MAT 01375 – Matemática Discreta B 2009/2

Lista de Exercícios 10

1. Mostre, por indução, que:

a)
$$(\forall n \ge 0)$$
 $2 - 2 \cdot 7 + 2 \cdot 7^2 - \ldots + 2 \cdot (-7)^n = \frac{1 - (-7)^{n+1}}{4}$

b)
$$(\forall n \ge 1)$$
 $1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$

c)
$$(\forall n \ge 0)$$
 $1^2 + 3^2 + 5^2 + \dots + (2n+1)^2 = \frac{(n+1)(2n+1)(2n+3)}{3}$

d)
$$(\forall n \ge 1)$$
 1 · 1! + 2 · 2! + 3 · 3! + ... + $n \cdot n! = (n+1)! - 1$

e)
$$(\forall n \ge 4)$$
 $2^n \ge n^2$

f)
$$(\forall n \ge 1)$$
 $n! \le n^n$

g)
$$(\forall n \ge 0)$$
 $1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + n \cdot (n+1) = \frac{n(n+1)(n+2)}{3}$

h)
$$1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + 3 \cdot 4 \cdot 5 + \ldots + n \cdot (n+1) \cdot (n+2) = \frac{n(n+1)(n+2)(n+3)}{4}$$
 $(\forall n \ge 0)$

i)
$$(\forall n \ge 1)$$
 $1 + \frac{1}{4} + \frac{1}{9} + \ldots + \frac{1}{n^2} \le 2 - \frac{1}{n}$

- 2. Use indução para mostrar que $(\forall n \geq 0)$ $n^3 + 2n$ é divisível por 3.
- 3. Mostre, usando indução, que $(\forall n \geq 0)$ se $f(x) = x^n$ então $f'(x) = nx^{(n-1)}$.
- 4. Determine quais os valores de postagem que podem ser formados usando somente selos de 5u.m e 6u.m. Mostre o resultado obtido usando o 1° e o 2° Princípio de Indução.

5. Seja
$$A = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$$
, onde $a, b \in \mathbb{R}$. Mostre que $(\forall n \geq 0)$ $A^n = \begin{bmatrix} a^n & 0 \\ 0 & b^n \end{bmatrix}$.

6. Afirmação: $S_n = 1 + 2 + 3 + \cdots + n = \frac{(2n+1)^2}{8}$, $\forall n \geq 1$. Encontre o erro na seguinte "prova" dessa afirmação: suponhamos, por hipótese de indução, que a fórmula seja válida para um certo número natural n, ou seja, que vale $S_n = 1 + 2 + 3 + \cdots + n = \frac{(2n+1)^2}{8}$. Mostremos que a fórmula também é válida para n+1. De fato:

$$S_{n+1} = S_n + (n+1) = \frac{(2n+1)^2}{8} + (n+1) = \frac{4n^2 + 4n + 1}{8} + (n+1) = \frac{4n^2 + 4n + 1 + 8n + 8}{8} = \frac{4n^2 + 4n + 1 + 8n + 8}{8} = \frac{4n^2 + 12n + 9}{8} = \frac{(2n+3)^2}{8} = \frac{(2(n+1) + 1)^2}{8}.$$

Logo, pelo princípio da indução , $S_n = 1 + 2 + 3 + \cdots + n = \frac{(2n+1)^2}{8}$, para cada $n \ge 1$.

7. Considere a seqüência abaixo:

$$a_0 = 1$$
, $a_1 = 2$ e $a_n = \frac{(a_{n-1})^2}{a_{n-2}}$, para para $n \ge 2$

Conjecture uma fórmula geral para os termos desta seqüência e prove por indução a validade de sua fórmula.

8. • **Questão** 4 (2,5 pontos):

i) Mostre, por indução, que:

$$(\forall n \ge 1)$$
 $\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n \cdot (n+1)} = \frac{n}{n+1}.$

ii) Seja $a_0=1$ e, para n>0, seja $a_n=3\cdot a_{n-1}-1$. Mostre, por indução, que

$$(\forall n \ge 1) \quad a_n = \frac{3^n + 1}{2} \ .$$

9. • Questão 4 (2,5 pontos): Mostre, por indução, que:

i)
$$(\forall n \ge 1)$$
 $1 + a + a^2 + \ldots + a^n = \frac{a^{n+1} - 1}{a - 1}$.

ii)
$$(\forall n \ge 1)$$
 $1 + \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \ldots + \frac{1}{(2n-1) \cdot (2n+1)} = \frac{n}{2n+1}$.