Midterm Review

EC 320: Introduction to Econometrics

Kyle Raze Fall 2019

Prologue

Housekeeping

Problem Set 4

• Due tonight by 23:59 on Canvas

Midterm 2 on Wednesday

- You still have lab this week!
- Maps!

Extended office hours

- Tomorrow 15:00 to 17:00
- Room TBA

Midterm II: The Weeds

Anything from the lectures, labs, or problem sets is fair game!

- 1. Simple Linear Regression: Estimation I & II
- 2. Classical Assumptions
- 3. Simple Linear Regression: Inference
- 4. Multiple Linear Regression: Estimation
- 5. Multiple Linear Regression: Inference
- 6. Regressions in R

1. Simple Linear Regression: Estimation

OLS mechanics

- How does OLS pick parameter estimates?
- What properties are a direct consequence of OLS?
- Residuals v.s. errors

Coefficient interpretation (literal)

1. Simple Linear Regression: Estimation (cont.)

Goodness of fit

- R^2 interpretation (literal)
- Understand R^2 derivation
- Use and misuse of \mathbb{R}^2

OLS by hand

- Estimate coefficients and calculate \mathbb{R}^2 .
- Don't have to calculate standard errors by hand.

2. Classical Assumptions

Six assumptions

- 1. Linearity
- 2. Sample variation/no perfect collinearity
- 3. Random sampling
- 4. Exogeneity
- 5. Homoskedasticity
- 6. Normality

What do they buy?

When are they satisfied? When are they violated?

2. Classical Assumptions (cont.)

So what?

- Coefficient interpretation (substantive)
- Hypothesis test validity.

3. Simple Linear Regression: Inference

Making inferences about population parameters

- Population v.s. sample
- What do we mean by "statistical significance?"

Hypothesis testing (e.g., t tests)

- Null hypotheses v.s. alternative hypotheses
- Left-tailed, right-tailed, and two-tailed
- Type I v.s. Type II error

Confidence intervals

4. Multiple Linear Regression: Estimation

OLS mechanics and properties

Goodness of fit

- R^2 interpretation (literal)
- Know the behavior of \mathbb{R}^2 as the number of explanatory variables increases.

Make predictions for certain values of the explanatory values (*e.g.,* hedonic modeling)

4. Multiple Linear Regression: Estimation (cont.)

Coefficient interpretation (literal and substantive)

Omitted-variable bias

- Know when omitting a variable causes bias.
- Sign the bias.
- Back out correlations between explanatory variables.

5. Multiple Linear Regression: Inference

Confidence intervals and t tests

• Other than degrees of freedom, same as before.

Multicollinearity

- Standard errors depend on the overlapping variation between the explanatory variable.
- More overlap \implies bigger standard errors \implies less likely to reject null hypothesis.

Irrelevant variables

No F tests on the midterm! Stay tuned for the final.

6. Regressions in R

Write the code that generates regression output

- I provide the console or R Markdown output and the name of the data file.
- You provide the code that loads the necessary packages, imports the data, runs regressions, and generates a table.
- Write the code as if it's in a .R script.

Midterm Structure

Fill in the Blank

- 10 blanks
- 3 points per blank (30 points total)

True or False

- 5 questions
- 6 points per question (30 points total)
- Brief explanations required for full credit

Free Response

- 4 multi-part questions with varying numbers of points (140 points total)
- Explanations required for full credit

Midterm Protocol

Materials

- Writing utensil
- 3-inch-by-5-inch note card
- Basic or scientific calculator (no graphing or programming capabilities)
- Nothing else

Procedure

- Randomized seating chart (penalty for non-compliance)
- 80 minutes from "you may begin" to "pencils down"
- First 30 minutes: quiet period (no questions, no getting up)
- Last 50 minutes: ask lots of questions

Practice

Regression Table

Example: Final Grades

Data on 680 students in an introductory microeconomics class.

Outcome: Final Exam Score (%)

Explanatory variable	1	2	3
Intercept	22.7	21.8	-8.69
	(0.877)	(0.973)	(1.49)
Classes Attended (%)	0.039	0.027	0.041
	(0.011)	(0.014)	(0.013)
HW Turned In (%)		0.022	0.023
		(0.012)	(0.011)
ACT Score			0.528
			(0.048)