

 考试科目:
 高等数学(上) A
 开课单位:
 数 学 系

 考试时长:
 150 分钟
 命题教师:
 王融 等

题 号	1	2	3	4	5	6	7	8	9	10
分值	15 分	15 分	6 分	8分	6 分	6 分	6 分	6 分	16 分	6 分
题号	11	12								
分值	5 分	5分								

本试卷共 12 道大题, 满分 100 分. (考试结束后请将试卷、答题本、草稿纸一起交给监考老师)

注意:本试卷里的中文为直译(即完全按英文字面意思直接翻译),所有数学词汇的定义请参照教材(Thomas' Calculus,13th Edition)中的定义。如果其中有些数学词汇的定义不同于中文书籍(比方说同济大学的高等数学教材)里的定义,以教材(Thomas' Calculus,13th Edition)中的定义为准。

- 1. (15 pts) Determine whether the following statements are **true** or **false**? No justification is necessary.
 - (1) If k > 0, then $\ln^{100} x < x^{0.0001} < 2^{kx}$ for sufficiently large x.
 - (2) If f is continuous on **R**, then $\int_0^a f(a-x) dx = \int_0^a f(x) dx$.
 - (3) If the graph of a differentiable function f(x) is concave up on an open interval (a, b), then f(x) has a local minimum value at a point $c \in (a, b)$ if and only if f'(c) = 0.
 - (4) If |f(x)| is continuous at x = a, then so is $(f(x))^2$.
 - (5) Suppose that f(a) = g(a) = 0, that f and g are differentiable on an open interval I containing a, and that $g'(x) \neq 0$ on I if $x \neq a$. If $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ does not exist, then neither does $\lim_{x \to a} \frac{f(x)}{g(x)}$.
- 2. (15pts) Multiple Choice Questions: (only one correct answer for each of the following questions.)
 - (1) If g(x) is one-to-one, and g(1) = 3, g(3) = 1, g'(1) = 4, g'(3) = 28, then $(g^{-1})'(3) = (A) \frac{1}{4}$. (B) $\frac{1}{28}$. (C) $\frac{1}{3}$. (D) 4.
 - (2) Let c > 0. How many real roots are there for the equation $x^3 6x^2 + 9x + c = 0$?
 - (A) 0. (B) 1. (C) 2. (D) 3.

- (3) Suppose $\lim_{x\to 0^+} f(x) = a$, $\lim_{x\to 0^-} f(x) = b$, then $\lim_{x\to 0^-} \left(f(x-\sin x) + 2f\left(x^2+x\right)\right) = (A) \ a + 2b$. (B) b + 2a. (C) 3a. (D) 3b.
- (4) If $f(x) = \frac{\ln |x|}{|x-1|} \sin x$, then the function f(x) has
 - (A) 1 removable discontinuity and 1 jump discontinuity.
 - (B) 2 removable discontinuities.
 - (C) 1 removable discontinuity and 1 infinite discontinuity.
 - (D) 2 jump discontinuities.
- (5) Let f(x) be a continuous function, and a is a nonzero constant. Which of the following function is an odd function?

(A)
$$\int_{a}^{x} \left(\int_{0}^{u} tf(t^{2}) dt \right) du.$$
 (B)
$$\int_{0}^{x} \left(\int_{a}^{u} f(t^{3}) dt \right) du.$$
 (C)
$$\int_{0}^{x} \left(\int_{a}^{u} tf(t^{2}) dt \right) du.$$
 (D)
$$\int_{a}^{x} \left(\int_{0}^{u} (f(t))^{2} dt \right) du.$$

(C)
$$\int_0^x \left(\int_a^u t f(t^2) dt \right) du$$
.

(D)
$$\int_{a}^{x} \left(\int_{0}^{u} (f(t))^{2} dt \right) du.$$

3. (6 pts) If the function

$$f(x) = \begin{cases} a \cdot \sin x, & x \le \frac{\pi}{4} \\ 1 + b \cdot \tan x, & \frac{\pi}{4} < x < \frac{\pi}{2} \end{cases}$$

is differentiable at $x = \frac{\pi}{4}$, find the values of a and b.

4. (8 pts) Evaluate the following limits.

(1)
$$\lim_{x \to 0} \frac{\tan^{-1} x - x}{x \tan^2 x}$$
.

(2)
$$\lim_{x \to \infty} \frac{(x+100)^{100x}}{x^{100x}}.$$

- 5. (6 pts) Find the area of the region enclosed by the curve $y = |x^2 4|$ and $y = \frac{x^2}{2} + 4$.
- 6. (6 pts) The graph of the equation $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 1$ is an astroid. Find the area of the surface generated by revolving the curve about the x-axis.
- 7. (6 pts) The point P(a,b) lies on the curve $l:(y-x)^3=y+x$, and the slope of the tangent line of l at P(a,b) is 3. Find the values of a and b.

8. (6 pts) Find
$$f'(2)$$
 if $f(x) = e^{g(x)}$ and $g(x) = \int_2^{\frac{x^2}{2}} \frac{t}{1+t^4} dt$.

9. (16 pts) Evaluate the integrals.

$$(1) \int \frac{dx}{\sqrt{1+e^x}}.$$

(2)
$$\int \frac{3x+6}{(x-1)^2(x^2+x+1)} \, dx.$$

(3)
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \tan^2 x \sec x \, dx$$
.

(4)
$$\int_{\frac{1}{2}}^{\frac{3}{2}} \frac{1}{\sqrt{|x-x^2|}} \, dx.$$

- 10. (6 pts) An 1600-L tank is half full of fresh water; i.e., contains 800-L of fresh water. At the time t=0, a solution containing 0.0625 kg/L of salt runs into the tank at the rate of 16 L/min, and the mixture is pumped out of the tank at the rate of 8 L/min. At the time the tank is full, how many kilograms of salt will it contain?
- 11. (5 pts) f(x) is differentiable, and f'(x) > 0 on $(0, +\infty)$. Let $F(x) = \int_{\frac{1}{x}}^{1} x f(u) du + \int_{1}^{\frac{1}{x}} \frac{f(u)}{u^2} du$.
 - (1) Identify the open intervals on which F(x) is decreasing and the open intervals on which F(x) is increasing.
 - (2) Find the open intervals on which the graph of y = F(x) is concave up and the open intervals on which it is concave down.
- 12. (5 pts) Let g be a function that is differentiable throughout an open interval containing the origin. Suppose g has the following properties:
 - (i) $g(x+y) = \frac{g(x)+g(y)}{1-g(x)g(y)}$ for all real numbers x, y, and x+y in the domain of g.
 - (ii) $\lim_{h \to 0} g(h) = 0$.
 - (iii) $\lim_{h\to 0}\frac{g(h)}{h}=1.$

Find g(x).

一、 (15分) 判断题:

- (1) 若 k > 0,那么对充分大的 x,必有 $\ln^{100} x < x^{0.0001} < 2^{kx}$.
- (2) 若函数 f(x) 在 **R** 上连续, 那么 $\int_0^a f(a-x) dx = \int_0^a f(x) dx$.
- (3) 若可微函数 f(x) 的图形在开区间 (a,b) 上是上凹的,那么 f(x) 在一点 $c \in (a,b)$ 处取 得局部极小值当且仅当 f'(c) = 0.
- (4) 若函数 |f(x)| 在 x = a 处连续,则 $(f(x))^2$ 在 x = a 处也连续.
- (5) 设 f(a) = g(a) = 0, 函数 f 和 g 在包含 a 的一个开区间 I 上可微, 且对任意 $x \in I$, 只要 $x \neq a$, 必有 $g'(x) \neq 0$. 如果极限 $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ 不存在,则 $\lim_{x \to a} \frac{f(x)}{g(x)}$ 也不存在.

二、(15分)单项选择题:

- (1) 若 g(x) 是一对一的函数,且 g(1) = 3, g(3) = 1, g'(1) = 4, g'(3) = 28,则 $(g^{-1})'(3) = (A) \frac{1}{4}$. (B) $\frac{1}{28}$. (C) $\frac{1}{3}$. (D) 4.
- (2) 设 c > 0, 方程 $x^3 6x^2 + 9x + c = 0$ 有多少个实根?
 - (A) 0. (B) 1. (C) 2. (D) 3.
- (3) 若 $\lim_{x \to 0^+} f(x) = a$, $\lim_{x \to 0^-} f(x) = b$, 则 $\lim_{x \to 0^-} \left(f(x \sin x) + 2f(x^2 + x) \right) =$ (A) a + 2b. (B) b + 2a. (C) 3a. (D) 3b.
- (4) 设函数 $f(x) = \frac{\ln |x|}{|x-1|} \sin x$,则 f(x) 有
 - (A) 1 个可去间断点, 1个跳跃间断点. (B) 2个可去间断点.
 - (C) 1个可去间断点,一个无穷间断点. (D) 2个跳跃间断点.
- (5) 设 f(u) 为连续函数, a 是非零常数,则为奇函数的是

(A)
$$\int_{a}^{x} \left(\int_{0}^{u} t f(t^{2}) dt \right) du.$$
 (B)
$$\int_{0}^{x} \left(\int_{a}^{u} f(t^{3}) dt \right) du.$$
 (C)
$$\int_{0}^{x} \left(\int_{a}^{u} t f(t^{2}) dt \right) du.$$
 (D)
$$\int_{a}^{x} \left(\int_{0}^{u} (f(t))^{2} dt \right) du.$$

三、(6分)已知函数

$$f(x) = \begin{cases} a \cdot \sin x, & x \le \frac{\pi}{4} \\ 1 + b \cdot \tan x, & \frac{\pi}{4} < x < \frac{\pi}{2} \end{cases}$$

在 $x = \frac{\pi}{4}$ 处可导, 求常数 a, b 的值.

四、(8分)求下列极限.

(1)
$$\lim_{x \to 0} \frac{\tan^{-1} x - x}{x \tan^2 x}.$$

(2)
$$\lim_{x \to \infty} \frac{(x+100)^{100x}}{x^{100x}}.$$

- 五、 (6分) 求夹在两条曲线 $y = |x^2 4|$ 和 $y = \frac{x^2}{2} + 4$ 之间的区域面积.
- 六、(6分)方程 $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 1$ 所对应的曲线为一个星形线. 求把此星形线绕 x 轴旋转所形成的旋转面的面积.

七、 (6分) 点 P 在曲线 $l: (y-x)^3 = y+x$ 上,且 l 在 P 处的切线斜率为 3,求点 P 的坐标.

八、 (6分) 设
$$f(x) = e^{g(x)}$$
, 这里 $g(x) = \int_2^{\frac{x^2}{2}} \frac{t}{1+t^4} dt$. 求 $f'(2)$.

九、(16分)计算积分.

$$(1) \int \frac{dx}{\sqrt{1+e^x}}.$$

(2)
$$\int \frac{3x+6}{(x-1)^2(x^2+x+1)} dx.$$

(3)
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \tan^2 x \sec x \, dx$$
.

(4)
$$\int_{\frac{1}{2}}^{\frac{3}{2}} \frac{1}{\sqrt{|x-x^2|}} \, dx.$$

- 十、(6分)一个容积为1600升的蓄水池装有800升的水. 在时间 t=0,浓度为每升 0.0625 公斤的 盐水以每分钟 16 升的速度流入蓄水池,同时混合液以每分钟 8 升的速度被抽出蓄水池. 请问: 当蓄水池正好装满混合液的那一刻,蓄水池内含有多少公斤的盐?
- 十一、 (5分)设函数 f(x) 在区间 $(0,+\infty)$ 上可导,且对任意 $x \in (0,+\infty)$,都有 f'(x) > 0. 定义 函数 $F(x) = \int_{\frac{1}{2}}^{1} x f(u) \, du + \int_{1}^{\frac{1}{x}} \frac{f(u)}{u^2} \, du$.
 - (1) 求函数 F(x) 的单调区间.
 - (2) 求函数 y = F(x) 的图形的凹凸区间(即上凹、下凹的开区间).
- 十二、 (5分) 设函数 g 在一个包含原点的开区间上有定义且可微,并且 g 有下列性质:
 - (i) 对任意在 g 的定义域内的实数 x, y 和x + y, 满足 $g(x + y) = \frac{g(x) + g(y)}{1 g(x)g(y)}$.
 - (ii) $\lim_{h\to 0}g(h)=0.$

(iii)
$$\lim_{h\to 0}\frac{g(h)}{h}=1.$$

求 g(x).