

Universidad Nacional de Ingeniería Escuela Profesional de Matemática Ciclo 2021-I

[Introducción a los procesos estocásticos]

[J. Ugarte]

UNI, 30 de julio de 2021.

Examen Final

Tiempo: 2h Tolerancia 15min

1. Medidas invariantes

Sea X una cadena de Markov irreducible sobre el espacio de estados E que posee una medida invariante de probabilidad π . Para μ una medida positiva sobre E, y $f: \mathbb{R}^+ \to \mathbb{R}$ esctrictamente convexa y acotada, definimos:

$$\operatorname{Ent}(\mu|\pi) = \sum_{x \in E} f\left(\frac{\mu(x)}{\pi(x)}\right) \pi(x)$$

- a) Muestre que $\operatorname{Ent}(\mu P|\pi) \leq \operatorname{Ent}(\mu|\pi)$.
- b) Identifique cuando existe igualdad en la desigualdad anterior. Enseguida, deduzca que toda medida invariante de X es múltiplo de π .

[5 puntos]

2. Tiempo de mezcla

Sea $p, q \in [0, 1]$, consideramos la cadena X con dos estados $\{1, 2\}$, con matriz de transición

$$P = \begin{pmatrix} 1 - p & p \\ q & 1 - q \end{pmatrix}$$

- a) Determine los valores de p, q para que la cadena sea irreducible y aperiódica.
- b) Determine el conjunto de probabilidades invariantes en función de p, q.
- c) Determine P^n para $n \in \mathbb{N}$.
- d) Cuando X es irreducible, calcule:

$$d_1(t) = \frac{1}{2}(|\mathbb{P}_1(X_t = 1) - \pi(1)| + |\mathbb{P}_1(X_t = 2) - \pi(2)|)$$

У

$$d_2(t) = \frac{1}{2}(|\mathbb{P}_2(X_t = 1) - \pi(1)| + |\mathbb{P}_2(X_t = 2) - \pi(2)|)$$

[5 puntos]

3. Tiempo de mezcla

Sea X una cadena de Markov sobre el espacio de estados $\{0,1,2,\ldots,n\}$ y matriz de transición P tal que:

$$P(0,k) = \frac{1}{2^{k+1}}, k \in \{0,1,\dots,n-1\}$$
 $P(0,n) = \frac{1}{2^n}$

$$P(k, k-1) = 1, k \in \{1, 2, \dots, n-1\}, \quad P(n, n) = P(n, n-1) = \frac{1}{2}$$

a) Muestre que la cadena posee una unica medida de probabilidad invariante π y calcule dicha medida.

- b) Muestre que para $x_0 \in \{0, 1, 2, \dots, n-1\}, P^{(x_0+1)}(x_0, z) = \pi(z)$ para todo z.
- c) Muestre que para todo $x_0 \in \{0,1,2,\ldots,n\}$, $P^{(n)}(x_0,z) = \pi(z).$
- d) Para $t \ge 0$ calcule

$$d(t) = \frac{1}{2} \sum_{x=0}^{n} \left| P^{(t)}(n,x) - \pi(x) \right|$$

[5 puntos]

4. Tiempo medio de alcance

A mouse is placed in the maze in figure starting in box A. A piece of cheese is put in box I. From each room the mouse moves to an adjacent room through an open door, choosing from the available doors with equal probability.

- a) How many rooms, on average, will the mouse visit before it inds the cheese?
- b) How many times, on average, will the mouse visit room A before it inds the cheese?

[5 puntos]