1 Билет 23

Интерполяция по Ньютону

- ullet Будем по индукции строить такой многочлен $g_k(t)$, что $g_k(x_i)=y_i$ при $i\in\{0,\ldots,k\}$ и $\deg(g_k)\leq k$.
- База k = 0: подойдет $g_0(t) = y_0$.
- ullet Переход k o k+1. Пусть построен многочлен g_k . Будем искать g_{k+1} в виде

$$g_{k+1}(t) = a_k(t-x_0)\dots(t-x_k) + g_k(t).$$

- ullet Тогда $g_{k+1}(x_i) = y_i$ при $i \in \{0, \dots, k\}$ и $\deg(g_{k+1}) \leq \max(k+1, \deg(g_k)) = k+1.$
- ullet Остается найти коэффициент a_k . Для этого подставим x_{k+1} :

$$y_{k+1} = g_{k+1}(x_{k+1}) = a_k(x_{k+1} - x_0) \dots (x_{k+1} - x_k) + g_k(x_{k+1})$$

$$\iff a_k = \frac{y_{k+1} - g_k(x_{k+1})}{(x_{k+1} - x_0) \dots (x_{k+1} - x_k)}.$$

2 Билет 24

Поле рациональных функций

• Пусть K — поле. Очевидно, в кольце многочленов K[t] нет делителей ноля (если fg=0 в K[t], то f=0 или g=0). Поэтому, следующее определение корректно.

Определение

Поле рациональных функций K(t) — это поле частных кольца многочленов K[t].

• Элементы K(t) — дробно-рациональные функции вида $\frac{f(t)}{g(t)}$, где $f,g\in K[t]$, $g\neq 0$ (точнее говоря, классы эквивалентности таких функций). Мы будем называть такие функции просто дробями.

Определение

Правильная дробь в K(t) — это дробь вида $\frac{f(t)}{g(t)}$, где $\deg(f) < \deg(g)$.

Свойство 1

Если дробь $\frac{f}{g} \in K(t)$ правильная и $\frac{f_1}{g_1} \sim \frac{f}{g}$, то дробь $\frac{f_1}{g_1}$ Тоже правильная.

Доказательство. • Если один из многочленов f и f_1 равен 0, то другой тоже. В этом случае утверждение очевидно.

- ullet Далее пусть f
 eq 0 и $f_1
 eq 0$.
- ullet $rac{f_1}{g_1}\simrac{f}{g}\iff f_1g=g_1f$, откуда следует, что $\deg(f_1)+\deg(g)=\deg(f_1g)=\deg(fg_1)=\deg(f)+\deg(g_1).$
- ullet Так как $0 \leq \deg(f) < \deg(g)$, отсюда следует, что $\deg(f_1) < \deg(g_1)$, то есть, $\frac{f_1}{g_1}$ правильная дробь.

Свойство 2

Если дробь $\frac{f}{g} \in K(t)$ правильная и $c \in K$, то и $\frac{cf}{g}$ — правильная дробь.

Доказательство. Очевидно ввиду $\deg(cf) \leq \deg(f)$.

Свойство 3

Если дроби $rac{f_1}{g_1},rac{f_2}{g_2}\in K(t)$ правильные, то и $rac{f_1}{g_1}\cdotrac{f_2}{g_2}$ правильная дробь.

Доказательство. Тогда $\deg(f_1) < \deg(g_1)$ и $\deg(f_2) < \deg(g_2)$, $\deg(f_1f_2) = \deg(f_1) + \deg(f_2) < \deg(g_1) + \deg(g_2) = \deg(g_1g_2)$, а значит, дробь $\frac{f_1}{g_1} \cdot \frac{f_2}{g_2} = \frac{f_1f_2}{g_1g_2}$ — правильная.

Свойство 4

Если дроби $\frac{f_1}{g_1}, \frac{f_2}{g_2} \in K(t)$ правильные, то и $\frac{f_1}{g_1} + \frac{f_2}{g_2}$ — правильная дробь.

Доказательство. $\frac{f_1}{g_1}+\frac{f_2}{g_2}=\frac{f_1g_2+g_1f_2}{g_1g_2}$. Нужно проверить, что $\deg(f_1g_2+g_1f_2)<\deg(g_1g_2)$:

$$egin{aligned} \deg(f_1g_2+g_1f_2) &\leq \max(\deg(f_1g_2),\deg(g_1f_2)) = \\ \max(\deg(f_1)+\deg(g_2),\deg(g_1)+\deg(f_2)) &< \\ \deg(g_1)+\deg(g_2)=\deg(g_1g_2), \end{aligned}$$

так как
$$\deg(f_1) < \deg(g_1)$$
 и $\deg(f_2) < \deg(g_2)$.