1 BASICS OF SET CONTSTRAINED AND UNCONSTRAINED OPTIMIZATION

6.1 Consider the problem

minimize
$$f(x)$$
 subject to $x \in \Omega$,

where $f \in C^2$. For each of the following specifications for Ω , \mathbf{x}^* and f, determine if the given point \mathbf{x}^* is: (i) definitely a local minimizer; (ii) definitely not a local minimizer; or (iii) possibly a local minimizer.

a.
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $\Omega = \{x = [x_1, x_2]^T : x_1 \ge 1\}$, $x^* = [1, 2]^T$, and gradient $\nabla f(x^*) = [1, 1]^T$.

b.
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $\Omega = \{x = [x_1, x_2]^\top : x_1 \ge 1, x_2 \ge 2\}$, $x^* = [1, 2]^\top$, and gradient $\nabla f(x^*) = [1, 0]^\top$.

c.
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $\Omega = \{x = [x_1, x_2]^\top : x_1 \ge 0, x_2 \ge 0\}$, $x^* = [1, 2]^\top$, gradient $\nabla f(x^*) = [0, 0]^\top$, and Hessian $F(x^*) = I$.

d.
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $\Omega = \{ \boldsymbol{x} = [x_1, x_2]^{\mathsf{T}} : x_1 \ge 1, x_2 \ge 2 \}$, $\boldsymbol{x}^* = [1, 2]^{\mathsf{T}}$, gradient $\nabla f(\boldsymbol{x}^*) = [1, 0]^{\mathsf{T}}$, and Hessian $\boldsymbol{F}(\boldsymbol{x}^*) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.

a. \mathbf{x}^* is definitely not a local minimizer. Note that $\mathbf{d} = [1, 2]^\mathsf{T}$ is a feasible direction at \mathbf{x}^* . However, $\mathbf{d}^\mathsf{T} \nabla f(\mathbf{x}^*) = [1, 2][1, 1]^\mathsf{T} = -1$, which violate the FONC.

b. x^* satisfies the FONC, and thus is possibly a local minimizer, but it is impossible to be definite based on the given information.

c. x^* satisfies the SOSC, and thus is definitely a (strict) local minimizer.

d. x^* is definitely not a local minimizer. To see this, note that $d = [0,1]^T$ is a feasible direction at x^* , and $d^T \nabla f(x^*) = 0$. However, $d^T F(x^*) d = -1$, which violates the SONC.

6.9 Consider the following function:

$$f(x_1, x_2) = x_1^2 x_2 + x_2^3 x_1.$$

- a. In what direction does the function f decrease most rapidly at the point $\mathbf{x}^{(0)} = [2, 1]^{\mathsf{T}}$?
- b. What is the rate of increase of f at the point $x^{(0)}$ in the direction of maximum decrease of f?
- c. Find the rate of increase of f at the point $\mathbf{x}^{(0)}$ in the direction $\mathbf{d} = [3, 4]^{\mathsf{T}}$.
- a. A differentiable function f decreases most rapidly in the direction of the negative gradient. In our problem,

$$\nabla f(\mathbf{x}) = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}\right]^{\mathsf{T}} = \left[2x_1x_2 + x_2^3, x_1^2 + 3x_1x_2^2\right]^{\mathsf{T}}.$$

Chong, Edwin Kah Pin., and Stanislaw H. Żak. *An Introduction to Optimization*. Fourth edition., John Wiley & Sons, Inc., 2013.

Hence, the direction of most rapid decrease is

$$-\nabla f(\mathbf{x}^{(0)}) = -[5, 10]^{\mathsf{T}}.$$

b. The rate of increase of f at $x^{(0)}$ in the direction $-\nabla f(x^{(0)})$ is

$$\nabla f(\mathbf{x}^{(0)})^{\mathsf{T}} - \frac{\nabla f(\mathbf{x}^{(0)})}{\|\nabla f(\mathbf{x}^{(0)})\|} = \|\nabla f(\mathbf{x}^{(0)})\| = -\sqrt{125} = -5\sqrt{5}.$$

c. The rate of increase of f at $\boldsymbol{x}^{(0)}$ in the direction \boldsymbol{d} is

$$\nabla f(\mathbf{x}^{(0)})^{\mathsf{T}} \frac{\mathbf{d}}{\|\mathbf{d}\|} = [5, 10] \begin{bmatrix} 3 \\ 4 \end{bmatrix} \frac{1}{5} = 11.$$

6.11 Consider the problem

minimize
$$-x_2^2$$

subject to $|x_2| \le x_1^2$
 $x_1 \ge 0$,

where $x_1, x_2 \in \mathbb{R}$.

a. Does the point $[x_1, x_2]^{\mathsf{T}} = \mathbf{0}$ satisfy the first-order necessary condition for a minimizer? That is, if f is the objective function, is it true that $\mathbf{d}^{\mathsf{T}} \nabla f(\mathbf{0}) \geq 0$ for all feasible directions \mathbf{d} at $\mathbf{0}$?

b. Is the point $[x_1, x_2]^T = \mathbf{0}$ a local minimizer, a strict local minimizer, a local maximizer, a strict local maximizer, or none of the above?

a. Write the objective function as $f(x) = -x_2^2$. In this problem the only feasible directions at **0** are of the form $\mathbf{d} = [d_1, 0]^\mathsf{T}$. Hence, $\mathbf{d}^\mathsf{T} \nabla f(\mathbf{0}) = 0$ for all feasible directions \mathbf{d} at **0**.

b. The point **0** is a local maximizer, because $f(\mathbf{0}) = 0$, while any feasible point \mathbf{x} satisfies $f(\mathbf{x}) \leq 0$. The point **0** is not a strict local maximizer because for any \mathbf{x} of the form $\mathbf{x} = [x_1, 0]^\mathsf{T}$, we have $f(\mathbf{x}) = 0 = f(\mathbf{0})$, and there are such points in any neighborhood of **0**.

The point $\mathbf{0}$ is not a local minimizer because for any point \mathbf{x} of the form $\mathbf{x} = [x_1, x_1^2]$ with $x_1 > 0$, we have $f(\mathbf{x}) = -x_1^4 < 0$, and there are such points in any neighborhood of $\mathbf{0}$. Since $\mathbf{0}$ is not a local minimizer, it is also not a strict local minimizer.

6.23 Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x) = (x_1 - x_2)^4 + x_1^2 - x_2^2 - 2x_1 + 2x_2 + 1$$

where $\mathbf{x} = [x_1, x_2]^\mathsf{T}$. Suppose that we wish to minimize f over \mathbb{R}^2 . Find all points satisfying the FONC. Do these points satisfy the SONC?

We have

$$\nabla f(\mathbf{x}) = \begin{bmatrix} 4(x_1 - x_2)^3 + 2x_1 - 2 \\ -4(x_1 - x_2)^3 - 2x_2 + 2 \end{bmatrix}.$$

Chong, Edwin Kah Pin., and Stanislaw H. Żak. *An Introduction to Optimization*. Fourth edition., John Wiley & Sons, Inc., 2013.

Setting $\nabla f(\mathbf{x}) = \mathbf{0}$ we get

$$4(x_1 - x_2)^3 + 2x_1 - 2 = 0$$

-4(x_1 - x_2)^3 - 2x_2 + 2 = 0

Adding the two equations, we obtain $x_1 = x_2$, and substituting back yields $x_1 = x_2 = 1$. Hence, the only point satisfying the FONC is $[1,1]^T$.

We have

$$F(x) = \begin{bmatrix} 12(x_1 - x_2)^2 + 2 & -12(x_1 - x_2)^2 \\ -12(x_1 - x_2)^2 & 12(x_1 - x_2)^2 - 2 \end{bmatrix}.$$

Hence,

$$\boldsymbol{F}([1,1]^{\mathsf{T}}) = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$$

Since $F([1,1]^T)$ is not positive semidefinite, the point $[1,1]^T$ does not satisfy the SONC.