

 Álgebra Linear
 LCC
 Teste 1
 Duração: 1h45
 [Teste modelo B]
 Universidade do Minho Escola de Citéricias

Nome:		Número:
	Grupo	Ι
correta é atribuída um	na cotação de $1.25\mathrm{valores}$ (ape	nas uma das opções de resposta. A uma resposta nas uma resposta está correta) e a uma resposta cotação mínima total deste grupo é de 0 valores.
1. As matrizes A	$= \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} e B = \begin{bmatrix} 1 & 1 \\ c & 0 \end{bmatrix}$	
são comut	áveis para qualquer $c \in \mathbb{R}$.	são comutáveis se $c = -1$.
nunca são	comutáveis.	\Box são ambas elementares quando $c=0$.
2. Para as matrizes $A \in \mathcal{M}_{3\times 4}(\mathbb{R})$ e $B \in \mathcal{M}_{4\times 2}(\mathbb{R})$,		
$igcap AB \ { m e} \ BA$	estão bem definidas.	A^TB^T está bem definida.
$A + B^T$ pe	ode ser calculada.	
3. Se A é um matriz quadrada tal que $A^2 = I_n$, então		
A é invert	ível e $A^{-1} = -A$.	A não é invertível.
A é invertível e $A^{-1} = A$.		
4. Se A é uma matriz de ordem 4 tal que $\det(A)=2$, então		
det(-A) =	= -2.	
$\det(2A^T)$	=4.	
5. Se $[A \mathbf{b}] = \begin{bmatrix} 1 & 5 & -5 & b_1 \\ 0 & 2 & 4 & b_2 \\ -1 & -2 & 1 & b_3 \end{bmatrix}$ é a matriz ampliada de um sistema de equações lineares tal que $(1,1,1)$ é solução desse sistema, então		
	$2 e \operatorname{car}(A \boldsymbol{b}) = 3.$	
$\boxed{ b_1 = 1, b_2}$	$= 6 e b_3 = -2.$	
6. Se $\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 1 & 2 & \alpha - \\ \beta \text{ parâmetros r} \end{bmatrix}$	$\begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$ é a matriz ampliada eais, então	de um sistema de equações lineares, com α e
o sistema o se $\alpha \neq 3$.	é possível determinado se e só	o sistema é possível e indeterminado se $\alpha = 2$ e $\beta = 0$.

o sistema é impossível se $\alpha = 3$.

o sistema é sempre possível.

Grupo II

Neste grupo as respostas a todos as questões devem ser devidamente justificadas.

1. [1.5 valores] Sendo A uma matriz quadrada de ordem n invertível, verifique que a equação matricial na variável X

$$A + AX = 3I_n$$

tem solução $X = 3A^{-1} - I_n$.

2. [3.5 valores] Para $\alpha, \beta \in \mathbb{R}$, considere o sistema de equações lineares nas incógnitas x, y, z e w com a seguinte matriz simples e vetor dos termos independentes:

$$A = \begin{bmatrix} 1 & 0 & 0 & \alpha \\ \beta & 1 & 0 & 0 \\ 0 & \beta & \alpha & 0 \\ 0 & \beta & 0 & \beta \end{bmatrix} \qquad \mathbf{e} \qquad \boldsymbol{b} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \alpha \beta \end{bmatrix}.$$

- (a) Use o método de eliminação de Gauss para resolver o sistema no caso em que $\alpha = \beta = 1$.
- (b) Considere o caso em que $\beta = 0$ e $\alpha = 2$. Verifique que o sistema é um sistema possível e indeterminado. Apresente a solução geral do sistema e duas soluções particulares.
- 3. [3 valores] Considere a matriz $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 2 \end{bmatrix}$.
 - (a) Verifique que $A^{-1} = \begin{bmatrix} 0 & -2 & 1 \\ 1 & 1 & -1 \\ 0 & 1 & 0 \end{bmatrix}$.
 - (b) Use A^{-1} para resolver o sistema de equações lineares

i.
$$A\boldsymbol{x} = \boldsymbol{b} \text{ com } \boldsymbol{b} = \begin{bmatrix} 1 & -1 & 2 \end{bmatrix}^T$$

i.
$$A\boldsymbol{x} = \boldsymbol{b} \text{ com } \boldsymbol{b} = \begin{bmatrix} 1 & -1 & 2 \end{bmatrix}^T$$
. ii. $2A^T\boldsymbol{x} = \boldsymbol{b} \text{ com } \boldsymbol{b} = \begin{bmatrix} 4 & -2 & 2 \end{bmatrix}^T$.

4. [3 valores] Seja
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 4 & 3 \\ 1 & 2 & 2 \end{bmatrix}$$
.

- (a) Calcule o determinante de A e conclua que A é invertível.
- (b) Use a regra de Cramer para resolver o sistema $Ax = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T$, calculando assim a terceira coluna de A^{-1} .
- (c) Determine a terceira coluna da matriz adj(A) usando o resultado da alínea (b).
- 5. [1.5 valores] Sejam $A, B \in \mathcal{M}_{n \times n}(\mathbb{R})$, com $n \geq 2$, matrizes invertíveis. Mostre que

$$\operatorname{adj}(AB) = \operatorname{adj}(B) \cdot \operatorname{adj}(A).$$

 2