CME 241: Foundations of Reinforcement Learning with Applications in Finance

Ashwin Rao

ICME, Stanford University

Winter 2022

Meet your Instructor

- Joined Stanford ICME as Adjunct Professor in Fall 2018
- Research Interests: A.I. for Dynamic Decisioning under Uncertainty
- Technical mentor to ICME students, partnerships with industry
- Educational background: Algorithms Theory & Abstract Algebra
- 10 years at Goldman Sachs (NY) Rates/Mortgage Derivatives Trading
- 4 years at Morgan Stanley as Managing Director Market Modeling
- Founded Tech Startup *ZLemma*, Acquired by hired.com in 2015
- One of our products was algorithmic jobs/career guidance for students
- Teaching experience: Pure & Applied Math, CompSci, Finance, Mgmt

Requirements and Setup

- Pre-requisites:
 - Undergraduate-level background in Applied Mathematics (Multivariate Analysis, Linear Algebra, Probability, Optimization)
 - Background in data structures/algorithms, fluency with numpy
 - Basic familiarity with Pricing, Portfolio Mgmt and Algo Trading, but we will do an overview of the requisite Finance/Economics
 - No background required in MDP, DP, RL (we will cover from scratch)
- Here's last year's final exam to get a sense of course difficulty
- Register for the course on Piazza
- Install Python 3 and supporting IDE/tools (eg: PyCharm, Jupyter)
- Install LaTeX/Markdown and supporting editor for tech writing
- Download the textbook for this course
- Assignments and code in the textbook based on this open-source code
- Fork this repo and get set up to use this code in assignments
- Create separate directories for each assignment for CA (<u>Sven Lerner</u>) to review - send Sven your forked repo URL and *git push* often

Housekeeping

- Grade based on:
 - 30% 48-hour Mid-Term Exam (on Theory, Modeling, Programming)
 - 40% 48-hour Final Exam (on Theory, Modeling, Programming)
 - 30% Assignments: Technical Writing and Programming
- Lectures (on Zoom): Wed & Fri 3:15pm-4:45pm. McCullough 115.
- Office Hours 12:30pm-2:30pm Fri (or by appointment) in ICME Mezzanine level, room M05 (within Huang Engg Bldg)
- Course Web Site: cme241.stanford.edu
- Ask Questions and engage in Discussions on Piazza
- My e-mail: <u>ashwin.rao@stanford.edu</u>

Purpose and Grading of Assignments

- Assignments shouldn't be treated as "tests" with right/wrong answer
- Rather, they should be treated as part of your learning experience
- You will truly understand ideas/models/algorithms only when you write down the Mathematics and the Code precisely
- Simply reading Math/Code gives you a false sense of understanding
- Take the initiative to make up your own assignments
- Especially on topics you feel you don't quite understand
- Individual assignments won't get a grade and there are no due dates
- The CA will review once every 2 weeks and provide feedback
- It will be graded less on correctness and completeness, and more on:
 - Coding and Technical Writing style that is clear and modular
 - Demonstration of curiosity and commitment to learning through the overall body of assignments work
 - Engagement in asking questions and seeking feedback for improvements

Resources

- Course based on my new RL For Finance book
- Supplementary/Optional reading: <u>Sutton-Barto's RL book</u>
- I prepare slides for each lecture ("guided tour" of respective chapter)
- A couple of lecture slides are from <u>David Silver's RL course</u>
- Code in my book based on this open-source code
- Reading this code as important as the reading of the theory
- We will go over some classical papers on the Finance applications
- Some supplementary/optional papers from Finance/RL
- All resources organized on the course web site ("source of truth")

Stanford Honor Code - For Assignments versus Exams

- Assignments: You can discuss solution approaches with other students
- Because assignments are graded more for effort than correctness
- Writing (answers/code) should be your own (don't copy/paste)
- You can invoke the core modules I have written (as instructed)
- Exams: You cannot engage in any conversation with other students
- Write to the CA if a question is unclear
- Exams are graded on correctness and completeness
- So don't ask for help on how to solve exam questions
- Open-internet Exams: Search for concepts, not answers to exam Qs
- If you accidentally run into a strong hint/answer, state it honestly

A.I. for Dynamic Decisioning under Uncertainty

- Let's browse some terms used to characterize this branch of A.I.
- Stochastic: Uncertainty in key quantities, evolving over time
- Optimization: A well-defined metric to be maximized ("The Goal")
- Dynamic: Decisions need to be a function of the changing situations
- Control: Overpower uncertainty by persistent steering towards goal
- Jargon overload due to confluence of Control Theory, O.R. and A.I.
- For language clarity, let's just refer to this area as Stochastic Control
- The core framework is called Markov Decision Processes (MDP)
- Reinforcement Learning is a class of algorithms to solve MDPs

The MDP Framework

Components of the MDP Framework

- The Agent and the Environment interact in a time-sequenced loop
- Agent responds to [State, Reward] by taking an Action
- Environment responds by producing next step's (random) State
- Environment also produces a (random) scalar denoted as Reward
- Each State is assumed to have the Markov Property, meaning:
 - Next State/Reward depends only on Current State (for a given Action)
 - Current State captures all relevant information from History
 - Current State is a sufficient statistic of the future (for a given Action)
- Goal of Agent is to maximize Expected Sum of all future Rewards
- By controlling the ($Policy: State \rightarrow Action$) function
- This is a dynamic (time-sequenced control) system under uncertainty

Formal MDP Framework

The following notation is for discrete time steps. Continuous-time formulation is analogous (often involving <u>Stochastic Calculus</u>)

- Time steps denoted as $t = 1, 2, 3, \dots$
- ullet Markov States $S_t \in \mathcal{S}$ where \mathcal{S} is the State Space
- Actions $A_t \in \mathcal{A}$ where \mathcal{A} is the Action Space
- Rewards $R_t \in \mathbb{R}$ denoting numerical feedback
- Transitions $p(r, s'|s, a) = \mathbb{P}[(R_{t+1} = r, S_{t+1} = s')|S_t = s, A_t = a]$
- \bullet $\gamma \in [0,1]$ is the Discount Factor for Reward when defining Return
- Return $G_t = R_{t+1} + \gamma \cdot R_{t+2} + \gamma^2 \cdot R_{t+3} + \dots$
- ullet Policy $\pi(a|s)$ is probability that Agent takes action a in states s
- ullet The goal is find a policy that maximizes $\mathbb{E}[G_t|S_t=s]$ for all $s\in\mathcal{S}$

How a baby learns to walk

Many real-world problems fit this MDP framework

- Self-driving vehicle (speed/steering to optimize safety/time)
- Game of Chess (Boolean Reward at end of game)
- Complex Logistical Operations (eg: movements in a Warehouse)
- Make a humanoid robot walk/run on difficult terrains
- Manage an investment portfolio
- Control a power station
- Optimal decisions during a football game
- Strategy to win an election (high-complexity MDP)

Self-Driving Vehicle

Why are these problems hard?

- State space can be large or complex (involving many variables)
- Sometimes, Action space is also large or complex
- No direct feedback on "correct" Actions (only feedback is Reward)
- Time-sequenced complexity (Actions influence future States/Actions)
- Actions can have delayed consequences (late Rewards)
- Agent often doesn't know the Model of the Environment
- "Model" refers to probabilities of state-transitions and rewards
- So, Agent has to learn the Model AND solve for the Optimal Policy
- Agent Actions need to tradeoff between "explore" and "exploit"

Value Function and Bellman Equations

ullet Value function (under policy π) $V_\pi(s)=\mathbb{E}[G_t|S_t=s]$ for all $s\in\mathcal{S}$

$$V_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{r,s'} p(r,s'|s,a) \cdot (r + \gamma V_{\pi}(s'))$$
 for all $s \in \mathcal{S}$

ullet Optimal Value Function $V_*(s) = \max_{\pi} V_{\pi}(s)$ for all $s \in \mathcal{S}$

$$V_*(s) = \max_{a} \sum_{r,s'} p(r,s'|s,a) \cdot (r + \gamma V_*(s'))$$
 for all $s \in \mathcal{S}$

- ullet There exists an Optimal Policy π_* achieving $V_*(s)$ for all $s \in \mathcal{S}$
- ullet Determining $V_{\pi}(s)$ known as *Prediction*, and $V_*(s)$ known as *Control*
- The above recursive equations are called Bellman equations
- In continuous time, referred to as Hamilton-Jacobi-Bellman (HJB)
- The algorithms based on Bellman equations are broadly classified as:
 - Dynamic Programming
 - Reinforcement Learning

Dynamic Programming versus Reinforcement Learning

- When Probabilities Model is known \Rightarrow Dynamic Programming (DP)
- DP Algorithms take advantage of knowledge of probabilities
- So, DP Algorithms do not require interaction with the environment
- In the Language of A.I, DP is a type of Planning Algorithm
- When Probabilities Model unknown ⇒ Reinforcement Learning (RL)
- RL Algorithms interact with the Environment and incrementally learn
- Environment interaction could be real or simulated interaction
- RL approach: Try different actions & learn what works, what doesn't
- RL Algorithms' key challenge is to tradeoff "explore" versus "exploit"
- DP or RL, Good approximation of Value Function is vital to success
- Deep Neural Networks are typically used for function approximation

Why is RL interesting/useful to learn about?

- RL solves MDP problem when *Environment Probabilities* are unknown
- This is typical in real-world problems (complex/unknown probabilities)
- RL interacts with Actual Environment or with Simulated Environment
- Promise of modern A.I. is based on success of RL algorithms
- Potential for automated decision-making in many industries
- In 10-20 years: Bots that act or behave more optimal than humans
- RL already solves various low-complexity real-world problems
- RL might soon be the most-desired skill in the technical job-market
- Possibilities in Finance are endless (we cover 5 important problems)
- Learning RL is a lot of fun! (interesting in theory as well as coding)

Many Faces of Reinforcement Learning

Vague (but in-vogue) Classification of Machine Learning

Overview of the Course

- Theory of Markov Decision Processes (MDPs)
- Dynamic Programming (DP) Algorithms
- Approximate DP and Backward Induction Algorithms
- Reinforcement Learning (RL) Algorithms
- Plenty of Python implementations of models and algorithms
- Apply these algorithms to 5 Financial/Trading problems:
 - (Dynamic) Asset-Allocation to maximize Utility of Consumption
 - Pricing and Hedging of Derivatives in an Incomplete Market
 - Optimal Exercise/Stopping of Path-dependent American Options
 - Optimal Trade Order Execution (managing Price Impact)
 - Optimal Market-Making (Bids and Asks managing Inventory Risk)
- By treating each of the problems as MDPs (i.e., Stochastic Control)
- We will go over classical/analytical solutions to these problems
- Then introduce real-world considerations, and tackle with RL (or DP)
- Course blends Theory/Math, Algorithms/Coding, Real-World Finance

Optimal Asset Allocation to Maximize Consumption Utility

- You can invest in (allocate wealth to) a collection of assets
- Investment horizon is a fixed length of time
- Each risky asset characterized by a probability distribution of returns
- Periodically, you are re-allocate your wealth to the various assets
- Transaction Costs & Constraints on trading hours/quantities/shorting
- Allowed to consume a fraction of your wealth at specific times
- Dynamic Decision: Time-Sequenced Allocation & Consumption
- To maximize horizon-aggregated Risk-Adjusted Consumption
- Risk-Adjustment involves a study of Utility Theory

MDP for Optimal Asset Allocation problem

- State is [Current Time, Current Holdings, Current Prices]
- Action is [Allocation Quantities, Consumption Quantity]
- Actions limited by various real-world trading constraints
- Reward is Utility of Consumption less Transaction Costs
- State-transitions governed by risky asset movements

Derivatives Pricing and Hedging in an Incomplete Market

- Classical Pricing/Hedging Theory assumes "frictionless market"
- Technically, referred to as arbitrage-free and complete market
- Complete market means derivatives can be perfectly replicated
- But real world has transaction costs and trading constraints
- So real markets are incomplete where classical theory doesn't fit
- How to price and hedge in an Incomplete Market?
- Maximize "risk-adjusted-return" of the derivative plus hedges
- Similar to Asset Allocation, this is a stochastic control problem
- Deep Reinforcement Learning helps solve when framed as an MDP

MDP for Pricing/Hedging in an Incomplete Market

- State is [Current Time, PnL, Hedge Qtys, Hedge Prices]
- Action is Units of Hedges to be traded at each time step
- Reward only at termination, equal to Utility of terminal PnL
- State-transitions governed by evolution of hedge prices
- Optimal Policy ⇒ Derivative Hedging Strategy
- Optimal Value Function ⇒ Derivative Price

Optimal Exercise of Path-dependent American Options

- An American option can be exercised anytime before option maturity
- Key decision at any time is to exercise or continue
- The default algorithm is Backward Induction on a tree/grid
- But it doesn't work for American options with complex payofss
- Also, it's not feasible when state dimension is large
- Industry-Standard: Longstaff-Schwartz's simulation-based algorithm
- RL is an attractive alternative to Longstaff-Schwartz
- RL is straightforward once Optimal Exercise is modeled as an MDP

MDP for Optimal American Options Exercise

- State is [Current Time, History of Underlying Security Prices]
- Action is Boolean: Exercise (i.e., Payoff and Stop) or Continue
- Reward always 0, except upon Exercise (= Payoff)
- State-transitions governed by Underlying Prices' Stochastic Process
- Optimal Policy ⇒ Optimal Stopping ⇒ Option Price
- Can be generalized to other Optimal Stopping problems

Optimal Trade Order Execution (controlling Price Impact)

- You are tasked with selling a large qty of a (relatively less-liquid) stock
- You have a fixed horizon over which to complete the sale
- Goal is to maximize aggregate sales proceeds over horizon
- If you sell too fast, Price Impact will result in poor sales proceeds
- If you sell too slow, you risk running out of time
- We need to model temporary and permanent Price Impacts
- Objective should incorporate penalty for variance of sales proceeds
- Again, this amounts to maximizing Utility of sales proceeds

MDP for Optimal Trade Order Execution

- State is [Time Remaining, Stock Remaining to be Sold, Market Info]
- Action is Quantity of Stock to Sell at current time
- Reward is Utility of Sales Proceeds (i.e., Variance-adjusted-Proceeds)
- Reward & State-transitions governed by Price Impact Model
- Real-world Model can be quite complex (Order Book Dynamics)

Optimal Market-Making (controlling Inventory Buildup)

- Market-maker's job is to submit bid and ask prices (and sizes)
- On the Trading Order Book (which moves due to other players)
- Market-maker needs to adjust bid/ask prizes/sizes appropriately
- By anticipating the Order Book Dynamics
- Goal is to maximize Utility of Gains at the end of a suitable horizon
- If Buy/Sell LOs are too narrow, more frequent but small gains
- If Buy/Sell LOs are too wide, less frequent but large gains
- Market-maker also needs to manage potential unfavorable inventory (long or short) buildup and consequent unfavorable liquidation
- This is a classical stochastic control problem

MDP for Optimal Market-Making

- State is [Current Time, Mid-Price, PnL, Inventory of Stock Held]
- Action is Bid & Ask Prices & Sizes at each time step
- Reward is Utility of Gains at termination
- State-transitions governed by probabilities of hitting/lifting Bid/Ask
- Also governed by Order Book Dynamics (can be quite complex)

Week by Week (Tentative) Schedule

- W1: Markov Decision Processes
- W2: Bellman Equations & Dynamic Programming Algorithms
- W3: Backward Induction and Approximate DP Algorithms
- W4: Optimal Asset Allocation & Derivatives Pricing/Hedging
- W5: Options Exercise, Order Execution, Market-Making
- Mid-Term Exam
- W6: RL For Prediction (MC, TD, $TD(\lambda)$)
- W7: RL for Control (SARSA, Q-Learning)
- W8: Batch Methods (DQN, LSTD/LSPI) and Gradient TD
- W9: Policy Gradient, Model-based RL, Explore v/s Exploit
- W10: Read-World RL and Guest Lecture by an Industry leader
- Final Exam

Some Landmark Papers we cover in this course

- Merton's solution for Optimal Portfolio Allocation/Consumption
- Longstaff-Schwartz Algorithm for Pricing American Options
- Almgren-Chriss paper on Optimal Order Execution
- Avellaneda-Stoikov paper on Optimal Market-Making
- Original DQN paper and Nature DQN paper
- Lagoudakis-Parr paper on Least Squares Policy Iteration
- Sutton, McAllester, Singh, Mansour's Policy Gradient Theorem
- Chang, Fu, Hu, Marcus' AMS origins of Monte Carlo Tree Search

Similar Courses offered at Stanford

- AA 228/CS 238 (Mykel Kochenderfer)
- CS 234 (Emma Brunskill)
- CS 332 (Emma Brunskill)
- MS&E 338 (Ben Van Roy)
- EE 277 (Ben Van Roy)
- MS&E 251 (Edison Tse)
- MS&E 348 (Gerd Infanger)
- MS&E 351 (Ben Van Roy)
- MS&E 339 (Ben Van Roy)