Introduction to Topology

General Topology, Lecture 12,13

Haoming Wang

17 July 2019

This is the Lecture note for the Introduction to Topology. The course covers the following topics: Naive Set Theory, Elementary Number Theory, Group Theory, Topological Spaces and Continuous Maps, Introduction to Algebraic Topology.

CONTENT:

1. Continuous maps and topology

Continuous maps and topology space

Definition 1 (Continuous). Let (X, d_X) , (Y, d_Y) be metric spaces. $a \in S \subseteq X$, $f : S \mapsto Y$, we say map f is continuous at a if for $\forall \epsilon > 0, \exists \delta > 0$, for $\forall x \in B_{\delta}(a) \cap S$, s.t. $f(x) \in B_{\epsilon}(f(a))$, that is $f(B_{\delta}(a)) \subseteq B_{\epsilon}(f(a)).$

We say f is a continuous map if f is continuous at every $a \in S$.

Exercise 1. Given a map $X \xrightarrow{f} Y$, $a \in X$, Show that

- 1. f is continuous at $a \Leftrightarrow \text{for } \forall V \subseteq_{open} Y$, where $f(a) \in V$, $\exists U \subseteq_{open} Y$ X, where $a \in U$, such that $f(U) \subseteq V$.
- 2. f is a continuous map \Leftrightarrow for $\forall V \subseteq_{open} Y, f^{-1}(V) \subseteq_{open} X$.

Proof. 1. \Rightarrow : for $\forall V \subseteq_{open} Y$, where $f(a) \in V$, $\exists \epsilon > 0$, s.t. $B_{\epsilon}(f(a)) \subseteq$ V, thus $\exists U = B_{\delta}(a)$. \Leftarrow : trivial. 2. \Leftarrow : for $\forall a \in S$,

Exercise 2. Given maps $X \xrightarrow{f} Y$, $Y \xrightarrow{g} Z$, show that

- 1. If *f* is continuous at x_0 , *g* is continuous at $f(x_0)$, then $g \circ f$ is continuous at x_0 .
- 2. If f, g are continuous maps, then $g \circ f$ is a continuous map.

Proof.

We replaced open ball with open set in Exercise 1, this is a meaningful operation, which means we could substitute the metric with set (here is open set), which drives the concept of topology. Generally, topology is a family of sets which have the basic properties of open set, but not necessarily be open sets. Using these sets, we can no longer rely on metric *d*.

Definition 2 (Topology). Given a set X, we say $\mathscr{T} \subseteq \mathcal{P}(X)$ is a topology on X if

- 1. $X,\emptyset \in \mathscr{T}$;
- 2. $U, V \in \mathcal{T} \Rightarrow U \cap V \in \mathcal{T}$;

3. $U_{\alpha} \in \mathscr{T}(\alpha \in A) \Rightarrow \bigcup_{\alpha \in A} U_{\alpha} \in \mathscr{T}$. (*A* is an arbitrary index set) And (X, \mathscr{T}) is a topology space.