无线通话:

中国移动,中国联通,中国电信

无线通信:

WiFi, Bluetooth, RFID, ZigBee, 无线鼠标,

无线医疗:

跟踪医疗:

2004年北京卫生局MOTO等, 手机+专用接入服务 移动观察:

法国, 医疗设备+GPRS, 中心与救护车的不间断医疗信息传输 远程医疗: 远程医疗会诊系统、远程机器人手术

.....

关于法规

无线技术的应用

《中华人民共和国无线电管理条例》——国务院

《无线电规则》——国际电信联盟2004年版

《中华人民共和国无线电频率划分规定》——信息产业部

《关于微功率(短距离)无线电设备管理暂行规定》

- 1、PTR8000无线数据传输系统中的应用
- 2、拟解决的问题:远距离温度监测
- 3、方案设计:

SPI总线接口

无线技术的应用

Motorola (Freescale) 公司推出的通信协议

四线(可以直接对应连接,无需像uart一样交叉连接)

SIMO:从出主入

STE:选通

SOMI: 主入从出

CLK:时钟

CPOL:时钟极性(即时钟空闲时为0还是为1,CPOL=0在上升沿采样,CPOL=1则在下降沿) CPHA:时钟相位(CPHA=0将在第一边沿采样,CPHA=1将在第二边沿采样)

两两组合共四种模式,分别由各自的寄存器控制

功率无法 线方案

无线技术的应用

nRF905: 单片 433/868/915MHz发送/接收器

特点:

单片GFSK发送/接收器、32脚封装(QFN 5×5mm)

电压范围: 1.9~3.6v

至10dBm输出功率可调

"发送前侦听"载波检测协议

有效数据包接收/发送时提供数据就绪信号

输入数据包地址匹配

自动CRC (循环冗余码校验)

低电流:发送电流11mA、接收电流12.5mA

相关术语

无线技术的应用

dBm: 是一个表示功率绝对值的单位。

计算公式为: 10lg功率值/1mW。

例如:如果发射功率为1mW,

按dBm单位进行折算后的值应为:

 $10 \lg 1mW/1mW = 0dBm;$

对于40W的功率,则

10lg(40W/1mW)=46dBm_o

GFSK:

数字调制方法,如:

ASK ——幅移键控调制,把二进制符号0和1分别用不同的幅度来表示。

FSK ——频移键控调制,即用不同的频率来表示不同的符号。如2KHz表示0,3KHz表示1。

GFSK——高斯频移键控,在调制之前通过一个高斯低通滤波器来限制信号的频谱宽度

般描述

无线技术的应用

用于ISM(工业、科研、医学)频段的单片无线发送/接收器。它包含:全集成频率合成器,接收器解调器、功率放大器、晶体振荡器、调制器。ShockBurst™产生CRC。芯片可以通过SPI接口编程。低电流特性,在-10dBm输出功率情况下发送工作电流为11mA,接收工作电流为12.5mA。片内低功率模式可以使其实现省电模式。

	Package Type		A	A_1	A2	b	D	E	e	J	K	L
- 5	QFN32	Min	0.8	0.0	0.65	0.18	907.0	3.5	11.0000.5	3.2	3.2	0.3
	(5x5 mm)	typ.				0.23	5.	5	0.5	3.3	3.3	0.4
	3 (6 (000 Hz - 50) eV (00) (5 - 35 è	Max	0.9	0.05	0.69	0.3		396	5-39-461	3.4	3.4	0.5

封装尺寸表

nRF905工作原理

无线技术的应用

工作模式:

活动模式

ShockBurst™接收 ShockBurst™发送

省电模式

掉电、SPI-编程

备用、SPI-编程

TX过程:

- 1、MCU将结点地址、有效数据通过SPI接口输入905。
- 2、MCU设置TRX_CE=1、TX_EN=1,激活905发送模式
- 3、无线模块自动上电 完成数据包——头、CRC计算 数据包发送(100kbps, GFSK, Manchester编码) 发送完成后DR信号置高电平
- 4、当TRX CE变低,发送包后进入备用模式

RX过程:

- 1、TRX_CE=1, TX_EN=0, 被选择RX模式
- 2、905检测无线信号、当905检测到载波,载波检测信号(CD)置高
- 3、当有效地址收到,地址匹配(AM)置高
- 4、有效数据收到(通过CRC校验)将去除数据包头、 地址和CRC位,数据有效(DR)置高
- 5、MCU设置TRX_CE为低,进入备用模式。
- 6、MCU可通过SPI读出有效数据

片2.4G无线方案

无线技术的应用

nRF2401: 单片 2.4GHz发送/接收器

特点:

单片GFSK发送/接收器、24脚封装(QFN 5×5mm)

电压范围: 1.9~3.6v

数据率0~1Mbps

仅需2个外接器件

用途:

无线鼠标, 无线键盘等

Package Type		A	A_1	A2	b	D/E	D1/E1	e	J	K	L	R
Punch QFN24	Min	0.8	0.0	0.65	0.25				3.47	3.47	0.3	1.235
(5x5 mm)	typ.		0.02		0.3	5 BSC	4.75	0.65 BSC	3.57	3.57	0.4	1.335
	Max	0.9	0.05	0.69	0.35		BSC		3.67	3.67	0.5	1.435

