COSC 290 Discrete Structures

Lecture 17: Structural induction on logic

Prof. Michael Hay Friday, Mar. 9, 2018 Colgate University

Practice with structural induction on trees

Plan for today

- 1. Practice with structural induction on trees
- 2. Structural induction on propositions

Recall: structural induction

If you have a recursively defined structure – a structure defined in terms of one or more base cases and one or more inductive cases – you can prove properties about it using structural induction. With structural induction, proof components should align with components of recursive definition.

Height of a tree, defined recursively

We can also define height recursively: let h(T) denote the height of tree T.

- Base case: tree T is empty,
 h(T) = −1.
- Inductive case: T is non-empty, thus it consists a root node x, a left subtree T_{ℓ} , and a right subtree T_{ℓ} . Then, $h(T) = 1 + \max\{h(T_{\ell}), h(T_{\ell})\}$.

Proof of base case

Claim:
$$nodes(T) \le 2^{h(T)+1} - 1$$

Base case: T is empty so nodes(T) = 0 and h(T) = -1.

Indeed nodes(T)
$$\leq 2^{h(T)+1} - 1 = 2^{-1+1} - 1 = 0$$
.

Recall: exercise from last class

Claim: $nodes(T) \le 2^{h(T)+1} - 1$

For reference: let h(T) denote the height of tree T.

- Base case: tree T is empty, h(T) = −1.
- Inductive case: T is non-empty, thus it consists a root node x, a left subtree T_ℓ , and a right subtree T_ℓ . Then, $h(T) = 1 + \max\{h(T_\ell), h(T_\ell)\}$.

Proof of inductive case

Claim: $nodes(T) \le 2^{h(T)+1} - 1$

Inductive case: T is a non-empty tree of height h(T), consisting of node x and left and right subtrees T_c and T_c .

$$\begin{split} & \textit{nodes}(T) = 1 + \textit{nodes}(T_t) + \textit{nodes}(T_t) & \text{(b. +1 for root)} \\ & \leq 1 + (2^{b(T_t)+1} - 1) + (2^{b(T_t)+1} - 1) & \text{(c. ind. hypothesis)} \\ & \leq 1 + (2^{(b(T)-1)+1} - 1) + (2^{(b(T)-1)+1} - 1) & \text{(d. why?)} \\ & = 2^{h+1} - 1 = 2^{h(T)+1} - 1 & \text{(e. algebra)} \end{split}$$

Explanation for line d:

Recall definition of height: $h(T) := 1 + \max\{h(T_{\ell}), h(T_{r})\}.$

So
$$h(T_{\ell}) \le h(T) - 1$$
 and $2^{h(T_{\ell})+1} \le 2^{(h(T)-1)+1}$.

Same idea for T_r .

Poll: Lower bound?

- False Claim: $nodes(T) \ge 2^{h(T)+1} 1$
- · Faulty proof by structural induction:
 - Base cases: T is empty, height is -1 and nodes(T) ≥ 2⁻¹⁺¹ 1 = 0.
 Inductive case: T is a non-empty tree of height h(T), consisting of
 - Inductive case: T is a non-empty tree of height h(T), consisting of node x and left and right subtrees T_ℓ and T_r.

$$nodes(T) = 1 + nodes(T_c) + nodes(T_c)$$
 (b. +1 for root)
 $\geq 1 + (2^{k(T_c)+1} - 1) + (2^{k(T_c)+1} - 1)$ (c. ind. hypothesis)
 $\geq 1 + (2^{(k(T_c)+1)+1} - 1) + (2^{(k(T_c)+1)+1} - 1)$ (d. subtree heights)
 $= 2^{k+1} - 1 = 2^{k(T_c)+1} - 1$ (e. algebra)

Where's the flaw? A) first sentence of inductive case; B) line b; C) line c; D) line d: E) line e.

Propositions, recursively defined

A proposition φ is a well-formed formula (wff) over the variables in the set $P := \{p_1, \dots, p_n\}$, is one of the following:

- (base case) $\varphi := p$ for some $p \in P$
- (inductive cases)
 - ω := α ∨ β
 - $\varphi := \alpha \wedge \beta$
 - $\varphi := \alpha \implies \beta$ • $\varphi := \neg \alpha$

where α and β are well-formed formulas.

Structural induction on propositions

Negation Normal Form

Definition (Negation Normal Form (NNF))

A proposition φ is in negation normal form if the negation connective is applied only to variables and not to more complex expressions, and furthermore, the only connectives allowed are in the set $\{\Lambda, V, \neg\}$.

Exercise: Negation Normal Form

Given

$$\varphi := \neg(p \land (\neg q \lor r)) \lor s$$

let's write an equivalent proposition that is in NNF by "pushing negations down."

Hint: double negation and De Morgan's laws are useful.

$$\neg(\neg \alpha) \equiv \alpha$$
 double-negation elimination
 $\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$ De Morgan's law #1
 $\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$ De Morgan's law #2

10

All propositions can be expressed in NNF

Claim: For any wff φ , there exists a proposition φ' that is in NNF and is logically equivalent to φ .

11

Restating claim

Claim: For any well-formed formula φ , there exists a proposition φ' that is in negation normal form and is logically equivalent to φ . Notation:

- isNNF(φ) denotes the predicate: φ is in NNF.
- hasNNF(φ) denotes the predicate: there exists a proposition φ' that is in NNF and $\varphi' \equiv \varphi$.
- · W denotes the set of all well-formed formulas

Thus, our claim can be restated as $\forall \varphi \in W : hasNNF(\varphi)$.

Proof

Claim A: $\forall \varphi \in W : hasNNF(\varphi)$.

We will instead prove the stronger claim:

Claim B: $\forall \omega \in W : hasNNF(\omega) \land hasNNF(\neg \omega)$.

How is this "stronger?" How does this help?

(See also book discussion on p. 540.)

13

Poll: what is the base case?

Claim B: $\forall \varphi \in W : hasNNF(\varphi) \land hasNNF(\neg \varphi)$.

We will do a proof by structural induction.

How should we structure the base case(s)?

- A) Two base cases: $\varphi \coloneqq p$ and $\varphi \coloneqq \neg p$. In each, want to show hasNNF(φ).
- B) One base cases: $\varphi := p$, want to show: $hasNNF(p) \wedge hasNNF(\neg p)$
- C) Either of above is acceptable.
- D) Structural induction proofs do not have base cases

Poll: Inductive case 1, what to show?

Claim B: $\forall \varphi \in W : hasNNF(\varphi) \land hasNNF(\neg \varphi)$.

Proof continued...

Inductive cases: We focus on case 1: $\varphi \coloneqq \alpha \wedge \beta$. What do we want to show?

- A) $hasNNF(\alpha)$
- B) hasNNF($\alpha \wedge \beta$)
- C) hasNNF($\neg(\alpha \land \beta)$)
- D) hasNNF($\neg \alpha \lor \neg \beta$)
- E) More than one / None of the above

Inductive cases

Claim B: $\forall \varphi \in W : hasNNF(\varphi) \land hasNNF(\neg \varphi)$.

We will do a proof by structural induction. How many inductive cases? One case for each case in the recursive definition of WFF:

- 1. AND: $\varphi := \alpha \wedge \beta$
- 2. OR: $\varphi := \alpha \vee \beta$
- 3. NOT: $\varphi := \neg \alpha$
- 4. IMPLIES: $\varphi := \alpha \implies \beta$.

Poll: Inductive case 1, what can we assume?

Claim B: $\forall \varphi \in W : hasNNF(\varphi) \land hasNNF(\neg \varphi)$.

Proof continued...

Inductive cases: We focus on case 1: $\varphi := \alpha \wedge \beta$.

Want to show: $hasNNF(\alpha \wedge \beta) \wedge hasNNF(\neg(\alpha \wedge \beta))$. Which of the following can we assume is true (by the inductive hypothesis)?

- A) $hasNNF(\alpha)$... recall this means that α is logically equivalent to some NNF proposition.
- B) $hasNNF(\neg \alpha)$
- C) $isNNF(\alpha)$... recall this means that α is an NNF.
- D) A and B
- E) A, B, and C

Proof for inductive case 1

Claim B: $\forall \varphi \in W : hasNNF(\varphi) \land hasNNF(\neg \varphi)$.

Inductive cases: We focus on case 1: $\varphi := \alpha \wedge \beta$.

Want to show: $hasNNF(\alpha \wedge \beta) \wedge hasNNF(\neg(\alpha \wedge \beta))$.

Assume by inductive hypothesis:

• $hasNNF(\alpha)$, $hasNNF(\beta)$, $hasNNF(\neg \alpha)$, $hasNNF(\neg \beta)$

Part 1: Since $hasNNF(\alpha)$, there exists α' such that $\alpha' \equiv \alpha$ and $isNNF(\alpha')$. Similarly for β . Let $\varphi' := \alpha' \wedge \beta'$. We have $isNNF(\varphi')$ and $\varphi' \equiv \alpha \wedge \beta$. Thus $hasNNF(\alpha \wedge \beta)$.

Part $z: \neg \varphi = \neg (\alpha \wedge \beta) \equiv \neg \alpha \vee \neg \beta$ by DeMorgan's law. Since $hasNNF(\neg \alpha)$, there exists $\bar{\alpha}$ such that $\bar{\alpha} \equiv \neg \alpha$ and $isNNF(\bar{\alpha})$. Similarly for β . Thus, let $\bar{\varphi} = \bar{\alpha} \vee \bar{\beta}$. We have $isNNF(\bar{\varphi})$ and $\bar{\varphi} \equiv \neg (\alpha \wedge \beta)$. Thus $hasNNF(\neg (\alpha \wedge \beta))$.

Poll: Inductive case 3. what to show?

Claim B: $\forall \varphi \in W : hasNNF(\varphi) \land hasNNF(\neg \varphi)$.

Inductive cases: Case 3: $\varphi := \neg \alpha$.

What do we want to show?

- A) $hasNNF(\alpha)$
- B) $hasNNF(\neg \alpha)$
- C) hasNNF($\neg\neg\alpha$)
- D) B and C
- E) A, B, and C

Proof for inductive case 2

Claim B: $\forall \varphi \in W : hasNNF(\varphi) \land hasNNF(\neg \varphi)$.

Inductive cases: Case 2: $\varphi := \alpha \vee \beta$.

Proof is identical to case 1, just replace ANDs with ORs and vice versa.

Proof for inductive case 3

Claim B: $\forall \varphi \in W : hasNNF(\varphi) \land hasNNF(\neg \varphi)$.

Inductive cases: Case 3: $\varphi := \neg \alpha$.

Want to show: $hasNNF(\neg \alpha) \land hasNNF(\neg \neg \alpha)$.

Assume by inductive hypothesis:

- hasNNF(α), hasNNF(¬α)
- Still need to show: $hasNNF(\neg \neg \alpha)$.

Since $\neg\neg\alpha\equiv\alpha$ and $hasNNF(\alpha)$, then let α' be such that $\alpha'\equiv\alpha$ and $isNNF(\alpha')$. Let $\bar{\varphi}\coloneqq\alpha'$. Since $\bar{\varphi}\equiv\neg\neg\alpha$ and $isNNF(\bar{\varphi})$, thus $hasNNF(\neg\neg\alpha)$.

Proof for inductive case 4

Claim B: $\forall \varphi \in \mathcal{W} : hasNNF(\varphi) \land hasNNF(\neg \varphi)$.

Inductive cases: Case 2: $\varphi := \alpha \implies \beta$.

The cleanest way to handle this is to have a lemma that states for any φ there is an equivalent φ' that contains only the connectives $\{\neg, \lor, \land\}$. This lemma can be proven using structural induction.