my first regression project

Carlos Soares

predictive: regression to estimate customer value

- y is customer value
- x is family income
 - and other characteristics
 - ... only 1 here for simplicity

plan & goals

- regression
 - introduction
 - my first regression (in RM...)
- linear regression
- evaluation of Regressors
- other algorithm

- regression concepts
 - interpretation of the linear model
 - evaluation measures of regression models
- understand the need to use different sets of data for modelling and for evaluation
- know how to evaluate the results of a classification model
 - conceptually and in RapidMiner

REGRESSÃO

previsão de valores numéricos: abordagem de análise de dados

U. PORTO
FEUP FACULDADE DE ENGENHARIA
UNIVERSIDADE DO PORTO

variável-objectivo (ou dependente)

- novas observações para as quais queremos fazer a previsão
 - ex. nova zona da cidade
- observações conhecidas
 - ex. bairros onde empresa já está implantada

variáveis

independentes

já conhecemos

my first regression (in RM): load data

pleases note: the figures are for another file!

- data file: regression data.xlsx
- load data into repositor
 - 1. choose file
 - choose worksheet
 - housing
 - 3. indicate row with column names (if any)
 - first row
 - 4. indicate column with ids of rows (if any)
 - none
 - 5. indicate column with target variable (if any)
 - last one
 - 6. give name
 - boston-housing
 - 7. finish

real

attribu

71 300

real

0.305

attribu

nume...

attribu

real

0.003

attribu

l real

label

126 201

integer

attribu

200

construir processo de regressão no rapid miner

- carregar dados do repositório
- aplicar algoritmo de regressão linear
 - ex. operators → modeling → classification and regression → function fitting → linear regression
- executar processo

analyze linear regression model

- assumes variables are not correlated
 - influence of each variable explained separately
 - coefficients are not influenced by changes in the set of independent variables
- variation depends on magnitude of correlation
 - sign might change!
- ... but empirical results indicate robustness

LinearRegression

```
- 0.108 * CRIM
```

+ 0.045 * ZN

+ 0.018 * INDUS

+ 2.661 * CHAS

17.655 * NOX

+ 3.822 * RM

-1.459 * DIS

+ 0.304 * RAD

- 0.012 * TAX

0.978 * PTRATIO

+ 0.009 * B

0.521 * LSTAT

+ 36.696

linear regression

simple case: 2 variables
 x and y

equation of the line

$$y = f(x)$$
$$= b_0 + b_1 x$$

interpretion of coefficients

$$y = b_0 + b_1 x$$

- b_0 : intersection of the line with the yy axis
 - frequently hard to interpret
- b_1 : slope of the line
 - variation of the value of y given an increase of 1 unit of x

make prediction for new examples

given a neighborhood with the following characteristics

CRIM	0,04294
ZN	28
INDUS	15,04
CHAS	0
NOX	0,464
RM	6,249
AGE	77,3
DIS	3,615
RAD	4
TAX	270
PTRATIO	18,2
В	396,9
LSTAT	10,59

... what is the predicted value?

estimating parameters: statistics meets optimization meets algorithms

$$y = b_0 + b_1 x$$

$$\widehat{b}_1 = \frac{S_{XY}}{S_{XX}}$$

where \hat{b}_1 is an estimate of b

$$S_{XY} = \sum_{i=1}^{n} [(X_i - \overline{X}).(Y_i - \overline{Y})]$$
$$S_{XX} = \sum_{i=1}^{n} (X_i - \overline{X})^2$$

- $\hat{b_1}$ should be statistically significantly different from zero
 - if not, there is no meaningful dependency between Y and X
 - this should be tested

$$\hat{b}_0 = \overline{Y} - \hat{\beta}.\overline{X}$$

where \hat{b}_0 is an estimate of b_0

- $\hat{b_0}$ may or may not be statistically significantly different from zero
 - If not there is no evidence that Y≠0 when X=0.
 - ... which could make sense
 - e.g. value of a customer with 0 income
 - ... or not...
 - e.g. minimum sales of a product without shelf space

Simple linear regression: assumptions

- Linear relationship between x and y
 - also additive
- Errors
 - i.e. unexplained variation in *y*
 - ... are independently and identically distributed
 - ... homoscedasticity
 - constant variance
 - ... normally distributed

AVALIAÇÃO DE MODELOS DE REGRESSÃO

regressão: resumo (até agora)

pleases note: the figures are for another file!

exemplos com valor conhecido da variável-objetivo

Comprou	Idade	Rendimento	Ag.fam	Vendas anteriores	Última Venda
não	37	49000	2	1	42000
sim	43	68000	3	0	0
sim	42	61000	4	0	0
sim	26	52000	2	0	0
sim	40	64000	1	1	21000
sim	38	52000	1	0	0
sim	45	43000	4	1	47000
sim	35	45000	2	1	34000
não	39	43000	2	0	0

(novos) exemplos com valor desconhecido da variável-objetivo

4	Α	В	С	D	
1	Comprou	Idade	Rendimento	Ag.fam	Vendas
2		41	50000	2	
3		39	68000	2	
4		58	61000	4	
5		26	25000	3	
6		21	50000	1	
7		38	43000	2	
8		44	43000	4	
9		27	47000	2	
10		70	23000	2	

2

previsões para os (novos) exemplos com valor desconhecido da variável-objetivo

row no.	Comprou	prediction(confidence(.confidence(lda
1	?	sim	0	1	41
2	?	sim	0	1	39
3	?	sim	0	1	58
4	?	não	1	0	26
5	?	não	0.818	0.182	21
6	?	não	1	0	38
7	?	sim	0	1	44
8	?	não	0.818	0.182	27
9	?	não	1	0	70

usariam as previsões feitas por este modelo?

gps

- regression
- linear regression
- evaluation of regressors
 - measures
 - methodology

prediction and evaluation

- given the value of x
- model estimates the value of y

$$\hat{y} = b_0 + b_1 x$$

- y: true value
- ŷ : value estimated by the model

common evaluation measures

- average error
 - do not use!

$$\frac{1}{m}\sum_{i}\hat{y}_{i}-y_{i}$$

mean absolute deviation

$$\frac{1}{m} \sum_{i} |\hat{y}_i - y_i|$$

mean squared error

$$\frac{1}{m}\sum_{i}(\hat{y}_{i}-y_{i})^{2}$$

common evaluation measures: MAD vs MSE

$$\frac{1}{m} \sum_{i} |\hat{y}_i - y_i|$$

$$\frac{1}{m}\sum_{i}(\hat{y}_{i}-y_{i})^{2}$$

	i=1	2	3	•••	 i=10	MAD	MSE
y_i	100	100	100		100		
$\widehat{\mathcal{Y}}_{i}^{M_{1}}$	99	99	99		99		
$\left \widehat{y}_i^{M_1}-y_i\right $	1	1	1		1	$\frac{1\times10}{10}=1$	
$\left(\hat{y}_i^{M_1} - y_i\right)^2$	1	1	1		1		$\frac{1\times10}{10}=1$
$\widehat{\mathcal{Y}}_i^{M_2}$	90	100	100		100		
$\left \hat{y}_i^{M_2} - y_i\right $	10	0	0	0	0	$\frac{10+0\times9}{10}=1$	
$\left(\hat{y}_i^{M_2}-y_i\right)^2$	100	0	0	0	0		$\frac{100 + 0 \times 9}{10} = 10$

analysis of evaluation measures

- mean absolute deviation
 - estimates "typical" error
- mean squared error

- values depend on the scale of the target variable
 - good or bad?
 - business perspective
 - but is it really the relationship between x and y?

baseline

- if nothing is known about the new case
- ... what is the best prediction we can make?
 - random vs average

 $\hat{y}_i = \overline{y}$

• eg MSE

To if prediction model is perfect

]0,1[if it is useful

1 if it is the same as the baseline

>1 if it is worse than the baseline

desenvolvimento de modelos

evaluation methodology: do not forget!

avaliar modelo de regressão em rapid miner (1/3)

- operador split validation
- sub-processo
 - operador que contém outros operadores
 - duplo clique para entrar

- distribuir aleatoriamente os dados por conjunto de treino e conjunto de teste
 - proporção
 - 70% dos casos para treino
 - 30% dos casos para teste

estimate predictive error with rapid miner (2/3)

- split validation
 - different operations applied to training and test data
 - model obtained with train data is applied to test data

avaliar modelo de regressão em rapid miner (3/3)

- operador "Performance (Regression)"
- escolher medidas RMSQ

estimativa de desempenho do modelo de regressão

metodologia de avaliação: treino

treino

 para obter o modelo automaticamente

• teste

- estimar o valor do modelo em novos casos
- assume que os novos dados terão uma distribuição idêntica aos de treino
 - não funciona se houver alterações na distribuição: ex: inflação

short detour: brief introduction to bias

- y is customer value
- x is family income
 - and other characteristics
 - ... only 1 here for simplicity
- why is it harder to predict y now?