Chapter5 Image Restoration

- Preview
- 5.1 Introduction
- 5.2 Diagonalization
- 5.3 Unconstrained Restoration (inverse filtering)
- 5.4 Constrained Restoration(wiener filtering)
- 5.5 Estimating the Degradation Function
- 5.6 Geometric Distortion Correction
- 5.7 Image Inpairing

Defocused image and its DFT

Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

Moved image and its DFT

Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

Atmospheric turbulence

Image inpainting

Geometric transformation

Changed grid

spatial transform result

5.1 Introduction

5.1.1 Purpose

"compensate for" or "undo" defects which degrade an image.

5.1.2 Degrade Causes

- (1) atmospheric turbulence
- (2) sampling, quantization
- (3) motion blur
- (4) camera misfocus
- (5) noise

5.1 Introduction

5.1.3 degradation model

Assume it is a linear, position- invariant system, We can model a blurred image by

$$g(x, y) = f(x, y) * h(x, y) + n(x, y)$$

Where h(x,y) is called as Point Spread Function (PSF)

$$g(x,y) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m,n)h(x-m,y-n) + n(x,y)$$
Digital Image Processing

Prof.Zhengkai Liu Dr.Rong Zhang

5.1 Introduction

5.1.4 Methods

Unconstrained Restoration: inverse filtering

Constrained Restoration: wiener filtering

5.1.5 problem expression

Estimate a true image f(x,y) from a degraded image g(x,y) based on prior knowledge of PSF h(x,y) and the statistical properties of noise n(x,y)

5.2.1 Matrix expression of degradation model: 1-D

$$g(x) = f(x) * h(x)$$

$$f_e(x) = \begin{cases} f(x) & 0 \le x \le A - 1 \\ 0 & \text{else} \end{cases}$$

$$h_e(x) = \begin{cases} h(x) & 0 \le x \le B - 1 \\ 0 & \text{else} \end{cases}$$

5.2.1 Matrix expression of degradation model: 1-D

$$g_e(x) = \sum_{m=0}^{M-1} f_e(m)h_e(x-m) + n_e(x)$$

$$M = A + B - 1$$

$$x = 0, 1, ..., M - 1$$

$$g = Hf + n = \begin{bmatrix} g_{e}(0) \\ g_{e}(1) \\ \vdots \\ g_{e}(M-1) \end{bmatrix} = \begin{bmatrix} h_{e}(0) & h_{e}(-1) & \cdots & h_{e}(-M+1) \\ h_{e}(1) & h_{e}(0) & \cdots & h_{e}(-M+2) \\ \vdots & \vdots & \ddots & \vdots \\ h_{e}(M-1) & h_{e}(M-2) & \cdots & h_{e}(0) \end{bmatrix} \begin{bmatrix} f_{e}(0) \\ f_{e}(1) \\ \vdots \\ f_{e}(M-1) \end{bmatrix} + \begin{bmatrix} n_{e}(0) \\ n_{e}(1) \\ \vdots \\ n_{e}(M-1) \end{bmatrix}$$

5.2.1 Matrix expression of degradation model: 1-D

$$h_e(x) = h_e(x+M)$$

$$H = \begin{bmatrix} h_e(0) & h_e(M-1) & \cdots & h_e(1) \\ h_e(1) & h_e(0) & \cdots & h_e(2) \\ \vdots & \vdots & \ddots & \vdots \\ h_e(M-1) & h_e(M-2) & \cdots & h_e(0) \end{bmatrix}$$

H is circulant

5.2.1 Matrix expression of degradation model: 2-D

$$f_e(x) = \begin{cases} f(x, y) & 0 \le x \le A - 1 \text{ and } 0 \le y \le B - 1 \\ 0 & A \le x \le M - 1 \text{ or } B \le y \le N - 1 \end{cases}$$

$$h_e(x) = \begin{cases} h(x, y) & 0 \le x \le C - 1 \text{ and } 0 \le y \le D - 1 \\ 0 & A \le x \le M - 1 \text{ or } B \le y \le N - 1 \end{cases}$$

5.2.1 Matrix expression of degradation model: 2-D

$$g = Hf + n = \begin{bmatrix} H_0 & H_{M-1} & \cdots & H_1 \\ H_1 & H_0 & \cdots & H_2 \\ \vdots & \vdots & \ddots & \vdots \\ H_{M-1} & H_{M-2} & \cdots & H_0 \end{bmatrix} \begin{bmatrix} f_e(0) \\ f_e(1) \\ \vdots \\ f_e(MN-1) \end{bmatrix} + \begin{bmatrix} n_e(0) \\ n_e(1) \\ \vdots \\ n_e(MN-1) \end{bmatrix}$$

$$H \text{ is block-circulant}$$

5.2.1 Matrix expression of degradation model: 2-D

where

$$H_{i} = \begin{bmatrix} h_{e}(i,0) & h_{e}(i,N-1) & \cdots & h_{e}(i,1) \\ h_{e}(i,1) & h_{e}(i,0) & \cdots & h_{e}(i,2) \\ \vdots & \vdots & \ddots & \vdots \\ h_{e}(i,N-1) & h_{e}(i,N-2) & \cdots & h_{e}(i,0) \end{bmatrix}$$

5.2.2 Diagonlization: 1-D

The eigenvector and eigenvalue of a circulant matrix H are

$$w(k) = \left[1 - \exp\left(j\frac{2\pi}{M}k\right) - \cdots - \exp\left(j\frac{2\pi}{M}(M-1)k\right)\right]^{T}$$

$$\lambda(k) = h_e(0) + h_e(1) \exp\left(-j\frac{2\pi}{M}k\right) + \dots + h_e(M-1) \exp\left(-j\frac{2\pi}{M}(M-1)k\right)$$

Combine the M eigenvectors to a matrix

$$W = [w(0) \quad w(1) \quad \cdots \quad w(M-1)]$$

then the H can be expressed as

$$H = WDW^{-1}$$
 where $D(k,k) = \lambda(k)$

5.2.2 Diagonlization: 1-D

for
$$g = Hf + n$$

$$W^{-1}g = W^{-1}Hf + W^{-1}n$$

$$= W^{-1}WDW^{-1}f + W^{-1}n$$

$$= DW^{-1}f + W^{-1}n$$

$$G(u) = H(u)F(u) + N(u)$$

5.2.2 Diagonlization: 2-D

$$W(i,m) = \exp\left(j\frac{2\pi}{M}im\right)W_{N}$$

$$W_N(k,n) = \exp\left(j\frac{2\pi}{N}kn\right)$$

$$H = WDW^{-1}$$
 $G(u, v)$

$$H = WDW^{-1}$$
 $G(u, v) = H(u, v)F(u, v) + N(u, v)$

$$g(x,y) = f(x,y)*h(x,y) + n(x,y)$$
 in Spatial Coordinates

$$G(u,v) = F(u,v)H(u,v) + N(u,v)$$

in frequency domain

$$g = Hf + n$$

in vector form

5.3.1 assumption

H is given, and the noise is negligible

5.3.2 degradation model

$$F(u,v) \longrightarrow \boxed{H} \longrightarrow G(u,v)$$

$$G(u,v) = H(u,v)F(u,v)$$

5.3.3 restoration

$$\hat{F}(u,v) = \frac{G(u,v)}{H(u,v)} = G(u,v)H_I(u,v)$$

$$H_I(u,v) = \frac{1}{H(u,v)}$$

deconvolution

$$\hat{F}(u,v) = \frac{G(u,v)}{H(u,v)}$$

$$= \frac{H(u,v)F(u,v) + N(u,v)}{H(u,v)}$$

$$= F(u,v) + \frac{N(u,v)}{H(u,v)}$$

5.3.4 properties

sensitive to additive noise: if H(u,v) has zero or very small value, the N(u,v)/H(u,v) could easily dominate the estimate

5.3.5 improvements

$$M(u,v) = \begin{cases} 1/H(u,v) & \text{if } u^2 + v^2 < w_0^2 \\ 1 & \text{else} \end{cases}$$

or

$$M(u,v) = \begin{cases} k & \text{if } H(u,v) < d \\ 1/H(u,v) & \text{else} \end{cases}$$

5.3.4 examples: without noise

Original image

Blurred image

Restored image

5.3.4 examples: with noise

Blurred and noised image

Restored image

5.3.4 examples: deferent cutoff

FIGURE 5.27 Restoring

Eq. (5.7-1). (a) Result of using the full

(d) outside a radius of 85.

Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

5.4.1 assumption

H is given, and consider the image and noise as random processes

5.4.2 request

The mean square error between uncorrupted image and estimated image is minimized. This error measure is given by

$$e^2 = E\left\{ (f - \hat{f})^2 \right\}$$

5.4.3 restoration

$$\hat{F}(u,v) = G(u,v)H_{W}(u,v)$$

$$H_{W}(u,v) = \frac{1}{H(u,v)} \times \frac{|H(u,v)|^{2}}{|H(u,v)|^{2} + S_{n}(u,v)/S_{f}(u,v)}$$
Wiener filter,
$$= \frac{H(u,v)^{*}}{|H(u,v)|^{2} + S_{n}(u,v)/S_{f}(u,v)}$$

where

$$S_n(u,v) = |N(u,v)|^2$$
 Power spectrum of the noise

$$S_f(u,v) = |F(u,v)|^2$$
 Power spectrum of the undegraded image

5.4.5 estimate the power spectrum

$$H_{w}(u,v) = \frac{H(u,v)^{*}}{|H(u,v)|^{2} + K}$$

5.4.4 properties

- •optimal in terms of the mean square error
- •When H(u,v)=0, $H_w(u,v)=0$

5.4.5 experimental results:

a b c

FIGURE 5.28 Comparison of inverse- and Wiener filtering. (a) Result of full inverse filtering of Fig. 5.25(b). (b) Radially limited inverse filter result. (c) Wiener filter result.

5.4.5 experimental results:

The first row:

Image corrupted by motion blur and additive noise

The second row:

Results of inverse filtering

The third row:

Results of Wiener filtering

(blind deconvolution)

5.5.1 Estimation by image observation

- (1) Choose observed sub-image $g_s(x, y)$
- (2) Denote the constructed sub-image as $\hat{f}_s(x, y)$
- (3) Assume noise is negligible

then

$$H_s(u,v) = \frac{G_s(u,v)}{\hat{F}_s(u,v)}$$

5.5.2 Estimation by experimentation

5.5.3 Estimation by modeling

An atmospheric turbulence model based on the physical characteristics

Hufnagel and Stanley, 1964
$$H(u,v) = e^{-k(u^2+v^2)^{5/6}}$$
Stanley, 1964

where k is a constant

it has the same form as the Gaussian lowpass filter

5.5.3 Estimation by modeling

a b c d

FIGURE 5.25 Illustration of the atmospheric turbulence model. (a) Negligible turbulence. (b) Severe turbulence, k = 0.0025. (c) Mild turbulence, k = 0.001.(d) Low turbulence. k = 0.00025. (Original image courtesy of

NASA.)

Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

5.5.3 Estimation by modeling :restoration of uniform linear motion

If *T* is the duration of the exposure, the effect of image motion follows that

$$g(x, y) = \int_0^T f[x - x_0(t), y - y_0(t)]dt$$

where $x_0(t)$ and $y_0(t)$ are the time varying components of motion in the x-direction and y-direction. Its Fourier transform is

$$G(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y)e^{-2\pi j(ux+vy)}dxdy$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\int_{0}^{T} f[x-x_{0}(t),y-y_{0}(t)]dt \right] e^{-2\pi j(ux+vy)}dxdy$$

5.5.3 Estimation by modeling :restoration of uniform linear motion

Reversing the order of integration:

$$G(u,v) = \int_0^T \left[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f[x - x_0(t), y - y_0(t)] e^{-2\pi j(ux + vy)} dx dy \right] dt$$

Using the translation Properties of Fourier transformation, then

$$G(u,v) = \int_0^T F(u,v)e^{-2\pi j[ux_0(t) + vy_0(t)]} dt$$
$$= F(u,v) \int_0^T e^{-2\pi j[ux_0(t) + vy_0(t)]} dt$$

5.5.3 Estimation by modeling :restoration of uniform linear motion

By defining
$$H(u,v) = \int_0^T e^{-2\pi j[ux_0(t) + vy_0(t)]} dt$$
then
$$G(u,v) = H(u,v)F(u,v)$$

Suppose that the image in question undergoes uniform linear motion in the *x*-direction only, at a rate given by $x_0(t) = at/T$

$$H(u,v) = \int_0^T e^{-2\pi j[ux_0(t) + vy_0(t)]} dt$$
$$= \int_0^T e^{-2\pi juat/T} dt$$
$$= \frac{T}{\pi ua} \sin(\pi ua) e^{-j\pi ua}$$

5.5Estimating the Degradation Function

5.5.3 Estimation by modeling :restoration of uniform linear motion

If we allow the y-component to wary as well with the motion given by $y_0(t) = bt/T$ then the degradation function becomes

$$H(u,v) = \frac{T}{\pi(ua+vb)} \sin[\pi(ua+vb)]e^{-j\pi(ua+vb)}$$

Digital Image Processing
Prof.Zhengkai Liu Dr.Rong Zhang

5.6 Geometric Transformation

5.6.introduction

$$f(x,y) \longrightarrow \boxed{T} \longrightarrow g(x,y)$$

$$g(x, y) = T[(f(x, y))] = f(x', y')$$

where

$$x' = r(x, y) \quad y' = s(x, y)$$

for example: zoom out x' = x/2 y' = y/2

zoom in
$$x' = 2x \quad y' = 2y$$

a b c d e f

FIGURE 2.25 Top row: images zoomed from 128×128 , 64×64 , and 32×32 pixels to 1024×1024 pixels, using nearest neighbor gray-level interpolation. Bottom row: same sequence, but using bilinear interpolation.

5.6.1 introduction

A geometric transformation consists of two basic operations:

(1) Spatial transformation

(2) Gray-level interpolation

Direct transform

Inverse transform

5.6.2 spatial transformations

Linear correction

$$r(x, y) = a_1 x + a_2 y + a_3$$

 $s(x, y) = b_1 x + b_2 y + b_3$

Quadratic correction

$$r(x, y) = a_1 x^2 + a_2 y^2 + a_3 xy + a_4 x + a_5 y + a_6$$

$$s(x, y) = b_1 x^2 + b_2 y^2 + b_3 xy + b_4 x + b_5 y + b_6$$

5.6.3 gray-level interpolation

Nearest neighbor interpolation

$$g(x, y) = f(x', y')$$

= $f(i+u, j+v)$
 $u, v \in (0,1)$ $i, j \in Z$

$$x' = round(x')$$
 $y' = round(y')$

5.6.3 gray-level interpolation

•Bi-linear interpolation

$$f(x', y') = f(i+u, j+v)$$

$$u, v \in (0,1) \qquad i, j \in Z$$

$$= (1-u)(1-v)f(i,j) + (1-u)vf(i,j+1)$$
$$+ u(1-v)f(i+1,j) + uvf(i+1,j+1)$$

It can be operated by a mask

$$\begin{vmatrix} (1-u)(1-v) & (1-u)v \\ u(1-v) & uv \end{vmatrix}$$

5.6.3 gray-level interpolation

Rotation in 2D plane

$$x' = r\cos(\alpha + \theta) = r\cos\alpha\cos\theta - r\sin\alpha\sin\theta$$
$$y' = r\sin(\alpha + \theta) = r\cos\alpha\sin\theta + r\sin\alpha\cos\theta$$

The original coordinated of the point in polar coordinates are:

$$x = r \cos \alpha$$
 $y = r \sin \alpha$

5.6.3 gray-level interpolation

Rotation in 2D plane

$$x' = x \cos \theta - y \sin \theta$$

$$y' = x \sin \theta + y \cos \theta$$

$$\theta = 45^{\circ}$$

Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

Notes:

- 1. The origin is in the center of image and the direction of x-axis is opposite
- 2. The result image's size is depended on the rotate angle
- 3. Interpolation is needed

46

5.6.4 experimental results

Changed grid

spatial transform result

5.6.4 experimental results

Digital Image Processing Prof.Zhengkai Liu Dr.Rong Zhang

Summary

- Inverse filtering is a very easy and accurate way to restore an image provided that we know what the blurring filter is and that we have no noise
- •Wiener filtering is the optimal tradeoff between the inverse filtering and noise smoothing
- It is possible to restore an image without having specific knowledge of degradation filter and additive noise. However, not knowing the degradation filter **h** imposes the strictest limitations on our restoration capabilities.

homework

- 写出逆滤波和维纳滤波图象恢复的具体 步骤。
- 推导水平匀速直线运动模糊的点扩展函数的数学公式并画出曲线。
- 编程实现lema.bmp的任意角旋转。

The End