1 Networking Tools

Basic networking tools like *ifconfig, nslookup, ping* and *traceroute* are used for answering the following questions.

- a) The IP address of a machine is determined using the *ifconfig* tool. The IP address of my machine when connected to different networks is-
 - Home Broadband Network: 192.168.1.18
 Mobile Hotspot Network: 192.168.43.61
 - 3. IIT Delhi VPN: 10.52.10.2
- b) The IP (IPv4) addresses of www.google.com and www.facebook.com is determined using nslookup. DNS server can be passed as an argument in the nslookup command.
 - 1. Using local DNS server

i. www.google.com: 142.251.42.36ii. www.facebook.com: 31.13.79.352. Using Google's DNS server (8.8.8.8)

i. www.google.com: 142.250.183.164 ii. www.facebook.com: 31.13.79.35

- c) The *ping* packets are sent with different parameter values like number of requests, packets size, TTL size and timeout. The maximum packets size is determined by running *ping* for different values of packets size manually. The maximum packets size for some destinations are listed below-
 - 1. www.iitd.ac.in: 1464(1492) bytes (size of header is 28 bytes).
 - 2. www.google.com: 68(96) bytes.
 - 3. www.facebook.com: 1464(1492) bytes.

By observing the maximum packets size of the above destinations, we can say that the maximum ping packets size is not same for all destinations.

d) Traceroute for www.google.com is shown below with two ISPs.

```
Lenovo@gaurav:~$ traceroute -4 -I -q 1 -n www.google.com
traceroute to www.google.com (142.251.42.36), 30 hops max, 60 byte packets
1 192.168.1.1 5.038 ms
2 122.169.32.1 7.686 ms
3 125.21.18.205 7.722 ms
4 182.79.146.178 20.791 ms
5 72.14.212.48 21.889 ms
6 209.85.246.51 24.234 ms
7 142.251.69.45 20.483 ms
8 142.251.42.36 22.658 ms
```

Figure 1: traceroute with Home Broadband Network

```
lenovo@gaurav:~$ traceroute -4 -I -q 1 -n www.google.com
traceroute to www.google.com (142.251.42.36), 30 hops max, 60 byte packets
1 192.168.43.1 9.857 ms
2 *
3 10.40.19.125 78.935 ms
4 10.50.73.185 79.685 ms
5 125.22.222.145 74.661 ms
6 116.119.73.209 118.466 ms
7 72.14.212.48 116.547 ms
8 209.85.246.51 112.925 ms
9 142.251.69.45 116.523 ms
10 142.251.42.36 105.151 ms
```

Figure 2: traceroute with Mobile Hotspot Network

Observations:

- 1. To force traceroute to use IPv4, -4 flag is added to the command.
- 2. Some routers don't respond to UDP packets. -I flag is added to use ICMP packets.
- 3. Queue size is limited by using -q 1.
- 4. To hide domain names corresponding to IP addresses, -n flag is used.

2 Packet Analysis

Wireshark is used to grab all packets while visiting the website *http://apache.org* and the following results are reported-

a) The "dns" filter is applied on the packet trace of *http://apache.org*. The DNS request is at line 176 and the response to this DNS request is at line 178 of the packet trace present below. Thus, the time taken to complete the request is 7.065921712 - 7.044159780 = 0.021761932 seconds.

dns					X■・
No.	Time	Source	Destination	Protocol	Length Info
	53 2.874695725	192.168.1.1	192.168.1.18	DNS	135 Standard query response 0x423e A ocsp.pki.goog CNAME pki-goog.l.goo
	54 2.875071421	192.168.1.1	192.168.1.18	DNS	147 Standard query response 0xa93c AAAA ocsp.pki.goog CNAME pki-goog.l.
	176 7.044159780	192.168.1.18	192.168.1.1	DNS	81 Standard query 0x3be0 A apache.org OPT
	177 7.044267484	192.168.1.18	192.168.1.1	DNS	81 Standard query 0x4ab5 AAAA apache.org OPT
4	178 7.065921712	192.168.1.1	192.168.1.18	DNS	97 Standard query response 0x3be0 A apache.org A 151.101.2.132 OPT
	179 7.068494457	192.168.1.1	192.168.1.18	DNS	109 Standard query response 0x4ab5 AAAA apache.org AAAA 2a04:4e42::644
	203 7.218316624	192.168.1.18	192.168.1.1	DNS	101 Standard query 0x913a A incoming telemetry mozilla org OPT
	204 7.218525175	192.168.1.18	192.168.1.1	DNS	101 Standard query 0xdce6 AAAA incoming.telemetry.mozilla.org OPT
	205 7.223293743	192.168.1.1	192.168.1.18	DNS	497 Standard query response 0x913a A incoming.telemetry.mozilla.org CNA
	206 7.223293771	192.168.1.1	192.168.1.18	DNS	313 Standard guery response 0xdce6 AAAA incoming.telemetry.mozilla.org

Figure 3: "dns" filter on packet trace of http://apache.org

- b) After applying the "http" filter on the packet trace, it is observed that separate HTTP request is sent for all components of a website. There are various HTTP requests for text, css, bootstrap, javascipt, slideshow and images. Requests of different images are also separate.
 - The approximate number of HTTP requests for *http://apache.org* is around 25. This means that complex websites are rendered part-wise by the browser. Essential parts like text, css and javascript are rendered first followed by heavy parts like images and videos.
- c) The first DNS request for *http://apache.org* is at 7.044159780 second (see Figure 3 line 176) and the last content object is received at 8.537084834 second (see Figure 4 line 1832). Thus, the total time taken for rendering the website is 1.492925054 seconds.

,	nttp					X 🗆 🕶
No.	Time	Source	Destination	Protocol	Length Info	_
	1659 8.178104655	192.168.1.18	142.251.42.35	0CSP	490 Request	
-	1675 8.254226405	192.168.1.18	151.101.2.132	HTTP	362 GET /favicons/favicon-194x194.png HTTP/1.1	
	1676 8.254950747	192.168.1.18	151.101.2.132	HTTP	360 GET /favicons/favicon-16x16.png HTTP/1.1	
	1677 8.256007309	142.251.42.35	192.168.1.18	0CSP	767 Response	
	1729 8.424861943	192.168.1.18	142.251.42.35	0CSP	490 Request	
	1781 8.502711132	142.251.42.35	192.168.1.18	0CSP	767 Response	
	1791 8.507599706	192.168.1.18	142.251.42.35	0CSP	491 Request	
	1802 8.518971820	151.101.2.132	192.168.1.18	HTTP	987 HTTP/1.1 200 OK (PNG)	
+	1832 8.537084834	151.101.2.132	192.168.1.18	HTTP	637 HTTP/1.1 200 OK (PNG)	
	1840 8.597482721	142.251.42.35	192.168.1.18	OCSP	768 Response	v

Figure 4: Last Content Object received from http://apache.org

d) No HTTP traffic is observed when the "http" filter is applied on packet trace of *http://www.cse.iitd.ac.in*. A single response is present, which shows a 301 Moved Permanently error (see Figure 5 lines 342-344).

A possible explanation behind this is *http://www.cse.iitd.ac.in* uses HTTPS, whereas *http://apache.org* uses both HTTP and HTTPS. The only difference between HTTP and HTTPS is HTTPS uses encryption in HTTP requests and responses.

Thus, when we try to trace the packet of http://www.cse.iitd.ac.in, it is automatically redirected to HTTPS, and we observe no HTTP traffic. The traffic is visible in the TLS (TLSv1.2) protocol, which encrypts the HTTP requests and responses. Figure 6 shows the HTTP requests and responses present in TLS layer in form of 'Application Data'.

Figure 5: "http" filter on packet trace of http://www.cse.iitd.ac.in

ip.ad	dr == 103.27.9.152 and tls				⊠ □
No.	Time	Source	Destination	Protocol	Length Info
	351 9.128467024	192.168.1.18	103.27.9.152	TLSv1.2	583 Client Hello
	353 9.228681725	103.27.9.152	192.168.1.18	TLSv1.2	4162 Server Hello
	355 9.230506931	103.27.9.152	192.168.1.18	TLSv1.2	445 Certificate, Server Key Exchange, Server Hello Done
	357 9.246405384	192.168.1.18	103.27.9.152	TLSv1.2	192 Client Key Exchange, Change Cipher Spec, Encrypted Handshake Mess
	371 9.264259339	192.168.1.18	103.27.9.152	TLSv1.2	530 Application Data
	372 9.346665814	103.27.9.152	192.168.1.18	TLSv1.2	340 New Session Ticket, Change Cipher Spec, Encrypted Handshake Messa
	375 9.410747138	103.27.9.152	192.168.1.18	TLSv1.2	10404 Application Data, Application Data, Application Data
	377 9.410860189	103.27.9.152	192.168.1.18	TLSv1.2	131 Application Data, Application Data
	383 9.488528126	192.168.1.18	103.27.9.152	TLSv1.2	573 Application Data
	398 9.587048776	103.27.9.152	192.168.1.18	TLSv1.2	739 Application Data, Application Data, Application Data

Figure 6: "tls" filter on packet trace of http://www.cse.iitd.ac.in

3 Traceroute using Ping

Traceroute is implemented using the *Ping* command in C++ language. Calls to the *Ping* command are made using system() function of C++. Sample output is present below where the input destination domain is www.google.com. The RTT vs Hops plot is also present below.

```
lenovo@gaurav:~/COL334A1/2019CS10349$ ./a.out www.google.com
        192.168.1.1
hop 1
hop 2
        122.169.32.1
        125.21.18.205
hop 3
        182.79.146.178
hop 4
hop 5
        72.14.212.48
hop 6
        209.85.246.51
        142.251.69.45
hop 7
hop 8
        142.251.42.36
TRACEROUTE for www.google.com (142.251.42.36) successful!
Round Trip Time : 19.620 milliseconds
plot saved successfully!
```

Figure 7: A sample output for www.google.com

Figure 8: RTT vs Hops plot for www.google.com