Paper Number(s): E3.02

AM4

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE UNIVERSITY OF LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING **EXAMINATIONS 2001**

MSc and EEE PART III/IV: M.Eng., B.Eng. and ACGI

INSTRUMENTATION

Monday, 30 April 10:00 am

There are SIX questions on this paper.

Answer FOUR questions.

Corrected Copy

Qu (a)

Time allowed: 3:00 hours

Examiners:

Papavassiliou, C. and Burdett, A.J.

Special instructions for invigilators:	None
Information for candidates:	None

- 1. This question is about noise and signal recovery.
 - a) Define the noise factor and noise figure of a signal processing device. Argue whether the output S/N ratio of a device can be larger, smaller than or equal to that at the input. What is the S/N ratio of a voltage source V_s with internal resistance R_s ? What is, therefore, the S/N ratio of a 1.5 volt battery of internal impedance 0.1Ω over a bandwidth of 100 Hz?

[5 marks]

b) Write an expression for the noise factor of a cascade of three amplifiers of gains and noise factors G_1 F_1 , G_2 F_2 and G_3 F_3 respectively. Derive an expression for the noise figure of the cascade of an infinite number of identical amplifiers of gain G and noise factors F. (Hint: notice that the cascade forms a geometric series) What is the limit of this noise factor as G tends to zero? as G tends to infinity?

[5 marks]

c) Derive the signal to noise ratio of a quantised sinusoidal signal, in terms of the quantisation step size.

[5 marks]

d) With the aid of a block diagram describe the $\Sigma\Delta$ A/D converter. Explain how it achieves multibit resolution despite its using a 1 bit converter internally. If a final sampling bandwidth B is required, what is the maximum resolution of the converter in terms of the oversampling ratio?

[5 marks]

e) Explain how the S/N ratio of a measurement can be enhanced by averaging a number N of repetitions of the measurement. How many measurements must be averaged if the S/N ratio is to be enhanced by a factor of 10? How many measurements are needed to enhance the Voltage signal to noise ratio by a factor of 10?

[5 marks]

13:40pm, Preak

Page 2 of 7

- 2. In this question we study a binary weighted D/A converter.
 - a) Design a 4 bit binary weighted D/A converter. Draw and fully label schematics for this converter, including component values. You should choose component values so the error arising from the 10 μA input bias and offset current of the OPAMP you use is less than ½ LSB. Write an expression for the voltage output of this converter involving the 4 binary inputs.

[5 marks]

b) Define when a converter is monotonic. Assume the resistors you use to construct a binary weighted D/A converter are supplied with a tolerance of 2%, i.e. a resistor is guaranteed to have an actual value within 2% of its nominal value. Write an expression for the converter output involving the individual resistor tolerances. What is the maximum number of bits for which a binary weighted converter is guaranteed to be monotonic? Is your 4 bit converter of part (a) above guaranteed to be monotonic?

[10 marks]

c) Define the sensitivity of an instrument with respect to a component value. What are the sensitivities of the binary weighted D/A converter of part (a) with respect to each of the resistors you use?

[10 marks]

- 3. In this question we will study a transimpedance amplifier
 - a) Draw and fully label the schematic for a simple OPAMP based transimpedance amplifier.

[2 marks]

- b) You are given the following specifications for the OPAMP:
 - It is a dominant pole OPAMP with an open loop gain G_0 and a pole at ω_0 .
 - The OPAMP has zero input admittance and zero output impedance.
 - The OPAMP has zero voltage offset and current offset and bias.

Write an expression for the transimpedance gain as a function of frequency for a feedback resistance $R_{\rm f}$. Write an expression for the input impedance of the transimpedance amplifier as a function of frequency.

[6 marks]

- c) Write expressions for the sensitivities as a function of frequency of the transimpedance gain to
 - the value of the feedback resistor
 - the value of the open loop gain of the OPAMP
 - the value of the dominant pole frequency

What happens to these sensitivities in the extreme cases that the open loop gain is large or unity?

[9 marks]

- d) Describe and write expressions for the errors in the current measurement that will arise if the OPAMP deviates from ideality in each of the following ways:
 - Has a non-zero offset current.
 - Has a non-zero bias current (Hint: this is equivalent to a non-zero input admittance)

[8 marks]

4. General measurements

a) Define the resolution and sensitivity of a measurement in general.

[5 marks]

- b) List and briefly discuss 2 methods for measuring each of the following quantities. Qualitatively comment on the sensitivity and resolution of each of the measurements you describe. Use appropriate diagrams to clarify your descriptions.
 - Voltage
 - Distance
 - Frequency
 - Magnetic field
 - Velocity

[2 marks each method]

- 5. Wheatstone bridges.
 - a) Draw a diagram for a wheatstone bridge. Describe its operation. Derive its balance condition.

[5 marks]

b) Calculate the bridge voltage output sensitivity to the impedance value of one of its branches.

[5 marks]

c) Devise an AC bridge that can be used to measure capacitance. You may use variable resistors, capacitors or inductors. Solve your bridge for the balance condition, and derive its sensitivity to the change in the unknown capacitance. How can we minimise the dependence of the sensitivity on the magnitude of the unknown capacitance?

[5 marks]

d) Suggest a way to extend the range of this instrument, and discuss advantages and drawbacks.

[5 marks]

e) Design, draw a circuit diagram and discuss an amplifier suitable for amplifying the error signal of the bridge. As the error lies on a large common mode signal your amplifier must have a high *CMRR*. Write an expression for the differential gain of this amplifier

[5 marks]

6. Oscilloscopes.

a) Define the risetime of an oscilloscope. Write an expression for the risetime if the vertical amplifier has a 3dB bandwidth B.

[5 marks]

b) The electron gun in the CRT has a current I_G . If 1 photon is generated for each electron hitting the screen derive an expression for the trace intensity (i.e. number of photons per unit trace length) when a sine wave of frequency f is displayed at a timebase setting such that the total time displayed horizontally is T.

[6 marks]

c) Describe and draw a qualitative schematic of the trigger circuit. Explain how events preceding the nominal trigger time can be displayed.

[6 marks]

d) Describe how the electronically intensified sweep method works. Draw an appropriate diagram to assist your description. Explain how this circuit can be used to augment the trace intensity.

[8 marks]

E3. 12	SILLITIONS - INSTRUMENTATI	1000
AM4	SILLITIONS - INSTRUMENTATIONS Question 1 2001 (m	arch oi)
ح)	Noise factros: F = S/N/12 (S,N powers) S/N/ord	L.1
	Noise figure: N = 10 log, F = (dB) F	<u> [1]</u>
	Always F>1 or S/N/N > S/N and	
t de la companya de l	A voltage source {vs, Rs} how Johnson	moùe:
	$V_N^2 = 4 kTRB$. then, the signed to noise 20ct	~
	$VS = \frac{V_S}{4 \omega T R B}$	[7]
The second secon	Substitute Us=1.5, R=0.1 and B=10	
B)	$-\left[G_{1}F_{1}\right]-\left[G_{2},F_{1}\right]-\left[G_{3},F_{5}\right]-\cdots$	
	$F = F_1 + F_2 - 1 + F_3 - 1 + \dots$ $G = G_1 G_2$	[2 mishs]
	If all amplifiers identical,	
	$F_{0} = F + F_{-1} + F_{-1} + F_{-1} + F_{-1} - F_{G_{-1}}$ $G'' = G_{-1}$	[2 mesles]
	if 6→∞ Fp → F	
	if G > 0 Fo > 0	[1]
1		

c)	Q is the quantisation step.	
	for a converter output N, for upet V,	
	V=NQ+vn and Vn/<\frac{1}{2}Q.	
	Noise power: $P_N = V_m^2$ than the owerage noise is:	
	$\frac{1}{P_{\text{M}}} = \frac{2}{Q} \left(\frac{Q_{\text{M}}^2}{V_{\text{m}}^2} \frac{Q_{\text{M}}^2}{Q_{\text{M}}^2} \right) = \frac{1}{12} Q^2 \qquad \boxed{22}$	
	Assuming the converter longth on bits,	
	« sinusoidal con hour amplitude	
	$V_0 = (2^{n-1})Q$ and a corresponding power:	
	$5 = 2^{2m-3}Q^2$ [2]	27 Apr - 184 Apr
	the signal-to-noise rates is:	

$$+\frac{B_3}{R(1+E_3)}$$

$$+\frac{B_2 E_0}{2 R} + \frac{B_3 E_0}{R}$$

the biggest possbility for non-monotomicity

is the transition 0111-> 1000

in this case, the output step is:

S Vout 7-98 = - Vzef Rf(1+ Eg) 1 - 1 Eo + E + E2 + E2 + R

383 In terms of the various &, worst

case a $\varepsilon_0 = -\varepsilon_2 = -\varepsilon_1 = -\varepsilon_0$. Then for non minotomaly,

 $\frac{1}{8R} - \frac{15\varepsilon}{8R} = \emptyset \implies \varepsilon = \frac{7}{15} = 6\%$

the 4 bit comertes is monotonic.

the general expression come to:

 $(2^{m}-1)\varepsilon=1$

[10]

c) Sansitevity:

 $S = \frac{d \ln A}{d \ln B}$

1A is the instrument reading, B the component

Velac -

the converter equation is, again:

Vout = - Vref Rf (Bo + B1 + Bz + B3)

SRF = 2 ln Vorit - 2 Vorit RF - Vorit - 1
2 ln RF 2 Rg Vorit Vorit

Sport Dort - Ro Vref Rg Bo - Vref Rg Bo Vont DRo Vont Ro Vont Ro Vont Ro.

the sensitivity depends on the code, is well is on the components!

DOJ

(૨)	Resolution: Smallest detectable uput change	_2
	Sensitivity: Latio of electrical orificed to imput charge	<u>[3</u>
(B)	Voltage: Voltmeter V/s converter	
	A/D Oscilloscope	
	Distance Meter/vernier Reflectancetry light, sound.	
	trequency: Counters Clocks	
	Mignetic feeld. Hall Bares Pot Mangnetometers Quantum Hall effect.	
	SQUID Velocity tumne. Interferometry. Deppler [2]	
	10 Ls	wer

Question 5
Viwt
\sim
z_3 $\sqrt{z_4}$
Vim
Bolonce $V_{+}-V_{-}=(V_{in}+-V_{in}-)\frac{Z_{3}}{Z_{1}+Z_{3}}\frac{Z_{4}}{Z_{2}+Z_{4}}$
$= V_{in} \frac{\mathbb{Z}_3 \mathbb{Z}_2 - \mathbb{Z}_1 \mathbb{Z}_4}{\left(\mathbb{Z}_1 + \mathbb{Z}_3\right) \left(\mathbb{Z}_2 + \mathbb{Z}_4\right)}$
$(\lambda_1 + \lambda_3) (\lambda_2 + \lambda_4)$
balance when Vout =0 => Z3Z2=Z,Z4
15]
5) Sensolwoly;
S-DVout ofor Tron Zs
$S_{2} = \frac{(Z_{1} + Z_{3})(Z_{2} + Z_{4})Z_{3} - (Z_{3}Z_{2} - Z_{1}Z_{4})(Z_{1} + Z_{2})V_{1} - (Z_{1} + Z_{3})^{2}(Z_{2} + Z_{4})^{2}}{(Z_{1} + Z_{3})^{2}(Z_{2} + Z_{4})^{2}}$
$(Z_1 + Z_3)^2 (Z_2 + Z_4)^2$
- 2, Z, Z, Z, Y + (Z, +Z, 2) Z+ V:
$-\frac{2 Z_{1} Z_{2} Z_{4} + (Z_{1} + Z_{2}) Z_{4} + V_{in}}{(Z_{1} + Z_{3})^{2} (Z_{2} + Z_{4})^{2}}$
Similarly the other senstwites, S, Sy 20
[s]

A possibility Cx = C, Ry
R2 $= 2\frac{R_3R_4}{j\omega C_1} + \left(-\frac{1}{\omega^2C_1^2} + R_3^2\right)$ $\left(R_3 + \frac{1}{2i\omega C_*}\right)^2 \left(\frac{1}{2i\omega C_*} + R_4\right)$ brilge linear, mike wc, CCR3 and wcx CCR4. d) the range is presumable limited the viscoble Since Cx = GR4 we can alter the trop= R3 the sanstwary $S = \frac{2p}{j\omega c} + \left(p^2 - \frac{1}{\omega^2 c^2}\right)$ (8+ jwc,R) (1+ jwc,Ry [S] Question 6

a) If an ideal step of emplotude orb is applied to the input of the scope, the rese time is the time the trace needs to go from 10% to 30% of the final value Assuning input implifier is a low poiss filter with a pole out to, V(t) = Vo(1-e^{-t/n}) then the rise time is defined between t. : V(t.)=0.1Vo $\Rightarrow t, = T lm(0.3)$ and t2= V(12)=0.9 Vo => t2=17 ln(0.1)=> $\ell_{Ruse} = \ell_r - \ell_r = \gamma \ln(9) = 2.2 \kappa.$ b) The minimum intensity is it the maximum trace velocity, is never sin(wt)=0. If the timebase is 1/10 cm the man relocaty is \$\sqrt{20 \times 10 cm} \and the linear intensity is just: Imin = I gan/Voner = Igan T.

For a gun current of 14.A and a timeboose of 10 nsec; the number of photons per lineact $N = 0.10^{-6} \quad 10^{-8} \text{ sec.} - 4.4 \times 10^{4}$ This is too small to be \$15,1ble c) The trugger circuit consists of comparing the trigger setting with & DC value. The comparactor output to synchronize the houzontal sweep generator. A delay generator in the vertical sup cerecit allows the signoch to be delayed relative to the trugger.