# Theory of Computer Games(Full 2022) Homework #2

**National Taiwan University** 

Due Data: 14:20(UTC+8), December 8,2022

## Homework Description

In this homework, you are required to

- Implement an agent of modified-Einstein Würfelt Nicht using Monte-Carlo Tree Search
- Beat the 3 baseline Al

## Original game - Einstein Würfelt Nicht

- get one of their cubes to the far corner square in the grid
- or remove all of their opponent's cubes from the board
- more detail can see wiki



## Our game - modified-Einstein Würfelt Nicht

• The game is played on a 6x7 board. Initially there are 6 red cubes and 6 blue cubes on the board.



- Each cube has a number between 0 and 5
- Initial positions of both sides are randomized. 1<sup>st</sup> player's pieces start from the North-West.
- In each turn the 1st player chooses a red cube to move, and subsequently (if the game is not over) the 2nd player chooses a blue cube to move.

#### Move

- a player can move any piece of its color
- The top-left player can only move a cube to east, south, or southeast adjacent square
- The bottom-right player can only move a cube to west, north, or northwest adjacent square
- If there is another cube in the adjacent square, that cube is captured.

  A player is not allowed to capture a cube of its own.
- A player is not allowed pass if there is at least one legal move.

### **Terminal Condition**

- A red cube has number a reaches the Southeast corner, and a blue cube has number b reaches the northwest corner
  - a < b then red win</li>
  - a = b then draw
  - a > b then blue win
- If the last red cube is captured, blue player wins
- If the last blue cube is captured, red player wins

#### **Execution Files**

- 2 folders, game and baseline
- Under game, make for the executable gaming environment game
- The game supports AI-AI mode, AI-human mode and human-human mode
- Under baseline, make for 3 given agents, random, greedy, and heuristic
- To begin with, use
  - \$ ./game -p0 ./greedy
  - to start playing Human vs AI with the agent greedy

#### Protocol

- An agent receives the last move of the opponent from game and sends its move accordingly back
- We've handled most parts of the communication. Receive messages by reading from stdin and send messages by writing to stdout
- Read everything character-by-character; if you expect a message of length k to be received, read one character k times instead of directly reading a string
- Remember to flush every time after writing a message to stdout.

## Frame of an Agent

- While true do
  - Receive  $R_1$ ,  $R_2$
  - $B \leftarrow$  the initial board given  $R_1$
  - Your Turn  $\leftarrow R_2 = \text{"f"}$ ? true: false
  - While true do
    - if "terminal" then
      - Break
    - if your turn = false then
      - Receive  $R_3$
    - else
      - Choose a move M
      - Do the move *M* on *B*
      - Send *M*
    - Your turn <-! Your turn</li>

## Formats of Received / Sent Messages

- $R_1[0:1][0:5]$ : a permutation of "012345"
  - number of cubes
  - (0,0),(0,1),(0,2),(1,0),(1,1),(2,0)
  - (3,6),(4,5),(4,6),(5,4),(5,5),(5,6)
- $R_2$ : a single character
  - 'f': you are the 1st player in this round
  - 's': you are the 2<sup>nd</sup> player in this round
- $R_3$ : can be "??" (pass), or ND, where
  - N = number of cube to be moved
  - D = direction, 0(vertical) 1(horizontal) 2(diagonal)
- M: a 2-sized string, can be "??" or ND only

## Homework requirement

- You're required to implement Monte-Carlo Tree Search
  - ucb score
  - uct tree search
  - amaf/rave
  - Anything taught or found in literatures about MCTS improvements
- Your agent should send a valid move within 10 seconds
- If game receives an invalid move or donesn't reveive a move within the time limit, the opponent wins immediately
- Beat the 3 baseline Al
- Write a Report

## Submission and Grading Policy

- Directory Hierarchy:
  - Student\_id
    - Makefile
    - src // a folder contains all your code
    - report.pdf
- Compress your folder into a zip file and submit to

https://www.csie.ntu.edu.tw/~tcg/2022/hw2.php

 We will compile and run your code on csie workstations, therefore make sure your code can run on csie workstations

## Report

- Your report should include but not limit to the following:
  - How to compile your code into an agent
  - What algorithms and heuristics you've implemented
  - Experiment results and findings of your implementation
  - Some detail about your implementation
  - Discuss benefits of various enhancements
- Add your name and student id in the report

## **Grading Policy**

- Beat the Random agent (20%), Greedy agent(30%), heuristic agent(30%)
- Random will play 10 rounds, Greedy and heuristic will play 15 rounds:
  - Win: +2
  - Draw: +1
  - Loss: +0
- Your agent will be tested by
  - \$ ./game -p0 [your agent] -p1 ./random -r 10
  - \$ ./game -p0 [your agent] -p1 ./greedy -r 15
  - \$ ./game -p0 [your agent] -p1 ./heuristic -r 15
- Report (20%)
- Bonus: We will make tournaments among students and those scores are among the best will be given bonus points