Taxation and Efficiency

EC313 - Public Economics: Taxation

Justin Smith

Wilfrid Laurier University

Fall 2025

Goals of This Section

Goals of This Section

- Outline different types of taxes
- Discuss different between statutory and economic incidence of a tax
- Show how tax incidence depends on elasticities of supply and demand
- Expand on tax incidence in various markets

Excess Burden of a Tax with Indifference Curves

Introduction

- Governments levy taxes mainly to raise revenue to fund public goods and services
- Taxes can impose different types of costs on consumers
 - The direct cost of sending money to the government
 - Taxes can distort behaviour because of changes in prices
 - Without taxes consumers make choices about consumption
 - Taxes force them to substitute away from the taxed good and make sub-optimal choices
- Ideally a tax imposes the least possible cost in order to raise revenue
 - When the costs are larger, we say there is an excess burden

- Below we will see what happens when an ad valorem tax is imposed on one good
 - An ad valorem tax is a percentage tax on the price of a good
 - For example, a 10% sales tax on a \$1 item means the consumer pays \$1.10
- We will use indifference curves and budget constraints to analyze the effects of the tax
- We will then compare to a lump-sum tax
- Lesson is that ad valorem taxes that distort behaviour create excess burden
- Lump-sum taxes that do not distort behaviour do not create excess burden
- Difference due to the distortionary effect of changing relative prices with ad valorem taxes

- Graph shows consumption decision for barley and corn
- Initially prices are P_B and P_C
- Budget constraint is $I = P_B B + P_C C$
- To plot budget constraint, put *C* on left side

$$C = \frac{I}{P_C} - \frac{P_B}{P_C} B$$

- Slope of budget constraint is $-\frac{P_B}{P_C}$
- Intercepts are $\frac{I}{P_C}$ and $\frac{I}{P_B}$
- Optimal consumption bundle is B_1 and C_1

- An ad valorem tax of t on barley is imposed
- Price of barley rises to $P_B(1 + t)$
- New budget constraint is $I = P_B(1 + t)B + P_CC$
- Rearranging gives

$$C = \frac{I}{P_C} - \frac{P_B(1+t)}{P_C} B$$

- Slope of new budget constraint is $-\frac{P_B(1+t)}{P_C}$
- Intercepts are $\frac{I}{P_C}$ and $\frac{I}{P_B(1+t)}$
- New optimal bundle is B_2 and C_2

- Vertical distance between budget lines is tax collected
- On the old budget line if consumer buys B_2 barley, corn consumption is

$$C' = \frac{I}{P_C} - \frac{P_B}{P_C} B_2$$

• On the new budget line if consumer buys B_2 barley, corn consumption is

$$C_2 = \frac{I}{P_C} - \frac{P_B(1+t)}{P_C} B_2$$

• Difference is

$$C' - C_2 = \frac{P_B t}{P_C} B_2$$

- Measures reduction in corn consumption due to tax
- To measure in dollar terms

$$P_C(C' - C_2) = tP_B B_2$$

This is the tax rate times the value of barley consumed

Equivalent Variation

- As a comparison, consider leaving prices unchanged and reducing income to reach the same utility as we got with the tax
 - This income reduction is the equivalent variation
- Shift the original budget line parallel in until it is tangent to the new indifference curve
- Distance between the original and new budget lines is the equivalent variation

Excess Burden

- The excess burden of a tax is the loss in welfare beyond the tax revenue collected
- In the graph it is the difference between the equivalent variation and the tax revenue collected
 - Equivalent variation measures loss in welfare
 - Distance in green
 - Tax revenue is money collected by government
 - Distance between black and red budget lines
- In this case, equivalent variation is larger than tax revenue

Excess Burden

- An ad valorem tax on one good creates two effects
 - 1. Income effect: consumer is poorer, so consumes less of all normal goods
 - 2. Substitution effect: relative price of taxed good rises, so consumer substitutes away from taxed good
- Excess burden arises because of the substitution effect
 - Consumer substitutes away from taxed good to other goods
 - This leads to a loss in welfare beyond the tax revenue collected
- One way to see this is to compare an ad valorem tax to a lump-sum tax
 - Lump-sum tax only has income effect, no substitution effect
 - So no excess burden

Lump Sum Tax

- A lump-sum tax *T* is imposed
- New budget constraint is $I T = P_B(1 + t)B + P_CC$
- Rearranging gives

$$C = \frac{I - T}{P_C} - \frac{P_B(1+t)}{P_C}B$$

- Budget line shifts down in parallel by T
 - Prices do not change, so slope does not either
- New optimal bundle is B_3 and C_3

Lump Sum Tax

- Tax revenue is T
 - Does not depend on how much of each good is consumed
- Equivalent variation is also T
 - Distance between original and new budget lines is T
- So there is no excess burden
 - Welfare loss equals tax revenue collected
- Arises because a lump sum tax is a pure income effect
 - No substitution effect, so no excess burden

Challenges with Excess Burden

Efficiency

- If lump sum taxes do not create excess burden, why not use them?
- Often they are unattractive politically
 - A fixed tax on everyone is viewed as unfair
 - It is also regressive
- There are few examples in the world
 - UK had a poll (head) tax in the late 80s that was unpopular
 - Some municipal government charge fixed fees for licenses/permits
- So governments widely use distortionary taxes instead

Income taxes

- Income taxes can also involve excess burdens
- Income taxes distort labour supply decisions
 - Higher tax rates reduce the after-tax wage
 - This causes people to substitute away from labour towards leisure
 - This is a substitution effect that creates excess burden
- Like with goods, income taxes change relative prices, and therefore behaviour
- Changes the price of leisure relative to consumption

Excess Burden with Inelastic Demand

- Suppose that a tax is introduced on barley, but barley consumption does not change
- Does this mean there is no excess burden?
- Answer: no
 - Consumer faces different relative prices
 - These distort the consumer's choices
 - This leads to inefficiency, and excess burden

Excess Burden with Inelastic Demand

- Graph looks similar to before
- This time barley consumption stays constant
- Corn consumption rises due to relatively lower price
- Excess burden is about the change in the consumption bundle
 - Not just the change in quantity of one good

Excess Burden with Demand Curves

Aside: Compensated vs Ordinary Demand Curves

- A demand curve measures the change in quantity demanded as price changes
- Ordinary (Marshallian) demand curve: measures the total change in quantity demanded as price changes
 - Includes both income and substitution effects
- Compensated (Hicksian) demand curve: measures the change in quantity demanded as price changes, holding utility constant
 - Only includes substitution effect
 - Can hold utility constant at initial level or new level
- Excess burden is related to the substitution effect, so we use compensated demand curves

Aside: Compensated vs Ordinary Demand Curves

- Consider a tax on barley
 - Price of barley rises from P_B to $P_B(1 + t)$
- The ordinary demand curve measures change from old equilibrium at old prices to new equilibrium at new prices
 - Includes both income and substitution effects
- The compensated demand curve measures starts from new utility curve at old prices then new equilibrium at new prices
 - Only includes substitution effect
- The drop in demand is larger for ordinary demand

Aside: Compensated vs Ordinary Demand Curves

- Demand curve is plot of price vs quantity demanded
- On left we plot price before and after tax against quantities
- Drop in quantity is larger for ordinary demand curve
 - Includes both income and substitution effects
 - So ordinary demand curve is flatter
- Compensated demand curve is steeper because it only includes substitution effect

Excess Burden with Demand Curves

- Excess burden of a tax is related to the substitution effect
- We can use compensated demand curve to measure it
- Recall that it is loss in welfare beyond tax revenue collected
- The loss in welfare to the consumer is measured by the drop in consumer surplus
 - This is the area under the compensated demand curve between old and new prices
- Part of that loss is tax revenue collected
 - This is the rectangle with height equal to the tax and width equal to new quantity
- The other part is lost entirely to the consumer
 - This is the excess burden

Excess Burden with Demand Curves

- Imagine a tax is imposed on barley
- Supply is perfectly elastic
 - So economic incidence falls entirely on consumers
- Price rises from P_B to $P_B(1 + t)$
- Compensated quantity demanded falls from B_3 to B_2
- Tax revenue is green rectangle
- Total fall in consumer surplus is green + blue areas
- Excess burden is blue area

Excess Burden with Elasticities

- We can translate the excess burden area into a formula using elasticities
- The excess burden is the blue triangle
- Area of triangle is $\frac{1}{2}$ × base × height
 - Base is change in quantity: $\Delta B = B_3 B_2$
 - Height is tax: *tP*_b
- The definition of elasticity at the original equilibrium is

$$\eta = \frac{\Delta B}{\Delta P} \times \frac{P_b}{B_3}$$

Excess Burden with Elasticities

Rearranging gives

$$\Delta B = \eta \times \frac{\Delta P}{P_b} \times B_3$$

• In our case, $\Delta P = tP_b$, so

$$\Delta B = \eta \times t \times B_3$$

The area is then

Excess Burden =
$$\frac{1}{2} \times (\eta \times t \times B_3) \times (tP_b) = \frac{1}{2} \times (\eta \times B_3) \times (t^2P_b)$$

Excess Burden with Elasticities

Some insights with the formula

Excess Burden =
$$\frac{1}{2} \times (\eta \times B_3) \times (t^2 P_b)$$

- Excess burden depends on three things
 - 1. Size of tax *t*
 - Excess burden rises with square of tax rate
 - 2. Elasticity of demand η
 - More elastic demand means larger excess burden
 - 3. Initial spending P_bB_3
 - Larger initial spending means larger excess burden

Additional Considerations for Excess Burden

Pre-existing Distortions

- In the real world, there are many taxes and regulations that distort behaviour
- If a new tax is introduced, it may interact with these pre-existing distortions
 - Pre-existing distortions include monopoly power, externalities, and other taxes
- Having pre-existing distortions complicates the analysis of excess burden
 - A new tax may increase or decrease overall excess burden
 - Depends on how it interacts with pre-existing distortions
- Theory of the Second Best: If economic optimum cannot be achieved (due to existing distortions), the next best solution may involve introducing additional distortions

Pre-existing Distortions

- Example 1: pre-existing tax on good A
 - This tax distorts consumption away from good A
 - Introducing a tax on good B may lead consumers to substitute towards good A
 - This can reduce the excess burden on good A by increasing its consumption
 - Overall excess burden may increase or decrease because of the new tax on good B

Pre-existing Distortions

- Example 2: Minimum Wages
 - A labour market monopsony leads to lower wages and employment than in a competitive market
 - Imposing a minimum wage can increase employment and reduce the excess burden caused by monopsony power
- Example 3: Externalities from Carbon
 - A country has a negative externality from emissions and cannot impose a carbon tax
 - The next best outcome might involve subsidies for renewable energy, even if they distort energy markets
- General lesson is that impact of tax is not limited to the market it directly affects
 - Overall excess burden depends on interactions with other markets and distortions

Excess Burden of a Subsidy

- A subsidy is a negative tax
 - It lowers the price paid by consumers or received by producers
- Problem is that it can lead to over-consumption or over-production
 - This creates inefficiencies and excess burden
- A subsidy will increase welfare (consumer surplus) but the cost to the government may exceed this increase
 - The difference is the excess burden of the subsidy

Excess Burden of a Subsidy

- Picture a housing subsidy
- Prior to subsidy, optimal consumption is H_0 at price P_h
- Subsidy lowers price to $(1 s)P_h$
- New optimal consumption is H₁
- Cost of subsidy is green plus blue rectangle
- Increase in consumer surplus is green area
- Excess burden is blue triangle

- Income taxes distort labour supply decisions
 - Higher tax rates reduce the after-tax wage
 - This causes people to substitute away from labour towards leisure
 - This is a substitution effect that creates excess burden

- Imagine a labour market with elastic labour demand
 - So a tax on labour is borne entirely by workers
- An income tax shifts down labour demand curve from D_0 to D_1
 - Reduces wage from W_{\perp} to (1 t)W
- Initially worker surplus is area below demand curve and above supply
- After tax, surplus falls by yellow plus green areas

- Some of the fall is collected by government as tax revenue
 - This is yellow rectangle
- The green triangle is lost entirely
 - This is the excess burden
- Result is very similar to excess burden from a tax on goods
 - Except here the tax is on wages and workers are suppliers

• The formula for excess burden is similar to that for goods

Excess Burden =
$$\frac{1}{2} \times (\epsilon \times L_0) \times (t^2 W)$$

- Where ϵ is the elasticity of labour supply
- Excess burden depends on
 - 1. Size of tax *t*
 - Excess burden rises with square of tax rate
 - 2. Elasticity of labour supply ϵ
 - More elastic labour supply means larger excess burden
 - 3. Initial earnings WL_0
 - Larger initial earnings means larger excess burden

References

References

- Rosen, Harvey S., and Lindsay M. Tedds, and Trevor Tombe, and Jean-Francois Wen, and Tracy Snoddon. Public Finance in Canada. 6th Canadian edition. McGraw-Hill Ryerson, 2023.
- Gruber, Jonathan. Public Finance and Public Policy. 7th edition. Worth Publishers, 2022.

