Abstract Algebra by Pinter, Chapter 23, question B3

Amir Taaki

Abstract

Chapter 23 on Number Theory

Contents

1	Pro	\mathbf{of}	1
	1.1	Initial Question	1
	1.2	Simultaneous Solution for Three Elements	1
	1.3	Generalizing to $k+1$ through induction	3
	1.4	Relation between gcd and lcm operators	3
	1.5	Proving equivalency holds under gcd for $k+1$	3
	1.6	Generalizing lcm to Multiple Arguments	3
	1.7	Solution $c \equiv c_i$ is also a Solution in the lcm of the gcds	4
	1.8	There is a Common Solution for c and c_{k+1}	4

1 Proof

1.1 Initial Question

We are given k congruences

$$x \equiv c_1 (\operatorname{mod} m_1) \qquad x \equiv c_2 (\operatorname{mod} m_2) \qquad \cdots \qquad x \equiv (\operatorname{mod} m_k)$$

 $c_i \equiv c_i \pmod{d_{ij}}$

where $d_{ij} = \gcd(m_i, m_j)$.

for all $i, j \in \{1, \dots, k\}$

Prove there is an x satisfying all k congruences simultaneously, and the solution is of the form

$$x \equiv c \pmod{t}$$

where $t = \text{lcm}(m_1, m_2, \dots, m_k)$.

1.2 Simultaneous Solution for Three Elements

We will proceed to prove these statements through induction, first starting with the case of proving there is a simultaneous solution for c_1, c_2 and c_3 .

It has been shown earlier in theorem 3 that there is a solution for two equations $x \equiv a \pmod{n}$ and $x \equiv b \pmod{m}$, only exists if

$$a \equiv b \pmod{d}$$

$$d = \gcd(m, n)$$

For the first two equations, there is therefore a simultaneous solution because

$$c_1 \equiv c_2 (\operatorname{mod} d_{12})$$

Earlier in theorem 4, it was shown that if $x \equiv a \pmod{n}$ and $x \equiv b \pmod{m}$ have a simultaneous solution, it is of the form

$$x \equiv c \pmod{t}$$

$$t = lcm(m, n)$$

So therefore the solution of $x \equiv c_1 \pmod{m_1}$ and $x \equiv c_2 \pmod{m_2}$ is

$$x \equiv c \pmod{t}$$

$$t = \operatorname{lcm}(m_1, m_2)$$

We want to know if there is a solution x for $x = c \pmod{t}$ and $x = c_3 \pmod{m_3}$. That is whether the statement

$$c_3 \equiv c[\operatorname{mod}\gcd(t, m_3)]$$

is true.

But we know that gcd(a, lcm(b, c)) = lcm(gcd(a, b), gcd(a, c)) so

$$\begin{split} \gcd(t = \operatorname{lcm}(m_1, m_2), m_3) &= \operatorname{lcm}(\gcd(m_1, m_3), \gcd(m_2, m_3)) \\ &= \operatorname{lcm}(d_{13}, d_{23}) \end{split}$$

So we want to know whether this statement is true

$$c_3 \equiv c[\operatorname{mod} \gcd(t, m_3)]$$
$$\equiv c[\operatorname{lcm}(d_{13}, d_{23})]$$

At the start it was stated that $c_3 \equiv c_1 \pmod{d_{13}}$, and we also we know that

$$c \equiv c_1 \pmod{m_1} \implies c \equiv c_1 \pmod{d_{13}}$$

$$\therefore c \equiv c_3 \pmod{d_{13}}$$

Likewise $c_3 \equiv c_2 (\operatorname{mod} d_{23}) \implies c \equiv c_3 (\operatorname{mod} d_{23})$

Now from the last part of theorem 4, we note that

$$m \mid (x-c)$$
 and $n \mid (x-c) \iff t \mid (x-c)$

or

$$x \equiv c \pmod{m}$$
 and $x \equiv c \pmod{n} \iff x \equiv c \pmod{t}$

Note that

$$d_{13} \mid (c-c_3) \text{ and } d_{23} \mid (c-c_3) \iff lcm(d_{13},d_{23}) \mid (c-c_3)$$

or

$$c \equiv c_3 \pmod{d_{13}}$$
 and $c \equiv c_3 \pmod{d_{23}} \iff c \equiv c_3 \pmod{\dim(d_{13},d_{23})}$

That is we can state that

$$c_3 \equiv c[\operatorname{mod}\operatorname{lcm}(d_{13},d_{23})]$$

But $lcm(d_{13}, d_{23}) = gcd(t, m_3)$. So by theorem 3 because

$$c_3 \equiv c[\operatorname{mod} \gcd(t, m_3)]$$

there is a simultaneous solution of

$$x \equiv c(\text{mod } t)$$
$$x \equiv c_3(\text{mod } m_3)$$

And this is also the solution for

$$x \equiv c_1 \pmod{m_1}$$
$$x \equiv c_2 \pmod{m_2}$$

1.3 Generalizing to k+1 through induction

Now we will generalize this using induction on $k+1 \in \mathbb{Z}$ terms where we assume S_k is true, proving the statement S_{k+1} is true, and therefore it is true for all integers.

Assume there is a solution of k congruences

$$x \equiv c_1 (\operatorname{mod} m_1) \qquad \cdots \qquad x \equiv c_k (\operatorname{mod} m_k)$$

of the form

$$x \equiv c (\operatorname{mod} t)$$

$$t = \operatorname{lcm}(m_1, \dots, m_k)$$

Note that $\forall i, j \in \{1, \dots, k\}$

$$\begin{aligned} c_i &\equiv c_j (\operatorname{mod} d_{ij}) \\ d_{ij} &= \gcd(m_i, m_j) \end{aligned}$$

that is

$$c_{k+1} = c_i (\operatorname{mod} d_{k+1,i})$$

We want to know if there an $x \pmod{t'}$ which is the solution for $x \equiv c \pmod{t}$ and $x \equiv c_{k+1} \pmod{m_{k+1}}$. That is whether the statement

$$c_{k+1} \equiv c[\operatorname{mod}\gcd(t,m_{k+1})]$$

is true or not.

1.4 Relation between gcd and lcm operators

From chapter 22, exercise H4, let $a \star b = \gcd(a, b)$ and $a \circ b = \operatorname{lcm}(a, b)$ then it is trivial to show that

$$a \star (b \circ c) = (a \star b) \circ (a \star c)$$

and we know that the lcm operation is associative.

$$m_1 \circ m_2 \circ \cdots \circ m_k = m_1 \circ (m_2 \circ (\cdots \circ m_k))$$

so

$$\begin{split} m_{k+1} \star (m_1 \circ m_2 \circ \cdots \circ m_k) &= (m_{k+1} \star m_1) \circ (m_{k+1} \star (m_2 \circ \cdots \circ m_k)) \\ &= (m_{k+1} \star m_1) \circ (m_{k+1} \star m_2) \circ (m_{k+1} \star (m_3 \circ \cdots \circ m_k)) \\ &= (m_{k+1} \star m_1) \circ \cdots \circ (m_{k+1} \star m_k) \end{split}$$

That is

$$\gcd(\operatorname{lcm}(m_1,\dots,m_k),m_{k+1}) = \operatorname{lcm}(\gcd(m_1,m_{k+1}),\dots,\gcd(m_k,m_{k+1}))$$

1.5 Proving equivalency holds under gcd for k+1

At the beginning it was stated that $\forall i \in \{1, ..., k\}$

$$c_{k+1} \equiv c_i (\operatorname{mod} d_{k+1,i})$$

and we also know that

$$\begin{split} c &\equiv c_i (\operatorname{mod} m_i) \\ c - c_i &= q m_i = q (s d_{k+1,i}) \\ \Longrightarrow c &\equiv c_i (\operatorname{mod} d_{k+1,i}) \end{split}$$

1.6 Generalizing lcm to Multiple Arguments

The lcm is defined as if c = lcm(a, b) then

- 1. $a \mid c$ and $b \mid c$
- 2. For any x if $a \mid x$ and $b \mid x \implies c \mid x$

This can be generalized for any number of arguments in the lcm by noting that since $c = \operatorname{lcm}(x_1, x_2, \dots, x_n)$ then $\forall i \in \{1, \dots, n\}$ then 1. $x_i \mid c$ for 2., note that the common multiples of $\{x_1, \dots, x_n\}$ form an ideal of $\mathbb Z$ by $\langle c \rangle = \langle x \rangle \cap \dots \cap \langle x_n \rangle$, and so every common multiple is a multiple of c.

 \therefore any v such that $\forall x_i \in X : x_i \mid v \implies c \mid v$.

1.7 Solution $c \equiv c_i$ is also a Solution in the lcm of the gcds

From theorem 4, we generalize that

$$\begin{aligned} m_1 \mid x, \cdots, m_n \mid x \implies t \mid x \\ m_1 \mid (x-c), \cdots, m_n \mid (x-c) \implies t \mid (x-c) \\ x \equiv c (\operatorname{mod} m_1) & \cdots & x \equiv c (\operatorname{mod} m_n) \implies x \equiv c (\operatorname{mod} t) \end{aligned}$$

where $t = \text{lcm}(m_1, \dots, m_n)$

Now note that

$$d_{k+1,1} \mid (c-c_i) \quad \cdots \quad d_{k+1,k} \mid (c-c_i) \implies \text{lcm}(d_{k+1,1}, \dots, d_{k+1,k}) \mid (c-c_i)$$

or

$$c \equiv c_i(\operatorname{mod} d_{k+1,1}) \qquad \cdots \qquad c \equiv c_i(\operatorname{mod} d_{k+1,k}) \implies c \equiv c_i[\operatorname{mod} \operatorname{lcm}(d_{k+1,1}, \ldots, d_{k+1,k})]$$

1.8 There is a Common Solution for c and c_{k+1}

So,

$$c \equiv c_i[\operatorname{mod}\operatorname{lcm}(\gcd(m_{k+1},m_1),\ldots,\gcd(m_{k+1},m_k))]$$

But we know that

$$\begin{split} \operatorname{lcm}(\operatorname{gcd}(m_{k+1},m_1),\dots,\operatorname{gcd}(m_{k+1},m_k)) &= \operatorname{gcd}(\operatorname{lcm}(m_1,\dots,m_k),m_{k+1}) \\ \\ \Longrightarrow & c \equiv c_i[\operatorname{mod}\operatorname{gcd}(t,m_{k+1})] \end{split}$$

where $t = \text{lcm}(m_1, \dots, m_k)$

And because of this, by theorem 3, because $\forall i \in \{1, \dots, k\}, c \equiv c_i[\text{mod} \gcd(t, m_{k+1})]$, there is an x such that

$$x \equiv c (\operatorname{mod} t)$$

$$x \equiv c_{k+1} \pmod{m_{k+1}}$$

which because $x \equiv c \pmod{t}$, this is also the solution for

$$x \equiv c_1 \pmod{m_1}$$

••

$$x \equiv c_k \pmod{m_k}$$

Furthermore this solution takes the form

$$x \equiv c'[\operatorname{mod}\operatorname{lcm}(t, m_{k+1})]$$
$$\equiv c'(\operatorname{mod}t')$$

where $t' = \operatorname{lcm}(m_1, m_2, \dots, m_k)$