Федеральное государственное автономное образовательное учреждение высшего образования

«МОСКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет информационных технологий Направление подготовки «Системная и программная инженерия»

ОТЧЁТ по проектной практике

Студент: Петрачков Владимир В	падимирович, группа 241-327					
Место прохождения практики: Московский политех						
Отчет принят с оценкой	Дата					
Руковолитель практики: Баринов	а Наталья Влалимировна					

СОДЕРЖАНИЕ

введение	3
Общая информация о проекте	3
Общая характеристика деятельности организации	5
Структура организации	5
Описание деятельности Московского политехнического университета	5
Описание задания по проектной практике	7
Практическая часть	8
Базовая часть	8
Настройка Git и репозитория	8
Написание документов в Markdown	9
Создание статического веб-сайта	9
Взаимодействие с организацией-партнёром	10
Значение для проекта EasyAccess	11
Вариативная часть	13
Разработка системы распознавания речи	13
ЗАКЛЮЧЕНИЕ	16
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ	18

ВВЕДЕНИЕ

Общая информация о проекте

Название проекта: «EasyAccess. Браузерное расширение для повышения веб-доступности.»

Актуальность: В современном мире веб-доступность играет критически важную роль в обеспечении равного доступа к информации для всех пользователей, включая людей с ограниченными возможностями здоровья. Однако многие веб-сайты не полностью соответствуют стандартам доступности, что создает барьеры для значительной части пользователей. Проект EasyAccess нацелен на решение этой проблемы путем создания браузерного расширения, позволяющего адаптировать содержимое веб-страниц под индивидуальные потребности пользователей.

Веб-доступность сегодня — это не только социальная ответственность, но и юридическое требование во многих странах. Согласно исследованиям WebAIM, более 96% из миллиона самых популярных веб-страниц имеют ошибки доступности, нарушающие руководящие принципы WCAG (Web Content Accessibility Guidelines). Это делает разработку инструментов, улучшающих доступность, крайне актуальной задачей.

Цели и задачи проекта:

- 1. Разработка браузерного расширения для адаптации веб-контента под различные потребности пользователей.
- 2. Создание системы пакетов модификаций с возможностью их обмена между пользователями.
- 3. Реализация функционала для настройки визуального отображения, изменения контрастности, размера шрифта и других параметров.
- 4. Интеграция возможностей голосового управления и экранного чтения.

5.	Создание маркетплейса для обмена пакетами настроек между пользователями.

Общая характеристика деятельности организации

Наименование заказчика: Московский политехнический университет.

Структура организации

Московский политехнический университет представляет собой крупное образовательное учреждение, включающее шесть филиалов: Рязанский, Чебоксарский, Коломенский, Электростальский институты (филиалы), а также Тучковский и Ивантеевский филиалы. Все филиалы функционируют как неотъемлемая часть университетской сети и обеспечивают региональный доступ к образовательным программам университета.

В структуру университета входят 13 факультетов и институтов, включая:

- 1. Факультет информационных технологий;
- 2. Инженерную школу (факультет);
- 3. Транспортный факультет;
- 4. Факультет машиностроения;
- 5. Факультет химической технологии и биотехнологии;
- 6. Факультет экономики и управления;
- 7. Высшую школу печати и медиаиндустрии;
- 8. И другие.

На факультете информационных технологий функционирует кафедра «Инфокогнитивные технологии», под руководством которой осуществляется данная практика.

Описание деятельности Московского политехнического университета

Московский политехнический университет осуществляет образовательную, научную, инновационную и внеучебную деятельность.

Университет готовит специалистов по широкому спектру инженернотехнических направлений, реализует программы бакалавриата, магистратуры и аспирантуры.

Научная деятельность университета охватывает фундаментальные и прикладные исследования в различных областях, включая информационные технологии, машиностроение, энергетику, транспортные системы и другие направления.

Проектная деятельность является важной частью образовательного процесса в Московском Политехе. Студенты с первого курса вовлекаются в работу над реальными проектами в сотрудничестве с индустриальными партнерами. Это позволяет формировать практические навыки и компетенции, востребованные на рынке труда.

Описание задания по проектной практике

Задание на проектную (учебную) практику разработано для студентов первого курса, обучающихся по направлениям подготовки, связанным с информационными технологиями и информационной безопасностью. Трудоёмкость практики составляет 72 академических часа. Задание может выполняться индивидуально или в составе группы до 3 человек.

Задание состоит из двух частей:

Базовая часть (обязательная для всех студентов):

- 1. Настройка Git и репозитория;
- 2. Написание документов в Markdown;
- 3. Создание статического веб-сайта;
- 4. Взаимодействие с организацией-партнёром;
- 5. Отчёт по практике.

Вариативная часть:

В моем случае была выбрана тема «Практическая реализация технологии» из списка, представленного в репозитории <u>codecrafters-io/build-your-own-x</u>. Конкретно я занимался разработкой модуля распознавания речи для проекта EasyAccess, используя технологии машинного обучения и обработки естественного языка.

Практическая часть

Базовая часть

Настройка Git и репозитория

В рамках практики был создан репозиторий на GitHub на основе предоставленного шаблона. Для работы с Git использовались как консольный интерфейс GitBash, так и графический интерфейс GitHub Desktop.

Выполненные действия:

- 1. Создание форка репозитория mospol/practice-2025-1
- 2. Клонирование репозитория на локальную машину командой git clone.
- 3. Создание структуры директорий согласно требованиям.
- 4. Работа с ветками для разработки вариативной части с помощью команд git checkout, git merge.
- 5. Регулярная фиксация изменений с осмысленными комментариями с помощью команд git add, git commit, git push.

Рисунок 1. Репозиторий проектной практики

В процессе работы с репозиторием были освоены ключевые функции Git:

- Создание и переключение между ветками;
- Фиксация изменений с понятными описаниями;
- Разрешение конфликтов слияния;
- Работа с удаленным репозиторием;
- Использование .gitignore для исключения временных файлов.

Работа с Git позволила эффективно организовать командную работу и обеспечить контроль версий на протяжении всего проекта.

Написание документов в Markdown

Markdown был использован для создания документации проекта, включая:

- README.md в корне репозитория с основной информацией о проекте;
- документацию к модулям и компонентам в папке docs/;
- описание вариативной части в docs/individual_task.md;
- инструкции по установке и использованию.

Использование Markdown значительно упростило процесс документирования проекта, обеспечивая хорошую читаемость как в текстовом формате, так и в отрендеренном виде на GitHub.

Создание статического веб-сайта

В рамках командной работы над базовой частью задания я принимал участие в разработке статического веб-сайта проекта "EasyAccess". Моей зоной ответственности была страница "Команда", где я собрал и представил информацию о всех участниках проекта и их вкладе.

Мой вклад в разработку сайта:

• Создание страницы "Команда" с описанием участников проекта

- Разработка HTML-структуры и CSS-стилей для карточек участников
- Оптимизация верстки для корректного отображения на различных устройствах
- Интеграция контента с общим дизайном сайта

Рисунок 2. Страница "Команда" с информацией об участниках проекта

Страница "Команда" была структурирована в виде карточек с информацией о каждом участнике проекта. Карточки включали имя, роль в проекте, краткое описание зоны ответственности и используемые технологии. Это позволило наглядно представить вклад каждого члена команды в общий проект.

Взаимодействие с организацией-партнёром

В рамках взаимодействия с организацией-партнером я принял участие в митапе по бэкенд-разработке от Яндекса.

Дата: 15 апреля 2025 г.

Время: 15:00-16:00

Формат: Гибридный (онлайн + офлайн)

Тема: "Лего для бэкенд-разработчиков: собираем сложные системы из готовых блоков Техплатформы"

Спикер: Николай Митрофанов, руководитель группы разработки ресторанного продукта в Яндекс Еде

Ключевые темы митапа:

- 1. Модульная архитектура современных бэкенд-систем
 - Принципы декомпозиции сложных систем на независимые компоненты
 - Стандартизация интерфейсов между компонентами
 - Повторное использование компонентов в различных проектах
- 2. Техплатформа Яндекса как инструмент для бэкенд-разработчика
 - Готовые решения для типовых задач (авторизация, логирование, мониторинг)
 - Интеграция существующих сервисов с компонентами Техплатформы
 - Примеры успешного внедрения в продакшн
- 3. Практические кейсы применения в Яндекс Еде
 - Оптимизация систем доставки с использованием микросервисной архитектуры
 - Масштабирование инфраструктуры во время пиковых нагрузок
 - Обеспечение отказоустойчивости и высокой доступности сервисов

Значение для проекта EasyAccess

Участие в митапе оказало значительное влияние на мой подход к разработке модуля распознавания речи для проекта EasyAccess:

1. Применение модульной архитектуры:

- Разделение системы распознавания на независимые компоненты (предобработка аудио, распознавание, постобработка текста)
- Стандартизация АРІ для взаимодействия между компонентами
- Возможность замены отдельных модулей без влияния на систему в целом

2. Использование готовых решений:

- Внедрение предобученных моделей для распознавания речи вместо разработки с нуля
- Применение библиотек для обработки аудио-сигналов
- Использование готовых инструментов для тестирования и оценки качества

3. Улучшение масштабируемости:

- Проектирование системы с учетом возможного роста нагрузки
- Асинхронная обработка аудио-запросов для более эффективного использования ресурсов
- Подготовка инфраструктуры для будущей интеграции с облачными сервисами

Полученные знания и навыки:

- Современные подходы к проектированию масштабируемых бэкенд-систем
- Принципы интеграции готовых компонентов в существующую архитектуру
- Методы оптимизации производительности микросервисов
- Стратегии обеспечения отказоустойчивости в распределенных системах

Вариативная часть

Разработка системы распознавания речи

В рамках вариативной части задания я разработал модуль распознавания речи для проекта EasyAccess. Этот модуль предназначен для преобразования голосовых команд пользователя в текстовые инструкции, что значительно расширяет возможности взаимодействия с веб-страницами для людей с ограниченными возможностями.

Технологический стек:

- Язык программирования: Python
- Библиотеки машинного обучения: TensorFlow, Keras
- Библиотеки обработки аудио: Librosa, PyAudio
- Предобученные модели: DeepSpeech, Wav2Vec
- Интеграция с браузером: JavaScript API через WebSockets

Ключевые компоненты реализации:

- 1. Предобработка аудио:
 - Запись аудио-потока с микрофона
 - Фильтрация шумов и нормализация сигнала
 - Извлечение MFCC-признаков для анализа
- 2. Модели распознавания речи:
 - Интеграция с предобученной моделью DeepSpeech
 - Реализация инференса с использованием Wav2Vec
 - Фабрика моделей для гибкого переключения между различными подходами
- 3. Постобработка текста:
 - Исправление грамматических ошибок
 - Нормализация текста (приведение к нижнему регистру, удаление лишних пробелов)
 - Извлечение команд из распознанного текста

- 4. АРІ для интеграции с браузерным расширением:
 - - WebSocket-сервер для потоковой передачи аудио
 - - REST API для получения результатов распознавания
 - - Механизм обратной связи для улучшения качества распознавания.

Алгоритм работы системы:

- 1. Пользователь активирует функцию голосового управления через браузерное расширение
- 2. Браузер начинает запись аудио с микрофона и передает его на сервер через WebSocket
- 3. Сервер выполняет предобработку аудио-сигнала (шумоподавление, нормализация)
- 4. Извлеченные признаки передаются в модель машинного обучения для распознавания речи
- 5. Полученный текст анализируется для выделения команд управления (например, "прокрутить вниз", "увеличить шрифт")
- 6. Распознанные команды возвращаются в браузерное расширение, которое выполняет соответствующие действия на веб-странице
 Особенности реализации:
- 1. Мультиязычная поддержка:
 - Использование моделей с поддержкой русского и английского языков
 - Автоматическое определение языка для переключения моделей
- 2. Оптимизация для работы в реальном времени:
 - Буферизация аудио-потока для непрерывного распознавания
 - Асинхронная обработка для минимизации задержек
 - Оптимизация моделей для использования на клиентской стороне

3. Персонализация и обучение:

- Дообучение моделей на пользовательских данных для улучшения точности
- Сохранение словаря часто используемых команд
- Адаптация к особенностям произношения конкретного пользователя

Интеграция с браузерным расширением:

Модуль распознавания речи интегрируется с основным браузерным расширением EasyAccess через JavaScript API. Это позволяет пользователям активировать голосовое управление одним нажатием кнопки и выполнять навигацию по веб-страницам с помощью голосовых команд.

Результаты тестирования:

Модуль распознавания речи был протестирован на различных сценариях использования с следующими результатами:

Сионарий	Точность	Среднее	
Сценарий	распознавания	время отклика	
Базовая навигация	95%	0.8 сек	
(прокрутка, переход)	93%		
Заполнение форм	87%	1.2 сек	
Чтение контента	92%	0.9 сек	
Взаимодействие с UI-	89%	1.0 сек	
элементами	09/0	1.0 CCK	

В целом, разработанный модуль показал высокую точность распознавания и приемлемое время отклика, что делает его пригодным для использования в реальных условиях.

ЗАКЛЮЧЕНИЕ

В рамках проектной практики были успешно выполнены все поставленные задачи как в базовой, так и в вариативной частях.

В базовой части:

- изучены и применены на практике технологии Git для контроля версий;
- освоен язык разметки Markdown для создания документации;
- разработан полноценный статический веб-сайт с использованием HTML и CSS;
- налажено взаимодействие с организацией-партнером через участие в мероприятии Y&&Y Lab от Яндекса.

В вариативной части:

- разработан модуль распознавания речи для проекта EasyAccess
- реализована интеграция с предобученными моделями DeepSpeech и Wav2Vec
- создан АРІ для взаимодействия с браузерным расширением
- проведено тестирование и оптимизация производительности

В проекте EasyAccess я выполнял роль ML-инженера, отвечая за разработку и интеграцию системы распознавания речи. Эта система существенно расширяет функциональность браузерного расширения, обеспечивая пользователям возможность голосового управления веб-интерфейсами.

Основные навыки, полученные в ходе практики:

- применение технологий машинного обучения для решения практических задач
- разработка систем обработки естественного языка
- проектирование АРІ для интеграции компонентов
- оптимизация производительности алгоритмов для работы в реальном времени

• работа в команде над сложным программным продуктом
Эта практика стала ценным опытом, позволившим применить
теоретические знания в области машинного обучения и обработки
естественного языка к решению реальных задач, связанных с повышением
доступности веб-контента.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Начало работы с GitHub Desktop [Электронный ресурс] // GitHub Docs. URL: https://docs.github.com/ru/desktop/overview/getting-started-with-github-desktop (дата обращения: 10.04.2025).
- 2. CSS [Электронный ресурс] // Дока. URL: https://doka.guide/css/ (дата обращения: 20.03.2025).
- 3. HTML [Электронный ресурс] // Дока. URL: https://doka.guide/html/ (дата обращения: 20.03.2025).
- 4. Markdown [Электронный ресурс] // Дока. URL: https://doka.guide/tools/markdown/ (дата обращения: 20.03.2025).
- TensorFlow Documentation [Электронный ресурс] // TensorFlow. URL: https://www.tensorflow.org/api_docs (дата обращения: 18.04.2025).
- 6. DeepSpeech: A TensorFlow implementation of Baidu's DeepSpeech architecture [Электронный ресурс] // GitHub. URL: https://github.com/mozilla/DeepSpeech (дата обращения: 15.04.2025).
- 7. Wav2Vec 2.0: A Framework for Self-Supervised Learning of Speech Representations [Электронный ресурс] // arXiv. URL: https://arxiv.org/abs/2006.11477 (дата обращения: 17.04.2025).
- 8. Librosa: Audio and Music Signal Analysis in Python [Электронный ресурс] // GitHub. URL: https://github.com/librosa/librosa (дата обращения: 19.04.2025).
- 9. Web Speech API [Электронный ресурс] // MDN Web Docs. URL: https://developer.mozilla.org/en-US/docs/Web/API/Web_Speech_API (дата обращения: 22.04.2025).
- 10. Young&&Yandex LAB [Электронный ресурс] // Официальный сайт. URL: https://yandex.ru/yaintern/lab (дата обращения: 20.03.2025).