

Event Extraction via Dynamic Multi-Pooling Convolutional Neural Networks

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng and Jun Zhao

National Laboratory of Pattern Recognition
Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China {yubo.chen,lhxu,kliu,djzeng,jzhao}@nlpr.ia.ac.cn

Abstract

Traditional approaches to the task of ACE event extraction primarily rely on elaborately designed features and complicated natural language processing (NLP) tools. These traditional approaches lack generalization, take a large amount of human

knowledge. In general, we can divide the features into two categories: lexical features and contextual features.

Lexical features contain part-of-speech tags (POS), entity information, and morphology features (e.g., token, lemma, etc.), which aim to capture semantics or the background knowledge of words. For example, consider the following sen-

S1: Obama beats McCain.

S2: Tyson beats his opponent.

$$x_{1:n} = x_1 \oplus x_2 \oplus \dots \oplus x_n \tag{3}$$

$$c_i = f(w \cdot x_{i:i+h-1} + b) \tag{4}$$

$$c_{ji} = f(w_j \cdot x_{i:i+h-1} + b_j)$$
 (5)

$$p_{ji} = \max(c_{ji}) \tag{6}$$

$$O = W_s F + b_s \tag{7}$$

$$p(i|x,\theta) = \frac{e^{o_i}}{\sum_{k=1}^{n_1} e^{o_k}}$$
 (8)

$$J(\theta) = \sum_{i=1}^{T} \log p(y^{(i)}|x^{(i)}, \theta)$$
 (9)

特征提取

⇒ 句子所有单词的特征不量 为, 私, …, 为 , d维 为i G Rd

ht版的window: 为zizth+

window in 63: Dish, 82:ht, 11, 8n-h+1:n

一) 危稅 mffilter 对每个window依幾般 W= w., Wz, …, Wm

席分子ilter、序文 window: Wj·Xiii+hi+bj 激活函数子: Cji=f(Wj·Xiii+hi+bj) 整行分子就有3 N-h+1 午輸出, Cji, Cji, Cji, Cjn-h+1

O=WsF+bs, WstRnix(3m+de) 线性多葉點的稱入
argument vole

>\$月竹有的笔数

所的embedding 参数 E, PFI, PF2, FF 两个线性多根的参数 W, b, Ws, bs 株庫 第if argument Yole: Di → 非核性 女 变换 → 除以所的 P(i | x, θ) = 是Di , θ = (E, PFI, PF2, EFI, W, b, Ws, bs)

Methods	Trigger Identification(%)			Trigger Identification + Classification(%)			Argument Identification(%)			Argument Role(%)		
	P	R	F	P	R	F	P	R	F	P	R	F
Li's baseline	76.2	60.5	67.4	74.5	59.1	65.9	74.1	37.4	49.7	65.4	33.1	43.9
Liao's cross-event		N/A		68.7	68.9	68.8	50.9	49.7	50.3	45.1	44.1	44.6
Hong's cross-entity	1	N/A		72.9	64.3	68.3	53.4	52.9	53.1	51.6	45.5	48.3
Li's structure	76.9	65.0	70.4	73.7	62.3	67.5	69.8	47.9	56.8	64.7	44.4	52.7
DMCNN model	80.4	67.7	73.5	75.6	63.6	69.1	68.8	51.9	59.1	62.2	46.9	53.5

感谢聆听