

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	14/01/2015	12:00

 \subset 75.570 \Re 14 \Re 01 \Re 15 \Re Π ς I \in 75.570 14 01 15 PV

Espacio para la etiqueta identificativa con el código personal del **estudiante**.

Prueba

Esta prueba sólo la pueden realizar los estudiantes que han aprobado la Evaluación Continua

Ficha técnica de la prueba

- Comprueba que el código y el nombre de la asignatura corresponden a la asignatura de la cual estás matriculado.
- Debes pegar una sola etiqueta de estudiante en el espacio de esta hoja destinado a ello.
- No se puede añadir hojas adicionales.
- No se puede realizar las pruebas a lápiz o rotulador.
- Tiempo total: 1 h.
- En el caso de que los estudiantes puedan consultar algún material durante la prueba, ¿cuál o cuáles pueden consultar?: No se puede consultar ningún tipo de material
- Valor de cada pregunta: Se indica en cada una de ellas
- En el caso de que haya preguntas tipo test: ¿descuentan las respuestas erróneas? NO ¿Cuánto?
- Indicaciones específicas para la realización de esta prueba:

Todos los porcentajes se refieren al total de la prueba

Enunciados

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	14/01/2015	12:00

Actividad 1 (15+15%)

[Criterio de valoración: Las formalizaciones deben ser correctas en todos los aspectos incluida la parentización. Cada frase se valora independientemente de las otras]

- a) Formalizad utilizando la lógica de enunciados. Utilizad los átomos indicados
 - A: estoy animado
 - B: bostezo
 - F: leo ciencia ficción
 - P: leo poesía
 - T: veo la tele
 - 1) Para leer poesía es necesario que no esté animado y que no vea la tele.

$$P \to \neg A \wedge \neg T$$

2) Bostezo siempre que veo la tele y no estoy animado

$$T \land \neg A \rightarrow B$$

3) Cuando leo poesía o ciencia ficción, bostezo si no estoy animado.

$$P \vee F \rightarrow (\neg A \rightarrow B)$$

- b) Utilizando los siguientes predicados:
 - E(x): x es un ingeniero
 - A(x): x arriesga su vida
 - C(x): x es una central nuclear
 - V(x): x es un traje aislante
 - T(x,y): x trabaja/ha trabajado en y
 - P(x,y): x lleva y
 - 1) Formalizad la frase: "los ingenieros que **no** llevan vestidos aislantes arriesgan su vida" $\forall x \{E(x) \land \neg \exists y [V(y) \land P(x,y)] \rightarrow A(x)\}$
 - 2) Indicad cual de las siguientes afirmaciones es cierta al respecto de la frase "Hay ingenieros que no trabajan en ninguna central nuclear y no los hay que trabajen en todas" [Solo una respuesta es correcta. Marcadla con un círculo]
 - **a.** Su formalización es $\exists x \{E(x) \land \exists y [C(y) \land \neg T(x,y)]\} \land \neg \exists x \{E(x) \land \forall y [C(y) \land T(x,y)]\}$
 - **b.** Su formalización es $\exists x \{ E(x) \land \exists y [C(y) \land \neg T(x,y)] \} \land \neg \exists x \{ E(x) \land \forall y [C(y) \rightarrow T(x,y)] \}$
 - c. Su formalización es $\exists x \{E(x) \land \neg \exists y [C(y) \land T(x,y)]\} \land \neg \exists x \{E(x) \land \forall y [C(y) \rightarrow T(x,y)]\}$
 - **d.** Su formalización es $\exists x \{ E(x) \rightarrow \neg \exists y [C(y) \land T(x,y)] \} \land \neg \exists x \{ E(x) \rightarrow \forall y [C(y) \land T(x,y)] \}$
 - 3) Indicad cual de las siguientes afirmaciones es cierta al respecto de la frase "Si no existieran centrales nucleares los ingenieros no llevarían trajes aislantes" [Solo una respuesta es correcta. Marcadla con un círculo]
 - a. Su formalización es $\neg\exists x C(x) \rightarrow \forall x \{E(x) \rightarrow \neg\exists y [V(y) \land P(x,y)]\}$
 - **b.** Su formalización es $\neg \{\exists x C(x) \rightarrow \forall x E(x) \rightarrow \neg \exists y [V(y) \land P(x,y)]\}$
 - **c.** Su formalización es $\neg \exists x \{C(x) \rightarrow \forall x [E(x) \rightarrow \neg \exists y (V(y) \land P(x,y))]\}$
 - d. Su formalización no es ninguna de las anteriores

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	14/01/2015	12:00

<u>Actividad 2 (25% o 15%)</u> [Criterio de valoración: será inválida (0%) cualquier deducción que contenga la aplicación incorrecta de alguna regla]

Demostrad, utilizando la deducción natural, que el siguiente razonamiento es correcto. Si la deducción es correcta y no utilizáis reglas derivadas obtendréis el 25% de la puntuación total de la prueba. Si la deducción es correcta pero utilizáis reglas derivadas obtendréis el 15% de la puntuación total de la prueba. Si hacéis más de una demostración y alguna es incorrecta obtendréis un 0% de la puntuación total de la prueba.

 $D \rightarrow A$, $D \lor B$ $\therefore \neg A \rightarrow (B \lor C) \land \neg D$

1	D→A				Р
2	D∨B				Р
3		¬A			Н
4			D		Н
5			Α		E→ 1,4
6			⊸A		It 3
7		¬D			I¬ 4, 5, 6
8			В		Н
9			B√C		l∨ 8
10			D		Н
11				¬В	Н
12				D	It 10
13				¬D	It 7
14			¬¬B		I–11, 12, 13
15			В		E¬ 14
16			B√C		l∨ 15
17		B√C			Ev 2, 9, 17
18		(B∨C)∧¬D			l∧ 7, 17
19	$\neg A \rightarrow (B \lor C) \land \neg D$				l→ 3, 18

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	14/01/2015	12:00

Actividad 3 (20%)

[Criterio de valoración: serán inválidas las respuestas incorrectas, contradictorias o ininteligibles. Cada pregunta se valora independientemente de las otras]

Un razonamiento ha dado lugar al siguiente conjunto de cláusulas de las cuales las tres últimas, en negrita, provienen de la negación de la conclusión:

$$\{\neg B, \neg A \lor C, \neg C \lor \neg A, A \lor B, \neg B \lor \neg D, D \lor \neg A\}$$

Responded las siguientes preguntas

- a) ¿Es correcto o no este razonamiento? Sí, el razonamiento es correcto.
- b) ¿Son consistentes o no las premisas de este razonamiento? Sí, son consistentes
- c) Si hubiéramos construido la tabla de verdad del razonamiento que ha dado lugar a este conjunto de cláusulas, ¿es posible pero no seguro, seguro o imposible que hubiéramos encontrado un contraejemplo? Imposible
- d) Si hubiéramos construido la tabla de verdad de las premisas de este razonamiento, ¿es posible pero no seguro, seguro o imposible que hubiéramos encontrado alguna interpretación que las hiciera todas ciertas simultáneamente? seguro

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	14/01/2015	12:00

Actividad 4 (25%)

Escoged uno de los dos problemas que tenéis a continuación. Si resolvéis los dos, la calificación será la menor. INDICAD CLARAMENTE CUAL ES EL EJERCICIO QUE ESCOGÉIS.

A) El siguiente razonamiento es correcto

$$\forall x \exists y [H(x) \rightarrow P(y) \land T(x,y)]$$

 $\exists x \forall y [P(y) \rightarrow \neg T(x,y)]$
 $\therefore \neg \forall x H(x)$

Demostrad su validez utilizando el método de resolución.

[Criterio de valoración: La presencia de errores en las FNSs se penalizará con la mitad del valor del apartado (-12.5%). La presencia de errores en la aplicación del método de resolución (incluidas las sustituciones) se penalizará con la mitad del valor del apartado (-12.5%), como mínimo]

$$\begin{split} & FNS(\forall x\exists y[H(x)\to P(y) \land T(x,y)]) = \forall x[\ (\neg H(x) \lor P(f(x))) \land (\neg H(x) \lor T(x,f(x)))\] \\ & FNS(\exists x\forall y[P(y)\to \neg T(x,y)]) = \forall y[\neg P(y) \lor \neg T(a,y)] \\ & FNS(\neg \neg \forall xH(x)) = \forall xH(x) \end{split}$$

$$S = \{ \ \neg H(x) \lor P(f(x)), \quad \neg H(x) \lor T(x, f(x)) \quad \neg P(y) \lor \neg T(a, y), \quad \textbf{H(x)} \}$$

Troncales	laterales	Sustituciones
H(x)	$\neg H(z) \lor P(f(z))$	x por z
H(z)		
P(f(z))	$\neg P(y) \lor \neg T(a,y)$	y por f(z)
	$\neg P(f(z)) \lor \neg T(a,f(z))$	
$\neg T(a,f(z))$	$\neg H(x) \lor T(x,f(x))$	x por a; z por a
¬T(a,f(a))	$\neg H(a) \lor T(a,f(a))$	
⊣H(a)	H(x)	x por a
	H(a)	

B) El siguiente razonamiento es correcto

$$\forall x \{\exists z T(x,z) \rightarrow P(x) \land \neg C(x)\}$$
$$\forall x \{P(x) \rightarrow C(x)\}$$
$$\therefore \forall v \forall w \neg T(v,w)$$

A continuación tenéis una DN que demuestra que el razonamiento anterior es correcto. Esta DN está incompleta y hay que completarla en los espacios sombreados [Criterio de valoración -5% por cada espacio en blanco o incorrecto]

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	14/01/2015	12:00

1	$\forall x \{\exists z T(x,z) \rightarrow P(x) \land \neg C(x)\}$		Р
2	$\forall x \{P(x) \rightarrow C(x)\}$		Р
3	∀v∀w¬T(v,w)		Р
4		$\neg \forall v \forall w \neg T(v,w)$	Н
5		$\exists v \neg \forall w \neg T(v,w)$	ED 4
6		∃v∃w¬¬T(v,w)	ED 5
7		∃w¬¬T(a,w)	E∃ 6
8		¬¬T(a,b)	E∃ 7
9		$\exists z T(a,z) \rightarrow P(a) \land \neg C(a)$	E∀ 1
10		T(a,b)	E¬ 8
11		∃zT(a,z)	l∃ 10
12		P(a)∧¬C(a)	E→ 9, 11
13		P(a)→C(a)	E∀ 2
14		P(a)	E∧ 12
15		C(a)	E→ 13, 14
16		¬C(a)	E∧ 12
17	$\neg\neg\forall v\forall w\neg T(v,w)$		l 4, 15, 16
18	∀v∀w¬T(v,w)		E¬ 17