Graphs

Contents

Basics		2
	Definitions	2
Matrice	3	3
	Adjacency matrices	3
	Distance matrices	3

Basics

<u>Definitions</u>

Graph	Graph A collection of nodes and edges			
Node (or vertex)	A point on a graph			
Edge (or arc)	A line segment connecting two nodes			
Weighted graph (or network)	A graph with weights associated with its edges			
Directed graph (or digraph)	A graph where the edges only go one way			
Subgraph	A subset of the nodes and vertices from the original graph			
Degree (or valency, or order)	The number of edges connected to a given vertex			
Walk	A route through a graph, connecting vertices along edges			
Path	A walk in which no <i>vertex</i> is visited more than once			
Trail	A walk in which no edge is visited more than once			
Eulerian circuit	A trail which starts where it ends and traverses every edge			
Cycle	A walk which ends where it started, and no other vertex is visited more than once			
Hamiltonian cycle	A cycle that includes every vertex			
Connected (vertices)	There is a path between the vertices			
Connected (graph)	All the vertices in the graph are connected			
Loop	An edge that starts and finishes at the same vertex			
Simple graph	A graph where there are no loops and there is at most one edge connecting any pair of vertices			
Tree	A connected graph with no cycles			
Spanning tree (of graph G)	A subgraph of G which contains all vertices and is a tree			
Complete graph	A graph in which every vertex is directly connected by a single edge to all other vertices			
Isomorphic graphs	Graphs which represent the same information but are drawn differently			

Matrices

A graph can be represented by an adjacency matrix, and a weighted graph can be represented by a distance matrix.

Adjacency matrices

Each entry in an adjacency matrix describes the number of edges joining the corresponding nodes.

	A	В	\mathbf{C}	D 0 0 1 0 0	\mathbf{E}	\mathbf{F}
A	0	1	0	0	0	0
В	1	0	1	0	2	1
\mathbf{C}	0	1	0	1	1	0
D	0	0	1	0	0	1
\mathbf{E}	0	2	1	0	0	1
\mathbf{F}	0	1	0	1	1	2

Distance matrices

Each entry in a distance matrix describes the weight of the edge joining the corresponding nodes, if any.

	A	В	\mathbf{C}	D	\mathbf{E}
A	_	17	18	_	_
В	17	_	15	19	23
В С	18	15	_	20	_
D	_	19	20	_	16
\mathbf{E}	_	23	_	16	_

