引文格式:ZHANG Baocheng, Study on the Theoretical Methodology and Applications of Precise Point Positioning Using Undifferenced and Uncombined GNSS Data[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(10):1099. (张宝成. GNSS 非差非组合精密单点定位的理论方法与应用研究[J]. 测绘学报, 2014, 43(10):1099.) DOI:10.13485/j. cnki. 11-2089. 2014. 0155

GNSS 非差非组合精密单点定位的理论方法与应用研究 张宝成

中国科学院 测量与地球物理研究所,动力大地测量学国家重点实验室,湖北 武汉 430077

Study on the Theoretical Methodology and Applications of Precise Point Positioning Using Undifferenced and Uncombined GNSS Data

ZHANG Baocheng

State Key Laboratory of Dynamic Geodesy, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China

由美国 GPS、俄罗斯 GLONASS、欧盟 Galileo 和中国"北斗"联合组成的全球导航卫星系统(global navigation satellite system, GNSS)现已广泛地服务于地球和空间科学领域。最优地融合各类 GNSS 的观测数据,以快速、准确地估计位置、速度、时间、大气等参数,是当前和未来阶段的研究热点。为实现此目的,本文对精密单点定位(precise point positioning, PPP)技术实施了一系列的改进,完善了其模型算法,弥补了其技术缺陷,拓展了其应用范围。本文的研究主线安排如下:

完善标准 PPP 的模型和算法。自被提出至今,PPP 技术较多地采用"消电离层组合"的非差伪距和相位作为基本观测量。在观测域消除电离层将放大多路径效应,且不便于约束电离层延迟的时空变化。为此,本文提出基于 GNSS 原始观测值的"非组合"PPP 概念,以克服上述不足。其中,电离层延迟被作为一类待估参数,其短期变化被合理地模型化为随机游走过程。同时,顾及了卫星姿态异常对改正两类系统误差(即相位绕转和卫星相位中心偏差)的影响。与标准 PPP 相比,非组合 PPP 的收敛时间较短(特别是高采样率观测数据),参数解可靠性更高。特别的,非组合 PPP 能提供准确的电离层信息,可作为利用 GNSS 研究电离层的一种新手段。

丰富参考网的数据处理理论。与实时动态相对定位 (RTK)相比,标准和非组合 PPP 存在一个共同的缺陷:无法实现整周模糊度固定,导致收敛时间过长。其根本原因在于,PPP 的模糊度参数中吸收了卫星相位偏差,因此不再具备整周特性。为此,先后有研究提出利用全球或区域 GNSS 参考网估计卫星相位偏差,以用作 PPP 的额外改正信息。本文将现有参考网数据处理方法归纳为 3 类,推导了它们的模型等价性,并概括了它们的实施差异。特别的,本文详细地分析了 3 类方法的典型不足,如侧重于处理双频观测值,无法有效地提供电离层改正等,由此掣肘了它们在未来多频、多模观测条件下的适用性,同时也难以实现单频 PPP 模糊度固定。

本文提出了一种直接处理非差、非组合 GNSS 观测值的 参考网函数模型,即非组合模型。为确保参数的可估性,采用 S 基理论识别了设计矩阵的列秩亏,以便于将部分参数定义为 S 基准,同时确保:① 可估的(接收机和卫星)伪距和相

位偏差仍具备时不变特性;② 可估的模糊度仍保留整周特性,互相独立且数量最多。在滤波实施中,当相邻历元所定义的 S 基准发生改变时,为确保滤波连续,还需要采用 S 转换对上一历元的滤波值实施等价变换。

非组合模型具备处理不同范围(全球、广域和局域)参考网数据的能力。针对某类参考网,还可以灵活地处理单频、双频和多频数据。基于某局域网的双频 GPS 数据,本文利用非组合模型估计了卫星钟差、卫星相位偏差的稳定性和电离层延迟的内插效果。进而,分别验证了单频和双频PPP模糊度固定的效率和静、动态定位精度。此外,采用非组合模型分析若干零/短基线的双频 GPS 数据,估计了两台接收机的相对仪器偏差,并发现了其中较为显著的短期变化趋势,进而否定了有关接收机仪器偏差在 1~3天内不随时间变化的一般性认知。

概括而言,本文对 PPP 算法的研究紧扣未来多频、多模的应用需求,并确保能提供高精度的单频服务。从改善单测站 PPP 性能的角度出发,引申出一种更为实用的参考网数据处理模型,最终促进了单测站 PPP 模型算法的完善和应用范围的扩展。

中图分类号:P228 文献标识码:D

文章编号:1001-1595(2014)10-1099-01

基金项目: 国家自然科学重点基金(41231064); 国家重点基础研究发展计划项目(2012CB825604); 国家 863 计划(2012AA121803); 国家自然科学基金(41174015)

收稿日期: 2013-07-14

作者简介:张宝成(1985—),男,博士后。2013 年 1 月毕业于中科院测量与地球物理研究所,获大地测量学专业博士学位(指导教师:袁运斌研究员,欧吉坤研究员)。研究方向为精密单点定位算法和应用。

Author: ZHANG Baocheng (1985—), male, post-doctoral. He received his doctorate in geodesy from Institute of Geodesy and Geophysics, Chinese Academy of Sciences on January 2013, majors in precise point positioning and its applications.

E-mail: b.zhang@whigg.ac.cn