Searching PAJ Page 1 of 1

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 2004-214746

(43) Date of publication of application: 29.07.2004

(51)Int.CI. H04Q 7/38 H04B 7/26 H04J 11/00

H04J 11/00

(21)Application number: 2002-378784 (71)Applicant: JAPAN TELECOM CO LTD

(22) Date of filing: 27.12.2002 (72) Inventor: FUJII TERUYA

MASUI ATSUYOSHI

(54) CHANNEL ASSIGNMENT METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a wireless system capable of singly flexibly covering transmission from low speed transmission whose transmission rate is about several Kbps to high speed transmission whose transmission rate is about 100 Mbps at maximum and an area from a narrow area such as an indoor area to a wide area of about several kilometers at maximum. SOLUTION: A subcarrier assignment method using the multicarrier CDMA system employing a plurality of orthogonal subcarriers on a frequency axis to assign the subcarriers to a communication channel, realizes high speed communication by assigning many subcarriers each having small transmission power to the channel when the distance between a base station and a mobile

station is near, and realizes low speed communication but a wide area coverage by assigning a few subcarriers to increase the transmission power of one subcarrier each when the distance between the base station and the mobile station is far. Thus, various speed communication and a variable speech available area size can simultaneously be realized while making the transmission power per user constant.

(19) **日本国特許庁(JP)**

(12) 公 開 特 許 公 報(A)

(11)特許出願公開番号

特開2004-214746 (P2004-214746A)

(43) 公開日 平成16年7月29日(2004.7.29)

(51) Int.Cl. ⁷		F 1			テーマコード(参考)
H 04Q	7/38	HO4B	7/26	109N	5K022
H 0 4B	7/26	HO4B	7/26	102	5K067
H 0 4J	11/00	HO4 J	11/00	Z	
H O 4J	13/00	HO4 J	13/00	Α	

審査請求 未請求 請求項の数 13 OL (全 18 頁)

(21) 出願番号 (22) 出願日	特願2002-378784 (P2002-378784) 平成14年12月27日 (2002.12.27)	(71)
	頂適用申請有り 2002年11月 子情報通信学会発行の「電子情報通	

(71) 出願人 502306660

日本テレコム株式会社

東京都中央区八丁堀四丁目7番1号

(74) 代理人 100106851

弁理士 野村 泰久

信学会技術研究報告 信学技報 Vol、102 No (72)発明者 藤井 輝也

東京都中央区八丁堀四丁目7番1号 日本

テレコム株式会社内

(72) 発明者 舛井 淳祥

東京都中央区八丁堀四丁目7番1号 日本

テレコム株式会社内

Fターム(参考) 5K022 DD01 DD13 DD19 DD23 DD33

EE02 EE11

5K067 AA42 BB21 CC01 CC10 EE02

EE10 GG08 JJ12

(54) 【発明の名称】チャネル割り当て方法

(57)【要約】

. 465」に発表

【課題】数Kbps程度の低速伝送から最大100Mbps程度の 高速伝送まで、さらに屋内のような狭工リアから最大数 キロメートル程度の広域エリアまでを、ひとつのシステムでフレキシブルにカバーできるような無線システムを 提供する。

【解決手段】周波数軸上で直交する複数のサブキャリアを用いたマルチキャリアCDMA方式を用い、通信チャネルへのサブキャリアの割り当て方法として、基地局と移動局間が近距離であるときは1サブキャリアごとの送信電力が小さくしたサブキャリアを多く割り当てて高速通信を実現し、また基地局と移動局間が遠距離であるときは1サブキャリアごとの送信電力が大きくなるようにサブキャリアを少なく割り当てることで低速通信ではあるが広範囲のエリアカバレッジを実現する。このようにして、1ユーザ当たりの送信電力を一定としながら可変速度通信と可変通話可能エリアサイズとを同時に実現できる

【選択図】 図1

20

30

40

50

【特許請求の範囲】

【請求項1】

直交周波数間隔に配置した複数のサプキャリアを用いてコード拡散されたシンポルを送信するMC CDMAシステムであって、1サプキャリアあたりの伝送速度を固定にしてユーザに割り当てるサプキャリア数を可変にすることで可変速度通信を実現するシステムにおいて

基地局と移動局間が近距離であるときは1サブキャリアごとの送信電力が小さくなるように制御したサブキャリアを多く割り当てることで基地局周辺では高速通信を実現し、また基地局と移動局間が遠距離であるときは1サブキャリアごとの送信電力が大きくなるように制御したサブキャリアを少なく割り当てることで低速通信ではあるが広範囲のエリアカバレッジを実現するようにして、1ユーザ当たりの送信電力を一定としながらサブキャリア数およびサブキャリアあたりの送信電力を調整することで可変速度通信と可変通話可能エリアサイズとを同時に実現できるようにしたことを特徴とするチャネル割り当て方法。

【請求項2】

チャンネルに割り当てられるサプキャリアが時間軸方向にコード拡散されたことを特徴と する前記請求項 1 記載のチャネル割り当て方法。

【請求項3】

チャンネルに割り当てられるサプキャリアが周波数軸方向にコード拡散されたことを特徴 とする前記請求項 1 記載のチャネル割り当て方法。

【請求項4】

チャンネルに割り当てられるサプキャリアが周波数軸方向および時間軸方向の2次元にコード拡散されたことを特徴とする前記請求項1記載のチャネル割り当て方法。

【請求項5】

予めサプキャリア送信電力とその送信電力に応じてチャネルに割り当てるサプキャリア数を決めるテーブルを保持し、移動局受信電力を予め決めた 値を満たすように送信電力を制御するときのサプキャリア送信電力をもとに、該テーブルの参照を行ってチャネルに割り当てるサプキャリア数を決めることにより、前記請求項1記載のチャネル割り当て方法を実現することを特徴とする基地局。

【請求項6】

前記請求項5記載の基地局から、チャネルに割り当てられるサブキャリア数の通知を受け、その数のサブキャリアを選択して該チャネルの元のデータに復号することを特徴とする移動局。

【請求項7】

共通制御チャネル用として、低速通信用の少ない数のサブキャリアを割り当てるようにしたことを特徴とする前記請求項1記載のチャネル割り当て方法。

【請求頂8】

前記チャネル割り当て方法を決めるテーブルの内容を移動通信網のセンター局にて保持し、基地局のサービス開始時あるいはサービス条件変更時に新しい条件に合わせたテーブル内容を該センター局から該基地局にダウンロードすることを特徴とする前記請求項 1 記載のチャネル割り当て方法。

【請求項9】

直交周波数間隔に配置した複数のサプキャリアを用いてシンボルを送信するOFDMシステムであって、1サプキャリアあたりの伝送速度を固定にしてユーザに割り当てるサブキャリア数を可変にすることで可変速度通信を実現するシステムにおいて、

基地局と移動局間が近距離であるときは1サプキャリアごとの送信電力が小さくなるように制御したサプキャリアを多く割り当てることで基地局周辺では高速通信を実現し、また基地局と移動局間が遠距離であるときは1サプキャリアごとの送信電力が大きくなるように制御したサプキャリアを少なく割り当てることで低速通信ではあるが広範囲のエリアカバレッジを実現するようにして、1ユーザ当たりの送信電力を一定としながらサプキャリア数およびサプキャリアあたりの送信電力を調整することで可変速度通信と可変通話可能

エリアサイズとを同時に実現できるようにしたことを特徴とするチャネル割り当て方法。

【請求項10】

予めサブキャリア送信電力とその送信電力に応じてチャネルに割り当てるサブキャリア数を決めるテーブルを保持し、移動局受信電力を予め決めた 値を満たすように送信電力を制御するときのサブキャリア送信電力をもとに、該テーブルの参照を行ってチャネルに割り当てるサブキャリア数を決めることにより、前記請求項9記載のチャネル割り当て方法を実現することを特徴とする基地局。

【請求項11】

前記請求項10記載の基地局から、チャネルに割り当てられるサプキャリア数の通知を受け、その数のサプキャリアを選択して該チャネルの元のデータに復号することを特徴とする移動局。

【請求項12】

共通制御チャネル用として、低速通信用の少ない数のサブキャリアを割り当てるようにしたことを特徴とする前記請求項9記載のチャネル割り当て方法。

【請求項18】

前記チャネル割り当て方法を決めるテーブルの内容を移動通信網のセンター局にて保持し、基地局のサービス開始時あるいはサービス条件変更時に新しい条件に合わせたテーブル内容を該センター局から該基地局にダウンロードすることを特徴とする前記請求項9記載のチャネル割り当て方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、無線伝送方式に適用されるマルチキャリアCDMA(以下、MC-CDMAという)方式およびOFDM方式における、チャネル割り当て方法とその応用に関するものである。

[00002]

【従来の技術】

無線通信において高速・広帯域伝送を行う場合、雑音帯域幅の増大に伴う雑音電力の増大により、同一送信電力では通信可能距離は小さくなる。すなわち、通信速度と通信距離とはトレードオフの関係にある。このため、現在商用化が開始され、もしくは検討されている一般加入者向け無線サービスには、大きく分けて二つの形態がある。ひとつは、最大で数キロメートル四方に及ぶ広大なエリアをカバーし高いモビリティを提供するセルラー方式のモバイル通信サービスであり、もう一つは通信可能距離は数十メートル程度に限定されるが高速インターネット等の高速データサービス提供が可能な、無線LANによるホットスポットサービスである。

[0003]

このようにセルラーモバイルと無線LANとは、通信速度やエリアカバレッジ、モビリティなどの点でサービス要求条件が異なるため、従来はそれぞれに対して異なる無線アクセス方式が適用され、別々の無線システムとして構築されてきた。

[0004]

【発明が解決しようとする課題】

一方、現在の固定通信におけるプロードバンド網の急速な普及、および一般加入者向け次世代無線サービスの予想される利用形態を考えると、最大100Mbps程度の高速パケット通信が実現でき、かつセルラー方式、無線LAN方式を問わずシームレスにサービスが利用できるような無線システムが望まれる。しかしながら現状では上記二つのサービスを同時に実現するためには、送受信機をどちらのサービスにも対応できるようにデュアルシステム構成とする必要があり、基地局、移動局(もしくはLAN端末)ともに装置規模の増大と制御の複雑化を招くことになる。

[0005]

本発明の課題は、このような従来の無線システムが持つ限界を克服し、数Kbps程度の低速

20

10

30

40

伝送から最大100MbPs程度の高速伝送まで、さらに屋内のような狭エリアから最大数キロメートル程度の広域エリアまでを、ひとつのシステムでフレキシブルにカバーできるような無線システムを提供することである。

[0006]

【課題を解決するための手段】

サービス要求条件の異なる無線サービスをシームレスに提供するためには、周波数利用効率が高いことに加え、一つの方式で低速から高速までの通信速度をカバーでき、かつ近距離から遠距離までの通信距離に柔軟に対応できる無線アクセス方式を実現する必要があり、そのために以下の手段を用いる。

[0007]

まず限られた無線周波数帯域を広帯域の多チャネルデータ伝送に利用するのに有効な無線伝送方式として知られている、周波数軸上で直交する複数のサプキャリアを用いた符号分割多重方式であるマルチキャリアCDMA方式(Multi Carrier Code Division Multiple Access方式、以下MCーCDMA方式と略す)を用い、前記課題を達成するため通信チャネルへのサプキャリアの割り当て方法として、基地局と移動局間が近距離であるときは1サプキャリアごとの送信電力が小さくなるように制御したサプキャリアを多く割り当てることで基地局周辺では高速通信を実現し、また基地局と移動局間が遠距離であるときは1サプキャリアごとの送信電力が大きくなるように制御したサプキャリアを少なく割り当てることで低速通信ではあるが広範囲のエリアカバレッジを実現するようにして、1ユーザ当たりの送信電力を一定としながらサプキャリア数およびサプキャリアあたりの送信電力を調整することで可変速度通信と可変通話可能エリアサイズとを同時に実現できるようにしたチャネル割り当て方法を用いる。

[00008]

サプキャリアのコード拡散の方法は、時間軸方向であっても、周波数軸方向であっても、 さらに時間軸方向および周波数軸方向の2次元方向であってもより。本発明で用いるMC-C DMA方式においては、一つの通信チャネルに割り当てるサプキャリアの数として、従来の ように利用しする全てのサプキャリアを割り当てるのではなく、移動局(端末)ユーザが 要求する通信速度と移動局の基地局からの距離とに応じてサプキャリア数を柔軟に割り当 てられるようにする。

[0009]

そのためには、基地局において予めサブキャリア送信電力とその送信電力に応じてチャネルに割り当てるサブキャリア数を決めるテーブルを保持し、移動局受信電力を予め決めた値を満たすように送信電力を制御するときのサブキャリア送信電力をもとに、該テーブルの参照を行ってチャネルに割り当てるサブキャリア数を決めて移動局に通知し、移動局においては基地局からチャネルに割り当てられるサブキャリア数の通知を受け、その数のサブキャリアを選択して該チャネルの元のデータに復号する。

[0010]

具体的には、一つの通信チャネルについて或る移動局で一定の通信品質(符号誤り率)を保つためやの通信チャネルの総受信電力を F_a とするとき、たとえば基地局から任意の近処悪にある移動局 1 に対して必要な、1 サプキャリア当たりの基地局送信電力を F_{s_1} 、及びやの通信チャネル用に割り当て可能な最大サプキャリア数を N_{d_1} とし、基地局から任意の遠距離にある移動局 2 に対して、必要な 1 サプキャリア当たりの基地局送信電力を F_{s_2} (当然 $F_{s_1} < F_{s_2}$)、及びやの通信チャネル用に割り当て可能な最大サプキャリア数を N_{d_2} とすると、 $F_a = N_{d_1} \times F_{s_1} = N_{d_2} \times F_{s_2}$ でなければならず、そのためには $N_{d_1} > N_{d_2}$ でなければならず、そのためには $N_{d_1} > N_{d_2}$ でなければならない。すなわち、使用し得る全サプキャリアの中から移動局 1 及び移動局 2 への通信に割り当てるべきサプキャリアの数としては、各移動局のユーザが要求するこの通信チャネルの所要帯域に応じたサプキャリア数を、上記関係を満足する範囲で選択して割り当てればより。

[0011]

10

20

30

40

20

40

50

さらに本発明は、特願2002-63987に開示されているMC CDMA方式(送信する複数の全サプキャリアを、共通制御チャネルに用いる少数のサプキャリアと、通信用チャネルに用いる多数のサプキャリアとに周波数軸上で完全に分離することで、共通制御チャネルの信号処理量を大幅に減少させるようにしたMC CDMA方式)に適用すれば、両者の特長を併せ持つMC CDMA方式無線システムを実現することができー層効果的である。

[0012]

すなわち、特願2002-63987のMC CDMA方式では、使用し得る全サプキャリアのうち、通信用チャネルに比べ通常はるかに低速でより共通制御チャネルには一つまたは極く少数のサプキャリアを割り当て、残りの大多数のサプキャリアを通信用チャネルに割り当てると共に、両者の周波数軸上の位置を互いに完全に分離して配置する方法をとるので、この方式における共通制御チャネル用として、低速通信用の一つまたは少数のサプキャリアを割り当て、残りの全サプキャリアに対して本発明のチャネル割り当て方法をそのまま適用することにより、上記が実現される。

[0013]

このことにより、本発明が目的とする、一つのシステムで通信速度と通信可能距離の双方の要求に柔軟に対応できる無線システムと、特願2002-63987が目的とする、移動局での共通制御チャネル信号処理量の大幅低減による応答時間短縮および消費電力低減、の双方が同時に実現可能な通信システムが構成出来る。

[0014]

以上の説明では、多数の通信チャネルを効率よく多重化するために、周波数軸上で直交する複数のサプキャリアを用いた符号分割多重方式であるマルチキャリアCDMA方式、すなわちOFDM / MC CDMA方式の使用を前提としたが、多重チャネル数の少ない簡易な方式が求められる場合などは、必ずしも符号分割多重を用いる必要はなく、単純なQAM / OFDM方式であってもよい。この場合にも、以下の手段により本発明のチャネル割り当て方法が実現でき、一つのシステムで通信速度と通信可能距離の双方の要求に柔軟に対応できる無線システムが構成できる。

[0015]

すなわち、直交周波数間隔に配置した複数のサブキャリアを用いてシンボルを送信するOFDMシステムであって、1サブキャリアあたりの伝送速度を固定にしてユーザに割り当てるサブキャリア数を可変にすることで可変速度通信を実現するシステムにおいて、基地局と移動局間が近距離であるときは1サブキャリアごとの送信電力が小さくなるように制御したサブキャリアを多く割り当てることで基地局周辺では高速通信を実現し、また基地局と移動局間が遠距離であるときは1サブキャリアごとの送信電力が大きくなるように制御したサブキャリアを少なく割り当てることで低速通信ではあるが広範囲のエリアカバレッジを実現するようにして、1ユーザ当たりの送信電力を一定としながらサブキャリア数およびサブキャリアあたりの送信電力を調整することで可変速度通信と可変通話可能エリアサイズとを同時に実現できるようにしたチャネル割り当て方法を用いる。

[0016]

本発明で用いるOFDM方式においては、一つの通信チャネルに割り当てるサプキャリアの数を、移動局ユーザが要求する通信速度と移動局の基地局からの距離とに応じて、柔軟に割り当てられるようにする。

[0017]

そのためには、基地局において予めサブキャリア送信電力とその送信電力に応じてチャネルに割り当てるサブキャリア数を決めるテーブルを保持し、移動局受信電力を予め決めた値を満たすように送信電力を制御するときのサブキャリア送信電力をもとに、該テーブルの参照を行ってチャネルに割り当てるサブキャリア数を決めて移動局に通知し、移動局においては基地局からチャネルに割り当てられるサブキャリア数の通知を受け、その数のサブキャリアを選択して該チャネルの元のデータに復号する。

[0018]

さらにこの場合、共通制御チャネル用として低速通信用の少数のサブキャリアを割り当て

20

30

50

るようにすれば、共通制御チャネルの信号処理量を大幅に削減することも可能となる。

[0019]

これまでの説明から明らかなように、本発明のチャネル割り当て方法は必ずしも特願2002-63987のMC CDMA方式をその構成要件とするものではないが、前記のように特願2002-63987との組合せで使用することによる効用が大であるので、以下の実施の形態の説明においては特願2002-63987との組合せで使用する例を用いて説明する。

[0020]

特願2002-68987のMC CDMA方式を用いて本発明を実施する場合、移動局において受信信号を復調する際に、全信号帯域のうち何処に位置するサプキャリアが何個、その移動局への信号チャネル用に割り当てられたかを、移動局側が知る必要がある。このためには、基地局はたとえば共通制御チャネル用の専用サプキャリアによって、信号チャネル用に割り当てた中心サプキャリア番号、および使用するサプキャリア数を移動局に通知する。移動局は、サプキャリア切り出し用のアナログフィルタ(サプキャリア選択フィルタ)を備え、通知された中心サプキャリア番号に従って周波数同期を行ない、通知された使用サプキャリア数に対応するサプキャリア選択フィルタを通過させた後A/D変換を行ない、更にFFT処理を行なうことで、信号チャネルの受信シンボルを復調することが出来る。

[0021]

具体的には、前記目的を達成するため、本発明のチャネル割り当て方法は、直交周波数間隔に配置した複数のサブキャリアを用いてつけ拡散されたシンボルを送信するMC CDMAシステムであって、1サブキャリアあたりの伝送速度するシステムに割り当てるサブキャリア数を可変にするとかできまり、これでは高速のようにはあるともは1サブキャリアでは高速通信を実現はなるように制御と移動局間が遠距離であるときは1サブキャリアではあるが広範囲のエリアカバレッジを実現するようにして、1ユーザ当たりの送信電力を一定としながらサブキャリア数あよりの送信電力をしながらサブキャリア数あよびではあるようにしたことを特徴とする。

[0022]

さらに、上記チャンネルに割り当てられるサブキャリアが時間軸方向、周波数軸方向、あるいは周波数軸方向および時間軸方向の2次元にコード拡散されたことを特徴とする。

[0023]

また、基地局は、予めサブキャリア送信電力とその送信電力に応じてチャネルに割り当てるサブキャリア数を決めるテーブルを保持し、移動局受信電力を予め決めた 値を満たすように送信電力を制御するときのサブキャリア送信電力をもとに、該テーブルの参照を行ってチャネルに割り当てるサブキャリア数を決めることにより、前記チャネル割り当て方法を実現することを特徴とする。

[0024]

また、移動局は、前記基地局から、チャネルに割り当てられるサブキャリア数の通知を受 40 け、 その数のサブキャリアを選択して該チャネルの元のデータに復号することを特徴とする。

[0025]

また、前記チャネル割り当て方法は、共通制御チャネル用として、低速通信用の少なり数のサプキャリアを割り当てるようにしたことを特徴とする。

さらに、前記チャネル割り当て方法を決めるテーブルの内容を移動通信網のセンター局にて保持し、基地局のサービス開始時あるいはサービス条件変更時に新しい条件に合わせたテーブル内容を該センター局から該基地局にダウンロードすることを特徴とする。

[0026]

あるいは、本発明のチャネル割り当て方法は、直交周波数間隔に配置した複数のサプキャ

リアを用いてシンボルを送信するOFDMシステムであって、1サプキャリアあたりの伝送速度を固定にしてユーザに割り当てるサプキャリア数を可変にすることで可変速度通信を実現するシステムにあいて、基地局と移動局間が近距離であるときは1サプキャリアごとの送信電力が小さくなるように制御したサプキャリアを多く割り当てることで基地局周辺では高速通信を実現し、また基地局と移動局間が遠距離であるときは1サプキャリアごとの送信電力が大きくなるように制御したサプキャリアを少なく割り当てることで低速通信ではあるが広範囲のエリアカバレッジを実現するようにして、1ユーザ当たりの送信電力をはあるが広範囲のエリアカバレッジを実現するようにして、1ユーザ当たりの送信電力をではあるが広がらサプキャリア数あよびサプキャリアあたりの送信電力を調整することで可変速度通信と可変通話可能エリアサイズとを同時に実現できるようにしたことを特徴とする。

[0027]

また、基地局は、予めサブキャリア送信電力とその送信電力に応じてチャネルに割り当てるサブキャリア数を決めるテーブルを保持し、移動局受信電力を予め決めた。値を満たすように送信電力を制御するときのサブキャリア送信電力をもとに、該テーブルの参照を行ってチャネルに割り当てるサブキャリア数を決めることにより、上記チャネル割り当て方法を実現することを特徴とする。

[0028]

また、移動局は、上記基地局から、チャネルに割り当てられるサブキャリア数の通知を受け、せの数のサブキャリアを選択して該チャネルの元のデータに復号することを特徴とする。

[0029]

さらに、共通制御チャネル用として、低速通信用の少なり数のサブキャリアを割り当てるようにしたことを特徴とする。

さらにまた、前記チャネル割り当て方法を決めるテーブルの内容を移動通信網のセンター局にて保持し、基地局のサービス開始時あるいはサービス条件変更時に新しい条件に合わせたテーブル内容を該センター局から該基地局にダウンロードすることを特徴とする。

[0030]

【発明の実施の形態】

以下、図面を参照しながら本発明の実施の形態を説明する。図1に、送信する複数の全サプキャリアを、共通制御チャネルに用いるサプキャリアと通信用チャネルに用いるサプキャリア群とに周波数軸上で完全に分離するようにした、特願2002-68987のMC CDMA方式において、本発明のチャネル割り当て方法を実現する基地局の一実施形態を示す

[0031]

図 1 において、たとえばm個の複数チャネルから成るデータソース 100の出力信号は、それでれのチャネル毎にチャネル符号化部 101で伝送用符号化が行なわれた後、シンボル変調部 102で されでれのチャネル毎にシンボル変調される。シンボル変調部 102の出力信号は、されでれのチャネル毎にシリアル パラレル変換部 (8/P変換部) 108に加えられ、ここでされてれのチャネルのシンボル毎にシリアル パラレル変換されて、mxr並列の出力信号 104となる(ここで8をサプキャリア総数、 PG_{ch} を各チャネルのシンボル毎に割り当てられる拡散符号の符号長とするとき、 $r=8/PG_{ch}$)。この出力信号 104は拡散部 105に加えられ、ここで各チャネルのシンボル毎に符号長 PG_{ch} の固有の拡散符号チップを乗じられる。拡散部 105から出力されるmx 8並列の拡散シンボル出力 106はマッパ 107に加えられ、ここで拡散シンボルの再配置が行われる。マッパ 107の出力はコード多重部 108内の8個並列の合成器 109に されぞれ加えられる。

[0032]

マッパ107での拡散シンボル再配置処理は、伝播路状況やコード多重数などから予め定められた、周波数軸方向拡散長PGfdと時間軸方向拡散長PGtdの比率に従って行われる。ここで図9を用いて、図1のマッパ107における再配置処理を説明する。

[0033]

50

10

20

40

50

[0034]

8個並列の合成器 109からの8並列の出力信号110は逆FFT変換部(IFFT)111の8個並列の入力端子に加えられ、逆FFT変換部111にあいて8個の互いに直交するサプキャリアが割り当てられて時間軸信号に変換され、出力信号112となる。 ポードインターバル付加部(GI付加部)118においてこの出力信号112にポードインターバルを付加した後、MC CDMA送信出力信号114としてアンテナ115から送信する。

[0035]

移動局に対する後述の報知信号および呼出信号127は、制御チャネル用シンボル変調部118を介して制御チャネル用シンボル119として8/P変換部108に送られ、低速用のチャネルが共通制御チャネルとして割り当てられて送信信号に加えられる。或いは、図1には示してないが、8/P変換部に入力せず直接逆FFT変換部111に入力して制御チャネル専用サプキャリアを割り当ててもよく、それにより基地局および移動局での制御チャネル信号処理量を減少させることが出来る。なお、この共通制御チャネルに割り当てられたサプキャリア信号を、ここでは「制御信号」と呼ぶことにする。制御信号には、前述の図1 127で示される報知信号及び呼出信号と、同図116で示されるサプキャリア制御信号とが含まれる。報知信号は、移動局においてサプキャリアの受信電力を測定するために、常時基地局より一定電力で送出される信号であり、呼出信号は、通信開始時に移動局を呼び出すために用いる信号である。サプキャリア制御信号については以下に説明する。

[0036]

図 1 の基地局構成にあいて、全信号帯域のうち何処に位置するサプキャリアが何個、通信対象とする移動局への通信チャネル用に割り当てられたかをその移動局に知らせるため、制御部 117は通信チャネル用に割り当てた中心サプキャリア番号 N_z および使用するサプキャリア数 N_d の情報をサプキャリア制御信号116として、制御チャネル用シンボル変調部 118を介して制御信号の一部に加え、移動局に通知する。この情報の流れを一点鎖線 120で示す。これと同時に、制御部 117は通信チャネル位置制御信号 121により、8/P変換部 103に対し通信チャネルとして用いるチャネルの位置を指示する。

[0037]

具体的には、移動局における 1 サプキャリアの受信電力が予め決めた 値 E_{th} を越えるための基地局送信信号の 1 サプキャリアあたりの送信電力 E_s (これは基地局と移動局の間の距離によって変わる)と、サプキャリア数(要求されるチャネル帯域に応じて必要かつ使用可能なサプキャリア数で、その中心サプキャリア番号 N_z の情報を含む)との対応表が保存されているテーブル部 122を制御部 117が参照して、移動局の位置に対応する E_s と、その信号チャネルに割り当てるべきサプキャリア数 N_d および中心サプキャリア番号 N_z を決定する。

[0038]

図 2 は、基地局と移動局との間の距離によって変わる E_s 、 N_d の関係を概念的に示したものである。同図 (a) において基地局 200 からの距離が小であるエリアに在圏する移動局を 201 、基地局 200 からの距離が中であるエリアに在圏する移動局を 200 ないの距離が大であるエリアに在圏する移動局を 208 とそれぞれするとき、近距離エリアに在圏する移動局 201 への通信 チャネルに割り当てられるサブキャリアの必要送信電力 E_s は、同図 (b) の 204 で示される小さなレベルでよい。このときこの移動局への通信チャネルに割り当てることの出来るサブキャリア数としては、 1 ユーザ (移動局) の使用する通信チャネルあ

20

40

50

たりの送信電力一定の条件のもとで同図205のNaで示されるように大きな値が許容され、この通信チャネルではNaに相当する大きな帯域の通信が可能になる。

[0039]

同様に中距離エリアに在圏する移動局202への通信チャネルに割り当てられるサブキャリアの必要送信電力Esは、同図(c)の206で示される中程度のレベルでよい。このときこの移動局への通信チャネルに割り当てることの出来るサブキャリア数としては、1ユーザ(移動局)の使用する通信チャネルあたりの送信電力一定の条件のもとで同図207のNdで示されるように中程度の値が許容され、このNdに相当する中程度の帯域の通信が可能になる。【0040】

同様に遠距離エリアに在圏する移動局202への通信チャネルに割り当てられるサプキャリアの必要送信電力Esは、同図(d)の208で示される大きなレベルが必用になる。このときこの移動局への通信チャネルに割り当てることの出来るサプキャリア数としては、1ユーザ(移動局)の使用する通信チャネルあたりの送信電力一定の条件のもとで同図209のNdで示されるように小さな値しか許容されず、このNdに相当する狭い帯域の通信が可能である

[0041]

図 2 (b)の210、(c)の211、および(d)の212は制御信号の 1 っである報知信号のサプキャリアであり、その送信電力は通信対称移動局の位置によらず常に一定値 E_{CT} に維持する。 なお、図 2 の例では、同図(α)において基地局200からの距離が異なる 3 つの移動局201、20 2、203 七れぞれに割り当てるサプキャリアの中心番号(中心周波数)を、同図(α)、(α)、(α)の α 0、で示す同一値としたが、このように同一サプキャリアを割り当ててもそれぞれの信号が異なる拡散コードで拡散されているので、互いの干渉は生じない。

[0042]

図 1 の基地局構成において、通信チャネルに割り当てられるサプキャリアの所要送信電力 E_s は、 E_s 判定部 12.3において次式により算出される。

 $E_s = E_{CT} + (E_{th} E_{CR}) \tag{1}$

ここに E_{CT} は報知信号サプキャリアの送信電力(既定値)、 E_{th} は移動局において所定の通信品質(符号誤り率)を得るのに必要なサプキャリア受信電力(既定値)、 E_{CR} は移動局において受信する報知信号の時間平均電力である。報知信号は一定時間間隔で基地局から常時発信されており、移動局では常時受信した報知信号の時間平均 E_{CR} を測定している。移動局は通信開始時にこの E_{CR} を基地局に通報する。移動局が基地局から遠ざかるほど E_{CR} は小さくなり、(1)式により、通信チャネルに割り当てられるサプキャリアの所要送信電力 E_{s} としては、大きな値が必要になる(たとえば図 2(d)の信号レベル208)。

[0043]

図 1 に あいて、移動局からの E_{CR} を含む制御情報は、基地局の受信アンテナ 124で受信され、受信部 125で E_{CR} 情報のみが分離されてE8判定部 128に加えられる。 E_s 判定部 128にあいて、この E_{CR} を用いて式(1)により所要の E_s が算出され、この値がテーブル部 122に送られる。制御部 117により、テーブル部 122に保持されている対応表からこの E_s に対応するサブキャリア数 N_d および中心サブキャリア番号 N_Z が読み出され、サブキャリア制御信号 116の一部に加えられる。またテーブル部 122に送られた E_s の値に対応する信号が、送信電力制御信号 126として逆FFT変換部 111に加えられ、通信チャネルに割り当てられるサブキャリアの送信電力が E_s となるように逆FFT変換部 111を制御する。

[0044]

次に、図1のように構成された基地局から、通信チャネルに割り当てられるサプキャリア数の通知を受け、その数のサプキャリアを選択して該チャネルの元のデータに復元する移動局の構成を、図3により説明する。

[0045]

図 8 は本発明のチャネル割り当て方法を実現する移動局の受信部の一実施形態を示す図であり、まず同図にあける主信号の流れを説明する。同図において、アンテナ800により受信された受信信号801は、帯域通過フィルタ(BPF)802により不要周波数帯域の雑音成分

20

40

50

が除去された後アナログ復調器 808に送られ、ここで所定のサプキャリアまたはサプキャリア群の周波数帯域の信号 804が抽出される。この信号 804はスイッチ(8W) 805によりアナログフィルタ群 806の中の選択されたフィルタ(図示例では 807のフィルタ 88F1)に接続され、所定のサプキャリアまたはサプキャリア群の周波数帯域の信号成分のみがこのフィルタによって切り出されてA/D変換部 808に送られる。A/D変換部によりデイジタルサンプル値に変換された信号はGI除去部 809に送られてガードインターバルを除去された後、出力信号 810 としてFFT 変換部 811に送られる。FFT 変換部 311の出力並列信号はデマッパ 812 とその後に接続された逆拡散部 818に送られて拡散コードの分離処理が行なわれ、その後 P/8変換部 314で元の送信シンボルが復元される。受信信号が所定のサプキャリアを使用する制御信号である場合には、P/8変換部 814の出力信号は制御チャネル用シンボル復号部 815に送られて基地局から送られた制御信号 816が復元される。受信信号が基地局によって選択されたサプキャリア群を使用する通信チャネルによって送信された信号である場合には、P/8変換部 814の出力信号はシンボル復調部 817に送られ、このサプキャリア群を使ってこの移動局宛に送られた元シンボルがここで復元され、さらにチャネル復号部 818で伝送路符号が復号されて、原データ 819が得られる。

[0046]

次に、上述のプロセスにより主信号から原データが正しく復元されるための制御の流れを 詳しく説明する。まず制御部820は、基地局から送られる制御信号の中に含まれる、使用 サブキャリア数Nd、中心サブキャリア番号Nzの精報を既に得ているものとする。制御部82 Oは同調器 321に対してその出力信号 322の周波数F_{8 YN} をF_{8 YN} = N₇ x Df で決まる周波数、 す な わ ち 使 用 サ プ キ ャ リ ア 群 の 中 心 周 波 数 に 設 定 す る よ う 、 同 期 周 波 数 制 御 信 号 828に よ って指示する。ここにDfは直交するサブキャリア周波数間隔である。これによリアナログ 復 調 器 308の 出 力 信 号 304は 使 用 サ ブ キ ャ リ ア 群 の 周 波 数 帯 域 の 信 号 成 分 と な り 、 こ れ が ス イッチ 805に送られる。制御部 820はフィルタ切替制御信号 824によりスイッチ 805を切り替 えて、使用するNa個のサプキャリアを選択するフィルタ807(88F1)に、この出力信号304を 入力する。フィルタ307の出力信号はA/D変換部308に加えられ、ここでA/D変換されてディ シ゚ タ ル サ ン プ ル 値 に な る が 、 A/D変 換 の サ ン プ リ ン グ 周 波 数 F c . は 、 選 択 さ れ た フ ィ ル タ の 周波数帯域FBWに応じて、FBWが小さければ小さく、FBWが大きければ大きく設定する。い まこの移動局への通信速度が低速で、使用するサプキャリア数N゚が小さく、従って選択さ れ た フ ィ ル タ S S F 1 の 帯 域 F B W ₁ が 小 さ い 場 合 は 、 サ ン プ リ ン グ 信 号 発 生 器 325 が 生 成 す る サ ンプリング信号326の周波数Fclもせれに応じた小さい値となるように、制御部320の出力 するサンプリング 周波数制御信号827によってサンプリング信号発生器825を制御する。す ら に 制 御 部 320は FFT 制 御 信 号 328 に よ り 、 サ ン プ リ ン グ 周 波 数 F_{c L} に 応 じ た FFT (高 速 フ ー リ 工 変 換) の ポ イ ン ト 数 P F F T と 、 使 用 す る サ プ キ ャ リ ア 数 N a に 応 じ 友 F F T 変 換 部 3 1 1 の 出 力 ポートの取り出し位置とを、FFT変換部811に指示する。FFT変換部811は、FFT制御信号828 の指示に従ってFTT変換を行ない、その結果を指定された出力ポートに出力してデマッパS 12に渡す。

[0047]

次に、上述した $F_{8\,Y\,N}$ の設定からFFT変換出力までのプロセスを、使用するサプキャリア数 N_d の具体例について、図4~図6によりすらに詳細に説明する。図4は N_d が $N_{d\,1}=48$ の低速データときの例であり、このときの中心サプキャリア番号を $N_{Z\,1}$ とする。同様に図5は $N_{d\,2}=96$ の中速データのときで中心サプキャリア番号が $N_{Z\,3}$ の場合の例をそれぞれ示す。図4~図6において、(a)はそれぞれの場合の N_d 、 N_Z 、BWの間の関係を図示したものであり、(b)はそれぞれの場合において N_d 、 N_Z が与えられた場合の制御部320の動作の流れを示したものである。

[0048]

これまでの説明では、図3の制御部320は N_d 、 N_g の情報を既に得ているものとしたが、実際には移動局は通信の開始時に、基地局から送られてくる制御信号からまずこれらの値を抽出する。制御信号を送るサプキャリアの中心周波数 f_0 は予めシステムとして設定されているので、制御部320は同調器321に対して、その復調用信号322の周波数 F_{SYN} を f_0 に設定す

20

40

50

るよう同期周波数制御信号 828により指令する。この復調用信号によりアナログ復調器 808でこのサプキャリアの帯域の信号が取り出され、出力信号 804 となる。この時スイッチ 805 はこの周波数帯域を通過させるフィルタ 831(88F0)に接続されるよう設定されてあり、その出力信号が A/D 変換部 808に接続される。制御部 820 はサンプリング周波数 制御信号 827 によって、A/D 変換部 808 に供給するサンプリング信号 発生器 825 のサンプリング 周波数 F_{cl} を、報知信号のサプキャリアの周波数帯域幅に対応する P_{cl} が P_{cl} かった P_{cl} でこのサブキャリア信号をデイジタルサンプル値に P_{cl} が P_{cl} でこのサブキャリア信号をデイジタルサンプル値に P_{cl} では P_{cl} でこのサブキャリア信号をディジタルサンプル値に P_{cl} が P_{cl} でこのサブキャリア信号をディジタルサンプル値に P_{cl} が P_{cl} が P_{cl} でこのサブキャリア信号をディジタルサンプル値に P_{cl} が P_{cl} が P_{cl} で P_{cl} が P_{cl} が P_{cl} で P_{cl} で

[0049]

以上説明したように、図1、図8の構成例を用いた本発明のチャネル割り当て方法によれば、直交周波数間隔に配置した複数のサブキャリアを用いてコード拡散されたシンポルを送信するMC CDMAシステムであって、1 サブキャリアあたりの伝送速度を固定にしてユーザに割り当てるサブキャリア数を可変にすることで可変速度通信を実現するシステムにおって、基地局と移動局間が近距離であるときは1サブキャリアごとの送信電力が小さくなるように制御したサブキャリアを少なく割り当てることで低速通信ではあるが広範囲のエリスカバレッジを実現するようにして、1ユーザ当たりの送信電力を一定としながらサブキャリア数あよびサブキャリアあたりの送信電力を調整することで可変速度通信と可変通話可能エリアサイズとを同時に実現できるようにした無線通信システムが実現される。

[0050]

更に、本発明においては制御信号(報知信号)を専用の低速通信用サブキャリアで伝送するため、図3の移動局受信回路における制御信号(報知信号)のA/D変換、FFT変換などの信号処理速度、処理量を大幅に低減させることができる。この信号処理速度、処理量の低減効果は、共通制御信号(報知信号)に対してのみでなく、使用サブキャリア数が少なくてよい低速データ通信の場合の信号チャネル伝送においても同様に期待できる。

[0051]

なお図1、図3の基地局および移動局の構成例では、共通制御信号(報知信号)のサブキャリア信号についても通信用信号チャネルのサブキャリア群と共通の処理回路に通すことにより符号拡散・逆拡散処理を行っているが、特願2002-63987の実施例にあるように共通制御信号(報知信号)のサブキャリアに対しては符号拡散・逆拡散の処理をバイパスするように構成すれば、信号処理量・速度の更なる低減効果が得られる。

[0052]

以上の説明においては符号拡散の方向を時間軸方向にとった例を示しているが必ずしも符号拡散方向はこれに限定される訳ではなく、周波数軸方向に符号拡散する場合でも、或いは時間軸および周波数軸の両方向に拡散する場合でも同様な効果が得られる。

[0053]

また以上の説明ではOFDM/MC CDMA方式の構成を説明したが、図1および図3の構成から符号拡散・逆拡散処理の部分(拡散部、逆拡散部、マッパ、デマッパなど)を取り除りた単純なOFDM方式においても符号拡散・逆拡散処理以外の処理は同じ構成で実現できるので、同様な効果が得られることは明らかである。

[0054]

なお図4~図6においてそれぞれ(b)で示した手順は、簡単のため、図3のフィルタ群832の各フィルタ(SSFO、SSF1、SSF2 ・・・)が図7(a)700に示すような矩形の通過特性を持つ

30

40

50

理想フィルタである場合を想定しており、現実のフィルタはたとえば図7(b)701のような遮断特性を有する。このためこのような現実のフィルタで N_d 個のサプキャリアを選択しようすると、図7(b)702のようにそのフィルタの通過信号には、 N_d 個のサプキャリアの外側のサプキャリアによる残留周波数成分も僅かではあるが含まれることになるので、その影響を低減させるために、サンプリング周波数 f_{CL} およびFFTポイント数 P_{FFT} の値を、理想フィルタのときよりも大きく選ぶ必要がある。

[0055]

しかしながら、図4や図5の低速信号チャネル伝送、あるいは共通制御チャネル伝送の場合のように、使用するサプキャリア数(Nd)の数が使用し得る全サプキャリア数(N_{ALL})に比べて充分小さいときは、サンプリング周波数 f_{CL} および FFT ポイント数 P_{FFT} の値も充分小さくできるので、移動局のA/D変換やFFT処理量・速度の大幅な低減を実現できることに変わりはない。

[0056]

図8(a) は本発明のチャネル割り当て方法を用いるセルラモバイルシステムの一構成例で、センタ局800、セルエリア 1 (801)、セルエリア2 (802)、セルエリア8 (808) から成るネットワークの例を示す。各セルエリアの基地局をそれぞれ基地局1 (804)、基地局2 (805)、基地局3 (806) とする。現在稼動中の図8(a)のシステムに対して、その後のサービス状況の変化(たとえば加入者数の増加に伴うセルエリアの追加やエリアサイズの変更など)によって、たとえば同図(b)のように新しいセルエリア4(807)および基地局4 (808)の新設、既設エリアの変更(図8の例ではセルエリア1およびセルエリア2の縮小とセルエリア3の拡大)が必要になる場合がある。

[0057]

このような場合、本発明のチャネル割り当て方法を用いる無線通信方式においては、それぞれのエリアの基地局における、チャネル割り当て方法を決めるテーブルの内容(図1のテーブル部122の内容)を、移動通信網のセンター局(図8(a)の800)にて保持しておき、基地局のサービス開始時あるいはサービス条件変更時には、新しい条件に合わせたテーブル内容を該センター局から該基地局にダウンロード(図8(b)の例ではダウンロード809による既設基地局1のテーブル部内容更新、ダウンロード810による既設基地局2のテーブル部内容更新、およびダウンロード811による既設基地局3のテーブル部内容更新)するようにしておくことにより、ネットワーク構成の変化に柔軟に対応することが可能となる。

[0058]

【発明の効果】

以上詳細に説明したように、一つのシステムで通信速度については低速から高速まで、通信距離については近距離から遠距離までをカバーする無線通信が実現できる。すなわち、基地局周辺の移動局には、多くのサプキャリアを割り当てることで無線LAN型の高速通信を実現でき、基地局から遠距離に位置する移動局に対しては、少ないサプキャリアではあるが送信電力を大きく調整することで、大きなエリアカバレッジを実現できる。また、従来のように全信号帯域のサプキャリアを用いて拡散コードにより可変速度伝送を実現するのではなく、通信速度に応じてサプキャリアを割り当てるので、サプキャリア選択フィルタ通過後の受信信号を復調処理する際、低速チャネルであれば使用帯域が小さいため、速度に関わらず一律に全サプキャリアを用いる場合と比較して、A/D変換、FFTなどの復調処理負担を大きく低減することが出来る。

【図面の簡単な説明】

- 【図1】本発明のチャネル割り当て方法を実現する移動無線通信基地局の一実施形態を示す図である。
- 【図2】基地局と移動局との間の距離によって変わるE_s、N_dの関係を概念的に示したものである。
- 【図3】本発明のチャネル割り当て方法を実現する移動無線通信移動局の一実施形態を示す図である。
- 【図4】F_{8 Y N}の設定からFFT変換出力までのプロセスを、使用するサプキャリア数Ndの具

体例について詳細に説明する図である。

【 図 5 】 F_{s Y N} の 設 定 か ら F F T 変 換 出 力 ま で の プ ロ セ ス を 、 使 用 す る サ プ キ ャ リ ア 数 Na の 具 体例について詳細に説明する図である。

【 図 6 】 F_{8 Y N} の 設 定 か ら F F T 変 換 出 力 ま で の プ ロ セ ス を 、 使 用 す る サ プ キ ャ リ ア 数 N_d の 具 体例について詳細に説明する図である。

【図7】移動局におけるフィルタの特性とその影響を説明する図である。

【図8】本発明のチャネル割り当て方法を用いるセルラモバイルシステムの一構成例と、 センタ局から基地局へのテーブル内容のダウンロードを説明する図である。

【図9】図1におけるマッパの動作を説明する図である。

【符号の説明】

- 100 データソース
- 101 チャネル符号化部
- 102 シンボル変調部
- 103 シリアル パラレル変換部(S/P変換部)
- 104 出力信号
- 105 拡散部
- 106 拡散シンボル出力
- 107 マッパ
- 108 コード多重部
- 109 合成器
- 110 出力信号
- 111 逆 FFT 変 換 部
- 112 出力信号
- 113 ガードインターバル付加部(GI付加部)
- 114 送信出力信号
- 115 アンテナ
- 116 サプキャリア制御信号
- 117 制御部
- 118 制御チャネル用シンボル変調部
- 119 制御チャネル用シンボル
- 120 N_z、N_d情報の流れ
- 121 通信チャネル位置制御信号
- 122 テーブル部
- 123 Es判定部
- 124 受信アンテナ
- 125 受信部
- 126 送信電力制御信号
- 127 報知信号および呼出信号
- 200 基地局
- 201 移動局
- 202 移動局
- 203 移動局
- 204 必要送信電力Eg
- 205 N_dの値
- 206 必要送信電力E₈
- 207 N_dの値
- 208 必要送信電力E₈
- 209 N_aの値
- 210 報知信号(共通制御信号)のサプキャリア
- 211 報知信号(共通制御信号)のサプキャリア

50

10

20

30

```
212 報知信号(共通制御信号)のサプキャリア
300 アンテナ
301 受信信号
302 帯域通過フィルタ(BPF)
303 アナログ復調器
804 所定のサブキャリアまたはサブキャリア群の周波数帯域の信号
305 スイッチ(SW)
306 アナログフィルタ群
307 フィルタSSF1
308 A/D変換部
                                                     10
309 GI除去部
310 出力信号
311 FFT 変換部
312 ディッパ
313 逆拡散部
314 P/S変換部
815 制御チャネル用シンボル復号部
316 共通制御信号(報知信号)
317 シンボル復調部
318 チャネル復号部
                                                     20
319 原データ
320 制御部
321 同調器
822 出力信号
323 同期周波数制御信号
324 フィルタ切替制御信号
325 サンプリング信号発生器
326 サンプリング信号
327 サンプリング 周波数制御信号
328 FFT制御信号
                                                     30
329 フィルタ(SSF2)
330 信号路
331 フィルタ(SSFO)
700 理想フィルタの特性
701 現実のフィルタの特性
702 フィルタ通過信号の残留周波数成分
800 センタ局
801 セルエリア1
802 セルエリア2
803 セルエリア3
                                                      40
804 基地局1
805 基地局2
806 基地局3
807 セルエリア4
808 基地局4
809 基地局1へのダウンロード
810 基地局 2 へのダウンロード
811 ダウン基地局3へのダウンロード
```


【図9】

【手続補正書】

【提出日】平成15年1月9日(2003.1.9)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0042

【補正方法】変更

【補正の内容】

[0042]

[0042]

図 1 の基地局構成において、通信チャネルに割り当てられるサプキャリアの所要送信電力 E_s は、 E_s 判定部 12.8において次式により算出される。

【数1】

$$E_{s} = E_{CT} + (E_{th} - E_{CR})$$
 --- (1)

ここに E_{CT} は報知信号サプキャリアの送信電力(既定値)、 E_{th} は移動局において所定の通信品質(符号誤り率)を得るのに必要なサプキャリア受信電力(既定値)、 外 1 (以下、 $*E_{CR}$ と表記する)は移動局において受信する報知信号の

【外1】

ECR

時間平均電力である。報知信号は一定時間間隔で基地局から常時発信されており、移動局では常時受信した報知信号の時間平均 $*E_{CR}$ を測定している。移動局は通信開始時にこの $*E_{CR}$ を基地局に通報する。移動局が基地局から遠ざかるほど $*E_{CR}$ は小さくなり、(1)式により、通信チャネルに割り当てられるサブキャリアの所要送信電力 E_s としては、大きな値が

必要になる(たとえば図2(d)の信号レベル208)。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0043

【補正方法】変更

【補正の内容】

[0043]