Suites et Séries – TD_6 17-18 octobre 2022

Exercice 1 : sous-suites

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle.

- 1. On suppose que $(u_n)_{n\in\mathbb{N}}$ est croissante et qu'elle admet une sous-suite majorée. Montrer que $(u_n)_{n\in\mathbb{N}}$ converge.
- 2. On suppose que $(u_n)_{n\in\mathbb{N}}$ est croissante et qu'elle admet une sous-suite convergente. Montrer que $(u_n)_{n\in\mathbb{N}}$ converge.
- 3. On suppose que $(u_n)_{n\in\mathbb{N}}$ est bornée et est divergente. Montrer qu'elle admet au moins deux valeurs d'adhérence différentes.
- 4. On suppose que $(u_n)_{n\in\mathbb{N}}$ n'est pas majorée. Montrer qu'elle admet une sous-suite qui diverge vers $+\infty$.

Exercice 2 : limites supérieures et inférieures

Soit $u=(u_n)_{n\in\mathbb{N}}$ une suite réelle bornée. On définit les suites $(s_n)_{n\in\mathbb{N}}$ et $(r_n)_{n\in\mathbb{N}}$ par

$$\forall n \in \mathbb{N}, \quad s_n = \sup\{u_k, \ k \geqslant n\} \quad \text{ et } \quad r_n = \inf\{u_k, \ k \geqslant n\}$$

1. Dans chacun des deux exemples suivantes, déterminer (si elles existent) les limites des suites $(s_n)_{n\in\mathbb{N}}$ et $(r_n)_{n\in\mathbb{N}}$:

a.
$$u = n \mapsto \frac{1}{n+1}$$
 b. $u = n \mapsto (-1)^n \left(1 + \frac{1}{n+1}\right)$

2. Montrer que les suites $(s_n)_{n\in\mathbb{N}}$ et $(r_n)_{n\in\mathbb{N}}$ sont convergentes.

Dans la suite, on note $\limsup u$ la limite de $(s_n)_{n\in\mathbb{N}}$ (« limite supérieure de u ») et $\liminf u$ la limite de $(r_n)_{n\in\mathbb{N}}$ (« limite inférieure de u »).

- 3. Soit $\ell \in \mathbb{R}$. Montrer que u converge vers ℓ si, et seulement si, $\limsup u = \liminf u = \ell$.
- 4. Soit λ une valeur d'adhérence de $(u_n)_{n\in\mathbb{N}}$. Montrer que $\lambda \in [\liminf u, \limsup u]$.
- 5. Montrer que pour tout $\varepsilon > 0$ et tout $N \in \mathbb{N}$, il existe un entier $p \geqslant N$ tel que

$$\limsup u - 2\varepsilon \leqslant u_n \leqslant \limsup u + 2\varepsilon$$

6. En déduire qu'il existe une sous-suite de $(u_n)_{n\in\mathbb{N}}$ qui converge vers $\limsup u$. Quel est le théorème que l'on vient de redémontrer?

Exercice 3 : suite logistique

Soit $m \in \mathbb{R}$. On considère la suite $(u_n)_{n \in \mathbb{N}}$ définie par $u_0 \in [0,1]$ et $u_{n+1} = m u_n (1 - u_n)$ pour tout $n \in \mathbb{N}$. On pose $f_m : x \mapsto m x (1 - x)$.

Partie I: étude numérique

- 1. Écrire une fonction logistique (m,u0,n) qui prend en arguments m, u_0 et n, et renvoie la liste $[u_0, \ldots, u_n]$.
- 2. Écrire une fonction escalier(m,u0,n) qui prend en arguments m, u_0 et n, et trace le graphique de construction de $[u_0, \ldots, u_n]$:
- 3. Étudier le comportement asymptotique (que se passe-t-il quand $n \to +\infty$?) de la suite selon la valeur de m.
- 4. Pour $m_1 = 3.5$, observez le comportement de la suite quand on change un peu la valeur de u_0 . Faire de même pour $m_2 = 3.8$. Que remarque-t-on?

En fait, pour $m \ge 3.57$ (à peu près...), le comportement devient chaotique : une petite perturbation initiale provoque des grandes variations de la suite.

5. On va tracer le "diagramme des bifurcations" de la suite. La variable des abscisses est m; et pour chaque m, on représente en ordonnées les valeurs d'adhérence de la suite $(u_n)_{n\in\mathbb{N}}$. Pour cela, on va supposer que la suite s'approche rapidement de ses valeurs d'adhérence. Pour chaque m, on va donc tracer $u_{300}, u_{301}, u_{302}, \ldots, u_{599}$ au dessus de l'abscisse m. Réaliser avec Python le diagramme des bifurcations.

Partie II: étude théorique

Si on le souhaite, on pourra utiliser Sympy pour faire les calculs.

- 1. Déterminer les valeurs possibles de m pour que l'intervalle [0,1] soit stable par f_m .
- 2. Soit $m \in [0, 1]$. Montrer que la suite logistique converge vers 0.
- 3. Soit $m \in]1,2]$. Montrer que la suite logistique converge. On utilisera les graphiques de Python pour voir les différents cas à étudier.
- 4. On suppose maintenant $m \in [2,3]$.
 - (a) Observer avec Python le comportement de la suite.
 - (b) Déterminer la ou les limites possibles pour la suite $(u_n)_{n\in\mathbb{N}}$.

Dans la suite, on note l_m le point fixe non nul de f_m .

- (c) Déterminer un intervalle I_m stable par f_m , contenant l_m , sur lequel f_m est décroissante.
- (d) Montrer que si $u_0 \in I_m$, les suites $(u_{2n})_{n \in \mathbb{N}}$ et $(u_{2n+1})_{n \in \mathbb{N}}$ convergent vers l_m .
- (e) Conclure.
- 5. On va essayer d'utiliser un raisonnement similaire au précédent pour décrire le comportement de la suite pour $m \in]3, 1 + \sqrt{5}[$.
 - (a) Observer le comportement de la suite avec Python.
 - (b) Montrer que l_m (la limite d'avant) est un point répulsif pour f_m , c'est-à-dire que $|f'_m(l_m)| > 1$.
 - (c) Déterminer les valeurs de m > 3 telles que l'intervalle I_m de la question 4c soit encore stable par f_m .
 - (d) Quelles sont les limites possibles pour les suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$?
 - (e) Montrer que ces suites convergent bien vers ces limites.