Contents

1	Introduzione		
	1.1 Intro	2	
2	Introduction 2.1 Formule di Logica modale e significato	3	
	Semantica 3.1 Semantica	5 5	

Chapter 1

Introduzione

1.1 Intro

Se voi signorine finirete questo corso, e se sopravviverete sarete dispensatori di fbf e pregherete per modellizzare sistemi assurdi in modo ancora più assurdo, ma fino a quel giorno non siete altro che buoni annulla convinti che tutti i cretesi sono stupidi e forse mentono.

Lasciate il formaggio fuori dall'aula.

Chapter 2

Introduction

```
a è vera nel mondo \alpha, e scriviamo \mu \models_{\alpha} a se
```

- a è una lettera enunciativa allora deve valere $a \in V(\alpha)$
- $a \in del tipo: a \vee b \dots allora \dots \mu \models_{\alpha} a \text{ oppure } \mu \models_{\alpha} b$

2.1 Formule di Logica modale e significato

Per assurdo: suppongo non che la funzione non sia parziale. Se è così $\exists \alpha$: $\alpha R\beta$, $\alpha R\gamma$, considero un modello in cui $V(A) = \{\beta \}$, $\Box A$ non vale in α dato che A è falsa in γ , il che contraddice l'ipotesi (BAM!)

Δα / \ Πα	funcione totale	Va710. a	DQ
$\diamond a \iff \sqcup a$	funzione totale	$ \vee \alpha \exists : \rho : \alpha$	$n\rho$

non ci sono "conti" da fare, R è seriale sse R è seriale $\Box a \implies \diamond a$, e se R è una funzione parziale $\diamond a \Rightarrow \Box a$

quindi dato che l'implica prevede un and di implica da una parte e dall'altra per definizione abbiamo la tesi

•

$\diamond a \Rightarrow \Box \diamond a$	relazione euclidea	$\forall \alpha, \beta, \gamma : (\alpha R \beta, \alpha R \gamma) \Rightarrow \beta R \gamma \text{ da cui anche: } \beta R \beta, \gamma R \gamma, \gamma R \beta$

Ip) relazione euclidea

Ts)
$$\diamond a \Rightarrow \Box \diamond a$$

Suppongo sia vero l'antecedente (se falso ho finito), quindi vale: $\diamond a$ da cui: $\mu \models \diamond a$

dato che $\diamond a$ si ha che esiste almeno un β tale che in beta vale a solo un beta: autoanello perché euclidea e quindi $\square \diamond a$

diversi beta: ognuno dei vari β' , β'' , ecc. sono in relazione con β , dato che la relazione è euclidea, pertanto dato che in β vale a, in ognuno di loro vale $\diamond a$

 $\operatorname{Ip}) \diamond a \Rightarrow \Box \diamond a$

Ts) relazione euclidea

Per assurdo, suppondo valga ip) ma non la tesi

Considero un Frame in cui: $\alpha R\beta$, $\alpha R\gamma$, $\beta R\gamma$ ma NON $\beta R\gamma$ cioè si ha un frammento in cui non vale l'euclidea. Poniamo che il modello sia tale che $V(A) = \{\gamma\}$

In queste ipotesi vale $\diamond a$ dato che in γ vale a. In β non vale a e neppure $\diamond a$ perché non ha "uscite", da cui in a non vale $\square \diamond a$ contraddicendo così l'ipotesi (BAM!)

Chapter 3

Semantica

3.1 Semantica

 $a \vdash b$ cio
è a è conseguenza semantica di b, se in ogni Frame, Modello e Mondo in cu
i $\mu \models b$ si ha anche $\mu \models a$

Vale anche da destra a sinistra, dimostrazione simile.