## 1 Warmup with Page Rank and stationary distributions: ii) calculate stationary distribution: using $\pi P = \pi$ , we have, $0^{3}/8^{5}/8$ $(\pi_{1}, \pi_{2}, \pi_{3}) \begin{pmatrix} 3/3 & 1/4 & 1/12 \\ 4/9 & 0 & 5/9 \end{pmatrix} = (\pi_{1}, \pi_{2}, \pi_{3})$ Then: $\begin{cases} \frac{3}{3} \pi_{1} + \frac{4}{19} \pi_{2} = \pi_{1}, & \pi_{1} = \frac{1}{13} \\ \frac{3}{8} \pi_{1} + \frac{4}{19} \pi_{2} = \pi_{2}, & \Rightarrow & \pi_{2} = \frac{1}{16} \\ \frac{3}{8} \pi_{1} + \frac{4}{19} \pi_{2} + \frac{3}{19} \pi_{3} = \pi_{3}, & \pi_{3} = \frac{1}{12} \end{cases}$ and $\pi_1 + \pi_2 + \pi_3 = 1$ therefore, the stationary distribution is: n=(1/2,1/6,1/2) (ii) Show 16. Pn converges to The (stationary distribution) as n > 00 We first calculate that the eigen values of P, only one equals 1 and others less than 1 ( -0) Therefore, we can represent P as follows. P= XAX here, $X = (x_1, x_2, x_3)$ when $x_i$ is right eigenvector of P. $A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \text{where } \lambda_{x_{1}} \lambda_{y_{1}} \text{ are eigen values} < 1$

therefore, the stationary distribution is:

$$\pi = (\frac{5}{12}, \frac{1}{16}, \frac{1}{12}, \frac{1}{12})$$

(ii) Now we want to show that lim ToP' not always converges.

Similar as (a), we calculate the eigen values of P as construct our A

$$A = \begin{pmatrix} 1 & 0.1 \\ -0.1 \end{pmatrix}$$

and 
$$\lim_{n\to\infty} P^n = \lim_{n\to\infty} X \Lambda^n X^{\dagger} = X \left(\lim_{n\to\infty} (-1)^n\right) X^{\dagger}$$

where it depends on whether n is eval or even,  $\lambda_{\Sigma} = (-1)^n$  shift from 1 to -1 therefore,

im πορ" = ποχ, y, + (-1)"ποχ, y,

where X, Xx denotes the 1st, 2nd column of X

y, y, denotes the 1st, 2nd row of XT

we observe that if we choose to wisely that makes nox, =0

$$\chi_{\nu} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 and  $\chi_{i} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ ,  $\chi_{i} = \pi \nu$  (Stationary distribution)

A therefore, if we choose initial  $\pi_0 = (/4, /4, /4, /4)$ then  $(-1)^n \pi_0 x_x y_x = 0$ , then  $\lim_{n \to \infty} \pi_0 P^n = \pi_0 x_x y_x = \pi$  converges

A if we choose mittal  $\pi_0 = (1/2, 0, 1/2, 0)$ then  $(-1)^n \pi_0 \times y_2 \neq 0$ , then  $\lim_{n \to \infty} \pi_0 P^n$  does not converge to a single value.

Conclution:  $\lim_{n\to\infty} \pi_0 P^n$  does not always converge, it depends on  $\pi_0$ , when  $\pi_0 = (1/4, 1/4, 1/4)$  it converges to  $\pi$ 

 $\lim_{n\to\infty} \frac{n}{n+1} = 1, \quad \lim_{n\to\infty} \frac{1}{n+1} = 0$ which means new added page has very little impact on original web graph. (b) when adding another page I that links to X.  $P = \begin{pmatrix} 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$  $(\widetilde{r}, \chi, y) = (\widetilde{r}, \chi, y) \widetilde{G}$   $= (\widehat{r}, \chi, y) (\partial \widetilde{r} + \frac{1-\partial}{n+1} \mathcal{L}_{ener}) \times (\widehat{r}, \chi, y) (\partial \widetilde{r} + \frac{1-\partial}{n+1} \mathcal{L}_{ener}) \times (\widehat{r}, \chi, y) (\partial \widetilde{r} + \frac{1-\partial}{n+1} \mathcal{L}_{ener}) \times (\widehat{r}, \chi, y) (\partial \widetilde{r} + \frac{1-\partial}{n+1} \mathcal{L}_{ener}) \times (\widehat{r}, \chi, y) (\partial \widetilde{r} + \frac{1-\partial}{n+1} \mathcal{L}_{ener}) \times (\widehat{r}, \chi, y) (\partial \widetilde{r} + \frac{1-\partial}{n+1} \mathcal{L}_{ener}) \times (\widehat{r}, \chi, y) (\partial \widetilde{r} + \frac{1-\partial}{n+1} \mathcal{L}_{ener}) \times (\widehat{r}, \chi, y) (\partial \widetilde{r} + \frac{1-\partial}{n+1} \mathcal{L}_{ener}) \times (\widehat{r}, \chi, y) (\partial \widetilde{r} + \frac{1-\partial}{n+1} \mathcal{L}_{ener}) \times (\widehat{r}, \chi, y) (\partial \widetilde{r} + \frac{1-\partial}{n+1} \mathcal{L}_{ener}) \times (\widehat{r}, \chi, y) (\partial \widetilde{r} + \frac{1-\partial}{n+1} \mathcal{L}_{ener}) \times (\widehat{r}, \chi, y) (\partial \widetilde{r} + \frac{1-\partial}{n+1} \mathcal{L}_{ener}) \times (\widehat{r}, \chi, y) (\partial \widetilde{r} + \frac{1-\partial}{n+1} \mathcal{L}_{ener}) \times (\widehat{r}, \chi, y) (\partial \widetilde{r} + \frac{1-\partial}{n+1} \mathcal{L}_{ener}) \times (\widehat{r}, \chi, y) (\partial \widetilde{r} + \frac{1-\partial}{n+1} \mathcal{L}_{ener}) \times (\widehat{r}, \chi, y) (\partial \widetilde{r} + \frac{1-\partial}{n+1} \mathcal{L}_{ener}) \times (\widehat{r}, \chi, y) (\partial \widetilde{r} + \frac{1-\partial}{n+1} \mathcal{L}_{ener}) \times (\widehat{r}, \chi, y) (\partial \widetilde{r} + \frac{1-\partial}{n+1} \mathcal{L}_{ener}) \times (\widehat{r}, \chi, y) (\partial \widetilde{r} + \frac{1-\partial}{n+1} \mathcal{L}_{ener}) \times (\widehat{r}, \chi, y) (\partial \widetilde{r} + \frac{1-\partial}{n+1} \mathcal{L}_{ener}) \times (\widehat{r}, \chi, y) (\partial \widetilde{r} + \frac{1-\partial}{n+1} \mathcal{L}_{ener}) \times (\widehat{r}, \chi, y) (\partial \widetilde{r} + \frac{1-\partial}{n+1} \mathcal{L}_{ener}) \times (\widehat{r}, \chi, y) (\partial \widetilde{r} + \frac{1-\partial}{n+1} \mathcal{L}_{ener}) \times (\widehat{r}, \chi, y) (\partial \widetilde{r} + \frac{1-\partial}{n+1} \mathcal{L}_{ener}) \times (\widehat{r}, \chi, y) (\partial \widetilde{r} + \frac{1-\partial}{n+1} \mathcal{L}_{ener}) \times (\widehat{r}, \chi, y) (\partial \widetilde{r} + \frac{1-\partial}{n+1} \mathcal{L}_{ener}) \times (\widehat{r}, \chi, y) (\partial \widetilde{r} + \frac{1-\partial}{n+1} \mathcal{L}_{ener}) \times (\widehat{r}, \chi, y) (\partial \widetilde{r} + \frac{1-\partial}{n+1} \mathcal{L}_{ener}) \times (\widehat{r}, \chi, y) (\partial \widetilde{r} + \frac{1-\partial}{n+1} \mathcal{L}_{ener}) \times (\widehat{r}, \chi, y) (\partial \widetilde{r} + \frac{1-\partial}{n+1} \mathcal{L}_{ener}) \times (\widehat{r}, \chi, y) (\partial \widetilde{r} + \frac{1-\partial}{n+1} \mathcal{L}_{ener}) \times (\widehat{r}, \chi, y) (\partial \widetilde{r} + \frac{1-\partial}{n+1} \mathcal{L}_{ener}) \times (\widehat{r}, \chi, y) (\partial \widetilde{r} + \frac{1-\partial}{n+1} \mathcal{L}_{ener}) \times (\widehat{r}, \chi, y) (\partial \widetilde{r} + \frac{1-\partial}{n+1} \mathcal{L}_{ener}) \times (\widehat{r}, \chi, y) (\partial \widetilde{r} + \frac{1-\partial}{n+1} \mathcal{L}_{ener}) \times (\widehat{r}, \chi, y) (\partial \widetilde{r} + \frac{1-\partial}{n+1} \mathcal{L}_{ener}) \times (\widehat{r}, \chi, y) (\partial \widetilde{r} + \frac{1-\partial}{n+1} \mathcal{L}_{ener}) \times (\widehat{r}, \chi, y) (\partial \widetilde{r} + \frac{1-\partial}{n+1} \mathcal{L}_{ener}) \times (\widehat{r}, \chi, y) (\partial \widetilde{r} + \frac{1-\partial}{n+1} \mathcal{L}_{ener}) \times (\widehat{r}, \chi, y) (\partial \widetilde{r} + \frac{1-\partial}{n+1} \mathcal{L}_{ener}) \times (\widehat{r},$ here we have:  $\int \partial \hat{v} P + \frac{1-d}{n+v} \int_{n}^{T} = \hat{v}$  $\begin{cases} x = \frac{1+0}{N+2} \\ y = \frac{1-0}{N+2} \end{cases}$  $\begin{cases} O(X+y) + \frac{1-y}{n+y} = \chi \end{cases}$ 0+1-3 Using the same argument in (a), we then have  $r = \frac{n}{n+2}r$ Then, the page rank in ner pages now are  $(\hat{Y}, X, y) = (\frac{n}{n+2}Y, \frac{1+\delta}{n+2}, \frac{1-\delta}{n+2})$ Compared with (a), there is improvement of X pagerant, when n is large enough,  $\lim_{N \to \infty} \frac{1+\sigma}{N+N} = \lim_{N \to \infty} \frac{1+\sigma}{1} \cdot \frac{\Lambda+1}{\Lambda+N} = 1+\sigma$ if  $v = \frac{1}{2}$ , the pagerant improvement is  $\frac{3}{2}$  its original value. (c) Here we first denote the transition matrix between X, Y, & is Q therefore, we have  $\widetilde{G} = \emptyset \left( \begin{array}{c} P & O \\ O \end{array} \right) + \frac{1-\partial}{n+\eta} \left( \underbrace{1}_{(n+\eta)\times(n+\eta)} \right)$ 

where 
$$\sum_{n \to \infty} P^n = \lim_{n \to \infty} X \left( \begin{array}{c} \lambda_n^n \\ \lambda_n^n \end{array} \right) X^{-1} = X \left( \begin{array}{c} \lim_{n \to \infty} \lambda_n^n \\ \lim_{n \to \infty} \lambda_n^n \end{array} \right) X^{-1}$$

$$= X \left( \begin{array}{c} 0 \\ 0 \end{array} \right) X^{-1} = \mathcal{H}_1 \cdot \left( \begin{array}{c} \lim_{n \to \infty} \lambda_n^n \\ \lim_{n \to \infty} \lambda_n^n \end{array} \right) X^{-1}$$

The first row in  $X^{-1}$  can be  $\pi$ , where  $\pi L = \pi$ 

As the sum of each row in  $P$  equals  $L$ , we can define  $X_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$  and

$$PX_1 = \lambda_1 X_1 = \mathcal{H}_2 \cdot \frac{1}{1} + \frac{1}{1}$$

3/4 11, + 1/4 11, = Thy

| 2. Iraining to be a farmer | 1 |
|----------------------------|---|
|----------------------------|---|

(a) create a web page X which has neither in-links and out-links for the new graph, we have.

$$(\widetilde{r}, x) = (\widetilde{r}, x)\widetilde{G}$$

cohen G is the now transition matrix

$$\widetilde{G} = \partial \left( \frac{P}{O} \right) + \frac{1-\partial}{n+1} \left( \mathbf{1}_{(n+1)(n+1)} \right)$$

where O represent all zero matrix,

then we depart 11):

$$\begin{cases}
\hat{\gamma} = \partial \hat{\gamma} P + \frac{1-\partial}{n+1} (\mathbf{1}_{n}) & (1) \\
\hat{\gamma} = \partial \hat{\gamma} P + \frac{1-\partial}{n+1} (\mathbf{1}_{n}) & (1)
\end{cases}$$

we have:

$$X = \frac{1}{n+1}$$
 which means in new graph, the page rank of X is  $1/n+1$ 

moreover, as for r,

we have,
$$sum(\hat{r}) = \hat{r} \mathbf{1}_n = 1 - \chi = \frac{n}{1 + n}$$

therefore, 
$$\tilde{\gamma} 1_{n \times n} = \frac{h}{1+n} 1_n^T$$

substitude In to not 7 1 nxn in (1)

we have: 
$$\tilde{r} = \partial \tilde{r} P + \frac{1-\partial}{n+1} \cdot \frac{n+1}{n} \hat{r} \cdot 1_{n \times n}$$

$$= \widehat{Y} \left( \partial P + \frac{1-d}{n} I_{NN} \right) = \widehat{Y} G$$

Therefore, we know:

$$Y = GY$$

$$\tilde{r} = G\tilde{r}$$

and sum
$$(\tilde{r}) = 1 - \chi = \frac{n}{n+1}$$
 sum $(r) = 1$ 

Therefore, we have  $\hat{r} = \frac{h}{n+1}r$ ,  $\hat{r}$  is just the scaling of r, which means when adding a node with no-links and out-links, the pagerant just shrink to its previous not ofor old nodes, when his very large.

Using 
$$(\tilde{Y}, \chi, y, \pm) = (\tilde{Y}, \chi, y, \pm) \tilde{B}$$

Eve have:

for example.

for  $\tilde{Z}$ .

$$J(O_{13} \times + O_{23}y + O_{33} \pm) + \frac{1-\sigma}{1+1} = \pm$$

$$J(O_{13} \times + O_{23}y + \frac{1-\sigma}{1+1}) = \pm$$

$$J=\frac{J(O_{23})}{J(O_{23})}$$

because  $O_{23} = 1$  and also  $O_{23} = O_{23} = O_{2$ 

Xmox = 2d+1

| <br>3. Beyond Page Rank:                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |  |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| <br>(a) '                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |  |
| <br>We first prove that, for any cons                                                              | We first prove these, for any connected, undirected graph G. The definition 1 (Degree Centrality) and definition 4 (Page Rank) are in the same order of important                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |
| 1 (Degree Centrality) and definition 4                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |  |
| <br>Thout is, the PageRank r; is propor                                                            | tional to the degree centrality Cpci),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |  |
| to be simplify, we prove.                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |  |
| N. A.                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |  |
| $\frac{di}{di} = C (cons)$                                                                         | tant)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <del></del> |  |
| first, we create transition matri                                                                  | tant; $(x P, where Pij = \begin{cases} /d; & i \neq i \Rightarrow j \\ 0 & i \neq i \neq j \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |  |
| <br>coe also build matrix A,                                                                       | 1 0 if i *> j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |  |
| <br>1                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |  |
| <br>$Aij = \begin{cases} 1 & \text{if } i \to j \\ 0 & \text{if } i \neq j \end{cases}$            | Then we have:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |  |
| 10 7 inj                                                                                           | P = DA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |  |
|                                                                                                    | $P^T = A^T D^T$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |  |
| <br>matrix D, where $Dii = \frac{1}{di}$                                                           | because A and D are all symmetrix,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |  |
| <br>,                                                                                              | then,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |  |
| D= / d, , ,                                                                                        | $P^T = AD$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |  |
| <br>$D = \begin{pmatrix} \overline{d}_{1}, \\ \overline{d}_{2}, \\ \overline{d}_{N} \end{pmatrix}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |  |
| <br>                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |  |
|                                                                                                    | , /a,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |  |
| <br>Therefore: $YD = (Y_1, Y_2,$                                                                   | $(x_n)$ $(x_n$ |             |  |
|                                                                                                    | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |  |
| $=(\frac{N}{2},\frac{N}{2})$                                                                       | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |  |
| <br>a, a,                                                                                          | . α <sub>λ</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |  |
| we want to prove rD = cc                                                                           | ·,c, ··· c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |  |
|                                                                                                    | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |  |
| <br>Here, using stationary distri                                                                  | rburion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |  |
| <br>r = rP                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |  |
| <br>rD = rPD = rDAD                                                                                | $= YDP^T$ we denote $YD = X^T$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |  |
|                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |  |
| <br>$x^{T} = x^{T} P^{T}$                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |  |
| <br>$\chi = Px$                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |  |
| <br>Because sum (Pi) =1 (each roo                                                                  | (1), we have $x = \binom{i}{i}$ is actually eigenow), we prove that $\frac{v_i}{d_i} = c$ (costains)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nveito      |  |
| <br>of P, then on $PD = \chi^T = (1, 1, 1)$                                                        | , 1) , we prove that $\frac{v_i}{l} = c$ ( costar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 41          |  |
|                                                                                                    | ٠ ٧٠                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |  |



1. degrae centrality : Social Network

Let G denotes a social network where each node represents a person, the edge between two nodes indicates that there two are friends. If a person has more degree which means he Ishe has more friends, that means he I she has more influence to the whole Social network and thus is more important

2 closeness centrality = Information Network

degree centrality has limitations = the measure does not take into consideration the global structure of the network. For example, although are node has many adjacencies, it might not be in the position to reach other quickly to access recourses. let G denotes a Information Network, where each path between

nodes have different weights (costs). Therefore, the node with

(d) Now if we add links from my page X (or Y and Z) to older pages, then the transition matrix of the n+3 nodes becomes

$$\widetilde{G} = \partial \left( \begin{array}{cc} P & O \\ O & \widetilde{Q} \end{array} \right) + \frac{1-\partial}{n+2} \mathcal{L}_{(n+2)\times(n+2)}$$

Since in this situation,  $SUM(U+\tilde{Q})=1$ ,

therefore, we have:

similar to calculation in (c)

$$(\widetilde{Y}, \chi, y, \pm) = (\widetilde{Y}, \chi, y, \pm) \widetilde{G}$$

$$= \partial(\widetilde{Y}P + (\chi, y, \pm)U, (\chi, y, \pm)\widetilde{Q}) + \frac{1-\partial}{n+\lambda} I_{n+\lambda}^{T}$$

where,

$$(\chi, \gamma, \bar{z}) = \vartheta(\chi, \gamma, \bar{z}) \widehat{Q} + \frac{1-\vartheta}{h+\tilde{z}} (1, 1, 1)$$

for 2:

$$\Rightarrow z = \frac{\partial Q_{13} x + \partial Q_{13} y + \frac{1 - \partial}{n + 3}}{1 - Q_{13}} > \frac{1 - \partial}{n + 3}$$

same as  $y \ge \frac{1-d}{n+1}$ 

$$sum(x,y,z) = x + y + z = (x,y,z) 1,$$

$$= o(x,y,z) \hat{Q} 1, + \frac{1-d}{n+3} (1,1,1) 1,$$

$$x+y+2<\frac{3}{n+3}$$

therefore  $\chi < \frac{3}{n+3} - \frac{2(1-3)}{n+3} = \frac{23+1}{n+3}$ , which means adding links from X to older pages will not improve the pagerank of X, it will reduce it conversely. Also, Situation will not change if Y or t is linked to older pages.

Then we give counterexample to show difference botween 114) and 2 and 3.

11). Difference Between 182.



for node 1. 
$$C_{p(1)} = \frac{3}{(7-1)} = \frac{1}{2}$$

$$C_{C(1)} = \frac{7-1}{2} = \frac{6}{12} = \frac{6}{12}$$

$$\frac{6}{12} = \frac{6}{12}$$

for node 
$$\lambda$$
:  $C_0(x) = \frac{\lambda}{(1-1)} = \frac{\lambda}{3}$ 

$$C_0(x) = \frac{\lambda}{2} = \frac{\delta}{10}$$

therefore:

(2) Difference Dexween 1 & 3.



for node 1: 
$$C_{p(1)} = \frac{3}{(7-1)} = \frac{1}{2} \frac{P_{i(j,k)}}{P_{i(j,k)}} = \frac{11}{28}$$

$$C_{p(i)} = \frac{\sum_{i,k=j+k,k+1} P_{i(j,k)}}{\binom{n-1}{2}} = \frac{11}{28}$$

for node 2: 
$$C_{p(2)} = \frac{2}{12}(1)-10 = \frac{12}{28}$$

$$C_{p}(2) = \frac{12}{28}$$

therefore 
$$G(1) = G(2)$$

$$G(1) = G(2)$$

shortest average distance between all other nodes is the most important and has more centrality since it is easier to access any other nodes (information) in the notwork. 3. betweenness centrality, train network. let G be a train network of a country, reach node denotes a city train station, edges between two nodes are train way between a stations. therefore, if a node (city, is important, it must be in the shortest paths of other stations, and meanwhile, the path excluded node (tr) is very few, then, if station node (A) is broken and need repairment, it will affect the transportation of many travellers. 4. pagerant centrality. Web page network Let G be a web page network and each node is a single web page, Then, by definition, a page with high Page Rank may have more in-links and connected to other important pages and thus has a higher visited frequency. Therefore, page Rank represents the importance of a webpage.

(e) To improve the page Rank of web page X, according to (a)  $\delta$  (b), I will generate many new web pages  $(A_1,A_2,\cdots A_{m-1})$  links to X we have the page Rank of X:

$$\chi = \frac{1 + (m-1)\theta}{m+n}, \quad \alpha_j = \frac{1-\theta}{m+n} \quad (j > 1, \geq 1, \cdots, m+)$$

$$(page rank of A_j)$$

and also X is linked to no page (eq. older page) as stated in (d) that links to older page will not increase but will decrease the pagerant of X.

Prove. 
$$\widetilde{G} = \lambda \begin{pmatrix} \rho & 0 \\ 0 & Q \end{pmatrix} + \frac{1-\delta}{n+m} \underbrace{\mathbb{1}_{(n+m)\times(n+m)}}_{(n+m)\times(n+m)}$$

where Q is the transition matrix of the new pages (m)  $(\tilde{Y}, Y) = (\tilde{Y}, Y) \tilde{G}$   $= \partial (\tilde{Y}P + VQ) + \frac{1-\partial}{n+\partial} I_{n+m}^{T}$ 

$$\Rightarrow v = \partial VQ + \frac{1-\partial}{n+m} \int_{m}^{T} \left( v = (\chi, \alpha_{l}, \alpha_{r}, \alpha_{s}, \dots \alpha_{m-1}) \right)$$

$$sum(v) = v \cdot 1_m = \partial v \cdot Q \cdot 1_m + \frac{1-\partial}{n+m} \cdot 1_m^T \cdot 1_m = \partial v \cdot 1_m + \frac{(1-\partial)m}{m+n}$$

$$\Rightarrow \quad Sum(v) = \frac{m}{m+n}$$

Using argument in (c)
$$\chi = \frac{m}{n+m} - \sum_{j=1}^{m-1} a_j \leq \frac{m}{n+m} - \frac{(1-a)(m-1)}{n+m} \leq \frac{1+(m-1)d}{m+n}$$

when choosing  $Q = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$