Homework 4

March 7, 2022 José Carlos Muñoz

1

The original 1D data set is

 $\begin{bmatrix} 2 & 1 & 3 & 4 & 7 \end{bmatrix}$

The filter we are using is

 $\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$

Using the convolution the math looks like this

$$2*1+1*0+3*1=5$$

 $1*1+3*0+4*1=5$
 $3*1+4*0+7*1=10$

Therefore, the final matrix will be

 $\begin{bmatrix} 5 & 5 & 10 \end{bmatrix}$

4

The Convolution Layer will not change the Hieght and width of the incoming matrix. but it will change the depth amount to however there is in that Convolution layer. The MaxPooling used here will only reduce the width and hieght by a factor of 2.

Using what we know we can now determine the dimensions of the Tensor as it pases through each of the different Convoluted Neural Networks.

For the First CNN

Layer	output of Layer
L_1	224x224x64
M	112x112x64
L_2	112x112x128
M	56x56x128
L_3, L_4	56x56x256
M	28x28x256
L_5, L_6	28x28x512
M	14x14x512
L_7, L_8	14x14x512
M	7x7x512
L_9, L_{10}	14x14x4096
L_{11}	14x14x1000
	1

For the Second CNN

Layer	output of Layer
L_1	224x224x64
M	112x112x64
L_2	112x112x128
M	56x56x128
L_3, L_4	56x56x256
M	28x28x256
L_5, L_6	28x28x512
M	14x14x512
L_7, L_8	14x14x512
M	7x7x512
L_9, L_{10}	14x14x4096
L_{11}	14x14x1000

7

The 7x7 matrix is

The 3x3 matrix

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$$

Using the convolution the math looks like this, only the first 3 columns of the first row of the new matrix will be calculated

$$4 = 6 * 1 + 3 * 1 + 4 * 1 + 4 * 0 + 7 * 0 + 4 * 0 + 7 * -1 + 0 * -1 + 2 * -1$$

$$3 = 3 * 1 + 4 * 1 + 4 * 1 + 7 * 0 + 4 * 0 + 0 * 0 + 0 * -1 + 2 * -1 + 3 * -1$$

$$4 = 4 * 1 + 4 * 1 + 5 * 1 + 4 * 0 + 0 * 0 + 4 * 0 + 2 * -1 + 3 * -1 + 4 * -1$$

The final convolution matrix is

$$\begin{bmatrix} 4 & 3 & 4 & -3 & -3 \\ 0 & -1 & 0 & 1 & -2 \\ -5 & -6 & 1 & -1 & 0 \\ 6 & 11 & 1 & -3 & 1 \\ 3 & 3 & 4 & 4 & 2 \end{bmatrix}$$