ELEC 341 – Graded Assignments

Assignment A5 State-Space Representation

100 Marks

Required Files

Available on Canvas

e341-a5.pdf

a5Submit.p

e341-APE.pdf

Assignment description (this document)

Grading script (LATEST version)

Instructions for submitting graded work (for reference)

Topics

State Space

• state transition matrix

Output Matrices

individual responses

Total Response

SIMO systems

2024-10-07

Develop a State-Space representation of Figure 1 (from Assig A3).

Use the state $\overline{\mathbf{x}}$ and output $\overline{\mathbf{y}}$ vectors: $\overline{\mathbf{x}} = [\mathbf{v_0} \ \mathbf{v_1} \ \mathbf{v_2} \ \mathbf{v_3} \ \mathbf{f_0} \ \mathbf{f_1} \ \mathbf{f_{20}} \ \mathbf{f_{32}}]^\mathsf{T}$

Each distance **d** is in (m). $\overline{y} = [d_3 \ f_{21}]^T$

Each speed \mathbf{v} is in (m/s).

Each state force f is a spring **TENSION** force & f_{21} is a damper **TENSION** force, all in (N).

Find the A&B state matrices.

1. 20 mark(s) State-Space Matrices

Q1.A (mixed) 8x8 MatrixQ1.B (mixed) 8x1 Matrix

Develop **C&D** output matrices. Avoid the 's' operator so you can use the ss() function.

Find G_{d3} : $G_{d3} = d_3/F_0$ Find G_{f21} : $G_{f21} = f_{21}/F_0$

2. 20 mark(s) Outputs

• Q2.Gd3 (m/N) LTI • Q2.Gf21 (pure) LTI

COW: Compare the step response of G_{d3} to what you got in **Assignment A3**. Update your **C&D** matrices to check the rest of **Assignment A3**.

Develop a State-Space representation of Figure 1 (this Assig A5).

Use the state $\overline{\mathbf{x}}$ and output $\overline{\mathbf{y}}$ vectors: $\overline{\mathbf{x}} = [\mathbf{v_0} \ \mathbf{v_1} \ \mathbf{v_2} \ \mathbf{v_3} \ \mathbf{f_0} \ \mathbf{f_1} \ \mathbf{f_{20}} \ \mathbf{f_{32}} \ \mathbf{i_w}]^\mathsf{T}$

Winding current $\mathbf{i}_{\mathbf{w}}$ is in (A). $\overline{\mathbf{y}} = [\mathbf{f}_0 \ \mathbf{f}_1 \ \mathbf{f}_{20} \ \mathbf{f}_{32}]^T$

Add gravity to each mass. $\overline{\mathbf{u}} = [\mathbf{V}_{in} \ \mathbf{g}]^T$ $\mathbf{g} = \mathbf{9.81} \ (\mathbf{m/s^2})$

Assume the vertical direction is as depicted in Assignment #3.

Find the **A&B** state matrices.

3. 20 mark(s) State-Space Matrices

Q3.A (mixed) 9x9 MatrixQ3.B (mixed) 9x2 Matrix

COW: Gravity is modeled as an external force applied each mass.

It becomes a MISO system, which is why the **B** matrix has a second column.

Elements that rotate are **not affected** by gravity.

Develop **C&D** output matrices. This is simple when all outputs are states.

Find the forced gain G_f : $G_f = f_{20}/V_{in}$ Find the gravitational gain G_g : $G_g = f_{20}/g$

4. 20 mark(s) Individual Gains

• Q4.Gf (pure) LTI
• Q4.Gg (Ns²/m) LTI

Get the step response of each individual gain.

Use super-position to find the total response when: $V_{in} = 120V$

Find rise-time T_r .

Find peak-time **T**_p.

Find settle-time **T**_s.

Find final value $\mathbf{y}_{\mathbf{f}}$.

Find peak value y_p .

Find percentage overshoot OS_{v^*}

5. 20 mark(s) Total Response

 Q5.Tr 	(s)	Scalar
 Q5.Tp 	(s)	Scalar
 Q5.Ts 	(s)	Scalar
 Q5.yf 	(N)	Scalar
 Q5.yp 	(N)	Scalar
 Q5.OSv 	(%)	Scalar

COW: Peak value can be a negative number. It all depends on the sign of the final value.

Blank Page