Partial differential equations

= PDE

- Numerical Solution of Partial Differential Equations, K.W. Morton and D.F. Mayers (Cambridge Univ. Press, 1995)
- Numerical Solution of Partial Differential Equations in Science and Engineering, L. Lapidus and G.F. Pinder (Wiley, 1999)
- Finite Difference Schemes and Partial Differential Equations, J.C. Strikwerda (Wadsworth, Belmont, 1989)

Examples for PDEs

examples for scalar boundary value problems (elliptic eqs.)

field Φ depends on \vec{x}

Poisson equation:

$$\Delta \Phi = \rho(\vec{x}), \quad \Phi(\Gamma) = \Phi_0$$

Dirichlet boundary condition

Laplace equation: $\Delta \Phi = 0$, $\nabla_{\mathbf{n}} \Phi(\Gamma) = \Psi_0$

von Neuman boundary condition

Examples for PDEs

example: vectorial boundary value problem

 $\vec{u}(\vec{x})$ is a vector field defined on space

$$\vec{\nabla}(\vec{\nabla}\vec{u}(\vec{x})) + (1 - \nu)\Delta\vec{u}(\vec{x}) = 0$$

Lamé equation of elasticity (elliptic eq.)

Examples for PDEs

wave equation

$$\Phi(\vec{x},t)$$

$$\frac{\partial^2 \Phi}{\partial t^2} = c^2 \Delta \Phi , \quad \Phi(\vec{x}, t_0) = \widetilde{\Phi}_0(\vec{x})$$

$$\Phi(\vec{x}, t_0) = \widetilde{\Phi}_0(\vec{x})$$

diffusion equation
$$\Phi(\Gamma, t) = \Phi_0(t)$$

$$\frac{\partial \Phi}{\partial t} = \kappa \, \Delta \Phi$$

initial boundary problem

$$v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z}$$

$$\vec{v}(\vec{x},t)$$
 vect

$$v_{x} \frac{\partial v_{y}}{\partial x} + v_{y} \frac{\partial v_{y}}{\partial y} + v_{z} \frac{\partial v_{y}}{\partial z}$$

$$v_{x} \frac{\partial v_{z}}{\partial x} + v_{y} \frac{\partial v_{z}}{\partial y} + v_{z} \frac{\partial v_{z}}{\partial z}$$

$$\vec{v}(\vec{x},t_0) = \vec{V}_0(\vec{x}), \quad p(\vec{x},t_0) = P_0(\vec{x})$$

$$\vec{v}(\Gamma,t) = \vec{v}_0(t)$$
, $p(\Gamma,t) = p_0(t)$

Navier – Stokes eq. for fluid motion

Discretization of space

Discretization of derivatives

first derivative
$$\frac{\partial \Phi}{\partial x} = \frac{\Phi(x_{n+1}) - \Phi(x_n)}{\Delta x} + O(\Delta x)$$
in 1d
$$= \frac{\Phi(x_n) - \Phi(x_{n-1})}{\Delta x} + O(\Delta x)$$

$$= \frac{\Phi(x_{n+1}) - \Phi(x_{n-1})}{2\Delta x} + O(\Delta x^2)$$

7

Discretization of derivatives

second derivative in one dimension

$$\frac{\partial^2 \Phi}{\partial x^2} = \frac{\Phi(x_{n+1}) + \Phi(x_{n-1}) - 2\Phi(x_n)}{\Delta x^2} + O(\Delta x^2)$$

or better

$$\frac{\partial^2 \Phi}{\partial x^2} = \frac{-\Phi(x_{n-2}) + 16 \Phi(x_{n-1}) - 30 \Phi(x_n) + 16 \Phi(x_{n+1}) - \Phi(x_{n+2})}{12 \Delta x^2} + O(\Delta x^4)$$

Discretization of derivatives

insert in $\left| \frac{\partial^i \Phi}{\partial x^i} = \frac{1}{\Delta x^i} \sum_{k=-l}^{l} a_k \Phi(x_{n+k}) \right|$ Taylor expansion:

$$\Phi(x_{n+k}) = \Phi(x_n) + k\Delta x \frac{\partial \Phi}{\partial x}(x_n) + \frac{k^2}{2} \Delta x^2 \frac{\partial^2 \Phi}{\partial x^2}(x_n) + \frac{k^3}{6} \Delta x^3 \frac{\partial^3 \Phi}{\partial x^3}(x_n) + O(\Delta x^4)$$

$$i=2 \implies$$

$$\frac{\partial^2 \Phi}{\partial x^2} = \frac{-\Phi(x_{n-2}) + 16\Phi(x_{n-1}) - 30\Phi(x_n) + 16\Phi(x_{n+1}) - \Phi(x_{n+2})}{12\Delta x^2} + O(\Delta x^4)$$

third derivative

$$\frac{\partial^3 \Phi}{\partial x^3} = \frac{-\Phi(x_{n-2}) + 2 \Phi(x_{n-1}) - 2 \Phi(x_{n+1}) + \Phi(x_{n+2})}{\Delta x^3} + O(\Delta x^2)$$

Derivatives in higher dimension

Be
$$\Delta x = \Delta y = \Delta z$$
.

2 d
$$\Delta \Phi \Delta x^2 = \Phi(x_{n+1}, y_n) + \Phi(x_{n-1}, y_n) + \Phi(x_n, y_{n+1}) + \Phi(x_n, y_{n-1}) - 4 \Phi(x_n, y_n)$$

Poisson equation

$$\Delta\Phi(\vec{x}) = \rho(\vec{x})$$

discretize one-dimensional space by x_n , n = 1,...,N

be
$$\Phi_n \equiv \Phi(x_n)$$

discretization of the Poisson equation:

$$\left| \Phi_{n+1} + \Phi_{n-1} - 2 \Phi_n = \Delta x^2 \cdot \rho(x_n) \right|$$

Dirichlet boundary conditions: $\Phi_0 = c_0$ and $\Phi_N = c_1$

 \Rightarrow System of N-1 coupled linear equations

11

Poisson equation in 1d

example: chain of N=5 with $\rho=0$ and Dirichlet boundary conditions

$$\begin{bmatrix} -2 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & -2 \end{bmatrix} \cdot \begin{bmatrix} \Phi_1 \\ \Phi_2 \\ \Phi_3 \\ \Phi_4 \end{bmatrix} = -\begin{bmatrix} c_0 \\ 0 \\ 0 \\ c_1 \end{bmatrix}$$

Poisson equation in 2d

two-dimensional discretized equation on grid $L \times L$:

$$(\Delta x = \Delta y)$$

$$\Phi_{i+1,j} + \Phi_{i-1,j} + \Phi_{i,j+1} + \Phi_{i,j-1} - 4 \Phi_{i,j} = \Delta x^2 \rho_{i,j}$$

replace indices i and j by k = i + (j-1)(L-2)

$$\left| \Phi_{k+1} + \Phi_{k-1} + \Phi_{k+L-2} + \Phi_{k-L+2} - 4 \Phi_k = \Delta x^2 \rho_k \right|$$

 \Rightarrow System of $N = (L-2)^2$ coupled linear

equations:

$$\vec{A} \cdot \vec{\Phi} = \vec{b}$$

15

Laplace equation in 2d

Example 5×5 lattice with $\rho = 0$ and $\Phi_m = \Phi_0$ for all $m \in \Gamma$, i.e. Dirichlet boundary condition with fixed Φ_0 on Γ .

Exact solution

$$\begin{bmatrix} \boldsymbol{a}_{11}\Phi_{1} & \dots & \boldsymbol{a}_{1N}\Phi_{N} \\ \dots & \dots & \dots \\ \boldsymbol{a}_{N1}\Phi_{1} & \dots & \boldsymbol{a}_{NN}\Phi_{N} \end{bmatrix} = \begin{bmatrix} \boldsymbol{b}_{1} \\ \dots \\ \boldsymbol{b}_{N} \end{bmatrix}$$

$$\vec{A} \cdot \vec{\Phi} = \vec{b}$$

$$\vec{\Phi}^{*} = \vec{A}^{-1}\vec{b}$$

$$\vec{A} \cdot \vec{\Phi} = \vec{b}$$

$$\vec{\Phi}^* = \vec{A}^{-1}\vec{b}$$

Gauss elimination procedure \Rightarrow matrix $\overset{\leftrightarrow}{A}$ triangular

$$q_{ik} = -\frac{a_{ik}}{a_{kk}}$$

$$d_{N}^{*} = \frac{b_{N}}{a_{NN}}$$
once matrix is triangular
$$a'_{jl} = a_{jl} + q_{jk}a_{kl}, \quad \forall j, l > k$$

$$b'_{i} = b_{i} + q_{ik}b_{k}$$

$$\Rightarrow O(N^{3}) \sim O(L^{3d})$$

$$b_{i}^{*} = \sum_{j=i}^{N-1} a_{jj+1}\Phi_{j+1}^{*}$$

Poisson equation in 2d

Independently of the size of the system each row or column has only maximally five non-zero matrix elements

 \Rightarrow sparse matrix

Invert with LU decomposition

Use sparse matrix solvers!

Sparse matrices

Store non-zero elements in a vector and also their coordinates i and j in vectors.

⇒ Yale Sparse Matrix Format example:

Iain Duff

Hanwell Subroutine Library

For more details see:

www.cise.ufl.edu/research/sparse/codes

19

Sparse matrix solvers

	_	100	5 E	ge featur	-		package	Authors, references	es, and availability URL and/or contact
	l		um degree I dissection triangular	I		l	BCSLIB-EXT	Ashcraft, Grimes, Lewis,	www.boeing.com
	l		3, 3 5	l			BCSLIB-EAT	and Pierce [6, 8, 9, 46]	phantom/bcslib-ext
				2	m		CHOLMOD	Davis, Hager, Chen, and	www.cise.ufl.edu/research/sparse
	€.	정	8 T E .	- 8 B	4		CHOLMOD	Rajamanickam [15]	www.cise.un.edu/research/sparse
	P Z	- A	inim ested ock to	8 4 4	E		CE	Davis	
	LU Cholesky LDL ^T QR	complex	Minimum Nested dis Block tris Profile	BLAS Parallel out-of-core	MATLAB		CSparse DSCDACK		www.cise.ufl.edu/research/sparse
package	7070	۰	AZMA	M 4 9	~	method	DSCPACK	Heath and Raghavan [40, 41, 47]	www.cse.psu.edu/~raghavan
BCSLIB-EXT	• • 2 •	•	• • • •	3 s •		multifrontal	GPLU	Gilbert and Peierls [37]	www.mathworks.com
CHOLMOD	- • 1 -	•	• •	3	•	left-looking supernodal	KLU	Davis and Palamadai	www.cise.ufl.edu/research/sparse
CSparse	• • • •		• - • -		•	various	LDL	Davis [14]	www.cise.ufl.edu/research/sparse
DSCPACK	- • 1 -	-	• • • •	3 d -		multifrontal	MA27	Duff and Reid [25]	www.cse.clrc.ac.uk/nag/hsl
GPLU	•	•	100000		•	left-looking	MA28	Duff and Reid [24]	www.cse.clrc.ac.uk/nag/hsl
KLU	•	•			•	left-looking	MA32	Duff [21]	www.cse.clrc.ac.uk/nag/hsl
LDL	- • 1 -	-		-0-0-	•	up-looking	MA37	Duff and Reid [26]	www.cse.clrc.ac.uk/nag/hsl
MA27	- • 2 -	•	•		-	multifrontal	MA38	Davis and Duff [16]	www.cse.clrc.ac.uk/nag/hsl
MA28	•	•				right-looking Markowitz	MA41	Amestoy and Duff [1]	www.cse.clrc.ac.uk/nag/hsl
MA32	•	•	•	1 - •	-	frontal	MA42	Duff and Scott [30]	www.cse.clrc.ac.uk/nag/hsl
MA37	•		•			multifrontal	HSL _{MP42}	Scott [51, 52, 53]	www.cse.clrc.ac.uk/nag/hsl
MA 38	•			3		unsymmetric multifrontal	MA46	Damhaug and Reid [12]	www.cse.clrc.ac.uk/nag/hsl
MA 41	•		•	3 s -		multifrontal	MA47	Duff and Reid [27]	www.cse.clrc.ac.uk/nag/hsl
MA 42	•	•	•	3 - •		frontal	MA48	Duff and Reid [28]	www.cse.clrc.ac.uk/nag/hsl
HSL_MP42	•	-		3 d •		frontal	HSL_MP48	Duff and Scott [32]	www.cse.clrc.ac.uk/nag/hsl
MA 46	•			3		finite-element multifrontal	MA49	Amestoy, Duff and Puglisi [4]	www.cse.clrc.ac.uk/nag/hsl
MA 47	- • 2 -		•	3		multifrontal	MA57	Duff [22, 29]	www.cse.clrc.ac.uk/nag/hsl
MA 48	•			3		left-looking	MA62	Duff and Scott [31]	www.cse.clrc.ac.uk/nag/hsl
HSL_MP48	•			3 d •	-	left-looking	HSL _{MP62}	Scott [53]	www.cse.clrc.ac.uk/nag/hsl
MA 49		-		3 8 -		multifrontal	MA67	Reid [23]	www.cse.clrc.ac.uk/nag/hsl
MA57	2 .			3		multifrontal	Mathematica	Wolfram Research, Inc. [56]	www.wolfram.com
MA62				3 - •		frontal	MATLAB	The MathWorks, Inc. [36]	www.mathworks.com
HSL_MP62		-		3 d •		frontal	Meschach	Steward and Leyk	www.netlib.org/c/meschach
MA67	2 .			3		right-looking Markowitz	MUMPS	Amestoy, Duff, Guermouche,	www.enseeiht.fr/apo/MUMPS
Mathematica	• • • •	•		3		various	1	Koster, L'Excellent, Pralet [2, 3, 5]	graal.ens-lyon.fr/MUMPS
MATLAB				3		various	NSPIV	Sherman [55]	www.netlib.org/toms/533
Meschach	• • 2 -			3	-	right-looking	Oblio	Dobrian, Kumfert, and	email pothen@cs.odu.edu
MUMPS	• • 2 -		• • • •	3 d -		multifrontal	1	Pothen [20]	
NSPIV				3 a -	•	up-looking	PARDISO	Schenk, Gärtner, and Fichtner	www.computational.unibas.ch/
Oblio	2 .	•		3 - •		left, right, multifrontal	1	[49, 50]	cs/scicomp/software/pardiso
PARDISO	• • 2 -	1 :		3 8 -		left/right supernodal	PaStiX	Hénon, Ramet, and Roman [42]	www.labri.fr/ \sim ramet/pastix
PaStiX	1 .			3 d -	-	left-looking supernodal	PSPASES	Joshi, Karypis, Kumar, Gupta,	www.cs.umn.edu/~mjoshi/pspas
PSPASES				3 d -	•	multifrontal	1	and Gustavson [39]	
RF		-		3 a -		product form of inverse	RF	Neculai	www.ici.ro/camo/neculai/RF
S+				3 d -			S+	Fu, Jiao, and Yang [33, 54]	www.cs.ucsb.edu/projects/s+
	•	-				right-looking supernodal	Sparse 1.4	Kundert [43]	sparse.sourceforge.net
Sparse 1.4	•	•	• • • •		-	right-looking Markowitz	SPARSPAK	George and Liu [34, 35]	www.cs.uwaterloo.ca/~jageorge
SPARSPAK	••••	-	••••			left-looking	SPOOLES	Ashcraft and Grimes [7]	www.netlib.org/linalg/spooles
SPRSBLKLLT	• • • •	-	•	3		left-looking supernodal	SPRSBLKLLT	Ng and Peyton [45]	email EGNg@lbl.gov
SPOOLES	• • 2 •	•	• • • •	- sd -	-	left-looking, multifrontal	SuperLU	Demmel, Eisenstat, Gilbert	crd.lbl.gov/~xiaoye/SuperLU
SuperLU	•	•	•	2	•	left-looking supernodal		and Li [18]	, , , , ,
SuperLU_MT	•	-	•	2 s -		left-looking supernodal	SuperLU_MT	Demmel, Gilbert, and Li [19]	crd.lbl.gov/~xiaove/SuperLU
SuperLU_DIST	•	•	•	3 d -	-	right-looking supernodal	SuperLU_DIST	Demmel and Li [44]	crd.lbl.gov/~xiaoye/SuperLU
TAUCS	• • 1 -	•	• • • •	3 s •	-	left-looking, multifrontal	TAUCS	Chen, Rotkin, and Toledo [48]	www.tau.ac.il/~stoledo/taucs
UMFPACK	•	•	•	3	•	multifrontal	UMFPACK	Davis and Duff [13, 16, 17]	www.cise.ufl.edu/research/sparse
WSMP	• • 1 -	•		3 sd -		multifrontal	WSMP	Gupta [38, 39]	www.cs.umn.edu/~agupta/wsmp
Y12M	•	-	•		-	right-looking Markowitz	Y12M	Zlatev, Wasniewski, and	www.netlib.org/y12m
		_						Schaumburg [57]	The state of the s

Quadtrees

Tree data structure where each node has up to four children corresponding to the four quadrants.

That means that each node can contain several pointers indexed by two bi

pointers indexed by two binary variables representing coordinates i and j.

21

Computational considerations

Computational effort for Gauss elimination $\sim N^3$. For a lattice $100 \times 100 = 10^4$ one needs 2 days.

 \Rightarrow Abandon exact solution and use approximation. But for that $\stackrel{\leftrightarrow}{A}$ must be well-conditioned:

example for ill-conditioned situation:

$$\begin{pmatrix}
2.0 & 6.0 \\
2.0 & 6.00001
\end{pmatrix}
\cdot
\begin{pmatrix}
x \\
y
\end{pmatrix} =
\begin{pmatrix}
8.0 \\
8.00001
\end{pmatrix}
\Rightarrow
\begin{cases}
x = 1.0 \\
y = 1.0
\end{cases}$$

$$\begin{pmatrix}
2.0 & 6.0 \\
2.0 & 5.99999
\end{pmatrix}
\cdot
\begin{pmatrix}
x \\
y
\end{pmatrix} =
\begin{pmatrix}
8.0 \\
8.00002
\end{pmatrix}
\Rightarrow
\begin{cases}
x = 10.0 \\
y = -2.0
\end{cases}$$

Jacobi relaxation method

example 2d Poisson equation: start with any $\Phi_{ii}(0)$

$$\Phi_{ij}(t+1) = \frac{1}{4} \left(\Phi_{i+1j}(t) + \Phi_{i-1j}(t) + \Phi_{ij+1}(t) + \Phi_{ij-1}(t) - b_{ij} \right)$$

fixed point is the exact solution:

$$\Delta\Phi(x,y) = b(x,y)$$

$$\Phi_{ij}^* = \frac{1}{4} \left(\Phi_{i+1j}^* + \Phi_{i-1j}^* + \Phi_{ij+1}^* + \Phi_{ij-1}^* - \boldsymbol{b}_{ij} \right)$$

general:

$$|\vec{A} \cdot \vec{\Phi}| = \vec{b}$$
 decompose: $\vec{A} = \vec{D} + \vec{O} + \vec{U}$

$$\Rightarrow \quad \vec{D} \vec{\Phi} = \vec{b} - (\vec{O} + \vec{U}) \vec{\Phi}$$

$$\vec{\Phi}(t+1) = \vec{D}^{-1} \left(\vec{b} - (\vec{O} + \vec{U}) \vec{\Phi}(t) \right)$$

23

Error of Jacobi relaxation

Exact solution is only reached for $t \rightarrow \infty$.

Define required precision arepsilon

and stop when:

$$\delta'(t+1) \equiv \frac{\left\| \vec{\Phi}(t+1) - \vec{\Phi}(t) \right\|}{\left\| \vec{\Phi}(t) \right\|} \leq \varepsilon$$

real error:

$$\vec{\delta}(t+1) \equiv \underbrace{\vec{A}^{-1}\vec{b}}_{exact \ solution} - \underbrace{\vec{\Phi}(t+1)}_{approximate \ solution} = \vec{A}^{-1}\vec{b} - \vec{D}^{-1}(\vec{b} - (\vec{O} + \vec{U})\vec{\Phi}(t))$$

$$= -\vec{D}^{-1}(\vec{O} + \vec{U})(\vec{A}^{-1}\vec{b} - \vec{\Phi}(t)) = -\vec{D}^{-1}(\vec{O} + \vec{U})\vec{\delta}(t)$$

Error of Jacobi relaxation

$$\vec{\delta}(t+1) = -\vec{\Lambda} \cdot \vec{\delta}(t)$$
 with $\vec{\Lambda} = \vec{D}^{-1}(\vec{O} + \vec{U})$

be λ the largest eigenvalue of $\stackrel{\leftrightarrow}{\Lambda}$ $0 < |\lambda| < 1$

for large
$$t$$
: $|\vec{\Phi}(t) \approx \vec{\Phi}^* + \vec{c} \lambda^t$

$$\frac{\left\|\vec{\Phi}(t+1) - \vec{\Phi}(t)\right\|}{\left\|\vec{\Phi}(t) - \vec{\Phi}(t-1)\right\|} \approx \frac{\lambda^{t+1} - \lambda^{t}}{\lambda^{t} - \lambda^{t-1}} = \lambda$$

25

Error of Jacobi relaxation

real error:
$$\delta(t) = \frac{\left\|\vec{\Phi}^* - \vec{\Phi}(t)\right\|}{\left\|\vec{\Phi}(t)\right\|} \approx \frac{\left\|\vec{c}\right\|}{\left\|\vec{\Phi}(t)\right\|} \lambda^t$$

$$\delta'(t+1) = \frac{\left\|\vec{\Phi}(t+1) - \vec{\Phi}(t)\right\|}{\left\|\vec{\Phi}(t)\right\|} \approx \frac{\left\|\vec{c}(\lambda^{t+1} - \lambda^{t})\right\|}{\left\|\vec{\Phi}(t)\right\|} = \frac{\left\|\vec{c}\right\|}{\left\|\vec{\Phi}(t)\right\|} \lambda^{t} \left|\lambda - 1\right|$$

$$\Rightarrow \delta'(t+1) = (1-\lambda) \delta(t)$$

$$\delta(t) = \frac{\delta'(t+1)}{1-\lambda} \approx \frac{\left\|\vec{\Phi}(t) - \vec{\Phi}(t-1)\right\|^2}{\left\|\vec{\Phi}(t)\right\| \left(\left\|\vec{\Phi}(t) - \vec{\Phi}(t-1)\right\| - \left\|\vec{\Phi}(t+1) - \vec{\Phi}(t)\right\|\right)}$$

Gauss-Seidel relaxation

$$\Phi_{i}(t+1) = -\frac{1}{a_{ii}} \left(\sum_{j=i+1}^{N} a_{ij} \Phi_{j}(t) + \sum_{j=1}^{i-1} a_{ij} \Phi_{j}(t+1) - b_{j} \right)$$

$$\vec{A} \cdot \vec{\Phi} = \vec{b}$$
 and $\vec{A} = \vec{D} + \vec{O} + \vec{U}$
 $\Rightarrow (\vec{D} + \vec{O}) \vec{\Phi} = \vec{b} - \vec{U} \vec{\Phi}$
 $\vec{\Phi}(t+1) = (\vec{D} + \vec{O})^{-1} (\vec{b} - \vec{U} \vec{\Phi}(t))$

fixed point is the exact solution

27

Error in Gauss-Seidel

$$\vec{\delta}(t+1) = \underbrace{\vec{A}^{-1}\vec{b}}_{exact \ solution} - (\vec{D} + \vec{O})^{-1} (\vec{b} - \vec{U} \ \vec{\Phi}(t))$$

$$= -(\vec{D} + \vec{O})^{-1} \vec{U} (\vec{A}^{-1}\vec{b} - \vec{\Phi}(t)) = -(\vec{D} + \vec{O})^{-1} \vec{U} \ \vec{\delta}(t)$$

$$\vec{\delta}(t+1) = -\vec{\Lambda} \cdot \vec{\delta}(t)$$
 with $\vec{\Lambda} = (\vec{D} + \vec{O})^{-1}\vec{U}$

$$\delta(t) = \frac{\left\|\vec{\Phi}(t+1) - \vec{\Phi}(t)\right\|}{(1-\lambda)\left\|\vec{\Phi}(t)\right\|} \le \varepsilon \quad \lambda \text{ largest EV of } \vec{\Lambda}$$

Partial differential equations (PDF)

Jacobi relaxation Gauss-Seidel relaxation

29

Gauss-Seidel relaxation

$$\Phi_{i}(t+1) = -\frac{1}{a_{ii}} \left(\sum_{j=i+1}^{N} a_{ij} \Phi_{j}(t) + \sum_{j=1}^{i-1} a_{ij} \Phi_{j}(t+1) - b_{j} \right)$$

$$\vec{A} \cdot \vec{\Phi} = \vec{b}$$
 and $\vec{A} = \vec{D} + \vec{O} + \vec{U}$
 $\Rightarrow (\vec{D} + \vec{O}) \vec{\Phi} = \vec{b} - \vec{U} \vec{\Phi}$
 $\vec{\Phi}(t+1) = (\vec{D} + \vec{O})^{-1} (\vec{b} - \vec{U} \vec{\Phi}(t))$

fixed point is the exact solution

Overrelaxation

Successive overrelaxation = SOR

$$\vec{\Phi}(t+1) = (\mathbf{D} + \omega \mathbf{O})^{-1} \left(\omega \vec{\mathbf{b}} + \left[(1-\omega)\mathbf{D} - \omega \mathbf{U} \right] \vec{\Phi}(t) \right)$$

Fixed point is the exact solution. ω is the overrelaxation parameter.

$$1 \le \omega < 2$$

 $\omega = 1$ Gauss-Seidel relaxation

Applet

21

Non-linear problem

Consider a network of resistors with a non-linear I-U relation f. Then Kirchhoff's law takes the form:

$$f(U_{i+1j}-U_{ij})+f(U_{ij}-U_{i-1j})+f(U_{ij+1}-U_{ij})+f(U_{ij}-U_{ij-1})=0$$

Solve with relaxation:

$$f(U_{i+1j}(t) - U_{ij}(t+1)) + f(U_{ij}(t+1) - U_{i-1j}(t))$$

$$+ f(U_{ij+1}(t) - U_{ij}(t+1)) + f(U_{ij}(t+1) - U_{ij-1}(t)) = 0$$

Gradient methods

Be matrix $\stackrel{\leftrightarrow}{A}$ positive and symmetric.

The residuum error

$$\vec{r} = \vec{A} \vec{\delta} = \vec{A} (\vec{A}^{-1} \vec{b} - \vec{\Phi}) = \vec{b} - \vec{A} \vec{\Phi}$$

is a measure for the error.

Minimize the functional:

$$\mathfrak{I} = \vec{r}^{t} \vec{A}^{-1} \vec{r} = \begin{cases} 0 & \text{if } \vec{\Phi} = \vec{\Phi}^{*} \\ > 0 & \text{otherwise} \end{cases}$$

33

Gradient methods

Gradient methods

$$\mathfrak{I} = (\vec{b} - \vec{A} \vec{\Phi})^t \vec{A}^{-1} (\vec{b} - \vec{A} \vec{\Phi}) = \vec{b}^t \vec{A}^{-1} \vec{b} + \vec{\Phi}^t \vec{A} \vec{\Phi} - 2 \vec{b} \vec{\Phi}$$

Be Φ_i the *i* th approximation. Minimize along lines:

$$|\vec{\Phi} = \vec{\Phi}_i + \alpha_i \vec{d}_i$$

$$\mathfrak{I} = \vec{\boldsymbol{b}}^t \vec{\boldsymbol{A}}^{-1} \vec{\boldsymbol{b}} + \vec{\boldsymbol{\Phi}}_i^t \vec{\boldsymbol{A}} \ \vec{\boldsymbol{\Phi}}_i + 2\boldsymbol{\alpha}_i \vec{\boldsymbol{d}}_i^t \vec{\boldsymbol{A}} \ \vec{\boldsymbol{\Phi}}_i + \boldsymbol{\alpha}_i^2 \vec{\boldsymbol{d}}_i^t \vec{\boldsymbol{A}} \ \vec{\boldsymbol{d}}_i - 2\vec{\boldsymbol{b}}^t \vec{\boldsymbol{\Phi}}_i - 2\boldsymbol{\alpha}_i \vec{\boldsymbol{b}}^t \vec{\boldsymbol{d}}_i$$

minimization condition with respect to α_i :

$$\frac{\partial \mathfrak{I}}{\partial \boldsymbol{\alpha_i}} = 2\vec{\boldsymbol{d}}_i^t \left(\overline{\boldsymbol{\alpha_i}} \ddot{\boldsymbol{A}} \ \vec{\boldsymbol{d}}_i - \vec{\boldsymbol{r}}_i \right) = 0 \quad \Rightarrow \quad \overline{\boldsymbol{\alpha_i}} = \frac{\vec{\boldsymbol{d}}_i^t \vec{\boldsymbol{r}}_i}{\vec{\boldsymbol{d}}_i^t \ddot{\boldsymbol{A}} \ \vec{\boldsymbol{d}}_i}$$

36

Method of steepest descent

Start with $\vec{\Phi}_1$ and choose $\vec{d}_i = \vec{r}_i$

$$\vec{r}_1 = \vec{b} - \vec{A}\vec{\Phi}_1$$

iterate: $\vec{u}_i = \vec{A}\vec{r}_i$, $\alpha_i = \frac{\vec{r}_i^2}{\vec{r}_i^t\vec{u}_i}$

$$\vec{\Phi}_{i+1} = \vec{\Phi}_i + \alpha_i \vec{r}_i$$

$$\vec{r}_{i+1} = \vec{r}_i + \alpha_i \vec{u}_i$$

each step ~ N^2 , but when matrix $\overset{\leftrightarrow}{A}$ sparse ~ N

Gradient methods

39

Conjugate gradient

Hestenes and Stiefel (1957)

Choose \vec{d}_i conjugate

to each other:

$$\vec{d}_i^t \vec{A} \vec{d}_j = 0 \quad \text{if} \quad i \neq j$$

as before:

$$\begin{vmatrix} \vec{r}_i = \vec{b} - \vec{A}\vec{\Phi}_i \\ \vec{d}_i \end{vmatrix}, \quad \alpha_i = \frac{\vec{r}_i \vec{d}_i}{\vec{d}_i^t \vec{A}\vec{d}_i} \end{vmatrix}, \quad \vec{\Phi}_{i+1} = \vec{\Phi}_i + \alpha_i \vec{d}_i$$

$$\Rightarrow \quad \vec{r}_i = \vec{b} - \vec{A} \left(\vec{\Phi}_1 + \sum_{j=1}^{i-1} \alpha_j \vec{d}_j \right)$$

Conjugate gradient

Construct conjugate basis using an orthogonalization procedure:

(Gram – Schmidt)

$$\vec{d}_1 = \vec{r}_1$$
, $\vec{d}_i = \vec{r}_i - \sum_{j=1}^{i-1} \frac{\vec{d}_j^t \vec{A} \vec{r}_i}{\vec{d}_j^t \vec{A} \vec{d}_j} \vec{d}_j$

one can also show:

$$\vec{r}_i^t \vec{A} \vec{d}_j = 0 \text{ if } i \neq j$$

42

Conjugate gradient

1. initialize:
$$\vec{r}_1 = \vec{b} - \vec{A}\vec{\Phi}_1$$
, $\vec{d}_1 = \vec{r}_1$

2. iterate:

$$\begin{vmatrix} \boldsymbol{c} = \left(\vec{\boldsymbol{d}}_{i}^{t} \vec{\boldsymbol{A}} \vec{\boldsymbol{d}}_{i}\right)^{-1} &, & \alpha_{i} = \boldsymbol{c} \vec{\boldsymbol{d}}_{i} \vec{\boldsymbol{r}}_{i} &, & \vec{\Phi}_{i+1} = \vec{\Phi}_{i} + \alpha_{i} \vec{\boldsymbol{d}}_{i} \end{vmatrix}$$

$$\begin{vmatrix} \vec{\boldsymbol{r}}_{i+1} = \vec{\boldsymbol{b}} - \vec{\boldsymbol{A}} \vec{\Phi}_{i+1} &, & \vec{\boldsymbol{d}}_{i+1} = \vec{\boldsymbol{r}}_{i+1} - \left(\boldsymbol{c} \vec{\boldsymbol{r}}_{i+1} \vec{\boldsymbol{A}} \vec{\boldsymbol{d}}_{i}\right) \vec{\boldsymbol{d}}_{i} \end{vmatrix}$$

3. stop when: $|\vec{r}_i^t\vec{r}_i| < \varepsilon$

$$|\vec{r}_i^t\vec{r}_i$$

Applet

Conjugate gradient

If matrix not symmetric then use biconjugate gradient method.

Consider two residuals:

$$\vec{r} = \vec{b} - \vec{A}\vec{\Phi}$$
 and $\tilde{\vec{r}} = \vec{b} - \vec{A}^t\vec{\Phi}$

This method does not always converge and can be unstable.

Biconjugate gradient

1. initialize:

$$egin{aligned} \vec{r}_1 &= \vec{b} - \ddot{A} \ \vec{\Phi}_1 \ , & \vec{d}_1 &= \vec{r}_1 \ \vec{\tilde{r}}_1 &= \vec{b} - \ddot{A}^t \vec{\Phi}_1 \ , & \ddot{\tilde{d}}_1 &= \widetilde{\tilde{r}}_1 \end{aligned}$$

2. iterate:

$$\vec{r}_{i+1} = \vec{r}_i - \alpha_i \vec{A} \vec{d}_i \quad , \quad \tilde{\vec{r}}_{i+1} = \tilde{\vec{r}}_i - \alpha_i \vec{A}^t \tilde{\vec{d}}_i \quad , \quad \alpha_i = c \vec{r}_i^t \vec{r}$$

$$\vec{d}_{i+1} = \vec{r}_i + \tilde{\alpha}_i \vec{d}_i \quad , \quad \tilde{\vec{d}}_{i+1} = \tilde{\vec{r}}_i + \tilde{\alpha}_i \tilde{\vec{d}}_i \quad , \quad \tilde{\alpha}_i = \tilde{c} \vec{r}_i^t \vec{r}_i$$
with $c = \left(\vec{d}_i^t \vec{A} \vec{d}_i\right)^{-1}$ and $\tilde{c} = \left(\tilde{\vec{d}}_i^t \vec{d}_i\right)^{-1}$

$$|\vec{r}_i| < \varepsilon$$

3. stop when:
$$\vec{r}_i^t \vec{r}_i < \varepsilon$$
 \Rightarrow $\vec{\Phi}_n = \vec{\Phi}_1 + \sum_i^n \alpha_i \vec{d}_i$

Preconditioning

Choose a preconditioning matrix

$$\vec{P}$$
 such that $\vec{P}^{-1}\vec{A} \approx \vec{1}$

and solve equation:
$$(\vec{P}^{-1}\vec{A})\vec{\Phi} = \vec{P}^{-1}\vec{b}$$

example: Jacobi preconditioner:

$$P_{ij} = A_{ii}\delta_{ij} = \begin{cases} A_{ii} & \text{if } i = j \\ 0 & \text{otherwise} \end{cases} \implies P_{ij}^{-1} = \frac{1}{A_{ii}\delta_{ij}}$$

Preconditioning

example: SOR preconditioner:

$$\vec{\boldsymbol{P}} = \left(\frac{\vec{\boldsymbol{D}}}{\omega} + \vec{\boldsymbol{U}}\right)^{-1} \frac{\omega}{2 - \omega} \vec{\boldsymbol{D}}^{-1} \left(\frac{\vec{\boldsymbol{D}}}{\omega} + \vec{\boldsymbol{O}}\right)$$

Preconditioned Conjugate Gradient

Achi Brandt (1970)

Consider coarser lattices on which the long-wave errors are damped out.

48

Multigrid procedure

W.L. Briggs, A Multigrid Tutorial (Soc. For Ind. & Appl. Math, 1991)

Strategy: solve the equation for the error on the coarser lattice.

Two-level procedure:

1. Determine residuum \overrightarrow{r} on the original lattice.

$$\vec{r}_n = \vec{b} - \vec{A}\vec{\Phi}_n$$
, $\vec{\delta}_n = \vec{A}^{-1}\vec{r}_n$

2. Define the residuum on the coarser lattice through a restriction operator \mathcal{R} :

$$\hat{\vec{r}}_n = \mathcal{R} \ \vec{r}_n$$

3. Then obtain the error on the coarser lattice solving equation:

$$\hat{\vec{A}}\hat{\vec{\delta}}_{n+1} = \hat{\vec{r}}_n$$

4. Then get the error on the original lattice through an extension operator \mathcal{P} :

$$|\vec{\delta}_{n+1} = \mathbf{P} \; \hat{\vec{\delta}}_{n+1}|$$

50

Multigrid procedure

5. Get new approximate solution through:

$$\vec{\Phi}_{n+1} = \vec{\Phi}_n + \vec{\delta}_{n+1}$$

In an *m*-level procedure one solves the equation only on the last (coarsest) level.

On each level one can also smoothen the error using several Gauss-Seidel relaxation steps.

Example for extension operator on square lattice:

bilinear interpolation

52

Multigrid procedure

Corresponding restriction operator:

$$\begin{array}{c}
\mathbf{R} \ \vec{r} \mapsto \begin{cases}
\hat{\mathbf{r}}_{i,j} = \frac{1}{4} \mathbf{r}_{i,j} + \frac{1}{8} \left(\mathbf{r}_{i+1,j} + \mathbf{r}_{i-1,j} + \mathbf{r}_{i,j+1} + \mathbf{r}_{i,j-1} \right) \\
+ \frac{1}{16} \left(\mathbf{r}_{i+1,j+1} + \mathbf{r}_{i-1,j+1} + \mathbf{r}_{i-1,j+1} + \mathbf{r}_{i-1,j-1} \right)
\end{array}$$

They are adjunct to each other, i.e.

$$\sum_{x,y} \mathbf{P} \, \hat{v}(\hat{x},\hat{y}) \cdot u(x,y) = h^2 \sum_{\hat{x},\hat{y}} \hat{v}(\hat{x},\hat{y}) \cdot \mathbf{R} \, u(x,y)$$

One can also vary the protocol

⇒ V-cycles, W-cycles, ...

54

Solving PDEs

discretize ⇒ system of coupled linear equations

$$\vec{A} \cdot \vec{\Phi} = \vec{b}$$

• Finite difference methods:

Field Φ is discretized on sites: Φ_i .

• Finite element methods = **FEM**:

Field Φ is patched together from a discrete set of continuous functions.

The Fathers of FEM

56

Finite Elements at ETH

- Gerald Kress: Strukturanalyse mit FEM
- · Christoph Schwab: Numerik der Dgln.
- Peter Arbenz: Introduction to FEM
- Pavel Hora: Grundlagen der nichtlinearen FEM
- Andrei Gusev: FEM in Solids and Structures
- Falk Wittel: Eine kurze Einführung in FEM
- Eleni Chatzi: Method of Finite Elements

Literature for FEM

- O.C. Zienkiewicz: "The Finite Element Method" (3 Volumes), 6th edition (Butterworth-Heinemann, 2005)
- K.J. Bathe: "Finite Element Procedures" (Prentice Hall, 1996)
- H.R. Schwarz: "Finite Element Methods" (Academic Press, 1988)

58

Finite Elements

Strukturmechanik/Anwendung:

[6] J. Altenbach und U. Fischer: Finite-Elemente Praxis,

Fachbuchverlag Leipzig (1991)

[7] P. Fröhlich: FEM-Anwendungspraxis. Einstieg in die

Finite Elemente Analyse, Vieweg Verlag (2005)

[8] B. Klein: FEM, Vieweg-Verlag 6. Aufl. (2005)

[9] K. Knothe and H. Wells: Finite Elemente, Springer-Verlag (1991)

[10] F.U. Mathiak: Die Methode der finiten Elemente (FEM) –

Einführung und Grundlagen (2002).

[11] G. Müller und I. Rehfeld: FEM für Praktiker, Expert-Verlag (1992)

[12] M. Link: Finite Elemente in der Statik und Dynamik,

Teubner-Verlag 3. Aufl. (2002)

[13] H. Tottenham und C. Brebbia: Finite Element Techniques in

Structural Mechanics, Southhamptom.

[14] R. Steinbuch: Finite Elemente - Ein Einstieg, Springer-Verlag (1998)

Properties of FEM

Clough (1960)

Advantage of finite elements over finite differences

- Irregular geometries
- Strongly inhomogeneous fields
- Moving boundaries
- Non-linear equations

adaptive meshing, e.g. triangulation

60

Adaptive meshing in 2d

triangulations with different resolution

Adaptive meshing in 3d

triangulation of a wheel-rim

62

One dimensional example

Poisson equation:

$$\frac{d^2\Phi}{dx^2}(x) = -4\pi\rho(x) \text{ with } \Phi(\mathbf{0}) = \Phi(L) = 0$$

Expand in terms of localized basis functions u_i :

$$\Phi(x) = \sum_{i=1}^{\infty} a_i u_i(x) \approx \Phi_N(x) = \sum_{i=1}^{N} a_i u_i(x)$$

One dimensional example

Define weight functions $w_i(x)$ and get a_i from:

$$-\sum_{i=1}^{N} a_i \int_{0}^{L} \frac{\partial^2 u_i}{\partial x^2}(x) w_j(x) dx = 4\pi \int_{0}^{L} \rho(x) w_j(x) dx, \quad j=1,...,N$$

 $w_i(x) = u_i(x)$ is called the Galerkin method.

⇒ system of linear equations

$$\vec{A} \cdot \vec{a} = \vec{b}$$

31

One dimensional example

$$\vec{A} \cdot \vec{a} = \vec{b}$$

with

$$A_{ij} = -\int_{0}^{L} u_{i}''(x) w_{j}(x) dx = \int_{0}^{L} u_{i}'(x) w_{j}'(x) dx$$

and

$$\mathbf{b}_{j} = 4\pi \int_{0}^{L} \rho(\mathbf{x}) \ \mathbf{w}_{j}(\mathbf{x}) \ d\mathbf{x}$$

One dimensional example

Example for basis functions $u_i(x)$ are hat functions

centered around x_i :

$$\Delta x \equiv x_i - x_{i-1}$$
=,,element"

$$u_{i}(x) = \begin{cases} (x - x_{i-1})/\Delta x & \text{for } x \in [x_{i-1}, x_{i}] \\ (x_{i+1} - x)/\Delta x & \text{for } x \in [x_{i}, x_{i+1}] \\ 0 & \text{otherwise} \end{cases}$$

66

One dimensional example

Boundary conditions are automatically fulfilled because basis functions were zero at both ends.

If
$$\Phi(0) = \Phi_0$$
, $\Phi(L) = \Phi_1$

then use following decomposition:

$$\Phi_{N}(x) = \frac{1}{L} \left(\Phi_{0}(L-x) + \Phi_{1}x + \sum_{i=1}^{N} a_{i}u_{i}(x) \right)$$

Non-linear PDEs

1d example:
$$\Phi(x) \frac{d^2 \Phi}{dx^2}(x) = -4\pi \rho(x)$$

Then solve:
$$\int_{0}^{L} \left[\Phi(x) \frac{d^{2}\Phi}{dx^{2}}(x) + 4\pi\rho(x) \right] w_{k}(x) dx = 0$$

i.e. the coupled non-linear system of equations:

$$\sum_{i,j} A_{ijk} a_i a_j = b_k$$

$$\sum_{i,j} A_{ijk} a_i a_j = b_k \Big|_{\mathbf{With}} \Big|_{A_{ijk} = -\int_0^L u_i(x) u_j ''(x) w_k(x) dx}$$

Picard iteration

Start with a guess Φ_0 . Solve linear equation for Φ_1 :

Émile Picard

Then iterate:
$$\Phi_n(x) \frac{d^2 \Phi_{n+1}}{dx^2}(x) = -4\pi \rho(x)$$

Finite Elements

$$\Delta\Phi(x,y) + a\Phi + b = 0$$

Decompose in basis functions N_i

$$\Phi(x,y) = \sum_{i=1}^{n} \Phi_{i} N_{i}(x,y)$$

70

Variational Approach

Minimize the functional:

Argyris (1954)

$$E = \iint_G \left(\frac{1}{2} (\nabla \Phi)^2 + \frac{1}{2} a \Phi^2 + b \Phi \right) dx dy + \iint_{\Gamma} \left(\frac{\alpha}{2} \Phi^2 + \beta \Phi \right) ds$$

$$\delta E = \iint_G (\nabla \Phi \, \delta \nabla \Phi + a \Phi \, \delta \Phi + b \, \delta \Phi) dx dy + \int_\Gamma (\alpha \Phi \, \delta \Phi + \beta \delta \Phi) ds$$

first Green's theorem:

$$\iint_{G} \nabla \Phi \nabla \Psi dx dy = -\iint_{G} \Psi \Delta \Phi dx dy + \int_{\Gamma} \frac{\partial \Phi}{\partial n} \Psi ds \quad \Rightarrow \quad$$

$$\delta E = \iint_G \left(-\Delta \Phi + a \Phi + b \right) = \mathbf{0} : dy + \int_{\Gamma} \left(\alpha \Phi + \beta + \frac{\partial \Phi}{\partial n} \right) \delta \Phi \, ds = 0$$

Variational Approach

$$\Delta \Phi = a \Phi + \mathbf{b}$$

a = 0 Poisson equation

b = 0 Helmholtz equation

First term of total energy

$$E = \sum_{\text{elements } j} \iint_{G_j} \left(\frac{1}{2} (\nabla \Phi)^2 + \frac{1}{2} \mathbf{a} \ \Phi^2 + \mathbf{b} \ \Phi \right) dx dy$$

can be brought into the form:

$$\boldsymbol{E} = \frac{1}{2}\vec{\boldsymbol{\Phi}} \, \, \boldsymbol{\vec{A}} \, \, \vec{\boldsymbol{\Phi}} + \boldsymbol{\vec{b}} \, \, \vec{\boldsymbol{\Phi}}$$

Minimizing then gives:

$$\frac{\partial \mathbf{E}}{\partial \Phi} = 0 \quad \Rightarrow \quad \mathbf{\vec{A}} \; \mathbf{\vec{\Phi}} + \mathbf{\vec{b}} = 0$$

72

Function on Element

Higher dimensions

In 2d define function over one element = triangle of the triangulation

e.g. linearly: $\Phi(\vec{r}) \approx a_1 + a_2 x + a_3 y$

or by a paraboloid:

$$\Phi(\vec{r}) \approx a_1 + a_2 x + a_3 y + a_4 x^2 + a_5 x y + a_6 y^2$$

Linear case

75

Standard Form

Transform any element *j* into the standard form.

$$x = x_1 + (x_2 - x_1)\xi + (x_3 - x_1)\eta$$

$$y = y_1 + (y_2 - y_1)\xi + (y_3 - y_1)\eta$$

$$\eta = ((y - y_1)(x_2 - x_1) - (x - x_1)(y_2 - y_1))/D$$

$$\Leftrightarrow \xi = ((x - x_1)(y_3 - y_1) - (y - y_1)(x_3 - x_1))/D$$

$$D = (y_3 - y_1)(x_2 - x_1) - (x_3 - x_1)(y_2 - y_1)$$

Coordinate transformation

$$\nabla \Phi = \left(\frac{\partial \Phi}{\partial x}, \frac{\partial \Phi}{\partial y}\right) \to \nabla \Phi = \left(\frac{\partial \Phi}{\partial \xi} \frac{\partial \xi}{\partial x} + \frac{\partial \Phi}{\partial \eta} \frac{\partial \eta}{\partial x}, \frac{\partial \Phi}{\partial \xi} \frac{\partial \xi}{\partial y} + \frac{\partial \Phi}{\partial \eta} \frac{\partial \eta}{\partial y}\right)$$

$$\frac{\partial \xi}{\partial x} = \frac{y_3 - y_1}{D} \quad \frac{\partial \xi}{\partial y} = -\frac{x_3 - x_1}{D} \quad \frac{\partial \eta}{\partial x} = -\frac{y_2 - y_1}{D} \quad \frac{\partial \eta}{\partial y} = \frac{x_2 - x_1}{D}$$

$$\left(\frac{\partial \Phi}{\partial x}\right)^{2} = \left(\frac{\partial \Phi}{\partial \xi}\right)^{2} \frac{\partial \xi}{\partial x} + \left(\frac{\partial \Phi}{\partial \eta}\right)^{2} \frac{\partial \eta}{\partial x}$$

$$= \frac{(y_{3} - y_{1})^{2}}{D^{2}} \Phi_{\xi}^{2} - 2 \frac{(y_{3} - y_{1})(y_{2} - y_{1})}{D^{2}} \Phi_{\xi} \Phi_{\eta} + \frac{(y_{2} - y_{1})^{2}}{D^{2}} \Phi_{\eta}^{2}$$

$$\left(\frac{\partial \Phi}{\partial y}\right)^{2} = \frac{(x_{3} - x_{1})^{2}}{D^{2}} \Phi_{\xi}^{2} - 2 \frac{(x_{3} - x_{1})(x_{2} - x_{1})}{D^{2}} \Phi_{\xi} \Phi_{\eta} + \frac{(x_{2} - x_{1})^{2}}{D^{2}} \Phi_{\eta}^{2}$$

Coordinate transformation

$$\iint_{G_j} ... dx dy = \iint_{T} ... \det(\vec{J}) d\xi d\eta$$

Jacobi matrix

$$\vec{J} = \begin{pmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial x}{\partial \eta} \\ \frac{\partial y}{\partial \xi} & \frac{\partial y}{\partial \eta} \end{pmatrix}$$

$$\det(\vec{J}) = \frac{\partial x}{\partial \xi} \frac{\partial y}{\partial \eta} - \frac{\partial x}{\partial \eta} \frac{\partial y}{\partial \xi}$$
$$= (x_2 - x_1)(y_3 - y_1) - (x_3 - x_1)(y_2 - y_1) = D$$

Coordinate transformation

Inserting gives for each element

$$\iint_{G_j} \left(\Phi_x^2 + \Phi_y^2 \right) dxdy = \iint_{\mathbf{T}} \left(c_1 \Phi_\xi^2 + 2c_2 \Phi_\xi \Phi_\eta + c_3 \Phi_\eta^2 \right) d\xi d\eta$$

$$\iint_{G_j} \left(\Phi_x^2 + \Phi_y^2 \right) dxdy = c_1 \iint_{\mathbf{T}} \Phi_{\xi}^2 d\xi d\eta + 2c_2 \iint_{\mathbf{T}} \Phi_{\xi} \Phi_{\eta} d\xi d\eta + c_3 \iint_{\mathbf{T}} \Phi_{\eta}^2 d\xi d\eta$$

coefficients are only calculated once for

coefficients
$$c_1 = \frac{C_1}{D} + \frac{C_2}{D}$$
are only calculated once for each element.
$$c_2 = -\frac{(y_3 - y_1)(y_2 - y_1)}{D} - \frac{(x_3 - x_1)(x_2 - x_1)}{D}$$

79

Basis functions

In 2d define function over

one **element** = triangle of the triangulation

e.g. linearly:

$$\Phi(\vec{r}) \approx a_1 + a_2 x + a_3 y$$

or by a paraboloid:

$$\Phi(\vec{r}) \approx a_1 + a_2 x + a_3 y + a_4 x^2 + a_5 x y + a_6 y^2$$

Shape of basis functions

81

Basis functions

Decompose on standard element in basis functions N_i

$$\Phi\left(\boldsymbol{\xi},\boldsymbol{\eta}\right) = \sum_{i=1}^{6} \Phi_{i} N_{i}\left(\boldsymbol{\xi},\boldsymbol{\eta}\right) = \vec{\varphi} \ \vec{N}\left(\boldsymbol{\xi},\boldsymbol{\eta}\right)$$

$$N_1 = (1 - \xi - \eta)(1 - 2\xi - 2\eta)$$
 , $N_2 = \xi(2\xi - 1)$
 $N_3 = \eta(2\eta - 1)$, $N_4 = 4\xi(1 - \xi - \eta)$
 $N_5 = 4\xi\eta$, $N_6 = 4\eta(1 - \xi - \eta)$

$$\vec{\varphi} = (\Phi_1, ..., \Phi_6)$$
, $\vec{N} = (N_1, ..., N_6)$

Shape functions on square lattice

$$\Phi(\vec{r}) \approx c_1 + c_2 x + c_3 y + c_4 x^2 + c_5 xy + c_6 y^2 + c_7 xy^2 + c_8 x^2 y + c_9 x^2 y^2$$

83

Energy Integrals

Calculate the energy integrals on standard element

$$\begin{vmatrix}
I_{1} = \iint_{T} \Phi_{\xi}^{2} d\xi d\eta = \iint_{T} (\vec{\varphi} \vec{N}_{\xi} (\xi, \eta))^{2} d\xi d\eta \\
= \iint_{T} \vec{\varphi}^{t} \vec{N}_{\xi} \vec{N}_{\xi}^{t} \vec{\varphi} d\xi d\eta = \vec{\varphi}^{t} \underbrace{\iint_{T} \vec{N}_{\xi} \vec{N}_{\xi}^{t} d\xi d\eta}_{\vec{S}_{1}} \vec{\varphi}
\end{vmatrix}$$

and analogously

$$\overline{I_2 = \iint_T \Phi_{\xi} \Phi_{\eta} d\xi d\eta} = \overline{\varphi}^t \overline{S}_2 \overline{\varphi}$$

$$\overline{I_3 = \iint_T \Phi_{\eta}^2 d\xi d\eta} = \overline{\varphi}^t \overline{S}_3 \overline{\varphi}$$

defining matrices $\overrightarrow{S}_1, \overrightarrow{S}_2$ and \overrightarrow{S}_3 on standard triangle.

Rigidity Matrix

$$\iint_{G_j} (\nabla \Phi)^2 dxdy =$$

$$\iint_{T} (c_1 \Phi_{\xi}^2 + 2c_2 \Phi_{\xi} \Phi_{\eta} + c_3 \Phi_{\eta}^2) d\xi d\eta = \vec{\varphi}^t \vec{S} \vec{\varphi}$$

defines the rigidity matrix \overrightarrow{S} for any element:

$$\vec{S} = c_1 \vec{S}_1 + 2c_2 \vec{S}_2 + c_3 \vec{S}_3$$

86

Mass Matrix

Analogously one defines the mass matrix M:

$$\iint_{G_j} a \, \Phi^2 dx dy = \iint_T a \, \left(\vec{\varphi}_j \, \vec{N}(\xi, \eta) \right)^2 \, \boldsymbol{D}_j \, d\xi d\eta$$
$$= \vec{\varphi}_j^t \, a \iint_T \vec{N} \, \vec{N}^t \, \boldsymbol{D}_j \, d\xi d\eta \, \vec{\varphi}_j \equiv \vec{\varphi}_j^t \vec{M}_j \vec{\varphi}_j$$

 $\stackrel{\mathbf{Y}}{M_{i}}$

$$E = \sum_{\text{elements } j} \iint_{G_j} \left(\left(\nabla \Phi \right)^2 + a \ \Phi^2 \right) \ dxdy = \sum_{\text{elements } j} \vec{\varphi}_j^t \left(\ \vec{S}_j + \vec{M}_j \right) \ \vec{\varphi}_j$$

$$\Rightarrow E = \vec{\Phi}^t \ \vec{A} \ \vec{\Phi} \quad \text{with} \quad \vec{\Phi} = (\vec{\varphi}_j) \quad \text{and} \quad \vec{A} = \overset{\text{assembly}}{\therefore} (\vec{S}_j + \vec{M}_j)$$

Assembly of the Matrix

This is done by identifying the values of the coefficients at each vertex for all elements that share this vertex. The elements must be joined such that the field is continuous.

88

Field term

$$\iint_{G_{j}} \mathbf{b} \Phi dx dy = \iint_{T} \mathbf{b} \vec{\varphi}_{j} \vec{N}(\xi, \eta) D_{j} d\xi d\eta$$

$$= \vec{\varphi}_{j} \underbrace{\mathbf{b} \iiint_{T} \vec{N}(\xi, \eta)}_{T} D_{j} d\xi d\eta = \vec{b}_{j} \vec{\varphi}_{j}$$

$$\Rightarrow \vec{b}_{j}$$

$$E = \vec{\Phi} \vec{A} \vec{\Phi} + \vec{b} \vec{\Phi} \quad \text{with } \vec{b} = (\vec{b}_{j})$$

Numerical task of FEM

$$|\vec{A} \vec{\Phi} + \vec{b}| = 0$$

of N linear equations where N is the number of vertices.

Matrix \overrightarrow{A} and vector \overrightarrow{b} only depend on the triangulation and on the basis functions and the unknowns are the coefficients $\overrightarrow{\Phi} = (\overrightarrow{\phi}_i)$.

93

FEM

The connection between the elements gives off-diagonal terms in the matrix $\stackrel{\leftrightarrow}{A}$. Finally one must also include the boundary terms, which appear as before on the right side of the equation.

Applet

http://www.lnm.mw.tum.de/teaching/tmapplets/

Stresses in a hinge

95

Stresses in a clip

Network of trusses

Time dependent PDE's

Simple example is heat equation:

$$\frac{\partial T}{\partial t}(\vec{x},t) = \frac{\kappa}{C\rho} \nabla^2 T(\vec{x},t) + \frac{1}{C\rho} W(\vec{x},t)$$

T is temperature, C is specific heat ρ is density, κ is thermal conductivity and W are external sources or sinks.

Time dependent PDE's

"line method" in two dimensions:

$$T(x_{ij}, t + \Delta t) = T(x_{ij}, t) + \frac{\kappa \Delta t}{C \rho \Delta x^{2}} \left(T(x_{i+1j}, t) + T(x_{i-1j}, t) + T(x_{i-1j}, t) + T(x_{ij+1}, t) + T(x_{ij-1}, t) - 4T(x_{ij}, t) \right) + \frac{\Delta t}{C \rho} W(x_{ij}, t)$$

clearly unstable if

$$\left| \frac{\kappa \, \Delta t}{C \rho \, \Delta x^2} \ge \frac{1}{4} \right|$$

Courant-Friedrichs-Lewy (CFL) condition (1928)

99

Unstable 1d parabolic PDE

Crank - Nicolson method

(1947)

implicit algorithm

John Crank

Phyllis Nicolson

 $T(\vec{x}, t + \Delta t) = T(\vec{x}, t) + \frac{\kappa \Delta t}{2C\rho} \left(\nabla^2 T(\vec{x}, t) + \nabla^2 T(\vec{x}, t + \Delta t) \right) + \frac{\Delta t}{2C\rho} \left(W(\vec{x}, t) + W(\vec{x}, t + \Delta t) \right)$

define

$$\vec{T}(t) = (T(x_n, t))$$
, $\vec{W}(t) = (W(x_n, t))$, $n = 1, ..., L^2$

101

Crank - Nicolson method

Define operator O

$$\mathbf{O}T(x_n,t) = \frac{\kappa \Delta t}{C\rho \Delta x^2} \left(T(x_{n+1},t) + T(x_{n-1},t) + T(x_{n-1},t) + T(x_{n+L},t) + T(x_{n-L},t) - 4T(x_n,t) \right)$$

Then Crank – Nicolson becomes:

$$T(\vec{x}, t + \Delta t) = T(\vec{x}, t) + \frac{1}{2} \left(\mathbf{O}T(\vec{x}, t) + \mathbf{O}T(\vec{x}, t + \Delta t) \right)$$
$$+ \frac{\Delta t}{2C\rho} \left(W(\vec{x}, t) + W(\vec{x}, t + \Delta t) \right)$$

Crank - Nicolson method

$$2 T(\vec{x}, t + \Delta t) = 2 T(\vec{x}, t) + (OT(\vec{x}, t) + OT(\vec{x}, t + \Delta t))$$
$$+ \frac{\Delta t}{C\rho} (W(\vec{x}, t) + W(\vec{x}, t + \Delta t))$$

Then Crank – Nicolson becomes:

$$(2 \cdot \mathbf{1} - \mathbf{O}) \vec{T}(t + \Delta t) = (2 \cdot \mathbf{1} + \mathbf{O}) \vec{T}(t) + \frac{\Delta t}{C\rho} (\vec{W}(t) + \vec{W}(t + \Delta t))$$

where 1 is the unity operator.

103

Crank - Nicolson method

Calculate the inverted operator B before:

$$\mathbf{B} = (2 \cdot \mathbf{1} - \mathbf{O})^{-1}$$

$$\vec{T}(t + \Delta t) = \mathbf{B} \left[(2 \cdot \mathbf{1} + \mathbf{O}) \ \vec{T}(t) + \frac{\Delta t}{C\rho} (\ \vec{W}(t) + \vec{W}(t + \Delta t)) \right]$$

Crank - Nicolson method

Example: 1d diffusion equation:

Courant-Friedrichs-Lewy (CFL) number

$$\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{t}} = \boldsymbol{D} \frac{\partial^2 \boldsymbol{u}}{\partial \boldsymbol{x}^2}$$

$$\frac{u_{i}(t+\Delta t)-u_{i}(t)}{\Delta t} = \frac{D}{2(\Delta x)^{2}} \left[(u_{i+1}(t+\Delta t)-2u_{i}(t+\Delta t)+u_{i-1}(t+\Delta t)) + (u_{i+1}(t)-2u_{i}(t)+u_{i-1}(t)) \right] + (u_{i+1}(t)-2u_{i}(t)+u_{i-1}(t))$$
tridiagonal problem
$$\frac{u_{i}(t+\Delta t)-u_{i}(t)}{2(\Delta x)^{2}} + \frac{u_{i+1}(t)-2u_{i}(t)+u_{i-1}(t)}{2(\Delta x)^{2}} + \frac{v_{i+1}(t)-2u_{i}(t)+u_{i-1}(t)}{2(\Delta x)^{2}} + \frac{v_{i+1}(t)-2u_{i}(t)+v_{i-1}(t)}{2(\Delta x)^{2}} + \frac{v_{i+1}(t)-2u_{i}(t)+v_{i-1}(t)}{2(\Delta x)^{2}$$

$$\mu = \frac{\mathbf{D}\Delta t}{2(\Delta x)^2}$$

$$-\mu \mathbf{u}_{i+1}(\mathbf{t} + \Delta \mathbf{t}) + (1+2\mu)\mathbf{u}_{i}(\mathbf{t} + \Delta \mathbf{t}) - \mu \mathbf{u}_{i-1}(\mathbf{t} + \Delta \mathbf{t})$$

$$= \mu \mathbf{u}_{i+1}(\mathbf{t}) + (1-2\mu)\mathbf{u}_{i}(\mathbf{t}) + \mu \mathbf{u}_{i-1}(\mathbf{t})$$

105

Tridiagonal matrix problem

equation:

$$a_i x_{i-1} + b_i x_i + c_i x_{i+1} = d_i$$

$$\begin{array}{c} \textbf{equation:} \\ a_i x_{i-1} + b_i x_i + c_i x_{i+1} = d_i \end{array} \begin{bmatrix} \begin{bmatrix} b_1 & c_1 & & & 0 \\ a_2 & b_2 & c_2 & & \\ & a_3 & b_3 & \ddots & \\ & & \ddots & \ddots & c_{n-1} \\ 0 & & & a_n & b_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \\ \vdots \\ d_n \end{bmatrix}$$

modify coefficients:

$$c'_{i} = \begin{cases} \frac{c_{i}}{b_{i}} & ; i = 1 \\ \frac{c_{i}}{b_{i} - c'_{i-1}a_{i}} & ; i = 2, 3, \dots, n-1 \end{cases} \qquad d'_{i} = \begin{cases} \frac{d_{i}}{b_{i}} & ; i = 1 \\ \frac{d_{i} - d'_{i-1}a_{i}}{b_{i} - c'_{i-1}a_{i}} & ; i = 2, 3, \dots, n. \end{cases}$$

$$d'_{i} = \begin{cases} \frac{d_{i}}{b_{i}} & ; i = 1\\ \frac{d_{i} - d'_{i-1}a_{i}}{b_{i} - c'_{i-1}a_{i}} & ; i = 2, 3, \dots, n. \end{cases}$$

solution:

$$x_n = d'_n$$

 $x_i = d'_i - c'_i x_{i+1}$; $i = n - 1, n - 2, ..., 1$.

Algorithm goes like O(N) (instead of O(N³) in Gauss elimination).

Wave equation

$$\frac{\partial^2 \mathbf{y}}{\partial \mathbf{t}^2} = \mathbf{c}^2 \nabla^2 \mathbf{y} \quad \text{with} \quad \mathbf{c} = \sqrt{\frac{\mathbf{k}}{\rho}}$$

$$\Rightarrow \frac{y(x_n, t_{k+1}) + y(x_n, t_{k-1}) - 2y(x_n, t_k)}{\Delta t^2} \approx c^2 \nabla^2 y(x_n, t_k)$$

$$\Rightarrow y(x_n, t_{k+1}) = 2(1 - 2\lambda^2)y(x_n, t_k) - y(x_n, t_{k-1}) + \lambda^2 \left(y(x_{n+1}, t_k) + y(x_{n-1}, t_k) + y(x_{n+L}, t_k) + y(x_{n-L}, t_k) \right)$$

with
$$\lambda = c\Delta t/\Delta x < 1/\sqrt{2}$$

which corresponds to cut off modes for wave lengths smaller than λ .

107

Initialization

To start the iterations one needs to know the field at two times t and t- Δt .

That means, one needs to know $y(x_n,0)$ and $\frac{\partial y}{\partial t}(x_n,0)$

Set
$$y(x_n, \Delta t) = y(x_n, 0) + \Delta t \frac{\partial y}{\partial t}(x_n, 0)$$
 error $O(\Delta t)$

better

$$y(x_{n}, \Delta t) = (1 - \lambda^{2})y(x_{n}, 0) + \Delta t \frac{\partial y}{\partial t}(x_{n}, 0)$$

$$+ \frac{\lambda^{2}}{4}(y(x_{n+1}, 0) + y(x_{n-1}, 0) + y(x_{n+L}, 0) + y(x_{n-L}, 0))$$
error $O(\Delta t^{2})$

Solution of the wave equation

109

Navier – Stokes equation

 $\vec{v}(\vec{x},t)$ velocity field, $p(\vec{x},t)$ pressure field

$$\frac{\partial \vec{v}}{\partial t} + (\vec{v}\vec{\nabla})\vec{v} = -\frac{1}{\rho}\vec{\nabla}p + \mu \nabla^2 \vec{v}, \vec{\nabla}\vec{v} = 0$$

Euler:
$$\frac{\partial \vec{v}}{\partial t} + (\vec{v} \vec{\nabla}) \vec{v} = -\frac{1}{\rho} \vec{\nabla} p$$

Stokes:
$$\frac{\partial \vec{v}}{\partial t} = -\frac{1}{\rho} \vec{\nabla} p + \mu \ \nabla^2 \vec{v}$$

equation of motion for incompressible fluid

Solvers for NS equation

- Penalty method with MAC
- Finite Volume Method (FLUENT, OpenFOAM)
- Spectral method
- Lattice Boltzmann (Ladd)
- Discrete methods: DPD, SPH, SRD, LGA,...
- k-ɛ model for turbulence

CFD = Computational Fluid Dynamics

Navier – Stokes equation

$$\frac{\vec{v}_{k+1} - \vec{v}_k}{\Delta t} = -\vec{\nabla} p_{k+1} - \mu \nabla^2 \vec{v}_k - (\vec{v}_k \cdot \vec{\nabla}) \vec{v}_k$$

Apply on both sides $\overrightarrow{\nabla}$:

$$\Rightarrow \frac{\vec{\nabla} \vec{v}_{k+1} - \vec{\nabla} \vec{v}_{k}}{\Delta t} = -\nabla^{2} p_{k+1} - \mu \nabla^{2} (\vec{\nabla} \vec{v}_{k}) - \vec{\nabla} (\vec{v}_{k} \vec{\nabla}) \vec{v}_{k}$$

Insert incompressibility condition:

$$\vec{\nabla} \vec{v}_{k+1} = \vec{\nabla} \vec{v}_k = 0$$

Navier – Stokes equation

$$\nabla^2 \boldsymbol{p}_{k+1} = -\vec{\nabla} \left((\vec{\boldsymbol{v}}_k \cdot \vec{\nabla}) \vec{\boldsymbol{v}}_k \right)$$

Poisson equation \Rightarrow determine pressure p_{k+1} To solve it, one needs boundary conditions for the pressure which one obtains projecting the NS equation on the boundary. This must be done numerically.

114

Operator splitting

Introduce auxiliary variable field \vec{v}^*

$$\frac{\vec{v}_{k+1} - \vec{v}^* + \vec{v}^* - \vec{v}_k}{\Delta t} = -\vec{\nabla} p_{k+1} - \mu \nabla^2 \vec{v}_k - (\vec{v}_k \cdot \vec{\nabla}) \vec{v}_k$$

and split in two equations:

$$\frac{\vec{v}^* - \vec{v}_k}{\Delta t} = -\mu \nabla^2 \vec{v}_k - (\vec{v}_k \cdot \vec{\nabla}) \vec{v}_k$$

$$\Rightarrow \vec{v}^*$$

$$\frac{\vec{v}_{k+1} - \vec{v}^*}{\Delta t} = -\vec{\nabla} p_{k+1}$$

Operator splitting

Applying
$$\overrightarrow{\nabla}$$
 on

$$\frac{|\vec{v}_{k+1} - \vec{v}^*|}{\Delta t} = -\vec{\nabla} p_{k+1}$$

one obtains

$$\nabla^2 \boldsymbol{p}_{k+1} = \frac{\vec{\nabla} \vec{\boldsymbol{v}}^*}{\Delta \boldsymbol{t}}$$

Projecting on the normal \vec{n} to the boundary

one obtains:

$$\frac{\partial \boldsymbol{p}_{k+1}}{\partial \boldsymbol{n}} \equiv \left(\vec{\boldsymbol{n}} \cdot \vec{\nabla} \right) \, \boldsymbol{p}_{k+1} = \frac{1}{\Delta t} \, \vec{\boldsymbol{n}} \, \left(\vec{\boldsymbol{v}}^* - \vec{\boldsymbol{v}}_{k+1} \right)$$

116

Spatial discretization

MAC = Marker and Cell is a staggered lattice:

h is the lattice spacing

Place components of velocity on middle of edges and pressures in the centers of the cells.

Spatial discretization

$$\left(\vec{\nabla} \boldsymbol{p}\right)_{x,i+1/2,j} = \frac{1}{\mathbf{h}} \left(\boldsymbol{p}_{i+1,j} - \boldsymbol{p}_{i,j}\right)$$

$$\nabla^2 p_{i,j} = \frac{1}{\mathbf{h}^2} (p_{i+1,j} + p_{i-1,j} + p_{i,j+1} + p_{i,j-1} - 4p_{i,j})$$

118

Spatial discretization

$$\vec{\nabla} \vec{v}_{i,j}^* = \frac{1}{\mathbf{h}} \left(v_{x,i+\frac{1}{2},j}^* - v_{x,i-\frac{1}{2},j}^* + v_{y,i,j+\frac{1}{2}}^* - v_{y,i,j-\frac{1}{2}}^* \right)$$

$$\nabla^2 \boldsymbol{p}_{k+1} = \frac{\vec{\nabla} \vec{\boldsymbol{v}}^*}{\Delta \boldsymbol{t}}$$

Poisson equation for the pressure p_{k+1} is solved on the centers of the cells (\bullet) .

Spatial discretization

$$\vec{\boldsymbol{v}}_{k+1} = \vec{\boldsymbol{v}}_k + \Delta \boldsymbol{t} \left(-\vec{\nabla} \boldsymbol{p}_{k+1} - \mu \ \nabla^2 \vec{\boldsymbol{v}}_k - (\vec{\boldsymbol{v}}_k \cdot \vec{\nabla}) \vec{\boldsymbol{v}}_k \right)$$

The equations for the velocity components are solved on the edges.

$$(\vec{v} \cdot \vec{\nabla}) v^x = v^x (\partial/\partial x) v^x + v^y (\partial/\partial y) v^x$$

120

Spatial discretization

$$\left(v^{x} \frac{\partial v^{x}}{\partial x}\right)_{i+\frac{1}{2},j} = v^{x}_{i+\frac{1}{2},j} \cdot \frac{1}{2\mathbf{h}} \left(v^{x}_{i+\frac{3}{2},j} - v^{x}_{i-\frac{1}{2},j}\right)$$

$$v = v^{x}_{i+\frac{1}{2},j} \cdot v^{x}_{i+\frac{1}{2},j}$$

$$v = v^{x}_{i+\frac{1}{2},j} \cdot v^{x}_{i+\frac{1}{2},j}$$

$$\left(\mathbf{v}^{y} \frac{\partial \mathbf{v}^{x}}{\partial \mathbf{y}}\right)_{i+\frac{1}{2},j} = \frac{1}{4} \left(\mathbf{v}^{y}_{i,j+\frac{1}{2}} + \mathbf{v}^{y}_{i,j-\frac{1}{2}} + \mathbf{v}^{y}_{i+1,j+\frac{1}{2}} + \mathbf{v}^{y}_{i+1,j-\frac{1}{2}}\right) \times \frac{1}{2\mathbf{h}} \left(\mathbf{v}^{x}_{i+\frac{1}{2},j+1} - \mathbf{v}^{x}_{i+\frac{1}{2},j-1}\right)$$

Flow around a vocal chord

122

Sedimentation

Glass beads descending in silicon oil

comparing experiment and simulation

Finite Volume Method

R.J. LeVeque, «Finite Volume Methods for Hyperbolic Problems» (Cambridge Univ. Press, 2002)

Solve conservation law
$$\frac{\partial}{\partial t}v(x,t) + \nabla f(v(x,t)) = g(v(x,t))$$

in integral form

$$\left| \int_{G_i} \left(\frac{\partial v}{\partial t} + \nabla f(v) \right) dV \right| = \int_{G_i} g(v) dV$$

using Green's theorem:

$$\left| \int_{G_i} \frac{\partial v}{\partial t} dV + \int_{\partial G_i} f(v) n dS \right| = \int_{G_i} g(v) dV$$

124

Finite Volume Method

$$\int_{G_i} \frac{\partial \mathbf{v}}{\partial \mathbf{t}} d\mathbf{V} + \int_{\partial G_i} f(\mathbf{v}) \mathbf{n} d\mathbf{S} = 0$$

change of value in volume *i*

$$\frac{\partial \mathbf{v}_{i}}{\partial t} = -\frac{1}{|\mathbf{G}_{i}|} \int_{\partial \mathbf{G}_{i}} f(\mathbf{v}) \, \mathbf{n} \, d\mathbf{S}$$

Forward-Time Central-Space (FTCS)

$$\frac{\partial \mathbf{v}}{\partial t} = -\nabla f \left(\mathbf{v}, \mathbf{x}, t, \frac{\partial^2 \mathbf{v}}{\partial \mathbf{x}^2} \right)$$

$$\frac{\mathbf{v}_i (t + \Delta t) - \mathbf{v}_i (t)}{\Delta t} = -\nabla f \left(\mathbf{v}, \mathbf{i}, t, \frac{\partial^2 \mathbf{v}}{\partial \mathbf{x}^2} \right)$$

f is spatially discretized in a central difference scheme

$$v_i(t + \Delta t) = v_i(t) - \frac{\Delta t}{2\Delta x} (f(v_{i+1}(t)) - f(v_{i-1}(t)))$$

126

FTCS

Time evolution of the inviscid Euler equation using a forward time central space scheme

Lax-Friedrichs Scheme

Peter Lax

Kurt Friedrichs

$$v_{i}(t + \Delta t) = \frac{1}{2} \left(v_{i+1}(t) + v_{i-1}(t) \right) - \frac{\Delta t}{2\Delta x} \left(f(v_{i+1}(t)) - f(v_{i-1}(t)) \right)$$

128

Lax-Friedrichs Scheme

2d Euler equation with reflecting boundaries

FLUENT

130

FLUENT

FLUENT

132

Cavity with FLUENT

Turbine with FLUENT

Airfoil with FLUENT

ANSYS FLUENT 12.0 (2d, dp, pbns, dynamesh, lam, transient)

Shock waves

Solutions of parabolic equations which move with constant velocity and develop a sharp front.

typical initial condition: Riemann problem

example: tsunami

136

Shock waves

Godunov Scheme

Example 1d inviscid Burgers equation: $\left| \frac{\partial \rho}{\partial t} + \rho \frac{\partial \rho}{\partial x} \right| = 0$

$$\frac{\partial \rho}{\partial t} + \rho \frac{\partial \rho}{\partial x} = 0$$

out-flow

Sergei K. Godunov (1959)

in-flow $\rho_{i}(t+\Delta t) = \rho_{i}(t) + \frac{\Delta t}{\Delta x} \left[F(\rho_{i}(t-\Delta t), \rho_{i}(t)) - F(\rho_{i}(t), \rho_{i}(t+\Delta t)) \right]$ with $F(\rho_{L}, \rho_{R}) = \frac{g^{2}}{2}, g = \begin{cases}
\rho_{L} & \text{if } \rho_{L} > 0 \\
\rho_{R} & \text{if } \rho_{R} < 0 \\
\rho_{L} \ge \rho_{R}
\end{cases}$ $\rho_{R} & \text{if } \rho_{L} \le 0 < \rho_{R} & \rho_{L} < \rho_{R}$ $\rho_{R} & \text{if } \overline{\rho} \le 0$ $\rho_{R} & \rho_{L} < \rho_{R}$

138

1d Burgers equation

formation of shock wave

Steve Orszag (1968)

PDE solver for smooth solutions without adaptive meshing. Has excellent convergence properties.

Finite elements:

basis functions: local smooth functions

Spectral methods:

basis functions: global smooth functions

140

Spectral Methods

PDE:

$$Lu(x,t) = f(u(x,t))$$
with $u(0,t) = u_B$ and $u(x,0) = u_I(x)$

L differential operator e.g.
$$Lu(x,t) = \left(\frac{\partial}{\partial t} - \frac{\partial}{\partial x}\right)u(x,t)$$

Expand in terms of basis functions ϕ_i :

$$u(x,t) = \sum_{i=1}^{\infty} a_i(t) \phi_i(x) \approx u_N(x,t) = \sum_{i=1}^{N} a_i(t) \phi_i(x)$$

Define N (orthogonal) test functions $w_i(x)$:

$$\int_{0}^{L} \left[Lu(x,t) + f(u(x,t)) \right] w_{j}(x) dxdt = 0 , j = 1,...,N$$

 $w_j(x) = \phi_j(x)$ is called the Galerkin method and $w_j(x) = \delta(x-x_j)$ is called a collocation.

142

Spectral Methods

Example 1: 1d advection equation

$$\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{t}} - \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{x}} = 0 \quad \text{on} \quad (0, 2\pi)$$

truncated expansion:

$$u^{(N)}(x,t) = \sum_{l=-N/2}^{N/2} a_l(t)\phi_l(x)$$

trigonometric basis and test functions:

$$\Rightarrow \frac{\left|\phi_{l}(x) = e^{ilx} \text{ and } w_{k}(x) = \frac{1}{2\pi} e^{-ikx}\right|}{\left[\frac{1}{2\pi} \int_{0}^{2\pi} \left[\left(\frac{\partial}{\partial t} - \frac{\partial}{\partial x}\right) \sum_{l=-N/2}^{N/2} a_{l}(t)e^{ilx}\right] e^{-ikx} dx = 2\pi \delta_{lk}}$$

$$\Rightarrow \frac{da_k}{dt} - ika_k = 0 , \forall k = -\frac{N}{2}, ..., \frac{N}{2}$$

Spectral Methods

solve

initial condition

$$\frac{da_k}{dt} - ika_k = 0 \quad \text{with} \quad a_k(0) = \int_0^{2\pi} u_I(x) e^{-kx} dx$$

choose for instance

$$u_I(x) = \sin(\pi \cos(x))$$

$$\Rightarrow a_k(t) = \sin\left(\frac{k\pi}{2}\right) J_k(\pi) e^{ikt}$$

$$a_k(t) = \sin\left(\frac{k\pi}{2}\right) J_k(\pi) e^{ikt}$$

From asymptotic behaviour of Bessel functions:

$$\forall p: k^p a_k(t) \to 0 \text{ for } k \to \infty$$

$$\Rightarrow u^{(N)}(x,t) = \sum_{k=-N/2}^{N/2} a_k(t) e^{ikx}$$
 than any

converges faster power of 1/N.

146

Spectral Methods

Example 2: 1d (full) Burgers equation

$$\partial_t \mathbf{u} + \mathbf{u} \partial_x \mathbf{u} = \mu \ \partial_{xx} \mathbf{u}$$

integral or «weak» form, $\forall w, \forall t$:

$$\left[\left\langle \partial_t u, w \right\rangle + \left\langle u \partial_x u, w \right\rangle = \mu \left\langle \partial_{xx} u, w \right\rangle \right] \text{ with } \left| \left\langle f, w \right\rangle = \int_0^{2\pi} f(x) \overline{w}(x) dx \right|$$

Fourier-Galerkian expansion

$$u^{(N)}(x,t) = \sum_{k=-N/2}^{N/2} a_k(t) e^{ikx} \qquad w(x) = e^{ikx}, k = -\frac{N}{2}, ..., \frac{N}{2}$$

$$w(x) = e^{ikx}$$
, $k = -\frac{N}{2}, ..., \frac{N}{2}$

$$\left|\left\langle \partial_{t} u, w \right\rangle + \left\langle u \partial_{x} u, w \right\rangle = \mu \left\langle \partial_{xx} u, w \right\rangle \right|$$

$$\left|\left\langle \partial_t \boldsymbol{u}, \boldsymbol{e}^{ikx} \right\rangle = \left\langle \partial_x \left(-\frac{1}{2} \boldsymbol{u}^2 + \mu \partial_x \boldsymbol{u} \right), \boldsymbol{e}^{ikx} \right\rangle \right|$$

integrating by parts:

$$\left|\left\langle \partial_{t} \boldsymbol{u}, \boldsymbol{e}^{ikx} \right\rangle = \left\langle \frac{1}{2} \boldsymbol{u}^{2} - \mu \partial_{x} \boldsymbol{u}, \partial_{x} \boldsymbol{e}^{ikx} \right\rangle = \left\langle \frac{1}{2} \boldsymbol{u}^{2} - \mu \partial_{x} \boldsymbol{u}, ik \boldsymbol{e}^{ikx} \right\rangle \right|$$

148

Spectral Methods

to solve
$$\left\langle \partial_t u, e^{ikx} \right\rangle = \left\langle \frac{1}{2} u^2 - \mu \partial_x u, ike^{ikx} \right\rangle$$

use orthogonality relation
$$\left| \left\langle e^{ilx}, e^{ikx} \right\rangle \right| = \int_{0}^{2\pi} e^{i(l-k)x} dx = 2\pi \delta_{lk}$$

$$\left| \left\langle \partial_t \mathbf{u}, \mathbf{e}^{ikx} \right\rangle = \left\langle \sum_{l=-N/2}^{N/2} \partial_t \mathbf{a}_l(t) \ \mathbf{e}^{ilx}, \mathbf{e}^{ikx} \right\rangle = 2\pi \ \partial_t \mathbf{a}_k$$

$$\left\langle \frac{1}{2} u^{2} - \mu \partial_{x} u, ike^{ikx} \right\rangle = \left\langle \frac{1}{2} \sum_{l,m=-N/2}^{N/2} a_{k} a_{l} e^{i(l+m)x} - i\mu \sum_{l=-N/2}^{N/2} l a_{l} e^{ilx}, ike^{ikx} \right\rangle$$

$$= -\frac{ik}{2} \left\langle \sum_{l,m} a_{k} a_{l} e^{i(l+m)x}, e^{ikx} \right\rangle - \mu k \left\langle \sum_{l,m} l a_{l} e^{ilx}, e^{ikx} \right\rangle = -i\pi k \sum_{l,m} a_{m} a_{l} - 2\pi \mu k^{2} a_{k}$$

$$2\pi \partial_t a_k = -i\pi k \sum_{l+m=k} a_k a_l - 2\pi \mu k^2 a_k$$

$$\frac{\partial a_k}{\partial t}(t) = -\frac{ik}{2} \sum_{l+m=k} a_k(t) a_l(t) - \mu k^2 a_k(t)$$

This system of coupled ODE can be solved e.g. with Runge Kutta using the Fourier transformed initial

condition:

$$\left| \mathbf{a}_{k}(0) = \frac{1}{2\pi} \left\langle \mathbf{u}(\mathbf{x}, 0), \mathbf{e}^{i\mathbf{k}\mathbf{x}} \right\rangle = \frac{1}{2\pi} \int_{0}^{2\pi} \mathbf{u}(\mathbf{x}, 0) \mathbf{e}^{-i\mathbf{k}\mathbf{x}} d\mathbf{x}$$

150

Spectral Methods with other basis functions

Fourier decomposition is good when functions are periodic. Families of orthogonal polynomials on [-1,1] are Legendre and Chebychev polynomials.

Legendre Chebyshev

Laguerre polynomials on $[0,\infty)$ Hermite polynomials on $(-\infty,\infty)$ Legendre polynomials:

$$\int_{-1}^{1} P_m(x) P_n(x) \, dx = \frac{2}{2n+1} \delta_{mn}$$

$$P_0(x) = 1$$
, $P_1(x) = x$, $P_2(x) = \frac{3}{2}x^2 - \frac{1}{2}$

Chebyshev polynomials:

$$\int_{-1}^{1} T_m(x) T_n(x) \frac{dx}{\sqrt{1-x^2}} = \frac{\pi}{2} (1+\delta_{0n}) \delta_{mn}$$

$$T_0(x) = 1$$
, $T_1(x) = x$, $T_2(x) = 2x^2 - 1$

Discrete fluid solvers

- Lattice Gas Automata (LGA)
- Lattice Boltzmann Method (LBM)
- Dissipative Particle Dynamics (DPD)
- Smooth Particle Hydrodynamics (SPH)
- Stochastic Rotation Dynamics (SRD)
- Direct Simulation Monte Carlo (DSMC)

152

Lattice gas Automata

- D.H. Rothman and S. Zaleski, "Lattice-Gas Cellular Automata" (Cambridge Univ. Press, 1997)
- J.-P. Rivet and J.P. Boon, "Lattice Gas Hydrodynamics" (Cambridge Univ. Press, 2001)
- D.A. Wolf-Gladrow, "Lattice-Gas Cellular Automata and Lattice Boltzmann Models" (Lecture Notes, Springer, 2000)

Lattice gas Automata **ETH**

Particles move on a triangular lattice and follow the following collision rules:

Momentum is conserved at each collision. It can be proven (Chapman-Enskog) that its continuum limit is the Navier Stokes eq.

154

Lattice gas Automata

von Karman street

velocity field of a fluid behind an obstacle

Each vector is an average over time of the velocities inside a square cell of 25 triangles.

157

Lattice gas Automata

Problem in three dimensions, because there exists no translationally invariant lattice which is locally isotropic. One must study the model in 4d and then project down to 3d. Start with 4d face centered hypercube that has 24 directions giving $2^{24} = 1677216$ possible states. Projecting onto a 3d hyperplane that already contains 12 directions adds another six new directions giving 18 in 3d.

Discrete fluid solvers

- Lattice Gas Automata (LGA)
- Lattice Boltzmann Method (LBM)
- Dissipative Particle Dynamics (DPD)
- Smooth Particle Hydrodynamics (SPH)
- Stochastic Rotation Dynamics (SRD)
- Direct Simulation Monte Carlo (DSMC)

160

Lattice Boltzmann

From LGCA to Lattice Boltzmann Models (LBM)

(Boolean) molecules to (discrete) distributions

$$n_i \longrightarrow f_i = \langle n_i \rangle$$

 n_i is the number of particles in a cell going in direction i

(Lattice) Boltzmann equations (LBE)

$$f_i(\vec{x} + \vec{c}_i, t+1) - f_i(\vec{x}, t) = C_i(f)$$

S.Succi, The Lattice Boltzmann equation for fluid dynamics and beyond, Oxford Univ. Press, 2001

Boltzmann equation

distribution function

 $f(\vec{x}, \vec{v}, t) \Delta \vec{x} \Delta \vec{v}$ is the number of particles having at time t velocities between \vec{v} and $\vec{v} + \Delta \vec{v}$ in the elementary volume between \vec{x} and $\vec{x} + \Delta \vec{x}$.

Ludwig Boltzmann

Taylor expansion:

$$f\left(\vec{x} + \Delta \vec{x}, \vec{v} + \Delta \vec{v}, t + \Delta t\right) = f\left(\vec{x}, \vec{v}, t\right) + \Delta t \partial_t f + \Delta \vec{x} \partial_x f + \Delta \vec{v} \partial_v f$$

$$\lim_{\Delta t \to 0} \frac{f(\vec{x} + \Delta \vec{x}, \vec{v} + \Delta \vec{v}, t + \Delta t) - f(\vec{x}, \vec{v}, t)}{\Delta t} = \partial_t f + \vec{v} \partial_x f + \vec{a} \partial_v f$$

$$\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t}$$

Boltzmann equation

Due to collisions between particles in the volume $\Delta \vec{x}$ during the time interval Δt some additional $\Delta f_{coll}^+(\vec{x}, \vec{v}, t)$ particles acquire velocities between \vec{v} and $\vec{v} + \Delta \vec{v}$ and some $\Delta f_{coll}^-(\vec{x}, \vec{v}, t)$ particles do not anymore have velocities between \vec{v} and $\vec{v} + \Delta \vec{v}$, giving the collision

term:
$$\Omega_{coll} = \Delta f_{coll}^{+} (\vec{x}, \vec{v}, t) - \Delta f_{coll}^{-} (\vec{x}, \vec{v}, t)$$

Boltzmann equation

This gives the Boltzmann equation:

$$\left| \partial_t \mathbf{f} + \vec{\mathbf{v}} \ \partial_x \mathbf{f} + \vec{\mathbf{a}} \ \partial_v \mathbf{f} = \Omega_{coll} \right|$$

In thermal equilibrium one expects the Maxwell-Boltzmann distribution:

$$f^{eq} = \frac{\rho_n}{\sqrt{2\pi kT}} e^{-\frac{(\vec{v}-\vec{u})^2}{2kT/m}}$$

 $\vec{u}(\vec{x},t)$

164

BGK collision term

P.L. Bhatnagar, E.P. Gross and M. Krook (1954)

BGK model:

$$\Omega_{coll} = rac{f - f^{eq}}{ au}$$

P.L. Bhatnagar

where τ is a relaxation time

$$\tau = \frac{\mu m}{kT} = \frac{\mu}{c_s^2}$$

 $\tau = \frac{\mu m}{kT} = \frac{\mu}{c_s^2} \begin{vmatrix} c_s \text{ is «sound speed»} \\ \mu \text{ is viscosity} \end{vmatrix}$

$$c_s^2 \equiv \frac{kT}{m}$$

Averaged quantities

Moments of the velocity distribution:

mass density:

$$\rho(\vec{x},t) = \int m f(\vec{x},\vec{v},t) d\vec{v}$$

momentum density:

energy density:

$$\rho(\vec{x},t)e(\vec{x},t) = \int m \frac{(\vec{v}-\vec{u})^2}{2} f(\vec{x},\vec{v},t)d\vec{v}$$

166

Knudsen number

Validity of the continuum description: characteristic length of system L must be much larger than the mean free path l of the molecules (distance between two subsequent collisions).

$$K = l/L$$

Navier-Stokes equation: 0.01 > K

Boltzmann equation: 0.005 > K

Chapman-Enskog

Chapman-Enskog expansion

$$f = \sum_{n=0}^{\infty} K^n f^{(n)}$$

where the small parameter K is the Knudsen number

$$f^{(0)} = f^{eq}$$

$$\nabla_{x} = \sum_{n=1}^{\infty} K^{n} \nabla_{x}^{(n)} , \frac{\partial}{\partial t} = \sum_{n=1}^{\infty} K^{n} \frac{\partial}{\partial t^{(n)}}$$

170

Chapman-Enskog

momentum conservation

$$\left| \frac{\partial}{\partial t^{(1)}} (\rho \vec{u}) + \nabla_x^{(1)} (\rho \vec{u} \otimes \vec{u}) = -\nabla_x^{(1)} (\rho e) + \rho \vec{a} \right|$$

$$\frac{\partial \boldsymbol{f}^{(0)}}{\partial \boldsymbol{t}^{(2)}} + \frac{\partial \boldsymbol{f}^{(1)}}{\partial \boldsymbol{t}^{(1)}} \frac{\partial \boldsymbol{f}^{(0)}}{\partial \boldsymbol{t}^{(2)}} + \frac{\partial \boldsymbol{f}^{(1)}}{\partial \boldsymbol{t}^{(1)}} + \vec{\boldsymbol{v}} \nabla_x^{(1)} \boldsymbol{f}^{(1)} + \vec{\boldsymbol{a}} \nabla_v^{(1)} \boldsymbol{f}^{(1)} = -\frac{1}{\tau} \boldsymbol{f}^{(2)} = -\frac{1}{\tau} \boldsymbol{f}^{(2)}$$

Navier Stokes equation:

$$\frac{\partial \rho \vec{u}}{\partial t} + \nabla \Pi = 0 \quad , \quad \Pi_{xy} = \int \vec{v} \otimes \vec{v} \left(f^{eq} + \left(1 - \frac{1}{2\tau} \right) f^{(1)} \right) dv$$

Gaussian quadrature theorem

Be g(x) a polynomial of at most degree 2n+1

$$\int_{a}^{b} g(x) w(x) dx = \sum_{i=0}^{n} w_{i} g(x_{i})$$

$$w_{i} = \int_{a}^{b} w(x) \prod_{k \neq i}^{n} \frac{x - x_{k}}{x_{i} - x_{k}} dx , \quad i = 0, ..., n$$

if for the positive weight function w(x) there exists a

polynomial p(x) of

polynomial
$$p(x)$$
 of degree $n+1$ such that
$$\int_{a}^{b} x^{k} p(x) w(x) dx = 0 , \forall k = 0,...,n$$

and x_i , i = 0,...,n are the zeros of p(x).

176

Lattice Boltzmann

$$f^{eq} = \frac{\rho}{m(2\pi kT/m)^{d/2}} e^{-\frac{(\vec{v}-\vec{u})^2}{2kT/m}}$$

small parameter:

$$\frac{\|\vec{u}\|}{c_s} \quad \text{with} \quad c_s^2 \equiv \frac{kT}{m}$$

$$f^{eq} \approx \frac{\rho}{m(2\pi c_s^2)^{d/2}} e^{-\frac{\vec{v}^2}{2c_s^2}} \left[1 + \frac{\vec{v}\vec{u}}{c_s^2} + \frac{(\vec{v}\vec{u})^2}{2c_s^4} - \frac{\vec{u}^2}{2c_s^2} \right]$$

$$p(x) = \sum_{i=0}^{2} a_i H_i(\vec{v})$$

Hermite Polynomials

$$H_0(x) = 1$$
, $H_1(x) = x$, $H_2(x) = x^2 - 1$, $H_3(x) = x^3 - 3x$

$$\int_{-\infty}^{\infty} \boldsymbol{H}_{i}(x) \, \boldsymbol{H}_{j}(x) \, \boldsymbol{e}^{-x^{2}} dx = \sqrt{2\pi} \, i! \, \delta_{ij}$$

178

Lattice Boltzmann

one dimensional case:

$$w(v) = \frac{1}{\sqrt{2\pi}c_s}e^{-\frac{v^2}{2c_s^2}}$$

$$n+1=3$$
 $v_i=-\frac{1}{\sqrt{3}},0,\frac{1}{\sqrt{3}}$

$$w_{i} = \frac{(n+1)!}{(n+1)^{2} [H_{n}(v_{i})]^{2}} = \left\{\frac{1}{6}, \frac{2}{3}, \frac{1}{6}\right\}_{i=0,1,2}$$

Lattice Boltzmann

three dimensional case:

$$e^{-\frac{\vec{v}^2}{2c_s^2}} = e^{-\frac{\vec{v}_x^2}{2c_s^2}} e^{-\frac{\vec{v}_y^2}{2c_s^2}} e^{-\frac{\vec{v}_z^2}{2c_s^2}}$$

27 discrete velocity vectors

$$w_{(0,0,0)} = w_0 w_0 w_0 = 8/27$$

$$w_{(\pm 1/\sqrt{3},0,0)} = w_{(0,\pm 1/\sqrt{3},0)} = w_{(0,0,\pm 1/\sqrt{3})} = w_{1/\sqrt{3}} w_0 w_0 = 2/27$$

$$w_{(\pm 1/\sqrt{3},\pm 1/\sqrt{3},0)} = w_{(0,\pm 1/\sqrt{3},\pm 1/\sqrt{3})} = w_{(\pm 1/\sqrt{3},0,\pm 1/\sqrt{3})} = w_{1/\sqrt{3}} w_{1/\sqrt{3}} w_0 = 1/54$$

$$w_{(\pm 1/\sqrt{3},\pm 1/\sqrt{3},\pm 1/\sqrt{3})} = w_{1/\sqrt{3}} w_{1/\sqrt{3}} w_{1/\sqrt{3}} = 1/216$$

180

Lattice Boltzmann

D2Q9

$$w_i = \begin{cases} 4/9 & i = 0\\ 1/9 & i = 1, 2, 3, 4\\ 1/36 & i = 5, 6, 7, 8 \end{cases}$$

D3Q15

$$w_i = \begin{cases} 2/9 & i = 0\\ 1/9 & i = 1 - 6\\ 1/72 & i = 7 - 14 \end{cases}$$

D3Q19

$$w_i = \begin{cases} 1/3 & i = 0\\ 1/18 & i = 1 - 6\\ 1/36 & i = 7 - 18 \end{cases}$$

Lattice Boltzmann

Define on each site x of a lattice on each outgoing bond i a velocity distribution function $f(x,v_i,t)$ which is updated as:

$$f_i(x+v_i,v_i,t+1)-f_i(x,v_i,t)+F_i(v_i)=\frac{1}{\tau}\Big[f_i^0(\rho_n,u,T)-f_i(x,v_i,t)\Big]$$

where the equilibrium distribution is defined as:

$$f_{i}^{0} = \rho_{n} w_{i} \left[1 + \frac{3\vec{v}\vec{u}}{c_{s}^{2}} + \frac{9(\vec{v}\vec{u})^{2}}{2c_{s}^{4}} - \frac{3\vec{u}^{2}}{2c_{s}^{2}} \right]$$

Lattice Boltzmann

discretization

CFL number

$$\boxed{\frac{\left|\vec{v}\right|\Delta t}{\left|\Delta\vec{x}\right|} = 1}$$

$$\tau = \frac{\mu}{c_s^2} + \frac{\Delta t}{2}$$

$$f(\vec{x} + \Delta \vec{x}, \vec{v} + \Delta \vec{v}, t + \Delta t) - f(\vec{x}, \vec{v}, t) = \Delta t \left(\partial_t + \vec{v} \vec{\nabla}\right) f + \frac{\Delta t^2}{2} \left(\partial_t + \vec{v} \vec{\nabla}\right)^2 f$$

Multi-Relaxation-Time (MRT) LBM

$$\left| f(\vec{x} + \vec{c}_{\alpha} \delta t, t + \delta t) \right\rangle_{\alpha} - \left| f(\vec{x}, t) \right\rangle_{\alpha} = -\sum_{j=0}^{N} \frac{s_{j}}{\left\langle \phi_{j} \left| \phi_{j} \right\rangle } (m_{j} - m_{j}^{eq}) \left| \phi_{j} \right\rangle_{\alpha}$$

 $\ket{\phi_i}$ Orthogonal polynomials

 $|m_j\rangle = \langle \phi_j | f \rangle$ Projections of the distribution

 \boldsymbol{S}_{j} is the inverse of a relaxation time.

P. Lallemand and L.S. Luo Phys.Rev.E 61, 6546 (2000)

Chapman-Enskog expansion:

$$\mu = c_s^2 \left(\frac{1}{s_{0,...,13}} - \frac{1}{2} \right)$$

Shear viscosity

$$\xi = \frac{5 - 9c_s^2}{9} \left(\frac{1}{s} - \frac{1}{2} \right)$$

Bulk viscosity

Lattice Boltzmann

Car design

Powerflow, EXA

3d Rayleigh Benard

Flow through porous medium in 2d

189

Surface Flow with Moving and Deforming Objects

Interfaces and free surfaces

191

Discrete fluid solvers

- Lattice Gas Automata (LGA)
- Lattice Boltzmann Method (LBM)
- Dissipative Particle Dynamics (DPD)
- Smooth Particle Hydrodynamics (SPH)
- Stochastic Rotation Dynamics (SRD)
- Direct Simulation Monte Carlo (DSMC)

Smooth Particle Hydrodynamics

- SPH describes a fluid by replacing its continuum properties with locally (smoothed) quantities at discrete Lagrangian locations ⇒ meshless
- **SPH** is based on integral interpolants (Lucy 1977, Gingold & Monaghan 1977, Liu 2003)

$$A(\mathbf{r}) = \int_{\Omega} A(\mathbf{r}') W(\mathbf{r} - \mathbf{r}', h) d\mathbf{r}'$$

(W is the smoothing kernel)

• These can be approximated discretely by a summation interpolant

$$A(\mathbf{r}) \approx \sum_{j=1}^{N} A(\mathbf{r}_{j}) W(\mathbf{r} - \mathbf{r}_{j}, h) \frac{m_{j}}{\rho_{j}}$$

193

Smooth Particle Hydrodynamics

The kernel (or weighting Function)

Example: quadratic kernel

$$W(r,h) = \frac{3}{2\pi h^2} \left(\frac{1}{4} q^2 - q + 1 \right)$$

$$q = \frac{r}{h}, r = |\mathbf{r}_a - \mathbf{r}_b|$$

Smooth Particle Hydrodynamics

• Spatial gradients are approximated using a summation containing the gradient of the chosen kernel function

$$\nabla A_i = \sum_j \frac{m_j}{\rho_j} A_j \nabla_i W_{ij}$$

$$\rho_i (\nabla .\mathbf{u})_i = \sum_j m_j (\mathbf{u}_i - \mathbf{u}_j) . \nabla_i W_{ij}$$

- Advantages are:
 - spatial gradients of the data are calculated analytically
 - the characteristics of the method can be changed by using a different kernel

195

Smooth Particle Hydrodynamics

Equations of Motion

• Navier-Stokes equations: $\frac{d \rho}{d t} = -\rho \nabla . \mathbf{v}$ $\frac{d \mathbf{v}}{d t} = -\frac{1}{\rho} \nabla p + \mu \nabla^2 \mathbf{u} + \mathbf{F}_i$

• Recast in particle form as:

$$\frac{\mathrm{d}\,\mathbf{r}_{i}}{\mathrm{d}\,t} = \mathbf{v}_{i} + \varepsilon \sum_{j} m_{j} \left(\frac{\mathbf{v}_{ji}}{\overline{\rho}_{ij}}\right) W_{ij}$$

$$\left(\frac{\mathrm{d}\,m_{i}}{\mathrm{d}\,t} = 0\right)$$

$$\frac{\mathrm{d}\,\rho_{i}}{\mathrm{d}\,t} = \sum_{j} m_{j} \left(\mathbf{v}_{i} - \mathbf{v}_{j}\right) \cdot \nabla_{i} W_{ij}$$

$$\frac{\mathrm{d}\,\mathbf{v}_{i}}{\mathrm{d}\,t} = -\sum_{j} m_{j} \left(\frac{p_{i}}{\rho_{i}^{2}} + \frac{p_{j}}{\rho_{j}^{2}} + \Pi_{ij}\right) \nabla_{i} W_{ij} + \mathbf{F}_{i}$$

Simulation of free surface

197

Simulation of free surface

10.000.000 Fluid Particles

Simulation of free surface

199

Dwarf Galaxy Formation

THE FORMATION OF A BULGELESS GALAXY WITH A SHALLOW DARK MATTER CORE

Fabio Governato (University of Washington)
Chris Brook (University of Central Lancashire)
Lucio Mayer (ETH and University of Zurich)
and the N-Body Shop

KEY: Blue: gas density map. The brighter regions represent gas that is actively forming stars. The clock shows the time from the Big Bang. The frame is 50,000 light years across.

Simulations were run on Columbia (NASA Advanced Supercomputing Center) and at ARSC

Discrete fluid solvers

- Lattice Gas Automata (LGA)
- Lattice Boltzmann Method (LBM)
- Dissipative Particle Dynamics (DPD)
- Smooth Particle Hydrodynamics (SPH)
- Stochastic Rotation Dynamics (SRD)
- Direct Simulation Monte Carlo (DSMC)

201

Stochastic Rotation Dynamics

Stochastic Rotation Dynamics (SRD)

- introduction of representative fluid particles
- collective interaction by rotation of local particle velocities
- very simple dynamics, but recovers hydrodynamics correctly
- Brownian motion is intrinsic

0 0	0 00	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	0
0	0000	000	0
0			0 0
0 0	08	000	0

$$\begin{split} \vec{x}_n' &= \vec{x}_n + \vec{v}_n \, \Delta t \\ \vec{v}_n' &= \vec{u} + \Omega(\vec{v}_n - \vec{u}) + \vec{g} \\ \Omega_z^\pm &= \begin{pmatrix} \cos\alpha & \pm\sin\alpha & 0 \\ \mp\sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ \vec{u} &= <\vec{v}_n> \\ & \text{A. Malevanets, J. Chem. Phys. 110 (1999)} \\ \text{J.T. Padding, A.A. Louis, Phys. Rev. Lett. 93 (2004)} \end{split}$$

Stochastic Rotation Dynamics

Example of two particles in cell:

Shift grid to impose Galilean invariance.

203

Shear flow

One particle in fluid

e.g. pull sphere through fluid

205

Drag force

drag force

(Bernoulli's principle)

$$\vec{F}_{D} = \int_{\Gamma} \vec{\Theta} d\vec{A}$$

stress tensor

$$\Theta_{ij} = -p\delta_{ij} + \eta \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right)$$

 $\eta = \rho \mu$ is static viscosity

Homogeneous flow

$$\mathbf{v}$$

Re << 1 Stokes law:

$$F_D = 6\pi \eta R v$$
(exact for Re = 0)

R is particle radius, v is relative velocity

Re >> 1 Newton's law: $F_D = 0.22\pi \rho R^2 v^2$

general drag law:

$$C_D$$
 is the drag coefficient

$$F_D = \frac{\pi}{8} \frac{\eta^2}{\rho} C_D \operatorname{Re}^2$$

207

Drag coefficient C_D

Inhomogeneous flow

In velocity or pressure gradients: Lift forces are perpendicular to the direction of the external flow, important for wings of airplanes.

lift force:
$$L = C_L \times \rho \times \frac{\text{v}^2}{2} \times A$$

C_L is ,,lift coefficient"

when particle rotates: Magnus effect important for soccer

209

Many particles in fluids

- •The fluid velocity field follows incompressible Navier Stokes equations.
- Many industrial processes involve the transport of solid particles suspended in a fluid. The particles can be sand, colloids, polymers, etc.
- The particles are dragged by the fluid with a force:

$$F_D = \frac{\pi}{8} \frac{\eta^2}{\rho} C_D \operatorname{Re}^2$$

simulating particles moving in a sheared fluid

Stokes limit

hydrodynamic interaction between the particles

$$\vec{v}_i = \sum_{j \neq i} M_{ij} (\vec{r}_i - \vec{r}_j) \vec{v}_j$$
mobility-matrix

for Re = 0 mobility matrix exact

Stokesian Dynamics (Brady and Bossis)

invert a full matrix \Rightarrow only a few thousand particles

211

Numerical techniques

- 1 Calculate stress tensor directly by evaluating the gradients of the velocity field through interpolation on the numerical grid, e.g. using Chebychev polynomials.
- Method of Fogelson and Peskin:
 Advect markers that were placed in the particle and then put springs between their new an their old position.
 These springs then pull the particle.

Numerical techniques

Method of A.L. Fogelson and C.S. Peskin:
Advect markers that were placed in the
particle and then put springs between
their new an their old position.
These springs then pull the particle.

Sedimentation

Glass beads descending in silicon oil

comparing experiment and simulation

Sedimentation of platelets

Oblate ellipsoids descend in a fluid under the action of gravity.

This has applications in biology (blood), industry (paint) and geology (clay).

Thesis of Frank Fonseca

Oral exams

Jan.22-Feb.02 2017

228

15 relevant questions

- Congruential and lagged-Fibbonacci RN
- Definition of percolation
- Fractal dimension and sand-box method
- Hoshen-Kopelman algorithm
- Finite size scaling
- Integration with Monte Carlo
- Detailed balance and MR²T²
- Ising model

15 relevant questions

- Simulate random walk
- Euler method
- 2nd order Runge-Kutta
- 2nd order predictor-corrector
- Jacobi and Gauss-Seidel relaxation
- Gradient methods
- Strategy of finite elements, finite volumes and spectral methods

230

Next semester

402-0810 Computational Quantum Physics

Giuseppe Carleo and Philippe de Forcrand

Tuesday afternoon: V Di 14-16, U Di 16-18

402-0812 Computational Statistical Physics

Mirko Lukovic and Miller Mendoza

Friday morning: V Fr 11-13, U Fr 9-11

327-5102 Molecular Materials Modelling

Daniele Passerone

Friday afternoon: V Fr 14-16, U Fr 16-18

Computational Quantum Physics FTH

Giuseppe Carleo and Philippe de Forcrand

Tuesday afternoon: V Di 14-16, U Di 16-18

One particle quantum mechanics: scattering problem, time evolution shooting technique

Numerov algorithm

232

Computational Quantum Physics FTH

Many particle systems:

Fock space, etc (\approx 2 weeks theory) Hartree-Fock approximation density functional theory and electron structure (He & H₂) strongly correlated electrons Hubbard and T-J models

Computational Quantum Physics

Lanczos method **Path integral Monte Carlo Bosonic world lines** QCD, lattice gauge theory Fermions, QFT

234

Molecular Materials Modelling

Daniele Passerone

Friday afternoon; V Fr 14-16, U Fr 16-18

Empirical potentials and transition rates Bio-force fields, charges, peptides Embedded atom models, Wilff's theorem Pair-correlation function with MD for neutron scattering

Molecular Materials Modelling

Melting temperature from phase coexistence MO-theory, basic SCF, chemical reactions Density functional theory, pseudopotentials DFT on realistic systems, hybrids Linear scaling, GPW Electronic spectroscopies, STM Bandstructure, graphene, free energies

236

Computational Statistical Physics

Mirko Lukovic and Miller Mendoza Friday morning: V Fr 11-13, U Fr 9-11

Advanced Monte Carlo techniques: continuous variables (XY, Heisenberg) multi-spin coding, bit-manipulation vectorization, parallelization histogram methods, multi canonical

Computational Statistical Physics **ETH**

Kawasaki dynamics, heat bath microcanonical, Creutz algorithm, Q2R critical slowing down, dynamical scaling cluster algorithms (Swendsen-Wang, Wolff) Monte Carlo Renormalization Group Molecular Dynamics Simulations:

Verlet and leap frog methods linked cell method, Verlet tables

238

Computational Statistical Physics ————

parallelization, realistic potentials
Ewald sums, reaction field method
Nose-Hoover thermostat, rescaling
constant pressure MD, melting
Discrete Elements, friction, inelasticity
rotation and quaternions
ab- initio calculations, Car Parinello