Инструкция по работе с блоком «Моделирование нечётких систем» программы Fuzzy Logic

Интерфейс приложения

Главное меню

Браузер входных и выходных лингвистических переменных

Окно отображения функций принадлежности для термов выбранной лингвистической переменной

Окно редактора правил нечёткой логики

Окно отображения поверхности нечёткого вывода

Окно создания/редактирования лингвистической переменной

(открывается при нажатии кнопки «Создать» под браузером входных и выходных переменных в главном меню для создания новой лингвистической переменной или при двойном нажатии на элемент того же браузера для редактирования существующей)

Данное окно включает в себя:

- 1) виджеты для заполнения информации о лингвистической переменной: названия, области определения, единиц измерения (если есть);
- 2) виджеты для добавления, изменения и удаления информации о термах этой лингвистической переменной: названия, типа функции принадлежности и параметров;
- 3) браузер, в котором хранится вся информация о термах данной лингвистической переменной.

- 1) при двойном нажатии на отдельный терм в браузере, будет выведен его график функции принадлежности;
- 2) нажатие на кнопку «ОК» завершит работу с лингвистической переменной и сохранит введённые значения, кнопка «Закрыть» отменит все действия пользователя и загрузит версию, до того как были внесены какие-либо изменения.

Окно отображения функций принадлежности для термов выбранной лингвистической переменной

- 1) после выбора лингвистической переменной для отображения в отдельном окне выводится график функций принадлежности её термов;
 - 2) легенда позволяет однозначно сопоставить термы между собой;
- 3) панель инструментов, расположенная в левом верхнем углу позволяет работать с полученным графиком (масштабировать, перемещать, настраивать координатные оси) в удобном режиме.

 Слайд 4

Окно редактора правил нечёткой логики

Данное окно включает в себя:

- 1) виджеты для задания входных термов отдельных лингвистических переменных;
- 2) тип соединения отдельных частей правила воедино (AND или OR);
- 3) вес правила, контролирующий степень правдивости отдельно взятого правила;
- 4) браузер правил, в котором можно проверить правильность добавленных правил и их количество.

- 1) если попытаться добавить правило, которое совпадает с имеющимся по входному условию: используются одни и те же термы (или их отрицание) и тип соединения, то правило добавлено не будет и пользователь получит соответствующее сообщение на экране;
- 2) нажатие на кнопку «ОК» завершит работу с правилами и сохранит введённые значения, кнопка «Закрыть» отменит все действия пользователя и загрузит версию, до того как были внесены какие-либо изменения.

Построение нечёткой модели

Нечёткая модель состоит из 3-х блоков: блок фаззификации, блока вывода и блок дефаззификации.

В процессе фаззификации четкий входной вектор X^* преобразуется в вектор M степеней принадлежности, которые, в свою очередь, являются входными данными для блока вывода.

Блок вывода на основе степеней принадлежности входных значений определяет результирующую функцию принадлежности $\mu_{\text{pes}}(y)$ выходного значения модели.

Операция вывода включает в себя следующие шаги:

- 1) вычисление степеней выполнения отдельных правил (их условий);
- 2) определение активизированных функций принадлежности заключений отдельных правил;
- 3) определение результирующей функции принадлежности вывода из всех правил, входящих в базу.

Под дефаззификацией нечеткого множества, являющегося результатом вывода, понимается операция нахождения четкого значения y^* , которое бы наиболее «рациональным» образом представляло это множество.

Блок фаззификации

Рассмотрим простой пример получения y^* из вектора входных значений X^* .

Пусть задана нечёткая система, регулирующая температуру внутри здания со следующим набором лингвистических переменных и их терм-множеств (в скобках указаны их сокращённые обозначения):

- 1) Температура: «Холодно» (A_1) , «Тепло» (A_2) и «Жарко» (A_3) ;
- 2) Желаемая температура: «Холодно» (B_1) , «Тепло» (B_2) и «Жарко» (B_3) ;
- 3) Действие: «Охлаждение» (\mathcal{C}_1), «Ничего» (\mathcal{C}_2) и «Отопление» (\mathcal{C}_3).

Вектор входных значений
$$X^* = \begin{bmatrix} x_1^* \\ x_2^* \end{bmatrix} = \begin{bmatrix} 2 \\ 9 \end{bmatrix}$$

А также даны графики функций принадлежности всех термов входных и выходных лингвистических переменных:

Блок фаззификации

Из графиков функций принадлежности термов входных лингвистических переменных получим:

$$\mu_{A_1}(x_1^*) = \mu_{A_1}(2) = 0.8$$

$$\mu_{A_2}(x_1^*) = \mu_{A_2}(2) = 0$$

$$\mu_{A_3}(x_1^*) = \mu_{A_3}(2) = 0$$

$$\mu_{B_1}(x_2^*) = \mu_{B_1}(9) = 0.1$$

$$\mu_{B_2}(x_2^*) = \mu_{B_2}(9) = 0.4$$

$$\mu_{B_3}(x_2^*) = \mu_{B_3}(9) = 0$$

На выходе блока фаззификации имеем:
$$\vec{M} = \begin{bmatrix} 0.8\\0\\0.1\\0.4\\0 \end{bmatrix}$$

Блок вывода

Составим базу правил (для примера будем использовать неполную базу правил, включающую в себя только те правила, которые касаются только поданных входных значений):

$$R_1$$
: ЕСЛИ $(x_1^* = A_1)$ И $(x_2^* = B_1)$ ТО $(y = C_2)$ R_2 : ЕСЛИ $(x_1^* = A_1)$ И $(x_2^* = B_2)$ ТО $(y = C_3)$

Оба правила можно записать в более привычном для человека виде:

- 1) ЕСЛИ (Температура «Холодно») И (Желаемая температура «Холодно») ТО (Действие «Ничего»);
- 2) ЕСЛИ (Температура «Холодно») И (Желаемая температура «Тепло») ТО (Действие «Отопление»).

Произведём оценку степеней выполнения условий отдельных правил (выбранная T-норма – PROD):

$$\mu_{R_1}(x_1^*, x_2^*) = \mu_{A_1}(x_1^*) \cdot \mu_{B_1}(x_2^*) = 0.8 \cdot 0.1 = 0.08 - \mu_{R_2}(x_1^*, x_2^*) = \mu_{A_1}(x_1^*) \cdot \mu_{B_2}(x_2^*) = 0.8 \cdot 0.4 = 0.32 -$$

Определим активизированные функции принадлежности заключений каждого из правил (для импликации выберем MIN):

Определим результирующую функцию принадлежности вывода всех правил (выбранная S-норма – SUM):

Блок дефаззификации

В случае дискретных функций принадлежности результат дефаззификации y^* вычисляется по формуле:

$$y^* = \frac{\sum_{i=1}^{l} y_i \sum_{j=1}^{m} \mu_{C_j}(y_i)}{\sum_{i=1}^{l} \sum_{j=1}^{m} \mu_{C_j}(y_i)}$$

где l — число элементов дискретной области определения Y, m — число правил нечёткой модели.

Для конкретного рассматриваемого случая результат дефаззификации y^* будет примерно равен 0.432, что соответствует терму «Отопление» выходной лингвистической переменной «Действие».

Слайд 10

Данное окно включает в себя:

- 1) виджеты для задания значений неиспользуемых лингвистических переменных при отображении поверхности нечёткого вывода (фиксированные значения);
- 2) виджеты для задания операций, используемых в блоке вывода (для операции объединение используется MAX, для пересечения и импликации PROD и MIN, а для аккумуляции SUM и MAX);
- 3) поле для ввода количества точек для построения поверхности нечёткого вывода (количество точек указывается для одной из осей);
 - 4) полоска прогресса отображающая оставшееся время до конца необходимых подсчётов.

Окно графика включает в себя:

- 1) поверхность нечёткого вывода;
- 2) графики функций принадлежности термов входных и выходных лингвистических переменных;
- 3) значения фиксированных лингвистических переменных.

- 1) пользователь может указать количество точек на графике, что позволяет уточнить полученный результат;
- 2) с использованием встроенного меню в левом верхнем углу окна пользователь может сохранить полученный график или изменить отдельные его параметры (масштаб, положение, отступы между соседними графиками).

Разное количество точек на графике поверхности нечёткого вывода

Разные значения входной фиксированной лингвистической переменной

