MSIM 607: Machine Learning 1

Project 1 Report

Name: Muhammad Enayetur Rahman UIN: 01216862

Team Members:

Muhammad Enayetur Rahman Mahmudul Hasan

Part 1

<u>Task 1:</u>

Training dataset scatterplot for the 'generated' datasets are plotted and given here:

Training Dataset Scatter Plot

Fig: Training dataset for 'generated' dataset

Testing Dataset Scatter Plot

Fig: Test dataset for 'generated' dataset

For this task, the scatter plot is generated and class 0 represents Red circles and class 1 represents the blue circles.

Task 2:

For the designing of **Bayes classifier** we got the following results:

For **generated dataset**:

Data type	Accuracy
Training data	86%
Testing data	87.5%

For zipcode dataset:

Data type	Accuracy
Training data	91.3%
Testing data	88.37%

Discussion:

The Bayes classifier is applied to both of the datasets by assuming that the dataset follows *Gaussian distribution*. We can see, for the generated dataset testing accuracy is more than the training dataset, which is unusual.

Task 3:

For designing a *Naive Bayes classifier* we got the following results:

For **generated dataset**:

Data type	Accuracy
Training data	85%
Testing data	87.25%

For zipcode dataset:

Data type	Accuracy
Training data	89.367%
Testing data	87.03%

Discussion:

Similarly, we can see the testing data accuracy of 'generated' dataset is higher than training data accuracy.

Task 4:

For the Nonparametric estimation technique to estimate the conditional distribution $p(\mathbf{x}|C_i)$, using a Gaussian kernel we got the following results:

For 'generated' dataset:

h value	Accuracy (%)
0.1	84
0.7	88
1.3	88.5
1.9	88.75

For 'zipcode' dataset:

h value	Accuracy (%)
0.11	86.83
0.12	86.97
0.13	87.0
0.14	87.1

Discussion:

We can see as the h values are increasing, the accuracy is also increasing for nonparametric estimation for both of the datasets.

Task 5:

For the designing of *k-nearest neighbor* classifier, we got the following results for different k values:

For 'generated' dataset

K value	Accuracy(%)
3	86.25
5	87.75
9	88.0
13	87.75

For 'zipcode' dataset we got the following results:

K value	Accuracy(%)
3	95.5
7	93.53
11	91.76

Discussion:

For KNN classifier, if K increases after a certain value, the accuracy is decreased thereafter.

Task 6:

For the 'generated' dataset we got the decision boundaries for the following classifiers:

Part 2

<u>Task 1</u>

We designed a Regression model using Matlab and train the model using 'regression_train.csv' dataset. The model is applied to the testing: 'regression_test.csv' dataset.

Training Errors:

0.0150	
0.0002	
0.2361	
0.0001	
0.0376	
0.0363	
0.0000	

Testing Error:

0.0140
0.0002
0.2567
0.0001
0.0426
0.0359
0.0000

Task 2:

The modified linear regression model so that it can do linear classification on 'generated' datasets:

Training Accuracy	Testing Accuracy
85.75%	86.75%

Task 3:

For the six different regularization coefficients, the classification codes on the *zipcode* dataset is given below:

Regularization Co-efficient	Training Accuracy (%)	Testing Accuracy (%)
0.01	87.8333	85.7667
0.1	87.2333	85.3333
0.5	87.0	85.1667
1	86.7667	84.7333
5	82.5333	80.2667
10	81.57	79.50

We can see, if we increase the regularization co-efficient the training and testing accuracy is decreasing.