Int. Cl. 2:

C 07 C 31/18 C 07 C 29/14

(9) BUNDESREPUBLIK

Offenlegungsschrift

0 **Ø**

Aktenzeichen:

P 27 02 582.7-42

Ø (3) Anmeldetag:

22. 1.77

Offenlegungstag:

27. 7.78

3

Unionspriorität:

Ø Ø Ø

Bezeichnung:

Verfahren zur Hersteilung von Trimethylolalkanen

Anmelder:

Bayer AG, 5090 Leverkusen

Erfinder:

Immel, Otto, Dr.; Schwarz, Hans-Helmut, Dr.; Weißel, Oskar, Dr.;

Krimm, Heinrich, Dr.; 4150 Krefeld

Prüfungsantrag gem. § 28 b PatG ist gestellt

7.78 809 830/280

12/100

Patentansprüche

Verfahren zur Herstellung von Trimethylolalkanen der Formel

in der R¹ einen aliphatischen Rest bedeutet,

durch Umsetzung von Aldehyden mit Formaldehyd in Gegenwart von Basen und anschließende Hydrierung des erhaltenen 2,2-Dimethylolalkanals, dadurch gekennzeichnet, daß man einen Aldehyd der Formel

in der

R¹ die vorstehend angegebene Bedeutung hat, in Gegenwart an sich bekannter Basen mit Formaldehyd im Molverhältnis von wenigstens 1:8 im Temperaturbereich zwischen etwa -20 bis etwa 5°C, gegebenenfalls in Gegenwart von Ionen eines Elementes der VII. und/oder VIII. Gruppe und/oder der I. und/oder II. Nebengruppe des periodischen Systems der Elemente, umsetzt und das erhaltene 2,2-Dimethylolalkanal anschließend in üblicher Weise hydriert.

Le A 17 758

- 20 -

809830/02B0

2) Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die Umsetzung des Aldehyds der Formel

in der

R¹ einen aliphatischen Rest bedeutet, mit Formaldehyd in Gegenwart von Ionen der Elemente Kobalt, Nickel, Kupfer, Mangan, Zink, Silber und/oder Cadmium durchführt.

- 3) Verfahren nach Ansprüchen 1 und 2, dadurch gekennzeichnet, daß die Ionen in einer Menge von 0,001 bis 0,03 Grammatomen zugegen sind.
- 4) Verfahren nach Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß man 0,01 bis 0,3 Mol Base je Mol Aldehyd der Formel

in der

R¹ einen aliphatischen Rest bedeutet, verwendet.

5) Verfahren nach Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß die Umsetzung des Aldehyds der Formel

in der ${\bf R}^1$ einen aliphatischen Rest bedeutet, mit Formaldehyd bei einem pH-Wert der Reaktionslösung von 9 bis 12 erfolgt.

Le A 17 758

- 22 -

2702582

Zentralbereich Patente, Merken und Lizenzen

5090 Leverkusen, Bayerwerk Zg/bc/AB 21. Jan. 1977

Verfahren zur Herstellung von Trimethylolalkanen

Die Erfindung betrifft ein Verfahren zur Herstellung von Trimethylolalkanen durch Umsetzung von Alkanalen mit Formaldehyd in Gegenwart eines basischen Kondensationsmittels und anschließende Hydrierung des erhaltenen 2,2-Dimethylolalkanals.

Aus der DT-AS 1 154 080 ist es bekannt, Trimethylolpropan durch alkalische Kondensation von Formaldehyd mit Butyraldehyd herzustellen. Die Umsetzung kann durch folgende Reaktionsgleichung wiedergegeben werden:

Le A 17 758

809830/0260

2,2-Dimethylolbutanal tritt hierbei intermediär als Zwischenprodukt auf und reagiert mit Formaldehyd und der Base nach Cannizzaro zu Trimethylolpropan und Formiat.

Bei der technischen Herstellung von Trimethylolpropan fallen also zumindest stöchiometrische Mengen von Natriumformiat zwangsläufig als Nebenprodukt an. Das Natriumformiat kann zwar auch einer entsprechenden Verwertung zugeführt werden, jedoch ist der Bedarf an Natriumformiat nicht zwangsläufig ebenso groß wie der an Trimethylolpropan. Aus dem Zwangsanfall von Natriumformiat ergeben sich also erhebliche Probleme der Entsorgung und des Umweltschutzes, die bislang in wirtschaftlicher Weise nur durch Deponierung gelöst werden konnten. Es ist daher bereits vorgeschlagen worden, in einer ersten Stufe zunächst das Dimethylolalkanal herzustellen, das sich dann in üblicher Weise zum Trimethylolalkan hydrieren läßt (DT-OS 2 507 461).

Es wurde nun gefunden, daß man in einfacher Weise und mit guter Ausbeute Trimethylolalkane der Formel

in der

R¹ einen aliphatischen Rest bedeutet,

durch Umsetzung von Aldehyden mit Formaldehyd in Gegenwart von Basen und anschließende Hydrierung des erhaltenen 2,2-Dimethylolalkanals erhält, wenn man einen Aldehyd der Formel

H R¹-C-CHO H 27025**82**

(II)

in der

die vorstehend angegebene Bedeutung hat,

in Gegenwart an sich bekannter Basen mit Formaldehyd im Molverhältnis von wenigstens 1:8 im Temperaturbereich zwischen etwa -20 bis etwa 5°C, gegebenenfalls in Gegenwart von Ionen eines Elementes der VII. und/oder VIII. Gruppe und/oder I. und/oder II. Nebengruppe des periodischen Systems der Elemente, umsetzt und das erhaltene 2,2-Dimethylol-alkanal anschließend in üblicher Weise hydriert.

Uberraschenderweise erlaubt es das erfindungsgemäße Verfahren, die an sich für die Aldokondensation üblichen und bekannten Basen einzusetzen, während sich nach dem Verfahren der DT-OS 2507 461 befriedigende Ausbeuten an Dimethylolalkanal nur erzielen ließen, wenn als Basen tertiäre aliphatische Amine verwendet würden, in denen wenigstens ein Alkylrest stark verzweigt ist, insbesondere Neopentyl-(N)-dialkylamine, z.B. Dimethylaminoneopentanol.

Bevorzugt wird die erfindungsgemäße Umsetzung im Temperaturbereich zwischen etwa -5^OC und O^OC durchgeführt.

Als aliphatische Reste kommen gegebenenfalls substituierte, geradkettige oder verzweigte Alkylreste mit bis zu 12, insbesondere 1 bis 6 Kohlenstoffatomen in Frage; als Substituenten dieser Reste kommen unter den Reaktionsbedingungen inerte Gruppen, insbesondere Alkylgruppen oder

Le A 17 758

- 3 -

809830/0260

Alkoxygruppen mit jeweils 1 bis 3 Kohlenstoffatomen 2702582 Frage. Beispielsweise seien als Aldehyde der Formel II genannt:

3-Athyl-, 3-n-Propyl-, 3-Isopropyl-, 3-n-Butyl-, 3-Isobutyl-, 3-sek.-Butyl-, 3-tert.-Butyl-butanal sowie entsprechende -n-pentanale, -n-hexanale, -n-heptanale; 4-Athyl-, 4-n-Propyl-, 4-Isopropyl-, 4-n-Butyl-, 4-Isobutyl-, 4-sek.-Butyl-, 4-tert.-Butyl-pentanale, -n-hexanale, -nheptanale; 5-Xthyl-, 5-n-Propyl-, 5-Isopropyl-, 5-n-Butyl-, 5-Isobutyl-, 5-sek.-Butyl-, 5-tert.-Butyl-n-hexanale, -n-heptanale; 3-Methyl-hexanal, 3-Methyl-heptanal; 4-Methyl-pentanal, 4-Methyl-heptanal, 5-Methyl-hexanal, 5-Methylheptanal; 3,3,5-Trimethyl-n-pentyl-, 3,3-Diäthylpentyl-, 4,4-Diathylpentyl-, 3,3-Dimethyl-n-butyl-, 3,3-Dimethyl-n-pentyl-, 5,5-Dimethylheptyl-, 3,3-Dimethylheptyl-, 3,3,4-Trimethylpentyl-, 3,4-Dimethylheptyl-, 3,5-Dimethylheptyl-, 4,4-Dimethylheptyl-, 3,3-Diathylhexyl-, 4,4-Dimethylhexyl-, 4,5-Dimethylhexyl-, 3,4-Dimethylhexyl-, 3,5-Dimethylhexyl-, 3,3-Dimethylhexyl-, 3,4-Diäthylhexyl-, 3-Methyl-4-äthylpentyl-, 3-Methyl-4-äthylhexyl-, 3,3,4-Trimethylpentyl-, 3,4,4-Trimethylpentyl-, 3,3,4-Trimethylhexyl-, 3,4,4-Trimethylhexyl-, 3,3,4,4-Tetramethylpentylaldehyd; bevorzugt sind Propanal, n-Butanal, n-Pentanal, 3-Methylbutanal, n-Hexanal, 3-Methylpentanal, n-Heptanal, 4-Methylhexanal, n-Octanal.

Das erfindungsgemäße Verfahren sei am Beispiel des Butyraldehyds durch nachstehendes Reaktionsschema verdeutlicht.

In der ersten Reaktionsstufe wird der Aldehyd der Formel II mit Formaldehyd in einem Molverhältnis von wenigstens 1:8, bevorzugt im Molverhältnis 1:8 bis 1:30 in Gegenwart von Basen im vorstehend angegebenen erfindungsgemäßen Temperaturbereich umgesetzt.

Formaldehyd wird im allgemeinen als wäßrige Lösung, bevorzugt mit einem Gehalt von 20 bis 40 Gew. Formaldehyd, zweckmäßigerweise mit handelsüblicher Konzentration, eingesetzt. Als Basen kommen die für die Aldolkondensation bekannten und üblicherweise verwendeten Basen in Betracht. Beispielsweise seien genannt Hydroxide und Carbonate von

Beispielsweise seien genannt Hydroxide und Carbonate von Alkali- und Erdalkalimetallen und tertiäre Amine; es können auch Gemische dieser Basen verwendet werden.

Als tertiäre Amine kommen heterocyclische, cycloaliphatische und bevorzugt aliphatische tertiäre Amine in Betracht, beispielsweise Trimethylamin, Tri-n-propylamin, Tri-isopropylamin, Tri-n-butylamin, Triisobutylamin, Tri-tert.-butylamin, ebenso unsymmetrische Trialkylamine wie Methyldiisopropylamin oder Dimethyl-tert.-butylamin; Diamine wie

Le A 17 758

- 5 -

N,N-Tetramethyl-äthylendiamin; N,N-Dimethylcyclohexylamin; N-Methyl-pyrrolidin, N-Methyl-piperidin, N-Methyl-morpholin; durch weitere funktionelle Gruppen substituierte Amine wie N,N-Dimethylaminoäthanol.

Weiterhin kommen auch araliphatische Amine wie Tribenzylamin sowie Polyamine mit sekundären und primären Aminogruppen in Frage wie Triäthylendiamin, Tetramethylendiamin; auch Tetraalkylammoniumhydroxide können als Basen
eingesetzt werden.

Im allgemeinen werden im erfindungsgemäßen Verfahren Basen in einer Menge von 0,01 bis 0,3 Mol je Mol Aldehyd der Pormel II verwendet; der pH-Wert der Reaktionslösung soll 9 bis 12, vorzugsweise 11 bis 12 betragen.

Bei der Durchführung der ersten Stufe des erfindungsgemäßen Verfahrens kann es vorteilhaft sein, dem Gemisch des Aldehyds der Formel II und dem wäßrigen Formaldehyd organische Lösungsmittel zuzusetzen, um eine bessere Löslichkeit des Aldehyds der Formel II in der wäßrigen Formaldehydlösung oder eine homogene Lösung zu erreichen.

Als solche organischen Lösungsmittel kommen die dafür bekannten Lösungsmittel in Frage, bevorzugt niedere aliphatische Alkohole wie Methanol, Äthanol, Propanol und Isopropanol; alicyclische Äther wie Tetrahydrofuran und Dioxan.

Die Menge des Lösungsmittels, die zweckmäßigerweise verwendet wird, richtet sich nach der Art des Aldehyds der Formel II und kann gegebenenfalls durch einige Vorversuche leicht bestimmt werden.

МАОЧЕКВЕНТ

Die erste Stufe des erfindungsgemäßen Verfahrens kann sowohl diskontinuierlich als auch kontinuierlich durchgeführt werden. Bei diskontinuierlicher Arbeitsweise kann man z.B. den Aldehyd der Formel II, Formaldehydlösung und die Base im gewählten Verhältnis und gegebenenfalls das organische Lösungsmittel unter Rühren bei der gewählten Temeratur zusammengeben und das Reaktionsgemisch eine entsprechende Zeit bei der Reaktionstemperatur halten.

Im allgemeinen werden für die Durchführung der Aldolkondensation, das heißt der ersten Reaktionsstufe, Reaktionszeiten zwischen 2 und 24 Stunden, insbesondere 5 bis 12 Stunden, benötigt. Dabei kann die im Einzelfall erforderliche Reaktionszeit in üblicher Weise durch Verfolgen des Reaktionsverlaufs mit analytischen Methoden oder durch einige wenige Vorversuche leicht bestimmt werden.

Im allgemeinen wird diese erste Stufe des erfindungsgemäßen Verfahrens bei Normaldruck durchgeführt; es ist jedoch auch möglich, bei vermindertem oder erhöhtem Druck zu arbeiten.

In einer besonderen Ausführungsform des erfindungsgemäßen Verfahrens wird die erste Stufe des Verfahrens, nämlich die Aldolkondensation, in Gegenwart von Ionen eines Elementes der VII. und/oder VIII. Gruppe und/oder I. und/oder II. Nebengruppe des Periodischen Systems der Elemente, bevorzugt der Elemente Kobalt, Nickel, Kupfer, Mangan, Zink, Silber und/oder Kadmium durchgeführt.

Diese Ionen werden dem Reaktionsgemisch zweckmäßig in Form wasserlöslicher Salze in einer Menge von 0,001 bis 0,03,

Le A 17 758

- 7 -

809830/0260

ORIGINAL INSPECTED

bevorzugt0,002 bis 0,01 Mol je Mol des Aldehyds der Formel II zugesetzt; dabei ist die Art des Anions nicht von Bedeutung.

Das als Reaktionsprodukt der ersten Stufe des erfindungsgemäßen Verfahrens erhaltene 2,2-Dimethylolalkanal wird an
schließend in üblicher Weise zum Trimethylolpropan der
Formel I reduziert. Dabei ist es nicht notwendig, das
2,2-Dimethylolalkanal vor der Reduktion zu isolieren. Vorteilhaft wird man jedoch den überschüssigen Formaldehyd
und das gegebenenfalls verwendete Lösungsmittel vor der
Reduktion teilweise oder vollständig abtrennen. Dies kann
beispielsweise durch Destillation, vorzugsweise unter vermindertem Druck, oder durch das aus der PT-OS 2 507 461
bekannte Strippen erfolgen.

In der zweiten Stufe des erfindungsgemäßen Verfahrens erfolgt die Reduktion des erhaltenen 2,2-Dimethylolalkanals zum Endprodukt, dem Trimethylolalkan in an sich bekannter Weise. Sie kann sowohl mit katalytisch aktiviertem als auch mit nascierendem Wasserstoff erfolgen. Ferner kann das 2,2-Dimethylolalkanal auch mit Alkylaminboranen und/oder Borhydriden der Alkali- und Erdalkalimetalle reduziert werden.

Bevorzugt wird das in der ersten Stufe des erfindungsgemäßen Verfahrens erhaltene 2,2-Dimethylolalkanal in Gegenwart eines Hydrierkatalysators bei erhöhtem Wasserstoffdruck hydriert.

Wie bereits ausgeführt, kann man das Reaktionsgemisch der ersten Stufe entweder ohne weitere Vorbehandlung oder aber

Le A 17 758

- 8 -

809830/0280

nach Abtrennung niedrig siedender Anteile der katalytischen Hydrierung zuführen, wobei es jedoch vorteilhaft sein kann, als Base verwendetes Amin und den im Überschuß eingesetzten Formaldehyd wiederzugewinnen. Beispielsweise kann man das erhaltene Reaktionsgemisch der ersten Stufe andestillieren um wenigstens einen Teil des überschüssigen Formaldehyds und gegebenenfalls Amins wiederzugewinnen, beispielsweise im Druckbereich zwischen O,5 und 8 bar.

Es kann ferner zweckmäßig sein, den pH-Wert des in der ersten Stufe erhaltenen Reaktionsgemisches vor der Hy-drierung durch Säurezugabe in üblicher Weise auf den für die Hydrierung günstigsten Wert einzustellen.

Hat man überschüssigen Formaldehyd, gegebenenfalls Lösungsmittel und Amin ganz oder teilweise entfernt, so kann es
weiterhin zweckmäßig sein, den Eindampf- oder Destillationsrückstand vor der Hydrierung mit Wasser oder einem anderen
üblichen Lösungsmittel, z.B. Dioxan oder Isopropanol, zu
verdünnen.

Im allgemeinen wird im Temperaturbereich zwischen Raumtemperatur (etwa 20°C) und 200°C, vorzugsweise von etwa 50 bis 170°C, insbesondere zwischen 80 bis 130°C hydriert. Der Wasserstoffdruck kann dabei 1 bis 500 bar, vorzugsweise 50 bis 400 bar, insbesondere 100 bis 300 bar betragen.

Als Hydrierkatalysatoren kommen solche in Frage, die als katalytisch wirksamen Bestandteil ein Element der 8. Gruppe und/oder der 1. Nebengruppe des Periodensystems enthalten, d.h. eines der Elemente Eisen, Kobalt, Nickel, Ruthenium, Rhodium, Palladium, Osmium, Iridium, Platin und/oder Kupfer, Silber, Gold.

Le A 17 758

- 9 -

Bevorzugt seien genannt Platin, Ruthenium, Kobalt, Nickel und Kupfer.

Diese Katalysatoren können in Form von Skelett-, Trägeroder Mischkatalysatoren zur Anwendung kommen.

Bevorzugt werden Mischkatalysatoren auf Basis Nickel und Kobalt verwendet, insbesondere solche, die als weitere Bestandteile Chrom, Aluminium, Magnesium, Barium, Zink, Mangan, Thorium und/oder Kupfer enthalten, beispiels-weise Nickelchromit-Katalysatoren der Zusammensetzung Ni-Cr-Al-Cu, Ni-Cr-Zn-Ba, Ni-Cr-Mg-Th-Ba-Cu, oder Kobalt-katalysatoren der Zusammensetzung Co-Mg-Cu, Co-Mn-Cu.

Die Hydrierung kann sowohl diskontinuierlich als auch kontinuierlich in üblicher Weise durchgeführt werden, z.B. in Rührautoklaven oder einem Reaktionsrohr. Zu Durchführung der Hydrierung sind die üblichen apparativen Anordnungen der verschiedensten Art geeignet. Dabei ist es möglich, die Hydrierung als Sumpfphasen- oder als Rieselphasen-Verfahren durchzuführen.

Diskontinuierlich wird die Hydrierung bevorzugt in üblicher Weise als Sumpfphasen-Verfahren in einem Autoklaven in Gegenwart von pulverförmigen Katalysatoren durchgeführt.

Besonders vorteilhaft kann die Hydrierung kontinuierlich durchgeführt werden. Dabei kann man einmal in üblicher Weise mit pulverförmigem Katalysator, z.B. nach dem Blasensäulenprinzip, in der Weise arbeiten, daß das flüssige Ausgangsprodukt, in dem der Katalysator suspendiert ist, zusammen mit Wasserstoff im Gleichstrom durch eine Reak-

tor-Kaskade geleitet wird, oder mit stückigem Katalysator, z.B. nach dem Rieselphasenprinzip in der Weise, daß
das Ausgangsprodukt flüssig über den im Reaktionsrohr befindlichen, stationären Katalysator rieselt, während der
Wasserstoff im Gleichstrom oder Gegenstrom durch das
Reaktionsrohr geleitet wird. Vorteilhaft kann dabei überschüssiger Wasserstoff im Kreis geführt werden.

Die Aufarbeitung nach beendeter Hydrierung erfolgt in üblicher Weise. Gegebenenfalls wird zuerst der Hydrierkatalysator abgetrennt, z.B. durch Abfiltrieren. Die Abtrennung des als Reaktionsprodukt erhaltenen Trimethylolalkans kann ebenfalls in üblicher Weise erfolgen, z.B. durch Destillation unter vermindertem Druck. Dabei kann es zweckmäßig sein, die Destillation in zwei oder mehr Stufen durchzuführen. In einer ersten Stufe wird das nach der Hydrierung erhaltene Gemisch bei Drücken von z.B. 40 bis 70 Torr destilliert, wobei die niedrig siedenden Verbindungen wie Methanol, das durch Hydrierung von gegebenenfalls noch anwesendem Formaldehyd entstanden ist, sowie gegebenenfalls noch vorhandenes Amin und gegebenenfalls organisches Lösungsmittel aus der ersten Reaktionsstufe abgetrennt. In einer weiteren Destillationsstufe wird dann das erhaltene Trimethylolalkan unter vermindertem Druck, beispielsweise zwischen 0,1 und 5 Torr, destilliert, wobei es, z.B. im Falle des Trimethylolpropans bei etwa 160 bis 170°C, als Kopfprodukt abgenommen werden kann.

Die Trimethylolalkane der Formel I, die nach dem erfindungsgemäßen Verfahren erhalten werden können, insbesondere das Trimethylolpropan, sind Zwischenprodukte von

technischer Bedeutung für die Herstellung von Weichmachern, Lackrohstoffen, Polyestern und Polyurethanen.

Der technische Fortschritt des erfindungsgemäßen Verfahrens, insbesondere für die Herstellung von Trimethylolpropan, liegt in folgendem begründet. Zwar war es nach dem Verfahren der DT-OS 2 507 461 möglich, durch die zweistufige Herstellung der Trimethylolalkane den unerwünschten Zwangsanfall von Formiat nach dem Stand der Technik zu vermeiden, jedoch war zur Reaktion des Aldehyds der Formel II mit Formaldehyd die Gegenwart von schwer zugänglichen Aminen notwendig, um befriedigende Ausbeuten zu erreichen. Nach dem erfindungsgemäßen Verfahren werden nun noch bessere Ausbeuten der Kondensation in Gegenwart üblicher Basen erzielt.

Dieser überraschende Fortschritt beruht auf der Verwendung eines großen Überschusses an Formaldehyd und tiefer Temperaturen. Er war nicht vorauszusehen, denn nach dem Stand der Technik waren stets höhere Temperaturen angewendet worden, um die Reaktion zu beschleunigen, und der Überschuß an Formaldehyd gering gehalten worden, um Nebenreaktionen zu vermeiden.

- 12 -

Beispiel 1

1000 g wäßriger Formaldehydlösung (etwa 30 Gew.-% Formaldehyd, 10 Mol) wurden auf O^OC abgekühlt und mit 25 g 20 Gew.-%iger Natronlauge (0,12 Mol) und 25 ml (0,18 Mol) Triäthylamin versetzt. Zu diesem Gemisch wurden im Laufe von 15 Minuten unter Einhaltung einer Temperatur von etwa O^OC 72 g (1,0 Mol) n-Butanal unter Rühren zugetropft. Anschließend wurde das Reaktionsgemisch noch 45 Stunden bei Temperaturen zwischen etwa -4^OC bis etwa O^OC stehen gelassen.

Danach wurde mit Essigsäure neutralisiert und 100 g der Lösung in einem Autoklaven in Gegenwart von 15 g eines Ni-Cr-Al-Katalysators bei etwa 110^OC und 200 bis 280 bar Wasserstoffdruck hydriert.

Die Analyse des Hydriergemisches ergab umgerechnet eine

Die Analyse des Hydriergemisches ergab umgerechnet eine Ausbeute von 88,5 % der Theorie an Trimethylolpropan, bezogen auf das eingesetzte n-Butanal.

Beispiel 2

In 1000 g einer wäßrigen Formaldehydlösung (etwa 30 Gew.-% Formaldehyd) wurde 1 g 0,005 Mol) Kupferacetat gelöst. Die Lösung wurde auf etwa 0°C abgekühlt und bei dieser Temperatur wurden unter Rühren zunächst 25 g 20 Gew.-% iger Natronlauge und dann 72 g n-Butanal zugetropft. Das Reaktionsgemisch anschließend 41 Stunden lang bei Temperaturen von etwa -4°C bis etwa 0°C stehen gelassen und danach mit Essigsäure neutralisiert.

100 g dieser Lösung wurden anschließend in Gegenwart von 15 g eines Ni-Cr-Al-Katalysators bei etwa 110°C und 230 bis 280 bar Wasserstoffdruck hydriert.

Le A 17 758

- 13 -

2702**582**

Die Umrechnung der Analyse des hydrierten Reaktionsproduktes ergab eine Ausbeute an Trimethylolpropan von 89.5 % der Theorie.

Beispiel 3

In 2500 g einer wäßrigen Formaldehydlösung (etwa 30 Gew.-% Formaldehyd, 25 Mol) wurden 2,5 g (0,012 Mol) Kupfer-II-Acetat gelöst. Bei 0°C wurden der Lösung zunächst 62,5 ml (0,45 Mol) Triäthylamin und dann 62,5 g einer 20 Gew.-%igen Natronlauge zugetropft. Im Verlauf einer halben Stunde wurden bei etwa 0°C in diese Lösung 180 g (2,5 Mol) n-Butanal unter Rühren eingetropft.

Anschließend wurde 5 Stunden bei gleicher Temperatur stehen gelassen und dann 10,74 g der Lösung mit Essigsäure angesäuert.

Zu dieser Probe wurde eine Lösung von 1,9 g (0,032 Mol) Dimethylaminboran, gelöst in 25 ml Methanol, zugegeben und das Gemisch eine Stunde unter Rückfluß zum Sieden erhitzt.

Das so hydrierte Reaktionsprodukt wurde analysiert und die Analyse auf den Gesamtansatz umgerechnet.

Die Ausbeute betrug 94,5 % der Theorie Trimethylolpropan, bezogen auf das eingesetzte n-Butanal.

Beispiel 4

Ein Gemisch von 1000 g wäßriger Formaldehydlösung (etwa 30 Gew.-% Formaldehyd und 72 g n-Butanal) wurde auf etwa 0°C abgekühlt und bei dieser Temperatur unter Rühren und

Le A 17 758

- 14 -

Kühlen 10 g (0,13 Mol) Calciumhydroxid in Pulverform eingetragen und das Gemisch dann 24 Stunden bei etwa -4° C bis etwa 0° C stehen gelassen.

10,425 g des so erhaltenen Reaktionsgemisches wurden mit Essigsäure angesäuert und nach Zugabe von 1,9 g Trimethylaminburan, gelöst in 25 ml Methanol, eine Stunde unter Rückfluß zum Sieden erhitzt.

Anschließend wurde die Probe analysiert und die Analyse auf den Gesamtansatz umgerechnet. Die Ausbeute betrug 88, der Theorie Trimethylolpropan, bezogen auf das eingesetzte n-Butanal.

Beispiel 5

In eine auf etwa O^OC abgekühlte Lösung von 2 g (0,01 Mol) Kupfer-II-Acetat in 2000 g einer wäßrigen Formaldehydlösung (etwa 30 Gew.-% Formaldehyd) wurden unter Rühren und Einhaltung der Temperatur zunächst 50 ml (0,36 Mol) Triäthylamin und dann 144 g (2,0 Mol) n-Butanal eingetropft. Anschließend wurde das Reaktionsgemisch 96 Stunden bei etwa -2^OC bis etwa O^OC stehen gelassen.

Danach wurde eine Probevon 10,49 g entnommen, mit Essigsäure angesäuert und nach Zugabe von 1,9 g Trimethylaminboran, gelöst in 25 ml Methanol, eine Stunde unter Rückfluß zum Sieden erhitzt.

Die Umrechnung der Analyse dieser Probe ergab eine Ausbeute von 74,6 % der Theorie Trimethylolpropan bezogen auf das eingesetzte n-Butanal.

Beispiel 6

In 5000 g einer wäßrigen Formaldehydlösung (30 Gew.-% Form-

Le A 17 758

- 15 -

aldehyd, 50 Mol) wurden unter Kühlung hei etwa O^OC nacheinander 5 g (0,03 Mol) Mangan-II-Acetat, 125 ml (0,9 Mol)
Triäthylamin und 125 g einer 20 Gew.-tigen Natronlauge unter
Rühren langsam zugegeben. Anschließend wurde bei gleicher
Temperatur im Verlauf von einer halben Stunde unter Rühren
und Kühlen 360 g (5,0 Mol) n-Butanal zugetropft.
Dann wurde das Reaktionsgemisch 24 Stunden lang bei Tempera-

Dann wurde das Reaktionsgemisch 24 Stunden lang bei Temperaturen zwischen -2° C und -8° C stehen gelassen und anschließend bei etwa -8° C mit Essigsäure neutralisiert.

Unter Normaldruck wurde das Reaktionsgemisch dann in einem Sambay-Verdampfer bei 760 Torr eingedampft, wobei ein Großteil des überschüssigen Formaldehyds überdestillierte. Der Eindampfrückstand betrug 1948 g.

61 g dieses Rückstandes wurden mit 61 g Isopropanol verdünnt und in Gegenwart von 15 g eines Ni-Cr-Al-Katalysators im Autoklaven bei etwa 110°C und 200 bis 280 bar Wasserstoffdruck hydriert.

Die Analyse des isolierten Produktes wurde auf den Gesamtansatz umgerechnet; die Ausbeute an Trimethylolpropan betrug 88, & der Theorie, bezogen auf eingesetztes n-Butanal.

Beispiel 7

Zu 2000 g einer wäßrigen Formaldehydlösung (30 Gew.-% Formaldehyd) wurden bei O^OC unter Rühren und Kühlung 50 g 20 Gew. %ige Natronlauge zugetropft und anschließend ebenfalls bei O^OC 144 g n-Butanal im Verlauf von 45 Minuten. Das Reaktionsgemisch blieb 24 Stunden bei Temperaturen zwischen O^OC bis -6^OC stehen.

Anschließend wurde das Reaktionsgemisch mit Essigsäure neutralisiert und die Lösung in einem Sambay-Verdampfer

Le A 17 758

- 16 -

bei 760 Torr auf 34,4 % ihres Gewichtes eingedampft. 130 g des Eindampfrückstandes wurden anschließend in 500 ml Aceton aufgenommen, filtriert und im Rotationsverdampfer im Wasserstrahl-Vakuum eingedampft.

Der erhaltene Rückstand wurde im Gewichtsverhältnis 1:1 mit Wasser verdünnt und im Autoklaven in Gegenwart von 15 g eines Ni-Cr-Al-Katalysators bei etwa 110°C und 200 bis 280 bar Wasserstoffdruck hydriert.

Durch Umrechnung der Analyse ergab sich eine Ausbeute von 85,8 % der Theorie an Trimethylolpropan, bezogen auf den eingesetzten n-Butyraldehyd.

Beispiel 8

Zu 2000 g einer wäßrigen Formaldehydlösung (etwa 30 Gew.-% Formaldehyd) wurde 1 g (0,005 Mol) Kupfer-II-Acetat gegeben und in die auf 0°C abgekühlte Lösung nacheinander unter Rühren und Kühlen bei dieser Temperatur 30 ml (0,22 Mol) Triäthylamin, 50 g einer 20 Gew.-%igen Natronlauge und danach 116 g (2,0 Mol) Propanal zugetropft. Anschließend wurde das Reaktionsgemisch 24 Stunden lang auf Temperaturen zwischen etwa -1°C bis -5°C gehalten und dann im Sambay-Verdampfer auf 38 % seines Gewichtes eingedampft.

150 g dieses Eindampfrückstandes wurden in 600 ml Aceton aufgenommen, filtriert und in einem Rotationsverdampfer im Wasserstrahlvakuum weiter eingeengt.

Der erhaltene Rückstand wurde im Gewichtsverhältnis 1:1 mit Wasser verdünnt und im Autoklaven in Gegenwart von 15 g eines Ni-Cr-Al-Katalysators bei etwa 110°C und 200

- 17 -

bis 280 bar Wasserstoffdruck hydriert.

Die Umrechnung der Analyse des Hydriergemisches ergab eine Ausbeute von 81,4 % der Theorie an Trimethyloläthan, bezogen auf eingesetztes Propanal.

Beispiele 9 bis 15

In den nachstehenden Beispielen 9 bis 15 wurde die jeweils angegebene Menge wäßriger Formaldehydlösung (etwa 30 Gew.-% Formaldehyd) jeweils mit den angegebenen Mengen einer oder mehrerer Basen bei 0°C versetzt und zu dieser Mischung ebenfalls bei 0°C unter Rühren die angegebene Menge n-Butanal im Verlauf von etwa einer halben Stunde zugetropft und das Reaktionsgemisch anschließend 6 Stunden lang bei etwa 0°C stehen gelassen.

Danach wurde eine Probe von etwa 10 g des Reaktionsgemisches mit Essigsäure angesäuert und mit 1,9 g Dimethylminboran, gelöst in 25 ml Methanol, versetzt. Danach wurde eine Stunde unter Rückfluß zum Sieden erhitzt und anschließend analysiert.

In der nachstehenden Tabelle I sind für jedes Beispiel die verwendeten Basen nach Art und Menge sowie die durch Umrechnung der Analysen auf den Gesamtansatz gefundenen Ausbeuten an Trimethylolpropan (TMP) in % der Theorie angegeben.

- 18 -

۰	4	ı
9	P	l
9	ŧ	l
É	ģ	ı

c ₅ -biol		ı		1	1,5	4,5	•
	81,5	78,6	6,98	. 62	57,6	57,1	55
Zeit M	9	9	9	9	9	9	8
Base [4]	5 NaOH 17 TKA	10 Ca (OH),	5 NaCH 18 TKA 1 Cd-Acetat	5 NaCH 18 TKA 1 CU-Acetat	4,3 NaCH	4,2 NaOH	10 Ca(CH) ₂
Formalin (30 %ig) (Mol Formaldehyd)	1000 (10)	1000 (10)	1000 (10)	(10)	230 (2,3)	230 (2,3)	230 (2,3) 770g H ₂ 0
Butyraldehyd (Mol)	-		-	-	-	•	- -
Beispiel	6	o O	=	2	13.	14	15

Beispiele 13 bis 15 sind Vergleichsbeispiele

THIS PAGE BLANK (USPTO)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
 □ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
 □ FADED TEXT OR DRAWING
 □ BLURRED OR ILLEGIBLE TEXT OR DRAWING
 □ SKEWED/SLANTED IMAGES
 □ COLOR OR BLACK AND WHITE PHOTOGRAPHS
 □ GRAY SCALE DOCUMENTS
 □ LINES OR MARKS ON ORIGINAL DOCUMENT

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

