

Лекция 4. Логистическая регрессия

Задача классификации

- > Электронная почта: спам / не спам
- > Онлайн сайты: вредоносный / легальный
- > Диагностика рака: злокачественный / доброкачественный

негативный класс «спам», «вредоносный», «злокачественный»

$$y \in \{A, B\}$$
 $y \in \{-, +\}$

у ∈ {0, 1, 2, 3, 4} – многоклассовая классификация (будет рассмотрена позднее)

Задействуем линейную регрессию

Диагностика рака:

$$y = 1 -$$
злокачественный $y = 0 -$ доброкачественный

$$h_{\theta}(x) \ge 0.5 \quad \rightarrow \quad y = 1$$

$$h_{\theta}(x) < 0.5 \quad \rightarrow \quad y = 0$$

Можно ли использовать линейную регрессию для классификации?

В принципе, да, но не в таком виде!

Задействуем линейную регрессию

Диагностика рака:

$$y = 1 -$$
злокачественный $y = 0 -$ доброкачественный

Пороговое условие:

$$h_{\theta}(x) \ge 0.5 \quad \rightarrow \quad y = 1$$

$$h_{\theta}(x) < 0.5 \quad \rightarrow \quad y = 0$$

$$y \in \{0, 1\}$$

$$h_{\theta}(x) \in \mathbb{R}$$

$$h_{\theta}(x) < 0$$
 ?

$$h_{\theta}(x) > 1$$
 ?

Логистическая регрессия

$$0 \le h_{\theta}(x) \le 1$$

Как интерпретировать значения
$$h_{\theta}(x) > 0$$
 и $h_{\theta}(x) < 1$?

$$g(z) = \frac{1}{1 + e^{-z}}$$

 $g(z) = \frac{1}{1 + e^{-z}}$ сигмоида, сигмовидная функция, логистическая функция

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Вид гипотезы логистической регрессии

Интерпретация значения гипотезы

$$h_{\theta}(x)$$
 – вероятность того, что $y=1$ для заданного x

$$x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{размер} \end{bmatrix}$$
 Например, $h_{\theta}(x) = 0.7$

 $h_{\theta}(x) = 0.7$ означает, что пациент (x) имеет шанс 70% наличия «злокачественной» (y = 1) болезни

 $h_{\theta}(x) = P(y=1|x;\theta)$ – вероятность того, что y=1 для заданного x при параметрах θ

$$y \in \{0, 1\}$$
 $P(y = 1|x; \theta) + P(y = 0|x; \theta) = 1$

Интерпретация значения гипотезы

Предположим, что имеется задача медицинской диагностики определения доброкачественной или злокачественной раковой опухоли. Для некоторого пациента, описанного вектором параметров x, логистическая регрессия выдала значение $h_{\theta}(x) = P(y = 1|x; \theta) = 0.7$, в связи с чем мы оцениваем шанс 70%, что опухоль является злокачественной.

Какова должна быть оценка, что опухоль является доброкачественной, то есть $P(y = 0|x; \theta)$?

$$\mathbf{\Sigma} P(y=0|x;\theta) = 0.3$$

$$\triangleright$$
 $P(y = 0|x; \theta) = 0.7$

$$P(y = 0|x; \theta) = 0.7^2$$

$$P(y = 0 | x; \theta) = 0.3 \times 0.7$$

$$h_{ heta}(x) = g(z) = P(y=1|x; heta)$$
 $g(z) \geq 0.5$ $g(z) \geq 0.5$ $g(z) = \frac{1}{1+e^{-z}}$ Одномерный случай: точка $g(z) = \frac{1}{1+e^{-z}}$ $g(z) < 0.5$

$$y = 1: h_{\theta}(x) \ge 0.5 \qquad z \ge 0 \qquad \theta^T x \ge 0$$

$$y = 0:$$
 $h_{\theta}(x) < 0.5$ $z < 0$ $\theta^{T}x < 0$

$$h_{\theta}(x) = 0.5$$

 $\theta^{T} x = 0$
 Уравнение **границы ре** кривой, разделяющей по гиперплоскости, *разделя*

Уравнение **границы решения** (разделяющей кривой, разделяющей плоскости, разделяющей гиперплоскости, разделяющей гиперповерхности)

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

$$\theta = \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix}$$

 $\theta = \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix}$ решение (результат алгоритма градиентного спуска)

Двумерный случай: линия

$$y = 1:$$
 $-3 + x_1 + x_2 \ge 0$

$$\theta^T x = 0$$

$$-3 + x_1 + x_2 = 0$$

$$x_1 + x_2 = 3$$

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2)$$

$$\theta = \begin{bmatrix} -1\\0\\0\\1\\1 \end{bmatrix} \qquad y = 1: \ -1 + x_1^2 + x_2^2 \ge 0$$

$$x_1^2 + x_2^2 = 1$$

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2 + \theta_5 x_1 x_2 + \theta_6 x_1^2 x_2 + \cdots)$$

Поверхность в трехмерном пространстве

Рассмотрим логистическую регрессию с двумя параметрами x_1 и x_2 . Предположим, что $\theta_0 = 5$, $\theta_1 = -1$, $\theta_2 = 0$. Таким образом $h_{\theta}(x) = g(5 - x_1)$.

Что является границей решения для $h_{\theta}(x)$?

Задача логистической регрессии

Обучающая выборка из т элементов:

$$\big\{ \big(x^{(1)}, y^{(1)} \big), \big(x^{(2)}, y^{(2)} \big), \dots, \big(x^{(m)}, y^{(m)} \big) \big\}$$

Объекты:

$$x \in \mathbb{R}^{n+1} = \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_n \end{bmatrix} \quad x_0 = 1$$

$$y \in \{0,1\}$$
 (два класса)

Гипотеза:

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$
 (метод градиентного спуска)

Для линейной регрессии:

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

$$h_{\theta}(x) = \theta^T x$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

В чем проблема с этой функцией?

Выпуклая функция

Функция выпуклая, когда отрезок между любыми двумя точками графика функции в векторном пространстве лежит не ниже соответствующей дуги графика. Может быть выпуклой вверх или вниз.

Какая из представленных ниже кривых выпуклая?

Для логистической регрессии:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} C(h_{\theta}(x^{(i)}), y^{(i)})$$

Задача медицинской диагностики рака:

$$y^{(i)} = 1$$
 – злокачественная

$$y^{(i)} = 0$$
 — доброкачественная

$$C(h_{ heta}(x^{(i)}), y^{(i)}) = egin{cases} -\log\left(h_{ heta}(x^{(i)})
ight), \text{ если } y = 1 \\ -\log\left(1 - h_{ heta}(x^{(i)})
ight), \text{ если } y = 0 \end{cases}$$

$$C(h_{ heta}(x),y) = egin{cases} -\logig(h_{ heta}(x)ig),$$
 если $y=1 \ -\logig(1-h_{ heta}(x)ig),$ если $y=0$

Какие из следующих утверждений верны?

$$left$$
 Если $h_{ heta}(x) = y$, то $C(h_{ heta}(x), y) = 0$ (для $y = 0$ и $y = 1$)

$$left$$
 Если $y=0$ и $h_{ heta}(x) o 1$, то $\mathcal{C}(h_{ heta}(x),y) o \infty$

$$left$$
 Если $y=0$ и $h_{ heta}(x) o 0$, то $\mathcal{C}(h_{ heta}(x),y) o 0$

$$left$$
 Если $h_{ heta}(x) = 0.5$, то $C(h_{ heta}(x), y) > 0$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} C(h_{\theta}(x^{(i)}), y^{(i)})$$

$$C(h_{\theta}(x^{(i)}), y^{(i)}) = \begin{cases} -\log\left(h_{\theta}(x^{(i)})\right), \text{если } y^{(i)} = 1\\ -\log\left(1 - h_{\theta}(x^{(i)})\right), \text{если } y^{(i)} = 0 \end{cases}$$

$$C(h_{\theta}(x^{(i)}), y^{(i)}) = -y^{(i)} \log(h_{\theta}(x^{(i)})) - \underbrace{(1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))}_{0}$$
$$y^{(i)} = 1 \qquad 0$$

$$y^{(i)} = 0$$

$$C(h_{\theta}(x^{(i)}), y^{(i)}) = -y^{(i)} \log(h_{\theta}(x^{(i)})) - (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} C(h_{\theta}(x^{(i)}), y^{(i)})$$

$$C(h_{\theta}(x^{(i)}), y^{(i)}) = -y^{(i)} \log(h_{\theta}(x^{(i)})) - (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))$$

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right]$$

Как найти θ , при которых $J(\theta)$ принимает минимальное значение?

Алгоритм градиентного спуска!

$$\frac{\partial}{\partial \theta_j} J(\theta) \qquad j = 0, \dots, n \qquad \theta \in \mathbb{R}^{n+1} = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \dots \\ \theta_n \end{bmatrix}$$

Градиентный спуск для логистической регрессии

Найти n + 1 частных производных:

$$\frac{\partial}{\partial \theta_i} J(\theta) \qquad j = 0, \dots, n$$

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right]$$

$$h_{\theta}(x^{(i)}) = \frac{1}{1 + e^{-\theta^T x^{(i)}}}$$

$$\theta \in \mathbb{R}^{n+1} = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \dots \\ \theta_n \end{bmatrix} \qquad x \in \mathbb{R}^{n+1} = \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_n \end{bmatrix}$$

Градиентный спуск для логистической регрессии

Частные производные по всем параметрам

 $\theta_0, \dots, \theta_n$

 $\frac{\partial}{\partial \theta_0} J(\theta) = \frac{1}{m} \sum_{i=1}^m \left(h_\theta \left(x^{(i)} \right) - y^{(i)} \right) x_0^{(i)}$

$$\frac{\partial}{\partial \theta_1} J(\theta) = \frac{1}{m} \sum_{i=1}^m \left(h_\theta \left(x^{(i)} \right) - y^{(i)} \right) x_1^{(i)}$$

...

$$\frac{\partial}{\partial \theta_n} J(\theta) = \frac{1}{m} \sum_{i=1}^m \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right) x_n^{(i)}$$

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=1}^m \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right) x_j^{(i)}, \qquad j = 0, \dots, n$$

Очень похоже на линейную регрессию

Ho!
$$h_{\theta}(x^{(i)}) = \frac{1}{1 + e^{-\theta^T x^{(i)}}}$$

Градиентный спуск для логистической регрессии

$$\theta := \theta - \alpha \nabla J(\theta)$$

Шаг градиентного спуска:
$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \dots \\ \theta_n \end{bmatrix} \qquad \nabla J(\theta) = \begin{bmatrix} \frac{\partial}{\partial \theta_0} J(\theta) \\ \frac{\partial}{\partial \theta_1} J(\theta) \\ \frac{\partial}{\partial \theta_1} J(\theta) \end{bmatrix}$$

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=1}^m \left(h_\theta \big(x^{(i)} \big) - y^{(i)} \big) x_j^{(i)} \qquad j = 0, \dots, n$$

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=1}^m \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right) x_j^{(i)} \qquad j = 0, \dots, n$$

Какое из следующих выражений ему эквивалентно?

$$\mathbf{Y} \theta := \theta - \alpha \frac{1}{m} \sum_{i=1}^{m} \left[\left(h_{\theta} (x^{(i)}) - y^{(i)} \right) x^{(i)} \right]$$

$$\Theta := \theta - \alpha \frac{1}{m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) \right] x^{(i)}$$

$$\Theta := \theta - \alpha \frac{1}{m} x^{(i)} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})$$

🛚 Все три верны

Задача сортировки электронных писем Дано *т* входящих писем, нужно присвоить им ярлыки:

Работа	Семья	Друзья	Развлечения	Реклама
y = 1	y = 2	y = 3	y = 4	y = 5

Задача прогноза облачности на завтра

Ясно Переменная Пасмурно y=0 y=1 y=2

Принцип «один-против-всех»

Принцип «один-против-всех»

Дано x. Как определить, к какому классу он относится?

$$h_{\theta}^{(k)}(x) = P(y = k | x; \theta)$$
 — вероятность того, что $y = k$ для $0 \le h_{\theta}^{(k)}(x) \le 1$ заданного x при параметрах θ

$$H_{\theta}(x) = \underset{k}{\operatorname{argmax}} h_{\theta}^{(k)}(x)$$

Функция argmax возвращает k того $h_{\theta}^{(k)}(x)$, значение которого максимально

В задаче классификации на k классов (т.е. $y \in \{1, ..., k\}$) сколько различных классификаторов методом логистической регрессии необходимо обучить?

$$\mathbb{Z}$$
 k^2

$$\bowtie$$
 $\log_2 k$

Продвинутые алгоритмы оптимизации

Оптимизация — математическая задача нахождения минимума функции

Определить такие параметры θ , при которых $J(\theta)$ принимает наименьшее значение

Найти наилучшую гипотезу $h_{\theta}(x)$

Градиентный спуск – простой алгоритм оптимизации

- > Легко реализуется
- > Понятен
- Позволяет реализацию методами линейной алгебры

- \triangleright Требует настройки (α, ε)
- Может долго сходиться
- Не находит глобальный минимум

Методы первого порядка (используют первую производную, градиент)

- > Метод сопряженных градиентов Флетчера Ривса
- > Стохастический градиентный спуск (SGD)
- > Адаптивный стохастический градиентный спуск (Adagrad, Adam, RMSProp)

Методы второго порядка (используют также вторую производную, гессиан)

- Алгоритм Бройдена Флетчера Гольдфарба Шанно (BFGS, L-BFGS)
- ➤ Метод Ньютона (его тензорные варианты Shampoo)
- > Алгоритм адаптивной оценки Гессиана (AdaHessian)

Модель имеет хорошую обобщающую способность, если хорошо работает и на обучающем наборе и на новых данных Хорошо на обучающем наборе и плохо на новых данных — плохая

обобщающая способность.

Недообученная модель Переобученная модель

Рассмотрим задачу медицинской диагностики (задача классификации). Если гипотеза $h_{\theta}(x)$ переобучается на наборе данных, то это означает, что ... (выбрать один правильный ответ)

- гипотеза делает точные предсказания на обучающем наборе данных и хорошо обобщается, делает точные предсказания для новых, ранее не встречаемых примерах
- **г**ипотеза делает плохие предсказания на обучающем наборе данных, но хорошо обобщается
- **г**ипотеза делает плохие предсказания на обучающем наборе данных и плохо обобщается

Причины переобучения

- Ошибки конструирования модели (слишком сложная функция)
- ightharpoonup Много исходных параметров $(n \gg m)$

 x_1 — площадь дома

 x_2 — количество комнат

 x_3 — количество этажей

 x_4 — возраст дома

. . .

 x_{98} — расстояние до магазина

 x_{99} — средний доход жителей по соседству

. . .

$$h_{\theta}^{(3)}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \dots + \theta_4 x^4$$

Методы борьбы с переобучением

1. Использовать внешние критерии оценки $J(\theta)$

Будем изучать позже

Будем

изучать позже

Не всегда хорошо,

- 2. Уменьшить размер вектора θ :
 - вручную выбрать признаки, которые важны все оставить в модели
 - использовать методы отбора признаков .
- 3. Использовать регуляризацию
 - сохранить все признаки в исходных данных, но уменьшить для некоторых из них степень влияния на результат
 - хорошо работает, когда имеется множество признаков, все из которых имеют некоторое влияние на результат

Рассмотрим подробнее

$$h_{\theta}^{(2)}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$$

$$h_{\theta}^{(3)}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

Добавим штраф на параметры θ_3 и θ_4 :

$$J(\theta) = \left[\frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2} + \underline{1000 \cdot \theta_{3}^{2}} + \underline{1000 \cdot \theta_{4}^{2}} \right] \to \min$$

$$\theta_3 \approx 0$$

$$\theta_4 \approx 0$$

Небольшие значения некоторых $\theta_0, \theta_1, \dots, \theta_n$

- > Упрощают гипотезу
- Делают ее менее склонной к переобучению

Регуляризованная функция стоимости:

$$J(\theta) = \frac{1}{2m} \Biggl[\sum_{i=1}^{m} \bigl(h_{\theta} \bigl(x^{(i)} \bigr) - y^{(i)} \bigr)^2 + \lambda \sum_{j=1}^{n} \theta_{j}^2 \Biggr] \qquad \text{ регуляризации}$$

$$j = 1, \dots, n$$

 θ_0 не участвует в регуляризации

 θ_0 можно включать или не включать в регуляризацию, результат почти не меняется. Не будем включать θ_0

Решая задачу регуляризованной линейной регрессии градиентным спуском, мы должны получить значения θ такие, чтобы найти минимум функции стоимости:

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

Что если задать значение λ очень большим (например, $\lambda = 10^{10}$) ?

- lacktriangleq Алгоритм отрабатывает правильно, большое значение λ не повредит ему
- Устранить переобучение не получится, но на обучающем наборе данных результат будет достаточно точным
- ☑ Получим недообученную модель
- 🛂 Градиентный спуск не сможет завершить работу

Решая задачу регуляризованной линейной регрессии градиентным спуском, мы должны получить значения θ такие, чтобы найти минимум функции стоимости:

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

Что если задать значение λ очень большим (например, $(\lambda = 10^{10})$?

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \qquad 0 \qquad 0 \qquad 0$$

$$h_{\theta}(x) = \theta_0$$
 Недообученная модель!

Выбор значения λ должен быть обоснован (рассматривается в дальнейших лекциях)

Функция стоимости:
$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

Частные производные:

$$\frac{\partial}{\partial \theta_0} J(\theta) = \frac{1}{m} \sum_{i=1}^m \left(h_\theta \left(x^{(i)} \right) - y^{(i)} \right) x_0^{(i)}$$

$$\frac{\partial}{\partial \theta_j} J(\theta) = \left[\frac{1}{m} \sum_{i=1}^m \left(h_{\theta} (x^{(i)}) - y^{(i)} \right) x_j^{(i)} \right] + \frac{\lambda}{m} \theta_j$$

$$j = 1, ..., n$$

Цикл шага алгоритма градиентного спуска:

```
повторять {
       для j = 0, ..., n:
               \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\theta_0, ..., \theta_n)
} пока d\theta_i > \varepsilon, j = 0, ..., n
                                                                                                  \theta_0 не регуляризуется
                  повторять {
                         \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})
                          для j = 1, ..., n:
                                 \theta_j := \theta_j \left( 1 - \alpha \frac{\lambda}{m} \right) - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_i^{(i)}
                  } пока d\theta_i > \varepsilon, j = 0, ..., n
```

Решаем задачу регуляризованной линейной регрессии градиентным спуском на обучающем наборе размером m>0, используя некоторый небольшой шаг $\alpha>0$ и некоторый заданный параметр регуляризации $\lambda>0$. Для вычисления следующего значения θ_1,\dots,θ_n используется выражение:

$$\theta_{j} := \theta_{j} \left(1 - \alpha \frac{\lambda}{m} \right) - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)}$$

Какое из следующих утверждений является верным?

$$1 - \alpha \frac{\lambda}{m} > 1$$

$$1 - \alpha \frac{\lambda}{m} = 1$$

И Никакое из перечисленных

Регуляризация нормального уравнения

$$X = \begin{bmatrix} x_0^{(1)} & \dots & x_n^{(1)} \\ \dots & \dots & \dots \\ x_0^{(m)} & \dots & x_n^{(m)} \end{bmatrix} \in \mathbb{R}^{m \times (n+1)} \qquad Y = \begin{bmatrix} y^{(1)} \\ \dots \\ y^{(m)} \end{bmatrix} \in \mathbb{R}^m \qquad \underset{\boldsymbol{\theta}}{\min} J(\boldsymbol{\theta}) ?$$

$$\theta = (X^T X)^{-1} X^T y$$

не регуляризованная форма нормального уравнения

Регуляризованная форма нормального уравнения

$$\theta = \begin{pmatrix} X^T X + \lambda & 0 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix}^{-1} X^T y$$

Если размер обучающей выборки мал: $m \ll n$

$$\theta = (X^T X)^{-1} X^T y$$
 $\theta = \begin{pmatrix} X^T X + \lambda & 0 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix}$
не обратимая (вырожденная) матрица
обратимая матрица

Регуляризация позволяет получить решение нормального уравнения во многих случаях

при условии $\lambda > 0$

При больших значениях n нахождение обратной матрицы по прежнему очень долгий процесс

Регуляризованная логистическая регрессия

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x + \theta_2 x^2 + \dots + \theta_4 x^4)$$

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

Не дает параметрам $\theta_1, ..., \theta_n$ расти, уменьшая склонность модели к переобучению $(\theta_0$ у нас не участвует в регуляризации)

Регуляризованная логистическая регрессия

Цикл шага алгоритма градиентного спуска:

повторять {
$$\theta_0 \text{ не регуляризуется}$$

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$
 для $j=1,\dots,n$:
$$\theta_j := \theta_j \left(1 - \alpha \frac{\lambda}{m}\right) - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$
 } пока $d\theta_j > \varepsilon, j=0,\dots,n$

Точно также, как и для линейной регрессии, но ...

$$h_{\theta}(x^{(i)}) = \theta^{T} x^{(i)} \qquad h_{\theta}(x^{(i)}) = \frac{1}{1 + e^{-\theta^{T} x^{(i)}}}$$

Регуляризованная логистическая регрессия

Используя логистическую регрессию, какой способ контролировать, что градиентный спуск работает корректно, является правильным из представленных?

- Отобразить график $-\frac{1}{m} [\sum_{i=1}^m y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) + (1-y^{(i)}) \log \left(1 h_{\theta}(x^{(i)}) \right)]$ от номера итерации и убедиться в том, что функция уменьшается
- Отобразить график $-\frac{1}{m} [\sum_{i=1}^m y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) + (1-y^{(i)}) \log \left(1 h_{\theta}(x^{(i)}) \right)] + \frac{\lambda}{2m} \sum_{j=1}^n \theta_j^2$ от номера итерации и убедиться в том, что функция уменьшается
- Отобразить график $-\frac{1}{m} \Big[\sum_{i=1}^m y^{(i)} \log \Big(h_{\theta}(x^{(i)}) \Big) + \big(1 y^{(i)} \big) \log \Big(1 h_{\theta}(x^{(i)}) \Big) \Big] \frac{\lambda}{2m} \sum_{j=1}^n \theta_j^2$ от номера итерации и убедиться в том, что функция уменьшается
- **У** Отобразить график значения $\sum_{j=1}^{n} \theta_{j}^{2}$ от номера итерации и убедиться в том, что функция уменьшается