This homework is due at 23:59, May 12, 2019.

Problem 1

Consider the problem of individual binary sequence prediction with the logarithmic loss. In this problem, we will derive a prediction algorithm that competes with any *Markov expert*.

Recall the following protocol. Let $T \in \mathbb{N}$. For every $1 \le t \le T$, the following happen in order.

- 1. Learner announces $\gamma_t \in [0, 1]$.
- 2. REALITY announces $\omega_t \in \{0, 1\}$.

Define the loss function

$$\lambda(\omega, \gamma) := -\omega \log \gamma - (1 - \omega) \log(1 - \gamma), \quad \forall \omega \in \{0, 1\}, \gamma \in [0, 1].$$

For any $h: \{0,1\}^* \to [0,1]$, we define the associated regret

$$R_T(h) := \sum_{t=1}^T \lambda(\omega_t, \gamma_t) - \sum_{t=1}^T \lambda(\omega_t, h(\omega_{1:t-1})),$$

where $\omega_{1:t-1}$ denotes the string $\omega_1 \dots \omega_{t-1}$.

1. (20 points) Let $k \in \mathbb{N}$. Let \mathcal{H}_k be the class of k-th order stationary Markov experts. That is, every hypothesis $h \in \mathcal{H}_k$ satisfies

$$h(\omega_{1:t-1}) = h(\omega_{t-k:t-1}), \quad \forall t \in \mathbb{N}.$$

We add an arbitrary prefix $\omega_{-k+1} \dots \omega_0$, so every h is well-defined for all t.

Consider the following algorithm. For every $t \in \mathbb{N}$ and $y_{1:k} \in \{0,1\}^k$, define

$$n_0(t; y_{1:k}) := \sum_{\tau=1}^t \mathbb{1}_{\{\omega_{\tau-k:\tau-1} = y_{1:k}, \omega_{\tau} = 0\}}, \quad n_1(t; y_{1:k}) := \sum_{\tau=1}^t \mathbb{1}_{\{\omega_{\tau-k:\tau-1} = y_{1:k}, \omega_{\tau} = 1\}},$$

where $\mathbb{1}$ denotes the indicator function. For every $t \in \mathbb{N}$, the algorithm outputs

$$\gamma_t = f_k(\omega_{1:t-1}) \coloneqq \frac{n_1(t-1;\omega_{t-k:t-1}) + 1}{n_0(t-1;\omega_{t-k:t-1}) + n_1(t-1;\omega_{t-k:t-1}) + 2}.$$

Show the algorithm satisfies

$$R_T(h) \leq \sum_{\theta \in \{0,1\}^k} \log (n_0(T;\theta) + n_1(T;\theta) + 1) \,, \quad \forall \, h \in \mathcal{H}_k.$$

 $2. \hspace{0.1in} \hbox{(10 points)}$ Show the regret bound in the previous problem leads to

$$R_T(h) \le 2^k \log \left(1 + \frac{T}{2^k}\right), \quad \forall h \in \mathcal{H}_k.$$

3. (10 points) The following lemma is due to Leung-Yan-Cheong and Cover.

Lemma 1 ([1]). *Define the* log-star function *as*

$$\log_2^* x := \log_2 x + \log_2 \log_2 x + \dots + \log_2^{w_2^*(x)} x, \quad \forall x \ge 1,$$

where $w_2^*(x)$ denotes the largest integer w such that $\log_2^w x \ge 0$, and \log_2^w denotes the w-fold composition of the function \log_2 . (Notice the log-star function is not the iterated logarithm function in computer science.) Then, it holds that

$$d := \sum_{i \in \mathbb{N}} 2^{-\log_2^* i} < +\infty.$$

Lecturer: Yen-Huan Li

Use Lemma 1 to show there exists an algorithm that achieves

$$R_T(h) \leq 2^k \log \left(1 + \frac{T}{2^k}\right) + (\log 2) \left(\log_2 d + \log_2^* k\right), \quad \forall h \in \mathcal{H}_k, \forall k \in \mathbb{N}.$$

Specify the algorithm.

Problem 2

(20 points) We have introduced some applications of *learning with expert advice* in Lecture 7. Find one more application in *published papers* that does not appear in Lecture 7. **Describe the application, address its importance, show how it can be formulated as learning with expert advice, and give a proper citation.**

Problem 3

In this problem, we will study a learning-with-expert-advice algorithm arguably simpler than the aggregating algorithm.

Let Ω be the outcome space and Γ the prediction space. Let $\lambda : \Omega \times \Gamma \to \mathbb{R}$. Let $T \in \mathbb{N}$. For every $1 \le t \le T$, the following happen in order.

- 1. EXPERT-i announces $\gamma_t(i) \in \Gamma$, $1 \le i \le n$.
- 2. Learner announces $\gamma_t \in \Gamma$.
- 3. REALITY announces $\omega_t \in \Omega$.

Let $(w_1(i))_{1 \le i \le n}$ be a probability vector in \mathbb{R}^n , and define

$$W_1 := \sum_{1 \le i \le n} w_1(i) = 1.$$

The algorithm we consider announces, for every t,

$$\gamma_t \coloneqq \sum_{1 \le i \le n} \frac{w_t(i) \, \gamma_t(i)}{W_t},$$

and after seeing ω_t , compute $w_{t+1}(i)$ and W_{t+1} as

$$w_{t+1}(i) = w_t(i)e^{-\eta\lambda(\omega_t,\gamma_t(i))}, \quad W_{t+1} = \sum_{1 \le i \le n} w_{t+1}(i).$$

for some $\eta > 0$.

We assume that $\lambda(\omega,\cdot)$ is η -exp-concave for all $\omega \in \Omega$; that is, the mapping $\gamma \mapsto e^{-\eta \lambda(\omega,\gamma)}$ is concave for all $\omega \in \Omega$.

- 1. (10 points) Compare the algorithm with the aggregating algorithm.
- 2. (10 points) Define

$$U_t \coloneqq \frac{-1}{\eta} \log W_t.$$

Show that

$$\lambda(\omega_t,\gamma_t) \leq U_{t+1} - U_t, \quad \forall 1 \leq t \leq T.$$

Lecturer: Yen-Huan Li

3. (10 points) Show that

$$\sum_{t=1}^T \lambda(\omega_t, \gamma_t) \leq \sum_{t=1}^T \lambda(\omega_t, \gamma_t(i)) + \frac{1}{\eta} \log \frac{1}{w_1(i)}, \quad \forall 1 \leq i \leq n.$$

4. (10 points) Show that the algorithm considered in this problem can yield a larger regret bound compared to the aggregating algorithm.

HINT: Consider the Brier loss.

References

[1] LEUNG-YAN-CHEONG, S. K., AND COVER, T. M. Some equivalences between Shannon entropy and Kolmogorov complexity. *IEEE Trans. Inf. Theory IT-24*, 3 (1978), 331–338.