第一套

一、单项选择题

. 1 >1.00	
1 、双对数模型 $\ln Y = \ln \beta_0 + \mu$	$\beta_1 \ln X + \mu$ 中,参数 β_1 的含义是 (C)
A. Y 关于 X 的增长率 C. Y 关于 X 的弹性 2、设 k 为回归模型中的参数个 程进行显著性检验时,所用的 F 统	B.Y关于X的发展速度 D.Y关于X的边际变化 个数,n为样本容量。则对多元线性回归方 计量可表示为(B))
A. $\frac{ESS/(n-k)}{RSS/(k-1)}$	B. $\frac{R^2/(k-1)}{(1-R^2)/(n-k)}$
C. $\frac{R^2/(n-k)}{(1-R^2)/(k-1)}$	D. $\frac{ESS/(k-1)}{TSS/(n-k)}$
3、回归分析中使用的距离是点 是指(D)	点到直线的垂直坐标距离。最小二乘准则
A.	小值 B. 使 $\min \left Y_i - \hat{Y}_i \right $ 达到最小值
C. 使 $\max Y_t - \hat{Y}_t $ 达到最	小值 D. 使 $\sum_{t=1}^{n} (Y_t - \hat{Y}_t)^2$ 达到最小值
为将其引入模型中,则需要引入虚	
	1
A. 参数估计值是无偏非有效 C. 常用 F 检验失效 6、 在一元线性回归模型中,	效的 B. 参数估计量仍具有最小方差性 D. 参数估计量是有偏的 样本回归方程可表示为(C)
A. $Y_t = \beta_0 + \beta_1 X_t + u_t$	B. $Y_t = E(Y_t / X) + \mu_i$
$C. \qquad \hat{Y}_t = \hat{\beta}_0 + \hat{\beta}_1 X_t$	D. $E(Y_t / X_t) = \beta_0 + \beta_1 X_t$
	可以通过引入虚拟变量方法来表示这种变化。 时。1991年前后,城镇居民商品性实际支出 Y

量 $D_t = \begin{cases} 1, & 1991$ 年以后 0, & 1991年以前 , 数据散点图显示消费函数发生了结构性变化:基本

对实际可支配收入 X 的回归关系明显不同。现以 1991 年为转折时期,设虚拟变

消费部分下降了, 边际消费倾向变大了。则城镇居民线性消费函数的理论方程可 以写作(D)

A.
$$Y_{t} = \beta_{0} + \beta_{1} X_{t} + u_{t}$$

A.
$$Y_t = \beta_0 + \beta_1 X_t + u_t$$
 B. $Y_t = \beta_0 + \beta_1 X_t + \beta_2 D_t X_t + u_t$

C.
$$Y_t = \beta_0 + \beta_1 X_t + \beta_2 D_t + u_t$$

C.
$$Y_t = \beta_0 + \beta_1 X_t + \beta_2 D_t + u_t$$
 D. $Y_t = \beta_0 + \beta_1 X_t + \beta_2 D_t + \beta_3 D_t X_t + u_t$

8、对于有限分布滞后模型

$$Y_{t} = \alpha + \beta_{0} X_{t} + \beta_{1} X_{t-1} + \beta_{2} X_{t-2} + \dots + \beta_{k} X_{t-k} + u_{t}$$

在一定条件下,参数 β_i 可近似用一个关于i的阿尔蒙多项式表示($i = 0,1,2,\cdots,m$), 其中多项式的阶数 m 必须满足(A)

- A. m < k
- B. m = k C. m > k D. $m \ge k$
- 9、在自适应预期模型和库伊克模型中,假定原始模型的随机扰动项u.满足 古典线性回归模型的所有假设,则对于这两个模型中的滞后解释变量Y,1和误差 项 u_{*}^{*} ,下列说法正确的有(D)

A.
$$Cov(Y_{t-1}, u_t^*) = 0$$
, $Cov(u_t^*, u_{t-1}^*) = 0$

B.
$$Cov(Y_{t-1}, u_t^*) = 0$$
, $Cov(u_t^*, u_{t-1}^*) \neq 0$

C.
$$Cov(Y_{t-1}, u_t^*) \neq 0$$
, $Cov(u_t^*, u_{t-1}^*) = 0$

D.
$$Cov(Y_{t-1}, u_t^*) \neq 0$$
, $Cov(u_t^*, u_{t-1}^*) \neq 0$

10、设u,为随机误差项,则一阶线性自相关是指(B)

A.
$$Cov(u_t, u_s) \neq 0 (t \neq s)$$
 B. $u_t = \rho u_{t-1} + \varepsilon_t$

$$B. u_t = \rho u_{t-1} + \varepsilon_t$$

C.
$$u_t = \rho_1 u_{t-1} + \rho_2 u_{t-2} + \varepsilon_t$$
 D. $u_t = \rho^2 u_{t-1} + \varepsilon_t$

$$D. u_t = \rho^2 u_{t-1} + \varepsilon_t$$

- 11、利用德宾 h 检验自回归模型扰动项的自相关性时,下列命题正确的是(B)
 - A. 德宾 h 检验只适用一阶自回归模型
 - B. 德宾 h 检验适用任意阶的自回归模型
 - C. 德宾 h 统计量渐进服从 t 分布
 - D. 德宾 h 检验可以用于小样本问题
- 12、关于联立方程组模型,下列说法中错误的是(B)
 - A. 结构式模型中解释变量可以是内生变量,也可以是前定变量
 - B. 简化式模型中解释变量可以是内生变量,
 - C. 简化式模型中解释变量是前定变量
 - D. 结构式模型中解释变量可以是内生变量

13、以下选项中,正确地表达了序列相关的是(A)
A. $Cov(\mu_i, \mu_j) \neq 0, i \neq j$ B. $Cov(\mu_i, \mu_j) = 0, i \neq j$
C. $Cov(X_i, X_j) = 0, i \neq j$ D. $Cov(X_i, \mu_j) \neq 0, i \neq j$
14、一元线性回归分析中的回归平方和 ESS 的自由度是(D) A. <i>n</i> B. <i>n</i> -1 C. <i>n-k</i> D. 1
15、边际成本函数为 $MC = \alpha + \beta_1 Q + \beta_2 Q^2 + \mu$ (MC 表示边际成本; Q 表示
产量),则下列说法正确的有(A)
A. 模型中可能存在多重共线性 B. 模型中不应包括 Q^2 作为解释变量
C. 模型为非线性模型 D. 模型为线性模型 16、如果某个结构方程是恰好识别的,估计其参数可用(D) A. 最小二乘法 B. 极大似然法 C. 广义差分法 D. 间接最小二乘法 17、已知样本回归模型残差的一阶自相关系数接近于 1,则 DW 统计量近似
等于(A)
A. 0 B. 1 C. 2 D. 4 18、更容易产生异方差的数据为 (C)
A. 时序数据 B. 修匀数据 C. 横截面数据 D. 年度数据 19 、设 M 为货币需求量, Y 为收入水平, r 为利率,流动性偏好函数为
$M = \beta_0 + \beta_1 Y + \beta_2 r + \mu$,又设 $\hat{\beta}_1$ 、 $\hat{\beta}_2$ 分别是 β_1 、 β_2 的估计值,则根据经济理
论, 一般来说(A)
A. $\hat{oldsymbol{eta}}_1$ 应为正值, $\hat{oldsymbol{eta}}_2$ 应为负值 B. $\hat{oldsymbol{eta}}_1$ 应为正值, $\hat{oldsymbol{eta}}_2$ 应为正值
C. $\hat{oldsymbol{eta}}_1$ 应为负值, $\hat{oldsymbol{eta}}_2$ 应为负值 D. $\hat{oldsymbol{eta}}_1$ 应为负值, $\hat{oldsymbol{eta}}_2$ 应为正值
20、对于有限分布滞后模型,解释变量的滞后长度每增加一期,可利用的样本数据就会(B)) A. 增加1个 B. 减少1个 C. 增加2个 D. 减少2个
二、多项选择题
1、对联立方程模型参数的单一方程估计法包括(A B D F)
A. 工具变量法 B. 间接最小二乘法 C. 完全信息极大似然估计法 D. 二阶段最小二乘法
E. 三阶段最小二乘法 F. 有限信息极大似然估计法
2、下列哪些变量一定属于前定变量(CD)
A. 内生变量 B. 随机变量 C. 滞后变量
D. 外生内生变量 E. 工具变量

- 3、古典线性回归模型的普通最小二乘估计量的特性有(ABC)
 - A. 无偏性

- B. 线性性 C. 最小方差性
- D. 不一致性
- E. 有偏性
- 4、利用普通最小二乘法求得的样本回归直线 $\hat{Y}_i = \hat{\beta}_1 + \hat{\beta}_2 X_i$ 的特点(\mathbf{ACD})
 - A. 必然通过点 $\left(ar{X}, ar{Y} \right)$ B. 可能通过点 $\left(ar{X}, ar{Y} \right)$

 - C. 残差 e 的均值为常数 D. \hat{Y} 的平均值与 Y 的平均值相等
 - E. 残差 e_i 与解释变量 X_i 之间有一定的相关性
- 5、关于联立方程模型识别问题,以下说法不正确的有 (A B)
 - A. 满足阶条件的方程则可识别
 - B. 如果一个方程包含了模型中的全部变量,则这个方程恰好识别
 - C. 如果一个方程包含了模型中的全部变量,则这个方程不可识别
 - D. 如果两个方程包含相同的变量,则这两个方程均不可识别
 - E. 联立方程组中的每一个方程都是可识别的,则联立方程组才可识别
 - F. 联立方程组中有一个方程不可识别,则联立方程组不可识别
- 三、判断题(判断下列命题正误,并说明理由)
 - 1、简单线性回归模型与多元线性回归模型的基本假定是相同的。

错

在多元线性回归模型里除了对随机误差项提出假定外,还对解释变量之间提 出无多重共线性的假定。

2、在模型中引入解释变量的多个滞后项容易产生多重共线性。

对

在分布滞后模型里多引进解释变量的滞后项,由于变量的经济意义一样,只 是时间不一致, 所以很容易引起多重共线性。

3、DW 检验中的 d 值在 0 到 4 之间,数值越小说明模型随机误差项的自相关 度越小,数值越大说明模型随机误差项的自相关度越大。

错

DW 值在 0 到 4 之间, 当 **DW** 落在最左边($0 < d < d_1$)、最右边($4 - d_1 < d < 4$)

时,分别为正自相关、负自相关;

中间 $(d_{ij} < d < 4 - d_{ij})$ 为不存在自相关区域;

其次为两个不能判定区域。

4、在计量经济模型中,随机扰动项与残差项无区别。

错

它们均为随机项,但随机误差项表示总体模型的误差,残差表示样本模型的 误差: 另外, 残差=随机误差项+参数估计误差。

5、在经济计量分析中,模型参数一旦被估计出来,就可将估计模型直接运 用于实际的计量经济分析。

错

参数一经估计,建立了样本回归模型,还需要对模型进行检验,包括经济 意义检验、统计检验、计量经济专门检验等。

四、计算题

1、根据某城市1978——1998年人均储蓄(y)与人均收入(x)的数据资料建立 了如下回归模型

$$\hat{y} = -2187.521 + 1.6843x$$

$$R^2 = 0.9748, S.E. = 1065.425, DW = 0.2934, F = 733.6066$$

试求解以下问题

(1) 取时间段 1978——1985 和 1991——1998, 分别建立两个模型。

模型 1:
$$\hat{y} = -145.4415 + 0.3971x$$
 模型 2: $\hat{y} = -4602.365 + 1.9525x$

$$R^2 = 0.9908, \sum e_1^2 = 1372.202$$

$$R^2 = 0.9826, \sum e_2^2 = 5811189$$

计算 F 统计量,即 $F = \sum e_2^2 / \sum e_1^2 = 5811189 / 1372.202 = 4334.9370$,对给定的 $\alpha = 0.05$,查 F 分布表,得临界值 $F_{0.05}(6,6) = 4.28$ 。请你继续完成上述工作,并回答所做的是一项什么工作,其结论是什么?

解: 该检验为 Goldfeld-Quandt 检验因为 F=4334.937>4.28,所以模型存在异方差

(2) 根据表 1 所给资料,对给定的显著性水平 $\alpha = 0.05$,查 χ^2 分布表,得临界值 $\chi_{0.05}(3) = 7.81$,其中 p=3 为自由度。请你继续完成上述工作,并回答所做的是一项什么工作,其结论是什么?

表 1

ARCH Test:

F-statistic	6. 033649	Probability	0.007410
Obs*R-squared	10. 14976	Probability	0. 017335

Test Equation:

Dependent Variable: RESID^2

Method: Least Squares

Date: 06/04/05 Time: 17:02 Sample(adjusted): 1981 1998

Included observations: 18 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	244797. 2	373821.3	0. 654851	0. 5232
RESID^2(-1)	1. 226048	0. 330479	3.709908	0.0023
RESID^2(-2)	-1. 405351	0. 379187	-3. 706222	0.0023
RESID^2 (-3)	1. 015853	0. 328076	3. 096397	0.0079
R-squared	0. 563876	Mean depen	dent var	971801.3
Adjusted R-squared	0. 470421	S.D. depen	dent var	1129283.
S.E. of regression	821804.5	Akaike inf	o criterion	30. 26952
Sum squared resid	9. 46E+12	Schwarz cr	iterion	30. 46738
Log likelihood	-268. 4257	F-statisti	c	6. 033649
Durbin-Watson stat	2. 124575	Prob(F-sta	tistic)	0.007410

解: 该检验为 ARCH 检验

- (1) 由 0bs*R-squared=10.1498>7.81,表明模型存在异方差:
- (2) 由各系数的 t-值可知, 残差各阶滞后系数均大于 2, 表明各阶滞后对 RESID

均有影响,揭示存在异方差。

- 2、根据某行业 1955——1974 年的库存量(y)和销售量(x)的资料(见表 2),运用 EViews 软件得如下报告资料,试根据所给资料和图形完成下列问题:
- (1) 完成表 2 的空白处, 由报告资料写出估计模型的表达式 (用标准书写格式);
- (2) 根据写出的模型表达式求销售量对库存量影响的短期乘数、动态乘数和长期乘数,同时给出经济解释;
- (3) 根据所给资料对估计模型进行评价(包括经济意义、拟合效果、显著性检验等)。

表 2

Dependent Variable: Y Method: Least Squares

Date: 06/04/05 Time: 17:42 Sample(adjusted): 1958 1974

Included observations: 17 after adjusting endpoints

Variable	Coefficient	Std. Error t-Statistic	Prob.
С	-6. 419601	2. 130157	-
PDL01	1. 156862	0. 195928	_
PDL02	0.065752	0. 176055	_
PDL03	-0. 460829	0. 181199	_
R-squared	0. 996230	Mean dependent var	81. 97653
Adjusted R-square	ed	S.D. dependent var	27. 85539
S.E. of regression	n 1. 897384	Akaike info criterion	4. 321154
Sum squared resid	46. 80087	Schwarz criterion	4. 517204
Log likelihood	-32.72981	F-statistic	
Durbin-Watson sta	1. 513212	Prob(F-statistic)	0.000000
Lag Distribution	n of X i	Coefficient Std. Error	T-Statistic
. *	0	0. 63028 0. 17916	
	* 1	1. 15686 0. 19593	
. *	: 2	0. 76178 0. 17820	
* .	3	-0. 55495 0. 25562	
	Sum of Lags	1. 99398 0. 06785	

$$\begin{split} t_{(17)}(0.025) &= 2.110, t_{(13)}(o.o25) = 2.160, t_{(12)}(0.025) = 2.176, \\ t_{(17)}(0.05) &= 1.740, t_{(13)}(0.05) = 1.771, t_{(12)}(0.05) = 1.782 \\ F_{(4.12)}(0.05) &= 3.26, F_{(5.13)}(0.05) = 3.03, F_{(5.17)}(0.05) = 2.81 \end{split}$$

解: (1) 第一栏的 t 统计量值:

T-Statistic

-3.013675

5.904516

0.373472

-2.513216

第二栏的 t 统计量值:

m.	α.		
Τ÷	Sta	at 1 s	stic

3, 51797

5. 90452

4. 27495

-2. 17104

Adjusted R-squared 0.99536 F-statistic 1145.20

$$\hat{y}_t = -6.4196 + 0.6303x_t + 1.1569x_{t-1} + 0.7618x_{t-2} - 0.5550x_{t-3}$$

$$t = (-3.0137)(3.5180) \quad (5.9045) \quad (4.2750) \quad (-2.1710)$$

$$\overline{R}^2 = 0.9954, \quad DW = 1.5132, \quad F = 1145.16$$

- (2) 短期乘数为 0.6303, 动态乘数分别为 1.1569, 0.7618, -0.5550。长期乘数为 1.994。
- (3) 模型整体的拟合效果较好,可决系数达到 0. 9963,F 统计量为 1145. 16,除 x_{t-3} 的系数的 t 统计量外,其余均大于在显著性水平为 0. 05,自由度为 12 下的临界值 2. 176,说明模型中销售额在滞后第三期对库存量影响较小外,其它各均影响显著。
- 3、根据某地区居民对农产品的消费 y 和居民收入 x 的样本资料,应用最小二乘法估计模型,估计结果如下,拟合效果见图。由所给资料完成以下问题:

- (1) 在 n=16, α = 0.05 的条件下, 查 D-W 表得临界值分别为 d_L = 1.106, d_U = 1.371, 试判断模型中是否存在自相关;
- (2) 如果模型存在自相关,求出相关系数 $\hat{\rho}$,并利用广义差分变换写出无自相关的广义差分模型。

$$\hat{y} = 27.9123 + 0.3524x$$

$$R^2 = 0.9966, \sum_{i=1}^{16} e_i^2 = 22.0506, DW = 0.6800, F = 4122.531$$

- 解: (1) 因为 DW=0.68<1.106, 所以模型中的随机误差存在正的自相关。
 - (2) 由 DW=0.68, 计算得 $\hat{\rho}$ = 0.66, 所以广义差分表达式为

$$y_t - 0.66 y_{t-1} = 0.34 \beta_1 + \beta_2 (x_t - 0.66 x_{t-1}) + u_t - 0.66 x_{t-1}$$