

SURROGATE PHYSICS MODELING FOR HEAT EXCHANGER OPTIMIZATION: ACCELERATING DESIGN EXPLORATION VIA INVERSE DESIGN

A++ Team

Amirhossein Iranmehr

**Armin Hassanirad** 





### **Overview**

- Problem statement
- Review of previous works
- Primary Exploratory Data Analysis (EDA)
- Secondary EDA
- Model setup
- Model prediction
- Inverse design
- Potential applications and broader implications
- Key takeaways





### Problem Statement

### >HEXs Conventional Design

- CFD, high computational cost, and timeintensive
- Limited scalability
- > Design of HEXs via surrogate physics models
- Dataset provided by nTop
- Train a model to predict flow and geometry properties



© nTOP



### **Review of Previous Works**

| Study & Year               | Method / Algorithm                                               | Application                                                                          | Key Outcome                                               |
|----------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Jeon et al. (2022)         | Residual-based Physics-<br>Informed Transfer Learning<br>(RePIT) | CFD acceleration in industrial simulations                                           | Reduced computational cost while maintaining accuracy     |
| Kwon et al. (2020)         | Random Forest                                                    | Predict convection heat transfer coefficients in cooling channels with rib roughness | Rapid multi-variable predictions without deep simulations |
| Krishnayatra et al. (2020) | k-Nearest Neighbor (k-NN)                                        | Predict efficiency & effectiveness of axial finned-tube heat exchanger               | High accuracy and effective geometry optimization tool    |



# **Primary Exploratory Data Analysis**

- Dataset Overview: 125 data points
- Data points appeared in distinct intervals
- Possible need for data augmentation
- Expand the physical domain knowledge of HEXS
- Provide sufficient data for bigger and more dense models (e.g., Neural Networks)









## **Data Augmentation**

- Latin Hypercube Sampling to generate wellspread design points
- Target correlation analysis for proper sampling
- Sampling Design:
- 15 discrete levels for YZ cell size & inlet vel.

(highest impact on targets)

 5 discrete levels X cell size (moderate impact on targets)





## Secondary EDA Comparing Features' Distribution

Feature Distribution: X Cell Size (mm) Feature Distribution: X Cell Size (mm) X Cell Size (mm) X Cell Size (mm) Feature Distribution: YZ Cell Size (mm) Feature Distribution: YZ Cell Size (mm) YZ Cell Size (mm) YZ Cell Size (mm) Feature Distribution: Velocity Inlet (mm/s) Feature Distribution: Velocity Inlet (mm/s) Frequency 10 Frequency 5 -Velocity Inlet (mm/s) Velocity Inlet (mm/s)

Augmented dataset (890 datapoints)



initial dataset

(125 datapoints)

### Reynolds Number a physics-informed analysis

### Dataset preprocessing

- Cold fluid volume extraction from nTop
- Calculating hydraulic diameter
- Solving for Reynolds number



### > Reynolds number (Re) analysis

- Re increases linearly with inlet velocity (expected)
- Scattered Re @ fixed inlet vel. Due to different cell sizes
- Cold flow is <u>fully turbulent</u> in the Re range



$$D_h = \frac{4V_S}{A_S}$$

$$Re = \frac{\rho U D_h}{\mu}$$



# Primary EDA – Feasibility Plots



## Models Setup-CV + Pipeline

- > Systematic Pipeline: Preprocessing, scaling, and multi-output regression integrated.
- ➤ Cross-Validation: Repeated K-Fold (5 splits × 3 repeats = 15 folds) for robust training and reduced variance. It prevents overfitting and tunes the hyperparameters for each model.
- > Custom Scoring: Defined target-specific RMSE plus a combined metric for fair comparison.





### Models Setup-Models + Evaluations

#### > Models:

Baselines: Linear Regression and Polynomial (degree 2) for linear and quadratic trends.

Ensembles: Random Forest and Histogram Gradient Boosting to capture complex nonlinearities.

Neural Models: MLP (128, 64) with ReLU, regularization, and early stopping for nonlinear mapping.

➤ Models were trained on 80% of the dataset (total: 890), and the other 20% was used to test the models.

#### > Evaluation:

- Statistical error metrics and visual comparisons of model predictions against the CFD results.
- The best model for accuracy and generality was selected through the comparison framework.
- This setup ensured that the surrogate model captured the underlying physics while.



## **Models Comparison**

- ➤ HistGradientBoosting: Best overall accuracy (Combined RMSE ≈ 471), strong across outputs.
- > Random Forest: Comparable accuracy, lowest surface area and mass error, slightly higher combined RMSE.
- > Poly2+LR: Fastest runtime (0.006 s), moderate accuracy good speed/accuracy trade-off.
- > MLP (128,64): Captured nonlinearities but underperformed with high runtime (13 s).

| Model                | RMSE Pressure<br>Drop | RMSE Avg<br>Velocity | RMSE<br>Surface Area | RMSE<br>Mass | RunTime (s) |
|----------------------|-----------------------|----------------------|----------------------|--------------|-------------|
| HistGradientBoosting | 462.14                | 9.19                 | 208.43               | 0.76         | 1.68        |
| RandomForest         | 473.49                | 13.44                | 45.36                | 0.14         | 1.86        |
| Poly2+LR             | 695.33                | 16.34                | 437.14               | 0.42         | 0.006       |
| MLP (128,64)         | 746.04                | 15.51                | 373.48               | 0.41         | 12.93       |
| LinearRegression     | 1015.01               | 19.00                | 976.78               | 1.72         | 0.005       |



### **Model Predictions-HGB**



### Model Prediction-Unseen Data/Cases

- > It is necessary to evaluate the efficiency and practicality of the model against unseen data.
- ➤ Also, the feature importance for the HGB (best model) was analysed, which satisfied the reasons behind data augmentation. This should be noted when using inverse design as well.

### **Model Prediction Accuracy**

Tested on 8 random input cases.

| Target Outputs   | Model Prediction vs.<br>nTop Error (%) |  |  |
|------------------|----------------------------------------|--|--|
| Average Velocity | 2.73                                   |  |  |
| Pressure Drop    | 7.53                                   |  |  |
| Surface Area     | 2.93                                   |  |  |
| Mass             | 2.86                                   |  |  |





## **Inverse Design**

- ➤ A progressive Latin Hypercube Sampling (LHS) strategy was chosen to determine the optimal lattice design for the HEXs.
- ➤ Design space is iteratively zoomed in around the best feasible point, and the surface area is maximized while mass, pressure drop, and velocity constraints are enforced.

### Optimal Design suggested

1. Cell X:19.6511226

2. CellYZ: 24.56128764

3. V-inlet: 2747.17462971

| Target Outputs   | HGB Predcition | пТор     |  |
|------------------|----------------|----------|--|
| Average Velocity | 537.56         | 546.51   |  |
| Pressure Drop    | 5124.33        | 5779.17  |  |
| Surface Area     | 21516.2        | 21281.11 |  |
| Mass             | 121.82         | 122.92   |  |



Mass < 125 grams
Pressure Drop < 8000 Pa
Avg Velocity > 520 mm/s^2



### Potential applications and broader implications

#### **Exploratory Data Analysis Applications:** Coupled COLD FLUID COLD FLUID surrogate-CFD**AGUMENTAION** approach COLD FLUID HOT FLUID Lattice-based structures' FEA analysis Optimal/Inverse Design Porous media ML Model Training and Evaluation simulations Additive Automated Pipeline to find the best Determine the Best ML model. manufacturing **Error, Computational Efficiency** Machine learning algorithm process modeling



## Key takeaways-Future Works

- Physics-informed surrogate modeling successfully replaced computationally expensive CFD for heat exchanger optimization, cutting evaluation time from hours to milliseconds.
- Physics-informed exploratory data analysis (EDA) would further help us understand the domain of the training ML models and augment the data.
- Inverse design optimization identified optimal HEX geometry and flow parameters (e.g., X = 19.65 mm, YZ = 24.56 mm, velocity = 2747 mm/s) that maximize surface area while satisfying mass, velocity, and pressure constraints.
- Eight different sets of input parameters were utilized as unseen data to examine the model's performance compared to nTop.

#### **Future works:**

- Integrating physics-based empirical equations to enhance model accuracy
- In-depth analysis of data point efficacy and coverage to optimize prediction performance
- Expand the data to 5 to 10 thousand, ideal for training neural networks.



### Thanks!

## **Any Questions?**

