Market Timing with Bi-Objective Cost-Sensitive Learning

Robert James U Sydney & NGS Super Jessica Wai Yin Leung Monash U Artem Prokhorov U Sydney & CEBDA & CIREQ

June 30, 2025

June 30, 2025 1/30

ISF 2025 June 30, 2025

- Suppose you have a standard classification problem:
 - direction of return y_t : $\{\uparrow,\downarrow\}$

$$p_{\uparrow} = rac{1}{1 + e^{-f(\mathbf{x}_{\mathrm{t}};oldsymbol{ heta})}}; \quad p_{\downarrow} = 1 - p_{\uparrow}$$

- $\hat{p}_{\uparrow} > 0.5 \Rightarrow \text{predict } \hat{y}_t \uparrow; \quad \hat{p}_{\downarrow} > 0.5 \Rightarrow \text{predict } \hat{y}_t \downarrow.$
- cost matrix:

		\uparrow	\downarrow	\hat{y}_t
y_t	\uparrow	0	С	
	\downarrow	С	0	

- assumes:
 - ★ c same for false positives and false negatives
 - ★ c time-constant

ISF 2025 June 30, 2025 2 / 30

- Cost-sensitive classification problem:
 - direction of return y_t : $\{\uparrow,\downarrow\}$

$$p_{\uparrow} = rac{1}{1 + e^{-f(\mathbf{x}_{\mathrm{t}};oldsymbol{ heta})}}; \quad p_{\downarrow} = 1 - p_{\uparrow}$$

- $\hat{p}_{\uparrow} > 0.5 \Rightarrow \text{predict } \hat{y}_t \uparrow; \quad \hat{p}_{\downarrow} > 0.5 \Rightarrow \text{predict } \hat{y}_t \downarrow.$
- cost matrix:

- assumes:
 - $\star c^{fp} \neq c^{fn}$
 - * time-constant

ISF 2025 June 30, 2025 3 / 30

Cost-sensitive example-dependent classification problem:

• direction of return y_t : $\{\uparrow,\downarrow\}$

$$p_{\uparrow} = rac{1}{1 + e^{-f(\mathbf{x}_t;oldsymbol{ heta})}}; \quad p_{\downarrow} = 1 - p_{\uparrow}$$

- $\hat{p}_{\uparrow} > 0.5 \Rightarrow \text{predict } \hat{y}_t \uparrow$; $\hat{p}_{\downarrow} > 0.5 \Rightarrow \text{predict } \hat{y}_t \downarrow$.
- cost matrix:

- assumes:
 - $\star c_t^{\text{fp}} \neq c_t^{\text{fn}}$
 - * each time-dependent

ISF 2025 June 30, 2025 4/30

Options prices as costs

- As a basis, look at options that are trading ATM at time t:
 - ▶ false positive $\Leftrightarrow \{\hat{y}_t \uparrow, y_t \downarrow\}$ which option hedges against that?
 - ▶ **false negative** \Leftrightarrow { $\hat{y}_t \downarrow$, $y_t \uparrow$ } which option hedges against that?
- Many prices and strikes, OTM, ITM, at different implied exposures

◆□▶◆□▶◆壹▶◆壹▶ 壹 り<</p>

ISF 2025 June 30, 2025 5 / 30

Options prices as costs

- As a basis, look at options that are trading ATM at time t:
 - ▶ false positive $\Leftrightarrow \{\hat{y}_t \uparrow, y_t \downarrow\}$ which option hedges against that? European put
 - ▶ false negative $\Leftrightarrow \{\hat{y}_t \downarrow, y_t \uparrow\}$ which option hedges against that? European call
- Many prices and strikes, OTM, ITM, at different implied exposures

ISF 2025

Options prices as costs

• Let $p_t^{(p)}$ and $p_t^{(c)}$ be generic (p)ut and (c)all prices then

 $c_t^{fp} = p_t^{(p)}$: price of the put that did not get exercised $c_{\star}^{\text{fn}} = p_{\star}^{(c)}$: price of the call that did not get exercised

- There is a distribution of $p_t^{(p)}$ and $p_t^{(c)}$ with different strike prices K
- Need an exposure-controlled measure of cost

ISF 2025 June 30, 2025 7/30

- Consider put price $p_t^{(p)}$, strike price K, expiry h days ahead;
- Let $F(P_{t+h})$ denote the distribution of asset price P_{t+h} ; then,

$$p_t^{(\rho)}(K) = e^{-rh} \int_0^K (K - P_{t+h}) dF(P_{t+h})$$

After some algebra:

$$\frac{dp_t^{(p)}(K)}{dK} = e^{-rh}F(K)$$

- So asset price cdf is linked to option price derivative wrt strike price
- This suggests a way to control exposure.

- Estimate the derivative nonparametrically from a cross-section of $(p_{+}^{(p)}, K)$
- For left tail (small K's), look at three contiguous put prices $p_t^{(p)}(K_{i-1}) < p_t^{(p)}(K_i) < p_t^{(p)}(K_{i+1})$ with strikes $K_{i-1} < K_i < K_{i+1}$
- Implicit risk level $\hat{\alpha} = \hat{F}(K_i)$ is

$$e^{rh}\left[\frac{1}{2}\left(\nu_1\frac{p_t^{(p)}(K_{i+1})-p_t^{(p)}(K_i)}{K_{i+1}-K_i}+\nu_2\frac{p_t^{(p)}(K_i)-p_t^{(p)}(K_{i-1})}{K_i-K_{i-1}}\right)\right],$$

where ν_1, ν_2 = weights to account for strike prices not equidistant.

ISF 2025 June 30, 2025 9/30

Similar for call options:

$$\frac{dp_t^{(c)}(K)}{dK} = e^{-rh}(1 - F(K))$$

- Estimate the derivative from a cross-section of $(p_t^{(c)}, K)$
- For right tail (large K's), look at three contiguous put prices $p_t^{(c)}(K_{i-1}) < p_t^{(c)}(K_i) < p_t^{(c)}(K_{i+1})$ with strikes $K_{i-1} > K_i > K_{i+1}$
- Implicit risk level $1 \hat{\alpha} = 1 \hat{F}(K_i)$ is

$$e^{rh}\left[\frac{1}{2}\left(\nu_1\frac{p_t^{(c)}(K_{i+1})-p_t^{(c)}(K_i)}{K_i-K_{i+1}}+\nu_2\frac{p_t^{(c)}(K_i)-p_t^{(c)}(K_{i-1})}{K_{i-1}-K_i}\right)\right]$$

ISF 2025 June 30, 2025 10 / 30

- Result: $\hat{\alpha} \Leftrightarrow \{p_t^{(p)}, K\}$ and $1 \hat{\alpha} \Leftrightarrow \{p_t^{(c)}, K\}$
- Find $\{p_t^{(p)}, K\}$ and $\{p_t^{(c)}, K\}$ for the desired risk level α you want, e.g., 0.05.
- Denote the prices by

$$\left\{p_t^{(p)}(\alpha), K(\alpha)\right\} \qquad \left\{p_t^{(c)}(1-\alpha), K(1-\alpha)\right\}$$

- $p_t^{(p)}(\alpha)$ and $p_t^{(c)}(1-\alpha)$ are risk-conrolled versions of c_t^{fp} and c_t^{fn} ; need exposure-controlled;
- Option-implied ES:

$$c_t^{\mathsf{fp}} = \mathsf{CVaR}_{t,t+h}^{(\alpha)} = P_t - \mathsf{K}(\alpha) + \mathsf{e}^{r_t(h)} \frac{p_t^{(p)}(\alpha)}{\alpha}$$

$$c_t^{\text{fn}} = \textit{CVaR}_{t,t+h}^{(1-\alpha)} = \textit{K}(1-\alpha) - \textit{P}_t + e^{\textit{r}_t(h)} \frac{\textit{p}_t^{(c)}(1-\alpha)}{\alpha}$$

ISF 2025 June 30, 2025 11/30

Option-implied CVaR misclassification costs

Figure: Option Implied CVaR Misclassification Costs for Two Market Trackers

Note: asymmetries, crises; prices in % of P_t ; signs opposite for illustration

ISF 2025 June 30, 2025 12 / 30

Return to cost-sensitive machine learning

- We look at rolling 10-day and 30-day ahead predictions using:
 - ► Logistic Regression [LR]
 - ► Gradient Boosting [GB]
- Both models use the score $f(\mathbf{x}_t; \theta)$ and probabilities

$$ho_{\uparrow} = p(y_t \uparrow | \mathbf{x}_t; oldsymbol{ heta}) = rac{1}{1 + e^{-f(\mathbf{x}_t; oldsymbol{ heta})}} \ p_{\downarrow} = 1 - p_{\uparrow}$$

ISF 2025 June 30, 2025 13/30

Traditional log-loss (cross-entropy) objective

$$L_1(\mathbf{y}, \mathbf{x}; \boldsymbol{\theta}) = \sum_{t=1}^T -[y_t \log(p(y_t = 1|\mathbf{x}_t; \boldsymbol{\theta})) + (1 - y_t) \log(1 - p(y_t = 1|\mathbf{x}_t; \boldsymbol{\theta}))]$$

Cost-sensitive average expected cost [AEC] objective

$$L_{2}(\mathbf{y}, \mathbf{x}; \boldsymbol{\theta}) = \frac{1}{T} \sum_{t=1}^{T} y_{t} (1 - \rho_{t}(y_{t} = 1 | \mathbf{x}_{t}; \boldsymbol{\theta})) \underbrace{\begin{bmatrix} c_{t}^{fn} \\ c_{t}^{fn} \end{bmatrix}}_{CVaR_{t}^{(0.05)}} + (1 - y_{t}) \rho_{t}(y_{t} = 1 | \mathbf{x}_{t}; \boldsymbol{\theta}) \underbrace{\begin{bmatrix} c_{t}^{fp} \\ c_{t}^{fp} \end{bmatrix}}_{CVaR_{t}^{(0.95)}}$$

- The inclusion of c_t^{fn} and c_t^{fp} makes the LR and GB models sensitive to time-varying misclassification costs.
 - ▶ E.g., in a financial crisis investors may want costs be higher than average, increase with volatility, and have $c_t^{fp} > c_t^{fn}$.

June 30, 2025

Bi-objective optimization

- Combine log-loss and AEC using weights u_1 and u_2 expressing an investor's importance of each objective. Use $u_1 = u_2$ as a base.
- Since log-loss and AEC are on different scales, use normalizations η_1 and η_2 so actual weights are $w_1 = \eta_1 u_1$ and $w_2 = \eta_2 u_2$.
- Find η_1 and η_2 by using the nadir and utopia points (see, e.g., Mausser 2006).
 - Utopia points are

$$s_i^U = \min_{\theta} L_i(\mathbf{y}, \mathbf{x}; \boldsymbol{\theta}), \quad i \in \{1, 2\}$$

▶ Nadir points are

$$s_i^N = \max_{j \in \{1,2\}} L_i(\mathbf{y}, \mathbf{x}; \boldsymbol{\theta}_j)$$

▶ Then, the normalization factors are given by

$$\eta_i = \frac{1}{s_i^N - s_i^U} \tag{1}$$

• Train bi-objective model using LR and GB

$$L(\mathbf{y}, \mathbf{x}; \boldsymbol{\theta}) = w_1 L_1(\mathbf{y}, \mathbf{x}; \boldsymbol{\theta}) + w_2 L_2(\mathbf{y}, \mathbf{x}; \boldsymbol{\theta})$$

| SF 2025 | June 30, 2025 | 15/30

Data

- S&P500, NASDAQ100 indices.
 - Training data = a rolling window of 2000 trading days (results are robust to wider window).
 - Asset prices from Compustat; options prices from OptionMetrics; risk free rates from Kenneth French library.
 - ▶ Option cross-section is cleaned using standard filters (see, e.g., Bali et al. 2023, Bollerslev et al. 2015)
- Include standard predictors that capture information about volatility, economic and financial conditions, technical indicators of momentum and trend, and behaviour of past returns (Welch & Goyal 2008).
 - ▶ VIX (VXN for NASDAQ100) and VRP are also included.
 - 30 lags of daily returns are included.

| SF 2025 | June 30, 2025 | 16 / 30

LR and GB models

- LR: elastic net logistic regression models:
 - **1** AEC LR: minimizes the average expected cost.
 - 2 Bi-LR: minimizes the bi-objective function.
 - Strain LR (benchmark): minimizes log-loss; includes tail asymmetry $[CVaR_{t}^{(0.05)} - CVaR_{t}^{(0.95)}]$ as a predictor.
- **GB**: gradient boosting models:
 - AEC GB: Minimizes the Average Expected Cost Objective function.
 - 2 Bi-GB: Minimizes our weighted sum bi-objective function.
 - GB (benchmark): minimizes log-loss; includes tail asymmetry $[CVaR_{t}^{(0.05)} - CVaR_{t}^{(0.95)}]$ as a predictor.
- Models are estimated and variables are engineered to ensure there is no look-ahead bias at time t.

ISF 2025 June 30, 2025 17/30

Hyperparameter optimization

AEC LR:
$$\min_{\beta} L_2(\mathbf{y}, \mathbf{x}; \boldsymbol{\beta}) + \lambda \left[(1 - \alpha) \|\boldsymbol{\beta}\|_2 / 2 + \alpha \|\boldsymbol{\beta}\|_1 \right]$$

Bi-LR:
$$\min_{\boldsymbol{\beta}} w_1 L_1(\mathbf{y}, \mathbf{x}; \boldsymbol{\beta}) + w_2 L_2(\mathbf{y}, \mathbf{x}; \boldsymbol{\beta}) + \lambda \left[(1 - \alpha) \|\boldsymbol{\beta}\|_2 / 2 + \alpha \|\boldsymbol{\beta}\|_1 \right]$$

$$LR: \min_{\boldsymbol{\beta}} L_1(\mathbf{y}, \mathbf{x}; \boldsymbol{\beta}) + \lambda \left[(1 - \alpha) \|\boldsymbol{\beta}\|_2 / 2 + \alpha \|\boldsymbol{\beta}\|_1 \right]$$

GB:
$$f(\mathbf{x}_t; \boldsymbol{\theta}) = \sum_{k=1}^{K} h_k(\mathbf{x}_t; \boldsymbol{\theta}_k), \quad g_{tk} = \left. \frac{\partial \ell(y_t, \xi)}{\partial \xi} \right|_{\xi = f^{(k-1)}(\mathbf{x}_t; \boldsymbol{\theta})}$$

$$f^{(k)}(\mathbf{x}_t; \boldsymbol{\theta}) := f^{(k-1)}(\mathbf{x}_t; \boldsymbol{\theta}) + \nu h_k(\mathbf{x}_t; \boldsymbol{\theta}_k)$$

ISF 2025 June 30, 2025 18 / 30

Hyperparameter optimization

- We use the Optuna framework (Akiba et al. 2019) together with 5-fold purged and embargoed cross validation (De Prado 2018).
 - ▶ Optuna implements an efficient hyper-parameter sampling strategy to search regions concentrated around the best values.
 - ▶ We let Optuna use 125 iterations.
- Our hyper-parameter tuning process makes it more likely that differences in model performance are likely attributable to our bi-objective loss function and not arbitrary or sub-optimal hyper-parameter choices.
- Hyperparameters are re-tuned at the start of each week.

ISF 2025 June 30, 2025 19/30

Hyperparameter optimization

Table: Hyperparameter Search Space

(i) Logistic Regression					
Hyper-parameter	Low	High	Choices		
λ (log scale)	0.01	10			
α	0.01	1			
(ii) Gr	adient B	oosting			
Hyper-parameter	Low	High	Choices		
n_estimators			[50, 100, 200]		
num_leaves	2	16			
learning_rate	0.01	0.1			
subsample			[0.5, 0.7, 0.9]		
min_child_samples	20	200			
max_bin	20	255			
drop_rate (log scale)	0.025	0.3			
reg_alpha (log scale)	0.01	1			
reg_lambda	0.01	1			

ISF 2025 June 30, 2025 20 / 30

Market timing strategy

- Cost-sensitive learning emphasizes the investment results more than predictive accuracy.
- Backtest: equal-weighted equity index market timing strategy using our forecasts.
 - ▶ Long the S&P500(SPDR S&P 500 ETF)/NASDAQ (INVESCO QQQ) when $\hat{y} = 1$.
 - ▶ Long Core iShares U.S. Aggregate Bond ETF when $\hat{y} = 0$.
- Transaction costs assumed at 0.3% of value traded (Petraki 2020), include 0.1% of the mid price for slippage.
- To mitigate path dependence we average the return paths for 30 different starting days at the beginning of the sample.
 - ▶ All results are reported for the average investment strategy return path
- We only trade on a forecast at time t+1 to emulate real-world execution times.
- The re-balancing period matches the forecast horizon (30-days)

ISF 2025 June 30, 2025 21/30

Market timing strategy (LR)

Table: Logistic Regression Market Timing Strategy
***, **, * represent statistical significance form the studentized time series bootstrap test of
Ledoit & Wolf (2008) against the benchmark LR model at the 10%, 5% and 1% levels
respectively.

	Buy & Hold	LR	AEC LR	Bi-LR
Annualised Return (%)	13.113	10.239	10.661	11.730
Annualised Std	20.357	13.262	12.291	12.094
Annualised Sharpe Ratio	0.686	0.776	0.858	0.946**
Annualised Sortino Ratio	1.068	1.205	1.335	1.478
Max Drawdown (%)	-53.931	-42.913	-38.557	-35.614
Max Drawdown Period (days)	353	276	248	248
MAR Ratio	0.243	0.239	0.277	0.329
Daily Var 5%	1.967	1.281	1.115	1.124
Daily Var 1%	3.871	2.679	2.435	2.382
Daily CVar 5%	3.156	2.107	1.929	1.901
Daily CVar 1%	5.297	3.618	3.456	3.394
Annualised Downside Deviation	13.091	8.726	8.014	8.673

ISF 2025 June 30, 2025 22 / 30

Market timing strategy (GB)

Table: Gradient Boosting Market Timing Strategy

	Buy & Hold	GB	AEC GB	Bi-GB
Annualised Return (%)	13.113	14.119	10.432	10.812
Annualised Std	20.357	16.730	11.883	11.670
Annualised Sharpe Ratio	0.686	0.847	0.866	0.908
Annualised Sortino Ratio	1.068	1.306	1.323	1.385
Max Drawdown (%)	-53.931	-34.910	-25.786	-23.553
Max Drawdown Period (days)	353	258	106	221
MAR Ratio	0.243	0.404	0.405	0.459
Daily Var 5%	1.967	1.671	1.150	1.150
Daily Var 1%	3.871	3.037	2.306	2.307
Daily CVar 5%	3.156	2.591	1.906	1.876
Daily CVar 1%	5.297	4.351	3.283	3.264
Annualised Downside Deviation	13.091	10.836	7.837	8.089

ISF 2025 June 30, 2025 23 / 30

International equity market strategy

- To further asses the robustness of our results we backtest a "transfer learning "market timing strategy for the Canada, U.K., France, Germany, and Japan equity markets (see, e.g., Liu et al. 2020, Jiang et al. 2023)
- Long the equal weighted basket of iShares MSCI Canada, iShares MSCI Canada, iShares MSCI France, iShares MSCI Germany, and iShares MSCI Japan ETFs when SPX $\hat{y} = 1$. Long Core U.S. Aggregate Bond ETF when $\hat{v} = 0$.
- Since international stock market data was not used to train our cost-sensitive models these tests further evaluate out-of-sample performance.

ISF 2025 June 30, 2025 24 / 30

International equity market strategy

Table: International Equity Market Timing Strategy
***, **, * represent statistical significance form the studentized time series bootstrap test of
Ledoit & Wolf (2008) against the benchmark GBM model at the 10%, 5% and 1% levels
respectively.

	(i) Logisitic Regression			
	Buy & Hold	LR	AEC LR	Bi-LR
Annualised Return (%)	4.618	7.068	6.183	7.066
Annualised Std	21.486	13.504	13.034	12.947
Annualised Sharpe Ratio	0.311	0.556	0.510	0.574
Annualised Sortino Ratio	0.477	0.857	0.782	0.883
Max Drawdown (%)	-60.449	-42.044	-33.089	-29.173
MAR Ratio	0.076	0.168	0.187	0.242
Daily CVar 5%	3.346	2.169	2.079	2.070
Daily CVar 1%	6.063	3.607	3.624	3.572
	(ii) Gradient Boosting			
	Buy & Hold	GB	AEC GB	Bi-GB
Annualised Return (%)	4.618	5.585	5.354	6.625
Annualised Std	21.486	16.464	11.237	11.516
Annualised Sharpe Ratio	0.311	0.402	0.505	0.596**
Annualised Sortino Ratio	0.477	0.608	0.766	0.898
Max Drawdown (%)	-60.449	-35.780	-26.232	-20.898
MAR Ratio	0.076	0.156	0.204	0.317
Daily CVar 5%	3.346	2.554	1.783	1.842
Daily CVar 1%	6.063	4.411	3.102	3.273

ISF 2025 June 30, 2025 25 / 30

LR classification performance

Table: Out-of-sample performance of LR

LR	AEC LR	Bi-LR
0.698	0.713	0.717
0.680	0.632	0.644
0.689	0.670	0.678
0.354	0.368	0.376
0.374	0.457	0.457
0.363	0.408	0.412
0.053	0.084	0.097
0.527	0.544	0.551
0.533	0.559	0.569
0.707	0.739	0.737
0.785	4.679	1.337
6.956	6.346	6.476
	0.698 0.680 0.689 0.354 0.374 0.363 0.053 0.527 0.533 0.707	0.698 0.713 0.680 0.632 0.689 0.670 0.354 0.368 0.374 0.457 0.363 0.408 0.053 0.084 0.527 0.544 0.533 0.559 0.707 0.739 0.785 4.679

- Cost sensitive models are better at classifying negative future returns (higher F1 (0) score).
- Interestingly, the bi-objective LR tends to perform best across all classification performance metrics.

ISF 2025 June 30, 2025

26/30

GB classification performance

Table: Out-of-sample performance of GB

	GB	AEC GB	Bi-GB
Precision	0.696	0.701	0.706
Recall	0.924	0.628	0.612
F1 (+1)	0.794	0.663	0.656
NPV	0.462	0.351	0.356
Specificity	0.140	0.428	0.457
F1 (0)	0.214	0.386	0.400
MCC	0.100	0.054	0.065
Balanced Accuracy	0.532	0.528	0.534
ROCAUC	0.565	0.539	0.552
AUPRC	0.714	0.701	0.707
Log Loss	0.632	1.192	0.774
AEC	5.931	6.420	6.745

- Cost sensitive models trade lower Recall for significantly higher Specificity.
- Interestingly, the bi-objective GB model has the highest out-of-sample AFC.

ISF 2025 June 30, 2025 27 / 30

Summary

- Cost sensitive models are better at classifying negative future returns.
 They tend to trade recall for specificity, correctly classifying a larger fraction of all negative future returns.
- The option implied $CVaR_t^{(0.05)}$ is often higher than the option implied $CVaR_t^{(0.95)}$ so the cost of FP is higher than FN.
 - ► These cost dynamics likely explain why our cost-sensitive ML models are better at predicting negative returns.
- out-of-sample Log-loss is substantially higher for all AEC models, while the bi-objective models adequately balance the out-of-sample realized log-loss and AEC.
- Also, GB models do not comprehensively outperform the elastic-net LR out-of-sample, consistent with Iworiso & Vrontos (2020). This may have implications for practitioners.

ISF 2025 June 30, 2025 28/30

Conference on Econometrics and Big Data Methods

• iCEBDA 2025 in Istanbul, 11-14 Sept

Keynotes:

- Guido Imbens (Stanford GSB)
- ► Tommaso Proietti (Tor Vergata)

ISF 2025 June 30, 2025 29 / 30

References I

- Akiba, T., Sano, S., Yanase, T., Ohta, T. & Koyama, M. (2019), Optuna: A next-generation hyperparameter optimization framework, in 'Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining', pp. 2623–2631.
- Bali, T. G., Beckmeyer, H., Moerke, M. & Weigert, F. (2023), 'Option return predictability with machine learning and big data', The Review of Financial Studies 36(9), 3548–3602.
- Bollerslev, T., Todorov, V. & Xu, L. (2015), 'Tail risk premia and return predictability', Journal of Financial Economics 118(1), 113–134.
- De Prado, M. L. (2018), Advances in financial machine learning, John Wiley & Sons.
- Iworiso, J. & Vrontos, S. (2020), 'On the directional predictability of equity premium using machine learning techniques', Journal of Forecasting 39(3), 449–469.
- Jiang, J., Kelly, B. & Xiu, D. (2023), '(re-) imag (in) ing price trends', The Journal of Finance 78(6), 3193-3249.
- Ledoit, O. & Wolf, M. (2008), 'Robust performance hypothesis testing with the sharpe ratio', *Journal of Empirical Finance* 15(5), 850–859.
- Liu, Y., Zhou, G. & Zhu, Y. (2020), 'Maximizing the sharpe ratio: A genetic programming approach', Available at SSRN 3726609.
- Mausser, H. (2006), Normalization and other topics in multi-objective optimization, in 'Fields-MITACS Industrial Problems Workshop', Citeseer, p. 89.
- Petraki, A. (2020), The transaction costs manual: What is behind transaction cost figures and how to use them, Technical report, Schroder Investment Management Limited.
- Welch, I. & Goyal, A. (2008), 'A comprehensive look at the empirical performance of equity premium prediction', The Review of Financial Studies 21(4), 1455–1508.

ISF 2025 June 30, 2025 30 / 30