Simple Linear Regression Part 3: Inference

STAT 705: Regression and Analysis of Variance

Variability of the Estimators

- Estimators: $\hat{\beta}_0$ and $\hat{\beta}_1$
- Calculated from the observed (X, Y) pairs in the sample
- This implies that each estimator
 - is a random variable
 - has a probability distribution
 - has a mean and a standard deviation

Distributions of \hat{eta}_0 and \hat{eta}_1

	Mean	Variance
Intercept	$E(\hat{\beta}_0) = \beta_0$	$Var(\hat{\beta}_0) = \sigma^2 \left(\frac{1}{n} + \frac{\bar{X}^2}{SS_{XX}} \right)$
Slope	$E(\hat{\beta}_1) = \beta_1$	$Var(\hat{\beta}_1) = \frac{\sigma^2}{SS_{XX}}$

For both \hat{eta}_0 and \hat{eta}_1 , the standard error is the square root of variance.

Since σ^2 is not known, we substitute $\hat{\sigma}^2$.

Then $\hat{\beta}_0$ and $\hat{\beta}_1$ follow a t distribution with n-2 degrees of freedom.

Standard Errors of \hat{eta}_0 and \hat{eta}_1

Intercept

Point estimate = $\hat{\beta}_0 = -21$

$$V\hat{a}r(\hat{\beta}_0) = MSE\left(\frac{1}{n} + \frac{\bar{X}^2}{SS_{XX}}\right)$$

$$V\hat{a}r(\hat{\beta}_0) = 7867.2\left(\frac{1}{11} + \frac{18.5^2}{643.56}\right)$$

$$V\hat{a}r(\hat{\beta}_0) = 4899.69$$

$$se(\hat{\beta}_0) = \sqrt{4899.69} = 70.0$$

Slope

Point estimate = $\hat{\beta}_1 = 35.7$

$$V\hat{a}r(\hat{\beta}_1) = \frac{MSE}{SS_{XX}}$$

$$V\hat{a}r(\hat{\beta}_1) = \frac{7867.2}{643.56} = 12.22$$

$$se(\hat{\beta}_1) = \sqrt{12.22} = 3.5$$

Confidence Intervals for β_0 and β_1

- General form of confidence interval is (point estimate) ± (critical value)*(standard error)
- The critical value is from the t distribution with n-2 degrees of freedom (n is the number of pairs in the data)
- For Lead vs. Traffic example, with $\alpha = .05$ $df = n 2 = 9 \implies$ critical value = $t_{\alpha/2, 9} = 2.262$
- 95% CI for β_0 is $-21 \pm (2.262)*70.0$, or (-179.3, 137.3)
- 95% CI for β_1 is 35.7 \pm (2.262)*3.5, or (27.8, 43.6)

Hypothesis Test for β_1

For some constant c, test H_0 : $\beta_1 = c$ vs. H_a : $\beta_1 \neq c$

Test statistic =
$$\frac{\hat{\beta}_1 - c}{se(\hat{\beta}_1)}$$
 Critical value = $t_{\alpha/2}$, $df = n-2$

Reject H_0 if | Test statistic | > Critical value

Example: Lead vs. Traffic, test H_0 : $\beta_1 = 0$ vs. H_a : $\beta_1 \neq 0$

Test statistic =
$$\frac{35.7 - 0}{3.5}$$
 = 10.2 Critical value = 2.262

|10.2| > 2.262, so we reject H $_0$

The sample provides evidence that the slope is not 0.

Interpret the Inference on Slope

- In the previous hypothesis test, we concluded that the slope of the line regressing Lead on Traffic is not 0. This means
 - the predictor (Traffic) DOES help explain response (Lead)
 - the predictor should be kept in the model
- If the conclusion had been opposite (i.e., do not reject H₀), then any of the following could be plausible
 - the 'true' slope is 0
 - the 'true' regression model does not include the predictor
 - a reduced model ($Y = \beta_0 + \varepsilon$) may be adequate
 - the 'true' regression model is not linear

Hypothesis Test for β_0

For some constant c, test H_0 : $\beta_0 = c$ vs. H_a : $\beta_0 \neq c$

Test statistic =
$$\frac{\hat{\beta}_0 - c}{se(\hat{\beta}_0)}$$
 Critical value = $t_{\alpha/2}$, $df = n-2$

Reject H_0 if | Test statistic | > Critical value

Example: Lead vs. Traffic, test H_0 : $\beta_0 = 0$ vs. H_a : $\beta_0 \neq 0$

Test statistic =
$$\frac{-21-0}{70}$$
 = -0.3 Critical value = 2.262

|-0.3| is not > 2.262, so we do not reject H $_0$

Conclusion: It is reasonable to believe that the intercept could be 0.

Relation Between Tests and CI

- Two-sided hypothesis tests are equivalent to confidence intervals
- For the slope:
 - At α = 0.05, we rejected H₀: β_1 = 0 in favor of H_a: $\beta_1 \neq 0$
 - A 95% confidence interval for β_1 is (27.8, 43.6)
- The confidence interval does not contain the hypothesized value (0), so 0 is not a 'plausible' value for β_1 and we should reject the null hypothesis.

Interpreting a Confidence Interval

- A confidence interval for a population parameters (e.g., either β_0 or β_1) is based on the sampling distribution of its estimator (e.g., either $\hat{\beta}_0$ or $\hat{\beta}_1$)
- We found a 95% confidence interval for β_1 is (27.8, 43.6)
- INCORRECT INTERPRETATION:
 - The probability is 95% that β_1 is between 27.8 and 43.6.
- Why is this incorrect?
 - β_1 is a population parameter. It is a fixed, but unknown, value.
 - β_1 is NOT a random variable; it does NOT have a probability distribution

Correct Interpretation a CI

- We found a 95% confidence interval for β_1 is (27.8, 43.6)
- What this means:
 - If we repeat the experiment many times
 - Generate a new confidence interval for each repetition
 - In approximately 95% of the repetitions, the confidence interval would contain the true value of the parameter
- Brief interpretation
 - The interval [27.8,43.6] contains the true value of the parameter β_1 with 95% confidence

Coefficient of Determination

Also known as 'R-square'

• Definition:
$$R^2 = 1 - \frac{SSE}{SS_{yy}}$$

For the Lead vs. Traffic example,

$$R^2 = 1 - \frac{70,805.1}{892,522.67} = 0.921$$

 Interpretation: Approximately 92.1% of the variability in lead concentration can be explained by the traffic volume.

Prediction and Estimation

- We can use the linear regression equation to
 - 1. Estimate the mean value of Y for a specific X
 - 2. Predict the value for an individual Y with a specified X
- How are these different?
 - Consider all the locations in the population that have traffic volume 22 thousand vehicles.
 - We can estimate the mean lead concentration across all these locations.
 - 2. We can predict the lead concentration for one of these locations.

Prediction and Estimation

- Estimate $E(Y/X_0)$, the mean Y for a specific X_0

 - point estimate = $\hat{\beta}_0 + \hat{\beta}_1 X_0$ variance of this estimate = $\sigma^2 \left(\frac{1}{n} + \frac{\left(X_0 \bar{X} \right)^2}{SS_{XX}} \right)$
- Predict an individual Y for a specific X_0

 - point estimate = $\hat{\beta}_0 + \hat{\beta}_1 X_0$ variance of this estimate = $\sigma^2 \left(1 + \frac{1}{n} + \frac{\left(X_0 \bar{X} \right)^2}{SS_{XX}} \right)$
- For both variances, substitute MSE for σ^2
- How are these different? How are they the same?

Example of Prediction and Estimation

- In the Lead vs. Traffic example, consider sites that have 22,000 vehicles ($X_0 = 22$)
- Estimated Y

 $-21 + 35.7 \times 22 = 764.4$ micrograms of lead per gram of bark

variance for the mean estimate

$$MSE\left(\frac{1}{n} + \frac{\left(X_0 - \overline{X}\right)^2}{SS_{XX}}\right) = 7867.2\left(\frac{1}{11} + \frac{\left(22 - 18.5\right)^2}{643.56}\right) = 864.95$$

variance for the individual predicted value

$$MSE\left(1 + \frac{1}{n} + \frac{\left(X_0 - \overline{X}\right)^2}{SS_{XX}}\right) = 7867.2\left(1 + \frac{1}{11} + \frac{\left(22 - 18.5\right)^2}{643.56}\right) = 8732.15$$

Confidence and Prediction Intervals

- $X_0 = 22$, point estimate = 764.4, critical value = 2.262
- Confidence interval for the mean Lead across all locations with 22,000 vehicles

```
estimate \pm (critical value)×se(est) \Rightarrow 764.4 \pm (2.262)×(864.95)<sup>1/2</sup> (697.9, 830.9)
```

 Prediction interval for the Lead concentration at one location that has 22,000 vehicle

```
estimate \pm (critical value)×se(est) \Rightarrow 764.4 \pm (2.262)×(8732.15)<sup>1/2</sup> (553.0, 975.8)
```

 Prediction intervals are wider because there is more variability in a single location than in the mean across numerous locations.

Confidence and Prediction Intervals

- Now obtain the CI and PI for sites with 18,500 vehicles
- For both intervals
 - $X_0 = 18.5$, which happens to be the mean of X
 - Point estimate = $-21 + 35.7 \times 18.5 = 639.45$
 - Critical value = 2.262
- For the mean estimate
 - Variance = MSE*(1/n) = 7867.2/11 = 715.2; std.err = 26.74
 - Interval is 639.45 ± 2.262*26.74, or (579, 700)
- For the individual predicted value
 - Variance = MSE*(1 + 1/n) = 7867.2 (1 + 1/11) = 8582.4; std.err = 92.64
 - Interval: 639.45 ± 2.262*92.64, or (430, 849).

Summary: CI and PI

	Confidence Interval	Prediction Interval
Traffic = 22,000 $(X_0 = 22)$	698 to 831 (width = 133)	553 to 976 (width = 423)
Traffic = 18,500 (X ₀ = 18.5)	579 to700 (width = 121)	430 to 849 (width = 419)

- In general,
 - The width of any of these intervals depends on the value of X_0
 - Both types of intervals are narrower when X_0 is closer to the mean than when X_0 is farther away
 - For any given X_0 , confidence intervals are narrower than prediction intervals

Comparison

Confidence Interval on Mean Response

- Mean of the distribution of Y for a given X
- More precise ⇒ narrower
- Inference on a parameter
- Apply to a mean response

Prediction Interval for New Observation

- Individual outcome⇒ more uncertainty
- Less precise ⇒ broader
- Statement on a random variable
- Apply to a single new observation

Things You Should Know

- Interpret confidence intervals
 - for the slope β_1
 - for the intercept β₀
 - for the mean (expected value) of the response
- Interpret prediction intervals
 - for an individual Y, given a specific X
- Interpret
 - Point estimates for σ^2 , β_0 and β_1
- Difference between an estimate and a parameter
- Difference between a confidence interval and a prediction interval

