

Twinning

Göttingen, Februar 1st, 2012

Introduction to Twinning

rherbst@shelx.uni-ac.gwdg.de

http://shelx.uni-ac.gwdg.de/~rherbst/twin.html

Definition

"Twins are regular aggregates consisting of individual crystals of the same species joined together in some definite mutual orientation."

from: "Fundamentals of Crystallography", edited by C. Giacovazzo, Union of Crystallography, Oxford University Press 2nd Edn. 2002.

Simple example for a two-dimensional twin:

Twin Law: $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

fractional contribution k_1 for twin domain 1: 5/9 fractional contribution k_2 for twin domain 2: 4/9

A twinned structure can sometimes be mistaken for a disordered one. What is the difference between disorder and twinning?

K. Meindl, J. Henn, N. Kocher, D. Leusser, K. A. Zachariasse, G. M. Sheldrick, T. Koritsanszky, D. Stalke, *J. Phys. Chem. A*, **113**, 9684, 2009.

•				•		•	
• ,		•	•	•	•		•
•			•	•	•		
• ,				•			•
•	•	•	•	•	•	•	•
• .	•		•	•	•		•
•	•	•	•	•	•	•	•
• ,					•		
•	•	•		•	•		
•	•	•		•	•	•	•
	•		•		•		•
	•		•		•		•
•	•	•	•	•	•	•	•
•	•	•		•		•	•
•	•		•	•	•		•
	•				•		

Twinning may occur when a unit cell (or a supercell)

- ignoring the content - has higher symmetry than implied by the space group of the crystal structure

•		•	•	•	•	•	
•	•		•	•	•	•	•
•	•	•	•	•	•	•	
•				•		•	
•	•	•	•	•	•	•	•
•		•		•	•	•	•
•		•	•	•	•	•	
•		•			•	•	
•	•	•	•	•	•	•	•
•		•		•	•	•	
	•	•	•	•		•	•
				•			•
•	•	•	•	•	•	•	•
•		•	•	•	•	•	•
	•	•	•	•		•	

Four Kinds of Twins (I)

1. Twinning by merohedry

Twin operator: symmetry operator of the crystal system but not of the point group of the crystal

- 1.1. racemic twin
- 1.2. twin operator: not of the Laue group of the crystal

-1	0	0	0	0	1	0	1	0
-1	0	0	0	1	0	0	0	-1
-1	0	0	0	0	-1	0	-1	0
-1	0	0	0	-1	0	0	0	1
1	0	0	0	0	-1	0	-1	0
1	0	0	0	-1	0	0	0	1
1	0	0	0	0	1	0	1	0
1	0	0	0	1	0	0	0	-1

Merohedral Twin Laws

True Lau	Appar e Group			-	Twi	n Lo	aw			
4/m	4/mmm	0	1	0	1	0	0	0	0	-1
3	31m	0	-1	0	-1	0	0	0	0	-1
3 3 3 3	$\overline{3}$ m1	0	1	0	1	0	0	0	0	-1
3	6/m	-1	0	0	0	-1	0	0	0	1
3	6/mmm	0	-1	0	-1	0	0	0	0	-1
		0	1	0	1	0	0	0	0	-1
		-1	0	0	0	-1	0	0	0	1
$\overline{3}$ m1	6/mmm	-1	0	0	0	-1	0	0	0	1
31m	6/mmm	0	1	0	1	0	0	0	0	-1
6/m	6/mmm	0	1	0	1	0	0	0	0	-1
m3	m3m	0	1	0	1	0	0	0	0	-1

Definition Classification Tests Solution Refinement Warning Signs

Four Kinds of Twins (I)

1. Twinning by merohedry

Twin operator: symmetry operator of the crystal system but not of the point group of the crystal

- 1.1. racemic twin
- 1.2. twin operator: not of the Laue group of the crystal
 - only in tetragonal, trigonal, hexagonal and cubic space groups
 - exact overlap of the reciprocal lattices
 - often low value for < |E2-1|>
 - Laue group and space group determination may be difficult
 - structure solution may be difficult

2. Twinning by pseudo-merohedry

Twin operator: belongs to a higher crystal system than the structure

- Metric symmetry higher than Laue symmetry

2	1	0	0	-1	0	1	0	1	0	1
3	5	-1	0	-1	0	1	0	1 1	0	0
2	1	0	0	1	0	1	0	-1 -1	0	-1
3	J	1	0	1	0	-1	0	-1 1	0	0
3	}	-1	0	-1	0	-1	0	1 -1	0	0
	J	-1	0	-1	0	-1	0	-1	0	-1

Four Kinds of Twins (II)

3. Twinning by reticular merohedry

e.g. obverse/reverse twinning in case of a rhombohedral crystal

Obverse/Reverse Twinning

Systematic Absences:

Domain 1: -h + k + l = 3n Domain 2: h - k + l = 3n

 \rightarrow HKLF 5

-h + k + l h - k + l domain = 3n $\neq 3n$ 1 $\neq 3n$ = 3n 2 $\neq 3n$ $\neq 3n$ - = 3n 1 and 2

1	1	0	0	-1	0	0	0	1
-1	0	0	1	1	0	0	0	1
0	-1	0	-1	0	0	0	0	1
-1	-1	0	0	1	0	0	0	-1
1	0	0	-1	-1	0	0	0	-1
0	1	0	1	0	0	0	0	-1

Four Kinds of Twins (II)

3. Twinning by reticular merohedry

- e.g. obverse/reverse twinning in case of a rhombohedral crystal
- detection of the lattice centring may be difficult
- structure solution not as difficult as for merohedral twins.

R. Herbst-Irmer, G. M. Sheldrick, Refinement of obverse/reverse twins, *Acta Crystallogr. B***58**, 477, 2002

4. Non-merohedral twins

Twin operator: arbitrary operator, often rotation of 180°

Reflection Pattern

- Problems with the cell determination
- Some reflections not indexed
- Some reflections very close to each other
- Some split reflections

Cell Determination

CELL_NOW

- Reads .spin, .p4p or .drx-files
- tries to find sets of reciprocal lattice planes that pass close to as many reflections as possible
- The cell may be rotated to locate further twin domains using only the reflections that have not yet been indexed
- Determination of the cell and the twin law in one program
- Writes a .p4p/.spin file for RLATT and SAINT for simultaneous integration of more than one domain
- Determination of very weak domains possible

Integration

exact overlaps

partial overlaps

nonoverlaps

Integration

exact overlaps

partial overlaps

nonoverlaps

Integration

exact overlaps

partial overlaps

nonoverlaps

TWINABS

Twin raw file: *.mul, similar to HKLF5 format

- → Special version of SADABS: TWINABS
- Scaling and absorption correction
- Merging
- Output
 - detwinned data file (HKLF4) for structure solution
 - HKLF5 file for the refinement:

h' k' l' F^2 $\sigma(F^2)$ -2

h k | $F^2 \sigma(F^2)$ 1

with h', k', l' generated by the second orientation matrix

Four Kinds of Twins (II)

3. Twinning by reticular merohedry

- e.g. obverse/reverse twinning in case of a rhombohedral crystal
- detection of the lattice centring may be difficult
- structure solution not as difficult as for merohedral twins.

4. Non-merohedral twins

Twin operator: arbitrary operator, often rotation of 180°

- no exact overlap of the reciprocal lattices
- cell determination problems
- cell refinement problems
- some reflections sharp, others split
- data integration complicated (requires more than one orientation matrix)
- structure solution not as difficult as for merohedral twins

Tests for Twinning: XPREP

[M] Test for MEROHEDRAL TWINNING

Comparing true/apparent Laue groups. 0.05 < BASF < 0.45 indicates partial merohedral twinning. BASF ca. 0.5 and a low $<|E^2-1|>(0.968[C] \text{ or } 0.736[NC])$ are normal) suggests perfect merohedral twinning. For a twin, R(int) should be low for the true Laue group and low/medium for the apparent Laue group.


```
[1] -3 / -31m:
   R(int) 0.039(801)/0.316(478), < |E^2-1| > 0.624/0.517
   TWIN 0 -1 0 -1 0 0 0 0 -1 BASF 0.205 [C] or 0.124 [NC]
[2] -3 / -3m1:
   R(int) 0.039(801)/0.406(444), < |E^2-1| > 0.624/0.525
   TWIN 0 1 0 1 0 0 0 0 -1 BASF 0.113 [C] or 0.008 [NC]
[3] -3 / 6/m:
   R(int) 0.039(801)/0.103(488), < |E^2-1| > 0.624/0.617
   TWIN -1 0 0 0 -1 0 0 0 1 BASF 0.319 [C] or 0.269 [NC]
[4] -31m / 6/mmm:
   R(int) 0.316(478)/0.097(228), < |E^2-1| > 0.517/0.523
   TWIN -1 0 0 0 -1 0 0 0 1 BASF 0.346 [C] or 0.304 [NC]
[5] -3m1 / 6/mmm:
   R(int) 0.406(444)/0.114(262), < |E^2-1| > 0.525/0.527
   TWIN -1 0 0 0 -1 0 0 0 1 BASF 0.360 [C] or 0.322 [NC]
[6] 6/m / 6/mmm:
   R(int) 0.103(488)/0.478(218), < |E^2-1| > 0.617/0.516
   TWIN 0 1 0 1 0 0 0 0 -1 BASF 0.178 [C] or 0.090 [NC]
```



```
[1] -3 / -31m:
   R(int) 0.039(801)/0.316(478), < |E^2-1| > 0.624/0.517
   TWIN 0 -1 0 -1 0 0 0 0 -1 BASF 0.205 [C] or 0.124 [NC]
[2] -3 / -3m1:
   R(int) 0.039(801)/0.406(444), < |E^2-1| > 0.624/0.525
   TWIN 0 1 0 1 0 0 0 0 -1 BASF 0.113 [C] or 0.008 [NC]
[3] -3 / 6/m:
   R(int) 0.039(801)/0.103(488), < |E^2-1| > 0.624/0.617
   TWIN -1 0 0 0 -1 0 0 0 1 BASF 0.319 [C] or 0.269 [NC]
[4] -31m / 6/mmm:
   R(int) 0.316(478)/0.097(228), < |E^2-1| > 0.517/0.523
   TWIN -1 0 0 0 -1 0 0 0 1 BASF 0.346 [C] or 0.304 [NC]
[5] -3m1 / 6/mmm:
   R(int) 0.406(444)/0.114(262), < |E^2-1| > 0.525/0.527
   TWIN -1 0 0 0 -1 0 0 0 1 BASF 0.360 [C] or 0.322 [NC]
[6] 6/m / 6/mmm:
   R(int) 0.103(488)/0.478(218), < |E^2-1| > 0.617/0.516
  TWIN 0 1 0 1 0 0 0 0 -1 BASF 0.178 [C] or 0.090 [NC]
```



```
[1] -3 / -31m:
   R(int) 0.039(801)/0.316(478), < |E^2-1| > 0.624/0.517
   TWIN 0-10-10000-1 BASF 0.205 [C] or 0.124 [NC]
[2] -3 / -3m1:
   R(int) 0.039(801)/0.406(444), < |E^2-1| > 0.624/0.525
   TWIN 0 1 0 1 0 0 0 0 -1 BASF 0.113 [C] or 0.008 [NC]
[3] -3 / 6/m:
   R(int) 0.039(801)/0.103(488), < |E^2-1| > 0.624/0.617
   TWIN -1 0 0 0 -1 0 0 0 1 BASF 0.319 [C] or 0.269 [NC]
[4] -31m / 6/mmm:
   R(int) 0.316(478)/0.097(228), < |E^2-1| > 0.517/0.523
  TWIN -1 0 0 0 -1 0 0 0 1 BASF 0.346 [C] or 0.304 [NC]
[5] -3m1 / 6/mmm:
   R(int) 0.406(444)/0.114(262), < |E^2-1| > 0.525/0.527
   TWIN -1 0 0 0 -1 0 0 0 1 BASF 0.360 [C] or 0.322 [NC]
[6] 6/m / 6/mmm:
   R(int) 0.103(488)/0.478(218), < |E^2-1| > 0.617/0.516
  TWIN 0 1 0 1 0 0 0 0 -1 BASF 0.178 [C] or 0.090 [NC]
```



```
[1] -3 / -31m:
   R(int) 0.039(801)/0.316(478), < |E^2-1| > 0.624/0.517
   TWIN 0-10-10000-1 BASF 0.205 [C] or 0.124 [NC]
[2] -3 / -3m1:
   R(int) 0.039(801)/0.406(444), < |E^2-1| > 0.624/0.525
   TWIN 0 1 0 1 0 0 0 0 -1 BASF 0.113 [C] or 0.008 [NC]
[3] -3 / 6/m:
   R(int) \ 0.039(801)/0.103(488), < |E^2-1| > 0.624/0.617
  TWIN -1 0 0 0 -1 0 0 0 1 BASF 0.319 [C] or 0.269 [NC]
[4] -31m / 6/mmm:
   R(int) 0.316(478)/0.097(228), < |E^2-1| > 0.517/0.523
   TWIN -1 0 0 0 -1 0 0 0 1 BASF 0.346 [C] or 0.304 [NC]
[5] -3m1 / 6/mmm:
   R(int) 0.406(444)/0.114(262), < |E^2-1| > 0.525/0.527
   TWIN -1 0 0 0 -1 0 0 0 1 BASF 0.360 [C] or 0.322 [NC]
[6] 6/m / 6/mmm:
   R(int) 0.103(488)/0.478(218), < |E^2-1| > 0.617/0.516
  TWIN 0 1 0 1 0 0 0 0 -1 BASF 0.178 [C] or 0.090 [NC]
```


Tests for Twinning: Todd Yeates Twinning Server

http://www.doe-mbi.ucla.edu/Services/Twinning

$$J_1 = (1-\alpha) I_1 + \alpha I_2$$

 $J_2 = (1-\alpha) I_2 + \alpha I_1$
 $H = (J_1 - J_2)/(J_1 + J_2)$

For centrosymmetric structures:

$$\alpha = \frac{1}{2}[1 - \langle |H| \rangle (\pi/2)]$$
 and $\alpha = \frac{1}{2}[1 - (2\langle H^2 \rangle)^{\frac{1}{2}}]$

non-centrosymmetric structures:

$$\alpha = \frac{1}{2}(1 - 2\langle |H| \rangle) \text{ and } \alpha = \frac{1}{2}[1 - (3\langle H^2 \rangle)^{\frac{1}{2}}]$$

Only possible for partial twins ($\alpha \neq 0.5$)

Tests for Twinning: Todd Yeates Perfect Twins (α = 0.5)

http://www.doe-mbi.ucla.edu/Services/Twinning

Acentric data:

 $\langle I^2 \rangle / \langle I \rangle^2 = 2$ for untwinned data

 $\langle I^2 \rangle / \langle I \rangle^2 = 1.5$ for twinned data

T. O. Yeates, Detecting and Overcoming Crystal Twinning, Meth. Enzym. 276, 344, 1997

$$L = \frac{I(h_1) - I(h_2)}{I(h_1) + I(h_2)}$$
 h₁ and h₂ proximally located in reciprocal space

	< L >	<l<sup>2></l<sup>
Acentric, untwinned	1/2	1/3
Centric, untwinned	$2/\pi$	1/2
Acentric, perfectly twinned	3/8	1/5

J. E. Padilla, T. O. Yeates, A statistic for local intensity differences: robustness to anisotropy and pseudo-centering and utility for detecting twinning, *Acta Cryst*, **59**, 1124, 2003

Local Intensity Test

Wrong Merging


```
[1] 4/m / 4/mmm: R(int) 0.052(20645)/0.794(1070),

<|E^2-1|> 0.981/0.729

TWIN 0 1 0 1 0 0 0 0 -1

BASF 0.043 [C] or -0.082 [NC]
```


[1] 4/m / 4/mmm: R(int) 0.000(0)/0.000(0), $<|E^2-1|>0.752/0.752$ TWIN 0 1 0 1 0 0 0 0 -1
BASF 0.500 [C] or 0.500 [NC]

Perfect Twinning or Higher Symmetry

[1] 4/m / 4/mmm: R(int) 0.000(0)/0.047(12539), <|E^2-1|> 0.763/0.765 TWIN 0 1 0 1 0 0 0 0 -1 BASF 0.409 [C] or 0.384 [NC]

PLATON - TwinRotMat

		TwlnRotMat	TWRON NRefSc Deltal/5	
			Barylor d	dexUVW
Ar	nalysis of Fo/Fc	Data for Unaccounted (Nan)Merahedral Twinning f	or: anilin DeltaTi	
Ce	ell: 0.71073 21.6	45 5.833 8.319 90.00 101.12 90.00 Spgr: P2	1/c FullList	ting
		ilgmaI .GT. 8.0, DeltaTheta O.10 Deg., NselMin	= 50 <u></u>	winLaw
N	(refl) = 1790.	N(selected) = 50, IndMax = 25, CritI = 0.3, C	~LtT = 0.10	vinMat1
<u> </u>	2-axls (1 0	0) [2 0 1], Angle () [] = 0.04 Deg, Freq =	00	vinMat2
(30206)			1 1	vinMat3
305	(l.000 0.000 (0.000 -1.000	1.004) (h1) (h2) Nr Overlap = 0.000) * (k1) = (k2) BASF =	1790	vinMat4
\odot	(0.000	-1.000) (L1) = (L2) DEL-R =-	2 010	winLat
1				
ω	2-axls (1 -2	-2] [0 -2 -1], Angle () [] = 0.46 Deg, Freq =	Resolu	
2008	(-1.000 -0.670	-0.330) (h1) (h2) Nr Overlap =	479	
2	(0.000 0.341	0.659) * (k1) = (k2) BASF =		
04	(0.000 1.341	-0.341) (L1) = (L2) DEL-R =-	0.003 Zone-H	I,K,L
Ü	2-axis (1 -4	-2) [0 -4 -1], Angle () [] = 0.30 Deg, Freq =	Up D	Down
0:11				nicTwin
10	(-1.000 -0.445 (0.000 0.781	-0.109) (h1) (h2) Nr Overlap = 0.438) * (k1) = (k2) BASF =		TMat1
	(0.000 0.78)	0.438) * (k1) = (k2) BASF = -0.781) (L1) = (L2) DEL-R =-	Soloct	TMat2
24		G.7617 (C1) - (C2)	SelectT	TMat3
>0	2-axis (4 -2	1] [1 -6 2]. AngLe [] [] = 0.56 Deg. Freq =	7 Select	TMat4
<u> </u>	(-0.549 -2.658	0.880) (h1) (h2) Nr Overlap =	136 HKLF5	5-Critl
ON O	(-0.226 0.329	-0.4401 * (k11 = (k2) BASF =		5-CritT
PLATON-Nov	(0.113 -0.664	-0.780) (L1) = (L2) DEL-R =	n nnn	5-Gener
P	anilin		En	
INDLE		EYBOARD or LEFT-MOUSE-CLICKS (HELP with RIGHT CLICKS)		Exit
INPU	INSTRUCTIONS VIA K	ETBOARD OFLEFT-MOUSE-CLICKS (HELP WITH RIGHT CLICKS)		
>>			MenuA	Active

www.mit.edu/platon_v40505/platon/docs/platon/pl000315.html

Obverse/Reverse Twinning

	Р	Α	В	С	I	F	Obv	Rev	All
N	0	24004	23981	24079	23964	36032	31915	31944	147964
N I>3σ	0	6903	6913	7404	6931	10610	3990	6064	13592
< >	0.0	80.3	81.4	84.3	80.8	82.0	16.8	66.2	81.0
< I /σ>	0.0	4.1	4.1	4.3	4.1	4.1	1.6	3.4	4.0

Obverse/reverse test for trigonal/hexagonal lattice Mean I: obv only 145.5, rev only 28.0, neither obv nor rev 4.8

Preparing dataset for refinement with BASF 0.161 and TWIN -1 0 0 0 -1 0 0 0 1

Reflections absent for both components will be removed

Structure Solution

- For small molecules, normal direct methods are often able to solve twinned structures even for perfect twins, provided that the correct space group is used.
- SHELXD can use the twin law and the fractional contribution
- Detwinning

$$J_1 = (1-\alpha) I_1 + \alpha I_2$$

$$J_2 = (1-\alpha) I_2 + \alpha I_1$$

$$I_1 = \frac{(1-\alpha)J_1 - \alpha J_2}{1-2\alpha}$$

$$I_2 = \frac{(1-\alpha)J_2 - \alpha J_1}{1-2\alpha}$$

Twin Refinement in SHELXL-97

Method of Pratt, Coyle and Ibers:

$$(F_c^2)^* = osf^2 \sum_{m=1}^n k_m F_{c_m}^2$$

osf = overall scale factor k_m = fractional contribution of twin domain m F_{cm} = F_c of twin domain m

$$1 = \underset{m=1}{\overset{n}{\sum}} k_m$$

(n-1) of the fractional contributions can be

$$\begin{array}{l} k_1 = 1 - \sum\limits_{m=2}^{n} k_m \end{array}$$

refined.

TWIN r11 r12 r13 r21 r22 r23 r31 r32 r33 n BASF k2 k3 ... kn

or

MERG 0 BASF k2 k3 ... kn HKLF 5

C. S. Pratt, B. A. Coyle, J. A. Ibers, J. Chem. Soc. 2146, 1971

G. B. Jameson, Acta Crystallogr. A38, 817, 1982

Warning Signs for Merohedral Twinning

- Metric symmetry higher than Laue symmetry
- R_{int} for the higher symmetry Laue group only slightly higher than for the lower symmetry one
- Different R_{int} values for the higher symmetry Laue group for different crystals of the same compound
- Mean value for $|E^2-1| \ll 0.736$
- Apparent trigonal or hexagonal space group
- Systematic absences not consistent with any known space group
- No structure solution
- Patterson function physically impossible (for heavy atom structures)
- High R-Values

Warning Signs for Non-merohedral Twinning

- An unusually long axis
- Problems with cell refinement
- Some reflections sharp, others split
- $K = mean(F_o^2)/mean(F_c^2)$ is systematically high for reflections with low intensity
- For all of the most disagreeable reflections $F_o \gg F_c$.
- Strange residual density, which could not be resolved as solvent or disorder.
 - R. Herbst-Irmer, G. M. Sheldrick, Refinement of Twinned Structures with SHELXL97, *Acta Crystallog. B***54**, 443, 1998
 - P. Müller, R. Herbst-Irmer, A. L. Spek, T. R. Schneider, M. R. Sawaya, Crystal Structure Refinement A Crystallographer's Guide to SHELXL, Oxford University Press 2006

Acknowledgements

George Sheldrick