

6.5

REVUE DE MATHEMATIQUES SPECIALES

Sujets donnés aux concours d'Agrégation et aux concours d'entrée aux grandes Écoles en 1976

N.D.L.R. — Pour permettre à ce numéro de la Revue de présenter un éventail des concours aussi large que possible, nous avons dû renoncer à faire paraître le sujet de certaines épreuves. Nos lecteurs voudront bien nous en excuser.

AGRÉGATION DES SCIENCES MATHÉMATIQUES

Composition de mathématiques générales.

Introduction.

On se fixe pour tout le problème un espace vectoriel euclidien E de dimension finie supérieure ou égale à 4. Par « vecteur » on entend « élément de E ». Si x et y sont deux vecteurs, on note xy leur produit scalaire (qui est un nombre réel). Si x est un vecteur, on note |x| sa norme \sqrt{xx} . Si x et y sont deux vecteurs non nuls, on note \widehat{x} , \widehat{y} leur angle, c'est-à-dire l'unique nombre réel $0 \le 0 \le \pi$ et que $\cos 0 = \frac{xy}{|x|}$.

On convient d'appeler réflexion une symétrie hyperplane orthogonale de E, c'est-à-dire un élément ρ du groupe orthogonal O(E) de E tel que $\rho^2 = 1_E$ et que l'ensemble Ker $(\rho - 1_E)$ des points fixes de ρ soit un hyperplan de E. Si x est un vecteur non nul, ρ_x désigne l'unique réflexion telle que $\rho_x(x) = -x$. On appelle similitude le composé d'une transformation orthogonale (élément de O(E)) et d'une homothétie (centrée en l'origine de E) de rapport différent de zéro. Deux parties A et B de E sont dites semblables s'il existe une similitude σ telle que $\sigma(A) = B$.

Un cristal est une partie non-vide X de E telle que, pour tout couple (x, y), d'éléments de X (éventuellement égaux), on ait

$$y \neq 0$$
, $y \neq 2x$, $2\frac{xy}{yy} \in \mathbb{Z}$ et $\rho_{y}(x) \in X$.

Première partie.

I. — 1° Soit x et y deux vecteurs, avec $y \neq 0$. On pose alors $n(x,y) = 2\frac{xy}{yy}$

Démontrer la formule $\rho_{y}(x) = x - n(x, y)y$.

I. — $f 2^o$ Démontrer que si deux vecteurs $\,m x\,$ et $\,m y\,$ appartiennent à un même cristal, on a les inégalités suivantes :

 $0 \leqslant n(x, y)n(y, x) \leqslant 4$ et $-3 \leqslant n(x, y) \leqslant 3$.

$$\left(n(x, y), n(y, x), \frac{|y|}{|x|}, \widehat{x, y}\right) \in \Omega.$$

(Par exception, il est nécessaire de traiter complètement cette question, c'est-à-dire de disposer d'un tel ensemble Ω par la liste de ses 12 éléments, pour pouvoir résoudre la suite du problème. En règle générale, il suffit en effet, pour pouvoir répondre à une question, d'admettre les résultats énoncés dans les questions qui la précèdent.)

I. — 4° On dit que deux vecteurs non nuls x et y forment un angle aigu si $0 < \widehat{x,y} < \frac{\pi}{2}$.

Démontrer que si deux vecteurs x et y appartiennent à un même cristal X et forment un angle aigu, alors leur différence y-x appartient à X.

- I. 5° Soit X et Y deux cristaux, F un sous-espace vectoriel de E, λ un nombre réel strictement positif, S_{λ} la «sphère » formée des vecteurs de norme λ . Démontrer que $X \cap Y, X \cap F$ et $X \cap S_{\lambda}$ sont, ou bien vides, ou bien des cristaux.
- I. 6° Soit X_1, \ldots, X_p $(p \ge 2)$ une famille finie de cristaux deux à deux orthogonaux, c'est-à-dire tels que

tout vecteur de X_i soit orthogonal à tout vecteur de X_j , pour $1 \le i \le p, 1 \le j \le p, i \ne j$. Démontrer que la réunion $X = X_1 \cup \ldots \cup X_p$ est un cristal (on dira que X est la réunion orthogonale des cristaux X_1, \ldots, X_p).

I. — 7º Un cristal Y est dit indécomposable s'il n'existe pas de cristaux Y, et Y2 tels que Y soit la réunion orthogonale de Y1 et de Y2.

Démontrer que tout cristal non indécomposable X est réunion orthogonale d'une famille finie X_1, \ldots, X_p de cristaux indécomposables, et que ces cristaux X_1, \ldots, X_p sont parfaitement déterminés par X, à l'ordre près.

L. — 8° Si P est un ensemble formé de vecteurs non nuls, on note W(P) le sous-groupe du groupe orthogonal $\mathrm{O}(\mathrm{E})$ engendré par les réflexions ρ_x , lorsque x décrit $\mathrm{P}.$

Démontrer que si un vecteur x appartient à un cristal indécomposable X, alors, d'une part l'orbite de xsous l'action de W(X) et d'autre part l'ensemble X engendrent le même sous-espace vectoriel de E.

- I. 9° Si P est une partie de E, on note |P| l'ensemble des normes |x| lorsque x décrit P. Démontrer que si X est un cristal indécomposable, l'ensemble |X| possède 1 ou 2 éléments.
- I. 10° Soit X un cristal indécomposable, et soit λ le plus petit élément de |X|. Démontrer que si x et ysont deux vecteurs distincts de X, on a $|x-y| \ge \lambda$.
 - I. 11º Démontrer que tout cristal est fini
 - I. 12° Démontrer que si X est un cristal, le groupe W(X) est fini.
 - I. 13° On appelle rang d'un cristal X la dimension du sous-espace vectoriel RX engendré par X. Démontrer qu'à similitude près il n'existe qu'un seul cristal de rang 1, noté A1, et qu'il est indécomposable.

DEUXIÈME PARTIE.

(Les résultats de cette deuxième partie ne sont pas indispensables par la suite.)

- II. 1º Démontrer qu'à similitude près, il n'existe qu'un seul cristal de rang 2, noté S2, qui ne soit pas indécomposable et dont tous les vecteurs aient même norme. Dessiner S_2 (dans le plan euclidien RS_2).
- \mathbf{H} , $\mathbf{2}^{\circ}$ Démontrer que dans un cristal X indécomposable de rang 2, on peut trouver deux vecteurs x et yformant un angle aigu. Si de plus |X| possède deux éléments, démontrer que l'on peut imposer la condition supplémentaire |y| > |x|.
- II. 3º Démontrer qu'à similitude près, il n'existe qu'un seul cristal de rang 2, noté A2, qui soit indécomposable et dont tous les vecteurs aient même norme. Dessiner A2.
- II. $oldsymbol{4}^{ ext{o}}$ Démontrer qu'à similitude près, il n'existe, outre le cristal $oldsymbol{ ext{A}_2}$, $ext{-que}$ deux autres cristaux indécomposables de rang 2, notés B2 et G2, de cardinaux respectifs 8 et 12. Dessiner des deux cristaux.

TROISIÈME PARTIE.

III. — 1º Démontrer la non-vacuité de l'ensemble $\mathscr{C}(X)$ des vecteurs t qui ne sont orthogonaux à aucun des vecteurs d'un cristal donné X.

- III. 2° Soit X un cristal et $t \in \mathcal{C}(X)$. Notons X_t^+ l'ensemble des vecteurs de X qui forment un angle aigu ou nul avec t. Notons enfin B_t^X l'ensemble des vecteurs de X_t^+ qui ne peuvent pas s'écrire comme somme de deux éléments de X_t^+ . Démontrer que tout élément de X_t^+ est combinaison linéaire d'éléments de B_t^X à coefficients entiers positifs ou nuls.
- III. 3° On dit que deux vecteurs non nuls x et y forment un angle obtus si $\frac{\pi}{2} < x, y < \pi$. Soit X un cristal et $t \in \mathcal{C}(X)$; démontrer que les éléments de B_t^X forment entre eux des angles obtus ou droits.
- III. 4° On appelle *demi-espace* (sous-entendu: strict) l'image réciproque de l'intervalle ouvert $]0, + \infty[$ par une forme linéaire non nulle $E \rightarrow \mathbb{R}$.

Démontrer que si des vecteurs sont situés dans un même demi-espace et forment entre eux, deux à deux, des angles droits ou obtus, alors ils forment une famille libre.

III. — 5° Une partie $B = \{b_1, \ldots, b_r\}$ d'un cristal X est dite une base cristalline de X si c'est une famille libre, et si pour tout x dans X, il existe un élément $(\varepsilon, v_1, \ldots, v_r)$ dans le produit cartésien

$$\{-1, +1\} \times \mathbf{N}^r$$
 tel que $x = \varepsilon(v_1b_1 + \cdots + v_rb_r)$.

Cette définition étant posée, soit X un cristal et $t \in \mathscr{C}(X)$; démontrer que B_t^x est une base cristalline de X.

III. - 6° Soit B une base cristalline d'un cristal X.

Démontrer qu'il existe un vecteur $t \in \mathcal{C}(X)$ fel que tb = 1, pour tout $b \in B$, et que, pour un tel vecteur t, on a $B = B_t^X$.

III. — 7° Soit B une base cristalline d'un cristal X. On note alors $X^+(B)$ l'ensemble des vecteurs positifs de X relativement à B, c'est-à-dire l'ensemble des vecteurs $x \in X$ qui sont combinaisons linéaires à coefficients positifs ou nuls des éléments de B.

Démontrer que si $b \in B$, la réflexion ρ_b laisse globalement invariant l'ensemble $X^+(B)$ privé de b.

III. — 8° Soit B une base cristalline d'un cristal X. Notons s_B^X la demi-somme des vecteurs de X qui sont positifs relativement à B.

Démontrer que pour tout b dans B, on a $\rho_p(s_B^X) = s_B^X - b$.

- III. 9° Soit x un vecteur d'un cristal X de rang supérieur ou égal à 2. Démontrer qu'il existe un vecteur u orthogonal à x, et donc à x, mais non orthogonal aux autres vecteurs de X.
 - III. 10° Soit x, X et u comme à la question précédente, et soit o un vecteur tel que ox > 0. Posons

$$\varepsilon = \min_{y \in X, \ y \neq \pm x} |uy|, \qquad M = \max_{y \in X} \varrho_y, \qquad t = u + \frac{\varepsilon}{2M} \varrho.$$

Démontrer que $t \in \mathscr{C}(X)$ et que $x \in B_t^X$.

III. — 11° Soit B une base cristalline d'un cristal X, et soit $t \in \mathcal{C}(X)$. Soit $\varphi \in W(B)$ tel que le produit scalaire $s_B^{\chi}\varphi(t)$ soit maximal (lorsque φ décrit le groupe W(B)).

Démontrer que $\varphi(t)$ forme un angle aigu ou nul avec tous les vecteurs de B.

- III. 12° Soit A et B deux bases cristallines d'un même cristal. Démontrer qu'il existe ϕ dans W(B) tel que $\phi(A) = B$.
 - III. 13° Soit B une base cristalline d'un cristal X. Démontrer que W(B) = W(X).
 - III. 14º Démontrer que si deux cristaux ont une base cristalline en commun, alors ils sont égaux.
 - III. 15º Démontrer qu'à similitude près, il n'existe qu'un nombre fini de cristaux indécomposables.

QUATRIÈME PARTIE.

Dans cette partie on se fixe une base orthonormale e_1, \ldots, e_N (N \geqslant 4) de l'espace euclidien E.

- IV. 1° Soit r un entier tel que $1 \le r \le N-1$ et soit A_r l'ensemble des r(r+1) vecteurs de la forme $e_i e_j$, avec $i \ne j, 1 \le i \le r+1, 1 \le j \le r+1$. Démontrer que A_r est un cristal.
- IV. 2º Démontrer que les r vecteurs $e_1 e_2$, $e_2 e_3$, ..., $e_r e_{r+1}$ constituent une base cristalline de A_r .
 - IV. -3° Trouver le nombre d'éléments du groupe $W(A_r)$.

- IV. 4° Soit r un entier tel que $2 \le r \le N$. On considère, d'une part, les 2r vecteurs $\pm e_i(1 \le i \le r)$ et, d'autre part, les 2r(r-1) vecteurs $\pm e_i \pm e_j (1 \le i < j \le r)$, où les signes \pm sont choisis indépendamment. Soit B, l'ensemble de ces 2r2 vecteurs. Démontrer que B, est un cristal.
- IV. 5º Démontrer que les r vecteurs $e_1 e_2$, $e_2 e_3$, ..., $e_{r-1} e_r$, e_r constituent une base cristalline de B.
- IV. 6º Soit I'inversion de centre l'origine de E et de puissance 2, c'est-à-dire l'application qui à tout vecteur non nul x associe l'unique vecteur y colinéaire à x tel que xy=2. Démontrer que si X est un cristal, alors $\mathcal{J}(X)$ est un cristal.
- IV. 7° Démontrer que si B est une base cristalline du cristal X, alors $\mathcal{J}(\mathrm{B})$ est une base cristalline du cristal inverse J(X).
 - IV. 8° Démontrer que les cristaux A_r , B_r et $C_r = \mathcal{J}(B_r)$ sont tous indécomposables.
- IV. 90 Démontrer que, pour $1 \le r \le N-1$, on a l'égalité $\mathcal{J}(A_r) = A_r$, et que les deux cristaux B_2 et C₂ sont semblables.
- IV. 10° Démontrer que les cristaux $A_r(1 \le r \le N-1)$, $B_r(2 \le r \le N)$, $C_r(3 \le r \le N)$ sont deux à deux non semblables.
 - IV. 11° Trouver deux cristaux indécomposables non semblables X et Y tels que W(X) = W(Y).

CINQUIÈME PARTIE.

(Les questions 20, 30, 40 et 50 de cette cinquième partie sont indépendantes des deuxième, troisième et quatrième

V. — 1º Un groupe G est dit cristallographique si c'est un sous-groupe fini du groupe orthogonal O(E), s'il n'est pas réduit à son élément neutre, si en outre il est engendré par des réflexions, et si enfin il existe une base de rationnalité pour G, c'est-à-dire une base de E (non nécessairement orthogonale) telle que les matrices des éléments de G par rapport à cette base soient toutes à coefficients rationnels.

Démontrer que si X est un cristal, le groupe W(X) est cristallographique.

V. — 2º Soit A une base de rationnalité pour un groupe cristallographique G. Soit T le sous-groupe du groupe additif de E engendré par la réunion $D = \bigcup_{\phi \in G} \phi(A)$.

Démontrer qu'il existe un nombre réel & strictement positif tel que le seul vecteur de T de norme strictement inférieure à s soit le vecteur nul. (On conserve ces notations dans les questions 3°, 4° et 5° ci-dessous.)

- V. 3º Démontrer que si y est un vecteur non nul tel que la réflexion $\,
 ho_{r}\,$ appartienne à $\,$ G, alors le groupe $\mathbf{T} \cap \mathbf{R} y$ (formé des vecteurs de \mathbf{T} colinéaires à y) est cyclique.
- V_* 4^o Soit X l'ensemble des vecteurs non nuls x tels que $\rho_x \in G$ et que x soit un générateur du groupe cyclique T ∩ Rx. Démontrer que X est un cristal.
 - V. 5° Démontrer que G = W(X).
- V. 6° Soit ρ et σ deux réflexions appartenant à un même groupe cristallographique. Démontrer que $(\rho \circ \sigma)^{12} = 1_E.$
- $V.-7^{\circ}$ Soit ϕ un élément d'un groupe cristallographique. Considérant ϕ comme un endomorphisme de l'espace vectoriel E, démontrer que son polynôme caractéristique est à coefficients entiers.
- V. 8º Donner un exemple de sous-groupe fini de O(E), non réduit à l'élément neutre, engendré par des réflexions, mais qui ne soit pas cristallographique.
 - V. 9º Démontrer qu'à isomorphie près, il n'y a qu'un nombre fini de groupes cristallographiques.

SIXIÈME PARTIE.

(Sauf pour sa dernière question, cette partie est indépendante de la cinquième partie.)

VI. — 1º Soit B une base cristalline d'un cristal indécomposable X (les notations des questions 1º, 2º et 3º se suivent).

Démontrer que si x et y sont dans B, le nombre $\cos \widehat{x}$, y ne peut prendre que quatre valeurs.

VI. — 2º Désormais, X est de rang 3.

Demontrer que $B = \{a, b, c\}$, avec a non orthogonal à b et b non orthogonal à c.

VI. — 3° Posons $\alpha = \frac{a}{|a|}$, $\beta = \frac{b}{|b|}$ et $\gamma = \frac{c}{|c|}$. En exprimant que le carré scalaire de chacun des trois vecteurs $\alpha + \beta + \gamma$, $\alpha + \sqrt{2\beta} + \gamma$ et $\sqrt{3\alpha} + 2\beta + \gamma$ est strictement positif, démontrer que le triplet $(\cos \alpha, \beta, \cos \beta, \gamma, \cos \gamma, \alpha)$ ne peut prendre que trois valeurs.

VI. — 4° Démontrer que les trois cristaux A_3 , B_3 et C_3 sont, à similitude près, les seuls cristaux indécomposables de rang 3.

VI. — 5° Soit ρ , σ et τ trois réflexions appartenant à un même groupe cristallographique. Démontrer que $(\rho \circ \sigma \circ \tau)^{48} = 1_{F}$.

Composition d'analyse.

PRÉLIMINAIRES.

1º K désigne R ou C. Si Ω est un ouvert non vide de \mathbb{R}^2 , et n un entier positif $(n \in \mathbb{N})$, on note $\mathscr{C}^n(\Omega, \mathbb{K})$ l'ensemble des applications de classe \mathbb{C}^n (en tant que fonctions de deux variables réelles) de Ω dans \mathbb{K} . En particulier $\mathscr{C}^0(\Omega, \mathbb{K})$ est l'ensemble des applications continues de Ω dans \mathbb{K} .

On note $\mathscr{C}^{\infty}(\Omega, \mathbf{K})$ l'ensemble $\bigcap \mathscr{C}^{n}(\Omega, \mathbf{K})$.

Lorsque la première (resp. seconde) variable est notée x (resp. y), $\frac{\partial}{\partial x}$ (resp. $\frac{\partial}{\partial y}$) désigne l'opérateur de dérivation partielle par rapport à la première (resp. seconde) variable, et Δ désigne alors l'opérateur

$$\left(\frac{\partial}{\partial x}\right)^2 + \left(\frac{\partial}{\partial y}\right)^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}.$$

Si Ω est un ouvert non vide de \mathbb{R}^2 et k un entier positif, on note $\mathscr{H}^k(\Omega, \mathbb{K})$ l'ensemble des éléments f de $\mathscr{C}^{\infty}(\Omega, \mathbb{K})$ tels que $\Delta^k f = 0$. On a ainsi $\mathscr{H}^o(\Omega, \mathbb{K}) = \{0\}$. Un élément f de $\mathscr{H}^k(\Omega, \mathbb{K})$ (plus spécialement de $\mathscr{H}^1(\Omega, \mathbb{K})$) est dit « polyharmonique » [d'ordre k, de Ω dans \mathbb{K}] (plus spécialement « harmonique » [de Ω dans \mathbb{K}]). On admet sans démonstration que $\mathscr{H}^1(\Omega, \mathbb{K})$ est fermé dans l'espace $\mathscr{C}^o(\Omega, \mathbb{K})$ muni de la topologie de la convergence uniforme sur tout compact de Ω .

2º On identifiera parfois \mathbf{R}^2 et \mathbf{C} en utilisant la variable complexe x+iy. Si celle-ci est notée $z[x=\mathrm{Re}(z)\,;y=\mathrm{Im}(z)]$, on désigne par $\frac{\partial}{\partial z}\left(\mathrm{resp.}\,\frac{\partial}{\partial \overline{z}}\right)$ l'opérateur de dérivation

$$\frac{1}{2} \left(\frac{\eth}{\eth x} - i \frac{\eth}{\eth y} \right) \left(\text{resp.} \, \frac{1}{2} \left(\frac{\eth}{\eth x} + i \frac{\eth}{\eth y} \right) \right).$$

On rappelle alors les formules:

$$a\frac{\partial}{\partial x} + b\frac{\partial}{\partial y} = c\frac{\partial}{\partial z} + \overline{c}\frac{\partial}{\partial \overline{z}}$$
 si $c = a + ib$; $\frac{\partial}{\partial z} \circ \frac{\partial}{\partial \overline{z}} = \frac{\partial}{\partial \overline{z}} \circ \frac{\partial}{\partial z} = \frac{1}{4}\Delta$; $df = \frac{\partial f}{\partial z}dz + \frac{\partial f}{\partial \overline{z}}d\overline{z}$,

et le résultat suivant

Si f est une fonction holomorphe d'un ouvert non vide Ω de C dans C, on a $\frac{\partial f}{\partial \bar{z}}(z) = 0$ et $f'(z) = \frac{\partial f}{\partial z}(z)$, pour tout z dans Ω .

3º Si a est un complexe, ρ un réel strictement positif, $D(a, \rho)$ (resp. $\overline{D}(a, \rho)$) désigne le disque ouvert (resp. fermé) de C de centre a, de rayon ρ . Pour Ω disque ouvert non vide de C, on admet sans démonstration que les éléments de $\mathcal{H}^1(\Omega, \mathbb{R})$ (resp. $\mathcal{H}^1(\Omega, \mathbb{C})$ sont exactement les parties réelles des fonctions holomorphes de Ω dans C (resp. les fonctions $f + \overline{g}$, où f, g sont des fonctions holomorphes de Ω dans C).

4º On désigne par λ la mesure de Lebesgue de \mathbb{R}^2 (ou \mathbb{C}). Les locutions « λ -intégrable », « λ -mesurable », « λ -presque partout », etc., sont usuélles. On désigne par $\mathscr L$ l'ensemble des fonctions à valeurs complexes, définies λ -presque partout dans \mathbb{C} , et λ -intégrables. Si f appartient à $\mathscr L$, son intégrale est notée indifféremment

$$\int f(z) \, d\lambda(z), \qquad \int f(\zeta) \, d\lambda(\zeta), \qquad \iint f(x, y) \, dx \, dy, \quad \text{etc.}$$

Si K est un compact de C, \mathcal{L}_{K} désigne l'ensemble des éléments de \mathcal{L} qui sont nuls λ -presque partout dans C K. On note plus spécialement, R étant un réel strictement positif, \mathcal{L}_{R} pour $\mathcal{L}_{\overline{D}(0, R)}$. Enfin \mathcal{L}_{C} désigne \mathcal{L}_{R} .