Homework 0. Solutions of the first part of the homework

1 Consider sets

$$V = \{ax^2 + bx + c, a, b, c \in \mathbf{R}\}, \qquad T = \{x^2 + px + q, p, q \in \mathbf{R}\}\$$

- a) Explain why a set V is a vector space, and a set T is not a vector space (with respect to natural operations of mulitplication and addition of polynomials)
 - b) Explain why polynomials $1, x, x^2$ are linearly independent in V.
 - c) Calcuatte dimension of V.

One can see that operations + and \cdot are well-defined: For two "vectors"—polynomials $P_1 = a_1 x^2 + b_1 x + c_1 \ P_2 = a_2 x^2 + b_2 x + c_2$

$$P_1+P_2=a_3x^2+b_3x+c_3$$
, where $(a_3,b_3,c_3)=(a_1,b_1,c_1)+(a_2,b_2,c_2)=(a_1+a_2,b_1+b_2,c_1+c_2)$,

$$\lambda \cdot P_1 = \lambda(a_1 x^2 + b_1 x + c_1) = (a, b, c), \text{ where } (a, b, c) = \lambda(a_1, b_1, c_1) = (\lambda a_1, \lambda b_1, \lambda c_1).$$

We see that we may identify the space V with \mathbf{R}^3 .

On the other hand T is not vector space, since if we consider two arbitrary polynomials in T their sum does not belong T,

Now prove that polynomials (vectors) $1, x, x^2$ are linearly independent. Let $c_1, c_2, c_3 \in \mathbf{R}$ be coefficients such that

$$c_1 \cdot 1 + c_2 \cdot x + c_3 \cdot x^2 = 0$$

i.e. polynomial $c_1 + c_2x + c_3x^2$ is identically equal to zero. In this case it is equal at zero at points x = 0, 1, -1:

$$P(x) = c_1 + c_2 x + c_3 x^2 \equiv 0 \Rightarrow \begin{cases} P(0) = c_1 = 0 \\ P(1) = c_1 + c_2 + c_3 = 0 \\ P(-1) = c_1 - c_2 + c_3 = 0 \end{cases} \Rightarrow c_1 = 0, c_2 = 0, c_3 = 0,$$

i.e. polynomials $1, x, x^2$ are linearly independent.

2 Show that the vectors $\{\mathbf{a}_1, \mathbf{a}_2 \dots, \mathbf{a}_m\}$ in vector space V are linearly dependent if at least one of these vectors is equal to zero.

WLOG suppose that $\mathbf{a}_1 = 0$. Then

$$\lambda \mathbf{a}_1 + 0 \cdot \mathbf{a}_2 + \ldots + 0 \cdot \mathbf{a}_n = 0$$

where λ is an arbitrary non-zero real number $\lambda \neq 0$. We see that there exists a linear combinations of vectors $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m\}$ which is equal to zero and one of the coefficients $\{\lambda, 0, \dots, 0\}$ is not equal to zero. Hence vectors $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m\}$ are linearly dependent.

3 a) Show that arbitrary three vectors in \mathbb{R}^2 are linearly dependent. Consider the following vectors in \mathbb{R}^2

$$\mathbf{e}_1 = (1,0), \quad \mathbf{e}_2 = (0,1), \quad \mathbf{a} = (2,3), \quad \mathbf{b} = (3,0),$$

- b) Show that $\{\mathbf{e}_1, \mathbf{e}_2\}$ is a basis in \mathbf{R}^2 .
 - c) Show that $\{\mathbf{a}, \mathbf{b}\}$ is a basis in \mathbf{R}^2 .
 - d) Show that $\{e_1, b\}$ is not a basis in \mathbb{R}^2 .

Solution of a)

Consider arbitrary three vectors in \mathbb{R}^2

$$\mathbf{x}_1 = (a^1, a^2)$$

 $\mathbf{x}_2 = (b^1, b^2)$
 $\mathbf{x}_3 = (c^1, c^2)$

If vector $\mathbf{x}_1 = (a_1, a_2) = 0$ then nothing to prove. (See exercise 2). Let $\mathbf{x}_1 \neq 0$. WLOG suppose $a_1 \neq 0$. Consider vectors

$$\begin{aligned} \mathbf{x}_2' &= \mathbf{x}_2 - \frac{b_1}{a_1} \mathbf{x}_1 = (b^1, b^2) - \frac{b_1}{a_1} (a_1, a_2) = (0, b_2') \\ \mathbf{x}_3' &= \mathbf{x}_3 - \frac{c_1}{a_1} \mathbf{x}_1 = (c^1, c^2) - \frac{c_1}{a_1} (a_1, a_2) = (0, c_2') \end{aligned}$$

We see that vectors \mathbf{x}_2' , \mathbf{x}_3' are proportional—i.e. they are linearly dependent: there exist $\mu_2 \neq 0$ or $\mu_3 \neq 0$ such that $\mu_2 \mathbf{x}_2' + \mu_3 \mathbf{x}_3' = 0$ E.g. we can take $\mu_2 = c_2'$, $\mu_3 = -b_2'$ in the case if $c_2' \neq 0$ or $b_2' \neq 0$ (if $c_2' = b_2' \neq 0$ then we can take coefficients μ_1, μ_2 any real numbers.) We have:

$$0 = \mu_2 \mathbf{x}_2' + \mu_3 \mathbf{x}_3' = \mu_2 \left(\mathbf{x}_3 - \frac{c_1}{a_1} \mathbf{x}_1 \right) + \mu_3 \left(\mathbf{x}_3 - \frac{c_1}{a_1} \mathbf{x}_1 \right) = \mu_2 \mathbf{x}_2 + \mu_3 \mathbf{x}_3 - \left(\frac{\mu_2 b_1}{a_1} + \frac{\mu_3 c_1}{a_1} \right) \mathbf{x}_1 = 0,$$

where $\mu_2 \neq 0$ or $\mu_3 \neq 0$. Hence vectors $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ are linearly dependent *.

Solution of b)

Vectors $\mathbf{e}_1, \mathbf{e}_2$ are linearly independent:

$$a\mathbf{e}_1 + b\mathbf{e}_2 = a(1,0) + b(0,1) = (a,b) = 0 \Rightarrow a = b = 0$$

We see that on one hand in \mathbb{R}^3 any trhee vectors are linearly dependent, and on the other hand there exist two linearly independent vectors. Hence dimension of \mathbb{R}^2 is equal to 2. Hence these two vectors $\{\mathbf{e}_1, \mathbf{e}_2\}$ form a basis

^{*} You may say: why so long proof? We know already that dimension of \mathbf{R}^2 is equal to 2 then by definition any three vectors in \mathbf{R}^2 have to be linear dependent. This "proof" is in fact "circulus vicious" since the proof of the fact that $\dim \mathbf{R}^2 = 2$ is founded on the statement of this exercise.

Solution of c) Vectors \mathbf{a}, \mathbf{b} are also linearly independent:

$$x\mathbf{a} + y\mathbf{b} = x(2,3) + y(3,0) = (2x + 3y, 3x) = 0 \Rightarrow \begin{cases} x = 0 \\ 2x + 3y = 0 \end{cases} \Rightarrow x = y = 0.$$

We see that two vectors \mathbf{a} , \mathbf{b} are linearly independent vectors in 2-dimensional space. Hence these two vectors $\{\mathbf{a}, \mathbf{b}\}$ form a basis

Solution of d) Vectors \mathbf{e}_1, \mathbf{b} are linearly dependent, since

$$3\mathbf{e}_1 - \mathbf{b} = 0.$$

Hence this is not a basis.