Artificial Neural Networks

Artificial Neural Networks

- A general, practical method for learning real-valued, discrete-valued, and vectorvalued functions from examples
- Robust to errors in training data
- Applications: speech recognition, robot control strategies, handwritten recognition, etc.

Biological Motivation

- Human brain has about 100 billion neurons
- Each connected to 10⁴ others
- Switching time = 10⁻³ seconds (quite slow compared to computer switching speeds of 10⁻¹⁰ seconds)
- Scene recognition time 10⁻¹ seconds
 - highly parallel and distributed processes

Biological Motivation

- ANN model is not the same as that of biological neural systems
- Two research directions:
 - Using ANNs to study and model biological learning processes
 - Obtaining highly effective machine learning algorithms

When to Consider Neural Networks

- Instances have many attribute-value pairs
- Target function output may be discrete-valued, realvalued, or a vector of several real- or discrete-valued attributes
- Training examples may contain errors
- Long training times are acceptable
- Fast evaluation of the learned target function may be required
- The ability for humans to understand the learned target function is not important

ANN Representation

Perceptron

Perceptron

$$o(x_1,\ldots,x_n) = \begin{cases} 1 & \text{if } w_0 + w_1 x_1 + \cdots + w_n x_n > 0 \\ -1 & \text{otherwise.} \end{cases}$$

Perceptron

Perceptron training rule

$$w_i \leftarrow w_i + \Delta w_i$$

where

$$\Delta w_i = \eta(t - o)x_i$$

Where:

- $t = c(\vec{x})$ is target value
- \bullet o is perceptron output
- η is small constant (e.g., .1) called learning rate

To understand, consider simpler linear unit, where

$$o = w_0 + w_1 x_1 + \dots + w_n x_n$$

Let's learn w_i 's that minimize the squared error

$$E[\vec{w}] \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

Where D is set of training examples

Gradient

$$\nabla E[\vec{w}] \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots \frac{\partial E}{\partial w_n} \right]$$

Training rule:

$$\Delta \vec{w} = -\eta \nabla E[\vec{w}]$$

i.e.,

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d} (t_d - o_d)^2
= \frac{1}{2} \sum_{d} \frac{\partial}{\partial w_i} (t_d - o_d)^2
= \frac{1}{2} \sum_{d} 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d)
= \sum_{d} (t_d - o_d) \frac{\partial}{\partial w_i} (t_d - \vec{w} \cdot \vec{x_d})
\frac{\partial E}{\partial w_i} = \sum_{d} (t_d - o_d) (-x_{i,d})$$

Gradient-Descent $(training_examples, \eta)$

Each training example is a pair of the form $\langle \vec{x}, t \rangle$, where \vec{x} is the vector of input values, and t is the target output value. η is the learning rate (e.g., .05).

- Initialize each w_i to some small random value
- Until the termination condition is met, Do
 - -Initialize each Δw_i to zero.
 - -For each $\langle \vec{x}, t \rangle$ in $training_examples$, Do
 - * Input the instance \vec{x} to the unit and compute the output o
 - * For each linear unit weight w_i , Do

$$\Delta w_i \leftarrow \Delta w_i + \eta(t - o)x_i$$

-For each linear unit weight w_i , Do

$$w_i \leftarrow w_i + \Delta w_i$$

Perceptron training rule guaranteed to succeed if

- Training examples are linearly separable
- Sufficiently small learning rate η

Linear unit training rule uses gradient descent

- Guaranteed to converge to hypothesis with minimum squared error
- Given sufficiently small learning rate η
- Even when training data contains noise
- \bullet Even when training data not separable by H

Stochastic Approximation

Batch mode Gradient Descent:

Do until satisfied

- 1. Compute the gradient $\nabla E_D[\vec{w}]$
- $2. \vec{w} \leftarrow \vec{w} \eta \nabla E_D[\vec{w}]$

Incremental mode Gradient Descent:

Do until satisfied

- For each training example d in D
 - 1. Compute the gradient $\nabla E_d[\vec{w}]$
 - $2. \vec{w} \leftarrow \vec{w} \eta \nabla E_d[\vec{w}]$

$$E_D[\vec{w}] \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$
$$E_d[\vec{w}] \equiv \frac{1}{2} (t_d - o_d)^2$$

Incremental Gradient Descent can approximate Batch Gradient Descent arbitrarily closely if η made small enough

Multilayer Networks

- Single perceptrons can express only linear decision surfaces
- A multilayer network can represent highly nonlinear decision surfaces

Multilayer Networks

Sigmoid Unit

Sigmoid Unit

 $\sigma(x)$ is the sigmoid function

$$\frac{1}{1 + e^{-x}}$$

Nice property:
$$\frac{d\sigma(x)}{dx} = \sigma(x)(1 - \sigma(x))$$

We can derive gradient decent rules to train

- One sigmoid unit
- Multilayer networks of sigmoid units → Backpropagation

Sigmoid Unit

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2
= \frac{1}{2} \sum_{d} \frac{\partial}{\partial w_i} (t_d - o_d)^2
= \frac{1}{2} \sum_{d} 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d)
= \sum_{d} (t_d - o_d) \left(-\frac{\partial o_d}{\partial w_i} \right)
= -\sum_{d} (t_d - o_d) \frac{\partial o_d}{\partial n \, e t_d} \frac{\partial n \, e t_d}{\partial w_i}$$

But we know:

$$\frac{\partial o_d}{\partial n \, e t_d} = \frac{\partial \sigma(n \, e t_d)}{\partial n \, e t_d} = o_d(1 - o_d)$$
$$\frac{\partial n \, e t_d}{\partial w_i} = \frac{\partial(\vec{w} \cdot \vec{x}_d)}{\partial w_i} = x_{i,d}$$

So:

$$\frac{\partial E}{\partial w_i} = -\sum_{d \in D} (t_d - o_d) o_d (1 - o_d) x_{i,d}$$

Backpropagation Algorithm

Initialize all weights to small random numbers.
Until satisfied, Do

- For each training example, Do
 - 1. Input the training example to the network and compute the network outputs
 - 2. For each output unit k

$$\delta_k \leftarrow o_k(1 - o_k)(t_k - o_k)$$

3. For each hidden unit h

$$\delta_h \leftarrow o_h(1 - o_h) \sum_{k \in outputs} w_{h,k} \delta_k$$

4. Update each network weight $w_{i,j}$

$$w_{i,j} \leftarrow w_{i,j} + \Delta w_{i,j}$$

where

$$\Delta w_{i,j} = \eta \delta_j x_{i,j}$$

Backpropagation Algorithm

- Gradient descent over entire network weight vector
- Easily generalized to arbitrary directed graphs
- Will find a local, not necessarily global error minimum
 - In practice, often works well (can run multiple times)
- Often include weight momentum α

$$\Delta w_{i,j}(n) = \eta \delta_j x_{i,j} + \alpha \Delta w_{i,j}(n-1)$$

- Minimizes error over training examples
 - Will it generalize well to subsequent examples?
- Training can take thousands of iterations → slow!
- Using network after training is very fast

Learning Hidden Layer Representations

A target function:

Input		Output
10000000	\rightarrow	10000000
01000000	\rightarrow	01000000
00100000	\rightarrow	00100000
00010000	\rightarrow	00010000
00001000	\rightarrow	00001000
00000100	\rightarrow	00000100
00000010	\rightarrow	00000010
00000001	\rightarrow	00000001

Learning Hidden Layer Representations

A network:

Learned hidden layer representation:

Input	Н	Hidden			Output		
Values							
10000000 →	.89	.04	.08	\rightarrow	10000000		
01000000 →	.01	.11	.88	\rightarrow	01000000		
00100000 →	.01	.97	.27	\rightarrow	00100000		
00010000 →	.99	.97	.71	\rightarrow	00010000		
00001000 →	.03	.05	.02	\rightarrow	00001000		
00000100 →	.22	.99	.99	\rightarrow	00000100		
00000010 →	.80	.01	.98	\rightarrow	00000010		
00000001 →	.60	.94	.01	\rightarrow	00000001		

Training

