Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Домашняя работа № 1 По Дискретной Математике Алгоритм, использующий упорядочивание вершин

Вариант № 20

Выполнил:

Карташев Владимир Р3131

Преподаватель:

Поляков Владимир Иванович

Исходная таблица соединений R:

V/V	e1	e2	e3	e4	e5	e6	e7	e8	e9	e10	e11	e12	r_{i}
e1	0		3	3		5	1		1				5
e2		0				2	1						2
e3	3		0				5	2	4			3	5
e4	3			0	1		3						3
e5				1	0	4				3			3
e6	5	2			4	0	2	3	2				6
e7	1	1	5	3		2	0		2		1		7
e8			2			3		0	4	5			4
e9	1		4			2	2	4	0	5	4		7
e10					3			5	5	0		1	4
e11							1		4		0		2
e12			3							1		0	2
r_{i}	5	2	5	3	3	6	7	4	7	4	2	2	

Упрощенная таблица соединений R:

	x_{1}	x_2	x_3	x_4	x_{5}	x_{6}	x_{7}	x_8	x_9	<i>x</i> ₁₀	<i>x</i> ₁₁	<i>x</i> ₁₂	r_{i}
x_{1}	0	0	1	1	0	1	1	0	1	0	0	0	5
x_2		0	0	0	0	1	1	0	0	0	0	0	2
x_3			0	0	0	0	1	1	1	0	0	1	5
x_4				0	1	0	1	0	0	0	0	0	3
<i>x</i> ₅					0	1	0	0	0	1	0	0	3
x_{6}						0	1	1	1	0	0	0	6
x_7							0	0	1	0	1	0	7
<i>x</i> ₈								0	1	1	0	0	4
x_9									0	1	1	0	7
<i>x</i> ₁₀										0	0	1	4
<i>x</i> ₁₁											0	0	2
<i>x</i> ₁₂												0	2

Алгоритм, использующий упорядочивание вершин:

- 1. Положим j = 1;
- 2. Упорядочим вершины в порядке убывания r_i : x7, x9, x6, x1, x3, x8, x10, x4, x5, x2, x11, x12;
- 3. Найдем минимальное количество вершин, покрывающих другие вершины и покрасим их в **первый цвет**:

$$\Gamma_{x7} = \{x1, x2, x3, x4, x6, x9, x11\}$$
 HeT: x5, x8, x10, x12
 $\Gamma_{x10} = \{x5, x8, x9, x12\}$

Остальные вершины смежны с х7 или с х10;

4. Остались неокрашенные вершины в матрице, поэтому удаляем из матрицы R строки и столбцы, соответствующие вершинам x7, x10. Инкрементируем j=j+1=2;

	x_{1}	x_2	x_3	x_4	x_{5}	x_{6}	x_8	x_9	<i>x</i> ₁₁	<i>x</i> ₁₂	r_{i}
x_{1}	0	0	1	1	0	1	0	1	0	0	4
x_2		0	0	0	0	1	0	0	0	0	1
x_3			0	0	0	0	1	1	0	1	4
x_4				0	1	0	0	0	0	0	2
x_{5}					0	1	0	0	0	0	2
x_6						0	1	1	0	0	5
x_8							0	1	0	0	3
x_9								0	1	0	5
<i>x</i> ₁₁									0	0	1
<i>x</i> ₁₂										0	1

- 5. Упорядочим вершины в порядке убывания r_i : x6, x9, x1, x3, x8, x4, x5, x2, x11, x12;
- 6. Найдем минимальное количество вершин, покрывающих другие вершины и покрасим их во второй цвет:

$$\Gamma_{x6} = \{x1, x2, x5, x8, x9\}$$
 Het: $x3, x4, x11, x12$
$$\Gamma_{x4} = \{x1, x5\}$$
 Het: $x3, x11, x12$
$$\Gamma_{x11} = \{x9\}$$
 Het: $x3, x11, x12$
$$\Gamma_{x12} = \{x3\}$$

Остальные вершины смежны с x6, x4, x11 или с x12;

7. Остались неокрашенные вершины в матрице, поэтому удаляем из матрицы R строки и столбцы, соответствующие вершинам: x6, x4, x11, x12. Инкрементируем j=j+1=3;

	x_{1}	x_2	x_3	x_{5}	x_8	x_9	r_{i}
x_{1}	0	0	1	0	0	1	2
x_2		0	0	0	0	0	0
x_3			0	0	1	1	3
<i>x</i> ₅				0	0	0	0
<i>x</i> ₈					0	1	2
x_9						0	3

- 8. Упорядочим вершины в порядке убывания r_i : x3, x9, x1, x8, x2, x5;
- 9. Найдем минимальное количество вершин, покрывающих другие вершины и покрасим их в **третий цвет**:

$$\Gamma_{x3} = \{x1, x8, x9\}$$

нет: x2,x5
$$(r_i = 0)$$

Остальные вершины смежны с х3;

10. Остались неокрашенные вершины в матрице, поэтому удаляем из матрицы R строки и столбцы, соответствующие вершине x3. Инкрементируем j=j+1=4;

	<i>x</i> ₁	x_2	x_{5}	x_8	x_9	r_{i}
x_{1}	0	0	0	0	1	1
$x_2^{}$		0	0	0	0	0
x_{5}			0	0	0	0
x_8				0	1	1
x_9					0	2

11. Упорядочим вершины в порядке убывания r_i : x9, x1, x8, x2, x5;

12. Найдем минимальное количество вершин, покрывающих другие вершины и покрасим их в четвертый цвет:

$$\Gamma_{x9} = \{x1, x8\}$$
 HeT: x2,x5 $(r_i = 0)$

Остальные вершины смежны с х9;

13. Остались неокрашенные вершины в матрице, поэтому удаляем из матрицы R строки и столбцы, соответствующие вершине x9. Инкрементируем j = j + 1 = 5;

	<i>x</i> ₁	x_2	x_{5}	x_8	r_{i}
x_{1}	0	0	0	0	0
x_2		0	0	0	0
x_{5}			0	0	0
<i>x</i> ₈				0	0

14. Все оставшиеся вершины окрашиваем в пятый цвет.

Все вершины окрашены!

Достоинства алгоритма – быстродействие, недостаток - не оптимальность.