The Hang Seng University of Hong Kong 2022-2023 Semester 2

MSIM4311:

Business Intelligence and Data Mining

Group Project Report

Class: L03
Group Members:

LAU Hei Yee	s197671
CHAN Ka Lam	s198167
CHOI Katarina Kai Ru	s198179
HO Yan Wa	s198184
LAM Yuet Ying	s198193

Table of Contents

- Question 1 Data Analytics
 - o Introduction
 - o Data cleaning
 - o Correlation
 - o Regression
 - Clustering and recommendation
 - o Conclusion
- Question 2 Data anonymisation

Question 1 – Data Analytics

Data set link:

https://www.kaggle.com/datasets/mirzahasnine/loan-data-set?resource=download&select=loan_train.csv Google share drive link: https://drive.google.com/drive/folders/0ALBDfRxfF3MxUk9PVA Google share folder link:

https://drive.google.com/drive/folders/1nWux0TKiZqz_hGwNvTUqb4VrvLHuT3VY?usp=sharing

Introduction

In recent years, the culture of lending is growing and the industry is becoming larger. As we all know, loans can be a lifesaver and more and more people are borrowing loans for things such as buying a new home, going for a world tour, or completing higher education from the best colleges, which make their dreams come true. However, different categories of people will show the characteristics of people borrowing loans. Therefore, finding out what element will influence the loan amount borrowed is our objective in this project.

In our dataset, it contains 615 records and 11 variables. We have also found out the mean, maximum, minimum, and standard deviation of the loan amount in the dataset, which is shown in the following table:

Variable(s)	Detail	
Gender	Female / Male	
Married	Yes/No	
Dependents	Number of Family member	
Education	Graduate / Not graduate	
Self_employed	Yes/ No	
Applicant_Income	Applicant income	
Coapplicant_Income	Coapplicant	
Loan_Amount	Borrowed amount	
Term	Borrowed period	
Credit_histroy	1 / 0	
Area	Living area	
Status	Repay or not	

	Amount
Mean	1414042.35
Maximum	70000000
Minimum	900000
Standard Deviation	8815682.47

Data cleaning

The data cleaning and transformation is the process to convert raw data source into another format. It is needed before we do the further analyses for the data set. There are total 4 steps to execute in this part. Firstly, we will reomove the reocords if the loan amount is equal to 0 since it is useless for our analysis. Secondly, we will convert all the blank value into missing value. Thirdly, convert all of the character variables to numeric variables. It included the data from gender, married, dependents, education, self employee, area and status total 7 variables because it would be used in arithmetic calculations. Last but not least, we will add two new variables. One is add the applicant income and coapplicant income and result it as total income. Second is debt to income ratio by dividing the loan amount by total income. These two variables will help us in further analyses.

Correlation

Before go for the regression part, we are going to find out which variables are linerly related to our objective which is loan amount. From the result, we can see that applicant income and total income have higher correlation coefficient than other with 0.57 and 0.62 respentivey. It means these two variables have a strong relationship with loan amount.

						Pearson 相關係數 觀測值數目
	GenderN	MarriedN	DependentsN	EducationN	Self_EmployedN	Applicant_Income
Loan_Amount	0.10698	0.14919	0.16387	-0.17113	0.12388	0.57091
	580	591	580	593	562	593

Coapplicant_Income	Term	Credit_History	StatusN	TotalIncome	Debt_ratio
0.18853	0.03946	-0.00838	- 0.03726	0.62459	0.16667
593	579	544	593	593	593

Regression

From the perspective of the bank, the company would like to know the customer repayment ability and the borrow amount in order to reduce the risk. So, 2 regression models are constructed for predicting the loan amount and the status of prediction. Before constructing the model, feature selection is managed to make sure that the models only have related variables. In this case, a stepwise selection method is adopted. The p-value limit is changed from smaller than 0.15 to smaller than 0.05 to make sure that all variables have a strong relationship with the dependent variable.

In terms of forecasting loan amounts, multiple regression models are adopted. The following images show the result of stepwise selection and regression.

After 7 steps in the stepwise selection, 5 features are chosen. They are Totallncome, Debt_ratio, MarriedN, EducationN and Self_EmployedN. By running the SAS code, an ANOVA table and parameter table is generated. From the ANOVA table, the p-value is smaller than 0.0001. This implies that we have enough evidence to reject the null hypothesis which is there is no relationship between features and loan amount. Also, the r square is almost 0.6 which means the strength of the prediction equation is strong. Based on these evidence, it is believed that this model is a predictive model.

Following is the regression equation of the loan amount:

```
 Loan\ amount = -5702975 + 10.80571\ (Total\ Income) + 498456\ (Debt\_ratio) \\ + 1591706(MarriedN) - 1418740\ (EducationN) \\ + 1470611\ (Self\_EmployedN) + Residual
```

In terms of repayment status of customers, logistic regression is used as status is a binary variable. The following images show the result of stepwise selection and regression.

After 4 steps in the selection, Credit_History and AreaN are chosen for the model. Both parameters have p-value smaller than 0.05 which means that they are good predictors. The data in the fit test is 0.0903 and greater than 0.05 which reflect that the model is a good fitting model. Moreover, take 0.50 as the cut-off point in the classification table, there is 46.2% of sensitivity and 98.1% of specificity. 82% of the correct cases are classified using this cut-off point. In addition, the ROC score is 0.7631 which is close to 1 and shows the predictive strength of the model is strong. According to these information, it is believed that this model is a predictive model. Following is the regression equation of the status:

Clustering and Recommendations

In the following part, we aim to group different sets of objects into classes of similar characteristics.

For the first analysis, we hope to find out the relationship between loan amount and total income. From the scatter plot, we can see there are 3 clusters, the red dots cluster 1, blue dots cluster 2 and green dots cluster 3.

Now, have a deeper analysis by looking at the means table. From this table, we can identify those specific characteristics of a particular cluster.

	Cluster Means					
Cluster TotalIncome Loan_Amou						
1	1.162198552	2.001296139				
2	7.147265403	3.394117943				
3	-0.211085809	-0.262199204				

Therefore, we can understand that, cluster 3, the blue dots are representing the low income group, while loaning the least amount of money. Their mean of total income and loan amount are -0.21& -0.26. Revealed that their mean are below average.

Then, cluster 1, the relatively average income group (1.162) with average loan amount (2.001). Although this cluster has a positive mean, compared with cluster 2, the high income group (7.147) with the most loan amount (3.394), their mean is much less. As a result, this analysis can show that cluster 2 are the high income group while loaning the most money.

For the second analysis, we aim to find out the relationship between loan amount and debt ratio. Make a quick review, debt ratio means loan amount divided by the total income, we aim to find out the ability for each group to do repayment.

From the scatter plot, we can see 3 clearly identical groups.

Move on to the means table.

Cluster Means					
Cluster Debt_ratio Loan_Amour					
1	0.033854716	2.700106470			
2	0.873549240	-0.001967049			
3	-0.553952660	-0.351298725			

All of the debt ratios are low. Cluster 1 = 0.033, Cluster 2 = 0.874 and Cluster 3 are the lowest, a negative result of -0.554. But compare them together, cluster 2 is comparatively high. So, we can draw a conclusion that the high income group (cluster 2) owns the most ability to repay.

With these 2 results, we can draw a conclusion that cluster 2, the high income group's demand for loaning money, is the most outstanding group. Therefore, in the following part, we will make recommendations.

If banks launch a loan package, we encourage them to loan to the high income group.

Firstly, they have needs. From the result of the first clustering analysis, they borrow the most amount of money. Reveals there are needs for this group of people. If Bank loans more to them, the bank can earn more by receiving interest.

Secondly, this group is safe to loan. We are so sure that the biggest concern for banks to loan is the ability for repayment. The high-income group is the safest group to loan. As they have good credit history which we find out from before analysis. They must be able to repay on time.

Conclusion

In conclusion, we found that people who are married and self-employed loan more. New family members may increase the living cost. It causes them to need loans. Those who are self-employed may need funds to start their businesses and operations, which may also lead to a large number of loans. It seems that people may take out loans for a better quality of life with family and career.

Before taking out a loan, people should calm down. There are a lot of loan advertisements to avoid being affected by these. Making loan decisions should be according to your demands. Only take out a loan if you can pay it back in order to avoid unnecessary financial pressure.

Question 2 – Data anonymisation

Description

About our data anonymisation policy, we have anonymised the customer name, telephone number, district, region and address, which are sensitive personal data that may cause harm or embarrassment to the individual. We have used different anonymization methods in this case.

For the customer number and telephone number, we have used Masking that hides personal identifiers to ensure that the data cannot refer back to a certain person. For the customer name, we hide the whole name without the first character so that customers can realize themselves but strangers cannot know the exact customer name. For the telephone number, we masked the last four digits to keep the confidentiality of the customer.

	full_name	new_full_name		telephone	new_telephone
1	SALLY HUI	Sxxxx Hxx	1	98421838	9842xxxx
2	STEVEN WANG	Sxxxxx Wxxx	2	91731955	9173xxxx
3	SUSAN WANG	Sxxxx Wxxx	3	91481676	9148xxxx
4	JOHN LI	Jxxx Lx	4	98342063	9834xxxx
5	THERESA CHAU	Txxxxxx Cxxx	5	98451668	9845xxxx
6	SARA LEE	Sxxx Lxx	6	98301276	9830xxxx
7	DEREK CHOI	Dxxxx Cxxx	7	93721974	9372xxxx
8	STEVEN AU	Sxxxxx Ax	8	98282015	9828xxxx
9	MARY NG	Mxxx Nx	9	92701337	9270xxxx
10	JOANNA TANG	Jxxxxx Txxx	10	98182107	9818xxxx
11	RICHARD WONG	Rxxxxxx Wxxx	11	98471786	9847xxxx
12	TED LOK	Txx Lxx	12	95661989	9566xxxx
13	RITZ TANG	Rxxx Txxx	13	91251500	9125xxxx

After that, as the district and region may contain sensitive information about which the individual is staying, we have replaced the district in which the individual is living , with a real district area in Hong Kong. For example, the original district and region are wai chai and Hong Kong Island, it will be replaced by eastern and Hong Kong Island. It refers to the incoming file HK_districts.

	new_district	district		new_region	region
1	eastern	wan chai	1	hong kong island	hong kong island
2	kwai tsing	sai kung	2	new territories	new territories
3	tuen mun	yuen long	3	new territories	new territories
4	wan chai	tuen mun	4	hong kong island	new territories
5	southern	islands	5	hong kong island	new territories
6	tai po	north	6	new territories	new territories
7	sham shui po	sai kung	7	kowloon	new territories
8	north	tai po	8	new territories	new territories
9	sai kung	tuen mun	9	new territories	new territories
10	yau tsim mong	sham shui po	10	kowloon	kowloon
11	central and western	wan chai	11	hong kong island	hong kong island
12	north	north	12	new territories	new territories
13	tuen mun	eastern	13	new territories	hong kong island

What's more, the address was anonymised by the fake flat. We set some fake flat and floor numbers with numeric numbers and letters. Those fake numbers will be randomly distributed. The data can show fake floor numbers and fake flats respectively. The new address will consist of fake data to protect users from hidden addresses.

	address	new_flat_no	new_floor_no	new_address
1	flat 6, 55/F	flat A	23/F	flat A, 23/F
2	flat B, 60/F	flat G	21/F	flat G, 21/F
3	flat 4, 35/F	flat 2	65/F	flat 2, 65/F
4	flat 10, 22/F	flat A	34/F	flat A, 34/F
5	flat 7, 19/F	flat D	67/F	flat D, 67/F
6	flat K, 45/F	flat 8	43/F	flat 8, 43/F
7	flat 3, 31/F	flat 1	54/F	flat 1, 54/F
8	flat 3, 21/F	flat G	56/F	flat G, 56/F
9	flat 12, 31/F	flat 7	21/F	flat 7, 21/F
10	flat 12, 1/F	flat D	56/F	flat D, 56/F
11	flat 9, 56/F	flat 4	54/F	flat 4, 54/F
12	flat F, 24/F	flat G	43/F	flat G, 43/F
13	flat 11, 23/F	flat 2	56/F	flat 2, 56/F