Artificial Intelligence AI 2002

Lecture 1

Mahzaib Younas
Lecture Department of Computer Science
FAST NUCES CFD

INTRODUCTION TO ARTIFICAL INTELLIGENCE

<u>INTELLIGENCE</u>

The ability to learn and solve problems

ARTIFICAL INTELLIGENCE:

The capacity given by human to machine to memorize and learn from experience, to think to create, to judge and make decision.

In other words,

- 1. The ability to solve problem.
- 2. The ability to act rationally.
- 3. The ability to act human.

HISTORY OF AI

1950

• The times when it all started

1955

• John McCarthy coined term of Artificial Intelligence.

1974

• Computer became faster and affordable

1980

• The year of Artificial Intelligence

2000

• Landmark of AI establishment achieved.

AI TYPES

There are four basic types of AI

- Reactive Machine
- Limited Memory
- Theory of Mind
- Self Awareness

AI TYPES (Cont...)

Reactive Machine

Limited Memory

AI TYPES (Cont...)

Theory of Mind

Self Awareness

FAMILY OF LEARNING ALGORITHM

Artificial Intelligence

Ability to Sense, engage, adapt and learns

Machine Learning

Use statical Method that enables machines to improve experience by learning

Deep Learning

Type of Machine Learning Algorithm which extract features by using Multi Layered Neural Network

Al 2002 Artifical Intelligence

Agents and environments

An agent is anything that;

- can be viewed as perceiving its environment
- through sensors.

and acting upon that environment through effectors (actuators).

A human agent has eyes, ears, and other organs for sensors.

hands, legs, mouth, and other body parts for effectors.

Example

- A robotic agent substitutes cameras and infrared range finders for the sensors.
 - - various motors for the effectors.

Agents and environments

Components of an AI System (Intelligent Agent)

- An agent perceives its environment through sensors and acts on the environment through actuators.
- 1. Human: (sensors) are eyes, ears, actuators (effectors) are hands, legs, mouth.
- 2. Robot: (sensors) are cameras, sonar, lasers, bumble-bee, (effectors) are grippers, manipulators, motors

How Agents should Act?

- An agents includes factor known as; a rational agent that does the right thing. (what is this?)
 - - Obviously, this is better than doing the wrong thing, but what does it mean?
 - 1. As a first approximation, we will say that the right action is the one that will cause the agent to be most successful.
 - 2. That leaves us with the problem of deciding "how" and "when" to evaluate the agent's success.

Solution

• A fixed performance measure evaluates the sequence of observed action effects on the environment.

Example

• Consider the case of an agent that is supposed to vacuum a dirty floor

Basic Factors:

- In case of "How" work with the evaluating performance measure.
- The "when" of evaluating performance measure is also important.

How and When?

- In case of "How" work with the evaluating performance measure.
 - 1. First, the <u>performance measure would</u> be the amount of dirt cleaned up in a single eight-hour shift.
 - 2. Second, performance measure would factor in the amount of electricity consumed and the amount of noise generated as well.
 - 3. performance measure might give highest marks to an agent that not only cleans the floor quietly and also efficiently.

- In case of "How" work with the evaluating performance measure.
 - 1. If we measured how much dirt the agent had cleaned up in the first hour of the day.
 - 2. either we query for appreciation or punishment to get positive results.

Example 2:

• Consider the case of an agent in which Taxi driver cover a reasonable distance ????

How Agents Should work?

- Tasks Parameters for Agents to perform accurately
- Environment Parameters for Agents to perform accurately

1. Tasks Parameters for Agents to perform accurately

• Major factors to evaluate the agents actions are;

Use PEAS to describe task

Performance measure

Environment

Actuators

Sensors

Example: Taxi Driver

Performance Measure

Safe

Fast

Comfortable

Environment

Roads

Traffic

Customer

Actuators

Brake

Starring

Signal

Horn

Sensors

Engine

Cameras

Speed Meter

2. Environment Parameters for Agents to perform accurately

- i) Fully observable vs. partially observable
- ii) Deterministic vs. stochastic / strategic
- iii) Episodic vs. sequential
- iv) Static vs. dynamic
- v) Discrete vs. continuous
- vi) Single agent vs. multiagent

Fully Observed Vs Partially Observed

monitoring the specific tasks (either Fully or partial).

- agent's sensory apparatus gives it access to the complete/partial state of the environment,

If we completely depend on sensors then its called fully observed other wise partially observed.

Example

Chess

Taxi Driver

Deterministic

- well-known knowledge of particular tasks. (either strategic or stochastic (change with condition)).
- If the next state of the environment is completely determined by the current state then deterministic.
 - Example: pick an object is acting as deterministic).
- If the next state of the environment is previously knowledge-based determined by the current state then Strategic.
 - Example: chess is acting as strategic).
- If the next state of the environment is uncertain situation determined by the current state then Stochastic.
 - Example: driving car is acting as stochastic).

Episodic vs. sequential

- series of separate parts (either sequential or episodic).
- the agent's experience is divided into "episodes.
- Each episode consists of the agent perceiving and then acting.

Lecture Delivering is episodic

Playing chess is Sequential

Static Vs Dynamic

- Static environments are easy to deal with because the agent need not keep looking at the world.
 - Example: Medical diagnosis is acting as static).
- If the environment can change while an agent is deliberating (thinking), then we say the environment is dynamic.
 - Example :driving a car is acting as dynamic).

Discrete vs Continuous

- There are a fixed number of possible moves on each turn, then Discrete.
 - Example: chess is acting as discrete
- Agent receives numerous range of continuous values, then its Continuous.
 - Example: driving car is acting as continuous

Environment Parameters for Agents to perform accurately

- Chess System
- Taxi Driver

Environment Parameters for Agents to perform accurately (cont...)

Environments Observable Deterministic Episodic Static Discrete Agents

Taxi Driver

Environments Observable Deterministic Episodic Static Discrete Agents

Chess Game

Environments Observable Deterministic Episodic Static Discrete Agents

Taxi Driver

Environments

• Taxi Driver

Observable

Partial

Deterministic

• Stochastic

Episodic

• Sequential

Static

• Dynamic

Discrete

• Continuous

Agents

• Single

Chess Game

Environments

• Playing with clock

Observable

• Fully

Deterministic

• Strategy

Episodic

• Sequential

Static

• Semi Dynamic Discrete

• Discrete

Agents

• Multi

Examples:

Environments	Observ able	Determinis tic	Episodic	Static	Discrete	Agents
Chess with a clock	Fully	Strategic	Sequential	Semi	Discrete	Multi
Taxi driving	Partial	Stochastic	Sequential	Dynamic	Continuous	Single
Medical diagnosis	Partial	Stochastic	Episodic	Static	Continuous	Single
Image analysis	Fully	Determinist ic	Episodic	Semi	Discrete	Single
Robot part picking	Fully	Determinist ic	Episodic	Semi	Discrete	Single
Interactive English tutor	Partial	Stochastic	Sequential	Dynamic	Discrete	Multi

Agent Types

- Five Types of Agents
 - Simple reflex agents
 - Reflex agents with state
 - Goal-based agents
 - Utility-based agents
 - Learning agent.