Whitehouse Education Zone

Model Test 1

	The moment of inertia of a disc of mass M and radius about an axis, which is tangential to
	the circumfetence of the disc and parallel to its diameter is
	a. $\frac{5}{4}$ MR ² b. $\frac{2}{3}$ MR ² c. $\frac{3}{2}$ MR ² d. $\frac{4}{5}$ MR ²
	Find the torque about the origin when a force of 3J N acts on a particle whose position
	vector is 2K m
	a. 6l N-m b. 6j N-m c6l N-m d. 6k N-m
	Find the moment of inertial of a solid sphere about a tangent to the sphere, where mass of
	sphere is M and Radius is R.
	a. 5/3 MR ² b. 7/5 MR ² c. 3/5 MR ² d. 2/7 MR ²
	The ratio of the radio of gyration of a circular disc about a tangentail axis in theplane of
	the disc and of a circular ring of the same radius about a tangible axis in the plane of the
	ring is
	a. $1:\sqrt{2}$ b. $\sqrt{5}:\sqrt{6}$ c. $\sqrt{2}:\sqrt{3}$ d. $\sqrt{2}:1$
	From a disc of radius R and mass M, a circular hole of diameter R, whose rim passes
	through the centre is cut. What is the moment of inertia of the remaining part of the disc
	about a perpendicular axis, passing through the centre?
	a. $11 \text{ MR}^2/32$ b. $9 \text{ MR}^2/32$ c. $15 \text{ MR}^2/32$ d. $13 \text{ MR}^2/32$
	Two circular discs of same mass and thickness are made from metals having densities d,
	and d ₂ respectively. The ratio of their moment of inetia about the central axis will be
	a. $d_1:d_2$ b. $d_2:d_1$ c. $d_1d_2:1$ d. $1:d_1d_2$
	A wheel of moment of inertia 5×10^3 kg m ² is making 20 rev/sec. The torque required to
	stop it in 10 sec is
	a. $2\pi \times 10^{-2} \text{ N-m}$ b. $\pi \times 10^{-2} \text{ N-m}$ c. $2\pi \times 10^{2} \text{ N-m}$ d. $4\pi \times 10^{2} \text{ N-m}$
	A thin hollow cylinder open at both ends,
	i. Slides without rotating
	ii. rolls without sliping with the same speed.
	The ratio of K.E in the two cases is:
	a. 1:1 b. 2:1 c. 4:1 d. 1:2
	A solid sphere of mass M is rolling on a horizontal surface without sliding with velocity v
	Its kinetic energy will be
	a. $\frac{1}{2}$ mv ² b. $\frac{7}{5}$ mv ² c. $\frac{7}{10}$ mv ² d. $\frac{1}{5}$ mv ²
0.	A solid sphere of mass M is rotating about its diameter and linear velocity of a point on its

d. $\frac{1}{5}$ mv+2+

1. A body rolling without sliding has its rotational kinetic energy equal to 40% of total

equator is v. Then its kinetic energy will be

a. $\frac{1}{2}$ mv²b. $\frac{7}{5}$ mv² c. $\frac{7}{10}$ mv²

energy. Then body should be

13. A ring of radius r and mass m rotates about its axis passing through its centre and perpendicular to its plane with angular velocity ∞ . its kinetic energy is : a. $\text{mr}^2 \infty \text{b.} \frac{1}{4} \text{mr}^2 \infty^2$ c. $mr^2\infty^2$ d. $\frac{1}{2}$ mr² ∞^2 14. A spherical ball rolls on a table without slipping, then the fraction of its total energy associated with rotation is: a. $\frac{2}{}$ b. $\frac{2}{5}$ 15. A thin uniform circular ring is rolling down an inclined plane of inclination 30° without slipping. Its linear acceleration along the inclined plane will be. 16. Two bodies of moment of inertia l_2 and l_2 ($l_1 > l_2$) have equal angular momentam. If E_1 , E_2 are their kinetic energies of rotation, then d. cannot be said a. $E_1 > E_2$ b. $E_1=E_2$ c. E₁<E₂ 17. The ratio of the radii of gyration of a circular disc to that of circular ring, each of same mass and radius, around their respective axes is a. $\sqrt{2} : 1$ b. $\sqrt{2} : \sqrt{3}$ c. $\sqrt{3} : \sqrt{2}$ d. 1: $\sqrt{2}$ 18. A particle performs uniform circular motion with an angular moment L . If the frequency of particle's motion is doubled and its kinetic energy is halved, the angular momentum becomes: a. 2L b. 4L c. L/2. d. L/4 19. A constant torque acting on a uniform circular wheel changes its angular momentum from J_0 to $4J_0$ in 4 seconds. The magnitude of the torque is : a. $\frac{3}{4}$ J₀ $b. 4J_0$ $c. J_0$ $d. 12J_0$ 20. The moment of inertia of a thin rod of mass mass M, length L, about an axis passing through a point $\frac{L}{r}$ from one end and perpendicular to length is a. $\frac{7}{40}$ MR² b. $\frac{ML^2}{3}$ c. $\frac{ML^2}{12}$ d. $\frac{31}{12}$ MR² 21. The M.I of a solid cylinder of length I radius R about its geometrical axis is same as about equatorial axis, then the ratio of R and I will be

c. 3

b. I_0 c. $\frac{2l_0}{2}$ d. $\frac{l_0}{4}$

22. A uniform metallic disc of moment of inertia I₀ about its own axis is melted and a

uniform ring of equal radius is then casted from it. Then M.I of the ring about its diameter

d. $\sqrt{3}$

b. Hollow sphere

d. Hollow cylinder

12. A solid spherical ball rolls on a table. Ratio of rotational. K.E to the total K.E is

a. Circular disc

c. Solid sphere

will be

a. 2l₀

23. A uniform metallic disc has its M.I l ₀ about an axis through its rim perpendicular to the plane be	36. Two masses of 1 kg and 2 kg are 9 m a part and make two body system. Their centre of mass from 1 kg mass will be at
a. $2l_0$ b. l_0 c. $\frac{l_0}{2}$ d. $\frac{l_0}{4}$	a. 6 m b. 4 m c. 3 m d. 2 m
24. A uniform metallic disc has its M.l l_0 about its diameter. Then its M.l about an axis through its rim perpendicular to the plane will be a. $4l_0$ b. $\frac{3}{2}l_0$ c. $6l_0$ d. $\frac{5}{4}l_0$	 37. A uniform disc is rotating at a constant speed about a vertical axis through its centre. Some wax is gently dropped on the disc, the angular velocity of the disc a. doesn't change b. increases c. decreases d. becomes zero 38. A circular disc of mass m and radius r is rotating about its axis with uniform speed of v.
25. Two point masses of 1 kg and 2 kg seprated by 0.5 m constitute a system. The distance of the centre of mass of the system from 1 kg mass is:	What is its kinetic energy? a. mv^2 b. $\frac{1}{2} \text{mv}^2$ c. $\frac{1}{4} \text{mv}^2$ d. $\frac{1}{8} \text{mv}^2$
a. 0.15 m b. 0.25 m c. 0.33 m d. 0.4 m 26. A circular body of mass 2 kg of radius 1 m then of inertia about diameter is: a. 0.5 kg m ² b. 4 kg m ² c. 4 kg m ² d. 1 kg m ²	39. When the size of the earth is reduced to half, mass ramaining same, the time period of the earth rotation will be:
27. Moment of inertia doesn't depend upon a. Mass b. Distrbution of mass c. Radius d. Angular velovity	a. 6 hours b. 24 hours c. 12 hours d. 48 hours 40. A rotating disc has kinetic energy, if mass is M & velocity is V
28. If 'M' and 'r' are respectively the mass of electrons and radius of the orbit in which the electron revolves about the aucleus, the moment of inertia of electrons will be: a. Mr^2 b. $(\frac{1}{2}) Mr^2$ c. $(\frac{2}{r}) Mr^2$ d. $(\frac{2}{3}) Mr^2$	 a. MV² b. 1/2 MV² c. 3/4 MV² d. MV²/4 41. A fly wheel of mass 10 kg and radius 50 cm is rotating with constant angular speed of ∞ with its kinetic energy 20 Joule, The angular speed of flywheel is a. 4 rad/s b. 2 rad/s c. 10 rad/s d. 4 rad/s
29. When a body rolls downs an inclined plane. The total potential energy of the body changes into:	42. The body applied with constant torque changes the angular momentum l_0 to final angular momentum $4l_0$ in 3 sec.
a. Rotational K.E b. Translational K.E c. Both rotational and translastional K.E d. None	a. $3l_0$ b. l_0 c. $4l_0$ d. $2l_0$ 43. Kinetic energy of a body is given by $1/2$ mv ² . Which one of the following expressions is
0. If non internal force is applied in a body the velocity of the centre of mass: a. Zero b. increases c. Decreases d. Remains contant	correct for the kinetic energy of the rigid body where i and ∞ represents the moment of intertia and angular velocity of the rigid body?
The product of moment of inertia and angular acceleration gives, a. Linear momentum	a. $(1/2)$ 1 ∞^2 b. $(1/2)$ 1 ² ∞ c. $(1/2)$ (I ∞) ² d. $(1/2)$ (1 ∞) ² 44. If a body starts from rest with angular acceleration $\propto = 6$ t ² . What is time taken to
c. Torque d. Force 32. A cylinder has mass 'M' a length 'l' and radius 'R' then M.L about own axis is:	complete 10 revolution?
a. MR ² b. $\frac{MR^2}{2}$ c. $\frac{MR^2}{4}$ d. $\left(\frac{R^2}{4} - \frac{l^2}{12}\right)$	a. 0 b. 2.14 c. 2.8 d. 3.6 45. If there is a change of angular momentum from 2 J to 4 J in 4 sec . Then the torque is
3. Two bodies of masses m1 and m2 move in circles of radii r_1 and r_2 respectively. if they complete the circles in equal time the ratio of their angular speed $\frac{\omega_1}{\omega_2}$ is	 a. 0.25 J b. 0.5 J c. 1 J d. 2 J When torque acting upon a system is zero. Which of the following will be constant? a. Force b. Lineat momentum c. Angular momentum d. Linear impusle
a. m ₃ /m ₂ b. r ₃ /r ₂ c. m ₁ r ₃ /m ₃ r ₂ d. 1 4. A uniform heavy disc is rotating with a constant angular velocity about a vertical axis through its center, Some wax is dropped gently on the disc near to the edge. The angular	47. A shell at rest explodes. The centre of mass of the fragmentsa. Moves along the parabolic path b. Moves along the straight linec. Move along an elliptical path d. remains at rest
velocity of the disc. a. Decreases b. Becomes Zero c. increase d. Does not change	48. The moment of inertia of a disc of mass M and radius R about and axis which is tangent to the circumference of the disc and parellel to its diameter is:
5. A uniform metal disc of radius R lies in XY - plane and rotates with uniform angular velocity ∞ about the Z - axis, the total induced EMF between the center and the rim of the	a. $\frac{5}{4}$ MR ² b. $\frac{3}{2}$ MR ² c. $\frac{4}{5}$ MR ² d. $\frac{2}{3}$ MR ² 49. A particle of mass m and radius of gyration k is rotating with and angular acceleration \propto
disc is equal to: a. ∞BR b. $\frac{1}{2} \infty BR$ c. $\frac{1}{2} \infty BR^2$ d. $\frac{1}{2} \infty B^2 R$	The torque acting on it is a. $mk^2 \propto$ b. $mk^2/\infty c$. $m\infty/k^2 d$. $1/4 mk^2 \infty^2$

0.	The ratio of the angular speeds of minute based and hour hand of a clock is	65.	Soda lime is used extensively in decarnoxylaties reaction to obtain alkanes. Soda lime is
	a. 60:1 b. 36:1 c. 24:1 d. 12:1		a. NaOH b. naOH and Cao c. CaO d. Na ₂ CO _{3\}
1.	The centre of gravity of a body	66.	Which one of the following cannot be prepared by wurts reaction?
	a. Lies always outside the body		a. C_2H_0 b. CH_4 c. C_3H_5 d. C_4H_{10}
	b. May lie whether outside or on the surface the body	67.	Methyl bromide when heated with zinc is closed tube produces
	c. Lies inside the body		a. Methane b. Ethane c. Ethylene d. Methanol
	d. Lies on the surface of the body	68.	Wurtz reation using bromoetheane yields
2.	Radius of Gyration of and uniform rod about and axis through its middle is		a. 2- bromobutane b. n-butane c. i3o-butane d. ethane
	a. L/(3)1/2 b. L/ (8)1/2 c. L/ (12) 1/2 d. Ll(2)1/2	69.	Successive alkanes differ by
3.	Let l_1 and l_2 be the moments of inertia of two bodies of identical geometrical shape, the		a. CH ₂ b. CH ₄ c. CH ₅ d. C ₂ H ₃
	first made of almunuim and the second of iron	70.	The shape of methane molecule is
	a. $l_1 < l_2 b$. $l_1 = l_1$ c. $l_1 > l_1$ d. information is insufficient to derive the		a. Linear b. trigonal planar c. square planar d. tetrahedral
	relation between l ₁ and l ₂	71.	Pure methane can be produced by
4.	Three point masses each of mass m are placed at the corners of an equilateral triangle of		a. Wurtz reation b. Kilbe's electrolytic method
	side l. Then moment of inertia of system about an axis along one side of the triangle is		c. Soda - lime decarboxylation d. Reduction with H ₂
	a. $3ml^2$ b. ml^2 c. $3/4 ml^2$ d. $3/2 ml^2$	72.	Both methane and ethane may be obtained in one step reation from
5.	When an explosive shell travelling in a parabolic path under the effect of gravity explodes,		a. C ₂ H ₄ b. CH ₃ l c. CH ₃ OH d. C ₂ H ₅ OH
	the centre of mass of the fragments will move	73.	During the preparation of ethane by Kolbe's electrolytic method using inert electrodes the
	a. Vertically upwards and then verically down wards		PH of the electrolyle
	b. Horizontally and then follow the parabolic path		a. increases progressively as the reaction proceeds
	c. along the original paranolic path		b. decreases progressively as the reation Proceeds
	d. along a hyperbolic path		c. remains constant throughout the reaction
6.	Radio of the angular velocity of the earth about its axis and the hour hand of a clock is		d. May decrease if the concentration of the electrolyte is not very high
٠.	a. 12:11b. 11:12 c. 1:2 d. 2:1	74.	Which of the following methods is most appropriate for the manufacture of methane?
7	If the radius of the earth's orbit is made one fourth the duration of year will become	,	b. Kolbe's electrolytic method c. soda - lime decarboxylation
, ·	a. 1/2 times b. 1/4 times c. 1/8 times d. 1/16 times		d. Reduction with H ₂
8	The moment of inertia of a circular ring of mass M and radius R about its diameter is	75	Both mathane and ethane may be obtained in on step reaction from
		,	a. C ₂ H ₄ b. CH ₃ l c. CH ₃ OH d. C ₂ H ₅ OH
	a. MR^2 b. $\frac{MR^2}{2}$ c. $\frac{2}{3}MR^2$ d. $\frac{3}{2}MR^2$	76	During the preparation of ethane by Kolbe's electrolytic method using inert electrodes the
9.	Major constituent of Marsh gas is	70.	PH of the electrolyte
	a. $C_2 H_2$ b. CH_4 c. H_2S d. CO		a. increase progressively as the reaction proseeds
0.	A compound on ozonolysis forms two molecules of HCHO, the compound is		b. decreases progressively as the reation proceeds
	a. C_2H_4 b. C_2H_2 c. C_2H_0 d. C_0H_0		c. remains constant throughout the reaction
1.	Alkanes are represented by genral formula.		d. may decrease of the concentration of the electrolyte is not very high
	$a. \ C_n H_{2n-1} \\ b. \ C_n H_{2n+2} \\ c. \ C_n H_{2n-l} \\ d. \ C_n \ H_{n+1}$	77	Which of the following method is most appropriate for the manufacture of methane?
2.	The no. of isomer of C_6H_{14}	, , ,	a. By reduction of CH ₂ Cl ₂ b. Wurts reation
	a. 6 b. 7 c. 5 d. 4		c. Liquefaction of naturalgas d. None of the above
3.	Propane on strong heating will yield	78	Which of the following liberates methane gas on teatment with water?
	a. 2 molecules of CH ₄ b. Ethane and methane	, 0.	a. Silicon carbide b. Calcium carbide
	c. Methane and etheane d. Methane and ethene		c. Aluminium carbide d. Iiron carbide
4.	is obtained when ethyl chloride is heard in presence of alcoholic	79	Wurts reaction using bromoethane yield
	a. Butane b. Ethyne c. Aeetylene d. Ethylene	17.	a. 2-bromobutane b. η - butane c. iso- butane d. ethane
			a. 2 cromodulie 6. ij dualie 6. iso dualie d. challe

8 0.	Amongst the following hydrocarbons, the one having lowest bollong point is
	a. η - Hexane b. η -Pertane c. Isopentane d. Neopentane
81.	Photochemical chlorination of alkane is initiated by a process of
	a. Pyrolysis b. Substitution c. Homolysis d. Pexoxidation
8 2.	Halogenation of alkanes is an example of
	a. Electrophilic substitution b. nucleophilic substitution
	c. free-radical subtitution d. Oxidation
83.	Carbon black, which is used in making printer's ink is obrained by the secomposition of
	a. acetylene b. benzene c. carbon tetrachloride
	d. mathane
84.	Marsh gas mainly contains
	a. C_2H_2 b. CH_4 c. H_2S d. CO
85.	Household gaseous fuel (LPG) mainly contains
	a. CH_4 b. C_2H_2 c. C_2H_4 d. C_4H_{10}
86.	General formula for alkenes is
	a. C_nH_{2n} b. C_nH_{2n+2} c. $C_{2n}H_{2n}$ d. C_nH_{2n-2}
8 7.	Which of the following ions is most stable?
	a. $CH_3 + H_2$ b. $(CH_3)_2 CH$ c. $(CH_3)_3 + d$ d. $C_6H_5 + H_2$
9.0	Which of the following has the highest nucleophilicity?
60.	a. F $-$ b. OH $-$ c. CH ₃ $-$ d. NH ₂ $-$
80	Which of the following apecies is a nucleophile?
٥).	a. NO ₂ b.: CX ₂ c. NH ₂ — d. CH ₃
90	Which one of the following series contian electrophiles only?
	a. H ₂ O,SO ₃ ,H ₃ O b. NH ₃ , H ₂ O, AlCl ₃ c. AlCl ₃ ,SO ₃ , NO ₂
	d. H ₂ O, Cl, NH ₃
91.	The bond that undergoes heterolytic cleavage most readily is
	a. C - C b. C - O c. C- H d. O – H
92.	Nucleophilieiity order is correctly represented by
	a. $CH_3 < NH_2 < Ho < F$ b. $CH_3 = NH_2 > HO = F$
	a. $CH_3 < NH_2 < Ho < F$ b. $CH_3 = NH_2 > HO = F$ c. $CH_3 > NH_2 > HO > F$ d. $NH_2 > F > HO > CH_3$
93.	Which of the following is not a nucleophile?
	a. H_2 O b. CH_3OH c. H_2 d. NH_{3}
94.	For the reaction of phenol with CHCl ₃ in presence of KOH, the electrophite is
	a. + CHCl ₂ b. : CCl ₂ c. CHCl ₂ d. CCl ₄
95.	Which behaves both as a nucleophile as well as electrophile?
	a. CH ₃ NH ₂ b. CH ₃ Cl c. CH ₃ CN d. CH ₃ OH
96.	Allyl cyanide contains σ and π bonds respectively
	a. 5 and 7 b. 9 and 3 c. 3 and 4 d. 9 and 9
9 7.	The number of σ and π - bonds in but -1-en-3-yne are
	a. 5σ and 5π b. 7σ and 3π c. 8σ and 2π d. 6σ and 4π

- 98. Toluene contains
 - a. 15 σ and 3π
- b. 6 σ and 3π bond
- c. 9 σ and 3π bonds
- d. 9 σ and 6π bonds
- 99. In a row of certain A is ranked 9th from left end and B is ranked 10th from right end .If C is exactly in between A and B .What could be the minimum number of students in this row?
 - a) 9
- b) 10
- c) 19
- d) 13
- 100. In an examination consisting 80 questions. Shankar answered 75% of the first 60 questions correctly. What percentage of the remaining 20 question did he need to answer correctly to get 80 % marks in the entire question?
 - a) 90% b) 98% c) 58% d) 95%

The END