Measuring the bikeability in Amsterdam across PC4 areas

Case Study - Final Presentation

Content

- Introduction research question
- Literature review
- Methodology
- Results
- Conclusion

Introduction

Biking is gaining significance due to the rising interest in bicycle usage

Measuring the bikeability is crucial for assessing a city's cycling infrastructure

There are no one-size-fits-all equation

Research Question

What is the bikeability of Amsterdam across PC4 areas in terms of grenness, biking infrastructure, and parking facilities?

Literature Review

- Eye-level greenness significantly influences cycling frequency, with visible greenery within 500m to 1500m boosting cycling and integrating it with public transport Wanga et al. (2020)
- Design features such as quick routes and dedicated bike lanes are crucial for encouraging cycling; wider and protected bike lanes increase active transportation, suggesting that infrastructure development is key for cyclist and pedestrian quality - Silva et al. (2011) and Aziz et al. (2018)
- Efficient bike parking management and integration into city planning are essential for improving the bikeability experience and supporting sustainable mobility - Van der Spek and Scheltema (2015) and Schmid-Querg et al. (2021)

Methodology

Data: Amsterdam.nl and CyclOSM

Geopandas: Data cleaning and spatial operations

QGIS: Visualisation

Folium: Visualisation in notebook

Methodology: Greenness

- Map algebra between PC4 and green areas
 - O Map Algebra functions, Field Calculator
 - Polygon in Polygon overlay
- Aggregation by PC4 area
- Visualisation on QGIS

Methodology: Infrastructure Quality

- Biking Network from Amsterdam.nl
- Assigning quality scores to bike lane types (Schmid-Querg et al. (2021))
- Map overlay, interaction with PC4 areas
- Measured the weighted average of the quality score per PC4

Table A1. Bicycle infrastructure.

Type of Street or Cycling Infrastructure	Abbreviation in Attribute Table	Value (1–10)
Broad bike path, both-sided	RWb	10
Broad and narrow bike path	RWb_RWs	9
Narrow bike path, both-sided	RWs	8
Cycling street	FS	7
Narrow bike path and bike lane	RWs_RS	7
Bike lane, both-sided	RS	6
Advisory bike lane, both-sided	SSt	5
Regular street	None	3
One-way street, open	EBo	3
One-way street with advisory bike lane	EB_RS	3

Methodology - Bike Parking Amenities

- OpenStreetMap
- Data cleaning and preparation
- Bike parking amenities categories and weights (Schmid-Querg et al. (2021))
- 72 out of 85 PC4 areas
- Spatial Join and group by PC4:
- Count of nike parking points per PC4 (50%)
- Average quality per PC4 (50%)

Type of Parking Facility	Value (1–10)
Bike Locker	10
Roofed bike rack	8
Regular bike rack	6
No bike rack	2

Methodology: Final Equation

I = Infrastructure Quality

P = Parking Quality

G = Greenness

The weights for each feature are:

 w_I = Weight for Infrastructure Quality = 50%

 w_P = Weight for Parking Quality = 25%

 $w_G = \text{Weight for Greenness} = 25\%$

The Bikeability Score is calculated as:

$$NQS = (w_I \times I) + (w_P \times P) + (w_G \times G)$$

Ref: Schmid-Querg et al. (2021)

Results - Greenness

Results - Infrastructure Quality

Results - Bike Parking Amenities

Results

Results - Overall Quality

Results

Highest Quality	Score	Lowest Quality	Score
1066	0.75	1071	0.25
1060 1032	0.75 0.73	1075 1057	0.26 0.31

Conclusion & Discussion

- Overall overview the quality of greenness, biking infrastructure, and bike parking facilities
- Calculated bikeability quality score for 71 out of 85 PC areas
- Most PC4 areas show high greenness
- Biking infrastructure quality is generally high
- Bike parking amenities have low quality
- **Data Source Limitation:** CyclOSM

References

- Wang, R., Lu, Y., Wu, X., Liu, Y., & Yao, Y. (2020). Relationship between eye-level greenness and cycling frequency around metro stations in Shenzhen, China: A big data approach. Sustainable Cities and Society, 59, 102201. https://doi.org/10.1016/j.scs.2020.102201
- Wahlgren, L., & Schantz, P. (2012). Exploring bikeability in a metropolitan setting: stimulating and hindering factors in commuting route environments. BMC Public Health, 12, 168. https://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-12-168
- City of Amsterdam. (2024, January 30). Maps data. https://maps.amsterdam.nl/open_geodata
- Gu, P., Han, Z., Cao, Z., Chen, Y., & Jiang, Y. (2018). Using open source data to measure street walkability and bikeability in China: A case of four cities. Transportation research record, 2672(31), 63-75.
- McNeil, N. (2011). Bikeability and the 20-min neighborhood: How infrastructure and destinations influence bicycle accessibility. Transportation research record, 2247(1), 53-63.
- Schmid-Querg, J., Keler, A., & Grigoropoulos, G. (2021). The Munich bikeability index: A practical approach for measuring urban bikeability. Sustainability, 13(1), 428.