Convex sets and functions

- Convex sets : hyperplane, half-space, convex cone, $\|\cdot\|$ -ball, ellipsoid, polyhedron,
- Intersection, affine, perspective, linear-fractional functions preserve <u>set</u> convexity.
- f is α-strongly convex iff $f-\alpha\|\cdot\|^2$ is convex, ie. if $\forall (x,y) \in \text{dom}(f), \forall \lambda \in [0,1], f(\lambda x + (1-\lambda)y) < \lambda f(x) + (1-\lambda)f(y) \alpha\lambda(1-\lambda)\|x-y\|^2$. $\alpha = 0$ is usual convexity,
- Warning : set dom(f) has to be convex for f to be convex!
- Convexity is strict if $\forall \lambda \in (0,1), f(\lambda x + (1-\lambda)y) < \lambda f(x) + (1-\lambda)f(y),$
- <u>Ex</u>: affine functions f(x) = ax + b, $\exp(ax)$, $-\log$, \log -sum-exp $\log\left(\sum_{i=1}^n \exp g_i(x)\right)$, all norms, x^p (p>0,x>0), $|x|^p$ (p>1), negative entropy $x \log x$ are all convex,
- Non-negative weighted sum, comp. with affine f., point-wise max or sup, composition, minimization, perspective all *preserve convexity*,
- On matrices : $f(X) = \text{Tr}(A^T X) + b$ (affine), spectral norm $||X||_2 = \sigma_{\text{max}}(X) = (\lambda_{\text{max}}(X^T X))^{1/2}$ (biggest spectral value) are convex,
- Condition for exty : $f(y) \ge f(x) + \nabla f(x)^T (y-x)$ (SNC, if f diff., supporting hyperplane), $\nabla^2 f(x) = H f(x) \ge 0$ (SNC, if f twice diff.), $H f(x) > 0 \Leftrightarrow \text{str.exty}$,
- 3 conditions. <u>Convex</u>: all local minima are global. <u>Strictly cvx</u>: if local minimum, then unique and global. <u>Strongly cvx</u>: $\exists ! x^*$ local (and global) minimum.

Optimization problems, convex problems

— Generic form: $\min_{x \in H} F(x)$ for $F: \mathbb{R}^n \to \mathbb{R}$ on a domain $H \subset \mathbb{R}^n$,

- Solution $x^* \in \operatorname{argmin}_{x \in H} F(x), \in \mathbb{R}$ can be not unique, and maybe no solution. Infeasible if no x satisfies the constraints $(x^* = +\infty)$. Unbounded below if $x^* = -\infty$,
- Equality constraints: $H_j(x) = 0$ (j = 1...p), and inequality constraints: $F_i(x) \leq 0$ (i = 1...m) $(\leq \text{can be } \leq_{\mathcal{K}} \text{ a generalized inequality on a cone}),$
- Problem is *convex* if F_0, H_j, F_i are **all** convex (it is then *tractable*). Usual form: $H_i(x) = a_i^T x + b_i$ (affine equality constraints).

Optimality conditions (1)

- Fermat/Euler's condition: if F is differentiable, $x^* \in \operatorname{argmin}_x F(x) \Longrightarrow \nabla F(x^*) = 0$ (stationary point). If F is convex, it's a \Leftrightarrow ,
- 2^{nd} -order condition: if F is twice differentiable, $x^* \in \operatorname{argmin}_x F(x) \Longrightarrow \nabla F(x^*) = 0, \nabla^2 F(x^*) \ge 0$. Converse: $\nabla^2 F(x^*) > 0$ is required for \Leftarrow .

Lagrangian and dual problem

- KKT theorem justifies to introduce λ, ν the Lagrange multipliers ($\lambda \in \mathbb{R}^m, \mu \in \mathbb{R}^p$,
- Lagrangian of a constrained problem : $\mathcal{L}(x,\lambda,\nu) = F_0(x) + \sum_{i=1}^m \lambda_i F_i(x) + \sum_{j=1}^p \nu_j H_j(x) \ (\lambda \geq 0)$. Dual function : $g^*(\lambda,\nu) = \inf_{x \in \mathbb{R}^n} L(x,\lambda,\nu)$ (always convex),
- Dual problem is $\max_{\lambda,\nu} g^{\star}(\lambda,\nu)$ with $\lambda \geq 0$. Dual solution is $d^{\star} \in \mathbb{R}$ (optimal dual value),
- How to compute the dual: write $L(x, \lambda, \nu)$, regroup terms with and without x, minimize wrt x to compute $g^*(\lambda, \nu)$, and (try to) solve the dual problem,

- $p^* d^*$ (unknown!),
- Slater's condition : \exists one strictly feasible point \implies strong duality : $d^{\star} = p^{\star}$
- Complementary slackness: $\lambda_i^{\star} \cdot F_i(x^{\star}) = 0 : \lambda_i^{\star} > 0 \implies F_i(x^{\star}) = 0 \text{ and } F_i(x^{\star}) < 0 \implies \lambda_i^{\star} = 0.$

Conjugate functions

- Definition: $f^{\star}(y) \stackrel{\text{def}}{=} \sup_{x \in \mathbf{dom} f} (y^T x f(x))$. f^{\star} is always convex,
- Examples: $f(x) = -\log x \implies f^*(y) = -1 \log y$ if $y < 0, +\infty$ otherwise. $f(x) = x^T Q x, Q \in \mathbf{S}_{++}^n, \implies f^*(y) = y^T Q^{-1} y$

KKT optimality conditions (2)

- KKT conditions: (1) Primal feasibility $(F_i(x) \leq 0, H_i(x) = 0) +$ (2) dual feasibility ($\lambda \geq 0$) + (3) complementary slackness + (4) $\nabla_x \mathcal{L}(x,\lambda,\mu) = 0$,
- If strong duality : x, λ, μ optimal have to satisfy KKT conditions,
- For a convex problem with no = cstr and \leq cstr, $x = x^* \Leftrightarrow \exists \lambda \text{ s.t. } (x, \lambda)$ is a saddle point (point selle) of $\mathcal{L}(x,\lambda)$, ie. $F(x) \leq 0, p \geq 0, F(u) \cdot p =$ $0, \nabla F_0(x) + \sum_{i=1}^m p_i \nabla F_i(x) = 0,$
- Still apply for linear = constraints : $A_i x = b_i \Leftrightarrow A_i x \leq b_i$ and $A_i x \leq b_i$,
- Note: for (completely) convex problem, KKT conditions are SNC (⇔). Newton's method

Classical convex problems

— Least-Squares: $\min \|Ax - b\|_2^2$. $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$ are parameters, $x \in \mathbb{R}^n$ is variable. Normal equations solution : $x^* = (A^T A)^{-1} A^T b$.

- Weak duality: $d^* \leq p^*$ (always: max min \leq min max), duality gap is Linear Programs: min $c^T x$ with $a_i^T x \leq b_i$, $i = 1 \dots m$. $c, a_i \in \mathbb{R}^n$, $b_i \in \mathbb{R}$ are parameters, $x \in \mathbb{R}^n$ is variable. With affine equality constraints: $\min c^T x$ with $Gx \leq h$, Ax = b.
 - Quadratic Programs: $\min \|Fx g\|_2^2$ with $a_i^T x \leq b_i, i = 1 \dots m$. $F \in \mathbb{R}^{m \times n}, g \in \mathbb{R}^m, a_i \in \mathbb{R}^n, b_i \in \mathbb{R}$ are parameters, $x \in \mathbb{R}^n$ is variable.
 - Symmetric Cone (\mathcal{K}) Programs: min $c^T x$ with $Ax b \in \mathcal{K}$.
 - Quadratically constrained Quadratic Program : QP + QC.

Gradient descent methods

For unconstrained problems, $\min_{x} F(x)$, F differentiable. (order-1 Taylor apprx.)

- Algorithm from $x_0, x_{(n+1)} \leftarrow x_n \alpha_n d_n$, direction $d_n = \nabla_x F(x)$, step size $\alpha_n > 0$,
- Variants : fixed step ($\alpha_n = \alpha > 0$), optimal step ($\alpha_n =$ $\operatorname{argmin}_{\alpha \in \mathbb{R}} F(x_n - \alpha \nabla_x F(x))$ optimal, with exact or backtracking line search), conjugate step $(d_n \text{ depends on history of } d_i, i < n)$,
- With = constraints : write $H = \{x : F_i(x) \le 0, i = 1 \dots m\}$, proj_H its projection operator, then $x_{(n+1)} \leftarrow \operatorname{proj}_H(x_n - \alpha_n d_n)$. Also: Uzawa algorithm (not covered).

For unconstrained problems, $\min_{x} F(x)$, F twice differentiable. (order-2 Taylor apprx.)

— Algorithm: from x^0 close "enough" to x^* , update $x_{n+1} \leftarrow x_n$ $\alpha_n(HF(x))^{-1}\nabla F(x),$

- 2 : slow (damped, require backtracking for α_n) then quick (quadratically, Schur's complements all $\alpha_n = 1$,
- Newton's decrement : $\lambda(x) = \nabla F(x)^T \nabla^2 F(x)^{-1} \nabla F(x)$, stopping criterion $\lambda^2/2 \leqslant \varepsilon$,
- Concretely: works really well, always with < 150 steps,
- Can be used with = constraints (need a valid starting point and new update formula).

Other methods

- Sub-gradient for f at $x = \text{vector } g \text{ s.t. } f(y) \ge f(x) + g^T(y x)$ (supporting hyperplane). Method = descent with direction d_n a subgradient (not unique).
- Coordinate descent algorithm: minimize in 1-D successively on one coordinate (cycle x_1, \ldots, x_n), if domain $H = H_1 \times \cdots \times H_k$ product of simpler sets $(n \neq k \text{ is possible}),$
- How-to find an strictly feasible initial point x_0 ? Phase $1:(x,s)^*=$ $\underset{x \in S}{\operatorname{argmin}} s$ with $f_i(x) \leq 0$, Ax = b. If $s^* < 0$ then $x_0 = x^*$ OK, else no x_0 .
- Central path / barrier method : start $x_0, t_0 > 0, \mu > 1$, then repeat : 1. Centering: $x_{n+1} = x^*(t) = \operatorname{argmin}(t_n f_0 + \phi)$ with Ax = b, 2. Increase $t_{n+1} \leftarrow \mu t_n \text{ (stops if } m/t < \varepsilon).$

Stochastic optimization: example

Stochastic Linear Program: $\min c^T x$ with $\mathbb{P}(a_i^T x \leq b_i) \geq \eta, i = 1 \dots m$ (required reliability $0 \le \eta \le 1$). $c \in \mathbb{R}^n$, $b_i \in \mathbb{R}$ are parameters, a_i follows $\mathcal{N}(\bar{a}_i, \Sigma_i), x \in \mathbb{R}^n$ is variable. SLP is convex $\Leftrightarrow \eta \geqslant 1/2$.

If M = [[A; B]; [C; D]], its Schur's complements are : bottom $M/D \stackrel{\text{def}}{=}$ $A-BD^{-1}C$, top $M/A \stackrel{\text{def}}{=} D-CA^{-1}B$. Formula: $M>0 \Leftrightarrow A>0, M/A>0$ (resp. with D).

Examples of gradients

- $-\nabla_x (a^T x + b) = a$ (vector affine function),
- $-\nabla_x \left(\frac{1}{2}x^T A x\right) = \frac{1}{2}(A^T + A)x$ (vector), $= A^T x$ if A sym.,
- $--\nabla_X \left(\operatorname{Tr}(A^T X) + b \right) = A \text{ (matrix affine function)},$
- $--\nabla_X (\det(X)) = \bar{X} \text{ with } \bar{X} = (\det X)(X^{-1})^T \text{ the comatrix of } X),$
- $\nabla_X (\log(\det X)) = X^{-1}$ (matrix, proof with LU decomposition, and $A + H = A^{1/2}(I + A^{-1/2}HA^{-1/2})A^{1/2}$
- $-f(X) = X^{-1} \implies (\nabla_X f)(H) = -X^{-1}HX^{-1}$

Sublevel set (bonus) The α -sublevel set of a function $f: \mathbb{R}^n \to \mathbb{R}$ is defined as $C_{\alpha}(f) \stackrel{\text{def}}{=} \{x \in \text{dom}(f) : f(x) \leq \alpha\}$ (convex for f cvx).

Author: Lilian Besson, (C) November 2015, MIT License.