Cours de mathématiques Première année

Sommaire

1	Logique et raisonnements9
1	Logique
2	Raisonnements
2	Ensembles et applications
1	Ensembles
2	Applications
3	Injection, surjection, bijection
4	Ensembles finis
5	Relation d'équivalence
3	Nombres complexes
1	Les nombres complexes
2	Racines carrées, équation du second degré
3	Argument et trigonométrie
4	Nombres complexes et géométrie
4	Arithmétique 55
1	Division euclidienne et pgcd
2	Théorème de Bézout
3	Nombres premiers
4	Congruences
5	Polynômes
1	Définitions
2	Arithmétique des polynômes
3	Racine d'un polynôme, factorisation
4	Fractions rationnelles
6	Groupes
1	Groupe
2	Sous-groupes
3	Morphismes de groupes
4	Le groupe $\mathbb{Z}/n\mathbb{Z}$
5	Le groupe des permutations \mathscr{S}_n
7	Les nombres réels 107
1	L'ensemble des nombres rationnels Q
2	Propriétés de ℝ
3	Densité de \mathbb{Q} dans \mathbb{R}
4	Borne supérieure

4 SOMMAIRE

8	Les suites	121
1	Définitions	. 121
2	Limites	. 124
3	Exemples remarquables	. 130
4	Théorème de convergence	. 135
5	Suites récurrentes	. 140
9	Limites et fonctions continues	147
1	Notions de fonction	. 148
2	Limites	
3	Continuité en un point	
4	Continuité sur un intervalle	
5	Fonctions monotones et bijections	. 166
10	Fonctions usuelles	173
1	Logarithme et exponentielle	
2	Fonctions circulaires inverses	
3	Fonctions hyperboliques et hyperboliques inverses	. 180
11	Dérivée d'une fonction	185
1	Dérivée	
2	Calcul des dérivées	. 189
3	Extremum local, théorème de Rolle	
4	Théorème des accroissements finis	. 197
12	Zéros des fonctions	203
1	La dichotomie	. 203
2	La méthode de la sécante	. 208
3	La méthode de Newton	. 212
13	Intégrales	217
1	L'intégrale de Riemann	. 219
2	Propriétés de l'intégrale	
3	Primitive d'une fonction	. 228
4	Intégration par parties – Changement de variable	. 234
5	Intégration des fractions rationnelles	. 238
14	Développements limités	243
1	Formules de Taylor	. 244
2	Développements limités au voisinage d'un point	. 250
3	Opérations sur les développements limités	. 253
4	Applications des développements limités	. 257
15	Courbes paramétrées	263
1	Notions de base	. 264
2	Tangente à une courbe paramétrée	. 271
3	Points singuliers – Branches infinies	. 277
4	Plan d'étude d'une courbe paramétrée	. 284
5	Courbes en polaires : théorie	
6	Courbes en polaires : exemples	. 298

16	Systèmes linéaires
1	Introduction aux systèmes d'équations linéaires
2	Théorie des systèmes linéaires
3	Résolution par la méthode du pivot de Gauss
17	L'espace vectoriel \mathbb{R}^n
1	Vecteurs de \mathbb{R}^n
2	Exemples d'applications linéaires
3	Propriétés des applications linéaires
18	Matrices
1	Définition
2	Multiplication de matrices
3	Inverse d'une matrice : définition
4	Inverse d'une matrice : calcul
5	Inverse d'une matrice : systèmes linéaires et matrices élémentaires
6	Matrices triangulaires, transposition, trace, matrices symétriques
19	Espaces vectoriels 361
1	Espace vectoriel (début)
2	Espace vectoriel (fin)
3	Sous-espace vectoriel (début)
4	Sous-espace vectoriel (milieu)
5	Sous-espace vectoriel (fin)
6	Application linéaire (début)
7	Application linéaire (milieu)
8	Application linéaire (fin)
20	Dimension finie
1	Famille libre
2	Famille génératrice
3	Base
4	Dimension d'un espace vectoriel
5	Dimension des sous-espaces vectoriels
21	Matrices et applications linéaires 419
1	Rang d'une famille de vecteurs
2	Applications linéaires en dimension finie
3	Matrice d'une application linéaire
4	Changement de bases
22	Déterminants
1	Déterminant en dimension 2 et 3
2	Définition du déterminant
3	Propriétés du déterminant
4	Calculs de déterminants
5	Applications des déterminants

6 SOMMAIRE

Cours et exercices de maths exo7.emath.fr

Licence Creative Commons - BY-NC-SA - 3.0 FR

8 SOMMAIRE

1 Logique et raisonnements

```
1 Logique
2 Raisonnements

Vidéo ■ partie 1. Logique

Vidéo ■ partie 2. Raisonnements

Exercices ◆ Logique, ensembles, raisonnements
```

Quelques motivations

- Il est important d'avoir un langage rigoureux. La langue française est souvent ambigüe. Prenons l'exemple de la conjonction « ou » ; au restaurant « fromage ou dessert » signifie l'un ou l'autre mais pas les deux. Par contre si dans un jeu de carte on cherche « les as ou les cœurs » alors il ne faut pas exclure l'as de cœur. Autre exemple : que répondre à la question « As-tu 10 euros en poche ? » si l'on dispose de 15 euros ?
- Il y a des notions difficiles à expliquer avec des mots : par exemple la continuité d'une fonction est souvent expliquée par « on trace le graphe sans lever le crayon ». Il est clair que c'est une définition peu satisfaisante. Voici la définition mathématique de la continuité d'une fonction $f: I \to \mathbb{R}$ en un point $x_0 \in I$:

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad (|x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon).$$

C'est le but de ce chapitre de rendre cette ligne plus claire! C'est la *logique*.

- Enfin les mathématiques tentent de *distinguer le vrai du faux*. Par exemple « *Est-ce qu'une augmentation de 20%, puis de 30% est plus intéressante qu'une augmentation de 50% ?* ». Vous pouvez penser « *oui* » ou « *non* », mais pour en être sûr il faut suivre une démarche logique qui mène à la conclusion. Cette démarche doit être convaincante pour vous mais aussi pour les autres. On parle de *raisonnement*.

Les mathématiques sont un langage pour s'exprimer rigoureusement, adapté aux phénomènes complexes, qui rend les calculs exacts et vérifiables. Le raisonnement est le moyen de valider — ou d'infirmer — une hypothèse et de l'expliquer à autrui.

1. Logique

1.1. Assertions

Une *assertion* est une phrase soit vraie, soit fausse, pas les deux en même temps.

Exemples:

```
- «Il pleut.»
```

- «Je suis plus grand que toi. »

- «2+2=4»

```
- < 2 \times 3 = 7 >
```

- « Pour tout $x \in \mathbb{R}$, on a $x^2 \ge 0$. »
- « Pour tout $z \in \mathbb{C}$, on a |z| = 1. »

Si P est une assertion et Q est une autre assertion, nous allons définir de nouvelles assertions construites à partir de P et de Q.

L'opérateur logique « et »

L'assertion « P et Q » est vraie si P est vraie et Q est vraie. L'assertion « P et Q » est fausse sinon. On résume ceci en une table de vérité:

$$\begin{array}{c|ccc} P \setminus Q & V & F \\ \hline V & V & F \\ \hline F & F & F \end{array}$$

FIGURE 1.1 – Table de vérité de « P et Q »

Par exemple si P est l'assertion « Cette carte est un as » et Q l'assertion « Cette carte est cœur » alors l'assertion « P et Q » est vraie si la carte est l'as de cœur et est fausse pour toute autre carte.

L'opérateur logique « ou »

L'assertion «P ou Q » est vraie si l'une des deux assertions P ou Q est vraie. L'assertion «P ou Q » est fausse si les deux assertions P et Q sont fausses.

On reprend ceci dans la table de vérité :

$$\begin{array}{c|cccc}
P \setminus Q & V & F \\
\hline
V & V & V \\
\hline
F & V & F
\end{array}$$

FIGURE 1.2 – Table de vérité de « P ou Q »

Si P est l'assertion « Cette carte est un as » et Q l'assertion « Cette carte est cœur » alors l'assertion « P ou Q » est vraie si la carte est un as ou bien un cœur (en particulier elle est vraie pour l'as de cœur).

Remarque

Pour définir les opérateurs « ou », « et » on fait appel à une phrase en français utilisant les mots ou, et! Les tables de vérités permettent d'éviter ce problème.

La négation « non »

L'assertion « non P » est vraie si P est fausse, et fausse si P est vraie.

$$\begin{array}{c|cc} P & V & F \\ \hline non P & F & V \end{array}$$

FIGURE 1.3 – Table de vérité de « non P »

L'implication \Rightarrow

La définition mathématique est la suivante :

L'assertion «
$$(non\ P)\ ou\ Q$$
 » est notée « $P\Longrightarrow Q$ ».

Sa table de vérité est donc la suivante :

$$\begin{array}{c|cccc}
P \setminus Q & V & F \\
\hline
V & V & F \\
\hline
F & V & V
\end{array}$$

FIGURE 1.4 – Table de vérité de « $P \Longrightarrow Q$ »

L'assertion « $P \Longrightarrow Q$ » se lit en français « P implique Q ».

Elle se lit souvent aussi « $si\ P$ est $vraie\ alors\ Q$ est vraie » ou « $si\ P$ $alors\ Q$ ».

Par exemple:

- « 0 ≤ x ≤ 25 \Longrightarrow \sqrt{x} ≤ 5 » est vraie (prendre la racine carrée).
- « $x \in]-\infty, -4[$ ⇒ $x^2 + 3x 4 > 0$ » est vraie (étudier le binôme).
- $\ll \sin(\theta) = 0 \implies \theta = 0$ » est fausse (regarder pour $\theta = 2\pi$ par exemple).
- « $2+2=5 \implies \sqrt{2}=2$ » est vraie! Eh oui, si P est fausse alors l'assertion « $P \implies Q$ » est toujours vraie.

L'équivalence ⇔

L'équivalence est définie par :

$$\ ^{\mathrm{v}}P \Longleftrightarrow Q \ ^{\mathrm{v}} \ \mathrm{est} \ \mathrm{l'assertion} \ ^{\mathrm{v}}(P \Longrightarrow Q) \ \ \mathit{et} \ \ (Q \Longrightarrow P) \ ^{\mathrm{v}}.$$

On dira « P est équivalent à Q » ou « P équivaut à Q » ou « P si et seulement si Q ». Cette assertion est vraie lorsque P et Q sont vraies ou lorsque P et Q sont fausses. La table de vérité est :

$$\begin{array}{c|cccc}
P \setminus Q & V & F \\
\hline
V & V & F \\
\hline
F & F & V
\end{array}$$

FIGURE 1.5 – Table de vérité de « $P \iff Q$ »

Exemples:

- Pour $x, x' \in \mathbb{R}$, l'équivalence « $x \cdot x' = 0$ ← (x = 0 ou x' = 0) » est vraie.
- Voici une équivalence toujours fausse (quelque soit l'assertion P) : « $P \iff non(P)$ ».

On s'intéresse davantage aux assertions vraies qu'aux fausses, aussi dans la pratique et en dehors de ce chapitre on écrira « $P \iff Q$ » ou « $P \implies Q$ » uniquement lorsque ce sont des assertions vraies. Par exemple si l'on écrit « $P \iff Q$ » cela sous-entend « $P \iff Q$ est vraie». Attention rien ne dit que P et Q soient vraies. Cela signifie que P et Q sont vraies en même temps ou fausses en même temps.

Proposition 1

Soient P,Q,R trois assertions. Nous avons les équivalences (vraies) suivantes :

- 1. $P \iff non(non(P))$
- 2. $(P \ et \ Q) \iff (Q \ et \ P)$
- 3. $(P ou Q) \iff (Q ou P)$
- 4. $non(P \ et \ Q) \iff (non \ P) \ ou \ (non \ Q)$
- 5. $non(P ou Q) \iff (non P) et (non Q)$
- 6. $(P \ et \ (Q \ ou \ R)) \iff (P \ et \ Q) \ ou \ (P \ et \ R)$
- 7. $(P ou (Q et R)) \iff (P ou Q) et (P ou R)$
- 8. « $P \Longrightarrow Q$ » \iff « $non(Q) \Longrightarrow non(P)$ »

Démonstration

Voici des exemples de démonstrations :

4. Il suffit de comparer les deux assertions « $non(P\ et\ Q)$ » et « $(non\ P)\ ou\ (non\ Q)$ » pour toutes les valeurs possibles de P et Q. Par exemple si P est vrai et Q est vrai alors « $P\ et\ Q$ » est vrai donc « $non(P\ et\ Q)$ » est faux ; d'autre part $(non\ P)$ est faux, $(non\ Q)$ est faux donc « $(non\ P)\ ou\ (non\ Q)$ » est faux. Ainsi dans ce premier cas les assertions sont toutes les deux fausses. On dresse ainsi les deux tables de vérités et comme elles sont égales les deux assertions sont équivalentes.

$$\begin{array}{c|cccc}
P \setminus Q & V & F \\
\hline
V & F & V \\
\hline
F & V & V
\end{array}$$

FIGURE 1.6 - Tables de vérité de « non(P et Q) » et de « (non P) ou (non Q) »

6. On fait la même chose mais il y a trois variables : P, Q, R. On compare donc les tables de vérité d'abord dans le cas où P est vrai (à gauche), puis dans le cas où P est faux (à droite). Dans les deux cas les deux assertions « $(P \ et \ (Q \ ou \ R))$ » et « $(P \ et \ Q) \ ou \ (P \ et \ R)$ » ont la même table de vérité donc les assertions sont équivalentes.

$$\begin{array}{c|c|c} Q \setminus R & V & F \\ \hline V & V & V \\ \hline F & V & F \end{array} \qquad \begin{array}{c|c|c} Q \setminus R & V & F \\ \hline V & F & F \\ \hline F & F & F \end{array}$$

8. Par définition, l'implication « $P\Longrightarrow Q$ » est l'assertion « $(non\ P)$ ou Q ». Donc l'implication « $non(Q)\Longrightarrow non(P)$ » est équivalente à « non(non(Q)) ou non(P) » qui équivaut encore à « Q ou non(P) » et donc est équivalente à « $P\Longrightarrow Q$ ». On aurait aussi pu encore une fois dresser les deux tables de vérité et voir quelles sont égales.

1.2. Quantificateurs

Le quantificateur ∀ : « pour tout »

Une assertion P peut dépendre d'un paramètre x, par exemple « $x^2 \ge 1$ », l'assertion P(x) est vraie ou fausse selon la valeur de x.

L'assertion

est une assertion vraie lorsque les assertions P(x) sont vraies pour tous les éléments x de l'ensemble E.

On lit « Pour tout x appartenant à E, P(x) », sous-entendu « Pour tout x appartenant à E, P(x) est vraie ».

Par exemple:

- « $\forall x \in [1, +\infty[$ ($x^2 \ge 1$) » est une assertion vraie.
- « $\forall x \in \mathbb{R}$ ($x^2 \ge 1$) » est une assertion fausse.
- « $\forall n \in \mathbb{N}$ n(n+1) est divisible par 2 » est vraie.

Le quantificateur 3 : « il existe »

L'assertion

$$\exists x \in E \quad P(x)$$

est une assertion vraie lorsque l'on peut trouver au moins un x de E pour lequel P(x) est vraie. On lit « il existe x appartenant à E tel que P(x) (soit vraie) ».

Par exemple:

- « ∃ $x \in \mathbb{R}$ (x(x-1) < 0) » est vraie (par exemple $x = \frac{1}{2}$ vérifie bien la propriété).
- « $\exists n \in \mathbb{N}$ $n^2 n > n$ » est vraie (il y a plein de choix, par exemple n = 3 convient, mais aussi n = 10 ou même n = 100, un seul suffit pour dire que l'assertion est vraie).
- « $\exists x \in \mathbb{R}$ ($x^2 = -1$) » est fausse (aucun réel au carré ne donnera un nombre négatif).

La négation des quantificateurs

La négation de «
$$\forall x \in E$$
 $P(x)$ » est « $\exists x \in E$ $non P(x)$ ».

Par exemple la négation de « $\forall x \in [1, +\infty[\quad (x^2 \ge 1) \text{ » est l'assertion « } \exists x \in [1, +\infty[\quad (x^2 < 1) \text{ ». En effet la négation de } x^2 \ge 1 \text{ est non}(x^2 \ge 1) \text{ mais s'écrit plus simplement } x^2 < 1.$

La négation de «
$$\exists x \in E \quad P(x)$$
 » est « $\forall x \in E \quad non \ P(x)$ ».

Voici des exemples :

- La négation de « $\exists z \in \mathbb{C}$ $(z^2 + z + 1 = 0)$ » est « $\forall z \in \mathbb{C}$ $(z^2 + z + 1 \neq 0)$ ».
- La négation de « $\forall x \in \mathbb{R}$ $(x+1 \in \mathbb{Z})$ » est « $\exists x \in \mathbb{R}$ $(x+1 \notin \mathbb{Z})$ ».
- Ce n'est pas plus difficile d'écrire la négation de phrases complexes. Pour l'assertion :

$$\forall x \in \mathbb{R} \quad \exists y > 0 \quad (x + y > 10)$$

sa négation est

$$\exists x \in \mathbb{R} \quad \forall y > 0 \quad (x + y \le 10).$$

Remarques

L'ordre des quantificateurs est très important. Par exemple les deux phrases logiques

$$\forall x \in \mathbb{R} \quad \exists y \in \mathbb{R} \quad (x+y>0) \qquad \text{et} \qquad \exists y \in \mathbb{R} \quad \forall x \in \mathbb{R} \quad (x+y>0).$$

sont différentes. La première est vraie, la seconde est fausse. En effet une phrase logique se lit de gauche à droite, ainsi la première phrase affirme « *Pour tout réel x, il existe un réel y (qui peut donc dépendre de x) tel que x* + y > 0. » (par exemple on peut prendre y = x + 1). C'est donc une phrase

vraie. Par contre la deuxième se lit : « Il existe un réel y, tel que pour tout réel x, x + y > 0. » Cette phrase est fausse, cela ne peut pas être le même y qui convient pour tous les x!

On retrouve la même différence dans les phrases en français suivantes. Voici une phrase vraie « Pour toute personne, il existe un numéro de téléphone », bien sûr le numéro dépend de la personne. Par contre cette phrase est fausse : « Il existe un numéro, pour toutes les personnes ». Ce serait le même numéro pour tout le monde !

Terminons avec d'autres remarques.

- Quand on écrit « $\exists x \in \mathbb{R}$ (f(x) = 0) » cela signifie juste qu'il existe un réel pour lequel f s'annule. Rien ne dit que ce x est unique. Dans un premier temps vous pouvez lire la phrase ainsi : « il existe au moins un réel x tel que f(x) = 0 ». Afin de préciser que f s'annule en une unique valeur, on rajoute un point d'exclamation :

$$\exists ! x \in \mathbb{R} \quad (f(x) = 0).$$

- Pour la négation d'une phrase logique, il n'est pas nécessaire de savoir si la phrase est fausse ou vraie. Le procédé est algorithmique : on change le « *pour tout* » en « *il existe* » et inversement, puis on prend la négation de l'assertion *P*.
- Pour la négation d'une proposition, il faut être précis : la négation de l'inégalité stricte « < » est l'inégalité large « ≥ », et inversement.
- Les quantificateurs ne sont pas des abréviations. Soit vous écrivez une phrase en français : « *Pour tout réel x, si* f(x) = 1 *alors* $x \ge 0$. » , soit vous écrivez la phrase logique :

$$\forall x \in \mathbb{R} \quad (f(x) = 1 \implies x \ge 0).$$

Mais surtout n'écrivez pas « $\forall x \ r\'eel$, $si \ f(x) = 1 \implies x \ positif \ ou \ nul$ ». Enfin, pour passer d'une ligne à l'autre d'un raisonnement, préférez plutôt « donc » à « \Longrightarrow ».

Il est défendu d'écrire ∄, ≠ . Ces symboles n'existent pas!

Mini-exercices

- 1. Écrire la table de vérité du « ou exclusif ». (C'est le ou dans la phrase « fromage ou dessert », l'un ou l'autre mais pas les deux.)
- 2. Écrire la table de vérité de « non (P et Q) ». Que remarquez vous?
- 3. Écrire la négation de « $P \Longrightarrow Q$ ».
- 4. Démontrer les assertions restantes de la proposition 1.
- 5. Écrire la négation de « (P et (Q ou R))».
- 6. Écrire à l'aide des quantificateurs la phrase suivante : « *Pour tout nombre réel, son carré est positif* ». Puis écrire la négation.
- 7. Mêmes questions avec les phrases : « Pour chaque réel, je peux trouver un entier relatif tel que leur produit soit strictement plus grand que 1 ». Puis « Pour tout entier n, il existe un unique réel x tel que $\exp(x)$ égale n ».

2. Raisonnements

Voici des méthodes classiques de raisonnements.

2.1. Raisonnement direct

On veut montrer que l'assertion « $P \Longrightarrow Q$ » est vraie. On suppose que P est vraie et on montre qu'alors Q est vraie. C'est la méthode à laquelle vous êtes le plus habitué.

Exemple 1

Montrer que si $a, b \in \mathbb{Q}$ alors $a + b \in \mathbb{Q}$.

Démonstration

Prenons $a \in \mathbb{Q}$, $b \in \mathbb{Q}$. Rappelons que les rationnels \mathbb{Q} sont l'ensemble des réels s'écrivant $\frac{p}{q}$ avec $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$.

Alors $a = \frac{p}{q}$ pour un certain $p \in \mathbb{Z}$ et un certain $q \in \mathbb{N}^*$. De même $b = \frac{p'}{q'}$ avec $p' \in \mathbb{Z}$ et $q' \in \mathbb{N}^*$.

$$a+b=\frac{p}{q}+\frac{p'}{q'}=\frac{p\,q'+q\,p'}{q\,q'}.$$

Or le numérateur pq'+qp' est bien un élément de \mathbb{Z} ; le dénominateur qq' est lui un élément de \mathbb{N}^* . Donc a+b s'écrit bien de la forme $a+b=\frac{p''}{q''}$ avec $p''\in\mathbb{Z},\,q''\in\mathbb{N}^*$. Ainsi $a+b\in\mathbb{Q}$.

2.2. Cas par cas

Si l'on souhaite vérifier une assertion P(x) pour tous les x dans un ensemble E, on montre l'assertion pour les x dans une partie A de E, puis pour les x n'appartenant pas à A. C'est la méthode de **disjonction** ou du **cas par cas**.

Exemple 2

Montrer que pour tout $x \in \mathbb{R}$, $|x-1| \le x^2 - x + 1$.

Démonstration

Soit $x \in \mathbb{R}$. Nous distinguons deux cas.

Premier cas : $x \ge 1$. Alors |x-1| = x-1. Calculons alors $x^2 - x + 1 - |x-1|$.

$$x^{2}-x+1-|x-1| = x^{2}-x+1-(x-1)$$
$$= x^{2}-2x+2$$
$$= (x-1)^{2}+1 \ge 0.$$

Ainsi $x^2 - x + 1 - |x - 1| \ge 0$ et donc $x^2 - x + 1 \ge |x - 1|$.

Deuxième cas : x < 1. Alors |x-1| = -(x-1). Nous obtenons $x^2 - x + 1 - |x-1| = x^2 - x + 1 + (x-1) = x^2 \ge 0$. Et donc $x^2 - x + 1 \ge |x-1|$.

Conclusion. Dans tous les cas $|x-1| \le x^2 - x + 1$.

2.3. Contraposée

Le raisonnement par *contraposition* est basé sur l'équivalence suivante (voir la proposition 1) :

L'assertion «
$$P \Longrightarrow Q$$
 » est équivalente à « $non(Q) \Longrightarrow non(P)$ ».

Donc si l'on souhaite montrer l'assertion « $P \implies Q$ », on montre en fait que si non(Q) est vraie alors non(P) est vraie.

Exemple 3

Soit $n \in \mathbb{N}$. Montrer que si n^2 est pair alors n est pair.

Démonstration

Nous supposons que n n'est pas pair. Nous voulons montrer qu'alors n^2 n'est pas pair. Comme n n'est pas pair, il est impair et donc il existe $k \in \mathbb{N}$ tel que n = 2k + 1. Alors $n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2\ell + 1$ avec $\ell = 2k^2 + 2k \in \mathbb{N}$. Et donc n^2 est impair.

Conclusion : nous avons montré que si n est impair alors n^2 est impair. Par contraposition ceci est équivalent à : si n^2 est pair alors n est pair.

2.4. Absurde

Le *raisonnement par l'absurde* pour montrer « $P \Longrightarrow Q$ » repose sur le principe suivant : on suppose à la fois que P est vraie et que Q est fausse et on cherche une contradiction. Ainsi si P est vraie alors Q doit être vraie et donc « $P \Longrightarrow Q$ » est vraie.

Exemple 4

Soient $a, b \ge 0$. Montrer que si $\frac{a}{1+b} = \frac{b}{1+a}$ alors a = b.

Démonstration

Nous raisonnons par l'absurde en supposant que $\frac{a}{1+b} = \frac{b}{1+a}$ et $a \neq b$. Comme $\frac{a}{1+b} = \frac{b}{1+a}$ alors a(1+a) = b(1+b) donc $a+a^2 = b+b^2$ d'où $a^2-b^2 = b-a$. Cela conduit à (a-b)(a+b) = -(a-b). Comme $a \neq b$ alors $a-b \neq 0$ et donc en divisant par a-b on obtient a+b=-1. La somme de deux nombres positifs ne peut être négative. Nous obtenons une contradiction.

Conclusion : si $\frac{a}{1+b} = \frac{b}{1+a}$ alors a = b.

Dans la pratique, on peut choisir indifféremment entre un raisonnement par contraposition ou par l'absurde. Attention cependant de bien écrire quel type de raisonnement vous choisissez et surtout de ne pas changer en cours de rédaction!

2.5. Contre-exemple

Si l'on veut montrer qu'une assertion du type « $\forall x \in E$ P(x) » est vraie alors pour chaque x de E il faut montrer que P(x) est vraie. Par contre pour montrer que cette assertion est fausse alors il suffit de trouver $x \in E$ tel que P(x) soit fausse. (Rappelez-vous la négation de « $\forall x \in E$ P(x) » est « $\exists x \in E$ non P(x) »). Trouver un tel x c'est trouver un **contre-exemple** à l'assertion « $\forall x \in E$ P(x) ».

Exemple 5

Montrer que l'assertion suivante est fausse « *Tout entier positif est somme de trois carrés* ». (Les carrés sont les 0^2 , 1^2 , 2^2 , 3^2 ,... Par exemple $6 = 2^2 + 1^2 + 1^2$.)

Démonstration

Un contre-exemple est 7 : les carrés inférieurs à 7 sont 0, 1, 4 mais avec trois de ces nombres on ne peut faire 7.

2.6. Récurrence

Le *principe de récurrence* permet de montrer qu'une assertion P(n), dépendant de n, est vraie pour tout $n \in \mathbb{N}$. La démonstration par récurrence se déroule en trois étapes : lors de

l'*initialisation* on prouve P(0). Pour l'étape d'*hérédité*, on suppose $n \ge 0$ donné avec P(n) vraie, et on démontre alors que l'assertion P(n+1) au rang suivant est vraie. Enfin dans la *conclusion*, on rappelle que par le principe de récurrence P(n) est vraie pour tout $n \in \mathbb{N}$.

Exemple 6

Montrer que pour tout $n \in \mathbb{N}$, $2^n > n$.

Démonstration

Pour $n \ge 0$, notons P(n) l'assertion suivante :

$$2^n > n$$
.

Nous allons démontrer par récurrence que P(n) est vraie pour tout $n \ge 0$.

Initialisation. Pour n = 0 nous avons $2^0 = 1 > 0$. Donc P(0) est vraie.

Hérédité. Fixons $n \ge 0$. Supposons que P(n) soit vraie. Nous allons montrer que P(n+1) est vraie.

$$2^{n+1} = 2^n + 2^n$$

> $n+2^n$ car par $P(n)$ nous savons $2^n > n$,
> $n+1$ car $2^n \ge 1$.

Donc P(n+1) est vraie.

Conclusion. Par le principe de récurrence P(n) est vraie pour tout $n \ge 0$, c'est-à-dire $2^n > n$ pour tout $n \ge 0$.

Remarques:

- La rédaction d'une récurrence est assez rigide. Respectez scrupuleusement la rédaction proposée : donnez un nom à l'assertion que vous souhaitez montrer (ici P(n)), respectez les trois étapes (même si souvent l'étape d'initialisation est très facile). En particulier méditez et conservez la première ligne de l'hérédité « Fixons $n \ge 0$. Supposons que P(n) soit vraie. Nous allons montrer que P(n+1) est vraie. »
- Si on doit démontrer qu'une propriété est vraie pour tout $n \ge n_0$, alors on commence l'initialisation au rang n_0 .
- Le principe de récurrence est basé sur la construction de \mathbb{N} . En effet un des axiomes pour définir \mathbb{N} est le suivant : « Soit A une partie de \mathbb{N} qui contient 0 et telle que si n ∈ A alors $n+1 \in A$. Alors $A=\mathbb{N}$ ».

Mini-exercices

- 1. (Raisonnement direct) Soient $a, b \in \mathbb{R}_+$. Montrer que si $a \le b$ alors $a \le \frac{a+b}{2} \le b$ et $a \le \sqrt{ab} \le b$.
- 2. (Cas par cas) Montrer que pour tout $n \in \mathbb{N}$, n(n+1) est divisible par 2 (distinguer les n pairs des n impairs).
- 3. (Contraposée ou absurde) Soient $a,b \in \mathbb{Z}$. Montrer que si $b \neq 0$ alors $a+b\sqrt{2} \notin \mathbb{Q}$. (On utilisera que $\sqrt{2} \notin \mathbb{Q}$.)
- 4. (Absurde) Soit $n \in \mathbb{N}^*$. Montrer que $\sqrt{n^2 + 1}$ n'est pas un entier.
- 5. (Contre-exemple) Est-ce que pour tout $x \in \mathbb{R}$ on a $x < 2 \implies x^2 < 4$?

- 6. (Récurrence) Montrer que pour tout $n \ge 1$, $1 + 2 + \cdots + n = \frac{n(n+1)}{2}$.
- 7. (Récurrence) Fixons un réel $x \ge 0$. Montrer que pour tout entier $n \ge 1$, $(1+x)^n \ge 1 + nx$.

Auteurs

Arnaud Bodin Benjamin Boutin Pascal Romon

2 Ensembles et applications

```
1 Ensembles
```

- 2 Applications
- 3 Injection, surjection, bijection
- 4 Ensembles finis
- 5 Relation d'équivalence

```
Vidéo ■ partie 1. Ensembles

Vidéo ■ partie 2. Applications

Vidéo ■ partie 3. Injection, surjection, bijection

Vidéo ■ partie 4. Ensembles finis

Vidéo ■ partie 5. Relation d'équivalence

Exercices ♦ Logique, ensembles, raisonnements

Exercices ♦ Injection, surjection, bijection

Exercices ♦ Dénombrement

Exercices ♦ Relation d'équivalence, relation d'ordre
```

Motivations

Au début du XX^e siècle le professeur Frege peaufinait la rédaction du second tome d'un ouvrage qui souhaitait refonder les mathématiques sur des bases logiques. Il reçut une lettre d'un tout jeune mathématicien : « J'ai bien lu votre premier livre. Malheureusement vous supposez qu'il existe un ensemble qui contient tous les ensembles. Un tel ensemble ne peut exister. » S'ensuit une démonstration de deux lignes. Tout le travail de Frege s'écroulait et il ne s'en remettra jamais. Le jeune Russell deviendra l'un des plus grands logiciens et philosophes de sont temps. Il obtient le prix Nobel de littérature en 1950.

Voici le « paradoxe de Russell » pour montrer que l'ensemble de tous les ensembles ne peut exister. C'est très bref, mais difficile à appréhender. Par l'absurde, supposons qu'un tel ensemble $\mathscr E$ contenant tous les ensembles existe. Considérons

$$F = \left\{ E \in \mathcal{E} \mid E \notin E \right\}.$$

Expliquons l'écriture $E \notin E$: le E de gauche est considéré comme un élément, en effet l'ensemble $\mathscr E$ est l'ensemble de tous les ensembles et E est un élément de cet ensemble; le E de droite est considéré comme un ensemble, en effet les élément de $\mathscr E$ sont des ensembles! On peut donc s'interroger si l'élément E appartient à l'ensemble E. Si non, alors par définition on met E dans l'ensemble F.

La contradiction arrive lorsque l'on se pose la question suivante : a-t-on $F \in F$ ou $F \notin F$? L'une des deux affirmation doit être vraie. Et pourtant :

- Si F ∈ F alors par définition de F, F est l'un des ensembles E tel que F ∉ F. Ce qui est contradictoire.
- Si $F \notin F$ alors F vérifie bien la propriété définissant F donc $F \in F$! Encore contradictoire.

Aucun des cas n'est possible. On en déduit qu'il ne peut exister un tel ensemble $\mathcal E$ contenant tous les ensembles.

Ce paradoxe a été popularisé par l'énigme suivante : « Dans une ville, le barbier rase tous ceux qui ne se rasent pas eux-mêmes. Qui rase le barbier ? » La seule réponse valable est qu'une telle situation ne peut exister.

Ne vous inquiétez pas, Russell et d'autres ont fondé la logique et les ensembles sur des bases solides. Cependant il n'est pas possible dans ce cours de tout redéfinir. Heureusement, vous connaissez déjà quelques ensembles :

- l'ensemble des entiers naturels $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$.
- l'ensemble des entiers relatifs $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$.
- l'ensemble des rationnels $\mathbb{Q} = \left\{ \frac{p}{q} \mid p \in \mathbb{Z}, q \in \mathbb{N} \setminus \{0\} \right\}$.
- l'ensemble des réels \mathbb{R} , par exemple $1, \sqrt{2}, \pi, \ln(2), \dots$
- l'ensemble des nombres complexes \mathbb{C} .

Nous allons essayer de voir les propriétés des ensembles, sans s'attacher à un exemple particulier. Vous vous apercevrez assez rapidement que ce qui est au moins aussi important que les ensembles, ce sont les relations entre ensembles : ce sera la notion d'application (ou fonction) entre deux ensembles.

1. Ensembles

1.1. Définir des ensembles

- On va définir informellement ce qu'est un ensemble : un *ensemble* est une collection d'éléments.
- Exemples:

$$\{0,1\}, \{\text{rouge, noir}\}, \{0,1,2,3,\ldots\} = \mathbb{N}.$$

- Un ensemble particulier est l'ensemble vide, noté Ø qui est l'ensemble ne contenant aucun élément.
- On note

$$x \in E$$

si x est un élément de E, et $x \notin E$ dans le cas contraire.

- Voici une autre façon de définir des ensembles : une collection d'éléments qui vérifient une propriété.
- Exemples:

$${x \in \mathbb{R} \mid |x - 2| < 1}, \quad {z \in \mathbb{C} \mid z^5 = 1}, \quad {x \in \mathbb{R} \mid 0 \le x \le 1} = [0, 1].$$

1.2. Inclusion, union, intersection, complémentaire

- L'inclusion. $E \subset F$ si tout élément de E est aussi un élément de F (autrement dit : $\forall x \in E \ (x \in F)$). On dit alors que E est un sous-ensemble de F ou une partie de F.
- L'égalité. E = F si et seulement si $E \subset F$ et $F \subset E$.
- **Ensemble des parties** de E. On note $\mathcal{P}(E)$ l'ensemble des parties de E. Par exemple si $E = \{1, 2, 3\}$:

$$\mathscr{P}(\{1,2,3\}) = \{\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}.$$

- Complémentaire. Si $A \subset E$,

$$\boxed{\mathbb{C}_E A = \big\{ x \in E \mid x \notin A \big\}}$$

On le note aussi $E \setminus A$ et juste CA s'il n'y a pas d'ambiguïté (et parfois aussi A^c ou \overline{A}).

- *Union*. Pour $A, B \subset E$,

$$A \cup B = \{x \in E \mid x \in A \text{ ou } x \in B\}$$

Le «ou» n'est pas exclusif : x peut appartenir à A et à B en même temps.

- Intersection.

1.3. Règles de calculs

Soient A, B, C des parties d'un ensemble E.

- $A \cap B = B \cap A$
- $A \cap (B \cap C)$ = $(A \cap B) \cap C$ (on peut donc écrire $A \cap B \cap C$ sans ambigüité)
- $A \cap \emptyset = \emptyset$, $A \cap A = A$, $A \subset B \iff A \cap B = A$
- $A \cup B = B \cup A$
- $A \cup (B \cup C) = (A \cup B) \cup C$ (on peut donc écrire $A \cup B \cup C$ sans ambiguïté)
- $A \cup \emptyset = A$, $A \cup A = A$, $A \subset B \iff A \cup B = B$
- $-A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$
- $-A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- $\mathbb{C}(\mathbb{C}A)$ = A et donc $A \subset B \iff \mathbb{C}B \subset \mathbb{C}A$.
- $C(A \cap B) = CA \cup CB$
- $C(A \cup B) = CA \cap CB$

Voici les dessins pour les deux dernières assertions.

Les preuves sont pour l'essentiel une reformulation des opérateurs logiques, en voici quelquesunes :

- Preuve de $A \cap (B \cup C) = (A \cap B) \cup (A \cap C) : x \in A \cap (B \cup C) \iff x \in A \text{ et } x \in (B \cup C) \iff x \in A \text{ et } x \in B \text{ ou } x \in C) \iff (x \in A \text{ et } x \in B) \text{ ou } (x \in A \text{ et } x \in C) \iff (x \in A \cap B) \text{ ou } (x \in A \cap C) \iff x \in (A \cap B) \cup (A \cap C).$
- Preuve de $C(A \cap B) = CA \cup CB : x \in C(A \cap B) \iff x \notin (A \cap B) \iff \operatorname{non}(x \in A \cap B) \iff \operatorname{non}(x \in A \cap B) \iff \operatorname{non}(x \in A \cap B) \iff x \in CA \cup CB$.

Remarquez que l'on repasse aux éléments pour les preuves.

1.4. Produit cartésien

Soient E et F deux ensembles. Le **produit cartésien**, noté $E \times F$, est l'ensemble des couples (x, y) où $x \in E$ et $y \in F$.

Exemple 7

- 1. Vous connaissez $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{(x, y) \mid x, y \in \mathbb{R}\}.$
- 2. Autre exemple $[0,1] \times \mathbb{R} = \{(x,y) \mid 0 \le x \le 1, y \in \mathbb{R}\}$

3. $[0,1] \times [0,1] \times [0,1] = \{(x,y,z) \mid 0 \le x, y, z \le 1\}$

Mini-exercices

- 1. En utilisant les définitions, montrer : $A \neq B$ si et seulement s'il existe $a \in A \setminus B$ ou $b \in B \setminus A$.
- 2. Énumérer $\mathcal{P}(\{1,2,3,4\})$.
- 3. Montrer $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ et $C(A \cup B) = CA \cap CB$.
- 4. Énumérer $\{1,2,3\} \times \{1,2,3,4\}$.
- 5. Représenter les sous-ensembles de \mathbb{R}^2 suivants : $(]0,1[\cup[2,3[)\times[-1,1],(\mathbb{R}\setminus[0,1[\cup[2,3[)\times[(\mathbb{R}\setminus[-1,1])\cap[0,2]).$

2. Applications

2.1. Définitions

- Une *application* (ou une *fonction*) $f: E \to F$, c'est la donnée pour chaque élément $x \in E$ d'un unique élément de F noté f(x).
 - Nous représenterons les applications par deux types d'illustrations : les ensembles «patates», l'ensemble de départ (et celui d'arrivée) est schématisé par un ovale ses éléments par des points. L'association $x \mapsto f(x)$ est représentée par une flèche.

L'autre représentation est celle des fonctions continues de \mathbb{R} dans \mathbb{R} (ou des sous-ensembles de \mathbb{R}). L'ensemble de départ \mathbb{R} est représenté par l'axe des abscisses et celui d'arrivée par l'axe des ordonnées. L'association $x \mapsto f(x)$ est représentée par le point (x, f(x)).

- **Égalité**. Deux applications $f,g:E\to F$ sont égales si et seulement si pour tout $x\in E$, f(x)=g(x). On note alors f=g.
- Le *graphe* de $f: E \to F$ est

$$\Gamma_{f} = \left\{ \left(x, f(x) \right) \in E \times F \mid x \in E \right\}$$

- Composition. Soient $f: E \to F$ et $g: F \to G$ alors $g \circ f: E \to G$ est l'application définie par

$$g \circ f(x) = g(f(x)).$$

Exemple 8

- 1. L'identité, $id_E : E \to E$ est simplement définie par $x \mapsto x$ et sera très utile dans la suite.
- 2. Définissons f,g ainsi

Alors $g \circ f :]0, +\infty[\to \mathbb{R}$ vérifie pour tout $x \in]0, +\infty[$:

$$g \circ f(x) = g(f(x)) = g\left(\frac{1}{x}\right) = \frac{\frac{1}{x} - 1}{\frac{1}{x} + 1} = \frac{1 - x}{1 + x} = -g(x).$$

2.2. Image directe, image réciproque

Soient E, F deux ensembles.

Définition 1

Soit $A \subset E$ et $f: E \to F$, l'**image directe** de A par f est l'ensemble

$$f(A) = \big\{ f(x) \mid x \in A \big\}$$

Définition 2

Soit $B \subset F$ et $f: E \to F$, l'**image réciproque** de B par f est l'ensemble

$$f^{-1}(B) = \{x \in E \mid f(x) \in B\}$$

Remarque

Ces notions sont plus difficiles à maîtriser qu'il n'y paraît!

- f(A) est un sous-ensemble de F, $f^{-1}(B)$ est un sous-ensemble de E.
- La notation « $f^{-1}(B)$ » est un tout, rien ne dit que f est un fonction bijective (voir plus loin). L'image réciproque existe quelque soit la fonction.
- L'image directe d'un singleton $f(\{x\}) = \{f(x)\}$ est un singleton. Par contre l'image réciproque d'un singleton $f^{-1}(\{y\})$ dépend de f. Cela peut être un singleton, un ensemble à plusieurs éléments; mais cela peut-être E tout entier (si f est une fonction constante) ou même l'ensemble vide (si aucune image par f ne vaut g).

2.3. Antécédents

Fixons $y \in F$. Tout élément $x \in E$ tel que f(x) = y est un **antécédent** de y. En termes d'image réciproque l'ensemble des antécédents de y est $f^{-1}(\{y\})$.

Sur les dessins suivants, l'élément y admet 3 antécédents par f. Ce sont x_1, x_2, x_3 .

Mini-exercices

- 1. Pour deux applications $f,g:E\to F$, quelle est la négation de f=g?
- 2. Représenter le graphe de $f: \mathbb{N} \to \mathbb{R}$ définie par $n \mapsto \frac{4}{n+1}$.
- 3. Soient $f,g,h:\mathbb{R}\to\mathbb{R}$ définies par $f(x)=x^2$, g(x)=2x+1, $h(x)=x^3-1$. Calculer $f\circ(g\circ h)$ et $(f\circ g)\circ h$.
- 4. Pour la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $x \mapsto x^2$ représenter et calculer les ensembles suivants : $f([0,1]), f(\mathbb{R}), f(]-1,2[), f^{-1}([1,2[),f^{-1}([-1,1]),f^{-1}(\{3\}),f^{-1}(\mathbb{R}\setminus\mathbb{N}).$

3. Injection, surjection, bijection

3.1. Injection, surjection

Soit E, F deux ensembles et $f: E \rightarrow F$ une application.

Définition 3

f est *injective* si pour tout $x, x' \in E$ avec f(x) = f(x') alors x = x'. Autrement dit :

$$\forall x, x' \in E \quad (f(x) = f(x') \Longrightarrow x = x')$$

Définition 4

f est *surjective* si pour tout $y \in F$, il existe $x \in E$ tel que y = f(x). Autrement dit :

$$\forall y \in F \quad \exists x \in E \quad (y = f(x))$$

Une autre formulation : f est surjective si et seulement si f(E) = F. Les applications f représentées sont injectives :

Les applications f représentées sont surjectives :

Remarque

Encore une fois ce sont des notions difficiles à appréhender. Une autre façon de formuler l'injectivité et la surjectivité est d'utiliser les antécédents.

- f est injective si et seulement si tout élément y de F a au plus 1 antécédent (et éventuellement aucun).
- -f est surjective si et seulement si tout élément y de F a au moins 1 antécédent.

Remarque

Voici deux fonctions non injectives :

Ainsi que deux fonctions non surjectives :

Exemple 9

- 1. Soit $f_1: \mathbb{N} \to \mathbb{Q}$ définie par $f_1(x) = \frac{1}{1+x}$. Montrons que f_1 est injective : soit $x, x' \in \mathbb{N}$ tels que $f_1(x) = f_1(x')$. Alors $\frac{1}{1+x} = \frac{1}{1+x'}$, donc 1+x=1+x' et donc x=x'. Ainsi f_1 est injective. Par contre f_1 n'est pas surjective. Il s'agit de trouver un élément y qui n'a pas d'antécédent par f_1 . Ici il est facile de voir que l'on a toujours $f_1(x) \le 1$ et donc par exemple y=2 n'a pas d'antécédent. Ainsi f_1 n'est pas surjective.
- 2. Soit $f_2: \mathbb{Z} \to \mathbb{N}$ définie par $f_2(x) = x^2$. Alors f_2 n'est pas injective. En effet on peut trouver deux éléments $x, x' \in \mathbb{Z}$ différents tels que $f_2(x) = f_2(x')$. Il suffit de prendre par exemple x = 2, x' = -2.

 f_2 n'est pas non plus surjective, en effet il existe des éléments $y \in \mathbb{N}$ qui n'ont aucun antécédent. Par exemple y=3: si y=3 avait un antécédent x par f_2 , nous aurions $f_2(x)=y$, c'est-à-dire $x^2=3$, d'où $x=\pm\sqrt{3}$. Mais alors x n'est pas un entier de \mathbb{Z} . Donc y=3 n'a pas d'antécédent et f_2 n'est pas surjective.

3.2. Bijection

Définition 5

f est *bijective* si elle injective et surjective. Cela équivaut à : pour tout $y \in F$ il existe un unique $x \in E$ tel que y = f(x). Autrement dit :

$$\forall y \in F \quad \exists! x \in E \quad (y = f(x))$$

L'existence du x vient de la surjectivité et l'unicité de l'injectivité. Autrement dit, tout élément de F a un unique antécédent par f.

Proposition 2

Soit E, F des ensembles et $f : E \to F$ une application.

- 1. L'application f est bijective si et seulement si il existe une application $g: F \to E$ telle que $f \circ g = \mathrm{id}_F$ et $g \circ f = \mathrm{id}_E$.
- 2. Si f est bijective alors l'application g est unique et elle aussi est bijective. L'application g s'appelle la *bijection réciproque* de f et est notée f^{-1} . De plus $(f^{-1})^{-1} = f$.

Remarque

 $- f ∘ g = id_F$ se reformule ainsi

$$\forall y \in F \quad f(g(y)) = y.$$

- Alors que $g \circ f = id_E$ s'écrit :

$$\forall x \in E \quad g(f(x)) = x.$$

- Par exemple $f: \mathbb{R} \to]0, +\infty[$ définie par $f(x) = \exp(x)$ est bijective, sa bijection réciproque est $g:]0, +\infty[\to \mathbb{R}$ définie par $g(y) = \ln(y)$. Nous avons bien $\exp\left(\ln(y)\right) = y$, pour tout $y \in]0, +\infty[$ et $\ln\left(\exp(x)\right) = x$, pour tout $x \in \mathbb{R}$.

Démonstration

- 1. Sens \Rightarrow . Supposons f bijective. Nous allons construire une application $g: F \to E$. Comme f est surjective alors pour chaque $y \in F$, il existe un $x \in E$ tel que y = f(x) et on pose g(y) = x. On a f(g(y)) = f(x) = y, ceci pour tout $y \in F$ et donc $f \circ g = \mathrm{id}_F$. On compose à droite avec f donc $f \circ g \circ f = \mathrm{id}_F \circ f$. Alors pour tout $x \in E$ on a $f(g \circ f(x)) = f(x)$ or f est injective et donc $g \circ f(x) = x$. Ainsi $g \circ f = \mathrm{id}_E$. Bilan: $f \circ g = \mathrm{id}_F$ et $g \circ f = \mathrm{id}_E$.
 - Sens \Leftarrow . Supposons que g existe et montrons que f est bijective.
 - f est surjective : en effet soit $y \in F$ alors on note $x = g(y) \in E$; on a bien : $f(x) = f(g(y)) = f \circ g(y) = \mathrm{id}_F(y) = y$, donc f est bien surjective.
 - f est injective : soient $x, x' \in E$ tels que f(x) = f(x'). On compose par g (à gauche) alors $g \circ f(x) = g \circ f(x')$ donc $\mathrm{id}_E(x) = \mathrm{id}_E(x')$ donc x = x'; f est bien injective.
- 2. Si f est bijective alors g est aussi bijective car $g \circ f = \mathrm{id}_E$ et $f \circ g = \mathrm{id}_F$ et on applique ce que l'on vient de démontrer avec g à la place de f. Ainsi $g^{-1} = f$.
 - Si f est bijective, g est unique: en effet soit $h: F \to E$ une autre application telle que $h \circ f = \mathrm{id}_E$ et $f \circ h = \mathrm{id}_F$; en particulier $f \circ h = \mathrm{id}_F = f \circ g$, donc pour tout $y \in F$, f(h(y)) = f(g(y)) or f est injective alors h(y) = g(y), ceci pour tout $y \in F$; d'où h = g.

Proposition 3

Soient $f: E \to F$ et $g: F \to G$ des applications bijectives. L'application $g \circ f$ est bijective et sa bijection réciproque est

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$

Démonstration

D'après la proposition 2, il existe $u: F \to E$ tel que $u \circ f = \mathrm{id}_E$ et $f \circ u = \mathrm{id}_F$. Il existe aussi $v: G \to F$ tel que $v \circ g = \mathrm{id}_F$ et $g \circ v = \mathrm{id}_G$. On a alors $(g \circ f) \circ (u \circ v) = g \circ (f \circ u) \circ v = g \circ \mathrm{id}_F \circ u = g \circ u = \mathrm{id}_E$. Et $(u \circ v) \circ (g \circ f) = u \circ (v \circ g) \circ f = u \circ \mathrm{id}_F \circ f = u \circ f = \mathrm{id}_E$. Donc $g \circ f$ est bijective et son inverse est $u \circ v$. Comme u est la bijection réciproque de f et v celle de g alors : $u \circ v = f^{-1} \circ g^{-1}$.

Mini-exercices

- 1. Les fonctions suivantes sont-elles injectives, surjectives, bijectives?
 - $-f_1: \mathbb{R} \to [0, +\infty[, x \mapsto x^2]$.
 - $f_2: [0, +\infty[\to [0, +\infty[, x \mapsto x^2]]]$
 - $-f_3: \mathbb{N} \to \mathbb{N}, x \mapsto x^2.$
 - $f_4: \mathbb{Z} \to \mathbb{Z}, x \mapsto x 7.$
 - $-f_5: \mathbb{R} \to [0, +\infty[, x \mapsto |x|].$
- 2. Montrer que la fonction $f:]1, +\infty[\rightarrow]0, +\infty[$ définie par $f(x) = \frac{1}{x-1}$ est bijective. Calculer sa bijection réciproque.

4. Ensembles finis

4.1. Cardinal

Définition 6

Un ensemble E est *fini* s'il existe un entier $n \in \mathbb{N}$ et une bijection de E vers $\{1, 2, ..., n\}$. Cet entier n est unique et s'appelle le *cardinal* de E (ou le *nombre d'éléments*) et est noté $\operatorname{Card} E$.

Quelques exemples:

- 1. $E = \{\text{rouge, noir}\}\ \text{est en bijection avec}\ \{1,2\}\ \text{et donc est de cardinal }2.$
- 2. N n'est pas un ensemble fini.
- 3. Par définition le cardinal de l'ensemble vide est 0.

Enfin quelques propriétés :

- 1. Si A est un ensemble fini et $B \subset A$ alors B est un ensemble fini et $Card B \leq Card A$.
- 2. Si A,B sont des ensembles finis disjoints (c'est-à-dire $A \cap B = \emptyset$) alors $\operatorname{Card}(A \cup B) = \operatorname{Card}A + \operatorname{Card}B$.
- 3. Si *A* est un ensemble fini et $B \subset A$ alors $Card(A \setminus B) = CardA CardB$.
- 4. Enfin pour A, B deux ensembles finis quelconques :

$$Card(A \cup B) = CardA + CardB - Card(A \cap B)$$

Voici une situation où s'applique la dernière propriété :

4.2. Injection, surjection, bijection et ensembles finis

Proposition 4

Soit E, F deux ensembles finis et $f: E \to F$ une application.

- 1. Si f est injective alors $Card E \leq Card F$.
- 2. Si f est surjective alors $Card E \ge Card F$.
- 3. Si f est bijective alors Card E = Card F.

Démonstration

- 1. Supposons f injective. Notons $F' = f(E) \subset F$ alors la restriction $f_{|}: E \to F'$ (définie par $f_{|}(x) = f(x)$) est une bijection. Donc pour chaque $y \in F'$ est associé un unique $x \in E$ tel que y = f(x). Donc E et F' ont le même nombre d'éléments. Donc $\operatorname{Card} F' = \operatorname{Card} E$. Or $F' \subset F$, ainsi $\operatorname{Card} E = \operatorname{Card} F' \leq \operatorname{Card} F$.
- 2. Supposons f surjective. Pour tout élément $y \in F$, il existe au moins un élément x de E tel que y = f(x) et donc $Card E \ge Card F$.
- 3. Cela découle de (1) et (2) (ou aussi de la preuve du (1)).

Proposition 5

Soit E, F deux ensembles finis et $f: E \to F$ une application. Si

$$Card E = Card F$$

alors les assertions suivantes sont équivalentes :

- i. f est injective,
- ii. f est surjective,
- iii. f est bijective.

Démonstration

Le schéma de la preuve est le suivant : nous allons montrer successivement les implications :

$$(i)\Longrightarrow (ii)\Longrightarrow (iii)\Longrightarrow (i)$$

ce qui prouvera bien toutes les équivalences.

- (i) \implies (ii). Supposons f injective. Alors $\operatorname{Card} f(E) = \operatorname{Card} E = \operatorname{Card} F$. Ainsi f(E) est un sousensemble de F ayant le même cardinal que F; cela entraı̂ne f(E) = F et donc f est surjective.
- (ii) ⇒ (iii). Supposons f surjective. Pour montrer que f est bijective, il reste à montrer que f est injective. Raisonnons par l'absurde et supposons f non injective. Alors Card f(E) < Card E (car au moins 2 éléments ont la même image). Or f(E) = F car f surjective, donc Card F < Card E. C'est une contradiction, donc f doit être injective et ainsi f est bijective.
- $-(iii) \Longrightarrow (i)$. C'est clair : une fonction bijective est en particulier injective.

Appliquez ceci pour montrer le principe des tiroirs :

Proposition 6

Si l'on range dans k tiroirs, n > k paires de chaussettes alors il existe (au moins) un tiroir contenant (au moins) deux paires de chaussettes.

Malgré sa formulation amusante, c'est une proposition souvent utile. Exemple : dans un amphi de 400 étudiants, il y a au moins deux étudiants nés le même jour!

4.3. Nombres d'applications

Soient E, F des ensembles finis, non vides. On note Card E = n et Card F = p.

Proposition 7

Le nombre d'applications différentes de E dans F est :

Autrement dit c'est $|(\operatorname{Card} F)^{\operatorname{Card} E}|$

Exemple 10

En particulier le nombre d'applications de E dans lui-même est n^n . Par exemple si E = $\{1, 2, 3, 4, 5\}$ alors ce nombre est $5^5 = 3125$.

Démonstration

Fixons F et $p = \operatorname{Card} F$. Nous allons effectuer une récurrence sur $n = \operatorname{Card} E$. Soit (P_n) l'assertion suivante : le nombre d'applications d'un ensemble à p éléments vers un ensemble à p éléments est p^n .

- Initialisation. Pour n=1, une application de E dans F est définie par l'image de l'unique élément de E. Il y a $p = \operatorname{Card} F$ choix possibles et donc p^1 applications distinctes. Ainsi P_1 est vraie.
- Hérédité. Fixons $n \ge 1$ et supposons que P_n est vraie. Soit E un ensemble à n+1 éléments. On choisit et fixe $a \in E$; soit alors $E' = E \setminus \{a\}$ qui a bien n éléments. Le nombre d'applications de E'vers F est p^n , par l'hypothèse de récurrence (P_n) . Pour chaque application $f: E' \to F$ on peut la prolonger en une application $f: E \to F$ en choisissant l'image de a. On a p choix pour l'image de a et donc $p^n \times p$ choix pour les applications de E vers F. Ainsi P_{n+1} est vérifiée.
- *Conclusion*. Par le principe de récurrence P_n est vraie, pour tout $n \ge 1$.

Proposition 8

Le nombre d'injections de E dans F est :

$$p \times (p-1) \times \cdots \times (p-(n-1)).$$

Démonstration

Supposons $E = \{a_1, a_2, \dots, a_n\}$; pour l'image de a_1 nous avons p choix. Une fois ce choix fait, pour l'image de a_2 il reste p-1 choix (car a_2 ne doit pas avoir la même image que a_1). Pour l'image de a_3 il y a p-2 possibilités. Ainsi de suite : pour l'image de a_k il y p-(k-1) choix... Il y a au final $p \times (p-1) \times \cdots \times (p-(n-1))$ applications injectives.

Notation *factorielle* : $n! = 1 \times 2 \times 3 \times \cdots \times n$. Avec 1! = 1 et par convention 0! = 1.

Proposition 9

Le nombre de bijections d'un ensemble E de cardinal n dans lui-même est :

Exemple 11

Parmi les 3125 applications de {1,2,3,4,5} dans lui-même il y en a 5! = 120 qui sont bijectives.

Démonstration

Nous allons le prouver par récurrence sur n. Soit (P_n) l'assertion suivante : le nombre de bijections d'un ensemble à n éléments dans un ensemble à n éléments est n!

- $-P_1$ est vraie. Il n'y a qu'une bijection d'un ensemble à 1 élément dans un ensemble à 1 élément.
- Fixons $n \ge 1$ et supposons que P_n est vraie. Soit E un ensemble à n+1 éléments. On fixe $a \in E$. Pour chaque $b \in E$ il y a -par l'hypothèse de récurrence- exactement n! applications bijectives de $E \setminus \{a\} \to E \setminus \{b\}$. Chaque application se prolonge en une bijection de $E \to F$ en posant $a \mapsto b$. Comme il y a n+1 choix de $b \in E$ alors nous obtenons $n! \times (n+1)$ bijections de E dans lui-même. Ainsi P_{n+1} est vraie.
- Par le principe de récurrence le nombre de bijections d'un ensemble à n éléments est n!

On aurait aussi pu directement utiliser la proposition 8 avec n = p (sachant qu'alors les injections sont aussi des bijections).

4.4. Nombres de sous-ensembles

Soit E un ensemble fini de cardinal n.

Proposition 10

Il y a $2^{\operatorname{Card} E}$ sous-ensembles de E:

 $\operatorname{Card} \mathscr{P}(E) = 2^n$

Exemple 12

Si $E = \{1, 2, 3, 4, 5\}$ alors $\mathcal{P}(E)$ a $2^5 = 32$ parties. C'est un bon exercice de les énumérer :

- l'ensemble vide : ∅,
- -5 singletons: $\{1\}, \{2\}, \ldots,$
- 10 paires: $\{1,2\},\{1,3\},\ldots,\{2,3\},\ldots$
- $-10 \text{ triplets}: \{1, 2, 3\}, \ldots,$
- 5 ensembles à 4 éléments : $\{1, 2, 3, 4\}, \{1, 2, 3, 5\}, \dots$
- et E tout entier : $\{1, 2, 3, 4, 5\}$.

Démonstration

Encore une récurrence sur n = CardE.

- Si n = 1, $E = \{a\}$ est un singleton, les deux sous-ensembles sont : \emptyset et E.
- Supposons que la proposition soit vraie pour $n \ge 1$ fixé. Soit E un ensemble à n+1 éléments. On fixe $a \in E$. Il y a deux sortes de sous-ensembles de E:
 - les sous-ensembles A qui ne contiennent pas a: ce sont les sous-ensembles $A \subset E \setminus \{a\}$. Par l'hypothèse de récurrence il y en a 2^n .

- les sous-ensembles A qui contiennent a: ils sont de la forme $A = \{a\} \cup A' \text{ avec } A' \subset E \setminus \{a\}$. Par l'hypothèse de récurrence il y a 2^n sous-ensembles A' possibles et donc aussi 2^n sousensembles A.

Le bilan : $2^n + 2^n = 2^{n+1}$ parties $A \subseteq E$.

- Par le principe de récurrence, nous avons prouvé que si $\operatorname{Card} E = n$ alors $\operatorname{Card} \mathscr{P}(E) = 2^n$.

4.5. Coefficients du binôme de Newton

Définition 7

Le nombre de parties à k éléments d'un ensemble à n éléments est noté $\binom{n}{k}$ ou C_n^k .

Exemple 13

Les parties à deux éléments de $\{1,2,3\}$ sont $\{1,2\}$, $\{1,3\}$ et $\{2,3\}$ et donc $\binom{3}{2} = 3$. Nous avons déjà classé les parties de {1,2,3,4,5} par nombre d'éléments et donc

 $-\binom{5}{0} = 1$ (la seule partie n'ayant aucun élément est l'ensemble vide),

 $-\binom{5}{1} = 5$ (il y a 5 singletons),

= 1 (la seule partie ayant 5 éléments est l'ensemble tout entier).

Sans calculs on peut déjà remarquer les faits suivants :

Proposition 11

$$-\binom{n}{0} = 1, \binom{n}{1} = n, \binom{n}{n} = 1.$$

$$- \binom{n}{n-k} = \binom{n}{k}$$

Démonstration

- 1. Par exemple : $\binom{n}{1} = n$ car il y a n singletons.
- 2. Compter le nombre de parties $A \subset E$ ayant k éléments revient aussi à compter le nombre de parties de la forme CA (qui ont donc n-k éléments), ainsi $\binom{n}{n-k} = \binom{n}{k}$.
- 3. La formule $\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{k} + \dots + \binom{n}{n} = 2^n$ exprime que faire la somme du nombre de parties à k éléments, pour k = 0, ..., n, revient à compter toutes les parties de E.

Proposition 12

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1} \quad 0 < k < n$$

Démonstration

Soit *E* un ensemble à *n* éléments, $a \in E$ et $E' = E \setminus \{a\}$. Il y a deux sortes de parties $A \subset E$ ayant *k* éléments:

- celles qui ne contiennent pas a : ce sont donc des parties à k éléments dans E' qui a n-1éléments. Il y a en a donc $\binom{n-1}{k}$,
- celles qui contiennent a : elles sont de la forme $A = \{a\} \cup A'$ avec A' une partie à k-1 éléments dans E' qui a n-1 éléments. Il y en a $\binom{n-1}{k-1}$. Bilan : $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$.

Le triangle de Pascal est un algorithme pour calculer ces coefficients $\binom{n}{k}$. La ligne du haut correspond à $\binom{0}{0}$, la ligne suivante à $\binom{1}{0}$ et $\binom{1}{1}$, la ligne d'après à $\binom{2}{0}$, $\binom{2}{1}$ et $\binom{2}{2}$.

La dernière ligne du triangle de gauche aux coefficients $\binom{4}{0}$, $\binom{4}{1}$, ..., $\binom{4}{4}$.

Comment continuer ce triangle pour obtenir le triangle de droite? Chaque élément de la nouvelle ligne est obtenu en ajoutant les deux nombres qui lui sont au-dessus à droite et au-dessus à gauche.

Ce qui fait que cela fonctionne c'est bien sûr la proposition 12 qui se représente ainsi :

Une autre façon de calculer le coefficient du binôme de Newton repose sur la formule suivante :

Proposition 13

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Démonstration

Cela se fait par récurrence sur n. C'est clair pour n=1. Si c'est vrai au rang n-1 alors écrivons $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$ et utilisons l'hypothèse de récurrence pour $\binom{n-1}{k-1}$ et $\binom{n-1}{k}$. Ainsi

4.6. Formule du binôme de Newton

Théorème 1

Soient $a, b \in \mathbb{R}$ et n un entier positif alors :

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} \cdot b^k$$

Autrement dit:

$$(a+b)^{n} = \binom{n}{0} a^{n} \cdot b^{0} + \binom{n}{1} a^{n-1} \cdot b^{1} + \dots + \binom{n}{k} a^{n-k} \cdot b^{k} + \dots + \binom{n}{n} a^{0} \cdot b^{n}$$

Le théorème est aussi vrai si a et b sont des nombres complexes.

Exemple 14

- 1. Pour n = 2 on retrouve la formule archi-connue : $(a + b)^2 = a^2 + 2ab + b^2$.
- 2. Il est aussi bon de connaître $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$.
- 3. Si a = 1 et b = 1 on retrouve la formule : $\sum_{k=0}^{n} {n \choose k} = 2^{n}$.

Démonstration

Nous allons effectuer une récurrence sur n. Soit (P_n) l'assertion : $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} \cdot b^k$. — *Initialisation*. Pour n=1, $(a+b)^1 = \binom{1}{0}a^1b^0 + \binom{1}{1}a^0b^1$. Ainsi P_1 est vraie. - *Hérédité*. Fixons $n \ge 2$ et supposons que P_{n-1} est vraie.

$$(a+b)^{n} = (a+b) \cdot (a+b)^{n-1} = a \left(a^{n-1} + \dots + \binom{n-1}{k} a^{n-1-k} b^{k} + \dots + b^{n-1} \right)$$

$$+ b \left(a^{n-1} + \dots + \binom{n-1}{k-1} a^{n-1-(k-1)} b^{k-1} + \dots + b^{n-1} \right)$$

$$= \dots + \left(\binom{n-1}{k} + \binom{n-1}{k-1} \right) a^{n-k} b^{k} + \dots$$

$$= \dots + \binom{n}{k} a^{n-k} b^{k} + \dots = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} \cdot b^{k}$$

Ainsi P_{n+1} est vérifiée.

- Conclusion. Par le principe de récurrence P_n est vraie, pour tout $n \ge 1$.

Mini-exercices

- 1. Combien y a-t-il d'applications injectives d'un ensemble à n éléments dans un ensemble à n+1 éléments ?
- 2. Combien y a-t-il d'applications surjectives d'un ensemble à n+1 éléments dans un ensemble à n éléments?
- 3. Calculer le nombre de façons de choisir 5 cartes dans un jeux de 32 cartes.
- 4. Calculer le nombre de listes à k éléments dans un ensemble à n éléments (les listes sont ordonnées : par exemple $(1,2,3) \neq (1,3,2)$).
- 5. Développer $(a-b)^4$, $(a+b)^5$.
- 6. Que donne la formule du binôme pour a = -1, b = +1? En déduire que dans un ensemble à n éléments il y a autant de parties de cardinal pair que de cardinal impair.

5. Relation d'équivalence

5.1. Définition

Une *relation* sur un ensemble E, c'est la donnée pour tout couple $(x, y) \in E \times E$ de «Vrai» (s'ils sont en relation), ou de «Faux» sinon.

Nous schématisons une relation ainsi : les éléments de E sont des points, une flèche de x vers y signifie que x est en relation avec y, c'est-à-dire que l'on associe «Vrai» au couple (x, y).

Définition 8

Soit E un ensemble et \mathcal{R} une relation, c'est une relation d'équivalence si :

-
$$\forall x \in E, x \Re x,$$
 (réflexivité)

$$x \bullet$$

 $- \forall x, y \in E, x \mathcal{R} y \Longrightarrow y \mathcal{R} x, \quad (symétrie)$

$$x \bullet \bullet y$$

- $\forall x, y, z \in E, x \mathcal{R} y \text{ et } y \mathcal{R} z \Longrightarrow x \mathcal{R} z, \quad (transitivité)$

Exemple de relation d'équivalence :

5.2. Exemples

Exemple 15

Voici des exemples basiques.

- 1. La relation $\mathcal R$ «être parallèle» est une relation d'équivalence pour l'ensemble E des droites affines du plan.
 - réflexivité : une droite est parallèle à elle-même,
 - symétrie : si D est parallèle à D' alors D' est parallèle à D,
 - transitivité : si D parallèle à D' et D' parallèle à D'' alors D est parallèle à D''.
- 2. La relation «être du même âge» est une relation d'équivalence.
- 3. La relation «être perpendiculaire» n'est pas une relation d'équivalence (ni la réflexivité, ni la transitivité ne sont vérifiées).
- 4. La relation \leq (sur $E = \mathbb{R}$ par exemple) n'est pas une relation d'équivalence (la symétrie n'est pas vérifiée).

5.3. Classes d'équivalence

Définition 9

Soit \mathcal{R} une relation d'équivalence sur un ensemble E. Soit $x \in E$, la classe d'équivalence de x est

$$\operatorname{cl}(x) = \big\{ y \in E \mid y \mathcal{R} x \big\}$$

cl(x) est donc un sous-ensemble de E, on le note aussi \overline{x} . Si $y \in cl(x)$, on dit que y un *représentant* de cl(x).

Soit E un ensemble et $\mathcal R$ une relation d'équivalence.

Proposition 14

On a les propriétés suivantes :

- 1. $\operatorname{cl}(x) = \operatorname{cl}(y) \Longleftrightarrow x \mathcal{R} y$.
- 2. Pour tout $x, y \in E$, cl(x) = cl(y) ou $cl(x) \cap cl(y) = \emptyset$.
- 3. Soit C un ensemble de représentants de toutes les classes alors $\{\operatorname{cl}(x) \mid x \in C\}$ constitue une partition de E.

Une *partition* de E est un ensemble $\{E_i\}$ de parties de E tel que $E = \bigcup_i E_i$ et $E_i \cap E_j = \emptyset$ (si $i \neq j$).

Exemples:

- 1. Pour la relation «être du même âge», la classe d'équivalence d'une personne est l'ensemble des personnes ayant le même âge. Il y a donc une classe d'équivalence formée des personnes de 19 ans, une autre formée des personnes de 20 ans,... Les trois assertions de la proposition se lisent ainsi :
 - On est dans la même classe d'équivalence si et seulement si on est du même âge.
 - Deux personnes appartiennent soit à la même classe, soit à des classes disjointes.
 - Si on choisit une personne de chaque âge possible, cela forme un ensemble de représentants
 C. Maintenant une personne quelconque appartient à une et une seule classe d'un des représentants.

2. Pour la relation «être parallèle», la classe d'équivalence d'une droite est l'ensemble des droites parallèles. À chaque classe d'équivalence correspond une et une seule direction.

Voici un exemple que vous connaissez depuis longtemps:

Exemple 16

Définissons sur $E = \mathbb{Z} \times \mathbb{N}^*$ la relation \mathcal{R} par

$$(p,q)\Re(p',q') \iff pq' = p'q.$$

Tout d'abord $\mathcal R$ est une relation d'équivalence :

- \mathcal{R} est réflexive : pour tout (p,q) on a bien pq = pq et donc $(p,q)\mathcal{R}(p,q)$.
- \mathscr{R} est symétrique : pour tout (p,q), (p',q') tels que $(p,q)\mathscr{R}(p',q')$ on a donc pq'=p'q et donc p'q=pq' d'où $(p',q')\mathscr{R}(p,q)$.
- \mathscr{R} est transitive: pour tout (p,q), (p',q'), (p'',q'') tels que $(p,q)\mathscr{R}(p',q')$ et $(p',q')\mathscr{R}(p'',q'')$ on a donc pq'=p'q et p'q''=p''q'. Alors (pq')q''=(p'q)q''=q(p'q'')=q(p''q''). En divisant par $q'\neq 0$ on obtient pq''=qp'' et donc $(p,q)\mathscr{R}(p'',q'')$.

Nous allons noter $\frac{p}{q} = \operatorname{cl}(p,q)$ la classe d'équivalence d'un élément $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$. Par exemple, comme $(2,3)\mathcal{R}(4,6)$ (car $2 \times 6 = 3 \times 4$) alors les classes de (2,3) et (4,6) sont égales : avec notre notation cela s'écrit : $\frac{2}{3} = \frac{4}{6}$.

C'est ainsi que l'on définit les rationnels : l'ensemble $\mathbb Q$ des rationnels est l'ensemble de classes d'équivalence de la relation $\mathcal R$.

Les nombres $\frac{2}{3} = \frac{4}{6}$ sont bien égaux (ce sont les mêmes classes) mais les écritures sont différentes (les représentants sont distincts).

5.4. L'ensemble $\mathbb{Z}/n\mathbb{Z}$

Soit $n \ge 2$ un entier. Définissons la relation suivante sur l'ensemble $E = \mathbb{Z}$:

$$a \equiv b \pmod{n} \iff a - b \text{ est un multiple de } n$$

Exemples pour $n = 7 : 10 \equiv 3 \pmod{7}$, $19 \equiv 5 \pmod{7}$, $77 \equiv 0 \pmod{7}$, $-1 \equiv 20 \pmod{7}$.

Cette relation est bien une relation d'équivalence :

- Pour tout $a \in \mathbb{Z}$, $a a = 0 = 0 \cdot n$ est un multiple de n donc $a \equiv a \pmod{n}$.
- Pour $a, b \in \mathbb{Z}$ tels que $a \equiv b \pmod{n}$ alors a b est un multiple de n, autrement dit il existe $k \in \mathbb{Z}$ tel que a b = kn et donc b a = (-k)n et ainsi $b \equiv a \pmod{n}$.
- Si $a \equiv b \pmod{n}$ et $b \equiv c \pmod{n}$ alors il existe $k, k' \in \mathbb{Z}$ tels que a b = kn et b c = k'n. Alors a - c = (a - b) + (b - c) = (k + k')n et donc $a \equiv c \pmod{n}$.

La classe d'équivalence de $a \in \mathbb{Z}$ est notée \overline{a} . Par définition nous avons donc

$$\overline{a} = \operatorname{cl}(a) = \{b \in \mathbb{Z} \mid b \equiv a \pmod{n}\}.$$

Comme un tel b s'écrit b = a + kn pour un certain $k \in \mathbb{Z}$ alors c'est aussi exactement

$$\overline{a} = a + n\mathbb{Z} = \{a + kn \mid k \in \mathbb{Z}\}.$$

Comme $n \equiv 0 \pmod{n}$, $n + 1 \equiv 1 \pmod{n}$, ... alors

$$\overline{n} = \overline{0}, \quad \overline{n+1} = \overline{1}, \quad \overline{n+2} = \overline{2}, \dots$$

et donc l'ensemble des classes d'équivalence est l'ensemble

$$\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}\}$$

qui contient exactement n éléments.

Par exemple : pour $n=7, \, \overline{0} = \{\dots, -14, -7, 0, 7, 14, 21, \dots\} = 7\mathbb{Z} \,; \, \overline{1} = \{\dots, -13, -6, 1, 8, 15, \dots\} = 1+7\mathbb{Z} \,; \dots \,; \, \overline{6} = \{\dots, -8, -1, 6, 13, 20, \dots\} = 6+7\mathbb{Z}.$ Mais ensuite $\overline{7} = \{\dots -7, 0, 7, 14, 21, \dots\} = \overline{0} = 7\mathbb{Z}.$ Ainsi $\mathbb{Z}/7\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{6}\}$ possède 7 éléments.

Remarque

Dans beaucoup de situations de la vie courante, nous raisonnons avec les modulos. Par exemple pour l'heure : les minutes et les secondes sont modulo 60 (après 59 minutes on repart à zéro), les heures modulo 24 (ou modulo 12 sur le cadran à aiguilles). Les jours de la semaine sont modulo 7, les mois modulo 12,...

Mini-exercices

- 1. Montrer que la relation définie sur \mathbb{N} par $x\mathcal{R}y \Longleftrightarrow \frac{2x+y}{3} \in \mathbb{N}$ est une relation d'équivalence. Montrer qu'il y a 3 classes d'équivalence.
- 2. Dans \mathbb{R}^2 montrer que la relation définie par $(x,y)\mathcal{R}(x',y') \iff x+y'=x'+y$ est une relation d'équivalence. Montrer que deux points (x,y) et (x',y') sont dans une même classe si et seulement s'ils appartiennent à une même droite dont vous déterminerez la direction.
- 3. On définit une addition sur $\mathbb{Z}/n\mathbb{Z}$ par $\overline{p}+\overline{q}=\overline{p+q}$. Calculer la table d'addition dans $\mathbb{Z}/6\mathbb{Z}$ (c'est-à-dire toutes les sommes $\overline{p}+\overline{q}$ pour $\overline{p},\overline{q}\in\mathbb{Z}/6\mathbb{Z}$). Même chose avec la multiplication $\overline{p}\times\overline{q}=\overline{p\times q}$. Mêmes questions avec $\mathbb{Z}/5\mathbb{Z}$, puis $\mathbb{Z}/8\mathbb{Z}$.

Auteurs

Arnaud Bodin Benjamin Boutin Pascal Romon

3 Nombres complexes

- 1 Les nombres complexes
- 2 Racines carrées, équation du second degré
- 3 Argument et trigonométrie
- 4 Nombres complexes et géométrie

```
Vidéo ■ partie 1. Les nombres complexes, définitions et opérations
```

Vidéo ■ partie 2. Racines carrées, équation du second degré

Vidéo ■ partie 3. Argument et trigonométrie

Vidéo ■ partie 4. Nombres complexes et géométrie

Exercices ♦ Nombres complexes

Préambule

L'équation x + 5 = 2 a ses coefficients dans $\mathbb N$ mais pourtant sa solution x = -3 n'est pas un entier naturel. Il faut ici considérer l'ensemble plus grand $\mathbb Z$ des entiers relatifs.

$$\mathbb{N} \xrightarrow{x+5=2} \mathbb{Z} \xrightarrow{2x=-3} \mathbb{Q} \xrightarrow{x^2=\frac{1}{2}} \mathbb{R} \xrightarrow{x^2=-\sqrt{2}} \mathbb{C}$$

De même l'équation 2x=-3 a ses coefficients dans $\mathbb Z$ mais sa solution $x=-\frac{3}{2}$ est dans l'ensemble plus grand des rationnels $\mathbb Q$. Continuons ainsi, l'équation $x^2=\frac{1}{2}$ à coefficients dans $\mathbb Q$, a ses solutions $x_1=+1/\sqrt{2}$ et $x_2=-1/\sqrt{2}$ dans l'ensemble des réels $\mathbb R$. Ensuite l'équation $x^2=-\sqrt{2}$ à ses coefficients dans $\mathbb R$ et ses solutions $x_1=+\sqrt{2}$ i et $x_2=-\sqrt{2}$ i dans l'ensemble des nombres complexes $\mathbb C$. Ce processus est-il sans fin? Non! Les nombres complexes sont en quelque sorte le bout de la chaîne car nous avons le théorème de d'Alembert-Gauss suivant : « Pour n'importe quelle équation polynomiale $a_nx^n+a_{n-1}x^{n-1}+\cdots+a_2x^2+a_1x+a_0=0$ où les coefficients a_i sont des complexes (ou bien des réels), alors les solutions x_1,\ldots,x_n sont dans l'ensemble des nombres complexes ».

Outre la résolution d'équations, les nombres complexes s'appliquent à la trigonométrie, à la géométrie (comme nous le verrons dans ce chapitre) mais aussi à l'électronique, à la mécanique quantique, etc.

1. Les nombres complexes

1.1. Définition

Définition 10

Un *nombre complexe* est un couple $(a,b) \in \mathbb{R}^2$ que l'on notera a + ib

Cela revient à identifier 1 avec le vecteur (1,0) de \mathbb{R}^2 , et i avec le vecteur (0,1). On note \mathbb{C} l'ensemble des nombres complexes. Si b=0, alors z=a est situé sur l'axe des abscisses, que l'on identifie à \mathbb{R} . Dans ce cas on dira que z est $r\acute{e}el$, et \mathbb{R} apparaît comme un sous-ensemble de \mathbb{C} , appelé axe $r\acute{e}el$. Si $b\neq 0$, z est dit axe axe

1.2. Opérations

Si z = a + ib et z' = a' + ib' sont deux nombres complexes, alors on définit les opérations suivantes :

- **addition**: (a+ib)+(a'+ib')=(a+a')+i(b+b')

- *multiplication* : $(a+ib) \times (a'+ib') = (aa'-bb')+i(ab'+ba')$. C'est la multiplication usuelle avec la convention suivante :

1.3. Partie réelle et imaginaire

Soit z = a + ib un nombre complexe, sa *partie réelle* est le réel a et on la note Re(z); sa *partie imaginaire* est le réel b et on la note Im(z).

Par identification de \mathbb{C} à \mathbb{R}^2 , l'écriture z = Re(z) + i Im(z) est unique :

$$z = z'$$
 \iff
$$\begin{cases} \operatorname{Re}(z) = \operatorname{Re}(z') \\ \operatorname{et} \\ \operatorname{Im}(z) = \operatorname{Im}(z') \end{cases}$$

En particulier un nombre complexe est réel si et seulement si sa partie imaginaire est nulle. Un nombre complexe est nul si et et seulement si sa partie réelle et sa partie imaginaire sont nuls.

1.4. Calculs

Quelques définitions et calculs sur les nombres complexes.

- L'opposé de z = a + ib est -z = (-a) + i(-b) = -a ib.
- La *multiplication par un scalaire* $\lambda \in \mathbb{R} : \lambda \cdot z = (\lambda a) + i(\lambda b)$.
- L'inverse: si z≠0, il existe un unique z' ∈ C tel que zz' = 1 (où 1 = 1+i×0).
 Pour la preuve et le calcul on écrit z = a + ib puis on cherche z' = a' + ib' tel que zz' = 1. Autrement dit (a + ib)(a' + ib') = 1. En développant et identifiant les parties réelles et imaginaires on obtient les équations

$$\begin{cases} aa' - bb' = 1 & (L_1) \\ ab' + ba' = 0 & (L_2) \end{cases}$$

En écrivant $aL_1 + bL_2$ (on multiplie la ligne (L_1) par a, la ligne (L_2) par b et on additionne) et $-bL_1 + aL_2$ on en déduit

$$\begin{cases} a'(a^2 + b^2) = a \\ b'(a^2 + b^2) = -b \end{cases} \quad \text{donc} \quad \begin{cases} a' = \frac{a}{a^2 + b^2} \\ b' = -\frac{b}{a^2 + b^2} \end{cases}$$

L'inverse de z est donc

$$z' = \frac{1}{z} = \frac{a}{a^2 + b^2} + i\frac{-b}{a^2 + b^2} = \frac{a - ib}{a^2 + b^2}.$$

- La *division* : $\frac{z}{z'}$ est le nombre complexe $z \times \frac{1}{z'}$.
- Propriété d'intégrité : si zz' = 0 alors z = 0 ou z' = 0.
- Puissances : $z^2 = z \times z$, $z^n = z \times \cdots \times z$ (n fois, $n \in \mathbb{N}$). Par convention $z^0 = 1$ et $z^{-n} = \left(\frac{1}{z}\right)^n = \frac{1}{z^n}$.

Proposition 15

Pour tout $z \in \mathbb{C}$ différent de 1

$$1+z+z^2+\cdots+z^n=\frac{1-z^{n+1}}{1-z}.$$

La preuve est simple : notons $S=1+z+z^2+\cdots+z^n$, alors en développant $S\cdot(1-z)$ presque tous les termes se télescopent et l'on trouve $S\cdot(1-z)=1-z^{n+1}$.

Remarque

Il n'y pas d'ordre naturel sur \mathbb{C} , il ne faut donc jamais écrire $z \ge 0$ ou $z \le z'$.

1.5. Conjugué, module

Le *conjugué* de z = a + ib est $\bar{z} = a - ib$, autrement dit $\text{Re}(\bar{z}) = \text{Re}(z)$ et $\text{Im}(\bar{z}) = -\text{Im}(z)$. Le point \bar{z} est le symétrique du point z par rapport à l'axe réel.

Le *module* de z=a+ib est le réel positif $|z|=\sqrt{a^2+b^2}$. Comme $z\times \bar{z}=(a+ib)(a-ib)=a^2+b^2$ alors le module vaut aussi $|z|=\sqrt{z\bar{z}}$.

Quelques formules:

$$-\overline{z+z'}=\bar{z}+\overline{z'}, \ \overline{\bar{z}}=z, \ \overline{zz'}=\bar{z}\overline{z'}$$

$$-z=\bar{z}\Longleftrightarrow z\in\mathbb{R}$$

$$-|z|^2 = z \times \bar{z}, |\bar{z}| = |z|, |zz'| = |z||z'|$$

$$- |z| = 0 \iff z = 0$$

- L'inégalité triangulaire : $|z + z'| \le |z| + |z'|$

Exemple 17

Dans un parallélogramme, la somme des carrés des diagonales égale la somme des carrés des côtés.

Si les longueurs des côtés sont notées L et ℓ et les longueurs des diagonales sont D et d alors il s'agit de montrer l'égalité

$$D^2 + d^2 = 2\ell^2 + 2L^2.$$

Démonstration

Cela devient simple si l'on considère que notre parallélogramme a pour sommets 0, z, z' et le dernier sommet est donc z+z'. La longueur du grand côté est ici |z|, celle du petit côté est |z'|. La longueur de la grande diagonale est |z+z'|. Enfin il faut se convaincre que la longueur de la petite diagonale est |z-z'|.

$$D^{2} + d^{2} = |z + z'|^{2} + |z - z'|^{2} = (z + z')\overline{(z + z')} + (z - z')\overline{(z - z')}$$

$$= z\bar{z} + z\bar{z'} + z'\bar{z} + z'\bar{z'} + z\bar{z} - z\bar{z'} - z'\bar{z} + z'\bar{z'}$$

$$= 2z\bar{z} + 2z'\bar{z'} = 2|z|^{2} + 2|z'|^{2}$$

$$= 2\ell^{2} + 2L^{2}$$

Mini-exercices

- 1. Calculer $1 2i + \frac{i}{1 2i}$.
- 2. Écrire sous la forme a + ib les nombres complexes $(1+i)^2$, $(1+i)^3$, $(1+i)^4$, $(1+i)^8$.
- 3. En déduire $1 + (1+i) + (1+i)^2 + \dots + (1+i)^7$.
- 4. Soit $z \in \mathbb{C}$ tel que |1+iz| = |1-iz|, montrer que $z \in \mathbb{R}$.
- 5. Montrer que si $|\text{Re }z| \le |\text{Re }z'|$ et $|\text{Im }z| \le |\text{Im }z'|$ alors $|z| \le |z'|$, mais que la réciproque est fausse.
- 6. Montrer que $1/\bar{z} = z/|z|^2$ (pour $z \neq 0$).

2. Racines carrées, équation du second degré

2.1. Racines carrées d'un nombre complexe

Pour $z \in \mathbb{C}$, une *racine carrée* est un nombre complexe ω tel que $\omega^2 = z$.

Par exemple si $x \in \mathbb{R}_+$, on connaît deux racines carrées : \sqrt{x} , $-\sqrt{x}$. Autre exemple : les racines carrées de -1 sont i et -i.

Proposition 16

Soit z un nombre complexe, alors z admet deux racines carrées, ω et $-\omega$.

Attention! Contrairement au cas réel, il n'y a pas de façon privilégiée de choisir une racine plutôt que l'autre, donc pas de fonction racine. On ne dira donc jamais « soit ω la racine de z ».

Si $z \neq 0$ ces deux racines carrées sont distinctes. Si z = 0 alors $\omega = 0$ est une racine double. Pour z = a + ib nous allons calculer ω et $-\omega$ en fonction de a et b.

Démonstration

Nous écrivons $\omega = x + iy$, nous cherchons x, y tels que $\omega^2 = z$.

$$\omega^2 = z \iff (x + iy)^2 = a + ib$$

$$\iff \begin{cases} x^2 - y^2 = a \\ 2xy = b \end{cases}$$
 en identifiant parties réelles et parties imaginaires.

Petite astuce ici : nous rajoutons l'équation $|\omega|^2 = |z|$ (qui se déduit bien sûr de $\omega^2 = z$) qui s'écrit aussi $x^2 + y^2 = \sqrt{a^2 + b^2}$. Nous obtenons des systèmes équivalents aux précédents :

$$\begin{cases} x^2 - y^2 = a \\ 2xy = b \\ x^2 + y^2 = \sqrt{a^2 + b^2} \end{cases} \iff \begin{cases} 2x^2 = \sqrt{a^2 + b^2} + a \\ 2y^2 = \sqrt{a^2 + b^2} - a \\ 2xy = b \end{cases} \iff \begin{cases} x = \pm \frac{1}{\sqrt{2}} \sqrt{\sqrt{a^2 + b^2} + a} \\ y = \pm \frac{1}{\sqrt{2}} \sqrt{\sqrt{a^2 + b^2} - a} \\ 2xy = b \end{cases}$$

Discutons suivant le signe du réel b. Si $b \ge 0$, x et y sont de même signe ou nuls (car $2xy = b \ge 0$) donc

$$\omega = \pm \frac{1}{\sqrt{2}} \left(\sqrt{\sqrt{a^2 + b^2} + a} + i \sqrt{\sqrt{a^2 + b^2} - a} \right),$$

et si $b \leq 0$

$$\omega = \pm \frac{1}{\sqrt{2}} \left(\sqrt{\sqrt{a^2 + b^2} + a} - i \sqrt{\sqrt{a^2 + b^2} - a} \right).$$

En particulier si b=0 le résultat dépend du signe de a, si $a \ge 0$, $\sqrt{a^2} = a$ et par conséquent $\omega = \pm \sqrt{a}$, tandis que si a < 0, $\sqrt{a^2} = -a$ et donc $\omega = \pm i\sqrt{-a} = \pm i\sqrt{|a|}$.

Il n'est pas nécessaire d'apprendre ces formules mais il est indispensable de savoir refaire les calculs.

Exemple 18

Les racines carrées de i sont $+\frac{\sqrt{2}}{2}(1+i)$ et $-\frac{\sqrt{2}}{2}(1+i)$. En effet :

$$\omega^{2} = i \iff (x + iy)^{2} = i$$

$$\iff \begin{cases} x^{2} - y^{2} = 0 \\ 2xy = 1 \end{cases}$$

Rajoutons la conditions $|\omega|^2 = |i|$ pour obtenir le système équivalent au précédent :

$$\begin{cases} x^{2} - y^{2} = 0 \\ 2xy = 1 \\ x^{2} + y^{2} = 1 \end{cases} \iff \begin{cases} 2x^{2} = 1 \\ 2y^{2} = 1 \\ 2xy = 1 \end{cases} \iff \begin{cases} x = \pm \frac{1}{\sqrt{2}} \\ y = \pm \frac{1}{\sqrt{2}} \\ 2xy = 1 \end{cases}$$

Les réels x et y sont donc de même signe, nous trouvons bien deux solutions :

$$x + iy = \frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}$$
 ou $x + iy = -\frac{1}{\sqrt{2}} - i\frac{1}{\sqrt{2}}$

2.2. Équation du second degré

Proposition 17

L'équation du second degré $az^2 + bz + c = 0$, où $a, b, c \in \mathbb{C}$ et $a \neq 0$, possède deux solutions $z_1, z_2 \in \mathbb{C}$ éventuellement confondues.

Soit $\Delta = b^2 - 4ac$ le discriminant et $\delta \in \mathbb{C}$ une racine carrée de Δ . Alors les solutions sont

$$z_1 = \frac{-b+\delta}{2a}$$
 et $z_2 = \frac{-b-\delta}{2a}$.

Et si $\Delta = 0$ alors la solution $z = z_1 = z_2 = -b/2a$ est unique (elle est dite double). Si on s'autorisait à écrire $\delta = \sqrt{\Delta}$ pour le nombre complexe Δ , on obtiendrait la même formule que celle que vous connaissez lorsque a, b, c sont réels.

Exemple 19

-
$$z^2 + z + 1 = 0$$
, $\Delta = -3$, $\delta = i\sqrt{3}$, les solutions sont $z = \frac{-1 \pm i\sqrt{3}}{2}$.

-
$$z^2 + z + 1 = 0$$
, $\Delta = -3$, $\delta = i\sqrt{3}$, les solutions sont $z = \frac{-1 \pm i\sqrt{3}}{2}$.
- $z^2 + z + \frac{1-i}{4} = 0$, $\Delta = i$, $\delta = \frac{\sqrt{2}}{2}(1+i)$, les solutions sont $z = \frac{-1 \pm \frac{\sqrt{2}}{2}(1+i)}{2} = -\frac{1}{2} \pm \frac{\sqrt{2}}{4}(1+i)$.

On retrouve aussi le résultat bien connu pour le cas des équations à coefficients réels :

Corollaire 1

Si les coefficients a, b, c sont réels alors $\Delta \in \mathbb{R}$ et les solutions sont de trois types :

- si $\Delta = 0$, la racine double est réelle et vaut $-\frac{b}{2a}$,
- si $\Delta > 0$, on a deux solutions réelles $\frac{-b \pm \sqrt{\Delta}}{2\pi}$,
- si Δ < 0, on a deux solutions complexes, mais non réelles, $\frac{-b \pm i\sqrt{-\Delta}}{2\pi}$

Démonstration

On écrit la factorisation

$$az^{2} + bz + c = a\left(z^{2} + \frac{b}{a}z + \frac{c}{a}\right) = a\left(\left(z + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}} + \frac{c}{a}\right)$$

$$= a\left(\left(z + \frac{b}{2a}\right)^{2} - \frac{\Delta}{4a^{2}}\right) = a\left(\left(z + \frac{b}{2a}\right)^{2} - \frac{\delta^{2}}{4a^{2}}\right)$$

$$= a\left(\left(z + \frac{b}{2a}\right) - \frac{\delta}{2a}\right)\left(\left(z + \frac{b}{2a}\right) + \frac{\delta}{2a}\right)$$

$$= a\left(z - \frac{-b + \delta}{2a}\right)\left(z - \frac{-b - \delta}{2a}\right) = a(z - z_{1})(z - z_{2})$$

Donc le binôme s'annule si et seulement si $z = z_1$ ou $z = z_2$.

2.3. Théorème fondamental de l'algèbre

Théorème 2. d'Alembert-Gauss

Soit $P(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$ un polynôme à coefficients complexes et de degré n. Alors l'équation P(z) = 0 admet exactement n solutions complexes comptées avec leur multiplicité.

En d'autres termes il existe des nombres complexes $z_1,...,z_n$ (dont certains sont éventuellement confondus) tels que

$$P(z) = a_n (z - z_1)(z - z_2) \cdots (z - z_n).$$

Nous admettons ce théorème.

Mini-exercices

- 1. Calculer les racines carrées de -i, 3-4i.
- 2. Résoudre les équations : $z^2 + z 1 = 0$, $2z^2 + (-10 10i)z + 24 10i = 0$.
- 3. Résoudre l'équation $z^2 + (i \sqrt{2})z i\sqrt{2}$, puis l'équation $Z^4 + (i \sqrt{2})Z^2 i\sqrt{2}$.
- 4. Montrer que si $P(z) = z^2 + bz + c$ possède pour racines $z_1, z_2 \in \mathbb{C}$ alors $z_1 + z_2 = -b$ et $z_1 \cdot z_2 = c$.
- 5. Trouver les paires de nombres dont la somme vaut i et le produit 1.
- 6. Soit $P(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_0$ avec $a_i \in \mathbb{R}$ pour tout i. Montrer que si z est racine de P alors \bar{z} aussi.

3. Argument et trigonométrie

3.1. Argument

Si z = x + iy est de module 1, alors $x^2 + y^2 = |z|^2 = 1$. Par conséquent le point (x, y) est sur le cercle unité du plan, et son abscisse x est notée $\cos \theta$, son ordonnée y est $\sin \theta$, où θ est (une mesure de) l'angle entre l'axe réel et z. Plus généralement, si $z \neq 0$, z/|z| est de module 1, et cela amène à :

Définition 11

Pour tout $z \in \mathbb{C}^* = \mathbb{C} - \{0\}$, un nombre $\theta \in \mathbb{R}$ tel que $z = |z|(\cos \theta + i \sin \theta)$ est appelé un *argument* de z et noté $\theta = \arg(z)$.

Cet argument est défini modulo 2π . On peut imposer à cet argument d'être unique si on rajoute la condition $\theta \in]-\pi, +\pi]$.

Remarque

$$\theta \equiv \theta' \pmod{2\pi} \iff \exists k \in \mathbb{Z}, \theta = \theta' + 2k\pi \iff \begin{cases} \cos \theta = \cos \theta' \\ \sin \theta = \sin \theta' \end{cases}$$

Proposition 18

L'argument satisfait les propriétés suivantes :

- $-\arg(zz') \equiv \arg(z) + \arg(z') \pmod{2\pi}$
- $arg(z^n) \equiv n arg(z) \pmod{2\pi}$
- $arg(1/z) \equiv -arg(z) \pmod{2\pi}$
- $arg(\bar{z}) \equiv -arg z \pmod{2\pi}$

Démonstration

$$zz' = |z|(\cos\theta + i\sin\theta)|z'|(\cos\theta' + i\sin\theta')$$

$$= |zz'|(\cos\theta\cos\theta' - \sin\theta\sin\theta' + i(\cos\theta\sin\theta' + \sin\theta\cos\theta'))$$

$$= |zz'|(\cos(\theta + \theta') + i\sin(\theta + \theta'))$$

donc $\arg(zz') \equiv \arg(z) + \arg(z') \pmod{2\pi}$. On en déduit les deux autres propriétés, dont la deuxième par récurrence.

3.2. Formule de Moivre, notation exponentielle

La formule de Moivre est :

$$\cos\theta + i\sin\theta)^n = \cos(n\theta) + i\sin(n\theta)$$

Démonstration

Par récurrence, on montre que

$$(\cos\theta + i\sin\theta)^n = (\cos\theta + i\sin\theta)^{n-1} \times (\cos\theta + i\sin\theta)$$

$$= (\cos((n-1)\theta) + i\sin((n-1)\theta)) \times (\cos\theta + i\sin\theta)$$

$$= (\cos((n-1)\theta)\cos\theta - \sin((n-1)\theta)\sin\theta)$$

$$+ i(\cos((n-1)\theta)\sin\theta + \sin((n-1)\theta)\cos\theta)$$

$$= \cos n\theta + i\sin n\theta$$

Nous définissons la *notation exponentielle* par

$$e^{\mathrm{i}\theta} = \cos\theta + \mathrm{i}\sin\theta$$

et donc tout nombre complexe s'écrit

$$z = \rho e^{\mathrm{i}\theta}$$

où $\rho = |z|$ est le module et $\theta = \arg(z)$ est un argument.

Avec la notation exponentielle, on peut écrire pour $z = \rho e^{i\theta}$ et $z' = \rho' e^{i\theta'}$

$$\begin{cases} zz' = \rho \rho' e^{\mathrm{i}\theta} e^{\mathrm{i}\theta'} = \rho \rho' e^{\mathrm{i}(\theta + \theta')} \\ z^n = \left(\rho e^{\mathrm{i}\theta}\right)^n = \rho^n \left(e^{\mathrm{i}\theta}\right)^n = \rho^n e^{\mathrm{i}n\theta} \\ 1/z = 1/\left(\rho e^{\mathrm{i}\theta}\right) = \frac{1}{\rho} e^{-\mathrm{i}\theta} \\ \bar{z} = \rho e^{-\mathrm{i}\theta} \end{cases}$$

La formule de Moivre se réduit à l'égalité : $(e^{i\theta})^n = e^{in\theta}$.

Et nous avons aussi : $\rho e^{i\theta} = \rho' e^{i\theta'}$ (avec $\rho, \rho' > 0$) si et seulement si $\rho = \rho'$ et $\theta \equiv \theta'$ (mod 2π).

3.3. Racines n-ième

Définition 12

Pour $z \in \mathbb{C}$ et $n \in \mathbb{N}$, une racine n-ième est un nombre $\omega \in \mathbb{C}$ tel que $\omega^n = z$.

Proposition 19

Il y a *n* racines *n*-ièmes $\omega_0, \omega_1, \dots, \omega_{n-1}$ de $z = \rho e^{i\theta}$, ce sont :

$$\omega_k = \rho^{1/n} e^{\frac{i\theta + 2ik\pi}{n}}, \quad k = 0, 1, \dots, n-1$$

Démonstration

Écrivons $z=\rho e^{\mathrm{i}\theta}$ et cherchons ω sous la forme $\omega=re^{\mathrm{i}t}$ tel que $z=\omega^n$. Nous obtenons donc $\rho e^{\mathrm{i}\theta}=\omega^n=\left(re^{\mathrm{i}t}\right)^n=r^ne^{\mathrm{i}nt}$. Prenons tout d'abord le module : $\rho=\left|\rho e^{\mathrm{i}\theta}\right|=\left|r^ne^{\mathrm{i}nt}\right|=r^n$ et donc $r=\rho^{1/n}$ (il s'agit ici de nombres réels). Pour les arguments nous avons $e^{\mathrm{i}nt}=e^{\mathrm{i}\theta}$ et donc $nt\equiv\theta\pmod{2\pi}$ (n'oubliez surtout pas le modulo 2π !). Ainsi on résout $nt=\theta+2k\pi$ (pour $k\in\mathbb{Z}$) et donc $t=\frac{\theta}{n}+\frac{2k\pi}{n}$. Les solutions de l'équation $\omega^n=z$ sont donc les $\omega_k=\rho^{1/n}e^{\frac{\mathrm{i}\theta+2\mathrm{i}k\pi}{n}}$. Mais en fait il n'y a que n solutions distinctes car $\omega_n=\omega_0,\,\omega_{n+1}=\omega_1,\,\ldots$ Ainsi les n solutions sont $\omega_0,\omega_1,\ldots,\omega_{n-1}$.

Par exemple pour z=1, on obtient les n racines n-ièmes de l'unité $e^{2ik\pi/n}$, $k=0,\ldots,n-1$ qui forment un groupe multiplicatif.

Racine 3-ième de l'unité (z = 1, n = 3)

Racine 3-ième de -1 (z = -1, n = 3)

Les racines 5-ième de l'unité (z = 1, n = 5) forment un pentagone régulier :

3.4. Applications à la trigonométrie

Voici les *formules d'Euler*, pour $\theta \in \mathbb{R}$:

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2} \quad , \quad \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

Ces formules s'obtiennent facilement en utilisant la définition de la notation exponentielle. Nous les appliquons dans la suite à deux problèmes : le développement et la linéarisation.

Développement. On exprime $\sin n\theta$ ou $\cos n\theta$ en fonction des puissances de $\cos \theta$ et $\sin \theta$.

 $M\acute{e}thode$: on utilise la formule de Moivre pour écrire $\cos(n\theta) + i\sin(n\theta) = (\cos\theta + i\sin\theta)^n$ que l'on développe avec la formule du binôme de Newton.

Exemple 20

$$\cos 3\theta + i \sin 3\theta = (\cos \theta + i \sin \theta)^{3}$$

$$= \cos^{3} \theta + 3i \cos^{2} \theta \sin \theta - 3 \cos \theta \sin^{2} \theta - i \sin^{3} \theta$$

$$= (\cos^{3} \theta - 3 \cos \theta \sin^{2} \theta) + i (3 \cos^{2} \theta \sin \theta - \sin^{3} \theta)$$

En identifiant les parties réelles et imaginaires, on déduit que

$$\cos 3\theta = \cos^3 \theta - 3\cos\theta \sin^2 \theta$$
 et $\sin 3\theta = 3\cos^2 \theta \sin\theta - \sin^3 \theta$.

Linéarisation. On exprime $\cos^n \theta$ ou $\sin^n \theta$ en fonction des $\cos k\theta$ et $\sin k\theta$ pour k allant de 0 à n.

 $M\acute{e}thode:$ avec la formule d'Euler on écrit $\sin^n\theta=\left(\frac{e^{i\theta}-e^{-i\theta}}{2i}\right)^n.$ On développe à l'aide du binôme de Newton puis on regroupe les termes par paires conjuguées.

Exemple 21

$$\begin{split} \sin^3\theta &= \left(\frac{e^{\mathrm{i}\theta} - e^{-\mathrm{i}\theta}}{2\mathrm{i}}\right)^3 \\ &= \frac{1}{-8\mathrm{i}} \left((e^{\mathrm{i}\theta})^3 - 3(e^{\mathrm{i}\theta})^2 e^{-\mathrm{i}\theta} + 3e^{\mathrm{i}\theta} (e^{-\mathrm{i}\theta})^2 - (e^{-\mathrm{i}\theta})^3 \right) \\ &= \frac{1}{-8\mathrm{i}} \left(e^{3\mathrm{i}\theta} - 3e^{\mathrm{i}\theta} + 3e^{-\mathrm{i}\theta} - e^{-3\mathrm{i}\theta} \right) \\ &= -\frac{1}{4} \left(\frac{e^{3\mathrm{i}\theta} - e^{-3\mathrm{i}\theta}}{2\mathrm{i}} - 3\frac{e^{\mathrm{i}\theta} - e^{-\mathrm{i}\theta}}{2\mathrm{i}} \right) \\ &= -\frac{\sin 3\theta}{4} + \frac{3\sin \theta}{4} \end{split}$$

3.5. Mini-exercices

Mini-exercices

- 1. Mettre les nombres suivants sont la forme module-argument (avec la notation exponentielle) : 1, i, -1, -i, 3i, 1+i, $\sqrt{3}-i$, $\sqrt{3}-i$, $\sqrt{3}-i$, $(\sqrt{3}-i)^{20xx}$ où 20xx est l'année en cours.
- 2. Calculer les racines 5-ième de i.
- 3. Calculer les racines carrées de $\frac{\sqrt{3}}{2} + \frac{i}{2}$ de deux façons différentes. En déduire les valeurs de $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$.
- 4. Donner sans calcul la valeur de $\omega_0 + \omega_1 + \cdots + \omega_{n-1}$, où les ω_i sont les racines n-ième de 1.
- 5. Développer $\cos(4\theta)$; linéariser $\cos^4\theta$; calculer une primitive de $\theta \mapsto \cos^4\theta$.

4. Nombres complexes et géométrie

On associe bijectivement à tout point M du plan affine \mathbb{R}^2 de coordonnées (x, y), le nombre complexe z = x + iy appelé son *affixe*.

4.1. Équation complexe d'une droite

Soit

$$ax + by = c$$

l'équation réelle d'une droite $\mathcal{D}: a,b,c$ sont des nombres réels (a et b n'étant pas tous les deux nuls) d'inconnues $(x,y) \in \mathbb{R}^2$.

Écrivons $z = x + iy \in \mathbb{C}$, alors

$$x = \frac{z + \overline{z}}{2}$$
, $y = \frac{z - \overline{z}}{2i}$,

donc \mathscr{D} a aussi pour équation $a(z+\bar{z})-\mathrm{i}b(z-\bar{z})=2c$ ou encore $(a-\mathrm{i}b)z+(a+\mathrm{i}b)\bar{z}=2c$. Posons $\omega=a+\mathrm{i}b\in\mathbb{C}^*$ et $k=2c\in\mathbb{R}$ alors l'équation complexe d'une droite est :

$$\bar{\omega}z + \omega\bar{z} = k$$

4.2. Équation complexe d'un cercle

Soit $\mathscr{C}(\Omega,r)$ le cercle de centre Ω et de rayon r. C'est l'ensemble des points M tel que $\mathrm{dist}(\Omega,M)=r$. Si l'on note ω l'affixe de Ω et z l'affixe de M. Nous obtenons :

$$\operatorname{dist}(\Omega, M) = r \iff |z - \omega| = r \iff |z - \omega|^2 = r^2 \iff (z - \omega)\overline{(z - \omega)} = r^2$$

et en développant nous trouvons que l'équation complexe du cercle centré en un point d'affixe ω et de rayon r est :

$$z\bar{z} - \bar{\omega}z - \omega\bar{z} = r^2 - |\omega|^2$$

où $\omega \in \mathbb{C}$ et $r \in \mathbb{R}$.

4.3. Équation $\frac{|z-a|}{|z-b|} = k$

Proposition 20

Soit A,B deux points du plan et $k \in \mathbb{R}_+$. L'ensemble des points M tel que $\frac{MA}{MB} = k$ est

- une droite qui est la médiatrice de [AB], si k = 1,
- un cercle, sinon.

Exemple 22

Prenons A le point d'affixe +1,B le point d'affixe -1. Voici les figures pour plusieurs valeurs de k.

Par exemple pour k = 2 le point M dessiné vérifie bien MA = 2MB.

Démonstration

Si les affixes de A, B, M sont respectivement a, b, z, cela revient à résoudre l'équation $\frac{|z-a|}{|z-b|} = k$.

$$\frac{|z-a|}{|z-b|} = k \iff |z-a|^2 = k^2|z-b|^2$$

$$\iff (z-a)\overline{(z-a)} = k^2(z-b)\overline{(z-b)}$$

$$\iff (1-k^2)z\overline{z} - z(\overline{a} - k^2\overline{b}) - \overline{z}(a-k^2b) + |a|^2 - k^2|b|^2 = 0$$

Donc si k=1, on pose $\omega=a-k^2b$ et l'équation obtenue $z\bar{\omega}+\bar{z}\omega=|a|^2-k^2|b|^2$ est bien celle d'une droite. Et bien sûr l'ensemble des points qui vérifient MA=MB est la médiatrice de [AB]. Si $k\neq 1$ on pose $\omega=\frac{a-k^2b}{1-k^2}$ alors l'équation obtenue est $z\bar{z}-z\bar{\omega}-\bar{z}\omega=\frac{-|a|^2+k^2|b|^2}{1-k^2}$. C'est l'équation d'un cercle de centre ω et de rayon r satisfaisant $r^2-|\omega|^2=\frac{-|a|^2+k^2|b|^2}{1-k^2}$, soit $r^2=\frac{|a-k^2b|^2}{(1-k^2)^2}+\frac{-|a|^2+k^2|b|^2}{1-k^2}$.

Ces calculs se refont au cas par cas, il n'est pas nécessaire d'apprendre les formules.

Mini-exercices

- 1. Calculer l'équation complexe de la droite passant par 1 et i.
- 2. Calculer l'équation complexe du cercle de centre 1+2i passant par i.
- 3. Calculer l'équation complexe des solutions de $\frac{|z-i|}{|z-1|} = 1$, puis dessiner les solutions.
- 4. Même question avec $\frac{|z-i|}{|z-1|} = 2$.

Auteurs

Arnaud Bodin Benjamin Boutin Pascal Romon

- 1 Division euclidienne et pgcd
- 2 Théorème de Bézout
- 3 Nombres premiers
- 4 Congruences

```
Vidéo ■ partie 1. Division euclidienne et pgcd
Vidéo ■ partie 2. Théorème de Bézout
Vidéo ■ partie 3. Nombres premiers
Vidéo ■ partie 4. Congruences
Exercices ◆ Arithmétique dans ℤ
```

Préambule

Une motivation : l'arithmétique est au cœur du cryptage des communication. Pour crypter un message on commence par le transformer en un –ou plusieurs– nombres. Le processus de codage et décodage fait appel à plusieurs notions de ce chapitre :

- On choisit deux *nombres premiers* p et q que l'on garde secrets et on pose $n = p \times q$. Le principe étant que même connaissant n il est très difficile de retrouver p et q (qui sont des nombres ayant des centaines de chiffres).
- La clé secrète et la clé publique se calculent à l'aide de l'algorithme d'Euclide et des coefficients de Bézout.
- Les calculs de cryptage se feront modulo n.
- Le décodage fonctionne grâce à une variante du *petit théorème de Fermat*.

1. Division euclidienne et pgcd

1.1. Divisibilité et division euclidienne

Définition 13

Soient $a, b \in \mathbb{Z}$. On dit que b divise a et on note b | a s'il existe $q \in \mathbb{Z}$ tel que

a = bq

.

Exemple 23

- 7|21; 6|48; a est pair si et seulement si 2|a.
- Pour tout a ∈ \mathbb{Z} on a a|0 et aussi 1|a.
- Si a | 1 alors a = +1 ou a = -1.
- $(a|b \text{ et } b|a) \Longrightarrow b = \pm a.$
- $(a|b \text{ et } b|c) \Longrightarrow a|c.$
- $(a|b \text{ et } a|c) \Longrightarrow a|b+c.$

Théorème 3. Division euclidienne

Soit $a \in \mathbb{Z}$ et $b \in \mathbb{N} \setminus \{0\}$. Il *existe* des entiers $q, r \in \mathbb{Z}$ tels que

$$a = bq + r$$
 et $0 \le r < b$

De plus q et r sont **uniques**.

Nous avons donc l'équivalence : r = 0 si et seulement si b divise a.

Exemple 24

Pour calculer q et r on pose la division «classique». Si a = 6789 et b = 34 alors

$$6789 = 34 \times 199 + 23$$

On a bien $0 \le 23 < 34$ (sinon c'est que l'on n'a pas été assez loin dans les calculs).

$\begin{array}{r} 6789 \\ \underline{34} \\ \underline{338} \\ \underline{306} \\ \underline{306} \\ \underline{306} \\ \underline{23} \end{array}$	34	dividende	diviseur
	199	reste	quotient

Démonstration

Existence. On peut supposer $a \ge 0$ pour simplifier. Soit $\mathcal{N} = \{n \in \mathbb{N} \mid bn \le a\}$. C'est un ensemble non vide car $n = 0 \in \mathcal{N}$. De plus pour $n \in \mathcal{N}$, on a $n \le a$. Il y a donc un nombre fini d'éléments dans \mathcal{N} , notons $q = \max \mathcal{N}$ le plus grand élément.

Alors $qb \le a$ car $q \in \mathcal{N}$, et (q+1)b > a car $q+1 \notin \mathcal{N}$ donc

$$qb \leq \alpha < (q+1)b = qb + b.$$

On définit alors r = a - qb, r vérifie alors $0 \le r = a - qb < b$.

Unicité. Supposons que q', r' soient deux entiers qui vérifient les conditions du théorème. Tout d'abord a = bq + r = bq' + r' et donc b(q - q') = r' - r. D'autre part $0 \le r' < b$ et $0 \le r < b$ donc -b < r' - r < b (notez au passage la manipulation des inégalités). Mais r' - r = b(q - q') donc on obtient -b < b(q - q') < b. On peut diviser par b > 0 pour avoir -1 < q - q' < 1. Comme q - q' est un entier, la seule possibilité est q - q' = 0 et donc q = q'. Repartant de r' - r = b(q - q') on obtient maintenant r = r'.

1.2. pgcd de deux entiers

Définition 14

Soient $a, b \in \mathbb{Z}$ deux entiers, non tous les deux nuls. Le plus grand entier qui divise à la fois a et b s'appelle le *plus grand diviseur commun* de a, b et se note pgcd(a, b).

Exemple 25

- pgcd(21,14) = 7, pgcd(12,32) = 4, pgcd(21,26) = 1.
- $\operatorname{pgcd}(a, ka) = a$, pour tout $k \in \mathbb{Z}$ et $a \ge 0$.
- Cas particuliers. Pour tout $a \ge 0$: pgcd(a, 0) = a et pgcd(a, 1) = 1.

1.3. Algorithme d'Euclide

Lemme 1

Soient $a, b \in \mathbb{N}^*$. Écrivons la division euclidienne a = bq + r. Alors

$$pgcd(a,b) = pgcd(b,r)$$

En fait on a même $\operatorname{pgcd}(a,b) = \operatorname{pgcd}(b,a-qb)$ pour tout $q \in \mathbb{Z}$. Mais pour optimiser l'algorithme d'Euclide on applique le lemme avec q le quotient.

Démonstration

Nous allons montrer que les diviseurs de a et de b sont exactement les mêmes que les diviseurs de b et r. Cela impliquera le résultat car les plus grands diviseurs seront bien sûr les mêmes.

- Soit d un diviseur de a et de b. Alors d divise b donc aussi bq, en plus d divise a donc d divise bq a = r.
- Soit d un diviseur de b et de r. Alors d divise aussi bq + r = a.

Algorithme d'Euclide.

On souhaite calculer le pgcd de $a, b \in \mathbb{N}^*$. On peut supposer $a \ge b$. On calcule des divisions euclidiennes successives. Le pgcd sera le dernier reste non nul.

- division de a par b, $a = bq_1 + r_1$. Par le lemme 1, $pgcd(a,b) = pgcd(b,r_1)$ et si $r_1 = 0$ alors pgcd(a,b) = b sinon on continue :
- $b = r_1q_2 + r_2$, $pgcd(a, b) = pgcd(b, r_1) = pgcd(r_1, r_2)$,
- $-r_1 = r_2q_3 + r_3$, $\operatorname{pgcd}(a, b) = \operatorname{pgcd}(r_2, r_3)$,
- ...
- $r_{k-2} = r_{k-1}q_k + r_k$, $pgcd(a,b) = pgcd(r_{k-1},r_k)$,
- $r_{k-1} = r_k q_k + 0$. $pgcd(a, b) = pgcd(r_k, 0) = r_k$.

Comme à chaque étape le reste est plus petit que le quotient on sait que $0 \le r_{i+1} < r_i$. Ainsi l'algorithme se termine car nous sommes sûr d'obtenir un reste nul, les restes formant une suite décroissante d'entiers positifs ou nuls : $b > r_1 > r_2 > ... > 0$

Exemple 26

Calculons le pgcd de a = 600 et b = 124.

$$600 = 124 \times 4 + 104$$

$$124 = 104 \times 1 + 20$$

$$104 = 20 \times 5 + 4$$

$$20 = 4 \times 5 + 0$$

Ainsi pgcd(600, 124) = 4.

Voici un exemple plus compliqué:

Exemple 27

Calculons pgcd(9945, 3003).

$$9945 = 3003 \times 3 + 936$$
 $3003 = 936 \times 3 + 195$
 $936 = 195 \times 4 + 156$
 $195 = 156 \times 1 + 39$
 $156 = 39 \times 4 + 0$

Ainsi pgcd(9945,3003) = 39.

1.4. Nombres premiers entre eux

Définition 15

Deux entiers a, b sont **premiers entre eux** si pgcd(a, b) = 1.

Exemple 28

Pour tout $a \in \mathbb{Z}$, a et a+1 sont premiers entre eux. En effet soit d un diviseur commun à a et à a+1. Alors d divise aussi a+1-a. Donc d divise 1 mais alors d=-1 ou d=+1. Le plus grand diviseur de a et a+1 est donc 1. Et donc $\gcd(a,a+1)=1$.

Si deux entiers ne sont pas premiers entre eux, on peut s'y ramener en divisant par leur pgcd :

Exemple 29

Pour deux entiers quelconques $a, b \in \mathbb{Z}$, notons $d = \operatorname{pgcd}(a, b)$. La décomposition suivante est souvent utile :

$$\begin{cases} a = a'd \\ b = b'd \end{cases} \text{ avec } a', b' \in \mathbb{Z} \text{ et } \operatorname{pgcd}(a', b') = 1$$

Mini-exercices

- 1. Écrire la division euclidienne de 111111 par 20xx, où 20xx est l'année en cours.
- 2. Montrer qu'un diviseur positif de 10008 et de 10014 appartient nécessairement à {1,2,3,6}.

- 3. Calculer pgcd(560, 133), pgcd(12121, 789), pgcd(99999, 1110).
- 4. Trouver tous les entiers $1 \le a \le 50$ tels que a et 50 soient premiers entre eux. Même question avec 52.

2. Théorème de Bézout

2.1. Théorème de Bézout

Théorème 4. Théorème de Bézout

Soient a, b des entiers. Il existe des entiers $u, v \in \mathbb{Z}$ tels que

$$au + bv = \operatorname{pgcd}(a, b)$$

La preuve découle de l'algorithme d'Euclide. Les entiers u,v ne sont pas uniques. Les entiers u,v sont des *coefficients de Bézout*. Ils s'obtiennent en «remontant» l'algorithme d'Euclide.

Exemple 30

Calculons les coefficients de Bézout pour a=600 et b=124. Nous reprenons les calculs effectués pour trouver pgcd(600,124)=4. La partie gauche est l'algorithme d'Euclide. La partie droite s'obtient de bas en haut. On exprime le pgcd à l'aide de la dernière ligne où le reste est non nul. Puis on remplace le reste de la ligne précédente, et ainsi de suite jusqu'à arriver à la première ligne.

```
= 124 \times (-5) + (600 - 124 \times 4) \times 6 = 600 \times 6 + 124 \times (-29)
600
                                 104
            124
                                 20
                                                      = 104 - (124 - 104 \times 1) \times 5 = 124 \times (-5) + 104 \times 6
124
           104
                        1
           20
                                                      = 104 - 20 \times 5
104
                       5
                                 4
 20
                       5
```

Ainsi pour u = 6 et v = -29 alors $600 \times 6 + 124 \times (-29) = 4$.

Remarque

- Soignez vos calculs et leur présentation. C'est un algorithme : vous devez aboutir au bon résultat! Dans la partie droite, il faut à chaque ligne bien la reformater. Par exemple 104-(124-104×1)×5 se réécrit en 124×(-5)+104×6 afin de pouvoir remplacer ensuite 104.
- N'oubliez de vérifier vos calculs! C'est rapide et vous serez certain que vos calculs sont exacts. Ici on vérifie à la fin que $600 \times 6 + 124 \times (-29) = 4$.

Exemple 31

Calculons les coefficients de Bézout correspondant à pgcd(9945,3003) = 39.

```
9945 =
          3003
                     3
                            936
                                                 9945 \times (-16) + 3003 \times 53
3003 =
          936
                            195
                                          39
                                                  . . .
                     3
                                              =
 936 =
          195
                    4
                       +
                           156
                                          39
                                          39 = 195 - 156 \times 1
 195 =
          156
                 \times 1 +
                            39
 156 =
          39
                 \times 4 + 0
```

À vous de finir les calculs. On obtient $9945 \times (-16) + 3003 \times 53 = 39$.

2.2. Corollaires du théorème de Bézout

Corollaire 2

Si d|a et d|b alors $d|\operatorname{pgcd}(a,b)$.

Exemple : 4|16 et 4|24 donc 4 doit divisé pgcd(16,24) qui effectivement vaut 8.

Démonstration

Comme d|au et d|bv donc d|au+bv. Par le théorème de Bézout $d|\operatorname{pgcd}(a,b)$.

Corollaire 3

Soient a, b deux entiers. a, b sont premiers entre eux **si et seulement si** il existe $u, v \in \mathbb{Z}$ tels que

au + bv = 1

Démonstration

Le sens ⇒ est une conséquence du théorème de Bézout.

Pour le sens \Leftarrow on suppose qu'il existe u,v tels que au+bv=1. Comme $\operatorname{pgcd}(a,b)|a$ alors $\operatorname{pgcd}(a,b)|au$. De même $\operatorname{pgcd}(a,b)|bv$. Donc $\operatorname{pgcd}(a,b)|au+bv=1$. Donc $\operatorname{pgcd}(a,b)=1$.

Remarque

Si on trouve deux entiers u', v' tels que au' + bv' = d, cela n'implique **pas** que $d = \operatorname{pgcd}(a, b)$. On sait seulement alors que $\operatorname{pgcd}(a, b)|d$. Par exemple a = 12, b = 8; $12 \times 1 + 8 \times 3 = 36$ et $\operatorname{pgcd}(a, b) = 4$.

Corollaire 4. Lemme de Gauss

Soient $a, b, c \in \mathbb{Z}$.

Si a|bc et pgcd(a,b) = 1 alors a|c|

Exemple: si $4|7 \times c$, et comme 4 et 7 sont premiers entre eux, alors 4|c.

Démonstration

Comme $\operatorname{pgcd}(a,b)=1$ alors il existe $u,v\in\mathbb{Z}$ tels que au+bv=1. On multiplie cette égalité par c pour obtenir acu+bcv=c. Mais a|acu et par hypothèse a|bcv donc a divise acu+bcv=c.

2.3. Équations ax + by = c

Proposition 21

Considérons l'équation

$$ax + by = c (E)$$

où $a, b, c \in \mathbb{Z}$.

- 1. L'équation (E) possède des solutions $(x, y) \in \mathbb{Z}^2$ si et seulement si pgcd(a, b)|c.
- 2. Si $\operatorname{pgcd}(a,b)|c$ alors il existe même une infinité de solutions entières et elles sont exactement les $(x,y) = (x_0 + \alpha k, y_0 + \beta k)$ avec $x_0, y_0, \alpha, \beta \in \mathbb{Z}$ fixés et k parcourant \mathbb{Z} .

Le premier point est une conséquence du théorème de Bézout. Nous allons voir sur un exemple comment prouver le second point et calculer explicitement les solutions. Il est bon de refaire toutes les étapes de la démonstration à chaque fois.

Exemple 32

Trouver les solutions entières de

$$161x + 368y = 115 \tag{E}$$

- Première étape. Y a-t'il de solutions ? L'algorithme d'Euclide. On effectue l'algorithme d'Euclide pour calculer le pgcd de a = 161 et b = 368.

$$368 = 161 \times 2 + 46$$
 $161 = 46 \times 3 + 23$
 $46 = 23 \times 2 + 0$

Donc pgcd(368,161) = 23. Comme $115 = 5 \times 23$ alors pgcd(368,161)|115. Par le théorème de Bézout, l'équation (E) admet des solutions entières.

Deuxième étape. Trouver une solution particulière : la remontée de l'algorithme d'Euclide. On effectue la remontée de l'algorithme d'Euclide pour calculer les coefficients de Bézout.

$$368 = 161 \times 2 + 46$$
 $23 = 161 + (368 - 2 \times 161) \times (-3) = 161 \times 7 + 368 \times (-3)$
 $161 = 46 \times 3 + 23$
 $23 = 161 - 3 \times 46$
 $46 = 23 \times 2 + 0$

On trouve donc $161 \times 7 + 368 \times (-3) = 23$. Comme $115 = 5 \times 23$ en multipliant par 5 on obtient :

$$161 \times 35 + 368 \times (-15) = 115$$

Ainsi $(x_0, y_0) = (35, -15)$ est une **solution particulière** de (E).

- Troisième étape. Recherche de toutes les solutions. Soit $(x, y) \in \mathbb{Z}^2$ une solution de (E). Nous savons que (x_0, y_0) est aussi solution. Ainsi :

$$161x + 368y = 115$$
 et $161x_0 + 368y_0 = 115$

(on n'a aucun intérêt à remplacer x_0 et y_0 par leurs valeurs). La différence de ces deux

égalités conduit à

$$161 \times (x - x_0) + 368 \times (y - y_0) = 0$$

$$\implies 23 \times 7 \times (x - x_0) + 23 \times 16 \times (y - y_0) = 0$$

$$\implies 7(x - x_0) = -16(y - y_0) \quad (*)$$

Nous avons simplifier par 23 qui est le pgcd de 161 et 368. (Attention, n'oubliez surtout pas cette simplification, sinon la suite du raisonnement serait fausse.)

Ainsi $7|16(y-y_0)$, or $\operatorname{pgcd}(7,16)=1$ donc par le lemme de Gauss $7|y-y_0$. Il existe donc $k\in\mathbb{Z}$ tel que $y-y_0=7\times k$. Repartant de l'équation $(*):7(x-x_0)=-16(y-y_0)$. On obtient maintenant $7(x-x_0)=-16\times 7\times k$. D'où $x-x_0=-16k$. (C'est le même k pour x et pour y.) Nous avons donc $(x,y)=(x_0-16k,y_0+7k)$. Il n'est pas dur de voir que tout couple de cette forme est solution de l'équation (E). Il reste donc juste à substituer (x_0,y_0) par sa valeur et nous obtenons :

Les solutions entières de 161x + 368y = 115 sont les (x, y) = (35 - 16k, -15 + 7k), k parcourant \mathbb{Z} .

Pour se rassurer, prenez une valeur de k au hasard et vérifiez que vous obtenez bien une solution de l'équation.

2.4. ppcm

Définition 16

Le ppcm(a,b) (plus petit multiple commun) est le plus petit entier ≥ 0 divisible par a et par b.

Par exemple ppcm(12,9) = 36.

Le pgcd et le ppcm sont liés par la formule suivante :

Proposition 22

Si a, b sont des entiers (non tous les deux nuls) alors

$$pgcd(a,b) \times ppcm(a,b) = |ab|$$

Démonstration

Posons $d = \operatorname{pgcd}(a,b)$ et $m = \frac{|ab|}{\operatorname{pgcd}(a,b)}$. Pour simplifier on suppose a > 0 et b > 0. On écrit a = da' et b = db'. Alors $ab = d^2a'b'$ et donc m = da'b'. Ainsi m = ab' = a'b est un multiple de a et de b. Il reste à montrer que c'est le plus petit multiple. Si n est un autre multiple de a et de b alors $n = ka = \ell b$ donc $kda' = \ell db'$ et $ka' = \ell b'$. Or $\operatorname{pgcd}(a',b') = 1$ et $a'|\ell b'$ donc $a'|\ell$. Donc $a'b|\ell b$ et ainsi $m = a'b|\ell b = n$.

Voici un autre résultat concernant le ppcm qui se démontre en utilisant la décomposition en facteurs premiers :

Proposition 23

Si a|c et b|c alors ppcm(a,b)|c.

Il serait faux de penser que ab|c. Par exemple 6|36, 9|36 mais 6×9 ne divise pas 36. Par contre ppcm(6,9) = 18 divise bien 36.

Mini-exercices

- 1. Calculer les coefficients de Bézout correspondant à pgcd(560, 133), pgcd(12121, 789).
- 2. Montrer à l'aide d'un corollaire du théorème de Bézout que pgcd(a, a + 1) = 1.
- 3. Résoudre les équations : 407x + 129y = 1; 720x + 54y = 6; 216x + 92y = 8.
- 4. Trouver les couples (a,b) vérifiant pgcd(a,b) = 12 et ppcm(a,b) = 360.

3. Nombres premiers

Les nombres premiers sont —en quelque sorte— les briques élémentaires des entiers : tout entier s'écrit comme produit de nombres premiers.

3.1. Une infinité de nombres premiers

Définition 17

Un *nombre premier* p est un entier ≥ 2 dont les seuls diviseurs positifs sont 1 et p.

Exemples: 2,3,5,7,11 sont premiers, $4 = 2 \times 2$, $6 = 2 \times 3$, $8 = 2 \times 4$ ne sont pas premiers.

Lemme 2

Tout entier $n \ge 2$ admet un diviseur qui est un nombre premier.

Démonstration

Soit \mathcal{D} l'ensemble des diviseurs de n qui sont ≥ 2 :

$$\mathcal{D} = \{k \ge 2 \mid k \mid n\}.$$

L'ensemble \mathcal{D} est non vide (car $n \in \mathcal{D}$), notons alors $p = \min \mathcal{D}$.

Supposons, par l'absurde, que p ne soit pas un nombre premier alors p admet un diviseur q tel que 1 < q < p mais alors q est aussi un diviseur de n et donc $q \in \mathcal{D}$ avec q < p. Ce qui donne une contradiction car p est le minimum. Conclusion : p est un nombre premier. Et comme $p \in \mathcal{D}$, p divise p.

Proposition 24

Il existe une infinité de nombres premiers.

Démonstration

Par l'absurde, supposons qu'il n'y ait qu'un nombre fini de nombres premiers que l'on note $p_1=2$, $p_2=3, p_3, \ldots, p_n$. Considérons l'entier $N=p_1\times p_2\times \cdots \times p_n+1$. Soit p un diviseur premier de N (un tel p existe par le lemme précédent), alors d'une part p est l'un des entiers p_i donc $p|p_1\times \cdots \times p_n$, d'autre part p|N donc p divise la différence $N-p_1\times \cdots \times p_n=1$. Cela implique que p=1, ce qui contredit que p soit un nombre premier.

Cette contradiction nous permet de conclure qu'il existe une infinité de nombres premiers.

3.2. Eratosthène et Euclide

Comment trouver les nombres premiers? Le *crible d'Eratosthène* permet de trouver les premiers nombres premiers. Pour cela on écrit les premiers entiers : pour notre exemple de 2 à 25.

```
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
```

Rappelons-nous qu'un diviseur positif d'un entier n est inférieur ou égal à n. Donc 2 ne peut avoir comme diviseurs que 1 et 2 et est donc premier. On entoure 2. Ensuite on raye (ici en grisé) tous les multiples suivants de 2 qui ne seront donc pas premiers (car divisible par 2) :

Le premier nombre restant de la liste est 3 et est nécessairement premier : il n'est pas divisible par un diviseur plus petit (sinon il serait rayé). On entoure 3 et on raye tous les multiples de 3 (6, 9, 12, ...).

```
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
```

Le premier nombre restant est 5 et est donc premier. On raye les multiples de 5.

7 est donc premier, on raye les multiples de 7 (ici pas de nouveaux nombres à barrer). Ainsi de suite : 11,13,17,19,23 sont premiers.

Remarque

Si un nombre n n'est pas premier alors un de ses facteurs est $\leq \sqrt{n}$. En effet si $n=a\times b$ avec $a,b\geqslant 2$ alors $a\leqslant \sqrt{n}$ ou $b\leqslant \sqrt{n}$ (réfléchissez par l'absurde!). Par exemple pour tester si un nombre ≤ 100 est premier il suffit de tester les diviseurs ≤ 10 . Et comme il suffit de tester les diviseurs premiers, il suffit en fait de tester la divisibilité par 2,3,5 et 7. Exemple : 89 n'est pas divisible par 2,3,5,7 et est donc un nombre premier.

Proposition 25. Lemme d'Euclide

Soit p un nombre premier. Si p|ab alors p|a ou p|b.

Démonstration

Si p ne divise pas a alors p et a sont premiers entre eux (en effet les diviseurs de p sont 1 et p, mais seul 1 divise aussi a, donc pgcd(a, p) = 1). Ainsi par le lemme de Gauss p|b.

Exemple 33

Si p est un nombre premier, \sqrt{p} n'est pas un nombre rationnel.

La preuve se fait par l'absurde : écrivons $\sqrt{p} = \frac{a}{b}$ avec $a \in \mathbb{Z}, b \in \mathbb{N}^*$ et $\operatorname{pgcd}(a,b) = 1$. Alors $p = \frac{a^2}{b^2}$ donc $pb^2 = a^2$. Ainsi $p|a^2$ donc par le lemme d'Euclide p|a. On peut alors écrire a = pa' avec a' un entier. De l'équation $pb^2 = a^2$ on tire alors $b^2 = pa'^2$. Ainsi $p|b^2$ et donc p|b. Maintenant p|a et p|b donc a et b ne sont pas premiers entre eux. Ce qui contredit $\operatorname{pgcd}(a,b) = 1$. Conclusion \sqrt{p} n'est pas rationnel.

3.3. Décomposition en facteurs premiers

Théorème 5

Soit $n \ge 2$ un entier. Il existe des nombres premiers $p_1 < p_2 < ... < p_r$ et des exposants entiers $\alpha_1, \alpha_2, ..., \alpha_r \ge 1$ tels que :

$$n = p_1^{\alpha_1} \times p_2^{\alpha_2} \times \cdots \times p_r^{\alpha_r}.$$

De plus les p_i et les α_i (i = 1, ..., r) sont uniques.

Exemple : $24 = 2^3 \times 3$ est la décomposition en facteurs premiers. Par contre $36 = 2^2 \times 9$ n'est pas la décomposition en facteurs premiers c'est $2^2 \times 3^2$.

Remarque

La principale raison pour laquelle on choisit de dire que 1 n'est pas un nombre premier, c'est que sinon il n'y aurait plus unicité de la décomposition : $24 = 2^3 \times 3 = 1 \times 2^3 \times 3 = 1^2 \times 2^3 \times 3 = \cdots$

Démonstration

Existence. Nous allons démontrer l'existence de la décomposition par une récurrence sur n.

L'entier n=2 est déjà décomposé. Soit $n \ge 3$, supposons que tout entier < n admette une décomposition en facteurs premiers. Notons p_1 le plus petit nombre premier divisant n (voir le lemme 2). Si n est un nombre premier alors $n=p_1$ et c'est fini. Sinon on définit l'entier $n'=\frac{n}{p_1} < n$ et on applique notre hypothèse de récurrence à n' qui admet une décomposition en facteurs premiers. Alors $n=p_1\times n'$ admet aussi une décomposition.

Unicité. Nous allons démontrer qu'une telle décomposition est unique en effectuant cette fois une récurrence sur la somme des exposants $\sigma = \sum_{i=1}^{r} \alpha_i$.

Si $\sigma = 1$ cela signifie $n = p_1$ qui est bien l'unique écriture possible.

Soit $\sigma \ge 2$. On suppose que les entiers dont la somme des exposants est $< \sigma$ ont une unique décomposition. Soit n un entier dont la somme des exposants vaut σ . Écrivons le avec deux décompositions :

$$n = p_1^{\alpha_1} \times p_2^{\alpha_2} \times \cdots \times p_r^{\alpha_r} = q_1^{\beta_1} \times q_2^{\beta_2} \times \cdots \times q_s^{\beta_s}.$$

(On a $p_1 < p_2 < \cdots$ et $q_1 < q_2 < \cdots$.)

Si $p_1 < q_1$ alors $p_1 < q_j$ pour tous les j = 1, ..., s. Ainsi p_1 divise $p_1^{\alpha_1} \times p_2^{\alpha_2} \times \cdots \times p_r^{\alpha_r} = n$ mais ne divise pas $q_1^{\beta_1} \times q_2^{\beta_2} \times \cdots \times q_s^{\beta_s} = n$. Ce qui est absurde. Donc $p_1 \ge q_1$.

Si $p_1 > q_1$ un même raisonnement conduit aussi à une contradiction. On conclut que $p_1 = q_1$. On pose alors

$$n' = \frac{n}{p_1} = p_1^{\alpha_1 - 1} \times p_2^{\alpha_2} \times \cdots \times p_r^{\alpha_r} = q_1^{\beta_1 - 1} \times q_2^{\beta_2} \times \cdots \times q_s^{\beta_s}$$

L'hypothèse de récurrence qui s'applique à n' implique que ces deux décompositions sont les mêmes. Ainsi r = s et $p_i = q_i$, $\alpha_i = \beta_i$, i = 1,...,r.

Exemple 34

$$504 = 2^3 \times 3^2 \times 7$$
, $300 = 2^2 \times 3 \times 5^2$.

Pour calculer le pgcd on réécrit ces décompositions :

$$504 = 2^3 \times 3^2 \times 5^0 \times 7^1$$
, $300 = 2^2 \times 3^1 \times 5^2 \times 7^0$.

Le pgcd est le nombre obtenu en prenant le plus petit exposant de chaque facteur premier :

$$pgcd(504,300) = 2^2 \times 3^1 \times 5^0 \times 7^0 = 12.$$

Pour le ppcm on prend le plus grand exposant de chaque facteur premier :

$$ppcm(504,300) = 2^{3} \times 3^{2} \times 5^{2} \times 7^{1} = 12600$$

Mini-exercices

- 1. Montrer que n! + 1 n'est divisible par aucun des entiers 2, 3, ..., n. Est-ce toujours un nombre premier?
- 2. Trouver tous les nombres premiers ≤ 103 .
- 3. Décomposer a=2340 et b=15288 en facteurs premiers. Calculer leur pgcd et leur ppcm.
- 4. Décomposer 48400 en produit de facteurs premiers. Combien 48400 admet-il de diviseurs?
- 5. Soient $a, b \ge 0$. À l'aide de la décomposition en facteurs premiers, reprouver la formule $pgcd(a, b) \times ppcm(a, b) = a \times b$.

4. Congruences

4.1. Définition

Définition 18

Soit $n \ge 2$ un entier. On dit que a est congru à b modulo n, si n divise b-a. On note alors

$$a \equiv b \pmod{n}$$
.

On note aussi parfois $a = b \pmod{n}$ ou $a \equiv b[n]$. Une autre formulation est

$$a \equiv b \pmod{n} \iff \exists k \in \mathbb{Z} \quad a = b + kn.$$

Remarquez que n divise a si et seulement si $a \equiv 0 \pmod{n}$.

Proposition 26

- 1. La relation «congru modulo n» est une relation d'équivalence :
 - $-a \equiv a \pmod{n}$,
 - si $a \equiv b \pmod{n}$ alors $b \equiv a \pmod{n}$,
 - si $a \equiv b \pmod{n}$ et $b \equiv c \pmod{n}$ alors $a \equiv c \pmod{n}$.
- 2. Si $a \equiv b \pmod{n}$ et $c \equiv d \pmod{n}$ alors $a + c \equiv b + d \pmod{n}$.
- 3. Si $a \equiv b \pmod{n}$ et $c \equiv d \pmod{n}$ alors $a \times c \equiv b \times d \pmod{n}$.
- 4. Si $a \equiv b \pmod{n}$ alors pour tout $k \ge 0$, $a^k \equiv b^k \pmod{n}$.

Exemple 35

- $-15 \equiv 1 \pmod{7}, 72 \equiv 2 \pmod{7}, 3 \equiv -11 \pmod{7},$
- $-5x+8 \equiv 3 \pmod{5}$ pour tout $x \in \mathbb{Z}$,
- $-11^{20xx} \equiv 1^{20xx} \equiv 1 \pmod{10}$, où 20xx est l'année en cours.

Démonstration

- 1. Utiliser la définition.
- 2. Idem.
- 3. Prouvons la propriété multiplicative : $a \equiv b \pmod n$ donc il existe $k \in \mathbb{Z}$ tel que a = b + kn et $c \equiv d \pmod n$ donc il existe $\ell \in \mathbb{Z}$ tel que $c \equiv d + \ell n$. Alors $a \times c = (b + kn) \times (d + \ell n) = bd + (b\ell + dk + k\ell n)n$ qui est bien de la forme bd + mn avec $m \in \mathbb{Z}$. Ainsi $ac \equiv bd \pmod n$.
- 4. C'est une conséquence du point précédent : avec a=c et b=d on obtient $a^2\equiv b^2\pmod n$. On continue par récurrence.

Exemple 36

Critère de divisibilité par 9.

N est divisible par 9 si et seulement si la somme de ses chiffres est divisible par 9.

Pour prouver cela nous utilisons les congruences. Remarquons d'abord que 9|N équivaut à $N \equiv 0 \pmod 9$ et notons aussi que $10 \equiv 1 \pmod 9$, $10^2 \equiv 1 \pmod 9$, $10^3 \equiv 1 \pmod 9$,... Nous allons donc calculer N modulo 9. Écrivons N en base $10: N = a_k \cdots a_2 a_1 a_0$ (a_0 est le

chiffre des unités, a_1 celui des dizaines,...) alors $N = 10^k a_k + \cdots + 10^2 a_2 + 10^1 a_1 + a_0$. Donc

$$N = 10^{k} a_{k} + \dots + 10^{2} a_{2} + 10^{1} a_{1} + a_{0}$$

$$\equiv a_{k} + \dots + a_{2} + a_{1} + a_{0} \pmod{9}$$

Donc N est congru à la somme de ses chiffres modulo 9. Ainsi $N \equiv 0 \pmod{9}$ si et seulement si la somme des chiffres vaut 0 modulo 9.

Voyons cela sur un exemple : N = 488889. Ici $a_0 = 9$ est le chiffre des unités, $a_1 = 8$ celui des dizaines,... Cette écriture décimale signifie $N = 4 \cdot 10^5 + 8 \cdot 10^4 + 8 \cdot 10^3 + 8 \cdot 10^2 + 8 \cdot 10 + 9$.

$$N = 4 \cdot 10^5 + 8 \cdot 10^4 + 8 \cdot 10^3 + 8 \cdot 10^2 + 8 \cdot 10 + 9$$

 $\equiv 4 + 8 + 8 + 8 + 8 + 9 \pmod{9}$
 $\equiv 45 \pmod{9}$ et on refait la somme des chiffres de 45
 $\equiv 9 \pmod{9}$
 $\equiv 0 \pmod{9}$

Ainsi nous savons que 488889 est divisible par 9 sans avoir effectué de division euclidienne.

Remarque

Pour trouver un «bon» représentant de $a \pmod n$ on peut aussi faire la division euclidienne de a par n: a = bn + r alors $a \equiv r \pmod n$ et $0 \le r < n$.

Exemple 37

Les calculs bien menés avec les congruences sont souvent très rapides. Par exemple on souhaite calculer $2^{21} \pmod{37}$ (plus exactement on souhaite trouver $0 \le r < 37$ tel que $2^{21} \equiv r \pmod{37}$). Plusieurs méthodes :

- 1. On calcule 2^{21} , puis on fait la division euclidienne de 2^{21} par 37, le reste est notre résultat. C'est laborieux!
- 2. On calcule successivement les 2^k modulo $37: 2^1 \equiv 2 \pmod{37}, \ 2^2 \equiv 4 \pmod{37}, \ 2^3 \equiv 8 \pmod{37}, \ 2^4 \equiv 16 \pmod{37}, \ 2^5 \equiv 32 \pmod{37}$. Ensuite on n'oublie pas d'utiliser les congruences : $2^6 \equiv 64 \equiv 27 \pmod{37}$. $2^7 \equiv 2 \cdot 2^6 \equiv 2 \cdot 27 \equiv 54 \equiv 17 \pmod{37}$ et ainsi de suite en utilisant le calcul précédent à chaque étape. C'est assez efficace et on peut raffiner : par exemple on trouve $2^8 \equiv 34 \pmod{37}$ mais donc aussi $2^8 \equiv -3 \pmod{37}$ et donc $2^9 \equiv 2 \cdot 2^8 \equiv 2 \cdot (-3) \equiv -6 \equiv 31 \pmod{37}$
- 3. Il existe une méthode encore plus efficace : on écrit l'exposant 21 en base 2 : 21 = $2^4 + 2^2 + 2^0 = 16 + 4 + 1$. Alors $2^{21} = 2^{16} \cdot 2^4 \cdot 2^1$. Et il est facile de calculer successivement chacun de ces termes car les exposants sont des puissances de 2. Ainsi $2^8 \equiv (2^4)^2 \equiv 16^2 \equiv 256 \equiv 34 \equiv -3 \pmod{37}$ et $2^{16} \equiv \left(2^8\right)^2 \equiv (-3)^2 \equiv 9 \pmod{37}$. Nous obtenons $2^{21} \equiv 2^{16} \cdot 2^4 \cdot 2^1 \equiv 9 \times 16 \times 2 \equiv 288 \equiv 29 \pmod{37}$.

4.2. Équation de congruence $ax \equiv b \pmod{n}$

Proposition 27

Soit $a \in \mathbb{Z}^*$, $b \in \mathbb{Z}$ fixés et $n \ge 2$. Considérons l'équation $ax \equiv b \pmod{n}$ d'inconnue $x \in \mathbb{Z}$:

- 1. Il existe des solutions si et seulement si pgcd(a, n)|b.
- 2. Les solutions sont de la forme $x = x_0 + \ell \frac{n}{\operatorname{pgcd}(a,n)}$, $\ell \in \mathbb{Z}$ où x_0 est une solution particulière. Il existe donc $\operatorname{pgcd}(a,n)$ classes de solutions.

Exemple 38

Résolvons l'équation $9x \equiv 6 \pmod{24}$. Comme pgcd(9,24) = 3 divise 6 la proposition ci-dessus nous affirme qu'il existe des solutions. Nous allons les calculer. (Il est toujours préférable de refaire rapidement les calculs que d'apprendre la formule). Trouver x tel que $9x \equiv 6 \pmod{24}$ est équivalent à trouver x et k tels que 9x = 6 + 24k. Mis sous la forme 9x - 24k = 6 il s'agit alors d'une équation que nous avons étudier en détails (voir section 2.3). Il y a bien des solutions car pgcd(9,24) = 3 divise 6. En divisant par le pgcd on obtient l'équation équivalente :

$$3x - 8k = 2$$
.

Pour le calcul du pgcd et d'une solution particulière nous utilisons normalement l'algorithme d'Euclide et sa remontée. Ici il est facile de trouver une solution particulière $(x_0 = 6, k_0 = 2)$ à la main.

On termine comme pour les équations de la section 2.3. Si (x,k) est une solution de 3x-8k=2 alors par soustraction on obtient $3(x-x_0)-8(k-k_0)=0$ et on trouve $x=x_0+8\ell$, avec $\ell\in\mathbb{Z}$ (le terme k ne nous intéresse pas). Nous avons donc trouvé les x qui sont solutions de 3x-8k=2, ce qui équivaut à 9x-24k=6, ce qui équivaut encore à $9x\equiv 6\pmod{24}$. Les solutions sont de la forme $x=6+8\ell$. On préfère les regrouper en 3 classes modulo 24:

$$x_1 = 6 + 24m$$
, $x_2 = 14 + 24m$, $x_3 = 22 + 24m$ avec $m \in \mathbb{Z}$

Remarque

Expliquons le terme de «classe» utilisé ici. Nous avons considérer ici que l'équation $9x \equiv 6 \pmod{24}$ est une équation d'entiers. On peut aussi considérer que 9,x,6 sont des classes d'équivalence modulo 24, et l'on noterait alors $\overline{9x} = \overline{6}$. On trouverait comme solutions trois classes d'équivalence :

$$\overline{x_1} = \overline{6}, \quad \overline{x_2} = \overline{14}, \quad \overline{x_3} = \overline{22}.$$

Démonstration

1.

 $x \in \mathbb{Z}$ est un solution de l'équation $ax \equiv b \pmod{n}$

$$\iff \exists k \in \mathbb{Z} \quad ax = b + kn$$

$$\iff \exists k \in \mathbb{Z} \quad ax - kn = b$$

 \iff pgcd(a,n)|b par la proposition 21

Nous avons juste transformé notre équation $ax \equiv b \pmod{n}$ en une équation ax - kn = b étudiée auparavant (voir section 2.3), seules les notations changent : au + bv = c devient ax - kn = b.

2. Supposons qu'il existe des solutions. Nous allons noter $d = \operatorname{pgcd}(a,n)$ et écrire a = da', n = dn' et b = db' (car par le premier point d|b). L'équation ax - kn = b d'inconnues $x, k \in \mathbb{Z}$ est alors équivalente à l'équation a'x - kn' = b', notée (\star) . Nous savons résoudre cette équation (voir de nouveau la proposition 21), si (x_0, k_0) est une solution particulière de (\star) alors on connaît tous les (x, k) solutions. En particulier $x = x_0 + \ell n'$ avec $\ell \in \mathbb{Z}$ (les k ne nous intéressent pas ici). Ainsi les solutions $x \in \mathbb{Z}$ sont de la forme $x = x_0 + \ell \frac{n}{\operatorname{pgcd}(a,n)}, \ell \in \mathbb{Z}$ où x_0 est une solution particulière de $ax \equiv b \pmod{n}$. Et modulo n cela donne bien $\operatorname{pgcd}(a,n)$ classes distinctes.

4.3. Petit théorème de Fermat

Théorème 6. Petit théorème de Fermat

Si p est un nombre premier et $a \in \mathbb{Z}$ alors

$$a^p \equiv a \pmod{p}$$

Corollaire 5

Si p ne divise pas a alors

$$a^{p-1} \equiv 1 \pmod{p}$$

Lemme 3

p divise $\binom{p}{k}$ pour $1 \le k \le p-1$, c'est-à-dire $\binom{p}{k} \equiv 0 \pmod{p}$.

Démonstration

 $\binom{p}{k} = \frac{p!}{k!(p-k)!}$ donc $p! = k!(p-k)!\binom{p}{k}$. Ainsi $p|k!(p-k)!\binom{p}{k}$. Or comme $1 \le k \le p-1$ alors p ne divise pas k! (sinon p divise l'un des facteurs de k! mais il sont tous < p). De même p ne divise pas (p-k)!, donc par le lemme d'Euclide p divise $\binom{p}{k}$.

Démonstration Preuve du théorème

Nous le montrons par récurrence pour les $a \ge 0$.

- Si a = 0 alors $0 \equiv 0 \pmod{p}$.
- Fixons $a \ge 0$ et supposons que $a^p \equiv a \pmod{p}$. Calculons $(a+1)^p$ à l'aide de la formule du binôme de Newton :

$$(a+1)^p = a^p + \binom{p}{p-1}a^{p-1} + \binom{p}{p-2}a^{p-2} + \dots + \binom{p}{1} + 1$$

Réduisons maintenant modulo p:

$$(a+1)^p \equiv a^p + \binom{p}{p-1}a^{p-1} + \binom{p}{p-2}a^{p-2} + \dots + \binom{p}{1} + 1 \pmod{p}$$

$$\equiv a^p + 1 \pmod{p} \quad \text{grâce au lemme 3}$$

$$\equiv a+1 \pmod{p} \quad \text{à cause de l'hypothèse de récurrence}$$

- Par le principe de récurrence nous avons démontré le petit théorème de Fermat pour tout $a \ge 0$.

Il n'est pas dur d'en déduire le cas des $a \le 0$.

Exemple 39

Calculons 14^{3141} (mod 17). Le nombre 17 étant premier on sait par le petit théorème de Fermat que $14^{16} \equiv 1 \pmod{17}$. Écrivons la division euclidienne de 3141 par 16 :

$$3141 = 16 \times 196 + 5$$
.

Alors

$$14^{3141} \equiv 14^{16 \times 196 + 5} \equiv 14^{16 \times 196} \times 14^{5} \equiv \left(14^{16}\right)^{196} \times 14^{5} \equiv 1^{196} \times 14^{5} \equiv 14^{5} \pmod{17}$$

Il ne reste plus qu'à calculer 14^5 modulo 17. Cela peut se faire rapidement : $14 \equiv -3 \pmod{17}$ donc $14^2 \equiv (-3)^2 \equiv 9 \pmod{17}$, $14^3 \equiv 14^2 \times 14 \equiv 9 \times (-3) \equiv -27 \equiv 7 \pmod{17}$, $14^5 \equiv 14^2 \times 14^3 \equiv 9 \times 7 \equiv 63 \equiv 12 \pmod{17}$. Conclusion : $14^{3141} \equiv 14^5 \equiv 12 \pmod{17}$.

Mini-exercices

- 1. Calculer les restes modulo 10 de 122+455, 122×455 , 122^{455} . Mêmes calculs modulo 11, puis modulo 12.
- 2. Prouver qu'un entier est divisible par 3 si et seulement si la somme de ses chiffres est divisible par 3.
- 3. Calculer 3¹⁰ (mod 23).
- 4. Calculer 3¹⁰⁰ (mod 23).
- 5. Résoudre les équations $3x \equiv 4 \pmod{7}$, $4x \equiv 14 \pmod{30}$.

Auteurs

Arnaud Bodin Benjamin Boutin Pascal Romon


```
1 Définitions
```

- 2 Arithmétique des polynômes
- 3 Racine d'un polynôme, factorisation
- 4 Fractions rationnelles

```
Vidéo ■ partie 1. Définitions

Vidéo ■ partie 2. Arithmétique des polynômes

Vidéo ■ partie 3. Racine d'un polynôme, factorisation

Vidéo ■ partie 4. Fractions rationnelles

Exercices ◆ Polynômes

Exercices ◆ Fractions rationnelles
```

Motivation

Les polynômes sont des objets très simples mais aux propriétés extrêmement riches. Vous savez déjà résoudre les équations de degré $2:aX^2+bX+c=0$. Savez-vous que la résolution des équations de degré $3,aX^3+bX^2+cX+d=0$, a fait l'objet de luttes acharnées dans l'Italie du XVI^e siècle? Un concours était organisé avec un prix pour chacune de trente équations de degré 3 à résoudre. Un jeune italien, Tartaglia, trouve la formule générale des solutions et résout les trente équations en une seule nuit! Cette méthode que Tartaglia voulait garder secrète sera quand même publiée quelques années plus tard comme la « méthode de Cardan ».

Dans ce chapitre, après quelques définitions des concepts de base, nous allons étudier l'arithmétique des polynômes. Il y a une grande analogie entre l'arithmétique des polynômes et celles des entiers. On continue avec un théorème fondamental de l'algèbre : « Tout polynôme de degré n admet n racines complexes. » On termine avec les fractions rationnelles : une fraction rationnelle est le quotient de deux polynômes.

Dans ce chapitre $\mathbb K$ désignera l'un des corps $\mathbb Q$, $\mathbb R$ ou $\mathbb C$.

1. Définitions

1.1. Définitions

Définition 19

Un *polynôme* à coefficients dans K est une expression de la forme

$$P(X) = a_n X^n + a_{n-1} X^{n-1} + \dots + a_2 X^2 + a_1 X + a_0$$

avec $n \in \mathbb{N}$ et $a_0, a_1, \dots, a_n \in \mathbb{K}$.

L'ensemble des polynômes est noté $\mathbb{K}[X]$.

- Les *a*_i sont appelés les *coefficients* du polynôme.
- Si tous les coefficients a_i sont nuls, P est appelé le **polynôme nul**, il est noté 0.

- On appelle le *degré* de P le plus grand entier i tel que $a_i \neq 0$; on le note deg P. Pour le degré du polynôme nul on pose par convention $deg(0) = -\infty$.
- Un polynôme de la forme $P = a_0$ avec $a_0 \in \mathbb{K}$ est appelé un polynôme constant. Si $a_0 \neq 0$, son degré est 0.

Exemple 40

- $X^3 5X + \frac{3}{4}$ est un polynôme de degré 3. $X^n + 1$ est un polynôme de degré n.
- 2 est un polynôme constant, de degré 0.

1.2. Opérations sur les polynômes

– Égalité. Soient $P = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0$ et $Q = b_n X^n + b_{n-1} X^{n-1} + \dots + b_1 X + b_0$ deux polynômes à coefficients dans K.

$$P = Q$$
 ssi $a_i = b_i$ pour tout i

et on dit que P et Q sont égaux.

- **Addition.** Soient $P = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0$ et $Q = b_n X^n + b_{n-1} X^{n-1} + \dots + b_1 X + b_0$. On définit:

$$P + Q = (a_n + b_n)X^n + (a_{n-1} + b_{n-1})X^{n-1} + \dots + (a_1 + b_1)X + (a_0 + b_0)$$

– Multiplication. Soient $P = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0$ et $Q = b_m X^m + b_{m-1} X^{m-1} + a_0 X^m + a_$ $\cdots + b_1 X + b_0$. On définit

$$P \times Q = c_r X^r + c_{r-1} X^{r-1} + \dots + c_1 X + c_0$$
 avec $r = n + m$ et $c_k = \sum_{i+j=k} a_i b_j$ pour $k \in \{0, \dots, r\}$.

- Multiplication par un scalaire. Si $\lambda \in \mathbb{K}$ alors $\lambda \cdot P$ est le polynôme dont le *i*-ème coefficient est λa_i .

Exemple 41

- Soient $P = aX^3 + bX^2 + cX + d$ et $Q = \alpha X^2 + \beta X + \gamma$. Alors $P + Q = \alpha X^3 + (b + \alpha)X^2 + (c + \beta)X + \beta X^2 + d$ $(d+\gamma), P \times Q = (a\alpha)X^5 + (a\beta + b\alpha)X^4 + (a\gamma + b\beta + c\alpha)X^3 + (b\gamma + c\beta + d\alpha)X^2 + (c\gamma + d\beta)X + d\gamma.$ Enfin P = Q si et seulement si a = 0, $b = \alpha$, $c = \beta$ et $d = \gamma$.
- La multiplication par un scalaire $\lambda \cdot P$ équivaut à multiplier le polynôme constant λ par le polynôme *P*.

L'addition et la multiplication se comportent sans problème :

Proposition 28

Pour $P, Q, R \in \mathbb{K}[X]$ alors

- -0+P=P, P+Q=Q+P, (P+Q)+R=P+(Q+R);
- $1 \cdot P = P$, $P \times Q = Q \times P$, $(P \times Q) \times R = P \times (Q \times R)$;
- $P \times (Q+R) = P \times Q + P \times R.$

Pour le degré il faut faire attention :

Proposition 29

Soient P et Q deux polynômes à coefficients dans \mathbb{K} .

$$\deg(P \times Q) = \deg P + \deg Q$$

$$\deg(P+Q) \leqslant \max(\deg P, \deg Q)$$

On note $\mathbb{R}_n[X] = \{ P \in \mathbb{R}[X] \mid \deg P \leq n \}$. Si $P, Q \in \mathbb{R}_n[X]$ alors $P + Q \in \mathbb{R}_n[X]$.

1.3. Vocabulaire

Complétons les définitions sur les polynômes.

Définition 20

- Les polynômes comportant un seul terme non nul (du type $a_k X^k$) sont appelés **monômes**.
- Soit $P = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0$, un polynôme avec $a_n \neq 0$. On appelle **terme dominant** le monôme $a_n X^n$. Le coefficient a_n est appelé le **coefficient dominant** de P.
- Si le coefficient dominant est 1, on dit que *P* est un *polynôme unitaire*.

Exemple 42

 $P(X) = (X-1)(X^n + X^{n-1} + \dots + X + 1)$. On développe cette expression : $P(X) = (X^{n+1} + X^n + \dots + X^2 + X) - (X^n + X^{n-1} + \dots + X + 1) = X^{n+1} - 1$. P(X) est donc un polynôme de degré n+1, il est unitaire et est somme de deux monômes : X^{n+1} et -1.

Remarque

Tout polynôme est donc une somme finie de monômes.

Mini-exercices

- 1. Soit $P(X) = 3X^3 2$, $Q(X) = X^2 + X 1$, R(X) = aX + b. Calculer P + Q, $P \times Q$, $(P + Q) \times R$ et $P \times Q \times R$. Trouver a et b afin que le degré de P QR soit le plus petit possible.
- 2. Calculer $(X+1)^5 (X-1)^5$.
- 3. Déterminer le degré de $(X^2 + X + 1)^n aX^{2n} bX^{2n-1}$ en fonction de a, b.
- 4. Montrer que si $\deg P \neq \deg Q$ alors $\deg(P+Q) = \max(\deg P, \deg Q)$. Donner un contreexemple dans le cas où $\deg P = \deg Q$.
- 5. Montrer que si $P(X) = X^n + a_{n-1}X^{n-1} + \cdots$ alors le coefficient devant X^{n-1} de $P(X \frac{a_{n-1}}{n})$ est nul.

2. Arithmétique des polynômes

Il existe de grandes similarités entre l'arithmétique dans \mathbb{Z} et l'arithmétique dans $\mathbb{K}[X]$. Cela nous permet d'aller assez vite et d'omettre certaines preuves.

2.1. Division euclidienne

Définition 21

Soient $A, B \in \mathbb{K}[X]$, on dit que B divise A s'il existe $Q \in \mathbb{K}[X]$ tel que A = BQ. On note alors B|A.

On dit aussi que A est multiple de B ou que A est divisible par B.

Outre les propriétés évidentes comme A|A, 1|A et A|0 nous avons :

Proposition 30

Soient $A, B, C \in \mathbb{K}[X]$.

- 1. Si A|B et B|A, alors il existe $\lambda \in \mathbb{K}^*$ tel que $A = \lambda B$.
- 2. Si A|B et B|C alors A|C.
- 3. Si C|A et C|B alors C|(AU+BV), pour tout $U,V \in \mathbb{K}[X]$.

Théorème 7. Division euclidienne des polynômes

Soient $A, B \in \mathbb{K}[X]$, avec $B \neq 0$, alors il existe un unique polynôme Q et il existe un unique polynôme R tels que :

$$A = BQ + R$$
 et $\deg R < \deg B$.

Q est appelé le *quotient* et R le *reste* et cette écriture est la *division euclidienne* de A par B. Notez que la condition $\deg R < \deg B$ signifie R = 0 ou bien $0 \le \deg R < \deg B$. Enfin R = 0 si et seulement si B|A.

Démonstration

Unicité. Si A = BQ + R et A = BQ' + R', alors B(Q - Q') = R' - R. Or $\deg(R' - R) < \deg B$. Donc Q' - Q = 0. Ainsi Q = Q', d'où aussi R = R'.

Existence. On montre l'existence par récurrence sur le degré de A.

- Si $\deg A = 0$ et $\deg B > 0$, alors A est une constante, on pose Q = 0 et R = A. Si $\deg A = 0$ et $\deg B = 0$, on pose Q = A/B et R = 0.
- On suppose l'existence vraie lorsque $\deg A \leq n-1$. Soit $A=a_nX^n+\cdots+a_0$ un polynôme de degré n $(a_n\neq 0)$. Soit $B=b_mX^m+\cdots+b_0$ avec $b_m\neq 0$. Si n< m on pose Q=0 et R=A. Si $n\geq m$ on écrit $A=B\cdot \frac{a_n}{b_m}X^{n-m}+A_1$ avec $\deg A_1\leq n-1$. On applique l'hypothèse de récurrence à A_1 : il existe $Q_1,R_1\in \mathbb{K}[X]$ tels que $A_1=BQ_1+R_1$ et $\deg R_1<\deg B$. Il vient:

$$A = B\left(\frac{a_n}{b_m}X^{n-m} + Q_1\right) + R_1.$$

Donc $Q = \frac{a_n}{b_m} X^{n-m} + Q_1$ et $R = R_1$ conviennent.

Exemple 43

On pose une division de polynômes comme on pose une division euclidienne de deux entiers. Par exemple si $A = 2X^4 - X^3 - 2X^2 + 3X - 1$ et $B = X^2 - X + 1$. Alors on trouve $Q = 2X^2 + X - 3$ et R = -X + 2. On n'oublie pas de vérifier qu'effectivement A = BQ + R.

Exemple 44

Pour $X^4 - 3X^3 + X + 1$ divisé par $X^2 + 2$ on trouve un quotient égal à $X^2 - 3X - 2$ et un reste égale à 7X + 5.

2.2. pgcd

Proposition 31

Soient $A, B \in \mathbb{K}[X]$, avec $A \neq 0$ ou $B \neq 0$. Il existe un unique polynôme unitaire de plus grand degré qui divise à la fois A et B.

Cet unique polynôme est appelé le pgcd (plus grand commun diviseur) de A et B que l'on note pgcd(A,B).

Remarque

- pgcd(A,B) est un polynôme unitaire.
- Si A|B et $A \neq 0$, $\operatorname{pgcd}(A,B) = \frac{1}{\lambda}A$, où λ est le coefficient dominant de A.
- Pour tout $\lambda \in K^*$, $\operatorname{pgcd}(\lambda A, B) = \operatorname{pgcd}(A, B)$.
- Comme pour les entiers : si A = BQ + R alors pgcd(A,B) = pgcd(B,R). C'est ce qui justifie l'algorithme d'Euclide.

Algorithme d'Euclide. Soient A et B des polynômes, $B \neq 0$.

On calcule les divisions euclidiennes successives,

$$\begin{array}{ll} A = BQ_1 + R_1 & \deg R_1 < \deg B \\ B = R_1Q_2 + R_2 & \deg R_2 < \deg R_1 \\ R_1 = R_2Q_3 + R_3 & \deg R_3 < \deg R_2 \\ \vdots & & \\ R_{k-2} = R_{k-1}Q_k + R_k & \deg R_k < \deg R_{k-1} \\ R_{k-1} = R_kQ_{k+1} & & \end{array}$$

Le degré du reste diminue à chaque division. On arrête l'algorithme lorsque le reste est nul. Le pgcd est le dernier reste non nul R_k (rendu unitaire).

Exemple 45

Calculons le pgcd de $A = X^4 - 1$ et $B = X^3 - 1$. On applique l'algorithme d'Euclide :

$$X^4 - 1 = (X^3 - 1) \times X + X - 1$$

 $X^3 - 1 = (X - 1) \times (X^2 + X + 1) + 0$

Le pgcd est le dernier reste non nul, donc pgcd $(X^4 - 1, X^3 - 1) = X - 1$.

Exemple 46

Calculons le pgcd de $A = X^5 + X^4 + 2X^3 + X^2 + X + 2$ et $B = X^4 + 2X^3 + X^2 - 4$.

$$\begin{array}{rcl} X^5 + X^4 + 2X^3 + X^2 + X + 2 & = & (X^4 + 2X^3 + X^2 - 4) \times (X - 1) + 3X^3 + 2X^2 + 5X - 2 \\ X^4 + 2X^3 + X^2 - 4 & = & (3X^3 + 2X^2 + 5X - 2) \times \frac{1}{9}(3X + 4) - \frac{14}{9}(X^2 + X + 2) \\ 3X^3 + 2X^2 + 5X - 2 & = & (X^2 + X + 2) \times (3X - 1) + 0 \end{array}$$

Ainsi $\operatorname{pgcd}(A,B) = X^2 + X + 2$.

Définition 22

Soient $A, B \in \mathbb{K}[X]$. On dit que A et B sont *premiers entre eux* si pgcd(A, B) = 1.

Pour A, B quelconques on peut se ramener à des polynômes premiers entre eux : si pgcd(A, B) = D alors A et B s'écrivent : A = DA', B = DB' avec pgcd(A', B') = 1.

2.3. Théorème de Bézout

Théorème 8. Théorème de Bézout

Soient $A, B \in \mathbb{K}[X]$ des polynômes avec $A \neq 0$ ou $B \neq 0$. On note $D = \operatorname{pgcd}(A, B)$. Il existe deux polynômes $U, V \in \mathbb{K}[X]$ tels que AU + BV = D.

Ce théorème découle de l'algorithme d'Euclide et plus spécialement de sa remontée comme on le voit sur l'exemple suivant.

Exemple 47

Nous avons calculé $\operatorname{pgcd}(X^4-1,X^3-1)=X-1$. Nous remontons l'algorithme d'Euclide, ici il n'y avait qu'une ligne : $X^4-1=(X^3-1)\times X+X-1$, pour en déduire $X-1=(X^4-1)\times 1+(X^3-1)\times (-X)$. Donc U=1 et V=-X conviennent.

Exemple 48

Pour $A=X^5+X^4+2X^3+X^2+X+2$ et $B=X^4+2X^3+X^2-4$ nous avions trouvé $D=\operatorname{pgcd}(A,B)=X^2+X+2$. En partant de l'avant dernière ligne de l'algorithme d'Euclide on a d'abord : $B=(3X^3+2X^2+5X-2)\times \frac{1}{9}(3X+4)-\frac{14}{9}D$ donc

$$-\frac{14}{9}D = B - (3X^3 + 2X^2 + 5X - 2) \times \frac{1}{9}(3X + 4).$$

La ligne au-dessus dans l'algorithme d'Euclide était : $A = B \times (X - 1) + 3X^3 + 2X^2 + 5X - 2$. On substitue le reste pour obtenir :

$$-\frac{14}{9}D = B - (A - B \times (X - 1)) \times \frac{1}{9}(3X + 4).$$

On en déduit

$$-\frac{14}{9}D = -A \times \frac{1}{9}(3X+4) + B(1+(X-1) \times \frac{1}{9}(3X+4))$$

Donc en posant $U = \frac{1}{14}(3X+4)$ et $V = -\frac{1}{14}\big(9 + (X-1)(3X+4)\big) = -\frac{1}{14}(3X^2 + X + 5)$ on a AU + BV = D.

Le corollaire suivant s'appelle aussi le théorème de Bézout.

Corollaire 6

Soient A et B deux polynômes. A et B sont premiers entre eux si et seulement s'il existe deux polynômes U et V tels que AU + BV = 1.

Corollaire 7

Soient $A, B, C \in \mathbb{K}[X]$ avec $A \neq 0$ ou $B \neq 0$. Si C|A et C|B alors $C|\operatorname{pgcd}(A, B)$.

Corollaire 8. Lemme de Gauss

Soient $A, B, C \in \mathbb{K}[X]$. Si A|BC et pgcd(A, B) = 1 alors A|C.

2.4. ppcm

Proposition 32

Soient $A, B \in \mathbb{K}[X]$ des polynômes non nuls, alors il existe un unique polynôme unitaire M de plus petit degré tel que A|M et B|M.

Cet unique polynôme est appelé le ppcm (plus petit commun multiple) de A et B qu'on note ppcm(A,B).

Exemple 49

$$\operatorname{ppcm}\left(X(X-2)^2(X^2+1)^4,(X+1)(X-2)^3(X^2+1)^3\right) = X(X+1)(X-2)^3(X^2+1)^4.$$

De plus le ppcm est aussi le plus petit au sens de la divisibilité :

Proposition 33

Soient $A, B \in \mathbb{K}[X]$ des polynômes non nuls et $M = \operatorname{ppcm}(A, B)$. Si $C \in \mathbb{K}[X]$ est un polynôme tel que $A \mid C$ et $B \mid C$, alors $M \mid C$.

Mini-exercices

- 1. Trouver les diviseurs de $X^4 + 2X^2 + 1$ dans $\mathbb{R}[X]$, puis dans $\mathbb{C}[X]$.
- 2. Montrer que $X 1|X^n 1$ (pour $n \ge 1$).
- 3. Calculer les divisions euclidiennes de A par B avec $A = X^4 1$, $B = X^3 1$. Puis $A = 4X^3 + 2X^2 X 5$ et $B = X^2 + X$; $A = 2X^4 9X^3 + 18X^2 21X + 2$ et $B = X^2 3X + 1$; $A = X^5 2X^4 + 6X^3$ et $B = 2X^3 + 1$.
- 4. Déterminer le pgcd de $A = X^5 + X^3 + X^2 + 1$ et $B = 2X^3 + 3X^2 + 2X + 3$. Trouver les coefficients de Bézout U, V. Mêmes questions avec $A = X^5 1$ et $B = X^4 + X + 1$.
- 5. Montrer que si AU + BV = 1 avec $\deg U < \deg B$ et $\deg V < \deg A$ alors les polynômes U, V sont uniques.

3. Racine d'un polynôme, factorisation

3.1. Racines d'un polynôme

Définition 23

Soit $P = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0 \in \mathbb{K}[X]$. Pour un élément $x \in \mathbb{K}$, on note $P(x) = a_n x^n + \dots + a_1 x + a_0$. On associe ainsi au polynôme P une **fonction polynôme** (que l'on note encore P)

$$P: \mathbb{K} \to \mathbb{K}, \quad x \mapsto P(x) = a_n x^n + \dots + a_1 x + a_0.$$

Définition 24

Soit $P \in \mathbb{K}[X]$ et $\alpha \in \mathbb{K}$. On dit que α est une *racine* (ou un *zéro*) de P si $P(\alpha) = 0$.

Proposition 34

$$P(\alpha) = 0 \iff X - \alpha \text{ divise } P$$

Démonstration

Lorsque l'on écrit la division euclidienne de P par $X-\alpha$ on obtient $P=Q\cdot(X-\alpha)+R$ où R est une constante car $\deg R < \deg(X-\alpha)=1$. Donc $P(\alpha)=0 \iff R(\alpha)=0 \iff R=0 \iff X-\alpha|P$.

Définition 25

Soit $k \in \mathbb{N}^*$. On dit que α est une *racine de multiplicité* k de P si $(X - \alpha)^k$ divise P alors que $(X - \alpha)^{k+1}$ ne divise pas P. Lorsque k = 1 on parle d'une *racine simple*, lorsque k = 2 d'une *racine double*, etc.

On dit aussi que α est une *racine d'ordre* k.

Proposition 35

Il y a équivalence entre :

- (i) α est une racine de multiplicité k de P.
- (ii) Il existe $Q \in \mathbb{K}[X]$ tel que $P = (X \alpha)^k Q$, avec $Q(\alpha) \neq 0$.
- (iii) $P(\alpha) = P'(\alpha) = \cdots = P^{(k-1)}(\alpha) = 0$ et $P^{(k)}(\alpha) \neq 0$.

Remarque

Par analogie avec la dérivée d'une fonction, si $P(X) = a_0 + a_1 X + \cdots + a_n X^n \in \mathbb{K}[X]$ alors le polynôme $P'(X) = a_1 + 2a_2 X + \cdots + na_n X^{n-1}$ est le **polynôme dérivé** de P.

3.2. Théorème de d'Alembert-Gauss

Passons à un résultat essentiel de ce chapitre :

Théorème 9. Théorème de d'Alembert-Gauss

Tout polynôme à coefficients complexes de degré $n \ge 1$ a au moins une racine dans \mathbb{C} . Il admet exactement n racines si on compte chaque racine avec multiplicité.

Nous admettons ce théorème.

Exemple 50

Soit $P(X) = aX^2 + bX + c$ un polynôme de degré 2 à coefficients réels : $a, b, c \in \mathbb{R}$ et $a \neq 0$.

- Si $\Delta = b^2 4ac > 0$ alors P admet 2 racines réelles distinctes $\frac{-b + \sqrt{\Delta}}{2a}$ et $\frac{-b \sqrt{\Delta}}{2a}$.
- Si $\Delta < 0$ alors P admet 2 racines complexes distinctes $\frac{-b+\mathrm{i}\sqrt{|\Delta|}}{2a}$ et $\frac{-b-\mathrm{i}\sqrt{|\Delta|}}{2a}$.
- Si $\Delta = 0$ alors *P* admet une racine réelle double $\frac{-b}{2a}$.

En tenant compte des multiplicités on a donc toujours exactement 2 racines.

Exemple 51

 $P(X) = X^n - 1$ admet *n* racines distinctes.

Sachant que P est de degré n alors par le théorème de d'Alembert-Gauss on sait qu'il admet n racines comptées avec multiplicité. Il s'agit donc maintenant de montrer que ce sont des racines simples. Supposons –par l'absurde– que $\alpha \in \mathbb{C}$ soit une racine de multiplicité ≥ 2 . Alors $P(\alpha) = 0$ et $P'(\alpha) = 0$. Donc $\alpha^n - 1 = 0$ et $n\alpha^{n-1} = 0$. De la seconde égalité on déduit $\alpha = 0$, contradictoire avec la première égalité. Donc toutes les racines sont simples. Ainsi les n racines sont distinctes. (Remarque : sur cet exemple particulier on aurait aussi pu calculer les racines qui sont ici les racines n-ième de l'unité.)

Pour les autres corps que les nombres complexes nous avons le résultat plus faible suivant :

Théorème 10

Soit $P \in \mathbb{K}[X]$ de degré $n \ge 1$. Alors P admet au plus n racines dans \mathbb{K} .

Exemple 52

 $P(X)=3X^3-2X^2+6X-4$. Considéré comme un polynôme à coefficients dans $\mathbb Q$ ou $\mathbb R$, P n'a qu'une seule racine (qui est simple) $\alpha=\frac{2}{3}$ et il se décompose en $P(X)=3(X-\frac{2}{3})(X^2+2)$. Si on considère maintenant P comme un polynôme à coefficients dans $\mathbb C$ alors $P(X)=3(X-\frac{2}{3})(X-i\sqrt{2})(X+i\sqrt{2})$ et admet 3 racines simples.

3.3. Polynômes irréductibles

Définition 26

Soit $P \in \mathbb{K}[X]$ un polynôme de degré ≥ 1 , on dit que P est irréductible si pour tout $Q \in \mathbb{K}[X]$ divisant P, alors, soit $Q \in \mathbb{K}^*$, soit il existe $\lambda \in \mathbb{K}^*$ tel que $Q = \lambda P$.

Remarque

 Un polynôme irréductible P est donc un polynôme non constant dont les seuls diviseurs de P sont les constantes ou P lui-même (à une constante multiplicative près).

- La notion de polynôme irréductible pour l'arithmétique de $\mathbb{K}[X]$ correspond à la notion de nombre premier pour l'arithmétique de \mathbb{Z} .
- Dans le cas contraire, on dit que P est r'eductible; il existe alors des polynômes A,B de $\mathbb{K}[X]$ tels que P = AB, avec $\deg A \ge 1$ et $\deg B \ge 1$.

Exemple 53

- Tous les polynômes de degré 1 sont irréductibles. Par conséquent il y a une infinité de polynômes irréductibles.
- X^2 1 = (*X* 1)(*X* + 1) ∈ $\mathbb{R}[X]$ est réductible.
- $X^2 + 1 = (X i)(X + i)$ est réductible dans $\mathbb{C}[X]$ mais est irréductible dans $\mathbb{R}[X]$.
- $X^2 2 = (X \sqrt{2})(X + \sqrt{2})$ est réductible dans $\mathbb{R}[X]$ mais est irréductible dans $\mathbb{Q}[X]$.

Nous avons l'équivalent du lemme d'Euclide de $\mathbb Z$ pour les polynômes :

Proposition 36. Lemme d'Euclide

Soit $P \in \mathbb{K}[X]$ un polynôme irréductible et soient $A, B \in \mathbb{K}[X]$. Si P|AB alors P|A ou P|B.

Démonstration

Si P ne divise pas A alors pgcd(P,A) = 1 car P est irréductible. Donc, par le lemme de Gauss, P divise B.

3.4. Théorème de factorisation

Théorème 11

Tout polynôme non constant $A \in \mathbb{K}[X]$ s'écrit comme un produit de polynômes irréductibles unitaires :

$$A = \lambda P_1^{k_1} P_2^{k_2} \cdots P_r^{k_r}$$

où $\lambda \in \mathbb{K}^*$, $r \in \mathbb{N}^*$, $k_i \in \mathbb{N}^*$ et les P_i sont des polynômes irréductibles distincts.

De plus cette décomposition est unique à l'ordre près des facteurs.

Il s'agit bien sûr de l'analogue de la décomposition d'un nombre en facteurs premiers.

3.5. Factorisation dans $\mathbb{C}[X]$ et $\mathbb{R}[X]$

Polynômes Polynômes

Théorème 12

Les polynômes irréductibles de $\mathbb{C}[X]$ sont les polynômes de degré 1.

Donc pour $P \in \mathbb{C}[X]$ de degré $n \ge 1$ la factorisation s'écrit $P = \lambda (X - \alpha_1)^{k_1} (X - \alpha_2)^{k_2} \cdots (X - \alpha_r)^{k_r}$, où $\alpha_1, ..., \alpha_r$ sont les racines distinctes de P et $k_1, ..., k_r$ sont leurs multiplicités.

Démonstration

Ce théorème résulte du théorème de d'Alembert-Gauss.

Théorème 13

Les polynômes irréductibles de $\mathbb{R}[X]$ sont les polynômes de degré 1 ainsi que les polynômes de degré 2 ayant un discriminant $\Delta < 0$.

Soit $P \in \mathbb{R}[X]$ de degré $n \ge 1$. Alors la factorisation s'écrit $P = \lambda (X - \alpha_1)^{k_1} (X - \alpha_2)^{k_2} \cdots (X - \alpha_r)^{k_r} Q_1^{\ell_1} \cdots Q_s^{\ell_s}$, où les α_i sont exactement les racines réelles distinctes de multiplicité k_i et les Q_i sont des polynômes irréductibles de degré $2: Q_i = X^2 + \beta_i X + \gamma_i$ avec $\Delta = \beta_i^2 - 4\gamma_i < 0$.

Exemple 54

 $P(X) = 2X^4(X-1)^3(X^2+1)^2(X^2+X+1) \text{ est d\'ej\`a d\'ecompos\'e en facteurs irr\'eductibles dans } \mathbb{R}[X] \text{ alors que sa d\'ecomposition dans } \mathbb{C}[X] \text{ est } P(X) = 2X^4(X-1)^3(X-\mathrm{i})^2(X+\mathrm{i})^2(X-j)(X-j^2) \text{ où } j = e^{\frac{2\mathrm{i}\pi}{3}} = \frac{-1+\mathrm{i}\sqrt{3}}{2}.$

Exemple 55

Soit $P(X) = X^4 + 1$.

- Sur \mathbb{C} . On peut d'abord décomposer $P(X) = (X^2 + i)(X^2 - i)$. Les racines de P sont donc les racines carrées complexes de i et -i. Ainsi P se factorise dans $\mathbb{C}[X]$:

$$P(X) = \left(X - \frac{\sqrt{2}}{2}(1+i)\right)\left(X + \frac{\sqrt{2}}{2}(1+i)\right)\left(X - \frac{\sqrt{2}}{2}(1-i)\right)\left(X + \frac{\sqrt{2}}{2}(1-i)\right).$$

– Sur $\mathbb R$. Pour un polynôme à coefficient réels, si α est une racine alors $\bar{\alpha}$ aussi. Dans la décomposition ci-dessus on regroupe les facteurs ayant des racines conjuguées, cela doit conduire à un polynôme réel :

$$P(X) = \left[\left(X - \frac{\sqrt{2}}{2} (1+\mathrm{i}) \right) \left(X - \frac{\sqrt{2}}{2} (1-\mathrm{i}) \right) \right] \left[\left(X + \frac{\sqrt{2}}{2} (1+\mathrm{i}) \right) \left(X + \frac{\sqrt{2}}{2} (1-\mathrm{i}) \right) \right] = \left[X^2 + \sqrt{2} X + 1 \right] \left[X^2 - \sqrt{2} X + 1 \right],$$

qui est la factorisation dans $\mathbb{R}[X]$.

Mini-exercices

- 1. Trouver un polynôme $P(X) \in \mathbb{Z}[X]$ de degré minimal tel que : $\frac{1}{2}$ soit une racine simple, $\sqrt{2}$ soit une racine double et i soit une racine triple.
- 2. Montrer cette partie de la proposition 35 : « $P(\alpha) = 0$ et $P'(\alpha) = 0 \iff \alpha$ est une racine de multiplicité ≥ 2 ».
- 3. Montrer que pour $P \in \mathbb{C}[X]$: « P admet une racine de multiplicité $\geq 2 \iff P$ et P' ne sont pas premiers entre eux ».

- 4. Factoriser $P(X) = (2X^2 + X 2)^2(X^4 1)^3$ et $Q(X) = 3(X^2 1)^2(X^2 X + \frac{1}{4})$ dans $\mathbb{C}[X]$. En déduire leur pgcd et leur ppcm. Mêmes questions dans $\mathbb{R}[X]$.
- 5. Si $\operatorname{pgcd}(A,B) = 1$ montrer que $\operatorname{pgcd}(A+B,A\times B) = 1$.
- 6. Soit $P \in \mathbb{R}[X]$ et $\alpha \in \mathbb{C} \setminus \mathbb{R}$ tel que $P(\alpha) = 0$. Vérifier que $P(\bar{\alpha}) = 0$. Montrer que $(X \alpha)(X \alpha)$ $\bar{\alpha}$) est un polynôme irréductible de $\mathbb{R}[X]$ et qu'il divise P dans $\mathbb{R}[X]$.

4. Fractions rationnelles

Définition 27

Une *fraction rationnelle* à coefficients dans K est une expression de la forme

$$F = \frac{P}{Q}$$

où $P, Q \in \mathbb{K}[X]$ sont deux polynômes et $Q \neq 0$.

Toute fraction rationnelle se décompose comme une somme de fractions rationnelles élémentaires que l'on appelle des « éléments simples ». Mais les éléments simples sont différents sur $\mathbb C$ ou sur $\mathbb R$.

4.1. Décomposition en éléments simples sur C

Théorème 14. Décomposition en éléments simples sur C

Soit P/Q une fraction rationnelle avec $P,Q \in \mathbb{C}[X]$, pgcd(P,Q) = 1 et $Q = (X - \alpha_1)^{k_1} \cdots (X - \alpha_r)^{k_r}$. Alors il existe une et une seule écriture :

$$\frac{P}{Q} = E + \frac{a_{1,1}}{(X - \alpha_1)^{k_1}} + \frac{a_{1,2}}{(X - \alpha_1)^{k_1 - 1}} + \dots + \frac{a_{1,k_1}}{(X - \alpha_1)} + \frac{a_{2,1}}{(X - \alpha_2)^{k_2}} + \dots + \frac{a_{2,k_2}}{(X - \alpha_2)} + \dots$$

Le polynôme E s'appelle la partie polynomiale (ou partie entière). Les termes $\frac{a}{(X-a)^i}$ sont les éléments simples sur C.

Exemple 56

- Vérifier que $\frac{1}{X^2+1} = \frac{a}{X+\mathrm{i}} + \frac{b}{X-\mathrm{i}}$ avec $a = \frac{1}{2}\mathrm{i}$, $b = -\frac{1}{2}\mathrm{i}$. Vérifier que $\frac{X^4 8X^2 + 9X 7}{(X-2)^2(X+3)} = X + 1 + \frac{-1}{(X-2)^2} + \frac{2}{X-2} + \frac{-1}{X+3}$.

Comment se calcule cette décomposition? En général on commence par déterminer la partie polynomiale. Tout d'abord si $\deg Q > \deg P$ alors E(X) = 0. Si $\deg P \leq \deg Q$ alors effectuons la division euclidienne de P par Q: P = QE + R donc $\frac{P}{Q} = E + \frac{R}{Q}$ où deg $R < \deg Q$. La partie polynomiale est donc le quotient de cette division. Et on s'est ramené au cas d'une fraction $\frac{R}{Q}$ avec $\deg R < \deg Q$. Voyons en détails comment continuer sur un exemple.

Exemple 57

Décomposons la fraction $\frac{P}{Q} = \frac{X^5 - 2X^3 + 4X^2 - 8X + 11}{X^3 - 3X + 2}$.

- **Première étape : partie polynomiale.** On calcule la division euclidienne de P par Q: $P(X) = (X^2 + 1)Q(X) + 2X^2 5X + 9$. Donc la partie polynomiale est $E(X) = X^2 + 1$ et la fraction s'écrit $\frac{P(X)}{Q(X)} = X^2 + 1 + \frac{2X^2 5X + 9}{Q(X)}$. Notons que pour la fraction $\frac{2X^2 5X + 9}{Q(X)}$ le degré du numérateur est strictement plus petit que le degré du dénominateur.
- Deuxième étape : factorisation du dénominateur. Q a pour racine évidente +1 (racine double) et -2 (racine simple) et se factorise donc ainsi $Q(X) = (X-1)^2(X+2)$.
- Troisième étape : décomposition théorique en éléments simples. Le théorème de décomposition en éléments simples nous dit qu'il existe une unique décomposition : $\frac{P(X)}{Q(X)} = E(X) + \frac{a}{(X-1)^2} + \frac{b}{X-1} + \frac{c}{X+2}.$ Nous savons déjà que $E(X) = X^2 + 1$, il reste à trouver les nombres a, b, c.
- Quatrième étape : détermination des coefficients. Voici une première façon de déterminer a,b,c. On récrit la fraction $\frac{a}{(X-1)^2} + \frac{b}{X-1} + \frac{c}{X+2}$ au même dénominateur et on l'identifie avec $\frac{2X^2-5X+9}{Q(X)}$:

$$\frac{a}{(X-1)^2} + \frac{b}{X-1} + \frac{c}{X+2} = \frac{(b+c)X^2 + (a+b-2c)X + 2a - 2b + c}{(X-1)^2(X+2)} \text{ qui doit être égale à } \frac{2X^2 - 5X + 9}{(X-1)^2(X+2)}$$

On en déduit b+c=2, a+b-2c=-5 et 2a-2b+c=9. Cela conduit à l'unique solution a=2, b=-1, c=3. Donc

$$\frac{P}{Q} = \frac{X^5 - 2X^3 + 4X^2 - 8X + 11}{X^3 - 3X + 2} = X^2 + 1 + \frac{2}{(X - 1)^2} + \frac{-1}{X - 1} + \frac{3}{X + 2}.$$

Cette méthode est souvent la plus longue.

 Quatrième étape (bis) : détermination des coefficients. Voici une autre méthode plus efficace.

Notons $\frac{P'(X)}{Q(X)} = \frac{2X^2 - 5X + 9}{(X - 1)^2(X + 2)}$ dont la décomposition théorique est : $\frac{a}{(X - 1)^2} + \frac{b}{X - 1} + \frac{c}{X + 2}$ Pour déterminer a on multiplie la fraction $\frac{P'}{Q}$ par $(X - 1)^2$ et on évalue en x = 1. Tout d'abord en partant de la décomposition théorique on a :

$$F_1(X) = (X-1)^2 \frac{P'(X)}{Q(X)} = a + b(X-1) + c\frac{(X-1)^2}{X+2}$$
 donc $F_1(1) = a$

D'autre part

$$F_1(X) = (X-1)^2 \frac{P'(X)}{Q(X)} = (X-1)^2 \frac{2X^2 - 5X + 9}{(X-1)^2(X+2)} = \frac{2X^2 - 5X + 9}{X+2} \text{ donc } F_1(1) = 2$$

On en déduit a = 2.

On fait le même processus pour déterminer c: on multiplie par (X+2) et on évalue en -2. On calcule $F_2(X)=(X+2)\frac{P'(X)}{Q(X)}=\frac{2X^2-5X+9}{(X-1)^2}=a\frac{X+2}{(X-1)^2}+b\frac{X+2}{X-1}+c$ de deux façons et lorsque l'on évalue x=-2 on obtient d'une part $F_2(-2)=c$ et d'autre part $F_2(-2)=3$. Ainsi c=3.

Comme les coefficients sont uniques tous les moyens sont bons pour les déterminer. Par exemple lorsque l'on évalue la décomposition théorique $\frac{P'(X)}{Q(X)} = \frac{a}{(X-1)^2} + \frac{b}{X-1} + \frac{c}{X+2}$ en x=0, on obtient :

$$\frac{P'(0)}{Q(0)} = a - b + \frac{c}{2}$$

Donc
$$\frac{9}{2} = a - b + \frac{c}{2}$$
. Donc $b = a + \frac{c}{2} - \frac{9}{2} = -1$.

4.2. Décomposition en éléments simples sur R

Théorème 15. Décomposition en éléments simples sur R

Soit P/Q une fraction rationnelle avec $P,Q \in \mathbb{R}[X]$, pgcd(P,Q) = 1. Alors P/Q s'écrit de manière unique comme somme :

- d'une partie polynomiale E(X),
- d'éléments simples du type $\frac{a}{(X-\alpha)^i}$, d'éléments simples du type $\frac{aX+b}{(X^2+\alpha X+\beta)^i}$.

Où les $X - \alpha$ et $X^2 + \alpha X + \beta$ sont les facteurs irréductibles de Q(X) et les exposants i sont inférieurs ou égaux à la puissance correspondante dans cette factorisation.

Exemple 58

Décomposition en éléments simples de $\frac{P(X)}{Q(X)} = \frac{3X^4 + 5X^3 + 8X^2 + 5X + 3}{(X^2 + X + 1)^2(X - 1)}$. Comme deg $P < \deg Q$ alors E(X) = 0. Le dénominateur est déjà factorisé sur \mathbb{R} car $X^2 + X + 1$ est irréductible. La décomposition théorique est donc :

$$\frac{P(X)}{Q(X)} = \frac{aX+b}{(X^2+X+1)^2} + \frac{cX+d}{X^2+X+1} + \frac{e}{X-1}.$$

Il faut ensuite mener au mieux les calculs pour déterminer les coefficients afin d'obtenir :

$$\frac{P(X)}{Q(X)} = \frac{2X+1}{(X^2+X+1)^2} + \frac{-1}{X^2+X+1} + \frac{3}{X-1}.$$

Mini-exercices

- 1. Soit $Q(X) = (X-2)^2(X^2-1)^3(X^2+1)^4$. Pour $P \in \mathbb{R}[X]$ quelle est la forme théorique de la décomposition en éléments simples sur \mathbb{C} de $\frac{P}{Q}$? Et sur \mathbb{R} ?
- 2. Décomposer les fractions suivantes en éléments simples sur \mathbb{R} et $\mathbb{C}: \frac{1}{X^2-1}; \frac{X^2+1}{(X-1)^2}; \frac{X}{X^3-1}$.
- 3. Décomposer les fractions suivantes en éléments simples sur $\mathbb{R}: \frac{X^2+X+1}{(X-1)(X+2)^2}; \frac{2X^2-X}{(X^2+2)^2};$ $\frac{X^6}{(X^2+1)^2}$.
- 4. Soit $F(X) = \frac{2X^2 + 7X 20}{X + 2}$. Déterminer l'équation de l'asymptote oblique en $\pm \infty$. Étudier la position du graphe de F par rapport à cette droite.

Auteurs

Rédaction: Arnaud Bodin

Basé sur des cours de Guoting Chen et Marc Bourdon

Relecture: Stéphanie Bodin


```
1 Groupe
```

- 2 Sous-groupes
- 3 Morphismes de groupes
- 4 Le groupe $\mathbb{Z}/n\mathbb{Z}$
- 5 Le groupe des permutations \mathcal{S}_n

```
Vidéo ■ partie 1. Définition

Vidéo ■ partie 2. Sous-groupes

Vidéo ■ partie 3. Morphismes de groupes

Vidéo ■ partie 4. Le groupe Z/nZ

Vidéo ■ partie 5. Le groupe des permutations
```

Motivation

Évariste Galois a tout juste vingt ans lorsqu'il meurt dans un duel. Il restera pourtant comme l'un des plus grands mathématiciens de son temps pour avoir introduit la notion de groupe, alors qu'il avait à peine dix-sept ans.

Vous savez résoudre les équations de degré 2 du type $ax^2 + bx + c = 0$. Les solutions s'expriment en fonction de a,b,c et de la fonction racine carrée $\sqrt{}$. Pour les équations de degré 3, $ax^3 + bx^2 + cx + d = 0$, il existe aussi des formules. Par exemple une solution de $x^3 + 3x + 1 = 0$ est $x_0 = \sqrt[3]{\frac{\sqrt{5}-1}{2}} - \sqrt[3]{\frac{\sqrt{5}+1}{2}}$. De telles formules existent aussi pour les équations de degré 4.

Un préoccupation majeure au début du XIX^e siècle était de savoir s'îl existait des formules similaires pour les équations de degré 5 ou plus. La réponse fut apportée par Galois et Abel : non il n'existe pas en général une telle formule. Galois parvient même à dire pour quels polynômes c'est possible et pour lesquels ce ne l'est pas. Il introduit pour sa démonstration la notion de groupe.

Les groupes sont à la base d'autres notions mathématiques comme les anneaux, les corps, les matrices, les espaces vectoriels,... Mais vous les retrouvez aussi en arithmétique, en géométrie, en cryptographie!

Nous allons introduire dans ce chapitre la notion de groupe, puis celle de sous-groupe. On étudiera ensuite les applications entre deux groupes : les morphismes de groupes. Finalement nous détaillerons deux groupes importants : le groupe $\mathbb{Z}/n\mathbb{Z}$ et le groupe des permutations \mathscr{S}_n .

1. Groupe

1.1. Définition

Définition 28

Un *groupe* (G, \star) est un ensemble G auquel est associé une opération \star (la *loi de composition*) vérifiant les quatre propriétés suivantes :

- 1. pour tout $x, y \in G$, $x \star y \in G$ (\star est une *loi de composition interne*)
- 2. pour tout $x, y, z \in G$, $(x \star y) \star z = x \star (y \star z)$ (la loi est *associative*)
- 3. il existe $e \in G$ tel que $\forall x \in G, x \star e = x$ et $e \star x = x$ (e est l'élément neutre)
- 4. pour tout $x \in G$ il existe $x' \in G$ tel que $x \star x' = x' \star x = e$ (x' est l'*inverse* de x et est noté x^{-1})

Si de plus l'opération vérifie

pour tous
$$x, y \in G$$
, $x \star y = y \star x$

on dit que G est un groupe commutatif (ou abélien).

Remarque

- L'élément neutre e est unique. En effet si e' vérifie aussi le point (3), alors on a $e' \star e = e$ (car e est élément neutre) et $e' \star e = e'$ (car e' aussi). Donc e = e'. Remarquez aussi que l'inverse de l'élément neutre est lui-même. S'il y a plusieurs groupes, on pourra noter e_G pour l'élément neutre du groupe G.
- Un élément $x \in G$ ne possède qu'un seul inverse. En effet si x' et x'' vérifient tous les deux le point (4) alors on a $x \star x'' = e$ donc $x' \star (x \star x'') = x' \star e$. Par l'associativité (2) et la propriété de l'élément neutre (3) alors $(x' \star x) \star x'' = x'$. Mais $x' \star x = e$ donc $e \star x'' = x'$ et ainsi x'' = x'.

1.2. Exemples

Voici des ensembles et des opérations bien connus qui ont une structure de groupe.

- (\mathbb{R}^*, \times) est un groupe commutatif, \times est la multiplication habituelle. Vérifions chacune des propriétés :
 - 1. Si $x, y \in \mathbb{R}^*$ alors $x \times y \in \mathbb{R}^*$.
 - 2. Pour tout $x, y, z \in \mathbb{R}^*$ alors $x \times (y \times z) = (x \times y) \times z$, c'est l'associativité de la multiplication des nombres réels.
 - 3. 1 est l'élément neutre pour la multiplication, en effet $1 \times x = x$ et $x \times 1 = x$, ceci quelque soit $x \in \mathbb{R}^*$.
 - 4. L'inverse d'un élément $x \in \mathbb{R}^*$ est $x' = \frac{1}{x}$ (car $x \times \frac{1}{x}$ est bien égal à l'élément neutre 1). L'inverse de x est donc $x^{-1} = \frac{1}{x}$. Notons au passage que nous avions exclu 0 de notre groupe, car il n'a pas d'inverse.
 - Ces propriétés font de (\mathbb{R}^*, \times) un groupe.
 - 5. Enfin $x \times y = y \times x$, c'est la commutativité de la multiplication des réels.
- (\mathbb{Q}^*, \times) , (\mathbb{C}^*, \times) sont des groupes commutatifs.
- $(\mathbb{Z},+)$ est un groupe commutatif. Ici + est l'addition habituelle.
 - 1. Si $x, y \in \mathbb{Z}$ alors $x + y \in \mathbb{Z}$.

- 2. Pour tout $x, y, z \in \mathbb{Z}$ alors x + (y + z) = (x + y) + z.
- 3. 0 est l'élément neutre pour l'addition, en effet 0+x=x et x+0=x, ceci quelque soit $x\in\mathbb{Z}$.
- 4. L'inverse d'un élément $x \in \mathbb{Z}$ est x' = -x car x + (-x) = 0 est bien l'élément neutre 0. Quand la loi de groupe est + l'inverse s'appelle plus couramment l'*opposé*.
- 5. Enfin x + y = y + x, et donc (\mathbb{Z} , +) est un groupe commutatif.
- **-** (\mathbb{Q} , +), (\mathbb{R} , +), (\mathbb{C} , +) sont des groupes commutatifs.
- Soit \mathcal{R} l'ensemble des rotations du plan dont le centre est à l'origine O.

Alors pour deux rotations R_{θ} et $R_{\theta'}$ la composée $R_{\theta} \circ R_{\theta'}$ est encore une rotation de centre l'origine et d'angle $\theta + \theta'$. Ici \circ est la composition. Ainsi (\mathcal{R}, \circ) forme un groupe (qui est même commutatif). Pour cette loi l'élément neutre est la rotation d'angle 0: c'est l'identité du plan. L'inverse d'une rotation d'angle θ est la rotation d'angle $-\theta$.

- Si $\mathscr I$ désigne l'ensemble des isométries du plan (ce sont les translations, rotations, réflexions et leurs composées) alors $(\mathscr I,\circ)$ est un groupe. Ce groupe n'est pas un groupe commutatif. En effet, identifions le plan à $\mathbb R^2$ et soit par exemple R la rotation de centre O=(0,0) et d'angle $\frac{\pi}{2}$ et T la translation de vecteur (1,0). Alors les isométries $T\circ R$ et $R\circ T$ sont des applications distinctes. Par exemple les images du point A=(1,1) par ces applications sont distinctes : $T\circ R(1,1)=T(-1,1)=(0,1)$ alors que $R\circ T(1,1)=R(2,1)=(-1,2)$.

Voici deux exemples qui **ne sont pas** des groupes :

- (\mathbb{Z}^*, \times) n'est pas un groupe. Car si 2 avait un inverse (pour la multiplication \times) ce serait $\frac{1}{2}$ qui n'est pas un entier.
- (N,+) n'est pas un groupe. En effet l'inverse de 3 (pour l'addition +) devrait être -3 mais $-3 \notin \mathbb{N}$.

Nous étudierons dans les sections 4 et 5 deux autres groupes très importants : les groupes cycliques $(\mathbb{Z}/n\mathbb{Z}, +)$ et les groupes de permutations (\mathscr{S}_n, \circ) .

1.3. Puissance

Revenons à un groupe (G, \star) . Pour $x \in G$ nous noterons $x \star x$ par x^2 et $x \star x \star x$ par x^3 . Plus généralement nous noterons :

$$-x^{n} = \underbrace{x \star x \star \cdots \star x}_{n \text{ fois}},$$

$$-x^{0} = e,$$

$$-x^{-n} = \underbrace{x^{-1} \star \cdots \star x^{-1}}_{n \text{ fois}}.$$
appelez-yous que x^{-1} dés

Rappelez-vous que x^{-1} désigne l'inverse de x dans le groupe.

Les règles de calcul sont les mêmes que pour les puissances des nombres réels. Pour $x, y \in G$ et $m, n \in \mathbb{Z}$ nous avons :

- $-x^m \star x^n = x^{m+n},$
- $-(x^m)^n=x^{mn},$
- $(x \star y)^{-1} = y^{-1} \star x^{-1}$, attention à l'ordre!
- Si (G, \star) est commutatif alors $(x \star y)^n = x^n \star y^n$.

1.4. Exemple des matrices 2×2

Une $matrice 2 \times 2$ est un tableau de 4 nombres (pour nous des réels) notée ainsi :

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
.

Nous allons définir l'opération *produit* noté × de deux matrices $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ et $M' = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$:

$$M \times M' = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} aa' + bc' & ab' + bd' \\ ca' + dc' & cb' + dd' \end{pmatrix}.$$

Voici comment présenter les calculs, on place M à gauche, M' au dessus de ce qui va être le résultat. On calcule un par un, chacun des termes de $M \times M'$.

Pour le premier terme on prend la colonne située au dessus et la ligne située à gauche : on effectue les produits $a \times a'$ et $b \times c'$ qu'on additionne pour obtenir le premier terme du résultat. Même chose avec le second terme : on prend la colonne située au dessus, la ligne située à gauche, on fait les produit, on additionne : ab' + bd'. Idem pour les deux autres termes.

$$\begin{pmatrix} x & b' \\ a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} aa'+bc' & ab'+bd' \\ ca'+dc' & cb'+dd' \end{pmatrix}$$

Par exemple si $M = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$ et $M' = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$ alors voici comment poser les calculs $(M \times M')$ à gauche, $M' \times M$ à droite

$$\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ -2 & -1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}$$

alors $M \times M' = \begin{pmatrix} 3 & 1 \\ -2 & -1 \end{pmatrix}$ et $M' \times M = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}$. Remarquez qu'en général $M \times M' \neq M' \times M$.

Le **déterminant** d'une matrice $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ est par définition le nombre réel

$$\det M = ad - bc$$
.

Proposition 37

L'ensemble des matrices 2×2 ayant un déterminant non nul, muni de la multiplication des matrices \times , forme un groupe non-commutatif.

Ce groupe est noté (\mathscr{G}_2, \times).

Nous aurons besoin d'un résultat préliminaire :

Lemme 4

 $\det(M \times M') = \det M \cdot \det M'.$

Pour la preuve, il suffit de vérifier le calcul : (aa' + bc')(cb' + dd') - (ab' + bd')(ca' + dc') = (ad - bc)(a'd' - b'c').

Revenons à la preuve de la proposition.

Démonstration

- 1. Vérifions la loi de composition interne. Si M, M' sont des matrices 2×2 alors $M \times M'$ aussi. Maintenant si M et M' sont de déterminants non nuls alors $\det(M \times M') = \det M \cdot \det M'$ est aussi non nul. Donc si $M, M' \in \mathcal{G}\ell_2$ alors $M \times M' \in \mathcal{G}\ell_2$.
- 2. Pour vérifier que la loi est associative, c'est un peu fastidieux. Pour trois matrices M, M', M'' quelconques il faut montrer $(M \times M') \times M'' = M \times (M' \times M'')$. Faites-le pour vérifier que vous maîtrisez le produit de matrices.
- 3. Existence de l'élément neutre. La *matrice identité* $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ est l'élément neutre pour la multiplication des matrices : en effet $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ et $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \times \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.
- 4. Existence de l'inverse. Soit $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ une matrice de déterminant non nul alors $M^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ est l'inverse de M: vérifiez que $M \times M^{-1} = I$ et que $M^{-1} \times M = I$.
- 5. Enfin nous avons déjà vu que cette multiplication n'est pas commutative.

Mini-exercices

- 1. Montrer que (\mathbb{R}_+^* , ×) est un groupe commutatif.
- 2. Soit $f_{a,b}: \mathbb{R} \to \mathbb{R}$ la fonction définie par $x \mapsto ax + b$. Montrer que l'ensemble $\mathscr{F} = \{f_{a,b} \mid a \in \mathbb{R}^*, b \in \mathbb{R}\}$ muni de la composition «o» est un groupe non commutatif.
- 3. (Plus dur) Soit G =]-1,1[. Pour $x,y \in G$ on définit $x \star y = \frac{x+y}{1+xy}$. Montrer que (G,\star) forme un groupe en (a) montrant que \star est une loi de composition interne : $x \star y \in G$; (b) montrant que la loi est associative; (c) montrant que 0 est élément neutre; (d) trouvant l'inverse de x.

Soit (G, \star) est un groupe quelconque, x, y, z sont des éléments de G.

- 4. Montrer que si $x \star y = x \star z$ alors y = z.
- 5. Que vaut $(x^{-1})^{-1}$?
- 6. Si $x^n = e$, quel est l'inverse de x?

Matrices:

- 7. Soient $M_1 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $M_2 = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$, $M_3 = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. Vérifier que $M_1 \times (M_2 \times M_3) = (M_1 \times M_2) \times M_3$.
- 8. Calculer $(M_1 \times M_2)^2$ et $M_1^2 \times M_2^2$. (Rappel : $M^2 = M \times M$)
- 9. Calculer les déterminants des M_i ainsi que leur inverse.
- 10. Montrer que l'ensemble des matrices 2×2 muni de l'addition + définie par $\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} a+a' & b+b' \\ c+c' & d+d' \end{pmatrix}$ forme un groupe commutatif.

2. Sous-groupes

Montrer qu'un ensemble est un groupe à partir de la définition peut être assez long. Il existe une autre technique, c'est de montrer qu'un sous-ensemble d'un groupe est lui-même un groupe : c'est la notion de sous-groupe.

2.1. Définition

Soit (G, \star) un groupe.

Définition 29

Une partie $H \subseteq G$ est un **sous-groupe** de G si :

- $-e \in H$
- pour tout $x, y \in H$, on a $x \star y \in H$,
- **–** pour tout x ∈ H, on a $x^{-1} ∈ H$.

Notez qu'un sous-groupe H est aussi un groupe (H, \star) avec la loi induite par celle de G. Par exemple si $x \in H$ alors, pour tout $n \in \mathbb{Z}$, nous avons $x^n \in H$.

Remarque

Un critère pratique et plus rapide pour prouver que H est un sous-groupe de G est :

- ${\mathord{\hspace{1pt}\text{--}\hspace{1pt}}} H$ contient au moins un élément
- pour tout $x, y \in H$, $x \star y^{-1} \in H$.

2.2. Exemples

- (\mathbb{R}_+^*,\times) est un sous-groupe de (\mathbb{R}^*,\times) . En effet :
 - $-1\in\mathbb{R}_{+}^{*}$
 - si $x, y \in \mathbb{R}_+^*$ alors $x \times y \in \mathbb{R}_+^*$,
 - si $x \in \mathbb{R}_+^*$ alors $x^{-1} = \frac{1}{x} \in \mathbb{R}_+^*$.
- (U, ×) est un sous-groupe de (\mathbb{C}^* , ×), où $\mathbb{U} = \{z \in \mathbb{C} \mid |z| = 1\}$.
- **−** (\mathbb{Z} , +) est un sous-groupe de (\mathbb{R} , +).
- $\{e\}$ et G sont les **sous-groupes** triviaux du groupe G.
- L'ensemble \mathcal{R} des rotations du plan dont le centre est à l'origine est un sous-groupe du groupe des isométries \mathcal{I} .
- L'ensemble des matrices diagonales $\begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$ avec $a \neq 0$ et $d \neq 0$ est un sous-groupe de $(\mathscr{G}\ell_2, \times)$.

2.3. Sous-groupes de \mathbb{Z}

Proposition 38

Les sous-groupes de $(\mathbb{Z}, +)$ sont les $n\mathbb{Z}$, pour $n \in \mathbb{Z}$.

L'ensemble $n\mathbb{Z}$ désigne l'ensemble des multiples de n:

$$n\mathbb{Z} = \left\{ k \cdot n \mid k \in \mathbb{Z} \right\}.$$

Par exemple:

- $-2\mathbb{Z} = \{..., -4, -2, 0, +2, +4, +6, ...\}$ est l'ensemble des entiers pairs,
- $-7\mathbb{Z} = \{..., -14, -7, 0, +7, +14, +21, ...\}$ est l'ensemble des multiples de 7.

Démonstration

Fixons $n \in \mathbb{Z}$. L'ensemble $n\mathbb{Z}$ est un sous-groupe de $(\mathbb{Z}, +)$, en effet :

- $n\mathbb{Z} \subset \mathbb{Z}$,
- l'élément neutre 0 appartient à $n\mathbb{Z}$,
- pour x = kn et y = k'n des éléments de $n\mathbb{Z}$ alors x + y = (k + k')n est aussi un élément de $n\mathbb{Z}$,
- enfin si x = kn est un élément de $n\mathbb{Z}$ alors -x = (-k)n est aussi un élément de $n\mathbb{Z}$.

Réciproquement soit H un sous-groupe de $(\mathbb{Z}, +)$. Si $H = \{0\}$ alors $H = 0\mathbb{Z}$ et c'est fini. Sinon H contient au moins un élément non-nul et positif (puisque tout élément est accompagné de son opposé) et notons

$$n = \min \{h > 0 \mid h \in H\}.$$

Alors n > 0. Comme $n \in H$ alors $-n \in H$, $2n = n + n \in H$, et plus généralement pour $k \in \mathbb{Z}$ alors $kn \in H$. Ainsi $n\mathbb{Z} \subset H$. Nous allons maintenant montrer l'inclusion inverse. Soit $h \in H$. Écrivons la division euclidienne :

$$h = kn + r$$
, avec $k, r \in \mathbb{Z}$ et $0 \le r < n$.

Mais $h \in H$ et $kn \in H$ donc $r = h - kn \in H$. Nous avons un entier $r \ge 0$ qui est un élément de H et strictement plus petit que n. Par la définition de n, nécessairement r = 0. Autrement dit h = kn et donc $h \in n\mathbb{Z}$. Conclusion $H = n\mathbb{Z}$.

2.4. Sous-groupes engendrés

Soit (G, \star) un groupe et $E \subset G$ un sous-ensemble de G. Le **sous-groupe engendré** par E est le plus petit sous-groupe de G contenant E.

Par exemple si $E = \{2\}$ et le groupe est (\mathbb{R}^*, \times) , le sous-groupe engendré par E est $H = \{2^n \mid n \in \mathbb{Z}\}$. Pour le prouver : il faut montrer que H est un sous-groupe, que $2 \in H$, et que si H' est un autre sous-groupe contenant 2 alors $H \subset H'$.

Autre exemple avec le groupe $(\mathbb{Z},+)$: si $E_1=\{2\}$ alors le sous-groupe engendré par E_1 est $H_1=2\mathbb{Z}$. Si $E_2=\{8,12\}$ alors $H_2=4\mathbb{Z}$ et plus généralement si $E=\{a,b\}$ alors $H=n\mathbb{Z}$ où $n=\operatorname{pgcd}(a,b)$.

2.5. Mini-exercices

- 1. Montrer que $\{2^n \mid n \in \mathbb{Z}\}$ est un sous-groupe de (\mathbb{R}^*, \times) .
- 2. Montrer que si H et H' sont deux sous-groupes de (G, \star) alors $H \cap H'$ est aussi un sous-groupe.
- 3. Montrer que $5\mathbb{Z} \cup 8\mathbb{Z}$ n'est *pas* un sous-groupe de $(\mathbb{Z}, +)$.
- 4. Montrer que l'ensemble des matrices 2×2 de déterminant 1 ayant leurs coefficients dans \mathbb{Z} est un sous-groupe de (\mathcal{G}_2, \times) .
- 5. Trouver le sous-groupe de $(\mathbb{Z}, +)$ engendré par $\{-12, 8, 20\}$.

3. Morphismes de groupes

3.1. Définition

Définition 30

Soient (G, \star) et (G', \diamond) deux groupes. Une application $f: G \longrightarrow G'$ est un **morphisme de groupes** si :

pour tout
$$x, x' \in G$$
 $f(x \star x') = f(x) \diamond f(x')$

L'exemple que vous connaissez déjà est le suivant : soit G le groupe $(\mathbb{R}, +)$ et G' le groupe (\mathbb{R}_+^*, \times) . Soit $f : \mathbb{R} \longrightarrow \mathbb{R}_+^*$ l'application exponentielle définie par $f(x) = \exp(x)$. Nous avons bien

$$f(x+x') = \exp(x+x') = \exp(x) \times \exp(x') = f(x) \times f(x').$$

Et donc f est bien un morphisme de groupes.

3.2. Propriétés

Proposition 39

Soit $f: G \longrightarrow G'$ un morphisme de groupes alors :

- $f(e_G) = e_{G'},$
- pour tout $x \in G$, $f(x^{-1}) = (f(x))^{-1}$.

Il faut faire attention où «habitent» les objets : e_G est l'élément neutre de G, $e_{G'}$ celui de G'. Il n'y a pas de raison qu'ils soient égaux (ils ne sont même pas dans le même ensemble). Aussi x^{-1} est l'inverse de x dans G, alors que $(f(x))^{-1}$ est l'inverse de f(x) mais dans G'.

Reprenons l'exemple de la fonction $f: \mathbb{R} \longrightarrow \mathbb{R}_+^*$ définie par $f(x) = \exp(x)$. Nous avons bien f(0) = 1: l'élément neutre de (\mathbb{R}_+^*, \times) . Pour $x \in \mathbb{R}$ son inverse dans $(\mathbb{R}_+, +)$ est ici son opposé -x, alors $f(-x) = \exp(-x) = \frac{1}{\exp(x)} = \frac{1}{f(x)}$ est bien l'inverse (dans (\mathbb{R}_+^*, \times)) de f(x).

Démonstration

- $f(e_G) = f(e_G \star e_G) = f(e_G) \diamond f(e_G)$, en multipliant (à droite par exemple) par $f(e_G)^{-1}$ on obtient $e_{G'} = f(e_G)$.
- Soit $x \in G$ alors $x \star x^{-1} = e_G$ donc $f(x \star x^{-1}) = f(e_G)$. Cela entraı̂ne $f(x) \diamond f(x^{-1}) = e_{G'}$, en composant à gauche par $(f(x))^{-1}$, nous obtenons $f(x^{-1}) = (f(x))^{-1}$.

Proposition 40

- Soient deux morphismes de groupes $f:G\longrightarrow G'$ et $g:G'\longrightarrow G''$. Alors $g\circ f:G\longrightarrow G''$ est un morphisme de groupes.
- Si $f: G \longrightarrow G'$ est un morphisme bijectif alors $f^{-1}: G' \longrightarrow G$ est aussi un morphisme de groupes.

Démonstration

La première partie est facile. Montrons la deuxième : Soit $y,y'\in G'$. Comme f est bijective, il existe $x,x'\in G$ tels que f(x)=y et f(x')=y'. Alors $f^{-1}(y\diamond y')=f^{-1}\big(f(x)\diamond f(x')\big)=f^{-1}\big(f(x\star x')\big)=x\star x'=f^{-1}(y)\star f^{-1}(y')$. Et donc f^{-1} est un morphisme de G' vers G.

Définition 31

Un morphisme bijectif est un *isomorphisme*. Deux groupes G, G' sont *isomorphes* s'il existe un morphisme bijectif $f: G \longrightarrow G'$.

Continuons notre exemple $f(x) = \exp(x)$, $f: \mathbb{R} \longrightarrow \mathbb{R}^*_+$ est une application bijective. Sa bijection réciproque $f^{-1}: \mathbb{R}^*_+ \longrightarrow \mathbb{R}$ est définie par $f^{-1}(x) = \ln(x)$. Par la proposition 40 nous savons que f^{-1} est aussi un morphisme (de (\mathbb{R}^*_+, \times) vers $(\mathbb{R}, +)$) donc $f^{-1}(x \times x') = f^{-1}(x) + f^{-1}(x')$. Ce qui s'exprime ici par la formule bien connue :

$$\ln(x \times x') = \ln(x) + \ln(x').$$

Ainsi f est un isomorphisme et les groupes $(\mathbb{R}, +)$ et (\mathbb{R}_+^*, \times) sont isomorphes.

3.3. Noyau et image

Soit $f: G \longrightarrow G'$ un morphisme de groupes. Nous définissons deux sous-ensembles importants qui vont être des sous-groupes.

Définition 32

Le noyau de f est

$$\operatorname{Ker} f = \left\{ x \in G \mid f(x) = e_{G'} \right\}$$

C'est donc un sous-ensemble de G. En terme d'image réciproque nous avons par définition $\operatorname{Ker} f = f^{-1}(\{e_{G'}\})$. (Attention, la notation f^{-1} ici désigne l'image réciproque, et ne signifie pas que f est bijective.) Le noyau est donc l'ensemble des éléments de G qui s'envoient par f sur l'élément neutre de G'.

Définition 33

L'image de f est

$$\operatorname{Im} f = \{ f(x) \mid x \in G \} \mid$$

C'est donc un sous-ensemble de G' et en terme d'image directe nous avons $\operatorname{Im} f = f(G)$. Ce sont les éléments de G' qui ont (au moins) un antécédent par f.

Proposition 41

Soit $f: G \longrightarrow G'$ un morphisme de groupes.

- 1. Ker f est un sous-groupe de G.
- 2. Im f est un sous-groupe de G'.
- 3. f est injectif si et seulement si Ker $f = \{e_G\}$.
- 4. f est surjectif si et seulement si Im f = G'.

Démonstration

- 1. Montrons que le noyau est un sous-groupe de G.
 - (a) $f(e_G) = e_{G'}$ donc $e_G \in \text{Ker } f$.
 - (b) Soient $x, x' \in \text{Ker } f$. Alors $f(x \star x') = f(x) \diamond f(x') = e_{G'} \diamond e_{G'} = e_{G'}$ et donc $x \star x' \in \text{Ker } f$.
 - (c) Soit $x \in \text{Ker } f$. Alors $f(x^{-1}) = f(x)^{-1} = e_{G'}^{-1} = e_{G'}$. Et donc $x^{-1} \in \text{Ker } f$.
- 2. Montrons que l'image est un sous-groupe de G'.
 - (a) $f(e_G) = e_{G'}$ donc $e_{G'} \in \text{Im } f$.
- (b) Soient $y, y' \in \text{Im } f$. Il existe alors $x, x' \in G$ tels que f(x) = y, f(x') = y'. Alors $y \diamond y' = f(x) \diamond f(x') = f(x \star x') \in \text{Im } f$.
- (c) Soit $y \in \text{Im } f$ et $x \in G$ tel que y = f(x). Alors $y^{-1} = f(x)^{-1} = f(x^{-1}) \in \text{Im } f$.
- 3. Supposons f injective. Soit $x \in \operatorname{Ker} f$, alors $f(x) = e_{G'}$ donc $f(x) = f(e_G)$ et comme f est injective alors $x = e_G$. Donc $\operatorname{Ker} f = \{e_G\}$. Réciproquement supposons $\operatorname{Ker} f = \{e_G\}$. Soient $x, x' \in G$ tels que f(x) = f(x') donc $f(x) \diamond \left(f(x')\right)^{-1} = e_{G'}$, d'où $f(x) \diamond f(x'^{-1}) = e_{G'}$ et donc $f(x \star x'^{-1}) = e_{G'}$. Ceci implique que $x \star x'^{-1} \in \operatorname{Ker} f$. Comme $\operatorname{Ker} f = \{e_G\}$ alors $x \star x'^{-1} = e_G$ et donc x = x'. Ainsi f est injective.
- 4. C'est clair!

3.4. Exemples

Exemple 59

- 1. Soit $f: \mathbb{Z} \longrightarrow \mathbb{Z}$ définie par f(k) = 3k. $(\mathbb{Z}, +)$ est considéré comme ensemble de départ et d'arrivée de l'application Alors f est un morphisme du groupe $(\mathbb{Z}, +)$ dans lui-même car f(k+k') = 3(k+k') = 3k+3k' = f(k)+f(k'). Calculons le noyau : Ker $f = \{k \in \mathbb{Z} \mid f(k) = 0\}$. Mais si f(k) = 0 alors 3k = 0 donc k = 0. Ainsi Ker $f = \{0\}$ est réduit à l'élément neutre et donc f est injective. Calculons maintenant l'image $\mathrm{Im}\, f = \{f(k) \mid k \in \mathbb{Z}\} = \{3k \mid k \in \mathbb{Z}\} = 3\mathbb{Z}$. Nous retrouvons que $3\mathbb{Z}$ est un sous-groupe de $(\mathbb{Z}, +)$.
 - Plus généralement si l'on fixe $n \in \mathbb{Z}$ et que f est définie par $f(k) = k \cdot n$ alors $\operatorname{Ker} f = \{0\}$ et $\operatorname{Im} f = n\mathbb{Z}$.
- 2. Soient les groupes $(\mathbb{R},+)$ et (\mathbb{U},\times) (où $\mathbb{U}=\{z\in\mathbb{C}\mid |z|=1\}$) et f l'application $f:\mathbb{R}\longrightarrow\mathbb{U}$ définie par $f(t)=e^{\mathrm{i}t}$. Montrons que f est un morphisme : $f(t+t')=e^{\mathrm{i}(t+t')}=e^{\mathrm{i}t}\times e^{\mathrm{i}t'}=f(t)\times f(t')$. Calculons le noyau $\mathrm{Ker}\, f=\{t\in\mathbb{R}\mid f(t)=1\}$. Mais si f(t)=1 alors $e^{\mathrm{i}t}=1$ donc $t=0\pmod{2\pi}$. D'où $\mathrm{Ker}\, f=\{2k\pi\mid k\in\mathbb{Z}\}=2\pi\mathbb{Z}$. Ainsi f n'est pas injective. L'image de f est \mathbb{U} car tout nombre complexe de module 1 s'écrit sous la forme $f(t)=e^{\mathrm{i}t}$.
- 3. Soient les groupes $(\mathscr{G}\ell_2,\times)$ et (\mathbb{R}^*,\times) et $f:\mathscr{G}\ell_2\longrightarrow\mathbb{R}^*$ définie par $f(M)=\det M$. Alors la formule vue plus haut (lemme 4) $\det(M\times M')=\det M\times\det M'$ implique que f est un morphisme de groupes. Ce morphisme est surjectif, car si $t\in\mathbb{R}^*$ alors $\det\begin{pmatrix}1&0\\0&t\end{pmatrix}=t$. Ce morphisme n'est pas injectif car par exemple $\det\begin{pmatrix}1&0\\0&t\end{pmatrix}=\det\begin{pmatrix}t&0\\0&1\end{pmatrix}$.

Attention : ne pas confondre les différentes notations avec des puissances $-1: x^{-1}, f^{-1}, f^{-1}(\{e_{G'}\}):$

- x^{-1} désigne l'inverse de x dans un groupe (G, \star) . Cette notation est cohérente avec la notation usuelle si le groupe est (\mathbb{R}^*, \times) alors $x^{-1} = \frac{1}{x}$.
- Pour une application bijective f^{-1} désigne la bijection réciproque.
- Pour une application quelconque $f: E \longrightarrow F$, l'image réciproque d'une partie $B \subset F$ est $f^{-1}(B) = \{x \in E \mid f(x) = B\}$, c'est une partie de E. Pour un morphisme f, $\operatorname{Ker} f = f^{-1}(\{e_{G'}\})$ est

donc l'ensemble des $x \in G$ tels que leur image par f soit $e_{G'}$. Le noyau est défini même si f n'est pas bijective.

Mini-exercices

- 1. Soit $f: (\mathbb{Z}, +) \longrightarrow (\mathbb{Q}^*, \times)$ défini par $f(n) = 2^n$. Montrer que f est un morphisme de groupes. Déterminer le noyau de f. f est-elle injective? surjective?
- 2. Mêmes questions pour $f:(\mathbb{R},+) \longrightarrow (\mathcal{R},\circ)$, qui à un réel θ associe la rotation d'angle θ de centre l'origine.
- 3. Soit (G, \star) un groupe et $f: G \longrightarrow G$ l'application définie par $f(x) = x^2$. (Rappel: $x^2 = x \star x$.) Montrer que si (G, \star) est commutatif alors f est un morphisme. Montrer ensuite la réciproque.
- **4.** Montrer qu'il n'existe pas de morphisme $f:(\mathbb{Z},+)\to(\mathbb{Z},+)$ tel que f(2)=3.
- 5. Montrer que $f,g:(\mathbb{R}^*,\times)\to(\mathbb{R}^*,\times)$ défini par $f(x)=x^2,\,g(x)=x^3$ sont des morphismes de groupes. Calculer leurs images et leurs noyaux respectives.

4. Le groupe $\mathbb{Z}/n\mathbb{Z}$

4.1. L'ensemble et le groupe $\mathbb{Z}/n\mathbb{Z}$

Fixons $n \ge 1$. Rappelons que $\mathbb{Z}/n\mathbb{Z}$ est l'ensemble

$$\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}\}$$

où \overline{p} désigne la classe d'équivalence de p modulo n.

Autrement dit

$$\overline{p} = \overline{q} \Longleftrightarrow p \equiv q \pmod{n}$$

ou encore $\overline{p} = \overline{q} \Longleftrightarrow \exists k \in \mathbb{Z} \quad p = q + kn$.

On définit une *addition* sur $\mathbb{Z}/n\mathbb{Z}$ par :

$$\overline{p} + \overline{q} = \overline{p+q}$$

Par exemple dans $\mathbb{Z}/60\mathbb{Z}$, on a $\overline{31} + \overline{46} = \overline{31 + 46} = \overline{77} = \overline{17}$.

Nous devons montrer que cette addition est bien définie : si $\overline{p'} = \overline{p}$ et $\overline{q'} = \overline{q}$ alors $p' \equiv p \pmod{n}$, $q' \equiv q \pmod{n}$ et donc $p' + q' \equiv p + q \pmod{n}$. Donc $\overline{p' + q'} = \overline{p + q}$. Donc on a aussi $\overline{p'} + \overline{q'} = \overline{p} + \overline{q}$. Nous avons montré que l'addition est indépendante du choix des représentants.

L'exemple de la vie courante est le suivant : considérons seulement les minutes d'une montre ; ces minutes varient de 0 à 59. Lorsque l'aiguille passe à 60, elle désigne aussi 0 (on ne s'occupe pas des heures). Ainsi de suite : 61 s'écrit aussi 1, 62 s'écrit aussi 2,... Cela correspond donc à l'ensemble $\mathbb{Z}/60\mathbb{Z}$. On peut aussi additionner des minutes : 50 minutes plus 15 minutes font 65 minutes qui s'écrivent aussi 5 minutes. Continuons avec l'écriture dans $\mathbb{Z}/60\mathbb{Z}$ par exemple : $\overline{135} + \overline{50} = \overline{185} = \overline{5}$. Remarquez que si l'on écrit d'abord $\overline{135} = \overline{15}$ alors $\overline{135} + \overline{50} = \overline{15} + \overline{50} = \overline{65} = \overline{5}$. On pourrait même écrire $\overline{50} = -\overline{10}$ et donc $\overline{135} + \overline{50} = \overline{15} - \overline{10} = \overline{5}$. C'est le fait que l'addition soit bien définie qui justifie que l'on trouve toujours le même résultat.

Proposition 42

 $(\mathbb{Z}/n\mathbb{Z},+)$ est un groupe commutatif.

C'est facile. L'élément neutre est $\overline{0}$. L'opposé de \overline{k} est $-\overline{k} = \overline{-k} = \overline{n-k}$. L'associativité et la commutativité découlent de celles de $(\mathbb{Z}, +)$.

4.2. Groupes cycliques de cardinal fini

Définition 34

Un groupe (G, \star) est un groupe cyclique s'il existe un élément $a \in G$ tel que :

pour tout
$$x \in G$$
, il existe $k \in \mathbb{Z}$ tel que $x = a^k$

Autrement dit le groupe G est engendré par un seul élément a.

Le groupe $(\mathbb{Z}/n\mathbb{Z},+)$ est un groupe cyclique. En effet il est engendré par $a=\overline{1}$, car tout élément \overline{k} s'écrit $\overline{k}=\underline{\overline{1}+\overline{1}+\cdots\overline{1}}=k\cdot\overline{1}$.

Voici un résultat intéressant : il n'existe, à isomorphisme près, qu'un seul groupe cyclique à n éléments, c'est $\mathbb{Z}/n\mathbb{Z}$:

Théorème 16

Si (G, \star) un groupe cyclique de cardinal n, alors (G, \star) est isomorphe à $(\mathbb{Z}/n\mathbb{Z}, +)$.

Démonstration

Comme G est cyclique alors $G = \{..., a^{-2}, a^{-1}, e, a, a^2, a^3, ...\}$. Dans cette écriture il y a de nombreuses redondances (car de toute façon G n'a que n éléments). Nous allons montrer qu'en fait

$$G = \left\{e, a, a^2, \dots, a^{n-1}\right\} \quad \text{ et que } \quad a^n = e.$$

Tout d'abord l'ensemble $\{e,a,a^2,\dots,a^{n-1}\}$ est inclus dans G. En plus il a exactement n éléments. En effet si $a^p=a^q$ avec $0 \le q alors <math>a^{p-q}=e$ (avec p-q>0) et ainsi $a^{p-q+1}=a^{p-q} \star a=a$, $a^{p-q+2}=a^2$ et alors le groupe G serait égal à $\{e,a,a^2,\dots,a^{p-q-1}\}$ et n'aurait pas n éléments. Ainsi $\{e,a,a^2,\dots,a^{n-1}\}\subset G$ et les deux ensembles ont le même nombre n d'éléments, donc ils sont égaux. Montrons maintenant que $a^n=e$. Comme $a^n\in G$ et que $G=\{e,a,a^2,\dots,a^{n-1}\}$ alors il existe $0\le p\le n-1$ tel que $a^n=a^p$. Encore une fois si p>0 cela entraı̂ne $a^{n-p}=e$ et donc une contradiction. Ainsi p=0 donc $a^n=a^0=e$.

Nous pouvons maintenant construire l'isomorphisme entre $(\mathbb{Z}/n\mathbb{Z},+)$ et (G,\star) . Soit $f:\mathbb{Z}/n\mathbb{Z}\longrightarrow G$ l'application définie par $f(\overline{k})=a^k$.

- Il faut tout d'abord montrer que f est bien définie car notre définition de f dépend du représentant k et pas de la classe \overline{k} : si $\overline{k} = \overline{k'}$ (une même classe définie par deux représentants distincts) alors $k \equiv k' \pmod{n}$ et donc il existe $\ell \in \mathbb{Z}$ tel que $k = k' + \ell n$. Ainsi $f(\overline{k}) = a^k = a^{k' + \ell n} = a^{k'} \star a^{\ell n} = a^{k'} \star (a^n)^{\ell} = a^{k'} \star e^{\ell} = a^{k'} = f(\overline{k'})$. Ainsi f est bien définie.
- f est un morphisme de groupes car $f(\overline{k} + \overline{k'}) = f(\overline{k} + \overline{k'}) = a^{k+k'} = a^k \star a^{k'} = f(\overline{k}) \star f(\overline{k'})$ (pour tout $x, x' \in \mathbb{Z}$).
- Il est clair que f est surjective car tout élément de G s'écrit a^k .
- Comme l'ensemble de départ et celui d'arrivée ont le même nombre d'éléments et que f est surjective alors f est bijective.

Conclusion f est un isomorphisme entre $(\mathbb{Z}/n\mathbb{Z}, +)$ et (G, \star) .

Mini-exercices

- 1. Trouver tous les sous-groupes de ($\mathbb{Z}/12\mathbb{Z}, +$).
- 2. Montrer que le produit défini par $\overline{p} \times \overline{q} = \overline{p \times q}$ est bien défini sur l'ensemble $\mathbb{Z}/n\mathbb{Z}$.
- 3. Dans la preuve du théorème 16, montrer directement que l'application f est injective.
- 4. Montrer que l'ensemble $\mathbb{U}_n = \{z \in \mathbb{C} \mid z^n = 1\}$ est un sous-groupe de (\mathbb{C}^*, \times) . Montrer que \mathbb{U}_n est isomorphe à $\mathbb{Z}/n\mathbb{Z}$. Expliciter l'isomorphisme.
- 5. Montrer que l'ensemble $H = \{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}\}$ est un sous-groupe de (\mathcal{G}_2, \times) ayant 4 éléments. Montrer que H n'est pas isomorphe à $\mathbb{Z}/4\mathbb{Z}$.

5. Le groupe des permutations \mathcal{S}_n

Fixons un entier $n \ge 2$.

5.1. Groupe des permutations

Proposition 43

L'ensemble des bijections de $\{1,2,\ldots,n\}$ dans lui-même, muni de la composition des fonctions est un groupe, noté (\mathcal{S}_n,\circ) .

Une bijection de $\{1,2,\ldots,n\}$ (dans lui-même) s'appelle une *permutation*. Le groupe (\mathcal{S}_n,\circ) s'appelle le *groupe des permutations* (ou le *groupe symétrique*).

Démonstration

- 1. La composition de deux bijections de $\{1, 2, ..., n\}$ est une bijection de $\{1, 2, ..., n\}$.
- 2. La loi est associative (par l'associativité de la composition des fonctions).
- 3. L'élément neutre est l'identité.
- 4. L'inverse d'une bijection f est sa bijection réciproque f^{-1} .

Il s'agit d'un autre exemple de groupe ayant un nombre fini d'éléments :

Lemme 5

Le cardinal de \mathcal{S}_n est n!.

Démonstration

La preuve est simple. Pour l'élément 1, son image appartient à $\{1,2,\ldots,n\}$ donc nous avons n choix. Pour l'image de 2, il ne reste plus que n-1 choix (1 et 2 ne doivent pas avoir la même image car notre application est une bijection). Ainsi de suite... Pour l'image du dernier élément n il ne reste qu'une possibilité. Au final il y a $n \times (n-1) \times \cdots \times 2 \times 1 = n!$ façon de construire des bijections de $\{1,2,\ldots,n\}$

5.2. Notation et exemples

Décrire une permutation $f:\{1,2,\ldots,n\}\longrightarrow\{1,2,\ldots,n\}$ équivaut à donner les images de chaque i allant de 1 à n. Nous notons donc f par

$$\begin{bmatrix} 1 & 2 & \cdots & n \\ f(1) & f(2) & \cdots & f(n) \end{bmatrix}$$

Par exemple la permutation de \mathcal{S}_7 notée

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 7 & 5 & 4 & 6 & 1 & 2 \end{bmatrix} \int_{f}^{f}$$

est la bijection $f: \{1, 2, ..., 7\} \longrightarrow \{1, 2, ..., 7\}$ définie par f(1) = 3, f(2) = 7, f(3) = 5, f(4) = 4, f(5) = 6, f(6) = 1, f(7) = 2. C'est bien une bijection car chaque nombre de 1 à 7 apparaît une fois et une seule sur la deuxième ligne.

L'élément neutre du groupe est l'identité id; pour \mathcal{S}_7 c'est donc $\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{bmatrix}$.

Il est facile de calculer la composition de deux permutations f et g avec cette notation. Si $f = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 7 & 5 & 4 & 6 & 1 & 2 \end{bmatrix}$ et $g = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 3 & 2 & 1 & 7 & 5 & 6 \end{bmatrix}$ alors $g \circ f$ s'obtient en superposant la permutation f puis g

$$g \circ f = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \frac{3}{2} & 7 & 5 & 4 & 6 & 1 & 2 \\ 2 & 6 & 7 & 1 & 5 & 4 & 3 \end{bmatrix} \xrightarrow{f} g \circ f = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 6 & 7 & 1 & 5 & 4 & 3 \end{bmatrix}$$

ensuite on élimine la ligne intermédiaire du milieu et donc $g \circ f$ se note $\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 6 & 7 & 1 & 5 & 4 & 3 \end{bmatrix}$.

Il est tout aussi facile de calculer l'inverse d'une permutation : il suffit d'échanger les lignes du haut et du bas et de réordonner le tableau. Par exemple l'inverse de

$$f = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 7 & 5 & 4 & 6 & 1 & 2 \end{bmatrix} \int f^{-1}$$

se note $f^{-1} = \begin{bmatrix} 3 & 7 & 5 & 4 & 6 & 1 & 2 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{bmatrix}$ ou plutôt après réordonnement $\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 7 & 1 & 4 & 3 & 5 & 2 \end{bmatrix}$.

5.3. Le groupe \mathcal{S}_3

Nous allons étudier en détails le groupe \mathcal{S}_3 des permutations de $\{1,2,3\}$. Nous savons que \mathcal{S}_3 possède 3! = 6 éléments que nous énumérons :

- id = $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}$ l'identité,
- $\tau_1 = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{bmatrix}$ une transposition,
- $\tau_2 = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$ une deuxième transposition,
- $-\tau_3 = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{bmatrix}$ une troisième transposition,
- $\sigma = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$ un cycle,
- $\sigma^{-1} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ l'inverse du cycle précédent.

Donc $\mathcal{S}_3 = \{id, \tau_1, \tau_2, \tau_3, \sigma, \sigma^{-1}\}.$

Calculons $\tau_1 \circ \sigma$ et $\sigma \circ \tau_1$:

$$\tau_1\circ\sigma=\begin{bmatrix}\begin{smallmatrix}1&2&3\\2&3&1\\3&2&1\end{bmatrix}=\begin{bmatrix}\begin{smallmatrix}1&2&3\\3&2&1\end{bmatrix}=\tau_2\quad\text{et}\quad\sigma\circ\tau_1=\begin{bmatrix}\begin{smallmatrix}1&2&3\\1&3&2\\2&1&3\end{bmatrix}=\begin{bmatrix}\begin{smallmatrix}1&2&3\\2&1&3\end{bmatrix}=\tau_3.$$

Ainsi $\tau_1 \circ \sigma = \tau_2$ est différent de $\sigma \circ \tau_1 = \tau_3$, ainsi le groupe \mathscr{S}_3 n'est pas commutatif. Et plus généralement :

Lemme 6

Pour $n \ge 3$, le groupe \mathcal{S}_n n'est pas commutatif.

Nous pouvons calculer la table du groupe S_3

g	• f	id	$ au_1$	$ au_2$	$ au_3$	σ	σ^{-1}
	id	id	$ au_1$	$ au_2$	$ au_3$	σ	σ^{-1}
	$ au_1$	$ au_1$	id	σ	σ^{-1}	$\tau_1 \circ \sigma = \tau_2$	τ ₃
	$ au_2$	$ au_2$	σ^{-1}	id	σ	$ au_3$	τ_1
	$ au_3$	τ_3	σ	σ^{-1}	id	$ au_1$	$ au_2$
	σ	σ	$\sigma \circ \tau_1 = \tau_3$	$ au_1$	$ au_2$	σ^{-1}	id
0	σ^{-1}	σ^{-1}	$ au_2$	$ au_3$	τ_1	id	σ

FIGURE 6.1 – Table du groupe S_3

Comment avons-nous rempli cette table? Nous avons déjà calculé $\tau_1 \circ \sigma = \tau_2$ et $\sigma \circ \tau_1 = \tau_3$. Comme $f \circ id = f$ et id $\circ f = f$ il est facile de remplir la première colonne noire ainsi que la première ligne noire. Ensuite il faut faire les calculs!

On retrouve ainsi que $\mathscr{S}_3 = \{id, \tau_1, \tau_2, \tau_3, \sigma, \sigma^{-1}\}$ est un groupe : en particulier la composition de deux permutations de la liste reste une permutation de la liste. On lit aussi sur la table l'inverse de chaque élément, par exemple sur la ligne de τ_2 on cherche à quelle colonne on trouve l'identité, c'est la colonne de τ_2 . Donc l'inverse de τ_2 est lui-même.

5.4. Groupe des isométries du triangle

Soit (ABC) un triangle équilatéral. Considérons l'ensemble des isométries du plan qui préservent le triangle, c'est-à-dire que l'on cherche toutes les isométries f telles que $f(A) \in \{A,B,C\}$, $f(B) \in \{A,B,C\}$, $f(C) \in \{A,B,C\}$. On trouve les isométries suivantes : l'identité id, les réflexions t_1,t_2,t_3 d'axes $\mathcal{D}_1,\mathcal{D}_2,\mathcal{D}_3$, la rotation s d'angle $\frac{2\pi}{3}$ et la rotation s^{-1} d'angle $-\frac{2\pi}{3}$ (de centre O).

Proposition 44

L'ensemble des isométries d'un triangle équilatéral, muni de la composition, forme un groupe. Ce groupe est isomorphe à (\mathcal{S}_3, \circ) .

L'isomorphisme est juste l'application qui à t_i associe τ_i , à s associe σ et à s^{-1} associe σ^{-1} .

5.5. Décomposition en cycles

- Nous allons définir ce qu'est un *cycle* : c'est une permutation σ qui fixe un certain nombre d'éléments ($\sigma(i) = i$) et dont les éléments non fixés sont obtenus par itération : $j, \sigma(j), \sigma^2(j), \ldots$ C'est plus facile à comprendre sur un exemple :

$$\sigma = \begin{bmatrix} 1 & \mathbf{2} & 3 & \mathbf{4} & \mathbf{5} & 6 & 7 & \mathbf{8} \\ 1 & \mathbf{8} & 3 & \mathbf{5} & \mathbf{2} & 6 & 7 & \mathbf{4} \end{bmatrix}$$

est un cycle : les éléments 1,3,6,7 sont fixes, les autres s'obtiennent comme itération de 2 : $2 \mapsto \sigma(2) = 8 \mapsto \sigma(8) = \sigma^2(2) = 4 \mapsto \sigma(4) = \sigma^3(2) = 5$, ensuite on retrouve $\sigma^4(2) = \sigma(5) = 2$.

- Nous noterons ce cycle par

Il faut comprendre cette notation ainsi : l'image de 2 est 8, l'image de 8 est 4, l'image de 4 est 5, l'image de 5 est 2. Les éléments qui n'apparaissent pas (ici 1,3,6,7) sont fixes. On aurait pu aussi noter ce même cycle par : (8 4 5 2), (4 5 2 8) ou (5 2 8 4).

- Pour calculer l'inverse on renverse les nombres : l'inverse de σ = (2 8 4 5) est σ^{-1} = (5 4 8 2).
- Le *support* d'un cycle sont les éléments qui ne sont pas fixes : le support de σ est $\{2,4,5,8\}$. La *longueur* (ou l'*ordre*) d'un cycle est le nombre d'éléments qui ne sont pas fixes (c'est donc le cardinal du support). Par exemple (2 8 4 5) est un cycle de longueur 4.
- Autres exemples : $\sigma = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix} = (1 \ 2 \ 3)$ est un cycle de longueur 3 ; $\tau = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{bmatrix} = (2 \ 4)$ est un cycle de longueur 2, aussi appelé une *transposition*.
- Par contre $f = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 2 & 5 & 4 & 6 & 3 & 1 \end{bmatrix}$ n'est pas un cycle; il s'écrit comme la composition de deux cycles $f = (1 \ 7) \circ (3 \ 5 \ 6)$. Comme les supports de $(1 \ 7)$ et $(3 \ 5 \ 6)$ sont disjoints alors on a aussi $f = (3 \ 5 \ 6) \circ (1 \ 7)$.

Ce dernier point fait partie d'un résultat plus général que nous admettons :

Théorème 17

Toute permutation de \mathcal{S}_n se décompose en composition de cycles à supports disjoints. De plus cette décomposition est unique.

Pour l'unicité il faut comprendre : unique à l'écriture de chaque cycle près (exemple : $(3\ 5\ 6)$ et $(5\ 6\ 3)$ sont le même cycle) et à l'ordre près (exemple : $(1\ 7)\circ(3\ 5\ 6)=(3\ 5\ 6)\circ(1\ 7)$).

Exemple : la décomposition de $f = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 2 & 1 & 8 & 3 & 7 & 6 & 4 \end{bmatrix}$ en composition de cycle à supports disjoints est $(153) \circ (48) \circ (67)$.

Attention, si les supports ne sont pas disjoints alors cela ne commute plus : par exemple $g=(1\ 2)\circ(2\ 3\ 4)$ n'est pas égale à $h=(2\ 3\ 4)\circ(1\ 2)$. En effet l'écriture de g en produit de cycle à support disjoint est $g=(1\ 2)\circ(2\ 3\ 4)=\begin{bmatrix}1\ 2\ 3\ 4\ 2\\2\ 3\ 4\ 1\end{bmatrix}=\begin{bmatrix}1\ 2\ 3\ 4\\2\ 3\ 4\ 1\end{bmatrix}=(1\ 2\ 3\ 4)$ alors que celle de h est $h=(2\ 3\ 4)\circ(1\ 2)=\begin{bmatrix}1\ 2\ 3\ 4\\3\ 1\ 4\ 2\end{bmatrix}=(1\ 3\ 4\ 2)$.

Mini-exercices

1. Soient f définie par f(1) = 2, f(2) = 3, f(3) = 4, f(4) = 5, f(5) = 1 et g définie par g(1) = 2, g(2) = 1, g(3) = 4, g(4) = 3, g(5) = 5. Écrire les permutations f, g, f^{-1} , g^{-1} , $g \circ f$, $f \circ g$, f^2 , g^2 , $(g \circ f)^2$.

- 2. Énumérer toutes les permutations de \mathcal{S}_4 qui n'ont pas d'éléments fixes. Les écrire ensuite sous forme de compositions de cycles à supports disjoints.
- 3. Trouver les isométries directes préservant un carré. Dresser la table des compositions et montrer qu'elles forment un groupe. Montrer que ce groupe est isomorphe à $\mathbb{Z}/4\mathbb{Z}$.
- 4. Montrer qu'il existe un sous-groupe de \mathcal{S}_3 isomorphe à $\mathbb{Z}/2\mathbb{Z}$. Même question avec $\mathbb{Z}/3\mathbb{Z}$. Est-ce que \mathcal{S}_3 et $\mathbb{Z}/6\mathbb{Z}$ sont isomorphes?
- 5. Décomposer la permutation suivante en produit de cycles à supports disjoints : $f = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 7 & 2 & 6 & 1 & 4 & 3 \end{bmatrix}$. Calculer f^2 , f^3 , f^4 puis f^{20xx} où 20xx est l'année en cours. Mêmes questions avec $g = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 8 & 9 & 6 & 5 & 2 & 4 & 7 & 1 \end{bmatrix}$ et h = (25)(1243)(12).

Auteurs

Arnaud Bodin Benjamin Boutin Pascal Romon

7 Les nombres réels

```
1 L'ensemble des nombres rationnels Q
2 Propriétés de R
3 Densité de Q dans R
4 Borne supérieure

Vidéo ■ partie 1. L'ensemble des nombres rationnels Q
Vidéo ■ partie 2. Propriétés de R
Vidéo ■ partie 3. Densité de Q dans R
Vidéo ■ partie 4. Borne supérieure
Exercices ◆ Propriétés de R
```

Motivation

Voici une introduction, non seulement à ce chapitre sur les nombres réels, mais aussi aux premiers chapitres de ce cours d'analyse.

Aux temps des babyloniens (en Mésopotamie de 3000 à 600 avant J.C.) le système de numération était en base 60, c'est-à-dire que tous les nombres étaient exprimés sous la forme $a + \frac{b}{60} + \frac{c}{60^2} + \cdots$. On peut imaginer que pour les applications pratiques c'était largement suffisant (par exemple estimer la surface d'un champ, le diviser en deux parties égales, calculer le rendement par unité de surface,...). En langage moderne cela correspond à compter uniquement avec des nombres rationnels \mathbb{O} .

Les pythagoriciens (vers 500 avant J.C. en Grèce) montrent que $\sqrt{2}$ n'entre pas ce cadre là. C'està-dire que $\sqrt{2}$ ne peut s'écrire sous la forme $\frac{p}{q}$ avec p et q deux entiers. C'est un double saut conceptuel : d'une part concevoir que $\sqrt{2}$ est de nature différente mais surtout d'en donner une démonstration.

Le fil rouge de ce cours va être deux exemples très simples : les nombres $\sqrt{10}$ et $1,10^{1/12}$. Le premier représente par exemple la diagonale d'un rectangle de base 3 et de hauteur 1 ; le second correspond par exemple au taux d'intérêt mensuel d'un taux annuel de $10\,\%$. Dans ce premier chapitre vous allez apprendre à montrer que $\sqrt{10}$ n'est pas un nombre rationnel mais aussi à encadrer $\sqrt{10}$ et $1,10^{1/12}$ entre deux entiers consécutifs.

Pour pouvoir calculer des décimales après la virgule, voire des centaines de décimales, nous aurons besoin d'outils beaucoup plus sophistiqués :

- une construction solide des nombres réels,
- l'étude des suites et de leur limites.
- l'étude des fonctions continues et des fonctions dérivables.

Ces trois points sont liés et permettent de répondre à notre problème, car par exemple nous verrons en étudiant la fonction $f(x) = x^2 - 10$ que la suite des rationnels (u_n) définie par $u_0 = 3$ et $u_{n+1} = \frac{1}{2} \left(u_n + \frac{10}{u_n} \right)$ tend très vite vers $\sqrt{10}$. Cela nous permettra de calculer des centaines de décimales de $\sqrt{10}$ et de certifier quelles sont exactes :

```
\sqrt{10} = 3.1622776601683793319988935444327185337195551393252168...
```

1. L'ensemble des nombres rationnels 0

1.1. Écriture décimale

Par définition, l'ensemble des nombres rationnels est

$$\mathbb{Q} = \left\{ \frac{p}{q} \mid p \in \mathbb{Z}, q \in \mathbb{N}^* \right\}.$$

On a noté $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$.

Par exemple : $\frac{2}{5}$; $\frac{-7}{10}$; $\frac{3}{6} = \frac{1}{2}$.

Les nombres décimaux, c'est-à-dire les nombres de la forme $\frac{a}{10^n}$, avec $a \in \mathbb{Z}$ et $n \in \mathbb{N}$, fournissent d'autres exemples :

$$1,234 = 1234 \times 10^{-3} = \frac{1234}{1000} \qquad 0,00345 = 345 \times 10^{-5} = \frac{345}{100000}$$

Proposition 45

Un nombre est rationnel si et seulement s'il admet une écriture décimale périodique ou finie.

Par exemple:

$$\frac{3}{5} = 0.6$$
 $\frac{1}{3} = 0.3333...$ $1.179325325325...$

Nous n'allons pas donner la démonstration mais le sens direct (\Longrightarrow) repose sur la division euclidienne. Pour la réciproque (\Longleftrightarrow) voyons comment cela marche sur un exemple : Montrons que x=12,3420212021... est un rationnel.

L'idée est d'abord de faire apparaître la partie périodique juste après la virgule. Ici la période commence deux chiffres après la virgule donc on multiplie par 100 :

$$100x = 1234,20212021... (7.1)$$

Maintenant on va décaler tout vers la gauche de la longueur d'une période, donc ici on multiplie par encore par 10000 pour décaler de 4 chiffres :

$$10\,000 \times 100x = 1234\,2021, 2021\dots \tag{7.2}$$

Les parties après la virgule des deux lignes (7.1) et (7.2) sont les mêmes, donc si on les soustrait en faisant (7.2)-(7.1) alors les parties décimales s'annulent :

$$10\,000 \times 100x - 100x = 12\,342\,021 - 1234$$

donc 999900x = 12340787 donc

$$x = \frac{12340787}{999900}.$$

Et donc bien sûr $x \in \mathbb{Q}$.

1.2. $\sqrt{2}$ n'est pas un nombre rationnel

Il existe des nombres qui ne sont pas rationnels, les *irrationnels*. Les nombres irrationnels apparaissent naturellement dans les figures géométriques : par exemple la diagonale d'un carré de côté 1 est le nombre irrationnel $\sqrt{2}$; la circonférence d'un cercle de rayon $\frac{1}{2}$ est π qui est également un nombre irrationnel. Enfin $e = \exp(1)$ est aussi irrationnel.

Les nombres réels 109

Nous allons prouver que $\sqrt{2}$ n'est pas un nombre rationnel.

Proposition 46 $\boxed{\sqrt{2} \notin \mathbb{Q}}$

Démonstration

Par l'absurde supposons que $\sqrt{2}$ soit un nombre rationnel. Alors il existe des entiers $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$ tels que $\sqrt{2} = \frac{p}{q}$, de plus –ce sera important pour la suite– on suppose que p et q sont premiers entre eux (c'est-à-dire que la fraction $\frac{p}{q}$ est sous une écriture irréductible).

En élevant au carré, l'égalité $\sqrt{2} = \frac{p}{q}$ devient $2q^2 = p^2$. Cette dernière égalité est une égalité d'entiers. L'entier de gauche est pair, donc on en déduit que p^2 est pair; en terme de divisibilité 2 divise p^2 .

Mais si 2 divise p^2 alors 2 divise p (cela se prouve par facilement l'absurde). Donc il existe un entier $p' \in \mathbb{Z}$ tel que p = 2p'.

Repartons de l'égalité $2q^2=p^2$ et remplaçons p par 2p'. Cela donne $2q^2=4p'^2$. Donc $q^2=2p'^2$. Maintenant cela entraı̂ne que 2 divise q^2 et comme avant alors 2 divise q.

Nous avons prouvé que 2 divise à la fois p et q. Cela rentre en contradiction avec le fait que p et q sont premiers entre eux. Notre hypothèse de départ est donc fausse : $\sqrt{2}$ n'est pas un nombre rationnel.

Comme ce résultat est important en voici une deuxième démonstration, assez différente mais toujours par l'absurde.

Démonstration Autre démonstration

Par l'absurde, supposons $\sqrt{2} = \frac{p}{q}$, donc $q\sqrt{2} = p \in \mathbb{N}$. Considérons l'ensemble

$$\mathcal{N} = \big\{ n \in \mathbb{N}^* \mid n\sqrt{2} \in \mathbb{N} \big\}.$$

Cet ensemble n'est pas vide car on vient de voir que $q\sqrt{2}=p\in\mathbb{N}$ donc $q\in\mathcal{N}$. Ainsi \mathcal{N} est une partie non vide de \mathbb{N} , elle admet donc un plus petit élément $n_0=\min\mathcal{N}$.

Posons

$$n_1 = n_0 \sqrt{2} - n_0 = n_0 (\sqrt{2} - 1),$$

il découle de cette dernière égalité et de $1 < \sqrt{2} < 2$ que $0 < n_1 < n_0$.

De plus $n_1\sqrt{2} = (n_0\sqrt{2} - n_0)\sqrt{2} = 2n_0 - n_0\sqrt{2} \in \mathbb{N}$. Donc $n_1 \in \mathcal{N}$ et $n_1 < n_0$: on vient de trouver un élément n_1 de \mathcal{N} strictement plus petit que n_0 qui était le minimum. C'est une contradiction.

Notre hypothèse de départ est fausse, donc $\sqrt{2} \notin \mathbb{Q}$.

Exercice 1

Montrer que $\sqrt{10} \notin \mathbb{Q}$.

On représente souvent les nombres réels sur une « droite numérique » :

Il est bon de connaître les premières décimales de certains réels $\sqrt{2} \simeq 1,4142\dots \quad \pi \simeq 3,14159265\dots$ $e \simeq 2,718\dots$

Il est souvent pratique de rajouter les deux extrémités à la droite numérique.

Définition 35

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$$

Mini-exercices

- 1. Montrer que la somme de deux rationnels est un rationnel. Montrer que le produit de deux rationnels est un rationnel. Montrer que l'inverse d'un rationnel non nul est un rationnel. Qu'en est-il pour les irrationnels?
- 2. Écrire les nombres suivants sous forme d'une fraction : 0,1212; 0,1212...; 78,33456456...
- 3. Sachant $\sqrt{2} \notin \mathbb{Q}$, montrer $2 3\sqrt{2} \notin \mathbb{Q}$, $1 \frac{1}{\sqrt{2}} \notin \mathbb{Q}$.
- 4. Notons D l'ensemble des nombres de la forme $\frac{a}{2^n}$ avec $a \in \mathbb{Z}$ et $n \in \mathbb{N}$. Montrer que $3 \notin D$. Trouver $x \in D$ tel que 1234 < x < 1234,001.
- 5. Montrer que $\frac{\sqrt{2}}{\sqrt{3}} \notin \mathbb{Q}$.
- 6. Montrer que $\log 2 \notin \mathbb{Q}$ ($\log 2$ est le logarithme décimal de 2 : c'est le nombre réel tel que $10^{\log 2} = 2$).

2. Propriétés de R

2.1. Addition et multiplication

Ce sont les propriétés que vous avez toujours pratiquées. Pour $a,b,c \in \mathbb{R}$ on a :

$$a+b=b+a \qquad a\times b=b\times a$$

$$0+a=a \qquad 1\times a=a \text{ si } a\neq 0$$

$$a+b=0 \Longleftrightarrow a=-b \qquad ab=1 \Longleftrightarrow a=\frac{1}{b}$$

$$(a+b)+c=a+(b+c) \qquad (a\times b)\times c=a\times (b\times c)$$

$$a \times (b+c) = a \times b + a \times c$$

 $a \times b = 0 \iff (a = 0 \text{ ou } b = 0)$

On résume toutes ces propriétés en disant que :

Les nombres réels 111

Propriété: $\mathbb{R}1$

 $(\mathbb{R},+,\times)$ est un *corps commutatif*.

2.2. Ordre sur R

Nous allons voir que les réels sont ordonnés. La notion d'ordre est générale et nous allons définir cette notion sur un ensemble quelconque. Cependant gardez à l'esprit que pour nous $E=\mathbb{R}$ et $\mathscr{R}=\leqslant$.

Définition 36

Soit E un ensemble.

- 1. Une *relation* \mathcal{R} sur E est un sous-ensemble de l'ensemble produit $E \times E$. Pour $(x, y) \in E \times E$, on dit que x est en relation avec y et on note $x\mathcal{R}y$ pour dire que $(x, y) \in \mathcal{R}$.
- 2. Une relation \mathcal{R} est une relation d'ordre si
 - \mathcal{R} est *réflexive* : pour tout $x \in E$, $x\mathcal{R}x$,
 - \mathcal{R} est antisymétrique : pour tout $x, y \in E$, $(x\mathcal{R}y \text{ et } y\mathcal{R}x) \Longrightarrow x = y$,
 - \mathcal{R} est *transitive*: pour tout $x, y, z \in E$, $(x\mathcal{R}y \text{ et } y\mathcal{R}z) \Longrightarrow x\mathcal{R}z$.

Définition 37

Une relation d'ordre \mathcal{R} sur un ensemble E est **totale** si pour tout $x, y \in E$ on a $x\mathcal{R}y$ ou $y\mathcal{R}x$. On dit aussi que (E, \mathcal{R}) est un **ensemble totalement ordonné**.

Propriété: R2

La relation \leq sur \mathbb{R} est une relation d'ordre, et de plus, elle est totale.

Nous avons donc:

- pour tout $x \in \mathbb{R}$, $x \le x$,
- pour tout $x, y \in \mathbb{R}$, si $x \le y$ et $y \le x$ alors x = y,
- pour tout $x, y, z \in \mathbb{R}$ si $x \le y$ et $y \le z$ alors $x \le z$.

Remarque

Pour $(x, y) \in \mathbb{R}^2$ on a par définition :

$$x \le y \iff y - x \in \mathbb{R}_+$$

 $x < y \iff (x \le y \text{ et } x \ne y).$

Les opérations de $\mathbb R$ sont compatibles avec la relation d'ordre \leq au sens suivant, pour des réels a,b,c,d:

$$(a \le b \text{ et } c \le d) \Longrightarrow a + c \le b + d$$

$$(a \le b \text{ et } c \ge 0) \Longrightarrow a \times c \le b \times c$$

$$(a \le b \text{ et } c \le 0) \Longrightarrow a \times c \ge b \times c.$$

On définit le maximum de deux réels a et b par :

$$\max(a,b) = \begin{cases} a & \text{si } a \ge b \\ b & \text{si } b > a. \end{cases}$$

Exercice 2

Comment définir $\max(a, b, c)$, $\max(a_1, a_2, ..., a_n)$? Et $\min(a, b)$?

2.3. Propriété d'Archimède

Propriété: R3, Propriété d'Archimède

 \mathbb{R} est *archimédien*, c'est-à-dire :

$$\forall x \in \mathbb{R} \ \exists n \in \mathbb{N} \ n > x$$

« Pour tout réel x, il existe un entier naturel n strictement plus grand que x. »

Cette propriété peut sembler évidente, elle est pourtant essentielle puisque elle permet de définir la *partie entière* d'un nombre réel :

Proposition 47

Soit $x \in \mathbb{R}$, il *existe* un *unique* entier relatif, la *partie entière* notée E(x), tel que :

$$E(x) \le x < E(x) + 1$$

Exemple 60

- E(2,853) = 2, $E(\pi) = 3$, E(-3,5) = -4.
- $-E(x)=3 \iff 3 \le x < 4.$

Remarque

- On note aussi E(x) = [x].
- Voici le graphe de la fonction partie entière $x \mapsto E(x)$:

Pour la démonstration de la proposition 47 il y a deux choses à établir : d'abord qu'un tel entier E(x) existe et ensuite qu'il est unique.

Les nombres réels 113

Démonstration

Existence. Supposons $x \ge 0$, par la propriété d'Archimède (Propriété $\mathbb{R}3$) il existe $n \in \mathbb{N}$ tel que n > x. L'ensemble $K = \{k \in \mathbb{N} \mid k \le x\}$ est donc fini (car pour tout k dans K, on a k < n). Il admet donc un plus grand élément $k_{max} = \max K$. On alors $k_{max} \le x$ car $k_{max} \in K$, et $k_{max} + 1 > x$ car $k_{max} + 1 \notin K$. Donc $k_{max} \le x < k_{max} + 1$ et on prend donc $E(x) = k_{max}$.

Unicité. Si k et ℓ sont deux entiers relatifs vérifiant $k \le x < k+1$ et $\ell \le x < \ell+1$, on a donc $k \le x < \ell+1$, donc par transitivité $k < \ell+1$. En échangeant les rôles de ℓ et k, on a aussi $\ell < k+1$. On en conclut que $\ell-1 < k < \ell+1$, mais il n'y a qu'un seul entier compris strictement entre $\ell-1$ et $\ell+1$, c'est ℓ . Ainsi $k=\ell$.

Exemple 61

Encadrons $\sqrt{10}$ et $1, 1^{1/12}$ par deux entiers consécutifs.

- Nous savons $3^2 = 9 < 10$ donc $3 = \sqrt{3^2} < \sqrt{10}$ (la fonction racine carrée est croissante). De même $4^2 = 16 > 10$ donc $4 = \sqrt{4^2} > \sqrt{10}$. Conclusion : $3 < \sqrt{10} < 4$ ce qui implique $E(\sqrt{10}) = 3$.
- On procède sur le même principe. $1^{12} < 1, 10 < 2^{12}$ donc en passant à la racine 12-ième (c'est-à-dire à la puissance $\frac{1}{12}$) on obtient : $1 < 1, 1^{1/12} < 2$ et donc $E(1, 1^{1/12}) = 1$.

2.4. Valeur absolue

Pour un nombre réel x, on définit la *valeur absolue* de x par :

$$|x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$$

Voici le graphe de la fonction $x \mapsto |x|$:

Proposition 48

- 1. $|x| \ge 0$; |-x| = |x|; $|x| > 0 \iff x \ne 0$
- 2. $\sqrt{x^2} = |x|$
- 3. |xy| = |x||y|
- 4. Inégalité triangulaire $|x+y| \le |x| + |y|$
- 5. Seconde inégalité triangulaire $||x| |y|| \le |x y|$

Démonstration Démonstration des inégalités triangulaires

- $-|x| \le x \le |x|$ et $-|y| \le y \le |y|$. En additionnant $-(|x| + |y|) \le x + y \le |x| + |y|$, donc $|x + y| \le |x| + |y|$.
- Puisque x = (x y) + y, on a d'après la première inégalité : $|x| = |(x y) + y| = \le |x y| + |y|$. Donc $|x| |y| \le |x y|$, et en intervertissant les rôles de x et y, on a aussi $|y| |x| \le |y x|$. Comme |y x| = |x y| on a donc $|x| |y| \le |x y|$.

Sur la droite numérique, |x - y| représente la distance entre les réels x et y; en particulier |x| représente la distance entre les réels x et 0.

De plus on a:

- $|x-a| < r \iff a-r < x < a+r.$
- Ou encore comme on le verra bientôt $|x-a| < r \iff x ∈]a-r,a+r[$.

Exercice 3

Soit $a \in \mathbb{R} \setminus \{0\}$ et $x \in \mathbb{R}$ tel que |x - a| < |a|. Montrer que :

- 1. $x \neq 0$
- 2. x est du signe de a.

Mini-exercices

- 1. On munit l'ensemble $\mathscr{P}(\mathbb{R})$ des parties de \mathbb{R} de la relation \mathscr{R} définie par $A\mathscr{R}B$ si $A \subset B$. Montrer qu'il s'agit d'une relation d'ordre. Est-elle totale?
- 2. Soient x, y deux réels. Montrer que $|x| \ge ||x + y| |y||$.
- 3. Soient $x_1, ..., x_n$ des réels. Montrer que $|x_1 + \cdots + x_n| \le |x_1| + \cdots + |x_n|$. Dans quel cas a-t-on égalité?
- 4. Soient x, y > 0 des réels. Comparer E(x + y) avec E(x) + E(y). Comparer $E(x \times y)$ et $E(x) \times E(y)$.
- 5. Soit x > 0 un réel. Encadrer $\frac{E(x)}{x}$. Quelle est la limite de $\frac{E(x)}{x}$ lorsque $x \to +\infty$?
- 6. On note $\{x\} = x E(x)$ la partie fractionnaire de x, de sorte que $x = E(x) + \{x\}$. Représenter les graphes des fonctions $x \mapsto E(x)$, $x \mapsto \{x\}$, $x \mapsto E(x) \{x\}$.

3. Densité de ℚ dans ℝ

3.1. Intervalle

Les nombres réels 115

Définition 38

Un *intervalle de* $\mathbb R$ est un sous-ensemble I de $\mathbb R$ vérifiant la propriété :

$$\forall a, b \in I \ \forall x \in \mathbb{R} \ (a \le x \le b \implies x \in I)$$

Remarque

- Par définition $I = \emptyset$ est un intervalle.
- $I = \mathbb{R}$ est aussi un intervalle.

Définition 39

Un *intervalle ouvert* est un sous-ensemble de \mathbb{R} de la forme $]a,b[=\{x \in \mathbb{R} \mid a < x < b\},$ où a et b sont des éléments de $\overline{\mathbb{R}}$.

Même si cela semble évident il faut justifier qu'un intervalle ouvert est un intervalle (!). En effet soient a',b' des éléments de]a,b[et $x\in\mathbb{R}$ tel que $a'\leqslant x\leqslant b'$. Alors on a $a< a'\leqslant x\leqslant b'< b$, donc $x\in]a,b[$.

La notion de voisinage sera utile pour les limites.

Définition 40

Soit a un réel, $V \subseteq \mathbb{R}$ un sous-ensemble. On dit que V est un *voisinage* de a s'il existe un intervalle ouvert I tel que $a \in I$ et $I \subseteq V$.

3.2. Densité

Théorème 18

- 1. $\mathbb Q$ est *dense* dans $\mathbb R$: tout intervalle ouvert (non vide) de $\mathbb R$ contient une infinité de rationnels.
- 2. $\mathbb{R}\setminus\mathbb{Q}$ est dense dans \mathbb{R} : tout intervalle ouvert (non vide) de \mathbb{R} contient une infinité d'irrationnels.

Démonstration

On commence par remarquer que tout intervalle ouvert non vide de \mathbb{R} contient un intervalle du type a,b. On peut donc supposer que a,b par la suite.

1. Tout intervalle contient un rationnel.

On commence par montrer l'affirmation :

$$\forall a, b \in \mathbb{R} \ (a < b \implies \exists r \in \mathbb{Q} \mid a < r < b)$$
 (7.3)

Donnons d'abord l'idée de la preuve. Trouver un tel rationnel $r=\frac{p}{q}$, avec $p\in\mathbb{Z}$ et $q\in\mathbb{N}^*$, revient à trouver de tels entiers p et q vérifiant $qa . Cela revient à trouver un <math>q\in\mathbb{N}^*$ tel que l'intervalle ouvert qb contienne un entier p. Il suffit pour cela que la longueur qb-qa=q(b-a) de l'intervalle dépasse strictement 1, ce qui équivaut à $q>\frac{1}{b-a}$.

Passons à la rédaction définitive. D'après la propriété d'Archimède (propriété \mathbb{R}^3), il existe un entier q tel que $q > \frac{1}{b-a}$. Comme b-a>0, on a $q \in \mathbb{N}^*$. Posons p=E(aq)+1. Alors $p-1 \le aq < p$. On en déduit d'une part $a < \frac{p}{q}$, et d'autre part $\frac{p}{q} - \frac{1}{q} \le a$, donc $\frac{p}{q} \le a + \frac{1}{q} < a + b - a = b$. Donc $\frac{p}{q} \in]a,b[$. On a montré l'affirmation (7.3).

2. Tout intervalle contient un irrationnel.

Partant de a, b réels tels que a < b, on peut appliquer l'implication de l'affirmation (7.3) au couple $(a-\sqrt{2},b-\sqrt{2})$. On en déduit qu'il existe un rationnel r dans l'intervalle $]a-\sqrt{2},b-\sqrt{2}[$ et par translation $r+\sqrt{2} \in]a,b[$. Or $r+\sqrt{2}$ est irrationnel, car sinon comme les rationnels sont stables par somme, $\sqrt{2}=-r+r+\sqrt{2}$ serait rationnel, ce qui est faux d'après la proposition 46. On a donc montré que si a < b, l'intervalle]a,b[contient aussi un irrationnel.

3. Tout intervalle contient une infinité de rationnels et d'irrationnels.

On va déduire de l'existence d'un rationnel et d'un irrationnel dans tout intervalle]a,b[le fait qu'il existe une infinité de chaque dans un tel intervalle ouvert. En effet pour un entier $N \ge 1$, on considère l'ensemble de N sous-intervalles ouverts :

$$\left]a,a+\frac{b-a}{N}\right[,\quad \left]a+\frac{b-a}{N},a+\frac{2(b-a)}{N}\right[,\quad \dots\quad \left]a+\frac{(N-1)(b-a)}{N},b\right[.$$

Chaque sous-intervalle contient un rationnel et un irrationnel, donc]a,b[contient (au moins) N rationnels et N irrationnels. Comme ceci est vrai pour tout entier $N \ge 1$, l'intervalle ouvert]a,b[contient alors une infinité de rationnels et une infinité d'irrationnels.

Mini-exercices

- 1. Montrer qu'une intersection d'intervalles est un intervalle. Qu'en est-il pour une réunion? Trouver une condition nécessaire et suffisante afin que la réunion de deux intervalles soit un intervalle.
- 2. Montrer que l'ensemble des nombres décimaux (c'est-à-dire ceux de la forme $\frac{a}{10^n}$, avec $n \in \mathbb{N}$ et $a \in \mathbb{Z}$) est dense dans \mathbb{R} .
- 3. Construire un rationnel compris strictement entre 123 et 123,001. Ensuite construire un irrationnel. Sauriez-vous en construire une infinité? Et entre π et π + 0,001?
- 4. Montrer que si $z = e^{i\alpha}$ et $z' = e^{i\beta}$ sont deux nombres complexes de module 1, avec $\alpha < \beta$, il existe un entier $n \in \mathbb{N}^*$ et une racine n-ième de l'unité $z = e^{i\gamma}$ avec $\alpha < \gamma < \beta$.

4. Borne supérieure

4.1. Maximum, minimum

Définition 41

Soit A une partie non vide de \mathbb{R} . Un réel α est un *plus grand élément* de A si : $\alpha \in A$ et $\forall x \in A$ $x \leq \alpha$.

S'il existe, le plus grand élément est unique, on le note alors $\max A$.

Le plus petit élément de A, noté min A, s'il existe est le réel α tel que $\alpha \in A$ et $\forall x \in A \ x \ge \alpha$.

Le plus grand élément s'appelle aussi le *maximum* et le plus petit élément, le *minimum*. Il faut garder à l'esprit que le plus grand élément ou le plus petit élément n'existent pas toujours.

Les nombres réels 117

Exemple 62

- $\max[a, b] = b$, $\min[a, b] = a$.
- L'intervalle]a,b[n'a pas de plus grand élément, ni de plus petit élément.
- L'intervalle [0,1[a pour plus petit élément 0 et n'a pas de plus grand élément.

Exemple 63

Soit $A = \left\{1 - \frac{1}{n} \mid n \in \mathbb{N}^*\right\}$.

Notons $u_n = 1 - \frac{1}{n}$ pour $n \in \mathbb{N}^*$. Alors $A = \{u_n \mid n \in \mathbb{N}^*\}$. Voici une représentation graphique de A sur la droite numérique :

- 1. A n'a pas de plus grand élément : Supposons qu'il existe un plus grand élément $\alpha = \max A$. On aurait alors $u_n \leq \alpha$, pour tout u_n . Ainsi $1 \frac{1}{n} \leq \alpha$ donc $\alpha \geq 1 \frac{1}{n}$. À la limite lorsque $n \to +\infty$ cela implique $\alpha \geq 1$. Comme α est le plus grand élément de A alors $\alpha \in A$. Donc il existe n_0 tel que $\alpha = u_{n_0}$. Mais alors $\alpha = 1 \frac{1}{n_0} < 1$. Ce qui est en contradiction avec $\alpha \geq 1$. Donc A n'a pas de maximum.
- 2. $\min A = 0$: Il y a deux choses à vérifier tout d'abord pour n = 1, $u_1 = 0$ donc $0 \in A$. Ensuite pour tout $n \ge 1$, $u_n \ge 0$. Ainsi $\min A = 0$.

4.2. Majorants, minorants

Définition 42

Soit A une partie non vide de \mathbb{R} . Un réel M est un **majorant** de A si $\forall x \in A$ $x \leq M$. Un réel m est un **minorant** de A si $\forall x \in A$ $x \geq m$.

Exemple 64

- 3 est un majorant de]0,2[;
- -7, -π, 0 sont des minorants de]0, +∞[mais il n'y a pas de majorant.

Si un majorant (resp. un minorant) de A existe on dit que A est majorée (resp. minorée). Comme pour le minimum et maximum il n'existe pas toujours de majorant ni de minorant, en plus on n'a pas l'unicité.

Exemple 65

Soit A = [0, 1[.

- 1. les majorants de A sont exactement les éléments de $[1,+\infty[$
- 2. les minorants de A sont exactement les éléments de $]-\infty,0]$.

4.3. Borne supérieure, borne inférieure

Définition 43

Soit A une partie non vide de \mathbb{R} et α un réel.

- 1. α est la **borne supérieure** de A si α est un majorant de A et si c'est le plus petit des majorants. S'il existe on le note sup A.
- 2. α est la **borne inférieure** de A si α est un minorant de A et si c'est le plus grand des minorants. S'il existe on le note infA.

Exemple 66

- $\sup[a, b] = b,$
- $-\inf[a,b]=a,$
- $\sup a, b = b,$
-]0, +∞[n'admet pas de borne supérieure,
- inf]0, +∞[= 0.

Exemple 67

Soit A =]0, 1].

- 1. $\sup A = 1$: en effet les majorants de A sont les éléments de $[1, +\infty[$. Donc le plus petit des majorants est 1.
- 2. $\inf A = 0$: les minorants sont les éléments de $]-\infty,0]$ donc le plus grand des minorants est 0.

Théorème 19. R4

Toute partie de ℝ non vide et majorée admet une borne supérieure.

De la même façon : Toute partie de $\mathbb R$ non vide et minorée admet une borne inférieure.

Remarque

C'est tout l'intérêt de la borne supérieure par rapport à la notion de plus grand élément, dès qu'une partie est bornée elle admet toujours une borne supérieure et une borne inférieure. Ce qui n'est pas le cas pour le plus grand ou plus petit élément. Gardez à l'esprit l'exemple A = [0,1[.

Proposition 49. Caractérisation de la borne supérieure

Soit A une partie non vide et majorée de \mathbb{R} . La borne supérieure de A est l'unique réel sup A tel que

- (i) si $x \in A$, alors $x \leq \sup A$,
- (ii) pour tout $y < \sup A$, il existe $x \in A$ tel que y < x.

Les nombres réels 119

Exemple 68

Reprenons l'exemple de la partie $A = \{1 - \frac{1}{n} \mid n \in \mathbb{N}^*\}.$

1. Nous avions vu que $\min A = 0$. Lorsque le plus petit élément d'une partie existe alors la borne inférieure vaut ce plus petit élément : donc $\inf A = \min A = 0$.

- 2. Première méthode pour $\sup A$. Montrons que $\sup A=1$ en utilisant la définition de la borne supérieure. Soit M un majorant de A alors $M\geqslant 1-\frac{1}{n}$, pour tout $n\geqslant 1$. Donc à la limite $M\geqslant 1$. Réciproquement si $M\geqslant 1$ alors M est un majorant de A. Donc les majorants sont les éléments de $[1,+\infty[$. Ainsi le plus petit des majorant est 1 et donc $\sup A=1$.
- 3. $Deuxi\`eme\ m\'ethode\ pour\ \sup A$. Montrons que $\sup A=1$ en utilisant la caractérisation de la borne supérieure.
 - (i) Si $x \in A$, alors $x \le 1$ (1 est bien un majorant de A);
 - (ii) pour tout y < 1, il existe $x \in A$ tel que y < x: en effet prenons n suffisamment grand tel que $0 < \frac{1}{n} < 1 y$. Alors on a $y < 1 \frac{1}{n} < 1$. Donc $x = 1 \frac{1}{n} \in A$ convient.

Par la caractérisation de la borne supérieure, $\sup A = 1$.

Démonstration

- 1. Montrons que $\sup A$ vérifie ces deux propriétés. La borne supérieure est en particulier un majorant, donc vérifie la première propriété. Pour la seconde, fixons $y < \sup A$. Comme $\sup A$ est le plus petit des majorants de A alors y n'est pas un majorant de A. Donc il existe $x \in A$ tel que y < x. Autrement dit $\sup A$ vérifie également la seconde propriété.
- 2. Montrons que réciproquement si un nombre α vérifie ces deux propriétés, il s'agit de sup A. La première propriété montre que α est un majorant de A. Supposons par l'absurde que α n'est pas le plus petit des majorants. Il existe donc un autre majorant y de A vérifiant $y < \alpha$. La deuxième propriété montre l'existence d'un élément x de A tel que y < x, ce qui contredit le fait que y est un majorant de A. Cette contradiction montre donc que α est bien le plus petit des majorants de A, à savoir sup A.

Nous anticipons sur la suite pour donner une autre caractérisation, très utile, de la borne supérieure.

Proposition 50

Soit A une partie non vide et majorée de \mathbb{R} . La borne supérieure de A est l'unique réel supA tel que

- (i) $\sup A$ est un majorant de A,
- (ii) il existe une suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de A qui converge vers $\sup A$.

Remarques historiques

- Les propriétés $\mathbb{R}1$, $\mathbb{R}2$, $\mathbb{R}3$ et le théorème $\mathbb{R}4$ sont intrinsèques à la construction de \mathbb{R} (que nous admettons).
- Il y a un grand saut entre \mathbb{Q} et \mathbb{R} : on peut donner un sens précis à l'assertion « il y a beaucoup plus de nombres irrationnels que de nombres rationnels », bien que ces deux ensembles soient infinis, et même denses dans \mathbb{R} .
 - D'autre part, la construction du corps des réels $\mathbb R$ est beaucoup plus récente que celle de $\mathbb Q$ dans l'histoire des mathématiques.
- La construction de R devient une nécessité après l'introduction du calcul infinitésimal (Newton et Leibniz vers 1670). Jusqu'alors l'existence d'une borne supérieure était considérée comme évidente et souvent confondue avec le plus grand élément.
- Ce n'est pourtant que beaucoup plus tard, dans les années 1860-1870 (donc assez récemment dans l'histoire des mathématiques) que deux constructions complètes de ℝ sont données :
 - Les coupures de Dedekind : \mathscr{C} est une coupure si $\mathscr{C} \subset \mathbb{Q}$ et si $\forall r \in \mathscr{C}$ on a $r' < r \implies r' \in \mathscr{C}$.
 - Le suites de Cauchy : ce sont les suites $(u_n)_{n\in\mathbb{N}}$ vérifiant la propriété

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ | (m \geq N \ , n \geq N) \Longrightarrow |u_m - u_n| \leq \varepsilon \ .$$

Les réels sont l'ensemble des suites de Cauchy (où l'on identifie deux suites de Cauchy dont la différence tend vers 0).

Mini-exercices

- 1. Soit A une partie de \mathbb{R} . On note $-A = \{-x | x \in A\}$. Montrer que $\min A = -\max(-A)$, c'est-à-dire que si l'une des deux quantités a un sens, l'autre aussi, et on a égalité.
- 2. Soit A une partie de \mathbb{R} . Montrer que A admet un plus petit élément si et seulement si A admet une borne inférieure qui appartient à A.
- 3. Même exercice, mais en remplaçant min par inf et max par sup.
- 4. Soit $A = \{(-1)^n \frac{n}{n+1} \mid n \in \mathbb{N}\}$. Déterminer, s'ils existent, le plus grand élément, le plus petit élément, les majorants, les minorants, la borne supérieure et la borne inférieure.
- 5. Même question avec $A = \left\{ \frac{1}{1+x} \mid x \in [0, +\infty[\right] \right\}$.

Auteurs

Arnaud Bodin Niels Borne Laura Desideri

- 1 Définitions
- 2 Limites
- 3 Exemples remarquables
- 4 Théorème de convergence
- 5 Suites récurrentes

```
Vidéo ■ partie 1. Premières définitions
Vidéo ■ partie 2. Limite
Vidéo ■ partie 3. Exemples remarquables
Vidéo ■ partie 4. Théorèmes de convergence
Vidéo ■ partie 5. Suites récurrentes
Exercices ◆ Suites
```

Introduction

L'étude des suites numériques a pour objet la compréhension de l'évolution de séquences de nombres (réels, complexes ...). Ceci permet de modéliser de nombreux phénomènes de la vie quotidienne. Supposons par exemple que l'on place une somme S à un taux annuel de 10%. Si S_n représente la somme que l'on obtiendra après n années, on a

$$S_0 = S$$
 $S_1 = S \times 1, 1$... $S_n = S \times (1, 1)^n$.

Au bout de n=10 ans, on possédera donc $S_{10}=S_n=S\times (1,1)^{10}\approx S\times 2,59$: la somme de départ avec les intérêts cumulés.

1. Définitions

1.1. Définition d'une suite

Définition 44

- Une *suite* est une application $u : \mathbb{N} \to \mathbb{R}$.
- Pour $n \in \mathbb{N}$, on note u(n) par u_n et on l'appelle n-ème **terme** ou **terme** général de la suite.

La suite est notée u, ou plus souvent $(u_n)_{n\in\mathbb{N}}$ ou simplement (u_n) . Il arrive fréquemment que l'on considère des suites définies à partir d'un certain entier naturel n_0 plus grand que 0, on note alors $(u_n)_{n\geqslant n_0}$.

Exemple 69

- $(\sqrt{n})_{n\geq 0}$ est la suite de termes : $0, 1, \sqrt{2}, \sqrt{3}, \dots$
- $((-1)^n)_{n\geq 0}$ est la suite qui alterne +1, -1, +1, -1,...
- La suite $(S_n)_{n\geq 0}$ de l'introduction définie par $S_n=S\times (1,1)^n$,
- $(F_n)_{n\geq 0}$ définie par $F_0=1$, $F_1=1$ et la relation $F_{n+2}=F_{n+1}+F_n$ pour $n\in \mathbb{N}$ (suite de Fibonacci). Les premiers termes sont 1, 1, 2, 3, 5, 8, 13, ... Chaque terme est la somme des deux précédents.
- $-\left(\frac{1}{n^2}\right)_{n\geqslant 1}$. Les premiers termes sont $1,\frac{1}{4},\frac{1}{9},\frac{1}{16},\ldots$

1.2. Suite majorée, minorée, bornée

Définition 45

Soit $(u_n)_{n\in\mathbb{N}}$ une suite.

- $(u_n)_{n\in\mathbb{N}}$ est majorée si $\exists M\in\mathbb{R} \ \forall n\in\mathbb{N} \ u_n\leqslant M$.
- $(u_n)_{n\in\mathbb{N}}$ est minorée si $\exists m\in\mathbb{R} \ \forall n\in\mathbb{N} \ u_n\geqslant m$.
- $(u_n)_{n\in\mathbb{N}}$ est **bornée** si elle est majorée et minorée, ce qui revient à dire :

$$\exists M \in \mathbb{R} \quad \forall n \in \mathbb{N} \quad |u_n| \leq M.$$

1.3. Suite croissante, décroissante

Définition 46

Soit $(u_n)_{n\in\mathbb{N}}$ une suite.

- $(u_n)_{n\in\mathbb{N}}$ est *croissante* si $\forall n\in\mathbb{N}$ $u_{n+1} \ge u_n$.
- $(u_n)_{n\in\mathbb{N}}$ est strictement croissante si $\forall n\in\mathbb{N} \ u_{n+1}>u_n$.
- $(u_n)_{n\in\mathbb{N}}$ est **décroissante** si $\forall n\in\mathbb{N}$ $u_{n+1} \leq u_n$.
- $(u_n)_{n \in \mathbb{N}}$ est strictement décroissante si $\forall n \in \mathbb{N}$ $u_{n+1} < u_n$.
- $(u_n)_{n\in\mathbb{N}}$ est *monotone* si elle est croissante ou décroissante.
- $(u_n)_{n\in\mathbb{N}}$ est **strictement monotone** si elle est strictement croissante ou strictement décroissante.

Voici un exemple d'une suite croissante (mais pas strictement croissante):

Remarque

- $(u_n)_{n\in\mathbb{N}}$ est croissante si et seulement si $\forall n\in\mathbb{N}$ $u_{n+1}-u_n \ge 0$.
- Si $(u_n)_{n\in\mathbb{N}}$ est une suite à termes strictement positifs, elle est croissante si et seulement si $\forall n\in\mathbb{N}$ $\frac{u_{n+1}}{u_n}\geqslant 1$.

Exemple 70

- La suite $(S_n)_{n\geq 0}$ de l'introduction est strictement croissante car $S_{n+1}/S_n=1, 1>1$.
- La suite $(u_n)_{n\geqslant 1}$ définie par $u_n=(-1)^n/n$ pour $n\geqslant 1$, n'est ni croissante ni décroissante. Elle est majorée par 1/2 (borne atteinte en n=2), minorée par −1 (borne atteinte en n=1).

– La suite $\left(\frac{1}{n}\right)_{n\geq 1}$ est une suite strictement décroissante. Elle est majorée par 1 (borne atteinte pour n=1), elle est minorée par 0 mais cette valeur n'est jamais atteinte.

Mini-exercices

- 1. La suite $\left(\frac{n}{n+1}\right)_{n\in\mathbb{N}}$ est-elle monotone? Est-elle bornée?
- 2. La suite $\left(\frac{n\sin(n!)}{1+n^2}\right)_{n\in\mathbb{N}}$ est-elle bornée?
- 3. Réécrire les phrases suivantes en une phrase mathématique. Écrire ensuite la négation mathématique de chacune des phrases. (a) La suite $(u_n)_{n\in\mathbb{N}}$ est majorée par 7. (b) La suite $(u_n)_{n\in\mathbb{N}}$ est constante. (c) La suite $(u_n)_{n\in\mathbb{N}}$ est strictement positive à partir d'un certain rang. (d) $(u_n)_{n\in\mathbb{N}}$ n'est pas strictement croissante.
- 4. Est-il vrai qu'une suite croissante est minorée? Majorée?
- 5. Soit x > 0 un réel. Montrer que la suite $\left(\frac{x^n}{n!}\right)_{n \in \mathbb{N}}$ est décroissante à partir d'un certain rang.

2. Limites

2.1. Introduction

Pour un trajet au prix normal de 20 euros on achète une carte d'abonnement de train à 50 euros et on obtient chaque billet à 10 euros. La publicité affirme « 50% de réduction ». Qu'en pensez-vous ? Pour modéliser la situation en termes de suites, on pose pour un entier $n \ge 1$:

$$u_n = 20n$$

$$v_n = 10n + 50$$

 u_n est le prix payé au bout de n achats au tarif plein, et v_n celui au tarif réduit, y compris le prix de l'abonnement. La réduction est donc, en pourcentage :

$$1 - \frac{v_n}{u_n} = \frac{u_n - v_n}{u_n} = \frac{10n - 50}{20n} = 0, 5 - \frac{5}{2n} \xrightarrow[n \to +\infty]{} 0, 5$$

Il faut donc une infinité de trajets pour arriver à 50% de réduction !

2.2. Limite finie, limite infinie

Soit $(u_n)_{n\in\mathbb{N}}$ une suite.

Définition 47

La suite $(u_n)_{n\in\mathbb{N}}$ a pour *limite* $\ell\in\mathbb{R}$ si : pour tout $\varepsilon>0$, il existe un entier naturel N tel que si $n\geqslant N$ alors $|u_n-\ell|\leqslant \varepsilon$:

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n \in \mathbb{N} \quad (n \ge N \Longrightarrow |u_n - \ell| \le \varepsilon)$$

On dit aussi que la suite $(u_n)_{n\in\mathbb{N}}$ tend vers ℓ . Autrement dit : u_n est proche d'aussi près que l'on veut de ℓ , à partir d'un certain rang.

Définition 48

1. La suite $(u_n)_{n\in\mathbb{N}}$ tend vers $+\infty$ si :

$$\forall A > 0 \quad \exists N \in \mathbb{N} \quad \forall n \in \mathbb{N} \quad (n \geqslant N \Longrightarrow u_n \geqslant A)$$

2. La suite $(u_n)_{n\in\mathbb{N}}$ tend vers $-\infty$ si :

$$\forall A > 0 \quad \exists N \in \mathbb{N} \quad \forall n \in \mathbb{N} \quad (n \geqslant N \Longrightarrow u_n \leqslant -A)$$

Remarque

- 1. On note $\lim_{n\to+\infty}u_n=\ell$ ou parfois $u_n\xrightarrow[n\to+\infty]{}\ell$, et de même pour une limite $\pm\infty$.
- 2. $\lim_{n\to+\infty} u_n = -\infty \iff \lim_{n\to+\infty} -u_n = +\infty$.
- 3. On raccourcit souvent la phrase logique en : $\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \qquad (n \geqslant N \Longrightarrow |u_n \ell| \leqslant \varepsilon)$. Noter que N dépend de ε et qu'on ne peut pas échanger l'ordre du « pour tout » et du « il existe ».
- 4. L'inégalité $|u_n \ell| \le \varepsilon$ signifie $\ell \varepsilon \le u_n \le \ell + \varepsilon$. On aurait aussi pu définir la limite par la phrase : $\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \qquad (n \ge N \Longrightarrow |u_n \ell| < \varepsilon)$, où l'on a remplacé la dernière inégalité large par une inégalité stricte.

Définition 49

Une suite $(u_n)_{n\in\mathbb{N}}$ est *convergente* si elle admet une limite *finie*. Elle est *divergente* sinon (c'est-à-dire soit la suite tend vers $\pm \infty$, soit elle n'admet pas de limite).

On va pouvoir parler de *la* limite, si elle existe, car il y a unicité de la limite :

Proposition 51

Si une suite est convergente, sa limite est unique.

Démonstration

On procède par l'absurde. Soit $(u_n)_{n\in\mathbb{N}}$ une suite convergente ayant deux limites $\ell\neq\ell'$. Choisissons $\varepsilon>0$ tel que $\varepsilon<\frac{|\ell-\ell'|}{2}$.

Comme $\lim_{n\to+\infty} u_n = \ell$, il existe N_1 tel que $n \ge N_1$ implique $|u_n - \ell| < \varepsilon$.

De même $\lim_{n\to+\infty} u_n = \ell'$, il existe N_2 tel que $n \ge N_2$ implique $|u_n - \ell'| < \varepsilon$.

Notons $N = \max(N_1, N_2)$, on a alors pour ce N:

$$|u_N - \ell| < \varepsilon$$
 et $|u_N - \ell'| < \varepsilon$

Donc $|\ell - \ell'| = |\ell - u_N + u_N - \ell'| \le |\ell - u_N| + |u_N - \ell'|$ d'après l'inégalité triangulaire. On en tire $|\ell - \ell'| \le \varepsilon + \varepsilon = 2\varepsilon < |\ell - \ell'|$. On vient d'aboutir à l'inégalité $|\ell - \ell'| < |\ell - \ell'|$ qui est impossible. Bilan : notre hypothèse de départ est fausse et donc $\ell = \ell'$.

2.3. Propriétés des limites

Proposition 52

- 1. $\lim_{n\to+\infty} u_n = \ell \iff \lim_{n\to+\infty} (u_n \ell) = 0 \iff \lim_{n\to+\infty} |u_n \ell| = 0$,
- 2. $\lim_{n\to+\infty} u_n = \ell \implies \lim_{n\to+\infty} |u_n| = |\ell|$.

Démonstration

Cela résulte directement de la définition.

Proposition 53. Opérations sur les limites

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites convergentes.

- 1. Si $\lim_{n\to+\infty} u_n = \ell$, où $\ell \in \mathbb{R}$, alors pour $\lambda \in \mathbb{R}$ on a $\lim_{n\to+\infty} \lambda u_n = \lambda \ell$.
- 2. Si $\lim_{n\to+\infty} u_n = \ell$ et $\lim_{n\to+\infty} v_n = \ell'$, où $\ell,\ell' \in \mathbb{R}$, alors

$$\lim_{n\to +\infty}(u_n+v_n)=\ell+\ell'$$

$$\lim_{n \to +\infty} (u_n \times v_n) = \ell \times \ell'$$

3. Si $\lim_{n\to+\infty}u_n=\ell$ où $\ell\in\mathbb{R}^*=\mathbb{R}\setminus\{0\}$ alors $u_n\neq 0$ pour n assez grand et $\lim_{n\to+\infty}\frac{1}{u_n}=\frac{1}{\ell}$.

Nous ferons la preuve dans la section suivante.

Nous utilisons continuellement ces propriétés, le plus souvent sans nous en rendre compte.

Exemple 71

Si $u_n \to \ell$ avec $\ell \neq \pm 1$, alors

$$u_n(1-3u_n) - \frac{1}{u_n^2-1} \xrightarrow[n \to +\infty]{} \ell(1-3\ell) - \frac{1}{\ell^2-1}.$$

Proposition 54. Opérations sur les limites infinies

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites telles que $\lim_{n\to+\infty}v_n=+\infty$.

- $1. \lim_{n\to+\infty}\frac{1}{v_n}=0$
- 2. Si $(u_n)_{n\in\mathbb{N}}$ est minorée alors $\lim_{n\to+\infty}(u_n+v_n)=+\infty$
- 3. Si $(u_n)_{n\in\mathbb{N}}$ est minorée par un nombre $\lambda > 0$ alors $\lim_{n\to+\infty} (u_n \times v_n) = +\infty$
- 4. Si $\lim_{n\to+\infty} u_n = 0$ et $u_n > 0$ pour n assez grand alors $\lim_{n\to+\infty} \frac{1}{u_n} = +\infty$.

Exemple 72

Si (u_n) est la suite de terme général $\frac{1}{\sqrt{n}}$, alors $\lim_{n\to+\infty}(u_n)=0$.

2.4. Des preuves!

Nous n'allons pas tout prouver mais seulement quelques résultats importants. Les autres se démontrent de manière tout à fait semblable.

Commençons par prouver un résultat assez facile (le premier point de la proposition 54):

«
$$Si$$
 $\lim u_n = +\infty$ $alors$ $\lim \frac{1}{u_n} = 0$.»

Démonstration

Fixons $\varepsilon > 0$. Comme $\lim_{n \to +\infty} u_n = +\infty$, il existe un entier naturel N tel que $n \ge N$ implique $u_n \ge \frac{1}{\varepsilon}$. On obtient alors $0 \le \frac{1}{u_n} \le \varepsilon$ pour $n \ge N$. On a donc montré que $\lim_{n \to +\infty} \frac{1}{u_n} = 0$.

Afin de prouver que la limite d'un produit est le produit des limites nous aurons besoin d'un peu de travail.

Proposition 55

Toute suite convergente est bornée.

Démonstration

Soit $(u_n)_{n\in\mathbb{N}}$ une suite convergeant vers le réel ℓ . En appliquant la définition de limite (définition 47) avec $\varepsilon = 1$, on obtient qu'il existe un entier naturel N tel que pour $n \ge N$ on ait $|u_n - \ell| \le 1$, et donc pour $n \ge N$ on a

$$|u_n| = |\ell + (u_n - \ell)| \le |\ell| + |u_n - \ell| \le |\ell| + 1.$$

Donc si on pose

$$M = \max(|u_0|, |u_1|, \cdots, |u_{N-1}|, |\ell| + 1)$$

on a alors $\forall n \in \mathbb{N} |u_n| \leq M$.

Proposition 56

Si la suite $(u_n)_{n\in\mathbb{N}}$ est bornée et $\lim_{n\to+\infty}v_n=0$ alors $\lim_{n\to+\infty}(u_n\times v_n)=0$.

Exemple 73

Si $(u_n)_{n\geqslant 1}$ est la suite donnée par $u_n=\cos(n)$ et $(v_n)_{n\geqslant 1}$ est celle donnée par $v_n=\frac{1}{\sqrt{n}}$, alors $\lim_{n\to+\infty}(u_nv_n)=0$.

Démonstration

La suite $(u_n)_{n\in\mathbb{N}}$ est bornée, on peut donc trouver un réel M>0 tel que pour tout entier naturel n on ait $|u_n| \leq M$. Fixons $\varepsilon>0$. On applique la définition de limite (définition 47) à la suite $(v_n)_{n\in\mathbb{N}}$ pour $\varepsilon'=\frac{\varepsilon}{M}$. Il existe donc un entier naturel N tel que $n\geqslant N$ implique $|v_n|\leqslant \varepsilon'$. Mais alors pour $n\geqslant N$ on a :

$$|u_n v_n| = |u_n||v_n| \le M \times \varepsilon' = \varepsilon.$$

On a bien montré que $\lim_{n\to+\infty} (u_n \times v_n) = 0$.

Prouvons maintenant la formule concernant le produit de deux limites (voir proposition 53).

«
$$Si \quad \lim u_n = \ell \quad et \quad \lim v_n = \ell' \quad alors \quad \lim u_n v_n = \ell \ell'$$
. »

Démonstration Démonstration de la formule concernant le produit de deux limites

Le principe est d'écrire :

$$u_n v_n - \ell \ell' = (u_n - \ell) v_n + \ell (v_n - \ell')$$

D'après la proposition 56, la suite de terme général $\ell(v_n-\ell')$ tend vers 0. Par la même proposition il en est de même de la suite de terme général $(u_n-\ell)v_n$, car la suite convergente $(v_n)_{n\in\mathbb{N}}$ est bornée. On conclut que $\lim_{n\to+\infty}(u_nv_n-\ell\ell')=0$, ce qui équivaut à $\lim_{n\to+\infty}u_nv_n=\ell\ell'$.

2.5. Formes indéterminées

Dans certaines situations, on ne peut rien dire à priori sur la limite, il faut faire une étude au cas par cas.

Exemple 74

1. « $+\infty-\infty$ » Cela signifie que si $u_n \to +\infty$ et $v_n \to -\infty$ il faut faire l'étude en fonction de chaque suite pour $\lim (u_n + v_n)$ comme le prouve les exemples suivants.

$$\lim_{n \to +\infty} \left(e^n - \ln(n) \right) = +\infty$$

$$\lim_{n \to +\infty} \left(n - n^2 \right) = -\infty$$

$$\lim_{n \to +\infty} \left(\left(n + \frac{1}{n} \right) - n \right) = 0$$

$$2. < 0 \times \infty$$

$$\lim_{n \to +\infty} \frac{1}{\ln n} \times e^n = +\infty$$

$$\lim_{n \to +\infty} \frac{1}{n} \times \ln n = 0$$

$$\lim_{n \to +\infty} \frac{1}{n} \times (n+1) = 1$$

3. «
$$\frac{\infty}{\infty}$$
 », « $\frac{0}{0}$ », « 1^{∞} », ...

2.6. Limite et inégalités

Proposition 57

1. Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites convergentes telles que : $\forall n\in\mathbb{N}, u_n\leq v_n$. Alors

$$\lim_{n \to +\infty} u_n \le \lim_{n \to +\infty} v_n$$

- 2. Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites telles que $\lim_{n\to+\infty}u_n=+\infty$ et $\forall n\in\mathbb{N},\,v_n\geqslant u_n$. Alors $\lim_{n\to+\infty}v_n=+\infty$.
- 3. Théorème des « gendarmes » : si $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ sont trois suites telles que

$$\forall n \in \mathbb{N} \quad u_n \leq v_n \leq w_n$$

et $\lim_{n\to+\infty} u_n = \ell = \lim_{n\to+\infty} w_n$, alors la suite $(v_n)_{n\in\mathbb{N}}$ est convergente et $\lim_{n\to+\infty} v_n = \ell$.

Remarque

- 1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite convergente telle que : $\forall n\in\mathbb{N}, u_n\geqslant 0$. Alors $\lim_{n\to+\infty}u_n\geqslant 0$.
- 2. Attention : si $(u_n)_{n\in\mathbb{N}}$ est une suite convergente telle que : $\forall n\in\mathbb{N},\,u_n>0$, on ne peut affirmer que la limite est strictement positive mais seulement que $\lim_{n\to+\infty}u_n\geqslant 0$. Par exemple la suite $(u_n)_{n\in\mathbb{N}}$ donnée par $u_n=\frac{1}{n+1}$ est à termes strictement positifs, mais converge vers zéro.

Démonstration Démonstration de la Proposition 57

1. En posant $w_n = v_n - u_n$, on se ramène à montrer que si une suite $(w_n)_{n \in \mathbb{N}}$ vérifie $\forall n \in \mathbb{N}, w_n \geqslant 0$ et converge, alors $\lim_{n \to +\infty} w_n \geqslant 0$. On procède par l'absurde en supposant que $\ell = \lim_{n \to +\infty} w_n < 0$. En prenant $\varepsilon = |\frac{\ell}{2}|$ dans la définition de limite (définition 47), on obtient qu'il existe un entier naturel N tel que $n \geqslant N$ implique $|w_n - \ell| < \varepsilon = -\frac{\ell}{2}$. En particulier on a pour $n \geqslant N$ que $w_n < \ell - \frac{\ell}{2} = \frac{\ell}{2} < 0$, une contradiction.

- 2. Laissé en exercice.
- 3. En soustrayant la suite $(u_n)_{n\in\mathbb{N}}$, on se ramène à montrer l'énoncé suivant : si $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont deux suites telles que : $\forall n\in\mathbb{N}$, $0\leq u_n\leq v_n$ et $\lim_{n\to+\infty}v_n=0$, alors (u_n) converge et $\lim_{n\to+\infty}u_n=0$. Soit $\varepsilon>0$ et N un entier naturel tel que $n\geq N$ implique $|v_n|<\varepsilon$. Comme $|u_n|=u_n\leq v_n=|v_n|$, on a donc : $n\geq N$ implique $|u_n|<\varepsilon$. On a bien montré que $\lim_{n\to+\infty}u_n=0$.

Exemple 75. Exemple d'application du théorème des « gendarmes »

Trouver la limite de la suite $(u_n)_{n\in\mathbb{N}}$ de terme général :

$$u_n = 2 + \frac{(-1)^n}{1 + n + n^2}$$

Mini-exercices

- 1. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_n=\frac{2n+1}{n+2}$. En utilisant la définition de la limite montrer que $\lim_{n\to+\infty}u_n=2$. Trouver explicitement un rang à partir duquel $1,999 \le u_n \le 2,001$.
- 2. Déterminer la limite ℓ de la suite $(u_n)_{n\in\mathbb{N}}$ de terme général : $\frac{n+\cos n}{n-\sin n}$ et trouver un entier N tel que si $n \ge N$, on ait $|u_n \ell| \le 10^{-2}$.
- 3. La suite $(u_n)_{n\in\mathbb{N}}$ de terme général $(-1)^n e^n$ admet-elle une limite? Et la suite de terme général $\frac{1}{u_n}$?
- 4. Déterminer la limite de la suite $(u_n)_{n\geqslant 1}$ de terme général $\sqrt{n+1}-\sqrt{n}$. Idem avec $v_n=\frac{\cos n}{\sin n+\ln n}$. Idem avec $w_n=\frac{n!}{n^n}$.

3. Exemples remarquables

3.1. Suite géométrique

Proposition 58. Suite géométrique

On fixe un réel a. Soit $(u_n)_{n\in\mathbb{N}}$ la suite de terme général : $u_n=a^n$.

- 1. Si a = 1, on a pour tout $n \in \mathbb{N}$: $u_n = 1$.
- 2. Si a > 1, alors $\lim_{n \to +\infty} u_n = +\infty$.
- 3. Si -1 < a < 1, alors $\lim_{n \to +\infty} u_n = 0$.
- 4. Si $a \le -1$, la suite $(u_n)_{n \in \mathbb{N}}$ diverge.

Démonstration

- 1. est évident.
- 2. Écrivons a=1+b avec b>0. Alors le binôme de Newton s'écrit $a^n=(1+b)^n=1+nb+\binom{n}{2}b^2+\cdots+\binom{n}{k}b^k+\cdots+b^n$. Tous les termes sont positifs, donc pour tout entier naturel n on $a:a^n\geqslant 1+nb$. Or $\lim_{n\to+\infty}(1+nb)=+\infty$ car b>0. On en déduit que $\lim_{n\to+\infty}a^n=+\infty$.
- 3. Si a=0, le résultat est clair. Sinon, on pose $b=|\frac{1}{a}|$. Alors b>1 et d'après le point précédent $\lim_{n\to+\infty}b^n=+\infty$. Comme pour tout entier naturel n on a : $|a|^n=\frac{1}{b^n}$, on en déduit que $\lim_{n\to+\infty}|a|^n=0$, et donc aussi $\lim_{n\to+\infty}a^n=0$.
- 4. Supposons par l'absurde que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers le réel ℓ . De $a^2 \ge 1$, on déduit que pour tout entier naturel n, on a $a^{2n} \ge 1$. En passant à la limite, il vient $\ell \ge 1$. Comme de plus pour tout entier naturel n on a $a^{2n+1} \le a \le -1$, il vient en passant de nouveau à la limite $\ell \le -1$. Mais comme on a déjà $\ell \ge 1$, on obtient une contradiction, et donc (u_n) ne converge pas.

3.2. Série géométrique

Proposition 59. Série géométrique

Soit a un réel, $a \neq 1$. En notant $\sum_{k=0}^{n} a^k = 1 + a + a^2 + \cdots + a^n$, on a :

$$\sum_{k=0}^{n} a^k = \frac{1 - a^{n+1}}{1 - a}$$

Démonstration

En multipliant par 1-a on fait apparaître une somme télescopique (presque tous les termes s'annulent) :

$$(1-a)(1+a+a^2+\cdots+a^n) = (1+a+a^2+\cdots+a^n) - (a+a^2+\cdots+a^{n+1}) = 1-a^{n+1}.$$

Remarque

Si $a \in]-1,1[$ et $(u_n)_{n\in\mathbb{N}}$ est la suite de terme général : $u_n = \sum_{k=0}^n a^k$, alors $\lim_{n\to+\infty} u_n = \frac{1}{1-a}$. De manière plus frappante, on peut écrire :

$$1 + a + a^2 + a^3 + \dots = \frac{1}{1 - a}$$

Enfin, ces formules sont aussi valables si $a \in \mathbb{C} \setminus \{1\}$. Si a = 1, alors $1 + a + a^2 + \cdots + a^n = n + 1$.

Exemple 76

L'exemple précédent avec $a = \frac{1}{2}$ donne

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = 2.$$

Cette formule était difficilement concevable avant l'avènement du calcul infinitésimal et a été popularisée sous le nom du *paradoxe de Zénon*. On tire une flèche à 2 mètres d'une cible. Elle met un certain laps de temps pour parcourir la moitié de la distance, à savoir un mètre. Puis il lui faut encore du temps pour parcourir la moitié de la distance restante, et de nouveau un certain temps pour la moitié de la distance encore restante. On ajoute ainsi une infinité

de durées non nulles, et Zénon en conclut que la flèche n'atteint jamais sa cible!

L'explication est bien donnée par l'égalité ci-dessus : la somme d'une infinité de termes peut bien être une valeur finie!! Par exemple si la flèche va à une vitesse de 1 m/s alors elle

bien être une valeur finie!! Par exemple si la flèche va à une vitesse de $1 \, m/s$, alors elle parcoure la première moitié en $1 \, s$, le moitié de la distance restante en $\frac{1}{2} \, s$, etc. Elle parcoure bien toute la distance en $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots = 2$ secondes!

3.3. Suites telles que $\left|\frac{u_{n+1}}{u_n}\right| < \ell < 1$

Théorème 20

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels non nuls. On suppose qu'il existe un réel ℓ tel que pour tout entier naturel n (ou seulement à partir d'un certain rang) on ait :

$$\left| \frac{u_{n+1}}{u_n} \right| < \ell < 1.$$

Alors $\lim_{n\to+\infty} u_n = 0$.

Démonstration

On suppose que la propriété $\left|\frac{u_{n+1}}{u_n}\right| < \ell < 1$ est vraie pour tout entier naturel n (la preuve dans le cas où cette propriété n'est vraie qu'à partir d'un certain rang n'est pas très différente). On écrit

$$\frac{u_n}{u_0} = \frac{u_1}{u_0} \times \frac{u_2}{u_1} \times \frac{u_3}{u_2} \times \dots \times \frac{u_n}{u_{n-1}}$$

ce dont on déduit

$$\left|\frac{u_n}{u_0}\right| < \ell \times \ell \times \ell \times \dots \times \times \ell = \ell^n$$

et donc $|u_n| < |u_0| \ell^n$. Comme $\ell < 1$, on a $\lim_{n \to +\infty} \ell^n = 0$. On conclut que $\lim_{n \to +\infty} u_n = 0$.

Corollaire 9

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels non nuls.

Si
$$\lim_{n\to+\infty} \frac{u_{n+1}}{u_n} = 0$$
, alors $\lim_{n\to+\infty} u_n = 0$.

Exemple 77

Soit $a \in \mathbb{R}$. Alors $\lim_{n \to +\infty} \frac{a^n}{n!} = 0$.

Démonstration

Si a=0, le résultat est évident. Supposons $a \neq 0$, et posons $u_n = \frac{a^n}{n!}$. Alors

$$\frac{u_{n+1}}{u_n} = \frac{a^{n+1}}{(n+1)!} \cdot \frac{n!}{a^n} = \frac{a}{n+1}.$$

Pour conclure, on peut ou bien directement utiliser le corollaire : comme $\lim \frac{u_{n+1}}{u_n} = 0$ (car a est fixe), on a $\lim u_n = 0$. Ou bien, comme $\frac{u_{n+1}}{u_n} = \frac{a}{n+1}$, on déduit par le théorème que pour $n \ge N > 2|a|$ on a :

$$\left|\frac{u_{n+1}}{u_n}\right| = \frac{|a|}{n+1} \leqslant \frac{|a|}{N+1} < \frac{|a|}{N} < \frac{1}{2} = \ell$$

et donc $\lim_{n\to+\infty} u_n = 0$.

Remarque

- 1. Avec les notations du théorème, si on a pour tout entier naturel n à partir d'un certain rang : $\left|\frac{u_{n+1}}{u_n}\right| > \ell > 1$, alors la suite $(u_n)_{n \in \mathbb{N}}$ diverge. En effet, il suffit d'appliquer le théorème à la suite de terme général $\frac{1}{|u_n|}$ pour voir que $\lim_{n \to +\infty} |u_n| = +\infty$.
- 2. Toujours avec les notations du théorème, si $\ell = 1$ on ne peut rien dire.

Exemple 78

Pour un nombre réel a, a > 0, calculer $\lim_{n \to +\infty} \sqrt[n]{a}$.

On va montrer que $\lim_{n\to+\infty} \sqrt[n]{a} = 1$. Si a = 1, c'est clair. Supposons a > 1. Écrivons a = 1 + h, avec h > 0. Comme

$$\left(1+\frac{h}{n}\right)^n \geqslant 1+n\frac{h}{n}=1+h=a$$

(voir la preuve de la proposition 58) on a en appliquant la fonction racine n-ième, $\sqrt[n]{\cdot}$:

$$1 + \frac{h}{n} \geqslant \sqrt[n]{a} \geqslant 1.$$

On peut conclure grâce au théorème « des gendarmes » que $\lim_{n\to+\infty} \sqrt[n]{a}=1$. Enfin, si a<1, on applique le cas précédent à $b=\frac{1}{a}>1$.

3.4. Approximation des réels par des décimaux

Proposition 60

Soit $a \in \mathbb{R}$. Posons

$$u_n = \frac{E(10^n a)}{10^n}.$$

Alors u_n est une approximation décimale de a à 10^{-n} près, en particulier $\lim_{n\to+\infty}u_n=a$.

Exemple 79

 $\pi = 3,14159265...$

$$u_0 = \frac{E(10^0 \pi)}{10^0} = E(\pi) = 3$$

$$u_1 = \frac{E(10^1 \pi)}{10^1} = \frac{E(31,415...)}{10} = 3,1$$

$$u_2 = \frac{E(10^2 \pi)}{10^2} = \frac{E(314,15...)}{100} = 3,14$$

$$u_3 = 3,141$$

Démonstration

D'après la définition de la partie entière, on a

$$E(10^n a) \le 10^n a < E(10^n a) + 1$$

donc

$$u_n \le \alpha < u_n + \frac{1}{10^n}$$

ou encore

$$0 \le a - u_n < \frac{1}{10^n}.$$

Or la suite de terme général $\frac{1}{10^n}$ est une suite géométrique de raison $\frac{1}{10}$, donc elle tend vers 0. On en déduit que $\lim_{n\to+\infty}u_n=a$.

Exercice 4

Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ de la proposition 60 est croissante.

Remarque

- 1. Les u_n sont des nombres décimaux, en particulier ce sont des nombres rationnels.
- 2. Ceci fournit une démonstration de la densité de $\mathbb Q$ dans $\mathbb R$. Pour $\varepsilon > 0$, et $I =]a \varepsilon, a + \varepsilon[$, alors pour n assez grand, $u_n \in I \cap \mathbb Q$.

Mini-exercices

- 1. Déterminer la limite de la suite $(u_n)_{n\in\mathbb{N}}$ de terme général 5^n-4^n .
- 2. Soit $v_n = 1 + a + a^2 + \dots + a^n$. Pour quelle valeur de $a \in \mathbb{R}$ la suite $(v_n)_{n \ge 1}$ a pour limite 3 (lorsque $n \to +\infty$)?
- 3. Calculer la limite de $\frac{1+2+2^2+\cdots+2^n}{2^n}$.
- 4. Montrer que la somme des racines *n*-ièmes de l'unité est nulle.
- 5. Montrer que si $\sin(\frac{\theta}{2}) \neq 0$ alors $\frac{1}{2} + \cos(\theta) + \cos(2\theta) + \cdots + \cos(n\theta) = \frac{\sin((n+\frac{1}{2})\theta)}{2\sin(\frac{\theta}{2})}$ (penser à $e^{i\theta}$).
- 6. Soit $(u_n)_{n\geqslant 2}$ la suite de terme général $u_n = \ln(1+\frac{1}{2}) \times \ln(1+\frac{1}{3}) \times \cdots \times \ln(1+\frac{1}{n})$. Déterminer la limite de $\frac{u_{n+1}}{u_n}$. Que peut-on en déduire?
- 7. Déterminer la limite de $\frac{\pi^n}{1\times 3\times 5\times \cdots \times (2n+1)}$ (où $\pi=3,14\ldots$).
- 8. Soit a un réel. Montrer que pour tout $\varepsilon > 0$ il existe un couple $(m,n) \in \mathbb{Z} \times \mathbb{N}$ (et même une infinité) tel que $\left|a \frac{m}{2^n}\right| \le \varepsilon$.

4. Théorème de convergence

4.1. Toute suite convergente est bornée

Revenons sur une propriété importante que nous avons déjà démontrée dans la section sur les limites.

Proposition 61

Toute suite convergente est bornée.

La réciproque est fausse mais nous allons ajouter une hypothèse supplémentaire pour obtenir des résultats.

4.2. Suite monotone

Théorème 21

Toute suite croissante et majorée est convergente.

Remarque

Et aussi:

- Toute suite décroissante et minorée est convergente.
- Une suite croissante et qui n'est pas majorée tend vers $+\infty$.
- Une suite décroissante et qui n'est pas minorée tend vers $-\infty$.

Démonstration Démonstration du théorème 21

Notons $A = \{u_n | n \in \mathbb{N}\} \subset \mathbb{R}$. Comme la suite $(u_n)_{n \in \mathbb{N}}$ est majorée, disons par le réel M, l'ensemble A est majoré par M, et de plus il est non vide. Donc d'après le théorème $\mathbb{R}4$ du chapitre sur les réels, l'ensemble A admet une borne supérieure : notons $\ell = \sup A$. Montrons que $\lim_{n \to +\infty} u_n = \ell$. Soit $\varepsilon > 0$. Par la caractérisation de la borne supérieure, il existe un élément u_N de A tel que $\ell - \varepsilon < u_N \le \ell$. Mais alors pour $n \ge N$ on a $\ell - \varepsilon < u_N \le \ell$, et donc $|u_n - \ell| \le \varepsilon$.

4.3. Deux exemples

 $\zeta(2)$

Soit $(u_n)_{n\geqslant 1}$ la suite de terme général :

$$u_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}.$$

- La suite $(u_n)_{n\geq 1}$ est croissante : en effet $u_{n+1}-u_n=\frac{1}{(n+1)^2}>0$.
- Montrons par récurrence que pour tout entier naturel $n \ge 1$ on a $u_n \le 2 \frac{1}{n}$.
 - Pour n = 1, on a $u_1 = 1 \le 1 = 2 \frac{1}{1}$.
 - Fixons $n \ge 1$ pour lequel on suppose $u_n \le 2 \frac{1}{n}$. Alors $u_{n+1} = u_n + \frac{1}{(n+1)^2} \le 2 \frac{1}{n} + \frac{1}{(n+1)^2}$. Or $\frac{1}{(n+1)^2} \le \frac{1}{n(n+1)} = \frac{1}{n} \frac{1}{n+1}$, donc $u_{n+1} \le 2 \frac{1}{n+1}$, ce qui achève la récurrence.
- Donc la suite $(u_n)_{n \ge 1}$ est croissante et majorée par 2 : elle converge.

Remarque

On note $\zeta(2)$ cette limite, vous montrerez plus tard qu'en fait $\zeta(2) = \frac{\pi^2}{6}$.

Suite harmonique

C'est la suite $(u_n)_{n\geq 1}$ de terme général :

$$u_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}.$$

Calculons $\lim_{n\to+\infty} u_n$.

- La suite $(u_n)_{n \ge 1}$ est croissante : en effet $u_{n+1} u_n = \frac{1}{n+1} > 0$. Minoration de $u_{2^p} u_{2^{p-1}}$. On a $u_2 u_1 = 1 + \frac{1}{2} 1 = \frac{1}{2}$; $u_4 u_2 = \frac{1}{3} + \frac{1}{4} > \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$, et en général:

$$u_{2^p} - u_{2^{p-1}} = \underbrace{\frac{1}{2^{p-1} + 1} + \frac{1}{2^{p-1} + 2} + \dots + \frac{1}{2^p}}_{2^{p-1} = 2^p - 2^{p-1} \text{ termes } \geqslant \frac{1}{2^p}} > 2^{p-1} \times \frac{1}{2^p} = \frac{1}{2}$$

- $\lim_{n\to+\infty} u_n$ = +∞. En effet

$$u_{2^{p}}-1=u_{2^{p}}-u_{1}=(u_{2}-u_{1})+(u_{4}-u_{2})+\cdots+(u_{2^{p}}-u_{2^{p-1}})\geqslant \frac{p}{2}$$

donc la suite $(u_n)_{n\geqslant 1}$ est croissante mais n'est pas bornée, donc elle tend vers $+\infty$.

4.4. Suites adjacentes

Définition 50

Les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont dites **adjacentes** si

- 1. $(u_n)_{n\in\mathbb{N}}$ est croissante et $(v_n)_{n\in\mathbb{N}}$ est décroissante, 2. pour tout $n\geqslant 0$, on a $u_n\leqslant v_n$,
- 3. $\lim_{n\to+\infty} (v_n u_n) = 0$.

Théorème 22

Si les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont adjacentes, elles convergent vers la même limite.

Il y a donc deux résultats dans ce théorème, la convergence de (u_n) et (v_n) et en plus l'égalité des limites.

Les termes de la suites sont ordonnées ainsi :

$$u_0 \le u_1 \le u_2 \le \dots \le u_n \le \dots \dots \le v_n \le \dots \le v_2 \le v_1 \le v_0$$

Démonstration

- La suite $(u_n)_{n\in\mathbb{N}}$ est croissante et majorée par v_0 , donc elle converge vers une limite ℓ .
- La suite $(v_n)_{n\in\mathbb{N}}$ est décroissante et minorée par u_0 , donc elle converge vers une limite ℓ' .
- Donc $\ell' \ell = \lim_{n \to +\infty} (v_n u_n) = 0$, d'où $\ell' = \ell$.

Exemple 80

Reprenons l'exemple de $\zeta(2)$. Soient (u_n) et (v_n) les deux suites définies pour $n \ge 1$ par

$$u_n = \sum_{k=1}^n \frac{1}{k^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}$$
 et $v_n = u_n + \frac{2}{n+1}$.

Montrons que (u_n) et (v_n) sont deux suites adjacentes :

- 1(a) (u_n) est croissante car $u_{n+1} u_n = \frac{1}{(n+1)^2} > 0$.
- (b) (v_n) est décroissante : $v_{n+1} v_n = \frac{1}{(n+1)^2} + \frac{2}{n+2} \frac{2}{n+1} = \frac{n+2+2(n+1)^2-2(n+1)(n+2)}{(n+2)(n+1)^2} = \frac{-n}{(n+2)(n+1)^2} < 0$
- 2. Pour tout $n \ge 1$: $v_n u_n = \frac{2}{n+1} > 0$, donc $u_n \le v_n$.
- 3. Enfin comme $v_n u_n = \frac{2}{n+1}$ donc $\lim (v_n u_n) = 0$.

Les suites (u_n) et (v_n) sont deux suites adjacentes, elles convergent donc vers une même limite finie ℓ . Nous avons en plus l'encadrement $u_n \le \ell \le v_n$ pour tout $n \ge 1$. Ceci fournit des approximations de la limite : par exemple pour n = 3, $1 + \frac{1}{4} + \frac{1}{9} \le \ell \le 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{2}$ donc $1,3611... \le \ell \le 1,8611...$

Exercice 5

Soit $(u_n)_{n\geq 1}$ la suite de terme général :

$$u_n = 1 + \frac{1}{2^3} + \frac{1}{3^3} + \dots + \frac{1}{n^3}.$$

Montrer que la suite $(u_n)_{n\geqslant 1}$ converge (on pourra considérer la suite $(v_n)_{n\geqslant 1}$ de terme général $v_n=u_n+\frac{1}{n^2}$).

Remarque

On note $\zeta(3)$ cette limite. On l'appelle aussi constante d'Apéry. Roger Apéry a prouvé en 1978 que $\zeta(3) \notin \mathbb{Q}$.

4.5. Théorème de Bolzano-Weierstrass

Définition 51

Soit $(u_n)_{n\in\mathbb{N}}$ une suite. Une *suite extraite* ou *sous-suite* de $(u_n)_{n\in\mathbb{N}}$ est une suite de la forme $(u_{\phi(n)})_{n\in\mathbb{N}}$, où $\phi:\mathbb{N}\to\mathbb{N}$ est une application strictement croissante.

Exemple 81

Soit la suite $(u_n)_{n\in\mathbb{N}}$ de terme général $u_n = (-1)^n$.

– Si on considère $\phi : \mathbb{N} \to \mathbb{N}$ donnée par $\phi(n) = 2n$, alors la suite extraite correspondante a pour terme général $u_{\phi(n)} = (-1)^{2n} = 1$, donc la suite $(u_{\phi(n)})_{n \in \mathbb{N}}$ est constante égale à 1.

– Si on considère $\psi: \mathbb{N} \to \mathbb{N}$ donnée par $\psi(n) = 3n$, alors la suite extraite correspondante a pour terme général $u_{\psi(n)} = (-1)^{3n} = \left((-1)^3\right)^n = (-1)^n$. La suite $(u_{\psi(n)})_{n \in \mathbb{N}}$ est donc égale à $(u_n)_{n \in \mathbb{N}}$.

Proposition 62

Soit $(u_n)_{n\in\mathbb{N}}$ une suite. Si $\lim_{n\to+\infty}u_n=\ell$, alors pour toute suite extraite $(u_{\phi(n)})_{n\in\mathbb{N}}$ on a $\lim_{n\to+\infty}u_{\phi(n)}=\ell$.

Démonstration

Soit $\varepsilon > 0$. D'après la définition de limite (définition 47), il existe un entier naturel N tel que $n \ge N$ implique $|u_n - \ell| < \varepsilon$. Comme l'application ϕ est strictement croissante, on montre facilement par récurrence que pour tout n, on a $\phi(n) \ge n$. Ceci implique en particulier que si $n \ge N$, alors aussi $\phi(n) \ge N$, et donc $|u_{\phi(n)} - \ell| < \varepsilon$. Donc la définition de limite (définition 47) s'applique aussi à la suite extraite.

Corollaire 10

Soit $(u_n)_{n\in\mathbb{N}}$ une suite. Si elle admet une sous-suite divergente, ou bien si elle admet deux sous-suites convergeant vers des limites distinctes, alors elle diverge.

Exemple 82

Soit la suite $(u_n)_{n\in\mathbb{N}}$ de terme général $u_n=(-1)^n$. Alors $(u_{2n})_{n\in\mathbb{N}}$ converge vers 1, et $(u_{2n+1})_{n\in\mathbb{N}}$ converge vers -1 (en fait ces deux sous-suites sont constantes). On en déduit que la suite $(u_n)_{n\in\mathbb{N}}$ diverge.

Exercice 6

Soit $(u_n)_{n\in\mathbb{N}}$ une suite. On suppose que les deux sous-suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ convergent vers la même limite ℓ . Montrer que $(u_n)_{n\in\mathbb{N}}$ converge également vers ℓ .

Terminons par un résultat théorique très important.

Théorème 23. Théorème de Bolzano-Weierstrass

Toute suite bornée admet une sous-suite convergente.

Exemple 83

- 1. On considère la suite $(u_n)_{n\in\mathbb{N}}$ de terme général $u_n=(-1)^n$. Alors on peut considérer les deux sous-suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$.
- 2. On considère la suite $(v_n)_{n\in\mathbb{N}}$ de terme général $v_n=\cos n$. Le théorème affirme qu'il existe une sous-suite convergente, mais il est moins facile de l'expliciter.

Démonstration Démonstration du théorème 23

On procède par dichotomie. L'ensemble des valeurs de la suite est par hypothèse contenu dans un intervalle [a,b]. Posons $a_0=a,\ b_0=b,\ \phi(0)=0$. Au moins l'un des deux intervalles $\left[a_0,\frac{a_0+b_0}{2}\right]$ ou $\left[\frac{a_0+b_0}{2},b_0\right]$ contient u_n pour une infinité d'indices n. On note $[a_1,b_1]$ un tel intervalle, et on note $\phi(1)$ un entier $\phi(1)>\phi(0)$ tel que $u_{\phi(1)}\in[a_1,b_1]$.

En itérant cette construction, on construit pour tout entier naturel n un intervalle $[a_n,b_n]$, de longueur $\frac{b-a}{2^n}$, et un entier $\phi(n)$ tel que $u_{\phi(n)} \in [a_n,b_n]$. Notons que par construction la suite $(a_n)_{n \in \mathbb{N}}$ est croissante et la suite $(b_n)_{n \in \mathbb{N}}$ est décroissante.

Comme de plus $\lim_{n\to+\infty} (b_n-a_n) = \lim_{n\to+\infty} \frac{b-a}{2^n} = 0$, les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ sont adjacentes et donc convergent vers une même limite ℓ . On peut appliquer le théorème « des gendarmes » pour conclure que $\lim_{n\to+\infty} u_{\phi(n)} = \ell$.

Mini-exercices

- 1. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=1$ et pour $n\geq 1$, $u_n=\sqrt{2+u_{n-1}}$. Montrer que cette suite est croissante et majorée par 2. Que peut-on en conclure?
- 2. Soit $(u_n)_{n\geqslant 2}$ la suite définie par $u_n=\frac{\ln 4}{\ln 5}\times\frac{\ln 6}{\ln 7}\times\frac{\ln 8}{\ln 9}\times\cdots\times\frac{\ln (2n)}{\ln (2n+1)}$. Étudier la croissance de la suite. Montrer que la suite (u_n) converge.
- 3. Soit $N \ge 1$ un entier et $(u_n)_{n \in \mathbb{N}}$ la suite de terme général $u_n = \cos(\frac{n\pi}{N})$. Montrer que la suite diverge.
- 4. Montrer que les suites de terme général $u_n = \sum_{k=1}^n \frac{1}{k!}$ et $v_n = u_n + \frac{1}{n \cdot (n!)}$ sont adjacentes. Que peut-on en déduire?
- 5. Soit $(u_n)_{n\geqslant 1}$ la suite de terme général $\sum_{k=1}^n \frac{(-1)^{k+1}}{k}$. On considère les deux suites extraites de terme général $v_n=u_{2n}$ et $w_n=u_{2n+1}$. Montrer que les deux suites $(v_n)_{n\geqslant 1}$ et $(w_n)_{n\geqslant 1}$ sont adjacentes. En déduire que la suite $(u_n)_{n\geqslant 1}$ converge.

6. Montrer qu'une suite bornée et divergente admet deux sous-suites convergeant vers des valeurs distinctes.

5. Suites récurrentes

Une catégorie essentielle de suites sont les suites récurrentes définies par une fonction. Ce chapitre est l'aboutissement de notre étude sur les suites, mais nécessite aussi l'étude de fonctions (voir «Limites et fonctions continues»).

5.1. Suite récurrente définie par une fonction

Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction. Une *suite récurrente* est définie par son premier terme et une relation permettant de calculer les termes de proche en proche :

$$u_0 \in \mathbb{R}$$
 et $u_{n+1} = f(u_n)$ pour $n \ge 0$

Une suite récurrente est donc définie par deux données : un terme initial u_0 , et une relation de récurrence $u_{n+1} = f(u_n)$. La suite s'écrit ainsi :

$$u_0$$
, $u_1 = f(u_0)$, $u_2 = f(u_1) = f(f(u_0))$, $u_3 = f(u_2) = f(f(f(u_0)))$,...

Le comportement peut très vite devenir complexe.

Exemple 84

Soit $f(x) = 1 + \sqrt{x}$. Fixons $u_0 = 2$ et définissons pour $n \ge 0$: $u_{n+1} = f(u_n)$. C'est-à-dire $u_{n+1} = 1 + \sqrt{u_n}$. Alors les premiers termes de la suite sont :

$$2$$
, $1+\sqrt{2}$, $1+\sqrt{1+\sqrt{2}}$, $1+\sqrt{1+\sqrt{1+\sqrt{2}}}$, $1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{2}}}}$,...

Voici un résultat essentiel concernant la limite si elle existe.

Proposition 63

Si f est une fonction continue et la suite récurrente (u_n) converge vers ℓ , alors ℓ est une solution de l'équation :

$$f(\ell) = \ell$$

Si on arrive à montrer que la limite existe alors cette proposition permet de calculer des candidats à être cette limite.

Une valeur ℓ , vérifiant $f(\ell) = \ell$ est un **point fixe** de f. La preuve est très simple et mérite d'être refaite à chaque fois.

Démonstration

Lorsque $n \to +\infty$, $u_n \to \ell$ et donc aussi $u_{n+1} \to \ell$. Comme $u_n \to \ell$ et que f est continue alors la suite $(f(u_n)) \to f(\ell)$. La relation $u_{n+1} = f(u_n)$ devient à la limite (lorsque $n \to +\infty$) : $\ell = f(\ell)$.

Nous allons étudier en détail deux cas particuliers fondamentaux : lorsque la fonction est croissante, puis lorsque la fonction est décroissante.

5.2. Cas d'une fonction croissante

Commençons par remarquer que pour une fonction croissante, le comportement de la suite (u_n) définie par récurrence est assez simple :

- Si $u_1 \ge u_0$ alors (u_n) est croissante.
- Si $u_1 ≤ u_0$ alors (u_n) est décroissante.

La preuve est une simple récurrence : par exemple si $u_1 \ge u_0$, alors comme f est croissante on a $u_2 = f(u_1) \ge f(u_0) = u_1$. Partant de $u_2 \ge u_1$ on en déduit $u_3 \ge u_2$,...

Voici le résultat principal:

Proposition 64

Si $f:[a,b] \to [a,b]$ une fonction continue et *croissante*, alors quelque soit $u_0 \in [a,b]$, la suite récurrente (u_n) est monotone et converge vers $\ell \in [a,b]$ vérifiant $f(\ell) = \ell$.

Il y a une hypothèse importante qui est un peu cachée : f va de l'intervalle [a,b] dans lui-même. Dans la pratique, pour appliquer cette proposition, il faut commencer par choisir [a,b] et vérifier que $f([a,b]) \subset [a,b]$.

Démonstration

La preuve est une conséquence des résultats précédents. Par exemple si $u_1 \ge u_0$ alors la suite (u_n) est croissante, elle est majorée par b, donc elle converge vers un réel ℓ . Par la proposition 63, alors $f(\ell) = \ell$. Si $u_1 \le u_0$, alors (u_n) est une décroissante et minorée par a, et la conclusion est la même.

Exemple 85

Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \frac{1}{4}(x^2 - 1)(x - 2) + x$ et $u_0 \in [0, 2]$. Étudions la suite (u_n) définie par récurrence : $u_{n+1} = f(u_n)$ (pour tout $n \ge 0$).

- 1. Étude de f
 - (a) f est continue sur \mathbb{R} .
 - (b) f est dérivable sur \mathbb{R} et f'(x) > 0.
 - (c) Sur l'intervalle [0,2], f est strictement croissante.
- (d) Et comme $f(0) = \frac{1}{2}$ et f(2) = 2 alors $f([0,2]) \subset [0,2]$.
- 2. Graphe de f

Voici comment tracer la suite : on trace le graphe de f et la bissectrice (y=x). On part d'une valeur u_0 (en rouge) sur l'axe des abscisses, la valeur $u_1=f(u_0)$ se lit sur l'axe des ordonnées, mais on reporte la valeur de u_1 sur l'axe des abscisses par symétrie par rapport à la bissectrice. On recommence : $u_2=f(u_1)$ se lit sur l'axe des ordonnées et on le reporte sur l'axe des abscisses, etc. On obtient ainsi une sorte d'escalier, et graphiquement on conjecture que la suite est croissante et tend vers 1. Si on part d'une autre valeur initiale u_0' (en vert), c'est le même principe, mais cette fois on obtient un escalier qui descend.

3. Calcul des points fixes.

Cherchons les valeurs x qui vérifient (f(x) = x), autrement dit (f(x) - x = 0), mais

$$f(x) - x = \frac{1}{4}(x^2 - 1)(x - 2) \tag{8.1}$$

Donc les points fixes sont les $\{-1,1,2\}$. La limite de (u_n) est donc à chercher parmi ces 3 valeurs.

4. Premier cas : $u_0 = 1$ ou $u_0 = 2$.

Alors $u_1 = f(u_0) = u_0$ et par récurrence la suite (u_n) est constante (et converge donc vers u_0).

5. Deuxième cas : $0 \le u_0 < 1$.

- Comme f([0,1]) ⊂ [0,1], la fonction f se restreint sur l'intervalle [0,1] en une fonction $f:[0,1] \rightarrow [0,1]$.

- De plus sur [0,1], $f(x)-x \ge 0$. Cela se déduit de l'étude de f ou directement de l'expression (8.1).
- Pour $u_0 \in [0,1[$, $u_1 = f(u_0) \ge u_0$ d'après le point précédent. Comme f est croissante, par récurrence, comme on l'a vu, la suite (u_n) est croissante.
- La suite (u_n) est croissante et majorée par 1, donc elle converge. Notons ℓ sa limite.
- D'une part ℓ doit être un point fixe de f : $f(\ell)$ = ℓ . Donc ℓ ∈ {−1,1,2}.
- D'autre part la suite (u_n) étant croissante avec $u_0 \ge 0$ et majorée par 1, donc $\ell \in [0,1]$.
- Conclusion : si $0 \le u_0 < 1$ alors (u_n) converge vers $\ell = 1$.
- 6. Troisième cas : $1 < u_0 < 2$.

La fonction f se restreint en $f:[1,2] \to [1,2]$. Sur l'intervalle [1,2], f est croissante mais cette fois $f(x) \le x$. Donc $u_1 \le u_0$, et la suite (u_n) est décroissante. La suite (u_n) étant minorée par 1, elle converge. Si on note ℓ sa limite alors d'une part $f(\ell) = \ell$, donc $\ell \in \{-1,1,2\}$, et d'autre part $\ell \in [1,2[$. Conclusion $: (u_n)$ converge vers $\ell = 1$.

Le graphe de f joue un rôle très important, il faut le tracer même si on ne le demande pas explicitement. Il permet de se faire une idée très précise du comportement de la suite : Est-elle croissante? Est-elle positive? Semble-t-elle converger? Vers quelle limite? Ces indications sont essentielles pour savoir ce qu'il faut montrer lors de l'étude de la suite.

5.3. Cas d'une fonction décroissante

Proposition 65

Soit $f:[a,b] \to [a,b]$ une fonction continue et *décroissante*. Soit $u_0 \in [a,b]$ et la suite récurrente (u_n) définie par $u_{n+1} = f(u_n)$. Alors :

- La sous-suite (u_{2n}) converge vers une limite ℓ vérifiant $f \circ f(\ell) = \ell$.
- La sous-suite (u_{2n+1}) converge vers une limite ℓ' vérifiant $f \circ f(\ell') = \ell'$.

Il se peut (ou pas!) que $\ell = \ell'$.

Démonstration

La preuve se déduit du cas croissant. La fonction f étant décroissante, la fonction $f \circ f$ est croissante. Et on applique la proposition 64 à la fonction $f \circ f$ et à la sous-suite (u_{2n}) définie par récurrence $u_2 = f \circ f(u_0), u_4 = f \circ f(u_2),...$

De même en partant de u_1 et $u_3 = f \circ f(u_1),...$

Exemple 86

$$f(x) = 1 + \frac{1}{x}$$
, $u_0 > 0$, $u_{n+1} = f(u_n) = 1 + \frac{1}{u_n}$

- 1. Étude de f. La fonction $f:]0, +\infty[\to]0, +\infty[$ est une fonction continue et strictement décroissante.
- 2. Graphe de f.

Le principe pour tracer la suite est le même qu'auparavant : on place u_0 , on trace $u_1 = f(u_0)$ sur l'axe des ordonnées et on le reporte par symétrie sur l'axe des abscisses,... On obtient ainsi une sorte d'escargot, et graphiquement on conjecture que la suite converge vers le point fixe de f. En plus on note que la suite des termes de rang pair semble une suite croissante, alors que la suite des termes de rang impair semble décroissante.

3. Points fixes de $f \circ f$.

$$f \circ f(x) = f(f(x)) = f(1 + \frac{1}{x}) = 1 + \frac{1}{1 + \frac{1}{x}} = 1 + \frac{x}{x+1} = \frac{2x+1}{x+1}$$

Donc

$$f \circ f(x) = x \iff \frac{2x+1}{x+1} = x \iff x^2 - x - 1 = 0 \iff x \in \left\{ \frac{1-\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2} \right\}$$

Comme la limite doit être positive, le seul point fixe à considérer est $\ell = \frac{1+\sqrt{5}}{2}$.

Attention! Il y a un unique point fixe, mais on ne peut pas conclure à ce stade car f est définie sur $]0,+\infty[$ qui n'est pas un intervalle compact.

4. Premier cas $0 < u_0 \le \ell = \frac{1+\sqrt{5}}{2}$.

Alors, $u_1 = f(u_0) \ge f(\ell) = \ell$; et par une étude de $f \circ f(x) - x$, on obtient que : $u_2 = f \circ f(u_0) \ge u_0$; $u_1 \ge f \circ f(u_1) = u_3$.

Comme $u_2 \ge u_0$ et $f \circ f$ est croissante, la suite (u_{2n}) est croissante. De même $u_3 \le u_1$, donc la suite (u_{2n+1}) est décroissante. De plus comme $u_0 \le u_1$, en appliquant f un nombre pair de fois, on obtient que $u_{2n} \le u_{2n+1}$. La situation est donc la suivante :

$$u_0 \le u_2 \le \cdots \le u_{2n} \le \cdots \le u_{2n+1} \le \cdots \le u_3 \le u_1$$

La suite (u_{2n}) est croissante et majorée par u_1 , donc elle converge. Sa limite ne peut être que l'unique point fixe de $f \circ f : \ell = \frac{1+\sqrt{5}}{2}$.

La suite (u_{2n+1}) est décroissante et minorée par u_0 , donc elle converge aussi vers $\ell = \frac{1+\sqrt{5}}{2}$.

On en conclut que la suite (u_n) converge vers $\ell = \frac{1+\sqrt{5}}{2}$.

Les suites 145

5. Deuxième cas $u_0 \ge \ell = \frac{1+\sqrt{5}}{2}$.

On montre de la même façon que (u_{2n}) est décroissante et converge vers $\frac{1+\sqrt{5}}{2}$, et que (u_{2n+1}) est croissante et converge aussi vers $\frac{1+\sqrt{5}}{2}$.

Mini-exercices

- 1. Soit $f(x) = \frac{1}{9}x^3 + 1$, $u_0 = 0$ et pour $n \ge 0$: $u_{n+1} = f(u_n)$. Étudier en détails la suite (u_n) : (a) montrer que $u_n \ge 0$; (b) étudier et tracer le graphe de g; (c) tracer les premiers termes de (u_n) ; (d) montrer que (u_n) est croissante; (e) étudier la fonction g(x) = f(x) x; (f) montrer que f admet deux points fixes sur \mathbb{R}_+ , $0 < \ell < \ell'$; (g) montrer que $f([0,\ell]) \subset [0,\ell]$; (h) en déduire que (u_n) converge vers ℓ .
- 2. Soit $f(x) = 1 + \sqrt{x}$, $u_0 = 2$ et pour $n \ge 0$: $u_{n+1} = f(u_n)$. Étudier en détail la suite (u_n) .
- 3. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par : $u_0\in[0,1]$ et $u_{n+1}=u_n-u_n^2$. Étudier en détail la suite (u_n) .
- 4. Étudier la suite définie par $u_0 = 4$ et $u_{n+1} = \frac{4}{u_{n+2}}$

Auteurs

Auteurs: Arnaud Bodin, Niels Borne, Laura Desideri

Dessins: Benjamin Boutin

146 Les suites

9 Limites et fonctions continues

- 1 Notions de fonction
- 2 Limites
- 3 Continuité en un point
- 4 Continuité sur un intervalle
- 5 Fonctions monotones et bijections

```
Vidéo ■ partie 1. Notions de fonction

Vidéo ■ partie 2. Limites

Vidéo ■ partie 3. Continuité en un point

Vidéo ■ partie 4. Continuité sur un intervalle

Vidéo ■ partie 5. Fonctions monotones et bijections

Exercices ♦ Limites de fonctions

Exercices ♦ Fonctions continues
```

Motivation

Nous savons résoudre beaucoup d'équations (par exemple ax + b = 0, $ax^2 + bx + c = 0$,...) mais ces équations sont très particulières. Pour la plupart des équations nous ne saurons pas les résoudre, en fait il n'est pas évident de dire s'il existe une solution, ni combien il y en a. Considérons par exemple l'équation extrêmement simple :

$$x + \exp x = 0$$

Il n'y a pas de formule connue (avec des sommes, des produits,... de fonctions usuelles) pour trouver la solution x.

Dans ce chapitre nous allons voir que grâce à l'étude de la fonction $f(x) = x + \exp x$ il est possible d'obtenir beaucoup d'informations sur la solution de l'équation $x + \exp x = 0$ et même de l'équation plus générale $x + \exp x = y$ (où $y \in \mathbb{R}$ est fixé).

Nous serons capable de prouver que pour chaque $y \in \mathbb{R}$ l'équation « $x + \exp x = y$ » admet une solution x; que cette solution est unique; et nous saurons dire comment varie x en fonction de y. Le point

clé de tout cela est l'étude de la fonction f et en particulier de sa continuité. Même s'il n'est pas possible de trouver l'expression exacte de la solution x en fonction de y, nous allons mettre en place les outils théoriques qui permettent d'en trouver une solution approchée.

1. Notions de fonction

1.1. Définitions

Définition 52

Une *fonction* d'une variable réelle à valeurs réelles est une application $f: U \to \mathbb{R}$, où U est une partie de \mathbb{R} . En général, U est un intervalle ou une réunion d'intervalles. On appelle U le *domaine de définition* de la fonction f.

Exemple 87

La fonction inverse:

$$f:]-\infty, 0[\cup]0, +\infty[\longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{1}{x}$$

Le *graphe* d'une fonction $f: U \to \mathbb{R}$ est la partie Γ_f de \mathbb{R}^2 définie par $\Gamma_f = \{(x, f(x)) \mid x \in U\}$.

1.2. Opérations sur les fonctions

Soient $f: U \to \mathbb{R}$ et $g: U \to \mathbb{R}$ deux fonctions définies sur une même partie U de \mathbb{R} . On peut alors définir les fonctions suivantes :

- la *somme* de f et g est la fonction $f + g : U \to \mathbb{R}$ définie par (f + g)(x) = f(x) + g(x) pour tout $x \in U$;
- le *produit* de f et g est la fonction $f \times g : U \to \mathbb{R}$ définie par $(f \times g)(x) = f(x) \times g(x)$ pour tout $x \in U$;
- la *multiplication par un scalaire* $\lambda \in \mathbb{R}$ de f est la fonction $\lambda \cdot f : U \to \mathbb{R}$ définie par $(\lambda \cdot f)(x) = \lambda \cdot f(x)$ pour tout $x \in U$.

1.3. Fonctions majorées, minorées, bornées

Définition 53

Soient $f: U \to \mathbb{R}$ et $g: U \to \mathbb{R}$ deux fonctions. Alors :

- $f \ge g \text{ si } \forall x \in U \ f(x) \ge g(x);$
- $f \ge 0$ si $\forall x \in U$ $f(x) \ge 0$;
- f > 0 si $\forall x \in U$ f(x) > 0;
- f est dite **constante** sur U si $\exists a \in \mathbb{R} \ \forall x \in U \ f(x) = a$;
- f est dite **nulle** sur U si $\forall x \in U$ f(x) = 0.

Définition 54

Soit $f: U \to \mathbb{R}$ une fonction. On dit que :

- f est *majorée* sur U si $\exists M \in \mathbb{R} \ \forall x \in U \ f(x) \leq M$;
- f est *minorée* sur U si $\exists m \in \mathbb{R} \ \forall x \in U \ f(x) \ge m$;
- f est **bornée** sur U si f est à la fois majorée et minorée sur U, c'est-à-dire si $\exists M \in \mathbb{R} \ \forall x \in U \ |f(x)| \leq M$.

1.4. Fonctions croissantes, décroissantes

Définition 55

Soit $f: U \to \mathbb{R}$ une fonction. On dit que :

- f est **croissante** sur U si $\forall x, y \in U$ $x \leq y \Longrightarrow f(x) \leq f(y)$
- f est strictement croissante sur U si $\forall x, y \in U$ $x < y \implies f(x) < f(y)$
- f est décroissante sur U si $\forall x, y \in U$ $x \leq y \implies f(x) \geq f(y)$
- f est strictement décroissante sur U si $\forall x, y \in U$ $x < y \Longrightarrow f(x) > f(y)$
- -f est monotone (resp. strictement monotone) sur U si f est croissante ou décroissante (resp. strictement croissante ou strictement décroissante) sur U.

Exemple 88

- La fonction racine carrée $\begin{cases} [0,+\infty[\longrightarrow \mathbb{R}\\ x\longmapsto \sqrt{x} \end{cases}$ est strictement croissante.
- Les fonctions exponentielle exp : $\mathbb{R} \to \mathbb{R}$ et logarithme ln :]0,+ ∞ [$\to \mathbb{R}$ sont strictement croissantes.
- La fonction valeur absolue $\begin{cases} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto |x| \end{cases}$ n'est ni croissante, ni décroissante. Par contre, la fonction $\begin{cases} [0, +\infty[\longrightarrow \mathbb{R} \\ x \longmapsto |x| \end{cases}$ est strictement croissante.

1.5. Parité et périodicité

Définition 56

Soit I un intervalle de \mathbb{R} symétrique par rapport à 0 (c'est-à-dire de la forme]-a,a[ou [-a,a]ou \mathbb{R}). Soit $f: I \to \mathbb{R}$ une fonction définie sur cet intervalle. On dit que :

- f est *paire* si $\forall x \in I$ f(-x) = f(x),
- f est **impaire** si $\forall x \in I$ f(-x) = -f(x).

Interprétation graphique :

- f est paire si et seulement si son graphe est symétrique par rapport à l'axe des ordonnées.
- f est impaire si et seulement si son graphe est symétrique par rapport à l'origine.

Exemple 89

- La fonction définie sur $\mathbb R$ par $x\mapsto x^{2n}\ (n\in\mathbb N)$ est paire.
- La fonction définie sur $\mathbb R$ par $x\mapsto x^{2n+1}$ $(n\in\mathbb N)$ est impaire.
- La fonction $\cos:\mathbb{R}\to\mathbb{R}$ est paire. La fonction $\sin:\mathbb{R}\to\mathbb{R}$ est impaire.

Définition 57

Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction et T un nombre réel, T > 0. La fonction f est dite *périodique* de période T si $\forall x \in \mathbb{R}$ f(x + T) = f(x).

Interprétation graphique: f est périodique de période T si et seulement si son graphe est invariant par la translation de vecteur $T\vec{i}$, où \vec{i} est le premier vecteur de coordonnées.

Exemple 90

Les fonctions sinus et cosinus sont 2π -périodiques. La fonction tangente est π -périodique.

Mini-exercices

- 1. Soit $U =]-\infty, 0[$ et $f : U \to \mathbb{R}$ définie par f(x) = 1/x. f est-elle monotone? Et sur $U =]0, +\infty[$? Et sur $U =]-\infty, 0[\cup]0, +\infty[$?
- 2. Pour deux fonctions paires que peut-on dire sur la parité de la somme? du produit? et de la composée? Et pour deux fonctions impaires? Et si l'une est paire et l'autre impaire?
- 3. On note $\{x\} = x E(x)$ la partie fractionnaire de x. Tracer le graphe de la fonction $x \mapsto \{x\}$ et montrer qu'elle est périodique.
- 4. Soit $f : \mathbb{R} \to \mathbb{R}$ la fonction définie par $f(x) = \frac{x}{1+x^2}$. Montrer que |f| est majorée par $\frac{1}{2}$, étudier les variations de f (sans utiliser de dérivée) et tracer son graphe.
- 5. On considère la fonction $g: \mathbb{R} \to \mathbb{R}$, $g(x) = \sin(\pi f(x))$, où f est définie à la question précédente. Déduire de l'étude de f les variations, la parité, la périodicité de g et tracer son graphe.

2. Limites

2.1. Définitions

Limite en un point

Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle I de \mathbb{R} . Soit $x_0 \in \mathbb{R}$ un point de I ou une extrémité de I.

Définition 58

Soit $\ell \in \mathbb{R}$. On dit que f a pour limite ℓ en x_0 si

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad |x - x_0| < \delta \implies |f(x) - \ell| < \varepsilon$$

On dit aussi que f(x) tend vers ℓ lorsque x tend vers x_0 . On note alors $\lim_{x \to x_0} f(x) = \ell$ ou bien $\lim_{x \to x_0} f = \ell$.

Remarque

- L'inégalité $|x-x_0| < \delta$ équivaut à $x \in]x_0 \delta, x_0 + \delta[$. L'inégalité $|f(x) \ell| < \varepsilon$ équivaut à $f(x) \in]\ell \varepsilon, \ell + \varepsilon[$.
- On peut remplacer certaines inégalités strictes « < »par des inégalités larges « ≤ » dans la définition : $\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad |x x_0| \le \delta \Longrightarrow |f(x) \ell| \le \varepsilon$
- Dans la définition de la limite

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad |x - x_0| < \delta \implies |f(x) - \ell| < \varepsilon$$

le quantificateur $\forall x \in I$ n'est là que pour être sûr que l'on puisse parler de f(x). Il est souvent omis et l'existence de la limite s'écrit alors juste :

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad |x - x_0| < \delta \implies |f(x) - \ell| < \varepsilon.$$

- N'oubliez pas que l'ordre des quantificateurs est important, on ne peut échanger le $\forall \varepsilon$ avec le $\exists \delta$: le δ dépend en général du ε . Pour marquer cette dépendance on peut écrire : $\forall \varepsilon > 0 \quad \exists \delta(\varepsilon) > 0 \dots$

Exemple 91

- $-\lim_{x\to x_0}\sqrt{x}=\sqrt{x_0} \text{ pour tout } x_0\geqslant 0,$
- la fonction partie entière E n'a pas de limite aux points $x_0 \in \mathbb{Z}$.

Définition 59

– On dit que f a pour limite $+\infty$ en x_0 si

$$\forall A > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad |x - x_0| < \delta \implies f(x) > A.$$

On note alors $\lim_{x \to x_0} f(x) = +\infty$.

- On dit que f a pour limite $-\infty$ en x_0 si

$$\forall A > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad |x - x_0| < \delta \implies f(x) < -A.$$

On note alors $\lim_{x \to x_0} f(x) = -\infty$.

Limite en l'infini

Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle de la forme $I =]a, +\infty[$.

Définition 60

- Soit $\ell \in \mathbb{R}$. On dit que f a pour limite ℓ en +∞ si

$$\forall \varepsilon > 0 \quad \exists B > 0 \quad \forall x \in I \quad x > B \Longrightarrow |f(x) - \ell| < \varepsilon.$$

On note alors $\lim_{x \to +\infty} f(x) = \ell$ ou $\lim_{+\infty} f = \ell$.

- On dit que f a pour limite $+\infty$ en $+\infty$ si

$$\forall A > 0 \quad \exists B > 0 \quad \forall x \in I \quad x > B \Longrightarrow f(x) > A.$$

On note alors $\lim_{x \to +\infty} f(x) = +\infty$.

On définit de la même manière la limite en $-\infty$ des fonctions définies sur les intervalles du type $]-\infty,a[.$

Exemple 92

On a les limites classiques suivantes pour tout $n \ge 1$:

$$-\lim_{x \to +\infty} x^n = +\infty \quad \text{et} \quad \lim_{x \to -\infty} x^n = \begin{cases} +\infty & \text{si } n \text{ est pair} \\ -\infty & \text{si } n \text{ est impair} \end{cases}$$
$$-\lim_{x \to +\infty} \left(\frac{1}{x^n}\right) = 0 \quad \text{et} \quad \lim_{x \to -\infty} \left(\frac{1}{x^n}\right) = 0.$$

$$-\lim_{x \to +\infty} \left(\frac{1}{x^n} \right) = 0 \quad \text{et} \quad \lim_{x \to -\infty} \left(\frac{1}{x^n} \right) = 0$$

Exemple 93

Soit $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ avec $a_n > 0$ et $Q(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0$ avec $b_m > 0$.

$$\lim_{x \to +\infty} \frac{P(x)}{Q(x)} = \begin{cases} +\infty & \text{si } n > m \\ \frac{a_n}{b_m} & \text{si } n = m \\ 0 & \text{si } n < m \end{cases}$$

Limite à gauche et à droite

Soit *f* une fonction définie sur un ensemble de la forme $]a, x_0[\cup]x_0, b[$.

Définition 61

- On appelle *limite* à *droite* en x_0 de f la limite de la fonction $f_{|_{]x_0,b[}}$ en x_0 et on la note
- On définit de même la *limite* à gauche en x_0 de f: la limite de la fonction $f_{\mid]a,x_0[}$ en x_0 et on la note $\lim_{x_0^-} f$.

 – On note aussi $\lim_{\substack{x \to x_0 \\ x > x_0}} f(x)$ pour la limite à droite et $\lim_{\substack{x \to x_0 \\ x < x_0}} f(x)$ pour la limite à gauche.

Dire que $f: I \to \mathbb{R}$ admet une limite $\ell \in \mathbb{R}$ à droite en x_0 signifie donc :

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad x_0 < x < x_0 + \delta \implies |f(x) - \ell| < \varepsilon.$$

Si la fonction f a une limite en x_0 , alors ses limites à gauche et à droite en x_0 coïncident et valent $\lim f$.

Réciproquement, si f a une limite à gauche et une limite à droite en x_0 et si ces limites valent $f(x_0)$ (si f est bien définie en x_0) alors f admet une limite en x_0 .

Exemple 94

Considérons la fonction partie entière au point x = 2:

- comme pour tout $x \in]2,3[$ on a E(x) = 2, on a $\lim_{x \to \infty} E = 2$,
- comme pour tout $x \in [1,2[$ on a E(x) = 1, on a $\lim_{x \to \infty} E = 1.$

Ces deux limites étant différentes, on en déduit que E n'a pas de limite en 2.

2.2. Propriétés

Proposition 66

Si une fonction admet une limite, alors cette limite est unique.

On ne donne pas la démonstration de cette proposition, qui est très similaire à celle de l'unicité de la limite pour les suites (un raisonnement par l'absurde).

Soient deux fonctions f et g. On suppose que x_0 est un réel, ou que $x_0 = \pm \infty$.

Proposition 67

Si $\lim_{x_0} f = \ell \in \mathbb{R}$ et $\lim_{x_0} g = \ell' \in \mathbb{R}$, alors : $-\lim_{x_0} (\lambda \cdot f) = \lambda \cdot \ell \text{ pour tout } \lambda \in \mathbb{R}$ $-\lim_{x_0} (f + g) = \ell + \ell'$ $-\lim_{x_0} (f \times g) = \ell \times \ell'$ $-\sin \ell \neq 0, \text{ alors } \lim_{x_0} \frac{1}{f} = \frac{1}{\ell}$ De plus, si $\lim_{x_0} f = +\infty$ (ou $-\infty$) alors $\lim_{x_0} \frac{1}{f} = 0$.

Cette proposition se montre de manière similaire à la proposition analogue sur les limites de suites. Nous n'allons donc pas donner la démonstration de tous les résultats.

Démonstration

Montrons par exemple que si f tend en x_0 vers une limite ℓ non nulle, alors $\frac{1}{f}$ est bien définie dans un voisinage de x_0 et tend vers $\frac{1}{\ell}$.

Supposons $\ell > 0$, le cas $\ell < 0$ se montrerait de la même manière. Montrons tout d'abord que $\frac{1}{f}$ est bien définie et est bornée dans un voisinage de x_0 contenu dans I. Par hypothèse

$$\forall \varepsilon' > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad x_0 - \delta < x < x_0 + \delta \implies \ell - \varepsilon' < f(x) < \ell + \varepsilon'.$$

Si on choisit ε' tel que $0 < \varepsilon' < \ell/2$, alors on voit qu'il existe un intervalle $J = I \cap]x_0 - \delta, x_0 + \delta[$ tel que pour tout x dans J, $f(x) > \ell/2 > 0$, c'est-à-dire, en posant $M = \ell/2$:

$$\forall x \in J \quad 0 < \frac{1}{f(x)} < M.$$

Fixons à présent $\varepsilon > 0$. Pour tout $x \in J$, on a

$$\left|\frac{1}{f(x)} - \frac{1}{\ell}\right| = \frac{|\ell - f(x)|}{f(x)\ell} < \frac{M}{\ell} |\ell - f(x)|.$$

Donc, si dans la définition précédente de la limite de f en x_0 on choisit $\varepsilon' = \frac{\ell \varepsilon}{M}$, alors on trouve qu'il existe un $\delta > 0$ tel que

$$\forall x \in J \quad x_0 - \delta < x < x_0 + \delta \implies \left| \frac{1}{f(x)} - \frac{1}{\ell} \right| < \frac{M}{\ell} \left| \ell - f(x) \right| < \frac{M}{\ell} \varepsilon' = \varepsilon.$$

Proposition 68

Si $\lim_{x_0} f = \ell$ et $\lim_{\ell} g = \ell'$, alors $\lim_{x_0} g \circ f = \ell'$.

Ce sont des propriétés que l'on utilise sans s'en apercevoir!

Exemple 95

Soit $x \mapsto u(x)$ une fonction , $x_0 \in \mathbb{R}$ tel que $u(x) \to 2$ lorsque $x \to x_0$. Posons $f(x) = \sqrt{1 + \frac{1}{u(x)^2} + \ln u(x)}$. Si elle existe, quelle est la limite de f en x_0 ?

- Tout d'abord comme $u(x) \to 2$ alors $u(x)^2 \to 4$ donc $\frac{1}{u(x)^2} \to \frac{1}{4}$ (lorsque $x \to x_0$).
- De même comme u(x) → 2 alors dans un voisinage de x_0 u(x) > 0 donc $\ln u(x)$ est bien définie dans ce voisinage et de plus $\ln u(x)$ → $\ln 2$ (lorsque x → x_0).
- Cela entraîne que $1 + \frac{1}{u(x)^2} + \ln u(x) \to 1 + \frac{1}{4} + \ln 2$ lorsque $x \to x_0$. En particulier $1 + \frac{1}{u(x)^2} + \ln u(x) \ge 0$ dans un voisinage de x_0 donc f(x) est bien définie dans un voisinage de x_0 .
- Et par composition avec la racine carrée alors f(x) a bien une limite en x_0 et $\lim_{x\to x_0} f(x) = \sqrt{1 + \frac{1}{4} + \ln 2}$.

Il y a des situations où l'on ne peut rien dire sur les limites. Par exemple si $\lim_{x_0} f = +\infty$ et $\lim_{x_0} g = -\infty$ alors on ne peut a priori rien dire sur la limite de f + g (cela dépend vraiment de f et de g). On raccourci cela en $+\infty - \infty$ est une **forme indéterminée**.

Voici une liste de formes indéterminées : $+\infty - \infty$; $0 \times \infty$; $\frac{\infty}{\infty}$; $\frac{0}{0}$; 1^{∞} ; ∞^0 .

Enfin voici une proposition très importante qui lie le comportement d'une limite avec les inégalités.

Proposition 69

- Si $f \le g$ et si $\lim_{x_0} f = \ell \in \mathbb{R}$ et $\lim_{x_0} g = \ell' \in \mathbb{R}$, alors $\ell \le \ell'$.
 Si $f \le g$ et si $\lim_{x_0} f = +\infty$, alors $\lim_{x_0} g = +\infty$.
- Théorème des gendarmes

Si $f \le g \le h$ et si $\lim_{x_0} f = \lim_{x_0} h = \ell \in \mathbb{R}$, alors g a une limite en x_0 et $\lim_{x_0} g = \ell$.

Mini-exercices

- 1. Déterminer, si elle existe, la limite de $\frac{2x^2-x-2}{3x^2+2x+2}$ en 0. Et en $+\infty$?
- 2. Déterminer, si elle existe, la limite de $\sin\left(\frac{1}{x}\right)$ en $+\infty$. Et pour $\frac{\cos x}{\sqrt{x}}$?
- 3. En utilisant la définition de la limite (avec des ε), montrer que $\lim_{x\to 2}(3x+1)=7$.
- 4. Montrer que si f admet une limite finie en x_0 alors il existe $\delta > 0$ tel que f soit bornée sur $]x_0 - \delta, x_0 + \delta[.$
- 5. Déterminer, si elle existe, $\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1+x^2}}{x}$. Et $\lim_{x\to 2} \frac{x^2-4}{x^2-3x+2}$?

3. Continuité en un point

3.1. Définition

Soit *I* un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$ une fonction.

Définition 62

- On dit que f est continue en un point $x_0 \in I$ si

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad |x - x_0| < \delta \Longrightarrow |f(x) - f(x_0)| < \varepsilon$$

c'est-à-dire si f admet une limite en x_0 (cette limite vaut alors nécessairement $f(x_0)$).

- On dit que f est **continue sur** I si f est continue en tout point de I.

Intuitivement, une fonction est continue sur un intervalle, si on peut tracer son graphe « sans lever le crayon », c'est-à-dire si elle n'a pas de saut.

Voici des fonctions qui ne sont pas continues en x_0 :

Exemple 96

Les fonctions suivantes sont continues :

- une fonction constante sur un intervalle,
- la fonction racine carrée $x \mapsto \sqrt{x}$ sur [0, +∞[,
- les fonctions sin et cos sur \mathbb{R} ,
- la fonction valeur absolue $x \mapsto |x| \operatorname{sur} \mathbb{R}$,
- la fonction exp sur \mathbb{R} ,
- la fonction ln sur]0,+∞[.

Par contre, la fonction partie entière E n'est pas continue aux points $x_0 \in \mathbb{Z}$, puisqu'elle n'admet pas de limite en ces points. Pour $x_0 \in \mathbb{R} \setminus \mathbb{Z}$, elle est continue en x_0 .

3.2. Propriétés

La continuité assure par exemple que si la fonction n'est pas nulle en un point (qui est une propriété ponctuelle) alors elle n'est pas nulle autour de ce point (propriété locale). Voici l'énoncé :

Lemme 7

Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle I et x_0 un point de I. Si f est continue en x_0 et si $f(x_0) \neq 0$, alors il existe $\delta > 0$ tel que

$$\forall x \in]x_0 - \delta, x_0 + \delta[f(x) \neq 0$$

Démonstration

Supposons par exemple que $f(x_0) > 0$, le cas $f(x_0) < 0$ se montrerait de la même manière. Écrivons ainsi la définition de la continuité de f en x_0 :

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad x \in]x_0 - \delta, x_0 + \delta[\implies f(x_0) - \varepsilon < f(x) < f(x_0) + \varepsilon.$$

Il suffit donc de choisir ε tel que $0 < \varepsilon < f(x_0)$. Il existe alors bien un intervalle $J = I \cap]x_0 - \delta, x_0 + \delta[$ tel que pour tout x dans J, on a f(x) > 0.

La continuité se comporte bien avec les opérations élémentaires. Les propositions suivantes sont des conséquences immédiates des propositions analogues sur les limites.

Proposition 70

Soient $f,g:I\to\mathbb{R}$ deux fonctions continues en un point $x_0\in I$. Alors

- $\lambda \cdot f$ est continue en x_0 (pour tout $\lambda \in \mathbb{R}$),
- f + g est continue en x_0 ,
- $f \times g$ est continue en x_0 ,
- si $f(x_0) \neq 0$, alors $\frac{1}{f}$ est continue en x_0 .

Exemple 97

La proposition précédente permet de vérifier que d'autres fonctions usuelles sont continues :

- les fonctions puissance $x \mapsto x^n$ sur \mathbb{R} (comme produit $x \times x \times \cdots$),
- les polynômes sur \mathbb{R} (somme et produit de fonctions puissance et de fonctions constantes),
- les fractions rationnelles $x \mapsto \frac{\overline{P(x)}}{Q(x)}$ sur tout intervalle où le polynôme Q(x) ne s'annule pas.

La composition conserve la continuité (mais il faut faire attention en quels points les hypothèses s'appliquent).

Proposition 71

Soient $f: I \to \mathbb{R}$ et $g: J \to \mathbb{R}$ deux fonctions telles que $f(I) \subset J$. Si f est continue en un point $x_0 \in I$ et si g est continue en $f(x_0)$, alors $g \circ f$ est continue en x_0 .

3.3. Prolongement par continuité

Définition 63

Soit *I* un intervalle, x_0 un point de *I* et $f: I \setminus \{x_0\} \to \mathbb{R}$ une fonction.

- On dit que f est *prolongeable par continuité* en x_0 si f admet une limite finie en x_0 . Notons alors $\ell = \lim_{x_0} f$.
- **–** On définit alors la fonction \tilde{f} : I → \mathbb{R} en posant pour tout $x \in I$

$$\tilde{f}(x) = \begin{cases} f(x) & \text{si } x \neq x_0 \\ \ell & \text{si } x = x_0. \end{cases}$$

Alors \tilde{f} est continue en x_0 et on l'appelle le **prolongement par continuité** de f en x_0 .

Dans la pratique, on continuera souvent à noter f à la place de \tilde{f} .

Exemple 98

Considérons la fonction f définie sur \mathbb{R}^* par $f(x) = x \sin(\frac{1}{x})$. Voyons si f admet un prolongement par continuité en 0?

Comme pour tout $x \in \mathbb{R}^*$ on a $|f(x)| \le |x|$, on en déduit que f tend vers 0 en 0. Elle est donc prolongeable par continuité en 0 et son prolongement est la fonction \tilde{f} définie sur \mathbb{R} tout entier par :

$$\tilde{f}(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0. \end{cases}$$

3.4. Suites et continuité

Proposition 72

Soit $f: I \to \mathbb{R}$ une fonction et x_0 un point de I. Alors :

f est continue en $x_0 \iff$ pour toute suite (u_n) qui converge vers x_0 la suite $(f(u_n))$ converge vers $f(x_0)$

Démonstration

 \implies On suppose que f est continue en x_0 et que (u_n) est une suite qui converge vers x_0 et on veut montrer que $(f(u_n))$ converge vers $f(x_0)$.

Soit $\varepsilon > 0$. Comme f est continue en x_0 , il existe un $\delta > 0$ tel que

$$\forall x \in I \quad |x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon.$$

Pour ce δ , comme (u_n) converge vers x_0 , il existe $N \in \mathbb{N}$ tel que

$$\forall n \in \mathbb{N} \quad n \ge N \Longrightarrow |u_n - x_0| < \delta.$$

On en déduit que, pour tout $n \ge N$, comme $|u_n - x_0| < \delta$, on a $|f(u_n) - f(x_0)| < \varepsilon$ et donc $(f(u_n))$ converge vers $f(x_0)$.

 \leftarrow On va montrer la contraposée: supposons que f n'est pas continue en x_0 et montrons qu'alors il existe une suite (u_n) qui converge vers x_0 et telle que $(f(u_n))$ ne converge pas vers $f(x_0)$. Par hypothèse, comme f n'est pas continue en x_0 :

$$\exists \varepsilon_0 > 0 \quad \forall \delta > 0 \quad \exists x_\delta \in I \quad \text{tel que} \quad |x_\delta - x_0| < \delta \text{ et } |f(x_\delta) - f(x_0)| > \varepsilon_0.$$

On construit la suite (u_n) de la façon suivante : pour tout $n \in \mathbb{N}^*$, on choisit dans l'assertion précédente $\delta = 1/n$ et on obtient qu'il existe u_n (qui est $x_{1/n}$) tel que

$$|u_n-x_0|<\frac{1}{n}\quad \mathrm{et}\quad |f(u_n)-f(x_0)|>\varepsilon_0.$$

La suite (u_n) converge vers x_0 alors que la suite $(f(u_n))$ ne peut pas converger vers $f(x_0)$.

Remarque

On retiendra surtout l'implication : si f est continue sur I et si (u_n) est une suite convergente de limite ℓ , alors $(f(u_n))$ converge vers $f(\ell)$. On l'utilisera intensivement pour l'étude des suites récurrentes $u_{n+1} = f(u_n)$: si f est continue et $u_n \to \ell$, alors $f(\ell) = \ell$.

Mini-exercices

- 1. Déterminer le domaine de définition et de continuité des fonctions suivantes : $f(x) = 1/\sin x$, $g(x) = 1/\sqrt{x + \frac{1}{2}}$, $h(x) = \ln(x^2 + x 1)$.
- 2. Trouver les couples $(a,b) \in \mathbb{R}^2$ tels que la fonction f définie sur \mathbb{R} par f(x) = ax + b si x < 0 et $f(x) = \exp(x)$ si $x \ge 0$ soit continue sur \mathbb{R} . Et si on avait $f(x) = \frac{a}{x-1} + b$ pour x < 0?
- 3. Soit f une fonction continue telle que $f(x_0) = 1$. Montrer qu'il existe $\delta > 0$ tel que : pour tout $x \in]x_0 \delta, x_0 + \delta[$ $f(x) > \frac{1}{2}$.
- 4. Étudier la continuité de $f : \mathbb{R} \to \mathbb{R}$ définie par : $f(x) = \sin(x)\cos\left(\frac{1}{x}\right)$ si $x \neq 0$ et f(0) = 0. Et pour g(x) = xE(x)?

- 5. La fonction définie par $f(x) = \frac{x^3 + 8}{|x+2|}$ admet-elle un prolongement par continuité en -2?
- 6. Soit la suite définie par $u_0 > 0$ et $u_{n+1} = \sqrt{u_n}$. Montrer que (u_n) admet une limite $\ell \in \mathbb{R}$ lorsque $n \to +\infty$. À l'aide de la fonction $f(x) = \sqrt{x}$ calculer cette limite.

4. Continuité sur un intervalle

4.1. Le théorème des valeurs intermédiaires

Théorème 24. Théorème des valeurs intermédiaires

Soit $f:[a,b] \to \mathbb{R}$ une fonction continue sur un segment.

Pour tout réel y compris entre f(a) et f(b), il existe $c \in [a,b]$ tel que f(c) = y.

Démonstration

Montrons le théorème dans le cas où f(a) < f(b). On considère alors un réel y tel que $f(a) \le y \le f(b)$ et on veut montrer qu'il a un antécédent par f.

1. On introduit l'ensemble suivant

$$A = \Big\{ x \in [a,b] \mid f(x) \le y \Big\}.$$

Tout d'abord l'ensemble A est non vide (car $a \in A$) et il est majoré (car il est contenu dans [a,b]): il admet donc une borne supérieure, que l'on note $c = \sup A$. Montrons que f(c) = y.

2. Montrons tout d'abord que $f(c) \le y$. Comme $c = \sup A$, il existe une suite $(u_n)_{n \in \mathbb{N}}$ contenue dans

A telle que (u_n) converge vers c. D'une part, pour tout $n \in \mathbb{N}$, comme $u_n \in A$, on a $f(u_n) \leq y$. D'autre part, comme f est continue en c, la suite $(f(u_n))$ converge vers f(c). On en déduit donc, par passage à la limite, que $f(c) \leq y$.

3. Montrons à présent que $f(c) \ge y$. Remarquons tout d'abord que si c = b, alors on a fini, puisque $f(b) \ge y$. Sinon, pour tout $x \in]c, b]$, comme $x \notin A$, on a f(x) > y. Or, étant donné que f est continue en c, f admet une limite à droite en c, qui vaut f(c) et on obtient $f(c) \ge y$.

4.2. Applications du théorème des valeurs intermédiaires

Voici la version la plus utilisée du théorème des valeurs intermédiaires.

Corollaire 11

Soit $f:[a,b] \to \mathbb{R}$ une fonction continue sur un segment.

Si $f(a) \cdot f(b) < 0$, alors il existe $c \in]a, b[$ tel que f(c) = 0.

Démonstration

Il s'agit d'une application directe du théorème des valeurs intermédiaires avec y = 0. L'hypothèse $f(a) \cdot f(b) < 0$ signifiant que f(a) et f(b) sont de signes contraires.

Exemple 99

Tout polynôme de degré impair possède au moins une racine réelle.

En effet, un tel polynôme s'écrit $P(x) = a_n x^n + \dots + a_1 x + a_0$ avec n un entier impair. On peut supposer que le coefficient a_n est strictement positif. Alors on a $\lim_{n \to \infty} P = -\infty$ et $\lim_{n \to \infty} P = +\infty$.

En particulier, il existe deux réels a et b tels que f(a) < 0 et f(b) > 0 et on conclut grâce au corollaire précédent.

Corollaire 12

Soit $f: I \to \mathbb{R}$ une fonction continue sur un intervalle *I*. Alors f(I) est un intervalle.

Attention! Il serait faux de croire que l'image par une fonction f de l'intervalle [a,b] soit l'intervalle [f(a),f(b)].

Démonstration

Soient $y_1, y_2 \in f(I)$, $y_1 \le y_2$. Montrons que si $y \in [y_1, y_2]$, alors $y \in f(I)$. Par hypothèse, il existe $x_1, x_2 \in I$ tels que $y_1 = f(x_1)$, $y_2 = f(x_2)$ et donc y est compris entre $f(x_1)$ et $f(x_2)$. D'après le théorème des valeurs intermédiaires, comme f est continue, il existe donc $x \in I$ tel que y = f(x), et ainsi $y \in f(I)$.

4.3. Fonctions continues sur un segment

Théorème 25

Soit $f:[a,b] \to \mathbb{R}$ une fonction continue sur un segment. Alors il existe deux réels m et M tels que f([a,b]) = [m,M]. Autrement dit, l'image d'un segment par une fonction continue est un segment.

Comme on sait déjà par le théorème des valeurs intermédiaires que f([a,b]) est un intervalle, le théorème précédent signifie exactement que

Si f est continue sur [a,b] alors f est bornée sur [a,b] et elle atteint ses bornes.

Donc m est le minimum de la fonction sur l'intervalle [a,b] alors que M est le maximum.

[[Preuve : à écrire]]

Mini-exercices

- 1. Soient $P(x) = x^5 3x 2$ et $f(x) = x2^x 1$ deux fonctions définies sur \mathbb{R} . Montrer que l'équation P(x) = 0 a au moins une racine dans [1,2]; l'équation f(x) = 0 a au moins une racine dans [0,1]; l'équation P(x) = f(x) a au moins une racine dans [0,2].
- 2. Montrer qu'il existe x > 0 tel que $2^x + 3^x = 7^x$.
- 3. Dessiner le graphe d'une fonction continue $f : \mathbb{R} \to \mathbb{R}$ tel que $f(\mathbb{R}) = [0,1]$. Puis $f(\mathbb{R}) = [0,1[; f(\mathbb{R}) = [0,1[; f(\mathbb{R}) =] \infty, 1], f(\mathbb{R}) =] \infty, 1[$.
- 4. Soient $f,g:[0,1] \to \mathbb{R}$ deux fonctions continues. Quelles fonctions suivantes sont à coup sûr bornées : f+g, $f \times g$, f/g?
- 5. Soient f et g deux fonctions continues sur [0,1] telles que $\forall x \in [0,1]$ f(x) < g(x). Montrer qu'il existe m > 0 tel que $\forall x \in [0,1]$ f(x) + m < g(x). Ce résultat est-il vrai si on remplace [0,1] par \mathbb{R} ?

5. Fonctions monotones et bijections

5.1. Rappels: injection, surjection, bijection

Dans cette section nous rappelons le matériel nécessaire concernant les applications bijectives.

Définition 64

Soit $f: E \to F$ une fonction, où E et F sont des parties de \mathbb{R} .

- f est **injective** si $\forall x, x' \in E$ $f(x) = f(x') \Longrightarrow x = x'$;
- f est surjective si $\forall y \in F \exists x \in E \ y = f(x)$;
- f est bijective si f est à la fois injective et surjective, c'est-à-dire si $\forall y \in F \ \exists ! x \in E \ y = f(x)$.

Proposition 73

Si $f: E \to F$ est une fonction bijective alors il existe une unique application $g: F \to E$ telle que $g \circ f = \mathrm{id}_E$ et $f \circ g = \mathrm{id}_F$ La fonction g est la *bijection réciproque* de f et se note f^{-1} .

Remarque

- On rappelle que l'**identité**, $\mathrm{id}_E:E\to E$ est simplement définie par $x\mapsto x$.
- $g \circ f = \mathrm{id}_E$ se reformule ainsi : $\forall x \in E \quad g(f(x)) = x$.
- Alors que $f \circ g = \mathrm{id}_F$ s'écrit : $\forall y \in F$ f(g(y)) = y.
- Dans un repère orthonormé les graphes des fonctions f et f^{-1} sont symétriques par rapport à la première bissectrice.

5.2. Fonctions monotones et bijections

Voici un résultat important qui permet d'obtenir des fonctions bijectives.

Théorème 26. Théorème de la bijection

Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle I de \mathbb{R} . Si f est continue et strictement monotone sur I, alors

- 1. f établit une bijection de l'intervalle I dans l'intervalle image J = f(I),
- 2. la fonction réciproque $f^{-1}: J \to I$ est continue et strictement monotone sur J et elle a le même sens de variation que f.

En pratique, si on veut appliquer ce théorème à une fonction continue $f: I \to \mathbb{R}$, on découpe l'intervalle I en sous-intervalles sur lesquels la fonction f est strictement monotone.

Exemple 100

Considérons la fonction carrée définie sur \mathbb{R} par $f(x) = x^2$. La fonction f n'est pas strictement monotone sur \mathbb{R} , d'ailleurs, on voit bien qu'elle n'est pas injective. Cependant, en restreignant son ensemble de définition à $]-\infty,0]$ d'une part et à $[0,+\infty[$ d'autre part, on définit deux fonctions strictement monotones (les ensembles de départ sont différents) :

$$f_1: \left\{ \begin{array}{ccc}]-\infty,0] \longrightarrow [0,+\infty[& & \\ x \longmapsto x^2 & & \end{array} \right.$$
 et $f_2: \left\{ \begin{array}{ccc} [0,+\infty[\longrightarrow [0,+\infty[& \\ x \longmapsto x^2 & & \end{array}] \right.$

On remarque que $f(]-\infty,0])=f([0,+\infty[)=[0,+\infty[$. D'après le théorème précédent, les fonctions f_1 et f_2 sont des bijections. Déterminons leurs fonctions réciproques $f_1^{-1}:[0,+\infty[\to]-\infty,0]$ et $f_2^{-1}:[0,+\infty[\to [0,+\infty[$. Soient deux réels x et y tels que $y\geqslant 0$. Alors

$$y = f(x) \Leftrightarrow y = x^2$$

 $\Leftrightarrow x = \sqrt{y}$ ou $x = -\sqrt{y}$,

c'est-à-dire y admet deux antécédents, l'un dans $[0, +\infty[$ et l'autre dans $]-\infty, 0]$. Et donc $f_1^{-1}(y) = -\sqrt{y}$ et $f_2^{-1}(y) = \sqrt{y}$. On retrouve bien que chacune des deux fonctions f_1 et f_2 a le même sens de variation que sa réciproque.

On remarque que la courbe totale en pointillée (à la fois la partie bleue et la verte), qui est l'image du graphe de f par la symétrie par rapport à la première bissectrice, ne peut pas être le graphe d'une fonction : c'est une autre manière de voir que f n'est pas bijective.

Généralisons l'exemple précédent.

Exemple 101

Soit $n \ge 1$. Soit $f:[0,+\infty[\to [0,+\infty[$ définie par $f(x)=x^n$. Alors f est continue et strictement croissante. Comme $\lim_{n\to\infty} f=+\infty$ alors f est une bijection. Sa bijection réciproque f^{-1} est notée : $x\mapsto x^{\frac{1}{n}}$ (ou aussi $x\mapsto \sqrt[n]{x}$) : c'est la fonction racine n-ième. Elle est continue et strictement croissante.

5.3. Démonstration

On établit d'abord un lemme utile à la démonstration du théorème précédent.

Lemme 8

Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle I de \mathbb{R} . Si f est strictement monotone sur I, alors f est injective sur I.

Démonstration

Soient $x, x' \in I$ tels que f(x) = f(x'). Montrons que x = x'. Si on avait x < x', alors on aurait nécessairement f(x) < f(x') ou f(x) > f(x'), suivant que f est strictement croissante, ou strictement décroissante. Comme c'est impossible, on en déduit que $x \ge x'$. En échangeant les rôles de x et de x', on montre de même que $x \le x'$. On en conclut que x = x' et donc que f est injective.

Démonstration Démonstration du théorème

- 1. D'après le lemme précédent, f est injective sur I. En restreignant son ensemble d'arrivée à son image J = f(I), on obtient que f établit une bijection de I dans J. Comme f est continue, par le théorème des valeurs intermédiaires, l'ensemble J est un intervalle.
- 2. Supposons pour fixer les idées que f est strictement croissante.
- (a) Montrons que f^{-1} est strictement croissante sur J. Soient $y, y' \in J$ tels que y < y'. Notons

 $x = f^{-1}(y) \in I$ et $x' = f^{-1}(y') \in I$. Alors y = f(x), y' = f(x') et donc

$$y < y' \implies f(x) < f(x')$$

 $\implies x < x'$ (car f est strictement croissante)
 $\implies f^{-1}(y) < f^{-1}(y'),$

c'est-à-dire f^{-1} est strictement croissante sur J.

(b) Montrons que f^{-1} est continue sur J. On se limite au cas où I est de la forme]a,b[, les autres cas se montrent de la même manière. Soit $y_0 \in J$. On note $x_0 = f^{-1}(y_0) \in I$. Soit $\varepsilon > 0$. On peut toujours supposer que $[x_0 - \varepsilon, x_0 + \varepsilon] \subset I$. On cherche un réel $\delta > 0$ tel que pour tout $y \in J$ on ait

$$y_0 - \delta < y < y_0 + \delta \implies f^{-1}(y_0) - \varepsilon < f^{-1}(y) < f^{-1}(y_0) + \varepsilon$$

c'est-à-dire tel que pour tout $x \in I$ on ait

$$y_0 - \delta < f(x) < y_0 + \delta \implies f^{-1}(y_0) - \varepsilon < x < f^{-1}(y_0) + \varepsilon.$$

Or, comme f est strictement croissante, on a pour tout $x \in I$

$$f(x_0 - \varepsilon) < f(x) < f(x_0 + \varepsilon) \implies x_0 - \varepsilon < x < x_0 + \varepsilon$$
$$\implies f^{-1}(y_0) - \varepsilon < x < f^{-1}(y_0) + \varepsilon.$$

Comme $f(x_0 - \varepsilon) < y_0 < f(x_0 + \varepsilon)$, on peut choisir le réel $\delta > 0$ tel que

$$f(x_0 - \varepsilon) < y_0 - \delta$$
 et $f(x_0 + \varepsilon) > y_0 + \delta$

et on a bien alors pour tout $x \in I$

$$y_0 - \delta < f(x) < y_0 + \delta \implies f(x_0 - \varepsilon) < f(x) < f(x_0 + \varepsilon)$$
$$\implies f^{-1}(y_0) - \varepsilon < x < f^{-1}(y_0) + \varepsilon.$$

La fonction f^{-1} est donc continue sur J.

Mini-exercices

- 1. Montrer que chacune des hypothèses « continue » et « strictement monotone » est nécessaire dans l'énoncé du théorème.
- 2. Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x^3 + x$. Montrer que f est bijective, tracer le graphe de f et de f^{-1} .
- 3. Soit $n \ge 1$. Montrer que $f(x) = 1 + x + x^2 + \dots + x^n$ définit une bijection de l'intervalle [0,1] vers un intervalle à préciser.
- **4.** Existe-t-il une fonction continue : $f : [0,1[\rightarrow]0,1[$ qui soit bijective ? $f : [0,1[\rightarrow]0,1[$ qui soit injective ? $f : [0,1[\rightarrow]0,1[$ qui soit surjective ?
- 5. Pour $y \in \mathbb{R}$ on considère l'équation $x + \exp x = y$. Montrer qu'il existe une unique solution y. Comment varie y en fonction de x? Comme varie x en fonction de y?

Auteurs

Auteurs : Arnaud Bodin, Niels Borne, Laura Desideri

Dessins: Benjamin Boutin

Exo7

10 Fonctions usuelles

- 1 Logarithme et exponentielle
- 2 Fonctions circulaires inverses
- 3 Fonctions hyperboliques et hyperboliques inverses

Vidéo ■ partie 1. Logarithme et exponentielle

Vidéo ■ partie 2. Fonctions circulaires inverses

Vidéo ■ partie 3. Fonctions hyperboliques et hyperboliques inverses

Exercices • Fonctions circulaires et hyperboliques inverses

$$y = a \operatorname{ch}\left(\frac{x}{a}\right)$$

1. Logarithme et exponentielle

1.1. Logarithme

Proposition 74

Il existe une unique fonction, notée $\ln :]0, +\infty[\to \mathbb{R}$ telle que :

$$\ln'(x) = \frac{1}{x}$$
 (pour tout $x > 0$) et $\ln(1) = 0$.

De plus cette fonction vérifie (pour tout a, b > 0):

1.
$$\ln(a \times b) = \ln a + \ln b$$
,

2.
$$\ln(\frac{1}{a}) = -\ln a$$
,

3.
$$\ln(a^n) = n \ln a$$
, (pour tout $n \in \mathbb{N}$)

- 4. In est une fonction continue, strictement croissante et définit une bijection de $]0, +\infty[$ sur \mathbb{R} ,
- 5. $\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$,
- 6. la fonction ln est concave et $\ln x \le x 1$ (pour tout x > 0).

Remarque

 $\ln x$ s'appelle le *logarithme naturel* ou aussi *logarithme néperien*. Il est caractérisé par $\ln(e) = 1$. On définit le *logarithme en base a* par

$$\log_a(x) = \frac{\ln(x)}{\ln(a)}$$

De sorte que $\log_a(a) = 1$.

Pour a=10 on obtient le *logarithme décimal* \log_{10} qui vérifie $\log_{10}(10)=1$ (et donc $\log_{10}(10^n)=n$). Dans la pratique on utilise l'équivalence : $x=10^y \iff y=\log_{10}(x)$ En informatique intervient aussi le logarithme en base $2:\log_2(2^n)=n$.

Démonstration

L'existence et l'unicité viennent de la théorie de l'intégrale : $\ln(x) = \int_1^x \frac{1}{t} dt$. Passons aux propriétés.

- 1. Posons $f(x) = \ln(xy) \ln(x)$ où y > 0 est fixé. Alors $f'(x) = y \ln'(xy) \ln'(x) = \frac{y}{xy} \frac{1}{x} = 0$. Donc $x \mapsto f(x)$ a une dérivée nulle, donc est constante et vaut $f(1) = \ln(y) \ln(1) = \ln(y)$. Donc $\ln(xy) \ln(x) = \ln(y)$.
- 2. D'une part $\ln(a \times \frac{1}{a}) = \ln a + \ln \frac{1}{a}$, mais d'autre part $\ln(a \times \frac{1}{a}) = \ln(1) = 0$. Donc $\ln a + \ln \frac{1}{a} = 0$.
- 3. Similaire ou récurrence.
- 4. In est dérivable donc continue, $\ln'(x) = \frac{1}{x} > 0$ donc la fonction est strictement croissante. Comme $\ln(2) > \ln(1) = 0$ alors $\ln(2^n) = n \ln(2) \to +\infty$ (lorsque $n \to +\infty$). Donc $\lim_{x \to +\infty} \ln x = +\infty$. De $\ln x = -\ln \frac{1}{x}$ on déduit $\lim_{x \to 0} \ln x = -\infty$. Par le théorème sur les fonctions continues et strictement croissantes, $\ln :]0, +\infty[\to \mathbb{R}$ est une bijection.
- 5. $\lim_{x\to 0} \frac{\ln(1+x)}{x}$ est la dérivée de ln au point $x_0=1$, donc cette limite existe et vaut $\ln'(1)=1$.
- 6. $\ln'(x) = \frac{1}{x}$ est décroissante, donc la fonction ln est concave. Posons $f(x) = x 1 \ln x$; $f'(x) = 1 \frac{1}{x}$. Par une étude de fonction f atteint son maximum en $x_0 = 1$. Donc $f(x) \ge f(1) = 0$. Donc $\ln x \le x 1$.

1.2. Exponentielle

Fonctions usuelles 175

Définition 65

La bijection réciproque de $\ln :]0, +\infty[\to \mathbb{R}$ s'appelle la fonction *exponentielle*, notée $\exp : \mathbb{R} \to]0, +\infty[$.

Pour $x \in \mathbb{R}$ on note aussi e^x pour $\exp x$.

Proposition 75

La fonction exponentielle vérifie les propriétés suivantes :

- $\exp(\ln x) = x$ pour tout x > 0 et $\ln(\exp x) = x$ pour tout $x \in \mathbb{R}$
- $-\exp(a+b) = \exp(a) \times \exp(b)$
- $-\exp(nx) = (\exp x)^n$
- exp: \mathbb{R} →]0, +∞[est une fonction continue, strictement croissante vérifiant $\lim_{x\to-\infty} \exp x = 0$ et $\lim_{x\to+\infty} \exp = +\infty$.
- La fonction exponentielle est dérivable et $\exp' x = \exp x$, pour tout $x \in \mathbb{R}$. Elle est convexe et $\exp x \ge 1 + x$

Remarque

La fonction exponentielle est l'unique fonction qui vérifie $\exp'(x) = \exp(x)$ (pour tout $x \in \mathbb{R}$) et $\exp(1) = e$. Où $e \simeq 2,718...$ est le nombre qui vérifie $\ln e = 1$.

Démonstration

Ce sont les propriétés du logarithme retranscrites pour sa bijection réciproque.

Par exemple pour la dérivée : on part de l'égalité $\ln(\exp x) = x$ que l'on dérive. Cela donne $\exp'(x) \times \ln'(\exp x) = 1$ donc $\exp'(x) \times \frac{1}{\exp x} = 1$ et ainsi $\exp'(x) = \exp x$.

1.3. Puissance et comparaison

Par définition, pour a > 0 et $b \in \mathbb{R}$,

$$a^b = \exp(b \ln a)$$

Remarque

- $-\sqrt{a}=a^{\frac{1}{2}}=\exp\left(\frac{1}{2}\ln a\right)$
- $\sqrt[n]{a} = a^{\frac{1}{n}} = \exp\left(\frac{1}{n}\ln a\right)$ (la *racine n-ième* de a)
 On note aussi $\exp x$ par e^x ce qui se justifie par le calcul : $e^x = \exp\left(x\ln e\right) = \exp(x)$.
- Les fonctions $x \mapsto a^x$ s'appellent aussi des fonctions exponentielles et se ramènent systématiquement à la fonction exponentielle classique par l'égalité $a^x = \exp(x \ln a)$. Il ne faut surtout pas les confondre avec les fonctions puissances $x \mapsto x^a$.

Comparons les fonctions $\ln x$, $\exp x$ avec x:

Proposition 76

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0 \qquad \text{et} \qquad \lim_{x \to +\infty} \frac{\exp x}{x} = +\infty.$$

Démonstration

1. On a vu $\ln x \le x - 1$ (pour tout x > 0). Donc $\ln x \le x$ donc $\frac{\ln \sqrt{x}}{\sqrt{x}} \le 1$. Cela donne

$$0 \le \frac{\ln x}{x} = \frac{\ln\left(\sqrt{x^2}\right)}{x} = 2\frac{\ln\sqrt{x}}{x} = 2\frac{\ln\sqrt{x}}{\sqrt{x}} \frac{1}{\sqrt{x}} \le \frac{2}{\sqrt{x}}$$

Cette double inégalité entraı̂ne $\lim_{x\to +\infty} \frac{\ln x}{x} = 0$.

2. On a vu $\exp x \ge 1 + x$ (pour tout $x \in \mathbb{R}$). Donc $\exp x \to +\infty$ (lorsque $x \to +\infty$).

$$\frac{x}{\exp x} = \frac{\ln(\exp x)}{\exp x} = \frac{\ln u}{u}$$

lorsque $x \to +\infty$ alors $u = \exp x \to +\infty$ et donc par le premier point $\frac{\ln u}{u} \to 0$. Donc $\frac{x}{\exp x} \to 0$ et reste positive, ainsi $\lim_{x \to +\infty} \frac{\exp x}{x} = +\infty$.

Fonctions usuelles 177

Mini-exercices

- 1. Montrer que $\ln(1+e^x) = x + \ln(1+e^{-x})$, pour tout $x \in \mathbb{R}$.
- 2. Étudier la fonction $f(x) = \ln(x^2 + 1) \ln(x) 1$. Tracer son graphe. Résoudre l'équation (f(x) = 0). Idem avec $g(x) = \frac{1 + \ln x}{x}$. Idem avec $h(x) = x^x$.
- 3. Expliquer comment log_{10} permet de calculer le nombre de chiffres d'un entier n.
- 4. Montrer $\ln(1+x) \ge x \frac{x^2}{2}$ pour $x \ge 0$ (faire une étude de fonction). Idem avec $e^x \ge 1 + x + \frac{x^2}{2}$ pour tout $x \ge 0$.
- 5. Calculer la limite de la suite définie par $u_n = \left(1 + \frac{1}{n}\right)^n$ lorsque $n \to +\infty$. Idem avec $v_n = \left(\frac{1}{n}\right)^n$ et $w_n = n^{\frac{1}{n}}$.

2. Fonctions circulaires inverses

2.1. Arccosinus

Considérons la fonction cosinus $\cos : \mathbb{R} \to [-1,1], x \mapsto \cos x$. Pour obtenir une bijection à partir de cette fonction, il faut considérer la restriction de cosinus à l'intervalle $[0,\pi]$. Sur cet intervalle la fonction cosinus est continue et strictement décroissante, donc la restriction

$$\cos_{|}:[0,\pi]\to[-1,1]$$

est une bijection. Sa bijection réciproque est la fonction arccosinus :

$$\arccos: [-1,1] \rightarrow [0,\pi]$$

On a donc, par définition de la bijection réciproque :

$$\cos(\arccos(x)) = x \quad \forall x \in [-1, 1]$$

 $\arccos(\cos(x)) = x \quad \forall x \in [0, \pi]$

Autrement dit:

Si
$$x \in [0, \pi]$$
 $\cos(x) = y \iff x = \arccos y$

Terminons avec la dérivée de arccos:

$$\arccos'(x) = \frac{-1}{\sqrt{1-x^2}} \qquad \forall x \in]-1,1[$$

Démonstration

On démarre de l'égalité $\cos(\arccos x) = x$ que l'on dérive :

$$\cos(\arccos x) = x$$

$$\Rightarrow -\arccos'(x) \times \sin(\arccos x) = 1$$

$$\Rightarrow \arccos'(x) = \frac{-1}{\sin(\arccos x)}$$

$$\Rightarrow \arccos'(x) = \frac{-1}{\sqrt{1 - \cos^2(\arccos x)}} \qquad (*)$$

$$\Rightarrow \arccos'(x) = \frac{-1}{\sqrt{1 - r^2}}$$

Le point crucial (*) se justifie ainsi : on démarre de l'égalité $\cos^2 y + \sin^2 y = 1$, en substituant $y = \arccos x$ on obtient $\cos^2(\arccos x) + \sin^2(\arccos x) = 1$ donc $x^2 + \sin^2(\arccos x) = 1$. On en déduit : $\sin(\arccos x) = +\sqrt{1-x^2}$ (avec le signe + car $\arccos x \in [0,\pi]$).

2.2. Arcsinus

La restriction

$$\sin_{|}:[-\frac{\pi}{2},+\frac{\pi}{2}] \to [-1,1]$$

est une bijection. Sa bijection réciproque est la fonction arcsinus :

$$\arcsin: [-1,1] \to [-\frac{\pi}{2}, +\frac{\pi}{2}]$$

Si
$$x \in \left[-\frac{\pi}{2}, +\frac{\pi}{2}\right]$$
 $\sin(x) = y \iff x = \arcsin y$

$$\arcsin'(x) = \frac{1}{\sqrt{1 - x^2}} \qquad \forall x \in]-1, 1[$$

2.3. Arctangente

La restriction

$$\tan_{|}:]-\frac{\pi}{2},+\frac{\pi}{2}[\rightarrow \mathbb{R}$$

Fonctions usuelles 179

est une bijection. Sa bijection réciproque est la fonction arctangente :

$$\arctan: \mathbb{R} \to]-\frac{\pi}{2}, +\frac{\pi}{2}[$$

$$\tan (\arctan(x)) = x \quad \forall x \in \mathbb{R}$$
$$\arctan (\tan(x)) = x \quad \forall x \in]-\frac{\pi}{2}, +\frac{\pi}{2}[$$

Si
$$x \in]-\frac{\pi}{2}, +\frac{\pi}{2}[$$
 $\tan(x) = y \iff x = \arctan y$

$$\arctan'(x) = \frac{1}{1+x^2} \qquad \forall x \in \mathbb{R}$$

Mini-exercices

- 1. Calculer les valeurs de arccos et arcsin en 0, 1, $\frac{1}{2}$, $\frac{\sqrt{2}}{2}$, $\frac{\sqrt{3}}{2}$. Idem pour arctan en 0, 1, $\sqrt{3}$ et $\frac{1}{\sqrt{3}}$.
- 2. Calculer $\arccos(\cos\frac{7\pi}{3})$. Idem avec $\arcsin(\sin\frac{7\pi}{3})$ et $\arctan(\tan\frac{7\pi}{3})$ (attention aux intervalles!)
- 3. Calculer cos(arctan x), cos(arcsin x), tan(arcsin x).
- 4. Calculer la dérivée de $f(x) = \arctan\left(\frac{x}{\sqrt{1-x^2}}\right)$. En déduire que $f(x) = \arcsin x$, pour tout $x \in]-1,1[$.
- 5. Montrer que $\arccos x + \arcsin x = \frac{\pi}{2}$, pour tout $x \in [-1, 1]$.

3. Fonctions hyperboliques et hyperboliques inverses

3.1. Cosinus hyperbolique et son inverse

Pour $x \in \mathbb{R}$, le *cosinus hyperbolique* est :

$$ch x = \frac{e^x + e^{-x}}{2}$$

La restriction $ch_{|}:[0,+\infty[\to[1,+\infty[$ est une bijection. Sa bijection réciproque est argch $:[1,+\infty[\to[0,+\infty[$.

3.2. Sinus hyperbolique et son inverse

Pour $x \in \mathbb{R}$, le *sinus hyperbolique* est :

$$sh x = \frac{e^x - e^{-x}}{2}$$

 $\mathrm{sh}:\mathbb{R}\to\mathbb{R}$ est une fonction continue, dérivable, strictement croissante vérifiant $\lim_{x\to-\infty}\mathrm{sh}\,x=-\infty$ et $\lim_{x\to+\infty}\mathrm{sh}\,x=+\infty$, c'est donc une bijection. Sa bijection réciproque est argsh: $\mathbb{R}\to\mathbb{R}$.

Proposition 77

- $\cosh^2 x \sinh^2 x = 1$.
- $\operatorname{ch}' x = \operatorname{sh} x$, $\operatorname{sh}' x = \operatorname{ch} x$.
- argsh: \mathbb{R} → \mathbb{R} est strictement croissante et continue.
- argsh est dérivable et argsh' $x = \frac{1}{\sqrt{x^2+1}}$.
- $\operatorname{argsh} x = \ln(x + \sqrt{x^2 + 1}).$

Fonctions usuelles

Démonstration

- $\cosh^2 x \sinh^2 x = \frac{1}{4} \left[(e^x + e^{-x})^2 (e^x e^{-x})^2 \right] = \frac{1}{4} \left[(e^{2x} + 2 + e^{-2x}) (e^{2x} 2 + e^{-2x}) \right] = 1.$ $\frac{d}{dx} (\cosh x) = \frac{d}{dx} \frac{e^x + e^{-x}}{2} = \frac{e^x e^{-x}}{2} = \sinh x$. Idem pour la dérivée de shx.
- Car c'est la réciproque de sh.
- Comme la fonction $x \mapsto \operatorname{sh}' x$ ne s'annule pas sur $\mathbb R$ alors la fonction argsh est dérivable sur $\mathbb R$. On calcule la dérivée par dérivation de l'égalité sh(argsh x) = x:

$$\operatorname{argsh}' x = \frac{1}{\operatorname{ch}(\operatorname{argsh} x)} = \frac{1}{\sqrt{\operatorname{sh}^2(\operatorname{argsh} x) + 1}} = \frac{1}{\sqrt{x^2 + 1}}$$

- Notons $f(x) = \ln(x + \sqrt{x^2 + 1})$ alors

$$f'(x) = \frac{1 + \frac{x}{\sqrt{x^2 + 1}}}{x + \sqrt{x^2 + 1}} = \frac{1}{\sqrt{x^2 + 1}} = \operatorname{argsh}' x$$

Comme de plus $f(0) = \ln(1) = 0$ et argsh0 = 0 (car sh0 = 0), on en déduit que pour tout $x \in \mathbb{R}$, $f(x) = \operatorname{argsh} x$.

3.3. Tangente hyperbolique et son inverse

Par définition la tangente hyperbolique est :

$$th x = \frac{\sinh x}{\cosh x}$$

La fonction th: $\mathbb{R} \to]-1,1[$ est une bijection, on note argth: $]-1,1[\to \mathbb{R}$ sa bijection réciproque.

3.4. Trigonométrie hyperbolique

$$\cosh^2 x - \sinh^2 x = 1$$

182 Fonctions usuelles

$$\operatorname{ch}(a+b) = \operatorname{ch} a \cdot \operatorname{ch} b + \operatorname{sh} a \cdot \operatorname{sh} b$$
$$\operatorname{ch}(2a) = \operatorname{ch}^2 a + \operatorname{sh}^2 a = 2 \operatorname{ch}^2 a - 1 = 1 + 2 \operatorname{sh}^2 a$$

$$\operatorname{sh}(a+b) = \operatorname{sh} a \cdot \operatorname{ch} b + \operatorname{sh} b \cdot \operatorname{ch} a$$

 $\operatorname{sh}(2a) = 2 \operatorname{sh} a \cdot \operatorname{ch} a$

$$th(a+b) = \frac{th a + th b}{1 + th a \cdot th b}$$

$$ch' x = sh x$$

$$sh' x = ch x$$

$$th' x = 1 - th^{2} x = \frac{1}{ch^{2} x}$$

$$\operatorname{argch}' x = \frac{1}{\sqrt{x^2 - 1}} \quad (x > 1)$$

$$\operatorname{argsh}' x = \frac{1}{\sqrt{x^2 + 1}}$$

$$\operatorname{argth}' x = \frac{1}{1 - x^2} \quad (|x| < 1)$$

$$\begin{split} & \operatorname{argch} x = \ln \left(x + \sqrt{x^2 - 1} \right) \quad (x \ge 1) \\ & \operatorname{argsh} x = \ln \left(x + \sqrt{x^2 + 1} \right) \quad (x \in \mathbb{R}) \\ & \operatorname{argth} x = \frac{1}{2} \ln \left(\frac{1 + x}{1 - x} \right) \quad (-1 < x < 1) \end{split}$$

Mini-exercices

- 1. Dessiner les courbes paramétrées $t \mapsto (\cos t, \sin t)$ et $t \mapsto (\operatorname{ch} t, \operatorname{sh} t)$. Pourquoi cos et sin s'appellent des fonctions trigonométriques *circulaires* alors que ch et sh sont des fonctions trigonométriques *hyperboliques*?
- 2. Prouver par le calcul la formule ch(a+b) = ... En utilisant que $cos x = \frac{e^{ix} + e^{-ix}}{2}$ retrouver la formule pour cos(a+b).
- 3. Résoudre l'équation sh x = 3.
- 4. Montrer que $\frac{\sinh(2x)}{1+\cosh(2x)} = \tanh x$.
- 5. Calculer les dérivées des fonctions définies par : $th(1+x^2)$, ln(chx), argch(expx), argth(cosx).

Fonctions usuelles 183

Auteurs

Arnaud Bodin, Niels Borne, Laura Desideri

Exo7

11 Dérivée d'une fonction

- 1 Dérivée
- 2 Calcul des dérivées
- 3 Extremum local, théorème de Rolle
- 4 Théorème des accroissements finis

```
Vidéo ■ partie 1. Définition

Vidéo ■ partie 2. Calculs

Vidéo ■ partie 3. Extremum local, théorème de Rolle

Vidéo ■ partie 4. Théorème des accroissements finis

Exercices ♦ Fonctions dérivables
```

Motivation

Nous souhaitons calculer $\sqrt{1,01}$ ou du moins en trouver une valeur approchée. Comme 1,01 est proche de 1 et que $\sqrt{1} = 1$ on se doute bien que $\sqrt{1,01}$ sera proche de 1. Peut-on être plus précis? Si l'on appelle f la fonction définie par $f(x) = \sqrt{x}$, alors la fonction f est une fonction continue en $x_0 = 1$. La continuité nous affirme que pour x suffisamment proche de x_0 , f(x) est proche de $f(x_0)$. Cela revient à dire que pour x au voisinage de x_0 on approche f(x) par la constante $f(x_0)$.

Nous pouvons faire mieux qu'approcher notre fonction par une droite horizontale! Essayons avec une droite quelconque. Quelle droite se rapproche le plus du graphe de f autour de x_0 ? Elle doit passer par le point $(x_0, f(x_0))$ et doit «coller» le plus possible au graphe : c'est la tangente au graphe en x_0 . Une équation de la tangente est

$$y = (x - x_0)f'(x_0) + f(x_0)$$

où $f'(x_0)$ désigne le nombre dérivé de f en x_0 .

On sait que pour $f(x) = \sqrt{x}$, on a $f'(x) = \frac{1}{2\sqrt{x}}$. Une équation de la tangente en $x_0 = 1$ est donc $y = (x-1)\frac{1}{2} + 1$. Et donc pour x proche de 1 on a $f(x) \approx (x-1)\frac{1}{2} + 1$. Qu'est ce que cela donne

pour notre calcul de $\sqrt{1,01}$? On pose x=1,01 donc $f(x)\approx 1+\frac{1}{2}(x-1)=1+\frac{0,01}{2}=1,005$. Et c'est effectivement une très bonne de approximation de $\sqrt{0,01}=1,00498...$ En posant h=x-1 on peut reformuler notre approximation en : $\sqrt{1+h}\approx 1+\frac{1}{2}h$ qui est valable pour h proche de 0.

Dans ce chapitre nous allons donc définir ce qu'est la dérivée d'une fonction, et établir les formules des dérivées des fonctions usuelles. Enfin, pour connaître l'erreur des approximations, il nous faudra travailler beaucoup plus afin d'obtenir le théorème des accroissements finis.

1. Dérivée

1.1. Dérivée en un point

Soit *I* un intervalle ouvert de \mathbb{R} et $f: I \to \mathbb{R}$ une fonction. Soit $x_0 \in I$.

Définition 66

f est dérivable en x_0 si le taux d'accroissement $\frac{f(x)-f(x_0)}{x-x_0}$ a une limite finie lorsque x tend vers x_0 . La limite s'appelle alors le nombre dérivé de f en x_0 et est noté $f'(x_0)$. Ainsi

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Définition 67

f est dérivable sur I si f est dérivable en tout point $x_0 \in I$. La fonction $x \mapsto f'(x)$ est la fonction dérivée de f, elle se note f' ou $\frac{df}{dx}$.

Exemple 102

La fonction définie par $f(x) = x^2$ est dérivable en tout point $x_0 \in \mathbb{R}$. En effet :

$$\frac{f(x)-f(x_0)}{x-x_0} = \frac{x^2-x_0^2}{x-x_0} = \frac{(x-x_0)(x+x_0)}{x-x_0} = x+x_0 \xrightarrow[x\to x_0]{} 2x_0.$$

On a même montré que le nombre dérivé de f en x_0 est $2x_0$, autrement dit : f'(x) = 2x.

Exemple 103

Montrons que la dérivée de $f(x) = \sin x$ est $f'(x) = \cos x$. Nous allons utiliser les deux assertions suivantes :

$$\frac{\sin x}{x} \xrightarrow[x \to 0]{} 1$$
 et $\sin p - \sin q = 2\sin \frac{p-q}{2} \cdot \cos \frac{p+q}{2}$

Remarquons déjà que la première assertion prouve $\frac{f(x)-f(0)}{x-0} = \frac{\sin x}{x} \to 1$ et donc f est dérivable en $x_0 = 0$ et f'(0) = 1.

Pour x_0 quelconque on écrit :

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{\sin x - \sin x_0}{x - x_0} = \frac{\sin \frac{x - x_0}{2}}{\frac{x - x_0}{2}} \cdot \cos \frac{x + x_0}{2}.$$

Lorsque $x \to x_0$ alors d'une part $\cos \frac{x+x_0}{2} \to \cos x_0$ et d'autre part en posant $u = \frac{x-x_0}{2}$ alors $u \to 0$ et on a $\frac{\sin u}{u} \to 1$. Ainsi $\frac{f(x)-f(x_0)}{x-x_0} \to \cos x_0$ et donc $f'(x) = \cos x$.

1.2. Tangente

La droite qui passe par les points distincts $(x_0, f(x_0))$ et (x, f(x)) a pour coefficient directeur $\frac{f(x) - f(x_0)}{x - x_0}$. À la limite on trouve que le coefficient directeur de la tangente est $f'(x_0)$. Une équation de la **tangente** au point $(x_0, f(x_0))$ est donc :

1.3. Autres écritures de la dérivée

Voici deux autres formulations de la dérivabilité de f en x_0 .

Proposition 78

- f est dérivable en x_0 si et seulement si $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$ existe et est finie.
- f est dérivable en x_0 si et seulement s'il existe $\ell \in \mathbb{R}$ (qui sera $f'(x_0)$) et une fonction $\varepsilon: I \to \mathbb{R}$ telle que $\varepsilon(x) \xrightarrow[x \to x_0]{} 0$ avec

$$f(x) = f(x_0) + (x - x_0)\ell + (x - x_0)\varepsilon(x).$$

Démonstration

Il s'agit juste de reformuler la définition de $f'(x_0)$. Par exemple, après division par $x-x_0$, la deuxième écriture devient

$$\frac{f(x)-f(x_0)}{x-x_0}=\ell+\varepsilon(x).$$

Proposition 79

Soit *I* un intervalle ouvert, $x_0 \in I$ et soit $f: I \to \mathbb{R}$ une fonction.

- Si f est dérivable en x_0 alors f est continue en x_0 .
- Si f est dérivable sur I alors f est continue sur I.

Démonstration

Supposons f dérivable en x_0 et montrons qu'elle est aussi continue en ce point.

Voici une démonstration concise : partant de l'écriture alternative donnée dans la proposition 78, nous écrivons

$$f(x) = f(x_0) + \underbrace{(x - x_0)\ell}_{-0} + \underbrace{(x - x_0)\varepsilon(x)}_{-0}.$$

Donc $f(x) \rightarrow f(x_0)$ lorsque $x \rightarrow x_0$ et ainsi f est continue en x_0 .

On reprend cette démonstration sans utiliser les limites mais uniquement la définition de continuité et dérivabilité :

Fixons $\varepsilon' > 0$ et écrivons $f(x) = f(x_0) + (x - x_0)\ell + (x - x_0)\varepsilon(x)$ grâce à la proposition 78, où $\varepsilon(x) \xrightarrow[x \to x_0]{} 0$ et $\ell = f'(x_0)$. Choisissons $\delta > 0$ de sorte qu'il vérifie tous les points suivants :

- δ ≤ 1
- $\delta |\ell| < \varepsilon'$
- si $|x x_0| < \delta$ alors $|\varepsilon(x)| < \varepsilon'$ (c'est possible car $\varepsilon(x) \to 0$)

Alors l'égalité ci-dessus devient :

$$\begin{aligned} \left| f(x) - f(x_0) \right| &= \left| (x - x_0)\ell + (x - x_0)\varepsilon(x) \right| \\ &\leq \left| x - x_0 \right| \cdot \left| \ell \right| + \left| x - x_0 \right| \cdot \left| \varepsilon(x) \right| \\ &\leq \delta \left| \ell \right| + \delta \varepsilon' \quad \text{pour } \left| x - x_0 \right| < \delta \\ &\leq \varepsilon' + \varepsilon' = 2\varepsilon' \end{aligned}$$

Nous venons de prouver que si $|x-x_0| < \delta$ alors $|f(x)-f(x_0)| < 2\varepsilon'$, ce qui exprime exactement que f est continue en x_0 .

Remarque

La réciproque est **fausse** : par exemple, la fonction valeur absolue est continue en 0 mais n'est pas dérivable en 0.

En effet, le taux d'accroissement de f(x) = |x| en $x_0 = 0$ vérifie :

$$\frac{f(x) - f(0)}{x - 0} = \frac{|x|}{x} = \begin{cases} +1 & \text{si } x > 0\\ -1 & \text{si } x < 0 \end{cases}.$$

Il y a bien une limite à droite (qui vaut +1), une limite à gauche (qui vaut -1) mais elles ne sont pas égales : il n'y a pas de limite en 0. Ainsi f n'est pas dérivable en x = 0.

Cela se lit aussi sur le dessin il y a une demi-tangente à droite, une demi-tangente à gauche mais elles ont des directions différentes.

Mini-exercices

- 1. Montrer que la fonction $f(x) = x^3$ est dérivable en tout point $x_0 \in \mathbb{R}$ et que $f'(x_0) = 3x_0^2$.
- 2. Montrer que la fonction $f(x) = \sqrt{x}$ est dérivable en tout point $x_0 > 0$ et que $f'(x_0) = \frac{1}{2\sqrt{x_0}}$.
- 3. Montrer que la fonction $f(x) = \sqrt{x}$ (qui est continue en $x_0 = 0$) n'est pas dérivable en $x_0 = 0$.
- 4. Calculer l'équation de la tangente (T_0) à la courbe d'équation $y = x^3 x^2 x$ au point d'abscisse $x_0 = 2$. Calculer x_1 afin que la tangente (T_1) au point d'abscisse x_1 soit parallèle à (T_0) .
- 5. Montrer que si une fonction f est paire et dérivable, alors f' est une fonction impaire.

2. Calcul des dérivées

2.1. Somme, produit,...

Proposition 80

Soient $f,g:I\to\mathbb{R}$ deux fonctions dérivables sur I. Alors pour tout $x\in I$:

- (f+g)'(x) = f'(x) + g'(x),
- $(\lambda f)'(x) = \lambda f'(x)$ où λ est un réel fixé,
- $(f \times g)'(x) = f'(x)g(x) + f(x)g'(x),$ $\left(\frac{1}{f}\right)'(x) = -\frac{f'(x)}{f(x)^2}$ (si $f(x) \neq 0$),
- $-\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) f(x)g'(x)}{g(x)^2} \text{ (si } g(x) \neq 0).$

Remarque

Il est plus facile de mémoriser les égalités de fonctions :

$$(f+g)' = f'+g', \quad (\lambda f)' = \lambda f', \quad (f \times g)' = f'g+fg', \quad \left(\frac{1}{f}\right)' = -\frac{f'}{f^2}, \quad \left(\frac{f}{g}\right)' = \frac{f'g-fg'}{g^2}.$$

Démonstration

Prouvons par exemple $(f \times g)' = f'g + fg'$.

Fixons $x_0 \in I$. Nous allons réécrire le taux d'accroissement de $f(x) \times g(x)$:

$$\frac{f(x)g(x)-f(x_0)g(x_0)}{x-x_0} = \frac{f(x)-f(x_0)}{x-x_0}g(x) + \frac{g(x)-g(x_0)}{x-x_0}f(x_0) \xrightarrow[x \to x_0]{} f'(x_0)g(x_0) + g'(x_0)f(x_0).$$

Ceci étant vrai pour tout $x_0 \in I$ la fonction $f \times g$ est dérivable sur I de dérivée f'g + fg'.

2.2. Dérivée de fonctions usuelles

Le tableau de gauche est un résumé des principales formules à connaître, x est une variable. Le tableau de droite est celui des compositions (voir paragraphe suivant), u représente une fonction $x \mapsto u(x)$.

Fonction	Dérivée
x^n	nx^{n-1} $(n \in \mathbb{Z})$
$\frac{1}{x}$	$-\frac{1}{x^2}$
\sqrt{x}	$\frac{1}{2}\frac{1}{\sqrt{x}}$
x^{α}	$\alpha x^{\alpha-1} (\alpha \in \mathbb{R})$
e^x	e^x
$\ln x$	$\frac{1}{x}$
$\cos x$	$-\sin x$
$\sin x$	$\cos x$
tanx	$1 + \tan^2 x = \frac{1}{\cos^2 x}$

Fonction	Dérivée
u^n	$nu'u^{n-1} (n \in \mathbb{Z})$
$\frac{1}{u}$	$-\frac{u'}{u^2}$
\sqrt{u}	$\frac{1}{2} \frac{u'}{\sqrt{u}}$
u^{α}	$\alpha u'u^{\alpha-1} (\alpha \in \mathbb{R})$
e^u	$u'e^u$
$\ln u$	$\frac{u'}{u}$
$\cos u$	$-u'\sin u$
$\sin u$	$u'\cos u$
tan u	$u'(1+\tan^2 u) = \frac{u'}{\cos^2 u}$

Remarque

– Notez que les formules pour x^n , $\frac{1}{x}\sqrt{x}$ et x^α sont aussi des conséquences de la dérivée de l'exponentielle. Par exemple $x^\alpha=e^{\alpha \ln x}$ et donc

$$\frac{d}{dx}(x^{\alpha}) = \frac{d}{dx}(e^{\alpha \ln x}) = \alpha \frac{1}{x}e^{\alpha \ln x} = \alpha \frac{1}{x}x^{\alpha} = \alpha x^{\alpha - 1}.$$

- Si vous devez dériver une fonction avec un exposant dépendant de x il faut absolument repasser à la forme exponentielle. Par exemple si $f(x) = 2^x$ alors on réécrit d'abord $f(x) = e^{x \ln 2}$ pour pouvoir calculer $f'(x) = \ln 2 \cdot e^{x \ln 2} = \ln 2 \cdot 2^x$.

2.3. Composition

Proposition 81

Si f est dérivable en x et g est dérivable en f(x) alors $g \circ f$ est dérivable en x de dérivée :

$$(g \circ f)'(x) = g'(f(x)) \cdot f'(x)$$

Démonstration

La preuve est similaire à celle ci-dessus pour le produit en écrivant cette fois :

$$\frac{g \circ f(x) - g \circ f(x_0)}{x - x_0} = \frac{g(f(x)) - g(f(x_0))}{f(x) - f(x_0)} \times \frac{f(x) - f(x_0)}{x - x_0} \xrightarrow{x \to x_0} g'(f(x_0)) \times f'(x_0).$$

Exemple 104

Calculons la dérivée de $\ln(1+x^2)$. Nous avons $g(x) = \ln(x)$ avec $g'(x) = \frac{1}{x}$; et $f(x) = 1+x^2$ avec f'(x) = 2x. Alors la dérivée de $\ln(1+x^2) = g \circ f(x)$ est

$$(g \circ f)'(x) = g'(f(x)) \cdot f'(x) = g'(1+x^2) \cdot 2x = \frac{2x}{1+x^2}.$$

Corollaire 13

Soit I un intervalle ouvert. Soit $f: I \to J$ dérivable et bijective dont on note $f^{-1}: J \to I$ la bijection réciproque. Si f' ne s'annule pas sur I alors f^{-1} est dérivable et on a pour tout $x \in J$:

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

Démonstration

Notons $g = f^{-1}$ la bijection réciproque de f. Soit $y_0 \in J$ et $x_0 \in I$ tel que $y_0 = f(x_0)$. Le taux d'accroissement de g en y_0 est :

$$\frac{g(y) - g(y_0)}{y - y_0} = \frac{g(y) - x_0}{f(g(y)) - f(x_0)}$$

Lorsque $y \to y_0$ alors $g(y) \to g(y_0) = x_0$ et donc ce taux d'accroissement tend vers $\frac{1}{f'(x_0)}$. Ainsi $g'(y_0) = \frac{1}{f'(x_0)}$.

Remarque

Il peut être plus simple de retrouver la formule à chaque fois en dérivant l'égalité

$$f(g(x)) = x$$

où $g = f^{-1}$ est la bijection réciproque de f.

En effet à droite la dérivée de x est 1; à gauche la dérivée de $f(g(x)) = f \circ g(x)$ est $f'(g(x)) \cdot g'(x)$. L'égalité f(g(x)) = x conduit donc à l'égalité des dérivées :

$$f'(g(x)) \cdot g'(x) = 1.$$

Mais $g = f^{-1}$ donc

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}.$$

Exemple 105

Soit $f : \mathbb{R} \to \mathbb{R}$ la fonction définie par $f(x) = x + \exp(x)$. Étudions f en détail.

Tout d'abord:

- 1. f est dérivable car f est la somme de deux fonctions dérivables. En particulier f est continue.
- 2. f est strictement croissante car f est la somme de deux fonctions strictement croissante.
- 3. f est une bijection car $\lim_{x\to-\infty} f(x) = -\infty$ et $\lim_{x\to+\infty} f(x) = +\infty$.
- 4. $f'(x) = 1 + \exp(x)$ ne s'annule jamais (pour tout $x \in \mathbb{R}$).

Notons $g = f^{-1}$ la bijection réciproque de f. Même si on ne sait pas a priori exprimer g, on peut malgré tout connaître des informations sur cette fonction : par le corollaire ci-dessus g est dérivable et l'on calcule g' en dérivant l'égalité f(g(x)) = x. Ce qui donne $f'(g(x)) \cdot g'(x) = 1$

et donc ici

$$g'(x) = \frac{1}{f'(g(x))} = \frac{1}{1 + \exp(g(x))}.$$

Pour cette fonction f particulière on peut préciser davantage : comme f(g(x)) = x alors $g(x) + \exp(g(x)) = x$ donc $\exp(g(x)) = x - g(x)$. Cela conduit à :

$$g'(x) = \frac{1}{1 + x - g(x)}.$$

Par exemple f(0) = 1 donc g(1) = 0 et donc $g'(1) = \frac{1}{2}$. Autrement dit $(f^{-1})'(1) = \frac{1}{2}$. L'équation de la tangente au graphe de f^{-1} au point d'abscisse $x_0 = 1$ est donc $y = \frac{1}{2}(x - 1)$.

2.4. Dérivées successives

Soit $f: I \to \mathbb{R}$ une fonction dérivable et soit f' sa dérivée. Si la fonction $f': I \to \mathbb{R}$ est aussi dérivable on note f'' = (f')' la *dérivée seconde* de f. Plus généralement on note :

$$f^{(0)} = f$$
, $f^{(1)} = f'$, $f^{(2)} = f''$ et $f^{(n+1)} = (f^{(n)})'$

Si la *dérivée* n-ième $f^{(n)}$ existe on dit que f est n fois dérivable.

Théorème 27. Formule de Leibniz

$$(f \cdot g)^{(n)} = f^{(n)} \cdot g + \binom{n}{1} f^{(n-1)} \cdot g^{(1)} + \dots + \binom{n}{k} f^{(n-k)} \cdot g^{(k)} + \dots + f \cdot g^{(n)}$$

Autrement dit:

$$(f \cdot g)^{(n)} = \sum_{k=0}^{n} {n \choose k} f^{(n-k)} \cdot g^{(k)}.$$

La démonstration est similaire à celle de la formule du binôme de Newton et les coefficients que l'on obtient sont les mêmes.

Exemple 106

- Pour n = 1 on retrouve $(f \cdot g)' = f'g + fg'$.
- Pour n = 2, on a $(f \cdot g)'' = f''g + 2f'g' + fg''$.

Exemple 107

Calculons les dérivées n-ième de $\exp(x) \cdot (x^2 + 1)$ pour tout $n \ge 0$. Notons $f(x) = \exp(x)$ alors $f'(x) = \exp(x)$, $f''(x) = \exp(x)$,..., $f^{(k)}(x) = \exp(x)$. Notons $g(x) = x^2 + 1$ alors g'(x) = 2x, g''(x) = 2 et pour $k \ge 3$, $g^{(k)}(x) = 0$.

Appliquons la formule de Leibniz :

$$(f \cdot g)^{(n)}(x) = f^{(n)}(x) \cdot g(x) + \binom{n}{1} f^{(n-1)}(x) \cdot g^{(1)}(x) + \binom{n}{2} f^{(n-2)}(x) \cdot g^{(2)}(x) + \binom{n}{3} f^{(n-3)}(x) \cdot g^{(3)}(x) + \cdots$$

On remplace $f^{(k)}(x) = \exp(x)$ et on sait que $g^{(3)}(x)$, $g^{(4)}(x) = 0$,... Donc cette somme ne contient que les trois premiers termes :

$$(f \cdot g)^{(n)}(x) = \exp(x) \cdot (x^2 + 1) + \binom{n}{1} \exp(x) \cdot 2x + \binom{n}{2} \exp(x) \cdot 2.$$

Que l'on peut aussi écrire :

$$(f \cdot g)^{(n)}(x) = \exp(x) \cdot \left(x^2 + 2nx + \frac{n(n-1)}{2} + 1\right).$$

Mini-exercices

- 1. Calculer les dérivées des fonctions suivantes : $f_1(x) = x \ln x$, $f_2(x) = \sin \frac{1}{x}$, $f_3(x) = \sqrt{1 + \sqrt{1 + x^2}}$, $f_4(x) = \left(\ln(\frac{1+x}{1-x})\right)^{\frac{1}{3}}$, $f_5(x) = x^x$, $f_6(x) = \arctan x + \arctan \frac{1}{x}$.
- 2. On note $\Delta(f) = \frac{f'}{f}$. Calculer $\Delta(f \times g)$.
- 3. Soit $f:]1, +\infty[\to]-1, +\infty[$ définie par $f(x) = x \ln(x) x$. Montrer que f est une bijection. Notons $g = f^{-1}$. Calculer g(0) et g'(0).
- 4. Calculer les dérivées successives de $f(x) = \ln(1+x)$.
- 5. Calculer les dérivées successives de $f(x) = \ln(x) \cdot x^3$.

3. Extremum local, théorème de Rolle

3.1. Extremum local

Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle I.

Définition 68

- On dit que x_0 est un **point** critique de f si $f'(x_0) = 0$.
- On dit que f admet un *maximum local en* x_0 (resp. un *minimum local en* x_0) s'il existe un intervalle ouvert J contenant x_0 tel que

pour tout
$$x \in I \cap J$$
 $f(x) \leq f(x_0)$

(resp. $f(x) \ge f(x_0)$).

- On dit que f admet un *extremum local en* x_0 si f admet un maximum local ou un minimum local en ce point.

Dire que f a un maximum local en x_0 signifie que $f(x_0)$ est la plus grande des valeurs f(x) pour les x proches de x_0 . On dit que $f: I \to \mathbb{R}$ admet un **maximum global** en x_0 si pour toutes les autres valeurs f(x), $x \in I$ on a $f(x) \le f(x_0)$ (on ne regarde donc pas seulement les f(x) pour x proche de x_0). Bien sûr un maximum global est aussi un maximum local, mais la réciproque est fausse.

Théorème 28

Soit I un intervalle ouvert et $f: I \to \mathbb{R}$ une fonction dérivable. Si f admet un maximum local (ou un minimum local) en x_0 alors $f'(x_0) = 0$.

En d'autres termes, un maximum local (ou un minimum local) x_0 est toujours un point critique. Géométriquement, au point $(x_0, f(x_0))$ la tangente au graphe est horizontale.

Exemple 108

Étudions les extremums de la fonction f_{λ} définie par $f_{\lambda}(x) = x^3 + \lambda x$ en fonction du paramètre $\lambda \in \mathbb{R}$. La dérivée est $f'_{\lambda}(x) = 3x^2 + \lambda$. Si x_0 est un extremum local alors $f'_{\lambda}(x_0) = 0$.

- Si $\lambda > 0$ alors $f'_{\lambda}(x) > 0$ et ne s'annule jamais il n'y a pas de points critiques donc pas non plus d'extremums. En anticipant sur la suite : f_{λ} est strictement croissante sur \mathbb{R} .
- Si $\lambda = 0$ alors $f'_{\lambda}(x) = 3x^2$. Le seul point critique est $x_0 = 0$. Mais ce n'est ni un maximum local, ni un minimum local. En effet si x < 0, $f_0(x) < 0 = f_0(0)$ et si x > 0, $f_0(x) > 0 = f_0(0)$.
- Si $\lambda < 0$ alors $f'_{\lambda}(x) = 3x^2 |\lambda| = 3\left(x + \sqrt{\frac{|\lambda|}{3}}\right)\left(x \sqrt{\frac{|\lambda|}{3}}\right)$. Il y a deux points critiques $x_1 = -\sqrt{\frac{|\lambda|}{3}}$ et $x_2 = +\sqrt{\frac{|\lambda|}{3}}$. En anticipant sur la suite : $f'_{\lambda}(x) > 0$ sur $]-\infty, x_1[$ et $]x_2, +\infty[$ et $f'_{\lambda}(x) < 0$ sur $]x_1, x_2[$. Maintenant f_{λ} est croissante sur $]-\infty, x_1[$, puis décroissante sur $]x_1, x_2[$, donc x_1 est un maximum local. D'autre part f_{λ} est décroissante sur $]x_1, x_2[$ puis croissante sur $]x_2, +\infty[$ donc x_2 est un minimum local.

Remarque

- 1. La réciproque du théorème 28 est fausse. Par exemple la fonction $f : \mathbb{R} \to \mathbb{R}$, définie par $f(x) = x^3$ vérifie f'(0) = 0 mais $x_0 = 0$ n'est ni maximum local ni un minimum local.
- 2. L'intervalle du théorème 28 est ouvert. Pour le cas d'un intervalle fermé, il faut faire attention aux extrémités. Par exemple si $f:[a,b] \to \mathbb{R}$ est une fonction dérivable qui admet un extremum en x_0 , alors on est dans l'une des situations suivantes :
 - $-x_0=a$
 - $x_0 = b$,
 - x_0 ∈]a, b[et dans ce cas on a bien $f'(x_0)$ = 0 par le théorème 28.

Aux extrémités on ne peut rien dire pour f'(a) et f'(b), comme le montre les différents maximums sur les dessins suivants.

3. Pour déterminer $\max_{[a,b]} f$ et $\min_{[a,b]} f$ (où $f:[a,b] \to \mathbb{R}$ est une fonction dérivable) il faut comparer les valeurs de f aux différents points critiques et en a et en b.

Démonstration Preuve du théorème

Supposons que x_0 soit un maximum local de f, soit donc J l'intervalle ouvert de la définition contenant x_0 tel que pour tout $x \in I \cap J$ on a $f(x) \leq f(x_0)$.

- Pour $x \in I \cap J$ tel que $x < x_0$ on a $f(x) f(x_0) \le 0$ et $x x_0 < 0$ donc $\frac{f(x) f(x_0)}{x x_0} \ge 0$ et donc à la limite $\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \ge 0.$
- Pour $x \in I \cap J$ tel que $x > x_0$ on a $f(x) f(x_0) \le 0$ et $x x_0 > 0$ donc $\frac{f(x) f(x_0)}{x x_0} \le 0$ et donc à la limite $\lim_{x\to x_0^+} \frac{f(x)-f(x_0)}{x-x_0} \leqslant 0.$ Or f est dérivable en x_0 donc

$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0).$$

La première limite est positive, la seconde est négative, la seule possibilité est que $f'(x_0) = 0$.

3.2. Théorème de Rolle

Théorème 29. Théorème de Rolle

Soit $f:[a,b] \to \mathbb{R}$ telle que

- f est continue sur [a,b],
- f est dérivable sur a, b,
- f(a) = f(b).

Alors il existe $c \in]a, b[$ tel que f'(c) = 0.

Interprétation géométrique : il existe au moins un point du graphe de f où la tangente est horizontale.

Démonstration

Tout d'abord, si f est constante sur [a,b] alors n'importe quel $c \in]a,b[$ convient. Sinon il existe $x_0 \in [a,b]$ tel que $f(x_0) \neq f(a)$. Supposons par exemple $f(x_0) > f(a)$. Alors f est continue sur l'intervalle fermé et borné [a,b], donc elle admet un maximum en un point $c \in [a,b]$. Mais $f(c) \geq f(x_0) > f(a)$ donc $c \neq a$. De même comme f(a) = f(b) alors $c \neq b$. Ainsi $c \in]a,b[$. En c, f est donc dérivable et admet un maximum (local) donc f'(c) = 0.

Exemple 109

Soit $P(X) = (X - \alpha_1)(X - \alpha_2) \cdots (X - \alpha_n)$ un polynôme ayant n racines réelles différentes : $\alpha_1 < \alpha_2 < \cdots < \alpha_n$.

1. Montrons que P' a n-1 racines distinctes.

On considère P comme une fonction polynomiale $x \mapsto P(x)$. P est une fonction continue et dérivable sur \mathbb{R} . Comme $P(\alpha_1) = 0 = P(\alpha_2)$ alors par le théorème de Rolle il existe $c_1 \in]\alpha_1, \alpha_2[$ tel que $P'(c_1) = 0$. Plus généralement, pour $1 \le k \le n-1$, comme $P(\alpha_k) = 0 = P(\alpha_{k+1})$ alors le théorème de Rolle implique l'existence de $c_k \in]\alpha_k, \alpha_{k+1}[$ tel que $P'(c_k) = 0$. Nous avons bien trouvé n-1 racines de $P': c_1 < c_2 < \cdots < c_{n-1}$. Comme P' est un polynôme de degré n-1, toutes ses racines sont réelles et distinctes.

2. Montrons que P + P' a n - 1 racines distinctes.

L'astuce consiste à considérer la fonction auxiliaire $f(x) = P(x) \exp x$. f est une fonction continue et dérivable sur \mathbb{R} . f s'annule comme P en $\alpha_1, \ldots, \alpha_n$.

La dérivée de f est $f'(x) = (P(x) + P'(x)) \exp x$. Donc par le théorème de Rolle, pour chaque $1 \le k \le n-1$, comme $f(\alpha_k) = 0 = f(\alpha_{k+1})$ alors il existe $\gamma_k \in]\alpha_k, \alpha_{k+1}[$ tel que $f'(\gamma_k) = 0$. Mais comme la fonction exponentielle ne s'annule jamais alors $(P + P')(\gamma_k) = 0$. Nous avons bien trouvé n-1 racines distinctes de $P + P' : \gamma_1 < \gamma_2 < \cdots < \gamma_{n-1}$.

3. Déduisons-en que P + P' a toutes ses racines réelles.

P+P' est un polynôme à coefficients réels qui admet n-1 racines réelles. Donc $(P+P')(X)=(X-\gamma_1)\cdots(X-\gamma_{n-1})Q(X)$ où $Q(x)=X-\gamma_n$ est un polynôme de degré 1. Comme P+P' est à coefficients réels et que les γ_i sont aussi réels, ainsi $\gamma_n\in\mathbb{R}$. Ainsi on a obtenu une n-ième racine réelle γ_n (pas nécessairement distincte des autres γ_i).

Mini-exercices

- 1. Dessiner le graphe de fonctions vérifiant : f_1 admet deux minimums locaux et un maximum local ; f_2 admet un minimum local qui n'est pas global et un maximum local qui est global ; f_3 admet une infinité d'extremum locaux ; f_4 n'admet aucun extremum local.
- 2. Calculer en quel point la fonction $f(x) = ax^2 + bx + c$ admet un extremum local.
- 3. Soit $f:[0,2] \to \mathbb{R}$ une fonction deux fois dérivable telle que f(0) = f(1) = f(2) = 0. Montrer qu'il existe c_1, c_2 tels que $f'(c_1) = 0$ et $f'(c_2) = 0$. Montrer qu'il existe c_3 tel que $f''(c_3) = 0$.
- 4. Montrer que chacune des trois hypothèses du théorème de Rolle est nécessaire.

4. Théorème des accroissements finis

4.1. Théorème des accroissements finis

Théorème 30. Théorème des accroissements finis

Soit $f:[a,b] \to \mathbb{R}$ une fonction continue sur [a,b] et dérivable sur [a,b]. Il existe $c \in]a,b[$ tel que

$$f(b) - f(a) = f'(c)(b - a)$$

Interprétation géométrique : il existe au moins un point du graphe de f où la tangente est parallèle à la droite (AB) où A=(a,f(a)) et B=(b,f(b)).

Démonstration

Posons $\ell = \frac{f(b) - f(a)}{b - a}$ et $g(x) = f(x) - \ell \cdot (x - a)$. Alors g(a) = f(a), $g(b) = f(b) - \frac{f(b) - f(a)}{b - a} \cdot (b - a) = f(a)$. Par le théorème de Rolle, il existe $c \in]a,b[$ tel que g'(c) = 0. Or $g'(x) = f'(x) - \ell$. Ce qui donne $f'(c) = \frac{f(b) - f(a)}{b - a}$.

4.2. Fonction croissante et dérivée

Corollaire 14

Soit $f : [a,b] \to \mathbb{R}$ une fonction continue sur [a,b] et dérivable sur [a,b].

- 1. $\forall x \in]a,b[f'(x) \ge 0 \iff f \text{ est croissante};$
- 2. $\forall x \in]a,b[f'(x) \le 0 \iff f \text{ est décroissante};$
- 3. $\forall x \in]a, b[f'(x) = 0 \iff f \text{ est constante};$
- 4. $\forall x \in]a,b[$ $f'(x)>0 \implies f \text{ est strictement croissante};$
- 5. $\forall x \in]a,b[$ $f'(x) < 0 \implies f$ est strictement décroissante.

Remarque

La réciproque au point (4) (et aussi au (5)) est fausse. Par exemple la fonction $x \mapsto x^3$ est strictement croissante et pourtant sa dérivée s'annule en 0.

Démonstration

Prouvons par exemple (1).

Sens \implies . Supposons d'abord la dérivée positive. Soient $x, y \in]a, b[$ avec $x \le y$. Alors par le théorème des accroissements finis, il existe $c \in]x, y[$ tel que f(x) - f(y) = f'(c)(x - y). Mais $f'(c) \ge 0$ et $x - y \le 0$ donc $f(x) - f(y) \le 0$. Cela implique que $f(x) \le f(y)$. Ceci étant vrai pour tout x, y alors f est croissante.

Sens \Leftarrow . Réciproquement, supposons que f est croissante. Fixons $x \in]a,b[$. Pour tout y > x nous avons y-x>0 et $f(y)-f(x) \ge 0$, ainsi le taux d'accroissement vérifie $\frac{f(y)-f(x)}{y-x} \ge 0$. À la limite, quand $y \to x$, ce taux d'accroissement tend vers la dérivée de f en x et donc $f'(x) \ge 0$.

4.3. Inégalité des accroissements finis

Corollaire 15. Inégalité des accroissements finis

Soit $f: I \to \mathbb{R}$ une fonction dérivable sur un intervalle I ouvert. S'il existe une constante M tel que pour tout $x \in I$, $|f'(x)| \leq M$ alors

$$\forall x, y \in I$$
 $|f(x) - f(y)| \le M|x - y|$

Démonstration

Fixons $x, y \in I$, il existe alors $c \in]x, y[$ ou]y, x[tel que f(x) - f(y) = f'(c)(x - y) et comme $|f'(c)| \le M$ alors $|f(x) - f(y)| \le M|x - y|$.

Exemple 110

Soit $f(x) = \sin(x)$. Comme $f'(x) = \cos x$ alors $|f'(x)| \le 1$ pour tout $x \in \mathbb{R}$. L'inégalité des accroissements finis s'écrit alors :

pour tous
$$x, y \in \mathbb{R}$$
 $|\sin x - \sin y| \le |x - y|$.

En particulier si l'on fixe y = 0 alors on obtient

$$|\sin x| \le |x|$$

ce qui est particulièrement intéressant pour *x* proche de 0.

4.4. Règle de l'Hospital

Corollaire 16. Règle de l'Hospital

Soient $f,g:I\to\mathbb{R}$ deux fonctions dérivables et soit $x_0\in I$. On suppose que

- $f(x_0) = g(x_0) = 0,$
- $\forall x \in I \setminus \{x_0\}$ $g'(x) \neq 0$.

Si
$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \ell$$
 $(\in \mathbb{R})$ alors $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \ell$.

Démonstration

Fixons $a \in I \setminus \{x_0\}$ avec par exemple $a < x_0$. Soit $h: I \to \mathbb{R}$ définie par h(x) = g(a)f(x) - f(a)g(x). Alors

- h est continue sur $[a, x_0] \subset I$,
- h est dérivable sur a, x_0 ,
- $h(x_0) = h(a) = 0$.

Donc par le théorème de Rolle il existe $c_a \in]a, x_0[$ tel que $h'(c_a) = 0$.

Or h'(x) = g(a)f'(x) - f(a)g'(x) donc $g(a)f'(c_a) - f(a)g'(c_a) = 0$. Comme g' ne s'annule pas sur $I \setminus \{x_0\}$ cela conduit à $\frac{f(a)}{g(a)} = \frac{f'(c_a)}{g'(c_a)}$. Comme $a < c_a < x_0$ lorsque l'on fait tendre a vers x_0 on obtient $c_a \to x_0$. Cela

$$\lim_{a \to x_0} \frac{f(a)}{g(a)} = \lim_{a \to x_0} \frac{f'(c_a)}{g'(c_a)} = \lim_{c_a \to x_0} \frac{f'(c_a)}{g'(c_a)} = \ell.$$

Exemple 111

Calculer la limite en 1 de $\frac{\ln(x^2+x-1)}{\ln(x)}$. On vérifie que : $-f(x) = \ln(x^2+x-1), f(1) = 0, f'(x) = \frac{2x+1}{x^2+x-1},$

- $g(x) = \ln(x)$, g(1) = 0, $g'(x) = \frac{1}{x}$,
- Prenons $I =]0, 1], x_0 = 1$, alors g' ne s'annule pas sur $I \setminus \{x_0\}$.

$$\frac{f'(x)}{g'(x)} = \frac{2x+1}{x^2+x-1} \times x = \frac{2x^2+x}{x^2+x-1} \xrightarrow[x\to 1]{} 3.$$

Donc

$$\frac{f(x)}{g(x)} \xrightarrow[x \to 1]{} 3.$$

Mini-exercices

- 1. Soit $f(x) = \frac{x^3}{3} + \frac{x^2}{2} 2x + 2$. Étudier la fonction f. Tracer son graphe. Montrer que fadmet un minimum local et un maximum local.
- 2. Soit $f(x) = \sqrt{x}$. Appliquer le théorème des accroissements finis sur l'intervalle [100, 101]. En déduire l'encadrement $10 + \frac{1}{22} \le \sqrt{101} \le 10 + \frac{1}{20}$.
- 3. Appliquer le théorème des accroissements finis pour montrer que $\ln(1+x) \ln(x) < \frac{1}{x}$ (pour tout x > 0).
- 4. Soit $f(x) = e^x$. Que donne l'inégalité des accroissements finis sur [0,x]?
- 5. Appliquer la règle de l'Hospital pour calculer les limites suivantes (quand $x \to 0$):

$$\frac{x}{(1+x)^n-1}$$
; $\frac{\ln(x+1)}{\sqrt{x}}$; $\frac{1-\cos x}{\tan x}$; $\frac{x-\sin x}{x^3}$.

Auteurs

Arnaud Bodin Niels Borne Laura Desideri

12 Zéros des fonctions

- 1 La dichotomie
- 2 La méthode de la sécante
- 3 La méthode de Newton

```
Vidéo ■ partie 1. La dichotomie
```

Vidéo ■ partie 2. La méthode de la sécante

Vidéo ■ partie 3. La méthode de Newton

Dans ce chapitre nous allons appliquer toutes les notions précédentes sur les suites et les fonctions, à la recherche des zéros des fonctions. Plus précisément, nous allons voir trois méthodes afin de trouver des approximations des solutions d'une équation du type (f(x) = 0).

1. La dichotomie

1.1. Principe de la dichotomie

Le principe de dichotomie repose sur la version suivante du *théorème des valeurs intermédiaires* :

Théorème 31

Soit $f:[a,b] \to \mathbb{R}$ une fonction continue sur un segment.

Si $f(a) \cdot f(b) \le 0$, alors il existe $\ell \in [a, b]$ tel que $f(\ell) = 0$.

La condition $f(a) \cdot f(b) \le 0$ signifie que f(a) et f(b) sont de signes opposés (ou que l'un des deux est nul). L'hypothèse de continuité est essentielle!

Ce théorème affirme qu'il existe au moins une solution de l'équation (f(x) = 0) dans l'intervalle [a,b]. Pour le rendre effectif, et trouver une solution (approchée) de l'équation (f(x) = 0), il s'agit maintenant de l'appliquer sur un intervalle suffisamment petit. On va voir que cela permet d'obtenir un ℓ solution de l'équation (f(x) = 0) comme la limite d'une suite.

Voici comment construire une suite d'intervalles emboîtés, dont la longueur tend vers 0, et contenant chacun une solution de l'équation (f(x) = 0).

On part d'une fonction $f : [a,b] \to \mathbb{R}$ continue, avec a < b, et $f(a) \cdot f(b) \le 0$.

Voici la première étape de la construction : on regarde le signe de la valeur de la fonction f appliquée au point milieu $\frac{a+b}{2}$.

- Si $f(a) \cdot f(\frac{a+b}{2}) \le 0$, alors il existe $c \in [a, \frac{a+b}{2}]$ tel que f(c) = 0.
- Si $f(a) \cdot f(\frac{a+b}{2}) > 0$, cela implique que $f(\frac{a+b}{2}) \cdot f(b) \le 0$, et alors il existe $c \in [\frac{a+b}{2}, b]$ tel que f(c) = 0.

Nous avons obtenu un intervalle de longueur moitié dans lequel l'équation (f(x) = 0) admet une solution. On itère alors le procédé pour diviser de nouveau l'intervalle en deux.

Voici le processus complet :

- Au rang 0:

On pose $a_0 = a$, $b_0 = b$. Il existe une solution x_0 de l'équation (f(x) = 0) dans l'intervalle $[a_0, b_0]$.

- Au rang 1:

- Si $f(a_0) \cdot f(\frac{a_0 + b_0}{2}) \le 0$, alors on pose $a_1 = a_0$ et $b_1 = \frac{a_0 + b_0}{2}$,
- sinon on pose $a_1 = \frac{a_0 + b_0}{2}$ et $b_1 = b$.
- Dans les deux cas, il existe une solution x_1 de l'équation (f(x) = 0) dans l'intervalle $[a_1, b_1]$.

_ ..

- **Au rang** n: supposons construit un intervalle $[a_n, b_n]$, de longueur $\frac{b-a}{2^n}$, et contenant une solution x_n de l'équation (f(x) = 0). Alors :
 - Si $f(a_n) \cdot f(\frac{a_n + \overline{b_n}}{2}) \le 0$, alors on pose $a_{n+1} = a_n$ et $b_{n+1} = \frac{a_n + b_n}{2}$,
 - sinon on pose $a_{n+1} = \frac{a_n + b_n}{2}$ et $b_{n+1} = b_n$.
 - Dans les deux cas, il existe une solution x_{n+1} de l'équation (f(x) = 0) dans l'intervalle $[a_{n+1}, b_{n+1}]$.

À chaque étape on a

$$a_n \leq x_n \leq b_n$$
.

On arrête le processus dès que $b_n - a_n = \frac{b-a}{2^n}$ est inférieur à la précision souhaitée.

Comme (a_n) est par construction une suite croissante, (b_n) une suite décroissante, et $(b_n - a_n) \to 0$ lorsque $n \to +\infty$, les suites (a_n) et (b_n) sont adjacentes et donc elles admettent une même limite. D'après le théorème des gendarmes, c'est aussi la limite disons ℓ de la suite (x_n) . La continuité de f montre que $f(\ell) = \lim_{n \to +\infty} f(x_n) = \lim_{n \to +\infty} 0 = 0$. Donc les suites (a_n) et (b_n) tendent toutes les deux vers ℓ , qui est une solution de l'équation (f(x) = 0).

1.2. Résultats numériques pour $\sqrt{10}$

Nous allons calculer une approximation de $\sqrt{10}$. Soit la fonction f définie par $f(x) = x^2 - 10$, c'est une fonction continue sur \mathbb{R} qui s'annule en $\pm \sqrt{10}$. De plus $\sqrt{10}$ est l'unique solution positive de

l'équation (f(x) = 0). Nous pouvons restreindre la fonction f à l'intervalle [3,4]: en effet $3^2 = 9 \le 10$ donc $3 \le \sqrt{10}$ et $4^2 = 16 \ge 10$ donc $4 \ge \sqrt{10}$. En d'autre termes $f(3) \le 0$ et $f(4) \ge 0$, donc l'équation (f(x) = 0) admet une solution dans l'intervalle [3,4] d'après le théorème des valeurs intermédiaires, et par unicité c'est $\sqrt{10}$, donc $\sqrt{10} \in [3,4]$.

Notez que l'on ne choisit pas pour f la fonction $x \mapsto x - \sqrt{10}$ car on ne connaît pas la valeur de $\sqrt{10}$. C'est ce que l'on cherche à calculer!

Voici les toutes premières étapes :

- 1. On pose $a_0 = 3$ et $b_0 = 4$, on a bien $f(a_0) \le 0$ et $f(b_0) \ge 0$. On calcule $\frac{a_0 + b_0}{2} = 3,5$ puis $f(\frac{a_0 + b_0}{2})$: $f(3,5) = 3,5^2 10 = 2,25 \ge 0$. Donc $\sqrt{10}$ est dans l'intervalle [3;3,5] et on pose $a_1 = a_0 = 3$ et $b_1 = \frac{a_0 + b_0}{2} = 3,5$.
- 2. On sait donc que $f(a_1) \le 0$ et $f(b_1) \ge 0$. On calcule $f(\frac{a_1+b_1}{2}) = f(3,25) = 0,5625 \ge 0$, on pose $a_2 = 3$ et $b_2 = 3,25$.
- 3. On calcule $f(\frac{a_2+b_2}{2}) = f(3,125) = -0,23... \le 0$. Comme $f(b_2) \ge 0$ alors cette fois f s'annule sur le second intervalle $[\frac{a_2+b_2}{2},b_2]$ et on pose $a_3 = \frac{a_2+b_2}{2} = 3,125$ et $b_3 = b_2 = 3,25$.

À ce stade, on a prouvé : $3,125 \le \sqrt{10} \le 3,25$.

Voici la suite des étapes :

$$a_0 = 3$$
 $b_0 = 4$
 $a_1 = 3$ $b_1 = 3,5$
 $a_2 = 3$ $b_2 = 3,25$
 $a_3 = 3,125$ $b_3 = 3,25$
 $a_4 = 3,125$ $b_4 = 3,1875$
 $a_5 = 3,15625$ $b_5 = 3,1875$
 $a_6 = 3,15625$ $b_6 = 3,171875$
 $a_7 = 3,15625$ $b_7 = 3,164062...$
 $a_8 = 3,16015...$ $b_8 = 3,164062...$

Donc en 8 étapes on obtient l'encadrement :

$$3,160 \le \sqrt{10} \le 3,165$$

En particulier, on vient d'obtenir les deux premières décimales : $\sqrt{10} = 3,16...$

1.3. Résultats numériques pour $(1,10)^{1/12}$

Nous cherchons maintenant une approximation de $(1,10)^{1/12}$. Soit $f(x) = x^{12} - 1,10$. On pose $a_0 = 1$ et $b_0 = 1,1$. Alors $f(a_0) = -0,10 \le 0$ et $f(b_0) = 2,038... \ge 0$.

$$a_0 = 1$$
 $b_0 = 1,10$
 $a_1 = 1$ $b_1 = 1,05$
 $a_2 = 1$ $b_2 = 1,025$
 $a_3 = 1$ $b_3 = 1,0125$
 $a_4 = 1,00625$ $b_4 = 1,0125$
 $a_5 = 1,00625$ $b_5 = 1,00937...$
 $a_6 = 1,00781...$ $b_6 = 1,00937...$
 $a_7 = 1,00781...$ $b_7 = 1,00859...$
 $a_8 = 1,00781...$ $b_8 = 1,00820...$

Donc en 8 étapes on obtient l'encadrement :

$$1,00781 \le (1,10)^{1/12} \le 1,00821$$

1.4. Calcul de l'erreur

La méthode de dichotomie a l'énorme avantage de fournir un encadrement d'une solution ℓ de l'équation (f(x)=0). Il est donc facile d'avoir une majoration de l'erreur. En effet, à chaque étape, la taille l'intervalle contenant ℓ est divisée par 2. Au départ, on sait que $\ell \in [a,b]$ (de longueur b-a); puis $\ell \in [a_1,b_1]$ (de longueur $\frac{b-a}{2}$); puis $\ell \in [a_2,b_2]$ (de longueur $\frac{b-a}{4}$); ...; $[a_n,b_n]$ étant de longueur $\frac{b-a}{2^n}$.

Si, par exemple, on souhaite obtenir une approximation de ℓ à 10^{-N} près, comme on sait que $a_n \le \ell \le b_n$, on obtient $|\ell - a_n| \le |b_n - a_n| = \frac{b-a}{2^n}$. Donc pour avoir $|\ell - a_n| \le 10^{-N}$, il suffit de choisir n tel que $\frac{b-a}{2^n} \le 10^{-N}$.

Nous allons utiliser le logarithme décimal :

$$\frac{b-a}{2^n} \le 10^{-N} \iff (b-a)10^N \le 2^n$$

$$\iff \log(b-a) + \log(10^N) \le \log(2^n)$$

$$\iff \log(b-a) + N \le n \log 2$$

$$\iff n \ge \frac{N + \log(b-a)}{\log 2}$$

Sachant $\log 2 = 0,301...$, si par exemple $b-a \le 1$, voici le nombre d'itérations suffisantes pour avoir une précision de 10^{-N} (ce qui correspond, à peu près, à N chiffres exacts après la virgule).

$$10^{-10}$$
 (~ 10 décimales) 34 itérations 10^{-100} (~ 100 décimales) 333 itérations 10^{-1000} (~ 1000 décimales) 3322 itérations

Il faut entre 3 et 4 itérations supplémentaires pour obtenir une nouvelle décimale.

Remarque

En toute rigueur il ne faut pas confondre précision et nombre de décimales exactes, par exemple 0,999 est une approximation de 1,000 à 10^{-3} près, mais aucune décimale après la virgule n'est exacte. En pratique, c'est la précision qui est la plus importante, mais il est plus frappant de parler du nombre de décimales exactes.

Zéros des fonctions 207

1.5. Algorithmes

Voici comment implémenter la dichotomie dans le langage Python. Tout d'abord on définit une fonction f (ici par exemple $f(x) = x^2 - 10$):

```
Algorithme . dichotomie.py (1)

def f(x):
   return x*x - 10
```

Puis la dichotomie proprement dite : en entrée de la fonction, on a pour variables a,b et n le nombre d'étapes voulues.

```
Algorithme . dichotomie.py (2)

def dicho(a,b,n):
    for i in range(n):
        c = (a+b)/2
        if f(a)*f(c) <= 0:
            b = c
        else:
            a = c
        return a,b
```

Même algorithme, mais avec cette fois en entrée la précision souhaitée :

```
Algorithme . dichotomie.py (3)

def dichobis(a,b,prec):
    while b-a>prec:
        c = (a+b)/2
        if f(a)*f(c) <= 0:
            b = c
        else:
            a = c
    return a,b</pre>
```

Algorithme . dichotomie.py (4)

else:

Enfin, voici la version récursive de l'algorithme de dichotomie.

```
def dichotomie(a,b,prec):
    if b-a<=prec:
        return a,b
    else:
        c = (a+b)/2
        if f(a)*f(c) <= 0:
        return dichotomie(a,c,prec)</pre>
```

return dichotomie(c,b,prec)

Mini-exercices

- 1. À la main, calculer un encadrement à 0,1 près de $\sqrt{3}$. Idem avec $\sqrt[3]{2}$.
- 2. Calculer une approximation des solutions de l'équation $x^3 + 1 = 3x$.
- 3. Est-il plus efficace de diviser l'intervalle en 4 au lieu d'en 2? (À chaque itération, la dichotomie classique nécessite l'évaluation de f en une nouvelle valeur $\frac{a+b}{2}$ pour une précision améliorée d'un facteur 2.)
- **4.** Écrire un algorithme pour calculer plusieurs solutions de (f(x) = 0).
- 5. On se donne un tableau trié de taille N, rempli de nombres appartenant à $\{1, ..., n\}$. Écrire un algorithme qui teste si une valeur k apparaît dans le tableau et en quelle position.

2. La méthode de la sécante

2.1. Principe de la sécante

L'idée de la méthode de la sécante est très simple : pour une fonction f continue sur un intervalle [a,b], et vérifiant $f(a) \le 0$, f(b) > 0, on trace le segment [AB] où A = (a,f(a)) et B = (b,f(b)). Si le segment reste au-dessus du graphe de f alors la fonction s'annule sur l'intervalle [a',b] où (a',0) est le point d'intersection de la droite (AB) avec l'axe des abscisses. La droite (AB) s'appelle la sécante. On recommence en partant maintenant de l'intervalle [a',b] pour obtenir une valeur a''.

Zéros des fonctions 209

Proposition 82

Soit $f:[a,b] \to \mathbb{R}$ une fonction continue, strictement croissante et convexe telle que $f(a) \le 0$, f(b) > 0. Alors la suite définie par

$$a_0 = a$$
 et $a_{n+1} = a_n - \frac{b - a_n}{f(b) - f(a_n)} f(a_n)$

est croissante et converge vers la solution ℓ de (f(x) = 0).

L'hypothèse f convexe signifie exactement que pour tout x, x' dans [a, b] la sécante (ou corde) entre (x, f(x)) et (x', f(x')) est au-dessus du graphe de f.

Démonstration

1. Justifions d'abord la construction de la suite récurrente. L'équation de la droite passant par les deux points (a, f(a)) et (b, f(b)) est

$$y = (x-a)\frac{f(b) - f(a)}{b-a} + f(a)$$

Cette droite intersecte l'axe des abscisses en (a',0) qui vérifie donc $0 = (a'-a)\frac{f(b)-f(a)}{b-a} + f(a)$, donc $a' = a - \frac{b-a}{f(b)-f(a)}f(a)$.

2. Croissance de (a_n) .

Montrons par récurrence que $f(a_n) \le 0$. C'est vrai au rang 0 car $f(a_0) = f(a) \le 0$ par hypothèse. Supposons vraie l'hypothèse au rang n. Si $a_{n+1} < a_n$ (un cas qui s'avérera a posteriori jamais réalisé), alors comme f est strictement croissante, on a $f(a_{n+1}) < f(a_n)$, et en particulier $f(a_{n+1}) \le 0$. Sinon $a_{n+1} \ge a_n$. Comme f est convexe : la sécante entre $(a_n, f(a_n))$ et (b, f(b)) est au-dessus du graphe de f. En particulier le point $(a_{n+1}, 0)$ (qui est sur cette sécante par définition a_{n+1}) est au-dessus du point $(a_{n+1}, f(a_{n+1}))$, et donc $f(a_{n+1}) \le 0$ aussi dans ce cas, ce qui conclut la récurrence.

Comme $f(a_n) \le 0$ et f est croissante, alors par la formule $a_{n+1} = a_n - \frac{b-a_n}{f(b)-f(a_n)} f(a_n)$, on obtient que $a_{n+1} \ge a_n$.

3. Convergence de (a_n) .

La suite (a_n) est croissante et majorée par b, donc elle converge. Notons ℓ sa limite. Par continuité $f(a_n) \to f(\ell)$. Comme pour tout n, $f(a_n) \le 0$, on en déduit que $f(\ell) \le 0$. En particulier, comme on suppose f(b) > 0, on a $\ell < b$. Comme $a_n \to \ell$, $a_{n+1} \to \ell$, $f(a_n) \to f(\ell)$, l'égalité $a_{n+1} = a_n - \frac{b - a_n}{f(b) - f(a_n)} f(a_n)$ devient à la limite (lorsque $n \to +\infty$) : $\ell = \ell - \frac{b - \ell}{f(b) - f(\ell)} f(\ell)$, ce qui implique $f(\ell) = 0$.

Conclusion : (a_n) converge vers la solution de (f(x) = 0).

2.2. Résultats numériques pour $\sqrt{10}$

Pour a=3, b=4, $f(x)=x^2-10$ voici les résultats numériques, est aussi indiquée une majoration de l'erreur $\varepsilon_n=\sqrt{10}-a_n$ (voir ci-après).

$$\begin{array}{lll} a_0 = 3 & \varepsilon_0 \leqslant 0, 1666 \dots \\ a_1 = 3, 14285714285 \dots & \varepsilon_1 \leqslant 0, 02040 \dots \\ a_2 = 3, 160000000000 \dots & \varepsilon_2 \leqslant 0, 00239 \dots \\ a_3 = 3, 16201117318 \dots & \varepsilon_3 \leqslant 0, 00028 \dots \\ a_4 = 3, 16224648985 \dots & \varepsilon_4 \leqslant 3, 28 \dots \cdot 10^{-5} \\ a_5 = 3, 16227401437 \dots & \varepsilon_5 \leqslant 3, 84 \dots \cdot 10^{-6} \\ a_6 = 3, 16227723374 \dots & \varepsilon_6 \leqslant 4, 49 \dots \cdot 10^{-7} \\ a_7 = 3, 16227761029 \dots & \varepsilon_7 \leqslant 5, 25 \dots \cdot 10^{-8} \\ a_8 = 3, 16227765433 \dots & \varepsilon_8 \leqslant 6, 14 \dots \cdot 10^{-9} \end{array}$$

2.3. Résultats numériques pour $(1,10)^{1/12}$

Voici les résultats numériques avec une majoration de l'erreur $\varepsilon_n = (1,10)^{1/12} - a_n$, avec $f(x) = x^{12} - 1,10$, a = 1 et b = 1,1

$$\begin{array}{lll} a_0 = 1 & & \varepsilon_0 \leqslant 0,0083 \dots \\ a_1 = 1,00467633 \dots & \varepsilon_1 \leqslant 0,0035 \dots \\ a_2 = 1,00661950 \dots & \varepsilon_2 \leqslant 0,0014 \dots \\ a_3 = 1,00741927 \dots & \varepsilon_3 \leqslant 0,00060 \dots \\ a_4 = 1,00774712 \dots & \varepsilon_4 \leqslant 0,00024 \dots \\ a_5 = 1,00788130 \dots & \varepsilon_5 \leqslant 0,00010 \dots \\ a_6 = 1,00793618 \dots & \varepsilon_6 \leqslant 4,14 \dots \cdot 10^{-5} \\ a_7 = 1,00795862 \dots & \varepsilon_7 \leqslant 1,69 \dots \cdot 10^{-5} \\ a_8 = 1,00796779 \dots & \varepsilon_8 \leqslant 6,92 \dots \cdot 10^{-6} \end{array}$$

2.4. Calcul de l'erreur

La méthode de la sécante fournit l'encadrement $a_n \le l \le b$. Mais comme b est fixe cela ne donne pas d'information exploitable pour $|l-a_n|$. Voici une façon générale d'estimer l'erreur, à l'aide du théorème des accroissements finis.

Proposition 83

Soit $f: I \to \mathbb{R}$ une fonction dérivable et ℓ tel que $f(\ell) = 0$. S'il existe une constante m > 0 telle que pour tout $x \in I$, $|f'(x)| \ge m$ alors

$$|x-\ell| \le \frac{|f(x)|}{m}$$
 pour tout $x \in I$.

Démonstration

Par l'inégalité des accroissement finis entre x et $\ell: |f(x)-f(\ell)| \ge m|x-\ell|$ mais $f(\ell)=0$, d'où la majoration.

Zéros des fonctions

Exemple 112. Erreur pour $\sqrt{10}$

Soit $f(x) = x^2 - 10$ et l'intervalle I = [3,4]. Alors f'(x) = 2x donc $|f'(x)| \ge 6$ sur I. On pose donc $m=6, \ell=\sqrt{10}, x=a_n$. On obtient l'estimation de l'erreur :

$$\varepsilon_n = |\ell - \alpha_n| \le \frac{|f(\alpha_n)|}{m} = \frac{|\alpha_n^2 - 10|}{6}$$

Par exemple on a trouvé $a_2=3,16... \le 3,17$ donc $\sqrt{10}-a_2 \le \frac{|3,17^2-10|}{6}=0,489$. Pour a_8 on a trouvé $a_8=3,1622776543347473...$ donc $\sqrt{10}-a_8 \le \frac{|a_8^2-10|}{6}=6,14...\cdot 10^{-9}$. On a en fait 7 décimales exactes après la virgule.

Dans la pratique, voici le nombre d'itérations suffisantes pour avoir une précision de 10^{-n} pour cet exemple. Grosso-modo, une itération de plus donne une décimale supplémentaire.

$$10^{-10}~(\sim 10~{\rm d\acute{e}cimales})$$
 10 itérations $10^{-100}~(\sim 100~{\rm d\acute{e}cimales})$ 107 itérations $10^{-1000}~(\sim 1000~{\rm d\acute{e}cimales})$ 1073 itérations

Exemple 113. Erreur pour $(1,10)^{1/12}$

On pose $f(x) = x^{12} - 1, 10, I = [1; 1, 10]$ et $\ell = (1, 10)^{1/12}$. Comme $f'(x) = 12x^{11}$, si on pose de plus m = 12, on a $|f'(x)| \ge m$ pour $x \in I$. On obtient

$$\varepsilon_n = |\ell - a_n| \le \frac{|a_n^{12} - 1, 10|}{12}.$$

Par exemple $a_8 = 1.0079677973185432...$ donc

$$|(1,10)^{1/12} - a_8| \le \frac{|a_8^{12} - 1,10|}{12} = 6,92...\cdot 10^{-6}.$$

2.5. Algorithme

Voici l'algorithme : c'est tout simplement la mise en œuvre de la suite récurrente (a_n) .

Algorithme . secante.py

```
def secante(a,b,n):
    for i in range(n):
        a = a-f(a)*(b-a)/(f(b)-f(a))
    return a
```

Mini-exercices

- 1. À la main, calculer un encadrement à 0,1 près de $\sqrt{3}$. Idem avec $\sqrt[3]{2}$.
- 2. Calculer une approximation des solutions de l'équation $x^3 + 1 = 3x$.
- 3. Calculer une approximation de la solution de l'équation ($\cos x = 0$) sur $[0, \pi]$. Idem avec $(\cos x = 2\sin x).$

4. Étudier l'équation $(\exp(-x) = -\ln(x))$. Donner une approximation de la (ou des) solution(s) et une majoration de l'erreur correspondante.

3. La méthode de Newton

3.1. Méthode de Newton

La méthode de Newton consiste à remplacer la sécante de la méthode précédente par la tangente. Elle est d'une redoutable efficacité.

Partons d'une fonction dérivable $f:[a,b] \to \mathbb{R}$ et d'un point $u_0 \in [a,b]$. On appelle $(u_1,0)$ l'intersection de la tangente au graphe de f en $(u_0,f(u_0))$ avec l'axe des abscisses. Si $u_1 \in [a,b]$ alors on recommence l'opération avec la tangente au point d'abscisse u_1 . Ce processus conduit à la définition d'une suite récurrente :

$$u_0 \in [a,b]$$
 et $u_{n+1} = u_n - \frac{f(u_n)}{f'(u_n)}$.

Démonstration

En effet la tangente au point d'abscisse u_n a pour équation : $y = f'(u_n)(x-u_n) + f(u_n)$. Donc le point (x,0) appartenant à la tangente (et à l'axe des abscisses) vérifie $0 = f'(u_n)(x-u_n) + f(u_n)$. D'où $x = u_n - \frac{f(u_n)}{f'(u_n)}$.

3.2. Résultats pour $\sqrt{10}$

Pour calculer \sqrt{a} , on pose $f(x) = x^2 - a$, avec f'(x) = 2x. La suite issue de la méthode de Newton est déterminée par $u_0 > 0$ et la relation de récurrence $u_{n+1} = u_n - \frac{u_n^2 - a}{2u_n}$. Suite qui pour cet exemple s'appelle *suite de Héron* et que l'on récrit souvent

$$u_0 > 0$$
 et $u_{n+1} = \frac{1}{2} \left(u_n + \frac{a}{u_n} \right)$.

Zéros des fonctions

Proposition 84

Cette suite (u_n) converge vers \sqrt{a} .

Pour le calcul de $\sqrt{10}$, on pose par exemple $u_0 = 4$, et on peut même commencer les calculs à la main:

$$u_{0} = 4$$

$$u_{1} = \frac{1}{2} \left(u_{0} + \frac{10}{u_{0}} \right) = \frac{1}{2} \left(4 + \frac{10}{4} \right) = \frac{13}{4} = 3,25$$

$$u_{2} = \frac{1}{2} \left(u_{1} + \frac{10}{u_{1}} \right) = \frac{1}{2} \left(\frac{13}{4} + \frac{10}{\frac{13}{4}} \right) = \frac{329}{104} = 3,1634...$$

$$u_{3} = \frac{1}{2} \left(u_{2} + \frac{10}{u_{2}} \right) = \frac{216401}{68432} = 3,16227788...$$

$$u_{4} = 3,162277660168387...$$

Pour u_4 on obtient $\sqrt{10} = 3,1622776601683...$ avec déjà 13 décimales exactes! Voici la preuve de la convergence de la suite (u_n) vers \sqrt{a} .

Démonstration

$$u_0 > 0$$
 et $u_{n+1} = \frac{1}{2} \left(u_n + \frac{a}{u_n} \right)$.

1. Montrons que $u_n \ge \sqrt{a}$ pour $n \ge 1$.

Tout d'abord

$$u_{n+1}^2 - a = \frac{1}{4} \left(\frac{u_n^2 + a}{u_n} \right)^2 - a = \frac{1}{4u_n^2} (u_n^4 - 2au_n^2 + a^2) = \frac{1}{4} \frac{(u_n^2 - a)^2}{u_n^2}$$

Donc $u_{n+1}^2 - a \ge 0$. Comme il est clair que pour tout $n \ge 0$, $u_n \ge 0$, on en déduit que pour tout $n \ge 0$, $u_{n+1} \ge \sqrt{a}$. (Notez que u_0 lui est quelconque.)

2. Montrons que $(u_n)_{n\geq 1}$ est une suite décroissante qui converge.

Comme $\frac{u_{n+1}}{u_n} = \frac{1}{2} \left(1 + \frac{a}{u_n^2} \right)$, et que pour $n \ge 1$ on vient de voir que $u_n^2 \ge a$ (donc $\frac{a}{u_n^2} \le 1$), alors $\frac{u_{n+1}}{u_n} \le 1$, pour tout $n \le 1$.

Conséquence : la suite $(u_n)_{n\geqslant 1}$ est décroissante et minorée par 0 donc elle converge.

3. (u_n) converge vers \sqrt{a} .

Notons ℓ la limite de (u_n) . Alors $u_n \to \ell$ et $u_{n+1} \to \ell$. Lorsque $n \to +\infty$ dans la relation $u_{n+1} = \ell$ $\frac{1}{2}\left(u_n+\frac{a}{u_n}\right)$, on obtient $\ell=\frac{1}{2}\left(\ell+\frac{a}{\ell}\right)$. Ce qui conduit à la relation $\ell^2=a$ et par positivité de la suite, $\ell = \sqrt{a}$.

3.3. Résultats numériques pour $(1,10)^{1/12}$

Pour calculer $(1,10)^{1/12}$, on pose $f(x) = x^{12} - a$ avec a = 1,10. On a $f'(x) = 12x^{11}$. On obtient $u_{n+1} = 12x^{11}$. $u_n - \frac{u_n^{12} - a}{12u_-^{11}}$. Ce que l'on reformule ainsi :

$$u_0 > 0$$
 et $u_{n+1} = \frac{1}{12} \left(11u_n + \frac{a}{u_n^{11}} \right)$.

Voici les résultats numériques pour $(1,10)^{1/12}$ en partant de $u_0 = 1$.

$$u_0 = 1$$

 $u_1 = 1,0083333333333333333...$
 $u_2 = 1,0079748433368980...$
 $u_3 = 1,0079741404315996...$
 $u_4 = 1,0079741404289038...$

Toutes les décimales affichées pour u_4 sont exactes : $(1,10)^{1/12} = 1,0079741404289038...$

3.4. Calcul de l'erreur pour $\sqrt{10}$

Proposition 85

1. Soit k tel que $u_1 - \sqrt{a} \le k$. Alors pour tout $n \ge 1$:

$$u_n - \sqrt{a} \le 2\sqrt{a} \left(\frac{k}{2\sqrt{a}}\right)^{2^{n-1}}$$

2. Pour a = 10, $u_0 = 4$, on a

$$u_n - \sqrt{10} \le 8 \left(\frac{1}{24}\right)^{2^{n-1}}$$

Admirez la puissance de la méthode de Newton : 11 itérations donnent déjà 1000 décimales exactes après la virgule. Cette rapidité de convergence se justifie grâce au calcul de l'erreur : la précision est multipliée par 2 à chaque étape, donc à chaque itération le nombre de décimales exactes double!

 10^{-10} (~ 10 décimales) 4 itérations 10^{-100} (~ 100 décimales) 8 itérations

 10^{-1000} (~ 1000 décimales) 11 itérations

Démonstration

1. Dans la preuve de la proposition 84, nous avons vu l'égalité :

$$u_{n+1}^2 - a = \frac{(u_n^2 - a)^2}{4u_n^2} \text{ donc } (u_{n+1} - \sqrt{a})(u_{n+1} + \sqrt{a}) = \frac{(u_n - \sqrt{a})^2(u_n + \sqrt{a})^2}{4u_n^2}$$

Ainsi comme $u_n \ge \sqrt{a}$ pour $n \ge 1$:

$$u_{n+1} - \sqrt{a} = (u_n - \sqrt{a})^2 \times \frac{1}{u_{n+1} + \sqrt{a}} \times \frac{1}{4} \left(1 + \frac{\sqrt{a}}{u_n} \right)^2 \le (u_n - \sqrt{a})^2 \times \frac{1}{2\sqrt{a}} \times \frac{1}{4} \cdot (1+1)^2 = \frac{1}{2\sqrt{a}} (u_n - \sqrt{a})^2 \times \frac{1}{2\sqrt{a}} \times \frac{1}{4} \cdot (1+1)^2 = \frac{1}{2\sqrt{a}} (u_n - \sqrt{a})^2 \times \frac{1}{2\sqrt{a}} \times \frac{1}{4} \cdot (1+1)^2 = \frac{1}{2\sqrt{a}} (u_n - \sqrt{a})^2 \times \frac{1}{2\sqrt{a}} \times \frac{1}{4} \cdot (1+1)^2 = \frac{1}{2\sqrt{a}} (u_n - \sqrt{a})^2 \times \frac{1}{2\sqrt{a}} \times \frac{1}{4} \cdot (1+1)^2 = \frac{1}{2\sqrt{a}} (u_n - \sqrt{a})^2 \times \frac{1}{2\sqrt{a}} \times \frac{1}{4} \cdot (1+1)^2 = \frac{1}{2\sqrt{a}} (u_n - \sqrt{a})^2 \times \frac{1}{2\sqrt{a}} \times \frac{1}{4} \cdot (1+1)^2 = \frac{1}{2\sqrt{a}} (u_n - \sqrt{a})^2 \times \frac{1}{2\sqrt{a}} \times \frac{1}{4} \cdot (1+1)^2 = \frac{1}{2\sqrt{a}} (u_n - \sqrt{a})^2 \times \frac{1}{2\sqrt{a}} \times \frac{1}{4\sqrt{a}} \times \frac{1$$

Si k vérifie $u_1 - \sqrt{a} \le k$, nous allons en déduire par récurrence, pour tout $n \ge 1$, la formule

$$u_n - \sqrt{a} \le 2\sqrt{a} \left(\frac{k}{2\sqrt{a}}\right)^{2^{n-1}}$$

C'est vrai pour n = 1. Supposons la formule vraie au rang n, alors :

$$u_{n+1} - \sqrt{a} \le \frac{1}{2\sqrt{a}} (u_n - \sqrt{a})^2 = \frac{1}{2\sqrt{a}} (2\sqrt{a})^2 \left(\left(\frac{k}{2\sqrt{a}} \right)^{2^{n-1}} \right)^2 = 2\sqrt{a} \left(\frac{k}{2\sqrt{a}} \right)^{2^n}$$

La formule est donc vrai au rang suivant.

2. Pour a=10 avec $u_0=4$ on a $u_1=3,25$. Comme $3 \le \sqrt{10} \le 4$ alors $u_1-\sqrt{10} \le u_1-3 \le \frac{1}{4}$. On fixe donc $k=\frac{1}{4}$. Toujours par l'encadrement $3 \le \sqrt{10} \le 4$, la formule obtenue précédemment devient

$$u_n - \sqrt{a} \le 2 \cdot 4 \left(\frac{\frac{1}{4}}{2 \cdot 3}\right)^{2^{n-1}} = 8 \left(\frac{1}{24}\right)^{2^{n-1}}.$$

Zéros des fonctions 215

3.5. Algorithme

Voici l'algorithme pour le calcul de \sqrt{a} . On précise en entrée le réel $a \ge 0$ dont on veut calculer la racine et le nombre n d'itérations.

Algorithme . newton.py

En utilisant le module decimal le calcul de u_n pour n = 11 donne 1000 décimales de $\sqrt{10}$:

3,

162277660168379331998893544432718533719555139325216826857504852792594438639238221344248108379300295187347284152840055148548856030453880014690519596700153903344921657179259940659150153474113339484124085316929577090471576461044369257879062037808609941828371711548406328552999118596824564203326961604691314336128949791890266529543612676178781350061388186278580463683134952478031143769334671973819513185678403231241795402218308045872844614600253577579702828644029024407977896034543989163349222652612067792651676031048436697793756926155720500369894909469421850007358348844643882731109289109042348054235653403907274019786543725939641726001306990000955784463109626790694418336130181302894541703315807731626386395193793704654765220632063686587197822049312426053454111609356979828132452297000798883523759585328579251362964686511497675217123459559238039375625125369855194955325099947038843990336466165470647234 99979613234340302185705218783667634578951073298287 51579452157716521396263244383990184845609357626020

Mini-exercices

- 1. À la calculette, calculer les trois premières étapes pour une approximation de $\sqrt{3}$, sous forme de nombres rationnels. Idem avec $\sqrt[3]{2}$.
- 2. Implémenter la méthode de Newton, étant données une fonction f et sa dérivée f'.
- 3. Calculer une approximation des solutions de l'équation $x^3 + 1 = 3x$.
- 4. Soit a > 0. Comment calculer $\frac{1}{a}$ par une méthode de Newton?
- 5. Calculer *n* de sorte que $u_n \sqrt{10} \le 10^{-\ell}$ (avec $u_0 = 4$, $u_{n+1} = \frac{1}{2} \left(u_n + \frac{a}{u_n} \right)$, a = 10).

Auteurs

Auteurs : Arnaud Bodin, Niels Borne, Laura Desideri

Dessins: Benjamin Boutin

- 1 L'intégrale de Riemann
- 2 Propriétés de l'intégrale
- 3 Primitive d'une fonction
- 4 Intégration par parties Changement de variable
- 5 Intégration des fractions rationnelles

Vidéo ■ partie 1. L'intégrale de Riemann

Vidéo ■ partie 2. Propriétés

Vidéo ■ partie 3. Primitive

Vidéo ■ partie 4. Intégration par parties - Changement de variable

Vidéo ■ partie 5. Intégration des fractions rationnelles

Exercices • Calculs d'intégrales

Motivation

Nous allons introduire l'intégrale à l'aide d'un exemple. Considérons la fonction exponentielle $f(x) = e^x$. On souhaite calculer l'aire $\mathscr A$ en-dessous du graphe de f et entre les droites d'équation (x = 0), (x = 1) et l'axe (Ox).

Nous approchons cette aire par des sommes d'aires des rectangles situés sous la courbe. Plus précisément, soit $n \ge 1$ un entier; découpons notre intervalle [0,1] à l'aide de la subdivision $(0,\frac{1}{n},\frac{2}{n},\ldots,\frac{i}{n},\cdots,\frac{n-1}{n},1)$.

On considère les «rectangles inférieurs» \mathcal{R}_i^- , chacun ayant pour base l'intervalle $\left[\frac{i-1}{n},\frac{i}{n}\right]$ et pour hauteur $f\left(\frac{i-1}{n}\right)=e^{(i-1)/n}$. L'entier i varie de 1 à n. L'aire de \mathcal{R}_i^- est «base × hauteur» : $\left(\frac{i}{n}-\frac{i-1}{n}\right)\times e^{(i-1)/n}=\frac{1}{n}e^{\frac{i-1}{n}}$.

La somme des aires des \mathcal{R}_i^- se calcule alors comme somme d'une suite géométrique :

$$\sum_{i=1}^{n} \frac{e^{\frac{i-1}{n}}}{n} = \frac{1}{n} \sum_{i=1}^{n} \left(e^{\frac{1}{n}} \right)^{i-1} = \frac{1}{n} \frac{1 - \left(e^{\frac{1}{n}} \right)^{n}}{1 - e^{\frac{1}{n}}} = \frac{\frac{1}{n}}{e^{\frac{1}{n}} - 1} (e - 1) \xrightarrow[n \to +\infty]{} e - 1.$$

Pour la limite on a reconnu l'expression du type $\frac{e^x-1}{x} \xrightarrow[x\to 0]{} 1$ (avec ici $x=\frac{1}{n}$).

Soit maintenant les «rectangles supérieurs» \mathcal{R}_i^+ , ayant la même base $\left[\frac{i-1}{n},\frac{i}{n}\right]$ mais la hauteur $f\left(\frac{i}{n}\right) = e^{i/n}$. Un calcul similaire montre que $\sum_{i=1}^n \frac{e^{\frac{i}{n}}}{n} \to e-1$ lorsque $n \to +\infty$. L'aire $\mathscr A$ de notre région est supérieure à la somme des aires des rectangles inférieurs ; et elle est

L'aire $\mathcal A$ de notre région est supérieure à la somme des aires des rectangles inférieurs; et elle est inférieure à la somme des aires des rectangles supérieurs. Lorsque l'on considère des subdivisions de plus en plus petites (c'est-à-dire lorsque l'on fait tendre n vers $+\infty$) alors on obtient à la limite que l'aire $\mathcal A$ de notre région est encadrée par deux aires qui tendent vers e-1. Donc l'aire de notre région est $\mathcal A=e-1$.

Voici le plan de lecture conseillé pour ce chapitre : il est tout d'abord nécessaire de bien comprendre comment est définie l'intégrale et quelles sont ses principales propriétés (parties 1 et 2). Mais il est important d'arriver rapidement à savoir calculer des intégrales : à l'aide de primitives ou par les deux outils efficaces que sont l'intégration par parties et le changement de variable.

Dans un premier temps on peut lire les sections 1.1, 1.2 puis 2.1, 2.2, 2.3, avant de s'attarder longuement sur les parties 3, 4. Lors d'une seconde lecture, revenez sur la construction de l'intégrale et les preuves.

Dans ce chapitre on s'autorisera (abusivement) une confusion entre une fonction f et son expression f(x). Par exemple on écrira « $une\ primitive\ de\ la\ fonction\ sin x\ est\ -\cos x$ » au lieu « $une\ primitive\ de\ la\ fonction\ x\mapsto \sin x\ est\ x\mapsto -\cos x$ ».

1. L'intégrale de Riemann

Nous allons reprendre la construction faite dans l'introduction pour une fonction f quelconque. Ce qui va remplacer les rectangles seront des **fonctions en escalier**. Si la limite des aires en-dessous égale la limite des aires au-dessus on appelle cette limite commune **l'intégrale** de f que l'on note $\int_a^b f(x) \, dx$. Cependant il n'est pas toujours vrai que ces limites soit égales, l'intégrale n'est donc définie que pour les fonctions **intégrables**. Heureusement nous verrons que si la fonction f est continue alors elle est intégrable.

1.1. Intégrale d'une fonction en escalier

Définition 69

Soit [a,b] un intervalle fermé borné de \mathbb{R} $(-\infty < a < b < +\infty)$. On appelle une *subdivision* de [a,b] une suite finie, strictement croissante, de nombres $\mathscr{S} = (x_0,x_1,\ldots,x_n)$ telle que $x_0 = a$ et $x_n = b$. Autrement dit $a = x_0 < x_1 < \ldots < x_n = b$.

Définition 70

Une fonction $f:[a,b] \to \mathbb{R}$ est une fonction en escalier s'il existe une subdivision (x_0,x_1,\ldots,x_n) et des nombres réels c_1,\ldots,c_n tels que pour tout $i\in\{1,\ldots,n\}$ on ait

$$\forall x \in]x_{i-1}, x_i[\quad f(x) = c_i$$

Autrement dit f est une fonction constante sur chacun des sous-intervalles de la subdivision.

Remarque

La valeur de f aux points x_i de la subdivision n'est pas imposée. Elle peut être égale à celle de l'intervalle qui précède ou de celui qui suit, ou encore une autre valeur arbitraire. Cela n'a pas d'importance car l'aire ne changera pas.

Définition 71

Pour une fonction en escalier comme ci-dessus, son *intégrale* est le réel $\int_a^b f(x) dx$ défini par

$$\int_{a}^{b} f(x) dx = \sum_{i=1}^{n} c_{i}(x_{i} - x_{i-1})$$

Remarque

Notez que chaque terme $c_i(x_i - x_{i-1})$ est l'aire du rectangle compris entre les abscisses x_{i-1} et x_i et de hauteur c_i . Il faut juste prendre garde que l'on compte l'aire avec un signe «+» si $c_i > 0$ et un signe «-» si $c_i < 0$.

L'intégrale d'une fonction en escalier est l'aire de la partie située au-dessus de l'axe des abscisses (ici en rouge) moins l'aire de la partie située en-dessous (en bleu). L'intégrale d'une fonction en escalier est bien un nombre réel qui mesure l'aire algébrique (c'est-à-dire avec signe) entre la courbe de f et l'axe des abscisses.

1.2. Fonction intégrable

Rappelons qu'une fonction $f:[a,b] \to \mathbb{R}$ est **bornée** s'il existe $M \ge 0$ tel que :

$$\forall x \in [a, b] \quad -M \leq f(x) \leq M.$$

Rappelons aussi que si l'on a deux fonctions $f,g:[a,b] \to \mathbb{R}$, alors on note

$$f \leq g \iff \forall x \in [a,b] \quad f(x) \leq g(x).$$

On suppose à présent que $f:[a,b]\to\mathbb{R}$ est une fonction bornée quelconque. On définit deux nombres réels :

$$I^{-}(f) = \sup \left\{ \int_{a}^{b} \phi(x) \, dx \, | \, \phi \text{ en escalier et } \phi \leq f \right\}$$

$$I^+(f) = \inf \left\{ \int_a^b \phi(x) \, dx \, | \, \phi \text{ en escalier et } \phi \ge f \right\}$$

Pour $I^-(f)$ on prend toutes les fonctions en escalier (avec toutes les subdivisions possibles) qui restent inférieures à f. On prend l'aire la plus grande parmi toutes ces fonctions en escalier, comme on n'est pas sûr que ce maximum existe on prend la borne supérieure. Pour $I^+(f)$ c'est le même principe mais les fonctions en escalier sont supérieures à f et on cherche l'aire la plus petite possible.

Il est intuitif que l'on a :

Proposition 86

$$I^-(f) \leqslant I^+(f).$$

Les preuves sont reportées en fin de section.

Définition 72

Une fonction bornée $f:[a,b] \to \mathbb{R}$ est dite *intégrable* (au sens de Riemann) si $I^-(f) = I^+(f)$. On appelle alors ce nombre *l'intégrale de Riemann* de f sur [a,b] et on le note $\int_a^b f(x) \, dx$.

Exemple 114

- Les fonctions en escalier sont intégrables! En effet si f est une fonction en escalier alors la borne inférieure $I^-(f)$ et supérieure $I^+(f)$ sont atteintes avec la fonction $\phi = f$. Bien sûr l'intégrale $\int_a^b f(x) \, dx$ coïncide avec l'intégrale de la fonction en escalier définie lors du paragraphe 1.1.
- Nous verrons dans la section suivante que les fonctions continues et les fonctions monotones sont intégrables.
- Cependant toutes les fonctions ne sont pas intégrables. La fonction $f:[0,1] \to \mathbb{R}$ définie par f(x)=1 si x est rationnel et f(x)=0 sinon, n'est pas intégrable sur [0,1]. Convainquez-vous que si ϕ est une fonction en escalier avec $\phi \le f$ alors $\phi \le 0$ et que si $\phi \ge f$ alors $\phi \ge 1$. On en déduit que $I^-(f)=0$ et $I^+(f)=1$. Les bornes inférieure et supérieure ne coïncident pas, donc f n'est pas intégrable.

Il n'est pas si facile de calculer des exemples avec la définition. Nous allons vu l'exemple de la fonction exponentielle dans l'introduction où nous avions en fait montré que $\int_0^1 e^x dx = e - 1$. Nous allons voir maintenant l'exemple de la fonction $f(x) = x^2$. Plus tard nous verrons que les primitives permettent de calculer simplement beaucoup d'intégrales.

Exemple 115

Soit $f:[0,1]\to\mathbb{R}$, $f(x)=x^2$. Montrons qu'elle est intégrable et calculons $\int_0^1 f(x)\,dx$.

Soit $n \ge 1$ et considérons la subdivision régulière de [0,1] suivante $\mathcal{S} = \left(0,\frac{1}{n},\frac{2}{n},\ldots,\frac{i}{n},\ldots,\frac{n-1}{n},1\right)$. Sur l'intervalle $\left[\frac{i-1}{n},\frac{i}{n}\right]$ nous avons

$$\forall x \in \left[\frac{i-1}{n}, \frac{i}{n}\right] \quad \left(\frac{i-1}{n}\right)^2 \le x^2 \le \left(\frac{i}{n}\right)^2.$$

Nous construisons une fonction en escalier ϕ^- en-dessous de f par $\phi^-(x) = \frac{(i-1)^2}{n^2}$ si $x \in \left[\frac{i-1}{n}, \frac{i}{n}\right[$ (pour chaque $i=1,\ldots,n$) et $\phi^-(1)=1$. De même nous construisons une fonction en escalier ϕ^+ au-dessus de f définie par $\phi^+(x) = \frac{i^2}{n^2}$ si $x \in \left[\frac{i-1}{n}, \frac{i}{n}\right[$ (pour chaque $i=1,\ldots,n$) et $\phi^+(1)=1$. ϕ^- et ϕ^+ sont des fonctions en escalier et l'on a $\phi^- \le f \le \phi^+$.

L'intégrale de la fonction en escalier ϕ^+ est par définition

$$\int_0^1 \phi^+(x) \, dx = \sum_{i=1}^n \frac{i^2}{n^2} \left(\frac{i}{n} - \frac{i-1}{n} \right) = \sum_{i=1}^n \frac{i^2}{n^2} \frac{1}{n} = \frac{1}{n^3} \sum_{i=1}^n i^2.$$

On se souvient de la formule $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$, et donc

$$\int_0^1 \phi^+(x) \, dx = \frac{n(n+1)(2n+1)}{6n^3} = \frac{(n+1)(2n+1)}{6n^2} \, \cdot$$

De même pour la fonction ϕ^- :

$$\int_0^1 \phi^-(x) \, dx = \sum_{i=1}^n \frac{(i-1)^2}{n^2} \frac{1}{n} = \frac{1}{n^3} \sum_{i=1}^{n-1} j^2 = \frac{(n-1)n(2n-1)}{6n^3} = \frac{(n-1)(2n-1)}{6n^2} \cdot \frac{(n-1)(2n-1)}{6n^2} = \frac{$$

Maintenant $I^-(f)$ est la borne supérieure sur toutes les fonctions en escalier inférieures à f donc en particulier $I^-(f) \ge \int_0^1 \phi^-(x) \, dx$. De même $I^+(f) \le \int_0^1 \phi^+(x) \, dx$. En résumé :

$$\frac{(n-1)(2n-1)}{6n^2} = \int_0^1 \phi^-(x) \, dx \le I^-(f) \le I^+(f) \le \int_0^1 \phi^+(x) \, dx = \frac{(n+1)(2n+1)}{6n^2}.$$

Lorsque l'on fait tendre n vers $+\infty$ alors les deux extrémités tendent vers $\frac{1}{3}$. On en déduit que $I^-(f) = I^+(f) = \frac{1}{3}$. Ainsi f est intégrable et $\int_0^1 x^2 dx = \frac{1}{3}$.

1.3. Premières propriétés

Proposition 87

- 1. Si $f:[a,b] \to \mathbb{R}$ est intégrable et si l'on change les valeurs de f en un nombre fini de points de [a,b] alors la fonction f est toujours intégrable et la valeur de l'intégrale $\int_a^b f(x) dx$ ne change pas.
- 2. Si $f : [a,b] \to \mathbb{R}$ est intégrable alors la restriction de f à tout intervalle $[a',b'] \subset [a,b]$ est encore intégrable.

1.4. Les fonctions continues sont intégrables

Voici le résultat théorique le plus important de ce chapitre.

Théorème 32

Si $f:[a,b] \to \mathbb{R}$ est continue alors f est intégrable.

La preuve sera vue plus loin mais l'idée est que les fonctions continues peuvent être approchées d'aussi près que l'on veut par des fonctions en escalier, tout en gardant un contrôle d'erreur uniforme sur l'intervalle.

Une fonction $f:[a,b] \to \mathbb{R}$ est dite *continue par morceaux* s'il existe un entier n et une subdivision (x_0,\ldots,x_n) telle que $f_{|]x_{i-1},x_i[}$ soit continue, admette une limite finie à droite en x_{i-1} et une limite à gauche en x_i pour tout $i \in \{1,\ldots,n\}$.

Corollaire 17

Les fonctions continues par morceaux sont intégrables.

Voici un résultat qui prouve que l'on peut aussi intégrer des fonctions qui ne sont pas continues à condition que la fonction soit croissante (ou décroissante).

Théorème 33

Si $f:[a,b] \to \mathbb{R}$ est monotone alors f est intégrable.

1.5. Les preuves

Les preuves peuvent être sautées lors d'une première lecture. Les démonstrations demandent une bonne maîtrise des bornes sup et inf et donc des «epsilons». La proposition 86 se prouve en manipulant les «epsilons». Pour la preuve de la proposition 87 : on prouve d'abord les propriétés pour les fonctions en escalier et on en déduit qu'elles restent vraies pour les fonctions intégrables (cette technique sera développée en détails dans la partie suivante).

Le théorème 32 établit que les fonctions continues sont intégrables. Nous allons démontrer une version affaiblie de ce résultat. Rappelons que f est dite de $classe \mathscr{C}^1$ si f est continue, dérivable et f' est aussi continue.

Théorème 34. Théorème 32 faible

Si $f:[a,b] \to \mathbb{R}$ est de classe \mathscr{C}^1 alors f est intégrable.

Démonstration

Comme f est de classe \mathscr{C}^1 alors f' est une fonction continue sur l'intervalle fermé et borné [a,b]; f' est donc une fonction bornée : il existe $M \ge 0$ tel que pour tout $x \in [a,b]$ on ait $|f'(x)| \le M$. Nous allons utiliser l'inégalité des accroissements finis :

$$\forall x, y \in [a, b] \quad |f(x) - f(y)| \le M|x - y|. \tag{*}$$

Soit $\varepsilon > 0$ et soit (x_0, x_1, \dots, x_n) une subdivision de [a, b] vérifiant pour tout $i = 1, \dots, n$:

$$0 < x_i - x_{i-1} \le \varepsilon. \tag{**}$$

Nous allons construire deux fonctions en escalier $\phi^-, \phi^+ : [a,b] \to \mathbb{R}$ définies de la façon suivante : pour chaque $i=1,\ldots,n$ et chaque $x\in [x_{i-1},x_i[$ on pose

$$c_i = \phi^-(x) = \inf_{t \in [x_{i-1}, x_i[} f(t) \quad \text{ et } \quad d_i = \phi^+(x) = \sup_{t \in [x_{i-1}, x_i[} f(t)$$

et aussi $\phi^-(b) = \phi^+(b) = f(b)$. ϕ^- et ϕ^+ sont bien deux fonctions en escalier (elles sont constantes sur chaque intervalle $[x_{i-1}, x_i]$).

De plus par construction on a bien $\phi^- \leq f \leq \phi^+$ et donc

$$\int_{a}^{b} \phi^{-}(x) \, dx \leq I^{-}(f) \leq I^{+}(f) \leq \int_{a}^{b} \phi^{+}(x) \, dx \, .$$

En utilisant la continuité de f sur l'intervalle $[x_{i-1}, x_i]$, on déduit l'existence de $a_i, b_i \in [x_{i-1}, x_i]$ tels que $f(a_i) = c_i$ et $f(b_i) = d_i$. Avec (\star) et $(\star \star)$ on sait que $d_i - c_i = f(b_i) - f(a_i) \le M|b_i - c_i| \le M(x_i - x_{i-1}) \le M\varepsilon$ (pour tout i = 1, ..., n). Alors

$$\int_{a}^{b} \phi^{+}(x) dx - \int_{a}^{b} \phi^{-}(x) dx \leq \sum_{i=1}^{n} M \varepsilon(x_{i} - x_{i-1}) = M \varepsilon(b - a)$$

Ainsi $0 \le I^+(f) - I^-(f) \le M\varepsilon(b-a)$ et lorsque l'on fait tendre $\varepsilon \to 0$ on trouve $I^+(f) = I^-(f)$, ce qui prouve que f est intégrable.

La preuve du théorème 33 est du même style et nous l'omettons.

Mini-exercices

- 1. Soit $f:[1,4] \to \mathbb{R}$ définie par f(x) = 1 si $x \in [1,2[$, f(x) = 3 si $x \in [2,3[$ et f(x) = -1 si $x \in [3,4]$. Calculer $\int_1^2 f(x) \, dx$, $\int_1^3 f(x) \, dx$, $\int_1^4 f(x) \, dx$, $\int_1^{\frac{3}{2}} f(x) \, dx$, $\int_{\frac{3}{2}}^{\frac{7}{2}} f(x) \, dx$.
- 2. Montrer que $\int_0^1 x \, dx = 1$ (prendre une subdivision régulière et utiliser $\sum_{i=1}^n i = \frac{n(n+1)}{2}$).
- 3. Montrer que si f est une fonction intégrable et paire sur l'intervalle [-a,a] alors $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$ (on prendra une subdivision symétrique par rapport à l'origine).
- 4. Montrer que si f est une fonction intégrable et *impaire* sur l'intervalle [-a,a] alors $\int_{-a}^{a} f(x) dx = 0$.
- 5. Montrer que tout fonction monotone est intégrable en s'inspirant de la preuve du théorème 34.

2. Propriétés de l'intégrale

Les trois principales propriétés de l'intégrale sont la relation de Chasles, la positivité et la linéarité.

2.1. Relation de Chasles

Proposition 88. Relation de Chasles

Soient a < c < b. Si f est intégrable sur [a, c] et [c, b], alors f est intégrable sur [a, b]. Et on a

$$\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx$$

Pour s'autoriser des bornes sans se préoccuper de l'ordre on définit :

$$\int_a^a f(x) \, dx = 0 \qquad \text{et pour } a < b \quad \int_b^a f(x) \, dx = -\int_a^b f(x) \, dx.$$

Pour a, b, c quelconques la *relation de Chasles* devient alors

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

2.2. Positivité de l'intégrale

Proposition 89. Positivité de l'intégrale

Soit $a \le b$ deux réels et f et g deux fonctions intégrables sur [a,b].

Si
$$f \le g$$
 alors $\int_a^b f(x) dx \le \int_a^b g(x) dx$

En particulier l'intégrale d'une fonction positive est positive :

Si
$$f \ge 0$$
 alors $\int_a^b f(x) dx \ge 0$

2.3. Linéarité de l'intégrale

Proposition 90

Soient f,g deux fonctions intégrables sur [a,b].

- 1. f + g est une fonction intégrable et $\int_a^b (f + g)(x) dx = \int_a^b f(x) dx + \int_a^b g(x) dx$.
- 2. Pour tout réel λ , λf est intégrable et on a $\int_a^b \lambda f(x) dx = \lambda \int_a^b f(x) dx$. Par ces deux premiers points nous avons la *linéarité de l'intégrale* : pour tous réels λ, μ

$$\int_{a}^{b} (\lambda f(x) + \mu g(x)) dx = \lambda \int_{a}^{b} f(x) dx + \mu \int_{a}^{b} g(x) dx$$

- 3. $f \times g$ est une fonction intégrable sur [a,b] mais en général $\int_a^b (fg)(x) dx \neq (\int_a^b f(x) dx) (\int_a^b g(x) dx)$.
- 4. |f| est une fonction intégrable sur [a,b] et

$$\left| \left| \int_{a}^{b} f(x) \, dx \right| \le \int_{a}^{b} \left| f(x) \right| \, dx$$

Exemple 116

$$\int_0^1 (7x^2 - e^x) dx = 7 \int_0^1 x^2 dx - \int_0^1 e^x dx = 7 \frac{1}{3} - (e - 1) = \frac{10}{3} - e^x$$

Nous avons utilisé les calculs déjà vus : $\int_0^1 x^2 dx = \frac{1}{3}$ et $\int_0^1 e^x dx = e - 1$.

Exemple 117

Soit $I_n = \int_1^n \frac{\sin(nx)}{1+x^n} dx$. Montrons que $I_n \to 0$ lorsque $n \to +\infty$.

$$|I_n| = \left| \int_1^n \frac{\sin(nx)}{1 + x^n} \, dx \right| \le \int_1^n \frac{|\sin(nx)|}{1 + x^n} \, dx \le \int_1^n \frac{1}{1 + x^n} \, dx \le \int_1^n \frac{1}{x^n} \, dx$$

Il ne reste plus qu'à calculer cette dernière intégrale (en anticipant un peu sur la suite du chapitre) :

$$\int_{1}^{n} \frac{1}{x^{n}} dx = \int_{1}^{n} x^{-n} dx = \left[\frac{x^{-n+1}}{-n+1} \right]_{1}^{n} = \frac{n^{-n+1}}{-n+1} - \frac{1}{-n+1} \xrightarrow[n \to +\infty]{} 0$$

 $(\operatorname{car} n^{-n+1} \to 0 \text{ et } \frac{1}{-n+1} \to 0).$

Remarque

Notez que même si $f \times g$ est intégrable on a en général $\int_a^b (fg)(x) \, dx \neq \left(\int_a^b f(x) \, dx\right) \left(\int_a^b g(x) \, dx\right)$. Par exemple, soit $f:[0,1] \to \mathbb{R}$ la fonction définie par f(x)=1 si $x \in [0,\frac{1}{2}[$ et f(x)=0 sinon. Soit $g:[0,1] \to \mathbb{R}$ la fonction définie par g(x)=1 si $x \in [\frac{1}{2},1[$ et g(x)=0 sinon. Alors $f(x) \times g(x)=0$ pour tout $x \in [0,1]$ et donc $\int_0^1 f(x)g(x) \, dx=0$ alors que $\int_0^1 f(x) \, dx=\frac{1}{2}$ et $\int_0^1 g(x) \, dx=\frac{1}{2}$.

2.4. Une preuve

Nous allons prouver la linéarité de l'intégrale : $\int \lambda f = \lambda \int f$ et $\int f + g = \int f + \int g$. L'idée est la suivante : il est facile de voir que pour des fonctions en escalier l'intégrale (qui est alors une somme finie) est linéaire. Comme les fonctions en escalier approchent autant qu'on le souhaite les fonctions intégrables alors cela implique la linéarité de l'intégrale.

Démonstration Preuve de $\int \lambda f = \lambda \int f$

Soit $f:[a,b] \to \mathbb{R}$ une fonction intégrable et $\lambda \in \mathbb{R}$. Soit $\varepsilon > 0$.

Il existe ϕ^- et ϕ^+ deux fonctions en escalier approchant suffisamment f, avec $\phi^- \le f \le \phi^+$:

$$\int_{a}^{b} f(x) dx - \varepsilon \le \int_{a}^{b} \phi^{-}(x) dx \qquad \text{et} \qquad \int_{a}^{b} \phi^{+}(x) dx \le \int_{a}^{b} f(x) dx + \varepsilon \tag{\dagger}$$

Quitte à rajouter des points, on peut supposer que la subdivision $(x_0, x_1, ..., x_n)$ de [a, b] est suffisamment fine pour que ϕ^- et ϕ^+ soient toutes les deux constantes sur les intervalles $]x_{i-1}, x_i[$; on note c_i^- et c_i^+ leurs valeurs respectives.

Dans un premier temps on suppose $\lambda \ge 0$. Alors $\lambda \phi^-$ et $\lambda \phi^+$ sont encore des fonctions en escalier vérifiant $\lambda \phi^- \le \lambda f \le \lambda \phi^+$. De plus

$$\int_{a}^{b} \lambda \phi^{-}(x) \, dx = \sum_{i=1}^{n} \lambda c_{i}^{-}(x_{i} - x_{i-1}) = \lambda \sum_{i=1}^{n} c_{i}^{-}(x_{i} - x_{i-1}) = \lambda \int_{a}^{b} \phi^{-}(x) \, dx$$

De même pour ϕ^+ . Ainsi

$$\lambda \int_{a}^{b} \phi^{-}(x) dx \leq I^{-}(\lambda f) \leq I^{+}(\lambda f) \leq \lambda \int_{a}^{b} \phi^{+}(x) dx$$

En utilisant les deux inégalités (†) on obtient

$$\lambda \int_{a}^{b} f(x) \, dx - \lambda \varepsilon \leq I^{-}(\lambda f) \leq I^{+}(\lambda f) \leq \lambda \int_{a}^{b} f(x) \, dx + \lambda \varepsilon$$

Lorsque l'on fait tendre $\varepsilon \to 0$ cela prouve que $I^-(\lambda f) = I^+(\lambda f)$, donc λf est intégrable et $\int_a^b \lambda f(x) dx = \lambda \int_a^b f(x) dx$. Si $\lambda \le 0$ on a $\lambda \phi^+ \le \lambda f \le \lambda \phi^-$ et le raisonnement est similaire.

Démonstration Preuve de $\int f + g = \int f + \int g$

Soit $\varepsilon > 0$. Soient $f,g:[a,b] \to \mathbb{R}$ deux fonctions intégrables. On définit deux fonctions en escalier ϕ^+,ϕ^- pour f et deux fonctions en escalier ψ^+,ψ^- pour g vérifiant des inégalités similaires à (†) de la preuve au-dessus. On fixe une subdivision suffisamment fine pour toutes les fonctions ϕ^\pm,ψ^\pm . On note c_i^\pm,d_i^\pm les constantes respectives sur l'intervalle $]x_{i-1},x_i[$. Les fonctions $\phi^-+\psi^-$ et $\phi^++\psi^+$ sont en escalier et vérifient $\phi^-+\psi^- \le f+g \le \phi^++\psi^+$. Nous avons aussi que

$$\int_{a}^{b} (\phi^{-} + \psi^{-})(x) \, dx = \sum_{i=1}^{n} (c_{i}^{-} + d_{i}^{-})(x_{i} - x_{i-1}) = \int_{a}^{b} \phi^{-}(x) \, dx + \int_{a}^{b} \psi^{-}(x) \, dx$$

De même pour $\phi^+ + \psi^+$. Ainsi

$$\int_{a}^{b} \phi^{-}(x) \, dx + \int_{a}^{b} \psi^{-}(x) \, dx \le I^{-}(f+g) \le I^{+}(f+g) \le \int_{a}^{b} \phi^{+}(x) \, dx + \int_{a}^{b} \psi^{+}(x) \, dx$$

Les conditions du type (†) impliquent alors

$$\int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx - 2\varepsilon \leq I^{-}(f+g) \leq I^{+}(f+g) \leq \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx + 2\varepsilon$$

Lorsque $\varepsilon \to 0$ on déduit $I^-(f+g) = I^+(f+g)$, donc f+g est intégrable et $\int_a^b \left(f(x) + g(x) \right) dx = \int_a^b f(x) dx + \int_a^b g(x) dx$.

Mini-exercices

- 1. En admettant que $\int_0^1 x^n dx = \frac{1}{n+1}$. Calculer l'intégrale $\int_0^1 P(x) dx$ où $P(x) = a_n x^n + \cdots + a_1 x + a_0$. Trouver un polynôme P(x) non nul de degré 2 dont l'intégrale est nulle : $\int_0^1 P(x) dx = 0$.
- 2. A-t-on $\int_a^b f(x)^2 dx = \left(\int_a^b f(x) dx \right)^2$; $\int_a^b \sqrt{f(x)} dx = \sqrt{\int_a^b f(x) dx}$; $\int_a^b |f(x)| dx = \left| \int_a^b f(x) dx \right|$; $\int_a^b |f(x)| dx = \left| \int_a^b f(x) dx \right| + \left| \int_a^b g(x) dx \right|$?
- 3. Peut-on trouver a < b tels que $\int_a^b x \, dx = -1$; $\int_a^b x \, dx = 0$; $\int_a^b x \, dx = +1$? Mêmes questions avec $\int_a^b x^2 \, dx$.
- 4. Montrer que $0 \le \int_1^2 \sin^2 x \, dx \le 1$ et $\left| \int_a^b \cos^3 x \, dx \right| \le |b-a|$.

3. Primitive d'une fonction

3.1. Définition

Définition 73

Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle I quelconque. On dit que $F: I \to \mathbb{R}$ est une *primitive* de f sur I si F est une fonction dérivable sur I vérifiant F'(x) = f(x) pour tout $x \in I$.

Trouver une primitive est donc l'opération inverse de calculer la fonction dérivée.

Exemple 118

- 1. Soit $I = \mathbb{R}$ et $f : \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x^2$. Alors $F : \mathbb{R} \to \mathbb{R}$ définie par $F(x) = \frac{x^3}{3}$ est une primitive de f. La fonction définie par $F(x) = \frac{x^3}{3} + 1$ est aussi une primitive de f.
- 2. Soit $I = [0, +\infty[$ et $g: I \to \mathbb{R}$ définie par $g(x) = \sqrt{x}$. Alors $G: I \to \mathbb{R}$ définie par $G(x) = \frac{2}{3}x^{\frac{3}{2}}$ est une primitive de g sur I. Pour tout $c \in \mathbb{R}$, la fonction G + c est aussi une primitive de g.

Nous allons voir que trouver une primitive permet de les trouver toutes.

Proposition 91

Soit $f: I \to \mathbb{R}$ une fonction et soit $F: I \to \mathbb{R}$ une primitive de f. Toute primitive de f s'écrit G = F + c où $c \in \mathbb{R}$.

Démonstration

Notons tout d'abord que si l'on note G la fonction définie par G(x) = F(x) + c alors G'(x) = F'(x) mais comme F'(x) = f(x) alors G'(x) = f(x) et G est bien une primitive de f.

Pour la réciproque supposons que G soit une primitive quelconque de f. Alors (G-F)'(x)=G'(x)-F'(x)=f(x)-f(x)=0, ainsi la fonction G-F a une dérivée nulle sur un intervalle, c'est donc une fonction constante! Il existe donc $c \in \mathbb{R}$ tel que (G-F)(x)=c. Autrement dit G(x)=F(x)+c (pour tout $x \in I$).

Notations On notera une primitive de f par $\int f(t) dt$ ou $\int f(x) dx$ ou $\int f(u) du$ (les lettres t, x, u, ... sont des lettres dites *muettes*, c'est-à-dire interchangeables). On peut même noter une primitive simplement par $\int f$.

La proposition 91 nous dit que si F est une primitive de f alors il existe un réel c, tel que $F = \int f(t) dt + c$.

Attention : $\int f(t) dt$ désigne une fonction de I dans \mathbb{R} alors que l'intégrale $\int_a^b f(t) dt$ désigne un nombre réel. Plus précisément nous verrons que si F est une primitive de f alors $\int_a^b f(t) dt = F(b) - F(a)$.

Par dérivation on prouve facilement le résultat suivant :

Proposition 92

Soient F une primitive de f et G une primitive de g. Alors F + G est une primitive de f + g. Et si $\lambda \in \mathbb{R}$ alors λF est une primitive de λf .

Une autre formulation est de dire que pour tous réels λ, μ on a

$$\int (\lambda f(t) + \mu g(t)) dt = \lambda \int f(t) dt + \mu \int g(t) dt$$

3.2. Primitives des fonctions usuelles

$$\int e^x dx = e^x + c \quad \text{sur } \mathbb{R}$$

$$\int \cos x \, dx = \sin x + c \quad \text{sur } \mathbb{R}$$

$$\int \sin x \, dx = -\cos x + c \quad \text{sur } \mathbb{R}$$

$$\int x^n \, dx = \frac{x^{n+1}}{n+1} + c \quad (n \in \mathbb{N}) \quad \text{sur } \mathbb{R}$$

$$\int x^\alpha \, dx = \frac{x^{a+1}}{a+1} + c \quad (\alpha \in \mathbb{R} \setminus \{-1\}) \text{ sur }]0, +\infty[$$

$$\int \frac{1}{x} \, dx = \ln|x| + c \quad \text{sur }]0, +\infty[\text{ ou }]-\infty, 0[$$

$$\int \operatorname{sh} x \, dx = \operatorname{ch} x + c, \int \operatorname{ch} x \, dx = \operatorname{sh} x + c \quad \operatorname{sur} \mathbb{R}$$

$$\int \frac{dx}{1+x^2} = \arctan x + c \quad \operatorname{sur} \mathbb{R}$$

$$\int \frac{dx}{\sqrt{1-x^2}} = \begin{cases} \arcsin x + c & \operatorname{sur}] - 1, 1[$$

$$\int \frac{dx}{\sqrt{x^2+1}} = \begin{cases} \operatorname{argsh} x + c & \operatorname{sur} \mathbb{R} \end{cases}$$

$$\int \frac{dx}{\sqrt{x^2-1}} = \begin{cases} \operatorname{argsh} x + c & \operatorname{sur} \mathbb{R} \end{cases}$$

$$\int \frac{dx}{\sqrt{x^2-1}} = \begin{cases} \operatorname{argch} x + c & \operatorname{sur} x \in]1, +\infty[$$

Remarque

Ces primitives sont à connaître par cœur.

- 1. Voici comment lire ce tableau. Si f est la fonction définie sur \mathbb{R} par $f(x) = x^n$ alors la fonction : $x \mapsto \frac{x^{n+1}}{n+1}$ est une primitive de f sur \mathbb{R} . Les primitives de f sont les fonctions définies par $x \mapsto \frac{x^{n+1}}{n+1} + c$ (pour c une constante réelles quelconque). Et on écrit $\int x^n dx = \frac{x^{n+1}}{n+1} + c$, où $c \in \mathbb{R}$.
- 2. Souvenez vous que la variable sous le symbole intégrale est une variable muette. On peut aussi bien écrire $\int t^n dt = \frac{x^{n+1}}{n+1} + c$.
- 3. La constante est définie pour un intervalle. Si l'on a deux intervalles, il y a deux constantes qui peuvent être différentes. Par exemple pour $\int \frac{1}{x} dx$ nous avons deux domaines de validité : $I_1 =]0, +\infty[$ et $I_2 =]-\infty, 0[$. Donc $\int \frac{1}{x} dx = \ln x + c_1$ si x > 0 et $\int \frac{1}{x} dx = \ln |x| + c_2 = \ln(-x) + c_2$ si x < 0.
- 4. On peut trouver des primitives aux allures très différentes par exemple $x \mapsto \arcsin x$ et $x \mapsto \frac{\pi}{2} \arccos x$ sont deux primitives de la même fonction $x \mapsto \frac{1}{\sqrt{1-x^2}}$. Mais bien sûr on sait que $\arcsin x + \arccos x = \frac{\pi}{2}$, donc les primitives diffèrent bien d'une constante!

3.3. Relation primitive-intégrale

Théorème 35

Soit $f:[a,b] \to \mathbb{R}$ une fonction continue. La fonction $F:I \to \mathbb{R}$ définie par

$$F(x) = \int_{a}^{x} f(t) \, dt$$

est une primitive de f, c'est-à-dire F est dérivable et F'(x) = f(x).

Par conséquent pour une primitive F quelconque de f:

$$\int_{a}^{b} f(t) dt = F(b) - F(a)$$

Notation. On note $[F(x)]_a^b = F(b) - F(a)$.

Exemple 119

Nous allons pouvoir calculer plein d'intégrales. Recalculons d'abord les intégrales déjà rencontrées.

1. Pour $f(x) = e^x$ une primitive est $F(x) = e^x$ donc

$$\int_0^1 e^x \, dx = \left[e^x \right]_0^1 = e^1 - e^0 = e - 1.$$

2. Pour $g(x) = x^2$ une primitive est $G(x) = \frac{x^3}{3}$ donc

$$\int_0^1 x^2 \, dx = \left[\frac{x^3}{3}\right]_0^1 = \frac{1}{3}.$$

- 3. $\int_a^x \cos t \, dt = [\sin t]_{t=a}^{t=x} = \sin x \sin a$ est une primitive de $\cos x$.
- 4. Si f est impaire alors ses primitives sont paires (le montrer). En déduire que $\int_{-a}^{a} f(t) dt = 0$.

Remarque

- 1. $F(x) = \int_a^x f(t) dt$ est même l'unique primitive de f qui s'annule en a.
- 2. En particulier si F est une fonction de classe \mathscr{C}^1 alors $\int_a^b F'(t) \, dt = F(b) F(a)$
- 3. On évitera la notation $\int_a^x f(x) dx$ où la variable x est présente à la fois aux bornes et à l'intérieur de l'intégrale. Mieux vaut utiliser la notation $\int_a^x f(t) dt$ ou $\int_a^x f(u) du$ pour éviter toute confusion.
- 4. Une fonction intégrable n'admet pas forcément une primitive. Considérer par exemple $f:[0,1] \to \mathbb{R}$ définie par f(x)=0 si $x \in [0,\frac{1}{2}[$ et f(x)=1 si $x \in [\frac{1}{2},1].$ f est intégrable sur [0,1] mais elle n'admet pas de primitive sur [0,1]. En effet par l'absurde si F était une primitive de F, par exemple la primitive qui vérifie F(0)=0. Alors F(x)=0 pour $x \in [0,\frac{1}{2}[$ et $F(x)=x-\frac{1}{2}$ pour $x \in [\frac{1}{2},1]$. Mais alors nous obtenons une contradiction car F n'est pas dérivable en $\frac{1}{2}$ alors que par définition une primitive doit être dérivable.

Démonstration

Essayons de visualiser tout d'abord pourquoi la fonction F est dérivable et F'(x) = f(x).

Fixons $x_0 \in [a, b]$. Par la relation de Chasles nous savons :

$$F(x) - F(x_0) = \int_a^x f(t) dt - \int_a^{x_0} f(t) dt = \int_{x_0}^a f(t) dt + \int_a^x f(t) dt = \int_{x_0}^x f(t) dt$$

Donc le taux d'accroissement

$$\frac{F(x) - F(x_0)}{x - x_0} = \frac{1}{x - x_0} \int_{x_0}^{x} f(t) dt = \frac{\mathcal{A}}{x - x_0}$$

où \mathscr{A} est l'aire hachurée (en rouge). Mais cette aire hachurée est presque un rectangle, si x est suffisamment proche de x_0 , donc l'aire \mathscr{A} vaut environ $(x-x_0)\times f(x_0)$ lorsque $x\to x_0$ le taux d'accroissement tend donc vers $f(x_0)$. Autrement dit $F'(x_0)=f(x_0)$.

Passons à la preuve rigoureuse. Comme $f(x_0)$ est une constante alors $\int_{x_0}^x f(x_0) dt = (x - x_0) f(x_0)$, donc

$$\frac{F(x) - F(x_0)}{x - x_0} - f(x_0) = \frac{1}{x - x_0} \int_{x_0}^x f(t) dt - \frac{1}{x - x_0} \int_{x_0}^x f(x_0) dt = \frac{1}{x - x_0} \int_{x_0}^x \left(f(t) - f(x_0) \right) dt$$

Fixons $\varepsilon > 0$. Puisque f est continue en x_0 , il existe $\delta > 0$ tel que $(|t - x_0| < \delta \implies |f(t) - f(x_0)| < \varepsilon)$.

$$\left| \frac{F(x) - F(x_0)}{x - x_0} - f(x_0) \right| = \left| \frac{1}{x - x_0} \int_{x_0}^x \left(f(t) - f(x_0) \right) dt \right| \le \frac{1}{|x - x_0|} \left| \int_{x_0}^x \left| f(t) - f(x_0) \right| dt \right| \le \frac{1}{|x - x_0|} \left| \int_{x_0}^x \varepsilon dt \right| = \varepsilon$$

Ce qui prouve que F est dérivable en x_0 et $F'(x_0) = f(x_0)$.

Maintenant on sait que F est une primitive de f, F est même la primitive qui s'annule en a car $F(a) = \int_a^a f(t) \, dt = 0$. Si G est une autre primitive on sait F = G + c. Ainsi

$$G(b) - G(a) = F(b) + c - (F(a) + c) = F(b) - F(a) = F(b) = \int_a^b f(t) dt.$$

3.4. Sommes de Riemann

L'intégrale est définie à partir de limites de sommes. Mais maintenant que nous savons calculer des intégrales sans utiliser ces sommes on peut faire le cheminement inverse : calculer des limites de sommes à partir d'intégrales.

Théorème 36

$$S_n = \frac{b-a}{n} \sum_{k=1}^n f(a+k\frac{b-a}{n}) \qquad \xrightarrow[n \to +\infty]{} \qquad \int_a^b f(x) \, dx$$

La somme S_n s'appelle la somme de Riemann associée à l'intégrale et correspond à une subdivision régulière de l'intervalle [a,b] en n petits intervalles. La hauteur de chaque rectangle étant évaluée à son extrémité droite.

Le cas le plus utile est le cas où $a=0,\,b=1$ alors $\frac{b-a}{n}=\frac{1}{n}$ et $f\left(a+k\frac{b-a}{n}\right)=f\left(\frac{k}{n}\right)$ et ainsi

$$S_n = \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right)$$
 $\xrightarrow[n \to +\infty]{}$ $\int_0^1 f(x) dx$

Exemple 120

Calculer la limite de la somme $S_n = \sum_{k=1}^n \frac{1}{n+k}$. On a $S_1 = \frac{1}{2}$, $S_2 = \frac{1}{3} + \frac{1}{4}$, $S_3 = \frac{1}{4} + \frac{1}{5} + \frac{1}{6}$, $S_4 = \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}$... La somme S_n s'écrit aussi $S_n = \frac{1}{n} \sum_{k=1}^n \frac{1}{1+\frac{k}{n}}$. En posant $f(x) = \frac{1}{1+x}$, a = 0 et b = 1, on reconnaît que S_n est une somme de Riemann. Donc

$$S_n = \frac{1}{n} \sum_{k=1}^n \frac{1}{1 + \frac{k}{n}} = \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right) \xrightarrow[n \to +\infty]{} \int_a^b f(x) \, dx = \int_0^1 \frac{1}{1 + x} \, dx = \left[\ln|1 + x|\right]_0^1 = \ln 2 - \ln 1 = \ln 2.$$

Ainsi $S_n \to \ln 2$ (lorsque $n \to +\infty$).

Mini-exercices

- 1. Trouver les primitives des fonctions : $x^3 x^7$, $\cos x + \exp x$, $\sin(2x)$, $1 + \sqrt{x} + x$, $\frac{1}{\sqrt{x}}$, $\sqrt[3]{x}$,
- 2. Trouver les primitives des fonctions : $ch(x) sh(\frac{x}{2}), \frac{1}{1+4x^2}, \frac{1}{\sqrt{1+x^2}} \frac{1}{\sqrt{1-x^2}}$
- 3. Trouver une primitive de x^2e^x sous la forme $(ax^2 + bx + c)e^x$.
- 4. Trouver toutes les primitives de $x \mapsto \frac{1}{x^2}$ (préciser les intervalles et les constantes).
- 5. Calculer les intégrales $\int_0^1 x^n dx$, $\int_0^{\frac{\pi}{4}} \frac{dx}{1+x^2}$, $\int_1^e \frac{1-x}{x^2} dx$, $\int_0^{\frac{1}{2}} \frac{dx}{x^2-1}$.
- 6. Calculer la limite (lorsque $n \to +\infty$) de la somme $S_n = \sum_{k=0}^n \frac{e^{k/n}}{n}$. Idem avec $S_n' = \sum_{k=0}^n \frac{e^{k/n}}{n}$.

$$\sum_{k=0}^{n} \frac{n}{(n+k)^2}.$$

4. Intégration par parties - Changement de variable

Pour trouver une primitive d'une fonction f on peut avoir la chance de reconnaître que f est la dérivée d'une fonction bien connue. C'est malheureusement très rarement le cas, et on ne connaît pas les primitives de la plupart des fonctions. Cependant nous allons voir deux techniques qui permettent des calculer des intégrales et des primitives : l'intégration par parties et le changement de variable.

4.1. Intégration par parties

Théorème 37

Soient u et v deux fonctions de classe \mathscr{C}^1 sur un intervalle [a,b].

$$\int_a^b u(x)v'(x) dx = \left[uv\right]_a^b - \int_a^b u'(x)v(x) dx$$

Notation. Le crochet $[F]_a^b$ est par définition $[F]_a^b = F(b) - F(a)$. Donc $[uv]_a^b = u(b)v(b) - u(a)v(a)$. Si l'on omet les bornes alors [F] désigne la fonction F + c où c est une constante quelconque. La formule d'intégration par parties pour les primitives est la même mais sans les bornes :

$$\int u(x)v'(x) dx = [uv] - \int u'(x)v(x) dx.$$

La preuve est très simple :

Démonstration

On a
$$(uv)' = u'v + uv'$$
. Donc $\int_a^b (u'v + uv') = \int_a^b (uv)' = [uv]_a^b$. D'où $\int_a^b uv' = [uv]_a^b - \int_a^b u'v$.

L'utilisation de l'intégration par parties repose sur l'idée suivante : on ne sait pas calculer directement l'intégrale d'une fonction f s'écrivant comme un produit f(x) = u(x)v'(x) mais si l'on sait calculer l'intégrale de g(x) = u'(x)v(x) (que l'on espère plus simple) alors par la formule d'intégration par parties on aura l'intégrale de f.

Exemple 121

1. Calcul de $\int_0^1 xe^x dx$. On pose u(x) = x et $v'(x) = e^x$. Nous aurons besoin de savoir que u'(x) = 1 et qu'une primitive de v' est simplement $v(x) = e^x$. La formule d'intégration par parties donne :

$$\int_{0}^{1} x e^{x} dx = \int_{0}^{1} u(x) v'(x) dx
= \left[u(x) v(x) \right]_{0}^{1} - \int_{0}^{1} u'(x) v(x) dx
= \left[x e^{x} \right]_{0}^{1} - \int_{0}^{1} 1 \cdot e^{x} dx
= \left(1 \cdot e^{1} - 0 \cdot e^{0} \right) - \left[e^{x} \right]_{0}^{1}
= e - (e^{1} - e^{0})
= 1$$

2. Calcul de $\int_1^e x \ln x \, dx$.

On pose cette fois $u = \ln x$ et v' = x. Ainsi $u' = \frac{1}{x}$ et $v = \frac{x^2}{2}$. Alors

$$\int_{1}^{e} \ln x \cdot x \, dx = \int_{1}^{e} uv' = \left[uv \right]_{1}^{e} - \int_{1}^{e} u'v = \left[\ln x \cdot \frac{x^{2}}{2} \right]_{1}^{e} - \int_{1}^{e} \frac{1}{x} \frac{x^{2}}{2} \, dx$$
$$= \left(\ln e \frac{e^{2}}{2} - \ln \frac{1}{2} \right) - \frac{1}{2} \int_{1}^{e} x \, dx = \frac{e^{2}}{2} - \frac{1}{2} \left[\frac{x^{2}}{2} \right]_{1}^{e} = \frac{e^{2}}{2} - \frac{e^{2}}{4} + \frac{1}{4} = \frac{e^{2} + 1}{4}$$

3. Calcul de $\int \arcsin x \, dx$.

Pour déterminer une primitive de $\arcsin x$ nous faisons artificiellement apparaître un produit en écrivant $\arcsin x = 1 \cdot \arcsin x$ pour appliquer la formule d'intégration par parties. On pose $u = \arcsin x$, v' = 1 (et donc $u' = \frac{1}{\sqrt{1-v^2}}$ et v = x) alors

$$\int 1 \cdot \arcsin x \, dx = \left[x \arcsin x \right] - \int \frac{x}{\sqrt{1 - x^2}} \, dx = \left[x \arcsin x \right] - \left[-\sqrt{1 - x^2} \right] = x \arcsin x + \sqrt{1 - x^2} + c$$

4. Calcul de $\int x^2 e^x dx$. On pose $u = x^2$ et $v' = e^x$ pour obtenir :

$$\int x^2 e^x \, dx = \left[x^2 e^x \right] - 2 \int x e^x \, dx$$

On refait une deuxième intégration par parties pour calculer

$$\int xe^{x} dx = [xe^{x}] - \int e^{x} dx = (x-1)e^{x} + c$$

D'où

$$\int x^2 e^x \, dx = (x^2 - 2x + 2)e^x + c.$$

Exemple 122

Nous allons étudier les intégrales définies par $I_n = \int_0^1 \frac{\sin(\pi x)}{x+n} dx$, pour tout entier n > 0.

- 1. Montrer que $0 \le I_{n+1} \le I_n$. Pour $0 \le x \le 1$, on a $0 < x + n \le x + n + 1$ et $\sin(\pi x) \ge 0$, donc $0 \le \frac{\sin(\pi x)}{x + n + 1} \le \frac{\sin(\pi x)}{x + n}$. D'où $0 \le I_{n+1} \le I_n$ par la positivité de l'intégrale.
- 2. Montrer que $I_n \le \ln \frac{n+1}{n}$. En déduire $\lim_{n \to +\infty} I_n$. De $0 \le \sin(\pi x) \le 1$, on a $\frac{\sin(\pi x)}{x+n} \le \frac{1}{x+n}$. D'où $0 \le I_n \le \int_0^1 \frac{1}{x+n} \, dx = \left[\ln(x+n)\right]_0^1 = \ln \frac{n+1}{n} \to 0$.
- 3. Calculer $\lim_{n\to+\infty} nI_n$.

Nous allons faire une intégration par parties avec $u=\frac{1}{x+n}$ et $v'=\sin(\pi x)$ (et donc $u'=-\frac{1}{(x+n)^2}$ et $v=-\frac{1}{\pi}\cos(\pi x)$) :

$$nI_n = n \int_0^1 \frac{1}{x+n} \sin(\pi x) \, dx = -\frac{n}{\pi} \left[\frac{1}{x+n} \cos(\pi x) \right]_0^1 - \frac{n}{\pi} \int_0^1 \frac{1}{(x+n)^2} \cos(\pi x) \, dx = \frac{n}{\pi(n+1)} + \frac{1}{\pi} - \frac{n}{\pi} J_n$$

Il nous reste à évaluer $J_n = \int_0^1 \frac{\cos(\pi x)}{(x+n)^2} dx$.

$$\left| \frac{n}{\pi} J_n \right| \leq \frac{n}{\pi} \int_0^1 \frac{|\cos(\pi x)|}{(x+n)^2} \, dx \leq \frac{n}{\pi} \int_0^1 \frac{1}{(x+n)^2} \, dx = \frac{n}{\pi} \left[-\frac{1}{x+n} \right]_0^1 = \frac{n}{\pi} \left(-\frac{1}{1+n} + \frac{1}{n} \right) = \frac{1}{\pi} \frac{1}{n+1} \to 0.$$

Donc $\lim_{n\to+\infty} nI_n = \lim_{n\to+\infty} \frac{n}{\pi(n+1)} + \frac{1}{\pi} - \frac{n}{\pi}J_n = \frac{2}{\pi}$.

4.2. Changement de variable

Théorème 38

Soit f une fonction définie sur un intervalle I et $\varphi: J \to I$ une bijection de classe \mathscr{C}^1 . Pour tout $a,b \in J$

$$\int_{\varphi(a)}^{\varphi(b)} f(x) \, dx = \int_{a}^{b} f(\varphi(t)) \cdot \varphi'(t) \, dt$$

Si *F* est une primitive de *f* alors $F \circ \varphi$ est une primitive de $(f \circ \varphi) \cdot \varphi'$.

Voici un moyen simple de s'en souvenir. En effet si l'on note $x = \varphi(t)$ alors par dérivation on obtient $\frac{dx}{dt} = \varphi'(t)$ donc $dx = \varphi'(t) dt$. D'où la substitution $\int_{\varphi(a)}^{\varphi(b)} f(x) dx = \int_a^b f(\varphi(t)) \varphi'(t) dt$.

Démonstration

Comme F est une primitive de f alors F'(x) = f(x) et par la formule de la dérivation de la composition $F \circ \varphi$ on a

$$(F \circ \varphi)'(t) = F'(\varphi(t))\varphi'(t) = f(\varphi(t))\varphi'(t).$$

Donc $F \circ \varphi$ est une primitive de $f(\varphi(t))\varphi'(t)$.

Pour les intégrales :
$$\int_a^b f(\varphi(t))\varphi'(t) dt = \left[F \circ \varphi\right]_a^b = F\left(\varphi(b)\right) - F\left(\varphi(a)\right) = \left[F\right]_{\varphi(a)}^{\varphi(b)} = \int_{\varphi(a)}^{\varphi(b)} f(x) dx.$$

Remarque

Comme φ est une bijection de J sur $\varphi(J)$, sa réciproque φ^{-1} existe et est dérivable sauf quand φ s'annule. Si φ ne s'annule pas, on peut écrire $t = \varphi^{-1}(x)$ et faire un changement de variable en sens inverse.

Exemple 123

Calculons la primitive $F = \int \tan t \, dt$.

$$F = \int \tan t \, dt = \int \frac{\sin t}{\cos t} \, dt.$$

On reconnaît ici une forme $\frac{u'}{u}$ (avec $u=\cos t$ et $u'=-\sin t$) dont une primitive est $\ln |u|$. Donc $F=\int -\frac{u'}{u}=-\left[\ln |u|\right]=-\ln |u|+c=-\ln |\cos t|+c$.

Nous allons reformuler tout cela en terme de changement de variable. Notons $\varphi(t) = \cos t$ alors $\varphi'(t) = -\sin t$, donc

$$F = \int -\frac{\varphi'(t)}{\varphi(t)} \, dt$$

Si f désigne la fonction définie par $f(x) = \frac{1}{x}$, qui est bijective tant que $x \neq 0$; alors $F = -\int \varphi'(t) f(\varphi(t)) dt$. En posant $x = \varphi(t)$ et donc $dx = \varphi'(t) dt$, on reconnaît la formule du changement de variable, par conséquent

$$F \circ \varphi^{-1} = -\int f(x) dx = -\int \frac{1}{x} dx = -\ln|x| + c$$
.

Comme $x = \varphi(t) = \cos t$, on retrouve bien $F(t) = -\ln|\cos t| + c$.

Remarque : pour que l'intégrale soit bien définie il faut que tan t soit définie, donc $t \not\equiv \frac{\pi}{2} \mod \pi$. La restriction d'une primitive à un intervalle $]-\frac{\pi}{2}+k\pi, \frac{\pi}{2}+k\pi[$ est donc de la forme $-\ln|\cos t|+c$. Mais la constante *c* peut être différente sur un intervalle différent.

Exemple 124

Calcul de $\int_0^{1/2} \frac{x}{(1-x^2)^{3/2}} \, dx$. Soit le changement de variable $u=\varphi(x)=1-x^2$. Alors $du=\varphi'(x)\, dx=-2x\, dx$. Pour x=0 on a $u=\varphi(0)=1$ et pour $x=\frac{1}{2}$ on a $u=\varphi(\frac{1}{2})=\frac{3}{4}$. Comme $\varphi'(x)=-2x, \varphi$ est une bijection de $[0,\frac{1}{2}]$

$$\int_0^{1/2} \frac{x \, dx}{(1-x^2)^{3/2}} = \int_1^{3/4} \frac{\frac{-du}{2}}{u^{3/2}} = -\frac{1}{2} \int_1^{3/4} u^{-3/2} \, du = -\frac{1}{2} \left[-2u^{-1/2} \right]_1^{3/4} = \left[\frac{1}{\sqrt{u}} \right]_1^{3/4} = \frac{1}{\sqrt{\frac{3}{4}}} - 1 = \frac{2}{\sqrt{3}} - 1.$$

Exemple 125

Calcul de $\int_0^{1/2} \frac{1}{(1-x^2)^{3/2}} dx$.

On effectue le changement de variable $x=\varphi(t)=\sin t$ et $dx=\cos t$ dt. De plus $t=\arcsin x$ donc pour x = 0 on a $t = \arcsin(0) = 0$ et pour $x = \frac{1}{2}$ on a $t = \arcsin(\frac{1}{2}) = \frac{\pi}{6}$. Comme φ est une bijection de $[0, \frac{\pi}{6}]$ sur $[0, \frac{1}{2}]$,

$$\int_0^{1/2} \frac{dx}{(1-x^2)^{3/2}} = \int_0^{\pi/6} \frac{\cos t \, dt}{(1-\sin^2 t)^{3/2}} = \int_0^{\pi/6} \frac{\cos t \, dt}{(\cos^2 t)^{3/2}} = \int_0^{\pi/6} \frac{\cos t}{\cos^3 t} \, dt = \int_0^{\pi/6} \frac{1}{\cos^2 t} \, dt = \left[\tan t\right]_0^{\pi/6} = \frac{1}{\sqrt{3}} \, .$$

Exemple 126

Calcul de $\int \frac{1}{(1+x^2)^{3/2}} dx$.

Soit le changement de variable $x = \tan t$ donc $t = \arctan x$ et $dx = \frac{dt}{\cos^2 t}$. Donc

$$F = \int \frac{1}{(1+x^2)^{3/2}} dx = \int \frac{1}{(1+\tan^2 t)^{3/2}} \frac{dt}{\cos^2 t}$$

$$= \int (\cos^2 t)^{3/2} \frac{dt}{\cos^2 t} \qquad \text{car } 1 + \tan^2 t = \frac{1}{\cos^2 t}$$

$$= \int \cos t \, dt = [\sin t] = \sin t + c = \sin(\arctan x) + c$$

Donc

$$\int \frac{1}{(1+x^2)^{3/2}} dx = \sin(\arctan x) + c.$$

En manipulant un peu les fonctions on trouverait que la primitive s'écrit aussi $F(x) = \frac{x}{\sqrt{1+x^2}} + c$.

Mini-exercices

- 1. Calculer les intégrales à l'aide d'intégrations par parties : $\int_0^{\pi/2} t \sin t \, dt$, $\int_0^{\pi/2} t^2 \sin t \, dt$, puis par récurrence $\int_0^{\pi/2} t^n \sin t \, dt$.
- 2. Déterminer les primitives à l'aide d'intégrations par parties : $\int t \sinh t \, dt$, $\int t^2 \sinh t \, dt$, puis par récurrence $\int t^n \sinh t \, dt$.

3. Calculer les intégrales à l'aide de changements de variable : $\int_0^a \sqrt{a^2 - t^2} dt$; $\int_{-\pi}^{\pi} \sqrt{1 + \cos t} dt$ (pour ce dernier poser deux changements de variables : $u = \cos t$, puis v = 1 - u).

4. Déterminer les primitives suivantes à l'aide de changements de variable : $\int th t \, dt$ où $th t = \frac{sh t}{ch t}$, $\int e^{\sqrt{t}} \, dt$.

5. Intégration des fractions rationnelles

Nous savons intégrer beaucoup de fonctions simples. Par exemple toutes les fonctions polynomiales : si $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$ alors $\int f(x) dx = a_0 x + a_1 \frac{x^2}{2} + a_2 \frac{x^3}{3} + \dots + a_n \frac{x^{n+1}}{n+1} + c$.

Il faut être conscient cependant que beaucoup de fonctions ne s'intègrent pas à l'aide de fonctions simples. Par exemple si $f(t) = \sqrt{a^2\cos^2 t + b^2\sin^2 t}$ alors l'intégrale $\int_0^{2\pi} f(t)\,dt$ ne peut pas s'exprimer comme somme, produit, inverse ou composition de fonctions que vous connaissez. En fait cette intégrale vaut la longueur d'une ellipse d'équation paramétrique $(a\cos t, b\sin t)$; il n'y a donc pas de formule pour le périmètre d'une ellipse (sauf si a=b auquel cas l'ellipse est un cercle!).

Mais de façon remarquable, il y a toute une famille de fonctions que l'on saura intégrer : les fractions rationnelles.

5.1. Trois situations de base

On souhaite d'abord intégrer les fractions rationnelles $f(x) = \frac{ax+\beta}{ax^2+bx+c}$ avec $\alpha, \beta, a, b, c \in \mathbb{R}$, $a \neq 0$ et $(\alpha, \beta) \neq (0, 0)$.

Premier cas. Le dénominateur $ax^2 + bx + c$ possède deux racines réelles distinctes $x_1, x_2 \in \mathbb{R}$. Alors f(x) s'écrit aussi $f(x) = \frac{ax + \beta}{a(x - x_1)(x - x_2)}$ et il existe de nombres $A, B \in \mathbb{R}$ tels que $f(x) = \frac{A}{x - x_1} + \frac{B}{x - x_2}$. On a donc

$$\int f(x) \, dx = A \ln|x - x_1| + B \ln|x - x_2| + c$$

sur chacun des intervalles $]-\infty, x_1[,]x_1, x_2[,]x_2, +\infty[$ (si $x_1 < x_2$).

Deuxième cas. Le dénominateur $ax^2 + bx + c$ possède une racine double $x_0 \in \mathbb{R}$. Alors $f(x) = \frac{ax + \beta}{a(x - x_0)^2}$ et il existe des nombres $A, B \in \mathbb{R}$ tels que $f(x) = \frac{A}{(x - x_0)^2} + \frac{B}{x - x_0}$. On a alors

$$\int f(x) \, dx = -\frac{A}{x - x_0} + B \ln|x - x_0| + c$$

sur chacun des intervalles $]-\infty, x_0[,]x_0, +\infty[.$

Troisième cas. Le dénominateur $ax^2 + bx + c$ ne possède pas de racine réelle. Voyons comment faire sur un exemple.

Exemple 127

Soit $f(x) = \frac{x+1}{2x^2+x+1}$. Dans un premier temps on fait apparaître une fraction du type $\frac{u'}{u}$ (que l'on sait intégrer en $\ln |u|$).

$$f(x) = \frac{(4x+1)\frac{1}{4} - \frac{1}{4} + 1}{2x^2 + x + 1} = \frac{1}{4} \cdot \frac{4x+1}{2x^2 + x + 1} + \frac{3}{4} \cdot \frac{1}{2x^2 + x + 1}$$

On peut intégrer la fraction $\frac{4x+1}{2x^2+x+1}$:

$$\int \frac{4x+1}{2x^2+x+1} dx = \int \frac{u'(x)}{u(x)} dx = \ln |2x^2+x+1| + c$$

Occupons nous de l'autre partie $\frac{1}{2x^2+x+1}$, nous allons l'écrire sous la forme $\frac{1}{u^2+1}$ (dont une

$$\frac{1}{2x^2+x+1} = \frac{1}{2(x+\frac{1}{4})^2 - \frac{1}{8}+1} = \frac{1}{2(x+\frac{1}{4})^2 + \frac{7}{8}} = \frac{8}{7} \cdot \frac{1}{\frac{8}{7}2(x+\frac{1}{4})^2 + 1} = \frac{8}{7} \cdot \frac{1}{\left(\frac{4}{\sqrt{7}}(x+\frac{1}{4})\right)^2 + 1}$$

On pose le changement de variable $u=\frac{4}{\sqrt{7}}(x+\frac{1}{4})$ (et donc $du=\frac{4}{\sqrt{7}}dx$) pour trouver

$$\int \frac{dx}{2x^2 + x + 1} = \int \frac{8}{7} \frac{dx}{\left(\frac{4}{\sqrt{7}}(x + \frac{1}{4})\right)^2 + 1} = \frac{8}{7} \int \frac{du}{u^2 + 1} \cdot \frac{\sqrt{7}}{4} = \frac{2}{\sqrt{7}} \arctan u + c = \frac{2}{\sqrt{7}} \arctan \left(\frac{4}{\sqrt{7}}(x + \frac{1}{4})\right) + c.$$
 Finalement :
$$\int f(x) \, dx = \frac{1}{4} \ln \left(2x^2 + x + 1\right) + \frac{3}{2\sqrt{7}} \arctan \left(\frac{4}{\sqrt{7}}(x + \frac{1}{4})\right) + c$$

$$\int f(x) \, dx = \frac{1}{4} \ln \left(2x^2 + x + 1 \right) + \frac{3}{2\sqrt{7}} \arctan \left(\frac{4}{\sqrt{7}} \left(x + \frac{1}{4} \right) \right) + c$$

5.2. Intégration des éléments simples

Soit $\frac{P(x)}{Q(x)}$ une fraction rationnelle, où P(x), Q(x) sont des polynômes à coefficients réels. Alors la fraction $\frac{P(x)}{Q(x)}$ s'écrit comme somme d'un polynôme $E(x) \in \mathbb{R}[x]$ (la partie entière) et d'éléments simples d'une des formes suivantes :

$$\frac{\gamma}{(x-x_0)^k} \quad \text{ou} \quad \frac{\alpha x + \beta}{(ax^2 + bx + c)^k} \text{ avec } b^2 - 4ac < 0$$

où $\alpha, \beta, \gamma, a, b, c \in \mathbb{R}$ et $k \in \mathbb{N} \setminus \{0\}$

- 1. On sait intégrer le polynôme E(x)
- 2. Intégration de l'élément simple $\frac{\gamma}{(x-x_0)^k}$.
- (a) Si k = 1 alors $\int \frac{\gamma \, dx}{x x_0} = \gamma \ln|x x_0| + c$ (sur $] \infty, x_0[$ ou $]x_0, +\infty[$). (b) Si $k \ge 2$ alors $\int \frac{\gamma \, dx}{(x x_0)^k} = \gamma \int (x x_0)^{-k} \, dx = \frac{\gamma}{-k+1} (x x_0)^{-k+1} + c$ (sur $] \infty, x_0[$ ou $]x_0, +\infty[$).
- 3. Intégration de l'élément simple $\frac{\alpha x + \beta}{(\alpha x^2 + b x + c)^k}$. On écrit cette fraction sous la forme

$$\frac{\alpha x + \beta}{(ax^2 + bx + c)^k} = \gamma \frac{2ax + b}{(ax^2 + bx + c)^k} + \delta \frac{1}{(ax^2 + bx + c)^k}$$

- (a) $\int \frac{2ax+b}{(ax^2+bx+c)^k} dx = \int \frac{u'(x)}{u(x)^k} dx = \frac{1}{-k+1} u(x)^{-k+1} + c = \frac{1}{-k+1} (ax^2+bx+c)^{-k+1} + c.$
- (b) Si k=1, calcul de $\int \frac{1}{ax^2+bx+c} dx$. Par un changement de variable u=px+q on se ramène à calculer une primitive du type $\int \frac{du}{u^2+1} = \arctan u + c$.
- (c) Si $k \ge 2$, calcul de $\int \frac{1}{(ax^2+bx+c)^k} dx$. On effectue le changement de variable u = px + q pour se ramener au calcul de $I_k = \int \frac{du}{(u^2+1)^k}$. Une intégration par parties permet de passer de I_k

Par exemple calculons I_2 . Partant de $I_1=\int \frac{du}{u^2+1}$ on pose $f=\frac{1}{u^2+1}$ et g'=1. La formule d'intégration par parties $\int fg'=[fg]-\int f'g$ donne (avec $f'=-\frac{2u}{(u^2+1)^2}$ et g=u)

$$\begin{array}{ll} I_1 & = & \int \frac{du}{u^2+1} = \left[\frac{u}{u^2+1}\right] + \int \frac{2u^2\,du}{(u^2+1)^2} = \left[\frac{u}{u^2+1}\right] + 2\int \frac{u^2+1-1}{(u^2+1)^2}du \\ & = & \left[\frac{u}{u^2+1}\right] + 2\int \frac{du}{u^2+1} - 2\int \frac{du}{(u^2+1)^2} = \left[\frac{u}{u^2+1}\right] + 2I_1 - 2I_2 \end{array}$$

On en déduit $I_2 = \frac{1}{2}I_1 + \frac{1}{2}\frac{u}{u^2+1} + c$. Mais comme $I_1 = \arctan u$ alors

$$I_2 = \int \frac{du}{(u^2+1)^2} = \frac{1}{2}\arctan u + \frac{1}{2}\frac{u}{u^2+1} + c.$$

Intégrales

5.3. Intégration des fonctions trigonométriques

On peut aussi calculer les primitives de la forme $\int P(\cos x, \sin x) \, dx$ ou $\int \frac{P(\cos x, \sin x)}{Q(\cos x, \sin x)} \, dx$ quand P et Q sont des polynômes, en se ramenant à intégrer une fraction rationnelle.

Il existe deux méthodes:

- les règles de Bioche sont assez efficaces mais ne fonctionnent pas toujours ;
- le changement de variable $t = \tan \frac{x}{2}$ fonctionne tout le temps mais conduit à davantage de calculs.

Les règles de Bioche. On note $\omega(x) = f(x) dx$. On a alors $\omega(-x) = f(-x) d(-x) = -f(-x) dx$ et $\omega(\pi - x) = f(\pi - x) d(\pi - x) = -f(\pi - x) dx.$

- Si $\omega(-x) = \omega(x)$ alors on effectue le changement de variable $u = \cos x$.
- Si $\omega(\pi x) = \omega(x)$ alors on effectue le changement de variable $u = \sin x$.
- Si $\omega(\pi + x) = \omega(x)$ alors on effectue le changement de variable $u = \tan x$.

Exemple 128

Calcul de la primitive $\int \frac{\cos x \, dx}{2-\cos^2 x}$ On note $\omega(x) = \frac{\cos x \, dx}{2-\cos^2 x}$. Comme $\omega(\pi-x) = \frac{\cos(\pi-x) \, d(\pi-x)}{2-\cos^2(\pi-x)} = \frac{(-\cos x) \, (-dx)}{2-\cos^2 x} = \omega(x)$ alors le changement de variable qui convient est $u = \sin x$ pour lequel $du = \cos x \, dx$. Ainsi :

$$\int \frac{\cos x \, dx}{2 - \cos^2 x} = \int \frac{\cos x \, dx}{2 - (1 - \sin^2 x)} = \int \frac{du}{1 + u^2} = \left[\arctan u\right] = \arctan(\sin x) + c.$$

Le changement de variable $t = \tan \frac{x}{2}$.

Les formules de la «tangente de l'arc moitié» permettent d'exprimer sinus, cosinus et tangente en fonction de tan $\frac{x}{2}$.

Avec
$$t = \tan \frac{x}{2}$$
 on a $\cos x = \frac{1 - t^2}{1 + t^2}$ $\sin x = \frac{2t}{1 + t^2}$ $\tan x = \frac{2t}{1 - t^2}$ et $dx = \frac{2 dt}{1 + t^2}$.

Exemple 129

Calcul de l'intégrale $\int_{-\pi/2}^0 \frac{dx}{1-\sin x}$. Le changement de variable $t=\tan\frac{x}{2}$ définit une bijection de $[-\frac{\pi}{2},0]$ vers [-1,0] (pour $x=-\frac{\pi}{2}$, t=-1 et pour x=0, t=0). De plus on a $\sin x=\frac{2t}{1+t^2}$ et $dx=\frac{2\,dt}{1+t^2}$.

$$\int_{-\frac{\pi}{2}}^{0} \frac{dx}{1-\sin x} = \int_{-1}^{0} \frac{\frac{2\,dt}{1+t^2}}{1-\frac{2t}{1+t^2}} = 2\int_{-1}^{0} \frac{dt}{1+t^2-2t} = 2\int_{-1}^{0} \frac{dt}{(1-t)^2} = 2\left[\frac{1}{1-t}\right]_{-1}^{0} = 2\left(1-\frac{1}{2}\right) = 1$$

Mini-exercices

- 1. Calculer les primitives $\int \frac{4x+5}{x^2+x-2} dx$, $\int \frac{6-x}{x^2-4x+4} dx$, $\int \frac{2x-4}{(x-2)^2+1} dx$, $\int \frac{1}{(x-2)^2+1} dx$.
- 2. Calculer les primitives $I_k = \int \frac{dx}{(x-1)^k}$ pour tout $k \ge 1$. Idem avec $J_k = \int \frac{x \, dx}{(x^2+1)^k}$.
- 3. Calculer les intégrales suivantes : $\int_0^1 \frac{dx}{x^2 + x + 1}$, $\int_0^1 \frac{x \, dx}{x^2 + x + 1}$, $\int_0^1 \frac{x \, dx}{(x^2 + x + 1)^2}$, $\int_0^1 \frac{dx}{(x^2 + x + 1)^2}$.
- 4. Calculer les intégrales suivantes : $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \cos^3 x \, dx$, $\int_0^{\frac{\pi}{2}} \cos^4 x \, dx$, $\int_0^{2\pi} \frac{dx}{2 + \sin x}$.

Auteurs

Rédaction: Arnaud Bodin

Basé sur des cours de Guoting Chen et Marc Bourdon

Relecture : Pascal Romon Dessins : Benjamin Boutin

Exo7

14 Développements limités

- 1 Formules de Taylor
- 2 Développements limités au voisinage d'un point
- 3 Opérations sur les développements limités
- 4 Applications des développements limités

```
Vidéo ■ partie 1. Formules de Taylor
```

Vidéo ■ partie 2. Développements limités au voisinage d'un point

Vidéo ■ partie 3. Opérations sur les DL

Vidéo ■ partie 4. Applications

Exercices ♦ Développements limités

Motivation

Prenons l'exemple de la fonction exponentielle. Une idée du comportement de la fonction $f(x) = \exp x$ autour du point x = 0 est donné par sa tangente, dont l'équation est y = 1 + x. Nous avons approximé le graphe par une droite. Si l'on souhaite faire mieux, quelle parabole d'équation $y = c_0 + c_1 x + c_2 x^2$ approche le mieux le graphe de f autour de f autour de f l'equation f l'equation f l'equation f l'equation f l'equation de cette parabole c'ext faire un développement limité à l'ordre 2 de la fonction f. Bien sûr si l'on veut être plus précis, on continuerait avec une courbe du troisième degré qui serait en fait f l'equation de cette parabole c'ext faire f l'equation de cette parabole c'ext faire un développement limité à l'ordre 2 de la fonction f le l'equation de cette parabole c'ext faire un développement limité à l'ordre 2 de la fonction f le l'equation de cette parabole c'ext faire un développement limité à l'ordre 2 de la fonction f le l'equation de cette parabole c'ext faire un développement limité à l'ordre 2 de la fonction f le l'equation de cette parabole c'ext faire un développement limité à l'ordre 2 de la fonction f le l'equation de cette parabole c'ext faire un développement limité à l'ordre 2 de la fonction f le l'equation de cette parabole c'ext faire un développement limité à l'ordre 2 de la fonction f le l'equation de cette parabole c'ext faire un développement limité à l'ordre 2 de la fonction f le l'equation de cette parabole d'équation f l'equation f l'e

Dans ce chapitre, pour n'importe quelle fonction, nous allons trouver le polynôme de degré n qui approche le mieux la fonction. Les résultats ne sont valables que pour x autour d'une valeur fixée (ce sera souvent autour de 0). Ce polynôme sera calculé à partir des dérivées successives au point considéré. Sans plus attendre, voici la formule, dite formule de Taylor-Young :

$$f(x) = f(0) + f'(0)x + f''(0)\frac{x^2}{2!} + \dots + f^{(n)}(0)\frac{x^n}{n!} + x^n \varepsilon(x).$$

La partie polynomiale $f(0)+f'(0)x+\cdots+f^{(n)}(0)\frac{x^n}{n!}$ est le polynôme de degré n qui approche le mieux f(x) autour de x=0. La partie $x^n\varepsilon(x)$ est le «reste» dans lequel $\varepsilon(x)$ est une fonction qui tend vers 0 (quand x tend vers 0) et qui est négligeable devant la partie polynomiale.

1. Formules de Taylor

Nous allons voir trois formules de Taylor, elles auront toutes la même partie polynomiale mais donnent plus ou moins d'informations sur le reste. Nous commencerons par la formule de Taylor avec reste intégral qui donne une expression exacte du reste. Puis la formule de Taylor avec reste $f^{(n+1)}(c)$ qui permet d'obtenir un encadrement du reste et nous terminons avec la formule de Taylor-Young très pratique si l'on n'a pas besoin d'information sur le reste.

Soit $I \subset \mathbb{R}$ un intervalle ouvert. Pour $n \in \mathbb{N}^*$, on dit que $f: I \to \mathbb{R}$ est une fonction de **classe** \mathscr{C}^n si f est n fois dérivable sur I et $f^{(n)}$ est continue. f est de **classe** \mathscr{C}^0 si f est continue sur I. f est de **classe** \mathscr{C}^∞ si f est de classe \mathscr{C}^n pour tout f est de classe f f est de clas

1.1. Formule de Taylor avec reste intégral

Théorème 39. Formule de Taylor avec reste intégral

Soit $f: I \to \mathbb{R}$ une fonction de classe \mathscr{C}^{n+1} $(n \in \mathbb{N})$ et soit $a, x \in I$. Alors

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + \int_a^x \frac{f^{(n+1)}(t)}{n!}(x-t)^n dt.$$

Nous noterons $T_n(x)$ la partie polynomiale de la formule de Taylor (elle dépend de n mais aussi de f et a):

$$T_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n.$$

Remarque

En écrivant x = a + h (et donc h = x - a) la formule de Taylor précédente devient (pour tout a et a + h de I):

$$f(a+h) = f(a) + f'(a)h + \frac{f''(a)}{2!}h^2 + \dots + \frac{f^{(n)}(a)}{n!}h^n + \int_0^h \frac{f^{(n+1)}(a+t)}{n!}(h-t)^n dt$$

Exemple 130

La fonction $f(x) = \exp x$ est de classe \mathscr{C}^{n+1} sur $I = \mathbb{R}$ pour tout n. Fixons $a \in \mathbb{R}$. Comme $f'(x) = \exp x$, $f''(x) = \exp x$,... alors pour tout $x \in \mathbb{R}$:

$$\exp x = \exp a + \exp a \cdot (x - a) + \dots + \frac{\exp a}{n!} (x - a)^n + \int_a^x \frac{\exp t}{n!} (x - t)^n dt.$$

Bien sûr si l'on se place en a=0 alors on retrouve le début de notre approximation de la fonction exponentielle en x=0: $\exp x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots$

Démonstration Preuve du théorème

Montrons cette formule de Taylor par récurrence sur $k \le n$:

$$f(b) = f(a) + f'(a)(b-a) + \frac{f''(a)}{2!}(b-a)^2 + \dots + \frac{f^{(k)}(a)}{k!}(b-a)^k + \int_a^b f^{(k+1)}(t) \frac{(b-t)^k}{k!} dt.$$

(Pour éviter les confusions entre ce qui varie et ce qui est fixe dans cette preuve on remplace x par b.)

Initialisation. Pour n = 0, une primitive de f'(t) est f(t) donc $\int_a^b f'(t) dt = f(b) - f(a)$, donc $f(b) = f(a) + \int_a^b f'(t) dt$. (On rappelle que par convention $(b-t)^0 = 1$ et 0! = 1.)

Hérédité. Supposons la formule vraie au rang k-1. Elle s'écrit $f(b) = f(a) + f'(a)(b-a) + \dots + \frac{f^{(k-1)}(a)}{(k-1)!}(b-a)^{k-1} + \int_a^b f^{(k)}(t) \frac{(b-t)^{k-1}}{(k-1)!} dt$.

On effectue une intégration par parties dans l'intégrale $\int_a^b f^{(k)}(t) \frac{(b-t)^{k-1}}{(k-1)!} dt$. En posant $u(t) = f^{(k)}(t)$ et $v'(t) = \frac{(b-t)^{k-1}}{(k-1)!}$, on a $u'(t) = f^{(k+1)}(t)$ et $v(t) = -\frac{(b-t)^k}{k!}$; alors

$$\int_{a}^{b} f^{(k)}(t) \frac{(b-t)^{k-1}}{(k-1)!} dt = \left[-f^{(k)}(t) \frac{(b-t)^{k}}{k!} \right]_{a}^{b} + \int_{a}^{b} f^{(k+1)}(t) \frac{(b-t)^{k}}{k!} dt$$
$$= f^{(k)}(a) \frac{(b-a)^{k}}{k!} + \int_{a}^{b} f^{(k+1)}(t) \frac{(b-t)^{k}}{k!} dt.$$

Ainsi lorsque l'on remplace cette expression dans la formule au rang k-1 on obtient la formule au rang k.

Conclusion. Par le principe de récurrence la formule de Taylor est vraie pour tous les entiers n pour lesquels f est classe \mathscr{C}^{n+1} .

1.2. Formule de Taylor avec reste $f^{(n+1)}(c)$

Théorème 40. Formule de Taylor avec reste $f^{(n+1)}(c)$

Soit $f: I \to \mathbb{R}$ une fonction de classe \mathscr{C}^{n+1} $(n \in \mathbb{N})$ et soit $a, x \in I$. Il existe un réel c entre a et x tel que :

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}.$$

Exemple 131

Soient $a, x \in \mathbb{R}$. Pour tout entier $n \ge 0$ il existe c entre a et x tel que $\exp x = \exp a + \exp a \cdot (x - a) + \cdots + \frac{\exp a}{n!} (x - a)^n + \frac{\exp c}{(n+1)!} (x - a)^{n+1}$.

Dans la plupart des cas on ne connaîtra pas ce c. Mais ce théorème permet d'encadrer le reste. Ceci s'exprime par le corollaire suivant :

Corollaire 18

Si en plus la fonction $|f^{(n+1)}|$ est majorée sur I par un réel M, alors pour tout $a, x \in I$, on a :

$$\left|f(x)-T_n(x)\right| \leq M\frac{|x-a|^{n+1}}{(n+1)!}.$$

Exemple 132

Approximation de sin(0,01).

Soit $f(x) = \sin x$. Alors $f'(x) = \cos x$, $f''(x) = -\sin x$, $f^{(3)}(x) = -\cos x$, $f^{(4)}(x) = \sin x$. On obtient donc f(0) = 0, f'(0) = 1, f''(0) = 0, $f^{(3)}(0) = -1$. La formule de Taylor ci-dessus en a = 0 à l'ordre 3 devient : $f(x) = 0 + 1 \cdot x + 0 \cdot \frac{x^2}{2!} - 1 \frac{x^3}{3!} + f^{(4)}(c) \frac{x^4}{4!}$, c'est-à-dire $f(x) = x - \frac{x^3}{6} + f^{(4)}(c) \frac{x^4}{24}$, pour un certain c entre 0 et x.

Appliquons ceci pour x = 0.01. Le reste étant petit on trouve alors

$$\sin(0,01) \approx 0.01 - \frac{(0.01)^3}{6} = 0.00999983333...$$

On peut même savoir quelle est la précision de cette approximation : comme $f^{(4)}(x) = \sin x$ alors $|f^{(4)}(c)| \le 1$. Donc $\left|f(x) - \left(x - \frac{x^3}{6}\right)\right| \le \frac{x^4}{4!}$. Pour x = 0,01 cela donne : $\left|\sin(0,01) - \left(0,01 - \frac{(0,01)^3}{6}\right)\right| \le \frac{(0,01)^4}{24}$. Comme $\frac{(0,01)^4}{24} \approx 4,16\cdot 10^{-10}$ alors notre approximation donne au moins 8 chiffres exacts après la virgule.

Remarque

- Dans ce théorème l'hypothèse f de classe \mathscr{C}^{n+1} peut-être affaiblie en f est «n+1 fois dérivable sur I».
- «le réel c est entre a et x» signifie «c ∈]a,x[ou c ∈]x,a[».
- Pour n=0 c'est exactement l'énoncé du théorème des accroissements finis : il existe $c \in]a,b[$ tel que f(b)=f(a)+f'(c)(b-a).
- Si I est un intervalle fermé borné et f de classe \mathscr{C}^{n+1} , alors $f^{(n+1)}$ est continue sur I donc il existe un M tel que $|f^{(n+1)}(x)| \leq M$ pour tout $x \in I$. Ce qui permet toujours d'appliquer le corollaire.

Pour la preuve du théorème nous aurons besoin d'un résultat préliminaire.

Lemme 9. Égalité de la moyenne

Supposons a < b et soient $u, v : [a, b] \to \mathbb{R}$ deux fonctions continues avec $v \ge 0$. Alors il existe $c \in [a, b]$ tel que $\int_a^b u(t)v(t)\,dt = u(c)\int_a^b v(t)\,dt$.

Démonstration

Notons $m = \inf_{t \in [a,b]} u(t)$ et $M = \sup_{t \in [a,b]} u(t)$. On a $m \int_a^b v(t) dt \le \int_a^b u(t) v(t) dt \le M \int_a^b v(t) dt$ (car $v \ge 0$). Ainsi $m \le \frac{\int_a^b u(t) v(t) dt}{\int_a^b v(t) dt} \le M$. Puisque u est continue sur [a,b] elle prend toutes les valeurs comprises entre m et M (théorème des valeurs intermédiaires). Donc il existe $c \in [a,b]$ avec $u(c) = \frac{\int_a^b u(t) v(t) dt}{\int_a^b v(t) dt}$.

Démonstration Preuve du théorème

Pour la preuve nous montrerons la formule de Taylor pour f(b) en supposant a < b. Nous montrerons seulement $c \in [a,b]$ au lieu de $c \in]a,b[$.

Posons $u(t) = f^{(n+1)}(t)$ et $v(t) = \frac{(b-t)^n}{n!}$. La formule de Taylor avec reste intégral s'écrit $f(b) = T_n(a) + \int_a^b u(t)v(t)dt$. Par le lemme, il existe $c \in [a,b]$ tel que $\int_a^b u(t)v(t)dt = u(c)\int_a^b v(t)dt$. Ainsi le reste est $\int_a^b u(t)v(t)dt = f^{(n+1)}(c)\int_a^b \frac{(b-t)^n}{n!}dt = f^{(n+1)}(c)\left[-\frac{(b-t)^{n+1}}{(n+1)!}\right]_a^b = f^{(n+1)}(c)\frac{(b-a)^{n+1}}{(n+1)!}$. Ce qui donne la formule recherchée.

1.3. Formule de Taylor-Young

Théorème 41. Formule de Taylor-Young

Soit $f: I \to \mathbb{R}$ une fonction de classe \mathscr{C}^n et soit $a \in I$. Alors pour tout $x \in I$ on a :

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + (x-a)^n \varepsilon(x),$$

où ε est une fonction définie sur I telle que $\varepsilon(x) \xrightarrow[x \to a]{} 0$.

Démonstration

f étant un fonction de classe \mathscr{C}^n nous appliquons la formule de Taylor avec reste $f^{(n)}(c)$ au rang n-1. Pour tout x, il existe c=c(x) compris entre a et x tel que $f(x)=f(a)+f'(a)(x-a)+\frac{f''(a)}{2!}(x-a)^2+\cdots+\frac{f^{(n-1)}(a)}{(n-1)!}(x-a)^{n-1}+\frac{f^{(n)}(c)}{n!}(x-a)^n$. Que nous réécrivons : $f(x)=f(a)+f'(a)(x-a)+\frac{f''(a)}{2!}(x-a)^2+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^n+\frac{f^{(n)}(c)-f^{(n)}(a)}{n!}(x-a)^n$. On pose $\varepsilon(x)=\frac{f^{(n)}(c)-f^{(n)}(a)}{n!}$. Puisque $f^{(n)}$ est continue et que $c(x)\to a$ alors $\lim_{x\to a}\varepsilon(x)=0$.

1.4. Un exemple

Soit $f:]-1,+\infty[\to\mathbb{R},x\mapsto\ln(1+x);f$ est infiniment dérivable. Nous allons calculer les formules de Taylor en 0 pour les premiers ordres.

Tous d'abord f(0) = 0. Ensuite $f'(x) = \frac{1}{1+x}$ donc f'(0) = 1. Ensuite $f''(x) = -\frac{1}{(1+x)^2}$ donc f''(0) = -1. Puis $f^{(3)}(x) = +2\frac{1}{(1+x)^3}$ donc $f^{(3)}(0) = +2$. Par récurrence on montre que $f^{(n)}(x) = (-1)^{n-1}(n-1)!\frac{1}{(1+x)^n}$ et donc $f^{(n)}(0) = (-1)^{n-1}(n-1)!$. Ainsi pour n > 0: $\frac{f^{(n)}(0)}{n!}x^n = (-1)^{n-1}\frac{(n-1)!}{n!}x^n = (-1)^{n-1}\frac{x^n}{n}$. Voici donc les premiers polynômes de Taylor :

$$T_0(x) = 0$$
 $T_1(x) = x$ $T_2(x) = x - \frac{x^2}{2}$ $T_3(x) = x - \frac{x^2}{2} + \frac{x^3}{3}$

Les formules de Taylor nous disent que les restes sont de plus en plus petits lorsque n croît. Sur le dessins les graphes des polynômes T_0, T_1, T_2, T_3 s'approchent de plus en plus du graphe de f. Attention ceci n'est vrai qu'autour de 0.

Pour *n* quelconque nous avons calculer que le polynôme de Taylor en 0 est

$$T_n(x) = \sum_{k=1}^n (-1)^{k-1} \frac{x^k}{k} = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n}.$$

1.5. Résumé

Il y a donc trois formules de Taylor qui s'écrivent toutes sous la forme

$$f(x) = T_n(x) + R_n(x)$$

où $T_n(x)$ est toujours le même polynôme de Taylor :

$$T_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n.$$

C'est l'expression du reste $R_n(x)$ qui change (attention le reste n'a aucune raison d'être un polynôme).

$$R_n(x) = \int_a^x \frac{f^{(n+1)}(t)}{n!} (x-t)^n dt$$
 Taylor avec reste intégral
$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}$$
 Taylor avec reste $f^{(n+1)}(c)$, c entre a et x
$$R_n(x) = (x-a)^n \varepsilon(x)$$
 Taylor-Young avec $\varepsilon(x) \xrightarrow[x \to a]{} 0$

Selon les situations l'une des formulations est plus adaptée que les autres. Bien souvent nous n'avons pas besoin de beaucoup d'information sur le reste et c'est donc la formule de Taylor-Young qui sera la plus utile.

Notons que les trois formules ne requièrent pas exactement les mêmes hypothèses : Taylor avec reste intégral à l'ordre n exige une fonction de classe \mathscr{C}^{n+1} , Taylor avec reste une fonction n+1 fois dérivable, et Taylor-Young une fonction \mathscr{C}^n . Une hypothèse plus restrictive donne logiquement une conclusion plus forte. Cela dit, pour les fonctions de classe \mathscr{C}^{∞} que l'on manipule le plus souvent, les trois hypothèses sont toujours vérifiées.

Notation. Le terme $(x-a)^n \varepsilon(x)$ où $\varepsilon(x) \xrightarrow[x\to 0]{} 0$ est souvent abrégé en «*petit o*» de $(x-a)^n$ et est noté $o((x-a)^n)$. Donc $o((x-a)^n)$ est une fonction telle que $\lim_{x\to a} \frac{o((x-a)^n)}{(x-a)^n} = 0$. Il faut s'habituer à cette notation qui simplifie les écritures, mais il faut toujours garder à l'esprit ce qu'elle signifie.

Cas particulier : Formule de Taylor-Young au voisinage de 0. On se ramène souvent au cas particulier où a = 0, la formule de Taylor-Young s'écrit alors

$$f(x) = f(0) + f'(0)x + f''(0)\frac{x^2}{2!} + \dots + f^{(n)}(0)\frac{x^n}{n!} + x^n \varepsilon(x)$$

où $\lim_{x\to 0} \varepsilon(x) = 0$.

Et avec la notation «petit o» cela donne :

$$f(x) = f(0) + f'(0)x + f''(0)\frac{x^2}{2!} + \dots + f^{(n)}(0)\frac{x^n}{n!} + o(x^n)$$

Mini-exercices

- 1. Écrire les trois formules de Taylor en 0 pour $x \mapsto \cos x$, $x \mapsto \exp(-x)$ et $x \mapsto \sinh x$.
- 2. Écrire les formules de Taylor en 0 à l'ordre 2 pour $x \mapsto \frac{1}{\sqrt{1+x}}, x \mapsto \tan x$.
- 3. Écrire les formules de Taylor en 1 pour $x \mapsto x^3 9x^2 + 14x + 3$.

4. Avec une formule de Taylor à l'ordre 2 de $\sqrt{1+x}$, trouver une approximation de $\sqrt{1,01}$. Idem avec $\ln(0,99)$.

2. Développements limités au voisinage d'un point

2.1. Définition et existence

Soit *I* un intervalle ouvert et $f: I \to \mathbb{R}$ une fonction quelconque.

Définition 74

Pour $a \in I$ et $n \in \mathbb{N}$, on dit que f admet un **développement limité** (**DL**) au point a et à l'ordre n, s'il existe des réels c_0, c_1, \ldots, c_n et une fonction $\varepsilon : I \to \mathbb{R}$ telle que $\lim_{x \to a} \varepsilon(x) = 0$ de sorte que pour tout $x \in I$:

$$f(x) = c_0 + c_1(x-a) + \dots + c_n(x-a)^n + (x-a)^n \varepsilon(x).$$

- L'égalité précédente s'appelle un DL de f au voisinage de a à l'ordre n.
- Le terme $c_0 + c_1(x-a) + \cdots + c_n(x-a)^n$ est appelé la *partie polynomiale* du DL.
- Le terme $(x-a)^n \varepsilon(x)$ est appelé le *reste* du DL.

La formule de Taylor-Young permet d'obtenir immédiatement des développements limités en posant $c_k = \frac{f^{(k)}(a)}{k!}$:

Proposition 93

Si f est de classe \mathscr{C}^n au voisinage d'un point a alors f admet un DL au point a à l'ordre n, qui provient de la formule de Taylor-Young :

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + (x-a)^n \varepsilon(x)$$

où $\lim_{x\to a} \varepsilon(x) = 0$.

Remarque

1. Si f est de classe \mathscr{C}^n au voisinage d'un point 0, un DL en 0 à l'ordre n est l'expression :

$$f(x) = f(0) + f'(0)x + f''(0)\frac{x^2}{2!} + \dots + f^{(n)}(0)\frac{x^n}{n!} + x^n \varepsilon(x)$$

2. Si f admet un DL en un point a à l'ordre n alors elle en possède un pour tout $k \le n$. En effet

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \dots + \frac{f^{(k)}(a)}{k!}(x-a)^k + \underbrace{\frac{f^{(k+1)}(a)}{(k+1)!}(x-a)^{k+1} + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + (x-a)^n \varepsilon(x)}_{=(x-a)^k \eta(x)}$$

où $\lim_{x\to a} \eta(x) = 0$.

2.2. Unicité

Proposition 94

Si f admet un DL alors ce DL est unique.

Démonstration

Écrivons deux DL de $f: f(x) = c_0 + c_1(x-a) + \dots + c_n(x-a)^n + (x-a)^n \varepsilon_1(x)$ et $f(x) = d_0 + d_1(x-a) + \dots + d_n(x-a)^n + (x-a)^n \varepsilon_2(x)$. En effectuant la différence on obtient:

$$(d_0 - c_0) + (d_1 - c_1)(x - a) + \dots + (d_n - c_n)(x - a)^n + (x - a)^n (\varepsilon_2(x) - \varepsilon_1(x)) = 0.$$

Lorsque l'on fait x=a dans cette égalité alors on trouve $d_0-c_0=0$. Ensuite on peut diviser cette égalité par $x-a:(d_1-c_1)+(d_2-c_2)(x-a)+\cdots+(d_n-c_n)(x-a)^{n-1}+(x-a)^{n-1}(\varepsilon_2(x)-\varepsilon_1(x))=0$. En évaluant en x=a on obtient $d_1-c_1=0$, etc. On trouve $c_0=d_0,\,c_1=d_1,\,\ldots,\,c_n=d_n$. Les parties polynomiales sont égales et donc les restes aussi.

Corollaire 19

Si f est paire (resp. impaire) alors la partie polynomiale de son DL en 0 ne contient que des monômes de degrés pairs (resp. impairs).

Par exemple $x \mapsto \cos x$ est paire et nous verrons que son DL en 0 commence par : $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$.

Démonstration

 $f(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \dots + c_n x^n + x^n \varepsilon(x)$. Si f est paire alors $f(x) = f(-x) = c_0 - c_1 x + c_2 x^2 - c_3 x^3 + \dots + (-1)^n c_n x^n + x^n \varepsilon(x)$. Par l'unicité du DL en 0 on trouve $c_1 = -c_1$, $c_3 = -c_3$, ... et donc $c_1 = 0$, $c_3 = 0$,...

Remarque

- 1. L'unicité du DL et la formule de Taylor-Young prouve que si l'on connaît le DL et que f est de classe \mathscr{C}^n alors on peut calculer les nombres dérivés à partir de la partie polynomiale par la formule $c_k = \frac{f^{(k)}(a)}{k!}$. Cependant dans la majorité des cas on fera l'inverse : on trouve le DL à partir des dérivées.
- 2. Si *f* admet un DL en un point *a* à l'ordre $n \ge 0$ alors $c_0 = f(a)$.
- 3. Si f admet un DL en un point a à l'ordre $n \ge 1$, alors f est dérivable en a et on a $c_0 = f(a)$ et $c_1 = f'(a)$. Par conséquent $y = c_0 + c_1(x a)$ est l'équation de la tangente au graphe de f au point d'abscisse a.
- 4. Plus subtil : f peut admettre un DL à l'ordre 2 en un point a sans admettre une dérivée seconde en a. Soit par exemple $f(x) = x^3 \sin \frac{1}{x}$. Alors f est dérivable mais f' ne l'est pas. Pourtant f admet un DL en f0 à l'ordre f2 : $f(x) = x^2 \varepsilon(x)$ (la partie polynomiale est nulle).

2.3. DL des fonctions usuelles à l'origine

Les DL suivants en 0 proviennent de la formule de Taylor-Young.

$$\exp x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + x^n \varepsilon(x)$$

$$\operatorname{ch} x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{2n}}{(2n)!} + x^{2n+1} \varepsilon(x)$$

$$\operatorname{sh} x = \frac{x}{1!} + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + x^{2n+2} \varepsilon(x)$$

$$\operatorname{cos} x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + x^{2n+1} \varepsilon(x)$$

$$\operatorname{sin} x = \frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + x^{2n+2} \varepsilon(x)$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + x^n \varepsilon(x)$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \dots + \frac{\alpha(\alpha-1)...(\alpha-n+1)}{n!}x^n + x^n \varepsilon(x)$$

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots + (-1)^n x^n + x^n \varepsilon(x)$$

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + x^n \varepsilon(x)$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{1}{8}x^2 + \dots + (-1)^{n-1} \frac{1 \cdot 1 \cdot 3 \cdot 5 \dots (2n-3)}{2^n n!} x^n + x^n \varepsilon(x)$$

Ils sont tous à apprendre par cœur. C'est facile avec les remarques suivantes :

- Le DL de chx est la partie paire du DL de expx. C'est-à-dire que l'on ne retient que les monômes de degré pair. Alors que le DL de shx est la partie impaire.
- Le DL de $\cos x$ est la partie paire du DL de $\exp x$ en alternant le signe +/- du monôme. Pour $\sin x$ c'est la partie impaire de $\exp x$ en alternant aussi les signes.
- On notera que la précision du DL de $\sin x$ est meilleure que l'application naïve de la formule de Taylor le prévoit $(x^{2n+2}\varepsilon(x))$ au lieu de $x^{2n+1}\varepsilon(x)$; c'est parce que le DL est en fait à l'ordre 2n+2, avec un terme polynomial en x^{2n+2} nul (donc absent). Le même phénomène est vrai pour tous les DL pairs ou impairs (dont $\sinh x, \cos x, \cosh x$).
- Pour ln(1+x) n'oubliez pas qu'il n'y a pas de terme constant, pas de factorielle aux dénominateurs, et que les signes alternent.
- Il faut aussi savoir écrire le DL à l'aide des sommes formelles (et ici des «petits o») :

$$\exp x = \sum_{k=1}^{n} \frac{x^k}{k!} + o(x^n) \qquad \text{et} \qquad \ln(1+x) = \sum_{k=1}^{n} (-1)^{k-1} \frac{x^k}{k} + o(x^n)$$

- La DL de $(1+x)^{\alpha}$ est valide pour tout $\alpha \in \mathbb{R}$. Pour $\alpha = -1$ on retombe sur le DL de $(1+x)^{-1} = \frac{1}{1+x}$. Mais on retient souvent le DL de $\frac{1}{1-x}$ qui est très facile. Il se retrouve aussi avec la somme d'une suite géométrique : $1+x+x^2+\cdots+x^n=\frac{1-x^{n+1}}{1-x}=\frac{1}{1-x}-\frac{x^{n+1}}{1-x}=\frac{1}{1-x}+x^n\varepsilon(x)$.
- Pour $\alpha = \frac{1}{2}$ on retrouve $(1+x)^{\frac{1}{2}} = \sqrt{1+x} = 1 + \frac{x}{2} \frac{1}{8}x^2 + \cdots$. Dont il faut connaître les trois premiers termes.

2.4. DL des fonctions en un point quelconque

La fonction f admet un DL au voisinage d'un point a si et seulement si la fonction $x \mapsto f(x+a)$ admet un DL au voisinage de 0. Souvent on ramène donc le problème en 0 en faisant le changement de variables h = x - a.

Exemple 133

1. DL de $f(x) = \exp x$ en 1.

On pose h=x-1. Si x est proche de 1 alors h est proche de 0. Nous allons nous ramener

à un DL de $\exp h$ en h = 0. On note $e = \exp 1$.

$$\exp x = \exp(1 + (x - 1)) = \exp(1) \exp(x - 1) = e \exp h = e \left(1 + h + \frac{h^2}{2!} + \dots + \frac{h^n}{n!} + h^n \varepsilon(h) \right)$$
$$= e \left(1 + (x - 1) + \frac{(x - 1)^2}{2!} + \dots + \frac{(x - 1)^n}{n!} + (x - 1)^n \varepsilon(x - 1) \right), \quad \lim_{x \to 1} \varepsilon(x - 1) = 0.$$

2. DL de $g(x) = \sin x$ en $\pi/2$.

Sachant $\sin x = \sin(\frac{\pi}{2} + x - \frac{\pi}{2}) = \cos(x - \frac{\pi}{2})$ on se ramène au DL de $\cos h$ quand $h = x - \frac{\pi}{2} \to 0$. On a donc $\sin x = 1 - \frac{(x - \frac{\pi}{2})^2}{2!} + \dots + (-1)^n \frac{(x - \frac{\pi}{2})^{2n}}{(2n)!} + (x - \frac{\pi}{2})^{2n+1} \varepsilon(x - \frac{\pi}{2})$, où $\lim_{x \to \pi/2} \varepsilon(x - \frac{\pi}{2}) = 0$.

3. DL de $\ell(x) = \ln(1+3x)$ en 1 à l'ordre 3. Il faut se ramener à un DL du type $\ln(1+h)$ en h=0. On pose h=x-1 (et donc x=1+h). On a $\ell(x) = \ln(1+3x) = \ln\left(1+3(1+h)\right) = \ln(4+3h) = \ln\left(4\cdot(1+\frac{3h}{4})\right) = \ln 4 + \ln\left(1+\frac{3h}{4}\right) = \ln 4 + \frac{3h}{4} - \frac{1}{2}\left(\frac{3h}{4}\right)^2 + \frac{1}{3}\left(\frac{3h}{4}\right)^3 + h^3\varepsilon(h) = \ln 4 + \frac{3(x-1)}{4} - \frac{9}{32}(x-1)^2 + \frac{9}{64}(x-1)^3 + (x-1)^3\varepsilon(x-1)$

où $\lim_{x\to 1} \varepsilon(x-1) = 0$.

Mini-exercices

- 1. Calculer le DL en 0 de $x \mapsto \operatorname{ch} x$ par la formule de Taylor-Young. Retrouver ce DL en utilisant que $\operatorname{ch} x = \frac{e^x e^{-x}}{2}$.
- 2. Écrire le DL en 0 à l'ordre 3 de $\sqrt[3]{1+x}$. Idem avec $\frac{1}{\sqrt{1+x}}$.
- 3. Écrire le DL en 2 à l'ordre 2 de \sqrt{x} .
- 4. Justifier l'expression du DL de $\frac{1}{1-x}$ à l'aide de l'unicité des DL de la somme d'une suite géométrique.

3. Opérations sur les développements limités

3.1. Somme et produit

On suppose que f et g sont deux fonctions qui admettent des DL en 0 à l'ordre n :

$$f(x) = c_0 + c_1 x + \dots + c_n x^n + x^n \varepsilon_1(x)$$
 $g(x) = d_0 + d_1 x + \dots + d_n x^n + x^n \varepsilon_2(x)$

Proposition 95

- f + g admet un DL en 0 l'ordre n qui est :

$$(f+g)(x) = f(x) + g(x) = (c_0 + d_0) + (c_1 + d_1)x + \dots + (c_n + d_n)x^n + x^n \varepsilon(x).$$

- $f \times g$ admet un DL en 0 l'ordre n qui est : $(f \times g)(x) = f(x) \times g(x) = T_n(x) + x^n \varepsilon(x)$ où $T_n(x)$ est le polynôme $(c_0 + c_1 x + \dots + c_n x^n) \times (d_0 + d_1 x + \dots + d_n x^n)$ tronqué à l'ordre n.

Tronquer un polynôme à l'ordre n signifie que l'on conserve seulement les monômes de degré $\leq n$.

Exemple 134

Calculer le DL de $\cos x \times \sqrt{1+x}$ en 0 à l'ordre 2. On sait $\cos x = 1 - \frac{1}{2}x^2 + x^2\varepsilon_1(x)$ et $\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + x^2\varepsilon_2(x)$. Donc :

$$\begin{aligned} \cos x \times \sqrt{1+x} &= \left(1-\frac{1}{2}x^2+x^2\varepsilon_1(x)\right) \times \left(1+\frac{1}{2}x-\frac{1}{8}x^2+x^2\varepsilon_2(x)\right) \quad \text{on d\'eveloppe} \\ &= 1+\frac{1}{2}x-\frac{1}{8}x^2+x^2\varepsilon_2(x) \\ &\qquad -\frac{1}{2}x^2\left(1+\frac{1}{2}x-\frac{1}{8}x^2+x^2\varepsilon_2(x)\right) \\ &\qquad +x^2\varepsilon_1(x)\left(1+\frac{1}{2}x-\frac{1}{8}x^2+x^2\varepsilon_2(x)\right) \\ &= 1+\frac{1}{2}x-\frac{1}{8}x^2+x^2\varepsilon_2(x) \quad \text{on d\'eveloppe encore} \\ &\qquad -\frac{1}{2}x^2-\frac{1}{4}x^3+\frac{1}{16}x^4-\frac{1}{2}x^4\varepsilon_2(x) \\ &\qquad +x^2\varepsilon_1(x)+\frac{1}{2}x^3\varepsilon_1(x)-\frac{1}{8}x^4\varepsilon_1(x)+x^4\varepsilon_1(x)\varepsilon_2(x) \\ &= \underbrace{1+\frac{1}{2}x+\left(-\frac{1}{8}x^2-\frac{1}{2}x^2\right)}_{\text{partie tronqu\'e\'e à l'ordre 2}} \quad \text{on a regroup\'e\'e les termes de degr\'e 0 et 1, 2} \\ &\qquad +x^2\varepsilon_2(x)-\frac{1}{4}x^3+\frac{1}{16}x^4-\frac{1}{2}x^4\varepsilon_2(x)+x^2\varepsilon_1(x)+\frac{1}{2}x^3\varepsilon_1(x)-\frac{1}{8}x^4\varepsilon_1(x)+x^4\varepsilon_1(x)\varepsilon_2(x)} \\ &= 1+\frac{1}{9}x-\frac{5}{8}x^2+x^2\varepsilon(x) \end{aligned} \quad \text{et ici les aut}$$

On a en fait écrit beaucoup de choses superflues, qui à la fin sont dans le reste et n'avaient pas besoin d'être explicitées! Avec l'habitude les calculs se font très vite car on n'écrit plus les termes inutiles. Voici le même calcul avec la notation «petit o» : dès qu'apparaît un terme $x^2\varepsilon_1(x)$ ou un terme $x^3,...$ on écrit juste $o(x^2)$ (ou si l'on préfère $x^2\varepsilon(x)$).

$$\cos x \times \sqrt{1+x} = \left(1 - \frac{1}{2}x^2 + o(x^2)\right) \times \left(1 + \frac{1}{2}x - \frac{1}{8}x^2 + o(x^2)\right) \quad \text{on développe}$$

$$= 1 + \frac{1}{2}x - \frac{1}{8}x^2 + o(x^2)$$

$$- \frac{1}{2}x^2 + o(x^2)$$

$$+ o(x^2)$$

$$= 1 + \frac{1}{2}x - \frac{5}{8}x^2 + o(x^2)$$

La notation «petit o» évite de devoir donner un nom à chaque fonction, en ne gardant que sa propriété principale, qui est de décroître vers 0 au moins à une certaine vitesse. Comme on le voit dans cet exemple, $o(x^2)$ absorbe les éléments de même ordre de grandeur ou plus petits que lui : $o(x^2) - \frac{1}{4}x^3 + \frac{1}{2}x^2o(x^2) = o(x^2)$. Mais il faut bien comprendre que les différents $o(x^2)$ écrits ne correspondent pas à la même fonction, ce qui justifie que cette égalité ne soit pas fausse!

3.2. Composition

On écrit encore:

$$f(x) = C(x) + x^{n} \varepsilon_{1}(x) = c_{0} + c_{1}x + \dots + c_{n}x^{n} + x^{n} \varepsilon_{1}(x) \qquad g(x) = D(x) + x^{n} \varepsilon_{2}(x) = d_{0} + d_{1}x + \dots + d_{n}x^{n} + x^{n} \varepsilon_{2}(x)$$

Proposition 96

Si g(0) = 0 (c'est-à-dire $d_0 = 0$) alors la fonction $f \circ g$ admet un DL en 0 à l'ordre n dont la partie polynomiale est le polynôme tronqué à l'ordre n de la composition C(D(x)).

Exemple 135

Calcul du DL de $h(x) = \sin(\ln(1+x))$ en 0 à l'ordre 3.

- On pose ici $f(u) = \sin u$ et $g(x) = \ln(1+x)$ (pour plus de clarté il est préférable de donner des noms différents aux variables de deux fonctions, ici x et u). On a bien $f \circ g(x) =$ $\sin(\ln(1+x)) \text{ et } g(0) = 0.$
- On écrit le DL à l'ordre 3 de $f(u) = \sin u = u \frac{u^3}{3!} + u^3 \varepsilon_1(u)$ pour u proche de 0.
- Et on pose $u = g(x) = \ln(1+x) = x \frac{x^2}{2} + \frac{x^3}{3} + x^3 \varepsilon_2(x)$ pour x proche de 0.
- On aura besoin de calculer un DL à l'ordre 3 de u^2 (qui est bien sûr le produit $u \times u$) : $u^{2} = \left(x - \frac{x^{2}}{2} + \frac{x^{3}}{3} + x^{3} \varepsilon_{2}(x)\right)^{2} = x^{2} - x^{3} + x^{3} \varepsilon_{3}(x) \text{ et aussi } u^{3} \text{ qui est } u \times u^{2}, u^{3} = x^{3} + x^{3} \varepsilon_{4}(x).$ - Donc $h(x) = f \circ g(x) = f(u) = u - \frac{u^{3}}{3!} + u^{3} \varepsilon_{1}(u) = \left(x - \frac{1}{2}x^{2} + \frac{1}{3}x^{3}\right) - \frac{1}{6}x^{3} + x^{3} \varepsilon(x) = x - \frac{1}{2}x^{2} + \frac{1}{2}$
- $\frac{1}{\epsilon}x^3 + x^3\varepsilon(x)$.

Exemple 136

Soit $h(x) = \sqrt{\cos x}$. On cherche le DL de h en 0 à l'ordre 4.

On utilise cette fois la notation «petit o». On connaît le DL de $f(u) = \sqrt{1+u}$ en u=0 à l'ordre 2: $f(u) = \sqrt{1+u} = 1 + \frac{1}{2}u - \frac{1}{8}u^2 + o(u^2)$.

Et si on pose $u(x) = \cos x - 1$ alors on a h(x) = f(u(x)) et u(0) = 0. D'autre part le DL de u(x) en x = 0 à l'ordre 4 est : $u = -\frac{1}{2}x^2 + \frac{1}{24}x^4 + o(x^4)$. On trouve alors $u^2 = \frac{1}{4}x^4 + o(x^4)$. Et ainsi

$$h(x) = f(u) = 1 + \frac{1}{2}u - \frac{1}{8}u^2 + o(u^2)$$

$$= 1 + \frac{1}{2}\left(-\frac{1}{2}x^2 + \frac{1}{24}x^4\right) - \frac{1}{8}\left(\frac{1}{4}x^4\right) + o(x^4)$$

$$= 1 - \frac{1}{4}x^2 + \frac{1}{48}x^4 - \frac{1}{32}x^4 + o(x^4)$$

$$= 1 - \frac{1}{4}x^2 - \frac{1}{96}x^4 + o(x^4)$$

3.3. Division

Voici comment calculer le DL d'un quotient f/g. Soient

$$f(x) = c_0 + c_1 x + \dots + c_n x^n + x^n \varepsilon_1(x)$$
 $g(x) = d_0 + d_1 x + \dots + d_n x^n + x^n \varepsilon_2(x)$

Nous allons utiliser le DL de $\frac{1}{1+u} = 1 - u + u^2 - u^3 + \cdots$

- 1. Si $d_0 = 1$ on pose $u = d_1 x + \dots + d_n x^n + x^n \varepsilon_2(x)$ et le quotient s'écrit $f/g = f \times \frac{1}{1+u}$.
- 2. Si d_0 est quelconque avec $d_0 \neq 0$ alors on se ramène au cas précédent en écrivant

$$\frac{1}{g(x)} = \frac{1}{d_0} \frac{1}{1 + \frac{d_1}{d_0}x + \dots + \frac{d_n}{d_0}x^n + \frac{x^n \varepsilon_2(x)}{d_0}}.$$

3. Si $d_0 = 0$ alors on factorise par x^k (pour un certain k) afin de se ramener aux cas précédents.

Exemple 137

1. DL de $\tan x$ en 0 à l'ordre 5.

Tout d'abord $\sin x = x - \frac{x^3}{6} + \frac{x^5}{120} + x^5 \varepsilon(x)$. D'autre part $\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} + x^5 \varepsilon(x) = 1 + u$ en posant $u = -\frac{x^2}{2} + \frac{x^4}{24} + x^5 \varepsilon(x)$.

Nous aurons besoin de u^2 et u^3 : $u^2 = \left(-\frac{x^2}{2} + \frac{x^4}{24} + x^5 \varepsilon(x)\right)^2 = \frac{x^4}{4} + x^5 \varepsilon(x)$ et en fait $u^3 = x^5 \varepsilon(x)$. (On note abusivement $\varepsilon(x)$ pour différents restes.)

Ainsi

$$\frac{1}{\cos x} = \frac{1}{1+u} = 1 - u + u^2 - u^3 + u^3 \varepsilon(u) = 1 + \frac{x^2}{2} - \frac{x^4}{24} + \frac{x^4}{4} + x^5 \varepsilon(x) = 1 + \frac{x^2}{2} + \frac{5}{24} x^4 + x^5 \varepsilon(x);$$

Finalement

$$\tan x = \sin x \times \frac{1}{\cos x} = \left(x - \frac{x^3}{6} + \frac{x^5}{120} + x^5 \varepsilon(x)\right) \times \left(1 + \frac{x^2}{2} + \frac{5}{24}x^4 + x^5 \varepsilon(x)\right) = x + \frac{x^3}{3} + \frac{2}{15}x^5 + x^5 \varepsilon(x).$$

2. DL de $\frac{1+x}{2+x}$ en 0 à l'ordre 4.

$$\frac{1+x}{2+x} = (1+x)\frac{1}{2}\frac{1}{1+\frac{x}{2}} = \frac{1}{2}(1+x)\left(1-\frac{x}{2}+\left(\frac{x}{2}\right)^2-\left(\frac{x}{2}\right)^3+\left(\frac{x}{2}\right)^4+o(x^4)\right) = \frac{1}{2}+\frac{x}{4}-\frac{x^2}{8}+\frac{x^3}{16}-\frac{x^4}{32}+o(x^4)$$

3. Si l'on souhaite calculer le DL de $\frac{\sin x}{\sinh x}$ en 0 à l'ordre 4 alors on écrit

$$\frac{\sin x}{\sinh x} = \frac{x - \frac{x^3}{3!} + \frac{x^5}{5!} + o(x^5)}{x + \frac{x^3}{3!} + \frac{x^5}{5!} + o(x^5)} = \frac{x\left(1 - \frac{x^2}{3!} + \frac{x^4}{5!} + o(x^4)\right)}{x\left(1 + \frac{x^2}{3!} + \frac{x^4}{5!} + o(x^4)\right)}$$
$$= \left(1 - \frac{x^2}{3!} + \frac{x^4}{5!} + o(x^4)\right) \times \frac{1}{1 + \frac{x^2}{3!} + \frac{x^4}{5!} + o(x^4)} = \dots = 1 - \frac{x^2}{2} + \frac{x^4}{18} + o(x^4)$$

Autre méthode. Soit $f(x) = C(x) + x^n \varepsilon_1(x)$ et $g(x) = D(x) + x^n \varepsilon_2(x)$. Alors on écrit la division suivant les puissances croissantes de C par D à l'ordre $n: C = DQ + x^{n+1}R$ avec $\deg Q \leq n$. Alors Q est la partie polynomiale du DL en 0 à l'ordre n de f/g.

Exemple 138

DL de $\frac{2+x+2x^3}{1+x^2}$ à l'ordre 2. On pose $C(x)=2+x+2x^3$ et $g(x)=D(x)=1+x^2$ alors $C(x)=D(x)\times(2+x-2x^2)+x^3(1+2x)$. On a donc $Q(x)=2+x-2x^2$, R(x)=1+2x. Et donc lorsque l'on divise cette égalité par C(x) on obtient $\frac{f(x)}{g(x)}=2+x-2x^2+x^2\varepsilon(x)$.

3.4. Intégration

Soit $f: I \to \mathbb{R}$ une fonction de classe \mathscr{C}^n dont le DL en $a \in I$ à l'ordre n est $f(x) = c_0 + c_1(x - a) + c_2(x - a)^2 + \dots + c_n(x - a)^n + (x - a)^n \varepsilon(x)$.

Théorème 42

Notons F une primitive de f. Alors F admet un DL en a à l'ordre n+1 qui s'écrit :

$$F(x) = F(a) + c_0(x-a) + c_1 \frac{(x-a)^2}{2} + c_2 \frac{(x-a)^3}{3} + \dots + c_n \frac{(x-a)^{n+1}}{n+1} + (x-a)^{n+1} \eta(x)$$

où $\lim_{x \to a} \eta(x) = 0$.

Cela signifie que l'on intègre la partie polynomiale terme à terme pour obtenir le DL de F(x) à la constante F(a) près.

Démonstration

On a $F(x) - F(a) = \int_a^x f(t)dt = a_0(x-a) + \dots + \frac{a_n}{n+1}(x-a)^{n+1} + \int_a^x (t-a)^{n+1} \varepsilon(t)dt$. Notons $\eta(x) = \frac{1}{(x-a)^{n+1}} \int_a^x (t-a)^n \varepsilon(t)dt$.

 $\begin{aligned} & \text{Alors } |\eta(x)| \leqslant \left| \frac{1}{(x-a)^{n+1}} \int_a^x |(t-a)^n| \cdot \sup_{t \in [a,x]} |\varepsilon(t)| dt \right| = |\frac{1}{(x-a)^{n+1}}| \cdot \sup_{t \in [a,x]} |\varepsilon(t)| \cdot \int_a^x |(t-a)^n| dt = \frac{1}{n+1} \sup_{t \in [a,x]} |\varepsilon(t)|. \\ & \text{Mais } \sup_{t \in [a,x]} |\varepsilon(t)| \to 0 \text{ lorsque } x \to a. \text{ Donc } \eta(x) \to 0 \text{ quand } x \to a. \end{aligned}$

Exemple 139

Calcul du DL de arctan x.

On sait que $\arctan' x = \frac{1}{1+x^2}$. En posant $f(x) = \frac{1}{1+x^2}$ et $F(x) = \arctan x$, on écrit

$$\arctan' x = \frac{1}{1+x^2} = \sum_{k=0}^{n} (-1)^k x^{2k} + x^{2n} \varepsilon(x).$$

Et comme $\arctan(0) = 0$ alors $\arctan x = \sum_{k=0}^{n} \frac{(-1)^k}{2k+1} x^{2k+1} + x^{2n+1} \varepsilon(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$

Exemple 140

La méthode est la même pour obtenir un DL de $\arcsin x$ en 0 à l'ordre 5. $\arcsin' x = (1-x^2)^{-\frac{1}{2}} = 1 - \frac{1}{2}(-x^2) + \frac{-\frac{1}{2}(-\frac{1}{2}-1)}{2}(-x^2)^2 + x^4\varepsilon(x) = 1 + \frac{1}{2}x^2 + \frac{3}{8}x^4 + x^4\varepsilon(x).$ Donc $\arcsin x = x + \frac{1}{6}x^3 + \frac{3}{40}x^5 + x^5\varepsilon(x)$.

Mini-exercices

- 1. Calculer le DL en 0 à l'ordre 3 de $\exp(x) \frac{1}{1+x}$, puis de $x\cos(2x)$ et $\cos(x) \times \sin(2x)$.
- 2. Calculer le DL en 0 à l'ordre 2 de $\sqrt{1+2\cos x}$, puis de $\exp(\sqrt{1+2\cos x})$.
- 3. Calculer le DL en 0 à l'ordre 3 de $\ln(1+\sin x)$. Idem à l'ordre 6 pour $\left(\ln(1+x^2)\right)^2$.
- 4. Calculer le DL en 0 à l'ordre n de $\frac{\ln(1+x^3)}{x^3}$. Idem à l'ordre 3 avec $\frac{e^x}{1+x}$.
- 5. Par intégration retrouver la formule du DL de ln(1+x). Idem à l'ordre 3 pour arccos x.

4. Applications des développements limités

Voici les applications les plus remarquables des développements limités. On utilisera aussi les DL lors de l'étude locale des courbes paramétrées lorsqu'il y a des points singuliers.

4.1. Calculs de limites

Les DL sont très efficaces pour calculer des limites ayant des formes indéterminées! Il suffit juste de remarquer que si $f(x) = c_0 + c_1(x - a) + \cdots$ alors $\lim_{x \to a} f(x) = c_0$.

Exemple 141

Limite en 0 de
$$\frac{\ln(1+x) - \tan x + \frac{1}{2}\sin^2 x}{3x^2\sin^2 x}$$
.

Limite en 0 de
$$\frac{\ln(1+x)-\tan x+\frac{1}{2}\sin^2 x}{3x^2\sin^2 x}.$$
 Notons
$$\frac{f(x)}{g(x)}$$
 cette fraction. En 0 on a
$$f(x)=\ln(1+x)-\tan x+\frac{1}{2}\sin^2 x=\left(x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+o(x^4)\right)-\left(x+\frac{x^3}{3}+o(x^4)\right)+\frac{1}{2}\left(x-\frac{x^3}{6}+o(x^3)\right)^2=-\frac{x^2}{2}-\frac{x^4}{4}+\frac{1}{2}(x^2-\frac{1}{3}x^4)+o(x^4)=-\frac{5}{12}x^4+o(x^4)$$
 et
$$g(x)=3x^2\sin^2 x=3x^2\left(x+o(x)\right)^2=3x^4+o(x^4).$$

Ainsi $\frac{f(x)}{g(x)} = \frac{-\frac{5}{12}x^4 + o(x^4)}{3x^4 + o(x^4)} = \frac{-\frac{5}{12} + o(1)}{3 + o(1)}$ en notant o(1) une fonction (inconnue) tendant vers 0 quand $x \to 0$. Donc $\lim_{x \to 0} \frac{f(x)}{g(x)} = -\frac{5}{36}$.

Note : en calculant le DL à un ordre inférieur (2 par exemple), on n'aurait pas pu conclure, car on aurait obtenu $\frac{f(x)}{g(x)} = \frac{o(x^2)}{o(x^2)}$, ce qui ne lève pas l'indétermination. De façon générale, on calcule les DL à l'ordre le plus bas possible, et si cela ne suffit pas, on augmente progressivement l'ordre (donc la précision de l'approximation).

4.2. Position d'une courbe par rapport à sa tangente

Proposition 97

Soit $f: I \to \mathbb{R}$ une fonction admettant un DL en $a: f(x) = c_0 + c_1(x-a) + c_k(x-a)^k + (x-a)^k \varepsilon(x)$, où k est le plus petit entier ≥ 2 tel que le coefficient c_k soit non nul. Alors l'équation de la tangente à la courbe de f en a est : $y = c_0 + c_1(x - a)$ et la position de la courbe par rapport à la tangente pour x proche de a est donnée par le signe f(x) - y, c'est-à-dire le signe de $c_k(x-a)^k$.

Il y a 3 cas possibles.

Si le signe est positif alors la courbe est au-dessus de la tangente.

- Si le signe est négatif alors la courbe est en dessous de la tangente.

- Si le signe change (lorsque l'on passe de x < a à x > a) alors la courbe traverse la tangente au point d'abscisse a. C'est un *point d'inflexion*.

Comme le DL de f en a à l'ordre 2 s'écrit aussi $f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + (x-a)^2 \varepsilon(x)$. Alors l'équation de la tangente est aussi y = f(a) + f'(a)(x-a). Si en plus $f''(a) \neq 0$ alors f(x) - y garde un signe constant autour de a. En conséquence si a est un point d'inflexion alors f''(a) = 0. (La réciproque est fausse.)

Exemple 142

Soit $f(x) = x^4 - 2x^3 + 1$.

1. Déterminons la tangente en $\frac{1}{2}$ du graphe de f et précisons la position du graphe par rapport à la tangente.

On a $f'(x) = 4x^3 - 6x^2$, $f''(x) = 12x^2 - 12x$, donc $f''(\frac{1}{2}) = -3 \neq 0$ et k = 2.

On en déduit le DL de f en $\frac{1}{2}$ par la formule de Taylor-Young : $f(x) = f(\frac{1}{2}) + f'(\frac{1}{2})(x - \frac{1}{2}) + \frac{f''(\frac{1}{2})}{2!}(x - \frac{1}{2})^2 + (x - \frac{1}{2})^2 \varepsilon(x) = \frac{13}{16} - (x - \frac{1}{2}) - \frac{3}{2}(x - \frac{1}{2})^2 + (x - \frac{1}{2})^2 \varepsilon(x).$

Donc la tangente en $\frac{1}{2}$ est $y = \frac{13}{16} - (x - \frac{1}{2})$ et le graphe de f est en dessous de la tangente car $f(x) - y = \left(-\frac{3}{2} + \varepsilon(x)\right)(x - \frac{1}{2})^2$ est négatif autour de $x = \frac{1}{2}$.

2. Déterminons les points d'inflexion.

Les points d'inflexion sont à chercher parmi les solutions de f''(x) = 0. Donc parmi x = 0 et x = 1.

- Le DL en 0 est $f(x) = 1 2x^3 + x^4$ (il s'agit juste d'écrire les monômes par degrés croissants!). L'équation de la tangente au point d'abscisse 0 est donc y = 1 (une tangente horizontale). Comme $-2x^3$ change de signe en 0 alors 0 est un point d'inflexion de f.
- Le DL en 1 : on calcule f(1), f'(1), ... pour trouver le DL en 1 $f(x) = -2(x-1) + 2(x-1)^3 + (x-1)^4$. L'équation de la tangente au point d'abscisse 1 est donc y = -2(x-1). Comme $2(x-1)^3$ change de signe en 1, 1 est aussi un point d'inflexion de f.

4.3. Développement limité en $+\infty$

Soit f une fonction définie sur un intervalle $I =]x_0, +\infty[$. On dit que f admet un DL en $+\infty$ à l'ordre n s'il existe des réels c_0, c_1, \ldots, c_n tels que

$$f(x) = c_0 + \frac{c_1}{x} + \dots + \frac{c_n}{x^n} + \frac{1}{x^n} \varepsilon \left(\frac{1}{x}\right)$$

où $\varepsilon(\frac{1}{x})$ tend vers 0 quand $x \to +\infty$.

Exemple 143

$$f(x) = \ln\left(2 + \frac{1}{x}\right) = \ln 2 + \ln\left(1 + \frac{1}{2x}\right) = \ln 2 + \frac{1}{2x} - \frac{1}{8x^2} + \frac{1}{24x^3} + \dots + (-1)^{n-1} \frac{1}{n2^n x^n} + \frac{1}{x^n} \varepsilon(\frac{1}{x}), \text{ où } \lim_{x \to \infty} \varepsilon(\frac{1}{x}) = 0$$

Cela nous permet d'avoir une idée assez précise du comportement de f au voisinage de $+\infty$. Lorsque $x \to +\infty$ alors $f(x) \to \ln 2$. Et le second terme est $+\frac{1}{2}x$, donc est positif, cela signifie que la fonction f(x) tend vers $\ln 2$ tout en restant au-dessus de $\ln 2$.

Remarque

- 1. Un DL en $+\infty$ s'appelle aussi un développement asymptotique.
- 2. Dire que la fonction $x \mapsto f(x)$ admet un DL en $+\infty$ à l'ordre n est équivalent à dire que

la fonction $x \to f(\frac{1}{x})$ admet un DL en 0^+ à l'ordre n.

3. On peut définir de même ce qu'est un DL en $-\infty$.

Proposition 98

On suppose que la fonction $x\mapsto \frac{f(x)}{x}$ admet un DL en $+\infty$ (ou en $-\infty$) : $\frac{f(x)}{x}=a_0+\frac{a_1}{x}+\frac{a_k}{x^k}+\frac{1}{x^k}\varepsilon(\frac{1}{x})$, où k est le plus petit entier ≥ 2 tel que le coefficient de $\frac{1}{x^k}$ soit non nul. Alors $\lim_{x\to+\infty}f(x)-(a_0x+a_1)=0$ (resp. $x\to-\infty$) : la droite $y=a_0x+a_1$ est une **asymptote** à la courbe de f en $+\infty$ (ou $-\infty$) et la position de la courbe par rapport à l'asymptote est donnée par le signe de f(x)-y, c'est-à-dire le signe de $\frac{a_k}{x^{k-1}}$.

Démonstration

On a $\lim_{x\to +\infty} \left(f(x)-a_0x-a_1\right) = \lim_{x\to +\infty} \frac{a_k}{x^{k-1}} + \frac{1}{x^{k-1}} \varepsilon(\frac{1}{x}) = 0$. Donc $y=a_0x+a_1$ est une asymptote à la courbe de f. Ensuite on calcule la différence $f(x)-a_0x-a_1=\frac{a_k}{x^{k-1}}+\frac{1}{x^{k-1}}\varepsilon(\frac{1}{x})=\frac{a_k}{x^{k-1}}\left(1+\frac{1}{a_k}\varepsilon(\frac{1}{x})\right)$.

Exemple 144

Asymptote de $f(x) = \exp \frac{1}{x} \cdot \sqrt{x^2 - 1}$.

1. En $+\infty$,

$$\frac{f(x)}{x} = \exp\frac{1}{x} \cdot \frac{\sqrt{x^2 - 1}}{x} = \exp\frac{1}{x} \cdot \sqrt{1 - \frac{1}{x^2}}$$

$$= \left(1 + \frac{1}{x} + \frac{1}{2x^2} + \frac{1}{6x^3} + \frac{1}{x^3} \varepsilon(\frac{1}{x})\right) \cdot \left(1 - \frac{1}{2x^2} + \frac{1}{x^3} \varepsilon(\frac{1}{x})\right)$$

$$= \dots = 1 + \frac{1}{x} - \frac{1}{3x^3} + \frac{1}{x^3} \varepsilon(\frac{1}{x})$$

Donc l'asymptote de f en $+\infty$ est y=x+1. Comme $f(x)-x-1=-\frac{1}{3x^2}+\frac{1}{x^2}\varepsilon(\frac{1}{x})$ quand $x\to +\infty$, le graphe de f reste en dessous de l'asymptote.

2. En $-\infty$. $\frac{f(x)}{x} = \exp{\frac{1}{x}} \cdot \frac{\sqrt{x^2-1}}{x} = -\exp{\frac{1}{x}} \cdot \sqrt{1-\frac{1}{x^2}} = -1-\frac{1}{x}+\frac{1}{3x^3}+\frac{1}{x^3}\varepsilon(\frac{1}{x})$. Donc y=-x-1 est une asymptote de f en $-\infty$. On a $f(x)+x+1=\frac{1}{3x^2}+\frac{1}{x^2}\varepsilon(\frac{1}{x})$ quand $x\to -\infty$; le graphe de f reste au-dessus de l'asymptote.

Mini-exercices

- 1. Calculer la limite de $\frac{\sin x x}{x^3}$ lorsque x tend vers 0. Idem avec $\frac{\sqrt{1 + x} \sinh \frac{x}{2}}{x^k}$ (pour k = 1, 2, 3, ...).
- 2. Calculer la limite de $\frac{\sqrt{x}-1}{\ln x}$ lorsque x tend vers 1. Idem pour $\left(\frac{1-x}{1+x}\right)^{\frac{1}{x}}$, puis $\frac{1}{\tan^2 x} \frac{1}{x^2}$ lorsque x tend vers 0.
- 3. Soit $f(x) = \exp x + \sin x$. Calculer l'équation de la tangente en x = 0 et la position du graphe. Idem avec $g(x) = \sinh x$.
- 4. Calculer le DL en $+\infty$ à l'ordre 5 de $\frac{x}{x^2-1}$. Idem à l'ordre 2 pour $\left(1+\frac{1}{x}\right)^x$.
- 5. Soit $f(x) = \sqrt{\frac{x^3+1}{x+1}}$. Déterminer l'asymptote en $+\infty$ et la position du graphe par rapport à cette asymptote.

Auteurs

Rédaction: Arnaud Bodin

Basé sur des cours de Guoting Chen et Marc Bourdon

Relecture : Pascal Romon Dessins : Benjamin Boutin

15 Courbes paramétrées

- 1 Notions de base
- 2 Tangente à une courbe paramétrée
- 3 Points singuliers Branches infinies
- 4 Plan d'étude d'une courbe paramétrée
- 5 Courbes en polaires : théorie
- 6 Courbes en polaires : exemples

Dans ce chapitre nous allons voir les propriétés fondamentales des courbes paramétrées. Commençons par présenter une courbe particulièrement intéressante. La *cycloïde* est la courbe que parcourt un point choisi de la roue d'un vélo, lorsque le vélo avance. Les coordonnées (x, y) de ce point M varient en fonction du temps :

$$\begin{cases} x(t) = r(t - \sin t) \\ y(t) = r(1 - \cos t) \end{cases}$$

où r est le rayon de la roue.

La cycloïde a des propriétés remarquables. Par exemple, la cycloïde renversée est une courbe brachistochrone: c'est-à-dire que c'est la courbe qui permet à une bille d'arriver le plus vite possible d'un point A à un point B. Contrairement à ce que l'on pourrait croire ce n'est pas une ligne droite, mais bel et bien la cycloïde. Sur le dessin suivant les deux billes sont lâchées en A à l'instant t_0 , l'une sur le segment [AB]; elle aura donc une accélération constante. La seconde parcourt la cycloïde renversée, ayant une tangente verticale en A et passant par B. La bille accélère beaucoup au début et elle atteint B bien avant l'autre bille (à l'instant t_4 sur le dessin). Notez que la bille passe même par des positions en-dessous de B (par exemple en t_3).

1. Notions de base

1.1. Définition d'une courbe paramétrée

Définition 75

Une courbe paramétrée plane est une application

$$f: D \subset \mathbb{R} \to \mathbb{R}^2$$

$$t \mapsto f(t)$$

d'un sous-ensemble D de \mathbb{R} dans \mathbb{R}^2 .

Ainsi, une courbe paramétrée est une application qui, à un réel t (le paramètre), associe un point du plan. On parle aussi d'arc paramétré. On peut aussi la noter $f: D \subset \mathbb{R} \to \mathbb{R}^2$ ou écrire $t \mapsto M(t)$

en abrégé $t\mapsto M(t)$ ou $t\mapsto \binom{x(t)}{y(t)}$. Enfin en identifiant $\mathbb C$ avec $\mathbb R^2$, on note aussi $t\mapsto z(t)=x(t)+\mathrm{i} y(t)$ avec l'identification usuelle entre le point $M(t)=\binom{x(t)}{y(t)}$ et son affixe $z(t)=x(t)+\mathrm{i} y(t)$.

Par la suite, une courbe sera fréquemment décrite de manière très synthétique sous une forme du type

$$\begin{cases} x(t) = 3\ln t \\ y(t) = 2t^2 + 1 \end{cases}, \quad t \in]0, +\infty[\quad \text{ou} \quad z(t) = e^{it}, \quad t \in [0, 2\pi].$$

Il faut comprendre que x et y désignent des fonctions de D dans $\mathbb R$ ou que z désigne une fonction de D dans $\mathbb C$. Nous connaissons déjà des exemples de paramétrisations :

Exemple 145

- $t\mapsto (\cos t,\sin t),\,t\in [0,2\pi[$: une paramétrisation du cercle trigonométrique.
- t → (2t-3,3t+1), $t \in \mathbb{R}$: une paramétrisation de la droite passant par le point A(-3,1) et de vecteur directeur $\vec{u}(2,3)$.
- λ → $((1-\lambda)x_A + \lambda x_B, (1-\lambda)y_A + \lambda y_B), \lambda \in [0,1]$: une paramétrisation du segment [AB].
- Si f est une fonction d'un domaine D de $\mathbb R$ à valeurs dans $\mathbb R$, une paramétrisation du graphe de f, c'est-à-dire de la courbe d'équation y = f(x), est $\begin{cases} x(t) = t \\ y(t) = f(t) \end{cases}$.

Il est important de comprendre qu'une courbe paramétrée ne se réduit pas au dessin, malgré le vocabulaire utilisé, mais c'est bel et bien *une application*. Le graphe de la courbe porte le nom suivant :

Définition 76

Le support d'une courbe paramétrée $f: D \subset \mathbb{R} \to \mathbb{R}^2$ est l'ensemble des points M(t) $t \mapsto f(t)$ où t décrit D.

Néanmoins par la suite, quand cela ne pose pas de problème, nous identifierons ces deux notions en employant le mot *courbe* pour désigner indifféremment à la fois l'application et son graphe. Des courbes paramétrées différentes peuvent avoir un même support. C'est par exemple le cas des courbes :

dont le support est un cercle, parcouru une seule fois pour la première paramétrisation et deux fois pour l'autre (figure de gauche).

Plus surprenant, la courbe

$$t \mapsto \left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right), \qquad t \in \mathbb{R},$$

est une paramétrisation du cercle trigonométrique privé du point (-1,0), avec des coordonnées qui sont des fractions rationnelles (figure de droite).

Ainsi, la seule donnée d'un dessin ne suffit pas à définir un arc paramétré, qui est donc plus qu'une simple courbe. C'est une *courbe munie d'un mode de parcours*. Sur cette courbe, on avance mais on peut revenir en arrière, on peut la parcourir une ou plusieurs fois, au gré du paramètre, celui-ci n'étant d'ailleurs jamais visible sur le dessin. On « voit » x(t), y(t), mais pas t.

Interprétation cinématique. La cinématique est l'étude des mouvements. Le paramètre t s'interprète comme le temps. On affine alors le vocabulaire : la courbe paramétrée s'appelle plutôt point en mouvement et le support de cette courbe porte le nom de trajectoire. Dans ce cas, on peut dire que M(t) est la position du point M à l'instant t.

1.2. Réduction du domaine d'étude

Rappelons tout d'abord l'effet de quelques transformations géométriques usuelles sur le point M(x, y) (x et y désignant les coordonnées de M dans un repère orthonormé (O, \vec{i}, \vec{j}) donné).

- Translation de vecteur $\vec{u}(a,b)$: $t_{\vec{u}}(M) = (x+a,y+b)$.
- Réflexion d'axe (Ox): $s_{(Ox)}(M) = (x, -y)$.
- Réflexion d'axe (Oy): $s_{(Oy)}(M) = (-x, y)$.
- Symétrie centrale de centre $O: s_O(M) = (-x, -y)$.
- Symétrie centrale de centre $I(a,b): s_I(M) = (2a x, 2b y)$.
- Réflexion d'axe la droite (*D*) d'équation $y = x : s_D(M) = (y, x)$.
- Réflexion d'axe la droite (D') d'équation $y = -x : s_{D'}(M) = (-y, -x)$.
- Rotation d'angle $\frac{\pi}{2}$ autour de $O: \operatorname{rot}_{O,\pi/2}(M) = (-y,x)$.
- Rotation d'angle $-\frac{\pi}{2}$ autour de $O: \operatorname{rot}_{O, -\pi/2}(M) = (y, -x)$.

Voici la représentation graphique de quelques-unes de ces transformations.

On utilise ces transformations pour réduire le domaine d'étude d'une courbe paramétrée. Nous le ferons à travers quatre exercices.

Exemple 146

Déterminer un domaine d'étude le plus simple possible de l'arc $\begin{cases} x(t) = t - \frac{3}{2}\sin t \\ y(t) = 1 - \frac{3}{2}\cos t \end{cases}$

Solution.

Pour $t \in \mathbb{R}$,

$$M(t+2\pi) = \left(t+2\pi - \frac{3}{2}\sin(t+2\pi), 1 - \frac{3}{2}\cos(t+2\pi)\right) = \left(t - \frac{3}{2}\sin t, 1 - \frac{3}{2}\cos t\right) + (2\pi,0) = t_{\vec{u}}(M(t))$$

où $\vec{u}=(2\pi,0)$. Donc, on étudie l'arc et on en trace le support sur un intervalle de longueur 2π au choix, comme $[-\pi,\pi]$ par exemple, puis on obtient la courbe complète par translations de vecteurs $k \cdot (2\pi,0) = (2k\pi,0), k \in \mathbb{Z}$.

Pour $t \in [-\pi, \pi]$,

$$M(-t) = \left(-(t - \frac{3}{2}\sin t), 1 - \frac{3}{2}\cos t\right) = s_{(Oy)}(M(t)).$$

On étudie la courbe et on en trace le support sur $[0,\pi]$ (première figure), ensuite on effectue la réflexion d'axe (Oy) (deuxième figure), puis on obtient la courbe complète par translations de vecteurs $k\vec{u}$, $k \in \mathbb{Z}$ (troisième figure).

Exemple 147

Déterminer un domaine d'étude le plus simple possible d'une *courbe de Lissajous* $\begin{cases} x(t) = \sin(2t) \\ y(t) = \sin(3t) \end{cases}$

Solution.

- Pour $t \in \mathbb{R}$, $M(t+2\pi)=M(t)$ et on obtient la courbe complète quand t décrit $[-\pi,\pi]$.
- Pour $t \in [-\pi, \pi]$, $M(-t) = (-\sin(2t), -\sin(3t)) = s_O(M(t))$. On étudie et on construit la courbe pour $t \in [0, \pi]$, puis on obtient la courbe complète par symétrie centrale de centre O.
- Pour $t \in [0,\pi]$, $M(\pi-t) = \left(\sin(2\pi-2t),\sin(3\pi-3t)\right) = \left(\sin(-2t),\sin(\pi-3t)\right) = \left(-\sin(2t),\sin(3t)\right) = s_{(Oy)}(M(t))$. On étudie et on construit la courbe pour $t \in [0,\frac{\pi}{2}]$ (première figure), on effectue la réflexion d'axe (Oy) (deuxième figure), puis on obtient la courbe complète par symétrie centrale de centre O (troisième figure).

Exemple 148

Déterminer un domaine d'étude le plus simple possible de l'arc $\begin{cases} x(t) = \frac{t}{1+t^4} \\ y(t) = \frac{t^3}{1+t^4} \end{cases}.$

Indication : on pourra, entre autres, considérer la transformation $t \mapsto 1/t$.

Solution.

Pour tout réel t, M(t) est bien défini.

- Pour $t \in \mathbb{R}$, $M(-t) = s_O(M(t))$. On étudie et on construit l'arc quand t décrit $[0, +\infty[$, puis on obtient la courbe complète par symétrie centrale de centre O.
- Pour $t \in]0, +\infty[$,

$$M\left(\frac{1}{t}\right) = \left(\frac{1/t}{1+1/t^4}, \frac{1/t^3}{1+1/t^4}\right) = \left(\frac{t^3}{1+t^4}, \frac{t}{1+t^4}\right) = \left(y(t), x(t)\right) = s_{(y=x)}(M(t)).$$

Autrement dit, $M(t_2) = s_{(y=x)}\big(M(t_1)\big)$ avec $t_2 = 1/t_1$, et si $t_1 \in]0,1]$ alors $t_2 \in [1,+\infty[$. Puisque la fonction $t \mapsto \frac{1}{t}$ réalise une bijection de $[1,+\infty[$ sur]0,1], alors on étudie et on construit la courbe quand t décrit]0,1] (première figure), puis on effectue la réflexion d'axe la première bissectrice (deuxième figure) puis on obtient la courbe complète par symétrie centrale de centre O et enfin en plaçant le point M(0) = (0,0) (troisième figure).

Exemple 149

Déterminer un domaine d'étude le plus simple possible de l'arc $z=\frac{1}{3}\left(2e^{\mathrm{i}t}+e^{-2\mathrm{i}t}\right)$. En calculant $z(t+\frac{2\pi}{3})$, trouver une transformation géométrique simple laissant la courbe globalement invariante.

Solution.

- Pour $t \in \mathbb{R}$, $z(t+2\pi) = \frac{1}{3}\left(2e^{\mathrm{i}(t+2\pi)} + e^{-2\mathrm{i}(t+2\pi)}\right) = \frac{1}{3}\left(2e^{\mathrm{i}t} + e^{-2\mathrm{i}t}\right) = z(t)$. La courbe complète est obtenue quand t décrit $[-\pi,\pi]$.
- Pour $t \in [-\pi, \pi]$, $z(-t) = \frac{1}{3} (2e^{-it} + e^{2it}) = \overline{\frac{1}{3} (2e^{it} + e^{-2it})} = \overline{z(t)}$. Donc, on étudie et on

- construit la courbe quand t décrit $[0,\pi]$, la courbe complète étant alors obtenue par réflexion d'axe (Ox) (qui correspond à la conjugaison).
- Pour $t \in \mathbb{R}$, $z(t+\frac{2\pi}{3})=\frac{1}{3}\left(2e^{\mathrm{i}(t+2\pi/3)}+e^{-2\mathrm{i}(t+2\pi/3)}\right)=\frac{1}{3}\left(2e^{2\mathrm{i}\pi/3}e^{\mathrm{i}t}+e^{-4\mathrm{i}\pi/3}e^{-2\mathrm{i}t}\right)=e^{2\mathrm{i}\pi/3}z(t)$. Le point $M(t+2\pi/3)$ est donc l'image du point M(t) par la rotation de centre O et d'angle $\frac{2\pi}{3}$. La courbe complète est ainsi invariante par la rotation de centre O et d'angle $\frac{2\pi}{3}$.

1.3. Points simples, points multiples

Définition 77

Soit $f: t \mapsto M(t)$ une courbe paramétrée et soit A un point du plan. La *multiplicité* du point A par rapport à la courbe f est le nombre de réels t pour lesquels M(t) = A.

En termes plus savants : la multiplicité du point A par rapport à l'arc f est $Card(f^{-1}(A))$.

- Si A est atteint une et une seule fois, sa multiplicité est 1 et on dit que le point A est un *point simple* de la courbe (première figure).
- Si A est atteint pour deux valeurs distinctes du paramètre et deux seulement, on dit que A est un *point double* de la courbe (deuxième figure).
- On parle de même de *points triples* (troisième figure), *quadruples*, ..., *multiples* (dès que le point est atteint au moins deux fois).
- Une courbe dont tous les points sont simples est appelée une courbe paramétrée simple. Il revient au même de dire que l'application $t \mapsto M(t)$ est injective.

Comment trouve-t-on les points multiples?

Pour trouver les points multiples d'une courbe, on cherche les couples $(t,u) \in D^2$ tels que t > u et M(t) = M(u).

On se limite au couple (t, u) avec t > u afin de ne pas compter la solution redondante (u, t) en plus de (t, u).

Exemple 150

Trouver les points multiples de l'arc $\begin{cases} x(t) = 2t + t^2 \\ y(t) = 2t - \frac{1}{t^2} \end{cases}, t \in \mathbb{R}^*.$

Solution. Soit $(t,u) \in (\mathbb{R}^*)^2$ tel que t > u.

$$\begin{split} M(t) &= M(u) \iff \left\{ \begin{array}{l} 2t + t^2 = 2u + u^2 \\ 2t - \frac{1}{t^2} = 2u - \frac{1}{u^2} \end{array} \right. \iff \left\{ \begin{array}{l} (t^2 - u^2) + 2(t - u) = 0 \\ 2(t - u) - \left(\frac{1}{t^2} - \frac{1}{u^2}\right) = 0 \end{array} \right. \iff \left\{ \begin{array}{l} (t - u)(t + u + 2) = 0 \\ (t - u)\left(2 + \frac{t + u}{t^2u^2}\right) = 0 \end{array} \right. \\ \iff \left\{ \begin{array}{l} t + u + 2 = 0 \\ 2 + \frac{t + u}{t^2u^2} = 0 \end{array} \right. (\operatorname{car} t - u \neq 0) \iff \left\{ \begin{array}{l} S + 2 = 0 \\ 2 + \frac{S}{P^2} = 0 \end{array} \right. (\operatorname{en \ posant} S = t + u \operatorname{et} P = tu) \\ \iff \left\{ \begin{array}{l} S = -2 \\ P^2 = 1 \end{array} \right. \iff \left\{ \begin{array}{l} S = -2 \\ P = 1 \end{array} \right. \operatorname{ou} \left\{ \begin{array}{l} S = -2 \\ P = -1 \end{array} \right. \\ \iff t = t \ u \ \operatorname{sont} \operatorname{les \ deux \ solutions \ de} \quad X^2 + 2X + 1 = 0 \quad \operatorname{ou \ de} \quad X^2 + 2X - 1 = 0 \\ \iff t = -1 + \sqrt{2} \quad \operatorname{et} \quad u = -1 - \sqrt{2} \quad (\operatorname{car} t > u). \end{split}$$

Il nous reste à déterminer où est ce point double M(t)=M(u). Fixons $t=-1+\sqrt{2}$ et $u=-1-\sqrt{2}$. De plus, $x(t)=t^2+2t=1$ (puisque pour cette valeur de t, $t^2+2t-1=0$). Ensuite, en divisant les deux membres de l'égalité $t^2+2t=1$ par t^2 , nous déduisons $\frac{1}{t^2}=1+\frac{2}{t}$, puis, en divisant les deux membres de l'égalité $t^2+2t=1$ par t, nous déduisons $\frac{1}{t}=t+2$. Par suite, y(t)=2t-(1+2(t+2))=-5. La courbe admet un point double, le point de coordonnées (1,-5).

Remarque 1

Dans cet exercice, les expressions utilisées sont des fractions rationnelles, ou encore, une fois réduites au même dénominateur, puis une fois les dénominateurs éliminés, les expressions sont polynomiales. Or, à u donné, l'équation M(t)=M(u), d'inconnue t, admet bien sûr la solution t=u. En conséquence, on doit systématiquement pouvoir mettre en facteur (t-u), ce que nous avons fait en regroupant les termes analogues : nous avons écrit tout de suite $(t^2-u^2)+2(t-u)=0$ et non pas $t^2+2t-u^2-2u=0$. Le facteur t-u se simplifie alors car il est non nul.

Mini-exercices

- 1. Représenter graphiquement chacune des transformations du plan qui servent à réduire l'intervalle d'étude.
- 2. Pour la courbe de Lissajous définie par $x(t) = \sin(2t)$ et $y(t) = \sin(3t)$, montrer que la courbe est symétrique par rapport à l'axe (Ox). Exprimer cette symétrie en fonction de celles déjà trouvées : s_O et $s_{(Oy)}$.
- 3. Trouver les symétries et les points multiples de la courbe définie par $x(t) = \frac{1-t^2}{1+t^2}$ et $y(t) = t \frac{1-t^2}{1+t^2}$.
- 4. Trouver un intervalle d'étude pour l'astroïde définie par $x(t) = \cos^3 t$, $y(t) = \sin^3 t$.
- 5. Trouver un intervalle d'étude pour la cycloïde définie par $x(t) = r(t \sin t)$, $y(t) = r(1 \cos t)$. Montrer que la cycloïde n'a pas de points multiples.

2. Tangente à une courbe paramétrée

2.1. Tangente à une courbe

Soit $f: t \mapsto M(t)$, $t \in D \subset \mathbb{R}$, une courbe. Soit $t_0 \in D$. On veut définir la tangente en $M(t_0)$.

On doit déjà prendre garde au fait que lorsque ce point $M(t_0)$ est un point multiple de la courbe, alors la courbe peut tout à fait avoir plusieurs tangentes en ce point (figure de droite). Pour éviter cela, on supposera que la courbe est *localement simple en* t_0 , c'est-à-dire qu'il existe un intervalle ouvert non vide I de centre t_0 tel que l'équation $M(t) = M(t_0)$ admette une et une seule solution dans $D \cap I$, à savoir $t = t_0$ (figure de gauche). Il revient au même de dire que l'application $t \mapsto M(t)$ est *localement injective*. Dans tout ce paragraphe, nous supposerons systématiquement que cette condition est réalisée.

Soit $f: t \mapsto M(t)$, $t \in D \subset \mathbb{R}$, une courbe paramétrée et soit $t_0 \in D$. On suppose que la courbe est localement simple en t_0 .

Définition 78. Tangente

On dit que la courbe admet une tangente en $M(t_0)$ si la droite $(M(t_0)M(t))$ admet une position limite quand t tend vers t_0 . Dans ce cas, la droite limite est la *tangente* en $M(t_0)$.

2.2. Vecteur dérivé

On sait déjà que la tangente en $M(t_0)$, quand elle existe, passe par le point $M(t_0)$. Mais il nous manque sa direction. Pour $t \neq t_0$, un vecteur directeur de la droite $(M(t_0)M(t))$ est le vecteur $\overline{M(t_0)M(t)} = \begin{pmatrix} x(t)-x(t_0) \\ y(t)-y(t_0) \end{pmatrix}$ (rappelons que ce vecteur est supposé non nul pour t proche de t_0 et distinct de t_0). Quand t tend vers t_0 , les coordonnées de ce vecteur tendent vers 0; autrement dit le vecteur $\overline{M(t_0)M(t)}$ tend (malheureusement) vers $\overline{0}$. Le vecteur nul n'indique aucune direction particulière et nous ne connaissons toujours pas la direction limite de la droite $(M(t_0)M(t))$. Profitons-en néanmoins pour définir la notion de limite et de continuité d'une fonction à valeurs dans \mathbb{R}^2 .

Définition 79

Soit $t \mapsto M(t) = (x(t), y(t))$, $t \in D \subset \mathbb{R}$, une courbe paramétrée et soit $t_0 \in D$. La courbe est **continue en** t_0 si et seulement si les fonctions x et y sont continues en t_0 . La courbe est **continue sur** D si et seulement si elle est continue en tout point de D.

En d'autres termes la courbe est continue en t_0 si et seulement si $x(t) \to x(t_0)$ et $y(t) \to y(t_0)$, lorsque $t \to t_0$.

Revenons maintenant à notre tangente. Un autre vecteur directeur de la droite $(M(t_0)M(t))$ est le vecteur

$$\frac{1}{t-t_0}\overrightarrow{M(t_0)M(t)} = \begin{pmatrix} \frac{x(t)-x(t_0)}{t-t_0} \\ \frac{y(t)-y(t_0)}{t-t_0} \end{pmatrix}.$$

On a multiplié le vecteur $\overline{M(t_0)M(t)}$ par le réel $\frac{1}{t-t_0}$. Remarquons que chaque coordonnée de ce vecteur est un taux d'accroissement, dont on cherche la limite. D'où la définition :

Définition 80

Soient $t \mapsto M(t) = (x(t), y(t)), t \in D \subset \mathbb{R}$, une courbe paramétrée et $t_0 \in D$. La courbe est *déri*vable en t_0 si et seulement si les fonctions x et y le sont. Dans ce cas, le vecteur dérivé de la courbe en t_0 est le vecteur $\begin{pmatrix} x'(t_0) \\ y'(t_0) \end{pmatrix}$. Ce vecteur se note $\frac{\overline{\mathrm{d}M}}{\mathrm{d}t}(t_0)$.

Cette notation se justifie car dans le vecteur $\frac{1}{t-t_0} \overrightarrow{M(t_0)M(t)}$, dont on cherche la limite, $\overrightarrow{M(t_0)M(t)}$ peut s'écrire $M(t) - M(t_0)$ (on rappelle qu'une différence de deux points B - A est un vecteur AB). Ainsi:

$$\overline{\frac{\mathrm{d} \overrightarrow{M}}{\mathrm{d} t}}(t_0) = \ll \frac{\overline{\mathrm{diff\acute{e}rence\ infinit\acute{e}simale\ de\ }\overrightarrow{M}}}{\mathrm{diff\acute{e}rence\ infinit\acute{e}simale\ de\ }t}\ \mathrm{en\ }t_0 \ \mathrm{*}$$

2.3. Tangente en un point régulier

Si le vecteur dérivé $\frac{\overline{dM}}{dt}(t_0)$ n'est pas nul, celui-ci indique effectivement la direction limite de la droite $(M(t_0)M(t))$. Nous étudierons plus tard le cas où le vecteur dérivé est nul.

Définition 81

Soit $t \mapsto M(t)$, $t \in D \subset \mathbb{R}$, une courbe dérivable sur D et soit t_0 un réel de D.

- Si dM/dt (t₀) ≠ 0, le point M(t₀) est dit régulier.
 Si dM/dt (t₀) = 0, le point M(t₀) est dit singulier.
- Une courbe dont tous les points sont réguliers est appelée courbe régulière.

Interprétation cinématique. Si t est le temps, le vecteur dérivé $\frac{\overline{dM}}{dt}(t_0)$ est le vecteur vitesse au point $M(t_0)$. Un point singulier, c'est-à-dire un point en lequel la vitesse est nulle, s'appellera alors plus volontiers point stationnaire. D'un point de vue cinématique, il est logique que le vecteur vitesse en un point, quand il est non nul, dirige la tangente à la trajectoire en ce point. C'est ce qu'exprime le théorème suivant, qui découle directement de notre étude du vecteur dérivé :

Théorème 43

En tout point régulier d'une courbe dérivable, cette courbe admet une tangente. La tangente en un point régulier est dirigée par le vecteur dérivé en ce point.

Si $\frac{\overrightarrow{dM}}{dt}(t_0) \neq \vec{0}$, une équation de la tangente T_0 en $M(t_0)$ est donc fournie par :

$$M(x,y) \in T_0 \iff \begin{vmatrix} x - x(t_0) & x'(t_0) \\ y - y(t_0) & y'(t_0) \end{vmatrix} = 0 \iff y'(t_0)(x - x(t_0)) - x'(t_0)(y - y(t_0)) = 0.$$

Exemple 151

Trouver les points où la tangente à la courbe de Lissajous $\begin{cases} x(t) = \sin(2t) \\ y(t) = \sin(3t) \end{cases}, t \in [-\pi, \pi], \text{ est }$ verticale, puis horizontale.

Solution.

Tout d'abord, par symétries, on limite notre étude sur $t \in [0, \frac{\pi}{2}]$. Or au point $M(t) = \begin{pmatrix} \sin(2t) \\ \sin(3t) \end{pmatrix}$, le vecteur dérivé est

$$\frac{\overrightarrow{\mathrm{d}M}}{\mathrm{d}t} = \begin{pmatrix} x'(t) \\ y'(t) \end{pmatrix} = \begin{pmatrix} 2\cos(2t) \\ 3\cos(3t) \end{pmatrix}.$$

Quand est-ce que la première coordonnée de ce vecteur dérivé est nul (sur $t \in [0, \frac{\pi}{2}]$)?

$$x'(t) = 0 \iff 2\cos(2t) = 0 \iff t = \frac{\pi}{4}$$

Et pour la seconde :

$$y'(t) = 0 \iff 3\cos(3t) = 0 \iff t = \frac{\pi}{6}$$
 ou $t = \frac{\pi}{2}$

Les deux coordonnées ne s'annulent jamais en même temps, donc le vecteur dérivé n'est jamais nul, ce qui prouve que tous les points sont réguliers, et le vecteur dérivé dirige la tangente.

La tangente est verticale lorsque le vecteur dérivé est vertical, ce qui équivaut à x'(t) = 0, autrement dit en $M(\frac{\pi}{4})$. La tangente est horizontale lorsque le vecteur dérivé est horizontal, ce qui équivaut à y'(t) = 0, autrement dit en $M(\frac{\pi}{6})$ et en $M(\frac{\pi}{2})$.

On trouve les autres tangentes horizontales et verticales par symétries.

Remarque 2

- Une courbe peut avoir une tangente verticale, contrairement à ce à quoi on est habitué pour les graphes de fonctions du type y = f(x).
- Par contre dans le cas d'une paramétrisation cartésienne du type $\begin{cases} x(t) = t \\ y(t) = f(t) \end{cases}$ qui est une paramétrisation du graphe de la fonction (dérivable) f (où cette fois-ci f est à valeurs dans \mathbb{R}), le vecteur dérivé en $t_0 = x_0$ est $\binom{1}{f'(x_0)}$. Celui-ci n'est jamais nul puisque sa première coordonnée est non nulle. Ainsi, une paramétrisation cartésienne dérivable est toujours régulière. De plus, pour la même raison, ce vecteur n'est jamais vertical.

2.4. Dérivation d'expressions usuelles

On généralise un peu l'étude précédente. Voici comment dériver le produit scalaire de deux fonctions vectorielles ainsi que la norme.

Théorème 44

Soient f et g deux applications définies sur un domaine D de \mathbb{R} à valeurs dans \mathbb{R}^2 et soit $t_0 \in D$. On suppose que f et g sont dérivables en t_0 . Alors :

1. L'application $t \mapsto \langle \overrightarrow{f(t)} | \overrightarrow{g(t)} \rangle$ est dérivable en t_0 et

$$\frac{\mathrm{d}\langle \overrightarrow{f} \mid \overrightarrow{g} \rangle}{\mathrm{d}t}(t_0) = \langle \frac{\overrightarrow{\mathrm{d}f}}{\mathrm{d}t}(t_0) \mid \overrightarrow{g(t_0)} \rangle + \langle \overrightarrow{f(t_0)} \mid \frac{\overrightarrow{\mathrm{d}g}}{\mathrm{d}t}(t_0) \rangle.$$

2. Si $\overrightarrow{f(t_0)} \neq \overrightarrow{0}$, l'application $t \mapsto \|\overrightarrow{f(t)}\|$ est dérivable en t_0 et, dans ce cas,

$$\frac{\mathrm{d} \|\overrightarrow{f}\|}{\mathrm{d} t}(t_0) = \frac{\left\langle \overrightarrow{f(t_0)} \mid \overrightarrow{\frac{\mathrm{d} f}{\mathrm{d} t}}(t_0) \right\rangle}{\|\overrightarrow{f(t_0)}\|}.$$

Démonstration

Le produit scalaire et la norme sont des fonctions de D dans \mathbb{R} .

1. Posons $\overrightarrow{f} = (x_1, y_1)$ et $\overrightarrow{g} = (x_2, y_2)$. Alors $\langle \overrightarrow{f} \mid \overrightarrow{g} \rangle = x_1 x_2 + y_1 y_2$ est dérivable en t_0 et

$$\langle \overrightarrow{f} \mid \overrightarrow{g} \rangle'(t_0) = (x_1'x_2 + x_1x_2' + y_1'y_2 + y_1y_2')(t_0) = \langle \overrightarrow{f}' \mid \overrightarrow{g} \rangle(t_0) + \langle \overrightarrow{f} \mid \overrightarrow{g}' \rangle(t_0).$$

2. La fonction $\langle \vec{f} \mid \vec{f} \rangle$ est positive, strictement positive en t_0 et est dérivable en t_0 . D'après le théorème de dérivation des fonctions composées, la fonction $||\vec{f}|| = \sqrt{\langle \vec{f} \mid \vec{f} \rangle}$ est dérivable en t_0 et

$$\left(\|\overrightarrow{f}\,\|\right)'(t_0) = \frac{1}{2\sqrt{\left\langle\overrightarrow{f}\,|\,\overrightarrow{f}\,\right\rangle}} \left(\left\langle\overrightarrow{f}\,'\,|\,\overrightarrow{f}\,\right\rangle + \left\langle\overrightarrow{f}\,|\,\overrightarrow{f}\,'\right\rangle\right)(t_0) = \frac{\left\langle\overrightarrow{f}\,|\,\overrightarrow{f}\,'\right\rangle}{\|\overrightarrow{f}\,\|}(t_0).$$

Exemple 152

Soit $t \mapsto M(t) = (\cos t, \sin t)$ une paramétrisation du cercle de centre O et de rayon 1. Pour tout réel t, on a OM(t) = 1 ou encore $\|\overrightarrow{OM(t)}\| = 1$. En dérivant cette fonction constante, on obtient : $\forall t \in \mathbb{R}, \langle \overrightarrow{OM(t)} | \overrightarrow{\frac{dM}{dt}}(t) \rangle = 0$ et on retrouve le fait que la tangente au cercle au point M(t) est orthogonale au rayon $\overrightarrow{OM(t)}$.

Théorème 45

Soient f, g deux applications définies sur un domaine D de \mathbb{R} à valeurs dans \mathbb{R}^2 et λ une application de D dans \mathbb{R} . Soit $t_0 \in D$. On suppose que f, g et λ sont dérivables en t_0 . Alors, f + g et λf sont dérivables en t_0 , et

$$\frac{\overrightarrow{\mathrm{d}(f+g)}}{\mathrm{d}t}(t_0) = \frac{\overrightarrow{\mathrm{d}f}}{\mathrm{d}t}(t_0) + \frac{\overrightarrow{\mathrm{d}g}}{\mathrm{d}t}(t_0) \qquad \text{et} \qquad \frac{\overrightarrow{\mathrm{d}(\lambda \cdot f)}}{\mathrm{d}t}(t_0) = \lambda'(t_0)\overrightarrow{f(t_0)} + \lambda(t_0)\overrightarrow{\overrightarrow{\mathrm{d}f}}(t_0).$$

Démonstration

Posons $\overrightarrow{f} = (x_1, y_1)$ et $\overrightarrow{g} = (x_2, y_2)$. Alors

$$(\overrightarrow{f} + \overrightarrow{g})'(t_0) = (x_1 + x_2, y_1 + y_2)'(t_0) = (x_1' + x_2', y_1' + y_2')(t_0) = \overrightarrow{f}'(t_0) + \overrightarrow{g}'(t_0),$$

et aussi

$$(\lambda \overrightarrow{f})'(t_0) = (\lambda x_1, \lambda y_1)'(t_0) = (\lambda' x_1 + \lambda x_1', \lambda' y_1 + \lambda y_1')(t_0) = \lambda'(x_1, y_1)(t_0) + \lambda(x_1', y_1')(t_0) = (\lambda' \overrightarrow{f} + \lambda \overrightarrow{f}')(t_0).$$

De même, toujours en travaillant sur les coordonnées, on établit aisément que :

Théorème 46

Soient $t \mapsto \theta(t)$ une application dérivable sur un domaine D de \mathbb{R} à valeurs dans un domaine D' de \mathbb{R} et $u \mapsto f(u)$ une application dérivable sur D' à valeurs dans \mathbb{R}^2 . Alors $f \circ \theta$ est dérivable sur D et, pour $t_0 \in D$,

$$\frac{\overrightarrow{\mathrm{d}(f\circ\theta)}}{\mathrm{d}t}(t_0) = \theta'(t_0) \cdot \frac{\overrightarrow{\mathrm{d}f}}{\mathrm{d}t} \big(\theta(t_0)\big).$$

Mini-exercices

- 1. Soit la courbe définie par $x(t) = t^5 4t^3$, $y(t) = t^2$. Calculer le vecteur dérivé en chaque point. Déterminer le point singulier. Calculer une équation de la tangente au point (3,1). Calculer les équations de deux tangentes au point (0,4).
- 2. Soit f une fonction dérivable de $D \subset \mathbb{R}$ dans \mathbb{R}^2 . Calculer la dérivée de l'application $t \mapsto \|f(t)\|^2$.
- 3. Calculer le vecteur dérivé en tout point de l'astroïde définie par $x(t) = \cos^3 t$, $y(t) = \sin^3 t$. Quels sont les points singuliers? Trouver une expression simple pour la pente de tangente en un point régulier.
- 4. Calculer le vecteur dérivé en tout point de la cycloïde définie par $x(t) = r(t \sin t)$, $y(t) = r(1 \cos t)$. Quels sont les points singuliers? En quels points la tangente est-elle horizontale? En quels points la tangente est-elle parallèle à la bissectrice d'équation (y = x)?

3. Points singuliers – Branches infinies

3.1. Tangente en un point singulier

Rappelons qu'un point $M(t_0)$ d'une courbe paramétrée M(t) = (x(t), y(t)) est dit **point singulier** si le vecteur dérivé en ce point est nul, c'est-à-dire si $\frac{\overrightarrow{dM}}{dt}(t_0) = \overrightarrow{0}$, ou autrement dit si $(x'(t_0), y'(t_0)) = (0,0)$. Lorsque le vecteur dérivé est nul, il n'est d'aucune utilité pour la recherche d'une tangente. Pour obtenir une éventuelle tangente en un point singulier, le plus immédiat est de revenir à la définition en étudiant la direction limite de la droite $(M(t_0)M(t))$, par exemple en étudiant la limite du coefficient directeur de cette droite dans le cas où cette droite n'est pas parallèle à (Oy). En supposant que c'est le cas :

En un point $M(t_0)$ singulier, on étudie $\lim_{t \to t_0} \frac{y(t) - y(t_0)}{x(t) - x(t_0)}$. Si cette limite est un réel ℓ , la tangente en $M(t_0)$ existe et a pour coefficient directeur ℓ .

Si cette limite existe mais est infinie, la tangente en $M(t_0)$ existe et est parallèle à (Oy).

Exemple 153

Trouver les points singuliers de la courbe $\begin{cases} x(t) = 3t^2 \\ y(t) = 2t^3 \end{cases}$. Donner une équation cartésienne de la tangente en tout point de la courbe.

Solution.

- Calcul du vecteur dérivé. Pour $t \in \mathbb{R}$, $\frac{\overrightarrow{dM}}{dt}(t) = {6t \choose 6t^2}$. Ce vecteur est nul si et seulement si $6t = 6t^2 = 0$ ou encore t = 0. Tous les points de la courbe sont réguliers, à l'exception de M(0).
- **Tangente en** M(0). Pour $t \neq 0$, $\frac{y(t)-y(0)}{x(t)-x(0)} = \frac{2t^3}{3t^2} = \frac{2t}{3}$. Quand t tend vers 0, cette expression tend vers 0. L'arc admet une tangente en M(0) et cette tangente est la droite passant par M(0) = (0,0) et de pente 0 : c'est l'axe (Ox) (d'équation y = 0).
- Tangente en M(t), $t \neq 0$. Pour $t \in \mathbb{R}^*$, la courbe admet en M(t) une tangente dirigée par $\frac{dM}{dt}(t) = {6t \choose 6t^2}$ ou aussi par le vecteur $\frac{1}{6t} {6t \choose 6t^2} = {1 \choose t}$. Une équation de la tangente en M(t) est donc $t(x-3t^2)-(y-2t^3)=0$ ou encore $y=tx-t^3$ (ce qui reste valable en t=0).

3.2. Position d'une courbe par rapport à sa tangente

Quand la courbe arrive en $M(t_0)$, le long de sa tangente, on a plusieurs possibilités :

- la courbe continue dans le même sens, sans traverser la tangente : c'est un *point d'allure* ordinaire,
- la courbe continue dans le même sens, en traversant la tangente : c'est un *point d'inflexion*,
- la courbe rebrousse chemin le long de cette tangente en la traversant, c'est un point de rebroussement de première espèce,
- la courbe rebrousse chemin le long de cette tangente sans la traverser, c'est un point de rebroussement de seconde espèce.

rebroussement de première espece — rebroussement de seconde espece

Intuitivement, on ne peut rencontrer des points de rebroussement qu'en un point stationnaire, car en un point où la vitesse est non nulle, on continue son chemin dans le même sens.

Pour déterminer de façon systématique la position de la courbe par rapport à sa tangente en un point singulier $M(t_0)$, on effectue un développement limité des coordonnées de M(t) = (x(t), y(t)) au voisinage de $t = t_0$. Pour simplifier l'expression on suppose $t_0 = 0$. On écrit

$$M(t) = M(0) + t^p \overrightarrow{v} + t^q \overrightarrow{w} + t^q \overrightarrow{\varepsilon}(t)$$

où:

- p < q sont des entiers,
- $-\overrightarrow{v}$ et \overrightarrow{w} sont des vecteurs non colinéaires,
- $-\overrightarrow{\varepsilon}(t)$ est un vecteur, tel que $\|\overrightarrow{\varepsilon}(t)\| \to 0$ lorsque $t \to t_0$.

En un tel point M(0), la courbe $\mathscr C$ admet une tangente, dont un vecteur directeur est \overrightarrow{v} . La position de la courbe $\mathscr C$ par rapport à cette tangente est donnée par la parité de p et q:

Prenons par exemple $M(t) = t^2 \vec{v} + t^5 \vec{w}$. Donc p = 2 et q = 5. Lorsque t passe d'une valeur négative à positive, t^2 s'annule mais en restant positif, donc la courbe arrive au point le long de la tangente (dirigée par \vec{v}) et rebrousse chemin en sens inverse. Par contre t^5 change de signe, donc la courbe franchit la tangente au point singulier. C'est bien un point de rebroussement de première espèce.

Voyons un exemple de chaque situation.

Exemple 154

Étudier le point singulier à l'origine de $\left\{ \begin{array}{l} x(t)=t^5 \\ y(t)=t^3 \end{array} \right. .$

Solution.

En M(0) = (0,0), il y a bien un point singulier. On écrit

$$M(t) = t^3 \begin{pmatrix} 0 \\ 1 \end{pmatrix} + t^5 \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

Ainsi p=3, q=5, $\overrightarrow{v}=\begin{pmatrix} 0\\1 \end{pmatrix}$, $\overrightarrow{w}=\begin{pmatrix} 1\\0 \end{pmatrix}$. La tangente, dirigée par \overrightarrow{v} , est verticale à l'origine. Comme p=3 est impair alors t^3 change de signe en 0, donc la courbe continue le long de la tangente, et comme q=5 est aussi impair, la courbe franchit la tangente au point singulier. C'est un point d'inflexion.

Exemple 155

Étudier le point singulier à l'origine de $\left\{ \begin{array}{l} x(t)=2t^2 \\ y(t)=t^2-t^3 \end{array} \right. .$

Solution.

En M(0) = (0,0), il y a bien un point singulier. On écrit

$$M(t) = t^2 \begin{pmatrix} 2 \\ 1 \end{pmatrix} + t^3 \begin{pmatrix} 0 \\ -1 \end{pmatrix}.$$

Ainsi $p=2, q=3, \vec{v}=\begin{pmatrix} 2\\1 \end{pmatrix}, \vec{w}=\begin{pmatrix} 0\\-1 \end{pmatrix}$. C'est un point de rebroussement de première espèce.

Exemple 156

Étudier le point singulier en (1,0) de $\begin{cases} x(t) = 1 + t^2 + \frac{1}{2}t^3 \\ y(t) = t^2 + \frac{1}{2}t^3 + 2t^4 \end{cases}$.

Solution.

On écrit

$$M(t) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + t^2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + t^3 \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} + t^4 \begin{pmatrix} 0 \\ 2 \end{pmatrix}.$$

On a donc p=2 avec $\overrightarrow{v}=\begin{pmatrix}1\\1\end{pmatrix}$, par contre le vecteur $\overrightarrow{v}'=\begin{pmatrix}\frac{1}{2}\\\frac{1}{2}\end{pmatrix}$ est colinéaire à \overrightarrow{v} , donc q=4 et $\overrightarrow{w}=\begin{pmatrix}0\\2\end{pmatrix}$. C'est un point de rebroussement de seconde espèce.

Exemple 157

Étudier le point singulier à l'origine de $\left\{ \begin{array}{l} x(t)=t^2\ln(1+t) \\ y(t)=t^2\left(\exp(t^2)-1\right) \end{array} \right. .$

Solution.

On écrit

$$x(t) = t^3 - \frac{t^4}{2} + t^4 \varepsilon_1(t)$$
 $y(t) = t^4 + t^4 \varepsilon_2(t)$

et ainsi

$$M(t) = t^{3} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + t^{4} \begin{pmatrix} -1/2 \\ 1 \end{pmatrix} + t^{4} \overrightarrow{\varepsilon}(t).$$

On a donc p = 3, q = 4 et c'est un point d'allure ordinaire.

3.3. Branches infinies

Dans ce paragraphe, la courbe $f: t \mapsto M(t)$ est définie sur un intervalle I de \mathbb{R} . On note aussi \mathscr{C} la courbe et t_0 désigne l'une des bornes de I et n'est pas dans I (t_0 est soit un réel, soit $-\infty$, soit $+\infty$).

Définition 82

Il y a *branche infinie* en t_0 dès que l'une au moins des deux fonctions |x| ou |y| tend vers l'infini quand t tend vers t_0 . Il revient au même de dire que $\lim_{t\to t_0} ||f(t)|| = +\infty$.

Pour chaque branche infinie, on cherche s'il existe une asymptote, c'est-à-dire une droite qui approxime cette branche infinie. La droite d'équation y = ax + b est **asymptote** à \mathscr{C} si $y(t) - (ax(t) + b) \rightarrow 0$, lorsque $t \rightarrow t_0$.

Dans la pratique, on mène l'étude suivante :

- 1. Si, quand t tend vers t_0 , x(t) tend vers $+\infty$ (ou $-\infty$) et y(t) tend vers un réel ℓ , la droite d'équation $y = \ell$ est asymptote horizontale à \mathscr{C} .
- 2. Si, quand t tend vers t_0 , y(t) tend vers $+\infty$ (ou $-\infty$) et x(t) tend vers un réel ℓ , la droite d'équation $x = \ell$ est **asymptote verticale** à \mathscr{C} .
- 3. Si, quand t tend vers t_0 , x(t) et y(t) tendent vers $+\infty$ (ou $-\infty$), il faut affiner. On étudie $\lim_{t\to t_0} \frac{y(t)}{x(t)}$ avec les sous-cas suivants :
- (a) Si $\frac{y(t)}{x(t)}$ tend vers 0, la courbe admet une *branche parabolique* de direction asymptotique d'équation y = 0 (mais il n'y a pas d'asymptote).
- (b) Si $\frac{y(t)}{x(t)}$ tend vers $+\infty$ (ou $-\infty$), la courbe admet une *branche parabolique* de direction asymptotique d'équation x = 0 (mais il n'y a pas d'asymptote).
- (c) Si $\frac{y(t)}{x(t)}$ tend vers un réel **non nul** a, la courbe admet une **branche parabolique** de direction asymptotique d'équation y = ax.
 - Il faut encore affiner l'étude. On étudie alors $\lim_{t\to t_0} (y(t) ax(t))$ avec les deux sous-cas :
 - (i) Si y(t) ax(t) tend vers un réel b (nul ou pas), alors $\lim_{t \to t_0} (y(t) (ax(t) + b)) = 0$ et la droite d'équation y = ax + b est **asymptote oblique** à la courbe.
 - (ii) Si y(t) ax(t) tend vers $+\infty$ ou $-\infty$, ou n'a pas de limite, la courbe n'a qu'une direction asymptotique d'équation y = ax, mais n'admet pas de droite asymptote.

De gauche à droite : asymptote verticale, horizontale, oblique.

Une branche parabolique peut ne pas admettre de droite asymptote, comme dans le cas d'une parabole :

Exemple 158

Étudier les asymptotes de la courbe $\begin{cases} x(t) = \frac{t}{t-1} \\ y(t) = \frac{3t}{t^2-1} \end{cases}$. Déterminer la position de la courbe par rapport à ses asymptotes.

Solution.

- **Branches infinies.** La courbe est définie sur $\mathbb{R} \setminus \{-1,+1\}$. $|x(t)| \to +\infty$ uniquement lorsque $t \to +1^-$ ou $t \to +1^+$. $|y(t)| \to +\infty$ lorsque $t \to -1^-$ ou $t \to -1^+$ ou $t \to +1^-$ ou $t \to +1^+$. Il y a donc 4 branches infinies, correspondant à -1^- , -1^+ , $+1^-$, $+1^+$.
- Étude en −1⁻. Lorsque $t \to -1^-$, $x(t) \to \frac{1}{2}$ et $y(t) \to -\infty$: la droite verticale $(x = \frac{1}{2})$ est donc asymptote pour cette branche infinie (qui part vers le bas).
- Étude en −1⁺. Lorsque $t \to -1^+$, $x(t) \to \frac{1}{2}$ et $y(t) \to +\infty$: la même droite verticale d'équation $(x = \frac{1}{2})$ est asymptote pour cette branche infinie (qui part cette fois vers le haut).
- **Étude en** +1⁻. Lorsque $t \to +1^-$, $x(t) \to -\infty$ et $y(t) \to -\infty$. On cherche une asymptote oblique en calculant la limite de $\frac{y(t)}{x(t)}$:

$$\frac{y(t)}{x(t)} = \frac{\frac{3t}{t^2 - 1}}{\frac{t}{t-1}} = \frac{3}{t+1} \longrightarrow \frac{3}{2} \quad \text{lorsque } t \to +1^-.$$

On cherche ensuite si $y(t) - \frac{3}{2}x(t)$ admet une limite finie, lorsque $x \to +1^-$:

$$y(t) - \frac{3}{2}x(t) = \frac{3t}{t^2 - 1} - \frac{3}{2}\frac{t}{t - 1} = \frac{3t - \frac{3}{2}t(t + 1)}{t^2 - 1} = \frac{-\frac{3}{2}t(t - 1)}{(t - 1)(t + 1)} = \frac{-\frac{3}{2}t}{t + 1} \longrightarrow -\frac{3}{4} \quad \text{lorsque } t \to +1^-.$$

Ainsi la droite d'équation $y = \frac{3}{2}x - \frac{3}{4}$ est asymptote à cette branche infinie.

- Étude en +1⁺. Les calculs sont similaires et la même droite d'équation $y = \frac{3}{2}x \frac{3}{4}$ est asymptote à cette autre branche infinie.
- **Position par rapport à l'asymptote verticale.** Il s'agit de déterminer le signe de $x(t) \frac{1}{2}$ lorsque $x \to -1^-$ (puis $x \to -1^+$). Une étude de signe montre que $x(t) \frac{1}{2} > 0$ pour t < -1 et t > +1, et la courbe est alors à droite de l'asymptote verticale; par contre $x(t) \frac{1}{2} < 0$ pour -1 < t < +1, et la courbe est alors à gauche de l'asymptote verticale.
- Position par rapport à l'asymptote oblique. Il s'agit de déterminer le signe de $y(t) \left(\frac{3}{2}x(t) \frac{3}{4}\right)$. La courbe est au-dessus de l'asymptote oblique pour -1 < t < +1; et en-dessous de l'asymptote ailleurs.
- **Point à l'infini.** Lorsque $t \to +\infty$ (ou bien $t \to -\infty$) alors $x(t) \to 1$ et $y(t) \to 0$. Le point (1,0) est donc un point limite de la courbe paramétrée.

On trouvera d'autres exemples d'études de branches infinies dans les exercices de la section suivante.

Mini-exercices

- 1. Déterminer la tangente et le type de point singulier à l'origine dans chacun des cas : $(t^5, t^3 + t^4), (t^2 t^3, t^2 + t^3), (t^2 + t^3, t^4), (t^3, t^6 + t^7).$
- 2. Trouver les branches infinies de la courbe définie par $x(t) = 1 \frac{1}{1+t^2}$, y(t) = t. Déterminer l'asymptote, ainsi que la position de la courbe par rapport à cette asymptote.
- 3. Mêmes questions pour les asymptotes de la courbe définie par $x(t) = \frac{1}{t} + \frac{1}{t-1}$, $y(t) = \frac{1}{t-1}$.
- 4. Déterminer le type de point singulier de l'astroïde définie par $x(t) = \cos^3 t$, $y(t) = \sin^3 t$. Pourquoi l'astroïde n'a-t-elle pas de branche infinie?
- 5. Déterminer le type de point singulier de la cycloïde définie par $x(t) = r(t \sin t)$, $y(t) = r(1 \cos t)$. Pourquoi la cycloïde n'a-t-elle pas d'asymptote?

4. Plan d'étude d'une courbe paramétrée

Dans la pratique, les courbes sont traitées de manière différente à l'écrit et à l'oral. À l'écrit, l'étude d'une courbe est souvent détaillée en un grand nombre de petites questions. Par contre, à l'oral, un énoncé peut simplement prendre la forme « construire la courbe ». Dans ce cas, on peut adopter le plan d'étude qui suit. Ce plan n'est pas universel et n'est qu'une proposition. Aussi, pour deux courbes différentes, il peut être utile d'adopter deux plans d'étude différents.

4.1. Plan d'étude

1. Domaine de définition de la courbe.

Le point M(t) est défini si et seulement si x(t) et y(t) sont définis. Il faut ensuite déterminer un **domaine d'étude** (plus petit que le domaine de définition) grâce aux symétries, périodicités...

2. Vecteur dérivé.

Calcul des dérivées des coordonnées de $t \mapsto M(t)$. Les valeurs de t pour lesquelles x'(t) = 0 (et $y'(t) \neq 0$) fournissent les points à tangente verticale et les valeurs de t pour lesquelles y'(t) = 0 (et $x'(t) \neq 0$) fournissent les points à tangente horizontale. Enfin, les valeurs de t pour lesquelles x'(t) = y'(t) = 0 fournissent les points singuliers, en lesquels on n'a encore aucun renseignement sur la tangente.

3. Tableau de variations conjointes.

L'étude de x' et y' permet de connaître les variations de x et y. Reporter les résultats obtenus des *variations conjointes* des fonctions x et y dans un tableau. Cela donne alors un tableau à compléter :

t	
x'(t)	
x	
у	
y'(t)	

Ce tableau est le tableau des variations des deux fonctions x et y ensemble. Il nous montre l'évolution du point M(t). Par suite, pour une valeur de t donnée, on doit lire verticalement des résultats concernant et x, et y. Par exemple, x tend vers $+\infty$, pendant que y « vaut » 3.

4. Étude des points singuliers.

5. Étude des branches infinies.

6. Construction méticuleuse de la courbe.

On place dans l'ordre les deux axes et les unités. On construit ensuite toutes les droites asymptotes. On place ensuite les points importants avec leur tangente (points à tangente verticale, horizontale, points singuliers, points d'intersection avec une droite asymptote,...). Tout est alors en place pour la construction et on peut tracer l'arc grâce aux règles suivantes :

Tracé de la courbe paramétrée (x(t), y(t))

Si *x* croît et *y* croît, on va vers la droite et vers le haut. Si *x* croît et *y* décroît, on va vers la droite et vers le bas. Si *x* décroît et *y* croît, on va vers la gauche et vers le haut. Si *x* décroît et *y* décroît, on va vers la gauche et vers le bas.

7. Points multiples.

On cherche les points multiples s'il y a lieu. On attend souvent de commencer la construction de la courbe pour voir s'il y a des points multiples et si on doit les chercher.

4.2. Une étude complète

Exemple 159

Construire la courbe

$$\begin{cases} x(t) = \frac{t^3}{t^2 - 1} \\ y(t) = \frac{t(3t - 2)}{3(t - 1)} \end{cases}$$

Solution. On note \mathscr{C} la courbe à construire

- Domaine d'étude.

Pour $t \in \mathbb{R}$, le point M(t) est défini si et seulement si $t \neq \pm 1$. Aucune réduction intéressante du domaine n'apparaît clairement et on étudie donc sur $D = \mathbb{R} \setminus \{-1, 1\}$.

Variations conjointes des coordonnées.

La fonction x est dérivable sur D et, pour $t \in D$,

$$x'(t) = \frac{3t^2(t^2 - 1) - t^3(2t)}{(t^2 - 1)^2} = \frac{t^2(t^2 - 3)}{(t^2 - 1)^2}.$$

La fonction x est donc strictement croissante sur $]-\infty, -\sqrt{3}]$ et sur $[\sqrt{3}, +\infty[$ et strictement décroissante sur $[-\sqrt{3}, -1[$, sur]-1, 1[et sur $]1, +\sqrt{3}[$.

La fonction y est dérivable sur $D \cup \{-1\}$ et, pour $t \in D \cup \{-1\}$,

$$y'(t) = \frac{(6t-2)(t-1) - (3t^2 - 2t)}{3(t-1)^2} = \frac{3t^2 - 6t + 2}{3(t-1)^2}.$$

La fonction y est donc strictement croissante sur $]-\infty,1-\frac{1}{\sqrt{3}}]$ et sur $[1+\frac{1}{\sqrt{3}},+\infty[$, strictement décroissante sur $[1-\frac{1}{\sqrt{3}},1[$ et sur $]1,1+\frac{1}{\sqrt{2}}]$.

Les fonctions x' et y' ne s'annulent jamais simultanément et la courbe est donc régulière. La tangente en un point M(t) est dirigée par le vecteur dérivé $\left(\frac{t^2(t^2-3)}{(t^2-1)^2}, \frac{3t^2-6t+2}{3(t-1)^2}\right)$ ou encore par le vecteur $\left(\frac{3t^2(t^2-3)}{(t+1)^2}, 3t^2-6t+2\right)$. Tangentes parallèles aux axes.

y' s'annule en $1-\frac{1}{\sqrt{3}}$ et $1+\frac{1}{\sqrt{3}}$. En les points $M(1-\frac{1}{\sqrt{3}})$ et $M(1+\frac{1}{\sqrt{3}})$, la courbe admet une tangente parallèle à (Ox). On a

$$x\left(1 - \frac{1}{\sqrt{3}}\right) = \left(1 - \frac{1}{\sqrt{3}}\right)^3 / \left(\left(1 - \frac{1}{\sqrt{3}}\right)^2 - 1\right) = \left(1 - \frac{3}{\sqrt{3}} + \frac{3}{3} - \frac{1}{3\sqrt{3}}\right) / \left(-\frac{2}{\sqrt{3}} + \frac{1}{3}\right) = \frac{6\sqrt{3} - 10}{-6 + \sqrt{3}}$$
$$= \frac{1}{33} \left(6\sqrt{3} - 10\right) \left(-6 - \sqrt{3}\right) = \frac{42 - 26\sqrt{3}}{33} = -0,09\dots,$$

et de même,

$$y\left(1 - \frac{1}{\sqrt{3}}\right) = \frac{1}{3}\left(1 - \frac{1}{\sqrt{3}}\right)\left(3 - \sqrt{3} - 2\right) / \left(-\frac{1}{\sqrt{3}}\right) = -\frac{1}{3}\left(\sqrt{3} - 1\right)\left(1 - \sqrt{3}\right) = \frac{4 - 2\sqrt{3}}{3} = 0,17...$$

Puis, par un calcul conjugué (c'est-à-dire en remplaçant $\sqrt{3}$ par $-\sqrt{3}$ au début de calcul), on a $x(1+\frac{1}{\sqrt{3}}) = \frac{42+26\sqrt{3}}{33} = 2,63...$ et $y(1+\frac{1}{\sqrt{3}}) = \frac{4+2\sqrt{3}}{33} = 2,48...$

x' s'annule en 0, $\sqrt{3}$ et $-\sqrt{3}$. En les points $M(0)=(0,0),\ M(\sqrt{3})=(\frac{3\sqrt{3}}{2},\frac{3+7\sqrt{3}}{6})=(\frac{3\sqrt{3}}{2},\frac{3+7\sqrt{3}}{6})$ (2,59...,2,52...) et $M(-\sqrt{3}) = (-\frac{3\sqrt{3}}{2}, \frac{3-7\sqrt{3}}{6}) = (-2,59...,-1,52...)$, il y a une tangente parallèle à (Oy).

- Étude en l'infini.

Quand t tend vers $+\infty$, x(t) et y(t) tendent toutes deux vers $+\infty$ et il y a donc une branche infinie. Même chose quand t tend vers $-\infty$.

Étudions $\lim_{t\to\pm\infty} \frac{y(t)}{x(t)}$. Pour $t\in D\setminus\{0\}$,

$$\frac{y(t)}{x(t)} = \frac{t(3t-2)}{3(t-1)} \times \frac{t^2-1}{t^3} = \frac{(3t-2)(t+1)}{3t^2}.$$

Cette expression tend vers 1 quand t tend vers $+\infty$ ou vers $-\infty$. Pour $t \in D$,

$$y(t) - x(t) = \frac{t(3t - 2)}{3(t - 1)} - \frac{t^3}{t^2 - 1} = \frac{t(3t - 2)(t + 1) - 3t^3}{3(t - 1)(t + 1)} = \frac{t^2 - 2t}{3(t - 1)(t + 1)}.$$

Cette expression tend vers $\frac{1}{3}$ quand t tend vers $+\infty$ ou vers $-\infty$. Ainsi,

$$\lim_{t\to\pm\infty} \left(y(t) - \left(x(t) + \frac{1}{3} \right) \right) = 0.$$

Quand t tend vers $+\infty$ ou vers $-\infty$, la droite Δ d'équation $y=x+\frac{1}{3}$ est donc asymptote à la courbe.

Étudions la position relative de $\mathscr C$ et Δ . Pour $t \in D$, $y(t) - \left(x(t) + \frac{1}{3}\right) = \frac{t^2 - 2t}{3(t-1)(t+1)} - \frac{1}{3} = \frac{-2t+1}{3(t-1)(t+1)}$.

t	-∞ -	·1	<u>.</u>	1	+∞
signe de $y(t) - (x(t) + \frac{1}{3})$	+	_	+	_	
position	€ au-dessus	\mathscr{C} en-dessous	\mathscr{C} au-dessus	\mathscr{C} en-dessous	
relative	$\operatorname{de}\Delta$	$\operatorname{de}\Delta$	$\operatorname{de}\Delta$	$\operatorname{de}\Delta$	

 \mathscr{C} et Δ se coupent au point M(1/2) = (-1/6, 1/6) = (-0, 16..., 0, 16...).

- Étude en t = -1.

Quand t tend vers -1, y(t) tend vers -5/6, et x(t) tend vers $-\infty$ en -1^- et vers $+\infty$ en -1^+ . La droite d'équation $y=-\frac{5}{6}$ est asymptote à $\mathscr C$. La position relative est fournie par le signe de $y(t)+\frac{5}{6}=\frac{6t^2+t-5}{6(t-1)}=\frac{(t+1)(6t-5)}{6(t-1)}$.

- Étude en t=1.

Quand t tend vers 1, x et y tendent vers l'infini, $\frac{y(t)}{x(t)} = \frac{(3t-2)(t+1)}{3t^2}$ tend vers $\frac{2}{3}$ et $y(t) - \frac{2}{3}x(t) = \frac{t^3+t^2-2t}{3(t^2-1)} = \frac{t(t+2)}{3(t+1)}$ tend vers $\frac{1}{2}$. La droite d'équation $y = \frac{2}{3}x + \frac{1}{2}$ est asymptote à la courbe. La position relative est fournie par le signe de $y(t) - \left(\frac{2}{3}x(t) + \frac{1}{2}\right) = \frac{2t^2+t-3}{6(t+1)} = \frac{(t-1)(2t+3)}{6(t+1)}$.

- Tableau de variations conjointes.

- Intersection avec les axes.

x(t) = 0 équivaut à t = 0. La courbe coupe (Oy) au point M(0) = (0,0). y(t) = 0 équivaut à t = 0 ou $t = \frac{2}{3}$. La courbe coupe (Ox) au point M(0) = (0,0) et $M(\frac{2}{3}) = (-\frac{8}{15},0)$.

- Tracé de la courbe.

Le tracé fait apparaître un point double. Je vous laisse le chercher (et le trouver).

4.3. Une courbe de Lissajous

Exemple 160

Construire la courbe $\left\{ \begin{array}{l} x = \sin(2t) \\ y = \sin(3t) \end{array} \right. \text{ de la famille des } \textbf{\textit{courbes de Lissajous}}.$

Solution.

- **Domaine d'étude.** Pour tout réel t, M(t) existe et $M(t+2\pi) = M(t)$. On obtient la courbe complète quand t décrit $[-\pi,\pi]$.
 - Pour $t \in [-\pi, \pi]$, $M(-t) = s_O(M(t))$, puis pour $t \in [0, \pi]$, $M(\pi t) = s_{(Oy)}(M(t))$. On étudie et on construit l'arc quand t décrit $[0, \frac{\pi}{2}]$, puis on obtient la courbe complète par réflexion d'axe (Oy) puis par symétrie centrale de centre O. Puisque, pour tout réel t, $M(t + \pi) = s_{(Ox)}(M(t))$, l'axe (Ox) est également axe de symétrie de la courbe.
- **Localisation.** Pour tout réel t, $|x(t)| \le 1$ et $|y(t)| \le 1$. Le support de la courbe est donc contenu dans le carré $\{(x,y) \in \mathbb{R}^2 \mid |x| \le 1 \text{ et } |y| \le 1\}$.
- Variations conjointes. D'après les propriétés usuelles de la fonction sinus, la fonction x est croissante sur $[0, \frac{\pi}{4}]$ et décroissante sur $[\frac{\pi}{4}, \frac{\pi}{2}]$; et de même, la fonction y croît sur

 $[0,\frac{\pi}{6}]$ et décroît sur $[\frac{\pi}{6},\frac{\pi}{2}]$.

- Vecteur dérivé et tangente.
 - Pour $t \in [0, \frac{\pi}{2}]$, $\frac{\overrightarrow{\mathrm{dM}}}{\mathrm{d}t}(t) = (2\cos(2t), 3\cos(3t))$. Par suite :

$$\frac{\overrightarrow{\mathrm{d}M}}{\mathrm{d}t}(t) = \vec{0} \iff \cos(2t) = \cos(3t) = 0 \iff t \in \left(\frac{\pi}{4} + \frac{\pi}{2}\mathbb{Z}\right) \cap \left(\frac{\pi}{6} + \frac{\pi}{3}\mathbb{Z}\right) = \varnothing.$$

Donc $\frac{dM}{dt}$ ne s'annule pas et la courbe est régulière. La tangente en tout point est dirigée par le vecteur $(2\cos(2t), 3\cos(3t))$.

- Cette tangente est parallèle à (Ox) si et seulement si $\cos(3t)=0$ ou encore $t\in\frac{\pi}{6}+\frac{\pi}{3}\mathbb{Z}$ ou enfin $t=\frac{\pi}{6}$ et $t=\frac{\pi}{2}$, et cette tangente est parallèle à (Oy) si et seulement si $\cos(2t)=0$ ou encore $t\in\frac{\pi}{4}+\frac{\pi}{2}\mathbb{Z}$ ou enfin $t=\frac{\pi}{4}$.
- La tangente en M(0) est dirigée par le vecteur (2,3) et a donc pour coefficient directeur 3/2.
- Pour $t \in [0, \frac{\pi}{2}]$, $M(t) \in (Ox)$ si et seulement si $\sin(3t) = 0$ ou encore $t \in \frac{\pi}{3}\mathbb{Z}$ ou enfin t = 0 ou $t = \frac{\pi}{3}$. La tangente en $M(\pi/3)$ est dirigée par le vecteur (-1, -3) et a donc pour coefficient directeur 3.

4.4. Le folium de Descartes

Il existe d'autres façons de définir une courbe, par exemple par une équation cartésienne du type f(x, y) = 0. Par exemple, $(x^2 + y^2 - 1 = 0)$ définit le cercle de rayon 1, centré à l'origine.

Pour étudier les équations f(x,y) = 0, il nous manque un cours sur les fonctions de deux variables. Néanmoins, il est possible dès à présent de construire de telles courbes en trouvant une paramétrisation. Une idée (parmi tant d'autres), fréquemment utilisée en pratique, est de chercher *l'intersection de la courbe avec toutes les droites passant par l'origine* comme le montre le dessin suivant. Ceci revient en gros à prendre comme paramètre le réel $t = \frac{y}{r}$.

Exemple 161

Construire le *folium de Descartes* $\mathscr C$ d'équation $x^3+y^3-3axy=0$, a étant un réel strictement positif donné.

Solution.

Commençons par montrer que l'intersection de la courbe avec l'axe des ordonnées est réduite à l'origine :

$$M(x,y) \in \mathcal{C} \cap (Oy) \iff x^3 + y^3 - 3axy = 0 \text{ et } x = 0 \iff x = y = 0.$$

Soient $t \in \mathbb{R}$ et D_t la droite d'équation (y = tx). Cherchons l'intersection de cette droite D_t avec notre courbe \mathscr{C} :

$$\begin{split} M(x,y) \in D_t \cap \mathscr{C} \setminus (Oy) &\iff \left\{ \begin{array}{l} x \neq 0 \\ y = tx \\ x^3 + t^3 x^3 - 3atx^2 = 0 \end{array} \right. \iff \left\{ \begin{array}{l} x \neq 0 \\ y = tx \\ (1 + t^3)x - 3at = 0 \end{array} \right. \\ &\iff \left\{ \begin{array}{l} x \neq 0 \\ x = \frac{3at}{1 + t^3} \\ y = \frac{3at^2}{1 + t^3} \end{array} \right. \text{ pour } t \notin \{-1\} \iff \left\{ \begin{array}{l} x = \frac{3at}{1 + t^3} \\ y = \frac{3at^2}{1 + t^3} \end{array} \right. \text{ pour } t \notin \{-1, 0\}. \end{split}$$

Ainsi $\mathscr C$ est la réunion de $\{O\}$ et de l'ensemble des points $\left(\frac{3at}{1+t^3},\frac{3at^2}{1+t^3}\right)$, $t\notin\{-1,0\}$. D'autre part les droites D_{-1} et D_0 n'ont qu'un point commun avec $\mathscr C$, à savoir le point O. Comme t=0 refournit le point O, on a plus simplement :

$$\mathscr{C} = \left\{ \left(\frac{3at}{1+t^3}, \frac{3at^2}{1+t^3} \right) \mid t \in \mathbb{R} \setminus \{-1\} \right\}.$$

Une paramétrisation de la courbe est donc

$$t \mapsto \begin{cases} x(t) = \frac{3at}{1+t^3} \\ y(t) = \frac{3at^2}{1+t^3} \end{cases}.$$

Après étude, on obtient le graphe suivant :

Mini-exercices

- 1. Faire une étude complète et le tracé de la courbe définie par $x(t) = \tan\left(\frac{t}{3}\right)$, $y(t) = \sin(t)$.
- 2. Faire une étude complète et le tracé de l'astroïde définie par $x(t) = \cos^3 t$, $y(t) = \sin^3 t$.
- 3. Faire une étude complète et le tracé de la cycloïde définie par $x(t) = r(t \sin t)$, $y(t) = r(1 \cos t)$.

5. Courbes en polaires : théorie

5.1. Coordonnées polaires

Rappelons tout d'abord la définition précise des coordonnées polaires. Le plan est rapporté à un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$. Pour θ réel, on pose

$$\overrightarrow{u_{\theta}} = \cos\theta \, \overrightarrow{i} + \sin\theta \, \overrightarrow{j} \quad \text{ et } \quad \overrightarrow{v_{\theta}} = -\sin\theta \, \overrightarrow{i} + \cos\theta \, \overrightarrow{j} = \overrightarrow{u_{\theta+\pi/2}}.$$

M étant un point du plan, on dit que $[r:\theta]$ est un couple de **coordonnées polaires** du point M si et seulement si $\overrightarrow{OM} = r\overrightarrow{u_{\theta}}$.

$$M = [r:\theta] \iff \overrightarrow{OM} = r\overrightarrow{u_{\theta}} \iff M = O + r\overrightarrow{u_{\theta}}.$$

5.2. Courbes d'équations polaires

La courbe d'équation polaire $r = f(\theta)$ est l'application suivante, où les coordonnées des points sont données en coordonnées polaires :

$$\begin{array}{ccc} F: & D & \to & \mathbb{R}^2 \\ & \theta & \mapsto & M(\theta) = \left[r(\theta) : \theta \right] = O + r(\theta) \vec{u}_{\theta} \\ \end{array}$$

ou encore, sous forme complexe, $\theta \mapsto r(\theta)e^{i\theta}$.

Exemple 162

Voici une spirale d'équation polaire $r = \sqrt{\theta}$, définie pour $\theta \in [0, +\infty[$.

Par exemple pour $\theta=0$, $r(\theta)=0$, donc l'origine appartient à la courbe \mathscr{C} . Pour $\theta=\frac{\pi}{2}$, $r(\theta)=\sqrt{\frac{\pi}{2}}$, donc $M(\frac{\pi}{2})=\left[\sqrt{\frac{\pi}{2}}:\frac{\pi}{2}\right]$, soit en coordonnées cartésiennes $M(\frac{\pi}{2})=(0,\ 1,25\ldots)\in\mathscr{C}$. Puis $M(\pi)=\left[\sqrt{\pi}:\pi\right]=(-1,77\ldots,0)\in\mathscr{C}$, $M(2\pi)=\left[\sqrt{2\pi}:2\pi\right]=\left[\sqrt{2\pi}:0\right]=(2,50\ldots,0)\in\mathscr{C}$, ...

Une telle équation $(r=f(\theta))$ ressemble à une équation cartésienne (y=f(x)). Mais la non unicité d'un couple de coordonnées polaires en fait un objet plus compliqué. Reprenons l'exemple de la spirale d'équation polaire $r=\sqrt{\theta}$. Le point de coordonnées polaires $[\sqrt{\pi}:\pi]$ est sur la spirale, mais aussi le point $[-\sqrt{\pi}:2\pi]$ (car $[-\sqrt{\pi}:2\pi]=[\sqrt{\pi}:\pi]$). Ainsi, si en cartésien on peut écrire $M(x,y)\in \mathscr{C}_f \iff y=f(x)$, ce n'est pas le cas en polaires, où l'on a seulement $r=f(\theta) \implies M[r:\theta]\in \mathscr{C}$. Pour avoir une équivalence, avec \mathscr{C} la courbe d'équation polaire $r=f(\theta)$ et M un point du plan, il faut écrire :

 $M \in \mathscr{C} \iff \text{il existe un couple } [r:\theta] \text{ de coordonnées}$ polaires de M tel que $r = f(\theta)$.

Remarque 3

- Dans cette présentation, la lettre r désigne à la fois la première des deux coordonnées polaires du point $[r:\theta]$ et aussi la fonction $\theta \mapsto r(\theta)$, cette confusion des notations étant résumée dans l'égalité $r = r(\theta)$.
- $r(\theta)$ n'est pas nécessairement la distance $OM(\theta)$ car la fonction r peut tout à fait prendre des valeurs strictement négatives. La formule générale est $OM(\theta) = |r(\theta)|$.
- Grâce aux relations usuelles entre les coordonnées cartésiennes et les coordonnées polaires d'un point, on peut à tout moment écrire une représentation polaire sous la forme d'une représentation paramétrique classique :

$$\theta \mapsto \begin{cases} x(\theta) = r(\theta)\cos(\theta) \\ y(\theta) = r(\theta)\sin(\theta) \end{cases}.$$

5.3. Calcul de la vitesse en polaires

Pour pouvoir dériver un arc en coordonnées polaires, il faut d'abord savoir dériver le vecteur $\overrightarrow{u_{\theta}} = \cos\theta \overrightarrow{i} + \sin\theta \overrightarrow{j}$ en tant que fonction de θ :

$$\frac{d\overrightarrow{u_{\theta}}}{d\theta}(\theta) = -\sin\theta \overrightarrow{i} + \cos\theta \overrightarrow{j} = \overrightarrow{v_{\theta}} = \overrightarrow{u_{\theta+\pi/2}} \quad \text{ et } \quad \frac{d\overrightarrow{v_{\theta}}}{d\theta}(\theta) = \overrightarrow{u_{\theta+\pi/2+\pi/2}} = \overrightarrow{u_{\theta+\pi}} = -\overrightarrow{u_{\theta}}.$$

En résumé, ils s'obtiennent par rotation d'angle $+\frac{\pi}{2}$:

$$\frac{\mathrm{d}\overrightarrow{u_{\theta}}}{\mathrm{d}\theta} = \overrightarrow{v_{\theta}} \qquad \frac{\mathrm{d}\overrightarrow{v_{\theta}}}{\mathrm{d}\theta} = -\overrightarrow{u_{\theta}}$$

5.4. Tangente en un point distinct de l'origine

Soient r une fonction dérivable sur un domaine D de \mathbb{R} à valeurs dans \mathbb{R} et \mathscr{C} la courbe d'équation polaire $r = r(\theta)$ ou encore de représentation polaire $\theta \mapsto O + r(\theta)\overrightarrow{u_{\theta}}$.

Théorème 47. Tangente en un point distinct de l'origine

- 1. Tout point de \mathscr{C} distinct de l'origine O est un point régulier.
- 2. Si $M(\theta) \neq O$, la tangente en $M(\theta)$ est dirigée par le vecteur $\frac{dM}{d\theta}(\theta) = r'(\theta)\overrightarrow{u_{\theta}} + r(\theta)\overrightarrow{v_{\theta}}$
- 3. L'angle β entre le vecteur $\overrightarrow{u_{\theta}}$ et la tangente en $M(\theta)$ vérifie $\tan(\beta) = \frac{r}{r'}$ si $r' \neq 0$, et $\beta = \frac{\pi}{2} \pmod{\pi}$ sinon.

Le repère $(M(\theta), \overrightarrow{u_{\theta}}, \overrightarrow{v_{\theta}})$ est le *repère polaire* en $M(\theta)$. Dans ce repère, les coordonnées du vecteur $\overrightarrow{\frac{dM}{d\theta}}$ sont donc (r', r). On note β l'angle $(\overrightarrow{u_{\theta}}, \overrightarrow{\frac{dM}{d\theta}})$ et α l'angle $(\overrightarrow{i}, \overrightarrow{\frac{dM}{d\theta}})$ de sorte que $\alpha = \beta + \theta$.

Démonstration

- Comme $M(\theta) = O + r(\theta)\overrightarrow{u_{\theta}}$, alors par la formule de dérivation d'un produit :

$$\frac{\overrightarrow{\mathrm{d}M}}{\mathrm{d}\theta}(\theta) = \frac{\mathrm{d}r(\theta)}{\mathrm{d}\theta}\overrightarrow{u_{\theta}} + r(\theta)\frac{\mathrm{d}\overrightarrow{u_{\theta}}}{\mathrm{d}\theta} = r'(\theta)\overrightarrow{u_{\theta}} + r(\theta)\overrightarrow{v_{\theta}}$$

- Déterminons alors les éventuels points singuliers. Puisque les vecteurs $\overrightarrow{u_{\theta}}$ et $\overrightarrow{v_{\theta}}$ ne sont pas colinéaires,

$$\frac{\overrightarrow{dM}}{d\theta}(\theta) = \overrightarrow{0} \iff r(\theta) = 0 \text{ et } r'(\theta) = 0$$

Maintenant, comme $r(\theta) = 0 \iff M(\theta) = 0$, on en déduit que tout point distinct de l'origine est un point régulier.

- Comme $\frac{\overrightarrow{dM}}{d\theta}(\theta) = r'(\theta)\overrightarrow{u_{\theta}} + r(\theta)\overrightarrow{v_{\theta}}$ alors, dans le repère polaire $(M(\theta), \overrightarrow{u_{\theta}}, \overrightarrow{v_{\theta}})$, les coordonnées de $\frac{\overrightarrow{dM}}{d\theta}$ sont (r', r).

On a alors

$$\cos \beta = \frac{r'}{\sqrt{r^2 + r'^2}}$$
 et $\sin \beta = \frac{r}{\sqrt{r^2 + r'^2}}$.

Ces égalités définissent β modulo 2π . Ensuite, (puisque $r \neq 0$) on a $\frac{1}{\tan \beta} = \frac{r'}{r}$. On préfère retenir que, si de plus $r' \neq 0$, $\tan(\beta) = \frac{r}{r'}$.

Les deux dernières égalités déterminent β modulo π , ce qui est suffisant pour construire la tangente, mais insuffisant pour construire le vecteur $\frac{dM}{d\theta}$.

Exemple 163

Déterminer la tangente à la courbe polaire :

$$r = 1 - 2\cos\theta$$

au point $M(\frac{\pi}{2})$.

Solution.

On note $\mathscr C$ la courbe.

1. **Première méthode.** On détermine l'angle $(\overrightarrow{u_{\theta}}, \frac{\overrightarrow{dM}}{d\theta})$ formé par la tangente avec la droite d'angle polaire θ .

Comme $r'(\theta) = 2\sin\theta$, alors $r'(\frac{\pi}{2}) = 2$. De plus, $r(\frac{\pi}{2}) = 1 \neq 0$. Donc,

$$\tan \beta = \frac{r(\frac{\pi}{2})}{r'(\frac{\pi}{2})} = \frac{1}{2}.$$

Ainsi, modulo π ,

$$\beta = \arctan(\frac{1}{2}) = \frac{\pi}{2} - \arctan(2).$$

L'angle polaire de la tangente en $M(\frac{\pi}{2})$ est donc

$$\alpha = \beta + \theta = \frac{\pi}{2} + \frac{\pi}{2} - \arctan(2) = \pi - \arctan(2).$$

2. Seconde méthode. On calcule le vecteur dérivé, qui bien sûr dirige la tangente :

$$\frac{\overrightarrow{\mathrm{d}M}}{\mathrm{d}\theta} \left(\frac{\pi}{2}\right) = 2 \cdot \overrightarrow{u_{\pi/2}} + 1 \cdot \overrightarrow{v_{\pi/2}} = -\overrightarrow{i} + 2\overrightarrow{j}$$

Comme la tangente passe par le point $M(\frac{\pi}{2}) = \left[1 : \frac{\pi}{2}\right] = (0,1)$, une équation cartésienne de cette tangente est donc $2 \cdot (x-0) + 1 \cdot (y-1) = 0$ ou encore y = -2x + 1.

5.5. Tangente à l'origine

Supposons maintenant que, pour un certain réel θ_0 , la courbe passe par l'origine O. On suppose comme d'habitude que l'arc est localement simple, ce qui revient à dire qu'au voisinage de θ_0 , la fonction r ne s'annule qu'en θ_0 .

Théorème 48. Tangente à l'origine

Si $M(\theta_0) = O$, la tangente en $M(\theta_0)$ est la droite d'angle polaire θ_0 .

Une équation cartésienne de cette droite dans le repère $(O, \overrightarrow{i}, \overrightarrow{j})$ est donc $y = \tan(\theta_0)x$, si $\theta_0 \notin \frac{\pi}{2} + \pi \mathbb{Z}$ et x = 0, si $\theta_0 \in \frac{\pi}{2} + \pi \mathbb{Z}$.

Démonstration

Pour $\theta \neq \theta_0$, le vecteur

$$\frac{1}{r(\theta)}\overrightarrow{M(\theta_0)M(\theta)} = \frac{1}{r(\theta)}\overrightarrow{OM(\theta)} = \overrightarrow{u_\theta},$$

dirige la droite $(M(\theta_0)M(\theta))$. Or, quand θ tend vers θ_0 , $\overrightarrow{u_{\theta}}$ tend vers $\overrightarrow{u_{\theta_0}}$. Ainsi $\overrightarrow{u_{\theta_0}}$ est un vecteur directeur de la tangente, comme on le souhaitait.

Remarque 4

En l'origine, on ne peut avoir qu'un *point d'allure ordinaire* ou un *rebroussement de première espèce*.

- Si r s'annule en changeant de signe, le point $M(\theta)$ franchit l'origine en tournant dans le sens direct : c'est un point d'allure ordinaire.
- Si r s'annule sans changer de signe en arrivant en O, on rebrousse chemin en traversant la tangente (puisque l'on tourne toujours dans le même sens) : c'est un rebroussement de première espèce.

Exemple 164

Étudier le point $M(\frac{\pi}{2})$ dans les deux cas suivants :

$$r = (\theta + 1)\cos\theta$$
 et $r = \cos^2(\theta)$.

Solution. Dans les deux cas, $M(\frac{\pi}{2}) = O$ et la tangente en $M(\frac{\pi}{2})$ est la droite passant par O et d'angle polaire $\frac{\pi}{2}$, c'est-à-dire l'axe des ordonnées.

- Dans le premier cas, r change de signe en franchissant $\frac{\pi}{2}$, de positif à négatif. Ainsi, en tournant toujours dans le même sens, on se rapproche de l'origine, on la franchit et on s'en écarte : c'est un point d'allure ordinaire.
- Dans le deuxième cas, *r* ne change pas de signe. On ne franchit pas l'origine. On rebrousse chemin tout en tournant toujours dans le même sens : c'est un point de rebroussement de première espèce.

Mini-exercices

- 1. Soit la courbe d'équation polaire $r = (\cos \theta)^2$. Quand est-ce que la tangente en $M(\theta)$ est perpendiculaire à $\overrightarrow{u_{\theta}}$? Quelle est la tangente à l'origine? En quels points la tangente est-elle horizontale? Tracer la courbe.
- 2. Montrer que la courbe polaire $r = \frac{1}{\cos\theta + 2\sin\theta}$ est une droite, que vous déterminerez.

Même problème avec $r = \frac{1}{\cos(\theta - \frac{\pi}{4})}$.

3. Montrer que la courbe polaire $r = \cos \theta$ est un cercle, que vous déterminerez.

6. Courbes en polaires : exemples

6.1. Réduction du domaine d'étude

On doit connaître l'effet de transformations géométriques usuelles sur les coordonnées polaires d'un point. Le plan est rapporté à un repère orthonormé direct, M étant le point de coordonnées polaires $[r:\theta]$.

- Réflexion d'axe (Ox). $s_{(Ox)}: [r:\theta] \mapsto [r:-\theta]$.
- Réflexion d'axe (Oy). $s_{(Oy)}: [r:\theta] \mapsto [r:\pi-\theta]$.
- Symétrie centrale de centre $O. s_O : [r : \theta] \mapsto [r : \theta + \pi] = [-r : \theta].$
- Réflexion d'axe la droite D d'équation (y = x). $s_D(M) : [r : \theta] \mapsto [r : \frac{\pi}{2} \theta]$.
- Réflexion d'axe la droite D' d'équation (y=-x). $s_{D'}(M):[r:\theta]\mapsto [-r:\frac{\pi}{2}-\theta]=[r:-\frac{\pi}{2}-\theta]$.
- Rotation d'angle $\frac{\pi}{2}$ autour de $O. r_{O,\pi/2}: [r:\theta] \mapsto [r:\theta+\frac{\pi}{2}].$
- Rotation d'angle φ autour de $O. r_{O,\varphi}: [r:\theta] \mapsto [r:\theta+\varphi]$.

Voici quelques transformations:

Exemple 165

Déterminer un domaine d'étude le plus simple possible de la courbe d'équation polaire

$$r = 1 + 2\cos^2\theta.$$

Solution.

- La fonction *r* est définie sur \mathbb{R} et 2*π*-périodique. Donc, pour *θ* ∈ \mathbb{R} ,

$$M(\theta + 2\pi) = [r(\theta + 2\pi) : \theta + 2\pi] = [r(\theta) : \theta] = M(\theta).$$

La courbe complète est donc obtenue quand θ décrit un intervalle de longueur 2π comme $[-\pi,\pi]$ par exemple.

- La fonction *r* est paire. Donc, pour $\theta \in [-\pi, \pi]$,

$$M(-\theta) = [r(-\theta): -\theta] = [r(\theta): -\theta] = s_{(Ox)}(M(\theta)).$$

On étudie et construit la courbe sur $[0, \pi]$, puis on obtient la courbe complète par réflexion d'axe (Ox).

- $r(\pi - \theta) = r(\theta)$. Donc, pour $\theta \in [0, \pi]$,

$$M(\pi - \theta) = [r(\pi - \theta) : \pi - \theta] = [r(\theta) : \pi - \theta] = s_{(O_V)}(M(\theta)).$$

On étudie et construit la courbe sur $[0, \frac{\pi}{2}]$, puis on obtient la courbe complète par réflexion d'axe (Oy) puis par réflexion d'axe (Ox).

- On obtiendrait les tracés suivants sur $[0, \frac{\pi}{2}]$, sur $[0, \pi]$ puis $[0, 2\pi]$.

6.2. Plan d'étude

- 1. *Domaine de définition* et réduction du *domaine d'étude* en détaillant à chaque fois les transformations géométriques permettant de reconstituer la courbe.
- 2. **Passages par l'origine.** On résout l'équation $r(\theta) = 0$ et on précise les tangentes en les points correspondants.
- 3. *Variations* de la fonction *r* ainsi que le *signe* de la fonction *r*. Ce signe aura une influence sur le tracé de la courbe (voir plus bas). Ce signe permet aussi de savoir si l'origine est un point de rebroussement ou un point ordinaire.
- 4. Tangentes parallèles aux axes. Recherche éventuelle des points en lesquels la tangente est parallèle à un axe de coordonnées (pour une tangente en un point distinct de O, parallèle à (Ox), on résout $(r\sin(\theta))' = y' = 0$).
- 5. Étude des branches infinies. Aucun résultat spécifique ne sera fait ici. Le plus simple est alors de se ramener à l'étude des branches infinies d'une courbe paramétrée classique : $\begin{cases} x(\theta) = r(\theta)\cos(\theta) \\ y(\theta) = r(\theta)\sin(\theta) \end{cases}$
- 6. Construction de la courbe.

Tracé de la courbe d'équation polaire $r = f(\theta)$

Si r est positif et croît, on tourne dans le sens direct en s'écartant de l'origine. Si r est négatif et décroit, on tourne dans le sens direct en s'écartant de l'origine. Si r est positif et décroît, on tourne dans le sens direct en se rapprochant de l'origine. Si r est négatif et croît, on tourne dans le sens direct en se rapprochant de l'origine.

7. *Points multiples*. Recherche éventuelle de points multiples si le tracé de la courbe le suggère (et si les calculs sont simples).

6.3. Exemples détaillés

Exemple 166

Construire la cardioïde, courbe d'équation polaire

$$r = 1 - \cos \theta$$
.

Solution.

- **Domaine d'étude.** La fonction r est 2π -périodique, donc on l'étudie sur $[-\pi,\pi]$, mais comme r est une fonction paire, on se limite à l'intervalle $[0,\pi]$, la courbe étant symétrique par rapport à l'axe des abscisses.
- Localisation de la courbe. Comme $0 \le r \le 2$ alors la courbe est bornée, incluse dans le disque de rayon 2, centré à l'origine. Il n'y a pas de branches infinies.
- **Passage par l'origine.** $r = 0 \iff \cos \theta = 1 \iff \theta = 0$ (toujours avec notre restriction $\theta \in [0, \pi]$). La courbe passe par l'origine uniquement pour $\theta = 0$.
- **Variations de** r. La fonction r est croissante sur $[0,\pi]$ avec r(0) = 0, $r(\pi) = 2$. Conséquence : r est positif et croît, on tourne dans le sens direct en s'écartant de l'origine.
- Tangentes parallèles aux axes. La représentation paramétrique de la courbe est $x(\theta) = r(\theta)\cos\theta$, $y(\theta) = r(\theta)\sin\theta$. La tangente est horizontale lorsque $y'(\theta) = 0$ (et $x'(\theta) \neq 0$) et verticale lorsque $x'(\theta) = 0$ (et $y'(\theta) \neq 0$). On calcule

$$x(\theta) = r(\theta)\cos\theta = \cos\theta - \cos^2\theta$$
 $x'(\theta) = \sin\theta(2\cos\theta - 1)$ $x'(\theta) = 0 \iff \theta = 0, \quad \theta = \frac{\pi}{3}, \quad \theta = \pi$

Puis:

$$y(\theta) = r(\theta)\sin\theta = \sin\theta - \cos\theta\sin\theta$$
 $y'(\theta) = -2\cos^2\theta + \cos\theta + 1$

Or:

$$-2X^2 + X + 1 = 0 \iff X = -\frac{1}{2} \text{ ou } X = 1 \quad \text{donc} \quad y'(\theta) = 0 \iff \theta = 0, \quad \theta = \frac{2\pi}{3}$$

En $\theta=0$ les deux dérivées s'annulent, donc on ne peut encore rien dire. En $\theta=\frac{2\pi}{3}$ la tangente est horizontale, et en $\theta=\frac{\pi}{3}$ et $\theta=\pi$ la tangente est verticale.

- Comportement à l'origine. À l'origine (pour $\theta_0 = 0$), une équation de la tangente est $y = \tan \theta_0 x$, donc ici d'équation y = 0. Comme $r(\theta) \ge 0$, il s'agit d'un point de rebroussement.
- **Graphe.** Toutes ces informations permettent de tracer cette courbe polaire.

Exemple 167

Le plan est rapporté à un repère orthonormé direct. Construire la courbe d'équation polaire

$$r = \frac{1 + 2\sin\theta}{1 + 2\cos\theta}.$$

Solution.

- Domaine d'étude.

La fonction r est 2π -périodique. De plus, pour $r \in [-\pi, \pi]$,

$$1 + 2\cos\theta = 0 \iff \left(\theta = -\frac{2\pi}{3} \text{ ou } \theta = \frac{2\pi}{3}\right).$$

On obtient la courbe complète quand θ décrit $D = [-\pi, -\frac{2\pi}{3}[\cup] - \frac{2\pi}{3}, \frac{2\pi}{3}[\cup] \frac{2\pi}{3}, \pi]$.

- Passages par l'origine.

Pour $\theta \in D$,

$$1 + 2\sin\theta = 0 \iff \left(\theta = -\frac{\pi}{6} \text{ ou } \theta = -\frac{5\pi}{6}\right).$$

En $M(-\frac{\pi}{6}) = O$, la tangente est la droite d'équation $y = \tan(-\frac{\pi}{6})x = -\frac{1}{\sqrt{3}}x$ et en $M(-\frac{5\pi}{6}) =$ O, la tangente est la droite d'équation $y = \tan(-\frac{5\pi}{6})x = \frac{1}{\sqrt{3}}x$.

- Signe et variations de r.

r est strictement positive sur $]-\frac{5\pi}{6},-\frac{2\pi}{3}[\ \cup\]-\frac{\pi}{6},\frac{2\pi}{3}[$, et strictement négative sur $[-\pi, -\frac{5\pi}{6}[\ \cup\]-\frac{2\pi}{3}, -\frac{\pi}{6}[\ \cup\]\frac{2\pi}{3}, \pi]$. Ensuite, r est dérivable sur D et, pour $\theta \in D$,

$$r'(\theta) = \frac{2\cos\theta(1 + 2\cos\theta) + 2\sin\theta(1 + 2\sin\theta)}{(1 + 2\cos\theta)^2} = \frac{2(\cos\theta + \sin\theta + 2)}{(1 + 2\cos\theta)^2} = \frac{2\sqrt{2}(\cos(\theta - \frac{\pi}{4}) + \sqrt{2})}{(1 + 2\cos\theta)^2} > 0.$$

Ainsi, r est strictement croissante sur $[-\pi, -\frac{2\pi}{3}[$, sur $]-\frac{2\pi}{3}, \frac{2\pi}{3}[$ et sur $]\frac{2\pi}{3}, \pi]$.

- Étude des branches infinies.

Quand θ tend vers $-\frac{2\pi}{3}$, $|r(\theta)|$ tend vers $+\infty$. Plus précisément,

- $x(\theta) = \frac{(1+2\sin\theta)\cos\theta}{1+2\cos\theta}$ tend vers $\pm\infty$, et $y(\theta) = \frac{(1+2\sin\theta)\sin\theta}{1+2\cos\theta}$ tend vers $\pm\infty$, $\frac{y(\theta)}{x(\theta)} = \tan\theta$ tend vers $\tan(-\frac{2\pi}{3}) = \sqrt{3}$. Donc la courbe admet une direction asymptotique d'équation $v = \sqrt{3}x$.

Ensuite,

$$y(\theta) - \sqrt{3}x(\theta) = \frac{(1 + 2\sin\theta)(\sin\theta - \sqrt{3}\cos\theta)}{1 + 2\cos\theta} = \frac{(1 + 2\sin\theta)\left(-2\sin(\theta + \frac{2\pi}{3})\right)}{2\left(\cos\theta - \cos(\frac{2\pi}{3})\right)}$$
$$= \frac{(1 + 2\sin\theta)\left(-4\sin(\frac{\theta}{2} + \frac{\pi}{3})\cos(\frac{\theta}{2} + \frac{\pi}{3})\right)}{-4\sin(\frac{\theta}{2} - \frac{\pi}{3})\sin(\frac{\theta}{2} + \frac{\pi}{3})} = \frac{(1 + 2\sin\theta)\cos(\frac{\theta}{2} + \frac{\pi}{3})}{\sin(\frac{\theta}{2} - \frac{\pi}{3})}$$

Quand θ tend vers $-\frac{2\pi}{3}$, cette dernière expression tend vers $2(1-\frac{1}{\sqrt{3}})$ et on en déduit que la droite d'équation $y=\sqrt{3}x+2(1-\frac{1}{\sqrt{3}})$ est asymptote à la courbe.

On trouve de même que, quand θ tend vers $\frac{2\pi}{3}$, la droite d'équation $y = -\sqrt{3}x + 2(1 + \frac{1}{\sqrt{3}})$ est asymptote à la courbe.

- Graphe.

Mini-exercices

- 1. Si la fonction $\theta \mapsto r(\theta)$ est π -périodique, comment limiter l'étude à un intervalle de longueur π ? Et si en plus la fonction r est impaire?
- 2. Soit la courbe d'équation polaire $r = \cos \theta + \sin \theta$. Montrer que l'on peut se limiter à $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ comme domaine d'étude.
- 3. Étudier la courbe d'équation polaire $r = \sin(2\theta)$.
- 4. Étudier la courbe d'équation polaire $r = 1 + \tan \frac{\theta}{2}$ et en particulier ses branches infinies.

Auteurs

Jean-Louis Rouget, maths-france.fr.

Amendé par Arnaud Bodin.

Relu par Stéphanie Bodin et Vianney Combet.

Exo7

16 Systèmes linéaires

- 1 Introduction aux systèmes d'équations linéaires
- 2 Théorie des systèmes linéaires
- 3 Résolution par la méthode du pivot de Gauss

```
Vidéo ■ partie 1. Introduction aux systèmes d'équations linéaires
```

Vidéo ■ partie 2. Théorie des systèmes linéaires

Vidéo ■ partie 3. Résolution par la méthode du pivot de Gauss

1. Introduction aux systèmes d'équations linéaires

L'algèbre linéaire est un outil essentiel pour toutes les branches des mathématiques appliquées, en particulier lorsqu'il s'agit de modéliser puis résoudre numériquement des problèmes issus de divers domaines : des sciences physiques ou mécaniques, des sciences du vivant, de la chimie, de l'économie, des sciences de l'ingénieur,...

Les systèmes linéaires interviennent dans de nombreux contextes d'applications car ils forment la base calculatoire de l'algèbre linéaire. Ils permettent également de traiter une bonne partie de la théorie de l'algèbre linéaire en dimension finie. C'est pourquoi le présent cours commence avec une étude des équations linéaires et de leur résolution.

Ce chapitre a un but essentiellement pratique : résoudre des systèmes linéaires. La partie théorique sera revue et prouvée dans le chapitre « Matrices ».

1.1. Exemple : deux droites dans le plan

L'équation d'une droite dans le plan (Oxy) s'écrit

$$ax + by = e$$

où a,b et e sont des paramètres réels. Cette équation s'appelle équation linéaire dans les variables (ou inconnues) x et y.

Par exemple, 2x + 3y = 6 est une équation linéaire, alors que les équations suivantes ne sont pas des équations linéaires :

$$2x + y^2 = 1$$
 ou $y = \sin(x)$ ou $x = \sqrt{y}$.

Considérons maintenant deux droites D_1 et D_2 et cherchons les points qui sont simultanément sur ces deux droites. Un point (x, y) est dans l'intersection $D_1 \cap D_2$ s'il est solution du système :

$$\begin{cases} ax + by = e \\ cx + dy = f \end{cases}$$
 (S)

Trois cas se présentent alors :

- 1. Les droites D_1 et D_2 se coupent en un seul point. Dans ce cas, illustré par la figure de gauche, le système (S) a une seule solution.
- 2. Les droites D_1 et D_2 sont parallèles. Alors le système (S) n'a pas de solution. La figure du centre illustre cette situation.
- 3. Les droites D_1 et D_2 sont confondues et, dans ce cas, le système (S) a une infinité de solutions.

Nous verrons plus loin que ces trois cas de figure (une seule solution, aucune solution, une infinité de solutions) sont les seuls cas qui peuvent se présenter pour n'importe quel système d'équations linéaires.

1.2. Résolution par substitution

Pour savoir s'il existe une ou plusieurs solutions à un système linéaire, et les calculer, une première méthode est la *substitution*. Par exemple pour le système :

$$\begin{cases} 3x + 2y = 1 \\ 2x - 7y = -2 \end{cases}$$
 (S)

Nous réécrivons la première ligne 3x + 2y = 1 sous la forme $y = \frac{1}{2} - \frac{3}{2}x$. Et nous remplaçons (nous *substituons*) le y de la seconde équation, par l'expression $\frac{1}{2} - \frac{3}{2}x$. Nous obtenons un système équivalent :

$$\begin{cases} y = \frac{1}{2} - \frac{3}{2}x \\ 2x - 7(\frac{1}{2} - \frac{3}{2}x) = -2 \end{cases}$$

La seconde équation est maintenant une expression qui ne contient que des x, et on peut la résoudre :

$$\begin{cases} y = \frac{1}{2} - \frac{3}{2}x \\ (2 + 7 \times \frac{3}{2})x = -2 + \frac{7}{2} \end{cases} \iff \begin{cases} y = \frac{1}{2} - \frac{3}{2}x \\ x = \frac{3}{25} \end{cases}$$

Il ne reste plus qu'à remplacer dans la première ligne la valeur de x obtenue :

$$\begin{cases} y = \frac{8}{25} \\ x = \frac{3}{25} \end{cases}$$

Le système (S) admet donc une solution unique $(\frac{3}{25}, \frac{8}{25})$. L'ensemble des solutions est donc

$$\mathscr{S} = \left\{ \left(\frac{3}{25}, \frac{8}{25} \right) \right\}.$$

1.3. Exemple: deux plans dans l'espace

Dans l'espace (0xyz), une équation linéaire est l'équation d'un plan :

$$ax + by + cz = d$$

L'intersection de deux plans dans l'espace correspond au système suivant à 2 équations et à 3 inconnues:

$$\begin{cases} ax + by + cz = d \\ a'x + b'y + c'z = d' \end{cases}$$

Trois cas se présentent alors :

- les plans sont parallèles (et distincts) et il n'y a alors aucune solution au système,
- les plans sont confondus et il y a une infinité de solutions au système,
- les plans se coupent en une droite et il y a une infinité de solutions.

Exemple 168

1. Le système $\begin{cases} 2x+3y-4z = 7 \\ 4x+6y-8z = -1 \end{cases}$ n'a pas de solution. En effet, en divisant par 2

Le système $\begin{cases} 4x+6y-8z = -1 \end{cases}$ na pas as 2x+3y-4z = 7 la seconde équation, on obtient le système équivalent : $\begin{cases} 2x+3y-4z = 7 \\ 2x+3y-4z = -\frac{1}{2} \end{cases}$. Les 2x + 3y - 4z = 7 et $2x + 3y - 4z = -\frac{1}{2}$. L'ensemble des solutions est donc $\mathscr{S} = \varnothing$.

- 2. Pour le système $\begin{cases} 2x+3y-4z &= 7 \\ 4x+6y-8z &= 14 \end{cases}$, les deux équations définissent le même plan! Le système est donc équivalent à une seule équation : 2x+3y-4z=7. Si on récrit cette équation sous la forme $z = \frac{1}{2}x + \frac{3}{4}y - \frac{7}{4}$, alors on peut décrire l'ensemble des solutions sous la forme : $\mathcal{S} = \{(x, y, \frac{1}{2}x + \frac{3}{4}y - \frac{7}{4}) \mid x, y \in \mathbb{R}\}.$
- 3. Soit le système $\begin{cases} 7x + 2y 2z &= 1 \\ 2x + 3y + 2z &= 1 \end{cases}$. Par substitution :

$$\begin{cases} 7x + 2y - 2z = 1 \\ 2x + 3y + 2z = 1 \end{cases} \iff \begin{cases} z = \frac{7}{2}x + y - \frac{1}{2} \\ 2x + 3y + 2\left(\frac{7}{2}x + y - \frac{1}{2}\right) = 1 \end{cases} \iff \begin{cases} z = \frac{7}{2}x + y - \frac{1}{2} \\ 9x + 5y = 2 \end{cases}$$

$$\iff \left\{ \begin{array}{l} z = \frac{7}{2}x + y - \frac{1}{2} \\ y = -\frac{9}{5}x + \frac{2}{5} \end{array} \right. \iff \left\{ \begin{array}{l} z = \frac{17}{10}x - \frac{1}{10} \\ y = -\frac{9}{5}x + \frac{2}{5} \end{array} \right.$$

Pour décrire l'ensemble des solutions, on peut choisir x comme paramètre :

$$\mathscr{S} = \left\{ \left(x, -\frac{9}{5}x + \frac{2}{5}, \frac{17}{10}x - \frac{1}{10} \right) | x \in \mathbb{R} \right\}.$$

Géométriquement : nous avons trouvé une équation paramétrique de la droite définie par l'intersection de deux plans.

Du point de vue du nombre de solutions, nous constatons qu'il n'y a que deux possibilités, à savoir aucune solution ou une infinité de solutions. Mais les deux derniers cas ci-dessus sont néanmoins très différents géométriquement et il semblerait que dans le second cas (plans confondus), l'infinité de solutions soit plus grande que dans le troisième cas. Les chapitres suivants nous permettront de rendre rigoureuse cette impression.

Si on considère trois plans dans l'espace, une autre possibilité apparaît : il se peut que les trois plans s'intersectent en un seul point.

1.4. Résolution par la méthode de Cramer

On note $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$ le **déterminant**. On considère le cas d'un système de 2 équations à 2 inconnues :

$$\begin{cases} ax + by = e \\ cx + dy = f \end{cases}$$

Si $ad - bc \neq 0$, on trouve une unique solution dont les coordonnées (x, y) sont :

$$x = \frac{\begin{vmatrix} e & b \\ f & d \end{vmatrix}}{\begin{vmatrix} a & b \\ c & d \end{vmatrix}} \qquad y = \frac{\begin{vmatrix} a & e \\ c & f \end{vmatrix}}{\begin{vmatrix} a & b \\ c & d \end{vmatrix}}$$

Notez que le dénominateur égale le déterminant pour les deux coordonnées et est donc non nul. Pour le numérateur de la première coordonnée x, on remplace la première colonne par le second membre ; pour la seconde coordonnée y, on remplace la seconde colonne par le second membre.

Exemple 169

Résolvons le système $\begin{cases} tx-2y &= 1\\ 3x+ty &= 1 \end{cases}$ suivant la valeur du paramètre $t \in \mathbb{R}$.

Le déterminant associé au système est $\left| \begin{smallmatrix} t & -2 \\ 3 & t \end{smallmatrix} \right| = t^2 + 6$ et ne s'annule jamais. Il existe donc une unique solution (x,y) et elle vérifie :

$$x = \frac{\begin{vmatrix} 1 & -2 \\ 1 & t \end{vmatrix}}{t^2 + 6} = \frac{t + 2}{t^2 + 6}, \qquad y = \frac{\begin{vmatrix} t & 1 \\ 3 & 1 \end{vmatrix}}{t^2 + 6} = \frac{t - 3}{t^2 + 6}.$$

Pour chaque t, l'ensemble des solutions est $\mathscr{S} = \left\{ \left(\frac{t+2}{t^2+6}, \frac{t-3}{t^2+6} \right) \right\}$.

1.5. Résolution par inversion de matrice

Pour ceux qui connaissent les matrices, le système linéaire

$$\begin{cases} ax + by = e \\ cx + dy = f \end{cases}$$

est équivalent à

$$AX = Y$$
 où $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $X = \begin{pmatrix} x \\ y \end{pmatrix}$, $Y = \begin{pmatrix} e \\ f \end{pmatrix}$.

Si le déterminant de la matrice A est non nul, c'est-à-dire si $ad-bc \neq 0$, alors la matrice A est inversible et

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

et l'unique solution $X = \begin{pmatrix} x \\ y \end{pmatrix}$ du système est donnée par

$$X = A^{-1}Y.$$

Exemple 170

Résolvons le système $\begin{cases} x+y &= 1 \\ x+t^2y &= t \end{cases}$ suivant la valeur du paramètre $t \in \mathbb{R}$.

Le déterminant du système est $\begin{vmatrix} 1 & 1 \\ 1 & t^2 \end{vmatrix} = t^2 - 1$.

Premier cas. $t \neq +1$ **et** $t \neq -1$. Alors $t^2 - 1 \neq 0$. La matrice $A = \begin{pmatrix} 1 & 1 \\ 1 & t^2 \end{pmatrix}$ est inversible d'inverse $A^{-1} = \frac{1}{t^2 - 1} \begin{pmatrix} t^2 & -1 \\ -1 & 1 \end{pmatrix}$. Et la solution $X = \begin{pmatrix} x \\ y \end{pmatrix}$ est

$$X = A^{-1}Y = \frac{1}{t^2 - 1} \begin{pmatrix} t^2 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ t \end{pmatrix} = \frac{1}{t^2 - 1} \begin{pmatrix} t^2 - t \\ t - 1 \end{pmatrix} = \begin{pmatrix} \frac{t}{t+1} \\ \frac{1}{t+1} \end{pmatrix}.$$

Pour chaque $t \neq \pm 1$, l'ensemble des solutions est $\mathscr{S} = \left\{ \left(\frac{t}{t+1}, \frac{1}{t+1} \right) \right\}$. **Deuxième cas.** t = +1. Le système s'écrit alors : $\begin{cases} x+y = 1 \\ x+y = 1 \end{cases}$ et les deux équations sont

identiques. Il y a une infinité de solutions : $\mathscr{S} = \{(x, 1-x) \mid x \in \mathbb{R}\}$. **Troisième cas.** t = -1. Le système s'écrit alors : $\begin{cases} x+y = 1 \\ x+y = -1 \end{cases}$, les deux équations sont clairement incompatibles et donc $\mathcal{S} = \emptyset$

Mini-exercices

- 1. Tracer les droites et résoudre le système linéaire $\begin{cases} x-2y = -1 \\ -x+3y = 3 \end{cases}$ de trois façons différentes : substitution, méthode de Cramer, inverse d'une matrice. Idem avec $\begin{cases} 2x-y &= 4 \\ 3x+3y &= -5 \end{cases}$
- 2. Résoudre suivant la valeur du paramètre $t \in \mathbb{R}$: $\begin{cases} 4x 3y = t \\ 2x y = t^2 \end{cases}$
- 3. Discuter et résoudre suivant la valeur du paramètre $t \in \mathbb{R}$: $\begin{cases} tx y = 1 \\ x + (t 2)y = -1 \end{cases}$. Idem avec $\begin{cases} (t-1)x + y = 1 \\ 2x + ty = -1 \end{cases}$.

2. Théorie des systèmes linéaires

2.1. Définitions

Définition 83

On appelle *équation linéaire* dans les variables (ou *inconnues*) $x_1,...,x_p$ toute relation de

$$a_1 x_1 + \dots + a_p x_p = b, \tag{16.1}$$

où a_1, \ldots, a_p et b sont des nombres réels donnés.

Remarque

- Il importe d'insister ici sur le fait que ces équations linéaires sont *implicites*, c'est-à-dire qu'elles décrivent des relations entre les variables, mais ne donnent pas directement les valeurs que peuvent prendre les variables.
- *Résoudre* une équation signifie donc la rendre *explicite*, c'est-à-dire rendre plus apparentes les valeurs que les variables peuvent prendre.
- On peut aussi considérer des équations linéaires de nombres rationnels ou de nombres complexes.

Soit $n \ge 1$ un entier.

Définition 84

Un système de n équations linéaires à p inconnues est une liste de n équations linéaires.

On écrit usuellement de tels systèmes en n lignes placées les unes sous les autres.

Exemple 171

Le système suivant a 2 équations et 3 inconnues

$$\begin{cases} x_1 - 3x_2 + x_3 = 1 \\ -2x_1 + 4x_2 - 3x_3 = 9 \end{cases}$$

La forme générale d'un système linéaire de n équations à p inconnues est la suivante :

$$\begin{cases} a_{11}x_1 & +a_{12}x_2 & +a_{13}x_3 & + & \cdots & +a_{1p}x_p & = & b_1 & (\leftarrow \text{équation 1}) \\ a_{21}x_1 & +a_{22}x_2 & +a_{23}x_3 & + & \cdots & +a_{2p}x_p & = & b_2 & (\leftarrow \text{équation 2}) \\ \vdots & \vdots & \vdots & & \vdots & = & \vdots \\ a_{i1}x_1 & +a_{i2}x_2 & +a_{i3}x_3 & + & \cdots & +a_{ip}x_p & = & b_i & (\leftarrow \text{équation } i) \\ \vdots & \vdots & \vdots & & \vdots & = & \vdots \\ a_{n1}x_1 & +a_{n2}x_2 & +a_{n3}x_3 & + & \cdots & +a_{np}x_p & = & b_n & (\leftarrow \text{équation } n) \end{cases}$$

Les nombres a_{ij} , $i=1,\ldots,n$, $j=1,\ldots,p$, sont les **coefficients** du système. Ce sont des données. Les nombres b_i , $i=1,\ldots,n$, constituent le **second membre** du système et sont également des données. Il convient de bien observer comment on a rangé le système en lignes (une ligne par équation) numérotées de 1 à n par l'indice i, et en colonnes : les termes correspondant à une même inconnue x_j sont alignés verticalement les uns sous les autres. L'indice j varie de 1 à p. Il y a donc p colonnes à gauche des signes d'égalité, plus une colonne supplémentaire à droite pour le second membre. La notation avec double indice a_{ij} correspond à ce rangement : le premier indice (ici i) est le numéro de ligne et le second indice (ici j) est le numéro de colonne. Il est extrêmement important de toujours respecter cette convention.

Dans l'exemple 171, on a n=2 (nombre d'équations = nombre de lignes), p=3 (nombre d'inconnues = nombre de colonnes à gauche du signe =) et $a_{11}=1$, $a_{12}=-3$, $a_{13}=1$, $a_{21}=-2$, $a_{22}=4$, $a_{23}=-3$, $a_{13}=1$ et $a_{21}=-2$, $a_{22}=4$, $a_{23}=-3$, $a_{21}=-2$, $a_{22}=4$, $a_{23}=-3$, $a_{23}=$

Définition 85

Une **solution** du système linéaire est une liste de p nombres réels $(s_1, s_2, ..., s_p)$ (un p-uplet) tels que si l'on substitue s_1 pour x_1 , s_2 pour x_2 , etc., dans le système linéaire, on obtient une égalité. L'ensemble des solutions du système est l'ensemble de tous ces p-uplets.

Exemple 172

Le système

$$\begin{cases} x_1 - 3x_2 + x_3 = 1 \\ -2x_1 + 4x_2 - 3x_3 = 9 \end{cases}$$

admet comme solution (-18, -6, 1), c'est-à-dire

$$x_1 = -18$$
, $x_2 = -6$, $x_3 = 1$.

Par contre, (7,2,0) ne satisfait que la première équation. Ce n'est donc pas une solution du système.

En règle générale, on s'attache à déterminer l'ensemble des solutions d'un système linéaire. C'est ce que l'on appelle *résoudre* le système linéaire. Ceci amène à poser la définition suivante.

Définition 86

On dit que deux systèmes linéaires sont équivalents s'ils ont le même ensemble de solutions.

À partir de là, le jeu pour résoudre un système linéaire donné consistera à le transformer en un système équivalent dont la résolution sera plus simple que celle du système de départ. Nous verrons plus loin comment procéder de façon systématique pour arriver à ce but.

2.2. Différents types de systèmes

Voici un résultat théorique important pour les systèmes linéaires.

Théorème 49

Un système d'équations linéaires n'a soit aucune solution, soit une seule solution, soit une infinité de solutions.

En particulier, si vous trouvez 2 solutions différentes à un système linéaire, alors c'est que vous pouvez en trouver une infinité! Un système linéaire qui n'a aucune solution est dit *incompatible*. La preuve de ce théorème sera vue dans un chapitre ultérieur (« Matrices »).

2.3. Systèmes homogènes

Un cas particulier important est celui des *systèmes homogènes*, pour lesquels $b_1 = b_2 = \cdots = b_n = 0$, c'est-à-dire dont le second membre est nul. De tels systèmes sont toujours compatibles car ils admettent toujours la solution $s_1 = s_2 = \cdots = s_p = 0$. Cette solution est appelée *solution triviale*. Géométriquement, dans le cas 2×2 , un système homogène correspond à deux droites qui passent par l'origine, (0,0) étant donc toujours solution.

Mini-exercices

- 1. Écrire un système linéaire de 4 équations et 3 inconnues qui n'a aucune solution. Idem avec une infinité de solution. Idem avec une solution unique.
- 2. Résoudre le système à n équations et n inconnues dont les équations sont $(L_i): x_i x_{i+1} = 1$ pour i = 1, ..., n-1 et $(L_n): x_n = 1$.
- 3. Résoudre les systèmes suivants :

$$\begin{cases} x_1 + 2x_2 + 3x_3 + 4x_4 &= 0 \\ x_2 + 2x_3 + 3x_4 &= 9 \\ x_3 + 2x_4 &= 0 \end{cases} \begin{cases} x_1 + 2x_2 + 3x_3 &= 1 \\ x_1 + x_2 + x_3 &= 2 \\ x_1 - x_2 + x_3 &= 3 \end{cases} \begin{cases} x_1 + x_2 \\ x_2 + x_3 \\ x_3 + x_4 \\ x_1 + 2x_2 + 2x_3 + x_4 \end{cases} = \begin{cases} x_1 + x_2 \\ x_2 + x_3 \\ x_3 + x_4 \\ x_1 + 2x_2 + 2x_3 + x_4 \end{cases} = \begin{cases} x_1 + x_2 \\ x_2 + x_3 \\ x_3 + x_4 \\ x_1 + 2x_2 + 2x_3 + x_4 \end{cases} = \begin{cases} x_1 + x_2 \\ x_2 + x_3 \\ x_3 + x_4 \\ x_1 + 2x_2 + 2x_3 + x_4 \end{cases} = \begin{cases} x_1 + x_2 \\ x_2 + x_3 \\ x_3 + x_4 \\ x_1 + x_2 + x_3 \\ x_2 + x_3 + x_4 \end{cases} = \begin{cases} x_1 + x_2 \\ x_2 + x_3 \\ x_3 + x_4 \\ x_1 + x_2 + x_3 \\ x_2 + x_3 \\ x_3 + x_4 \end{cases} = \begin{cases} x_1 + x_2 \\ x_2 + x_3 \\ x_3 + x_4 \\ x_1 + x_2 + x_3 \\ x_2 + x_3 \\ x_3 + x_4 \end{cases} = \begin{cases} x_1 + x_2 \\ x_2 + x_3 \\ x_3 + x_4 \\ x_1 + x_2 + x_3 \\ x_2 + x_3 \\ x_3 + x_4 \end{cases} = \begin{cases} x_1 + x_2 \\ x_3 + x_4 \\ x_1 + x_2 + x_3 \\ x_2 + x_3 \\ x_3 + x_4 \end{cases} = \begin{cases} x_1 + x_2 \\ x_3 + x_4 \\ x_1 + x_2 + x_3 \\ x_3 + x_4 \end{cases} = \begin{cases} x_1 + x_2 \\ x_3 + x_4 \\ x_1 + x_2 + x_3 \\ x_3 + x_4 \end{cases} = \begin{cases} x_1 + x_2 \\ x_3 + x_4 \\ x_1 + x_2 + x_3 \\ x_3 + x_4 \end{cases} = \begin{cases} x_1 + x_2 \\ x_3 + x_4 \\ x_1 + x_2 + x_3 \\ x_3 + x_4 \end{cases} = \begin{cases} x_1 + x_2 \\ x_3 + x_4 \\ x_1 + x_2 + x_3 \\ x_3 + x_4 \end{cases} = \begin{cases} x_1 + x_2 \\ x_3 + x_4 \\ x_1 + x_2 + x_3 \\ x_3 + x_4 \end{cases} = \begin{cases} x_1 + x_2 \\ x_3 + x_4 \\ x_3 + x_4 \\ x_3 + x_4 \end{cases} = \begin{cases} x_1 + x_2 \\ x_3 + x_4 \\ x_3 + x_4 \end{cases} = \begin{cases} x_1 + x_2 \\ x_3 + x_4 \\ x_4 + x_4 \\ x_3 + x_4 \end{cases} = \begin{cases} x_1 + x_2 \\ x_3 + x_4 \\ x_4 + x_4 \\ x_4 + x_4 \\ x_4 + x_4 \end{cases} = \begin{cases} x_1 + x_2 \\ x_3 + x_4 \\ x_4 + x_4 \\ x_4 + x_4 \\ x_4 + x_4 \end{cases} = \begin{cases} x_1 + x_4 \\ x_4 + x_4 \\ x_4 + x_4 \\ x_4 + x_4 \\ x_4 + x_4 \end{cases} = \begin{cases} x_1 + x_4 \\ x_4 + x_4 \\ x_4 + x_4 \\ x_4 + x_4 \\ x_4 + x_4 \end{cases} = \begin{cases} x_1 + x_4 \\ x_4 + x_4 \end{cases} = \begin{cases} x_1 + x_4 \\ x_4 + x_4 \\ x_4$$

4. Montrer que si un système linéaire *homogène* a une solution $(x_1,...,x_p) \neq (0,...,0)$, alors il admet une infinité de solutions.

3. Résolution par la méthode du pivot de Gauss

3.1. Systèmes échelonnés

Définition 87

Un système est échelonné si :

- le nombre de coefficients nuls commençant une ligne croît strictement ligne après ligne.

Il est échelonné réduit si en plus :

- le premier coefficient non nul d'une ligne vaut 1;
- et c'est le seul élément non nul de sa colonne.

Exemple 173

$$-\begin{cases} 2x_1 & +3x_2 & +2x_3 & -x_4 & = & 5 \\ & -x_2 & -2x_3 & = & 4 & \text{est \'echelonn\'e (mais pas r\'eduit).} \\ & & 3x_4 & = & 1 \\ -\begin{cases} 2x_1 & +3x_2 & +2x_3 & -x_4 & = & 5 \\ & -2x_3 & = & 4 & \text{n'est pas \'echelonn\'e (la derni\`ere ligne commence avec} \\ & x_3 & +x_4 & = & 1 \end{cases}$$

la même variable que la ligne au-dessus).

Il se trouve que les systèmes linéaires sous une forme échelonnée réduite sont particulièrement simples à résoudre.

Exemple 174

Le système linéaire suivant à 3 équations et 4 inconnues est échelonné et réduit.

$$\begin{cases} x_1 & +2x_3 & = 25 \\ x_2 & -2x_3 & = 16 \\ x_4 & = 1 \end{cases}$$

Ce système se résout trivialement en

$$\begin{cases} x_1 = 25 - 2x_3 \\ x_2 = 16 + 2x_3 \\ x_4 = 1. \end{cases}$$

En d'autres termes, pour toute valeur de x_3 réelle, les valeurs de x_1, x_2 et x_4 calculées cidessus fournissent une solution du système, et on les a ainsi toutes obtenues. On peut donc décrire entièrement l'ensemble des solutions :

$$\mathcal{S} = \{ (25 - 2x_3, 16 + 2x_3, x_3, 1) \mid x_3 \in \mathbb{R} \}.$$

3.2. Opérations sur les équations d'un système

Nous allons utiliser trois opérations élémentaires sur les équations (c'est-à-dire sur les lignes) qui sont:

- 1. $L_i \leftarrow \lambda L_i$ avec $\lambda \neq 0$: on peut multiplier une équation par un réel non nul.
- 2. $L_i \leftarrow L_i + \lambda L_j$ avec $\lambda \in \mathbb{R}$ (et $j \neq i$): on peut ajouter à l'équation L_i un multiple d'une autre équation L_i .
- 3. $L_i \leftrightarrow L_j$: on peut échanger deux équations.

Ces trois opérations élémentaires ne changent pas les solutions d'un système linéaire; autrement dit ces opérations transforment un système linéaire en un système linéaire équivalent.

Exemple 175

Utilisons ces opérations élémentaires pour résoudre le système suivant.

$$\begin{cases} x + y +7z = -1 & (L_1) \\ 2x - y +5z = -5 & (L_2) \\ -x -3y -9z = -5 & (L_3) \end{cases}$$

Commençons par l'opération $L_2 \leftarrow L_2 - 2L_1$: on soustrait à la deuxième équation deux fois la première équation. On obtient un système équivalent avec une nouvelle deuxième ligne (plus simple):

$$\begin{cases} x + y +7z = -1 \\ -3y -9z = -3 \\ -x -3y -9z = -5 \end{cases}$$

$$\begin{cases} x + y +7z = -1 \\ -3y -9z = -3 \\ -2y -2z = -6 \end{cases}$$

$$\begin{cases} x + y +7z = -1 \\ -3y -9z = -3 \\ -2y -2z = -6 & L_3 \leftarrow L_3 + L \end{cases}$$

On continue pour faire apparaître un coefficient 1 en tête de la deuxième ligne ; pour cela on divise la ligne L_2 par -3:

$$\begin{cases} x + y +7z = -1 \\ y +3z = 1 \\ -2y -2z = -6 \end{cases}$$

On continue ainsi

$$\begin{cases} x + y + 7z = -1 \\ y + 3z = 1 \\ 4z = -4 & L_3 \leftarrow L_3 + 2L_2 \end{cases} \qquad \begin{cases} x + y + 7z = -1 \\ y + 3z = 1 \\ z = -1 & L_3 \leftarrow \frac{1}{4}L_3 \end{cases}$$

$$\begin{cases} x + y + 7z = -1 \\ y = -1 & L_3 \leftarrow \frac{1}{4}L_3 \end{cases} \qquad \begin{cases} x + y = 6 & L_1 \leftarrow L_1 - 7L_3 \\ y = 4 & z = -1 \end{cases}$$

$$\begin{cases} x + y + 7z = -1 \\ y = 4 & L_2 \leftarrow L_2 - 3L_3 \\ z = -1 \end{cases} \qquad \begin{cases} x + y = 6 & L_1 \leftarrow L_1 - 7L_3 \\ y = 4 \\ z = -1 \end{cases}$$

On aboutit à un système réduit et échelonné :

$$\begin{cases} x & = 2 & L_1 \leftarrow L_1 - L_2 \\ y & = 4 \\ z & = -1 \end{cases}$$

On obtient ainsi x = 2, y = 4 et z = -1 et l'unique solution du système est (2, 4, -1).

La méthode utilisée pour cet exemple est reprise et généralisée dans le paragraphe suivant.

3.3. Méthode du pivot de Gauss

La méthode du pivot de Gauss permet de trouver les solutions de n'importe quel système linéaire. Nous allons décrire cet algorithme sur un exemple. Il s'agit d'une description précise d'une suite d'opérations à effectuer, qui dépendent de la situation et d'un ordre précis. Ce processus aboutit toujours (et en plus assez rapidement) à un système échelonné puis réduit, qui conduit immédiatement aux solutions du système.

Partie A. Passage à une forme échelonnée.

Soit le système suivant à résoudre :

$$\begin{cases} -x_2 + 2x_3 + 13x_4 = 5\\ x_1 - 2x_2 + 3x_3 + 17x_4 = 4\\ -x_1 + 3x_2 - 3x_3 - 20x_4 = -1 \end{cases}$$

Pour appliquer la méthode du pivot de Gauss, il faut d'abord que le premier coefficient de la première ligne soit non nul. Comme ce n'est pas le cas ici, on échange les deux premières lignes par l'opération élémentaire $L_1 \leftrightarrow L_2$:

$$\begin{cases} x_1 & -2x_2 & +3x_3 & +17x_4 & = & 4 & L_1 \leftrightarrow L_2 \\ & -x_2 & +2x_3 & +13x_4 & = & 5 \\ -x_1 & +3x_2 & -3x_3 & -20x_4 & = & -1 \end{cases}$$

Nous avons déjà un coefficient 1 devant le x_1 de la première ligne. On dit que nous avons un *pivot* en position (1,1) (première ligne, première colonne). Ce pivot sert de base pour éliminer tous les autres termes sur la même colonne.

Il n'y a pas de terme x_1 sur le deuxième ligne. Faisons disparaître le terme x_1 de la troisième ligne; pour cela on fait l'opération élémentaire $L_3 \leftarrow L_3 + L_1$:

$$\begin{cases} x_1 & -2x_2 & +3x_3 & +17x_4 & = & 4 \\ & -x_2 & +2x_3 & +13x_4 & = & 5 \\ & x_2 & & -3x_4 & = & 3 & L_3 \leftarrow L_3 + L_1 \end{cases}$$

On change le signe de la seconde ligne $(L_2 \leftarrow -L_2)$ pour faire apparaître 1 au coefficient du pivot (2,2) (deuxième ligne, deuxième colonne) :

$$\begin{cases} x_1 & -2x_2 & +3x_3 & +17x_4 & = & 4 \\ & x_2 & -2x_3 & -13x_4 & = & -5 & L_2 \leftarrow -L_2 \\ & x_2 & & -3x_4 & = & 3 \end{cases}$$

On fait disparaître le terme x_2 de la troisième ligne, puis on fait apparaître un coefficient 1 pour le pivot de la position (3,3):

$$\begin{cases} x_1 & -2x_2 & +3x_3 & +17x_4 & = & 4 \\ & x_2 & -2x_3 & -13x_4 & = & -5 \\ & & 2x_3 & +10x_4 & = & 8 & L_3 \leftarrow L_3 - L_2 \end{cases} \qquad \begin{cases} x_1 & -2x_2 & +3x_3 & +17x_4 & = & 4 \\ & x_2 & -2x_3 & -13x_4 & = & -5 \\ & & x_3 & +5x_4 & = & 4 & L_3 \leftarrow \frac{1}{2}L_3 \end{cases}$$

Le système est maintenant sous forme échelonnée.

Partie B. Passage à une forme réduite.

Il reste à le mettre sous la forme échelonnée réduite. Pour cela, on ajoute à une ligne des multiples adéquats des lignes situées au-dessous d'elle, en allant du bas à droite vers le haut à gauche. On fait apparaître des 0 sur la troisième colonne en utilisant le pivot de la troisième ligne :

$$\begin{cases} x_1 & -2x_2 & +3x_3 & +17x_4 & = & 4 \\ & x_2 & & -3x_4 & = & 3 & L_2 \leftarrow L_2 + 2L_3 \\ & & x_3 & +5x_4 & = & 4 \end{cases} \qquad \begin{cases} x_1 & -2x_2 & 2x_4 & = & -8 & L_1 \leftarrow L_1 - 3L_3 \\ & x_2 & & -3x_4 & = & 3 \\ & & x_3 & +5x_4 & = & 4 \end{cases}$$

On fait apparaître des 0 sur la deuxième colonne (en utilisant le pivot de la deuxième ligne) :

$$\begin{cases} x_1 & -4x_4 = -2 & L_1 \leftarrow L_1 + 2L_2 \\ x_2 & -3x_4 = 3 \\ x_3 & +5x_4 = 4 \end{cases}$$

Le système est sous forme échelonnée réduite.

Partie C. Solutions. Le système est maintenant très simple à résoudre. En choisissant x_4 comme variable libre, on peut exprimer x_1, x_2, x_3 en fonction de x_4 :

$$x_1 = 4x_4 - 2$$
, $x_2 = 3x_4 + 3$, $x_3 = -5x_4 + 4$.

Ce qui permet d'obtenir toutes les solutions du système :

$$\mathcal{S} = \{ (4x_4 - 2, 3x_4 + 3, -5x_4 + 4, x_4) \mid x_4 \in \mathbb{R} \}.$$

3.4. Systèmes homogènes

Le fait que l'on puisse toujours se ramener à un système échelonné réduit implique le résultat suivant :

Théorème 50

Tout système homogène d'équations linéaires dont le nombre d'inconnues est strictement plus grand que le nombre d'équations a une infinité de solutions.

Exemple 176

Considérons le système homogène

$$\begin{cases} 3x_1 + 3x_2 - 2x_3 & -x_5 = 0 \\ -x_1 - x_2 + x_3 + 3x_4 + x_5 = 0 \\ 2x_1 + 2x_2 - x_3 + 2x_4 + 2x_5 = 0 \\ x_3 + 8x_4 + 4x_5 = 0. \end{cases}$$

Sa forme échelonnée réduite est

$$\begin{cases} x_1 + x_2 + 13x_5 = 0 \\ x_3 + 20x_5 = 0 \\ x_4 - 2x_5 = 0. \end{cases}$$

On pose comme variables libres x_2 et x_5 pour avoir

$$x_1 = -x_2 - 13x_5,$$
 $x_3 = -20x_5,$ $x_4 = 2x_5,$

et l'ensemble des solutions :

$$\mathcal{S} = \left\{ (-x_2 - 13x_5, x_2, -20x_5, 2x_5, x_5) \mid x_2, x_5 \in \mathbb{R} \right\}$$

qui est bien infini.

Mini-exercices

- 1. Écrire un système linéaire à 4 équations et 5 inconnues qui soit échelonné mais pas réduit. Idem avec échelonné, non réduit, dont tous les coefficients sont 0 ou +1. Idem avec échelonné et réduit.
- 2. Résoudre les systèmes échelonnés suivants : $\begin{cases} 2x_1 x_2 & +x_4 = 1 \\ x_2 + x_3 2x_4 = 3 \\ 2x_3 + x_4 = 4 \\ x_4 = -2 \end{cases}$ $\begin{cases} x_1 + x_2 + x_4 = 0 \\ x_2 + x_3 = 0 \\ 2x_3 + x_4 = 0 \end{cases}$ $\begin{cases} x_1 + 2x_2 + x_4 = 0 \\ 2x_3 3x_4 = 0 \end{cases}$

$$\begin{cases} x_1 + x_2 + x_4 = 0 \\ x_2 + x_3 = 0 \\ 2x_3 + x_4 = 0 \end{cases} = \begin{cases} x_1 + 2x_2 + x_4 = 0 \\ 2x_3 - 3x_4 = 0 \end{cases}$$

- 3. Si l'on passe d'un système (S) par une des trois opérations élémentaires à un système (S'), alors quelle opération permet de passer de (S') à (S)?
- 4. Résoudre les systèmes linéaires suivants par la méthode du pivot de Gauss :

$$\begin{cases} 2x + y + z = 3 \\ x - y + 3z = 8 \\ x + 2y - z = -3 \end{cases} \begin{cases} 2x_1 + 4x_2 - 6x_3 - 2x_4 = 2 \\ 3x_1 + 6x_2 - 7x_3 + 4x_4 = 2 \\ 5x_1 + 10x_2 - 11x_3 + 6x_4 = 3 \end{cases}$$

5. Résoudre le système suivant, selon les valeurs de $a,b\in\mathbb{R}$: $\begin{cases} x + y - z = a \\ -x + 2z = b \\ 2y + 2z = 4 \end{cases}$

Auteurs

- D'après un cours de Eva Bayer-Fluckiger, Philippe Chabloz, Lara Thomas de l'École Polytechnique Fédérale de Lausanne,
- et un cours de Sophie Chemla de l'université Pierre et Marie Curie, reprenant des parties d'un cours de H. Ledret et d'une équipe de l'université de Bordeaux animée par J. Queyrut,
- mixés et révisés par Arnaud Bodin, relu par Vianney Combet.

Exo7

17 L'espace vectoriel \mathbb{R}^n

- 1 Vecteurs de \mathbb{R}^n
- 2 Exemples d'applications linéaires
- 3 Propriétés des applications linéaires

Vidéo \blacksquare partie 1. Vecteurs de \mathbb{R}^n

Vidéo ■ partie 2. Exemples d'applications linéaires

Vidéo ■ partie 3. Propriétés des applications linéaires

Ce chapitre est consacré à l'ensemble \mathbb{R}^n vu comme espace vectoriel. Il peut être vu de plusieurs façons :

- un cours minimal sur les espaces vectoriels pour ceux qui n'auraient besoin que de \mathbb{R}^n ,
- une introduction avant d'attaquer le cours détaillé sur les espaces vectoriels,
- une source d'exemples à lire en parallèle du cours sur les espaces vectoriels.

1. Vecteurs de \mathbb{R}^n

1.1. Opérations sur les vecteurs

- L'ensemble des nombres réels $\mathbb R$ est souvent représenté par une droite. C'est un espace de dimension 1.
- Le plan est formé des couples $\binom{x_1}{x_2}$ de nombres réels. Il est noté \mathbb{R}^2 . C'est un espace à deux dimensions.
- L'espace de dimension 3 est constitué des triplets de nombres réels $\binom{x_1}{x_2}$. Il est noté \mathbb{R}^3 . Le symbole $\binom{x_1}{x_2}$ a deux interprétations géométriques : soit comme un point de l'espace (figure de gauche), soit comme un vecteur (figure de droite) :

On généralise ces notions en considérant des espaces de dimension n pour tout entier positif $n=1,2,3,4,\ldots$ Les éléments de l'espace de dimension n sont les n-uples $\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$ de nombres réels.

L'espace de dimension n est noté \mathbb{R}^n . Comme en dimensions 2 et 3, le n-uple $\begin{pmatrix} x_1 \\ x_2 \\ \vdots \end{pmatrix}$ dénote aussi bien un point qu'un vecteur de l'espace de dimension n.

Soient
$$u = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}$$
 et $v = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$ deux vecteurs de \mathbb{R}^n .

Définition 88

- Somme de deux vecteurs. Leur somme est par définition le vecteur u + v =
- Produit d'un vecteur par un scalaire. Soit $\lambda \in \mathbb{R}$ (appelé un scalaire) : $\lambda \cdot u =$
- Le *vecteur nul* de \mathbb{R}^n est le vecteur $0 = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$.

 L'*opposé* du vecteur $u = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$ est le vecteur $-u = \begin{pmatrix} -u_1 \\ \vdots \\ -u_n \end{pmatrix}$.

Voici des vecteurs dans \mathbb{R}^2 (ici $\lambda = 2$):

Dans un premier temps, vous pouvez noter $\vec{u}, \vec{v}, \vec{0}$ au lieu de u, v, 0. Mais il faudra s'habituer rapidement à la notation sans flèche. De même, si λ est un scalaire et u un vecteur, on notera souvent λu au lieu de $\lambda \cdot u$.

Théorème 51

Soient
$$u = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$$
, $v = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$ et $w = \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix}$ des vecteurs de \mathbb{R}^n et $\lambda, \mu \in \mathbb{R}$. Alors :

1.
$$u + v = v + u$$

2.
$$u + (v + w) = (u + v) + w$$

3.
$$u + 0 = 0 + u = u$$

4.
$$u + (-u) = 0$$

5.
$$1 \cdot u = u$$

6.
$$\lambda \cdot (\mu \cdot u) = (\lambda \mu) \cdot u$$

7.
$$\lambda \cdot (u + v) = \lambda \cdot u + \lambda \cdot v$$

8.
$$(\lambda + \mu) \cdot u = \lambda \cdot u + \mu \cdot u$$

Chacune de ces propriétés découle directement de la définition de la somme et de la multiplication par un scalaire. Ces huit propriétés font de \mathbb{R}^n un *espace vectoriel*. Dans le cadre général, ce sont ces huit propriétés qui définissent ce qu'est un espace vectoriel.

1.2. Représentation des vecteurs de \mathbb{R}^n

Soit $u = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$ un vecteur de \mathbb{R}^n . On l'appelle *vecteur colonne* et on considère naturellement u comme une matrice de taille $n \times 1$. Parfois, on rencontre aussi des *vecteurs lignes*: on peut voir le vecteur u comme une matrice $1 \times n$, de la forme (u_1, \dots, u_n) . En fait, le vecteur ligne correspondant à u est le transposé u^T du vecteur colonne u.

Les opérations de somme et de produit par un scalaire définies ci-dessus pour les vecteurs coïncident parfaitement avec les opérations définies sur les matrices :

$$u+v=\begin{pmatrix}u_1\\\vdots\\u_n\end{pmatrix}+\begin{pmatrix}v_1\\\vdots\\v_n\end{pmatrix}=\begin{pmatrix}u_1+v_1\\\vdots\\u_n+v_n\end{pmatrix}\qquad\text{et}\qquad\lambda u=\lambda\begin{pmatrix}u_1\\\vdots\\u_n\end{pmatrix}=\begin{pmatrix}\lambda u_1\\\vdots\\\lambda u_n\end{pmatrix}.$$

1.3. Produit scalaire

Soient $u = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$ et $v = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$ deux vecteurs de \mathbb{R}^n . On définit leur **produit scalaire** par

$$\langle u | v \rangle = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

C'est un scalaire (un nombre réel). Remarquons que cette définition généralise la notion de produit scalaire dans le plan \mathbb{R}^2 et dans l'espace \mathbb{R}^3 .

Une autre écriture :

$$\langle u \mid v \rangle = u^T \times v = \begin{pmatrix} u_1 & u_2 & \cdots & u_n \end{pmatrix} \times \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$$

Soient $A = (a_{ij})$ une matrice de taille $n \times p$, et $B = (b_{ij})$ une matrice de taille $p \times q$. Nous savons que l'on peut former le produit matriciel AB. On obtient une matrice de taille $n \times q$. L'élément d'indice ij de la matrice AB est

$$a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{ip}b_{pj}$$
.

Remarquons que ceci est aussi le produit matriciel:

$$\begin{pmatrix} a_{i1} & a_{i2} & \cdots & a_{ip} \end{pmatrix} \times \begin{pmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{pj} \end{pmatrix}.$$

Autrement dit, c'est le produit scalaire du i-ème vecteur ligne de A avec le j-ème vecteur colonne de B. Notons ℓ_1, \ldots, ℓ_n les vecteurs lignes formant la matrice A, et c_1, \ldots, c_q les vecteurs colonnes formant la matrice B. On a alors

$$AB = \begin{pmatrix} \langle \ell_1 \mid c_1 \rangle & \langle \ell_1 \mid c_2 \rangle & \cdots & \langle \ell_1 \mid c_q \rangle \\ \langle \ell_2 \mid c_1 \rangle & \langle \ell_2 \mid c_2 \rangle & \cdots & \langle \ell_2 \mid c_q \rangle \\ \vdots & \vdots & & \vdots \\ \langle \ell_n \mid c_1 \rangle & \langle \ell_n \mid c_2 \rangle & \cdots & \langle \ell_n \mid c_q \rangle \end{pmatrix}.$$

Mini-exercices

- 1. Faire un dessin pour chacune des 8 propriétés qui font de \mathbb{R}^2 un espace vectoriel.
- 2. Faire la même chose pour \mathbb{R}^3 .
- 3. Montrer que le produit scalaire vérifie $\langle u \mid v \rangle = \langle v \mid u \rangle$, $\langle u + v \mid w \rangle = \langle u \mid w \rangle + \langle v \mid w \rangle$, $\langle \lambda u \mid v \rangle = \lambda \langle u \mid v \rangle$ pour tout $u, v, w \in \mathbb{R}^n$ et $\lambda \in \mathbb{R}$.
- 4. Soit $u \in \mathbb{R}^n$. Montrer que $\langle u \mid u \rangle \ge 0$. Montrer $\langle u \mid u \rangle = 0$ si et seulement si u est le vecteur nul.

2. Exemples d'applications linéaires

Soient

$$f_1: \mathbb{R}^p \longrightarrow \mathbb{R}$$
 $f_2: \mathbb{R}^p \longrightarrow \mathbb{R}$ \cdots $f_n: \mathbb{R}^p \longrightarrow \mathbb{R}$

n fonctions de p variables réelles à valeurs réelles ; chaque f_i est une fonction :

$$f_i: \mathbb{R}^p \longrightarrow \mathbb{R}, \qquad (x_1, x_2, \dots, x_p) \mapsto f_i(x_1, \dots, x_p)$$

On construit une application

$$f: \mathbb{R}^p \longrightarrow \mathbb{R}^n$$

définie par

$$f(x_1,...,x_p) = (f_1(x_1,...,x_p),...,f_n(x_1,...,x_p)).$$

2.1. Applications linéaires

Définition 89

Une application $f: \mathbb{R}^p \longrightarrow \mathbb{R}^n$ définie par $f(x_1, ..., x_p) = (y_1, ..., y_n)$ est dite une **application**

$$\begin{cases} y_1 &= a_{11}x_1 + a_{12}x_2 + \cdots + a_{1p}x_p \\ y_2 &= a_{21}x_1 + a_{22}x_2 + \cdots + a_{2p}x_p \\ \vdots &\vdots &\vdots &\vdots \\ y_n &= a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{np}x_p. \end{cases}$$

En notation matricielle, on a

$$f\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix},$$

ou encore, si on note $X=egin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix}$ et $A\in M_{n,p}(\mathbb{R})$ la matrice $(a_{ij}),$

$$f(X) = AX.$$

Autrement dit, une application linéaire $\mathbb{R}^p \to \mathbb{R}^n$ peut s'écrire $X \mapsto AX$. La matrice $A \in M_{n,p}(\mathbb{R})$ est appelée la *matrice de l'application linéaire* f.

Remarque

- On a toujours f(0,...,0) = (0,...,0). Si on note 0 pour le vecteur nul dans \mathbb{R}^p et aussi dans \mathbb{R}^n , alors une application linéaire vérifie toujours f(0) = 0.
- Le nom complet de la matrice A est : la matrice de l'application linéaire f de la base canonique de \mathbb{R}^p vers la base canonique de \mathbb{R}^n !

Exemple 177

La fonction $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$ définie par

$$\begin{cases} y_1 = -2x_1 + 5x_2 + 2x_3 - 7x_4 \\ y_2 = 4x_1 + 2x_2 - 3x_3 + 3x_4 \\ y_3 = 7x_1 - 3x_2 + 9x_3 \end{cases}$$

s'exprime sous forme matricielle comme suit :

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} -2 & 5 & 2 & -7 \\ 4 & 2 & -3 & 3 \\ 7 & -3 & 9 & 0 \end{pmatrix} \quad \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}.$$

Exemple 178

- Pour l'application linéaire identité $\mathbb{R}^n \to \mathbb{R}^n$, $(x_1, \dots, x_n) \mapsto (x_1, \dots, x_n)$, sa matrice associée est l'identité I_n (car $I_nX = X$).
- Pour l'application linéaire nulle $\mathbb{R}^p \to \mathbb{R}^n$, $(x_1, \dots, x_p) \mapsto (0, \dots, 0)$, sa matrice associée est la matrice nulle $0_{n,p}$ (car $0_{n,p}X=0$).

2.2. Exemples d'applications linéaires

Réflexion par rapport à l'axe (Oy)

La fonction

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} -x \\ y \end{pmatrix}$

est la réflexion par rapport à l'axe des ordonnées (Oy), et sa matrice est

$$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \text{car} \qquad \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ y \end{pmatrix}.$$

Réflexion par rapport à l'axe (Ox)

La réflexion par rapport à l'axe des abscisses (Ox) est donnée par la matrice

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
.

Réflexion par rapport à la droite (y = x)

La réflexion par rapport à la droite (y = x) est donnée par

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2, \qquad \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} y \\ x \end{pmatrix}$$

et sa matrice est

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
.

Homothéties

L'homothétie de rapport λ centrée à l'origine est :

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2, \qquad \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} \lambda x \\ \lambda y \end{pmatrix}.$$

On peut donc écrire $f\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$. Alors la matrice de l'homothétie est :

$$\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$$
.

Remarque

La translation de vecteur $\begin{pmatrix} u_0 \\ v_0 \end{pmatrix}$ est l'application

$$f: \mathbb{R}^2 \to \mathbb{R}^2, \qquad \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} u_0 \\ v_0 \end{pmatrix} = \begin{pmatrix} x + u_0 \\ y + v_0 \end{pmatrix}.$$

Si c'est une translation de vecteur non nul, c'est-à-dire $\binom{u_0}{v_0} \neq \binom{0}{0}$, alors *ce n'est pas* une application linéaire, car $f\binom{0}{0} \neq \binom{0}{0}$.

Rotations

Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ la rotation d'angle θ , centrée à l'origine.

Si le vecteur $\binom{x}{y}$ fait un angle α avec l'horizontale et que le point $\binom{x}{y}$ est à une distance r de l'origine, alors

$$\begin{cases} x = r \cos \alpha \\ y = r \sin \alpha \end{cases}$$

Si $\binom{x'}{y'}$ dénote l'image de $\binom{x}{y}$ par la rotation d'angle θ , on obtient :

$$\begin{cases} x' = r\cos(\alpha + \theta) \\ y' = r\sin(\alpha + \theta) \end{cases} \quad \text{donc} \quad \begin{cases} x' = r\cos\alpha\cos\theta - r\sin\alpha\sin\theta \\ y' = r\cos\alpha\sin\theta + r\sin\alpha\cos\theta \end{cases}$$

(où l'on a appliqué les formules de trigonométrie pour $\cos(\alpha + \theta)$ et $\sin(\alpha + \theta)$). On aboutit à

$$\begin{cases} x' = x\cos\theta - y\sin\theta \\ y' = x\sin\theta + y\cos\theta \end{cases} \quad \text{donc} \quad \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

Autrement dit, la rotation d'angle θ est donnée par la matrice

$$\begin{pmatrix}
\cos\theta & -\sin\theta \\
\sin\theta & \cos\theta
\end{pmatrix}$$

Projections orthogonales

L'application

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2, \qquad \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x \\ 0 \end{pmatrix}$$

est la projection orthogonale sur l'axe (Ox). C'est une application linéaire donnée par la matrice

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
.

L'application linéaire

$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3, \qquad \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$$

est la projection orthogonale sur le plan (Oxy) et sa matrice est

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

De même, la projection orthogonale sur le plan (Oxz) est donnée par la matrice de gauche; la projection orthogonale sur le plan (Oyz) par la matrice de droite :

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Réflexions dans l'espace

L'application

$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3, \qquad \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x \\ y \\ -z \end{pmatrix}$$

est la réflexion par rapport au plan (Oxy). C'est une application linéaire et sa matrice est

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

De même, les réflexions par rapport aux plans (Oxz) (à gauche) et (Oyz) (à droite) sont données par les matrices :

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \qquad \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Mini-exercices

- 1. Soit $A = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}$ et soit f l'application linéaire associée. Calculer et dessiner l'image par f de $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, puis $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ et plus généralement de $\begin{pmatrix} x \\ y \end{pmatrix}$. Dessiner l'image par f du carré de sommets $\begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Dessiner l'image par f du cercle inscrit dans ce carré.
- 2. Soit $A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 0 \\ 2 & 1 & 1 \end{pmatrix}$ et soit f l'application linéaire associée. Calculer l'image par f de $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ et plus généralement de $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$.
- 3. Écrire la matrice de la rotation du plan d'angle $\frac{\pi}{4}$ centrée à l'origine. Idem dans l'espace avec la rotation d'angle $\frac{\pi}{4}$ d'axe (Ox).
- 4. Écrire la matrice de la réflexion du plan par rapport à la droite (y = -x). Idem dans l'espace avec la réflexion par rapport au plan d'équation (y = -x).
- 5. Écrire la matrice de la projection orthogonale de l'espace sur l'axe (Oy).

3. Propriétés des applications linéaires

3.1. Composition d'applications linéaires et produit de matrices

Soient

$$f: \mathbb{R}^p \longrightarrow \mathbb{R}^n$$
 et $g: \mathbb{R}^q \longrightarrow \mathbb{R}^p$

deux applications linéaires. Considérons leur composition :

$$\mathbb{R}^q \xrightarrow{g} \mathbb{R}^p \xrightarrow{f} \mathbb{R}^n \qquad f \circ g : \mathbb{R}^q \longrightarrow \mathbb{R}^n.$$

L'application $f \circ g$ est une application linéaire. Notons :

- $A = Mat(f) \in M_{n,p}(\mathbb{R})$ la matrice associée à f,
- B = Mat(g) ∈ $M_{p,q}(\mathbb{R})$ la matrice associée à g,
- C = Mat($f \circ g$) ∈ $M_{n,q}(\mathbb{R})$ la matrice associée à $f \circ g$.

On a pour un vecteur $X \in \mathbb{R}^q$:

$$(f \circ g)(X) = f(g(X)) = f(BX) = A(BX) = (AB)X.$$

Donc la matrice associée à $f \circ g$ est C = AB.

Autrement dit, la matrice associée à la composition de deux applications linéaires est égale au produit de leurs matrices :

$$Mat(f \circ g) = Mat(f) \times Mat(g)$$

En fait le produit de matrices, qui au premier abord peut sembler bizarre et artificiel, est défini exactement pour vérifier cette relation.

Exemple 179

Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ la réflexion par rapport à la droite (y = x) et soit $g: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ la rotation d'angle $\theta = \frac{\pi}{3}$ (centrée à l'origine).

Les matrices sont

$$A = \operatorname{Mat}(f) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \text{et} \qquad B = \operatorname{Mat}(g) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}.$$

Voici pour $X = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ les images f(X), g(X), $f \circ g(X)$, $g \circ f(X)$:

Alors

$$C = \operatorname{Mat}(f \circ g) = \operatorname{Mat}(f) \times \operatorname{Mat}(g) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \times \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix}.$$

Notons que si l'on considère la composition $g \circ f$ alors

$$D = \operatorname{Mat}(g \circ f) = \operatorname{Mat}(g) \times \operatorname{Mat}(f) = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \times \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -\frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}.$$

Les matrices C = AB et D = BA sont distinctes, ce qui montre que la composition d'applications linéaires, comme la multiplication des matrices, n'est pas commutative en général.

3.2. Application linéaire bijective et matrice inversible

Théorème 52

Une application linéaire $f: \mathbb{R}^n \to \mathbb{R}^n$ est bijective si et seulement si sa matrice associée $A = \operatorname{Mat}(f) \in M_n(\mathbb{R})$ est inversible.

L'application f est définie par f(X) = AX. Donc si f est bijective, alors d'une part $f(X) = Y \iff X = f^{-1}(Y)$, mais d'autre part $AX = Y \iff X = A^{-1}Y$. Conséquence : la matrice de f^{-1} est A^{-1} .

Corollaire 20

Si f est bijective, alors

$$\operatorname{Mat}(f^{-1}) = (\operatorname{Mat}(f))^{-1}.$$

Exemple 180

Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ la rotation d'angle θ . Alors $f^{-1}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ est la rotation d'angle $-\theta$. On a

$$Mat(f) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix},$$

$$\operatorname{Mat}(f^{-1}) = \left(\operatorname{Mat}(f)\right)^{-1} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{pmatrix}.$$

Exemple 181

Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ la projection sur l'axe (Ox). Alors f n'est pas injective. En effet, pour x fixé et tout $y \in \mathbb{R}$, $f \binom{x}{y} = \binom{x}{0}$. L'application f n'est pas non plus surjective : ceci se vérifie aisément car aucun point en-dehors de l'axe (Ox) n'est dans l'image de f.

La matrice de f est $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$; elle n'est pas inversible.

La preuve du théorème 52 est une conséquence directe du théorème suivant, vu dans le chapitre sur les matrices :

Théorème 53

Les assertions suivantes sont équivalentes :

- (i) La matrice A est inversible.
- (ii) Le système linéaire $AX = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$ a une unique solution $X = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$.
- (iii) Pour tout second membre Y, le système linéaire AX = Y à une unique solution X.

Voici donc la preuve du théorème 52.

Démonstration

- Si A est inversible, alors pour tout vecteur Y le système AX = Y a une unique solution X, autrement dit pour tout Y, il existe un unique X tel que f(X) = AX = Y. f est donc bijective.
- Si A n'est pas inversible, alors il existe un vecteur X non nul tel que AX = 0. En conséquence on a $X \neq 0$ mais f(X) = f(0) = 0. f n'est pas injective donc pas bijective.

3.3. Caractérisation des applications linéaires

Théorème 54

Une application $f: \mathbb{R}^p \longrightarrow \mathbb{R}^n$ est linéaire si et seulement si pour tous les vecteurs u, v de \mathbb{R}^p et pour tout scalaire $\lambda \in \mathbb{R}$, on a

- (i) f(u+v) = f(u) + f(v),
- (ii) $f(\lambda u) = \lambda f(u)$.

Dans le cadre général des espaces vectoriels, ce sont ces deux propriétés (i) et (ii) qui définissent une application linéaire.

Définition 90

Les vecteurs

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \qquad e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \qquad \cdots \qquad e_p = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$

sont appelés les vecteurs de la base canonique de \mathbb{R}^p .

La démonstration du théorème impliquera :

Corollaire 21

Soit $f: \mathbb{R}^p \longrightarrow \mathbb{R}^n$ une application linéaire, et soient e_1, \dots, e_p les vecteurs de base canonique de \mathbb{R}^p . Alors la matrice de f (dans les bases canoniques de \mathbb{R}^p vers \mathbb{R}^n) est donnée par

$$\operatorname{Mat}(f) = \left(f(e_1) \quad f(e_2) \quad \cdots \quad f(e_p) \right);$$

autrement dit les vecteurs colonnes de Mat(f) sont les images par f des vecteurs de la base canonique (e_1, \ldots, e_p) .

Exemple 182

Considérons l'application linéaire $f: \mathbb{R}^3 \to \mathbb{R}^4$ définie par

$$\begin{cases} y_1 &= 2x_1 + x_2 - x_3 \\ y_2 &= -x_1 - 4x_2 \\ y_3 &= 5x_1 + x_2 + x_3 \\ y_4 &= 3x_2 + 2x_3 \end{cases}$$

Calculons les images des vecteurs de la base canonique $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$:

$$f\begin{pmatrix} 1\\0\\0 \end{pmatrix} = \begin{pmatrix} 2\\-1\\5\\0 \end{pmatrix} \qquad f\begin{pmatrix} 0\\1\\0 \end{pmatrix} = \begin{pmatrix} 1\\-4\\1\\3 \end{pmatrix} \qquad f\begin{pmatrix} 0\\0\\1 \end{pmatrix} = \begin{pmatrix} -1\\0\\1\\2 \end{pmatrix}.$$

Donc la matrice de f est :

$$Mat(f) = \begin{pmatrix} 2 & 1 & -1 \\ -1 & -4 & 0 \\ 5 & 1 & 1 \\ 0 & 3 & 2 \end{pmatrix}.$$

Exemple 183

Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ la réflexion par rapport à la droite (y = x) et soit g la rotation du plan d'angle $\frac{\pi}{6}$ centrée à l'origine. Calculons la matrice de l'application $f \circ g$. La base canonique de \mathbb{R}^2 est formée des vecteurs $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ et $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

$$f \circ g \begin{pmatrix} 1 \\ 0 \end{pmatrix} = f \begin{pmatrix} \frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{pmatrix} \qquad f \circ g \begin{pmatrix} 0 \\ 1 \end{pmatrix} = f \begin{pmatrix} -\frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{3}}{2} \\ -\frac{1}{2} \end{pmatrix}$$

Donc la matrice de $f \circ g$ est :

$$\mathbf{Mat}(f) = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}.$$

Voici la preuve du théorème 54.

Démonstration

Supposons $f: \mathbb{R}^p \longrightarrow \mathbb{R}^n$ linéaire, et soit A sa matrice. On a f(u+v) = A(u+v) = Au + Av = f(u) + f(v) et $f(\lambda u) = \lambda Au = \lambda f(u)$.

Réciproquement, soit $f: \mathbb{R}^p \longrightarrow \mathbb{R}^n$ une application qui vérifie (i) et (ii). Nous devons construire une matrice A telle que f(u) = Au. Notons d'abord que (i) implique que $f(v_1 + v_2 + \cdots + v_r) = f(v_1) + f(v_2) + \cdots + f(v_r)$. Notons (e_1, \dots, e_p) les vecteurs de la base canonique de \mathbb{R}^p .

Soit *A* la matrice $n \times p$ dont les colonnes sont

$$f(e_1), f(e_2), \dots, f(e_p).$$

Pour
$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix} \in \mathbb{R}^p$$
, alors $X = x_1e_1 + x_2e_2 + \dots + x_pe_p$

et donc

$$AX = A(x_1e_1 + x_2e_2 + \dots + x_pe_p)$$

$$= Ax_1e_1 + Ax_2e_2 + \dots + Ax_pe_p$$

$$= x_1Ae_1 + x_2Ae_2 + \dots + x_pAe_p$$

$$= x_1f(e_1) + x_2f(e_2) + \dots + x_pf(e_p)$$

$$= f(x_1e_1) + f(x_2e_2) + \dots + f(x_pe_p)$$

$$= f(x_1e_1 + x_2e_2 + \dots + x_pe_p) = f(X).$$

On a alors f(X) = AX, et f est bien une application linéaire (de matrice A).

Mini-exercices

- 1. Soit f la réflexion du plan par rapport à l'axe (Ox) et soit g la rotation d'angle $\frac{2\pi}{3}$ centrée à l'origine. Calculer la matrice de $f \circ g$ de deux façons différentes (produit de matrices et image de la base canonique). Cette matrice est-elle inversible? Si oui, calculer l'inverse. Interprétation géométrique. Même question avec $g \circ f$.
- 2. Soit f la projection orthogonale de l'espace sur le plan (Oxz) et soit g la rotation d'angle $\frac{\pi}{2}$ d'axe (Oy). Calculer la matrice de $f \circ g$ de deux façons différentes (produit de matrices et image de la base canonique). Cette matrice est-elle inversible? Si oui, calculer l'inverse. Interprétation géométrique. Même question avec $g \circ f$.

Auteurs

- D'après un cours de Eva Bayer-Fluckiger, Philippe Chabloz, Lara Thomas de l'École Polytechnique Fédérale de Lausanne,
- révisé et reformaté par Arnaud Bodin, relu par Vianney Combet.

- 1 Définition
- 2 Multiplication de matrices
- 3 Inverse d'une matrice : définition
- 4 Inverse d'une matrice : calcul
- 5 Inverse d'une matrice : systèmes linéaires et matrices élémentaires
- 6 Matrices triangulaires, transposition, trace, matrices symétriques

```
Vidéo ■ partie 1. Définition

Vidéo ■ partie 2. Multiplication de matrices

Vidéo ■ partie 3. Inverse d'une matrice : définition

Vidéo ■ partie 4. Inverse d'une matrice : calcul

Vidéo ■ partie 5. Inverse d'une matrice : systèmes linéaires et matrices élémentaires

Vidéo ■ partie 6. Matrices triangulaires, transposition, trace, matrices symétriques
```

Les matrices sont des tableaux de nombres. La résolution d'un certain nombre de problèmes d'algèbre linéaire se ramène à des manipulations sur les matrices. Ceci est vrai en particulier pour la résolution des systèmes linéaires.

Dans ce chapitre, \mathbb{K} désigne un corps. On peut penser à \mathbb{Q} , \mathbb{R} ou \mathbb{C} .

1. Définition

1.1. Définition

Définition 91

- Une $matrice\ A$ est un tableau rectangulaire d'éléments de \mathbb{K} .
- Elle est dite de *taille* $n \times p$ si le tableau possède n lignes et p colonnes.
- Les nombres du tableau sont appelés les *coefficients* de A.
- Le coefficient situé à la i-ème ligne et à la j-ème colonne est noté $a_{i,j}$.

Un tel tableau est représenté de la manière suivante :

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,j} & \dots & a_{1,p} \\ a_{2,1} & a_{2,2} & \dots & a_{2,j} & \dots & a_{2,p} \\ \dots & \dots & \dots & \dots & \dots \\ a_{i,1} & a_{i,2} & \dots & a_{i,j} & \dots & a_{i,p} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n,1} & a_{n,2} & \dots & a_{n,j} & \dots & a_{n,p} \end{pmatrix} \quad \text{ou} \quad A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}} \quad \text{ou} \quad (a_{i,j}).$$

Exemple 184

$$A = \left(\begin{array}{ccc} 1 & -2 & 5 \\ 0 & 3 & 7 \end{array}\right)$$

est une matrice 2×3 avec, par exemple, $a_{1,1} = 1$ et $a_{2,3} = 7$.

Encore quelques définitions :

Définition 92

- Deux matrices sont égales lorsqu'elles ont la même taille et que les coefficients correspondants sont égaux.
- L'ensemble des matrices à n lignes et p colonnes à coefficients dans \mathbb{K} est noté $M_{n,p}(\mathbb{K})$. Les éléments de $M_{n,p}(\mathbb{R})$ sont appelés matrices réelles.

1.2. Matrices particulières

Voici quelques types de matrices intéressantes :

- Si n = p (même nombre de lignes que de colonnes), la matrice est dite *matrice carrée*. On note $M_n(\mathbb{K})$ au lieu de $M_{n,n}(\mathbb{K})$.

$$egin{pmatrix} m{a_{1,1}} & a_{1,2} & \dots & a_{1,n} \ a_{2,1} & a_{2,2} & \dots & a_{2,n} \ dots & dots & \ddots & dots \ a_{n,1} & a_{n,2} & \dots & a_{n,n} \end{pmatrix}$$

Les éléments $a_{1,1}, a_{2,2}, \dots, a_{n,n}$ forment la **diagonale principale** de la matrice.

Une matrice qui n'a qu'une seule ligne (n = 1) est appelée *matrice ligne* ou *vecteur ligne*.
 On la note

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,p} \end{pmatrix}.$$

De même, une matrice qui n'a qu'une seule colonne (p = 1) est appelée matrice colonne ou vecteur colonne.
 On la note

$$A = \begin{pmatrix} a_{1,1} \\ a_{2,1} \\ \vdots \\ a_{n,1} \end{pmatrix}.$$

– La matrice (de taille $n \times p$) dont tous les coefficients sont des zéros est appelée la *matrice nulle* et est notée $0_{n,p}$ ou plus simplement 0. Dans le calcul matriciel, la matrice nulle joue le rôle du nombre 0 pour les réels.

1.3. Addition de matrices

Définition 93. Somme de deux matrices

Soient A et B deux matrices ayant la même taille $n \times p$. Leur **somme** C = A + B est la matrice de taille $n \times p$ définie par

$$c_{ij} = a_{ij} + b_{ij}.$$

En d'autres termes, on somme coefficients par coefficients. Remarque : on note indifféremment a_{ij} où $a_{i,j}$ pour les coefficients de la matrice A.

Exemple 185

Si
$$A = \begin{pmatrix} 3 & -2 \\ 1 & 7 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & 5 \\ 2 & -1 \end{pmatrix}$ alors $A + B = \begin{pmatrix} 3 & 3 \\ 3 & 6 \end{pmatrix}$.

Par contre si $B' = \begin{pmatrix} -2 \\ 8 \end{pmatrix}$ alors A + B' n'est pas définie.

Définition 94. Produit d'une matrice par un scalaire

Le produit d'une matrice $A = (a_{ij})$ de $M_{n,p}(\mathbb{K})$ par un scalaire $\alpha \in \mathbb{K}$ est la matrice (αa_{ij}) formée en multipliant chaque coefficient de A par α . Elle est notée $\alpha \cdot A$ (ou simplement αA).

Exemple 186

Si
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \end{pmatrix}$$
 et $\alpha = 2$ alors $\alpha A = \begin{pmatrix} 2 & 4 & 6 \\ 0 & 2 & 0 \end{pmatrix}$.

La matrice (-1)A est l'opposée de A et est notée -A. La **différence** A-B est définie par A+(-B).

Exemple 187

Si
$$A = \begin{pmatrix} 2 & -1 & 0 \\ 4 & -5 & 2 \end{pmatrix}$$
 et $B = \begin{pmatrix} -1 & 4 & 2 \\ 7 & -5 & 3 \end{pmatrix}$ alors $A - B = \begin{pmatrix} 3 & -5 & -2 \\ -3 & 0 & -1 \end{pmatrix}$.

L'addition et la multiplication par un scalaire se comportent sans surprises :

Proposition 99

Soient A, B et C trois matrices appartenant à $M_{n,p}(\mathbb{K})$. Soient $\alpha \in \mathbb{K}$ et $\beta \in \mathbb{K}$ deux scalaires.

- 1. A + B = B + A: la somme est commutative,
- 2. A + (B + C) = (A + B) + C: la somme est associative,
- 3. A + 0 = A: la matrice nulle est l'élément neutre de l'addition,
- 4. $(\alpha + \beta)A = \alpha A + \beta A$,
- 5. $\alpha(A+B) = \alpha A + \alpha B$.

Démonstration

Prouvons par exemple le quatrième point. Le terme général de $(\alpha + \beta)A$ est égal à $(\alpha + \beta)a_{ij}$. D'après les règles de calcul dans \mathbb{K} , $(\alpha + \beta)a_{ij}$ est égal à $\alpha a_{ij} + \beta a_{ij}$ qui est le terme général de la matrice $\alpha A + \beta A$.

Mini-exercices

- 1. Soient $A = \begin{pmatrix} -7 & 2 \\ 0 & -1 \\ 1 & -4 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 2 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 21 & -6 \\ 0 & 3 \\ -3 & 12 \end{pmatrix}$, $D = \frac{1}{2} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$, $E = \begin{pmatrix} 1 & 2 \\ -3 & 6 \\ -8 & 6 \end{pmatrix}$. Calculer toutes les sommes possibles de deux de ces matrices. Calculer 3A + 2C et 5B 4D. Trouver α tel que $A \alpha C$ soit la matrice nulle.
- 2. Montrer que si A + B = A, alors B est la matrice nulle.

3. Que vaut $0 \cdot A$? et $1 \cdot A$? Justifier l'affirmation : $\alpha(\beta A) = (\alpha \beta)A$. Idem avec $nA = A + A + \cdots + A$ (n occurrences de A).

2. Multiplication de matrices

2.1. Définition du produit

Le produit AB de deux matrices A et B est défini si et seulement si le nombre de colonnes de A est égal au nombre de lignes de B.

Définition 95. Produit de deux matrices

Soient $A = (a_{ij})$ une matrice $n \times p$ et $B = (b_{ij})$ une matrice $p \times q$. Alors le produit C = AB est une matrice $n \times q$ dont les coefficients c_{ij} sont définis par :

$$c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}$$

On peut écrire le coefficient de façon plus développée, à savoir :

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{ik}b_{kj} + \cdots + a_{ip}b_{pj}$$
.

Il est commode de disposer les calculs de la façon suivante.

Avec cette disposition, on considère d'abord la ligne de la matrice A située à gauche du coefficient que l'on veut calculer (ligne représentée par des \times dans A) et aussi la colonne de la matrice B située au-dessus du coefficient que l'on veut calculer (colonne représentée par des \times dans B). On calcule le produit du premier coefficient de la ligne par le premier coefficient de la colonne $(a_{i1} \times b_{1j})$, que l'on ajoute au produit du deuxième coefficient de la ligne par le deuxième coefficient de la colonne $(a_{i2} \times b_{2j})$, que l'on ajoute au produit du troisième. . .

2.2. Exemples

Exemple 188

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 2 \\ -1 & 1 \\ 1 & 1 \end{pmatrix}$$

On dispose d'abord le produit correctement (à gauche) : la matrice obtenue est de taille 2×2 . Puis on calcule chacun des coefficients, en commençant par le premier coefficient $c_{11} = 1 \times 1 + 2 \times (-1) + 3 \times 1 = 2$ (au milieu), puis les autres (à droite).

$$\begin{pmatrix} 1 & 2 \\ -1 & 1 \\ 1 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 \\ -1 & 1 \\ 1 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 \\ -1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \end{pmatrix} \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \end{pmatrix} \begin{pmatrix} 2 & c_{12} \\ c_{21} & c_{22} \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \end{pmatrix} \begin{pmatrix} 2 & 7 \\ 3 & 11 \end{pmatrix}$$

Un exemple intéressant est le produit d'un vecteur ligne par un vecteur colonne :

$$u = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \end{pmatrix} \quad v = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

Alors $u \times v$ est une matrice de taille 1×1 dont l'unique coefficient est $a_1b_1 + a_2b_2 + \cdots + a_nb_n$. Ce nombre s'appelle le *produit scalaire* des vecteurs u et v.

Calculer le coefficient c_{ij} dans le produit $A \times B$ revient donc à calculer le produit scalaire des vecteurs formés par la i-ème ligne de A et la j-ème colonne de B.

2.3. Pièges à éviter

Premier piège. Le produit de matrices n'est pas commutatif en général.

En effet, il se peut que AB soit défini mais pas BA, ou que AB et BA soient tous deux définis mais pas de la même taille. Mais même dans le cas où AB et BA sont définis et de la même taille, on a en général $AB \neq BA$.

Exemple 189

$$\begin{pmatrix} 5 & 1 \\ 3 & -2 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 4 & 3 \end{pmatrix} = \begin{pmatrix} 14 & 3 \\ -2 & -6 \end{pmatrix}$$
 mais
$$\begin{pmatrix} 2 & 0 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} 5 & 1 \\ 3 & -2 \end{pmatrix} = \begin{pmatrix} 10 & 2 \\ 29 & -2 \end{pmatrix}.$$

Deuxième piège. AB = 0 n'implique pas A = 0 ou B = 0.

Il peut arriver que le produit de deux matrices non nulles soit nul. En d'autres termes, on peut avoir $A \neq 0$ et $B \neq 0$ mais AB = 0.

Exemple 190

$$A = \begin{pmatrix} 0 & -1 \\ 0 & 5 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & -3 \\ 0 & 0 \end{pmatrix} \qquad \text{et} \qquad AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Troisième piège. AB = AC **n'implique pas** B = C. On peut avoir AB = AC et $B \neq C$.

Exemple 191

$$A = \begin{pmatrix} 0 & -1 \\ 0 & 3 \end{pmatrix} \qquad B = \begin{pmatrix} 4 & -1 \\ 5 & 4 \end{pmatrix} \qquad C = \begin{pmatrix} 2 & 5 \\ 5 & 4 \end{pmatrix} \qquad \text{et} \qquad AB = AC = \begin{pmatrix} -5 & -4 \\ 15 & 12 \end{pmatrix}.$$

2.4. Propriétés du produit de matrices

Malgré les difficultés soulevées au-dessus, le produit vérifie les propriétés suivantes :

Proposition 100

- 1. A(BC) = (AB)C: associativité du produit,
- 2. A(B+C) = AB + AC et (B+C)A = BA + CA: distributivité du produit par rapport à la somme,
- 3. $A \cdot 0 = 0$ et $0 \cdot A = 0$.

Démonstration

Posons $A = (a_{ij}) \in M_{n,p}(\mathbb{K})$, $B = (b_{ij}) \in M_{p,q}(\mathbb{K})$ et $C = (c_{ij}) \in M_{q,r}(\mathbb{K})$. Prouvons que A(BC) = (AB)C en montrant que les matrices A(BC) et (AB)C ont les mêmes coefficients.

Le terme d'indice (i,k) de la matrice AB est $x_{ik} = \sum_{\ell=1}^{p} a_{i\ell} b_{\ell k}$. Le terme d'indice (i,j) de la matrice (AB)C est donc

$$\sum_{k=1}^q x_{ik} c_{kj} = \sum_{k=1}^q \left(\sum_{\ell=1}^p a_{i\ell} b_{\ell k} \right) c_{kj}.$$

Le terme d'indice (ℓ, j) de la matrice BC est $y_{\ell j} = \sum_{k=1}^q b_{\ell k} c_{kj}$. Le terme d'indice (i, j) de la matrice A(BC) est donc

$$\sum_{\ell=1}^p a_{i\ell} \left(\sum_{k=1}^q b_{\ell k} c_{kj} \right).$$

Comme dans \mathbb{K} la multiplication est distributive et associative, les coefficients de (AB)C et A(BC) coïncident. Les autres démonstrations se font comme celle de l'associativité.

2.5. La matrice identité

La matrice carrée suivante s'appelle *la matrice identité* :

$$I_n = \left(\begin{array}{cccc} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{array} \right)$$

Ses éléments diagonaux sont égaux à 1 et tous ses autres éléments sont égaux à 0. Elle se note I_n ou simplement I. Dans le calcul matriciel, la matrice identité joue un rôle analogue à celui du nombre 1 pour les réels. C'est l'élément neutre pour la multiplication. En d'autres termes :

Proposition 101

Si A est une matrice $n \times p$, alors

$$I_n \cdot A = A$$
 et $A \cdot I_p = A$.

Démonstration

Nous allons détailler la preuve. Soit $A \in M_{n,p}(\mathbb{K})$ de terme général a_{ij} . La matrice unité d'ordre p est telle que tous les éléments de la diagonale principale sont égaux à 1, les autres étant tous nuls. On peut formaliser cela en introduisant le symbole de Kronecker. Si i et j sont deux entiers, on appelle symbole de Kronecker, et on note $\delta_{i,j}$, le réel qui vaut 0 si i est différent de j, et 1 si i est égal à j. Donc

$$\delta_{i,j} = \begin{cases} 0 & \text{si } i \neq j \\ 1 & \text{si } i = j. \end{cases}$$

Alors le terme général de la matrice identité I_p est $\delta_{i,j}$ avec i et j entiers, compris entre 1 et p. La matrice produit AI_p est une matrice appartenant à $M_{n,p}(\mathbb{K})$ dont le terme général c_{ij} est donné par la formule $c_{ij} = \sum_{k=1}^p a_{ik}\delta_{kj}$. Dans cette somme, i et j sont fixés et k prend toutes les valeurs comprises entre 1 et p. Si $k \neq j$ alors $\delta_{kj} = 0$, et si k = j alors $\delta_{kj} = 1$. Donc dans la somme qui définit c_{ij} , tous les termes correspondant à des valeurs de k différentes de j sont nuls et il reste donc $c_{ij} = a_{ij}\delta_{jj} = a_{ij}1 = a_{ij}$. Donc les matrices AI_p et A ont le même terme général et sont donc égales. L'égalité $I_nA = A$ se démontre de la même façon.

2.6. Puissance d'une matrice

Dans l'ensemble $M_n(\mathbb{K})$ des matrices carrées de taille $n \times n$ à coefficients dans \mathbb{K} , la multiplication des matrices est une opération interne : si $A,B \in M_n(\mathbb{K})$ alors $AB \in M_n(\mathbb{K})$.

En particulier, on peut multiplier une matrice carrée par elle-même : on note $A^2 = A \times A$, $A^3 = A \times A \times A$.

On peut ainsi définir les puissances successives d'une matrice :

Définition 96

Pour tout $A \in M_n(\mathbb{K})$, on définit les puissances successives de A par $A^0 = I_n$ et $A^{p+1} = A^p \times A$ pour tout $p \in \mathbb{N}$. Autrement dit, $A^p = \underbrace{A \times A \times \cdots \times A}_{a}$.

Exemple 192

On cherche à calculer A^p avec $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$. On calcule A^2 , A^3 et A^4 et on obtient :

$$A^{2} = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix} \qquad A^{3} = A^{2} \times A = \begin{pmatrix} 1 & 0 & 7 \\ 0 & -1 & 0 \\ 0 & 0 & 8 \end{pmatrix} \qquad A^{4} = A^{3} \times A = \begin{pmatrix} 1 & 0 & 15 \\ 0 & 1 & 0 \\ 0 & 0 & 16 \end{pmatrix}.$$

L'observation de ces premières puissances permet de penser que la formule est : A^p =

$$egin{pmatrix} 1 & 0 & 2^p-1 \\ 0 & (-1)^p & 0 \\ 0 & 0 & 2^p \end{pmatrix}$$
. Démontrons ce résultat par récurrence.

Il est vrai pour p = 0 (on trouve l'identité). On le suppose vrai pour un entier p et on va le démontrer pour p + 1. On a, d'après la définition,

$$A^{p+1} = A^p \times A = \begin{pmatrix} 1 & 0 & 2^p - 1 \\ 0 & (-1)^p & 0 \\ 0 & 0 & 2^p \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 2^{p+1} - 1 \\ 0 & (-1)^{p+1} & 0 \\ 0 & 0 & 2^{p+1} \end{pmatrix}.$$

Donc la propriété est démontrée.

2.7. Formule du binôme

Comme la multiplication n'est pas commutative, les identités binomiales usuelles sont fausses. En particulier, $(A + B)^2$ ne vaut en général pas $A^2 + 2AB + B^2$, mais on sait seulement que

$$(A+B)^2 = A^2 + AB + BA + B^2$$

Proposition 102. Calcul de $(A + B)^p$ **lorsque** AB = BA

Soient A et B deux éléments de $M_n(\mathbb{K})$ qui *commutent*, c'est-à-dire tels que AB = BA. Alors, pour tout entier $p \ge 0$, on a la formule

$$(A+B)^p = \sum_{k=0}^p \binom{p}{k} A^{p-k} B^k$$

où $\binom{p}{k}$ désigne le coefficient du binôme.

La démonstration est similaire à celle de la formule du binôme pour $(a+b)^p$, avec $a,b \in \mathbb{R}$.

Exemple 193

Soit
$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
. On pose $N = A - I = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$. La matrice N est nilpotente (c'est-

à-dire il existe $k \in \mathbb{N}$ tel que $N^k = 0$) comme le montrent les calculs suivants :

Comme on a A=I+N et les matrices N et I commutent (la matrice identité commute avec toutes les matrices), on peut appliquer la formule du binôme de Newton. On utilise que $I^k=I$ pour tout k et surtout que $N^k=0$ si $k \ge 4$. On obtient

$$A^p = \sum_{k=0}^p \binom{p}{k} N^k I^{p-k} = \sum_{k=0}^3 \binom{p}{k} N^k = I + pN + \frac{p(p-1)}{2!} N^2 + \frac{p(p-1)(p-2)}{3!} N^3.$$

D'où

$$A^p = egin{pmatrix} 1 & p & p^2 & p(p^2-p+1) \\ 0 & 1 & 2p & p(3p-2) \\ 0 & 0 & 1 & 3p \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Mini-exercices

1. Soient $A = \begin{pmatrix} 0 & 2 & -2 \\ 6 & -4 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & 0 \\ 2 & -2 & -3 \end{pmatrix}$, $C = \begin{pmatrix} 8 & 2 \\ -3 & 2 \\ -5 & 5 \end{pmatrix}$, $D = \begin{pmatrix} 5 \\ 2 \\ -1 \end{pmatrix}$, $E = \begin{pmatrix} x & y & z \end{pmatrix}$. Quels produits sont possibles? Les calculer!

- 2. Soient $A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \\ 1 & -1 & 0 \end{pmatrix}$. Calculer A^2 , B^2 , AB et BA.

 3. Soient $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 3 & 1 & 0 \end{pmatrix}$. Calculer A^p et B^p pour tout $p \ge 0$. Montrer que AB = BA. Calculer $(A + B)^p$.

3. Inverse d'une matrice : définition

3.1. Définition

Définition 97. Matrice inverse

Soit A une matrice carrée de taille $n \times n$. S'il existe une matrice carrée B de taille $n \times n$ telle

$$AB = I$$
 et $BA = I$,

on dit que A est *inversible*. On appelle B l'*inverse de A* et on la note A^{-1} .

On verra plus tard qu'il suffit en fait de vérifier une seule des conditions AB = I ou bien BA = I.

- Plus généralement, quand *A* est inversible, pour tout $p \in \mathbb{N}$, on note :

$$A^{-p} = (A^{-1})^p = \underbrace{A^{-1}A^{-1}\cdots A^{-1}}_{p \text{ facteurs}}.$$

- L'ensemble des matrices inversibles de $M_n(\mathbb{K})$ est noté $GL_n(\mathbb{K})$.

3.2. Exemples

Exemple 194

Soit $A = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$. Étudier si A est inversible, c'est étudier l'existence d'une matrice $B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ à coefficients dans \mathbb{K} , telle que AB = I et BA = I. Or AB = I équivaut à :

$$AB = I \iff \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \iff \begin{pmatrix} a+2c & b+2d \\ 3c & 3d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Cette égalité équivaut au système :

$$\begin{cases} a+2c=1\\ b+2d=0\\ 3c=0\\ 3d=1 \end{cases}$$

Sa résolution est immédiate : $a=1, b=-\frac{2}{3}, c=0, d=\frac{1}{3}$. Il n'y a donc qu'une seule matrice possible, à savoir $B = \begin{pmatrix} 1 & -\frac{2}{3} \\ 0 & \frac{1}{3} \end{pmatrix}$. Pour prouver qu'elle convient, il faut aussi montrer l'égalité dont la vérification est laissée au lecteur. La matrice A est donc inversible et A^{-1} =

$$\begin{pmatrix}
1 & -\frac{2}{3} \\
0 & \frac{1}{3}
\end{pmatrix}$$

Exemple 195

La matrice $A=\left(\begin{smallmatrix}3&0\\5&0\end{smallmatrix}\right)$ n'est pas inversible. En effet, soit $B=\left(\begin{smallmatrix}a&b\\c&d\end{smallmatrix}\right)$ une matrice quelconque. Alors le produit

$$BA = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 5 & 0 \end{pmatrix} = \begin{pmatrix} 3a + 5b & 0 \\ 3c + 5d & 0 \end{pmatrix}$$

ne peut jamais être égal à la matrice identité.

Exemple 196

- Soit I_n la matrice carrée identité de taille $n \times n$. C'est une matrice inversible, et son inverse est elle-même par l'égalité $I_nI_n = I_n$.
- La matrice nulle 0_n de taille $n \times n$ n'est pas inversible. En effet on sait que, pour toute matrice B de $M_n(\mathbb{K})$, on a $B0_n = 0_n$, qui ne peut jamais être la matrice identité.

3.3. Propriétés

Unicité

Proposition 103

Si A est inversible, alors son inverse est unique.

Démonstration

La méthode classique pour mener à bien une telle démonstration est de supposer l'existence de deux matrices B_1 et B_2 satisfaisant aux conditions imposées et de démontrer que $B_1 = B_2$.

Soient donc B_1 telle que $AB_1 = B_1A = I_n$ et B_2 telle que $AB_2 = B_2A = I_n$. Calculons $B_2(AB_1)$. D'une part, comme $AB_1 = I_n$, on a $B_2(AB_1) = B_2$. D'autre part, comme le produit des matrices est associatif, on a $B_2(AB_1) = (B_2A)B_1 = I_nB_1 = B_1$. Donc $B_1 = B_2$.

Inverse de l'inverse

Proposition 104

Soit A une matrice inversible. Alors A^{-1} est aussi inversible et on a :

$$(A^{-1})^{-1} = A$$

Inverse d'un produit

Proposition 105

Soient A et B deux matrices inversibles de même taille. Alors AB est inversible et

$$(AB)^{-1} = B^{-1}A^{-1}$$

Il faut bien faire attention à l'inversion de l'ordre!

Démonstration

Il suffit de montrer $(B^{-1}A^{-1})(AB) = I$ et $(AB)(B^{-1}A^{-1}) = I$. Cela suit de

$$(B^{-1}A^{-1})(AB) = B^{-1}(AA^{-1})B = B^{-1}IB = B^{-1}B = I,$$
 et
$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I.$$

De façon analogue, on montre que si A_1, \ldots, A_m sont inversibles, alors

$$(A_1A_2\cdots A_m)^{-1} = A_m^{-1}A_{m-1}^{-1}\cdots A_1^{-1}.$$

Simplification par une matrice inversible

Si C est une matrice quelconque de $M_n(\mathbb{K})$, nous avons vu que la relation AC = BC où A et B sont des éléments de $M_n(\mathbb{K})$ n'entraîne pas forcément l'égalité A = B. En revanche, si C est une matrice inversible, on a la proposition suivante :

Proposition 106

Soient A et B deux matrices de $M_n(\mathbb{K})$ et C une matrice inversible de $M_n(\mathbb{K})$. Alors l'égalité AC = BC implique l'égalité A = B.

Démonstration

Ce résultat est immédiat : si on multiplie à droite l'égalité AC = BC par C^{-1} , on obtient l'égalité : $(AC)C^{-1} = (BC)C^{-1}$. En utilisant l'associativité du produit des matrices on a $A(CC^{-1}) = B(CC^{-1})$, ce qui donne d'après la définition de l'inverse AI = BI, d'où A = B.

Mini-exercices

- 1. Soient $A = \begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix}$ et $B = \begin{pmatrix} 2 & 1 \\ 5 & 3 \end{pmatrix}$. Calculer A^{-1} , B^{-1} , $(AB)^{-1}$, $(BA)^{-1}$, A^{-2} .
- 2. Calculer l'inverse de $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 1 & 0 & 3 \end{pmatrix}$.
- 3. Soit $A = \begin{pmatrix} -1 & -2 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. Calculer $2A A^2$. Sans calculs, en déduire A^{-1} .

4. Inverse d'une matrice : calcul

Nous allons voir une méthode pour calculer l'inverse d'une matrice quelconque de manière efficace. Cette méthode est une reformulation de la méthode du pivot de Gauss pour les systèmes linéaires. Auparavant, nous commençons par une formule directe dans le cas simple des matrices 2×2 .

4.1. Matrices 2×2

Considérons la matrice $2 \times 2 : A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

Proposition 107

Si $ad - bc \neq 0$, alors A est inversible et

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Démonstration

On vérifie que si $B = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ alors $AB = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Idem pour BA.

4.2. Méthode de Gauss pour inverser les matrices

La méthode pour inverser une matrice A consiste à faire des opérations élémentaires sur les lignes de la matrice A jusqu'à la transformer en la matrice identité I. On fait simultanément les mêmes opérations élémentaires en partant de la matrice I. On aboutit alors à une matrice qui est A^{-1} . La preuve sera vue dans la section suivante.

En pratique, on fait les deux opérations en même temps en adoptant la disposition suivante : à côté de la matrice A que l'on veut inverser, on rajoute la matrice identité pour former un tableau $(A \mid I)$. Sur les lignes de cette matrice augmentée, on effectue des opérations élémentaires jusqu'à obtenir le tableau $(I \mid B)$. Et alors $B = A^{-1}$.

Ces opérations élémentaires sur les lignes sont :

- 1. $L_i \leftarrow \lambda L_i$ avec $\lambda \neq 0$: on peut multiplier une ligne par un réel non nul (ou un élément de $\mathbb{K} \setminus \{0\}$).
- 2. $L_i \leftarrow L_i + \lambda L_j$ avec $\lambda \in \mathbb{K}$ (et $j \neq i$): on peut ajouter à la ligne L_i un multiple d'une autre ligne L_j .
- 3. $L_i \leftrightarrow L_j$: on peut échanger deux lignes.

N'oubliez pas : tout ce que vous faites sur la partie gauche de la matrice augmentée, vous devez aussi le faire sur la partie droite.

4.3. Un exemple

Calculons l'inverse de $A=\begin{pmatrix}1&2&1\\4&0&-1\\-1&2&2\end{pmatrix}$.

Voici la matrice augmentée, avec les lignes numérotées :

$$(A \mid I) = \begin{pmatrix} 1 & 2 & 1 & 1 & 0 & 0 \\ 4 & 0 & -1 & 0 & 1 & 0 \\ -1 & 2 & 2 & 0 & 0 & 1 \end{pmatrix} \begin{array}{c} L_1 \\ L_2 \\ L_3 \end{array}$$

On applique la méthode de Gauss pour faire apparaître des 0 sur la première colonne, d'abord sur la deuxième ligne par l'opération élémentaire $L_2 \leftarrow L_2 - 4L_1$ qui conduit à la matrice augmentée :

$$\left(egin{array}{ccc|ccc} 1 & 2 & 1 & 1 & 0 & 0 \ 0 & -8 & -5 & -4 & 1 & 0 \ -1 & 2 & 2 & 0 & 0 & 1 \ \end{array}
ight) L_2 \leftarrow L_2 - 4L_1$$

Puis un 0 sur la première colonne, à la troisième ligne, avec $L_3 \leftarrow L_3 + L_1$:

$$\left(\begin{array}{ccc|ccc|c} 1 & 2 & 1 & 1 & 0 & 0 \\ 0 & -8 & -5 & -4 & 1 & 0 \\ 0 & 4 & 3 & 1 & 0 & 1 \end{array}\right) L_3 - L_3 + L_1$$

On multiplie la ligne L_2 afin qu'elle commence par 1 :

$$\left(\begin{array}{ccc|ccc} 1 & 2 & 1 & 1 & 0 & 0 \\ 0 & 1 & \frac{5}{8} & \frac{1}{2} & -\frac{1}{8} & 0 \\ 0 & 4 & 3 & 1 & 0 & 1 \end{array}\right) L_2 \leftarrow -\frac{1}{8}L_2$$

On continue afin de faire apparaître des 0 partout sous la diagonale, et on multiplie la ligne L_3 . Ce qui termine la première partie de la méthode de Gauss :

$$\begin{pmatrix}
1 & 2 & 1 & 1 & 0 & 0 \\
0 & 1 & \frac{5}{8} & \frac{1}{2} & -\frac{1}{8} & 0 \\
0 & 0 & \frac{1}{2} & -1 & \frac{1}{2} & 1
\end{pmatrix}$$
puis
$$\begin{pmatrix}
1 & 2 & 1 & 1 & 0 & 0 \\
0 & 1 & \frac{5}{8} & \frac{1}{2} & -\frac{1}{8} & 0 \\
0 & 0 & 1 & -2 & 1 & 2
\end{pmatrix}$$
 $L_3 \leftarrow 2L_3$

Il ne reste plus qu'à « remonter » pour faire apparaître des zéros au-dessus de la diagonale :

$$\begin{pmatrix} 1 & 2 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & \frac{7}{4} & -\frac{3}{4} & -\frac{5}{4} \\ 0 & 0 & 1 & -2 & 1 & 2 \end{pmatrix} L_2 - L_2 - \frac{5}{8}L_3 \qquad \text{puis} \qquad \begin{pmatrix} 1 & 0 & 0 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & 1 & 0 & \frac{7}{4} & -\frac{3}{4} & -\frac{5}{4} \\ 0 & 0 & 1 & -2 & 1 & 2 \end{pmatrix} L_1 - L_1 - 2L_2 - L_3$$

Ainsi l'inverse de A est la matrice obtenue à droite et après avoir factorisé tous les coefficients par $\frac{1}{4}$, on a obtenu :

$$A^{-1} = \frac{1}{4} \begin{pmatrix} -2 & 2 & 2 \\ 7 & -3 & -5 \\ -8 & 4 & 8 \end{pmatrix}$$

Pour se rassurer sur ses calculs, on n'oublie pas de vérifier rapidement que $A \times A^{-1} = I$.

Mini-exercices

- 1. Si possible calculer l'inverse des matrices : $\begin{pmatrix} 3 & 1 \\ 7 & 2 \end{pmatrix}$, $\begin{pmatrix} 2 & -3 \\ -5 & 4 \end{pmatrix}$, $\begin{pmatrix} 0 & 2 \\ 3 & 0 \end{pmatrix}$, $\begin{pmatrix} \alpha+1 & 1 \\ 2 & \alpha \end{pmatrix}$.
- 2. Soit $A(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$. Calculer $A(\theta)^{-1}$.
- 3. Calculer l'inverse des matrices : $\begin{pmatrix} 1 & 3 & 0 \\ 2 & 1 & -1 \\ -2 & 1 & 1 \end{pmatrix}$, $\begin{pmatrix} 2 & -2 & 1 \\ 3 & 0 & 5 \\ 1 & 1 & 2 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 2 & -2 & 0 \\ -1 & 2 & 0 & 1 \\ 0 & 2 & 1 & 3 \end{pmatrix}$, $\begin{pmatrix} 2 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 2 \\ 0 & 1 & 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 & 1 & 2 & 0 & 0 \\ 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 5 & 3 \end{pmatrix}$.

5. Inverse d'une matrice : systèmes linéaires et matrices élémentaires

5.1. Matrices et systèmes linéaires

Le système linéaire

$$\begin{cases} a_{11} x_1 + a_{12} x_2 + \cdots + a_{1p} x_p = b_1 \\ a_{21} x_1 + a_{22} x_2 + \cdots + a_{2p} x_p = b_2 \\ & \cdots \\ a_{n1} x_1 + a_{n2} x_2 + \cdots + a_{np} x_p = b_n \end{cases}$$

peut s'écrire sous forme matricielle :

$$\underbrace{\begin{pmatrix} a_{11} & \dots & a_{1p} \\ a_{21} & \dots & a_{2p} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{np} \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix}}_{X} = \underbrace{\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}}_{B}.$$

On appelle $A \in M_{n,p}(\mathbb{K})$ la matrice des coefficients du système. $B \in M_{n,1}(\mathbb{K})$ est le vecteur du second membre. Le vecteur $X \in M_{p,1}(\mathbb{K})$ est une solution du système si et seulement si

$$AX = B$$
.

Nous savons que:

Théorème 55

Un système d'équations linéaires n'a soit aucune solution, soit une seule solution, soit une infinité de solutions.

5.2. Matrices inversibles et systèmes linéaires

Considérons le cas où le nombre d'équations égale le nombre d'inconnues :

$$\underbrace{\begin{pmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}}_{X} = \underbrace{\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}}_{B}.$$

Alors $A \in M_n(\mathbb{K})$ est une matrice carrée et B un vecteur de $M_{n,1}(\mathbb{K})$. Pour tout second membre, nous pouvons utiliser les matrices pour trouver la solution du système linéaire.

Proposition 108

Si la matrice A est inversible, alors la solution du système AX = B est unique et est :

$$X = A^{-1}B.$$

La preuve est juste de vérifier que si $X = A^{-1}B$, alors $AX = A(A^{-1}B) = (AA^{-1})B = I \cdot B = B$. Réciproquement si AX = B, alors nécessairement $X = A^{-1}B$. Nous verrons bientôt que si la matrice n'est pas inversible, alors soit il n'y a pas de solution, soit une infinité.

5.3. Les matrices élémentaires

Pour calculer l'inverse d'une matrice A, et aussi pour résoudre des systèmes linéaires, nous avons utilisé trois opérations élémentaires sur les lignes qui sont :

- 1. $L_i \leftarrow \lambda L_i$ avec $\lambda \neq 0$: on peut multiplier une ligne par un réel non nul (ou un élément de $\mathbb{K} \setminus \{0\}$).
- 2. $L_i \leftarrow L_i + \lambda L_j$ avec $\lambda \in \mathbb{K}$ (et $j \neq i$): on peut ajouter à la ligne L_i un multiple d'une autre ligne L_j .
- 3. $L_i \leftrightarrow L_j$: on peut échanger deux lignes.

Nous allons définir trois matrices élémentaires $E_{L_i \leftarrow \lambda L_i}$, $E_{L_i \leftarrow L_i + \lambda L_j}$, $E_{L_i \rightarrow L_j}$ correspondant à ces opérations. Plus précisément, le produit $E \times A$ correspondra à l'opération élémentaire sur A. Voici les définitions accompagnées d'exemples.

1. La matrice $E_{L_i \leftarrow \lambda L_i}$ est la matrice obtenue en multipliant par λ la i-ème ligne de la matrice identité I_n , où λ est un nombre réel non nul.

$$egin{aligned} E_{L_2 \leftarrow 5L_2} = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 5 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix} \end{aligned}$$

2. La matrice $E_{L_i \leftarrow L_i + \lambda L_j}$ est la matrice obtenue en ajoutant λ fois la j-ème ligne de I_n à la i-ème ligne de I_n .

$$E_{L_2 - L_2 - 3L_1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -3 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

3. La matrice $E_{L_i \leftrightarrow L_j}$ est la matrice obtenue en permutant les *i*-ème et *j*-ème lignes de I_n .

$$E_{L_2 \leftrightarrow L_4} = E_{L_4 \leftrightarrow L_2} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

Les opérations élémentaires sur les lignes sont réversibles, ce qui entraîne l'inversibilité des matrices élémentaires.

Le résultat de la multiplication d'un matrice élémentaire E par A est la matrice obtenue en effectuant l'opération élémentaire correspondante sur A. Ainsi :

- 1. La matrice $E_{L_i \leftarrow \lambda L_i} \times A$ est la matrice obtenue en multipliant par λ la i-ème ligne de A.
- 2. La matrice $E_{L_i \leftarrow L_i + \lambda L_j} \times A$ est la matrice obtenue en ajoutant λ fois la j-ème ligne de A à la i-ème ligne de A.

3. La matrice $E_{L_i \leftrightarrow L_j} \times A$ est la matrice obtenue en permutant les i-ème et j-ème lignes de A.

Exemple 197

1.

$$E_{L_2 \leftarrow \frac{1}{3}L_2} \times A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{pmatrix} = \begin{pmatrix} x_1 & x_2 & x_3 \\ \frac{1}{3}y_1 & \frac{1}{3}y_2 & \frac{1}{3}y_3 \\ z_1 & z_2 & z_3 \end{pmatrix}$$

2.

$$E_{L_1 \leftarrow L_1 - 7L_3} \times A = \begin{pmatrix} 1 & 0 & -7 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{pmatrix} = \begin{pmatrix} x_1 - 7z_1 & x_2 - 7z_2 & x_3 - 7z_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{pmatrix}$$

3.

$$E_{L_2 \to L_3} \times A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{pmatrix} = \begin{pmatrix} x_1 & x_2 & x_3 \\ z_1 & z_2 & z_3 \\ y_1 & y_2 & y_3 \end{pmatrix}$$

5.4. Équivalence à une matrice échelonnée

Définition 98

Deux matrices A et B sont dites *équivalentes par lignes* si l'une peut être obtenue à partir de l'autre par une suite d'opérations élémentaires sur les lignes. On note $A \sim B$.

Définition 99

Une matrice est échelonnée si :

 le nombre de zéros commençant une ligne croît strictement ligne par ligne jusqu'à ce qu'il ne reste plus que des zéros.

Elle est échelonnée réduite si en plus :

- le premier coefficient non nul d'une ligne (non nulle) vaut 1;
- et c'est le seul élément non nul de sa colonne.

Exemple d'une matrice échelonnée (à gauche) et échelonnée réduite (à droite); les * désignent des coefficients quelconques, les + des coefficients non nuls :

Théorème 56

Étant donnée une matrice $A \in M_{n,p}(\mathbb{K})$, il existe une unique matrice échelonnée réduite Uobtenue à partir de A par des opérations élémentaires sur les lignes.

Ce théorème permet donc de se ramener par des opérations élémentaires à des matrices dont la structure est beaucoup plus simple : les matrices échelonnées réduites.

Démonstration

Nous admettons l'unicité.

L'existence se démontre grâce à l'algorithme de Gauss. L'idée générale consiste à utiliser des substitutions de lignes pour placer des zéros là où il faut de façon à créer d'abord une forme échelonnée, puis une forme échelonnée réduite.

Soit *A* une matrice $n \times p$ quelconque.

Partie A. Passage à une forme échelonnée.

Étape A.1. Choix du pivot.

On commence par inspecter la première colonne. Soit elle ne contient que des zéros, auquel cas on passe directement à l'étape A.3, soit elle contient au moins un terme non nul. On choisit alors un tel terme, que l'on appelle le *pivot*. Si c'est le terme a_{11} , on passe directement à l'étape A.2; si c'est un terme a_{i1} avec $i \neq 1$, on échange les lignes 1 et $i (L_1 \leftrightarrow L_i)$ et on passe à l'étape A.2.

Au terme de l'étape A.1, soit la matrice A a sa première colonne nulle (à gauche) ou bien on obtient une matrice équivalente dont le premier coefficient a_{11}' est non nul (à droite) :

Étape A.2. Élimination.

On ne touche plus à la ligne 1, et on se sert du pivot a'_{11} pour éliminer tous les termes a'_{i1} (avec $i \ge 2$) situés sous le pivot. Pour cela, il suffit de remplacer la ligne i par elle-même moins $\frac{a'_{i1}}{a'_{i1}} \times$ la ligne 1, ceci

pour
$$i=2,\ldots,n:L_2\leftarrow L_2-\frac{a'_{21}}{a'_{11}}L_1,L_3\leftarrow L_3-\frac{a'_{31}}{a'_{11}}L_1,\ldots$$
 Au terme de l'étape A.2, on a obtenu une matrice de la forme

$$\begin{pmatrix} a'_{11} & a'_{12} & \cdots & a'_{1j} & \cdots & a'_{1p} \\ 0 & a''_{22} & \cdots & a''_{2j} & \cdots & a''_{2p} \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & a''_{i2} & \cdots & a''_{ij} & \cdots & a''_{ip} \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & a''_{n2} & \cdots & a''_{nj} & \cdots & a''_{np} \end{pmatrix} \sim A.$$

Étape A.3. Boucle.

Au début de l'étape A.3, on a obtenu dans tous les cas de figure une matrice de la forme

$$\begin{pmatrix} a_{11}^1 & a_{12}^1 & \cdots & a_{1j}^1 & \cdots & a_{1p}^1 \\ 0 & a_{22}^1 & \cdots & a_{2j}^1 & \cdots & a_{2p}^1 \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & a_{i2}^1 & \cdots & a_{ij}^1 & \cdots & a_{ip}^1 \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & a_{n2}^1 & \cdots & a_{nj}^1 & \cdots & a_{np}^1 \end{pmatrix} \sim A$$

dont la première colonne est bien celle d'une matrice échelonnée. On va donc conserver cette première colonne. Si $a_{11}^1 \neq 0$, on conserve aussi la première ligne, et l'on repart avec l'étape A.1 en l'appliquant cette fois à la sous-matrice $(n-1) \times (p-1)$ (ci-dessous à gauche : on « oublie » la première ligne et la première colonne de A); si $a_{11}^1 = 0$, on repart avec l'étape A.1 en l'appliquant à la sous-matrice $n \times (p-1)$ (à droite, on « oublie » la première colonne) :

Au terme de cette deuxième itération de la boucle, on aura obtenu une matrice de la forme

$$\begin{pmatrix} a_{11}^1 & a_{12}^1 & \cdots & a_{1j}^1 & \cdots & a_{1p}^1 \\ 0 & a_{22}^2 & \cdots & a_{2j}^2 & \cdots & a_{2p}^2 \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{ij}^2 & \cdots & a_{ip}^2 \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{nj}^2 & \cdots & a_{np}^2 \end{pmatrix} \sim A,$$

et ainsi de suite.

Comme chaque itération de la boucle travaille sur une matrice qui a une colonne de moins que la précédente, alors au bout d'au plus p-1 itérations de la boucle, on aura obtenu une matrice échelonnée.

Partie B. Passage à une forme échelonnée réduite.

Étape B.1. Homothéties.

On repère le premier élément non nul de chaque ligne non nulle, et on multiplie cette ligne par l'inverse de cet élément. Exemple : si le premier élément non nul de la ligne i est $\alpha \neq 0$, alors on effectue $L_i \leftarrow \frac{1}{\alpha}L_i$. Ceci crée une matrice échelonnée avec des 1 en position de pivots.

Étape B.2. Élimination.

On élimine les termes situés au-dessus des positions de pivot comme précédemment, en procédant à partir du bas à droite de la matrice. Ceci ne modifie pas la structure échelonnée de la matrice en raison de la disposition des zéros dont on part.

Exemple 198

Soit

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 4 & 6 \\ -1 & 0 & 1 & 0 \end{pmatrix}.$$

A. Passage à une forme échelonnée.

Première itération de la boucle, étape A.1. Le choix du pivot est tout fait, on garde $a_{11}^1 = 1$. Première itération de la boucle, étape A.2. On ne fait rien sur la ligne 2 qui contient déjà un zéro en bonne position et on remplace la ligne 3 par $L_3 \leftarrow L_3 + L_1$. On obtient

$$A \sim \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 4 & 6 \\ 0 & 2 & 4 & 4 \end{pmatrix}.$$

Deuxième itération de la boucle, étape A.1. Le choix du pivot est tout fait, on garde $a_{22}^2 = 2$. Deuxième itération de la boucle, étape A.2. On remplace la ligne 3 avec l'opération $L_3 \leftarrow L_3 - L_2$. On obtient

$$A \sim \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 4 & 6 \\ 0 & 0 & 0 & -2 \end{pmatrix}.$$

Cette matrice est échelonnée.

B. Passage à une forme échelonnée réduite.

Étape B.1, homothéties. On multiplie la ligne 2 par $\frac{1}{2}$ et la ligne 3 par $-\frac{1}{2}$ et l'on obtient

$$A \sim \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Étape B.2, première itération. On ne touche plus à la ligne 3 et on remplace la ligne 2 par $L_2 \leftarrow L_2 - 3L_3$ et $L_1 \leftarrow L_1 - 4L_3$. On obtient

$$A \sim \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Étape B.2, deuxième itération. On ne touche plus à la ligne 2 et on remplace la ligne 1 par $L_1 \leftarrow L_1 - 2L_2$. On obtient

$$A \sim \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

qui est bien échelonnée et réduite.

5.5. Matrices élémentaires et inverse d'une matrice

Théorème 57

Soit $A \in M_n(\mathbb{K})$. La matrice A est inversible si et seulement si sa forme échelonnée réduite est la matrice identité I_n .

Démonstration

Notons U la forme échelonnée réduite de A. Et notons E le produit de matrices élémentaires tel que EA = U.

- \iff Si $U = I_n$ alors $EA = I_n$. Ainsi par définition, A est inversible et $A^{-1} = E$.
- \implies Nous allons montrer que si $U \neq I_n$, alors A n'est pas inversible.
 - Supposons $U \neq I_n$. Alors la dernière ligne de U est nulle (sinon il y aurait un pivot sur chaque ligne donc ce serait I_n).
 - Cela entraîne que U n'est pas inversible : en effet, pour tout matrice carrée V, la dernière ligne de UV est nulle; on n'aura donc jamais $UV = I_n$.
 - Alors, A n'est pas inversible non plus : en effet, si A était inversible, on aurait U = EA et Userait inversible comme produit de matrices inversibles (E est inversible car c'est un produit de matrices élémentaires qui sont inversibles).

Remarque

Justifions maintenant notre méthode pour calculer A^{-1} .

Nous partons de (A|I) pour arriver par des opérations élémentaires sur les lignes à (I|B). Montrons que $B = A^{-1}$. Faire une opération élémentaire signifie multiplier à gauche par une des matrices élémentaires. Notons E le produit de ces matrices élémentaires. Dire que l'on arrive à la fin du processus à I signifie EA = I. Donc $A^{-1} = E$. Comme on fait les mêmes opérations sur la partie droite du tableau, alors on obtient EI = B. Donc B = E. Conséquence : $B = A^{-1}$.

Corollaire 22

Les assertions suivantes sont équivalentes :

- (i) La matrice A est inversible.
- (ii) Le système linéaire $AX = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$ a une unique solution $X = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$.
- (iii) Pour tout second membre B, le système linéaire AX = B à une unique solution X.

Démonstration

Nous avons déjà vu $(i) \Longrightarrow (ii)$ et $(i) \Longrightarrow (iii)$.

Nous allons seulement montrer $(ii) \Longrightarrow (i)$. Nous raisonnons par contraposée : nous allons montrer la proposition équivalente $non(i) \implies non(ii)$. Si A n'est pas inversible, alors sa forme échelonnée réduite U contient un premier zéro sur sa diagonale, disons à la place ℓ . Alors U à la forme suivante

$$\begin{pmatrix} 1 & 0 & \cdots & c_1 & * & \cdots & * \\ 0 & \ddots & 0 & \vdots & & \cdots & * \\ 0 & 0 & 1 & c_{\ell-1} & & \cdots & * \\ 0 & \cdots & 0 & 0 & * & \cdots & * \\ 0 & \cdots & 0 & 0 & * & \cdots & * \\ \vdots & \vdots & \vdots & \cdots & 0 & \ddots & \vdots \\ 0 & \cdots & & \cdots & 0 & * \end{pmatrix} . \quad \text{On note} \quad X = \begin{pmatrix} -c_1 \\ \vdots \\ -c_{\ell-1} \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} .$$

Alors X n'est pas le vecteur nul, mais UX est le vecteur nul. Comme $A = E^{-1}U$, alors AX est le vecteur nul. Nous avons donc trouvé un vecteur non nul X tel que AX = 0.

Mini-exercices

1. Exprimer les systèmes linéaires suivants sous forme matricielle et les résoudre en

inversant la matrice :
$$\begin{cases} 2x + 4y = 7 \\ -2x + 3y = -14 \end{cases}$$
,
$$\begin{cases} x + z = 1 \\ -2y + 3z = 1 \\ x + z = 1 \end{cases}$$
,
$$\begin{cases} x + t = \alpha \\ x - 2y = \beta \\ x + y + t = 2 \\ y + t = 4 \end{cases}$$

- 2. Écrire les matrices 4×4 correspondant aux opérations élémentaires : $L_2 \leftarrow \frac{1}{3}L_2$, $L_3 \leftarrow L_3 \frac{1}{4}L_2$, $L_1 \leftrightarrow L_4$. Sans calculs, écrire leurs inverses. Écrire la matrice 4×4 de l'opération $L_1 \leftarrow L_1 2L_3 + 3L_4$.
- 3. Écrire les matrices suivantes sous forme échelonnée, puis échelonnée réduite : $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 4 & 0 \\ -2 & -2 & -3 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 & 2 \\ 1 & -1 & 1 \\ 2 & 2 & 3 \end{pmatrix}$, $\begin{pmatrix} 2 & 0 & -2 & 0 \\ 0 & -1 & 1 & 0 \\ 1 & -2 & 1 & 4 \\ 1 & -2 & 1 & 4 \end{pmatrix}$.

6. Matrices triangulaires, transposition, trace, matrices symétriques

6.1. Matrices triangulaires, matrices diagonales

Soit A une matrice de taille $n \times n$. On dit que A est *triangulaire inférieure* si ses éléments au-dessus de la diagonale sont nuls, autrement dit :

$$i < j \implies a_{ij} = 0.$$

Une matrice triangulaire inférieure a la forme suivante :

$$egin{pmatrix} a_{11} & 0 & \cdots & \cdots & 0 \ a_{21} & a_{22} & \ddots & & dots \ dots & dots & \ddots & \ddots & dots \ dots & dots & \ddots & \ddots & dots \ a_{n1} & a_{n2} & \cdots & \cdots & a_{nn} \end{pmatrix}$$

On dit que A est *triangulaire supérieure* si ses éléments en-dessous de la diagonale sont nuls, autrement dit :

$$i > j \implies a_{ij} = 0.$$

Une matrice triangulaire supérieure a la forme suivante :

$$\begin{pmatrix} a_{11} & a_{12} & \dots & \dots & a_{1n} \\ 0 & a_{22} & \dots & \dots & a_{2n} \\ \vdots & \ddots & \ddots & & \vdots \\ \vdots & & \ddots & \ddots & \vdots \\ \vdots & & & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & 0 & a_{nn} \end{pmatrix}$$

Exemple 199

Deux matrices triangulaires inférieures (à gauche), une matrice triangulaire supérieure (à droite) :

$$\begin{pmatrix} 4 & 0 & 0 \\ 0 & -1 & 0 \\ 3 & -2 & 3 \end{pmatrix} \qquad \begin{pmatrix} 5 & 0 \\ 1 & -2 \end{pmatrix} \qquad \begin{pmatrix} 1 & 1 & -1 \\ 0 & -1 & -1 \\ 0 & 0 & -1 \end{pmatrix}$$

Une matrice qui est triangulaire inférieure *et* triangulaire supérieure est dite *diagonale*. Autrement dit : $i \neq j \implies a_{ij} = 0$.

Exemple 200

Exemples de matrices diagonales :

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \text{et} \qquad \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$$

Exemple 201. Puissances d'une matrice diagonale

Si D est une matrice diagonale, il est très facile de calculer ses puissances D^p (par récurrence sur p) :

$$D = \begin{pmatrix} \alpha_1 & 0 & \dots & \dots & 0 \\ 0 & \alpha_2 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & \alpha_{n-1} & 0 \\ 0 & \dots & \dots & 0 & \alpha_n \end{pmatrix} \implies D^p = \begin{pmatrix} \alpha_1^p & 0 & \dots & \dots & 0 \\ 0 & \alpha_2^p & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & \alpha_{n-1}^p & 0 \\ 0 & \dots & \dots & 0 & \alpha_n^p \end{pmatrix}$$

Théorème 58

Une matrice A de taille $n \times n$, triangulaire, est inversible si et seulement si ses éléments diagonaux sont tous non nuls.

Démonstration

Supposons que A soit triangulaire supérieure.

- Si les éléments de la diagonale sont tous non nuls, alors la matrice A est déjà sous la forme échelonnée. En multipliant chaque ligne i par l'inverse de l'élément diagonal a_{ii}, on obtient des 1 sur la diagonale. De ce fait, la forme échelonnée réduite de A sera la matrice identité. Le théorème 57 permet de conclure que A est inversible.
- Inversement, supposons qu'au moins l'un des éléments diagonaux soit nul et notons $a_{\ell\ell}$ le premier élément nul de la diagonale. En multipliant les lignes 1 à $\ell-1$ par l'inverse de leur

élément diagonal, on obtient une matrice de la forme

$$\begin{pmatrix} 1 & * & \cdots & & & \cdots & * \\ 0 & \ddots & * & \cdots & & \cdots & * \\ 0 & 0 & 1 & * & \cdots & * \\ 0 & \cdots & 0 & 0 & * & \cdots & * \\ 0 & \cdots & 0 & 0 & * & \cdots & * \\ \vdots & \vdots & \vdots & \cdots & 0 & \ddots & \vdots \\ 0 & \cdots & & \cdots & 0 & * \end{pmatrix}.$$

Il est alors clair que la colonne numéro ℓ de la forme échelonnée réduite ne contiendra pas de 1 comme pivot. La forme échelonnée réduite de A ne peut donc pas être I_n et par le théorème 57, A n'est pas inversible.

Dans le cas d'une matrice triangulaire inférieure, on utilise la transposition (qui fait l'objet de la section suivante) et on obtient une matrice triangulaire supérieure. On applique alors la démonstration cidessus.

6.2. La transposition

Soit A la matrice de taille $n \times p$

$$A = \left(egin{array}{ccccc} a_{11} & a_{12} & \dots & a_{1p} \ a_{21} & a_{22} & \dots & a_{2p} \ dots & dots & dots \ a_{n1} & a_{n2} & \dots & a_{np} \end{array}
ight).$$

Définition 100

On appelle *matrice transposée* de A la matrice A^T de taille $p \times n$ définie par :

$$A^T = \left(egin{array}{cccc} a_{11} & a_{21} & \dots & a_{n1} \ a_{12} & a_{22} & \dots & a_{n2} \ dots & dots & dots \ a_{1p} & a_{2p} & \dots & a_{np} \end{array}
ight).$$

Autrement dit : le coefficient à la place (i,j) de A^T est a_{ji} . Ou encore la i-ème ligne de A devient la i-ème colonne de A^T (et réciproquement la j-ème colonne de A^T est la j-ème ligne de A).

Notation : La transposée de la matrice A se note aussi souvent tA .

Exemple 202

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & -6 \\ -7 & 8 & 9 \end{pmatrix}^T = \begin{pmatrix} 1 & 4 & -7 \\ 2 & 5 & 8 \\ 3 & -6 & 9 \end{pmatrix} \qquad \begin{pmatrix} 0 & 3 \\ 1 & -5 \\ -1 & 2 \end{pmatrix}^T = \begin{pmatrix} 0 & 1 & -1 \\ 3 & -5 & 2 \end{pmatrix} \qquad (1 \quad -2 \quad 5)^T = \begin{pmatrix} 1 \\ -2 \\ 5 \end{pmatrix}$$

L'opération de transposition obéit aux règles suivantes :

Théorème 59

1.
$$(A+B)^T = A^T + B^T$$

2.
$$(\alpha A)^T = \alpha A^T$$

3.
$$(A^T)^T = A$$

$$4. \quad \boxed{(AB)^T = B^T A^T}$$

5. Si A est inversible, alors A^T l'est aussi et on a $(A^T)^{-1} = (A^{-1})^T$.

Notez bien l'inversion : $(AB)^T = B^T A^T$, comme pour $(AB)^{-1} = B^{-1} A^{-1}$.

6.3. La trace

Dans le cas d'une matrice carrée de taille $n \times n$, les éléments $a_{11}, a_{22}, \dots, a_{nn}$ sont appelés les éléments diagonaux.

Sa *diagonale principale* est la diagonale $(a_{11}, a_{22}, ..., a_{nn})$.

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

Définition 101

La *trace* de la matrice A est le nombre obtenu en additionnant les éléments diagonaux de A. Autrement dit,

$$\operatorname{tr} A = a_{11} + a_{22} + \dots + a_{nn}.$$

Exemple 203

- Si $A = \begin{pmatrix} 2 & 1 \\ 0 & 5 \end{pmatrix}$, alors $\operatorname{tr} A = 2 + 5 = 7$. Pour $B = \begin{pmatrix} 1 & 1 & 2 \\ 5 & 2 & 8 \\ 11 & 0 & -10 \end{pmatrix}$, $\operatorname{tr} B = 1 + 2 10 = -7$.

Théorème 60

Soient A et B deux matrices $n \times n$. Alors:

- 1. $\operatorname{tr}(A+B) = \operatorname{tr} A + \operatorname{tr} B$,
- 2. $tr(\alpha A) = \alpha tr A$ pour tout $\alpha \in \mathbb{K}$,
- 3. $\operatorname{tr}(A^T) = \operatorname{tr} A$,
- 4. tr(AB) = tr(BA).

Démonstration

1. Pour tout $1 \le i \le n$, le coefficient (i, i) de A + B est $a_{ii} + b_{ii}$. Ainsi, on a bien tr(A + B) = tr(A) + tr(B).

- 2. On a $\operatorname{tr}(\alpha A) = \alpha a_{11} + \dots + \alpha a_{nn} = \alpha (a_{11} + \dots + a_{nn}) = \alpha \operatorname{tr} A$.
- 3. Étant donné que la transposition ne change pas les éléments diagonaux, la trace de A est égale à la trace de A^T .
- 4. Notons c_{ij} les coefficients de AB. Alors par définition

$$c_{ii} = a_{i1}b_{1i} + a_{i2}b_{2i} + \cdots + a_{in}b_{ni}$$
.

Ainsi,

$$tr(AB) = a_{11}b_{11} + a_{12}b_{21} + \cdots + a_{1n}b_{n1} + a_{21}b_{12} + a_{22}b_{22} + \cdots + a_{2n}b_{n2} \vdots + a_{n1}b_{1n} + a_{n2}b_{2n} + \cdots + a_{nn}b_{nn}.$$

On peut réarranger les termes pour obtenir

En utilisant la commutativité de la multiplication dans K, la première ligne devient

$$b_{11}a_{11} + b_{12}a_{21} + \cdots + b_{1n}a_{n1}$$

qui vaut le coefficient (1,1) de BA. On note d_{ij} les coefficients de BA. En faisant de même avec les autres lignes, on voit finalement que

$$\operatorname{tr}(AB) = d_{11} + \dots + d_{nn} = \operatorname{tr}(BA).$$

6.4. Matrices symétriques

Définition 102

Une matrice A de taille $n \times n$ est symétrique si elle est égale à sa transposée, c'est-à-dire si

$$A = A^T$$
.

ou encore si $a_{ij} = a_{ji}$ pour tout i, j = 1, ..., n. Les coefficients sont donc symétriques par rapport à la diagonale.

Exemple 204

Les matrices suivantes sont symétriques :

$$\begin{pmatrix} 0 & 2 \\ 2 & 4 \end{pmatrix} \qquad \begin{pmatrix} -1 & 0 & 5 \\ 0 & 2 & -1 \\ 5 & -1 & 0 \end{pmatrix}$$

Exemple 205

Pour une matrice B quelconque, les matrices $B \cdot B^T$ et $B^T \cdot B$ sont symétriques.

Preuve : $(BB^T)^T = (B^T)^T B^T = BB^T$. Idem pour $B^T B$.

6.5. Matrices antisymétriques

Définition 103

Une matrice A de taille $n \times n$ est antisymétrique si

$$A^T = -A$$
.

c'est-à-dire si $a_{ij} = -a_{ji}$ pour tout i, j = 1, ..., n.

Exemple 206

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 4 & 2 \\ -4 & 0 & -5 \\ -2 & 5 & 0 \end{pmatrix}$$

Remarquons que les éléments diagonaux d'une matrice antisymétrique sont toujours tous nuls.

Exemple 207

Toute matrice est la somme d'une matrice symétrique et d'une matrice antisymétrique.

Preuve : Soit A une matrice. Définissons $B=\frac{1}{2}(A+A^T)$ et $C=\frac{1}{2}(A-A^T)$. Alors d'une part A=B+C ; d'autre part B est symétrique, car $B^T=\frac{1}{2}(A^T+(A^T)^T)=\frac{1}{2}(A^T+A)=B$; et enfin C est antisymétrique, car $C^T=\frac{1}{2}(A^T-(A^T)^T)=-C$.

Exemple:

Pour
$$A = \begin{pmatrix} 2 & 10 \\ 8 & -3 \end{pmatrix}$$
 alors $A = \begin{pmatrix} 2 & 9 \\ 9 & -3 \end{pmatrix}$ + $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ antisymétrique

Mini-exercices

- 1. Montrer que la somme de deux matrices triangulaires supérieures reste triangulaire supérieure. Montrer que c'est aussi valable pour le produit.
- 2. Montrer que si A est triangulaire supérieure, alors A^T est triangulaire inférieure. Et si A est diagonale?
- 3. Soit $A = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$. Calculer $A^T \cdot A$, puis $A \cdot A^T$.
- 4. Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Calculer $tr(A \cdot A^T)$.
- 5. Soit A une matrice de taille 2×2 inversible. Montrer que si A est symétrique, alors A^{-1} aussi. Et si A est antisymétrique?
- 6. Montrer que la décomposition d'une matrice sous la forme « symétrique + antisymé-

trique » est unique.

Auteurs

- D'après un cours de Eva Bayer-Fluckiger, Philippe Chabloz, Lara Thomas de l'École Polytechnique Fédérale de Lausanne,
- et un cours de Sophie Chemla de l'université Pierre et Marie Curie, reprenant des parties de cours de H. Ledret et d'une équipe de l'université de Bordeaux animée par J. Queyrut,
- mixés et révisés par Arnaud Bodin, relu par Vianney Combet.


```
1 Espace vectoriel (début)
```

- 2 Espace vectoriel (fin)
- 3 Sous-espace vectoriel (début)
- 4 Sous-espace vectoriel (milieu)
- 5 Sous-espace vectoriel (fin)
- 6 Application linéaire (début)
- 7 Application linéaire (milieu)
- 8 Application linéaire (fin)

```
Vidéo partie 1. Espace vectoriel (début)

Vidéo partie 2. Espace vectoriel (fin)

Vidéo partie 3. Sous-espace vectoriel (début)

Vidéo partie 4. Sous-espace vectoriel (milieu)

Vidéo partie 5. Sous-espace vectoriel (fin)

Vidéo partie 6. Application linéaire (début)

Vidéo partie 7. Application linéaire (milieu)

Vidéo partie 8. Application linéaire (fin)
```

La notion d'espace vectoriel est une structure fondamentale des mathématiques modernes. Il s'agit de dégager les propriétés communes que partagent des ensembles pourtant très différents. Par exemple, on peut additionner deux vecteurs du plan, et aussi multiplier un vecteur par un réel (pour l'agrandir ou le rétrécir). Mais on peut aussi additionner deux fonctions, ou multiplier une fonction par un réel. Même chose avec les polynômes, les matrices,... Le but est d'obtenir des théorèmes généraux qui s'appliqueront aussi bien aux vecteurs du plan, de l'espace, aux espaces de fonctions, aux polynômes, aux matrices,... La contrepartie de cette grande généralité de situations est que la notion d'espace vectoriel est difficile à appréhender et vous demandera une quantité conséquente de travail! Il est bon d'avoir d'abord étudié le chapitre « L'espace vectoriel \mathbb{R}^n ».

1. Espace vectoriel (début)

Dans ce chapitre, $\mathbb K$ désigne un corps. Dans la plupart des exemples, ce sera le corps des réels $\mathbb R.$

1.1. Définition d'un espace vectoriel

Un espace vectoriel est un ensemble formé de vecteurs, de sorte que l'on puisse additionner (et soustraire) deux vecteurs u,v pour en former un troisième u+v (ou u-v) et aussi afin que l'on puisse multiplier chaque vecteur u d'un facteur λ pour obtenir un vecteur $\lambda \cdot u$. Voici la définition formelle :

Définition 104

Un \mathbb{K} -espace vectoriel est un ensemble non vide E muni :

- d'une loi de composition interne, c'est-à-dire d'une application de $E \times E$ dans E:

$$E \times E \rightarrow E$$

$$(u,v) \mapsto u+v$$

- d'une loi de composition externe, c'est-à-dire d'une application de $\mathbb{K} \times E$ dans E:

$$\mathbb{K} \times E \quad \to \quad E$$
$$(\lambda, u) \quad \mapsto \quad \lambda \cdot u$$

qui vérifient les propriétés suivantes :

- 1. u + v = v + u (pour tous $u, v \in E$)
- 2. u + (v + w) = (u + v) + w (pour tous $u, v, w \in E$)
- 3. Il existe un *élément neutre* $0_E \in E$ tel que $u + 0_E = u$ (pour tout $u \in E$)
- 4. Tout $u \in E$ admet un symétrique u' tel que $u + u' = 0_E$. Cet élément u' est noté -u.
- 5. $1 \cdot u = u$ (pour tout $u \in E$)
- 6. $\lambda \cdot (\mu \cdot u) = (\lambda \mu) \cdot u$ (pour tous $\lambda, \mu \in \mathbb{K}, u \in E$)
- 7. $\lambda \cdot (u+v) = \lambda \cdot u + \lambda \cdot v$ (pour tous $\lambda \in \mathbb{K}$, $u, v \in E$)
- 8. $(\lambda + \mu) \cdot u = \lambda \cdot u + \mu \cdot u$ (pour tous $\lambda, \mu \in \mathbb{K}, u \in E$)

Nous reviendrons en détail sur chacune de ces propriétés juste après des exemples.

1.2. Premiers exemples

Exemple 208. Le \mathbb{R} -espace vectoriel \mathbb{R}^2

Posons $\mathbb{K} = \mathbb{R}$ et $E = \mathbb{R}^2$. Un élément $u \in E$ est donc un couple (x, y) avec x élément de \mathbb{R} et y élément de \mathbb{R} . Ceci s'écrit

$$\mathbb{R}^2 = \{ (x, y) \mid x \in \mathbb{R}, y \in \mathbb{R} \}.$$

- *Définition de la loi interne.* Si (x,y) et (x',y') sont deux éléments de \mathbb{R}^2 , alors :

$$(x,y)+(x',y')=(x+x',y+y').$$

- Définition de la loi externe. Si λ est un réel et (x,y) est un élément de \mathbb{R}^2 , alors :

$$\lambda \cdot (x, y) = (\lambda x, \lambda y).$$

L'élément neutre de la loi interne est le vecteur nul (0,0). Le symétrique de (x,y) est (-x,-y), que l'on note aussi -(x,y).

L'exemple suivant généralise le précédent. C'est aussi le bon moment pour lire ou relire le chapitre « L'espace vectoriel \mathbb{R}^n ».

Exemple 209. Le \mathbb{R} -espace vectoriel \mathbb{R}^n

Soit n un entier supérieur ou égal à 1. Posons $\mathbb{K} = \mathbb{R}$ et $E = \mathbb{R}^n$. Un élément $u \in E$ est donc un n-uplet (x_1, x_2, \dots, x_n) avec x_1, x_2, \dots, x_n des éléments de \mathbb{R} .

- Définition de la loi interne. Si (x_1,\ldots,x_n) et (x'_1,\ldots,x'_n) sont deux éléments de \mathbb{R}^n , alors :

$$(x_1,\ldots,x_n)+(x_1',\ldots,x_n')=(x_1+x_1',\ldots,x_n+x_n').$$

- Définition de la loi externe. Si λ est un réel et (x_1,\ldots,x_n) est un élément de \mathbb{R}^n , alors :

$$\lambda \cdot (x_1, \dots, x_n) = (\lambda x_1, \dots, \lambda x_n).$$

L'élément neutre de la loi interne est le vecteur nul $(0,0,\ldots,0)$. Le symétrique de (x_1,\ldots,x_n) est $(-x_1,\ldots,-x_n)$, que l'on note $-(x_1,\ldots,x_n)$.

De manière analogue, on peut définir le \mathbb{C} -espace vectoriel \mathbb{C}^n , et plus généralement le \mathbb{K} -espace vectoriel \mathbb{K}^n .

Exemple 210

Tout plan passant par l'origine dans \mathbb{R}^3 est un espace vectoriel (par rapport aux opérations habituelles sur les vecteurs). Soient $\mathbb{K} = \mathbb{R}$ et $E = \mathscr{P}$ un plan passant par l'origine. Le plan admet une équation de la forme :

$$ax + by + cz = 0$$

où a, b et c sont des réels non tous nuls.

cz=0. Soient $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et $\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ deux éléments de \mathscr{P} . Autrement dit,

$$ax + by + cz = 0,$$

et
$$ax' + by' + cz' = 0.$$

Alors $\begin{pmatrix} x+x' \\ y+y' \\ z+z' \end{pmatrix}$ est aussi dans \mathscr{P} car on a bien :

$$a(x+x') + b(y+y') + c(z+z') = 0.$$

Les autres propriétés sont aussi faciles à vérifier : par exemple l'élément neutre est $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$; et si $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ appartient à \mathscr{P} , alors ax + by + cz = 0, que l'on peut réécrire a(-x) + b(-y) + c(-z) = 0 et ainsi $-\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ appartient à \mathscr{P} .

Attention! Un plan ne contenant pas l'origine n'est pas un espace vectoriel, car justement il ne contient pas le vecteur nul $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$.

1.3. Terminologie et notations

Rassemblons les définitions déjà vues.

- On appelle les éléments de E des *vecteurs*. Au lieu de \mathbb{K} -espace vectoriel, on dit aussi espace vectoriel sur \mathbb{K} .
- Les éléments de K seront appelés des scalaires.
- L'élément neutre 0_E s'appelle aussi le vecteur nul. Il ne doit pas être confondu avec l'élément 0 de \mathbb{K} . Lorsqu'il n'y aura pas de risque de confusion, 0_E sera aussi noté 0.
- Le *symétrique* u d'un vecteur $u \in E$ s'appelle aussi l'*opposé*.
- La loi de composition interne sur E (notée usuellement +) est appelée couramment l'addition et u + u' est appelée somme des vecteurs u et u'.
- La loi de composition externe sur E est appelée couramment multiplication par un scalaire. La multiplication du vecteur u par le scalaire λ sera souvent notée simplement λu , au lieu de $\lambda \cdot u$.

Somme de n vecteurs. Il est possible de définir, par récurrence, l'addition de n vecteurs, $n \ge 2$. La structure d'espace vectoriel permet de définir l'addition de deux vecteurs (et initialise le processus). Si maintenant la somme de n-1 vecteurs est définie, alors la somme de n vecteurs v_1, v_2, \ldots, v_n est définie par

$$v_1 + v_2 + \cdots + v_n = (v_1 + v_2 + \cdots + v_{n-1}) + v_n$$

L'associativité de la loi + nous permet de ne pas mettre de parenthèses dans la somme $v_1 + v_2 + \cdots + v_n$.

On notera $v_1 + v_2 + \dots + v_n = \sum_{i=1}^{n} v_i$.

1.4. Mini-exercices

- 1. Vérifier les 8 axiomes qui font de \mathbb{R}^3 un \mathbb{R} -espace vectoriel.
- 2. Idem pour une droite \mathscr{D} de \mathbb{R}^3 passant par l'origine définie par $\begin{cases} ax + by + cz &= 0 \\ a'x + b'y + c'z &= 0 \end{cases}$.
- 3. Justifier que les ensembles suivants *ne sont pas* des espaces vectoriels : $\{(x,y) \in \mathbb{R}^2 \mid xy=0\}$; $\{(x,y) \in \mathbb{R}^2 \mid x=1\}$; $\{(x,y) \in \mathbb{R}^2 \mid x \geq 0 \text{ et } y \geq 0\}$; $\{(x,y) \in \mathbb{R}^2 \mid -1 \leq x \leq 1 \text{ et } -1 \leq y \leq 1\}$.

4. Montrer par récurrence que si les v_i sont des éléments d'un \mathbb{K} -espace vectoriel E, alors pour tous $\lambda_i \in \mathbb{K} : \lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_n v_n \in E$.

2. Espace vectoriel (fin)

2.1. Détail des axiomes de la définition

Revenons en détail sur la définition d'un espace vectoriel. Soit donc E un \mathbb{K} -espace vectoriel. Les éléments de E seront appelés des *vecteurs*. Les éléments de \mathbb{K} seront appelés des *scalaires*.

Loi interne.

La loi de composition interne dans E, c'est une application de $E \times E$ dans E:

$$E \times E \quad \to \quad E$$
$$(u,v) \quad \mapsto \quad u+v$$

C'est-à-dire qu'à partir de deux vecteurs u et v de E, on nous en fournit un troisième, qui sera noté u+v.

La loi de composition interne dans E et la somme dans \mathbb{K} seront toutes les deux notées +, mais le contexte permettra de déterminer aisément de quelle loi il s'agit.

Loi externe.

La loi de composition externe, c'est une application de $\mathbb{K} \times E$ dans E:

$$\mathbb{K} \times E \quad \to \quad E$$
$$(\lambda, u) \quad \mapsto \quad \lambda \cdot u$$

C'est-à-dire qu'à partir d'un scalaire $\lambda \in \mathbb{K}$ et d'un vecteur $u \in E$, on nous fournit un autre vecteur, qui sera noté $\lambda \cdot u$.

Axiomes relatifs à la loi interne.

- 1. *Commutativité*. Pour tous $u, v \in E$, u + v = v + u. On peut donc additionner des vecteurs dans l'ordre que l'on souhaite.
- 2. Associativité. Pour tous $u, v, w \in E$, on a u + (v + w) = (u + v) + w. Conséquence : on peut « oublier » les parenthèses et noter sans ambiguïté u + v + w.
- 3. Il existe un élément neutre, c'est-à-dire qu'il existe un élément de E, noté 0_E , vérifiant : pour tout $u \in E$, $u + 0_E = u$ (et on a aussi $0_E + u = u$ par commutativité). Cet élément 0_E s'appelle aussi le vecteur nul.
- 4. Tout élément u de E admet un symétrique (ou opposé), c'est-à-dire qu'il existe un élément u' de E tel que $u + u' = 0_E$ (et on a aussi $u' + u = 0_E$ par commutativité). Cet élément u' de E est noté -u.

Proposition 109

- S'il existe un élément neutre 0_E vérifiant l'axiome (3) ci-dessus, alors il est unique.
- Soit u un élément de E. S'il existe un élément symétrique u' de E vérifiant l'axiome (4), alors il est unique.

Démonstration

- Soient 0_E et $0_E'$ deux éléments vérifiant la définition de l'élément neutre. On a alors, pour tout élément u de E:

$$u + 0_E = 0_E + u = u$$
 et $u + 0'_E = 0'_E + u = u$

- Alors, la première propriété utilisée avec $u=0_E'$ donne $0_E'+0_E=0_E+0_E'=0_E'$.
- La deuxième propriété utilisée avec $u = 0_E$ donne $0_E + 0_E' = 0_E' + 0_E = 0_E$.
- En comparant ces deux résultats, il vient $0_E = 0_E'$.
- Supposons qu'il existe deux symétriques de u notés u' et u''. On a :

$$u + u' = u' + u = 0_E$$
 et $u + u'' = u'' + u = 0_E$.

Calculons u' + (u + u'') de deux façons différentes, en utilisant l'associativité de la loi + et les relations précédentes.

- $u' + (u + u'') = u' + 0_E = u'$
- $u' + (u + u'') = (u' + u) + u'' = 0_E + u'' = u''$
- On en déduit u' = u''.

Remarque

Les étudiants connaissant la théorie des groupes reconnaîtront, dans les quatre premiers axiomes ci-dessus, les axiomes caractérisant un groupe commutatif.

Axiomes relatifs à la loi externe.

5. Soit 1 l'élément neutre de la multiplication de \mathbb{K} . Pour tout élément u de E, on a

$$1 \cdot u = u$$
.

6. Pour tous éléments λ et μ de \mathbb{K} et pour tout élément u de E, on a

$$\lambda \cdot (\mu \cdot u) = (\lambda \times \mu) \cdot u$$
.

Axiomes liant les deux lois.

7. *Distributivité* par rapport à l'addition des vecteurs. Pour tout élément λ de \mathbb{K} et pour tous éléments u et v de E, on a

$$\lambda \cdot (u+v) = \lambda \cdot u + \lambda \cdot v.$$

8. *Distributivité* par rapport à l'addition des scalaires. Pour tous λ et μ de \mathbb{K} et pour tout élément u de E, on a :

$$(\lambda + \mu) \cdot u = \lambda \cdot u + \mu \cdot u.$$

La loi interne et la loi externe doivent donc satisfaire ces huit axiomes pour que $(E, +, \cdot)$ soit un espace vectoriel sur \mathbb{K} .

2.2. Exemples

Dans tous les exemples qui suivent, la vérification des axiomes se fait simplement et est laissée au soin des étudiants. Seules seront indiquées, dans chaque cas, les valeurs de l'élément neutre de la loi interne et du symétrique d'un élément.

Exemple 211. L'espace vectoriel des fonctions de $\mathbb R$ dans $\mathbb R$

L'ensemble des fonctions $f: \mathbb{R} \longrightarrow \mathbb{R}$ est noté $\mathscr{F}(\mathbb{R}, \mathbb{R})$. Nous le munissons d'une structure de \mathbb{R} -espace vectoriel de la manière suivante.

- Loi interne. Soient f et g deux éléments de $\mathscr{F}(\mathbb{R},\mathbb{R})$. La fonction f+g est définie par :

$$\forall x \in \mathbb{R} \quad (f+g)(x) = f(x) + g(x)$$

(où le signe + désigne la loi interne de $\mathscr{F}(\mathbb{R},\mathbb{R})$ dans le membre de gauche et l'addition dans \mathbb{R} dans le membre de droite).

- Loi externe. Si λ est un nombre réel et f une fonction de $\mathscr{F}(\mathbb{R},\mathbb{R})$, la fonction $\lambda \cdot f$ est définie par l'image de tout réel x comme suit :

$$\forall x \in \mathbb{R} \quad (\lambda \cdot f)(x) = \lambda \times f(x).$$

(Nous désignons par · la loi externe de $\mathscr{F}(\mathbb{R},\mathbb{R})$ et par × la multiplication dans \mathbb{R} . Avec l'habitude on oubliera les signes de multiplication : $(\lambda f)(x) = \lambda f(x)$.)

- Élément neutre. L'élément neutre pour l'addition est la fonction nulle, définie par :

$$\forall x \in \mathbb{R} \quad f(x) = 0.$$

On peut noter cette fonction $0_{\mathscr{F}(\mathbb{R},\mathbb{R})}$.

- Symétrique. Le symétrique de l'élément f de $\mathscr{F}(\mathbb{R},\mathbb{R})$ est l'application g de \mathbb{R} dans \mathbb{R} définie par :

$$\forall x \in \mathbb{R} \quad g(x) = -f(x).$$

Le symétrique de f est noté -f.

Exemple 212. Le R-espace vectoriel des suites réelles

On note $\mathscr S$ l'ensemble des suites réelles $(u_n)_{n\in\mathbb N}$. Cet ensemble peut être vu comme l'ensemble des applications de $\mathbb N$ dans $\mathbb R$; autrement dit $\mathscr S=\mathscr F(\mathbb N,\mathbb R)$.

- Loi interne. Soient $u = (u_n)_{n \in \mathbb{N}}$ et $v = (v_n)_{n \in \mathbb{N}}$ deux suites appartenant à \mathscr{S} . La suite u + v est la suite $w = (w_n)_{n \in \mathbb{N}}$ dont le terme général est défini par

$$\forall n \in \mathbb{N} \quad w_n = u_n + v_n$$

(où $u_n + v_n$ désigne la somme de u_n et de v_n dans \mathbb{R}).

- Loi externe. Si λ est un nombre réel et $u=(u_n)_{n\in\mathbb{N}}$ un élément de \mathscr{S} , $\lambda\cdot u$ est la suite $v=(v_n)_{n\in\mathbb{N}}$ définie par

$$\forall n \in \mathbb{N} \quad v_n = \lambda \times u_n$$

où \times désigne la multiplication dans \mathbb{R} .

- Élément neutre. L'élément neutre de la loi interne est la suite dont tous les termes sont nuls.
- Symétrique. Le symétrique de la suite $u = (u_n)_{n \in \mathbb{N}}$ est la suite $u' = (u'_n)_{n \in \mathbb{N}}$ définie par :

$$\forall n \in \mathbb{N} \quad u'_n = -u_n.$$

Elle est notée -u.

Exemple 213. Les matrices

L'ensemble $M_{n,p}(\mathbb{R})$ des matrices à n lignes et p colonnes à coefficients dans \mathbb{R} est muni d'une structure de \mathbb{R} -espace vectoriel. La loi interne est l'addition de deux matrices. La loi externe est la multiplication d'une matrice par un scalaire. L'élément neutre pour la loi interne est la matrice nulle (tous les coefficients sont nuls). Le symétrique de la matrice $A = (a_{i,j})$ est la matrice $(-a_{i,j})$. De même, l'ensemble $M_{n,p}(\mathbb{K})$ des matrices à coefficients dans \mathbb{K} est un \mathbb{K} -espace vectoriel.

Autres exemples:

- 1. L'espace vectoriel $\mathbb{R}[X]$ des polynômes $P(X) = a_n X^n + \cdots + a_2 X^2 + a_1 X + a_0$. L'addition est l'addition de deux polynômes P(X) + Q(X), la multiplication par un scalaire $\lambda \in \mathbb{R}$ est $\lambda \cdot P(X)$. L'élément neutre est le polynôme nul. L'opposé de P(X) est -P(X).
- 2. L'ensemble des fonctions continues de $\mathbb R$ dans $\mathbb R$; l'ensemble des fonctions dérivables de $\mathbb R$ dans $\mathbb R$
- 3. \mathbb{C} est un \mathbb{R} -espace vectoriel : addition z+z' de deux nombres complexes, multiplication λz par un scalaire $\lambda \in \mathbb{R}$. L'élément neutre est le nombre complexe 0 et le symétrique du nombre complexe z est -z.

2.3. Règles de calcul

Proposition 110

Soit *E* un espace vectoriel sur un corps \mathbb{K} . Soient $u \in E$ et $\lambda \in \mathbb{K}$. Alors on a :

- 1. $0 \cdot u = 0_E$
- $2. \ \lambda \cdot 0_E = 0_E$
- 3. $(-1) \cdot u = -u$
- 4. $\lambda \cdot u = 0_E \iff \lambda = 0 \text{ ou } u = 0_E$

L'opération qui à (u,v) associe u+(-v) s'appelle la **soustraction**. Le vecteur u+(-v) est noté u-v. Les propriétés suivantes sont satisfaites : $\lambda(u-v)=\lambda u-\lambda v$ et $(\lambda-\mu)u=\lambda u-\mu u$.

Démonstration

Les démonstrations des propriétés sont des manipulations sur les axiomes définissant les espaces vectoriels.

- 1. Le point de départ de la démonstration est l'égalité dans $\mathbb{K}: 0+0=0$.
 - D'où, pour tout vecteur de E, l'égalité $(0+0) \cdot u = 0 \cdot u$.
 - Donc, en utilisant la distributivité de la loi externe par rapport à la loi interne et la définition de l'élément neutre, on obtient $0 \cdot u + 0 \cdot u = 0 \cdot u$. On peut rajouter l'élément neutre dans le terme de droite, pour obtenir : $0 \cdot u + 0 \cdot u = 0 \cdot u + 0_E$.
 - En ajoutant $-(0 \cdot u)$ de chaque côté de l'égalité, on obtient : $0 \cdot u = 0_E$.
- 2. La preuve est semblable en partant de l'égalité $0_E + 0_E = 0_E$.
- 3. Montrer $(-1) \cdot u = -u$ signifie exactement que $(-1) \cdot u$ est le symétrique de u, c'est-à-dire vérifie $u + (-1) \cdot u = 0_E$. En effet :

$$u + (-1) \cdot u = 1 \cdot u + (-1) \cdot u = (1 + (-1)) \cdot u = 0 \cdot u = 0_E$$
.

4. On sait déjà que si $\lambda = 0$ ou $u = 0_E$, alors les propriétés précédentes impliquent $\lambda \cdot u = 0_E$.

Pour la réciproque, soient $\lambda \in \mathbb{K}$ un scalaire et $u \in E$ un vecteur tels que $\lambda \cdot u = 0_E$.

Supposons λ différent de 0. On doit alors montrer que $u=0_E$.

- Comme $\lambda \neq 0$, alors λ est inversible pour le produit dans le corps \mathbb{K} . Soit λ^{-1} son inverse.
- En multipliant par λ^{-1} les deux membres de l'égalité $\lambda \cdot u = 0_E$, il vient : $\lambda^{-1} \cdot (\lambda \cdot u) = \lambda^{-1} \cdot 0_E$.
- D'où en utilisant les propriétés de la multiplication par un scalaire $(\lambda^{-1} \times \lambda) \cdot u = 0_E$ et donc $1 \cdot u = 0_E$.
- D'où $u = 0_E$.

2.4. Mini-exercices

- 1. Justifier si les objets suivants sont des espaces vectoriels.
 - (a) L'ensemble des fonctions réelles sur [0,1], continues, positives ou nulles, pour l'addition et le produit par un réel.
 - (b) L'ensemble des fonctions réelles sur \mathbb{R} vérifiant $\lim_{x\to+\infty} f(x) = 0$ pour les mêmes opérations
 - (c) L'ensemble des fonctions sur \mathbb{R} telles que f(3) = 7.
- (d) L'ensemble \mathbb{R}_+^* pour les opérations $x \oplus y = xy$ et $\lambda \cdot x = x^{\lambda}$ ($\lambda \in \mathbb{R}$).
- (e) L'ensemble des points (x, y) de \mathbb{R}^2 vérifiant $\sin(x + y) = 0$.
- (f) L'ensemble des vecteurs (x, y, z) de \mathbb{R}^3 orthogonaux au vecteur (-1, 3, -2).
- (g) L'ensemble des fonctions de classe \mathscr{C}^2 vérifiant f'' + f = 0.
- (h) L'ensemble des fonctions continues sur [0,1] vérifiant $\int_0^1 f(x) \sin x \, dx = 0$.
- (i) L'ensemble des matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{R})$ vérifiant a + d = 0.
- 2. Prouver les propriétés de la soustraction : $\lambda \cdot (u v) = \lambda \cdot u \lambda \cdot v$ et $(\lambda \mu) \cdot u = \lambda \cdot u \mu \cdot u$.

3. Sous-espace vectoriel (début)

Il est vite fatiguant de vérifier les 8 axiomes qui font d'un ensemble un espace vectoriel. Heureusement, il existe une manière rapide et efficace de prouver qu'un ensemble est un espace vectoriel : grâce à la notion de sous-espace vectoriel.

3.1. Définition d'un sous-espace vectoriel

Définition 105

Soit E un \mathbb{K} -espace vectoriel. Une partie F de E est appelée un sous-espace vectoriel si :

- $-0_E \in F$
- $u + v \in F$ pour tous $u, v \in F$,
- *λ* · *u* ∈ *F* pour tout *λ* ∈ \mathbb{K} et tout *u* ∈ *F*.

Remarque

Expliquons chaque condition.

- La première condition signifie que le vecteur nul de *E* doit aussi être dans *F*. En fait il suffit même de prouver que *F* est non vide.
- La deuxième condition, c'est dire que F est stable pour l'addition : la somme u+v de deux vecteurs u,v de F est bien sûr un vecteur de E (car E est un espace vectoriel), mais ici on exige que u+v soit un élément de F.

- La troisième condition, c'est dire que F est stable pour la multiplication par un scalaire.

Exemple 214. Exemples immédiats

- 1. L'ensemble $F = \{(x, y) \in \mathbb{R}^2 \mid x + y = 0\}$ est un sous-espace vectoriel de \mathbb{R}^2 . En effet :
 - (a) $(0,0) \in F$,
 - (b) si $u = (x_1, y_1)$ et $v = (x_2, y_2)$ appartiement à F, alors $x_1 + y_1 = 0$ et $x_2 + y_2 = 0$ donc $(x_1 + x_2) + (y_1 + y_2) = 0$ et ainsi $u + v = (x_1 + x_2, y_1 + y_2)$ appartiemt à F,
 - (c) si $u = (x, y) \in F$ et $\lambda \in \mathbb{R}$, alors x + y = 0 donc $\lambda x + \lambda y = 0$, d'où $\lambda u \in F$.

- 2. L'ensemble des fonctions continues sur $\mathbb R$ est un sous-espace vectoriel de l'espace vectoriel des fonctions de $\mathbb R$ dans $\mathbb R$. Preuve : la fonction nulle est continue ; la somme de deux fonctions continues est continue ; une constante fois une fonction continue est une fonction continue.
- 3. L'ensemble des suites réelles convergentes est un sous-espace vectoriel de l'espace vectoriel des suites réelles.

Voici des sous-ensembles qui ne sont pas des sous-espaces vectoriels.

Exemple 215

- 1. L'ensemble $F_1=\{(x,y)\in\mathbb{R}^2\mid x+y=2\}$ n'est pas un sous-espace vectoriel de \mathbb{R}^2 . En effet le vecteur nul (0,0) n'appartient pas à F_1 .
- 2. L'ensemble $F_2 = \{(x,y) \in \mathbb{R}^2 \mid x=0 \text{ ou } y=0\}$ n'est pas un sous-espace vectoriel de \mathbb{R}^2 . En effet les vecteurs u=(1,0) et v=(0,1) appartiennent à F_2 , mais pas le vecteur u+v=(1,1).
- 3. L'ensemble $F_3 = \{(x,y) \in \mathbb{R}^2 \mid x \ge 0 \text{ et } y \ge 0\}$ n'est pas un sous-espace vectoriel de \mathbb{R}^2 . En effet le vecteur u = (1,1) appartient à F_3 mais, pour $\lambda = -1$, le vecteur -u = (-1,-1) n'appartient pas à F_3 .

3.2. Un sous-espace vectoriel est un espace vectoriel

La notion de sous-espace vectoriel prend tout son intérêt avec le théorème suivant : un sous-espace vectoriel est lui-même un espace vectoriel. C'est ce théorème qui va nous fournir plein d'exemples d'espaces vectoriels.

Théorème 61

Soient E un \mathbb{K} -espace vectoriel et F un sous-espace vectoriel de E. Alors F est lui-même un \mathbb{K} -espace vectoriel pour les lois induites par E.

Méthodologie. Pour répondre à une question du type « L'ensemble F est-il un espace vectoriel ? », une façon efficace de procéder est de trouver un espace vectoriel E qui contient F, puis prouver que F est un sous-espace vectoriel de E. Il y a seulement trois propriétés à vérifier au lieu de huit!

Exemple 216

1. Est-ce que l'ensemble des fonctions paires (puis des fonctions impaires) forme un espace vectoriel (sur \mathbb{R} avec les lois usuelles sur les fonctions)?

Notons $\mathscr P$ l'ensemble des fonctions paires et $\mathscr I$ l'ensemble des fonctions impaires. Ce sont deux sous-ensembles de l'espace vectoriel $\mathscr F(\mathbb R,\mathbb R)$ des fonctions.

$$\mathcal{P} = \left\{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \mid \forall x \in \mathbb{R}, f(-x) = f(x) \right\}$$
$$\mathcal{I} = \left\{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \mid \forall x \in \mathbb{R}, f(-x) = -f(x) \right\}$$

 \mathscr{P} et \mathscr{I} sont des sous-espaces vectoriels de $\mathscr{F}(\mathbb{R},\mathbb{R})$. C'est très simple à vérifier, par exemple pour \mathscr{P} :

- (a) la fonction nulle est une fonction paire,
- (b) si $f, g \in \mathcal{P}$ alors $f + g \in \mathcal{P}$,
- (c) si $f \in \mathcal{P}$ et si $\lambda \in \mathbb{R}$ alors $\lambda f \in \mathcal{P}$.

Par le théorème 61, \mathcal{P} est un espace vectoriel (de même pour \mathcal{I}).

2. Est-ce que l'ensemble \mathcal{S}_n des matrices symétriques de taille n est un espace vectoriel (sur \mathbb{R} avec les lois usuelles sur les matrices)?

 \mathscr{S}_n est un sous-ensemble de l'espace vectoriel $M_n(\mathbb{R})$. Et c'est même un sous-espace vectoriel. Il suffit en effet de vérifier que la matrice nulle est symétrique, que la somme de deux matrices symétriques est encore symétrique et finalement que le produit d'une matrice symétrique par un scalaire est une matrice symétrique. Par le théorème 61, \mathscr{S}_n est un espace vectoriel.

Démonstration Preuve du théorème 61

Soit F un sous-espace vectoriel d'un espace vectoriel $(E,+,\cdot)$. La stabilité de F pour les deux lois permet de munir cet ensemble d'une loi de composition interne et d'une loi de composition externe, en restreignant à F les opérations définies dans E. Les propriétés de commutativité et d'associativité de l'addition, ainsi que les quatre axiomes relatifs à la loi externe sont vérifiés, car ils sont satisfaits dans E donc en particulier dans F, qui est inclus dans E.

L'existence d'un élément neutre découle de la définition de sous-espace vectoriel. Il reste seulement à justifier que si $u \in F$, alors son symétrique -u appartient à F.

Fixons $u \in F$. Comme on a aussi $u \in E$ et que E est un espace vectoriel alors il existe un élément de E, noté -u, tel que $u + (-u) = 0_E$. Comme u est élément de F, alors pour $\lambda = -1$, $(-1)u \in F$. Et ainsi -u

appartient à F.

Un autre exemple d'espace vectoriel est donné par l'ensemble des solutions d'un système linéaire homogène. Soit AX = 0 un système de n équations à p inconnues :

$$\begin{pmatrix} a_{11} & \dots & a_{1p} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{np} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

On a alors

Théorème 62

Soit $A \in M_{n,p}(\mathbb{R})$. Soit AX = 0 un système d'équations linéaires homogènes à p variables. Alors l'ensemble des vecteurs solutions est un sous-espace vectoriel de \mathbb{R}^p .

Démonstration

Soit F l'ensemble des vecteurs $X \in \mathbb{R}^p$ solutions de l'équation AX = 0. Vérifions que F est un sous-espace vectoriel de \mathbb{R}^p .

- Le vecteur 0 est un élément de F.
- F est stable par addition : si X et X' sont des vecteurs solutions, alors AX = 0 et AX' = 0, donc A(X + X') = AX + AX' = 0, et ainsi $X + X' \in F$.
- *F* est stable par multiplication par un scalaire : si *X* est un vecteur solution, on a aussi $A(\lambda X) = \lambda (AX) = \lambda 0 = 0$, ceci pour tout $\lambda \in \mathbb{R}$. Donc $\lambda X \in F$.

Exemple 217

Considérons le système

$$\left(\begin{array}{ccc} 1 & -2 & 3 \\ 2 & -4 & 6 \\ 3 & -6 & 9 \end{array}\right) \left(\begin{array}{c} x \\ y \\ z \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right).$$

L'ensemble des solutions $F \subset \mathbb{R}^3$ de ce système est :

$$F = \{(x = 2s - 3t, y = s, z = t) \mid s, t \in \mathbb{R}\}.$$

Par le théorème 62, F est un sous-espace vectoriel de \mathbb{R}^3 . Donc par le théorème 61, F est un espace vectoriel.

Une autre façon de voir les choses est d'écrire que les éléments de F sont ceux qui vérifient l'équation (x = 2y - 3z). Autrement dit, F est d'équation (x - 2y + 3z = 0). L'ensemble des solutions F est donc un plan passant par l'origine. Nous avons déjà vu que ceci est un espace vectoriel.

3.3. Mini-exercices

Parmi les ensembles suivants, reconnaître ceux qui sont des sous-espaces vectoriels :

- 1. $\{(x, y, z) \in \mathbb{R}^3 \mid x + y = 0\}$
- 2. $\{(x, y, z, t) \in \mathbb{R}^4 \mid x = t \text{ et } y = z\}$
- 3. $\{(x, y, z) \in \mathbb{R}^3 \mid z = 1\}$
- 4. $\{(x, y) \in \mathbb{R}^2 \mid x^2 + xy \ge 0\}$

- 5. $\{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \ge 1\}$
- 6. $\{f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \mid f(0) = 1\}$
- 7. $\{f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \mid f(1) = 0\}$
- 8. $\{f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \mid f \text{ est croissante } \}$
- 9. $\{(u_n)_{n\in\mathbb{N}} \mid (u_n) \text{ tend vers } 0\}$

4. Sous-espace vectoriel (milieu)

4.1. Combinaisons linéaires

Définition 106

Soit $n \ge 1$ un entier, soient v_1, v_2, \dots, v_n , n vecteurs d'un espace vectoriel E. Tout vecteur de la forme

$$u = \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n$$

(où $\lambda_1, \lambda_2, ..., \lambda_n$ sont des éléments de \mathbb{K}) est appelé *combinaison linéaire* des vecteurs $v_1, v_2, ..., v_n$. Les scalaires $\lambda_1, \lambda_2, ..., \lambda_n$ sont appelés *coefficients* de la combinaison linéaire.

Remarque : Si n = 1, alors $u = \lambda_1 v_1$ et on dit que u est *colinéaire* à v_1 .

Exemple 218

1. Dans le \mathbb{R} -espace vectoriel \mathbb{R}^3 , (3,3,1) est combinaison linéaire des vecteurs (1,1,0) et (1,1,1) car on a l'égalité

$$(3,3,1) = 2(1,1,0) + (1,1,1).$$

- 2. Dans le \mathbb{R} -espace vectoriel \mathbb{R}^2 , le vecteur u=(2,1) n'est pas colinéaire au vecteur $v_1=(1,1)$ car s'il l'était, il existerait un réel λ tel que $u=\lambda v_1$, ce qui équivaudrait à l'égalité $(2,1)=(\lambda,\lambda)$.
- 3. Soit $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$ l'espace vectoriel des fonctions réelles. Soient f_0, f_1, f_2 et f_3 les fonctions définies par :

$$\forall x \in \mathbb{R}$$
 $f_0(x) = 1$, $f_1(x) = x$, $f_2(x) = x^2$, $f_3(x) = x^3$.

Alors la fonction f définie par

$$\forall x \in \mathbb{R}$$
 $f(x) = x^3 - 2x^2 - 7x - 4$

est combinaison linéaire des fonctions f_0, f_1, f_2, f_3 puisque l'on a l'égalité

$$f = f_3 - 2f_2 - 7f_1 - 4f_0.$$

4. Dans $M_{2,3}(\mathbb{R})$, on considère $A=\begin{pmatrix} 1 & 1 & 3 \\ 0 & -1 & 4 \end{pmatrix}$. On peut écrire A naturellement sous la forme suivante d'une combinaison linéaire de matrices élémentaires (des zéros partout, sauf un 1) :

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} + 3 \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} + 4 \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Voici deux exemples plus compliqués.

Exemple 219

Soient $u=\begin{pmatrix}1\\2\\-1\end{pmatrix}$ et $v=\begin{pmatrix}6\\4\\2\end{pmatrix}$ deux vecteurs de \mathbb{R}^3 . Montrons que $w=\begin{pmatrix}9\\2\\7\end{pmatrix}$ est combinaison linéaire de u et v. On cherche donc λ et μ tels que $w=\lambda u+\mu v$:

$$\begin{pmatrix} 9 \\ 2 \\ 7 \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + \mu \begin{pmatrix} 6 \\ 4 \\ 2 \end{pmatrix} = \begin{pmatrix} \lambda \\ 2\lambda \\ -\lambda \end{pmatrix} + \begin{pmatrix} 6\mu \\ 4\mu \\ 2\mu \end{pmatrix} = \begin{pmatrix} \lambda + 6\mu \\ 2\lambda + 4\mu \\ -\lambda + 2\mu \end{pmatrix}.$$

On a donc

$$\begin{cases}
9 = \lambda + 6\mu \\
2 = 2\lambda + 4\mu \\
7 = -\lambda + 2\mu.
\end{cases}$$

Une solution de ce système est $(\lambda = -3, \mu = 2)$, ce qui implique que w est combinaison linéaire de u et v. On vérifie que l'on a bien

$$\begin{pmatrix} 9 \\ 2 \\ 7 \end{pmatrix} = -3 \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + 2 \begin{pmatrix} 6 \\ 4 \\ 2 \end{pmatrix}.$$

Exemple 220

Soient $u = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ et $v = \begin{pmatrix} 6 \\ 4 \\ 2 \end{pmatrix}$. Montrons que $w = \begin{pmatrix} 4 \\ -1 \\ 8 \end{pmatrix}$ n'est pas une combinaison linéaire de u et v. L'égalité

$$\begin{pmatrix} 4 \\ -1 \\ 8 \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + \mu \begin{pmatrix} 6 \\ 4 \\ 2 \end{pmatrix} \quad \text{équivant au système} \quad \begin{cases} 4 = \lambda + 6\mu \\ -1 = 2\lambda + 4\mu \\ 8 = -\lambda + 2\mu. \end{cases}$$

Or ce système n'a aucune solution. Donc il n'existe pas $\lambda, \mu \in \mathbb{R}$ tels que $w = \lambda u + \mu v$.

4.2. Caractérisation d'un sous-espace vectoriel

Théorème 63. Caractérisation d'un sous-espace par la notion de combinaison linéaire

Soient E un \mathbb{K} -espace vectoriel et F une partie non vide de E. F est un sous-espace vectoriel de E si et seulement si

$$\lambda u + \mu v \in F$$
 pour tous $u, v \in F$ et tous $\lambda, \mu \in \mathbb{K}$.

Autrement dit si et seulement si toute combinaison linéaire de deux éléments de F appartient à F.

Démonstration

- Supposons que F soit un sous-espace vectoriel. Et soient $u, v \in F$, $\lambda, \mu \in \mathbb{K}$. Alors par la définition de sous-espace vectoriel : $\lambda u \in F$ et $\mu v \in F$ et ainsi $\lambda u + \mu v \in F$.
- Réciproquement, supposons que pour chaque $u, v \in F$, $\lambda, \mu \in \mathbb{K}$ on a $\lambda u + \mu v \in F$.
 - Comme *F* n'est pas vide, soient $u, v \in F$. Posons $\lambda = \mu = 0$. Alors $\lambda u + \mu v = 0_E \in F$.
 - Si $u, v \in F$, alors en posant $\lambda = \mu = 1$ on obtient $u + v \in F$.

- Si $u \in F$ et $\lambda \in \mathbb{K}$ (et pour n'importe quel v, en posant $\mu = 0$), alors $\lambda u \in F$.

4.3. Intersection de deux sous-espaces vectoriels

Proposition 111. Intersection de deux sous-espaces

Soient F,G deux sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E. L'intersection $F \cap G$ est un sous-espace vectoriel de E.

On démontrerait de même que l'intersection $F_1 \cap F_2 \cap F_3 \cap \cdots \cap F_n$ d'une famille quelconque de sous-espaces vectoriels de E est un sous-espace vectoriel de E.

Démonstration

Soient F et G deux sous-espaces vectoriels de E.

- $-0_E \in F$, $0_E \in G$ car F et G sont des sous-espaces vectoriels de E; donc $0_E \in F \cap G$.
- Soient u et v deux vecteurs de $F \cap G$. Comme F est un sous-espace vectoriel, alors $u, v \in F$ implique $u + v \in F$. De même $u, v \in G$ implique $u + v \in G$. Donc $u + v \in F \cap G$.
- Soient $u \in F \cap G$ et $\lambda \in \mathbb{K}$. Comme F est un sous-espace vectoriel, alors $u \in F$ implique $\lambda u \in F$. De même $u \in G$ implique $\lambda u \in G$. Donc $\lambda u \in F \cap G$.

Conclusion : $F \cap G$ est un sous-espace vectoriel de E.

Exemple 221

Soit \mathcal{D} le sous-ensemble de \mathbb{R}^3 défini par :

$$\mathcal{D} = \{(x, y, z) \in \mathbb{R}^3 \mid x + 3y + z = 0 \text{ et } x - y + 2z = 0\}.$$

Est-ce que \mathscr{D} est sous-espace vectoriel de \mathbb{R}^3 ? L'ensemble \mathscr{D} est l'intersection de F et G, les sous-ensembles de \mathbb{R}^3 définis par :

$$F = \{(x, y, z) \in \mathbb{R}^3 \mid x + 3y + z = 0\}$$

$$G = \{(x, y, z) \in \mathbb{R}^3 \mid x - y + 2z = 0\}$$

Ce sont deux plans passant par l'origine, donc des sous-espaces vectoriels de \mathbb{R}^3 . Ainsi $\mathscr{D} = F \cap G$ est un sous-espace vectoriel de \mathbb{R}^3 , c'est une droite vectorielle.

Remarque

La réunion de deux sous-espaces vectoriels de E n'est pas en général un sous-espace vectoriel de E. Prenons par exemple $E=\mathbb{R}^2$. Considérons les sous-espaces vectoriels $F=\{(x,y)\mid x=0\}$ et $G=\{(x,y)\mid y=0\}$. Alors $F\cup G$ n'est pas un sous-espace vectoriel de \mathbb{R}^2 . Par exemple, (0,1)+(1,0)=(1,1) est la somme d'un élément de F et d'un élément de G, mais n'est pas dans $F\cup G$.

4.4. Mini-exercices

- 1. Peut-on trouver $t \in \mathbb{R}$ tel que les vecteurs $\begin{pmatrix} -2\\\sqrt{2}\\t \end{pmatrix}$ et $\begin{pmatrix} -4\sqrt{2}\\4t\\2\sqrt{2} \end{pmatrix}$ soient colinéaires?
- 2. Peut-on trouver $t \in \mathbb{R}$ tel que le vecteur $\begin{pmatrix} 1\\3t\\t \end{pmatrix}$ soit une combinaison linéaire de $\begin{pmatrix} 1\\3\\2 \end{pmatrix}$ et $\begin{pmatrix} -1\\1\\-1 \end{pmatrix}$?

5. Sous-espace vectoriel (fin)

5.1. Somme de deux sous-espaces vectoriels

Comme la réunion de deux sous-espaces vectoriels F et G n'est pas en général un sous-espace vectoriel, il est utile de connaître les sous-espaces vectoriels qui contiennent à la fois les deux sous-espaces vectoriels F et G, et en particulier le plus petit d'entre eux (au sens de l'inclusion).

Définition 107. Définition de la somme de deux sous-espaces

Soient F et G deux sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E. L'ensemble de tous les éléments u+v, où u est un élément de F et v un élément de G, est appelé somme des sous-espaces vectoriels F et G. Cette somme est notée F+G. On a donc

$$F+G=\big\{u+v\mid u\in F, v\in G\big\}.$$

Proposition 112

Soient F et G deux sous-espaces vectoriels du \mathbb{K} -espace vectoriel E.

- 1. F + G est un sous-espace vectoriel de E.
- 2. F + G est le plus petit sous-espace vectoriel contenant à la fois F et G.

Démonstration

- 1. Montrons que F + G est un sous-espace vectoriel.
 - 0_E ∈ F, 0_E ∈ G, donc 0_E = 0_E + 0_E ∈ F + G.
 - Soient w et w' des éléments de F+G. Comme w est dans F+G, il existe u dans F et v dans G tels que w=u+v. Comme w' est dans F+G, il existe u' dans F et v' dans G tels que w'=u'+v'. Alors $w+w'=(u+v)+(u'+v')=(u+u')+(v+v')\in F+G$, car $u+u'\in F$ et $v+v'\in G$.
 - Soit w un élément de F+G et $\lambda \in \mathbb{K}$. Il existe u dans F et v dans G tels que w=u+v. Alors $\lambda w = \lambda(u+v) = (\lambda u) + (\lambda v) \in F+G$, car $\lambda u \in F$ et $\lambda v \in G$.
- 2. L'ensemble F+G contient F et contient G: en effet tout élément u de F s'écrit u=u+0 avec u appartenant à F et 0 appartenant à G (puisque G est un sous-espace vectoriel), donc u appartient à F+G. De même pour un élément de G.
 - Si H est un sous-espace vectoriel contenant F et G, alors montrons que $F+G \subset H$. C'est clair : si $u \in F$ alors en particulier $u \in H$ (car $F \subset H$), de même si $v \in G$ alors $v \in H$. Comme H est un sous-espace vectoriel, alors $u + v \in H$.

Exemple 222

Déterminons F+G dans le cas où F et G sont les sous-espaces vectoriels de \mathbb{R}^3 suivants :

$$F = \{(x, y, z) \in \mathbb{R}^3 \mid y = z = 0\}$$
 et $G = \{(x, y, z) \in \mathbb{R}^3 \mid x = z = 0\}.$

Un élément w de F+G s'écrit w=u+v où u est un élément de F et v un élément de G. Comme $u \in F$ alors il existe $x \in \mathbb{R}$ tel que u=(x,0,0), et comme $v \in G$ il existe $y \in \mathbb{R}$ tel que v=(0,y,0). Donc w=(x,y,0). Réciproquement, un tel élément w=(x,y,0) est la somme de (x,0,0) et de (0,y,0). Donc $F+G=\{(x,y,z)\in \mathbb{R}^3\mid z=0\}$. On voit même que, pour cet exemple, tout élément de F+G s'écrit de façon unique comme la somme d'un élément de F et d'un élément de G.

Exemple 223

Soient F et G les deux sous-espaces vectoriels de \mathbb{R}^3 suivants :

$$F = \left\{ (x,y,z) \in \mathbb{R}^3 \mid x=0 \right\} \qquad \text{et} \qquad G = \left\{ (x,y,z) \in \mathbb{R}^3 \mid y=0 \right\}.$$

Dans cet exemple, montrons que $F+G=\mathbb{R}^3$. Par définition de F+G, tout élément de F+G est dans \mathbb{R}^3 . Mais réciproquement, si w=(x,y,z) est un élément quelconque de \mathbb{R}^3 : w=(x,y,z)=(0,y,z)+(x,0,0), avec $(0,y,z)\in F$ et $(x,0,0)\in G$, donc w appartient à F+G.

Remarquons que, dans cet exemple, un élément de \mathbb{R}^3 ne s'écrit pas forcément de façon unique comme la somme d'un élément de F et d'un élément de G. Par exemple (1,2,3)=(0,2,3)+(1,0,0)=(0,2,0)+(1,0,3).

5.2. Sous-espaces vectoriels supplémentaires

Définition 108. Définition de la somme directe de deux sous-espaces

Soient F et G deux sous-espaces vectoriels de E. F et G sont en somme directe dans E si

- F ∩ G = {0 $_E$ },
- -F+G=E.

On note alors $F \oplus G = E$.

Si F et G sont en somme directe, on dit que F et G sont des sous-espaces vectoriels **supplémentaires** dans E.

Proposition 113

F et G sont supplémentaires dans E si et seulement si tout élément de E s'écrit d'une manière *unique* comme la somme d'un élément de F et d'un élément de G.

Remarque

- Dire qu'un élément w de E s'écrit d'une manière unique comme la somme d'un élément de F et d'un élément de G signifie que si w = u + v avec $u \in F$, $v \in G$ et w = u' + v' avec $u' \in F$, $v' \in G$ alors u = u' et v = v'.
- On dit aussi que F est un sous-espace supplémentaire de G (ou que G est un sous-espace supplémentaire de F).
- Il n'y a pas unicité du supplémentaire d'un sous-espace vectoriel donné (voir un exemple ci-dessous).
- L'existence d'un supplémentaire d'un sous-espace vectoriel sera prouvée dans le cadre des espaces vectoriels de dimension finie.

Démonstration

- Supposons $E = F \oplus G$ et montrons que tout élément $u \in E$ se décompose de manière unique. Soient donc u = v + w et u = v' + w' avec $v, v' \in F$ et $w, w' \in G$. On a alors v + w = v' + w', donc v v' = w' w. Comme F est un sous-espace vectoriel alors $v v' \in F$, mais d'autre part G est aussi un sous-espace vectoriel donc $w' w \in G$. Conclusion : $v v' = w' w \in F \cap G$. Mais par définition d'espaces supplémentaires $F \cap G = \{0_E\}$, donc $v v' = 0_E$ et aussi $w' w = 0_E$. On en déduit v = v' et w = w', ce qu'il fallait démontrer.
- Supposons que tout $u \in E$ se décompose de manière unique et montrons $E = F \oplus G$.
 - Montrons $F \cap G = \{0_E\}$. Si $u \in F \cap G$, il peut s'écrire des deux manières suivantes comme somme d'un élément de F et d'un élément de G:

$$u = 0_E + u$$
 et $u = u + 0_E$.

Par l'unicité de la décomposition, $u = 0_E$.

- Montrons F + G = E. Il n'y rien à prouver, car par hypothèse tout élément u se décompose en u = v + w, avec $v \in F$ et $w \in G$.

Exemple 224

1. Soient $F = \{(x,0) \in \mathbb{R}^2 \mid x \in \mathbb{R}\}\$ et $G = \{(0,y) \in \mathbb{R}^2 \mid y \in \mathbb{R}\}.$

Montrons que $F \oplus G = \mathbb{R}^2$. La première façon de le voir est que l'on a clairement $F \cap G = \{(0,0)\}$ et que, comme (x,y)=(x,0)+(0,y), alors $F+G=\mathbb{R}^2$. Une autre façon de le voir est d'utiliser la proposition 113, car la décomposition (x,y)=(x,0)+(0,y) est unique.

- 2. Gardons F et notons $G' = \{(x,x) \in \mathbb{R}^2 \mid x \in \mathbb{R}\}$. Montrons que l'on a aussi $F \oplus G' = \mathbb{R}^2$:
 - (a) Montrons $F \cap G' = \{(0,0)\}$. Si $(x,y) \in F \cap G'$ alors d'une part $(x,y) \in F$ donc y = 0, et aussi $(x,y) \in G'$ donc x = y. Ainsi (x,y) = (0,0).
 - (b) Montrons $F + G' = \mathbb{R}^2$. Soit $u = (x, y) \in \mathbb{R}^2$. Cherchons $v \in F$ et $w \in G'$ tels que u = v + w. Comme $v = (x_1, y_1) \in F$ alors $y_1 = 0$, et comme $w = (x_2, y_2) \in G'$ alors $x_2 = y_2$. Il s'agit donc de trouver x_1 et x_2 tels que

$$(x, y) = (x_1, 0) + (x_2, x_2).$$

Donc $(x, y) = (x_1 + x_2, x_2)$. Ainsi $x = x_1 + x_2$ et $y = x_2$, d'où $x_1 = x - y$ et $x_2 = y$. On trouve bien

$$(x, y) = (x - y, 0) + (y, y),$$

qui prouve que tout élément de \mathbb{R}^2 est somme d'un élément de F et d'un élément de G'.

3. De façon plus générale, deux droites distinctes du plan passant par l'origine forment des sous-espaces supplémentaires.

Exemple 225

Est-ce que les sous-espaces vectoriels F et G de \mathbb{R}^3 définis par

$$F = \{(x, y, z) \in \mathbb{R}^3 \mid x - y - z = 0\}$$
 et $G = \{(x, y, z) \in \mathbb{R}^3 \mid y = z = 0\}$

sont supplémentaires dans \mathbb{R}^3 ?

- 1. Il est facile de vérifier que $F \cap G = \{0\}$. En effet si l'élément u = (x, y, z) appartient à l'intersection de F et de G, alors les coordonnées de u vérifient : x y z = 0 (car u appartient à F), et y = z = 0 (car u appartient à G), donc u = (0,0,0).
- 2. Il reste à démontrer que $F + G = \mathbb{R}^3$.

Soit donc u=(x,y,z) un élément quelconque de \mathbb{R}^3 ; il faut déterminer des éléments v de F et w de G tels que u=v+w. L'élément v doit être de la forme $v=(y_1+z_1,y_1,z_1)$ et l'élément w de la forme $w=(x_2,0,0)$. On a u=v+w si et seulement si $y_1=y,z_1=z,x_2=x-y-z$. On a donc

$$(x, y, z) = (y + z, y, z) + (x - y - z, 0, 0)$$

avec v = (y + z, y, z) dans F et w = (x - y - z, 0, 0) dans G.

Conclusion : $F \oplus G = \mathbb{R}^3$.

Exemple 226

Dans le \mathbb{R} -espace vectoriel $\mathscr{F}(\mathbb{R},\mathbb{R})$ des fonctions de \mathbb{R} dans \mathbb{R} , on considère le sous-espace vectoriel des fonctions paires \mathscr{P} et le sous-espace vectoriel des fonctions impaires \mathscr{I} . Montrons que $\mathscr{P} \oplus \mathscr{I} = \mathscr{F}(\mathbb{R},\mathbb{R})$.

1. Montrons $\mathscr{P} \cap \mathscr{I} = \{0_{\mathscr{F}(\mathbb{R}.\mathbb{R})}\}.$

Soit $f \in \mathcal{P} \cap \mathcal{I}$, c'est-à-dire que f est à la fois une fonction paire et impaire. Il s'agit de montrer que f est la fonction identiquement nulle. Soit $x \in \mathbb{R}$. Comme f(-x) = f(x) (car f est paire) et f(-x) = -f(x) (car f est impaire), alors f(x) = -f(x), ce qui implique f(x) = 0. Ceci est vrai quel que soit $x \in \mathbb{R}$; donc f est la fonction nulle. Ainsi $\mathcal{P} \cap \mathcal{I} = \{0_{\mathcal{F}(\mathbb{R}, \mathbb{R})}\}$.

2. Montrons $\mathscr{P} + \mathscr{I} = \mathscr{F}(\mathbb{R}, \mathbb{R})$.

Soit $f \in \mathcal{F}(\mathbb{R},\mathbb{R})$. Il s'agit de montrer que f peut s'écrire comme la somme d'une fonction paire et d'une fonction impaire.

Analyse. Si f = g + h, avec $g \in \mathcal{P}$, $h \in \mathcal{I}$, alors pour tout x, d'une part, (a) f(x) = g(x) + h(x), et d'autre part, (b) f(-x) = g(-x) + h(-x) = g(x) - h(x). Par somme et différence de (a) et

(b), on tire que

$$g(x) = \frac{f(x) + f(-x)}{2}$$
 et $h(x) = \frac{f(x) - f(-x)}{2}$.

Synthèse. Pour $f \in \mathcal{F}(\mathbb{R}, \mathbb{R})$, on définit deux fonctions g, h par $g(x) = \frac{f(x) + f(-x)}{2}$ et $h(x) = \frac{f(x) - f(-x)}{2}$. Alors d'une part f(x) = g(x) + h(x) et d'autre part $g \in \mathcal{P}$ (vérifier g(-x) = g(x)) et $h \in \mathcal{I}$ (vérifier h(-x) = -h(x)). Bilan : $\mathcal{P} + \mathcal{I} = \mathcal{F}(\mathbb{R}, \mathbb{R})$.

En conclusion, \mathscr{P} et \mathscr{I} sont en somme directe dans $\mathscr{F}(\mathbb{R},\mathbb{R}): \mathscr{P} \oplus \mathscr{I} = \mathscr{F}(\mathbb{R},\mathbb{R})$. Notez que, comme le prouvent nos calculs, les g et h obtenus sont uniques.

5.3. Sous-espace engendré

Théorème 64. Théorème de structure de l'ensemble des combinaisons linéaires

Soit $\{v_1, \ldots, v_n\}$ un ensemble fini de vecteurs d'un \mathbb{K} -espace vectoriel E. Alors :

- L'ensemble des combinaisons linéaires des vecteurs $\{v_1, \dots, v_n\}$ est un sous-espace vectoriel de E.
- C'est le plus petit sous-espace vectoriel de E (au sens de l'inclusion) contenant les vecteurs v_1, \ldots, v_n .

Notation. Ce sous-espace vectoriel est appelé sous-espace engendré par $v_1,...,v_n$ et est noté $\text{Vect}(v_1,...,v_n)$. On a donc

$$u \in \text{Vect}(v_1, \dots, v_n) \iff \text{il existe } \lambda_1, \dots, \lambda_n \in \mathbb{K} \text{ tels que } u = \lambda_1 v_1 + \dots + \lambda_n v_n$$

Remarque

- Dire que $\text{Vect}(v_1, ..., v_n)$ est le plus petit sous-espace vectoriel de E contenant les vecteurs $v_1, ..., v_n$ signifie que si F est un sous-espace vectoriel de E contenant aussi les vecteurs $v_1, ..., v_n$ alors $\text{Vect}(v_1, ..., v_n) \subset F$.
- Plus généralement, on peut définir le sous-espace vectoriel engendré par une partie $\mathcal V$ quelconque (non nécessairement finie) d'un espace vectoriel : Vect $\mathcal V$ est le plus petit sous-espace vectoriel contenant $\mathcal V$.

Exemple 227

1. E étant un \mathbb{K} -espace vectoriel, et u un élément quelconque de E, l'ensemble $\operatorname{Vect}(u) = \{\lambda u \mid \lambda \in \mathbb{K}\}$ est le sous-espace vectoriel de E engendré par u. Il est souvent noté $\mathbb{K}u$. Si u n'est pas le vecteur nul, on parle d'une *droite vectorielle*.

- 2. Si u et v sont deux vecteurs de E, alors $\text{Vect}(u,v) = \{\lambda u + \mu v \mid \lambda, \mu \in \mathbb{K}\}$. Si u et v ne sont pas colinéaires, alors Vect(u,v) est un *plan vectoriel*.
- 3. Soient $u = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ et $v = \begin{pmatrix} 2 \\ 3 \\ 3 \end{pmatrix}$ deux vecteurs de \mathbb{R}^3 . Déterminons $\mathscr{P} = \operatorname{Vect}(u, v)$.

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \text{Vect}(u, v) \quad \Longleftrightarrow \quad \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \lambda u + \mu v \quad \text{pour certains } \lambda, \mu \in \mathbb{R}$$

$$\iff \quad \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

$$\iff \quad \begin{cases} x = \lambda + \mu \\ y = \lambda + 2\mu \\ z = \lambda + 3\mu$$

Nous obtenons bien une équation paramétrique du plan $\mathcal P$ passant par l'origine et contenant les vecteurs u et v. On sait en trouver une équation cartésienne : (x-2y+z=0).

Exemple 228

Soient E l'espace vectoriel des applications de $\mathbb R$ dans $\mathbb R$ et f_0, f_1, f_2 les applications définies par :

$$\forall x \in \mathbb{R}$$
 $f_0(x) = 1, \ f_1(x) = x \ \text{ et } f_2(x) = x^2.$

Le sous-espace vectoriel de E engendré par $\{f_0, f_1, f_2\}$ est l'espace vectoriel des fonctions polynômes f de degré inférieur ou égal à 2, c'est-à-dire de la forme $f(x) = ax^2 + bx + c$.

Méthodologie. On peut démontrer qu'une partie F d'un espace vectoriel E est un sous-espace vectoriel de E en montrant que F est égal à l'ensemble des combinaisons linéaires d'un nombre fini de vecteurs de E.

Exemple 229

Est-ce que $F = \{(x, y, z) \in \mathbb{R}^3 \mid x - y - z = 0\}$ est un sous-espace vectoriel de \mathbb{R}^3 ? Un triplet de \mathbb{R}^3 est élément de F si et seulement si x = y + z. Donc u est élément de F si et seulement s'il peut s'écrire u = (y + z, y, z). Or, on a l'égalité

$$(y+z,y,z) = y(1,1,0) + z(1,0,1).$$

Donc F est l'ensemble des combinaisons linéaires de $\{(1,1,0),(1,0,1)\}$. C'est le sous-espace vectoriel engendré par $\{(1,1,0),(1,0,1)\}$: $F = \text{Vect}\{(1,1,0),(1,0,1)\}$. C'est bien un plan vectoriel (un plan passant par l'origine).

Démonstration Preuve du théorème 64

- 1. On appelle F l'ensemble des combinaisons linéaires des vecteurs $\{v_1, \ldots, v_n\}$.
 - (a) $0_E \in F$ car F contient la combinaison linéaire particulière $0v_1 + \cdots + 0v_n$.
 - (b) Si $u, v \in F$ alors il existe $\lambda_1, \dots, \lambda_n \in \mathbb{K}$ tels que $u = \lambda_1 v_1 + \dots + \lambda_n v_n$ et $\mu_1, \dots, \mu_n \in \mathbb{K}$ tels que $v = \mu_1 v_1 + \dots + \mu_n v_n$. On en déduit que $u + v = (\lambda_1 + \mu_1)v_1 + \dots + (\lambda_n + \mu_n)v_n$ appartient bien à F.
 - (c) De même, $\lambda \cdot u = (\lambda \lambda_1)v_1 + \cdots + (\lambda \lambda_n)v_n \in F$.

Conclusion : F est un sous-espace vectoriel.

2. Si G est un sous-espace vectoriel contenant $\{v_1, ..., v_n\}$, alors il est stable par combinaison linéaire; il contient donc toute combinaison linéaire des vecteurs $\{v_1, ..., v_n\}$. Par conséquent F est inclus dans G: F est le plus petit sous-espace (au sens de l'inclusion) contenant $\{v_1, ..., v_n\}$.

5.4. Mini-exercices

- 1. Trouver des sous-espaces vectoriels distincts F et G de \mathbb{R}^3 tels que
 - (a) $F + G = \mathbb{R}^3 \text{ et } F \cap G \neq \{0\};$
 - (b) $F + G \neq \mathbb{R}^3 \text{ et } F \cap G = \{0\};$
 - (c) $F + G = \mathbb{R}^3$ et $F \cap G = \{0\}$:
- (d) $F + G \neq \mathbb{R}^3$ et $F \cap G \neq \{0\}$.
- 2. Soient $F = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$ et $G = \text{Vect}\{(1, 1, 1)\} \subset \mathbb{R}^3$.
 - (a) Montrer que F est un espace vectoriel. Trouver deux vecteurs u, v tels que F = Vect(u, v).
- (b) Calculer $F \cap G$ et montrer que $F + G = \mathbb{R}^3$. Que conclure?
- 3. Soient $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $D = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ des matrices de $M_2(\mathbb{R})$.
- (a) Quel est l'espace vectoriel F engendré par A et B? Idem avec G engendré par C et D.
- (b) Calculer $F \cap G$. Montrer que $F + G = M_2(\mathbb{R})$. Conclure.

6. Application linéaire (début)

6.1. Définition

Nous avons déjà rencontré la notion d'application linéaire dans le cas $f : \mathbb{R}^p \longrightarrow \mathbb{R}^n$ (voir le chapitre « L'espace vectoriel \mathbb{R}^n »). Cette notion se généralise à des espaces vectoriels quelconques.

Définition 109

Soient E et F deux \mathbb{K} -espaces vectoriels. Une application f de E dans F est une **application linéaire** si elle satisfait aux deux conditions suivantes :

- 1. f(u+v) = f(u) + f(v), pour tous $u, v \in E$;
- 2. $f(\lambda \cdot u) = \lambda \cdot f(u)$, pour tout $u \in E$ et tout $\lambda \in \mathbb{K}$.

Autrement dit : une application est linéaire si elle « respecte » les deux lois d'un espace vectoriel.

Notation. L'ensemble des applications linéaires de E dans F est noté $\mathcal{L}(E,F)$.

6.2. Premiers exemples

Exemple 230

L'application f définie par

$$f: \mathbb{R}^3 \to \mathbb{R}^2$$

$$(x, y, z) \mapsto (-2x, y + 3z)$$

est une application linéaire. En effet, soient u=(x,y,z) et v=(x',y',z') deux éléments de \mathbb{R}^3 et λ un réel.

$$f(u+v) = f(x+x', y+y', z+z')$$

$$= (-2(x+x'), y+y'+3(z+z'))$$

$$= (-2x, y+3z)+(-2x', y'+3z')$$

$$= f(u)+f(v)$$

$$f(\lambda \cdot u) = f(\lambda x, \lambda y, \lambda z)$$

$$= (-2\lambda x, \lambda y+3\lambda z)$$

$$= \lambda \cdot (-2x, y+3z)$$

$$= \lambda \cdot f(u)$$

Toutes les applications ne sont pas des applications linéaires!

Exemple 231

Soit $f : \mathbb{R} \to \mathbb{R}$ l'application définie par $f(x) = x^2$. On a f(1) = 1 et f(2) = 4. Donc $f(2) \neq 2 \cdot f(1)$. Ce qui fait que l'on n'a pas l'égalité $f(\lambda x) = \lambda f(x)$ pour un certain choix de λ, x . Donc f n'est pas linéaire. Notez que l'on n'a pas non plus f(x + x') = f(x) + f(x') dès que $xx' \neq 0$.

Voici d'autres exemples d'applications linéaires :

1. Pour une matrice fixée $A \in M_{n,p}(\mathbb{R})$, l'application $f : \mathbb{R}^p \longrightarrow \mathbb{R}^n$ définie par

$$f(X) = AX$$

est une application linéaire.

2. L'application nulle, notée $0_{\mathcal{L}(E,F)}$:

$$f: E \longrightarrow F$$
 $f(u) = 0_F$ pour tout $u \in E$.

3. L'application identité, notée id_E :

$$f: E \longrightarrow E$$
 $f(u) = u$ pour tout $u \in E$.

6.3. Premières propriétés

Proposition 114

Soient E et F deux \mathbb{K} -espaces vectoriels. Si f est une application linéaire de E dans F, alors :

- $f(0_E) = 0_F,$
- f(-u) = -f(u), pour tout $u \in E$.

Démonstration

Il suffit d'appliquer la définition de la linéarité avec $\lambda = 0$, puis avec $\lambda = -1$.

Pour démontrer qu'une application est linéaire, on peut aussi utiliser une propriété plus « concentrée », donnée par la caractérisation suivante :

Proposition 115. Caractérisation d'une application linéaire

Soient E et F deux \mathbb{K} -espaces vectoriels et f une application de E dans F. L'application f est linéaire si et seulement si, pour tous vecteurs u et v de E et pour tous scalaires λ et μ de \mathbb{K} ,

$$f(\lambda u + \mu v) = \lambda f(u) + \mu f(v).$$

Plus généralement, une application linéaire f préserve les combinaisons linéaires : pour tous $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$ et tous $v_1, \ldots, v_n \in E$, on a

$$f(\lambda_1 v_1 + \dots + \lambda_n v_n) = \lambda_1 f(v_1) + \dots + \lambda_n f(v_n).$$

Démonstration

- Soit f une application linéaire de E dans F. Soient $u,v\in E,\ \lambda,\mu\in\mathbb{K}$. En utilisant les deux axiomes de la définition, on a

$$f(\lambda u + \mu v) = f(\lambda u) + f(\mu v) = \lambda f(u) + \mu f(v).$$

- Montrons la réciproque. Soit $f: E \to F$ une application telle que $f(\lambda u + \mu v) = \lambda f(u) + \mu f(v)$ (pour tous $u, v \in E$, $\lambda, \mu \in \mathbb{K}$). Alors, d'une part f(u + v) = f(u) + f(v) (en considérant le cas particulier où $\lambda = \mu = 1$), et d'autre part $f(\lambda u) = \lambda f(u)$ (cas particulier où $\mu = 0$).

Vocabulaire.

Soient E et F deux \mathbb{K} -espaces vectoriels.

- Une application linéaire de E dans F est aussi appelée *morphisme* ou *homomorphisme* d'espaces vectoriels. L'ensemble des applications linéaires de E dans F est noté $\mathcal{L}(E,F)$.
- Une application linéaire de E dans E est appelée *endomorphisme* de E. L'ensemble des endomorphismes de E est noté $\mathcal{L}(E)$.

6.4. Mini-exercices

Montrer que les applications suivantes $f_i : \mathbb{R}^2 \to \mathbb{R}^2$ sont linéaires. Caractériser géométriquement ces applications et faire un dessin.

- 1. $f_1(x, y) = (-x, -y)$;
- 2. $f_2(x, y) = (3x, 3y)$;
- 3. $f_3(x,y) = (x,-y)$;
- 4. $f_4(x,y) = (-x,y)$;
- 5. $f_5(x, y) = \left(\frac{\sqrt{3}}{2}x \frac{1}{2}y, \frac{1}{2}x + \frac{\sqrt{3}}{2}y\right)$.

7. Application linéaire (milieu)

7.1. Exemples géométriques

Symétrie centrale.

Soient E un \mathbb{K} -espace vectoriel. On définit l'application f par :

$$f: E \to E$$

$$u \mapsto -u$$

f est linéaire et s'appelle la symétrie centrale par rapport à l'origine 0_E .

Homothétie.

Soient E un \mathbb{K} -espace vectoriel et $\lambda \in \mathbb{K}$. On définit l'application f_{λ} par :

$$f_{\lambda}: E \to E$$

$$u \mapsto \lambda u$$

 f_{λ} est linéaire. f_{λ} est appelée *homothétie* de rapport λ . Cas particuliers notables :

- $\lambda = 1$, f_{λ} est l'application identité;
- $\lambda = 0$, f_{λ} est l'application nulle;
- − λ = −1, on retrouve la symétrie centrale.

Preuve que f_{λ} est une application linéaire :

$$f_{\lambda}(\alpha u + \beta v) = \lambda(\alpha u + \beta v) = \alpha(\lambda u) + \beta(\lambda v) = \alpha f_{\lambda}(u) + \beta f_{\lambda}(v).$$

Projection.

Soient E un \mathbb{K} -espace vectoriel et F et G deux sous-espaces vectoriels supplémentaires dans E, c'est-à-dire $E = F \oplus G$. Tout vecteur u de E s'écrit de façon unique u = v + w avec $v \in F$ et $w \in G$. La **projection** sur F parallèlement à G est l'application $p : E \to E$ définie par p(u) = v.

- Une projection est une application linéaire.

En effet, soient $u, u' \in E$, $\lambda, \mu \in \mathbb{K}$. On décompose u et u' en utilisant que $E = F \oplus G : u = v + w$, u' = v' + w' avec $v, v' \in F$, $w, w' \in G$. Commençons par écrire

$$\lambda u + \mu u' = \lambda (v + w) + \mu (v' + w') = (\lambda v + \mu v') + (\lambda w + \mu w').$$

Comme F et G sont des un sous-espaces vectoriels de E, alors $\lambda v + \mu v' \in F$ et $\lambda w + \mu w' \in G$. Ainsi:

$$p(\lambda u + \mu u') = \lambda v + \mu v' = \lambda p(u) + \mu p(u').$$

- Une projection p vérifie l'égalité $p^2 = p$. Note : $p^2 = p$ signifie $p \circ p = p$, c'est-à-dire pour tout $u \in E$: p(p(u)) = p(u). Il s'agit juste de remarquer que si $v \in F$ alors p(v) = v (car v = v + 0, avec $v \in F$ et $0 \in G$). Maintenant, pour $u \in E$, on a u = v + w avec $v \in F$ et $w \in G$. Par définition p(u) = v. Mais alors p(p(u)) = p(v) = v. Bilan : $p \circ p(u) = v = p(u)$. Donc $p \circ p = p$.

Exemple 232

Nous avons vu que les sous-espaces vectoriels F et G de \mathbb{R}^3 définis par

$$F = \{(x, y, z) \in \mathbb{R}^3 \mid x - y - z = 0\}$$
 et $G = \{(x, y, z) \in \mathbb{R}^3 \mid y = z = 0\}$

sont supplémentaires dans $\mathbb{R}^3:\mathbb{R}^3=F\oplus G$ (exemple 225). Nous avions vu que la décomposition s'écrivait :

$$(x, y, z) = (y + z, y, z) + (x - y - z, 0, 0).$$

Si p est la projection sur F parallèlement à G, alors on a p(x,y,z)=(y+z,y,z).

Exemple 233

Nous avons vu dans l'exemple 226 que l'ensemble des fonctions paires \mathscr{P} et l'ensemble des fonctions impaires \mathscr{I} sont des sous-espaces vectoriels supplémentaires dans $\mathscr{F}(\mathbb{R},\mathbb{R})$. Notons p la projection sur \mathscr{P} parallèlement à \mathscr{I} . Si f est un élément de $\mathscr{F}(\mathbb{R},\mathbb{R})$, on a p(f) = g où

$$g: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto \frac{f(x) + f(-x)}{2}.$

7.2. Autres exemples

1. La **dérivation**. Soient $E = \mathscr{C}^1(\mathbb{R}, \mathbb{R})$ l'espace vectoriel des fonctions $f : \mathbb{R} \longrightarrow \mathbb{R}$ dérivables avec f' continue et $F = \mathscr{C}^0(\mathbb{R}, \mathbb{R})$ l'espace vectoriel des fonctions continues. Soit

$$\begin{array}{ccc} d: \mathcal{C}^1(\mathbb{R}, \mathbb{R}) & \longrightarrow & \mathcal{C}^0(\mathbb{R}, \mathbb{R}) \\ f & \longmapsto & f' \end{array}$$

Alors d est une application linéaire, car $(\lambda f + \mu g)' = \lambda f' + \mu g'$ et donc $d(\lambda f + \mu g) = \lambda d(f) + \mu d(g)$.

2. L'intégration. Soient $E = \mathcal{C}^0(\mathbb{R}, \mathbb{R})$ et $F = \mathcal{C}^1(\mathbb{R}, \mathbb{R})$. Soit

$$\begin{array}{ccc} I: \mathscr{C}^0(\mathbb{R}, \mathbb{R}) & \longrightarrow & \mathscr{C}^1(\mathbb{R}, \mathbb{R}) \\ f(x) & \longmapsto & \int_0^x f(t) \, dt \end{array}$$

L'application I est linéaire car $\int_0^x \left(\lambda f(t) + \mu g(t)\right) dt = \lambda \int_0^x f(t) dt + \mu \int_0^x g(t) dt$ pour toutes fonctions f et g et pour tous $\lambda, \mu \in \mathbb{R}$.

3. Avec les polynômes.

Soit $E = \mathbb{R}_n[X]$ l'espace vectoriel des polynômes de degré $\leq n$. Soit $F = \mathbb{R}_{n+1}[X]$ et soit

$$\begin{array}{ccc} f: & E & \longrightarrow & F \\ P(X) & \longmapsto & XP(X) \end{array}$$

Autrement dit, si $P(X) = a_n X^n + \dots + a_1 X + a_0$, alors $f(P(X)) = a_n X^{n+1} + \dots + a_1 X^2 + a_0 X$. C'est une application linéaire : $f(\lambda P(X) + \mu Q(X)) = \lambda X P(X) + \mu X Q(X) = \lambda f(P(X)) + \mu f(Q(X))$.

4. La transposition.

Considérons l'application T de $M_n(\mathbb{K})$ dans $M_n(\mathbb{K})$ donnée par la transposition :

$$\begin{array}{ccc} T: M_n(\mathbb{K}) & \longrightarrow & M_n(\mathbb{K}) \\ A & \longmapsto & A^T \end{array}$$

T est linéaire, car on sait que pour toutes matrices $A, B \in M_n(\mathbb{K})$ et tous scalaires $\lambda, \mu \in \mathbb{K}$:

$$(\lambda A + \mu B)^T = (\lambda A)^T + (\mu B)^T = \lambda A^T + \mu B^T.$$

5. La trace.

$$\operatorname{tr}: M_n(\mathbb{K}) \longrightarrow \mathbb{K}$$
 $A \longmapsto \operatorname{tr} A$

est une application linéaire car $tr(\lambda A + \mu B) = \lambda tr A + \mu tr B$.

7.3. Mini-exercices

- 1. Les applications suivantes sont-elles linéaires?
 - (a) $\mathbb{R} \longrightarrow \mathbb{R}$, $x \longmapsto 3x-2$
 - (b) $\mathbb{R}^4 \longrightarrow \mathbb{R}$, $(x, y, x', y') \longmapsto x \cdot x' + y \cdot y'$
 - (c) $\mathscr{C}^0(\mathbb{R},\mathbb{R}) \longrightarrow \mathbb{R}, \quad f \longmapsto f(1)$
- (d) $\mathscr{C}^1(\mathbb{R},\mathbb{R}) \longrightarrow \mathscr{C}^0(\mathbb{R},\mathbb{R}), \quad f \longmapsto f' + f$
- (e) $\mathscr{C}^0([0,1],\mathbb{R}) \longrightarrow \mathbb{R}, \quad f \longmapsto \int_0^1 |f(t)| dt$
- (f) $\mathscr{C}^0([0,1],\mathbb{R}) \longrightarrow \mathbb{R}$, $f \longmapsto \max_{x \in [0,1]} f(x)$
- (g) $\mathbb{R}_3[X] \longrightarrow \mathbb{R}_3[X]$, $P(X) \longmapsto P(X+1) P(0)$
- 2. Soient $f,g:M_n(\mathbb{R}) \longrightarrow M_n(\mathbb{R})$ définies par $A \longmapsto \frac{A+A^T}{2}$ et $A \longmapsto \frac{A-A^T}{2}$. Montrer que f et g sont des applications linéaires. Montrer que f(A) est une matrice symétrique, g(A) une matrice antisymétrique et que A = f(A) + g(A). En déduire que les matrices symétriques et les matrices antisymétriques sont en somme directe dans $M_n(\mathbb{R})$. Caractériser géométriquement f et g.

8. Application linéaire (fin)

8.1. Image d'une application linéaire

Commençons par des rappels. Soient E et F deux ensembles et f une application de E dans F. Soit A un sous-ensemble de E. L'ensemble des images par f des éléments de A, appelé image directe de A par f, est noté f(A). C'est un sous-ensemble de F. On a par définition :

$$f(A) = \{f(x) \mid x \in A\}.$$

Dans toute la suite, E et F désigneront des \mathbb{K} -espaces vectoriels et $f: E \to F$ sera une application linéaire.

f(E) s'appelle l'*image* de l'application linéaire f et est noté Im f.

Proposition 116. Structure de l'image d'un sous-espace vectoriel

- 1. Si E' est un sous-espace vectoriel de E, alors f(E') est un sous-espace vectoriel de F.
- 2. En particulier, $\operatorname{Im} f$ est un sous-espace vectoriel de F.

Remarque

On a par définition de l'image directe f(E):

f est surjective si et seulement si Im f = F.

Démonstration

Tout d'abord, comme $0_E \in E'$ alors $0_F = f(0_E) \in f(E')$. Ensuite on montre que pour tout couple (y_1, y_2) d'éléments de f(E') et pour tous scalaires λ, μ , l'élément $\lambda y_1 + \mu y_2$ appartient à f(E'). En effet :

$$y_1 \in f(E') \iff \exists x_1 \in E', f(x_1) = y_1$$

 $y_2 \in f(E') \iff \exists x_2 \in E', f(x_2) = y_2.$

Comme f est linéaire, on a

$$\lambda y_1 + \mu y_2 = \lambda f(x_1) + \mu f(x_2) = f(\lambda x_1 + \mu x_2).$$

Or $\lambda x_1 + \mu x_2$ est un élément de E', car E' est un sous-espace vectoriel de E, donc $\lambda y_1 + \mu y_2$ est bien un élément de f(E').

8.2. Noyau d'une application linéaire

Définition 110. Définition du noyau

Soient E et F deux \mathbb{K} -espaces vectoriels et f une application linéaire de E dans F. Le **noyau** de f, noté $\operatorname{Ker}(f)$, est l'ensemble des éléments de E dont l'image est 0_F :

$$Ker(f) = \{x \in E \mid f(x) = 0_F\}$$

Autrement dit, le noyau est l'image réciproque du vecteur nul de l'espace d'arrivée : $Ker(f) = f^{-1}\{0_F\}$.

Proposition 117

Soient E et F deux K-espaces vectoriels et f une application linéaire de E dans F. Le noyau de f est un sous-espace vectoriel de E.

Démonstration

 $\operatorname{Ker}(f)$ est non vide $\operatorname{car} f(0_E) = 0_F$ donc $0_E \in \operatorname{Ker}(f)$. Soient $x_1, x_2 \in \operatorname{Ker}(f)$ et $\lambda, \mu \in \mathbb{K}$. Montrons que $\lambda x_1 + \mu x_2$ est un élément de $\operatorname{Ker}(f)$. On a, en utilisant la linéarité de f et le fait que x_1 et x_2 sont des éléments de $\operatorname{Ker}(f)$: $f(\lambda x_1 + \mu x_2) = \lambda f(x_1) + \mu f(x_2) = \lambda 0_F + \mu 0_F = 0_F$.

Exemple 234

Reprenons l'exemple de l'application linéaire f définie par

$$f: \mathbb{R}^3 \to \mathbb{R}^2$$

$$(x, y, z) \mapsto (-2x, y + 3z)$$

- Calculons le noyau Ker(*f*).

$$(x,y,z) \in \operatorname{Ker}(f) \iff f(x,y,z) = (0,0)$$

$$\iff (-2x,y+3z) = (0,0)$$

$$\iff \begin{cases} -2x = 0 \\ y+3z = 0 \end{cases}$$

$$\iff (x,y,z) = (0,-3z,z), \quad z \in \mathbb{R}$$

Donc $Ker(f) = \{(0, -3z, z) \mid z \in \mathbb{R}\}$. Autrement dit, $Ker(f) = Vect\{(0, -3, 1)\}$: c'est une droite vectorielle.

- Calculons l'image de f. Fixons $(x', y') \in \mathbb{R}^2$.

$$(x', y') = f(x, y, z) \iff (-2x, y + 3z) = (x', y')$$

$$\iff \begin{cases}
-2x = x' \\
y + 3z = y'
\end{cases}$$

On peut prendre par exemple $x=-\frac{x'}{2},\ y'=y,\ z=0.$ Conclusion : pour n'importe quel $(x',y')\in\mathbb{R}^2$, on a $f(-\frac{x'}{2},y',0)=(x',y')$. Donc $\mathrm{Im}(f)=\mathbb{R}^2$, et f est surjective.

Exemple 235

Soit $A \in M_{n,p}(\mathbb{R})$. Soit $f : \mathbb{R}^p \longrightarrow \mathbb{R}^n$ l'application linéaire définie par f(X) = AX. Alors $\operatorname{Ker}(f) = \{X \in \mathbb{R}^p \mid AX = 0\}$: c'est donc l'ensemble des $X \in \mathbb{R}^p$ solutions du système linéaire homogène AX = 0. On verra plus tard que $\operatorname{Im}(f)$ est l'espace engendré par les colonnes de la matrice A.

Le noyau fournit une nouvelle façon d'obtenir des sous-espaces vectoriels.

Exemple 236

Un plan $\mathscr P$ passant par l'origine, d'équation (ax+by+cz=0), est un sous-espace vectoriel de $\mathbb R^3$. En effet, soit $f:\mathbb R^3\to\mathbb R$ l'application définie par f(x,y,z)=ax+by+cz. Il est facile de vérifier que f est linéaire, de sorte que $\operatorname{Ker} f=\left\{(x,y,z)\in\mathbb R^3\mid ax+by+cz=0\right\}=\mathscr P$ est un sous-espace vectoriel.

Exemple 237

Soient E un \mathbb{K} -espace vectoriel, F et G deux sous-espaces vectoriels de E, supplémentaires : $E = F \oplus G$. Soit p la projection sur F parallèlement à G. Déterminons le noyau et l'image de p.

Un vecteur u de E s'écrit d'une manière unique u = v + w avec $v \in F$ et $w \in G$ et par définition p(u) = v.

- Ker(p) = G: le noyau de p est l'ensemble des vecteurs u de E tels que v = 0, c'est donc G.
- $\operatorname{Im}(p) = F$. Il est immédiat que $\operatorname{Im}(p) \subset F$. Réciproquement, si $u \in F$ alors p(u) = u, donc $F \subset \operatorname{Im}(p)$.

Conclusion:

$$Ker(p) = G$$
 et $Im(p) = F$.

Théorème 65. Caractérisation des applications linéaires injectives

Soient E et F deux \mathbb{K} -espaces vectoriels et f une application linéaire de E dans F. Alors:

$$f$$
 injective \iff $\operatorname{Ker}(f) = \{0_E\}$

Autrement dit, f est injective si et seulement si son noyau ne contient que le vecteur nul. En particulier, pour montrer que f est injective, il suffit de vérifier que :

si
$$f(x) = 0_F$$
 alors $x = 0_E$.

Démonstration

- Supposons que f soit injective et montrons que $\text{Ker}(f) = \{0_E\}$. Soit x un élément de Ker(f). On a $f(x) = 0_F$. Or, comme f est linéaire, on a aussi $f(0_E) = 0_F$. De l'égalité $f(x) = f(0_E)$, on déduit $x = 0_E$ car f est injective. Donc $\text{Ker}(f) = \{0_E\}$.
- Réciproquement, supposons maintenant que $Ker(f) = \{0_E\}$. Soient x et y deux éléments de E tels que f(x) = f(y). On a donc $f(x) f(y) = 0_F$. Comme f est linéaire, on en déduit $f(x y) = 0_F$, c'est-à-dire x y est un élément de Ker(f). Donc $x y = 0_E$, soit x = y.

Exemple 238

Considérons, pour $n \ge 1$, l'application linéaire

$$f: \mathbb{R}_n[X] \longrightarrow \mathbb{R}_{n+1}[X]$$

 $P(X) \longmapsto X \cdot P(X).$

Étudions d'abord le noyau de f : soit $P(X) = a_n X^n + \cdots + a_1 X + a_0 \in \mathbb{R}_n[X]$ tel que $X \cdot P(X) = 0$.

Alors

$$a_n X^{n+1} + \dots + a_1 X^2 + a_0 X = 0.$$

Ainsi, $a_i = 0$ pour tout $i \in \{0, ..., n\}$ et donc P(X) = 0. Le noyau de f est donc nul : $\text{Ker}(f) = \{0\}$. L'espace Im(f) est l'ensemble des polynômes de $\mathbb{R}_{n+1}[X]$ sans terme constant : $\text{Im}(f) = \text{Vect}\{X, X^2, ..., X^{n+1}\}$.

Conclusion : f est injective, mais n'est pas surjective.

8.3. L'espace vectoriel $\mathcal{L}(E,F)$

Soient E et F deux \mathbb{K} -espaces vectoriels. Remarquons tout d'abord que, similairement à l'exemple 211, l'ensemble des applications de E dans F, noté $\mathscr{F}(E,F)$, peut être muni d'une loi de composition interne + et d'une loi de composition externe, définies de la façon suivante : f,g étant deux éléments de $\mathscr{F}(E,F)$, et λ étant un élément de \mathbb{K} , pour tout vecteur u de E,

$$(f+g)(u) = f(u) + g(u)$$
 et $(\lambda \cdot f)(u) = \lambda f(u)$.

Proposition 118

L'ensemble des applications linéaires entre deux \mathbb{K} -espaces vectoriels E et F, noté $\mathcal{L}(E,F)$, muni des deux lois définies précédemment, est un \mathbb{K} -espace vectoriel.

Démonstration

L'ensemble $\mathcal{L}(E,F)$ est inclus dans le \mathbb{K} -espace vectoriel $\mathcal{F}(E,F)$. Pour montrer que $\mathcal{L}(E,F)$ est un \mathbb{K} -espace vectoriel, il suffit donc de montrer que $\mathcal{L}(E,F)$ est un sous-espace vectoriel de $\mathcal{F}(E,F)$:

- Tout d'abord, l'application nulle appartient à $\mathcal{L}(E,F)$.
- Soient $f,g \in \mathcal{L}(E,F)$, et montrons que f+g est linéaire. Pour tous vecteurs u et v de E et pour tous scalaires α , β de \mathbb{K} ,

$$(f+g)(\alpha u + \beta v) = f(\alpha u + \beta v) + g(\alpha u + \beta v)$$
 (définition de $f+g$)

$$= \alpha f(u) + \beta f(v) + \alpha g(u) + \beta g(v)$$
 (linéarité de f et g)

$$= \alpha (f(u) + g(u)) + \beta (f(v) + g(v))$$
 (propriétés des lois de F)

$$= \alpha (f+g)(u) + \beta (f+g)(v)$$
 (définition de $f+g$)

f + g est donc linéaire et $\mathcal{L}(E, F)$ est stable pour l'addition.

- Soient $f \in \mathcal{L}(E,F)$, $\lambda \in \mathbb{K}$, et montrons que λf est linéaire.

```
(\lambda f)(\alpha u + \beta v) = \lambda f(\alpha u + \beta v)  (définition de \lambda f)

= \lambda (\alpha f(u) + \beta f(v))  (linéarité de f)

= \alpha \lambda f(u) + \beta \lambda f(v)  (propriétés des lois de F)

= \alpha (\lambda f)(u) + \beta (\lambda f)(v)  (définition de \lambda f)
```

 λf est donc linéaire et $\mathcal{L}(E,F)$ est stable pour la loi externe. $\mathcal{L}(E,F)$ est donc un sous-espace vectoriel de $\mathscr{F}(E,F)$.

En particulier, $\mathcal{L}(E)$ est un sous-espace vectoriel de $\mathcal{F}(E,E)$.

8.4. Composition et inverse d'applications linéaires

Proposition 119. Composée de deux applications linéaires

Soient E, F, G trois \mathbb{K} -espaces vectoriels, f une application linéaire de E dans F et g une application linéaire de F dans G. Alors $g \circ f$ est une application linéaire de E dans G.

Remarque

En particulier, le composé de deux endomorphismes de E est un endomorphisme de E. Autrement dit, \circ est une loi de composition interne sur $\mathcal{L}(E)$.

Démonstration

Soient u et v deux vecteurs de E, et α et β deux éléments de \mathbb{K} . Alors :

$$(g \circ f)(\alpha u + \beta v) = g (f(\alpha u + \beta v))$$
 (définition de $g \circ f$)
$$= g (\alpha f(u) + \beta f(v))$$
 (linéarité de f)
$$= \alpha g (f(u)) + \beta g (f(v))$$
 (linéarité de g)
$$= \alpha (g \circ f)(u) + \beta (g \circ f)(v)$$
 (définition de $g \circ f$)

La composition des applications linéaires se comporte bien :

$$g \circ (f_1 + f_2) = g \circ f_1 + g \circ f_2$$
 $(g_1 + g_2) \circ f = g_1 \circ f + g_2 \circ f$ $(\lambda g) \circ f = g \circ (\lambda f) = \lambda (g \circ f)$

Vocabulaire.

Soient E et F deux \mathbb{K} -espaces vectoriels.

- Une application linéaire *bijective* de E sur F est appelée *isomorphisme* d'espaces vectoriels. Les deux espaces vectoriels E et F sont alors dits *isomorphes*.
- Un endomorphisme bijectif de E (c'est-à-dire une application linéaire bijective de E dans E) est appelé *automorphisme* de E. L'ensemble des automorphismes de E est noté GL(E).

Proposition 120. Linéarité de l'application réciproque d'un isomorphisme

Soient E et F deux K-espaces vectoriels. Si f est un isomorphisme de E sur F, alors f^{-1} est un isomorphisme de F sur E.

Démonstration

Comme f est une application bijective de E sur F, alors f^{-1} est une application bijective de F sur E. Il reste donc à prouver que f^{-1} est bien linéaire. Soient u' et v' deux vecteurs de F et soient α et β deux éléments de \mathbb{K} . On pose $f^{-1}(u') = u$ et $f^{-1}(v') = v$, et on a alors f(u) = u' et f(v) = v'. Comme f est linéaire, on a

$$f^{-1}(\alpha u' + \beta v') = f^{-1}(\alpha f(u) + \beta f(v)) = f^{-1}(f(\alpha u + \beta v)) = \alpha u + \beta v$$

car $f^{-1} \circ f = \mathrm{id}_E$ (où id_E désigne l'application identité de E dans E). Ainsi

$$f^{-1}(\alpha u' + \beta v') = \alpha f^{-1}(u') + \beta f^{-1}(v'),$$

et f^{-1} est donc linéaire.

Exemple 239

Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par f(x,y) = (2x+3y,x+y). Il est facile de prouver que f est linéaire. Pour prouver que f est bijective, on pourrait calculer son noyau et son image. Mais ici nous allons calculer directement son inverse : on cherche à résoudre f(x,y) = (x',y'). Cela correspond à l'équation (2x+3y,x+y) = (x',y') qui est un système linéaire à deux équations et deux inconnues. On trouve (x,y) = (-x'+3y',x'-2y'). On pose donc $f^{-1}(x',y') = (-x'+3y',x'-2y')$. On vérifie aisément que f^{-1} est l'inverse de f, et on remarque que f^{-1} est une application linéaire.

Exemple 240

Plus généralement, soit $f: \mathbb{R}^n \to \mathbb{R}^n$ l'application linéaire définie par f(X) = AX (où A est une matrice de $M_n(\mathbb{R})$). Si la matrice A est inversible, alors f^{-1} est une application linéaire bijective et est définie par $f^{-1}(X) = A^{-1}X$.

Dans l'exemple précédent,

$$X = \begin{pmatrix} x \\ y \end{pmatrix} \qquad A = \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix} \qquad A^{-1} = \begin{pmatrix} -1 & 3 \\ 1 & -2 \end{pmatrix}.$$

8.5. Mini-exercices

- 1. Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ définie par f(x,y,z) = (-x,y+z,2z). Montrer que f est une application linéaire. Calculer Ker(f) et Im(f). f admet-elle un inverse? Même question avec f(x,y,z) = (x-y,x+y,y).
- 2. Soient E un espace vectoriel, et F,G deux sous-espaces tels que $E=F\oplus G$. Chaque $u\in E$ se décompose de manière unique u=v+w avec $v\in F, w\in G$. La *symétrie* par rapport à F parallèlement à G est l'application $s:E\to E$ définie par s(u)=v-w. Faire un dessin. Montrer que s est une application linéaire. Montrer que $s^2=\mathrm{id}_E$. Calculer $\mathrm{Ker}(s)$ et $\mathrm{Im}(s)$. s admet-elle un inverse?
- 3. Soit $f : \mathbb{R}_n[X] \to \mathbb{R}_n[X]$ définie par $P(X) \mapsto P''(X)$ (où P'' désigne la dérivée seconde). Montrer que f est une application linéaire. Calculer $\operatorname{Ker}(f)$ et $\operatorname{Im}(f)$. f admet-elle un inverse?

Auteurs

- D'après un cours de Sophie Chemla de l'université Pierre et Marie Curie, reprenant des parties d'un cours de H. Ledret et d'une équipe de l'université de Bordeaux animée par J. Queyrut,
- et un cours de Eva Bayer-Fluckiger, Philippe Chabloz, Lara Thomas de l'École Polytechnique Fédérale de Lausanne,
- mixés et révisés par Arnaud Bodin, relu par Vianney Combet.

- 1 Famille libre
- 2 Famille génératrice
- 3 Base
- 4 Dimension d'un espace vectoriel
- 5 Dimension des sous-espaces vectoriels

```
Vidéo ■ partie 1. Famille libre

Vidéo ■ partie 2. Famille génératrice

Vidéo ■ partie 3. Base

Vidéo ■ partie 4. Dimension d'un espace vectoriel

Vidéo ■ partie 5. Dimension des sous-espaces vectoriels

Exercices ◆ Espaces vectoriels de dimension finie
```

Les espaces vectoriels qui sont engendrés par un nombre fini de vecteurs sont appelés espaces vectoriels de dimension finie. Pour ces espaces, nous allons voir comment calculer une base, c'est-à-dire une famille minimale de vecteurs qui engendrent tout l'espace. Le nombre de vecteurs dans une base s'appelle la dimension et nous verrons comment calculer la dimension des espaces et des sous-espaces.

1. Famille libre

1.1. Combinaison linéaire (rappel)

Soit E un \mathbb{K} -espace vectoriel.

Définition 111

Soient $v_1, v_2, \dots, v_p, p \ge 1$ vecteurs d'un espace vectoriel E. Tout vecteur de la forme

$$u = \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_p v_p$$

(où $\lambda_1, \lambda_2, ..., \lambda_p$ sont des éléments de \mathbb{K}) est appelé **combinaison linéaire** des vecteurs $v_1, v_2, ..., v_p$. a Les scalaires $\lambda_1, \lambda_2, ..., \lambda_p$ sont appelés **coefficients** de la combinaison linéaire.

1.2. Définition

Définition 112

Une famille $\{v_1, v_2, ..., v_p\}$ de E est une famille libre ou linéairement indépendante si toute combinaison linéaire nulle

$$\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_p v_p = 0$$

est telle que tous ses coefficients sont nuls, c'est-à-dire

$$\lambda_1 = 0$$
 $\lambda_2 = 0$... $\lambda_p = 0$.

Dans le cas contraire, c'est-à-dire s'il existe une combinaison linéaire nulle à coefficients non tous nuls, on dit que la famille est *liée* ou *linéairement dépendante*. Une telle combinaison linéaire s'appelle alors une *relation de dépendance linéaire* entre les v_i .

1.3. Premiers exemples

Pour des vecteurs de \mathbb{R}^n , décider si une famille $\{v_1, \dots, v_p\}$ est libre ou liée revient à résoudre un système linéaire.

Exemple 241

Dans le \mathbb{R} -espace vectoriel \mathbb{R}^3 , considérons la famille

$$\left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 4\\5\\6 \end{pmatrix}, \begin{pmatrix} 2\\1\\0 \end{pmatrix} \right\}.$$

On souhaite déterminer si elle est libre ou liée. On cherche des scalaires $(\lambda_1, \lambda_2, \lambda_3)$ tels que

$$\lambda_1 \begin{pmatrix} 1\\2\\3 \end{pmatrix} + \lambda_2 \begin{pmatrix} 4\\5\\6 \end{pmatrix} + \lambda_3 \begin{pmatrix} 2\\1\\0 \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$$

ce qui équivaut au système :

$$\begin{cases} \lambda_1 + 4\lambda_2 + 2\lambda_3 = 0 \\ 2\lambda_1 + 5\lambda_2 + \lambda_3 = 0 \\ 3\lambda_1 + 6\lambda_2 = 0 \end{cases}$$

On calcule (voir un peu plus bas) que ce système est équivalent à :

$$\begin{cases} \lambda_1 & -2\lambda_3 = 0 \\ \lambda_2 + \lambda_3 = 0 \end{cases}$$

Ce système a une infinité de solutions et en prenant par exemple $\lambda_3=1$ on obtient $\lambda_1=2$ et $\lambda_2=-1$, ce qui fait que

$$2 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} - \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} + \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

La famille

$$\left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 4\\5\\6 \end{pmatrix}, \begin{pmatrix} 2\\1\\0 \end{pmatrix} \right\}$$

est donc une famille liée.

Voici les calculs de la réduction de Gauss sur la matrice associée au système :

$$\begin{pmatrix} 1 & 4 & 2 \\ 2 & 5 & 1 \\ 3 & 6 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 4 & 2 \\ 0 & -3 & -3 \\ 0 & -6 & -6 \end{pmatrix} \sim \begin{pmatrix} 1 & 4 & 2 \\ 0 & -3 & -3 \\ 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 4 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Exemple 242

Soient $v_1 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$, $v_2 = \begin{pmatrix} 2\\-1\\0 \end{pmatrix}$, $v_3 = \begin{pmatrix} 2\\1\\1 \end{pmatrix}$. Est-ce que la famille $\{v_1,v_2,v_3\}$ est libre ou liée? Résolvons le système linéaire correspondant à l'équation $\lambda_1v_1 + \lambda_2v_2 + \lambda_3v_3 = 0$:

$$\begin{cases} \lambda_1 & + & 2\lambda_2 & + & 2\lambda_3 & = & 0 \\ \lambda_1 & - & \lambda_2 & + & \lambda_3 & = & 0 \\ \lambda_1 & & & + & \lambda_3 & = & 0 \end{cases}$$

On résout ce système et on trouve comme seule solution $\lambda_1=0,\ \lambda_2=0,\ \lambda_3=0.$ La famille $\{v_1,v_2,v_3\}$ est donc une famille libre.

Exemple 243

Soient $v_1=\begin{pmatrix}2\\-1\\0\\3\end{pmatrix}$, $v_2=\begin{pmatrix}1\\2\\5\\-1\end{pmatrix}$ et $v_3=\begin{pmatrix}7\\-1\\5\\8\end{pmatrix}$. Alors $\{v_1,v_2,v_3\}$ forme une famille liée, car $3v_1+v_2-v_3=0.$

1.4. Autres exemples

Exemple 244

Les polynômes $P_1(X) = 1 - X$, $P_2(X) = 5 + 3X - 2X^2$ et $P_3(X) = 1 + 3X - X^2$ forment une famille liée dans l'espace vectoriel $\mathbb{R}[X]$, car

$$3P_1(X) - P_2(X) + 2P_3(X) = 0.$$

Exemple 245

Dans le \mathbb{R} -espace vectoriel $\mathscr{F}(\mathbb{R},\mathbb{R})$ des fonctions de \mathbb{R} dans \mathbb{R} , on considère la famille {cos, sin}. Montrons que c'est une famille libre. Supposons que l'on ait $\lambda \cos + \mu \sin = 0$. Cela équivaut à

$$\forall x \in \mathbb{R}$$
 $\lambda \cos(x) + \mu \sin(x) = 0$.

En particulier, pour x=0, cette égalité donne $\lambda=0$. Et pour $x=\frac{\pi}{2}$, elle donne $\mu=0$. Donc la famille {cos, sin} est libre. En revanche la famille {cos}^2, sin}, 1} est liée car on a la relation de dépendance linéaire cos $^2+\sin^2-1=0$. Les coefficients de dépendance linéaire sont $\lambda_1=1, \lambda_2=1, \lambda_3=-1$.

1.5. Famille liée

Soit E un \mathbb{K} -espace vectoriel. Si $v \neq 0$, la famille à un seul vecteur $\{v\}$ est libre (et liée si v = 0). Considérons le cas particulier d'une famille de deux vecteurs.

Proposition 121

La famille $\{v_1, v_2\}$ est liée si et seulement si v_1 est un multiple de v_2 ou v_2 est un multiple de v_1 .

Ce qui se reformule ainsi par contraposition : « La famille $\{v_1, v_2\}$ est libre si et seulement si v_1 n'est pas un multiple de v_2 et v_2 n'est pas un multiple de v_1 . »

Démonstration

- Supposons la famille $\{v_1, v_2\}$ liée, alors il existe λ_1, λ_2 non tous les deux nuls tels que $\lambda_1 v_1 + \lambda_2 v_2 = 0$. Si c'est λ_1 qui n'est pas nul, on peut diviser par λ_1 , ce qui donne $v_1 = -\frac{\lambda_2}{\lambda_1} v_2$ et v_1 est un multiple de v_2 . Si c'est λ_2 qui n'est pas nul, alors de même v_2 est un multiple de v_1 .
- Réciproquement, si v_1 est un multiple de v_2 , alors il existe un scalaire μ tel que $v_1 = \mu v_2$, soit $1v_1 + (-\mu)v_2 = 0$, ce qui est une relation de dépendance linéaire entre v_1 et v_2 puisque $1 \neq 0$: la famille $\{v_1, v_2\}$ est alors liée. Même conclusion si c'est v_2 qui est un multiple de v_1 .

Généralisons tout de suite cette proposition à une famille d'un nombre quelconque de vecteurs.

Théorème 66

Soit E un \mathbb{K} -espace vectoriel. Une famille $\mathscr{F} = \{v_1, v_2, \dots, v_p\}$ de $p \ge 2$ vecteurs de E est une famille liée si et seulement si au moins un des vecteurs de \mathscr{F} est combinaison linéaire des autres vecteurs de \mathscr{F} .

Démonstration

C'est essentiellement la même démonstration que ci-dessus.

– Supposons d'abord ${\mathscr F}$ liée. Il existe donc une relation de dépendance linéaire

$$\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_p v_p = 0,$$

avec $\lambda_k \neq 0$ pour au moins un indice k. Passons tous les autres termes à droite du signe égal. Il vient

$$\lambda_k v_k = -\lambda_1 v_1 - \lambda_2 v_2 - \dots - \lambda_p v_p,$$

où v_k ne figure pas au second membre. Comme $\lambda_k \neq 0$, on peut diviser cette égalité par λ_k et l'on obtient

$$v_k = -\frac{\lambda_1}{\lambda_k}v_1 - \frac{\lambda_2}{\lambda_k}v_2 - \dots - \frac{\lambda_p}{\lambda_k}v_p,$$

c'est-à-dire que v_k est combinaison linéaire des autres vecteurs de \mathscr{F} , ce qui peut encore s'écrire $v_k \in \mathrm{Vect}\big(\mathscr{F} \setminus \{v_k\}\big)$ (avec la notation ensembliste $A \setminus B$ pour l'ensemble des éléments de A qui n'appartiennent pas à B).

- Réciproquement, supposons que pour un certain k, on ait $v_k \in \text{Vect}(\mathscr{F} \setminus \{v_k\})$. Ceci signifie que l'on peut écrire

$$v_k = \mu_1 v_1 + \mu_2 v_2 + \dots + \mu_p v_p$$

où v_k ne figure pas au second membre. Passant v_k au second membre, il vient

$$0 = \mu_1 v_1 + \mu_2 v_2 + \dots - v_k + \dots + \mu_p v_p,$$

ce qui est une relation de dépendance linéaire pour \mathcal{F} (puisque $-1 \neq 0$) et ainsi la famille \mathcal{F} est liée.

1.6. Interprétation géométrique de la dépendance linéaire

– Dans \mathbb{R}^2 ou \mathbb{R}^3 , deux vecteurs sont linéairement dépendants si et seulement s'ils sont colinéaires. Ils sont donc sur une même droite vectorielle.

- Dans \mathbb{R}^3 , trois vecteurs sont linéairement dépendants si et seulement s'ils sont coplanaires. Ils sont donc dans un même plan vectoriel.

Proposition 122

Soit $\mathscr{F} = \{v_1, v_2, \dots, v_p\}$ une famille de vecteurs de \mathbb{R}^n . Si \mathscr{F} contient plus de n éléments (c'est-à-dire p > n), alors \mathscr{F} est une famille liée.

Démonstration

Supposons que

$$v_{1} = \begin{pmatrix} v_{11} \\ v_{21} \\ \vdots \\ v_{n1} \end{pmatrix} \qquad v_{2} = \begin{pmatrix} v_{12} \\ v_{22} \\ \vdots \\ v_{n2} \end{pmatrix} \qquad \dots \qquad v_{p} = \begin{pmatrix} v_{1p} \\ v_{2p} \\ \vdots \\ v_{np} \end{pmatrix}.$$

L'équation

$$x_1v_1 + x_2v_2 + \dots + x_pv_p = 0$$

donne alors le système suivant

$$\left\{ \begin{array}{lll} v_{11}x_1+v_{12}x_2+\cdots+v_{1p}x_p & = & 0 \\ v_{21}x_1+v_{22}x_2+\cdots+v_{2p}x_p & = & 0 \\ & \vdots & & \\ v_{n1}x_1+v_{n2}x_2+\cdots+v_{np}x_p & = & 0 \end{array} \right.$$

C'est un système homogène de n équations à p inconnues. Lorsque p > n, ce système a des solutions non triviales (voir le chapitre « Systèmes linéaires », dernier théorème) ce qui montre que la famille $\mathscr F$ est une famille liée.

Mini-exercices

- 1. Pour quelles valeurs de $t \in \mathbb{R}$, $\left\{ {t \choose t}, {t^2 \choose -t} \right\}$ est une famille libre de \mathbb{R}^2 ? Même question avec la famille $\left\{ {t \choose t^2} {t^2 \choose 1} {t \choose 1} {t \choose 1} \right\}$ de \mathbb{R}^3 .
- 2. Montrer que toute famille contenant une famille liée est liée.
- 3. Montrer que toute famille inclue dans une famille libre est libre.

4. Montrer que si $f: E \to F$ est une application linéaire et que $\{v_1, \dots, v_p\}$ est une famille liée de E, alors $\{f(v_1), \dots, f(v_p)\}$ est une famille liée de F.

5. Montrer que si $f: E \to F$ est une application linéaire *injective* et que $\{v_1, ..., v_p\}$ est une famille libre de E, alors $\{f(v_1), ..., f(v_p)\}$ est une famille libre de F.

2. Famille génératrice

Soit E un espace vectoriel sur un corps \mathbb{K} .

2.1. Définition

Définition 113

Soient $v_1,...,v_p$ des vecteurs de E. La famille $\{v_1,...,v_p\}$ est une **famille génératrice** de l'espace vectoriel E si tout vecteur de E est une combinaison linéaire des vecteurs $v_1,...,v_p$. Ce qui peut s'écrire aussi :

$$\forall v \in E \qquad \exists \lambda_1, \dots, \lambda_p \in \mathbb{K} \qquad v = \lambda_1 v_1 + \dots + \lambda_p v_p$$

On dit aussi que la famille $\{v_1, ..., v_p\}$ engendre l'espace vectoriel E.

Cette notion est bien sûr liée à la notion de sous-espace vectoriel engendré : les vecteurs $\{v_1, \dots, v_p\}$ forment une famille génératrice de E si et seulement si $E = \text{Vect}(v_1, \dots, v_p)$.

2.2. Exemples

Exemple 246

Considérons par exemple les vecteurs $v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $v_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ et $v_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ de $E = \mathbb{R}^3$. La famille $\{v_1, v_2, v_3\}$ est génératrice car tout vecteur $v = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ de \mathbb{R}^3 peut s'écrire

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

Les coefficients sont ici $\lambda_1 = x$, $\lambda_2 = y$, $\lambda_3 = z$.

Exemple 247

Soient maintenant les vecteurs $v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $v_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ de $E = \mathbb{R}^3$. Les vecteurs $\{v_1, v_2\}$ ne forment pas une famille génératrice de \mathbb{R}^3 . Par exemple, le vecteur $v = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ n'est pas dans $\text{Vect}(v_1, v_2)$. En effet, si c'était le cas, alors il existerait $\lambda_1, \lambda_2 \in \mathbb{R}$ tels que $v = \lambda_1 v_1 + \lambda_2 v_2$. Ce qui s'écrirait aussi $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \lambda_1 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, d'où le système linéaire :

$$\begin{cases} \lambda_1 + \lambda_2 &= 0 \\ \lambda_1 + 2\lambda_2 &= 1 \\ \lambda_1 + 3\lambda_2 &= 0 \end{cases}$$

Ce système n'a pas de solution. (La première et la dernière ligne impliquent $\lambda_1 = 0, \lambda_2 = 0$, ce qui est incompatible avec la deuxième.)

Exemple 248

Soit $E = \mathbb{R}^2$.

- Soient $v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ et $v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. La famille $\{v_1, v_2\}$ est génératrice de \mathbb{R}^2 car tout vecteur de \mathbb{R}^2 se décompose comme $\begin{pmatrix} x \\ y \end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

– Soient maintenant $v_1' = \binom{2}{1}$ et $v_2' = \binom{1}{1}$. Alors $\{v_1', v_2'\}$ est aussi une famille génératrice. En effet, soit $v = \binom{x}{y}$ un élément quelconque de \mathbb{R}^2 . Montrer que v est combinaison linéaire de v_1' et v_2' revient à démontrer l'existence de deux réels λ et μ tels que $v = \lambda v_1' + \mu v_2'$. Il s'agit donc d'étudier l'existence de solutions au système :

$$\begin{cases} 2\lambda + \mu &= x \\ \lambda + \mu &= y \end{cases}$$

Il a pour solution $\lambda = x - y$ et $\mu = -x + 2y$, et ceci, quels que soient les réels x et y. Ceci prouve qu'il peut exister plusieurs familles finies différentes, non incluses les unes dans les autres, engendrant le même espace vectoriel.

Exemple 249

Soit $\mathbb{R}_n[X]$ l'espace vectoriel des polynômes de degré $\leq n$. Alors les polynômes $\{1, X, ..., X^n\}$ forment une famille génératrice. Par contre, l'espace vectoriel $\mathbb{R}[X]$ de tous les polynômes ne possède pas de famille finie génératrice.

2.3. Liens entre familles génératrices

La proposition suivante est souvent utile :

Proposition 123

Soit $\mathscr{F} = \{v_1, v_2, \dots, v_p\}$ une famille génératrice de E. Alors $\mathscr{F}' = \{v_1', v_2', \dots, v_q'\}$ est aussi une famille génératrice de E si et seulement si tout vecteur de \mathscr{F} est une combinaison linéaire de vecteurs de \mathscr{F}' .

Démonstration

C'est une conséquence immédiate de la définition de $Vect \mathscr{F}$ et de $Vect \mathscr{F}'$.

Nous chercherons bientôt à avoir un nombre minimal de générateurs. Voici une proposition sur la réduction d'une famille génératrice.

Proposition 124

Si la famille de vecteurs $\{v_1, \ldots, v_p\}$ engendre E et si l'un des vecteurs, par exemple v_p , est combinaison linéaire des autres, alors la famille $\{v_1, \ldots, v_p\} \setminus \{v_p\} = \{v_1, \ldots, v_{p-1}\}$ est encore une famille génératrice de E.

Démonstration

En effet, comme les vecteurs $v_1, ..., v_p$ engendrent E, alors pour tout élément v de E, il existe des scalaires $\lambda_1, ..., \lambda_p$ tels que

$$v = \lambda_1 v_1 + \dots + \lambda_p v_p.$$

Or l'hypothèse v_p est combinaison linéaire des vecteurs $v_1, ..., v_{p-1}$ se traduit par l'existence de scalaires $\alpha_1, ..., \alpha_{p-1}$ tels que

$$v_p = \alpha_1 v_1 + \dots + \alpha_{p-1} v_{p-1}.$$

Alors, le vecteur v s'écrit :

$$v = \lambda_1 v_1 + \dots + \lambda_{p-1} v_{p-1} + \lambda_p \left(\alpha_1 v_1 + \dots + \alpha_{p-1} v_{p-1} \right).$$

Donc

$$v = (\lambda_1 + \lambda_p \alpha_1) v_1 + \dots + (\lambda_{p-1} + \lambda_p \alpha_{p-1}) v_{p-1},$$

ce qui prouve que v est combinaison linéaire des vecteurs v_1, \ldots, v_{p-1} . Ceci achève la démonstration. Il est clair que si l'on remplace v_p par n'importe lequel des vecteurs v_i , la démonstration est la même.

Mini-exercices

- 1. À quelle condition sur $t \in \mathbb{R}$, la famille $\{\binom{0}{t-1}, \binom{t}{t-t}, \binom{t^2-t}{t-1}\}$ est une famille génératrice de \mathbb{R}^2 ?
- 2. Même question avec la famille $\left\{ \begin{pmatrix} 1 \\ 0 \\ t \end{pmatrix} \begin{pmatrix} 1 \\ t^2 \end{pmatrix} \begin{pmatrix} 1 \\ t^2 \end{pmatrix} \right\}$ de \mathbb{R}^3 .
- 3. Montrer qu'une famille de vecteurs contenant une famille génératrice est encore une famille génératrice de E.
- 4. Montrer que si $f: E \to F$ est une application linéaire *surjective* et que $\{v_1, ..., v_p\}$ est une famille génératrice de E, alors $\{f(v_1), ..., f(v_p)\}$ est une famille génératrice de F.

3. Base

La notion de base généralise la notion de repère. Dans \mathbb{R}^2 , un repère est donné par un couple de vecteurs non colinéaires. Dans \mathbb{R}^3 , un repère est donné par un triplet de vecteurs non coplanaires. Dans un repère, un vecteur se décompose suivant les vecteurs d'une base. Il en sera de même pour une base d'un espace vectoriel.

3.1. Définition

Définition 114. Base d'un espace vectoriel

Soit E un \mathbb{K} -espace vectoriel. Une famille $\mathscr{B} = (v_1, v_2, \dots, v_n)$ de vecteurs de E est une base de E si \mathscr{B} est une famille libre et génératrice.

Théorème 67

Soit $\mathscr{B} = (v_1, v_2, ..., v_n)$ une base de l'espace vectoriel E. Tout vecteur $v \in E$ s'exprime de façon unique comme combinaison linéaire d'éléments de \mathscr{B} . Autrement dit, il *existe* des scalaires $\lambda_1, ..., \lambda_n \in \mathbb{K}$ *uniques* tels que :

$$v = \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n.$$

Remarque

- 1. $(\lambda_1, ..., \lambda_n)$ s'appellent les *coordonnées* du vecteur v dans la base \mathscr{B} .
- 2. Il faut observer que pour une base $\mathscr{B} = (v_1, v_2, \dots, v_n)$ on introduit un *ordre* sur les vecteurs. Bien sûr, si on permutait les vecteurs on obtiendrait toujours une base, mais il faudrait aussi permuter les coordonnées.
- 3. Notez que l'application

$$\phi : \mathbb{K}^n \to E$$

$$(\lambda_1, \lambda_2, \dots, \lambda_n) \mapsto \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n$$

est un isomorphisme de l'espace vectoriel \mathbb{K}^n vers l'espace vectoriel E.

Démonstration Preuve du théorème 67

- Par définition, \mathscr{B} est une famille génératrice de E, donc pour tout $v \in E$ il existe $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$ tels que

$$v = \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n.$$

Cela prouve la partie existence.

- Il reste à montrer l'unicité des $\lambda_1, \lambda_2, \dots, \lambda_n$. Soient $\mu_1, \mu_2, \dots, \mu_n \in \mathbb{K}$ d'autres scalaires tels que $v = \mu_1 v_1 + \mu_2 v_2 + \dots + \mu_n v_n$. Alors, par différence on a : $(\lambda_1 - \mu_1) v_1 + (\lambda_2 - \mu_2) v_2 + \dots + (\lambda_n - \mu_n) v_n = 0$. Comme $\mathscr{B} = \{v_1, \dots, v_n\}$ est une famille libre, ceci implique $\lambda_1 - \mu_1 = 0$, $\lambda_2 - \mu_2 = 0$, ..., $\lambda_n - \mu_n = 0$ et donc $\lambda_1 = \mu_1, \quad \lambda_2 = \mu_2, \quad \dots, \lambda_n = \mu_n$.

3.2. Exemples

Exemple 250

- 1. Soient les vecteurs $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ et $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Alors (e_1, e_2) est une base de \mathbb{R}^2 , appelée **base** canonique de \mathbb{R}^2 .
- 2. Soient les vecteurs $v_1 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ et $v_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. Alors (v_1, v_2) forment aussi une base de \mathbb{R}^2 .

3. De même dans \mathbb{R}^3 , si $e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, alors (e_1, e_2, e_3) forment la **base canonique** de \mathbb{R}^3 .

Exemple 251

Soient $v_1 = \begin{pmatrix} 1\\2\\1 \end{pmatrix}$, $v_2 = \begin{pmatrix} 2\\9\\0 \end{pmatrix}$ et $v_3 = \begin{pmatrix} 3\\4\\4 \end{pmatrix}$. Montrons que la famille $\mathscr{B} = (v_1, v_2, v_3)$ est une base de \mathbb{R}^3 .

Dans les deux premiers points, nous ramenons le problème à l'étude d'un système linéaire.

1. Montrons d'abord que \mathscr{B} est une famille génératrice de \mathbb{R}^3 . Soit $v = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ un vecteur quelconque de \mathbb{R}^3 . On cherche $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ tels que

$$v = \lambda_1 v_1 + \lambda_2 v_2 + \lambda_3 v_3.$$

Ceci se reformule comme suit:

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \lambda_1 \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 2 \\ 9 \\ 0 \end{pmatrix} + \lambda_3 \begin{pmatrix} 3 \\ 3 \\ 4 \end{pmatrix} = \begin{pmatrix} \lambda_1 + 2\lambda_2 + 3\lambda_3 \\ 2\lambda_1 + 9\lambda_2 + 3\lambda_3 \\ \lambda_1 + 4\lambda_3 \end{pmatrix}.$$

Ceci conduit au système suivant :

$$\begin{cases} \lambda_1 + 2\lambda_2 + 3\lambda_3 = a_1 \\ 2\lambda_1 + 9\lambda_2 + 3\lambda_3 = a_2 \\ \lambda_1 + 4\lambda_3 = a_3. \end{cases}$$
 (S)

Il nous restera à montrer que ce système a une solution $\lambda_1, \lambda_2, \lambda_3$.

2. Pour montrer que ${\mathcal B}$ est une famille libre, il faut montrer que l'unique solution de

$$\lambda_1 v_1 + \lambda_2 v_2 + \lambda_3 v_3 = 0$$

est

$$\lambda_1 = \lambda_2 = \lambda_3 = 0.$$

Ceci équivaut à montrer que le système

$$\begin{cases} \lambda_1 + 2\lambda_2 + 3\lambda_3 = 0\\ 2\lambda_1 + 9\lambda_2 + 3\lambda_3 = 0\\ \lambda_1 + 4\lambda_3 = 0 \end{cases}$$
 (S')

a une unique solution

$$\lambda_1 = \lambda_2 = \lambda_3 = 0.$$

 Nous pouvons maintenant répondre à la question sans explicitement résoudre les systèmes.

Remarquons que les deux systèmes ont la même matrice de coefficients. On peut donc montrer simultanément que \mathscr{B} est une famille génératrice et une famille libre de \mathbb{R}^3 en montrant que la matrice des coefficients est inversible. En effet, si la matrice des coefficients est inversible, alors (S) admet une solution $(\lambda_1, \lambda_2, \lambda_3)$ quel que soit (a_1, a_2, a_3) et d'autre part (S') admet la seule solution (0,0,0).

Cette matrice est

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 9 & 3 \\ 1 & 0 & 4 \end{pmatrix}.$$

Pour montrer qu'elle est inversible, on peut calculer son inverse ou seulement son déterminant qui vaut $\det A = -1$ (le déterminant étant non nul la matrice est inversible).

Conclusion : \mathscr{B} est une famille libre et génératrice ; c'est une base de \mathbb{R}^3 .

Exemple 252

Les vecteurs de \mathbb{K}^n :

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \qquad e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} \qquad \dots \qquad e_n = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$

forment une base de \mathbb{K}^n , appelée la **base canonique** de \mathbb{K}^n .

Remarque

L'exemple 251 se généralise de la façon suivante. Pour montrer que n vecteurs de \mathbb{R}^n forment une base de \mathbb{R}^n , il suffit de montrer la chose suivante : la matrice A constituée des composantes de ces vecteurs (chaque vecteur formant une colonne de A) est inversible.

Application: montrer que les vecteurs

$$v_1 = \begin{pmatrix} 1\\0\\0\\\vdots\\0 \end{pmatrix} \qquad v_2 = \begin{pmatrix} 1\\2\\0\\\vdots\\0 \end{pmatrix} \qquad \dots \qquad v_n = \begin{pmatrix} 1\\2\\3\\\vdots\\n \end{pmatrix}$$

forment aussi une base de \mathbb{R}^n .

Voici quelques autres exemples :

Exemple 253

- 1. La base canonique de $\mathbb{R}_n[X]$ est $\mathscr{B} = (1, X, X^2, \dots, X^n)$. Attention, il y a n+1 vecteurs!
- 2. Voici une autre base de $\mathbb{R}_n[X]$: $(1, 1+X, 1+X+X^2, ..., 1+X+X^2+...+X^n)$.
- 3. L'espace vectoriel $M_2(\mathbb{R})$ des matrices 2×2 admet une base formée des vecteurs :

$$M_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 $M_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ $M_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ $M_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.

En effet, n'importe quelle matrice $M=egin{pmatrix} a & b \\ c & d \end{pmatrix}$ de $M_2(\mathbb{R})$ se décompose de manière unique en

$$M = aM_1 + bM_2 + cM_3 + dM_4$$
.

4. C'est un bon exercice de prouver que les quatre matrices suivantes forment aussi une base de $M_2(\mathbb{R})$:

$$M_1'=egin{pmatrix}1&0\1&0\end{pmatrix} \qquad M_2'=egin{pmatrix}1&0\0&1\end{pmatrix} \qquad M_3'=egin{pmatrix}0&1\1&0\end{pmatrix} \qquad M_4'=egin{pmatrix}1&3\4&2\end{pmatrix}.$$

3.3. Existence d'une base

Voyons maintenant un théorème d'existence d'une base finie. Dans la suite, les espaces vectoriels sont supposés non réduits à {0}.

Théorème 68. Théorème d'existence d'une base

Tout espace vectoriel admettant une famille finie génératrice admet une base.

3.4. Théorème de la base incomplète

Une version importante et plus générale de ce qui précède est le théorème suivant :

Théorème 69. Théorème de la base incomplète

Soit E un \mathbb{K} -espace vectoriel admettant une famille génératrice finie.

- 1. Toute famille libre \mathcal{L} peut être complétée en une base. C'est-à-dire qu'il existe une famille \mathcal{F} telle que $\mathcal{L} \cup \mathcal{F}$ soit une famille libre et génératrice de E.
- 2. De toute famille génératrice \mathcal{G} on peut extraire une base de E. C'est-à-dire qu'il existe une famille $\mathcal{B} \subset \mathcal{G}$ telle que \mathcal{B} soit une famille libre et génératrice de E.

3.5. Preuves

Les deux théorèmes précédents sont la conséquence d'un résultat encore plus général :

Théorème 70

Soit \mathcal{G} une famille génératrice finie de E et \mathcal{L} une famille libre de E. Alors il existe une famille \mathcal{F} de \mathcal{G} telle que $\mathcal{L} \cup \mathcal{F}$ soit une base de E.

Le théorème 69 de la base incomplète se déduit du théorème 70 ainsi :

- 1. On sait qu'il existe une famille génératrice de E : notons-la $\mathcal G$. On applique le théorème 70 avec ce $\mathcal L$ et ce $\mathcal G$.
- 2. On applique le théorème 70 avec $\mathcal{L}=\varnothing$ et la famille \mathscr{G} de l'énoncé.

En particulier, le théorème 68 d'existence d'une base se démontre comme le point (2) ci-dessus avec $\mathcal{L} = \emptyset$ et \mathcal{G} une famille génératrice de E.

3.6. Preuves (suite)

Nous avons : Théorème $70 \implies$ Théorème $69 \implies$ Théorème 68.

Il nous reste donc à prouver le théorème 70. La démonstration que nous en donnons est un algorithme.

Démonstration

- Étape 0. Si \mathscr{L} est une famille génératrice de E, on pose $\mathscr{F} = \varnothing$ et c'est fini puisque \mathscr{L} est une famille génératrice et libre, donc une base. Sinon on passe à l'étape suivante.
- Étape 1. Comme \mathcal{L} n'est pas une famille génératrice, alors il existe au moins un élément g_1 de \mathcal{G} qui n'est pas combinaison linéaire des éléments de \mathcal{L} . (En effet, par l'absurde, si tous les éléments de \mathcal{G} sont dans $\text{Vect }\mathcal{L}$, alors \mathcal{L} serait aussi une famille génératrice.) On pose $\mathcal{L}_1 = \mathcal{L} \cup \{g_1\}$. Alors la famille \mathcal{L}_1 vérifie les propriétés suivantes :
 - (i) $\mathcal{L} \subseteq \mathcal{L}_1 \subset E$: la famille \mathcal{L}_1 est strictement plus grande que \mathcal{L} .
 - (ii) \mathcal{L}_1 est une famille libre. (En effet, si \mathcal{L}_1 n'était pas une famille libre, alors une combinaison linéaire nulle impliquerait que $g_1 \in \text{Vect } \mathcal{L}$.)

On recommence le même raisonnement à partir de \mathcal{L}_1 : si \mathcal{L}_1 est une famille génératrice de E, alors on pose $\mathscr{F} = \{g_1\}$ et on s'arrête. Sinon on passe à l'étape suivante.

- Étape 2. Il existe au moins un élément g_2 de \mathscr{G} qui n'est pas combinaison linéaire des éléments de \mathscr{L}_1 . Alors la famille $\mathscr{L}_2 = \mathscr{L}_1 \cup \{g_2\} = \mathscr{L} \cup \{g_1, g_2\}$ est strictement plus grande que \mathscr{L}_1 et est encore une famille libre.
 - Si \mathcal{L}_2 est une famille génératrice, on pose $\mathcal{F} = \{g_1, g_2\}$ et c'est fini. Sinon on passe à l'étape d'après.

- ...

L'algorithme consiste donc à construire une suite, strictement croissante pour l'inclusion, de familles libres, où, si \mathcal{L}_{k-1} n'engendre pas E, alors \mathcal{L}_k est construite partir de \mathcal{L}_{k-1} en lui ajoutant un vecteur g_k de \mathcal{G} , de sorte que $\mathcal{L}_k = \mathcal{L}_{k-1} \cup \{g_k\}$ reste une famille libre.

- L'algorithme se termine. Comme la famille \(\mathscr{G} \) est finie, le processus s'arrête en moins d'étapes qu'il y a d'éléments dans \(\mathscr{G} \). Notez que, comme \(\mathscr{G} \) est une famille génératrice, dans le pire des cas on peut être amené à prendre \(\mathscr{F} = \mathscr{G} \).
- L'algorithme est correct. Lorsque l'algorithme s'arrête, disons à l'étape s: on a $\mathcal{L}_s = \mathcal{L} \cup \mathcal{F}$ où $\mathcal{F} = \{g_1, \dots, g_s\}$. Par construction, \mathcal{L}_s est une famille finie, libre et aussi génératrice (car c'est la condition d'arrêt). Donc $\mathcal{L} \cup \mathcal{F}$ est une base de E.

Exemple 254

Soit $\mathbb{R}[X]$ le \mathbb{R} -espace vectoriel des polynômes réels et E le sous-espace de $\mathbb{R}[X]$ engendré par la famille $\mathcal{G} = \{P_1, P_2, P_3, P_4, P_5\}$ définie par :

$$P_1(X) = 1$$
 $P_2(X) = X$ $P_3(X) = X + 1$ $P_4(X) = 1 + X^3$ $P_5(X) = X - X^3$

Partons de $\mathcal{L} = \emptyset$ et cherchons $\mathscr{F} \subset \mathscr{G}$ telle que \mathscr{F} soit une base de E.

- Étape 0. Comme \mathcal{L} n'est pas génératrice (vu que $\mathcal{L} = \emptyset$), on passe à l'étape suivante.
- Étape 1. On pose \mathcal{L}_1 = \mathcal{L} ∪ { P_1 } = { P_1 }. Comme P_1 est non nul, \mathcal{L}_1 est une famille libre.
- Étape 2. Considérons P_2 . Comme les éléments P_1 et P_2 sont linéairement indépendants, $\mathcal{L}_2 = \{P_1, P_2\}$ est une famille libre.
- Étape 3. Considérons P_3 : ce vecteur est combinaison linéaire des vecteurs P_1 et P_2 car $P_3(X) = X + 1 = P_1(X) + P_2(X)$ donc $\{P_1, P_2, P_3\}$ est une famille liée. Considérons alors P_4 . Un calcul rapide prouve que les vecteurs P_1 , P_2 et P_4 sont linéairement indépendants. Alors $\mathcal{L}_3 = \{P_1, P_2, P_4\}$ est une famille libre.

Il ne reste que le vecteur P_5 à considérer. Il s'agit, pour pouvoir conclure, d'étudier

l'indépendance linéaire des vecteurs P_1, P_2, P_4, P_5 . Or un calcul rapide montre l'égalité

$$P_1 + P_2 - P_4 - P_5 = 0$$
,

ce qui prouve que la famille $\{P_1, P_2, P_4, P_5\}$ est liée. Donc avec les notations de l'algorithme, s = 3 et $\mathcal{L}_3 = \{P_1, P_2, P_4\}$ est une base de E.

Mini-exercices

- 1. Trouver toutes les façons d'obtenir une base de \mathbb{R}^2 avec les vecteurs suivants : $v_1 = \begin{pmatrix} -1 \\ -3 \end{pmatrix}$, $v_2 = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$, $v_3 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $v_4 = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$, $v_5 = \begin{pmatrix} 2 \\ 6 \end{pmatrix}$.
- 2. Montrer que la famille $\{v_1, v_2, v_3, v_4\}$ des vecteurs $v_1 = \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}$, $v_2 = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$, $v_3 = \begin{pmatrix} -1 \\ 2 \\ 4 \end{pmatrix}$, $v_4 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$ est une famille génératrice du sous-espace vectoriel d'équation 2x y + z = 0 de \mathbb{R}^3 . En extraire une base.
- 3. Déterminer une base du sous-espace vectoriel E_1 de \mathbb{R}^3 d'équation x+3y-2z=0. Compléter cette base en une base de \mathbb{R}^3 . Idem avec E_2 vérifiant les deux équations x+3y-2z=0 et y=z.
- 4. Donner une base de l'espace vectoriel des matrices 3×3 ayant une diagonale nulle. Idem avec l'espace vectoriel des polynômes $P \in \mathbb{R}_n[X]$ vérifiant P(0) = 0, P'(0) = 0.

4. Dimension d'un espace vectoriel

4.1. Définition

Définition 115

Un \mathbb{K} -espace vectoriel E admettant une base ayant un nombre fini d'éléments est dit de dimension finie.

Par le théorème 68 d'existence d'une base, c'est équivalent à l'existence d'une famille finie génératrice

On va pouvoir parler de *la* dimension d'un espace vectoriel grâce au théorème suivant :

Théorème 71. Théorème de la dimension

Toutes les bases d'un espace vectoriel E de dimension finie ont le même nombre d'éléments.

Nous détaillerons la preuve un peu plus loin.

Définition 116

La *dimension* d'un espace vectoriel de dimension finie E, notée dimE, est par définition le nombre d'éléments d'une base de E.

Méthodologie. Pour déterminer la dimension d'un espace vectoriel, il suffit de trouver une base de E (une famille à la fois libre et génératrice) : le cardinal (nombre d'éléments) de cette famille donne la dimension de E. Le théorème 71 de la dimension prouve que même si on choisissait une base différente alors ces deux bases auraient le même nombre d'éléments.

Convention. On convient d'attribuer à l'espace vectoriel {0} la dimension 0.

4.2. Exemples

Exemple 255

- 1. La base canonique de \mathbb{R}^2 est $(\binom{1}{0},\binom{0}{1})$. La dimension de \mathbb{R}^2 est donc 2.
- 2. Les vecteurs $(\binom{2}{1},\binom{1}{1})$ forment aussi une base de \mathbb{R}^2 , et illustrent qu'une autre base contient le même nombre d'éléments.
- 3. Plus généralement, \mathbb{K}^n est de dimension n, car par exemple sa base canonique $(e_1, e_2, ..., e_n)$ contient n éléments.
- 4. $\dim \mathbb{R}_n[X] = n+1$ car une base de $\mathbb{R}_n[X]$ est $(1,X,X^2,\ldots,X^n)$, qui contient n+1 éléments.

Exemple 256

Les espaces vectoriels suivants ne sont pas de dimension finie :

- $\mathbb{R}[X]$: l'espace vectoriel de tous les polynômes,
- $\mathcal{F}(\mathbb{R},\mathbb{R})$: l'espace vectoriel des fonctions de \mathbb{R} dans \mathbb{R} ,
- \mathscr{S} = \mathscr{F} (N,ℝ) : l'espace vectoriel des suites réelles.

Exemple 257

Nous avons vu que l'ensemble des solutions d'un système d'équations linéaires *homogène* est un espace vectoriel. On considère par exemple le système

$$\begin{cases} 2x_1 + 2x_2 - x_3 + x_5 = 0 \\ -x_1 - x_2 + 2x_3 - 3x_4 + x_5 = 0 \\ x_1 + x_2 - 2x_3 - x_5 = 0 \\ x_3 + x_4 + x_5 = 0. \end{cases}$$

On vérifie que la solution générale de ce système est

$$x_1 = -s - t$$
 $x_2 = s$ $x_3 = -t$ $x_4 = 0$ $x_5 = t$.

Donc les vecteurs solutions s'écrivent sous la forme

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} -s - t \\ s \\ -t \\ 0 \\ t \end{pmatrix} = \begin{pmatrix} -s \\ s \\ 0 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} -t \\ 0 \\ -t \\ 0 \\ t \end{pmatrix} = s \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} -1 \\ 0 \\ -1 \\ 0 \\ 1 \end{pmatrix}.$$

Ceci montre que les vecteurs

$$v_1 = \begin{pmatrix} -1\\1\\0\\0\\0 \end{pmatrix} \quad \text{et} \quad v_2 = \begin{pmatrix} -1\\0\\-1\\0\\1 \end{pmatrix}$$

engendrent l'espace des solutions du système. D'autre part, on vérifie que v_1 et v_2 sont linéairement indépendants. Donc (v_1, v_2) est une base de l'espace des solutions du système. Ceci montre que cet espace vectoriel est de dimension 2.

4.3. Compléments

Lorsqu'un espace vectoriel est de dimension finie, le fait de connaître sa dimension est une information très riche; les propriétés suivantes montrent comment exploiter cette information. Le schéma de preuve sera : Lemme $10 \implies$ Proposition $125 \implies$ Théorème 71.

Lemme 10

Soit E un espace vectoriel. Soit \mathcal{L} une famille libre et soit \mathcal{G} une famille génératrice finie de E. Alors Card $\mathcal{L} \leq \text{Card} \mathcal{G}$.

Ce lemme implique le résultat important :

Proposition 125

Soit E un \mathbb{K} -espace vectoriel admettant une base ayant n éléments. Alors :

- 1. Toute famille libre de E a au plus n éléments.
- 2. Toute famille génératrice de E a au moins n éléments.

En effet, soit \mathcal{B} une base de E telle que $\operatorname{Card} \mathcal{B} = n$.

- 1. On applique le lemme 10 à la famille $\mathcal B$ considérée génératrice; alors une famille libre $\mathcal L$ vérifie $\operatorname{Card} \mathcal L \leq \operatorname{Card} \mathcal B = n$.
- 2. On applique le lemme 10 à la famille \mathscr{B} considérée maintenant comme une famille libre, alors une famille génératrice \mathscr{G} vérifie $n = \operatorname{Card} \mathscr{B} \leq \operatorname{Card} \mathscr{G}$.

Cette proposition impliquera bien le théorème 71 de la dimension :

Corollaire 23

Si E est un espace vectoriel admettant une base ayant n éléments, alors toute base de E possède n éléments.

La preuve du corollaire (et donc du théorème 71 de la dimension) est la suivante : par la proposition 125, si \mathcal{B} est une base quelconque de E, alors \mathcal{B} est à la fois une famille libre et génératrice, donc possède à la fois au plus n éléments et au moins n éléments, donc exactement n éléments.

Il reste à énoncer un résultat important et très utile :

Théorème 72

Soient E un \mathbb{K} -espace vectoriel de dimension n, et $\mathscr{F} = (v_1, \dots, v_n)$ une famille de n vecteurs de E. Il y a équivalence entre :

- (i) \mathcal{F} est une base de E,
- (ii) \mathcal{F} est une famille libre de E,
- (iii) \mathcal{F} est une famille génératrice de E.

La preuve sera une conséquence du théorème 71 de la dimension et du théorème 69 de la base incomplète.

Autrement dit, lorsque le nombre de vecteurs considéré est exactement égal à la dimension de l'espace vectoriel, l'une des deux conditions – être libre ou bien génératrice – suffit pour que ces vecteurs déterminent une base de E.

Démonstration

- Les implications (i) \implies (ii) et (i) \implies (iii) découlent de la définition d'une base.
- Voici la preuve de (ii) \implies (i).
 - Si \mathscr{F} est une famille libre ayant n éléments, alors par le théorème de la base incomplète (théorème 69) il existe une famille \mathscr{F}' telle que $\mathscr{F} \cup \mathscr{F}'$ soit une base de E. D'une part $\mathscr{F} \cup \mathscr{F}'$ est une base de E qui est de dimension n, donc par le théorème 71, $\operatorname{Card}(\mathscr{F} \cup \mathscr{F}') = n$. Mais d'autre part $\operatorname{Card}(\mathscr{F} \cup \mathscr{F}') = \operatorname{Card}\mathscr{F} + \operatorname{Card}\mathscr{F}'$ (par l'algorithme du théorème 69) et par hypothèse $\operatorname{Card}\mathscr{F} = n$. Donc $\operatorname{Card}\mathscr{F}' = 0$, ce qui implique que $\mathscr{F}' = \varnothing$ et donc que \mathscr{F} est déjà une base de E.
- Voici la preuve de (iii) \Longrightarrow (i). Par hypothèse, \mathscr{F} est cette fois une famille génératrice. Toujours par le théorème 69, on peut extraire de cette famille une base $\mathscr{B} \subset \mathscr{F}$. Puis par le théorème 71, $\operatorname{Card} \mathscr{B} = n$, $\operatorname{donc} n = \operatorname{Card} \mathscr{B} \leqslant \operatorname{Card} \mathscr{F} = n$. Donc $\mathscr{B} = \mathscr{F}$ et \mathscr{F} est bien une base.

Exemple 258

Pour quelles valeurs de $t \in \mathbb{R}$ les vecteurs (v_1, v_2, v_3) suivants forment une base de \mathbb{R}^3 ?

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix} \qquad v_2 = \begin{pmatrix} 1 \\ 3 \\ t \end{pmatrix} \qquad v_3 = \begin{pmatrix} 1 \\ 1 \\ t \end{pmatrix}$$

- Nous avons une famille de 3 vecteurs dans l'espace \mathbb{R}^3 de dimension 3. Donc pour montrer que la famille (v_1, v_2, v_3) est une base, par le théorème 72, il suffit de montrer que la famille est libre ou bien de montrer qu'elle est génératrice. Dans la pratique, il est souvent plus facile de vérifier qu'une famille est libre.
- À quelle condition la famille $\{v_1, v_2, v_3\}$ est libre? Soient $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ tels que $\lambda_1 v_1 + \lambda_2 v_2 + \lambda_3 v_3 = 0$. Cela implique le système

$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 &= 0 \\ \lambda_1 + 3\lambda_2 + \lambda_3 &= 0 \\ 4\lambda_1 + t\lambda_2 + t\lambda_3 &= 0 \end{cases}.$$

Ce système est équivalent à :

$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 &= 0 \\ 2\lambda_2 &= 0 \\ (t-4)\lambda_2 + (t-4)\lambda_3 &= 0 \end{cases} \iff \begin{cases} \lambda_1 + \lambda_3 &= 0 \\ \lambda_2 &= 0 \\ (t-4)\lambda_3 &= 0 \end{cases}$$

- Il est clair que si $t \neq 4$, alors la seule solution est $(\lambda_1, \lambda_2, \lambda_3) = (0, 0, 0)$ et donc $\{v_1, v_2, v_3\}$ est une famille libre. Si t = 4, alors par exemple $(\lambda_1, \lambda_2, \lambda_3) = (1, 0, -1)$ est une solution non nulle, donc la famille n'est pas libre.
- Conclusion : si $t \neq 4$ la famille est libre, donc par le théorème 72 la famille (v_1, v_2, v_3) est en plus génératrice, donc c'est une base de \mathbb{R}^3 . Si t = 4, la famille n'est pas libre et n'est donc pas une base.

4.4. Preuve

Il nous reste la preuve du lemme 10. La démonstration est délicate et hors-programme.

Démonstration

La preuve de ce lemme se fait en raisonnant par récurrence.

On démontre par récurrence que, pour tout $n \ge 1$, la propriété suivante est vraie : « Dans un espace vectoriel engendré par n vecteurs, toute famille ayant n+1 éléments est liée. »

Initialisation. On vérifie que la propriété est vraie pour n=1. Soit E un espace vectoriel engendré par un vecteur noté g_1 , et soit $\{v_1,v_2\}$ une famille de E ayant deux éléments. Les vecteurs v_1 et v_2 peuvent s'écrire comme combinaisons linéaires du vecteur g_1 ; autrement dit, il existe des scalaires α_1 , α_2 tels que $v_1=\alpha_1g_1$ et $v_2=\alpha_2g_1$, ce qui donne la relation : $\alpha_2v_1-\alpha_1v_2=0_E$. En supposant v_2 non nul (sinon il est évident que $\{v_1,v_2\}$ est liée), le scalaire α_2 est donc non nul. On a trouvé une combinaison linéaire nulle des vecteurs v_1,v_2 , avec des coefficients non tous nuls. Donc la famille $\{v_1,v_2\}$ est liée.

Hérédité. On démontre maintenant que si la propriété est vraie au rang n-1 $(n \ge 2)$, alors elle vraie au rang n. Soit E un espace vectoriel engendré par n vecteurs notés g_1, g_2, \ldots, g_n , et soit $\{v_1, v_2, \ldots, v_n, v_{n+1}\}$ une famille de E ayant n+1 éléments. Tout vecteur v_j , pour $j=1,2,\ldots,n+1$, est combinaison linéaire de g_1, g_2, \ldots, g_n , donc il existe des scalaires $\alpha_1^j, \alpha_2^j, \ldots, \alpha_n^j$ tels que :

$$v_j = \alpha_1^j g_1 + \alpha_2^j g_2 + \dots + \alpha_n^j g_n.$$

Remarque. On est contraint d'utiliser ici deux indices i, j pour les scalaires (attention! j n'est pas un exposant) car deux informations sont nécessaires : l'indice j indique qu'il s'agit de la décomposition du vecteur v_j , et i indique à quel vecteur de la famille génératrice est associé ce coefficient.

En particulier, pour j = n + 1, le vecteur v_{n+1} s'écrit :

$$v_{n+1} = \alpha_1^{n+1} g_1 + \alpha_2^{n+1} g_2 + \dots + \alpha_n^{n+1} g_n.$$

Si v_{n+1} est nul, c'est terminé, la famille est liée; sinon, v_{n+1} est non nul, et au moins un des coefficients α_j^{n+1} est non nul. On suppose, pour alléger l'écriture, que α_n^{n+1} est non nul (sinon il suffit de changer l'ordre des vecteurs). On construit une nouvelle famille de n vecteurs de E de telle sorte que ces vecteurs soient combinaisons linéaires de $g_1, g_2, \ldots, g_{n-1}$, c'est-à-dire appartiennent au sous-espace engendré par $\{g_1, g_2, \ldots, g_{n-1}\}$. Pour $j=1,2,\ldots,n$, on définit w_j par :

$$w_{j} = \alpha_{n}^{n+1}v_{j} - \alpha_{n}^{j}v_{n+1} = \sum_{k=1}^{n} (\alpha_{n}^{n+1}\alpha_{k}^{j} - \alpha_{n}^{j}\alpha_{k}^{n+1})g_{k}.$$

Le coefficient de g_n est nul. Donc w_j est bien combinaison linéaire de $g_1, g_2, \ldots, g_{n-1}$. On a n vecteurs qui appartiennent à un espace vectoriel engendré par n-1 vecteurs; on peut appliquer l'hypothèse de récurrence : la famille $\{w_1, w_2, \ldots, w_n\}$ est liée. Par conséquent, il existe des scalaires non tous nuls $\lambda_1, \lambda_2, \ldots, \lambda_n$ tels que

$$\lambda_1 w_1 + \lambda_2 w_2 + \dots + \lambda_n w_n = 0.$$

En remplaçant les w_i par leur expression en fonction des vecteurs v_i , on obtient :

$$\alpha_n^{n+1}\lambda_1v_1 + \alpha_n^{n+1}\lambda_2v_2 + \dots + \alpha_n^{n+1}\lambda_nv_n - (\lambda_1\alpha_n^1 + \dots + \lambda_n\alpha_n^n)v_{n+1} = 0_E$$

Le coefficient α_n^{n+1} a été supposé non nul et au moins un des scalaires $\lambda_1, \lambda_2, \ldots, \lambda_n$ est non nul; on a donc une combinaison linéaire nulle des vecteurs $v_1, v_2, \ldots, v_n, v_{n+1}$ avec des coefficients qui ne sont pas tous nuls, ce qui prouve que ces vecteurs forment une famille liée.

Conclusion. La démonstration par récurrence est ainsi achevée.

Mini-exercices

Dire si les assertions suivantes sont vraies ou fausses. Justifier votre réponse par un résultat du cours ou un contre-exemple :

- 1. Une famille de $p \ge n$ vecteurs dans un espace vectoriel de dimension n est génératrice.
- 2. Une famille de p > n vecteurs dans un espace vectoriel de dimension n est liée.
- 3. Une famille de p < n vecteurs dans un espace vectoriel de dimension n est libre.
- 4. Une famille génératrice de $p \le n$ vecteurs dans un espace vectoriel de dimension n est libre.
- 5. Une famille de $p \neq n$ vecteurs dans un espace vectoriel de dimension n n'est pas une base.
- 6. Toute famille libre à p éléments d'un espace vectoriel de dimension n se complète par une famille ayant exactement n-p éléments en une base de E.

5. Dimension des sous-espaces vectoriels

Tout sous-espace vectoriel F d'un \mathbb{K} -espace vectoriel E étant lui même un \mathbb{K} -espace vectoriel, la question est de savoir s'il est de dimension finie ou s'il ne l'est pas.

Prenons l'exemple de l'espace vectoriel $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$ des fonctions de \mathbb{R} dans \mathbb{R} :

- il contient le sous-espace vectoriel $F_1 = \mathbb{R}_n[X]$ des (fonctions) polynômes de degré ≤ n, qui est de dimension finie ;
- et aussi le sous-espace vectoriel $F_2 = \mathbb{R}[X]$ de l'ensemble des (fonctions) polynômes, qui lui est de dimension infinie.

5.1. Dimension d'un sous-espace vectoriel

Nous allons voir par contre que lorsque E est de dimension finie alors F aussi.

Théorème 73

Soit E un \mathbb{K} -espace vectoriel de dimension finie.

- 1. Alors tout sous-espace vectoriel F de E est de dimension finie;
- 2. $\dim F \leq \dim E$;
- 3. $F = E \iff \dim F = \dim E$.

Démonstration

- Soit E un espace vectoriel de dimension n et soit F un sous-espace vectoriel de E. Si $F = \{0\}$ il n'y a rien à montrer. On suppose donc $F \neq \{0\}$ et soit v un élément non nul de F. La famille $\{v\}$ est une famille libre de F, donc F contient des familles libres. Toute famille libre d'éléments de F étant une famille libre d'éléments de E (voir la définition des familles libres), alors comme E est de dimension n, toutes les familles libres de F ont au plus n éléments.
- On considère l'ensemble K des entiers k tels qu'il existe une famille libre de F ayant k éléments :

$$K = \Big\{k \in \mathbb{N} \mid \exists \{v_1, v_2, \dots, v_k\} \subset F \ \text{ et } \{v_1, v_2, \dots, v_k\} \text{ est une famille libre de } F\Big\}$$

Cet ensemble K est non vide (car $1 \in K$); K est un sous-ensemble borné de \mathbb{N} (puisque tout élément de K est compris entre 1 et n) donc K admet un maximum. Notons p ce maximum et

soit $\{v_1, v_2, \dots, v_p\}$ une famille libre de F ayant p éléments.

- Montrons que $\{v_1, v_2, \ldots, v_p\}$ est aussi génératrice de F. Par l'absurde, s'il existe w un élément de F qui n'est pas dans $\mathrm{Vect}(v_1, \ldots, v_p)$, alors la famille $\{v_1, \ldots, v_p, w\}$ ne peut pas être libre (sinon p ne serait pas le maximum de K). La famille $\{v_1, \ldots, v_p, w\}$ est donc liée, mais alors la relation de dépendance linéaire implique que $w \in \mathrm{Vect}(v_1, \ldots, v_p)$, ce qui est une contradiction. Conclusion : (v_1, \ldots, v_p) est une famille libre et génératrice, donc est une base de F.
 - On a ainsi démontré simultanément que :
 - F est de dimension finie (puisque (v_1, v_2, \dots, v_p) est une base de F).
 - Ainsi dim F = p, donc dim F ≤ dim E (puisque toute famille libre de F a au plus n éléments).
 - De plus, lorsque p=n, le p-uplet (v_1,v_2,\ldots,v_p) , qui est une base de F, est aussi une base de E (car $\{v_1,v_2,\ldots,v_p\}$ est alors une famille libre de E ayant exactement n éléments, donc est une base de E). Tout élément de E s'écrit comme une combinaison linéaire de v_1,v_2,\ldots,v_p , d'où E=F.

5.2. Exemples

Exemple 259

Si E est un \mathbb{K} -espace vectoriel de dimension 2, les sous-espaces vectoriels de E sont :

- soit de dimension 0 : c'est alors le sous-espace {0};
- soit de dimension 1 : ce sont les droites vectorielles, c'est-à-dire les sous-espaces $\mathbb{K}u = \text{Vect}\{u\}$ engendrés par les vecteurs non nuls u de E;
- soit de dimension 2 : c'est alors l'espace *E* tout entier.

Vocabulaire. Plus généralement, dans un \mathbb{K} -espace vectoriel E de dimension n ($n \ge 2$), tout sous-espace vectoriel de E de dimension 1 est appelé *droite vectorielle* de E et tout sous-espace vectoriel de E de dimension 2 est appelé *plan vectoriel* de E. Tout sous-espace vectoriel de E de dimension n-1 est appelé *hyperplan* de E. Pour n=3, un hyperplan est un plan vectoriel; pour n=2, un hyperplan est une droite vectorielle.

Le théorème 73 précédent permet de déduire le corollaire suivant :

Corollaire 24

Soit E un \mathbb{K} -espace vectoriel. Soient F et G deux sous-espaces vectoriels de E. On suppose que F est de dimension finie et que $G \subset F$. Alors :

$$F = G \iff \dim F = \dim G$$

Autrement dit, sachant qu'un sous-espace est inclus dans un autre, alors pour montrer qu'ils sont égaux il suffit de montrer l'égalité des dimensions.

Exemple 260

Deux droites vectorielles F et G sont soit égales, soit d'intersection réduite au vecteur nul.

Exemple 261

Soient les sous-espaces vectoriels de \mathbb{R}^3 suivants :

$$F = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid 2x - 3y + z = 0 \right\} \quad \text{ et } \quad G = \operatorname{Vect}(u, v) \quad \text{ où } u = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \text{ et } v = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}.$$

Est-ce que F = G?

1. On remarque que les vecteurs u et v ne sont pas colinéaires, donc G est de dimension 2, et de plus ils appartiennent à F, donc G est contenu dans F.

- 2. Pour trouver la dimension de F, on pourrait déterminer une base de F et on montrerait alors que la dimension de F est 2. Mais il est plus judicieux ici de remarquer que F est contenu strictement dans \mathbb{R}^3 (par exemple le vecteur $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ de \mathbb{R}^3 n'est pas dans F), donc dim $F < \dim \mathbb{R}^3 = 3$; mais puisque F contient G alors dim $F > \dim G = 2$, donc la dimension de F ne peut être que 2.
- 3. On a donc démontré que $G \subset F$ et que dim $G = \dim F$, ce qui entraı̂ne G = F.

5.3. Théorème des quatre dimensions

Théorème 74. Théorème des quatre dimensions

Soient E un espace vectoriel de dimension finie et F,G des sous-espaces vectoriels de E. Alors :

$$\dim(F+G) = \dim F + \dim G - \dim(F \cap G)$$

Corollaire 25

Si $E = F \oplus G$, alors dim $E = \dim F + \dim G$.

Exemple 262

Dans un espace vectoriel E de dimension 6, on considère deux sous-espaces F et G avec $\dim F = 3$ et $\dim G = 4$. Que peut-on dire de $F \cap G$? de F + G? Peut-on avoir $F \oplus G = E$?

- $F \cap G$ est un sous-espace vectoriel inclus dans F, donc dim($F \cap G$) ≤ dimF = 3. Donc les dimensions possibles pour $F \cap G$ sont pour l'instant 0,1,2,3.
- F + G est un sous-espace vectoriel contenant G et inclus dans E, donc $4 = \dim G \le \dim(F + G) \le \dim E = 6$. Donc les dimensions possibles pour F + G sont 4, 5, 6.
- Le théorème 74 des quatre dimensions nous donne la relation : $\dim(F \cap G) = \dim F + \dim G \dim(F + G) = 3 + 4 \dim(F + G) = 7 \dim(F + G)$. Comme F + G est de dimension 4, 5 ou 6, alors la dimension de $F \cap G$ est 3, 2 ou 1.
- Conclusion: les dimensions possibles pour F+G sont 4, 5 ou 6; les dimensions correspondantes pour $F\cap G$ sont alors 3, 2 ou 1. Dans tous les cas, $F\cap G\neq \{0\}$ et en particulier F et G ne sont jamais en somme directe dans E.

La méthode de la preuve du théorème 74 des quatre dimensions implique aussi :

Corollaire 26

Tout sous-espace vectoriel F d'un espace vectoriel E de dimension finie admet un supplémentaire.

Démonstration Preuve du théorème 74

- Notez l'analogie de la formule avec la formule pour les ensembles finis :

$$Card(A \cup B) = CardA + CardB - Card(A \cap B)$$
.

- Nous allons partir d'une base $\mathscr{B}_{F\cap G}=\{u_1,\ldots,u_p\}$ de $F\cap G$. On commence par compléter $\mathscr{B}_{F\cap G}$ en une base $\mathscr{B}_F=\{u_1,\ldots,u_p,v_{p+1},\ldots,v_q\}$ de F. On complète ensuite $\mathscr{B}_{F\cap G}$ en une base $\mathscr{B}_G=\{u_1,\ldots,u_p,w_{p+1},\ldots,w_r\}$ de G.
- Nous allons maintenant montrer que la famille $\{u_1, \ldots, u_p, v_{p+1}, \ldots, v_q, w_{p+1}, \ldots, w_r\}$ est une base de F + G. Il est tout d'abord clair que c'est une famille génératrice de F + G (car \mathcal{B}_F est une famille génératrice de F).
- Montrons que cette famille est libre. Soit une combinaison linéaire nulle :

$$\sum_{i=1}^{p} \alpha_i u_i + \sum_{j=p+1}^{q} \beta_j v_j + \sum_{k=p+1}^{r} \gamma_k w_k = 0$$
 (20.1)

On pose $u=\sum_{i=1}^p\alpha_iu_i, \ v=\sum_{j=p+1}^q\beta_jv_j, \ w=\sum_{k=p+1}^r\gamma_kw_k$. Alors d'une part $u+v\in F$ (car \mathscr{B}_F est une base de F) mais comme l'équation (20.1) équivaut à u+v+w=0, alors $u+v=-w\in G$ (car $w\in G$). Maintenant $u+v\in F\cap G$ et aussi bien sûr $u\in F\cap G$, donc $v=\sum_{j=p+1}^q\beta_jv_j\in F\cap G$. Cela implique $\beta_j=0$ pour tout j (car les $\{v_j\}$ complètent la base de $F\cap G$).

La combinaison linéaire nulle (20.1) devient $\sum_{i=1}^p \alpha_i u_i + \sum_{k=p+1}^r \gamma_k w_k = 0$. Or \mathscr{B}_G est une base de G, donc $\alpha_i = 0$ et $\gamma_k = 0$ pour tout i,k. Ainsi $\mathscr{B}_{F+G} = \{u_1,\ldots,u_p,v_{p+1},\ldots,v_q,w_{p+1},\ldots,w_r\}$ est une base de F+G.

- Il ne reste plus qu'à compter le nombre de vecteurs de chaque base : $\dim F \cap G = \operatorname{Card} \mathscr{B}_{F \cap G} = p$, $\dim F = \operatorname{Card} \mathscr{B}_{F} = q$, $\dim G = \operatorname{Card} \mathscr{B}_{G} = r$, $\dim(F + G) = \operatorname{Card} \mathscr{B}_{F+G} = q + r - p$. Ce qui prouve bien $\dim(F + G) = \dim F + \dim G - \dim(F \cap G)$.

Mini-exercices

- 1. Soient $F = \text{Vect}\left(\begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 3\\-1\\2 \end{pmatrix}\right)$ et $G = \text{Vect}\left(\begin{pmatrix} -7\\7\\0 \end{pmatrix}, \begin{pmatrix} 6\\5\\11 \end{pmatrix}\right)$. Montrer que F = G.
- 2. Dans \mathbb{R}^3 , on considère $F = \text{Vect}\left(\left(\begin{array}{c} 1\\t\\-1 \end{array}\right), \left(\begin{array}{c} t\\1\\1 \end{array}\right), \ G = \text{Vect}\left(\begin{array}{c} 1\\1\\1 \end{array}\right)$. Calculer les dimensions de $F, G, F \cap G, F + G$ en fonction de $t \in \mathbb{R}$.
- 3. Dans un espace vectoriel de dimension 7, on considère des sous-espaces F et G vérifiant $\dim F = 3$ et $\dim G \le 2$. Que peut-on dire pour $\dim(F \cap G)$? Et pour $\dim(F + G)$?
- 4. Dans un espace vectoriel E de dimension finie, montrer l'équivalence entre : (i) $F \oplus G = E$; (ii) F + G = E et dim $F + \dim G = \dim E$; (iii) $F \cap G = \{0_E\}$ et dim $F + \dim G = \dim E$.
- 5. Soit H un hyperplan dans un espace vectoriel de dimension finie E. Soit $v \in E \setminus H$. Montrer que H et Vect(v) sont des sous-espaces supplémentaires dans E.

Auteurs

- D'après un cours de Sophie Chemla de l'université Pierre et Marie Curie, reprenant des parties d'un cours de H. Ledret et d'une équipe de l'université de Bordeaux animée par J. Queyrut,
- et un cours de Eva Bayer-Fluckiger, Philippe Chabloz, Lara Thomas de l'École Polytech-

nique Fédérale de Lausanne,

• mixé, révisé et complété par Arnaud Bodin. Relu par Vianney Combet.

21 Matrices et applications linéaires

- 1 Rang d'une famille de vecteurs
- 2 Applications linéaires en dimension finie
- 3 Matrice d'une application linéaire
- 4 Changement de bases

```
Vidéo ■ partie 1. Rang d'une famille de vecteurs

Vidéo ■ partie 2. Applications linéaires en dimension finie

Vidéo ■ partie 3. Matrice d'une application linéaire

Vidéo ■ partie 4. Changement de bases

Exercices ♦ Matrice d'une application linéaire
```

Ce chapitre est l'aboutissement de toutes les notions d'algèbre linéaire vues jusqu'ici : espaces vectoriels, dimension, applications linéaires, matrices. Nous allons voir que dans le cas des espaces vectoriels de dimension finie, l'étude des applications linéaires se ramène à l'étude des matrices, ce qui facilite les calculs.

1. Rang d'une famille de vecteurs

Le rang d'une famille de vecteurs est la dimension du plus petit sous-espace vectoriel contenant tous ces vecteurs.

1.1. Définition

Soient E un \mathbb{K} -espace vectoriel et $\{v_1,\ldots,v_p\}$ une famille finie de vecteurs de E. Le sous-espace vectoriel $\mathrm{Vect}(v_1,\ldots,v_p)$ engendré par $\{v_1,\ldots,v_p\}$ étant de dimension finie, on peut donc donner la définition suivante :

Définition 117. Rang d'une famille finie de vecteurs

Soit E un \mathbb{K} -espace vectoriel et soit $\{v_1, \ldots, v_p\}$ une famille finie de vecteurs de E. Le rang de la famille $\{v_1, \ldots, v_p\}$ est la dimension du sous-espace vectoriel $\operatorname{Vect}(v_1, \ldots, v_p)$ engendré par les vecteurs v_1, \ldots, v_p . Autrement dit :

$$\operatorname{rg}(v_1,\ldots,v_p) = \dim \operatorname{Vect}(v_1,\ldots,v_p)$$

Calculer le rang d'une famille de vecteurs n'est pas toujours évident, cependant il y a des inégalités qui découlent directement de la définition.

Proposition 126

Soient E un \mathbb{K} -espace vectoriel et $\{v_1, \dots, v_p\}$ une famille de p vecteurs de E. Alors :

- 1. $0 \le \operatorname{rg}(v_1, \dots, v_p) \le p$: le rang est inférieur ou égal au nombre d'éléments dans la famille.
- 2. Si E est de dimension finie alors $\operatorname{rg}(v_1,\ldots,v_p) \leq \dim E$: le rang est inférieur ou égal à la dimension de l'espace ambiant E.

Remarque

- Le rang d'une famille vaut 0 si et seulement si tous les vecteurs sont nuls.
- Le rang d'une famille $\{v_1, \dots, v_p\}$ vaut p si et seulement si la famille $\{v_1, \dots, v_p\}$ est libre.

Exemple 263

Quel est le rang de la famille $\{v_1, v_2, v_3\}$ suivante dans l'espace vectoriel \mathbb{R}^4 ?

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$
 $v_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \end{pmatrix}$ $v_3 = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$

- Ce sont des vecteurs de \mathbb{R}^4 donc $\operatorname{rg}(v_1, v_2, v_3) \leq 4$.
- Mais comme il n'y a que 3 vecteurs alors $rg(v_1, v_2, v_3) \le 3$.
- Le vecteur v_1 est non nul donc $rg(v_1, v_2, v_3) \ge 1$.
- Il est clair que v_1 et v_2 sont linéairement indépendants donc $\operatorname{rg}(v_1, v_2, v_3) \ge \operatorname{rg}(v_1, v_2) = 2$.

Il reste donc à déterminer si le rang vaut 2 ou 3. On cherche si la famille $\{v_1, v_2, v_3\}$ est libre ou liée en résolvant le système linéaire $\lambda_1 v_1 + \lambda_2 v_2 + \lambda_3 v_3 = 0$. On trouve $v_1 - v_2 + v_3 = 0$. La famille est donc liée. Ainsi $\text{Vect}(v_1, v_2, v_3) = \text{Vect}(v_1, v_2)$, donc $\text{rg}(v_1, v_2, v_3) = \text{dim} \, \text{Vect}(v_1, v_2, v_3) = 2$.

1.2. Rang d'une matrice

Une matrice peut être vue comme une juxtaposition de vecteurs colonnes.

Définition 118

On définit le rang d'une matrice comme étant le rang de ses vecteurs colonnes.

Exemple 264

Le rang de la matrice

$$A = \begin{pmatrix} 1 & 2 & -\frac{1}{2} & 0 \\ 2 & 4 & -1 & 0 \end{pmatrix} \in M_{2,4}$$

est par définition le rang de la famille de vecteurs de \mathbb{K}^2 : $\left\{v_1 = \left(\frac{1}{2}\right), v_2 = \left(\frac{2}{4}\right), v_3 = \left(\frac{-\frac{1}{2}}{-1}\right), v_4 = \left(\frac{0}{0}\right)\right\}$. Tous ces vecteurs sont colinéaires à v_1 , donc le rang de la famille $\{v_1, v_2, v_3, v_4\}$ est 1 et ainsi $\operatorname{rg} A = 1$.

Réciproquement, on se donne une famille de p vecteurs $\{v_1, \dots, v_p\}$ d'un espace vectoriel E de dimension n. Fixons une base $\mathcal{B} = \{e_1, \dots, e_n\}$ de E. Chaque vecteur v_j se décompose dans la base

$$\mathscr{B}: v_j = a_{1j}e_1 + \dots + a_{ij}e_i + \dots + a_{nj}e_n, \text{ ce que l'on note } v_j = \begin{pmatrix} a_{1j} \\ \vdots \\ a_{ij} \\ \vdots \\ a_{nj} \end{pmatrix}_{\mathscr{B}}. \text{ En juxtaposant ces vecteurs}$$

colonnes, on obtient une matrice $A \in M_{n,p}(\mathbb{K})$. Le rang de la famille $\{v_1,\ldots,v_p\}$ est égal au rang de la matrice A.

Définition 119

On dit qu'une matrice est échelonnée par rapport aux colonnes si le nombre de zéros commençant une colonne croît strictement colonne après colonne, jusqu'à ce qu'il ne reste plus que des zéros. Autrement dit, la matrice transposée est échelonnée par rapport aux lignes.

Voici un exemple d'une matrice échelonnée par colonnes; les * désignent des coefficients quelconques, les + des coefficients non nuls :

$$\begin{pmatrix}
+ & 0 & 0 & 0 & 0 & 0 \\
* & 0 & 0 & 0 & 0 & 0 \\
* & + & 0 & 0 & 0 & 0 \\
* & * & + & 0 & 0 & 0 \\
* & * & * & + & 0 & 0
\end{pmatrix}$$

Le rang d'une matrice échelonnée est très simple à calculer.

Proposition 127

Le rang d'une matrice échelonnée par colonnes est égal au nombre de colonnes non nulles.

Par exemple, dans la matrice échelonnée donnée en exemple ci-dessus, 4 colonnes sur 6 sont non nulles, donc le rang de cette matrice est 4.

La preuve de cette proposition consiste à remarquer que les vecteurs colonnes non nuls sont linéairement indépendants, ce qui au vu de la forme échelonnée de la matrice est facile.

1.3. Opérations conservant le rang

Proposition 128

Le rang d'une matrice ayant les colonnes $C_1, C_2, ..., C_p$ n'est pas modifié par les trois opérations élémentaires suivantes sur les vecteurs :

- 1. $C_i \leftarrow \lambda C_i$ avec $\lambda \neq 0$: on peut multiplier une colonne par un scalaire non nul.
- 2. $C_i \leftarrow C_i + \lambda C_j$ avec $\lambda \in \mathbb{K}$ (et $j \neq i$): on peut ajouter à la colonne C_i un multiple d'une autre colonne C_j .
- 3. $C_i \leftrightarrow C_j$: on peut échanger deux colonnes.

Plus généralement, l'opération $C_i \leftarrow C_i + \lambda_1 C_1 + \lambda_2 C_2 + \dots + \lambda_{i-1} C_{i-1} + \lambda_{i+1} C_{i+1} + \dots + \lambda_p C_p$ conserve le rang de la matrice.

On a même un résultat plus fort, comme vous le verrez dans la preuve : l'espace vectoriel engendré par les vecteurs colonnes est conservé par ces opérations.

Démonstration

Le premier et troisième point de la proposition sont faciles.

Pour simplifier l'écriture de la démonstration du deuxième point, montrons que l'opération $C_1 \leftarrow C_1 + \lambda C_2$ ne change pas le rang. Notons v_i le vecteur correspondant à la colonne C_i d'une matrice A. L'opération sur les colonnes $C_1 \leftarrow C_1 + \lambda C_2$ change la matrice A en une matrice A' dont les vecteurs colonnes sont : $v_1 + \lambda v_2, v_2, v_3, \ldots, v_p$.

Il s'agit de montrer que les sous-espaces $F = \text{Vect}(v_1, v_2, \dots, v_p)$ et $G = \text{Vect}(v_1 + \lambda v_2, v_2, v_3, \dots, v_p)$ ont la même dimension. Nous allons montrer qu'ils sont égaux!

- Tout générateur de G est une combinaison linéaire des v_i , donc G ⊂ F.
- Pour montrer que $F \subset G$, il suffit de montrer v_1 est combinaison linéaire des générateurs de G, ce qui s'écrit : $v_1 = (v_1 + \lambda v_2) \lambda v_2$.

Conclusion : F = G et donc dim $F = \dim G$.

Méthodologie. Comment calculer le rang d'une matrice ou d'un système de vecteurs?

Il s'agit d'appliquer la méthode de Gauss sur les colonnes de la matrice A (considérée comme une juxtaposition de vecteurs colonnes). Le principe de la méthode de Gauss affirme que par les opérations élémentaires $C_i \leftarrow \lambda C_i$, $C_i \leftarrow C_i + \lambda C_j$, $C_i \leftrightarrow C_j$, on transforme la matrice A en une matrice échelonnée par rapport aux colonnes. Le rang de la matrice est alors le nombre de colonnes non nulles.

Remarque : la méthode de Gauss classique concerne les opérations sur les lignes et aboutit à une matrice échelonnée par rapport aux lignes. Les opérations sur les colonnes de A correspondent aux opérations sur les lignes de la matrice transposée A^T .

1.4. Exemples

Exemple 265

Quel est le rang de la famille des 5 vecteurs suivants de \mathbb{R}^4 ?

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \qquad v_2 = \begin{pmatrix} -1 \\ 2 \\ 0 \\ 1 \end{pmatrix} \qquad v_3 = \begin{pmatrix} 3 \\ 2 \\ -1 \\ -3 \end{pmatrix} \qquad v_4 = \begin{pmatrix} 3 \\ 5 \\ 0 \\ -1 \end{pmatrix} \qquad v_5 = \begin{pmatrix} 3 \\ 8 \\ 1 \\ 1 \end{pmatrix}$$

On est ramené à calculer le rang de la matrice :

$$\begin{pmatrix}
1 & -1 & 3 & 3 & 3 \\
1 & 2 & 2 & 5 & 8 \\
1 & 0 & -1 & 0 & 1 \\
1 & 1 & -3 & -1 & 1
\end{pmatrix}$$

En faisant les opérations $C_2 \leftarrow C_2 + C_1$, $C_3 \leftarrow C_3 - 3C_1$, $C_4 \leftarrow C_4 - 3C_1$, $C_5 \leftarrow C_5 - 3C_1$, on obtient des zéros sur la première ligne à droite du premier pivot :

$$\begin{pmatrix} 1 & -1 & 3 & 3 & 3 \\ 1 & 2 & 2 & 5 & 8 \\ 1 & 0 & -1 & 0 & 1 \\ 1 & 1 & -3 & -1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 3 & -1 & 2 & 5 \\ 1 & 1 & -4 & -3 & -2 \\ 1 & 2 & -6 & -4 & -2 \end{pmatrix}$$

On échange C_2 et C_3 par l'opération $C_2 \leftrightarrow C_3$ pour avoir le coefficient -1 en position de pivot

et ainsi éviter d'introduire des fractions.

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 3 & -1 & 2 & 5 \\ 1 & 1 & -4 & -3 & -2 \\ 1 & 2 & -6 & -4 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & -1 & 3 & 2 & 5 \\ 1 & -4 & 1 & -3 & -2 \\ 1 & -6 & 2 & -4 & -2 \end{pmatrix}$$

En faisant les opérations $C_3 \leftarrow C_3 + 3C_2$, $C_4 \leftarrow C_4 + 2C_2$ et $C_5 \leftarrow C_5 + 5C_2$, on obtient des zéros à droite de ce deuxième pivot :

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & -1 & 3 & 2 & 5 \\ 1 & -4 & 1 & -3 & -2 \\ 1 & -6 & 2 & -4 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 \\ 1 & -4 & -11 & -11 & -22 \\ 1 & -6 & -16 & -16 & -32 \end{pmatrix}$$

Enfin, en faisant les opérations $C_4 \leftarrow C_4 - C_3$ et $C_5 \leftarrow C_5 - 2C_3$, on obtient une matrice échelonnée par colonnes :

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 \\ 1 & -4 & -11 & -11 & -22 \\ 1 & -6 & -16 & -16 & -32 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 \\ 1 & -4 & -11 & 0 & 0 \\ 1 & -6 & -16 & 0 & 0 \end{pmatrix}$$

Il y a 3 colonnes non nulles : on en déduit que le rang de la famille de vecteurs $\{v_1, v_2, v_3, v_4, v_5\}$ est 3.

En fait, nous avons même démontré que

$$\mathrm{Vect}(v_1, v_2, v_3, v_4, v_5) = \mathrm{Vect}\left(\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\-1\\-4\\-6 \end{pmatrix}, \begin{pmatrix} 0\\0\\-11\\-16 \end{pmatrix}\right).$$

Exemple 266

Considérons les trois vecteurs suivants dans \mathbb{R}^5 : $v_1 = (1,2,1,2,0)$, $v_2 = (1,0,1,4,4)$ et $v_3 = (1,1,1,0,0)$. Montrons que la famille $\{v_1,v_2,v_3\}$ est libre dans \mathbb{R}^5 . Pour cela, calculons le rang de cette famille de vecteurs ou, ce qui revient au même, celui de la matrice suivante :

$$\begin{pmatrix}
1 & 1 & 1 \\
2 & 0 & 1 \\
1 & 1 & 1 \\
2 & 4 & 0 \\
0 & 4 & 0
\end{pmatrix}.$$

Par des opérations élémentaires sur les colonnes, on obtient :

$$\begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & 1 \\ 1 & 1 & 1 \\ 2 & 4 & 0 \\ 0 & 4 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 2 & -2 & -1 \\ 1 & 0 & 0 \\ 2 & 2 & -2 \\ 0 & 4 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 2 & -1 & -1 \\ 1 & 0 & 0 \\ 2 & 1 & -2 \\ 0 & 2 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 2 & -1 & 0 \\ 1 & 0 & 0 \\ 2 & 1 & -3 \\ 0 & 2 & -2 \end{pmatrix}$$

Comme la dernière matrice est échelonnée par colonnes et que ses 3 colonnes sont non nulles,

on en déduit que la famille $\{v_1, v_2, v_3\}$ constituée de 3 vecteurs est de rang 3, et donc qu'elle est libre dans \mathbb{R}^5 .

Exemple 267

Considérons les quatre vecteurs suivants dans \mathbb{R}^3 : $v_1 = (1,2,3)$, $v_2 = (2,0,6)$, $v_3 = (3,2,1)$ et $v_4 = (-1,2,2)$. Montrons que la famille $\{v_1,v_2,v_3,v_4\}$ engendre \mathbb{R}^3 . Pour cela, calculons le rang de cette famille de vecteurs ou, ce qui revient au même, celui de la matrice suivante :

$$\begin{pmatrix} 1 & 2 & 3 & -1 \\ 2 & 0 & 2 & 2 \\ 3 & 6 & 1 & 2 \end{pmatrix}.$$

Par des opérations élémentaires sur les colonnes, on obtient :

$$\begin{pmatrix} 1 & 2 & 3 & -1 \\ 2 & 0 & 2 & 2 \\ 3 & 6 & 1 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & -4 & -4 & 4 \\ 3 & 0 & -8 & 5 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & -4 & 0 & 0 \\ 3 & 0 & -8 & 5 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & -4 & 0 & 0 \\ 3 & 0 & -8 & 0 \end{pmatrix}.$$

La famille $\{v_1, v_2, v_3, v_4\}$ est donc de rang 3. Cela signifie que $\text{Vect}(v_1, v_2, v_3, v_4)$ est un sous-espace vectoriel de dimension 3 de \mathbb{R}^3 . On a donc $\text{Vect}(v_1, v_2, v_3, v_4) = \mathbb{R}^3$. Autrement dit, la famille $\{v_1, v_2, v_3, v_4\}$ engendre \mathbb{R}^3 .

1.5. Rang et matrice inversible

Nous anticipons sur la suite, pour énoncer un résultat important :

Théorème 75. Matrice inversible et rang

Une matrice carrée de taille n est inversible si et seulement si elle est de rang n.

La preuve repose sur plusieurs résultats qui seront vus au fil de ce chapitre.

Démonstration

Soit A une matrice carrée d'ordre n. Soit f l'endomorphisme de \mathbb{K}^n dont la matrice dans la base canonique est A. On a les équivalences suivantes :

A de rang n \iff f de rang n \iff f surjective \iff f bijective \iff A inversible.

Nous avons utilisé le fait qu'un endomorphisme d'un espace vectoriel de dimension finie est bijectif si et seulement s'il est surjectif et le théorème sur la caractérisation de la matrice d'un isomorphisme.

1.6. Rang engendré par les vecteurs lignes

On a considéré jusqu'ici une matrice $A \in M_{n,p}$ comme une juxtaposition de vecteurs colonnes (v_1,\ldots,v_p) et défini $\operatorname{rg} A = \dim \operatorname{Vect}(v_1,\ldots,v_p)$. Considérons maintenant que A est aussi une superposition de vecteurs lignes (w_1,\ldots,w_n) .

Proposition 129

 $\operatorname{rg} A = \dim \operatorname{Vect}(w_1, \dots, w_n)$

Nous admettrons ce résultat. Autrement dit : l'espace vectoriel engendré par les vecteurs colonnes et l'espace vectoriel engendré par les vecteurs lignes sont de même dimension.

Une formulation plus théorique est que le rang d'une matrice égale le rang de sa transposée :

$$gA = rgA^T$$

Attention! Les dimensions $\dim \operatorname{Vect}(v_1, \dots, v_p)$ et $\dim \operatorname{Vect}(w_1, \dots, w_n)$ sont égales, mais les espaces vectoriels $\operatorname{Vect}(v_1, \dots, v_p)$ et $\operatorname{Vect}(w_1, \dots, w_n)$ ne sont pas les mêmes.

Mini-exercices

- 1. Quel est le rang de la famille de vecteurs $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ -2 \\ -1 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$?

 Même question pour $\begin{pmatrix} 1 \\ t \\ 1 \end{pmatrix}, \begin{pmatrix} t \\ 1 \\ t \end{pmatrix}, \begin{pmatrix} 1 \\ t \\ 1 \end{pmatrix}$ en fonction du paramètre $t \in \mathbb{R}$.
- 2. Mettre sous forme échelonnée par rapport aux colonnes la matrice $\begin{pmatrix} 1 & 2 & -4 & -2 & -1 \\ 0 & -2 & 4 & 2 & 0 \\ 1 & 1 & -2 & -1 & 1 \end{pmatrix}$.

Calculer son rang. Idem avec $\begin{pmatrix} 1 & 7 & 2 & 5 \\ -2 & 1 & 1 & 5 \\ -1 & 2 & 1 & 4 \\ 1 & 4 & 1 & 2 \end{pmatrix}.$

- 3. Calculer le rang de $\begin{pmatrix} 2 & 4 & -5 & -7 \\ -1 & 3 & 1 & 2 \\ 1 & a & -2 & b \end{pmatrix}$ en fonction de a et b.
- 4. Calculer les rangs précédents en utilisant les vecteurs lignes.
- 5. Soit $f: E \to F$ une application linéaire. Quelle inégalité relie $\operatorname{rg}(f(v_1), \ldots, f(v_p))$ et $\operatorname{rg}(v_1, \ldots, v_p)$? Que se passe-t-il si f est injective?

2. Applications linéaires en dimension finie

Lorsque $f: E \to F$ est une application linéaire et que E est de dimension finie, la théorie de la dimension fournit de nouvelles propriétés très riches pour l'application linéaire f.

2.1. Construction et caractérisation

Une application linéaire $f: E \to F$, d'un espace vectoriel de dimension finie dans un espace vectoriel quelconque, est entièrement déterminée par les images des vecteurs d'une base de l'espace vectoriel E de départ. C'est ce qu'affirme le théorème suivant :

Théorème 76. Construction d'une application linéaire

Soient E et F deux espaces vectoriels sur un même corps \mathbb{K} . On suppose que l'espace vectoriel E est de dimension finie n et que (e_1,\ldots,e_n) est une base de E. Alors pour tout choix (v_1,\ldots,v_n) de n vecteurs de F, il existe une et une seule application linéaire $f:E\to F$ telle que, pour tout $i=1,\ldots,n$:

$$f(e_i) = v_i$$
.

Le théorème ne fait aucune hypothèse sur la dimension de l'espace vectoriel d'arrivée F.

Exemple 268

Il existe une unique application linéaire $f: \mathbb{R}^n \to \mathbb{R}[X]$ telle que $f(e_i) = (X+1)^i$ pour $i=1,\ldots,n$ (où (e_1,\ldots,e_n) est la base canonique de \mathbb{R}^n).

Pour un vecteur $x = (x_1, ..., x_n)$, on a

$$f(x_1,...,x_n) = f(x_1e_1 + \dots + x_ne_n) = x_1f(e_1) + \dots + x_nf(e_n) = \sum_{i=1}^n x_i(X+1)^i$$
.

Démonstration

- *Unicité*. Supposons qu'il existe une application linéaire $f: E \to F$ telle que $f(e_i) = v_i$, pour tout i = 1, ..., n. Pour $x \in E$, il existe des scalaires $x_1, x_2, ..., x_n$ uniques tels que $x = \sum_{i=1}^n x_i e_i$. Comme f est linéaire, on a

$$f(x) = f\left(\sum_{i=1}^{n} x_i e_i\right) = \sum_{i=1}^{n} x_i f(e_i) = \sum_{i=1}^{n} x_i v_i.$$
 (*)

Donc, si elle existe, f est unique.

- *Existence*. Nous venons de voir que s'il existe une solution c'est nécessairement l'application définie par l'équation (*). Montrons qu'une application définie par l'équation (*) est linéaire et vérifie $f(e_i) = v_i$. Si (x_1, \ldots, x_n) (resp. $y = (y_1, \ldots, y_n)$) sont les coordonnées de x (resp. y) dans la base (e_1, \ldots, e_n) , alors

$$f(\lambda x + \mu y) = f\left(\sum_{i=1}^{n} (\lambda x_i + \mu y_i)e_i\right) = \sum_{i=1}^{n} (\lambda x_i + \mu y_i)f(e_i) = \lambda \sum_{i=1}^{n} x_i f(e_i) + \mu \sum_{i=1}^{n} y_i f(e_i) = \lambda f(x) + \mu f(y).$$

Enfin les coordonnées de e_i sont (0,...,0,1,0,...,0) (avec un 1 en i-ème position), donc $f(e_i) = 1 \cdot v_i = v_i$. Ce qui termine la preuve du théorème.

2.2. Rang d'une application linéaire

Soient E et F deux \mathbb{K} -espaces vectoriels et soit $f: E \to F$ une application linéaire. On rappelle que l'on note f(E) par $\mathrm{Im}\, f$, c'est-à-dire $\mathrm{Im}\, f=\{f(x)|x\in E\}$. $\mathrm{Im}\, f$ est un sous-espace vectoriel de F.

Proposition 130

Si *E* est de dimension finie, alors :

- Im f = f(E) est un espace vectoriel de dimension finie.
- Si (e_1, \dots, e_n) est une base de E, alors Im $f = \text{Vect}(f(e_1), \dots, f(e_n))$.

La dimension de cet espace vectoriel $\operatorname{Im} f$ est appelée $\operatorname{rang} \operatorname{de} f$:

$$\operatorname{rg}(f) = \dim \operatorname{Im} f = \dim \operatorname{Vect}(f(e_1), \dots, f(e_n))$$

Démonstration

Il suffit de démontrer que tout élément de Im f est combinaison linéaire des vecteurs $f(e_1), \ldots, f(e_n)$. Soit y un élément quelconque de Im f. Il existe donc un élément x de E tel que y = f(x). Comme (e_1, \ldots, e_n) est une base de E, il existe des scalaires (x_1, \ldots, x_n) tels que $x = \sum_{i=1}^n x_i e_i$. En utilisant la

linéarité de f, on en déduit que $y = f(x) = \sum_{i=1}^{n} x_i f(e_i)$, ce qui achève la démonstration.

Le rang est plus petit que la dimension de E et aussi plus petit que la dimension de F, si F est de dimension finie :

Proposition 131

Soient E et F deux \mathbb{K} -espaces vectoriels de dimension finie et $f: E \to F$ une application linéaire. On a

$$rg(f) \leq min(dim E, dim F)$$
.

Exemple 269

Soit $f: \mathbb{R}^3 \to \mathbb{R}^2$ l'application linéaire définie par f(x,y,z) = (3x-4y+2z,2x-3y-z). Quel est le rang de f?

Si on note $e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ et $e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, alors (e_1, e_2, e_3) est la base canonique de \mathbb{R}^3 . Il s'agit de trouver le rang de la famille $\{v_1, v_2, v_3\}$:

$$v_1 = f(e_1) = f\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
 $v_2 = f(e_2) = f\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -4 \\ -3 \end{pmatrix}$ $v_3 = f(e_3) = f\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$

ou, ce qui revient au même, trouver le rang de la matrice

$$A = \begin{pmatrix} 3 & -4 & 2 \\ 2 & -3 & -1 \end{pmatrix}.$$

Commençons par estimer le rang sans faire de calculs.

- Nous avons une famille de 3 vecteurs donc rg f ≤ 3.
- Mais en fait les vecteurs v_1, v_2, v_3 vivent dans un espace de dimension 2 donc rg $f \le 2$.
- f n'est pas l'application linéaire nulle (autrement dit v_1, v_2, v_3 ne sont pas tous nuls) donc rg $f \ge 1$.

Donc le rang de f vaut 1 ou 2. Il est facile de voir que v_1 et v_2 sont linéairement indépendants, donc le rang est 2 :

$$\operatorname{rg} f = \operatorname{rg} (f(e_1), f(e_2), f(e_3)) = \dim \operatorname{Vect}(v_1, v_2, v_3) = 2$$

Remarque : il est encore plus facile de voir que le rang de la matrice A est 2 en remarquant que ses deux seules lignes ne sont pas colinéaires.

2.3. Théorème du rang

Le théorème du rang est un résultat fondamental dans la théorie des applications linéaires en dimension finie.

On se place toujours dans la même situation :

- f : E → F est une application linéaire entre deux \mathbb{K} -espaces vectoriels,
- E est un espace vectoriel de dimension finie,

- le *noyau* de f est $\operatorname{Ker} f = \{x \in E \mid f(x) = 0_F\}$; c'est un sous-espace vectoriel de E, donc $\operatorname{Ker} f$ est de dimension finie,
- l'image de f est $\text{Im } f = f(E) = \{f(x) \mid x \in E\}$; c'est un sous-espace vectoriel de F et est de dimension finie.

Le théorème du rang donne une relation entre la dimension du noyau et la dimension de l'image de f.

Théorème 77. Théorème du rang

Soit $f: E \to F$ une application linéaire entre deux \mathbb{K} -espaces vectoriels, E étant de dimension finie. Alors

$$\dim E = \dim \operatorname{Ker} f + \dim \operatorname{Im} f$$

Autrement dit : $\dim E = \dim \operatorname{Ker} f + \operatorname{rg} f$

Dans la pratique, cette formule sert à déterminer la dimension du noyau connaissant le rang, ou bien le rang connaissant la dimension du noyau.

Exemple 270

Soit l'application linéaire

$$f: \mathbb{R}^4 \longrightarrow \mathbb{R}^3 (x_1, x_2, x_3, x_4) \longmapsto (x_1 - x_2 + x_3, 2x_1 + 2x_2 + 6x_3 + 4x_4, -x_1 - 2x_3 - x_4)$$

Calculons le rang de f et la dimension du noyau de f.

- Première méthode. On calcule d'abord le noyau :

$$(x_1, x_2, x_3, x_4) \in \operatorname{Ker} f \iff f(x_1, x_2, x_3, x_4) = (0, 0, 0) \iff \begin{cases} x_1 - x_2 + x_3 = 0 \\ 2x_1 + 2x_2 + 6x_3 + 4x_4 = 0 \\ -x_1 - 2x_3 - x_4 = 0 \end{cases}$$

On résout ce système et on trouve qu'il est équivalent à

$$\begin{cases} x_1 - x_2 + x_3 & = 0 \\ x_2 + x_3 + x_4 & = 0 \end{cases}$$

On choisit x_3 et x_4 comme paramètres et on trouve :

$$\operatorname{Ker} f = \left\{ (-2x_3 - x_4, -x_3 - x_4, x_3, x_4) \mid x_3, x_4 \in \mathbb{R} \right\} = \left\{ x_3 \begin{pmatrix} -2 \\ -1 \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} -1 \\ -1 \\ 0 \\ 1 \end{pmatrix} \mid x_3, x_4 \in \mathbb{R} \right\} = \operatorname{Vect} \left(\begin{pmatrix} -2 \\ -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ 0 \\ 1 \end{pmatrix} \right) = \operatorname{Vect} \left(\begin{pmatrix} -2 \\ -1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ 0 \\ 0 \end{pmatrix} \right) = \operatorname{Vect} \left(\begin{pmatrix} -2 \\ -1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ 0 \\ 0 \end{pmatrix} \right) = \operatorname{Vect} \left(\begin{pmatrix} -2 \\ -1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ 0 \\ 0 \end{pmatrix} \right) = \operatorname{Vect} \left(\begin{pmatrix} -2 \\ -1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ 0 \\ 0 \end{pmatrix} \right) = \operatorname{Vect} \left(\begin{pmatrix} -2 \\ -1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ 0 \\ 0 \end{pmatrix} \right) = \operatorname{Vect} \left(\begin{pmatrix} -2 \\ -1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ 0 \\ 0 \end{pmatrix} \right) = \operatorname{Vect} \left(\begin{pmatrix} -2 \\ -1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right) = \operatorname{Vect} \left(\begin{pmatrix} -2 \\ -1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right) = \operatorname{Vect} \left(\begin{pmatrix} -2 \\ -1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix},$$

Les deux vecteurs définissant le noyau sont linéairement indépendants, donc dim $\operatorname{Ker} f = 2$.

On applique maintenant le théorème du rang pour en déduire sans calculs la dimension de l'image : $\dim \operatorname{Im} f = \dim \mathbb{R}^4 - \dim \operatorname{Ker} f = 4 - 2 = 2$. Donc le rang de f est 2.

– Deuxième méthode. On calcule d'abord l'image. On note (e_1, e_2, e_3, e_4) la base canonique de \mathbb{R}^4 . Calculons $v_i = f(e_i)$:

$$v_1 = f(e_1) = f\begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} = \begin{pmatrix} 1\\2\\-1 \end{pmatrix}$$
 $v_2 = f(e_2) = f\begin{pmatrix} 0\\1\\0\\0 \end{pmatrix} = \begin{pmatrix} -1\\2\\0 \end{pmatrix}$

$$v_3 = f(e_3) = f\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 6 \\ -2 \end{pmatrix}$$
 $v_4 = f(e_4) = f\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 4 \\ -1 \end{pmatrix}$

On réduit la matrice A, formée des vecteurs colonnes, sous une forme échelonnée :

$$A = \begin{pmatrix} 1 & -1 & 1 & 0 \\ 2 & 2 & 6 & 4 \\ -1 & 0 & -2 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 4 & 0 & 0 \\ -1 & -1 & 0 & 0 \end{pmatrix}$$

Donc le rang de A est 2, ainsi $\operatorname{rg} f = \dim \operatorname{Im} f = \dim \operatorname{Vect} \big(f(e_1), f(e_2), f(e_3), f(e_4) \big) = 2$. Maintenant, par le théorème du rang, $\dim \operatorname{Ker} f = \dim \mathbb{R}^4 - \operatorname{rg} f = 4 - 2 = 2$.

On trouve bien sûr le même résultat par les deux méthodes.

Exemple 271

Soit l'application linéaire

$$f: \mathbb{R}_n[X] \longrightarrow \mathbb{R}_n[X]$$

 $P(X) \longmapsto P''(X)$

où P''(X) est la dérivée seconde de P(X). Quel est le rang et la dimension du noyau de f?

- Première méthode. On calcule d'abord le noyau :

$$P(X) \in \operatorname{Ker} f \iff f(P(X)) = 0 \iff P'(X) = 0 \iff P(X) = aX + b$$

où $a,b \in \mathbb{R}$ sont des constantes. Cela prouve que $\operatorname{Ker} f$ est engendré par les deux polynômes : 1 (le polynôme constant) et X. Ainsi $\operatorname{Ker} f = \operatorname{Vect}(1,X)$. Donc $\dim \operatorname{Ker} f = 2$. Par le théorème du rang, $\operatorname{rg} f = \dim \operatorname{Im} f = \dim \mathbb{R}_n[X] - \dim \operatorname{Ker} f = (n+1) - 2 = n-1$.

- **Deuxième méthode.** On calcule d'abord l'image : $(1, X, X^2, ..., X^n)$ est une base de l'espace de départ $\mathbb{R}_n[X]$, donc $\operatorname{rg} f = \dim \operatorname{Im} f = \dim \operatorname{Vect} \left(f(1), f(X), ..., f(X^n) \right)$. Tout d'abord, f(1) = 0 et f(X) = 0. Pour $k \ge 2$, $f(X^k) = k(k-1)X^{k-2}$. Comme les degrés sont échelonnés, il est clair que $\left\{ f(X^2), f(X^3), ..., f(X^n) \right\} = \left\{ 2, 6X, 12X^2, ..., n(n-1)X^{n-2} \right\}$ engendre un espace de dimension n-1, donc $\operatorname{rg} f = n-1$. Par le théorème du rang, $\dim \operatorname{Ker} f = \dim \mathbb{R}_n[X] - \operatorname{rg} f = (n+1) - (n-1) = 2$.

Démonstration Preuve du théorème du rang

- Premier cas : *f* est injective.

En désignant par (e_1, \ldots, e_n) une base de E, nous avons vu que la famille à n éléments $(f(e_1), \ldots, f(e_n))$ est une famille libre de F (car f est injective), donc une famille libre de $\operatorname{Im} f$. De plus, $\{f(e_1), \ldots, f(e_n)\}$ est une partie génératrice de $\operatorname{Im} f$. Donc $(f(e_1), \ldots, f(e_n))$ est une base de $\operatorname{Im} f$. Ainsi $\dim \operatorname{Im} f = n$, et comme f est injective, $\dim \operatorname{Ker} f = 0$, et ainsi le théorème du rang est vrai.

- Deuxième cas : *f* n'est pas injective.

Dans ce cas le noyau de f est un sous-espace de E de dimension p avec $1 \le p \le n$. Soit $(\varepsilon_1, \ldots, \varepsilon_p)$ une base de Ker f. D'après le théorème de la base incomplète, il existe n-p vecteurs $\varepsilon_{p+1}, \ldots, \varepsilon_n$ de E tels que $(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n)$ soit une base de E.

Alors Im f est engendrée par les vecteurs $f(\varepsilon_1), f(\varepsilon_2), \dots, f(\varepsilon_n)$. Mais, comme pour tout i vérifiant $1 \le i \le p$ on a $f(\varepsilon_i) = 0$, Im f est engendrée par les vecteurs $f(\varepsilon_{p+1}), \dots, f(\varepsilon_n)$.

Montrons que ces vecteurs forment une famille libre. Soient $\alpha_{p+1}, \ldots, \alpha_n$ des scalaires tels que

$$\alpha_{p+1}f(\varepsilon_{p+1})+\cdots+\alpha_nf(\varepsilon_n)=0.$$

Puisque f est linéaire, cette égalité équivaut à l'égalité $f\left(\alpha_{p+1}\varepsilon_{p+1}+\cdots+\alpha_{n}\varepsilon_{n}\right)=0$, qui prouve que le vecteur $\alpha_{p+1}\varepsilon_{p+1}+\cdots+\alpha_{n}\varepsilon_{n}$ appartient au noyau de f. Il existe donc des scalaires $\lambda_{1},\ldots,\lambda_{p}$

tels que

$$\alpha_{p+1}\varepsilon_{p+1} + \cdots + \alpha_n\varepsilon_n = \lambda_1\varepsilon_1 + \cdots + \lambda_p\varepsilon_p$$
.

Comme $(\varepsilon_1, \varepsilon_2, ..., \varepsilon_n)$ est une base de E, les vecteurs $\varepsilon_1, \varepsilon_2, ..., \varepsilon_n$ sont linéairement indépendants et par conséquent pour tout i = 1, ..., p, $\lambda_i = 0$, et pour tout i = p + 1, ..., n, $\alpha_i = 0$. Les vecteurs $f(\varepsilon_{p+1}), ..., f(\varepsilon_n)$ définissent donc bien une base de $\operatorname{Im} f$. Ainsi le sous-espace vectoriel $\operatorname{Im} f$ est de dimension n - p, ce qui achève la démonstration.

On remarquera le rôle essentiel joué par le théorème de la base incomplète dans cette démonstration.

2.4. Application linéaire entre deux espaces de même dimension

Rappelons qu'un *isomorphisme* est une application linéaire bijective. Un isomorphisme implique que les espaces vectoriels de départ et d'arrivée ont la même dimension.

Proposition 132

Soit $f: E \to F$ un isomorphisme d'espaces vectoriels. Si E (respectivement F) est de dimension finie, alors F (respectivement E) est aussi de dimension finie et on a dim $E = \dim F$.

Démonstration

Si E est de dimension finie, alors comme f est surjective, $F=\operatorname{Im} f$, donc F est engendré par l'image d'une base de E. On a donc F de dimension finie et $\dim F \leq \dim E$. De même $f^{-1}: F \to E$ est un isomorphisme, donc $f^{-1}(F)=E$, ce qui prouve cette fois $\dim E \leq \dim F$.

Si c'est F qui est de dimension finie, on fait le même raisonnement avec f^{-1} .

Nous allons démontrer une sorte de réciproque, qui est extrêmement utile.

Théorème 78

Soit $f: E \to F$ une application linéaire avec E et F de dimension finie.

Supposons $\dim E = \dim F$. Alors les assertions suivantes sont équivalentes :

- (i) f est bijective
- (ii) *f* est injective
- (iii) f est surjective

Autrement dit, dans le cas d'une application linéaire entre deux espaces de *même* dimension, pour démontrer qu'elle est bijective, il suffit de démontrer l'une des deux propriétés : injectivité ou surjectivité.

Démonstration

C'est immédiat à partir du théorème du rang. En effet, la propriété f injective équivaut à $\operatorname{Ker} f = \{0\}$, donc d'après le théorème du rang, f est injective si et seulement si $\dim \operatorname{Im} f = \dim E$. D'après l'hypothèse sur l'égalité des dimensions de E et de F, ceci équivaut à $\dim \operatorname{Im} f = \dim F$. Cela équivaut donc à $\operatorname{Im} f = F$, c'est-à-dire f est surjective.

Exemple 272

Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par f(x, y) = (x - y, x + y). Une façon simple de montrer que l'application linéaire f est bijective est de remarquer que l'espace de départ et l'espace d'arrivée ont même

dimension. Ensuite on calcule le noyau:

$$(x,y) \in \operatorname{Ker} f \iff f(x,y) = 0 \iff (x-y,x+y) = (0,0) \iff \begin{cases} x+y &= 0 \\ x-y &= 0 \end{cases} \iff (x,y) = (0,0)$$

Ainsi $\operatorname{Ker} f = \{(0,0)\}$ est réduit au vecteur nul, ce qui prouve que f est injective et donc, par le théorème 78, que f est un isomorphisme.

Exemple 273

On termine par la justification que si une matrice admet un inverse à droite, alors c'est aussi un inverse à gauche. La preuve se fait en deux temps : (1) l'existence d'un inverse à gauche ; (2) l'égalité des inverses.

Soit $A \in M_n(\mathbb{K})$ une matrice admettant un inverse à droite, c'est-à-dire il existe $B \in M_n(\mathbb{K})$ tel que AB = I.

- 1. Soit $f: M_n(\mathbb{K}) \to M_n(\mathbb{K})$ définie par f(M) = MA.
- (a) f est une application linéaire, car $f(\lambda M + \mu N) = (\lambda M + \mu N)A = \lambda f(M) + \mu f(N)$.
- (b) f est injective : en effet supposons f(M) = O (où O est la matrice nulle), cela donne MA = O. On multiplie cette égalité par B à droite, ainsi MAB = OB, donc MI = O, donc M = O.
- (c) Par le théorème 78, f est donc aussi surjective.
- (d) Comme f est surjective, alors en particulier l'identité est dans l'image de f. C'està-dire il existe $C \in M_n(\mathbb{K})$ tel que f(C) = I. Ce qui est exactement dire que C est un inverse à gauche de A: CA = I.
- 2. Nous avons AB = I et CA = I. Montrons B = C. Calculons CAB de deux façons :

$$(CA)B = IB = B$$
 et $C(AB) = CI = C$

donc B = C.

Mini-exercices

- 1. Soit (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 . Donner l'expression de f(x, y, z) où $f : \mathbb{R}^3 \to \mathbb{R}^3$ est l'application linéaire qui envoie e_1 sur son opposé, qui envoie e_2 sur le vecteur nul et qui envoie e_3 sur la somme des trois vecteurs e_1, e_2, e_3 .
- 2. Soit $f: \mathbb{R}^3 \to \mathbb{R}^2$ définie par f(x, y, z) = (x 2y 3z, 2y + 3z). Calculer une base du noyau de f, une base de l'image de f et vérifier le théorème du rang.
- 3. Même question avec $f: \mathbb{R}^3 \to \mathbb{R}^3$ définie par f(x,y,z) = (-y+z,x+z,x+y).
- 4. Même question avec l'application linéaire $f : \mathbb{R}_n[X] \to \mathbb{R}_n[X]$ qui à X^k associe X^{k-1} pour $1 \le k \le n$ et qui à 1 associe 0.
- 5. Lorsque c'est possible, calculer la dimension du noyau, le rang et dire si *f* peut être injective, surjective, bijective :
 - Une application linéaire surjective $f: \mathbb{R}^7 \to \mathbb{R}^4$.
 - Une application linéaire injective $f : \mathbb{R}^5 \to \mathbb{R}^8$.
 - Une application linéaire surjective $f: \mathbb{R}^4 \to \mathbb{R}^4$.

- Une application linéaire injective $f: \mathbb{R}^6 \to \mathbb{R}^6$.

3. Matrice d'une application linéaire

Nous allons voir qu'il existe un lien étroit entre les matrices et les applications linéaires. À une matrice on associe naturellement une application linéaire. Et réciproquement, étant donné une application linéaire, et des bases pour les espaces vectoriels de départ et d'arrivée, on associe une matrice.

Dans cette section, tous les espaces vectoriels sont de dimension finie.

3.1. Matrice associée à une application linéaire

Soient E et F deux \mathbb{K} -espaces vectoriels de dimension finie. Soient p la dimension de E et $\mathscr{B} = (e_1, \ldots, e_p)$ une base de E. Soient n la dimension de F et $\mathscr{B}' = (f_1, \ldots, f_n)$ une base de F. Soit enfin $f: E \to F$ une application linéaire.

Les propriétés des applications linéaires entre deux espaces de dimension finie permettent d'affirmer que :

- l'application linéaire f est déterminée de façon unique par l'image d'une base de E, donc par les vecteurs $f(e_1), f(e_2), \ldots, f(e_p)$.
- Pour $j \in \{1, ..., p\}$, $f(e_j)$ est un vecteur de F et s'écrit de manière unique comme combinaison linéaire des vecteurs de la base $\mathscr{B}' = (f_1, f_2, ..., f_n)$ de F.

 Il existe donc n scalaires uniques $a_{1,j}, a_{2,j}, ..., a_{n,j}$ (parfois aussi notés $a_{1j}, a_{2j}, ..., a_{nj}$) tels

$$f(e_j) = a_{1,j}f_1 + a_{2,j}f_2 + \dots + a_{n,j}f_n = \begin{pmatrix} a_{1,j} \\ a_{2,j} \\ \vdots \\ a_{n,j} \end{pmatrix}_{a_{2,j}}.$$

Ainsi, l'application linéaire f est entièrement déterminée par les coefficients $(a_{i,j})_{(i,j)\in\{1,\dots,n\}\times\{1,\dots,p\}}$. Il est donc naturel d'introduire la définition suivante :

Définition 120

que

La *matrice de l'application linéaire* f par rapport aux bases \mathscr{B} et \mathscr{B}' est la matrice $(a_{i,j}) \in M_{n,p}(\mathbb{K})$ dont la j-ème colonne est constituée par les coordonnées du vecteur $f(e_j)$ dans la base $\mathscr{B}' = (f_1, f_2, \ldots, f_n)$:

$$f(e_1)$$
 ... $f(e_j)$... $f(e_p)$
 f_1
 f_2
 f_3
 f_4
 f_5
 f_6
 f_7
 f_8
 f_8

En termes plus simples : c'est la matrice dont les vecteurs colonnes sont l'image par f des vecteurs de la base de départ \mathscr{B} , exprimée dans la base d'arrivée \mathscr{B}' . On note cette matrice $\mathrm{Mat}_{\mathscr{B},\mathscr{B}'}(f)$.

Remarque

- La taille de la matrice $\operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(f)$ dépend uniquement de la dimension de E et de celle de F.
- Par contre, les coefficients de la matrice dépendent du choix de la base \mathscr{B} de E et de la base \mathscr{B}' de F.

Exemple 274

Soit f l'application linéaire de \mathbb{R}^3 dans \mathbb{R}^2 définie par

$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$

 $(x_1, x_2, x_3) \longmapsto (x_1 + x_2 - x_3, x_1 - 2x_2 + 3x_3)$

Il est utile d'identifier vecteurs lignes et vecteurs colonnes; ainsi f peut être vue comme l'application $f: \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} x_1 + x_2 - x_3 \\ x_1 - 2x_2 + 3x_3 \end{pmatrix}$.

Soient $\mathscr{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 et $\mathscr{B}' = (f_1, f_2)$ la base canonique de \mathbb{R}^2 . C'est-à-dire :

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \qquad e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \qquad e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \qquad \qquad f_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad f_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- 1. Quelle est la matrice de f dans les bases \mathscr{B} et \mathscr{B}' ?
 - On a $f(e_1) = f(1,0,0) = (1,1) = f_1 + f_2$. La première colonne de la matrice $Mat_{\mathscr{B},\mathscr{B}'}(f)$ est donc $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
 - De même $f(e_2) = f(0,1,0) = (1,-2) = f_1 2f_2$. La deuxième colonne de la matrice $\operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(f)$ est donc $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$.
 - Enfin $f(e_3) = f(0,0,1) = (-1,3) = -f_1 + 3f_2$. La troisième colonne de la matrice $\operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(f)$ est donc $\binom{-1}{3}$.

Ainsi:

$$\operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(f) = \begin{pmatrix} 1 & 1 & -1 \\ 1 & -2 & 3 \end{pmatrix}$$

2. On va maintenant changer la base de l'espace de départ et celle de l'espace d'arrivée. Soient les vecteurs

$$\varepsilon_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \quad \varepsilon_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \quad \varepsilon_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \qquad \qquad \phi_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \phi_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

On montre facilement que $\mathscr{B}_0 = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$ est une base de \mathbb{R}^3 et $\mathscr{B}_0' = (\phi_1, \phi_2)$ est une base de \mathbb{R}^2 .

Quelle est la matrice de f dans les bases \mathscr{B}_0 et \mathscr{B}'_0 ?

$$f(\varepsilon_1) = f(1,1,0) = (2,-1) = 3\phi_1 - \phi_2$$
, $f(\varepsilon_2) = f(1,0,1) = (0,4) = -4\phi_1 + 4\phi_2$, $f(\varepsilon_3) = f(0,1,1) = (0,1) = -\phi_1 + \phi_2$, donc

$$\operatorname{Mat}_{\mathscr{B}_0,\mathscr{B}_0'}(f) = \begin{pmatrix} 3 & -4 & -1 \\ -1 & 4 & 1 \end{pmatrix}.$$

Cet exemple illustre bien le fait que la matrice dépend du choix des bases.

3.2. Opérations sur les applications linéaires et les matrices

Proposition 133

Soient $f,g:E\to F$ deux applications linéaires et soient $\mathscr B$ une base de E et $\mathscr B'$ une base de F. Alors :

- $\operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(f+g) = \operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(f) + \operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(g)$
- $\operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(\lambda f) = \lambda \operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(f)$

Autrement dit, si on note:

$$A = \operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(f) \qquad B = \operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(g) \qquad C = \operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(f+g) \qquad D = \operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(\lambda f)$$

Alors:

$$C = A + B$$
 $D = \lambda A$

Autrement dit : la matrice associée à la somme de deux applications linéaires est la somme des matrices (à condition de considérer la même base sur l'espace de départ pour les deux applications et la même base sur l'espace d'arrivée). Idem avec le produit par un scalaire.

Ce qui est le plus important va être la composition des applications linéaires.

Proposition 134

Soient $f: E \to F$ et $g: F \to G$ deux applications linéaires et soient \mathscr{B} une base de E, \mathscr{B}' une base de F et \mathscr{B}'' une base de G. Alors :

$$\operatorname{Mat}_{\mathcal{B},\mathcal{B}''}(g \circ f) = \operatorname{Mat}_{\mathcal{B}',\mathcal{B}''}(g) \times \operatorname{Mat}_{\mathcal{B},\mathcal{B}'}(f)$$

Autrement dit, si on note:

$$A = \operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(f) \qquad B = \operatorname{Mat}_{\mathscr{B}',\mathscr{B}''}(g) \qquad C = \operatorname{Mat}_{\mathscr{B},\mathscr{B}''}(g \circ f)$$

Alors

$$C = B \times A$$

Autrement dit, à condition de bien choisir les bases, la matrice associée à la composition de deux applications linéaires est le produit des matrices associées à chacune d'elles, dans le même ordre. En fait, le produit de matrices, qui semble compliqué au premier abord, est défini afin de correspondre à la composition des applications linéaires.

Démonstration

Posons $p=\dim(E)$ et $\mathscr{B}=(e_1,\ldots,e_p)$ une base de E; $n=\dim F$ et $\mathscr{B}'=(f_1,\ldots,f_n)$ une base de F; $q=\dim G$ et $\mathscr{B}''=(g_1,\ldots,g_q)$ une base de G. Écrivons $A=\operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(f)=(a_{ij})\in M_{n,p}$ la matrice de f, $B=\operatorname{Mat}_{\mathscr{B}',\mathscr{B}''}(g)=(b_{ij})\in M_{q,n}$ la matrice de g, $C=\operatorname{Mat}_{\mathscr{B},\mathscr{B}''}(g\circ f)=(c_{ij})\in M_{q,p}$ la matrice de $g\circ f$. On a

$$\begin{array}{rcl} (g \circ f)(e_1) & = & g\big(f(e_1)\big) \\ & = & g(a_{11}f_1 + \dots + a_{n1}f_n) \\ & = & a_{11}g(f_1) + \dots + a_{n1}g(f_n) \\ & = & a_{11}\Big(b_{11}g_1 + \dots + b_{q1}g_q\Big) + \dots + a_{n1}\Big(b_{1n}g_1 + \dots + b_{qn}g_q\Big) \end{array}$$

Ainsi, la première colonne de $C = \operatorname{Mat}_{\mathscr{B},\mathscr{B}''}(g \circ f)$ est

$$\begin{pmatrix} a_{11}b_{11} + \dots + a_{n1}b_{1n} \\ a_{11}b_{21} + \dots + a_{n1}b_{2n} \\ \vdots \\ a_{11}b_{q1} + \dots + a_{n1}b_{qn} \end{pmatrix}.$$

Mais ceci est aussi la première colonne de la matrice BA. En faisant la même chose avec les autres colonnes, on remarque que $C = \operatorname{Mat}_{\mathscr{B},\mathscr{B}''}(g \circ f)$ et BA sont deux matrices ayant leurs colonnes égales. On a donc bien l'égalité cherchée.

Exemple 275

On considère deux applications linéaires : $f: \mathbb{R}^2 \to \mathbb{R}^3$ et $g: \mathbb{R}^3 \to \mathbb{R}^2$. On pose $E = \mathbb{R}^2$, $F = \mathbb{R}^3$, $G = \mathbb{R}^2$ avec $f : E \to F$, $g : F \to G$. On se donne des bases : $\mathscr{B} = (e_1, e_2)$ une base de $E, \mathscr{B}' = (e_1, e_2)$ (f_1, f_2, f_3) une base de F, et $\mathscr{B}'' = (g_1, g_2)$ une base de G.

On suppose connues les matrices de f et g:

$$A = \operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(f) = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 2 \end{pmatrix} \in M_{3,2} \qquad B = \operatorname{Mat}_{\mathscr{B}',\mathscr{B}''}(g) = \begin{pmatrix} 2 & -1 & 0 \\ 3 & 1 & 2 \end{pmatrix} \in M_{2,3}$$

Calculons la matrice associée à $g \circ f : E \to G$, $C = \operatorname{Mat}_{\mathscr{B},\mathscr{B}''}(g \circ f)$, de deux façons différentes.

- 1. **Première méthode.** Revenons à la définition de la matrice de l'application linéaire $g \circ f$. Il s'agit d'exprimer l'image des vecteurs de la base de départ & dans la base d'arrivée \mathcal{B}'' . C'est-à-dire qu'il faut exprimer $g \circ f(e_j)$ dans la base (g_1, g_2) .
 - Calcul des $f(e_i)$. On sait par définition de la matrice A que $f(e_i)$ correspond au premier vecteur colonne : plus précisément, $f(e_1) = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}_{\mathscr{R}'} = 1f_1 + 1f_2 + 0f_3 = f_1 + f_2$. De même, $f(e_2) = \binom{0}{1}_{\mathscr{Z}'} = 0f_1 + 1f_2 + 2f_3 = f_2 + 2f_3$.

 – Calcul des $g(f_j)$. Par définition, $g(f_j)$ correspond à la j-ème colonne de la matrice B:

$$g(f_1) = \begin{pmatrix} 2 \\ 3 \end{pmatrix}_{\mathscr{B}''} = 2g_1 + 3g_2 \qquad g(f_2) = \begin{pmatrix} -1 \\ 1 \end{pmatrix}_{\mathscr{B}''} = -g_1 + g_2 \qquad g(f_3) = \begin{pmatrix} 0 \\ 2 \end{pmatrix}_{\mathscr{B}''} = 2g_2$$

- Calcul des $g \circ f(e_j)$. Pour cela on combine les deux séries de calculs précédents :

$$g \circ f(e_1) = g(f_1 + f_2) = g(f_1) + g(f_2) = (2g_1 + 3g_2) + (-g_1 + g_2) = g_1 + 4g_2$$

 $g \circ f(e_2) = g(f_2 + 2f_3) = g(f_2) + 2g(f_3) = (-g_1 + g_2) + 2(2g_2) = -g_1 + 5g_2$

- Calcul de la matrice $C = \operatorname{Mat}_{\mathscr{B},\mathscr{B}''}(g \circ f)$: cette matrice est composée des vecteurs $g \circ f(e_i)$ exprimés dans la base \mathscr{B}'' . Comme

$$g \circ f(e_1) = g_1 + 4g_2 = \begin{pmatrix} 1 \\ 4 \end{pmatrix}_{\mathscr{B}''}$$
 $g \circ f(e_2) = -g_1 + 5g_2 = \begin{pmatrix} -1 \\ 5 \end{pmatrix}_{\mathscr{B}''}$ alors $C = \begin{pmatrix} 1 & -1 \\ 4 & 5 \end{pmatrix}$

On trouve bien une matrice de taille 2×2 (car l'espace de départ et d'arrivée de $g \circ f$ est \mathbb{R}^2).

2. **Deuxième méthode.** Utilisons le produit de matrices : on sait que C = BA. Donc

$$\operatorname{Mat}_{\mathscr{B},\mathscr{B}''}(g \circ f) = C = B \times A = \begin{pmatrix} 2 & -1 & 0 \\ 3 & 1 & 2 \end{pmatrix} \times \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 4 & 5 \end{pmatrix}$$

Cet exemple met bien en évidence le gain, en termes de quantité de calculs, réalisé en passant par l'intermédiaire des matrices.

3.3. Matrice d'un endomorphisme

Dans cette section, on étudie la cas où l'espace de départ et l'espace d'arrivée sont identiques : $f: E \to E$ est un endomorphisme. Si dimE = n, alors chaque matrice associée à f est une matrice carrée de taille $n \times n$.

Deux situations:

- Si on choisit la même base \mathscr{B} au départ et à l'arrivée, alors on note simplement $\mathrm{Mat}_{\mathscr{B}}(f)$ la matrice associée à f.
- Mais on peut aussi choisir deux bases distinctes pour le même espace vectoriel E; on note alors comme précédemment $\operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(f)$.

Exemple 276

- Cas de l'identité : id : $E \to E$ est définie par id(x) = x. Alors quelle que soit la base \mathscr{B} de E, la matrice associée est la matrice identité : $\operatorname{Mat}_{\mathscr{B}}(\operatorname{id}) = I_n$. (Attention ! Ce n'est plus vrai si la base d'arrivée est différente de la base de départ.)
- Cas d'une homothétie h_{λ} : $E \to E$, $h_{\lambda}(x) = \lambda \cdot x$ (où $\lambda \in \mathbb{K}$ est le rapport de l'homothétie) : Mat_ℬ(h_{λ}) = λI_n .
- Cas d'une symétrie centrale $s: E \to E$, s(x) = -x: Mat_𝒯 $(s) = -I_n$.
- Cas de $r_{\theta}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ la rotation d'angle θ , centrée à l'origine, dans l'espace vectoriel \mathbb{R}^2 muni de la base canonique \mathscr{B} . Alors $r_{\theta}(x,y) = (x\cos\theta y\sin\theta, x\sin\theta + y\cos\theta)$. On a

$$\operatorname{Mat}_{\mathscr{B}}(r_{\theta}) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

Dans le cas particulier de la puissance d'un endomorphisme de E, nous obtenons :

Corollaire 27

Soient E un espace vectoriel de dimension finie et $\mathscr B$ une base de E. Soit $f:E\to E$ une application linéaire. Alors, quel que soit $p\in\mathbb N$:

$$\operatorname{Mat}_{\mathscr{B}}(f^p) = \left(\operatorname{Mat}_{\mathscr{B}}(f)\right)^p$$

Autrement dit, si A est la matrice associée à f, alors la matrice associée à $f^p = \underbrace{f \circ f \circ \cdots \circ f}_{p \text{ occurrences}}$ est

 $A^p = \underbrace{A \times A \times \cdots \times A}_{p \text{ facteurs}}$. La démonstration est une récurrence sur p en utilisant la proposition 134.

Exemple 277

Soit r_{θ} la matrice de la rotation d'angle θ dans \mathbb{R}^2 . La matrice de r_{θ}^p est :

$$\operatorname{Mat}_{\mathscr{B}}(r_{\theta}^{p}) = \left(\operatorname{Mat}_{\mathscr{B}}(r_{\theta})\right)^{p} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}^{p}$$

Un calcul par récurrence montre ensuite que

$$\operatorname{Mat}_{\mathscr{B}}(r_{\theta}^{p}) = egin{pmatrix} \cos(p\theta) & -\sin(p\theta) \\ \sin(p\theta) & \cos(p\theta) \end{pmatrix},$$

ce qui est bien la matrice de la rotation d'angle $p\theta$: composer p fois la rotation d'angle θ revient à effectuer une rotation d'angle $p\theta$.

3.4. Matrice d'un isomorphisme

Passons maintenant aux isomorphismes. Rappelons qu'un isomorphisme $f: E \to F$ est une application linéaire bijective. Nous avons vu que cela entraı̂ne dim $E = \dim F$.

Théorème 79. Caractérisation de la matrice d'un isomorphisme

Soient E et F deux \mathbb{K} -espaces vectoriels de même dimension finie. Soit $f: E \to F$ une application linéaire. Soient \mathscr{B} une base de E, \mathscr{B}' une base de F et $A = \operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(f)$.

- 1. f est bijective si et seulement si la matrice A est inversible. Autrement dit, f est un isomorphisme si et seulement si sa matrice associée $\text{Mat}_{\mathscr{B},\mathscr{B}'}(f)$ est inversible.
- 2. De plus, si $f: E \to F$ est bijective, alors la matrice de l'application linéaire $f^{-1}: F \to E$ est la matrice A^{-1} . Autrement dit, $\operatorname{Mat}_{\mathscr{B}',\mathscr{B}}(f^{-1}) = \left(\operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(f)\right)^{-1}$.

Voici le cas particulier très important d'un endomorphisme $f: E \to E$ où E est muni de la même base \mathscr{B} au départ et à l'arrivée et $A = \operatorname{Mat}_{\mathscr{B}}(f)$.

Corollaire 28

- f est bijective si et seulement si A est inversible.
- Si f est bijective, alors la matrice associée à f^{-1} dans la base \mathscr{B} est A^{-1} .

Autrement dit : $\operatorname{Mat}_{\mathscr{B}}(f^{-1}) = (\operatorname{Mat}_{\mathscr{B}}(f))^{-1}$.

Exemple 278

Soient $r: \mathbb{R}^2 \to \mathbb{R}^2$ la rotation d'angle $\frac{\pi}{6}$ (centrée à l'origine) et s la réflexion par rapport à l'axe (y=x). Quelle est la matrice associée à $(s \circ r)^{-1}$ dans la base canonique \mathscr{B} ?

- Pour $\theta = \frac{\pi}{6}$, on trouve la matrice $A = \operatorname{Mat}_{\mathscr{B}}(r) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$.
- La matrice associée à la réflexion est $B = \text{Mat}_{\mathscr{B}}(s) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.
- La matrice de $s \circ r$ est $B \times A = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$.

- La matrice de $(s \circ r)^{-1}$ est $(BA)^{-1} = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}^{-1} = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$. On aurait aussi pu calculer ainsi : $(BA)^{-1} = A^{-1}B^{-1} = \cdots$
- On note que $(BA)^{-1} = BA$ ce qui, en termes d'applications linéaires, signifie que $(s \circ r)^{-1} = s \circ r$. Autrement dit, $s \circ r$ est son propre inverse.

Démonstration Preuve du théorème 79

On note $A = \operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(f)$.

- Si f est bijective, notons $B = \operatorname{Mat}_{\mathscr{B}',\mathscr{B}}(f^{-1})$. Alors par la proposition 134 on sait que

$$BA = \operatorname{Mat}_{\mathscr{B}',\mathscr{B}}(f^{-1}) \times \operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(f) = \operatorname{Mat}_{\mathscr{B},\mathscr{B}}(f^{-1} \circ f) = \operatorname{Mat}_{\mathscr{B},\mathscr{B}}(\operatorname{id}_E) = I.$$

De même AB = I. Ainsi $A = \operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(f)$ est inversible et son inverse est $B = \operatorname{Mat}_{\mathscr{B}',\mathscr{B}}(f^{-1})$.

- Réciproquement, si $A = \operatorname{Mat}_{\mathscr{B}, \mathscr{B}'}(f)$ est une matrice inversible, notons $B = A^{-1}$. Soit $g : F \to E$ l'application linéaire telle que $B = \operatorname{Mat}_{\mathscr{B}', \mathscr{B}}(g)$. Alors, toujours par la proposition 134 :

$$\operatorname{Mat}_{\mathcal{B},\mathcal{B}}(g \circ f) = \operatorname{Mat}_{\mathcal{B}',\mathcal{B}}(g) \times \operatorname{Mat}_{\mathcal{B},\mathcal{B}'}(f) = BA = I$$

Donc la matrice de $g \circ f$ est l'identité, ce qui implique $g \circ f = \mathrm{id}_E$. De même $f \circ g = \mathrm{id}_F$. Ainsi f est bijective (et sa bijection réciproque est g).

Mini-exercices

- 1. Calculer la matrice associée aux applications linéaires $f_i: \mathbb{R}^2 \to \mathbb{R}^2$ dans la base canonique :
- (a) f_1 la symétrie par rapport à l'axe (Oy),
- (b) f_2 la symétrie par rapport à l'axe (y = x),
- (c) f_3 le projection orthogonale sur l'axe (Oy),
- (d) f_4 la rotation d'angle $\frac{\pi}{4}$.

Calculer quelques matrices associées à $f_i \circ f_j$ et, lorsque c'est possible, à f_i^{-1} .

- 2. Même travail pour $f_i : \mathbb{R}^3 \to \mathbb{R}^3$:
 - (a) f_1 l'homothétie de rapport λ ,
 - (b) f_2 la réflexion orthogonale par rapport au plan (Oxz),
 - (c) f_3 la rotation d'axe (Oz) d'angle $-\frac{\pi}{2}$,
 - (d) f_4 la projection orthogonale sur le plan (Oyz).

4. Changement de bases

4.1. Application linéaire, matrice, vecteur

Soit E un espace vectoriel de dimension finie et soit $\mathcal{B} = (e_1, e_2, \dots, e_p)$ une base de E. Pour chaque $x \in E$, il existe un p-uplet unique d'éléments de \mathbb{K} (x_1, x_2, \dots, x_p) tel que

$$x = x_1 e_1 + x_2 e_2 + \cdots + x_n e_n$$
.

La matrice des coordonnées de x est un vecteur colonne, noté $\mathrm{Mat}_{\mathscr{B}}(x)$ ou encore $\begin{pmatrix} x_1 \\ x_2 \\ \vdots \end{pmatrix}$.

Dans \mathbb{R}^p , si \mathscr{B} est la base canonique, alors on note simplement $\begin{pmatrix} \tilde{x}_2^1 \\ \vdots \end{pmatrix}$ en omettant de mentionner la base.

Soient E et F deux \mathbb{K} -espaces vectoriels de dimension finie et $f: E \to F$ une application linéaire. Le but de ce paragraphe est de traduire l'égalité vectorielle y = f(x) par une égalité matricielle. Soient \mathcal{B} une base de E et \mathcal{B}' une base de F.

Proposition 135

- Soit $A = \operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(f)$. Pour $x \in E$, notons $X = \operatorname{Mat}_{\mathscr{B}}(x) = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix}_{\mathscr{B}}$. Pour $y \in F$, notons $Y = \operatorname{Mat}_{\mathscr{B}'}(y) = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}_{\mathscr{B}'}$.

$$Y = AX$$

Autrement dit:

$$\operatorname{Mat}_{\mathscr{B}'}(f(x)) = \operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(f) \times \operatorname{Mat}_{\mathscr{B}}(x)$$

Démonstration

- On pose
$$\mathscr{B} = (e_1, \dots, e_p), \mathscr{B}' = (f_1, f_2, \dots, f_n), A = (a_{i,j}) = \operatorname{Mat}_{\mathscr{B}, \mathscr{B}'}(f) \text{ et } X = \operatorname{Mat}_{\mathscr{B}}(x) = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

- On a

$$f(x) = f\left(\sum_{j=1}^{p} x_j e_j\right) = \sum_{j=1}^{p} x_j f(e_j) = \sum_{j=1}^{p} x_j \left(\sum_{i=1}^{n} a_{i,j} f_i\right).$$

En utilisant la commutativité de K, on a

$$f(x) = \left(\sum_{j=1}^{p} a_{1,j} x_j\right) f_1 + \dots + \left(\sum_{j=1}^{p} a_{n,j} x_j\right) f_n.$$

- La matrice colonne des coordonnées de y = f(x) dans la base $(f_1, f_2, ..., f_n)$ est $\begin{pmatrix} \sum_{j=1}^{\nu} a_{1,j} x_j \\ \sum_{j=1}^{p} a_{2,j} x_j \\ \vdots \\ \sum_{j=1}^{p} a_{n,j} x_j \end{pmatrix}.$
- Ainsi la matrice $Y = \operatorname{Mat}_{\mathscr{B}'} \left(f(x) \right) = \begin{pmatrix} \sum_{j=1}^{p} a_{1,j} x_{j} \\ \sum_{j=1}^{p} a_{2,j} x_{j} \\ \vdots \\ \sum_{p} a_{p,j} a_{p,j} \end{pmatrix}$ n'est autre que $A \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{p} \end{pmatrix}$.

Exemple 279

Soient E un \mathbb{K} -espace vectoriel de dimension 3 et $\mathscr{B} = (e_1, e_2, e_3)$ une base de E. Soit f l'endomorphisme de E dont la matrice dans la base \mathscr{B} est égale à

$$A = \operatorname{Mat}_{\mathscr{B}}(f) = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

On se propose de déterminer le noyau de f et l'image de f.

Les éléments x de E sont des combinaisons linéaires de e_1 , e_2 et e_3 : $x = x_1e_1 + x_2e_2 + x_3e_3$. On a

$$x \in \operatorname{Ker} f \iff f(x) = 0_{E} \iff \operatorname{Mat}_{\mathscr{B}}(f(x)) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\iff AX = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \iff A \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\iff \begin{cases} x_{1} + 2x_{2} + x_{3} = 0 \\ 2x_{1} + 3x_{2} + x_{3} = 0 \\ x_{1} + x_{2} = 0 \end{cases}$$

On résout ce système par la méthode du pivot de Gauss. On trouve

$$\operatorname{Ker} f = \left\{ x_1 e_1 + x_2 e_2 + x_3 e_3 \in E \mid x_1 + 2x_2 + x_3 = 0 \text{ et } x_2 + x_3 = 0 \right\} = \left\{ \begin{pmatrix} t \\ -t \end{pmatrix} \mid t \in \mathbb{K} \right\} = \operatorname{Vect} \left(\begin{pmatrix} 1 \\ -1 \end{pmatrix}_{\otimes} \right)$$

Le noyau est donc de dimension 1. Par le théorème du rang, l'image $\operatorname{Im} f$ est de dimension 2. Les deux premiers vecteurs de la matrice A étant linéairement indépendants, ils engendrent $\operatorname{Im} f : \operatorname{Im} f = \operatorname{Vect} \left(\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}_{\mathscr{B}}, \begin{pmatrix} 2 \\ 3 \\ 1 \end{bmatrix}_{\mathscr{B}} \right)$.

4.2. Matrice de passage d'une base à une autre

Soit E un espace vectoriel de dimension finie n. On sait que toutes les bases de E ont n éléments.

Définition 121

Soit \mathcal{B} une base de E. Soit \mathcal{B}' une autre base de E.

On appelle *matrice de passage* de la base \mathscr{B} vers la base \mathscr{B}' , et on note $P_{\mathscr{B},\mathscr{B}'}$, la matrice carrée de taille $n \times n$ dont la j-ème colonne est formée des coordonnées du j-ème vecteur de la base \mathscr{B}' , par rapport à la base \mathscr{B} .

On résume en :

La matrice de passage $P_{\mathscr{B},\mathscr{B}'}$ contient - en colonnes - les coordonnées des vecteurs de la nouvelle base \mathscr{B}' exprimés dans l'ancienne base \mathscr{B} .

C'est pourquoi on note parfois aussi $P_{\mathscr{B},\mathscr{B}'}$ par $Mat_{\mathscr{B}}(\mathscr{B}')$.

Exemple 280

Soit l'espace vectoriel réel \mathbb{R}^2 . On considère

$$e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad e_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \qquad \varepsilon_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \qquad \varepsilon_2 = \begin{pmatrix} 5 \\ 4 \end{pmatrix}.$$

On considère la base $\mathcal{B} = (e_1, e_2)$ et la base $\mathcal{B}' = (\varepsilon_1, \varepsilon_2)$.

Quelle est la matrice de passage de la base \mathscr{B} vers la base \mathscr{B}' ?

Il faut exprimer ε_1 et ε_2 en fonction de (e_1,e_2) . On calcule que :

$$arepsilon_1 = -e_1 + 2e_2 = egin{pmatrix} -1 \ 2 \end{pmatrix}_{\mathscr{B}} \qquad arepsilon_2 = e_1 + 4e_2 = egin{pmatrix} 1 \ 4 \end{pmatrix}_{\mathscr{B}}$$

La matrice de passage est donc :

$$\mathbf{P}_{\mathscr{B},\mathscr{B}'} = \begin{pmatrix} -1 & 1 \\ 2 & 4 \end{pmatrix}$$

On va interpréter une matrice de passage comme la matrice associée à l'application identité de E par rapport à des bases bien choisies.

Proposition 136

La matrice de passage $P_{\mathscr{B},\mathscr{B}'}$ de la base \mathscr{B} vers la base \mathscr{B}' est la matrice associée à l'identité $id_E:(E,\mathscr{B}')\to(E,\mathscr{B})$ où E est l'espace de départ muni de la base \mathscr{B}' , et E est aussi l'espace d'arrivée, mais muni de la base \mathscr{B} :

$$\boxed{\mathbf{P}_{\mathscr{B},\mathscr{B}'} = \mathbf{Mat}_{\mathscr{B}',\mathscr{B}}(\mathrm{id}_E)}$$

Faites bien attention à l'inversion de l'ordre des bases!

Cette interprétation est un outil fondamental pour ce qui suit. Elle permet d'obtenir les résultats de façon très élégante et avec un minimum de calculs.

Démonstration

On pose $\mathcal{B} = (e_1, e_2, \dots, e_n)$ et $\mathcal{B}' = (e'_1, e'_2, \dots, e'_n)$. On considère

$$\begin{array}{cccc} \mathrm{id}_E & : & (E,\mathcal{B}') & \longrightarrow & (E,\mathcal{B}) \\ & x & \longmapsto & \mathrm{id}_E(x) = x \end{array}$$

On a $\mathrm{id}_E(e'_j) = e'_j = \sum_{i=1}^n a_{i,j} e_i$ et $\mathrm{Mat}_{\mathscr{B}',\mathscr{B}}(\mathrm{id}_E)$ est la matrice dont la j-ème colonne est formée des coordonnées de e'_j par rapport à \mathscr{B} , soit $\begin{pmatrix} a_{1,j} \\ a_{2,j} \\ \vdots \\ a_{r-1} \end{pmatrix}$. Cette colonne est la j-ème colonne de $\mathrm{P}_{\mathscr{B},\mathscr{B}'}$.

Proposition 137

- 1. La matrice de passage d'une base \mathscr{B} vers une base \mathscr{B}' est inversible et son inverse est égale à la matrice de passage de la base \mathscr{B}' vers la base \mathscr{B} : $P_{\mathscr{B}',\mathscr{B}} = (P_{\mathscr{B},\mathscr{B}'})^{-1}$
- 2. Si \mathscr{B} , \mathscr{B}' et \mathscr{B}'' sont trois bases, alors $P_{\mathscr{B},\mathscr{B}''} = P_{\mathscr{B},\mathscr{B}'} \times P_{\mathscr{B}',\mathscr{B}''}$

Démonstration

- 1. On a $P_{\mathscr{B},\mathscr{B}'} = \operatorname{Mat}_{\mathscr{B}',\mathscr{B}}(\operatorname{id}_E)$. Donc, d'après le théorème 79 caractérisant la matrice d'un isomorphisme, $P_{\mathscr{B},\mathscr{B}'}^{-1} = (\operatorname{Mat}_{\mathscr{B}',\mathscr{B}}(\operatorname{id}_E))^{-1} = \operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(\operatorname{id}_E^{-1})$. Or $\operatorname{id}_E^{-1} = \operatorname{id}_E$, donc $P_{\mathscr{B},\mathscr{B}'}^{-1} = \operatorname{Mat}_{\mathscr{B},\mathscr{B}'}(\operatorname{id}_E) = P_{\mathscr{B}',\mathscr{B}}$.
- 2. $id_E:(E,\mathcal{B}'')\to(E,\mathcal{B})$ se factorise de la façon suivante :

$$(E, \mathscr{B}'') \xrightarrow{\mathrm{id}_E} (E, \mathscr{B}') \xrightarrow{\mathrm{id}_E} (E, \mathscr{B}).$$

Autrement dit, on écrit $\mathrm{id}_E=\mathrm{id}_E\circ\mathrm{id}_E$. Cette factorisation permet d'écrire l'égalité suivante : $\mathrm{Mat}_{\mathscr{B}'',\mathscr{B}}\left(\mathrm{id}_E\right)=\mathrm{Mat}_{\mathscr{B}',\mathscr{B}}\left(\mathrm{id}_E\right)\times\mathrm{Mat}_{\mathscr{B}'',\mathscr{B}'}\left(\mathrm{id}_E\right)$, soit $\mathrm{P}_{\mathscr{B},\mathscr{B}''}=\mathrm{P}_{\mathscr{B},\mathscr{B}'}\times\mathrm{P}_{\mathscr{B}',\mathscr{B}''}$.

Exemple 281

Soit $E = \mathbb{R}^3$ muni de sa base canonique \mathscr{B} . Définissons

$$\mathcal{B}_1 = \left(\begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\-1\\0 \end{pmatrix}, \begin{pmatrix} 3\\2\\-1 \end{pmatrix} \right) \qquad \text{et} \qquad \mathcal{B}_2 = \left(\begin{pmatrix} 1\\-1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\-1 \end{pmatrix} \right).$$

Quelle est la matrice de passage de \mathcal{B}_1 vers \mathcal{B}_2 ?

On a d'abord

$$P_{\mathcal{B},\mathcal{B}_1} = \begin{pmatrix} 1 & 0 & 3 \\ 1 & -1 & 2 \\ 0 & 0 & -1 \end{pmatrix} \qquad \text{et} \qquad P_{\mathcal{B},\mathcal{B}_2} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

La proposition 137 implique que $P_{\mathscr{B},\mathscr{B}_2} = P_{\mathscr{B},\mathscr{B}_1} \times P_{\mathscr{B}_1,\mathscr{B}_2}$. Donc $P_{\mathscr{B}_1,\mathscr{B}_2} = P_{\mathscr{B},\mathscr{B}_1}^{-1} \times P_{\mathscr{B},\mathscr{B}_2}$. En appliquant la méthode de Gauss pour calculer $P_{\mathscr{B},\mathscr{B}_1}^{-1}$, on trouve alors :

$$\mathbf{P}_{\mathscr{B}_{1},\mathscr{B}_{2}} = \begin{pmatrix} 1 & 0 & 3 \\ 1 & -1 & 2 \\ 0 & 0 & -1 \end{pmatrix}^{-1} \times \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 3 \\ 1 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -3 \\ 2 & -1 & -1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Nous allons maintenant étudier l'effet d'un changement de bases sur les coordonnées d'un vecteur.

- Soient $\mathcal{B} = (e_1, e_2, \dots, e_n)$ et $\mathcal{B}' = (e'_1, e'_2, \dots, e'_n)$ deux bases d'un même \mathbb{K} -espace vectoriel E.
- Soit $P_{\mathscr{B},\mathscr{B}'}$ la matrice de passage de la base \mathscr{B} vers la base \mathscr{B}' .
- Pour $x \in E$, il se décompose en $x = \sum_{i=1}^{n} x_i e_i$ dans la base \mathscr{B} et on note $X = \operatorname{Mat}_{\mathscr{B}}(x) = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}_{\mathscr{B}}$.
- Ce même $x \in E$ se décompose en $x = \sum_{i=1}^n x_i' e_i'$ dans la base \mathscr{B}' et on note $X' = \operatorname{Mat}_{\mathscr{B}'}(x) = \operatorname{Mat}_{\mathscr{B}'}(x)$

$$\begin{pmatrix} x_1 \\ x_2' \\ \vdots \\ x_n' \end{pmatrix}_{\mathscr{B}'}$$

Proposition 138

$$X = \mathbf{P}_{\mathscr{B},\mathscr{B}'} \times X'$$

Notez bien l'ordre!

Démonstration

 $P_{\mathscr{B},\mathscr{B}'}$ est la matrice de $id_E:(E,\mathscr{B}')\to(E,\mathscr{B})$. On utilise que $x=id_E(x)$ et la proposition 135. On a :

$$X = \operatorname{Mat}_{\mathscr{B}}(x) = \operatorname{Mat}_{\mathscr{B}}\left(\operatorname{id}_{E}(x)\right) = \operatorname{Mat}_{\mathscr{B}',\mathscr{B}}(\operatorname{id}_{E}) \times \operatorname{Mat}_{\mathscr{B}'}(x) = \operatorname{P}_{\mathscr{B},\mathscr{B}'} \times X'$$

4.3. Formule de changement de base

- Soient E et F deux \mathbb{K} -espaces vectoriels de dimension finie.
- Soit f : E → F une application linéaire.
- Soient \mathscr{B}_E , \mathscr{B}'_E deux bases de E.
- Soient \mathscr{B}_F , \mathscr{B}'_F deux bases de F.
- Soit $P = P_{\mathscr{B}_E, \mathscr{B}_E'}$ la matrice de passage de \mathscr{B}_E à \mathscr{B}_E' .
- Soit $Q = P_{\mathscr{B}_F, \mathscr{B}'_F}$ la matrice de passage de \mathscr{B}_F à \mathscr{B}'_F .
- Soit $A = \operatorname{Mat}_{\mathscr{B}_{E},\mathscr{B}_{F}}(f)$ la matrice de l'application linéaire f de la base \mathscr{B}_{E} vers la base \mathscr{B}_{F} .
- Soit $B = \operatorname{Mat}_{\mathscr{B}_{F}',\mathscr{B}_{F}'}(f)$ la matrice de l'application linéaire f de la base \mathscr{B}_{E}' vers la base \mathscr{B}_{F}' .

Théorème 80. Formule de changement de base

$$B = Q^{-1}AP$$

Démonstration

L'application $f:(E,\mathscr{B}_E')\to (F,\mathscr{B}_F')$ se factorise de la façon suivante :

$$(E, \mathcal{B}_E') \xrightarrow{\mathrm{id}_E} (E, \mathcal{B}_E) \xrightarrow{f} (F, \mathcal{B}_F) \xrightarrow{\mathrm{id}_F} (F, \mathcal{B}_F'),$$

c'est-à-dire que $f = id_F \circ f \circ id_E$.

On a donc l'égalité de matrices suivante :

$$\begin{array}{lcl} B & = & \operatorname{Mat}_{\mathscr{B}_{E}',\mathscr{B}_{F}'}(f) \\ & = & \operatorname{Mat}_{\mathscr{B}_{F},\mathscr{B}_{F}'}(\operatorname{id}_{F}) \times \operatorname{Mat}_{\mathscr{B}_{E},\mathscr{B}_{F}}(f) \times \operatorname{Mat}_{\mathscr{B}_{E}',\mathscr{B}_{E}}(\operatorname{id}_{E}) \\ & = & \operatorname{P}_{\mathscr{B}_{F}',\mathscr{B}_{F}} \times \operatorname{Mat}_{\mathscr{B}_{E},\mathscr{B}_{F}}(f) \times \operatorname{P}_{\mathscr{B}_{E},\mathscr{B}_{E}'} \\ & = & Q^{-1}AP \end{array}$$

Dans le cas particulier d'un endomorphisme, nous obtenons une formule plus simple :

- Soit $f: E \to E$ une application linéaire.
- Soient \mathcal{B} , \mathcal{B}' deux bases de E.
- Soit $P = P_{\mathcal{B}, \mathcal{B}'}$ la matrice de passage de \mathcal{B} à \mathcal{B}' .
- Soit $A = \operatorname{Mat}_{\mathscr{B}}(f)$ la matrice de l'application linéaire f dans la base \mathscr{B} .
- Soit $B = \operatorname{Mat}_{\mathscr{B}'}(f)$ la matrice de l'application linéaire f dans la base \mathscr{B}' .

Le théorème 80 devient alors :

Corollaire 29

$$B = P^{-1}AP$$

Exemple 282

Reprenons les deux bases de \mathbb{R}^3 de l'exemple 281 :

$$\mathcal{B}_1 = \left(\begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\-1\\0 \end{pmatrix}, \begin{pmatrix} 3\\2\\-1 \end{pmatrix} \right) \qquad \text{et} \qquad \mathcal{B}_2 = \left(\begin{pmatrix} 1\\-1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\-1 \end{pmatrix} \right).$$

Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire dont la matrice dans la base \mathscr{B}_1 est :

$$A = \operatorname{Mat}_{\mathscr{B}_1}(f) = \begin{pmatrix} 1 & 0 & -6 \\ -2 & 2 & -7 \\ 0 & 0 & 3 \end{pmatrix}$$

Que vaut la matrice de f dans la base \mathcal{B}_2 , $B = \operatorname{Mat}_{\mathcal{B}_2}(f)$?

1. Nous avions calculé que la matrice de passage de \mathcal{B}_1 vers \mathcal{B}_2 était

$$P = \mathbf{P}_{\mathcal{B}_1, \mathcal{B}_2} = \begin{pmatrix} 1 & 0 & -3 \\ 2 & -1 & -1 \\ 0 & 0 & 1 \end{pmatrix}.$$

- 2. On calcule aussi $P^{-1} = \begin{pmatrix} 1 & 0 & 3 \\ 2 & -1 & 5 \\ 0 & 0 & 1 \end{pmatrix}$.
- 3. On applique la formule du changement de base du corollaire 29 :

$$B = P^{-1}AP = \begin{pmatrix} 1 & 0 & 3 \\ 2 & -1 & 5 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & -6 \\ -2 & 2 & -7 \\ 0 & 0 & 3 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & -3 \\ 2 & -1 & -1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

C'est souvent l'intérêt des changements de base, se ramener à une matrice plus simple. Par exemple ici, il est facile de calculer les puissances B^k , pour en déduire les A^k .

4.4. Matrices semblables

Les matrices considérées dans ce paragraphe sont des matrices carrées, éléments de $M_n(\mathbb{K})$.

Définition 122

Soient A et B deux matrices de $M_n(\mathbb{K})$. On dit que la matrice B est semblable à la matrice A s'il existe une matrice inversible $P \in M_n(\mathbb{K})$ telle que $B = P^{-1}AP$.

C'est un bon exercice de montrer que la relation « être semblable » est une relation d'équivalence dans l'ensemble $M_n(\mathbb{K})$:

Proposition 139

- La relation est *réflexive* : une matrice *A* est semblable à elle-même.
- La relation est symétrique: si A est semblable à B, alors B est semblable à A.
- La relation est *transitive* : si A est semblable à B, et B est semblable à C, alors A est semblable à C.

Vocabulaire:

Compte tenu de ces propriétés, on peut dire indifféremment que la matrice A est semblable à la matrice B ou que les matrices A et B sont semblables.

Le corollaire 29 se reformule ainsi :

Corollaire 30

Deux matrices semblables représentent le même endomorphisme, mais exprimé dans des bases différentes.

Mini-exercices

Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par f(x,y) = (2x+y,3x-2y), Soit $v = \begin{pmatrix} 3\\-4 \end{pmatrix} \in \mathbb{R}^2$ avec ses coordonnées dans la base canonique \mathscr{B}_0 de \mathbb{R}^2 . Soit $\mathscr{B}_1 = \left(\begin{pmatrix} 3\\2 \end{pmatrix}, \begin{pmatrix} 2\\2 \end{pmatrix} \right)$ une autre base de \mathbb{R}^2 .

- 1. Calculer la matrice de f dans la base canonique.
- 2. Calculer les coordonnées de f(v) dans la base canonique.
- 3. Calculer la matrice de passage de \mathcal{B}_0 à \mathcal{B}_1 .
- 4. En déduire les coordonnées de v dans la base \mathcal{B}_1 , et de f(v) dans la base \mathcal{B}_1 .
- 5. Calculer la matrice de f dans la base \mathcal{B}_1 .

Même exercice dans \mathbb{R}^3 avec $f: \mathbb{R}^3 \to \mathbb{R}^3$, f(x,y,z) = (x-2y,y-2z,z-2x), $v = \begin{pmatrix} 3\\-2\\1 \end{pmatrix} \in \mathbb{R}^3$ et $\mathscr{B}_1 = \begin{pmatrix} 0\\1\\2 \end{pmatrix}, \begin{pmatrix} 2\\0\\1 \end{pmatrix}, \begin{pmatrix} 2\\0\\0 \end{pmatrix}$.

Auteurs

- D'après un cours de Sophie Chemla de l'université Pierre et Marie Curie, reprenant des parties d'un cours de H. Ledret et d'une équipe de l'université de Bordeaux animée par J. Queyrut,
- réécrit et complété par Arnaud Bodin. Relu par Vianney Combet.

- 1 Déterminant en dimension 2 et 3
- 2 Définition du déterminant
- 3 Propriétés du déterminant
- 4 Calculs de déterminants
- 5 Applications des déterminants

```
Vidéo ■ partie 1. Déterminant en dimension 2 et 3
Vidéo ■ partie 2. Définition du déterminant
Vidéo ■ partie 3. Propriétés du déterminant
Vidéo ■ partie 4. Calculs de déterminants
Vidéo ■ partie 5. Applications des déterminants
Exercices ◆ Calculs de déterminants
```

Le déterminant est un nombre que l'on associe à n vecteurs $(v_1, ..., v_n)$ de \mathbb{R}^n . Il correspond au volume du parallélépipède engendré par ces n vecteurs. On peut aussi définir le déterminant d'une matrice A. Le déterminant permet de savoir si une matrice est inversible ou pas, et de façon plus générale, joue un rôle important dans le calcul matriciel et la résolution de systèmes linéaires.

Dans tout ce qui suit, nous considérons des matrices à coefficients dans un corps commutatif \mathbb{K} , les principaux exemples étant $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$. Nous commençons par donner l'expression du déterminant d'une matrice en petites dimensions.

1. Déterminant en dimension 2 et 3

1.1. Matrice 2×2

En dimension 2, le déterminant est très simple à calculer :

$$\det\begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc.$$

C'est donc le produit des éléments sur la diagonale principale (en bleu) moins le produit des éléments sur l'autre diagonale (en orange).

1.2. Matrice 3 × 3

Soit $A \in M_3(\mathbb{K})$ une matrice 3×3 :

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}.$$

Voici la formule pour le déterminant :

$$\det A = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{31}a_{22}a_{13} - a_{32}a_{23}a_{11} - a_{33}a_{21}a_{12}.$$

Il existe un moyen facile de retenir cette formule, c'est la règle de Sarrus : on recopie les deux premières colonnes à droite de la matrice (colonnes grisées), puis on additionne les produits de trois termes en les regroupant selon la direction de la diagonale descendante (en bleu), et on soustrait ensuite les produits de trois termes regroupés selon la direction de la diagonale montante (en orange).

Exemple 283

Calculons le déterminant de la matrice $A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & -1 & 3 \\ 3 & 2 & 1 \end{pmatrix}$.

Par la règle de Sarrus :

$$\det A = 2 \times (-1) \times 1 + 1 \times 3 \times 3 + 0 \times 1 \times 2 - 3 \times (-1) \times 0 - 2 \times 3 \times 2 - 1 \times 1 \times 1 = -6.$$

Attention : cette méthode ne s'applique pas pour les matrices de taille supérieure à 3. Nous verrons d'autres méthodes qui s'appliquent aux matrices carrées de toutes tailles et donc aussi aux matrices 3×3 .

1.3. Interprétation géométrique du déterminant

On va voir qu'en dimension 2, les déterminants correspondent à des aires et en dimension 3 à des

Donnons nous deux vecteurs $v_1 = \binom{a}{c}$ et $v_2 = \binom{b}{d}$ du plan \mathbb{R}^2 . Ces deux vecteurs v_1, v_2 déterminent un parallélogramme.

Proposition 140

L'aire du parallélogramme est donnée par la valeur absolue du déterminant :

$$\mathscr{A} = \Big| \det(v_1, v_2) \Big| = \Big| \det \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Big|.$$

De manière similaire, trois vecteurs de l'espace \mathbb{R}^3 :

$$v_1 = \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix}$$
 $v_2 = \begin{pmatrix} a_{12} \\ a_{22} \\ a_{32} \end{pmatrix}$ $v_3 = \begin{pmatrix} a_{13} \\ a_{23} \\ a_{33} \end{pmatrix}$

définissent un parallélépipède.

À partir de ces trois vecteurs on définit, en juxtaposant les colonnes, une matrice et un déterminant :

$$\det(v_1, v_2, v_3) = \det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}.$$

Proposition 141

Le volume du parallélépipède est donné par la valeur absolue du déterminant :

$$\mathcal{V} = \left| \det(v_1, v_2, v_3) \right|.$$

On prendra comme unité d'aire dans \mathbb{R}^2 l'aire du carré unité dont les côtés sont les vecteurs de la base canonique $(\binom{1}{0},\binom{0}{1})$, et comme unité de volume dans \mathbb{R}^3 , le volume du cube unité.

Démonstration

Traitons le cas de la dimension 2. Le résultat est vrai si $v_1 = \binom{a}{0}$ et $v_2 = \binom{0}{d}$. En effet, dans ce cas on a affaire à un rectangle de côtés |a| et |d|, donc d'aire |ad|, alors que le déterminant de la matrice $\begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$ vaut ad.

Si les vecteurs v_1 et v_2 sont colinéaires alors le parallélogramme est aplati, donc d'aire nulle; on calcule facilement que lorsque deux vecteurs sont colinéaires, leur déterminant est nul.

Dans la suite on suppose que les vecteurs ne sont pas colinéaires. Notons $v_1 = {a \choose c}$ et $v_2 = {b \choose d}$. Si $a \neq 0$, alors $v_2' = v_2 - \frac{b}{a}v_1$ est un vecteur vertical : $v_2' = {0 \choose d - \frac{b}{a}c}$.

L'opération de remplacer v_2 par v_2' ne change pas l'aire du parallélogramme (c'est comme si on avait coupé le triangle vert et on l'avait collé à la place le triangle bleu).

Cette opération ne change pas non plus le déterminant car on a toujours :

$$\det(v_1, v_2') = \det\begin{pmatrix} a & 0 \\ b & d - \frac{b}{a}c \end{pmatrix} = ad - bc = \det(v_1, v_2).$$

On pose alors $v_1' = {a \choose 0}$: c'est un vecteur horizontal. Encore une fois l'opération de remplacer v_1 par v_1' ne change ni l'aire des parallélogrammes ni le déterminant car

$$\det(v_1',v_2') = \det\begin{pmatrix} a & 0 \\ 0 & d - \frac{b}{a}c \end{pmatrix} = ad - bc = \det(v_1,v_2).$$

On s'est donc ramené au premier cas d'un rectangle aux côtés parallèles aux axes, pour lequel le résultat est déjà acquis.

Le cas tridimensionnel se traite de façon analogue.

Mini-exercices

1. Pour $A = \begin{pmatrix} 1 & 2 \\ 5 & 3 \end{pmatrix}$ et $B = \begin{pmatrix} -7 & 8 \\ -9 & 5 \end{pmatrix}$ calculer les déterminants de $A, B, A \times B, A + B, A^{-1}, AA, A^{T}$.

2. Mêmes questions pour
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 et $B = \begin{pmatrix} a' & 0 \\ c' & d' \end{pmatrix}$.

- 3. Mêmes questions pour $A = \begin{pmatrix} 2 & 0 & 1 \\ 2 & -1 & 2 \\ 3 & 1 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix}$.
- 4. Calculer l'aire du parallélogramme défini par les vecteurs $\binom{7}{3}$ et $\binom{1}{4}$.
- 5. Calculer le volume du parallélépipède défini par les vecteurs $\begin{pmatrix} 2\\1\\1 \end{pmatrix}$, $\begin{pmatrix} 1\\1\\4 \end{pmatrix}$, $\begin{pmatrix} 1\\3\\1 \end{pmatrix}$.

2. Définition du déterminant

Cette partie est consacrée à la définition du déterminant. La définition du déterminant est assez abstraite et il faudra attendre encore un peu pour pouvoir vraiment calculer des déterminants.

2.1. Définition et premières propriétés

Nous allons caractériser le déterminant comme une application, qui à une matrice carrée associe un scalaire :

$$\det: M_n(\mathbb{K}) \longrightarrow \mathbb{K}$$

Théorème 81. Existence et d'unicité du déterminant

Il existe une unique application de $M_n(\mathbb{K})$ dans \mathbb{K} , appelée **déterminant**, telle que

- (i) le déterminant est linéaire par rapport à chaque vecteur colonne, les autres étant fixés ;
- (ii) si une matrice A a deux colonnes identiques, alors son déterminant est nul;
- (iii) le déterminant de la matrice identité I_n vaut 1.

Une preuve de l'existence du déterminant sera donnée plus bas en section 2.4. On note le déterminant d'une matrice $A = (a_{ij})$ par :

Si on note C_i la i-ème colonne de A, alors

$$\det A = \begin{vmatrix} C_1 & C_2 & \cdots & C_n \end{vmatrix} = \det(C_1, C_2, \dots, C_n).$$

Avec cette notation, la propriété (i) de linéarité par rapport à la colonne j s'écrit : pour tout $\lambda, \mu \in \mathbb{K}$, $\det(C_1, \dots, \lambda C_j + \mu C'_j, \dots, C_n) = \lambda \det(C_1, \dots, C_j, \dots, C_n) + \mu \det(C_1, \dots, C'_j, \dots, C_n)$, soit

$$\begin{vmatrix} a_{11} & \cdots & \lambda a_{1j} + \mu a'_{1j} & \cdots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{i1} & \cdots & \lambda a_{ij} + \mu a'_{ij} & \cdots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \cdots & \lambda a_{nj} + \mu a'_{nj} & \cdots & a_{nn} \end{vmatrix} = \lambda \begin{vmatrix} a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{i1} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \cdots & a_{nj} & \cdots & a_{nn} \end{vmatrix} + \mu \begin{vmatrix} a_{11} & \cdots & a'_{1j} & \cdots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{i1} & \cdots & a'_{ij} & \cdots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \cdots & a_{nj} & \cdots & a_{nn} \end{vmatrix}.$$

Exemple 284

$$\begin{vmatrix} 6 & 5 & 4 \\ 7 & -10 & -3 \\ 12 & 25 & -1 \end{vmatrix} = 5 \times \begin{vmatrix} 6 & 1 & 4 \\ 7 & -2 & -3 \\ 12 & 5 & -1 \end{vmatrix}$$

Car la seconde colonne est un multiple de 5.

$$\begin{vmatrix} 3 & 2 & 4-3 \\ 7 & -5 & 3-2 \\ 9 & 2 & 10-4 \end{vmatrix} = \begin{vmatrix} 3 & 2 & 4 \\ 7 & -5 & 3 \\ 9 & 2 & 10 \end{vmatrix} - \begin{vmatrix} 3 & 2 & 3 \\ 7 & -5 & 2 \\ 9 & 2 & 4 \end{vmatrix}$$

Par linéarité sur la troisième colonne.

Remarque

- Une application de $M_n(\mathbb{K})$ dans \mathbb{K} qui satisfait la propriété (i) est appelée *forme multi-linéaire*.
- Si elle satisfait (ii), on dit qu'elle est alternée.

Le déterminant est donc la seule forme multilinéaire alternée qui prend comme valeur 1 sur la matrice I_n . Les autres formes multilinéaires alternées sont les multiples scalaires du

déterminant. On verra plus loin comment on peut calculer en pratique les déterminants.

2.2. Premières propriétés

Nous connaissons déjà le déterminant de deux matrices :

- le déterminant de la matrice nulle 0_n vaut 0 (par la propriété (ii)),
- le déterminant de la matrice identité I_n vaut 1 (par la propriété (iii)).

Donnons maintenant quelques propriétés importantes du déterminant : comment se comporte le déterminant face aux opérations élémentaires sur les colonnes ?

Proposition 142

Soit $A \in M_n(\mathbb{K})$ une matrice ayant les colonnes C_1, C_2, \dots, C_n . On note A' la matrice obtenue par une des opérations élémentaires sur les colonnes, qui sont :

- 1. $C_i \leftarrow \lambda C_i$ avec $\lambda \neq 0$: A' est obtenue en multipliant une colonne de A par un scalaire non nul. Alors $\det A' = \lambda \det A$.
- 2. $C_i \leftarrow C_i + \lambda C_j$ avec $\lambda \in \mathbb{K}$ (et $j \neq i$): A' est obtenue en ajoutant à une colonne de A un multiple d'une autre colonne de A. Alors $\det A' = \det A$.
- 3. $C_i \leftrightarrow C_j$: A' est obtenue en échangeant deux colonnes distinctes de A. Alors $\det A' = -\det A$

Plus généralement pour (2) : l'opération $C_i \leftarrow C_i + \sum_{\substack{j=1 \ j \neq i}}^n \lambda_j C_j$ d'ajouter une combinaison linéaire des autres colonnes conserve le déterminant.

Attention! Échanger deux colonnes change le signe du déterminant.

Démonstration

- 1. La première propriété découle de la partie (i) de la définition du déterminant.
- 2. Soit $A = \begin{pmatrix} C_1 & \cdots & C_i & \cdots & C_j & \cdots & C_n \end{pmatrix}$ une matrice représentée par ses vecteurs colonnes C_k .

 L'opération $C_i \leftarrow C_i + \lambda C_j$ transforme la matrice A en la matrice $A' = \begin{pmatrix} C_1 & \cdots & C_i + \lambda C_j & \cdots & C_j & \cdots & C_n \end{pmatrix}$. Par linéarité par rapport à la colonne i, on sait que

$$\det A' = \det A + \lambda \det \begin{pmatrix} C_1 & \cdots & C_j & \cdots & C_j & \cdots & C_n \end{pmatrix}.$$

Or les colonnes i et j de la matrice $\begin{pmatrix} C_1 & \cdots & C_j & \cdots & C_j & \cdots & C_n \end{pmatrix}$ sont identiques, donc son déterminant est nul.

3. Si on échange les colonnes i et j de la matrice $A = \begin{pmatrix} C_1 & \cdots & C_i & \cdots & C_j & \cdots & C_n \end{pmatrix}$ on obtient la matrice $A' = \begin{pmatrix} C_1 & \cdots & C_i & \cdots & C_j & \cdots & C_n \end{pmatrix}$, où le vecteur C_j se retrouve en colonne i et le vecteur C_i en colonne j. Introduisons alors une troisième matrice $B = \begin{pmatrix} C_1 & \cdots & C_i + C_j & \cdots & C_j + C_i & \cdots & C_n \end{pmatrix}$. Cette matrice a deux colonnes distinctes égales, donc d'après (ii), $\det B = 0$.

D'un autre côté, nous pouvons développer ce déterminant en utilisant la propriété (i) de multili-

néarité, c'est-à-dire linéarité par rapport à chaque colonne. Ceci donne

$$\begin{array}{llll} 0 = \det B & = & \det \left(C_1 & \cdots & C_i + C_j & \cdots & C_j + C_i & \cdots & C_n \right) \\ & = & \det \left(C_1 & \cdots & C_i & \cdots & C_j + C_i & \cdots & C_n \right) \\ & & & + \det \left(C_1 & \cdots & C_j & \cdots & C_j + C_i & \cdots & C_n \right) \\ & = & \det \left(C_1 & \cdots & C_i & \cdots & C_j & \cdots & C_n \right) + \det \left(C_1 & \cdots & C_i & \cdots & C_i & \cdots & C_n \right) \\ & & & + \det \left(C_1 & \cdots & C_j & \cdots & C_j & \cdots & C_n \right) + \det \left(C_1 & \cdots & C_j & \cdots & C_i & \cdots & C_n \right) \\ & = & \det A + 0 + 0 + \det A', \end{array}$$

encore grâce à (i) pour les deux déterminants nuls du milieu.

Corollaire 31

Si une colonne C_i de la matrice A est combinaison linéaire des autres colonnes, alors det A=0.

2.3. Déterminants de matrices particulières

Calculer des déterminants n'est pas toujours facile. Cependant il est facile de calculer le déterminant de matrices triangulaires.

Proposition 143

Le déterminant d'une matrice triangulaire supérieure (ou inférieure) est égal au produit des termes diagonaux.

Autrement dit, pour une matrice triangulaire $A = (a_{ij})$ on a

$$\det A = \begin{vmatrix} a_{11} & a_{12} & \dots & \dots & a_{1n} \\ 0 & a_{22} & \dots & \dots & a_{2n} \\ \vdots & \ddots & \ddots & & \vdots \\ \vdots & & \ddots & \ddots & \vdots \\ \vdots & & & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & 0 & a_{nn} \end{vmatrix} = a_{11} \cdot a_{22} \cdots a_{nn}.$$

Comme cas particulièrement important on obtient :

Corollaire 32

Le déterminant d'une matrice diagonale est égal au produit des termes diagonaux.

Démonstration

On traite le cas des matrices triangulaires supérieures (le cas des matrices triangulaires inférieures est identique). Soit donc

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{pmatrix}$$

La façon de procéder utilise l'algorithme du pivot de Gauss (sur les colonnes, alors qu'il est en général

défini sur les lignes). Par linéarité par rapport à la première colonne, on a

$$\det A = a_{11} \begin{vmatrix} 1 & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{vmatrix}.$$

On soustrait maintenant de chaque colonne C_j , pour $j \ge 2$, la colonne C_1 multipliée par $-a_{1j}$. C'est l'opération élémentaire $C_j \leftarrow C_j - a_{1j}C_1$. Ceci ne modifie pas le déterminant d'après la section précédente. Il vient donc

$$\det A = a_{11} \begin{vmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{vmatrix}.$$

Par linéarité par rapport à la deuxième colonne, on en déduit

et l'on continue ainsi jusqu'à avoir parcouru toutes les colonnes de la matrice. Au bout de n étapes, on a obtenu

d'où le résultat, car $\det I_n = 1$, par (iii).

2.4. Démonstration de l'existence du déterminant

La démonstration du théorème d'existence du déterminant, exposée ci-dessous, est ardue et pourra être gardée pour une seconde lecture. Par ailleurs, l'unicité du déterminant, plus difficile, est admise.

Pour démontrer l'existence d'une application satisfaisant aux conditions (i), (ii), (iii) du théorèmedéfinition 81, on donne une formule qui, de plus, nous offre une autre méthode de calcul pratique du déterminant d'une matrice, et on vérifie que les propriétés caractéristiques des déterminants sont satisfaites. On retrouvera cette formule, dite de développement par rapport à une ligne, en section 4.2.

Notation. Soit $A \in M_n(\mathbb{K})$ une matrice carrée de taille $n \times n$. Il est évident que si l'on supprime une ligne et une colonne dans A, la matrice obtenue a n-1 lignes et n-1 colonnes. On note $A_{i,j}$ ou $A_{i,j}$ la matrice obtenue en supprimant la i-ème ligne et la j-ème colonne de A. Le théorème d'existence peut s'énoncer de la façon suivante :

Théorème 82. Existence du déterminant

Les formules suivantes définissent par récurrence, pour $n \ge 1$, une application de $M_n(\mathbb{K})$ dans \mathbb{K} qui satisfait aux propriétés (i), (ii), (iii) caractérisant le déterminant :

- Déterminant d'une matrice 1×1 . Si $a \in \mathbb{K}$ et A = (a), det A = a.
- **Formule de récurrence.** Si $A = (a_{i,j})$ est une matrice carrée de taille $n \times n$, alors pour tout i fixé

$$\det A = (-1)^{i+1} a_{i,1} \det A_{i,1} + (-1)^{i+2} a_{i,2} \det A_{i,2} + \dots + (-1)^{i+n} a_{i,n} \det A_{i,n}.$$

Démonstration

La preuve se fait par récurrence sur l'ordre des matrices.

Initialisation. Dans le cas n = 1, il est évident que toutes les propriétés souhaitées sont satisfaites.

Hérédité. Supposons maintenant que l'application $\det: M_{n-1}(\mathbb{K}) \to \mathbb{K}$ soit définie et satisfasse les propriétés (i), (ii) et (iii). Pour faciliter l'exposition, la preuve va être faite pour i=n. Soit $A=(a_{i,j})$ notée aussi $A=(C_1\cdots C_n)$ où $C_j=\begin{pmatrix} a_{1,j}\\ \vdots\\ a_{n,j} \end{pmatrix}$ est la j-ème colonne de A. On notera aussi $\bar{C}_j=\begin{pmatrix} a_{1,j}\\ \vdots\\ a_{n-1,j} \end{pmatrix}$ la colonne à (n-1) éléments, égale à C_j privée de son dernier coefficient.

- Propriété (i).

Il s'agit de vérifier que l'application

$$A \mapsto \det A = (-1)^{n+1} a_{n,1} \det A_{n,1} + (-1)^{n+2} a_{n,2} \det A_{n,2} + \dots + (-1)^{n+n} a_{n,n} \det A_{n,n}$$

est linéaire par rapport à chaque colonne. Nous allons le prouver pour la dernière colonne, c'est-à-dire que :

$$\det(C_1, \dots, C_{n-1}, \lambda C'_n + \mu C''_n) = \lambda \det(C_1, \dots, C_{n-1}, C'_n) + \mu \det(C_1, \dots, C_{n-1}, C''_n).$$

Notons A,A',A'' les matrices $(C_1\cdots C_{n-1}\cdots \lambda C'_n+\mu C''_n)$, $(C_1\cdots C_{n-1}\cdots C'_n)$ et $(C_1\cdots C_{n-1}\cdots C''_n)$, et $A_{n,j},A'_{n,j},A''_{n,j}$ les sous-matrices extraites en enlevant n-ème ligne et la j-ème colonne. En comparant les différentes matrices, on constate que $a'_{n,j}=a''_{n,j}=a_{n,j}$ si j< n tandis que $a_{n,n}=\lambda a'_{n,n}+\mu a''_{n,n}$. Similairement, $A'_{n,n}=A''_{n,n}=A_{n,n}=(\bar{C}_1\cdots \bar{C}_{n-1})$ puisque la n-ème colonne est enlevée. Par contre, pour j< n, $A_{n,j},A''_{n,j},A''_{n,j}$ ont leurs (n-2) premières colonnes identiques, et diffèrent par la dernière. Comme ce sont des déterminants de taille n-1, on peut utiliser l'hypothèse de récurrence :

$$\begin{split} \det &A_{n,j} &= \det(\bar{C}_1, \dots, \bar{C}_{j-1}, \bar{C}_{j+1}, \dots, \bar{C}_{n-1}, \lambda \bar{C}'_n + \mu \bar{C}''_n) \\ &= \lambda \det(\bar{C}_1, \dots, \bar{C}_{j-1}, \bar{C}_{j+1}, \dots, \bar{C}_{n-1}, \bar{C}'_n) + \mu \det(\bar{C}_1, \dots, \bar{C}_{j-1}, \bar{C}_{j+1}, \dots, \bar{C}_{n-1}, \bar{C}''_n) \\ &= \lambda \det &A'_{n,j} + \mu \det &A''_{n,j} \end{split}$$

Finalement, en mettant de côté dans la somme le n-ème terme :

$$\begin{split} \det A &= (-1)^{n+1} a_{n,1} \det A_{n,1} + (-1)^{n+2} a_{n,2} \det A_{1,2} + \dots + (-1)^{n+n} a_{n,n} \det A_{n,n} \\ &= \left(\sum_{j=1}^{n-1} (-1)^{n+j} a_{n,j} \det A_{n,j} \right) + (-1)^{2n} a_{n,n} \det A_{n,n} \\ &= \left(\sum_{j=1}^{n-1} (-1)^{n+j} a_{n,j} (\lambda \det A'_{n,j} + \mu \det A''_{n,j}) \right) + (-1)^{2n} (\lambda a'_{n,n} + \mu a''_{n,n}) \det A_{n,n} \\ &= \lambda \sum_{j=1}^{n} (-1)^{n+j} a'_{n,j} \det A'_{n,j} + \mu \sum_{j=1}^{n} (-1)^{n+j} a''_{n,j} \det A''_{n,j} \\ &= \lambda \det A' + \mu \det A'' \end{split}$$

La démonstration est similaire pour les autres colonnes (on peut aussi utiliser la propriété (ii) ci-dessous).

- Propriété (ii).

Supposons que $C_r = C_s$ pour r < s. Si k est différent de r et de s, la matrice $A_{n,k}$ possède encore deux colonnes identiques \bar{C}_r et \bar{C}_s . Par hypothèse de récurrence, det $A_{n,k} = 0$. Par conséquent,

$$\det A = (-1)^{n+r} \det A_{n,r} + (-1)^{n+s} \det A_{n,s}$$

Or $A_{n,r}$ et $A_{n,s}$ possèdent toutes les deux les mêmes colonnes : $A_{n,r} = (\bar{C}_1 \cdots \bar{C}_{r-1} \bar{C}_{r+1} \cdots \bar{C}_s \cdots \bar{C}_n)$ et $A_{n,s} = (\bar{C}_1 \cdots \bar{C}_r \cdots \bar{C}_{s-1} \bar{C}_{s+1} \cdots \bar{C}_n)$, car $\bar{C}_r = \bar{C}_s$. Pour passer de $A_{n,s}$ à $A_{n,r}$, il faut faire s-r-1 échanges de colonnes $\bar{C}_j \leftrightarrow \bar{C}_{j+1}$ successifs, qui par hypothèse de récurrence changent le signe par $(-1)^{s-r-1}$: $\det A_{n,s} = (-1)^{s-r-1} \det A_{n,r}$. On conclut immédiatement que

$$\det A = ((-1)^{n+r} + (-1)^{n+2s-r-1}) \det A_{n,r} = 0.$$

- **Propriété** (iii). Si l'on considère pour A la matrice identité I_n , ses coefficients $a_{i,j}$ sont tels que :

$$i = j \Longrightarrow a_{i,j} = 1$$

 $i \neq j \Longrightarrow a_{i,j} = 0$.

Donc $\det I_n = (-1)^{n+n} \det A_{n,n}$. Or, la matrice $A_{n,n}$ obtenue à partir de la matrice identité en supprimant la dernière ligne et la dernière colonne est la matrice identité de taille $(n-1) \times (n-1)$. Par hypothèse de récurrence, on a $\det I_{n-1} = 1$. On en déduit $\det I_n = 1$.

Conclusion. Le principe de récurrence termine la preuve du théorème d'existence du déterminant.

Remarque

La définition donnée ci-dessus suppose le choix d'un indice i de ligne (i = n dans la démonstration) et peut paraître arbitraire. Alors se pose naturellement la question : que se passe-t-il si l'on prend une autre valeur de i? L'unicité du déterminant d'une matrice permet de répondre : quelle que soit la ligne choisie, le résultat est le même.

Mini-exercices

- 1. En utilisant la linéarité du déterminant, calculer $\det(-I_n)$.
- 2. Pour $A \in M_n(\mathbb{K})$, calculer $\det(\lambda A)$ en fonction de $\det A$.
- 3. Montrer que le déterminant reste invariant par l'opération $C_i \leftarrow C_i + \sum_{\substack{j=1...n \ j\neq i}} \lambda_j C_j$ (on ajoute à une colonne de A une combinaison linéaire des autres colonnes de A).

3. Propriétés du déterminant

Nous allons voir trois propriétés importantes du déterminant : le déterminant d'un produit de matrices, le déterminant de l'inverse d'une matrice, le déterminant de la transposée d'une matrice. Pour prouver ces propriétés, nous aurons besoin des matrices élémentaires.

3.1. Déterminant et matrices élémentaires

Pour chacune des opérations élémentaires sur les colonnes d'une matrice A, on associe une matrice élémentaire E, telle que la matrice obtenue par l'opération élémentaire sur A soit $A' = A \times E$.

1. $C_i \leftarrow \lambda C_i$ avec $\lambda \neq 0$: $E_{C_i \leftarrow \lambda C_i} = \text{diag}(1, \dots, 1, \lambda, 1, \dots, 1)$ est la matrice diagonale ne comporting tant que des 1, sauf en position (i,i);

- 2. $C_i \leftarrow C_i + \lambda C_j$ avec $\lambda \in \mathbb{K}$ (et $j \neq i$): $E_{C_i \leftarrow C_i + \lambda C_j}$ est comme la matrice identité, sauf en position (j,i) où son coefficient vaut λ ;
- 3. $C_i \leftrightarrow C_j : E_{C_i \leftrightarrow C_j}$ est comme la matrice identité, sauf que ses coefficients (i,i) et (j,j) s'annulent, tandis que les coefficients (i, j) et (j, i) valent 1.

Nous allons détailler le cas de chaque opération et son effet sur le déterminant :

Proposition 144

- 1. $\det E_{C_i \leftarrow \lambda C_i} = \lambda$
- 2. $\det E_{C_i \leftarrow C_i + \lambda C_j} = +1$ 3. $\det E_{C_i \rightarrow C_j} = -1$
- 4. Si E est une des matrices élémentaires ci-dessus, $det(A \times E) = det A \times det E$

Démonstration

Nous utilisons les propositions 142 et 143.

- 1. La matrice $E_{C_i-\lambda C_i}$ est une matrice diagonale, tous les éléments diagonaux valent 1, sauf un qui vaut λ . Donc son déterminant vaut λ .
- 2. La matrice $E_{C_i \leftarrow C_i + \lambda C_i}$ est triangulaire inférieure ou supérieure avec des 1 sur la diagonale. Donc son déterminant vaut 1.
- 3. La matrice $E_{C_i \to C_j}$ est aussi obtenue en échangeant les colonnes i et j de la matrice I_n . Donc son déterminant vaut -1.
- 4. La formule $\det A \times E = \det A \times \det E$ est une conséquence immédiate de la proposition 142.

Cette proposition nous permet de calculer le déterminant d'une matrice A de façon relativement simple, en utilisant l'algorithme de Gauss. En effet, si en multipliant successivement A par des matrices élémentaires E_1, \dots, E_r on obtient une matrice T échelonnée, donc triangulaire.

$$T = A \cdot E_1 \cdots E_r$$

alors, en appliquant *r*-fois la proposition précédente, on obtient :

$$\det T = \det(A \cdot E_1 \cdots E_r)$$

$$= \det(A \cdot E_1 \cdots E_{r-1}) \cdot \det E_r$$

$$= \cdots$$

$$= \det A \cdot \det E_1 \cdot \det E_2 \cdots \det E_r$$

Comme on sait calculer le déterminant de la matrice triangulaire T et les déterminants des matrices élémentaires E_i , on en déduit le déterminant de A.

En pratique cela ce passe comme sur l'exemple suivant.

Exemple 285

Calculer det *A*, où
$$A = \begin{pmatrix} 0 & 3 & 2 \\ 1 & -6 & 6 \\ 5 & 9 & 1 \end{pmatrix}$$

$$\det A = \det \begin{pmatrix} 0 & 3 & 2 \\ 1 & -6 & 6 \\ 5 & 9 & 1 \end{pmatrix}$$

$$= (-1) \times \det \begin{pmatrix} 3 & 0 & 2 \\ -6 & 1 & 6 \\ 9 & 5 & 1 \end{pmatrix} \quad \text{opération } C_1 \leftrightarrow C_2 \text{ pour avoir un pivot en haut à gauche}$$

$$= (-1) \times 3 \times \det \begin{pmatrix} 1 & 0 & 2 \\ -2 & 1 & 6 \\ 3 & 5 & 1 \end{pmatrix} \quad C_1 \leftarrow \frac{1}{3}C_1 \text{ (linéarité par rapport à la première colonne)}$$

$$= (-1) \times 3 \times \det \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 10 \\ 3 & 5 & -5 \end{pmatrix} \quad C_3 \leftarrow C_3 - 2C_1$$

$$= (-1) \times 3 \times \det \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & 5 & -55 \end{pmatrix} \quad C_3 \leftarrow C_3 - 10C_2$$

$$= (-1) \times 3 \times (-55) \quad \text{car la matrice est triangulaire}$$

3.2. Déterminant d'un produit

Théorème 83

 $\det(AB) = \det A \cdot \det B$

Démonstration

La preuve utilise les matrices élémentaires; en effet, par la proposition 144, pour A une matrice quelconque et E une matrice d'une opération élémentaire alors :

$$\det(A \times E) = \det A \times \det E.$$

Passons maintenant à la démonstration du théorème. On a vu dans le chapitre «Matrices» qu'une matrice B est inversible si et seulement si sa forme échelonnée réduite par le pivot de Gauss est égale à I_n , c'est-à-dire qu'il existe des matrices élémentaires E_i telles que

$$BE_1\cdots E_r=I_n$$
.

D'après la remarque préliminaire appliquée r fois, on a

$$\det(B \cdot E_1 E_2 \cdots E_r) = \det B \cdot \det E_1 \cdot \det E_2 \cdots \det E_r = \det I_n = 1$$

On en déduit

$$\det B = \frac{1}{\det E_1 \cdots \det E_r}$$

Pour la matrice AB, il vient

$$(AB)\cdot(E_1\cdots E_r)=A\cdot I_n=A$$
.

Ainsi

$$\det(ABE_1\cdots E_r) = \det(AB)\cdot \det E_1\cdots \det E_r = \det A$$
.

Donc:

$$\det(AB) = \det A \times \frac{1}{\det E_1 \cdots \det E_r} = \det A \times \det B.$$

D'où le résultat dans ce cas.

Si B n'est pas inversible, $\operatorname{rg} B < n$, il existe donc une relation de dépendance linéaire entre les colonnes de B, ce qui revient à dire qu'il existe un vecteur colonne X tel que BX = 0. Donc $\det B = 0$, d'après le corollaire 31. Or BX = 0 implique (AB)X = 0. Ainsi AB n'est pas inversible non plus, d'où $\det(AB) = 0 = \det A \det B$ dans ce cas également.

3.3. Déterminant des matrices inversibles

Comment savoir si une matrice est inversible? Il suffit de calculer son déterminant!

Corollaire 33

Une matrice carrée A est inversible si et seulement si son déterminant est non nul. De plus si A est inversible, alors :

$$\det\left(A^{-1}\right) = \frac{1}{\det A}$$

Démonstration

- Si A est inversible, il existe une matrice A^{-1} telle que $AA^{-1} = I_n$, donc $\det(A)\det(A^{-1}) = \det I_n = 1$. On en déduit que $\det A$ est non nul et $\det(A^{-1}) = \frac{1}{\det A}$.
- Si A n'est pas inversible, alors elle est de rang strictement inférieur à n. Il existe donc une relation de dépendance linéaire entre ses colonnes, c'est-à-dire qu'au moins l'une de ses colonnes est combinaison linéaire des autres. On en déduit $\det A = 0$.

Exemple 286

Deux matrices semblables ont même déterminant.

En effet : soit $B = P^{-1}AP$ avec $P \in GL_n(\mathbb{K})$ une matrice inversible. Par multiplicativité du déterminant, on en déduit que :

$$\det B = \det(P^{-1}AP) = \det P^{-1} \det A \det P = \det A$$
,

puisque $\det P^{-1} = \frac{1}{\det P}$.

3.4. Déterminant de la transposée

Corollaire 34

$$\det \left(A^T \right) = \det A$$

Démonstration

Commençons par remarquer que la matrice E d'une opération élémentaire est soit triangulaire (substitution), soit symétrique c'est-à-dire égale à leur transposée (échange de lignes et homothétie). On vérifie facilement que $\det E^T = \det E$.

Supposons d'abord que A soit inversible. On peut alors l'écrire comme produit de matrices élémentaires, $A = E_1 \cdots E_r$. On a alors

$$A^T = E_r^T \cdots E_1^T$$

et

$$\det(A^T) = \det(E_r^T) \cdots \det(E_1^T) = \det(E_r) \cdots \det(E_1) = \det(A).$$

D'autre part, si A n'est pas inversible, alors A^T n'est pas inversible non plus, et $\det A = 0 = \det A^T$.

Remarque

Une conséquence du dernier résultat, est que par transposition, tout ce que l'on a dit des déterminants à propos des colonnes est vrai pour les lignes. Ainsi, le déterminant est multilinéaire par rapport aux lignes, si une matrice a deux lignes égales, son déterminant est nul, on ne modifie pas un déterminant en ajoutant à une ligne une combinaison linéaire des autres lignes, etc.

Voici le détail pour les opérations élémentaires sur les lignes :

- 1. $L_i \leftarrow \lambda L_i$ avec $\lambda \neq 0$: le déterminant est multiplié par λ .
- 2. $L_i \leftarrow L_i + \lambda L_j$ avec $\lambda \in \mathbb{K}$ (et $j \neq i$) : le déterminant ne change pas.
- 3. $L_i \leftrightarrow L_j$: le déterminant change de signe.

Mini-exercices

- 1. Soient $A = \begin{pmatrix} a & 1 & 3 \\ 0 & b & 2 \\ 0 & 0 & c \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 0 & 2 \\ 0 & d & 0 \\ -2 & 0 & 1 \end{pmatrix}$. Calculer, lorsque c'est possible, les déterminants des matrices A, B, A^{-1} , B^{-1} , A^{T} , B^{T} , AB, BA
- 2. Calculer le déterminant de chacune des matrices suivantes en se ramenant par des opérations élémentaires à une matrice triangulaire.

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 6 \\ 3 & 4 & 15 \\ 5 & 6 & 21 \end{pmatrix} \qquad \begin{pmatrix} 1 & 1 & 1 \\ 1 & j & j^2 \\ 1 & j^2 & j \end{pmatrix} \text{ avec } j = e^{\frac{2i\pi}{3}} \qquad \begin{pmatrix} 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64 \\ 1 & 5 & 25 & 125 \end{pmatrix}$$

4. Calculs de déterminants

Une des techniques les plus utiles pour calculer un déterminant est le «développement par rapport à une ligne (ou une colonne)».

4.1. Cofacteur

Définition 123

Soit $A = (a_{ij}) \in M_n(\mathbb{K})$ une matrice carrée.

- On note A_{ij} la matrice extraite, obtenue en effaçant la ligne i et la colonne j de A.
 Le nombre det A_{ij} est un *mineur d'ordre* n 1 de la matrice A.

 - Le nombre $C_{ij} = (-1)^{i+j} \det A_{ij}$ est le **cofacteur** de A relatif au coefficient a_{ij} .

$$A = \begin{pmatrix} a_{11} & \dots & a_{1,j-1} & a_{1,j} & a_{1,j+1} & \dots & a_{1n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{i-1,1} & \dots & a_{i-1,j-1} & a_{i-1,j} & a_{i-1,j+1} & \dots & a_{i-1,n} \end{pmatrix}$$

$$a_{i,1} & \dots & a_{i,j-1} & a_{i,j} & a_{i,j+1} & \dots & a_{i,n} \\ a_{i+1,1} & \dots & a_{i+1,j-1} & a_{i+1,j} & a_{i+1,j+1} & \dots & a_{i+1,n} \\ \vdots & \vdots & & & \vdots & & \vdots \\ a_{n1} & \dots & a_{n,j-1} & a_{n,j} & a_{n,j+1} & \dots & a_{nn} \end{pmatrix}$$

$$A_{ij} = egin{pmatrix} a_{1,1} & \dots & a_{1,j-1} & a_{1,j+1} & \dots & a_{1,n} \\ dots & dots & dots & dots & dots \\ a_{i-1,1} & \dots & a_{i-1,j-1} & a_{i-1,j+1} & \dots & a_{i-1,n} \\ a_{i+1,1} & \dots & a_{i+1,j-1} & a_{i+1,j+1} & \dots & a_{i+1,n} \\ dots & & dots & & dots \\ a_{n,1} & \dots & a_{n,j-1} & a_{n,j+1} & \dots & a_{n,n} \end{pmatrix}$$

Exemple 287

Soit
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
. Calculons $A_{11}, C_{11}, A_{32}, C_{32}$

$$A_{11} = \left(egin{array}{ccc} 1 & 2 & 3 \ 4 & 2 & 1 \ 0 & 1 & 1 \end{array}
ight) = \left(egin{array}{ccc} 2 & 1 \ 1 & 1 \end{array}
ight) \qquad C_{11} = (-1)^{1+1} \det A_{11} = +1.$$

$$A_{32} = \left(egin{array}{ccc} 1 & 2 & 3 \ 4 & 2 & 1 \ \hline 0 & 1 & 1 \end{array}
ight) = \left(egin{array}{ccc} 1 & 3 \ 4 & 1 \end{array}
ight) \qquad C_{32} = (-1)^{3+2} \det A_{32} = (-1) imes (-11) = 11.$$

Pour déterminer si $C_{ij} = + \det A_{ij}$ ou $C_{ij} = - \det A_{ij}$, on peut se souvenir que l'on associe des signes en suivant le schéma d'un échiquier :

$$A = \begin{pmatrix} + & - & + & - & \dots \\ - & + & - & + & \dots \\ + & - & + & - & \dots \\ \vdots & \vdots & \vdots & \vdots & \end{pmatrix}$$

Donc $C_{11} = + \det A_{11}$, $C_{12} = - \det A_{12}$, $C_{21} = - \det A_{21}$...

4.2. Développement suivant une ligne ou une colonne

Théorème 84. Développement suivant une ligne ou une colonne

Formule de développement par rapport à la ligne i:

$$\det A = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det A_{ij} = \sum_{j=1}^{n} a_{ij} C_{ij}$$

Formule de développement par rapport à la colonne j:

$$\det A = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det A_{ij} = \sum_{i=1}^{n} a_{ij} C_{ij}$$

Démonstration

Nous avons déjà démontré la formule de développement suivant une ligne lors de la démonstration du théorème 81 d'existence et d'unicité du déterminant. Comme $\det A = \det A^T$, on en déduit la formule de développement par rapport à une colonne.

Exemple 288

Retrouvons la formule des déterminants 3×3 , déjà présentée par la règle de Sarrus, en développement par rapport à la première ligne.

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13}$$

$$= a_{11}\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{32} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{11}(a_{22}a_{33} - a_{32}a_{23}) - a_{12}(a_{21}a_{33} - a_{31}a_{23})$$

$$+ a_{13}(a_{21}a_{32} - a_{31}a_{22})$$

$$= a_{11}a_{22}a_{33} - a_{11}a_{32}a_{23} + a_{12}a_{31}a_{23} - a_{12}a_{21}a_{33}$$

$$+ a_{13}a_{21}a_{32} - a_{13}a_{31}a_{22}.$$

4.3. Exemple

Exemple 289

$$A = \begin{pmatrix} 4 & 0 & 3 & 1 \\ 4 & 2 & 1 & 0 \\ 0 & 3 & 1 & -1 \\ 1 & 0 & 2 & 3 \end{pmatrix}$$

On choisit de développer par rapport à la seconde colonne (car c'est là qu'il y a le plus de zéros) :

$$\det A = 0C_{12} + 2C_{22} + 3C_{32} + 0C_{42} \quad \text{développement par rapport à la deuxième colonne}$$

$$= +2 \begin{vmatrix} 4 & 3 & 1 \\ 0 & 1 & -1 \\ 1 & 2 & 3 \end{vmatrix} - 3 \begin{vmatrix} 4 & 3 & 1 \\ 4 & 1 & 0 \\ 1 & 2 & 3 \end{vmatrix} \quad \text{on n'oublie pas les signes des cofacteurs}$$

$$= +2 \left(+4 \begin{vmatrix} 1 & -1 \\ 2 & 3 \end{vmatrix} - 0 \begin{vmatrix} 3 & 1 \\ 2 & 3 \end{vmatrix} + 1 \begin{vmatrix} 3 & 1 \\ 1 & -1 \end{vmatrix} \right) \quad \text{par rapport à la première colonne}$$

$$= -3 \left(-4 \begin{vmatrix} 3 & 1 \\ 2 & 3 \end{vmatrix} + 1 \begin{vmatrix} 4 & 1 \\ 1 & 3 \end{vmatrix} - 0 \begin{vmatrix} 4 & 3 \\ 1 & 2 \end{vmatrix} \right) \quad \text{par rapport à la deuxième ligne}$$

$$= +2 \left(+4 \times 5 - 0 + 1 \times (-4) \right) - 3 \left(-4 \times 7 + 1 \times 11 - 0 \right)$$

Remarque

Le développement par rapport à une ligne permet de ramener le calcul d'un déterminant $n \times n$ à celui de n déterminants $(n-1) \times (n-1)$. Par récurrence descendante, on se ramène ainsi au calcul de n! sous-déterminants, ce qui devient vite fastidieux. C'est pourquoi le développement par rapport à une ligne ou une colonne n'est utile pour calculer explicitement un déterminant que si la matrice de départ a beaucoup de zéros. On commence donc souvent par faire apparaître un maximum de zéros par des opérations élémentaires sur les lignes et/ou les colonnes qui ne modifient pas le déterminant, avant de développer le déterminant suivant la ligne ou la colonne qui a le plus de zéros.

4.4. Inverse d'une matrice

Soit $A \in M_n(\mathbb{K})$ une matrice carrée.

Nous lui associons la matrice C des cofacteurs, appelée comatrice, et notée Com(A):

$$C = (C_{ij}) = \begin{pmatrix} C_{11} & C_{12} & \cdots & C_{1n} \\ C_{21} & C_{22} & \cdots & C_{2n} \\ \vdots & \vdots & & \vdots \\ C_{n1} & C_{n2} & \cdots & C_{nn} \end{pmatrix}$$

Théorème 85

Soient A une matrice inversible, et C sa comatrice. On a alors

$$A^{-1} = \frac{1}{\det A} \, C^T$$

Exemple 290

Soit $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$. Le calcul donne que $\det A = 2$. La comatrice C s'obtient en calculant

9 déterminants 2×2 (sans oublier les signes +/-). On trouve :

$$C = \begin{pmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix} \quad \text{et donc} \quad A^{-1} = \frac{1}{\det A} \cdot C^T = \frac{1}{2} \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1 \end{pmatrix}$$

La démonstration se déduit directement du lemme suivant.

Lemme 11

Soit A une matrice (inversible ou pas) et C sa comatrice. Alors $AC^T = (\det A)I_n$, autrement dit

$$\sum_{k} a_{ik} C_{jk} = \begin{cases} \det A & \text{si } i = j \\ 0 & \text{sinon} \end{cases}$$

Démonstration

Le terme de position (i,j) dans AC^T est $\sum_k a_{ik}C_{jk}$, et donc si i=j, le résultat découle de la formule de développement par rapport à la ligne i.

Pour le cas $i \neq j$, imaginons que l'on remplace A par une matrice $A' = (a'_{ij})$ identique, si ce n'est que la ligne L_j est remplacée par la ligne L_i , autrement dit $a'_{jk} = a_{ik}$ pour tout k. De plus, comme A' possède deux lignes identiques, son déterminant est nul. On appelle C' la comatrice de A', et la formule de développement pour la ligne j de A' donne

$$0 = \det A' = \sum_{k} a'_{jk} C'_{jk} = \sum_{k} a_{ik} C'_{jk}$$

Or, C'_{jk} se calcule à partir de la matrice extraite A'_{jk} , qui ne contient que les éléments de A' sur les lignes différentes de j et colonnes différentes de k. Mais sur les lignes différentes de j, A' est identique à A, donc $C'_{jk} = C_{jk}$. On conclut que $\sum_k a_{ik} C'_{jk} = 0$. Finalement.

$$AC^T = \left(egin{array}{cccc} \det A & 0 & \dots & 0 \ 0 & \det A & & dots \ dots & & \ddots & 0 \ 0 & \dots & 0 & \det A \end{array}
ight) = \det A \cdot I.$$

et en particulier, si $\det A \neq 0$, c'est-à-dire si A est inversible, alors on a

$$A^{-1} = \frac{1}{\det A}C^T.$$

Mini-exercices

1. Soient $A = \begin{pmatrix} 2 & 0 & -2 \\ 0 & 1 & -1 \\ 2 & 0 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} t & 0 & t \\ 0 & t & 0 \\ -t & 0 & t \end{pmatrix}$. Calculer les matrices extraites, les mineurs

d'ordre 2 et les cofacteurs de chacune des matrices A et B. En déduire le déterminant de A et de B. En déduire l'inverse de A et de B lorsque c'est possible.

2. Par développement suivant une ligne (ou une colonne) bien choisie, calculer les déterminants :

3. En utilisant la formule de développement par rapport à une ligne, recalculer le déterminant d'une matrice triangulaire.

5. Applications des déterminants

Nous allons voir plusieurs applications des déterminants.

5.1. Méthode de Cramer

Le théorème suivant, appelé règle de Cramer, donne une formule explicite pour la solution de certains systèmes d'équations linéaires ayant autant d'équations que d'inconnues. Considérons le système d'équations linéaires à n équations et n inconnues suivant :

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &= b_2 \\ & \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n &= b_n \end{cases}$$

Ce système peut aussi s'écrire sous forme matricielle AX = B où

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \in M_n(\mathbb{K}), \qquad X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}.$$

Définissons la matrice $A_j \in M_n(\mathbb{K})$ par

$$A_{j} = \begin{pmatrix} a_{11} & \dots & a_{1,j-1} & b_{1} & a_{1,j+1} & \dots & a_{1n} \\ a_{21} & \dots & a_{2,j-1} & b_{2} & a_{2,j+1} & \dots & a_{2n} \\ \vdots & & \vdots & \vdots & & \vdots \\ a_{n1} & \dots & a_{n,j-1} & b_{n} & a_{n,j+1} & \dots & a_{nn} \end{pmatrix}$$

Autrement dit, A_j est la matrice obtenue en remplaçant la j-ème colonne de A par le second membre B. La règle de Cramer va nous permettre de calculer la solution du système dans le cas où $\det A \neq 0$ en fonction des déterminants des matrices A et A_j .

Théorème 86. Règle de Cramer

Soit

$$AX = B$$

un système de n équations à n inconnues. Supposons que $\det A \neq 0$. Alors l'unique solution $(x_1, x_2, ..., x_n)$ du système est donnée par :

$$x_1 = \frac{\det A_1}{\det A}$$
 $x_2 = \frac{\det A_2}{\det A}$... $x_n = \frac{\det A_n}{\det A}$.

Démonstration

Nous avons supposé que $\det A \neq 0$. Donc A est inversible. Alors $X = A^{-1}B$ est l'unique solution du système. D'autre part, nous avons vu que $A^{-1} = \frac{1}{\det A}C^T$ où C est la comatrice. Donc $X = \frac{1}{\det A}C^TB$. En développant,

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \frac{1}{\det A} \begin{pmatrix} C_{11} & \dots & C_{n1} \\ \vdots & & \vdots \\ C_{1n} & \dots & C_{nn} \end{pmatrix} \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = \frac{1}{\det A} \begin{pmatrix} C_{11}b_1 + C_{21}b_2 + \dots + C_{n1}b_n \\ \vdots \\ C_{1n}b_1 + C_{2n}b_2 + \dots + C_{nn}b_n \end{pmatrix}$$

C'est-à-dire

$$x_1 = \frac{C_{11}b_1 + \dots + C_{n1}b_n}{\det A} \quad \dots \quad x_i = \frac{C_{1i}b_1 + \dots + C_{ni}b_n}{\det A} \quad \dots \quad x_n = \frac{C_{1n}b_1 + \dots + C_{nn}b_n}{\det A}$$

Mais $b_1C_{1i} + \cdots + b_nC_{ni}$ est le développement en cofacteurs de $\det A_i$ par rapport à sa i-ème colonne. Donc

$$x_i = \frac{\det A_i}{\det A}$$
.

Exemple 291

Résolvons le système suivant :

$$\begin{cases} x_1 & + 2x_3 = 6 \\ -3x_1 + 4x_2 + 6x_3 = 30 \\ -x_1 - 2x_2 + 3x_3 = 8. \end{cases}$$

On a

$$A = \begin{pmatrix} 1 & 0 & 2 \\ -3 & 4 & 6 \\ -1 & -2 & 3 \end{pmatrix} \qquad B = \begin{pmatrix} 6 \\ 30 \\ 8 \end{pmatrix}$$

$$A_1 = \begin{pmatrix} 6 & 0 & 2 \\ 30 & 4 & 6 \\ 8 & -2 & 3 \end{pmatrix} \qquad A_2 = \begin{pmatrix} 1 & 6 & 2 \\ -3 & 30 & 6 \\ -1 & 8 & 3 \end{pmatrix} \qquad A_3 = \begin{pmatrix} 1 & 0 & 6 \\ -3 & 4 & 30 \\ -1 & -2 & 8 \end{pmatrix}$$

et

$$\det A = 44$$
 $\det A_1 = -40$ $\det A_2 = 72$ $\det A_3 = 152$.

La solution est alors

$$x_1 = \frac{\det A_1}{\det A} = -\frac{40}{44} = -\frac{10}{11} \qquad x_2 = \frac{\det A_2}{\det A} = \frac{72}{44} = \frac{18}{11} \qquad x_3 = \frac{\det A_3}{\det A} = \frac{152}{44} = \frac{38}{11} = \frac{18}{11} = \frac{18}{1$$

La méthode de Cramer n'est pas la méthode la plus efficace pour résoudre un système, mais est

utile si le système contient des paramètres.

5.2. Déterminant et base

Soit E un \mathbb{K} -espace vectoriel de dimension n. Fixons une base \mathscr{B} de E. On veut décider si n vecteurs v_1, v_2, \ldots, v_n forment aussi une base de E. Pour cela, on écrit la matrice $A \in M_n(\mathbb{K})$ dont la j-ème colonne est formée des coordonnées du vecteur v_j par rapport à la base \mathscr{B} (comme pour la matrice de passage). Le calcul de déterminant apporte la réponse à notre problème.

Théorème 87

Soit E un \mathbb{K} espace vectoriel de dimension n, et v_1, v_2, \ldots, v_n , n vecteurs de E. Soit A la matrice obtenue en juxtaposant les coordonnées des vecteurs par rapport à une base \mathscr{B} de E. Les vecteurs (v_1, v_2, \ldots, v_n) forment une base de E si et seulement si det $A \neq 0$.

Corollaire 35

Une famille de n vecteurs de \mathbb{R}^n

$$\begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{pmatrix} \quad \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{n2} \end{pmatrix} \quad \cdots \quad \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{nn} \end{pmatrix}$$

forme une base si et seulement si det $(a_{ij}) \neq 0$.

Exemple 292

Pour quelles valeurs de $a, b \in \mathbb{R}$ les vecteurs

$$\begin{pmatrix} 0 \\ a \\ b \end{pmatrix} \quad \begin{pmatrix} a \\ b \\ 0 \end{pmatrix} \quad \begin{pmatrix} b \\ 0 \\ a \end{pmatrix}$$

forment une base de \mathbb{R}^3 ? Pour répondre, il suffit de calculer le déterminant

$$\begin{vmatrix} 0 & a & b \\ a & b & 0 \\ b & 0 & a \end{vmatrix} = -a^3 - b^3.$$

Conclusion : si $a^3 \neq -b^3$ alors les trois vecteurs forment une base de \mathbb{R}^3 . Si $a^3 = -b^3$ alors les trois vecteurs sont liés. (Exercice : montrer que $a^3 + b^3 = 0$ si et seulement si a = -b.)

Démonstration

La preuve fait appel à des résultats du chapitre «Matrices et applications linéaires» (section «Rang

d'une famille de vecteurs»):

$$(v_1,v_2,\ldots,v_n)$$
 forment une base \iff $\operatorname{rg}(v_1,v_2,\ldots,v_n)=n$ \iff $\operatorname{rg} A=n$ \iff $A \text{ est inversible}$ \iff $\det A\neq 0$

5.3. Mineurs d'une matrice

Définition 124

Soit $A = (a_{ij}) \in M_{n,p}(\mathbb{K})$ une matrice à n lignes et p colonnes à coefficients dans \mathbb{K} . Soit k un entier inférieur à n et à p. On appelle *mineur d'ordre* k le déterminant d'une matrice carrée de taille k obtenue à partir de A en supprimant n-k lignes et p-k colonnes.

Noter que A n'a pas besoin d'être une matrice carrée.

Exemple 293

Soit la matrice

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 7 \\ 0 & 1 & 6 & 5 \end{pmatrix}$$

- Un mineur d'ordre 1 est simplement un coefficient de la matrice A.
- Un mineur d'ordre 2 est le déterminant d'une matrice 2×2 extraite de A. Par exemple en ne retenant que la ligne 1 et 3 et la colonne 2 et 4, on obtient la matrice extraite $\begin{pmatrix} 2 & 4 \\ 1 & 5 \end{pmatrix}$. Donc un des mineurs d'ordre 2 de A est $\begin{vmatrix} 2 & 4 \\ 1 & 5 \end{vmatrix} = 6$.
- Ùn mineur d'ordre 3 est le déterminant d'une matrice 3×3 extraite de A. Par exemple, en ne retenant que les colonnes 1, 3 et 4 on obtient le mineur

$$\begin{vmatrix} 1 & 3 & 4 \\ 1 & 1 & 7 \\ 0 & 6 & 5 \end{vmatrix} = -28$$

- Il n'y a pas de mineur d'ordre 4 (car la matrice n'a que 3 lignes).

5.4. Calcul du rang d'une matrice

Rappelons la définition du rang d'une matrice.

Définition 125

Le rang d'une matrice est la dimension de l'espace vectoriel engendré par les vecteurs colonnes. C'est donc le maximum de vecteurs colonnes linéairement indépendants.

Théorème 88

Le rang d'une matrice $A \in M_{n,p}(\mathbb{K})$ est le plus grand entier r tel qu'il existe un mineur d'ordre r extrait de A non nul.

La preuve sera vue en section 5.6.

Exemple 294

Soit α un paramètre réel. Calculons le rang de la matrice $A \in M_{3,4}(\mathbb{R})$:

$$A = \begin{pmatrix} 1 & 1 & 2 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 1 & \alpha & 1 \end{pmatrix}$$

- Clairement, le rang ne peut pas être égal à 4, puisque 4 vecteurs de \mathbb{R}^3 ne sauraient être indépendants.
- On obtient les mineurs d'ordre 3 de A en supprimant une colonne. Calculons le mineur d'ordre 3 obtenu en supprimant la première colonne, en le développant par rapport à sa première colonne :

$$\begin{vmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & \alpha & 1 \end{vmatrix} = \begin{vmatrix} 3 & 1 \\ \alpha & 1 \end{vmatrix} - 2 \begin{vmatrix} 2 & 1 \\ \alpha & 1 \end{vmatrix} + \begin{vmatrix} 2 & 1 \\ 3 & 1 \end{vmatrix} = \alpha - 2.$$

Par conséquent, si $\alpha \neq 2$, le mineur précédent est non nul et le rang de la matrice A est 3.

- Si $\alpha = 2$, on vérifie que les 4 mineurs d'ordre 3 de A sont nuls :

$$\begin{vmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 2 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 1 & 1 & 2 \end{vmatrix} = 0$$

Donc dans ce cas, A est de rang inférieur ou égal à 2. Or $\begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = 1$ (lignes 1,2, colonnes 1,2 de A) est un mineur d'ordre 2 non nul. Donc si $\alpha = 2$, le rang de A est 2.

5.5. Rang d'une matrice transposée

Proposition 145

Le rang de A est égal au rang de sa transposée A^T .

Démonstration

Les mineurs de A^T sont obtenus à partir des mineurs de A par transposition. Comme les déterminants d'une matrice et de sa transposée sont égaux, la proposition découle de la caractérisation du rang d'une matrice à l'aide des mineurs (théorème 88).

5.6. Indépendance et déterminant

Revenons sur le théorème 88 et sa preuve avec une version améliorée.

Théorème 89. Caractérisation de l'indépendance linéaire de p vecteurs

Soit E un \mathbb{K} -espace vectoriel de dimension n et $\mathscr{B} = (e_1, \ldots, e_n)$ une base de E. Soient v_1, \ldots, v_p des vecteurs de E avec $p \leq n$. Posons $v_j = \sum_{i=1}^n a_{i,j} e_i$ pour $1 \leq j \leq n$. Alors les vecteurs $\{v_1, \ldots, v_p\}$ forment une famille libre si et seulement s'il existe un mineur d'ordre p non nul extrait de la matrice $A = (a_{i,j}) \in M_{n,p}(\mathbb{K})$.

Démonstration

Supposons d'abord que la famille $\mathcal{F} = \{v_1, \dots, v_p\}$ soit libre.

- Si p = n, le résultat est une conséquence du théorème 87.
- Si p < n, on peut appliquer le théorème de la base incomplète à la famille \mathscr{F} et à la base $\mathscr{B} = \{e_1, \ldots, e_n\}$; et quitte à renuméroter les vecteurs de \mathscr{B} , on peut supposer que $\mathscr{B}' = (v_1, \ldots, v_p, e_{p+1}, \ldots, e_n)$ est une base de E. (Note : cette renumérotation change l'ordre de e_i , autrement dit échange les lignes de la matrice A, ce qui n'a pas d'impact sur ses mineurs; on appellera encore \mathscr{B} la base renumérotée.) La matrice P de passage de \mathscr{B} vers \mathscr{B}' contient les composantes des vecteurs $(v_1, \ldots, v_p, e_{p+1}, \ldots, e_n)$ par rapport à la base (renumérotée) $\mathscr{B} = (e_1, \ldots, e_n)$ est

$$P = egin{pmatrix} a_{1,1} & \dots & a_{1,p} & 0 & \dots & 0 \\ dots & \ddots & dots & dots & \ddots & dots \\ dots & \ddots & dots & dots & \ddots & dots \\ a_{p,1} & \dots & a_{p,p} & 0 & \dots & 0 \\ a_{p+1,1} & \dots & a_{p+1,p} & 1 & \dots & 0 \\ dots & \ddots & dots & dots & \ddots & dots \\ a_{p,1} & \dots & a_{p,p} & 0 & \dots & 1 \end{pmatrix}$$

Le déterminant det P est non nul puisque les vecteurs $(v_1, \ldots, v_p, e_{p+1}, \ldots, e_n)$ forment une base de E. Or ce déterminant se calcule en développant par rapport aux dernières colonnes autant de fois que nécessaire (soit n-p fois). Et l'on trouve que

$$\det P = \begin{vmatrix} a_{1,1} & \dots & a_{1,p} \\ \vdots & \ddots & \vdots \\ a_{p,1} & \dots & a_{p,p} \end{vmatrix}$$

Le mineur
$$\begin{vmatrix} a_{1,1} & \dots & a_{1,p} \\ \vdots & \ddots & \vdots \\ a_{p,1} & \dots & a_{p,p} \end{vmatrix}$$
 est donc non nul.

Montrons maintenant la réciproque. Supposons que le mineur correspondant aux lignes i_1, i_2, \ldots, i_p

soit non nul. Autrement dit, la matrice

$$B = \begin{pmatrix} a_{i_1,1} & \dots & a_{i_1,p} \\ \vdots & \ddots & \vdots \\ a_{i_p,1} & \dots & a_{i_p,p} \end{pmatrix}$$

satisfait $\det B \neq 0$. Supposons aussi

$$\lambda_1 v_1 + \dots + \lambda_p v_p = 0$$

En exprimant chaque v_i dans la base $(e_1, ..., e_n)$, on voit aisément que cette relation équivaut au système suivant à n lignes et p inconnues :

$$\begin{cases} a_{1,1}\lambda_1 & + & \dots & + & a_{1,p}\lambda_p & = & 0 \\ a_{2,1}\lambda_1 & + & \dots & + & a_{2,p}\lambda_p & = & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n,1}\lambda_1 & + & \dots & + & a_{n,p}\lambda_p & = & 0 \end{cases}$$

Ce qui implique, en ne retenant que les lignes $i_1, ..., i_p$:

$$\begin{cases} a_{i_1,1}\lambda_1 & + & \dots & + & a_{i_1,p}\lambda_p & = & 0 \\ a_{i_2,1}\lambda_1 & + & \dots & + & a_{i_2,p}\lambda_p & = & 0 \\ \vdots & \vdots \\ a_{i_p,1}\lambda_1 & + & \dots & + & a_{i_p,p}\lambda_p & = & 0 \end{cases}$$

ce qui s'écrit matriciellement

$$B\begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_p \end{pmatrix} = 0.$$

Comme B est inversible (car $\det B \neq 0$), cela implique $\lambda_1 = \cdots = \lambda_p = 0$. Ce qui montre l'indépendance $\det v_i$.

Mini-exercices

- 1. Résoudre ce système linéaire, en fonction du paramètre $t \in \mathbb{R}$: $\begin{cases} ty+z &= 1 \\ 2x+ty &= 2 \\ -y+tz &= 3 \end{cases}$
- 2. Pour quelles valeurs de $a, b \in \mathbb{R}$, les vecteurs suivants forment-ils une base de \mathbb{R}^3 ?

$$\begin{pmatrix} a \\ 1 \\ b \end{pmatrix}, \begin{pmatrix} 2a \\ 1 \\ b \end{pmatrix}, \begin{pmatrix} 3a \\ 1 \\ -2b \end{pmatrix}$$

3. Calculer le rang de la matrice suivante selon les paramètres $a, b \in \mathbb{R}$.

$$\begin{pmatrix}
1 & 2 & b \\
0 & a & 1 \\
1 & 0 & 2 \\
1 & 2 & 1
\end{pmatrix}$$

Auteurs

• D'après un cours de Sophie Chemla de l'université Pierre et Marie Curie, reprenant des parties d'un cours de H. Ledret et d'une équipe de l'université de Bordeaux animée par J. Queyrut,

- et un cours de Eva Bayer-Fluckiger, Philippe Chabloz, Lara Thomas de l'École Polytechnique Fédérale de Lausanne,
- réécrit et complété par Arnaud Bodin, Niels Borne. Relu par Laura Desideri et Pascal Romon.