Synopsis - Modules in Futhark

vfr988

March 15, 2016

Problemformulering

Er det muligt at udvide Futhark med moduler, signaturer og funktorer, med SMLs modulsystem som inspiration ???

Begrundelse

SMLs modulsystem tillader definitionen af abstrakte strukturer, der konkretiseres gennem et funktor-kald med en type. Ved compile-time optimeres kald til modulerne væk, og efterlader almindelig kode.

Da Futhark oversættes til kode med en meget høj grad af parallelisering, vil et modulsystem give Futhark-udvikleren mulighed for at benytte sig af polymorfi, uden det går ud over det oversatte programs endelige køretid.

Muligheden for at inkludere eksterne moduler i et program betyder, at en programmør kan skrive et bibliotek af moduler, og siden hen inkludere disse moduler i sine programmer eksempelvis kan han skrive moduler til matrixregning, eller listefunktioner.

Succeskriterierne for projektet er følgende:

- At Futharks modul-system oversættes til maskinkode korrekt
 - Hvorvidt dette lykkes, vil primært blive målt på, hvorvidt Futhark succesfuldt udfører testprogrammer, der udnytter modulsystemet.
 - Der vil i bachelorraporten også blive ført bevis for, at værdier der tilgås gennem modulsystemet, evaluerer på samme måde som værdier der tilgås i Futhark-kode, der ikke benytter modulsystemet. Såfremt dette er beviseligt, er succeskriteriet opfyldt.
- At et Futhark-program der benytter modulsystemet, performer ligeså godt som et tilsvarende program, implementeret uden anvendelse af moduler Dette kriterie måles ved hjælp af måling af CPU-tid brugt af sammenlignelige Futhark-programmer, hvoraf kun det ene benytter sig af modulsystemet. Såvidt programmerne yder lige godt, er dette succeskriterie opfyldt.
- At Futharks usability øges gennem muligheden for at kalde modulers værdier gennem prik-notation.

Hvorvidt dette successkriterie er opfyldt, vil blive bedømt gennem interviews med brugere, som arbejder med Futhark til dagligt.

1 Arbejdsopgaver

Projektet kan, udover udførelsen af en bachelorrapport, deles op i tre hoveddele: Implementation af type-aliasser i Futhark, implementation af signaturer og moduler i Futhark, og slutteligt implementation af (SML)-funktorer i Futhark.

For hver af de tre delopgaver, gælder det, at

1. der skal udarbejdes et abstrakt syntaks-træ

- 2. opgaven skal implementeres i Futharks kodebase
- 3. løsningen skal testes og dokumenteres i projektrapporten.

1.1 Implementation of type-aliasser

Produkt: udvidelse af Futhark. Ressourcekrav: Futhark-dokumentation. Denne er tilgængelig på github.com??. Interne afhængigheder: Ingen Tidsforbrug: Uge 11 til 13.

1.2 Implementation of signaturer og strukturer

Produkt: udvidelse af Futhark. Ressourcekrav: Futhark-dokumentation. Denne er tilgængelig på github.com??. Desuden vejledning fra Futhark-designer Troels Henriksen. Interne afhængigheder: Implementation af typealiasser. Tidsforbrug: Uge 13 til 17

1.3 Implementation af funktorer

Produkt: udvidelse af Futhark. Ressourcekrav: Futhark-dokumentation. Denne er tilgængelig på github.com??. Desuden vejledning fra Futhark-designer Troels Henriksen. Interne afhængigheder: Implementation af af signaturer og strukturer Tidsforbrug: Uge 17 til 20

1.4 Tests

1.4.1 Ad hoc udvikling af simple testprogrammer, til løbende afprøvning modulsystem

Produkt: Testprogrammer skrevet i Futhark. Disse programmer vil have definerede inputs, og forventede outputs. Ressourcekrav: Futhark-dokumentation. Denne er tilgængelig på github.com??. Interne afhængigheder: Testprogrammerne vil allesammen som udgangspunkt fejle, men flere og flere vil køre korrekt, jo mere færdig Futhark-moduler-implementationen bliver. Tidsforbrug: Løbende under hele implementationsforløbet.

1.4.2 Udvikling af simple testprogrammer, til afprøvning af det færdige modulsystem

Produkt: Testprogrammer skrevet i Futhark. Ressourcekrav: Futhark-dokumentation. Denne er tilgængelig på github.com??. Interne afhængigheder: Et færdigt modulsystem. Tidsforbrug: Uge 19-20.

2 Overvejelser og tidsplan

Litteratur

References

Danny Gratzer, A $crash\ course\ on\ ML\ modules$ http://jozefg.bitbucket.org/posts/2015-01-08-modules.html

HIPERFIT, APL section on Datalogisk Institut, KU. Official Futhark Github Repo and documentation https://github.com/HIPERFIT/futhark