Open-Source Prototyping of 5G Wireless Systems for UGV/UAV

Team: SDMAY20-36

Team Members: William Byers, Ibrica Tutic, Samuel Stanek,

Nathan Whitcome, Andrew Eschweiler, Nicholas Lorenz

Faculty Advisor/Client: Hongwei Zhang

High Level Overview

- Create a 5G wireless solution that allows for large scale simulation of wireless networks
 - Low latency
 - High throughput
 - Extremely reliable network
- Tools
 - Open Air Interface (OAI)
 - Simulation of Urban Mobility (SUMO)
- Future uses
 - Connected autonomous transport
 - Smart agriculture

Problem Statement

- Need to modify OAI to simulate 5G networks in various traffic conditions
 - Need to simulate 100s of nodes
 - Ensure simulation output matches theory (no bugs)
- Utilize open source tools to solve the above problem

Conceptual Sketch

Functional Requirements

- Design a scalable system to test 5G scheduling algorithms
- Ensure the solution is:
 - Reliable
 - Has low latency
 - Has high throughput
- Utilize open source tools and follow good software practices
 - CI/CD
 - Jenkins
 - Cloud Deployments
 - OAI
 - SUMO

Technical/Other Constraints

- Limited in terms of hardware
 - Current server specs:
 - Intel Xeon 8 core processor (2.4 Ghz)
 - 8 GB of RAM
 - 120 GB disk
- Simulator is difficult to use
 - Requires multiple computers for various components
 - Very specific hardware requirements
 - Linux Low Latency Kernel
 - AVX512 Instruction Support
 - Turbo Decoding
 - Disable Processor Power Saving Features

Potential Risks & Mitigation

- Lack of knowledge of complex network simulations
 - LTE and 5G network architecture
 - Mitigated by learning as much as possible about how these systems work within reason
- Bugs in our code
 - Learn how to properly debug these kinds of systems
 - Ask for assistance from people who worked on the development team for the simulator
- Specific hardware requirements and vague default test case results
 - Mitigated by creating a build system to make it easier to track errors

Potential Risks & Mitigation

Risks

- Difficulty scaling networks to many UEs and eNBs
- New scheduling algorithm integration
- Difficulty recreating system configurations
 - Similar issues with cloud deployments
- Unknown simulator bugs
 - Large software project
 - Lots of legacy code

Mitigation

- Potentially deploy to cloud services
 - Cloudlab, ExoGENI
- Use CI/CD to verify old functionality isn't broken
- Use scripts where possible to create network layouts
 - Cloud formation templates
- Verify experiments match theory

Resource Cost/Estimate

- Hardware capable of running OAI and SUMO
 - A test bed specifically for OAI
 - Linux
- No financial requirement
 - OAI and SUMO are open source

Project Milestones

- Get OAI working
 - UE (like a cell phone)
 - ENB (a radio tower)
 - EPC (evolved packet core)
- Integrate OAI and SUMO
 - Get SUMO positional data
 - Find where in OAI to insert SUMO data
- Implement algorithm and check its validity
- Test system with network simulator and SUMO
 - Low Latency
 - High Throughput
 - High Reliability
 - Interoperability with current solutions

Project Schedule

Assignment/Task	9/9-9/23	9/23-10/7	10/7-10/21	10/21-11/4	11/4-11/18	11/18-12/2	12/2-12/16	Winter Break	1/13-1/27	1/27-2/10	2/10-2/24	2/24-3/9	3/9-2/25	3/25-5/1
Read 4G/LTE Book														
Research PRKS Paper														
Research CPS Paper														
Research SUMO														
Research OAI and specific Install Steps														
Set Up Hardware/Operating Environment														
Install OAI														
Install SUMO														
Verify/Run OAI on Server														
OAI/SUMO Integration														
Algorithm Development														
Verify and Test Simulation														
Writing Report														
Compare Simulation Results to Control														
Hardware Deployment														
Finalize Report and Project														

Functional Decomposition

- SUMO Traffic Generation
 - SUMO Server to create traffic simulations
 - Update positions of nodes in OAI using SUMO data
 - Interface between OAI and SUMO
- Network Emulation
 - Various eNB and UE in configurations
 - 1 eNB, 1 UE
 - 1 eNB, Many UEs
 - Many eNBs, Many UEs
- Scheduling Algorithm (CPS-V2X)
 - Based on PKRS, CPS, and UCS
 - Adjusted for dynamic node configurations

Detailed Design – OAI Simulation

- Configure and run UE and eNB on one server
 - UE mobile phone, tablet, modem
 - eNB Base stations connected to the network that communicate wirelessly with mobile handsets
- Configure and run EPC on another server
 - Network Access Controls, Packet Routing, Mobility Management, Security

Detailed Design – CPS-V2X Algorithm

- Incorporates characteristics of three existing algorithms:
 - PRKS (Physical-Ratio-K Scheduling)
 - Interference control, High Reliability
 - CPS-V2V (Cyber-Physical Scheduling Vehicle to Vehicle)
 - Vehicle Mobility, Uses PRKS
 - UCS (Unified Cellular Scheduling)
 - Multi-Channel
- Will be implemented in MAC layer of OAI
 - Collision Detection, uses data from PHY layer

P(S,R)

Detailed Design – OAI/SUMO Integration

- SUMO integrated with OAI at PHYS layer
- Mobile Location Interface between SUMO and OAI
 - Allows future integration of hardwarebased GPS system instead of OAI
- PHYS layer returns location data to MAC layer through control plane

Detailed Design – Jenkins

HW/SW/Technology Platforms Used

• OAI

- Open Air Interface
- Open source 5g network simulator/emulator/test bench
- Highly optimized, written in C

SUMO

- Simulation of Urban Mobility
- Open source, highly customizable traffic simulator
- Include an API to get vehicle positioning data

Jenkins

- CI/CD
- Pipelined build jobs for regression testing

Test Plan

- Configure simulation test bed
 - 1 UE, 1 eNB to start with
 - Use nFAPI to facilitate communication
 - Network functional API
 - Connects Physical Network to Virtual Network (Layer 1 to Layer 2)
 - Modify number of eNBs/UEs
 - Incorporate SUMO traffic data
- Implement new scheduling algorithm
 - Does the simulation test bed break?
 - Unit tests using simple UE/eNB sets
 - Reliability, throughput, and latency measurements

Prototype Implementations

- Currently running 1 UE and 1 eNB with an EPC
 - Have configuration files for multiple UE/eNBs created
- Built a C client to support SUMO API
 - Used for traffic data
- Newest version of OAI running on server
 - Updated from v.5.2 -> 1.2.0 -> 1.2.1

Engineering Standards and Design Practices

- 3GPP
- E-UTRAN
- EURECOM
- IEEE
- Continuous Integration, Continuous Development (CI/CD)
- Coding Best-Practices

Conclusion

- Progress was slower than expected
 - Difficult learning curve with OAI
 - Switched to a newer version of OAI part of the way through
 - Able to run with one eNB and one UE

- Was able to get SUMO working
 - Created a program to grab information from SUMO and send it to a C program using sockets
 - Meant to be integrated with OAI to send data straight from SUMO to OAI

Conclusion

- The new scheduling algorithm has gotten to the point of carrying out the preliminary design
 - Not yet integrated into OAI
 - Have begun writing pseudocode and verifying functions
- Configured network simulation with one eNB/UE and EPC
 - eNB/UE run on the same server
 - EPC runs on separate server on same local network
 - Wrote documentation on how to recreate our configuration