

Dobby's Cult presents

A WORLD AWAY: HUNTING FOR EXOPLANETS WITH AI

NASA Space App Challenge 2025

OUR APPROACH

- <u>Data Foundation</u>: Utilized the Kepler Object of Interest (KOI) dataset provided by NASA.
- <u>Preprocessing</u> & <u>Feature Engineering</u>: Implemented a rigorous data cleaning pipeline and engineered new features like transit_shape to enhance predictive power.
- <u>Model Exploration:</u> Systematically evaluated a suite of powerful ensemble models, including RandomForest and LightGBM.
- Intensive Optimization: Employed RandomizedSearchCV for extensive hyperparameter tuning, with AI tools providing slight assistance in accelerating our coding workflow, which subtimately identified koi_score as the most influential feature.

INITIAL CHALLENGES

Significant Class Imbalance:

The dataset was heavily skewed towards FALSE POSITIVE signals, risking a biased model. We addressed this with class weighting techniques during training

Complex Signal Patterns:

The initial features were insufficient. We performed feature engineering to better capture the nuanced signatures of a true planetary transit.

Optimal Model Selection:

With many high-performing models, identifying the best approach required a direct, systematic comparison of multiple advanced algorithms.

OUR FINAL SOLUTION

• Our final solution is a Stacking Classifier, an advanced ensemble that integrates multiple fine-tuned models to achieve superior accuracy and robust generalization.

USER INTERFACE

To make our model accessible, we developed an interactive web application for on-demand classification.

- Input Data: The user enters key observational data for a signal (e.g., koi_score, SNR) into a simple web interface.
- Initiate Prediction: The user clicks the 'Predict Disposition' button.
- Receive Instant Results: The application displays a clear, readable classification: CANDIDATE, CONFIRMED, or FALSE POSITIVE.
- Review Confidence: A bar chart shows the model's confidence probability for each of the three possible classes.

FUTURE IMPROVEMENTS

- Incorporate New Data: Enhance model robustness by training on more diverse datasets from missions like NASA's TESS.
- Explore Deep Learning: Investigate Convolutional Neural Networks (CNNs) to analyze raw transit light curves directly and uncover more complex patterns.
- Enhance Application Functionality: Expand the web app to support batch processing, provide model interpretability results (e.g., SHAP plots), and integrate with live astronomical databases.

MEET THE CULT

Sharad Yadav

Smit Ashvinbhai Shingala

Parigna Bhavik Rathod

THANK YOU!

