

Given two height biased leftist trees T_a and T_b .

- Q1: Write out the results after executing insert(7, T_a).
- Q2: Write out the results after executing deleteMin(T_b) once.

Please use array representation to show the answers.

Bottom-up phase

Please review Ch 5.2.3 for array representation of the binary trees.

- 1. Compare shortest(left child of 7) and shortest(right child of 7)
 - → Left child has a smaller value of shortest().
 - → Interchange left and right subtrees of 7.
- 2. Compare shortest(left child of 5) and shortest(right child of 5)
 - → Equal → No interchange

• union(7, 13)

Which tree should become a subtree of the other?

Q4: Write out the answer based on weight rule. Left tree

Q5: Write out the answer based on height rule. Right tree

For any pair of nodes <u, v>, there is a directed path from u to v and also from v to u.

- Q6: Write out the in-degree of vertices 0, 1, ..., 5 in G1.
- Q7: Write out the out-degree of vertices 0, 1, ..., 5 in G1.
- Q8: Is the directed graph G2 strongly connected? Why? YES

Graph (2)

 Write out the linked adjacency-list representation. Write out the adjacency matrix.

Out-degree

