数学 4 A 中間試験問題

2017年6月7日

Masato Kurihara

1. 次の行列の逆行列を求めよ。

$$\begin{pmatrix}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$(2) \left(\begin{array}{ccc} 2 & 0 & 1 \\ 7 & 6 & 7 \\ 1 & 1 & 1 \end{array}\right)$$

2.
$$A = \begin{pmatrix} 2 & \bullet & \bullet \\ 7 & 6 & 7 \\ 1 & 1 & 1 \end{pmatrix}$$
 とおく。 A に対応する一次変換 $f_A(\mathbf{x}) = A\mathbf{x}$ により、平面 $2x + y + z = 2$ はどのような平面に移るか。その方程式を

り、平面 2x+y+z=2 はどのような平面に移るか。その方程式を求めよ。また、その平面に垂直なベクトルをひとつ求めよ。

3. x, y 平面上の曲線 $6x^2 + 2\sqrt{3}xy + 4y^2 = 1$ を原点中心に $\frac{\pi}{3}$ 回転して得られる図形の方程式を求めよ。

4.
$$A = \begin{pmatrix} k & 1 & 1 \\ 1 & k & 1 \\ 1 & 1 & k \end{pmatrix}$$
 とおく。

- (1) A の rank (階数) を k の値で分類することによって求めよ。
- (2) 連立方程式

$$\begin{cases} -kx + y + z = 0 \\ x + ky + z = 0 \\ x + y + kz = 0 \end{cases}$$

をkの値で分類することによって解け。連立方程式の解x, y, zに

対し、ベクトル
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 を使って、 $\begin{pmatrix} x \\ y \\ x \end{pmatrix} = \dots$ という形で答えよ。

- **5.** n を正の整数とする。A を n 次行列とし、 $\mathbf{a}_1,...,\mathbf{a}_r$ を n 次元ベクトルとする。 $A\mathbf{a}_1,...,A\mathbf{a}_r$ が 1 次独立のとき、 $\mathbf{a}_1,...,\mathbf{a}_r$ も 1 次独立であることを証明せよ。
- **6.(1)** 3 次元空間で、右手系の x, y, z 軸を考える。z 軸を中心として、x 軸を向きをこめて y 軸に移す角度 $\frac{\pi}{2}$ の回転を f と書くことにす

る。この変換
$$f$$
 により、ベクトル $\begin{pmatrix} 1\\0\\0 \end{pmatrix}$ は $\begin{pmatrix} 0\\1\\0 \end{pmatrix}$ に、ベクトル $\begin{pmatrix} 0\\1\\0 \end{pmatrix}$ は $\begin{pmatrix} -1\\0\\0 \end{pmatrix}$ に、ベクトル $\begin{pmatrix} 0\\0\\1 \end{pmatrix}$ は $\begin{pmatrix} 0\\0\\1 \end{pmatrix}$ に移るので、 $\begin{pmatrix} 0&-1&0\\1&0&0\\0&0&1 \end{pmatrix}$ である。

次に、x 軸を中心として、y 軸を向きをこめて z 軸に移す角度 $\frac{\pi}{2}$ の回転を g と書くことにする。一次変換 g に対応する行列を、上と同様の方法で求めよ。答案用紙には答のみでよい。

- (2) f を行ってから、g を行う変換を h とする。一次変換 h に対応する 行列を求めよ。
- (3) 一次変換 h で動かない 0 でないベクトルをひとつ求めよ。すなわち、 A_h を h に対応する 3 次行列とするとき、 A_h **x** = \mathbf{x} となるようなベクトル \mathbf{x} で零ベクトルでないものをひとつ求めよ。

以上

*NFN	慶應義塾大学	答案用紙	42
/*** -	数字記入例 0 1 2 3 4 5 6 7 8 9 (OCR 上では特に 4 と 9 の区別がしにくいので、4 は上を閉じないこと)	科目名 担当者	
	学籍番号	大學·可栗 阿登爾銀牌間中AP草群	
	氏 名	年 月 日() 時限 学科(学門)	年組
	(ページ数は必ずご記入ください)	注1 学籍番号は数字記入例を参照の上、丁寧に記すこと. 注2 左上にある思い「基準マーク」付近には何も記さないこと. 注3 東西を使用する場合には、矢印思号つの位置から書き始めること(天地を逆転させないこと). 注4 用紙が複数枚に及ぶ場合,氏名は全ての用紙に記入すること.	
1 (1)	$ \begin{pmatrix} 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} $	0 1 1 0 0 1 0	
	00010001	(1 0 0 0 1 -1 1 -1) (0 1 0 0 0 1 -1 1) (0 0 0 1 0 0 0 1 -1) (0 0 0 1 0 0 0 1	
	以上により 遊行列に		
(2)	(201100) (111 (767010) (1111 (111001) (11) (11) (11) (11) (11) (11) ($\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 -7 -2

以上に引 遊門別
$$\gamma$$
 (1 -1 6) γ (0 -1 7) γ (1 -1 2 -12) γ (イン γ) γ とかくと 本から γ そかける

$$\frac{2}{2} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = A \begin{pmatrix} x \\ y \\ z \end{pmatrix} \quad \frac{2}{2} \cdot \begin{pmatrix} x \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ -Y + 7Z \\ -X + 2Y - 12Z \end{pmatrix}$$

 $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = A^{-1} \begin{pmatrix} x \\ \gamma \\ z \end{pmatrix} = \begin{pmatrix} x - \gamma + 6Z \\ -\gamma + 7Z \\ -X + 2\gamma - 12Z \end{pmatrix}$

 $t_{12} \times - \times + 72 = 2$

以上にFリ 平面2x+4+8=2は平面x-4+78=212粉を

この平面に重直なかりしいとしては

2x+y+8=2 1= 1x x x 38 2 (X-Y+62)+(-Y+72)+(-X+2Y-122)=2

裏面に続く場合は⇒印の欄から書くこと。

$$\begin{array}{c} \Rightarrow \\ 3. \ \ \overline{R}. \ \ \overline{E} + \overline{R}. \ \ \ \overline{R}. \$$