RAID

Why RAID

Performance limitation of a single drive disk drive

- Limited Capacity
- Limited access speed
- No fault tolerance

RAID was introduced to mitigate this problem

RAID

- RAID was defined as redundant array of inexpensive disks, now commonly redundant array of independent disks
- It combines multiple physical disk drive components into a single logical unit

RAID Advantages

- Fault tolerance
- Increase capacity
- Higher availability
- Increased performance
- Data redundancy

RAID Array Components

RAID Array

RAID Array Components

- RAID Array
- RAID Controller
- Physical disks

RAID Array

RAID Controller

P300H iSCSI Redundant RAID Controller

RAID Implementation Techniques

Software RAID

Hardware RAID

Software RAID

Software RAID uses host-based software to provide RAID function.

- Runs as part of the operating system
- Performance is dependent on CPU workload
- Does not support all RAID levels

Virtual Media Record Macro Options User List Capture Exit

Intel(R) Matrix Storage Manager option ROM v8.9.0.1023 PCH-D wRAID5 Copyright(C) 2003-09 Intel Corporation. All Rights Reserved.

=[MAIN MENU]=

- Create RAID Volume
- 2. Delete RAID Volume

- 3. Reset Disks to Non-RAID
- 4. Recovery Volume Options
- 5. Exit

=[DISK/VOLUME INFORMATION]=

RAID Volumes:

ID Name Level Strip Size Status Bootable
O OS Boot Drive RAID1(Mirror) N/A 37.3GB Normal Yes

Physical Disks:

Port Drive Model Serial # Size Type/Status(Vol ID)

9 INTEL SSDSA2M040 GB943300HR040GGN 37.2GB Member Disk(0)

4 INTEL SSDSAZMO40 GB9436006X040GGN 37.2GB Member Disk(0)

Hardware RAID

In this technique, a specialized hardware controller is implemented either on the host or on the array.

- Controls all drives attached to it
- Translation of I/O requests between logical disks and physical disks
- Data regeneration in the event of disk failures.

RAID comparison

Software RAID	Hardware RAID
Low performance	High performance
Low cost	High cost
Does not need RAID controller	RAID controller needed
Does not supports all RAID levels(RAID 0,1)	Supports all RAID levels

RAID techniques

Three key techniques used for RAID are:

- Striping
- Mirroring
- Parity

RAID Technique – Striping

RAID Technique – Mirroring

RAID Technique – Parity

B XOR Parity = A

Actual parity calculation is a bitwise XOR operation

RAID Levels

- Commonly used RAID levels are:
 - RAID 0 Striped set with no fault tolerance
 - RAID 1 Disk mirroring
 - RAID 1 + 0 Nested RAID
 - RAID 3 Striped set with parallel access and dedicated parity disk
 - RAID 5 Striped set with independent disk access and a distributed parity
 - RAID 6 Striped set with independent disk access and dual distributed parity

RAID 0

RAID 1

Nested RAID – 1+0 Data from host В A Striping **RAID Controller** Mirroring Mirroring Mirroring A1 B1 B2 **B3** Mirror Set A Mirror Set C Mirror Set B

Dual Distributed Parity

THANK YOU