프로그래밍 과제 01

1. 입력으로 하나의 정수 $2 \le n \le 30$ 을 받아서 Fibonacci 수 f_n 을 계산하여 출력하는 프로그램을 작성하라. Fibonacci 수열은 다음과 같이 정의된다.

$$f_0 = 1$$

 $f_1 = 1$
 $f_n = f_{n-1} + f_{n-2}, \ n > 1$

입력 예	출력
5	8
10	89
20	10946
30	1346269

2. 입력으로 하나의 양의 정수 n을 받은 후 다음의 합을 구하여 출력하는 프로그램을 작성하라. 소수점 3 째 자리 이후에는 아래의 예시와 달라도 무시하라.

$$1 - \frac{1}{2} + \frac{1}{2^2} - \frac{1}{2^3} + \dots + (-1)^n \frac{1}{2^n}$$

입력 예	출력
1	0.5000
2	0.7500
5	0.6562
10	0.6670
20	0.6667

3. 먼저 양의 정수 N을 입력받고 이어서 N개의 정수를 키보드로 부터 입력받는다. 입력된 정수들 중에서 음이 아닌 정수들 중에서 최소값을 찾아서 출력하는 프로그램을 작성하라. 그런 값이 존재하지 않을 경우 -1을 출력하라.

입력 예	출력
10 1 4 8 11 -4 2 9 13 3 20	1
12 -2 -5 -6 -3 -10 -11 -7 -8 -9 -10 -9 -18	-1
20 -7 -8 -9 -12 0 -7 19 2 19 20 7 -5 -61 7 18 27 -81 77 16 9	0
8 -10 -7 1 7 2 4 8 8	1

4. 먼저 양의 정수 N을 입력받고 이어서 N개의 정수를 키보드로 부터 입력받는다. $\underline{\text{새로운 정수가 입력될}}$ $\underline{\text{때 마다}}$ 현재까지 입력된 정수들 중에서 최대값과 최소값의 차이를 계산하여 출력하는 프로그램을 작성하라. 배열을 사용해서는 안된다.

입력 예	출력
10 1 4 8 11 -4 2 9 13 3 20	0 3 7 10 15 15 15 17 17 24
12 -10 7 0 7 2 4 8 8 8 1 10 -15	0 17 17 17 17 18 18 18 18 20 25

5. 두 개의 날짜를 입력받은 후 그 중 첫 번째 날짜가 더 이르면 -1, 두 번째 날짜가 더 이르면 1, 두 날짜 가 동일하면 0을 출력하는 프로그램을 작성하라. 각각의 날짜는 년, 월, 일을 나타내는 3개의 정수로 주어진다. 날짜의 유효성을 체크할 필요는 없다.

입력 예	출력
2017 1 3 2016 12 9	1
2017 3 3 2017 3 3	0
2017 2 5 2017 2 4	1
2017 3 9 2017 2 19	1
1999 3 3 2011 5 8	-1

6. 키보드로 부터 2개 이상의 정수들을 연속해서 입력받는다. -1은 입력의 끝을 의미한다 (즉, -1 자체는 입력된 정수로 간주하지 않는다.) 입력된 정수들 중에서 극소값(local minima)의 개수를 카운트하여 출력하라. 여기서 극소값이란 바로 직전에 입력된 정수보다 작거나 같고, 바로 다음에 입력된 정수보다 도 작거나 같은 수를 의미한다. 단, 첫 번째 정수는 2번째 정수보다 작거나 같으면 극소값으로 간주하고, 마지막 정수는 바로 이전의 정수보다 작거나 같으면 극소값으로 간주한다.

입력 예	출력
1 1 2 1 3 5 9 8 -1	4
1 2 -1	1
9 7 5 7 8 1 3 9 -1	2
1 2 5 4 5 2 7 8 1 1 1 1 2 -1	7

7. 2차원 평면의 1사분면에서 직선 y = 2/3x의 아래쪽에 있고 직선 y = 1/3x의 위쪽에 있으면서 원점으로부터 거리가 100이하인 정수 좌표 점의 개수는? x-좌표나 y-좌표가 0이거나 직선 상에 있는 점도 포함한다. (정답: 1362)

- 8. 1693년에 Samuel Pepys는 뉴튼에게 "주사위를 6번 던져서 적어도 한 번 1이 나오는 것"과 "주사위를 12번 던져서 적어도 두 번 1이 나오는 것" 중 어느 쪽이 일어날 확률이 더 높은지 질문하였다. 이 질문에 대한 답을 실험을 통해 알아내는 프로그램을 작성하라. 즉 T=1,000,000번의 실험을 하여 두 사건이 일어난 경우의 수를 각각 카운트하는 프로그램을 작성하라. (6번 던져서 적어도 1번 1이 나오는 사건의 확률은 1-(5/6)6 ~ 0.6651이고, 12번 중 적어도 2번 1이 나오는 사건의 확률은 1-(5/6)12-2(5/6)11 ~ 0.618667이다. 대략 이 확률에 근접하는 실험 결과가 나오면 정답이다.)
- 9. 먼저 입력될 정수의 개수 $n \le 100$ 을 입력받고, 이어서 n개의 정수를 받아 <u>평균</u>과 <u>표준편차</u>를 계산하여 출력하는 프로그램을 작성하라. 표준편차는 다음과 같이 정의된다. 루트(square root)를 계산하기 위해 서 **cmath>**를 **include**하고 **sqrt**함수를 사용하라.

$$SD = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2}$$

입력 예	출력
3 1 1 1	1.0 0.0
6 1 9 8 2 5 12	6.1667 3.8909
6 -5 -1 -4 -1 -12 -9	-5.3333 4.0277
8 1 2 3 4 5 6 7 8	4.5 2.2913
10 1 4 0 4 4 -11 4 1 1 6	1.4 4.521

10.먼저 입력될 정수의 개수 $n \le 100$ 을 입력받고, 이어서 n개의 정수를 받아 순서대로 배열에 저장한다. 그런 다음 키보드로 부터 다시 하나의 정수 k를 입력받은 후 n개의 정수들 중에 서 k에 가장 가까운, 즉 k와의 차이의 절대값이 가장 작은 정수를 찾아 출력하는 프로그램을 작성하라.

입력 예	출력
6 1 9 8 2 5 12 7	8
6 -5 -1 -4 -1 -12 -9 20	-1
8 1 2 3 4 5 6 7 8 5	5
10 1 4 0 4 4 -11 4 1 1 6 -8	-11
12 73 28 1 9 37 46 -92 -8 37 0 0 12 24	28

11. 먼저 입력될 정수의 개수 *n* ≤ 100이 주어지고, 이어서 *n*개의 정수가 주어진다. 정수들 중에서 <u>자신보다 먼저 나온 모든 정수들 보다 크거나 같은 정수를 리더(leader)라고 부른다. 그리고 첫 번째 정수는 무조건 리더이다. 리더가 아닌 모든 정수들은 무시하고 <u>리더들만 입력된 순서대로 배열에 저장하는 프로그램</u>을 작성하라. 리더들은 배열의 맨 앞에서 부터 빈 칸 없이 저장되어야 한다. <u>먼저 리더들의 개수를</u> 출력하고 콜론(:)을 출력한 후 이어서 리더들을 순서대로 화면으로 출력하라.</u>

입력 예 (INPUT9.TXT)	출력
10 1 2 3 4 5 6 7 8 9 10	10: 1 2 3 4 5 6 7 8 9 10
5 1 1 1 1 1	5: 1 1 1 1 1
12 10 1 4 0 4 4 -11 4 1 1 6 -8	1: 10
9 6 -5 -1 -4 20 -1 -12 -9 20	3: 6 20 20
14 12 0 28 1 9 37 46 -92 -8 37 0 0 12 124	5: 12 28 37 46 124

12. 키보드로 부터 연속해서 정수들을 입력받는다. 정수가 하나 씩 입력될 때 마다 현재까지 입력된 정수들을 오름차순으로 정렬하여 화면에 출력한다. 단, 새로 입력된 정수가 이미 배열에 저장되어 있다면 추가하는 대신 "duplicate"라고 출력한다. 사용자가 -1을 입력하면 프로그램을 종료한다.

입력 예	출력
5	5
2	2 5
5	duplicate
1	1 2 5
3	1 2 3 5
-1	
4	4
3	3 4
4	duplicate
45	3 4 45
12	3 4 12 45
5	3 4 5 12 45
4	duplicate
45	duplicate
2	2 3 4 5 12 45
1	1 2 3 4 5 12 45
7	1 2 3 4 5 7 12 45
-1	

- 13. 선택정렬(selection sort) 알고리즘은 다음과 같다. 배열 data에 data[0]에서 data[n-1]까지 n개의 정수가 저장되어 있다. 먼저 data[0] ~ data[n-1] 사이의 정수들 중에서 가장 큰 정수를 찾는다. 그 것을 data[k]라고 가정해보자. 그러면 data[k]와 data[n-1]을 교환(swap)한다. 이제 가장 큰 정수가 data[n-1], 즉 맨 마지막 위치에 저장되었으므로 그 값에 대해서는 더 이상 생각할 필요가 없다. 이 제 data[0] ~ data[n-2] 중에서 최대값을 찾는다. 그 값을 data[p]라고 하자. 그러면 다시 data[p]와 data[n-2]를 교환하고 data[n-2]에 대해서는 잊어버려도 된다. 이런 식으로 계속하면 마지막에는 data[0]와 data[1] 중에 최대값을 data[1]과 교환하면 전체의 정렬이 완료된다. 이 알고리즘을 구현하라. 입력은 먼저 정렬할 정수의 개수 n이 주어지고 이어서 n개의 정수들이 주어진다.
- 14. 사용자로부터 *n*개의 정수를 입력받아 <u>크기순으로 정렬한 후 중복된 수를 제거</u>하는 프로그램을 작성하라. 입력 형식은 먼저 *n*의 값이 주어지고 이어서 *n*개의 정수들이 주어진다. 예를 들어 *n* = 8이고 입력된 정수들이 4, 7, 4, 12, 4, 10, 9, 7 이라면 중복을 제거하고 남은 정수들은 4, 7, 9, 10, 12 이다. 그러면 먼저 남은 정수의 개수 5를 출력하고 콜론(:)을 출력한 후 남은 정수들을 오름차순으로 출력한다.

입력 예	출력
8 4 7 4 12 4 10 9 7	5: 4 7 9 10 12
5 1 1 1 1 1	1: 1

15. 입력으로 *n*개의 구간(interval)이 주어진다. 각 구간은 구간의 시작점과 끝점으로 표현된다. 이 구간들을 시작점이 빠른 순서대로 정렬하여 출력하는 프로그램을 작성하라. 시작점이 같은 경우 끝점이 빠른 것을 먼저 출력한다. 입력 형식은 먼저 *n*의 값이 주어지고, 이어서 각 구간의 시작점과 끝점이 차례대로 주어진다. 각 구간의 시작점과 끝점은 정수이고, 끝점은 항상 시작점보다 크거나 같다.

	입력 예	출력
8	// 구간의 개수	
2 8	// 첫 번째 구간의 시작점과 끝점	1 5
4 12	// 두 번째 구간의 시작점과 끝점	2 8
	// 구 근에 구인의 시크리의 트리	4 7
4 7		4 10
4 10		4 12
1 5		6 8
9 11		9 11
15 18		15 18
6 8	// 마지막 구간의 시작점과 끝점	15 16

16. 수열에서 큰 값이 작은 값보다 앞서 나오는 경우 두 값을 역전된(inverted) 쌍이라고 부른다. 예를 들어수열 4, 2, 1, 1, 3에는 (4, 2), (4, 1), (4, 1), (4, 3), (2, 1), (2, 1)의 총 6개의 역전된 쌍이 있다. 수열을 입력으로 받아서 역전된 쌍의 개수를 카운트하여 출력하는 프로그램을 작성하라. 키보드로부터 먼저 정수의 개수 N을 입력받고, 이어서 N개의 정수를 입력 받는다.

입력 예	출력
5 4 2 1 1 3	6
10 3 8 10 7 2 1 8 9 11 7	18
8 1 1 1 1 1 1 1 1	0
8 8 7 6 5 4 3 2 1	28

17. 입력으로 하나의 수열이 주어진다. 이 중 오름차순으로 정렬되어 있는 가장 긴 구간을 찾아서 그 구간의 길이를 출력하는 프로그램을 작성하라. 예를 들어 수열이 2, 3, -2, -2, -2, 7, 7, 9, 10, 10, 9, -3라면 밑줄 친 구간이 가장 긴 구간이고 그 길이는 8이다. 입력은 키보드로부터 받으며 먼저 수열의 길이 N이 주어지고 이어서 N개의 정수들이 주어진다.

입력 예	출력
12 2 3 -2 -2 -2 7 7 9 10 10 9 -3	8
10 3 7 1 8 0 2 6 2 1 9	3
12 9 3 7 2 4 6 12 8 3 2 9 1	4
12 9 9 9 9 8 9 10 3 4 5 1 2	4
6 1 1 1 1 1 1	6

18. 입력으로 N개의 정수와 또 하나의 정수 K가 주어진다. N개의 정수들 중에서 <u>합이 K를 초과하지 않으면 서 가장 긴 구간</u>을 찾아 그 구간의 길이를 출력하는 프로그램을 작성하라. 키보드로부터 먼저 정수의 개수 N을 입력받고, 이어서 N개의 정수를 입력 받은 후, 마지막으로 정수 K를 입력 받는다.

	입력 예	출력
6 4 1 1 2 3 1 5		3
4 5 6 7 8 3		0

입력 예	출력
12 8 1 3 4 1 2 7 2 1 3 1 1 10	5
8 1 1 1 1 1 1 1 1 8	8

19. 7개의 1~13 사이의 정수를 키보드로부터 입력받아 스트레이트(straight)가 성립하는지 판단하여 YES 혹은 NO라고 출력하는 프로그램을 작성하라. 스트레이트란 7개의 정수들 중 어떤 5개가 연속된 숫자 인 경우를 말한다. 예를 들어서 입력된 정수가 5, 2, 5, 11, 4, 3, 6이면 이들 중 2, 3, 4, 5, 6이 있으므로 스트레이트가 성립한다.

입력 예	출력
5 2 5 11 4 3 6	YES
8 8 12 5 5 3 4	NO
3 5 7 6 1 9 13	NO
9 10 11 8 2 2 7	YES

20. [Puppy's Escape] 강아지가 N × N 크기의 2차원 배열의 가운데 위치 (N/2,N/2)에서 출발한다. N은 홀수이다. 상, 하, 좌, 우 4방향으로 인접한 셀(cell)들 중에서 <u>방문한 적이 없는 한 셀을 동일한 확률로 랜덤하게 선택</u>하여 한 칸 이동한다. 가령 아래 그림에서 강아지의 현재 위치는 (3, 3)이고 이웃한 위치들 중에서 아직 방문하지 않은 위치는 (2, 3)과 (4, 3)으로 2곳이다. 따라서 두 위치중 하나를 1/2의 확률로 선택하여 이동한다. <u>배열의 가장자리 셀에 도착하면 탈출에 성공한 것이다</u>. 하지만 아무 곳으로도 이동할 수 없는 상태에 처하면 탈출에 실패한 것이다. 아래 그림의 예에서 만약 위쪽 방향을 선택하여 (2, 3)으로 이동한다면 그 다음에는 어떻게 하더라도 탈출에 성공할 수 없다. 입력으로 하나의 홀수 N ≤ 100을 받아서 강아지가 탈출에 성공할 확률을 시뮬레이션으로 계산하는 프로그램을 작성하라. 실험 횟수는 10,000번으로 하라. 정답은 없으며 아래의 예와 유사한 값이 출력되면 된다.

입력 예	출력 (정답이 없고 유사하면 됨)
5	1.0
9	0.966
21	0.644

입력 예	출력 (정답이 없고 유사하면 됨)
51	0.117
71	0.033
99	0.005