

Hajg Jasa

joint work with

Ronny Bergmann and Roland Herzog

European Conference on Operational Research, Copenhagen

Riemannian Geometry

- ► Smooth Riemannian manifold *M*
- ► Tangent space $\mathcal{T}_p \mathcal{M}$ at the point $p \in \mathcal{M}$
- Inner product $(\cdot, \cdot)_p : \mathcal{T}_p \mathcal{M} \times \mathcal{T}_p \mathcal{M} \to \mathbb{R}$
- Exponential map $\exp_p X_p = \gamma_{pq}(1) = q$
- Logarithmic map $\log_p q = \exp_p^{-1} q = X_p$
- ▶ Parallel transport $P_{q \leftarrow p} \colon \mathcal{T}_p \mathcal{M} \to \mathcal{T}_q \mathcal{M}$
- \triangleright Sectional curvature κ

Consider the following minimization problem

minimize
$$f(p)$$
, $p \in \mathcal{M}$,

Consider the following minimization problem

minimize
$$f(p)$$
, $p \in \mathcal{M}$,

where

 $ightharpoonup \mathcal{M}$ is a Riemannian manifold

Consider the following minimization problem

minimize
$$f(p)$$
, $p \in \mathcal{M}$,

where

- $ightharpoonup \mathcal{M}$ is a Riemannian manifold
 - complete
 - **b** bounded sectional curvature $\omega \le \kappa \le \Omega$ on dom f

Consider the following minimization problem

minimize
$$f(p)$$
, $p \in \mathcal{M}$,

where

- $ightharpoonup \mathcal{M}$ is a Riemannian manifold
 - complete
 - **b** bounded sectional curvature $\omega \le \kappa \le \Omega$ on dom *f*
- ▶ $f: \mathcal{M} \to \overline{\mathbb{R}}$ is such that

NTNU

The Problem

Consider the following minimization problem

minimize
$$f(p)$$
, $p \in \mathcal{M}$,

where

- $ightharpoonup \mathcal{M}$ is a Riemannian manifold
 - complete
 - ▶ bounded sectional curvature $\omega \le \kappa \le \Omega$ on dom f
- ▶ $f: \mathcal{M} \to \overline{\mathbb{R}}$ is such that
 - ▶ dom $f \neq \emptyset$ strongly geodesically convex
 - ▶ diam(dom f) < ∞ if $\kappa \neq 0$
 - ▶ $int(dom f) \neq \emptyset in \mathcal{M}$
 - geodesically convex: $f \circ \gamma$ convex
 - lower semi-continuous: $\liminf_{q\to p} f(q) \ge f(p)$

NTNU

The Problem

Consider the following minimization problem

minimize
$$f(p)$$
, $p \in \mathcal{M}$,

where

- $ightharpoonup \mathcal{M}$ is a Riemannian manifold
 - complete
 - ▶ bounded sectional curvature $\omega \le \kappa \le \Omega$ on dom f
- $ightharpoonup f: \mathcal{M} \to \overline{\mathbb{R}}$ is such that
 - ▶ dom $f \neq \emptyset$ strongly geodesically convex
 - ▶ diam(dom f) < ∞ if $\kappa \neq 0$
 - ▶ $int(dom f) \neq \emptyset in \mathcal{M}$
 - geodesically convex: $f \circ \gamma$ convex
 - lower semi-continuous: $\liminf_{q\to p} f(q) \ge f(p)$

Goal. Solve this optimization problem with a convex bundle method.

The Convex Subdifferential(s)

For a

convex function, the subdifferential is defined as

$$\partial f(x) = \left\{ s \in \mathbb{R}^n \,\middle|\, f(y) \ge f(x) + (s)^T (y - x) \text{ for all } y \in \mathbb{R}^n \right\}$$

and it is a non-empty, closed and convex subset.

The Convex Subdifferential(s)

For a

convex function, the subdifferential is defined as

$$\partial f(x) = \left\{ s \in \mathbb{R}^n \,\middle|\, f(y) \ge f(x) + (s)^T (y - x) \text{ for all } y \in \mathbb{R}^n \right\}$$

and it is a non-empty, closed and convex subset. Let $\varepsilon>0$. The $\varepsilon-$ subdifferential is

$$\partial_{\varepsilon} f(x) = \left\{ s \in \mathbb{R}^n \,\middle|\, f(y) \ge f(x) + (s)^{\mathsf{T}} (y - x) - \varepsilon \text{ for all } y \in \mathbb{R}^n \right\}$$

and

$$\partial f(\mathbf{x}) \subseteq \partial_{\varepsilon} f(\mathbf{x})$$

The Convex Subdifferential(s)

For a geodesically convex function, the subdifferential is defined as

$$\partial f(p) = \left\{ X_p \in \mathcal{T}_p \mathcal{M} \,\middle|\, f(q) \ge f(p) + \left(X_p, \log_p q \right) \text{ for all } q \in \operatorname{\mathsf{dom}} f \right\}$$

and it is a non-empty, closed and convex subset. Let $\varepsilon >$ 0. The $\varepsilon -$ subdifferential is

$$\partial_{\varepsilon} f(p) = \left\{ X_p \in \mathcal{T}_p \mathcal{M} \,\middle|\, f(q) \geq f(p) + \left(X_p, \log_p q \right) - \varepsilon \text{ for all } q \in \operatorname{\mathsf{dom}} f \right\}$$

and

$$\partial f(p) \subseteq \partial_{\varepsilon} f(p)$$

Bundle methods are about descent as well as stability.

Bundle methods are about descent as well as stability.

Core characteristics of general bundle algorithms ([Bonnans et al. 2006]):

Bundle methods are about descent as well as stability.

Core characteristics of general bundle algorithms ([Bonnans et al. 2006]):

keep track of the "best" points

Bundle methods are about descent as well as stability.

Core characteristics of general bundle algorithms ([Bonnans et al. 2006]):

- keep track of the "best" points
- solve a stabilization subproblem

Bundle methods are about descent as well as stability.

Core characteristics of general bundle algorithms ([Bonnans et al. 2006]):

- keep track of the "best" points
- solve a stabilization subproblem

dual approach as in [Geiger and Kanzow 2002]

Bundle methods are about descent as well as stability.

Core characteristics of general bundle algorithms ([Bonnans et al. 2006]):

- keep track of the "best" points
- solve a stabilization subproblemdual approach as in [Geiger and Kanzow 2002]
- generate sequences of candidate points and stability centers

Bundle methods are about descent as well as stability.

Core characteristics of general bundle algorithms ([Bonnans et al. 2006]):

- keep track of the "best" points
- solve a stabilization subproblemdual approach as in [Geiger and Kanzow 2002]
- generate sequences of candidate points and stability centers

Goal. Approximate ∂f with $\partial_{\varepsilon} f$ on int(dom f).

Given $x^{(0)}, \ldots, x^{(k)} \in \mathbb{R}^n$, and $s^{(j)} \in \partial f(x^{(j)})$ for $j = 0, \ldots, k$, and

Given
$$x^{(0)}, \dots, x^{(k)} \in \mathbb{R}^n$$
, and $s^{(j)} \in \partial f(x^{(j)})$ for $j = 0, \dots, k$, and $e_j^{(k)} := f(x^{(k)}) - f(x^{(j)}) - (s^{(j)})^T (x^{(k)} - x^{(j)})$,

Given
$$x^{(0)}, \dots, x^{(k)} \in \mathbb{R}^n$$
, and $s^{(j)} \in \partial f(x^{(j)})$ for $j = 0, \dots, k$, and
$$e_j^{(k)} := f(x^{(k)}) - f(x^{(j)}) - (s^{(j)})^T (x^{(k)} - x^{(j)}),$$
 then
$$s^{(j)} \in \partial_{e_i^{(k)}} f(x^{(k)}).$$

Given
$$x^{(0)}, \dots, x^{(k)} \in \mathbb{R}^n$$
, and $s^{(j)} \in \partial f(x^{(j)})$ for $j = 0, \dots, k$, and $e_i^{(k)} := f(x^{(k)}) - f(x^{(j)}) - (s^{(j)})^T (x^{(k)} - x^{(j)})$.

then

$$s^{(j)} \in \partial_{e_i^{(k)}} f(x^{(k)}).$$

Characterize an inner approximation of $\partial_{\varepsilon} f(p)$ as:

$$G_{\varepsilon}^{(k)} := \left\{ \sum_{j=0}^k \lambda_j s^{(j)} \,\middle|\, \sum_{j=0}^k \lambda_j \,e_j^{(k)} \leq \varepsilon, \, \sum_{j=0}^k \lambda_j = 1, \, \lambda_j \geq 0 \, \forall j = 0, \ldots, k
ight\}$$

with $G_{\varepsilon}^{(k)} \subseteq \partial_{\varepsilon} f(x^{(k)})$.

Given
$$x^{(0)}, \dots, x^{(k)} \in \mathbb{R}^n$$
, and $s^{(j)} \in \partial f(x^{(j)})$ for $j = 0, \dots, k$, and $e_j^{(k)} := f(x^{(k)}) - f(x^{(j)}) - (s^{(j)})^T (x^{(k)} - x^{(j)})$,

then

$$s^{(j)} \in \partial_{e_i^{(k)}} f(x^{(k)}).$$

Characterize an inner approximation of $\partial_{\varepsilon} f(p)$ as:

$$G_{arepsilon}^{(k)} := \left\{ \sum_{j=0}^k \lambda_j s^{(j)} \, \middle| \, \sum_{j=0}^k \lambda_j \, e_j^{(k)} \le arepsilon, \, \sum_{j=0}^k \lambda_j = 1, \, \, \lambda_j \ge 0 \, orall j = 0, \ldots, k
ight\}$$

with $G_{\varepsilon}^{(k)} \subseteq \partial_{\varepsilon} f(x^{(k)})$.

Main challenge on manifolds: given $p^{(0)}, \dots, p^{(k)} \in \mathcal{M}$, and $X_{p^{(j)}} \in \partial f(p^{(j)})$, then

$$P_{p^{(k)}\leftarrow p^{(j)}}X_{p^{(j)}}\in \partial_c f(p^{(k)})$$
 for some $c>0$?

Curvature Correction

Using the upper bound Ω on the curvature, define

$$c_j^{(k)} := f(p^{(k)}) - f(p^{(j)}) - \left(X_{p^{(j)}}, \log_{p^{(j)}} p^{(k)}\right) \quad \text{if } \Omega \le 0,$$

$$c_j^{(k)} := f(p^{(k)}) - f(p^{(j)}) + \|X_{p^{(j)}}\| \|\log_{p^{(j)}} p^{(k)}\| \quad \text{if } \Omega > 0.$$

[Bergmann, Herzog, and HJ 2024].

Curvature Correction

Using the upper bound Ω on the curvature, define

$$c_j^{(k)} := f(p^{(k)}) - f(p^{(j)}) - \left(X_{p^{(j)}}, \log_{p^{(j)}} p^{(k)}\right) \quad \text{if } \Omega \le 0,$$

$$c_j^{(k)} := f(p^{(k)}) - f(p^{(j)}) + \|X_{p^{(j)}}\| \|\log_{p^{(j)}} p^{(k)}\| \quad \text{if } \Omega > 0.$$

[Bergmann, Herzog, and HJ 2024].

We get

$$G_{\varepsilon}^{(k)} \coloneqq \left\{ \sum_{j=0}^{k} \lambda_{j} \mathsf{P}_{p^{(k)} \leftarrow p^{(j)}} X_{p^{(j)}} \, \middle| \, \sum_{j=0}^{k} \lambda_{j} \, c_{j}^{(k)} \le \varepsilon, \, \sum_{j=0}^{k} \lambda_{j} = 1, \, \lambda_{j} \ge 0 \, \text{for all } j = 0, \dots, k \right\}$$
with $G_{\varepsilon}^{(k)} \subseteq \partial_{\varepsilon} f(p^{(k)})$, and $\mathsf{P}_{p^{(k)} \leftarrow p^{(j)}} X_{p^{(j)}} \in \partial_{c_{j}^{(k)}} f(p^{(k)})$.

Let $k \in \mathbb{N}$ and $j \in \{0, ..., k\} =: J^{(k)}$ and let λ_j be convex coefficients.

Let $k \in \mathbb{N}$ and $j \in \{0, ..., k\} =: J^{(k)}$ and let λ_j be convex coefficients.

$$s^{(j)} \in \partial f(x^{(j)}) \implies \sum_{j=0}^k \lambda_j s^{(j)} \in \partial_{\varepsilon} f(x^{(k)})$$

Let $k \in \mathbb{N}$ and $j \in \{0, ..., k\} =: J^{(k)}$ and let λ_j be convex coefficients.

$$s^{(j)} \in \partial f(x^{(j)}) \implies \sum_{j=0}^k \lambda_j s^{(j)} \in \partial_{\varepsilon} f(x^{(k)}) \quad \text{iff} \quad \varepsilon \ge \sum_{j=0}^k \lambda_j e_j^{(k)}$$

Let $k \in \mathbb{N}$ and $j \in \{0, ..., k\} =: J^{(k)}$ and let λ_j be convex coefficients.

$$s^{(j)} \in \partial f(x^{(j)}) \implies \sum_{j=0}^k \lambda_j s^{(j)} \in \partial_{\varepsilon} f(x^{(k)}) \quad \text{iff} \quad \varepsilon \ge \sum_{j=0}^k \lambda_j e_j^{(k)}$$

The search direction is

$$d^{(k)} := -\sum_{j=0}^k \lambda_j s^{(j)}$$

Let $k \in \mathbb{N}$ and $j \in \{0, ..., k\} =: J^{(k)}$ and let λ_j be convex coefficients.

$$s^{(j)} \in \partial f(x^{(j)}) \implies \sum_{j=0}^k \lambda_j s^{(j)} \in \partial_{\varepsilon} f(x^{(k)}) \quad \text{iff} \quad \varepsilon \ge \sum_{j=0}^k \lambda_j e_j^{(k)}$$

The search direction is

$$d^{(k)} := -\sum_{j=0}^k \lambda_j s^{(j)}$$

where λ_i are solution to

$$\begin{split} & \underset{\lambda \in \mathbb{R}^{|J^{(k)}|}}{\min} \quad \frac{1}{2} \left\| \sum_{j \in J^{(k)}} \lambda_j s^{(j)} \right\|^2 + \sum_{j \in J^{(k)}} \lambda_j e_j^{(k)} \\ & \text{s. t.} \quad \sum_{j \in J^{(k)}} \lambda_j = 1, \quad \lambda_j \geq 0 \quad \text{ for all } j \in J^{(k)} \end{split}$$

The Riemannian Subproblem

Let $k \in \mathbb{N}$ and $j \in \{0, ..., k\} =: J^{(k)}$ and let λ_j be convex coefficients.

$$X_{q^{(j)}} \in \partial f(q^{(j)}) \implies \sum_{j=0}^{k} \lambda_{j} \mathsf{P}_{p^{(k)} \leftarrow q^{(j)}} X_{q^{(j)}} \in \partial_{\varepsilon} f(p^{(k)}) \quad \text{iff} \quad \varepsilon \geq \sum_{j=0}^{k} \lambda_{j} c_{j}^{(k)}$$

The search direction is

$$d^{(k)} := -\sum_{j=0}^k \lambda_j \mathsf{P}_{p^{(k)} \leftarrow q^{(j)}} \mathsf{X}_{q^{(j)}}$$

where λ_i are solution to

$$\begin{aligned} & \underset{\lambda \in \mathbb{R}^{|J^{(k)}|}}{\min} & \frac{1}{2} \left\| \sum_{j \in J^{(k)}} \lambda_j \mathsf{P}_{p^{(k)} \leftarrow q^{(j)}} X_{q^{(j)}} \right\|^2 + \sum_{j \in J^{(k)}} \lambda_j c_j^{(k)} \\ & \text{s. t.} & \sum_{j \in J^{(k)}} \lambda_j = 1, \quad \lambda_j \geq 0 \qquad \text{for all } j \in J^{(k)} \end{aligned}$$

NTNU

The Euclidean Convex Bundle Method

Data:
$$x^{(0)} = y^{(0)} \in \mathbb{R}^n$$
, $g^{(0)} = s^{(0)} \in \partial f(x^{(0)})$, $m \in (0,1)$, $\varepsilon^{(0)} = e_0^{(0)} = 0$, $k = 0$, $J^{(k)} = \{0\}$

- 1 while not converged do
- **2** Compute a solution $\lambda^{(k)} \in \mathbb{R}^{|J^{(k)}|}$ of the subproblem and set

$$g^{(k)} := \sum_{j \in J^{(k)}} \lambda_j^{(k)} s^{(j)}, \quad \varepsilon^{(k)} := \sum_{j \in J^{(k)}} \lambda_j^{(k)} e_j^{(k)},$$

$$d^{(k)} := -g^{(k)}, \quad \xi^{(k)} := -\|g^{(k)}\|^2 - \varepsilon^{(k)}$$

$$:= x^{(k)} + d^{(k)}$$

Set $y^{(k+1)} := x^{(k)} + d^{(k)}$.

3 If $f(y^{(k+1)}) \le f(x^{(k)}) + m\xi^{(k)}$, then $x^{(k+1)} := y^{(k+1)}$, else

4 Compute $s^{(k+1)} \in \partial f(y^{(k+1)})$, update $J^{(k+1)}$, and for all $j \in J^{(k+1)}$ $e_j^{(k+1)} := f(x^{(k+1)}) - f(y^{(j)}) - (s^{(j)})^T (x^{(k+1)} - y^{(j)})$

5 end

Result: $x^{(k_*)}$, for some $k_* \in \mathbb{N}$.

NTNL

The Riemannian Convex Bundle Method

Data:
$$p^{(0)} = q^{(0)} \in \text{int}(\text{dom } f)$$
, $g^{(0)} = X_1 \in \partial f(p^{(0)})$, $m \in (0, 1)$, $\varepsilon^{(0)} = c_0^{(0)} = 0$, $k = 0$, $J^{(k)} = \{0\}$, $\beta > 0$, $\Omega \in \mathbb{R}$,

1 while not converged do

Compute a solution
$$\lambda^{(k)} \in \mathbb{R}^{|J^{(k)}|}$$
 of the subproblem and set
$$g^{(k)} \coloneqq \sum_{j \in J^{(k)}} \lambda_j^{(k)} \mathsf{P}_{p^{(k)} \leftarrow q^{(j)}} X_{q^{(j)}}, \quad \varepsilon^{(k)} \coloneqq \sum_{j \in J^{(k)}} \lambda_j^{(k)} c_j^{(k)},$$

$$d^{(k)} \coloneqq -g^{(k)}, \quad \xi^{(k)} \coloneqq -\|g^{(k)}\|^2 - \varepsilon^{(k)}$$
 Set $t^{(k)} \coloneqq 1$. While $q^{(k+1)} \coloneqq \exp_{p^{(k)}}(t^{(k)}d^{(k)}) \notin \operatorname{int}(\operatorname{dom} f)$ or
$$\operatorname{dist}(q^{(k+1)}, p^{(k)}) < t^{(k)} \|d^{(k)}\| \text{ backtrack } t^{(k)} = \beta t^{(k)}.$$
 If $f(q^{(k+1)}) \le f(p^{(k)}) + m\xi^{(k)}$, then $p^{(k+1)} \coloneqq q^{(k+1)}$, else
$$p^{(k+1)} \coloneqq p^{(k)}.$$
 Compute $X_{q^{(k+1)}} \in \partial f(q^{(k+1)})$, update $J^{(k+1)}$, and for all $j \in J^{(k+1)}$
$$c_j^{(k+1)} \coloneqq f(p^{(k+1)}) - f(q^{(j)}) - \left(X_{q^{(j)}}, \log_{q^{(j)}} p^{(k+1)}\right) \text{ if } \Omega \le 0$$

5 end

Result: $p^{(k_*)}$, for some $k_* \in \mathbb{N}$.

NTNL

The Riemannian Convex Bundle Method

Data:
$$p^{(0)} = q^{(0)} \in \text{int}(\text{dom } f)$$
, $g^{(0)} = X_1 \in \partial f(p^{(0)})$, $m \in (0, 1)$, $\varepsilon^{(0)} = c_0^{(0)} = 0$, $k = 0$, $J^{(k)} = \{0\}$, $\beta > 0$, $\Omega \in \mathbb{R}$,

1 while not converged do

Compute a solution $\lambda^{(k)} \in \mathbb{R}^{|J^{(k)}|}$ of the subproblem and set $g^{(k)} := \sum_{i} \lambda_{i}^{(k)} \mathsf{P}_{p^{(k)} \leftarrow q^{(j)}} X_{q^{(j)}}, \quad \varepsilon^{(k)} := \sum_{i} \lambda_{i}^{(k)} c_{i}^{(k)},$ $\dot{g} \in J^{(k)}$ $\dot{g} \in J^{(k)} := -g^{(k)}, \quad \xi^{(k)} := -\|g^{(k)}\|^2 - \varepsilon^{(k)}$ Set $t^{(k)} := 1$. While $q^{(k+1)} := \exp_{q(k)}(t^{(k)}d^{(k)}) \notin \operatorname{int}(\operatorname{dom} f)$ or $dist(q^{(k+1)}, p^{(k)}) < t^{(k)} || d^{(k)} || backtrack t^{(k)} = \beta t^{(k)}.$ If $f(a^{(k+1)}) < f(p^{(k)}) + m\xi^{(k)}$, then $p^{(k+1)} := a^{(k+1)}$, else $p^{(k+1)} := p^{(k)}$ Compute $X_{q^{(k+1)}} \in \partial f(q^{(k+1)})$, update $J^{(k+1)}$, and for all $j \in J^{(k+1)}$ $c_i^{(k+1)} := f(p^{(k+1)}) - f(q^{(j)}) + \|\log_{q(i)} p^{(k+1)}\| \|X_{q(i)}\| \text{ if } \Omega > 0$

5 end

Result: $p^{(k_*)}$, for some $k_* \in \mathbb{N}$.

Convergence

▶ In the Euclidean case [Geiger and Kanzow 2002, Theorem 6.80] holds.

Theorem

Let the solution set $S = \{x^* \in \mathbb{R}^n \mid f(x^*) = \inf_{x \in \mathbb{R}^n} f(x)\}$ of the minimization problem be nonempty. Then every sequence $\{x^{(k)}\}$ generated by the bundle method algorithm converges to a minimizer of f.

Convergence

▶ In the Euclidean case [Geiger and Kanzow 2002, Theorem 6.80] holds.

Theorem

Let the solution set $S = \{x^* \in \mathbb{R}^n \mid f(x^*) = \inf_{x \in \mathbb{R}^n} f(x)\}$ of the minimization problem be nonempty. Then every sequence $\{x^{(k)}\}$ generated by the bundle method algorithm converges to a minimizer of f.

- ▶ In the non-positive curvature case, assuming
 - **1.** $t^{(k)} > m$ for all $k \ge k_*$, if a finite number of serious steps k_* occur
 - **2.** no accumulation point of $p^{(k)}$ is allowed to lie on $\partial \operatorname{dom} f$ we have an analogous result. [Bergmann, Herzog, and HJ 2024]

Implementation

The algorithm is implemented in Julia using Manopt.jl ([Bergmann 2022]) and Manifolds.jl ([Axen et al. 2023])¹. A solver call looks like ²

```
p* = convex_bundle_method(M, f, \partialf, p0;
diameter = \delta, domain = dom f, k_max = \Omega, m = 10^{-3})
```

where

- M is a Riemannian manifold
- ► f is the objective function
- ightharpoonup ∂f is a subgradient of the objective function
- p0 is an initial point on the manifold

The default stopping criterion for the algorithm is set to

$$-\xi^{(k)} \le 10^{-8}$$
.

¹For more on this: go to Ronny's talk on Wednesday at 12:30, building 208, room 64

²https://manoptjl.org/stable/solvers/convex_bundle_method/

▶ signal $q \in \mathcal{M} = (\mathcal{H}^2)^n$, n = 496

- ▶ signal $q \in \mathcal{M} = (\mathcal{H}^2)^n$, n = 496
- ▶ noisy signal $\bar{q} \in \mathcal{M}$, $\bar{q}^{[i]} = \exp_{q^{[i]}} X_i$, $\sigma = 0.1$

- ▶ signal $q \in \mathcal{M} = (\mathcal{H}^2)^n$, n = 496
- ▶ noisy signal $\bar{q} \in \mathcal{M}$, $\bar{q}^{[i]} = \exp_{q^{[i]}} X_i$, $\sigma = 0.1$
- ► ROF Model:

$$\underset{p \in \mathcal{M}}{\operatorname{arg\,min}} \ \frac{1}{n} \, \mathrm{d}_{\mathcal{M}}(p,q)^2$$

$$+ \alpha \sum_{i=1}^{n-1} \mathsf{d}_{\mathcal{H}^2}(p^{[i]}, p^{[i+1]})$$

- ▶ signal $q \in \mathcal{M} = (\mathcal{H}^2)^n$, n = 496
- ▶ noisy signal $\bar{q} \in \mathcal{M}$, $\bar{q}^{[i]} = \exp_{q^{[i]}} X_i$, $\sigma = 0.1$
- ► ROF Model:

$$\begin{aligned} & \underset{p \in \mathcal{M}}{\text{arg min}} \ \frac{1}{n} \, \mathsf{d}_{\mathcal{M}}(p,q)^2 \\ & + \alpha \sum_{i=1}^{n-1} \mathsf{d}_{\mathcal{H}^2}(p^{[i]},p^{[i+1]}) \end{aligned}$$

► Setting $\alpha = 0.05$ yields reconstruction p^* .

- ▶ signal $q \in \mathcal{M} = (\mathcal{H}^2)^n$, n = 496
- ▶ noisy signal $\bar{q} \in \mathcal{M}$, $\bar{q}^{[i]} = \exp_{q^{[i]}} X_i$, $\sigma = 0.1$
- ► ROF Model:

$$\underset{p \in \mathcal{M}}{\operatorname{arg \, min}} \ \frac{1}{n} \, \mathsf{d}_{\mathcal{M}}(p,q)^2 \\ + \alpha \sum_{i=1}^{n-1} \mathsf{d}_{\mathcal{H}^2}(p^{[i]},p^{[i+1]})$$

▶ in RCBM: set diam(dom f) = b > 0. (in practice: $b = floatmax() \approx 10^{308}$)

Signal Denoising - Algorithms³

- ▶ Riemannian Convex Bundle Method (RCBM) [Bergmann, Herzog, and HJ 2024]
- Proximal Bundle Algorithm (PBA) Pouryayevali 2021]

[Hoseini Monjezi, Nobakhtian, and

Subgradient Method (SGM)

[Ferreira and Oliveira 1998]

Cyclic Proximal Point Algorithm (CPPA)

[Bačák 2014]

Algorithm	Iter.	Time (sec.)	Objective	Error
RCBM	3417	51.393	1.7929×10^{-3}	3.3194×10^{-4}
PBA	15 000	102.387	1.8153×10^{-3}	4.3874×10^{-4}
SGM	15 000	99.604	1.7920×10^{-3}	
CPPA	15 000	94.200	1.7928×10^{-3}	3.3230×10^{-4}

³The code for the experiment is available at

Numerical Example: Riemannian Median on \mathcal{S}^d

- $\triangleright S^d d$ -dimensional sphere
- ightharpoonup north pole
- $m{p} q^{(1)},\ldots,q^{(n)}\in\mathcal{S}^d$ are n=1000 Gaussian random data points in $B_{rac{\pi}{8}}(ar{p})$
- $ightharpoonup \mathcal{D} = \left\{q^{(1)}, \dots, q^{(n)} \,\middle|\, q^{(j)} \in \mathcal{S}^d ext{ for all } j = 1, \dots, n
 ight\}$

Numerical Example: Riemannian Median on \mathcal{S}^d

- \triangleright S^d d-dimensional sphere
- ightharpoonup north pole
- $m{p} q^{(1)},\ldots,q^{(n)}\in\mathcal{S}^d$ are n=1000 Gaussian random data points in $B_{rac{\pi}{8}}(ar{p})$
- $ightharpoonup \mathcal{D} = \left\{q^{(1)}, \dots, q^{(n)} \mid q^{(j)} \in \mathcal{S}^d \text{ for all } j = 1, \dots, n\right\}$

Numerical Example: Riemannian Median on \mathcal{S}^d

- \triangleright S^d d-dimensional sphere
- ightharpoonup north pole
- $lackbox{ } q^{(1)},\ldots,q^{(n)}\in\mathcal{S}^d$ are n=1000 Gaussian random data points in $B_{rac{\pi}{8}}(ar{p})$
- $ightharpoonup \mathcal{D} = \left\{q^{(1)}, \dots, q^{(n)} \mid q^{(j)} \in \mathcal{S}^d \text{ for all } j = 1, \dots, n\right\}$

Solve

$$p^* := \underset{p \in \mathcal{S}^d}{\operatorname{arg \, min}} f(p)$$

Riemannian Median on \mathcal{S}^d - Algorithms⁴

	RCBM			PBA		
Dimension	Iter.	Time (sec.)	Objective	Iter.	Time (sec.)	Objective
2	19	6.50×10^{-3}	0.19289	20	5.30×10^{-3}	0.19289
4	28	1.01×10^{-2}	0.19881	23	5.99×10^{-3}	0.19881
32	58	2.29×10^{-2}	0.19576	28	1.13×10^{-2}	0.19576
1024	48	3.91×10^{-1}	0.19775	40	3.31×10^{-1}	0.19775
32 768	43	7.54	0.19290	21	4.16	0.19290

	SGM			
Dimension	Iter.	Time (sec.)	Objective	
2	5000	1.14	0.19289	
4	3270	$8.09 imes 10^{-1}$	0.19881	
32	5000	2.18	0.19576	
1024	122	9.75×10^{-1}	0.19775	
32 768	172	$5.25 imes 10^1$	0.19290	

⁴The code for the experiment is available at

Conclusion and Future Work

In summary:

- introduced the Riemannian Convex Bundle Method for non-smooth geodesically convex functions on Riemannian manifolds
- discussed convergence and related challenges
- showed two numerical examples

To do:

further investigate the implications of positive curvature

Thank you!

Selected References

Axen, S. D. et al. (2023). "Manifolds.jl: An Extensible Julia Framework for Data Analysis on Manifolds". In: *ACM Transactions on Mathematical Software* 49.4. DOI: 10.1145/3618296. arXiv: 2106.08777.

Bačák, M. (2014). "Computing medians and means in Hadamard spaces". In: SIAM Journal on Optimization 24.3, pp. 1542–1566. DOI: 10.1137/140953393.

Bergmann, Ronny (2022). "Manopt.jl: Optimization on Manifolds in Julia". In: Journal of Open Source Software 7.70, p. 3866. DOI: 10.21105/joss.03866.

Bergmann, Ronny, Roland Herzog, and HJ (2024). "The Riemannian Convex Bundle Method". URL: https://arxiv.org/abs/2402.13670.

Bonnans, J.-F. et al. (2006). *Numerical optimization: theoretical and practical aspects*. Springer-Verlag.

Ferreira, Orizon and Paulo Roberto Oliveira (1998). "Subgradient algorithm on Riemannian manifolds". In: *Journal of Optimization Theory and Applications* 97.1, pp. 93–104. DOI: 10.1023/A:1022675100677.

Geiger, C. and C. Kanzow (2002). *Theorie und Numerik restringierter Optimierungsaufgaben*. New York: Springer. DOI: 10.1007/978-3-642-56004-0.

Hoseini Monjezi, Najmeh, Soghra Nobakhtian, and Mohamad Reza Pouryayevali (Dec. 2021). "A proximal bundle algorithm for nonsmooth optimization on Riemannian manifolds". In: *IMA Journal of Numerical Analysis*. DOI: 10.1093/imanum/drab091.

Convergence

In [Geiger and Kanzow 2002, Theorem 6.80], they are able to show that

$$\sum_{j=k_*}^{+\infty} \left(\|g^{(j)}\|^2 + \varepsilon^{(j)} \right)^2 < +\infty$$

where $k_* \in \mathbb{N}$ is the index that corresponds to the last serious iterate, namely

$$p^{(k)} = p^{(k_*)}$$
 for all $k \ge k_*$.

This is possible because from the definition of $e_i^{(k)}$ one gets a bound

$$(s^{(k)}, g^{(k-1)}) < m(\|g^{(k-1)}\|^2 + \varepsilon^{(k-1)}) - e_k^{(k)},$$

which is still valid in the case of non-positive curvature for $c_k^{(k)}$ with the added assumptions.