The Datatype of Loss Landscapes

Dan Roberts (roberts@ias.edu) and Samuel Tenka (coli@mit.edu) 2019-01-22

0. Loss Landscapes

What is the natural setting for a stochastic gradient-based optimizer such as SGD? A typical implementation might have this pseudocode:

```
Weight learn(Data ^N X, Weight w_0, float(*l)(Data, Weight), int E) { Weight w=w_0; for (int e=0; e\neq E; e=e+1) { shuffle(X); for (Data x\colon X) { Covector g=\nabla_w l(x,w); w=\exp_w(-\operatorname{transpose}(g)); } } return w; }
```

We thus see that the key ingredients are

- a probability space X of data;
- ullet a manifold W of weights that is equipped with
- a Riemannian (inverse) metric transpose : $T^*W \to TW$ to turn covectors into vectors (the learning rate is part of this data) that in turn induces
- the flow $\exp: TW \to W$ to update along a vector; and
- a loss function $l: X \times W \to \mathbb{R}$.

One wishes for W to be metrically complete, for $w \mapsto l(x, w)$ to be smooth for all x, and for each random variable $\nabla_w^a \nabla_w^b \cdots \nabla_w^z l(x, w)$ to be subgaussian for all w. In this case, let us call the listed data (X, W, l) a **loss landscape**. Traditionally, W has been either curved according to a Fisher metric or else flat. The purpose of this note is to unify and clarify these and all other reasonable possibilities.

Let us write $\langle f(x) \rangle$ for the expectation of f(x), and let us notate derivatives such as $\nabla_w^a \nabla_w^a \nabla_w^b \nabla_w^c l(x, w)$ by parenthesized sequences of indices such as (aabc). By subgaussianity, every grammatical expression of $\langle \rangle$ s and ()s has a finite value. For example, we may consider the **hessian** $H = \langle (ab) \rangle$ or the **covariance** $C = \langle (a)(b) \rangle - \langle (a) \rangle \langle (b) \rangle$. Though both H and C are symmetric 2-tensors on TW, their meanings greatly differ. For instance, H scales linearly with l while C scales quadratically. Table 0 makes such scalings vivid by imagining that the loss has units of dollars.

1. Germs

2. Taylor Expansion in the Metric

DIMENSIONS	$length^{-2}$	$length^{-1}$	$length^0$	-length ¹
dollars ⁻¹			learning rate	gas mileage
$dollars^0$	metric		unitless	weight update
$dollars^1$	hessian	gradient	loss	
$dollars^2$	covariance		trace covariance	

Table 0: This table indicates the scaling properties of selected objects so that the reader may orient her intuition for dimensional analysis. Many interesting objects are left unlisted: for instance, the variance $\langle ()() \rangle - \langle () \rangle \langle () \rangle$ of the loss would inhabit the trace-covariance's cell, and the intensity $\langle (a) \rangle \langle (a) \rangle$ of the mean gradient would inhabit the covariance's cell.

3. Example: The Valley of Death

4. Geometry as Prior