Purità e compattezza algebrica per gruppi abeliani

Relatrice: Prof.ssa Silvana Bazzoni Candidato: Marco Morosin

Università degli Studi di Padova

17.10.2019

Contenuti

- 1 Purità, pura-iniettività, pura-proiettività
- 2 Topologie lineari
- 3 Gruppi algebricamente compatti e completezza

Definizione

 $B(\leq A)$ è *puro* in A se vale una delle seguenti condizioni equivalenti:

- per ogni $n \in \mathbb{Z}$, $B \cap nA = nB$
- **per ogni** $n \in \mathbb{Z}$, $b \in B$, se nx = b ha soluzione in A allora ha soluzione in B
- ogni sistema $\sum_{j=1}^{n} n_{ij} x_j = b_i$ ($b_i \in B, i = 1, ..., m$) risolvibile in A è risolvibile anche in B

Esempi

Addendi diretti, sottogruppo di torsione, sottogruppi divisibili.

Quando un sottogruppo puro è addendo diretto?

- **Quando** B è limitato, i.e. esiste $n \neq 0$: $nB = \{0\}$
- Quando A/B è somma diretta di gruppi ciclici

Una sequenza esatta $0 \longrightarrow A \stackrel{\alpha}{\longrightarrow} B \stackrel{\beta}{\longrightarrow} C \longrightarrow 0$ si dice pura-esatta se im α è puro in B.

Ricordiamo che:

G ha la proprietà iniettiva rispetto a una sequenza esatta se, per ogni $\phi \colon A \to G$, esiste ψ tale che

$$0 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 0$$

$$\downarrow^{\phi}_{\psi}$$

$$G$$

G ha la proprietà proiettiva rispetto a una sequenza esatta se, per ogni $\phi \colon G \to C$, esiste ψ tale che

$$0 \longrightarrow A \longrightarrow B \xrightarrow{\kappa} C \longrightarrow 0$$

$$\downarrow^{\psi} \downarrow^{\phi} \uparrow$$

$$G$$

Una sequenza esatta è pura-esatta se e solo se:

ogni gruppo ciclico ha la proprietà proiettiva.

Dualmente:

se e solo se ogni gruppo cociclico ha la proprietà iniettiva.

Gruppi cociclici

Un gruppo G si dice *cociclico* se $\exists g \in G$ tale che: per ogni morfismo $\phi \colon G \to X$, $g \notin \ker \phi \implies \ker \phi = \{0\}$.

Un gruppo è cociclico se e solo se

- l'intersezione di tutti i sottogruppi \neq {0} è \neq {0};
- $G \cong \mathbb{Z}(p^k)$ oppure $G \cong \mathbb{Z}(p^\infty)$.

Quali sono *tutti* i gruppi che hanno la proprietà iniettiva o proiettiva rispetto a sequenze pure-esatte?

Chiamiamo *puri-iniettivi* (*puri-proiettivi*) i gruppi che hanno la proprietà iniettiva (proiettiva) rispetto a tutte le sequenze pure-esatte.

Un gruppo è puro-proiettivo se e solo se è somma diretta di gruppi ciclici.

È puro-iniettivo se e solo se è addendo diretto di un prodotto diretto di gruppi cociclici.

I gruppi puri-iniettivi si prestano ad essere studiati sotto diversi aspetti:

Sono equivalenti:

(caratterizzazioni algebriche)

- *A* è puro-iniettivo
- A è addendo diretto di ogni gruppo di cui è sottogruppo puro;
- A è addendo diretto di un prodotto diretto di gruppi cociclici;

(caratterizzazioni topologiche)

- A è addendo diretto di un gruppo che ammette una topologia compatta;
 (caratterizzazione in termini di risolubilità di sistemi di equazioni)
 - ogni sistema su A finitamente risolubile in A è risolubile in A.

Parliamo quindi di gruppi algebricamente compatti.

Li studiamo ora da un punto di vista topologico.

Topologie lineari su un gruppo

Scegliamo una base di intorni di 0 del tipo $\mathscr{B} = \{U_i \leq A \mid i \in I\}$; allora una base di intorni di $a \in A$ è formata dalle classi a + U con $U \in \mathscr{B}$.

Esempi

$$\mathscr{B} = \{ nA \mid n \in \mathbb{Z} \setminus \{0\} \}$$
 topologia \mathbb{Z} -adica $\mathscr{B} = \{ p^n A \mid n \in \mathbb{N} \}$ topologia p -adica.

- Rendono continue $(x, y) \mapsto x + y$ e $x \mapsto -x$;
- Sono Hausdorff se e solo se $\bigcap_{i \in I} U_i = \{0\};$

Parliamo di reti $\{a_i\}_{i\in I}$ dotando I dell'ordine parziale $i\leq j\iff U_i\supseteq U_j$.

- Proprietà di Cauchy: $a_j a_i \in U_i$ per ogni $j \ge i$.
- Completezza: se ogni rete di Cauchy è convergente $(\exists a \in A : a_i a \in U_i \text{ per ogni } j \geq i).$

Quando parleremo di completezza, assumeremo sempre che i gruppi in questione siano Hausdorff.

Completamenti

- Un completamento di A è un gruppo topologico completo di cui A sia sottogruppo denso.
- Il completamento di un gruppo è unico a meno di omeomorfismo.
- Un modo per costruirlo è attraverso i limiti inversi.

Limiti inversi nel caso della topologia Z-adica

Per ogni $n \leq m$ consideriamo i morfismi

$$\pi_{nm} \colon A/mA \to A/nA$$

 $a + mA \mapsto a + nA$

$$\varprojlim_n A/nA = \{(\cdots a_n + nA \cdots)_n \in \prod_{n>0} A/nA \mid \pi_{nm}(a_m + mA) = a_n + nA \text{ se } n \leq m\}$$

(sono gli elementi del prodotto che soddisfano $a_m - a_n \in nA$ per ogni $m \geq n$).

 $\lim_{n} A/nA$ è un completamento di A rispetto alla topologia \mathbb{Z} -adica.

Osservazione preliminare

Ogni gruppo abeliano può essere decomposto come $A = D \oplus R$ dove D è un gruppo divisibile e R è ridotto (non ha sottogruppi divisibili non banali).

- I gruppi divisibili sono algebricamente compatti
- La struttura dei gruppi divisibili è nota

Pertanto: è sufficiente studiare i gruppi algebricamente compatti ridotti.

Teorema

Un gruppo è ridotto algebricamente compatto se e solo se è completo nella topologia $\mathbb{Z}\text{-}\mathsf{adica}.$

Teorema di struttura dei gruppi algebricamente compatti

A è un gruppo ridotto algebricamente compatto se e solo se

$$A=\prod_p A_p$$

con A_p completo nella sua topologia p-adica. Inoltre gli A_p sono determinati univocamente da A.

Esempio

Il gruppo J_p degli interi p-adici è algebricamente compatto.

$$J_p = \varprojlim_n \mathbb{Z}/p^n\mathbb{Z}$$

ha come elementi le serie formali $b_0 + b_1 p + \cdots + b_n p^n + \ldots$ con $b_i \in \{0, \ldots, p-1\}.$

Teorema di struttura dei gruppi algebricamente compatti

A è un gruppo ridotto algebricamente compatto se e solo se $A = \prod_{\rho} A_{\rho}$ con A_{ρ} completo nella sua topologia ρ -adica.

(\Longrightarrow)

- $A \oplus B = C = \prod_{p} C_{p}$ con C_{p} prodotto diretto di p-gruppi ciclici.
- lacksquare Per la piena invarianza di C_p si ha $C_p=(A\cap C_p)\oplus (B\cap C_p)=:A_p\oplus B_p$
- $C = \prod_{p} C_{p} = \prod_{p} (A_{p} \oplus B_{p}) = (\prod_{p} A_{p}) \oplus (\prod_{p} B_{p})$
- Dalla divisibilità di $\prod_{\rho} A_{\rho} / \bigoplus_{\rho} A_{\rho}$ si arriva a dimostrare che $\prod_{\rho} A_{\rho} \leq A$.
- $A = \prod_{p} A_{p} \cong A_{q} \oplus \prod_{p \neq q} A_{p}$
- A completo e Hausdorff \implies A_q Hausdorff e completo nella sua topologia \mathbb{Z} -adica (uguale alla sua topologia q-adica).

Teorema di struttura dei gruppi algebricamente compatti

A è un gruppo ridotto algebricamente compatto se e solo se $A = \prod_{p} A_{p}$ con A_{p} completo nella sua topologia p-adica.

(⇐)

- $\blacksquare A_p$ completo nella topologia p-adica $\implies A_p$ è un modulo su \mathbb{Z}_p
- $qA_p = A_p$ per ogni primo $q \neq p \implies$ la topologia \mathbb{Z} -adica di A_p coincide con la sua topologia p-adica
- A_p è completo nella sua topologia p-adica $\implies \prod_p A_p$ lo è.