

Gradient Descent

Jiahui Chen
Department of Mathematical Sciences
University of Arkansas

Introduction

- In general, the loss function has no analytical solutions.
- Gradient = direction of the steepest ascent
- Find a local minimum of a function
- Often a first-order iterative optimization algorithm

General Idea

Algorithm

Find a local minimum of a C^1 continuous f(c)

- Start with random value c^0
- Update new value:

$$c^{i+1} = c^i - \alpha \frac{\partial f(c^i)}{\partial c^i}$$

 α : **learning rate**, very small

■ Repeat until $\left\| \frac{\partial f(c^i)}{\partial c^i} \right\| \le \text{tolerance}$

Making Sure Gradient Descent Working Correctly

• Function f(c) should decrease after every iteration (monotonically decreases)

Making Sure Gradient Descent Working Correctly

• Use smaller learning rate α

Very large learning rate

Making Sure Gradient Descent Working Correctly

- Feature scaling:
 - Example: assume features for the house price includes number of bedrooms and living area
 - # of bedrooms between 0 and 5
 - But living area between 1 and 5000 feet²
 - Make all features have the same level of magnitude

Application for Minimizing Loss Function

• <u>Linear regression</u>: loss function for predictor $p_c(x) = c_0 + c_1 x$ is

$$L(c_0, c_1) = \sum_{i=1}^{M} (p(x^{(i)}) - y^{(i)})^2$$
$$= \sum_{i=1}^{M} (c_0 + c_1 x^{(i)} - y^{(i)})^2$$

Use gradient descent to $\min_{c_0,c_1} L(c_0,c_1)$

Application for Minimizing Loss Function

• Step 1: Assign initial values for c_0 , c_1 : $c_0 = 0$, $c_1 = 1$

• Step 2: Update the change in values for c_0, c_1 : $c_0 \coloneqq c_0 - \alpha \frac{\partial}{\partial c_0} L(c_0, c_1)$

$$:= c_0 - \alpha \sum_{i=1}^{M} 2(c_0 + c_1 x^{(i)} - y^{(i)})$$

Application for Minimizing Loss Function

Step 2: (continue)

$$c_1 \coloneqq c_1 - \alpha \frac{\partial}{\partial c_1} L(c_0, c_1)$$

$$\coloneqq c_1 - \alpha \sum_{i=1}^{M} 2x^{(i)} \left(c_0 + c_1 x^{(i)} - y^{(i)} \right)$$

- Step 3: Repeat Step 2 until it converges
- Logistic regression: do it similarly

- Stochastic gradient descent (SGD):
- Herbert Robbins and Sutton Monro (1951)
- Good for large/huge data sets
 - 1) Choose an initial parameter set c and learning rate α
 - 2) Randomly shuffle samples in the training set to update $oldsymbol{c}$

$$\mathbf{c} \coloneqq \mathbf{c} - \alpha \frac{\partial}{\partial \mathbf{c}} L(\mathbf{c}, \mathbf{x}^{(i)}, y^{(i)}), i = 1, 2, ..., M$$

No

sum over *i*

3) Repeat 2) until the convergence is reached.

SGD with momentum: accelerate SGD

$$\boldsymbol{v} \coloneqq \gamma \boldsymbol{v} + \alpha \frac{\partial}{\partial \boldsymbol{c}} L(\boldsymbol{c}, \mathbf{x}^{(i)}, y^{(i)})$$
$$\boldsymbol{c} \coloneqq \boldsymbol{c} - \boldsymbol{v}$$

https://distill.pub/2017/momentum/

- Adaptive learning rates are often used.
- If multiple passes are needed, the data can be shuffled for each pass to prevent cycles.

$$g \coloneqq \frac{\partial}{\partial c} L(c, \mathbf{x}^{(i)}, y^{(i)})$$

$$m \coloneqq \beta_1 m + (1 - \beta_1) g$$

$$v \coloneqq \beta_2 v + (1 - \beta_2) g^2$$

$$\widehat{m} \coloneqq \frac{m}{\beta_1^k}$$

$$\widehat{v} \coloneqq \frac{v}{\beta_2^k}$$

$$c \coloneqq c - \alpha \frac{\widehat{m}}{\sqrt{\widehat{v}} + \epsilon}$$

(Compute gradient)

(Update 1st order momentum)

(Update 2nd order momentum)

(Compute corrected-1st order momentum)

(Compute corrected-2nd order momentum)

(Update parameters)

Adaptive Gradient Descent

- Barzilai-Bowein method (for L(c) convex and $\frac{\partial}{\partial c}L(c)$ Lipschitz):
- $\boldsymbol{\alpha}^{n} = \boldsymbol{c}^{n-1} \alpha^{n} \frac{\partial}{\partial c} L(\boldsymbol{c})$ $\alpha^{n} = \frac{(\boldsymbol{c}^{n} \boldsymbol{c}^{n-1})^{T} \left[\frac{\partial}{\partial \boldsymbol{c}} L(\boldsymbol{c}) \Big|_{\boldsymbol{c} = \boldsymbol{c}^{n}} \frac{\partial}{\partial \boldsymbol{c}} L(\boldsymbol{c}) \Big|_{\boldsymbol{c} = \boldsymbol{c}^{n-1}} \right]}{\left\| \frac{\partial}{\partial \boldsymbol{c}} L(\boldsymbol{c}) \Big|_{\boldsymbol{c} = \boldsymbol{c}^{n}} \frac{\partial}{\partial \boldsymbol{c}} L(\boldsymbol{c}) \Big|_{\boldsymbol{c} = \boldsymbol{c}^{n-1}} \right\|^{2}}$

Convex => the global minimum!

- A Method for Stochastic Optimization (Adam) by Kingma & Ba, 2015: An efficiency version of SGD using first and second order momentum, well suited for large data set problems
- Kalman-based Stochastic Gradient Descent: SIAM Journal on Optimization. 26 (4): 2620– 2648. arXiv:1512.01139

Discussions

Pros and Cons of Gradient Descent

Pros

- Can be applied for any dimensional space
- Nonlinear problems
- Easy to implement

Cons:

- Local optima problem
- Slowly to reach the local minimum
- Cannot be applied for discontinuous functions

Discussions

- Sample noise (uncertainty in $\{y^{(i)}\}$)
- Parameter linear dependence (in $\{c_i\}$)
- Manifold properties:
 - Smoothness -- differentiability
 - Convex/concave
 - Tangent bundle/cotangent bundle
 - > Topological structure of the tangent space
 - de Rham-Hodge theory

- Purpose: all features will have relatively similar magnitude
- How?:
 - 1. Linearly scale features to range [0,1]

$$x_{\text{new}} = \frac{x_{\text{old}} - x_{\text{old}}^{\min}}{x_{\text{old}}^{\max} - x_{\text{old}}^{\min}}$$

2. Linearly scale features to 0 mean and variance 1 (normal distribution)

$$x_{\text{new}} = \frac{x_{\text{old}} - \mu}{\sigma}$$

$$\mu: \text{mean, } \sigma^2: \text{variance}$$

Original dataset

Name	x_1	x_2	Label
P1	1	100	Red
P2	1	120	Red
P3	4	200	Green
P4	4	250	Green

After normalizing features using normal distribution $(\mu(x_1) = 2.5, \sigma(x_1) = 1.5, \mu(x_2) = 167.5, \sigma(x_2) \approx 60.57)$

Name	x_1	x_2	label
P1	-1	-1.11	Red
P2	-1	-0.78	Red
P3	1	0.54	Green
P4	1	1.36	Green

Test set (original)

Name	x_1	x_2	label
P5	1	220	?

Test set (after normalization)

Name	x_1	x_2	label
P5	-1	0.87	?

Training set (normalized)

Name	x_1	x_2	label
P1	-1	-1.11	Red
P2	-1	-0.78	Red
P3	1	0.54	Green
P4	1	1.36	Green

Test set (normalized)

Name	x_1	x_2	label
P5	-1	0.87	?