ELEN3016: CONTROL LAB 1

Group 7

Tyson Cross (1239448) Jannes Smit (10382530 Daniel de Barros (1036613)

$$G(s) = \frac{1}{s(s+4)(s+6)}$$

1 Matlab Simulations

Figure 1: Root-Locus Plot of Plant Transfer Figure 3: Step Response of Plant with Unity Function Feedback

Figure 2: Step Response of Plant (with no Feedback)

Figure 4: Bode Plot of Plant with Unity Feedback

Figure 5: Simulink Simulation

Figure 6: Simulink State Diagram Simulation

Table 1: Matlab Simulated Characteristics

Property	
Rise Time (s)	51.8
Settling Time (s)	92.7
Overshoot (%)	0
Undershoot (%)	0
Peak	0.9993

For a closed loop transfer function with unity negative feedback, the steady state error (e_{ss}) can be expressed as;

$$e_{ss} = \lim_{s \to 0} sE(s) \tag{1}$$

$$e_{ss} = \lim_{s \to 0} sE(s)$$

$$= \lim_{s \to 0} \frac{sR(s)}{1 + G(s)}$$
(2)

For a step input (i.e R(s) = $\frac{1}{s}$). $e_{ss} = \frac{1}{1+K_p}$ where $K_p = \lim_{s\to 0} G(s)$.

2 Dominant Pole Theory Reduction

$$G_1(s) = \frac{\frac{1}{6.08}}{s(s+3.921)} \tag{3}$$

Figure 7: $G_1(s)$ Frequency Response

$$G_2(s) = \frac{\frac{1}{6}}{s(s+4)} \tag{4}$$

Figure 8: $G_2(s)$ Frequency Response

Figure 9: State Diagram With Time Scaling and Dominant Pole Theory Reduction

Figure 10: Step Response of Time Scaled and Dominant Pole Theory Reduced System