1

0.1 The Bisection Method

Exercise 0.1.1

Use the Bisection method to find p_3 for $f(x) = \sqrt{x} - \cos x$ on [0, 1].

Solution 0.1.1

f(0) = -1 and $f(1) \approx 0.459\,697\,694$ have the opposite signs, so there's a root in [0,1].

Applying Bisection method generates the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	0	1	0.5	-0.170475781
2	0.5	1	0.75	0.134336535
3	0.5	0.75	0.625	-0.020393704

So $p_3 = 0.625$.

Exercise 0.1.2

Let $f(x) = 3(x+1)(x-\frac{1}{2})(x-1)$. Use the bisection method to find p_3 in the following intervals:

a)
$$[-2, 1.5]$$

b)
$$[-1.5, 2.5]$$

Solution 0.1.2

(a) f(-2) = -22.5 and f(1.5) = 3.75 have the opposite signs, so there's a root in [-2, 1.5].

Applying Bisection method generates the following table:

n	a_n	b_n	p_n	$f(p_n)$
1	-2	1.5	-0.25	2.109375
2	-2	-0.25	-1.125	-1.294921875
3	-1.125	-0.25	-0.6875	1.878662109

So $p_3 = -0.6875$.

(b) f(-1.25) = -2.953125 and f(2.5) = 31.5 have the opposite signs, so there's a root in [-1.25, 2.5].

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	-1.5	2.5	0.5	0

The solution is found in the first iteration so p_3 doesn't exist.

Exercise 0.1.3

Use the Bisection method to find solutions accurate to within 10^{-2} for $x^3 - 7x^2 + 14x - 6 = 0$ in the following intervals:

- a) [0,1]
- b) [1, 3.2]
- c) [3.2, 4]

Solution 0.1.3

(a) f(0) = -6 and f(1) = 2 have the opposite signs, so there's a root in [0, 1]. The number of iteration n needed to approximate p to within 10^{-2} is:

$$|p_n - p| \le \frac{1 - 0}{2^n} < 10^{-2} \iff n \ge 7$$

Applying Bisection method generates the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	0	1	0.5	-0.625
2	0.5	1	0.75	0.984375
3	0.5	0.75	0.625	0.259766
4	0.5	0.625	0.5625	-0.161865
5	0.5625	0.625	0.59375	0.054047
6	0.5625	0.59375	0.578125	-0.052624
7	0.578125	0.59375	0.5859375	0.001031

So $p \approx 0.5859$.

(b) f(1) = 2 and f(3.2) = -0.112 have the opposite signs, so there's a root in [1, 3.2].

The number of iteration n needed to approximate p to within 10^{-2} is:

$$|p_n - p| \le \frac{3.2 - 1}{2^n} < 10^{-2} \iff n \ge 8$$

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	1	3.2	2.1	1.791
2	2.1	3.2	2.65	0.552125
3	2.65	3.2	2.925	0.085828
4	2.925	3.2	3.0625	-0.054443
5	2.925	3.0625	2.99375	0.006328
6	2.99375	3.0625	3.028125	-0.026521
7	2.99375	3.02813	3.010938	-0.010697
8	2.99375	3.010938	3.002344	-0.002333

So $p \approx 3.0023$.

(c) f(3.2) = -0.112 and f(4) = 2 have the opposite signs, so there's a root in [3.2, 4].

The number of iteration n needed to approximate p to within 10^{-2} is:

$$|p_n - p| \le \frac{4 - 3.2}{2^n} < 10^{-2} \iff n \ge 7$$

Applying Bisection method generates the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	3.2	4	3.6	0.336
2	3.2	3.6	3.4	-0.016
3	3.4	3.6	3.5	0.125
4	3.4	3.5	3.45	0.046125
5	3.4	3.45	3.425	0.013016
6	3.4	3.425	3.4125	-0.001998
7	3.4125	3.425	3.41875	0.005382

So $p \approx 3.4188$.

Exercise 0.1.4

Use the Bisection method to find solutions accurate to within 10^{-2} for $x^4 - 2x^3 - 4x^2 + 4x + 4 = 0$ for the following intervals:

- a) [-2, -1]

- b) [0,2] c) [2,3] d) [-1,0]

Solution 0.1.4

(a) f(-2) = 12 and f(-1) = -1 have the opposite signs, so there's a root in [-2, -1].

The number of iteration n needed to approximate p to within 10^{-2} is:

$$|p_n - p| \le \frac{-1 - (-2)}{2^n} < 10^{-2} \iff n \ge 7$$

Applying Bisection method generates the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	-2	-1	-1.5	0.8125
2	-1.5	-1	-1.25	-0.902344
3	-1.5	-1.25	-1.375	-0.288818
4	-1.5	-1.375	-1.4375	0.195328
5	-1.4375	-1.375	-1.40625	-0.062667
6	-1.4375	-1.40625	-1.421875	0.062263
7	-1.421875	-1.40625	-1.414063	-0.001208

So $p \approx -1.4141$.

(b) f(0) = 4 and f(2) = -4 have the opposite signs, so there's a root in [0, 2]. The number of iteration n needed to approximate p to within 10^{-2} is:

$$|p_n - p| \le \frac{2 - 0}{2^n} < 10^{-2} \iff n \ge 8$$

Applying Bisection method generates the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	0	2	1	3
2	1	2	1.5	-0.6875
3	1	1.5	1.25	1.285156
4	1.25	1.5	1.375	0.312744
5	1.375	1.5	1.4375	-0.186508
6	1.375	1.4375	1.40625	0.063676
7	1.40625	1.4375	1.421875	-0.061318
8	1.40625	1.421875	1.414063	0.001208

So $p \approx 1.4141$.

(c) f(2) = -4 and f(3) = 7 have the opposite signs, so there's a root in [2, 3]. The number of iteration n needed to approximate p to within 10^{-2} is:

$$|p_n - p| \le \frac{3 - 2}{2^n} < 10^{-2} \iff n \ge 7$$

Appl	ving	Bisection	method	generates	the	followi	ing t	table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	2	3	2.5	-3.1875
2	2.5	3	2.75	0.347656
3	2.5	2.75	2.625	-1.757568
4	2.625	2.75	2.6875	-0.795639
5	2.6875	2.75	2.71875	-0.247466
6	2.71875	2.75	2.734375	0.044125
7	2.71875	2.734375	2.726563	-0.103151

So $p \approx 2.7266$.

(d) f(-1) = -1 and f(0) = 4 have the opposite signs, so there's a root in [-1,0].

The number of iteration n needed to approximate p to within 10^{-2} is:

$$|p_n - p| \le \frac{0 - (-1)}{2^n} < 10^{-2} \iff n \ge 7$$

Applying Bisection method generates the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	-1	0	-0.5	1.3125
2	-1	-0.5	-0.75	-0.089844
3	-0.75	-0.5	-0.625	0.578369
4	-0.75	-0.625	-0.6875	0.232681
5	-0.75	-0.6875	-0.71875	0.068086
6	-0.75	-0.71875	-0.734375	-0.011768
7	-0.734375	-0.71875	-0.726563	0.027943

So $p \approx -0.7266$.

Exercise 0.1.5

Use the Bisection method to find solutions accurate to within 10^{-5} for the following problems:

(a)
$$x - 2^{-x} = 0, x \in [0, 1]$$

(b)
$$e^x - x^2 + 3x - 2 = 0, x \in [0, 1]$$

(c)
$$2x\cos 2x - (x+1)^2 = 0, x \in [-3, -2]$$

(d)
$$x \cos x - 2x^2 + 3x - 1 = 0, x \in [0.2, 0.3]$$

Solution 0.1.5

(a) f(0) = -1 and f(1) = 0.5 have the opposite signs, so there's a root in [0, 1].

The number of iteration n needed to approximate p to within 10^{-5} is:

$$|p_n - p| \le \frac{1 - 0}{2^n} < 10^{-5} \iff n \ge 17$$

Applying Bisection method generates the following table:

n	a_n	b_n	p_n	$f(p_n)$
1	0	1	0.5	-0.207106781
2	0.5	1	0.75	0.155396442
3	0.5	0.75	0.625	-0.023419777
4	0.625	0.75	0.6875	0.066571094
5	0.625	0.6875	0.65625	0.021724521
6	0.625	0.65625	0.640625	-0.000810008
7	0.640625	0.65625	0.6484375	0.010466611
8	0.640625	0.6484375	0.64453125	0.004830646
9	0.640625	0.64453125	0.642578125	0.002010906
10	0.640625	0.642578125	0.641601562	0.000600596
11	0.640625	0.641601562	0.641113281	-0.000104669
12	0.641113281	0.641601562	0.641357422	0.000247972
13	0.641113281	0.641357422	0.641235352	0.000071654
14	0.641113281	0.641235352	0.641174316	-0.000016507
15	0.641174316	0.641235352	0.641204834	0.000027573
16	0.641174316	0.641204834	0.641189575	0.000005533
17	0.641174316	0.641189575	0.641181946	-0.000005487

So $p \approx -0.641182$.

(b) f(0) = -1 and f(1) = e have the opposite signs, so there's a root in [0, 1]. The number of iteration n needed to approximate p to within 10^{-5} is:

$$|p_n - p| \le \frac{1 - 0}{2^n} < 10^{-5} \iff n \ge 17$$

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	0	1	0.5	0.898721271
2	0	0.5	0.25	-0.028474583
3	0.25	0.5	0.375	0.439366415

n	a_n	b_n	p_n	$f(p_n)$
4	0.25	0.375	0.3125	0.206681691
5	0.25	0.3125	0.28125	0.089433196
6	0.25	0.28125	0.265625	0.030564234
7	0.25	0.265625	0.2578125	0.001066368
8	0.25	0.2578125	0.25390625	-0.013698684
9	0.25390625	0.2578125	0.255859375	-0.006314807
10	0.255859375	0.2578125	0.256835938	-0.002623882
11	0.256835938	0.2578125	0.257324219	-0.000778673
12	0.257324219	0.2578125	0.257568359	0.000143868
13	0.257324219	0.257568359	0.257446289	-0.000317397
14	0.257446289	0.257568359	0.257507324	-0.000086763
15	0.257507324	0.257568359	0.257537842	0.000028553
16	0.257507324	0.257537842	0.257522583	-0.000029105
17	0.257522583	0.257537842	0.257530212	-0.000000276

So $p \approx 0.25753$.

(c) $f(-3) \approx -9.761\,021\,72$ and $f(-2) \approx 1.614\,574\,483$ have the opposite signs, so there's a root in [-3,-2].

The number of iteration n needed to approximate p to within 10^{-5} is:

$$|p_n - p| \le \frac{-2 - (-3)}{2^n} < 10^{-5} \iff n \ge 17$$

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	-3	-2	-2.5	-3.66831093
2	-2.5	-2	-2.25	-0.613918903
3	-2.25	-2	-2.125	0.630246832
4	-2.25	-2.125	-2.1875	0.038075532
5	-2.25	-2.1875	-2.21875	-0.280836176
6	-2.21875	-2.1875	-2.203125	-0.119556815
7	-2.203125	-2.1875	-2.1953125	-0.040278514
8	-2.1953125	-2.1875	-2.19140625	-0.000985195
9	-2.19140625	-2.1875	-2.18945312	0.018574337
10	-2.19140625	-2.18945312	-2.19042969	0.008801851
11	-2.19140625	-2.19042969	-2.19091797	0.003910147
12	-2.19140625	-2.19091797	-2.19116211	0.00146293
13	-2.19140625	-2.19116211	-2.19128418	0.000238981
14	-2.19140625	-2.19128418	-2.19134521	-0.000373078
15	-2.19134521	-2.19128418	-2.1913147	-0.000067041

n	a_n	b_n	p_n	$f(p_n)$
16	-2.1913147	-2.19128418	-2.19129944	0.000085972

So $p \approx -2.191299$.

(d) $f(0.2) \approx -0.283\,986\,684$ and $f(0.3) \approx 0.006\,600\,946$ have the opposite signs, so there's a root in [0.2, 0.3].

The number of iteration n needed to approximate p to within 10^{-5} is:

$$|p_n - p| \le \frac{0.3 - 0.2}{2^n} < 10^{-5} \iff n \ge 14$$

Applying Bisection method generates the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	0.2	0.3	0.25	-0.132771895
2	0.25	0.3	0.275	-0.061583071
3	0.275	0.3	0.2875	-0.027112719
4	0.2875	0.3	0.29375	-0.010160959
5	0.29375	0.3	0.296875	-0.001756232
6	0.296875	0.3	0.2984375	0.002428306
7	0.296875	0.2984375	0.29765625	0.000337524
8	0.296875	0.29765625	0.297265625	-0.000708983
9	0.297265625	0.29765625	0.297460938	-0.000185637
10	0.297460938	0.29765625	0.297558594	0.000075967
11	0.297460938	0.297558594	0.297509766	-0.000054829
12	0.297509766	0.297558594	0.29753418	0.00001057
13	0.297509766	0.29753418	0.297521973	-0.000022129
14	0.297521973	0.29753418	0.297528076	-0.000005779

So $p \approx 0.297528$.

Exercise 0.1.6

Use the Bisection method to find solutions accurate to within 10^{-5} for the following problems:

a)
$$3x - e^x = 0$$
, $x \in [1, 2]$

a)
$$3x - e^x = 0$$
, $x \in [1, 2]$ b) $2x + 3\cos x - e^x = 0$, $x \in [0, 1]$

c)
$$x^2 - 4x + 4 - \ln x = 0$$
, $x \in [1, 2]$ d) $x + 1 - 2\sin \pi x = 0$, $x \in [0, 0.5]$

d)
$$x + 1 - 2\sin \pi x = 0, x \in [0, 0.5]$$

Solution 0.1.6

(a) $f(1) \approx 0.281718172$ and $f(2) \approx -1.389056099$ have the opposite signs, so there's a root in [1, 2].

The number of iteration n needed to approximate p to within 10^{-5} is:

$$|p_n - p| \le \frac{2 - 1}{2^n} < 10^{-5} \iff n \ge 17$$

Applying Bisection method generates the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	1	2	1.5	0.01831093
2	1.5	2	1.75	-0.504602676
3	1.5	1.75	1.625	-0.203419037
4	1.5	1.625	1.5625	-0.083233182
5	1.5	1.5625	1.53125	-0.030203153
6	1.5	1.53125	1.515625	-0.005390404
7	1.5	1.515625	1.5078125	0.006598107
8	1.5078125	1.515625	1.51171875	0.000638447
9	1.51171875	1.515625	1.51367188	-0.002367313
10	1.51171875	1.51367188	1.51269531	-0.000862268
11	1.51171875	1.51269531	1.51220703	-0.00011137
12	1.51171875	1.51220703	1.51196289	0.000263674
13	1.51196289	1.51220703	1.51208496	0.000076186
14	1.51208496	1.51220703	1.512146	-0.000017584
15	1.51208496	1.512146	1.51211548	0.000029303
16	1.51211548	1.512146	1.51213074	0.00000586
17	1.51213074	1.512146	1.51213837	-0.000005861

So $p \approx 1.512138$.

- (b) f(0) = 2 and $f(1) \approx 0.902\,625\,089$ have the same sign, so there's no root in [0,1].
- (c) f(1) = 1 and f(2) = -0.693147181 have the opposite signs, so there's a root in [1, 2].

The number of iteration n needed to approximate p to within 10^{-5} is:

$$|p_n - p| \le \frac{2 - 1}{2^n} < 10^{-5} \iff n \ge 17$$

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	1	2	1.5	-0.155465108
2	1	1.5	1.25	0.339356449
3	1.25	1.5	1.375	0.072171269
4	1.375	1.5	1.4375	-0.046499244
5	1.375	1.4375	1.40625	0.011612476
6	1.40625	1.4375	1.421875	-0.017747908
7	1.40625	1.421875	1.4140625	-0.003144013
8	1.40625	1.4140625	1.41015625	0.004215136
9	1.41015625	1.4140625	1.41210938	0.00053079
10	1.41210938	1.4140625	1.41308594	-0.001307804
11	1.41210938	1.41308594	1.41259766	-0.000388805
12	1.41210938	1.41259766	1.41235352	0.000070918
13	1.41235352	1.41259766	1.41247559	-0.000158962
14	1.41235352	1.41247559	1.41241455	-0.000044027
15	1.41235352	1.41241455	1.41238403	0.000013444
16	1.41238403	1.41241455	1.41239929	-0.000015292
17	1.41238403	1.41239929	1.41239166	-0.000000924

So $p \approx 1.412392$.

(d) f(0) = 1 and f(1) = -0.5 have the opposite signs, so there's a root in [0, 0.5].

The number of iteration n needed to approximate p to within 10^{-5} is:

$$|p_n - p| \le \frac{0.5 - 0}{2^n} < 10^{-5} \iff n \ge 16$$

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	0	0.5	0.25	-0.164213562
2	0	0.25	0.125	0.359633135
3	0.125	0.25	0.1875	0.076359534
4	0.1875	0.25	0.21875	-0.050036568
5	0.1875	0.21875	0.203125	0.011726391
6	0.203125	0.21875	0.2109375	-0.019525681
7	0.203125	0.2109375	0.20703125	-0.003990833
8	0.203125	0.20703125	0.205078125	0.003845166
9	0.205078125	0.20703125	0.206054688	-0.00007851
10	0.205078125	0.206054688	0.205566406	0.001881912
11	0.205566406	0.206054688	0.205810547	0.000901347
12	0.205810547	0.206054688	0.205932617	0.00041133
13	0.205932617	0.206054688	0.205993652	0.000166388

$\underline{}$	a_n	b_n	p_n	$f(p_n)$
14	0.205993652	0.206054688	0.20602417	0.000043934
15	0.20602417	0.206054688	0.206039429	-0.000017289
16	0.20602417	0.206039429	0.206031799	0.000013322

So $p \approx 0.206\,032$.

Exercise 0.1.7

- (a) Sketch the graphs of y = x and $y = 2 \sin x$.
- (b) Use the Bisection method to find an approximation to within 10^{-5} to the first positive value of x with $x = 2 \sin x$.

Solution 0.1.7

(a) Graph of y = x and $y = 2 \sin x$ is as follow:

(b) According to the graph, the first positive root p of $f=x-2\sin x$ is in $[\frac{\pi}{2},\pi].$

The number of iteration n needed to approximate p to within 10^{-5} in that interval is:

$$|p_n - p| \le \frac{\pi - \frac{\pi}{2}}{2^n} < 10^{-5} \iff n \ge 18$$

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	1.57079633	3.14159265	2.35619449	0.941980928
2	1.57079633	2.35619449	1.96349541	0.115736343
3	1.57079633	1.96349541	1.76714587	-0.194424693
4	1.76714587	1.96349541	1.86532064	-0.048560033
5	1.86532064	1.96349541	1.91440802	0.031319893

n	a_n	b_n	p_n	$f(p_n)$
6	1.86532064	1.91440802	1.88986433	-0.009192031
7	1.88986433	1.91440802	1.90213618	0.010921526
8	1.88986433	1.90213618	1.89600025	0.000829072
9	1.88986433	1.89600025	1.89293229	-0.004190408
10	1.89293229	1.89600025	1.89446627	-0.001682899
11	1.89446627	1.89600025	1.89523326	-0.000427471
12	1.89523326	1.89600025	1.89561676	0.000200661
13	1.89523326	1.89561676	1.89542501	-0.00011344
14	1.89542501	1.89561676	1.89552088	0.000043602
15	1.89542501	1.89552088	1.89547295	-0.000034921
16	1.89547295	1.89552088	1.89549692	0.00000434
17	1.89547295	1.89549692	1.89548493	-0.000015291
18	1.89548493	1.89549692	1.89549092	-0.000005476

So $p \approx 1.895491$.

Exercise 0.1.8

- (a) Sketch the graphs of y = x and $y = \tan x$.
- (b) Use the Bisection method to find an approximation to within 10^{-5} to the first positive value of x with $y = \tan x$.

Solution 0.1.8

(a) Graph of y = x and $y = \tan x$ is as follow:

(b) According to the graph, the first positive root p of $f=x-\tan x$ is in $[\pi,\frac{3\pi}{2}].$

The number of iteration n needed to approximate p to within 10^{-5} in that interval is:

$$|p_n - p| \le \frac{3\pi}{2} - \pi < 10^{-5} \iff n \ge 18$$

Applying Bisection method generates the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	3.14159265	4.71238898	3.92699082	2.92699082
2	3.92699082	4.71238898	4.3196899	1.90547634
3	4.3196899	4.71238898	4.51603944	-0.511300053
4	4.3196899	4.51603944	4.41786467	1.12130646
5	4.41786467	4.51603944	4.46695205	0.474728271
6	4.46695205	4.51603944	4.49149575	0.038293523
7	4.49149575	4.51603944	4.50376759	-0.219861735
8	4.49149575	4.50376759	4.49763167	-0.086980389
9	4.49149575	4.49763167	4.49456371	-0.023432692
10	4.49149575	4.49456371	4.49302973	0.007653323
11	4.49302973	4.49456371	4.49379672	-0.007833371
12	4.49302973	4.49379672	4.49341322	-0.00007602
13	4.49302973	4.49341322	4.49322148	0.003792144
14	4.49322148	4.49341322	4.49331735	0.001858936
15	4.49331735	4.49341322	4.49336529	0.000891677
16	4.49336529	4.49341322	4.49338925	0.000407883
17	4.49338925	4.49341322	4.49340124	0.000165946
18	4.49340124	4.49341322	4.49340723	0.000044966

So $p \approx 4.493407$.

Exercise 0.1.9

- (a) Sketch the graphs of $y = e^x 2$ and $y = \cos e^x 2$.
- (b) Use the Bisection method to find an approximation to within 10^{-5} to a value in [0.5, 1.5] with $e^x 2 = \cos e^x 2$.

Solution 0.1.9

(a) The graphs of the 2 functions are as follow:

(b) Let $f = e^x - 2 - \cos e^x - 2$. $f(0.5) \approx -1.290212$ and $f(1.5) \approx 3.27174$ have the opposite signs, so there's a root p of f in [0.5, 1.5].

The number of iteration n needed to approximate p to within 10^{-5} in that interval is:

$$|p_n - p| \le \frac{1.5 - 0.5}{2^n} < 10^{-5} \iff n \ge 17$$

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	0.5	1.5	1	-0.034655726
2	1	1.5	1.25	1.40997635
3	1	1.25	1.125	0.609079747
4	1	1.125	1.0625	0.266982288
5	1	1.0625	1.03125	0.111147764
6	1	1.03125	1.015625	0.037002875
7	1	1.015625	1.0078125	0.000864425
8	1	1.0078125	1.00390625	-0.016972716
9	1.00390625	1.0078125	1.00585938	-0.00807344
10	1.00585938	1.0078125	1.00683594	-0.003609335
11	1.00683594	1.0078125	1.00732422	-0.001373662
12	1.00732422	1.0078125	1.00756836	-0.00025492
13	1.00756836	1.0078125	1.00769043	0.000304677
14	1.00756836	1.00769043	1.00762939	0.000024859
15	1.00756836	1.00762939	1.00759888	-0.000115035
16	1.00759888	1.00762939	1.00761414	-0.000045089

15

Exercise 0.1.10

Let $f(x) = (x+2)(x+1)^2x(x-1)^3(x-2)$. To which zero of f does the Bisection method converge when applied on the following intervals?

a)
$$[-1.5, 2.5]$$

b)
$$[-0.5, 2.4]$$
 c) $[-0.5, 3]$

c)
$$[-0.5, 3]$$

d)
$$[-3, -0.5]$$

Solution 0.1.10

f has 5 zeros: ± 2 , ± 1 , 0.

(a) Applying Bisection method generates the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	-1.5	2.5	0.5	0.52734375
2	-1.5	0.5	-0.5	-1.58203125
3	-0.5	0.5	0	0

So when applied on [-1.5, 2.5], the Bisection method gives 0.

(b) Applying Bisection method generates the following table:

n	a_n	b_n	p_n	$f(p_n)$
_	0.0		0.00	0.001398666
2	-0.5	0.95	0.225	0.62070919

At n = 2, the interval shrinks to [-0.5, 0.95]. So when applied on [-0.5, 2.4], the Bisection method gives 0.

(c) Applying Bisection method generates the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	-0.5	3	1.25	-0.241012573
2	1.25	3	2.125	15.2352825

At n = 2, the interval shrinks to [1.25, 3]. So when applied on [-0.5, 3], the Bisection method gives 2.

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	-3	-0.5	-1.75	-19.1924286
2	-3	-1.75	-2.375	283.204185

At n = 2, the interval shrinks to [3, -1.75]. So when applied on [-3, -0.5], the Bisection method gives -2.

Exercise 0.1.11

Let $f(x) = (x+2)(x+1)x(x-1)^3(x-2)$. To which zero of f does the Bisection method converge when applied on the following intervals?

a) [-3, 2.5]

b) [-2.5, 3]

c) [-1.75, 1.5]

d) [-1.5, -1.75]

Solution 0.1.11

f has 5 zeros: $\pm 2, \pm 1, 0$.

(a) Applying Bisection method generates the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	-3	2.5	-0.25	-1.44195557
2	-0.25	2.5	1.125	-0.012767315
3	1.125	2.5	1.8125	-1.95457248

At n = 3, the interval shrinks to [1.125, 2.5]. So when applied on [-3, 2.5], the Bisection method gives 2.

(b) Applying Bisection method generates the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	-2.5	3	0.25	0.519104004
2	-2.5	0.25	-1.125	3.68975401
3	-2.5	-1.125	-1.8125	23.4201732

At n=3, the interval shrinks to [-2.5, -1.125]. So when applied on [-2.5, 3], the Bisection method gives -2.

(c) Applying Bisection method generates the following table:

n	a_n	b_n	p_n	$f(p_n)$
1	-1.75	1.5	-0.125	-0.620491505
2	-1.75	-0.125	-0.9375	-1.33009678

At n=2, the interval shrinks to [-1.75, -0.125]. So when applied on [-1.75, 1.5], the Bisection method gives -1.

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1 2	$-1.5 \\ 0.125$	2	$0.125 \\ 0.9375$	$0.375359058 \\ 0.001384076$

At n=2, the interval shrinks to [0.125, 1.75]. So when applied on [-1.5, 1.75], the Bisection method gives 1.

Exercise 0.1.12

Find an approximation to $\sqrt{3}$ correct to within 10^{-4} using the Bisection Algorithm.

Solution 0.1.12

Let $f(x) = x^2 - 3$. The positive zero of f is $\sqrt{3}$, so by approximating that positive zero, we get an approximation of $\sqrt{3}$.

The positive zero of f clearly is inside [1, 2]. Using Bisection, the number of iteration n needed to approximate $\sqrt{3}$ to within 10^{-4} in that interval is:

$$\frac{2-1}{2^n} < 10^{-4} \iff n \ge 14$$

Applying Bisection method generates the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	1	2	1.5	-0.75
2	1.5	2	1.75	0.0625
3	1.5	1.75	1.625	-0.359375
4	1.625	1.75	1.6875	-0.15234375
5	1.6875	1.75	1.71875	-0.045898438
6	1.71875	1.75	1.734375	0.008056641
7	1.71875	1.734375	1.7265625	-0.018981934
8	1.7265625	1.734375	1.73046875	-0.005477905
9	1.73046875	1.734375	1.73242188	0.001285553
10	1.73046875	1.73242188	1.73144531	-0.00209713
11	1.73144531	1.73242188	1.73193359	-0.000406027
12	1.73193359	1.73242188	1.73217773	0.000439703
13	1.73193359	1.73217773	1.73205566	0.000016823
14	1.73193359	1.73205566	1.73199463	-0.000194605

So $\sqrt{3} \approx 1.73199$.

Exercise 0.1.13

Find an approximation to $\sqrt[3]{25}$ correct to within 10^{-4} using the Bisection Algorithm.

Solution 0.1.13

Let $f(x) = x^3 - 25$. The zero of f is $\sqrt[3]{25}$, so by approximating that positive zero, we get an approximation of $\sqrt[3]{25}$.

The positive zero of f clearly is inside [2, 3]. Using Bisection, the number of iteration n needed to approximate $\sqrt[3]{25}$ to within 10^{-4} in that interval is:

$$\frac{3-2}{2^n} < 10^{-4} \iff n \ge 14$$

Applying Bisection method generates the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	2	3	2.5	-9.375
2	2.5	3	2.75	-4.203125
3	2.75	3	2.875	-1.23632812
4	2.875	3	2.9375	0.347412109
5	2.875	2.9375	2.90625	-0.452972412
6	2.90625	2.9375	2.921875	-0.054920197
7	2.921875	2.9375	2.9296875	0.145709515
8	2.921875	2.9296875	2.92578125	0.045260727
9	2.921875	2.92578125	2.92382812	-0.004863195
10	2.92382812	2.92578125	2.92480469	0.020190398
11	2.92382812	2.92480469	2.92431641	0.00766151
12	2.92382812	2.92431641	2.92407227	0.001398635
13	2.92382812	2.92407227	2.9239502	-0.001732411
14	2.9239502	2.92407227	2.92401123	-0.000166921

So $\sqrt[3]{25} \approx 2.92401$.

Exercise 0.1.14

Use Theorem 2.1 (*Dinh lí* 2.2 in the Lectures.pdf of the project) to find a bound for the number of iterations needed to achieve an approximation with accuracy 10^{-3} to the solution of $x^3 + x - 4 = 0$ lying in the interval [1, 4]. Find an approximation to the root with this degree of accuracy.

Solution 0.1.14

Let $f(x) = x^3 + x - 4$. f(1) = -2 and f(4) = 64 have the opposite signs, so there's a root p of f in [1, 4].

The number of iteration n needed to approximate p to within 10^{-3} in that interval is:

$$|p_n - p| \le \frac{4 - 1}{2^n} < 10^{-3} \iff n \ge 12$$

Applying Bisection method generates the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	1	4	2.5	14.125
2	1	2.5	1.75	3.109375
3	1	1.75	1.375	-0.025390625
4	1.375	1.75	1.5625	1.37719727
5	1.375	1.5625	1.46875	0.637176514
6	1.375	1.46875	1.421875	0.296520233
7	1.375	1.421875	1.3984375	0.13326025
8	1.375	1.3984375	1.38671875	0.053363502
9	1.375	1.38671875	1.38085938	0.013844214
10	1.375	1.38085938	1.37792969	-0.005808686
11	1.37792969	1.38085938	1.37939453	0.004008885
12	1.37792969	1.37939453	1.37866211	-0.000902119

So $p \approx 1.3787$.

Exercise 0.1.15

Use Theorem 2.1 (*Dịnh lí* 2.2 in the Lectures.pdf of the project) to find a bound for the number of iterations needed to achieve an approximation with accuracy 10^{-4} to the solution of $x^3 - x - 1 = 0$ lying in the interval [1, 2]. Find an approximation to the root with this degree of accuracy.

Solution 0.1.15

Let $f(x) = x^3 - x - 1$. f(1) = -2 and f(4) = 64 have the opposite signs, so there's a root p of f in [1, 2].

The number of iteration n needed to approximate p to within 10^{-4} in that interval is:

$$|p_n - p| \le \frac{2 - 1}{2^n} < 10^{-4} \iff n \ge 14$$

\overline{n}		a_n	b_n	p_n $f(p_n)$
1	1	2	1.5	0.875
2	1	1.5	1.25	-0.296875

n	a_n	b_n	p_n	$f(p_n)$
3	1.25	1.5	1.375	0.224609375
4	1.25	1.375	1.3125	-0.051513672
5	1.3125	1.375	1.34375	0.082611084
6	1.3125	1.34375	1.328125	0.014575958
7	1.3125	1.328125	1.3203125	-0.018710613
8	1.3203125	1.328125	1.32421875	-0.002127945
9	1.32421875	1.328125	1.32617188	0.00620883
10	1.32421875	1.32617188	1.32519531	0.002036651
11	1.32421875	1.32519531	1.32470703	-0.000046595
12	1.32470703	1.32519531	1.32495117	0.000994791
13	1.32470703	1.32495117	1.3248291	0.000474039
14	1.32470703	1.3248291	1.32476807	0.000213707

So $p \approx 1.32477$.

Exercise 0.1.16

Let $f(x) = (x-1)^{10}$, p = 1, and $p_n = 1 + \frac{1}{n}$. Show that $|f(p_n)| < 10^{-3}$ whenever n > 1 but that $|p - p_n| < 10^{-3}$ requires that n > 1000.

Solution 0.1.16

For $f(p_n) < 10^{-3}$, it is required that n > 1 as:

$$f(p_n) < 10^{-3}$$

$$\iff (p_n - 1)^{10} < 10^{-3}$$

$$\iff \frac{1}{n^{10}} < 10^{-3}$$

$$\iff n > 1$$

For $|p - p_n| < 10^{-3}$, it is required that n > 1000 as:

$$|p - p_n| < 10^{-3}$$

$$\Leftrightarrow \qquad \frac{1}{n} < 10^{-3}$$

$$\Leftrightarrow \qquad n > 1000$$

Exercise 0.1.17

Let $\{p_n\}$ be the sequence defined by $p_n = \sum_{k=1}^n \frac{1}{k}$. Show that $\{p_n\}$ diverges even though $\lim_{n\to\infty}(p_n-p_{n-1})=0$.

21

Solution 0.1.17

It's clear that the difference of 2 consecutive terms goes to zero:

$$\lim_{n\to\infty}(p_n-p_{n-1})=\lim_{n\to\infty}\frac{1}{n}=0$$

However, the sequence diverges as:

$$p_n = \sum_{k=1}^n \frac{1}{k}$$

$$= 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$$

$$> 1 + (\frac{1}{2}) + (\frac{1}{4} + \frac{1}{4}) + \dots$$

$$= 1 + \frac{1}{2} + \frac{1}{2} + \dots$$

$$= \infty$$

Exercise 0.1.18

The function defined by $f(x) = \sin \pi x$ has zeros at every integer. Show that when -1 < a < 0 and 2 < b < 3, the Bisection method converges to

a) 0 if
$$a + b < 2$$

b) 2 if
$$a + b > 2$$

c) 1 if
$$a + b = 2$$

Solution 0.1.18

Let p be the zero converged by Bisection.

With -1 < a < 0 and 2 < b < 3:

$$\sin \pi a < 0$$
$$\sin \pi b > 0$$
$$1 < a + b < 3$$

- (a) If a+b<2, then $0.5< p_1=\frac{a+b}{2}<1$. Then $\sin p_1>0$, and the interval shrinks to $[a,p_1]$. 0 is the only zero in that interval, so p=0.
- (b) If a+b>2, then $1< p_1=\frac{a+b}{2}<1.5$. Then $\sin p_1<0$, and the interval shrinks to $[p_1,b]$. 2 is the only zero in that interval, so p=0.
- (c) If a+b=2, then $p_1=\frac{a+b}{2}=1$. Then $\sin p_1=0$, and a zero p=1 is found.

Exercise 0.1.19

A trough of length L has a cross section in the shape of a semicircle with radius r. When filled with water to within a distance h of the top, the volume V of water is:

$$V = L(0.5\pi r^{2} - r^{2}\arcsin\frac{h}{r} - h\sqrt{r^{2} - h^{2}})$$

Suppose $L=10\,\mathrm{ft},\,r=1\,\mathrm{ft},\,\mathrm{and}~V=12.4\,\mathrm{ft}^3.$ Find the depth of water in the trough to within 0.01 ft.

Solution 0.1.19

Let d be the depth of the water, so d = r - h. Let

$$f(h) = 10(0.5\pi - \arcsin(h) - h\sqrt{1 - h^2}) - 12.4$$

Instead of finding d directly, we find h, also to within 0.01 ft. The number of iteration n needed to approximate h to within 0.01 in [0, r] is:

$$|h - h_n| < \frac{1 - 0}{2^n} < 0.01 \iff n \ge 7$$

Applying Bisection method generates the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	0	1	0.5	-6.25815151
2	0	0.5	0.25	-1.63945387
3	0	0.25	0.125	0.814489029
4	0.125	0.25	0.1875	-0.419946724
5	0.125	0.1875	0.15625	0.195725903
6	0.15625	0.1875	0.171875	-0.112536394
7	0.15625	0.171875	0.1640625	0.041493241

So $h \approx 0.1641$, hence $d = r - h \approx 0.8359$.

Exercise 0.1.20

A particle starts at rest on a smooth inclined plane whose angle θ is changing at a constant rate ω such that:

$$\frac{\mathrm{d}\theta}{\mathrm{d}t} = \omega < 0$$

At the end of t seconds, the position of the object is given by:

$$x(t) = -\frac{g}{2\omega^2} \left(\frac{e^{\omega t} - e^{-\omega t}}{x} - \sin \omega t \right)$$

Suppose the particle has moved 1.7 ft in 1 s. Find, to within 10^5 , the rate ω at which θ changes. Assume that $g = 32.17 \, \text{ft/s}^2$.

Solution 0.1.20

As $\omega < 0$, the plane rotates clockwise. After 1 s, the particle still sticks to the plane, so:

$$\theta(1) < \frac{\pi}{2} \iff -\frac{\pi}{2} < \omega < 0$$

After 1s, the particle has moved 1.7ft, so that:

$$x(1) = 1.7 = -\frac{32.17}{2\omega^2} \left(\frac{e^{\omega t} - e^{-\omega t}}{2} - \sin \omega t \right)$$

Let

$$f(\omega) = 3.4\omega^2 + 32.17 \left(\frac{e^{\omega t} - e^{-\omega t}}{2} - \sin \omega t \right)$$

The root of the above function in $(-\frac{\pi}{2},0)$ will be the solution of the problem. Applying Bisection on f on $[-\frac{\pi}{2},0]$ fails as f(0)=0. We need to expand (arbitrarily even) the searching interval a bit for the method to work, and check the solution later on. Hence, we use the interval $[-\frac{\pi}{2},1]$.

The number of iteration n needed to approximate ω to within 10^{-5} is:

$$|\omega - \omega_n| < \frac{1 - (-0.5\pi)}{2^n} < 10^{-5} \iff n \ge 18$$

\overline{n}	а	b_n	n	$f(p_n)$
	a_n	o_n	p_n	J(Pn)
1	-1.57079633	1	-0.285398163	0.027657569
2	-1.57079633	-0.285398163	-0.928097245	-5.65148786
3	-0.928097245	-0.285398163	-0.606747704	-1.14396969
4	-0.606747704	-0.285398163	-0.446072934	-0.275313029
5	-0.446072934	-0.285398163	-0.365735549	-0.06982238
6	-0.365735549	-0.285398163	-0.325566856	-0.009667545
7	-0.325566856	-0.285398163	-0.30548251	0.011587981
8	-0.325566856	-0.30548251	-0.315524683	0.001641051
9	-0.325566856	-0.315524683	-0.320545769	-0.003838965
10	-0.320545769	-0.315524683	-0.318035226	-0.001055895
11	-0.318035226	-0.315524683	-0.316779954	0.00030328
12	-0.318035226	-0.316779954	-0.31740759	-0.000373625
13	-0.31740759	-0.316779954	-0.317093772	-0.000034503
14	-0.317093772	-0.316779954	-0.316936863	0.000134556
15	-0.317093772	-0.316936863	-0.317015318	0.000050068
16	-0.317093772	-0.317015318	-0.317054545	0.000007793
17	-0.317093772	-0.317054545	-0.317074159	-0.000013352

n	a_n	b_n	p_n	$f(p_n)$
18	-0.317074159	-0.317054545	-0.317064352	-0.000002779

As $-0.317\,064\in(-\frac{\pi}{2},0),$ it is a valid approximation of $\omega.$ We conclude that $\omega\approx-0.317\,064.$