МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа №5

по дисциплине: Информатика тема: «Работа с документами в MS Office Excel»

Выполнил: ст. группы ПВ-223 Пахомов Владислав Андреевич

Проверили: ст. пр. Бондаренко Т. В.

Цель работы: изучить основные принципы и получить практические навыки работы с документами в приложении MS Office Excel.

Вариант № 10 ПВ-223

Задания к работе:

- 1. Выполнить перевод целого положительного числа номера зачетной книжки (105223194) в двоичную систему счисления.
- 2. Составить таблицу значений логической функции от 5 логических переменных: f(X) = f(x1, x2, x3, x4, x5), вектор $X = \{x1, x2, x3, x4, x5\}$. Использовать 32 набора значений логических переменных xi, i=1,...,5, составить таблицу значений логической функции (см. табл. 8).

Значения логической функции f(X)

Таблица 6

эначения логической функции $f(x)$												
<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	X4	<i>X</i> 5	$f(x_1, x_2, x_3, x_4, x_5)$							
0	0	0	0	0	1							
0	0	0	0	1	0							
1	1	1	1	0	1							
1	1	1	1	1	0							

В качестве значений логической функции взять двоичное число, полученное в пункте 1, записать его поразрядно в ячейки столбца значений функции (см. табл. 6). Незаполненные клетки таблицы значений функции считать равными 0.

- 3. По полученной таблице значений логической функции выполнить построение СДНФ (совершенной дизъюнктивной нормальной формы) логической функции f(X).
- 4. Выполнить минимизацию полученной в пункте 3 логической функции (X), используя основные законы и аксиомы алгебры логики. В итоге будет получена логическая функция G(X).
- 5. Выполнить вычисление значений логической функции G(X) на заданных наборах значений логических переменных хі, i=1,...,5. Построить таблицу значений функции G(X). Сравнить полученные значения со значениями логической функции f(X).
- 6. Для логической функции G(X) выполнить построение комбинационной схемы.

- 7. Преобразовать полученную функцию G(X), перейдя к базису «И-НЕ» или «ИЛИ-НЕ». Выразить все логические операции, содержащиеся в функции G(X), используя операцию штрих Шеффера "и-не" или стрелка Пирса "или-не" (допустимо приведение функции к новому базису по частям).
- 8. По таблице значений логической функции выполнить построение СКНФ (совершенной конъюнктивной нормальной формы) логической функции f(X).
- 9. Выполнить упрощение полученной в пункте 8 логической функции, используя основные законы и аксиомы алгебры логики, уменьшая количество логических операций. В итоге будет получена логическая функция G1(X).
- 10.Выполнить вычисление значений логической функции G1(X) на заданных наборах значений логических переменных хі, i=1,...,5. Построить таблицу значений функции G1(X). Сравнить полученные значения функции G1(X) со значениями логической функции f(X).
- 11. Создать модуль, реализующий следующие логические функции: отрицание, конъюнкция, дизъюнкция, «исключающее или», эквивалентность, импликация, штрих Шеффера, стрелка Пирса.
- 12. Составить программу, выполняющую вычисление значений логических функций G(X) и G1(X) на заданных наборах значений логических переменных xi, i=1,...,5 и вывод на экран таблиц значений этих логических функций. Логические функции могут быть заданы в тексте программы.

Задание 1 (номер книжной зачётки = 105223194)

 $105223194 = 110\ 0100\ 0101\ 1001\ 0100\ 0001\ 1010$

Задание 2

						1					
x_1	x_2	χ_3	x_4	x_5	F						
0	0	0	0	0	0						
0	0	0	0	1	0						
0	0	0	1	0	0						
0	0	0	1	1	0						
0	0	1	0	0	0						
0	0	1	0	1	1	=	$\overline{x_1}$	$\cdot \overline{x_2}$	$\cdot x_3$	$\cdot \overline{x_4}$	$\cdot x_5$
0	0	1	1	0	1	=	$\overline{x_1}$	$\overline{x_2}$	$\cdot x_3$	$\cdot x_4$	$\cdot \overline{x_5}$
0	0	1	1	1	0						
0	1	0	0	0	0						
0	1	0	0	1	1	=	$\overline{x_1}$	$\cdot x_2$	$\cdot \overline{\chi_3}$	$\cdot \overline{\chi_4}$	$\cdot x_5$
0	1	0	1	0	0						
0	1	0	1	1	0						
0	1	1	0	0	0						
0	1	1	0	1	1	=	$\overline{x_1}$	$\cdot x_2$	$\cdot x_3$	$\cdot \overline{\chi_4}$	$\cdot x_5$
0	1	1	1	0	0						
0	1	1	1	1	1	=	$\overline{x_1}$	$\cdot x_2$	$\cdot x_3$	$\cdot x_4$	$\cdot x_5$
1	0	0	0	0	1	=				$\cdot \overline{\chi_4}$	
1	0	0	0	1	0						
1	0	0	1	0	0						
1	0	0	1	1	1	=	x_1	$\overline{x_2}$	$\cdot \overline{x_3}$	$\cdot x_4$	$\cdot x_5$
1	0	1	0	0	0						
1	0	1	0	1	1	=	x_1	$\overline{x_2}$	$\cdot x_3$	$\cdot \overline{x_4}$	$\cdot x_5$
1	0	1	1	0	0						
1	0	1	1	1	0						
1	1	0	0	0	0						
1	1	0	0	1	0						
1	1	0	1	0	0						
1	1	0	1	1	1	=	χ_1	$\cdot x_2$	$\overline{x_3}$	$\cdot x_4$	x_5
1	1	1	0	0	1	=				$\cdot \overline{x_4}$	
1	1	1	0	1	0		_	_	J	-	3
1	1	1	1	0	1	=	χ_1	$\cdot x_2$	$\cdot x_3$	$\cdot x_4$	$\cdot \overline{\chi_5}$
1	1	1	1	1	0		_	_	-	-	_

Задание 3-4

Для удобства в вычислениях заменил x1 = 1, x2 = 2 и т.д.

 $\overline{G(x)} = \overline{x_1} \cdot x_2 \cdot x_3 \cdot x_5 + \overline{x_2} \cdot x_3 \cdot \overline{x_4} \cdot x_5 + x_1 \cdot x_2 \cdot x_3 \cdot \overline{x_5} + x_1 \cdot \overline{x_3} \cdot x_4 \cdot x_5 + \overline{x_1} \cdot \overline{x_2} \cdot x_3 \cdot x_4 \cdot \overline{x_5} + \overline{x_1} \cdot x_2 \cdot \overline{x_3} \cdot \overline{x_4} \cdot \overline{x_5} + x_1 \cdot \overline{x_2} \cdot \overline{x_3} \cdot \overline{x_4} \cdot \overline{x_5}$ Задание 5

Составил выражение G(x) в Excel

x1	x2	х3	x4	x5	G(x)	F
0	0	0	0	0	0	0
0	0	0	0	1	0	0
0	0	0	1	0	0	0
0	0	0	1	1	0	0
0	0	1	0	0	0	0
0	0	1	0	1	1	1
0	0	1	1	0	1	1
0	0	1	1	1	0	0
0	1	0	0	0	0	0
0	1	0	0	1	1	1
0	1	0	1	0	0	0
0	1	0	1	1	0	0
0	1	1	0	0	0	0
0	1	1	0	1	1	1
0	1	1	1	0	0	0
0	1	1	1	1	1	1
1	. 0	0	0	0	1	1
1	0	0	0	1	0	0
1		0	1	0	0	0
1	0	0	1	1	1	1
1	0	1	0	0	0	0
1	0	1	0	1	1	1
1		1	1	0	0	0
1		1	1	1	0	0
1	1	0	0	0	0	0
1	1	0	0	1	0	0
1		0	1	0	0	0
1		0	1	1	1	1
1		1	0	0	1	1
1		1	0	1	0	0
1		1	1	0	1	1
1		1	1	1	0	0

Полученная таблица истинности совпадает с исходной, формула составлена верно

Задание 6

Заменил повторяющиеся комбинаторные схемы, получил необходимые функции путём изменения порядка входных данных.

Задание 7

 $\begin{array}{l} \mathbf{A} = \overline{x_1} \cdot x_2 \cdot x_3 \cdot x_5; \ \mathbf{B} = \overline{x_2} \cdot x_3 \cdot \overline{x_4} \cdot x_5; \ \mathbf{C} = x_1 \cdot x_2 \cdot x_3 \cdot \overline{x_5}; \ \mathbf{D} = x_1 \cdot \overline{x_3} \cdot x_4 \cdot x_5; \\ \mathbf{E} = \overline{x_1} \cdot \overline{x_2} \cdot x_3 \cdot x_4 \cdot \overline{x_5}; \ \mathbf{H} = \overline{x_1} \cdot x_2 \cdot \overline{x_3} \cdot \overline{x_4} \cdot \overline{x_5}; \ \mathbf{I} = x_1 \cdot \overline{x_2} \cdot \overline{x_3} \cdot \overline{x_4} \cdot \overline{x_5} \\ \mathbf{G}(\mathbf{x}) = \mathbf{A} + \mathbf{B} + \mathbf{C} + \mathbf{D} + \mathbf{E} + \mathbf{H} + \mathbf{I} \end{array}$

```
A = \overline{x_1} \cdot x_2 \cdot x_3 \cdot x_5 = A_{123} \cdot x_5 = (A_{123}|x_5)|(A_{123}|x_5);
A_{123} = \overline{x_1} \cdot x_2 \cdot x_3 = A_{12} \cdot x_3 = (A_{12}|x_3|)(A_{12}|x_3);
A_{12} = \overline{x_1} \cdot x_2 \cdot x_3 = A_{12} \cdot x_3 = (A_{12}|x_3|)(A_{12}|x_3);
A_{12} = \overline{x_1} \cdot x_2 = (\overline{x_1}|x_2|)(\overline{x_1}|x_2) = ((x_1|x_1)|x_2|)((x_1|x_1)|x_2);
A_{123} = (A_{12}|x_3|)(A_{12}|x_3) = (((x_1|x_1)|x_2)|((x_1|x_1)|x_2)|x_3)|(((x_1|x_1)|x_2)|((x_1|x_1)|x_2)|x_3);
 A = (A_{123}|x_5) \left| (A_{123}|x_5) = \left( \left( \left( (x_1|x_1)|x_2 \right) \middle| \left( (x_1|x_1)|x_2 \right) \middle| x_3 \right) \middle| \left( ((x_1|x_1)|x_2) \middle| ((x_1|x_1)|x_2) \middle| ((x_1|x_1)|x_2) \middle| x_3 \right) \middle| x_5 \right) \right|
  |((((x_1|x_1)|x_2)|((x_1|x_1)|x_2)|x_3)|(((x_1|x_1)|x_2)|((x_1|x_1)|x_2)|x_3)|x_5);
  Получили другие составляющие формулы G(x) аналогичным способом;
  B = (((((x_2|x_2)|x_3)|((x_2|x_2)|x_3)|(x_4|x_4))|(((x_2|x_2)|x_3)|((x_2|x_2)|x_3)|(x_4|x_4)))|x_5)|
  |(((((x_2|x_2)|x_3)|((x_2|x_2)|x_3)|(x_4|x_4))|(((x_2|x_2)|x_3)|((x_2|x_2)|x_3)|(x_4|x_4)))|x_5)|
 C = (((((x_1|x_2)|(x_1|x_2))|x_3)|(((x_1|x_2)|(x_1|x_2))|x_3))|(x_5|x_5))|
  |(((((x_1|x_2)|(x_1|x_2))|x_3)|(((x_1|x_2)|(x_1|x_2))|x_3))|(x_5|x_5));
 D = (((((x_1|(x_3|x_3))|(x_1|(x_3|x_3)))|x_4)|(((x_1|(x_3|x_3))|(x_1|(x_3|x_3)))|x_4))|x_5)|
  |((((x_1|(x_3|x_3))|(x_1|(x_3|x_3)))|x_4)|(((x_1|(x_3|x_3))|(x_1|(x_3|x_3)))|x_4)|x_5);
\begin{split} & E = \begin{pmatrix} ((((x_1|x_1)|(x_2|x_2))|((x_1|x_1)|(x_2|x_2)))|x_3)|((((x_1|x_1)|(x_2|x_2))|((x_1|x_1)|(x_2|x_2)))|x_3))|x_4)|\\ |((((x_1|x_1)|(x_2|x_2))|((x_1|x_1)|(x_2|x_2))|x_3)|((((x_1|x_1)|(x_2|x_2))|((x_1|x_1)|(x_2|x_2))|(x_1|x_1)|(x_2|x_2))|x_3)|x_4)|\\ |((((x_1|x_1)|(x_2|x_2))|((x_1|x_1)|(x_2|x_2)))|x_3)|((((x_1|x_1)|(x_2|x_2))|((x_1|x_1)|(x_2|x_2)))|x_3))|x_4)|\\ |((((x_1|x_1)|(x_2|x_2))|((x_1|x_1)|(x_2|x_2)))|x_3)|((((x_1|x_1)|(x_2|x_2))|((x_1|x_1)|(x_2|x_2)))|x_3))|x_4)|\\ |((((x_1|x_1)|(x_2|x_2))|((x_1|x_1)|(x_2|x_2)))|x_3)|((((x_1|x_1)|(x_2|x_2))|((x_1|x_1)|(x_2|x_2)))|x_3))|x_4)|\\ |((((x_1|x_1)|(x_2|x_2))|((x_1|x_1)|(x_2|x_2)))|x_3)|((((x_1|x_1)|(x_2|x_2))|((x_1|x_1)|(x_2|x_2)))|x_3))|x_4)|\\ |((((x_1|x_1)|(x_2|x_2))|((x_1|x_1)|(x_2|x_2)))|x_3)|((((x_1|x_1)|(x_2|x_2))|((x_1|x_1)|(x_2|x_2)))|x_3))|x_4)|\\ |((((x_1|x_1)|(x_2|x_2))|((x_1|x_1)|(x_2|x_2)))|x_3)|((((x_1|x_1)|(x_2|x_2))|((x_1|x_1)|(x_2|x_2)))|x_3))|x_4)|\\ |((((x_1|x_1)|(x_2|x_2))|((x_1|x_1)|(x_2|x_2)))|x_3)|((((x_1|x_1)|(x_2|x_2))|((x_1|x_1)|(x_2|x_2)))|x_3))|x_4)|\\ |((((x_1|x_1)|(x_2|x_2))|((x_1|x_1)|(x_2|x_2)))|x_3)|((((x_1|x_1)|(x_2|x_2))|((x_1|x_1)|(x_2|x_2)))|x_3))|x_4)|\\ |((((x_1|x_1)|(x_2|x_2))|((x_1|x_1)|(x_2|x_2)))|x_3)|((((x_1|x_1)|(x_2|x_2)))|((x_1|x_1)|(x_2|x_2)))|x_3))|x_4)|\\ |((((x_1|x_1)|(x_2|x_2))|((x_1|x_1)|(x_2|x_2)))|x_3)|((((x_1|x_1)|(x_2|x_2)))|((x_1|x_1)|(x_2|x_2)))|x_3)|(((x_1|x_1)|(x_2|x_2)))|x_3)|\\ |((((x_1|x_1)|(x_1|x_1)|(x_2|x_2))|((x_1|x_1)|(x_2|x_2))|((x_1|x_1)|(x_2|x_2))|((x_1|x_1)|(x_2|x_2))|\\ |((((x_1|x_1)|(x_1|x_1)|(x_1|x_1)|(x_1|x_1)|(x_1|x_1)|(x_1|x_1)|(x_2|x_2))|((x_1|x_1)|(x_1|x_1)|(x_2|x_2))|\\ |((((x_1|x_1)|(x_1|x_1)|(x_1|x_1)|(x_1|x_1)|(x_1|x_1)|(x_1|x_1)|(x_1|x_1)|(x_1|x_1)|(x_1|x_1)|(x_1|x_1)|\\ |((((x_1|x_1)|(x_1|x_1)|(x_1|x_1)|(x_1|x_1)|(x_1|x_1)|(x_1|x_1)|(x_1|x_1)|(x_1|x_1)|(x_1|x_1)|(x_1|x_1)|(x_1|x_1)|(x_1|x_1)|(x_1|x_1)|(x_1|x_1)|(x_1|x_1)|(x_1|x_1)|(x_1|x_1)|(x_1|x_1)|(x_1|x_1)|(x_1|x_1)|(x_1|x_1)|(x_1|x_1)|(x_1|x_1)|(x_1|x_1)|(x_1|x_1)|(x_1|x_1)|(x_1|x_1)|(x_1|x_1)|(x_1|x_1)|(x_1|x_1)|(x_1|x_1)|(x_1
 H = \left( \left( \left( \left( \left( (x_2 | (x_1 | x_1)) \middle| (x_2 | (x_1 | x_1)) \right) \middle| (x_4 | x_4) \right) \middle| \left( \left( (x_2 | (x_1 | x_1)) \middle| (x_2 | (x_1 | x_1)) \right) \middle| (x_4 | x_4) \right) \right) \middle| (x_4 | x_4) \right) \right) \left( (x_4 | x_4) \middle| (
 |((((x_2|(x_1|x_1))|(x_2|(x_1|x_1)))|(x_4|x_4))|(((x_2|(x_1|x_1))|(x_2|(x_1|x_1)))|(x_4|x_4)))|(x_4|x_4))|(x_5|x_5))|
 \left| \left( \left( \left( \left( \left( (x_2 | (x_1 | x_1)) \middle| (x_2 | (x_1 | x_1)) \middle| (x_4 | x_4) \right) \middle| \left( \left( (x_2 | (x_1 | x_1)) \middle| (x_2 | (x_1 | x_1)) \middle| (x_4 | x_4) \right) \middle| (x_4 | x_4) \right) \middle| (x_5 | x_5) \right) \right| \\ \left| \left( \left( \left( ((x_2 | (x_1 | x_1)) \middle| (x_2 | (x_1 | x_1)) \middle| (x_4 | x_4) \right) \middle| (((x_2 | (x_1 | x_1)) \middle| (x_2 | (x_1 | x_1)) \middle| (x_4 | x_4)) \middle| (x_5 | x_5) \right) \right) \right| \\ \left| \left( \left( ((x_2 | (x_1 | x_1)) \middle| (x_2 | (x_1 | x_1)) \middle| (x_4 | x_4) \right) \middle| (((x_2 | (x_1 | x_1)) \middle| (x_2 | (x_1 | x_1)) \middle| (x_4 | x_4)) \middle| (x_5 | x_5) \right) \right| \\ \left| \left( ((x_2 | (x_1 | x_1)) \middle| (x_2 | (x_1 | x_1)) \middle| (x_4 | x_4) \middle| (((x_2 | (x_1 | x_1)) \middle| (x_2 | (x_1 | x_1)) \middle| (x_4 | x_4)) \middle| (x_5 | x_5) \right) \right| \\ \left| \left( ((x_2 | (x_1 | x_1)) \middle| (x_2 | (x_1 | x_1)) \middle| (x_4 | x_4) \middle| (((x_2 | (x_1 | x_1)) \middle| (x_4 | x_4)) \middle| (x_5 | x_5) \middle| (x_5 | x_5)
   G(x) = A + B + C + D + E + H + I = G(x)_{ABCDEH} + I = (G(x)_{ABCDEH}|G(x)_{ABCDEH})|(I|I)
     G(x)_{ABCDEH} = G(x)_{ABCDE} + H = (G(x)_{ABCDE}|G(x)_{ABCDE})|(H|H)
     G(x)_{ABCDE} = G(x)_{ABCD} + E = (G(x)_{ABCD}|G(x)_{ABCD})|(E|E)
     G(x)_{ABCD} = G(x)_{ABC} + D = (G(x)_{ABC}|G(x)_{ABC})|(D|D)
     G(x)_{ABC} = G(x)_{AB} + C = (G(x)_{AB}|G(x)_{AB})|(C|C)
     G(x)_{AB} = A + B = (A|A)|(B|B)
```

Задание 8-9

x_1	x_2	x_3	x_4	x_5	F		
0	0	0	0	0	0	=	$x_1 + x_2 + x_3 + x_4 + x_5$
0	0	0	0	1	0	=	$x_1 + x_2 + x_3 + x_4 + \overline{x_5}$
0	0	0	1	0	0	=	$x_1 + x_2 + x_3 + \overline{x_4} + x_5$
0	0	0	1	1	0	=	$x_1 + x_2 + x_3 + \overline{x_4} + \overline{x_5}$
0	0	1	0	0	0	=	$x_1 + x_2 + \overline{x_3} + x_4 + x_5$
0	0	1	0	1	1		
0	0	1	1	0	1		
0	0	1	1	1	0	=	$x_1 + x_2 + \overline{x_3} + \overline{x_4} + \overline{x_5}$
0	1	0	0	0	0	=	$x_1 + \overline{x_2} + x_3 + x_4 + x_5$
0	1	0	0	1	1		
0	1	0	1	0	0	=	$x_1 + \overline{x_2} + x_3 + \overline{x_4} + x_5$
0	1	0	1	1	0	=	$x_1 + \overline{x_2} + x_3 + \overline{x_4} + \overline{x_5}$
0	1	1	0	0	0	=	$x_1 + \overline{x_2} + \overline{x_3} + x_4 + x_5$
0	1	1	0	1	1		
0	1	1	1	0	0	=	$x_1 + \overline{x_2} + \overline{x_3} + \overline{x_4} + x_5$
0	1	1	1	1	1		
1	0	0	0	0	1		
1	0	0	0	1	0	=	$\overline{x_1} + x_2 + x_3 + x_4 + \overline{x_5}$
1	0	0	1	0	0	=	$\overline{x_1} + x_2 + x_3 + \overline{x_4} + x_5$
1	0	0	1	1	1		
1	0	1	0	0	0	=	$\overline{x_1} + x_2 + \overline{x_3} + x_4 + x_5$
1	0	1	0	1	1		
1	0	1	1	0	0	=	$\overline{x_1} + x_2 + \overline{x_3} + \overline{x_4} + x_5$
1	0	1	1	1	0	=	$\overline{x_1} + x_2 + \overline{x_3} + \overline{x_4} + \overline{x_5}$
1	1	0	0	0	0	=	$\overline{x_1} + \overline{x_2} + x_3 + x_4 + x_5$
1	1	0	0	1	0	=	$\overline{x_1} + \overline{x_2} + x_3 + x_4 + \overline{x_5}$
1	1	0	1	0	0	=	$\overline{x_1} + \overline{x_2} + x_3 + \overline{x_4} + x_5$
1	1	0	1	1	1		
1	1	1	0	0	1		
1	1	1	0	1	0	=	$\overline{x_1} + \overline{x_2} + \overline{x_3} + x_4 + \overline{x_5}$
1	1	1	1	0	1		
1	1	1	1	1	0	=	$\overline{x_1} + \overline{x_2} + \overline{x_3} + \overline{x_4} + \overline{x_5}$

(Для удобства в вычислениях x1 = 1, x2 = 2, x3 = 3, x4 = 4, x5 = 5).

```
(1+2+3+4+5). (1+2+3+4+ =)
 0(1+2+3+549)(112+3+544)
e (1+2+3+4+5). (1+2+3+4+5)
 0 (1+2+3+4+5) (1 (2+3+4+5)
· (1+(2+3+4+5)· (7+5+3+4+5))
· ((+ 2 + 3 + 4) + 5) ( 1+2 + 3+4+5).
· (1 +2 + 3 + 4 + 5) - (8 +2 +3+ 4+5) +
P 1 1 + 2 + 3 + 4 + 3) (7 + 2 4 3 + 4 + 5)
· (1+3+3+4+5)· (2+2+3+9+5).
。(1+2+3+4+5)。(1+2+3+4+5)
· (1+2+3+9+5)=
2[1+2+3+4] . (1+2+3+4) . (1+3+4+5).
· (2 + 3 + 4 + 5) · (2 + 3 + 4 + 5) · (8 + 2 + 3 + 9).
· (1+2+3+5) · (7+3+4+5) · (7+3+9+5).
0 (7 + 2 + 3 + 5) . (1+2+3+9+5)
- (て42+3)·(1+3+4+5)·(2+3+4+5)。
0 (2+3+4+5) - (1+2+3+4) - (1+2+3+5)
· (7+3+4+5). (7+3+4+5). (7+2+3+5)
 0 (1+2+3+4+5)
```

 $G_{1}(x) = (x_{1} + x_{2} + x_{3}) \cdot (x_{1} + \overline{x_{3}} + x_{4} + x_{5}) \cdot (x_{2} + \overline{x_{3}} + \overline{x_{4}} + \overline{x_{5}}) \cdot (\overline{x_{2}} + x_{3} + x_{4} + x_{5}) \cdot (\overline{x_{1}} + \overline{x_{2}} + x_{3} + \overline{x_{4}}) \cdot (\overline{x_{1}} + x_{2} + \overline{x_{3}} + x_{5}) \cdot (\overline{x_{1}} + x_{3} + \overline{x_{4}} + x_{5}) \cdot (\overline{x_{1}} + x_{3} + \overline{x_{4}} + x_{5}) \cdot (\overline{x_{1}} + \overline{x_{2}} + \overline{x_{3}} + \overline{x_{5}}) \cdot (x_{1} + \overline{x_{2}} + \overline{x_{3}} + \overline{x_{4}} + x_{5})$

Задание 10Составил выражение G1(x) в Excel

СУММ	* : X	~	A2+	A2+B2+C2)>0)*((+ HE(B2)+C2+HE() > 0) * ((HE(A2)	(D2))	>0)*((HE()	12)+ <mark>B2</mark> +HE	(C2)+E	2) > 0)*((HE(A2)+C	2+D2+H	E(E2)) > 0	* ((HE(A2		
A 1 x1	B x2 x3	С	D x4	E F		G F	Н	1	J		K	L	М	N	
2 0	ol ol	^	^	0[·E2) >	0)	0				_					+
	x1	x2		х3	х4		x5		G1(x)	F	:				
		0	0	0		0		0		0		0			
		0	0	0		0		1		0		0			
		0	0	0		1		0		0		0			
		0	0	0		1		1		0		0			
		0	0	1		0		0		0		0			
		0	0	1		0		1		1		1			
		2	0	1		1	_	0		1		1			
		2	0	1		1	_	1		0		0			
		2	1	0		0	_	0		0		0			
))	1	0		0		1 0		0		1			
)	1 1	0		1		1		0		0			
)	1	1		0		0		0		0			
		0	1	1		0		1		1		1			
		0	1	1		1		0		0		0			
		0	1	1		1		1		1		1			
		1	0	0		0		0		1		1			
		1	0	0		0		1		0		0			
		1	0	0		1		0		0		0			
		1	0	0		1		1		1		1			
		1	0	1		0		0		0		0			
		1	0	1		0		1		1		1			
		1	0	1		1		0		0		0			
		1	0	1		1		1		0		0			
		1	1	0		0		0		0		0			
		1	1	0		0		1		0		0			
		1	1	0		1		0		0		0			
		1	1	0		1		1		1		1			
		1	1	1		0		0		1		1			
		1	1	1		0		1		0		0			
	:	1	1	1		1		0		1		1			
		1	1	1		1		1		0		0			

Полученная таблица истинности совпадает с исходной, формула составлена верно

Задание 11

Составил функции в Си, написал тесты, соответствующие таблице истинности каждой из функций.

```
#include <stdbool.h>
#include <assert.h>
bool not(bool value) {
    return !value;
}
bool and(bool valueA, bool valueB) {
    return valueA && valueB;
}
bool or(bool valueA, bool valueB) {
    return valueA || valueB;
}
bool xor(bool valueA, bool valueB) {
    return and(or(not(valueA),
                  not(valueB)),
              or(valueA,
                  valueB));
}
bool equal(bool valueA, bool valueB) {
    return or(and(not(valueA),
                  not(valueB)),
              and(valueA,
                  valueB));
}
bool implication(bool valueA, bool valueB) {
    return or(not(valueA), valueB);
}
bool shefferStroke(bool valueA, bool valueB) {
    return not(and(valueA, valueB));
}
bool pierceArrow(bool valueA, bool valueB) {
    return not(or(valueA, valueB));
}
void testnot() {
    assert(not(true) == false);
    assert(not(false) == true);
}
void testand() {
    assert(and(false, false) == false);
    assert(and(false, true) == false);
    assert(and(true, false) == false);
    assert(and(true, true) == true);
}
void testor() {
assert(or(false, false) == false);
```

```
assert(or(false, true) == true);
    assert(or(true, false) == true);
    assert(or(true, true) == true);
}
void testxor() {
    assert(xor(false, false) == false);
    assert(xor(false, true) == true);
    assert(xor(true, false) == true);
    assert(xor(true, true) == false);
}
void testequal() {
    assert(equal(false, false) == true);
    assert(equal(false, true) == false);
    assert(equal(true, false) == false);
    assert(equal(true, true) == true);
}
void testimplication() {
    assert(implication(false, false) == true);
    assert(implication(false, true) == true);
    assert(implication(true, false) == false);
    assert(implication(true, true) == true);
}
void testShefferStroke() {
    assert(shefferStroke(false, false) == true);
    assert(shefferStroke(false, true) == true);
    assert(shefferStroke(true, false) == true);
    assert(shefferStroke(true, true) == false);
}
void testPierceArrow() {
    assert(pierceArrow(false, false) == true);
    assert(pierceArrow(false, true) == false);
    assert(pierceArrow(true, false) == false);
    assert(pierceArrow(true, true) == false);
}
void test() {
    testnot();
    testand();
    testor();
    testxor();
    testequal();
    testimplication();
    testShefferStroke();
    testPierceArrow();
}
int main() {
    test();
    return 0;
```

Задание 12

```
#include <stdbool.h>
#include <stdio.h>
#include <windows.h>
bool G(bool x1, bool x2, bool x3, bool x4, bool x5) {
    return (!(x1) && x2 && x3 && x5) || (!(x2) && x3 && !(x4) && x5) || (x1 && x2 &&
x3 && !(x5)) ||
           (x1 && !(x3) && x4 && x5) || (!(x1) && !(x2) && x3 && x4 && !(x5)) ||
           (!(x1) && x2 && !(x3) && !(x4) && x5) || (x1 && !(x2) && !(x3) && !(x4) &&
!(x5));
bool G1(bool x1, bool x2, bool x3, bool x4, bool x5) {
    return (x1 || x2 || x3) && (x1 || !(x3) || x4 || x5) && (x2 || !(x3) || !(x4) ||
!(x5)) &&
           (!(x2) || x3 || x4 || x5) && (x1 || !(x2) || x3 || !(x4)) && (!(x1) || x2
|| !(x3) || x5) &&
           (!(x1) || x3 || x4 || !(x5)) && (!(x1) || x3 || !(x4) || x5) && (!(x1) ||
!(x2) || !(x3) || !(x5)) &&
           (x1 || !(x2) || !(x3) || !(x4) || x5);
}
int main() {
    SetConsoleOutputCP(CP_UTF8);
    printf("
    printf(" | x1 | x2 | x3 | x4 | x5 | Gx | G1x | n");
    for (int x1 = 0; x1 < 2; x1++)
       for (int x2 = 0; x2 < 2; x2++)
            for (int x3 = 0; x3 < 2; x3++)
               for (int x4 = 0; x4 < 2; x4++)
                   for (int x5 = 0; x5 < 2; x5++) {
                       printf("⊨
                                                                    \n");
                       ∥\n",
                                                       ∥ %d
                                                             | %d
                                                                   %d
                              x1, x2, x3, x4, x5,
                              G(x1, x2, x3, x4, x5),
                              G1(x1, x2, x3, x4, x5));
                   }
    printf("╚
                                               ┛\n");
    return 0;
```

Вывод: в ходе лабораторной работы изучил основные принципы и получить практические навыки работы с документами в приложении MS Office Excel.