Relatório de Implementação de um classificador com opção de rejeição

Angélica Viana

May 2019

1 Introdução

Este relatório visa descrever a implementação de um classificador bayesiano gaussiano com opção de rejeição. Após a implementação do classificador, foram testadas as bases de dados: Íris, Coluna Vertebral e Artificial 1.

2 Classificador com opção de rejeição

O classificador com opção de rejeição aqui implementado é resultante da introdução da capacidade de rejeição no classificador bayesiano gaussiano puro.

Para a implementação da rejeição, o conceito de limiar de rejeição deve ser definido, que nada mais é do que um parametro t que é utilizado para definir uma região de rejeição onde estarão as probabilidades a posteriori que na regra de decisão do classificador fará rejeitar o padrão, além do conceito de custo de rejeição (Wr).

A regra de decisão do classificador binário com opção de rejeição é dada por:

- $p = max(P(\omega_1|x), P(\omega_2|x))$
- $Se\ (0.5+t) \ge p \ge (0.5-t)$: Rejeite! $Sen\~ao$: Classifique!

Em que $p(\omega_1|x)$ é a probabilidade a posteriori de o padrão x pertencer a classe 1, $p(\omega_2|x)$ é a probabilidade a posteriori de um padrão x pertencer a classe 2 e t é um limiar definido pelo usuário.

Para se encontrar o limiar ideal a ser utilizado, deseja-se minimizar o valor de uma função custo definida como o risco, que envolve em seu compto o erro (E(t)), a taxa de rejeição (R(t)) e um valor de custo de rejeição (Wr) e pode ser definida por:

$$Risco(t) = E(t) + Wr * R(t)$$
(1)

Neste trabalho, foram feitas vinte realizações de treinamento e teste, nas quais foram feitas buscas em grade no treinamento para encontrar o melhor

limiar t
 com base no objetivo de minimizar a função custo Risco(t) utilizandose cinco valores diferentes para Wr, sendo eles 0,04; 0,12; 0,24; 0.36 e 0,48.
 Além disso, foram testados dez valores para o limiar t, no intervalo [0,0; 0,5] com passos de 0,05 entre os valores. Para cada Wr foi encontrado um valor de limiar ótimo.

Ao final das vinte realizações, foram computadas as médias de acurácias e taxas e rejeição para cada Wr e assim foi possível plotar um gráfico de acurácia x rejeição.

Os resultados da aplicação desse classificador bayesiano binário com opção de rejeição as bases da Iris, da Coluna Vertebral e Artificial podem ser vistos na seção seguinte.

3 Testes

As três bases utilizadas nos experimentos são referente a bases com duas classes, na qual:

- *Iris:* Setosa contra as demais.
- Coluna vertebral: Normal contra os demais.
- Artificial I: Base de dados baseado na estrutura da lógica AND com 50 padrões para cada classe.

As medidas de acurácia (A.M.), desvio padrão da média das acurácias (D.A.) e das taxas de rejeição podem ser visualizados a partir da tabela abaixo para cada uma das bases.

Table S1: Tabela contendo as métricas de avaliação para a aplicação das três bases.

Classificador	Treinamento			Teste				
	A.M.	D.A.	R.M.	D.R.	A.M.	D.P.	R.M.	D.R.
Iris	100,00	0,00	0,00	0,00	100,00	0,00	0,00	0,00
Coluna Vertebral	92,79	0,19	27,17	$5,\!34$	90,83	8,00	$24,\!59$	$0,\!16$
Artificial I	100,00	0,00	0,00	0,00	100,00	0,00	0,00	0,00

Fonte: Autoria Própria.

A curva de acurácia x rejeição da base da coluna pode ser visualizada referente as médias das acurácias e das taxas de rejeição obtidas nas vinte realizações para cada custo Wr e pode ser observada abaixo. **Obs:** As demais bases de dados deram 100% de acurácia média para todos os Wr e o mesmo valor de taxa de rejeição média.

Figure 1: Curva acurácia x rejeição

As matrizes de confusão de teste que mais se aproximaram da média das acurácias das vinte realizações são apresentadas abaixo para as três bases.

	1	2	3		1	2	3		1	2	3
1	11	0	0	1	11	3	5	1	9	0	0
2	0	19	0	2	5	31	6	2	0	11	0
	(a)	Iris		(b) (Coluna	a Verte	ebral	(c) Artificia			

É possível observar que na base da coluna alguns padrões de ambas as classes não são classificados e sim rejeitados, no exemplo da matriz de confusão apresentada acima ao todo 11 padrões são rejeitados de um total de 61 padrões.

Os valores médios de acurácia e taxas de rejeição podem ser vistos na tabela abaixo para a base da coluna.

Table S2: Tabela contendo as médias de acurácia e rejeição das 20 realizações para cada Wr.

Acurácias	82,61	85,19	91,68	94,15	94,15
Taxas de rejeição	2,45	10,08	33,36	39,5	39,5

Fonte: Autoria Própria.

As imagens abaixo representam as superfícies de decisão do classificador implementado aqui para as bases da Iris (atributos 1 e 2), Coluna (atributos 2 e 5) e Artificial I (2 atributos).

Figure 2: Superfícies de decisão - Iris, coluna e artificial.

Os limiares de rejeição ótimos para as bases da Iris e Artificial foram todos iguais a 0,0, pois são problemas facilmente separáveis e os padrões de cada classe não são facilmente confundidos. Já para a base da Coluna, os limiares ótimos variaram em sua maioria entre 0.4 e 0.5.

4 Conclusão

Os resultados demonstram que o classificador com opção de rejeição é uma ótima alternativa para solucionar problemas de classificação que apresentam uma região de decisão muito difícil, pois os dados de ambas as classes estão muito próximos e o classificador naive tende a errar nesses casos, o ideal então seria rejeitar ao invés de realizar uma classificação errada. Dessa forma, cria-se uma região de rejeição, equilibrada pela definição de uma função custo que é capaz de encontrar um limiar ideal para definir essa região de modo que nem a acurácia seja tão alta e a rejeição alta, nem ambas sejam tão baixa. Além disso, podemos observar que tanto a base de dados da Iris, como a base de dados artificial I são bases que pertencem a problemas de classificação binária fáceis de serem solucionados, de modo que sem qualquer região de rejeição o algoritmo ainda assim resulta em 100% de acurácia para ambas as bases tanto no treinamento como teste.