WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 4:	A1	(11) International Publication Number: WO 89/00692	
G01N 33/53	AI	(43) International Publication Date: 26 January 1989 (26.01.89)	
(21) International Application Number: PCT/U	ernational Application Number: PCT/US88/01941 (74) Agents: STERN, Marvin, R. et al.; Holm 2401 Fifteenth Street, N.W., Washington		
(22) International Filing Date: 7 June 1988	(07.06.		
(31) Priority Application Number:	073,6	(81) Designated States: AT (European patent), AU, BE (European patent), CH (European patent), DE (Euro-	
(32) Priority Date: 15 July 1987	15 July 1987 (15.07.87) pean patent), FR (European patent), GB (European patent), IT (European patent), JP, LU (European patent)		
(33) Priority Country:	1	tent), NL (European patent), SE (European patent).	
(71) Applicant: THE UNITED STATES OF AME represented by THE SECRETARY, U.S.	ERICA, DEPAR	Published With international search report.	
MENT OF COMMERCE [US/US]; 5285 F Road, Springfield, VA 22151 (US).	ort Roy	Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt	
(72) Inventors: SCHLOM, Jeffrey; 10525 Tyle: Potomac, MD 20854 (US). COLCHER, I Kirkwall Court, Potomac, MD 20854 (US).	r Terra David ;	of amendments.	
	•		

(54) Title: SECOND GENERATION MONOCLONAL ANTIBODIES HAVING BINDING SPECIFICITY TO TAG-72 AND HUMAN CARCINOMAS AND METHODS FOR EMPLOYING THE SAME

(57) Abstract

The present invention relates to second generation monoclonal antibodies having binding specificity to a tumor associated glycoprotein having an approximate molecular weight of $> 10^6$ d ("TAG-72") and human carcinomas and methods for employing the same. Hybridomas producing such antibodies have been prepared.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	ML	Maii
AU	Australia	GA	Gabon	MR	Mauritania
BB	Barbados	GB	United Kingdom	MW	Malawi
BE	Belgium	HU	Hungary	NL	Netherlands
BG	Bulgaria	IT	Italy	NO	Norway .
BJ	Benin	JP	Japan	RO	Romania
BR	Brazil	· KP	Democratic People's Republic	SD	Sudan
Œ	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SN	Senegal
CH	Switzerland	LI	Liechtenstein	SU	Soviet Union
CM	Cameroon	LK	Sri Lanka	TD	Chad
DE	Germany, Federal Republic of	LU	Luxembourg	TG	Togo
DK	Denmark	ME	Monaco .	US	United States of America
FT.	Finland	MG	Madagascar		·

10

11

1	SECOND GENERATION MONOCLONAL ANTIBODIES HAVING
2	BINDING SPECIFICITY TO TAG-72 AND HUMAN
3	CARCINOMAS AND METHODS FOR EMPLOYING
4	THE SAME

FIELD OF THE INVENTION

The present invention relates to second generation monoclonal antibodies having binding specificity to a tumor associated glycoprotein having an approximate molecular weight of >10⁶d (hereinafter "TAG-72") and human carcinomas, and methods for employing the same.

BACKGROUND OF THE INVENTION

Numerous monoclonal antibodies have been developed 12 which have binding specificity for a variety of human 13 carcinomas (see Schlom, et al., "Important Advances in 14 Oncology", Philadelphia, PA, J.B. Lippincott Co., Vol. 1, 15 pp. 170-192 (1984) and Schlom, Cancer Res., 46:3225-3238 16 One of these monoclonal antibodies designated 17 (1986)). B72.3 (see Colcher, et al., Proc. Natl. Acad. Sci. USA, 18 78:3199-3203 (1981) and U.S. Patents Nos. 4,522,918 and 19 4,612,282), is a murine IgG_1 , and was developed using a 20 extract as the immunogen. carcinoma 21 breast Monoclonal antibody \$72.3 is produced by hybridoma B72.3 22 (ATCC No. HB-8108) and has been extensively studied. 23

Monoclonal antibody B72.3 has been shown to be distinct I 2 from other known monoclonal antibodies on the basis of: (1) its binding specificity to TAG-72 (see Johnson, Cancer Res., 46:857-859 (1986)); (2) its binding 5 specificity to various types of human carcinoma tissues, 6 including breast, ovarian, lung, colorectal, endometrial, 7 and pancreatic carcinoma tissues (see Nuti, et al., Intl. 8 J. Cancer, 29:539-545 (1982); Stramignoni, et al., Intl. 9 J. Cancer, 31:543-552 (1982); Thor, et al., J. Natl. 10 Inst., Cancer 76:995-1006 (1986); and Thor, 11 <u>46</u>:3118-3124 (1986)); Cancer Res., (3) its lack of 12 binding specificity to normal adult human tissues (see 13 Nuti, et al., Intl. J. Cancer, 29:539-545 (1982);Stramignoni, et al., <u>Intl. J. Cancer</u>, <u>31</u>:543-552 (1983); 14 15 Thor, et al., J. Natl. Cancer Inst., 76:995-1006 16 Thor, et al., <u>Cancer Res.</u>, <u>46</u>:3118-3124 (1986)); (4) 17 its ability to detect TAG-72 in serum (see Paterson, 18 al., Intl. J. Cancer, 37:659-666 (1986) and Klug, et al. 19 Intl. J. Cancer, 38:661-669 (1986)); (5) its ability to 20 detect carcinoma cells in human effusions and fine needle aspiration biopsies (see Szpak, et al., Acta Cytologica, 21 28:356-367 (1984); Johnston, et al., Cancer Res., 45: 22 23 1894-1900 (1986); Szpak, et al., Am. J. Path., 122:252-24 260 (1986); Johnston, et al., Human Path., 17:501-513 25 (1986); Martin, et al., Am. J. Clin. Path., 86:10-18 26 (1986); Nuti, et al., Intl. J. Cancer, 37:493-498 (1986); 27. and Johnston, et al., Cancer Res., 46:6462-6470 (1986)); 28 and (6) its binding specificity and prolonged binding to 29 human carcinomas both in experimental animal systems (see Kennan, et al., <u>J. Nucl. Med.</u>, <u>25</u>:1197-1203 (1984) and 30. 31 Colcher, et al., Cancer Res., 44:5744-5751 (1984)) and in 32 clinical trials (see Colcher, et al., Cancer Res., 47: 33 1185-1189 (1987) and Esteban, et al., Intl. 34 39:50-58 (1987)).

antibody B72.3 is monoclonal 1 However, disadvantageous in that (1) B72.3 does not have binding 2 carincoma tissue of a specificity to every human 3 particular type, e.g., to every ovarian, colon carcinoma 4 tissue, etc. (see Nuti, et al., Intl. J. Cancer, 29:539-5 . 545 (1982); Stramignoni, et al., <u>Intl. J. Cancer</u>, <u>31</u>:543-6 7 552 (1983); Thor, et al., J. Natl. Cancer Inst., 76:995-1006 (1986); Thor, et al., Cancer Res., 46:3118-3124 8 Hand, et al., Cancer Res., 43:728-735 (1986); and 9 (1983)); (2) B72.3 does not have binding specificity to 10 all carcinoma cells within a given human carcinoma mass 11 (see Nuti, et al., Intl. J. Cancer, 29:539-545 (1982); 12 Stramignoni, et al., Intl. J. Cancer, 31:543-552 (1983); 13 Thor, et al., J. Natl. Cancer Inst., 76:995-1006 (1986); 14 Thor, et al., Cancer Res., 46:3118-3124 (1986); and Hand, 15 et al., Cancer Res., 43:728-735 (1983)); (3) B72.3 does 16 not have binding specificity to most human carcinoma cell 17 lines in culture (see Hand, et al., Cancer Res., 43:728-18 19 735 (1983); Hand, et al., Cancer Res., 45:833-840 (1985); and Friedman, et al., Cancer Res., 45:5648-5655 (1985)); 20 21 (4) it is difficult to obtain highly immunoreactive 22 F(ab')2, F(ab') and F(ab) fragments from B72.3, such fragments efficient 23 being necessary for in vivo 24 immunodiagnostic and therapeutic applications; since B72.3 is of the IgG1 isotype, it is difficult to 25 cell mediated conduct monoclonal antibody effector 26 cytotoxicity or complement mediated cytotoxicity studies 27 using B72.3 (Ig G_{2a} , Ig G_{2b} or IgM isotypes being more 28 29 efficient for these applications).

20 ¹

- 4 -

SUMMARY OF THE INVENTION

Accordingly, an object of the present invention is to provide monoclonal antibodies which have binding specificity to a variety of human carcinomas, including human carcinomas of a given type for which B72.3 essentially has no binding specificity.

Another object of the present invention is to provide monoclonal antibodies having high binding affinity for TAG-72 and human carcinomas.

A further object of the present invention is to provide monoclonal antibodies from which highly immunoreactive $F(ab')_2$, F(ab') and F(ab) fragments can be easily obtained for use in <u>in vivo</u> immunodiagnosis and therapy of human carcinomas.

A still further object of the present invention is to provide monoclonal antibodies from which recombinant antibodies can be obtained for use in in vivo immunodiagnosis and therapy of human carcinomas.

An additional object of the present invention is to provide monoclonal antibodies of the IgG2a, IgG2b and IgM isotypes which have binding specificity for human carcinomas for use in conducting monoclonal antibody effector cell mediated cytotoxicity or complement mediated cytotoxicity studies.

Still an additional object of the present invention is to provide methods for diagnosing in vitro and in vivo human carcinomas and methods for treating human carcinomas employing these monoclonal antibodies.

Other objects and advantages of the present invention will become apparent from the Detailed Description of the Invention presented hereunder.

The above and various other objects and advantages of the present invention are achieved by the second

4

5

6

7

10

11

12

13

14 .

15

16

17

18

19 20

21 22

23 24

25

26

27

30

31

32

33

34

28 29 generation monoclonal antibodies of the present invention which have binding affinity to both TAG-72 and to LS-174T antigen(s).

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are now described. All publications mentioned hereunder are incorporated herein by reference.

As used herein, the expression "second generation antibodies" means monoclonal antibodies monoclonal produced using, as the immunogen, an antigen which has been affinity purified with a first generation monoclonal antibody. As used herein, expression. the monoclonal antibody" means a monoclonal generation antibody produced using, as the immunogen, a crude cell extract.

The term "substantially" as used herein means almost wholly or to a large extent, but not entirely.

LS-174T (ATCC No. CRL-188) is a variant of the LS180 (ATCC No. CRL-187) colon adenocarcinoma line. It is more easily subcultivated than the parent line. It is tumorigenic in nude mice. The karyotype is similar to that of LS180 with a missing X chromosome in a majority of the cells. Electron microscopic studies reveal abundant microvilli and intracytoplasmic mucin vacuoles (see Tom, et al., In Vitro, 12:180-191 (1976)).

TAG-72 is an antigen found in the LS-174T tumor cell line. Monoclonal antibody B72.3 binds to a high molecular weight tumor associated glycoprotein identified as TAG-72. Data has been presented as described in

20

21

22

23

24 25 ×

26

27 .

28

29 30

31

32

33

Johnson, et al., Cancer Res., 46:850-857 (1986), to 1 2 characterize the TAG-72 molecule as a mucin. 3 conclusion is based on the following observations: 4. TAG-72 has a high molecular weight (>1 x 10^6) as shown by its exclusion from a Sepharose CL-4B column; (b) the 5 б density of TAG-72 determined by eguilibrium centrifugation in CsCl was 1.45 gm/ml, 7 indicating a 8 heavily glycosylated glycoprotein; (c) 9 demonstrates a change in migration after neuraminidase 10 digestion, indicating that it is a heavily sialylated molecule with an abundance of O-glycosidically linked 11 12 oligosaccharides characteristic of mucins; (d) blood group antigens commonly found on mucins are found on 13 14 affinity-purified TAG-72; and (e) chondroitinase ABC 15 digestion had no effect on TAG-72, thus demonstrating 16 that the TAG-72 epitope is not expressed on a chondroitin 17 sulfate proteoglycan. 18

More specifically, the above-described objects of the present invention have been achieved by the second generation monoclonal antibodies of the present invention, immunoreactive fragments or recombinants thereof which have binding specificity to TAG-72 and to human carcinomas, including human carcinomas to which antibody B72.3 has minimal binding specificity and with minimal binding specificity to normal adult human tissues. The term "minimal" means the least possible or substantially inconsequential.

To another embodiment, the above-described objects of the present invention have been achieved by a method for diagnosing a human carcinoma or metastases thereof comprising:

(a) obtaining a body sample, such as body fluid, tissue or biopsy from a patient;

monoclonal

antibody

1	(b) contacting the body sample material
2	with a second generation monoclonal antibody of the
3	present invention, an immunoreactive fragment or a
4	recombinant thereof;
5	(c) determining the level of binding of
6	second generation monoclonal antibody, immunoreactive
7	fragment or recombinant thereof to the body sample
8	material; and
9	(d) comparing the amount of second
10	generation monoclonal antibody, immunoreactive fragment
11	or recombinant thereof bound to substances present in the
12	body sample to a control sample or to a predetermined
13	base level, so that a binding greater than the control
14	level is indicative of the presence of human carcinomas
15	or metastases thereof.
16	In still another embodiment, the above-described
1.7	objects of the present invention have been achieved by a
18	method for diagnosing the presence of a human carcinoma
19	or metastases thereof comprising:
20	(a) administering to a patient a second
21	generation monoclonal antibody of the present invention,
22	an immunoreactive fragment or recombinant thereof,
23	conjugated to an imaging marker; and
24	(b) exposing the patient to a means for
25	detecting said imaging marker to identify areas of
26	imaging marker corresponding to a human carcinoma or
27	metastatic sites thereof in said patient.
28	In a still further embodiment, the above-described
29	objects of the present invention have been achieved by a
30	method of treating a patient afflicted with a human
31.	carcinoma or metastases thereof, comprising administering
32	to a patient afflicted with carcinoma or metastases, a
33	pharmaceutically effective amount of a second generation

of the present invention, an

17 -

immunoreactive fragment or recombinant thereof conjugated
to a therapeutic agent.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a schematic diagram of: (1) the differential binding specificities of the CC and MATAG monoclonal antibodies of the present invention to LS-174T colon carcinoma cells (ATCC No. CRL-188) in a competition radioimmunoassay (hereinafter "RIA") with B72.3; (2) the isotypes of the CC and MATAG monoclonal antibodies of the present invention; and (3) the binding specificity of the CC and MATAG monoclonal antibodies of the present invention to various colon carcinomas in a solid phase RIA (hereinafter "SPRIA)".

Figure 2 is an analysis of the binding specificity of monoclonal antibody CC41 to LS-174T colon carcinoma cell extract in a competition RIA with B72.3. Figure 2B is a quantitative analysis of the binding specificities of monoclonal antibodies B72.3 and CC41 to LS-174T colon carcinoma cell line extract (LS) and a breast carcinoma biopsy extract (Br. Ca.) in a SPIRA.

Figure 2C is an analysis of the binding specificity of monoclonal antibody CC60 to LS-174T colon carcinoma cell extract in a competition RIA with B72.3. Figure 2D is a quantitative analysis of the binding specificities of monoclonal antibodies B72.3 and CC60 to LS-174T colon carcinoma cell line extract (LS) and a breast biopsy extract (Br. Ca.) in a SPRIA.

Figure 2E is an analysis of the binding specificity of monoclonal antibody CC83 to LS-174T colon carcinoma cell extract in a competition RIA with B72.3. Figure 2F is a quantitative analysis of the binding specificities of monoclonal antibodies B72.3 and CC83 to

6

7

8

9

10

11

12

13 14

21

1 LS-174T colon carcinoma cell line extract (LS) and a breat carcinoma biopsy extract (Br. Ca.) in a SPRIA.

Figure 2G is an analysis of the binding specificity of monoclonal antibody CC49 to LS-174T colon carcinoma cell extract in a competition RIA with B72.3. Figure 2H is a quantitative analysis of the binding specificities of monoclonal antibodies B72.3 and CC49 to LS-174T colon carcinoma cell line extract (LS) and a breast carcinoma biopsy extract (Br. Ca.) in a SPRIA.

Figure 3 is an analysis of a competition RIA with CC49, wherein ¹²⁵I-labelled CC49 monoclonal antibody was reacted with LS-174T colon carcinoma cell extract and purified CC30, CC46, CC49, CC83 and B72.3 were used as competing antibodies.

Figure 4A is an analysis of the <u>in vivo</u> targeting of a LS-174T colon carcinoma xenograft with monoclonal antibody CC11.

Figure 4B is an analysis of the <u>in vivo</u> targeting
of a LS-174T colon carcinoma xenograft with monoclonal:
antibody CC46.

DETAILED DESCRIPTION OF THE INVENTION

22 I. Characteristics of the Monoclonal Antibodies

The monoclonal antibodies specifically developed 23 in the present invention, designated CC1 to CC92 (IgG 24 monoclonal antibodies) and MATAG 1 to MATAG 18 (IgM 25 monoclonal antibodies) (see Figure 1) all have binding 26 specificity to TAG-72 and numerous types 27 carcinomas (including breast, ovarian, lung, colorectal, 28 endometrial and pancreatic carcinomas), and are different 29 30 from B72.3 in that they:

27

28

29

30

31

1.	(1) have binding specificity to more human
2	carcinomas than B72.3 while still maintaining essentially
3	no specificity to normal adult human tissues;
4	(2) have a higher binding affinity for
5	TAG-72 than B72.3, i.e., on the order of greater than 3 m
6.	109M, preferably greater than 8 x 109M and consequently
7	bind human carcinomas in vivo at a higher efficiency;
8	(3) exhibit a 50% or more efficiency than
9 .	B72.3 in targeting human carcinomas in situ (i.e., 50%
10	more injected dose/gram tumor than B72.3 and preferably
11	greater than 100% more injected dose/gram tumor than
12	B72.3);
13	(4) can be easily fragmented with pepsin to
14	obtain F(ab')2, F(ab') and F(ab) fragments that are
15	highly immunoreactive; and
16	(5) include monoclonal antibodies of the
17	IgG2a, IgG2b, and IgM isotypes so they can more
18	efficiently be used in monoclonal antibody targeted
19	effector cell mediated cytotoxicity or complement
20	mediated cytotoxicity studies.
21:	The development of the CC and MATAG monoclonal
22	antibodies of the present invention also now makes
23	feasible the use of double determinant RIAs (hereinafter
24	"DDRIA"s) for more efficient detection of human carcinoma
25	antigens in body fluids and biopsies of cancer nationts

II. Production of the Monoclonal Antibodies

The CC and MATAg monoclonal antibodies of the present invention are produced by immunizing mice (or other animals such as rats, rabbits, goats, and humans) with purified TAG-72 obtained from various xenografts, such as LS-174T human colon carcinoma xenografts prepared

6

7

8

9.

10

11

12

13 14

15

16 17

18 19

20

22

23

24 25

26 27

28

29

30

32

33

31

21

using LS-174T carcinoma cells (ATCC No. CRL-188) and OVCAR-3 human ovarian cancer xenografts, prepared using OVCAR-3 carcinoma cells (see Hamilton, et al., Cancer Res., 43:5379-5389 (1983)).

TAG-72 is purified from the xenografts by methods well known in the art. More specifically, by following steps: (1) breaking the cells; (2) centrifuging and/or filtering to remove cellular debris; (3) carrying out sizing column chromatography to obtain proteins having a molecular weight of >106d, i.e., the molecular weight of TAG-72; and then (4) carrying out column chromatography to obtain the B72.3 affinity desired TAG-72 (see Paterson, et al., Intl. J. Cancer, 37:659-666 (1986)).

Immunizing the animals, e.g., mice, with purified TAG-72, isolating the immunized cells, fusing the immunized cells with mouse myeloma cells (or myeloma cells of other species such as rats, rabbits, goats and humans), all of which are well known in the art and readily available, and culturing the resulting fused under conditions which allow for growth of hybridomas, are all conducted by methods well known or readily determined in the art (see Herzenberg, et al., "Handbook of Experimental Immunology", Oxford, Blackwell, pp. 25.1-25.7; Colcher, et al., Proc. Natl. Acad. Sci. USA, 78:3199-3203 (1981); and Muraro, et al., Intl. J. Cancer, 39:34-44 (1987)).

The resulting hybridomas are then tested to isolate those which produce monoclonal antibodies having binding specificity to TAG-72 and human carcinomas but not to normal adult human tissues. This screening is carried out using a SPRIA as decribed in greater detail in the Examples provided hereinafter.

7 ...

The binding affinity of monoclonal antibodies for TAG-72 is determined by means well known in the art (see Heyman, et al., <u>J. Immunol. Methods</u>, <u>68</u>:193-204 (1984)) and as described in detail in the Examples provided hereinafter.

The isotypes (IgG₁, IgG_{2a}, IgG_{2b}, IgG₃ or IgM) of the monoclonal antibodies are determined by means well known in the art (see Colcher, et al., <u>Cancer Res.</u>, <u>41</u>:1451-1459 (1981)) and as described in detail in the Examples provided hereinafter.

In the non-limiting Examples provided hereinafter, in excess of four thousand hybridomas were produced by fusing (i) spleen cells of mice immunized with purified TAG-72 which was obtained from a LS-174T human colon carcinoma xenograft, and (ii) the well known and readily available NS-1 mouse myeloma line (ATCC No. TIB-18). From these hybridomas, 44 double cloned hybridomas (29 CC second generation monoclonal antibodies and 15 MATAG second generation monoclonal antibodies) were selected and characterized as described in the Examples provided hereinafter.

The CC monoclonal antibodies of the present invention are fragmented to obtain highly immunoreactive $F(ab')_2$ and F(ab) fragments using the enzyme pepsin by methods well known in the art (see Colcher, et al., Cancer Res., 43:736-742 (1983)) and as described in greater detail in the Examples provided hereinafter. The immunoreactivity of the resulting $F(ab')_2$, F(ab') and F(ab) fragments are determined in a competition RIA or SPRIA as described above for the complete monoclonal antibody molecule.

The second generation antibodies of the present invention are also made into recombinant forms by

techniques of molecular biology well known in the art (see Rice, et al., Proc. Natl. Acad. Sci. USA, 79:7862-2. 7865 (1982); Kurokawa, et al., Nucleic Acids Res., 11: 3 4 3077-3085 (1983); Oi, et al., Proc. Natl. Acad. Sci. USA, 80:825-829 (1983); Boxx, et al. Nucleic Acids Res., 12: 5 6 3791-3806 (1984); Boulianne, et al., Nature (London), 7 312:643-646 (1984); Cabily, et al., Proc. Natl. Acad. Sci. USA, 81:3273-3277 (1984); Kenten, et al. Proc. Natl. 8 Acad. Sci. USA, 81:2955-2959 (1984); Liu, et al., Proc. 9 Natl. Acad. Sci. USA, 81: 5369-5373 (1984); Morrison, et 10 al., Proc. Natl. Acad. Sci. USA, 81:6851-6855 (1984); 11 12 Neuberger, et al., <u>Nature (London)</u>, <u>312</u>:604-608 (1984); 13 Potter, et al., Proc. Natl. Acad. Sci. USA, 81:7161-7165 (1984); Neuberger, et al., Nature (London), 314:268-270 14 15 (1985); Jones, et al., Nature (London), 321:522-525 16 (1986); Oi, et al., <u>BioTechniques</u>, <u>4</u>:214-221 (1986); Sahagan, et al., <u>J. Immunol.</u>, <u>137</u>:1066-1074 (1986); Sun, 17 et al., Hybridoma 5 (Suppl. 1):S-17-S20 (1986); and Sun,... 18 19 et al., Proc. Natl. Acad. Sci. USA, 84:214-218 (1987))_ 20 . all of which are specifically incorporated herein by 21 reference. 22 More specifically, the second generation monoclonal antibodies of the present 23 invention 24 altered to a chimeric form by substituting, e.g., human 25 constant regions (Fc domains) for mouse constant regions by recombinant DNA techniques known in the art 26 described in the above cited references. 27 domains can be of various human isotypes, i.e., IgG_1 , 28 29 IgG2, IgG3, IgG4, or IgM. 30 In addition, the second generation monoclonal antibodies of the present invention are altered to an 31 affinity modified form, avidity modified form, or both, 32. . by altering binding sites or altering the hinge region 33

4

5

6 7

8

9

IO

I1 :

12

I3...

14

15

16

17

18

19

20

21. 22

23

24

25

26

27

28

29

30

31

32

33 34 using recombinant DNA techniques well known in the art as described in the above cited references.

The recombinant antibody forms are also fragmented to produce immunoreactive fragments $F(ab')_2$, F(ab'), or F(ab) in the same manner as described above in which the second generation monoclonal antibodies of the present invention are fragmented.

Accordingly, es used herein, the expression "recombinant antibodies" collectively includes chimeric/ recombinant forms of the second generation monoclonal antibody of the present invention wherein the Fc domain is substituted for an F_c domain of another species or isotype, affinity modified forms of the second generation monoclonal antibody of the present invention wherein the binding sites are altered, avidity modified forms of the second generation monoclonal antibody of the present invention wherein the hinge regions are altered, immunoreactive fragments thereof and combinations thereof.

The second generation monoclonal antibodies of the present invention are produced in large quantities by injecting a hybridoma producing a second generation monoclonal antibody of the present invention into the peritoneal cavity of pristane-primed mice, and after an appropriate time (about 1-2 weeks), harvesting ascites fluid from the mice, which yields a very high titer of homogenous monoclonal antibody, and isolating the monoclonal antibodies therefrom by methods well known in the art (see Stramignoni, et al., Intl. J. Cancer, 31: 543-552 (1983)). Alternatively, the second generation monoclonal antibodies are. produced by culturing a hybridoma producing a second generation monoclonal antibody of the present invention in vitro and isolating secreted monoclonal antibodies from the cell culture

4

5

8

9

medium by methods well known in the art (see Colcher, et al., Proc. Natl. Acad. Sci. USA, 78:3199-3203 (1981)).

The CC and MATAG monoclonal antibodies of the present invention are thus produced according to the above method. The binding specificity and binding affinity of these monoclonal antibodies and a comparison of such with B72.3 are discussed in greater detail in the Examples provided hereinafter.

III. Uses of the Monoclonal Antibodies

The second generation monoclonal antibodies of the 10 present invention, immunoreactive fragments 11 recombinants thereof, can be used either alone, 12 in combination with one another, or in combination with 13 as B72.3 or immunoreactive antibodies. such 14. 15 fragments thereof, in: (1) in vitro diagnostic assays using labelled monoclonal antibodies for the detection of 16 TAG-72 in body fluids of patients; (2) in vivo diagnostic 17 assays (diagnostic imaging) using the second generation 18 19 monoclonal antibodies of the present invention, 20 immunoreactive fragments or recombinants thereof. for conjugated to an imaging marker, 21 the in 22 detection of carcinoma lesions; (3) in vivo cancer generation monoclonal 23 treatment using the second the present invention, immunoreactive 24 antibodies of fragments or recombinants thereof alone or conjugated to 25 a therapeutic agent such as radionuclide, drug, toxin, 26 effector cells, other antibodies or via a complement 27 immunohistopathology 28 mechanism; (4) or immunocytochemistry for the detection or phenotyping of 29 carcinoma cells; and (5) as immunogens to activate the 30 anti-idiotype network for active immunotherapy against 31 32 carcinomas.

4

5

6 -

7

8

9 10

11

12

13

14

15

16

17

18

19

20

21

22 -

23

24 25

26

27

29 30

31

32

33

28

A. In Vitro Diagnostic Assays

In vitro diagnostic assays of human carcinomas or metastases thereof by detecting TAG-72 in body fluids of patients using the second generation monoclonal antibodies of the present invention, immunoreactive fragments or recombinants thereof are described in greater detail below.

The body fluid obtained from a patient contacted with the monoclonal antibody of the present invention, immunoreactive fragment OT recombinant thereof. A diagnosis is then made by determining the amount of monoclonal antibody, immunoreactive fragment or recombinant thereof binding to substances (TAG-72) present in the body fluid and comparing the amount of monoclonal antibody, immunoreactive fragments or recombinants thereof bound to the body fluid substances to a predetermined base level as hereinafter defined. The amount of bound monoclonal antibody, immunoreactive fragment or recombinant thereof exceeding the base level indicates the presence of a human carcinoma or metastases thereof.

Examples of body fluids which can be used in the in vitro method are any body fluids suspected of containing TAG-72. Preferred examples thereof include blood (serum or plasma), sputum, nipple discharge, cyst fluid, ascites fluids, pleural effusions, seminal plasma, semen, urine and prostatic fluid and/or biopsy specimens. Serum or plasma are the more preferred body fluids employed in the present invention. The body fluids can be obtained by methods readily known to or determined by those skilled in the art.

The body fluid is contacted with the second generation monoclonal antibody of the present invention.

immunoreactive fragment or recombinant thereof and the 1 amount of monoclonal antibody, immunoreactive fragment or 2 recombinant thereof bound to substances in the body fluid 3 is determined by means of immunochemical assays well . 4 known to those skilled in the art, as described, 5 example, in Klug, et al., Cancer Res., 44:1048-1053 б (1984); Klug, et al., <u>Intl. J. Cancer</u>, <u>38</u>:661-669 (1986); 7. . Herlyn, et al., J. Clin. Immunol., 2:135-140 (1982); 8 Metzgar, et al., Proc. Natl. Acad. Sci. USA, 81:5242-5246 9 (1984); Papsidero, et al., Cancer Res., 44:4653-4657 10 (1984); Hayes, et al., J. Clin. Invest., 75:1671-1678 11 (1985); Killian, et al., Cancer Res., 45:886-891 (1985); 12 Hedin, et al., Proc. Natl. Acad. Sci. USA, 80:3470-3474 13 (1983); Pekary, et al., Clin. Chem., 30:1213-1215 (1984); 14 Bast, et al., New England J. Med., 309:883-887 (1983); 15 and Bellet, et al., Proc. Natl. Acad. Sci. USA, 81: . 16 3869-3873 (1984), the disclosures of all of which are 17 specifically incorporated herein by reference. 18 An example of one type of immunochemical assay 19 20 the present invention is a sandwich immunoradiometric assay (hereinafter "IRMA"). In this 21 type of assay, the presence of antigen (TAG-72) is 22 measured directly by reacting it with an excess of 23 labelled monoclonal antibody. In such an assay, before 24 the antigen is reacted with the labelled monoclonal 25 antibody, the antigen in insolubilized 26 immunoadsorbent which specifically binds the antigen. 27. The immunoadsorbent is formed by affixing a second 28 generation monoclonal antibody, immunoreactive fragment 29. or recombinant thereof to a substrate such 30 In sandwich assays for an antigen which is 31 immunobead. monomeric, two antibodies which recognize distinct 32 epitopes on the antigen are required, i.e., a so-called 33. "double determinant" assay, so that there is 34

5

6

. 8

10

11 12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30.

31 32

33.

34

competition for binding to the antigen. In sandwich assays, one antibody is bound to the immunoadsorbent and the other antibody is used as the labelled tracer. In assays for dimeric or polymeric antigens, the same antibody can be bound to the immunoadsorbent as the labelled tracer.

Sandwich IRMA's may be performed in a forward, reverse or simulantaneous mode.

In a forward sandwich assay for TAG-72, a monoclonal antibody is affixed to a solid phase such as an immunobead to form an immunoadsorbent specific for TAG-72. A body liquid sample containing TAG-72 is then incubated with the immunoadsorbent. Incubation is maintained for a sufficient period of time to allow TAG-72 in the body fluid to bind to the immobilized monoclonal antibody on the immunoadsorbent. After this first incubation, the solid phase immunoadsorbent is separated from the incubation mixture. immunoadsorbent may be washed to. remove unbound interfering substances, such as non-specific binding proteins, which may also be present in the body fluid. The immunoadsorbent containing TAG-72 bound immobilized monoclonal antibody is subsequently incubated with a labelled monoclonal antibody. immunoreactive fragment or recombinant thereof. Again, the incubation is carried out for a period of time and under conditions sufficient to ensure binding of the labelled monoclonal antibody, immunoreactive fragment or recombinant thereof to TAG-72. After the second incubation, another wash may be performed to remove unbound labelled monoclonal antibody, immunoreactive fragment or recombinant thereof from the solid phase immunoadsorbent. The labelled monoclonal antibody, immunoreactive fragement or recombinant thereof bound to the solid phase

2

3

6

7

8

9

10

11

12

13

14

15

16 ·

18

19

20

21

22

23

24

25

26

27

-28

29

30

31

32

immunoadsorbent is then measured, and the amount of labelled monoclonal antibody, immunoreactive fragment or recombinant thereof detected serves as a direct measure of the amount of TAG-72 present in the body fluid.

The sandwich IRMA may also be performed in reverse the reverse mode, an modes. In simultaneous incubation mixture is formed of the body fluid to be monoclonal antibody, labelled soluble and immunoreactive fragment or recombinant thereof directed The mixture is incubated, then TAG-72. against immunoadsorbent contacted with a solid phase containing a monoclonal antibody, immunoreactive fragment or recombinant thereof directed against TAG-72. another incubation, the immunoadsorbent is separated from. the mixture and the label bound to the immunadsorbent is taken as an indication of the amount of TAG-72 in the body fluid.

In the simultaneous mode, an incubation mixture is formed of the body fluid, the labelled monoclonal antibody, immunoreactive fragment or recombinant thereof and the solid phase immunoadsorbent. After incubation for a sufficient time, the solid phase immunoadsorbent is separated from the mixture and the label associated with the immunoadsorbent is measured to give an indication of the amount of TAG-72 in the body fluid.

For each incubation step in the various assay modes described above, the time and conditions of incubation are selected to ensure maximum binding of TAG-72 to the immobilized monoclonal antibody, immunoreactive fragment or recombinant thereof and to labelled monoclonal antibody, immunoreactive fragment or recombinant thereof, but generally are about 6 to 16 hours at room temperature (22° to 27°C).

In addition to the IRMA's described above, other immunoassays useful in the present invention include competitive binding assays such as RIAs and fluorescent or enzymelinked immunoassays (hereinafter "ELISA"). On suitable type of RIA is a SPRIA.

For a SPRIA, a solid phase immunoadsorbent is prepared as described for the IRMA.

The immunoadsorbent is then incubated with the body fluid and a known amount of labelled TAG-72 for a period of time and under conditions which permit binding of TAG-72 to the immunoadsorbent. The immunoadsorbent is separated from the body fluid and the amount of label associated therewith is assessed. By reference to a preestablished inhibition curve defining the relationship between labelled TAG-72 associated with the immunoadsorbent, the amount of unlabelled human TAG-72 in the body fluid is determined.

In the various SPRIA's, the immunoadsorbent is separated from incubation mixtures containing the body fluid, the labelled antibody or both. Separation can be accomplished by any conventional separation technique such as sedimentation or centrifugation. Preferably, though not necessarily, the immunoadsorbent is washed prior to contacting it, when required, with a second incubation medium and prior to measuring the amount of label associated with the immunoadsorbent. The washing removes non-specific interfering substances or excess labelled antibody which may affect the accuracy and sensitivity of the assay.

The particular label employed to label the second generation monoclonal antibodies of the present invention, immunoreactive fragments or recombinants thereof or TAG-72 in the above-described assays is not critical to the present invention and can be a

21 ²

radioisotope such as ³²p, ¹⁴C, ³H, ¹²⁵I, ¹³¹I, or ³⁵S for the IRMA and RIA or a fluorescent molecule such as fluorescein or rhodamine or an enzyme, which, under the presence of an appropriate substrate converts the substrate to a color product for the ELISA. Examples of such enzymes include alkaline phosphatase and horseradish peroxidase.

As the last step in the <u>in vitro</u> diagnostic method according the present invention, the amount of second generation monoclonal antibody, immunoreactive fragment or recombinant thereof, binding to substances (TAG-72) present in the body fluid is compared to a predetermined base level.

The determination of the base level of monoclonal antibody assay binding to be expected is a determination routinely made by those of ordinary skill in the art when defining the parameters necessary for the reading of a diagnostic test of this sort. These determinations may be made without undue experimentation, particularly in light of the teachings set forth herein.

Generally, the "base level" is defined as (1) two standard deviations above the mean of the normal population, or (2) the level below which 99% of the normal population falls.

B. In Vivo Diagnostic Assays

<u>In vivo</u> diagnostic assay of human carcinomas or metastases thereof using the second generation monoclonal antibodies of the present invention, immunoreactive fragments or recombinants thereof, are described in more detail below.

A second generation monoclonal antibody of the present invention, immunoreactive fragment or recombinant

3

4.

5

6

7

8

9

10

11 12

13

14 15 .

16

17

18 19

20 21

22

23

24

25

26

27

28

29

30

31

32

33

34

thereof, conjugated to an imaging marker is administered to a patient (or subsequently administering the marker or linker conjugate marker after administration of the second generation monoclonal antibody) and then the presence of the imaging marker in the patient is detected by exposing the patient to an appropriate means for detecting the marker.

Administration and detection of the antibodyimaging marker conjugate as well as a methods of conjugation of the antibody to the imaging marker are accomplished by methods readily known to or readily determined by those skilled in the art, as described, for example, in Goldenberg, et al., New England J. Med., 298: 1384-1388 (1978); Goldenberg, et al., J.A.M.A., 250:630-635 (1983); Goldenberg, et al., Gastroenterol., 84:524-532 (1983); Siccardi, et al., <u>Cancer Res.</u>, <u>45</u>:4817-4822 (1986); Epenetos, et al., Cancer, 55:984-987 (1985); Philben, et al., <u>Cancer</u>, <u>57</u>:571-576 (1986); Chiou, et Cancer Res., 45:6140-6146 (1985); Hwang, et al., J. Natl. Cancer Inst., 76:849-855 (1986); Colcher, et al., Cancer Res., <u>43</u>:736-742 (1983); Colcher, et al., "Laboratory Research Methods in Biology and Medicine Immunodiagnostics", New York, Alan R. Liss, pp. 215-258 (1983); Keenan, et al., J. Nucl. Med., 25:1197-1203 (1984); Colcher, Cancer Res., 43:1185-1189 et al., (1987); Esteban, et al., Intl. J. Cancer, 39:50-59 (1987); Martin, et al., Curr. Surg., 41:193-194 (1984); Martin, et al., Hybridoma, 5:S97-S108 (1986); and Martin, et al., Am. J. Surg., 150:672-675 (1985); the disclosures of all of which are specifically incorporated herein by reference.

The dosage will vary depending upon the age and weight of the patient, but generally a one time dosage of about 0.1 to 20 mg of antibody-marker conjugate per

28 ·

patient is sufficient. A more preferred dosage is about 1.0 to 2.0 mg of antibody-marker conjugate per patient.

Examples of imaging markers which can be conjugated to the antibody are well known to those skilled in the art and include substances which can be detected by diagnostic imaging using a gamma scanner or hand held gamma probe or Positron Emission Tomography or the like as described by the references cited above and substances which can be detected by nuclear magnetic resonance imaging using a nuclear magnetic resonance spectrometer or the like as described in the references cited above.

Suitable examples of substances which can be detected using a gamma scanner or the like include 125 I, 131 I, 123 I, 111 In, and 99 mTc. 111 Tn and 99 mTc are preferred due to their low energy and suitability for long range detection.

An example of a substance which can be detected using a nuclear magnetic resonance spectrometer or the like is the nuclear magnetic spin-resonance isotope gadolinium (Gd).

C. In Vivo Treatment

<u>In vivo</u> treatment of human carcinomas or metastases thereof using second generation monoclonal antibodies of the present invention, immunoreactive fragments or recombinants thereof is described in greater detail below.

A pharmaceutically effective amount of a second generation monoclonal antibody of the present invention, immunoreactive fragment or recombinant thereof unconjugated or conjugated to a therapeutic agent is administered to a patient.

7

8

9.

10

11 12

13

14 15

16

17 18

19

20. 21

22

23

24.

25

26

27

28

29

30

31

32:

33

34

Methods of preparing and administering the monoclonal antibody-therapeutic agent conjugate as well as suitable dosages will depend on the age and weight of the patient and the therapeutic agent employed and are well known to or readily determined by those skilled in the art. Representative protocols are described in the references cited below. Examples of the monoclonal antibody-therapeutic

agent conjugates which can be used in therapy include antibodies coupled to radionuclides, such as 131T, 90y, 105_{Rh.} 47_{Sc.} 67_{Cu.} 212_{Bi.} and 211_{At.} as described, example in Goldenberg, et al., Cancer Res., 41:4354-4360 (1981); Carrasquillo, et al., Treat. Rep., Cancer 68:317-328 (1984); Zelcberg, et al., J. Natl. Cancer Inst., 72:697-704 (1984); Jones, et al., Int. J. Cancer, 35:715-720 (1985); Lange, et al., Surgery, 98:143-150 (1985); Kaltovich, et al., <u>J. Nucl. Med.</u>, 27:897 (1986); Order, et al., Intl. J. Radiother. Oncl. Biol. Phys., 8:259-261 (1982); Courtenay-Luck, et al., Lancet, 1:1441-1443 (1983); and Ettinger, et al., Cancer Treat. Rep., 66:289-297 (1982), the disclosure of all of which specifically incorporated herein by reference; antibodies coupled to other drugs or biological response modifiers such as methotrexate, adriamycin, and interferon as described, for example in Chabner, et "Cancer, Principles and Practice of Oncology", Philadelphia, PA, J.B. Lippincott Co., Vol. 1, pp. 290-328 (1985); Oldham, et al., "Cancer, Principles and Practice of Oncology", Philadelphia, PA, J.B. Lippincott Co., Vol. 2, pp. 2223-2245 (1985); Deguchi, et al., Cancer Res., 46:3751-3755 (1986); Deguchi, et al. Fed. Proc., 44:1684 (1985); Embleton, et al., Br. J. Cancer, 49:559-565 (1984); and Pimm, et al., Cancer Immunol. Immunother., 12:125-134

(1982),

the

disclosure

of all of which are specifically incorporated herein by 1 reference; antibodies coupled to toxins, as described, 2 for example, in Uhr, et al., "Monoclonal Antibodies and 3 Cancer", Academic Press, Inc., pp. 85-98 (1983); Vitetta, 4 et al., "Biotechnology and Bio. Frontiers", Ed. P.H. 5 73-85 (1984); and Vitetta, et al., Sci., Abelson, pp. 6 219:644-6540 (1983), the disclosures of all of which are 7 8 specifically incorporated herein by reference; heterobifunctional antibodies for example, antibodies 9 coupled or combined with another antibody so that the 10 complex binds both to the carcinoma and effector cells, 11 e.g., killer cells, such as T cells, as described, for 12 example, in Perez, et al., J. Exper. Med., 163:166-178 13 (1986); and Lau, et al., Proc. Natl. Acad. Sci. USA, 14 82:8648-8652 (1985); the disclosures of both of which are 15 16 incorporated herein by reference; and specifically native, i.e., non-conjugated or non-complexed, antibody, 17 as described in, for example, Herlyn, et al., Proc. Natl. 18 19 Acad. Sci. USA, 79:4761-4765 (1982); Schulz, Proc. Natl. Acad. Sci. USA, 80:5407-5411 (1983); Capone, 20 et al., Proc. Natl. Acad. Sci. USA, 80:7328-7332 (1983); 21 Sears, et al., <u>Cancer Res.</u>, <u>45</u>:5910-5913 (1985); Nepom, 22 et al., Proc. Natl. Acad. Sci. USA, 81:2864-2867 (1984); 23 Koprowski, et al., Proc. Natl. Acad. Sci. USA, 81:216-219 24 (1984); and Houghton, et al., Proc. Natl. Acad. Sci. USA, 25 all of which are specifically <u>82</u>:1242-1246 (1985), 26 incorporated herein by reference. 2.7 this method, the monoclonal 28 In therapeutic agent conjugate can be delivered to the 29 carcinoma site thereby directly exposing the carcinoma 30 31 tissue to the therapeutic agent.

5

б

7 .

8

9

10 11

12

13

14 15

16

17

18

19

20

22

23 24

25

26

27

28 29

30

31

32

33.

21

D. <u>Immunohistochemistry and Immunocytochemistry</u> Assays

Immunohistochemistry (hereinafter "IHC") and immunocytochemistry (hereinafter "ICC") assays for the diagnosis of human carcinomas or metastases thereof or to make differential diagnoses using the second generation monoclonal antibodies of the present invention, are carried out as described in detail below.

A second generation monoclonal antibody of present invention, is added to a slide containing a 5 μ section of a biopsy specimen (for IHC) or cells (for ICC) from body fluid (such as pleural effusion, ascites. sputum, or vaginal fluid). A series of linkers (e.g., biotinylated horse anti-mouse IgG followed by avidin DH: biotinylated horseradish peroxidase complex) and dyes diaminobenzidine) are then added to the slides to detect binding of the second generation immunoreactive fragment or recombinant thereof antibody, to carcinoma cells in the biopsy or body fluid by a color i.e., carcinoma cells will look reddish-brown while normal and benign cells will look blue (the background stain). Alternate linkers, dyes subsequent color reactions, may of course be applied, incorporated by herein (see Sternberger, reference "Immunocytochemistry", New York, John Wiley & Sons, Second Edition, pp. 82-169 (1979)). By this method: (a) carcinoma cells can be detected in biopsy specimens and body fluids as an adjunct to making a diagnosis of cancer, and (b) a differential diagnosis can be made; for example, TAG-72 has been shown to be present in adenocarcinoma of the lung and adenosquamous carcinoma of the lung but not in small cell carcinoma. detection of binding of the second generation monoclonal

10

11

12

13

14

15

16

17

18

19

20

21

22 23

24 25

26

27

28

29

30 31

present invention, immunoreactive antibody of the 1 fragment or recombinant thereof to a lung biopsy would 2 rule out small cell lung cancer. Furthermore, since 3 TAG-72 has been shown not to be expressed in malignant 4 mesothelioma, the second generation monoclonal antibody 5 of the present invention, therefore can be used to 6. differentiate adenocarcinoma of the lung from malignant 7 8 mesothelioma.

The use of IHC and ICC assays for the diagnosis of cancer or to make differential diagnoses are accomplished by methods known or readily determined by those skilled in the art, as described, for example, in Nuti, et al., Intl. J. Cancer, 29:539-545 (1982); Stramignoni, et al., Intl. J. Cancer, 31:543-552 (1983); Szpak, et al., Acta Cytologica, 28:356-367 (1984); Johnston, et al., Cancer Res., 45:1894-1900 (1985); Szpak, et al., Am. J. Path., 122:252-260 (1986); Martin, et al., Am. J. Clin. Path., 86:10-18 (1986); Nuti, et al., Intl. J. Cancer, 37:493-498 (1986); Johnston, et al., Cancer Res., 46:850-857 (1986); Thor, et al., Cancer Res., 46:3118-3124 (1986); Ohuchi, et al., <u>Intl. J. Cancer</u>, <u>38</u>:643-650 (1986); Johnston, et al., Cancer Res., 45:6462-6470 (1986); and Thor, et al., Cancer Res., 47:505-512 (1987), disclosures of all of which are specifically incorporated herein by reference.

The amount of second generation monoclonal antibody of the present invention, used per slide and the incubation time and temperature may vary, but generally, the IHC and ICC assays are conducted at about 4° C for about 18 hours using about 40 µg per ml of monoclonal antibody.

·2

3

5

6

9

10

12

13

14

15

16 17

18

19

20

21 22

23:

24

25

26

27 ...

28

29

30

31

32 33

E. Activating the Anti-Idiotype Network

Activating the anti-idiotype network for cancer therapy using the second generation monoclonal antibodies of the present invention, immunoreactive fragments or recombinants thereof is carried out as described in detail below.

A second generation monoclonal antibody of the present invention, immunoreactive fragment or recombinant thereof (designated Ab 1) is administered to a patient at multiple intervals. The immune system of the patient will respond by the generation of antibodies (designated Ab 2) which having binding specificity to the binding site of Ab 1. These anti-idiotype antibodies (Ab 2's) will then elicit the formation of antibodies (designated Ab 3) which have binding specificity to the binding site of Ab 2. The Ab 2 antibodies will be an internal image of the original TAG-72, and thus the Ab 3 antibodies will have binding specificity and potentially destroy a carcinoma producing TAG-72.

The use of monoclonal antibodies to activate the idiotypic network and the procedures used to accomplish this are readily known or readily determined by those skilled in the art, as described, for example, Nisonoff, et al., Clin. Immunol. and Path., 21:397-406 (1981), Forstrom, et al., Nature, 303:627-629 (1983); et al., J. Immunol., 131:2539-2541 (1983); Kauffman, Reagen, et al., J. Virol., 48:660-666 (1983); Koprowski, et al., Proc. Natl. Acad. Sci. USA, 81:216-219 (1984), Herlyn, et al., J. Immunol., 143:1300-1304 (1985); Koprowski,e t al., J. Immunol. Metho., 85:27-38 (1985), Koprowski, et al., <u>Science</u>, <u>232</u>:100-102 (1985); Greene, et al., J. Immunol., 137:2930-2936 (1986), Kohler, et al., J. Immunol., 137:1743-1749 (1986), Notkins, et al.,

7 .

8

10

21

22

24 25

26

27

28

29 30

31.

1	J. Exp. Med	<u>., 16</u>	<u>53</u> :1355-1360	(1986), the	disclosures	01
2	all of which	are	specifically	incorporat	ed herein	p2
3	reference.			•		

The activation of the anti-idiotypic network can be used to stimulate a patient's immune system so that the patient can mount an active immune response against carcinomas producing TAG-72.

The following examples are provided for illustrative purposes only and are in no way intended to limit the scope of the present invention.

11 Example 1

12 Preparation of Monoclonal Antibodies

13 A. Preparation of Immunogen

LS-174T colon carcinoma cells (ATCC No. 14 were grown in Eagle's minimum essential medium with 15 16 non-essential amino acids supplemented with 10% (v/v) 17 heat-inactivated fetal calf serum, 100 penicillin and 100 µg/ml streptomycin. The LS-174T cells 18 19 were tested for the presence of Mycoplasma species and 20 were found to be negative.

Four-week old female athymic mice were inoculated subcutaneously with 1 x 10^6 LS-174T cells in 0.1 ml of culture medium. Carcinoma xenografts were harvested when they reached approximately 1.0 cm in diameter (15-20 days after cell implantation), quick frozen in liquid nitrogen and stored at -70°C. Large carcinoma xenografts were not used due to necrosis.

Thereafter, aprpoximately 3 grams of frozen LS-174T human carcinoma xenograft was homogenized with an Omni Mixer for 45 sec in buffer comprising 20 mM Tris (pH 7.2) and 150 mM NaCl (hereinafter "TBS"). The

Ż

3

5

7

8

9

10

11 12

13.

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28 29

30.

31

32

homogenized xenograft was then filtered through glass wool and loaded onto a Sepharose CL-4B column sizing column (Pharmacia, Upsala, Sweden) (5.5. x 25 cm) which was previously equilibrated in TBS. The column was elusted using TBS (pH 7.2).

7.0 ml fractions were collected and examined in a direct 1/10 volume dilutions. binding assay specifically, 50 µl of the dilutions were added to wells 96-well polyvinyl chloride microtiter plate (Dynatech Laboratories, Inc., Alexandriva VA). minimize nonspecific protein adsorption, the microtiter wells were treated with 100 ul of 5.0% bovine serum albumin (hereinafter "BSA") in phosphate buffered saline, comprising 8.0 mM Na₂HPO₄, 2.5 mM KCl, 140 mM NaCl, mM MgCl2, 1.0 mM CaCl2, (pH 7.2) (hereinafter "PBS") and incubated for 1 hour at 37°C. Next, the BSA was removed and 1251-B72.3, prepared as described in Colcher, et al., Cancer Res., 44:5744-5751 (1984) at 50,000 cpm/25 ul per well, was added to each well. Following an overnight incubation at 4°C, unbound 125_{I-B72.3} was removed by washing with 1.0% BSA (v/v) in PBS. The bound $125_{I-B72.3}$ was detected by cutting individual wells from the plate and measuring the radioactivity in a gamma counter (RIAgamma, LKB, Bromma, Sweden).

Thereafter, the peak fractions were pooled (130 mls of material), and loaded onto a B72.3 affinity column which was washed with TBS. The B72.3 affinity column was prepared as described in Johnson, et al., Cancer Res., 46:850-857 (1986) and comprised 100 ml of 1,1'-carbonyl-diimidazole activated affinity matrix Reacta-Gel HW65F (Pierce, Rockford, IL) coupled with 200 mg of B72.3. The column was washed with TBS and the bound protein was

3

4

5

6

7

8

9 10

11

12

13

15 16

17

18

19 20

21 22

23

24 .

25

26 27

28

29

30

31 32

14 .

eluted with 3.0 M NaI in TBS. The column was finally washed with TBS.

5.0 ml fractions were collected and examined in a second direct binding assay carried out as described above. The peak fractions were pooled (92 mls of protein) dialyzed against 4.0 liters of 20 mM Tris (pH 7.2) at 4°C overnight. The purified TAG-72 thus obtained was concentrated in Aquacide II, sodium salt of carboxymethyl cellulose (Calbiochem, San Diego, CA) and used as the immunogen.

B. Immunizations

1. CC Group

For the group designated CC hereinafter, BALB/c old mice were immunized by three four-week intraperitoneal inoculation of 10 µg of TAG-72 purified as described above which had been pre-mixed with an equal volume of complete Freund's adjuvant. After 80 days,: the mice received booster doses intraperitoneally of 50 g of TAG-72 purified as described above which had been pre-mixed with an equal volume of incomplete Freund's adjuvant. Seven days later the mice received 10 µg of TAG-72 in saline, by intravenous inoculation. Spleens were harvested three days later for cell infusion.

2. MATAG Group

For the group designated MATAG hereinafter, two four-week old BALB/c mice were immunized by intraperitoneal incoulation of 50 μg of TAG-72 purified as described above which had been pre-mixed with an equal volume of complete Freund's adjuvant. After seven days, the mice received booster doses intraperitoneally of 50 μg of TAG-72 purified as described above which had been pre-mixed with an equal volume of incomplete Freund's

4

5

7.

9

10

11 12

13

14

15

16

17 18

19 20 ·

21 22

23

24

25

26

27

28 29

30

31

32

33

adjuvant. Seven days later the mice received 10 μg of TAG-72 in saline, by intravenous inoculation. Spleens were harvested three days later for cell fusion.

C. Preparation of Hybridomas

Somatic cell hybrids (hybridomas) were prepared using a modification of the method of Herzenberg, et al., "Handbook of Experimental Immunology", Oxford, Blackwell, pp. 25.1-25.7 (1978). More specifically, single cell suspensions of spleen cells from the immunized mice were made by passing the spleen tissue of the mice through a No. 3 mesh stainless steel screen (B. Fenenco Co., Norcester, MA). The spleen cells and NS-1 mouse myeloma cells (ATCC No. TIB-18) were washed in RPMI-1640 medium, containing 2.0 mM glutamine, 1.0 mM sodium pyruvate, 50 units/ml penicillin, 50 µg/ml streptomycin and 0.25 µg/ml Fungizone, an antimycotic mixture (Grand Biological Company, Grand Island, NY). Then, the spleen cells and NS-1 mouse myeloma cells were mixed at a 4:1 ratio, and fused with 50% (v/v) polyethylene glycol (M.W. 1500) (BDH Chemical Ltd., Poole, England). After fusion, individual wells of 96-well microtiter plates (Costar, Cambridge, MA) were seeded with 1×10^6 total cells (0.1) ml) of the cell suspension. Fused cells were then selected for growth with HAT media.

Cloning of hybridoma cell lines was performed by limiting dilution. Specifically, twenty-four wells of a 96-well microtiter plate (Costar, Cambridge, MA) were seeded with one of the following concentrations of hybridoma cells: 10 cells/well, 5 cells/well, 1.0 cell/well, or 0.5 cell/well. Mouse thymocytes, dervied from the thymus glands of four-week old BALB/c mice, were added to each well as feeder cells at a concentration of 106 cells/well. Wells were seeded at the

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

1 concentration that eventually resulted in the growth of 2 single cell cultures.

A total of 2,567 initial hybridoma cultures were obtained for the CC group and a total of 2,000 initial hybridoma cultures were obtained for the MATAG group. All hybridoma cell lines selected for further screening were cloned twice.

D. Solid Phase Radioimmunoassays

1. CC Group

The CC group was assayed in a SPRIA using the cell extracts from a metastatic breast carcinoma and normal spleen and liver.

specifically, 50 of the cell More ul extracts (5 µg) were added to each well of a Cooke round chloride microtiter (Dynatech polyvinyl bottom Laboratories, Alexandria, VA) plate and allowed to dry. To minimize non-specific protein adsorption, microtiter wells were treated with 100 l of 5.0% (v/v) BSA in PBS and incubated with the sample covered for 1 hour. and all subsequent incubations were at 37°C. The BSA was then removed and the wells were washed one time with 1.0% (v/v) BSA in PBS. Next, 50 $\mu 1$ of hybridoma supernatant was added per well. After a 1 hour incubation, the unbound immunoglobulin was removed by washing the plates 1.0% (v/v)BSA in PBS at 100 three times with ul/well/wash.

To determine antibody binding, the wells were then incubated with 25 μ l of 125 I-goat-anti- mouse IgG (γ chain specific) (Kirkegaard & Perry, Gaithersburg, MD) at 75,000 cpm/25 μ l per well for 1 hour at 37°C.

29

30

31 32

34

1	The supernatant was aspirated and the plates were washed
2	four times with 1.0% (v/v) BSA in PBS at 100
3	μl/well/wash.
4	The plates were then subjected to
5	autoradiography using Kodak XAR film and Dupont
б	Lightning-Plus intensifying screens. The films were
7	developed after 16 hours at -70°C. The bound cpm were
8	also detected by cutting the individual wells from the
9	plate and measuring the cpm in a gamma counter.
10	The results yielded 433 CC cultures which
11	had binding specificity in the SPRIA, to the carcinoma
12	extract but not to the normal extracts.
13	All of these 433 CC cultures were then
14	assayed, in a SPRIA as described above, using the cell
15	extracts shown in Table I below.

•	
17	Primary colon carcinoma
18	Metastatic breast carcinoma
19	Normal kidney
20	Normal liver
21	Normal colon
22	Normal stomach
23	Normal bone marrow
24	Normal lung
25	Normal thyroid
26	Polymorphonuclear leukocyte
27	Red blood cell

The results yielded 99 CC cultures which had binding specificity, in the SPRIA, to the carcinoma extracts but not to the normal extracts listed in Table I above.

Next, all of the 99 cultures were cloned 33 into 9,504 wells and each well was checked for growth of a single colony. Those with a single colony were

3

4

5 6

7 8

9

10

11 12

13

14

15

16 17

18

19

20

21 22

23

24 25

26

27

28

29 30

31

32

33

34

Those that were selected selected for further assay. were assayed, in a SPRIA as described above, using extracts of a human breast carcinoma and primary colon carcinoma as well as normal liver. The colonies that had binding specificity, in the SPRIA, to the carcinoma extracts but not to normal liver extract were recloned and again assayed for binding specificity, in the SPRIA, to the colon carcinoma extract but not to the normal liver extract. This resulted in the generation of 29 CC monoclonal antibodies which had binding specificity to the colon carcinoma but not the normal liver extracts (see Figure 1).

All of the 29 CC monoclonal antibodies shown in Figure 1 exhibit binding specificity to extracts of colon adenocarcinoma, but lack binding specificity to extracts of the following normal and/or benign tissues: colon (minimal binding specificity to superficial goblet cells), ovary, stomach (minimal binding specificity to intestinal metaplasia), goblet cells of endocervix (minimal binding specificity to glandular epithelium), brain, kidney, spleen, lung (minimal binding specificity to epithelium), skin (minimal binding specificity to sebaceous glandular epithelium), liver, prostate, uterus specificity to secretory phase endometrium only), adrenal, pancreas, heart, lymph node, bone marrow, breast and small intestine (minimal binding specificity to superficial mucosal cells).

Of the 29 CC monoclonal antibodies so produced, the hybridomas producing preferred monoclonal antibodies have been deposited at the American Type Culture Collection under CC 49 (ATCC No. HB-9459); CC 83 (ATCC No. HB-9453); CC 46 (ATCC No. HB-9458); CC 92 (ATCC No. HB-9454); CC 30 (ATCC No. HB-9457); CC 11 (ATCC No. HB-9455); and CC 15 (ATCC No. HB-9460).

2

3

4.

5 6

7

8

10 11

12

13

14

15

16

17

18

19

21

22

23

24

25

26

27

28

29

31

32

30 .

20

2. MATAG Group

The MATAG group was assayed in a SPRIA essentially as described above for the CC group using a 1/80 dilution per well of TAG-72 in PBS except that to detect binding of antibody, 50 μ l of rabbit-anti-mouse IgM (Cooper Biomedical, Malvern, PA) was added to each well. The plates were incubated for 1 hour at 37°C, after which time 125 I-labelled Protein A (SPA) (Pharmacía, Upsala, Sweden) at 50,000 cpm/25 μ l was added per well and again allowed to incubate at 37°C for 1 hour. The unbound SPA was removed by extensive washing with 1.0% (v/v) BSA in PBS.

Of the 2000 MATAG cultures assayed using TAG-72 and PBS, 110 were found to have binding specificity to TAG-72. Further cloning and assaying in a described above, using TAG-72 vielded 34 cultures which had binding specificity with colon cancer extract and TAG-72 but not a normal liver extract. were cloned into 3,264 wells and approximately 20 wells of each of the original 34 cultures were assayed, in a SPRIA as described above, using TAG-72 and PBS. yielded 23 cultures which had binding specificity to TAG-72. The 23 cultures were subsequently grown up and further assayed, in a SPRIA as described above, for lack of binding specificity to normal spleen and normal liver and binding specificity to a metastatic breast carcinoma extract, as well as being assayed, in a SPRIA as described above, using TAG-72 and PBS. The results yielded 15 cultures which exhibited binding specificity to the carcinoma extract and TAG-72 but not to the normal extracts. These cultures were then recloned reassayed, in a SPRIA as described above, to produce 15 MATAG monoclonal antibodies (see Figure 1).

1	All of the MATAG monoclonal antibodies shown
2	in Figure 1 exhibit binding specificity to extracts of
3	ovarian carcinoma, colon adenocarcinoma, infiltrating
4	ductal carcinoma of the breast, non-small cell lung
5 · :	carcinoma, but lack binding specificity to extracts of
6 -	the following normal and/or benign tissues: colon
7	(minimal binding specificity to mucosal goblet cells),
8	ovary, benign effusions (minimal binding specificity to
9	lymphocytes and mesothelial cells), lung (minimal binding
10	specificity to brochial epithelium), spleen, liver,
11	breast, kidney, bone marrow, stomach (minimal binding
12	specificity to superficial epithelium), skin, nerve,
13	parathyroid, heart, pancreas, lymph node, adrenal,
14	thyroid, small intestive (minimal binding specificity to
15	superficial mucosa), brain, gall bladder, cervix, uterus
16	(binding specificity to secretory phase of endometrium
17.	only), endocervix (minimal binding specificity to
18	endocervical glandular epithelium), bladder, appendix,
19	fallopian tube, muscle, salivary gland, thymus, testis,
20	and esophagus.
21 .	Of the 15 MATAG monoclonal antibodies so
22	produced, the hybridoma producing MATAG 12 is preferred
23	and has been deposited at the American Type Culture
24	Collection under MATAG 12 (ATCC No. HB-9456).

25 Example 2
26 Isotyping Assay

27 1. <u>CC Group</u>

For the CC group, 50 µl of polyclonal anti-mouse 19 IgG (Jackson Immunoresearch Laboratories, Inc., West 30 Grove, PA) was absorbed onto a 96-well polyvinyl chloride

3 4

5 6

7

9

10

11

12

13 14

15

16

17

18

19

21.

22

23

24

25

26

27 .

28

29

30

31:

Laboratories, Alexandria, (Dynatech VA) microtiter plate. The IgG was diluted with PBS. The plates were incubated overnight at 37°C. The following day, 100 µl of 5.0% (w/v) BSA in PBS was added to each well allowed to incubate for 1 hour to minimize non-specific absorption. The wells were then washed with 1.0% (w/v) 5 µl of undiluted CC culture supernatant was BSA in PBS. added to each of two wells. The plates were again incubated for 1 hour at 37°C after which time they were washed 3 times with 1.0% (w/v) BSA in PBS. anti-mouse IgG₁, IgG_{2b}, IgG3, IgM, IgA (Cooper Biomedical, Malvern, PA) DC-12 (NIH, NCI, LTIB) control 1.0% (w/v) BSA in PBS were added at 50 μI per well. Following a 1 hour incubation, the plates were washed 3 times as described above. Then 50,000 cpm of $^{
m 125}_{
m I}$ -labelled Protein A (SPA) were added to each well, incubated for 1 hour, washed 4 times with 1.0% (w/v) BSA in PBS and the cpm per well was counted in a gamma counter. The results are shown in Figure 1.

20 2. MATAG Group

For the MATAG group, isotypes were determined by parallel assays essentially as described above for the CC group. However, for detection, one assay used 1251-labelled goat-anti-mouse IgG (Kirkegaard & Perry, Gaithersburg, MD) and the other assay used 1251-labelled goat-anti-mouse IgM (Kirkegaard & Perry, Gaithersburg, MD) in place of 1251-labelled Protein A (SPA).

The MATAG group was further characterized by High Performance Liquid Chromatography (herreinafter "HPLC") analysis for their pentameric structure. HPLC analysis was performed using a Zorbax GF-450 column, 0.94 x 25 cm

8.

9

10 .

11

12

13

15 16

17

18

19

20

23

24

25

26 .

27

28

29

30

31

21 . 22

14

1.	(Dupont, Wilmington, DE), equilibrated in 0.2 M sodiu
2	phosphate (pH 6.8). 100 µl MATAG culture supernatant wa
3.	loaded on the column and the column was run at a flo
4	rate of 0.5 ml/min, 0.5 ml fractions were collected at
5	min intervals. The fractions were analyzed for isotype
5	as described above. The results are shown in Figure 1.

Example 3 Competition RIA

Competition RIAs were performed to determine whether B72.3 and the CC monoclonal antibodies of the different · antigenic present invention recognize specifically, B72.3 and the CC More determinants. monoclonal antibodies were assayed for their ability to compete for the binding of 125I-labelled B72.3 to an extract of LS-174T colon carcinoma cells in the following manner.

5.0 µg of LS-174T colon carcinoma cell extract was absorbed in each well of a polyvinyl chloride microtiter plate (Dynatech Laboratories, Alexandria, VA) and varying amounts of competing CC monoclonal antibody (from 10 $\mu g/\mu l$ to 0.004 $\mu g/\mu l$) was added to saturate the binding sites. After incubation for 6 hours at 4°C, 50,000 cpm/25 μ l of 125 I-B72.3, was added to each well and Bound 125I-B72.3 was incubated for 12 hours at 4°C. determined by cutting individual wells and measuring cpm in the wells in a gamma counter. The cpm in the wells pre-incubated with saturating amounts of B72.3 as a competitor was considered 100% competition. The results are shown in Figure 2A, 2C, 2E, and 2G. In Figure 2A, CC 41 was used as the competing antibody. In Figure 2C, CC 60 was used as the competing antibody. In Figure 2E,

3

4 5

6

7

8 9

10 11

12

13

14

15

16

17

18 19

20

21

22

23

24

25

26

27

28

29.

30

31

CC 83 was used as the competing antibody. In Figure 26, CC 49 was used as the competing antibody.

As shown in Figures 2A and 2C, CC 41 and CC 60 did not compete at all with B72.3. This demonstrates that CC 41 and CC 60 having specificity for a different epitope on TAG-72 than B72.3. As shown in Figures 2E and 2G, CC 83 and CC 49 partially compete with B72.3. This demonstrates that the epitopes recognized by CC 83 and CC 49 share partial (but not complete) homology with the B72.3 epitope on the TAG-72 molecule, or that the CC 83 and CC 49 epitopes are distinct from but near the B72.3 epitope, resulting in steric hinderance.

Thereafter, competition RIAs were performed to determine whether CC 49 recognizes the same or different antigenic determinants than B72.3, CC 30, CC 46, 83. More specifically, these monoclonal antibodies were assayed for their ability to compete for the binding of 125I-labelled CC 49 to an extract of LS-174T colon carcinoma cells as described above. The results obtained are shown in Figure 3. Figure 3 demonstrates that (1) the epitopes on **TAG-72** recognized рA antibodies CC 46 and B72.3 share little or no homology with the epitope recognized by monoclonal antibody CC 49; (2) the epitope recognized by CC 83 shares considerable homology with that recognized by CC 49 but is not identical as revealed by the displacement of the CC 83 curve; and (3) the epitope recognized by monoclonal antibody 30, shares CC partial homology to that recognized by CC 49, or is distinct from that of CC 49 but is in proximal location resulting in steric hinderance.

Example 4

Binding Affinity

The binding affinities (affinity constants) of the 3 second generation monoclonal antibodies of the present 4 invention to TAG-72 were determined by a SPRIA using a 5 modification of the procedure of Heyman, et al., J. . 6 Immunol. Methods, 68:193-204 (1984). More specifically, 7 purified TAG-72 diluted in PBS at a 8 of concentration of 280 units/ml (units determined as 9 described in Paterson, et al., Intl. J. Cancer, 37:659-10 666 (1986)) were dried in 96 well polyvinyl chloride 11 microtiter plates (Dynatech Laboratories, Alexandria, 12 Any remaining non-specific active groups were 13 blocked with 5.0% (v/v) BSA in PBS. Then, 20 μ l of 1:1.5 14 serial dilutions of the purified monoclonal antibody 15 (purified as described in Colcher, et al., Cancer Res., 16 44:5744-5751 (1984)), shown in Table 2 below, starting at 17 1.0 µg/ml were added to the wells. After incubating 18 overnight at 4°C, the plates were washed three times with 19 Next, 125I-labelled PBS. 20 (v/v)BSA in goat-anti-mouse IgG (Kirkegaard & Perry, Gaithersburg, 21 MD) at 75,000 cpm/25 ul per well was added and left to 22 react for 1 hour at 37°C. After washing three times with 23 1.0% (v/v) BSA in PBS, the cpm in the individual wells 24 were counted as described above. 25. values In order to convert the CDM 26 concentration of bound monoclonal antibody, the remaining 27 free monoclonal antibodies in the supernatant, which had 28 been incubated with TAG-72 but not bound thereto, were 29 polyvinyl incubated on another 96 well 30. microtiter plate which had been precoated with 4.0 g/ml 31 Immunoresearch anti-mouse IgG (Jackson 32 sheep Laboratories, Inc., West Grove, PA) and detected with 33

3 4

5

6

8

19

20

21

22

23

24 25

26

27

28

29

125I-labelled goat anti-mouse IgG (Kirkegaard & Perry, Gaithersburg, MD). In this manner, the concentration at which there was no free monoclonal antibodies remaining in the supernatant was determined for each monoclonal antibody. From these data, computer curves were generated to determine the binding affinity constant of each monoclonal antibody. The results are shown in Table 2 below.

9 TABLE 2 10 Binding Affinity Constants .11 Measured Using TAG-72 12 Affinity Constant 13 Purified Antibody $(\times 10^{9} \text{M})$ 14 B72.3 2.54 15 CC 46 3.64 16 CC 30 8.15 17 CC 15 9.13 18 CC 29 9.49

CC 92

CC 49

CC 83

Table 2 demonstrates that the second generation monoclonal antibodies CC 46, CC 30, CC 15, CC 29, CC 92, CC 49 and CC 83 all have higher binding affinity constants than the first generation monoclonal antibody B72.3.

14.26

20.58

27.72

The CC group was assayed in a SPRIA using the cell extracts from the LS-174T cell line and a metastatic breast carcinoma. 50 μl of the cell extract (5 μg) was

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

20 21

22 .

23

24

25

26

27

28

29

30

31

33

32

19 .

added to each well of a Cooke round bottom polyvinyl chloride microtiter plate (Dynatech Laboratories, dry. To minimize Alexandria, VA) and allowed to non-specific protein absorption, microtiter wells were treated with 100 µl of 5.0% (v/v) BSA in PBS incubated covered for 1 hour. This and all subsequent incubations were at 37°C. The BSA was then removed and the wells were washed one time with 1.0% (v/v) BSA in Next, 50 ul of hybridoma supernatant and 1:5 dilutions of the supernatant fluid was added per well. After a 1 hour incubation, the unbound immunoglobin was removed by washing the plates three times with 1.0% (v/v)BSA in PBS at 100 ul/well/wash.

To determine antibody binding, the wells were then incubated with 25 μl of $^{125}I\text{-goat-anti-mouse}$ IgG (gamma chain specific) (Kirkegaard & Perry, Gaithersburg, MD) at 75,000 cpm/25 μl per well for 1 hour at 37°C. The supernatant was aspirated and the plates were washed four times with 1.0% (v/v) BSA in PBS at 100 $\mu l/\text{well/wash}$. The bound cpm were detected by cutting the individual wells from the plate and measuring the CPM in a gamma counter.

As shown in Figure 2B, CC 41 reacts with the LS extract but B72.3 does not. Note, Figure 2B and Table 2 demonstrates that CC 41 has a higher binding affinity (slope of the curve) to the Br. Ca. than B72.3. Figure 2D demonstrates that although CC 60 does not have binding specificity to the LS extract like B72.3, CC 60 has a higher binding affinity (slope of the curve) to the Br. Ca. than B72.3. Figure 2F demonstrates that CC 83 and B72.3 have similar binding properities to the Br. Ca. extract but that CC 83 has high binding affinity to the LS extract while B72.3 does not. Figure 2H demonstrates

9 10

11

12

13 14

15

16

17 18

19

20

21

22⁻⁻ 23

24

25 26

27

28 29

30.

31

that CC 49 has high binding affinity to both the LS and Br. Ca. extracts while B72.3 has essentially no binding affinity to the LS extract.

Example 5 Western Blotting

40 μ g of LS-174T cell extracts or an extract of a human breast carcinoma diluted in SDS-PAGE sample buffer comprising 0.125 M Tris-HCl (pH 6.8) 4.0% (w/v) SDS, 20% (v/v) glycerol and 10% (v/v) 2-mercaptoethanol, onto a 3 to 12% (v/v) linear gradient SDS-PAGE. electrophoresis for 8 hours at 5 milliamps/gel at 90C, the gels were treated with transfer buffer comprising 25 mM Tris-HCl (pH 8.3), 192 mM glycine, 20% (v/v) methanol with 4 M urea and 0.5% Triton-X-100 for 1 hour at room temperature. The gel was then equilibrated transfer buffer and the proteins were transferred to nitrocellulose paper (0.45 μm pore size) at 4°C for 16 hours at 30 V. Then, the nitrocellulose paper was incubated with 5.0% (w/v) BSA with 0.05% (v/v) Tween-20 in PBS for 3 hours at room temperature and washed with 0.05% (v/v) Tween-20 in PBS. Next, 10 ml of hybridoma tissue culture supernatant of all the CC and MATAG monoclonal antibodies were added, and incubation continued for 2 hours at room temperature with gentle agitation. After washing with PBS containing 0.05% (v/v) Tween-20, the nitrocellulose paper was incubated for 1 hour at room temperature 125_I-labelled with goat-anti-mouse IgG (Kirkegaard & Perry, Gaithersburg, MD). The nitrocellulose paper was then extensively washed overnight and exposed to Kodak XAR-5 X-ray film with a DuPont Lightning Plus intensifying screen

4.

5

7 .

10

11 12

13

14

15

16.

17

18 -

19

20

21 22

23

24

25

26

27

28

29

30

8

-70°C for 2 hours. For all experiments, NS-1 tissure culture supernatant was used as a negative control.

The Western blotting analysis demonstrated the reactivity of the CC and MATAG antibodies to a diffuse band beginning at the interface of the stacking gel with the 5-12% resolving gel that penetrated the resolving gel approximately 1 cm. This diffuse band is consistent with the high molecular weight TAG-72 mucin-like molecule. The high molecular weight band was observed with all the CC and MATAG antibodies tested and detected in both the LS-174T cell line extract and the human breast carcinoma metastases extract.

Example 6 Immunoperoxidase Studies

5.0 sections of formalin-fixed or frozen sections of tissue on slides were used. Fixed tissues were deparaffinized in xylene and hydrated in graded HoO/ethanol rinses. A 15 minute incubation with 0.3% (v/v) H₂O₂ in methanol was used to block any endogenous peroxidase activity. After rinsing in PBS without Ca+2 and Mg^{+2} , the slides were incubated with a 1:10 (v/v)dilution of normal goat serum for the MATAG designated antibodies for 15 minutes. This incubation and all out at carried subsequent incubations were temperature with the exception of the primary MATAG incubation at 4°C. antibody which was a 16 hour normal blocking serum was removed and undiluted tissue culture supernatant of the monoclonal antibody was placed on the tissue sections and the slides were incubated supernatant IqM was overnight. The

7 8

9

10

11

12

13

14

15

16

17

18

19

20

22

23

24

removed and the slides were rinsed for 15 minutes in PBS without Ca^{+2} and Mg^{+2} . For the MATAG antibodies at 1:167 (v/v) dilution of biotinylated goat anti-murine IgM (Vector Laboratories, Inc.), was added to each of the tissue sections and allowed to incubated for 30 minutes. The slides were again rinsed in PBS without Ca^{+2} and Mg^{+2} and then incubated for 30 minutes with ABC (Vector Laboratories, Inc.) peroxidase at temperature. After another PBS rinse, 0.06% (v/v) 3,3' diaminobenzidine (Sigma Chemical Co., St. Louis, MO) with 0.01% (v/v) H₂O₂ was added for 5 minutes. The sections were rinsed briefly in water, counterstained with hematoxylin, dehydrated in graded ethanol/H2O rinses, cleared (eliminating residual H2O) in xylene, mounted with Permount (histologic mounting medium, Fisher Scientific Co.) under a coverslip, and examined with a light microscope. Each section was evaluated for the presence of reddish-brown diaminobenzidine precipitate indicative of monoclonal antibody binding. The approximate percentage of positive carcinoma cells was assigned according to the number of carcinoma cells 21 . positive with each monoclonal antibody divided by the total number of carcinoma cells times 100. The results are shown in Table 3 below.

(New

2 min

After

27

Nuclear,

	•		
1		TABLE 3	
2	Binding Specificity an Immunoperoxidase		
4	Percer	nt MAb Reactiv	e Carcinoma Cells
5		B72.3	MATAG-12
6	Ovarian Cancer 1	6	80
7	Ovarian Cancer 2	5	25
8	Ovarian Cancer 3	10	55
9	Colorectal Cancer 1	10	60
10	Colorectal Cancer 2	40	.95
11	As shown in Table 3	the percent	carcinoma cells
12	reactive with B72.3 is o	=	
13	MATAG-12. This demonstrat		
14	binding specificity for t		
15	more useful in immunohisto		
16	assays, as well as in \underline{i}		
17	cancer.		
			·
		÷	
•			
18	<u> </u>	Example 7	
19	In Vivo Ca	rcinoma Testi	ng
20 -	The monoclonal anti	hodies shown	in Table 4 below
21	were labelled with Na ¹²⁵ I		
22	Rockford, IL). More speci	•	
	antibody shown in Table 4		
23	M sodium phosphate buffer	•	
24	m sodium phosphate buffer cm x 75 cm glass tube		
25	cm x 75 cm dlass tube	coated wit	n zo jg or rodogen

26 followed by addition of 0.5 mCi of Na¹²⁵I

Boston,

MA).

.27

20 ; incubation at room temperature, the protein was removed from the insoluble Iodogen, and the unincorporated ^{125}I was separated from the antibody by gel filtration through a 10 ml column Sephadex G-25 with a buffer comprising 10 mM sodium phosphate, pH 7.2. The labelled monoclonal antibody in the void was pooled and dialyzed against 10 mM sodium phosphate buffer (pH 7.2) containing 5.0 mM NaI. The iodination protocol yielded labelled IgG monoclonal antibody with a specific activity of 5.0 to 15 $\mu\text{Ci}/\mu\text{g}$ (approximately 8.0 to 25 x 10^6 cpm/ μg).

Female athymic mice (nu/nu) on a BALB/c background were obtained from Charles River, Inc., or the Frederick Cancer Research Facility at approximately 4 weeks of age. One week later, mice were inoculated subcutaneously (0.1 ml/mouse) with the LS-174T human colon carcinoma cells (1 x 10^6 cells/animal).

Athymic mice bearing carcinomas 0.3 to 1.5 cm in diameter, approximately 2 to 3 weeks after inoculation of the cells were given injections intraperitoneally of 1.5 μ Ci (0.1 μ g) in PBS of the monoclonal antibodies shown in Table 4 below, which had been iodinated as described above. Groups of five mice were sacrificed at varying times by exsanguination, the carcinoma and normal tissues were excised and weighed, and the cpm were measured in a gamma counter. The cpm/mg of each tissues was then determined and compared to that found in the carcinoma. The results are shown in Table 4 and Figures 4A and 4B.

13

14 15

16 17

18

19 20

21

22

23

24

25 26

27

28

1								
2	Percent Injected Dose Per Gram of							
3 .	•	125 _{I-L}	abelle	d Antil	oody*		-	
4	Tissue	B72.3	<u>cc 11</u>	CC 46	<u>cc 30</u>	CC 92	CC 83	CC 49.
5	Carcinoma	6.6	26.6	13.2	23.1	12.4	22.9	23.4
6	Liver	0.8	1.2	0.5	0.8	0.8	0.7	1.2
7	Spleen	0.5	1.1	0.5	1.0	1.0	0.7	1.2
8	Kidney	0.6	1.1	0.4	1.0	1.0	0.7	0.4
9	Lung	1.4	2.4	1.1	2.1	2.0	1.8	0.6
10	Blood	2.9	6.2	2.1	4.1	3.8	4.6	1.1
						-		:

*At 168 hours post monoclonal antibody administration.

As shown in Table 4, the percent of injected dose to tumor for B72.3 is considerably lower than that for . the CC antibodies of the present invention. Even though monoclonal antibody CC 46 has only a slightly higher affinity constant than B72.3, Table 4 shows that CC 46 is clearly more efficient in targeting the human tumor in situ than is B72.3. This demonstrates that the second generation monoclonal antibodies of the present invention are more efficient for in vivo carcinoma targeting than monoclonal antibody B72.3 and thus are more useful in in vivo diagnosis and therapy of cancer. Figures 4A and 4B show the different binding kinetics and carcinoma/normal tissue ratios at various time points for CC 11 and CC 46, respectively. Figures 4A and 4B demonstrate that these monoclonal antibodies have the ability to bind the carcinomas efficiently and stay bound to the carcinomas over a prolonged time (i.e, at least 7 days).

3

4

5

6

7

8

9

10 11

12

13

23

24 25

26

27

28

29

Example 8

Fragmentation of Monoclonal Antibodies

Biodistribution studies both in animal models and in clinical trials have demonstrated that intact IgG may not be the best form of the antibody molecule to obtain optimal tumor localization with minimal background in normal organs. As a result, studies were undertaken to fragment the second generation monoclonal antibodies of the present invention and B72.3 with pepsin as described in Colcher, et al., Cancer Res., 43:736-742 (1983). The resulting fragments were radiolabelled with 1251 as described above and tested for binding specificity in a SPRIA as described above, using a LS-174T colon carcinoma cell extract. The results are shown in Table 5.

15 TABLE 5 16 Binding Specificity of Immunoreactive 17 F(ab')2 Fragments 18 Binding Specificity to LS-174T F(ab')2 Fragment 19 colon carcinoma cell extract 20 B72.3 ₹28 21 CC 49 50% 22 CC 46 70%

As shown in Table 5, F(ab')₂ fragments of CC 49 were able to bind greater than 50% of the input counts in a SPRIA using limiting amounts of antigen and CC 46 fragments bound over 70% of the input activity while fragments obtained from B72.3 essentially lack all immunoreactivity, i.e., maintained less than 2% binding specificity.

3

5

6 · 7

8

9

10 11

12 13

14

15

16

17 · 18

A pharmaceutical composition comprising the second generation antibodies of the present invention in a pharmaceutically acceptable, non-toxic, sterile carrier such as physiological saline, non-toxic buffers and the The amount of said like, now also becomes possible. antibodies in the pharmaceutical composition should be sufficient to achieve effective binding with the antigens against which said antibodies have specific affinity or pharamaceutical neutralization reactivity. The composition may be administered in a single or multiple dosage with other adjuvants or additives, if necessary, in any suitable manner to the host in need of antibodies.

While this invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one skilled in the art that various changes and modifications could be made therein without departing from the spirit and scope thereof.

3

5

WHAT IS CLAIMED IS:

- 1. A second generation monoclonal antibody, immunoreactive fragment or recombinant thereof, having binding affinity for both TAG-72 and LS-174T cell line antigen without substantial binding affinity for normal adult human tissues.
- 7 2. The second generation monoclonal antibody of 8 Claim 1, wherein said antibody has a binding affinity of greater than 3×10^9 M.
- The second generation monoclonal antibody of Claim 1, wherein said antibody has about 50% more efficiency than B72.3 antibody in targeting human carcinomas in situ.
- 14 4. The second generation monoclonal antibody of 15 Claim 1, wherein said antibody exhibits 0-30% competition with B72.3.
- 5. The second generation monoclonal antibody of Claim 1, wherein said antibody is of an iostype selected from the group consisting of IgG2a, IgG2b, IgG3, and IgM.
- 20 6. The second generation antibody of Claim 1, 21 wherein said antibody is conjugated to a label, a tumor 22 detecting marker or to a therapeutic agent.
- 7. The second generation antibody of Claim 6, wherein said label is selected from the group consisting of a radioisotope, a fluorescent molecule and an enzyme.

- 1 8. The second generation antibody of Claim 7, 2 wherein said radioisotope is selected from the group 3 consisting of 32p, 14c, 3H, 125I, and 35s.
- 9. The second generation antibody of Claim 7, wherein said fluorescent molecule is selected from the group consisting of fluorescin and rhodamine.
- 7 10. The second generation antibody of Claim 7, 8 wherein said enzyme is selected from the group consisting 9 of alkaline phosphatase and horseradish peroxidase.
- 10 11. The second generation antibody of Claim 6, wherein said tumor detecting marker is selected from the group consisting of ¹³¹I, ¹²³I, ¹¹¹In, ⁶⁷Ga, ^{99m}Tc and 13 Gd.
- 12. The second generation antibody of Claim 6,
 wherein said therapeutic agent is selected from the group
 consisting of a radionuclide, drug, toxin and second
 antibody.
- 18 13. The second generation antibody of Claim 12, wherein said radionuclide is selected from the group consisting of 131_I, 90_Y, 105_{Rh}, 47_{Sc}, 67_{Cu}, 212_{Bi}, and 21 211_{At}.
- 22 14. The second generation antibody of Claim 12, 23 wherein said drug is selected from the group consisting 24 of methotrexate and adriamycin.
- 25 15. The second generation antibody of Claim 23, 26 wherein said second antibody has specific binding 27 affinity to killer T-cells.

•	
1	16. The second generation antibody of Claim 1,
2	obtained from a hybridoma selected from the group
3	consisting of the hybridomas having the identifying
4	characteristics of ATCC No. HB-9459, ATCC No. HB-9453,
5 -	ATCC No. HB-9458, ATCC No. HB-9454, ATCC No. HB-9457,
6	ATCC No. HB-9455, ATCC No. HB-9460, and ATCC No. HB-9456.
7	17. A method for detecting a human carcinoma or
8	metastases thereof comprising:
9	(a) obtaining a sample of body fluid or
10	biopsy from a patient;
11	(b) contacting the body fluid or biopsy
12	with the second generation monoclonal antibody,
13	immunoreactive fragment or recombinant thereof of Claim
14	1;
15	(c) determining the amount of binding of
16	second generation monoclonal antibody, immunoreactive
17	fragment or recombinant thereof to the body fluid or
18	biopsy material; and
19	(d) comparing the amount of binding in step
20	(c) to a control sample or to a predetermined base level;
21	a binding greater than the base level being indicative of
22	the presence of carcinomas or metastases thereof.
	Ended of Continue of Motor Continue of Motor Continue of Continue
00	
23	18. The method of Claim 17, wherein said body
24	fluid is selected from the group consisting of blood,
25	plasma, serum, nipple discharge, cyst fluid, ascites
26	fluids, pleural effusions, seminal plasma, semen, urine
27	and prostatic fluid.

19. The method of Claim 17, wherein the amount of monoclonal antibody binding to material present in the body fluid or biopsy is determined by means of a radioimmunoassay.

22 23

24

- 1 20. The method of Claim 17, wherein the amount 2 of monoclonal antibody binding to substances present in 3 the body fluid or biopsy is determined by means of an enzyme immunoassay.
 - 5 21. The method of Claim 17, wherein said antibody has a binding affinity of greater than 3 \times 10⁹ M.
 - 8 22. The method of Claim 17, wherein said antibody exhibits 0-30% competition with B72.3 antibody.
 - 10 23. The method of Claim 17, wherein said 11 antibody is of an isotype selected from the group 12 consisting of IgG_{2a}, IgG_{2b}, IgG₃, and IgM.
 - 24. The method of Claim 17, wherein said antibody is obtained from a hybridoma selected from the group consisting of hybridomas having the identifying characteristics of ATCC No. HB-9459, ATCC No. HB-9453, ATCC No. HB-9458, ATCC No. HB-9454, ATCC No. HB-9456.
 - 19 25. A method for localizing carcinoma or 20 metastases thereof comprising:
 - (a) administering to a patient a second generation monoclonal antibody, immunoreactive fragment or recombinant thereof of Claim 1, conjugated to an imaging or detecting marker; and
 - (b) exposing a patient to means for detecting said tumor detecting marker, an area of localization of the tumor detecting marker being indicative of the site of the carcinoma or metastasis in said patient.

24

25 ·

26

1	26. The method of Claim 25, wherein said tumor
2	detecting marker is selected from the group consisting of
3	125 _I , 131 _I , 123 _I , 111 _{In} , 113 _{In} , 67 _{Ga} , 68 _{Ga} , 99m _{Tc} and Gd.
4	27. The method of Claim 25, wherein said
5	antibody has a binding affinity of greater than 3 \times 105
6	M.
·	
7	20 Mbp mothed of Claim 25 chamsing ati
8	28. The method of Claim 25, whereins aid antibody exhibits 50% more efficiency than B72.3 ir
9	targeting human carcinoma in situ.
	targeting numan carernoma in situ.
10	
11	antibody exhibits 0-30% competition with B72.3 antibody.
12	30. The method of Claim 25, wherein said
13	antibody is of an isotype selected from the group
14	consisting of IgG2a, IgG2b, IgG3, and IgM.
15	31. The method of Claim 25, wherein said
16	antibody is obtained from a hybridoma selected from the
17	group consisting of hybridomas having the identifying
18	characteristics of ATCC No. HB-9459, ATCC No. HB-9453,
19	ATCC No. HB-9458, ATCC No. HB-9454, ATCC No. HB-9457,
20	ATCC No. HB-9455, ATCC No. HB-9460, and ATCC No. HB-9456.
21	32. A method for treating carcinoma or
22	32. A method for treating carcinoma or metastases thereof, comprising administering to a patient
	metastases thereor, combrising administering to a patient

32. A method for treating carcinoma or metastases thereof, comprising administering to a patient afflicted with carcinoma or metastases thereof, an effective amount of a second generation monoclonal antibody, immunoreactive fragment or recombinant thereof of Claim 1 to destroy or inhibit growth and proliferation of said carcinoma or metastases thereof.

- 1 33. The method of Claim 32, wherein said antibody is conjugated to a therapeutic agent.
- 3 34. The method as claimed in Claim 33, wherein said therapeutic agent is selected from the group consisting of a radionuclide, a drug, a toxin, a biological response modifier, and a second antibody.
- 7 35. The method of Claim 34, wherein said 8 radionuclide is selected from the group consisting of $131_{\rm I}$, $90_{\rm Y}$, $105_{\rm Rh}$, $47_{\rm Sc}$, $67_{\rm Cu}$, $212_{\rm Bi}$, and $211_{\rm At}$.
- 36. The method of Claim 34, wherein said drug is selected from the group consisting of methotrexate and adriamycin.
- 13 37. The method of Claim 34, wherein said second.
 14 antibody has specific binding affinity to killer T-cells.
- 15 38. The method of Claim 32, wherein said 16 antibody has a binding affinity of greater than 3×10^9 17 M.
- 39. The method of Claim 32, wherein said antibody exhibits 50% or more efficiency than B72.3 in targeting human carcinoma in situ.
- 21 40. The method of Claim 32, wherein said 22 antibody exhibits 0-30% competition with B72.3 antibody.
- 23 41. The method as claimed in Claim 32, wherein 24 said antibody is of an isotype selected from the group 25 consisting of IgG_{2a}, IgG_{2b}, IgG₃ and IgM.

1	42. The method of Claim 32, wherein said
2	antibody is obtained from a hybridoma selected from the
3	group consisting of hybridomas having the identifying
4	characteristics of ATCC No. HB-9459, ATCC No. HB-9453,
5 🖖	ATCC No. HB-9458, ATCC No. HB-9454, ATCC No. HB-9457,
6	ATCC No. HB-9455, ATCC No. HB-9460, and ATCC No. HB-9456.

- 7 43. A hybridoma producing a second generation 8 monoclonal antibody having specific binding affinity to 9 both TAG-72 and LS-174T antigens without substantial 10 binding affinity to normal adult human tissues.
- 11 44. The hybridoma of Claim 43, selected from the 12 group consisting of hybridomas having the identifying 13 characteristics of ATCC No. HB-9459, ATCC No. HB-9453, ATCC No. HB-9458, ATCC No. HB-9454, ATCC No. HB-9457, ATCC No. HB-9455, ATCC No. HB-9456.
- 45. A pharmaceutical composition comprising the antibody, immunoreactive fragment or recombinant thereof, of Claim 1 in an amount sufficient to bind antigens for which said antibody or part thereof has specific binding affinity and pharmaceutically acceptable, non-toxic, sterile carrier.
- 22 46. A composition of matter comprising an immuogen which is an antibody of Claim 1.
- 24 47. A method of producing anti-idiotype 25 antibodies by administration of an immunogenic effective 26 amount of a composition of Claim 46 to a mammal.

1			48.	· A	method of	eliciting	antibodies	against	а
2		tumor	of	a	cancer	patient	by administ	ration of	a
2	٠.	COMPOS	ition	of	Claim 46.				

Ab DILUTION (1:5)

Ab DILUTION (1:5)

RIIDETTTIITE CUEET

Fig. 4A

Fig. 4B

□ blood • liver • spleen △ kidney o lung

INTERNATIONAL SEARCH REPORT

International Application No. PCT/US88/01941

EC1, 0500, 01741								
	I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) 5							
According	According to International Patent Classification (IPC) or to both National Classification and IPC IPC (4): G01N 33/53							
U.S. CL.: 435/7								
II. FIELDS SEARCHED								
			ntation Searched 7					
Classificat	lon System		Classification Symbols	 				
ຫ.s.	U.S. 435/7; 436/63, 64, 512, 548, 813							
		Documentation Searched other to the Extent that such Documents	than Minimum Documentation s are included in the Fields Searched *					
		Abstracts Services Onl File Biosis Prev Stem (File USPAT, 1975	riews 1969-1988). At	-1988; itomated				
-		ONSIDERED TO BE RELEVANT						
Category *		on of Document, 11 with indication, where app	ropriate, of the relevant passages 12	Relevant to Claim No. 13-				
X Y	Can	cer, Volume 57, No. 3 6 (Philadelphia, Penn	, published	1,25,26 27-31				
-	U.S "Ra Col Vis	.A.), J. Lundy, dioimmunodetection of on Carcinoma Xenograf ceral Organs of Conge ymic Mice", see Abstr	Human ts in nitally	27-31				
X Y	Biological Abstracts, Volume 81, No. 2, issued 15 January 1986, (Philadelphia, Pennsylvania, USA), S.C. Lottich, "Tumor-associated Antigen TAG-72: Correlation of Expression in Primary and Metastatic Breast Cancer Lesions, see page 679, column I, the abstract No. 15748, Breast Cancer Res. Treat. 1985, 6(1), 49-56 (Eng).							
"T" later document published after the international filing date or priority date and not in conflict with the application but citized to understand the principle or theory underlying the invention filing date. "E" earlier document but published on or after the international filing date and not in conflict with the application but citized to understand the principle or theory underlying the invention filing date. "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered novel or cannot be considered novel or cannot be considered to involve an inventive step when the document security and the priority date claimed in the art. "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document security combination being obvious to a person skilled in the art. "A" document published after the international filing date or priority date and not in conflict with the application but citized to understand the principle or theory underlying the invention cannot be considered novel or cannot be considered to involve an inventive step when the document is combined with one or more other such documents is combined with one or more other such documents are considered to involve an inventive step when the document such combination being obvious to a person skilled in the priority date and not in conflict with the application but citized to understand the principle or theory underlying the citized to understand the principle or theory underlying the citized to understand the principle or theory underlying the citized to understand the principle or theory underlying the citized to understand the principle or theory underlying the citized to understand the principle or theory underlying the citized to understand the principle or theory underlying the citized to understand the principle or theory underlying the citized to understand the principle or theory underlying the citized to understand the principle or theo								
Date of the Actual Completion of the International Search Date of Mailing of this International Search Report								
		r 1988	0 5 DEC 198	8				
			Signature of Authorized Difference	-,				
Internation TSA:/1	ial Searchini ITS	Authority	TONI R. SCHEINER	theiner				

	RENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEE	T)
ategory *	Citation of Document, 18 with indication, where appropriate of the relevant passages 17	Relevant to Claim No
v	Biological Abstracts, Volume 82,	7 17 10
$\frac{\mathbf{X}}{\mathbf{Y}}$		1,17-19
Y	No. 3, issued 1 August 1986	2-8,11,
	(Philadelphia, Pennsylvania, USA),	20-24
.]	A.J. Paterson, "A Radioimmunoassay	
	for the Detection of a Tumor-	,
.		
.	associated Glycoprotein (TAG-72)	
	using Monoclonal Antibody B72.3,"	
	see page 685, column 1, the astract	•
.	No. 36028, Int. J. Cancer 1986,	
	37(5), 659-666 (Eng).	
1	37(3), 033-000 (mg).	
Y	Clin. Chem., Volume 27, No. 11,	1-46
	issued 1981 (Winston-Salem,	
. [North Carolina, USA), E.D. Sevier,	
	"Monoclonal Antibodies in Clinical	
	MONOCIONAL MICIDOCIES IN CITATERI	•
	Immunology", 1797-1806, see page 1799,	
	column 2, 1st paragraph, page 1800,	
- I	column 1, last paragraph, and column 2,	l .
	1st paragraph.	\
- 1	Tac heredrehm.	
F		l · ·
Y	JNCI, Volume 76, No. 6,	1-48
	issued June 1986 (Washington, D.C.	I .
. [USA), F. Gorstein, "Tumor-Associated	
	Clarentatin (mag 70) in America	
. 1	Glycoprotein (TAG-72) in Ovarian	
1	Carcinomas Defined by Monoclonal	
	Antibody B72.3", 995-1003,	
i fi	See Abstract.	
. [.		
Y	R. LEVY, "Monoclonal Antibodies in	22.40
. I		32-48
	Approaches to Tumor Immunology",	
- 1	Summary of Minisymoposium presented	
ŀ	by the American Association of	
1	Immunologists at the 66th Annual	
.		
.	Meeting of the Federation of American	
.	Societies for Experimental Biology,	l • :
•	New Orleans, Louisiana, USA, 16	1
·	April 1982, "Tumor therpyy with	: "
. 1	Managara Taribadian	·
. 1	Monoclonal Antibodies", see pages	
· .	2655-2656, Future Prospects.	
. 1		
x l	N. Ohuchi, "In vivo Application of	1,25,26
$\frac{\mathbf{X}}{\mathbf{Y}}$	Monoclonal Antibodies in the	
_ +		27-31
· ·	Management of Human Carcinomas",	1
]	Medline, Index Medicus,	1
· .	Gan To Kagaku Ryoho (Japan)	
	April 1988, Volume 15, No. 4,	
		· .
	1109-1114, see the abstract.	1
}.		1
Y	H. HEDIN, "Tumor Localization of CEA	25-31
	Containing Human Tumors in Nude	
]
. }	Mice by Means of Monoclonal	
	Anti-CEA Antibodies", Medline, Index	j.
:	Medicus, Int. J. Cancer,	
;	Medicus, Int. J. Cancer, 15 November 1982, Volume 30,	

FURTHER INFORMATION CONTINUED FROM THE SECOND SHEET						
Y US, A, 4,361,544 (Goldenberg) 30 November 1982, see Abstract, column 13, lines 45-62, column 14 lines 48-68 and column 15, lines 1-7.	17-48					
Y US, A, 4,634,586 (Goodwin) 6 January 1987, see Abstract and column 8, lines 5-21.	17-31					
V. OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE						
This international search report has not been established in respect of certain claims under Article 17(2) (a) for the following reasons: 1. Claim numbers, because they relate to subject matter 12 not required to be searched by this Authority, namely: 2. Claim numbers, because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out 13, specifically:						
	·					
Claim numbers, because they are dependent claims not drafted in accordance with the second and third sentences of PCT Rule 6.4(a).						
VI. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING?						
This international Searching Authority found multiple inventions in this international application as follow	vs:					
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims of the international application. 2. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only						
those claims of the international application for which fees were paid, specifically claims:						
3. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claim numbers:						
4. As all searchable claims could be searched without effort justifying an additional fee, the international Searching Authority did not invite payment of any additional fee.						
Remark on Protest The additional search fees were accompanied by applicant's protest.						
No protest accompanied the payment of additional search fees.						

THIS PAGE BLANK (USPTO)

THIS PAGE BLANK (USPTO)