How to use iGPS to generate velocity profiles?

Step 1). For InSAR LOS rate map (\$iGPS\example\sar\xyz_profiles\xyz\meanvel_01.t xt) in XYZ format (Fig. 1):

```
91.474576 31.035791 0.505565
91.482076 31.030791 -1.081916
...
```

Each line of the XYZ file contains:

longitude latitude velocity [velocity uncertainty]

The last column (velocity uncertainty) is optional.

Fig. 1 InSAR LOS rate map for Gulu Graben, Dangxiong, Lhasa, Tibet, China. Viewed with Google Earth.

If the LOS rate map is in other formats (e.g. binary grid), one should first convert it to XYZ format. Currently, iGPS does not support other file formats.

2) Create a fault trace polyline for Yadong-Gulu rift and save it as GMT psxy format (\$iGPS\example\sar\xyz profiles\fault trace\fault ydgl2.psxy).

	> 0	
	91.628132	31.219651
	91.617858	30.960269
THE REAL PROPERTY.	91.580499	30.728116
	91.602397	30.581162
	91.276486	30.507717
	91.096729	30.476943
	90.541578	30.149055
6	90.330221	29.600453
	90.247891	29.198726
	90.046320	28.659747
	89.514785	28.123819
是一种种类型	88.896762	27.459436

Fig. 2 Fault trace polyline for Yadong-Gulu fault zone.

3) Use iGPS program "SAR_LOS_PROFILES_AUTO_XYZ" to generate velocity profiles.

The iGPS main program should be first launched. If not, open the iGPS starter (\$iGPS\main\start igps.pro) and run it (e.g. by pressing the F8 key), which will set the

iGPS environment paths automatically. Then, open \$iGPS\sar\sar_los_profiles_auto_xyz.pro file with IDL Workbench (IDLDE) and set your parameters. Currently, iGPS does not provide a GUI for this program.

Fig. 3 Open SAR LOS PROFILES AUTO XYZ source code in IDL Workbench.

With the default settings, SAR_LOS_PROFILES_AUTO_XYZ program will run with the supplied example located at \$iGPS\example\sar\xyz_profiles\ directory. If the output path does not exist, iGPS will create it.

iGPS will create a preview plot for each profile (e.g. Fig. 4).

Fig. 4 Plot for velocity profile.

Content of the output velocity profile file looks like:

# PSXY_P	ROFTLE	90.440	32.500											
	* PSXY_PROFILE 92.809 29.758 These two lines are profile line.													
# PSXY_F	AULT_PROFI	LE_INTERS	ECT 91	.625 3	1.129	Thi	is is the inte	ersection p	oint betwee	en the proj	tile and fault.			
# PSXY_F	AULT_TRACE	91.62	31.2	20	The b	elow points	s represent	the fault t	race.					
# PSXY_F	AULT_TRACE	91.61	30.9	60										
# PSXY_F	AULT_TRACE	91.58	30.7	28										
# PSXY_F	AULT_TRACE	91.60	2 30.5	81										
# PSXY_F	AULT_TRACE	91.27	30.5	08										
# PSXY_F	AULT_TRACE	91.09	7 30.4	77										
# PSXY_F	AULT_TRACE	90.54	2 30.1	49										
# PSXY_F	AULT_TRACE	90.33	29.6	00										
# PSXY_F	AULT_TRACE	90.24	3 29.1	99										
# PSXY_F	AULT_TRACE	90.04	5 28.6	60										
# PSXY_F	AULT_TRACE	89.51	5 28.1	24										
# PSXY_F	AULT_TRACE	88.89	7 27.4	59										
*	site	p_long	p_lati	p_dist	v_along	ve_along	v_tang	ve_tang	long	lati d	ist_to_fault	v_los	ve_los	
	1165	91.709	31.031	-4.99	0.00	0.00	0.00	0.00	91.673	30.999	13.603498	-0.47	0.00	
	1151	91.710	31.031	-4.92	0.00	0.00	0.00	0.00	91.673	30.999	13.619490	-0.51	0.00	
	1166	91.710	31.030	-4.92	0.00	0.00	0.00	0.00	91.673	30.999	13.660586	-0.89	0.00	
	1171	91.710	31.030	-4.94	0.00	0.00	0.00	0.00	91.673	30.999	13.682630	-0.43	0.00	

The data section of the profile file is velocity along the profile. The columns are

- site: site name (each point in LOS map);
- p long: longitude of the point by projecting the site (LOS point) to the profile;
- p lati: latitude of the above point;
- p_dist: distance from the LOS point to the profile;
- v_along: velocity along the profile (not valid for InSAR LOS velocity);
- ve_along: uncertainty for the above;
- v tang: velocity perpendicular to the profile (strike-slip component);
- ve tang: uncertainty for the above;
- long: longitude of the LOS point;
- lati: latitude of the LOS point;
- dist_to_fault: distance from the LOS point to the fault trace (vary between negative and positive from the left to the right)
- v los: LOS velocity
- ve_los: LOS velocity uncertainty