교과목: 정보보호

1. 정보보호 개요

2023학년도 2학기 Suk-Hwan Lee

References

Textbook

- Mark Stamp, Information Security: Principles and Practice, Second edition, & Lecture Note
- William Stallings, Cryptography and Network Security, Seventh Edition

참조

- Stanford Univ., https://crypto.stanford.edu/~dabo/courses/OnlineCrypto/
- 부산대, Computer Security, Lecture Note
- 단국대, Introduction to Software Security, Lecture Note
- 명지대, Computer Security, Lecture Note
- 서울과학기술대, Information Protection Theory, Lecture Note
- York Univ. Network Security & Forensics, Lecture Note
- 해시넷, http://www.hash.kr/
- Wikipedia
- Cryptographics, https://cryptographics.info/all-cryptographics/#
- etc.....

Python cryptography

- https://www.tutorialspoint.com/cryptography_with_python/cryptography_with_python_modules_of_cryptography.htm
- https://pypi.org/project/cryptography/
- https://cryptography.io/en/latest/
- etc....

1. The Cast of Characters

- Alice and Bob are the good guys
- Trudy is the bad guy (Trudy is our generic "intruder")

Alice's Bank

- Alice opens Alice's Online Bank (AOB)
- What are Alice's security concerns?
- If Bob is a customer of AOB, what are his security concerns?
- How are Alice and Bob concerns similar? How are they different?
- How does Trudy view the situation?

1. The Cast of Characters

- Most common characters are Alice, Bob, Eve, Trudy, etc.
- Other characters;
 - 홀수번째 알파벳에는 여성 이름을, 짝수번째 알파벳에는 남성 이름을 사용하는 게 일반적이다.
 - ✓ Alice and Bob : 통신 과정의 첫번째와 두번째 당사자, 보통 앨리스가 밥에게 메시지를 보내려 한다고 가정
 - ✓ Carol, Carol, Charlie: 통신 과정의 세 번째 당사자
 - ✓ Chuck : 통신 과정의 악의있는 세 번째 당사자
 - ✓ Craig: 비밀번호를 훔치려는 자
 - ✓ Dave, Dan, David : 통신 과정의 네 번째 당사자
 - ✓ Eve: '엿듣는 사람'이라는 뜻의 'eavesdropper'에서 온 것이며, 소극적 공격자
 - ✓ Faythe : 신뢰할만한 조언자, 통신 과정의 여섯번째 당 사자로 Frank를 쓴다.
 - ✓ Grace : Government Representitave
 - ✓ Heidi: 멍청한 암호제작자(mischievous designer)

- ✓ Isaac : ISP(Internet Service Provider), Ivan : Issuer
- ✓ Justin : 법원(justice system)
- ✓ Mallory: 악의적인(malicious), 적극적 공격자
- ✓ Matilda : Merchant
- ✓ Oscar : Opponent, Olivia : Oracle
- ✓ Peggy : Prover, Plod : police
- ✓ Sybil: 익명 공격자(pseudonymous attacker)
- ✓ Trudy : 침입자(intruder)
- ✓ Trent : trusted arbitrator
- ✓ Victor : 검증자 Verifier
- ✓ Zoe : 암호 프로토콜의 맨 마지막 당사자

Basic Communication Scenario for Cryptography

Confidentiality (or Privacy) (기밀성)

- Eve should not be able to read Alice's message to Bob
- AOB must prevent Eve(Trudy) from learning Bob's account balance
- Confidentiality: prevent unauthorized reading of information

(Data) Integrity (무결성)

- Bob want to be sure that Alice's message has not been altered
- i.e. contain no modification, insertion or deletion
- Trudy must not be able to change Bob's account balance
- Bob must not be able to improperly change his own account balance
- Integrity: prevent unauthorized writing of information

Availability (가용성)

- A system or a system resource should be accessible and usable
 - ✓ Upon demand by an authorized system entity,
 - ✓ according to performance specifications for the system

- AOB's information must be available when needed
- Alice must be able to make transaction
 - ✓ If not, Bob'll take his business elsewhere
- Availability: Data is available in a timely manner when needed
- Availability is a "new" security concern
 - ✓ In response to denial of service (DoS)

Authentication (인증)

Bob wants to be sure that his communication partner is Alice

Non-repudiation (부인방지)

- Alice cannot claim that she did not send the message, if she actually sent it.
- This service is particularly important in electronic commerce applications, where it is important that a consumer cannot deny the authorization of a purchase.

Access Control (접근제어)

- Prevention of unauthorized use of a resource
- This service controls
 - ✓ who can have access to a resource
 - ✓ under what conditions access can occur
 - ✓ and what those accessing the resource are allowed to to

Cryptographic Mechanisms

Confidentiality

Encryption algorithm

Classical cryptosystems

Symmetric key algorithm (DES, AES)

Public key algorithms (RSA, ElGamal)

Digital Signature

RSA signature

DAS

MAC(Message Authentication Code)

Confidentiality Model

- CIA are only beginning of the Information Security
- Case 1: when Bob logs on his computer
 - ✓ How does Bob's computer know that "Bob" is really Bob and not Trudy?
- Bob's password must be verified
 - ✓ This requires some clever cryptography
- What are security concerns of pwds?
- Are there alternatives to passwords?

- CIA are only beginning of the Information Security
- Case2: when Bob logs into AOB
 - ✓ how does AOB know that "Bob" is really Bob?
- As before, Bob's password is verified
- Unlike standalone computer case, network security issues arise
- What are network security concerns?
 - **✓ Protocols** are critically important
 - Crypto also important in protocols

- Once Bob is authenticated by AOB, then AOB must restrict actions of Bob
 - ✓ Bob can't view Charlie's account info
 - ✓ Bob can't install new software, etc.
- Enforcing these restrictions is known as authorization
- Access control (접근제어) includes both authentication(인증) and authorization(권한)

- Cryptography, protocols, and access control are implemented in software
- What are security issues of software?
 - ✓ Most software is complex and buggy
 - ✓ Software flaws lead to security flaws
 - ✓ How to reduce flaws in software development?
- Some software is intentionally evil
 - ✓ Malware: computer viruses, worms, etc.
- How do the malwares work?
- What can Alice and Bob do to protect themselves from malware?
- What can Trudy do to make malware more "effective"?

- Operating systems enforce security
 - ✓ For example, authorization
- OS: large and complex software
 - ✓ Window 10 has about 50 Million lines of code! (Microsoft community)
 - ✓ Subject to bugs and flaws like any other software
 - ✓ Many security issues specific to OSs
 - ✓ Can you trust an OSP

4. Security Life Cycle

- First defining a security policy
- Then choosing some mechanism to enforce the policy
- Finally providing assurance that both the mechanism and the policy are sound
- Security/policy: What the sys supposed to do?
- Implementation/mechanism: How does it do it?
- Correctness/assurance: Does it really work?
- Human nature: Can the sys survive "clever" user?
- The focus of the text book (lecture)
 - Implementation/mechanism
 - Why?

A security policy is a definition of what it means to be secure for a system, organization or other entity.

(https://en.wikipedia.org/wiki/Securit y_policy)

- The lecture consists of four major parts
 - Cryptography
 - ✓ Access control
 - ✓ Protocols
 - ✓ Software

Cryptography

- Secret codes"
- The book covers
 - ✓ Classic cryptography
 - ✓ Symmetric ciphers
 - ✓ Public key cryptography
 - ✓ Hash functions
 - ✓ Advanced cryptanalysis

Access Control

- Authentication
 - ✓ Passwords
 - ✓ Biometrics and other
- Authorization
 - ✓ Access Control Lists and Capabilities
 - Multilevel security (MLS), security modeling, covert channel, inference control
 - ✓ Firewalls and Intrusion Detection Systems

Protocols

- Simple authentication protocols
 - ✓ "Butterfly effect" small change can have drastic effect on security
 - Cryptography used in protocols
- Real-world security protocols
 - ✓ SSL (Secure Sockets Layer) / TLS (Transport Layer Security) / HTTPS (Hyper Text Protocol Secure)
 - ✓ IPSec (Internet Protocol Security)
 - ✓ Kerberos (computer-network authentication protocol)
 - ✓ GSM security (Global System for Mobile Communications, ETSI)

Software

- Software security-critical flaws
 - ✓ Buffer overflow
 - ✓ Other common flaws
 - Incomplete Mediation
 - Race Conditions
- Malware
 - ✓ Specific viruses and worms
 - ✓ Prevention and detection
 - ✓ The future of malware

- Software reverse engineering (SRE)
 - ✓ How hackers "dissect" software
- Digital rights management (DRM)
 - Shows difficulty of security in software
 - ✓ Also raises OS security issues
- Limits of testing
 - ✓ Open source vs closed source

Software

- Operating systems
 - ✓ Basic OS security issues
 - ✓ "Trusted" OS requirements
 - ✓ NGSCB("n-scub"): Microsoft's trusted OS for PC
 - Next Generation Secure Computing Base
- Software is a big security topic
 - ✓ Lots of material to cover
 - ✓ Lots of security problems to consider

Notes

General Notation for Cryptography

[Textbook] William Stallings, Cryptography and Network Security, Seventh Edition

Symbol	Expression	Meaning
D, <i>K</i>	D(K, Y)	Symmetric decryption of ciphertext Y using secret key K
D, PR_a	$D(PR_a, Y)$	Asymmetric decryption of ciphertext Y using A's private key PR_a
D, PU_a	$D(PU_a, Y)$	Asymmetric decryption of ciphertext Y using A's public key PU_a
E, K	E(K,X)	Symmetric encryption of plaintext X using secret key K
E, PR_a	$E(PR_a, X)$	Asymmetric encryption of plaintext X using A's private key PR_a
E, PU_a	$E(PU_a, X)$	Asymmetric encryption of plaintext X using A's public key PU_a
K		Secret key
PR_a		Private key of user A
PU_a		Public key of user A
MAC, K	MAC(K, X)	Message authentication code of message X using secret key K
GF(p)		The finite field of order p , where p is prime. The field is defined as the set Z_p together with the arithmetic operations modulo p .
$GF(2^n)$		The finite field of order 2 ⁿ
Z_n		Set of nonnegative integers less than n
gcd	gcd(i, j)	Greatest common divisor; the largest positive integer that divides both i and j with no remainder on division.

$$\mathbf{C} = \mathbf{E}(\mathbf{K}, \mathbf{P}) = \mathbf{P}\mathbf{K} \mod 26$$

 $\mathbf{P} = \mathbf{D}(\mathbf{K}, \mathbf{C}) = \mathbf{C}\mathbf{K}^{-1} \mod 26 = \mathbf{P}\mathbf{K}\mathbf{K}^{-1} = \mathbf{P}$

$$C = E(K_2, E(K_1, P))$$

 $P = D(K_1, D(K_2, C))$

Notes

General Notation for Cryptography

Symbol	Expression	Meaning
mod	$a \mod m$	Remainder after division of a by m
\mod , \equiv	$a \equiv b \pmod{m}$	$a \mod m = b \mod m$
mod, ≢	$a \not\equiv b \pmod{m}$	$a \mod m \neq b \mod m$
dlog	$dlog_{a,p}(b)$	Discrete logarithm of the number b for the base $a \pmod{p}$
φ	$\phi(n)$	The number of positive integers less than n and relatively prime to n. This is Euler's totient function.
Σ	$\sum_{i=1}^{n} a_i$	$a_1 + a_2 + \cdots + a_n$
П	$\prod_{i=1}^{n} a_i$	$a_1 \times a_2 \times \cdots \times a_n$
	i j	i divides j , which means that there is no remainder when j is divided by i
,	a	Absolute value of a

Notes

General Notation for Cryptography

Symbol	Expression	Meaning
	$x \parallel y$	x concatenated with y
~	$x \approx y$	x is approximately equal to y
⊕	$x \oplus y$	Exclusive-OR of x and y for single-bit variables; Bitwise exclusive-OR of x and y for multiple-bit variables
[,]		The largest integer less than or equal to x
€	$x \in S$	The element x is contained in the set S.
\longleftrightarrow	$A \longleftrightarrow (a_1, a_2, \ldots, a_k)$	The integer A corresponds to the sequence of integers $(a_1, a_2, \ldots a_k)$