

Fakultät Elektrotechnik und Informationstechnik Institut für Automatisierungstechnik

DIPLOMARBEIT

zum Thema

Kollaborative Problemlösung in modularen Anlagen mittels persönlicher digitaler Assistenz

> vorgelegt von Meret Feldkemper im Studiengang Mechatronik, Jg. 2013 geboren am 28.07.1994 in Dortmund

zur Erlangung des akademischen Grades einer Diplomingenieurin (Dipl.-Ing.)

Betreuer: Dipl.-Ing. Sebastian Heinze

Verantwortlicher Hochschullehrer: Prof. Dr.-Ing. habl. Leon Urbas

Tag der Einreichung: 02.05.2019

School of Engineering Chair of Process Control Systems & Process Systems Engineering Group

Aufgabenstellung für die Diplomarbeit

fiir

Frau Meret Feldkemper, Matr.Nr. 3951915, Studiengang MT 2013

Kollaborative Problemlösung in modularen Anlagen mittels persönlicher digitaler Assistenz

Forschungslücke

Die modulare Automation beschleunigt den digitalen Wandel in der Prozess- und Fertigungsindustrie und ermöglicht neue Betriebs- und Bedienparadigmen. Nicht nur im fehlerfreien Anlagenbetrieb, sondern auch in den hochgradig komplexen und kooperativen Aufgaben während der Fehlersuche sind Assistenzfunktion auf Basis des digitalen Abbilds einer Anlage denkbar. Während die fast vollständige Automatisierung im Normalbetrieb für ein hohes Maß an Strukturierung sorgt, unterscheiden sich die notwendigen Lösungsschritte bei technischen Störungen von Fall zu Fall. Die Professur für Prozessleittechnik und Arbeitsgruppe für Systemverfahrenstechnik untersucht im Rahmen des Forschungsprojektes PlantCom diese Kommunikation.

Zielsetzung

Ziel dieser Diplomarbeit ist die Untersuchung geeigneter Interaktionsmechaniken und der benötigten Informationen zur Unterstützung der einzelnen Mitarbeiter in der Störungsdiagnose mittels persönlicher digitaler Assistenzsysteme. Die Ergebnisse der Untersuchung sollen an einer prototypischen Implementierung unter Zuhilfenahme des P2O Labs der TU Dresden demonstriert und verifiziert werden.

Arbeitspakete

- 1. Literaturrecherche zur Kommunikation in der kollaborativen Störungsdiagnose und digitaler Assistenten
- 2. Analyse möglicher Informationsbedarfe, Informationsanpassungen und Interaktionsmechaniken zum Austausch in einem kollaborativen Problemlöseprozess mit einem digitalen Assistenten
- 3. Entwurf & prototypische Implementierung eines Demonstrators für die zuvor erarbeiteten Konzepte
- 4. Validierung/ Verifikation der Ergebnisse

Die Arbeit wird in deutscher Sprache verfasst.

Betreuer: Dipl.-Ing. Sebastian Heinze

1. Prüfer: Prof. Dr.-Ing. habil. Urbas

2. Prüfer: Jun.-Prof. Dr.-lng. Jens Krzywinski

Datum Arbeitsbeginn: 22.11.18 **Einzureichen am:** 02.05.19

Bearbeiter: Meret Feldkemper

Fakultät Elektrotechnik und Informationstechnik Institut für Automatisierungstechnik

Kollaborative Problemlösung in modularen Anlagen mittels persönlicher digitaler Assistenz

Kurzfassung

Betreuer: Dipl.-Ing. Sebastian Heinze Hochschullehrer: Prof. Dr.-Ing. habl. Leon Urbas

Tag der Einreichung: 02.05.2019

DIPLOMARBEIT

Author: Meret Feldkemper

Fakultät Elektrotechnik und Informationstechnik Institut für Automatisierungstechnik

XX

Abstract

Tutor: Dipl.-Ing. Sebastian Heinze Supervisor: Prof. Dr.-Ing. habl. Leon Urbas

Day of Submission: 02.05.2019

DIPLOMA THESIS

Inhaltsverzeichnis

1	Einleitung	1
2	Stand der Technik2.1 Modulare Anlagen2.2 Problemlösen2.3 Assistenz2.3.1 Assistenzsysteme	2 2 2 2 3
3	Analyse	4
4	Konzept	5
5	Implementierung	6
6	Verifikation	7
7	Zusammenfassung	8
8	Ausblick	9
Ar	nhang A Anhang	11
Lit	teraturverzeichnis	12

Abbildungsverzeichnis

Tabellenverzeichnis

Quelltextverzeichnis

1 Einleitung

Auf Grundlage von immer kürzeren Produkteinführungszeiten wurden Modularisierungskonzepte für die Prozessindustrie entworfen. Dies bieten eine höhere Flexibilität, haben allerdings auch Auswirkungen auf das Engineering und den Betrieb der Anlage [5]. Dies hat auch Auswirkungen auf die Störungsdiagnose. Selbst im herkömmlichen Anlagenbau werden die Mitarbeiter bei Problemen immer wieder aufs neue gefordert. So schrieb Bainbridge [1] schon 1983, dass die Automatisierung weitreichende Auswirkungen auf die Arbeit des Operators hat. So ist zwar die Anlage automatisiert, bei kritischen Situationen ist jedoch der Mensch gefordert. Dieser trifft seine Entscheidung anhand von Beobachtung und Erfahrungen. Da die Komplexität der Verfahren zur Produktion zunimmt ist es schwierig bei auftretenden Störungen alle Faktoren zu kennen und zu überblicken.

Assistenzsysteme können hier eine geeignete Unterstützung bieten [2] . Dabei ist zu beachten, dass der Mensch nicht als Lückenbüßer verwendet wird, der alle Aufgaben übernehmen muss mit denen das Automatisierungssystem überfordert ist. Die Kompetenzen des Menschen sind zu würdigen und mit zusätzlichen Informationen aus dem Prozess zu ergänzen. [7]

Durch voranschreiten der Automatisierung in der Prozessführung sind Menschen vor allem in kritischen Situationen für Entscheidungen verantwortlich.

Zitat korrigieren (Teil eines Buchs)

2 Stand der Technik

2.1 Modulare Anlagen

Aufgrund immer kürzerer Produkteinführungszeiten werden Modularisierungskonzepte entwickelt. Die Modularisierung ermöglicht eine höhere Flexibilität und beschleunigt Konzeption, Engineering, Aufbau und Inbetriebnahme der Anlage [6]. Ein Modul ist eine geschlossene funktionale Einheit und stellt eine verfahrenstechnische Grundfunktion als Dienst der Prozessführungsebene (PFE) zur Verfügung. Die Grundfunktionalitäten der PFE müssen unterstützt werden [3]

- Mensch-Maschine-Schnittstelle: Übertragung der Daten zur Anzeige und Bedienung
- Steuern und Überwachen: Übertragung der internen Zustände des Moduls

In der Namur-Empfehlung NE 148 [4] ist beschrieben, welche Daten an das übergeordnete Automatisierungssystem übertragen werden und welche dem Modullieferanten zur Wartungsunterstützung zur Verfügung stehen. Die Daten für das übergeordnete Automatisierungssystemen umfassen unter anderem die Verriegelungs-, Steuerungs- und Reglungsstruktur, die Prozess- und Sollwerte sowie den Status des Moduls / der Services. Für die Wartungsunterstüzungen werden nur hersteller- und modulspezifische und keine prozessspezifischen Daten übertragen.

2.2 Problemlösen

2.3 Assistenz

Assistenz kann viele Facetten haben. Laut Duden bedeutet Assistenz Beistand oder Mithilfe. Das Verb assistieren wird mit den Worten "jemanden nach dessen Anweisungen zur Hand gehen, bei einer Arbeit oder Tätigkeit behilflich sein"erklärt. ….

2.3.1 Assistenzsysteme

Laut x kann bereits ein Schraubendreher ein Assistenzsystem sein, da dieser jemanden befähigt eine Aufgabe durchzuführen, die ohne Assistenz schwer umzusetzen ist.

3 Analyse

4 Konzept

5 Implementierung

6 Verifikation

7 Zusammenfassung

8 Ausblick

A Anhang

Literaturverzeichnis

- Lisanne Bainbridget. "Ironies of Automation". In: Automatica 19.6 (1983),
 S. 775–779. ISSN: 00051098. DOI: 10.1016/0005-1098(83)90046-8.
- [2] Thomas Bauernhansl, Michael ten Hompel und Brigit Vogel-Heuser. Industrie 4.0 in Produktion, Automatisierung und Logistik. Bd. 136. 1. 2007, S. 23–42. ISBN: 9783658046811.
- [3] Jens Bernshausen, Axel Haller, Thomas Holm, Mario Hoernicke, Michael Obst und Jan Ladiges. "Namur Modul Type Package Definition". In: *Atp Edition* 1-2 (2016), S. 72–81.
- [4] NAMUR Arbeitskreis 1.12. "Ne 148". In: (2013), S. 1–32.
- [5] Michael Obst, Thomas Holm, Stephan Bleuel, Ulf Claussnitzer, Lars Evetz, Tobias Jäger, Tobias Nekolla, Stephan Pech, Stefan Schmitz und Leon Urbas. "Automatisierung im Life Cycle modularer Anlagen". In: *Atp Edition* 1-2. January (2013), S. 24–31.
- [6] Leon Urbas, Stephan Bleuel, Tobias Jäger, Stephan Schmitz, Lars Evetz und Tobias Nekolla. "Automatisierung von Prozessmodulen". In: *Atp Edition* 1-2.February (2012), S. 44–53. ISSN: 1292-8941. DOI: 10.1140/epje/i2017-11542-4.
- [7] Kirsten Weisner, Marco Knittel, Sascha Wischniewski, Thomas Jaitner, Heiko Enderlein, Peter Kuhlang und Jochen Deuse. "Assistenzsystem zur Individualisierung der Arbeitsgestaltung". In: 111.2016 (2018), S. 2016–2019.

Selbstständigkeitserklärung

Hiermit versichere ich, Meret Feldkemper, geboren am 28.07.1994 in Dortmund, dass ich die vorliegende Diplomarbeit zum Thema

Kollaborative Problemlösung in modularen Anlagen mittels persönlicher digitaler Assistenz

ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht. Bei der Auswahl und Auswertung des Materials sowie bei der Herstellung des Manuskripts habe ich Unterstützungsleistungen von folgenden Personen erhalten:

Dipl.-Ing. Sebastian Heinze

Weitere Personen waren an der geistigen Herstellung der vorliegenden Diplomarbeit nicht beteiligt. Mir ist bekannt, dass die Nichteinhaltung dieser Erklärung zum nachträglichen Entzug des Diplomabschlusses (Masterabschlusses) führen kann.

Dresden, den 02.05.2019	
Diesden, den 02.05.2019	
	Unterschrift