

Venezia
12 DICEMBRE 2024

Conversations with an AI gynecologist: design of an explainable medical decision support tool

Rosilari Bellacosa CTO @ SynDiag

It's me, hi!

Former neuroscientist

Former ML specialist

Former R&D in Computer Vision

Current CTO @ SynDiag

A few facts about) (SynDiag:

Launched in 2018

3 founders

9 people

PoliTO Spin Off

5 IPs protected in 5+ countries

2 products

750K in sales in 2024

Al in Healthcare:

Imaging and Diagnostics
Predictive Analytics
Personalized Medicine
Virtual Health Assistants
Administrative Workflow
Remote Monitoring
Clinical Decision Support

Goals:

Efficacy and accuracy
Efficiency and costs reduction
Personalized care
Discovering new patterns

. . .

Al in Healthcare:

Human Only Shadow mode

AI assistance

Partial automation

Full automation

OvAi case study

HVData

OvAi case study:

Diagnostic support for gynecological tumors

Main features of OvAi:

Transparency Modularity

Transparency by design

Transparency by design

Hybata

Transparency by design

Real Data

Official diagnostic guidelines

CONTRACTOR OF THE PROPERTY OF

Visual tumor description

Diagnostic suggestion

Transparency by design

Real Data

Official diagnostic guidelines

OvAi Explainable output

Pillars of responsible Al

- Privacy and security
- Fairness and inclusion
- Robustness and safety
- Transparency and control
- Accountability and governance

Benign

VS

Malignant

Modularity in OvAi

ROI detection and navigation

Visual

Diagnostic class suggestion

> Tumor identification

> > Mucinous Cystadenoma

Modularity in OvAi

Pros:

- Specific tasks and technologies
- Work with limited resources
- Reuse modules
- Regulatory requirements

Cons:

- Integration
- Overall performance
- Maintenance
- Coupling

Module performance: segmentation

Do physicians really need pixel-level information?

Classification
Is there a tumor
component?

Detection classification + where is it?

Segmentation
detection + object
boundaries

Module performance: segmentation

Do physicians really need pixel-level information?

Classification
NAVIGATION
(TUMOR Vs
NON TUMOR)

Detection
ROI (TUMOR)
DETECTION

Segmentation TUMOR FEATURE EXTRACTION

Hylbata.

Module performance: segmentation

Classification x IoU (overlap)

Module performance: segmentation

Classification x IoU (overlap)

Used dataset:

~800 clinical cases from 7 hospital partners 55% benign, 33% malignant, 12% BOT cases

~5 videos, ~6 images per case

15 histotypes

Solution development

- Python/ TensorFlow, PyTorch, Scikit-learn
- Algorithms: UNet, CNN, random forest, ...
- Cross validation on AWS batch
- Gitlab, Weight&Biases

Product architecture

Modules performance

True Condition

Modules performance

ROI detection

Segmentation of lesion

DICE: 85%

IoU: 77%

precision 85%, recall: 86%

Modules performance

Tumor identification

Accuracy: 77%

Sensitivity: 88%

Specificity: 95%

Table 2. Accuracy, sensitivity, specificity, positive and negative LR with regard to malignancy of subjective evaluation of static ultrasound images by observers with varying levels of ultrasound experience

Sonolo- gist	AUC	Accuracy n (%)	95% CI	р	Sensitivity n (%)	95% CI	p	Specificity n (%)	95% CI	p	LR+ (95% CI)	LR- (95% CI)
Experts												
A	0.92247	89 (147/166)	83-93		86 (60/70)	76-92		91 (87/96)	83-95		9.14 (5.03-17.25)	0.16 (0.09-0.27)
В	0.86109	82 (136/166)	75-87		86 (60/70)	76-92		79 (76/96)	70-86		4.11 (2.81-6.23)	0.18 (0.10-0.31)
C	0.88199	83 (138/166)	77-88		80 (56/70)	69-88		85 (82/96)	77-91		5.49 (3.41-9.12)	0.23 (0.14-0.36)
	ensus pinion	85 (141/166)	79–90		83 (58/70)	72-90		86 (83/96)	78-92		6.12 (3.74–10.36)	0.20 (0.12-0.32)
Senior tr	ainees											
D	0.84189	80 (133/166)	73-85	0.1441	84 (59/70)	74-91	0.7630	77 (74/96)	8-84	0.0389	3.68 (2.56-5.45)	0.20 (0.12-0.34)
E	0.85506	81 (134/166)	74-86	0.1779	70 (49/70)	58-79	0.0201	89 (85/96)	1-93	0.5637	6.11 (3.52–10.95)	0.34 (0.23-0.47)
Junior tr	ainees											
F	0.78586	78 (129/166)	71-83	0.0455	70 (49/70)	58-79	0.0290	83 (80/96)	75-89	0.4913	4.20 (2.67-6.81)	0.36 (0.24-0.51)
G	0.72560	72 (120/166)	65-79	0.0014	74 (52/70)	63-83	0.1336	71 (68/96)	61-79	0.0039	2.55 (1.83-3.62)	0.36 (0.23-0.54)
Н	0.72664	70 (117/166)	63-77	0.0004	86 (60/70)	76-92	0.6171	59 (57/96)	49-69	< 0.0001	2.11 (1.65-2.77)	0.24 (0.12-0.47)
I	0.79464	75 (125/166)	68-81	0.0114	73 (51/70)	61-82	0.0896	77 (74/96)	68-84	0.0606	3.18 (2.18-4.77)	0.35 (0.23-0.51)

p value refers to the comparison with the consensus opinion. Consensus opinion is defined as the diagnosis suggested by at least 2 of the 3 experts.

Deployment in clinical environment

- Access through a webapp
- Data can be dragged and drop or sent from the ultrasound machine

Remote/On premise DICOM server

API for data sorting

Data available on user profile

Challenges in AI in Healthcare:

Data quality and availability

Model biases

GDPR and data management

Regulatory requirements

Cost and resource requirements

Integration into existing systems (e.g. where will it be deployed)