1992 \$507 Problems Assigned: 2/3. Due: 2/10/92.

- 19 Consider the 2P states of a one-electron atom. Here, the orbital & momentum \vec{L} (ligenweste l=1) and electron spin & momentum \vec{S} (ligenweste S=1/2) conple to form $\vec{J} = \hat{L} + \vec{S}$, with g-values $\frac{3}{2} = \frac{1}{2}$. By using the step-down operator J_{-} , and imposing orthonormality, explicitly do a Clebsch-Gordan transform from the uncoupled states | lsmems > to the conplete states | lsgm, >. Make a table of your results, i.e. each | lsgmy > state in turn, as a linear combination of the Ilsmems >, with appropriate C-G coefficients.
- (1) [15pts]. To generalize prob. (1), let l have any value >0; then $g=l\pm\frac{1}{2}$. With $m_s=\pm\frac{1}{2}$ only, there are just two me values for a given m:viz. $m_e=m\mp\frac{1}{2}$ (here $m=m_g$). Let $\alpha=|s=\frac{1}{2},m_s=+\frac{1}{2}>$ $\beta=|s=\frac{1}{2},m_s=-\frac{1}{2}>$ be the spin-up of spin-down eigenfens. Then the eigenfens of the completed states have just two terms (suppress $l \nmid s$, ad libitum): $|m_s| l_s gm> = C_1(gm)|m_s|l_s m_e=m-\frac{1}{2}> \alpha + C_2(gm)|m_s|l_s m_e=m+\frac{1}{2}> \beta$. The C-G transform in this case amounts to finding two pairs of constants l_s , one pair for each of $l=l\pm\frac{1}{2}$. By using the J-operator, calculate the l_s (gm) explicitly.
- 12 In an atom where the orbital & spin & momenta \vec{L} & \vec{S} couple to form $\vec{J} = \vec{L} + \vec{S}$, the magnetic moments $\vec{\mu}_L = -g_L \mu_0 \vec{L}$ & $\vec{\mu}_S = -g_S \mu_0 \vec{S}$ likewise couple to form a total $\vec{\mu}_J = \vec{\mu}_L + \vec{\mu}_S$. Use the Vector Model to show that (in an expectation-value sense): $\vec{\mu}_J = -g_J \mu_0 \vec{J}$. Show that $g_J = -\omega hich$ is called the Landé g-factor -- is given by: $g_J = \left[\frac{\chi(\chi+1) + l(l+1) s(s+1)}{2\chi(s+1)}\right]g_L + \left[\frac{\chi(\chi+1) + s(s+1) l(l+1)}{2\chi(g+1)}\right]g_S$.

Calculate & values for the hydrogen states 2B12, 2B12 & 2512. What is the maximum observable my in each state? If a weak magnetic field H were applied to this system how would the state energies vary with H? Drawa picture. [This is the Zeeman Effect].

(3) Consider the hydrogenic states $2S_{\frac{1}{2}}$ [the $m=\pm\frac{1}{2}$ levels are denoted at β] and $2P_{3/2}$ [$m=\pm\frac{1}{2}$, $\pm\frac{1}{2}$, $-\frac{1}{2}$, $-\frac{3}{2}$ levels denoted a,b,c,d]. Some of the m-levels are coupled by a Stark interaction $V=\overline{E}\cdot\overline{r}$, \overline{r} =position and $\overline{E}=$ cast. Find the absolute value of all matrix elements $M=|\langle 2S_{\frac{1}{2}}|V|2P_{\frac{3}{2}}\rangle|$ allowed between the six m-levels, up to a reduced matrix element R. If $\Gamma \propto M^2$ is the transition rate induced by V, establish the equalities: $\Gamma(\alpha+b)=\Gamma(\beta+c), \Gamma(\alpha+a)=\Gamma(\beta+d)=3\Gamma(\alpha+c)=3\Gamma(\beta+b).$

(8)

@ Carry out a Clebsch-Gordan transform for hydrogen states 2P3/2 & 2P1/2.

1. Denote the wavefor for the coupled rept by: Inlagm) = $\frac{1}{3}$ (m=mg here), for the uncoupled space part: Inlma) = $\frac{1}{3}$, and for the spin $\frac{1}{2}$ spinors: $|S=\frac{1}{2},m_S=\pm\frac{1}{2}\rangle = 0$, β (Spin up & Spin down, resp.). Start at the top of the ladder: $m=j=\frac{3}{2}$, where

is the only possibility. Operate with J= L+S_, "J-7" = /3(j+1)-m(m-1) 42, and likewise for L= & S- (note: S- \alpha = \beta, and no more). Then ...

$$\int_{-1}^{3/2} - \sqrt{23} \, \psi_{3/2}^{1/2} = \left(L_{-} \phi_{1}^{+1} \right) \alpha + \phi_{1}^{+1} \left(S_{-} \alpha \right) = \sqrt{2l} \, \phi_{1}^{0} \alpha + \phi_{1}^{+1} \beta.$$

$$\int_{-1}^{1} \psi_{3/2}^{3/2} = \sqrt{2l} \, \psi_{3/2}^{1/2} = \left(L_{-} \phi_{1}^{+1} \right) \alpha + \phi_{1}^{+1} \left(S_{-} \alpha \right) = \sqrt{2l} \, \phi_{1}^{0} \alpha + \phi_{1}^{+1} \beta.$$

$$\int_{-1}^{1} \psi_{3/2}^{3/2} = \sqrt{2l} \, \psi_{3/2}^{1/2} = \sqrt{2l} \, \phi_{1}^{0} \alpha + \sqrt{1/3} \, \phi_{1}^{+1} \beta.$$

$$\left(\frac{2}{2} \right)$$

Normalization is evidently preserved. Apply J. twice more to get to m=-z...

$$\int_{3/2}^{4/2} = \int_{4}^{4/2} \psi_{3/2}^{-1/2} = \int_{3}^{2} \left[(L - \phi_{1}^{\circ}) \alpha + \phi_{1}^{\circ} (S - \alpha) \right] + \int_{3}^{4} (L - \phi_{1}^{+1}) \beta,$$

$$\psi_{3/2}^{-1/2} = \int_{1/3}^{1/3} \phi_{1}^{-1} \alpha + \int_{2/3}^{2/3} \phi_{1}^{\circ} \beta. (3) \quad \psi_{3/2}^{-3/2} = \phi_{1}^{-1} \beta \text{ (obvious!)} (4)$$

2. We now have all the coupled states for 2P3/2, i.e. the 4 for j = 3/2. The 4 for $2P_{1/2}$ must be orthogonal to the $2P_{3/2}$ states, so -- for the first one -- try

$$\rightarrow \psi_{1/2}^{1/2} = A \phi_1^{\circ} \alpha + B \phi_1^{+1} \beta, \quad \forall \psi_{1/2}^{1/2} | \psi_{3/2}^{1/2} \rangle = 0 \Rightarrow A \sqrt{\frac{2}{3}} + B \sqrt{\frac{1}{3}} = 0. \quad (5)$$

This condition, together with the norm: $|A|^2 + |B|^2 = 1$, implies $A = \begin{bmatrix} \frac{1}{3} \\ 3 \end{bmatrix}$, $B = -\begin{bmatrix} \frac{1}{3} \\ 3 \end{bmatrix}$,

$$\frac{201}{412} = \sqrt{1/3} \, \phi_1^{\circ} \, \alpha - \sqrt{2/3} \, \phi_1^{+1} \, \beta \, , \, (6) \, \frac{1}{4} \, \psi_{1/2}^{-1/2} = \sqrt{2/3} \, \phi_1^{-1} \, \alpha - \sqrt{1/3} \, \phi_1^{\circ} \, \beta \, . \, (7)$$

41/2 is gotten by a J-41/2 operation (as above). A table of C-G coefficients for the states 2B1/2 & 2P1/2 appears at right.

	Ψm		φ+1 α	φiα	φ+1 B	φ=1'a	φ, β	φ-1 β
ſ	∂ =	m=+3/2	1	\$	}	~	*	~~
20	3/2	+1/2	*	12/3	V1/3	~~	\$	~
2P _{3/2}		-1/2	*	~	}	1113	1213	
Į		-3/2	**	~~	•	~		1
	3=	m=+12	~	11/3'	-/2/3	~	~	m
P1/2	1/2	-1/2	~	~	~	1213	- √1/3`	~~

(5)

D[15 pts]. Derive Clersch - Gordan coefficients, in general, for s = 1/2.

1. Denote the warefons for the coupled rep and l-eigenfon rep by, resp...

$$|n; \ell, s, j, m\rangle = \psi_{j}^{m}, |n; \ell, m_{\ell}\rangle = \phi_{k}^{m_{\ell}}.$$

Start at the top of the ladder, m = max = &, noting the only possibility is ...

$$\Psi_{3=l+\frac{1}{2}}^{m=3} = \phi_{l}^{+l} \alpha, \quad \alpha = |s=\frac{1}{2}, \uparrow\rangle = \text{Spin-np lightfon}.$$

Apply the Slep-down operator: J= L+5, where in general ...

$$J - |j, m\rangle = \sqrt{j(j+1) - m(m-1)} |j, m-1\rangle.$$
 (3)

$$J^{-} \psi_{j=\ell+\frac{1}{2}}^{m=8} = \sqrt{2j} \psi_{j=\ell+\frac{1}{2}}^{m=3-1}, \quad \text{and} \quad (L^{-} + S^{-}) \phi_{\ell}^{+\ell} \alpha = \sqrt{2\ell} \phi_{\ell}^{\ell-1} \alpha + \phi_{\ell}^{\ell} \beta,$$

2. This is for J- applied once. Operate again with J- to get ...

$$J^{-}\psi_{3^{-},k+\frac{1}{2}}^{m-\frac{1}{2}-1}=\sqrt{\frac{2\ell}{2\ell+1}}\left[\left(L^{-}\phi_{\ell}^{\ell-1}\right)\alpha+\phi_{\ell}^{\ell-1}\beta\right]+\sqrt{\frac{1}{2\ell+1}}\left[\left(L^{-}\phi_{\ell}^{\ell}\right)\beta+0\right],$$

$$\sqrt[my]{\sqrt{2(2j-1)}} \psi_{j=l+\frac{1}{2}}^{m=\frac{1}{2}-2} = \sqrt{\frac{2l}{2l+1}} \sqrt{2(2l-1)} \phi_{l}^{l-2} \alpha + 2\sqrt{\frac{2l}{2l+1}} \phi_{l}^{l-1} \beta$$

$$\psi_{3=l+\frac{1}{2}}^{m=j-2} = \sqrt{\frac{2l-1}{2l+1}} \phi_{1}^{l-2} \alpha + \sqrt{\frac{2}{2l+1}} \phi_{1}^{l-1} \beta \begin{cases} J^{-} applied \\ \frac{twice}{2l+1} \end{cases}$$

Another application of J - gives ...

$$\psi_{1=l+\frac{1}{2}}^{m=1-3} = \int \frac{2l-2}{2l+1} \phi_{l}^{l-3} \alpha + \int \frac{3}{2l+1} \phi_{l}^{l-2} \beta \left\{ \int \frac{1}{\text{applied}} \frac{1}{\text{divice}} \right\}$$
(6)

3. Comparing Egs. (2), (4), (5) & (6), the Horizus generalization is ...

$$\psi_{3=l+\frac{1}{2}}^{m=3-k} = \int \frac{2l+1-k}{2l+1} \phi_{l}^{l-k} \alpha + \int \frac{k}{2l+1} \phi_{l}^{l-k+1} \beta. \tag{7}$$

(8) m

But m=3-k => k= l+\frac{1}{2}-m. Then Eq. (7) can be wrotten as...

$$|\psi_{3=l+\frac{1}{2}}^{m} = \left[\sqrt{(l+\frac{1}{2}+m)/(2l+1)} \right] \phi_{\lambda}^{m-\frac{1}{2}} \alpha + \left[\sqrt{(l+\frac{1}{2}-m)/(2l+1)} \right] \phi_{\lambda}^{m+\frac{1}{2}} \beta$$

The []'s here are the desired Clebsch-Gordan coefficients for j=l+2...

$$\xrightarrow{C_{4,2}(l+\frac{1}{2},m) = \sqrt{(l+\frac{1}{2}\pm m)/(2l+1)}}, \text{ for } m_4 = m \mp \frac{1}{2}.$$

4. To get the $\Psi_{3=l-\frac{1}{2}}$, we need only construct them \bot $\Psi_{3=l+\frac{1}{2}}$, and impose hormalization. If the Clebsch-Gordan coefficients are $C_{1,2}(l-\frac{1}{2},m)$, then $C_1(l-\frac{1}{2},m)\sqrt{\frac{l+\frac{1}{2}+m}{2l+1}}+C_2(l-\frac{1}{2},m)\sqrt{\frac{l+\frac{1}{2}-m}{2l+1}}=0$, or Theyonality;

 $|C_1(1-\frac{1}{2},m)|^2+|C_2(1-\frac{1}{2},m)|^2=1$, normalization.

These conditions are satisfied by the desired C-G coefficients for 1=1-1/2...

$$C_{1,2}(1-\frac{1}{2},m) = \pm \sqrt{(1+\frac{1}{2}\mp m)/(2l+1)}, \text{ for } m_{\ell} = m \mp \frac{1}{2}.$$

Ezs. (9) \$ (11) give the general C-G coefficients for S= \frac{1}{2} and arbitrary J= l±\frac{1}{2}.

5. For the 2P3/2 & 2Pyz states in hydrogen, l=1 and g=3/2 & 1/z. The above gives ...

$$2P_{3/2}\begin{cases} \frac{m}{+3/2} & \frac{\sqrt{11}}{\sqrt{11}} \alpha \\ + \frac{1}{2} & (\sqrt{213}) \phi_{1}^{\circ} \alpha + (\sqrt{11}) \phi_{1}^{+1} \beta \\ - \frac{1}{2} & (\sqrt{11}) \phi_{1}^{-1} \alpha + (\sqrt{21}) \phi_{1}^{\circ} \beta \\ - \frac{3}{2} & \frac{\sqrt{11}}{\sqrt{11}} \phi_{1}^{-1} \alpha - (\sqrt{213}) \phi_{1}^{+1} \beta \\ 2P_{1/2}\begin{cases} + \frac{1}{2} & (\sqrt{213}) \phi_{1}^{-1} \alpha - (\sqrt{11}) \phi_{1}^{+1} \beta \\ - \frac{1}{2} & (\sqrt{213}) \phi_{1}^{-1} \alpha - (\sqrt{11}) \phi_{1}^{\circ} \alpha \end{cases}$$

One can see by inspection that these eigenfens if are mutually or thogonal. This is true for general $g = l + \frac{1}{2}$, in ligarifiens constructed via true C-G transformation... the C-G transformation on an orthogonal set of product wavefors will in turn produce an orthogonal set. 12 Derive the Landé &-factor and apply it to the 2P-25 levels in hydrogen.

1. By the Vector Model, we average everything in the direction of $\vec{J} = \vec{L} + \vec{S}$, so ...

Where: $g_{J} = (\vec{L} \cdot \vec{J} / \vec{J}^{2}) g_{L} + (\vec{S} \cdot \vec{J} / \vec{J}^{2}) g_{S} \leftarrow \text{tand\'e } g\text{-factor.}$

But: I.J = I2 + I.J, and: J.J = 32 + I.J, with: I.J = 12 (J2-I2-52).

Thun...
$$\vec{\zeta} \cdot \vec{J} = \frac{1}{2}(\vec{J}^2 + \vec{\zeta}^2 - \vec{S}^2) = \frac{1}{2}[J(J+1) + L(L+1) - S(S+1)],$$

$$\vec{S} \cdot \vec{J} = \frac{1}{2}(\vec{J}^2 - \vec{L}^2 + \vec{S}^2) = \frac{1}{2}[J(J+1) - L(L+1) + S(S+1)],$$

The Landé g-factor is then given by -- as advertised:

$$g_{J} = \left[\frac{3(3+1)+2(1+1)-s(s+1)}{23(3+1)}\right]g_{L} + \left[\frac{3(3+1)-2(1+1)+s(s+1)}{23(3+1)}\right]g_{S}. \tag{3}$$

2. For the hydrogen 2P-25 levels, 5= \frac{1}{2} always. With gr=1 & gs=2, get,..

$$\frac{2P_{y_0}}{2P_{y_0}} \left\{ \begin{array}{l} \frac{3}{2} \frac{3}{2} \\ \frac{1}{2} \end{array} \right\} g_1 = \left[+ \frac{4}{3} \right] g_1 + \left[-\frac{1}{3} \right] g_3 = \frac{2}{3} g$$

$$25_{1/2} \left\{ \frac{3}{1} = \frac{1}{2} \right\} g_{3} = [0] g_{L} + [+1] g_{5} = \frac{2}{1}; \mu_{5} |_{max}| = g_{5} \mu_{0} * \frac{1}{2} = \mu_{0}, \quad (6)$$

The MI (max) values are just MI (max) = gI Mox [mJ (max) = J]. In a weak

magnetic f(h H, get a <u>linear</u> Zeeman effect... $\frac{2P_{3/2}}{43/2}$ $\frac{2P_{1/2}}{43/2}$ $\mathcal{E}_{J} = -\vec{\mu}_{J} \cdot \vec{H} = g_{J} \mu_{o} H m_{J}$ (7)

Which governs the pictures (voto scale)

(13) Calculate 2P= → 2S; transition rates for compling by V = E· r.

1. The transition rates $\Gamma \propto |M|^2$, where the transition matrix elt is ...

$$M = \vec{\epsilon} \cdot (\alpha j m | \vec{r} | \alpha' j' m')$$

$$\begin{cases} J = \frac{1}{2} \text{ for } 2S_{1/2}, j' = \frac{3}{2} \text{ for } 2P_{3/2} \\ m \rightarrow m' = m, m \pm 1 \text{ order} \end{cases}$$
(1)

By the T- vector formalism, M is calculable in terms of a reduced elt R...

$$M(m-m'=m) = \mathcal{E}_{z} R / (J+1)^{2} - m^{2}$$
.

(2)

2. There are six allowed transitions 2P3/2 - 2S1/2 (all With Dm=0, ±1), as shown in the diagram. Using Eq. (2), the transition matrix elts are...

$$M(\partial + \alpha) = -\frac{1}{2}(E_{x} + i E_{y}) R \sqrt{(2)(3)},$$

$$M(b+\alpha) = \frac{1}{2} E_{z} R \sqrt{8} = E_{z} R \sqrt{2}$$

$$M(c+\alpha) = +\frac{1}{2}(E_{x} - i E_{y}) R \sqrt{(1)(2)},$$

$$M(b+\alpha) = \frac{1}{2} \mathcal{E}_z R \sqrt{8} = \mathcal{E}_z R \sqrt{2}$$

$$M(c+\alpha) = +\frac{1}{2}(\xi_{x} - \xi_{y})R\sqrt{(1)(2)}$$

and
$$M(b\leftarrow\beta)=(-)M^*(c\leftarrow\alpha)$$
, $M(c+\beta)=M(b\leftarrow\alpha)$, $M(d\rightarrow\beta)=(-)M^*(a\leftarrow\alpha)$. (3)

3. If we call $\mathcal{E}_{1}^{2} = \mathcal{E}_{x}^{2} + \mathcal{E}_{y}^{2}$, $\mathcal{E}_{11}^{2} = \mathcal{E}_{z}^{2}$, then the $\Gamma = |M|^{2}$ values are ...

$$\begin{bmatrix}
\Gamma(a+\alpha) = \frac{3}{2} |R|^2 \xi_{\perp}^2 = \Gamma(d+\beta), \\
\Gamma(b+\alpha) = 2|R|^2 \xi_{\parallel}^2 = \Gamma(c+\beta), \\
\Gamma(c+\alpha) = \frac{1}{2} |R|^2 \xi_{\perp}^2 = \Gamma(b+\beta);
\end{bmatrix}$$

Fig.
$$\Gamma(a+\alpha) = \Gamma(d+\beta)$$
, [vin ϵ_1]
$$= 3\Gamma(c+\alpha) = 3\Gamma(b+\beta);$$
and,
$$\Gamma(b+\alpha) = \Gamma(c+\beta)$$
, [vin ϵ_1].

$$\Gamma(b+\alpha) = \Gamma(c+\beta), [na \in [n].$$