

To be a leading quality & Innovation driven global conglomerate.

MISSION

We are constantly striving to achieve excellence in all our endeavors to create sustainable value for our stakeholders and the community at large.

OBJECT DETECTION

An *Artificial Intelligence (AI) based* approach *Advanced Technology Group (DS – ATG)*

SUBMITTED BY: SURAT BANERJEE AI TEAM

Outline

- Brief of Object Detection
- Performance Metrics
- Object Detection Approaches
- Region Proposal Based Algo.
- Regression-Classification Proposal Based Algo.

Brief of Object Detection

Object Detection

Given an image we want to detect all the object in the image that belong to a specific classes and give their location. An image can contain more than one object with different classes.

Computer Vision Task

Image Classification

 Output a class label. The whole image represents one class. We don't want to know exactly where are the object. Usually only one object in the image.

Classification + localization

 Given an image we want to learn the class of the image and where are the class location in the image. Usually only one object in the image.

Object Detection

Predicted class and coordinates for bounding box

Each image needs different number of outputs

Dog: (x, y, w, h)

Person: (x, y, w, h) 12 Numbers

Bed: (x, y, w, h)

Bird: (x, y, w, h)

Bird: (x, y, w, h)

. . .

SEGMENTATION

Semantic Segmentation

•Goal: Divide an image into different regions, where each region corresponds to a specific object class.

Instance Segmentation

•Goal: Identify and segment individual instances of objects within an image.

Panoptic Segmentation

•Goal: Combine both semantic and instance segmentation to provide a complete understanding of the scene.

•Object Representation:

- Semantic Segmentation: Regions based on object class.
- Instance Segmentation: Individual instances based on object class.
- Panoptic Segmentation: Regions and instances based on object class.

Data: object detection research

330K images (>200K labeled) and 80 object categories

11,530 images and 20 classes

14M images and more than 20K object categories

Google Open Images
Dataset V5

~9M images annotated with image-level labels, object bounding boxes, object segmentation masks, and visual relationships.

Challenges in Object Detection

- Two tasks -Classification and Localization
- Results/prediction take lot of time but we need fast predictions for real-time task
- Different scales and aspect ratios
- Limited data and labelled data
- Imbalanced data-classes

Performance Metrics

Performance metrics for object detection

- Intersection over union (IoU)
- Precision and recall
- Mean average precision (mAP)

IoU (Intersection over Union)

- IoU is a function used to evaluate the object detection algorithm.
- It computes size of intersection and divide it by the union. More generally, IoU is a
 measure of the overlap between two bounding boxes.
- For example in the diagram here: The red is the predicted output and green is the labeled output.
- To compute Intersection Over Union we first compute the union area of the two rectangles which is "the first rectangle + second rectangle" Then compute the intersection area between these two rectangles.
- Finally IOU = intersection area / Union area
- If IoU >= 0.5 (threshold)
 then it's good. The best
 answer will be 1

Why to use IoU score?

- We use Accuracy, precision, recall etc as accuracy metrics for classification tasks but for object detection it's not so straightforward.
- It's very unlikely that the (x, y)-coordinates of our predicted bounding box are going to exactly match the (x, y)-coordinates of the ground-truth bounding box.
- More the overlap predicted bounding boxes have with the groundtruth bounding boxes better (higher) their IoU scores will be.

Confusion Matrix

- True Positives (TP): These are cases in which we predicted yes and they do have the pregnency.
- True Negatives (TN): We predicted no, and they don't have the pregnency.
- ❖ False Positives (FP): We predicted yes, but they don't actually have the pregnency.
- False Negatives (FN): We predicted no, but they actually do have the pregnency.

Precision and Recall

 Precision: what percentage of your positive predictions are correct (TP/TP+FP)

• Recall: what percentage of ground truth objects were found

(TP/TP+FN)

mAP (Mean Average Precision)

- **Step 1:**Sort predictions according to confidence
- **Step 2:**Calculate IoU of every predicted box with every ground truth box
- Step 3:Match predictions to ground truth using IoU, correct predictions are those with IoU > threshold (.5)
- **Step 4:**Calculate precision and recall at every row
- Step 5: Take the mean of maximum precision at 11 recall values (0.0, 0.1, ... 1.0) to get Average Precision
- Step 6:Average across all classes to get the mAP

$$\text{mAP} = \frac{1}{N} \sum_{i=1}^{N} \text{AP}_i$$

Object Detection Approaches

Object detection: 1. Brute force approach

- Run a classifier for every possible box
- This is a 15 x 10 grid, there are 150 small boxes.

How many total boxes?

Computationally expensive

Object detection: 2. Sliding window approach

- Run classifier in a sliding window fashion
- Apply a CNN to many different crops of the image
- CNN classifies each crop as object or background

Detection window

Pre-trained on imagenet (transfer learning)

Dog? Yes Cat? No Background? No

Traditional Object Detection

Three stages:

- Informative Region selection,
- Feature Extraction
- Classification.

Ex: Haar Features & Histogram of Oriented Gradients

Object Detection State

State of the Art methods are generally categorised in two categories

- One stage methods / Regression-Classification Based Frameworks
- Three stage methods / Region Proposal Based Frameworks

Region Proposal based frameworks

It is composed of 3 correlated stages, including region proposal generation, feature extraction with CNN, classification and bounding box regression, which are usually trained separately.

Regression/Classification Based Framework

One-step frameworks based on global regression/classification, mapping straightly from image pixels to bounding box coordinates and class probabilities, can reduce time expense.

two significant frameworks,

You only look once (YOLO) and Single Shot MultiBox Detector (SSD)

Object Detection State - Algorithms

Region Proposal Based Algorithms -

- > R-CNN
- Fast R-CNN
- Faster R-CNN

Regression-Classification Based Algorithm -

- > YOLO
- > SSD

Region Proposal Based Algo

Regression-Classification Proposal Based Algo.

