Machine Learning in Astronomy

Reza Monadi

UC Riverside

May 14, 2020

credit: 365datascience.com

• What is ML?

- What is **ML**?
- How astronomy is tied to BIG DATA?

- What is **ML**?
- How astronomy is tied to BIG DATA?
- How to implement **ML** in astronomy?

- What is ML?
- How astronomy is tied to BIG DATA?
- How to implement ML in astronomy?
- How ML helps SKA?

- What is **ML**?
- How astronomy is tied to BIG DATA?
- How to implement **ML** in astronomy?
- How ML helps SKA?
- What are the pitfalls of ML in astronomy?

Western Digital.

How supervised learning works?

credit: javatpoint.com

• Training:

- Training:
 - Select a model

- Training:
 - Select a model
 - Set up hyper-parameters of model

- Training:
 - Select a model
 - Set up hyper-parameters of model
 - Teach the machine by training set

- Training:
 - Select a model
 - Set up hyper-parameters of model
 - Teach the machine by training set
- Validation:

- Training:
 - Select a model
 - Set up hyper-parameters of model
 - Teach the machine by training set
- Validation:
 - Change the hyper-parameters

- Training:
 - Select a model
 - Set up hyper-parameters of model
 - Teach the machine by training set
- Validation:
 - Change the hyper-parameters
 - Select the optimum hyper-parameters

- Training:
 - Select a model
 - Set up hyper-parameters of model
 - Teach the machine by training set
- Validation:
 - Change the hyper-parameters
 - Select the optimum hyper-parameters
- Testing:

- Training:
 - Select a model
 - Set up hyper-parameters of model
 - Teach the machine by training set
- Validation:
 - Change the hyper-parameters
 - Select the optimum hyper-parameters
- Testing:
 - Test learned model by an unseen part of the data-set.

- Training:
 - Select a model
 - Set up hyper-parameters of model
 - Teach the machine by training set
- Validation:
 - Change the hyper-parameters
 - Select the optimum hyper-parameters
- Testing:
 - Test learned model by an unseen part of the data-set.
 - 2 Select the best model and use it for predictions.

Similarities

Both need a set of labeled measurements

Similarities

- Both need a set of labeled measurements
- Both need a model

- Both need a set of labeled measurements
- Both need a model

Similarities

- Both need a set of labeled measurements
- Both need a model

Differences

Supervised learning:

Similarities

- Both need a set of labeled measurements
- Both need a model

- Supervised learning:
 - The model gets adapted by data

Similarities

- Both need a set of labeled measurements
- Both need a model

- Supervised learning:
 - The model gets adapted by data
 - Can be very nonlinear and complex

Similarities

- Both need a set of labeled measurements
- Both need a model

- Supervised learning:
 - 1 The model gets adapted by data
 - ② Can be very nonlinear and complex
 - Oesigned for predicting unseen data

Similarities

- Both need a set of labeled measurements
- Both need a model

- Supervised learning:
 - The model gets adapted by data
 - 2 Can be very nonlinear and complex
 - Oesigned for predicting unseen data
- Traditional model fitting:

Similarities

- Both need a set of labeled measurements
- Both need a model

- Supervised learning:
 - The model gets adapted by data
 - 2 Can be very nonlinear and complex
 - Obesigned for predicting unseen data
- Traditional model fitting:
 - The model is predefined and has limited adaptivity

Similarities

- Both need a set of labeled measurements
- Both need a model

- Supervised learning:
 - The model gets adapted by data
 - 2 Can be very nonlinear and complex
 - Obesigned for predicting unseen data
- Traditional model fitting:
 - The model is predefined and has limited adaptivity
 - Useful for inferring relationships between features

How unsupervised learning works?

• KMeans:

- KMeans:
- DBSCAN:

- KMeans:
- DBSCAN:
- :

- KMeans:
- DBSCAN:
- •
- OPTICS:

What is BIG DATA?

VVV in astronomy

• Volume: larger quantities of data by better facilitates

VVV in astronomy

- Volume: larger quantities of data by better facilitates
- Velocity: Higher speed of getting data

VVV in astronomy

- Volume: larger quantities of data by better facilitates
- Velocity: Higher speed of getting data
- Verity: More complex structures of data

Sloan Digital Sky Server

Large Synaptic Survey Telescope

Zwicky Transient Facility

Gaia

DESI

Square Kilometer Array

- Classification: discrete targets
 - Spectrum: quasar, star, galaxy, supernova, ...
- Regression: continuous targets

- Classification: discrete targets
 - Spectrum: quasar, star, galaxy, supernova, ...
 - Timing: Binary/isolated pulsar, variability,...
- Regression: continuous targets
 - **a**
 - Opening Photometry: redshift estimation
 - **6**

- Classification: discrete targets
 - Spectrum: quasar, star, galaxy, supernova, ...
 - Timing: Binary/isolated pulsar, variability,...
 - Galaxy morphology: spiral, dwarf, elliptical, ...
- Regression: continuous targets
 - **a**
 - Photometry: redshift estimation
 - **6**

- Classification: discrete targets
 - Spectrum: quasar, star, galaxy, supernova, ...
 - Timing: Binary/isolated pulsar, variability,...
 - Galaxy morphology: spiral, dwarf, elliptical, ...
- Regression: continuous targets
 - **a**
 - Opening Photometry: redshift estimation
 - 9
- DBSCAN:

- Classification: discrete targets
 - Spectrum: quasar, star, galaxy, supernova, ...
 - Timing: Binary/isolated pulsar, variability,...
 - Galaxy morphology: spiral, dwarf, elliptical, ...
- Regression: continuous targets
 - **a**
 - Photometry: redshift estimation
 - **(**
- DBSCAN:
- :

- Classification: discrete targets
 - Spectrum: quasar, star, galaxy, supernova, ...
 - Timing: Binary/isolated pulsar, variability,...
 - Galaxy morphology: spiral, dwarf, elliptical, ...
- Regression: continuous targets
 - **a**
 - Opening Photometry: redshift estimation
 - **(**
- DBSCAN:
- •
- OPTICS:

Classification Regression Regression a

Classification Regression Regression a

Classification Regression Regression

assification egression egression

assification egression egression

text

