

Software transformations to reduce instruction memory power consumption using a loop buffer

Tom Vander Aa Murali Jayapala Francisco Barat Geert Deconinck

Henk Corporaal Francky Catthoor

ESAT, K.U.Leuven, Belgium IMEC, Leuven, Belgium

LEUVEN	Overview
•	Introduction and motivation ☐ Low power ☐ Multimedia applications and the loop buffer
•	Optimization problem ☐ Map loops onto the loop buffer ☐ Energy function
•	Software transformations Goal Examples and results
•	Conclusions and future work ☐ Related issues Optimisations for DSP and embedded systems, March 2003

Context

Low Power Embedded Systems

- Battery operated (low energy)
 - ⇒ 10-50 MOPS/mW
- □ Small
- ☐ Low cost
- ☐ Flexible
- Multimedia Applications
 - ⇒ Video, audio, wireless
 - ⇒ High performance
 - ✓ 10-100 GOPS
 - √ real-time constraints

3

Optimisations for DSP and embedded systems, March 2003

Context

Embedded processors

- Power Breakdown
 - ☐ 43 % of power in on-chip Memory
 - ⇒ StrongARM SA110: A 160MHz 32b 0.5W CMOS ARM processor
 - ☐ 40 % of power in internal memory
 - ⇒ C6x, Texas Instruments Inc.

25-30% of power in Instruction Memory

Optimisations for DSP and embedded systems, March 2003 $\,$

4

Software controlled L0 buffers

- Assumed Architecture
 - ☐ MIPS 4000 ISA
 - ☐ Single Issue Processor
 - L1 Cache
 - □ 16KB Direct Mapped
 - ☐ Loop Buffer (2KB)
 - ⇒ Depth = 128 instructions
 - ⇒ Width = 16 Bytes
- Tools
 - ☐ Simplescalar 2.0
 - Wattch Power estimator

Loops with less than 128 instructions were hand-mapped onto the loop buffer

Optimisations for DSP and embedded systems, March 2003

Energy Behaviour

Energy of the instruction memory hierarchy (lb and il1)

(Ib and II1)
$$E = \sum_{l \in mapped}^{l} N_{loads}(l) \times E_{access}(il1) + N_{exec}(l) \times E_{access}(lb)$$

$$+ \sum_{l \in unmapped}^{l} N_{exec}(l) \times E_{access}(il1)$$

+
$$\sum_{l=unmapped}^{l} N_{exec}(l) \times E_{access}(il1)$$

- \Box $E_{access}(Ib) < E_{access}(il1)$
- ☐ E_{access}(lb) depends on the mapped loops
- □ N_{loads}(I) depends on the Control Flow Graph

Optimisations for DSP and embedded systems, March 2003

Factorization (I)

- Factorization
 - ☐ Finds common code in the loop buffer

 - ⇔ Create a function call
- · Benefits
 - ☐ Reduces N_{loads}(I)
- Example
 - ☐ 3D Image Reconstruction Algorithm

Optimisations for DSP and embedded systems, March 2003

16

Related Work

- Data memory hierarchy power
 - Should also be handled
 - ⇔ Methods and tools are known (DTSE)
- · Compiler support for loop buffers
 - ☐ Code layout [Bellas, et al]
 - ☐ Complementary transformation [Sias, et al]
- · Impact of the transformations
 - □ On data memory
 - □ Unchanged, since accesses are not reordered (yet)
 - On processor performance
 - □ Evaluation framework
 - ⇒ Enhanced VLIW compiler
 - ⇒ Based on Trimaran framework
 - ⇒ Wattch power models

10

Optimisations for DSP and embedded systems, March 2003

ESAT/ACC	ÇΑ
	J
LEUVEI	N

Conclusion

•	L0	Buffer	Orga	ınizati	on
---	----	--------	------	---------	----

- ☐ Multimedia applications have high locality in small program segments
- ☐ An additional small L0 buffer should be used
- ☐ Standard implimentations: loop buffer not effciently used
- · Software transformations are needed
 - Loop peeling
 - □ Loop rerolling
 - □ Factorisation
 - □ Loop splitting
- Up to 80% of energy reduction in the instruction memory hierarchy
 - □ Evaluation framework
- · What's next?
 - Automation of the transformations

19

Optimisations for DSP and embedded systems, March 2003