

Bad Buoys: A Modular Swarm for Autonomous Maritime Monitoring and Defense

Patent Pending | © 2025 Ian Donohue and Project Collaborators Version 2.0 | Published May 2025

Badbouy.project@gmail.com

www.github.com/Badbuoy1

I. Executive Summary

Bad Buoys is a revolutionary maritime monitoring platform composed of autonomous, modular ocean buoys capable of operating in coordinated swarms. These low-cost, mobile units are equipped with interchangeable payloads for diverse missions including surveillance, environmental data collection, and disaster response.

By leveraging open-source architecture and scalable deployment strategies, Bad Buoys empower coastal nations, researchers, and humanitarian organizations to establish sovereign control over their maritime domains without reliance on conventional naval assets.

II. Introduction

Maritime threats continue to escalate, from illegal fishing and piracy to oil spills and coastal disasters. Traditional ocean-monitoring systems — satellites, manned patrols, and fixed buoys — are often prohibitively expensive, inflexible, and slow to deploy.

Bad Buoys introduces a new paradigm: a swarm of intelligent sea drones that work together, adapt to changing conditions, and operate with minimal oversight. They're built for mobility, rapid response, and scalability.

III. Technical Architecture

Each Bad Buoy unit includes:

- Raspberry Pi or equivalent microcontroller
- GPS and IMU navigation
- Solar or battery-based power system
- Propulsion and directional control
- Modular payload bay (e.g., camera, sonar, RF, hydrophone)
- Mesh or satellite communications

The swarm operates using open protocols like LoRa, Wi-Fi, or Iridium, allowing autonomous behavior even in low-bandwidth environments. Buoys can hold position, respond to anomalies, or relocate as a group.

IV. Applications

Bad Buoys are designed to serve across commercial, scientific, and defense sectors:

Maritime Security

- Detect unauthorized vessels and spoofed AIS beacons
- Patrol EEZ boundaries with swarm formations

Environmental Monitoring

- Sample ocean pH, temperature, and pollutants
- Track acoustic signals from marine life or vessels

Disaster Response

- · Rapid deployment after storms, spills, or earthquakes
- Temporary relay stations for comms and search-and-rescue

Scientific Research

- Collect long-term datasets for climate or biodiversity
- Support decentralized academic fieldwork

V. Case Studies

Scenario A: Island Nation Security Grid

An island nation deploys 75 Bad Buoys to form a perimeter defense and maritime observation mesh. The system detects unauthorized trawlers and reports them with photo and GPS data.

Scenario B: Smart Port Contamination Watch

A busy commercial port outfits its anchorage area with Bad Buoys capable of detecting oil sheen and bilge discharge — automatically alerting environmental agencies.

VI. Future Developments

Planned upgrades include:

- Al-enhanced pattern recognition
- Al-classified hydroacoustic data
- Underwater drone attachment
- Satellite uplink mission control
- Integration with open-source MDA (Maritime Domain Awareness) platforms

The open-source nature of the system means continuous community improvements and forks are encouraged.

VII. Conclusion & Call to Action

The future of maritime defense and monitoring is decentralized, affordable, and open-source.

Whether you're a developing nation with vulnerable borders, an oceanographer with a laptop, or a DEF CON hacker group with a 3D printer — **Bad Buoys** gives you the power to observe, defend, and adapt.

Join the swarm.

Feature	Bad Buoys	Saildrone	NOAA Spotters	Military Systems
Open-source hardware/software	✓ Yes	X No	X No	X No
Modular payloads	✓ Interchangeable	≭ Fixed	▲ Limited	X Classified
Swarm coordination	✓ Yes	X No	X No	Yes (but costly)
3D-printable components	✓ Yes	X No	X No	X No
Cost	Ultra-low	₫ ₫ ð High	66 Medium	🖟 🧓 🧓 🖟 Very High
Designed for civilian DIY use	✓ Yes	X No	X No	X No
Powered by Raspberry Pi or similar	✓ Yes	X No	X No	X No
Disaster/emergency deployment	✓ Rapid	▲ Limited	▲ Limited	✓ Yes
AIS monitoring & spoof detection	✓ Integrated	▲ Optional	X No	✓ Yes

FEATURE HIGHLIGHTS — TL: DR

Open-source hardware/software

Built on Raspberry Pi and open platforms anyone can build, customize, or fork the systern

Modular payloads

intershangeable sensors and modulas for missionspecific use, from senal and hydrephones to cameras and weather tools

Swarm coordination

Multiple buoys collaborate, forming an intelligent mean to track, report, and adapt across wide areas

Ultra-low cost

A swarm costs less than a singigle commercial drone empowering nations or groups with limited defense budgets

3D-printable componente

Printable housings and mounts make them deployaable even in low-lesquree or disasterstruck areas

Raspberry Pipowered

Modular and programmable on a glabal standard microcomputer plug in, flash, and go

Rapid deployment

Drop from a boat, air, or dock, budys self-right: stabilize, and join the awarm in minutes

AIS spoof detection

Cross; check AiS messages against real-world data (sound, melton, RF) to catch ghast ships or forged broadc-

IX. Feature Highlights — TL;DR

ISLAND NATION DEFENSE DEPLOYMENT ENEMY VESSEL ((a)) ((a))