BABY RUDIN CHAPTER 1

Problem 1 If $r \in \mathbb{I} = \mathbb{R} \setminus \mathbb{Q}$ and $x \in \mathbb{Q}$ prove that $r + x, rx \in \mathbb{I}$. By hypothesis there are no integers a, b such that r = a/b, but there are integers such that x = a/b. In particular let's say x = a/b where $b \neq 0$ and gcd(a,b) = 1. For contradiction suppose r + x = p/q for integers p,q. This would imply

$$r = p/q - x = \frac{pb - aq}{bq} \in \mathbb{Q}$$

Also for contradiction assume $rx \in \mathbb{Q}$ and rx = p/q to lazily re-use our old symbols. Then so long as $a \neq 0$ we have

$$r = \frac{p}{q} \frac{1}{x} = \frac{pb}{qa} \in \mathbb{Q}$$

and if a=0 then of course $rx=ra/b=0\in\mathbb{Q}.$

Problem 2 Prove there is no rational square-root of 12. Suppose for contradiction $a/b = \sqrt{12}$ with gcd(a,b) = 1 and $b \neq 0$. Then $a^2 = 12b^2$ which implies a has a factor of 3. Therefore a^2 has two factors of 3. Therefore b must be furnishing at least one factor of 3, since 12 is only furnishing one. But then gcd(a, b) > 1.

Problem 4 Show that lowerbounds are less than upperbounds. Let $\emptyset \neq E \subseteq \mathbb{R}$ with lower bound α and upper bound β . Let $x \in E$ so that $\alpha \leq x \leq \beta$.

Problem 5.

Show that the inf is the negative sup of the negative set.

Let $\emptyset \neq A \subseteq \mathbb{R}$. We want to argue that

$$\inf A = -\sup(-A)$$

and to show that anything is the infimum of a set, we can attempt to show that it is the greatest lower bound. That means showing 1) it's a lower bound and 2) showing that it's greater than any other lower bound.

First let's see that $-\sup(-A)$ is a lower bound of A (i.e. part (1)). So let $x \in A$ and for brevity let's call $s = -\sup(-A)$. Then $-s = \sup(-A)$ and by definition of $\sup(-A)$ we know that -s is an upper bound of -A. Since $-x \in -A$ it follows that $-x \leq -s$ and so $s \leq x$ as desired.

Now let's see that s is the greatest lower bound of A, so consider some s' which is a lower bound of A. As before we know $-s = \sup(-A)$ and so -s is the least upper bound of -A. We can also claim that -s' is an upper bound of -A because it's a lower bound of A. In the paragraph below I prove this claim.

We want to show that -s' is an upper bound of -A as stated above. So let $-x \in -A$, then we want $-x \le -s'$. This is equivalent to $s' \le x \in A$. But since s' was assumed to be a lower bound of A then this inequality must be true.

To summarize, we now know that -s' is an upper bound of -A and -s is the least upper bound. These together imply $-s \le -s'$ so that $s' \le s$. But this then demonstrates that s is greater than all other lower bounds of A. That makes s the greatest lower bound, as desired.