Matematika Diskrit [KOMS119602] - 2022/2023

6 - Pembuktian formal

Dewi Sintiari

Prodi D4 Teknologi Rekayasa Perangkat Lunak Universitas Pendidikan Ganesha

Week 6 (Oktober 2022)

Bagian 1: Tautologi

Tautologi

Tautologi adalah proposisi majemuk yang selalu bernilai benar, terlepas dari nilai kebenaran dari variabel-variabel yang terlibat di dalamnya.

Proposisi majemuk yang selalu bernilai salah disebut kontradiksi.

Contoh

Diberikan proposisi p. Buatlah tabel kebenaran dari

$$p \lor \neg p \ dan \ p \land \neg p$$

Tautologi

Tautologi adalah proposisi majemuk yang selalu bernilai benar, terlepas dari nilai kebenaran dari variabel-variabel yang terlibat di dalamnya.

Proposisi majemuk yang selalu bernilai salah disebut kontradiksi.

Contoh

Diberikan proposisi p. Buatlah tabel kebenaran dari

$$p \lor \neg p \ dan \ p \land \neg p$$

TABLE 1 Examples of a Tautology and a Contradiction.					
p	$\neg p$	$p \vee \neg p$	$p \wedge \neg p$		
Т	F	T	F		
F	Т	T	F		

Ekuivalensi logika

TABLE 6 Logical Equivalences.			
Equivalence	Name		
$p \wedge \mathbf{T} \equiv p$ $p \vee \mathbf{F} \equiv p$	Identity laws		
$p \lor \mathbf{T} \equiv \mathbf{T}$ $p \land \mathbf{F} \equiv \mathbf{F}$	Domination laws		

Argumen

Definisi

Argumen dalam logika proporsional adalah barisan proposisi. Pada argumen, proposisi yang bukan merupakan proposisi akhir disebut premis dan proposisi akhir disebut kesimpulan.

$$p_1$$
 p_2
 \vdots
 p_n

Dalam hal ini, $p_1, p_2, ..., p_n$ disebut hipotesis (premis) dan q disebut kesimpulan (konklusi).

Argumen

Definisi

Sebuah argumen dikatakan sahih (valid) jika konklusi benar apabila semua hipotesisnya benar. Sebaliknya, sebuah argumen dikatakan palsu (invalid).

Argumen yang sahih berarti bahwa implikasi berikut bernilai benar:

$$(p_1 \wedge p_2 \wedge \cdots \wedge p_n) \Rightarrow q$$

Bagian 2: Penarikan kesimpulan

Contoh kasus pembuktian

Diberikan argumen:

"Jika air laut surut setelah gempa di laut, maka tsunami datang.

Air laut surut setelah gempa di laut. Karena itu tsunami datang."

Apakah argumen tersebut sahih?

Contoh kasus pembuktian

Diberikan argumen:

"Jika air laut surut setelah gempa di laut, maka tsunami datang.

Air laut surut setelah gempa di laut. Karena itu tsunami datang."

Apakah argumen tersebut sahih?

Solusi:

Misalkan:

- p: proposisi "Air laut surut setelah gempa di laut."
- ▶ q: proposisi "Tsunami datang."

Maka argumen tersebut dapat ditulis sebagai:

$$\begin{array}{c} p \Rightarrow q \\ \hline p \\ \hline q \end{array}$$

Bagaimana membuktikan kebenaran argumen?

Cara 1: Menggunakan tabel kebenaran untuk p, q, dan $p \Rightarrow q$

p	q	$p \Rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Karena p benar dan $p \Rightarrow q$ benar, maka sesuai dengan tabel di atas, konklusi q juga benar.

Bagaimana membuktikan kebenaran argumen?

Cara 2: Buktikan dengan tabel kebenaran apakah:

$$[p \land (p \Rightarrow q)] \Rightarrow q$$

adalah tautologi.

p	q	$p \Rightarrow q$	$p \wedge (p \Rightarrow q)$	$p \wedge (p \Rightarrow q) \Rightarrow q$
Т	Т	Т	Т	T
Т	F	F	F	Т
F	Т	Т	F	Т
F	F	T	F	Т

Latihan 1

Apakah argumen berikut sahih?

Jika 13 adalah bilangan prima, maka 3 tidak habis membagi 17 3 habis membagi 13

13 bukan bilangan prima

Solusi Latihan 1

- p: 13 adalah bilangan prima;
- ▶ q: 3 habis membagi 17

$$p\Rightarrow \neg q$$
 q
 $\neg p$

BENAR, disini kita menggunakan kontraposisi (akan dibahas pada bagian berikutnya)

$$\mathsf{Kontraposisi}: (p \Rightarrow q) \equiv (\neg q \Rightarrow \neg p)$$

Latihan 2

Apakah argumen berikut sahih?

Jika saya menyukai Informatika, maka saya belajar sungguh-sungguh Saya belajar sungguh-sungguh atau saya gagal

Jika saya gagal, maka saya tidak menyukai Informatika

Solusi Latihan 2

- p: saya menyukai Informatika;
- q: saya belajar sungguh-sungguh;
- r: saya gagal

Jika saya gagal, maka saya tidak menyukai Informatika berarti:

$$r \Rightarrow \neg p$$

$$\begin{array}{ccc}
p \Rightarrow \neg q & & p \Rightarrow \neg q \\
q \lor r & & \neg q \Rightarrow r
\end{array}$$

$$\begin{array}{ccc}
r \Rightarrow \neg p
\end{array}$$

Proposisi $r \Rightarrow \neg p$ ekuivalen dengan $p \Rightarrow \neg r$ (kontraposisi).

Bagaimana menurut Anda, apakah kesimpulan di atas sahih?

Solusi Latihan 2

Coba buat tabel kebenaran untuk $p \Rightarrow q$, $q \lor r$, dan $r \Rightarrow \neg p$.

	1			ı		i
p	q	r	$p \Rightarrow q$	$q \vee r$	$\neg p$	$r \Rightarrow \neg p$
Т	Т	Т	Т	Т	F	F
Т	Т	F	Т	Т	F	Т
Т	F	Т	F	Т	F	F
Т	F	F	F	Т	F	Т
F	Т	Т	Т	F	Т	Т
F	Т	F	Т	Т	Т	Т
F	F	Т	T	Т	Т	Т
F	F	F	Т	F	Т	Т

Latihan soal

Soal nomor 15, 21, dan 22 dari Buku Referensi "Matematika Diskrit Ed 3 (oleh Rinaldi Munir)"

Aksioma, Teorema, Lemma, Corollary

Apa yang Anda ketahui tentang istilah-istilah tersebut?

Aksioma

Aksioma adalah proposisi yang <u>diasumsikan</u> benar. Aksioma tidak memerlukan pembuktian kebenaran.

Contoh

- $\forall x, y \in \mathbb{R}$, berlaku: x + y = y + x;
- ▶ Jika diberikan dua titik berbeda, maka hanya ada satu garis lurus yang melalui kedua titik tersebut.

Teorema

Teorema adalah proposisi yang sudah terbukti benar.

Contoh

▶ Jika dua sisi dari sebuah segitiga sama panjang, maka sudut yang berlawanan dengan sisi tersebut sama besar.

Lemma

Lemma adalah teorema sederhana yang digunakan dalam pembuktian suatu teorema lain atau proposisi (yang lebih kompleks).

Contoh

Jika n adalah bilangan bulat positif, maka n=2k atau n=2k+1 untuk suatu bilangan bulat k.

Corollary

Corollary adalah teorema yang merupakan akibat dari suatu teorema lain yang sudah dibuktikan.

Contoh

Jika suatu segitiga adalah segitiga sama sisi, maka segitiga tersebut adalah segitiga sama sudut

Corollary tersebut adalah akibat dari teorema berikut.

Teorema

Jika dua sisi dari sebuah segitiga sama panjang, maka sudut yang berlawanan dengan sisi tersebut sama besar.

Bagian 3: Pembuktian kontrapositif

Converse, Inverse, Contrapositive

Diberikan sebuah proposisi: $p \Rightarrow q$.

- **Converse** dari proposisi tersebut adalah $q \Rightarrow p$.
- ► Contrapositive dari proposisi tersebut adalah $\neg q \Rightarrow \neg p$.
- ▶ Inverse dari proposisi tersebut adalah $\neg p \Rightarrow \neg q$.

Contoh

- 1. Jika hari hujan, maka saya masak mie.
- 2. Jika tidak membuat tugas, maka nilai saya buruk.
- 3. Jika saya tidak memasak, maka saya tidak bisa makan.

Konsep pembuktian dengan kontrapositif (1)

Cara pembuktian dengan kontrapositif adalah pembuktian suatu pernyataan "Jika P maka Q", dilakukan dengan menunjukkan ""Jika Q tidak benar, maka P tidak benar"...

Contoh

Misalkan $x \in \mathbb{Z}$. Buktikan bahwa:

Jika 7x + 9 adalah bilangan genap, maka x adalah bilangan ganjil.

Konsep pembuktian dengan kontrapositif (1)

Cara pembuktian dengan kontrapositif adalah pembuktian suatu pernyataan "Jika P maka Q", dilakukan dengan menunjukkan ""Jika Q tidak benar, maka P tidak benar"...

Contoh

Misalkan $x \in \mathbb{Z}$. Buktikan bahwa:

Jika 7x + 9 adalah bilangan genap, maka x adalah bilangan ganjil.

Solusi:

- \triangleright p : 7x + 9 adalah bilangan genap
- ▶ q : x adalah bilangan ganjil

Kontrapositif dari $p \Rightarrow q$ adalah $\neg q \Rightarrow \neg p$, yaitu:

Jika x adalah bilangan genap, maka 7x + 9 adalah bilangan ganjil.

Konsep pembuktian dengan kontrapositif (2)

Jika x adalah bilangan genap, maka 7x+9 adalah bilangan ganjil.

- ► 7x adalah bilangan (genap/ganjil) ?
- Maka 7x + 9 adalah bilangan (genap/ganjil) ?

Bagian 4: Pembuktian dengan kontradiksi

Contoh memotivasi

Proposisi

Untuk setiap bilangan bulat n, jika $n^3 + 5$ adalah bilangan ganjil, maka n adalah bilangan genap.

Bagaimanakah Anda membuktikan kebenaran dari pernyataan ini?

Contoh memotivasi

Proposisi

Untuk setiap bilangan bulat n, jika $n^3 + 5$ adalah bilangan ganjil, maka n adalah bilangan genap.

Bagaimanakah Anda membuktikan kebenaran dari pernyataan ini?

- Dengan pembuktian langsung, mulai dari pernyataan bahwa n³ + 5 adalah bilangan ganjil, dan selanjutnya disimpulkan bahwa n adalah bilangan genap.
- ▶ Dengan kontraposisi, asumsikan bahwa *n* adalah bilangan *ganjil*, dan buktikan bahwa *n* adalah bilangan *genap*.

Pembuktian dengan kontradiksi

Proposisi

 $P \Rightarrow Q$

Proof.

Asumsikan bahwa untuk kontradiksi, P bernilai benar dan Q bernilai salah.

.....

Pembuktian ini mengarah ke kontradiksi

Contoh memotivasi

Proposisi

Untuk setiap bilangan bulat n, jika $n^3 + 5$ adalah bilangan ganjil, maka n adalah bilangan genap.

Proof.

Untuk kontradiksi, asumsikan bahwa $n \in \mathbb{Z}$, dan n dan $n^3 + 5$ adalah bilangan ganjil. Maka, harus dibuktikan bahwa hal ini mengarah ke *kontradiksi*.

Bagian 5: Pembuktian dengan *exhaustive search*

Buktikan bahwa satu-satunya bilangan bulat positif berurutan yang tidak melebihi 100 yang merupakan pangkat sempurna adalah 8 dan 9. (Bilangan bulat dikatakan pangkat sempurna jika sama dengan n^a , dimana a adalah bilangan bulat yang lebih dari 1.)

Buktikan bahwa satu-satunya bilangan bulat positif berurutan yang tidak melebihi 100 yang merupakan pangkat sempurna adalah 8 dan 9. (Bilangan bulat dikatakan pangkat sempurna jika sama dengan n^a , dimana a adalah bilangan bulat yang lebih dari 1.)

Solusi:

Dengan pencarian *exhaustive*, periksa setiap pasangan bilangan bulat berurutan yang tidak lebih dari 100, yakni:

$$\{1,2\},\ \{2,3\},\ \{3,4\},\ \ldots,\ \{99,100\}$$

Bagian 6: Pembuktian dengan enumerasi kasus

Buktikan bahwa untuk bilangan bulat n berlaku: $n^2 \ge n$.

Buktikan bahwa untuk bilangan bulat n berlaku: $n^2 \ge n$.

Solusi: Analisis kasus n = 0, $n \ge 1$, dan $n \le -1$.

- ► Untuk $n = 0 : 0^2 \ge 0$
- ▶ Untuk $n \ge 1$: $n^2 \ge n$
- ▶ Untuk $n \le -1$: n^2 positif, dan n negatif

Tunjukkan dengan enumerasi kasus, bahwa: |xy| = |x||y|, dimana $x, y \in \mathbb{R}$. *

^{*|}a| adalah nilai mutlak a, dimana |a|=a jika $a\geq 0$, dan |a|=-a jika a<0.

Tunjukkan dengan enumerasi kasus, bahwa: |xy| = |x||y|, dimana $x, y \in \mathbb{R}$. *

Perhatikan bahwa jika x=0 maka |x|=0; jika x>0 maka |x|>0, dan jika x<0 maka |x|>0.

- ▶ Untuk x > 0, y > 0, maka: |x| = x dan |y| = y
- ▶ Untuk x > 0, y < 0, maka |x| = x dan |y| = -y
- ▶ Untuk x < 0, y > 0, maka |x| = -x dan |y| = y
- Untuk x < 0, y < 0, maka |x| = x dan |y| = y

 $^{^*|}a|$ adalah nilai mutlak a, dimana |a|=a jika $a\geq 0$, dan |a|=-a jika a<0.

end of slide...