Esercizio 7.1 (pagina 201), addendum FSA

Data la seguente grammatica G di tipo 3, individuare un FSA M tale che L(G) = T(M).

$$X = \{a, b\}, P = \{S \to bS_1 | aB_2 | \lambda, S_1 \to bS_1 | \lambda, S_3 \to aB_2 | \lambda, B_2 \to bS_3 | b\}$$

Per il teorema di Kleene, $\mathcal{L}_3 \equiv \mathcal{L}_{FSL} \equiv \mathcal{L}_{REG}$. In particolare utilizziamo la dimostrazione relativa a $\mathcal{L}_3 \subset \mathcal{L}_{FSL}$, per cui, ricordando che $\mathcal{L}_{FSL} \equiv \mathcal{L}_{NDL} = \{L \in 2^{X^*} | \exists M, M \in un \ NDA: L = T(M)\}$, possiamo affermare che esiste sicuramente un NDA che riconosce il linguaggio L. La dimostrazione costruttiva del teorema consiste nell'Algoritmo 7.1 consente di costruire il seguente NDA:

$$M = (Q, \delta, q_0, F)$$

con alfabeto di ingresso $X = \{a, b\}$ e definito come segue:

- 1. $Q = V \cup \{q\} = \{S, S_1, S_3, B_2\} \cup \{q\} = \{S, S_1, S_3, B_2, q\}$
- 2. qo = S
- 3. $F = \{q\} \cup \{S, S_1, S_3\}$ (le variabili S, S₁, S₃ per le quali esistono λ -produzioni in G)
- 4. $\delta: Q \times X \to 2^Q$ così definito:
 - $S \rightarrow aB_2$ dà luogo a $B_2 \in \delta(S, a)$
 - $S_1 \in \delta(S, b)$
 - $S_1 \in \delta(S_1, b)$
 - $B_2 \in \delta(S_3, a)$
 - $S \rightarrow bS_1$ dà luogo a $S_1 \rightarrow bS_1$ dà luogo a $S_3 \rightarrow aB_2$ dà luogo a $B_2 \rightarrow bS_3$ dà luogo a $S_3 \in \delta(B_2, b)$
 - $B_2 \rightarrow b$ $q \in \delta(B_2, b)$ dà luogo a

M è un NDA per cui possiamo costruire un FSA M' equivalente ad M applicando l'Algoritmo 6.1 di trasformazione di un NDA in un FSA equivalente, che costituisce la dimostrazione costruttiva di $\mathcal{L}_{NDL} \subset \mathcal{L}_{FSL}$ nel Teorema di equivalenza $\mathcal{L}_{FSL} \equiv \mathcal{L}_{NDL}$:

$$M' = (Q', \delta', q'_0, F')$$

con alfabeto di ingresso $X = \{a, b\}$ e definito come segue:

- 1. $O' = 2^Q = 2^{\{S,S_1,S_3,B_2,q\}}$
- 2. $q_0' = \{S\}$
- 3. $F' = \{\{q\}, \{S\}, \{S_1\}, \{q, S_3\}\}$
- 4. $\delta': Q' \times X \rightarrow Q'$ cosi definita
 - a. $\delta'(\{S\}, a) = \delta(S, a) = \{B_2\}$
 - b. $\delta'(\{S\}, b) = \delta(S, b) = \{S_1\}$
 - c. $\delta'(\{S_1\}, a) = \delta(S_1, a) = \emptyset$
 - d. $\delta'(\{S_1\}, b) = \delta(S_1, b) = \{S_1\}$
 - e. $\delta'(\{S_3\}, a) = \delta(S_3, a) = \{B_2\}$
 - f. $\delta'(\{S_3\}, b) = \delta(S_3, b) = \emptyset$
 - g. $\delta'(\lbrace B_2 \rbrace, a) = \delta(B_2, a) = \emptyset$
 - h. $\delta'(\{B_2\}, b) = \delta(B_2, b) = \{q, S_3\}$
 - i. $\delta'(\{q, S_3\}, a) = \delta(q, a) \cup \delta(S_3, a) = \{B_2\}$
 - j. $\delta'(\lbrace q, S_3 \rbrace, b) = \delta(q, b) \cup \delta(S_3, b) = \emptyset$