日本国特許庁 JAPAN PATENT OFFICE

07.04.2005

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2004年 6月30日

出 願 番 号 Application Number:

人

特願2004-194156

[ST. 10/C]:

[JP2004-194156]

出 願
Applicant(s):

日立電線株式会社

2005年 2月14日

特許庁長官 Commissioner, Japan Patent Office

特許願 【書類名】 PHC04256 【整理番号】 平成16年 6月30日 【提出日】 特許庁長官 殿 【あて先】 H01B 11/02 【国際特許分類】 【発明者】 東京都千代田区大手町一丁目6番1号 日立電線株式会社内 【住所又は居所】 松井 量 【氏名】 【発明者】 日立電線株式会社内 東京都千代田区大手町一丁目6番1号 【住所又は居所】 小室 浩 【氏名】 【発明者】 東京都千代田区大手町一丁目6番1号 日立電線株式会社内 【住所又は居所】 堆 信仁 【氏名】 【発明者】 東京都千代田区大手町一丁目6番1号 日立電線株式会社内 【住所又は居所】 中東 文賢 【氏名】 【特許出願人】 000005120 【識別番号】 日立電線株式会社 【氏名又は名称】 【代理人】 100071526 【識別番号】 【弁理士】 平田 忠雄 【氏名又は名称】 【手数料の表示】 038070 【予納台帳番号】 16,000円 【納付金額】 【提出物件の目録】 特許請求の範囲 1 【物件名】

明細書 1

図面 1 要約書 1

【物件名】 【物件名】

【物件名】

【書類名】特許請求の範囲

【請求項1】

内部導体の外周に絶縁体を被覆したコアを複数撚り合わせ、その外周にシールド層を前記コアの撚り合わせ方向とは逆方向に横巻きし、更にシースを設けて、外径を1.0mm 以下としたことを特徴とする差動信号伝送ケープル。

【請求項2】

前記コアを4心撚り合わせたことを特徴とする請求項1記載の差動信号伝送ケープル。 【請求項3】

前記コアの撚り合わせピッチを、層心径の40倍以内としたことを特徴とする請求項1 記載の差動信号伝送ケーブル。

【請求項4】

前記内部導体として、素線径0.05mm以下の銀めっき銅合金線を撚り合わせた導体を用いたことを特徴とする請求項1記載の差動信号伝送ケーブル。

【請求項5】

前記絶縁体として、ふっ素樹脂を用いたことを特徴とする請求項1記載の差動信号伝送 ケーブル。

【請求項6】

前記シールド層として、素線径0.05mm以下の銀めっき銅合金線を用いたことを特徴とする請求項1記載の差動信号伝送ケーブル。

【請求項7】

前記シースとして、ふっ素樹脂、又は銅めっきポリエステルテープとポリエステルテープとを貼り合わせたものを用いたことを特徴とする請求項1記載の差動信号伝送ケーブル

【請求項8】

前記コアの撚り合わせに際し、中心にポリエステルによる介在を入れたことを特徴とする請求項1記載の差動信号伝送ケーブル。

【請求項9】

前記コアの撚り合わせに際し、ポリエステルテープ、銅蒸着ポリエステルテープ、又は 銅めっきポリエステルテープによるおさえ巻きを設けたことを特徴とする請求項1記載の 差動信号伝送ケープル。

【請求項10】

携帯電話の液晶ディスプレイの画像信号伝送に用いられることを特徴とする請求項1乃至9のいずれか1項記載の差動信号伝送ケープル。

【書類名】明細書

【発明の名称】差動信号伝送ケーブル

【技術分野】

[0001]

本発明は、小型電子機器の可動部等に使用される差動信号伝送ケーブルに関し、特に、 電気特性、機械特性に優れ、携帯電話の液晶ディスプレイの画像信号伝送用に好適な差動 信号伝送ケーブルに関するものである。

【背景技術】

[0002]

ノート型パソコンや携帯電話などの小型の液晶ディスプレイの信号伝送に使用されるケ ーブルは、EMI (電磁波障害:Electro Magnetic Interherence) 防止対策や低SKE W化(低対間伝送遅延差)等の電気特性が要求される。また、内径 5 mm以下のヒンジ部 を介して配線されるため、ケーブル外径の細径化が大きな課題となっている。

[0003]

図4に、このような用途に使用されている極細同軸ケーブルの構造例を示す。

この極細同軸ケーブル10は、Snめっき銅合金線等からなる内部導体11の外周に、 順に、PFA (テフロン (登録商標)) 樹脂等からなる絶縁層12、Snめっき銅線等か らなる外部導体13、ポリエステル等からなるシース14を設けて構成され、外径が0. 35mm程度とされている (例えば、特許文献1参照)。

[0004]

更に、ノート型パソコンについては、信号伝送方式がパラレル伝送からシリアル伝送に 移行しつつあり、上記のような極細同軸ケーブルの持つ特性よりも厳しい電気特性が要求 されるため、2心平行極細同軸ケーブルが適用されつつある。

[0005]

図5に、2心平行同軸ケーブル20の構造例を示す。

この2心平行同軸ケーブル20は、軟銅線等からなる内部導体21の外周をポリエチレ ン等からなる絶縁体23で被覆したコアを2本並列に並べ、これら2本のコアの外周に、 外部シールドとしての軟銅線等からなる外部導体23を施し、更に、ポリエステル等から なるシース24を形成したものである(例えば、特許文献2参照)。

【特許文献1】特開2002-352640号公報

【特許文献2】特開2003-22718号公報

【発明の開示】

【発明が解決しようとする課題】

[0006]

一方、現在の携帯電話はパラレル方式で伝送されており、液晶ディスプレイの信号伝送 には40本程度の極細同軸ケーブルを束ねて使用されている。これをシリアル方式に変更 することで信号線を10本程度まで低減できる。

[0007]

このようなシリアル方式に移行する場合は、ケープルからのノイズがマザーボードに伝 わると誤動作が懸念されるため、2心平行同軸ケーブルなど電気特性に優れたケーブルが 不可欠である。

[0008]

しかしながら、2心平行同軸ケープルは極細同軸ケーブルと比較して屈曲・捻回特性が 低く、携帯電話のように過酷な屈曲・捻回を受ける用途には適さない。

[0009]

従って、本発明の目的は、電気特性のみならず、屈曲・捻回特性等の機械特性に優れ、 携帯電話の液晶ディスプレイの信号伝送用ケーブルとして好適な差動信号伝送ケーブルを 提供することにある。

【課題を解決するための手段】

[0010]

上記目的を達成するため、本発明の差動信号伝送ケーブルは、内部導体の外周に絶縁体を被覆したコアを複数撚り合わせ、その外周にシールド層を前記コアの撚り合わせ方向とは逆方向に横巻きし、更にシースを設けて、外径を1.0mm以下としたことを特徴とする。

[0011]

前記コアを4心撚り合わせることができる。また、前記コアの撚り合わせピッチを、層 心径の40倍以内とすることが望ましい。

[0012]

前記内部導体として素線径0.05mm以下の銀めっき銅合金線を撚り合わせた導体を、前記絶縁体としてふっ素樹脂を、前記シールド層として素線径0.05mm以下の銀めっき銅合金線を用いることができる。

[0013]

前記シースとして、ふっ素樹脂、又は銅めっきポリエステルテープとポリエステルテープとを貼り合わせたものを用いることができる。

[0014]

前記コアの撚り合わせに際し、中心にポリエステルによる介在を入れることができる。 また、前記コアの撚り合わせに際し、ポリエステルテープ、銅蒸着ポリエステルテープ、 又は銅めっきポリエステルテープによるおさえ巻きを設けることもできる。

[0015]

前記差動信号伝送ケーブルを携帯電話の液晶ディスプレイの画像信号伝送に用いることができる。

【発明の効果】

[0016]

本発明によれば、屈曲特性と捻回特性の機械特性に優れた差動信号伝送ケーブルを提供することができる。このため、携帯電話の液晶ディスプレイの信号伝送用ケーブル等に好適に使用できる。

【発明を実施するための最良の形態】

[0017]

以下、本発明の実施形態について添付図面を参照しつつ説明する。

図1に、本発明の差動信号伝送ケーブルの一実施形態を示す。

[0018]

(全体構成)

この差動信号伝送ケーブル30は、内部導体31の外周にふっ素樹脂による絶縁体32を被覆したコアを4心で撚り合わせ、コアの撚り合わせ方向とは逆方向に横巻きによるシールド層33を設け、さらにその外周にシース34を形成したものである。ケーブル外径については、携帯電話のヒンジ部を通さなければならないこと、繰り返し捻りを受けること、液晶の精細化に伴い伝送信号線の本数が増大する等から1.0mm以下としている。この差動信号伝送ケーブル30では、図1のA-C、B-D間の2対にそれぞれ差動信号が伝送される。

[0019]

(内部導体)

内部導体 3 1 は、銀めっき銅合金線を撚り合わせて構成することができる。銀めっき銅合金線は導電率が高いほど好ましいが、携帯電話用のハーネスは 1 0 0 mm程度で使用されるため、7 0 % I A C S 以上であれば問題ない。引張強さも大きいほど好ましいが、7 0 0 M P a 以上であれば問題ない。銀めっき厚さについては、主に 8 0 0 M H z から 1 . 9 G H z の帯域、最大で 6 G H z 付近で使用されるため、1 μ m程度あれば問題ない。

[0020]

(絶縁体)

絶縁体32についでは簿肉での押出が可能であり、6GHzまでの周波数、特に800 MHzから1.9GHzの帯域における誘電率、誘電正接が安定した材料であることが望 ましい。このような材料としてふっ素樹脂が望ましく、この中でもPFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)、FEP(テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(4.67)、PTFE(ポリテトラフルオロエチレン(47)がより望ましい。厚さについては対角のコア間で特性インピーダンスが $90\sim100$ 0が実現できる厚さに調整されたものが望ましい。絶縁体32に表面処理を施しても良く、銅などの導電性が高い金属をスパッタ処理やめっき処理などで形成したものを用いてもよい。

[0021]

コアの撚り合わせについては撚り合わせピッチが層心径の40倍以内が望ましい。撚り合わせピッチを層心径の40倍以内とすることにより、携帯電話に用いた際に、送受信回路への影響を少なくすることができる。撚り合わせの際には中心にポリエステルの糸などの介在35を入れてもよい。さらに、撚り合わせ後の形状を保持するため、ポリエステルテープや銅蒸着ポリエステルテープ、銅めっきポリエステルテープ等によるおさえ巻きを設けても良い。

[0022]

(シールド層)

シールド層33については、内部導体と同じ材料が望ましいが、異なるものを使用しても構わない。巻き方向についてはコアの撚り合わせ方向と同方向とした場合、コアの撚り合わせによってできた溝にシールド層が落ち込むことにより不安定となるため、逆方向にした方が構造上安定するため好ましい。但し、同方向であってもコアの撚り合わせによってできた溝にシールド層が落ち込むことがなければ問題はない。また、シールド層33の横巻きを2重に行うことでシールド特性が向上する。

[0023]

(シース)

シース34については、ふっ素樹脂や銅めっき(蒸着)ポリエステルテープとポリエステルテープを貼り合わせたものが挙げられる。但し、薄肉でかつ繰り返し曲げに強い材料であれば、これらに限定されるものではない。

【実施例】

[0024]

表1に示す材料、肉厚、線径のものを用いて、図1に示す構成の差動信号伝送ケーブルを製造し、屈曲特性と捻回特性を評価した。

[0025]

【表1】

	外径	0.57mm	0.58mm	0.66mm	0.67mm	0.75mm	0.77mm	0.59mm	0.60mm	0.68mm	0.69mm	0.77mm	0.79mm	0.53mm	0.54mm	0 69mm	0.0211111	U.osmm	0.71mm	0.73mm	0.62mmm	0.64mm	0.71mm	0.73mm	0.81mm	O 85mm	0.00
ジャケット	材料	PFA	PFA	PFA	PFA	PFA	PFA	PFA	PFA	PFA	PFA	PFA .	PFA	指今口口不一子※2	数日に 相合 日 日 日 日			複合PEテーフ	П	複合PEテープ [※]	PFA	PFA	PFA	PFA	DEA	V-10	V11
311	素線径	0.025mm	0.03mm	1		0.03mm	0.04mm	0.025mm	0.03mm	0.025mm	0.03mm	0.03mm		L		_		0.03mm	0.03mm	0.04mm	0.025mm	0.03mm	0.025mm	-	4	┸	0.04mm
1/3	構成	構券(1重)	構装(1重)	描卷(1重)	転扱に制	成功(1年) 構装(1番)	構製(1重)	横巻(1重)	横巻(1重)	構巻(1量)	横巻(1重)	構巻(1重)	描装(1重)	本帯(二部)	気がに出り	横谷(二里)	横卷(1里)	横巻(1重)	横巻(1重)	横巻(1重)	横巻(2重)	横巻(2重)	構券(2重)	構業の制	は多くの単)	関合に単一株がの事	横巻(2里)
	テープ巻か	71.	7			4 4		館がんま		網及しまローナープ※1 構巻 (1重)		割めっていた。	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		75	787	なし	なし	なし	なし	なし	拉上	4	5 4	76	7%/	なし
77.8%	記録 と を を	N 100						0.00mm				_		_		0.05mm	0.06mm	₩	-	+	_	_	_	-+-	_	0.08mm	0.08mm
1	第三				PFA	PFA F	PFA PTA	¥ {	7 \ 1 \ 2 \ 2 \ 3 \ 4 \ 5 \ 5 \ 7	Y 1	Z Z			PFA	PFA	PFA	PFA	PFA	H.	PFA	DEA	V Z		Y I	PFA	PFA	PFA
	内部導体	神成二十八0.00万	/A/U.UZɔmm	/本/U.U25mm	7本/0.03mm	7本/0.03mm	7本/0.04mm	7本/0.04mm	74/0.025mm	14/0.02mm	/本/U.USmm	/本/0.03mm	/4/0.04mm	7本/0.04mm	7本/0.025mm	7本/0.025mm	7本/0.03mm	7本/0.03mm	7*/0.04mm	7*/0.04mm	7*/0095mm	74/0.025umi	14×10.023	7.₩/0.03mm	7本/0.03mm	7本/0.04mm	7本/0.04mm
	実施例	,		2	3	4	2	9	-],	χ) c	5)	2		12	13	14	15	-	= =	= =	2 5	2 8	3	21	22	23	24

銅めっきPEテープ^{※1}:銅めっきポリエステルテープ 複合PEテープ^{※2}:銅めっきポリエステルテープ+ポリエステルテープ

粉-

[0026]

屈曲特性は、図2に示す試験方法により行った。

この試験方法は、1本のケーブルの内部導体4心を直列につないで試験サンプル42とし、これに荷重50gfの重り43をつないで、曲げ治具41により、半径2mm、試験速度30回/分にて左右90度屈曲させることを破断するまで繰り返し、破断した時の回数を測定するものである。

[0027]

捻回特性は、図3に示す試験方法により行った。

この試験方法は、内部導体を直列につないで試験サンプル53とし、このサンプルに捻

回チャック 51 (捻回側) と捻回チャック 52 (固定側) とを設け、試料サンプル 53 を捻回距離 20 mm、荷重 50 g f、試験速度 30 回/分にて左右 180 度 (1) ~ (4) の方向に捻回させ、破断するまで綴り返し、破断した時の回数を測定するものである。

[0028]

屈曲特性及び捻回特性を測定した結果、実施例 $1\sim24$ の差動信号伝送ケーブルの屈曲 寿命はすべて 2 万回以上であった。また、実施例 $1\sim24$ の差動信号伝送ケーブルの捻回 寿命はすべて 2 0 万回以上であった。

[比較例]

[0029]

表 2 に示す材料、肉厚、線径のものを用いて、図 4 に示す構成の極細同軸ケーブル及び図 5 に示す 2 心平行同軸ケーブルを製造し、屈曲特性と捻回特性を評価した。

[0030]

【表2】

1.1	外徑	.0.34mm	長径 0.52mm、 短径 0.32mm	長径 0.52mm、 短径 0.32mm				
ジャケット	な粋	PFA	複合PEテープ ^{※3}	複合PEテープ ^{※3}				
シールド	妹 枠	すずめつき銅合金	PFA 0.056mm 2重横巻 すずめっき飼合金 複合PEテープ ^{※3}	すずめつき飼合金 複合PEテー				
	構成	横卷	2重横巻	編組				
絶緣体	肉厚	0.06mm	0.056mm	РҒА 0.056mm				
鄒	材料	PFA		PFA				
体	材料	然り線 7本/0.025mm すずめつき銅合金	すずめつき銅合金	すずめつき銅合金				
内部遺体	素線径	7本/0.025mm	7本/0.03mm	7本/0.03mm				
	構成	撚り線	蒸り線	撚り線				
	構造	極細同軸ケープル一線	2心平行同軸ケーブル 撚り線 7本/0.03mm すずめつき飼合金	3 2心平行同軸ケーブル 燃り線 7本/0.03mm すずめつき銅合金				
	比較 室	_	2	က				

.pe-テープ^{※3}: 個慈着ポリエステルデープ+ポリエステルテープ

嵌2

[0031]

比較例1は4本、比較例2、3については2本のケーブルを束ねて内部導体を直列につなぎ、実施例と同様に屈曲評価試験及び捻回評価試験を行った。

[0032]

この結果、比較例においては、いずれも屈曲寿命は1万回以上であったが、中には2万 出証特2005-301011 回に満たないものが認められた。また、比較例1の捻回寿命は2万回以上であったが、比較例2、3の中には1万回に満たないものが認められた。

[0033]

以上の結果より、実施例 $1\sim24$ のサンプルは、比較例 $1\sim3$ のサンプルと比較して、 屈曲特性と捻回特性に優れていることが確認できた。

【図面の簡単な説明】

[0034]

- 【図1】本発明の差動信号伝送ケーブルの一実施形態を示す断面図である。
- 【図2】屈曲特性の試験方法を説明する概略図である。
- 【図3】捻回特性の試験方法を説明する概略図である。
- 【図4】従来の極細同軸ケーブルを示す断面図である。
- 【図5】従来の2心平行同軸ケーブルを示す断面図である。

【符号の説明】

[0035]

- 10 極細同軸ケーブル
- 11 内部導体、12 絶縁体、13 シールド層、14 シース
- 20 2心平行同軸ケーブル
- 21 内部導体、22 絶縁体、23 シールド層、24 シース
- 30 差動信号伝送ケーブル
- 31 内部導体、32 絶縁体、33 シールド層、34 シース、35 介在
- 41 曲げ治具、42 試験サンプル、43 重り、
- 51 捻回チャック (捻回側)、52 捻回チャック (固定側)、53 試験サンプル

【書類名】図面【図1】

【図2】

図 2

【図3】

【図4】

【図5】

【書類名】要約書

【要約】

【課題】電気特性のみならず、屈曲・捻回特性等の機械特性に優れ、携帯電話の液晶ディ スプレイの信号伝送用ケーブルとして好適な差動信号伝送ケーブルを提供する。

【解決手段】内部導体31の外周にふっ素樹脂による絶縁体32を被覆したコアを4心で 撚り合わせ、コアの撚り合わせ方向とは逆方向に横巻きによるシールド層33を設け、さ らにその外周にシース34を形成し、ケーブル外径を1.0mm以下とした。

図 1 【選択図】

特願2004-194156

出願人履歴情報

識別番号

[000005120]

1. 変更年月日

1999年11月26日

[変更理由]

住所変更

住所

東京都千代田区大手町一丁目6番1号

氏 名

日立電線株式会社

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/007271

International filing date:

07 April 2005 (07.04.2005)

Document type:

Certified copy of priority document

Document details:

Country/Office: JP

Number:

2004-194156

Filing date:

30 June 2004 (30.06.2004)

Date of receipt at the International Bureau: 28 April 2005 (28.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

