Computer Vision Homework 7

R08922079 資工所一 洪浩翔

Part 0

```
import cv2
import numpy as np
def readImg(filename='lena.bmp'):
    #read img
    image = cv2.imread(filename, cv2.IMREAD GRAYSCALE)
    #print('shape:', image.shape)
    #binarize
    index = np.where(image >= 128)
    binary = np.zeros(image.shape)
    binary[index] = 255
    cv2.imwrite('binary.jpg', binary)
    return image, binary
def downSample(image):
    #down sample to 64*64
    w,h = image.shape
    result = np.zeros((int(w/8), int(h/8)))
    for i in range(0, w, 8):
        for j in range(0,h,8):
            result[int(i/8), int(j/8)] = image[i,j]
    cv2.imwrite('downSample.jpg', result)
    return result
```

Pre-processing and down-sampling code fragment

<u> Part 1</u>

(a) Write a program which does thinning on a down-sampled image (lena.bmp).

Result of thinning operator

Code for Yokoi

Code for pair relation mark

Code for connective shrink operator

Code for comparing marked and shrunk images and determining whether to stop

```
def main():
    image, binary = readImg()
    down = downSample(binary)
    yokoiConn = yokoiConnect()
    pairRelat = pairRelation()
    connShrk = connectShrink()
    counter = 0
    while True:
        print(counter)
        yokoiResult = yokoiConn.yokoi(down.copy(), counter)
        markedImg = pairRelat.pair(yokoiResult, counter)
        connResult = connShrk.connShrink(down.copy(), markedImg, counter)
        result, flag = cmp(down, markedImg, connResult)
        cv2.imwrite("thinning_"+str(counter)+".jpg", result)
        counter += 1
        if flag == 1:
            down = result.copy()
            cv2.imwrite("thinning.jpg", result)
            == "__main__":
    name
    main()
```

Main function for thinning

Thinning result in each iteration