Khovanov Homology

Jaehoon Yoo

Department of Mathematics Sungkyunkwan University

November 28, 2023

Table of Contents

- 1 Knot and Link
- 2 Jones Polynomial
- 3 Graded Vector Space
- 4 Linear Map
- 5 Khovanov Homology

Knot and Link

Link

A link is simply a collection of (finitely-many) disjoint closed loops of string in $\mathbb{R}^3 \cup \{\infty\}$; each loop is called a component of the link.

Knot

A knot is a closed loop of string in $\mathbb{R}^3 \cup \{\infty\}$; two knots are equivalent if one can be wiggled around, stretched, tangled and untangled until it coincides with the other. Cutting and rejoining is not allowed.

Knot

Isotopic

Isotopic

Isotopy is a homotopy H such that for each fixed t, H(x,t) gives an homeomorphism.

Figure: Isotopic

Figure: Isotopic

Diagram

We have many different diagrams of the same knot! Example)

Reidemeister moves

Reidemeister moves example

Orientation

We can give an orientation to the knot diagrams.

Let's define n_+, n_- for each one means the number of \pm crossings.

Jones polynomial

We can compute the Jones polynomial with some rules for links K. First,

$$\langle\emptyset\rangle=1$$

.

Smoothing

$$\langle \mathcal{N} \rangle = \langle \mathcal{N} \rangle - q \langle \mathcal{N} \rangle \langle \mathcal{N} \rangle$$

Let be the first one be the *A*-smoothing, and the second one be the *B*-smoothing.

Some authors write in 0 & 1 smoothing or 1 & x.

Skein Relation

$$\langle \bigcirc \rangle = q + q^{-1}$$

$$\langle K \bigcirc \rangle = (q + q^{-1})\langle K \rangle$$

$$\langle \bigcirc \rangle = q^{-1}\langle \smile \rangle$$

$$\langle \bigcirc \rangle = -q^2\langle \smile \rangle$$

$$\langle \bigcirc \rangle = -q\langle \bigcirc \rangle$$

Knot category

Let S(K) denote a category associated with the states of the bracket for a diagram K whose objects are the states, with sites labeled 0 and 1. In addition, a morphism in this category is an arrow from a state with a given number of A's to a state with fewer B's[2].

Cube Category

Let $D^n = \{A, B\}^n$ be the *n*-cube category whose objects are the *n*-sequences from the set $\{A, B\}$ and whose morphisms are arrows from sequences with greater numbers of A's to sequence with fewer numbers of A's which is the poset category of subsets of $\{1, 2, \ldots, n\}$.

Hopf Link Smoothing

Categorification

Functor

Define the functor $R: D^n \to S(K)$ and $S: S(K) \to D^n$.

Object

Bracket state to the sequences in the cube category.

Morphism

Smoothing to sequences.

Then the two categories are equivalent.

Jones polynomial

For $\alpha \in \{A, B\}^n$, we will denote the associated smoothing by Γ_{α} .

Define

$$r_{\alpha}$$
 = the number of B's in α

and

$$k_{\alpha}$$
 = the number of circles in Γ_{α} .

Then

Jones Polynomial[5]

$$J(L) = \sum_{\alpha \in \{A,B\}^n} (-1)^{r_{\alpha}+n_{-}} q^{r_{\alpha}+n_{+}-2n_{-}} (q+q^{-1})^{k_{\alpha}}.$$

Jones Polynomial of Hopf link

$$J(L) = q^{-6} + q^{-4} + q^{-2} + 1.$$

Conjectures

Unknotting problem

The unknot is the unique knot K with V(K) = 1.

Even though the Jones polynomial is the strong knot invariant, it cannot detect the unknot until now.

$$D^n \rightarrow V$$

Again the functor $F: D^n \to V$, where V is a vector space(abelian group).

Graded Vector Space

Graded Vector Space

Let $V = \mathbb{Q}\{1,x\}$ (the \mathbb{Q} -vector space with basis 1 and x) and grade the two basis elements by deg(1) = 1 and deg(x) = -1.

Graded dimension

For a graded vector space $W = \bigoplus_m V^m$, defined the graded dimension

$$q\dim(W) = \sum_{m} q^{m}\dim(W^{m})$$

.

Grade Shifting

Graded shift

For a graded vector space W and an integer I we can define a new graded vector space W $\{I\}$ by

$$W\{I\}^m = W^{m-I}$$

and notice that $q\dim(W\{I\}) = q^I q\dim(W)$.

Properties

$$q \operatorname{dim} (W \otimes W') = q \operatorname{dim} (W) q \operatorname{dim} (W'),$$

 $q \operatorname{dim} (W \oplus W') = q \operatorname{dim} (W) + q \operatorname{dim} (W')$

Cochain complex

To each $\alpha \in \{A, B\}^n$, associate the graded vector space

$$V_{\alpha}=V^{\otimes}\left\{ r_{\alpha}+n_{+}-2n_{-}\right\}$$

and define

$$C^{i,*}(L) = \bigoplus_{\substack{\alpha \in \{A,B\}^n \\ r_{\alpha} = i + n_{-}}} V_{\alpha}.$$

Bi-grading

An element of $C^{i,j}(L)$ is said to have homological grading i and q-grading j. If $v \in V_{\alpha} \subset C^{*,*}(L)$,

$$i = r_{\alpha} - n_{-}$$

 $j = deg(v) + i + n_{+} - n_{-}$

Vector Space

Vector Space

Linear map

Through the smoothing, two circles merge one circle, and one circle split to the one circle.

So we can define the linear map

$$\Delta: \textit{V} \otimes \textit{V} \rightarrow \textit{V}$$

$$m:V \to V \otimes V.$$

such that

$$1 \otimes 1 \mapsto 1, \ 1 \otimes x, x \otimes 1 \mapsto x, \ x \otimes x \mapsto 0$$

and

$$1 \mapsto 1 \otimes x + x \otimes 1, \ x \mapsto x \otimes x.$$

Cobordism

These maps can be represented by the surface cobordism.

TQFT and Frobenius Algebra

These cobordism can represent the Frobenius Algebra through the $1\!+\!1$ Topological Quantum Field Theory.

Boundary map

And it is equivalent to the commute digram.

Boundary map II

If we define the boundary map of the chain complex at slide 26 as

$$d^{i}(v) = \sum_{\substack{\xi \text{ such that} \\ Tail(\xi) = \alpha}} \operatorname{sign}(\xi) d_{\xi}(v)$$

where sign $(\xi) = (-1)^{\text{number of 1's to the left of * in } \xi}$ and $v \in V_{\alpha} \subset C^{i,*}(L)$.

Then we can check that $d^{r+1} \circ d^r = 0$ from the previous slide.

Linear Map

Then we can define

 d^1

$$d^1:V\otimes V\to V$$
 such that

$$d^{1}\left(v_{1}\otimes v_{2}\right)=\left(m\left(v_{1}\otimes v_{2}\right),m\left(v_{1}\otimes v_{2}\right)\right)$$

.

 d^2

$$d^2: V \to V \otimes V$$
 such that

$$d^{2}\left(v_{1},v_{2}\right)=-\Delta\left(v_{1}\right)+\Delta\left(v_{2}\right)$$

.

Linear map computation

Write the vector spaces with the ordered basis,

$$V \otimes V = \mathbb{Q}1 \otimes 1 \oplus \mathbb{Q}x \otimes 1 \oplus \mathbb{Q}1 \otimes x \oplus x \otimes x$$

and

$$V \oplus V = \mathbb{Q}^2 1 \oplus \mathbb{Q}^2 x$$

.

Linear map matrix

Then

$$d^{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \quad d^{2} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

Homology

Easily we can compute the kernel and image of each matrices. So

Homological degree	-2	-1	0	
Cycles	$\{1 \otimes x - x \otimes 1, x \otimes x\}$	$\{(1,1),(x,x)\}$	$\{1\otimes 1, 1\otimes x, x\otimes 1, x\otimes x\}$	
Boundaries	-	$\{(1,1),(x,x)\}$	$\{1\otimes x + x\otimes 1, x\otimes x\}$	
Homology	$\{1 \otimes x - x \otimes 1, x \otimes x\}$	-	$\{1\otimes 1, 1\otimes x\}$	
q-degrees	-4, -6		0, -2	

Khovanov Homology

\	0	-1	-2	-3	-4	-5	-6
-2					Q		Q
-1							
0	Q		Q				

Graded Euler Characteristic

Compute the graded Euler characteristic of this complex

$$\sum_{i}\left(-1\right)^{i}q\mathrm{dim}\left(C^{i,*}\left(L\right)\right)\in\mathbb{Q}\left[q^{\pm}\right]$$

is

$$q^{-6} + q^{-4} + q^{-2} + 1$$

that Jones polynomial of the Hopf link.

Significancy

Why we use the Khovanov Homology?

Unknot detector[4]

Khovanov homology can detect the unknot.

Mathematical Physics[7]

Related to the Gauge theory via Floer homology.

References I

D. Bar-Natan.

Khovanov's homology for tangles and cobordisms.

Geometry & Topology, 9(3):1443-1499, 2005.

L. Kauffman.

An introduction to knovanov homology, 2016.

M. Khovanov.

A categorification of the jones polynomial.

Duke Mathematical Journal, 101(3), 2000.

P. B. Kronheimer and T. S. Mrowka.

Khovanov homology is an unknot-detector.

Publications mathématiques de l'IHÉS, 113(1):97-208, 2011.

References II

Five lectures on khovanov homology, 2006.

O. Viro.

Khovanov homology, its definitions and ramifications. *Fundamenta Mathematicae*, 184:317–342, 2004.

E. Witten.

Khovanov homology and gauge theory, 2012.