

Machine Learning (IS ZC464) Session 5:

Decision tree classifier and Data visualization for classification

Discussion

- Decision tree classifier
- Data Visualization for classification
 - Example dataset
 - Data as tables-rows as instances and columns as features/ attributes
 - Scatter plots
 - Parallel coordinate graphs
 - Pearson correlation
 - Example code in Python

Decision Tree

- A decision tree takes as input an object or situation described by a set of attributes and returns a decision.
- This decision is the predicted output value for the input.
- The input attributes can be discrete or continuous.
- Classification Learning:
 - Learning a discrete valued function is called classification learning
- Regression :
 - Learning a continuous function is called Regression.

Decision Tree

- A decision tree reaches its decision by performing a sequence of tests.
- All non leaf nodes lead to partial decisions and assist in moving towards the leaf node.
- Leaf nodes are the decisions based on properties satisfied at non leaf nodes on the path from the root node.

Decision tree

- Leaf nodes depict the decision about a character having attributes falling on the path from the root node
- Each example that participate in the construction of the decision tree is called a training data and the complete set of the training data is called as training set.

Limitations of Decision Tree Learning

- The tree memorizes the observations but does not extract any pattern from the examples.
- This limits the capability of the learning algorithm in that the observations do not extrapolate to examples it has not seen.

How can we construct a decision tree for face recognition problem

- Define attributes
- Collect the attributes data from training samples
- Associate the output (to be used as leaf)

Imagine the size of decision tree with 1000 attributes capable of discriminating between persons!!!

Decision trees

- The attributes aid in taking decisions.
- The most appropriate attribute is selected for testing in the beginning else the size of the tree becomes large resulting in large computational time.
- Leaf nodes represent the decisions.
- The attributes falling in the path from represent the attributes fully able to define the decision at leaf.

Goal Predicate: WillWait()

Problem: decide whether to wait for a table at a restaurant, based on the following attributes:

- 1. Alternate: is there an alternative restaurant nearby?
- 2. Bar: is there a comfortable bar area to wait in?
- 3. Fri/Sat: is today Friday or Saturday?
- 4. Hungry: are we hungry?
- 5. Patrons: number of people in the restaurant (None, Some, Full)
- 6. Price: price range (\$, \$\$, \$\$\$)
- 7. Raining: is it raining outside?
- 8. Reservation: have we made a reservation?
- 9. Type: kind of restaurant (French, Italian, Thai, Burger)
- 10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)

Attributes

Example	Attributes									Target	
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10–30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0–10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

Decision Tree

Reference: aima.eecs.berkeley.edu/slides-ppt/m18-learning.ppt

Size of the decision tree

- The size of the Decision tree depends on the choice of the attributes and the order in which they are used to test the examples.
- Selection of attributes must be "fairly good" and "really useless" attributes (such as type) should be avoided
- The quality of the attribute can be measured.
- One measure can be the amount of information the attribute carries.

Information content

• If v_i are different possible answers and $P(v_i)$ are the probabilities that answer could be vi. Then the information content I of the actual answer is given by

$$- I(P(v_1), P(v_2), ...P(v_n)) = - \sum P(v_i) log_2 P(v_i)$$

 Assume that the training set contains 'p' positive examples and 'n' negative examples, then an estimate of the information contained in a correct answer is

```
I(p/(p+n), n/(p+n)) = -(p/(p+n)) \log_2(p/(p+n))
- (n/(p+n)) \log_2(n/(p+n))
```


Refer the given table of Attributes

Example	Attributes									Target	
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0-10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0-10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10–30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0-10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

Information content

Since

```
I(p/(p+n), n/(p+n)) = -(p/(p+n)) \log_2(p/(p+n))
                        -(n/(p+n)) \log_2(n/(p+n))
- information = -(6/12) \log_2(1/2) - (6/12) \log_2(1/2)
                 = - \log_2(1/2)
                 = \log_2 (1/2)^{-1}
                   = \log_2(2)
                 = 1 bit
```


Generalize the splitting

- Let the attribute A divides the entire training set into sets E1, E2, ... Ev. Where v is the total number of values A can be tested on.
- Assume that each set E_i contains p_i positive examples and n_i negative examples
- Remainder (A)

=
$$\Sigma$$
 (p_i+n_i)/(p+n) I(p_i/(p_i+n_i), n_i/(p_i+n_i))
over i=1 to v

Gain(A)

Gain(A)

=
$$I(p/p+n, n/p+n)$$
 – Remainder(A)

The heuristic to choose attribute A from a set of all attributes is the maximum gain

Compute

- 1. Gain(Patrons)
- 2. Gain(type)

Selecting patrons attribute

Selecting type as attribute

Gain(patron)

- 1 ((2/12)I(0,1) + (4/12)I(1,0) + (6/12)I(2/6,4/6))
- Approximately equal to 0.541 bits

Refer the given table of Attributes and compute Gain

Example	Attributes									Target	
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10–30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0–10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

Decision Trees

- Learning is through a series of decisions taken with respect to the attribute at the non-leaf node.
- There can be many trees possible for the given training data.
- Finding the smallest DT is an NP-complete problem.
- Greedy selection of the attribute with largest gain to split the training data into two or more sub-classes may lead to approximately the smallest tree

Decision Trees

- If the decisions are binary, then in the best case the decision eliminates almost half of the regions (leaves).
- If there are 'b' regions, then the correct region can be found in log₂(b) decisions in the best case.
- The height of the decision trees depends on the order of the attributes selected to split the training examples at each step.

Expressiveness of the DS

- A decision tree can represent a disjunction of conjunctions of constraints on the attribute values of instances.
 - Each path corresponds to a conjunction
 - The tree itself corresponds to a disjunction

Example

If (O=Sunny AND H=Normal) OR (O=Overcast) OR (O=Rain AND W=Weak) then YES

 "A disjunction of conjunctions of constraints on attribute values"

Entropy

- It is the measure of the information content and is given by
- $-I = -\sum P(v_i)log_2P(v_i)$
- Where v1,v2,...,vk are the values of the attribute on which the decisions bifurcate.

rec	Age	Income	Student	Credit_rating	Buys_computer
r1	<=30	High	No	Fair	No
r2	<=30	High	No	Excellent	No
r3	3140	High	No	Fair	Yes
r4	>40	Medium	No	Fair	Yes
r5	>40	Low	Yes	Fair	Yes
r6	>40	Low	Yes	Excellent	No
r7	3140	Low	Yes	Excellent	Yes
r8	<=30	Medium	No	Fair	No
r9	<=30	Low	Yes	Fair /	Yes
r10	>40	Medium	Yes	Fair	Yes
r11	<-=30	Medium	Yes	Excellent	Yes
r12	3140	Medium	No	Excellent	Yes
r13	3140	High	Yes	Fair	Yes
r14	>40	Medium	No	Excellent	No

Class Work

```
Remainder (A)

= \sum (p_i+n_i)/(p+n)
I(p_i/(p_i+n_i), n_i/(p_i+n_i))
over i=1 to v
```

- Identify the examples belonging to the two sets constructed after the data is split on the basis of attribute 'student'.
- Compute the total information content of the training data.
- Compute the information gain if the training data is split on the basis of the attribute 'student'.
- Draw the **decision tree**, which may or may not be optimal.

Understand the examples

- Decisions are binary yes / no
- Training data as <example, decision> pair
- <r1,no>, <r2,no>, <r3,yes>, <r4,yes> and so on
- Positive examples: r3, r4, r5, r7, r9, r10, r11, r12,
 r13
- Negative examples: r1,r2,r6, r8, r14
- Is the given training set sufficient to take any decision?
- Is the generalization capability of the given training set sufficient?

Information content of the given training data

- Here v1 = yes, v2 = no
- Positive examples: r3, r4, r5, r7, r9, r10, r11, r12, r13
- Negative examples: r1,r2,r6, r8, r14
- Total number of examaples = 14
- P(v1) = 9/14, P(v2)=5/14
- Information content is represented by the notion I(9/14, 5/14)
- Entropy = $-(P(v_1)log_2(P(v_1)) + P(v_2)log_2(P(v_2)))$ = $-((9/14)*log_2(9/14) + (5/14)*log_2(5/14))$ = 0.8108

Compute the significance of attribute 'income'

Compute the significance of attribute 'income'

Observe that the split regions of examples possess mixed decisions, this shows the poor quality of the attribute 'income'

Recall Generalize the splitting

- Let the attribute A divides the entire training set into sets E1, E2, ... Ev. Where v is the total number of values A can be tested on.
- Assume that each set E_i contains p_i positive examples and n_i negative examples
- Remainder (A)

=
$$\Sigma$$
 (p_i+n_i)/(p+n) I(p_i/(p_i+n_i), n_i/(p_i+n_i))
over i=1 to v

Remainder (A)

= $\sum (p_i+n_i)/(p+n) I(p_i/(p_i+n_i), n_i/(p_i+n_i))$ over i=1 to v

Compute attribute

• Remainder =
$$(4/14)*I(3/4,1/4)$$

+ $(6/14)*I(4/6, 2/6)$
+ $(4/14)*I(2/4,2/4)$
= $(4/14)$ {- $(3/4)$ log₂ $(3/4)$ – $(1/4)$ log₂ $(1/4)$ }
+ $(6/14)$ {- $(4/6)$ log₂ $(4/6)$ – $(2/6)$ log₂ $(2/6)$ }
+ $(4/14)$ { (- $(2/4)$ log₂ $(2/4)$ - $(2/4)$ log₂ $(2/4)$

[Home Work: Remaining computation]

$$p_1 = 3$$

$$n_1 = 1$$

$$p_2 = 4$$

$$n_2 = 2$$

$$p_3 = 2$$

$$n_3 = 2$$

Using Python to understand data

- Python Standard library: https://www.python.org/
- Scientific Computing: http://www.numpy.org/
- Machine learning software: https://scikit-learn.org/
- Data analysis library: http://pandas.pydata.org/
- Plotting library: https://matplotlib.org/

 Complete collection available through anaconda software available free at https://www.anaconda.com/

Anaconda Navigator

Example datasets

UCI machine learning repository

https://archive.ics.uci.edu/ml/datasets.html

 Used frequently by beginners in machine learning: Iris data set

https://archive.ics.uci.edu/ml/datasets/iris

IRIS dataset

- Input attributes: Sepal length, sepal width, petal length and petal width
- Class labels: Iris Setosa, Iris Versicolour and Iris Virginica

Data samples for Setosa class

```
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
        5.1
                    3.5
                                 1.4
                                             0.2 setosa
        4.9
                                             0.2 setosa
                    3.0
                                 1.4
        4.7
                   3.2
                                 1.3
                                            0.2 setosa
                   3.1
        4.6
                                 1.5
                                             0.2 setosa
        5.0
                  3.6
                                 1.4
                                            0.2 setosa
```


Data samples for virginica class

```
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
         6.3
                                   6.0
                                               2.5 virginica
                     3.3
         5.8
                     2.7
                                  5.1
                                               1.9 virginica
         7.1
                     3.0
                                  5.9
                                               2.1 virginica
                                               1.8 virginica
         6.3
                     2.9
                                  5.6
         6.5
                     3.0
                                   5.8
                                               2.2 virginica
```


Data samples for versicolor class

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
7.0	3.2	4.7	1.4	versicolor
6.4	3.2	4.5	1.5	versicolor
6.9	3.1	4.9	1.5	versicolor
5.5	2.3	4.0	1.3	versicolor
6.5	2.8	4.6	1.5	versicolor

Iris Data

- Number of samples per class = 50
- Total number of records = 150 (for 3 classes)

Working with the data: code and output


```
datarow = datarv.iloc[:,0]
datarow.plot(color ="blue", label = 'sepal length')
plot.legend()
```


Visualizing the attribute's ability to discriminate the classes

```
datarow = datarv.iloc[:,1]
datarow.plot(color ="red", label = 'sepal width')
plot.legend()
```


Sample number


```
datarow = datarv.iloc[:,2]
datarow.plot(color ="green", label = 'petal length')
plot.legend()
```



```
datarow = datarv.iloc[:,3]
datarow.plot(color ="magenta", label = 'petal width')
plot.legend()
```


Parallel Coordinate graph

```
for i in range(150):
    if datarv.iat[i,4]=="Iris-setosa":
        pcolor = "red"
    elif datarv.iat[i,4]=="Iris-virginica":
        pcolor = "green"
    else:
        pcolor = "blue"
    datarow = datarv.iloc[i,0:4]
    datarow.plot(color = pcolor)

plot.xlabel("attributes V0 to V3")
    plot.ylabel("attribute values")
```

```
Most discriminative
                                      feature (A2), i.e. petal
                                      length
   6
attribute values
  1
                           attributes V0 to V3
```


Scatter Plot

```
colorarr = []
for i in range(150):
    if datarv.iat[i,4]=="Iris-setosa":
        pcolor = "red"
    elif datarv.iat[i,4]=="Iris-virginica":
        pcolor = "green"
    else:
        pcolor = "blue"
    colorarr = np.append(colorarr, pcolor)

datacol0 = datarv.iloc[1:150,2]
datacol1 = datarv.iloc[1:150,3]
plot.scatter(datacol0,datacol1,c = colorarr)
```


Import numpy as np

Scatter Plot

```
colorarr = []
for i in range(150):
    if datarv.iat[i,4]=="Iris-setosa":
        pcolor = "red"
    elif datarv.iat[i,4]=="Iris-virginica":
        pcolor = "green"
    else:
        pcolor = "blue"
    colorarr = np.append(colorarr, pcolor)

datacol0 = datarv.iloc[1:150,0]
datacol1 = datarv.iloc[1:150,1]
plot.scatter(datacol0,datacol1,c = colorarr)
```


Using IRIS data for classification

```
1 #using pandas for iris data
2 import pandas as pd
3 from pandas import DataFrame
4 import numpy as np
5 import random
6 import matplotlib.pyplot as plot
7 from sklearn.linear model import LogisticRegression as Model
8 dataset url = ("https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data")
9 datarv= pd.read csv(dataset url, header=None, prefix="V")
10 #using various print statements for understanding the data
12 #print(datarv.head())
13 #print(datarv.tail())
14 summary = datary.describe()
15 #print(summary)
17 def train(features, target):
      classifier model = Model()
19
      classifier model.fit(features, target)
      return classifier model
20
```

```
22 def predict(model, testfeatures):
      pred = model.predict(testfeatures)
24
      return pred
26 def evaluate acc(pred, target):
      a = pred.shape
28 # b = target.shape
30 #
       print(a)
31 #
       print(b)
32 #
     print(a[0])
33
      acc count = 0;
      for i in range(0,a[0]):
35
          if(pred[i]==target.iloc[i]):
              acc count = acc count+1
36
37
      accuracy percent = (acc count/a[0])*100
38
      return accuracy percent
```


Contd...

```
40 N = 150
41 sum crossfold = 0
42 for i in range(10):
      N train = int(np.floor(0.7*N))
44 #
       print(N train)
      idx = np.random.permutation(N)
45
                                                                       Using all 4
46 #
       print(idx)
      # Below splitting the data into training and test indices
47
                                                                       features
      idx train = idx[:N train]
48
      idx test = idx[N_train:]
49
       print(idx train)
50 #
51 #
       print(idx test)
      # check the dimension of your data
52
53
      #IRIS data has 150 rows and 5 colums of which first four are the attributes
54
      # and the 5th column has class label
55
      #print(datarv.shape)
      # Use the first four columns as features
56
      features train = datarv.iloc[idx train,0:3]
57
58
      #print(features train)
      features test = datarv.iloc[idx test, 0:3]
59
60
      #print(features test)
61
      # extract the targets similarly
62
      target train = datarv.iloc[idx train,4]
63
      #print(target train)
64
      target test = datarv.iloc[idx test, 4]
65
      #print(target test)
      model = train(features train, target train)
66
67
      predicted classes = predict(model, features test)
68 #
       print(predicted classes)
69
      accuracy = evaluate acc(predicted classes, target test)
70
      sum crossfold =sum crossfold + accuracy
71
      print(i,accuracy)
73 print(sum_crossfold/10)
```

output

Pearson Correlation coefficient

- The degree of correlation between two attributes or one attribute and the target can be quantified using Pearson's correlation coefficient.
- Let u and v be the two equal length vectors

$$u = \langle u_1, u_2, u_3, ..., u_n \rangle$$

 $v = \langle v_1, v_2, v_3, ..., v_n \rangle$

 Let M_u and M_v be the mean values of vectors u and v respectively

Pearson Correlation coefficient

 Compute the vector by taking the difference of each value with their corresponding mean as follows

$$\Delta u = \langle u_1 - M_u, u_2 - M_u, u_3 - M_u, ..., u_n - M_u \rangle$$

 $\Delta v = \langle v_1 - M_v, v_2 - M_v, v_3 - M_v, ..., v_n - M_v \rangle$

The Correlation between u and v is defined as below

$$Corr(u, v) = \frac{\Delta u^T \Delta v}{\sqrt{(\Delta u^T \Delta u) * (\Delta v^T \Delta v)}}$$

Python Code for Pearson Correlation Coefficient

```
1 #using pandas for iris data
2 import pandas as pd
3 from pandas import DataFrame
4 import numpy as np
5 import random
6 import matplotlib.pyplot as plot
7 dataset url = ("https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
8 datarv= pd.read csv(dataset url, header=None, prefix="V")
10 featureVec0 = datarv.iloc[:,0]
11 featureVec1 = datarv.iloc[:,1]
12 featureVec2 = datarv.iloc[:,2]
13 featureVec3 = datarv.iloc[:,3]
15 colorarr = []
16 for i in range(150):
      if datarv.iat[i,4]=="Iris-setosa":
          pcolor = "red"
      elif datarv.iat[i,4]=="Iris-virginica":
          pcolor ="green"
      else:
          pcolor = "blue"
      colorarr = np.append(colorarr, pcolor)
```

```
26 def pearsonCoefficient(u, v):
27     delta_u = u - np.mean(u)
28     delta_v = v - np.mean(v)
29     numerator = np.matmul(delta_u,delta_v.T)
30     denominator = np.sqrt(np.matmul(delta_u,delta_u.T)*np.matmul(delta_v,delta_v.T))
31     Pearson_correlation_coefficient = numerator/denominator
32     print(Pearson_correlation_coefficient)
```


Code

```
33
34 pearsonCoefficient(featureVec0, featureVec1)
35 plot.scatter(featureVec0, featureVec1, c = colorarr)
36
37 plot.figure()
38 pearsonCoefficient(featureVec0, featureVec2)
39 plot.scatter(featureVec0, featureVec2, c = colorarr)
41 plot.figure()
42 pearsonCoefficient(featureVec0, featureVec3)
43 plot.scatter(featureVec0, featureVec3, c = colorarr)
45 plot.figure()
46 pearsonCoefficient(featureVec1, featureVec2)
47 plot.scatter(featureVec1, featureVec2, c = colorarr)
49 plot.figure()
50 pearsonCoefficient(featureVec1, featureVec3)
51 plot.scatter(featureVec1, featureVec3, c = colorarr)
52
53 plot.figure()
54 pearsonCoefficient(featureVec2, featureVec3)
55 plot.scatter(featureVec2, featureVec3, c = colorarr)
```


Correlation coefficient output using features 0 and 1 (Sepal length and width)

Pearson Correlation Coefficient = -0.10936924995064934

Correlation coefficient output using features 0 and 2 (Sepal length and petal length)

Pearson Correlation Coefficient =

0.8717541573048712

Correlation coefficient output using features 0 and 3 (Sepal length and petal width)

Pearson Correlation Coefficient =

0.8179536333691633

Correlation coefficient output using features 1 and 2 (Sepal width and petal length)

Pearson Correlation Coefficient =

-0.42051609640115445

Correlation coefficient output using features 1 and 3 (Sepal width and petal width)

Pearson Correlation Coefficient =

-0.35654408961380585

Correlation coefficient output using features 2 and 3 (Petal length and width)

Pearson Correlation Coefficient = 0.9627570970509662