1. 授课内容

一 授保 P	教学内容	教学要求
	数论:	1. 理解带余除法的意义(与后面整数环的概念呼
1	1. 认识数论,数论研究范畴;	应);
	2. 带余除法与辗转相除,最大公因数的求法;	2. 掌握辗转相除及回带的计算方法;
	3. 二元一次不定方程及多元一次不定方程;	3. <mark>掌握</mark> 二元一次不定方程的解法;
	4. 背包问题及公钥算法,构造背包公钥算法	4. 初步理解公开密钥体制的含义及其构建原理,掌
	(第一步);	握基于背包问题构造公钥体制的思路。
2	数论:	1. 掌握一次同余方程的概念及解法;
	1.同余方程初步,背包算法构造;	2.基于不定方程和同余方程完成背包公钥体制的构
	2.素数与合数,整数唯一分解;	建;
	3.剩余系与欧拉函数;	3. <mark>理解</mark> 整数唯一分解定理;
	4.欧拉函数的计算;	4. 掌握欧拉函数的概念及计算方法。
3	数论:	1. <mark>理解</mark> 欧拉定理与费马小定理;
	1.欧拉定理与费马小定理;	2.了解 RSA 算法的背景;
	2.RSA 算法的数学原理;	3.理解 RSA 算法的流程、数学原理及安全性分析;
	3.RSA 算法实现中的若干问题;	4.了解 RSA 算法在实际使用中的安全和计算问题。
	数论:	1.了解中国剩余定理,及同余方程组的解法;
	双比: 1.一次同余方程与同余方程组;	2.了解一般同余方程的形式及求解思路;
4	2.一般同余方程的概念;	3.基于上述数学原理,了解快速模幂的计算方法及原
	2. 放門示力程的概念; 3.快速模幂、零知识证明。	理;
	3.	4.了解零知识证明的概念。
	数论:	1. <mark>理解</mark> 无穷多素数定理的证明;
	1.认识素数,素数的数量;	2.了解素数计数定理的含义;
5	2.关于素数的著名猜想;	3.了解哥德巴赫猜想、孪生素数猜想等关于素数的著
	3.梅森素数与完全数。	名数学猜想;
		4.了解梅森素数与完全数的含义。
	数论:	1 .理解阶的概念,了解阶的计算方法;
	1.模数的阶,及其计算;	2. <mark>理解</mark> 原根的概念,了解原根的计算方法;
6	2.原根,及其计算;	3.了解 D-H 算法的数学原理,了解离散对数问题及其
	3.D-H 算法、ElGamal 算法的数学原理。	在构建公钥体制中的作用;
	4.素数的判断。	4.了解常见的几种素性判别法:整除判别法、威尔逊
		判别法、莱美判别法、普罗兹判别法。
	近世代数:	1.了解代数结构的概念;
	1.近世代数的介绍,代数结构的概念;	2. <mark>理解</mark> 集合上二元运算的概念:
7	2.集合上的二元运算;	3.理解群的概念, <mark>掌握</mark> 群的判断方法;
	3.群的概念及举例;	4.理解子群的概念。
	4. 子群的概念及举例。	፲-፻፫// 1 ለ፲ ዘንብልንናው o
	近世代数:	1.理解循环群、生成元、阶的概念;
8	1.循环群及其生成元;	2.了解置换的定义,以及基于置换集合构建的群(对
	2.置换与对称群;	称群);
	3.古典密码的群描述;	3.了解希尔密码、置换密码、代换密码的原理,以及
	4.群上离散对数。	用群的方式如何描述;

		4.了解群上离散对数问题。
		4. J 解群工离散外数问题。 1. <mark>理解</mark> 环的定义,及与体、域的关系;
	7.C. 111. 17. 14.	
	近世代数:	2.理解零因子和整环的概念,通过零因子深化对代数
9	1.环的定义及举例;	结构的 <mark>理解</mark> ;
	2.零因子与整环;	3.了解理想和主理想的概念;
	3.理想和主理想;	4. 理解环上多项式的概念,能判断环上多项式构成的
	4.环上的多项式,多项式环。	代数结构;
	No. 21. 45. W	5.了解循环吗与多项式环的关系。
10	近世代数:	1. <mark>理解</mark> 域的定义及判断方法;
	1.域的定义及举例;	2. <mark>理解</mark> 有限域,特别是 GF(2);
	2.有限域,GF(2);	3.了解域的基本性质,对比群、环的性质,深入理解
	3.域的基本性质;	【代数结构的含义;
	4.域上多项式。	4.了解域上多项式的概念。
11		1. 掌握多项式的带余除法、欧几里得算法;
	近世代数:	2. 理解多项式的同余、剩余类、既约以及多项式的既
	1.多项式的带余除法,公因式、公倍式的求法;	约多项式分解等概念;
	2.既约多项式,既约多项式分解;	3.理解子域、扩域的概念,了解数据组与多项式的关
	3.多项式的同余,剩余类;	系;
	4.子域、扩域,数据组与多项式。	4.了解 AES 算法中涉及到的运算, 及其与多项式的关
		系。
	近世代数:	1.了解有限域的特征与有限域元素数量之间的关系;
12	1.有限域的加法特性;	2.了解有限域的乘法特性,结合循环群的概念,进一
	2.域的特征,二项式运算;	步 <mark>理解</mark> 阶的概念;
12	3.有限域的乘法特性;	3.了解本原元与生成元的概念,以及最小多项式和本
	4.本原元与生成元;	原多项式的概念;
	5.最小多项式与本原多项式。	4.了解椭圆曲线的概念及 ECC 的构造。
	数理逻辑:	1. <mark>理解</mark> 命题逻辑中的基本概念;
	1.逻辑学与数理逻辑的介绍;	2.掌握命题逻辑公式与自然语言之间的转换;
13	2.命题、命题变量、命题常量;	3.掌握命题逻辑公式等值判断的方法;
	3.命题联结词与真值;	4. <mark>理解</mark> 永真式、矛盾式、命题公式的等值等概念;
	4.命题逻辑公式,逻辑等价式。	5.了解命题逻辑公式的逻辑等价式。
	数理逻辑:	1.了解等值演算、限制性公式的概念;
1.4	1.命题逻辑公式的等值演算;	2.了解范式的概念;
14	2.命题逻辑公式的范式;	3. 理解命题演算系统的定义及演算方法;
	3.命题演算系统。	4.通过实例了解命题演算系统的推理流程。
15	数理逻辑:	
	1.一阶逻辑的概念;	1.了解一阶逻辑与命题逻辑的区别;
	2.一阶逻辑语言的符号及项;	2.了解一阶逻辑语言的符号、项等概念;
	3.合式公式,换名规则与替换原则;	3.了解合式公式,能够使用换名规则、替换原则;
	4.等值式与前束范式;	4.了解等值式,了解前束范式的概念。
	数理逻辑:	1.了解一阶逻辑推理的概念、推理定理;
16	1.一阶逻辑推理及推理定理;	2.能够使用全称量词和存在量词的消除和引入规则
	2.全称量词的消除和引入;	对公式进行变换;
L		· コートル ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

3.存在量词的消除和引入;

4.非经典逻辑,模态逻辑。

3.了解非经典逻辑的范畴;

4.了解模态逻辑的定义和基本概念。

2. 实验内容

序号	实验内容	教学要求说明
1	数论基础算法的计算机实现: 1.辗转相除法的实现及应用; 2.素性判断方法的实现。	1. 掌握 辗转相除法的计算机实现; 2. 掌握基于辗转相除的最大公因数、最小公倍数的计算; 3. 掌握 一种素性判断法的计算机实现。
2	RSA 算法数学原理的计算机实现与验证: 1.快速模幂算法的实现; 2.公钥、私钥的生成; 3.加密、解密模块的实现。	1.掌握快速模幂算法的计算机实现; 2.掌握 RSA 公钥体制的实现方法; 3.掌握 RSA 密钥对的生成方法及计算机实现; 4.掌握 RSA 算法加解密算法的计算机实现。
3	有限域算法的计算机实现: 1.GF(2)上多项式的基本运算; 2.GF(2)上多项式的辗转相除法; 3.GF(2)上多项式的最大公因式、最小公倍式的计算。	1.多项式基本运算的计算机实现,包括加、减、 乘、模; 2.多项式的辗转相除法的计算机实现; 3.基于辗转相除法的多项式最大公因式、最小 公倍式的计算机实现。
4	AES 算法数学原理的计算机实现与验证: 1.GF(2 ⁿ)上的运算及辗转相除; 2.AES 算法中的加法、乘法及循环移位算法。	1.GF(2 ⁿ)上多项式基本运算的计算机实现; 2.AES 算法中基本运算的计算机实现; 3.AES 算法流程的部分计算机实现。