

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE190502303V01

FCC REPORT

Applicant: APRIX LATINOAMERICA S.A.

Address of Applicant: ADVANCED 099 BLDG SUITE 4 C CALLE BEATRIZ M DE

CABAL PANAMA

Equipment Under Test (EUT)

Product Name: Tablet PC

Model No.: APRIX TAB8II

Trade mark: APRIX/KONNEN

FCC ID: 2AHJQ-APT8IIA

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 09 May, 2019

Date of Test: 09 May, to 30 May, 2019

Date of report issued: 10 Jun., 2019

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	31 May, 2019	Original
01	10 Jun., 2019	Update page 52

Tested by:

Mike OU

Date: 10 Jun., 2019

Test Engineer

Reviewed by: Date: 10 Jun., 2019

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4		T SUMMARY	
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND TEST MODE	6
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	LABORATORY FACILITY	
	5.7	LABORATORY LOCATION	
	5.8	TEST INSTRUMENTS LIST	7
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT	
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	20
	6.6	BAND EDGE	
	6.6.		
	6.6.2		
	6.7	Spurious Emission	
	6.7.		
	6.7.2		
7	TES	T SETUP PHOTO	54
Q	FUT	CONSTRUCTIONAL DETAILS	55

Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass
Pass: The FLIT complies with the essential re	quirements in the standard	

Pass: The EUT complies with the essential requirements in the standard.

N/A: N/A: Not Applicable.

5 General Information

5.1 Client Information

Applicant:	APRIX LATINOAMERICA S.A.
Address:	ADVANCED 099 BLDG SUITE 4 C CALLE BEATRIZ M DE CABAL PANAMA
Manufacturer:	Todos industrial limited
Address:	Room 308, Building #5, Cofoc (Fuan) Robotics Industrial Park, No.90, Dayang Road, Fuyong Street, Shenzhen City, P.R. China

5.2 General Description of E.U.T.

Product Name:	Tablet PC
Model No.:	APRIX TAB8II
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(HT20)) 2422MHz~2452MHz (802.11n(HT40))
Channel numbers:	11 for 802.11b/802.11g/802.11(HT20) 7 for 802.11n(HT40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.31dBi
Power supply:	Rechargeable Li-ion polymer Battery DC3.8V/4500mAh
AC adapter:	Model No.:AS013Z-0502000UU Input: AC100-240V, 50/60Hz 0.45 A Output: DC 5.0V, 2.0A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Fr	Operation Frequency each of channel for 802.11b/g/n(HT20)						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

- 1. For 802.11n-HT40 mode, the channel number is from 3 to 9;
- 2. Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel. Channel 3, 6 & 9 selected for 802.11n-HT40 as Lowest, Middle and Highest channel, Channel.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: CCISE190502303

5.3 Test environment and test mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate, the follow list were t	he worst case.
Mode	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(HT20)	6.5Mbps
802.11n(HT40)	13.5Mbps

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.54 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.84 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2019	03-17-2020
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919	b
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-18-2019	03-17-2020
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-18-2019	03-17-2020
LISN	CHASE	MN2050D	1447	03-18-2019	03-17-2020
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019
Cable	HP	10503A	N/A	03-18-2019	03-17-2020
EMI Test Software	AUDIX	E3	\	Version: 6.110919	b

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The Wi-Fi antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.31 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 1	5.207	
Test Method:	ANSI C63.10: 2013		
Test Frequency Range:	150 kHz to 30 MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9 kHz, VBW=30 kl	 U ₇	
Limit:	Frequency range	Limit (c	√Ru\/\
Littit.	(MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the loga		
Test procedure	line impedance stab 50ohm/50uH couplir 2. The peripheral device through a LISN that with 50ohm terminal setup and photograph 3. Both sides of A.C. ling interference. In order positions of equipments	lators are connected to the illization network (L.I.S.N.) and impedance for the mean ces are also connected to provides a 500hm/50uH contion. (Please refer to the bit ohs). The are checked for maximum enter to find the maximum enter and all of the interface to ANSI C63.4: 2014 on continuous contents.	which provides a suring equipment. the main power oupling impedance lock diagram of the test um conducted ission, the relative cables must be
	measurement.		
Test setup:		Reference Plane	
Test setup:	AUX Equipment Test table/Insulat Remarkc E.U.T. Equipment Under T LISN: Line Impedence Sta	40cm 80cm LISN Fi	Iter — AC power
Test setup: Test Instruments:	AUX Equipment Test table/Insulat Remark E.U.T: Equipment Under T	40cm 80cm Fi E.U.T EMI Receiver	
	AUX Equipment Test table/Insulat Remark E.U.T. Equipment Under T LISN: Line Impedence Sta Test table height=0.8m	E.U.T ion plane Est bilization Network etails	

Measurement Data:

Product name:	Tablet PC	Product model:	APRIX TAB8II
Test by:	Mike	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∜	<u>dB</u>	dB	dBu₹	dBu∜	<u>d</u> B	
1	0.150	48.80	-0.45	10.78	59.13	66.00	-6.87	QP
2	0.154	22.66	-0.45	10.78	32.99	55.78	-22.79	Average
3	0.190	41.10	-0.42	10.76	51.44	64.02	-12.58	QP
1 2 3 4 5 6 7 8 9	0.230	24.86	-0.40	10.75	35.21	52.44	-17.23	Average
5	0.266	19.64	-0.39	10.75	30.00	51.25	-21.25	Average
6	0.398	38.19	-0.37	10.72	48.54	57.90	-9.36	QP
7	0.398	19.85	-0.37	10.72	30.20	47.90	-17.70	Average
8	0.608	22.08	-0.38	10.77	32.47	46.00	-13.53	Average
9	0.634	37.37	-0.38	10.77	47.76	56.00	-8.24	QP
10	0.751	39.60	-0.38	10.79	50.01	56.00	-5.99	QP
11	0.767	24.47	-0.38	10.80	34.89	46.00	-11.11	Average
12	0.796	39.86	-0.38	10.81	50.29	56.00	-5.71	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Page 10 of 55

Product name:	Tablet PC	Product model:	APRIX TAB8II
Test by:	Mike	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	₫B	₫B	dBu₹	dBu∇	<u>d</u> B	
1	0.158	35. 24	-0.68	10.77	45.33	65.56	-20.23	QP
2	0.190	33.65	-0.69	10.76	43.72	64.02	-20.30	QP
1 2 3	0.190	17.63	-0.69	10.76	27.70	54.02	-26.32	Average
4 5 6 7 8 9	0.294	11.94	-0.63	10.74	22.05	50.41	-28.36	Average
5	0.421	27.83	-0.64	10.73	37.92	57.42	-19.50	QP
6	0.647	29.56	-0.64	10.77	39.69	56.00	-16.31	QP
7	0.647	18.52	-0.64	10.77	28.65	46.00	-17.35	Average
8	0.739	33.64	-0.64	10.79	43.79		-12.21	
9	0.739	24.08	-0.64	10.79	34.23	46.00	-11.77	Average
10	0.755	25.04	-0.64	10.79	35.19	46.00	-10.81	Average
11	0.763	35.27	-0.64	10.80	45.43	56.00	-10.57	QP
12	2.915	13.16	-0.67	10.92	23.41			Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)			
Test Method:	ANSI C63.10:2013 and KDB 558074			
Limit:	30dBm			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

Test CH	N	laximum Conduc	Limit(dDm)	Dogult			
	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Limit(dBm)	Result	
Lowest	5.09	4.23	3.32	2.86			
Middle	4.92	4.10	3.57	2.87	30.00	Pass	
Highest	4.90	4.36	3.69	3.06			

Test plot as follows:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)
Test Method:	ANSI C63.10:2013 and KDB 558074
Limit:	>500kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

Task OU		6dB Emission	Limit/IrLl=\	Dooult			
Test CH	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Limit(kHz)	Result	
Lowest	9.04	16.56	17.76	36.64			
Middle	9.04	16.48	17.76	36.64	>500	Pass	
Highest	8.64	16.48	17.60	36.16			
Test CH		99% Occupy I	Limit/kU=\	Result			
Test CH	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Limit(kHz)	Kesull	
Lowest	10.48	16.48	17.68	36.16			
Middle	10.48	16.56	17.68	36.16	N/A	N/A	
Highest	10.64	16.40	17.68	36.00			

Test plot as follows:

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)
Test Method:	ANSI C63.10:2013 and KDB 558074
Limit:	8dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

Test CH		Limit(dDm)	Dogult			
	802.11b	802.11g	Limit(dBm)	Result		
Lowest	-3.89	-9.14	-9.48	-12.63		
Middle	-3.33	-8.72	-9.02	-12.66	8.00	Pass
Highest	-3.20	-8.40	-8.64	-12.42		

Test plot as follows:

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013 and KDB 558074				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Test plot as follows:

6.6.2 Radiated Emission Method

6.6.2 Radiat	5.2 Radiated Emission Method									
Test Req	uirement:	FCC Pa	FCC Part 15 C Section 15.209 and 15.205							
Test Meth	nod:	ANSI C	ANSI C63.10: 2013 and KDB 558074							
Test Fred	quency Range:	2.3GHz to 2.5GHz								
Test Dista	ance:	3m								
Receiver	setup:	Frequ	ency	Detecto	r	RBW		BW	Remar	
		Above 1GHz		Peak		1MHz		MHz	Peak Val	
Limit:		F	requenc	RMS v	l im	1MHz it (dBuV/m @		ИHz 	Average V Remark	alue
Liiiit.						54.00	OIII)	A۱	verage Value	
			ove 1Gł			74.00			Peak Value	
Test Proc	cedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 						enna e o 4 rees an alues not asi-		
Test setu	p:		- 150cm	AE EUT (Turntable)		3m Ground Reference Plane	rn Antenna Pre- Pre- Inspiriter Co	Antenna Tox	wer	
Test Instr	uments:	Refer to	section	5.8 for de	tails					
Test mod	le:	Refer to	section	5.3 for de	tails					
Test resu	lts:	Passed								

802.11b mode:

Product Name:	Tablet PC	Product Model:	APRIX TAB8II
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000								

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Tablet PC	Product Model:	APRIX TAB8II	
Test By:	Mike	Test mode: 802.11b Tx mode		
Test Channel:	Lowest channel	Polarization:	Horizontal	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%	

req	Level	Factor				Limit Line		Remark
MHz	dBu∀	_dB/m	₫B	dB	dBuV/m	dBuV/m	dB	
	MHz	MHz dBuV	MHz dBuV dB/m	MHz dBuV dB/m dB	MHz dBuV dB/m dB dB	MHz dBuV dB/m dB dB dBuV/m	MHz dBuV dB/m dB dB dBuV/m dBuV/m	Treq Level Factor Loss Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dB

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	t Name: Tablet PC Product Model:			
est By:	Mike	Test mode:	802.11b Tx mode	
est Channel:	Highest channel	Polarization:	Vertical	
est Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%	
110 Level (dBuV/r	n)			
100				
80			FCC PART 15 (PK)	
60			FCC PART 15 (AV)	
40		2		
20				
02452	Frequency	y (MHz)	2500	

MHz

19.31

8.64

2483.500

2483.500

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

dB/m

27.36

27.36

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

dB

0.00

0.00

4.81

4.81

dB dBuV/m dBuV/m

ďB

51.48 74.00 -22.52 Peak 40.81 54.00 -13.19 Average

Product Name:	Tablet PC	Product Model:	APRIX TAB8II
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	dB/m	₫B	dB	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g mode:

Product Name:	Tablet PC	Product Model: APRIX TAB8II		
Test By:	Mike	Test mode:	802.11g Tx mode	
Test Channel:	Lowest channel	Polarization:	Vertical	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%	

	Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1 2	2390.000 2390.000								

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Tablet PC	Product Model:	APRIX TAB8II						
Test By:	Mike	Test mode:	802.11g Tx mode						
Test Channel:	Lowest channel	Polarization:	Horizontal						
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%						
	-								

	Freq		Antenna Factor						Remark
	MHz	dBu₹	dB/m	dB	<u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B	
1 2	2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Tablet PC	Product Model: APRIX TAB8II		
Test By:	Mike	Test mode:	802.11g Tx mode	
Test Channel:	Highest channel	Polarization:	Vertical	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%	

	Freq	ReadAntenna Freq Level Factor		Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	$\overline{-}\overline{dB}/\overline{m}$	−−−−dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483,500 2483,500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Tablet PC	Product Model:	APRIX TAB8II
Test By:	Mike	Test mode:	802.11g Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

		Read/ Freq Level		ReadAntenna Cable I eq Level Factor Loss I		Preamp Factor	Level	Line	Limit	Remark
		MHz dBuV	dB/m dB	dB	dBuV/m					
1 2	2483.500 2483.500									

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT20):

Product Name:	Tablet PC	Product Model:	APRIX TAB8II
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

		Readán req Level F				Line	Limit	Remark
		MHz dBuV	dB/m dB	dB				
1 2	2390.000 2390.000							

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Tablet PC	Product Model:	APRIX TAB8II							
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode							
Test Channel:	Lowest channel	Polarization: Horizontal								
Test Voltage:	AC 120/60Hz	20/60Hz Environment:								
110 Level (dBuV/m)										

	Freq	ReadAntenna Freq Level Factor		Cable Loss	Cable Preamp Loss Factor		Limit Line	Over Limit	
	MHz	dBu∜	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000		27.08 27.08			53.32 40.08			

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Tablet PC	Product Model:	APRIX TAB8II		
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode		
Test Channel:	Highest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

	Freq		Antenna Factor						
	MHz	dBu∀	dB/m	₫B	₫B	dBuV/m	dBuV/m	₫B	
1 2	2483,500 2483,500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Tablet PC	Product Model:	APRIX TAB8II
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Read Freq Level		ReadAntenna Cable Pre req Level Factor Loss Fac		Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	dB/m	₫B	<u>dB</u>	dBuV/m	dBuV/m	₫B	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT40):

Product Name:	Tablet PC	Product Model:	APRIX TAB8II		
Test By:	Mike	Test mode:	802.11n(HT40) Tx mode		
Test Channel:	Lowest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

	Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1 2	2390.000 2390.000	19.51 7.35	27.07 27.07	4.69 4.69	0.00 0.00	51.27 39.11	74.00 54.00	-22.73 -14.89	Peak Average

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Nar	ne:	Tablet PC				Product M	lodel:	APRIX	(TAB8II	
est By:		Mike				Test mode	e:	802.11	1n(HT40)	Tx mode
est Channe	el:	Lowest cha	annel			Polarizatio	on:	Horizo	ntal	
Test Voltage	e:	AC 120/60)Hz			Environm	ent:	Temp:	24 ℃	Huni: 57%
					•					
110	revel (gRnA/u	1)								1
100										
							fun	and and	morne	m
80				_			1	FCC	PART 15	(PK)
							1	,,,,	THILL TO	
60						1~~	-	FCC	PART 15	(AV)
	morna	manyon	mym	mayer	mann	and y	~~	100	TAIL 15	(4.0)
40						2				_
20			_	-	-	_	-			
0	2310 2320		2350							2442
	2310 2320		2550	Fre	equency (M	Hz)				2442
0.000		ReadA	intenna	Cable	Preamo		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level		Limit	Remark	
<u>-</u>	MHz	dBu∜	dB/m	₫B	<u>d</u> B	dBuV/m	dBuV/m	dB		
1	2390.000	22.23	27.08	4.69	0.00	54.00	74.00	-20.00	Peak	
2	2390.000		27.08	4.69				-13.50		

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Tablet PC	Product Model:	APRIX TAB8II	
Test By:	Mike	Test mode:	802.11n(HT40) Tx mode	
Test Channel:	Highest channel	Polarization:	Vertical	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Tablet PC	Product Model:	APRIX TAB8II
Test By:	Mike	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Freq		Antenna Factor						
MHz	dBu∜	<u>dB</u> /m	<u>d</u> B	dB	dBuV/m	dBuV/m	dB	
2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

	Metriod				
Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013 and KDB 558074				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.				
Test setup:					
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Test plot as follows:

6.7.2 Radiated Emission Method

	etnod							
Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10:201	3						
Test Frequency Range:	9kHz to 25GHz							
Test Distance:	3m							
Receiver setup:	Frequency	Detector	RBW	VB	3W	Remark		
	30MHz-1GHz	Quasi-peak	120KHz	300ŀ	KHz	Quasi-peak Value		
	Above 1GHz Peak 1MHz 3MHz Peak Value							
	RMS 1MHz 3MHz Average Value							
Limit:	Frequency Limit (dBuV/m @3m) Remark							
	30MHz-88MHz 40.0 Quasi-peak Value 88MHz-216MHz 43.5 Quasi-peak Value							
	216MHz-960M		46.0			uasi-peak Value		
	960MHz-1GH		54.0			uasi-peak Value		
			54.0			Average Value		
	Above 1GHz		74.0			Peak Value		
Test Procedure:			ne top of a rot					
	 The EUT was placed on the top of a rotating table 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values 							
	peak or aver					sing peak, quasi- rted in a data		
Test setup:	sheet. Below 1GHz							
	EUT Turn Table Ground F				_			

Measurement Data (worst case):

Below 1GHz:

Product Name:	Tablet PC	Product Model:	APRIX TAB8II
Test By:	Mike	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor				Limit Line		Remark
	MHz	dBu∜	─dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	35.749	48.76	11.39	1.07	29.94	31.28	40.00	-8.72	QP
1 2 3	41.567	47.36	12.37	1.24	29.89	31.08	40.00	-8.92	QP
3	133.151	49.36	9.95	2.32	29.31	32.32	43.50	-11.18	QP
4	185.138	45.96	10.13	2.77	28.93	29.93	43.50	-13.57	QP
5	213.015	44.61	11.19	2.85	28.75	29.90	43.50	-13.60	QP
4 5 6	601.427	35.93	19.51	3.94	28.93	30.45	46.00	-15.55	QP

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Tablet PC	Product Model:	APRIX TAB8II
Test By:	Mike	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Freq								
MHz	dBu∜	<u>dB/m</u>	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>db</u>	
114.114	41.25	11.34	2.10	29.43	25.26	43.50	-18.24	QP
167.237	48.47	9.54	2.64	29.07	31.58	43.50	-11.92	QP
189.074	49.25	10.26	2.79	28.91	33.39	43.50	-10.11	QP
213.763	45.41	11.23	2.85	28.74	30.75	43.50	-12.75	QP
250.301	40.04	12.70	2.81	28.54	27.01	46.00	-18.99	QP
290.017	39.08	13.43	2.91	28.47	26.95	46.00	-19.05	QP
	MHz 114, 114 167, 237 189, 074 213, 763 250, 301	MHz dBuV 114.114 41.25 167.237 48.47 189.074 49.25 213.763 45.41 250.301 40.04	MHz dBuV dB/m 114.114 41.25 11.34 167.237 48.47 9.54 189.074 49.25 10.26 213.763 45.41 11.23 250.301 40.04 12.70	MHz dBuV dB/m dB 114.114 41.25 11.34 2.10 167.237 48.47 9.54 2.64 189.074 49.25 10.26 2.79 213.763 45.41 11.23 2.85 250.301 40.04 12.70 2.81	MHz dBuV dB/m dB dB 114.114 41.25 11.34 2.10 29.43 167.237 48.47 9.54 2.64 29.07 189.074 49.25 10.26 2.79 28.91 213.763 45.41 11.23 2.85 28.74 250.301 40.04 12.70 2.81 28.54	MHz dBuV dB/m dB dB dBuV/m 114.114 41.25 11.34 2.10 29.43 25.26 167.237 48.47 9.54 2.64 29.07 31.58 189.074 49.25 10.26 2.79 28.91 33.39 213.763 45.41 11.23 2.85 28.74 30.75 250.301 40.04 12.70 2.81 28.54 27.01	MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m 114.114 41.25 11.34 2.10 29.43 25.26 43.50 167.237 48.47 9.54 2.64 29.07 31.58 43.50 189.074 49.25 10.26 2.79 28.91 33.39 43.50 213.763 45.41 11.23 2.85 28.74 30.75 43.50 250.301 40.04 12.70 2.81 28.54 27.01 46.00	MHz dBuV dB/m dB dB dB dB uV/m dBuV/m dB uV/m dB 114.114 41.25 11.34 2.10 29.43 25.26 43.50 -18.24 167.237 48.47 9.54 2.64 29.07 31.58 43.50 -11.92 189.074 49.25 10.26 2.79 28.91 33.39 43.50 -10.11 213.763 45.41 11.23 2.85 28.74 30.75 43.50 -12.75

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz

Above 1GHz										
				802.11b						
			Test ch	nannel: Lowe	est channel					
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	46.68	30.94	6.81	41.82	42.61	74.00	-31.39	Vertical		
4824.00	46.44	30.94	6.81	41.82	42.37	74.00	-31.63	Horizontal		
			Dete	ector: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	37.73	30.94	6.81	41.82	33.66	54.00	-20.34	Vertical		
4824.00	37.44	30.94	6.81	41.82	33.37	54.00	-20.63	Horizontal		
				nannel: Mido						
		_		tector: Peal	(Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	46.86	31.20	6.85	41.84	43.07	74.00	-30.93	Vertical		
4874.00	46.24	31.20	6.85	41.84	42.45	74.00	-31.55	Horizontal		
			Dete	ector: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	37.18	31.20	6.85	41.84	33.39	54.00	-20.61	Vertical		
4874.00	37.24	31.20	6.85	41.84	33.45	54.00	-20.55	Horizontal		
			Test ch	annel: High	est channel					
			De	tector: Peak	Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	46.89	31.46	6.89	41.86	43.38	74.00	-30.62	Vertical		
4924.00	46.71	31.46	6.89	41.86	43.20	74.00	-30.80	Horizontal		
			Dete	ector: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	36.76	31.46	6.89	41.86	33.25	54.00	-20.75	Vertical		
4924.00	36.24	31.46	6.89	41.86	32.73	54.00	-21.27	Horizontal		

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

				802.11g						
				nannel: Lowe						
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	46.52	30.94	6.81	41.82	42.45	74.00	-31.55	Vertical		
4824.00	46.37	30.94	6.81	41.82	42.30	74.00	-31.70	Horizontal		
			Dete	ector: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	37.41	30.94	6.81	41.82	33.34	54.00	-20.66	Vertical		
4824.00	37.38	30.94	6.81	41.82	33.31	54.00	-20.69	Horizontal		
				nannel: Midd						
				tector: Peal	value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	46.91	31.20	6.85	41.84	43.12	74.00	-30.88	Vertical		
4874.00	46.19	31.20	6.85	41.84	42.40	74.00	-31.60	Horizontal		
			Dete	ctor: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	36.47	31.20	6.85	41.84	32.68	54.00	-21.32	Vertical		
4874.00	36.16	31.20	6.85	41.84	32.37	54.00	-21.63	Horizontal		
			Test ch	annel: High	est channel					
				tector: Peal						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	46.85	31.46	6.89	41.86	43.34	74.00	-30.66	Vertical		
4924.00	46.26	31.46	6.89	41.86	42.75	74.00	-31.25	Horizontal		
			Dete	ector: Avera	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	37.09	31.46	6.89	41.86	33.58	54.00	-20.42	Vertical		
4924.00	36.83	31.46	6.89	41.86	33.32	54.00	-20.68	Horizontal		
Remark:							•			
1 Finalla	ol - Possino	r Dood lovel	Antonno Fo	otor , Cobla	Loon Droom	anlifior Easter				

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n(HT20)										
				annel: Low							
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4824.00	45.25	36.06	6.81	41.82	46.30	74.00	-27.70	Vertical			
4824.00	46.01	36.06	6.81	41.82	47.06	74.00	-26.94	Horizontal			
			Dete	ctor: Avera	ge Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4824.00	38.12	36.06	6.81	41.82	39.17	54.00	-14.83	Vertical			
4824.00	37.37	36.06	6.81	41.82	38.42	54.00	-15.58	Horizontal			
			Test ch	nannel: Mido	dle channel						
			De	tector: Peak	v Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4874.00	46.52	36.32	6.85	41.84	47.85	74.00	-26.15	Vertical			
4874.00	46.37	36.32	6.85	41.84	47.70	74.00	-26.30	Horizontal			
			Dete	ctor: Avera	ge Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4874.00	36.49	36.32	6.85	41.84	37.82	54.00	-16.18	Vertical			
4874.00	36.38	36.32	6.85	41.84	37.71	54.00	-16.29	Horizontal			
			Test ch	annel: High	est channel						
				tector: Peal	Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4924.00	46.58	36.58	6.89	41.86	48.19	74.00	-25.81	Vertical			
4924.00	46.73	36.58	6.89	41.86	48.34	74.00	-25.66	Horizontal			
			Dete	ector: Avera	ge Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4924.00	36.12	36.58	6.89	41.86	37.73	54.00	-16.27	Vertical			
4924.00	36.09	36.58	6.89	41.86	37.70	54.00	-16.30	Horizontal			
Remark:	val Danairus	r Dood lovel	Antonno Fo	otor . Coblo	l oss – Pream	anlifiar Footor					

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n(HT40)										
				annel: Lowe							
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4844.00	46.48	36.06	6.81	41.82	47.53	74.00	-26.47	Vertical			
4844.00	46.72	36.06	6.81	41.82	47.77	74.00	-26.23	Horizontal			
	Detector: Average Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4844.00	38.16	36.06	6.81	41.82	39.21	54.00	-14.79	Vertical			
4844.00	36.47	36.06	6.81	41.82	37.52	54.00	-16.48	Horizontal			
	Test channel: Middle channel										
			De	tector: Peak	· Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4874.00	46.52	36.32	6.85	41.84	47.85	74.00	-26.15	Vertical			
4874.00	46.24	36.32	6.85	41.84	47.57	74.00	-26.43	Horizontal			
			Dete	ctor: Avera	ge Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4874.00	37.42	36.32	6.85	41.84	38.75	54.00	-15.25	Vertical			
4874.00	36.15	36.32	6.85	41.84	37.48	54.00	-16.52	Horizontal			
			Test ch	annel: High	est channel						
		T		tector: Peak	v Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4904.00	46.79	36.45	6.87	41.85	48.26	74.00	-25.74	Vertical			
4904.00	46.38	36.45	6.87	41.85	47.85	74.00	-26.15	Horizontal			
			Dete	ector: Avera	ge Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4904.00	37.21	36.45	6.87	41.85	38.68	54.00	-15.32	Vertical			
4904.00	37.10	36.45	6.87	41.85	38.57	54.00	-15.43	Horizontal			
Remark:		r Read level +				···· = ·					

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.