A machine-independent characterization of timed languages

Sławomir Lasota University of Warsaw

joint work with Mikołaj Bojańczyk

HIGHLIGHTS 2013

the guards use the structure (R, <, +1)

deterministic timed automata

let L be a language over a finite alphabet A

let L be a language over a finite alphabet A

L is recognized by a DFA

let L be a language over a finite alphabet A

L is recognized by a DFA

≈L has finitely many equivalence classes

let L be a language over a finite alphabet A

L is recognized by a DFA

iff

≈L has finitely many equivalence classes

 $w \approx_L u$ iff $\forall v (wv \in L \text{ iff } uv \in L)$

let L be a language over a finite alphabet A

L is recognized by a DFA

≈L has finitely many equivalence classes

The same for deterministic timed automata? $\forall v (wv \in L \text{ iff } uv \in L)$ iff w ≈_L u

let L be a language over a finite alphabet A

L is recognized by a DFA

iff

≈L has finitely many equivalence classes

 $w \approx_L u$ iff $\forall v (wv \in L \text{ iff } uv \in L)$

The same for deterministic timed automata?

Problems:

let L be a language over a finite alphabet A

L is recognized by a DFA

iff

≈L has finitely many equivalence classes

 $w \approx_L u$ iff $\forall v (wv \in L \text{ iff } uv \in L)$

The same for deterministic timed automata?

Problems:

• infinitely many equivalence classes

let L be a language over a finite alphabet A

L is recognized by a DFA

≈L has finitely many equivalence classes

 \forall v (wv \in L iff uv \in L) iff w ≈_L u

The same for deterministic timed automata?

- infinitely many equivalence classes • no canonical minimal timed automaton Problems:

deterministic timed automata with uninitialized clocks do not minimize

do not minimize

do not minimize

deterministic timed automata

deterministic orbit-finite automata in sets with atoms (R, <, +1)

deterministic timed automata

deterministic orbit-finite automata in sets with atoms (R, <, +1)

finite automata
up to automorphisms of
(R, <, +1)

deterministic timed automata

deterministic orbit-finite automata in sets with atoms (R, <, +1)

finite automata
up to automorphisms of
(R, <, +1)

deterministic timed automata

with uninitialized clocks

1

deterministic orbit-finite automata in sets with atoms (R, <, +1)

finite automata
up to automorphisms of
(R, <, +1)

deterministic timed automata

deterministic orbit-finite automata in sets with atoms (R, <, +1)

finite automata

up to automorphisms of

(R, <, +1)

deterministic timed automata

deterministic orbit-finite automata in sets with atoms (R, <, +1)

finite automata
up to automorphisms of
(R, <, +1)

deterministic timed automata

deterministic orbit-finite automata in sets with atoms (R, <, +1)

deterministic timed automata

with uninitialized clocks

finite automata
up to automorphisms of
(R, <, +1)

resemble timed automata with updates

deterministic orbit-finite automata in sets with atoms (R, <, +1)

deterministic timed automata

deterministic orbit-finite automata in sets with atoms (R, <, +1)

deterministic timed automata

with uninitialized clocks

minimal automata for languages of deterministic timed automata with uninitialized clocks

let L be a language over $A \times R$

let L be a language over $A \times R$

such that

• L contains only increasing words

let L be a language over $A \times R$

such that

- L contains only increasing words
- L is invariant under Aut(R, <, +1)

let L be a language over $A \times R$

such that

- L contains only increasing words
- L is invariant under Aut(R, <, +1)

L is recognized by a deterministic timed automaton with uninitialized clocks

let L be a language over $A \times R$

such that

- L contains only increasing words
- L is invariant under Aut(R, <, +1)

L is recognized by a deterministic timed automaton with uninitialized clocks

iff

• ≈L has orbit-finite set of equivalence classes

deterministic orbit-finite automata in sets with atoms (R, <, +1)

let L be a language over $A \times R$

such that

- L contains only increasing words
- L is invariant under Aut(R, <, +1)

L is recognized by a deterministic timed automaton

with uninitialized clocks

iff

- ≈L has orbit-finite set of equivalence classes
- L is forgetful

deterministic orbit-finite automata in sets with atoms (R, <, +1)

deterministic timed automata
with uninitialized clocks

there is $M \in \mathbb{R}$ such that

there is $M \in \mathbb{R}$ such that for every timed word

there is $M \in \mathbb{R}$ such that for every timed word

there is $M \in \mathbb{R}$ such that for every timed word and $\pi \in \operatorname{Aut}(\mathbb{R}, <, +1)$

there is $M \in \mathbb{R}$ such that

for every timed word and $\pi \in Aut(R, <, +1)$

for every factorization

there is $M \in \mathbb{R}$ such that

for every timed word and $\pi \in Aut(R, <, +1)$

for every factorization

there is $M \in \mathbb{R}$ such that

for every timed word and $\pi \in Aut(R, <, +1)$

for every factorization

summary

• Myhill-Nerode theorem for timed languages

• superclass of deterministic timed automata closed under minimization

summary

• Myhill-Nerode theorem for timed languages

• superclass of deterministic timed automata closed under minimization

both result due to sets with atoms

summary

• Myhill-Nerode theorem for timed languages

• superclass of deterministic timed automata closed under minimization

both result due to sets with atoms

Thank you!