CS2100: Computer Organisation

Tutorial #6: Boolean Algebra, Logic Gates and Simplification

(Week 8: 8 – 12 March 2021)

Answers to Selected Questsions

Tutorial Questions:

2. Using Boolean algebra, simplify each of the following expressions into simplified **sum-of-products (SOP) expressions**. Indicate the law/theorem used for each step.

(a)
$$F(x,y,z) = (x + y \cdot z') \cdot (y' + y) + x' \cdot (y \cdot z' + y)$$

(b)
$$G(p,q,r,s) = \prod M(5, 9, 13)$$

Tip: For (b), it is simpler to start with the given expression and get done in 5 steps, rather than to expand it into sum-of-products/sum-of-minterms expression first.

Answers:

Note: There are more than one way of derivation.

(a)
$$(x + y \cdot z') \cdot (y' + y) + x' \cdot (y \cdot z' + y)$$

 $= (x + y \cdot z') \cdot 1 + x' \cdot (y \cdot z' + y)$ [complement law]
 $= (x + y \cdot z') + x' \cdot (y \cdot z' + y)$ [identity law]
 $= x + y \cdot z' + x' \cdot y$ [absorption theorem 1]
 $= x + x' \cdot y + y \cdot z'$ [commutative law]
 $= x + y + y \cdot z'$ [absorption theorem 2]
 $= x + y$ [absorption theorem 1]

(b)
$$G(p,q,r,s) = \prod M(5,9,13)$$

 $= (p+q'+r+s') \cdot (p'+q+r+s') \cdot (p'+q'+r+s')$
 $= ((p\cdot p') + (q'+r+s')) \cdot (p'+q+r+s')$ [distributive law]
 $= (0+(q'+r+s')) \cdot (p'+q+r+s')$ [complement law]
 $= (q'+r+s') \cdot (p'+q+r+s')$ [identity law]
 $= (q'\cdot (p'+q)) + (r+s')$ [distributive law]
 $= p'\cdot q'+r+s'$ [absorption theorem 2]

- 4. A circuit takes in four inputs *K*,*L*,*M*,*N* and generates 3 outputs *X*,*Y*,*Z* as follow:
 - X(K,L,M,N) = 1 if KL = MN, or 0 otherwise, where KL and MN are 2-bit unsigned integers.
 - Y(K,L,M,N) = 1 if $KL \le MN$, or 0 otherwise, where KL and MN are 2-bit unsigned integers.
 - Z(K,L,M,N) = 1 if KLM < LMN, or 0 otherwise, where KLM and LMN are 3-bit unsigned integers.
 - (a) Fill in the truth table for the circuit. Write 'd' for don't cares.
 - (b) Fill in the K-maps of X, Y and Z using the layout given below.

- (c) Write out the simplified SOP expressions of *X*, *Y* and *Z*, with the assumption that the input 0000 will not occur.
- (d) After designing the circuit according to the simplified SOP expressions in (c), if you feed the input 0000 into it, what will be the outputs?

Answers:

(a)

K	L	M	N	X	Υ	Z	
0	0	0	0 (٥	d	d	D
0	0	0	1	0	1	1	
0	0	1	0	0	1	1	
0	0	1	1	0	1	1	
0	1	0	0	0	0	1	
0	1	0	1	1	1	1	
0	1	1	0	0	1	1	
0	1	1	1	0	1	1	

K	L	М	N	X	Υ	Z
1	0	0	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	1	0
1	0	1	1	0	1	0
1	1	0	0	0	0	0
1	1	0	1	0	0	0
1	1	1	0	0	0	0
1	1	1	1	1	1	0

(b)

(c)
$$X = K' \cdot L \cdot M' \cdot N + K \cdot L' \cdot M \cdot N' + K \cdot L \cdot M \cdot N$$

$$Y = M \cdot N + K' \cdot N + K' \cdot M + L' \cdot M$$

$$Z = K'$$

(d)

Input KLMN = 0000; output X = 0; Y = 0; Z = 1.