Kompakte Teilmengen von \mathbb{R}^n

Jendrik Stelzner

21. Dezember 2014

1 Stetige Funktionen auf abgeschlossenen Intervallen

Zur Motivation des Kompaktheitbegriffes wollen wir zunächst das folgende sehr nützliche Lemma beweisen:

Lemma 1. Es seien $a, b \in \mathbb{R}$ mit a < b und $f : [a, b] \to \mathbb{R}$ stetig. Dann ist die Abbildung f beschränkt und nimmt auf [a, b] ihr Maximum und Minimum an, d.h. es gibt $x_{max}, x_{min} \in [a, b]$ mit

$$f(x_{max}) = \sup_{y \in [a,b]} f(y) \quad und \quad f(x_{min}) = \inf_{y \in [a,b]} f(y).$$

Für offene Intervalle oder halboffene Intervalle gilt diese Aussage nicht. Man betrachte etwa die Abbildung $(0,1] \to \mathbb{R}, x \mapsto 1/x$, oder gar $(0,1] \to \mathbb{R}, x \mapsto \sin(1/x)/x$.

Herzstück des Beweises ist die Beobachtung, dass auf [a,b] jede Folge eine konvergente Teilfolge besitzt.

Lemma 2. Es seien $a, b \in \mathbb{R}$ mit a < b und $(x_n)_{n \in \mathbb{N}}$ eine Folge auf [a, b]. Dann besitzt (x_n) eine konvergente Teilfolge $(x_{n_j})_{j \in \mathbb{N}}$, und für den Grenzwert $x := \lim_{j \to \infty} x_{n_j}$ gilt $x \in [a, b]$.

Beweis. Da $a \leq x_n \leq b$ für alle $n \in \mathbb{N}$ ist die Folge (x_n) beschränkt und besitzt daher nach Bolzano-Weierstraß eine konvergente Teilfolge $(x_{n_j})_{j \in \mathbb{N}}$. Es sei $x \coloneqq \lim_{j \to \infty} x_{n_j}$. Da $a \leq x_{n_j} \leq b$ für alle $j \in \mathbb{N}$ ist auch $a \leq x \leq b$, also $x \in [a, b]$.

Beweis von Lemma 1. Wir zeigen zunächst, dass f beschränkt ist: Angenommen, f wäre nach oben unbeschränkt. Dann gibt es für alle $n \in \mathbb{N}$ ein $x_n \in [a,b]$ mit $f(x_n) \geq n$. Nach Lemma 2 besitzt die Folge (x_n) eine konvergente Folge $(x_{n_j})_{j \in \mathbb{N}}$. Da f stetig ist, konvergiert auch die Folge $(f(x_{n_j}))_{j \in \mathbb{N}}$. Für alle $f \in \mathbb{N}$ ist aber $f(x_{n_j}) \geq n_j$, die Folge $f(x_{n_j})$ konvergiert also nicht. Dieser Widerspruch zeigt dass f nach oben unbeschränkt seien muss. Analog ergibt sich, dass f auch nach unten beschränkt ist. Also ist f beschränkt.

Es sei

$$M\coloneqq \sup_{y\in [a,b]} f(y).$$

Da f nach oben beschränkt ist, ist $M < \infty$. Nach der ε -Charakterisierung des Supremums gibt es für alle $n \ge 1$ ein $x_n \in [a, b]$ mit

$$M \ge f(x_n) \ge M - \frac{1}{n}$$
.

Nach Lemma 2 besitzt die Folge (x_n) eine konvergente Teilfolge $(x_{n_j})_{j\in\mathbb{N}}$. Es sei $x := \lim_{j\to\infty} x_{n_j}$. Da f stetig ist, konvergiert auch die Folge $(f(x_{n_j}))$ und es gilt

$$\lim_{j \to \infty} f(x_{n_j}) = f(x).$$

Andererseits gilt für alle $j \in \mathbb{N}$

$$M \ge f(x_{n_j}) \ge M - \frac{1}{n_j}.$$

Also muss nach dem Sandwich-Lemma auch

$$\lim_{i \to \infty} f(x_{n_j}) = M.$$

Also ist f(x) = M. Das zeigt, dass f auf [a, b] sein Maximum annimmt. Analog ergibt sich, dass f auf [a, b] auch sein Minimum annimmt.

2 Folgenkompaktheit

Zum Beweis von Lemma 1 haben wir Folgenstetigkeit und Lemma 2 benötigt. Diese Beobachtung legt nahe, dass sich Lemma 1 auf beliebige Teilmengen $K \subseteq \mathbb{R}^n$ verallgemeinern lässt, für die eine zu Lemma 2 analoge Aussage gilt.

Definition 3. Es sei $X \subseteq \mathbb{R}^n$ und (x_n) ein Folge auf X. Wir sagen (x_n) konvergiert auf X, falls die Folge (x_n) konvergiert und $\lim_{n\to\infty} x_n \in X$.

Beispiel(e). Die Folge $(1/n)_{n>1}$ konvergiert auf [0,1], nicht aber auch (0,1).

Definition 4. Eine Teilmenge $K \subseteq \mathbb{R}^n$ heißt folgenkompakt, falls jede Folge (x_n) auf K eine auf K konvergente Teilfolge besitzt.

Beispiel(e). Lemma 2 zeigt, dass ein Intervall [a,b] mit a < b folgenkompakt ist. Offene Intervalle hingegen sind niemals folgenkompakt: Sind $a,b \in \mathbb{R}$ mit a < b, so ist $(a + (b - a)/(n + 2))_{n \in \mathbb{N}}$ eine Folge auf (a,b), die keine auf (a,b) konvergente Teilfolge besitzt.

Proposition 5. Es sei $K \subseteq \mathbb{R}^n$ folgenkompakt und $f: K \to \mathbb{R}$ stetig. Dann ist die Abbildung f auf K beschränkt und nimmt auf K ihr Maximum und ihr Minimum an, d.h. es gibt $x_{min}, x_{max} \in K$ mit

$$f(x_{max}) = \sup_{y \in K} f(y)$$
 und $f(x_{min}) = \inf_{y \in K} f(y)$.

Beweis. Nehme den Beweis von Lemma 1 und ersetze [a,b] durch K und die Verweise auf Lemma 2 durch Folgenkompaktheit.

Da sich stetige Funktionen auf folgenkompakten Mengen gutartig verhalten, sind folgenkompakte Mengen von großer Bedeutung für die Analysis.

3 Überdeckungskompaktheit

Ein weiterer Kompaktheitsbegriff ist der der Überdeckungskompaktheit.

Definition 6. Es sei $X \subseteq \mathbb{R}^n$ eine Teilmenge. Eine Überdeckung von X ist eine Kollektion $\{A_i\}_{i\in I}$ von Teilmengen $A_i \subseteq \mathbb{R}^n$ mit $X \subseteq \bigcup_{i\in I} A_i$.

Mit einer Teilüberdeckung der Überdeckung $\{A_i\}_{i\in I}$ bezeichnen wir eine Teilkollektion $\{A_j\}_{j\in J}$, also $J\subseteq I$, die selber eine Überdeckung von X bildet.

Eine Überdeckung $\{A_i\}_{i\in I}$ heißt abzählbar, bzw. endlich, falls die Indexmenge I abzählbar, bzw. endlich ist.

Eine offene Überdeckung von X ist eine Überdeckung $\{U_i\}_{i\in I}$ von X bei der alle Mengen $U_i\subseteq\mathbb{R}^n$ offen sind.

Bemerkung 7. Teilüberdeckungen von offenen Überdeckungen sind offenbar wieder offene Überdeckungen.

Beispiel(e). 1. Die Kollektion $\{(n-1, n+2) \mid n \in \mathbb{Z}\}$ ist eine (abzählbare) offen Überdeckung von \mathbb{R} .

- 2. Die Kollektion $\{(n,n+1)\mid n\in\mathbb{Z}\}$ ist keine Überdeckung von $\mathbb{R},$ da \mathbb{Z} nicht überdeckt wird.
- 3. Für alle $\varepsilon > 0$ bilden die *n*-dimenisonaler ε -Bälle $\{B_{\varepsilon}(x) \mid x \in \mathbb{R}^n\}$ eine offene Überdeckung von \mathbb{R}^n .
- 4. Die Kollektion $\{[n, n+1) \mid n \in \mathbb{N}\}$ bildet eine (abzählbare) Überdeckung von \mathbb{R} , jedoch keine offene.
- 5. Eine Kollektion $\{A_i\}_{i\in I}$ von Teilmengen $A_i\subseteq\mathbb{R}^n$ ist genau dann eine Überdeckung einer einelementigen Menge $\{x\}$ mit $x\in\mathbb{R}^n$, falls $x\in A_i$ für ein $i\in I$. Die Überdeckung besitzt dann eine einelementige Teilüberdeckung.
- 6. Ist $\{A_i\}_{i\in I}$ eine Überdeckung von $Y\subseteq \mathbb{R}^n$, so ist $\{A_i\}_{i\in I}$ auch für jedes $X\subseteq Y$ eine Überdeckung von X.

Definition 8. Eine Teilmenge $C \subseteq \mathbb{R}^n$ heißt *überdeckungskompakt*, falls jede offene Überdeckung von C ein endliche Teilüberdeckung besitzt.

Lemma 9. Für $a, b \in \mathbb{R}$ mit a < b ist das abgeschlossen Intervall [a, b] überdeckungskompakt.

Beweis. Es sei $\{U_i \mid i \in I\}$ eine offene Überdeckung von [a,b]. Für jedes $s \in [a,b]$ ist $\{U_i \mid i \in I\}$ auch eine offene Überdeckung von [a,s]. Wir betrachten die Menge

 $S := \{s \in [a, b] \mid [a, s] \text{ besitzt eine endliche Teilüberdeckung} \}.$

Wir haben $S \neq \emptyset$, denn $[a, a] = \{a\}$ besitzt eine endliche Teilüberdeckung (sogar eine einelementige), also $a \in S$. Ist $s \in S$, so ist für alle $a \leq t \leq s$ offenbar auch $t \in S$. Also ist S ein Intervall. Für $s := \sup S$ ist daher

$$S = [a, s)$$
 oder $S = [a, s]$.

Wir zeigen nun, dass $b \in S$. Da $\{U_i\}_{i \in I}$ eine Überdeckung von s ist, gibt es ein $j \in I$ mit $s \in U_j$. Da U_j offen ist, gibt es ein $\varepsilon > 0$ mit $(x - \varepsilon, x + \varepsilon) \subseteq U_j$. Wählen wir nun ein $t \in [a, s)$ mit $s - \varepsilon < t$, so besitzt [a, t] ein endliche Teilüberdeckung, d.h. es gibt $i_1, \ldots, i_n \in I$ mit $[a, t] \subseteq U_{i_1} \cup \cdots \cup U_{i_n}$. Für alle

$$u \in [s, b] \quad \text{mit} \quad u < s + \varepsilon$$
 (1)

besitzt

$$[a, u] = [a, t] \cup [t, u] \subseteq [a, t] \cup (x - \varepsilon, x + \varepsilon) \subseteq U_1 \cup \cdots \cup U_n \cup U_j.$$

eine endliche Teilüberdeckung. Also ist $u \in S$. Damit $u \leq \sup S = s$, und da nach Konstruktion auch $u \geq s$ muss s = u. Da aus (1) schon folgt, dass u = s, muss schon $[s,b] = \{s\}$, also auch s = b. Zusammen mit $s = u \in S$ ergibt sich, dass $b \in S$. Per Definition von S besitzt also [a,b] eine endliche Teilüberdeckung.