Sieci komputerowe

Wykład 5 Protokoły ARP, RARP, nagłówek IP

Przykład adresacji IP

Ruting dla poprzedniego przykładu

- Użyjemy rutingu statycznego
- Należy dokonać odpowiednich wpisów do tablicy rutowania
 - route add -net 193.0.96.0/26 gw 193.0.96.193 eth1
 - route add -net 193.0.96.64/26 gw 193.0.96.194eth1

– ...

 Jeśli używamy dynamicznego protokołu rutowania, nie trzeba ręcznie modyfikować tablicy rutowania

Protokół ARP

DNS Hannah

10.1.1.1

10.1.1.2

0200.1111.1111

Hey Everybody! If You
Are 10.1.1.2, Tell Me
Your MAC Address!

10.1.1.2; My
MAC Address Is
0200.2222.2222.

 ARP (Address Resolution Protocol) umożliwia znalezienie adresu fizycznego (MAC) odpowiadającego adresowi IP

Ramka ARP

Eth	Eth	Тур	Rodzaj	Rodzaj	Rozm.	Rozm.	Op (1-	Adres	Adres	Adres	Adres
adres	adres		1	-			zapytan			Eth	IP
przezna	źródła		(1 –eth)	(IP-0x0	sprzęt.	prot.	ie ARP)	wysyłaj	wysyłaj	przezna	przezna
czenia				800				ącego	ącego	czenia	czenia
)							

-----ragł. Ethernet------|-----zapytanie/odpowiedź arp ------

- Zapytanie i odpowiedź ARP zawarte są w ramce Ethernet
- Zapytania ARP wykorzystują mechanizm broadcast Ethernetu
 - Adres MAC docelowy jest ustawiany na wartość: ff:ff:ff:ff:ff

Polecenie arp

- Mapowania adresów IP na MAC są przechowywane w pamięci podręcznej ARP (dla zwiększenia wydajności)
- Polecenie arp służy do manipulowania wpisami do pamięci ARP
- Wynik działania polecenia arp -an

```
(10.1.1.8) at 00:90:27:2A:7A:A2 [ether] on eth0.11 (10.1.2.211) at 00:0E:7B:9A:25:5F [ether] on eth0.12 (10.1.3.83) at 00:E0:7D:84:C8:4B [ether] on eth0.13 (10.1.2.4) at 00:0B:DB:93:10:6B [ether] on eth0.12
```

Protokół RARP i BOOTP

Figure 5-11 RARP and BOOTP

- RARP (Reverse ARP zapewnia odwzorowanie odwrotne w porównaniu z ARP – MAC na IP
- Bootp dodatkowo udostępnia jeszcze inne dane

Ramka RARP

Eth adres		• •					Op (3- zapytan	Adres IP	Adres Eth	Adres IP
przezna czenia	źródła		(1 - eth)	(IP-0x0 800)	sprzęt.	prot.	l			przezna czenia

-----ragł. Ethernet------|-----zapytanie/odpowiedź arp ------

- Ramka RARP ma taki sam format jak ramka ARP
- Protokół RARP nie jest częścią implementacji stosu TCP/IP

Protokół DHCP

- BOOTP i DHCP stosuje się do konfiguracji interfejsów sieciowych hostów
- Ułatwia to czynności administracyjne związane z zarządzaniem adresacją IP

Nagłówek protokołu IP

+	Bity 0 - 3 4 - 7 8 - 15		16 - 18	19 - 31					
0	Wersja Długość nagłówka		Typ usługi (ToS)		Całkowita długość				
32	N	lumer iden	ityfikacyjny	Znaczniki Przesunięcie fragmentacji					
64	Czas życia pakietu (TTL)		Protokół warstwy wyższej		Suma kontrolna nagłówka				
96	Adres źródłowy								
128		Adres przeznaczenia							
160	Opcje								
192	Dane								

 Długość nagłówka wynosi 20 bajtów (bez pola opcje)

Najważniejsze pola nagłówka IP

- Pierwsze, 4-bitowe pole zawiera numer wersji protokołu IP (dla IPv4 jest to 4)
- Kolejne 4-bitowe pole zawiera długość samego nagłówka protokołu (bez danych)
- Następne 8 bitów prezentuje tzw. "typ usługi" (ang. Type of Service). Jest to najbardziej podstawowy sposób wyznaczania priorytetu danego datagramu
- Kolejnym 16-bitowym polem jest całkowita długość pakietu (razem z danymi). Jego długość (wynosząca 2^16) umożliwia ustawienie rozmiaru datagramu na 65536 bajtów

Pola nagłówka IP c.d.

- Kolejne 16-bitowe pole to numer identyfikacyjny, służy do fragmentacji i defragmentacji datagramów
- Dalsze 3-bitowe pole to znaczniki, używane przy fragmentacji datagramów
- Następne 13-bitowe pole służy do odpowiedniego oznaczania fragmentów datagramów
- Pole TTL (8 bitów) to czas życia pakietów (ang. Time To Live). Jest to liczba z zakresu 0-255.
 Przy trasowaniu pakietu przez router jest ona zmniejszana o jeden. W momencie osiągnięcia przez TTL wartości 0, pakiet nie jest dalej przekazywany

Pola nagłówka IP c.d.

- Kolejne, 8-bitowe określa rodzaj protokołu warstwy wyższej, takimi jak TCP czy UDP
- Następnym polem jest suma kontrolna nagłówka datagramu
- Dalsze pola zawierają adresy źródłowy i przeznaczenia. Na ich podstawie można określić pochodzenie i miejsce docelowe datagramu w sieci
- Ostatnim, 32-bitowym polem są opcje, które w normalnej transmisji zwykle nie są używane

Fragmentacja

Datagram:

Nagłówek IP	Nagłówek UDP	Dane UDP
20 bajtów	8 bajtów	1473 bajty

20+8+1473=1501

1501>MTU dla sieci Ethernet, konieczna jest fragmentacja:

pierwszy pakiet:

Nagłówek IP	Nagłówek UDP	Dane UDP
20 bajtów	8 bajtów	1472 bajty

drugi pakiet:

Nagłówek IP	Dane		
	UDP		
20 bajtów	1 bajt		

 W kolejnych fragmentach nie ma nagłówka UDP!

Fragmentacja c.d.

- W przypadku pierwszego fragmentu, numer identyfikacyjny może mieć wartość np. 26304, pole przesunięcie fragmentacji będzie miało wartość 0
- W przypadku drugiego fragmentu wartość numeru identyfikacyjnego pozostaje ta sama, natomiast przesunięcie fragmentacji będzie równe 1480. Oznacza to, że drugi fragment zaczyna się po 1480 bajcie oryginalnego datagramu
- Wartości te można obserwować np. programem tcpdump

Terminologia

- Porcję danych w warstwie łącza nazywamy ramką
- W warstwie sieciowej jest to datagram lub pakiet
- W warstwie transportu stosujemy nazwę segment