Topology

K

September 21, 2022

Contents

1	Introduction	
2	Topological Spaces	

4 CONTENTS

Chapter 1

Introduction

Chapter 2

Topological Spaces

2-1

"\Rightarrow": Let $f: X_1 \longrightarrow X_2$ be a homeomorphism and fix a subset (not necessarily open) $U \in \mathcal{T}_1$.

- 1. Assume U is open in X_1 . Because f is continuous, the image of open subsets are again open, thus f(U) lies in \mathcal{T}_2 .
- 2. On the other hand, if f(U) is open in X_2 , then since f is bijective we have

$$f^{-1}(f(U)) = U.$$

Because f is continuous, the preimage of open subsets under f is open. We may therefore conclude U is open in X_1 .

We have shown that if f is a homeomorphism, then $f(\mathcal{T}_1) = \mathcal{T}_2$.

" \Leftarrow ": Let $f: X_1 \longrightarrow X_2$ be a bijective map such that $f(\mathcal{T}_1) = \mathcal{T}_2$. Consider the inverse map f^{-1} . We want to show f^{-1} is continuous. Fix an open subset $U \in \mathcal{T}_1$. It is

$$(f^{-1})^{-1}(U) = f(U)$$

because f is bijective. Since $f(\mathcal{T}_1) = \mathcal{T}_2$ and U is open, f(U) is open as well. Hence the preimage of U under f^{-1} is open and f^{-1} is continuous.

Now we show that f is also continuous. Again, fix an open subset $V \in \mathcal{T}_2$. The preimage of V under f is just the image of the inverse function. We have already shown that the inverse is continuous. Thus, $f^{-1}(V)$ is open and f is continuous. Since f and f^{-1} exist and are continuous, f is a homeomorphism as desired.

2-2

a)

We show that \mathcal{T} is a topology.

- 1. Since \mathcal{T} is the collection of all unions of finite intersections of elements of \mathcal{B} , it contains the union of all elements of \mathcal{B} which is just X. The union of empty collection generates the emptyset so $\emptyset \in \mathcal{T}$ as well.
- 2. Let I be an arbitary index set and $U_{i \in I}$