Contexte

Dans le cadre du **S**ystème de **C**uisson **A**ssistée par **O**rdinateur **SCAO** et de son <u>prototype N°3</u>, la e-poignée 433MHZ <u>e-p-433</u> est l'un des objets connectés de ce prototype.

Le prototypage définit par le \underline{SCAO} est interprété, au sens large, comme regroupant toutes les activités qui concourent à la réalisation du prototype.

Objet

L'objet de la e-poignée 433 MHZ est double : * la mesure de la température sur le couvercle de la casserole * la transmission de la valeur mesurée au e-rupteur 433 MHZ.

Description physique

Assemblage de la e-poignée 433 MHZ

La e-poignée 433 MHZ communique avec le e-rupteur par radio. Elle est équipé de 2 amplificateurs de thermocouple, une batterie LI-ION, un chargeur de batterie, d'un microcontrôleur Teensy 3.2 et un émetteur 433 MHZ. Dans un effort de miniaturisation, un circuit imprimé regroupe ces composants (CMS et traversants).

Nomenclature

Une nomenclature permet de répertorier les éléments de la e-poignée 433, la première colonne indique le niveau de décomposition :

Nomenclature e-p-433

Niv	Designation	Founisseur	Туре	Reference	Rep	Qty
•	Vis M3		Achat		1	4
٠	Rondelles M3		Achat		2	4
•	CI CMS e-p-433	RL	Management	WBS	3	1
٠	Lithium Ion Battery - 400mAh	<u>Sparkfun</u>	Achat	PRT-13851	4	1
٠	Entretoises M3		Achat		11	4
•	Rondelles		Achat		6	4
•	Jupe	<u>Iot city</u>	IMP3D	jupe-433.gcode	9	1
٠	Ecrou M5		Achat		10	1
•	Isolateur	<u>Iot city</u>	Découpe laser	<u>Isolateur_a.dxf</u>	13	1
•	Rondelles M3		Achat		14	4
٠	Vis M3		Achat		15	4
•	Entretoise de fixation		Atelier		16	1
•	Capteur de température		Atelier		17	1
•	Couvercle	AMC	Achat		18	1

La modélisation des différents sous-ensembles fait appel principalement à deux logiciels : * Openscad pour les pièces fabriquées en impression 3D. * kicad pour le CI CMS e-p-433.

Description fonctionnelle

Schéma fonctionel de la e-p-433

La fonction globale e-p-433 est la <u>mesure de la température</u> sur l'entretoise de fixation [16] et sa transmission en mode radio au e-rupteur <u>e-r-433</u>. Cette fonction se décline par : * La capture avec contact de la température sur l'entretoise [16] à l'aide d'un capteur de température [17] * Le traitement du signal délivré par le thermocouple (filtrage, amplification, conversion analogique digitale) * La transmission radio vers le e-r-433 * Des fonctions secondaires : Battery manager, calibration, \underline{IHM} .

Description détaillée

Ce paragraphe est structuré selon les articles de la nomenclature de la e-poignée 433MHZ.

Les articles de visserie repérés [1], [2], [5], [6], [10], [11], [12], [14], [15], ne font pas l'objet de paragraphes spécifiques.

Les autres repérés [3], [4], [9], [13], [16] et [17], font l'objet de paragraphes spécifiques.

Entretoise de fixation [16]

Objet

L'objet de l'entretoise de fixation [16] est de constituer la fixation mécanique de la e-p-433 sur le couvercle [18]. En complément, de prévoir le logement du capteur de température [17] pour qu'il puisse être correctement maintenu et positionner.

Conception et réalisation

Version 1

L'entretoise de fixation [16] est constituée d'une entretoise M5. Elle est modifiée en atelier selon les indications suivantes : *

<u>Usinage d'une fraisure</u>

* Perçage d'un trou, de 1mm de diamêtre, à mi-hauteur de la partie hexagonale, pour permettre l'introduction du thermocouple.

Version 2

L'entretoise de fixation [16] est constituée d'une entretoise spécifique en aluminium : Entretoise aluminium de la e-poignée 433 MHZ

Entretoise aluminium de la e-poignée 433 MHZ

Capteur de température [17]

Objet

L'objet du capteur de température est la mise à disposition d'une valeur électrique proportionnelle à la température du couvercle [18] de la casserole.

Conception et réalisation

Le capteur de température [17] est conçu et réalisé à partir d'un thermocouple de type K qui utilise une jonction **chromel** (nickel + chrome) / **alumel** (nickel + aluminium).

Un article de la revue Mesures atteste que les thermocouples devraient représenter la plus grande part du marché en 2023.

La photo ci-contre montre la soudure chaude Thermocouple soudure d'un thermocouple de type K.

En principe, un thermocouple peut être fabriquer soi-même de <u>manière "artisanal"</u>, j'ai moi-même essayé mais sans succès pour le moment. La difficulté est de réaliser la soudure du chromel et de l'alumel. Il faut faire appel à une source de chaleur qui permette d'atteindre la fusion des 2 alliages. De mon expérience, un briquet, la gazinière ou une lampe à souder de type "camping gaz" sont insuffisants. Dans le meilleur des cas, l'intensité de la source de chaleur permet aux 2 alliages de prendre la couleur rouge clair. En conclusion, un poste de soudure de type <u>chalumeau</u>) est nécessaire. Par exemple le <u>micro chalumeau</u>.

Un exemple de câble de thermocouple est montré ci-dessous :

Câble du thermocouple

Il provient d'un thermocouple de $\underline{\text{type }K}$, à l'origine, le câble était trop long, il a donc été coupé, ce câble : * longueur = 90 mm * la gaine est blanche/verte * les 2 fils : * vert (recouvert d'une gaine thermorétractable bleue) * blanc (recouvert d'une gaine thermorétractable blanche)

Les mesures à l'Ohmêtre des 2 fils donnent : * R(vert) = 8 Ohms * R(blanc) = 3,5 Ohms.

Version 1

- \bullet Introduction du thermocouple dans le trou de l'entretoise. Sont maintien est assuré par :
 - o une goutte de super glu introduite dans le trou
 - o une gaine thermorétractable pour envelopper l'ensemble entretoise/thermocouple.

Version 2

Thermocouple équipé

La jupe [9]

Objet

La jupe [9] habille la partie inférieure de la e-p-433.

Conception

jupe-433

Réalisation

IMP3D

L'isolateur [13]

Objet

L'objet de l'isolateur est de réaliser une isolation thermique entre l'entretoise [16] et la jupe [9].

Conception

Isolateur de la e-poignée 433 MHZ

Réalisation

Découpe laser

Batterie LI-ION [4]

Objet

L'objet de la batterie LI-ION est l'alimentation en tension continue des circuits électroniques du CI CMS e-p-433 [3].

Conception

 $\label{lambda} \begin{tabular}{l} La $\underline{$\text{Lithium Ion Battery - 400mAh}$ est décrite sur les sites Wikipédia français et anglais: *$\underline{$\text{Accumulateur lithium-ion}$ *$\underline{$\text{Lithium-ion}$ battery.}$ \\ \hline \end{tabular}$

Son utilisation nécessite : * un chargeur adapté à ce type de technologie SparkFun LiPo Charger Basic - Micro-USB * une attention particulière à la température en fonctionnement conduisant au strict respect des recommandations du constructeur. La datasheet du constructeur, concernant "Operating Temperature Range", en fonction du mode de fonctionnement, indique : * $Charge\ 0 \sim 45^{\circ}C$ * Discharge -20 $\sim 60^{\circ}C$.

Réalisation

Approvisionnement.

CI CMS e-p-433 [3]

Objet

L'objet du CI CMS e-p-433 [3] est de grouper toutes les composants électroniques de l'e-p-433 à l'exception du thermocouple.

Conception

Schéma du circuit CMS e-p-433

Conception des fonctions

Amplificateur de thermocouple

L'amplificateur de thermocouple est conçu à partir du circuit intégré \underline{CMS} \underline{ANALOG} $\underline{DEVICES}$ $\underline{AD8495}$. Son schéma électrique : Schéma de l'amplificateur de thermocouple

Microcontrôleur

Schéma du microcontrôleur

Calibration

Schéma du circuit calibration

Battery manager

Schéma Battery manager

3XLEDS

Schéma du circuit LEDS

Emetteur 433MHZ

Schéma du circuit Emetteur

Réalisation (WBS)

La réalisation du CI CMS e-p-433 [3] est traitée en un projet séparé. Il fait appel à un "Work Breakdown Structure" (WBS). Le principe du WBS consiste à décomposer le projet en tâches élémentaires. Ces tâches sont représentées par le tableau ci-dessous .