ASSIGNMENT 1

Naive Bayes Classifier

Machine Intelligence and Expert System (IT-5213)

Submitted By:

Name	Roll	M.Sc. Session
1. Tajim Md. Niamat Ullah Akhund	1120	
2. M. Mahfuzul Haq	1124	
3. Priyanka Dhar	1074	2017-2018
4. Rafia Akther	1086	
5. Kazi Zannath Nowshin	1077	

Submitted To: Dr. Shamim Al Mamun

Associate Professor, Institute of Information Technology, Jahangirnagar University.

Institute of Information Technology, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh.

Naive Bayes Classifier

Naive Bayes:

The Bayesian Classification represents a supervised learning method as well as a statistical method for classification. Assumes an underlying probabilistic model and it allows us to capture uncertainty about the model in a principled way by determining probabilities of the outcomes. It can solve diagnostic and predictive problems [1].

Naive Bayes algorithm is based on Bayesian Theorem.

Bayesian Theorem:

Given training data X, posterior probability of a hypothesis H, P(H|X), follows the Bayes theorem $P(H|X) = \{P(X|H) * P(H)\} / P(X) \dots (1.1)$

Algorithm:

The Naive Bayes algorithm is based on Bayesian theorem as given by equation (1.1) Steps in algorithm are as follows [2]:

- 1. Each data sample is represented by an n dimensional feature vector, X = (x1, x2.....xn), depicting n measurements made on the sample from n attributes, respectively A1, A2, An.
- 2. Suppose that there are m classes, C1, C2.....Cm. Given an unknown data sample, X (i.e., having no class label), the classifier will predict that X belongs to the class having the highest posterior probability, conditioned if and only if:
 - P(Ci/X)>P(Cj/X) for all 1 < = j < = m and j != i
 - Thus, we maximize P(Ci|X). The class Ci for which P(Ci|X) is maximized is called the maximum posteriori hypothesis.
- 3. As P(X) is constant for all classes, only P(X|Ci)P(Ci) need be maximized. If the class prior probabilities are not known, then it is commonly assumed that the classes are equally likely, i.e. $P(C1) = P(C2) = \dots = P(Cm)$, and we would therefore maximize P(X|Ci). Otherwise, we maximize P(X|Ci)P(Ci). Note that the class prior probabilities may be estimated by P(Ci) = si/s, where Si is the number of training samples of class Ci, and s is the total number of training samples. on X. That is, the naive probability assigns an unknown sample X to the class Ci [2]

Example of Naive Bayes Classifier:

We can predict the class of an animal from some attributes of it. Lets our train data set is as follows:

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
qila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

Lets,

A: attributesM: mammalsN: non-mammals

Then the equations will be:

P
$$(A|M) = \frac{6}{7} * \frac{6}{7} * \frac{2}{7} * \frac{2}{7} = 0.06$$

P $(A|N) = \frac{1}{13} * \frac{10}{13} * \frac{3}{13} * \frac{4}{13} = 0.0042$
P $(A|M) * P(M) = 0.06 * \frac{7}{20} = 0.021$
P $(A|N) * P(N) = 0.0042 * \frac{13}{20} = 0.0027$

Lets,

A given data is:

Give Birth	Can Fly	Live in Water	Have Legs	Class
yes	no	yes	no	?

We have to predict the class of that animal from the given data.

Then,
$$P(A|M) * P(M) > P(A|N) * P(N)$$

: The Animal is **Mammal**.

References:

- [1] Mai Shouman, Tim Turner, Rob Stocker, "Using data mining techniques in heart disease diagnosis and treatment", JapanEgypt Conference on Electronics, Communications and Computers 978-1-4673-0483-2 c_2012 IEEE.
- [2] N. Aaditya Sunder, P. PushpaLatha, "Performance analysis of classification data mining techniques over heart disease database" Inernational Journal Of Engineering Science and Advance Technology"-vol-2 issue-3,470-478,May-June 2012.