Respecting Time Series Properties Makes Deep Time Series Forecasting Perfect

1 REQUIREMENTS

- Python 3.6
- matplotlib == 3.1.1
- numpy == 1.19.4
- pandas == 0.25.1
- scikit_learn == 0.21.3
- torch == 1.7.1

Dependencies can be installed using the following command:

• pip install -r requirements.txt

2 DATA

The ETT, ECL and WTH datasets were acquired at: https://drive.google.com/drive/folders/1ohGYWWohJlOlb2gsGTeEq3Wii2egnEPR?usp=sharing.

3 USAGE

Commands for training and testing the RTNet on Dataset ETT, ECL and WTH respectively in the file named as '<data>.sh'. More parameter information please refer to 'main.py'. The detailed descriptions about the arguments are as Tab.3

4 RESULTS

MSE and MAE results of comparison experiment are shown as Tab.2-9, where 'S' denotes univariate forecasting and 'M' refers to multivariate forecasting. The experiment parameters of each dataset are formated in the '.sh' files in the directory './scripts/'. You can refer to these parameters for experiments, and you can also adjust the parameters to obtain better MSE and MAE results or draw better prediction figures.

1

TABLE 1
The Detailed Descriptions of Arguments

Parameter	Description of parameter
model	Model of experiment: 'RT'
forecasting_form	Forecasting form. This can be set to end-to-end/contrastiv learning based format
data	The dataset name
root_path	Root path of the data file
features	The forecasting task. This can be set to ['S', 'M']. S: univariate, M: multivariate
target	Target feature in 'S' task
label_len	Input sequence length of RTNet auto-regressive feature extractor
Alter_label_len	Alternative sequence length for group instance forecasting
pred_len	Prediction sequence length
pred_list	The group of prediction sequence length in self-supervised models
enc_in	Input variates
c_out	Output variates
timebed	Time embedding type, options: [None, hour, year, year_min]
d_model	Hidden dimension of model
pyramid	The number of pyramid networks
block_nums	The number of RTBlocks in the dominant pyramid network
time_nums	The number of TimeBlocks in time embedding network
feature_extractor	Feature extractor used in backbone, options: ['ResNet', 'CSPNet', 'Attention'].
group	Whether use group convolution for multivariate forecasting
group_pred	The number of individual experiments for instance forecasting
group_num	Indexes of individual experiments for instance forecasting
block_shift	α , controling the maximum overlap degree of adjacent input sequences
aug_num	The number of data augmentation, including initial sequences
jitter	Data augmentation amplification
kernel	The kernel size of convolutional layers
angle	θ , threshold angle of cos-relation matrix
dropout	The probability of dropout
criterion	Data preprocessing format,
	options: [Standard(Z-score), Maxabs]
train_epochs	The number of train epochs
cost_epochs	Contrastive epochs
cost_grow_epochs	Contrastive growing epochs per experiment
batch_size	Batch size of train input data in end-to-end format or the second stage in contrastive learning based format
cost batch size	Batch size of train input data of the first stage in contrastive learning based format
patience	Early stopping patience
learning_rate	Optimizer learning rate
loss	Loss function
checkpoints	Location of model checkpoints
Спескроппа	Only inverse test data.
test_inverse	Whether to transform them to the format of Z-score standardization.
save_loss	Whether saving results and checkpoints
train	Whether to train
reproducible	Whether to make results reproducible

TABLE 2
MSE of Comparison Experiment on Feature-based Baselines During Univariate Forecasting

Dataset\	Baseline	RTNet(E)	RTNet(C)			Cont	rastive	Learn	ing			Feature Engineered
Dutaset	Buschite	KII (CI(E)	RII (C)	CoST	TS2Vec	МоСо	TCC	CPC	TNC	Triplet	TST	TSFresh
	24	0.028(+12.7%)	0.035(+16.4%)	0.040	0.039	0.040	0.053	0.076	0.057	0.130	0.127	0.080
	48	0.040(+25.0%)	0.059(+39.4%)	0.060	0.062	0.063	0.074	0.104	0.094	0.145	0.202	0.092
$ETTh_1$	168	0.062(+32.5%)	0.074(+36.9%)	0.097	0.142	0.122	0.133	0.162	0.171	0.173	0.491	0.097
	336	0.076(+19.0%)	0.086(+56.2%)	0.112	0.160	0.144	0.161	0.183	0.192	0.167	0.526	0.109
	720	0.097(+46.5%)	0.109(+44.2%)	0.148	0.179	0.183	0.176	0.212	0.235	0.195	0.717	0.142
	24	0.071(+2.2%)	0.067(+11.5%)	0.079	0.091	0.095	0.111	0.109	0.097	0.160	0.134	0.176
	48	0.092(+11.9%)	0.095(+11.6%)	0.118	0.124	0.130	0.148	0.152	0.131	0.181	0.171	0.202
$ETTh_2$	168	0.139(+10.5%)	0.149(+9.2%)	0.189	0.198	0.204	0.225	0.251	0.197	0.214	0.261	0.273
	336	0.171(+11.5%)	0.178(+11.1%)	0.206	0.205	0.206	0.232	0.238	0.207	0.232	0.269	0.284
	720	0.190(+15.1%)	0.206(+27.6%)	0.214	0.208	0.206	0.242	0.234	0.207	0.251	0.278	0.339
	24	0.011(+12.8%)	0.012(+6.3%)	0.015	0.016	0.015	0.026	0.018	0.019	0.071	0.048	0.027
	48	0.018(+7.0%)	0.021(+14.3%)	0.025	0.028	0.027	0.045	0.035	0.036	0.084	0.064	0.043
$ETTm_1$	96	0.027(+6.6%)	0.034(+13.5%)	0.038	0.045	0.041	0.072	0.059	0.054	0.097	0.102	0.054
	288	0.045(+25.0%)	0.084(+19.0%)	0.077	0.095	0.081	0.158	0.118	0.098	0.130	0.172	0.098
	672	0.058(+6.6%)	0.090(+74.1%)	0.113	0.142	0.122	0.239	0.177	0.136	0.160	0.224	0.121
	24	0.088(+2.3%)	0.092(+2.6%)	0.096	0.096	0.097	0.107	0.105	0.102	0.203	0.124	0.192
	48	0.129(+3.0%)	0.134(+7.2%)	0.138	0.140	0.140	0.143	0.147	0.139	0.219	0.151	0.231
WTH	168	0.188(+4.1%)	0.191(+3.6%)	0.207	0.207	0.198	0.204	0.213	0.198	0.251	0.213	0.298
	336	0.204(+2.5%)	0.206(+5.9%)	0.230	0.231	0.220	0.219	0.234	0.215	0.262	0.233	0.314
	720	0.195(+4.1%)	0.200(+7.7%)	0.242	0.233	0.224	0.220	0.237	0.219	0.263	0.232	0.423
	24	0.111(+1.6%)	0.115(+10.2%)	0.243	0.260	0.254	0.266	0.264	0.252	0.355	0.351	_
	48	0.120(+1.1%)	0.120(+7.2%)	0.292	0.313	0.304	0.317	0.321	0.300	0.375	0.398	_
ECL	168	0.112(+5.4%)	0.125(+7.5%)	0.405	0.429	0.416	0.424	0.438	0.412	0.482	0.531	_
	336	0.115(+5.2%)	0.125(+13.8%)	0.560	0.565	0.556	0.578	0.599	0.548	0.633	0.656	_
	720	0.113(+4.5%)	0.126(+12.5%)	0.889	0.863	0.858	0.950	0.957	0.859	0.93	0.929	_

TABLE 3
MSE of Comparison Experiment on End-to-end Baselines During Univariate Forecasting

Dataset\	Baseline	RTNet(E)	RTNet(C)	SCINet	Informer	LogTrans	N-BEATS	TCN	DeepAR	ARIMA	LSTMa	LSTNet	Reformer	Prophet
	24	0.028	0.035	0.097	0.098	0.103	0.094	0.075	0.107	0.086	0.094	0.114	0.172	0.093
	48	0.040	0.059	0.096	0.158	0.167	0.210	0.227	0.162	0.133	0.175	0.193	0.228	0.150
$ETTh_1$	168	0.062	0.074	0.110	0.183	0.207	0.232	0.316	0.239	0.364	0.210	0.236	1.460	1.194
	336	0.076	0.086	0.147	0.222	0.230	0.232	0.306	0.445	0.428	0.556	0.590	1.728	1.509
	720	0.097	0.109	0.233	0.269	0.273	0.322	0.390	0.658	0.613	0.635	0.683	1.948	2.685
	24	0.071	0.067	0.236	0.093	0.102	0.198	0.109	0.080	3.538	0.080	3.554	0.135	0.179
	48	0.092	0.095	0.195	0.155	0.169	0.234	0.147	0.125	3.168	0.125	3.190	0.172	0.284
$ETTh_2$	168	0.139	0.149	0.262	0.232	0.246	0.331	0.209	0.179	2.768	0.179	2.800	0.359	2.113
	336	0.171	0.178	0.238	0.263	0.267	0.431	0.237	0.568	2.717	0.568	2.753	0.516	2.052
	720	0.190	0.206	0.313	0.277	0.303	0.437	0.200	0.367	2.822	0.367	2.878	0.562	3.287
	24	0.011	0.012	0.027	0.030	0.065	0.054	0.027	0.075	0.074	0.099	0.090	0.055	0.102
	48	0.018	0.021	0.037	0.069	0.078	0.190	0.040	0.197	0.157	0.289	0.179	0.229	0.117
$ETTm_1$	96	0.027	0.034	0.051	0.194	0.199	0.183	0.097	0.336	0.242	0.255	0.272	0.854	0.146
	288	0.045	0.084	0.076	0.401	0.411	0.186	0.305	0.908	0.424	0.480	0.462	0.962	0.414
	672	0.058	0.090	0.105	0.512	0.598	0.197	0.445	2.371	0.565	0.988	0.639	1.605	2.671
	24	0.088	0.092	0.137	0.117	0.136	_	0.161	0.128	0.199	0.107	0.131	0.197	0.280
	48	0.129	0.134	0.170	0.178	0.206	_	0.204	0.203	0.247	0.166	0.190	0.268	0.421
WTH	168	0.188	0.191	0.243	0.266	0.309	_	0.292	0.293	0.471	0.305	0.341	0.590	2.409
	336	0.204	0.206	0.287	0.297	0.359	_	0.533	0.585	0.678	0.404	0.456	1.692	1.931
	720	0.195	0.200	0.360	0.359	0.388		0.764	0.499	0.996	0.784	0.866	1.887	3.759
	24	0.111	0.115	0.413	0.251	0.528	0.427	0.263	0.188	0.861	0.475	0.281	0.917	0.506
	48	0.120	0.120	0.453	0.346	0.409	0.551	0.373	0.204	1.014	0.703	0.381	1.635	2.711
ECL	168	0.112	0.125	0.258	0.544	0.959	0.893	0.609	0.315	1.102	1.186	0.599	3.448	2.220
	336	0.115	0.125	0.282	0.713	1.079	1.035	0.855	0.414	1.213	1.473	0.823	4.745	4.201
	720	0.113	0.126	0.320	1.182	1.001	1.548	1.263	0.563	1.322	1.493	1.278	6.841	6.827

TABLE 4
MSE of Comparison Experiment on Feature-based Baselines During Multivariate Forecasting

Dataset\	Baseline	RTNet(E)	RTNet(C)			Cont	rastive	Learn	ing			Feature Engineered
Dataset	\Duberra	1111(01(2)	1111101(0)	CoST	TS2Vec	MoCo	TCC	CPC	TNC	Triplet	TST	TSFresh
	24	0.340(+0.2%)	0.326(+1.8%)	0.386	0.590	0.623	0.766	0.728	0.708	0.942	0.735	3.858
	48	0.371(+1.0%)	0.372(+2.8%)	0.437	0.624	0.669	0.825	0.774	0.749	0.975	0.800	4.246
$ETTh_1$	168	0.440(+3.6%)	0.451(+2.5%)	0.643	0.762	0.820	0.982	0.920	0.884	1.135	0.973	3.527
	336	0.485(+7.8%)	0.505(+3.6%)	0.812	0.931	0.981	1.099	1.050	1.020	1.187	1.029	2.905
	720	0.530(+5.1%)	0.539(+3.9%)	0.970	1.063	1.138	1.267	1.160	1.157	1.283	1.020	2.667
	24	0.269(+41.2%)	0.219(+82.9%)	0.447	0.423	0.444	1.154	0.551	0.612	1.285	0.994	8.720
	48	0.481(+30.0%)	0.461(+33.1%)	0.699	0.619	0.613	1.158	0.752	0.840	1.455	1.159	12.771
$ETTh_2$	168	1.260(+15.5%)	1.038(+44.5%)	1.549	1.845	1.791	3.546	2.452	2.359	2.175	2.609	20.843
	336	1.499(+11.6%)	1.140(+28.1%)	1.749	2.194	2.241	3.184	2.664	2.782	2.007	2.824	14.801
	720	1.580(+16.1%)	1.212(+32.3%)	1.971	2.636	2.425	3.538	2.863	2.753	2.157	2.684	17.967
	24	0.204(+2.9%)	0.210(+5.6%)	0.246	0.453	0.458	0.502	0.478	0.522	0.689	0.471	0.639
	48	0.263(+3.7%)	0.271(+3.2%)	0.331	0.592	0.594	0.645	0.641	0.695	0.752	0.614	0.705
$ETTm_1$	96	0.299(+3.7%)	0.298(+1.3%)	0.378	0.635	0.621	0.675	0.707	0.731	0.744	0.645	0.675
	288	0.361(+4.9%)	0.363(+1.0%)	0.472	0.693	0.700	0.758	0.781	0.818	0.808	0.749	0.848
	672	0.422(+5.5%)	0.432(+1.9%)	0.620	0.782	0.821	0.854	0.880	0.932	0.917	0.857	0.968
	24	0.295(+2.1%)	0.294(+1.4%)	0.298	0.307	0.311	0.332	0.328	0.320	0.522	0.372	2.170
	48	0.352(+5.2%)	0.359(+2.5%)	0.359	0.374	0.372	0.391	0.390	0.380	0.539	0.418	2.235
WTH	168	0.448(+9.2%)	0.459(+1.2%)	0.464	0.491	0.482	0.492	0.499	0.479	0.572	0.521	2.514
	336	0.490(+3.0%)	0.486(+1.4%)	0.497	0.525	0.516	0.523	0.533	0.505	0.582	0.555	2.293
	720	0.497(+3.0%)	0.497(+1.3%)	0.533	0.556	0.540	0.548	0.559	0.519	0.597	0.575	2.468

TABLE 5
MSE of Comparison Experiment on End-to-end Baselines During Multivariate Forecasting

Dataset\	Baseline	RTNet(E)	RTNet(C)	SCINet	Informer	LogTrans	TCN	LSTMa	LSTNet	Reformer	StemGNN
	24	0.340	0.326	0.505	0.577	0.686	0.767	0.536	1.293	0.887	0.614
	48	0.371	0.372	0.459	0.685	0.766	0.713	0.616	1.456	1.159	0.748
$ETTh_1$	168	0.440	0.451	0.510	0.931	1.002	0.995	1.058	1.997	1.686	0.663
	336	0.485	0.505	0.607	1.128	1.362	1.175	1.152	2.655	1.919	0.927
	720	0.530	0.539	0.746	1.215	1.397	1.453	1.682	2.143	2.177	_
	24	0.269	0.219	0.510	0.720	0.828	0.935	1.049	2.742	1.381	1.292
	48	0.481	0.461	0.518	1.457	1.806	1.300	1.331	3.564	1.715	1.099
$ETTh_2$	168	1.260	1.038	0.804	3.489	4.070	4.017	3.987	3.242	4.484	2.282
	336	1.499	1.140	0.946	2.723	3.875	3.460	3.276	2.544	3.798	3.086
	720	1.580	1.212	1.687	3.467	3.913	3.106	3.711	4.625	5.111	_
	24	0.204	0.210	0.367	0.323	0.419	0.363	0.511	1.968	0.598	0.620
	48	0.263	0.271	0.394	0.494	0.507	0.542	1.280	1.999	0.952	0.744
$ETTm_1$	96	0.299	0.298	0.392	0.678	0.768	0.666	1.195	2.762	1.267	0.709
	288	0.361	0.363	0.486	1.056	1.462	0.991	1.598	1.257	1.632	0.843
	672	0.422	0.432	0.746	1.192	1.669	1.032	2.530	1.917	1.943	_
	24	0.295	0.294	0.337	0.335	0.435	0.320	0.476	0.615	0.583	0.396
	48	0.352	0.359	0.397	0.395	0.426	0.417	0.763	0.660	0.633	0.459
WTH	168	0.448	0.459	0.537	0.608	0.727	0.540	0.948	0.748	1.228	0.572
	336	0.490	0.486	0.587	0.702	0.754	0.607	1.497	0.782	1.770	0.583
	720	0.497	0.497	0.640	0.831	0.885	0.907	1.314	0.851	2.548	_

TABLE 6
MAE of Comparison Experiment on Feature-based Baselines During Univariate Forecasting

Dataset\	Baseline	RTNet(E)	RTNet(C)			Cont	rastive	Learn	ing			Feature Engineered
Dataset	Dasenne	KIIVCI(L)	KIIVEL(C)	CoST	TS2Vec	МоСо	TCC	CPC	TNC	Triplet	TST	TSFresh
	24	0.128(+5.7%)	0.146(+10.4%)	0.152	0.151	0.151	0.175	0.217	0.184	0.289	0.284	0.224
	48	0.157(+8.2%)	0.191(+17.0%)	0.186	0.189	0.191	0.209	0.259	0.239	0.306	0.362	0.242
$ETTh_1$	168	0.192(+12.5%)	0.209(+18.6%)	0.236	0.291	0.268	0.284	0.326	0.329	0.336	0.596	0.253
	336	0.216(+7.4%)	0.228(+26.8%)	0.258	0.316	0.297	0.320	0.351	0.357	0.333	0.618	0.263
	720	0.248(+22.1%)	0.260(+21.1%)	0.306	0.345	0.347	0.343	0.387	0.408	0.368	0.760	0.302
	24	0.202(+3.0%)	0.194(+7.8%)	0.207	0.230	0.234	0.255	0.251	0.238	0.316	0.281	0.331
	48	0.233(+6.8%)	0.237(+0.0%)	0.259	0.274	0.279	0.298	0.301	0.281	0.339	0.321	0.357
$ETTh_2$	168	0.294(+4.1%)	0.304(+4.1%)	0.339	0.355	0.360	0.374	0.392	0.354	0.372	0.404	0.420
	336	0.332(+5.9%)	0.336(+0.0%)	0.360	0.364	0.364	0.385	0.388	0.366	0.389	0.413	0.423
	720	0.352(+7.9%)	0.366(+14.0%)	0.371	0.371	0.369	0.397	0.389	0.370	0.406	0.420	0.466
	24	0.077(+10.0%)	0.079(+4.9%)	0.088	0.093	0.091	0.122	0.102	0.103	0.180	0.151	0.128
	48	0.100(+6.0%)	0.110(+7.0%)	0.117	0.126	0.122	0.165	0.142	0.142	0.206	0.183	0.159
$ETTm_1$	96	0.123(+3.5%)	0.140(+6.9%)	0.147	0.162	0.153	0.211	0.188	0.178	0.230	0.231	0.178
	288	0.164(+9.5%)	0.221(+10.8%)	0.209	0.235	0.219	0.318	0.271	0.244	0.276	0.316	0.245
	672	0.186(+5.7%)	0.228(+38.8%)	0.257	0.290	0.268	0.398	0.332	0.290	0.315	0.366	0.274
	24	0.206(+0.7%)	0.211(+1.9%)	0.213	0.215	0.216	0.232	0.226	0.221	0.337	0.244	0.330
	48	0.252(+0.9%)	0.256(+3.7%)	0.262	0.264	0.264	0.272	0.272	0.264	0.351	0.280	0.361
WTH	168	0.315(+4.1%)	0.316(+2.9%)	0.334	0.335	0.326	0.333	0.340	0.328	0.379	0.342	0.415
	336	0.332(+2.0%)	0.336(+0.0%)	0.356	0.360	0.350	0.350	0.362	0.347	0.389	0.361	0.429
	720	0.329(+2.7%)	0.329(+5.8%)	0.370	0.365	0.357	0.352	0.366	0.353	0.394	0.361	0.499
	24	0.234(+1.0%)	0.240(+8.6%)	0.264	0.288	0.280	0.301	0.299	0.278	0.379	0.387	_
	48	0.243(+0.9%)	0.243(+13.2%)	0.300	0.321	0.314	0.330	0.339	0.308	0.390	0.416	_
ECL	168	0.242(+3.0%)	0.247(+15.7%)	0.375	0.392	0.391	0.402	0.418	0.384	0.459	0.498	_
	336	0.243(+3.6%)	0.251(+14.2%)	0.473	0.478	0.482	0.486	0.507	0.466	0.551	0.575	_
	720	0.242(+3.5%)	0.257(+12.5%)	0.645	0.651	0.653	0.667	0.679	0.651	0.706	0.729	

TABLE 7
MAE of Comparison Experiment on End-to-end Baselines During Univariate Forecasting

Dataset	\Baseline	RTNet(E)	RTNet(C)	SCINet	Informer	LogTrans	N-BEATS	TCN	DeepAR	ARIMA	LSTMa	LSTNet	Reformer	Prophet
	24	0.128	0.146	0.253	0.247	0.259	0.238	0.210	0.280	0.190	0.232	0.272	0.319	0.241
	48	0.157	0.191	0.245	0.319	0.328	0.367	0.402	0.327	0.242	0.322	0.358	0.395	0.300
$ETTh_1$	168	0.192	0.209	0.257	0.346	0.375	0.391	0.493	0.422	0.456	0.352	0.392	1.089	0.721
	336	0.216	0.228	0.309	0.387	0.398	0.388	0.495	0.552	0.537	0.644	0.698	0.978	1.766
	720	0.248	0.260	0.405	0.435	0.463	0.490	0.557	0.707	0.684	0.704	0.768	1.226	3.155
	24	0.202	0.194	0.381	0.240	0.255	0.345	0.251	0.229	0.407	0.275	0.445	0.369	0.345
	48	0.233	0.237	0.350	0.314	0.348	0.386	0.302	0.283	0.440	0.318	0.474	0.505	0.428
$ETTh_2$	168	0.294	0.304	0.413	0.389	0.422	0.453	0.366	0.346	0.555	0.470	0.595	0.797	1.018
	336	0.332	0.336	0.396	0.417	0.437	0.508	0.391	0.555	0.680	0.548	0.738	1.060	2.487
	720	0.352	0.366	0.451	0.431	0.493	0.517	0.367	0.488	0.952	0.613	1.044	1.543	4.592
	24	0.077	0.079	0.131	0.137	0.202	0.184	0.127	0.205	0.168	0.201	0.206	0.170	0.256
	48	0.100	0.110	0.150	0.203	0.220	0.361	0.154	0.332	0.274	0.371	0.306	0.340	0.273
$ETTm_1$	96	0.123	0.140	0.177	0.372	0.386	0.353	0.246	0.450	0.357	0.370	0.399	0.675	0.304
	288	0.164	0.221	0.212	0.554	0.572	0.362	0.455	0.739	0.500	0.528	0.558	1.107	0.482
	672	0.186	0.228	0.248	0.644	0.702	0.368	0.576	1.256	0.605	0.805	0.697	1.312	1.112
	24	0.206	0.211	0.267	0.251	0.279	_	0.306	0.274	0.321	0.222	0.254	0.329	0.403
	48	0.252	0.256	0.299	0.318	0.356	_	0.342	0.353	0.375	0.298	0.334	0.381	0.492
WTH	168	0.315	0.316	0.364	0.398	0.439	_	0.409	0.451	0.541	0.404	0.448	0.552	1.092
	336	0.332	0.336	0.399	0.416	0.484	_	0.540	0.644	0.666	0.476	0.554	0.945	2.406
	720	0.329	0.329	0.456	0.466	0.499	_	0.629	0.596	0.853	0.709	0.809	1.352	1.030
	24	0.234	0.240	0.492	0.275	0.447	0.330	0.279	0.344	0.726	0.509	0.287	0.840	0.557
	48	0.243	0.243	0.509	0.339	0.414	0.392	0.344	0.357	0.797	0.617	0.366	1.515	1.239
ECL	168	0.242	0.247	0.369	0.424	0.612	0.538	0.462	0.436	0.834	0.854	0.500	2.088	3.029
	336	0.243	0.251	0.385	0.512	0.639	0.669	0.606	0.519	0.883	0.910	0.624	3.913	1.363
	720	0.242	0.257	0.427	0.806	0.714	0.881	0.858	0.595	0.908	0.926	0.906	4.913	4.184

TABLE 8
MAE of Comparison Experiment on Feature-based Baselines During Multivariate Forecasting

Dataset\	Baseline	RTNet(E)	RTNet(C)			Cont	rastive	Learr	ing			Feature Engineered
Dutager	\Duberrie	1111 (01(2)	1111 (0)	CoST	TS2Vec	MoCo	TCC	CPC	TNC	Triplet	TST	TSFresh
	24	0.386(+0.4%)	0.375(+1.6%)	0.429	0.531	0.555	0.629	0.600	0.592	0.729	0.633	1.574
	48	0.402(+1.0%)	0.403(+2.3%)	0.464	0.555	0.586	0.657	0.629	0.619	0.746	0.671	1.674
$ETTh_1$	168	0.442(+2.6%)	0.446(+2.6%)	0.582	0.639	0.674	0.731	0.714	0.699	0.825	0.768	1.500
	336	0.463(+4.6%)	0.474(+2.0%)	0.679	0.728	0.755	0.786	0.779	0.768	0.859	0.797	1.329
	720	0.509(+3.1%)	0.515(+1.8%)	0.771	0.799	0.831	0.859	0.835	0.830	0.916	0.798	1.283
	24	0.330(+14.3%)	0.307(+36.1%)	0.502	0.489	0.495	0.838	0.572	0.595	0.911	0.779	2.311
	48	0.432(+10.1%)	0.446(+15.5%)	0.637	0.605	0.595	0.983	0.684	0.716	0.966	0.850	2.746
$ETTh_2$	168	0.679(+7.1%)	0.668(+10.4%)	0.982	1.074	1.034	1.459	1.213	1.213	1.155	1.265	3.779
	336	0.811(+1.6%)	0.712(+13.5%)	1.042	1.197	1.186	1.420	1.304	1.349	1.101	1.337	3.006
	720	0.857(+5.2%)	0.763(+13.6%)	1.092	1.370	1.292	1.523	1.399	1.394	1.139	1.334	3.335
	24	0.287(+2.1%)	0.292(+4.9%)	0.329	0.444	0.444	0.478	0.459	0.472	0.592	0.491	0.589
	48	0.327(+2.9%)	0.333(+1.8%)	0.386	0.521	0.528	0.559	0.550	0.567	0.624	0.560	0.629
$ETTm_1$	96	0.352(+2.1%)	0.350(+1.1%)	0.419	0.554	0.553	0.583	0.593	0.595	0.623	0.581	0.606
	288	0.391(+3.7%)	0.389(+0.3%)	0.486	0.597	0.606	0.633	0.644	0.649	0.662	0.644	0.702
	672	0.429(+3.5%)	0.426(+3.3%)	0.574	0.653	0.674	0.689	0.700	0.712	0.720	0.709	0.767
	24	0.353(+1.1%)	0.354(+1.3%)	0.360	0.363	0.365	0.392	0.383	0.373	0.533	0.404	0.909
	48	0.387(+6.1%)	0.410(+1.9%)	0.411	0.418	0.416	0.439	0.433	0.421	0.543	0.445	0.936
WTH	168	0.467(+6.1%)	0.483(+1.0%)	0.491	0.506	0.499	0.510	0.512	0.495	0.565	0.518	0.985
	336	0.509(+0.7%)	0.503(+0.2%)	0.517	0.530	0.523	0.532	0.536	0.514	0.572	0.541	0.969
	720	0.515(+1.0%)	0.511(+0.4%)	0.542	0.552	0.540	0.549	0.553	0.525	0.582	0.555	0.961

TABLE 9
MAE of Comparison Experiment on End-to-end Baselines During Multivariate Forecasting

Dataset\	Baseline	RTNet(E)	RTNet(C)	SCINet	Informer	LogTrans	TCN	LSTMa	LSTNet	Reformer	StemGNN
	24	0.386	0.375	0.489	0.549	0.604	0.612	0.528	0.901	0.630	0.571
	48	0.402	0.403	0.467	0.625	0.757	0.617	0.577	0.960	0.750	0.618
$ETTh_1$	168	0.442	0.446	0.501	0.752	0.846	0.738	0.725	1.214	0.996	0.608
	336	0.463	0.474	0.577	0.873	0.952	0.800	0.794	1.369	1.090	0.730
	720	0.509	0.515	0.667	0.896	1.291	1.311	1.018	1.380	1.218	_
	24	0.330	0.307	0.519	0.665	0.750	0.754	0.689	1.457	1.475	0.883
	48	0 0.432	0.446	0.527	1.001	1.034	0.911	0.805	1.687	1.585	0.847
$ETTh_2$	168	0.679	0.668	0.662	1.515	1.681	1.579	1.560	2.513	1.650	1.228
	336	0.811	0.712	0.725	1.340	1.763	1.456	1.375	2.591	1.508	1.351
	720	0.857	0.763	0.992	1.472	1.552	1.381	1.520	3.709	1.793	_
	24	0.287	0.292	0.422	0.369	0.412	0.397	0.517	1.170	0.489	0.570
	48	0.327	0.333	0.431	0.503	0.583	0.508	0.819	1.215	0.645	0.628
$ETTm_1$	96	0.352	0.350	0.431	0.614	0.792	0.578	0.785	1.542	0.795	0.624
	288	0.391	0.389	0.497	0.786	1.320	0.735	0.952	2.076	0.886	0.683
	672	0.429	0.426	0.700	0.926	1.461	0.756	1.259	2.941	1.006	_
	24	0.353	0.354	0.382	0.381	0.477	0.355	0.464	0.545	0.497	0.449
	48	0.387	0.410	0.433	0.459	0.495	0.455	0.589	0.589	0.556	0.484
WTH	168	0.467	0.483	0.535	0.567	0.671	0.525	0.713	0.647	0.763	0.555
	336	0.509	0.503	0.575	0.620	0.670	0.555	0.889	0.683	0.997	0.575
	720	0.515	0.511	0.606	0.731	0.773	0.825	0.875	0.757	1.407	_