# Hyper-Align: Efficient Modality Alignment via Hypernetworks

Jaisidh Singh<sup>1,2,3,5</sup> Diganta Misra<sup>2,3</sup> Boris Knyazev<sup>6</sup> Antonio Orvieto<sup>2,3,4</sup>

<sup>1</sup>University of Tübingen <sup>2</sup>ELLIS Institute Tübingen <sup>3</sup>MPI for Intelligent Systems, Tübingen <sup>4</sup>Tübingen AI Center <sup>5</sup>Zuse School ELIZA <sup>6</sup>SAIT AI Lab Montreal





#### **SUMMARY**

Contrastive vision-language models (VLMs) like CLIP align encoders of image-text modalities via an InfoNCE loss.

Background: Instead of training VLMs end-to-end,

- APE trains a modality connector (MLP) between pretrained encoders
- outperforms CLIP at significantly costs.

**Problem:** unimodal performance ≠ multimodal performance.

- Finding the optimal pair in N image and M text encoders requires searching all  $N \times M$  combinations.
- Pretraining any one combination needs massive data volumes.
- Hence, training all combinations individually becomes unfeasible.

**Proposed solution (Hyper-Align):** Use a hypernetwork to learn all  $N \times M$  modality connectors together, instead of learning them individually (APE).

Result: Compared to APE (on a linear modality connectors), Hyper-Align

- Is comparable in performance
- Yields an 8x reduction in FLOP cost.



#### **METHODOLOGY**



**APE:** train a linear layer  $f_{\theta}: \mathbb{R}^{D_{z_t}} \to \mathbb{R}^{D_{z_t}}$  between encoders

- $z_i$  and  $z_t$  are embeddings of an image-caption sample.
- training objective is  $L_{APE} = L_{InfoNCE}(f_{\theta}(z_t), z_i)$

**Hyper-Align:** hypernetwork  $H_{\phi}$  uses a conditional input  $c_j$  to predict the parameters of the  $j^{th}$  modality connector.

- $z_i^j$  = batch of embeddings from  $j^{th}$  image encoder,  $j \in \{1,...,N\}$
- $z_t$  = batch of embeddings from 1 text encoder
- $H_{\phi}(c_i) = \theta_i$  where  $c_i = \text{batch-average}(z_i^J)$
- training objective is  $L_H = \sum_{i=1}^N (L_{\mathsf{InfoNCE}}(f_{H_{\phi}(c_i)}(z_t), z_i^j)) / N$
- $H_{\phi}$  = MLP which predicts several parameter spaces (via slicing).
- We train  $H_\phi$  on a mini-batch B < N of image encoders per step to efficiently scale up the number of combinations (N).

#### EXPERIMENTS AND RESULTS

### Scaling up no. of combinations:

- M = 1 (sentence-t5-base) and N varies from 12 to 30
- $\bullet$  Best image encoder reported at each value of N
- Numbers on data points denote the epochs at which the VLM was evaluated.



# Search over various image encoder scales:

- N = 30 equally split among 3 feature dims
- Parameter count ↑ as feature dim ↑
- Best ImageNet accuracy is shown per scale.

|   | Scale type   | Range      | Method |       |
|---|--------------|------------|--------|-------|
|   |              |            | Ours   | APE   |
| _ | Feature dim  | 384        | 36.75  | 38.36 |
|   |              | 768        | 42.83  | 45.44 |
|   |              | 1024       | 51.92  | 53.86 |
| _ | Param. count | < 30M      | 36.75  | 38.36 |
|   |              | 30M - 120M | 43.04  | 44.84 |
|   |              | > 120M     | 51.92  | 53.86 |

## CONCLUSION

Parameter prediction via hypernetworks can

- efficiently search image-text encoder pairs for optimal VLMs, under constraints.
- Future work can use Hyper-Align on image encoders and LLMs to create MLLMs.