MCMC focus the posterior density evaluations to the part of the parameter space where the most of the posterior mass is

- MCMC focus the posterior density evaluations to the part of the parameter space where the most of the posterior mass is
- This lecture introduces two simplest MCMC algorithms Gibbs and Metropolis
 - these help to understand the basic idea
 - in your assignment you implement Metropolis algorithm

- MCMC focus the posterior density evaluations to the part of the parameter space where the most of the posterior mass is
- This lecture introduces two simplest MCMC algorithms Gibbs and Metropolis
 - these help to understand the basic idea
 - in your assignment you implement Metropolis algorithm
- Next week introduces more elaborate and complex MCMC algorithm
 - after that in your assignments and projects, you will use ready made efficient implementation

- MCMC focus the posterior density evaluations to the part of the parameter space where the most of the posterior mass is
- This lecture introduces two simplest MCMC algorithms Gibbs and Metropolis
 - these help to understand the basic idea
 - in your assignment you implement Metropolis algorithm
- Next week introduces more elaborate and complex MCMC algorithm
 - after that in your assignments and projects, you will use ready made efficient implementation
- This lecture introduces also necessary diagnostics to check whether MCMC results are useful

Chapter 11

- 11.1 Gibbs sampler
- 11.2 Metropolis and Metropolis-Hastings
- 11.3 Using Gibbs and Metropolis as building blocks
- 11.4 Inference and assessing convergence (important)
 - potential scale reduction \widehat{R} (R-hat)
- 11.5 Effective number of simulation draws (important)
 - effective sample size (ESS / S_{eff})
- 11.6 Example: hierarchical normal model (quick glance)

Chapter 11 demos

- demo11_1: Gibbs sampling
- demo11_2: Metropolis sampling
- demo11_3: Convergence of Markov chain
- demo11_4: split- \widehat{R} and effective sample size (ESS or $S_{\rm eff}$)
- demo11_5: Diagnostics with posterior and bayesplot packages

$$E_{p(\theta|y)}[f(\theta)] = \int f(\theta)p(\theta|y)d\theta,$$
 where $p(\theta|y) = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta)d\theta}$

$$E_{p(\theta|y)}[f(\theta)] = \int f(\theta)p(\theta|y)d\theta,$$
 where $p(\theta|y) = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta)d\theta}$

We can easily evaluate $p(y \mid \theta)p(\theta)$ for any θ , but the integral $\int p(y \mid \theta)p(\theta)d\theta$ is usually difficult.

$$E_{p(\theta|y)}[f(\theta)] = \int f(\theta)p(\theta|y)d\theta,$$
 where $p(\theta|y) = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta)d\theta}$

We can easily evaluate $p(y \mid \theta)p(\theta)$ for any θ , but the integral $\int p(y \mid \theta)p(\theta)d\theta$ is usually difficult.

We can use the unnormalized posterior $q(\theta \mid y) = p(y \mid \theta)p(\theta)$, for example, in

$$E_{p(\theta|y)}[f(\theta)] = \int f(\theta)p(\theta \mid y)d\theta,$$
 where
$$p(\theta \mid y) = \frac{p(y \mid \theta)p(\theta)}{\int p(y \mid \theta)p(\theta)d\theta}$$

We can easily evaluate $p(y \mid \theta)p(\theta)$ for any θ , but the integral $\int p(y \mid \theta)p(\theta)d\theta$ is usually difficult.

We can use the unnormalized posterior $q(\theta \mid y) = p(y \mid \theta)p(\theta)$, for example, in

Grid (equal spacing) evaluation with self-normalization

$$E_{p(\theta|y)}[f(\theta)] \approx \frac{\sum_{s=1}^{S} \left[f(\theta^{(s)}) q(\theta^{(s)} \mid y) \right]}{\sum_{s=1}^{S} q(\theta^{(s)} \mid y)}$$

$$E_{p(\theta|y)}[f(\theta)] = \int f(\theta)p(\theta \mid y)d\theta,$$
 where
$$p(\theta \mid y) = \frac{p(y \mid \theta)p(\theta)}{\int p(y \mid \theta)p(\theta)d\theta}$$

We can easily evaluate $p(y \mid \theta)p(\theta)$ for any θ , but the integral $\int p(y \mid \theta)p(\theta)d\theta$ is usually difficult.

We can use the unnormalized posterior $q(\theta \mid y) = p(y \mid \theta)p(\theta)$, for example, in

Grid (equal spacing) evaluation with self-normalization

$$E_{p(\theta|y)}[f(\theta)] \approx \frac{\sum_{s=1}^{S} \left[f(\theta^{(s)}) q(\theta^{(s)} \mid y) \right]}{\sum_{s=1}^{S} q(\theta^{(s)} \mid y)}$$

• Monte Carlo methods which can sample from $p(\theta^{(s)} \mid y)$ using only $q(\theta^{(s)} \mid y)$

$$E_{p(\theta|y)}[f(\theta)] \approx \frac{1}{S} \sum_{s=1}^{S} f(\theta^{(s)})$$

Monte Carlo

- Monte Carlo methods we have discussed so far
 - Inverse CDF works for 1D
 - Analytic transformations work for only certain distributions
 - Factorization works only for certain joint distributions
 - Grid evaluation and sampling works in a few dimensions
 - Rejection sampling works mostly in 1D (truncation is a special case)
 - Importance sampling is reliable only in special cases

Monte Carlo

- Monte Carlo methods we have discussed so far
 - Inverse CDF works for 1D
 - Analytic transformations work for only certain distributions
 - Factorization works only for certain joint distributions
 - Grid evaluation and sampling works in a few dimensions
 - Rejection sampling works mostly in 1D (truncation is a special case)
 - Importance sampling is reliable only in special cases

Monte Carlo

- Monte Carlo methods we have discussed so far
 - Inverse CDF works for 1D
 - Analytic transformations work for only certain distributions
 - Factorization works only for certain joint distributions
 - Grid evaluation and sampling works in a few dimensions
 - Rejection sampling works mostly in 1D (truncation is a special case)
 - Importance sampling is reliable only in special cases
- What to do in high dimensions?
 - Markov chain Monte Carlo (Ch 11-12)
 - Laplace, Variational*, EP* (Ch 4,13*)

Automatically focuses density evaluations where most of the posterior mass is

- Andrey Markov proved weak law of large numbers and central limit theorem for certain dependent-random sequences, which were later named Markov chains
 - CLT saying the sum / mean converges towards normal if the variance is finite

- Andrey Markov proved weak law of large numbers and central limit theorem for certain dependent-random sequences, which were later named Markov chains
 - CLT saying the sum / mean converges towards normal if the variance is finite
- The probability of each event depends only on the state attained in the previous event (or finite number of previous events)

- Andrey Markov proved weak law of large numbers and central limit theorem for certain dependent-random sequences, which were later named Markov chains
 - CLT saying the sum / mean converges towards normal if the variance is finite
- The probability of each event depends only on the state attained in the previous event (or finite number of previous events)
- Markov estimated the transition probabilities for the 20 000 first wovels and consonants in Pushkin's novel "Yevgeniy Onegin"

- Andrey Markov proved weak law of large numbers and central limit theorem for certain dependent-random sequences, which were later named Markov chains
 - CLT saying the sum / mean converges towards normal if the variance is finite
- The probability of each event depends only on the state attained in the previous event (or finite number of previous events)
- Markov estimated the transition probabilities for the 20 000 first wovels and consonants in Pushkin's novel "Yevgeniy Onegin"
 - Markov's model was a very small language model

Markov chain and language models (off-topic)

- Deep learning language models are super big Markov models
- Brian Hayes, 1983, in American Statistican, experimented with 0-8th order Markov chains for producing text. For example, using William Faulkner's story "Two Soldiers" to compute 8th order transition probabilities and then randomly generate text:

Markov chain and language models (off-topic)

- Deep learning language models are super big Markov models
- Brian Hayes, 1983, in American Statistican, experimented with 0-8th order Markov chains for producing text. For example, using William Faulkner's story "Two Soldiers" to compute 8th order transition probabilities and then randomly generate text:

"Who let you in here?" he said. "Go on, beat it." "Durn that," I said, "They got to have wood and water. I can chop it and tote it. Come on," I said, "Where's Pete?" And he looked jest like Pete first soldier hollered. When he got on the table, he come in. He never come out of my own pocket as a measure of protecting the company against riot and bloodshed. And when he said. "You tell me a bus ticket, let alone write out no case histories. Then the law come back with a knife!"

Markov chain and language models (off-topic)

- Deep learning language models are super big Markov models
- Brian Hayes, 1983, in American Statistican, experimented with 0-8th order Markov chains for producing text. For example, using William Faulkner's story "Two Soldiers" to compute 8th order transition probabilities and then randomly generate text:

"Who let you in here?" he said. "Go on, beat it." "Durn that," I said,
"They got to have wood and water. I can chop it and tote it. Come on,"
I said, "Where's Pete?" And he looked jest like Pete first soldier
hollered. When he got on the table, he come in. He never come out of
my own pocket as a measure of protecting the company against riot
and bloodshed. And when he said. "You tell me a bus ticket, let alone
write out no case histories. Then the law come back with a knife!"

 In Markov chain Monte Carlo we are not interested in the sequences directly, but how likely each state is in a long sequence

• Example of a simple Markov chain

• Example of a simple Markov chain

 Given known transition probabilities, we can simulate the Markov process and count how often each state is visited

Example of a simple Markov chain

Example of a simple Markov chain

 Given known transition probabilities, we can simulate the Markov process and count how often each state is visited
 aabbaabbbbbbaaaaaaaabbaaaaabbaaaaaab

$$p(\mathbf{a}) \approx \frac{1}{S} \sum_{s=1}^{S} I(\text{state} = \mathbf{a})$$

Example of a simple Markov chain

 Given known transition probabilities, we can simulate the Markov process and count how often each state is visited
 aabbaabbbbbbaaaaaaaabbaaaaabbaaaaaab

$$p(\mathbf{a}) \approx \frac{1}{S} \sum_{s=1}^{S} I(\text{state} = \mathbf{a}) = 0.7$$

Example of a simple Markov chain

 Given known transition probabilities, we can simulate the Markov process and count how often each state is visited
 aabbaabbbbbbaaaaaaaabbaaaaaabbaaaaaab

$$p(\mathbf{a}) \approx \frac{1}{S} \sum_{s=1}^{S} I(\text{state} = \mathbf{a}) = 0.7$$

 In discrete case we can also find the marginal probabilities by examining the transition probability matrix

$$A = \begin{pmatrix} 0.8 & 0.2 \\ 0.6 & 0.4 \end{pmatrix}$$

Example of a simple Markov chain

$$p(\mathbf{a}) \approx \frac{1}{S} \sum_{s=1}^{S} I(\text{state} = \mathbf{a}) = 0.7$$

 In discrete case we can also find the marginal probabilities by examining the transition probability matrix

$$A = \begin{pmatrix} 0.8 & 0.2 \\ 0.6 & 0.4 \end{pmatrix} \quad A^s = \begin{pmatrix} 0.75 & 0.75 \\ 0.25 & 0.25 \end{pmatrix},$$

Example of a simple Markov chain

 Given known transition probabilities, we can simulate the Markov process and count how often each state is visited

$$p(\mathbf{a}) \approx \frac{1}{S} \sum_{s=1}^{S} I(\text{state} = \mathbf{a}) = 0.7$$

 In discrete case we can also find the marginal probabilities by examining the transition probability matrix

$$A = \begin{pmatrix} 0.8 & 0.2 \\ 0.6 & 0.4 \end{pmatrix}$$
 $A^s = \begin{pmatrix} 0.75 & 0.75 \\ 0.25 & 0.25 \end{pmatrix}$, where $S \ge 3$ for 2 digit accuracy

• Example of a simple Markov chain

• Given known transition probabilities, we can simulate the Markov process and count how often each state is visited

$$p(\mathbf{a}) \approx \frac{1}{S} \sum_{n=1}^{S} I(\text{state} = \mathbf{a}) = 0.7$$

 In discrete case we can also find the marginal probabilities by examining the transition probability matrix

$$A = \begin{pmatrix} 0.8 & 0.2 \\ 0.6 & 0.4 \end{pmatrix}$$
 $A^s = \begin{pmatrix} 0.75 & 0.75 \\ 0.25 & 0.25 \end{pmatrix}$, where $S \ge 3$ for 2 digit accuracy

• From A^s we get p(a) = 0.75 and p(b) = 0.25

 In continuous case, we can't compute the full transition matrix, but we can use conditional transition probabilities to simulate

- In continuous case, we can't compute the full transition matrix, but we can use conditional transition probabilities to simulate
- Produce draws $\theta^{(t)}$, given $\theta^{(t-1)}$, from a Markov chain, constructed so that the equilibrium distribution is $p(\theta \mid y)$

- In continuous case, we can't compute the full transition matrix, but we can use conditional transition probabilities to simulate
- Produce draws $\theta^{(t)}$, given $\theta^{(t-1)}$, from a Markov chain, constructed so that the equilibrium distribution is $p(\theta \mid y)$
 - + generic
 - combine sequence of easier Monte Carlo draws to form a Markov chain

- In continuous case, we can't compute the full transition matrix, but we can use conditional transition probabilities to simulate
- Produce draws $\theta^{(t)}$, given $\theta^{(t-1)}$, from a Markov chain, constructed so that the equilibrium distribution is $p(\theta \mid y)$
 - + generic
 - combine sequence of easier Monte Carlo draws to form a Markov chain
 - + chain goes where most of the posterior mass is
 - + asymptotically chain spends the $\alpha\%$ of time where $\alpha\%$ posterior mass is

- In continuous case, we can't compute the full transition matrix, but we can use conditional transition probabilities to simulate
- Produce draws $\theta^{(t)}$, given $\theta^{(t-1)}$, from a Markov chain, constructed so that the equilibrium distribution is $p(\theta \mid y)$
 - + generic
 - combine sequence of easier Monte Carlo draws to form a Markov chain
 - + chain goes where most of the posterior mass is
 - + asymptotically chain spends the $\alpha\%$ of time where $\alpha\%$ posterior mass is
 - + central limit theorem holds for expectations

Markov chain Monte Carlo (MCMC)

- In continuous case, we can't compute the full transition matrix, but we can use conditional transition probabilities to simulate
- Produce draws $\theta^{(t)}$, given $\theta^{(t-1)}$, from a Markov chain, constructed so that the equilibrium distribution is $p(\theta \mid y)$
 - + generic
 - combine sequence of easier Monte Carlo draws to form a Markov chain
 - + chain goes where most of the posterior mass is
 - + asymptotically chain spends the $\alpha\%$ of time where $\alpha\%$ posterior mass is
 - + central limit theorem holds for expectations
 - draws are dependent
 - construction of efficient Markov chains is not always easy

Markov chain

• Set of random variables $\theta^1, \theta^2, \ldots$, so that with all values of t, θ^t depends only on the previous $\theta^{(t-1)}$

$$p(\theta^t \mid \theta^1, \dots, \theta^{(t-1)}) = p(\theta^t \mid \theta^{(t-1)})$$

Markov chain

• Set of random variables $\theta^1, \theta^2, \ldots$, so that with all values of t, θ^t depends only on the previous $\theta^{(t-1)}$

$$p(\theta^t \mid \theta^1, \dots, \theta^{(t-1)}) = p(\theta^t \mid \theta^{(t-1)})$$

• Chain has to be initialized with some starting point θ^0

Markov chain

• Set of random variables $\theta^1, \theta^2, \ldots$, so that with all values of t, θ^t depends only on the previous $\theta^{(t-1)}$

$$p(\theta^t \mid \theta^1, \dots, \theta^{(t-1)}) = p(\theta^t \mid \theta^{(t-1)})$$

- Chain has to be initialized with some starting point θ^0
- Transition distribution $T_t(\theta^t \mid \theta^{t-1})$ (may depend on t)
 - by choosing a suitable transition distribution, the stationary distribution of Markov chain is p(θ | y)

- Alternate sampling from 1D conditional distributions
 - e.g. normal distribution, sample alternating from $p(\mu \mid \sigma^2, y)$ and $p(\sigma^2 \mid \mu, y)$

- Alternate sampling from 1D conditional distributions
 - e.g. normal distribution, sample alternating from $p(\mu \mid \sigma^2, y)$ and $p(\sigma^2 \mid \mu, y)$

Joint posterior

- Alternate sampling from 1D conditional distributions
 - e.g. normal distribution, sample alternating from $p(\mu \mid \sigma^2, y)$ and $p(\sigma^2 \mid \mu, y)$

Joint posterior

1D is easy even if no conjugate prior and analytic posterior

- Alternate sampling from 1D conditional distributions
- demo11 1

Draws — Steps of the sampler — 90% HPD

- Alternate sampling from 1D conditional distributions
- demo11 1

Draws — Steps of the sampler — 90% HPD

Basic algorithm

sample
$$\theta_j^t$$
 from $p(\theta_j \mid \theta_{-j}^{t-1}, y)$, where $\theta_{-j}^{t-1} = (\theta_1^t, \dots, \theta_{j-1}^t, \theta_{j+1}^{t-1}, \dots, \theta_d^{t-1})$

- With conditionally conjugate priors, the sampling from the conditional distributions is easy for wide range of models
 - BUGS/WinBUGS/OpenBUGS/JAGS

- With conditionally conjugate priors, the sampling from the conditional distributions is easy for wide range of models
 - BUGS/WinBUGS/OpenBUGS/JAGS
- No algorithm parameters to tune (cf. proposal distribution in Metropolis algorithm)

- With conditionally conjugate priors, the sampling from the conditional distributions is easy for wide range of models
 - BUGS/WinBUGS/OpenBUGS/JAGS
- No algorithm parameters to tune (cf. proposal distribution in Metropolis algorithm)
- For not so easy conditionals, use e.g. inverse-CDF

- With conditionally conjugate priors, the sampling from the conditional distributions is easy for wide range of models
 - BUGS/WinBUGS/OpenBUGS/JAGS
- No algorithm parameters to tune (cf. proposal distribution in Metropolis algorithm)
- For not so easy conditionals, use e.g. inverse-CDF
- Several parameters can be updated in blocks (blocking)

- With conditionally conjugate priors, the sampling from the conditional distributions is easy for wide range of models
 - BUGS/WinBUGS/OpenBUGS/JAGS
- No algorithm parameters to tune (cf. proposal distribution in Metropolis algorithm)
- For not so easy conditionals, use e.g. inverse-CDF
- Several parameters can be updated in blocks (blocking)
- Slow if parameters are highly dependent in the posterior
 - demo11_1 continues

Conditional vs joint

- How about sampling θ jointly?
 - e.g. it is easy to sample from multivariate normal

Conditional vs joint

- How about sampling θ jointly?
 - e.g. it is easy to sample from multivariate normal
- Can we use that to form a Markov chain?

- Algorithm
 - 1. starting point θ^0
 - 2. $t = 1, 2, \dots$
 - (a) pick a proposal θ^* from the proposal distribution $J_t(\theta^* \mid \theta^{t-1})$. Proposal distribution has to be symmetric, i.e.

```
J_t(\theta_a \mid \theta_b) = J_t(\theta_b \mid \theta_a), for all \theta_a, \theta_b
```

- Algorithm
 - 1. starting point θ^0
 - 2. $t = 1, 2, \dots$
 - (a) pick a proposal θ^* from the proposal distribution $J_t(\theta^* \mid \theta^{t-1})$. Proposal distribution has to be symmetric, i.e.

$$J_t(\theta_a \mid \theta_b) = J_t(\theta_b \mid \theta_a)$$
, for all θ_a, θ_b

(b) calculate acceptance ratio

$$r = \frac{p(\theta^* \mid y)}{p(\theta^{t-1} \mid y)}$$

- Algorithm
 - 1. starting point θ^0
 - 2. $t = 1, 2, \dots$
 - (a) pick a proposal θ^* from the proposal distribution $J_t(\theta^* \mid \theta^{t-1})$. Proposal distribution has to be symmetric, i.e.

$$J_t(\theta_a \mid \theta_b) = J_t(\theta_b \mid \theta_a)$$
, for all θ_a, θ_b

(b) calculate acceptance ratio

(c) set
$$r = \frac{p(\theta^* \mid y)}{p(\theta^{t-1} \mid y)}$$

$$\theta^t = \begin{cases} \theta^* & \text{with probability } \min(r,1) \\ \theta^{t-1} & \text{otherwise} \end{cases}$$

- Algorithm
 - 1. starting point θ^0
 - 2. $t = 1, 2, \dots$
 - (a) pick a proposal θ^* from the proposal distribution $J_t(\theta^* \mid \theta^{t-1})$. Proposal distribution has to be symmetric, i.e.

$$J_t(\theta_a \mid \theta_b) = J_t(\theta_b \mid \theta_a)$$
, for all θ_a, θ_b

(b) calculate acceptance ratio

$$r = \frac{p(\theta^* \mid y)}{p(\theta^{t-1} \mid y)}$$

(c) set

$$\theta^t = \begin{cases} \theta^* & \text{with probability } \min(r, 1) \\ \theta^{t-1} & \text{otherwise} \end{cases}$$

ie, if $p(\theta^* \mid y) > p(\theta^{t-1} \mid y)$ accept the proposal always and otherwise accept the proposal with probability r

- Algorithm
 - 1. starting point θ^0
 - 2. $t = 1, 2, \dots$
 - (a) pick a proposal θ^* from the proposal distribution $J_t(\theta^* \mid \theta^{t-1})$. Proposal distribution has to be symmetric, i.e.

$$J_t(\theta_a \mid \theta_b) = J_t(\theta_b \mid \theta_a)$$
, for all θ_a, θ_b

(b) calculate acceptance ratio

$$r = \frac{p(\theta^* \mid y)}{p(\theta^{t-1} \mid y)}$$
 (c) set
$$\theta^t = \begin{cases} \theta^* & \text{with probability } \min(r,1) \\ \theta^{t-1} & \text{otherwise} \end{cases}$$

 rejection of a proposal increments the time t also by one ie, the new state is the same as previous

- Algorithm
 - 1. starting point θ^0
 - 2. $t = 1, 2, \dots$
 - (a) pick a proposal θ^* from the proposal distribution $J_t(\theta^* \mid \theta^{t-1})$. Proposal distribution has to be symmetric, i.e. $J_t(\theta_a \mid \theta_b) = J_t(\theta_b \mid \theta_a)$, for all θ_a, θ_b

$$J_t(\theta_a \mid \theta_b) = J_t(\theta_b \mid \theta_a), \mathbb{R}$$

(b) calculate acceptance ratio

$$r = \frac{p(\theta^* \mid y)}{p(\theta^{t-1} \mid y)}$$
 (c) set
$$\theta^t = \begin{cases} \theta^* & \text{with probability } \min(r,1) \\ \theta^{t-1} & \text{otherwise} \end{cases}$$

- rejection of a proposal increments the time t also by one ie, the new state is the same as previous
- step c is executed by generating a random number from $U(0,1)\,$

- Algorithm
 - 1. starting point θ^0
 - 2. $t = 1, 2, \dots$
 - (a) pick a proposal θ^* from the proposal distribution $J_t(\theta^* \mid \theta^{t-1})$. Proposal distribution has to be symmetric, i.e. $J_t(\theta_a \mid \theta_b) = J_t(\theta_b \mid \theta_a)$, for all θ_a, θ_b
 - (b) calculate acceptance ratio

$$r = \frac{p(\theta^* \mid y)}{p(\theta^{t-1} \mid y)}$$
 (c) set
$$\theta^t = \begin{cases} \theta^* & \text{with probability } \min(r,1) \\ \theta^{t-1} & \text{otherwise} \end{cases}$$

- rejection of a proposal increments the time t also by one ie, the new state is the same as previous
- step c is executed by generating a random number from U(0,1)
- $p(\theta^* \mid y)$ and $p(\theta^{t-1} \mid y)$ have the same normalization terms, and thus instead of $p(\cdot \mid y)$, unnormalized $q(\cdot \mid y)$ can be used, as the normalization terms cancel out!

- Example: one bivariate observation (y_1, y_2)
 - bivariate normal distribution with unknown mean and known covariance

$$\begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix} \middle| y \sim N \begin{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \end{pmatrix}$$

- proposal distribution $J_t(\theta^* \mid \theta^{t-1}) = N(\theta^* \mid \theta^{t-1}, \sigma_p^2)$
- demo11_2

- Example: one bivariate observation (y_1, y_2)
 - bivariate normal distribution with unknown mean and known covariance

$$\begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix} \middle| y \sim N \begin{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \end{pmatrix}$$

- proposal distribution $J_t(\theta^* \mid \theta^{t-1}) = N(\theta^* \mid \theta^{t-1}, \sigma_p^2)$
- demo11_2
- More examples https://chi-feng.github.io/mcmc-demo/

 Intuitively more draws from the higher density areas as jumps to higher density are always accepted and only some of the jumps to the lower density are accepted

 Intuitively more draws from the higher density areas as jumps to higher density are always accepted and only some of the jumps to the lower density are accepted

Theoretically

- 1. Prove that simulated series is a Markov chain which has unique stationary distribution
- Prove that this stationary distribution is the desired target distribution

- 1. Prove that simulated series is a Markov chain which has unique stationary distribution
 - a) irreducible
 - b) aperiodic

c) recurrent / not transient

- 1. Prove that simulated series is a Markov chain which has unique stationary distribution
 - a) irreducible
 - positive probability of eventually reaching any state from any other state
 - b) aperiodic

c) recurrent / not transient

- 1. Prove that simulated series is a Markov chain which has unique stationary distribution
 - a) irreducible
 - positive probability of eventually reaching any state from any other state
 - b) aperiodic
 - = aperiodic (return times are not periodic)
 - holds for a random walk on any proper distribution (except for trivial exceptions)
 - c) recurrent / not transient

- Prove that simulated series is a Markov chain which has unique stationary distribution
 - a) irreducible
 - positive probability of eventually reaching any state from any other state
 - b) aperiodic
 - = aperiodic (return times are not periodic)
 - holds for a random walk on any proper distribution (except for trivial exceptions)
 - c) recurrent / not transient
 - = probability to return to a state i is 1
 - holds for a random walk on any proper distribution (except for trivial exceptions)

- 2. Prove that this stationary distribution is the desired target distribution $p(\theta \mid y)$
 - consider starting algorithm at time t-1 with a draw $\theta^{t-1} \sim p(\theta \mid y)$

- 2. Prove that this stationary distribution is the desired target distribution $p(\theta \mid y)$
 - consider starting algorithm at time t-1 with a draw $\theta^{t-1} \sim p(\theta \mid y)$
 - consider any two such points θ_a and θ_b drawn from $p(\theta \mid y)$ and labeled so that $p(\theta_b \mid y) \ge p(\theta_a \mid y)$

- 2. Prove that this stationary distribution is the desired target distribution $p(\theta \mid y)$
 - consider starting algorithm at time t-1 with a draw $\theta^{t-1} \sim p(\theta \mid y)$
 - consider any two such points θ_a and θ_b drawn from $p(\theta \mid y)$ and labeled so that $p(\theta_b \mid y) \ge p(\theta_a \mid y)$
 - the unconditional probability density of a transition from θ_a to θ_b is $p(\theta^{t-1} = \theta_a, \theta^t = \theta_b) = p(\theta_a \mid y)J_t(\theta_b \mid \theta_a),$

- 2. Prove that this stationary distribution is the desired target distribution $p(\theta \mid y)$
 - consider starting algorithm at time t-1 with a draw $\theta^{t-1} \sim p(\theta \mid y)$
 - consider any two such points θ_a and θ_b drawn from $p(\theta \mid y)$ and labeled so that $p(\theta_b \mid y) \ge p(\theta_a \mid y)$
 - the unconditional probability density of a transition from θ_a to θ_b is $p(\theta^{t-1} = \theta_a, \theta^t = \theta_b) = p(\theta_a \mid y)J_t(\theta_b \mid \theta_a),$
 - the unconditional probability density of a transition from θ_b to θ_a is

$$p(\theta^{t-1} = \theta_b, \theta^t = \theta_a) = p(\theta_b \mid y)J_t(\theta_a \mid \theta_b) \left(\frac{p(\theta_a \mid y)}{p(\theta_b \mid y)}\right)$$
$$= p(\theta_a \mid y)J_t(\theta_a \mid \theta_b),$$

- 2. Prove that this stationary distribution is the desired target distribution $p(\theta \mid y)$
 - consider starting algorithm at time t-1 with a draw $\theta^{t-1} \sim p(\theta \mid y)$
 - consider any two such points θ_a and θ_b drawn from $p(\theta \mid y)$ and labeled so that $p(\theta_b \mid y) \ge p(\theta_a \mid y)$
 - the unconditional probability density of a transition from θ_a to θ_b is $p(\theta^{t-1} = \theta_a, \theta^t = \theta_b) = p(\theta_a \mid y)J_t(\theta_b \mid \theta_a),$
 - the unconditional probability density of a transition from θ_b to θ_a is

$$p(\theta^{t-1} = \theta_b, \theta^t = \theta_a) = p(\theta_b \mid y)J_t(\theta_a \mid \theta_b) \left(\frac{p(\theta_a \mid y)}{p(\theta_b \mid y)}\right)$$
$$= p(\theta_a \mid y)J_t(\theta_a \mid \theta_b),$$

which is the same as the probability of transition from θ_a to θ_b , since we have required that $J_t(\cdot \mid \cdot)$ is symmetric

Why Metropolis algorithm works

- 2. Prove that this stationary distribution is the desired target distribution $p(\theta \mid y)$
 - consider starting algorithm at time t-1 with a draw $\theta^{t-1} \sim p(\theta \mid y)$
 - consider any two such points θ_a and θ_b drawn from $p(\theta \mid y)$ and labeled so that $p(\theta_b \mid y) \ge p(\theta_a \mid y)$
 - the unconditional probability density of a transition from θ_a to θ_b is $p(\theta^{t-1} = \theta_a, \theta^t = \theta_b) = p(\theta_a \mid y)J_t(\theta_b \mid \theta_a),$
 - the unconditional probability density of a transition from θ_b to θ_a is

$$p(\theta^{t-1} = \theta_b, \theta^t = \theta_a) = p(\theta_b \mid y)J_t(\theta_a \mid \theta_b) \left(\frac{p(\theta_a \mid y)}{p(\theta_b \mid y)}\right)$$
$$= p(\theta_a \mid y)J_t(\theta_a \mid \theta_b),$$

which is the same as the probability of transition from θ_a to θ_b , since we have required that $J_t(\cdot \mid \cdot)$ is symmetric

- since their joint distribution is symmetric, θ^{t-1} and θ^t have the same marginal distributions, and so $p(\theta \mid y)$ is the stationary distribution of the Markov chain of θ

- Generalization of Metropolis algorithm for non-symmetric proposal distributions
 - acceptance ratio includes ratio of proposal distributions

$$r = \frac{p(\theta^* \mid y)/J_t(\theta^* \mid \theta^{t-1})}{p(\theta^{t-1} \mid y)/J_t(\theta^{t-1} \mid \theta^*)}$$

- Generalization of Metropolis algorithm for non-symmetric proposal distributions
 - acceptance ratio includes ratio of proposal distributions

$$r = \frac{p(\theta^* \mid y)/J_t(\theta^* \mid \theta^{t-1})}{p(\theta^{t-1} \mid y)/J_t(\theta^{t-1} \mid \theta^*)} = \frac{p(\theta^* \mid y)J_t(\theta^{t-1} \mid \theta^*)}{p(\theta^{t-1} \mid y)J_t(\theta^* \mid \theta^{t-1})}$$

- Ideal proposal distribution is the distribution itself
 - $J(\theta^* \mid \theta) \equiv p(\theta^* \mid y)$ for all θ
 - acceptance probability is 1
 - independent draws
 - not usually feasible

- Ideal proposal distribution is the distribution itself
 - $J(\theta^* \mid \theta) \equiv p(\theta^* \mid y)$ for all θ
 - acceptance probability is 1
 - independent draws
 - not usually feasible
- Good proposal distribution resembles the target distribution
 - if the shape of the target distribution is unknown, usually normal or t distribution is used

- Ideal proposal distribution is the distribution itself
 - $J(\theta^* \mid \theta) \equiv p(\theta^* \mid y)$ for all θ
 - acceptance probability is 1
 - independent draws
 - not usually feasible
- Good proposal distribution resembles the target distribution
 - if the shape of the target distribution is unknown, usually normal or t distribution is used
- After the shape has been selected, it is important to select the scale
 - small scale
 - ightarrow many steps accepted, but the chain moves slowly due to small steps
 - big scale
 - \rightarrow long steps proposed, but many of those rejected and again chain moves slowly

- Ideal proposal distribution is the distribution itself
 - $J(\theta^* \mid \theta) \equiv p(\theta^* \mid y)$ for all θ
 - acceptance probability is 1
 - independent draws
 - not usually feasible
- Good proposal distribution resembles the target distribution
 - if the shape of the target distribution is unknown, usually normal or t distribution is used
- After the shape has been selected, it is important to select the scale
 - small scale
 - ightarrow many steps accepted, but the chain moves slowly due to small steps
 - big scale
 - ightarrow long steps proposed, but many of those rejected and again chain moves slowly
- Generic rule for rejection rate is 60-90% (but depends on dimensionality and a specific algorithm variation)

Gibbs sampling

- Specific case of Metropolis-Hastings algorithm
 - single updated (or blocked)
 - proposal distribution is the conditional distribution
 - \rightarrow proposal and target distributions are same
 - ightarrow acceptance probability is 1

Metropolis

- Usually doesn't scale well to high dimensions
 - if the shape doesn't match the whole distribution, the efficiency drops
 - demo11 2

Draws—Steps of the sampler—90% HPI

Draws—Steps of the sampler—90% HPI

Dynamic Hamiltonian Monte Carlo and NUTS

- Chapter 12 presents some more advanced methods
 - Chapter 12 includes Hamiltonian Monte Carlo and NUTS, which is one of the most efficient methods
 - uses gradient information
 - Hamiltonian dynamic simulation reduces random walk
 - state-of-the-art MCMC used by most modern probabilistic programming frameworks
- More next week

HMC / NUTS

Comparison of algorithms on **highly correlated** 250-dimensional Gaussian distribution

- •Do **1,000,000** draws with both Random Walk Metropolis and Gibbs, thinning by 1000
- •Do 1,000 draws using Stan's NUTS algorithm (no thinning)
- •Do 1,000 independent draws (we can do this for multivariate normal)

• Asymptotically chain spends the $\alpha\%$ of time where $\alpha\%$ posterior mass is

- Asymptotically chain spends the $\alpha\%$ of time where $\alpha\%$ posterior mass is
 - but in finite time the initial part of the chain may be non-representative and lower error of the estimate can be obtained by throwing it away

Draws—Steps of the sampler—90% HP

- Asymptotically chain spends the $\alpha\%$ of time where $\alpha\%$ posterior mass is
 - but in finite time the initial part of the chain may be non-representative and lower error of the estimate can be obtained by throwing it away

- Draws—Steps of the sampler—90% HP
- Warm-up = remove draws from the beginning of the chain
 - warm-up may include also phase for adapting algorithm parameters

- Asymptotically chain spends the $\alpha\%$ of time where $\alpha\%$ posterior mass is
 - but in finite time the initial part of the chain may be non-representative and lower error of the estimate can be obtained by throwing it away

- Draws—Steps of the sampler—90% HP
- Warm-up = remove draws from the beginning of the chain
 - warm-up may include also phase for adapting algorithm parameters
- Convergence diagnostics
 - Is the sample representative of the target distribution?

MCMC draws are dependent

 Monte Carlo estimates still valid (central limit theorem holds as proved by Andrey Markov)

$$E_{p(\theta|y)}[f(\theta)] \approx \frac{1}{S} \sum_{s=1}^{S} f(\theta^{(s)})$$

- Estimation of Monte Carlo error is more difficult
 - dependency (due to the Markov process) reduces the efficiency

MCMC draws are dependent

 Monte Carlo estimates still valid (central limit theorem holds as proved by Andrey Markov)

$$E_{p(\theta|y)}[f(\theta)] \approx \frac{1}{S} \sum_{s=1}^{S} f(\theta^{(s)})$$

- Estimation of Monte Carlo error is more difficult
 - dependency (due to the Markov process) reduces the efficiency
 - evaluation of effective sample size (ESS)

MCMC draws are dependent

 Monte Carlo estimates still valid (central limit theorem holds as proved by Andrey Markov)

$$E_{p(\theta|y)}[f(\theta)] \approx \frac{1}{S} \sum_{s=1}^{S} f(\theta^{(s)})$$

- Estimation of Monte Carlo error is more difficult
 - dependency (due to the Markov process) reduces the efficiency
 - evaluation of effective sample size (ESS)
 - given finite variance, the distribution of the expectation approaches normal distribution with variance $\sigma_{\theta}^2/{\rm ESS}$

- Use of several chains make convergence diagnostics easier
- Start chains from different starting points preferably overdispersed

- Use of several chains make convergence diagnostics easier
- Start chains from different starting points preferably overdispersed

 Remove draws from the beginning of the chains and run chains long enough so that it is not possible to distinguish where each chain started and the chains are well mixed

Visual convergence check is not sufficient

- BDA3: \widehat{R} aka potential scale reduction factor (PSRF)
- Compare means and variances of the chains

- BDA3: \widehat{R} aka potential scale reduction factor (PSRF)
- Compare means and variances of the chains
 W = within chain variance estimate
 var_hat_plus = total variance estimate

- BDA3: \widehat{R} aka potential scale reduction factor (PSRF)
- Compare means and variances of the chains
 W = within chain variance estimate
 var_hat_plus = total variance estimate

- BDA3: \widehat{R} aka potential scale reduction factor (PSRF)
- Compare means and variances of the chains
 W = within chain variance estimate
 var_hat_plus = total variance estimate

 \widehat{R}

• M chains, each having N draws (with new \widehat{R} notation)

$$\widehat{R}$$

- *M* chains, each having *N* draws (with new \widehat{R} notation)
- Within chains variance W

$$W = \frac{1}{M} \sum_{m=1}^{M} s_m^2$$
, where $s_m^2 = \frac{1}{N-1} \sum_{n=1}^{N} (\theta_{nm} - \bar{\theta}_{.m})^2$

- M chains, each having N draws (with new \widehat{R} notation)
- Within chains variance W

$$W = \frac{1}{M} \sum_{m=1}^{M} s_m^2$$
, where $s_m^2 = \frac{1}{N-1} \sum_{n=1}^{N} (\theta_{nm} - \bar{\theta}_{.m})^2$

Between chains variance B

$$\begin{split} B &= \frac{N}{M-1} \sum_{m=1}^M (\bar{\theta}_{.m} - \bar{\theta}_{..})^2, \\ \text{where } \bar{\theta}_{.m} &= \frac{1}{N} \sum_{n=1}^N \theta_{nm}, \ \bar{\theta}_{..} = \frac{1}{M} \sum_{m=1}^M \bar{\theta}_{.m} \end{split}$$

- M chains, each having N draws (with new \widehat{R} notation)
- Within chains variance W

$$W = \frac{1}{M} \sum_{m=1}^{M} s_m^2, \text{ where } s_m^2 = \frac{1}{N-1} \sum_{n=1}^{N} (\theta_{nm} - \bar{\theta}_{.m})^2$$

Between chains variance B

$$B = \frac{N}{M-1} \sum_{m=1}^{M} (\bar{\theta}_{.m} - \bar{\theta}_{..})^{2},$$
 where $\bar{\theta}_{.m} = \frac{1}{N} \sum_{m=1}^{N} \theta_{nm}, \ \bar{\theta}_{..} = \frac{1}{M} \sum_{m=1}^{M} \bar{\theta}_{.m}$

• B/N is variance of the means of the chains

\widehat{R}

- M chains, each having N draws (with new \widehat{R} notation)
- Within chains variance W

$$W = \frac{1}{M} \sum_{m=1}^{M} s_m^2$$
, where $s_m^2 = \frac{1}{N-1} \sum_{m=1}^{N} (\theta_{nm} - \bar{\theta}_{.m})^2$

Between chains variance B

$$B = \frac{N}{M-1} \sum_{m=1}^{M} (\bar{\theta}_{.m} - \bar{\theta}_{..})^{2},$$
 where $\bar{\theta}_{.m} = \frac{1}{N} \sum_{m=1}^{N} \theta_{nm}, \ \bar{\theta}_{..} = \frac{1}{M} \sum_{m=1}^{M} \bar{\theta}_{.m}$

- B/N is variance of the means of the chains
- Estimate total variance $var(\theta \mid y)$ as a weighted mean of W and B

$$\widehat{\text{var}}^+(\theta \mid y) = \frac{N-1}{N}W + \frac{1}{N}B$$

• Estimate total variance $var(\theta \mid y)$ as a weighted mean of W and B

$$\widehat{\text{var}}^+(\theta \mid y) = \frac{N-1}{N}W + \frac{1}{N}B$$

 this overestimates marginal posterior variance if the starting points are overdispersed • Estimate total variance $var(\theta \mid y)$ as a weighted mean of W and B

$$\widehat{\text{var}}^+(\theta \mid y) = \frac{N-1}{N}W + \frac{1}{N}B$$

- this overestimates marginal posterior variance if the starting points are overdispersed
- Given finite N, W underestimates marginal posterior variance
 - single chains have not yet visited all points in the distribution
 - when $N \to \infty$, $E(W) \to var(\theta \mid y)$

• Estimate total variance $var(\theta \mid y)$ as a weighted mean of W and B

$$\widehat{\text{var}}^+(\theta \mid y) = \frac{N-1}{N}W + \frac{1}{N}B$$

- this overestimates marginal posterior variance if the starting points are overdispersed
- Given finite N, W underestimates marginal posterior variance
 - single chains have not yet visited all points in the distribution
 - when $N \to \infty$, $E(W) \to var(\theta \mid y)$
- As $\widehat{\text{var}}^+(\theta \mid y)$ overestimates and W underestimates, compute

$$\widehat{R} = \sqrt{\frac{\widehat{\text{var}}^+}{W}}$$

R

- BDA3: \widehat{R} aka potential scale reduction factor (PSRF)
- Compare means and variances of the chains
 W = within chain variance estimate
 var_hat_plus = total variance estimate

R

- BDA3: \widehat{R} aka potential scale reduction factor (PSRF)
- Compare means and variances of the chains
 W = within chain variance estimate
 var_hat_plus = total variance estimate

R

- BDA3: \widehat{R} aka potential scale reduction factor (PSRF)
- Compare means and variances of the chains
 W = within chain variance estimate
 var_hat_plus = total variance estimate

$$\widehat{R} = \sqrt{\frac{\widehat{\text{var}}^+}{W}}$$

- Estimates how much the scale of ψ could reduce if $N \to \infty$
- $\widehat{R} \to 1$, when $N \to \infty$
- if \widehat{R} is big (e.g., R > 1.01), keep sampling

$$\widehat{R}$$

$$\widehat{R} = \sqrt{\frac{\widehat{\text{var}}^+}{W}}$$

- Estimates how much the scale of ψ could reduce if $N \to \infty$
- $\widehat{R} \to 1$, when $N \to \infty$
- if \widehat{R} is big (e.g., R > 1.01), keep sampling
- If \widehat{R} close to 1, it is still possible that chains have not converged
 - if starting points were not overdispersed
 - distribution far from normal (especially if infinite variance)
 - just by chance when N is finite

Split- \widehat{R}

- BDA3: split- \widehat{R}
- Examines mixing and stationarity of chains
- To examine stationarity chains are split to two parts
 - after splitting, we have M chains, each having N draws
 - scalar draws θ_{nm} (n = 1, ..., N; m = 1, ..., M)
 - compare means and variances of the split chains

• Original \widehat{R} requires that the target distribution has finite mean and variance

- Original \widehat{R} requires that the target distribution has finite mean and variance
- Rank normalization fixes this and is also more robust given finite but high variance
 - inverse normal-cdf of ranks

- Original \widehat{R} requires that the target distribution has finite mean and variance
- Rank normalization fixes this and is also more robust given finite but high variance
 - inverse normal-cdf of ranks
- Folding improves detecting scale differences between chains

- Original \widehat{R} requires that the target distribution has finite mean and variance
- Rank normalization fixes this and is also more robust given finite but high variance
 - inverse normal-cdf of ranks
- Folding improves detecting scale differences between chains
- The original \widehat{R} is still needed for ESS/MCSE computation as shown later

- Original \widehat{R} requires that the target distribution has finite mean and variance
- Rank normalization fixes this and is also more robust given finite but high variance
 - inverse normal-cdf of ranks
- Folding improves detecting scale differences between chains
- The original \widehat{R} is still needed for ESS/MCSE computation as shown later
- Notation updated compared to BDA3

- Autocorrelation function
 - describes the correlation given a certain lag
 - can be used to compare efficiency of MCMC algorithms and parameterizations

Autocorrelation

Draws—Steps of the sampler—90% HPI

Autocorrelation

Autocorrelation

Autocorrelation (slow mixing due to small step size)

Autocorrelation (slow mixing due to many rejections)

- Time series analysis can be used to estimate Monte Carlo error in case of MCMC
- For expectation $\bar{\theta}$

$$Var[\bar{\theta}] = \frac{\sigma_{\theta}^2}{S_{\text{eff}}}$$

where $S_{\rm eff} = S/\tau$ (=ESS), and τ is sum of autocorrelations

- Time series analysis can be used to estimate Monte Carlo error in case of MCMC
- For expectation $\bar{\theta}$

$$Var[\bar{\theta}] = \frac{\sigma_{\theta}^2}{S_{\text{eff}}}$$

where $S_{\text{eff}} = S/\tau$ (=ESS), and τ is sum of autocorrelations

 ${f au}$ describes how many dependent draws correspond to one independent sample

- Time series analysis can be used to estimate Monte Carlo error in case of MCMC
- For expectation $\bar{\theta}$

$$Var[\bar{\theta}] = \frac{\sigma_{\theta}^2}{S_{\text{eff}}}$$

where $S_{\text{eff}} = S/\tau$ (=ESS), and τ is sum of autocorrelations

- τ describes how many dependent draws correspond to one independent sample
- new \widehat{R} paper S=NM (in BDA3 N=nm and $n_{\text{eff}}=N/\tau$)

- Time series analysis can be used to estimate Monte Carlo error in case of MCMC
- For expectation $\bar{\theta}$

$$Var[\bar{\theta}] = \frac{\sigma_{\theta}^2}{S_{\text{eff}}}$$

where $S_{\text{eff}} = S/\tau$ (=ESS), and τ is sum of autocorrelations

- ${f au}$ describes how many dependent draws correspond to one independent sample
- new R paper S = NM (in BDA3 N = nm and $n_{\text{eff}} = N/\tau$)
- BDA3 focuses on $S_{\rm eff}$ and not the Monte Carlo error directly new \widehat{R} paper discusses more about MCSEs for different quantities

Estimation of the autocorrelation using several chains

$$\hat{\rho}_n = 1 - \frac{W - \frac{1}{M} \sum_{m=1}^{M} \hat{\rho}_{n,m}}{2\widehat{\text{var}}^+}$$

Estimation of the autocorrelation using several chains

$$\hat{\rho}_n = 1 - \frac{W - \frac{1}{M} \sum_{m=1}^{M} \hat{\rho}_{n,m}}{2\widehat{\text{var}}^+}$$

- This combines \widehat{R} and autocorrelation estimates
 - takes into account if the chains are not mixing (the chains have not converged)

Estimation of the autocorrelation using several chains

$$\hat{\rho}_n = 1 - \frac{W - \frac{1}{M} \sum_{m=1}^{M} \hat{\rho}_{n,m}}{2\widehat{\text{var}}^+}$$

- This combines \widehat{R} and autocorrelation estimates
 - takes into account if the chains are not mixing (the chains have not converged)
- BDA3 has slightly different and less accurate equation. The above equation is used in Stan 2.18+

Estimation of the autocorrelation using several chains

$$\hat{\rho}_n = 1 - \frac{W - \frac{1}{M} \sum_{m=1}^{M} \hat{\rho}_{n,m}}{2\widehat{\text{var}}^+}$$

- This combines \widehat{R} and autocorrelation estimates
 - takes into account if the chains are not mixing (the chains have not converged)
- BDA3 has slightly different and less accurate equation. The above equation is used in Stan 2.18+
- Compared to a method which computes the autocorrelation from a single chain, the multi-chain estimate has smaller variance

• Estimation of τ

$$\tau = 1 + 2\sum_{t=1}^{\infty} \hat{\rho}_t$$

• Estimation of τ

$$\tau = 1 + 2\sum_{t=1}^{\infty} \hat{\rho}_t$$

• Estimation of τ

$$\tau = 1 + 2\sum_{t=1}^{\infty} \hat{\rho}_t$$

- empirical autocorrelation function is noisy and thus estimate of au is noisy
- noise is larger for longer lags (less observations)

• Estimation of τ

$$\tau = 1 + 2\sum_{t=1}^{\infty} \hat{\rho}_t$$

- empirical autocorrelation function is noisy and thus estimate of au is noisy
- noise is larger for longer lags (less observations)
- · less noisy estimate is obtained by truncating

$$\hat{\tau} = 1 + 2\sum_{t=1}^{T} \hat{\rho}_t$$

Geyer's adaptive window estimator

- Truncation can be decided adaptively
 - for stationary, irreducible, recurrent Markov chain
 - let $\Gamma_m = \rho_{2m} + \rho_{2m+1}$, which is sum of two consequent autocorrelations
 - Γ_m is positive, decreasing and convex function of m

Geyer's adaptive window estimator

- Truncation can be decided adaptively
 - for stationary, irreducible, recurrent Markov chain
 - let Γ_m = ρ_{2m} + ρ_{2m+1}, which is sum of two consequent autocorrelations
 - Γ_m is positive, decreasing and convex function of m
- Initial positive sequence estimator (Geyer's IPSE)
 - Choose the largest m so, that all values of the sequence $\hat{\Gamma}_1, \dots, \hat{\Gamma}_m$ are positive

Effective sample size

Effective sample size ESS = $S_{\text{eff}} \approx S/\hat{\tau}$

Effective sample size

Effective sample size ESS = $S_{\text{eff}} \approx S/\hat{\tau}$

$$\hat{\tau} = 1 + 2 \sum_{t=1}^{T} \hat{\rho}_{t}$$

$$\approx 24$$

Effective sample size

Effective sample size ESS = $S_{\text{eff}} \approx S/\hat{\tau}$

$$\hat{\tau} = 1 + 2 \sum_{t=1}^{T} \hat{\rho}_t$$

$$\approx 104$$

Effective sample size

Effective sample size ESS = $S_{\text{eff}} \approx S/\hat{\tau}$

$$\hat{\tau} = 1 + 2\sum_{t=1}^{T} \hat{\rho}_t$$

$$\approx 63$$

Monte Carlo standard error (MCSE)

- MCSE is obtained as discussed in lecture 4, but replacing the sample size S with the effective sample size ESS.
- See Digits case study for how many iterations to run and how many digits to report https://avehtari.github.io/casestudies/Digits/digits.html

ESS and MCSE in posterior package

Simulated 4 chains with AR(0.3) process

ESS and MCSE in posterior package

Simulated 4 chains with AR(0.3) process

variable	mean	sd	pareto_khat	ess_mean	mcse_mean
xn	0.01	0.99	-0.07	2280	0.02
xt3	0.02	1.6	0.33	2452	0.03
xt2	0.05	2.9	0.52	2903 .	. 0.05
xt1	0.33	93.	1.0	3976 .	. 1.5

ESS and MCSE in posterior package

Simulated 4 chains with AR(0.3) process

```
/variable mean pareto_khat ess_mean mcse_mean ess_q95 mcse_q95
       0.01
                 -0.07
                          2280.
                                  0.02
                                        3251.
                                                 0.04
хn
                 0.33
xt3
       0.02
                          2452. 0.03
                                        3251.
                                                0.09
xt2
       0.05
                 0.52
                         <del>2903.</del> 0.05
                                        3251.
                                                0.13
                1.0 <del>3976.</del> <del>1.5</del>
xt1
    0.33
                                        3251.
                                                 0.49
```

Bulk-ESS and Tail-ESS in posterior package

- ESS depends on the quantity
- For quick diagnostic purposes the default summary shows
 - median and median absolute deviation (mad), which are valid in case of infinite mean and variance, too
 - if mad is much smaller than sd, suspect infinite variance
 - Rank-normalized \widehat{R} rhat
 - Bulk-ESS (ess_bulk) is generic ESS for sampling efficiency in bulk using rank normalized values (works for infinite variance)
 - Tail-ESS (ess_tail) is the minimum ESS for 5%- and 95%-quantiles

drt |> summarise_draws()

variable	mean	median	sd	mad	q5	q95	rhat	ess_bulk	ess_tail	
xn	0.01	0.00	0.99	0.99	-1.6	1.6	1.00	2284.	3189.	
xt3	0.02	0.00	1.6	1.1	-2.3	2.3	1.00	2284.	3189.	
xt2	0.05	0.00	2.9	1.2	-2.8	2.9	1.00	2284.	3189.	
xt1	0.33	0.00	93.	1.5	-5.8	6.1	1.00	2284.	3189.	

ESS and MCSE

- ESS and MCSE depend on the quantity
 - Bulk-ESS and Tail-ESS are useful diagnostic summaries, but eventually need to look at the ESS / MCSE for the quantity of interest

Diagnostic tools

For this week's assignment:

- \widehat{R} , ESS, MCSE
 - library(posterior)
 - th |> summarise_draws(Rhat=basic_rhat, ESS=mean_ess)
 - th |> summarise_draws(mean, mean_mcse)
 - th |> summarize_draws(~quantile(.x, probs = c(0.05, 0.95)))
 - see demo11_5 and Digits case study for the examples how to use these

Diagnostic tools

For this week's assignment:

- \widehat{R} , ESS, MCSE
 - library(posterior)
 - th |> summarise_draws(Rhat=basic_rhat, ESS=mean_ess)
 - th |> summarise_draws(mean, mean_mcse)
 - th |> summarize_draws(~quantile(.x, probs = c(0.05, 0.95)))
 - see demo11_5 and Digits case study for the examples how to use these
- trace, autocorrelation, density, scatter plots in R
 - library(bayesplot)
 - mcmc_trace(th), mcmc_acf(th), mcmc_areas(th), ...
 - see demo11_5 for the examples for more bayesplot examples

Diagnostic tools

For this week's assignment:

- \widehat{R} , ESS, MCSE
 - library(posterior)
 - th |> summarise_draws(Rhat=basic_rhat, ESS=mean_ess)
 - th |> summarise_draws(mean, mean_mcse)
 - th |> summarize_draws(~quantile(.x, probs = c(0.05, 0.95)))
 - see demo11_5 and Digits case study for the examples how to use these
- trace, autocorrelation, density, scatter plots in R
 - library(bayesplot)
 - mcmc_trace(th), mcmc_acf(th), mcmc_areas(th), ...
 - see demo11_5 for the examples for more bayesplot examples
- Python
 - see ArviZ package

- Nonlinear dependencies
 - optimal proposal depends on location

- Nonlinear dependencies
 - optimal proposal depends on location
- Funnels
 - optimal proposal depends on location

- Nonlinear dependencies
 - optimal proposal depends on location
- Funnels
 - optimal proposal depends on location
- Multimodal
 - · difficult to move from one mode to another

- Nonlinear dependencies
 - optimal proposal depends on location
- Funnels
 - optimal proposal depends on location
- Multimodal
 - difficult to move from one mode to another
- Long-tailed with non-finite variance and mean
 - central limit theorem for expectations does not hold

Next week: HMC, NUTS, and dynamic HMC

Effective sample size ESS = $S_{\text{eff}} \approx S/\hat{\tau}$

theta1 —theta2

$$\hat{\tau} = 1 + 2 \sum_{t=1}^{T} \hat{\rho}$$

$$\approx 1.6$$

Further diagnostics

- Pareto- \hat{k} diagnostic for checking whether variance is finite
- Dynamic HMC/NUTS has additional diagnostics
 - divergences
 - tree depth exceedences

- Construct a Markov chain which has desired stationary distribution
 - most of the density evaluations will be made where most of posterior mass is, which helps to scale in higher dimensions
 - better Markov chains are more efficient per density evaluation

- Construct a Markov chain which has desired stationary distribution
 - most of the density evaluations will be made where most of posterior mass is, which helps to scale in higher dimensions
 - better Markov chains are more efficient per density evaluation
- MCMC estimate is biased towards the initial value
 - this bias can be non-negligible especially for short chains
 - the bias can be reduced by discarding the initial part of the chain
 - convergence diagnostics help to decide when the bias can be expected to be negligible

- Construct a Markov chain which has desired stationary distribution
 - most of the density evaluations will be made where most of posterior mass is, which helps to scale in higher dimensions
 - better Markov chains are more efficient per density evaluation
- MCMC estimate is biased towards the initial value
 - this bias can be non-negligible especially for short chains
 - the bias can be reduced by discarding the initial part of the chain
 - convergence diagnostics help to decide when the bias can be expected to be negligible
- MCMC draws are correlated in time, but CLT holds (given finite variance)
 - effective sample size estimates help to decide how many correlated draws are needed

- Construct a Markov chain which has desired stationary distribution
 - most of the density evaluations will be made where most of posterior mass is, which helps to scale in higher dimensions
 - better Markov chains are more efficient per density evaluation
- MCMC estimate is biased towards the initial value
 - this bias can be non-negligible especially for short chains
 - the bias can be reduced by discarding the initial part of the chain
 - convergence diagnostics help to decide when the bias can be expected to be negligible
- MCMC draws are correlated in time, but CLT holds (given finite variance)
 - effective sample size estimates help to decide how many correlated draws are needed
- Probabilistic programming frameworks
 - provide efficient MCMC algorithms that work well without manual tuning for many posterior distributions (more next week)