In [1]:

```
import os
import cv2
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

In [2]:

```
dataset = []
```

In [3]:

```
dataset = [] # List to store image and label pairs
# List of folder paths
folder paths = [
    "/home/mirza/Desktop/Navttac/ML-1st/Fruits360/fruits-360-original-size/fruits
    "/home/mirza/Desktop/Navttac/ML-1st/Fruits360/fruits-360-original-size/fruits
    "/home/mirza/Desktop/Navttac/ML-1st/Fruits360/fruits-360-original-size/fruits
    "/home/mirza/Desktop/Navttac/ML-1st/Fruits360/fruits-360-original-size/fruits
    "/home/mirza/Desktop/Navttac/ML-1st/Fruits360/fruits-360-original-size/fruits
    "/home/mirza/Desktop/Navttac/ML-1st/Fruits360/fruits-360-original-size/fruits
    "/home/mirza/Desktop/Navttac/ML-1st/Fruits360/fruits-360-original-size/fruits
   "/home/mirza/Desktop/Navttac/ML-1st/Fruits360/fruits-360-original-size/fruits-
    "/home/mirza/Desktop/Navttac/ML-1st/Fruits360/fruits-360-original-size/fruits
    "/home/mirza/Desktop/Navttac/ML-1st/Fruits360/fruits-360-original-size/fruits
    "/home/mirza/Desktop/Navttac/ML-1st/Fruits360/fruits-360-original-size/fruits
    "/home/mirza/Desktop/Navttac/ML-1st/Fruits360/fruits-360-original-size/fruits
    "/home/mirza/Desktop/Navttac/ML-1st/Fruits360/fruits-360-original-size/fruits
    "/home/mirza/Desktop/Navttac/ML-1st/Fruits360/fruits-360-original-size/fruits
    "/home/mirza/Desktop/Navttac/ML-1st/Fruits360/fruits-360-original-size/fruits
    "/home/mirza/Desktop/Navttac/ML-1st/Fruits360/fruits-360-original-size/fruits
     "/home/mirza/Desktop/Navttac/ML-1st/Fruits360/fruits-360-original-size/fruit
     "/home/mirza/Desktop/Navttac/ML-1st/Fruits360/fruits-360-original-size/fruit
     "/home/mirza/Desktop/Navttac/ML-1st/Fruits360/fruits-360-original-size/fruit
     "/home/mirza/Desktop/Navttac/ML-1st/Fruits360/fruits-360-original-size/fruit
     "/home/mirza/Desktop/Navttac/ML-1st/Fruits360/fruits-360-original-size/fruit
     "/home/mirza/Desktop/Navttac/ML-1st/Fruits360/fruits-360-original-size/fruit
     "/home/mirza/Desktop/Navttac/ML-1st/Fruits360/fruits-360-original-size/fruit
     "/home/mirza/Desktop/Navttac/ML-1st/Fruits360/fruits-360-original-size/fruit
    # Add the rest of the folder paths here
]
```

In [4]:

```
# Iterate over the folder paths
for i in folder_paths:
   folder name = os.path.basename(i)
   # Iterate over the images in the subdirectory
   for file name in os.listdir(i):
        image path = os.path.join(i, file name)
       if os.path.isfile(image_path): # Only consider files
            # Load the image using OpenCV
            image = cv2.imread(image path, cv2.IMREAD GRAYSCALE)
            # If the image was successfully loaded
            if image is not None:
                # Resize the grayscale image to 250X250 pixels
                resized_image = cv2.resize(image, (250, 250))
                # Flatten the image and append each pixel as a separate feature a
                flattened image = resized image.flatten().tolist()
                dataset.append(flattened image + [folder name])
```

In [5]:

```
"""Convert the dataset to a pandas DataFrame"""

df = pd.DataFrame(dataset, columns=[f'pixel_{i+1}' for i in range(250*250)] + ['l
"""Print the DataFrame"""

df
```

Out[5]:

	pixel_1	pixel_2	pixel_3	pixel_4	pixel_5	pixel_6	pixel_7	pixel_8	pixel_9	pixel_10	
0	255	255	255	255	255	255	255	255	255	255	-
1	255	255	255	255	255	255	255	255	255	255	
2	255	255	255	255	255	255	255	255	255	255	
3	255	255	255	255	255	255	255	255	255	255	
4	255	255	255	255	255	255	255	255	255	255	
6162	255	255	255	255	255	255	255	255	255	255	
6163	255	255	255	255	255	255	255	255	255	255	
6164	255	255	255	255	255	255	255	255	255	255	
6165	255	255	255	255	255	255	255	255	255	255	
6166	255	255	255	255	255	255	255	255	255	255	

6167 rows × 62501 columns

In [6]:

```
# Extract the last column (label column) from the DataFrame
label_column = df.iloc[:, -1]
# Count the occurrences of each unique label
```

In [7]:

```
label_counts = label_column.value_counts()
label_counts
```

Out[7]:

apple_hit_1	468
pear_1	326
apple_granny_smith_1	320
••• — —	320
apple_rotten_1	319
• • • • • •	318
apple_red_2	318
apple_golden_3	316
apple_6	315
apple_pink_lady_1	313
apple_red_1	309
apple_golden_1	308
apple_golden_2	308
apple_red_yellow_1	308
•• – – –	300
apple_red_3	281
cabbage_white_1	192
cucumber_3	163
zucchini_dark_1	160
zucchini_1	160
pear_3	144
carrot_1	101
cucumber_1	100
Name: label, dtype: into	54

In [8]:

```
# Create a pie chart
plt.figure(figsize=(20, 15))
plt.pie(label_counts, labels=label_counts.index, autopct='%1.1f%%', startangle=14
plt.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.
plt.title('Distribution of Labels')
plt.show()
```


In [9]:

```
# Create a bar chart
plt.figure(figsize=(12, 8))
plt.bar(label_counts.index, label_counts.values)
plt.xlabel('Labels')
plt.ylabel('Count')
plt.title('Distribution of Labels')
plt.xticks(rotation=45, ha='right')
plt.show()
```


In [10]:

```
"""Sort the label counts by index (labels) for a more organized line graph"""
label_counts_sorted = label_counts.sort_index()
"""Create a line graph"""
"""Increase width to 12 inches and height to 8 inches"""
plt.figure(figsize=(12, 8))
plt.plot(label_counts_sorted.index, label_counts_sorted.values, marker='o', lines.plt.xlabel('Labels')
plt.ylabel('Count')
plt.title('Distribution of Labels')
"""Rotate x-axis labels for better visibility"""
plt.xticks(rotation=45, ha='right')
"""Add grid lines for better visualization"""
plt.grid(True)
plt.show()
```


In [11]:

df

Out[11]:

	pixel_1	pixel_2	pixel_3	pixel_4	pixel_5	pixel_6	pixel_7	pixel_8	pixel_9	pixel_10	
0	255	255	255	255	255	255	255	255	255	255	_
1	255	255	255	255	255	255	255	255	255	255	
2	255	255	255	255	255	255	255	255	255	255	
3	255	255	255	255	255	255	255	255	255	255	
4	255	255	255	255	255	255	255	255	255	255	
6162	255	255	255	255	255	255	255	255	255	255	
6163	255	255	255	255	255	255	255	255	255	255	
6164	255	255	255	255	255	255	255	255	255	255	
6165	255	255	255	255	255	255	255	255	255	255	
6166	255	255	255	255	255	255	255	255	255	255	

6167 rows × 62501 columns

In [12]:

```
# # Example of a heatmap for correlation between numerical columns
# plt.figure(figsize=(10, 8))
# corr_matrix = df.corr()  # Calculate correlation matrix for numerical columns
# plt.imshow(corr_matrix, cmap='coolwarm', interpolation='nearest')
# plt.colorbar()
# plt.xticks(range(len(corr_matrix)), corr_matrix.columns, rotation=45, ha='right
# plt.yticks(range(len(corr_matrix)), corr_matrix.columns)
# plt.title('Correlation Heatmap')
# plt.show()
```

In [13]:

```
"Normalize the pixel values between 0 and 1"
X=df.iloc[:,:62500]
X=X/255
```

In [14]:

```
Χ
```

Out[14]:

	pixel_1	pixel_2	pixel_3	pixel_4	pixel_5	pixel_6	pixel_7	pixel_8	pixel_9	pixel_10	
0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	_
1	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
2	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
3	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
4	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
6162	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
6163	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
6164	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
6165	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
6166	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	

6167 rows × 62500 columns

```
In [15]:
```

```
Y=df.iloc[:,-1]
Y
```

Out[15]:

```
apple 6
           apple 6
1
2
           apple_6
3
           apple_6
4
           apple_6
6162
        zucchini_1
6163
        zucchini 1
6164
        zucchini_1
6165
        zucchini_1
6166
        zucchini 1
Name: label, Length: 6167, dtype: object
```

In [16]:

```
from sklearn.preprocessing import LabelEncoder
label_encoder = LabelEncoder()
# Fit and transform the labels into numeric values
Y_encoded = label_encoder.fit_transform(Y)
```

In [17]:

Χ

Out[17]:

	pixel_1	pixel_2	pixel_3	pixel_4	pixel_5	pixel_6	pixel_7	pixel_8	pixel_9	pixel_10	
0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	-
1	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
2	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
3	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
4	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
6162	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
6163	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
6164	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
6165	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
6166	1.0	1.0	1.0	1.0 1.0		1.0	1.0	1.0	1.0	1.0	

6167 rows × 62500 columns

In [18]:

```
y_series = pd.Series(Y_encoded, name='Target')

# Concatenate 'X' (features) and 'y_series' (target variable) along columns (axis
df = pd.concat([X, y_series], axis=1)

# Print the merged DataFrame to check the result
df
```

Out[18]:

	pixel_1	pixel_2	pixel_3	pixel_4	pixel_5	pixel_6	pixel_7	pixel_8	pixel_9	pixel_10	_
0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	_
1	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
2	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
3	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
4	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
6162	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
6163	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
6164	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
6165	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
6166	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	

6167 rows × 62501 columns

In [19]:

4

```
from sklearn.model_selection import train_test_split
# Split the data into training and testing sets (80% training, 20% testing)
X_train, X_test, y_train, y_test = train_test_split(X, y_series, test_size=0.2, r
```

In [20]:

```
from sklearn.svm import SVC

# Create an SVM classifier
svm_classifier = SVC(kernel='linear', C=1.0)

# Train the SVM classifier
svm_classifier.fit(X_train, y_train)
```

Out[20]:

```
▼ SVC
SVC(kernel='linear')
```

In [21]:

```
from sklearn.metrics import accuracy_score, classification_report, confusion_matr
# Predict the labels for the test set
y_pred = svm_classifier.predict(X_test)

# Calculate the accuracy of the model
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)

# Print classification report
print(classification_report(y_test, y_pred))

# Print confusion matrix
conf_matrix = confusion_matrix(y_test, y_pred)
print("Confusion Matrix:")
print(conf_matrix)
```

						-	\sim
Δ	\sim	`	ra	~ 1	, .	1.	(-)
М	\sim $^{\circ}$	٠u	ıa	v			v

Acc	ura	cy:	1.0													
				prec	isio	n	rec	all	f1-	score	9	suppo	ort			
			0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18		1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9))))))))))	L.00 L.00 L.00 L.00 L.00 L.00 L.00 L.00		1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00			75 75 50 75 64 57 68 101 61 58 56 321 20 365			
			20 21 22		1.00 1.00 1.00	9	1	L.00 L.00 L.00		1.00 1.00 1.00)		32 28 32			
	accuracy macro avg 1.00 eighted avg 1.00							L.00 L.00		1.00 1.00 1.00)	12	234 234 234			
		ion	Matr 0		0	Α	0	0	0	0	0	0	0	0	0	0
[[0	75 0	0		0	0	0	U	0	в	U	U	0	U	U	U	0
[0	0 0 0	0 75	0 0	0 0	0] 0	0	0	0	0	0	0	0	0	0	0	0
] 0	0 0 0	0 0	0 50	0 0	0] 0	0	0	0	0	0	0	0	0	0	0	0
[0 0	0 0	0 0	0 75	0] 0	0	0	0	0	0	0	0	0	0	0	0
0	0 0 0	0 0	0 0	0 0	0] 64	0	0	0	0	0	0	0	0	0	0	0
0	0 0 0	0 0	0 0	0 0	0] 0	57	0	0	0	0	0	0	0	0	0	0
0	0 0	0	0	0	0]											
[0	0 0	0	0	0	0	0	68	0	0	0	0	0	0	0	0	0
] 0	0 0 0	0 0	0 0	0 0	0] 0	0	0	101	0	0	0	Θ	0	0	0	0
[0 0	0 0	0 0	0 0	0] 0	0	0	Θ	61	0	0	0	0	0	0	0
0 [0	0 0 0 0	0 0	0 0	0 0	0] 0	0	0	0	0	61	0	0	0	0	0	0