#### Lecture 4: Informed Search

### **Artificial Intelligence**

CS-6364

#### **Outline**

- Informed (heuristic) search
  - Greedy Best-first search
  - -A\* search
  - Memory Bounded heuristic search:
    - Recursive Best First Search (RBFS)
- Heuristic Functions

### Informed search strategy

- ➤ When selecting what node to expand (in TREE-SEARCH of GRAPH-SEARCH), it is informed by an *evaluation function f(n)*. It is a cost (to the solution) estimate, such that the node with the lowest cost is selected!!!
- □ The choice of the function f determines the search strategy!!!!
- Most evaluation function include some heuristic function h(n)
- □ Some also include the cost of getting to the node from START, g(n)

### Greedy Best-first search

**Greedy** BEST-FIRST-SEARCH tries to expand a node that is closest to the goal, on the grounds that it is likely to lead to a solution *quickly!!* 

\* **Evaluates** nodes by using just the heuristic function f(n)=h(n)

**Example of heuristic:** straight-line distance  $h^{SLD}$ GOAL = Bucharest  $h^{SLD}(In (Arad)) = 366$ 

<u>Important</u>: the values of *h*<sup>SLD</sup> cannot be computed from the problem formulation directly.

# Romania with step costs in km



| Straight-line distance to | Bucharest |
|---------------------------|-----------|
| Arad                      | 366       |
| Bucharest                 | 0         |
| Craiova                   | 160       |
| Drobeta                   | 242       |
| <b>Eforie</b>             | 161       |
| Fagaras                   | 178       |
| Giurgiu                   | 77        |
| Hirsova                   | 151       |
| Iasi                      | 226       |
| Lugoj                     | 244       |
| Mehadia                   | 241       |
| Neamt                     | 234       |
| Oradea                    | 380       |
| Pitesti                   | 98        |
| Rimnicu Vilcea            | 193       |
| Sibiu                     | 253       |
| Timisoara                 | 329       |
| Urziceni                  | 80        |
| Vaslui                    | 199       |
| Zerind                    | 374       |

## Greedy search example



| Straight-line distance to Bucharest |     |
|-------------------------------------|-----|
| Arad                                | 366 |
| Bucharest                           | 0   |
| Craiova                             | 160 |
| Drobeta                             | 242 |
| Eforie                              | 161 |
| Fagaras                             | 178 |
| Giurgiu                             | 77  |
| Hirsova                             | 151 |
| Iasi                                | 226 |
| Lugoj                               | 244 |
| Mehadia                             | 241 |
| Neamt                               | 234 |
| Oradea                              | 380 |
| Pitesti                             | 98  |
| Rimnicu Vilcea                      | 193 |
| Sibiu                               | 253 |
| Timisoara                           | 329 |
| Urziceni                            | 80  |
| Vaslui                              | 199 |
| Zerind                              | 374 |

# Is all that good?

- Minimizing h(n) is susceptible to false starts
  - Example: Go from Iasi to Fagaras



- Greedy best-first search resembles depth-first search because it prefers to follow a single path all the way to the goal, but it will back up when it hits a dead-end.
  - Worse case time and space complexity: O(b<sup>m</sup>), where m is the maximum depth of the search space

#### Greedy best-first search — to remember!!!

- Evaluation function h (n) (heuristic)estimate of cost from n to goal
- $\square E.g. h_{SLD}(n) = straight-line distance from$ n to Bucharest
- ☐Greedy best-first search expands the node that appears to be closest to goal

### Properties of greedy search

*b* - maximum branching factor of the search tree *d* - depth of the least-cost solution m - max depth of the state space (may be  $\infty$ )  $C^*$  - the cost of the optimal solution

- Complete ?? No can get stuck in loops
  - -e.g. Iasi→Neamt →Iasi →Neamt
  - Complete in finite space with repeated-state checking
- Time ??  $O(b^m)$ , but a good heuristic can give dramatic improvement
- Space ??  $O(b^m)$  (keeps all nodes in memory)
- Optimal ?? No

### A\* search

- Idea: <u>avoid</u> expanding paths that are already expensive
- Evaluation function f(n) = g(n) + h(n)
  - $-g(n) = \cos t$  so far to reach n
  - -h(n) =estimated cost to goal from n
  - -f(n) = estimated cost of path through n to goal
- > A\* search uses an *admissible* heuristic
- Admissible heuristics never overestimate the cost of reaching a goal
  - i.e.  $h(n) \le h^*(n)$  where  $h^*(n)$  is the *true* cost from *n* to the goal
- E.g.  $h_{SLD}(n)$  never overestimates the actual road distance
- Theorem: A\* search is optimal

# A\* heuristic properties

- > A\* search uses an admissible heuristic
- ➤ A\* uses a *consistent* heuristic Consistency = monotonicity
  - A heuristic is consistent if for every node n and for every successor n' (generated by action a), the estimated cost of reaching the goal from n is no greater than the estimated cost of reaching the goal from n':
    - h(n) ≤ c(n,a,n') + h(n')
  - Theorem: A\* search is optimal

# A\* search example



### Consistent heuristics

#### E.g. for the 8-puzzle:

- -h1(n) = number of misplaced tiles
- h2(n) = total Manhattan distance (i.e. # of squares from desired location of each tile)

$$h1(S) = ?? 7$$
  
 $h2(S) = ?? 2+ 3+ 3+ 2+ 4+2+0+2=18$ 

# Why is A\* optimal?

#### > How do we search?

- If we are Using TREE-SEARCH, then the heuristic h(n) has to be admissible!!!
- If we are Using GRAPH-SEARCH, then the heuristic h(n) has to be consistent!!!
- We will consider only the consistency property.
- $\rightarrow$  if h(n) is consistent, then the values of f(n) along the search path are non-decreasing.

<u>PROOF</u>: suppose n' is a successor of  $n_i o g(n') = g(n) + c(n_i a_i, n')$ 

•  $f(n') = g(n') + h(n') = g(n) + c(n,a,n') + h(n') \ge g(n) + h(n) = f(n)$ When  $A^*$  selects a node n for expansion, the optimal path to that node has been found.

<u>PROOF</u>: by contradiction. If this would not be the case, there would have to be another node  $n_x$  on the frontier, such that it belongs to the optimal path from the start node to the goal.

# Optimality of A\* (standard proof)

- In this case,  $n_x$  would have to have a lower value of the evaluation function  $f(n_x) < f(n)$ .
- $\rightarrow$  The sequence of nodes expanded by GRAPH-SEARCH is in non-decreasing order of f(n).



A\* always selects for expansion the node with the lowest f(n) from the frontier (Open list)

#### Consistent heuristics

- Heuristics that ensure that the optimal paths is selected by GRAPH-SEARCH when repeated states are reached are called consistent heuristics
- CONSISTENCY=MONOTONICITY
- How do we see if heuristic h is consistent?
  - Let n be a node and n'his successor created by action a.
    Then the estimated cost of reaching the goal from n is no greater than the cost of getting to n'plus the estimated cost of reaching the goal from n':
    - h(n) ≤ c(n,a,n') + h(n')

1

Triangle inequality

## Consequences of consistency

- Every consistent heuristic is also admissible
- GRAPH-SEARCH is optimal if h is consistent
- If h(n) is consistent, then the values of f(n) along any path are non-decreasing
  - Proof:

Suppose *n'* is a successor of *n*, then

$$f(n') = g(n') + h(n') = g(n) + c(n,a,n') + h(n') \ge g(n) + h(n) = f(n)$$

### Admissible heuristics

- A heuristic h\*(n) is admissible if for every node n,
   h\*(n) ≤ h(n), where h(n) is the true cost to reach the goal state from n.
- An admissible heuristic never overestimates the cost to reach the goal,
   i.e., it is optimistic
- Example: h<sub>SLD</sub>(n) (never overestimates the actual road distance)
- Theorem: If h\*(n) is admissible, A\* using TREE-SEARCH is optimal

### Consistent heuristics

A heuristic is consistent if for every node n, every successor n' of n generated by any action a,

$$h(n) \le c(n,a,n') + h(n')$$

• If *h* is consistent, we have

$$f(n') = g(n') + h(n')$$
  
=  $g(n) + c(n,a,n') + h(n')$   
\geq  $g(n) + h(n)$   
=  $f(n)$ 

- i.e., f(n) is non-decreasing along any path.
- Theorem: If h(n) is consistent, A\*using GRAPH-SEARCH is optimal



# Optimality of A\* (more useful)

Lemma: A\* expands nodes in order of increasing f value Gradually adds "f-contours" of nodes (cf. breadth-first adds layers)

Contour *i* has all nodes with  $f = f_i$  where  $f_i < f_{i+1}$ 



## Stages of A\* search from Bucharest



## Stages of A\* search from Bucharest





### Stages of A\* search from Bucharest



## Properties of A\*

- Complete?? Yes, unless there are infinitely many nodes with f ≤ f(G)
- <u>Time</u> ?? Exponential in [relative error in h × length of solution path.]
- Space ?? Keeps all nodes in memory
- Optimal ?? Yes it is optimally efficient for any consistent heuristic

### Memory bounded heuristic search

> Reduce the memory requirements for A\*??

- Adapt the idea of iterative deepening to heuristic search: the cut-off is the *f-cost*, not the *depth*
  - IDA\*: At each iteration, the cutoff is the smallest f-cost of each node that exceeded the cutoff of the previous iteration

### Recursive Best-First Search

```
function Recursive-Best-First-Search(problem) returns a solution, or failure
 return RBFS( problem, MAKE-NODE (problem.INITIAL-STATE), ∞)
Function RBFS( problem, node, f_limit ) returns a solution, or failure and a new
                                                               f-cost limit
 if problem.GOAL-TEST (node.STATE) then return SOLUTION(node)
  successors ← [ ]
  for each action in problem.ACTIONS(node.STATE) do
         add CHILD-NODE(problem, node, action) into successors
  if successors is empty then return failure, ∞
  for each s in successors do // update f with value from previous search, if any
         s.f \leftarrow \max(s.g + s.h, node.f)
 loop do
      best ← the lowest f-value node in successors
      if best.f > f_limit then return failure, best.f
      alternative ← the second-lowest f-value among successors
      result, best. f \leftarrow RBFS ( problem, best, min(f_limit, alternative))
     if result ≠ failure then return result
```

### How does it work???

#### We keep track of 5 values:

| Value/Node                 | Modified by:                                          |
|----------------------------|-------------------------------------------------------|
| f_limit                    | $f_{limit} \leftarrow min(f_{limit,alternative})$     |
| best                       | The minimum <i>f</i> value of the successors          |
| alternative                | The second minimal f value of the successors          |
| Node (current city)        | Initial node or the best node or the backtracked node |
| Best successor (next city) | The node having the f=best                            |



| f_limit      | 8     |
|--------------|-------|
| best         | 393   |
| alternative  | 447   |
| Current city | Arad  |
| Next city    | Sibiu |

Sibiu

Next city

RV











**if** *f*[*best*] > *f*\_*limit* **then return** failure





| f_limit      | $\infty$ | 447   | 415  | 447     | 417     | 447   |
|--------------|----------|-------|------|---------|---------|-------|
| best         | 393      | 413   | 417  | 415     | 450     | 417   |
| alternative  | 447      | 415   | 525  | 417     | 591     | 450   |
| Current city | Arad     | Sibiu | RV   | Sibiu   | Fagaras | Sibiu |
| Next city    | Sibiu    | RV    | FAIL | Fagaras | FAIL    | RV    |

F\_limit for RV is: F\_limit=min(f\_limit,alternative)= =min(447,450) = 447



### RBFS example -10



#### Final trace

| f_limit      | $\infty$ | 447   | 415  | 447         | 417     | 447   | 447     | 447       |
|--------------|----------|-------|------|-------------|---------|-------|---------|-----------|
| best         | 393      | 413   | 417  | 415         | 450     | 417   | 417     | 418       |
| alternative  | 447      | 415   | 525  | 417         | 591     | 450   | 526     | 607       |
| Current city | Arad     | Sibiu | RV   | Sibiu       | Fagaras | Sibiu | RV      | Pitesti   |
| Next city    | Sibiu    | RV    | FAIL | Fagara<br>s | FAIL    | RV    | Pitesti | Bucharest |

f(RV) changed

f(Fagaras) changed

From 413 to 417

From 415 to 450 

#### What did we use?

- 1/ best ← the lowest f-value node in successors
- 2/ alternative ← the second-lowest f-value among successors
- 3/ if f[best] > f\_limit then return failure, f[previous-best] changed!
- 4/ f\_limit ← min(f\_limit, alternative)
- 5/ f[node] ← max(f[node],f[best-successor])

# How much memory we use???

| f_limit      | $\infty$ | 447   | 415  | 447         | 417     | 447   | 450     | 526       |
|--------------|----------|-------|------|-------------|---------|-------|---------|-----------|
| best         | 393      | 413   | 417  | 415         | 450     | 417   | 417     | 418       |
| alternative  | 447      | 415   | 525  | 417         | 591     | 450   | 526     | 607       |
| Current city | Arad     | Sibiu | RV   | Sibiu       | Fagaras | Sibiu | RV      | Pitesti   |
| Next city    | Sibiu    | RV    | FAIL | Fagara<br>s | FAIL    | RV    | Pitesti | Bucharest |

- 1/ best and the best node/ next city
- 2/ f\_limit and the previous alternate node
- 3/ previous-best node
- 4/ previous current city
- + all the current successors = branching factor

### Compare traces!!!



#### The frontier!!



### RBFS uses too little memory

- RBFS ends up expanding the same states many times, because it has no memory available to remember that!
- How about using all available memory??
  - Memory-Bounded A\*
  - □ Simplified Memory-bounded A\*: it cannot add a new node to the search tree without dropping one: it drops the worst leaf node (with highest f-value!).
    - Then it backs-up the value of the forgotten node to its parent (in this way the ancestor of the forgotten tree knows the quality of the best path in that subtree)

#### Heuristic Functions

☐The 8-puzzle problem generates very many states

- □362880 states is still a large number
- ☐ Solution: good heuristic that does not overestimate the number of steps to the goal

#### 2 candidates:

□ Heuristic 1:  $h_1$  = the number of tiles that are in the wrong position

### Heuristics for the 8-Puzzle problem

For example, in the start state,  $h_1=7$ 





Note: Heuristic 1 is admissible because it is clear that any tile that is out of place must be moved at least once

#### Manhattan distance

**Heuristic 2:**  $h_2$  = the sum of the distances of the tiles from their goal positions

Manhattan distance

Distance =  $\Sigma$  (horizontal + vertical distances)







: 
$$h_2 = 2+3+3+2+4+2+0+2 = 18$$

# The effect of heuristic accuracy on performance

 One way to characterize the quality of a heuristic is the effective branching factor

Definition: If N = the total number of nodes expanded by A\* for a particular problem, and the solution depth is d, then b\* is the branching factor of a uniform tree of depth d that has N nodes

Thus 
$$N = 1 + b^* + (b^*)^2 + ... + (b^*)^d$$

# Examples

A\* finds a solution at depth 5 using 52 nodes  $b^* = 1.92$ 

Why? 
$$N = ((b^*)^{d+1} - 1) / (b^* - 1)$$

A well-designed heuristic would have b\* close to 1, allowing fairly large problems to be solved

# Comparison of search costs

|    |         | Search cost | -                   | Effective branching factor |           |                     |  |
|----|---------|-------------|---------------------|----------------------------|-----------|---------------------|--|
| d  | IDS     | $A*(h_1)$   | A*(h <sub>2</sub> ) | IDS                        | $A*(h_1)$ | A*(h <sub>2</sub> ) |  |
| 2  | 10      | 6           | 6                   | 2.45                       | 1.79      | 1.79                |  |
| 4  | 112     | 13          | 12                  | 2.87                       | 1.48      | 1.45                |  |
| 6  | 680     | 20          | 18                  | 2.73                       | 1.34      | 1.30                |  |
| 8  | 6384    | 39          | 25                  | 2.80                       | 1.33      | 1.24                |  |
| 10 | 47127   | 93          | 39                  | 2.79                       | 1.38      | 1.22                |  |
| 12 | 364404  | 227         | 73                  | 2.78                       | 1.42      | 1.24                |  |
| 14 | 3473941 | 539         | 113                 | 2.83                       | 1.44      | 1.23                |  |
| 16 |         | 1301        | 211                 |                            | 1.45      | 1.25                |  |
| 18 |         | 3056        | 363                 |                            | 1.46      | 1.26                |  |
| 20 |         | 7276        | 676                 |                            | 1.47      | 1.27                |  |
| 22 |         | 18094       | 1219                |                            | 1.48      | 1.28                |  |
| 24 |         | 39135       | 1641                |                            | 1.48      | 1.26                |  |

h<sub>2</sub> is much better than h<sub>1</sub>! IDS is much worse!

### Testing heuristic functions

To test heuristics  $h_1$  and  $h_2$  we randomly generate problems each with solution path length 2,4,...,20 and solve them using  $A^*$  search with  $h_1$  and  $h_2$ 

# How do you solve the 8-puzzle??



Start state

Goal state

### A\* (with graph-search)

```
g(node) = g(father) + 1
h(node) = h2
h(init) = 2+2+2+0+3+1+1+3=14
```

#### **Trace**



Which action to chose????

### Solve: 1



### Solution: Starting



### Inventing heuristic functions

- We have seen that both h<sub>1</sub> and h<sub>2</sub> are fairly good heuristics for the 8-puzzle, and h<sub>2</sub> is better than h<sub>1</sub>
- How can we invent a heuristic function?
- •h<sub>1</sub> and h<sub>2</sub> are estimates to the remaining path length for the 8-puzzle
  - they can be considered accurate path lengths for <u>simplified versions</u> of the puzzle. If a tile is moved anywhere → h<sub>1</sub> would give the number of steps to the shortest solution
- a problem with less restrictions is a relaxed problem

### Relaxed problems

- A problem with fewer restrictions on the actions is called a relaxed problem
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem
- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then h<sub>1</sub>(n) gives the shortest solution
- If the rules are relaxed so that a tile can move to any adjacent square, then h<sub>2</sub>(n) gives the shortest solution

#### Admissible heuristics

- The cost of an optimal solution to a <u>relaxed problem</u> is an admissible heuristic for the original problem.
  - Why is it admissible?
    - The optimal solution in the original problem is also a solution to the relaxed problem!
    - An optimal solution in the original problem must be at least as expensive as the optimal solution of the relaxed problem
    - Admissible heuristics <u>never</u> overestimate the cost of reaching a goal
  - Is it also consistent?
    - CONSISTENCY=MONOTONICITY
    - A heuristic is consistent if for every node *n* and every successor *n'* of n generated by an action *a*, the estimated cost of reaching the goal from *n* is no greater than the step cost of getting to n' plus the estimated cost of reaching the goal from *n'*:

$$h(n) \le c(n,a,n') + h(n')$$
 The triangle inequality

#### Heuristic dominance

Is h₂ always better than h₁?

Yes! From the definition:  $(\forall)$ n  $h_2(n) \ge h_1(n)$ 



h<sub>2</sub> dominates h<sub>1</sub>

Dominance translates into efficiency!!

#### **Dominance**

```
If h_2(n) \ge h_1(n) for all n (both admissible) then h_2 dominates h_1 h_2 is better for search
```

Typical search costs (average number of nodes expanded):

```
IDS = 3,644,035 nodes

A^*(h_1) = 227 nodes

A^*(h_2) = 73 nodes

IDS = too many nodes

A^*(h_1) = 39,135 nodes

A^*(h_2) = 1,641 nodes
```

IDS – iterative-deepening search

#### Lesson learned

- □ It is often the case that the cost of an exact solution to a relaxed problem is a good heuristic for the original problem
   □ One problem with generating new heuristic functions: one often fails to get the "best" heuristic
  - ☐ If a collection of heuristics is available (a program called ABSOLVER can generate heuristics automatically)  $h_1, h_2, ..., h_m$  PROBLEM: none of them dominates the others, which to choose?

•  $h(n) = max ( h_1(n), h_2(n), ..., h_m(n) )$ 

Composite heuristic

#### Pattern databases

 Admissible heuristics can also be derived from a solution of a <u>sub-problem</u> of a given problem



- -Find the exact solution cost to every possible sub-problem
- -Store them in a pattern database
- -Compute the admissible heuristic  $h_{DB}$  for each complete state encountered during search by looking up the corresponding subproblem configuration in the database

#### How to build the database?

Start from the goal



Goal state Move backwards Right Up Down Left H=1H=1H=1H=1

#### How to build the database? -2

#### Continue backwards:









Etc.

Etc.

#### Could we combine heuristic databases???

#### Yes and No!!!

- ▶ If we build database of 1-2-3-4 subproblem,  $DB_{1234}$ , and a database  $DB_{5678}$ , and one  $DB_{2468}$ , because each of them yield an admissible heuristic, we can combine them by taking the maximum value!!!  $\leftarrow$  a composite heuristic
- ► How about adding the heuristic from DB<sub>1234</sub> with the heuristic from DB<sub>5678</sub>??? Would we still have an <u>admissible heuristic</u>?
  - NO! Because it is likely that the solution to the 1-2-3-4 subproblem shares some moves (states) with the solution to the 5-6-7-8 problem, and hence it is overestimating the cost to the goal!
  - SOLUTION: Record the # moves that involve only 1-2-3-4, record the number of moves that involve only 5-6-7-8: then they do not share any common moves the heuristic in admissible!!!

### Disjoint pattern databses

How do we build the disjoint DB<sub>1234</sub>???

Only the moves of 1,2,3 4!!!



Great speedup is obtained!!! More in textbook.

# Another way of inventing heuristics

- A learning algorithm can construct a function h(n) from many examples of solving a problem.
- For example: choose randomly 100 of the 8-puzzle configurations | gather statistics
   Each example = a state from the solution path+ the cost of the solution from that point.

□ Result: you find out that when  $h_2(n)=14$  90% of the time, the real distance to the goal is 18

### Inventing heuristic functions

- I You can also use statistics to come up with heuristic functions. Say you run your algorithm 100 times and find that 90% of the time when your heuristic gives a value of 14, the real value is 18. So you use 18, instead of 14.
- ➤ The problem with this approach is that you lose optimality, because that 10% of the time, the real cost could be 15 and you have just over-estimated.

### Inductive learning of the heuristics

Use features of the states!

```
Example: # of misplaced tiles: feature x_1(n) # of pairs of adjacent tiles that are not adjacent in the goal state: feature x_2(n)
```

```
Then : h(n) = c_1 x_1(n) + c_2 x_2(n)
What kind of heuristic is h(n)???
```

- Admissible??? NO
- Consistent??? NO