```
1 from google.colab import files
2 uploaded = files.upload()
1 import pandas as pd
2 from sklearn.model selection import train test split, GridSearchCV, cross val score
3 from sklearn.ensemble import RandomForestClassifier
4 from sklearn.metrics import classification report, roc auc score
5 import numpy as np
6
7 # Load datasets with consistent dtypes and low memory=False to avoid DtypeWarning
8 app df = pd.read csv('app.csv', dtype={'identity id hash': 'object'}, low memory=False)
9 campa df = pd.read csv('campa.csv', dtype={'identity id hash': 'object'}, low memory=False)
10 ib df = pd.read csv('ib.csv', dtype={'identity id hash': 'object'}, low memory=False)
11 prodeje df = pd.read csv('prodeje.csv', dtype={'identity id hash': 'object'}, low memory=False)
12 web df = pd.read csv('web.csv', dtype={'identity id hash': 'object'}, low memory=False)
13
14 # Merge datasets on 'identity id hash'
15 merged df = app df.merge(campa df, on='identity id hash', how='outer', suffixes=('app', 'campa')) \
                     .merge(ib df, on='identity id hash', how='outer', suffixes=('', ' ib')) \
17
                     .merge(prodeje df, on='identity id hash', how='outer', suffixes=('', ' prodeje')) \
18
                     .merge(web df, on='identity id hash', how='outer', suffixes=('', ' web'))
19
20 # Drop columns with all missing values
21 columns to drop = [col for col in merged df.columns if merged df[col].isnull().sum() == len(merged df)]
22 cleaned df = merged df.drop(columns=columns to drop)
23
24 # Fill missing values for categorical and numerical columns
25 categorical cols = cleaned df.select dtypes(include=['object']).columns
26 numerical cols = cleaned df.select dtypes(include=['float64', 'int64']).columns
27 cleaned df[categorical cols] = cleaned df[categorical cols].fillna('Unknown')
28 cleaned_df[numerical_cols] = cleaned_df[numerical_cols].fillna(cleaned_df[numerical_cols].median())
29
30 # Feature engineering
31 extra features = pd.DataFrame({
       'avg session duration': cleaned_df[['session_time', 'session_time_ib']].mean(axis=1),
33
       'interaction count': cleaned df.apply(lambda row: sum([1 for event in ['page view', 'custom event', 'screen view', 'back intent event', 'show content event'] if event in row.
34
       'campaign engagement': cleaned df['campaign planning name'].apply(lambda x: 0 if x == 'Unknown' else 1),
35
       'unique product interest': cleaned df[['product l1', 'product l2', 'product l2 prodeje']].nunique(axis=1)
36 })
37
38 cleaned df = pd.concat([cleaned df, extra features], axis=1)
40 # Define target variable
41 cleaned df['purchase'] = cleaned df['agreement status'].apply(lambda x: 1 if x == 'Y' else 0)
42 # cleaned_df['purchase'] = cleaned_df['nbi_fictive_flag'].apply(lambda x: 1 if x == '>2100' else 0)
44 # Select only numeric columns for correlation to avoid ValueError
45 numeric_df = cleaned_df.select_dtypes(include=[np.number])
```

```
47 # Data leakage check by examining correlation with the target variable
48 correlations = numeric df.corr()
49 high corr features = correlations['purchase'].loc[lambda x: abs(x) > 0.8].drop('purchase').index.tolist()
51 if high corr features:
      print("Potential data leakage detected with high correlation features:", high corr features)
52
53 else:
54
      print("No high correlation features detected, data leakage is less likely.")
55
56 # Select features and target, excluding highly correlated features if necessary
57 feature_columns = ['avg_session_duration', 'interaction_count', 'campaign_engagement', 'unique_product_interest']
58 if high_corr_features:
59
      feature columns = [col for col in feature columns if col not in high corr features]
60
61 X = cleaned df[feature columns]
62 y = cleaned df['purchase']
64 # Split data into train and test sets with an 80-20 split
65 X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=42)
67 # Set up RandomForest with GridSearchCV for hyperparameter tuning
68 rf_model = RandomForestClassifier(random_state=42)
69 param grid = {
      'n estimators': [50],
71
      'max depth': [5],
72
       'min_samples_split': [2]
73 }
74 grid_search = GridSearchCV(rf_model, param_grid, cv=5, scoring='roc_auc', n_jobs=-1)
76 # Fit model with GridSearch
77 grid search.fit(X train, y train)
79 # Best model and cross-validation scores
80 best model = grid search.best estimator
81 cross val scores = cross val score(best model, X train, y train, cv=5, scoring='roc auc')
83 # Make predictions with the best model on the test set
84 y_pred = best_model.predict(X_test)
85 y_prob = best_model.predict_proba(X_test)[:, 1]
86
87 # Evaluation metrics
88 classification_rep = classification_report(y_test, y_pred)
89 roc_auc = roc_auc_score(y_test, y_prob)
91 # Output results
92 print("Best Parameters:", grid_search.best_params_)
93 print("Cross-validation AUC scores:", cross val scores)
94 print("Average CV AUC:", cross val scores.mean())
95 print("Test Set Classification Report:\n", classification rep)
96 print("Test Set AUC-ROC:", roc auc)
97
```

```
98 # Segment customers based on predicted purchase probabilities
 99 customer probabilities = best model.predict proba(X test)[:, 1] # Probability of being in class 1 (purchase)
101 # Define segments based on probability thresholds
102 segments = []
103 for prob in customer_probabilities:
104
       if prob > 0.8:
105
            segments.append('High Value Engaged')
       elif 0.5 < prob <= 0.8:
106
           segments.append('Potential Upsell')
107
108
       elif 0.3 < prob <= 0.5:
109
           segments.append('Nurture and Educate')
110
       else:
111
            segments.append('Low Engagement and Awareness')
112
113 # Add segment labels and probability to DataFrame
114 X test['purchase probability'] = customer probabilities
115 X test['segment'] = segments
116
117 # Product recommendations based on segments
118 recommendations = []
119 for segment in segments:
120
       if segment == 'High Value Engaged':
121
            recommendations.append('Offer premium services, investment opportunities, and loyalty programs.')
122
       elif segment == 'Potential Upsell':
123
            recommendations.append('Suggest additional products like credit cards or loans with personalized offers.')
124
       elif segment == 'Nurture and Educate':
125
            recommendations.append('Provide educational content on products, focusing on convenience and value.')
126
       else: # 'Low Engagement and Awareness'
127
            recommendations.append('Target with brand awareness campaigns and simple introductory offers.')
128
129 # Add recommendations to the DataFrame
130 X test['recommendation'] = recommendations
131
132 # Display a sample of the segmented data with recommendations
133 X_test[['purchase_probability', 'segment', 'recommendation']].head(10)
```

Best Parameters: {'max_depth': 5, 'min_samples_split': 2, 'n_estimators': 50}
Cross-validation AUC scores: [0.95188881 0.94734026 0.94265207 0.95369071 0.95975599]

Average CV AUC: 0.951065568125418 Test Set Classification Report:

	precision	recall	f1-score	support
6	0.95	0.88	0.91	695
1	0.81	0.92	0.86	391
accuracy	/		0.89	1086
macro ava	g 0.88	0.90	0.89	1086
weighted ava	0.90	0.89	0.89	1086

Test Set AUC-ROC: 0.9418498960422454

H	recommendation	segment	purchase_probability	
	Suggest additional products like credit cards	Potential Upsell	0.777550	79
	Offer premium services, investment opportuniti	High Value Engaged	0.909583	4139
	Target with brand awareness campaigns and simp	Low Engagement and Awareness	0.005575	1643
	Offer premium services, investment opportuniti	High Value Engaged	0.838086	167
	Suggest additional products like credit cards	Potential Upsell	0.777550	439
	Target with brand awareness campaigns and simp	Low Engagement and Awareness	0.065151	2531
	Target with brand awareness campaigns and simp	Low Engagement and Awareness	0.005575	1421
	Target with brand awareness campaigns and simp	Low Engagement and Awareness	0.065151	2834
	Suggest additional products like credit cards	Potential Upsell	0.777550	4356
	Offer premium services, investment opportuniti	High Value Engaged	0.838086	168