Trabajo Práctico No.2

Robótica. Segundo Cuatrimestre 2017 28/8/2017

1 Problema Directo

Para el Robot ABB IRB 140 del laboratorio, que también se muestra en la Fig. 1, se pide:

- Indicar y numerar los ejes y eslabones.
- Utilizando el método de Denavit y Hartenberg, asignar ternas solidarias a los eslabones.
- Indicar cuáles son los valores de los ángulos de los ejes (es decir θ), para la posición del robot en la Fig. 1 de acuerdo a las ternas que seleccionó.
- Escribir una función en Octave o Matlab que resuelva el problema Directo de posición, es decir, que obtenga la matriz homogénea que relaciona la terna 6 solidaria al ultimo eslabón, con la terna 0 solidaria a la base (A₀⁶). Las entradas al programa deben ser los valores en grados de los ángulos de los ejes de rotación (θ). Adicionalmente debe calcular el vector de configuración [g₁, g₂, g₃].
- Como ejemplos del problema Directo imprimir la matriz homogénea de salida para la posición de la Fig. 1 y para la posición correpondiente a $\theta_I = [0,0,0,0,90,0]$. Hacer un gráfico simple del robot en esta última posición, dibujando también las ternas.
- Finalmente, imprimir la matriz homogenea correspondiente a la posición $\theta_{II} = [30, 30, 30, 30, 30, 30, 30].$

2 Problema Inverso

Para el robot del punto anterior se pide escribir una función en Octave o Matlab que resuelva el problema Inverso. Las entradas deben ser:

- La matriz homogenea de posición y orientación A_0^6
- La configuración $[g_1, g_2, g_3]$

Figure 1: Vista lateral (plano $z_0 \times x_0$) del robot IRB-140. El eje 2 está 70mm por delante del eje 1.

La salida de la función debe ser el vector de los ángulos de los ejes (θ)

Para verificar el problema Inverso, utilizar las salidas (matrices A_0^6) de los tres ejemplos anteriores del problema Directo, como entradas del Inverso. Ensayar otros resultados cambiando las configuraciones y manteniendo la matriz homogenea del problema directo.

Luego Imprimir las verificaciones.