EECS 551 Homework 6 YUZHAN JIANG

Pl:

We are given that A has full column rank, let $A \in F^{N \times N}$ (X)

Let
$$A = U_r \sum V_r'$$
 by sup of A
 $A'A = (U_r \sum V_r')'(U_r \sum_r V_r')$
 $= V_r \sum' U_r' U_r \sum_r V_r'$
 $= V_r \sum_r' \sum_r V_r'$

: (ica'A) = (ica)

Condition number of A'A cond(A'A);

$$\frac{1}{2} \frac{D_1^2}{D_{11}^2}$$

= $\overline{U_1^2}$ Where $\sigma_1, \overline{\sigma_2}, \dots \overline{\sigma_n}$ are the Singular values of A

Ji and In one the maximum and minmum singular value of A

(b)

Based on part (a).

$$f(\Sigma_r/\Sigma_r + \beta I) = \sigma_i^2(A) + \beta^2$$

Thus, condition number of A'A+BI = $\frac{g_1^2 + \beta^2}{\sigma_1^2 + \beta^2}$

Maw, let Cond(A'A) - Cond(A'A+BI)
$$= \frac{\sigma_1^2}{\sigma_0^2} - \frac{\sigma_1^2 + \beta^2}{\sigma_0^2 + \beta^2} = \frac{\sigma_1^2 \sigma_0^2 + \sigma_1^2 \sigma_0^2 - \sigma_1^2 \sigma_0^2 - \sigma_1^2 \sigma_0^2}{\sigma_0^2 (\sigma_1^2 + \beta^2)} = \frac{(\sigma_1^2 - \sigma_0^2) \beta^2}{\sigma_0^2 (\sigma_1^2 + \beta^2)} > 0 \quad (Since $\sigma_1^2 > \sigma_0^2$)$$

. Condition number of A'A is greater than condition number of A'A+PI Thus, the regularized solution has a "better" condition number

12. (a) Consider A1 = [0], N≤M, and A1 is not a frame Consider Az= [0], $A_1A_1' = \begin{bmatrix} 20 \\ 0 \end{bmatrix} \begin{bmatrix} 10 \\ 0 \end{bmatrix} = \begin{bmatrix} 40 \\ 0 \end{bmatrix}$ 5i=1 and 5i=1 5i+52 > 3+13.. As is a frame but not a tight frame Consider As = [02] $\overline{U_1} = \overline{U_2} = 2$ and $\overline{U_1} = \overline{U_2} = 4$ and $\overline{u_1} = \overline{U_1} = 4$: As is a tight frame Consider A4 = [1 1]/N2 A4. A4' = [1]/12 [1]62 = [1] = I, .. Ay is a Parseval frame but A4 is not unitary (b) The necessary and sufficient conditions for a cliaganal Matrix D= cliag(cli,/doz....don) to be matrix is that di, dr., dis dry should have unit norm

XKH = AXE 11AXKIIZ

We are guen that AEFM has N different eigenvalue Cin magnitude).

 $\lambda_1 > \lambda_2 > \lambda_3 > \cdots > \lambda_N$

Since λ_i is known, given $Ax = \lambda X$ and λ_i is the largest eigenvalue, then we have

[A-λι] x= dx Where 2 is the eigenvalue of the shifted matrix A-λ.], Which is 0, λ2-λ1, λ3-λ1,...,λη-λ1

Consider $d_n = \lambda v - \lambda_1$

Then, we can use one run of power method to got hu

(b) The "Sign ambiguity" does not affect the calculation of λ_n

P4.

We are given that matrix $X = [x_1, \dots, x_N]$ has full now rank.

For finding W to minimize the overage loss over the training data. $\hat{W} = \arg\min_{W} L(w)$ where $L(w) = \frac{1}{N} \sum_{i=1}^{N} L(y_{n_i} y_{n_i})$ $g = W_{Kn}$ $U(y_{n_i} y_{n_i}) = \frac{1}{N} (y_n - \hat{y}_n)^2$

=) $\hat{W} = \underset{n=1}{\operatorname{argmin}} \hat{N} = \sum_{n=1}^{N} \frac{1}{2} \left(y_n - w' x_n \right)^2$ Let $y = \begin{bmatrix} y_1 \\ y_2 \\ y_n \end{bmatrix} \in \mathbb{R}^N$

 $\hat{W} = \underset{w}{\operatorname{argmin}} \frac{1}{\sqrt{N}} \sum_{n=1}^{N} ||y_n - w' x_n||_{2}^{2}$

= $\frac{1}{N} ||y' - w'x'||_2^2$ = $(XX')^{-1}Xy$ $Since \times is a full now rank matrix$

Since the training data feature conceletion matrix $k_x = \sqrt{1} \sum_{n=1}^{\infty} x_n x_n'$ and the cross-correlation between the training data features and responses $k_y = \sqrt{1} \sum_{n=1}^{\infty} y_n x_n'$

= V- Kux

Conditions needed. NaM So that kx as invertible

Ps.

- (a) We assume that there exist a non-zero X such that $\|Bx\|_2 = 0 = x'B'Bx = 0$
 - => BX =0 Which is contradicted that B has full col rank
 - in X doesn't exist
 - · B'B >0
- (b) By the def of positive definite, if A > 0, then all eigenvalues of A > 0. $\therefore \lambda \neq 0 = 0$ A has full rank $\implies A$ is invertible
- (c) show that $A \ge 0$ and $B \ge B => A + B \ge 0$ Since there exist $x \ne 0$ such that $X'Ax + X'Bx = x'(A+B)x \ge 0$
- : A+B≥0
- (e) If B has full column ramp, then based on part (a) B'B > 0And we know that $A'A \ge 0$, based on part (d) A'A + B'B > 0
 - .. A'A+B'B is invertible by part (6)

5 A) If N(A) \(\cap\) N(B) = \{\cap\}, then A'A + B'B is invertible

Assume A'A+B'B≥0 So there exist non-zero x, such that

 $\times'(A'A+B'B)x=0$ X'A'AX+ X'B'BX =0

||Ax ||2 + ||Bx ||2 =0

: AX = Bx = 0

:. X is nullspace for both A and B

· N(A) \ N(B) + \ o | contradict with N(A) \ \ N(B) = \ o \

: X closure exist. and A'A+B'B > 0 and it is invotible

P6;

(a)
$$= \underset{\mathsf{x} = (\mathsf{x}_1, r, \mathsf{x}_k) \in F^k}{\text{Argmin}} \| \left(\sum_{k=1}^k \mathsf{x}_k \mathsf{A}_k \right) - \mathsf{B} \|_{\mathsf{F}}$$

= argmin || [vec
$$(A_1)$$
 + vec (A_2) + · · + Vec (A_k)] × - vec (B) $||_2$

= argmin
$$||\widetilde{A} \times - \widehat{B}||_2$$
 Where $A = \text{vec}(A_1) + \text{vec}(A_2) + \cdots + \text{vec}(A_K)$
 $\widehat{B} = \text{vec}(B)$

(C) When
$$k=3$$
, Julia code Should be:
 $\frac{1}{2} = \text{Pinv} \left(\left[\text{vec}(A_1) \text{ vec}(A_2) \text{ vec}(A_3) \right] \right) * \text{vec}(B)$

(b)
$$N^{\perp}(z) = R(z') = R(z) = span \begin{cases} 0 \\ 0 \\ 0 \end{cases}$$
(c) is diagonal metric)

$$\begin{cases} 0 \\ 0 \\ 0 \\ 0 \end{cases} \begin{cases} 0 \\ 0 \\ 0 \end{cases}$$
is the orthonomial basis for the $N^{\perp}(z)$

(d)
$$Y = J_3 J_3'$$
 and $W = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$
By using Julia:

The orthonormal basis for the nullspace of Y is
$$\{ \begin{bmatrix} -1 \\ 1 \end{bmatrix} | \sqrt{6} \}$$
 the orthonormal basis for the orthogonal complement of the nullspace of Y is $\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} | \sqrt{3} \}$ and the projection is $[\frac{3}{2}]$

```
orthcompnull.ji ×

R = orthcompnull(A, X)

Project each column of `X` onto the orthogonal complement of the null space of the input matrix `A`.

In:

* `A` `M × N` matrix

* `X` vector of length `N`, or matrix with `N` rows and many columns

Out:

* `R` : vector or matrix of size ??? (you determine this)

For full credit, your solution should be computationally efficient!

using LinearAlgebra
function orthcompnull(A, X)

r = rank(A)

u, s, v = svd(A)

vr = v[:, 1:r]

R = vr * (vr' * X)

return R

end
```


(L)

As the graph shown, I take $u = \frac{0.15}{\sigma_1^2 ta}$, $\frac{a_1}{\sigma_1^2 ta}$ and $\frac{1}{\sigma_2^2 ta}$.

If is clearly to conclude that NGD converges faster than Standard GD