- · Deep 2-layer neural Work
 - . What is deep newal network? z or more hidden larger
 - · very neural network notation

$$1 = 4 \text{ CH layers} \quad n^{LN} = 5 \quad n^{12J} = 5 \quad n^{L3J} = 3 \quad n^{L4J} = 1$$

$$h^{(1)} = \text{ # units in layer } 1 \quad \text{ or } l^{2J} = \text{ activations in layer } l$$

$$a^{24J} = g(z^{24J}) \qquad \hat{\mathcal{I}} = \alpha^{(2J)}$$

. Forward Propagation in Josp Neural Network

$$x: \quad z^{ij} = w^{ij}x + b^{zij}$$

$$\alpha^{zij} = g^{zij}(z^{zij})$$

$$\alpha^{ij} = g^{ij}(z^{zij})$$

· Getting your Matrix dimension right

eg: X1 2=5

 $w^{[\ell]} = n^{[\ell]} \times n^{[\ell-1]}$

overforized Implementation

m: training examples Z^{ZIJ} , A^{ZIJ} : $n^{ZIJ} \times m$ $Z^{ZIJ} = W^{LLJ} \times + b^{ZIJ}$ (n^{LD}, m) (n^{LJ}, n^{LJ}) $(n^{ZIJ}, 1) \leftarrow b$ broad cashing

Why Jeep Representations?

Law layer learn simple fectures, higher layer put those features together

· Cruit breary and deep learning

Informally: There are functions you can compute with a "small" 2-layer deep neural Network that shallower networks require expontationally more hidden units to compute

e.g. XOR tree:

X, XOR Xz XOR Xz ... YOR Xn O(log(n))

[very neural network]

[Shallow network]

o Building Blocks of Deep Neuval Networks

large l: WELT, but

Formard: Input $a^{[i-1]}$, output $a^{[i]}$ $z^{[i]} = w^{[i]} a^{[i-1]} + b^{[i]} cache z^{[i]}$ $a^{[i]} = g^{[i]} (z^{[i]})$

Budeword: Input "dati"; output "da [1-1]"

o Forward and Backward Functions

$$w^{uj} := w^{[i]} - \alpha dw^{[i]}$$

$$b^{[i]} := b^{[i]} - \alpha db^{[i]}$$

· Tornard and Backward Propagation

Forward Propagation for layer 1.

Input attention, cache Zui, Win, bui, bui, vectorized zui = Win Au-11 + bui

Au = gui (zui)

Bademard Propagation for layer l

Input dati-17 dway dbin]

 $dz^{[L]} = da^{[L]} * g^{[L]}(Z^{[L]})$ (dement-mise) $dw^{[L]} = dz^{[L]} \cdot a^{[L-1]}$ $db^{[L]} = dz^{[L]}$ $da^{[L-1]} = w^{[L]} \cdot dz^{[L]}$

Vectorized:

 $dz^{U} = dA^{U} * g^{U} (Z^{U})$ $dN^{U} = m dZ^{U} \cdot A^{U-1)T}$ $db^{U} = m np. Sum(dz^{U} - axis = 1 - beardin = The)$ $dD^{U-2} = N^{U} \cdot dZ^{U}$

· Parameters VS hyperparameters

owhat are hyperparameters?

Parameters: WII, bIJ, WII, bID,

Hyperparameters: learning rate a

Hesations

hidden layer 2

hidden unit new news

choice of activortum function

"The control parameters"

o Agalisal close learning is a very empirical process

experiment ado