$-f(x) = a_0 + a_1 x' + a_2 x^2 + \cdots \qquad (|x| < R \text{ sum convergence})$

(e.g. polynomial f(x)= arta(x+...+anx"+ D.x"+ ...)

 $= \frac{\chi}{1} \cdot \frac{\chi}{2} \cdot \frac{\chi}{3} \cdot \dots \cdot \frac{\chi}{2n+1} \quad (n-2n0) \qquad \qquad |R-|-1|=1$

-> o for any value of x. => R=00.

Common func's power series expansion

	Ops (old series > new series)
	0 . 1
	e.g. $x_{3;4} = x^2 - \frac{x^2}{3!} + \frac{x^6}{5!} \cdots$ (R=\infty, Smaller of R, R2)
	G N. Pl
	$\begin{array}{c} \text{Sin'x} & \text{(P=P_1 when diff)} \\ \text{= (X-} \frac{\chi^3}{3!} + \frac{\chi^5}{5!} \cdots)' \end{array}$
	$= \left(\chi - \frac{\chi^2}{\chi^2} + \frac{\zeta^2}{\chi^2} \cdots \right)'$
	$- 1 - \frac{\chi^{2}}{2!} + \frac{\chi^{4}}{4!} \dots$
	= asx
	B Inte
	$(n(1+x))=$ $\int_0^x \frac{dt}{1+t}$ $(x>-1)$ $(R=1)$
	B Inte $ n(1+x) = \int_0^x \frac{dt}{1+t}$ $(x>-1)$ $(R=1)$ $= \int_0^x (1-t+t^2-t^3) dt$ $ t^n \to 0$, $t < 1$, $R=1$.
	= \(\subset - \subset \sqrt{2} + \sqrt{1/3} - \sqrt{1/4} \cdots
	B. Substitute
	e^{-t^2} $e^{\chi} = 1 + \chi + \frac{\chi^2}{3!} + \frac{\chi^3}{3!} \dots$
	$= \left[-t^{2} + \frac{(t^{2})^{2}}{2!} - \frac{(t^{2})^{3}}{2!} - \frac{(t^{2})^{3}}{3!} \right]$
	$= 1 - t^2 + \frac{t^4}{2!} - \frac{t^6}{3!} \dots$
	24. 3!
	enf(x) = in [e-t) (so that lim enf(x)=1)
202/1003 5:10	

Operations to power series.