- (c) What is the probability that a measurement of the energy would yield the value E_1 ?
- (d) Find the expectation value of the energy.

Problem 2.8 A particle of mass m in the infinite square well (of width a) starts out in the left half of the well, and is (at t = 0) equally likely to be found at any point in that region.

- (a) What is its initial wave function, $\Psi(x, 0)$? (Assume it is real. Don't forget to normalize it.)
- (b) What is the probability that a measurement of the energy would yield the value $\pi^2 \hbar^2 / 2ma^2$?

Problem 2.9 For the wave function in Example 2.2, find the expectation value of H, at time t = 0, the "old fashioned" way:

$$\langle H \rangle = \int \Psi(x,0)^* \hat{H} \Psi(x,0) dx.$$

Compare the result obtained in Example 2.3. *Note:* Because $\langle H \rangle$ is independent of time, there is no loss of generality in using t = 0.

2.3 THE HARMONIC OSCILLATOR

The paradigm for a classical harmonic oscillator is a mass m attached to a spring of force constant k. The motion is governed by **Hooke's law**,

$$F = -kx = m\frac{d^2x}{dt^2}$$

(ignoring friction), and the solution is

$$x(t) = A \sin(\omega t) + B \cos(\omega t)$$
,

where

$$\omega \equiv \sqrt{\frac{k}{m}} \tag{2.41}$$

is the (angular) frequency of oscillation. The potential energy is

$$V(x) = \frac{1}{2}kx^2;$$
 [2.42]

its graph is a parabola.

FIGURE 2.4: Parabolic approximation (dashed curve) to an arbitrary potential, in the neighborhood of a local minimum.

Of course, there's no such thing as a *perfect* harmonic oscillator—if you stretch it too far the spring is going to break, and typically Hooke's law fails long before that point is reached. But practically any potential is *approximately* parabolic, in the neighborhood of a local minimum (Figure 2.4). Formally, if we expand V(x) in a **Taylor series** about the minimum:

$$V(x) = V(x_0) + V'(x_0)(x - x_0) + \frac{1}{2}V''(x_0)(x - x_0)^2 + \cdots,$$

subtract $V(x_0)$ (you can add a constant to V(x) with impunity, since that doesn't change the force), recognize that $V'(x_0) = 0$ (since x_0 is a minimum), and drop the higher-order terms (which are negligible as long as $(x - x_0)$ stays small), we get

$$V(x) \cong \frac{1}{2}V''(x_0)(x-x_0)^2,$$

which describes simple harmonic oscillation (about the point x_0), with an effective spring constant $k = V''(x_0)$. That's why the simple harmonic oscillator is so important: Virtually *any* oscillatory motion is approximately simple harmonic, as long as the amplitude is small.

The quantum problem is to solve the Schrödinger equation for the potential

$$V(x) = \frac{1}{2}m\omega^2 x^2 \tag{2.43}$$

(it is customary to eliminate the spring constant in favor of the classical frequency, using Equation 2.41). As we have seen, it suffices to solve the time-independent Schrödinger equation:

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + \frac{1}{2}m\omega^2 x^2 \psi = E\psi.$$
 [2.44]

¹⁶Note that $V''(x_0) \ge 0$, since by assumption x_0 is a *minimum*. Only in the rare case $V''(x_0) = 0$ is the oscillation not even approximately simple harmonic.

In the literature you will find two entirely different approaches to this problem. The first is a straightforward "brute force" solution to the differential equation, using the **power series method**; it has the virtue that the same strategy can be applied to many other potentials (in fact, we'll use it in Chapter 4 to treat the Coulomb potential). The second is a diabolically clever algebraic technique, using so-called **ladder operators**. I'll show you the algebraic method first, because it is quicker and simpler (and a lot more fun); ¹⁷ if you want to skip the power series method for now, that's fine, but you should certainly plan to study it at some stage.

2.3.1 Algebraic Method

To begin with, let's rewrite Equation 2.44 in a more suggestive form:

$$\frac{1}{2m}[p^2 + (m\omega x)^2]\psi = E\psi.$$
 [2.45]

where $p \equiv (\hbar/i)d/dx$ is, of course, the momentum operator. The basic idea is to factor the Hamiltonian,

$$H = \frac{1}{2m} [p^2 + (m\omega x)^2].$$
 [2.46]

If these were numbers, it would be easy:

$$u^{2} + v^{2} = (iu + v)(-iu + v).$$

Here, however, it's not quite so simple, because p and x are *operators*, and operators do not, in general, **commute** (xp is not the same as px). Still, this does motivate us to examine the quantities

$$a_{\pm} \equiv \frac{1}{\sqrt{2\hbar m\omega}} \left(\mp ip + m\omega x \right)$$
 [2.47]

(the factor in front is just there to make the final results look nicer). Well, what is the product $a_{-}a_{+}$?

$$a_{-}a_{+} = \frac{1}{2\hbar m\omega}(ip + m\omega x)(-ip + m\omega x)$$
$$= \frac{1}{2\hbar m\omega}[p^{2} + (m\omega x)^{2} - im\omega(xp - px)].$$

¹⁷We'll encounter some of the same strategies in the theory of angular momentum (Chapter 4), and the technique generalizes to a broad class of potentials in **super-symmetric quantum mechanics** (see, for example, Richard W. Robinett, *Quantum Mechanics*. (Oxford U.P., New York, 1997). Section 14.4).

As anticipated, there's an extra term, involving (xp - px). We call this the **commutator** of x and p; it is a measure of how badly they *fail* to commute. In general, the commutator of operators A and B (written with square brackets) is

$$[A, B] \equiv AB - BA. \tag{2.48}$$

In this notation,

$$a_{-}a_{+} = \frac{1}{2\hbar m\omega} [p^{2} + (m\omega x)^{2}] - \frac{i}{2\hbar} [x, p].$$
 [2.49]

We need to figure out the commutator of x and p. Warning: Operators are notoriously slippery to work with in the abstract, and you are bound to make mistakes unless you give them a "test function," f(x), to act on. At the end you can throw away the test function, and you'll be left with an equation involving the operators alone. In the present case we have:

$$[x, p]f(x) = \left[x\frac{\hbar}{i}\frac{d}{dx}(f) - \frac{\hbar}{i}\frac{d}{dx}(xf)\right] = \frac{\hbar}{i}\left(x\frac{df}{dx} - x\frac{df}{dx} - f\right) = i\hbar f(x).$$
[2.50]

Dropping the test function, which has served its purpose,

$$[x, p] = i\hbar.$$
 [2.51]

This lovely and ubiquitous result is known as the canonical commutation relation. 18

With this, Equation 2.49 becomes

$$a_{-}a_{+} = \frac{1}{\hbar\omega}H + \frac{1}{2}.$$
 [2.52]

or

$$H = \hbar\omega \left(a_- a_+ - \frac{1}{2} \right). \tag{2.53}$$

Evidently the Hamiltonian does *not* factor perfectly—there's that extra -1/2 on the right. Notice that the ordering of a_+ and a_- is important here; the same argument, with a_+ on the left, yields

$$a_{+}a_{-} = \frac{1}{\hbar\omega}H - \frac{1}{2}.$$
 [2.54]

In particular,

$$[a_-, a_+] = 1.$$
 [2.55]

¹⁸In a deep sense all of the mysteries of quantum mechanics can be traced to the fact that position and momentum do not commute. Indeed, some authors take the canonical commutation relation as an axiom of the theory, and use it to derive $p = (\hbar/i)d/dx$,

So the Hamiltonian can equally well be written

$$H = \hbar\omega \left(a_+ a_- + \frac{1}{2} \right). \tag{2.56}$$

In terms of a_{\pm} , then, the Schrödinger equation 19 for the harmonic oscillator takes the form

$$\hbar\omega\left(a_{\pm}a_{\mp}\pm\frac{1}{2}\right)\psi=E\psi\tag{2.57}$$

(in equations like this you read the upper signs all the way across, or else the lower signs).

Now, here comes the crucial step: I claim that if ψ satisfies the Schrödinger equation with energy E, (that is: $H\psi = E\psi$), then $a_+\psi$ satisfies the Schrödinger equation with energy $(E + \hbar \omega)$: $H(a_+\psi) = (E + \hbar \omega)(a_+\psi)$. Proof:

$$H(a_{+}\psi) = \hbar\omega \left(a_{+}a_{-} + \frac{1}{2}\right)(a_{+}\psi) = \hbar\omega \left(a_{+}a_{-}a_{+} + \frac{1}{2}a_{+}\right)\psi$$
$$= \hbar\omega a_{+} \left(a_{-}a_{+} + \frac{1}{2}\right)\psi = a_{+} \left[\hbar\omega \left(a_{+}a_{-} + 1 + \frac{1}{2}\right)\psi\right]$$
$$= a_{+}(H + \hbar\omega)\psi = a_{+}(E + \hbar\omega)\psi = (E + \hbar\omega)(a_{+}\psi).$$

(I used Equation 2.55 to replace a_-a_+ by a_+a_-+1 , in the second line. Notice that whereas the ordering of a_+ and a_- does matter, the ordering of a_\pm and any constants—such as \hbar , ω , and E—does not; an operator commutes with any constant.)

By the same token, $a_-\psi$ is a solution with energy $(E - \hbar\omega)$:

$$H(a_{-}\psi) = \hbar\omega \left(a_{-}a_{+} - \frac{1}{2}\right)(a_{-}\psi) = \hbar\omega a_{-}\left(a_{+}a_{-} - \frac{1}{2}\right)\psi$$

$$= a_{-}\left[\hbar\omega \left(a_{-}a_{+} - 1 - \frac{1}{2}\right)\psi\right] = a_{-}(H - \hbar\omega)\psi = a_{-}(E - \hbar\omega)\psi$$

$$= (E - \hbar\omega)(a_{-}\psi).$$

Here, then, is a wonderful machine for generating new solutions, with higher and lower energies—if we could just find *one* solution, to get started! We call a_{\pm} ladder operators, because they allow us to climb up and down in energy; a_{+} is the raising operator, and a_{-} the lowering operator. The "ladder" of states is illustrated in Figure 2.5.

¹⁹I'm getting tired of writing "time-independent Schrödinger equation," so when it's clear from the context which one I mean, I'll just call it the "Schrödinger equation."

FIGURE 2.5: The "ladder" of states for the harmonic oscillator.

But wait! What if I apply the lowering operator repeatedly? Eventually I'm going to reach a state with energy less than zero, which (according to the general theorem in Problem 2.2) does not exist! At some point the machine must fail. How can that happen? We know that $a_-\psi$ is a new solution to the Schrödinger equation, but there is no guarantee that it will be normalizable—it might be zero, or its square-integral might be infinite. In practice it is the former: There occurs a "lowest rung" (call it ψ_0) such that

$$a_{-}\psi_{0} = 0. ag{2.58}$$

We can use this to determine $\psi_0(x)$:

$$\frac{1}{\sqrt{2\hbar m\omega}} \left(\hbar \frac{d}{dx} + m\omega x \right) \psi_0 = 0.$$

or

$$\frac{d\psi_0}{dx} = -\frac{m\omega}{\hbar}x\psi_0.$$

This differential equation is easy to solve:

$$\int \frac{d\psi_0}{\psi_0} = -\frac{m\omega}{\hbar} \int x \, dx \quad \Rightarrow \quad \ln \psi_0 = -\frac{m\omega}{2\hbar} x^2 + \text{constant},$$

SO

$$\psi_0(x) = Ae^{-\frac{m\omega}{2\hbar}x^2}.$$

We might as well normalize it right away:

$$1 = |A|^2 \int_{-\infty}^{\infty} e^{-m\omega x^2/\hbar} dx = |A|^2 \sqrt{\frac{\pi \hbar}{m\omega}}.$$

so $A^2 = \sqrt{m\omega/\pi\hbar}$, and hence

$$\psi_0(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} e^{-\frac{m\omega}{2\hbar}x^2}.$$
 [2.59]

To determine the energy of this state we plug it into the Schrödinger equation (in the form of Equation 2.57), $\hbar\omega(a_+a_-+1/2)\psi_0=E_0\psi_0$, and exploit the fact that $a_-\psi_0=0$:

$$E_0 = \frac{1}{2}\hbar\omega. ag{2.60}$$

With our foot now securely planted on the bottom rung (the ground state of the quantum oscillator), we simply apply the raising operator (repeatedly) to generate the excited states, 20 increasing the energy by $\hbar\omega$ with each step:

$$\psi_n(x) = A_n(a_+)^n \psi_0(x), \quad \text{with } E_n = \left(n + \frac{1}{2}\right) \hbar \omega,$$
 [2.61]

where A_n is the normalization constant. By applying the raising operator (repeatedly) to ψ_0 , then, we can (in principle) construct all²¹ the stationary states of

 $^{^{20}}$ In the case of the harmonic oscillator it is customary, for some reason, to depart from the usual practice, and number the states starting with n = 0, instead of n = 1. Obviously, the lower limit on the sum in a formula such as Equation 2.17 should be altered accordingly.

²¹Note that we obtain *all* the (normalizable) solutions by this procedure. For if there were some *other* solution, we could generate from it a second ladder, by repeated application of the raising and lowering operators. But the bottom rung of this new ladder would have to satisfy Equation 2.58, and since that leads inexorably to Equation 2.59, the bottom rungs would be the same, and hence the two ladders would in fact be identical.

the harmonic oscillator. Meanwhile, without ever doing that explicitly, we have determined the allowed energies.

Example 2.4 Find the first excited state of the harmonic oscillator.

Solution: Using Equation 2.61,

$$\psi_{1}(x) = A_{1}a_{+}\psi_{0} = \frac{A_{1}}{\sqrt{2\hbar m\omega}} \left(-\hbar \frac{d}{dx} + m\omega x\right) \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} e^{-\frac{m\omega}{2\hbar}x^{2}}$$

$$= A_{1} \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \sqrt{\frac{2m\omega}{\hbar}} x e^{-\frac{m\omega}{2\hbar}x^{2}}.$$
[2.62]

We can normalize it "by hand":

$$\int |\psi_1|^2 dx = |A_1|^2 \sqrt{\frac{m\omega}{\pi\hbar}} \left(\frac{2m\omega}{\hbar}\right) \int_{-\infty}^{\infty} x^2 e^{-\frac{m\omega}{\hbar}x^2} dx = |A_1|^2,$$

so, as it happens, $A_1 = 1$.

I wouldn't want to calculate ψ_{50} this way (applying the raising operator fifty times!), but never mind: In *principle* Equation 2.61 does the job—except for the normalization.

You can even get the normalization algebraically, but it takes some fancy footwork, so watch closely. We know that $a_{\pm}\psi_n$ is proportional to $\psi_{n\pm 1}$,

$$a_{+}\psi_{n} = c_{n}\psi_{n+1}, \quad a_{-}\psi_{n} = d_{n}\psi_{n-1}$$
 [2.63]

but what are the proportionality factors, c_n and d_n ? First note that for "any" ²² functions f(x) and g(x),

$$\int_{-\infty}^{\infty} f^*(a_{\pm}g) \, dx = \int_{-\infty}^{\infty} (a_{\mp}f)^* g \, dx.$$
 [2.64]

(In the language of linear algebra, a_{\mp} is the **hermitian conjugate** of a_{\pm} .) *Proof:*

$$\int_{-\infty}^{\infty} f^*(a_{\pm}g) \, dx = \frac{1}{\sqrt{2\hbar m\omega}} \int_{-\infty}^{\infty} f^*\left(\mp \hbar \frac{d}{dx} + m\omega x\right) g \, dx,$$

²²Of course, the integrals must *exist*, and this means that f(x) and g(x) must go to zero at $\pm \infty$,

and integration by parts takes $\int f^*(dg/dx) dx$ to $-\int (df/dx)^*g dx$ (the boundary terms vanish, for the reason indicated in footnote 22), so

$$\int_{-\infty}^{\infty} f^*(a_{\pm}g) dx = \frac{1}{\sqrt{2\hbar m\omega}} \int_{-\infty}^{\infty} \left[\left(\pm \hbar \frac{d}{dx} + m\omega x \right) f \right]^* g dx = \int_{-\infty}^{\infty} (a_{\mp}f)^* g dx.$$

QED

In particular,

$$\int_{-\infty}^{\infty} (a_{\pm}\psi_n)^* (a_{\pm}\psi_n) dx = \int_{-\infty}^{\infty} (a_{\mp}a_{\pm}\psi_n)^* \psi_n dx.$$

But (invoking Equations 2.57 and 2.61)

$$a_{+}a_{-}\psi_{n} = n\psi_{n}, \quad a_{-}a_{+}\psi_{n} = (n+1)\psi_{n}.$$
 [2.65]

SO

$$\int_{-\infty}^{\infty} (a_{+}\psi_{n})^{*}(a_{+}\psi_{n}) dx = |c_{n}|^{2} \int_{-\infty}^{\infty} |\psi_{n+1}|^{2} dx = (n+1) \int_{-\infty}^{\infty} |\psi_{n}|^{2} dx.$$

$$\int_{-\infty}^{\infty} (a_{-}\psi_{n})^{*}(a_{-}\psi_{n}) dx = |d_{n}|^{2} \int_{-\infty}^{\infty} |\psi_{n-1}|^{2} dx = n \int_{-\infty}^{\infty} |\psi_{n}|^{2} dx.$$

But since ψ_n and $\psi_{n\pm 1}$ are normalized, it follows that $|c_n|^2 = n+1$ and $|d_n|^2 = n$, and hence

$$a_+\psi_n = \sqrt{n+1}\,\psi_{n+1}, \quad a_-\psi_n = \sqrt{n}\,\psi_{n-1}.$$
 [2.66]

Thus

$$\psi_1 = a_+ \psi_0, \quad \psi_2 = \frac{1}{\sqrt{2}} a_+ \psi_1 = \frac{1}{\sqrt{2}} (a_+)^2 \psi_0,$$

$$\psi_3 = \frac{1}{\sqrt{3}} a_+ \psi_2 = \frac{1}{\sqrt{3 \cdot 2}} (a_+)^3 \psi_0, \quad \psi_4 = \frac{1}{\sqrt{4}} a_+ \psi_3 = \frac{1}{\sqrt{4 \cdot 3 \cdot 2}} (a_+)^4 \psi_0,$$

and so on. Clearly

$$\psi_n = \frac{1}{\sqrt{n!}} (a_+)^n \psi_0.$$
 [2.67]

which is to say that the normalization factor in Equation 2.61 is $A_n = 1/\sqrt{n!}$ (in particular, $A_1 = 1$, confirming our result in Example 2.4).

As in the case of the infinite square well, the stationary states of the harmonic oscillator are orthogonal:

 $\int_{-\infty}^{\infty} \psi_m^* \psi_n \, dx = \delta_{mn}. \tag{2.68}$

This can be proved using Equation 2.65, and Equation 2.64 twice—first moving a_+ and then moving a_- :

$$\int_{-\infty}^{\infty} \psi_m^*(a_+ a_-) \psi_n \, dx = n \int_{-\infty}^{\infty} \psi_m^* \psi_n \, dx$$

$$= \int_{-\infty}^{\infty} (a_- \psi_m)^* (a_- \psi_n) \, dx = \int_{-\infty}^{\infty} (a_+ a_- \psi_m)^* \psi_n \, dx$$

$$= m \int_{-\infty}^{\infty} \psi_m^* \psi_n \, dx.$$

Unless m = n, then, $\int \psi_n^* \psi_n dx$ must be zero. Orthonormality means that we can again use Fourier's trick (Equation 2.34) to evaluate the coefficients, when we expand $\Psi(x,0)$ as a linear combination of stationary states (Equation 2.16), and $|c_n|^2$ is again the probability that a measurement of the energy would yield the value E_n .

Example 2.5 Find the expectation value of the potential energy in the nth state of the harmonic oscillator.

Solution:

$$\langle V \rangle = \left\langle \frac{1}{2} m \omega^2 x^2 \right\rangle = \frac{1}{2} m \omega^2 \int_{-\infty}^{\infty} \psi_n^* x^2 \psi_n \, dx.$$

There's a beautiful device for evaluating integrals of this kind (involving powers of x or p): Use the definition (Equation 2.47) to express x and p in terms of the raising and lowering operators:

$$x = \sqrt{\frac{\hbar}{2m\omega}}(a_{+} + a_{-}); \quad p = i\sqrt{\frac{\hbar m\omega}{2}}(a_{+} - a_{-}).$$
 [2.69]

In this example we are interested in x^2 :

$$x^{2} = \frac{\hbar}{2m\omega} \left[(a_{+})^{2} + (a_{+}a_{-}) + (a_{-}a_{+}) + (a_{-})^{2} \right].$$

So

$$\langle V \rangle = \frac{\hbar \omega}{4} \int \psi_n^* \left[(a_+)^2 + (a_+ a_-) + (a_- a_+) + (a_-)^2 \right] \psi_n \, dx.$$

But $(a_+)^2 \psi_n$ is (apart from normalization) ψ_{n+2} , which is orthogonal to ψ_n , and the same goes for $(a_-)^2 \psi_n$, which is proportional to ψ_{n-2} . So those terms drop out, and we can use Equation 2.65 to evaluate the remaining two:

$$\langle V \rangle = \frac{\hbar \omega}{4} (n + n + 1) = \frac{1}{2} \hbar \omega \left(n + \frac{1}{2} \right).$$

As it happens, the expectation value of the potential energy is exactly *half* the total (the other half, of course, is kinetic). This is a peculiarity of the harmonic oscillator, as we'll see later on.

*Problem 2.10

- (a) Construct $\psi_2(x)$.
- (b) Sketch ψ_0 , ψ_1 , and ψ_2 .
- (c) Check the orthogonality of ψ_0 , ψ_1 , and ψ_2 , by explicit integration. *Hint:* If you exploit the even-ness and odd-ness of the functions, there is really only one integral left to do.

*Problem 2.11

- (a) Compute $\langle x \rangle$, $\langle p \rangle$, $\langle x^2 \rangle$, and $\langle p^2 \rangle$, for the states ψ_0 (Equation 2.59) and ψ_1 (Equation 2.62), by explicit integration. *Comment:* In this and other problems involving the harmonic oscillator it simplifies matters if you introduce the variable $\xi \equiv \sqrt{m\omega/\hbar} x$ and the constant $\alpha \equiv (m\omega/\pi\hbar)^{1/4}$.
- (b) Check the uncertainty principle for these states.
- (c) Compute $\langle T \rangle$ (the average kinetic energy) and $\langle V \rangle$ (the average potential energy) for these states. (No new integration allowed!) Is their sum what you would expect?
- *Problem 2.12 Find $\langle x \rangle$, $\langle p \rangle$, $\langle x^2 \rangle$, $\langle p^2 \rangle$, and $\langle T \rangle$, for the *n*th stationary state of the harmonic oscillator, using the method of Example 2.5. Check that the uncertainty principle is satisfied.

Problem 2.13 A particle in the harmonic oscillator potential starts out in the state

$$\Psi(x, 0) = A[3\psi_0(x) + 4\psi_1(x)].$$

- (a) Find A.
- (b) Construct $\Psi(x,t)$ and $|\Psi(x,t)|^2$.