Convex Optimization

Jaden Wang

January 19, 2021

Contents

1	Theoretical Foundation			
	1.1	Introd	luction	3
		1.1.1	Lipschitz continuity	4
		1.1.2	categorization	6

Chapter 1

Theoretical Foundation

1.1 Introduction

An optimization problem looks like

$$\min_{x \in C} f(x)$$

where f(x) is the **objective function** and $C \subseteq \mathbb{R}^n$ is the **constraint set**. C might look like

$$C = \{x : g_i(x) \le 0 \ \forall \ i = 1, \dots, m\}.$$

Remark. We can always turn a maximization problem into a minimization problem as the following:

$$\min_{x} f(x) = -\max_{x} -f(x).$$

Therefore, WLOG, we will stick with minimization.

Example. An assistant professor earns \$100 per day, and they enjoy both ice cream and cake. The optimization problem aims to maximize the utility (e.g. happiness) of ice cream $f_1(x_1)$ and of cake $f_2(x_2)$. The constraints we have is that $x_1 \geq 0, x_2 \geq 0$, and $x_1 + x_2 \leq 100$.

To maximize both utility, it might be natural to define

$$F(\operatorname{vec} x) = \begin{pmatrix} f_1(x_1) \\ f_2(x_2) \end{pmatrix}, \operatorname{vec} x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

and maximize F. However, this isn't a well-defined problem, because there is no total order on \mathbb{R}^n ! That is, we don't have a good way to compare whether a vector is bigger than another vector, except in the cases when the same direction of inequality can be achieved for all components of two vectors and a partial order can be established. For this kind of **multi-objective** optimization problem, we can look for Pareto-optimal points in these special cases. We can also try to convert the output into a scalar as the following:

$$\min_{x} f_1(x) + \lambda \cdot f_2(x_2)$$

for some $\lambda > 0$ that reflects our preference for cake vs ice cream. But this can be subjective.

Thus, For the remainder of this class, we are only going to assume $f: \mathbb{R}^n \to \mathbb{R}$.

Moreover, for $f: \mathbb{R} \to \mathbb{R}$, it's very easy to solve by using root finding algorithms or grid search. So since interesting problems occur with vector inputs, we will simply use x to represent vectors.

Notation. min asks for the minimum value, whereas arg min asks for the minimizer that yields the minimum value.

1.1.1 Lipschitz continuity

Example. Let's consider a variant of the Dirichlet function, $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q} \\ 1 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Then the solution to the problem

$$\min_{x \in [0,1]} f(x) = 0$$

is x = 0 by observation. However, the function is not smooth and a small perturbation can yield wildly different values. Thus, it is not tractable to solve this numerically.

This requires us to add a smoothness assumption:

Definition: Lipschitz continuity

 $f:\mathbb{R}^n \to \mathbb{R}$ is $\textbf{\textit{L-Lipschitz continuous}}$ with respect to a norm $\|\cdot\|$ if for

$$|f(x) - f(y)| \le L \cdot ||x - y||.$$

Note. Lipschitz continuity implies continuity and uniform continuity. It is a stronger statement because it tells us how the function is (uniformly) continuous. However, it doesn't require differentiability.

Definition: l_p norms For $1 \le p < \infty$,

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}.$$

For
$$p = \infty$$
,

$$||x||_{\infty} = \max_{1 \le i \le n} |x_i|.$$

Remark. $||x||_1$ and $||x||_2^2$ have separable terms as they are sums of their components. $||x||_2^2$ is also differentiable which makes it the nicest norm to optimize.

Example. Let $f: \mathbb{R}^n \to \mathbb{R}$ be *L*-Lipschitz continuous w.r.t. $\|\cdot\|_{\infty}$. Let $C = [0,1]^n$, *i.e.* in \mathbb{R}^2 , C is a square. To solve the problem

$$\min_{x \in C} f(x),$$

since we have few assumption, there is no better method (in the worst case sense) than the **uniform grid method**. The idea is that we pick p+1 points in each dimension, *i.e.* $\{0, \frac{1}{p}, \frac{2}{p}, \dots, 1\}$, so we would have $(p+1)^n$ points in total. Let x^* be a global optimal point, then there exists a grid point \tilde{x} s.t.

$$||x^* - \widetilde{x}||_{\infty} \le \frac{1}{2} \cdot \frac{1}{p}.$$

Thus by Lipschitz continuity,

$$|f(x^*) - f(\widetilde{x})| \le L \cdot ||x^* - \widetilde{x}||_{\infty}$$

$$\le \frac{1}{2} \frac{L}{p}$$

So we can find \tilde{x} by taking the discrete minimum of all $(p+1)^n$ grid points.

In (non-discrete) optimization, we usually can't exactly find the minimizer, but rather find something very close.

Definition: epsilon-optimal solution

x is a ε -optimal solution to $\min_{x \in C} f(x)$ if $x \in C$ and

$$f(x) - f^* \le \varepsilon$$

where $f^* = \min_{x \in C} f(x)$.

Our uniform grid method gives us an ε -optimal solution with $\varepsilon = \frac{L}{2p}$, and requires $(p+1)^n$ function evaluations. Writing p in terms of ε , we have $p = \frac{L}{2\varepsilon}$

so equivalently it requires $\left(\frac{2L}{\varepsilon}+1\right)^n$ function evaluations, which approximately is ε^{-n} .

For $\varepsilon=10^{-6},\ n=100,$ it requires 10^{600} function evaluations. This is really bad!

Take-aways from this example:

- curse-of-dimensionality: there can be trillions of variables in a Google Neural Network. It would be intractable using the grid method.
- we need more assumptions to allow us to use more powerful methods.

1.1.2 categorization

