# UM BREVE COMENTÁRIO SOBRE EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM

#### Rafael Sergio Sampaio Emidio

Trabalho de Conclusão de Curso Instituto de Ciências Exatas e Naturais Orientador: Augusto César dos Reis Costa

11 de Dezembro de 2022

#### Resumo

Neste trabalho apresentaremos um breve estudo sobre equações diferenciais ordinárias de primeira ordem. Estudamos alguns métodos analíticos de determinação de soluções e importantes aplicações em determinadas áreas do conhecimento humano; como na biologia, química, física e matemática, envolvendo essas classes de equações e métodos.

**Palavras-chave**: Equações diferenciais de primeira ordem, solução, aplicações.

## Introdução

Newton e Leibniz, os criadores do cálculo, foram uns dos primeiros matemáticos que deram início aos estudos das equações diferenciais. Para resolver problemas físicos, era necessário equacionar o fenômeno estudado e através do cálculo de primitivas era possível encontrar a solução do problema. Um dos métodos mais usados era a quadratura, este método consiste em reduzir o problema para obter a solução pelo cálculo de primitivas. Devido ao baixo número de funções que poderiam ser resolvidas por funções elementares, surgiu no século XIX, o uso das séries de funções. Porém, algum tempo depois o método das séries de funções foi sendo usado de uma maneira descuidada, para tentar sanar isso surgiram os teoremas de existência e unicidade, que marcaram o inicío da fase moderna com Poincaré, no final do século XIX. Na evolução dos estudos das equações diferenciais de primeira ordem foram surgindo métodos analíticos para a resolução dessas equações que se originaram de fenômenos físicos, químicos, biológicos, matemáticos, e entre outros.

## Equações Diferenciais de Primeira Ordem

Uma equação diferencial é uma equação que envolve uma função incógnita e suas derivadas. A forma geral de uma equação diferencial ordinária de primeira ordem é designada por

$$\frac{dy}{dt}=f(t,y).$$

### Equações Diferenciais Lineares de Primeira Ordem

A forma geral das equações diferenciais ordinárias de primeira ordem é a seguinte

$$\dot{x} = p(t)x + q(t), \tag{2.1}$$

onde  $\dot{x}=dx/dt$ . Precisamos encontrar uma função diferenciável  $x:[a,b]\to\mathbb{R}$  para satisfazer a equação (2.1). Para a solução desta equação, vamos considerar o seguinte problema de valor inicial

$$\begin{cases} \dot{x} = p(t)x + q(t) \\ x(t_0) = x_0. \end{cases}$$
 (2.2)

Vamos primeiro determinar a solução geral de (2.1), para depois verificarmos que (2.2) possui apenas uma solução. Consideremos como uma solução de (2.1) uma equação de crescimento exponencial dada por

$$\dot{x} = kx(t). \tag{2.3}$$



Considerando uma função  $x(t) = e^{kt}$  como uma solução de (2.3), os seus múltiplos  $ce^{kt}$  também serão soluções de (2.3) e considerando a condição  $x(t_0) = x_0$ , temos o seguinte problema de valor inicial:

$$\begin{cases} \dot{x} = kx \\ x(t_0) = x_0, \end{cases}$$

Através da condição inicial  $x(t_0) = x_0$ , o valor da constante c será dado por

$$c=\frac{x_0}{e^{kt_0}}$$

Portanto, obtemos como solução do problema:

$$x(t) = x_0 e^{k(t-t_0)},$$

para todo  $t \in \mathbb{R}$ .

Podemos escrever a equação (2.1) como o seguinte problema de valor inicial com  $q(t) \equiv 0$ :

$$\begin{cases} \dot{x} = p(t)x \\ x(t_0) = x_0. \end{cases}$$
 (2.4)

A equação (2.4) é um problema inicial de valor homogêneo, cuja a solução é dada por

$$x(t) = x_0 e^{\int_{t_0}^t p(s) \, ds}. \tag{2.5}$$

Com o objetivo de simplificar as expressões, reescrevemos a equação (2.5) da seguinte maneira:

$$T(t,t_0) = e^{\int_{t_0}^t p(s) \, ds}. \tag{2.6}$$

Temos as seguintes propriedades para a função T:

$$T(t_0, t_0) = 1,$$

$$T(t, t_0) = T(t_0, t)^{-1},$$

$$T(t, t_0)T(t_0, s) = T(t, s).$$
(2.7)

Voltemos agora, para o problema de valor inicial (2.2), para determinarmos sua solução utilizaremos um fator integrante  $\mu(t)$ , e multiplicaremos em ambos os lados da equação:

$$\mu(t)(\dot{x}-p(t)x)=\mu(t)q(t).$$

Determinaremos  $\mu(t)$  igualando o primeiro membro da expressão anterior a derivada do produto de x por  $\mu$ , logo

$$\mu(\dot{x}-p(t)x)=\frac{d}{dt}(\mu x)=\dot{\mu}x+\mu\dot{x}.$$

Então, podemos igualar as seguintes expressões

$$-\mu p(t)x = \dot{\mu}x.$$

Logo, integrando em ambos os lados, obtemos

$$ln\mu = -\int p(s) ds.$$

Logo,  $\mu(t)$  será dado por:

$$\mu(t) = e^{-\int_{t_0}^t p(s) \, ds} = e^{\int_t^{t_0} p(s) \, ds} = T(t_0, t).$$

Então temos de  $\frac{d}{dt}(\mu x) = \mu(t)q(t)$ :

$$\frac{d}{dt}(T(t_0,t)x(t))=T(t_0,t)q(t),$$

integrando em ambos os lados de  $t_0$  a t:

$$T(t_0,t)x(t)-x(t_0)=\int_{t_0}^t T(t_0,s)q(s)\,ds.$$

Portanto, podemos obter a solução do problema de valor inicial (2.2) e utilizando as propriedades (2.7), multiplicamos a última expressão por  $T(t,t_0)$  e vamos obter:

$$x(t) = T(t, t_0)x_0 + \int_{t_0}^t T(t, s)q(s) ds, \qquad (2.8)$$

a equação (2.8) é chamada de fórmula de variação de constantes, fórmula esta que pode ser escrita como solução do problema de valor inicial (2.2).

Em particular, se o coeficiente p(t) for igual a uma constante k, temos

$$T(t,t_0)=e^{k(t-t_0)}.$$

Então temos o seguinte problema de valor inicial

$$\begin{cases} \dot{x} = kx + q(t) \\ x(t_0) = x_0, \end{cases}$$

e pela fórmula de variação de constantes, dada na equação (2.8), obtemos

$$x(t) = e^{k(t-t_0)}x_0 + \int_{t_0}^t e^{k(t-s)}q(s)ds.$$

Se existe um ponto a associado a uma função  $x_1(t)$  e um ponto b associado a uma função  $x_2(t)$ , podemos verificar que essas funções são soluções do problema de valor inicial (2.1) da seguinte maneira:

$$x_1(t) = ae^{\int_{t_0}^t p(s) ds},$$
  
 $x_2(t) = be^{\int_{t_0}^t p(s) ds}.$ 

$$x_2(t) = be^{\int_{t_0}^t p(s) \, ds}$$

Logo,

$$x_1(t) - x_2(t) = (a - b)e^{\int_{t_0}^t p(s) ds}$$
$$x(t) = x_0 e^{\int_{t_0}^t p(s) ds},$$

então podemos afirmar que  $x(t) = x_1(t) - x_2(t)$  é uma solução do problema de valor inicial (2.4), onde  $x_0 = a - b$ . Logo, todas as soluções de (2.1) são obtidas somando uma solução particular com a solução geral da equação homogênea associada em (2.4). Logo, podemos dizer que o termo da fórmula da variação de constantes

$$\int_{t_0}^t e^{k(t-s)} q(s) ds$$

é uma solução particular de (2.1).

# Equações Separáveis

Uma equação diferencial da forma

$$y' = \frac{f(x)}{g(y)},\tag{2.9}$$

é chamada de equação separável, onde  $g(y) \neq 0$  e y' = dy/dx. Consideramos f e g funções contínuas em intervalos abertos reais, tal que  $f:(a,b) \to \mathbb{R}$  e  $g:(c,d) \to \mathbb{R}$ . Logo escrevemos (2.9) da forma

$$g(y)y' = f(x).$$
 (2.10)

Considerando uma função  $y:(\alpha,\beta)\to\mathbb{R}$  de classe  $C^1$  uma solução para (2.9) e G uma primitiva de g, onde G'=g, teremos a partir de (2.10):

$$g(y)\frac{dy}{dx} = f(x)$$



então obtemos

$$G(y(x)) = F(x) + C,$$
 (2.11)

onde F é uma primitiva de f. Dado um ponto  $x_0 \in (\alpha, \beta)$ , então temos uma condição inicial dada por  $y(x_0) = y_0$ , onde  $y_0 \in y(\alpha, \beta)$ . Logo a constante C será dada determinada por

$$C=G(y_0)-F(x_0),$$

substituindo C na expressão (2.11), vamos obter

$$G(y(x)) - G(y_0) = F(x) - F(x_0).$$

Como G é uma primitiva de g e F é uma primitiva de f, podemos escrever a última expressão como

$$\int_{y_0}^{y(x)} g(y) \, dy = \int_{x_0}^{x} f(x) \, dx. \tag{2.12}$$

O que mostramos acima foi que dada uma solução de (2.9), esta solução irá satisfazer a expressão (2.11). Podemos concluir que dada uma relação G(y) = F(x) + C e um ponto  $(x_0, y_0)$  que satisfaz essa relação, onde  $G'(y_0) = g(y_0) \neq 0$ , dado também um intervalo aberto  $(\alpha, \beta)$  contendo  $x_0$  e uma função de classe  $C^1$ , através do Teorema das funções implícitas podemos garantir que esse intervalo existe e que satifaz a relação (2.11), logo trata-se de uma solução de (2.1).

**Exemplo 1**: Resolva a equação  $y' = \frac{x}{y}$ .

Resolução: Como yy'=x, teremos como solução geral  $y^2=x^2+C$ . Se considerarmos um problema de valor inicial com a condição y(3)=2, obtemos C=-5, logo a solução é dada por

$$y(x) = +\sqrt{x^2 - 5}, \ x > \sqrt{5}.$$

**Teorema**: Seja  $\Omega$  um intervalo aberto no plano (x,y), neste intervalo está definido a função contínua  $f:\Omega\to\mathbb{R}$ . Supondo que a derivada parcial em relação à y, dada por  $f_y:\Omega\to\mathbb{R}$  também seja contínua, temos para cada ponto  $(x_0,y_0)$  em  $\Omega$  um intervalo aberto I que contém  $x_0$ , uma única função diferenciável  $\phi:I\to\mathbb{R}$ , onde  $(x,\phi(x))$   $\in\Omega$  para todo  $x\in I$ . Logo,  $\phi$  será a solução do problema de valor inicial dado por

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0. \end{cases}$$

## Dinâmica de uma População e Noções de Estabilidade

#### O Modelo Malthusiano

Este modelo basicamente assume que a taxa de crescimento de uma população é dado por uma constante  $\lambda$ , então a equação que rege o crescimento dessa população é dado

$$\dot{p} = \lambda p. \tag{3.1}$$

Considerando  $p_0$  como população inicial, temos como solução geral do problema de valor inicial homogêneo (3.1):

$$p(t) = p_0 e^{\lambda(t-t_0)},$$

e com a condição inicial  $p(t_0) = p_0$ , a solução para (3.1) é dada por

$$p(t) = p(t_0)e^{\lambda(t-t_0)},$$

onde esta solução apresenta um crescimento exponencial se  $\lambda > 0$ , porém não é possível que este crescimento se mantenha para sempre. Um modelo desta natureza pode descrever o crescimento populacional de micro-organismos que se reproduzem por mitose.

#### • O Modelo de Verhulst - A Logística

Neste modelo proposto por Verhulst em 1834, constante  $\lambda$  é a taxa de crescimento da população, dado pela diferença entre a taxa de natalidade e a taxa de mortalidade, ou seja:  $\lambda = \lambda_n - \lambda_m$ . Verhulst propôs um modelo em que a taxa de crescimento decresce linearmente com a população, modelo este dado por:  $\lambda = a - bp$ , onde a e b são constantes positivas. Este modelo é dado por

$$\dot{p} = (a - bp)p. \tag{3.2}$$

Podemos observar que ainda não é um modelo ideal, pois não leva em conta que a taxa de produção de novos seres da espécie humana, depende da idade dos pais. Considerando  $p(t_0) = p_0$  como condição inicial, a solução para (3.2) será dada por:

$$p(t) = \frac{ap_0}{p_0b + (a - bp_0)e^{-a(t - t_0)}}. (3.3)$$

**Análise da solução**: A solução do modelo proposto por Verhulst, forma o gráfico da chamada curva logística. Onde este gráfico forma uma curva em forma de S entre as retas p=0 e p=a/b (soluções de (3.2)). Em p=a/2b existe um ponto de inflexão pois a/2b é uma solução para  $\ddot{p}$ . Esta curva é formada para o caso  $0 < p_0 < a/b$ , para  $p_0 > a/b$  a curva descresce exponencialmente para a/b.



Figura: Curva logística

## Resfriamento de um Corpo

Podemos analisar o fenômeno da variação de temperatura em um corpo por perda de calor para o meio ambiente através do seguinte modelo:

 $\frac{dT}{dt} = -k(T - T_a),\tag{3.4}$ 

onde dT/dt é o fluxo de calor, T é a temperatura do corpo dependente do tempo t,  $T_a$  é a temperatura do meio ambiente, k é uma constante positiva determinada pelas propriedades físicas do corpo. Na situação dada, o calor flui da fonte quente para fonte fria, então se  $T>T_a$ , a temperatura T descresce e o corpo se resfria, portanto isto justifica o sinal negativo em (3.4). Agora, se  $T<T_a$ , a temperatura T cresce e o corpo irá se aquecer. O modelo apresentado acima é chamada Lei de Resfriamento de Newton, Newton elaborou este modelo estudando uma bola de metal aquecida.

Considerando a condição inicial de temperatura  $T(0) = T_0$ , temos o seguinte problema de valor inicial:

$$\begin{cases} \frac{dT}{dt} = -k(T - T_a) \\ T(0) = T_0. \end{cases}$$

Através do métodos da sessão 2.1, a solução do problema é dada por

$$T-T_a=e^{-kt+C},$$

usando a condição inicial  $T(0) = T_0$ ,

$$e^C = T_0 - T_a.$$

Logo, obtemos a solução do problema:

$$T = (T_0 - T_a)e^{-kt} + T_a. (3.5)$$



**Análise da solução**: Na expressão (3.4), podemos ver que T(t) descrece monotonicamente com t quando  $T > T_a$ , T(t) irá crescer monotonicamente quando  $T < T_a$  e quando for T(t) for constante teremos  $T = T_a$ . Na expressão (3.5) temos a mesma conclusão, pois T(t) tende monotonicamente para  $T_a$  quando  $t \to +\infty$ . Portanto, a temperatura  $T_a$  é chamada Temperatura de Equilíbrio.

## Diluição de Soluções

Um reservatório com capacidade de V litros de água pura, recebe uma solução de água salgada que contém c kg de sal por litro de solução, a uma vazão de a litros/segundo de forma constante. Portanto, seja x(t) a quantidade de sal em kg no reservatório em função do tempo t, a concentração de sal na solução é dada por x/V kg/I. Então podemos descrever esta situação através da seguinte equação diferencial:

$$\frac{dx}{dt} = ac - a\frac{x}{V},\tag{3.6}$$

e considerando a condição x(0) = 0, temos o seguinte problema de valor inicial:

$$\begin{cases} \frac{dx}{dt} + a\frac{x}{V} = ac \\ x(0) = 0. \end{cases}$$

Para encontrarmos a solução do problema, precisamos determinar o fator integrante  $\mu(t)=e^{\int a(t)dt}$ , onde  $a(t)=\frac{a}{V}$ , logo

$$\mu(t)=e^{\frac{at}{V}}.$$

Então, multiplicando todos os membros da equação (3.6), por  $\mu(t)$ , obtemos

$$(\mu x)\frac{d}{dt} = ace^{\frac{at}{V}}$$
$$x = cV + ke^{-\frac{at}{V}}.$$

Para determinar k, utilizamos a condição inicial x(0) = 0, logo

$$k = -cV$$
.

Portanto a solução do problema será dada por:

$$x(t) = cV(1 - e^{-\frac{at}{v}})$$
 (3.7)

**Análise da solução**: Podemos notar que quando  $t \to \infty$ , a concentração de sal dada por x(t)/V tende para c, assim como em resfriamento de um corpo em que a solução nos dava uma temperatura de equilíbrio, no caso de diluição das soluções podemos encontrar o equilíbrio entre a solução salina injetada e a solução no reservatório, pois em ambos os casos a matemática é a mesma.

#### A Tractriz

Uma partícula Q de massa m, será arrastada ao longo de uma corda QP, essa corda é mantida de forma bem esticada e sua extremidade P está sobre o eixo x, então a tractriz é formada ao longo da curva descrita pela partícula Q como é mostrado na figura 6.



Considerando as coordenadas Q(x, y),  $P(x_a, 0)$  e R(x, 0), temos a seguinte relação pelo teorema de Pitágoras:

$$QP^2 = QR^2 + RP^2$$

$$a^2 = y^2 + (x - x_a)^2,$$

isolando o termo  $x - x_a$ , obtemos

$$x - x_a = \pm \sqrt{a^2 - y^2}.$$

Para o problema vamos considerar  $-\sqrt{a^2-y^2}$ . Então, lembrando da equação da reta que passa por um ponto, temos

$$y - y(x_a) = y' \cdot (x - x_a),$$

sabendo que  $y(x_a) = 0$ , teremos a seguinte equação diferencial:

$$y' = -\frac{y}{\sqrt{a^2 - y^2}}. (3.8)$$

Sabendo que y'=dx/dy, podemos rescreever a expressão (3.8) da seguinte maneira:

$$-dx = \frac{\sqrt{a^2 - y^2}}{y} dy,$$

uma primitiva de  $\sqrt{a^2 - y^2}/y$ , é dada por

$$-x+c=a \ln \left(\frac{a-\sqrt{a^2-y^2}}{y}\right)+\sqrt{a^2-y^2}.$$

Considerando o problema de valor inicial com a condição y(0) = a, vamos obter que c = 0. Portanto a solução da equação diferencial (3.8) será dada por

$$x = -a \ln \left( \frac{a - \sqrt{a^2 - y^2}}{y} \right) - \sqrt{a^2 - y^2},$$

onde esta solução é a equação da tractriz x(y), explicitada de maneira que y é a variável independente e x sendo a variável dependente.

# As Curvas de Perseguição

Vamos imaginar que um gato persegue um rato no plano (x,y). O rato estava comendo queijo na origem e o gato localizado no ponto G=(a,0), o gato faminto parte em direção ao rato e o rato por sua vez, foge do gato correndo ao longo do eixo y no sentido positivo com uma velocidade constante  $\nu$ . O gato ao correr em direção ao rato com uma velocidade constante  $\omega$ , forma uma curva como podemos ver na figura 12, e o problema desta sessão consiste em determinar a curva descrita pelo gato nos parâmetros  $a, \nu \in \omega$ .



Figura: Curva de perseguição.

Considerando que após um tempo t, o gato estará em um ponto P=(x,y) e como o deslocamento do rato se dá ao longo do eixo y, logo a sua segunda coordenada será dada por esse deslocamento, então ele estará no ponto  $Q=(0,\nu t)$  c. Olhando agora para o deslocamento do gato, podemos calcular o seu deslocamento L através do comprimento de arco PG que vai de a até x, então teremos

$$L=\int_{x}^{a}\sqrt{1+|y'(x)|^{2}}dx,$$

sabendo que o deslocamento L é dado por  $t\omega$ , o tempo que o gato levou para chegar até o ponto P será dado por

$$t = \frac{1}{\omega} \int_{x}^{a} \sqrt{1 + |y'(x)|^{2}} dx.$$
 (3.9)

Agora, considerando o ponto P de coordenadas arbitrárias (x, y) temos pela geometria da figura:

$$y' = \frac{\bar{OQ} - y}{0 - x},$$

logo

$$\bar{OQ} = y - y'x,$$

e como  $\bar{OQ} = \nu t$ ,

$$\nu t = y - y'x. \tag{3.10}$$

Logo, de (3.9) e (3.10), temos a expressão

$$\frac{\nu}{\omega}\int_{x}^{a}\sqrt{1+|y'(x)|^{2}}dx=y-y'x,$$

derivando a expressão acima em relação a variável x, obtemos

$$c\sqrt{1+|y'(x)|^2} = xy'',$$
 (3.11)

onde  $c=\nu/\omega$ . Introduzindo a variável p=y', teremos a seguinte expressão

$$c\sqrt{1+p^2} = xp'. \tag{3.12}$$

Sabendo que p' = dp/dx, temos o seguinte problema de valor inicial:

$$\begin{cases} \frac{c}{x}dx = \frac{1}{\sqrt{1+p^2}}dp \\ p(a) = 0. \end{cases}$$

Uma primitiva de  $1/\sqrt{1+p^2}$  é dada por

$$- \ln (\sqrt{p^2 + 1} - p),$$

logo a solução geral do problema de valor inicial será dada por

$$c \cdot lnx + k = -ln(\sqrt{p^2 + 1} - 1).$$

Utilizando a condição inicial p(a) = 0, vamos obter

$$k = -c \cdot lna$$
.



Então vamos obter da solução de (3.12):

$$c \cdot \ln a - c \cdot \ln x = \ln(\sqrt{p^2 + 1} - 1)$$

$$\sqrt{p^2 + 1} - p = \left(\frac{a}{x}\right)^c. \tag{3.13}$$

Da expressão (3.13), isolando a variável p, obtemos

$$p = \frac{1}{2} \left[ \left( \frac{x}{a} \right)^c - \left( \frac{a}{x} \right)^c \right].$$

Sabendo que p = y' = dy/dx, temos o seguinte problema de valor inicial:

$$\begin{cases} y' = \frac{1}{2} \left[ \left( \frac{x}{a} \right)^c - \left( \frac{a}{x} \right)^c \right] \\ y(a) = 0. \end{cases}$$

Para  $c \neq 1$ , vamos obter como solução geral do problema:

$$y = \frac{a}{2} \left[ \frac{1}{c+1} \left( \frac{x}{a} \right)^{c+1} + \frac{1}{c-1} \left( \frac{a}{x} \right)^{c-1} \right] + k.$$

Utilizando a condição inicial y(a) = 0,

$$k=-\frac{ac}{c^2-1}.$$

Portanto, a solução do problema de valor inicial será dada por

$$y(x) = \frac{a}{2} \left[ \frac{1}{c+1} \left( \frac{x}{a} \right)^{c+1} + \frac{1}{c-1} \left( \frac{a}{x} \right)^{c-1} \right] - \frac{ac}{c^2 - 1}.$$
 (3.14)

**Análise da solução**: Se considerarmos  $c \geq 1$ , consequentemente a velocidade do rato seria maior que a do gato, ou seja,  $\nu \geq \omega$ . Porém, se analisarmos o caso para c < 1, vamos ter que a velocidade do gato será a maior, ou seja,  $\nu < \omega$ . Podemos determinar o instante e o ponto da coordenada sobre o eixo y onde o encontro entre os dois aconteceria.

Para determinar o instante, utilizaremos a equação (3.14), para  $y(0) = \nu t$ , onde  $\nu t$  representa o deslocamento do rato. Logo obtemos que o instante que o gato encontra o rato é dado por

$$t = \frac{a\omega}{\omega^2 - \nu^2}.$$

Já o ponto de encontro entre os dois, também pode ser encontrado pela expressão (3.14), agora considerando a condição y(0) = E, onde E será o ponto de encontro. Logo temos que o ponto da ordenada sobre o eixo y onde o gato encontra o rato, é dado por

$$E = \frac{a\nu\omega}{\omega^2 - \nu^2}.$$

## Referências bibliográficas

- [1] BOYCE, William; DIPRIMA, Richard; MEADE, Douglas. **Equações Diferenciais Elementares e Problemas de Valores de Contorno**. 11. ed. Rio de Janeiro: LTC. 2020.
- [2] FIGUEIREDO, Djairo Guedes; NEVES, Aloisio Freiria. **Equações Diferenciais Aplicadas**. 3. ed. Rio de Janeiro: IMPA, 2014.
- [3] PINTO, Alex Oliveira. Equações Diferenciais Ordinárias: Um estudo dos modelos matemáticos que descrevem a Catenária e a Tractriz. 2021. 40 f. Trabalho de Conclusão de Curso (Graduação) Centro de Estudos Superiores de Tefé, Universidade do Estado do Amazonas, Tefé/Am, 2021.

# Referências bibliográficas

- [4] KREYSZIG, Erwin. **Matemática Superior**. 1. ed. Rio de Janeiro: Editora Livros Técnicos e Científicos, 1969.
- [5] KREIDER, Donald; KULLER, Robert; OSTBERG, Donald. **Equações Diferenciais**. Ed. da Universidade de São Paulo, 1972.
- [6] BRONSON, Richard. **Moderna Introdução Às Equações Diferenciais**. 1. ed. São Paulo: Editora McGraw-Hill, 1977.

# Obrigado pela atenção!