ToDoList: Week 1 - Week 12

Contents

Week $4: 23/10/2023 - 27/10/2023$	2
Week $5: 30/10/2023 - 03/11/2023$	4
Week $6: 06/11/2023 - 10/11/2023$	5
Week $7: 13/11/2023 - 17/11/2023$	ϵ
Week $8: 20/11/2023 - 24/11/2023$	7
Week $9: 27/11/2023 - 01/12/2023$	8
Week $10: 04/12/2023 - 08/12/2023$	10
Week $11: 11/12/2023 - 15/12/2023$	11
Week 12: 18/12/2023 - 22/12/2023	12

Week 4: 23/10/2023 - 27/10/2023

COMPLET

Anciennes tâches:

- M mettre à jour la documentation antora du stage → sera fait au fur et à mesure pour le "rapport" de thèse (résultats de la thèse)
- 🛮 ranger code du stage et push github?
- ✓ regarder proposition inria pc portable
- 🛮 réinstaller environnement pytorch sur pc fixe (dépend de si je le gardes ?)

Nouvelles tâches:

- $\downarrow\downarrow$ Modifier la présentation du stage pour présentation Mimesis \rightarrow 12/12/2023
- 🗹 Organisation de la partie Correction avec sauvegarde des images script qui lance la correction à partir d'un modèle donnée
- ✓ Faire récap semaine 3
- ✓ Push code pour la Semaine 3 sur github
- ☑ Lire article 2301.05187 sur les WIRE et 2302.04107
- ✓ Remettre en forme la partie excel ("create_xlsx_file.py")
 - ${\it o}$ ajout des résultats de correction si existe ?
 - Ø griser les cellules qui sont différentes de la configuration précédente
 - ② génération d'un grand fichier qui regroupe tous les sous fichiers → je pense qu'on ne peut pas créer des feuilles pour Circle puis des sous-feuilles pour Poisson2D_f..
- - ${\bf {\mathcal O}}\,$ sampling de n points sur le bord à une tolérance fixée puis recalage
 - \mathbf{p} sampling de n points dans le carré puis recalage \rightarrow ne parait plus très utile
 - → comparer le nombre d'itération et garder celui qui est le plus rapide
- \checkmark résultats avec recalage de la level set
 - Ø régénération des modèles
 - Ø régénération des résultats de correction
 - \rightarrow utile uniquement dans le cas où on impose pas les conditions au bord de manière exacte
- 🗷 Regarder méthode de Newton (proposé par Emmanuel par mail) et la tester ? Explication
- 🗹 faire un suivi hebdomadaire rapide avec les résultats (demandé par Michel)
- Il entraînement du cas test du cercle sur
 - Ø le carré tout entier
 - 🗭 un carré plus petit (on dirait que les plus grosses erreurs sont au bord du carré)

- \mathfrak{P} Ω_h utilisation de MVP présenté dans l'article 2104.08426 pour la génération d'une fonction distance à Ω_h pour le sampling (ATTENTION : cette fonction distance n'est pas utilisé directement dans la loss du PINNs, elle sert juste à générer le domaine sur lequel on veut entraîner le modèle) $\to \Omega_h$ varie en fonction du nombre de noeuds choisis, est-ce qu'on va le fixer ou est-ce qu'il varie ?
- 🛮 essayer d'améliorer l'entraînement du cas du cercle sur le carré tout entier
- 🛮 ajouter excel pour résultats avec recalage levelset
- dans le cas des erreurs PhiFEM calculée avec FEniCS, rajouter la projection sur un maillage conforme (maillage qui fit avec le bord, maillage FEM) afin d'avoir des erreurs sur Ω et pas Ω_h
- ✓ Pour le script "run_model.py":
 - 🗭 ajouter la possibilité de donner directement un nom de fichier de configuration et pas seulement un numéro ?
 - ♥ vérifier le code (config+args fonctionne?)
- \checkmark vérification du code quand on fait varier $f \to \text{plage}$ de paramètres donnée en argument de la classe mais pas utilisé
- relancer des modèles avec f paramétrisé par S (car les résultats n'étaient pas bons)
- ✓ rajouter CI Github pour toute la partie rédaction
 - O correction à faire pour antora sur le rapport de stage (réutilisé ici)
 - Ø faire une page html à la main comme pour le stage sur lorenz (où y avait sphinx-doxygen-antora) pour pouvoir accèder aux "3 sites" (abstract/results/to_do_list (+ documentation des codes))
 - Ø rajouter la CI au compte Github

- 🗹 push tout le code sur github **vendredi**

Week 5: 30/10/2023 - 03/11/2023

COMPLET

- $m{\mathbb{Z}}$ se renseigner à nouveau sur les CNN \rightarrow une séquence Fidle est dédiée au CNN
- ↓ trier les modifs dans le code ScimBa (pour pouvoir valider les issues)
- \checkmark projeter la solution sur Ω pour calculer erreur ϕ -FEM et erreur de Correction avec ϕ -FEM
- $\downarrow\downarrow$ faire une étude du paramètre σ (possibilité de choisir 2 σ différents dans les termes de stabilisation)
- $\downarrow\downarrow$ afficher $\Delta \tilde{\phi}$ à la fin de l'entraı̂nement (et comparer avec f)
- $\downarrow\downarrow$ Tester $\tilde{u}=\tilde{\phi}+\tilde{\phi}\tilde{C}$ au lieu de $\tilde{u}=\tilde{\phi}+\phi\tilde{C}$ pour la correction par addition
- 🛮 Pousser les entraînements du carré plus loin
- Continuer les résultats sur le recalage de la levelset
- $\ensuremath{\underline{\checkmark}}$ faire un résumé des nouveaux résultats $\rightarrow 06/12/2023$

- ✓ abstract semaine en cours
- **✓** push code github

Week 6: 06/11/2023 - 10/11/2023

COMPLET

Code:

- ↓ vérifier les projections faites pour les plots des erreurs (cas FEM standard)
- ☑ Inverser dans les plot : FEM/Corr ↔ PINNs/Corr (+ remettre images dans results/meetings)

- ↓ merge branche develop dans ma branche (car ajout d'une fonction d'activation supplémentaire qu'il faudra peut-être que je teste)
- $\downarrow\downarrow$ Cas f qui varie : rajouter plus de paramètres (fréquence, phase à l'origine)
- □ Regarder https://www.youtube.com/watch?v=G_hIppUWcsc sur les PINNs

CI/Documentation:

- ✓ rajouter exécution fichier run dans la CI
- pour les fichiers Latex : modifier graphics path pour aller directement au niveau des résultats du modèle (pas de copie d'image ?)

Autre:

- trier les cahiers (1 réunions, 1 notes article, 1 autres)
- $\mathbf{\underline{r}}$ regarder PC BUREAU

- ${\bf Z}$ Regarder vidéo du foie (replay si je le trouve) \rightarrow problème de diffusion

- ✓ abstract semaine en cours
- **✓** push code github

Week 7: 13/11/2023 - 17/11/2023

COMPLET

Code:

✓ rajouter argument bash

 $\ \downarrow \$ revoir résultats du stage où Ω est un carré

🗹 afficher solution prédite par le PINNs entraîné sur le cercle où (x,y) est un sampling sur le carré tout entier

 \square projeter dérivées 2ndes et 1ères sur Ω

□ pour la correction par addition plot :

 $\downarrow\downarrow$ Pour Correction par addition avec FEM : augmenter le degré de \tilde{C} (P2) et comparer avec FEM où u de plus haut degré aussi (P2) \rightarrow But : voir l'influence du degré sur le facteur

 $\downarrow\downarrow$ Utiliser prédiction de u_{θ} sur un maillage conforme puis interpoler sur Ω_h

 $\downarrow\downarrow$ Correction avec ϕ -FEM: prédiction sur un maillage conforme de Ω puis interpolation FEniCS sur Ω_h

 $\downarrow \downarrow$ Afficher f et $\tilde{f} = f + \Delta u_{\theta}$ sur Ω et sur Ω_h

CI/Documentation:

↓ modifier fichier résultat (+antora) pour ordonner les résultats plutôt sous forme de rapport que sous forme de week

 $\downarrow\downarrow$ penser rajouter la figure où on projette la solution sur ω dans le cas de l'entraînement sur le cercle

fixer pb CI pour exécution du script pdflatex ?

Autre:

Lire sujet CC1 (L2S3 Info) et faire des commentaires

✓ regarder PC bureau

✓ mail microsoft

Hebdomadaire:

🗹 faire abstract de la semaine

Week 8: 20/11/2023 - 24/11/2023

COMPLET

Code:

- 🗹 trier tout le code pour ranger correctement les résultats (à cause du cas test du carré)
- modifier script "create_xlxs_file.py" pour création de fichier excel adapté aux modifications faites
- **✓** modifier "run_corr.py"
- 🛮 tester différent seed pour torch

CI/Documentation:

- $\downarrow\downarrow$ Github Pages : sommaire pas affiché dans les pdf + pb affichage avec antora (fichier "convert_latex_to_antora" à modifier)
- □ Documenter le code python (docstring)
- $\downarrow\downarrow$ rajouter doc sphinx sur github + CI
- ↓ Antora : trier le script python convert_latex_to_antora et le mettre au propre

Autre:

🛮 mail microsoft

- ↓ VPN du bâtiment explora à tester!

- \checkmark Préparer TP6 + cours 6 \rightarrow 24/11/2023
- 🗹 faire abstract de la semaine
- push tout le code sur github vendredi

Week 9: 27/11/2023 - 01/12/2023

Anciennes tâches

Code:

- 🖔 trier les modifs dans le code ScimBa (pour pouvoir valider les issues)
- ${\bf r}$ faire une étude du paramètre σ (possibilité de choisir 2 σ) ${\bf r}$
- $\overset{\text{(5)}}{\circ}$ afficher $\Delta \tilde{\phi}$ à la fin de l'entraı̂nement (et comparer avec f)
- (5) tester correction par addition avec IPP
- \mathbf{Z} Tester $\tilde{u} = \tilde{\phi} + \tilde{\phi}\tilde{C}$ au lieu de $\tilde{u} = \tilde{\phi} + \phi\tilde{C}$ pour la correction par addition \tilde{b}
- Tester sur une forme aléatoire (générée par le code de Killian) ७
- **(b)** vérifier les projections faites pour les plots des erreurs (cas FEM standard)
- (comme plot dans scimba?) + fixer l'échelle!
- ® merge branche develop dans ma branche (car ajout d'une fonction d'activation supplémentaire qu'il faudra peut-être que je teste)
- 6 Cas f qui varie : rajouter plus de paramètres (fréquence, phase à l'origine)
- ® Retester avec solveur itératif type gradient conjugué (+ regarder ce qui est fait actuellement)
- ® Regarder https://www.youtube.com/watch?v=G_hIppUWcsc sur les PINNs
- ${}^{\mbox{\tiny{7}}}$ revoir résultats du stage où Ω est un carré
- \square projeter dérivées 2ndes et 1ères sur Ω \bigcirc
- ${}^{\mbox{\ensuremath{\overleftarrow{\frown}}}}$ pour la correction par addition plot :

- (\tilde{C}) Pour Correction par addition avec FEM : augmenter le degré de \tilde{C} (P2) et comparer avec FEM où u de plus haut degré aussi (P2) \to But : voir l'influence du degré sur le facteur
- \mathfrak{T} Utiliser prédiction de u_{θ} sur un maillage conforme puis interpoler sur Ω_h
- \odot Correction avec ϕ -FEM: prédiction sur un maillage conforme de Ω puis interpolation FEniCS sur Ω_h
- \tilde{f} Afficher f et $\tilde{f} = f + \Delta u_{\theta}$ sur Ω et sur Ω_h

CI/Documentation:

- (6) Antora: pb avec couleur texte
- 🖔 modifier fichier résultat (+antora) pour ordonner les résultats plutôt sous forme de rapport que sous forme de week
- \circlearrowleft penser rajouter la figure où on projette la solution sur ω dans le cas de l'entraînement sur le cercle
- ® Github Pages : sommaire pas affiché dans les pdf + pb affichage avec antora (fichier "convert_latex_to_antora" à modifier)
- **(a)** Documenter le code python (docstring)
- (8) rajouter doc sphinx sur github + CI

- 🗞 Antora : trier le script python convert_latex_to_antora et le mettre au propre
- ® mettre au propre tous les résultats
- 🕲 rajouter : lancement de la CI uniquement quand docs est modifié

Autre:

- 4 faire sauvegarder sur disque dur tablette et pc fixe
- **(6)** Regarder formations amethis
- TRattraper Formation FIDLE Seq 1
- **®** Rattraper Formation FIDLE Seq 2
- **®** MOOC : intégrité scientifique
- $\ensuremath{\textcircled{\$}}$ VPN du bâtiment explora à tester !

Nouvelles tâches

COMPLET

Autre:

- ✓ S'occuper des anciennes tâches

- \checkmark Préparer TP7 + cours 7 \rightarrow 01/12/2023
- ✓ faire abstract de la semaine
- \mathbf{v} push tout le code sur github **vendredi**

Week 10: 04/12/2023 - 08/12/2023

COMPLET

Présentation - 12/12/2023 :

☑ Général :

- 🛮 Titlepage : améliorer emplacement auteur, date et superviseurs
- \blacksquare page de section : sous-sections trop transparentes ?
- 🗹 enlever numération des diapos titres
- faire abstracts pour Michel

✓ Intro

- \mathbf{p} Contexte scientifique : faire l'animation (FEM vs ϕ -FEM, avec des ellipses qui varient)
- 🗸 Problems 1&2 Modifier 2 diapos pour en faire qu'une et mettre les problèmes considérés

✓ FEMs

- Ø Presentation of standard FEM method : condenser en 1 diapo ?
- Correction on a FNO prediction II : enlever FEM de l'image

Code:

- ✓ Faire les courbes temps/erreur
- ☑ Faire le tableau récap temps pour la présentation (à précision fixée)

Autre:

- \mathbf{Z} Préparer QCM $\rightarrow 08/12/2023$

- ✓ faire abstract de la semaine
- \mathbf{v} push tout le code sur github **vendredi**

Week 11: 11/12/2023 - 15/12/2023

COMPLET

Autre:

 \checkmark Finir la présentation $\rightarrow 12/12/2023$

Début des installations sur le nouveau PC

 \checkmark Préparation $CC2 \rightarrow \frac{13}{12}, \frac{2023}{2023}$

Hebdomadaire:

✓ faire abstract de la semaine

 $\mathbf{\mathscr{D}}$ push tout le code sur github **vendredi**

Week 12 : $18/12/2023 - 22/12/2023$
Code:
\Box trier tout le code et push sur Github
${ m CI/Documentation}:$
Autre:
\Box Rattraper formations Fidle
\square MOOC - Intégration scientifique
\Box Installation PC portable
\Box Correction CC2 \rightarrow ?
\square Regarder VPN
Hebdomadaire:
\Box faire abstract de la semaine
\square push tout le code sur github vendredi