Partiel: Circuits Électriques en Régime sinusoïdal

I / Généralités

- 1. Définition
 - a) amplitude
 - b) pulsation
 - c) phase à l'origine
- 2. valeur moyenne
- 3. valeur efficace
- 4. représentation de Fresnel
- 5. complexe associé

II / Etude des circuits linéaires

- 1. fréquence
- 2. lois fondamentales
- 3. déphasage

III / Les dipôles passifs linéaires

- 1. définition
- 2. loi d'Ohm pour les dipôles élémentaires
 - a) résistance
 - b) bobine parfaite
 - c) capacité parfaite
- 3. impédances et admittances
- 4. associations de dipôles linéaires
 - a) série
 - b) parallèle

I / Généralités

- La grande majorité de l'énergie électrique est produite sous forme alternative.
- Les grandeurs périodiques sont la somme de grandeurs sinusoïdales (Fourier, décomposition harmonique)

1. Définition

• Une grandeur alternative sinusoïdale est une grandeur périodique dont la valeur instantanée est une fonction sinusoïdale du temps.

```
• u(t)=\hat{u}.\sin(\omega t + \phi_u) où t est la variable temps (en s) \hat{u} \text{ est l'amplitude de } u \text{ (en V)} \omega \text{ est la pulsation (en rad.s}^{-1}) \phi_u \text{ est la phase à l'origine des temps (en rad)} \theta=\omega t + \phi_u \text{ est la phase de } u à l'instant t (en rad)
```

a) <u>amplitude</u>

- Par définition, le sinus varie entre –1 et 1 ; donc u varie entre -û et û.
- L'amplitude d'une grandeur sinusoïdale est sa <u>valeur maximale</u>, appelée aussi, <u>valeur crête</u> : c'est û.

b) pulsation

- ω en radian par seconde : rad.s⁻¹ (car ω t est en radian)
- on montre que $\omega T=2\pi$ où T est la période du signal (en s)

```
or T=1/f donc \omega=2\pi/T=2\pi f T en s ; f en Hz ; \omega en rad.s<sup>-1</sup>
```

c) phase à l'origine

- A chaque instant t correspond un angle (car ω t en rad), on l'appelle phase θ .
- ϕ_u est la phase de u(t) quand t=0s.
- Choix arbitraire donc φ dépend de l'observateur (contrairement à l'amplitude, pulsation, fréquence ... qui sont intrinsèques au signal).

Avec le choix $1 : \varphi = 0$; $u = \hat{u}.\sin\omega t$

Avec le choix 1 : $\varphi = 0$; $u = \hat{u}.\sin(\omega t + \pi/2)$

Avec le choix 1 : $\varphi = 0$; $u = \hat{u}.\sin\omega t(\omega t + \pi)$

Remarque : $\sin(\omega t + \pi/2) = \cos\omega t$ donc une grandeur sinusoïdale s'exprime aussi bien en cos

2. <u>valeur moyenne</u>

• la valeur moyenne d'une grandeur sinusoïdale est nulle puisqu'elle est alternative.

3. Valeur efficace

On démontre que la valeur efficace U peut s'exprimer en fonction de l'amplitude û :

$$U = \sqrt{u^2} = \frac{\hat{u}}{\sqrt{2}}$$

$$U = \frac{\hat{u}}{\sqrt{2}}$$

D'où
$$u^2=\hat{u}^2 \cdot \left[\frac{1}{2} - \frac{\cos 2(\omega t + \varphi)}{2}\right]$$

Donc
$$u^2 = \frac{\hat{u}^2}{2} - \frac{\hat{u}^2}{2} \cos 2(\omega t + \varphi)$$

Donc
$$u^2 = \frac{\hat{u}^2}{2} - 0$$

Donc
$$u = \sqrt{\frac{\hat{\mathbf{u}}^2}{2}} = \frac{\hat{u}}{\sqrt{2}}$$

4. Représentation de Fresnel

$$u(t) = U\sqrt{2} \sin(\omega t + \varphi)$$

- une grandeur sinusoïdale est caractérisée par son amplitude (= valeur efficace \times $\sqrt{2}$) et sa phase θ = ωt + ϕ
- on associe donc à cette tension un vecteur tournant à ω et on le représente à l'instant t=0s.
- on a : norme du vecteur \leftrightarrow valeur efficace angle entre vecteur et $\overrightarrow{OX} \leftrightarrow$ phase à l'origine ϕ

Exercice

1 Représenter par leur vecteur de Fresnel ces deux tensions :

$$u_1(t) = 2\sqrt{2} \sin(\omega t + \pi/4)$$

 $u_2(t) = 3\sqrt{2} \sin(\omega t - \pi/6)$

2 Représenter les courants :

$$i_1(t) = 3\sqrt{2} \sin(\omega t + \pi/2)$$

$$i_2(t) = \sqrt{2} \sin(\omega t)$$

3 D'après leurs vecteurs de Fresnel, donner l'expression de ces deux tensions:

$$u_3(t) = 3\sqrt{2} \sin(\omega t - \pi/4)$$

 $u_4(t) = 2\sqrt{2} \sin(\omega t + \pi/4)$

5. Complexe associé

- → le vecteur de Fresnel est un outil intéressant mais il conduit à des diagrammes vectoriels et donc à une résolution graphique des problèmes
- → on utilise donc un autre outil pour étudier un circuit en régime sinusoïdal
 - A une grandeur sinusoïdale u, on associe une grandeur complexe <u>U</u>
 - On a

 $\begin{array}{ccc} \text{module } U \text{ de } \underline{U} & \leftrightarrow & \text{valeur efficace } U \text{ de } u(t) \\ \text{argument } \phi_u \text{ de } U & \leftrightarrow & \text{phase à l'origine } \phi_u \text{ de } u(t) \end{array}$

$$u = U\sqrt{2} \sin(\omega t + \phi_u) \leftrightarrow U (U; \phi_u) = U\cos\phi_u + j.U\sin\phi_u$$

• Rappels complexes

$$\underline{U} = (\ U\ ;\ \phi_u\) = U cos \phi_u + j. U sin \phi_u = a + j. b \qquad \text{avec} \left\{ \begin{array}{l} U = \sqrt{a^2 + b^2} \\ \\ \phi = arctan\ b/a \end{array} \right.$$

Exercice d'application

1 Donner l'écriture complexe de ces deux tensions

$$\begin{array}{c} u_1(t) = 2\sqrt{2} \sin(\omega t + \pi/4) \\ u_2(t) = 3\sqrt{2} \sin(\omega t - \pi/6) \end{array}$$

$$\underline{U_1} = [2;\pi/4] = 2\cos\pi/4 + 2j\sin\pi/4 = \sqrt{2} + \sqrt{2}j$$

$$\underline{U_2} = [3;-\pi/6] = 3\cos\pi/6 + 3j\sin\pi/6 = 3\sqrt{3}/2 - 3/2j$$

$$= 2,6 - 1,5 j$$

2 De même pour ces courants :
$$\underline{I_1} = [\ 3\ ; \ \pi/2\] = 3j$$

$$i_1(t) = 3\sqrt{2} \sin(\ \omega t + \pi/2\)$$

$$i_2(t) = \sqrt{2} \sin(\ \omega t\)$$

$$\underline{I_2} = [\ 1\ ;0\] = 1$$

3 D'après leurs formes complexes, donner l'expression de ces deux tensions:

II / Etude des circuits linéaires

1. fréquence

• Quand un circuit ne comporte que <u>des éléments linéaires</u> et est <u>alimenté par une tension</u> <u>sinusoïdale u de fréquence f</u>, tous les courants et toutes les tensions de ce circuit ont la même <u>fréquence</u>.

• On peut alors utiliser la représentation de Fresnel puisque tous les vecteurs tournent à la même vitesse ω. On peut également utiliser la représentation complexe.

2. Lois fondamentales

- Comme en continu, les lois des nœuds, des mailles et d'Ohm s'appliquent <u>aux valeurs</u> instantanées, aux <u>complexes</u>, et aux <u>vecteurs de Fresnel</u>.
- Exercices d'application

- 1° Déterminer l'expression de $i_1(t)$ sachant que $i_2=0.05\sqrt{2}\sin 628t$ et $i_3=0.03\sqrt{2}\sin (628t+\pi/3)$
- 2° Déterminer u(t) sachant que $u_1=3\sin(628t+0.5)$ et $u_2=4\sin(628t-1.2)$

```
1° \underline{I}_2 = (0,05;0) = 0,05 et \underline{I}_3 = (0,03;\pi/3) = 0.015 + 0.025j

donc \underline{I}_1 = \underline{I}_2 + \underline{I}_3

= 0,065 + 0.025j

= (0,07;0,38) \rightarrow i_1 = 0,07\sqrt{2}\sin(628t + 0,4)

2° U = U_1 + U_2 = (3/\sqrt{2};0,5) + (4/\sqrt{2};-1,2) = 2.9 - 1.6j = (3.3;0,51)
```

3. déphasage

a)

Lorsqu'on observe à l'oscilloscope deux tensions sur un même circuit, on constate qu'elles sont décalées : on dit qu'il existe <u>une différence de phase</u> ou <u>déphasage</u>.

2 tensions de même fréquence

$$u_1 = U_1 \sqrt{2.\sin(\omega t + \varphi_1)}$$

$$u_2\!=U_2\sqrt{2.sin(\omega t\!+\!\phi_2)}$$

on peut les représenter par leurs vecteurs de Fresnel

$$\varphi = \varphi_2 - \varphi_1$$
 déphasage de u_2 par rapport à u_1 . $\varphi = (U_1; U_2)$

b) avance ou retard

on a un courant et une tension de pulsation $\boldsymbol{\omega}$

$$u(t) = U\sqrt{2} \sin(\omega t + \varphi_u)$$

$$i(t) = I\sqrt{2} \sin(\omega t + \varphi_i)$$

donc , le déphasage de u par rapport à i est l'angle ($\overrightarrow{1},\overrightarrow{U}$) : $\phi=\phi_u$ - ϕ_i

 $si \; \phi_u \! > \! \phi_i \; \; alors \; \phi \! > \! 0 \; \; et \quad u \; est \; en \; avance \; sur \; i$

 $si \phi_u < \phi_i alors \phi < 0$ et u est en retard sur i

• cas particuliers:

 $\varphi_{u2/u1} = \varphi_2 - \varphi_1 = 0 \text{ rad}$

 $\phi_{u2/u1}=\phi_2\text{-}\phi_1=\pi \ rad$

 $\phi_{u2/u1}=\phi_2\text{-}\phi_1=\pi/2$ rad

 $\phi_{u2/u1}=\phi_2\text{-}\phi_1=\text{-}\pi/2$ rad

u₁ et u₂ sont en phase

u₁ et u₂ sont en opposition de phase

 u_1 est en quadrature retard par rapport à u_2 .

 u_1 est en quadrature avance par rapport à u_2 .

AP7&AP8&AP9

10

III / Les dipôles passifs linéaires

1. <u>Définition</u>

- Un dipôle est linéaire si sa caractéristique courant / tension est une droite.
- Un dipôle est passif si sa caractéristique courant / tension passe par l'origine.

2. Loi d'Ohm pour les dipôles élémentaires

a) Résistance

on a : $\underline{\mathbf{U}}_{\mathbf{R}} = \underline{\mathbf{Z}}_{\mathbf{R}} \times \underline{\mathbf{I}}_{\mathbf{R}}$

où $\underline{Z}_{\underline{R}}$ est l'impédance de R

on a $\underline{Z_R} = R = [R; 0]$ <u>la résistance n'introduit aucun déphasage entre u et i.</u>

 $donc~U_R = R \times I_R ~~et~~ \phi_{uR} = \phi_{iR}$

En Fresnel:

b) bobine parfaite

on a :
$$\underline{\mathbf{U}}_{\mathbf{L}} = \underline{\mathbf{Z}}_{\mathbf{L}} \times \underline{\mathbf{I}}_{\mathbf{L}}$$

où
$$\underline{Z_L} = jL\omega = [jL\omega; \pi/2]$$

la bobine introduit un déphasage $\pi/2$ radentre u et i.

donc
$$u_L = L\omega \times I_L$$
 et ϕ_{uL} - $\phi_{iL} = \pi/2$

En Fresnel:

c) capacité parfaite

on a :
$$\underline{\mathbf{U}}_{\underline{\mathbf{C}}} = \underline{\mathbf{Z}}_{\underline{\mathbf{C}}} \times \underline{\mathbf{I}}_{\underline{\mathbf{C}}}$$

où
$$\underline{Z_C} = 1 / jC\omega = [1/jC\omega; -\pi/2]$$

<u>la bobine introduit un déphasage $-\pi/2$ radentre u et i.</u>

donc
$$u_C = 1/C\omega \times I_C$$
 et ϕ_{uC} - $\phi_{iC} = -\pi/2$

3. <u>Impédances et admittances</u>

L'impédance d'un complexe se définit par :

$$\underline{Z} = \frac{\underline{U}}{\underline{I}} = [\ \underline{U} \ ; \ \phi_u \ \text{-} \ \phi_i \] = [\ |\underline{Z}| \ ; \ \phi \]$$

Son admittance complexe est:

$$\underline{\underline{Y}} = \underline{\underline{\underline{I}}}_{\underline{\underline{U}}} = [\ \underline{\underline{I}}_{\underline{U}} \ ; \ \phi_i - \phi_u \] = [\ |\underline{\underline{Y}}| \ ; \ - \phi \]$$

Tableau récapitulatif

	Impédance <u>Z</u>	Admittance <u>Y</u>
Résistance R	R	G
Bobine L	jLω = [Lω; π/2]	$1/\mathrm{j}\mathrm{L}\omega = [\ 1/\mathrm{L}\omega\ ;\ -\ \pi/2\]$
Condensateur C	$1/jC\omega = [1/C\omega; -\pi/2]$	$jC\omega = [C\omega; \pi/2]$

4. <u>associations de dipôles linéaires</u>

a) en série

En série, les impédances s'ajoutent.

Exercice d'application

b) en parallèle

En parallèle, les admittances s'ajoutent

IV / Les dipôles actifs linéaires

1. <u>définition</u>

la caractéristique U=f(I) (en valeur efficace) d'un dipôle actif linéaire ne passe par l'origine des axes.

2. diviseur de tension

$$\underline{U} = \frac{\underline{Z_2}}{\underline{Z_1} + \underline{Z_2}} \underline{E}$$

3. diviseur de courant

$$\underline{I_2} = \frac{\underline{Y_2}}{\underline{Y_1} + \underline{Y_2}} \times \underline{I_0}$$

4. modèle de Thévenin

a) MET:

Tout circuit linéaire est modélisable par l'association série :

- d'une source de tension idéale $\underline{E}_{th} = \underline{U}_{AB0}$
- d'une impédance \underline{Z}_{th} : impédance équivalente du circuit rendu passif

$$\underline{U} = \underline{E}_{\underline{th}} - \underline{Z}_{\underline{th}}.\underline{I}$$

b) exercice:

Déterminer le MET :

Docs Etudiant

Document 2