Description

Glass passivated triacs in a plastic envelope, intended for use in applications requiring high bidirectional transient and blocking voltage capability and high thermal cycling performance.

Typical applications include motor control, industrial and domestic lighting, heating and static switching.

Applications:

- ♦ Motor control
- ♦ Industrial and domestic lighting
- ♦ Heating
- ♦ Static switching

Features

- ♦ Blocking voltage to 600 V
- ◆ On-state RMS current to 8 A

SYMBOL	PARAMETER	Value	Unit
VDRM	Repetitive peak off-state voltages	600	V
IT (RMS)	RMS on-state current (full sine wave)	8	А
Non-repetitive peak on-state current (full cycle,Tj initial=25°C)		84	А

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
$R_{\text{th(j-c)}}$	Junction to case(AC)		-	2.5	-	°C/W
$R_{th(j-a)}$	Junction to ambient		-	60	-	°C/W

BTA08-600C

Triacs

HAOPIN MICROELECTRONICS CO.,LTD.

Limiting values in accordance with the Maximum system(IEC 134)

SYMBOL	PARAMETER	CONDITIONS			MIN	Value	UNIT
V _{DRM}	Repetitive peak off-state Voltages				-	600	V
I _{T(RMS)}	RMS on-state current	T _c =100℃			-	8	Α
l .	Non repetitive surge	Full cycle	F=50H _z	t=20ms	-	80	Α
TSM	peak on-state current	Tj initial =25℃	F=60H _z	t=16.7ms	-	84	А
l ² t	I ² t value for fusing	T _p =10ms			-	36	A ² S
dI/dt	Critical rate of rise of on-state current	$I_{g}=2\times I_{gT}$, $tr \leq 100$ ns $F=120H_{z}$ $Tj=125^{\circ}C$		-	50	A/μs	
I _{GM}	Peak gate current	tp=20us Tj=125℃			-	4	А
I _{DRM}	V _{DRM} =V _{RRM}	Tj=25℃			-	5	μА
I _{RRM}	V _{DRM} =V _{RRM}	Tj=125℃			-	1	mA
$P_{G(AV)}$	Average gate power	Tj=125℃			-	1	W
T _{stg}	Storage temperature range				-40	150	°C
T _j	Operating junction Temperature range				-40	125	$^{\circ}$

T₁=25°C unless otherwise stated

1j-25 O diness otherwise stated								
SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT		
Static characteristics								
I _{GT}		V _D =12V; R _L =30 Ω	1-11-111	-	-	25	mA	
			IV			50	mA	
I _L		I _G =1.2 I _{GT}	I-III-IV II		-	40 80	mA mA	
I _H		I _τ =500mA		-	-	25	mA	
V _{GT}		V _D =12V; R _L =30 Ω	ALL	-	-	1.3	V	
$V_{\sf GD}$		$V_D = V_{DRM} R_L = 3.3 K \Omega Tj = 125 ^{\circ}C$	ALL	0.2	-	-	V	
dV/dt		V _D =67%V _{DRM} gate open;T _J =1	25℃	200	-	-	V/μs	
(dV/dt)c	(dl/dt)c=3.5A/ms	T _J =125℃		5	-	-	V/μs	

Dynamic Characteristics

V _{TM}	I _{τм} =11A tp=380 μ s	T _J =25℃	-	-	1.55	V
V _{TO}	Threshold voltage	T _J =125℃	-	-	0.85	V
R _d	Dynamic resistance	T _J =125℃	-	-	50	mΩ

Description

00

3

Fig. 2-2: RMS on-state current versus ambient temperature (printed circuit board FR4, copper thickness: $35\mu m$),full cycle.

4

5

6

8

Fig. 4: On-state characteristics (maximum values).

Description

Fig. 6: Non-repetitive surge peak on-state

Fig. 7: Relative variation of gate trigger current, holding current and latching current versus junction temperature (typical values).

Fig. 8-1: Relative variation of critical rate of decrease of main current versus (dV/dt)c (typical values). Snubberless & Logic Level Types

Fig. 8-2: Relative variation of critical rate of decrease of main current versus (dV/dt)c (typical values). Standard Types

Fig. 9: Relative variation of critical rate of decrease of main current versus junction temperature.

Fig. 10: DPAK and D 2 PAK Thermal resistance junction to ambient versus copper surface under tab (printed circuit board FR4, copper thickness: 35 μ m).

MECHANICAL DATA

Dimensions in mm

Net Mass: 2g TO-220AB

		ı	DIMEN	ISIONS	;	
REF.	Millimeters				;	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	15.20		15.90	0.598		0.625
a1		3.75			0.147	
a2	13.00		14.00	0.511		0.551
В	10.00		10.40	0.393		0.409
b1	0.61		0.88	0.024		0.034
b2	1.23		1.32	0.048		0.051
С	4.40		4.60	0.173		0.181
c1	0.49		0.70	0.019		0.027
c2	2.40		2.72	0.094		0.107
е	2.40		2.70	0.094		0.106
F	6.20		6.60	0.244		0.259
I	3.75		3.85	0.147		0.151
14	15.80	16.40	16.80	0.622	0.646	0.661
L	2.65		2.95	0.104		0.116
12	1.14		1.70	0.044		0.066
13	1.14		1.70	0.044		0.066
М		2.60			0.102	