Homework 8

Pranav Belligundu(psb898) - SDS 315 UT Austin

https://github.com/pranav-B21/SDS-315

Problem 1: regression warm up

A. Load and examine the data

```
##
## lm(formula = creatclear ~ age, data = creatinine)
## Residuals:
##
       Min
                  1Q
                       Median
                                    3Q
                                            Max
## -18.2249 -4.6175
                       0.2221
                                4.7212
                                       15.8221
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 147.81292
                            1.37965
                                    107.14
                                              <2e-16 ***
                                              <2e-16 ***
                -0.61982
                            0.03475
                                    -17.84
## age
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 6.911 on 155 degrees of freedom
## Multiple R-squared: 0.6724, Adjusted R-squared: 0.6703
## F-statistic: 318.2 on 1 and 155 DF, p-value: < 2.2e-16
## 113.723
          age
## -0.6198159
##
          1
## 11.97972
##
          1
## 1.376035
```

\mathbf{A}

The expected value for a 55-year old is 133.72 (mL/minute) clearance rate and I calcualted this through the lm function which gives me the intercept and the slope -> clearance rate = -0.6198159 (age) + 147.81292.

\mathbf{B}

For each increase in age by one, the creatine clearance rate decreases by -0.62 ml/minute per year with age. I got this value from the slope of the lin reg model.

\mathbf{C}

The difference in creatine rate for the 40 year old with a rate of 135 is 11.97 and the difference in creatine rate for the 60 year old with a rate of 112 is 1.38. Because the difference of the 40 year old is higher, they are more healthier for their age. I determined this by using the model to predict it based on their ages and subtracted the actual rate to find the difference.

Problem 2: Modeling disease growth

##	name	lower	upper	level	method	estimate
##	1 Intercept	0.5437208	1.6044025	0.95	percentile	1.0186023
##	2 days_since_first_death	0.1595732	0.2082654	0.95	percentile	0.1832180
##	3 sigma	0.5584201	0.8345044	0.95	percentile	0.7248213
##	4 r.squared	0.8543197	0.9328082	0.95	percentile	0.8950791
##	5 F	216.9807351	513.6625229	0.95	percentile	315.6466194

Italy: The growth rate with a 95% CI is between 0.159 and 0.208. The doubling time with a 95% CI is between 3.3 and 4.4 days.

##		name	lower	upper	level	method	estimate
##	1	Intercept	-0.1595855	1.2463876	0.95	percentile	0.4652173
##	2	${\tt days_since_first_death}$	0.2351316	0.3182956	0.95	percentile	0.2762447
##	3	sigma	0.5930165	0.9501547	0.95	percentile	0.8168767
##	4	r.squared	0.8317826	0.9398591	0.95	percentile	0.8893316
##	5	F	128.5619321	406.3180157	0.95	percentile	208.9360824

Spain: The growth rate with a 95% CI is between 0.234 and 0.318. The doubling time with a 95% CI is between 2.2 and 3.0 days.

Problem 3: price elasticity of demand

10

250

0

0

```
##
          name
                     lower
                                  upper level
                                                  method
                                                             estimate
## 1 Intercept
                                         0.95 percentile
                                                            4.7206042
                 4.5363627
                              4.8939185
## 2 log_price
                -1.7749846
                             -1.4517843
                                         0.95 percentile
                                                           -1.6185778
## 3
                                         0.95 percentile
         sigma
                 0.2314283
                              0.3001677
                                                            0.2687036
## 4 r.squared
                 0.6875275
                              0.8447800
                                         0.95 percentile
                                                            0.7772187
## 5
             F 250.8321060 620.4414497
                                         0.95 percentile 397.7126271
```

The estimated price elasticity of demand for milk is -1.62, with a 95% bootstrapped confidence interval between -1.77 and -1.45. To estimate this, I log-transformed both price and sales to linearize the power-law demand model Q=KP $^$, then used linear regression to estimate as the slope of log_sales on log_price. I computed the confidence interval using 10,000 bootstrap resamples.

20

Days Since First Reported Death

30