

Actividad de Verificación de Saberes (AVS): Análisis de Datos de Ciclos Termodinámicos

Asignatura: Termodinámica Automotriz

Unidad 4: Procesos Termodinámicos y de Transferencia de Calor

Tema: Ciclos Termodinámicos (Carnot, Otto, Diesel)

Objetivo de la Actividad

Al completar esta actividad, el estudiante será capaz de analizar datos de operación de motores térmicos, aplicar los principios de los ciclos termodinámicos para calcular eficiencias y balances de energía, e interpretar los resultados en un formato conciso.

Instrucciones Generales

- 1. Esta actividad se realizará de forma individual en el laboratorio o aula de cómputo, con una duración máxima de **1.5 horas**.
- Los datos necesarios para la resolución de los problemas serán proporcionados al inicio de la sesión, ya sea a través de una práctica de laboratorio o de una simulación interactiva de un ciclo termodinámico.
- 3. Presente todos los cálculos de manera clara y ordenada. Utilice la notación LaTeX para todas las ecuaciones y variables.
- 4. Las respuestas deben ser concisas y directas, enfocándose en los resultados numéricos y una breve interpretación.
- 5. El entregable será un documento (físico o digital, según se indique) con las soluciones a los problemas planteados.

Escenario y Problemas a Resolver

Se ha realizado una simulación de un motor de gasolina operando bajo un ciclo Otto ideal. A continuación, se presentan los datos obtenidos en puntos clave del ciclo. Su tarea es analizar estos datos para evaluar el desempeño termodinámico del motor.

Datos Proporcionados (Ejemplo - los datos reales se entregarán en la sesión):

■ Motor: Gasolina, 4 cilindros.

■ Ciclo Ideal: Otto.

■ Relación de Compresión (r): 9.0:1

■ Relación de calores específicos (k): 1.4

■ Calor suministrado por ciclo (Q_{in}): $1200 \, kJ/kg$

■ Masa de mezcla aire-combustible por ciclo: $0,003\,kg$

Problemas a Resolver:

- 1. **Eficiencia del Ciclo Otto:** Calcule la eficiencia térmica ideal del motor ($\eta_{th,Otto}$). (30 %)
- 2. Balance de Energía: Determine el trabajo neto producido por ciclo (W_{neto}) y el calor rechazado por ciclo $(Q_{rechazado})$. (40 %)
- 3. **Interpretación:** Si este motor operara bajo un ciclo Diesel con la misma relación de compresión, ¿esperaría una mayor o menor eficiencia? Justifique brevemente su respuesta. (30 %)

Rúbrica de Evaluación

Criterio	10 Es-	9 Autóno-	8 Básico	7 Re-	6 Pre-	0 No	Puntaje
de Eva- Iuación	tratégico (90- 100%)	mo (80- 89%)	(70-79%)	ceptivo (60-69 %)	formal (50-59 %)	entrega (0%)	
1. Efi- ciencia del Ciclo Otto	Cálculos precisos y com- pletos de eficiencia, trabajo neto y calor re- chazado.	Cálculos correc- tos con errores menores o alguna omisión.	Cálcu- los con errores signifi- cativos en una sección.	Cálculos incomple- tos o con errores concep- tuales.	Cálculos incorrec- tos o ausentes.	No entrega.	/30%
2. Ba- lance de Energía	Cálculos precisos y completos de W_{neto} y $Q_{rechazado}$.	Cálculos correc- tos con errores menores o alguna omisión.	Cálcu- los con errores signifi- cativos en una sección.	Cálculos incomple- tos o con errores concep- tuales.	Cálculos incorrec- tos o ausentes.	No entrega.	/40 %
3. Inter- pretación	Análisis profundo y justi- ficado, conclu- sión clara.	Análisis adecuado, conclu- sión clara.	Análisis básico, con- clusión aceptable.	Análisis super- ficial, conclu- sión vaga.	Análisis incorrecto o ausente, sin con- clusión.	No entre- ga.	/30%
Puntaje Total							/100%