458 296.6<br>476 296.3<br>452 296.3<br>5517 296.5                        | 306.7<br>305.2<br>304.2<br>303.3<br>303.0<br>302.6           | 193.5<br>184.7<br>176.0<br>167.2<br>158.5<br>149.7<br>140.8<br>131.7                                                                               | SPEED<br>0UT<br>195.0<br>191.1<br>183.1<br>175.1<br>157.1<br>159.3<br>151.4<br>143.8<br>136.3<br>129.0<br>125.5              |                                                                                                      |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | PERCENT INC<br>SPAN MEAN<br>5.0 5.3<br>10.0 5.7<br>20.0 6.1<br>30.0 7.0<br>40.0 7.4<br>50.0 7.7<br>60.0 6.6<br>70.0 4.7<br>80.0 3.9<br>90.0 6.4<br>95.0 8.7                          | 2.8<br>3.4<br>3.9<br>3.8<br>1.9                                                                         | 6.1<br>4.4<br>4.6<br>5.8<br>6.0<br>8                                                         | D<br>FACTOR<br>.292<br>.308<br>.339<br>.375<br>.376<br>.376<br>.376<br>.378          | .912<br>.894<br>.922<br>.912<br>.909<br>.944<br>.976                                          | .0                                                                                   | T PRO .04451 .05444 .04552 .05558 .055 .0042 .042 .00900                                                 | 1                                                                                                                                     | .0<br>.0<br>.0<br>.0<br>.0<br>.0                                                    | 08                                                                                                                          | TER F SHOCK F .000 .000 .000 .000 .000 .000 .000 .           | PEAK SS<br>HACH NO<br>.883<br>.879<br>.836<br>.820<br>.809<br>.768<br>.716<br>.671<br>.679                                                         |                                                                                                                              |                                                                                                      |

(a) 100 Percent of design speed; reading 1283

| RP 1 2 3 4 5 6 7 8 9                                  | RADII<br>IN OUT<br>23.142 23.160<br>22.697 22.730<br>21.788 21.849<br>20.889 20.973<br>20.002 20.109<br>19.129 19.258<br>18.268 18.423<br>17.414 17.600<br>16.576 16.800 | AXIAL VELO<br>IN OUT<br>176.2 164.1<br>175.1 170.7<br>177.2 177.5<br>183.1 178.4<br>185.0 176.5<br>184.5 174.5<br>181.2 170.1<br>172.1 168.5 | RATIO IN .931 176.2 .975 175.1 1.004 177.2 .974 183.1 .954 185.1 .946 184.6 .942 181.4 .978 172.3 1.036 158.4                  | 176.5 .954<br>174.7 .946<br>170.8 .941<br>168.4 .977<br>163.8 1.034                                                                                     | TANG VEL IN OUT 136.7 14.8 143.2 17.7 147.7 10.9 141.4 7.8 142.6 7.4 145.4 8.1 150.5 6.6 163.4 8.0 187.5 13.6 | RADIAL VEL<br>IN OUT<br>.5 .5<br>1.2 1.0<br>2.3 2.0<br>3.6 2.9<br>4.8 3.5<br>6.2 4.1<br>7.5 4.5<br>8.7 4.8<br>9.6 5.0                                  | ABS VEL IN OUT 223.1 164.7 226.2 171.6 230.7 178.2 231.4 178.6 233.6 176.7 235.0 174.9 235.7 170.9 237.5 168.6 245.5 164.4 | REL VEL IN 0UT 223.1 164.7 226.2 171.6 230.7 178.2 231.4 178.6 233.6 176.7 235.0 174.9 237.5 168.6 245.5 164.4 |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 10<br>11<br>RP                                        | 15.751 16.035<br>15.342 15.669<br>ABS MACH NO                                                                                                                            | 158.8 147.3<br>172.5 136.4<br>REL MACH NO                                                                                                    | .791 173.1<br>AXIAL MACH NO                                                                                                    | MERID MACH NO                                                                                                                                           | 200.7 12.2<br>188.2 8.5<br>ABS BETAZ<br>IN OUT                                                                |                                                                                                                                                        |                                                                                                                            | 256.2 147.7<br>255.7 136.7<br>BETAM                                                                            |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9             | IN OUT .574 .417 .584 .436 .601 .458 .607 .462 .617 .459 .622 .455 .626 .445 .630 .439 .652 .427 .681 .381 .679 .352                                                     | IN OUT .574 .41 .584 .43 .601 .45 .607 .46 .617 .45 .622 .45 .626 .44 .630 .43 .652 .42 .681 .38 .679 .35                                    | 5 .452 .434<br>8 .461 .457<br>2 .480 .461<br>9 .488 .459<br>6 .489 .455<br>6 .481 .445<br>7 .420 .425<br>4 .422 .380           | .452 .434<br>.461 .457<br>.481 .461<br>.489 .459<br>.489 .455<br>.481 .445<br>.458 .439<br>.420 .425<br>.423 .380                                       | IN OUT 37.8 5.2 39.3 5.9 39.8 3.5 37.7 2.5 37.6 2.4 38.2 2.6 39.7 2.2 43.5 2.7 49.9 4.8 51.7 4.7 47.5 3.6     | 37.8 5.2 3 39.3 5.9 3 39.8 3.5 3 37.7 2.5 3 37.6 2.4 3 38.2 2.6 3 39.7 2.2 3 43.5 2.7 4 49.8 4.8 4.8 5 51.6 4.7 5                                      | IN OUT IN 7.8 5.2 37.9 39.3 5.9 39.8 3.5 39.7 7.6 2.4 37.8 2.2 39.7 2.2 39.7 2.2 39.7 2.2 39.7 4.8 49.1 7.5 3.6 47         | .8 5.2<br>3 5.9<br>8 3.5<br>.7 2.5<br>.6 2.4<br>.2 2.6<br>.7 2.2<br>.5 2.7<br>.8 4.8<br>.6 4.7                 |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | TOTAL PRESS IN OUT 25.48 24.81 25.59 25.09 25.65 25.40 25.70 25.44 25.58 25.34 25.51 25.28 25.34 25.08 25.14 24.87 25.26 24.80 25.15 23.96 24.89 23.59                   | RATIO IN .974 401981 399990 393990 388991 384991 382990 381989 381982 383953 385948 386.                                                     | 399.8 1.000<br>393.8 1.000<br>6 384.6 1.000<br>9 382.9 1.000<br>2 381.2 1.000<br>381.4 1.000<br>4 383.4 1.000<br>2 385.2 1.000 | STATIC PRESS IN OUT 20.39 22.01 20.32 22.02 20.10 22.01 20.04 21.98 19.79 21.94 19.65 21.93 19.47 21.89 19.24 21.79 18.99 21.88 18.44 21.68 18.29 21.66 |                                                                                                               | T 1N C<br>7647 376.7 38<br>7124 374.4 38<br>2825 367.4 37<br>7038 357.5 36<br>7783 355.5 36<br>8007 353.6 36<br>6649 353.4 36<br>6065 353.5 31         |                                                                                                                            | EED DUT  .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0                                                                |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9       | PERCENT INCI<br>SPAN MEAN<br>5.0 2.7<br>10.0 4.4<br>20.0 4.8<br>30.0 2.6<br>40.0 1.8<br>50.0 1.3<br>60.0 1.5<br>70.0 3.8<br>80.0 7.7<br>90.0 6.0<br>95.05                | -3.0 19 -1.4 189 14 -3.1 12 -3.7 11 -4.2 11 -3.9 11 -1.6 12 2.5 15                                                                           | .6 .454<br>.1 .446<br>.1 .432<br>.7 .439<br>.8 .445<br>.5 .463<br>.3 .483<br>.2 .528<br>.5 .619                                | 000                                                                                                                                                     | OF SHOCK TI 31 .000 . 95 .000 . 45 .000 . 47 .000 . 39 .000 . 43 .000 . 47 .000 . 74 .000 .                   | LDSS PARAMETER OT PROF SHOO 051 .051 .00 036 .036 .00 016 .016 .01 014 .014 .0 013 .013 .0 013 .013 .0 014 .014 .0 021 .021 .0 047 .047 .0 051 .051 .0 | 00 .958<br>00 .992<br>00 1.011<br>00 .961<br>00 .957<br>00 .957<br>00 .972<br>00 1.180<br>00 1.236                         |                                                                                                                |



(b) 100 Percent of design speed; reading 1382

| RP            | RADII                                        | AXIA                            | r AEFOCII               |                        | MERIDION                                      |                       |                               | TANG                          |                       |                            | IAL VEL                 |                                              | ABS VEL                 | REL                                 |                         |
|---------------|----------------------------------------------|---------------------------------|-------------------------|------------------------|-----------------------------------------------|-----------------------|-------------------------------|-------------------------------|-----------------------|----------------------------|-------------------------|----------------------------------------------|-------------------------|-------------------------------------|-------------------------|
| 1 2           | IN OUT 23.142 23.16 22.697 22.73             | 0 176.4                         | 192.4 1                 | .091                   | IN<br>176.4 1<br>193.0 2                      | 0UT<br>192.4<br>212.0 | RATIO<br>1.091<br>1.098       |                               | OUT<br>-16.6<br>-11.1 | IN<br>1.                   | 0UT<br>5 .<br>3 1.      | 6 18                                         | 8.0 193                 | UT IN<br>3.2 188.0<br>2.2 206.4     | 0UT<br>193.2<br>212.2   |
| 3             | 21.788 21.84<br>20.889 20.97                 | 9 212.4<br>3 217.5              | 226.0 1<br>225.6 1      | 1.064<br>1.037         | 212.5 2<br>217.5 2                            | 226.0<br>225.6        | 1.064<br>1.037                | 77.0<br>74.1                  | -4.6<br>-4.0          | 2.<br>4.                   | 8 2.<br>3 3.            | 6 22<br>6 22                                 | 6.0 226<br>9.8 225      | 6.0 226.0<br>5.7 229.8              | 226.0<br>225.7<br>227.7 |
| 5<br>6<br>7   | 20.002 20.10<br>19.129 19.25<br>18.268 18.42 | 8 216.9                         | 234.9 1                 | .083                   | 217.1 2                                       | 235.0                 | 1.050<br>1.083<br>1.101       | 80.1<br>90.6<br>106.3         | -4.1<br>-5.1<br>-6.9  | 5.<br>7.<br>9.             | 3 5.                    | 6 23<br>5 23<br>4 25                         | 5.2 23                  | 7.7 231.1<br>5.0 235.2<br>1.2 251.5 | 235.0                   |
| 8             | 17.414 17.60<br>16.576 16.80                 | 0 245.4<br>0 255.4              | 275.2 1<br>283.9 1      | 1.122<br>1.112         | 245.7 2<br>255.8 2                            | 275.4<br>284.0        | 1.121<br>1.110                | 127.9<br>155.6                | -10.6<br>-8.6         | 12.<br>15.                 | 4 7.<br>6 8.            | 9 27<br><b>7</b> 29                          | 7.0 275<br>9.4 28       | 5.6 277.0<br>4.1 299.4              | 251.2<br>275.6<br>284.1 |
| 10            | 15.751 16.03<br>15.342 15.66                 |                                 | 266.9<br>259.5          | 1.105<br>1.200         | 242.3 2<br>217.0 2                            | 267.1<br>259.6        | 1.102<br>1.197                | 167.6<br>169.3                | 3.0<br>-3.7           | 17.<br>17.                 | 8 8.<br>7 8.            | 6 29<br>5 27                                 |                         | 7.1 294.6<br>9.6 275.2              | 267.1<br>259.6          |
| RP            | ABS MACH NO                                  | IN                              | OUT                     | AXIAL MA<br>IN         | OUT                                           | IN                    | MACH NO<br>OUT                |                               | OUT                   | ABS B                      | DUT                     | REL B                                        | OUT                     | REL BETAM<br>IN OUT                 |                         |
| 1<br>2<br>3   | .500 .51<br>.552 .56<br>.612 .61             | .552                            | .514<br>.569<br>.612    | .469<br>.516<br>.575   | .512<br>.568<br>.612                          | .469<br>.516<br>.575  | .568                          | 20.7                          | -4.9<br>-3.0<br>-1.2  | 20.2<br>20.7<br>19.9       | -4.9<br>-3.0<br>-1.2    | 20.2<br>20.7<br>19.9                         | -4.9<br>-3.0<br>-1.2    | 20.2 -4.9<br>20.7 -3.0<br>19.9 -1.2 |                         |
| 4 5           | .626 .61<br>.63 <b>0</b> .62                 | .4 .626                         | .614<br>.620            | .592<br>.591           | .614                                          | .593<br>.591          | .614<br>.620                  | 18.8<br>20.3                  | -1.0<br>-1.0          | 18.8<br>20.3               | -1.0<br>-1.0            | 18.8<br>20.3                                 | -1.0<br>-1.0            | 18.8 -1.0<br>20.3 -1.0              |                         |
| 6<br>7<br>8   | .641 .64<br>.687 .68<br>.758 .75             | .687                            | .640<br>.685<br>.754    | .591<br>.622<br>.672   | .640<br>.685<br>.753                          | .591<br>.622<br>.672  | . 685                         | 25.0                          | -1.2<br>-1.6<br>-2.2  | 22.6<br>25.0<br>27.5       | -1.2<br>-1.6<br>-2.2    | 22.7<br>25.0<br>27.5                         | -1.2<br>-1.6<br>-2.2    | 22.6 -1.2<br>25.0 -1.6<br>27.5 -2.2 |                         |
| .9<br>10      | .821 .77<br>.806 .72                         | 4 .821<br>2 .806                | .774<br>.722            | .701<br>.661           | .77 <b>4</b><br>.72 <b>2</b>                  | .702<br>.663          | .774<br>.722                  | 31.3<br>34.7                  | -1.7<br>.7            | 31.3<br>34.7               | -1.7<br>.7              | 31.3<br>34.7                                 | -1.7<br>.7              | 31.3 -1.7<br>34.7 .7                |                         |
| 11<br>RP      | .744 .69<br>TOTAL PR                         |                                 | .698                    | .584<br>TEHPERAT       | .697                                          | .586.                 | .697<br>PRESS                 | 38.1                          | 8<br>DENSI            | 38.0                       | 8<br>STATIC             | 38.1                                         | 8<br>uucci              | 38.08<br>SPEED                      |                         |
| 1             | IN OUT<br>18.11 17.4                         | RATIO                           | IÑ<br>369.9             | GUT F                  | OOO.                                          | IN<br>15.27           | 0UT<br>14.57                  | IN<br>1.51020                 | 0UT                   | 1449                       | IN                      | 0UT<br>351.4                                 | IN .O                   | OUT                                 |                         |
| 2<br>3        | 18.76 18.1<br>19.55 18.7                     | 9 .970<br>1 .957                | 369.1<br>365.2          | 369.1 1<br>365.2 1     | .000                                          | 15.25<br>15.19        | 14.61<br>14.53                | 1.52739<br>1.55676            | 7 1.46<br>5 1.48      | 82 <b>2</b><br>98 <b>1</b> | 347.9<br>339.8          | 346. <b>7</b> 339.8                          | . 0<br>. 0              | .0                                  |                         |
| 4<br>5<br>6   | 19.69 18.6<br>19.67 18.7<br>19.79 18.9       | 73 .952                         | 361.0                   | 361.0 1                | .00 <b>0</b>                                  | 15.05                 | 14.43<br>14.45<br>14.35       | 1.56980<br>1.56810<br>1.56029 | 1.50                  | 1164                       | 334.4                   | 336.5<br>335.2<br>335.3                      | .0<br>.0<br>.0          | .0                                  |                         |
| 7<br>8        | 20.30 19.5<br>21.74 20.6                     | 58 .965<br>53 .949              | 365.6                   | 365.6 1<br>370.5 1     | .000                                          | 14.81<br>14.86        | 14.30<br>14.16                | 1.54479                       | 9 1.49<br>3 1.48      | 1099                       | 334.1<br>332.3<br>330.7 | 334.2<br>332.7                               | .0                      | .0                                  |                         |
| 9<br>10<br>11 | 22.64 21.0<br>22.61 19.2<br>21.16 18.7       | 24 .851                         | 375.3<br>375.8<br>378.4 | 375.8 1                | .000                                          | 14.75                 | 14.14<br>13.59<br>13.51       | 1.53173<br>1.54483<br>1.4987  | 3 1.39                | 166                        | 332.6                   | 335.2<br>340.3<br>344.9                      | .0<br>.0<br>.0          |                                     |                         |
| RP            | PERCENT                                      | INCIDENCE                       |                         | D                      |                                               | ı                     | OSS COEF                      | FICIENT                       |                       | LOSS F                     | PARAMETE                | R I                                          | PEAK SS                 |                                     |                         |
| 1 2           | 5.0 -15                                      | AN SS<br>5.0 -20.8<br>1.3 -20.1 | 9.2<br>9.6              | FACTOR<br>.142<br>.128 | EFFI <b>C</b><br>.00 <b>0</b><br>.00 <b>0</b> | . 2                   | T PRO<br>235 .23<br>.62 .16   | 5 .000                        | ). (                  | 192 .                      | .092 .                  | 10CK 1<br>.00 <b>0</b><br>.00 <b>0</b>       | 1ACH NO<br>.500<br>.552 |                                     |                         |
| 3             | 20.0 -15<br>30.0 -16                         | 5.2 -20.9<br>5.4 -22.0          | 9.2<br>8.5              | .133                   | .00 <b>0</b>                                  | .1                    | 92 .19<br>238 .23             | 2 .00                         | ). 0<br>). 0          | )71 .<br>)84 .             | .071<br>.084            | .00 <b>0</b><br>.0 <b>00</b>                 | .612<br>.626            |                                     |                         |
| 5<br>6<br>7   | 40.0 -15<br>50.0 -14<br>60.0 -13             |                                 | 8.2<br>7.8<br>7.6       | .138<br>.132<br>.140   | .000<br>.000<br>.000                          | . 1                   | 204 .20<br>.85 .18<br>.31 .13 | 35 .00                        | 0.0                   | 060                        | .060                    | .00 <b>0</b><br>.00 <b>0</b><br>.00 <b>0</b> | .630<br>.641<br>.687    |                                     |                         |
| 8             | 70.0 -12<br>80.0 -10                         | 2.3 -17.7<br>0.9 -16.1          | 7.3<br>8.6              | .152                   | .000                                          | .1                    | .62 .16<br>201 .20            | 32 .00<br>11 .00              | 0 .(<br>0 .(          | ) 48<br>) 57               | .048<br>.057            | .00 <b>0</b>                                 | .76 <b>6</b><br>.947    |                                     |                         |
| 10<br>11      |                                              | 1.1 -16.2<br>0.0 -15.0          | 13.4<br>13.8            | .242<br>.219           | .000<br>.000                                  |                       | 129 .42<br>37 <b>9</b> .37    | 9 .00                         |                       | 115<br>199                 |                         | .00 <b>0</b><br>.00 <b>0</b>                 | .987<br>.977            |                                     |                         |

```
PERFORMANCE AT BLADE EDGES FOR SECOND-STAGE STATOR
                мг
                           RADII
                                                                             (c) 100 Percent of design speed; reading 1393
                                               AXIAL VELOCITY
                     23,142
                                  001
                             23.160
22.730
21.849
20.973
20.109
                     22.697
                                                                          HERIDIONAL VELOCITY
                                            167.7
                   21.788
20.889
20.002
19.129
18.268
                                                                RATIO
                                          183.2
197.5
200.9
                                                      166.4
                                                                 .992
                                                     181.4
                                                                                    0UT
166.4
                                                                           167.7
                                                                                              RATIO
                                                                                                            TANG VEL
                                                                 .990
                                                    194.5
195.9
                                                                         183.2
197.5
200.9
                                                                                                           I N
                                                                                                                               RADIAL VEL
                                                                .985
                                                                                   181.4
                                                                                               .992
                                         200.1
201.5
213.4
228.8
229.8
                                                                                                          91.4
                             19.258
                                                                                               .990
                                                                                                                                IN
                                                    196.7
                                                                                   194.5
                                                                                                                                                     ABS VEL
                                                                                                                    ~8.6
                                                                                                         97.2
                             18.423
                                                                                                                                         OUT
                                                                                                                               1.2
2.6
3.9
                                                   202.8
217.5
                                                                                               -985
                                                                -983
                                                                         200.2
                                                                                   196.0
                                                                                                                    -4.5
                            i7.600
                                                                                                         98.6
                                                                                                                                                    IN
                       .414
                                                                                                                                                                          REL
                                                                                              .975
                                                                                                                                            .5
                                                                                                                                                              OUT
                                                              1.006
                                                                                                                                                                                VEL
                   16.576 16.800
                                                                                  196.8
                                                                                                                                                   191.0
                                                                                                         94.0
                                                                                                                    -2.2
                                                                                                                                                            166.6
                                                                                                                  -6.2
-7.0
-7.8
-7.7
                                                                                                                                          1.1
             10
                                                   238.1
249.7
                                                              1.020
                                                                                  202.9
                                                                                              .983
                                                                                                                                                  207.4
                  15.751 16.035
                                                                                                       99.5
                                                                       213.5
228.5
230.2
223.1
                                                                                                                                                                       191.0
                                                                                                                                         2.2
                                                                                                                                                            181.4
                  15.342 15.669
                                                                                            1.006
             11
                                                             1.043
                                                                                                                                                  220.8
                                                                                                                                                                                 166.6
                                                                                                                                                                       207.4
                                         222.5
222.0
                                                                                                                                                           194.6
                                                  237.3
219.6
                                                             1.087
                                                                                238.2
249.8
237.4
219.7
                                                                                            1.019
                                                                                                                               5.2
                                                                                                                                                                    201.8
221.8
221.8
229.6
245.8
265.9
278.6
284.7
                                                                                                                                                 221.8
                                                                                                                                                                                181.4
                                                                                                       121.8
                                                            1.066
                                                                                                                                         3.9
                                                                                           1.042
                                                                                                                                                           196.1
            RP
                                                                                                                              6.8
                                                                                                                                                 223.6
                                                                                                                                                                                194.6
                   ABS MACH NO
                                                                                                       136.0
                                                             .989
                                                                                                                              8.9
                                                                                                                                         4.7
                                                                                                                                                           196.9
                                                                                           1.085
                                                                                                                                                                                196.1
                                       REL MACH NO
                                                                                                      156.9
                                                                                                                  -6.0
                                                                                                                                        5.7
                    IN
                                                                       222.8
                                                                                                                                                          203.1
217.8
                                                                                           1.064
                                                                                                                             11.6
                                                                                                                                               245.8
265.9
278.6
284.7
                                                                                                                                                                                196.9
                              OUT
                                                                                                                    . 7
                                                           AXIAL MACH
                                                                                                      176.9
                                                                                            .986
                                                                                                                                        6.9
                                                                                                                             14.0
                                                                                                                 10.8
7.0
                              .435
                                                                                                                                                                               203.1
                                                                                                     173.3
                                                                                                                                       7.7
7.7
7.2
                                                                                                                                                         238.2
                                                   OUT
                                                                                                                            16.4
18.2
                                                                          NO
                                                                                                                                                                               217.8
                                         -501
                                                                                MERID MACH NO
                              .476
                                                              l n
                                                   .435
                                         -548
                                                                       DUT
                             .516
.523
.527
                                                                                                                                                                              238.2
                                                              .440
                                                  -476
                    .597
                                                                                                      ABS BETAZ
                                                                                                                                                         237.6
219.8
                                         .590
                                                                        -434
                                                                                                                                                                              249.8
                                                                                                                                               282.2
                                                  .516
                                                              .484
                                                                                            OUT
                                                                                   -440
                   .603
                                                                        -476
                                                                                                                             BETAM
                                        -597
                                                                                                                         ABS
                                                             .528
                                                                                                   28.6
28.0
26.5
26.4
29.7
29.8
34.8
                                                                                                                                                                              237.6
                                                 .523
.527
.543
                                                                                             -434
                                                                                                              OUT
                                                                                                                                                                    282.2
                                                                                   -484
                   .619
                                                                                                                          ĪŇ
                                        -603
                                                                       -516
                                                                                                                                          REL
                                                                                                                                                                             219.8
                                                             .540
                                                                                            -476
                                                                                                                                               BETAZ
                             .543
                                                                                                              -3.0
                                                                                                                                DUT
                                                                                  .528
                   -665
                                                                       .523
.526
                                                                                                                        28.6
                                       -619
                                                            .540
.544
.577
                                                                                           .516
.523
.526
                                                                                                                                                            REL
IN
                            -584
                                                                                                                                -3.0
                                                                                                                                            ΙÑ
                                                                                                              -1.4
                                                                                                                     28.6
26.5
25.1
26.4
28.6
29.7
30.8
34.3
                                                                                                                                                                  BETAN
                  .723
.757
                                     .665
.723
.757
.773
                                                                                  .540
                                                                                                                                                  OUT
                                                                                                                                         28.6
28.0
26.5
                           -641
-672
                                                                                                             1.8
                                                                                 .540
.544
                                                                                                                                -1.4
                                                                                                                                                  -3.0
                                                 -584
                                                                                                                                                                     OUT
                                                                       .543
                                                                                                                                                            28.6
         10
                 .773
                                                 -641
                                                                                                                                 -.6
                                                                                                                                                  -1.4
                                                                                                                                                                    -3.0
                                                                      .583
                                                                                                                                                           28.0
26.5
25.1
26.4
        11
                                                                                                            -2.0
                           -634
                                                                                           .543
                                                            -620
                                                                                                                               -1.8
                                                 -672
                                                                                 .578
                 .764
                                                                     -640
                                                                                                                                                                    -1.4
                                                                                                                                         25.1
26.4
                           -582
                                                                                           .583
                                                                                                                              -2.2.0
                                                            -624
                                                                                -621
-626
                                                                                                                                                  -1.8
                                                .634
                                                                     671
633
                                                                                                                                                                    ~.6
                                                                                          .641
                                                           -604
                                                                                                                                                -2.0
-2.2
-2.0
                  TOTAL PRESSURE
                                                .582
                                                                                                                                                                    -1.8
                                                                                                                                        28.6
                                                                                                            -1.4
                                                           .601
                                                                                          -672
                                                                                                   34.3
                ΙN
                                                                    .581
                                                                                -606
                                                                                                                                                                   -2.0
                                                                                                                                        29.7
30.8
             19.98
20.60
21.05
                          OÙT
                                                                                                            2.6
1.8
                                                                                                                                                          28.6
29.7
                                                                                          .633
                                               TOTAL
                                                                                                                              -1.4
                                 RATIO
                                                      TEMPERATURE
                                                                               -603
                                                                                                   38.5
                                                                                                                                                                   -5.5
                        19.65
                                                                                         .582
                                                                                                                                 .2
                                                                                                   38.ŏ
                                                                                                                     38.4
37.9
                                   -983
                                                      379.4
                                                                                                                                       34.3
                                                                                                                                                         30.8
34.3
                                            379.4
                                                                                                                              2.6
                                                                            STATIC PRESS
                                                                RATIO
                                         3/9.4
378.0
373.1
368.3
369.9
372.3
375.7
378.3
379.3
                                                                                                                                                 2.6
                      20.66
20.72
20.72
                                   . 980
                                                                                                                                                                  -1.4
                                                                                                                                       38.5
           21.10
21.10
21.22
21.87
22.88
23.41
                                                                1.000
                                                                                                 STATIC DENSITY
                                   .981
                                                                                                                                      38.ō
                                                      378.0
                                                                                                                                                                     . 2
                                                                           16.83
16.80
                                                                                      OUT'
                                                                                                                                                         38.4
37.9
                                                               1.000
                                                                                   17.26
17.28
17.23
17.19
17.15
                                                                                                                                                1.8
                    20.72
20.91
21.48
22.40
22.88
21.88
20.96
                                  . 982
                                                                                                                                                                   2.6
                                                     373.1
368.4
                                                                                                                           STATIC
                                                               1.000
                                                                                                1.62313
                                                                                                                                    TEMP
                                  . 982
                                                                                                                                                                   1.8
                                                                          16.64
                                                                                                            1.64465
                                                                                                                                                HHEEL
                                                               1.000
                                                                                                1.64136
                                  . 988
                                                     367.3
                                                                                                                                      ŌÜT
                                                                                                                                                       SPEED
                                                                          16.59
                                                                                                                          361.3
                                                                                                           1.66487
1.69456
1.71446
                                                                                               1.66176
                                                               1.000
                                  .982
                                                                                                                        356.7
356.7
348.8
344.0
342.4
339.9
337.2
337.1
                                                                                                                                    365.6
                                                    368.3
                                                                          16.51
                                 979
                                                                                               1.68030
                                                    369.9
                                                               1.000
                                                                                                                                    361.7
    10
                                                                         16.38
16.25
           23.27
22.97
                                                   372.3
375.7
                                                                                               1.67948
                                                                                                                                   354.2
                                                              1.000
                                                                                   17.11
    11
                                                                                                           1.71699
                                                                                              1.66825
1.66616
1.67052
                                940
                                                                                                                                                             . 0
                                                              1.000
                                                                                                                                   349.3
                                                                                  17.06
                                                                         16.17
                                                                                                           1.71353
                                .913
                                                                                                                                                             . 0
                                                   378.3
379.3
                                                             1.000
                                                                                                                                   348.0
                                                                                   16.99
         PERCENT
                                                                         16.01
                                                                                                          1.71550
                                                                                                                                  347.8
                                                              1.000
                                                                                  16.91
                        INCIDENCE
                                                                        15.68
                                                                                                          1.72062
            SPAN
                                                             1.000
                                                                                              1.65531
                                                                                                                                  346.4
                                                                                  16.70
                      MEAN
-6.3
                                                                       15.61
                                                                                             1.61648
                                                                                                          1.70957
            5.0
                                                                                                                                 344.1
                                                                                 16.67
                                                       п
                                          DEVIA
                                                                                                         1.66090
           10.0
                                                                                                                                 344.6
                   -6.72
-9.1
-9.1
-8.2
-8.2
-8.6
-77.0
                                                                                             1.60064
                               -12.1
                                                                                                                                                  ٠Ô
                                                   FACTOR
                                                                                                                       338.0
339.7
                                                                                                         1.63418
                                          11.5
           20.0
                                                                EFFIC
                                                                                                                                 350.ž
                              -12.5
                                                                             TOT
                                                                                                                                                 . O
                                                                                    COEFFICIENT
PROF SHOCK
          30.0
                                           11.4
                              -13.9
                                                                                                                                 355.3
                                                                 .000
                                                                                                                                                 . 0
                                                      .313
          40.0
                             -15.5
                                           10.1
                                                                             .105
                                                                                              SHOCK
                                                                                                           TOT
                                                                                                                     PARAMETER
                                                                  -00ā
                                                      .287
         50.0
                                                                                       .105
                             -14.7
                                           8.0
                                                                             -111
                                                                                                .000
                                                                 .000
                                          7.5
7.2
7.5
8.4
                                                      . 275
                                                                                                                     PROF
                                                                                                                                       PEAK SS
         60.0
                            -13.6
-13.7
                                                                                      -111
                                                                                                            .041
                                                                                                                             SHOCK
                                                                            -090
                                                                 .000
                                                                                                -000
                                                                                                                                       MACH NO
                                                      .28ã
                                                                                      -090
                                                                                                                     .041
         70.0
                                                                            .085
                                                                                                            .043
                                                                                                                               .000
                                                                 -000
                                                                                                -00a
        80.0
                                                     .281
                                                                                                                     .043
                                                                                      -085
                           -14.1
-12.9
-12.1
                                                                            .084
                                                                                                           .033
                                                                                                                                          -684
                                                                                                .000
                                                                                                                              -000
10
                                                                .000
                                                                                     .084
                                                                                                                     .033
                                                                                                                                         .723
.724
        90.0
                                                                                                           .03ŏ
                                                                            .064
                                                                                                                               .000
                                                    .261
.260
.320
.373
                                                                                               .000
11
                                                                -000
                                                                                                                     .03ā
                                                                                     -064
                                            . 8
                                                                                                           .028
                                                                           .069
                                                                                                                              .000
                   -9.8
                                                                .000
                                                                                               .00õ
                                                                                                                    -028
                                                                                     .069
                                         15.6
                                                                                                          .021
                                                                                                                                         .675
                            -14.8
                                                                           .072
                                                               .000
                                                                                                                              .000
                                                                                    .072
.072
                                                                                               .000
                                                                                                                    .021
                                        16.8
                                                                                                          .02i
                                                                                                                                         .696
                                                                           .072
                                                                                                                              .000
                                                               .000
                                                                                              .000
                                                                                                                  .021
.021
.020
                                                                                                          .021
                                                                                                                                        .744
                                                                          ·184
·273
                                                                                                                              .000
                                                              .000
                                                                                              .00ň
                                                                                    .184
                                                                                                         .020
                                                                                                                                        .803
                                                                                                                             .000
                                                                                              .00ñ
                                                                                    . 273
                                                                                                                                        . 869
                                                                                                         .049
                                                                                                                             .000
                                                                                              .00ň
                                                                                                                  .049
.071
                                                                                                                                        .972
                                                                                                        .071
                                                                                                                            -000
                                                                                                                                      1.061
                                                                                                                            . 0 ō ō
                                                                                                                                     1.011
```

OUT

(d) 100 Percent of design speed; reading 1415

| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | RADII<br>IN 0U<br>23.142 23.1<br>22.697 22.7<br>21.788 21.8<br>20.889 20.9<br>20.002 20.1<br>19.129 19.2<br>18.268 18.4<br>17.414 17.6<br>16.576 16.8<br>15.751 16.0<br>15.342 15.6 | T IN<br>60 171.5<br>30 175.3<br>49 181.8<br>73 187.6<br>09 190.8<br>58 193.0<br>23 196.4<br>00 194.9                                      | VELOCI<br>OUT<br>162.9<br>170.6<br>178.5<br>181.1<br>162.6<br>185.6<br>189.5<br>191.6<br>189.2<br>176.1 | RATIO<br>.950<br>.973<br>.982<br>.965<br>.957<br>.962<br>.965                               | 181.8<br>187.7<br>190.8<br>193.1<br>196.6<br>195.2<br>185.6<br>180.2                                  | 0U <b>T</b>                                                                              | LOCITY<br>RATIO<br>.950<br>.973<br>.982<br>.965<br>.957<br>.961<br>.964<br>.964<br>.978<br>.887                                  | TANG<br>IN<br>126.7<br>131.4<br>133.2<br>130.1<br>133.4<br>138.8<br>143.6<br>151.2<br>170.2<br>189.5<br>185.5 | VEL<br>OUT<br>2.0<br>6.5<br>5.1<br>2.2<br>1.4<br>.7<br>-3<br>7.2<br>13.0<br>9.7 | RADIAL<br>IN .5<br>1.2<br>2.4<br>3.7<br>5.0<br>6.5<br>8.2<br>9.9<br>11.3<br>13.3<br>15.0     | OUT<br>1.0<br>2.1<br>2.9<br>3.7<br>4.3<br>5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 213.3 16<br>219.1 17<br>225.4 17<br>228.3 18<br>232.9 18<br>237.8 18<br>243.4 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UT 2.9 213<br>0.7 215<br>8.5 225<br>1.1 228<br>2.6 232<br>5.7 237<br>9.7 242 | 3.3 162.9<br>7.1 170.7<br>6.4 178.5<br>8.3 181.1<br>1.9 182.6<br>7.8 185.6<br>7.8 189.5<br>8.8 191.7<br>8.8 189.5<br>8.8 189.5                                                                           |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | .570 .4<br>.592 .4<br>.604 .4<br>.619 .4<br>.634 .4<br>.652 .4<br>.662 .5<br>.674 .4                                                                                                |                                                                                                                                           | CH ND<br>OUT<br>-417<br>-438<br>-463<br>-473<br>-479<br>-488<br>-499<br>-505<br>-497<br>-461<br>-425    | AXIAL H/<br>IN .444<br>.456<br>.477<br>.496<br>.507<br>.515<br>.526<br>.522<br>.496<br>.481 | ACH NO<br>OUT<br>-417<br>-438<br>-463<br>-473<br>-478<br>-488<br>-499<br>-595<br>-497<br>-459<br>-424 | MERID<br>IN .444<br>.456<br>.477<br>.496<br>.507<br>.515<br>.523<br>.497<br>.482<br>.492 | .438<br>.463<br>.473<br>.479<br>.488<br>.499<br>.505<br>.497                                                                     | 36.5<br>36.9<br>36.2                                                                                          | OUT<br>-7<br>2.2<br>1.6<br>-7<br>-4<br>-1<br>2.2<br>4.2                         | 36.9 2<br>36.2 1<br>34.7<br>35.0<br>35.7<br>36.2<br>37.8 -<br>42.5 2                         | T IN .7 36.5 .2 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 | 5 .7<br>9 2.2<br>1 .6<br>7 .7<br>9 .4<br>1 .1<br>2 .2<br>81<br>6 2.2<br>4 .2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 36.5<br>36.9<br>36.2<br>34.7<br>35.0<br>35.7<br>36.2<br>37.8<br>42.5<br>46.4 | AH<br>JT<br>-7<br>-2<br>-4<br>-1<br>-2<br>-1<br>-1<br>-2<br>-1<br>-2<br>-1<br>-2<br>-1<br>-2<br>-3<br>-4<br>-1<br>-2<br>-3<br>-4<br>-1<br>-2<br>-3<br>-3<br>-3<br>-3<br>-3<br>-3<br>-3<br>-3<br>-3<br>-3 |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | TOTAL P<br>IN 0U<br>23.54 23.<br>23.77 23.<br>24.07 23.<br>24.15 23.<br>24.23 23.<br>24.37 24.<br>24.37 24.<br>24.28 23.<br>24.35 23.<br>24.13 22.                                  | 09 .981<br>39 .984<br>68 .988<br>84 .990<br>86 .988<br>98 .990<br>14 .990<br>15 .991<br>197 .987<br>32 .958                               | IN<br>393.9<br>392.1<br>386.4<br>381.9<br>379.4<br>378.1<br>377.0<br>376.9<br>379.1<br>381.8            | 393.9<br>392.1<br>386.4<br>381.9<br>379.4<br>378.1<br>377.0<br>376.9<br>379.1               | RATIO<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000                         | IN<br>19.13<br>19.08<br>18.91<br>18.65<br>18.48<br>18.32<br>18.17<br>17.91               | PRESS<br>0UT<br>20.49<br>20.50<br>20.45<br>20.45<br>20.40<br>20.39<br>20.36<br>20.29<br>20.24<br>20.16<br>20.13                  | IN<br>1.79527<br>1.80516<br>1.82431<br>1.84131<br>1.84395<br>1.83961<br>1.83687<br>1.79527                    | 1.8916<br>1.922<br>1.9493<br>1.9593<br>1.9674                                   | IN<br>02 371<br>61 368<br>29 361<br>34 356<br>25 352<br>40 350<br>21 347<br>17 346<br>81 347 | .3 380.<br>.2 377.<br>.2 370.<br>.0 365.<br>.4 362.<br>.0 361.<br>.5 359.<br>.6 361.<br>.6 361.<br>.8 366.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IN .066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .0066 .006 | .00                                                                          |                                                                                                                                                                                                          |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | SPAN M<br>5.0<br>10.0<br>20.0<br>30.0<br>40.0<br>50.0<br>-70.0<br>80.0                                                                                                              | INCIDENCE<br>EAN SS<br>1.5 -4.2<br>2.1 -3.6<br>1.4 -4.3<br>7 -6.2<br>1.0 -6.5<br>1.8 -7.3<br>1.8 -7.3<br>1.8 -4.7<br>1.0 -4.1<br>2.5 -7.5 | DEVIA<br>15.1<br>15.0<br>12.3<br>10.5<br>9.9<br>9.5<br>9.7<br>9.7<br>12.8<br>17.2<br>18.3               | D<br>FACTOR<br>.465<br>.439<br>.417<br>.404<br>.407<br>.407<br>.402<br>.404<br>.504         | .000                                                                                                  | TO .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0                                             | OSS COEF<br>I PRO<br>02 .10<br>81 .08<br>57 .05<br>57 .05<br>43 .04<br>43 .04<br>39 .03<br>38 .03<br>349 .04<br>52 .15<br>01 .20 | F SHOCK<br>2 .000<br>7 .000<br>4 .000<br>2 .000<br>9 .000<br>9 .000<br>9 .000                                 | . TOT                                                                           | 0 .040<br>1 .031<br>1 .021<br>6 .016<br>8 .018<br>4 .014<br>2 .012<br>1 .011                 | SHOCK<br>-000<br>-000<br>-000<br>-000<br>-000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PEAK SS<br>MACH NO<br>.900<br>.925<br>.927<br>.899<br>.908<br>.925<br>.938<br>.962<br>1.057<br>1.151<br>1.099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                              |                                                                                                                                                                                                          |

(e) 100 Percent of design speed; reading 1426

| RP 1 2 3 4 5 6 7 8 9 10 11                            | RADII IN OUT 23.142 23.160 22.697 22.730 21.788 21.849 20.889 20.973 20.002 20.109 19.129 19.258 18.268 18.423 17.414 17.600 16.576 16.800 15.751 16.035 15.342 15.669                     | AXIAL VEL<br>IN 007<br>170.0 162<br>173.0 169<br>180.3 177<br>186.0 179<br>138.0 179<br>190.3 182<br>191.5 183<br>186.2 181<br>175.1 177<br>170.7 162<br>176.0 147 | RATIO<br>2 .954<br>3 .979<br>5 .985<br>6 .965<br>6 .955<br>0 .956<br>1 .956<br>1 .973<br>2 1.012<br>4 .951           | HERIDIONAL VE<br>IN OUT<br>170.0 162.2<br>173.0 169.3<br>180.3 177.5<br>186.1 179.6<br>188.0 179.6<br>190.4 182.0<br>191.7 183.2<br>186.4 181.2<br>175.4 177.2<br>171.2 162.5<br>176.6 147.9 | ELOCITY<br>RATIO<br>.954<br>.979<br>.984<br>.965<br>.955<br>.956<br>.956<br>.972<br>1.011<br>.949<br>.838              | 132.0<br>138.2<br>140.7<br>137.1<br>139.0<br>143.7<br>148.8<br>156.3<br>176.0<br>192.7          | UT IN                                                                                                                                  | 1 1.0<br>4 2.0<br>6 2.9<br>9 3.6<br>4 4.3<br>0 4.8<br>4 5.2<br>7 5.4<br>6 5.2                                                                                     | ABS VEL IN 0UT 215.3 162.3 221.4 169.5 228.7 177.6 231.1 179.6 233.8 179.6 238.5 182.0 242.6 183.2 243.3 181.2 243.4 177.5 257.7 162.9 255.9 148.2         | 221.4<br>228.7<br>231.1<br>233.8<br>238.5<br>242.6<br>243.3<br>248.4<br>257.7 | EL 0UT 162.3 169.5 177.6 179.7 179.6 182.0 183.2 177.5 162.9 148.2 |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------|
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | ABS MACH NO IN OUT .555 .413 .573 .433 .598 .458 .609 .466 .619 .468 .634 .476 .647 .480 .649 .475 .662 .464 .687 .423 .681 .383                                                           | REL MACH NO IN GU .555 .4 .573 .4 .4 .598 .4 .619 .4 .634 .4 .647 .4 .662 .4 .687 .4 .681 .3                                                                       | IN .438<br>33 .448<br>38 .471<br>36 .490<br>38 .498<br>76 .506<br>80 .511<br>75 .497<br>74 .467<br>23 .455           | ACH NO MERID GUT IN .413 -432 .443 .457 .47 .466 .49 .468 .49 .476 .50 .480 .51 .475 .49 .463 .46 .421 .45 .382 .47                                                                          | 8 .432<br>1 .457<br>0 .466<br>8 .468<br>6 .476<br>1 .480<br>8 .475<br>8 .463<br>7 .422                                 | 38.6 2<br>38.0 2<br>36.4 1<br>36.5<br>37.1<br>37.9<br>40.0<br>45.2 3<br>48.5                    |                                                                                                                                        | BETAM REL<br>GUT IN<br>1.5 37.<br>2.9 38.<br>2.0 38.<br>1.0 36.<br>.7 36.<br>.6 37.<br>.6 37.<br>.6 37.<br>.6 37.<br>.8 45.<br>4.0 48.<br>3.2 46.                 | 0UT IN<br>8 1.5 37.6<br>6 2.9 38.0<br>0 2.0 38.0<br>4 1.0 36.5<br>5 .7 36.1<br>1 .6 37.1<br>9 .6 37.1<br>9 .6 37.1<br>0 .3 40.2<br>2 3.0 45.5<br>5 4.0 48. | 5 2.9<br>9 2.0<br>4 1.0<br>5 .7<br>0 .6<br>8 .6<br>0 .3<br>1 3.0<br>4 4.0     |                                                                    |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | TOTAL PRESS<br>IN OUT<br>24.30 23.87<br>24.55 24.16<br>24.81 24.48<br>24.89 24.62<br>24.82 24.56<br>24.92 24.68<br>24.98 24.75<br>24.75 24.51<br>24.70 24.37<br>24.68 23.68<br>24.36 23.15 | SURE TO RATIO IN .982 397 .984 396 .987 385 .990 380 .991 379 .986 380 .959 383 .950 384                                                                           | .8 397.8<br>.1 396.1<br>.6 390.6<br>.7 385.7<br>.4 382.4<br>.9 380.9<br>.3 379.3<br>.0 379.0<br>.3 380.9<br>.1 383.1 | TURE STATIC IN 1.000 19.71 1.000 19.65 1.000 19.38 1.000 19.17 1.000 19.02 1.000 18.65 1.000 18.64 1.000 18.40 1.000 17.86                                                                   | 21.24<br>21.21<br>21.22<br>21.14<br>21.14<br>21.01<br>21.03<br>20.94                                                   | 1.84172<br>1.86232<br>1.87985<br>1.88014<br>1.87887<br>1.87630<br>1.85808<br>1.83066<br>1.79091 | ENSITY<br>OUT<br>1.92257<br>1.93795<br>1.97060<br>1.99928<br>2.01024<br>2.02093<br>2.03085<br>2.01797<br>2.00620<br>1.97229<br>1.95337 | STATIC TEMP<br>IN 0U1<br>374.8 384.<br>371.7 381.<br>364.6 374.<br>359.2 369.<br>355.2 366.<br>352.7 364.<br>350.1 362.<br>369.6 362.<br>350.2 365.<br>350.1 370. | IN 0<br>.7 .0<br>.9 .0<br>.7 .0<br>.4 .0<br>.5 .0<br>.7 .0<br>.7 .0                                                                                        | ED<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                |                                                                    |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | PERCENT INC. SPAN MEAN 5.0 2.9 10.0 3.9 20.0 3.2 30.0 1.4 40.0 .9 50.0 .3 60.02 70.0 .4 80.0 3.1 90.0 2.9 95.0 -1.3                                                                        | -2.9 1<br>-1.9 1<br>-2.5 1<br>-4.2 1<br>-4.7 1<br>-5.2 -5.6 1<br>-4.9 1<br>-2.1 1                                                                                  | D FACTOR 5.9 .478 .459 .2.7 .440 0.8 .427 0.2 .429 9.9 .429 0.1 .432 3.7 .473 7.0 .555 8.1 .599                      | EFFIC T .000000000000000000000000000000000000000000000000000000000000000000                                                                                                                  | LOSS COEF<br>OT PRO<br>093 .09<br>080 .08<br>062 .06<br>048 .04<br>045 .04<br>049 .03<br>039 .03<br>053 .03<br>150 .18 | SHOCK 3 .000 10 .000 12 .000 18 .000 15 .000 18 .000 18 .000 18 .000 18 .000 18 .000 18 .000    | TOT<br>.036<br>.031<br>.023<br>.017<br>.015                                                                                            | PARAMETER PROF SHOCK .036 .000 .031 .000 .023 .000 .017 .000 .015 .000 .012 .000 .011 .000 .015 .000 .011 .000                                                    | PEAK SS<br>MACH NO<br>.930<br>.965<br>.972<br>.940<br>.953<br>.968<br>1.096<br>1.176                                                                       |                                                                               |                                                                    |

(f) 100 Percent of design speed; reading 1437

|                                                       |                                                                                                                                                          |                                                                                                                                                                  |                                                                                                                                         | • • •                                                                                                  |                                                                                                                    |                                                                                                 | •                                                                                                                           | J                                                                                      |                                                                            |                                                                                              |                                                                                                                 |                                                                                                                                         |                                                      |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| RP 1 2 3 4 5 6 7 8 9 10 11                            | RADII IN 0UT 23.142 23.160 22.697 22.730 21.788 22.730 20.002 20.109 19.129 19.258 18.268 18.423 17.414 17.600 16.576 16.800 15.751 16.035 15.342 15.669 | AXIAL VE<br>1N 0U<br>171.9 163<br>173.4 169<br>177.9 176<br>183.4 176<br>186.2 177<br>188.2 180<br>188.0 180<br>180.7 174<br>167.5 169<br>163.7 155<br>171.9 143 | .2 .949<br>.7 .978<br>.1 .990<br>.6 .963<br>.2 .952<br>.9 .961<br>.2 .959<br>.7 .967<br>.7 1.013<br>.9 .952                             | IN<br>171.9<br>173.4<br>177.9<br>183.4<br>186.3<br>188.3<br>188.1<br>181.0<br>167.8                    | ONAL VEL<br>OUT<br>163.2<br>169.7<br>176.1<br>176.6<br>177.2<br>181.0<br>180.3<br>174.8<br>169.8<br>155.9<br>143.3 | RATIO<br>.949<br>.978<br>.978<br>.963<br>.951<br>.961<br>.958<br>.966<br>1.012<br>.950          | TANG 'IN 135.3 140.7 142.7 136.9 146.5 152.2 159.0 178.6 194.7 185.1                                                        | ดบ <b>T</b>                                                                            | RADIAL IN .5 1.2 2.3 3.6 4.9 6.3 7.8 9.2 10.2 12.1 14.1                    | OUT 5 1.0 2.8 3.6 4.2 4.8 5.0 5.0 5.0                                                        | 218.8 16<br>223.3 17<br>228.1 17<br>228.8 1<br>232.9 17<br>238.6 18<br>242.0 18<br>242.0 18<br>244.9 1          | OUT IN                                                                                                                                  | 176.<br>176.<br>177.<br>181.<br>180.<br>174.<br>170. |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | ABS MACH NO IN OUT .563 .414 .577 .433 .595 .453 .602 .458 .616 .461 .632 .472 .644 .471 .641 .652 .443 .678 .405 .672 .371                              | .577 .4<br>.595 .4<br>.602 .4<br>.616 .4<br>.632 .4<br>.644 .4<br>.652 .4                                                                                        |                                                                                                                                         | NACH NO<br>OUT<br>-414<br>-432<br>-453<br>-461<br>-472<br>-471<br>-471<br>-457<br>-442<br>-403<br>-370 | MERID N<br>1N<br>-442<br>-448<br>-464<br>-482<br>-499<br>-500<br>-482<br>-446<br>-437<br>-458                      | OUT<br>.414<br>.432<br>.453<br>.458<br>.461<br>.472                                             | ABS BE IN 38.2 39.0 38.7 36.7 36.9 37.9 39.0 41.3 46.8 49.9 47.1                                                            | 0UT 2.0 33.2 33.2 33.2 3 3 3 3 3 3 3 3 3 3 3 3                                         | 9.0 3<br>8.7 2<br>6.7 1<br>6.9<br>7.9<br>9.0<br>1.3<br>6.8 3<br>9.9 5      |                                                                                              | 2 2.0<br>3.2<br>7 2.1<br>7 1.0<br>9 .9<br>9 .9<br>3 .6<br>9 5.1                                                 | REL BETAM<br>IN OUT<br>38.2 2.0<br>39.0 3.2<br>38.7 2.1<br>36.7 1.0<br>36.9 .8<br>37.9 .9<br>37.9 .9<br>41.3 .8<br>46.8 3.6<br>49.9 5.1 |                                                      |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | TOTAL PRESS IN OUT 24.90 24.34 25.08 24.61 25.18 24.88 25.20 24.92 25.22 24.92 25.35 25.09 25.36 25.10 25.01 24.66 24.91 24.56 24.84 23.88 24.53 23.43   | SURE TO RAT10 IN .978 400 .981 398 392 .989 383 .990 381 .996 382 .962 384 .955 384                                                                              | .0 400.0<br>.4 398.4<br>.2 392.2<br>.5 386.5<br>.5 383.5<br>.8 382.8<br>.0 381.0<br>.1 380.1<br>.1 380.1                                | RATIO<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000                 | 19.20<br>18.97<br>18.73                                                                                            | 0UT<br>21 - 63<br>21 - 64<br>21 - 62<br>21 - 59<br>21 - 55<br>21 - 55<br>21 - 57<br>21 - 37     | STATIC<br>IN<br>1.86010<br>1.86721<br>1.90721<br>1.90807<br>1.90807<br>1.908080<br>1.90039<br>1.80397<br>1.80397<br>1.78893 | 1 9630<br>1.9986<br>2.0275<br>2.0396<br>2.0481<br>2.0591<br>2.0402<br>2.0338<br>1.9987 | IN<br>4 376<br>9 373<br>0 366<br>9 360<br>9 354<br>1 352<br>9 351<br>1 351 | .2 386.1<br>.6 384.1<br>.4 376.1<br>.5 371.1<br>.6 367.1<br>.5 366.1<br>.0 364.1<br>.3 365.1 | IN 3                                                                                                            | 0 .0<br>0 .0<br>0 .0<br>0 .0<br>0 .0                                                                                                    |                                                      |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | PERCENT INC SPAN MEAN 5.0 3.3 10.0 4.3 20.0 3.9 30.0 1.8 40.0 1.3 50.0 1.2 60.0 1.0 70.0 4.8 90.0 4.4 95.07                                              | -2.5 1 -1.4 1 -1.8 1 -3.9 1 -4.3 1 -4.3 1 -4.4 1 -3.6 14 1                                                                                                       | D<br>VIA FACTO<br>6.4 .48<br>6.0 .46<br>2.7 .44<br>0.8 .43<br>0.3 .43<br>0.2 .43<br>0.4 .43<br>0.6 .46<br>4.3 .49<br>8.8 .57<br>8.8 .61 | R EFFI .000 .000 .000 .000 .000 .000 .000 .                                                            | C TO<br>0 .1<br>0 .0<br>0 .0<br>0 .0<br>0 .0<br>0 .0<br>0 .0<br>0 .0                                               | 16 .116<br>93 .093<br>56 .056<br>50 .050<br>52 .052<br>42 .042<br>58 .058<br>58 .058<br>45 .145 | SHICK 1000                                                                                                                  | TOT<br>.045<br>.036<br>.021<br>.018<br>.014<br>.013<br>.016<br>.039                    | .045<br>.036<br>.021<br>.018<br>.018<br>.014<br>.013                       | SHOCK<br>.000<br>.000<br>.000<br>.000<br>.000<br>.000                                        | PEAK SS<br>MACH NO<br>.951<br>.979<br>.982<br>.936<br>.944<br>.969<br>.988<br>1.010<br>1.116<br>1.1193<br>1.098 | ·                                                                                                                                       |                                                      |

(g) 100 Percent of design speed; reading 1461

|                                                       |                                                                                                                                                                                                            |                                                                                                       |                                                                                                                                                         | (B) I(                                                                                                                                           | o Fercent or                                                                                                                            | design spe                                                                                               | eeu; reaum                                                                                                                            | g 1401                                                                                                                                  |                                                                               |                                                                                                                                                       |                                                                                                                                                                             |                                                                             |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| RP<br>12345567789                                     | RADII<br>1N 0UT<br>23.142 23.160<br>22.697 22.730<br>21.788 21.849<br>20.889 20.973<br>20.002 20.109<br>19.129 19.258<br>18.268 18.423<br>17.414 17.600<br>16.576 16.800<br>15.751 16.035<br>15.342 15.669 | IN<br>175.3 1<br>176.5 1<br>178.4 1<br>182.2 1<br>184.8 1<br>182.8 1<br>174.5 1<br>162.9 1<br>150.5 1 | VELOCITY<br>OUT RATI<br>164.9 .94<br>170.9 .96<br>176.0 .98<br>176.0 .98<br>174.3 .99<br>166.9 .99<br>166.9 .99<br>166.0 1.03<br>143.5 .93<br>134.0 .86 | 0 IN<br>1 175.3<br>8 176.5<br>178.4<br>66 182.2<br>184.9<br>13 182.9<br>7 174.7<br>163.1<br>157 150.8<br>188 153.4                               | 164.9<br>170.9<br>176.0<br>176.0<br>175.7<br>174.3<br>167.0<br>160.3<br>156.1<br>143.6                                                  | ATIO<br>.941 1<br>.968 1<br>.987 1<br>.960 1<br>.953 1<br>.953 1<br>.953 1<br>.953 1                     | 144.7<br>139.6<br>141.8<br>147.6<br>154.4                                                                                             | OUT 1N 3.3 7.1 1 2 2.5 3 2.3 4 3.5 6 6 7 3.3 8 10.5 9 113.2 11 8.6 13                                                                   |                                                                               | 226.8<br>229.7<br>229.6<br>233.0<br>235.0<br>233.1<br>232.4<br>240.6<br>250.4                                                                         | OUT 1N<br>165.0 222.5<br>171.1 226.8<br>176.1 229.7<br>176.0 229.6<br>175.7 233.0<br>174.3 235.0<br>167.0 233.1<br>160.3 232.4<br>156.5 240.6<br>144.2 250.4<br>134.4 249.2 | 0UT<br>165.0<br>171.1<br>176.1<br>176.0<br>175.7<br>174.3<br>167.0<br>160.3 |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | ABS MACH NO IN OUT .571 .417 .584 .434 .597 .451 .601 .454 .614 .456 .621 .453 .617 .434 .615 .416 .637 .405 .664 .372 .660 .346                                                                           | REL MACH<br>IN<br>.571<br>.584<br>.597<br>.601<br>.614<br>.621<br>.617<br>.615<br>.637<br>.664        | 0UT II<br>-417 -434 -451 -454 -454 -453 -434 -416 -405 -372                                                                                             | AL MACH NO<br>1 OUT<br>150 -417<br>155 -434<br>163 -451<br>177 -454<br>187 -456<br>1883 -453<br>1431 -416<br>1899 -404<br>1406 .370<br>1439 .345 | IN                                                                                                                                      | OUT<br>.417<br>.434<br>.451<br>.454                                                                      | 38.0<br>38.9<br>39.1<br>37.5<br>37.5<br>38.9<br>41.5                                                                                  | AZ ABS<br>UT IN<br>1.2 38.0<br>2.4 38.9<br>1.6 59.0<br>.8 37.5<br>.7 37.5<br>1.1 38.9<br>1.2 45.4<br>3.8 51.2<br>52.2<br>33.7 48.2      | อบT                                                                           | REL BETAZ<br>IN OUT<br>38.0 1.2<br>38.9 2.4<br>39.1 1.6<br>37.5 .7<br>37.5 .7<br>38.9 1.1<br>41.5 1.2<br>41.5 1.2<br>51.2 3.8<br>52.3 5.2<br>48.3 3.7 | 39.0 1.6<br>37.5 .8<br>37.5 .7<br>38.9 1.1<br>41.5 .9<br>45.4 1.2<br>51.2 3.8                                                                                               |                                                                             |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | TOTAL PRESS IN OUT 25.63 25.00 25.80 25.25 25.77 25.44 25.74 25.50 25.73 25.47 25.33 25.07 25.04 24.72 25.11 24.64 25.03 24.06 24.74 23.73                                                                 | RATIO<br>.975<br>.979<br>.987<br>.991<br>.988<br>.990<br>.988                                         | TOTAL TEH IN OU 402.6 402.6 401.1 401 395.2 389.2 389.385.7 385.7 385.382.3 382.3 382.3 382.0 385.6 385.6 385.6                                         | .6 1.000<br>.1 1.000<br>.2 1.000<br>.2 1.000<br>.7 1.000<br>.1 1.000                                                                             | STATIC P<br>IN<br>20.55 2<br>20.49 2<br>20.26 2<br>20.17 2<br>19.96 2<br>19.83 2<br>19.60 2<br>19.39 2<br>19.11 2<br>18.62 2<br>18.47 2 | RESS<br>OUT<br>2.18<br>2.18<br>2.13<br>2.14<br>2.06<br>22.12<br>2.06<br>22.12<br>21.95<br>12.01<br>21.87 | STATIC<br>IN<br>1.89391<br>1.90011<br>1.91260<br>1.93529<br>1.93827<br>1.93755<br>1.92138<br>1.90192<br>1.87464<br>1.83365<br>1.81366 | DENSITY<br>OUT<br>1.98561<br>1.99905<br>2.02970<br>2.06317<br>2.07512<br>2.08894<br>2.08229<br>2.07027<br>2.06215<br>2.03403<br>2.02095 | 378.0<br>375.6<br>369.0<br>363.0<br>358.7<br>356.6<br>355.3<br>355.2<br>355.2 | EMP WHE DUT IN 189.1 189.1 189.1 189.1 189.1 189.7 19.8 179.8 179.8 179.4 1869.0 1868.5 1869.3 179.1 188.7 1.8 1874.6 176.7                           | SPEED OUT                                                                                                                               |                                                                             |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | SPAN MEAN 3.2 10.0 4.4 30.0 2.7 40.0 2.1 50.0 2.4 60.0 3.7 70.0 6.1 80.0 9 4                                                                                                                               | DENCE<br>SS<br>-2.5<br>-1.4<br>-1.3<br>-2.9<br>-3.5<br>-3.1<br>-1.7<br>4.2<br>1.8<br>-4.3             | DEVIA FA<br>15.8<br>15.4<br>12.5<br>10.8<br>10.4<br>10.7<br>10.6<br>11.1<br>14.7<br>18.4                                                                | .493 .0<br>.474 .0<br>.457 .0<br>.444 .0<br>.448 .0<br>.456 .0<br>.484 .0<br>.515 .0<br>.555 .0                                                  | 00 .125<br>00 .104<br>00 .060<br>00 .043                                                                                                | SS COEFF<br>PROF<br>125<br>104<br>1060<br>3 .060<br>3 .052<br>1 .014<br>7 .047<br>7 .055<br>9 .079       | ICIENT SHOCK .000 .000 .000 .000 .000 .000 .000 .0                                                                                    |                                                                                                                                         | .049 .0<br>.042 .3<br>.015 .0<br>.018 .0<br>.014 .0<br>.014 .0<br>.012 .0     | R PEAK 9 900 -96 900 -99 900 -95 900 -95 900 -95 900 1.05 900 1.05 900 1.19                                                                           | 4<br>2<br>3<br>4<br>7<br>8<br>8<br>4<br>9<br>9                                                                                                                              |                                                                             |



(h) 90 Percent of design speed; reading 1310

| RP                                              | RADII                                                                                                                                                            |                                                                               | VELOCITY                                                                                                                                                                       |                                                                                                                      | AL_VELOCI                                                                                                           |                                                                                                      |                                                                  | ADIAL VEL                                                                         | ABS VEL                                                                                                                                    | REL VEL                                                                                                                    |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | IN OUT 23.142 23.160 22.697 22.730 21.788 21.849 20.889 20.973 20.002 20.109 19.129 19.258 18.268 18.423 17.414 17.600 16.576 16.800 15.751 16.035 15.342 15.669 | 170.3<br>184.8<br>190.5<br>193.4<br>198.4<br>209.8<br>220.1<br>224.6<br>220.0 | OUT RATIO<br>162.5 1.051<br>181.1 1.063<br>193.0 1.044<br>192.5 1.011<br>196.0 1.013<br>205.7 1.037<br>220.7 1.052<br>237.7 1.080<br>249.5 1.111<br>240.2 1.092<br>221.6 1.048 | 154.7 16<br>170.3 18<br>184.9 19<br>190.5 19<br>193.4 19<br>198.5 20<br>210.0 22<br>220.4 22<br>225.1 24<br>220.6 24 | OUT RAT<br>62.5 1.0<br>93.0 1.0<br>92.6 1.0<br>96.0 1.0<br>96.0 1.0<br>37.8 1.0<br>37.8 1.0<br>49.6 1.1<br>40.3 1.0 | 51 71.8<br>63 77.2<br>444 78.7<br>11 73.1<br>13 79.3<br>36 88.3<br>51 100.1<br>179 136.9<br>90 153.3 | -6.8<br>-2.4<br>.1<br>-3.7<br>-2.9<br>-1.9<br>.2<br>5 1<br>6.3 1 | N OUT .5 1 .1 1.1 2.4 2.2 3.7 3.1 5.1 3.9 6.7 4.8 2.7 5.8 3.7 7.7 6.2 7.8 7.3 7.3 | IN 0UT 170.6 162.7 187.0 181.1 200.9 193.0 204.1 192.6 209.1 196.0 217.3 205.8 232.6 220.7 247.6 237.8 263.4 249.7 268.6 240.9 261.9 222.2 | 187.0 181.<br>200.9 193.<br>204.1 192.<br>209.1 196.<br>217.3 205.<br>232.6 220.<br>247.6 237.<br>263.4 249.<br>268.6 240. |
| RP                                              | ABS MACH NO                                                                                                                                                      | REL MAC                                                                       | H NO AXIAL                                                                                                                                                                     | MACH NO ME                                                                                                           | ERID MACH                                                                                                           | NO ABS B                                                                                             | ETAZ ABS                                                         |                                                                                   | EL BETAZ REI<br>IN DUT I                                                                                                                   | L BETAM<br>N DUT                                                                                                           |
| 1 2                                             | .460 .437<br>.507 .490                                                                                                                                           | .460<br>.507                                                                  | .437 .417<br>.490 .462                                                                                                                                                         | .437<br>.490                                                                                                         | .417                                                                                                                | 437 24.9<br>490 24.4                                                                                 | -2.4 24.<br>7 24.                                                | 9 -2.4 2<br>47 2                                                                  | 4.9 -2.4 24<br>4.47 24                                                                                                                     | .9 -2.4<br>.47                                                                                                             |
| 3                                               | .550 .527<br>.561 .528                                                                                                                                           | .561                                                                          | .527 .50 <i>6</i>                                                                                                                                                              | .528                                                                                                                 | .524 .:                                                                                                             | 527 23.1<br>528 21.0                                                                                 | .0 23.<br>-1.1 21.                                               | 0 -1.1 2                                                                          | 3.1 .0 23<br>1.0 -1.1 21                                                                                                                   | .0 -1.1                                                                                                                    |
| 5<br>6<br>7                                     | .577 .539<br>.599 .566<br>.643 .608                                                                                                                              | .599                                                                          | .539 .533<br>.566 .543<br>.608 .589                                                                                                                                            | .565                                                                                                                 | .548 .:                                                                                                             | 538 22.3<br>566 24.0<br>608 25.5                                                                     | 9 22.<br>5 24.<br>.1 25.                                         | 05 2                                                                              | 2.39 22<br>4.05 24<br>5.5 .1 25                                                                                                            | .05                                                                                                                        |
| 8<br>9                                          | .686 .656<br>.729 .688                                                                                                                                           | .686                                                                          | .656 .610                                                                                                                                                                      | .656                                                                                                                 | .610 .                                                                                                              | 656 27.2<br>688 31.4                                                                                 | 1 27.<br>1.4 31.                                                 | 11 2                                                                              | 7.21 27<br>1.4 1.4 31                                                                                                                      | .11                                                                                                                        |
| 10<br>11                                        | .742 .659<br>.720 .602                                                                                                                                           | .742                                                                          | .659 .600<br>.602 .58                                                                                                                                                          | .657                                                                                                                 | .609                                                                                                                | 657 34.9<br>601 36.0                                                                                 | 4.1 34.<br>3.6 35.                                               |                                                                                   | 4.9 4.1 34<br>6.0 3.6 35                                                                                                                   |                                                                                                                            |
| RP                                              | TOTAL PRE                                                                                                                                                        | SSURE<br>RATIO                                                                | TOTAL TEMPER                                                                                                                                                                   |                                                                                                                      | TATIC PRE                                                                                                           |                                                                                                      | C DENSITY<br>OUT                                                 | STATIC TE<br>IN O                                                                 |                                                                                                                                            | EED<br>DUT                                                                                                                 |
| 1 2                                             | 17.36 16.87<br>17.88 17.47                                                                                                                                       | .972                                                                          | 357.3 357.3<br>356.3 356.3                                                                                                                                                     | 1.000 15                                                                                                             | 5.02 14.<br>5.00 14.                                                                                                | 79 1.5260<br>82 1.5424                                                                               | 8 1.49736<br>9 1.51918                                           | 342.8 34                                                                          | 4.1 .0<br>9.9 .0                                                                                                                           | . 8<br>. 0                                                                                                                 |
| 3                                               | 18.24 17.78<br>18.39 17.73                                                                                                                                       | .964                                                                          | 352.5 352.5<br>349.4 349.4                                                                                                                                                     | 1.000 14                                                                                                             | 4.85 14.<br>4.85 14.                                                                                                | 66 1.5734                                                                                            | 0 1.54314                                                        | 328.7 33                                                                          | 3.9 .0<br>1.0 .0                                                                                                                           | . 0<br>. 0                                                                                                                 |
| 5<br>6<br>7                                     | 18.52 17.86<br>18.75 18.15<br>19.33 18.74                                                                                                                        | .969                                                                          | 348.9 348.9<br>350.4 350.4<br>352.5 352.5                                                                                                                                      | 1.000 14                                                                                                             | 4.78 14.<br>4.69 14.<br>4.64 14.                                                                                    | 61 1.5652                                                                                            | 6 1.54512                                                        | 326.9 32                                                                          | 9.7 .0<br>9.3 .0<br>8.3 .0                                                                                                                 | .0<br>.0<br>.0                                                                                                             |
| 8<br>9                                          | 19.92 19.34<br>20.50 19.75                                                                                                                                       | .971                                                                          | 354.9 354.9<br>359.1 359.1                                                                                                                                                     | 1.000 1                                                                                                              | 4.54 14.<br>4.39 14.                                                                                                | 48 1.5617                                                                                            | 5 1.54412                                                        | 324.4 32                                                                          | 6.8 .0<br>8.1 .0                                                                                                                           | .0                                                                                                                         |
| 10<br>11                                        | 20.70 19.07<br>20.20 18.18                                                                                                                                       | .921                                                                          | 361.9 361.9<br>363.3 363.3                                                                                                                                                     | 1.000 1                                                                                                              | 4.36 14.<br>4.30 14.                                                                                                | 25 1.5343                                                                                            | 2 1.49115                                                        | 326.0 33                                                                          | 3.0 .0<br>8.8 .0                                                                                                                           | . 0<br>. 0                                                                                                                 |
| RP                                              | PERCENT IN                                                                                                                                                       | CIDENCE<br>N SS                                                               | D<br>DEVIA FACTI                                                                                                                                                               | OR EFFIC                                                                                                             | LOSS<br>TOT                                                                                                         | COEFFICIENT<br>PROF SHOC                                                                             |                                                                  | PARAMETER<br>PROF SHOC                                                            | PEAK SS<br>K MACH NO                                                                                                                       |                                                                                                                            |
| 1 2                                             | 5.0 -10.<br>10.0 -10.                                                                                                                                            | 6 -16.4                                                                       | 11.4 .2                                                                                                                                                                        | .000                                                                                                                 | .209                                                                                                                | .209 .00                                                                                             | 0 .082                                                           | .082 .00                                                                          | 0 .553<br>0 .586                                                                                                                           |                                                                                                                            |
| 3                                               | 20.0 -12.<br>30.0 -14.                                                                                                                                           | 5 -20.2                                                                       | 10.1 .1                                                                                                                                                                        | 39 .000                                                                                                              | .136<br>.186                                                                                                        | .136 .00<br>.186 .00                                                                                 | 0 .066                                                           | .050 .00<br>.066 .00                                                              | 0 .561                                                                                                                                     |                                                                                                                            |
| 5                                               | 40.0 -13.<br>50.0 -13.                                                                                                                                           | 3 -18.8                                                                       | 8.1 .1<br>8.3 .1                                                                                                                                                               | .000                                                                                                                 | .176<br>.143<br>.127                                                                                                | .176 .00<br>.143 .00<br>.127 .00                                                                     | 0 .046                                                           | .060 .00<br>.046 .00<br>.039 .00                                                  | 0.59 <b>9</b>                                                                                                                              |                                                                                                                            |
| 7<br>8<br>9                                     | 60.0 -13.<br>70.0 -13.<br>80.0 -11.                                                                                                                              | 0 -18.3                                                                       | 9.0 .1<br>9.1 .1<br>11.5 .1                                                                                                                                                    | 74 .000                                                                                                              | .108                                                                                                                | .108 .00                                                                                             | 0 .032                                                           | .032 .00<br>.034 .00                                                              | 0 .686                                                                                                                                     |                                                                                                                            |
| 10<br>11                                        | 90.0 -11.<br>95.0 -12.                                                                                                                                           | 2 -16.3                                                                       | 16.6 .2<br>17.9 .2                                                                                                                                                             | 37 .000                                                                                                              | .256                                                                                                                | .256 .00<br>.342 .00                                                                                 | 0 .069                                                           | .069 .00<br>.089 .00                                                              | 0.905                                                                                                                                      |                                                                                                                            |

(i) 90 Percent of design speed; reading 1321

| RP            | RADII<br>IN OUT                                 | AXIAL<br>IN                  | VELOCITY<br>OUT RATIO                     | MERIDI<br>IN               | ONAL VELOCITY OUT RATIO                   | TANG VEL<br>IN OUT                  | RADIAL '                                  | VEL ABS                             | VEL I                         | REL VEL<br>N OUT                    |
|---------------|-------------------------------------------------|------------------------------|-------------------------------------------|----------------------------|-------------------------------------------|-------------------------------------|-------------------------------------------|-------------------------------------|-------------------------------|-------------------------------------|
| 1<br>2<br>3   | 23.142 23.160<br>22.697 22.730<br>21.788 21.849 | 158.4                        | 148.5 .986<br>157.7 .996<br>164.6 .993    | 150.6<br>158.4<br>165.7    | 148.5 .986<br>157.7 .996<br>164.6 .993    | 115.6<br>117.5<br>119.2             | 7 1.1                                     | .4 189.9<br>.9 197.3<br>1.9 204.1   | 148.5 189<br>157.8 19         | 7.9 148.5<br>7.3 157.8              |
| 4<br>5        | 20.889 20.973<br>20.002 20.109                  | 170.6<br>173.9               | 166.1 .974<br>168.3 .968                  | 170.6<br>174.0             | 166.2 .974<br>168.3 .968                  | 113.7 -1.<br>117.3 -2.              | 2 3.3<br>1 4.6                            | 2.7 205.0<br>3.4 209.8              | 166.2 20:<br>168.3 20:        | 4.1 164.6<br>5.0 166.2<br>9.8 168.3 |
| 6<br>7<br>8   | 19.129 19.258<br>18.268 18.423<br>17.414 17.600 | 181.8                        | 171.6 .970<br>176.1 .969<br>179.6 1.001   | 177.0<br>182.0<br>179.6    | 171.6 .970<br>176.1 .968<br>179.6 1.000   | 122.9 -2.<br>127.0 -1.<br>136.7 -2. | 4 7.6                                     | 4.0 215.5<br>4.6 221.9<br>5.2 225.7 | 176.1 22                      | 5.5 171.6<br>1.9 176.1<br>5.7 179.6 |
| 9<br>10<br>11 | 16.576 16.800<br>15.751 16.035<br>15.342 15.669 | 169 <sub>-</sub> 2<br>168.1  | 177.9 1.051<br>166.9 .993<br>157.1 .909   | 169.5<br>168.6<br>173.3    | 178.0 1.050<br>167.0 .991<br>157.2 .907   | 156.1 2.<br>169.7 8.<br>163.9 6.    | 0 10.3<br>8 12.4                          | 5.5 230.4<br>5.4 239.2<br>5.2 238.5 | 178.0 23<br>167.2 23          | 0.4 178.0<br>9.2 167.2              |
| RP            | ABS MACH NO                                     | REL MAC                      | H NO AXIAL                                | MACH NO                    | MERID MACH NO                             | ABS BETAZ                           | ABS BETAM                                 | REL BETA                            | Z REL BET                     |                                     |
| 1 2           | IN OUT<br>.501 .388<br>.523 .414                | IN<br>.501<br>.523           | OUT IN<br>.388 .39<br>.414 .42            |                            | IN OUT<br>.398 .388<br>.420 .414          |                                     |                                           | 3 37.5                              | .3 37.5                       | UT<br>.3<br>2.1                     |
| 3<br>4<br>5   | .546 .436<br>.552 .443<br>.567 .450             | .546<br>.552<br>.567         | .436 .44<br>.443 .45<br>.450 .47          | 3 .436<br>9 .443           | .443 .436<br>.459 .443<br>.470 .450       | 35.7 .9<br>33.74                    | 35.7 .<br>33.7                            | 9 35.7<br>4 33.7 -                  | .9 35.7<br>.4 33.7            | .9<br>4                             |
| 6<br>7        | .584 .459<br>.603 .472                          | .584<br>.603                 | .459 .47<br>.472 .49                      | 9 .459<br>4 .472           | .480 .459<br>.495 .472                    | 34.87<br>34.94                      | 34.8<br>34.9                              | 7 34.8 -<br>4 34.9 -                | .7 34.0<br>.7 34.8<br>.4 34.9 | 7<br>7<br>4                         |
| 8<br>9<br>10  | .614 .482<br>.626 .476<br>.649 .445             | .614<br>.626<br>.649         | .482 .48<br>.476 .46<br>.445 .45          | 0 .476                     | .488 .482<br>.460 .476<br>.458 .444       | 42.7 .6                             | 42.6 .                                    | 6 42.7                              | .7 37.3<br>.6 42.6<br>.0 45.2 | 7<br>.6<br>3.0                      |
| 11            | .647 .417                                       | .647                         | .417 .46                                  | 8 .416                     | .470 .416                                 | 43.5 2.2                            | 43.4 2.                                   | 2 43.5 2                            | .2 43.4                       | 2.2                                 |
| RP<br>1       | TOTAL PRESS<br>IN OUT<br>20.85 20.50            | SURE<br>RATIO<br>.983        | TOTAL TEMPS<br>IN OUT<br>375.1 375.1      | RATIO                      | STATIC PRESS<br>IN OUT<br>17.56 18.48     |                                     | ISITY STAT<br>IUT IN<br>.76759 357.       | OUT                                 | HEEL SPEED<br>IN OUT<br>.0 .0 |                                     |
| 2             | 21.11 20.81<br>21.20 20.97                      | .98 <b>6</b><br>.98 <b>9</b> | 373.7 373.7<br>368.4 368.4                | 1.000<br>1.000             | 17.52 18.49<br>17.31 18.40                | 1.72295 1.<br>1.73464 1.            | 78292 354.<br>80624 347.                  | 3 361.3<br>7 355.0                  | .0 .0<br>.0 .0                |                                     |
| 4<br>5<br>6   | 21.26 21.07<br>21.32 21.12<br>21.45 21.23       | .991<br>.991<br>.990         | 364.4 364.4<br>362.3 362.3<br>362.0 362.0 | 1.000                      | 17.29 18.42<br>17.14 18.38<br>17.03 16.37 | 1.75387 1.                          | .82939 343.<br>.83892 340.<br>.84213 338. | 4 348.3                             | .0 .0<br>.0 .0<br>.0 .0       |                                     |
| 7<br>8<br>9   | 21.60 21.37<br>21.69 21.45<br>21.52 21.31       | .989<br>.98 <b>9</b><br>.990 | 361.4 361.4<br>362.1 362.1<br>363.9 363.9 | 1.000                      | 16.90 18.34<br>16.82 18.30<br>16.53 18.25 | 1.74700 1.<br>1.74075 1.            | .84639 336.<br>.84282 336.                | 9 346.0<br>7 346.0                  | .0 .0<br>.0 .0                |                                     |
| 10<br>11      | 21.69 20.81<br>21.50 20.44                      | .960<br>.950                 | 366.3 366.3<br>367.1 367.3                | 1.000                      | 16.34 18.17<br>16.24 18.14                | 1.68516 1.                          | .82622 337.<br>.79669 337.<br>.78122 338. | 8 352.4                             | .0 .0<br>.0 .0<br>.0 .0       |                                     |
| RP            | PERCENT INC<br>SPAN MEAN                        | IDENCE<br>SS                 | DEVIA FAC                                 | OR EFF                     |                                           | EFFICIENT<br>ROF SHOCK              | LOSS PARAM                                | IETER PEAK<br>SHOCK MACH            |                               |                                     |
| 1<br>2<br>3   | 5.0 2.6<br>10.0 1.8                             | -3.2<br>-3.9                 | 14.7<br>14.9                              | 154 .01<br>117 .01         | 00 .106 .1<br>00 .085 .1                  | .000<br>.000                        | .041 .041<br>.032 .032                    | 3. 000.<br>3. <b>0</b> 00.          | 335<br>344                    |                                     |
| 4<br>5        | 30.0 -1.3<br>40.0 -1.6                          | -7.2                         | 9.4<br>8.8                                | 104 .0<br>387 .0<br>390 .0 | 00 .048 .                                 | 060 .000<br>048 .000<br>047 .900    | .022 .022<br>.017 .017<br>.016 .016       | .000 .8                             | 347<br>302<br>314             |                                     |
| 6<br>7<br>8   | 50.0 -1.9<br>60.0 -3.1<br>70.0 -2.3             | -7.4<br>-8.5<br>-7.6         | 9.0                                       | 391 .0<br>385 .0<br>385 .0 | 00 .050 .                                 | 051 .000<br>050 .000<br>049 .000    | .016 .016<br>.016 .016<br>.015 .015       | .000 .8                             | 334<br>343<br>383             |                                     |
| 9<br>10<br>11 | 80.0 .7<br>90.03<br>95.0 -4.3                   | -4.5<br>-5.4                 | 11.3 .<br>16.0 .                          | 115 .0<br>179 .0           | 00 .041 .<br>00 .164 .                    | 041 .000<br>164 .000                | .012 .012<br>.044 .044                    | .000 .9                             | 784<br>041                    |                                     |
|               | 77 11 -4 1                                      | -9.3                         | 17.1 .                                    | 512 .0                     | 00 .203 .                                 | 203 .000                            | .053 .053                                 | .000 .9                             | 778                           |                                     |

(j) 90 Percent of design speed; reading 1332

| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | RADII IN 001 23.142 23.16 22.697 22.73 21.788 21.84 20.889 20.97 20.002 20.16 19.129 19.25 18.268 18.42 17.414 17.66 15.7751 16.03 15.342 15.68 | T IN 155.0 157.0 157.0 157.0 158.8 159.1 158.8 160.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 156.1 148.8 1 | NEL VELOC<br>OUT<br>145.7<br>151.1<br>156.3<br>157.8<br>158.7<br>157.4<br>152.6<br>151.0<br>149.9<br>139.6<br>131.7 | RATIO<br>.940<br>.956<br>.998<br>.994<br>.978<br>.979<br>.978<br>1.015<br>1.071<br>.943<br>.817     | 1N<br>155.0<br>157.9<br>156.7<br>158.8<br>162.4<br>160.9<br>156.2<br>149.0<br>140.2<br>148.5 | 145.7<br>151.1<br>156.4<br>157.9<br>158.8<br>157.4<br>152.7<br>151.0                               | OCITY<br>RATIO<br>.940<br>.956<br>.998<br>.994<br>.978<br>.979<br>.977<br>1.014<br>1.070<br>.941<br>.815 | TANG<br>1N<br>118.2<br>119.4<br>129.3<br>126.2<br>128.9<br>132.3<br>137.8<br>148.5<br>171.2<br>176.6<br>164.2                         | OUT<br>4.2<br>7.7<br>6.2<br>3.7<br>3.0<br>2.9<br>1.7<br>2.5<br>9.9<br>11.2 | .4<br>1.0<br>2.1<br>3.1<br>4.3<br>5.4<br>6.5<br>7.5<br>8.5                                                          | UT    | 94.9 14<br>98.0 15<br>203.1 15<br>202.9 15<br>207.3 15<br>208.3 15<br>208.3 15<br>210.3 15<br>221.3 15<br>230.7 14 | UT 1N 194.9 1.3 198.0 6.5 203.1 7.9 202.9 8.8 207.3 7.5 208.3 1.1 210.3 0.3 221.3 0.1 230.7                                   | VEL<br>0UT<br>145.8<br>151.3<br>156.5<br>157.9<br>158.8<br>157.5<br>152.7<br>151.1<br>150.3<br>140.1 |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| RP 1 2 3 4 5 6 7 8 9 10 11                            | ABS MACH NO IN OUT .510 .37 .520 .39 .538 .41 .541 .41 .556 .42 .560 .41 .566 .40 .566 .40 .597 .39 .623 .36                                    | REL M/<br>I IN<br>77 .510<br>23 .520<br>.0 .538<br>.6 .541<br>.20 .556<br>.8 .560<br>.5 .561<br>.1 .566<br>.8 .597<br>.9 .623                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                     | AXIAL M/<br>IN .406<br>.415<br>.415<br>.423<br>.435<br>.432<br>.420<br>.401<br>.377<br>.400<br>.434 |                                                                                              | MERID M<br>IN .406<br>.415<br>.415<br>.424<br>.435<br>.432<br>.420<br>.401<br>.378<br>.401<br>.436 |                                                                                                          | ABS BE                                                                                                                                |                                                                            | S BETAM<br>N OUT<br>.3 1.7<br>.1 2.9<br>.5 2.3<br>.5 1.3<br>.4 1.1<br>.4 1.0<br>.4 .7<br>.9 1.0<br>.7 3.8<br>.9 4.6 |       | BETAZ<br>OUT<br>1.7<br>2.9<br>2.3<br>1.3<br>1.1<br>1.0<br>.7<br>1.0<br>4.6                                         | 1.9 230.5  REL BETAM IN OUT 37.3 1.7 37.1 2.9 39.5 2.3 38.5 1.3 38.4 1.1 39.4 1.0 41.4 .7 44.9 1.0 50.7 3.8 49.9 4.6 45.4 2.7 | 131.9                                                                                                |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9       | TOTAL PRIN OUT 21.95 21.4 22.05 21.5 22.07 21.8 22.03 21.8 22.03 21.8 21.76 21.76 21.87 21.94 21.77 20.8                                        | RATIO<br>975<br>975<br>979<br>989<br>990<br>990<br>11 992<br>990<br>11 992<br>11 992<br>11 984<br>959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TOTAL<br>IN<br>382.0<br>380.2<br>375.1<br>370.5<br>367.6<br>366.2<br>365.1<br>365.5<br>366.8<br>368.4<br>369.2      | 382.0<br>380.2<br>375.1<br>370.5<br>367.6<br>1<br>365.1<br>365.5<br>366.8<br>368.4                  | RATIO<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000                | 18.34<br>18.07<br>18.07<br>17.89<br>17.81<br>17.59<br>17.51<br>17.19                               | PRESS<br>QUT<br>19.40<br>19.40<br>19.38<br>19.36<br>19.35<br>19.35<br>19.30<br>19.24<br>19.24<br>19.24   | STATIC<br>IN<br>1.76327<br>1.77154<br>1.77578<br>1.79893<br>1.80009<br>1.80027<br>1.78411<br>1.77574<br>1.74893<br>1.72195<br>1.70566 | 1.83282<br>1.86018                                                         | STATI<br>IN<br>363.1<br>360.7<br>3540.0<br>346.2<br>344.6<br>343.6<br>342.5<br>342.5<br>342.8                       | 358.1 | IN .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0                                                                          | . 0                                                                                                                           |                                                                                                      |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | SPAN ME 5.0 2 10.0 2 20.0 4 30.0 3 40.0 3 50.0 2 60.0 5 80.0 890.0 4                                                                            | NCIDENCE<br>AN SS<br>.5 -3.2<br>.5 -3.2<br>.9 - 1.9<br>.0 -2.6<br>.9 -2.6<br>.6 -1.8<br>.5 .2<br>.9 3.7<br>.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DEVIA<br>16.2<br>15.9<br>13.1<br>11.3<br>10.7<br>10.6<br>10.3<br>10.9<br>14.6<br>17.7                               | D<br>FACTOR<br>.481<br>.452<br>.453<br>.435<br>.439<br>.445<br>.468<br>.486<br>.524<br>.583<br>.605 | EFFIC<br>.000<br>.000<br>.000<br>.000<br>.000<br>.000<br>.000                                | 101<br>.15:<br>.12:                                                                                | 3 .153<br>7 .127<br>6 .066<br>0 .066<br>2 .052<br>0 .056<br>1 .041<br>5 .065<br>7 .077<br>8 .178         | SHOCK                                                                                                                                 | LOS' TOT .060 .049 .024 .021 .017 .016 .013 .019 .022 .047 .051            | PARAME PROF .060 .049 .024 .021 .017 .016 .013 .019 .022 .047 .051                                                  |       | PEAK SS<br>MACH NO<br>.850<br>.852<br>.906<br>.877<br>.885<br>.891<br>.910<br>.9164<br>1.105<br>1.102<br>.986      |                                                                                                                               |                                                                                                      |

TABLE XII. - Continued. BLADE-ELEMENT PERFORMANCE AT BLADE EDGES FOR SECOND-STAGE STATOR

(k) 80 Percent of design speed; reading 1347

| RP                                              | RADII                                                                                                                                                            | AXIAL VELO                                                                                                                                 |                                                                                                                      | IONAL VELOCITY                                                                                                                      | TANG VEL                                                                                                                | RADIAL VEL                                                                                                           | ABS VEL                                                                                                                                    | REL VEL                                                                                                                                    |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | IN OUT 23.142 23.160 22.697 22.730 21.788 21.849 20.889 20.973 20.002 20.109 19.129 19.258 18.268 18.423 17.414 17.600 16.576 16.800 15.751 16.035 15.342 15.669 | IN OUT 144.4 160.3 159.5 178.5 175.0 188.1 180.2 189.0 185.7 197.3 194.7 208.9 206.3 222.9 214.4 241.8 223.9 255.4 220.3 247.3 199.0 233.9 | 1.119 159.5<br>1.075 175.0<br>1.049 180.7<br>1.063 185.8<br>1.073 194.8<br>1.080 206.5<br>1.128 214.1<br>1.141 224.1 | 178.5 1.119<br>188.2 1.075<br>189.1 1.049<br>197.3 1.062<br>208.9 1.072<br>222.9 1.080<br>241.9 1.127<br>255.5 1.139<br>247.5 1.120 | IN OUT 36.7 -12.0 39.1 -8.4 39.5 -7.2 41.0 -8.3 51.0 -5.9 63.1 -5.1 76.0 -4.7 89.1 -6.4 109.1 -1.6 123.1 11.1 130.1 4.9 | IN OUT  .4 .5  1.1 1.1  2.3 2.2  3.5 3.0  4.9 4.0  6.5 4.9  8.6 5.9  8.6 5.9  10.9 7.0  13.7 7.8  16.3 8.0  16.3 7.7 | IN 0UT 149.0 160.7 164.2 178.3 179.4 188.3 184.9 189.2 192.7 197.4 204.8 209.0 220.0 223.0 237.5 242.0 249.4 255.5 252.9 247.7 238.3 234.0 | IN 0UT 149.0 160.7 164.2 178.7 179.4 188.3 184.9 189.2 192.7 197.4 204.8 209.0 220.0 223.0 223.5 242.0 249.4 255.5 252.9 247.7 238.3 234.0 |
| RP                                              | ABS MACH NO<br>IN OUT                                                                                                                                            | REL MACH NO<br>IN OUT                                                                                                                      | AXIAL MACH NI<br>IN OUT                                                                                              | IN OUT                                                                                                                              | ABS BETAZ<br>IN OUT                                                                                                     | IN OUT                                                                                                               | IN OUT I                                                                                                                                   |                                                                                                                                            |
| 1<br>2<br>3                                     | .414 .448<br>.458 .501<br>.505 .531                                                                                                                              | .414 .448<br>.458 .501<br>.505 .531                                                                                                        | .445 .50                                                                                                             | .445 .500                                                                                                                           | 14.3 -4.3<br>13.8 -2.7<br>12.7 -2.2                                                                                     | 13.8 -2.7                                                                                                            | 4.3                                                                                                                                        | .8 -2.7                                                                                                                                    |
| 4<br>5                                          | .522 .535<br>.544 .559                                                                                                                                           | .522 .535<br>.544 .559                                                                                                                     | .509 .53<br>.525 .55                                                                                                 | 1 .509 .534<br>3 .525 .558                                                                                                          | 12.8 -2.5<br>15.4 -1.7                                                                                                  | 12.8 -2.5<br>15.4 -1.7                                                                                               | 12.8 -2.5 12<br>15.4 -1.7 15                                                                                                               | .8 -2.5<br>.4 -1.7                                                                                                                         |
| 6<br>7<br>8                                     | .578 .591<br>.622 .631<br>.657 .686                                                                                                                              | .578 .591<br>.622 .633<br>.657 .688                                                                                                        | .583 .63<br>.606 .68                                                                                                 | .584 .631                                                                                                                           | 18.0 -1.4<br>20.2 -1.2<br>22.6 -1.5                                                                                     | 20.2 -1.2                                                                                                            | 18.0 -1.4 17<br>20.2 -1.2 20<br>22.6 -1.5 22                                                                                               | .2 -1.2                                                                                                                                    |
| 9<br>10<br>11                                   | .705 .724<br>.713 .697<br>.666 .653                                                                                                                              | .705 .724<br>.713 .691<br>.666 .651                                                                                                        | .622 .69                                                                                                             | 6 .623 .697                                                                                                                         | 26.04<br>29.2 2.6<br>33.2 1.2                                                                                           | 29.1 2.6                                                                                                             | 26.04 25<br>29.2 2.6 29<br>33.2 1.2 33                                                                                                     | .1 2.6                                                                                                                                     |
| RP                                              | TOTAL PRES                                                                                                                                                       | SURE TOTA                                                                                                                                  | AL TEMPERATURE                                                                                                       | STATIC PRESS                                                                                                                        | STATIC DENSI                                                                                                            | TY STATIC T                                                                                                          | EMP WHEEL SP                                                                                                                               | EED                                                                                                                                        |
| 1<br>2                                          | IN OUT<br>14.46 13.98<br>14.84 14.49                                                                                                                             | RATIO IN<br>.967 333.<br>.977 332.                                                                                                         |                                                                                                                      | IN OUT<br>12.85 12.18<br>12.85 12.21                                                                                                | IN 001<br>1.38777 1.32<br>1.40123 1.34                                                                                  | 2265 322.6 3                                                                                                         | DUT IN<br>20.8 .0<br>16.9 .0                                                                                                               | 0 . 0<br>. 0<br>. 0                                                                                                                        |
| 3<br>4<br>5                                     | 15.22 14.62<br>15.37 14.62<br>15.58 14.90                                                                                                                        | .960 330.3<br>.951 329.<br>.957 330.                                                                                                       | 329.1 1.000                                                                                                          | 12.79 12.06<br>12.77 12.03<br>12.73 12.06                                                                                           | 1.41828 1.34<br>1.42507 1.34<br>1.42358 1.35                                                                            | 1683 312.1 3                                                                                                         | 12.6 .0<br>11.3 .0<br>10.7 .0                                                                                                              | . 0<br>. 0<br>. 0                                                                                                                          |
| 6<br>7                                          | 15.95 15.22<br>16.41 15.67                                                                                                                                       | .954 332.<br>.955 335.                                                                                                                     | 9 332.9 1.000<br>3 335.3 1.000                                                                                       | 12.71 12.01<br>12.64 11.98                                                                                                          | 1.41945 1.34<br>1.41544 1.34                                                                                            | 1525 312.0 3<br>1425 311.1 3                                                                                         | 11.1 .0<br>10.5 .0                                                                                                                         | . 0.                                                                                                                                       |
| 8<br>9<br>10                                    | 16.88 16.26<br>17.29 16.77<br>17.86 16.00                                                                                                                        | .963 338.<br>.970 342.<br>.896 344.                                                                                                        | 3 342.3 1.000                                                                                                        | 12.63 11.86<br>12.40 11.83<br>12.72 11.57                                                                                           | 1.41311 1.33<br>1.38815 1.33<br>1.41698 1.20                                                                            | 3060 311.3 3                                                                                                         | 09.3 .0<br>09.7 .0<br>14.0 .0                                                                                                              | .0<br>.0<br>.0                                                                                                                             |
| 11                                              | 17.06 15.36 PERCENT INC                                                                                                                                          | .900 346.                                                                                                                                  | 9 346.9 1.000                                                                                                        | 12.67 11.53                                                                                                                         | 1.38569 1.2                                                                                                             | 318.6 3                                                                                                              | 19.6 .0                                                                                                                                    | .0                                                                                                                                         |
| RP<br>1                                         | SPAN MEAN<br>5.0 -20.7                                                                                                                                           |                                                                                                                                            | .1 .049 .                                                                                                            |                                                                                                                                     | OF SHOCK TO                                                                                                             |                                                                                                                      | PEAK SS<br>CK MACH NO<br>00 _414                                                                                                           |                                                                                                                                            |
| 2<br>3<br>4                                     | 10.0 -21.0<br>20.0 -22.1<br>30.0 -22.2                                                                                                                           | -27.8 3                                                                                                                                    | .5 .046 .                                                                                                            | 000 .249 .2                                                                                                                         | 49 .000 .                                                                                                               | 092 .092 .0                                                                                                          | 00 .458<br>00 .505<br>00 .522                                                                                                              |                                                                                                                                            |
| 5                                               | 40.0 -20.3<br>50.0 -18.8                                                                                                                                         | -25.9 7<br>-24.3 7                                                                                                                         | .7 .075 .<br>.9 .087 .                                                                                               | 000 .238 .2<br>000 .225 .2                                                                                                          | 38 .000 .<br>25 .000 .                                                                                                  | 081 .081 .0<br>073 .073 .0                                                                                           | 00 .544<br>00 .578                                                                                                                         |                                                                                                                                            |
| 7<br>8<br>9                                     | 60.0 -17.8<br>70.0 -17.1<br>80.0 -16.0                                                                                                                           | -22.4 8                                                                                                                                    | .2 .080 .                                                                                                            | 000 .148 .1                                                                                                                         | 48 .000 .                                                                                                               | 044 .044 .0                                                                                                          | 00 .622<br>00 .657<br>00 .705                                                                                                              |                                                                                                                                            |
| 1 0<br>1 1                                      | 90.0 -16.4<br>95.0 -14.7                                                                                                                                         | -21.5 15                                                                                                                                   | .5 .138 .                                                                                                            | 000 .360 .3                                                                                                                         | 60 .000 .                                                                                                               | 097 .097 .0                                                                                                          | 00 .713<br>00 .752                                                                                                                         |                                                                                                                                            |

TABLE XII. - Continued. BLADE-ELEMENT PERFORMANCE AT BLADE EDGES FOR SECOND-STAGE STATOR

(1) 80 Percent of design speed; reading 1358

| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9       | RADII<br>IN 0U1<br>23.142 23.14<br>22.697 22.77<br>21.788 20.97<br>20.889 20.97<br>20.002 20.10<br>19.129 19.20<br>18.268 18.44<br>17.414 17.61<br>16.576 16.80 | IN 135.9 143.1 150.5 73 154.5 157.7 158 159.5 163.5 164.0 164.0 135 165.0                                                                        | 133.6<br>143.0<br>150.6<br>153.1<br>155.9<br>158.6<br>164.1<br>172.1<br>177.6<br>1                               | ATIO IN                                                                                                                                                   | 133.6<br>143.0<br>150.7<br>155.9<br>16.6<br>158.1<br>175.9<br>16.6<br>164.1<br>175.5<br>172.2<br>133.1<br>177.7<br>175.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RATID<br>.983<br>.999<br>1.001<br>.991<br>.988<br>.994<br>1.003<br>1.028<br>1.082<br>1.046                                        | 87.1<br>88.3<br>90.6<br>68.9<br>93.4<br>103.8<br>111.1<br>130.1<br>144.3                          | OUT 1N .1 3.4 .2 2 -2.6 3 -2.0 4 -1.5 5 -1.3 6 -1.9 8 2.1 10 11.0 12                                                                    | .4 .4 .8 .8 .0 1.7 .0 2.5 .1 3.1 .3 3.7 .8 4.3 .5 5.0 .0 5.5 .2 5.6                                                                                   | ABS VEL IN 0U1 161.4 133 168.2 143 175.7 150 178.2 153 183.3 155 187.5 158 193.8 164 201.0 172 209.6 177 219.6 173                             | .6 161.4<br>168.2<br>7 175.7<br>11 178.2<br>19 183.3<br>.7 187.5<br>11 193.8<br>201.0<br>.7 209.6<br>219.6 | 0UT<br>133.6<br>143.1<br>150.7<br>153.1<br>155.9<br>158.7<br>164.1<br>172.2<br>177.7<br>173.5 |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| 11<br>RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | ABS MACH NO IN OU .437 .33 .457 .33 .457 .3481 .4 .490 .4 .518 .4 .537 .4 .557 .4 .580 .4 .608 .4 .620 .4 .620 .4 .620                                          | REL MA I IN 59 .437 86 .457 10 .481 19 .490 27 .506 35 .518 51 .537 73 .557 78 .590 74 .608                                                      |                                                                                                                  | .368<br>.389<br>.412<br>.425<br>.435<br>.441<br>.453<br>.464<br>.454                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9 .386<br>2 .410<br>5 .419<br>5 .427<br>1 .435<br>13 .451<br>4 .473<br>5 .488<br>8 .473                                           | 32.7<br>31.7<br>31.0<br>29.9 -<br>30.7<br>31.7<br>32.4<br>33.6<br>38.4<br>41.2                    | 9.0 14  AZ ABS UT IN .1 32.7 1.4 31.7 .1 31.0 29.97 30.65 31.65 32.46 33.6 .7 38.4 3.6 41.1 3.1 39.5                                    | BETAM RE OUT 1 1 32 1.4 31 -1.0 297 305 315 326 33 3.6 41                                                                                             | N OUT<br>.7 .1<br>.7 1.4<br>.0 .1<br>.9 -1.0<br>.77<br>.75<br>.45<br>.66<br>.7 .7<br>.2 3.6                                                    | REL BETAM IN OUT 32.7 .1 31.7 1.4 29.9 -1.0 30.67 31.65 32.45 33.66 38.4 .7 41.1 3.6 39.5 3.1              | 165.2                                                                                         |
| RP 1 2 3 4 5 6 7 8 9 10 11                            | TOTAL P. IN OU. 17.49 17. 17.68 17. 17.84 17. 17.89 17. 18.02 17. 18.07 17. 18.19 18. 18.41 18. 18.55 18. 18.67 18.                                             | T RATIO 26 .987 51 .991 67 .991 75 .992 84 .990 88 .989 03 .991 25 .991 36 .990 12 .970                                                          | 1N<br>352.7 3<br>351.2 3<br>347.8 3<br>343.5 3<br>343.5 3<br>343.1 3<br>344.1 3<br>344.1 3<br>346.3 3<br>348.7 3 | EMPERATURE<br>OUT RAT<br>52.7 1.0<br>51.2 1.0<br>47.8 1.0<br>44.8 1.0<br>43.5 1.0<br>43.3 1.0<br>43.1 1.0<br>44.1 1.0<br>46.3 1.0<br>48.7 1.0<br>49.7 1.0 | IO IN<br>15.34<br>15.32<br>16.23<br>16.13<br>16.13<br>16.13<br>17.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18.13<br>18 | 15.80<br>15.74<br>15.73<br>15.74<br>15.70<br>15.68<br>15.65                                                                       | 1.58312<br>1.59620<br>1.60727<br>1.61300<br>1.60932<br>1.60559<br>1.60321<br>1.38534<br>1.56076   | DEMSITY<br>OUT<br>1.59983<br>1.61410<br>1.63006<br>1.64534<br>1.65439<br>1.65363<br>1.55694<br>1.55525<br>1.64479<br>1.32177<br>1.50592 | STATIC TEM<br>1N OU<br>339.7 343<br>337.1 341<br>332.4 336<br>329.0 333<br>326.8 331<br>325.8 330<br>324.4 329<br>324.4 320<br>324.7 333<br>324.7 333 | T IN .8 .0 .0 .0 .5 .0 .0 .1 .0 .0 .7 .0 .7 .0 .4 .0 .5 .0 .5 .0 .5 .0 .5 .0 .5 .0 .5 .0 .0 .5 .0 .0 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | SPEED<br>OUT<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                     |                                                                                               |
| 1 2 3 4 5 6 7 8 9 10 11                               | SPAN M<br>5.0 -<br>10.0 -<br>20.0 -<br>30.0 -<br>40.0 -<br>50.0 -<br>60.0 -<br>70.0 -<br>80.0 -<br>90.0 -                                                       | INCIDENCE<br>EAN SS<br>2.2 -8.0<br>3.0 -8.7<br>3.7 -9.4<br>5.0 -10.5<br>5.0 -10.5<br>5.5 -10.9<br>5.5 -11.3<br>3.5 -9.7<br>4.3 -9.7<br>8.2 -13.2 | DEVIA<br>14.5<br>14.3<br>10.8<br>8.9<br>8.8<br>8.9<br>9.1<br>9.2<br>11.4<br>16.7                                 | D<br>FACTOR<br>.383<br>.343<br>.332<br>.322<br>.325<br>.326<br>.321<br>.309<br>.323<br>.371<br>.416                                                       | .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LOSS COEF<br>DT PRO<br>105 .10<br>069 .06<br>064 .05<br>051 .05<br>051 .05<br>050 .05<br>047 .04<br>049 .04<br>134 .13<br>229 .22 | F SHOCK<br>5 .000<br>9 .000<br>1 .000<br>1 .000<br>1 .000<br>1 .000<br>1 .000<br>1 .000<br>1 .000 |                                                                                                                                         | PARAMETER<br>FRDF SHDCK<br>.041 .000<br>.027 .001<br>.024 .000<br>.018 .000<br>.021 .000<br>.015 .000<br>.014 .000<br>.014 .000<br>.014 .000          | .658<br>.663<br>.669<br>.649<br>.668<br>.664<br>.704<br>.770<br>.831                                                                           |                                                                                                            |                                                                                               |

TABLE XII. - Continued. BLADE-ELEMENT PERFORMANCE AT BLADE EDGES FOR SECOND-STAGE STATOR

(m) 80 Percent of design speed; reading 1369

| RP 1 2 3 4 5 6 7 8 9 1 0 1 1                          | RADII IN 0 23.142 23. 22.697 22. 21.788 21. 20.889 20. 20.002 20. 19.129 19. 18.268 18. 17.414 17. 16.576 16. 15.751 16.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 730<br>849<br>973<br>109<br>258<br>423<br>600<br>800                                                     | IN<br>131.2<br>133.2<br>134.6<br>135.4<br>137.3<br>140.7<br>141.7<br>138.0<br>132.0<br>135.6 | 129.3<br>131.0<br>134.7<br>136.1<br>136.3<br>137.5<br>138.2<br>140.2                        | RATIO<br>.985<br>.984<br>1.001<br>1.005<br>.993<br>.975<br>1.016<br>1.069<br>.972                        | 133.2<br>134.6<br>135.5<br>137.3<br>140.7<br>141.8<br>138.1<br>132.2                         | NAL VE<br>0UT<br>129.3<br>131.1<br>134.7<br>136.1<br>136.4<br>137.6<br>138.2<br>140.2<br>141.2<br>131.9<br>122.6 | RATIO<br>.985<br>.984<br>1.001<br>1.005<br>.977<br>.975<br>1.015<br>1.068<br>.970<br>.850 | TANG<br>IN<br>105.7<br>105.3<br>113.5<br>113.5<br>116.4<br>115.6<br>118.4<br>128.5<br>148.6             | VEL<br>OUT<br>5.7<br>7.5<br>6.8<br>4.3<br>2.8<br>6-1.0<br>6.1<br>8.3<br>3.5                     | 1 N 1                                                                                                         | 6 2 2 3 3 3 4 3 5 6 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6                                                        | JT I .4 16 .8 16 1.6 17 2.2 17 22.7 18 3.2 18 3.6 18 4.3 19 4.3 20            | ABS VEL<br>N OU<br>8.5 129<br>9.8 131<br>6.1 134<br>6.1 134<br>6.1 134<br>4.7 136<br>8.6 141<br>8.6 141<br>7.5 135<br>5.6 125 | 7.4<br>1.9<br>5.2<br>5.4<br>7.6<br>3.2<br>1.3                                                       | REL<br>1N<br>168.5<br>169.8<br>176.1<br>176.9<br>180.0<br>182.2<br>184.7<br>188.6<br>199.9<br>207.5<br>205.6 | VEL 0UT 129.4 131.3 134.9 136.2 136.4 137.5 138.2 140.2 141.3 152.1 |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | .450<br>.454<br>.474<br>.479<br>.490<br>.498<br>.506<br>.518<br>.546                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NO<br>343<br>.348<br>.360<br>.365<br>.368<br>.372<br>.375<br>.380<br>.383<br>.356                        | REL MAC<br>1N<br>.450<br>.454<br>.474<br>.479<br>.490<br>.506<br>.518<br>.546<br>.570        | H NO<br>OUT<br>.343<br>.348<br>.360<br>.365<br>.368<br>.372<br>.375<br>.380<br>.383<br>.356 | AXIAL MA<br>1N .350<br>.356<br>.362<br>.367<br>.374<br>.385<br>.388<br>.379<br>.363<br>.373              | CH NO<br>OUT<br>.342<br>.348<br>.359<br>.365<br>.368<br>.372<br>.375<br>.380<br>.382<br>.356 | MERID<br>IN<br>.350<br>.362<br>.362<br>.363<br>.374<br>.389<br>.379<br>.360<br>.377                              | 348<br>2 .359<br>7 .365<br>4 .368<br>5 .372<br>9 .375<br>9 .380<br>3 .382<br>4 .356       | 39.9<br>43.0<br>48.4<br>49.1                                                                            | ETAZ<br>OUT<br>2.5<br>3.3<br>2.9<br>1.8<br>1.2<br>4<br>0<br>2.5<br>3.6<br>1.6                   | ABS E 1N 38.8 38.3 40.1 40.0 40.3 49.9 42.9 48.3 49.5                                                         | BETAM<br>OUT<br>2.5<br>3.3<br>2.9<br>1.8<br>1.2<br>4<br>0<br>2.5<br>3.6                                        | 39.4<br>39.9<br>43.0<br>48.4<br>49.1                                          | ETAZ<br>OUT<br>2.5<br>3.3<br>2.9<br>1.8<br>1.2<br>4<br>0<br>2.5<br>3.6<br>1.6                                                 | REL E<br>1N<br>38.8<br>38.3<br>40.1<br>40.0<br>40.3<br>39.4<br>39.9<br>42.9<br>48.3<br>49.0<br>45.5 | ETAM<br>OUT<br>2.5<br>3.3<br>2.9<br>1.8<br>1.2<br>4<br>0<br>2.5<br>3.6                                       |                                                                     |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9       | IN 18.59 1: 18.61 1: 18.70 1: 18.71 1: 18.68 1: 18.71 1: 18.66 1: 18.69 1: 18.69 1: 18.85 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: 18.89 1: | PRESSUR<br>BUT R<br>8.30<br>8.34<br>8.46<br>8.50<br>8.55<br>8.55<br>8.55<br>8.55<br>8.26<br>8.26<br>8.02 | RE .984 .986 .987 .989 .990 .991 .992 .987 .963                                              | TOTAL IN 363.7 362.6 359.1 355.1 351.9 349.3 348.2 349.5 350.8 351.4                        | 363.7 1<br>362.6 1<br>359.1 1<br>355.1 1<br>351.9 1<br>349.3 1<br>348.2 1<br>348.2 1<br>349.5 3<br>350.8 | RATIO<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000                | STATII<br>IN<br>16.18<br>16.15<br>16.04<br>15.99<br>15.85<br>15.67<br>15.39<br>15.39<br>15.15<br>15.07           | 16.87<br>16.88<br>16.87<br>16.85<br>16.85<br>16.83<br>16.78<br>16.81                      | STAT IN 1.612(1.616) 1.625(1.641) 1.644(1.653) 1.648(1.640) 1.625(1.602) 1.589                          | 30 1.6<br>17 1.6<br>39 1.6<br>15 1.6<br>55 1.7<br>1.7<br>1.7<br>1.7<br>1.7<br>1.7<br>1.7<br>1.7 | SITY<br>JT<br>65385<br>66011<br>68021<br>69935<br>71315<br>72664<br>73156<br>72700<br>72464<br>70334<br>69304 | STATI<br>IN<br>349.6<br>348.2<br>343.7<br>339.5<br>335.8<br>331.8<br>331.8<br>330.5<br>329.8<br>329.4<br>330.4 | 354.0<br>350.0<br>345.8<br>342.6<br>339.9<br>338.7<br>338.5<br>339.6<br>342.2 | WHEEL<br>IN .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                            |                                                                                                     |                                                                                                              |                                                                     |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | PERCENT<br>SPAN<br>5.0<br>10.0<br>20.0<br>30.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0<br>95.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | INCIE<br>MEAN<br>4.0<br>3.7<br>5.4<br>5.2<br>4.8<br>2.0<br>3.5<br>6.5<br>3.7                             | DENCE<br>\$5<br>-1.8<br>-2.1<br>3<br>5<br>-2.7<br>-3.5<br>-1.9<br>1.3<br>-1.4<br>-7.1        | DEVIA<br>17.0<br>16.2<br>13.7<br>11.7<br>10.8<br>9.7<br>9.2<br>9.2<br>13.2<br>16.7          | .464<br>.448<br>.457<br>.449<br>.456<br>.4451<br>.457<br>.490                                            |                                                                                              | C T 0                                                                                                            | 122 .1<br>108 .1<br>092 .0<br>079 .0<br>065 .1<br>061 .1<br>040 .0<br>048 .1              | ROF SHO<br>22 .0<br>0.08 .0<br>192 .0<br>1979 .0<br>1979 .0<br>1965 .0<br>1961 .0<br>1940 .0<br>1948 .0 | CK<br>00<br>00<br>00<br>00<br>00<br>00<br>00                                                    |                                                                                                               | PARAME<br>PROF<br>.048<br>.041<br>.034<br>.028<br>.022<br>.012<br>.014<br>.021<br>.045<br>.049                 |                                                                               | PEAK SS<br>MACH NO<br>.771<br>.761<br>.807<br>.801<br>.809<br>.791<br>.794<br>.845<br>.991<br>.895                            |                                                                                                     |                                                                                                              |                                                                     |

(n) 80 Percent of design speed; reading 1544

| RP                                                    | RADII                                                                                                                                                             | AXIA                                                                                                     | Y AEFOC.                                                                                      |                                                                                              | MERIDIO                                                                                |                                                                                                 |                                                                                        | TANG                                                                                             |                                                                    |                                                                      | IAL VE                                                                                          |                                                                                                 | ABS VEI                                                                                                               |                                                                              | REL                                                                                                   |                                                                               |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10       | IN 23.142 23.160 22.697 22.730 21.788 21.849 20.889 20.973 20.002 20.109 19.129 19.258 18.268 18.423 17.414 17.600 15.751 16.035 15.342 15.669                    | 148.3<br>161.1<br>165.6<br>168.0<br>170.9<br>176.9<br>183.6<br>186.9<br>185.8                            | OUT<br>139.5<br>150.5<br>160.4<br>164.4<br>169.2<br>174.3<br>180.4<br>189.6<br>196.4<br>182.2 | RATIO<br>1.039<br>1.015<br>.996<br>.993<br>1.007<br>1.020<br>1.021<br>1.035<br>1.057<br>.985 | 161.1<br>165.6<br>168.1<br>171.0<br>176.8<br>183.8<br>187.2                            | 139.5<br>150.5<br>160.4<br>164.5<br>169.3<br>174.4<br>180.4<br>180.0<br>200.7<br>196.5<br>182.3 | RATIO<br>1.039<br>1.015<br>.996<br>1.007<br>1.020<br>1.020<br>1.034<br>1.055<br>.983   | IN 76.7 79.4 77.7 75.7 82.4 89.7 95.1 102.6 120.5 138.1 137.9                                    | OUT -4.1 -1.5 -4.6 -7.2 -5.5 -4.9 -6.1 -7.6 -2.2 8.7               | 1.<br>2.<br>3.<br>4.<br>5.<br>7.<br>9.<br>11.<br>13.                 | 0<br>1 1<br>2 2<br>4 3<br>7 4<br>3 5<br>4 6<br>7 6                                              | .4 19 16 .8 11 .4 11 .8 20 .5 2 2 .3 22                                                         | 54.6 13<br>68.2 13<br>78.9 16<br>82.1 16<br>87.2 16<br>87.2 16<br>93.1 13<br>90.8 18<br>10.5 19<br>22.7 20<br>31.9 19 | 50.5<br>50.5                                                                 | 1N<br>154.6<br>168.2<br>178.9<br>182.1<br>187.2<br>193.1<br>200.8<br>210.5<br>222.7<br>231.9<br>231.1 | 139.5<br>150.5<br>160.5<br>164.6<br>169.4<br>174.4<br>180.2<br>200.7<br>196.7 |
| RP                                                    | ABS MACH NO                                                                                                                                                       | REL MA                                                                                                   | ACH NO<br>OUT                                                                                 | AXIAL M                                                                                      | ACH NO<br>OUT                                                                          | MERID<br>IN                                                                                     | NACH NO                                                                                | ABS BE                                                                                           | TAZ                                                                | ABS 8                                                                | ETAM<br>TUO                                                                                     | REL I                                                                                           | BETAZ<br>DUT                                                                                                          | REL E                                                                        | ETAM<br>OUT                                                                                           |                                                                               |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10       | .421 .379<br>.460 .410<br>.493 .441<br>.505 .454<br>.520 .468<br>.537 .482<br>.559 .500<br>.587 .527<br>.621 .555<br>.645 .541<br>.642 .499                       | .421<br>.460<br>.493<br>.505<br>.520<br>.539<br>.587<br>.645                                             | .379<br>.410<br>.441<br>.454<br>.468<br>.482<br>.500<br>.527<br>.555<br>.541                  | .366<br>.406<br>.444<br>.459<br>.467<br>.475<br>.492<br>.512<br>.521<br>.517                 | .379<br>.410<br>.440<br>.454<br>.468<br>.482<br>.499<br>.526<br>.555<br>.540           | .366<br>.445<br>.459<br>.467<br>.475<br>.493<br>.513<br>.522<br>.519                            | .379<br>.410<br>.441<br>.454<br>.468<br>.482<br>.500<br>.527<br>.555                   | 29.7<br>28.2<br>25.7<br>24.6<br>26.1<br>27.7<br>28.3<br>29.2<br>32.8<br>36.6                     | -1.7<br>-2.5<br>-1.9<br>-1.6<br>-1.9<br>-2.3<br>6<br>2.6           | 29.7<br>28.7<br>24.6<br>26.1<br>27.7<br>28.3<br>29.2<br>36.5         | -1.7<br>6<br>-1.7<br>-2.5<br>-1.9<br>-1.9<br>-2.3<br>6<br>2.5                                   | 29.7<br>28.7<br>24.6<br>26.1<br>27.7<br>28.2<br>32.8<br>36.6                                    |                                                                                                                       | 29.7<br>28.2<br>25.7<br>24.6<br>26.1<br>27.7<br>28.3<br>29.2<br>32.8<br>36.5 | -1.7<br>6<br>-1.7<br>-2.5<br>-1.9<br>-1.9<br>-2.3<br>6<br>2.5                                         |                                                                               |
| RP                                                    | TOTAL PRE                                                                                                                                                         | RATIO                                                                                                    | IN                                                                                            | TEMPERA<br>OUT                                                                               | RATIO                                                                                  | IN                                                                                              | PRESS<br>OUT                                                                           | IN                                                                                               | DENSI<br>DUT                                                       | •                                                                    | STATIC                                                                                          | OUT                                                                                             | IN                                                                                                                    | L SPEEI                                                                      | Ī_                                                                                                    |                                                                               |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10       | 16.61 16.44<br>16.98 16.75<br>17.19 16.98<br>17.32 17.11<br>17.40 17.25<br>17.56 17.38<br>17.74 17.54<br>18.03 17.79<br>18.40 18.11<br>18.59 17.86<br>18.47 17.31 | 986<br>988<br>988<br>989<br>991<br>990<br>989<br>986<br>984<br>984                                       | 347.3<br>346.4<br>342.8<br>340.2<br>340.6<br>340.8<br>342.1<br>345.0<br>348.1<br>349.2        | 346.4<br>342.8<br>340.2<br>340.1<br>340.6<br>340.8<br>342.1<br>345.0<br>348.1                | 1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000 | 14.70<br>14.68<br>14.55<br>14.55<br>14.48<br>14.43<br>14.35<br>14.28<br>14.05<br>14.00          | 14.90<br>14.92<br>14.86<br>14.85<br>14.84<br>14.82<br>14.79<br>14.72<br>14.68<br>14.64 | 1.5266<br>1.5396<br>1.5510<br>1.5662<br>1.5630<br>1.5613<br>1.5582<br>1.5545<br>1.5433<br>1.5237 | 4 1.55<br>7 1.58<br>1 1.58<br>5 1.58<br>0 1.58<br>7 1.58<br>1 1.58 | 5100<br>5861<br>5368<br>5724<br>5659<br>5734<br>5231<br>7431<br>5078 | 335.5<br>332.3<br>326.9<br>323.7<br>322.7<br>322.0<br>320.8<br>320.1<br>320.3<br>321.3<br>322.6 | 337.7<br>335.1<br>330.0<br>326.7<br>325.8<br>325.4<br>324.6<br>324.1<br>325.0<br>328.8<br>332.6 |                                                                                                                       | 0<br>0<br>0<br>0<br>0                                                        | .0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                      |                                                                               |
| RP                                                    | SPAN MEA                                                                                                                                                          |                                                                                                          | DEVIA                                                                                         |                                                                                              |                                                                                        | C TO                                                                                            | T PRO                                                                                  | FICLENT<br>OF SHOCK                                                                              | K TO                                                               |                                                                      | ROF S                                                                                           | HOCK                                                                                            | PEAK SS                                                                                                               |                                                                              | •                                                                                                     |                                                                               |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11 | 5.0 -5<br>10.0 -6<br>20.0 -9<br>30.0 -10<br>40.0 -9<br>50.0 -9<br>60.0 -9<br>70.0 -10<br>80.0 -9<br>90.0 -8<br>95.0 -11                                           | .6 -12.3<br>.1 -14.8<br>.4 -16.0<br>.5 -15.1<br>.0 -14.5<br>.7 -15.1<br>.4 -15.7<br>.2 -14.4<br>.9 -14.0 | 12.7<br>12.2<br>9.0<br>7.3<br>7.6<br>7.7<br>7.5<br>10.0<br>15.5                               | .289<br>.272<br>.257<br>.254<br>.255<br>.256<br>.251                                         | .00                                                                                    | 0 .1<br>0 .0<br>0 .0<br>0 .0<br>0 .0<br>0 .0<br>0 .0                                            | 79 07 07 07 07 07 07 07 07 07 07 07 07 07                                              | 00 .00<br>30 .00<br>75 .00<br>53 .00<br>57 .00<br>59 .00<br>66 .00<br>70 .00                     | 0 .00 .00 .00 .00 .00 .00 .00 .00 .00 .                            | 038 -<br>030 -<br>027 -<br>018 -<br>019 -<br>019 -<br>020 -          | 031<br>038<br>030<br>027<br>018<br>019<br>019<br>020<br>043<br>068                              | .000                                                                                            | .590<br>.610<br>.589<br>.557<br>.592<br>.625<br>.640<br>.760<br>.843<br>.819                                          |                                                                              |                                                                                                       |                                                                               |

(o) 80 Percent of design speed; reading 1555

| RP               | RADII<br>IN OUT                                 | AXIAL<br>IN                                  | VELOCI                               |                              | ERIDION<br>In                |                             |                                    | TANG                        |                          |                      | IAL VE                    | : ,                     | ABS VEL                       |                                     | VEL                    |
|------------------|-------------------------------------------------|----------------------------------------------|--------------------------------------|------------------------------|------------------------------|-----------------------------|------------------------------------|-----------------------------|--------------------------|----------------------|---------------------------|-------------------------|-------------------------------|-------------------------------------|------------------------|
| 1<br>2<br>3      | 23.142 23.160<br>22.697 22.730<br>21.788 21.849 | 138.3<br>140.4                               | 132.9<br>137.6<br>142.8              | .961 1<br>.980 1             | 38.3 1<br>40.4 1             | OUT<br>32.9<br>37.6<br>42.8 | RATIO<br>.961<br>.980<br>.995      | IN<br>96.6<br>97.4<br>101.1 | 0UT<br>-2.5<br>1.6<br>.1 | IN<br>1              | .4                        | .4 16<br>.8 17          | 8.7 13:<br>0.9 13:<br>5.5 14: | 7.6 170.9                           |                        |
| 4<br>5<br>6      | 20.889 20.973<br>20.002 20.109<br>19.129 19.258 | 146.1<br>148.8                               | 145.3<br>147.4<br>150.9              | .994 1<br>.591 1             | 46.2 1<br>48.9 1             | 45.3<br>47.5<br>50.9        | .994<br>.991<br>.992               | 100.5<br>104.6<br>108.6     | -2.5<br>-2.5<br>-2.2     | 2                    | .9 2<br>.9 3              | .3 17<br>.0 18          | 7.4 14:<br>1.9 14             | 5.3 177.4                           | 145.3                  |
| 7<br>8<br>9      | 18.268 18.423<br>17.414 17.600<br>16.576 16.800 | 155.9<br>155.2                               | 154.9<br>159.2                       | .993 1<br>1.026 1            | 56.1 1<br>55.4 1             | 55.0<br>59.3                | .993<br>1.025<br>1.086             | 113.1<br>119.9<br>140.5     | -2.1<br>-3.6<br>1.0      | 6                    | .5 4<br>.9 4              | .1 19<br>.6 19          | 2.7 15:<br>6.3 15:            | 5.0 192.7<br>9.3 196.3<br>1.8 204.8 | 155. <b>0</b><br>159.3 |
| 10<br>11         | 15.751 16.035<br>15.342 15.669                  | 150.9<br>158.1                               |                                      | 1.023 1                      | 51.3 1                       |                             | 1.021                              | 153.4<br>146.6              | 6.2<br>2.1               | 11<br>12             | .1 5                      | .0 21                   | 5.4 15<br>6.0 14              | 4.6 215.4                           | 154.6                  |
| R₽               | ABS MACH NO                                     | REL MAG                                      | OUT                                  | AXIAL MAC                    | DUT                          | IN                          | IACH NO                            | ABS BI                      | ĐUΤ                      | IN                   | BETAM<br>OUT              | REL E                   | DUT                           | REL BETAM                           |                        |
| 1 2 3            | .453 .355<br>.461 .368<br>.477 .385             | .453<br>.461<br>.477                         | .35 <b>5</b><br>.368<br>.38 <b>5</b> | .372<br>.379<br>.390         | .355<br>.368<br>.385         | .372<br>.379<br>.390        | .355<br>.368<br>.385               | 34.9<br>34.7<br>35.2        | -1 .1<br>.7<br>.1        | 34.9<br>34.7<br>35.2 | .7<br>.1                  | 34.7<br>35.2            | -1 .1<br>.7<br>.1             | 34.9 -1.1<br>34.7 .7<br>35.2 .1     |                        |
| 4<br>5<br>6<br>7 | .484 .394<br>.498 .401<br>.513 .411             | .484<br>.498<br>.513                         | .394<br>.401<br>.411                 | .399<br>.408<br>.417         | .393<br>.400<br>.411         | .399<br>.408<br>.418        | .393<br>.401<br>.411               | 34.5<br>35.1<br>35.6        | -1.0<br>-1.0<br>8        | 34.5<br>35.1<br>35.5 | -1.0<br>-1.0<br>8         | 34.5<br>35.1<br>35.6    | -1.0<br>-1.0<br>8             | 34.5 -1.0<br>35.1 -1.0<br>35.58     |                        |
| 7<br>8<br>9      | .530 .422<br>.541 .435<br>.564 .441             | .530<br>.541<br>.564                         | .422<br>.435<br>.441                 | .429<br>.428<br>.409         | .422<br>.434<br>.440         | .430<br>.428<br>.410        | .422<br>.434<br>.441               | 35.9<br>37.7<br>43.4        | 8<br>-1.3<br>.4          | 35.9<br>37.7<br>43.3 | 8                         | 35.9<br>37.7<br>43.4    | 8<br>-1.3<br>.4               | 35.98<br>37.7 -1.3<br>43.3 .4       |                        |
| 10<br>11         | .594 .419<br>.595 .390                          | .594<br>.59 <b>5</b>                         | .419<br>.390                         | .416<br>.435                 | .418<br>.390                 | .417<br>.437                | .419<br>.390                       | 45.5<br>42.8                | 2.3                      | 45.4<br>42.7         | 2.3                       | 45.5<br>42.8            | 2.3                           | 45.4 2.3<br>42.7 .8                 |                        |
| RP.              | TOTAL PRESS                                     | RATIO                                        | IN                                   | TEMPERATE OUT RA             | OITA                         | TATIC                       | DUT                                | IN                          | C DENSI                  |                      | STATIC<br>IN<br>344.5     | DUT                     | IN                            | SPEED<br>OUT                        |                        |
| 1 2 3            | 18.28 17.97<br>18.34 18.09<br>18.44 18.22       | .983<br>.987<br>.988                         | 356.9<br>353.0                       | 356.9 1<br>353.0 1           | .000 1<br>.000 1             | 5.85                        | 16.47<br>16.47<br>16.45            | 1.6133                      | 5 1.67                   | 174<br>191           | 342.4<br>337.7            | 349.8<br>347.5<br>342.9 | . 0<br>. 0<br>. 0             | .0<br>.0                            |                        |
| 4<br>5<br>6      | 18.45 18.30<br>18.54 18.35<br>18.61 18.44       | .99 <b>2</b><br>.99 <b>0</b><br>.99 <b>1</b> | 348.2<br>347.5                       | 348.2 1<br>347.5 1           | .000 1<br>.00 <b>0</b> 1     | 5.64                        | 16.45<br>16.43<br>16.42            | 1.6379<br>1.6428<br>1.6405  | 9 1.69<br>3 1.70         | 662<br>146           | 334.3<br>331.8<br>330.2   | 339.4<br>337.4<br>336.2 | . 0<br>. 0<br>. 0             | .0<br>.0                            |                        |
| 7<br>8<br>9      | 18.72 18.55<br>18.77 18.62<br>18.85 18.67       | .991<br>.992<br>.991                         | 347.1<br>347.3                       | 347.1 1<br>347.3 1           | .000 1                       | 15.46<br>15.38              | 16.41<br>16.36<br>16.34            | 1.6391                      | 5 1.70<br>0 1.70         | 573<br>279           | 328.6<br>328.1<br>328.1   | 335.1<br>334.6<br>336.0 | . 0<br>. 0<br>. 0             | .0                                  |                        |
| 10<br>11         | 19.03 18.38<br>18.95 18.06                      | .966<br>.953                                 | 351.0                                |                              | .00 <b>0</b> 1               | 5.00<br>14.92               | 16.29                              | 1.6129<br>1.5935<br>1.5828  | 5 1.67<br>5 1.66         | 366                  | 327.9<br>328.4            | 339.1<br>341.2          | .0                            | .0                                  |                        |
| RP               | SPAN MEAN                                       | IDENCE<br>SS<br>-5.7                         | DEVIA<br>13.5                        | D<br>FACTOR<br>.441          | EFFIC<br>.000                | L(<br>TO<br>.13             | OSS COEF<br>T PRO<br>32 .13        | F SHOC                      | K TO                     | T                    | PARAMET<br>PROF S<br>.052 |                         | PEAK SS<br>MACH NO<br>.718    |                                     |                        |
| 3                | 10.0 .1<br>20.0 .5                              | -5.6<br>-5.2                                 | 13.6<br>10.9                         | .410<br>.398                 | .00 <b>0</b><br>.00 <b>0</b> | .01                         | 9 <b>9 .</b> 09<br>8 <b>1 .</b> 08 | 9 .00                       | 0 .0                     | 38<br>30             | .038<br>.030              | .000                    | .717<br>.732                  |                                     |                        |
| 4<br>5<br>6      | 30.03<br>40.04<br>50.0 -1.0                     | -6.0<br>-6.0<br>-6.5                         | 9.0<br>8.6<br>8.6                    | .386<br>.388<br>.384         | .000<br>.000<br>.000         | . 0 :<br>. 0 :              | 64 .06<br>54 .05                   | 4 .00                       | 0 .0                     | 22<br>17             | .019<br>.022<br>.017      | .000                    | .719<br>.736<br>.748          |                                     |                        |
| 7<br>8<br>9      | 60.0 -1.9<br>70.0 -1.8<br>80.0 1.5              | -3.7                                         | 8.8<br>8.6<br>11.1                   | .38 <b>0</b><br>.374<br>.400 | .000<br>.000<br>.000         | .0:<br>.0<br>.0             | 43 .04<br>49 .04                   | 13 .00<br>19 .00            | 0 .0<br>0 .0             | 13                   | .017<br>.013<br>.014      | .000<br>.000<br>.000    | .762<br>.787<br>.902          |                                     |                        |
| 10<br>11         | 90.0 .1<br>95.0 -4.8                            | -5.0<br>-9.9                                 | 15.4<br>15.9                         | .464<br>.504                 | .00 <b>0</b>                 | .1                          |                                    |                             |                          | 143<br>158           | .043                      | .000<br>.000            | .95 <b>9</b><br>.88 <b>9</b>  |                                     |                        |

2n +4 -00

(p) 70 Percent of design speed; reading 1475

| RP<br>1<br>2<br>3<br>4                                | RAD<br>IN<br>23.142<br>22.697<br>21.788<br>20.889                                                       | OUT<br>23.160<br>22.730<br>21.849<br>20.973                                                               | IN<br>128.0<br>144.5<br>158.8<br>163.1                                               | L VELOC<br>OUT<br>142.2<br>159.2<br>166.8<br>169.0                                                    | RATIO<br>1.111<br>1.102<br>1.051<br>1.036                                              | MERIDIO<br>IN<br>128.0<br>144.5<br>158.8<br>163.1                                                                | OUT<br>142.2<br>159.2<br>166.8<br>169.0                                             | RATIO<br>1.111<br>1.102<br>1.051<br>1.036                                                                       | TANG<br>IN<br>31.5<br>35.6<br>33.8<br>36.3                                                                                 | OUT<br>-8.6<br>-6.5<br>-7.2<br>-7.7                                               | RADIA<br>IN<br>.4<br>1.0<br>2.1<br>3.2                                                       | OUT<br>.4<br>.9<br>1.9<br>2.7                                                                                                   | 131.9 1<br>148.8 1<br>162.4 1<br>167.1 1                                                                                     | OUT<br>42.5<br>59.3<br>67.0<br>69.2                                                    | 148.8<br>162.4<br>167.1                                                  | 142<br>142<br>153<br>163                      |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------|
| 5<br>7<br>8<br>9<br>10                                | 20.002<br>19.129<br>18.268<br>17.414<br>16.576<br>15.751<br>15.342                                      | 19.258<br>18.423<br>17.600<br>16.800<br>16.035                                                            | 167.4<br>175.4<br>184.4<br>191.3<br>199.1<br>200.3<br>193.3                          | 176.7<br>185.5<br>196.9<br>209.4<br>224.2<br>224.8<br>208.0                                           | 1.056<br>1.058<br>1.068<br>1.095<br>1.126<br>1.122<br>1.076                            | 167.5<br>175.5<br>184.6<br>191.5<br>199.5<br>200.9<br>193.9                                                      | 176.8<br>185.5<br>197.0<br>209.5<br>224.3<br>224.9<br>208.2                         | 1.056<br>1.057<br>1.067<br>1.094<br>1.125<br>1.120<br>1.073                                                     | 44.1<br>52.2<br>63.0<br>74.2<br>90.1<br>107.0<br>111.3                                                                     | -5.7<br>-5.8<br>-6.0<br>-7.6<br>-2.4<br>13.1<br>10.9                              | 4.4<br>5.9<br>7.7<br>9.7<br>12.1<br>14.8<br>15.8                                             | 3.5<br>4.3<br>5.2<br>6.0<br>6.9<br>7.3<br>6.8                                                                                   | 183.1 1<br>195.0 1<br>205.4 2<br>218.9 2<br>227.6 2                                                                          | 76.9<br>85.6<br>97.0<br>209.6<br>224.4<br>225.3                                        | 183.1<br>195.0<br>205.4<br>218.9<br>227.6                                | 176<br>185<br>197<br>205<br>226<br>226<br>208 |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | ABS MA IN .371 .421 .462 .477 .523 .557 .587 .625 .649                                                  | CH NO<br>OUT<br>.402<br>.452<br>.476<br>.505<br>.531<br>.563<br>.642<br>.642<br>.589                      | REL MA IN .371 .421 .462 .477 .494 .523 .557 .587 .625 .649                          | CH NO<br>OUT<br>.402<br>.452<br>.476<br>.483<br>.505<br>.531<br>.563<br>.600<br>.642<br>.589          | AXIAL 1<br>IN .361<br>.409<br>.452<br>.478<br>.501<br>.527<br>.568<br>.571<br>.549     | ACH NO<br>OUT<br>.401<br>.451<br>.476<br>.483<br>.505<br>.530<br>.563<br>.599<br>.641<br>.588                    | MERID<br>IN<br>.361<br>.409<br>.452<br>.465<br>.478<br>.501<br>.527<br>.547<br>.569 | .452<br>.476<br>.483<br>.505<br>.530<br>.563<br>.599<br>.642<br>.641                                            | ABS BE IN 13.8 13.8 12.0 12.6 14.8 16.6 18.9 21.2 24.3 28.1 29.9                                                           | TAZ<br>OUT<br>-3.5<br>-2.4<br>-2.6<br>-1.9<br>-1.8<br>-1.8<br>-2.1<br>6<br>3.3    | 13.8 -<br>13.8 -<br>12.0 -<br>12.6 -<br>14.8 -<br>16.6 -<br>18.9 -<br>21.2 -<br>24.3<br>28.0 | UT I<br>3.5 13<br>2.4 13<br>2.5 12<br>2.6 12<br>1.9 14<br>1.8 16<br>1.8 18<br>12.1 21<br>2.1 24                                 | L BETAZ<br>N OUT<br>.8 -3.5<br>.8 -2.4<br>.0 -2.5<br>.6 -2.6<br>.8 -1.9<br>.6 -1.8<br>.9 -1.8<br>.2 -2.1<br>.1 3.3<br>.9 3.0 | RELN E<br>13.8<br>13.8<br>12.0<br>12.6<br>14.8<br>16.6<br>18.9<br>21.2<br>28.0<br>29.9 | BETAH<br>OUT<br>-3.5<br>-2.4<br>-2.5<br>-1.9<br>-1.8<br>-1.8<br>-2.1<br> |                                               |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | TOT.<br>18.45<br>13.45<br>14.06<br>14.20<br>14.31<br>14.57<br>14.90<br>15.18<br>15.54<br>15.92<br>15.71 | AL PRESS<br>OUT<br>13.17<br>13.59<br>13.59<br>13.68<br>13.89<br>14.07<br>14.71<br>15.07<br>15.08<br>14.42 | URE<br>RATIO<br>.979<br>.983<br>.967<br>.963<br>.971<br>.965<br>.967<br>.969<br>.947 | TOTAL<br>IN<br>322.3<br>321.9<br>319.4<br>320.2<br>321.6<br>323.7<br>326.0<br>329.2<br>332.0<br>333.5 | 322.3<br>321.9<br>319.9<br>319.4<br>320.2<br>321.6<br>323.7<br>326.0<br>329.2<br>332.0 | TURE<br>RATIO<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000 | IN<br>12.23<br>12.23<br>12.14<br>12.16<br>12.11<br>12.07<br>12.02<br>11.94<br>12.00 | PRESS<br>OUT<br>11.78<br>11.81<br>11.63<br>11.66<br>11.67<br>11.61<br>11.62<br>11.54<br>11.42<br>11.43<br>11.40 | STATIO<br>IN<br>1.35832<br>1.37050<br>1.37873<br>1.38633<br>1.38144<br>1.38312<br>1.37974<br>1.37256<br>1.36507<br>1.36507 | 1.336<br>7 1.326<br>5 1.33<br>4 1.336<br>2 1.326<br>4 1.336<br>5 1.326<br>7 1.298 | 1470 31<br>034 31<br>451 30<br>115 30<br>407 30<br>905 30<br>014 30<br>872 30<br>861 30      | ATIC TEM<br>N 312<br>0.8 309<br>6.7 306<br>5.5 305<br>5.5 304<br>4.9 304<br>4.7 304<br>5.0 304<br>5.3 304<br>6.2 306<br>8.6 311 | T IN .2                                                                                                                      | 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -                                                |                                                                          |                                               |
| RP<br>12345567891011                                  | PERCENT<br>SPAN<br>5.0<br>10.0<br>20.0<br>40.0<br>50.0<br>60.0<br>70.0<br>90.0<br>95.0                  | INCI<br>MEAN<br>-21.2<br>-20.9<br>-22.4<br>-20.9<br>-20.2<br>-19.2<br>-17.5<br>-17.5                      | DENCE<br>SS<br>-26.9<br>-26.7<br>-28.1<br>-26.4<br>-25.7<br>-24.6<br>-23.9<br>-22.9  | DEVIA<br>10.9<br>10.4<br>8.2<br>7.6<br>7.5<br>7.7<br>10.0<br>16.3                                     | .038<br>.038<br>.065<br>.081<br>.076<br>.089<br>.099                                   | .00                                                                                                              | C TO<br>0 .2<br>0 .1<br>0 .2<br>0 .2<br>0 .1<br>0 .1                                |                                                                                                                 | 29 .000<br>45 .000<br>57 .000<br>90 .000<br>108 .000<br>73 .000<br>47 .000<br>30 .000                                      | C TO .09                                                                          | 90 .09<br>56 .05<br>90 .09<br>91 .09<br>64 .06<br>67 .06<br>653 .05<br>43 .04                | F SHOCK .000 6 .000 1 .000 4 .000 7 .000 7 .000 7 .000 7 .000 7 .000 7 .000 7 .000 7 .000 7 .000                                | .371<br>.421<br>.462<br>.477<br>.494<br>.523<br>.557<br>.625                                                                 |                                                                                        |                                                                          |                                               |

(q) 70 Percent of design speed; reading 1486

| RP 1 2 3 4 5 6 7 8 9 10 11                            | RADII IN OUT 23.142 23.160 22.697 22.730 21.788 21.849 20.889 20.973 20.002 20.109 19.129 19.258 18.268 18.423 17.414 17.600 16.576 16.800 15.751 16.035 15.342 15.669 | IN<br>117.8<br>126.4<br>134.3<br>137.1<br>139.8<br>143.7<br>149.2<br>154.0<br>155.2<br>155.4  | 119.4<br>128.2<br>135.1<br>137.9<br>141.5<br>145.4<br>151.4<br>159.8<br>167.7                |                                                                               | 126.4<br>134.3<br>137.1<br>139.8<br>143.7<br>149.4<br>154.2<br>155.5<br>155.8                 | NAL VE<br>0UT<br>119.4<br>128.2<br>135.1<br>137.9<br>141.5<br>145.4<br>151.4<br>159.9<br>167.7<br>162.8<br>150.3 | LOCITY<br>RATIO<br>1.014<br>1.014<br>1.006<br>1.006<br>1.012<br>1.012<br>1.014<br>1.036<br>1.079<br>1.079              | TANG<br>IN<br>71.0<br>73.1<br>72.7<br>71.0<br>76.7<br>85.7<br>92.4<br>108.6<br>121.8<br>119.9                   | VEL<br>0UT<br>-2.2<br>-7<br>-5.1<br>-4.3<br>-4.3<br>-5.7<br>-1.6<br>7.3                     | RADI.<br>IN .3<br>1.8<br>2.7<br>3.7<br>4.2<br>7.8<br>9.5<br>112.3               | 1.<br>2.<br>3.<br>4.<br>5.                                                                  | 4 13<br>8 14<br>6 15<br>2 15<br>8 15<br>4 16<br>0 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 37.5 11<br>16.0 12<br>52.7 13<br>54.4 13<br>59.5 14<br>52.2 15<br>79.8 16<br>39.7 16               | JT . | REL<br>1N<br>137.5<br>146.0<br>152.7<br>154.4<br>159.5<br>165.0<br>172.2<br>179.8<br>189.7<br>197.9 | VEL<br>00'<br>119<br>128<br>135<br>138<br>141<br>145<br>151<br>160<br>167<br>162 |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | ABS MACH NO IN OUT .380 .328 .404 .353 .425 .375 .431 .384 .447 .395 .463 .406 .484 .424 .506 .448 .534 .469 .556 .454 .556 .417                                       | REL MAC<br>IN<br>.380<br>.404<br>.425<br>.431<br>.447<br>.463<br>.484<br>.506<br>.534<br>.556 | CH NO<br>OUT<br>.328<br>.353<br>.375<br>.384<br>.395<br>.406<br>.424<br>.448<br>.469<br>.454 | AXIAL M. IN .325 .350 .374 .383 .392 .403 .419 .433 .437 .437                 | ACH NO<br>OUT<br>.328<br>.353<br>.374<br>.384<br>.395<br>.406<br>.423<br>.447<br>.469<br>.453 | MERID<br>IN<br>.325<br>.374<br>.383<br>.392<br>.403<br>.423<br>.434<br>.438<br>.442                              | 374<br>384<br>395<br>406<br>423<br>447<br>469<br>3453                                                                  | ABS BI<br>IN<br>31.1<br>30.0<br>28.4<br>27.4<br>28.8<br>29.4<br>29.9<br>31.0<br>38.1<br>37.4                    | TAZ<br>OUT<br>-1.0<br>.3<br>-1.1<br>-2.1<br>-1.7<br>-1.7<br>-1.7<br>-2.0<br>5<br>2.6<br>1.8 | 31.1<br>30.0<br>28.4<br>27.4<br>28.7<br>29.4                                    | TAM<br>OUT<br>-1.0<br>.3<br>-1.1<br>-2.1<br>-1.7<br>-1.7<br>-1.9<br>-2.0<br>5<br>2.6<br>1.8 | REL IN<br>31.1<br>30.0<br>28.4<br>27.4<br>28.8<br>29.4<br>29.9<br>31.0<br>35.0<br>38.1<br>37.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .3<br>-1.1                                                                                         | IN   | BETAM<br>OUT<br>-1.0<br>.3<br>-1.1<br>-2.1<br>-1.7<br>-1.7<br>-1.9<br>-2.0<br>2.6<br>1.8            |                                                                                  |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | TOTAL PRES IN OUT 15.22 15.08 15.41 15.27 15.51 15.38 15.54 15.45 15.63 15.54 15.73 15.60 15.88 15.75 16.05 15.92 16.27 16.11 16.38 15.93 16.32 15.56                  | SURE<br>RATIO<br>.991<br>.991<br>.992<br>.994<br>.994<br>.992<br>.992<br>.992<br>.991<br>.973 | TOTAL IN 336.2 335.6 332.9 330.6 329.7 329.6 329.7 330.5 332.3 334.3 335.1                   | 336.2<br>335.6<br>332.9<br>330.6<br>329.7<br>329.7<br>330.5<br>332.3<br>334.3 | TURE RATIO 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000            | STATIO<br>IN<br>13.78<br>13.77<br>13.67<br>13.63<br>13.58<br>13.53<br>13.47<br>13.40<br>13.28<br>13.24           | PRESS<br>OUT<br>14.00<br>14.01<br>13.96<br>13.96<br>13.96<br>13.93<br>13.92<br>13.88<br>13.88<br>13.83                 | STATI<br>IN<br>1.4688<br>1.4757<br>1.4849<br>1.4975<br>1.4972<br>1.4968<br>1.4968<br>1.4968<br>1.4690<br>1.4612 | 6 1.49<br>8 1.50<br>9 1.51<br>3 1.52<br>7 1.52<br>2 1.53<br>9 1.53                          | 13181<br>3181<br>3187<br>3157<br>31426<br>2083<br>2058<br>2058<br>2147<br>31690 | 325.0<br>321.3<br>318.7<br>317.1<br>316.0<br>314.9<br>314.4<br>314.4                        | TEMP<br>0UT<br>329.1<br>327.4<br>323.8<br>321.1<br>319.8<br>319.1<br>318.3<br>317.8<br>318.3<br>321.1<br>323.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IN .0                                                                                              |      |                                                                                                     |                                                                                  |
| RP<br>12345567891011                                  | PERCENT INC SPAN MEAN 5.0 -3.6 10.0 -4.6 20.0 -6.3 30.0 -7.6 40.0 -6.5 50.0 -7.6 60.0 -8.7 70.0 -8.8 80.0 -6.9 90.0 -7.9 95.0 -10.3                                    | 3 -9.5<br>-10.4<br>3 -12.0<br>-13.1<br>3 -12.7<br>-12.7<br>-13.5<br>-13.9<br>-12.2<br>4 -12.5 | DEVIA<br>13.4<br>13.2<br>9.6<br>7.8<br>7.7<br>7.6<br>7.8<br>10.2                             | .280<br>.284<br>.286<br>.283<br>.271<br>.276                                  | .00                                                                                           | C T(000000000000000000000000000000000000                                                                         | LOSS COEF<br>DT PRO<br>093 .09<br>082 .08<br>072 .07<br>046 .04<br>041 .04<br>055 .05<br>048 .04<br>054 .05<br>144 .14 | F SHOC<br>3 .00<br>12 .00<br>16 .00<br>14 .00<br>15 .00<br>18 .00<br>18 .00                                     | K T(00                                                                                      | 036 .0<br>032 .0<br>027 .0<br>016 .0<br>015 .0<br>020 .0<br>017 .1<br>014 .0    | ROF SI<br>036<br>032<br>027<br>016<br>015<br>020<br>017<br>014<br>015                       | R 18CK .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 | PEAK SS<br>MACH NO<br>.551<br>.564<br>.553<br>.531<br>.559<br>.573<br>.588<br>.613<br>.699<br>.757 |      |                                                                                                     |                                                                                  |

(r) 70 Percent of design speed; reading 1497

| RP                                                          | RADII<br>IN OUT                                                                                                                                        | AXIAL \                                                                     | VELOCITY<br>DUT RATIO                                                                                                                   | MERIDII                                                                                                  | NAL VELO                                                                                               | CITY                                                                                   | TANG VEL                                                                             | L RAI<br>UT IN                                                                                                                         | DIAL VEL                                                                      | ABS V                                                                                                                                               | EL<br>OUT                                                            | REL VEL                                                                        |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6                                  | 23.142 23.160<br>22.697 22.730<br>21.788 21.849<br>20.889 20.973<br>20.002 20.109<br>19.129 19.258                                                     | 118.9 11<br>118.3 12<br>118.5 12<br>124.0 12                                | 12.7 .981<br>16.8 .983<br>21.8 1.029<br>23.7 1.043<br>25.4 1.011<br>28.9 .990                                                           | 118.9<br>118.3<br>118.6<br>124.1<br>130.3                                                                | 112.7<br>116.8<br>121.8 1<br>123.7 1<br>125.4 1                                                        | .981<br>.983<br>.029<br>.043<br>.011                                                   | 78.3 -2<br>79.4<br>94.7 1<br>96.0<br>97.1 -<br>94.9 -2                               | 2.1<br>.3<br>1.0 1<br>.5 2<br>6 3<br>2.6 4                                                                                             | .3 2.1<br>.2 2.5<br>.4 3.6                                                    | 3 139.1<br>7 142.9<br>4 151.5<br>0 152.6<br>5 157.5<br>0 161.2                                                                                      | 112.8 1<br>116.8 1<br>121.8 1<br>123.7 1<br>125.4 1<br>129.0 1       | 39.1 112<br>42.9 116<br>51.5 121<br>52.6 123<br>57.5 125<br>61.2 129           |
| 7<br>8<br>9<br>10<br>11                                     | 18.268 18.423<br>17.414 17.600<br>16.576 16.800<br>15.751 16.035<br>15.342 15.669                                                                      | 135.6 13<br>136.2 13<br>131.5 14<br>132.3 13                                | 33.6 .985<br>38.5 1.017<br>40.7 1.070<br>33.8 1.011<br>25.3 .915                                                                        | 135.7<br>136.4<br>131.7                                                                                  | 133.6<br>138.6 1<br>140.8 1                                                                            | .985<br>.016 1<br>.069 1                                                               | 96.5 -2<br>02.9 -3<br>19.4 1<br>31.3                                                 | 2.9 5<br>3.3 6                                                                                                                         | .6 3.5<br>.9 4.6<br>.0 4.3                                                    | 5 166.5<br>170.8<br>3 177.8<br>3 186.7                                                                                                              | 133.7 1<br>138.6 1<br>140.8 1<br>133.9 1                             | 66.5 133<br>70.8 138<br>77.8 140<br>86.7 133<br>85.7 125                       |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11 | ABS MACH NO IN OUT .379 .306 .391 .318 .416 .333 .421 .339 .437 .346 .449 .357 .465 .370 .477 .384 .497 .390 .522 .370 .519 .345                       | .379<br>.391<br>.416<br>.421<br>.437<br>.449<br>.465<br>.477<br>.497        | NO AXIAL<br>OUT IN<br>.306 .313<br>.318 .325<br>.333 .325<br>.339 .327<br>.346 .344<br>.357 .363<br>.370 .376<br>.370 .370<br>.370 .370 | 0UT<br>.306<br>.318<br>.339<br>.344<br>.356<br>.370<br>.394<br>.390                                      | MERID MA<br>1N<br>.313<br>.325<br>.325<br>.327<br>.344<br>.363<br>.379<br>.381<br>.368<br>.371<br>.384 | 0UT<br>.306<br>.318<br>.333<br>.339<br>.346<br>.357<br>.370                            | 36.1 -1<br>35.4 -1<br>37.1 -1<br>42.3<br>44.8 2                                      | IN 34.3<br>.2 33.7<br>.5 38.7<br>.2 39.0<br>.3 38.1<br>.1 36.1<br>.3 35.4                                                              | .2<br>.5<br>.2<br>3<br>-1.1<br>-1.3<br>-1.4<br>.5<br>2.2                      | REL BETAZ<br>IN OUT<br>34.3 -1.1<br>33.7 .2<br>38.7 .2<br>39.0 .2<br>38.13<br>36.1 -1.1<br>35.4 -1.3<br>37.1 -1.4<br>42.3 .5<br>44.8 2.2<br>42.3 .8 | 34.3<br>33.7<br>38.7<br>39.0<br>38.1<br>36.1<br>35.4<br>42.2<br>44.7 | TAM<br>OUT<br>-1.1<br>.2<br>.5<br>.2<br>3<br>-1.1<br>-1.3<br>-1.4<br>.5<br>2.2 |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10       | TOTAL PRESS 1N OUT 15.88 15.71 15.96 15.79 16.06 15.89 16.08 15.93 16.14 15.97 16.19 16.04 16.25 16.14 16.34 16.23 16.38 16.27 16.51 16.05 16.41 15.84 | RATIO<br>.989 3<br>.989 3<br>.990 3<br>.991 3<br>.989 3<br>.993 3<br>.993 3 | TOTAL TEMPER IN OUT 44.8 344.8 43.5 340.9 340.9 38.1 338.1 35.5 33.8 33.1 333.1 33.1 33.1 33.1 33.1 33.                                 | ATURE<br>RATIO<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000 | 14.02 1<br>13.98 1<br>13.84                                                                            | OUT 4.72 1 4.72 1 4.72 1 4.71 1 4.70 1 4.69 1 4.68 1 4.65 1 4.65                       | 1.50138<br>1.50701<br>1.51879<br>1.52580<br>1.53114<br>1.52867<br>1.52867<br>1.51373 | ENSITY<br>OUT<br>1.51542<br>1.52322<br>1.53749<br>1.55081<br>1.56298<br>1.57797<br>1.57780<br>1.57780<br>1.57780<br>1.57780<br>1.57780 | 333.4<br>329.5<br>326.5<br>323.1<br>320.9<br>319.3<br>318.6<br>318.5<br>318.3 | OUT 19 338.4 336.7 333.6 330.4 327.7 325.6 324.2 323.6 324.3 326.7 328.3                                                                            | .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .                             | 1                                                                              |
| RP<br>123345567788910111                                    | SPAN HEAN 5.05 10.08 20.0 4.0 30.0 4.2 40.0 2.6 50.05 60.0 -2.4 70.0 -2.3                                                                              | -6.3<br>-6.6<br>-1.7<br>-1.4<br>-3.0<br>-6.0<br>-7.8                        | DEVIA FACTI<br>13.5 .4<br>13.2 .3<br>11.3 .4<br>10.2 .4<br>9.4 .4<br>8.4 .3<br>8.4 .3<br>8.6 .3<br>11.3 .3<br>15.3 .4                   | 15 .00<br>24 .00<br>10 .00<br>13 .00<br>25 .00<br>271 .00<br>74 .00                                      | C TOT 0 .111 0 .100 0 .091 0 .080 0 .077 0 .044 0 .044 0 .044 0 .166                                   | 3 .113<br>7 .107<br>3 .093<br>1 .081<br>6 .086<br>4 .074<br>9 .049<br>6 .046<br>6 .166 | SHOCK<br>.000<br>.000<br>.000<br>.000<br>.000<br>.000                                | .044<br>.041<br>.034<br>.029<br>.029<br>.024<br>.015                                                                                   | PROF SH<br>.044 .<br>.034 .<br>.029 .<br>.029 .<br>.024 .<br>.015 .<br>.014 . | R PEAK S OCK HACH S 000 -59 000 -68 000 -69 000 -66 000 -66 000 -66 000 -68 000 -68 000 -68 000 -68 000 -68 000 -68 000 -68 000 -68 000 -68 000 -76 | NO<br>2<br>6<br>7<br>1<br>1<br>0<br>3<br>0<br>6<br>6<br>7<br>7       |                                                                                |

(s) 60 Percent of design speed; reading 1510

|                                                       |                                                                                                                                                            |                                                                                                                   |                                                                                              |                                                                                                      |                                                                                             | (5) 00                                                                                                | rereem                                                                                     |                                                                                     |                                                                                      |                                                                                                                        | mig 1910                                                                                                                                          |                                                                                              |                                                                                                                  |                                                                          |                                                                                                    |                                                                      |                                                                                             |                                                                                            |    |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----|
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | RADII<br>1N<br>23.142 2:<br>22.697 2:<br>21.788 2:<br>20.889 2:<br>20.002 2:<br>19.129 1:<br>18.268 1:<br>17.414 1:<br>16.576 1:<br>15.751 1:<br>15.342 1: | OUT<br>3.160<br>2.730<br>1.849<br>0.973<br>0.109<br>9.258<br>8.423<br>7.600<br>6.800                              | 92.7<br>106.0<br>115.2<br>118.8<br>123.9<br>129.5<br>136.8                                   | 0UT<br>100.4<br>113.3<br>119.1<br>120.9<br>127.2<br>134.5<br>143.0<br>151.2<br>163.1<br>169.5        | 1.083<br>1.068<br>1.034<br>1.018<br>1.027<br>1.038<br>1.045<br>1.062                        | IN<br>92.7<br>106.0<br>115.2<br>118.8<br>123.9                                                        | OUT<br>100.4<br>113.3<br>119.1<br>120.9<br>127.2<br>134.5<br>143.1<br>151.2                | RATI<br>1.08<br>1.08<br>1.03<br>1.01<br>1.02<br>1.03<br>1.04<br>1.06<br>1.10        | Y 03844878517443                                                                     | TANG<br>1N<br>17.2<br>20.2<br>19.1<br>21.0<br>25.4<br>31.8<br>39.7<br>47.6<br>59.1<br>72.2<br>76.2                     | VEL<br>05.1<br>-3.8<br>-4.1<br>-4.3<br>-3.3<br>-3.1<br>-4.3<br>-4.4<br>6.4<br>8.2                                                                 | RAI<br>IN<br>1.<br>2.<br>3.<br>4.<br>5.<br>7.<br>9.<br>11.                                   | .3<br>7<br>.5<br>3<br>2<br>3<br>7<br>2                                                                           | JEL<br>DUT<br>.7<br>1.4<br>1.9<br>2.6<br>3.1<br>3.8<br>4.4<br>5.0<br>5.5 | ABS<br>1N<br>94.3<br>107.9<br>116.8<br>120.7<br>126.5<br>133.6<br>150.2<br>158.8<br>169.7<br>173.2 | 121<br>127<br>134<br>143<br>151<br>163<br>169                        | 7 .5 .1 .2 .1 .3 .1 .3 .1 .3 .1 .3 .1 .7                                                    | REL<br>IN<br>94.3<br>07.9<br>16.8<br>20.7<br>26.5<br>33.4<br>42.6<br>550.2<br>58.8<br>69.7 | OL |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | ABS HAC<br>IN .271<br>.312<br>.338<br>.350<br>.367<br>.382<br>.414<br>.436<br>.492<br>.502                                                                 | H ND<br>OUT<br>-290<br>-328<br>-346<br>-351<br>-370<br>-391<br>-416<br>-445<br>-492<br>-469                       | REL MAIN .271 .312 .338 .350 .367 .388 .414 .436 .461 .492 .502                              | CH NO<br>OUT<br>-290<br>-328<br>-346<br>-351<br>-370<br>-391<br>-416<br>-440<br>-475<br>-492<br>-469 | AXIAL H/<br>IN .267<br>.306<br>.334<br>.345<br>.360<br>.376<br>.398<br>.413<br>.427<br>.444 | ACH NO<br>DUT<br>-289<br>-327<br>-345<br>-351<br>-370<br>-391<br>-416<br>-439<br>-474<br>-492<br>-468 | MERID<br>IN<br>-267<br>-306<br>-334<br>-345<br>-361<br>-378<br>-416<br>-426<br>-446<br>-45 | 7 .33                                                                               | 1T<br>189<br>127<br>145<br>151<br>1570<br>1116                                       | IN<br>10.5<br>10.8<br>9.4                                                                                              | TAZ<br>OUT<br>-2.9<br>-1.9<br>-2.0<br>-1.5<br>-1.7<br>-2.1<br>-1.5<br>2.9                                                                         | ABS 1<br>10.5<br>10.8<br>9.4<br>10.0<br>11.6<br>13.8<br>16.2<br>18.5<br>21.9<br>25.2<br>26.1 | -2.<br>-1.<br>-2.<br>-1.<br>-1.<br>-1.<br>-1.                                                                    | I<br>9 10<br>9 10<br>0 9<br>0 10<br>5 11<br>3 13<br>7 16<br>1 18<br>5 21 | L BETA<br>N OU<br>.5 -2<br>.8 -1<br>.4 -2<br>.0 -2<br>.6 -1<br>.8 -1<br>.5 -2<br>.9 -1<br>.2 -2    | .9<br>.9<br>.0<br>.5<br>.3<br>.7<br>.1                               | REL BE<br>IN<br>10.5<br>10.8<br>9.4<br>10.0<br>11.6<br>13.8<br>16.2<br>18.5<br>21.9<br>25.2 | TAM<br>OUT<br>-2.9<br>-2.0<br>-2.0<br>-1.5<br>-1.3<br>-1.7<br>-2.1<br>-1.5<br>2.1          |    |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | IN<br>11.56<br>11.75<br>11.82<br>11.90<br>12.00<br>12.10<br>12.28<br>12.41<br>12.54                                                                        | L PRESS<br>OUT<br>11.45<br>11.65<br>11.64<br>11.70<br>11.80<br>11.92<br>12.07<br>12.22<br>12.39<br>12.59<br>12.36 | URE<br>RATIO<br>.991<br>.992<br>.985<br>.983<br>.983<br>.984<br>.984<br>.984<br>.987<br>.983 | TN                                                                                                   | 304.5<br>304.2<br>303.0<br>302.5<br>302.8<br>303.5<br>304.8<br>307.8<br>307.8               | RATIO<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000                                  | STATION 10.98 10.98 10.92 10.93 10.91 10.89 10.84 10.85 10.84                              | 10 . 8<br>10 . 8<br>10 . 7<br>10 . 7<br>10 . 7<br>10 . 7<br>10 . 7                  | 65<br>180<br>182<br>172<br>174<br>174<br>173<br>170<br>170<br>161<br>167<br>167      | STATION 1 . 27509 1 . 28241 1 . 28241 1 . 2828 1 . 2914 1 . 2828 1 . 2828 1 . 2828 1 . 2828 1 . 2275 1 . 2786 1 . 2754 | DENSI<br>9 1.25<br>1 1.26<br>2 1.26<br>1 1.26<br>3 1.26<br>3 1.26<br>3 1.26<br>3 1.26<br>1 1.26<br>1 1.26<br>1 1.26<br>1 1.26<br>1 1.26<br>1 1.26 | 7710<br>5556<br>5204<br>5792<br>5904<br>5898<br>5776<br>5530<br>5565<br>5746<br>4268         | STAT<br>1N<br>300.<br>298.<br>296.<br>295.<br>294.<br>294.<br>294.<br>295.<br>295.                               | 4 297<br>2 295<br>3 295<br>8 294<br>6 294<br>6 294<br>7 294              | .8<br>.9<br>7<br>5<br>5                                                                            | HEEL<br>IN .0<br>.0<br>.0<br>.0<br>.0<br>.0                          | SPEED<br>OUT                                                                                | 0                                                                                          |    |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | PERCENT<br>SPAN<br>5.0<br>10.0<br>30.0<br>40.0<br>50.0<br>70.0<br>80.0<br>95.0                                                                             | MEAN<br>-24.5<br>-24.0<br>-25.5<br>-25.0                                                                          | DENCE<br>SS<br>-30.2<br>-29.8<br>-31.7<br>-29.7<br>-28.5<br>-27.3<br>-26.4<br>-25.5          | 11.4<br>10.8<br>8.6<br>7.7                                                                           | .053<br>.071<br>.071<br>.076<br>.091<br>.097                                                | .00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00                                                         |                                                                                            | LOSS (<br>183<br>183<br>198<br>205<br>186<br>151<br>148<br>126<br>093<br>108<br>255 | PROFF<br>183<br>.126<br>.128<br>.205<br>.186<br>.151<br>.148<br>.126<br>.193<br>.108 | ICIENT<br>SHOCI<br>.000<br>.000<br>.000<br>.000<br>.000                                                                | K T(                                                                                                                                              | LOSS<br>072<br>048<br>073<br>072<br>063                                                      | PARAM<br>PROF<br>- 072<br>- 048<br>- 073<br>- 072<br>- 063<br>- 049<br>- 046<br>- 037<br>- 026<br>- 029<br>- 067 | ETER<br>SHOCK<br>-000<br>-000<br>-000<br>-000<br>-000<br>-000            | . 2<br>. 3<br>. 3<br>. 3<br>. 3<br>. 3<br>. 3<br>. 4<br>. 4                                        | SS<br>NO<br>71<br>12<br>38<br>50<br>67<br>88<br>14<br>36<br>61<br>92 |                                                                                             |                                                                                            |    |

(t) 60 Percent of design speed; reading 1521

| RP                                              | RADII                                                                                                                                  | AXIAL VELOCI                                                                                                                                                         | TY HERIDIO                                                                                                                         |                                                                                                                                                                             | TANG VEL                                                                                                                                                     | RADIAL VEL                                                                                                                    | ABS VEL                                                                                                                                 | REL VEL                                                                                                                                 |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | 20.889 20.973<br>20.002 20.109<br>19.129 19.258<br>18.268 18.423<br>17.414 17.600<br>16.576 16.800<br>15.751 16.035                    | 84.1 86.4<br>93.6 95.3<br>100.7 102.0<br>102.5 104.7<br>105.0 108.4<br>108.5 112.9<br>114.8 119.1                                                                    | 1.018 93.6<br>1.013 100.7<br>1.021 102.5<br>1.032 105.1<br>1.041 108.6<br>1.038 114.8<br>1.046 120.5<br>1.082 124.8<br>1.087 127.8 | OUT RATIO<br>86.4 1.028<br>95.3 1.018<br>102.0 1.013<br>104.7 1.021<br>108.4 1.032<br>113.0 1.040<br>119.1 1.037<br>126.0 1.046<br>134.8 1.080<br>134.8 1.055<br>124.6 -985 | TANG VEL 1N OUT 40.0 -3.3 40.9 -2.2 41.8 -3.5 42.3 -4.4 46.6 -3.5 50.0 -3.4 54.2 -3.8 59.7 -4.7 70.6 -2.4 78.9 5.1 79.8 3.9                                  | 1N 0UT .2 .3 .6 .6 1.3 1.2 2.0 1.7 2.7 2.2 3.6 2.6 4.8 3.1 6.1 3.6 7.6 4.1 9.4 4.4 10.3 4.1                                   | IN 0UT 93.1 86.4 102.2 95.3 109.0 102.0 110.9 104.8 114.9 108.5 119.6 113.0 127.0 119.2 134.5 126.1 143.4 134.8 150.2 134.9 149.6 124.7 | IN OUT 93.1 86.4 102.2 95.3 109.0 102.0 110.9 104.8 114.9 108.5 119.6 113.0 127.0 119.2 134.5 126.1 143.4 134.8 150.2 134.9 149.6 124.7 |
| RP                                              |                                                                                                                                        | REL MACH NO                                                                                                                                                          |                                                                                                                                    | MERID MACH NO                                                                                                                                                               | ADC DCTA7                                                                                                                                                    | ABS BETAM R                                                                                                                   |                                                                                                                                         | BETAM                                                                                                                                   |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | IN OUT .266 .246 .252 .272 .312 .292 .318 .301 .330 .312 .344 .325 .366 .343 .388 .363 .413 .388 .433 .387 .430 .357                   | IÑ OUT -266 .246 .292 .312 .292 .318 .301 .330 .312 .344 .325 .366 .343 .388 .433 .387 .430 .357                                                                     | IN 0UT .240 .246 .268 .272 .288 .292 .294 .300 .302 .311 .312 .325 .331 .342 .347 .362 .359 .388 .367 .387 .363 .356               | IN OUT .240 .246 .268 .272 .288 .292 .294 .300 .302 .311 .312 .325 .331 .343 .347 .363 .360 .388 .368 .387 .364 .357                                                        | IN OUT 25.5 -2.2 23.6 -1.3 22.5 -2.0 22.4 -2.4 23.9 -1.8 24.8 -1.7 25.3 -1.8 26.4 -2.1 29.5 -1.0 31.8 2.2 32.3 1.8                                           | 23.9 -1.8 2<br>24.7 -1.7 2<br>25.3 -1.8 2<br>26.4 -2.1 2<br>29.5 -1.0 2<br>31.7 2.2 3                                         | EL BETAZ REL IN OUT IN IN OUT IN IN OUT IN                                                          | 5 -2.2<br>6 -1.3<br>6 -2.0<br>4 -2.4<br>9 -1.8<br>7 -1.7<br>3 -1.8<br>4 -2.1<br>5 -2.2                                                  |
| RP                                              | TOTAL PRESSU<br>IN OUT R                                                                                                               | ATID IN                                                                                                                                                              | TEMPERATURE<br>OUT RATIO                                                                                                           | STATIC PRESS<br>IN OUT                                                                                                                                                      | STATIC DENSI'                                                                                                                                                | IN F                                                                                                                          | THP WHEEL SPEA                                                                                                                          | ED<br>UT                                                                                                                                |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | 12.26 12.19 12.38 12.31 12.44 12.37 12.47 12.41 12.52 12.47 12.58 12.53 12.69 12.63 12.82 12.73 12.93 12.96 13.08 12.88 13.05 12.66    | .994 310.1<br>.994 310.0<br>.994 308.9<br>.995 307.9<br>.996 307.6<br>.995 307.6<br>.995 307.6<br>.995 307.7<br>.992 308.5<br>.994 309.7<br>.985 311.1<br>.971 311.6 | 310 1 1 000                                                                                                                        | 11.67 11.69<br>11.63 11.66<br>11.62 11.66<br>11.61 11.66<br>11.59 11.64<br>11.57 11.64<br>11.55 11.59<br>11.50 11.59<br>11.50 11.62<br>11.49 11.60                          | 1.33015 1.32<br>1.33415 1.33<br>1.33686 1.33<br>1.34211 1.34<br>1.34315 1.34<br>1.34411 1.34<br>1.34466 1.34<br>1.33766 1.34<br>1.33766 1.33<br>1.33170 1.32 | 367 304.8 30<br>385 303.0 30<br>329 301.7 30<br>528 301.0 30<br>554 300.5 30<br>5571 299.5 30<br>571 299.4 30<br>589 299.9 30 | UT IN 04 6.3 .0 5.4 .0 5.7 .0 1.7 .0 11.2 .0 10.8 .0 10.6 .0 10.6 .0 10.6 .0 2.0 .9                                                     | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                                                  |
| RP                                              | PERCENT INCID                                                                                                                          | SS DEVIA                                                                                                                                                             | D<br>FACTOR EFFI                                                                                                                   | LOSS COEF<br>C TOT PRO                                                                                                                                                      | F SHOCK TO                                                                                                                                                   | OSS PARAMETER PROF SHOO                                                                                                       | PEAK SS<br>K MACH NO                                                                                                                    |                                                                                                                                         |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | 5.0 -9.5<br>10.0 -11.2<br>20.0 -12.3<br>30.0 -12.6<br>40.0 -11.8<br>50.0 -12.0<br>60.0 -12.8<br>70.0 -13.2<br>80.0 -12.5<br>90.0 -13.8 | -15.3 12.2<br>-17.0 11.4<br>-18.0 8.7<br>-18.2 7.3<br>-17.3 7.6<br>-17.5 7.6<br>-18.2 7.6<br>-18.6 7.6<br>-17.7 9.6<br>-18.9 15.1<br>-20.5 16.7                      | .253 .00<br>.229 .00<br>.217 .00<br>.204 .00<br>.203 .00<br>.199 .00<br>.203 .00<br>.203 .00<br>.203 .00<br>.203 .00<br>.203 .00   | 0 .102 .10<br>0 .092 .09<br>0 .067 .06<br>0 .059 .05<br>0 .055 .05<br>0 .077 .07<br>0 .053 .05<br>0 .128 .12                                                                | 2 .000 .01<br>2 .000 .01<br>7 .000 .01<br>5 .000 .03<br>3 .000 .07<br>7 .000 .07<br>3 .000 .00<br>8 .000 .01                                                 | 39 .039 .00 34 .034 .00 24 .024 .00 20 .020 .00 18 .018 .00 16 .016 .00 23 .023 .00 15 .015 .00                               | .334<br>0 .319<br>0 .318<br>0 .330<br>0 .344<br>0 .366<br>0 .388<br>0 .444                                                              |                                                                                                                                         |

(u) 60 Percent of design speed; reading 1533

| RP 1 2 3 4 5 6 7 8                                    | RADII<br>IN OUT<br>23.142 23.160<br>22.697 22.730<br>21.788 21.849<br>20.889 20.973<br>20.002 20.109<br>19.129 19.258<br>18.268 18.423<br>17.414 17.600                                       | 90.5 93.0<br>92.6 94.5<br>95.8 97.7<br>100.9 102.9<br>103.8 108.3                                                                | RATIO IN                                                                                                                                                              | ONAL VELOCITY OUT RATIO 83.8 .988 87.9 1.005 91.9 1.029 93.0 1.027 94.5 1.020 97.8 1.019 102.9 102.0                                        | TANG VEL<br>IN OUT<br>49.2 -2.9<br>50.0 -1.2<br>58.95<br>59.6 -1.3<br>61.8 -1.5<br>61.7 -2.5<br>63.9 -2.5<br>69.3 -2.3                                                                | RADIAL VEL<br>IN DUT<br>.2 .2<br>.6 .5<br>1.2 1.1<br>1.8 1.5<br>2.4 1.9<br>3.2 2.3<br>4.2 2.7<br>5.3 3.1<br>6.3 3.4                                                                              | 111.3 94.5<br>114.0 97.8                                                                                                                                                              | REL VEL<br>IN OUT<br>98.0 83.8<br>100.8 87.9<br>107.0 91.9<br>108.4 93.0<br>111.3 94.5<br>114.0 97.8<br>119.5 103.0<br>124.9 108.4 |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 9<br>10<br>11                                         | 16.576 16.800<br>15.751 16.035<br>15.342 15.669                                                                                                                                               | 102.9 111.8<br>103.7 108.8<br>105.6 102.5                                                                                        | 1.087 103.1<br>1.049 104.0<br>.970 106.0                                                                                                                              | 111.9 1.085<br>108.8 1.046<br>102.5 .967                                                                                                    | 80.6 .3<br>88.2 4.8<br>88.2 3.0                                                                                                                                                       | 6.3 3.4<br>7.7 3.5<br>8.6 3.4                                                                                                                                                                    | 130.9 111.9<br>136.4 108.9<br>137.9 102.6                                                                                                                                             | 130.9 111.9<br>136.4 108.9<br>137.9 102.6                                                                                          |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | ABS MACH NO IN OUT .278 .237 .286 .249 .304 .261 .309 .264 .318 .269 .326 .279 .343 .294 .358 .310 .375 .320 .391 .311 .395 .292                                                              | REL MACH NO IN OUT .278 .237 .286 .249 .304 .261 .309 .264 .318 .269 .326 .279 .343 .294 .358 .310 .375 .320 .391 .311 .395 .292 | AXIAL HACH ND IN OUT .240 .237 .248 .249 .254 .261 .258 .264 .265 .269 .274 .279 .289 .294 .298 .310 .295 .320 .297 .310 .303 .292                                    | HERID HACH NO IN OUT .240 .237 .248 .249 .254 .261 .258 .264 .265 .269 .275 .279 .289 .294 .298 .310 .296 .320 .298 .310 .304 .292          | ABS BETAZ IN OUT 30.1 -2.0 29.88 33.48 33.79 32.8 -1.5 32.4 -1.4 33.7 -1.2 38.1 .2 40.4 2.6 39.9 1.7                                                                                  | IN OUT 30.1 -2.0 30.29.88 33.343 33.48 33.79 32.7 -1.5 32.3 -1.4 32.3 -1.4 32.3 -1.2 33.0 .2 38.0 .2 340.3 2.6 40                                                                                | L BETAZ REL I<br>N OUT IN<br>1.1 -2.0 30.1<br>1.88 29.8<br>1.48 33.4<br>1.79 33.7<br>1.8 -1.5 32.7<br>1.4 -1.4 32.3<br>1.7 -1.2 33.0<br>1.7 -1.2 38.0<br>1.4 2.6 40.3<br>1.9 1.7 39.8 | SETAN OUT -2.089 -1.5 -1.4 -1.2 2.6                                                                                                |
| RP<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | TOTAL PRESSI<br>IN OUT 1<br>12.68 12.60<br>12.71 12.65<br>12.77 12.70<br>12.79 12.71<br>12.80 12.73<br>12.83 12.77<br>12.89 12.84<br>12.98 12.92<br>13.01 12.95<br>13.08 12.90<br>13.08 12.78 | URE TOTAL IN .994 314.9 .995 314.5 .994 312.1 .994 310.8 .995 310.1 .995 310.2 .995 310.2 .995 311.8 .986 311.8 .977 312.3       | TEMPERATURE OUT RATIO 314.9 1.000 314.5 1.000 312.1 1.000 310.8 1.000 310.1 1.000 310.1 1.000 310.2 1.000 310.2 1.000 310.8 1.000 311.8 1.000 311.8 1.000 312.3 1.000 | STATIC PRESS IN OUT 12.02 12.12 12.01 12.12 11.97 12.11 11.97 12.11 11.94 12.10 11.92 12.10 11.88 12.09 11.87 12.07 11.77 12.06 11.75 12.05 | STATIC DENSI<br>IN OUT<br>1.34980 1.35<br>1.35222 1.35<br>1.35506 1.36<br>1.36215 1.37<br>1.36495 1.37<br>1.36789 1.38<br>1.36810 1.38<br>1.36810 1.38<br>1.3698 1.38<br>1.35509 1.37 | 1N 00<br>578 310.1 31:<br>920 309.5 31:<br>407 307.9 30:<br>625 304.7 30:<br>625 304.7 30:<br>626 303.6 30:<br>337 302.7 30:<br>338 302.4 30:<br>303 302.3 30:<br>339 302.3 30:<br>339 302.3 30: | JT IN OU' 1.4 .0 1.7 .0 2.4 .0 2.7 .0 5.4 .0 5.3 .0 4.5 .0 4.5 .0                                                                                                                     |                                                                                                                                    |
| RP<br>1233455677891011                                | PERCENT INCI<br>SPAN MEAN<br>5.0 -4.8<br>10.0 -5.0<br>20.0 -1.4<br>30.0 -1.6<br>40.0 -1.9<br>50.0 -4.0<br>60.0 -5.6<br>70.0 -5.9<br>80.0 -3.9<br>90.0 -5.2<br>95.0 -7.9                       | DENCE  SS DEVIA  -10.6 12.4  -10.7 12.0  -7.1 10.3  -7.2 9.5  -9.5 7.9  -11.1 8.1  -11.2 8.5  -9.2 10.8  -10.3 15.5  -13.0 16.5  | .353 .01<br>.322 .01<br>.346 .01<br>.341 .01<br>.344 .01<br>.324 .01<br>.310 .01<br>.301 .01                                                                          | 00                                                                                                                                          | DF SHOCK TO                                                                                                                                                                           | LOSS PARAMETER T PROF SHOCK 144 .044 .00 32 .032 .00 32 .032 .00 35 .035 .00 129 .029 .00 122 .022 .00 115 .015 .00 114 .014 .00 137 .037 .00 159 .059 .00                                       | 393<br>395<br>395<br>0 .447<br>0 .446<br>0 .454<br>0 .443<br>0 .447<br>0 .470<br>0 .531                                                                                               |                                                                                                                                    |



Figure 1. - Flow path of low-aspect-ratio two-stage fan.



Figure 2. - Two-stage fan with low-aspect-ratio, first-stage rotor.



Figure 3. - Radial distributions of several design parameters of first-stage rotor.





Figure 5. - Survey probe.



Figure 6. - Circumferential locations of combination probes (looking downstream; clockwise rotation).



Figure 7. - Overall performance of two-stage, low-aspect-ratio fan.



Figure 8. - Overall performance.



Figure 9. - Dimensionless overall performance.



Figure 10. - Radial distributions of first-stage rotor.



Figure 11. - Radial distribution of first-stage stator.





Figure 12. - Radial distribution of second-stage rotor.



Figure 13. - Radial distributions of second-stage stator.



Figure 14. - Comparison of overall performance of lowaspect-ratio two-stage fan at design and off-design stator blade setting angles.

| 1. Report No NASA TP-1493<br>AVRADCOM TR 78-49                                                                                                                              | 2. Government Accession No.                                                                                                                                     | 3. Recipient's Catalo                                      | og No.                                     |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------|--|
| 4. Title and Subtitle                                                                                                                                                       | L                                                                                                                                                               | 5. Report Date                                             |                                            |  |
| PERFORMANCE OF TWO-STAGE FAN HAVING LOW-A                                                                                                                                   |                                                                                                                                                                 | August 1979                                                |                                            |  |
|                                                                                                                                                                             |                                                                                                                                                                 | 6. Performing Organ                                        | nization Code                              |  |
| RATIO, FIRST-STAGE ROTOR                                                                                                                                                    | BLADING                                                                                                                                                         | 0. Terrorning Organ                                        | iization code                              |  |
| 7. Author(s)                                                                                                                                                                |                                                                                                                                                                 | 8. Performing Organ                                        | ization Report No.                         |  |
| Donald C. Urasak William T.                                                                                                                                                 | Connell and Walter S. Curner                                                                                                                                    | E-9237                                                     |                                            |  |
| Donald C. Crasek, William 1.                                                                                                                                                | Gorrell, and Walter S. Cunnan                                                                                                                                   | 10. Work Unit No.                                          |                                            |  |
| 9. Performing Organization Name and Address                                                                                                                                 |                                                                                                                                                                 | 505-04                                                     |                                            |  |
| National Aeronautics and Space                                                                                                                                              | Administration                                                                                                                                                  |                                                            |                                            |  |
| Lewis Research Center                                                                                                                                                       |                                                                                                                                                                 | 11. Contract or Gran                                       | t No.                                      |  |
| 1                                                                                                                                                                           |                                                                                                                                                                 |                                                            |                                            |  |
| Cleveland, Ohio 44135                                                                                                                                                       |                                                                                                                                                                 | 13. Type of Report a                                       | and Period Covered                         |  |
| 12. Sponsoring Agency Name and Address                                                                                                                                      |                                                                                                                                                                 | Technical Paper                                            |                                            |  |
| National Aeronautics and Space                                                                                                                                              | Administration                                                                                                                                                  | 14. Sponsoring Agence                                      | cy Code                                    |  |
| Washington, D.C. 20546                                                                                                                                                      |                                                                                                                                                                 | , in apartico mg rigoni                                    | ,, 5555                                    |  |
| 15. Supplementary Notes                                                                                                                                                     |                                                                                                                                                                 |                                                            |                                            |  |
|                                                                                                                                                                             | anch Conton. William W. Com.                                                                                                                                    | II C A D                                                   | analogua                                   |  |
| Donald C. Urasek, Lewis Research Center; William T. Gorrell, U.S. Army Research and                                                                                         |                                                                                                                                                                 |                                                            |                                            |  |
| Technology Laboratories (AVRADCOM); Walter S. Cunnan, Lewis Research Center.                                                                                                |                                                                                                                                                                 |                                                            |                                            |  |
| 16. Abstract                                                                                                                                                                |                                                                                                                                                                 |                                                            |                                            |  |
| The NASA two-stage fan was te                                                                                                                                               | sted with a low-aspect-ratio first-                                                                                                                             | stage rotor havin                                          | og no midenan                              |  |
|                                                                                                                                                                             | -                                                                                                                                                               | -                                                          | •                                          |  |
| dampers. At design speed the                                                                                                                                                | dampers. At design speed the fan achieved an adiabatic design efficiency of 0.846, and peak effi-                                                               |                                                            |                                            |  |
|                                                                                                                                                                             |                                                                                                                                                                 |                                                            |                                            |  |
| ciencies for the first stage and                                                                                                                                            | rotor of 0.870 and 0.906, respecti                                                                                                                              | vely. Peak effic                                           | iency occurred                             |  |
|                                                                                                                                                                             | rotor of 0.870 and 0.906, respecti<br>an attempt to improve stall margin                                                                                        |                                                            |                                            |  |
| very close to the stall line. In                                                                                                                                            | an attempt to improve stall margin                                                                                                                              | n, the fan was re                                          | tested with cir-                           |  |
| very close to the stall line. In cumferentially grooved casing t                                                                                                            | an attempt to improve stall margin<br>treatment and with a series of state                                                                                      | n, the fan was re<br>or-blade resets.                      | tested with cir-<br>Results                |  |
| very close to the stall line. In<br>cumferentially grooved casing t<br>showed no improvement in stall                                                                       | an attempt to improve stall margin                                                                                                                              | n, the fan was re<br>or-blade resets.                      | tested with cir-<br>Results                |  |
| very close to the stall line. In cumferentially grooved casing t                                                                                                            | an attempt to improve stall margin<br>treatment and with a series of state                                                                                      | n, the fan was re<br>or-blade resets.                      | tested with cir-<br>Results                |  |
| very close to the stall line. In<br>cumferentially grooved casing t<br>showed no improvement in stall                                                                       | an attempt to improve stall margin<br>treatment and with a series of state                                                                                      | n, the fan was re<br>or-blade resets.                      | tested with cir-<br>Results                |  |
| very close to the stall line. In<br>cumferentially grooved casing t<br>showed no improvement in stall                                                                       | an attempt to improve stall margin<br>treatment and with a series of state                                                                                      | n, the fan was re<br>or-blade resets.                      | tested with cir-<br>Results                |  |
| very close to the stall line. In<br>cumferentially grooved casing t<br>showed no improvement in stall                                                                       | an attempt to improve stall margin<br>treatment and with a series of state                                                                                      | n, the fan was re<br>or-blade resets.                      | tested with cir-<br>Results                |  |
| very close to the stall line. In<br>cumferentially grooved casing t<br>showed no improvement in stall                                                                       | an attempt to improve stall margin<br>treatment and with a series of state                                                                                      | n, the fan was re<br>or-blade resets.                      | tested with cir-<br>Results                |  |
| very close to the stall line. In<br>cumferentially grooved casing t<br>showed no improvement in stall                                                                       | an attempt to improve stall margin<br>treatment and with a series of state                                                                                      | n, the fan was re<br>or-blade resets.                      | tested with cir-<br>Results                |  |
| very close to the stall line. In<br>cumferentially grooved casing t<br>showed no improvement in stall                                                                       | an attempt to improve stall margin<br>treatment and with a series of state                                                                                      | n, the fan was re<br>or-blade resets.                      | tested with cir-<br>Results                |  |
| very close to the stall line. In<br>cumferentially grooved casing t<br>showed no improvement in stall                                                                       | an attempt to improve stall margin<br>treatment and with a series of state                                                                                      | n, the fan was re<br>or-blade resets.                      | tested with cir-<br>Results                |  |
| very close to the stall line. In<br>cumferentially grooved casing t<br>showed no improvement in stall                                                                       | an attempt to improve stall margin<br>treatment and with a series of state                                                                                      | n, the fan was re<br>or-blade resets.                      | tested with cir-<br>Results                |  |
| very close to the stall line. In<br>cumferentially grooved casing t<br>showed no improvement in stall                                                                       | an attempt to improve stall margin<br>treatment and with a series of state                                                                                      | n, the fan was re<br>or-blade resets.                      | tested with cir-<br>Results                |  |
| very close to the stall line. In<br>cumferentially grooved casing t<br>showed no improvement in stall                                                                       | an attempt to improve stall margin<br>treatment and with a series of state                                                                                      | n, the fan was re<br>or-blade resets.                      | tested with cir-<br>Results                |  |
| very close to the stall line. In<br>cumferentially grooved casing t<br>showed no improvement in stall                                                                       | an attempt to improve stall margin<br>treatment and with a series of state                                                                                      | n, the fan was re<br>or-blade resets.                      | tested with cir-<br>Results                |  |
| very close to the stall line. In<br>cumferentially grooved casing t<br>showed no improvement in stall                                                                       | an attempt to improve stall margin<br>treatment and with a series of state                                                                                      | n, the fan was re<br>or-blade resets.                      | tested with cir-<br>Results                |  |
| very close to the stall line. In cumferentially grooved casing to showed no improvement in stall stator-blade reset.                                                        | an attempt to improve stall marging treatment and with a series of state margin with casing treatment but                                                       | n, the fan was re<br>or-blade resets.<br>increased to 8 pe | tested with cir-<br>Results                |  |
| very close to the stall line. In cumferentially grooved casing to showed no improvement in stall stator-blade reset.  17. Key Words (Suggested by Author(s))                | an attempt to improve stall marginareatment and with a series of state margin with casing treatment but                                                         | n, the fan was re<br>or-blade resets.<br>increased to 8 pe | tested with cir-<br>Results                |  |
| very close to the stall line. In cumferentially grooved casing to showed no improvement in stall stator-blade reset.                                                        | an attempt to improve stall marging treatment and with a series of state margin with casing treatment but                                                       | n, the fan was re<br>or-blade resets.<br>increased to 8 pe | tested with cir-<br>Results                |  |
| very close to the stall line. In cumferentially grooved casing to showed no improvement in stall stator-blade reset.  17. Key Words (Suggested by Author(s))                | an attempt to improve stall marginareatment and with a series of state margin with casing treatment but                                                         | n, the fan was re or-blade resets. increased to 8 pe       | tested with cir-<br>Results                |  |
| very close to the stall line. In cumferentially grooved casing to showed no improvement in stall stator-blade reset.  17. Key Words (Suggested by Author(s))                | an attempt to improve stall margin treatment and with a series of state margin with casing treatment but  18. Distribution Statemen Unclassified -              | n, the fan was re or-blade resets. increased to 8 pe       | tested with cir-<br>Results                |  |
| very close to the stall line. In cumferentially grooved casing to showed no improvement in stall stator-blade reset.  17. Key Words (Suggested by Author(s))                | an attempt to improve stall margin treatment and with a series of state margin with casing treatment but  18. Distribution Statemen Unclassified -              | n, the fan was re or-blade resets. increased to 8 pe       | tested with cir-<br>Results                |  |
| very close to the stall line. In cumferentially grooved casing to showed no improvement in stall stator-blade reset.  17. Key Words (Suggested by Author(s)) Turbomachinery | an attempt to improve stall margin treatment and with a series of state margin with casing treatment but  18. Distribution Statemen Unclassified - STAR Categor | n, the fan was re or-blade resets. increased to 8 pe       | tested with cir-<br>Results<br>ercent with |  |
| very close to the stall line. In cumferentially grooved casing to showed no improvement in stall stator-blade reset.  17. Key Words (Suggested by Author(s))                | an attempt to improve stall margin treatment and with a series of state margin with casing treatment but  18. Distribution Statemen Unclassified -              | n, the fan was re or-blade resets. increased to 8 pe       | tested with cir-<br>Results                |  |