01204211 Discrete Mathematics Lecture 9b: Affine Spaces

Jittat Fakcharoenphol

August 31, 2022

Review: Linear combinations

Definition

For any scalars

$$\alpha_1, \alpha_2, \ldots, \alpha_m$$

and vectors

$$\boldsymbol{u}_1, \boldsymbol{u}_2, \ldots, \boldsymbol{u}_m,$$

we say that

$$\alpha_1 \boldsymbol{u}_1 + \alpha_2 \boldsymbol{u}_2 + \cdots + \alpha_m \boldsymbol{u}_m$$

is a linear combination of u_1, \ldots, u_m .

Review: Span

Definition

A set of all linear combination of vectors u_1, u_2, \dots, u_m is called the **span** of that set of vectors.

It is denoted by $\mathrm{Span}\{\boldsymbol{u}_1,\boldsymbol{u}_2,\ldots,\boldsymbol{u}_m\}.$

Review: Vector spaces

Definition

A set $\mathcal V$ of vectors over $\mathbb F$ is a **vector space** iff

- ightharpoonup (V1) $\mathbf{0} \in \mathcal{V}$,
- ightharpoonup (V2) for any $u\in\mathcal{V}$,

$$\alpha \cdot \boldsymbol{u} \in \mathcal{V}$$

for any $\alpha \in \mathbb{F}$, and

ightharpoonup (V3) for any $oldsymbol{u},oldsymbol{v}\in\mathcal{V}$,

$$u + v \in \mathcal{V}$$
.

Examples of vector spaces:

- A span of vectors is a vector space.
- A solution set to homogeneous linear equations is a vector space.

If we have a line or a plane passing through a vector a, but not through the origin, how can we represent it?

► Translate the object so that it passes through the origin.

- Translate the object so that it passes through the origin.
- ightharpoonup We obtain a vector space $\mathcal V$.

- Translate the object so that it passes through the origin.
- ightharpoonup We obtain a vector space \mathcal{V} .
- ▶ Then we translate it back so that it passes through a.

- Translate the object so that it passes through the origin.
- ightharpoonup We obtain a vector space \mathcal{V} .
- ightharpoonup Then we translate it back so that it passes through a.
- We get the set

$$A = a + u : u \in V$$

If we have a line or a plane passing through a vector \boldsymbol{a} , but not through the origin, how can we represent it?

- Translate the object so that it passes through the origin.
- ightharpoonup We obtain a vector space \mathcal{V} .
- ightharpoonup Then we translate it back so that it passes through a.
- We get the set

$$\mathcal{A} = \{ \boldsymbol{a} + \boldsymbol{u} : \boldsymbol{u} \in \mathcal{V} \}$$

▶ Question: Is A a vector space?

- ► Translate the object so that it passes through the origin.
- ightharpoonup We obtain a vector space \mathcal{V} .
- ightharpoonup Then we translate it back so that it passes through a.
- We get the set

$$\mathcal{A} = \{\boldsymbol{a} + \boldsymbol{u} : \boldsymbol{u} \in \mathcal{V}\}$$

- ► Question: Is A a vector space?
- ightharpoonup We also write it as a + V.

Affine spaces

Definition

If a is a vector and $\mathcal V$ is a vector space, then

$$a + V$$

is an affine space.

An affine space and convex combination: 2 dimensions

An affine space and convex combination: 3 dimensions

Affine combination

Definition

For any scalars $\alpha_1, \alpha_2, \ldots, \alpha_m$ such that

$$\alpha_1 + \alpha_2 + \ldots + \alpha_m = 1$$

and vectors $oldsymbol{u}_1, oldsymbol{u}_2, \dots, oldsymbol{u}_m$, we say that a linear combination

$$\alpha_1 \boldsymbol{u}_1 + \alpha_2 \boldsymbol{u}_2 + \dots + \alpha_m \boldsymbol{u}_m$$

is an **affine combination** of u_1, \ldots, u_m .

Affine combination

Definition

For any scalars $\alpha_1, \alpha_2, \ldots, \alpha_m$ such that

$$\alpha_1 + \alpha_2 + \ldots + \alpha_m = 1$$

and vectors $oldsymbol{u}_1, oldsymbol{u}_2, \dots, oldsymbol{u}_m$, we say that a linear combination

$$\alpha_1 \boldsymbol{u}_1 + \alpha_2 \boldsymbol{u}_2 + \dots + \alpha_m \boldsymbol{u}_m$$

is an **affine combination** of u_1, \ldots, u_m .

Definition

The set of all affine combinations of vectors u_1, u_2, \ldots, u_m is called the affine hull of u_1, u_2, \ldots, u_m .

Convex combination: review

Definition

For any scalars $\alpha_1, \alpha_2, \dots, \alpha_m \geq 0$ such that

$$\alpha_1 + \alpha_2 + \ldots + \alpha_m = 1$$

and vectors $oldsymbol{u}_1, oldsymbol{u}_2, \dots, oldsymbol{u}_m$, we say that a linear combination

$$\alpha_1 \boldsymbol{u}_1 + \alpha_2 \boldsymbol{u}_2 + \dots + \alpha_m \boldsymbol{u}_m$$

is a **convex combination** of u_1, \ldots, u_m .

Definition

The set of all convex combinations of vectors u_1, u_2, \dots, u_m is called the **convex hull** of u_1, u_2, \dots, u_m .

Writing an affine space using a span

Writing an affine space using a span

An affine space

An affine space passing through $oldsymbol{u}_1, oldsymbol{u}_2, \dots, oldsymbol{u}_n$ is

$$(u_1)$$
+ Span $\{u_2 - u_1, u_3 - u_1, \dots, u_n - u_1\}.$

$$= \begin{bmatrix} 1 - \alpha_2 - \alpha_3 + \dots - \alpha_n \end{bmatrix} u_1 + \alpha_2 u_2 + \alpha_3 u_3 + \dots + \alpha_n u_n$$

$$= \begin{bmatrix} 1 - \alpha_2 - \alpha_3 + \dots - \alpha_n \end{bmatrix} u_1 + \alpha_2 u_2 + \alpha_3 u_3 + \dots + \alpha_n u_n$$

Non-homogeneous linear system $\chi = [x_1, x_2, y_3, \dots, x_n]$

Two linear systems:

What can you say about the solution sets of these two related linear systems?

$$Q_{11} \times_{1} + Q_{12} \times + - \cdots + Q_{1n} \times_{n} = b_{1}$$

 $Q_{11} \times_{1} + Q_{12} \cdot \times_{2} + \cdots + Q_{1n} \cdot \times_{n} = b_{1}$
 $Q_{11} \times_{1} + Q_{12} \cdot \times_{2} + \cdots + Q_{1n} \cdot \times_{n} = b_{1}$
 $Q_{12} \times_{n} = b_{1}$

Non-homogeneous linear system

geneous linear system

$$u_1 \otimes u_2 = b_1 \otimes b_1 \otimes b_2 \otimes b_2 \otimes b_1 \otimes b_2 \otimes$$

Two linear systems:

$$\mathbf{a_1} \cdot \mathbf{x} = b_1$$
 $\mathbf{a_1} \cdot \mathbf{x} = 0$
 $\mathbf{a_2} \cdot \mathbf{x} = b_2$ $\mathbf{a_2} \cdot \mathbf{x} = 0$
 \vdots \vdots \vdots \vdots $\mathbf{a_m} \cdot \mathbf{x} = b_m$ $\mathbf{a_m} \cdot \mathbf{x} = 0$

What can you say about the solution sets of these two related linear systems?

0 is always a solution to the linear system on the right.

Note: A linear equation whose right-hand-side is zero is called a homogeneous linear equation. A system of linear homogeneous equations is called a **homogeneous linear system**.

Solutions of the two systems

Recall that if \underline{u}_1 and \underline{u}_2 are both solutions to the non-homogeneous linear system, we have that for any i

$$a_i u_1 - a_i u_2 = b_i - b_i \neq 0 \neq \underline{a_i(u_1 - u_2)}.$$

Solutions of the two systems

Recall that if ${m u}_1$ and ${m u}_2$ are both solutions to the non-homogeneous linear system, we have that for any i

$$a_i u_1 - a_i u_2 = b_i - b_i = 0 = a_i (u_1 - u_2).$$

This implies that $\underline{u_1-u_2}$ is a solution to the homogeneous linear system.

Suppose that ${\mathcal W}$ is the set of all solution to the non-homogeneous linear system, i.e.,

$$\mathcal{W} \neq \{ \boldsymbol{x} : \boldsymbol{a}_i \boldsymbol{x} = b_i, \text{ for } 1 \leq i \leq m \},$$

and let $u \in \mathcal{W}$ be one of the solutions, we have that

$$\{\boldsymbol{v}-\boldsymbol{u}:\boldsymbol{v}\in\mathcal{W}\}$$

Suppose that $\ensuremath{\mathcal{W}}$ is the set of all solution to the non-homogeneous linear system, i.e.,

$$\mathcal{W} = \{ \boldsymbol{x} : \boldsymbol{a}_i \boldsymbol{x} = b_i, \text{ for } 1 \leq i \leq m \},$$

and let $u \in \mathcal{W}$ be one of the solutions, we have that

$$\{v - u : v \in \mathcal{W}\}$$

is a vector space, because

Suppose that \mathcal{W} is the set of all solution to the non-homogeneous linear system, i.e.,

$$\mathcal{W} = \{ \boldsymbol{x} : \boldsymbol{a}_i \boldsymbol{x} = b_i, \text{ for } 1 \leq i \leq m \},$$

and let $u \in \mathcal{W}$ be one of the solutions, we have that

$$\{ \boldsymbol{v} - \boldsymbol{u} : \boldsymbol{v} \in \mathcal{W} \}$$

is a vector space, because
$$\{\pmb{v}-\pmb{u}:\pmb{v}\in\mathcal{W}\}=\{\pmb{x}:\underline{\pmb{a}_i\pmb{x}}=0, \text{ for } 1\leq i\leq m\}$$

Suppose that $\ensuremath{\mathcal{W}}$ is the set of all solution to the non-homogeneous linear system, i.e.,

$$\mathcal{W} = \{ \boldsymbol{x} : \boldsymbol{a}_i \boldsymbol{x} = b_i, \text{ for } 1 \leq i \leq m \},$$

and let $u \in \mathcal{W}$ be one of the solutions, we have that

$$\{v - u : v \in \mathcal{W}\}$$

is a vector space, because

$$\{\boldsymbol{v} - \boldsymbol{u} : \boldsymbol{v} \in \mathcal{W}\} = \{\boldsymbol{x} : \boldsymbol{a}_i \boldsymbol{x} = 0, \text{ for } 1 \leq i \leq m\}$$

In other words,

$$\mathcal{W} = \mathbf{u} + \{\mathbf{v} - \mathbf{u} : \mathbf{v} \in \mathcal{W}\}$$

$$= \mathbf{u} + \{\mathbf{x} : \mathbf{a}_i \mathbf{x} = 0, \text{ for } 1 \le i \le m\},$$

Suppose that $\ensuremath{\mathcal{W}}$ is the set of all solution to the non-homogeneous linear system, i.e.,

$$\mathcal{W} = \{ \boldsymbol{x} : \boldsymbol{a}_i \boldsymbol{x} = b_i, \text{ for } 1 \leq i \leq m \},$$

and let $u \in \mathcal{W}$ be one of the solutions, we have that

$$\{v - u : v \in \mathcal{W}\}$$

is a vector space, because

$$\{v - u : v \in W\} = \{x : a_i x = 0, \text{ for } 1 \le i \le m\}$$

In other words,

$$\mathcal{W} = \mathbf{u} + \{\mathbf{v} - \mathbf{u} : \mathbf{v} \in \mathcal{W}\}$$

= $\mathbf{u} + \{\mathbf{x} : \mathbf{a}_i \mathbf{x} = 0, \text{ for } 1 \le i \le m\},$

i.e., ${\cal W}$ is an affine space.

Solutions to a non-homogeneous linear system

Lemma 1

If the solution set of a linear system is not empty, it is an affine space.