

Выпускная квалификационная работа по курсу "Data Science"

Тема: Прогнозирование конечных свойств

новых материалов

(композиционных материалов).

Докладчик: Запорожец Марина Владимировна

Объединение датасетов и описательная статистика

Датасет состоит из двух файлов: X_bp и X_nup.

Файл Х_bp содержит 10 признаков и индекс; 1023 строки.

Файл Х_пир содержит 3 признака и индекс; строк: 1040.

Файлы объединены с типом INNER по индексу. Дальнейшие исследования проводим с объединенным датасетом, содержащим 13 признаков и 1023 строк или объектов.

	Соотношение матрица- наполнитель	Плотнос ть, кг/м3	модуль упругости, ГПа	Количес тво отвердит еля, м.%	Содержание эпоксидных групп,%_2	тура	Поверхн остная плотнос ть, г/м2	Модуль упругости при растяжении, ГПа	Прочнос ть при растяже нии, МПа	Потребл ение смолы, г/м2	Угол нашивк и, град	Шаг нашивки	Плотность нашивки
count	1023.00	1023.00	1023.00	1023.00	1023.00	1023.00	1023.00	1023.00	1023.00	1023.00	1023.00	1023.00	1023.00
mean	2.93	1975.73	739.92	110.57	22.24	285.88	482.73	73.33	2466.92	218.42	44.25	6.90	57.15
std	0.91	73.73	330.23	28.30	2.41	40.94	281.31	3.12	485.63	59.74	45.02	2.56	12.35
min	0.39	1731.76	2.44	17.74	14.25	100.00	0.60	64.05	1036.86	33.80	0.00	0.00	0.00
25%	2.32	1924.16	500.05	92.44	20.61	259.07	266.82	71.25	2135.85	179.63	0.00	5.08	49.80
50%	2.91	1977.62	739.66	110.56	22.23	285.90	451.86	73.27	2459.52	219.20	0.00	6.92	57.34
75%	3.55	2021.37	961.81	129.73	23.96	313.00	693.23	75.36	2767.19	257.48	90.00	8.59	64.94
max	5.59	2207.77	1911.54	198.95	33.00	413.27	1399.54	82.68	3848.44	414.59	90.00	14.44	103.99

Гистограммы распределения и графики Q-Q

Тепловая карта и парная диаграмма. Зависимостей не обнаружено.

Описательная статистика очищенных данных

	Соотношение матрица- наполнитель	Плотнос ть, кг/м3	модуль упругости, ГПа	Количес тво отвердит еля, м.%	Содержание эпоксидных групп,%_2	Темпера тура вспышк и, С_2	Поверхн остная плотнос ть, г/м2	Модуль упругости при растяжении, ГПа	Прочнос ть при растяже нии, МПа	Потребл ение смолы, г/м2	Угол нашивк и, град	Шаг нашивки	Плотность нашивки
count	922.00	922.00	922.00	922.00	922.00	922.00	922.00	922.00	922.00	922.00	922.00	922.00	922.00
mean	2.93	1974.12	736.12	111.14	22.20	286.18	482.43	73.30	2461.49	218.05	45.98	6.93	57.56
std	0.90	71.04	327.61	26.75	2.39	39.42	280.44	3.03	453.56	57.14	45.01	2.51	11.12
min	0.55	1784.48	2.44	38.67	15.70	179.37	0.60	65.79	1250.39	72.53	0.00	0.04	28.66
25%	2.32	1923.32	498.54	92.86	20.56	259.21	264.35	71.24	2148.18	179.88	0.00	5.14	50.28
50%	2.91	1977.32	736.18	111.16	22.18	286.22	457.73	73.25	2455.97	218.70	90.00	6.97	57.58
75%	3.55	2020.05	956.96	130.11	23.96	313.01	695.53	75.31	2751.23	256.62	90.00	8.61	64.84
max	5.31	2161.57	1628.00	181.83	28.96	386.07	1291.34	81.20	3654.43	359.05	90.00	13.73	86.01

Выделение целевых переменных «Модуль упругости при растяжении, ГПа» и «Прочность при растяжении, МПа»

Посмотрим размерность.

```
X_no_norm.shape, y_1.shape, y_2.shape
((922, 11), (922,), (922,))
```

Выделение целевой переменной «Соотношение матрица – наполнитель»

Графики Boxplot с выбросами (слева) и Boxplot без выбросов (справа).

Используемые модели и метрики

Используемые модели регрессии

- Линейная регрессия
- Метод k-ближайших соседей
- Случайный лес
- Метод опорных векторов для регрессии
- Градиентный бустинг
- Нейронная сеть

Метрики качества работы моделей

- R2 коэффициент детерминации
- MSE (Mean Squared Error) средняя квадратичная ошибка
- RMSE (Root Mean Squared Error) корень из средней квадратичной ошибки
- MAE (Mean Absolute Error) средняя абсолютная ошибка
- MAPE (Mean Absolute Percentage Error) - средняя абсолютная ошибка в процентах

Графики преобразований при применении нормализаторов и стандартизаторов (выбор GridSearch и RandomSearch

Работа моделей предсказания Модуля упругости при растяжении (слева) и Прочности при растяжении (справа)

Работа полносвязной нейронной сети

Модуль упругости при растяжении

Прочность при растяжении

Соотношение матрица - наполнитель

Модуль упругости при растяжении

Model regr MSE RMSE MAE MAPE LinearRegression -0.03 0.03 0 3.12 9.71 2.48 KNeighborsRegressor -0.01 9.57 3.09 2.48 0.03 RandomForestRegressor 9.94 3.15 2.48 0.03 3.08 3 SVR -0.01 9.51 2.46 0.03 4 GradientBoostingRegressor 9.83 2.50 0.03 Neural net minmax 0.01 3.12 2.50 5 9.75 0.03 Neural_net_stand_scal -0.01 9.98 3.16 2.51 0.03 Neural net max abs scal -0.01 9.89 3.14 2.52 0.03 10.58 3.25 2.58 0.04 8 Neural net robust sc -0.08

Лучший показатель R2 = 0.009 в модели Neural_net_minmax Лучший показатель MSE = 9.5116 в модели SVR Лучший показатель MAE = 2.4591 в модели SVR

Метрики работы моделей

Прочность при растяжении

Соотношение матрица - наполнитель

	Model_regr	R2	MSE	RMSE	MAE	MAPE
0	LinearRegression	-0.01	214500.17	463.14	372.07	0.16
1	KNeighborsRegressor	0.01	209932.30	458.18	369.54	0.16
2	RandomForestRegressor	0.01	209452.24	457.66	366.52	0.16
3	SVR	0.00	211079.56	459.43	370.15	0.16
4	${\it Gradient Boosting Regressor}$	-0.02	215203.10	463.90	371.32	0.16
5	Neural_net_minmax	-0.00	198679.67	445.74	360.30	0.15
6	Neural_net_stand_scal	-0.00	198576.58	445.62	360.28	0.15
7	Neural_net_max_abs_scal	-0.01	199034.83	446.13	360.37	0.15
8	Neural_net_robust_sc	-0.00	198663.93	445.72	360.30	0.15

Лучший показатель R2 = 0.0091 в модели RandomForestRegressor Лучший показатель MSE = 198576.5801 в модели Neural_net_stand_scal Лучший показатель MAE = 360.2825 в модели Neural_net_stand_scal R2: -0.126

MSE: 0.774

RMSE: 0.88

MAE: 0.717

MAPE: 0.294

WEB-приложение на сайте www.render.com

https://composite-predict.onrender.com

Предсказание конечных свойств получаемых композиционных материалов по имеющимся измерениям.

На вход подаются данные о начальных свойствах компонентов композиционных материалов (количество связующего, наполнителя, температурный режим отверждения и т.д.).

Матрица-наполнитель

Модуль упругости при растяжении

Прочность при растяжении

Композиционные материалы - это искусственно созданные материалы, состоящие из нескольких других с четкой границей между ними. Композиты обладают теми свойствами, которые не наблюдаются у компонентов по отдельности. При этом композиты являются монолитным материалом, т.е. компоненты материала неотделимы друг от друга без разрушения конструкции в целом. Яркий пример композита - железобетон. Бетон прекрасно сопротивляется сжатию, но плохо растяжению. Стальная арматура внутри бетона компенсирует его неспособность сопротивляться сжатию, формируя тем самым новые, уникальные свойства. Современные композиты изготавливаются из других материалов: полимеры, керамика, стеклянные и углеродные волокна, но данный принцип сохраняется. У такого подхода есть и недостаток: даже если мы знаем характеристики исходных компонентов, определить характеристики композита, состоящего из этих компонентов, достаточно проблематично. Для решения этой проблемы есть два пути: физические испытания образцов материалов, или прогнозирование характеристик. Суть прогнозирования заключается в симуляции представительного элемента объема композита на основе данных о характеристиках входящих компонентов (связующего и армирующего компонента).

do.bmstu.ru

