REGRESSÃO LOGÍSTICA

É uma técnica recomendada para situações em que a variável dependente é de natureza dicotômica ou binária. Quanto às independentes, tanto podem ser categóricas ou não.

A regressão logística é um recurso que nos permite estimar a probabilidade associada à ocorrência de determinado evento em face de um conjunto de variáveis explanatórias.

Características

- Busca estimar a probabilidade da variável dependente assumir um determinado valor em função dos conhecidos de outras variáveis;
- Os resultados da análise ficam contidos no intervalo de zero a um.

Aplicação da Regressão Logística

- Previsão de risco na área tributária calcular a probabilidade do contribuinte ser inadimplente o adimplente após o parcelamento de tributos. Dias Filho (2003).
- Utilizado para classificar se a empresa encontra-se no grupo de empresas solvente ou insolvente. Matias (2002).
- Determinar quais características levam as empresas adotarem o balanced scorecard. Wanderley (2002).

Vantagens do Modelo Logístico

- Facilidade para lidar com variáveis independentes categóricas.
- Fornece resultados em termos de probabilidade.
- Facilidade de classificação de indivíduos em categorias.
- Requer pequeno número de suposições.
- Alto grau de confiabilidade.

Regressão Logística x Regressão Linear

- Logística: Variável dependente é categórica;
- Linear: Utiliza o método dos mínimos quadrados;
- Logística: Utiliza o método da máxima verossimilhança;

O Modelo Regressão Logística

Função Logística

Na regressão logística, a probabilidade de ocorrência de um evento pode ser estimada diretamente. No caso da variável dependente Y assumir apenas dois possíveis estados (1 ou 0) e haver um conjunto de p variáveis independentes X_1 , X_2 , ..., X_p , o modelo de regressão logística pode ser escrito da seguinte forma:

$$P(Y = 1) = \frac{1}{1 + e^{-g(x)}}$$

onde,

$$g(x) = B_0 + B_1 X_1 + \cdots + B_p X_p$$

Os coeficientes

Os coeficientes B_0 , B_1 , ..., B_p são estimados a partir do conjunto dados, pelo método da máxima verossimilhança, em que encontra uma combinação de coeficientes que maximiza a probabilidade da amostra ter sido observada. Considerando uma certa combinação de coeficientes B_0 , B_1 , ..., B_p e variando os valores de X. Observa-se que a curva logística tem um comportamento probabilístico no formato da letra S, o que é uma característica da regressão logística. (Hosmer e Lemeshow ,1989)

a) Quando

$$g(x) \rightarrow +\infty$$
, então $P(Y=1) \rightarrow 1$

b) Quando

$$g(x) \rightarrow -\infty$$
, então $P(Y=1) \rightarrow 0$

Curva da regressão logística

Interpretação dos Coeficientes

- Observa-se que o impacto de cada coeficiente sobre a própria razão de chances e não mais sobre a quantidade de logit.
- Identifica-se que o impacto do coeficiente da variável independente sobre a razão de chances.
- Determina-se o efeito que os coeficientes exercem sobre a chance de um evento ocorrer.
- Ressalta-se que um coeficiente:
 - positivo aumenta a probabilidade;
 - negativo diminui a probabilidade.

Classificação

- Para utilizar o modelo de regressão logística para discriminação de dois grupos, a regra de classificação é a seguinte:
 - se P(Y=1) > 0.5 então classifica-se Y=1
 - se P(Y=1) < 0.5 então classifica-se Y=0
- Para obter-se uma boa estimativa da eficiência classificatória do modelo, recomenda-se separar a amostra em duas partes:
 - uma parte para estimação do modelo, e
 - outra parte para testar a eficiência da classificação (holdout sample)
 (Hair et alii, 1998).

Exemplo de aplicação no SPSS

Uma amostra aleatória de 92 clientes de uma concessionária.

Variáveis: **Status** Inadimplente: 1

Adimplente: 0

Renda Mensal,

Número de dependentes,

Vínculo Empregatício

Com vínculo: 1

Sem vínculo: 0

Construção do Modelo

Definido - as variáveis dependentes e independentes.

2º Passo

- Selecionar as seguintes opções no SSPS:
- Analyze
 - Regression
 - Binary logistic
 - Inserir no campo Dependent Variável dependente "x11"
 - Inserir no campo Covariates Variáveis independentes "x1, x2, x3"
- Options (marcar)
 - Classificação do plots;
 - Hosmer-Lomeshow goodness-of- fit;
 - Include constant in model;
 - Classification cutoff: 0,5 (seleção do ponto de corte);
 - Maximum Iterations: 20;
 - CI for exp(B): 95% (intervalo de confiança de cada coeficiente estimado);
 - Método ENTER (inclusão simultânea de todas as variáveis independentes).

Base de dados

1	ST	R	ND	VE												
2	0	2,5	3	1	0	8,2	5	0	0	1,7	4	0	0	5	3	0
3	1	1,7	3	1	1	1,8	1	1	1	1,7	2	1	1	2,2	3	0
4	0	4	2	1	1	2,5	1	1	1	1,3	3	1	1	1,3	3	1
5	1	2,3	2	1	1	2,2	3	1	0	2,5	1	1	1	1,7	3	1
6	1	3,7	4	0	0	4	1	0	0	3,5	2	0	0	3	2	0
7	0	4,8	1	0	0	4,2	1	0	0	5,6	3	0	0	3	2	1
8	1	1,9	3	0	0	3,7	1	0	0	3,8	2	0	0	3,5	2	1
9	0	5,3	2	1	1	2,4	2	1	0	4	0	0	0	5,8	2	1
10	1	3,1	4	1	1	1,6	3	1	1	2,5	1	1	0	4,8	1	0
11	1	1,9	3	1	1	2	1	1	1	1,2	2	0	1	2,3	3	1
12	1	2,3	4	1	1	2,5	3	1	0	3	1	0	1	2,6	2	1
13	0	3,6	1	0	0	3,8	1	0	0	3	1	0	1	1,8	2	1
14	0	4,7	2	1	0	4,3	2	0	1	2,1	2	1	1	2,9	2	1
15	0	5,8	2	0	1	2	2	1	0	2,5	1	0	0	3,2	1	0
16	0	6	4	0	0	5,2	2	0	0	2,9	1	0	0	4,2	1	0
17	0	3,9	3	1	1	2,4	3	0	0	4	3	0	0	2,6	1	0
18	1	2,4	4	1	0	2,6	4	0	0	3,2	3	0	0	6	1	0
19	1	1,7	4	1	0	1,3	2	1	1	1,2	2	1	1	4,5	3	1
20	0	3,7	2	0	0	3,8	1	1	0	3,5	3	0	1	1,3	2	1
21	0	4,8	1	0	0	4,5	0	1	0	4	1	0	1	2,4	2	1
22	0	3,2	2	1	0	3	0	1	1	2,3	3	1	0	4,3	2	0
23	1	2,7	3	1	1	2,1	2	1	0	2,9	4	0	1	1,8	0	1
24	1	1,2	3	1	1	1,9	2	1	1	2,4	2	1	0	2,4	2	0
25																

Seleção das variáveis

Saídas do SPSS

Case Processing Summary

Unweighted Case	S ^a	N	Percent
Selected Cases	92	100,0	
	Missing Cases	0	,0
	Total	92	100,0
Unselected Cases	Unselected Cases		
Total		92	100,0

a. If weight is in effect, see classification table for the total number of cases.

O primeiro relatório evidencia o número de casos incluídos na análise. Concluise que todas as observações foram aproveitadas.

Dependent Variable Encoding

Original Value	Internal Value
0	0
1	1

O quadro acima apresenta o código que o software atribui à variável dependente.

Saídas do SPSS (razão de Chances)

Classification Table^{a,b}

	Observed	Predicted					
		S	Т				
		0	1	Percentage Correct			
Step 0	ST 0	51	0	100,0			
	1	41	0	,0			
	Overall Percentage			55,4			

- a. Constant is included in the model.
- b. The cut value is ,500

Antes de realizar análise propriamente dita, o SPSS fornece um conjunto de dados que pode ser utilizado para fins de comparação. (Cálculo da razão de chances P/1-P = 51/41)

Saídas do SPSS

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 0	Constant	-,218	,210	1,083	1	,298	,804

Refere-se análise de cada constante no modelo.

Variables not in the Equation

		Score	df	Sig.
Step 0	Variables R	39,112	1	,000
	ND	7,768	1	,005
	VE	33,368	1	,000
	Overall Statistics	54,573	3	,000

O quadro apresentado acima evidencia o *score* de cada variável, todas apresentam *scores* significativos.

Teste Wald

- Este teste avalia o modelo de regressão Logística como um todo, tem como finalidade aferir o grau de significância de cada coeficiente da equação logística, inclusive a constante.
- Verifica se cada parâmetro estimado é significativamente diferente de zero. (testa a hipótese de que um determinado coeficiente é nulo).
- Segue uma distribuição Qui-quadrado e quando a variável dependente tem um único grau de liberdade, pode-se elevar ao quadrado a razão entre o coeficiente que está sendo testado e o respectivo erro padrão.

Fórmula:

$$Wald = \frac{B_j}{SE_{Bj}}$$

Os coeficientes (*B*) são divididos pelo seus respectivos erros padrão(SE).

Step, Block e Model

Estes testes que têm como objetivo testar a hipótese de que todos os coeficientes da equação são nulos.

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	76,143	3	,000,
	Block	76,143	3	,000
	Model	76,143	3	,000

H0: Todos os coeficientes da equação são nulos.

H1: Todos os coeficientes da equação não são nulos.

Todos os três testes têm a mesma finalidade.

Cox-Snell R2

Este teste é comparável ao R-quadrado da regressão linear. Ou seja, indica que 66% das variações ocorridas no Log da razão de chances são explicadas pelo conjunto das variáveis independentes.

Model Summary

Step	-2 Log likelihood	Cox & Snell R Square	Nagelkerke R Square
Step	likeliilood	i i Square	n Square
1	24,876	,666	,901

Trata-se de um *mecanismo que pode ser utilizado para comparar o desempenho de modelos concorrentes*. Entre duas equações logísticas igualmente válidas. Deve-se preferir o que apresente o COX-SNELL R2 mais elevado.

Nagelkerke R2

Sua a finalidade é a mesma do cox-snell R2 Na prática a única diferença está em se fazer mais compreensível que o cox-snell R2

Model Summary

Step	-2 Log	Cox & Snell R	Nagelkerke R		
	likelihood	Square	Square		
1	50,307 ^a	,563	,754		

a. Estimation terminated at iteration number 6 because parameter estimates changed by less than .001.

O Nagelkerke R2 é uma versão do Cox e Snell adaptada para fornecer resultados entre 0 e 1. Conclui-se que o modelo é capaz de explicar cerca de 75,4% das variações registradas na variável dependente

Teste Hosmer e Lemeshow

Este teste mede o grau de acurácia do modelo logístico, este indicador corresponde a um teste do qui-quadrado que consiste em dividir o número de observações em cercas de dez classes e, em seguida, comparar as freqüências preditas com as observadas. A finalidade desse teste é verificar se existem diferenças significativas entre as classificações realizadas pelo modelo e a realidade observada. Busca-se não rejeitar a hipótese de que não existem diferenças entre os valores preditos e observados.

Hosmer and Lemeshow Test

Step	Chi-square	df	Sig.
1	8,169	8	,417

H0: não há diferenças significativas entre os resultados os preditos pelo modelo e os observados.

H1: há diferenças significativas entre os resultados os preditos pelo modelo e os observados.

Quadro de Classificação Final

Observa-se que o modelo apresenta-se uma classificação satisfatória, quanto ao uso de variáveis independentes como estimadores do status que o cliente poderá assumir em determinadas circunstâncias.

Classification Table^a

	Observed	Predicted					
		S	Т				
		0	1	Percentage Correct			
Step 1	ST 0	45	6	88,2			
	1	4	37	90,2			
	Overall Percentage			89,1			

a. The cut value is ,500

Teste Wald

- Este teste avalia o modelo de regressão Logística como um todo, tem como finalidade aferir o grau de significância de cada coeficiente da equação logística, inclusive a constante.
- Verifica se cada parâmetro estimado é significativamente diferente de zero. (testa a hipótese de que um determinado coeficiente é nulo).
- O teste de Wald é usado para analisar a significância, exceto nos caso em que o coeficiente é extremamente grande.

Coeficientes e Testes

Variables in the Equation

								95% C.I.fo	or EXP(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1 ^a	R	-1,882	,489	14,845	1	,000	,152	,058	,397
	ND	,860	,386	4,965	1	,026	2,362	1,109	5,031
	VE	2,822	,852	10,969	1	,001	16,812	3,165	89,317
	Constant	1,478	1,657	,795	1	,373	4,383		

a. Variable(s) entered on step 1: R, ND, VE.

H0: os coeficientes são iguais a 0

H1: os coeficientes não são iguais a 0

REGRESSÃO LOGÍSTICA ANÁLISE DISCRIMINANTE

Semelhança

- Ambas se enquadram na classe de métodos estatísticos multivariados, pois relacionam um conjunto de variáveis independentes com uma variável dependente categórica. (Hair et alii, 1998; Sharma, 1996; Morgan e Griego, 1998).
- São técnicas utilizadas para classificação e discriminação de grupos,
 em muitas situações práticas, pesquisadores desejam separar duas
 classes de objetos ou alocar um novo objeto em uma dessas classes;
- Ambas procuram encontrar uma função ou um conjunto de funções que discrimine os grupos definidos pela variável categórica visando minimizar erros de classificação.

Diferença

- Em um contexto onde o conjunto de variáveis independentes possui um comportamento probabilístico de normalidade multivariada, a análise discriminante é ótima porque minimiza os erros de classificação (Hair et alii, 1998; Sharma, 1996).
- O modelo logístico pode ser utilizado de uma forma bem mais geral, pois não faz suposições quanto a forma funcional das variáveis independentes e, além disso, o número de parâmetros envolvidos no processo de estimação será provavelmente menor.

Regressão Logística x Análise Discriminante

- Comparando as duas técnicas, é consenso que a discriminação logística deve ser preferida quando as distribuições são claramente não-normais. Krzanowski (1988) Press e Wilson (1978). Hair et alii (1998)
- Motivos que levariam o pesquisador a optar pela regressão logística:
 - não é necessário supor normalidade multivariada;
 - é uma técnica mais genérica e mais robusta, pois sua aplicação é apropriada numa grande variedade de situações;
 - é uma técnica similar a regressão linear múltipla.