

Beschreibung

Zuordnung von Stationsadressen zu Kommunikationsteilnehmern in einem Bussystem

5

Die Erfindung betrifft ein Verfahren zur Zuordnung von Stationsadressen zu Kommunikationsteilnehmern in einem Bussystem sowie Kommunikationsteilnehmer in einem Bussystem.

10 Für die Informationsübertragung zwischen einzelnen Teilnehmern eines Systems, also die Kommunikation der Teilnehmer, hat sich in der Digitaltechnik allgemein das Bussystem durchgesetzt. Ein Bussystem ist dadurch charakterisiert, dass mehrere Kommunikationsteilnehmer eingangs- und/oder ausgangsseitig parallel an einer gemeinsamen Sammelleitung, dem sogenannten Bus, angeschlossen sind. Ein Bussystem ist somit eine Einrichtung zur kollektiven Kommunikation mehrerer Teilnehmer untereinander, wobei jeder Teilnehmer mit jedem anderen direkt verkehren kann. Es wird zwischen parallelen und seriellen Bussystemen unterschieden. Der Datenaustausch erfolgt meist bit-parallel und byte-seriell, es ist aber auch ein bit-serieller Betrieb möglich. Je nach Variante spricht man von parallelen bzw. seriellen Bussystemen. Bitparallele Busse werden bevorzugt zur Übertragung hoher Datenraten über kurze Entfernungen eingesetzt, z. B. innerhalb eines Rechners. Die Vorteile bitserieller Busse liegen im geringen Aufwand für Treiberstufen, Steckverbinder und Übertragungsleitungen (oft einfache Zwei-Draht-Leitung). Die Datenübertragung ist auch bei großen Entfernungen unproblematisch und der Hardwareaufwand für eine evtl. geforderte galvanische Trennung ist vergleichsweise gering.

Kommunikationsteilnehmer in einem Bussystem, z. B. an einen seriellen Bus angekoppelte Kommunikationsteilnehmer, benötigen üblicherweise eine eindeutige StationsAdresse, um miteinander kommunizieren zu können. Bei seriellen Bussystemen kommen bisher unterschiedliche Verfahren zur Vergabe von Stati-

onsadressen für die einzelnen Kommunikationsteilnehmer zum Einsatz. Üblich sind eine manuelle Einstellung über Codierungsschalter an den Kommunikationsteilnehmern oder eine Adressvergabe vorab über den Bus, wobei jeder Kommunikations-
5 teilnehmer von Anfang an adressierbar sein muss. Bei weiteren üblichen Verfahren ergibt sich die Stationsadresse anhand der Position des Kommunikationsteilnehmers am Bus. Der Datenverkehr in einem solchen System wird von einem so genannten Busmaster erzeugt, dem die Struktur des Busses bekannt sein
10 muss. Adresskonflikte können in einem solchen Fall nicht auftreten. Der Busmaster erzeugt einen genau spezifizierten Datenrahmen, der so viele Datenfelder aufweist, wie Kommunikationsteilnehmer am Bus angeschlossen sind. Dieser Datenrahmen wird von einem Kommunikationsteilnehmer zum nächsten gesendet, wobei jeder Teilnehmer seine Daten entnehmen und neue
15 Daten für den Busmaster mitgeben kann. Problematisch ist dieses Verfahren insbesondere, wenn ein Kommunikationsteilnehmer ausgetauscht werden muss und der Busmaster diese Änderung nicht sofort erkennt. Dadurch verschiebt sich der Datenrahmen
20 und bestimmte Daten erreichen nicht mehr den richtigen Empfänger. Die beschriebenen Verfahren zur Vergabe von Adressen sind einerseits sehr fehleranfällig, wie die manuelle Vergabe mit Codierungsschaltern, oder erfordern schon ein Eindeutigkeitsmerkmal für die einzelnen Kommunikationsteilnehmer, bevor die Adressvergabe erfolgen kann. Dieses Eindeutigkeitsmerkmal muss sowohl der Adressvergabeeinheit als auch den Kommunikationsteilnehmern bekannt sein.

Der Erfindung liegt die Aufgabe zugrunde, die Zuordnung von
30 Stationsadressen zu Kommunikationsteilnehmern in einem Bussystem zu vereinfachen.

Diese Aufgabe wird durch ein Verfahren zur Zuordnung von Stationsadressen zu Kommunikationsteilnehmern in einem Bussystem
35 gelöst, wobei genau ein erster Kommunikationsteilnehmer, welcher selbstständig an einem Bus senden kann, einer Stationsadresse Daten zuordnen kann, welche einen weiteren Kommunika-

tionsteilnehmer eindeutig identifizieren, oder eine Stations-
adresse als nicht belegt kennzeichnen kann, bei welchem Ver-
fahren jeweils in einem Kommunikationszyklus

- der erste Kommunikationsteilnehmer jeweils ein erstes Da-
5 tenpaket an jede Stationsadresse sendet, wobei das erste
Datenpaket gegebenenfalls der jeweiligen Stationsadresse
zugeordnete Daten, welche einen weiteren Kommunikations-
teilnehmer eindeutig identifizieren, enthält,
- ein oder mehrere weitere Kommunikationsteilnehmer jeweils
10 ein zweites Datenpaket mit ihrer Stationsadresse und den
jeweiligen weiteren Kommunikationsteilnehmer eindeutig i-
dentifizierenden Daten an den ersten Kommunikationsteil-
nehmer senden, wobei die den jeweiligen weiteren Kommu-
nikationsteilnehmer eindeutig identifizierenden Daten vom
15 ersten Kommunikationsteilnehmer der jeweiligen Stationsad-
resse zugeordnet werden und
- der erste Kommunikationsteilnehmer ein drittes Datenpaket
mit der Information, welche Stationsadressen als nicht be-
legt gekennzeichnet sind, an alle weiteren Kommunikations-
20 teilnehmer sendet,

wobei ein Kommunikationsteilnehmer, welcher in einem früheren
Kommunikationszyklus bereits ein zweites Datenpaket mit die-
sen Kommunikationsteilnehmer eindeutig identifizierenden Da-
ten an den ersten Kommunikationsteilnehmer gesendet hat und
25 welcher in einem späteren Kommunikationszyklus ein erstes Da-
tenpaket mit Daten, welche diesen Kommunikationsteilnehmer
nicht eindeutig kennzeichnen, empfängt, seine Stationsadresse
automatisch in eine der als nicht belegt gekennzeichneten
Stationsadressen ändert.

30 Diese Aufgabe wird durch einen Kommunikationsteilnehmer in
einem Bussystem gelöst, welcher selbstständig an einem Bus
senden kann und Mittel zur Zuordnung von Daten, welche einen
weiteren Kommunikationsteilnehmer eindeutig identifizieren,
35 zu einer Stationsadresse und Mittel zur Kennzeichnung einer
Stationsadresse als nicht belegt aufweist.

Diese Aufgabe wird durch einen Kommunikationsteilnehmer in einem Bussystem gelöst, welcher Mittel zum Senden von zweiten Datenpaketen mit den Kommunikationsteilnehmer eindeutig identifizierenden Daten an einen ersten Kommunikationsteilnehmer 5 aufweist und welcher seine Stationsadresse automatisch ändern kann.

Der Erfindung liegt die Idee zugrunde, die Zuordnung von Stationsadressen zu Kommunikationsteilnehmern in einem Bussystem, insbesondere einem seriellen Bussystem, von den Kommunikationsteilnehmern selbst durchführen zu lassen, unter Nutzung zentral verfügbarer Informationen. Das erfindungsgemäße Verfahren sorgt dafür, dass die Stationsadressen der Kommunikationsteilnehmer eindeutig sind. Mehrfach vergebene Stationenadressen werden automatisch erkannt und vorliegende Adresskonflikte werden dezentral von den betroffenen Kommunikationsteilnehmern selbstständig durch zufällige Wahl einer potentiell freien, nicht belegten Stationsadresse aufgelöst. Es handelt sich somit um ein Verfahren zur Autokonfiguration von 10 Stationsadressen. Bereits vergebene Stationsadressen von ansprechbaren Kommunikationsteilnehmern werden dabei nicht beeinflusst. Damit werden alle Kommunikationsteilnehmer erreichbar und ansprechbar. Bei dem Verfahren handelt es sich nicht um eine zentrale Vergabe von Stationsadressen, es kann 15 allerdings die Voraussetzung dafür sein. Beim erfindungsgemäßen Verfahren sind alle im Bussystem gültigen physikalischen Stationsadressen völlig frei verwendbar. Es werden weder Beziehungen beispielsweise mit der physikalischen Position des Kommunikationsteilnehmer vorausgesetzt noch wird der Adressraum in irgendeiner Weise eingeschränkt. Das Verfahren erfordert 20 weder eine zusätzliche Verkabelung zwischen den Kommunikationsteilnehmern noch bestimmte Restriktionen bezüglich der Topologie. Es ist anwendbar auf die endgültig für einen Betrieb aufgebaute Bustopologie. Da die Stationsadresse vom 25 Kommunikationsteilnehmer selbst verwaltet wird, ist auch beim Austausch eines Kommunikationsteilnehmers, z. B. beim Bau-

gruppentausch, weder mit Störungen noch mit Adressierungsfehlern zu rechnen.

- Mischkonfigurationen mit Kommunikationsteilnehmern, welche
- 5 keine Mittel zum Senden von zweiten Datenpaketen mit den jeweiligen Kommunikationsteilnehmer eindeutig identifizierenden Daten an einen ersten Kommunikationsteilnehmer aufweisen und welche ihre Stationsadresse nicht automatisch ändern können, sind ohne negative Beeinflussung dieser Kommunikationsteil-
- 10 nehmer möglich.

Der Kommunikationszyklus wiederholt sich mit einer gewissen Zyklusdauer. Um die Kommunikationsressourcen möglichst wenig mit dem Versenden, Weiterleiten, Empfangen und Verarbeiten

15 der für die Zuordnung von Stationsadressen zu Kommunikationsteilnehmern erforderlichen Datenpakete zu belasten, wird gemäß einer vorteilhaften Ausgestaltung der Erfindung vorgeschlagen, dass die Zyklusdauer des Kommunikationszyklus variabel ist. Damit kann die Zyklusdauer z. B. in einer Anfangs-

20 phase, in welcher die Adressierung noch nicht weit fortgeschritten ist, kleiner gewählt werden im Vergleich zu einer späteren Phase im Adressierungsvorgang, in welcher weniger Adressierungsbedarf besteht. Insbesondere kann nach erfolgreichem Abschluss der Zuordnung von Stationsadressen zu Kommunikationsteilnehmern der beschriebene Kommunikationszyklus

25 nur noch mit einer im Vergleich zu anderen Kommunikationszyklen vergleichsweise großen Zyklusdauer durchgeführt werden, um z. B. auf Änderungen im Bussystem durch Tausch oder Ausfall von Kommunikationsteilnehmern und Ähnlichem reagieren zu

30 können.

Auf der Grundlage des erfindungsgemäßen Verfahrens zur Zuordnung von Stationsadressen zu Kommunikationsteilnehmern in einem Bussystem wird eine vorteilhafte Ausgestaltung des Verfahrens vorgeschlagen, bei welcher Geräteinformationen in Speichermitteln der weiteren Kommunikationsteilnehmer speicherbar sind, wobei die Speichermittel über den Bus vom ers-

ten Kommunikationsteilnehmer adressierbar sind und die Geräteinformationen vom ersten Kommunikationsteilnehmer auslesbar sind. So können beispielsweise alle für eine automatische Konfiguration notwendigen Geräteinformationen direkt in einem

5 Speicher der weiteren Kommunikationsteilnehmer hinterlegt werden. Für das Auslesen wird z. B. ein nachrichtenorientiertes Übertragungsverfahren, wie es bei den meisten seriellen Bussystemen bereits definiert ist, benutzt. Somit steht dem ersten Kommunikationsteilnehmer jederzeit ein aktuelles Abbild der Geräteinformationen jedes am Bus befindlichen weiteren Kommunikationsteilnehmers zur Verfügung. Die Geräteinformationen bestehen z. B. aus einer Identifikation sowie möglichen Konfigurationen und Parametrierungen.

15 Damit ist die Projektierung und Wartung eines Bussystems ohne vom Hersteller gelieferte Geräteinformationen in Form von elektronischen Datenblättern möglich. Damit besteht die Möglichkeit weitere Schritte bei der Projektierung eines Bussystems, insbesondere eines seriellen Bussystems, zu automatisieren. Bei Verwendung dieser vorteilhaften Ausgestaltung der Erfindung steht einem Projektierer stets eine Gegenüberstellung der projektierten Kommunikationsteilnehmer mit deren Konfiguration und Parametrierung und der tatsächlich am Bus vorliegenden Situation zur Verfügung. Somit können Projektierungsfehler, Fehler bei der Verkabelung und der Wahl der Kommunikationsteilnehmer an einer zentralen Stelle analysiert und entsprechend behoben werden.

25 Nachfolgend wird die Erfindung anhand der in den Figuren dargestellten Ausführungsbeispiele näher beschrieben und erläutert.

Es zeigen:

35 FIG 1 ein Bussystem mit Kommunikationsteilnehmern,

FIG 2 ein erstes Datenpaket,

FIG 3 ein drittes Datenpaket,

FIG 4 die Kommunikation zwischen einem ersten Kommunikationsteilnehmer und weiteren Kommunikationsteilnehmern,

FIG 5 die Kommunikation zwischen einem ersten Kommunikationsteilnehmer und einem weiteren Kommunikations-
teilnehmer ohne Adresskonflikt,

FIG 6 die Kommunikation zwischen einem ersten Kommunikationsteilnehmer und einem weiteren Kommunikations-
teilnehmer ohne Mittel zum Senden von zweiten Da-
tenpaketen und

FIG 7 die Kommunikation zwischen einem ersten Kommunikationsteilnehmer und weiteren Kommunikationsteilnehmern bei Vorliegen eines Adresskonflikts.

FIG 1 zeigt ein serielles Bussystem 9 mit Kommunikationsteilnehmern 1, 2. Die Kommunikationsteilnehmer 1, 2 sind über einen Bus 3 miteinander verbunden. Ein erster Kommunikations-
teilnehmer 1 in dem Bussystem 9 weist Mittel 7 zur Zuordnung
von Daten, welche einen weiteren Kommunikationsteilnehmer 2
eindeutig identifizieren zu einer Stationsadresse 6 und zur
Kennzeichnung einer Stationsadresse 6 als nicht belegt auf.
Der erste Kommunikationsteilnehmer 1 kann jeweils ein erstes
Datenpaket 4 an jede Stationsadresse 6 senden, wobei das ers-
te Datenpaket 4 gegebenenfalls der jeweiligen Stationsadresse
6 zugeordnete Daten, welche einen weiteren Kommunikations-
teilnehmer 2 eindeutig identifizieren, enthält. Die weiteren
Kommunikationsteilnehmer 2 im Bussystem 9 weisen Mittel 8 zum
Senden von zweiten Datenpaketen 5 mit den jeweiligen Kommuni-
kationsteilnehmer 2 eindeutig identifizierenden Daten an den
ersten Kommunikationsteilnehmer 1 auf und können ihre Stati-
onsadresse 6 automatisch selbständig ändern.

FIG 2 zeigt ein erstes Datenpaket 10. Das erste Datenpaket 10 weist einen ersten Abschnitt 11 auf, welcher den Namen des Datenpakets enthält. In einem zweiten Abschnitt 12 des ersten Datenpakets 10 sind weitere Informationen zur Struktur des ersten Datenpakets enthalten, z. B. eine Identifikation des Datenpakets und Daten, welche einen weiteren Kommunikations- teilnehmer eindeutig identifizieren, wie z. B. Bauteildaten und/oder eine Seriennummer.

10

FIG 3 zeigt ein drittes Datenpaket 13. Das dritte Datenpaket 13 weist einen ersten Abschnitt 14 auf, welcher den Namen des dritten Datenpakets enthält. In einem zweiten Abschnitt 15 des dritten Datenpakets 13 sind weitere Informationen zur Struktur des dritten Datenpakets 13 enthalten. Solche Informationen sind z. B. eine Identifikation des dritten Datenpaketes, Statusinformationen, Informationen zu kritischen Buspa- rametern und/oder eine Information, welche Stationsadressen als nicht belegt gekennzeichnet sind.

20

FIG 4 zeigt die Kommunikation zwischen einem ersten Kommunikationsteilnehmer, dem so genannten ACFG-Manager 20, und weiteren Kommunikationsteilnehmern, in diesem Fall vier so genannten ACFG-Agents 22 bis 25 (ACFG = Autokonfiguration) und einem weiteren Kommunikationsteilnehmer 26. Den Kommunikati- onsteilnehmern wird also jeweils eine von zwei unterschiedli- chen Rollen zugeordnet. Der ACFG-Manager 20 übernimmt die steuernde Rolle für den sogenannten ACFG-Mechanismus. Zu ei- nem Zeitpunkt darf immer nur ein ACFG-Manager 20 am Bussystem aktiv sein. Ein ACFG-Manager 20 muss selbständig am Bus sen- den können. Bei Bussystemen, die auf dem Master-Slave-Prinzip beruhen, muss der ACFG-Manager 20 immer ein Master sein. Wei- tere Kommunikationsteilnehmer, die am Bussystem angeschlossen sind, können jeweils die Rolle eines ACFG-Agents 22 - 25 ü- bernehmen.

Der ACFG-Manager 20 weist als Mittel zur Zuordnung von Daten, welche einen weiteren Kommunikationsteilnehmer eindeutig identifizieren zu einer Stationsadresse und zur Kennzeichnung einer Stationsadresse als nicht belegt in einem Speicher eine 5 Datenbasis auf, die so genannte System-MIB (MIB = Management Information Base). In der System-MIB 21 wird jeder möglichen Stationsadresse im Bussystem entweder ein Kommunikationsteilnehmer oder die Information, dass diese Stationsadresse nicht belegt ist, zugeordnet. Der ACFG-Manager 20 kann eigenständig 10 Datenpakete am Bus senden. In FIG 4 sind verschiedene Datenpakete dargestellt. Allgemein werden Datenpakete auch als PDU (PDU = Protocol Data Unit) bezeichnet. Vom ACFG-Manager 20 gesendete PDUs werden als Request-PDUs bezeichnet. Von Kommunikationsteilnehmern als Antwort auf die Request-PDUs gesendete 15 PDUs werden als Response-PDU bezeichnet.

Der ACFG-Manager 20 initiiert einen Kommunikationszyklus, auch ACFG-Zyklus genannt, wobei alle in dem entsprechenden seriellen Bussystem möglichen Stationsadressen angesprochen 20 werden. Im Ausführungsbeispiel der FIG 4 ist ein Kommunikationszyklus zur Zuordnung von Stationsadressen zu Kommunikationsteilnehmern beispielhaft gezeigt. Die zeitliche Abfolge der Datenpakete entspricht prinzipiell der Richtung des Zeitpfeils t. Zu Beginn des Kommunikationszyklus sendet der ACFG- 25 Manager 20 eine so genannte SDD-Request-PDU 34 (SDD = Systems Data Distribution) per Broadcast 27 an alle Teilnehmer im Bussystem. Die SDD-Request-PDU 34 ist ein Ausführungsbeispiel für ein drittes Datenpaket 13 gemäß FIG 3. Mit der SDD-Request-PDU 34 werden alle als nicht belegt gekennzeichneten 30 Stationsadressen durch den ACFG-Manager 20 im Bussystem bekanntgegeben. Jeder ACFG-Agent speichert in jedem ACFG-Zyklus die in der SDD-Request-PDU 34 enthaltene Liste mit freien Busadressen.

35 Die im Folgenden dargestellten Request-PDUs sind so genannte NAN-Request-PDUs 35 - 40 (NAN = New Agent Notification). Eine NAN-Request-PDU ist ein Ausführungsbeispiel für ein erstes

Datenpaket 10 gemäß FIG 2. Die NAN-Request-PDU 35 - 40 enthält gegebenenfalls einen Kommunikationsteilnehmer eindeutig identifizierende Informationen. Der ACFG-Manager 20 schickt an jede verfügbare Stationsadresse 28 - 33 jeweils eine NAN-
5 Request-PDU 35 - 40. Im Falle, dass die Stationsadressen 28, 30 durch keinen Kommunikationsteilnehmer belegt sind, erhält der ACFG-Manager 20 auf die jeweilige NAN-Request-PDU 35 bzw. 37 keine entsprechende Response-PDU. In diesem Fall kennzeichnet der ACFG-Manager 20 in seiner System-MIB diese Stationsadressen als nicht belegt. Alle Stationsadressen, auf
10 denen nicht geantwortet wurde, erhalten z. B. in der System-MIB 21 den Eintrag "free". Alle Stationsadressen mit diesem Eintrag werden am Anfang jedes ACFG-Zyklus mittels einer SDD-Request-PDU 34 an alle Kommunikationsteilnehmer gleichzeitig
15 als Broadcast-Message veröffentlicht.

Wird eine NAN-Request-PDU 36, 40 an eine Stationsadresse 29 bzw. 33 gesendet, welche einem am beschriebenen Verfahren teilnehmenden ACFG-Agent 22 bzw. 25 zugeordnet ist, gesendet,
20 so erhält der ACFG-Manager 20 jeweils eine NAN-Response-PDU 41 bzw. 42, welche den jeweiligen ACFG-Agent 22 bzw. 25 eindeutig identifizierende Daten aufweist. Eine Stationsadresse 29, 33, auf der mit einer solchen korrekten NAN-Response-PDU 41, 42 geantwortet wird, erhält in der System-MIB 21 des
25 ACFG-Managers 20 den Eintrag "ACFG-Agent". Außerdem werden jeweils die übermittelten Daten der jeweiligen NAN-Response-PDU 41, 42 vermerkt. Der Kommunikationsteilnehmer mit dieser Stationsadresse wird im Folgenden mit einer NAN-Request-PDU 36, 40 angesprochen, deren Inhalt der NAN-Response-PDU 41, 42 entspricht. Der Kommunikationsteilnehmer hat somit kontinuierlich die Gewähr, dass er vom ACFG-Manager 20 korrekt als
30 genau dieser ACFG-Agent erkannt und in die System-MIB 21 aufgenommen wurde.
35 Ist eine Stationsadresse 31 mehreren ACFG-Agents 23, 24 gleichzeitig zugeordnet, so kommt es zu einem Adresskonflikt und der ACFG-Manager 20 erhält ebenfalls keine gültige NAN-

Response-PDU und würde diese Stationsadresse 31 in seiner System-MIB 21 als nicht belegt kennzeichnen.

Wird eine NAN-Request-PDU 39 an eine Stationsadresse 32 ge-
5 sendet, welche von einem Kommunikationsteilnehmer 26 genutzt wird, welcher das beschriebene Verfahren nicht nutzt, so wird dieser Kommunikationsteilnehmer 26 eine PDU 43 an den ACFG-Manager 20 senden, welche jedoch keine diesen Kommunikations-
10 teilnehmer 26 eindeutig identifizierende Daten enthält. Der Kommunikationsteilnehmer 26 wird vom ACFG-Manager 20 als Kom-
munikationsteilnehmer ohne ACFG-Agent-Funktionalität identi-
fiziert. Der ACFG-Manager 20 wird in diesem Fall der entspre-
chenden Stationsadresse 32 das Attribut "kein ACFG-Agent" zu-
ordnen. Die Stationsadresse 32 wird weiterhin mit einer NAN-
15 Request-PDU 39 angesprochen. In diesem Fall handelt es sich um die gleiche wie beim vorherigen Ansprechen.

FIG 5 zeigt die Kommunikation zwischen einem ersten Kommuni-
kationsteilnehmer und einem weiteren Kommunikationsteilnehmer
20 ohne Adresskonflikt. Der erste Kommunikationsteilnehmer, ent-
sprechend FIG 4 der ACFG-Manager 20 mit einer System-MIB 21,
sendet über einen hier nicht dargestellten Bus Datenpakete an den ACFG-Agent 22. In FIG 5 sind zwei Kommunikationszyklen
25 zur Zuordnung von Stationsadressen dargestellt, wobei der Be-
ginn eines Kommunikationszyklus jeweils durch eine gestri-
chelte Linie gekennzeichnet wird. Die voranschreitende Zeit wird wiederum durch einen Zeitpfeil t symbolisiert. Im ersten
Kommunikationszyklus wird nach der obligatorischen SDD-
Request-PDU 34 eine NAN-Request-PDU 36 an die dem ACFG-Agent
30 22 zugeordnete Stationsadresse 29 gesendet. Der ACFG-Agent 22 sendet daraufhin als Antwort eine NAN-Response-PDU 41 mit In-
formationen, welche diesen ACFG-Agent 22 eindeutig identifi-
zieren. Der ACFG-Manager 20 ordnet daraufhin in seiner Sys-
tem-MIB diese den ACFG-Agent 22 kennzeichnenden Informationen
35 zur Stationsadresse 29 zu. In einem zweiten folgenden Kommu-
nikationszyklus sendet der ACFG-Manager 20 eine NAN-Request-
PDU 50 an die Stationsadresse 29, welche die den ACFG-Agent

12

22 eindeutig identifizierenden Informationen enthält. Der ACFG-Agent 22 erkennt daraufhin, dass der ACFG-Manager 20 ihn der korrekten Stationsadresse zugeordnet hat und sendet als Antwort wiederum die NAN-Response-PDU 41. Entsprechend dem 5 zweiten Kommunikationszyklus laufen weitere folgende Kommunikationszyklen bezüglich dieser Stationsadresse und dieses ACFG-Agents 22 ab.

FIG 6 zeigt die Kommunikation zwischen einem ersten Kommunikationsteilnehmer und einem weiteren Kommunikationsteilnehmer, welcher keine Mittel zum Senden von zweiten Datenpaketen aufweist. Der erste Kommunikationsteilnehmer, entsprechend FIG 4 und 5 der ACFG-Manager 20 mit einer System-MIB 21, sendet in einem ersten Kommunikationszyklus eine SDD-Request-PDU 15 34 an alle Kommunikationsteilnehmer mittels einem Broadcast ... 27. An die Stationsadresse 32 sendet der ACFG-Manager 20 eine NAN-Request-PDU 39. Der Kommunikationsteilnehmer 26, welchem diese Stationsadresse 32 zugeordnet ist, weist jedoch keine Mittel zum Senden von zweiten Datenpaketen, welche den Kommunikationsteilnehmer eindeutig identifizierende Daten aufweisen, auf und sendet daher als Antwort eine PDU 43, welche 20 keine diesen Kommunikationsteilnehmer 26 eindeutig identifizierende Daten enthält oder der Kommunikationsteilnehmer 26 sendet gar keine Antwort bzw. kein Datenpaket. Der ACFG- 25 Manager 20 ordnet daraufhin in seiner System-MIB der jeweiligen Stationsadresse 32 die Information bzw. das Attribut "kein ACFG-Agent" zu. In allen weiteren Kommunikationszyklen sendet der ACFG-Manager 20 wiederum eine NAN-Request-PDU 39 an die Stationsadresse 32 und erhält vom Kommunikationsteilnehmer 26 als Antwort jeweils eine PDU 43 ohne diesen Kommunikationsteilnehmer identifizierenden Daten.

FIG 7 zeigt die Kommunikation zwischen einem ersten Kommunikationsteilnehmer und weiteren Kommunikationsteilnehmern bei 35 Vorliegen eines Adresskonflikts. Dargestellt sind wiederum mehrere in Richtung des Zeitpfeils t aufeinander folgende Kommunikationszyklen, deren Beginn jeweils durch eine gestri-

chelte Linie gekennzeichnet ist. Der erste Kommunikations- teilnehmer ist im Ausführungsbeispiel gemäß FIG 7 wiederum der ACFG-Manager 20, welcher eine System-MIB 21 zur Zuordnung von Informationen zu Stationsadressen aufweist. Zu Beginn je-
5 des hier dargestellten Kommunikationszyklus sendet der ACFG- Manager 20 per Broadcast 27 eine SDD-Request-PDU 34 an alle Stationsadressen bzw. alle Kommunikationsteilnehmer, welche die Information über nicht belegte Stationsadressen enthält. Im ersten hier dargestellten Kommunikationszyklus sendet der
10 ACFG-Manager 20 eine NAN-Request-PDU 38 an die Stationsadres- se 31. Diese Stationsadresse 31 ist jedoch zwei verschiedenen ACFG-Agents 23 und 24 gleichzeitig zugeordnet. Der ACFG- Manager 20 erhält daraufhin keine eindeutig einen einzelnen ACFG-Agent kennzeichnende Response-PDU und kennzeichnet daher
15 in seiner System-MIB 21 die Stationsadresse 31 als nicht be- legt.

In einem zweiten Kommunikationszyklus wird dieser als nicht belegt gekennzeichneten Stationsadresse 31 deshalb durch den
20 ACFG-Manager 20 wiederum eine NAN-Request-PDU 38 zugesendet, welche keine einen der beiden ACFG-Agents 23 bzw. 24 eindeu- tig identifizierende Informationen enthält. Beide ACFG-Agents 23 und 24 erkennen dadurch, dass sie vom ACFG-Manager 20 nicht eindeutig der Stationsadresse 31 zugeordnet werden
25 konnten und wählen sich im Folgenden automatisch eine neue Stationsadresse 51 bzw. 52 aus dem Pool der als nicht belegt gekennzeichneten Stationsadressen, welche per Broadcast 27 durch die SDD-Request-PDU 34 mitgeteilt wurden. Im ACFG-Agent 23, 24 wird also ein Adresskonflikt signalisiert, wenn der
30 ACFG-Agent 23, 24 nach dem Empfang einer NAN-Request-PDU 38 im nächsten ACFG-Zyklus nicht den Inhalt seiner eigenen NAN- Response-PDU empfängt. In diesem Fall zieht sich der ACFG- Agent 23, 24 vom Bus zurück und geht mit einer zufällig ge- wählten Stationsadresse aus seiner Liste mit freien Stations-
35 adressen wieder an den Bus. Diese Prozedur wird wiederholt, bis die Stationsadresse des ACFG-Agents 23, 24 vom ACFG-

Manager 20 erkannt und in dessen System-MIB 21 aufgenommen wurde.

Im dritten hier dargestellten Kommunikationszyklus wird der
5 ACFG-Manager 20 diesen bisher als nicht belegt gekennzeichneten Stationsadressen 51 und 52 eine NAN-Request-PDU 38 ohne einen Kommunikationsteilnehmer eindeutig identifizierende Informationen zusenden. Die ACFG-Agents 23 und 24 beantworten diese NAN-Request-PDU 38 jeweils mit einer NAN-Response-PDU
10 53 bzw. 54, welche den jeweiligen ACFG-Agents 23 und 24 eindeutig identifizierende Informationen enthalten. Der ACFG-Manager 20 kann daraufhin den Stationsadressen 51 bzw. 52 die entsprechenden Informationen, welche in den NAN-Response-PDUs 53 bzw. 54 enthalten sind, zuordnen. Im folgenden Kommunikationszyklus sendet der ACFG-Manager 20 daraufhin NAN-Request-PDUs 55 und 56 mit den die jeweiligen ACFG-Agents 24 bzw. 23 eindeutig kennzeichnenden Informationen an die jeweilige Stationsadresse 51 bzw. 52. Die ACFG-Agents 23 und 24 antworten mit den entsprechenden NAN-Response-PDUs 54 bzw. 53.

20

Alle Stationsadressen auf denen ein Adresskonflikt vorliegt, können je nach Bussystem, Topologie und Konfiguration des jeweiligen Bussystems sehr unterschiedliche Reaktionen aufweisen. Innerhalb des beschriebenen Verfahrens zur Autokonfiguration werden die im Folgenden beschriebenen Reaktionen erwartet und bewältigt. In einem ersten Fall empfängt der ACFG-Manager 20 keine Antwort von dieser Stationsadresse, weil das Datenpaket durch Überlagerung so zerstört ist, dass keine Interpretation möglich ist. In diesem Fall wird diese Stations-
25 adresse im nächsten ACFG-Zyklus wiederum mit einer NAN-Request-PDU ohne entsprechende Dateninhalte des ACFG-Agents angesprochen. Der ACFG-Agent erkennt, dass die Kommunikation zum ACFG-Manager 20 nicht erfolgreich war und ändert automatisch seine Stationsadresse. In einem zweiten Fall empfängt
30 der ACFG-Manager 20 eine unbekannte Antwort von dieser Stationsadresse, weil das Datenpaket durch Überlagerung verfälscht aber nicht vollständig zerstört ist. In diesem Fall wird die-

se Stationsadresse im nächsten ACFG-Zyklus wiederum mit einer NAN-Request-PDU ohne entsprechende Dateninhalte des ACFG-Agents angesprochen. Der ACFG-Agent erkennt auch in diesem Fall, dass die Kommunikation zum ACFG-Manager 20 nicht erfolgreich war und ändert automatisch seine Stationsadresse.

In einem dritten Fall empfängt der ACFG-Manager 20 eine korrekte NAN-Response-PDU von dieser Stationsadresse, weil sich eines der Telegramme der verschiedenen ACFG-Agents auf dem Übertragungsmedium elektrisch durchsetzen konnte. Dieses Verhalten ist bei bestimmten Topologien mit sehr langen Busleitungen, Repeatern oder Kopplern zum Verbinden unterschiedlicher physikalischer Medien zu beobachten, wenn sich ein ACFG-Agent sehr nahe am ACFG-Manager 20 befindet und ein weiterer ACFG-Agent relativ weit weg ist oder sich in einem anderen Bussegment befindet. Daraus ergeben sich für die beiden ACFG-Agents sehr unterschiedliche Antwortzeiten. In diesem Fall sendet der ACFG-Manager 20 im nächsten Zyklus eine NAN-Request-PDU mit den Dateninhalten eines der ACFG-Agents. Alle anderen ACFG-Agents, die sich auf dieser Stationsadresse befinden, erkennen, dass die Kommunikation zum ACFG-Manager 20 nicht erfolgreich war und ändern ihre Stationsadresse.

Gemäß einem weiteren Ausführungsbeispiel werden alle für eine automatische Konfiguration notwendigen Geräteinformationen direkt im Speicher der ACFG-Agents hinterlegt. Dieser Speicher ist über den Bus vom ACFG-Manager 20 aus eindeutig addressierbar, so dass der ACFG-Manager 20 alle für die Konfiguration notwendigen Geräteinformationen automatisch aus den ACFG-Agents auslesen kann. Für das Auslesen wird z. B. ein nachrichtenorientiertes Übertragungsverfahren, wie es bei den meisten seriellen Bussystemen bereits definiert ist, benutzt. Somit steht in der System-MIB 21 des ACFG-Manager 20 jederzeit ein aktuelles Abbild der Geräteinformationen jedes am seriellen Bus befindlichen ACFG-Agents zur Verfügung. Die Geräteinformationen bestehen im Wesentlichen aus einer Identifikation sowie möglichen Konfigurationen und Parametrierungen. Auf der Grundlage dieser Daten ist die Projektierung des

seriellen Busses ohne extra vom Hersteller gelieferte Geräteinformationen in Form von elektronischen Datenblätter möglich.

- 5 Gemäß einer weiteren Ausgestaltung ist es möglich im ACFG-Manager 20 erwartete Projektierungsdaten vorzugeben. In diesem Fall werden die erwarteten Projektierungsdaten mit dem tatsächlichen Istzustand am seriellen Bus verglichen und eventuelle Abweichungen angezeigt. Dies wird mit Hilfe von
10 entsprechenden Anzeigen an allen ACFG-Agents sichtbar gemacht, so dass der Projektierungsfortschritt sowie Fehlerfälle in jedem Winkel einer Anlage erkennbar sind. Damit steht einem Projektierer stets eine Gegenüberstellung der projektierten Kommunikationsteilnehmer mit deren Konfiguration und
15 Parametrierung und der tatsächlich am seriellen Bus vorherrschenden Situation zur Verfügung. Somit können Projektierungsfehler, Fehler beim Aufbau des Bussystem, Fehler bei der Verkabelung und der Wahl der Kommunikationsteilnehmer an einer zentralen Stelle wesentlich leichter analysiert und entsprechend behoben werden.
20

Bei der Angabe von erwarteten Projektierungsdaten ist es möglich aber nicht notwendig gewünschte Stationsadressen für alle am Bus befindlichen Kommunikationsteilnehmer zu vergeben.

- 25 Falls Stationsadressen projektiert wurden, sind diese aufgrund des Verhaltens bei der Auflösung von Adresskonflikten sehr einfach vom ACFG-Manager 20 zu vergeben. Innerhalb weniger Iterationsschritte über alle Stationsadressen können nacheinander alle projektierten Stationsadressen zugewiesen
30 werden. Dabei wiederum entstehende Adresskonflikte werden von den ACFG-Agents selbständig aufgelöst. Dabei nehmen nur noch die ACFG-Agents, denen noch keine projektierte Stationsadresse zugeordnet wurde, temporär eine zufällige freie Stationsadresse an. Alle anderen ACFG-Agents behalten ihre explizit
35 zugeordnete StationsAdresse bei.

Eine weitere Ausgestaltung des Verfahrens betrifft die eindeutige Identifizierung von Kommunikationsteilnehmern, sofern dies anhand der Projektierungsdaten nicht möglich ist. In diesem Fall wird zwischen dem ACFG-Manager 20 und den ACFG-

- 5 Agents, die der Projektierung nicht zugeordnet werden können, ein azyklischer Kommunikationskanal geöffnet. Mittels einer Sequenz von Lese- und Schreibbefehlen und entsprechenden Anzeigen und Eingabehilfsmitteln bei den ACFG-Agents erfolgt eine manuelle Identifizierung.

10

Zusammengefasst betrifft die Erfindung somit ein Verfahren zur vereinfachten Zuordnung von Stationsadressen 6 zu Kommunikationsteilnehmern 2 in einem Bussystem 9 sowie Kommunikationsteilnehmer 1, 2 in einem Bussystem 9. Genau ein erster Kommunikationsteilnehmer 1, welcher selbstständig am Bus 3 senden kann, kann dabei einer Stationsadresse 6 Daten zuordnen, welche einen weiteren Kommunikationsteilnehmer 2 eindeutig identifizieren, oder eine Stationsadresse 6 als nicht belegt kennzeichnen. Ein weiterer Kommunikationsteilnehmer 2,

- 20 welcher in einem früheren Kommunikationszyklus bereits ein Datenpaket mit diesen Kommunikationsteilnehmer 2 eindeutig identifizierenden Daten an den ersten Kommunikationsteilnehmer 1 gesendet hat und welcher in einem späteren Kommunikationszyklus ein Datenpaket 10 mit Daten, welche diesen Kommunikationsteilnehmer 2 nicht eindeutig kennzeichnen, empfängt, kann seine Stationsadresse 6 automatisch in eine als nicht belegt gekennzeichnete Stationsadresse 6 ändern.

Patentansprüche

1. Verfahren zur Zuordnung von Stationsadressen (6) zu Kommunikationsteilnehmern (2) in einem Bussystem (9), wobei genau
5 ein erster Kommunikationsteilnehmer (1), welcher selbstständig an einem Bus (3) senden kann, einer Stationsadresse (6) Daten zuordnen kann, welche einen weiteren Kommunikationsteilnehmer (2) eindeutig identifizieren, oder eine Stationsadresse (6) als nicht belegt kennzeichnen kann, bei welchem
10 Verfahren jeweils in einem Kommunikationszyklus
 - der erste Kommunikationsteilnehmer (1) jeweils ein erstes Datenpaket (10) an jede Stationsadresse (6) sendet, wobei das erste Datenpaket (10) gegebenenfalls der jeweiligen Stationsadresse (6) zugeordnete Daten, welche einen weiteren Kommunikationsteilnehmer (2) eindeutig identifizieren, enthält,
15
 - ein oder mehrere weitere Kommunikationsteilnehmer (2), jeweils ein zweites Datenpaket mit ihrer Stationsadresse (6) und den jeweiligen weiteren Kommunikationsteilnehmer (2) eindeutig identifizierenden Daten an den ersten Kommunikationsteilnehmer (1) senden, wobei die den jeweiligen weiteren Kommunikationsteilnehmer (2) eindeutig identifizierenden Daten vom ersten Kommunikationsteilnehmer (1) der jeweiligen Stationsadresse (6) zugeordnet werden und
20
 - der erste Kommunikationsteilnehmer (1) ein drittes Datenpaket (13) mit der Information, welche Stationsadressen (6) als nicht belegt gekennzeichnet sind, an alle weiteren Kommunikationsteilnehmer (2) sendet,
wobei ein Kommunikationsteilnehmer (2), welcher in einem früheren Kommunikationszyklus bereits ein zweites Datenpaket mit diesen Kommunikationsteilnehmer (2) eindeutig identifizierenden Daten an den ersten Kommunikationsteilnehmer (1) gesendet hat und welcher in einem späteren Kommunikationszyklus ein erstes Datenpaket (10) mit Daten, welche diesen Kommunikationsteilnehmer (2) nicht eindeutig kennzeichnen, empfängt,
25
 - 30
 - 35

2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass die Zyklusdauer des Kommunikationszyklus variabel ist.

5

3. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass Geräteinformationen in Speichermitteln der weiteren Kom-
munikationsteilnehmer (2) speicherbar sind, wobei die Spei-
10 chermittel über den Bus (3) vom ersten Kommunikationsteilneh-
mer (1) adressierbar sind und die Geräteinformationen vom
ersten Kommunikationsteilnehmer (1) auslesbar sind.

4. Verwendung eines Verfahrens nach Anspruch 3 zur Projektie-
15 rung eines Bussystems (9).

5. Kommunikationsteilnehmer (1) in einem Bussystem (9), wel-
cher selbstständig an einem Bus (3) senden kann und

- Mittel zur Zuordnung von Daten, welche einen weiteren Kom-
20 munikationsteilnehmer (2) eindeutig identifizieren, zu ei-
ner Stationsadresse (6) und
- Mittel zur Kennzeichnung einer Stationsadresse (6) als
nicht belegt
aufweist.

25

6. Kommunikationsteilnehmer (2) in einem Bussystem (9), wel-
cher Mittel (8) zum Senden von zweiten Datenpaketen mit den
Kommunikationsteilnehmer (2) eindeutig identifizierenden Da-
ten an einen ersten Kommunikationsteilnehmer (1) aufweist und
30 welcher seine Stationsadresse (6) automatisch ändern kann.

1/5

FIG 1

FIG 2

FIG 3

2/5

FIG 4

3/5

FIG 5

4/5

FIG 6

5/5

FIG 7

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP2004/007120

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 G06F13/38 H04L29/12

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHEDMinimum documentation searched (classification system followed by classification symbols)
 IPC 7 G06F H04L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	DE 197 13 240 A (ENDRESS HAUSER GMBH CO) 1 October 1998 (1998-10-01)	1-4
X	abstract column 2, line 40 – line 44 column 2, line 63 – line 66 column 3, line 30 – line 33 column 3, line 66 – column 4, line 5 column 4, line 49 – line 52	5,6
A	US 4 847 834 A (BRYANT STEWART F) 11 July 1989 (1989-07-11) column 2, line 66 – column 3, line 6	1-6
A	DE 100 40 438 A (SIEMENS AG) 7 March 2002 (2002-03-07) the whole document	1-6

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the International filing date
- "L" document which may throw doubts on priority, claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

22 November 2004

02/12/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
 NL – 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax: (+31-70) 340-3016

Authorized officer

Albert, J

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No
PCT/EP2004/007120

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
DE 19713240	A	01-10-1998	DE US	19713240 A1 6216172 B1		01-10-1998 10-04-2001
US 4847834	A	11-07-1989	GB CA EP JP	2167274 A 1242503 A1 0182417 A2 61126843 A		21-05-1986 27-09-1988 28-05-1986 14-06-1986
DE 10040438	A	07-03-2002	DE AT WO DE EP US	10040438 A1 272865 T 0215452 A2 50103141 D1 1309920 A2 2003167360 A1		07-03-2002 15-08-2004 21-02-2002 09-09-2004 14-05-2003 04-09-2003

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP2004/007120

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 G06F13/38 H04L29/12

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 G06F H04L

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	DE 197 13 240 A (ENDRESS HAUSER GMBH CO) 1. Oktober 1998 (1998-10-01)	1-4
X	Zusammenfassung Spalte 2, Zeile 40 - Zeile 44 Spalte 2, Zeile 63 - Zeile 66 Spalte 3, Zeile 30 - Zeile 33 Spalte 3, Zeile 66 - Spalte 4, Zeile 5 Spalte 4, Zeile 49 - Zeile 52	5,6
A	US 4 847 834 A (BRYANT STEWART F) 11. Juli 1989 (1989-07-11) Spalte 2, Zeile 66 - Spalte 3, Zeile 6	1-6
A	DE 100 40 438 A (SIEMENS AG) 7. März 2002 (2002-03-07) das ganze Dokument	1-6

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *E* älteres Dokument, das jedoch erst am oder nach dem Internationalen Anmeldedatum veröffentlicht worden ist
- *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *P* Veröffentlichung, die vor dem Internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- *T* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des Internationalen Recherchenberichts

22. November 2004

02/12/2004

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Albert, J

INTERNATIONALES RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen
PCT/EP2004/007120

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
DE 19713240	A	01-10-1998	DE US	19713240 A1 6216172 B1		01-10-1998 10-04-2001
US 4847834	A	11-07-1989	GB CA EP JP	2167274 A 1242503 A1 0182417 A2 61126843 A		21-05-1986 27-09-1988 28-05-1986 14-06-1986
DE 10040438	A	07-03-2002	DE AT WO DE EP US	10040438 A1 272865 T 0215452 A2 50103141 D1 1309920 A2 2003167360 A1		07-03-2002 15-08-2004 21-02-2002 09-09-2004 14-05-2003 04-09-2003