

K-Nearest Neighbors (KNN) – A Deep Dive

1. What is K-Nearest Neighbors (KNN)?

K-Nearest Neighbors (KNN) is a **simple**, **yet powerful** supervised learning algorithm used for **classification and regression**.

- ullet Classification: Assigns a data point to the most common class among its K nearest neighbors.
- Regression: Averages the values of K nearest neighbors to predict the output.

How It Works

- 1. Choose K (the number of nearest neighbors).
- Compute the distance between the new data point and all points in the dataset.
- 3. Select the K nearest neighbors.
- 4. For classification: Assign the most frequent label.
- 5. For regression: Take the average of the K-nearest neighbor values.

2. When to Use & Avoid KNN

▼ Use KNN When:

- You have small to medium-sized datasets.
- The dataset has low dimensionality.
- You need a non-parametric model (i.e., you don't assume the data follows a specific distribution).
- You have a balanced dataset (classes have similar sample sizes).

X Avoid KNN When:

- The dataset is large → KNN requires computing distances for every point at prediction time (slow).
- The dataset has high dimensionality → Distance computations become less meaningful (Curse of Dimensionality).
- The dataset is imbalanced → Majority class dominates predictions.

3. Choosing K (Number of Neighbors)

Choosing the right **K** is crucial for **accuracy and generalization**.

Effect of K

- Small K (e.g., K=1,3) → More variance, sensitive to noise.
- Large K (e.g., K=20,30) → More bias, smoother decision boundary.

Methods to Choose K

- 1. Cross-Validation: Try multiple values of K and pick the one with the best validation accuracy.
- Elbow Method for Classification: Plot error rate vs. K and choose the point where error stops decreasing significantly.
- 3. Heuristic Rule: A common rule is:

$$K = \sqrt{N}$$

where N is the number of training samples.

4. Step-by-Step Pseudo Code for KNN

```
∜ Fdit
                                                                   raoO 凸
# Step 1: Load Dataset
1. Load dataset and split into training and test sets.
# Step 2: Choose K
1. Set the number of neighbors (K).
# Step 3: Compute Distance
1. For each test point:
    a. Compute distance to all training points.
    b. Sort distances in ascending order.
# Step 4: Select K Nearest Neighbors
1. Pick the K closest points.
# Step 5: Make Prediction
1. **For classification**:
    a. Count the occurrences of each class in K neighbors.
    b. Assign the most common class.
2. **For regression**:
    a. Take the mean of K nearest neighbors.
# Step 6: Evaluate Model
1. Compare predictions with true labels.
2. Compute accuracy (classification) or RMSE (regression).
```

5. Mathematical Breakdown

5.1 Distance Calculation

The most common distance metric is Euclidean Distance:

$$d(x,y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$

Other distance metrics include:

· Manhattan Distance:

$$d(x,y) = \sum_{i=1}^n |x_i - y_i|$$

• Minkowski Distance (Generalized form of Euclidean & Manhattan):

$$d(x,y) = \left(\sum_{i=1}^n |x_i-y_i|^p
ight)^{rac{1}{p}}$$

- $p = 1 \rightarrow Manhattan Distance$
- $p=2 \rightarrow$ Euclidean Distance

5.2 Classification Decision

The predicted class \hat{y} is determined by **majority voting**:

$$\hat{y} = rg \max_{c} \sum_{i=1}^{K} \mathbb{1}(y_i = c)$$

where:

- c is a class label.
- $1(y_i = c)$ is an indicator function that counts occurrences.

5.3 Regression Decision

For regression, the predicted value is:

$$\hat{y} = rac{1}{K} \sum_{i=1}^K y_i$$

6. Fully Commented Manual Implementation (From Scratch)

```
Д Сору
                                                                            ∜ Edit
import numpy as np
from collections import Counter
   def __init__(self, k=3, distance_metric='euclidean'):
       self.k = k
       self.distance metric = distance metric
       self.X_train = None
       self.y_train = None
   def compute_distance(self, x1, x2):
       if self.distance_metric == 'euclidean':
            return np.sqrt(np.sum((x1 - x2) ** 2))
       elif self.distance_metric == 'manhattan':
            return np.sum(np.abs(x1 - x2))
```

```
Copy
                                                                            B Edit
def fit(self, X, y):
    self.X train = X
    self.y_train = y
def predict(self, X, classification=True):
    predictions = []
    for x in X:
        # Compute distances from test point to all training points
        distances = [self.compute_distance(x, x_train) for x_train in self.X_train]
        # Get indices of K closest points
        k_indices = np.argsort(distances)[:self.k]
        # Get K closest labels
        k_nearest_labels = [self.y_train[i] for i in k_indices]
        if classification:
            predictions.append(Counter(k_nearest_labels).most_common(1)[0][0]]
            # Mean for regression
            predictions.append(np.mean(k_nearest_labels))
    return np.array(predictions)
```

7. Scikit-Learn Implementation

```
 Copy
                                                                            ₺ Edit
from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor
from sklearn.datasets import make_classification
from sklearn.model selection import train test split
# Generate synthetic classification dataset
X, y = make\_classification(n\_samples=300, n\_features=5, random\_state=42)
# Split dataset into training and test sets
X train, X test, y train, y test = train test split(X, y, test size=0.2, random sta
# Initialize and train KNN Classifier
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(X train, y train)
# Predict and evaluate
accuracy = knn.score(X_test, y_test)
print(f"KNN Accuracy: {accuracy:.4f}")
```

Final Takeaways

KNN is a simple yet powerful non-parametric method for classification & regression.

Sensitive to high-dimensionality and large datasets.

K must be chosen carefully using cross-validation or heuristics.

Comparison of Popular Clustering Algorithms

Algorithm	Intuition (How It Works & What It Does)	When to Use	Pros	Cons
K-Means	Assigns points to the nearest centroid, then updates centroids iteratively to minimize variance.	When clusters are spherical, well-separated, and you know K.	Simple, fast, works well on large datasets.	Sensitive to initialization and outliers. Struggles with non-spherical clusters.
Hierarchical Clustering	Recursively merges (agglomerative) or splits (divisive) clusters based on similarity.	When you want a dendrogram (cluster hierarchy) and don't know K.	No need to predefine K, creates a full hierarchy.	Slow for large datasets, sensitive to distance metrics.
DBSCAN (Density- Based Clustering)	Groups points that have a minimum number of neighbors within a radius, marking outliers.	When clusters have arbitrary shapes and contain noise.	Detects arbitrary- shaped clusters, robust to noise.	Struggles with varying densities and high-dimensional data.
Gaussian Mixture Model (GMM)	Assumes data is generated from multiple Gaussian distributions and assigns probabilities to clusters.	When clusters overlap and have elliptical shapes.	Soft clustering, flexible cluster shapes.	Computationally expensive, requires Gaussian assumption.
Mean Shift	Moves data points toward areas of highest density (mode seeking).	When clusters have varying densities and you want automatic cluster detection.	No need to specify K, works for irregular densities.	Computationally expensive, sensitive to bandwidth selection.
Spectral Clustering	Uses graph-based methods and eigenvalues to separate data points into clusters.	When clusters are connected but not necessarily spherical.	Works well for non-convex clusters, handles complex structures.	Doesn't scale well, computationally expensive.

Final Takeaways

- K-Means → Best for simple, well-separated clusters.
- **V** DBSCAN → Best for arbitrary-shaped clusters with noise.
- Hierarchical Clustering → Best when you don't know K and want a hierarchy.
- ✓ GMM → Best when clusters overlap and have elliptical shapes.
- **▼** Mean Shift → Best when you want automatic cluster detection without K.
- ▼ Spectral Clustering → Best for complex structures and non-spherical clusters.