CREDX – Credit Loss Analysis

Finding the right customers

PGDDA Capstone Project March 2018 IIIT-B Vamsi Kiran Telikicherla Suman Kumar Sinha Talveen Singh Rakhra Shounak Kundu

BUSINESS OBJECTIVE AND STRATEGY

Business Objective

- Formulate strategy to combat the increased loss of credit due to customer defaults in recent years.
- Possibly mitigate credit risk by acquiring the right set of customers.

Strategy

 Analyse, understand and clean data in-order to prepare a model capable of predicting the right set of customers

UNDERSTANDING CUSTOMER AND CREDIT DATA

Files

- Customer demographics
- Customer credit bureau data

Nature of data

- 71295 records
- 71289 unique customers
- 29 total Attributes

Points of interest

- Overall Customer Age < 65 years
- Salaried employees >50%
- Male to Female Ratio ~ 3:1
- Performance Tag
 - Indicates whether the customer has defaulted or not

ANALYSIS STRATEGY

DATA CLEANING

Remove NA, outliers

and other trivial

columns

 Univariate/bivariate visual analysis

 Create derived metrics based on existing data

EDA

MODEL CREATION

- Model the performance tag
- Identify driving factors to find the right customers

MODEL EVALUATION

- Predict the probability of finding the right set of customers
- Application scorecard generation
- Assessing the Financial benefit

Application ID: 3 duplicate IDs

- 765011468
- 653287861
- 671989187

Performance Tag:

- Non Defaulters ~67K applicants (94%)
- Defaulters ~3K applicants (4%)
- Rejected = 1425 (2%) applicants

Income:

- 81 incorrect values (Negative)
- Notable inverse trend between income and default rate

No of times 30 DPD or worse in last 6 months: Number of months in current residence:

- No "NA" or blank values
- Trend: Customers who have crossed 3oDPD once or more in last 6 months tend to default more
- No blanks or incorrect values
 - Trend: Customers who stay one or more year at the same residence tend to default more

No of PL trades opened in last 12 months:

 Applicants with 1-7 PL trades opened in last 12 months tend to default more

Default rate by No of PL trades opened in last 12 months 20000 - 1000 -

Average CC Utilization in last 12 months:

- 1058 first time CC user
- Trend: Defaulters tends to use more Credit card

Number of months in current company:

- No "NA" or blank values
- Trend: Customers who stay less than 2 years in current company tend to default more.

DATA PREPARATION

IV AND WOE:

- IV helps in identifying important predictors and reduce dimensions
- WOE denotes the effect of individual variable on the target
- Found 18 variables as significant (Refer table)

SMOTE:

 Data is balanced using SMOTE to avoid making a biased model

$IV = \sum (DistributionGood_i - DistributionBad_i) \times WOE_i$ $Weight of Evidence = ln(\frac{DistributionGood_i}{DistributionBad_i})$

Columns	IV
binning.AvgCCUtilLast12Mnths	0.315294
NbrOfPLTradesOpenLast12Mnths	0.315274
NbrOf3oDPDLast6Mnths	0.24877
NbrOfPLTradesOpenLast6Mnths	0.232858
NbrOf3oDPDLast12Mnths	0.221618
NbrOf9oDPDLast12Mnths	0.218707
NbrOf6oDPDLast6Mnths	0.213864
binning. Total Nbr Of Trades	0.20797
binning. Outstanding Bal	0.198815
Nbr Of Trades Open Last 6 Mnths	0.197141
NbrOf6oDPDLast12Mnths	0.191041
binning.NbrOfTradesOpenLast12Mnths	0.190322
binning.NbrOfInq_ExclHomeAutoLoan_Last12Mnths	0.175896
NbrOf9oDPDLast6Mnths	0.163895
binning.NbrOfInq_ExclHomeAutoLoan_Last6Mnths	0.074198
binning.income	0.039888
binning.NbrMnthsCurrResidence	0.030396
binning.NbrMnthsCurrCompany	0.019481

MODEL BUILDING

- Applied Logistic Regression, Decision Tree and Random Forest to iteratively build model by removing insignificant variables and variables exhibiting high levels of multicollinearity
- Model was evaluated for accuracy, sensitivity and specificity values
- As the business objective is to find the right customer, the final variable was selected in such way as to attain higher accuracy and higher sensitivity

MODEL EVALUATION

- In Logistic Regression, we eliminated insignificant variable one by one
- In Decision tree, we tuned the hyper parameters to find the best model
- In Random Forest, we varied the hyper parameters and created a model
- Got the best results using Logistic Regression

Cut Off Value = 0.54 Accuracy = 62.51% Sensitivity = 62.04% Specificity = 62.53%

MODEL EVALUATION AND INTERPRETATION

Final Model produced 4 factors which are significant and most decisive

- 1. Applicants who have crossed 30DPD once or more in last 6 months
- 2. Number of PL trades open in last 12 months by Applicants
- 3. Tenure of Applicants residing in current residence
- 4. Average credit card utilization of Applicants

APPLICATION SCORECARD: TEST DATA

- Cut Off derived = 0.54
- Based on above cut-off, CredX should approve application with score >330
- The graph shows the distribution of application in test data where the applications should be approved/rejected

APPLICATION SCORECARD: REJECTED DATA

- We can see that majority of rejected application have score less than 330
- The proposed model correctly predicts -98% rejected applicants

FINANCIAL BENEFIT

 Using the proposed model, we can avoid credit risk of 81% of defaulters by targeting 60% of the applicants

bucket	total	totalresp	Cumresp	Gain	Cumlift
1	2081	181	181	20.56818	2.056818
2	2080	161	342	38.86364	1.943182
3	2081	103	445	50.56818	1.685606
4	2080	114	559	63.52273	1.588068
5	2080	95	654	74.31818	1.486364
6	2081	63	717	81.47727	1.357955
7	2080	58	775	88.06818	1.258117
8	2081	36	811	92.15909	1.151989
9	2080	42	853	96.93182	1.07702
10	2080	27	880	100	1

FINANCIAL BENEFIT

The lift chart shows we can predict defaulters
 -1.4 times compared to any random model when we are targeting 60% of applicants

RECOMMENDATIONS

- On an average our model is able to predict with 63% accuracy whether the applicant will default or not
- Management should focus on following characteristics of the applicant
 - Crossed 3oDPD in last 6 months
 - Number of PL Trades opened in last 12 months
 - Tenure of Applicants residing in current residence
 - Average credit card utilization
- CredX should approve applicants having score > 330