## Homework Assignment 11 Due Friday, April 22

This assignment will fill in many details from lecture, and do a few hands on classifications. To begin we will confirm that the semidirect product is indeed a group. First recall the definition.

**Definition 1.** Let H, K be groups, and  $\varphi : K \to \operatorname{Aut}(H)$  a group homomorphism. Denote the induced action of K on H by:

$$k \cdot h = \varphi(k)(h).$$

The semidirect product of H and K with respect to  $\varphi$  is the set  $H \rtimes K = \{(h,k) : h \in H, k \in K\}$ , where multiplication is defined by the rule:

$$(h_1, k_1)(h_2, k_2) = (h_1(k_1 \cdot h_2), k_1k_2).$$

- 1. Let's make sure that  $H \times K$  is a group.
  - (a) Show that  $(1,1) \in H \times K$  is the identity. (Remember you have to check both sides).

*Proof.* Fix  $h \in H$  and  $k \in H$ . Then we check,

$$(1,1)(h,k) = (1(1 \cdot h), 1k) = (h,k).$$

On the other hand:

$$(h,k)(1,1) = (h(k \cdot 1), k1) = (h,k),$$

where we remark that  $k \cdot 1 = 1$  because K acts by automorphisms (i.e.  $x \mapsto k \cdot x$  is not merely a bijection, but also a homomorphism which in particular sends 1 to 1 [by HW3 Problem 4a]).

(b) Show that  $(h,k)^{-1} = (k^{-1} \cdot h^{-1}, k^{-1})$ . (As above, you have to check both sides).

*Proof.* We check both directly:

$$\begin{array}{lll} (h,k)(k^{-1}\cdot h^{-1},k^{-1}) & = & (h(k\cdot (k^{-1}\cdot h^{-1})),kk^{-1}) \\ & = & (h(kk^{-1}\cdot h^{-1}),1) \\ & = & (h(1\cdot h^{-1}),1) \\ & = & (hh^{-1},1) \\ & = & (1,1). \end{array}$$

For the other side, we remark that because K acts by automorphisms, we have that for each  $\ell \in K$ , we have  $(\ell \cdot x)(\ell \cdot y) = \ell \cdot (xy)$  (because  $x \mapsto \ell \cdot x$  is a homomorphism). In particular

$$(k^{-1} \cdot h^{-1}, k^{-1})(h, k) = ((k^{-1} \cdot h^{-1})(k^{-1} \cdot h), k^{-1}k)$$

$$= (k^{-1} \cdot (h^{-1}h), 1)$$

$$= (k^{-1} \cdot 1, 1)$$

$$= (1, 1).$$

(c) Prove that multiplication is associative.

*Proof.* We consider  $h_1, h_2, h_3 \in H$  and  $k_1, k_2, k_3 \in K$ . We passing from line 2 to 3 that K acts by automorphism. Then:

$$((h_1, k_1)(h_2, k_2)) (h_3, k_3) = (h_1(k_1 \cdot h_2), k_1k_2)(h_3, k_3)$$

$$= (h_1(k_1 \cdot h_2)(k_1k_2 \cdot h_3), k_1k_2k_3)$$

$$= (h_1(k_1 \cdot (h_2(k_2 \cdot h_3)), k_1k_2k_3))$$

$$= (h_1, k_1)(h_2(k_2 \cdot h_3), k_2k_3)$$

$$= (h_1, k_1) ((h_2, k_2)(h_3, k_3)).$$

- 2. Consider again the setup of Definition 1. Let's prove some basic properties about  $G = H \rtimes K$ .
  - (a) Show that the subset  $\{(h,1): h \in H\} \subseteq G$  is a subgroup isomorphic to H. Similarly, show that  $\{(1,k): k \in K\} \subseteq G$  is a subgroup isomorphic to K. In what follows we identify H and K with these subgroups, and write  $H, K \leq G$ .

*Proof.* Consider the map  $\varphi: H \to H \rtimes K$  defined by the rule  $\varphi(h) = (h,1)$ . We observe it is a homomorphism because:

$$\varphi(h)\varphi(h') = (h,1)(h',1) = (h(1 \cdot h'),1) = (hh',1) = \varphi(hh').$$

It is also injective since  $\varphi(h) = (1,1)$  precisely when h = 1. Therefore by the first isomorphism theorem and HW4 Problem 4(b) we have:

$$H \cong \text{im } \varphi = \{\varphi(h) : h \in H\} = \{(h, 1) : h \in H\} \le G.$$

Almost (but not quite) symmetrically we next consider the map  $\psi: K \to H \rtimes K$  given by the rule  $\psi(k) = (1, k)$ . This is a homomorphism because:

$$\psi(k)\psi(k') = (1,k)(1,k') = (k \cdot 1,kk') = (1,kk') = \psi(kk'),$$

where the second to last equality crucially uses that K acts by automorphisms. Injectivity follows similarly to above,  $\psi(k) = (1,1)$  precisely when k = 1, so that the first isomorphism theorem and HW4 Problem 4(b):

$$K \cong \text{im } \psi = \{\psi(k) : k \in K\} = \{(1, k) : k \in K\} \le G.$$

(b) Prove that  $H \cap K = \{1_G\}$ .

*Proof.* Under the identification above we have:

$$H \cap K = \{(h,1) : h \in H\} \cap \{(1,k) : k \in K\} = \{(1,1)\}.$$

(c) Show that  $H \subseteq G$  and  $G/H \cong K$ .

*Proof.* Define a function  $\pi: G \to K$  given by the rule  $\pi(h, k) = k$ . Let's observe this is a homomorphism:

$$\pi(h_1, k_1)\pi(h_2, k_2) = k_1k_2,$$

while

$$\pi\Big((h_1,k_1)(h_2,k_2)\Big) = \pi\Big(h_1(k_1\cdot h_2),k_1k_2\Big) = k_1k_2.$$

We then see  $\pi$  is surjective since any  $k = \pi(1, k)$ . Finally we compute the kernel:  $\pi(h, k) = 1$  if and only if k = 1, if and only if  $(h, k) = (h, 1) \in H$ . Therefore ker  $\pi = H$ , and so H is normal since it is a kernel. Finally, the first isomorphism theorem gives us that

$$K \cong G / \ker \pi = G / H$$
.

In HW 10 Problem 5 we proved the *Recognition Theorem for Direct Products* (HW10 Theorem 3). There is an analogous result for semidirect products, and in fact you already did most of the work. Let's state the result.

**Theorem 2** (Recognition Theorem for Semidirect Products). Suppose G is a group and  $H, K \leq G$  are subgroups. Suppose that  $H \leq G$  is normal, and that  $H \cap K = 1$ . Then

$$HK \cong H \rtimes_{\varphi} K$$
,

where  $\varphi: K \to \operatorname{Aut}(H)$  corresponds to the action of K on H by conjugation (in G). In particular, if HK = G then  $G \cong H \rtimes_{\varphi} K$ .

3. Prove Theorem 2 by showing that function  $H \rtimes_{\varphi} K \to HK$  defined by the rule  $(h, k) \mapsto hk$  is an isomorphim. (*Note:* Bijectivity should follow from HW10 Problem 5(a), so the main verification is that it is a homomorphism).

*Proof.* Bijectivity follows identically to HW10 Probem 5(c). We reproduce the proof here (but don't require it). Call the map  $\Phi(h,k) = hk$ . Surjectivity is immediate, as any hk in the target is the image of (h,k). As for injectivity, let  $\Phi(h,k) = \Phi(h',k')$ , so that hk = h'k'. Using that  $H \cap K = \{1\}$ , HW10 Problem 5(a) tells us that there is a unique way to write hk as an element of H times one of K, so that h = h' and k = k'.

It remains to show that  $\Phi$  is a homomorphism. Notice that in  $H \rtimes K$  we have:

$$(h_1, k_1)(h_2, k_2) = (h_1(k_1 \cdot h_2), k_1k_2) = (h_1k_1h_2k_1^{-1}, k_1k_2),$$

because the action of K on H is that by conjugation in HK. Then after applying  $\Phi$  we get:

$$\Phi\Big((h_1,k_1)(h_2,k_2)\Big) = (h_1k_1h_2k_1^{-1})(k_1k_2) = (h_1k_1)(h_2k_2) = \Phi(h_1,k_1)\Phi(h_2,k_2),$$

completing the proof.

4. A lot of studying semidirect products comes down to enumerating and classifying homomorphisms.

(a) Show that giving a homomorphism  $Z_n \to G$  is the same as selecting an element  $g \in G$  with |g| dividing n. That is, give a bijection between the following sets:

$$\left\{\begin{array}{c} \text{Homomorphisms} \\ Z_n \to G \end{array}\right\} \Longleftrightarrow \left\{\begin{array}{c} \text{Elements } g \in G \\ \text{where } |g| \text{ divide } n \end{array}\right\}$$

*Proof.* Fix once and for all a generator x of  $Z_n$ . Then given a map  $\varphi: Z_n \to G$ , we know that  $g = \varphi(x) \in G$  has order dividing |x| = n (HW3 Probelem 4(c)). Conversely, given  $g \in G$  of order dividing n, the map  $\psi: x^i \mapsto g^i$  is a homomorphism from  $Z_n \to G$ . One readily checks that these are inverse constructions.

(b) If p is prime show that giving a nontrivial map  $Z_p \to G$  is the same as choosing an element of order p in G. (Note: the trivial map is the one that sends every element to the identity of G).

*Proof.* In part (a) we saw that a map  $Z_p \to G$  is the same as an element of G whose order divides p. The trivial map corresponds to  $1_G$ , so all other maps correspond to elements of order p.

(c) Show that giving a homomorphism  $Z_{n_1} \times \cdots \times Z_{n_r} \to G$  is the same as chosing elements  $g_1, \dots, g_r \in G$  such that all the  $g_i$  commute with eachother and each  $|g_i|$  divides  $n_i$ .

*Proof.* This is essentially identical to part (a). Fix generators  $x_i$  of  $Z_{n_1}$ . Given a homomorphism  $\varphi$  we let  $g_i = \varphi(x_i)$  and remark that its order must divide  $|x_i| = n_i$  (again HW3 4(c)). Furthermore, we notice that:

$$g_i g_j = \varphi(x_i)\varphi(x_j) = \varphi(x_i x_j) = \varphi(x_j x_i) = \varphi(x_j)\varphi(x_i) = g_j g_i,$$

so that they commute. Conversely, given such  $g_i$ , we define  $\psi$  on the generators of  $Z_{n_1} \times \cdots \times Z_{n_r}$  via the rule

$$\psi(x_1^{j_1},\cdots,x_r^{j_r})=g_1^{j_1}\cdots g_r^{j_r},$$

noting that  $\psi$  is a homomorphism precisely because the  $g_i$  commute and have order dividing  $x_i$ .

(d) Suppose G is abelian and p is prime. Describe the set of homomorphisms  $Z_p \times Z_p \to G$  as a subset of  $G \times G$ .

*Proof.* By part (c) this should correspond to pairs  $(a, b) \in G \times G$  such that  $a^p = b^p = 1$ . We remark that actually a subgroup of  $G \times G$ , called the *p-torsion subgroup*.

Any homomorphism  $\varphi: K \to \text{Aut } H$  allows us to build a semidirect product  $H \rtimes_{\varphi} K$ . An interesting question is when different maps give us isomorphic semidirect products. In class we stated and used a special case of the following lemma.

**Lemma 3.** Let  $\varphi, \psi : K \to \operatorname{Aut} H$  be two homomorphisms, and suppose they differ by an automorphism of K. That is, suppose there is some  $\gamma \in \operatorname{Aut}(K)$  such that  $\psi \circ \gamma = \varphi$ :



Then  $H \rtimes_{\varphi} K \cong H \rtimes_{\psi} K$ .

One could ask if this is the only thing that could allow different  $\varphi$  to give different semidirect products. The answer would be no, as the following lemma shows.

**Lemma 4.** Let  $\varphi, \psi : K \to \operatorname{Aut} H$  be two homomorphisms, and suppose they are conjugate in  $\operatorname{Aut} H$ . Explicitly, suppose there is some  $\alpha \in \operatorname{Aut} H$ , corresponding to the inner automorphism  $\sigma_{\alpha} : \beta \mapsto \alpha \beta \alpha^{-1}$ , and suppose that  $\psi = \sigma_{\alpha} \circ \varphi$ :



Then  $H \rtimes_{\varphi} K \cong H \rtimes_{\psi} K$ .

- 5. Lemmas 3 and 4 say that if we alter  $\varphi$  by an automorphism of K, or an inner automorphism of Aut H, (or both), we don't change the semidirect products. Let's prove this.
  - (a) Consider the setup of Lemma 3. Show that the map:

$$\begin{array}{ccc} H \rtimes_{\varphi} K & \longrightarrow & H \rtimes_{\psi} K \\ (h,k) & \mapsto & (h,\gamma(k)) \end{array}$$

is an isomorphism, thereby proving the lemma.

*Proof.* Call the map we are studying  $\Phi$ . Since  $\gamma$  is bijective, so is  $\Phi$ . So it suffices to show that  $\Phi$  is a homomorphism. Fix  $(h_i, k_i) \in H \rtimes_{\varphi} K$  for i = 1, 2.

$$\Phi(h_1, k_1)\Phi(h_2, k_2) = (h_1, \gamma(k_1))(h_2, \gamma(k_2)) 
= (h_1(\psi(\gamma(k_1))(h_2)), \gamma(k_1)\gamma(k_2)) 
= (h_1(\varphi(k_1)(h_2)), \gamma(k_1k_2)) 
= \Phi(h_1(\varphi(k_1)(h_2)), k_1k_2) 
= \Phi((h_1, k_1)(h_2, k_2)),$$

and the result follows.

(b) Consider the setup of Lemma 4. Show that the map:

$$\begin{array}{ccc} H \rtimes_{\varphi} K & \longrightarrow & H \rtimes_{\psi} K \\ (h,k) & \mapsto & (\alpha(h),k) \end{array}$$

is an isomorphism, thereby proving the lemma. (Notice that  $\alpha \in \operatorname{Aut} H$  is an automorphism of H, wheras  $\sigma_{\alpha}$  is an automorphism of  $\operatorname{Aut} H$ , given by conjugation by  $\alpha$ . In unweildy notation, this says  $\sigma_{\alpha} \in \operatorname{Aut}(\operatorname{Aut} H)$ .)

*Proof.* Call the map we are studying  $\Psi$ . Since  $\alpha$  is bijective, so is  $\Psi$ , so it suffices to show that  $\Psi$  is an automorphism. Fix  $(h_i, k_i) \in H \rtimes_{\varphi} K$  for i = 1, 2.

$$\Psi(h_{1}, k_{1})\Psi(h_{2}, k_{2}) = \left(\alpha(h_{1}), k_{1}\right) \left(\alpha(h_{2}), k_{2}\right) \\
= \left(\alpha(h_{1})(\psi(k_{1})(\alpha(k_{2})), k_{1}k_{2}\right) \\
= \left(\alpha(h_{1})(\sigma_{\alpha}(\varphi((k_{1})))(\alpha(k_{2})), k_{1}k_{2}\right) \\
= \left(\alpha(h_{1})(\alpha\varphi(k_{1})\alpha^{-1})(\alpha(h_{2})), k_{1}k_{2}\right) \\
= \left(\alpha(h_{1})\alpha(\varphi(k_{1})(h_{1})), k_{1}k_{2}\right) \\
= \left(\alpha(h_{1})\varphi(k_{1})(h_{1}), k_{1}k_{2}\right) \\
= \Psi\left(h_{1}(\varphi(k_{1})(h_{1})), k_{1}k_{1}\right) \\
= \Psi\left((h_{1}, k_{1})(h_{2}, k_{2})\right).$$

(c) Now suppose  $\varphi, \psi : K \to \operatorname{Aut} H$  are two homomorphisms, and suppose there is an automorphism  $\gamma \in \operatorname{Aut} K$  and an inner automorphism  $\sigma \in \operatorname{Inn}(\operatorname{Aut}(H))$  such that the following diagram commutes:

$$\begin{array}{ccc} K & \stackrel{\varphi}{\longrightarrow} \operatorname{Aut} H \\ \uparrow \downarrow & & \downarrow \sigma \\ K & \stackrel{\psi}{\longrightarrow} \operatorname{Aut} H. \end{array}$$

That is,  $\sigma \circ \varphi = \psi \circ \gamma$ . Then  $H \rtimes_{\varphi} K \cong H \rtimes_{\psi} K$ . (Hint: This should follow formally from Lemmas 3 and 4, so you shouldn't have to do any lengthy computations).

*Proof.* We give the function  $\sigma \circ \varphi = \psi \circ \gamma$  the name  $\xi : K \to \operatorname{Aut} H$ . That is,  $\xi$  fits into the following diagram:

$$\begin{array}{c} K \xrightarrow{\varphi} \operatorname{Aut} H \\ \gamma \downarrow & \downarrow \sigma \\ K \xrightarrow{\psi} \operatorname{Aut} H. \end{array}$$

By part (b), we know that

$$H \rtimes_{\varphi} K \cong H \rtimes_{\xi} K$$
,

and by part (a) we know that

$$H \rtimes_{\mathcal{E}} K \cong H \rtimes_{\psi} K$$
.

Combining these two gives the result.

- 6. We've seen 5 groups of order 12:  $Z_{12}$ ,  $Z_6 \times Z_2$ ,  $D_{12}$ ,  $A_4$ , and a nontrivial semidirect product  $Z_3 \times Z_4$  where the generator of  $Z_4$  acts on  $Z_3$  by inverting elements. Let's prove this is all of them!
  - (a) Let G be a group of order 12. Show that if  $G \ncong A_4$ , then  $G \cong Q \rtimes P$  where P is a Sylow 2-subgroup and Q is a Sylow 3-subgroup. (*Hint*: (Sylow 3) and the Theorem 2 should help).

*Proof.* Let  $P \leq G$  be a Sylow 2-subgroup (of order 4), and Q a Sylow 3-subgroup (of order 3). By HW9 Problem 3(b), if Q isn't normal, then  $G \cong A_4$ , so we may assume that  $Q \subseteq G$ . Since  $Q \cap P$  have order dividing both 3 and 4, so it must be trivial. Finally, we see that:

$$|QP| = \frac{|Q| \cdot |P|}{|Q \cap P|} = 12,$$

so that QP = G. Therefore Theorem 2 shows that  $G \cong Q \rtimes P$ .

(b) Show that there is only one abelian and one nonabelian semidirect product  $Z_3 \rtimes Z_4$  up to isomorphism.

*Proof.* For every  $\varphi: Z_4 \to \operatorname{Aut}(Z_3)$  we get a semidirect product group  $Z_3 \rtimes_{\varphi} Z_4$ . Notice that  $\operatorname{Aut}(Z_3) \cong (\mathbb{Z}/3\mathbb{Z})^{\times} \cong Z_2$ , so this boils down to classifying maps  $\varphi: Z_4 \to Z_2$ . Let  $Z_4 = \langle z \rangle$  and  $Z_2 = \langle y \rangle$ . By 4(a), the  $\varphi$  correspond to elements of  $Z_2$  whose order divide 4, which correspond to choosing the image of z. In particular, we have

$$\varphi_0: Z_4 \to Z_2$$
 and  $\varphi_1: Z_4 \to Z_2$   
 $z \mapsto 1$   $z \mapsto x$ 

In particular, there are at most 2 semidirect products:  $G_i = Z_3 \rtimes_{\varphi_i} Z_4$  for i = 0, 1. If i = 0 then  $\varphi$  is the trivial map, and the semidirect product corresponds to the direct product giving

$$G_0 = Z_3 \rtimes_{\varphi_0} Z_4 \cong Z_3 \times Z_4 \cong Z_{12}.$$

We proved in class that any nontrivial semidirect product is nonabelian, so this shows  $G_0$  is the unique abelian case, and that  $G_1$  is nonabelian. Since there are no other semidirect products, this exhaustive list completes our proof.

(c) Show that there is only one abelian and one nonabelian semidirect product  $Z_3 \rtimes (Z_2 \times Z_2)$  up to isomorphism. (You might need Lemma 3).

*Proof.* As above, this boils down to classifying maps:

$$\psi: (Z_2 \times Z_2) \to \operatorname{Aut}(Z_3) \cong Z_2.$$

Let  $Z_2 \times Z_2 = \langle a \rangle \times \langle b \rangle$  and let the right side  $Z_2 = \langle x \rangle$ . By 4(c), classifying such  $\psi$  this boils down to choosing 2 elements of  $Z_2$ , corresponding to picking the images of a and b. There are four options, which we will denote by  $\psi_{j,k}$  for  $j,k \in \{0,1\}$ .

$$\begin{array}{cccc} \psi_{0,0}: & a \mapsto 1 & & \psi_{1,0}: & a \mapsto x \\ & b \mapsto 1 & & b \mapsto 1 \end{array}$$

$$\begin{array}{cccc} \psi_{0,1}: & a \mapsto 1 & & \psi_{1,1}: & a \mapsto x \\ & b \mapsto x & & b \mapsto x \end{array}$$

We let  $G_{j,k} = Z_3 \rtimes_{\psi_{j,k}} (Z_2 \times Z_2)$ .

## **Case A:** j = k = 0

In this case  $\psi_{0,0}$  is trivial so arguing as in part (b) we have the unique abelian semidirect product of this form:

$$G_{0,0} \cong Z_3 \times (Z_2 \times Z_2) \cong Z_6 \times Z_2$$
.

## Case B: j, k not both 0

We claim that in this case all the  $G_{j,k}$  are isomorphic. We remark that

$$Z_2 \times Z_2 \cong \langle a \rangle \times \langle b \rangle \cong \langle a \rangle \times \langle ab \rangle \cong \langle ab \rangle \times \langle b \rangle$$
,

and each nontrivial  $\psi_{j,k}$  takes 2 generators to x and the third to 1. But  $\operatorname{Aut}(Z_2 \times Z_2) = GL_2(\mathbb{F}_2)$  includes all the *change of basis* matrices which takes a pair of generators to any other pair of generators. In particular, if we fix any nontrivial  $\psi_{j,k}$  and view  $Z_2 \times = \langle g \rangle \times \langle h \rangle$  as generated by g and h for the two generators sent to x (i.e., where  $\psi_{j,k}(g) = \psi_{j,k}(h) = x$  and  $\psi_{j,k}(gh) = 1$ ) then there exists some  $\eta \in \operatorname{Aut}(Z_2 \times Z_2)$  where  $\eta(a) = g$  and  $\eta(b) = h$ . That is, we have the following:



By Lemma 3 this shows  $G_{1,1} \cong G_{i,j}$ , so that all three nontrivial  $G_{i,j}$ 's must be isomorphic.

(d) Put together parts (a)-(c) to deduce that there are exactly 5 groups of order 12 up to isomorphism. Of the semidirect products classified in parts (b) and (c), which one corresponds to  $D_{12}$ ?

*Proof.* We will prove that  $D_{12}$  is isomorphic to the nonabelian group from part (c). We first observe that  $D_{12} \not\cong G_0$  and  $D_{12} \not\cong G_{0,0}$ , because those two groups are abelian and

 $D_{12}$  is not.

Next we observe that  $D_{12} \ncong A_4$  (one can also quote that we observed this in class). This is because  $A_4$  has a unique Sylow 2-subgroup given by  $\{(1), (12)(34), (13)(24), (14)(23)\}$ , which is normal since it consists precisely of the identity and the entire 2-2 cycle type. On the other hand,  $P = \{1, r^3, s, sr^3\}$ , is a Sylow 2-subgroup of  $D_{12}$ , but  $rsr^{-1} = sr^4 \notin P$ , so that  $P \le D_{12}$ , and therefore has more than one Sylow 2-subgroup.

Finally we observe that  $D_{12} \not\cong G_1$ . Indeed, the subgroup P from the previous paragraph is isomorphic to  $Z_2 \times Z_2$  (every element squares to 1!), whereas the Sylow 2-subgroup of  $G_1$  is isomorphic to  $Z_4$ .

Therefore  $D_{12} \cong G_{j,k}$  for j,k not both zero.

- 7. In this problem we classify all groups of order 75 up to isomorphism. (There should be 3 total).
  - (a) List all the abelian groups of order 75 using the fundamental theorem of finite abelian groups.

*Proof.* Notice  $75 = 3 * 5^2$ . Therefore, these decompose into elementary divisor form as:

$$Z_3 \times Z_{25}$$
 and  $Z_3 \times Z_5 \times Z_5$ .

In invariant factor form these correspond to  $Z_{75}$  and  $Z_{15} \times Z_5$  respectively.

(b) Prove that a group of order 75 is isomorphic to  $P \rtimes Q$  where P is a Sylow 5-subgroup and Q is a Sylow 3-subgroup.

*Proof.* Let  $|G| = 75 = 3 \cdot 5^2$ . By Sylow III we know  $n_5 \in \{1, 6, 11, \dots\}$  and that  $n_5$  divides 3. Therefore  $n_5 = 1$  and so we can fix the *unique* Sylow 5-subgroup P, which by necessity is normal (HW9 Problem 1). Let Q be any Sylow 3-subgroup. Then  $P \cap Q = \{1\}$  by Lagrange's theorem. We then compute:

$$|PQ| = \frac{|P||Q|}{|P \cap Q|} = \frac{25 \cdot 3}{1} = 75 = |G|.$$

Therefore PQ = G. Theorem 2 (or Problem 3) now gives the result..

(c) Prove that if a group of order 75 has a cyclic Sylow 5-subgroup, then it is abelian.

*Proof.* By part (b), we know  $G \cong P \rtimes_{\varphi} Q$  for some map  $\varphi : Q \to \operatorname{Aut}(P)$ . By assumption,  $P \cong Z_{25}$ , and by TH1 Problem 4 we know  $Q \cong Z_3$ . Therefore we may identify  $\varphi$  with map

$$Z_3 \to \operatorname{Aut}(Z_{25}) \cong Z_{20}$$
.

By 4(a) this corresponds to selecting an element in  $Z_{20}$  whose order divides 3. By Lagrange's theorem this can only be the identity element, so in fact  $\varphi$  is the trivial map. Therefore  $G \cong Z_{25} \times Z_3 \cong Z_{75}$  which is abelian.

(d) Show that there is a unique nonabelian group of order 75 up to isomorphism. (*Hint:* Show that 3 is a maximal 3-divisor of  $|GL_2(\mathbb{F}_5)|$ . Then use Sylow's theorems and 5(c).)

*Proof.* By part (c), to be nonabelian we must have  $P \cong Z_5 \times Z_5$ . Therefore we must study nontivial maps

$$\psi: Z_3 \longrightarrow \operatorname{Aut}(Z_5 \times Z_5) \cong GL_2(\mathbb{F}_5).$$

In HW 6 problem 7(d) we computed:

$$|GL_2(\mathbb{F}_5)| = 5^4 - 5^3 - 5^2 + 5 = 480 = 3 * 160.$$

Since 3|480 then by Cauchy's theorem there exists an element  $M \in GL_2(\mathbb{F}_3)$  of order 3. If y is a generator of  $Z_3$ , then we let  $\varphi(y) = M$  and get a nonabelian group

$$G_{\varphi} = (Z_5 \times Z_5) \rtimes_{\varphi} Z_3$$

of order 75. In fact, any such group comes from choosing some N of order 3 in  $|GL_2(\mathbb{F}_5)|$  and letting  $\psi: y \mapsto N$  and building  $G_{\psi}$  as above. We finish the proof by showing  $G_{\psi} \cong G_{\varphi}$ .

Since 3 /160, we know  $\langle M \rangle$  and  $\langle N \rangle$  are both Sylow 3-subgroups of  $GL_2(\mathbb{F}_5)$ . Therefore they are conjugate. That is, there is some  $\alpha \in GL_2(\mathbb{F}_5)$  such that

$$\alpha \langle M \rangle \alpha^{-1} = \langle N \rangle.$$

Denote by  $\sigma_{\alpha} \in \text{Inn}(GL_2(\mathbb{F}_5))$  the associated inner automorphism. In particular, we see that  $\sigma(M)$  is either N or  $N^2$ . Define  $\gamma: Z_3 \to Z_3$  by the following rule. If  $\sigma_{\alpha}(M) = N$  then  $\gamma$  is the identity, and if  $\sigma_{\alpha}(M) = N^2$  then  $\gamma: y \mapsto y^2$ . In either case,  $\gamma \in \text{Aut}(Z_3)$ . In particular, we have the following commutative diagram:

$$Z_{3} \xrightarrow{\varphi} GL_{2}(\mathbb{F}_{5})$$

$$\uparrow \qquad \qquad \downarrow \sigma_{\alpha}$$

$$Z_{3} \xrightarrow{\psi} GL_{2}(\mathbb{F}_{5}),$$

where the vertical maps are automorphisms, and the right one is even inner. Applying Problem 5(c) immediately implies:

$$G_{\varphi} = (Z_5 \times Z_5) \rtimes_{\varphi} Z_3 \cong (Z_5 \times Z_5) \rtimes_{\psi} Z_3 = G_{\psi},$$

and so we are done.