Grupo 3

Participantes:

David Arias Calderón 20181020149 Luis Miguel Polo 20182020158

Taller 2 Ejercicio 4

Enunciado

Realizar el modelamiento del siguiente sistema empleando redes neuronales

$$G(s) = \frac{1}{2s^4 + 2s^3 + 4s^2 + 2s + 3}$$

Requerimientos de diseño

- Considerando el valor máximo de la señal:
- Error máximo del 5%
- Error cuadrático medio inferior al 2%

Solución

Modelamiento en simulink (Stop Time = 20)

Configuración de paso

Gráfica en simulink

Configuración de la red neuronal

```
%Red neuronal
net=newff(MinMax,[2 1],{'tansig' 'purelin'});
%Entrenamiento de la red neuronal
net.trainParam.epochs = 500;
net = train(net,P,T);
```

Resultados Entrenamiento

Training Results

Training finished: Reached maximum number of epochs

Training Progress

Unit	Initial Value	Stopped Value	Target Value	
Epoch	0	500	500	â
Elapsed Time	-	00:00:04	-	
Performance	6.54	5.6e-07	0	
Gradient	6.28	0.000251	1e-07	
Mu	0.001	1e-08	1e+10	
Validation Checks	0	0	6	Ŧ

Training Algorithms

Data Division: Levenberg-Marquardt trainIm

Performance: Mean Squared Error mse

Calculations: MEX

Error Cuadrático medio

```
>> AplicacionIdentificacion
mse =
   5.6048e-07
```

Gráfica de la simulación

Figura del error

