



# Digital Logic

Junying Chen





## Bits, Bytes, Nibbles...

Bits

10010110
most least significant bit bit

Bytes & Nibbles

10010110
nibble

Bytes

CEBF9AD7

most least significant byte byte



### Large Powers of Two

- $2^{10} = 1 \text{ kilo}$   $\approx 1000 (1024)$
- $2^{20} = 1 \text{ mega} \approx 1 \text{ million } (1,048,576)$
- $2^{30} = 1$  giga  $\approx 1$  billion (1,073,741,824)





### **Estimating Powers of Two**

• What is the value of  $2^{24}$ ?

 How many values can a 32-bit variable represent?





### **Estimating Powers of Two**

- What is the value of  $2^{24}$ ?
  - $-2^4 \times 2^{20} \approx 16$  million

 How many values can a 32-bit variable represent?

$$-2^2 \times 2^{30} \approx 4$$
 billion



### Addition

Decimal

Binary



Significant significant

digit

digit

ELSEVIER

### Binary Addition Examples

Add the following
 4-bit binary
 numbers

Add the following
 4-bit binary
 numbers



## Binary Addition Examples

Add the following
 4-bit binary
 numbers

Add the following
 4-bit binary
 numbers

Overflow!





### Overflow

- Digital systems operate on a fixed number of bits
- Overflow: when result is too big to fit in the available number of bits
- See previous example of 11 + 6





### Signed Binary Numbers

- Sign/Magnitude Numbers
- Two's Complement Numbers



# NE Sign

# Sign/Magnitude Numbers

- 1 sign bit, *N*-1 magnitude bits
- Sign bit is the most significant (left-most) bit
  - Positive number: sign bit = 0
  - Negative number: sign bit = 1

$$A: \{a_{N-1}, a_{N-2}, \cdots a_2, a_1, a_0\}$$

$$A = (-1)^{a_{n-1}} \sum_{i=0}^{n-2} a_i 2^i$$

• Example, 4-bit sign/mag representations of  $\pm$  6:

• Range of an *N*-bit sign/magnitude number:





# Sign/Magnitude Numbers

- 1 sign bit, *N*-1 magnitude bits
- Sign bit is the most significant (left-most) bit
  - Positive number: sign bit = 0
  - Negative number: sign bit = 1

$$A: \{a_{N-1}, a_{N-2}, \cdots a_2, a_1, a_0\}$$

$$A = (-1)^{a_{n-1}} \sum_{i=0}^{n-2} a_i 2^i$$

• Example, 4-bit sign/mag representations of  $\pm$  6:

$$+6 = 0110$$

$$-6 = 1110$$

• Range of an *N*-bit sign/magnitude number:

$$[-(2^{N-1}-1), 2^{N-1}-1]$$





# Sign/Magnitude Numbers

### Problems:

- Addition doesn't work, for example -6 + 6:

10100 (wrong!)

– Two representations of  $0 (\pm 0)$ :

0000





### Two's Complement Numbers

- Don't have same problems as sign/magnitude numbers:
  - Addition works
  - Single representation for 0





### Two's Complement Numbers

• Msb has value of  $-2^{N-1}$ 

$$A = a_{n-1} \left( -2^{n-1} \right) + \sum_{i=0}^{n-2} a_i 2^i$$

- Most positive 4-bit number:
- Most negative 4-bit number:
- The most significant bit still indicates the sign (0 = positive, 1 = negative)
- Range of an *N*-bit two's comp number:





### Two's Complement Numbers

• Msb has value of  $-2^{N-1}$ 

$$A = a_{n-1} \left( -2^{n-1} \right) + \sum_{i=0}^{n-2} a_i 2^i$$

- Most positive 4-bit number: 0111
- Most negative 4-bit number: 1000
- The most significant bit still indicates the sign (0 = positive, 1 = negative)
- Range of an *N*-bit two's comp number:

$$[-(2^{N-1}), 2^{N-1}-1]$$





# "Taking the Two's Complement"

- Flip the sign of a two's complement number
- Method (invert & add-one):
  - 1. Invert the bits
  - 2. Add 1
- Example: Flip the sign of  $3_{10} = 0011_2$





# "Taking the Two's Complement"

- Flip the sign of a two's complement number
- Method:
  - 1. Invert the bits
  - 2. Add 1
- Example: Flip the sign of  $3_{10} = 0011_2$ 
  - 1. 1100

$$\frac{2. + 1}{1101} = -3_{10}$$





# Two's Complement Examples

• Take the two's complement of  $6_{10} = 0110_2$ 

• What is the decimal value of the two's complement number 1001<sub>2</sub>?





## Two's Complement Examples

- Take the two's complement of  $6_{10} = 0110_2$ 
  - 1. 1001

$$\frac{2. + 1}{1010_2 = -6_{10}}$$

- What is the decimal value of the two's complement number 1001<sub>2</sub>?
  - 1. 0110

$$\frac{2. + 1}{0111_2} = 7_{10}$$
, so  $1001_2 = -7_{10}$ 





# Two's Complement Addition

 Add 6 + (-6) using two's complement numbers

• Add -2 + 3 using two's complement numbers





## Two's Complement Addition

Add 6 + (-6) using two's complement numbers
 111
 0110
 + 1010

• Add -2 + 3 using two's complement numbers



Omitted



### Increasing Bit Width

- Extend number from N to M bits (M > N):
  - Sign-extension
  - Zero-extension





### Sign-Extension

- Sign bit copied to msb's
- Number value is same

### Example 1:

- 4-bit representation of 3 = 0011
- 8-bit sign-extended value: 00000011

### Example 2:

- 4-bit representation of -5 = 1011
- 8-bit sign-extended value: 11111011





### Zero-Extension

- Zeros copied to msb's
- Value changes for negative numbers

### Example 1:

$$0011_2 = 3_{10}$$

- 8-bit zero-extended value:  $00000011 = 3_{10}$ 

### Example 2:

$$1011 = -5_{10}$$

- 8-bit zero-extended value: 
$$00001011 = 11_{10}$$



### Number System Comparison

| Number System    | Range                       |
|------------------|-----------------------------|
| Unsigned         | $[0, 2^{N}-1]$              |
| Sign/Magnitude   | $[-(2^{N-1}-1), 2^{N-1}-1]$ |
| Two's Complement | $[-2^{N-1}, 2^{N-1}-1]$     |

### For example, 4-bit representation:



