血管的三维重建

013 李卓遥 李世旺 王辰光

摘要

随着现代医学的发展,科学对人类疾病的研究不再局限于表面病理现象,在实际研究中利用断面可了解生物组织、器官等的形态和结构,从而可大大提高人类对某些疾病的预防和治疗。假设某些血管可视为一类特殊的管道,该管道的表面是由球心沿着某一曲线(称为中轴线)的球滚动包络而成。题中给出该血管的相继 100 张平行切片图象,记录了管道与切片的交。由假设可知,每一张切片都有唯一的最大内切圆,且由切片图像可得,血管的中轴线与每张切片有且只有一个交点,而此圆正是以这个交点为圆心的球的最大圆面,交点即是切片最大内切圆的圆心。由此即把求管道半径的问题,转化为求解每张切片最大内切圆半径的问题。

首先,建立含约束非线性优化模型(模型一),以每张切片骨架(中轴线)上的像素点为圆心,到切片轮廓上的像素点为半径,固定圆心,搜索半径最小者,得到圆心在骨架上的所有内切圆,其中的最大圆即为该切片的最大内切圆。对100 张切片重复此算法,最终得到 100 组圆心坐标和半径,对所有半径取平均值作为管道的半径。

其次,建立一元多项式回归模型(模型二),对上述 **100** 组圆心坐标做多项式拟合,最终得出血管中轴线的方程,并画出了拟合出的中轴线的三维图像、血管的立体图像以及拟合中轴线再 XY、YZ、ZX 平面的投影图。

最后,通过分析模型一的可行性,并对模型二做回归分析,对比各次数的多项式的拟合度,从而说明 7 次多项式拟合的最优性,两个模型得到了检验,并提出了一定的模型改进的想法。

关键字: 等径 最大内切圆 骨架 轮廓 优化 回归

一、问题重述

1.1 背景

断面可用于了解生物组织、器官等的形态。例如,将样本染色后切成厚约 1m m 的切片,在显微镜下观察该横断面的组织形态结构。如果用切片机连续不断地将样本切成数十、成百的平行切片,可依次逐片观察。根据拍照并采样得到的平行切片数字图象,运用计算机可重建组织、器官等准确的三维形态。

1.2 目标

假设某些血管可视为一类特殊的管道,该管道的表面是由球心沿着某一曲线(称为中轴线)的球滚动包络而成。例如圆柱就是这样一种管道,其中轴线为直线,由半径固定的球滚动包络形成。现有某管道的相继 100 张平行切片图象,记录了管道与切片的交。取坐标系的 Z 轴垂直于切片,第 1 张切片为平面 Z=0,第 100 张切片为平面 Z=99。Z=z 切片图象中象素的坐标依它们在文件中出现的前后次序为 (-256,-256,z),(-256,-255,z), …(-255,-256,z),(-255,-255,z), …(255,-256,z), …(255,-256,z), …(255,-256,z), …(255,255,z), …(255,255,z

- (1) 计算管道的半径;
- (2) 求出管道的中轴线;
- (3) 绘制中轴线在 XY、YZ、ZX 平面的投影图。

二、问题分析

题中假设血管的表面是由球心沿着某一曲线(称为中轴线)的球滚动包络而成,题中给出了它的相继 100 张平行切片图象。由假设可知,每一张切片都有唯一的最大内切圆,且由切片图像可得,血管的中轴线与每张切片有且只有一个交点,而此圆正是以这个交点为圆心的球的最大圆面。由于题中血管等径,所有切片的最大内切圆的半径相同。据此讨论以下三个问题:

问题一:

管道和每一张切片的交是该切片的最大内切圆,圆心是管道中轴线与此切片的交点,也是球滚动到此的球心,半径则为该圆心到切片边界线的最短距离,也是管道的半径。考虑到若已知切片的最大内切圆的圆心必在该切片的中轴线上,故可先找出每一张切片的中轴线,并以此轴线上的点为圆心,建立模型找到该切片的最大内切圆,确定此圆半径,对所有切片的最大内切圆的半径取均值,即可得到误差较小的管道半径。

问题二:

连接所有切片最大内切圆的圆心,所得曲线即为管道的中轴线。用 MATLAB 对 100 个圆心坐标做多项式拟合,即可得到管道中轴线方程,并绘出其三维图。问题三:

用 MATLAB 对问题二中所得的中轴线三维图做投影,从而得出在模型中建立的坐标系下,中轴线在 XY、YZ、ZX 平面的投影图。

三、模型假设与符号说明

3.1 模型假设

- a.血管视为一类特殊的等径管道,即其表面是由球心沿着某一曲线(称为中轴线)的球滚动包络而成,且此生成球的半径固定;
 - b.管道中轴线与每张切片有且只有一个交点,且此交点在该切片的中轴线上; c.切片间距以及图像像素的尺寸均为 1;

3.2 模型猜想与可行性分析

根据问题分析,我们采用分布的方法,先对管道与切片之间的关系做剖析,得出切片的最大内切圆的圆心是管道中轴线与切片交点,从而把求管道半径的问题,转化为求解每张切片最大内切圆半径的问题。

根据题目假设,切片部分必有唯一一个最大的内切圆,故我们对解决问题的模型有以下猜想:

想法一:

用切线来找血管直径。该内切圆是球的大圆,该大圆相对的两个切点连线过 圆心且两处切线平行。

做法:

(1) 若不对切片的轮廓线拟合,而要求轮廓的切线斜率,则需找两个点来 计算:

如果两点过于密集(相距像素格点≤1),斜率为0或1或-1或无穷;如果两点过远,则不准确。

- (2) 若对切片的轮廓线进行拟合,则用什么类型的曲线拟合,多项式的话次数是多少,都要商榷。
- (3) 若求出了斜率,由于题中给出的切片图像有像素限制,有的切片可能 根本不存在两条完全平行的切线(斜率相等),此时,需求斜率最相近的两直线, 这样就使得计算冗杂和判断方式无普遍性,且有一定的误差范围。

由以上分析知,想法一算法复杂, 且误差较大。

想法二:

对切片上所有点逐一取定为圆心,半径也在一定集合内逐一取定,保留满足条件的最大半径及圆心位置、切片编号。

做法:

每张切片有 512*512 个像素点作为待定圆心,相应内切圆的搜索范围庞大,且 100 张切片形状各异,内切圆的搜索方式各不相同,此方法下的计算量不可想象,可行性很低。

想法三:

经过查阅资料,我们发现,MATLAB有对图像提取骨架(中轴线)的 bwmorph函数,以及提取边界轮廓的函数 edge,而切片的最大内切圆半径就在骨架和轮廓的某个连线上,可以建立非线性优化模型,用含约束的非线性规划把它找出来。

通过初步判断,这种找取切片最大内切圆的方式避免了盲目搜索的弊端,有 较强的可行性。

3.3 符号说明

P_i	每张切片的最大内切圆骨架上的第 ⁱ 个像素点坐标
Q_{j}	每张切片的最大内切圆骨架上的第 ^j 个像素点坐标
D_{ij}	骨架上第 i 个像素点到轮廓上第 j 个像素点的距离
X	切片最大内切圆圆心(血管中轴线与相应切片的交点)的横坐标
у	切片最大内切圆圆心(血管中轴线与相应切片的交点)的竖坐标
Z	切片最大内切圆圆心(血管中轴线与相应切片的交点)的纵坐标
r	每个切片最大内切圆的半径

四、模型建立与模型求解

由题意可知,题设建立了O-xyz坐标系,其中,每张切片图像左上角在该坐标系中的坐标为(-256,-256,z) ,右下角为(255,255,z)。为了方便运算与 MATLAB 构图,我们平移所有切片,建立新的坐标系O'-xyz ,使得左上角在新的坐标系中的坐标为(1,1,z),右下角为(512,512,z)。我们将在得出最终结果后,还原坐标系。

● 问题一:

1.1 模型一: 含约束非线性优化模型

由问题分析可知,欲求问题一中管道的半径,即求切片最大内切圆的半径。 为找取各切片的最大内切圆,我们建立含约束非线性优化模型,从各个切片的所 有内切圆中找出最大者,确定其半径和圆心坐标。

已知管道的 100 张切片图,用 MATLAB 的 bwmorph 命令求出切片部分的骨架——切片的中轴线,即切片内部的点到切片两侧轮廓距离相等的点的集合(以 49.bmp 图为例,见图 1a),以骨架上的像素点作为集合逐一取定为圆心;用 edge 命令求出切片轮廓所形成的像素点集合(同上例,见图 1b)。

对于任意取定的圆心,计算该圆心到轮廓上每一点距离,从而得到其中的最小距离和此时圆心在骨架上的位置。由于圆心分布在骨架上的某一点处,这样,与边界距离最小的线段正是与轮廓内切的圆的半径。在骨架上所有点所得的内切圆中,取半径最大者,即为该切片最大内切圆的半径。

图 1: 49.bmp 图的骨架和轮廓

- **Step1:** 用 MATLAB 中的 find 函数找骨架和轮廓上的像素点,并排成矩阵。
- (1)找取骨架上的点 $P_1\cdots P_m$,并排成一个 $m\times 2$ 的矩阵,两列分别为各点的横纵坐标。
- (2)找取轮廓上的点 $Q_1\cdots Q_m$,并排成一个 $\mathbf{n}\times\mathbf{2}$ 的矩阵,两列分别为各点的横纵坐标。
- Step2: 用距离公式计算 P_i 和 Q_j 的距离 D_{ij} 。

$$D_{ij} = \sqrt{(P_i(1) - Q_j(1))^2 + (P_i(2) - Q_j(2))^2}$$

其中 $1 \le i \le m, 1 \le i \le n$ 。

由此可得到如下模型:

$$\max_{i} \min_{j} D_{ij}$$
s.t.
$$\begin{cases} 1 \le i \le m \\ 1 \le j \le n \end{cases}$$

用 MATLAB 编程进行模型求解,程序见附录 1。

1.2 求所有切片最大内切圆半径的均值

通过上述模型的求解,得到 100 张切片的圆心坐标(x,y,z) 和半径r。所求得数据见附录 2,其中部分数据如表 1 所示:

X	У	Z	r	X	у	Z	r
-160	1	1	29. 069	-114	117	51	29.698
-160	0	2	28. 284	-114	117	52	29.698
-160	2	3	29. 017	-113	118	53	29. 698
-160	2	4	29. 069	-112	119	54	29.698
-160	2	5	29. 069	-111	120	55	29. 682
-160	2	6	29. 069	-111	120	56	29. 206
-160	1	7	29	-63	151	57	29. 411
-160	4	8	29. 017	-75	145	58	29. 53
-160	1	9	29	-81	142	59	29. 53
-160	1	10	28.862	-51	156	60	29. 547
-160	7	11	28.862	-51	156	61	29. 547
-160	8	12	28.862	-31	162	62	29.614

表 1: 部分切片的圆心坐标和半径

对所得的所有半径求平均值

$$r = \frac{1}{100} \sum_{i=1}^{100} r_i$$

计算可得,所有切片最大内切圆的平均半径为 29.41662,即血管的半径为 29.41662。

问题二:

模型二: 一元多项式回归模型

通过问题一中的模型求解,我们得到了血管的中轴线与 100 张切片的交点坐标 (x,y,z) (最大内切圆的圆心坐标),故可画出中轴线的散点图 (见图 4):

图 4: 血管中轴线的散点图

现对轴线参数化,取z=t,然后用分别拟合出 y(t) 和 x(t)。用 MATLAB 经过多次拟合,发现用七次多项式拟合的结果比较好,所以建立如下的多元线性回归模型:

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4 + \beta_5 x^5 + \beta_6 x^6 + \beta_7 x^7 + \varepsilon$$

用 MATLAB 编程求解,程序见附录 1,轴线的参数方程如下: 画出拟合的血管中轴线的三维图(见图 5)和血管的立体图(见图 6)。

图 5: 拟合的血管中轴线的三维图

图 6: 血管的立体图

问题三:

用 MATLAB 绘制出拟合后的血管中轴线在 XY、YZ、ZX 平面的投影图,分别见图 7、8、9。

图 7: 轴线在 xOy 平面的投影

图 8: 轴线在 yOz 平面的投影

图 9: 轴线在 xOz 平面的投影

五、模型分析与模型检验

以下主要对模型二进行分析和检验:

为了检验我们建立的回归模型,需衡量所求管道轴线的拟合度。为说明模型中选择的 7 次多项式拟合度相对较好且便于操作,我们首先求出 1~10 次多项式拟合的残差,见表 2。

次数 xOy 平面 yOz 平面		xOz 平面
515.8078	439.596	483.6977
147.6518	299.7439	186.0957
138.1141	72.453	157.9127
79.1281	70.058	46.8148
74.3622	25.4723	42.5005
66.1146	24.1316	22.8714
61.2999	1.0151e-10	8.4207e-10
60.8226	9.7782e-11	5.7081e-11
58.6169	9.5084e-11	9.4373e-11
58.6131	9.2375e-11	5.882e-11
	515.8078 147.6518 138.1141 79.1281 74.3622 66.1146 61.2999 60.8226 58.6169	515.8078 439.596 147.6518 299.7439 138.1141 72.453 79.1281 70.058 74.3622 25.4723 66.1146 24.1316 61.2999 1.0151e-10 60.8226 9.7782e-11 58.6169 9.5084e-11

表 2: 1~10 次多项式拟合的残差

表 2 中数据的折线图如图 10 所示:

图 10: 三个平面在 1~10 次多项式拟合下的残差变化折线图

图 10 显示,拟合多项式的次数越高,残差越小,但在数据处理的过程中,多项式回归次数越高,数据越繁杂,越难于处理,故我们需要找到一个兼顾残差较小,且便于处理的多项式,从而达到最佳的拟合效果。由表中数据可知,xOy平面投影的拟合残差较大,从 7 次多项式拟合开始,残差达到 61.2999,且逐渐趋于稳定; yOz 平面投影的拟合残差从 7 次多项式以后,已经小至 1e-10 及以下数量级且逐渐趋于稳定,达到了很高的拟合度; xOz 平面同 yOz 平面的情况类似。综上所述,我们选择 7 次多项式回归来确定血管的中轴线。

下面以7次多项式回归为例,画出 XY、YZ、XZ 三平面投影的散点和拟合曲线,并做出回归分析。

(1) xOy 平面的投影

图 11: 拟合后的轴线在 xOy 平面的投影

回归系数	置信区间	残差
-0.0367	[-0.1773 0.1039]	61.2999

表 3: xOy 平面的投影的拟合数据分析

图 12: 拟合曲线在 xOy 平面的投影的拟合残差图

(2) yOz 平面的投影

图 13: 拟合后的轴线在 yOz 平面的投影

回归系数	置信区间	残差
0.5323	[0.4764 0.5881]	1.0151e-10

表 4: yOz 平面的投影的拟合数据分析

图 14: 拟合曲线在 yOz 平面的投影的拟合残差图

(2) yOz 平面的投影

图 15: 拟合后的轴线在 xoz 平面的投影

回归系数	置信区间	残差
0.0462	[-0.0380 0.1304]	8.4207e-11

表 5: xOz 平面的投影的拟合数据分析

图 16: 拟合曲线在 xOz 平面的投影的拟合残差图

六、模型优缺点分析

模型一:

优点:用 edge 和 bwmorph 函数找出它的轮廓和骨架,在此基础上用含约束的非线性规划来求出最大内切圆半径,可行性较高,兼顾了准确性和效率。

缺点: 若切片数充分大时, 计算最大内切圆的程序循环次数充分大, 运行时间会很长或结果出现错误。

模型二:

优点: 用一元多项式进行拟合, 大部分数据拟合得当, 效果较好。

缺点: 从图上看出, 当 z 比较大时, 拟合显得粗糙。

模型假设的优缺点分析:

对于此问题的解答,我们假设血管是固定半径的球滚动包络而成的,实际上血管的粗细会随分布情况而变化。

优点:对于血管的一小段,我们可以认为血管粗细变化不明显,此时我们的模型适用;缺点:对于一条长的血管,由于粗细变化范围较大,此时,直接运用上述模型可能会造

成较大的误差。

模型改进:

若将血管化为若干个小段,运用微积分的思想和相关知识,我们可以将模型进行一定的修正,使其应用更为广泛。

七、参考文献

- [1]姜启源,谢金星,邢文训,张立平.大学数学实验.清华大学出版社,2010,(2).
- [2]楼天顺,于卫.基于 MATLAB 软件的系统分析与设计.西安电子科技大学出版 社.119981
- [3]汪国昭,陈凌钧.血管三维重建的问题[J].工程数学学报(建模专辑),Vol.19, No.5,2002:54-58.
 - [4]中国知网 www.cnki.net
 - [5]中国大学生数学建模竞赛, http://mcm.edu.cn/mcm01/problems.htm.

附录 1

相关程序:

banjing.txt(计算半径并把 100 组数据导出到 banjing.xls)

zhouxian.txt(画出中轴线以及血管的三维图)

touying.txt(画出三面投影图)

附: "matlab 程序"文件夹内为上述程序同名 m 文件,可直接运行。

附录 2:

第0 $^{\sim}$ 99张切片的圆心坐标(x, y, z)和半径r							
X	y	Z	r	X	v	Z	r
-160	1	1	29.069	-114	117	51	29. 698
-160	0	2	28. 284	-114	117	52	29. 698
-160	2	3	29.017	-113	118	53	29. 698
-160	2	4	29.069	-112	119	54	29. 698
-160	2	5	29.069	-111	120	55	29. 682
-160	2	6	29.069	-111	120	56	29. 206
-160	1	7	29	-63	151	57	29. 411
-160	4	8	29.017	-75	145	58	29. 53
-160	1	9	29	-81	142	59	29. 53
-160	1	10	28. 862	-51	156	60	29. 547
-160	7	11	28.862	-51	156	61	29. 547
-160	8	12	28.862	-31	162	62	29.614
-160	9	13	28.862	-31	162	63	29.614
-160	10	14	29.017	-31	162	64	29.614
-160	12	15	29.017	-35	161	65	29.614
-160	13	16	29.017	-35	161	66	29.614
-160	14	17	29.017	-26	163	67	29. 428
-160	16	18	29.017	-35	161	68	29. 411
-160	17	19	29.017	-26	163	69	29. 275
-160	18	20	29.017	46	163	70	29. 428
-160	19	21	29.017	46	163	71	29.614
-160	20	22	29.017	46	163	72	29.614
-160	21	23	29.017	46	163	73	29.614
-160	22	24	29.017	65	158	74	29.614
-160	21	25	29.069	68	157	75	29. 732
-160	21	26	29.069	65	158	76	29. 732
-160	21	27	29.069	81	152	77	29. 547
-159	30	28	29. 155	81	152	78	29. 53
-159	30	29	29. 275	81	152	79	29. 53
-159	29	30	29. 275	135	118	80	29. 411
-158	35	31	29. 428	136	117	81	29.698
-157	40	32	29.614	136	117	82	29.698
-157	40	33	29.614	137	116	83	29.698
-157	40	34	29.614	138	115	84	29. 698
-156	44	35	29.614	138	115	85	29. 698
-153	55	36	29. 732	139	114	86	29. 698
-153	<u>55</u>	37	29. 732	139	114	87	29. 698
<u>-153</u>	55 - 5	38	29. 732	139	114	88	29. 698
<u>-152</u>	58	39	29. 732	140	113	89	29. 698
<u>-152</u>	58	40	29.614	140	113	90	29. 682
-150	63	41	29. 547	172	67	91	29. 53
-149	66	42	29. 547	172	67	92	29. 53
-148	68	43	29. 53	172	67	93	29. 53
-148	68	44	29. 53	172	67	94	29. 53
-143	78	45	29. 53	182	43	95	29. 732
-137	88	46	29. 411	187	24	96	29. 614
-137	88	47	29. 411	187	24	97	29. 614
-116	115	48	29.698	187	24	98	29. 614
-115	116	49	29.698	187	24	99	29. 614
-115	116	50	29.698	188	18	100	29. 428