University of Cambridge Department of Engineering

Masters Project Report

Propulsion Systems for e-VTOL UAV

Jordan Eriksen

SUPERVISED BY: Dr Sam Grimshaw

Abstract

Abstract here..

${\bf Contents}$

1	1 I	ntroduction Helminer Catediism may be writed to help smuture 1
	1	.1 Literature Review
	1	.2 Research Questions
	•	Brownison and Emperimental Dosign
2	2 F	Topulsor and Experimental Design
	1 2	.1 Propulsor Design Time Test
		2.1.1 Diffusing Ducted Fan
krofyn	ani	2.1.2 Turbomachinery Design
/	2	.2 Mechanical Design
/		2.2.1 Weight Reduction
/		2.2.2 Shroud Tip Clearance
1		2.2.3 Hollow Stators
1		2.2.4 3D Printing
1	2	.3 Electrical Design
1		2.3.1 Choice of Electric Motor
1		2.3.2 Power vs Torque Design Space
1		2.3.3 Power Supply
		2.3.4 [Instrumentation Design] Ms- 3:2.2. Aught at golden 2
	2	.4 System Design /
		2.4.1 Procursory UROP
		2.4.2 Subsystem Function
		2.4.3 Subsystem Interaction
		2.4.4 Telemetry
		V
9	3 N	Methods 1 Experiment 3
	3	.1 Experiments
		3.1.1 Stationary Propulsor Test
		3.1.2 Computational Fluid Dynamics
		3.1.3 Hover Test
	3	.2 Experimental Method & Data Processing
		3.2.1 Non-dimensional Quantities
		3.2.2 Instrumentation
		3.2.3 Flight Management for Auto Position Hold
		3.2.4 Data Acquisition
		3 2 5 Cage Design & Tether

4	Exp	perimental Results 4
	4.1	
		4.1.1 Version 1.0 EDF
		4.1.2 Version 2.0 EDF
		4.1.3 Version 3.0 EDF
		4.1.4 Propeller
	4.2	Computational Fluid Dynamics
		4.2.1 Comparison to Static Test Data
		4.2.2 Propulsor Performance
	4.3	Hover Tests
		4.3.1 Propeller Performance
		4.5.2 Hover Test Limitations
U		
2	. —	iture Work
	4	1 Poulse Design
	3.1	1 Propulsor Design
		CII Clai D La Tock
		5.1.1. Stationar Populsor Tests
		a Let It have done this case
		to finish of analysis of populsors. Acoustics?
		to find of anothers of prombers. Acoustics ?
		J or J of t
	<	.1.2 Contra- rotating Deuted Fan
		. J
		This could have some design work in, sit were
		khon, plus a section en ely CRFs refet be a good ilea. Bit more likrature?
		1 1 1 200 804 10 7
		te a good
	5.	1.5. 6.9
		Discuss Instation of design method (e.g. disation
		for high s/c) at its (Fi) is weeful
		Could reference Myan Leve, show that
		CFD can get close to experimental measurements
		3
	_	
	2	. 2 Hying Test Bed Experients
		. 2 Flying Test Bed Experients - Eriksen manoneure ides.

6. Condusions

Electric Vertical Take-Off and Landing e-VTOL FTB Flying Test-Bed Axial Flow Velocity V_x Fan Speed Ω Fan Hub Radius r_h Fan Casing Radius r_c Fan Mid-line Radius r_m $= \Omega \cdot r_m$ Mid-line Fan Speed Flow Coefficient Stage Loading

NOMENCLATURE TO DO

Introduction

Intro and motivation

1.1 Literature Review

1.2 Research Questions

Propulsor and Experimental Design

2.1 Propulsor Design

2.1.1 Diffusing Ducted Fan

Theoretical thrust and power Derive $M_f = \sqrt{2\sigma}$ ESDU diffusion tables?

2.1.2 Turbomachinery Design

Blade design code.
Profiles
Deviation
Span-wise psi distribution
Boundary conditions (Constant P exit, Vx, etc)
Sweep/Lean
Blade number

2.2 Mechanical Design

2.2.1 Weight Reduction

Thrust = Weight condition
Mass model to close the problem

2.2.2 Shroud Tip Clearance

Shroud thickness FEA 3D printer tolerances

2.2.3 Hollow Stators

Power supply Weight reduction Tolerance How to

2.2.4 3D Printing

Printer used Printer tolerance Design adjustments to enable good printing - Straight TRAILING edge

- Raft and reduce air-gap

2.3 Electrical Design

2.3.1 Choice of Electric Motor

Size (d < 36mm)

2.3.2 Power vs Torque Design Space

2.3.3 Power Supply

Want to simulate using a battery pack for actual flight conditions but increase run-time. Choose 12V steady state operating voltage (14.8V nominal Li-Po).

2.3.4 Instrumentation Design

RPM

Thrust

- Calibration

Power

Pressures

2.4 Systems Design

2.4.1 Precursory UROP

Platform design chassis etc Pixhawk 4 RPi ADC

2.4.2 Subsystem Function

Pixhawk 4 RPi ADC

2.4.3 Subsystem Interaction

2.4.4 Telemetry

 $\operatorname{QGroundControl}$ - Telemetry module SSH

Method

3.1 Experiments

3.1.1 Stationary Propulsor Test

Setup

- Stand

Test variables

- Speeds
- Sigma
- Rotor design

3.1.2 Computational Fluid Dynamics

3.1.3 Hover Test

3.2 Experimental Method & Data Processing

3.2.1 Non-dimensional Quantities

Pressure quantities, FOM, ϕ , ψ .

3.2.2 Instrumentation

Power (DC Current and Voltage), Thrust, FOM, RPM, Pressures

3.2.3 Flight Management for Auto Position Hold

System not used.

3.2.4 Data Acquisition

Acquisition and integration of systems and software.

3.2.5 Cage Design & Tether

Experiment

4.1 Stationary Propulsor Test

4.1.1 Version 1.0 EDF

Heavy Blue: 3 exits and 3 rotor vortex designs. Comparison of intake performance (long and short).

- Power (Current and Voltage)
- Thrust
- FOM
- RPM

4.1.2 Version 2.0 EDF

1 exit and 2 rotor vortex designs. Long intake only.

- Power (Current and Voltage)
- Thrust

- FOM
- \bullet RPM
- Pressures

4.1.3 Version 3.0 EDF

1 exit and 1 rotor vortex designs. Long intake only.

- Power (Current and Voltage)
- Thrust
- FOM
- \bullet RPM
- P1 Only
- 4.1.4 Propeller
- 4.2 Computational Fluid Dynamics
- 4.2.1 Comparison to Static Test Data
- 4.2.2 Propulsor Performance
- 4.3 Hover Tests
- 4.3.1 Propeller Performance
- 4.3.2 Hover Test Limitations