FINITE MAGMAS: RIGIDITY AND ASYMPTOTICS

ABSTRACT. Almost all finite magmas are rigid, and the number of finite magmas, up to isomorphism, is asymptotic to $n^{n^2}/n!$.

This note is essentially a rewrite of parts of Ralph Freese's 1990 paper On the two kinds of probability in algebra published in Algebra Universalis 27 (1), 70-79. Here the emphasis is on application to magmas.

1. Count estimates and rigidity

First some definitions:

- $I_n = \{0, 1, \dots, n-1\}.$
- M_n is the set of n^{n^2} magmas $\mathbf{A} = (\mathsf{I}_n, \diamond)$ on I_n .
- Sym_n is the symmetric group on I_n .
- $Aut(\mathbf{A})$ is the group of automorphisms of $\mathbf{A} \in M_n$, a subgroup of Sym_n .
- A magma **A** is rigid if the identity map is its only automorphism.
- R_n is the set of rigid magmas $A \in M_n$.
- For $\sigma \in M_n$ let $M_n(\sigma)$ be the set of magmas $\mathbf{A} \in M_n$ such that $\sigma \in \mathsf{Aut}(\mathbf{A})$.

We need two simple estimates for $|\mathsf{M}_n(\sigma)|$.

Lemma 1.1.

• For σ a transposition in Sym_n ,

$$|\mathsf{M}_n(\sigma)| \leqslant n^{n(n-1)}$$
.

 $\bullet \ \ \textit{If} \ \sigma \in \mathsf{Sym}_n \ \textit{is not the identity or a transposition then}$

$$|\mathsf{M}_n(\sigma)| \leq n^{n(n-2)}$$
.

Proof. Let σ be the transposition (ij) and suppose $\sigma \in \operatorname{Aut}(\mathbf{A})$. One can then determine the jth row of the table for \mathbf{A} from σ if one is given the ith row because $j \diamond k = \sigma(\sigma^{-1}(j) \diamond \sigma^{-1}(k)) = \sigma(i \diamond \sigma^{-1}(k))$. The total number of ways to fill in the n^2 entries in the rows of the table other than the jth row, with integers from I_n , is clearly $n^{n(n-1)}$. For each such partial filling of the table one then fills in the jth row using σ —the tables that give an \mathbf{A} for which σ is an automorphism will be among these. So $|\mathsf{M}_n(\sigma)| \leq n^{n(n-1)}$.

Date: May 12, 2025.

If $\sigma \in \mathsf{Sym}_n$ is not the identity or a transposition then given an $\mathbf{A} \in \mathsf{M}_n(\sigma)$ one likewise finds that there are at least two rows of the table that are completely determined by the other rows and σ , so $|\mathsf{M}_n(\sigma)| \leq n^{n(n-2)}$. \square

A key estimate used to prove the main results is the following lemma.

Lemma 1.2.

$$|\mathsf{M}_n| \leq \sum_{\mathbf{A} \in \mathsf{M}_n} |\mathsf{Aut}(\mathbf{A})| \leq |\mathsf{R}_n| + 2 \binom{n}{2} n^{(n-1)n} + (n!)^2 \cdot n^{(n-2)n}.$$

Proof. The first inequality is trivial since $1 \leq |\mathsf{Aut}(\mathbf{A})|$. For the second inequality break the middle term, the sum over $\mathbf{A} \in \mathsf{M}_n$, into three sums, the first for the \mathbf{A} with $|\mathsf{Aut}(\mathbf{A})| = 1$, the second for $|\mathsf{Aut}(\mathbf{A})| = 2$, and the third for $|\mathsf{Aut}(\mathbf{A})| > 2$.

The first of these sums is just $|R_n|$ since $|Aut(\mathbf{A})| = 1$ is precisely the condition for \mathbf{A} to be rigid.

The second sum has $|\operatorname{Aut}(\mathbf{A})| = 2$ which means $\operatorname{Aut}(\mathbf{A})$ consists of a transposition σ and the identity map. The collection of $\mathbf{A} \in \mathsf{M}_n$ with $|\operatorname{Aut}(\mathbf{A})| = 2$ is contained in the union of the $\mathsf{M}_n(\sigma)$ where σ ranges over the transpositions. There are $\binom{n}{2}$ transpositions σ in Sym_n , and for each transposition σ we have $|\mathsf{M}_n(\sigma)| \leq n^{n(n-1)}$.

For the third sum note that it is at most n! times the number of $\mathbf{A} \in \mathsf{M}_n$ which have $|\mathsf{Aut}(\mathbf{A})| > 2$. This collection of \mathbf{A} is contained in the union of the $\mathsf{M}_n(\sigma)$ where the σ in Sym_n range over elements that are not the identity or a transposition. For each such σ we have $|\mathsf{M}_n(\sigma)| \leq n^{n(n-2)}$. The number of such σ is clearly at most n!, thus the number of $\mathbf{A} \in \mathsf{M}_n$ which have $|\mathsf{Aut}(\mathbf{A})| > 2$ is at most $n! \cdot n^{n(n-2)}$. Combining this with the first line of this paragraph gives the desired estimate for the third sum. \square

Theorem 1.1.

$$\lim_{n \to \infty} \frac{|\mathsf{R}_n|}{|\mathsf{M}_n|} = 1$$

and

$$\lim_{n\to\infty} \frac{1}{|\mathsf{M}_n|} \sum_{\mathbf{A}\in\mathsf{M}_n} |\mathsf{Aut}(\mathbf{A})| = 1.$$

Proof. Dividing the statement in Lemma 1.2 by $|M_n|$ which is n^{n^2} gives

$$1 \leqslant \frac{1}{|\mathsf{M}_n|} \sum_{\mathbf{A} \in \mathsf{M}_n} |\mathsf{Aut}(\mathbf{A})| \leqslant \frac{|\mathsf{R}_n|}{|\mathsf{M}_n|} + 2\binom{n}{2} n^{-n} + (n!)^2 \cdot n^{-2n}.$$

The last two terms on the right go to 0 as $n \to \infty$, and $\frac{|R_n|}{|M_n|} \le 1$.

The first assertion in the Theorem can be read as almost all finite magmas are rigid. (In 1975 Murskii proved a stronger result, that almost all magmas are idemprimal, but that is not needed for this note.)

- 2. The asymptotics for counting magmas up to isomorphism Four more definitions:
 - $E_n = \frac{1}{|\mathsf{M}_n|} \sum_{\mathbf{A} \in \mathsf{M}_n} |\mathsf{Aut}(\mathbf{A})|$. [Note: $E_n \to 1$ by Theorem 1.1]
 - Given $\mathbf{A} = (\mathsf{I}_n, \diamond)$ in M_n and $\sigma \in \mathsf{Sym}_n$ let \mathbf{A}_σ be the magma $(\mathsf{I}_n, \diamond_\sigma)$ where \diamond_{σ} is defined by

$$i \diamond_{\sigma} j = \sigma(\sigma^{-1}(i) \diamond \sigma^{-1}(j)).$$

- Given $\mathbf{A} \in \mathsf{M}_n$ let $\widehat{\mathbf{A}}$ be the set of $\mathbf{B} \in \mathsf{M}_n$ that are isomorphic to \mathbf{A} .
- For $P_n \subseteq M_n$ let \hat{P}_n be the set of \hat{A} for $A \in P_n$.

The goal of this section is first to prove that for $P_n \subseteq M_n$ and P_n closed under isomorphism, $\lim \frac{|\mathsf{P}_n|}{|\mathsf{M}_n|}$ exists iff $\lim \frac{|\mathsf{P}_n|}{|\widehat{\mathsf{M}}_n|}$ exists, and if so then both limits are equal. Then, with P_n being R_n , Theorem 1.1 quickly proves that $|\widehat{\mathsf{M}}_n|$ is asymptotic to $|\mathsf{M}_n|/n!$, that is to $n^{n^2}/n!$ But first some basic facts.

Lemma 2.1. For $A \in M_n$

$$(1) \hat{\mathbf{A}} = \{\mathbf{A}_{\sigma} : \sigma \in \mathsf{Sym}_n\}$$

(1)
$$\hat{\mathbf{A}} = \{\mathbf{A}_{\sigma} : \sigma \in \mathsf{Sym}_n\}$$

(2) $|\hat{\mathbf{A}}| = \frac{n!}{|\mathsf{Aut}(\mathbf{A})|}$

- (3) $|\widehat{\mathbf{A}}| \leq n!$, with equality iff $\mathbf{A} \in \mathbb{R}_n$
- $(4) |P_n| \leq n! \cdot |\widehat{P}_n| \text{ for } P_n \subseteq M_n$
- $(5) |\mathsf{R}_n| = n! \cdot |\widehat{\mathsf{R}}_n|$
- (6) $\sum_{\mathbf{A} \in \mathsf{M}_n} |\mathsf{Aut}(\mathbf{A})| = n! \cdot |\widehat{\mathsf{M}}_n|$

Proof.

For (1): \mathbf{A}_{σ} is \mathbf{A} when σ is the identity map, and for all $\sigma \in \mathsf{Sym}_n$ we have σ being an isomorphism from **A** to \mathbf{A}_{σ} .

If σ is an isomorphism from **A** to **B** \in M_n then **B** = A_{σ} . Thus **A** is the set of all \mathbf{A}_{σ} , $\sigma \in \mathsf{Sym}_n$.

For (2): The A_{σ} may not all be distinct magmas, indeed it is routine to show that $\mathbf{A}_{\sigma} = \mathbf{A}_{\tau}$ iff $\sigma^{-1}\tau \in \mathsf{Aut}(\mathbf{A})$ for $\sigma, \tau \in \mathsf{Sym}_n$.

Thus $|\hat{\mathbf{A}}|$, the number of distinct \mathbf{A}_{σ} , equals the number of cosets of $Aut(\mathbf{A})$ in the group Sym_n , which is $n!/|Aut(\mathbf{A})|$.

For (3): Immediate from (1).

For (4): $P_n \subseteq \bigcup_{\widehat{\mathbf{A}} \in \widehat{\mathsf{P}}_n} \widehat{\mathbf{A}} \text{ and } |\widehat{\mathbf{A}}| \leq n! \text{ for } \mathbf{A} \in \mathsf{M}_n \text{ gives}$ $|\mathsf{P}_n| \leq \sum_{\widehat{\mathbf{A}} \in \widehat{\mathsf{P}}_n} |\widehat{\mathbf{A}}| \leq n! \cdot |\widehat{\mathsf{P}}_n|$

For (5): $R_n = \bigcup_{\widehat{\mathbf{A}} \in \widehat{\mathsf{R}}_n} \widehat{\mathbf{A}}$, a disjoint union, and $|\widehat{\mathbf{A}}| = n!$ for $\mathbf{A} \in \mathsf{R}_n$ gives $|\mathsf{R}_n| = \sum_{\widehat{\mathbf{A}} \in \widehat{\mathsf{R}}} |\widehat{\mathbf{A}}| = n! \cdot |\widehat{\mathsf{R}}_n|$

For (6): Note that

$$\begin{split} \sum_{\mathbf{A} \in \mathsf{M}_n} |\mathsf{Aut}(\mathbf{A})| &= \sum_{\widehat{\mathbf{A}} \in \widehat{\mathsf{M}}_n} \sum_{\mathbf{B} \in \widehat{\mathbf{A}}} |\mathsf{Aut}(\mathbf{B})| \\ &= \sum_{\widehat{\mathbf{A}} \in \widehat{\mathsf{M}}_n} |\widehat{\mathbf{A}}| \cdot |\mathsf{Aut}(\mathbf{A})| \\ &= \sum_{\widehat{\mathbf{A}} \in \widehat{\mathsf{M}}_n} \frac{n!}{|\mathsf{Aut}(\mathbf{A})|} |\mathsf{Aut}(\mathbf{A})| \\ &= n! \cdot |\widehat{\mathsf{M}}_n| \end{split}$$

Lemma 2.2. For $P_n \subseteq M_n$ with P_n closed under isomorphism

(1)
$$\frac{|\widehat{\mathsf{P}}_n|}{|\widehat{\mathsf{M}}_n|} \geqslant \frac{1}{E_n} \frac{|\mathsf{P}_n|}{|\mathsf{M}_n|}$$

(2)
$$1 - \frac{|\widehat{\mathsf{P}}_n|}{|\widehat{\mathsf{M}}_n|} \geqslant \frac{1}{E_n} \left(1 - \frac{|\mathsf{P}_n|}{|\mathsf{M}_n|}\right)$$

 $(3) \qquad \lim_{n\to\infty}\frac{|\mathsf{P}_n|}{|\mathsf{M}_n|} \text{ exists iff } \lim_{n\to\infty}\frac{|\widehat{\mathsf{P}}_n|}{|\widehat{\mathsf{M}}_n|} \text{ exists. If so, they are equal.}$

Proof.

For (1): Since

$$n! \cdot |\widehat{\mathsf{P}}_n| \geqslant |\mathsf{P}_n| \quad \text{ and } \quad n! \cdot |\widehat{\mathsf{M}}_n| \ = \ \sum_{\mathbf{A} \in \mathsf{M}_n} |\mathsf{Aut}(\mathbf{A})|$$

we have

$$\frac{|\widehat{\mathsf{P}}_n|}{|\widehat{\mathsf{M}}_n|} \ \geqslant \ \frac{|\mathsf{P}_n|}{\sum_{\mathbf{A} \in \mathsf{M}_n} |\mathsf{Aut}(\mathbf{A})|} \ = \ \frac{|\mathsf{P}_n|}{|\mathsf{M}_n|} \cdot \frac{|\mathsf{M}_n|}{\sum_{\mathbf{A} \in \mathsf{M}_n} |\mathsf{Aut}(\mathbf{A})|} \ = \ \frac{1}{E_n} \cdot \frac{|\mathsf{P}_n|}{|\mathsf{M}_n|}.$$

For (2): Replace P_n by $M_n \backslash P_n$ in the previous steps for proving (1).

Then
$$\widehat{\mathsf{M}_n\backslash\mathsf{P}_n}=\widehat{\mathsf{M}}_n\backslash\widehat{\mathsf{P}}_n$$
 gives $|\widehat{\mathsf{M}_n\backslash\mathsf{P}_n}|=|\widehat{\mathsf{M}}_n|-|\widehat{\mathsf{P}}_n|$, and thus
$$1-\frac{|\widehat{\mathsf{P}}_n|}{|\widehat{\mathsf{M}}_n|}\geqslant \frac{1}{E_n}\cdot \big(1-\frac{|\mathsf{P}_n|}{|\mathsf{M}_n|}\big).$$

For (3): Combining (1) and (2) gives

$$\frac{1}{E_n} \cdot \frac{|\mathsf{P}_n|}{|\mathsf{M}_n|} \; \leqslant \; \frac{|\widehat{\mathsf{P}}_n|}{|\widehat{\mathsf{M}}_n|} \; \leqslant \; 1 - \frac{1}{E_n} \cdot \big(1 - \frac{|\mathsf{P}_n|}{|\mathsf{M}_n|}\big).$$

Since
$$E_n \to 1$$
, if $\frac{|\mathsf{P}_n|}{|\mathsf{M}_n|} \to \lambda$ then $\frac{|\widehat{\mathsf{P}}_n|}{|\widehat{\mathsf{M}}_n|} \to \lambda$.

Combining (1) and (2) in a different way gives

$$1 - E_n \cdot \left(1 - \frac{|\widehat{\mathsf{P}}_n|}{|\widehat{\mathsf{M}}_n|}\right) \leqslant \frac{|\mathsf{P}_n|}{|\mathsf{M}_n|} \leqslant E_n \cdot \frac{|\widehat{\mathsf{P}}_n|}{|\widehat{\mathsf{M}}_n|}.$$

Again since
$$E_n \to 1$$
, if $\frac{|\hat{\mathsf{P}}_n|}{|\hat{\mathsf{M}}_n|} \to \lambda$ then $\frac{|\mathsf{P}_n|}{|\mathsf{M}_n|} \to \lambda$.

Theorem 2.1. $|\widehat{\mathsf{M}}_n|$ is asymptotic to $\frac{|\mathsf{M}_n|}{n!}$, that is to $\frac{n^{n^2}}{n!}$.

Proof. Since

$$\frac{|\mathsf{R}_n|}{|\mathsf{M}_n|} \to 1, \ \ \text{and therefore} \quad \frac{|\widehat{\mathsf{R}}_n|}{|\widehat{\mathsf{M}}_n|} \to 1,$$

it follows that

$$\frac{|\mathsf{R}_n|}{|\mathsf{M}_n|} \cdot \frac{|\widehat{\mathsf{M}}_n|}{|\widehat{\mathsf{R}}_n|} \to 1.$$

This gives

$$\frac{|\widehat{\mathsf{M}}_n|}{|\mathsf{M}_n|} \cdot \frac{|\mathsf{R}_n|}{|\widehat{\mathsf{R}}_n|} \to 1, \text{ hence } |\widehat{\mathsf{M}}_n| \cdot \frac{n!}{|\mathsf{M}_n|} \to 1.$$