1 The Simple Linear Regression Model

The linear regression model with one predictor variable is given by the below.

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

- 1. Interpret β_0 . What are the units of β_0 ?
 - (a) If X = 0 is not within the range of the observed X values, is β_0 extrapolation or interpolation?
 - (b) Give an example when X = 0 is meaningful from your work.
- 2. Interpret β_1 . What are the units of β_1 ?
- 3. How does ordinary least squares (OLS) choose the parameter estimates for the fitted/estimated/predicted model $\hat{y} = b_0 + b_1 x$? If you use any other values other than the estimates provided by OLS, what will happen to $SSE = \sum (y - \hat{y})^2$?
- 4. What population parameter does \hat{y} estimate?
- 5. If a model overpredicts the value of y for a given x, is the residual positive or negative, and is the point above or below the line \widehat{y} ?

2 The Multiple Linear Regression Model

The linear regression model with one predictor variable is given by

$$Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_k X_k + \varepsilon$$

and the estimated model is given by

$$\widehat{y} = b_0 + b_1 x_1 + \ldots + b_k x_k$$

- 1. How does the interpretation of β_0 differ when there are multiple predictors?
- 2. How does the interpretation of β_i $(i=1,\ldots,k)$ differ when there are multiple predictors?
- 3. What do we assume about the distribution of ε ?
 - (a) As a result, what do we assume about the distribution of Y and why?
 - (b) How do you check this before fitting the model?
 - (c) How do you check this after fitting the model?

- 4. What do we assume of about the variation of ε ?
 - (a) What does this mean in less technical terms?
 - (b) How do you check this before fitting the model?
 - (c) How do you check this after fitting the model?
- 5. What do we assume about the relationships between Y and the X_i in the model?
 - (a) Give two examples of when the zero mean condition is not satisfied.
 - (b) How do you check this before fitting the model?
 - (c) How do you check this after fitting the model?
- 6. What do we assume about the relationships between $X_1, \ldots X_k$?
 - (a) How do you check this before fitting the model?
 - (b) How do you check this after fitting the model?
- 7. What do we assume about the the autocorrelation between the ε_i ?
 - (a) How do you check this after fitting the model?
 - (b) Is the autocorrelation of the ε_i the same as the Y_i ?
- 8. In regression, what is the difference between endogineity and exogeneity?
 - (a) For a given fitted model, how might you be able to detect endogineity by examining the model coefficients?
 - (b) If the above is detected, violation of what other condition could cause the same problem? How can you tell the difference?
 - (c) Suppose the nature of the endogienity is omitted variable bias such that $COV[X_i, \varepsilon] \neq 0$ for some X_i in the model and the effects of an external X_j are accounted for by ε . What does this suggest about X_i and X_j ? Would problem might introducing X_j cause?
 - (d) Suppose there is a non-linear relationship between the X_i and ε . What might this suggest about the underlying model formulation?
- 9. What do we require to establish causality?