

MONASH BUSINESS SCHOOL

ETC3550/ETC5550 Applied forecasting

Ch8. Exponential smoothing OTexts.org/fpp3/

Historical perspective

- Developed in the 1950s and 1960s as methods (algorithms) to produce point forecasts.
- Combine a "level", "trend" (slope) and "seasonal" component to describe a time series.
- The rate of change of the components are controlled by "smoothing parameters": α , β and γ respectively.
- Need to choose best values for the smoothing parameters (and initial states).
- Equivalent ETS state space models developed in the 1990s and 2000s.

Big idea: control the rate of change

 α controls the flexibility of the **level**

- If α = 0, the level never updates (mean)
- If α = 1, the level updates completely (naive)

 β controls the flexibility of the **trend**

- If β = 0, the trend is linear
- If β = 1, the trend changes suddenly every observation

 γ controls the flexibility of the **seasonality**

- If γ = 0, the seasonality is fixed (seasonal means)
- If $\gamma = 1$, the seasonality updates completely (seasonal naive)

Models and methods

Methods

Algorithms that return point forecasts.

Models

- Generate same point forecasts but can also generate forecast distributions.
- A stochastic (or random) data generating process that can generate an entire forecast distribution.
- Allow for "proper" model selection.

Iterative form

$$\hat{\mathbf{y}}_{t+1|t} = \alpha \mathbf{y}_t + (1 - \alpha)\hat{\mathbf{y}}_{t|t-1}$$

Iterative form

$$\hat{\mathbf{y}}_{t+1|t} = \alpha \mathbf{y}_t + (1 - \alpha)\hat{\mathbf{y}}_{t|t-1}$$

Weighted average form

$$\hat{y}_{T+1|T} = \sum_{j=0}^{T-1} \alpha (1-\alpha)^j y_{T-j} + (1-\alpha)^T \ell_0$$

Iterative form

$$\hat{\mathbf{y}}_{t+1|t} = \alpha \mathbf{y}_t + (1 - \alpha)\hat{\mathbf{y}}_{t|t-1}$$

Weighted average form

$$\hat{\mathbf{y}}_{T+1|T} = \sum_{j=0}^{T-1} \alpha (1-\alpha)^j \mathbf{y}_{T-j} + (1-\alpha)^T \ell_0$$

Component form

Forecast equation

Smoothing equation

$$\hat{y}_{t+h|t} = \ell_t$$

$$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$$

Component form

Forecast equation

Smoothing equation

$$\hat{y}_{t+h|t} = \ell_t$$

$$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$$

Component form

Forecast equation

 $\hat{\mathbf{y}}_{t+h|t} = \ell_t$

Smoothing equation

$$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$$

Forecast error: $e_t = y_t - \hat{y}_{t|t-1} = y_t - \ell_{t-1}$.

Component form

Forecast equation

Smoothing equation

$$\hat{y}_{t+h|t} = \ell_t$$

$$\ell_t = \alpha v_t + (1 - \alpha)\ell_{t-1}$$

Forecast error: $e_t = y_t - \hat{y}_{t|t-1} = y_t - \ell_{t-1}$.

Error correction form

$$\begin{aligned} \mathbf{y}_t &= \ell_{t-1} + e_t \\ \ell_t &= \ell_{t-1} + \alpha (\mathbf{y}_t - \ell_{t-1}) \\ &= \ell_{t-1} + \alpha e_t \end{aligned}$$

Component form

Forecast equation $\hat{y}_{t+h|t} = \ell_t$ Smoothing equation $\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$

Forecast error: $e_t = y_t - \hat{y}_{t|t-1} = y_t - \ell_{t-1}$.

Error correction form

$$y_t = \ell_{t-1} + e_t$$

$$\ell_t = \ell_{t-1} + \alpha(y_t - \ell_{t-1})$$

$$= \ell_{t-1} + \alpha e_t$$

Specify probability distribution for e_t , we assume $e_t = \varepsilon_t \sim \text{NID}(0, \sigma^2)$.

ETS(A,N,N): SES with additive errors

ETS(A,N,N) model

Measurement equation
$$y_t = \ell_{t-1} + \varepsilon_t$$

State equation $\ell_t = \ell_{t-1} + \alpha \varepsilon_t$

where $\varepsilon_t \sim \text{NID}(0, \sigma^2)$.

- "innovations" or "single source of error" because equations have the same error process, ε_t .
- Measurement equation: relationship between observations and states.
- State equation(s): evolution of the state(s) through time.

ETS(M,N,N): SES with multiplicative errors.

- Specify relative errors $\varepsilon_t = \frac{y_t \hat{y}_{t|t-1}}{\hat{y}_{t|t-1}} \sim \text{NID}(0, \sigma^2)$
- Substituting $\hat{y}_{t|t-1} = \ell_{t-1}$ gives:

ETS(M,N,N): SES with multiplicative errors.

- Specify relative errors $\varepsilon_t = \frac{y_t \hat{y}_{t|t-1}}{\hat{y}_{t|t-1}} \sim \text{NID}(0, \sigma^2)$
- Substituting $\hat{y}_{t|t-1} = \ell_{t-1}$ gives:

ETS(M,N,N) model

Measurement equation

$$y_t = \ell_{t-1}(1 + \varepsilon_t)$$

State equation

$$\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$$

ETS(M,N,N): SES with multiplicative errors.

- Specify relative errors $\varepsilon_t = \frac{y_t \hat{y}_{t|t-1}}{\hat{y}_{t|t-1}} \sim \text{NID}(0, \sigma^2)$
- Substituting $\hat{y}_{t|t-1} = \ell_{t-1}$ gives:

 - $ightharpoonup e_t = \mathbf{y}_t \hat{\mathbf{y}}_{t|t-1} = \ell_{t-1} \varepsilon_t$

ETS(M,N,N) model

Measurement equation $y_t = \ell_{t-1}(1 + \varepsilon_t)$ State equation $\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$

Models with additive and multiplicative errors with the same parameters generate the same point forecasts but different prediction intervals.

```
General notation ETS: ExponenTial Smoothing

∠ ↑ △

Error Trend Season
```

Error: Additive ("A") or multiplicative ("M")

9

```
General notation ETS: ExponenTial Smoothing

∠ ↑ △

Error Trend Season
```

Error: Additive ("A") or multiplicative ("M")

Trend: None ("N"), additive ("A"), multiplicative ("M"), or damped ("Ad" or "Md").

9

```
General notation ETS: ExponenTial Smoothing

∠ ↑ △

Error Trend Season
```

Error: Additive ("A") or multiplicative ("M")

Trend: None ("N"), additive ("A"), multiplicative ("M"), or damped ("Ad" or "Md").

Seasonality: None ("N"), additive ("A") or multiplicative ("M")

ETS(A,A,N)

Holt's methods method with additive errors.

Forecast equation
$$\hat{y}_{t+h|t} = \ell_t + hb_t$$
 Observation equation
$$y_t = \ell_{t-1} + b_{t-1} + \varepsilon_t$$
 State equations
$$\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$$

$$b_t = b_{t-1} + \beta \varepsilon_t$$

■ Forecast errors: $\varepsilon_t = y_t - \hat{y}_{t|t-1}$

ETS(A,A,A)

Holt-Winters additive method with additive errors.

Forecast equation
$$\begin{aligned} \hat{y}_{t+h|t} &= \ell_t + hb_t + s_{t+h-m(k+1)} \\ \text{Observation equation} & y_t &= \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t \\ \text{State equations} & \ell_t &= \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t \\ b_t &= b_{t-1} + \beta \varepsilon_t \\ s_t &= s_{t-m} + \gamma \varepsilon_t \end{aligned}$$

- Forecast errors: $\varepsilon_t = \mathbf{y}_t \hat{\mathbf{y}}_{t|t-1}$
- k is integer part of (h-1)/m.

ETS(M,A,M)

Holt-Winters multiplicative method with multiplicative errors.

Forecast equation
$$\hat{y}_{t+h|t} = (\ell_t + hb_t)s_{t+h-m(k+1)}$$
Observation equation
$$y_t = (\ell_{t-1} + b_{t-1})s_{t-m}(1 + \varepsilon_t)$$
State equations
$$\ell_t = (\ell_{t-1} + b_{t-1})(1 + \alpha \varepsilon_t)$$

$$b_t = b_{t-1} + \beta(\ell_{t-1} + b_{t-1})\varepsilon_t$$

$$s_t = s_{t-m}(1 + \gamma \varepsilon_t)$$

- Forecast errors: $\varepsilon_t = (y_t \hat{y}_{t|t-1})/\hat{y}_{t|t-1}$
- \blacksquare k is integer part of (h-1)/m.

ETS model specification

```
ETS(y ~ error("A") + trend("N") + season("N"))
```

By default, optimal values for α , β , γ , and the states at time 0 are used.

The values for α , β and γ can be specified:

```
trend("A", alpha = 0.5, beta = 0.2)
trend("A", alpha_range = c(0.2, 0.8), beta_range = c(0.1, 0.4))
season("M", gamma = 0.04)
season("M", gamma_range = c(0, 0.3))
```

Exponential smoothing methods

		Seasonal Component			
	Trend	N	Α	М	
	Component	(None)	(Additive)	(Multiplicative)	
Ν	(None)	(N,N)	(N,A)	(N,M)	
Α	(Additive)	(A,N)	(A,A)	(A,M)	
A_d	(Additive damped)	(A_d,N)	(A_d,A)	(A_d, M)	

(N,N): Simple exponential smoothing

(A,N): Holt's linear method

(A_d,N): Additive damped trend method (A.A): Additive Holt-Winters' method

(A,M): Multiplicative Holt-Winters' method

(A_d,M): Damped multiplicative Holt-Winters' method

Exponential smoothing methods

		Seasonal Component			
	Trend	N	Α	М	
	Component	(None)	(Additive)	(Multiplicative)	
Ν	(None)	(N,N)	(N,A)	(N,M)	
Α	(Additive)	(A,N)	(A,A)	(A,M)	
A_d	(Additive damped)	(A_d,N)	(A_d,A)	(A_d, M)	

(N,N): Simple exponential smoothing

(A,N): Holt's linear method

(A_d,N): Additive damped trend method

(A,A): Additive Holt-Winters' method

(A,M): Multiplicative Holt-Winters' method

(A_d,M): Damped multiplicative Holt-Winters' method

There are also multiplicative trend methods (not recommended).

Additive Error		Seasonal Component			
	Trend	N	Α	М	
	Component	(None)	(Additive)	(Multiplicative)	
Ν	(None)	A,N,N	A,N,A	A,N,M	
Α	(Additive)	A,A,N	A,A,A	A,A,M	
A_d	(Additive damped)	A,A_d,N	A,A_d,A	A,A_d,M	

Multiplicative Error		Seasonal Component			
	Trend	N	Α	М	
	Component	(None)	(Additive)	(Multiplicative)	
Ν	(None)	M,N,N	M,N,A	M,N,M	
Α	(Additive)	M,A,N	M,A,A	M,A,M	
A_d	(Additive damped)	M,A _d ,N	M,A_d,A	M,A_d,M	

Additive Error		Seasonal Component			
	Trend	N	Α	М	
	Component	(None)	(Additive)	(Multiplicative)	
Ν	(None)	A,N,N	A,N,A	<u> </u>	
Α	(Additive)	A,A,N	A,A,A	<u>^,^,\</u>	
A_d	(Additive damped)	A,A_d,N	A,A_d,A	<u>^,^,</u> ^	

Multiplicative Error		Seasonal Component			
	Trend	N	Α	М	
	Component	(None)	(Additive)	(Multiplicative)	
Ν	(None)	M,N,N	M,N,A	M,N,M	
Α	(Additive)	M,A,N	M,A,A	M,A,M	
A_d	(Additive damped)	M,A _d ,N	M,A_d,A	M,A_d,M	

AIC and cross-validation

Minimizing the AIC assuming Gaussian residuals is asymptotically equivalent to minimizing one-step time series cross validation MSE.

Automatic forecasting

From Hyndman et al. (IJF, 2002):

- Apply each model that is appropriate to the data. Optimize parameters and initial values using MLE (or some other criterion).
- Select best method using AICc:
- Produce forecasts using best method.
- Obtain forecast intervals using underlying state space model.

Method performed very well in M3 competition.

Residuals

Response residuals

$$\hat{e}_t = \mathsf{y}_t - \hat{\mathsf{y}}_{t|t-1}$$

Innovation residuals

Additive error model:

$$\hat{\varepsilon}_t = \mathbf{y}_t - \hat{\mathbf{y}}_{t|t-1}$$

Multiplicative error model:

$$\hat{\varepsilon}_t = \frac{\mathbf{y}_t - \hat{\mathbf{y}}_{t|t-1}}{\hat{\mathbf{y}}_{t|t-1}}$$