CLUSTERING LOCATION HISTOGRAMS

By: Le Yan Koh

Supervisor: Dr Grigorios Loukides

Outline

Motivation, Contributions, Domain and Dataset

Background

Data, Clustering Methods, Software Libraries

Approach

K-means clustering, Multidimensional Scaling, Layered Clustering Approach

Results

Silhouette Scoring, Cluster Distribution, Objective Function and Runtime

Conclusion

And Questions

Introduction: Motivation

- Increasing use of Location Sharing Services (LSS) and Location Based Social Networks (LBSN)
 - Facebook Places, Foursquare
- Generating interest in user movement and mobility patterns
- Uses: Cost effective planning of urban spaces, prediction of socialisation, collaborative filtering, targeted advertising
- Needs: A meaningful way of grouping users via their check-ins

Introduction: Contributions

- Test existing clustering methods on clustering users based on their check-in histograms (location histograms)
- Create and test new, combined clustering methods for clustering users
- Hypothesis: Users tend to visit similar types of spaces, rather than specific locations themselves

Introduction: Domain and Dataset

- Open dataset on Kaggle: 227,428 check-ins in New York
- User ID, location coordinates, venue category (different taxonomies on Foursquare developer site)
- For baseline algorithm testing, histograms are represented by matrices of their frequency —
 Each user has their own histogram
 - 1 row = 1 user
 - 1 column = 1 venue category
 - Column values (x, y) = Frequency the user y has visited location x

Background: Clustering Techniques

- Purpose: Similarity between users are maximised; Given matrix *D* of *M* objects and *N* attributes, find an optimal partitioning of *m* objects using features described by *N* attributes.
 - Information retrieval, pattern recognition
- Typical Steps: Deciding which attributes are able to distinguish the data the most; Picking measure of similarity (e.g. Euclidean distance), then grouping is done by type of clustering algorithm
- Types of Clustering Algorithm: Hierarchical, Partitional, Fuzzy
- Clustering Algorithms: k-means clustering, manifold learning, spectral clustering, DBSCAN, bi-clustering...
- Software Libraries: Scikit-learn (SKLearn)

Approach: k-means clustering

■ Example Representation of Matrix:

User ID	Asian Restaurant	Cafe	Zoo		
1	10	5	0		
2	5	10	3		
3	1	4	10		

- 1083 users total, 251 venue categories or 9 venue categories (upper hierarchy)
- \blacksquare Silhouette score used to determine the optimal number of k to pick
- Euclidean distance measure used to minimise within cluster sum of squares

■ Problems:

- Curse of dimensionality
- Extremely high value of objective function
- Extremely skewed clusters, which does not give meaningful user groupings

k-means clustering, 251 venue category histograms K = 5, silhouette score = 0.52

k-means clustering, 9 venue category histograms K = 4, silhouette score = 0.6

Problem: No specific, well-distributed clusters; Poor user segmentation, perhaps assumptions made about user distribution makes it unsuitable for k-means clustering

Approach: Multi-dimensional Scaling

- Helps to avoid the "curse of dimensionality" by projecting data into lower-dimensional subspace; preserves non-linearity
- 2 dimensions for the ease of visualisation
- Apply k-means clustering after reducing dimensions
- Dissimilarity measure: cosine dissimilarity (also used in high dimensional clustering domains, such as document clustering)

0.4 0.2 Second Component -0.2 -0.4-0.6-0.8 -0.6 -0.4 -0.2 0.2 0.0 0.6 First Component

MDS, 251 venue category histograms Best K = 5, silhouette score = 0.41

MDS, 9 venue category histograms Best K = 4, silhouette score = 0.36

Poorer silhouette scores, better user cluster distributions...
But, there might be a better way of segmenting users *semantically*

Approach: Layered Clustering

- Goal: Cluster users according to the semantic associations of the land parcels that users are visiting
- Summary: Create histograms of users based on *primary semantic value of land parcels they checked into*, rather than specific venue category

■ Steps:

1) Data Preprocessing: Divide geographic space into 500m by 500m grids. Create histograms of *user activity* in each grid.

Grid ID	Asian Restaurant	Cinema	Zoo		
1	320	5	3		
2	5	432			
3	1	4	763		

Each row = 1 Histogram

Each column = Feature/attribute (venue category)

- 2) Spectral Clustering: Use eigengap heuristic to determine the optimal number of clusters. Apply spectral clustering to the matrix using **optimal clusters**.
- 3) Generate user histograms from area clusters. Hence, instead of venue categories, *area clusters* will be used as the attribute.

User ID	0	1	2	3	4	5	6	7	8
1	9	56	3	5	17	0	10	1	5
2	43	31	3	30	5	8	6	0	16
3	12	50	7	10	17	3	10	1	4

Example of new user histograms and their clusters

4) Either: Directly apply k-means clustering to the results, or perform multidimensional scaling first (if dimensionality is too high) then apply k-means clustering.

Results: Layered Clustering Method (251 venue categories)

■ Not effective. Why? Eigengap heuristic was unable to detect the optimal number of clusters for area clustering:

As a result, applying k-means clustering to user histograms generated from these area histograms would have poor returns. For example below: Incredibly skewed user clusters if we pressed on with using non-optimal clusters for area histograms

Possible reasons: At this level of granularity, the venue categories are unable to describe splits in areas. A "vegan restaurant vs Greek restaurant" may not produce any meaningful discrimination in semantic area clustering.

MDS results are also strange as well:

- Users are clustered according to their number of check-ins into Cluster 3, because majority of area histograms were divided into that cluster. Hence, this distribution is generally not that useful
- Lesson learnt: Attributes/venue categories need to be able to meaningfully describe areas, not necessarily a problem with dimensionality

Results: Layered Clustering Method (9 venue categories

■ Able to find appropriate splits with eigengap heuristic: k = 9

■ Able to find adequate distribution and description of each cluster:

Cluste	er 0	Cluste	er 1	Cluste	er 2	Clust	er 3
1.	Shops & Services	1.	Food (69.9%)	1.	Arts &	1.	Travel &
	(68.6%)	2.	Shop & Services		Entertainment		Transport
2.	Food (12.8%)		(9.6%)		(73.9%)		(77.8%)
3.	Professional &	3.	Professional &	2.	Outdoors &	2.	Food (6%)
	Other Places		Other Places		Recreation	3.	Outdoors &
	(5.5%)		(5.1%)		(5.3%)		Recreation
				3.	Food (4.8%)		(4.7%)

uster 4		Clust	iuster 5		Cluster 6		er /
	Professional &	1.	Residence	1.	Nightlife Spot	1.	College &
	Other Places		(82.2%)		(63.9%)		University
	(77.9%)	2.	Food (4.1%)	2.	Food (12%)		(74.7%)
	Food (5.6%)	3.	Outdoors &	3.	Shop & Services	2.	Professional &
	Travel &		Recreation		(6%)		Other Places
	Transport (4.6%)		(3.3%)				(8.7%)
						3.	Food (4.2%)

Cluster 8

- Outdoors & Recreation (85.9%)
- 2. Food (3.5%)
- 3. Professional &
 Other Places
 (2.6%)

Results: Applying k-means directly after spectral clustering

- Optimal silhouette score is 0.59, at k = 5
- However...
 - Poor cluster distribution
 - Incredibly high objective function
- Possible reasons:
 - Euclidean space still works poorly in this case
 - Shape of user data is not suitable for k-means clustering
- Does not mean this method will be unsuitable for other datasets!

Results: Using MDS before *k*-means clustering

■ Better cluster distribution, poorer silhouette coefficient (k=6, coefficient = 0.38)

Cluster Descriptions

User Cluster 0		User Cluster 1		Use	er Cluster 2	User Cluster 3		
1.	Food (25.8%)	1.	Shops & Services	1.	Travel & Transport	1.	Food (43.5%)	
2.	Travel & Transport		(38.4%)		(38.8%)	2.	Nightlife Spot (16.2%)	
	(19.7%)	2.	Food (22.1%)	2.	Residence (12.5%)	3.	Shops & Services	
3.	Shops & Services	3.	Travel & Transport (7.7%)	3.	Professional & Other		(12.4%)	
	(15.2%)				Places (11.3%)			
Use	er Cluster 4	Us	er Cluster 5					
1.	Professional & Other	1.	Residence (35.4%)					
	Places (41.8%)	2.	Shops & Services					
2.	Food (15.3%)		(18.3%)					
3.	Outdoors & Recreation	3.	Food (9.7%)					
	(10.0%)							

Description of user clustering. Dominant categories of each area cluster used instead of cluster name (e.g. cluster 0...8)

Hence...

- We were able to produce user clusters from the semantic associations of locations users visit
 - E.g. a user visiting a restaurant in a work-dominated area will be classed differently from a user visiting a restaurant in a nightclub-dominated area
- Venue category descriptions are important to describing the space
- Next... run-time of algorithm

Results: Runtime

- Direct *k*-means Very fast, varying from **0.267s** (251 dimensions) to **0.048s** (9 dimension)
- Direct *k*-means **after** MDS Much slower, **43.4s** (251 dimensions) and **36.1s** (9 dimensions)
- Layered clustering Total time (*k*-means only)
 - 251 Dimensions: **3.87s**
 - 9 Dimensions: **3.66s**
- Layered clustering Total time (MDS + *k*-means)
 - 251 Dimensions: **20.23s**
 - 9 Dimensions: **39.31s**

Results: Runtime with increasing data size

Layered clustering algorithm: *k-means only comparison*

Layered clustering algorithm: *k-means with MDS comparison*

For most part: the new algorithm performs slightly slower. However, we could argue that the new algorithm also produces new results that might be more meaningful – Possibly worth the trade-off.

Results: Runtime with increasing k

- Comparison of 9 venue categories only (since this was the one that produced the most effective results)
- Does not count spectral clustering step, only second layer of clustering (user histogram clustering)
- As expected, using MDS in the algorithm makes it perform slower – but it is more effective
- Runtime increases with increasing amount of k

Conclusion

■ Contributions: Devising and testing a new algorithm that can better separate users based on geographical principles; Qualitatively and quantitatively assess clusters given from baseline algorithms and new algorithm

Future work:

- Testing on other datasets;
- Weighing area histogram check-ins to improve accuracy of area semantics (to account for locations that are less checked-into but of some importance).
- Optimise algorithm

■ Lessons learnt:

- Algorithm may not necessarily be good for online learning and using as of yet
- However, poor results does not mean the algorithm performed poorly but the dataset may not fit the method

QUESTIONS AND DEMONSTRATION