Written Assignment 7 Math 290, Dr. Walnut

Lucas Bouck

11/23/15

1 Problem 1A

Let R be a relation on a nonempty set A. Prove that if R is symmetric and transitive and Dom(R) = A, then R is reflexive.

Proof:

Let R be a relation on a nonempty set A. Assume R is symmetric and transitive and Dom(R) = A. We want to show that R is reflexive. Let $x \in A$. Since Dom(R) = A, there exists a $y \in A$ such that $(x, y) \in R$. Thus, xRy. Since R is symmetric, yRx. Since R is transitive and xRy and yRx, xRx. Since for all $x \in A$, then xRx, then R is reflexive.

2 Problem 1B

Suppose that R is reflexive and transitive and define the relation L on A by xLy if and only if xRy and yRx. Prove that L is an equivalence relation.

${f Proof:}$

Let R and L be relations on A. Assume R is reflexive and transitive and define the relation L on A by xLy if and only if xRy and yRx. We want to show that L is an equivalence relation.

First, we want to show that L is reflexive. Let $x \in A$. Since R is reflexive, xRx and xRx. Since xRx and xRx, xLx. Therefore, L is reflexive.

Next, we want to show that L is symmetric. Let xLy. Then, xRy and yRx. Then, yRx and xRy. Therefore, yLx, and L is symmetric.

Finally, we want to show that L is transitive. Let xLy and yLz. Then, xRy, yRx, yRz, and zRy. Since R is transitive, xRy, and yRz, then xRz. Also, since R is transitive, zRy, and yRx, then zRx. Since xRz and zRx, then xLz. Therefore, L is transitive.

Since L is reflexive, symmetric, and transitive, L is an equivalence relation.

3 Problem 1C

Suppose that S is a symmetric relation on A such that $R \subseteq S$. Prove that $R \cup R^{-1} \subseteq S$. **Proof:**

Let S be a symmetric relation on A. Let R be a relation on A and assume $R \subseteq S$. We want to show that $R \cup R^{-1} \subseteq S$. Let $(x,y) \in R \cup R^{-1}$. This means $(x,y) \in R$ or $(x,y) \in R^{-1}$. There will be two cases. Let $(x,y) \in R$. Since $R \subseteq S$, then $(x,y) \in S$. In this case, $R \cup R^{-1} \subseteq S$. Next, suppose $(x,y) \in R^{-1}$. Then, $(y,x) \in R$. Since $R \subseteq S$, $(y,x) \in S$ and ySx. Since S is symmetric, xSy. Then, $(x,y) \in S$. In this case, $R \cup R^{-1} \subseteq S$. In both cases, $R \cup R^{-1} \subseteq S$. We are done.

4 Problem 2

Let $m \in \mathbb{N}$ and for $x \in \mathbb{Z}$ define \overline{x}^m to be the equivalence class of x in \mathbb{Z}_m . Prove that for any integers a, b, c, and d, if $\overline{a}^m = \overline{c}^m$ and $\overline{b}^m = \overline{d}^m$ then $\overline{ab}^m = \overline{cd}^m$.

Proof:

Let a,b,c, and d be integers, and let $m \in \mathbb{N}$. Assume $\overline{a}^m = \overline{c}^m$ and $\overline{b}^m = \overline{d}^m$. We want to show that $\overline{ab}^m = \overline{cd}^m$. Since $\overline{a}^m = \overline{c}^m$, then m|(c-a). This means mk = c-a for some integer k. Then, c = mk + a. Since $\overline{b}^m = \overline{d}^m$, m|(d-b). This means ml = d-b for some integer l. Then, d = ml + b. Then, $cd = (mk + a)(ml + b) = m^2kl + mla + mkb + ab$. Then, $cd - ab = m^2kl + mla + mkb = m(mkl + la + kb)$. Let mkl + la + kb = z. Since $m, k, l, a, b \in \mathbb{Z}$, then $z \in \mathbb{Z}$. Thus, there exists an integer z such that mz = cd - ab. Therefore, m|(cd - ab), and $\overline{ab}^m = \overline{cd}^m$.