Übungsblatt 4

Kontextfreie Sprachen und Kellerautomaten

{Theoretische Informatik}@AIN3

Prof. Dr. Barbara Staehle Wintersemester 2021/2022 HTWG Konstanz

AUFGABE 4.1 EINE KONTEXTFREIE SPRACHE

Gegeben sei die Grammatik $G = (\{S, X\}, \{x, y\}, P, S)$ mit der Produktionsmenge $P = \{X \rightarrow xXy\}$ $X \rightarrow xy$

TEILAUFGABE 4.1.1 VON G ERZEUGTE SPRACHE, 2 PUNKTE

Geben Sie an

- a) 3 Worte, welche man aus G ableiten kann,
- b) $\mathcal{L}(G)$, also alle von G erzeugten Worte.

TEILAUFGABE 4.1.2 CHOMSKY-NORMALFORM, 4 PUNKTE

Geben Sie für G eine Grammatik G' in Chomsky-Normalform mit L(G) = L(G') an.

AUFGABE 4.2 EINE CNF FÜR DIE DYCK-SPRACHE, 3 PUNKTE

Von Übungsblatt 2 ist Ihnen die Grammatik G_4 zur Erzeugung der Dyck-Sprache D_4 bekannt:

- $G_4 = \{N, \Sigma, P, S\} = \{\{S\}, \{(,), [,], \{,\}, <, >\}, P, S\}$
- Die Produktionsmenge *P* besteht aus den Regeln:

$$S \rightarrow \varepsilon \mid SS \mid \lceil S \rceil \mid (S) \mid \{S\} \mid \langle S \rangle$$

- a) Modifizieren Sie die Grammatik so, dass sich das leere Wort nicht mehr ableiten lässt.
- b) Übersetzen Sie die modifizierte Grammatik in Chomsky-Normalform.
- c) Generieren Sie mit Hilfe der Grammatik in Chomsky-Normalform eine Ableitung und den dazugehörigen Ableitungsbaum für das Wort $[] < \{([])()\} >$

AUFGABE 4.3 CHOMSKY-NORMALFORM UND CYK-ALOGRITHMUS

Gegeben seien die Grammatiken $G_x = (\{S\}, \{a, b\}, P, S)$ mit der Produktionsmenge

$$P_x = \{S \to aSb, S \to b\}$$

und $G_{\gamma} = (\{S,A,B\},\{a,b,c\},P,S)$ mit der Produktionsmenge

$$P_{v} = \{S \rightarrow cAB, A \rightarrow aAb, B \rightarrow cBb, A \rightarrow ab, B \rightarrow \epsilon\}$$

TEILAUFGABE 4.3.1 2 PUNKTE

Geben Sie für die Grammatik G_x eine Grammatik G_x' in Chomsky-Normalform mit $\mathcal{L}(G_x) = \mathcal{L}(G_x')$ an.

TEILAUFGABE 4.3.2 3 PUNKTE

Bestimmen Sie mit Hilfe der Tabellen aus dem CYK-Algorithmus, welche der Wörter abb, aabb und aabbb zur Sprache $\mathcal{L}(G_r)$ gehören.

Verallgemeinern Sie Ihre Erkenntnis - welche Sprache wird von G_x erzeugt?

TEILAUFGABE 4.3.3 3 PUNKTE

Geben Sie für die Grammatik G_y eine Grammatik G_y' in Chomsky-Normalform mit $\mathcal{L}(G_y) = \mathcal{L}(G_y')$ an.

TEILAUFGABE 4.3.4 4 PUNKTE

Bestimmen Sie mit Hilfe der Tabellen aus dem CYK-Algorithmus, welche der Wörter cab, cabcb und caabcb zur Sprache $\mathcal{L}(G_v)$ gehören.

Verallgemeinern Sie Ihre Erkenntnis - welche Sprache wird von G_{γ} erzeugt?

AUFGABE 4.4 EINE FORMELSPRACHE, 3 PUNKTE

Wir betrachten das Alphabet $\Sigma = \{x, y, *, +\}$ sowie die Sprache $L_F = \{$ korrekt formulierte mathematische Formeln mit Symbolen aus Σ $\}$.

 $L_F = \{ \text{ Nortest Prime} : S \rightarrow TRT \}$ $L_F \text{ wird von der kontextfreien Grammatik } G_2 = (N_2, \Sigma, P_2, S) \text{ mit } N_2 = \{S, T, R\} \text{ und } P_2 = \{S, T, R\} \text{ und } P$

- a) Geben Sie eine **reguläre** Grammatik G_3 , welche L_F ebenfalls erzeugt (mit $\mathcal{L}(G_3) = L_F$).
- b) Bringen Sie die Grammatik G_2 in die Chomsky-Normalform.

Aufgabe 4.5 Der Kellerautomat P_{ab}

Betrachten Sie den PDA $P_{ab} = (Q, \Sigma, \Gamma, \delta, q_0) = (\{q_0, q_1\}, \{a, b\}, \{A, B, \#\}, \delta, q_0)$ mit δ gegeben wie folgt:

Abbildung 1: Erweitertes Zustandsübergangsdiagramm für P_{ab}

TEILAUFGABE 4.5.1 2 PUNKTE

Bestimmen Sie für die Worte

- a) $\omega_1 = ab$
- b) $\omega_2 = aab$
- c) $\omega_3 = bbbaa$

jeweils alle Konfigurationen (aktueller Zustand, verbleibendes Eingabewort, Inhalt des Kellers), die P_{ab} während der Verarbeitung der Worte durchläuft. Beantworten Sie anschließend, warum die Worte (nicht) akzeptiert werden.

TEILAUFGABE 4.5.2 2 PUNKTE

Welche Sprache $\mathcal{L}(P_{ab})$ wird von P_{ab} akzeptiert?

Aufgabe 4.6 Der Kellerautomat P_{01}

Betrachten Sie den PDA $P_{01} = (Q, \Sigma, \Gamma, \delta, q_0) = (\{q_0, q_1, q_2, q_3\}, \{0, 1\}, \{A, B, X, \#\}, \delta, q_0)$ mit δ gegeben wie folgt:

- $\delta(q_0, 0, \#) = (q_1, A\#)$
- $\delta(q_0, 1, \#) = (q_3, B\#)$
- $\delta(q_0, \varepsilon, \#) = (q_0, \varepsilon)$
- $\delta(q_1, 0, A) = (q_1, AA)$
- $\delta(q_1, 1, A) = (q_2, \varepsilon)$
- $\delta(q_2, \varepsilon, A) = (q_1, \varepsilon)$
- $\delta(q_1, \varepsilon, \#) = (q_0, \varepsilon)$
- $\delta(q_2, \varepsilon, \#) = (q_3, X)$
- $\delta(q_3, 1, B) = (q_3, BB)$
- $\delta(q_3, 0, B) = (q_3, X)$
- $\delta(q_3, 0, X) = (q_3, \varepsilon)$
- $\delta(q_3, 1, X) = (q_3, XB)$
- $\delta(q_3, \varepsilon, \#) = (q_0, \#)$

TEILAUFGABE 4.6.1 1 PUNKT

Stellen Sie die Zustandsübergangsfunktion mit Hilfe eines Graphen dar.

TEILAUFGABE 4.6.2 3 PUNKTE

Bestimmen Sie für die Worte

- a) $\omega_1 = 001$
- b) $\omega_2 = 101$
- c) $\omega_3 = 100001$

jeweils alle Konfigurationen (aktueller Zustand, verbleibendes Eingabewort, Inhalt des Kellers), die P_{01} während der Verarbeitung der Worte durchläuft. Beantworten Sie anschließend, warum die Worte (nicht) akzeptiert werden.

TEILAUFGABE 4.6.3 2 PUNKTE

Welche Sprache $\mathcal{L}(P_{01})$ wird von P_{01} akzeptiert?

AUFGABE 4.7 EIN PDA FÜR DIE OTTO-ZAHLEN

Erinnern Sie sich an die OTTO-Zahlen (siehe Übungsblatt 2). Wir betrachten jetzt allerdings nur OTTO-Zahlen mit dem Ziffernvorrat 1-3: $L_{O3} \subseteq \{1,2,3\}^*$ mit

 $L_{O3} = \{1, 2, 3, 11, 22, 33, 111, 121, 131...2332...132321,...\}$, also die natürlichen Zahlen aus Ziffern von 1-3, die von vorne und hinten gelesen gleich sind.

TEILAUFGABE 4.7.1 3 PUNKTE

Geben Sie den PDA $P_{\rm O3}$ an, der $L_{\rm O3}$ akzeptiert.

TEILAUFGABE 4.7.2 2 PUNKTE

Bestimmen Sie für die Worte

- a) $\omega_1 = 123321$
- b) $\omega_2 = 321311$

jeweils alle Konfigurationen, die P_{O3} während der Verarbeitung der Worte auf einem möglichen Pfad durchläuft. Falls es einen akzeptierenden Pfad gibt, so wählen Sie bitte diesen. Beantworten Sie anschließend, warum die Worte (nicht) akzeptiert werden.

AUFGABE 4.8 VERSCHIEDENE KELLERAUTOMATEN

Betrachten Sie das Alphabet $\Sigma = \{x, y\}$, sowie die folgenden Sprachen:

- a) $L_1 = \{x^m y^n | m, n \in \mathbb{N}_0, m \le n\} = \{\varepsilon, y, yy, xy, xyy, xxyy, xxyyy, \ldots\}$
- b) $L_2 = \{x^m y^n | m, n \in \mathbb{N}_0, m < n\} = \{y, yy, xyy, xxyyy, \ldots\}$
- c) $L_3 = \{x^m y^n | m, n \in \mathbb{N}_0, m \ge n\} = \{\varepsilon, x, xx, xy, xxy, xxyy, xxxyy, \ldots\}$
- d) $L_4 = \{x^m y^n | m, n \in \mathbb{N}_0, m > n\} = \{x, xx, xxy, xxxyy, \ldots\}$
- e) $L_5 = \{x^m y^n | m, n \in \mathbb{N}, n = 2m\} = \{xyy, xxyyyy, xxxyyyyyy, ...\}$
- f) $L_6 = \{x^m y^n | m, n \in \mathbb{N}, m = 2n\} = \{xxy, xxxxyy, xxxxxxyyy, \ldots\}$

TEILAUFGABE 4.8.1 3 PUNKTE

Konstruieren Sie die PDAs P_1 , P_2 , welcher die Sprachen L_1 , L_2 erkennen. Geben Sie jeweils an, ob die Automat deterministisch oder nichtdeterministisch arbeiten.

TEILAUFGABE 4.8.2 3 PUNKTE

Konstruieren Sie die PDAs P_3 , P_4 , welcher die Sprachen L_3 , L_4 erkennen. Geben Sie jeweils an, ob die Automat deterministisch oder nichtdeterministisch arbeiten.

TEILAUFGABE 4.8.3 3 PUNKTE

Konstruieren Sie die PDAs P_5 , P_6 , welcher die Sprachen L_5 , L_6 erkennen. Geben Sie jeweils an, ob die Automat deterministisch oder nichtdeterministisch arbeiten.

TEILAUFGABE 4.8.4 2 PUNKTE

Für $a \in \{1, 2, ..., 6\}$ können die Sprachen L_a jeweils von einer Grammatik $G_a = (\{S\}, \{x, y\}, P_a, S)$ (also nur mit einem einzigen Nonterminal) erzeugt werden.

Geben Sie die Produktionsmengen der verschiedenen Grammatiken (P_1, P_2, \dots, P_6) an.