Real Time Graphics Programming Project Report

 $Compagnoni\ Alessandro$

UNIMI A.A. 2023/2024

Contents

1	Overview	2
2	Project Details and Design Choices 2.1 Technologies	2 2 2
3	Algorithms and Techniques	3
4	Implementation Details	4
5	Performance Evaluation	5
6	Conclusion	6

1 Overview

This project implements a 3D environment using OpenGL, allowing users to navigate within 3 square rooms connected by corridors. Inside the rooms various 3D objects are placed, each rendered with a different material based on shaders that showcase various types of noise with different parameters, all freely adjustable by the user thanks to the dedicated UI.

2 Project Details and Design Choices

2.1 Technologies

The following technologies were selected to ensure efficient rendering, cross-platform compatibility, and streamlined development for the project:

- OpenGL Modern Pipeline (Version 3.3+):
 OpenGL's modern shader-based architecture was chosen to leverage direct control over vertex and fragment processing. By utilizing GLSL shaders, the pipeline enables complex procedural effects while maintaining high performance.
- GLFW (Graphics Library Framework): GLFW provides robust window management and input handling, ensuring consistent behavior across operating systems, also its event-driven architecture simplifies interaction with user inputs.
- GLM (OpenGL Mathematics): GLM mathematics library is optimized for graphics programming. It offers essential data types (e.g., vectors, matrices) and prebuilt functions for common transformations (e.g., translation, projection).

2.2 Architecture

3 Algorithms and Techniques

4 Implementation Details

5 Performance Evaluation

6 Conclusion