Modeling the Neuron components

BT6270 Introduction to Computational Neuroscience

Single Neuron Modeling

Action Potential Detailed generation

Hodgkin-Huxley Model

Biophysical Modeling
Dendritic Processing
Axonal Processing
Synaptic Transmission

Less Detailed

Simplified Neuron Models
FitzHugh-Nagumo model
Morris-Lecar Model
Izhikevich Models
Integrate and fire neuron
McCulloch-Pitts neuron

Biophysical modeling

https://www.researchgate.net/publication/259961755_LFPy_A_tool_for_biophysical_simulation_of_extracellular_potentials _generated_by_detailed_model_neurons/figures?lo=1

Simplified (2-variable) neuron models

Biophysical modeling: Neuron Signaling components

The 4 Neuron Signaling components

- Dendritic Processing: Signal propagation along dendrites is mostly passive, as along an electrical cable;
- Action Potential Generation: Summation occurs in the axon hillock; action potential is generated
- Axonal Propagation: action potential propagates down the axon without losing amplitude because it is charged all along the way by voltage-sensitive channels;
- Neurotransmission occurs across a synapse as though there is a "hotline" from axon terminal A to apical dendrite B – via chemical means;
- This whole sequence of events occurs in a neat unidirectional fashion from the apical dendrites to axon terminals.

Dendritic propagation

Wave propagation over a dendrite

As the wave propagates down the dendrite:

It spreads in time

Membrane with voltage-sensitive channels

Dendritic processing: Passive cable

No active elements

No voltage-dependent ion channels

At a single point on a membrane

Along the length of the membrane

Reference:

C. Koch, Biophysics of Computation.

Formulating the cable equation

Axial resistance

- Resistance offered by the intracellular compartment per unit length of the cable of diameter, d. The resistivity of the intracellular medium is R_i .
- We now relate the resistivity, R_i , which is an intrinsic property of the intracellular medium, to axial resistance, r_a , which is resistance per unit length of the cable.

Axial resistance

• In general the resistance, R, and resistivity, ρ , of a pipe of area of cross-section, A, and length, L, are related as:

$$R = \rho L/A$$
, and

Resistance per unit length (L=1) of the pipe is:

$$R = \rho/A$$

• A similar relation for our cable is:

$$r_a = \frac{R_i}{A} = \frac{R_i}{\pi d^2 / 4} = \frac{4R_i}{\pi d^2}$$
 (Ω/cm)

Membrane resistance

• The membrane offers resistance for flow of current between the intracellular compartment and the extracellular space. This resistance is inversely proportional to the surface area of the membrane.

Membrane resistance

• Therefore, if R_m is the resistance of a membrane patch of unit area, a quantity referred to as specific resistance, the total resistance offered by a cylinder of diameter, d, and unit length (L=1), is given as:

$$g_{m} = G_{m} A = G_{m} (\pi d L)$$

 $g_{m} = 1/r_{m}; G_{m} = 1/R_{m}$

$$r_m = \frac{R_m}{A} = \frac{R_m}{\pi d \cdot 1} = \frac{R_m}{\pi d} \qquad (\Omega \text{ cm})$$

Membrane capacitance

- The plasma membrane has a specific capacitance, C_m , of about 10^{-6} F/cm².
- Therefore, capacitance of the cable of unit length, c_m , is,

$$c_{\scriptscriptstyle m} = C_{\scriptscriptstyle m} \pi d$$
 (F/cm)

The cable as an electric circuit

- Using the electrical parameters defined above, we can now represent the cable as an electric circuit.
- In this circuit, the continuous cable is represented as a series of discrete circuit elements, in which each element approximates a short length of the cable, say, of length, Δx .

Circuit equivalent for a dendrite

Ohm's law for axial resistance

• Applying Ohm's law to one of the axial resistances, $r_a \Delta x$,

$$V_m(x,t) - V_m(x + \Delta x, t) = \Delta x r_a I_i(x,t)$$

$$-\frac{\partial V_m}{\partial x} = r_a I_i(x, t) \tag{1}$$

Kirchoff's current law at the nodes

Applying the law of continuity of current at a given node in the circuit

$$I_{i}(x,t) - I_{i}(x - \Delta x, t) = -\Delta x I_{m}(x,t)$$

$$-\frac{\partial I_i}{\partial x} = I_m(x,t) \tag{2}$$

• Combining (1) and (2),

$$\frac{1}{r_a} \frac{\partial^2 V_m}{\partial x^2} = I_m(x, t) \tag{3}$$

- Now, the membrane current, I_m, can be resolved into three components:
 - 1) current through membrane capacitance,
 - 2) current through membrane resistance,
 - 3) externally injected current, I_{ext}, if any.

Linear Cable Equation

$$I_m(x,t) = \frac{V_m - V_{rest}}{r_m} + c_m \frac{\partial V_m}{\partial t} - I_{ext}$$
 (4)

• Combining (3) and (4), we get equation 5, known as the Linear Cable Equation.

where
$$\lambda^2 \frac{\partial^2 V_m}{\partial x^2} = V_m - V_{rest} + \tau_m \frac{\partial V_m}{\partial t} - r_m I_{ext}$$
 (5)

 $\tau_m = r_m c_m$ known as the time constant, of the cable.

$$\lambda = \sqrt{\frac{r_m}{r_a}}$$
 known as the space constant, and,

- Eqn. 5 can be further simplified if the membrane voltage, is defined with reference to the resting potential, V_{rest} .
- Assuming that the resting potential is the same everywhere along the cable, it only offsets the membrane potential and does not affect the derivative terms in eqn. (5).

The Cable Equation

• Thus, from now on, if we designate V_m to represent the deviation of membrane potential from the resting potential, V_{rest} , the $(V_m - V_{rest})$ term in eqn. (5) can be replaced by, V_m , and we have the following simpler form.

$$\lambda^2 \frac{\partial^2 V_m}{\partial x^2} = V_m + \tau_m \frac{\partial V_m}{\partial t} - r_m I_{ext} \tag{6}$$

The cable equation???!!!

