

The 2025 ACM Web Conference

MedRAG: Enhancing Retrieval-augmented Generation with Knowledge Graph-Elicited Reasoning for Healthcare Copilot Xuejiao Zhao^{1,2}* Siyan Liu^{1,2}* Su-Yin Yang³ Chunyan Miao^{1,2}

¹Joint NTU-UBC Research Centre of Excellence in Active Living for the Elderly (LILY), NTU, Singapore ³ Tan Tock Seng Hospital & Woodlands Health, Singapore

(* Co-first Author)

Retrieval-augmented Generation & Knowledge Graph

RAG (Retrieval-Augmented Generation):

- Retrieves relevant local info for answer generation
- **Improves** factuality and contextawareness of responses of LLMs
- **Suffers** from inaccuracies and vagueness due to heuristic-based approaches

KG (Knowledge Graph):

- Represents medical entities (e.g., diseases, disease categories) and their relations
- **Elicits reasoning** of LLMs
- **Distinguishes** similar diseases and enhances diagnostic accuracy

Our Approach

1. Diagnostic Knowledge Graph (KG) Construction:

A four-tier diagnostic KG is constructed through disease clustering, hierarchical aggregation and LLM augmentation from EHR database.

2. Diagnostic Differences KG Searching:

Patient symptoms are matched to the diagnostic KG via clinical feature decomposition, matching, and upward traversal to identify key diagnostic differences.

3. KG-elicited Reasoning RAG:

Elicit LLM reasoning based on the diagnostic difference KG, retrieved similar EHRs, and patient information to generate precise diagnostic suggestions and proactive diagnostic questioning.

Evaluations and Ul

	Backbone LLMs S	Size	w/o KG-elicited Reasoning			w/ KG-elicited Reasoning		
		OILC	$\overline{L1}$	L2	L3	$\overline{L1}$	L2	L3
Open-source Models	Mixtral-8x7B	13B	60.38	32.08	22.34	84.62	82.69	63.46
	Qwen-2.5	72B	66.04	41.51	39.62	80.36	73.21	64.29
	Llama-3.1-Instruct	8B	75.47	54.72	43.40	79.25	75.47	66.04
	Llama-3.1-Instruct	70B	86.79	<u>67.92</u>	<u>56.60</u>	86.79	83.02	<u>71.70</u>
Closed-source Models	GPT-3.5-turbo	_	83.02	56.60	45.28	70.56	68.68	50.57
	GPT-40-mini	-	88.68	<u>67.92</u>	<u>56.60</u>	85.85	75.00	60.38
	GPT-40	-	90.57	71.70	60.38	91.87	81.78	73.23

Performance of MedRAG on different LLM w and w/o KG-elicited reasoning

	MadDAG	Healthcare	Capilat
	MEURAG -	пеаннсаге	CODIIOL

Method	Model	CPDD			DDXPlus		
111011104		L1	L2	L3	L1	L2	L3
Baselines	Naive RAG + COT	75.47	54.72	43.40	79.28	71.89	56.84
	FS-RAG	64.71	49.02	45.10	78.18	68.20	51.40
	FLARE	54.84	48.39	45.16	71.09	56.70	31.02
	FL-RAG	65.45	50.91	49.09	90.12	83.32	66.78
	DRAGIN	78.72	59.57	40.42	80.51	70.83	50.24
	SR-RAG	73.58	60.38	<u>54.72</u>	78.65	70.28	52.16
Ours	MedRAG	79.25	75.47	66.04	88.65	83.46	68.01

Outperform SOTA RAG methods on objective results

Ablation study of KG-elicited reasoning (Llama-3.1-Instruct 8B &CPDD)

Manifestation Masking Ratio	L1	L2	L3
100%	60.38	56.60 67.35 67.35 75.47	52.83
66.6%	69.39	67.35	55.10
33.3%	71.43	67.35	61.22
0%	79.25	75.47	66.04

Proactive diagnostic questioning

KG-elicited Reasoning

