Compounds of formulae:

5

1.

ϱ

10

15

in which:

Formula I

O

Ô R₁

Formula Ia

 R_1 , R_2 , R_3 , R_4 and R_5 are selected from <u>hydrogen</u>, halogens, C₁-C₆ alkyl grouns, hydroxyl, -CHO, -OR₈, -COOH, -CN, $-CO_2R_8$, $-CONHR_8$ \ $-CONR_8R_9$, $-NH_2$, $-NHR_8$, $-NH-CH_2-CH_2-N(CH_3)_2$, $-NH-CH_2-CH_2-Cl$, $-N(R_8)_2$, -NHCOR₈, morpholino, nitro, SO₃H,

and

-CH₂-N-COOR₈ -CH₂-N-COOR₈ CH₂-COOR₉

20

 R_8 and R_9 being selected from C_1 - C_6 \ alkyl groups and phenyl(C_1 - C_4)alkyl groups and Ar heing a C_6 - C_{14} aryl group,

- R₆ is selected from hydrogen, halogens, C₁-C₆

25

alkyl or $-(CH_2)_nR_{10}$ groups with R_{10} being selected from halogens or -OH, (C_1-C_6) alkoxy of -0-CO- (C_1-C_6) alkyl groups and n between 1 and -CO₂Et or -COR₁₁ groups with R₁₁ being selected from C_1-C_6 and phenyl (C_1-C_4) alkyl groups, groups with R_{12} and R_{13} selected, independently of another, from hydrogen or $C_1 - C_6$ phenyl (C_1-C_4) alkyl or $-(CH_2)_nR_{14}$ groups with

30

Boods

 (C_1-C_6) alkoxy and $-N(CH_3)_2$ groups and n between 1 and 6.

- R_7 is selected from hydrogen, groups of type (C_1-C_6) alkyl, phenyl (C_1-C_4) alkyl, $-NR_{15}R_{16}$ with R_{15} and R_{16} selected, independently of one another, from hydrogen, groups of type C_1-C_6 alkyl and phenyl (C_1-C_4) alkyl and $-(CH_2)_nR_{17}$, with R_{17} selected from hydrogen, halogens or -OH or (C_1-C_6) alkoxy groups and n between 1 and 6,

and the addition salts of these compounds with pharmaceutically acceptable acids.

2. Compounds according to Claim 1, which are compounds of formulae I or Ia in which:

15

20

25

10

 R_1 , R_2 , R_3 , R_4 and R_5 are selected from hydrogen, halogens, C_1 - C_6 alkyl groups, hydroxyl, -CHO, -OR₈, -COOH, -CN, -CO₂R₈, -CONHR₈, -CONR₈R₉, -NH₂, -NHR₈, -N(R₈)₂, -NH-CH₂-CH₂-N(CH₃)₂, -NHCOR₈, morpholino, nitro, SO₃H,

-CH₂-N-COOR₈ , -CH₂-N-COOR₈ CH₂-COOR₉

 R_8 and R_9 being selected from C_1 - C_6 alkyl groups and Ar being a C_6 - C_{14} aryl group.

- 3. Compounds according to Claim 1, which are compounds of formulae I or Ia in which:
- R_1 , R_2 , R_3 , R_4 and R_5 are selected from hydrogen, halogens, C_1 - C_6 alkyl groups, hydroxyl - OR_8 , NO_2 , - NH_2 , - NHR_8 , - $NH(R_8)_2$, -NH- CH_2 - CH_2 - $NHCOR_8$, R_8 being selected from C_1 - C_6 alkyl groups,
- R_6 is selected from hydrogen, $(CH_2)_nR_{10}$ groups, with R_{10} being selected from halogens the ...-O-CO-CH₃ group, C_1 -C₆ alkyl groups and $NR_{12}R_{13}$

Boot

10

35

groups with R_{12} and R_{13} selected, independently of one another, from hydrogen or C_1 - C_6 alkyl, benzyl or $(CH_2)_nR_{14}$ groups, with R_{14} being selected from halogens or $(C_1$ - $C_6)$ alkoxy and $-N(CH_3)_2$ groups and n between 1 and 6,

- R_7 selected from hydrogen or groups of type (C_1-C_6) alkyl, benzyl, -NR₁₅R₁₆ with R₁₅ and R₁₆ selected from hydrogen, groups of type C_1-C_6 alkyl and benzyl, and - $(CH_2)_nR_{17}$, with R₁₇ selected from hydrogen, halogens or -OH or (C_1-C_6) alkoxy groups and n between 1 and 6,
- and the addition salts of these compounds with pharmaceutically acceptable acids.
- 15 4. Compounds according to Claim 3, which are compounds of formulae I or Ia in which at least one of the R_1 , R_2 , R_4 and R_5 groups is an OR_8 group.
- 20 5. Compounds according to Claim 3, which are compounds of formulae I of Ia in which:
- hydrogen, is selected from halogens \mathbb{R}_1 -NH₂, -NHCH₃, methoxy, nitro, hydroxyl, -NHCOCH₃ -NH-CH₂-CH₂-N(CH₃)₂, $-NH-CH_2-CH_2-Cl$ or25 groups,

R2 is hydrogen,

R₃ and R₅ are selected from hydrogen or hydroxyl or methoxy groups

and the addition salts of these compounds with pharmaceutically acceptable acids.

6. Compounds according to Claim 3, which are compounds of formula (I):

11-methoxy-7H-pyrido[4,3,2-de][1,7]phenanthroline-7-one,

```
[1-chloro-7H-pyrido[4,3,2-de][1,7]phenanthroline-
         4-methoxy-7H-pyrido[4,3,2-de][1,7]phenanthroline-
         4,11-dimethoxy-7H-pyrido[4,3,2-de][1,7]-
 5
         phenanthroline-7-one,
         4,9-dimethoxy-7H-pyrido[4,3,2-de][1,7]-
         phenanthroline-7-one,
         9-methoxy-XH-pyrido[4,3,2-de][1,7]phenanthroline-
10
         7-one,
         9,11-dimethoxy-7H-pyrido[4,3,2-de][1,7]-
         phenanthroline 7-one,
         3-acetoxymethyl \TH-pyrido [4,3,2-de] [1,7] -
         phenanthroline-7-one,
         3-acetoxymethyl-9-methoxy-7H-pyrido[4,3,2-de]-
15
         [1,7] phenanthroline 7-one,
         2-(2-chloroethyl)-7H pyrido[4,3,2-de][1,7]-
         phenanthroline-7-one,
         and the addition salks of these compounds with
         pharmaceutically acceptable acids.
20
                                      Claim
    7.
         Compounds
                     according
                                              3,
                                                   which
                                                           are
         compounds of formula (Ia):
         8-methoxy-7H-pyrido [4,3,2-d] [1,10] phenanthroline-
         7-one,
25
         8-chloro-7H-pyrido[4,3,2-de][1,10]phenanthroline-
         7-one,
         4-methoxy-7H-pyrido[4,3,2-de][1\lambda10]phenanthroline-
         7-one,
         4,8-dimethoxy-7H-pyrido[4,3,2-de] [1,10]-
30
         phenanthroline-7-one,
         4,10-dimethoxy-7H-pyrido[4,3,2-de][1,10]-
         phenanthroline-7-one,
         10-methoxy-7H-pyrido[4,3,2-de][1,10]-
         phenanthroline-7-one,
35
          8,10-dimethoxy-7H-pyrido[4,3,2-de][1,10]
         phenanthroline-7-one,
          3-acetoxymethyl-7H-pyrido[4,3,2-de][1,10]
       · phenanthroline-7-one,
```

BI

5

10

3-acetoxymethyl-9-methoxy-7H-pyrido[4,3,2-de][1,10]phenenthroline-7-one,

2-(2-chloroethyl)-7H-pyrido[4,3,2-de][1,10]-phenanthroline-7-one,

and the addition salts of these compounds with pharmaceutically acceptable acids.

- 8. Pharmaceutical composition comprising an effective amount of a compound selected from the compounds according to any one of Claims 1 to 7 for treating, by virtue of their cytotoxic properties, cancerous tumours and their metastases.
- 9. Use of the compounds as defined in any one of Claims 1 to 7 in the manufacture of an anticancer medicament.
- 10. Process for the preparation of compounds according to Claim 1, which consists in:
 - a) reacting, according to a hetero Diels-Alder reaction, a quinolined one of formula:

and an azadiene of formula

where $X = CH_3$,

in order to obtain a mixture of compounds

25

20

30

$$R_2$$
 R_3
 R_4
 R_4
 R_5
 R_4
 R_2
 R_1
 R_2
 R_1

Formula IIa Fokmula II

- b) optionally separating the compounds of formulae II and IIa,
- c_1) subsequently reacting a compound of formulae and or ITa with dimethylformamide dimethyl acetal, in order to obtain an enamine of formula:

$$R_1$$
 R_2 R_3 R_4 R_5 R_5 R_6 R_7 R_8 R_9 R_9

then functionalizing the enamines, in order introduce the R_6 and/or R_7 substituents, cyclizing, in order to obtain the compounds of formulae I and/or Ia,

or

- c₂) functionalizing and cyclizing at the time, in order to obtain the compounds of formulae I and/or Ia,
- d) optionally separating the compounds\of formulae 25 · I and Ia.

10

5

15

20

5

10

15

20

- 11. Process for the preparation of compounds according to Claim 1 of formulae I or Ia in which R_6 and R_7 are hydrogen atoms, which consists:
 - a) In reacting, according to a hetero Diels-Alder reaction, a quinolinedione of formula:

and an azadiene of formula

$$R_5$$
 R_4
 R_4
 R_4
 R_4

where $X = CH_2 - CH_2 - NHBOC$,

in order to obtain a mixture of compounds

$$R_2$$
 R_3
 R_4
 R_5
 R_4
 R_5
 R_6
 R_7
 R_8
 R_8
 R_8
Formula II

b) optionally separating the compounds of formulae II and IIa,

5 jy

- c) cyclizing a compound of formulae II and/or IIa, in order to obtain a compound of formulae I and/or Ia,
- d) optionally separating the compounds of formulae I or Ia.
- 12. Method for the treatment of a patient exhibiting a cancerous tumour, which consists in administering, to this patient, an effective amount of a compound as defined in Claim 1.

add