Московский Государственный Университет им. М.В. Ломоносова Факультет Вычислительной Математики и Кибернетики Кафедра Суперкомпьютеров и Квантовой Информатики

Отчёт № 1. Анализ ресурса параллелизма алгоритма однокубитного квантового преобразования.

Работу выполнил **Пилюгин В.И.**

Постановка задачи и формат данных.

Задача: Реализовать параллельный алгоритм однокубитного квантового преобразования, используя технологию OpenMP.

Формат входных данных: количество кубитов n, номер кубита k, по которому будет производиться преобразование

Описание алгоритма.

Анализ времени выполнения: Для оценки времени выполнения программы использовалась стандартная функция gettimeofday() из sys/time.h.

Прогонка: Для каждого числа кубитов программа запускалась по пять раз. Время работы усреднялось по результатам запусков.

Основные функции:

- Конфигурационный файл для задания числа кубитов и номера кубита
- Скрипт для запуска на системе Regatta, который ставит программу на счет с разным числом параллельных процессов

Теоретический расчет.

Система Регатта это 16-процессорная система, которая имеет общую оперативную память объемом 64 гигабайта = 2^36 байт. Каждый элемент вектора состояний занимает $16 = 2^4$ байт. Значит, всего элементов вектора может быть не более 2^32 . Если число кубитов равно n, то вектор получится длины 2^n . Значит, при числе элементов 2^32 максимальное число кубитов будет равно 32.

Экспериментальная проверка показала, что уже начиная с n=28 программа завершается из-за нехватки памяти, а для n=27 результаты были получены только один раз, а в остальных запусках программа аварийно завершалась. Поэтому результаты приведены для числа кубитов до n=26.

Результаты выполнения.

Проводились запуски программы на системе Регатта. Показаны результаты для 20, 24, 25 и 26 кубитов(макс.). Зависимость времени выполнения от количества нитей представлена на графике (время в секундах).

Исходные данны	e:
----------------	----

Число кубитов	1	2	4	8	16
20	0.48	0.24	0.12	0.06	0.03
24	7.76	3.96	1.97	0.98	0.52
25	15.52	7.92	4.27	1.97	0.99
26	31.65	15.83	7.88	3.94	1.97

Ускорение:

Число кубитов	1	2	4	8	16
20	1.00	2.00	4.00	8.00	16.00
24	1.00	1.96	3.94	7.92	14.92
25	1.00	1.96	3.63	7.88	15.68
26	1.00	2.00	04.02	08.03	16.07

Эффективность:

Число кубитов	1	2	4	8	16
20	100.00%	100.00%	100.00%	100.00%	100.00%
24	100.00%	97.98%	98.48%	98.98%	93.27%
25	100.00%	97.98%	90.87%	98.48%	97.98%
26	100.00%	99.97%	100.41%	100.41%	100.41%

Для 16 процессов и 26 кубитов:

Время,сек	30.39	1.97	51.95
Ускорение	01.04	16.07	0.61
Эффективность	6.51%	100.41%	3.81%

Основные выводы.

Результаты показывают, что эффективность алгоритма близка к единице, что означает линейное ускорение в зависимости от числа процессов. Это легко объяснимо, так как обменов между нитями не происходит, и они могут работать полностью параллельно.