

Vector và Nhập môn Đại số tuyến tính

Người trình bày: Carina

Mục lục

1. Vector

- 2. Vector và...nhiều vector hơn
- 2.1 Không gian vector
- 2.2 Ma trậr

Mục lục

1 Vector

- 2. Vector và...nhiều vector hơn
- 2.1 Không gian vector
- 2.2 Ma trận

Cho hai hệ cơ sở:

- $ightharpoonup (e_1, e_2)$
- $ightharpoonup (e_3, e_4)$

$$\implies$$
 $\mathbf{v} = \alpha \mathbf{e}_1 + \beta \mathbf{e}_2 = \gamma \mathbf{e}_3 + \sigma \mathbf{e}_4.$

Cho hai hệ cơ sở:

- $ightharpoonup (e_1, e_2)$
- $ightharpoonup (e_3, e_4)$

$$\implies$$
 $\mathbf{v} = \alpha \mathbf{e}_1 + \beta \mathbf{e}_2 = \gamma \mathbf{e}_3 + \sigma \mathbf{e}_4.$

Giả sử:

- ightharpoonup $m {f e}_3 = 2{f e}_1 3{f e}_2, \ {f e}_4 = {f e}_1 + 2{f e}_2,$
- $\gamma = 1, \sigma = 3.$
- \implies $\mathbf{v} = \mathbf{e}_3 + 3\mathbf{e}_4$.

Nếu $\mathbf{e}_1, \mathbf{e}_2$ trực chuẩn:

xPhO Physics Club

Nếu thay vì $(\mathbf{e}_3, \mathbf{e}_4)$, ta chọn $(\mathbf{e}_3, 2\mathbf{e}_3)$ thì sao?

xPhO Physics Club

Nếu thay vì $(\mathbf{e}_3, \mathbf{e}_4)$, ta chọn $(\mathbf{e}_3, 2\mathbf{e}_3)$ thì sao?

Định nghĩa

Bao tuyến tính

Nếu $S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ là một tập hợp n vector trong không gian, thì tập hợp tất cả các tổ hợp tuyến tính của chúng được gọi là bao tuyến tính của $\mathbf{u}_1, \mathbf{u}_2, \dots \mathbf{u}_n$, và được kí hiệu là $\mathrm{span}(S)$.

Nếu span(S) chứa toàn bộ vector trong không gian, vậy ta gọi S là một hệ sinh cho không gian.

Định nghĩa

Độc lập tuyến tính

Một tập hợp các vector được gọi là $d\hat{\rho}c$ lập tuyến tính với nhau nếu tổ hợp tuyến tính của chúng không bao giờ bằng $\mathbf{0}$ trừ khi **tất cả** các hệ số vô hướng đều bằng $\mathbf{0}$.

Định nghĩa

Hệ cơ sở

Một cơ sở của không gian là một tập hợp các vector trong không gian sao cho

- tạo thành hệ sinh cho không gian, và
- ▶ độc lập tuyến tính.

Hệ sinh của mặt phẳng đã được đề cập:

$$ightharpoonup S_1 = \{\mathbf{e}_1, \mathbf{e}_2\},$$

$$\triangleright$$
 $S_2 = \{\mathbf{e}_3, \mathbf{e}_4\},$

$$\triangleright$$
 $S_3 = \{\mathbf{e}_3, \mathbf{e}_4, 2\mathbf{e}_3\}.$

Nhưng,

$$ightharpoonup$$
 (e₃, e₄, 2e₃)

không phải là một hệ cơ sở.

Hệ sinh của đường thẳng chứa e_3 :

$$ightharpoonup S_1 = \{\mathbf{e}_3\},$$

$$\triangleright$$
 $S_2 = \{\mathbf{e}_3, 2\mathbf{e}_3\},$

$$ightharpoonup S_2 = \{\mathbf{e}_3, 2\mathbf{e}_3, \mathbf{0}\}.$$

Nhưng,

$$ightharpoonup (e_3, 2e_3)$$
, và

$$(e_3, 0)$$

không phải là một hệ cơ sở.

Ví du

Vì:

- $-2\mathbf{e}_3 + 1(2\mathbf{e}_3) + 0\mathbf{e}_4 = \mathbf{0},$
- $-2\mathbf{e}_3 + 1(2\mathbf{e}_3) = \mathbf{0}$,
- $ightharpoonup 0e_3 + 100(0) = 0.$

Không gian vector

Có một sự mập mờ khi sử dụng cụm từ "không gian" trong các phần trước!

Không gian vector

Một không gian vector là một tập hợp mà các phần tử trong đó thoả mãn:

- 1. Với mọi $\mathbf{v}, \mathbf{w} \in V, \mathbf{v} + \mathbf{w} \in V$.
- 2. Với mọi $\mathbf{v} \in V, \alpha \in \mathbb{R}, \alpha \mathbf{v} \in V$.
- 3. v + w = w + v.
- 4. u + (v + w) = (u + v) + w.
- 5. Tồn tại một vector $\mathbf{0}$ sao cho $\mathbf{v} + \mathbf{0} = \mathbf{v}$.
- 6. Với mọi vector \mathbf{v} , tồn tại một vector \mathbf{v}' sao cho $\mathbf{v} + \mathbf{v}' = \mathbf{0}$.
- 7. 1v = v.
- 8. $\alpha(\beta \mathbf{v}) = (\alpha \beta) \mathbf{v}$.
- 9. $\alpha(\mathbf{v} + \mathbf{w}) = \alpha \mathbf{v} + \alpha \mathbf{w}$.
- 10. $(\alpha + \beta)\mathbf{v} = \alpha\mathbf{v} + \beta\mathbf{v}$.

xPhO Physics Club

Tập hợp số thực: \mathbb{R}^1

Vector: $-1.9, 5, 2, 100, -\pi, e, \dots$

Mặt phẳng toạ độ: \mathbb{R}^2

Vector: $(1.23; 2), (\pi, e), (-111, -\pi), \dots$

Không gian hình học: \mathbb{R}^3

Vector: $(1; 3; 4), (100, 0, 0), \dots$

Chiều

Chiều của không gian vector

Chiều của một không gian là số lượng vector trong hệ cơ sở của không gian đó.

Chiều

Chiều của không gian vector

Chiều của một không gian là số lượng vector trong hệ cơ sở của không gian đó.

 $\mathbb{R}, \mathbb{R}^2, \mathbb{R}^3$ đã được đề cập. Vậy $\mathbb{R}^4, \mathbb{R}^5, \cdots$ thì sao?

Chiều

Vector trong \mathbb{R}^4 : Mảng số có 4 thành phần.

Vector trong \mathbb{R}^5 : Mảng số có 5 thành phần.

. . .

Vector trong \mathbb{R}^{100} : Mảng số có 100 thành phần.

Vector trong \mathbb{R}^n : Mảng số có n thành phần!

$$1 \to (1; 2) \to (1; 2; 3) \to (1; 2; 3; 4) \to \cdots \to \underbrace{(1; 2; \dots; 100)}_{100}$$

Mũi tên hay mảng số?

Từ \mathbb{R}^4 trở đi, không còn mũi tên nào cả.

Vector?

$$ightharpoonup \mathbb{C}^n$$
: $(1+2i; 0.76-100i; i; e+\pi i; ...)$.

Vector?

- $ightharpoonup \mathbb{C}^n : (1+2i; 0.76-100i; i; e+\pi i; ...).$
- $f(x) = 1 + 2x^2 3x^3 + 42x^4.$
- $g(x) = \sin x.$
- **•** ...

Quay trở lại với các vector thực

(a) Đường thẳng (đi qua gốc toạ độ) trên mặt phẳng

(b) Mặt phẳng (đi qua gốc toạ độ) trong không gian

Không gian con

Không gian con

Một không gian con S trong một không gian vector V là một tập hợp các vector trong V sao cho chúng thoả mãn 10 tiên đề của vector.

Cơ sở của không gian con

Một cơ sở cho một không gian con S của \mathbb{R}^n là một tập hợp các vector trong S sao cho

- 1. tao thành S, và
- 2. là độc lập tuyến tính.

Thêm ví dụ

Một đường thẳng đi qua gốc toạ độ trên một mặt phẳng trong không gian:

Giới thiệu ma trận

$$\mathbf{A} = \begin{bmatrix} 1 & 5 & 12 \\ 3 & 0 & 4 \\ 0 & 7 & 9 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} -1.3 & 0.6 \\ 20.4 & 5.5 \\ 9.7 & -6.2 \end{bmatrix}$$

Quy tắc đọc: hàng trước cột sau.

$$\mathbf{A}_{21} = 3.$$

$$\mathbf{B}_{32} = -6.2.$$

Ma trận 1 cột

Ví dụ:

$$\mathbf{v} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} c \\ d \\ f \end{bmatrix}.$$

Ma trận 1 cột

Ví dụ:

$$\mathbf{v} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} c \\ d \\ f \end{bmatrix}.$$

Nếu,

$$\mathbf{v} + \mathbf{w} = \begin{bmatrix} a + c \\ b + d \\ c + f \end{bmatrix}, \qquad n \cdot \mathbf{v} = \begin{bmatrix} na \\ nb \\ nc \end{bmatrix}.$$

$$\implies \text{Vector}$$

Chuyển đổi ký hiệu

$$(a,b,c)
ightarrow egin{bmatrix} a \ b \ c \end{bmatrix}$$

$$(1,2,3,4,\ldots,100) \longrightarrow \begin{bmatrix} 1\\2\\3\\4\\\vdots\\100 \end{bmatrix}$$
 100

Dạng tổng quát của một ma trận

Một ma trận m hàng n cột về tổng quát có dạng:

$$\mathbf{A}_{m\times n} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} & \cdots & \mathbf{A}_{1j} & \cdots & \mathbf{A}_{1n} \\ \mathbf{A}_{21} & \mathbf{A}_{22} & \cdots & \mathbf{A}_{2j} & \cdots & \mathbf{A}_{2n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \mathbf{A}_{i1} & \mathbf{A}_{i2} & \cdots & \mathbf{A}_{ij} & \cdots & \mathbf{A}_{in} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \mathbf{A}_{m1} & \mathbf{A}_{m2} & \cdots & \mathbf{A}_{mj} & \cdots & \mathbf{A}_{mn} \end{bmatrix}.$$

Phép cộng ma trận.

$$(\mathbf{A} + \mathbf{B})_{ij} = \mathbf{A}_{ij} + \mathbf{B}_{ij}.$$

Phép nhân ma trận với một số.

$$(c\mathbf{A})_{ij}=c\mathbf{A}_{ij}.$$

Ví dụ:

$$4\begin{bmatrix}0&3\\2&-6\end{bmatrix}+\begin{bmatrix}1&-2\\0&5\end{bmatrix}=??$$

Phép cộng ma trận.

$$(\mathbf{A} + \mathbf{B})_{ij} = \mathbf{A}_{ij} + \mathbf{B}_{ij}.$$

Phép nhân ma trận với một số.

$$(c\mathbf{A})_{ij}=c\mathbf{A}_{ij}.$$

Ví dụ:

$$4\begin{bmatrix}0&3\\2&-6\end{bmatrix}+\begin{bmatrix}1&-2\\0&5\end{bmatrix}=\begin{bmatrix}0&12\\8&-24\end{bmatrix}+\begin{bmatrix}1&-2\\0&5\end{bmatrix}=\begin{bmatrix}1&10\\8&-19\end{bmatrix}.$$

Cho

$$\mathbf{v} = \begin{bmatrix} +2 \\ +5 \\ -4 \end{bmatrix}$$
.

Phân tích trong một hệ cơ sở ngẫu nhiên,

$$\begin{bmatrix} 2 \\ 5 \\ -4 \end{bmatrix} = \alpha \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 2 \\ -5 \end{bmatrix} + \gamma \begin{bmatrix} 0 \\ 11 \\ -19 \end{bmatrix}.$$

Cho

$$\mathbf{v} = \begin{bmatrix} +2 \\ +5 \\ -4 \end{bmatrix}$$
.

Phân tích trong một hệ cơ sở ngẫu nhiên,

$$\begin{bmatrix} 2 \\ 5 \\ -4 \end{bmatrix} = \alpha \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 2 \\ -5 \end{bmatrix} + \gamma \begin{bmatrix} 0 \\ 11 \\ -19 \end{bmatrix}.$$

Tính được $(\alpha, \beta, \gamma) = (2, -3, 1)$.

Phép nhân ma trận-vector.

$$\begin{bmatrix} 2 \\ 5 \\ -4 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + (-3) \begin{bmatrix} 0 \\ 2 \\ -5 \end{bmatrix} + 1 \begin{bmatrix} 0 \\ 11 \\ -19 \end{bmatrix}.$$

$$\begin{bmatrix} 2 \\ 5 \\ -4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 11 \\ 0 & -5 & -19 \end{bmatrix} \begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix}.$$

Các phép toán trên ma trận

Phép nhân ma trận-vector.

$$\begin{bmatrix} 2 \\ 5 \\ -4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 11 \\ 0 & -5 & -19 \end{bmatrix} \begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix}. \tag{1}$$

Một ma trận $m \times n$ nhân với một vector n thành phần = một vector m thành phần; phần tử thú i của vector:

$$(\mathbf{A}\mathbf{x})_i = \sum_{j=1}^n \mathbf{A}_{ij}\mathbf{x}_j. \tag{2}$$

Phép nhân ma trận-vector

Phần tử thứ i của vector này là tích vô hướng của hàng thứ i của ${\bf A}$ với vector ${\bf x}$. Chẳng hạn,

$$\begin{bmatrix} 0 & 2 & 11 \end{bmatrix} \begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 11 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix} = 0 \times 2 + 2 \times (-3) + 11 \times 1 = 5.$$

Phép nhân ma trận-vector

Tóm gọn:

Tính phân phối:

$$A(a+b) = Aa + Ab$$
.

$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = 1 \begin{bmatrix} 0.5 \\ -1 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 0.75 \\ 1 \\ -2 \end{bmatrix} + 1 \begin{bmatrix} -1 \\ -1 \\ 4 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0.5 & 0.75 & -1 \\ -1 & 1 & -1 \\ 0 & -2 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}.$$

$$\begin{bmatrix} 0 \\ 2 \\ -5 \end{bmatrix} = -1.625 \begin{bmatrix} 0.5 \\ -1 \\ 0 \end{bmatrix} - 1.75 \begin{bmatrix} 0.75 \\ -1 \\ 0 \end{bmatrix} - 2.125 \begin{bmatrix} -1 \\ -1 \\ 4 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 0 \\ 2 \\ -5 \end{bmatrix} = \begin{bmatrix} 0.5 & 0.75 & -1 \\ -1 & 1 & -1 \\ 0 & -2 & 4 \end{bmatrix} \begin{bmatrix} -1.625 \\ -1.75 \\ -2.125 \end{bmatrix}.$$

$$\begin{bmatrix} 0 \\ 11 \\ -19 \end{bmatrix} = -7.875 \begin{bmatrix} 0.5 \\ -1 \\ 0 \end{bmatrix} - 3.25 \begin{bmatrix} 0.75 \\ -1 \\ 0 \end{bmatrix} - 6.375 \begin{bmatrix} -1 \\ -1 \\ 4 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 0 \\ 11 \\ -19 \end{bmatrix} = \begin{bmatrix} 0.5 & 0.75 & -1 \\ -1 & 1 & -1 \\ 0 & -2 & 4 \end{bmatrix} \begin{bmatrix} -7.875 \\ -3.25 \\ -6.375 \end{bmatrix}.$$

Đặt

$$\begin{bmatrix} 0.5 & 0.75 & -1 \\ -1 & 1 & -1 \\ 0 & -2 & 4 \end{bmatrix} = \mathbf{B}.$$

Thay 3 đẳng thức trên vào 1,

$$\begin{bmatrix} 2 \\ 5 \\ -4 \end{bmatrix} = \begin{bmatrix} \mathbf{B} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} & \mathbf{B} \begin{bmatrix} -1.625 \\ -1.75 \\ -2.125 \end{bmatrix} & \mathbf{B} \begin{bmatrix} -7.875 \\ -3.25 \\ -6.375 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix}.$$

Sự lặp lại của **B**(!)

Tạo ra một phép toán mới để:

$$\begin{bmatrix} 2 \\ 5 \\ -4 \end{bmatrix} = \mathbf{B} \begin{bmatrix} 1 & -1.625 & -7.875 \\ 2 & -1.75 & -3.25 \\ 1 & -2.125 & -6.375 \end{bmatrix} \begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix}$$
 (3)

Xét một ma trận $\mathbf{A}_{m\times n}$ và một ma trận $\mathbf{B}_{n\times p}$, tích của của chúng là một ma trận $\mathbf{C}_{m\times p}$; các cột của ma trận này là các vector, bằng với tích ma trận-vector của ma trân \mathbf{A} và các cột tương ứng của ma trận \mathbf{B} .

Tương đương điều này,

$$\mathbf{C}_{ij} = (\mathbf{A}\mathbf{B})_{ij} = \sum_{k=1}^{n} \mathbf{A}_{ik} \mathbf{B}_{kj}. \tag{4}$$

Ví dụ

Tính tích

$$\begin{bmatrix} 1 & 5 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 0 & 3 \end{bmatrix}$$

theo hai cách: (4) và bằng góc nhìn của phép nhân vector.

Ví dụ- Giải

Cách 1:

$$\begin{bmatrix} (1 \cdot 2 + 5 \cdot 0) & (1 \cdot -1 + 5 \cdot 3) \\ (3 \cdot 2 + 2 \cdot 0) & (3 \cdot -1 + 2 \cdot 3) \end{bmatrix} = \begin{bmatrix} 2 & 14 \\ 6 & 3 \end{bmatrix}.$$

Ví dụ-Giải

Cách 2: Theo góc nhìn của phép nhân vector, tích này tương đương với

$$\begin{bmatrix} \begin{bmatrix} 1 & 5 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} & \begin{bmatrix} 1 & 5 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} -1 \\ 3 \end{bmatrix} \end{bmatrix}.$$

Dễ thấy,

$$\begin{bmatrix} 1 & 5 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 3 \end{bmatrix} + 0 \begin{bmatrix} 5 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \end{bmatrix},$$

$$\begin{bmatrix} 1 & 5 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} -1 \\ 3 \end{bmatrix} = -1 \begin{bmatrix} 1 \\ 3 \end{bmatrix} + 3 \begin{bmatrix} 5 \\ 2 \end{bmatrix} = \begin{bmatrix} 14 \\ 3 \end{bmatrix}.$$

Các phép toán trên ma trận

Các quy tắc cho các phép toán trên ma trận. Ta tổng kết lại các quy tắc chung nhất.

- 1. Quy luật giao hoán: $\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$.
- 2. Quy luật phân phối: $\alpha(\mathbf{A} + \mathbf{B}) = \alpha \mathbf{A} + \alpha \mathbf{B}$.
- 3. Quy luật liên kết: $\mathbf{A} + (\mathbf{B} + \mathbf{C}) = (\mathbf{A} + \mathbf{B}) + \mathbf{C}$.
- 4. Quy luật liên kết: (AB)C = A(BC).
- 5. Quy luật phân phối (trái): A(B + C) = AB + AC.
- 6. Quy luật phân phối (phải): (A + B)C = AC + BC.
- 7. Quy luật giao hoán: $AB \neq BA$.

Chú ý quy luật cuối cùng, tích ma trận không mang tính giao hoán.

