Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 0 764 647 A1 (11)

(12)

(19)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 26.03.1997 Patentblatt 1997/13

(51) Int. Cl.⁶: **C07D 473/00**, C07D 473/06, C07D 473/08, A61K 31/52

(21) Anmeldenummer: 96114577.8

(22) Anmeldetag: 12.09.1996

(84) Benannte Vertragsstaaten:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC **NL PT SE**

(30) Priorität: 25.09.1995 DE 19535504

(71) Anmelder: BAYER AG 51368 Leverkusen (DE)

(72) Erfinder:

· Connell, Richard, Dr. Trumbull, CT 06611 (US)

· Goldmann, Siegfried, Dr. 42327 Wuppertal (DE)

· Müller, Ulrich, Dr. 42111 Wuppertal (DE)

· Lohmer, Stefan, Dr. 20132 Milano (IT)

· Bischoff, Hilmar, Dr. 42113 Wuppertal (DE)

· Denzer, Dirk, Dr. 42115 Wuppertal (DE)

· Grützmann, Rudi, Dr. 42657 Solingen (DE)

· Wohlfeil, Stefan, Dr. 40721 Hilden (DE)

(54)Substituierte Xanthine

(57)Substituierte Xanthine werden hergestellt durch Umsetzung der geeigneten unsubstituierten Xan-Halogenmethylphenylessigsäuren und anschließende Reaktion der Carbonester bzw. -säuren mit Phenylglycinolamin. Die substituierten Xanthine eignen sich als Wirkstoffe in Arzneimitteln, insbesondere in antiatherosklerotischen Arzneimitteln.

durch Halogen, Phenyl, Trifluormethyl, Hydroxy, Carboxyl oder durch geradkettiges oder verzweigtes Alkyl, Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 6 Kohlenstoffatomen oder durch eine Gruppe der Formel -(CO)_a-NR⁹R¹⁰substituiert sind, worin

5 .a

10

15

20

25

30

35

40

eine Zahl 0 oder 1 bedeutet,

R⁹ und R¹⁰35.

gleich oder verschieden sind und

43 :

Wasserstoff, Phenyl oder geradkettiges oder verzweigtes Alkyl oder Acyl mit jeweils bis zu 5 Kohlenstoffatomen bedeuten,

D und E

gleich oder verschieden sind und

für Wasserstoff, Halogen, Trifluormethyl, Hydroxy, Carboxyl oder für geradkettiges oder verzweigtes Alkyl, Alkoxy oder Alkoxycarbonyl mit jeweils bis zu 6 Kohlenstoffatomen stehen,

R¹

für Wasserstoff oder Cycloalkyl mit 3 bis 8 Kohlenstoffatomen steht, oder für geradkettiges oder verzweigtes Alkyl oder Alkenyl mit jeweils bis zu 8 Kohlenstoffatomen steht, die gegebenenfalls durch Cycloalkyl mit 3 bis 6 Kohlenstoffatomen, Phenyl oder durch einen 5- bis 6-gliedrigen aromatischen Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O substituiert sind, oder

für Phenyl oder einen 5- bis 6-gliedrigen aromatischen Heterocylcus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O steht, wobei die Ringsysteme gegebenenfalls bis zu 3-fach gleich oder verschieden durch Halogen, Phenyl, Trifluormethyl oder geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 5 Kohlenstoffatomen, Hydroxy oder durch eine Gruppe der Formel -NR¹¹R¹² substituiert sind,

R¹¹ und R¹²

die oben angegebene Bedeutung von R⁹ und R¹⁰ haben und mit dieser gleich oder verschieden sind,

für ein Sauerstoff- oder Schwefelatom steht,

R²

für Mercapto, Hydroxy, geradkettiges oder verzweigtes Alköxy mit bis zu 8 Kohlenstoffatomen oder für die Gruppe der Formel

45

steht, worin

R¹³

Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet,

50 R

Wasserstoff, Phenyl oder einen 5- bis 6-gliedrigen aromatischen Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O bedeutet,

R¹⁵

Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 8 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Hydroxy substituiert ist.

55

und deren Salze.

Die erfindungsgemäßen substituierten Xanthine können auch in Form ihrer Salze vorliegen. Im allgemeinen seien hier Salze mit organischen oder anorganischen Basen oder Säuren genannt.

Im Rahmen der vorliegenden Erfindung werden physiologisch unbedenkliche Salze bevorzugt. Physiologisch

.....

	a	eine Zahl 0 oder 1 bedeutet,
5	R ⁹ und R ¹⁰	gleich oder verschieden sind und Wasserstoff, Phenyl oder geradkettiges oder verzweigtes Alkyl oder Acyl mit jeweils bis zu 4 Kohlenstoffatomen bedeuten,
	D und E:	gleich oder verschieden sind und für Wasserstoff, Fluor, Chlor, Brom, Trifluormethyl, Hydroxy oder geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 4 Kohlenstofatomen stehen,
10	R ¹	für Wasserstoff, Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl oder für geradkettiges oder verzweigtes Alkyl oder Alkenyl mit jeweils bis zu 6 Kohlenstoffatomen steht, die gegebenenfalls durch Cylcopropyl, Cyclopentyl, Cyclohexyl, Phenyl, Phristyl oder Thiopyl cybrithiest sind, eder
15		Pyridyl oder Thienyl substituiert sind, oder für Phenyl, Pyridyl, Furyl oder Thienyl steht, die gegebenenfalls bis zu 2-fach gleich oder verschieden durch Fluor, Chlor, Brom, Phenyl, Trifluormethyl oder geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 4 Kohlenstoffatomen oder durch eine Gruppe der Formel -NR ¹¹ R ¹² substituiert sind,
		worin
. 20	R ¹¹ und R ¹²	die oben angegebene Bedeutung von ${\sf R}^9$ und ${\sf R}^{10}$ haben und mit dieser gleich oder verschieden sind,
	L	für ein Sauerstoff- oder Schwefelatom steht,
25	R ²	für Mercapto, Hydroxy, geradkettiges oder verzweigtes Alkoxy mit bis zu 6 Kohlenstoff- atomen oder für die Gruppe der Formel
30		R ¹⁴
		-NR ¹³ /CH_R ¹⁵
35	• •	
		steht, worin
40	R ¹³	Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet,
	R ¹⁴	Wasserstoff, Phenyl, Pyridyl, Furyl oder Thienyl bedeutet,
45	R ¹⁵ .	Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Hydroxy substituiert ist,
-	und deren Salze. Besonders bevorzugt sind in welcher	Verbindungen der allgemeinen Formel (I),
50	A	für einen Rest der Formel
	•	

L

für ein Sauerstoff- oder Schwefelatom steht.

 R^2

für Mercapto, Hydroxy, geradkettiges oder verzweigtes Alkoxy mit bis zu 5 Kohlenstoffatomen oder für die Gruppe der Formel

5

R¹⁴ | -NR¹³/CH R¹⁵

15

10

steht, worin

R¹³

Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet,

20 R14

Wasserstoff, Phenyl, Pyridyl oder Thienyl bedeutet,

R¹⁵

Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Hydroxy substituiert ist,

25 und deren Salze.

Ganz besonders bevorzugt sind Verbindungen der allgemeinen Formel (I), in welcher

Δ

für einen Rest der Formel

35

30

40

steht, worin

R3, R4, R6 und R7

Wasserstoff, geradkettiges oder verzweigtes Alkyl mit jeweils bis zu 4 Kohlenstoffatomen bedeuten,

45

T, V, X und Y gleich oder verschieden sind und

ein Sauerstoff- oder Schwefelatom bedeuten,

R⁵ und R⁸

gleich oder verschieden sind und

Wasserstoff, Fluor, Chlor, Brom, Cyclopropyl, Cyclopentyl, Cyclohexyl oder für geradkettiges oder verzweigtes Alkyl oder Alkenyl mit jeweils bis zu 3 Kohlenstoffatomen bedeuten, die gegebenenfalls durch Cyclopropyl, Cyclopentyl, Cyclohexyl, Phenyl, Pyridyl, Thienyl oder Furyl substituiert sind, die ihrerseits bis zu 2-fach gleich oder verschieden durch Phenyl, Benzyl, Fluor, Chlor, Brom, Hydroxy oder durch geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 3 Kohlenstoffatomen substituiert

sein können,

ode

Phenyl, Pyridyl, Thienyl oder Furyl bedeuten, die gegebenenfalls bis zu 2-fach gleich oder verschieden durch Fluor, Chlor, Brom, Phenyl, Trifluormethyl, Hydroxy oder durch

55

$$R^{16}-H_2C$$
 E
 R^1
 C
 R^2
(III)

10 in welcher

141.

5

15

25

30

40

D, E, L und R¹ die oben angegebene Bedeutung haben,

R¹⁶ für Hydroxy oder Halogen, vorzugsweise für Brom steht,

und

R² für geradkettiges oder verzweigtes Alkoxy mit bis zu 8 Kohlenstoffatomen steht,

20 in inerten Lösemitteln und in Anwesenheit von Basen und/oder Hilfsmitteln in Verbindungen der allgemeinen Formel (la)

$$A-H_2C$$

$$D$$

$$E$$

$$R^1$$

$$C$$

$$R^2$$

$$(Ia)$$

in welcher

A, D, E, L, R¹ und R² die oben angegebene Bedeutung haben,

überführt und diese gegebenenfalls (R² = OH) verseift, oder gegebenenfalls diese Säuren mit Glycinolen und Glycinolderivaten der allgemeinen Formel (IV)

45 in welcher

R¹³, R¹⁴ und R¹⁵ die oben angegebene Bedeutung haben,

in inerten Lösemitteln, gegebenenfalls in Anwesenheit von Basen und/oder Hilfsmitteln umsetzt.

Das erfindungsgemäße Verfahren kann durch folgendes Formelschema beispielhaft erläutert werden:

Die erfindungsgemäßen Verfahren werden im allgemeinen, bei Normaldruck durchgeführt. Es ist aber auch möglich, die Verfahren bei Überdruck oder bei Unterdruck durchzuführen (z.B. in einem Bereich von 0,5 bis 5 bar).

Die Verseifung der Carbonsäureester erfolgt nach üblichen Methoden, indem man die Ester in inerten Lösemitteln mit üblichen Basen behandelt.

5

20

45

Als Basen eignen sich für die Verseifung die üblichen anorganischen Basen. Hierzu gehören bevorzugt Alkalihydroxide oder Erdalkalihydroxide wie beispielsweise Natriumhydroxid, Kaliumhydroxid oder Bariumhydroxid, oder Alkalicarbonate wie Natrium- oder Kaliumcarbonat oder Natriumhydrogencarbonat. Besonders bevorzugt wird Natriumhydroxid oder Kaliumhydroxid eingesetzt.

Als Lösemittel eignen sich für die Verseifung Wasser oder die für eine Verseifung üblichen organischen Lösemittel. Hierzu gehören bevorzugt Alkohole wie Methanol, Ethanol, Propanol, Isopropanol oder Butanol, oder Ether wie Tetrahydrofuran oder Dioxan, oder Dimethylformamid oder Dimethylsulfoxid. Besonders bevorzugt werden Alkohole wie Methanol, Ethanol, Propanol oder Isopropanol verwendet. Ebenso ist es möglich, Gemische der genannten Lösemittel einzusetzen.

Die Verseifung kann auch mit Säuren wie beispielsweise Trifluoressigsäure, Essigsäure, Chlorwasserstoffsäure, Bromwasserstoffsäure, Methansulfonsäure, Schwefelsäure oder Perchlorsäure, bevorzugt mit Trifluoressigsäure erfolgen.

Die Verseifung wird im allgemeinen in einem Temperaturbereich von 0°C bis +100°C, bevorzugt von +20°C bis +80°C durchgeführt.

Im allgemeinen wird die Verseifung bei Normaldruck durchgeführt. Es ist aber auch möglich, bei Unterdruck oder bei Überdruck zu arbeiten (z.B. von 0,5 bis 5 bar).

Bei der Durchführung der Verseifung wird die Base im allgemeinen in einer Menge von 1 bis 3 Mol, bevorzugt von 1 bis 1,5 Mol bezogen auf 1 Mol des Esters eingesetzt. Besonders bevorzugt verwendet man molare Mengen der Reaktanden.

Als Lösemittel für die Umsetzung mit Glycinolen eignen sich hierbei inerte organische Lösemittel, die sich unter den Reaktionsbedingungen nicht verändern. Hierzu gehören Ether, wie Diethylether oder Tetrahydrofuran, Halogen-kohlenwasserstoffe wie Dichlormethan, Trichlormethan, Tetrachlormethan, 1,2-Dichlorethan, Trichlorethan, Tetrachlorethan, 1,2-Dichlorethylen oder Trichlorethylen, Kohenwasserstoffe wie Benzol, Xylol, Toluol, Hexan, Cyclohexan oder Erdölfraktionen, Nitromethan, Dimethylformamid, Aceton, Acetonitril oder Hexamethylphosphorsäuretriamid. Ebenso ist es möglich, Gemische der Lösemittel einzusetzen. Besonders bevorzugt ist Dichlormethan, Tetrahydrofuran, Aceton oder Dimethylformamid.

Als Basen können hier im allgemeinen anorganische oder organische Basen eingesetzt werden. Hierzu gehören vorzugsweise Alkalihydroxide wie zum Beispiel Natriumhydroxid oder Kaliumhydroxid, Erdalkalihydroxide wie zum Beispiel Bariumhydroxid, Alkalicarbonate wie Natriumcarbonat oder Kaliumcarbonat, Erdalkalicarbonate wie Calciumcarbonat, oder Alkali- oder Erdalkalialkoholate wie Natrium- oder Kaliummethanolat, Natrium- oder Kaliumethanolat oder Kalium-tert.butylat, oder organische Amine (Trialkyl(C₁-C₆)amine) wie Triethylamin, oder Heterocyclen wie 1,4-Diazabicyclo[2.2.2]octan (DABCO), 1,8-Diazabicyclo[5.4.0]undec-7-en (DBU), Pyridin, Diaminopyridin, Methylpiperidin oder Morpholin. Es ist auch möglich als Basen Alkalimetalle wie Natrium und deren Hydride wie Natriumhydrid einzusetzen. Bevorzugt sind Natrium- und Kaliumcarbonat und Triethylamin.

Die Base wird in einer Menge von 1 mol bis 5 mol, bevorzugt von 1 mol bis 3 mol, bezogen auf 1 mol der entsprechenden Carbonsaure eingesetzt.

Die Reaktion wird im allgemeinen in einem Temperaturbereich von 0°C bis 150°C, bevorzugt von + 20°C bis + 110°C durchgeführt.

Die Umsetzung kann bei normalen, erhöhtem oder bei erniedrigtem Druck durchgeführt werden (z.B. 0,5 bis 5 bar). Im allgemeinen arbeitet man bei Normaldruck.

Die Umsetzung mit Phenylglycinolen kann gegebenenfalls auch über die aktivierte Stufe der Säurehalogenide, die aus den entsprechenden Säuren durch Umsetzung mit Thionylchlorid, Phosphortrichlorid, Phosphortribromid oder Oxalylchlorid hergestellt werden können, verlaufen.

Die oben aufgeführten Basen können gegebenenfalls auch als säurebindende Hilfsmittel eingesetzt werden.

Als Hilfsmittel eignen sich ebenso Dehydratisierungsreagenzien. Dazu gehören beispielsweise Carbodiimide wie Diisopropylcarbodiimid, Dicyclohexylcarbodiimid oder N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimid-Hydrochlorid oder Carbonylverbindungen wie Carbonyldiimidazol oder 1,2-Oxazoliumverbindungen wie 2-Ethyl-5-phenyl-1,2-oxazolium-3-sulfonat oder Propanphosphonsäureanhydrid oder Iso-butylchloroformat oder Benzotriazolyloxy-tris-(dimethylamino)phosphoniumhexa-fluorophosphat oder Phosphorsäurediphenyl-esteramid oder Methan-sulfonsäurechlorid, gegebenenfalls in Anwesenheit von Basen wie Triethylamin oder N-Ethylmorpholin oder N-Methylpiperidin oder Dicyclohexylcarbodiimid und N-Hydroxysuccinimid.

Die säurebindenden Mittel und Dehydratisierungsreagenzien werden im allgemeinen in einer Menge von 0,5 bis 3 mol, bevorzugt von 1 bis 1,5 mol, bezogen auf 1 mol der entsprechenden Carbonsäuren, eingesetzt.

Die Verbindungen der allgemeinen Formeln (III) und (IV) sind an sich bekannt oder nach üblichen Methoden herstellbar. (Lösemittelkontrolle ohne Substanz) um 50% inhibiert ist.

Tabelle 1:

BspNr.	ApoB IC ₅₀ [nM]
112	4.0
113	58.0
114 .	39.0
115	240.0
117	3,0
118	7.0
119	11.0
120	28.0
121	36.0
122	48.0
123	8.0
126	41.0
129	34.0
130	25.0
131	135.0
132	743.0
133	5.0
136	23.0
137	124.0
138	403.0
139	90.0
140	10.0
143	11.0
146	6.0
149	9.0
151	34.0
152	169.0
154	3.0
155	2.0
156	25.0

	BspNr.	ApoB IC ₅₀ [nM
5	197	43.0
3	198	5.0
name t	199	5.0
	200	24.0
10	201	11.0
	202	9.0
	203	63.0
15	204	16.0
	207	40.0
	211	9.0
20	212	8.0
:	215	3.0
•	216	34.0
25	217	11.0
	218	8.0
	219	5.0
30	220	16.0
	223	4.0
	224	4.0
35	225	4.0
	226	11.0
	227	40.0

40

45

2. Bestimmung der VLDL-Sekretion in vivo am Hamster

Der Effekt der Testsubstanzen auf die VLDL-Sekretion in vivo wird am Hamster untersucht. Hierzu werden Goldhamster nach Prämedikation mit Atropin (83 mg/kg s.c.) mit Ketavet (83 mg/kg s.c.) und Nembutal (50 mg/kg i.p.) narkotisiert. Wenn die Tiere reflexfrei geworden sind, wird die V. jugularis freipräpariert und kanüliert. Anschließend werden 0,25 ml/kg einer 20%igen Lösung von Triton WR-1339 in physiologischer Kochsalzlösung appliziert. Dieses Detergens hemmt die Lipoproteinlipase und führt so zu einem Anstieg des Triglyceridspiegels aufgrund eines ausbleibenden Katabolismus von sezernierten VLDL-Partikeln. Dieser Triglyceridanstieg kann als Maß für die VLDL-Sekretionsrate herangezogen werden. Den Tieren wird vor sowie ein und zwei Stunden nach Applikation des Detergens durch Punktion des retroorbitalen Venenplexus Blut entnommen. Das Blut wird zwei Stunden bei Raumtemperatur, anschließend über Nacht bei 4°C inkubiert, um die Gerinnung vollständig abzuschließen. Danach wird 5 Minuten bei 10.000 g zentrifugiert. Im so erhaltenen Serum wird die Triglyceridkonzentration mit Hilfe eines modifizierten kommerziell erhältlichen Enzymtests bestimmt (Merckotest® Triglyceride Nr. 14354). 100 µl Serum werden mit 100 µl Testreagenz in 96-Lochplatten versetzt und 10 Minuten bei Raumtemperatur inkubiert. Anschließend wird die optische Dichte bei einer Wellenlänge von 492 nm in einem automatischen Platten-Lesegerät bestimmt (SLT-Spectra). Serumproben mit einer zu hohen Triglyceridkonzentration werden mit physiologischer Kochsalzlösung verdünnt. Die in den Proben enthaltene Triglyceridkonzentration wird mit Hilfe einer parallel gemessenen Standardkurve bestimmt. Testsubstanzen werden in

Tabelle 3

BspNr.	Absorption ED ₅₀ oder % Inhibition (mg/kg p.o.)
112	3 mg/kg
114	< 2 mg/kg
117	3 mg/kg
123	2 mg/kg
129	20 mg/kg
130	5 mg/kg
133	2 mg/kg
136	2 mg/kg
140	> 3 mg/kg
143	> 3 mg/kg
146	> 3 mg/kg
149	> 3 mg/kg
151	6 mg/kg
154	< 2 mg/kg
157	> 2 mg/kg
160	3 mg/kg
167	> 2 mg/kg
169	2 mg/kg
174	< 2 mg/kg
178	3 mg/kg
179	> 3 mg/kg
182	2 mg/kg
191	>> 3 mg/kg
197	3 mg/kg
201	> 3 mg/kg
227	> 6 mg/kg

Die statistische Auswertung erfolgt mit Student's t-Test nach vorheriger Überprüfung der Varianzen auf Homogenität.

Substanzen, die zu einem Zeitpunkt den postprandialen Serumtriglyceridanstieg, verglichen mit dem der unbehandelten Kontrollgruppe, statistisch signifikant (p <0,05) um mindestens 30 % vermindern, werden als pharmakologisch wirksam angesehen.

4. Hemmung der VLDL-Sekretion in vivo (Ratte)

Die Wirkung der Testsubstanzen auf die VLDL-Sekretion wird ebenfalls an der Ratte untersucht. Dazu wird Ratten 500 mg/kg Körpergewicht (2,5 ml/kg) Triton WR-1339, gelöst in physiologischer Kochsalzlösung, intravenös in die Schwanzvene appliziert. Triton WR-1339 inhibiert die Lipoproteinlipase und führt somit durch Hemmung des VLDL-Katabolismus zu einem Anstieg des Triglycerid- und Cholsterinspiegels. Diese Anstiege können als Maß für die VLDL-

mg/kg, vorzugsweise etwa 0,01 bis 0,5 mg/kg Körpergewicht zur Erzielung wirksamer Ergebnisse zu verabreichen, und bei oraler Applikation beträgt die Dosierung etwa 0,01 bis 20 mg/kg, vorzugsweise 0,1 bis 10 mg/kg Körpergewicht.

Trotzdem kann es gegebenenfalls erforderlich sein, von den genannten Mengen abzuweichen, und zwar in Abhängigkeit vom Körpergewicht bzw. der Art des Applikationsweges, vom individuellen Verhalten gegenüber dem Medikament, der Art von dessen Formulierung und dem Zeitpunkt bzw. Intervall, zu welchem die Verabreichung erfolgt. So kann es in einigen Fällen ausreichend sein, mit weniger als der vorgenannten Mindestmenge auszukommen, während in anderen Fällen die genannte obere Grenze überschritten werden muß. Im Falle der Applikation größerer Mengen kann es empfehlenswert sein, diese in mehreren Einzelgaben über den Tag zu verteilen.

o Verwendete Abkürzungen:

TFA

= Trifluoressiasäure

```
= Acetyl
     Ac
               = broad singlet
     bs
               = Benzyl
     Bn
               = Benzoyl
     Bz
     CI
               = Chemische Ionisation
     cDec
               = cyclo Decyl
               = cyclo Dodecyl
     cDodec
     cHept
               = cyclo Heptyl
    cHex
               = cyclo Hexyl
     cNon
               = cyclo Nonyl
     cOct
               = cyclo Octyl
     cPent
               = cyclo Pentyl
    cPr
               = cyclo Propyl
    cUndec
               = cyclo Undecyl
25
               = doublet
    d
    DCC
               = Dicyclohexylcarbodiimid
    DCCI
               = N'-(3-Dimethylaminopropyl)-N'-ethylcarbodiimid
               = doublet doublets
    dd
    DDQ
               = 2,3-Dichlor-5,6-dicyano-1,4-benzochinon
.30
    dia
               = Diastereomer
    DMAP
               = 4-(N,N-Dimethylamino)pyridin
    DMF

    ■ N,N-Dimethylformamid

    DMSO
               = Dimethylsulfoxid
35
    ΕI
               = Elektronenstoß-lonisation
               = Enantiomer
    ent
    Εt
               = Ethyl
    FAB
               = Fast Atom Bombardment
    HOBT
               = 1-Hydroxy-1H-benzotriazol
    Hz
               = Hertz
    iBu
               = iso Butyl
    iPr
               = iso Propyl
    m
               = multiplet
    Me
               = Methyl
               = Mesyl
    Mes
    NBS
               = Bromsuccinimid
               = normales Benzyl
    nBu
    nPr
               = normales Propyl
    Ph
               = Phenyl
    PPA
               = Polyphosphorsäure
50
    loTq
               = para Tolyl
    pTos
               = para Tosyl
               = Racemat
    rac
    RT
               = Raumtemperatur
55
               = sinalet
    s
    sBu
               = sekundär Butyl
    tBu
               = tertiär Butyl
               = triplet
```

Beispiel I (Methode A)

5

10

15

35

45

1,3-Dimethyl-8-(4-methyl)phenyl-xanthin

O N N N CH

8.5 g (50 mmol) 5,6-Diamino-1,3-dimethyluracil Hydrat wurden unter Rückfluß in Ethanol (180 ml) gelöst. Zu diese Lösung wurde eine Lösung von 6.0 g (50 mmol) p-Tolylaldehyd sowie 4.5 g Essigsaeure in Ethanol (50 ml) gegeben. Es wurde für 1 Std unter Rückfluß erhitzt, auf Raumtemperatur abgekühlt und abgesaugt. Die Kristalle wurden mit Diethylether nachgewaschen.

Die so erhaltenen Kristalle wurden vorgelegt und mit 36.6 g (210 mmol) Azodicarbonsaeurediethylester versetzt. Es wurde 5 Min. auf 90°C erwärmt, wobei ein Feststoff ausfiel. Die Lösung wurde auf Raumtemperatur abgekühlt und mit Ethanol (100 ml) verdünnt. Der ausgefallene Feststoff wurde abgesaugt, mit Diethylether gewaschen und i. Vak. getrocknet.

25 Ausbeute 10.9 g (81%);

 $R_f = 0.56$ (Dichlormethan: Methanol, 20:1);

 $Fp = >240 \, {}^{\circ}C;$

Masse (berechnet) für $C_{14}H_{14}N_4O_2 = 270.30$, Massenspektrum (EI, rel. Intensität) 270 (100%);

¹H NMR (200 MHz, Pyridin-D₅) δ 8.29 (d, J = 8.62 Hz, 2 H), 7.33 (d, J = 7.89 Hz, 2 H), 4.98 (bs, 1 H), 3.72 (s, 3 H), 3.53 (s, 3 H), 2.29 (s, 3 H).

Beispiel II (Methode B)

1,3-Dimethyl-8-[1-(3-chlorphenyl)methyl]xanthin

O N N N N C I

11.94 g (70 mmol) 3-Chlorphenylessigsäure wurden in 100 ml Dichlormethan gelöst, mit einem Tropfen DMF versetzt und auf 0°C gekühlt. Zu dieser Lösung gab man langsam 8.74 g (73.5 mmol) Thionylchlorid und rührte bis zum Ende der Gasentwicklung (ca. 1 h), wobei man das Reaktionsgemisch auf Raumtemperatur erwärmen ließ.

11.91 g (70 mmol) 5,6-Diamino-1,3-dimethyluracil Hydrat wurden in 1M NaOH (150 ml) und Wasser (350 ml) vorgelegt und auf 45°C erwärmt bis eine homogene Lösung entstand. Man kühlte diese Lösung auf Raumtemperatur ab und gab die Säurechloridlösung (s.o.) unter kräftigem Rühren hinzu. Es wurden noch weitere 16 h bei Raumtemperatur gerührt. Der ausgefallene Feststoff wurde abgesaugt und mit Wasser gewaschen.

Dieser Feststoff wurde in Methanol (400 ml) suspendiert und mit 4 M NaOH (400 ml) 1 h unter Rückfluß erhitzt. Nach Abkühlen auf Raumtemperatur säuerte man die Lösung mit konz. HCl auf pH 3 an, wobei das gewünschte Produkt ausfiel. Der ausgefallene Feststoff wurde abgesaugt, mit Wasser und Methanol gewaschen und im Umlufttrockenschrank getrocknet.

15		
20		
25		-R ₅
30		Z-I
35	1	μ <u>α</u>
40		
4 <u>5</u>		•

BspNr.	R⁴	R³	R ⁵	Ţ	. ^	R _f *	F (°C)	CH ₃ thode	Massen- spektrum	Ausbeute (% d.Th.)
IV	СН	СН,	CH,	0	0	0.57 (L)	>240	د.	*194 (100%)	20
۸	СН,	CH,	с,н,	0	0	0.56 (K)	>240	S	*208 (100%)	46
ΛI	СН,	сн,	сРго	0	.0	0.35 (K)	>240 .	A	*220 (100%)	47
VII	СН3	сн3	-CH ₂ cHex	o [.]	0	0.64 (L.)	238	В	*276 (40%) 194 (100%)	72
VIII	сн³	СН3		0 .	0	0.80 (L)	>240	В	276 (100%)	47
X	СН3	снз	P. S.	0	0	0.67 (K)	>240	٧	*270 (100%)	82
×	сн³	снз	CH ₃	. 0	0	0.86 (L.)	>240	¥	*270 (100%)	79
IX	сн³	сн³	φ, - α,	0	0	0.80 (L)	>240	Ą	*284 (100%)	69

5	Ausbeute (% d.Th.)	88	82	. 52	83	70		64	64	47
10	Massen- spektrum		276 (100%)	276 (100%)	341 (100%)	283 (100%)	*284 (100%)	*284 (100%)	*284 (100%)	*346 (100%)
15	CH ₃ thode	A	¥	Ą	· ·	А	В .	В	В	В
20	F (°C)	>240	>240	>240	>240	>240	>240	>240	>240	>240
25	R _f *		0.30 (K)	0.38 (K)	0.54 (K)	0.69 (K)	0.68 (L)	0.68 (L.)	0.28 (K)	0.78 (L)
30	Λ	0	0	0	0	0	0	0	0	0
35	Т	0	0	0	· O	.0	0	0	0	0
40	R ⁵	S	H ₃ C	√S CH,	Br S	-сн=сн	P	CH,	To the state of th	
45	R³	сн³	СН3	сн³	снз	СН3	сн³	CH ₃	сн³	СН3
	R⁴	CH ₃	СН3	сн³	сн³	сн³	СН3	CH ₃	сн³	СН3
50	BspNr.	XXII	XXIII	ΛΙΧΧ	XXV	XXVI	XXVII	XXVIII	XIXX	xxx

BspNr.	₩.	R³	R ⁵	Т	Λ	R,*	F (°C)	CH ₃ thode	Massen- spektrum	Ausbeute (% d,Th.)
XLII	СН	СН	cH,	S	0	0.30 (K)	>240	S	*210 (100%)	51
XLIII	СН	СН,	C_2H_5	S	0	0.62 (K)	>240	S	*224 (100%)	78
XLIV	сн³	сн³	S	S	0	0.79 (K)	>240	¥.	*278 (100%)	51
ΧŢ,V	сн³ сн³	CH³	£	S	0	0.80 (K)	>240	¥.	*286 (100%)	59

Tabelle II:

5

10

15

20

25

30

35

40

50

55

H₃C OR 16

BspNr.	R ¹	R ¹⁸	R _f *
XLIII	(R&S) iPr	CH ₃	0.86 (S)
ΙL	(R&S) iBu	tBu	0.84 (R)
L	(R&S) cPent	CH ₃	0.59 (C)
LI	(R&S) cHex	CH ₃	0.38 (B)
LII	(R&S) cHex	tBu	0.71 (P)
LIII	(R&S) cHept	CH ₃	0.57 (P)
LIV	(R&S) cHept	tBu	0.32 (P)

Beispiel LV

2-(4-Brommethyl-phenyl)-2-cyclopentyl-essigsäure-tert.butylester

racemisch CO₂C(CH₃)₃

27.4 g (0.1 mol) der Verbindung aus Beispiel XLVII werden in 200 ml Tetrachlormethan gelöst und zum Sieden erhitzt. Nach Zugabe von 0.82 g Azobisisobutyronitril werden 18.7 g (0.105 mol) N-Bromsuccinimid portionsweise zugegeben und anschließend 1 h refluxiert, auf 0°C abgekühlt und vom Succinimid abfiltriert. Nach Einengen des Filtrats fällt das Produkt aus. Es wird mit Petrolether (40/60) gewaschen und getrocknet. Ausbeute: 20 g (57% d.Th.);

Fp.: 73-76°C.

Die Verbindungen der Tabelle III werden analog der Vorschrift des Beispiels LV hergestellt:

Ausbeute 9.3 g (88%);

R_f = 0.48 (Dichlormethan: Methanol, 20:1);

Masse (berechnet) für $C_{32}H_{38}N_4O_4 = 542.68$, Massenspektrum (CI (NH₃), rel. Intensität) 560 (25%, M+NH₄), 543 (100%);

¹H NMR (300 MHz, CDCl₃) δ 7.42 (d, 2 H), 7.28-7.20 (m, 4 H), 6.95 (d, 2 H), 5.60 (s, 2 H), 3.61 (s, 3 H), 3.40 (s, 3 H), 3.10 (d, 1 H), 2.42 (m, 1 H), 2.40 (s, 3 H), 1.90 (m, 1 H), 1.70-1.20 (m, 6 H), 1.41 (s, 9 H), 0.95 (m, 1 H).

Die in den Tabellen 1, 2 und 3 aufgeführten Verbindungen werden in Analogie zur Vorschrift des Beispiels 1 hergestellt:

P M.	1 n	Şa	D20	* 0	2		Ambanta	V A
bspivr.	K	R	R	Nr.	(°C)	spektrum	Auspeate (% d.Th.)	Ausgangs- verbindung
. 10	(R&S)cPent		tBu ,	0.11 (7)			. 84	VIII
Ξ	(R&S)cPent	£ 5	tBu	0.31 (J)	105	543 (60%) 57 (100%)	09	XI
12	(R&S)cPent	CH ₃	tBu	0.37 (J)	86	543 (100%)	64	X
13	(R&S)cPent	д,	tBu	0.39 (J)	88 (Schaum)	557 (100%)	. 99	ΙΧ
14	(R&S)cPent	-C,H,	сн³	0.46 (J)	104 (Schaum)	563 (100%)	52	IIX
15	(R&S)cPent	10-	tBu	0.24 (J)	90 (Schaum)	563 (80%) 57 (100%)	40	IIIX
16	(R&S)cPent	-CF,	tBu	0.26 (J)		597 (80%) 57 (100%)	53	ΧΙΛ
17	(R&S)cPent		tBu .	0.36 (J)	96 (Schaum)	*559 (100%)	51	XV
18	(R&S)cPent	N(CH,),	tBu	0.06 (J)	(Schaum)	571 (80%) 298 (100%)	36	XVI
19	(R&S)cPent	-NC. Hu	tBu	0.3 (J)	84 · (Schaum)	600 (100%) 599 (100%)	61	XVII

ċ	
٥	
Pol	
3	
⊱	

	Aus					X	X	X	×	×	=
	Ausheute (% d.Th.)	89	80	98	44	55	51	56	58	61	40
	Masssen- spektrum	543 (60%) 57 (100%)	515 (100%)	571 (100%)	509 (100%)	557 (100%)	557 (60%) 57 (100%)	557 (100%)	619 (60%) 57 (100%)	577 (40%) 57 (100%)	577 (100%)
^oR²¹	F (°C)	136	131	82	92	148	65 (Schaum)	165	90 (Schaum)	156	135
	R _f *	0.26 (J)	0.21 (J)	0.76 (K)	0.23 (J)	0.29 (J)	0.40 (J)	0.17 (J)	0.35 (J)	0.26 (J)	0.21 (J)
	R ²²	Н	Н	Н	I	2-CH ₃	3-CH ₃	4-CH ₃	4-Phenyl	2-C1	3-Cl
o o o o o o o o o o o o o o o o o o o	R ²¹	1Bu	CH,	tBu .	CH	tBu	tBu	tBu	tBu	tBu	tBu .
	R¹	(R&S) cPent	(R&S) cHex	(R&S) c Hept	(R&S) Phenyl	(R&S) cPent	(R&S) cPent	(R&S) cPent	(R&S) cPent	(R&S) cPent	(R&S) cPent
•	BspNr.	59	30	31	32	33	34	35	36	37	38

::
(F)
₹
ق
డై
_

	Ausgangs- verbindung	III	IIAXXX	XXXVIII	XIXX		XL .	XL1	
	Ausbeute (% d.Th.)	76	99	69	49	57	46	65	69
	Massen- spektrum	481 (100%) 57 (90%)	495 (50%) 57 (100%)	509 (100%) 57 (80%)	479 (80%) 55 (100%)	(100%)	529 (100%)	521 (85%) 55 (100%)	495 (60%) 57 (100%)
	F (°C)	QI	167	121-24	128	58 (Schaum)	58 (Schaum)	166	:
° OR ²³	R, *	0.28 (J)	0.22 (J)	0.34	0.40 (J)	0.26 (J)	0.40 (J)	0.58 (J)	0.64 (J)
O==	Λ	0	0	0	0	0	0	0	. 0
° ~	Т	0	0	0	0	0	0	0	ó
z z	R ²³	tBu	tBu.	tBu	CH3	сн³	CH3	сн³	ıBı
μ - z - z - z - z - z - z - z - z - z -	R ⁵	Н	сн₃	С2Н5	cPro	Phenyl	-CH,	$\langle \rangle$	Н
	R4	C_2H_5	C_2H_5	C_2H_5	C ₂ H ₅	C_2H_5	C_2H_5	C_2H_5	iBu
	R³	C ₂ H ₅	СН3						
	R¹	(R&S) cPent	(R&S) cPent						
	Bsp Nr.	43	44	45	46	47	48	49	80

Beispiel 55

5

10

15

20

temperatur nachgerührt. Man kühlt dieses anschließend mit einem Eisbad wieder auf 0°C ab und versetzt mit 50 ml Methanol. Es wird über Nacht bei Raumtemperatur nachgerührt. Das Lösemittel wird abrotiert, der Rückstand wird in CH₂Cl₂ und Wasser aufgenommen und extrahiert. Die organische Phase wird über Natriumsulfat getrocknet, dabei fal-Ien Kristalle aus, die mit Zugabe von wenig Methanol wieder in Lösung gehen. Das Natriumsulfat wird abgesaugt, die Mutterlauge wird einrotiert. Der Rückstand (Kristalle) wird in CH₂Cl₂ verrührt und abgesaugt.

30

0,27 (Dichlormethan:Methanol, 20:1) R_f =

160°C Fp=

In Analogie zur Vorschrift des Beispiels 55 werden die in Tabelle 4 aufgeführten Verbindungen hergestellt:

Man löst 5.26 g (9.18 mmol) der Verbindung aus Beispiel 41 in 50 ml CH₂Cl₂ und kühlt die Lösung auf -78°C ab. Dazu tropft man 45.9 ml (45.9 mmol; 1 molar in CH₂Cl₂) Bortribromid langsam dazu. Das Gemisch wird 2 Stunden bei Raum-

Ausbeute

(36%)

35

40

45

50

 $R_i = 0.23$ (Dichlormethan: Methanol, 20:1);

- 10

15

20

25

30

35 -

40

45

50

55

Masse (berechnet) für $C_{28}H_{30}N_4O_4$ = 486.58, Massenspektrum (FAB, rel. Intensität) 487 (100%);

 1 H NMR (300 MHz, CDCl₃) $_{0}$ 7.45 (d, J = 8.19 Hz, 2 H), 7.28-7.23 (m, 4 H), 6.98 (d, J = 8.18 Hz, 2 H), 5.60 (s, 2 H), 3.64 (s, 3 H), 3.40 (s, 3 H), 3.23 (d, J = 11.08 Hz, 1 H), 2.41 (m, 1 H), 2.40 (s, 3 H), 1.92 (m, 1 H), 1.70-1.20 (m, 6 H), 0.97 (m, 1 H).

Die in den Tabellen 5, 6 und 7 aufgeführten Verbindungen werden in Analogie zur Vorschrift des Beispiels 58 hergestellt:

BspNr.	R1	R ⁵	R _f *	F (°C)	Massen- spektrum	Ausbeute (% d.Th.)	Ausgangs-
67	(R&S)cPent		0.39 (J)			100	10
89	(R&S)cPent	P. S.	0.28 (K)	185	487 (100%)	001	
69	(R&S)cPent	T.	0.24 (K)	155	487(100%)	84	12
70	(R&S)cPent	£ 5	0.35 (K)	165	501 (100%)	96	13
71	(R&S)cPent	₩d	0.36 (K)	218	549 (100%)	56	14
72	(R&S)cPent	D-C1	0.33 (K)	130 (Schaum)	507 (100%)		15
73	(R&S)cPent		0.31 (K)	132	541 (80%) 149 (100%)	85	16
74	(R&S)cPent		0.35 (K)	122 (Schaum)	503 (100%)	88	17
75	(R&S)cPent	NICH.),	0.29 (K)	>245	*516 (70%) 307 (100%)	88	. 18
76	(R&S)cPent	-N(C ₂ H ₃) ₂	0.46 (K)	(Schaum)	544 (100%)	100	19

÷
ية
ᇹ
ð
Ë

X R25	<u>.</u>	· 0=	₹ -\~
CH ₃			

BspNr.	R¹	R ²⁵	R _f *	F (°C)	Masssen- spektrum	Ausbeute (% d.Th.)	Ausgangs- verbindung
98	(R&S) cPent	Н	0.44 (K)	97	487 (100%)	96	
87	(R&S) cHex	Н	0.29 (K)	117 (Schaum)	501 (100%)	55	30
88	(R&S) cHept	Н	0.41 (K)	214	*514 (100%)	09	31
68	(R&S)Ph	Н	0.22 (K)	130	495 (100%)	42	32
06	(R&S) cPent	2-CH ₃	0.42 (K)	192	501 (100%)	94	33
16	(R&S) cPent	3-CH ₃	0.24 (K)	196	501 (100%)	91	34
92	(R&S) cPent	4-CH ₁	0.27 (K)	222	501 (100%)		35
93	(R&S) cPent	4-Ph	0.31 (K)	215	563 (100%)	100	36
94	(R&S) cPent	2-C1	0.34 (K)	155	521 (100%)	100	37
95	(R&S) cPent	3-CI	0.25 (K)	194	521 (100%)	89	38
96	(R&S) cPent	4-₽	0.25 (K)	213	505 (100%)	94	39

•		
•	3	
·	Ć	
t		١

→ R⁵	0=	HO LA
\mathbb{Z}	χ) =>	

Bsp Nr.	R ¹	R³	R ⁴	R ⁵	T	Λ	R, *	F (°C)	Massen- spektrum	Ausbeute (% d.Th.)	Ausgangs- verbindung
100	(R&S) cPent	C ₂ H ₅	C ₂ H ₅ C ₂ H ₅ H	Н	0.	0	0.27 (K)	110	425 (100%)		43
101	(R&S) cPent	C_2H_5	C ₂ H ₅ C ₃ H ₅ CH ₃	сн³	0	0	0.24 (K) 82-85	82-85	439 (100%)	100	44
102	(R&S) cPent	C_2H_5	C ₂ H ₅ C ₂ H ₅ C ₂ H ₅	C_2H_5	0	0	0.20 (K) 181	181	453 (100%)	96	45
103	(R&S) cPent	C_2H_5	C ₂ H ₅ cPro	cPro	0	0	0.30 (K)	0.30 (K) 98 (Schaum)	465 (100%) 78	78	46
104	(R&S) cPent	C ₂ H ₅	C ₂ H ₅ C ₂ H ₅	Ph	0	. 0	0.38 (K) 100 (Sch	100 (Schaum)	501 (100%)	08	47
105	(R&S) cPent	C ₂ H ₅	C ₂ H ₅	-cń,	. 0	0	0.16 (K) 92 (Sc)	92 (Schaum)	515 (100%) 75	75	48
901	(R&S) cPent	C ₂ H ₅ C ₂ H ₅	C ₂ H ₅	$\langle \rangle$		0	0.33 (K)	232	507 (80%) 464 (100%)	. 85	49

Beispiel 112

5

10

15

20

35

40

45

50

55

N-[2-(R)-Phenyl-1-hydroxyethan]-2-(R&S)-cyclopentyl-[4-(1,3-dimethyl)-2,6-dioxo-8-(4-methyl)phenyl-1,2,3,6-tetrahydro-purin-7-ylmethyl)phenyl]essigsäureamid

6.1 g (12.5 mmol) der Verbindung aus Beispiel 58, (R)-Phenylglycinol (1.71 g, 12.5 mmol), 1-Hydroxy-1-benzotriazol (1.86 g, 13.8 mmol), N`-(3-Dimethylaminopropyl)-N-ethylcarbodiimid Hydrochlorid (2.76 g, 14.4 mmol) und Triethylamin (2.53 g, 25 mmol) werden nacheinander in CH₂Cl₂ (60 ml) gelöst und über Nacht bei Raumtemperatur gerührt. Es werden nochmal 15 ml CH₂Cl₂ zugegeben und mit wäßriger NH₄Cl- und NaHCO₃-Lösung sowie mit Wasser gewaschen. Die organische Phase wird über Natriumsulfat getrocknet und eingedampft. Der Rückstand wird säulenchromatographisch gereinigt.

Ausbeute 6.59 g (87%);

Fp 87 °C (Schaum);

 $R_f = 0.32$ (Dichlormethan: Methanol, 20:1);

Masse (berechnet) für $C_{36}H_{39}N_5O_4 = 605.75$, Massenspektrum (FAB, rel. Intensität) 606 (100%), 105 (95%);

Die in Tabellen 8, 9 und 10 aufgeführten Verbindungen werden in Analogie zur Vorschrift des Beispiels 112 hergestellt. Entweder fallen die Verbindungen direkt als reine Diastereomere an, oder sie werden ausgehend vom Racemat nach üblichen Methoden säulenchromatographisch getrennt.

. ':'

₹..._{...} +

BspNr.	R¹	R ⁵	R _f *	(೨೮)	Massen- spektrum	Ausbeute (% d.Th.)	Ausgangs- verbindung
121	(R&S) cPent	cPro .	0.36 (K)	110 (Schaum)	556 (80%) 105 (100%)	73	63
122	(R&S) cPent	cPent	0.33 (K)	194	584 (100%)	59	64
123	(R&S) cPent	-CH ₂ cHex	0.31 (K)	117 (Schaum)	612 (100%)	69	65
124	(dia A) cPent	-CH,cHex	0.46 (K)	173	C, HN Pent		123
125	(dia B) cPent	-CH ₂ cHex	0.46 (K)	90 (Schaum)	612 (100 %)		. 123
126	(R&S)cPent		0.35 (K)	112 (Schaum)	612 (100%)	. 18	99
127	(dia A)cPent		0.16 (K)	183	612 (50 %) 227 (100 %)		126
128	(dia B)cPent	S s	0.16 (K)	82 (Schaum)	612 (40 %) 105 (100 %)		126
129	(R&S)cPent		0.50 (L)			86	<i>L</i> 9
130	(dia A) cPent		0.50 (L)		592 (100%)		129
131	(dia B) cPent		0.50 (L)		592 (1 <u>0</u> 0%)		129
132	(R&S)cPent	£ ()	0.31 (K)	128 (Schaum)	(100%)	79	89

BspNr.	\mathbb{R}^1	$ m R^{5}$	R _f *	F (°C)	Massen- spektrum	Ausheute (% d.Th.)	Ausgangs- verbindung
143	(R&S) cPent	, 20-{	0.34 (K)	130 (Schaum)	(%001) 099	; 69	73
144	(dia A) cPent		0.47 (K)	245	660 (50 %) 171 (100 %)		143
145	(dia B) cPent		0.45 (K)	212	C,H,N Anal.		143
146	(R&S) cPent	- Ссн,	0.20 (K)	126 . (Schaum)	622 (100%)	84	74
147	(dia A) cPent	- ОСН,	0.43 (K)	QI	622 (351) 105 (100 %)		146
148	(dia B) cPent	'ноо-{	0.45 (K)	201	C,H,N Anal.		146
149	(R&S) cPent	——————————————————————————————————————	0.25 (K)	140 (Schaum)	635 (100%)	13	75
150	(R&S) cPent		0.24 (K)	128 (Schaum)	663 (100%)	72	76
151	(R&S) cPent	Z	0.28 (K)	>240	593 (100%)	64	77
	(R&S) cPent	N N	0.14 (K)	123 (Schaum)	593 (100%)	81	78
153	(R&S) cPent	Z					97
154	(R&S) cPent	\$ J	0.21 (K)	115 (Schaum)	598 (60%) 105 (100%)	82	

.

BspNr.	R¹	R ⁵	R _f *	F (°C)	Massen- spektrum	Ausbeute (% d.Th.)	Ausgangs-
163	(R&S) cPent	Ch,	(J) 65.0	97 (Schaum)	612 (60%) 57 (100%)	85	83
164	(R&S) cPent	Br	0.48 (K)	>235	676 (20%) 55 (100%)	61	84
165	(dia A) cPent.	Br	0.37 (K)	175	C,H,N Anal.		164
166	(dia B) cPent	Br	0.37 (K)	169	676 (100 %)		164
. 167	(R&S)cPent	-СН*СН	0.49 (K)	69-091	(100%)	31	85

1/4

BspNr.	R1	R ²⁶	R _r *	F (°C)	Massen- spektrum	Ausbeute (% d.Th.)	Ausgangs-
178	(R&S) cPent	2-CH ₃	0.38 (K)	137	620 (100%)	54	06
179	(R&S) cPent	3-CH ₃	0.28 (K)	121 (Schaum)	620 (100%)	36 .	16
180	(dia A) cPent	3-CH ₃	0.16 (K)	200	C,H,N Anal.		179
181	(dia B) cPent	3-CH ₃	0.17 (K)	. 991			621
182	(R&S) cPent	4-CH ₃	0.33 (K)	113 (Schaum)	620 (100%)	92	92
183	(dia A) cPent	4-CH ₃	0.37 (K)	223	C,H,N Anal.		182
184	(dia B) cPent	4-CH ₃	0.40 (K)	208	C,H,N Anal.		182
185	(R&S) cPent	4-Phenyl	0.49 (K)	180	682 (100%)	47	93
186	(dia A) cPent	4-Phenyl	0.32 (K)	>230	C,H,N Anal.		185
187	(dia B) cPent	4-Phenyl	0.31 (K)	200	C,H,N Anal.		185
188	(R&S) cPent	2-Cl	0.39 (K)	113 (Schaum)	640 (100%)	11	94
189	(dia A) cPent	2-Cl	0.38 (K)	208	C,H,N Anal.		188
. 061	(dia B) cPent	2-Cl	0.34 (K)	142	C,H,N Anal.		188
191	(R&S) cPent	3-Cl	0.41 (K)	142	640 (100%)	98	95
192	(dia A) cPent	3-CI	0.35 (K)	200	C,H,N Anal.		161
193	(dia B) cPent	3-CI	0.35 (K)	183			161
194	(R&S) cPent	4-F	0.42 (K)	151 (Schaum)	624 (100%)	81	96
195	(dia A) cPent	4-F	0.38 (K)	212	C,H,N Anal.		194
196	(dia B) cPent	4-F	0.37 (K)	189	C,H,N Anal		194
197	(R&S) cPent	2-0CH ₃	0.37 (K)	120 (Schaum)	636 (100%)	19	97

.

634 (90%) 105 (100%)

0.44 (K)

сн2он

(R) Ph

 C_2H_5

 C_2H_5

(R&S) cPent

Ausgangsverbindung

lle 1	
Tabel	

	Ausbeute (% d.Th.)	<i>L</i> 9			83	84	87	87
	Massen- spektrum	.544 (100%)			(%001) 855	(80%)	584 (100%)	620 (100%)
	F (°C)		. 011	121	112-14	104	104 (Schaum)	115 (Schaum)
2.A R15	R,*	0.40 (J)	0.40 (J)	0.35 (J)	0.48 (K)	0.20 (J)	0.36 (K)	(K)
	^	0	0	0	0	0	0	0
	Т	0	0	0	0	0	Ö	0
	R ¹⁵	сн ² он	сн ₂ он	сн ₂ он	сн ² он	сн ₂ он	сн ₂ он	сн ₂ он
z z z = 0	R14	(R) Ph						
0 U I	R ⁵	Н	Н	11	СН3	C ₂ H ₅	cPro	Ph
· - ·	R4	C_2H_S	C ₂ H ₅	C ₂ H _s	C ₂ H ₅	C_2H_5	C_2H_5	C ₂ H ₅
	R ³	C ₂ H ₅	C_2H_5	C_2H_5	C_2H_5	C ₂ H ₅	C ₂ H ₅	C ₂ H ₅
	R¹	(R&S) cPent	(dia A) cPent	(dia B) cPent	(R&S) cPent	(R&S) cPent	(R&S) cPent	(R&S) cPent
·	Bsp Nr.	211	212	213	214	215	216	217

Beispiel 227

5

10

15

20

Man löst 0.40~g (0.648~mmol) der Verbindung aus Beispiel 167~in 10~ml Methanol und 10~ml Essigsäure. Dazu gibt man eine Spatelspitze Palladium-Kohle (10%ig) und hydriert 4~Stunden unter Normaldruck. Das Gemisch wird über Celite abgesaugt und einrotiert. Der Rückstand wird in CH_2Cl_2 und Wasser aufgenommen, mit Natriumhydrogencarbonat auf pH 8~gestellt und extrahiert. Die organische Phase wird über Natriumsulfat getrocknet und einrotiert. Der Rückstand wird säulenchromatographisch gereinigt.

Ausbeute: 0.180 g (44.9%)

 $R_f = 0.16$ (Dichlormethan : Methanol 20:1) Masse (berechnet) für $C_{37}H_{41}N_5O_4 = 619.77$

Patentansprüche

1. Substituierte Xanthine der allgemeinen Formel

35

40

30

 $A-CH_2 \longrightarrow E \qquad R^1 \qquad (I)$

in welcher

45

für einen Rest der Formel

50

 \mathbb{R}^6 \mathbb{N} \mathbb{N} \mathbb{N} \mathbb{N} \mathbb{R}^7

OH

55

steht, worin R^2

für Mercaptyl, Hydroxy, geradkettiges oder verzweigtes Alkoxy mit bis zu 8 Kohlenstoffatomen oder für die Gruppe der Formel

10

15

5

steht. worin

R13

Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen bedeutet.

R14

Wasserstoff, Phenyl oder einen 5- bis 6-gliedrigen aromatischen Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O bedeutet,

R¹⁵ 20

Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 8 Kohlenstoffatomen bedeutet, das gegebenenfalls durch Hydroxy substituiert ist,

und deren Salze.

Substituierte Xanthine der Formel nach Anspruch 1, in welcher 25

für einen Rest der Formel

30

35

oder

steht, worin

40

R3, R4, R6 und R7

gleich oder verschieden sind und

Wasserstoff, Phenyl, Cyclopropyl, Cyclopentyl oder Cyclohexyl bedeuten, oder geradkettiges oder verzweigtes Alkyl oder Alkenyl mit jeweils bis zu 6 Kohlenstoffatomen bedeuten, die gegebenenfalls durch Fluor, Chlor, Brom, Hydroxy oder

Phenyl substituiert sind,

T, V, X und Y

gleich oder verschieden sind und

ein Sauerstoff- oder Schwefelatom bedeuten,

50

45

R⁵ und R⁸

gleich oder verschieden sind und

Wasserstoff, Fluor, Chlor, Brom, Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl oder für geradkettiges oder verzweigtes Alkyl oder Alkenyl mit jeweils bis zu 6 Kohlenstoffatomen bedeuten, die gegebenenfalls durch Cyclopropyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Naphthyl, Phenyl, Pyridyl, Thienyl oder Furyl substituiert sind, die ihrerseits bis zu 2-fach gleich oder verschieden durch Phenyl, Benzyl, Fluor, Chlor, Brom, Hydroxy oder durch geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 4 Kohlenstoffatomen substituiert sein können, oder

Phenyl, Pyridyl, Thienyl oder Furyl bedeuten, die gegebenenfalls bis zu 2-fach

oder

steht, worin

R3, R4, R6 und R7

gleich oder verschieden sind und

Wasserstoff, Phenyl, Cyclopropyl, Cyclopentyl oder Cyclohexyl bedeuten, oder geradkettiges oder verzweigtes Alkyl oder Alkenyl mit jeweils bis zu 5 Kohlenstoffatomen bedeuten, die gegebenenfalls durch Fluor, Chlor, Brom, Hydroxy oder

Phenyl substituiert sind,

T. V. X und Y

gleich oder verschieden sind und

ein Sauerstoff- oder Schwefelatom bedeuten,

R5 und R8

gleich oder verschieden sind und

Wasserstoff, Fluor, Chlor, Brom, Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl oder für geradkettiges oder verzweigtes Alkyl oder Alkenyl mit jeweils bis zu 5 Kohlenstoffatomen bedeuten, die gegebenenfalls durch Cyclopropyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Phenyl, Pyridyl, Thienyl oder Furyl substituiert sind, die ihrerseits bis zu 2-fach gleich oder verschieden durch Phenyl, Benzyl, Fluor, Chlor, Brom, Hydroxy oder durch geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 3 Kohlenstoffatomen substituiert sein können, oder Phenyl, Pyridyl, Thienyl oder Furyl bedeuten, die gegebenenfalls bis zu 2-fach gleich oder verschieden durch Fluor, Chlor, Brom, Phenyl, Trifluormethyl, Hydroxy oder durch geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 3 Kohlenstoffatomen oder durch eine Gruppe der Formel -(CO)_a-NR⁹R¹⁰ substituiert sind,

5

10

15

20

25

30

35

45

50

55

eine Zahl 0 oder 1 bedeutet,

R9 und R10 40

gleich oder verschieden sind und

Wasserstoff, Phenyl oder geradkettiges oder verzweigtes Alkyl oder Acyl mit jeweils bis zu 3 Kohlenstoffatomen bedeuten,

D und E

gleich oder verschieden sind und

für Wasserstoff, Fluor, Chlor, Brom oder Trifluormethyl stehen,

 R^1

für Wasserstoff, Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl oder für geradkettiges oder verzweigtes Alkyl oder Alkenyl mit jeweils bis zu 5 Kohlenstoffatomen steht, die gegebenenfalls durch Cyclopropyl, Cyclopentyl, Cyclo-

hexyl, Phenyl, Pyridyl oder Thienyl substituiert sind, oder

für Phenyl, Pyridyl, Furyl oder Thienyl steht, die gegebenenfalls bis zu 2-fach gleich oder verschieden durch Fluor, Chlor, Brom, Phenyl, Trifluormethyl oder geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 3 Kohlenstoffatomen oder durch eine Gruppe der Formel -NR¹¹R¹² substituiert sind,

worin

R¹¹ und R¹² die oben angegebene Bedeutung von R⁹ und R¹⁰ haben und mit dieser gleich oder verschieden sind,

für ein Sauerstoff- oder Schwefelatom steht,

worin

die Zahl 0 bedeutet, а R9 und R10 gleich oder verschieden sind und Wasserstoff, oder geradkettiges oder verzweigtes Alkyl mit jeweils bis zu 3 Kohlenstoffatomen bedeuten. gleich oder verschieden sind und D und E für Wasserstoff, Fluor, Chlor, Brom oder Trifluormethyl stehen, 10 R^1 für Wasserstoff, Cyclopropyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Phenyl oder für geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen steht, für ein Sauerstoffatom steht, L 15 R^2 für Hydroxy, geradkettiges oder verzweigtes Alkoxy mit bis zu 5 Kohlenstoffatomen oder für die Gruppe der Formel 20

-NR¹³/CH

steht, worin

R¹³ Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffato-

men bedeutet,

R¹⁴ Phenyl bedeutet,

35 R¹⁵ geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet, das

gegebenenfalls durch Hydroxy substituiert ist,

und deren Salze.

25

30

45

55

- 40 5. Substituierte Xanthine nach Anspruch 1 bis 4 zur therapeutischen Anwendung.
 - 6. Verfahren zur Herstellung von substituierten Xanthinen nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß man zunächst durch Umsetzung von

Verbindungen der allgemeinen Formel (II)

A-H (II)

in welcher

50 A die oben angegebene Bedeutung hat,

mit Verbindungen der allgemeinen Formel (III)

·...

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 96 11 4577

	EINSCHLÄGI	GE DOKUMENTE		
Kategorie	Kennzeichnung des Dokur der maßgeb	nents mit Angabe, soweit erforder lichen Teile	lich, Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.Cl.6)
A ·	GB-A-2 276 383 (ME * Seite 148 - Seit	RCK & CO INC) e 197; Ansprüche *	1-10	C07D473/00 C07D473/06 C07D473/08
4	EP-A-0 363 320 (CI * Seite 22 - Seite	BA-GEIGY AG) 33; Ansprüche *	1-10	A61K31/52
	·			
}				
	•			RECHERCHIERTE
				CO7D
				00/5
		•		
İ				
		•		
	•	······································		
Der vor		de für alle Patentansprüche erstel	1	
	Recharchemort	Abschlußdatum der Recherci		Prefer
	DEN HAAG	2.Januar 199	7 Luy	ten, H
X : von b Y : von b ander	ATEGORIE DER GENANNTEN I esonderer Bedeutung allein betrach esonderer Bedeutung in Verbindung en Veröffentlichung derselben Kate	E: ilteres F	idung zugrunde liegende l atentdokument, das jedoc n Anmeldedatum veröffen nmeldung angeführtes Do m Gründen angeführtes I	dicht worden ist kument
A: techn O: nicht	ologischer Hintergrund schriftliche Offenbarung henliteratur	************	der gleichen Patentfamil	

EPO FORM ISO (0.82 (POICO)