

13

Nuclear Physics

Nucleus

The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom.

Atomic Number (Z): Number of protons in a nucleus.

Mass Number (A): Number of protons + neutrons.

Propteries of Nucleus:

A Radius of nucleus, $R = R_0 A^{1/3}$ (Where $R_0 = 1.2 \times 10^{-15} \text{m}$)

• Volume of Nucleus,
$$V = \frac{4\pi R_0^3 A}{3}$$

• Density of Nucleus,
$$d = \frac{m}{v} = \frac{3m}{4\pi R_0^3} = 2.3 \times 10^7 \text{ Kg/m}^3$$

Mass Energy Equivalence Relation

According to Einstein; $[E = mc^2]$

$$1 \text{ amu} = 1.66 \times 10^{-27} \text{ kg} = 931.5 \text{ MeV}$$

(where E is total energy of mass m, c is speed of light)

Mass Defect: It is difference between total mass of nucleons and nucleus.

$$\Delta m = [Zm_{_{D}} + (A - Z)m_{_{D}}] - M_{_{nucleus}}$$

Binding Energy: The Energy required to bring the nucleons from infinity to form the nucleus.

• Binding Energy = $(\Delta m) \times 931.5 \text{ MeV}$

 $\Rightarrow Packing fraction = \frac{Mass excess}{Mass number}$

Nuclear Force

- Strongest force in nature.
- * Short range force.
- Charge independent.
- ❖ Depends on spin or angular moment of nuclei.
- * Non-central force.

Plot of Potential Energy Vs Distance

Important Features:

- Attraction is maximum at $r_0 = 0.8$ fm.
- For $r < r_0$, Force is repulsive.
- For $r > r_0$, Force is attractive.

Radioactivity

- Radioactive Decays: Generally, there are three types of radioactive decays
 - (i) α decay
 - (ii) β^- and β^+ decay
 - (iii) γ decay
- * α decay: By emitting α particle, the nucleus decreases it's mass number and move towards stability. Nucleus having A > 210 shows α decay.
- * β **decay**: In beta decay, either a proton is converted into neutron and position (β ⁺) or neutron is converted into proton and electron (β ⁻).
- * γ decay: When an α or β decay takes place, the daughter nucleus is usually in higher energy state, such a nucleus comes to ground state by emitting a photon or photons called as γ-rays.
- Order of energy of γ photon is 100 keV.

Laws of Radioactive Decay

❖ The rate of disintegration is directly proportional to the number of radioactive atoms present at that time i.e., rate of decay

number of nuclei.

Rate of decay = λ (number of active nuclei) i.e., $\frac{dN}{dt} = -\lambda N$. where λ is called the decay constant.

 $N = N_0 e^{-\lambda t}$ where $\lambda = decay$ constant

+ Half life $t_{1/2} = \frac{l n 2}{\lambda}$

+ Average life
$$t_{av} = \frac{1}{\lambda}$$

+ Activity
$$R = \lambda N = R_0 e^{-\lambda t}$$

+ After n half lives Number of nuclei left =
$$\frac{N_0}{2^n}$$

+ After n half lives Number of nuclei left =
$$\frac{N_0}{2^n}$$

+ Probability of a nucleus for survival of time $t = \frac{N}{N_0} = \frac{N_0 e^{-\lambda t}}{N_0} = e^{-\lambda t}$

Nuclear Fission

By bombarding a particle on a heavy nucleus (A > 230), it splits into two or more light nuclei. In this process certain mass disappears which is obtained in the form of energy (enormous amount)

$$A + p \rightarrow B + C + Q$$

Nuclear Fusion

It is the phenomenon of fusing two or more light nuclei to form a single heavy nucleus.

$$A + B \rightarrow C + Energy$$

The product (C) is more stable then reactants (A and B) and m_{c} $\!<$ $\!(m_{a}$ $\!+$ $\!m_{b})$ and mass defect Δm = $[(m_{a}$ $\!+$ $\!m_{b})\!\! \!m_{c}]$ amu Energy released is $E = (\Delta m) 931 \text{ MeV}$