Class 4 Outline

- Goal of controlling for potential confounding and set-up
- 2. Stratification to account for potential confounding
- 3. Propensity score strategy and detailed example
- 4. Comparison of propensity score results to that obtained by multivariable logistic regression
- 5. Pros and cons of constructing propensity scores
- 6. References

1

0. Learning Objectives

- Identify and review possible methods to control for potential confounding.
- Define and construct a propensity score for a major covariate of interest based on the possible confounders of the association between it and the outcome of interest.
- Review a detailed example to show the construction and use of propensity scores to control for potential confounding.

Goal of Controlling for Potential Confounding

To estimate the effect of a "treatment" or "risk factor" (e.g., ever smoking) on an outcome (e.g. major smoking caused disease) by *comparing* otherwise similar persons with and without the risk factor.

3

1.1 Set-Up

- Health response: Y = 1,0
 - Major smoking caused disease (MSCD)
- Binary treatment or risk factor: Z = 1,0
 - Ever smoker
- Potential confounders: X
 - Age
 - Gender
 - SES: Poverty, education; marital status, seat belt use

2. Stratification to Account for Potential Confounding

- Stratify by the covariate
- Woolf's method for pooling (combining) odds ratio estimates
- Multivariable logistic regression

5

2.1 Controlling for One Covariate

- · Stratify by the covariate
- Estimate the difference in mean outcome or log odds ratio within each covariate stratum
- Pool the stratum-specific estimates of effects absent any evidence of qualitative effect modification

2.1a Example: MSCD, Ever Smoker, Poverty

Poverty Level	Probability of MSCD (n)		Log OR	Std Error
	Ever smokers	Never smokers		
1	.076	.042	.630	.439
(Poverty)	(181)	(213)		
2	.081	.089	099	.526
	(86)	(101)		
3	.122	.043	1.11	.336
	(285)	(296)		
4	.092	.052	.613	.220
	(682)	(651)		
5	.076	.042	.623	.220
(No Poverty)	(758)	(823)		

7

2.2 Woolf's Method for Pooling (Combining) Odds Ratio Estimates

- Weight each odds ratio estimate inversely proportional to the variance of the estimate
- Give more weight to less variable estimates
- Combine or pool log_e OR estimates

2.2a Pool the Evidence Using Weighted Mean of Log OR

Stratum	log OR	se	1/var= 1/se ²	weight= (1/var)/total	weight-logOR
1	.63	.439	5.19	.088	.0554
2	099	.526	3.61	.061	0060
3	1.11	.336	8.86	.150	.1665
4	.613	.220	20.66	.350	.2146
5	.623	.220	20.66	.350	.2181
Pooled			58.98	1.00	0.65

se
$$_{\log OR} = \sqrt{\frac{1}{58.98}} = 0.130$$

2.3 Multivariable Logistic Regression

- A faster method of pooling evidence!
- Regressing Y on X and indicators of the strata is identical to weighting the log ORs inversely related to their variances

U

3. What to Do with Many Confounders?

- Stratify on all confounder combinations
 - Large number of strata, hard to make tables
- Match each smoker to a few "similar" nonsmokers; not bad, but does not use all the data
- Stratify on a single derived variable chosen so that the distribution of all the covariates is similar for the two treatment groups within each stratum of the variable.
 - One such variable is the propensity score

11

3.1 Propensity Score Definition

- Definition: p(X) = Pr(Z=1|X)
 - The propensity score is the probability of being "treated" (smoking) as a function of the potential confounders
- Fact: the distribution of X given p(X) is the same whether Z=1 or Z=0
 - The treated (smokers) and untreated (nonsmokers) within a propensity score stratum are alike with respect to the covariates (age, gender, SES variables)

3.2 Propensity Score Strategy

- Estimate the propensity score using logistic regression or other classification method
 - Similar to that performed in the example in Class 15, Biostat 622
- Stratify into quintiles of the estimated propensity score
- Estimate the treatment effect within each stratum
- · Pool the estimates across strata

13

3.2a Estimating the Propensity Score

- Question: does the rate of ever smoking differ for men and woman who are otherwise similar?
- Major variables in a larger data set:
 - eversmk = ever smoker : 1-yes; 0-no
 - age =age at survey
 - male (0-female; 1-male)
 - educate (1-college grad; 2-some college;3-high school grad; 4 - other)
 - poor (poverty level) (1-at or below poverty line; 2 up to twice line;...;5 - 5 or more times)

3.2b l	_501116	aurig	uie	FIOP	CH211	y Sco	16
. mkspline newage	65 newage_sp	65= age, mar	ginal				
. gen male_newage=	_						
. gen male_newage_	sp65=male*ne	wage_sp65					
. logit eversmk ma	le newage ne	wage sp65 ma	le newage	e male new	age sp65 i.	poor i.educa	te
Logistic regression				mber of ob	os =	11,645	
			LR	chi2(12)		1280.62	
			Pro	ob > chi2	=	0.0000	
Log likelihood = -	7328.5935		Pse	eudo R2	=	0.0804	
eversmk	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]	
male	4718718	.2926374	-1.61	0.107	-1.045431	.1016871	
newage	0027621	.0034017	-0.81	0.417	0094292	.003905	
newage_sp65	0568172	.0078003	-7.28	0.000	0721055	0415289	
male_newage	.0296449	.0054042	5.49	0.000	.0190529	.0402368	
male_newage_sp65	0190136	.012415	-1.53	0.126	0433466	.0053193	
poor							
2	1286167	.1065875	-1.21	0.228	3375243	.0802909	
3	0486653	.0802896	-0.61	0.544	20603	.1086994	
4	1630927	.0717029	-2.27	0.023	3036277	0225577	
5	1950945	.0728702	-2.68	0.007	3379174	0522715	
educate							
2	.4716228	.0746741	6.32	0.000	.3252642	.6179814	
3	.4566217	.06203	7.36	0.000	.3350451	.5781984	
4	.1599544	.0741713	2.16	0.031	.0145812	.3053275	
1		.2019025	0.24	0.734	464362	.3270812	

3.4 Creating Quintiles for Predicted Probabilities of Ever Smoking

. centile PrC, centile(20(20)100)

				Binom. Ir	nterp
Variable	Obs	Percentile	Centile	[95% Conf.	Interval]
PrC	13,592	20	.4184538	.4132604	.4225965
1		40	.5153694	.5143821	.5161662
1		60	.6099819	.5971178	.6192712
1		80	.7361238	.7333673	.7393156
1		100	.8407061	.8407061	.8407061*

. gen group=1 if PrC <0.418

(10,932 missing values generated)

. replace group=2 if PrC >= 0.418 & PrC < .515

(2,668 real changes made)

. replace group=3 if PrC >= 0.515 & PrC <.610 $\,$

(2,799 real changes made)

. replace group=4 if PrC >= 0.610 & PrC < 0.736

(2,688 real changes made)

. replace group=5 if PrC >=0.736 & PrC <0.841

(2,721 real changes made)

47

3.5 Probability of MSCD by Ever Smoking within Quintiles (Groups)

Never Smokers

. tab group mscd if eversmk==0, row

1	ms	cd	
group	0		
1	1,251	203 13.96	1,454
2		97 7.78	
3	-	35 3.04	1,153 100.00
4	606	48 7.34	654
5	492 90.77	50 9.23	542 100.00
	4,617 91.43	433	5,050

Ever Smokers

. tab group mscd if eversmk==1, row

	mse	cd	
group	0	1	Total
1	633	150	783
	80.84	19.16	100.00
2	928	129	1,057
	87.80	12.20	100.00
3	1,196	89	1,285
	93.07	6.93	100.00
4	1,467	183	1,650
	88.91	11.09	100.00
5	1,487	333	1,820
	81.70	18.30	100.00
Total	5,711 86.60	884 13.40	6,595 100.00 18

..

3.6 Log OR of MSCD by Ever Smoking within Propensity Score Quintiles

Propensity Score	1	/ of MSCD n)	Log _e OR	Std error	
Quintile	Ever	Never			
1	.1916	. 1396	0.379		
	(783)	(1454)			
2	. 1220	.0778	0.499		
	(1057)	(12471)			
3	.0693	.0304	0.866		
	(1285)	(1153)			
4	.1109	.0734	0.454		
	(1650)	(654)			
5	.1830	.0923	0.791		
	(1820)	(542)			19

3.7a Another Way: Logistic Regression of Ever Smoking within Quintiles

ogistic regre					of obs =	-
mscd	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
					.1469841	
cons	-1.818493	.0756668	-24.03	0.000	-1.966797	-1.670188
logit mscd e	versmk if gr				of obs =	
logit mscd e	versmk if grossion	oup==2		Number (2,304
logit mscd e	versmk if gr	oup==2 Std. Err.	z	Number o	of obs = [95% Conf.	2,304
logit mscd e	versmk if gr	oup==2 Std. Err.	z	Number (of obs =	2,304 Interval

3.7b An of E		•			c Regr Quint		n
. logit mscd e Logistic regre	-	oup==3	•	Number	of obs =	2,438	
					[95% Conf.		
eversmk	.865847 -3.463949	.2038086 .1716563	4.25 -20.18	0.000	.4663894 -3.800389	1.265305 -3.127508	
. logit mscd e Logistic regre	ssion		z		of obs = [95% Conf.		
eversmk	.4541904	.169203	2.68	0.007	.1225586 -2.829566	.7858221	
. logit mscd e Logistic regre mscd	ssion				of obs =		
					.4758261 -2.577379		21

3.8 Pc	ooling t Logi	the Ev				ng	le
. logit mscd e	versmk i.gro	up					
Logistic regre		5		LR chi2	(5) chi2	=	11,645 286.96 0.0000 0.0349
mscd	Coef.	Std. Err.	z	P> z	[95% (Conf.	Interval]
eversmk	.5496893	.0664281	8.27	0.000	.4194	926	.679886
group 2	6101214	.0917195	C CE	0.000	7898	000	4303645
3	6101314						-1.142787
3 4		.093844					536465
5	1923965	.0849841			3589		0258307
_cons	-1.890916	.0651202	-29.04	0.000	-2.01	855	-1.763283
•							22

3.9 Findings from Propensity Score Analysis

- We estimate that the odds of having a major smoking caused disease is exp(.55)=1.73 times as high among ever smokers versus never smokers who have similar demographic and SES characteristics
- 95% CI: (exp(.42)= 1.52, exp(.68)=1.97) times higher

23

4. Compare Propensity Score Results to Multiple Logistic Regression

.logit mscd eversmk male newage newage_sp65 male_newage male_newage_sp65 i.poor i.educate

Number of obs Logistic regression 11,645 LR chi2(13) Prob > chi2 0.0000 Log likelihood = -3645.339Pseudo R2 0.1131 z P>|z| [95% Conf. Interval] mscd Coef. Std. Err. eversmk | .6543806 .0693947 9.43 0.000 .5183696 .7903916 .715148 -0.88 .0085118 10.71 male | -.6277045 newage | .0911537 -2.029369 .0744708 0.380 newage 0.000 .1078365 -2.90 newage_sp65 -.0378389 .0130328 0.004 -.0633827 -.012295 male_newage .0165958 .0119243 1.39 -2.07 0.164 -.0067755 -.0388879 -.0757823 -.0019936 male_newage_sp65 | .018824 0.039 0.80 0.426 .1177465 .1480643 -.1724542 .4079471 .0224403 .1161032 0.19 0.847 -.2051178 .2499984 -1.06 -.113896 .1078534 0.291 -.3252848 .0974928 -2.05 0.041 -.2286938 .1117192 -.4476595 -.0097281 educate | .1249633 2.27 0.023 .1066018 1.27 0.204 .1194866 -1.24 0.215 .0387238 .2836474 .528571 .1354226 -.073513 .3443582 -.148143 -.3823324 .0860463

.5284758 -15.62 0.000

-9.289139

-8.253345

cons

5.1a Pros and Cons of Propensity Scores

- Organizes the analysis into 2 steps
 - Probability of treatment given the covariates: there is sometimes prior knowledge about this probability, for example in randomized trials (p(X)=.5)
 - Comparison of treatment groups within strata of assignment probability
- Easy to picture the evidence for the binary treatment effect

25

5.1b Pros and <u>Cons</u> of Propensity Scores

- Most natural with binary treatment
 - Extensions possible, but they are awkward
- Not as simple to study effect modifications (interactions)
- No method controls for unmeasured confounders, regardless of what is claimed

6.0 References

- Propensity scores can also be used to perform weighted analyses
- References
 - Rosenbaum and Rubin, 1983. Biometrika, 70: 41-55.
 - Rubin. 1997. Annals of Internal Medicine, 127: 757-763.