Experimental Tests of Rational Inattention

Mark Dean and Nathaniel Neligh, Journal of Political Economy, forthcoming

presented by Yonggyun (YG) Kim

October 20, 2023

Introduction

Motivation

- Economic actors often fail to use all relevant information when making choices
- Several theory to explain informational limits and choice mistakes:
 - Random Utility Model: utility is randomly drawn
 - Signal Detection Theory: people receive noisy signal
 - Rational Inattention
- Two crucial assumptions of rational inattention
 - choice is optimal conditional on the information received
 - the DM choose what information to gather in order to maximize the utility of subsequent choice, net of costs

Motivation

- Economic actors often fail to use all relevant information when making choices
- Several theory to explain informational limits and choice mistakes:
 - Random Utility Model: utility is randomly drawn
 - Signal Detection Theory: people receive noisy signal
 - Rational Inattention
- Two crucial assumptions of rational inattention
 - choice is optimal conditional on the information received
 - the DM choose what information to gather in order to maximize the utility of subsequent choice, net of costs

Motivation

- Economic actors often fail to use all relevant information when making choices
- Several theory to explain informational limits and choice mistakes:
 - Random Utility Model: utility is randomly drawn
 - Signal Detection Theory: people receive noisy signal
 - Rational Inattention
- Two crucial assumptions of rational inattention
 - choice is optimal conditional on the information received
 - the DM choose what information to gather in order to maximize the utility of subsequent choice, net of costs

Preview of the Setting

- Examine the empirical validity of the rational in attention model
- Simple information acquisition task
 - State: Number of balls on the screen
 - DM chooses an action and the payoff depends on the state and the action
 - No time limit or extrinsic cost of information
- Various Experiments
 - 1. Experiment 1.1: varies the set of available options—testing monotonicity
 - Experiment 1.2: changes the incentives for making the correct choice—testing NIAS, NIAC / ILR
 - Experiment 1.3: changes prior beliefs—testing LIF

Preview of the Setting

- Examine the empirical validity of the rational in attention model
- Simple information acquisition task
 - State: Number of balls on the screen
 - DM chooses an action and the payoff depends on the state and the action
 - · No time limit or extrinsic cost of information
- Various Experiments
 - 1. Experiment 1.1: varies the set of available options—testing monotonicity
 - Experiment 1.2: changes the incentives for making the correct choice—testing NIAS, NIAC / ILR
 - Experiment 1.3: changes prior beliefs—testing LIF

Preview of the Setting

- Examine the empirical validity of the rational in attention model
- Simple information acquisition task
 - State: Number of balls on the screen
 - DM chooses an action and the payoff depends on the state and the action
 - · No time limit or extrinsic cost of information
- Various Experiments
 - 1. Experiment 1.1: varies the set of available options—testing monotonicity
 - 2. Experiment 1.2: changes the incentives for making the correct choice—testing NIAS, NIAC / ILR
 - 3. Experiment 1.3: changes prior beliefs—testing LIP

- Adding the new alternatives to a choice set can *increase* the likelihood of existing alternatives being chosen
 - This can be explained by RI theory, but not by RUM or SDT
- No Improving Action Switches (NIAS) and No Improving Attention Cycle (NIAC) conditions hold
 - Caplin and Dean (2015) shows that subjects behavior is consistent with the general model of rational inattention iff NIAS and NIAC hold
- Inconsistent with the Invariant Likelihood Ratio (ILR) property
 - ILR property is predicted by Shannon's entropy model
- Mixed evidence in support of Locally Invariant Posteriors (LIP) condition
 - LIP condition is predicted by uniformly posterior-separable (UPS) cost functions, which is generalized version of the entropy cost
 - 5 out of 6 tests support this prediction, but a joint test that all conditions hold

- Adding the new alternatives to a choice set can *increase* the likelihood of existing alternatives being chosen
 - This can be explained by RI theory, but not by RUM or SDT
- No Improving Action Switches (NIAS) and No Improving Attention Cycle (NIAC) conditions hold
 - Caplin and Dean (2015) shows that subjects behavior is consistent with the general model of rational inattention iff NIAS and NIAC hold
- Inconsistent with the Invariant Likelihood Ratio (ILR) property
 - ILR property is predicted by Shannon's entropy model
- Mixed evidence in support of Locally Invariant Posteriors (LIP) condition
 - LIP condition is predicted by uniformly posterior-separable (UPS) cost functions, which is generalized version of the entropy cost
 - 5 out of 6 tests support this prediction, but a joint test that all conditions hold

- Adding the new alternatives to a choice set can increase the likelihood of existing alternatives being chosen
 - This can be explained by RI theory, but not by RUM or SDT
- No Improving Action Switches (NIAS) and No Improving Attention Cycle (NIAC) conditions hold
 - Caplin and Dean (2015) shows that subjects behavior is consistent with the general model of rational inattention iff NIAS and NIAC hold
- Inconsistent with the Invariant Likelihood Ratio (ILR) property
 - ILR property is predicted by Shannon's entropy model
- Mixed evidence in support of Locally Invariant Posteriors (LIP) condition
 - LIP condition is predicted by uniformly posterior-separable (UPS) cost functions, which is generalized version of the entropy cost
 - 5 out of 6 tests support this prediction, but a joint test that all conditions hold

- Adding the new alternatives to a choice set can *increase* the likelihood of existing alternatives being chosen
 - This can be explained by RI theory, but not by RUM or SDT
- No Improving Action Switches (NIAS) and No Improving Attention Cycle (NIAC) conditions hold
 - Caplin and Dean (2015) shows that subjects behavior is consistent with the general model of rational inattention iff NIAS and NIAC hold
- Inconsistent with the Invariant Likelihood Ratio (ILR) property
 - ILR property is predicted by Shannon's entropy model
- Mixed evidence in support of Locally Invariant Posteriors (LIP) condition
 - LIP condition is predicted by uniformly posterior-separable (UPS) cost functions, which is generalized version of the entropy cost
 - 5 out of 6 tests support this prediction, but a joint test that all conditions hold

Background

Theory: Set-Up and Data

Decision Problem

- Single decision maker (DM)
- Ω : the finite set of states ($\omega \in \Omega$ is a generic state)
- $\mu \in \Delta(\Omega)$: the finite set of states
- A: the set of available actions $(a \in A \text{ is a generic action})$
- $u(a,\omega)$: the DM's utility of action a in state ω
- A decision problem is defined by (μ, A) —both of which we assume can be chosen by the experimenter.

Theory: Set-Up and Data

Data

- The data observed from a particular decision problem generates a state dependent stochastic choice (SDSC) function
- $P_{(\mu,A)}$: the SDSC function associated with (μ,A)
 - $P_{(\mu,A)}(a|\omega)$: the probability that action $a \in A$ was chosen in state $\omega \in \Omega$
- SDSC function also implies a set of 'revealed posteriors' via Bayes' rule:

$$\gamma^{a}(\omega) \equiv \frac{\mu(\omega) \cdot P_{(\mu,A)}(a|\omega)}{\sum_{\nu \in \Omega} \mu(\nu) \cdot P_{(\mu,A)}(a|\nu)} \tag{1}$$

Theory: Set-Up and Data

Data

- The data observed from a particular decision problem generates a state dependent stochastic choice (SDSC) function
- $P_{(\mu,A)}$: the SDSC function associated with (μ,A)
 - $P_{(\mu,A)}(a|\omega)$: the probability that action $a \in A$ was chosen in state $\omega \in \Omega$
- SDSC function also implies a set of 'revealed posteriors' via Bayes' rule:

$$\gamma^{a}(\omega) \equiv \frac{\mu(\omega) \cdot P_{(\mu,A)}(a|\omega)}{\sum_{\nu \in \Omega} \mu(\nu) \cdot P_{(\mu,A)}(a|\nu)}$$
(1)

Theory: Rational Inattention Model

Information Structure

- DM chooses an information structure prior to choosing an action
- Assume that the subject's choice of information structure is not observed, and so has to be inferred from their choice data
- \bullet For simplicity, we consider each signal as a posterior belief $\gamma \in \Gamma$
- $\pi: \Omega \to \Delta(\Gamma)$: information structure
 - $\pi(\gamma|\omega)$: the probability of signal γ given state ω
 - $\gamma(\omega)$: the probability of state ω conditional on receiving signal γ

Theory: Rational Inattention Model

Expected Payoffs

• G: the gross payoff of using an info. structure π in a decision problem (μ, A)

$$G(\mu, A, \pi) \equiv \sum_{\gamma \in \Gamma(\pi)} \left[\sum_{\omega \in \Omega} \mu(\omega) \pi(\gamma | \omega) \right] \cdot \left[\max_{a \in A} \sum_{\omega \in \Omega} \gamma(\omega) u(a, \omega) \right]$$
(2)

- $K(\mu, \pi)$: the cost of information structure π given prior μ
- DM's objective is to maximize

$$G(\mu, A, \pi) - K(\mu, \pi) \tag{3}$$

• *G* is observable, but *K* is not

Experimental Design 1

Experimental Design: Setup

- State: 100 balls shown on a screen, some are red, some are blue
- Prior to seeing the screen, subjects are informed of the probability distribution over such states
- Having seen the screen, they choose from a number of different actions whose payoffs are state dependent

Example Question

Remember:

- . With 50% probability there will be 49 red dots
- . With 50% probability there will be 51 red dots

Please select from the following options:

	Option	Pay if there are 49 red dots	Pay if there are 51 red dots
0	A	10	0
•	В	0	10
0	С	5	5

Experiment 1.1: Testing for

Responsive Attention

- Random Utility Model (RUM): choices are determined by the maximization of a utility function drawn from some distribution that does not depend on the decision problem
- 2. **Signal Detection Theory** (SDT): people receive a noisy signal about the state of the world, then choose actions optimally given their subsequent beliefs

Definition 1

- Monotonicity is a necessary property of data generated by RUM and SDT
- However, Monotonicity is *not* implied by rational inattention models
 - Matejka and McKay [2015]: the introduction of a new act can increase the incentives to acquire information, which may in turn lead the DM to learn that an existing act was of high value.

- 1. Random Utility Model (RUM)
- 2. Signal Detection Theory (SDT)

Definition 1

- Monotonicity is a necessary property of data generated by RUM and SDT
- However, Monotonicity is not implied by rational inattention models
 - Matejka and McKay [2015]: the introduction of a new act can increase the
 incentives to acquire information, which may in turn lead the DM to learn that an
 existing act was of high value.

- 1. Random Utility Model (RUM)
- 2. Signal Detection Theory (SDT)

Definition 1

- Monotonicity is a necessary property of data generated by RUM and SDT
- However, Monotonicity is not implied by rational inattention models
 - Matejka and McKay [2015]: the introduction of a new act can increase the incentives to acquire information, which may in turn lead the DM to learn that an existing act was of high value.

- 1. Random Utility Model (RUM)
- 2. Signal Detection Theory (SDT)

Definition 1

- Monotonicity is a necessary property of data generated by RUM and SDT
- However, Monotonicity is not implied by rational inattention models
 - Matejka and McKay [2015]: the introduction of a new act can increase the
 incentives to acquire information, which may in turn lead the DM to learn that an
 existing act was of high value.

- Two equally likely states: state 1 (49 red balls); state 2 (51 red balls)
- Payment: probability points with a prize of \$20
- Each subject faced 75 repetitions of two decision problems

	Payoffs								
DP	U(a,1)	U(a,2)	U(b,1)	U(b,2)	U(c,1)	U(c,2)			
1	50	50	b_1	b_2	n/a	n/a			
2	50	50	b_1	b_2	100	0			

• 4 treatments with $b_1 < 50 < b_2$: (40,55), (40,52), (30,55), (30,52)

- Monotonicity: $A_1 = \{a, b\} \subset A_2 = \{a, b, c\} \Rightarrow P_{(\mu, A_1)}(b|\omega) \geq P_{(\mu, A_2)}(b|\omega)$
- SDSC data violates Monotonicity if $P_{(\mu,A_1)}(b|2) < P_{(\mu,A_2)}(b|2)$, which we show in the following slide
- Then, RUM or SDT cannot explain this data

			P(b 1)			P(b 2)		
Treat	N	$\{a,b\}$	$\{a,b,c\}$	Prob	$\{a,b\}$	$\{a,b,c\}$	Prob	% Subjects
1	7	2.9	6.8	0.52	50.6	59.8	0.54	29
2	7	5.7	14.7	0.29	21.1	63.1	0.05	57
3	7	9.5	5.0	0.35	21.4	46.6	0.06	43
4	7	1.1	0.8	0.76	19.9	51.7	0.02	57
Total	28	4.8	6.6	0.52	28.3	55.6	< 0.01	46

- Treatments: (b_1, b_2) are (40,55), (40,52), (30,55), (30,52)
- Col 3: prob. associated with the null hypothesis that prob. in column 1 and 2 are equal.
- % subjects: the fraction of choosing b significantly more in state 2 when c is available

How can Rational Inattention model explain this result?

- In DP1, the incentive for gathering information is low, and the subject can simply choose *a* which guarantees 50 points
- However, in DP2, with the addition of the option c, the subject may want to identify the true state with a high degree of accuracy
- By acquiring info, half the time they will determine that the state is in fact 2, in which case b is the best option
- ⇒ there is potentially a 'spillover' effect of adding c to the choice set which is to increase the probability of selecting b

	Payoffs							
DP	U(a,1)	U(a,2)	U(b,1)	U(b,2)	U(c,1)	U(c,2)		
1	50	50	b_1	b_2	n/a	n/a		
2	50	50	b_1	b_2	100	0		

- How can Rational Inattention model explain this result?
 - In DP1, the incentive for gathering information is low, and the subject can simply choose *a* which guarantees 50 points
 - However, in DP2, with the addition of the option c, the subject may want to identify
 the true state with a high degree of accuracy
 - By acquiring info, half the time they will determine that the state is in fact 2, in which case b is the best option
 - ⇒ there is potentially a 'spillover' effect of adding c to the choice set which is to increase the probability of selecting b

	Payoffs							
DP	U(a,1)	U(a,2)	U(b,1)	U(b,2)	U(c,1)	U(c,2)		
1	50	50	b_1	b_2	n/a	n/a		
2	50	50	b_1	b_2	100	0		

- How can Rational Inattention model explain this result?
 - In DP1, the incentive for gathering information is low, and the subject can simply choose *a* which guarantees 50 points
 - However, in DP2, with the addition of the option c, the subject may want to identify
 the true state with a high degree of accuracy
 - By acquiring info, half the time they will determine that the state is in fact 2, in which case b is the best option
 - ⇒ there is potentially a 'spillover' effect of adding c to the choice set which is to increase the probability of selecting b

	Payoffs							
DP	U(a,1)	U(a,2)	U(b,1)	U(b,2)	U(c,1)	U(c,2)		
1	50	50	b_1	b_2	n/a	n/a		
2	50	50	b_1	b_2	100	0		

- How can Rational Inattention model explain this result?
 - In DP1, the incentive for gathering information is low, and the subject can simply choose *a* which guarantees 50 points
 - However, in DP2, with the addition of the option c, the subject may want to identify
 the true state with a high degree of accuracy
 - By acquiring info, half the time they will determine that the state is in fact 2, in which case b is the best option
 - ⇒ there is potentially a 'spillover' effect of adding c to the choice set which is to increase the probability of selecting b

	Payoffs								
DP	U(a,1)	U(a,2)	U(b,1)	U(b,2)	U(c,1)	U(c,2)			
1	50	50	b_1	b_2	n/a	n/a			
2	50	50	b_1	b_2	100	0			

- How can Rational Inattention model explain this result?
 - In DP1, the incentive for gathering information is low, and the subject can simply choose *a* which guarantees 50 points
 - However, in DP2, with the addition of the option c, the subject may want to identify
 the true state with a high degree of accuracy
 - By acquiring info, half the time they will determine that the state is in fact 2, in which case b is the best option
 - ⇒ there is potentially a 'spillover' effect of adding c to the choice set which is to increase the probability of selecting b

	Payoffs							
DP	U(a,1)	U(a,2)	U(b,1)	U(b,2)	U(c,1)	U(c,2)		
1	50	50	b_1	b_2	n/a	n/a		
2	50	50	b_1	b_2	100	0		

Experiment 1.2: Changing

Incentives

Theory: Rational Inattention Model Conditions

- Caplin and Dean [2015] provide necessary and sufficient conditions on SDSC data such that there exists some cost function which rationalizes the general model
 - Roughly speaking, SDSC data has a costly information acquisition representation if the data can be explained by the maximization of $G(\mu, A, \pi) K(\mu, \pi)$
 - No Improving Action Switches (NIAS) ensures that choices are consistent with efficient use of whatever information the DM has
 - No Improving Attention Cycles (NIAC) ensures that choices of information structure itself is rationalizable according to some underlying cost function
- **Theorem** [Caplin, Dean (2015)]: SDSC data has a costly information acquisition representation iff it satisfies NIAS and NIAC.

Theory: Rational Inattention Model Conditions

- Caplin and Dean [2015] provide necessary and sufficient conditions on SDSC data such that there exists some cost function which rationalizes the general model
 - Roughly speaking, SDSC data has a costly information acquisition representation if the data can be explained by the maximization of $G(\mu, A, \pi) K(\mu, \pi)$
 - No Improving Action Switches (NIAS) ensures that choices are consistent with efficient use of whatever information the DM has
 - No Improving Attention Cycles (NIAC) ensures that choices of information structure itself is rationalizable according to some underlying cost function
- Theorem [Caplin, Dean (2015)]: SDSC data has a costly information acquisition representation iff it satisfies NIAS and NIAC.

Theory: Rational Inattention Model Conditions

- Caplin and Dean [2015] provide necessary and sufficient conditions on SDSC data such that there exists some cost function which rationalizes the general model
 - Roughly speaking, SDSC data has a costly information acquisition representation if the data can be explained by the maximization of $G(\mu, A, \pi) K(\mu, \pi)$
 - No Improving Action Switches (NIAS) ensures that choices are consistent with efficient use of whatever information the DM has
 - No Improving Attention Cycles (NIAC) ensures that choices of information structure itself is rationalizable according to some underlying cost function
- **Theorem** [Caplin, Dean (2015)]: SDSC data has a costly information acquisition representation iff it satisfies NIAS and NIAC.

Experiment 1.2: Changing Incentives

- Two equally likely states: state 1 (49 red balls); state 2 (51 red balls)
- Two actions:

$$\begin{array}{c|cccc} & u(\cdot|1) & u(\cdot|2) \\ a & x & 0 \\ b & 0 & x \end{array}$$

- DPs 3–6: x is 5, 40, 75, 90
- NIAS: the subject must be more likely to choose the action a in state 1
- NIAC: the subject becomes no less accurate as incentives increase, i.e., P(a|1) + P(b|1) increases as x increases

Experiment 1.2: Changing Incentives

- Two equally likely states: state 1 (49 red balls); state 2 (51 red balls)
- Two actions:

- DPs 3–6: x is 5, 40, 75, 90
- **NIAS**: the subject must be more likely to choose the action a in state 1
- **NIAC**: the subject becomes no less accurate as incentives increase, i.e., P(a|1) + P(b|1) increases as x increases

Experiment 1.2: Testing NIAS and NIAC

• The aggregate data supports both NIAS and NIAC:

Table 3: Data from Experiment 1.2^{45}							
DP	$P_j(a 1)$	$P_j(a 2)$	Prob	$P_j(a 1) + P_j(b 2)$			
3	0.74	0.40	0.00	0.67			
4	0.76	0.34	0.00	0.71			
5	0.78	0.33	0.00	0.72			
6	0.78	0.28	0.00	0.75			

Experiment 1.2: Testing NIAS and NIAC

- Experiment 1.2 Individual level:
 - 81% show no significance violations of either condition
 - 17% violate NIAC only
 - 2% violate NIAS only
 - None violates both conditions
 - ⇒ most of subjects do not have significant violations of the NIAS and NIAC conditions and therefore act as if they maximize payoffs net of some underlying attention cost function
- NIAS and NIAC in Experiment 1.1 can also be tested (though much complicated)
 - 9 out of 196 NIAS tests (5%) significantly violates
 - 2out of 28 NIAC tests (7%) significantly violates

Experiment 1.2: Testing NIAS and NIAC

- Experiment 1.2 Individual level:
 - 81% show no significance violations of either condition
 - 17% violate NIAC only
 - 2% violate NIAS only
 - None violates both conditions
 - ⇒ most of subjects do not have significant violations of the NIAS and NIAC conditions and therefore act as if they maximize payoffs net of some underlying attention cost function
- NIAS and NIAC in Experiment 1.1 can also be tested (though much complicated)
 - 9 out of 196 NIAS tests (5%) significantly violates
 - 2out of 28 NIAC tests (7%) significantly violates

Theory: Shannon Entropy Cost and Generalization

- The previous results suggest that the SDSC data has a costly information acquisition representation, but *what types of information cost* is used?
- Shannon Entropy cost:

$$K_{\mathbf{s}}(\mu, \pi) = \kappa \cdot \left\{ \sum_{\gamma \in \Gamma(\pi)} \pi(\gamma) \cdot [-H[\gamma]] - [-H[\mu]] \right\}$$
(4)

where $\pi(\gamma)$ is the unconditional probability of signal γ and $H(\gamma) = \sum_{\alpha} -\gamma(\omega) \ln \gamma(\omega)$

$$H(\gamma) \equiv \sum_{\omega \in \Omega} -\gamma(\omega) \ln \gamma(\omega)$$

• Uniformly posterior-separable cost: same as (4) but -H is an arbitrary convex function

Theory: Shannon Entropy Cost and Generalization

- The previous results suggest that the SDSC data has a costly information acquisition representation, but *what types of information cost* is used?
- Shannon Entropy cost:

$$K_{s}(\mu, \pi) = \kappa \cdot \left\{ \sum_{\gamma \in \Gamma(\pi)} \pi(\gamma) \cdot [-H[\gamma]] - [-H[\mu]] \right\}$$
 (4)

where $\pi(\gamma)$ is the unconditional probability of signal γ and $H(\gamma) \equiv \sum_{\omega \in \Omega} -\gamma(\omega) \ln \gamma(\omega)$

• Uniformly posterior-separable cost: same as (4) but -H is an arbitrary convex function

Theory: Shannon Entropy Cost and Generalization

- The previous results suggest that the SDSC data has a costly information acquisition representation, but *what types of information cost* is used?
- Shannon Entropy cost:

$$K_s(\mu, \pi) = \kappa \cdot \left\{ \sum_{\gamma \in \Gamma(\pi)} \pi(\gamma) \cdot [-H[\gamma]] - [-H[\mu]] \right\}$$
 (4)

where $\pi(\gamma)$ is the unconditional probability of signal γ and $H(\gamma) \equiv \sum_{\omega \in \Omega} -\gamma(\omega) \ln \gamma(\omega)$

• Uniformly posterior-separable cost: same as (4) but -H is an arbitrary convex function

Theory: Shannon Entropy Cost and Invariant Likelihood Ratio (ILR) property

 Under the Shannon Entropy cost function, the invariant likelihood ration (ILR) property holds:

$$\frac{\gamma^{a}(\omega)}{\gamma^{b}(\omega)} = \frac{\exp(u(a,\omega)/\kappa)}{\exp(u(b,\omega)/\kappa)}$$
 (5)

where γ^i is the posterior belief given the choice i

• Under Experiment 1.2, it is equivalent to

$$\kappa = \frac{5}{\ln(\gamma_3^a(1)) - \ln(\gamma_3^b(1))} = \frac{40}{\ln(\gamma_4^a(1)) - \ln(\gamma_4^b(1))} = \frac{70}{\ln(\gamma_5^a(1)) - \ln(\gamma_5^b(1))} = \frac{95}{\ln(\gamma_6^a(1)) - \ln(\gamma_6^b(1))}$$

where $\gamma_i^a(1)$ is the posterior probability of state 1 in DP j

Theory: Shannon Entropy Cost and Invariant Likelihood Ratio (ILR) property

 Under the Shannon Entropy cost function, the invariant likelihood ration (ILR) property holds:

$$\frac{\gamma^{a}(\omega)}{\gamma^{b}(\omega)} = \frac{\exp(u(a,\omega)/\kappa)}{\exp(u(b,\omega)/\kappa)}$$
 (5)

where γ^i is the posterior belief given the choice i

• Under Experiment 1.2, it is equivalent to

$$\kappa = \frac{5}{\ln(\gamma_3^a(1)) - \ln(\gamma_3^b(1))} = \frac{40}{\ln(\gamma_4^a(1)) - \ln(\gamma_4^b(1))}$$
$$= \frac{70}{\ln(\gamma_5^a(1)) - \ln(\gamma_5^b(1))} = \frac{95}{\ln(\gamma_6^a(1)) - \ln(\gamma_6^b(1))}$$

where $\gamma_j^{\it a}(1)$ is the posterior probability of state 1 in DP j

Experiment 1.2: Testing ILR property

- \bullet This figure shows the extimated cost parameter κ from each decision problem
- The Shannon model predicts that these should be equal, but it is not the case.

Theory: UPS cost and LIP condition

Uniformly posterior-separable cost:

$$K_{s}(\mu, \pi) = \kappa \cdot \left\{ \sum_{\gamma \in \Gamma(\pi)} \pi(\gamma) [-H[\gamma]] - [-H[\mu]] \right\}$$
 (6)

where $\pi(\gamma)$ is the unconditional probability of signal γ and -H is an arbitrary convex function

- Locally Invariant Posteriors (LIP) condition
 - Local changes in prior beliefs do not lead to changes in optimal posterior beliefs.

Theory: UPS cost and LIP condition

Uniformly posterior-separable cost:

$$K_s(\mu, \pi) = \kappa \cdot \left\{ \sum_{\gamma \in \Gamma(\pi)} \pi(\gamma) [-H[\gamma]] - [-H[\mu]] \right\}$$
 (6)

where $\pi(\gamma)$ is the unconditional probability of signal γ and -H is an arbitrary convex function

- Locally Invariant Posteriors (LIP) condition
 - Local changes in prior beliefs do not lead to changes in optimal posterior beliefs.

- Two states: state 1 (47 red balls); state 2 (53 red balls)¹
- Two actions:

- DPs 7–10: Pr(s = 1) is .5, .6, .75, .85
- As the prior probability of state 1 increases, there are two possibilities:
 - 1. if the prior remains inside the convex hull, the subject must use the same posterior
 - 2. if the prior moves outside the convex hull, the subject should learn nothing

¹Consider easier setting to ensure that more subjects collected some information

- Two states: state 1 (47 red balls); state 2 (53 red balls)¹
- Two actions:

- DPs 7–10: Pr(s = 1) is .5, .6, .75, .85
- As the prior probability of state 1 increases, there are two possibilities:
 - 1. if the prior remains inside the convex hull, the subject must use the same posterior
 - 2. if the prior moves outside the convex hull, the subject should learn nothing

¹Consider easier setting to ensure that more subjects collected some information

- LIP Test 1: subjects with $\gamma_7^a(1) < \mu_i(1)$ should exclusively choose action a, while those with $\gamma_7^a(1) > \mu_i(1)$ should choose both a and b
 - $\gamma_7^a(1)$: the posterior that the state is 1 revealed in DP 7 (prior was .5)
 - $\mu_i(1)$: the prior belief that the state is 1 in DP i

	$\mu(1)$		
	DP8	DP9	DP10
	0.6	0.75	0.85
$\gamma_7^a(1) < \mu_i(1)$	33%	46%	41%
$\gamma_7^a(1) \ge \mu_i(1)$	3%	10%	14%

Testing 'No Learning' prediction: Fraction of subjects who never choose *b*

- LIP Test 2: subjects who are predicted to be gathering information should use the same posteriors as they did in DP 7
- The following figure shows that data is relatively well described by LIP prediction
 - ullet Of the six comparisons, only one shows a significant difference at the 10% level
 - However, a test of the joint hypothesis that all six conditions hold simultaneously is rejected at the 5% level

Conclusion

Next Step

- In this paper, the authors provide extensive experiments testing the foundations of rational inattention model
- There is an emerging literature in applied theory using the rational inattention model
- Given that this is the seminal experimental paper in the rational inattention literature, I believe that there will be a series of experimental works to be done

Experimental Design 2

Experimental Design: Setup

• State: number of correct simple equations

	There is a 50% chance of 4 correct equations. There is a 50% chance of 3 correct equations.				
42+19=51	38+6=44	38+39=80			
9+8=8	18+2=20				
41+37=78	28+15=50				