INSTITUTO TECNOLÓGICO DE AERONÁUTICA

Pedro Kuntz Puglia

ORBITAL MANEUVER OPTIMIZATION

Trabalho de Graduação 2025

Curso de Engenheria Aeroespacial

Pedro Kuntz Puglia

ORBITAL MANEUVER OPTIMIZATION

Orientador

Prof. Dr. Willer Gomes dos Santos (ITA)

Coorientador

Prof. Emilien Flayac (ISAE-SUPAERO)

ENGENHERIA AEROESPACIAL

São José dos Campos Instituto Tecnológico de Aeronáutica

Dados Internacionais de Catalogação-na-Publicação (CIP) Divisão de Informação e Documentação

Puglia, Pedro Kuntz Orbital Maneuver Optimization / Pedro Kuntz Puglia. São José dos Campos, 2025. 20f.

Trabalho de Graduação – Curso de Engenheria Aeroespacial
– Instituto Tecnológico de Aeronáutica, 2025. Orientador: Prof. Dr. Willer Gomes dos Santos. Coorientador: Prof. Emilien Flayac.

1. Optimization. 2. Control. 3. Orbital Mechanics. I. Instituto Tecnológico de Aeronáutica. II. Título.

REFERÊNCIA BIBLIOGRÁFICA

PUGLIA, Pedro Kuntz. **Orbital Maneuver Optimization**. 2025. 20f. Trabalho de Graduação – Instituto Tecnológico de Aeronáutica, São José dos Campos.

CESSÃO DE DIREITOS

NOME DO AUTOR: Pedro Kuntz Puglia TITULO DO TRABALHO: Orbital Maneuver Optimization. TIPO DO TRABALHO/ANO: Trabalho de Graduação / 2025

É concedida ao Instituto Tecnológico de Aeronáutica permissão para reproduzir cópias deste trabalho de graduação e para emprestar ou vender cópias somente para propósitos acadêmicos e científicos. O autor reserva outros direitos de publicação e nenhuma parte deste trabalho de graduação pode ser reproduzida sem a autorização do autor.

Pedro Kuntz Puglia Rua H8C, Ap. 303 12.228- 462 – São José dos Campos- SP

ORBITAL MANEUVER OPTIMIZATION

ssa publicação foi aceita como Relatório Final de Trabalho de Grad	duaçã			
Pedro Kuntz Puglia				
Autor				
Willer Gomes dos Santos (ITA)				
Orientador				
Emilien Flayac (ISAE-SUPAERO)				
Coorientador				
Profa. Dra. Cristiane Martins Coordenadora do Curso de Engenheria Aeroespacial				

 $\operatorname{dedicar}...$

Agradecimentos

Resumo

RESUMO

Abstract

This work presents the development and characterization process of a cold gas thruster vectorization system. The motor is required to have a thrust of 2 N and a chamber pressure of 5 bar. The chosen vectorization method for testing was the jet vane. The constructed motor had slight deviations from the requirements, with a specific impulse of 46.6 s. This motor was mounted on a control mechanism of the deflecting blade, and this assembly was coupled to a three-component scale for force and moment characterization. As a final result, the control derivatives for lateral force and moment were obtained. Finally, the methodological issues encountered and engineering trade-offs identified for the system were presented.

Lista de Figuras

Lista de Tabelas

Lista de Símbolos

F

 M_{δ}

F	Empuxo propulsivo
\dot{m}	Vazão mássica
v_e	Velocidade de exaustão média
p_c	Pressão de câmara
p_e	Pressão de saída média
p_{amb}	Pressão ambiente
A_c	Área da seção transversal da câmara
A_e	Área da seção transversal da saída da tubeira
A_t	Área da seção transversal da garganta
ε	Razão de expansão
I_{sp}	Impulso específico
C_F	Coeficiente de empuxo
C^*	Velocidade característica
F_x	Força horizontal, transversal ao motor foguete
F_y	Força vertical, na direção do empuxo propulsivo
M	Torque resultante
δ	Deflexão da lâmina (jet vane)
$F_{x\delta}$	Derivada da força lateral em relação à deflexão da lâmina

Derivada de momento em relação à deflexão da lâmina

Sumário

1	IN	ΓRODUÇÃO	14
	1.1	Definição do Problema	14
	1.2	Hipóteses	14
	1.3	Objetivos	14
	1.4	Justificativa	14
	1.5	Organização do trabalho	14
2	Rev	visão Bibliográfica	15
	2.1	Controle Ótimo	15
	2.2	Orbital Mechanics	15
	2.2	Lambert's Problem	15
	2.3	Orbital Maneuvers	15
	2.3	Propulsion models	15
	2.3	2.2 Primer vector theory	15
3	ME	TODOLOGIA	16
	3.1	Orbit Propagation	16
	3.2	Nonlinear solver	16
	3.3	Lambert problem formulations	16
	3.4	Optimal impulsive maneuver problem statement	16
4	\mathbf{RE}	SULTADOS E DISCUSSÃO	17
	4.1	Preliminary direct optimization results	17
	4.1	.1 Primer vector theory application	17

SUMÁRIO xiii								
4.2 Future results	. 17							
5 CONCLUSÃO	18							
Referências	19							
APÊNDICE A – FUTURE PLANNING	20							

1 INTRODUÇÃO

- 1.1 Definição do Problema
- 1.2 Hipóteses
- 1.3 Objetivos
- 1.4 Justificativa
- 1.5 Organização do trabalho

2 Revisão Bibliográfica

- 2.1 Controle Ótimo
- 2.2 Orbital Mechanics
- 2.2.1 Lambert's Problem
- 2.3 Orbital Maneuvers

Conway

- 2.3.1 Propulsion models
- 2.3.2 Primer vector theory

3 METODOLOGIA

- 3.1 Orbit Propagation
- 3.2 Nonlinear solver
- 3.3 Lambert problem formulations
- 3.4 Optimal impulsive maneuver problem statement

algo usado

4 RESULTADOS E DISCUSSÃO

- 4.1 Preliminary direct optimization results
- 4.1.1 Primer vector theory application
- 4.2 Future results

5 CONCLUSÃO

Referências

Apêndice A - Future Planning

	FOLHA DE REGIST	RO DO DOCUMENTO	
1. CLASSIFICAÇÃO/TIPO TC	 DATA 25 de março de 2015 	3. DOCUMENTO Nº DCTA/ITA/DM-018/2015	4. № DE PÁGINAS 20
^{5.} TÍTULO E SUBTÍTULO: Orbital Maneuver Optimiza	ation		
6. AUTOR(ES): Pedro Kuntz Puglia			
7. INSTITUIÇÃO(ÕES)/ÓRGÃ Instituto Tecnológico de Ae	O(S) INTERNO(S)/DIVISÃO(Ĉ ronáutica – ITA	ES):	
8. PALAVRAS-CHAVE SUGER Cupim; Cimento; Estrutura			
9. PALAVRAS-CHAVE RESUL Propulsão; Gás Frio; Vetori	•		
Mecânica. Área de Sistema	as Aeroespaciais e Mecatrôn	rama de Pós-Graduação em E lica. Orientador: Prof. Dr. A 05/03/2015. Publicada em 25/	dalberto Santos Dupont.
12. GRAU DE SIGILO: (X) OSTENS	IVO () RESE	RVADO () SEC	PRETO