Знакопеременные числовые ряды. Теорема Лейбница. Абсолютная и условная сходимости

Теоретический материал

<u>Определение</u>. Ряды, представленные в виде $\sum_{n=1}^{\infty} (-1)^{n+1} \cdot u_n$ или

 $\sum_{n=1}^{\infty} (-1)^n \cdot u_n$, где $u_n > 0$, называются з*накочередующимися* числовыми рядами.

Теорема Лейбница (признак сходимости знакочередующегося ряда)

Рассматриваем ряд $\sum_{n=1}^{\infty} (-1)^{n+1} \cdot u_n$.

- а) Если члены знакочередующегося ряда монотонно убывают по модулю: $u_1 \ge u_2 \ge u_3 \ge \cdots \ge u_n \ge \cdots$
- б) и стремятся к нулю: $\lim_{n\to\infty}u_n=0$,

то ряд сходится.

<u>Пример.</u> Исследовать на сходимость ряд $\sum_{n=2}^{\infty} (-1)^n \cdot \frac{\ln n}{n}$.

Решение. Проверим выполнения условий теоремы Лейбница:

- а) $u_n = \frac{\ln n}{n}$, начиная с номера n = 3, верно, $u_{n+1} \le u_n$;
- 6) $\lim_{n\to\infty} \frac{\ln n}{n} = 0$,

следовательно, ряд сходится по теореме Лейбница.

Абсолютная и условная сходимости

Пусть $\sum_{n=1}^{\infty} u_n$ - произвольный знакопеременный ряд, а ряд $\sum_{n=1}^{\infty} |u_n|$ составлен из модулей его членов.

<u>Теорема (Коши)</u>. Если сходится ряд из модулей членов данного ряда, то сходится и сам знакопеременный ряд.

<u>Определение</u>. Если ряд, составленный из модулей членов данного ряда, сходится, то сам знакопеременный ряд называется абсолютно сходящимся.

<u>Определение</u>. Если знакопеременный ряд сходится, а ряд, составленный из модулей членов, расходится, то такой ряд называется условно сходящимся.

<u>Замечание.</u> При установлении абсолютной сходимости можно пользоваться всеми признаками сходимости положительных рядов.

Примеры

1. Исследовать на сходимость $\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{3n+1}{5n+3}\right)^n$.

<u>Решение</u>. Применим радикальный признак Коши к ряду из модулей: $\lim_{n\to\infty} \sqrt[n]{u_n} = \lim_{n\to\infty} \frac{3n+1}{5n+3} = \frac{3}{5} < 1 \Rightarrow$ ряд сходится абсолютно.

2. Исследовать на сходимость $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[3]{n}}$.

<u>Решение</u>. Ряд из модулей является расходящимся как обобщенный гармонический ряд с показателем $\alpha = \frac{1}{3}$ (ряд Дирихле). Однако, для данного ряда выполнены условия теоремы Лейбница (проверить самостоятельно), следовательно, ряд сходится условно.

3. Исследовать на сходимость $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^3}{2^n}$.

<u>Решение</u>. Рассмотрим ряд из модулей $\sum_{n=1}^{\infty} \frac{n^3}{2^n}$, по признаку ра $\lim_{n\to\infty} \left|\frac{u_{n+1}}{u_n}\right| = \lim_{n\to\infty} \left|\frac{(n+1)^3}{2^{n+1}} \cdot \frac{2^n}{n^3}\right| = \frac{1}{2} < 1 \Rightarrow$ ряд из модулей сходится, значит исходный ряд *сходится абсолютно*.

4. Исследовать на сходимость $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$.

<u>Решение</u>. Ряд из модулей будет гармоническим рядом $\sum_{n=1}^{\infty} \frac{1}{n}$, который расходится, значит, абсолютной сходимости нет. Проверим признак Лейбница: верно $u_{n+1} \leq u_n$ и $\lim_{n\to\infty} \frac{1}{n} = 0$. Признак Лейбница выполняется, значит, исходный ряд *сходится условно*.

<u>Замечание</u>. Доказательство монотонного убывания можно проводить одним из трех способов:

- а) непосредственно из свойств функции;
- б) оценивая знак разности $u_n u_{n+1}$ (знак должен быть > 0);
- в) взяв производную от u_n и оценив ее знак (знак должен быть < 0).

Задания для аудиторной работы

Исследовать на сходимость.

1. $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{\sqrt{n}}$ (Ответ: условная сходимость).

- 2. $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2n+1}{n(n+1)}$ (Ответ: условная сходимость).
- 3. $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{\ln(n+1)}$ (Ответ: условная сходимость).
- 4. $\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{n}{2n+1}\right)^n$ (Ответ: абсолютная сходимость).
- 5. $\sum_{n=1}^{\infty} (-1)^n (\sqrt[n]{2} 1)$ (Ответ: условная сходимость). 6. $\sum_{n=1}^{\infty} \frac{\cos nx}{n^3}$ (Ответ: абсолютная сходимость).