Segmenting and analyzing flight trajectories in moths

Matthieu DACHER ECOSENS

Purpose of the talk: discuss the methodology

The question

We are interested in sex-pheromone tracking in male moths

We use wind-tunnel and a pair of cameras to record 3D trajectories (x, y, z + t)

8 groups n = 21-34:

- With/without sex-pheromone
- 0%, 0.1%, 1% or 10% HAc (odorant background)

Behavioural results

Time to approach the target

- survival analysis (Cox regression)
- proportional hazard OK
- blatant effect of sex-pheromone
- small effect of HAc background
- small interaction

Example for the obtained trajectories

• Trajectories are corrected for artifact (tigmotactism, duplication ...) and smoothed

Is target-finding connected to the trajectories?

Physical index: dynamic time warping = similarity index between trajectories

Phylogenetic classification: neat clustering of pheromone and non-pheromone trajectories (target approach in green)

Hypotheses

- 1. Odours elicit differing flight strategies = trajectories
- 2. Trajectories reach (or not !) the target

But trajectories are hardly analysable by themselves ...

Solution: creating segments as units of analysis

- 1. Initial trajectory
- 2. Assume there is a single segment
- 3. Is the most remote point beyond a given threshold?
- 4. If no: stop
- 5. If yes: separate the segment at this point
- 6. Repeat until no more cutting can be done

Setting the threshold (1/2)

Setting the threshold (2/2)

What to do with the segments?

- 9805 segments in 220 trajectories (repeated measurements: mixed models)
- Parameters:
 - Speed (local speed in the segments)
 - Duration (latency before changing direction = before a new segment)
 - Length (=distance flown before turning, redundant with the previous)
 - Straightness
 - Azimuth and zenith against the wind (angle with the wind)
 - Azimuth and zenith between two segments
- Principal component analysis
 - 77.3% explained with 4 components

PCA (1/2)

Component 1: angles (azimuth and zenith) with the wind Component 2: duration and straightness (and length)

Component 1: angles (azimuth and zenith) with the wind Component 3: angles (azimuth and zenith) between segments

PCA (2/2)

Component 1: angles (azimuth and zenith) with the wind

Component 4: speed (and length)

Parameters retained for the analysis

- Azimuth with the wind
- Turning angle (azimuth)
- Latency before turning (= segment duration)
- Speed

We can now address the first hypothesis: Odours elicit differing flight strategies

1st factor is presence/absence of sex-pheromone
 2nd factor is background concentration
 We will test the 4 parameters above
 Mixed effect: segment within each trajectory

Azimuth with the wind

Median azimuth angle in the tunnel, 1% HAc Median azimuth angle in the tunnel, 0.1% HAc

Median azimuth angle in the tunnel, 0% HAc

Median azimuth angle in the tunnel, 10% HAc

Analysis tool:

Bayesian circular mixed-effects model, with the R package bpnreg (very convenient, slow!)

No effect, no interaction

Odours are is irrelevant for wind angle

Turning angle (azimuth between segments)

Median azimuth angle in turning, 0% HAc Median azimuth angle in turning, 0.1% HAc

Median azimuth angle in turning, 1% HAc Median azimuth angle in turning, 10% HAc

Bayesian circular mixed-effects model Effect of sex-pheromone (CI: 98.1-112.2°) but not background (CI: 46.7-58.2°)

Sex-pheromone affects turning angle

Latency before turning (segment duration)

Speed

Mixed linear model on the speed
Problem of heteroscedasticity, solved with a mixed
generalized least square (1 variance per cell,
interaction dropped)
Effect of sex-pheromone and background

The presence of an odour makes the animal slower (especially the sex-pheromone)

Hypothesis 2: do speed and turning angle explain target-reaching?

Geeglm (quicker and stabler than glmm)
Speed factor dropped

Only turning angle significantly explains the probability of finding the target

The same test performed restricted to either control or sex-pheromone do not reveal any angle effect. This indicate pheromone and turniong angle are in fact redundant.

This is consistent to the litterature and what can be seen by observers.

An attempt to plot the angle before the end reveals an interesting pattern. (end is defined as the moment when the animal approaches the target or when it is the closest to it)

Supplementary data

No significant effect on the number of segments

Length vs. threshold

