Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования **Московский авиационный институт**

(национальный исследовательский университет)

Прорект	ор по	УТВЕРЖДАЮ учебной работе
		Козорез Д.А
44	"	20

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (0000ХХХХХ)

Актуарная математика

(указываеп	іся наименов	вание дисциплины по учебному плану)
Направление подготовки	Прикладная	и математика
Квалификация (степень) выпус	кника	Магистр
Профиль подготовки Мате	матическая	экономика
Форма обучения очная		
Выпускающая кафедра	804	(очная, очно-заочная и др.)
Обеспечивающая кафедра	804	
Кафедра-разработчик рабочей і	ірограммы	804

Семестр	3.E.	Трудоемкость, час.	Лекций, час.	Практич. занятий, час.	Лаборат. работ, час.	КСР, час.	СРС,	Экзаменов, час.	Форма промежуточ- ного контроля
2	3	108	36	36	24	0	12	0	P
Итого	3	108	36	36	24	0	12	0	

Москва 2014

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Разделы рабочей программы

- 1. Цели освоения дисциплины. Перечень планируемых результатов обучения.
- 2. Место дисциплины в структуре образовательной программы.
- 3. Структура и содержание дисциплины.
- 4. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине.
- 5. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине.
- 6. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины.
- 7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины.
- 8. Методические указания для обучающихся по освоению дисциплины.
- 9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине.
- 10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине.

Приложения к рабочей программе дисциплины

Приложение 1. Аннотация рабочей программы

Приложение 2. Прикрепленные файлы

Программа составлена в соответствии с требо основе ФГОС ВО по направлению 01.03.04 При	ованиями СУОС НИУ МАИ, разработанного на икладная математика
Авторы программы:	
Семенихин К.В.	
Заведующий обеспечивающей кафедрой 804	
Программа одобрена:	
Заведующий выпускающей кафедрой 804	Декан выпускающего факультета 8

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ.

Целью освоения дисциплины <u>Актуарная математика</u> является достижение следующих результатов освоения (PO):

N	Шифр	Результат освоения
1		Владеет навыками участия в качестве исполнителя в научно-исследовательских работах

Перечисленные РО являются основой для формирования следующих компетенций: (в соответствии с $\Phi \Gamma OC$ ВО и требованиями к результатам освоения основной образовательной программы (OOII))

N	Шифр	Компетенция
1	ДПК-15	Способен применять на практике математические модели современных технических и экономических систем
2	ДПК-16	Способен использовать математические модели современных экономических систем в процессе принятия производственно-экономических решений
3	ДПК-17	Способен оценивать с позиций системного анализа свою роль в организационно- управленческом блоке производственно-экономической системы
4	ДПК-18	Умение применять современные математические методы анализа и синтеза сложных систем в задачах математической экономики

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ.

Дисциплина <u>Актуарная математика</u> является предшествующей и последующей для следующих дисциплин:

N	Предшествующие дисциплины	Последующие дисциплины
1	Выпуклый анализ	Прикладное стохастическое программирование (Теория параметрической идентификации)
2	Введение в актуарную математику	Статистическое моделирование на ЭВМ (Статистические методы в социологии и экономике)
3	Введение в стохастическую финансовую математику	Системы массового обслуживания
4		Преддипломная практика

3. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины составляет <u>3</u> зачетных единицы, <u>108</u> часов.

Модуль	Раздел	Лекции	Практич. занятия	Лаборат. работы	КСР	СРС	Всего часов	Всего с экзаменами и курсовыми
Актуарная математика	Элементы теории полезности в статической модели страхования	8	8	6	0	2	24	108
	Модели страхования с неполным возмещением	4	4	6	0	1	15	

	Распределение суммарного риска	4	4	6	0	1	15	
	Модели наступления страховых событий	8	8	6	0	2	24	
	Динамические модели страхования	12	12	0	0	6	30	
Всего	36	36	24	0	12	108	108	

3.1.Содержание (дидактика) дисциплины

В разделе приводится полный перечень дидактических единиц, подлежащих усвоению при изучении данной дисциплины.

- 1. Элементы теории полезности в статической модели страхования.
- 2. Модели страхования с неполным возмещением.
- 3. Распределение суммарного риска.
- 4. Модели наступления страховых событий.
- 5. Динамические модели страхования.

3.2.Лекции

№	Раздел	Объем,	Тема лекции	Дидакт.
п/п	дисциплины	часов	20	единицы
1	Основные понятия теории полезности	2	Основные понятия теории полезности. Ожидаемая полезность: примеры функций полезности, петербургский парадокс.	1
2	Статическая модель страхования	2	Базовые понятия страхового дела. Статическая модель страхования с полным возмещением	1
3	Нахождение границ страховых премий	2	Множества допустимых страховых премий. Нахождение границ страховых премий при экспоненциальной функции полезности.	1
4	Теорема о нагрузке	2	Свойства вогнутых функций. Теорема о нагрузке и ее следствия.	1
5	Модели страхования с неполным возмещением	2	Статическая модель страхования с неполным возмещением. Функции выплат и примеры договоров страхования.	2
6	Оптимальный договор страхования	2	Теорема Эрроу и ее следствия. Выбор размера эксцедента убытка в договоре страхования с безусловной франшизой.	2
7	Распределение суммарного риска	2	Оценка погрешности нормальной аппроксимации посредством неравенства Берри—Эссеена. Оценка погрешности пуассоновской аппроксимации.	3
8	Оценка вероятности «разорения»	2	Оценка вероятности «разорения» с помощью неравенств Чебышева и Селберга. Применение указанных неравенств при расчете вероятности неисчерпания страховой компанией своего резервного фонда.	3
9	Модели наступления страховых	2	Процесс числа страховых случаев: локальный и глобальный способы его описания.	4

	событий			
10	Пуассоновский поток страховых событий	2	Пуассоновский поток страховых событий и его свойства.	4
11	Операции над пуассоновским потоком	2	Операции над пуассоновским потоком страховых событий: прореживание, суперпозиция. Нестационарные и групповые потоки	4
12	Модели выбытия	2	Модели выбытия из данной совокупности и ее основные характеристики: функция дожития, интенсивность выбытия, кривая смертности. Закон де Муавра.	4
13	Модель страхования с дискретным временем	2	Модель страхования с дискретным временем. Анализ моментных характеристик	5
14	Задача о разорении в дискретной модели	2	Коэффициент Лундберга: определение и способ нахождения. Вероятность «разорения» и ее оценка	5
15	Сложно- пуассоновское распределение	2	Сложно-пуассоновское распределение. Моментные характеристики и производящая функция.	5
16	Сложно- пуассоновская модель страхования	2	Сложно-пуассоновская модель страхования. Анализ моментных характеристик.	5
17	Задача о разорении в сложно- пуассоновской модели	2	Коэффициент Лундберга: определение и способ нахождения. Теорема Крамера—Лундберга о вероятности «разорения».	5
18	Задача о разорении в модели с броуновским движением	2	Модель страхования, основанная на процессе броуновского движения. Распределение момента «разорения» и его моментные характеристики.	5
	Итого:	36		

3.3.Содержание лекций.

1. Основные понятия теории полезности (АЗ: 2, СРС: 0,5)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Основные понятия теории полезности. Ожидаемая полезность: примеры функций полезности, петербургский парадокс.

2. Статическая модель страхования. (АЗ: 2, СРС: 0,5)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Базовые понятия страхового дела. Статическая модель страхования с полным возмещением.

3. Нахождение границ страховых премий. (АЗ: 2, СРС: 0,5)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Множества допустимых страховых премий. Нахождение границ страховых премий при экспоненциальной функции полезности.

4. Теорема о нагрузке. (АЗ: 2, СРС: 0,5)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Свойства вогнутых функций. Неравенство Йенсена. Теорема о нагрузке и ее следствия.

5. Модели страхования с неполным возмещением. (АЗ: 2, СРС: 0,5)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Статическая модель страхования с неполным возмещением. Функции выплат и примеры договоров страхования.

6. Оптимальный договор страхования. (АЗ: 2, СРС: 0,5)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Теорема Эрроу и ее следствия. Выбор размера эксцедента убытка в договоре страхования с безусловной францизой.

7. Распределение суммарного риска (АЗ: 2, СРС: 0,5)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Центральная предельная теорема, как способ аппроксимации распределения суммарного риска. Оценка погрешности нормальной аппроксимации посредством неравенства Берри—Эссеена. Оценка погрешности пуассоновской аппроксимации.

8. Оценка вероятности «разорения». (АЗ: 2, СРС: 0,5)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Оценка вероятности «разорения» с помощью неравенств Чебышева и Селберга. Применение указанных неравенств при расчете вероятности неисчерпания страховой компанией своего резервного фонда.

9. Модели наступления страховых событий. (АЗ: 2, СРС: 0,5)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Процесс числа страховых случаев: локальный и глобальный способы его описания. Свойства потоков: стационарность, отсутствие последействия, ординарность. Параметр и интенсивность потока. Реккурентный поток.

10. Пуассоновский поток страховых событий. (АЗ: 2, СРС: 0,5)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Пуассоновский поток страховых событий (три варианта его определения): аксиоматическое определение, определение через пуассоновский процесс, способ моделирования. Основные характеристики. Парадокс ожидания события в пуассоновском потоке.

11. Операции над пуассоновским потоком. (АЗ: 2, СРС: 0,5)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Операции над пуассоновским потоком страховых событий: взятие условного распределения (для моментов и числа событий), прореживание, суперпозиция. Нестационарные и групповые пуассоновские потоки.

12. Модели выбытия. (A3: 2, CPC: 0,5)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Модели выбытия из данной совокупности и ее основные характеристики: функция дожития, интенсивность выбытия, кривая смертности. Закон де Муавра.

13. Модель страхования с дискретным временем. (АЗ: 2, СРС: 1)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Динамическая модель страхования с дискретным временем. Анализ моментных характеристик. Условие безубыточности.

14. Задача о разорении в дискретной модели. (АЗ: 2, СРС: 1)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Коэффициент Лундберга: мартингальное определение и способ нахождения через логарифмическую производящую функцию (уравнение Лундберга). Условия существования. Вероятность «разорения» и ее оценка сверху.

15. Сложно-пуассоновское распределение. (АЗ: 2, СРС: 1)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Сложно-пуассоновское распределение. Тождества Вальда для сумм независимых величин со случайным числом слагаемых: для математического ожидания, для дисперсии, для производящей функции. Моментные характеристики и производящая функция сложно-пуассоновской величины.

16. Сложно-пуассоновская модель страхования. (АЗ: 2, СРС: 1)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Сложно-пуассоновская модель страхования. Анализ моментных характеристик. Условие безубыточности.

17. Задача о разорении в сложно-пуассоновской модели. (АЗ: 2, СРС: 1)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Коэффициент Лундберга: мартингальное определение и способ нахождения через производящую функцию (уравнение Лундберга). Условия существования. Теорема Крамера—Лундберга о вероятности «разорения».

18. Задача о разорении в модели с броуновским движением. (АЗ: 2, СРС: 1)

Тип лекции: Информационная лекция

Форма организации: Лекция, мастер-класс

Описание: Модель страхования, основанная на процессе броуновского движения. Определение и свойства процесса броуновского движения. Распределение момента «разорения» и его моментные характеристики.

3.4.Практические занятия

№ п/п	Раздел дисциплины	Объем, часов	Тема практического занятия	Дидакт. единицы
1	Основные понятия теории полезности	2	Основные понятия теории полезности. Ожидаемая полезность: примеры функций полезности, петербургский парадокс.	1
2	Статическая модель страхования	2	Базовые понятия страхового дела. Статическая модель страхования с полным возмещением	1
3	Нахождение границ страховых премий	2	Множества допустимых страховых премий. Нахождение границ страховых премий при экспоненциальной функции полезности.	1
4	Теорема о нагрузке	2	Теорема о нагрузке и ее следствия. Контрольная работа №1.	1
5	Модели страхования с неполным возмещением	2	Статическая модель страхования с неполным возмещением. Функции выплат и примеры договоров страхования.	2
6	Оптимальный договор страхования	2	Выбор размера эксцедента убытка в договоре страхования с безусловной франшизой. Контрольная работа №2.	2
7	Распределение суммарного риска	2	Оценка погрешности нормальной аппроксимации посредством неравенства Берри—Эссеена. Оценка погрешности пуассоновской аппроксимации.	3
8	Оценка вероятности «разорения»	2	Оценка вероятности «разорения» при расчете вероятности неисчерпания страховой компанией своего резервного фонда. Контрольная работа №3.	3
9	Модели наступления страховых событий	2	Процесс числа страховых случаев: локальный и глобальный способы его описания.	4
10	Пуассоновский поток страховых событий	2	Пуассоновский поток страховых событий и его свойства.	4
11	Операции над пуассоновским потоком	2	Операции над пуассоновским потоком страховых событий: прореживание, суперпозиция. Нестационарные и групповые потоки	4
12	Модели выбытия	2	Модели выбытия из данной совокупности и ее основные характеристики: функция дожития, интенсивность выбытия, кривая смертности. Контрольная работа №4.	4
13	Модель страхования с дискретным временем	2	Модель страхования с дискретным временем. Анализ моментных характеристик	5
14	Задача о разорении в дискретной модели	2	Коэффициент Лундберга: определение и способ нахождения. Вероятность «разорения» и ее оценка	5
15	Сложно- пуассоновское распределение	2	Сложно-пуассоновское распределение. Моментные характеристики и производящая функция.	5
16	Сложно- пуассоновская модель страхования	2	Сложно-пуассоновская модель страхования. Анализ моментных характеристик.	5

17	Задача о разорении в сложно- пуассоновской модели	2	Коэффициент Лундберга: определение и способ нахождения. Теорема Крамера—Лундберга о вероятности «разорения».	5
18	Задача о разорении в модели с броуновским движением	2	Модель страхования, основанная на процессе броуновского движения. Контрольная работа №5.	5
	Итого:	36		

3.5.Содержание практических занятий

1. Основные понятия теории полезности (АЗ: 2, СРС: 0,5)

Форма организации: Практическое занятие

Описание: Основные понятия теории полезности. Ожидаемая полезность: примеры функций полезности, петербургский парадокс.

2. Статическая модель страхования. (АЗ: 2, СРС: 0,5)

Форма организации: Практическое занятие

Описание: Базовые понятия страхового дела. Статическая модель страхования с полным возмещением.

3. Нахождение границ страховых премий. (АЗ: 2, СРС: 0,5)

Форма организации: Практическое занятие

Описание: Множества допустимых страховых премий. Нахождение границ страховых премий при экспоненциальной функции полезности.

4. Теорема о нагрузке. (АЗ: 2, СРС: 0,5)

Форма организации: Практическое занятие

Описание: Свойства вогнутых функций. Неравенство Йенсена. Теорема о нагрузке и ее следствия . Контрольная работа №1.

5. Модели страхования с неполным возмещением. (АЗ: 2, СРС: 0,5)

Форма организации: Практическое занятие

Описание: Статическая модель страхования с неполным возмещением. Функции выплат и примеры договоров страхования.

6. Оптимальный договор страхования. (АЗ: 2, СРС: 0,5)

Форма организации: Практическое занятие

Описание: Теорема Эрроу и ее следствия. Выбор размера эксцедента убытка в договоре страхования с безусловной франшизой. Контрольная работа №2.

7. Распределение суммарного риска (АЗ: 2, СРС: 0,5)

Форма организации: Практическое занятие

Описание: Центральная предельная теорема, как способ аппроксимации распределения суммарного риска. Оценка погрешности нормальной аппроксимации посредством неравенства Берри—Эссеена. Оценка погрешности пуассоновской аппроксимации . Контрольная работа №3.

8. Оценка вероятности «разорения». (АЗ: 2, СРС: 0,5)

Форма организации: Практическое занятие

Описание: Оценка вероятности «разорения» с помощью неравенств Чебышева и Селберга. Применение указанных неравенств при расчете вероятности неисчерпания страховой компанией своего резервного фонда.

9. Модели наступления страховых событий. (АЗ: 2, СРС: 0,5)

Форма организации: Практическое занятие

Описание: Процесс числа страховых случаев: локальный и глобальный способы его описания. Свойства потоков: стационарность, отсутствие последействия, ординарность. Параметр и интенсивность потока. Реккурентный поток.

10. Пуассоновский поток страховых событий. (АЗ: 2, СРС: 0,5)

Форма организации: Практическое занятие

Описание: Пуассоновский поток страховых событий (три варианта его определения): аксиоматическое определение, определение через пуассоновский процесс, способ моделирования. Основные характеристики. Парадокс ожидания события в пуассоновском потоке.

11. Операции над пуассоновским потоком. (АЗ: 2, СРС: 0,5)

Форма организации: Практическое занятие

Описание: Операции над пуассоновским потоком страховых событий: взятие условного распределения (для моментов и числа событий), прореживание, суперпозиция. Нестационарные и групповые пуассоновские потоки.

12. Модели выбытия. (A3: 2, CPC: 0,5)

Форма организации: Практическое занятие

Описание: Модели выбытия из данной совокупности и ее основные характеристики: функция дожития, интенсивность выбытия, кривая смертности. Контрольная работа №4.

13. Модель страхования с дискретным временем. (АЗ: 2, СРС: 1)

Форма организации: Практическое занятие

Описание: Динамическая модель страхования с дискретным временем. Анализ моментных характеристик. Условие безубыточности.

14. Задача о разорении в дискретной модели. (АЗ: 2, СРС: 1)

Форма организации: Практическое занятие

Описание: Коэффициент Лундберга: мартингальное определение и способ нахождения через логарифмическую производящую функцию (уравнение Лундберга). Условия существования. Вероятность «разорения» и ее оценка сверху.

15. Сложно-пуассоновское распределение. (АЗ: 2, СРС: 1)

Форма организации: Практическое занятие

Описание: Сложно-пуассоновское распределение. Тождества Вальда для сумм независимых величин со случайным числом слагаемых: для математического ожидания, для дисперсии, для производящей функции. Моментные характеристики и производящая функция сложно-пуассоновской величины.

16. Сложно-пуассоновская модель страхования. (АЗ: 2, СРС: 1)

Форма организации: Практическое занятие

Описание: Сложно-пуассоновская модель страхования. Анализ моментных характеристик. Условие безубыточности.

17. Задача о разорении в сложно-пуассоновской модели. (АЗ: 2, СРС: 1)

Форма организации: Практическое занятие

Описание: Коэффициент Лундберга: мартингальное определение и способ нахождения через производящую функцию (уравнение Лундберга). Условия существования. Теорема Крамера—Лундберга о вероятности «разорения».

18. Задача о разорении в модели с броуновским движением. (АЗ: 2, СРС: 1)

Форма организации: Практическое занятие

Описание: Модель страхования, основанная на процессе броуновского движения. Определение и свойства процесса броуновского движения. Контрольная работа №5.

3.6. Лабораторные работы

№ п/п	Раздел дисциплины	Наименование лабораторной работы	Наименование лаборатории	Объем, часов	Дидакт. единицы
1	Элементы теории полезности	Нахождение границ страховых премий	Лаборатория кафедры «Теория вероятностей и компьютерное	6	1
	в статической		моделирование»		

	модели страхования				
2	Модели страхования с неполным возмещением	Определение эксцедента убытка в договоре страхования с безусловной франшизой	Лаборатория кафедры «Теория вероятностей и компьютерное моделирование»	6	2
3	Распределение суммарного риска	Расчет вероятности сохранения заданной доли резервного фонда	Лаборатория кафедры «Теория вероятностей и компьютерное моделирование»	6	3
4	Модели наступления страховых событий	Описание распределения времени выбытия из однородной группы страхователей	Лаборатория кафедры «Теория вероятностей и компьютерное моделирование»	6	4
			Итого:	24	

3.7. Содержание лабораторных работ

1. Нахождение границ страховых премий. (АЗ: 2, СРС: 4)

Форма организации: Лабораторная работа

Описание: Для заданного распределения убытка определить границы премий, допустимые для страховщика и страхователей, если их предпочтения описываются экспоненциальной функцией полезности.

2. Определение эксцедента убытка в договоре страхования с безусловной францизой. (A3: 2, CPC: 4)

Форма организации: Лабораторная работа

Описание: Определить величину эксцедента убытка в договоре страхования с безусловной франшизой, если задана вероятность страхового события и распределение положительного убытка.

3. Расчет вероятности сохранения заданной доли резервного фонда. (АЗ: 2, СРС: 4)

Форма организации: Лабораторная работа

Описание: Рассчитать вероятность того, что страховая компания сохранит заданную долю резервного фонда, если число страхователей велико и известно распределение их убытка.

4. Описание распределения времени выбытия из однородной группы страхователей. (A3: 2, CPC: 4)

Форма организации: Лабораторная работа

Описание: Построить функцию распределения для момента выбытия из однородной группы страхователей по заданной функции дожития.

Прикрепленные файлы: Актуар_Лаб.pdf

3.8.Контроль самостоятельной работы (КСР)

№ п/п	Раздел дисциплины	Объем, часов	Тема КСР
		0	
Итого:		0	

3.9.Содержание КСР

3.10. Курсовые работы и проекты по дисциплине

1. Тема «Стохастические модели динамики резервного фонда страховой компании».

Прикрепленные файлы: Актуар_КП.pdf

3.11.Промежуточная аттестация

1. Рейтинговая оценка (2 семестр)

4. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

Вопросы для самостоятельной работы по темам:

№ п/п	Раздел дисциплины	Вопросы для самостоятельной работы

Задания для самостоятельной работы обучающихся:

№ п/п	Раздел дисциплины	Задания для самостоятельной работы

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

Описание показателей, критерии оценивания компетенций и описание шкал оценивания осуществляются в соответствии с Положением о балльно-рейтинговой системе оценки результатов обучения студентов по дисциплине (Приказ №42 от 04.04.2014 «Об утверждении положения «Рейтинг по дисциплине»).

Для оценивания интегрированных и практико-ориентированных заданий обучающихся используются следующие критерии по 100-балльной шкале:

- 1. Формулирование представленной информации в виде проблемы;
- 2. Предложение способа решения проблемы;
- 3. Обоснование способа решения проблемы;
- 4. Демонстрация способа решения проблемы.

Оценивание осуществляется по следующей шкале:

100-балльная шкала	Результат освоения
менее 40	Критерий не сформирован
41-70	Критерий четко не выражен

71-100	Критерий выражен четко
--------	------------------------

Для оценивания ситуационных заданий используется следующая шкала:

100-балльная шкала	Результат освоения
менее 30	обучающийся не может сформулировать
менее 30	проблему, представленную в задании
	обучающийся формулирует поставленную
	задачу, у него сформированы
31-50	изолированные знания и умения, однако
31-30	отсутствуют интегрированные понятия и
	навыки, в результате чего допущены
	ошибки в решении и задание не выполнено
	задание выполнено, обучающийся
	применяет знания для решения
51-80	поставленной проблемы, однако не
31-80	сформированы компетенции, вследствие
	чего обучающийся испытывает затруднения
	в демонстрации способов решения задачи
	задание выполнено как в теоретическом,
81-100	так и в практическом плане, обучающийся
01-100	легко демонстрирует свою компетентность
	по данному вопросу

Фонды оценочных средств, позволяющие оценить результаты обучения, включают в себя:

- комплект типовых индивидуальных заданий;
- темы письменных опросов;
- экзаменационные вопросы по курсу.

Перечень компетенций и этапы их формирования приведены в следующей таблице:

N	Шифр	Компетенция	Этапы формирования компетенции
1	ДПК-15	Способен применять на практике математические модели современных технических и экономических систем	Лекции, практические занятия, лабораторные работы и курсовой проект по дидактическим единицам №№1–5
2	ДПК-16	Способен использовать математические модели современных экономических систем в процессе принятия производственно-экономических решений	Лекции, практические занятия, лабораторные работы и курсовой проект по дидактическим единицам №№1–5
3	ДПК-17	Способен оценивать с позиций системного анализа свою роль в организационно-управленческом блоке производственно-экономической системы	Лекции, практические занятия, лабораторные работы и курсовой проект по дидактическим единицам №№1-5
4	ДПК-18	Умение применять современные математические методы анализа и синтеза сложных систем в задачах математической экономики	Лекции, практические занятия, лабораторные работы и курсовой проект по дидактическим единицам №№1-5

Комплект типовых индивидуальных заданий

№ п/п	Раздел дисциплины	Объем, часов	Наименование типового задания
	Итого:		

Содержание типовых заданий

Темы письменных опросов

1. Контрольная работа №1

Тип: Контрольная работа

Тематика: Элементы теории полезности в статической модели страхования.

2. Контрольная работа №2

Тип: Контрольная работа

Тематика: Модели страхования с неполным возмещением.

3. Контрольная работа №3

Тип: Контрольная работа

Тематика: Распределение суммарного риска.

4. Контрольная работа №4

Тип: Контрольная работа

Тематика: Модели наступления страховых событий.

5. Контрольная работа №5

Тип: Контрольная работа

Тематика: Динамические модели страхования. **Прикрепленные файлы:** Актуар_KP.pdf

Вопросы к экзамену по дисциплине

«Актуарная математика»

1. Рейтинговая оценка (2 семестр)

Прикрепленные файлы: Актуар Экз.pdf

6. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ УЧЕБНОЙ ЛИТЕРАТУРЫ, НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Основная литература

- 1. Бауэрс Н. и др. Актуарная математика. М.: Янус-К, 2001.
- 2. Бланд Д. Страхование: принципы и практика. М.: Финансы и статистика, 1998.

- 3. Гербер Х. Математика страхования жизни. М.: Мир, 1995.
- 4. Голубин А.Ю. Математические модели в теории страхования: построение и оптимизация. М.: «Анкил», 2003.
- 5. Фалин Г.И., Фалин А.И. Теория риска для актуариев в задачах. М.: «Научный мир», 2004.

Дополнительная литература

- 6. Бенинг В. Е., Ротарь В. И. Введение в математическую теорию страхования // Обозр. прикл. и промышл. математики. 1994. Т.1, №5. С.698-779.
- 7. Нефедова Ю.С., Шевцова И.Г. О неравномерных оценках скорости сходимости в центральной предельной теореме // Теория вероятн. и ее примен. 2012. Т.57. №1. С.62-97.
- 8. Панков А. Р., Семенихин К. В. Практикум по теории случайных процессов. Учебное пособие. М.: Изд-во МАИ-ПРИНТ, 2009.
- 9. Ширяев А.Н. Основы стохастической финансовой математики. Том 1. Модели. М.: «ФАЗИС», 1998.
- 10. Ширяев А. Н. О мартингальных методах в задачах о пересечении границ броуновским движением. Современные проблемы математики. Вып. 8. М.: МИАН, 2007.

7. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ «ИНТЕРНЕТ», НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Для обеспечения образовательного процесса по дисциплине обучающимся предоставляется возможность круглосуточного дистанционного индивидуального доступа к электронной библиотечной системе НЭИКОН, IqLib, American Mathematical Society, Annual Reviews, Science (научно-популярный журнал), e-Library, Единое окно доступа к образовательным ресурсам (ссылки ко многим ресурсам, поддерживается Минобрнауки), из любой точки, в которой имеется доступ к сети «Интернет».

Рекомендованы следующие электронные ресурсы:

1. Pecypc НЭИКОН (http://archive.neicon.ru):

Cambridge University Press (Журналы издательства Cambridge University Press);

Oxford University Press (Журналы издательства Oxford University Press);

Журнал Science (Цифровой архив журнала Science);

Научная литература по дисциплине издательства Taylor&Francis.

- 2. Pecypc IqLib (http://www.iqlib.ru/);
- 3. American Mathematical Society (http://www.ams.org/mathscinet/index.html);
- 4. Annual Reviews (http://www.annualreviews.org);
- 5. Science (http://www.sciencemag.org);
- 6.e-Library (http://elibrary.ru);
- 7. Единое окно доступа к образовательным ресурсам (ссылки ко многим ресурсам, поддерживается Минобрнауки) (http://window.edu.ru/).

8.Проект «Tigris» (http://www.tigris.org).

9.Сайт Рамус (http://ramussoftware.com).

10.Стандарты: http://www.gost.ru/, обновления и новые стандарты: http://protect.gost.ru/.

8.МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

9. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

Программное обеспечение, Интернет-ресурсы, электронные библиотечные системы:

10. ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

При выполнении лабораторных работ используются ПЭВМ дисплейного класса факультета 8 для проведения расчетов.

Аннотация рабочей программы

Дисциплина <u>Актуарная математика</u> является частью <u>Блока 1 Дисциплины</u> дисциплин подготовки студентов по направлению подготовки <u>Прикладная математика</u>. Дисциплина реализуется на <u>8</u> факультете <u>«Московский авиационного института (национального исследовательского университета)» кафедрой (кафедрами) 804.</u>

Дисциплина нацелена на формирование следующих компетенций: <u>ДПК-15</u>, <u>ДПК-16</u>, <u>ДПК-17</u>, <u>ДПК-18</u>.

Содержание дисциплины охватывает круг вопросов, связанных с: основами актуарной математики для:

- построения математических моделей страховых систем;
- решения задач актуарных расчетов;
- анализа эффективности решений в страховом деле.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: <u>Лекция (мастер-класс)</u>, <u>Практическое занятие</u>.

Программой дисциплины предусмотрены следующие виды контроля: рубежный контроль в форме <u>Контрольной работы</u> и аттестации в форме <u>Рейтинговой оценки (за 2 семестр)</u>.

Общая трудоемкость освоения дисциплины составляет $\underline{3}$ зачетных единиц, $\underline{108}$ часов. Программой дисциплины предусмотрены лекции ($\underline{36}$ часов), практические занятия ($\underline{36}$ часов), курсовой проект ($\underline{0}$ часов), лабораторные работы ($\underline{24}$ часов) и ($\underline{12}$ часов) самостоятельной работы студента. Основными задачами изучения дисциплины являются:

ознакомление с математическими моделями страхования;	
освоение принципов принятия решений в условиях стохастической неопределени	ности;
овладение вероятностными методами актуарных расчетов;	
освоение схем решения для типовых задач анализа страховых систем.	

Приложение 2 к рабочей программе дисциплины «Актуарная математика»

Прикрепленные файлы

Актуар_КП.рdf — задание на курсовой проект.

Актуар_КР.рdf — варианты контрольных работ.

Актуар_Лаб.рdf — варианты лабораторных работ.

Актуар_Экз.pdf — список вопросов к экзамену.