Correction du sujet EM Lyon voie S 2021

Problème 1

1. (a) Soit $t \in]0, +\infty[$, la fonction ln est continue sur [t, t+1] et dérivable sur [t, t+1] donc, d'après le théorème des accroissements finis, il existe $c \in]t, t+1[$ tel que $\ln(t+1) - \ln(t) = (t+1-t) \ln'(c) = \frac{1}{c}$ or 0 < t < c < t+1 donc par passage à l'inverse $\frac{1}{t+1} < \frac{1}{c} < \frac{1}{t}$. Finalement $\left\lceil \frac{1}{t+1} \leqslant \ln(t+1) - \ln(t) \leqslant \frac{1}{t} \right\rceil$

(b) Soit $n \in \mathbb{N}^*$, $u_{n+1} - u_n = \sum_{k=1}^{n+1} \frac{1}{k} - \ln(n+2) - \left(\sum_{k=1}^{n} \frac{1}{k} - \ln(n+1)\right) = \frac{1}{n+1} - \left(\ln(n+2) - \ln(n+1)\right)$.

Or avec la question précédente en remplaçant t par $n+1\in\mathbb{N}^*,$ on a $\ln(n+2)-\ln(n+1)\leqslant\frac{1}{n+1}$ donc $u_{n+1} - u_n \ge 0$ donc la suite $(u_k)_{k \in \mathbb{N}^*}$ est croissante.

De façon analogue, $v_{n+1} - v_n = \sum_{k=1}^{n+1} \frac{1}{k} - \ln(n+1) - \left(\sum_{k=1}^{n} \frac{1}{k} - \ln(n)\right) = \frac{1}{n+1} - \left(\ln(n+1) - \ln(n)\right)$.

Or avec la question précédente en remplaçant t par $n \in \mathbb{N}^*$, on a $\frac{1}{n+1} \leqslant \ln(n+1) - \ln(n)$ donc $v_{n+1} - v_n \leq 0$ donc la suite $(v_k)_{k \in \mathbb{N}^*}$ est décroissante.

On remarque que

$$v_n - u_n = \sum_{k=1}^n \frac{1}{k} - \ln(n) - \left(\sum_{k=1}^n \frac{1}{k} - \ln(n+1)\right) = \ln(n+1) - \ln(n) = \ln\left(1 + \frac{1}{n}\right) \underset{n \to +\infty}{\to} 0.$$

Nous avons montré que les suites $(u_k)_{k\in\mathbb{N}^*}$ et $(v_k)_{k\in\mathbb{N}^*}$ sont adjacentes et donc elles convergent et ont la même limite |. On la note γ , dite constante d'Euler.

2. La suite $(u_k)_{k\in\mathbb{N}^*}$ est croissante vers γ et $(v_k)_{k\in\mathbb{N}^*}$ est décroissante vers γ donc, pour tout $n\in\mathbb{N}^*$,

$$u_n \leqslant \gamma \leqslant v_n \text{ donc } \sum_{k=1}^n \frac{1}{k} - \ln(n+1) \leqslant \gamma \leqslant \sum_{k=1}^n \frac{1}{k} - \ln(n).$$

Par conséquent

$$\gamma + \ln(n) \leqslant \sum_{k=1}^{n} \frac{1}{k} \leqslant \gamma + \ln(n+1).$$

Avec n > 1, on peut diviser par $\ln(n) > 0$,

$$\frac{\gamma}{\ln(n)} + 1 \leqslant \frac{\sum\limits_{k=1}^{n} \frac{1}{k}}{\ln(n)} \leqslant \frac{\gamma}{\ln(n)} + \frac{\ln(n+1)}{\ln(n)}$$

donc

$$\frac{\gamma}{\ln(n)} + 1 \leqslant \frac{\sum_{k=1}^{n} \frac{1}{k}}{\ln(n)} \leqslant \frac{\gamma}{\ln(n)} + \frac{\ln(n) + \ln(1 + \frac{1}{n})}{\ln(n)} = \frac{\gamma}{\ln(n)} + \frac{\ln(1 + \frac{1}{n})}{\ln(n)} + 1.$$

Il est clair que $\frac{\gamma}{\ln(n)} \xrightarrow[n \to +\infty]{} 0$ et $\frac{\ln(1+\frac{1}{n})}{\ln(n)} \xrightarrow[n \to +\infty]{} 0$ donc par encadrement

$$\frac{\sum\limits_{k=1}^{n}\frac{1}{k}}{\ln(n)} \xrightarrow[n \to +\infty]{} 1$$

1

finalement
$$\sum_{k=1}^{n} \frac{1}{k} \underset{n \to +\infty}{\sim} \ln(n).$$

3. (a) On a déjà vu que, pour tout $n \in \mathbb{N}^*$, $u_n \leqslant \gamma \leqslant v_n$. Par inégalité triangulaire,

$$\left|\frac{u_n+v_n}{2}-\gamma\right|=\left|\frac{u_n-\gamma}{2}+\frac{v_n-\gamma}{2}\right|\leqslant \frac{|u_n-\gamma|}{2}+\frac{|v_n-\gamma|}{2}.$$

Comme $u_n - \gamma \leq 0$ on a $|u_n - \gamma| = \gamma - u_n$ et comme $0 \leq v_n - \gamma$, on a $|v_n - \gamma| = v_n - \gamma$ donc

$$\left| \left| \frac{u_n + v_n}{2} - \gamma \right| \leqslant \frac{\gamma - u_n}{2} + \frac{v_n - \gamma}{2} = \frac{v_n - u_n}{2} \right|.$$

(b) • On voit que $v_n - u_n = \ln(n+1) - \ln(n)$. On calcule le plus petit $n \in \mathbb{N}^*$ tel que

$$0 \leqslant \frac{v_n - u_n}{2} = \frac{\ln(n+1) - \ln(n)}{2} \leqslant 10^{-5}$$

avec une boucle while. Quand ce n est connu, on calcule $S = \sum_{k=1}^{n} \frac{1}{k}$ avec une opération pointée, on en déduit u_n, v_n puis $\frac{v_n + u_n}{2}$ qui est une approximation de γ telle que

$$\left| \frac{u_n + v_n}{2} - \gamma \right| \leqslant \frac{v_n - u_n}{2} = \frac{\ln(n+1) - \ln(n)}{2} \leqslant 10^{-5}.$$

function gamma=approx()

endfunction

On obtient 0.5772157.

• Il est possible de donner une valeur acceptable de n en résolvant

$$\frac{v_n - u_n}{2} = \frac{\ln(n+1) - \ln(n)}{2} \leqslant 10^{-5} \iff \ln\left(1 + \frac{1}{n}\right) \leqslant \frac{2}{10^5} \iff \frac{1}{n} \leqslant e^{\frac{2}{10^5}} - 1$$
$$\iff \frac{1}{e^{\frac{2}{10^5}} - 1} \leqslant n.$$

Pour être sûr que n soit entier et plus grand que $\frac{1}{e^{\frac{2}{10^5}}-1}$, on fixe $n=\left\lfloor \frac{1}{e^{\frac{2}{10^5}}-1}\right\rfloor+1$. Comme $e^{\frac{2}{10^5}}-1\simeq \frac{2}{10^5}$, on voit que $n\simeq \frac{10^5}{2}$. On donne aussi un calcul de S avec une boucle for. function gamma=approx2()

• Version python:

```
import numpy as np
def approx() :
    n=1
    while 0.5*(np.log(n+1)-np.log(n)) > 10**(-5) :
        n=n+1
    S=0
    for k in range(1,n+1) :
        S += 1/k
    return(S-0.5*(np.log(n+1)+np.log(n)))
```

4. Soit $x \ge 0, k \in \mathbb{N}^*$, le calcul donne $\frac{1}{k} - \frac{1}{k+x} = \frac{x}{k(k+x)}$ comme $k+x \underset{k \to +\infty}{\sim} k$, on a $\frac{1}{k} - \frac{1}{k+x} \underset{k \to +\infty}{\sim} \frac{x}{k^2}$. La série de Riemann $\sum_{k \ge 1} \frac{1}{k^2}$ converge car l'exposant est supérieur à 1, donc la série $\sum_{k \ge 1} \frac{x}{k^2}$ converge.

Elle est à terme général positif donc par comparaison, la série $\sum_{k\geqslant 1}\left(\frac{1}{k}-\frac{1}{k+x}\right)$ converge aussi.

5. (a) Pour $x = 0, k \in \mathbb{N}^*$, $\frac{1}{k} - \frac{1}{k+0} = 0$ donc S(0) = 0.

Pour x = 1, on applique un télescopage, soit $N \in \mathbb{N}^*$,

$$\sum_{k=1}^{N} \left(\frac{1}{k} - \frac{1}{k+1} \right) = \frac{1}{1} - \frac{1}{N+1} \underset{N \to +\infty}{\rightarrow} 1.$$

Donc S(1) = 1.

(b) Soit $n \in \mathbb{N}^*$,

$$\sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k + \frac{1}{2}} \right) = \sum_{k=1}^{n} \frac{1}{k} - \sum_{k=1}^{n} \frac{2}{2k + 1},$$

de façon classique, j'ajoute les termes d'indices pairs

$$\sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k + \frac{1}{2}} \right) = \sum_{k=1}^{n} \frac{1}{k} - 2 \left(\underbrace{\sum_{k=1}^{n} \frac{1}{2k + 1}}_{= \sum_{j=2}^{n+1} \frac{1}{j}} - \sum_{k=1}^{n} \frac{1}{2k} \right),$$

on développe puis isole le terme le terme en k=1 du premier sigma

$$\sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k + \frac{1}{2}} \right) = \sum_{k=1}^{n} \frac{1}{k} - 2 \left(\sum_{j=2}^{2n+1} \frac{1}{j} - \frac{1}{2} \sum_{k=1}^{n} \frac{1}{k} \right) = 2 \sum_{k=1}^{n} \frac{1}{k} - 2 \sum_{j=2}^{2n+1} \frac{1}{j} = 2 + 2 \left(\sum_{k=2}^{n} \frac{1}{k} - \sum_{j=2}^{2n+1} \frac{1}{j} \right).$$

On simplifie

$$\sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k + \frac{1}{2}} \right) = 2 - 2 \sum_{j=n+1}^{2n+1} \frac{1}{j}.$$

On poursuit

$$2 - 2\sum_{j=n+1}^{2n+1} \frac{1}{j} = 2 - \frac{2}{2n+1} - 2\sum_{j=n+1}^{2n} \frac{1}{j},$$

on pense au changement de variable k = n - j,

$$2 - 2\sum_{j=n+1}^{2n+1} \frac{1}{j} = 2 - \frac{2}{2n+1} - 2\sum_{k=1}^{n} \frac{1}{n+k} = 2 - \frac{2}{2n+1} - 2\sum_{k=1}^{n} \frac{1}{n(1+\frac{k}{n})},$$

finalement

$$\sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k + \frac{1}{2}} \right) = 2 - 2 \sum_{j=n+1}^{2n+1} \frac{1}{j} = 2 - \frac{2}{2n+1} - \frac{1}{n} \sum_{k=1}^{n} \frac{2}{1 + \frac{k}{n}}.$$

La dernière somme suggère l'usage des sommes de Riemann. La fonction $f: x \mapsto \frac{2}{1+x}$ est continue sur [0,1] comme inverse d'un polynôme qui ne s'annule pas sur [0,1]. De sorte que

$$\frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) \underset{n \to +\infty}{\longrightarrow} \int_{0}^{1} f(x) dx.$$

Donc

$$\frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) = \frac{1}{n} \sum_{k=1}^{n} \frac{2}{1 + \frac{k}{n}} \xrightarrow[n \to +\infty]{} \int_{0}^{1} f(x) dx = \int_{0}^{1} \frac{2}{1 + x} dx = \left[2\ln(1 + x)\right]_{0}^{1} = 2\ln(2).$$

On sait que $\frac{1}{2n+1} \underset{n \to +\infty}{\longrightarrow} 0$. Finalement

$$S\left(\frac{1}{2}\right) = 2 - 2\ln(2)$$

6. (a) Soit $n \in \mathbb{N}^*, x \in \mathbb{R}^+, y \in \mathbb{R}^+,$

$$\sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+y} \right) - \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+x} \right) = \sum_{k=1}^{n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k} + \sum_{k=1}^{n} \left(\frac{1}{k+x} - \frac{1}{k+y} \right)$$
$$= \sum_{k=1}^{n} \frac{y-x}{(k+x)(k+y)} = (y-x) \sum_{k=1}^{n} \frac{1}{(k+x)(k+y)}.$$

On sait que $\frac{1}{(k+x)(k+y)} \sim \frac{1}{k \to +\infty} \frac{1}{k^2}$ et $\sum \frac{1}{k^2}$ converge et comme $\frac{1}{k^2} > 0$, la série $\sum \frac{1}{(k+x)(k+y)}$ converge aussi. On peut donc faire tendre n vers $+\infty$.

Ainsi

$$\sum_{k=1}^{+\infty} \left(\frac{1}{k} - \frac{1}{k+y} \right) - \sum_{k=1}^{+\infty} \left(\frac{1}{k} - \frac{1}{k+x} \right) = S(y) - S(x) = (y-x) \sum_{k=1}^{+\infty} \frac{1}{(k+x)(k+y)}.$$

- (b) Soit $x \in \mathbb{R}^+$, $y \in \mathbb{R}^+$ tels que $x \leqslant y$, on a, pour tout $k \in \mathbb{N}^*$, $\frac{1}{(k+x)(k+y)} > 0$ donc $\sum_{k=1}^{+\infty} \frac{1}{(k+x)(k+y)} > 0$. Comme $y - x \geqslant 0$, on a $S(y) - S(x) \geqslant 0$ donc la fonction S est croissante sur \mathbb{R}^+ .
- (c) Soit $x \in \mathbb{R}^+$, $h \in \mathbb{R}$ tel que $x + h \ge 0$, on a

$$\left| \frac{S(x+h) - S(x)}{h} - \sum_{k=1}^{+\infty} \frac{1}{(k+x)^2} \right| = \left| \frac{1}{h} \times \underbrace{h \sum_{k=1}^{+\infty} \frac{1}{(k+x)(k+x+h)}}_{\text{avec Q6(a)}} - \sum_{k=1}^{+\infty} \frac{1}{(k+x)^2} \right|$$

$$=\left|\sum_{k=1}^{+\infty}\frac{1}{(k+x)(k+x+h)}-\sum_{k=1}^{+\infty}\frac{1}{(k+x)^2}\right|=\left|\sum_{k=1}^{+\infty}\frac{k+x-(k+x+h)}{(k+x)^2(k+x+h)}\right|=\sum_{k=1}^{+\infty}\frac{|h|}{(k+x)^2(k+x+h)}.$$

On a $k+x+h\geqslant k>0$ et $k+x\geqslant k>0$ donc $0<\frac{1}{(k+x)^2(k+x+h)}\leqslant \frac{1}{k^3}$ donc en multipliant par $|h|\geqslant 0, 0\leqslant \frac{|h|}{(k+x)^2(k+x+h)}\leqslant \frac{|h|}{k^3}$. Il reste à sommer sachant que la série de Riemann $\sum \frac{1}{k^3}$ converge. Finalement

$$\left| \frac{S(x+h) - S(x)}{h} - \sum_{k=1}^{+\infty} \frac{1}{(k+x)^2} \right| \le |h| \sum_{k=1}^{+\infty} \frac{1}{k^3}.$$

Le terme $\sum_{k=1}^{+\infty} \frac{1}{k^3}$ est indépendant de h donc $|h| \sum_{k=1}^{+\infty} \frac{1}{k^3} \xrightarrow[h \to 0]{} 0$, comme une valeur absolue est toujours positive, par encadrement,

$$\left| \frac{S(x+h) - S(x)}{h} - \sum_{k=1}^{+\infty} \frac{1}{(k+x)^2} \right| \underset{h \to 0}{\longrightarrow} 0.$$

Le terme $\sum_{k=1}^{+\infty} \frac{1}{(k+x)^2}$ est indépendant de h donc $\frac{S(x+h)-S(x)}{h} \xrightarrow{} \sum_{k=1}^{+\infty} \frac{1}{(k+x)^2}$. Donc le taux d'accroissement de S en x évalué en x+h a une limite finie quand $h \to 0$ donc S est dérivable en x et $S'(x) = \sum_{k=1}^{+\infty} \frac{1}{(k+x)^2}$. C'est vrai pour tout $x \in \mathbb{R}^+$, donc S est dérivable sur \mathbb{R}^+ .

7. (a) Soit $x \ge 0$, la question 6(a) donne

$$S(x+1) - S(x) = (x+1-x) \sum_{k=1}^{+\infty} \frac{1}{(k+x)(k+x+1)} = \sum_{k=1}^{+\infty} \frac{(k+x+1) - (k+x)}{(k+x)(k+x+1)} = \sum_{k=1}^{+\infty} \left(\frac{1}{k+x} - \frac{1}{k+x+1} \right).$$

L'erreur ici serait d'écrire $\sum_{k=1}^{+\infty} \frac{1}{k+x}$ car cette série diverge. Donc on utilise les sommes partielles, soit $n \in \mathbb{N}^*$,

$$\sum_{k=1}^{n} \left(\frac{1}{k+x} - \frac{1}{k+x+1} \right) = \frac{1}{1+x} - \frac{1}{n+x+1}$$

par télescopage. Ainsi $\sum_{k=1}^{n} \left(\frac{1}{k+x} - \frac{1}{k+x+1} \right) = \frac{1}{1+x} - \frac{1}{n+x+1} \xrightarrow[n \to +\infty]{} \frac{1}{1+x}.$

Donc $\sum_{k=1}^{+\infty} \left(\frac{1}{k+x} - \frac{1}{k+x+1} \right) = \frac{1}{1+x}$. Donc $S(x+1) - S(x) = \frac{1}{1+x}$. Finalement

$$S(x+1) = S(x) + \frac{1}{1+x}.$$

- (b) Pour tout $n \in \mathbb{N}^*$, on pose $\mathcal{H}_n : S(n) = \sum_{k=1}^n \frac{1}{k}$.
 - Pour n = 1, la question 5(a) donne $S(1) = 1 = \sum_{k=1}^{1} \frac{1}{k}$. Donc \mathcal{H}_1 est vraie.
 - Supposons \mathcal{H}_n pour un $n \in \mathbb{N}^*$, avec la question 7(b), on a $S(n+1) = S(n) + \frac{1}{n+1}$ donc avec \mathcal{H}_n ,

$$S(n+1) = \sum_{k=1}^{n} \frac{1}{k} + \frac{1}{n+1} = \sum_{k=1}^{n+1} \frac{1}{k}$$

donc \mathcal{H}_{n+1} est vraie.

• Finalement pour tout
$$n \in \mathbb{N}^*, S(n) = \sum_{k=1}^n \frac{1}{k}$$
.

(c) Soit x > 2, on sait qu'avec la partie entière, $1 \le \lfloor x \rfloor \le x < \lfloor x \rfloor + 1$ donc avec la croissance de S, on a

$$S(\lfloor x \rfloor) \leqslant S(x) \leqslant S(\lfloor x \rfloor + 1)$$
.

Donc avec 7(b)

$$\sum_{k=1}^{\left\lfloor x\right\rfloor}\frac{1}{k}\leqslant S\left(x\right)\leqslant\sum_{k=1}^{\left\lfloor x\right\rfloor+1}\frac{1}{k}=\frac{1}{\left\lfloor x\right\rfloor+1}+\sum_{k=1}^{\left\lfloor x\right\rfloor}\frac{1}{k}.$$

On divise par $\sum_{k=1}^{\lfloor x \rfloor} \frac{1}{k} > 0$,

$$1 \leqslant \frac{S(x)}{\sum\limits_{k=1}^{\lfloor x\rfloor} \frac{1}{k}} \leqslant \frac{1}{(\lfloor x\rfloor + 1)\sum\limits_{k=1}^{\lfloor x\rfloor} \frac{1}{k}} + 1.$$

On a $\sum_{k=1}^{\lfloor x \rfloor} \frac{1}{k} \geqslant 1$ donc $(\lfloor x \rfloor + 1) \sum_{k=1}^{\lfloor x \rfloor} \frac{1}{k} \geqslant \lfloor x \rfloor + 1 \geqslant \lfloor x \rfloor > 0$ donc $0 < \frac{1}{(\lfloor x \rfloor + 1) \sum_{k=1}^{\lfloor x \rfloor} \frac{1}{k}} \leqslant \frac{1}{\lfloor x \rfloor}$ donc par

encadrement

$$\frac{1}{(\lfloor x \rfloor + 1) \sum_{k=1}^{\lfloor x \rfloor} \frac{1}{k}} \xrightarrow[x \to +\infty]{} 0$$

donc on a montré que $\frac{S(x)}{\sum\limits_{k=1}^{\lfloor x\rfloor}\frac{1}{k}} \xrightarrow{x \to +\infty} 1$ et $S(x) \sim \sum_{x \to +\infty}^{\lfloor x\rfloor}\frac{1}{k}$.

La question 2 donne alors $S\left(x\right) \underset{x \to +\infty}{\sim} \ln\left(\lfloor x \rfloor\right)$.

Sachant que ln est croissante sur \mathbb{R}^{+*} , on a $1 \leq \lfloor x \rfloor \leq x < \lfloor x \rfloor + 1$ qui implique $0 \leq \ln(\lfloor x \rfloor) \leq \ln(x) \leq \ln(\lfloor x \rfloor + 1)$. Avec x > 2, on a $\lfloor x \rfloor > 1$ donc $\ln(\lfloor x \rfloor) > 0$, et

$$1 \leqslant \frac{\ln\left(x\right)}{\ln\left(\left|x\right|\right)} \leqslant \frac{\ln\left(\left\lfloor x\right\rfloor + 1\right)}{\ln\left(\left|x\right|\right)} = \frac{\ln\left(\left\lfloor x\right\rfloor\right) + \ln\left(1 + \frac{1}{\left\lfloor x\right\rfloor}\right)}{\ln\left(\left|x\right|\right)} = 1 + \frac{\ln\left(1 + \frac{1}{\left\lfloor x\right\rfloor}\right)}{\ln\left(\left|x\right|\right)}.$$

Une fois de plus par encadrement on a $\frac{\ln(x)}{\ln(\lfloor x \rfloor)} \underset{x \to +\infty}{\to} 1$ donc $\ln(x) \underset{x \to +\infty}{\sim} \ln(\lfloor x \rfloor)$. Finalement

$$S(x) \underset{x \to +\infty}{\sim} \ln(x)$$
.

8. (a) Pour tout $k \in \mathbb{N}^*$, la fonction $x \mapsto \frac{1}{k+x}$ est continue sur [0,1] comme inverse d'un polynôme qui ne s'annule pas donc on peut intégrer $x \mapsto \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+x}\right)$ selon x sur [0,1], la somme étant finie. La linéarité de l'intégration donne

$$\int_0^1 \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+x} \right) dx = \sum_{k=1}^n \frac{1}{k} \int_0^1 1 dx - \sum_{k=1}^n \int_0^1 \frac{1}{k+x} dx = \sum_{k=1}^n \frac{1}{k} - \sum_{k=1}^n \left[\ln(k+x) \right]_0^1$$
$$= \sum_{k=1}^n \frac{1}{k} - \sum_{k=1}^n \left(\ln(k+1) - \ln(k) \right)$$

donc par télescopage

$$\int_0^1 \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+x} \right) dx = \sum_{k=1}^n \frac{1}{k} - \ln(n+1) = u_n.$$

(b) La fonction S est dérivable sur \mathbb{R}^+ donc continue sur [0,1], soit $n \in \mathbb{N}^*$,

$$\int_{0}^{1} S(x) dx - u_{n} = \int_{0}^{1} \left(S(x) - \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+x} \right) \right) dx$$

$$= \int_{0}^{1} \left(\sum_{k=1}^{+\infty} \left(\frac{1}{k} - \frac{1}{k+x} \right) - \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+x} \right) \right) dx = \int_{0}^{1} \left(\sum_{k=n+1}^{+\infty} \left(\frac{1}{k} - \frac{1}{k+x} \right) \right) dx$$

$$= \int_{0}^{1} \left(\sum_{k=n+1}^{+\infty} \left(\frac{x}{k(k+x)} \right) \right) dx = \int_{0}^{1} x \left(\sum_{k=n+1}^{+\infty} \left(\frac{1}{k(k+x)} \right) \right) dx.$$

Avec $0 \le x$, $k \in \mathbb{N}^*$, on a $0 < k^2 \le k(k+x)$ donc $0 < \frac{1}{k(k+x)} \le \frac{1}{k^2}$, donc en sommant sachant que les séries convergent

$$0 < \sum_{k=n+1}^{+\infty} \frac{1}{k(k+x)} \le \sum_{k=n+1}^{+\infty} \frac{1}{k^2}$$

ainsi

$$0 \leqslant x \sum_{k=n+1}^{+\infty} \frac{1}{k(k+x)} \leqslant x \sum_{k=n+1}^{+\infty} \frac{1}{k^2}.$$

On intègre selon x sur [0,1] avec 0 < 1,

$$0 \leqslant \int_0^1 x \sum_{k=n+1}^{+\infty} \frac{1}{k(k+x)} dx \leqslant \sum_{k=n+1}^{+\infty} \frac{1}{k^2} \int_0^1 x dx = \frac{1}{2} \sum_{k=n+1}^{+\infty} \frac{1}{k^2}.$$

Finalement

$$\boxed{0 \leqslant \int_0^1 S(x) dx - u_n \leqslant \frac{1}{2} \sum_{k=n+1}^{+\infty} \frac{1}{k^2}}.$$

(c) La quantité $\sum_{k=n+1}^{+\infty} \frac{1}{k^2}$ est le reste d'une série convergente donc

$$\sum_{k=n+1}^{+\infty} \frac{1}{k^2} \underset{n \to +\infty}{\to} 0$$

donc

$$\int_0^1 S(x) dx - u_n \underset{n \to +\infty}{\longrightarrow} 0.$$

Comme $\int_0^1 S(x) dx$ est indépendant de n, $u_n \underset{n \to +\infty}{\to} \int_0^1 S(x) dx$, l'unicité de la limite assure avec 1(b) que

$$\int_0^1 S(x) \mathrm{d}x = \gamma.$$

9. La fonction f est définie et positive sur \mathbb{R} . Sur $]-\infty,1[$, f est constante donc continue. Sur $[1,+\infty[$, $f(x)=\frac{1}{x^2}$ donc f est continue sur $[1,+\infty[$ comme carré de la fonction inverse. Soit A>1, on a

$$\int_{-\infty}^{A} f(t) dt = \int_{1}^{A} f(t) dt = \int_{1}^{A} \frac{1}{t^{2}} dt = \left[-\frac{1}{t} \right]_{1}^{A} = -\frac{1}{A} + 1 \underset{A \to +\infty}{\longrightarrow} 1.$$

Donc $\int_{-\infty}^{+\infty} f(t) dt$ converge est vaut 1.

Finalement f est une densité de probabilité.

10. On note F la fonction de répartition de X.

(a) Soit
$$x < 1$$
, on a $F(x) = \int_{-\infty}^{x} f(t) dt = \int_{-\infty}^{x} 0 dt = 0$.
Soit $1 \le x$, on a $F(x) = \int_{-\infty}^{x} f(t) dt = \int_{1}^{x} \frac{1}{t^2} dt = \left[-\frac{1}{t} \right]_{1}^{x} = -\frac{1}{x} + 1$.

Bilan:

$$F(x) = \begin{cases} 0 & \text{si } x < 1\\ \frac{x-1}{x} & \text{si } 1 \leqslant x \end{cases}$$

- (b) X est à densité donc X a une espérance si et seulement si $\int_{-\infty}^{+\infty} t f(t) dt$ converge absolument. Or, pour t > 1, $tf(t) = \frac{1}{t}$ et on sait que l'intégrale de Riemann $\int_{1}^{+\infty} \frac{1}{t} dt$ diverge donc X n'a pas d'espérance.
- 11. (a) Une densité f de X est nulle sur $]-\infty,1[$ donc on peut considérer $X(\Omega)=[1,+\infty[$ donc $[X](\Omega)=\mathbb{N}^*,$ donc $\{[[X]=k]\}_{k\in\mathbb{N}^*}$ est un système complet d'événements donc, pour tout $x\in[0,1[,$

$$P\left(Y\leqslant x\right)=\sum_{k=1}^{+\infty}P\left(\left[\lfloor X\rfloor=k\right]\cap\left[Y\leqslant x\right]\right)=\sum_{k=1}^{+\infty}P\left(\left[\lfloor X\rfloor=k\right]\cap\left[X-\lfloor X\rfloor\leqslant x\right]\right)$$

$$=\sum_{k=1}^{+\infty}P\left(\left[\lfloor X\rfloor=k\right]\cap\left[X\leqslant\lfloor X\rfloor+x\right]\right)=\sum_{k=1}^{+\infty}P\left(\left[\lfloor X\rfloor=k\right]\cap\left[X\leqslant k+x\right]\right).$$

On sait que $[|X] \leq X]$ est certain donc

$$P(Y \leqslant x) = \sum_{k=1}^{+\infty} P([\lfloor X \rfloor = k] \cap [k \leqslant X \leqslant k + x]).$$

Comme $0 \le x < 1$, si $w \in [k \le X \le k + x]$ alors $k \le X(w) \le k + x$ donc $k \le X(w) \le k + x < k + 1$ donc nécessairement $\lfloor X(w) \rfloor = k$ donc $w \in [\lfloor X \rfloor = k]$ donc $[k \le X \le k + x] \subset [\lfloor X \rfloor = k]$ et $[\lfloor X \rfloor = k] \cap [k \le X \le k + x] = [k \le X \le k + x]$.

Finalement

$$P(Y \leqslant x) = \sum_{k=1}^{+\infty} P(k \leqslant X \leqslant k + x).$$

Soit $k \in \mathbb{N}^*$, on a $1 \leq k \leq k + x$ donc

$$P(k \le X \le k + x) = F(x + k) - F(k) = -\frac{1}{k + x} + 1 - \left(-\frac{1}{k} + 1\right) = \frac{1}{k} - \frac{1}{k + x}$$

donc par somme avec des séries qui convergent

$$P(Y \leqslant x) = \sum_{k=1}^{+\infty} \left(\frac{1}{k} - \frac{1}{k+x}\right) = S(x).$$

(b) On note F_Y la fonction de répartition de Y. On sait que, pour tout $x \in \mathbb{R}$, on a $\lfloor x \rfloor \leqslant x < \lfloor x \rfloor + 1$ donc $0 \leqslant x - \lfloor x \rfloor < 1$. Or $Y = X - \lfloor X \rfloor$ donc $Y(\Omega) \subset [0, 1]$. On en déduit

$$F_Y(x) = \begin{cases} 0 & \text{si } x < 0 \\ S(x) & \text{si } 0 \leqslant x < 1 \\ 1 & \text{si } 1 \leqslant x \end{cases}$$

(c) Sur les intervalles $]-\infty,0[,]0,1[,]1;+\infty[$, la fonction F_Y est est C^1 donc continue car c'est le cas des fonctions constantes et de S sur [0,1].

En 0, on a $\lim_{0^{-}} F_Y = \lim_{0^{-}} (0) = 0$ et $\lim_{0^{+}} F_Y = \lim_{0^{+}} (S) = S(0) = 0 = F_Y(0)$ (question 5(a)) donc F_Y est continue en 0.

En 1, on a $\lim_{1^{-}} F_Y = \lim_{1^{-}} (S) = S(1) = 1$ (question 5(a)) et $\lim_{1^{+}} F_Y = \lim_{1^{+}} (1) = 1 = F_Y(1)$ donc F_Y est continue en 1.

Donc F_Y est continue sur \mathbb{R} et C^1 sur $\mathbb{R} - \{0, 1\}$. Finalement Y est à densité. On a une densité de Y en dérivant F_Y là où elle est C^1 et en imposant des valeurs positives en 0 et 1, par exemple, on propose avec la question 6(c),

$$f_Y(x) = \begin{cases} 0 & \text{si } x < 0 \\ S'(x) = \sum_{k=1}^{+\infty} \frac{1}{(k+x)^2} & \text{si } 0 \le x \le 1 \\ 0 & \text{si } 1 < x \end{cases}.$$

En 0 et en 1, j'ai imposé les valeurs S'(0) et S'(1) qui sont positives ainsi f_Y est continue sur [0,1].

12. On a vu que $Y(\Omega) \subset [0,1]$ donc le support de Y est borné et Y admet une espérance. Et

$$E(Y) = \int_0^1 x f_Y(x) dx = \int_0^1 x S'(x) dx.$$

On pose u(x) = x, u'(x) = 1 et v = S, ces fonctions sont C^1 sur [0,1] et par intégartion par parties,

$$E(Y) = [xS(x)]_0^1 - \int_0^1 S(x) dx = S(1) - 0 - \gamma$$

avec la question 8(c). Finalement Y a une espérance et elle vaut $E(Y) = 1 - \gamma$.

Problème 2

- 1. Soit $n \in \mathbb{N}^*$. Pour tout $k \in \mathbb{N}$, on pose $e_k(X) = X^k$.
 - (a) On a $e_0' = e_0'' = \theta$, le polynôme nul. Donc $\varphi_n(e_0) = \varphi_n(1) = Xe_0(X)$ donc $\varphi_n(1) = X$. Et comme $e_1' = 1, e_1'' = \theta$ donc

$$\varphi_n(X) = Xe_1 - \frac{1}{n^2}((2n-1)X+1)(X-1)e_1' = \frac{1}{n^2}\left(n^2X^2 - (2n-1)X^2 - X + (2n-1)X + 1\right)$$

$$= \frac{1}{n^2} \left((n^2 - 2n + 1)X^2 + (2n - 2)X + 1 \right) = \frac{1}{n^2} \left((n - 1)^2 X^2 + 2(n - 1)X + 1 \right).$$

Soit $i \in [2, n]$, $e'_i = ie_{i-1}, e''_i = i(i-1)e_{i-2}$ donc

$$\varphi_n(X^i) = Xe_i - \frac{1}{n^2}((2n-1)X+1)(X-1)e_i' + \frac{1}{n^2}X(X-1)^2e_i''$$

$$= \frac{1}{n^2}\left(n^2X^{i+1} - \left((2n-1)X^2 + X - (2n-1)X - 1\right)iX^{i-1} + (X^3 - 2X^2 + X)i(i-1)X^{i-2}\right)$$

$$= \frac{1}{n^2}\left(n^2X^{i+1} - (2n-1)iX^{i+1} + (2n-2)iX^i + iX^{i-1} + (X^3 - 2X^2 + X)i(i-1)X^{i-2}\right)$$

$$= \frac{1}{n^2}\left((n^2 - 2ni + i + i^2 - i)X^{i+1} + (2ni - 2i - 2i^2 + 2i)X^i + iX^{i-1} + i(i-1)X^{i-1}\right)$$

donc

$$\varphi_n(X^i) = \frac{(n-i)^2}{n^2} X^{i+1} + \frac{2i(n-i)}{n^2} X^i + \frac{i^2}{n^2} X^{i-1}$$

Cette formule reste valable quand on remplace i par 1.

(b) On va montrer que φ_n est linéaire sur $\mathbb{R}_n[X]$. Soit A, B dans $\mathbb{R}_n[X]$ et $\alpha \in \mathbb{R}$. Par linéarité de la dérivation,

$$\varphi_n(\alpha A + B) = X(\alpha A + B) - \frac{1}{n^2}((2n - 1)X + 1)(X - 1)(\alpha A + B)' + \frac{1}{n^2}X(X - 1)^2(\alpha A + B)''$$

$$= X(\alpha A) - \frac{1}{n^2}((2n - 1)X + 1)(X - 1)(\alpha A)' + \frac{1}{n^2}X(X - 1)^2(\alpha A)''$$

$$+XB(X) - \frac{1}{n^2}((2n - 1)X + 1)(X - 1)(B)' + \frac{1}{n^2}X(X - 1)^2(B)''$$

$$= \alpha\varphi_n(A) + \varphi_n(B).$$

Montrons que $\mathbb{R}_n[X]$ est stable par φ_n , pour cela on montre que les images par φ_n d'une base de $\mathbb{R}_n[X]$ sont dans $\mathbb{R}_n[X]$. On prend la base canonique $(1, X, ..., X^n)$ de $\mathbb{R}_n[X]$.

- $\varphi_n(1) = X \in \mathbb{R}_n[X]$.
- Soit $i \in [1, n-1]$, $\varphi_n(X^i) = \frac{(n-i)^2}{n^2} X^{i+1} + \frac{2i(n-i)}{n^2} X^i + \frac{i^2}{n^2} X^{i-1} \in \mathbb{R}_n[X]$ car $i+1 \leqslant n$ donc X^{i+1}, X^{i-1}, X^i sont dans $\mathbb{R}_n[X]$.
 $\varphi_n(X^n) = \frac{(n-n)^2}{n^2} X^{n+1} + \frac{2n(n-n)}{n^2} X^n + \frac{n^2}{n^2} X^{n-1} = X^{n-1} \in \mathbb{R}_n[X]$.

Donc $\mathbb{R}_n[X]$ est stable par φ_n , finalement φ_n est un endomorphisme de $\mathbb{R}_n[X]$.

- 2. On fixe dans cette question n=2.
 - - $\bullet \ \varphi_2(X^1) = \frac{(2-1)^2}{2^2} X^{1+1} + \frac{2(2-1)}{2^2} X^1 + \frac{1^2}{2^2} X^{1-1} = \frac{1}{4} + \frac{1}{2} X + \frac{1}{4} X^2.$ $\bullet \ \varphi_2(X^2) = X^{2-1} = X.$

On retrouve bien A_2 en mettant en colonnes les coordonnées de ces images dans la base $(1, X, X^2)$.

(b) On sait que $\lambda \in \mathbb{R}$ est valeur propre de A_2 si et seulement si $A_2 - \lambda I_3$ est non inversible. Pour le prouver on résout $(A_2 - \lambda I_3) \begin{pmatrix} a \\ b \\ a \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$. Il y a une solution $\begin{pmatrix} a \\ b \\ a \end{pmatrix}$ non nulle si et seulement si

 λ est valeur propre de A_2 , on a, au passage, une base du sous-espace propre (SEP) associé à λ .

•
$$\lambda = -\frac{1}{2}$$
,

$$\begin{pmatrix} A_2 + \frac{1}{2}I_3 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} \frac{1}{2}a + \frac{1}{4}b \\ a + b + c \\ \frac{1}{4}b + \frac{1}{2}c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \iff \begin{pmatrix} a + \frac{1}{2}b \\ a + b + c \\ \frac{1}{4}b + \frac{1}{2}c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\underset{L_2 \leftarrow L_2 - L_1}{\Longleftrightarrow} \begin{pmatrix} a + \frac{1}{2}b \\ \frac{1}{2}b + c \\ \frac{1}{4}b + \frac{1}{2}c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Longleftrightarrow \begin{pmatrix} a + \frac{1}{2}b \\ \frac{1}{2}b + c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Longleftrightarrow \begin{pmatrix} a \\ b \\ c \end{pmatrix} = b \begin{pmatrix} -\frac{1}{2} \\ 1 \\ -\frac{1}{2} \end{pmatrix}.$$

Il y a une solution non nulle donc $-\frac{1}{2}$ est valeur propre de A_2 . Et SEP $\left(A_2, -\frac{1}{2}, \right)$ est généré par un vecteur non nul donc il forme une base de ce SEP, on peut dire que $\begin{pmatrix} -\frac{1}{2} \\ 1 \\ 1 \end{pmatrix}$ est une base de SEP $(A_2, -\frac{1}{2})$. En multipliant par -2 non nul, on peut aussi choisir $\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$ comme base de SEP $(A_2, -\frac{1}{2})$. • $\lambda = 0$,

$$(A_2 - 0I_3) \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a + \frac{1}{2}b \\ \frac{1}{4}b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Longleftrightarrow \begin{pmatrix} b \\ a+c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Longleftrightarrow \begin{pmatrix} a \\ b \\ c \end{pmatrix} = a \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}.$$

Il y a une solution non nulle donc 0 est valeur propre de A_2 . Donc SEP $(A_2, 0)$ est généré par un vecteur non nul donc il forme une base de ce SEP, on peut dire que $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ est une base de SEP $(A_2, 0)$.

• $\lambda = 1$,

$$(A_2 - I_3) \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -a + \frac{1}{4}b \\ a - \frac{1}{2}b + c \\ \frac{1}{4}b - c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \underset{L_2 \leftarrow L_2 - L_1}{\Longleftrightarrow} \begin{pmatrix} -a + \frac{1}{4}b \\ -\frac{1}{4}b + c \\ \frac{1}{4}b - c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Longleftrightarrow \begin{pmatrix} -a + \frac{1}{4}b \\ -\frac{1}{4}b + c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

$$\iff \begin{pmatrix} a \\ b \\ c \end{pmatrix} = b \begin{pmatrix} \frac{1}{4} \\ 1 \\ \frac{1}{4} \end{pmatrix}$$

Il y a une solution non nulle donc 1 est valeur propre de A_2 . Donc SEP $(A_2, 1)$ est généré par un vecteur non nul donc il forme une base de ce SEP, on peut dire que $\begin{pmatrix} \frac{1}{4} \\ 1 \\ 1 \end{pmatrix}$ est une base de

SEP $(A_2, 0)$. On peut aussi choisir $\begin{pmatrix} 1 \\ 4 \end{pmatrix}$.

 $A_2 \in \mathcal{M}_3(\mathbb{R})$ et A_2 a 3 valeurs propres donc A_2 est diagonalisable et ses SEP sont de dimen-

On a montré SEP
$$(A_2, 1) = \text{Vect}\begin{pmatrix} 1\\4\\1 \end{pmatrix}$$
, SEP $(A_2, 0) = \text{Vect}\begin{pmatrix} 1\\0\\-1 \end{pmatrix}$, SEP $(A_2, -\frac{1}{2}) = \text{Vect}\begin{pmatrix} 1\\-2\\1 \end{pmatrix}$.

- (c) A_2 et φ_2 ont le même spectre. Pour obtenir une base de $\mathbb{R}_2[X]$ formée de vecteurs propres de φ_2 , on traduit dans $(1, X, X^2)$ les vecteurs propres de A_2 formant des bases des 3 SEP de A_2 . Cela donne $(1 2X + X^2, 1 X^2, 1 + 4X + X^2)$ comme base de $\mathbb{R}_2[X]$ formée de vecteurs propres de φ_2 .
- 3. Pour $n=1,\, \varphi_1(X-1)=\varphi_1(X)-\varphi_1(1)=1-X=\frac{-1}{1}(X-1).$ Comme X-1 n'est pas le polynôme nul, X-1 est vecteur propre de φ_1 associé à $\frac{-1}{1}=-1.$

Soit
$$n \ge 2$$
, on a alors $((X-1)^n)' = n(X-1)^{n-1}$ et $((X-1)^n)'' = n(n-1)(X-1)^{n-2}$ donc
$$\varphi_n((X-1)^n) = X(X-1)^n - \frac{1}{n^2}((2n-1)X+1)(X-1)((X-1)^n)' + \frac{1}{n^2}X(X-1)^2((X-1)^n)''$$
$$= X(X-1)^n - \frac{1}{n}((2n-1)X+1)(X-1)(X-1)^{n-1} + \frac{1}{n}X(X-1)^2(n-1)(X-1)^{n-2}$$
$$= \frac{1}{n}(X-1)^n (nX-((2n-1)X+1)+(n-1)X) = \frac{-1}{n}(X-1)^n.$$

Comme $(X-1)^n$ n'est pas le polynôme nul, $(X-1)^n$ est vecteur propre de φ_n associé à $\frac{-1}{n}$. 4. (a) Pour $i=0, \, \varphi_n(X^0)=X$ donc en évaluant en 1, on a bien $\left(\varphi_n(X^0)\right)(1)=1$.

- 4. (a) Pour i = 0, $\varphi_n(X^0) = X$ donc en évaluant en 1, on a bien $(\varphi_n(X^0))$ (1) = 1. Pour $i \in [1, n]$, $\varphi_n(X^i) = \frac{(n-i)^2}{n^2} X^{i+1} + \frac{2i(n-i)}{n^2} X^i + \frac{i^2}{n^2} X^{i-1}$ donc en remplaçant X par 1, on a $(\varphi_n(X^i))$ (1) = $\frac{(n-i)^2}{n^2} + \frac{2i(n-i)}{n^2} + \frac{i^2}{n^2} = \frac{n^2 - 2ni + i^2 + 2ni - 2i^2 + i^2}{n^2} = 1$.
 - (b) Soit $\begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix}$ une colonne de A_n , on sait que, pour un $i \in [\![0,n]\!]$, elle représente les coordonnées de $\varphi_n(X^i)$ dans la base $(1,X,...,X^n)$ donc

$$\varphi_n(X^i) = \sum_{k=0}^n a_k X^k.$$

On évalue en 1 et on utilise la question précédente,

$$(\varphi_n(X^i))(1) = \sum_{k=0}^n a_k 1^k = \sum_{k=0}^n a_k = 1.$$

Donc la somme des coefficients de chaque colonne de A_n est égale à 1

(c) Ce qui précède montre que tA_n $\begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$ car les lignes de tA_n sont les colonnes de A_n et quand on multiplie tA_n par $\begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$, on additionne les termes ligne par ligne et on trouve toujours 1. Donc comme $\begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$ est non nul, on voit que 1 est valeur propre de tA_n donc $\operatorname{rg}({}^tA_n - I_n) < n+1$ donc $\operatorname{rg}(A_n - I_n) < n+1$ car une matrice et sa transposée ont le même rang. Cela prouve que 1 est valeur propre de A_n donc de φ_n .

- 5. Soit $n \in \mathbb{N}^*$.
 - (a) Soit $P \in \mathbb{R}_n[X]$. On a ((X-1)P)' = P + (X-1)P' et ((X-1)P)'' = 2P' + (X-1)P''. Donc $(n+1)^2 \varphi_{n+1}((X-1)P) = (n+1)^2 X((X-1)P) ((2n+1)X+1)(X-1)((X-1)P)' + X(X-1)^2 ((X-1)P)''$ $= (n+1)^2 X((X-1)P) ((2n+1)X+1)(X-1)(P+(X-1)P') + X(X-1)^2 (2P'+(X-1)P'')$ $= (X-1)\left((n+1)^2 XP ((2n+1)X+1)(P+(X-1)P') + X(X-1)(2P'+(X-1)P'')\right)$ $= (X-1)\left(((n+1)^2 X ((2n+1)X+1))P + (-((2n+1)X+1)(X-1)+2X(X-1))P'\right)$ $+ (X-1)\left(X(X-1)(X-1)P''\right)$ $= (X-1)\left((n^2 X-1)P + (-((2n+1)X+1)+2X)(X-1)P' + X(X-1)^2 P''\right)$ $= (X-1)\left((n^2 X-1)P + ((-2n+1)X-1)(X-1)P' + X(X-1)^2 P''\right)$ $= (X-1)\left((n^2 XP ((2n-1)X+1)(X-1)P' + X(X-1)^2 P'' P\right).$

On retrouve bien

$$(n+1)^{2}\varphi_{n+1}((X-1)P) = (X-1)(n^{2}\varphi_{n}(P) - P).$$

(b) Supposons que P soit un vecteur propre de φ_n associé à λ alors $\varphi_n(P) = \lambda P$ et $(n+1)^2 \varphi_{n+1}((X-1)P) = (X-1) \left(n^2 \varphi_n(P) - P\right) = (X-1) \left(n^2 \lambda P - P\right) = \left(n^2 \lambda - 1\right) (X-1)P.$ Comme $(n+1)^2 \neq 0$, on a

$$\varphi_{n+1}((X-1)P) = \frac{n^2\lambda - 1}{(n+1)^2}(X-1)P.$$

Comme P est vecteur propre de φ_n , P n'est pas le polynôme nul donc (X-1)P n'est pas le polynôme nul et il est vecteur propre de φ_{n+1} associè à $\frac{n^2\lambda-1}{(n+1)^2}$.

- 6. (a) Pour tout $n \in \mathbb{N}^*$, on pose $\mathcal{H}_n : \operatorname{Sp}(\varphi_n) = \left\{\frac{-n+j(j+1)}{n^2}; j \in [0,n]\right\}$. • Par définition, $\varphi_1(P) = XP - (X^2 - 1)P'$ car $P'' = \theta$ si le degré de P est dominé par 1. Dans
 - Par définition, $\varphi_1(P) = XP (X^2 1)P'$ car $P'' = \theta$ si le degré de P est dominé par 1. Dans la base (1, X) de $\mathbb{R}_1[X]$ on a la matrice $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. On sait que λ est valeur propre de $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ si et seulement si $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \lambda I_2$ est non inversible si et seulement si det $\begin{pmatrix} -\lambda & 1 \\ 1 & -\lambda \end{pmatrix} = 0$ si et seulement si $\lambda^2 1 = 0$ si et seulement si $\lambda = 1$ ou -1. Donc $\operatorname{Sp}(\varphi_1) = \{-1, 1\} = \left\{ \frac{-1 + j(j+1)}{1^2}; j \in \llbracket 0, 1 \rrbracket \right\}$. Donc \mathcal{H}_1 est vraie.
 - Supposons \mathcal{H}_n vraie à un rang $n \in \mathbb{N}^*$. Avec la question 5(b), on sait que, pour tout $j \in [0, n]$, $\frac{n^2\left(\frac{-n+j(j+1)}{n^2}\right)-1}{(n+1)^2}$ est valeur propre de φ_{n+1} donc $\frac{-(n+1)+j(j+1)}{(n+1)^2}$ est valeur propre de φ_{n+1} . On pose $g: x \mapsto \frac{-(n+1)+x(x+1)}{(n+1)^2}$, cette fonction est polynomiale donc C^1 sur \mathbb{R} et $g'(x) = \frac{2x+1}{(n+1)^2} > 0$ lorsque $x \ge 0$. Donc g est strictement croissante sur \mathbb{R}^+ donc avec j qui varie dans [0,n], on voit que g(j) prend n+1 valeurs deux à deux distinctes comprises entre $g(0) = \frac{-1}{n+1}$ et $g(n) = \frac{-(n+1)+n(n+1)}{(n+1)^2} = \frac{n^2-1}{(n+1)^2} < 1$. Or on sait avec la question 4(c) que 1 est valeur propre de φ_{n+1} donc nous avons trouvé n+2 valeurs propres de φ_{n+1} , comme la dimension de $\mathbb{R}_{n+1}[X]$ est n+2, nous avons trouvé tous les éléments du spectre de φ_{n+1} . En remarquant que si j=n+1, on a $\frac{-(n+1)+j(j+1)}{(n+1)^2}=1$, on peut conclure

$$Sp(\varphi_{n+1}) = \left\{ \frac{-(n+1) + j(j+1)}{(n+1)^2}; j \in [0, n+1] \right\}$$

donc \mathcal{H}_{n+1} est vraie.

- Finalement pour tout $n \in \mathbb{N}^*$, $\operatorname{Sp}(\varphi_n) = \left\{ \frac{-n+j(j+1)}{n^2}; j \in [0, n] \right\}$.
- (b) Pour tout $n \in \mathbb{N}^*$, on a $\operatorname{Sp}(\varphi_n) = \left\{\frac{-n+j(j+1)}{n^2}; j \in \llbracket 0, n \rrbracket \right\}$. Nous savons que le spectre contient n+1 valeurs dans $\mathbb{R}_n[X]$ de dimension n+1 donc φ_n est diagonalisable et ses SEP sont de dimension 1.
- 7. Soit $n \in \mathbb{N}^*$.
 - (a) Pour n = 1, on a $\Pi_1(X) = 1 + X$ et on a déjà vu que $\varphi_1(X + 1) = 1 + X = \Pi_1(X)$. Soit $n \ge 2$. Par linéarité de φ_n ,

$$\varphi_n\left(\Pi_n\right) = \sum_{i=0}^n \binom{n}{i}^2 \varphi_n\left(X^i\right) = \varphi_n\left(1\right) + \sum_{i=1}^n \binom{n}{i}^2 \varphi_n\left(X^i\right).$$

Avec 1(a),

$$\varphi_n(\Pi_n) = X + \sum_{i=1}^n \binom{n}{i}^2 \left(\frac{(n-i)^2}{n^2} X^{i+1} + \frac{2i(n-i)}{n^2} X^i + \frac{i^2}{n^2} X^{i-1} \right).$$

On développe

$$\varphi_n\left(\Pi_n\right) = X + \sum_{i=1}^n \binom{n}{i}^2 \frac{(n-i)^2}{n^2} X^{i+1} + \sum_{i=1}^n \binom{n}{i}^2 \frac{2i(n-i)}{n^2} X^i + \sum_{i=1}^n \binom{n}{i}^2 \frac{i^2}{n^2} X^{i-1}.$$

On simplifie

$$\varphi_n\left(\Pi_n\right) = X + \sum_{i=1}^{n-1} \binom{n}{i}^2 \frac{(n-i)^2}{n^2} X^{i+1} + \sum_{i=1}^{n-1} \binom{n}{i}^2 \frac{2i(n-i)}{n^2} X^i + \sum_{i=1}^n \binom{n}{i}^2 \frac{i^2}{n^2} X^{i-1}.$$

Pour
$$1 \le i \le n-1$$
, on utilise $\binom{n}{i}^2 \frac{(n-i)^2}{n^2} = \left(\frac{n!}{i!(n-i)!}\right)^2 \frac{(n-i)^2}{n^2} = \left(\frac{(n-1)!}{i!(n-i-1)!}\right)^2 = \binom{n-1}{i}^2$ et $\binom{n}{i}^2 \frac{2i(n-i)}{n^2} = 2\left(\frac{n!}{i!(n-i)!}\right)^2 \frac{i(n-i)}{n^2} = 2\left(\frac{n!}{i!(n-i)!}\right)^2 \frac{i(n-i)}{n} = 2\left(\frac{n!}{i!(n-i)!}\right)^2 \frac{i(n-i)}{n} = 2\left(\frac{(n-1)!}{(i-1)!(n-i)!}\right) \left(\frac{(n-1)!}{i!(n-1-i)!}\right) = 2\binom{n-1}{i-1}\binom{n-1}{i}.$

Pour $1 \leqslant i \leqslant n$, on utilise $\binom{n}{i}^2 \frac{i^2}{n^2} = \binom{n-1}{i-1}^2$.

$$\varphi_n(\Pi_n) = X + \sum_{i=1}^{n-1} {n-1 \choose i}^2 X^{i+1} + \sum_{i=1}^{n-1} 2 {n-1 \choose i-1} {n-1 \choose i} X^i + \sum_{i=1}^n {n-1 \choose i-1}^2 X^{i-1}.$$

on fait les changements de variables k = i + 1 et j = i - 1,

$$\varphi_n(\Pi_n) = X + \sum_{k=2}^n \binom{n-1}{k-1}^2 X^k + 2 \sum_{i=1}^{n-1} \binom{n-1}{i-1} \binom{n-1}{i} X^i + \sum_{i=0}^{n-1} \binom{n-1}{j}^2 X^j.$$

Pour n=2, on obtient

$$\varphi_2(\Pi_2) = X + \sum_{k=2}^2 \binom{1}{k-1}^2 X^k + 2\sum_{i=1}^1 \binom{1}{i-1} \binom{1}{i} X^i + \sum_{j=0}^1 \binom{1}{j}^2 X^j = X + X^2 + 2X + X^0 + X$$
$$= X^2 + 4X + 1 = \sum_{k=0}^2 \binom{2}{k}^2 X^k = \Pi_2.$$

Pour $n \ge 3$, on peut isoler la plage commune d'indexation [2, n-1],

$$\varphi_{n}(\Pi_{n}) = X + \underbrace{\binom{n-1}{n-1}^{2} X^{n} + \sum_{k=2}^{n-1} \binom{n-1}{k-1}^{2} X^{k}}_{k=2} + 2 \left(\binom{n-1}{1-1} \binom{n-1}{1} X^{1} + \sum_{i=2}^{n-1} \binom{n-1}{i-1} \binom{n-1}{i} X^{i} \right)$$

$$+ \binom{n-1}{0}^{2} X^{0} + \binom{n-1}{1}^{2} X^{1} + \sum_{j=0}^{n-1} \binom{n-1}{j}^{2} X^{j}$$

$$\varphi_{n}(\Pi_{n}) = X + X^{n} + \sum_{k=2}^{n-1} \binom{n-1}{k-1}^{2} X^{k} + 2 \left((n-1)X + \sum_{i=2}^{n-1} \binom{n-1}{i-1} \binom{n-1}{i} X^{i} \right)$$

$$+1 + (n-1)^{2} X + \sum_{j=0}^{n-1} \binom{n-1}{j}^{2} X^{j}.$$

On urbanise avec les puissances de X,

$$\varphi_n\left(\Pi_n\right) = 1 + \left(1 + 2(n-1) + (n-1)^2\right)X + \sum_{k=2}^{n-1} \left(\binom{n-1}{k-1}^2 + 2\binom{n-1}{k-1}\binom{n-1}{k} + \binom{n-1}{k}^2\right)X^k + X^n$$

$$= 1 + n^2X + \sum_{k=2}^{n-1} \left(\binom{n-1}{k-1} + \binom{n-1}{k}\right)^2X^k + X^n.$$

Le triangle de Pascal donne, pour $2 \leq k \leq n-1$, $\binom{n-1}{k-1} + \binom{n-1}{k} = \binom{n}{k}$. Il est temps de conclure

$$\varphi_n(\Pi_n) = \binom{n}{0}^2 + \binom{n}{1}^2 X + \sum_{k=2}^{n-1} \binom{n}{k}^2 X^k + \binom{n}{n}^2 X^n = \sum_{k=0}^n \binom{n}{k}^2 X^k.$$

Finalement, pour tout $n \in \mathbb{N}^*$, $\varphi_n(\Pi_n) = \Pi_n$.

- (b) Π_n est de degré n donc ce n'est pas le polynôme nul et il est vecteur propre associé à 1. Or les SEP de φ_n sont tous de dimension 1 donc $\text{SEP}(\varphi_n, 1)$ est une droite et tout vecteur non nul de $\text{SEP}(\varphi_n, 1)$ est une base de $\text{SEP}(\varphi_n, 1)$ donc $\boxed{\text{SEP}(\varphi_n, 1) = \text{Vect}(\Pi_n)}$.
- 8. (a) Avec la question 6, on sait que φ_n est diagonalisable avec des SEP de dimension 1. On note $(\lambda_j)_{0\leqslant j\leqslant n}$ les n+1 valeurs propres, en notant R_j un vecteur propre associé à $0\leqslant j\leqslant n$, on sait que R_j est une base de SEP $(\varphi_n,\lambda_j)=\mathrm{Vect}(R_j)$. Ainsi la famille $(R_0,R_1,...,R_n)$ est une base de $\mathbb{R}_n[X]$ donc tout vecteur $P\in\mathbb{R}_n[X]$ est combinaison linéaire de $(R_0,R_1,...,R_n)$ et il existe $(\alpha_j)_{0\leqslant j\leqslant n}\in\mathbb{R}^{n+1}$ tel que $P=\sum\limits_{j=0}^n\alpha_jR_j$, on compose par φ_n ,

$$\varphi_n(P) = \varphi_n\left(\sum_{j=0}^n \alpha_j R_j\right) = \sum_{j=0}^n \alpha_j \varphi_n(R_j) = \sum_{j=0}^n \alpha_j \lambda_j R_j.$$

On peut composer à nouveau par φ_n ,

$$\varphi_n^2(P) = \varphi_n\left(\sum_{j=0}^n \alpha_j \lambda_j R_j\right) = \sum_{j=0}^n \alpha_j \lambda_j \varphi_n(R_j) = \sum_{j=0}^n \alpha_j \lambda_j^2 R_j.$$

A ce stade de l'épreuve, on peut se permettre de dire qu'une récurrence simple assure que, pour tout $k \in \mathbb{N}^*$,

$$\varphi_n^k(P) = \sum_{j=0}^n \alpha_j \left(\lambda_j^k\right) R_j.$$

(b) Soit $n \ge 2$, on sait que, pour tout $j \in [0, n]$, $\lambda_j = \frac{-n + j(j+1)}{n^2} = g(j)$ avec les notations de la réponse 6(a). La fonction g est strictement croissante donc pour $j \in [0, n-1]$, on a

$$g(0) = -\frac{1}{n} \le g(j) = \lambda_j \le g(n-1) = \frac{-n + (n-1)n}{n^2} = \frac{n^2 - 2n}{n^2} < 1.$$

Donc $-1 < \lambda_j < 1$ et $\lambda_j^k \xrightarrow[k \to +\infty]{} 0$. Notons que $\lambda_n = g(n) = 1$.

Comme n est indépendant de k, on peut sommer les limites ce qui donne

$$\lim_{k \to +\infty} \left(\varphi_n^k \left(P \right) \right) = \lim_{k \to +\infty} \left(\sum_{j=0}^n \alpha_j \left(\lambda_j^k \right) R_j \right) = \lim_{k \to +\infty} \left(\sum_{j=0}^{n-1} \alpha_j \left(\lambda_j^k \right) R_j + \alpha_n R_n \right) = \alpha_n R_n.$$

On sait que $R_n \in \text{SEP}(\varphi_n, 1) = \text{Vect}(\Pi_n)$ donc R_n est colinéaire à Π_n donc il existe $\beta \in \mathbb{R}$ tel que $R_n = \beta \Pi_n$ et en notant $\alpha = \alpha_n \beta$, on a bien

$$\lim_{k \to +\infty} \left(\varphi_n^k \left(P \right) \right) = \alpha \Pi_n.$$

Pour n=1, on a $\varphi_1(X)=1$ et $\varphi_1^2(X)=X$ donc la suite $(\varphi_1^k(X)_{k\in\mathbb{N}^*})$ n'a pas de limite.

- 9. Au début de l'épreuve, il y a n rouges dans l'urne rouge et n bleues dans l'urne bleue donc comme il y a un échange, après la première épreuve il y a n-1 rouges dans l'urne rouge et Z_1 est constante de valeur n-1.
- 10. Soit $k \in \mathbb{N}$, le nombre de boules rouges dans l'urne rouge est toujours compris entre 0 et n car il y a toujours n boules dans cette urne. Donc $Z_k(\Omega) \subset [\![0,n]\!]$ et $\{[Z=\ell]\}_{0 \leqslant \ell \leqslant n}$ est un système complet dévénements avec éventuellement des ensembles vides, on parle aussi de quasi-système complet dévénements. Soit $i \in [\![0,n]\!]$, avec la formule des probabilités totales,

$$P(Z_{k+1} = i) = \sum_{\ell=0}^{n} P([Z_{k+1} = i] \cap [Z_k = \ell]).$$

Le $(k+1)^e$ échange permet d'enlever ou d'ajouter une boule rouge à l'urne rouge donc l'écart entre le nombre de boules rouges dans l'urne rouge entre le k^e échange et le $(k+1)^e$ échange ne peut dépasser 1. Donc si $\ell < i-1$ ou si $\ell > i+1$ alors $P([Z_{k+1}=i] \cap [Z_k=\ell]) = 0$, donc

$$P\left(Z_{k+1}=i\right) = P\left(\left[Z_{k+1}=i\right] \cap \left[Z_{k}=i-1\right]\right) + P\left(\left[Z_{k+1}=i\right] \cap \left[Z_{k}=i\right]\right) + P\left(\left[Z_{k+1}=i+1\right] \cap \left[Z_{k}=i+1\right]\right).$$

• Si $P(Z_k=i-1) \neq 0$, alors $P_{[Z_k=i-1]}(Z_{k+1}=i)$ est la probabilité que, sachant qu'il y a i-1 boules rouges dans l'urne rouge, il y en ait i au tour suivant. Cela signifie que l'on a sorti une bleue de l'urne rouge et une rouge de l'urne bleue, or il y a n-(i-1) boules bleues dans l'urne rouge donc, par équiprobabilité, on en pioche une avec la probabilité $\frac{n-(i-1)}{n}=1-\frac{i-1}{n}$. Pour l'urne bleue, c'est la même probabilité par symétrie donc $P_{[Z_k=i-1]}(Z_{k+1}=i)=\left(1-\frac{i-1}{n}\right)^2$. Si $P(Z_k=i-1)=0$, alors $P([Z_{k+1}=i]\cap [Z_k=i-1])=0$ donc dans tous les cas,

$$P([Z_{k+1} = i] \cap [Z_k = i - 1]) = \left(1 - \frac{i - 1}{n}\right)^2 P(Z_k = i - 1).$$

• Si $P\left(Z_k=i\right) \neq 0$, alors $P_{[Z_k=i]}\left(Z_{k+1}=i\right)$ est la probabilité que, sachant qu'il y a i boules rouges dans l'urne rouge, il y en ait i au tour suivant. Cela signifie que l'on a sorti une bleue de l'urne rouge et une bleue de l'urne bleue ou bien que l'on a sorti une rouge de l'urne rouge et une rouge de l'urne bleue. Dans le premier cas, il y a n-i boules bleues dans l'urne rouge donc, par équiprobabilité, on en pioche une avec la probabilité $\frac{n-i}{n}=1-\frac{i}{n}$ et il y a i boules bleues dans l'urne bleue donc,

par équiprobabilité, on en pioche une avec la probabilité $\frac{i}{n}$ donc le premier cas se réalise avec la probabilité $\left(1-\frac{i}{n}\right)\frac{i}{n}$. L'autre cas est incompatible avec le premier et par symétrie il a la même probabilité. donc $P_{[Z_k=i-1]}\left(Z_{k+1}=i\right)=2\frac{i}{n}\left(1-\frac{i}{n}\right)$. Si $P\left(Z_k=i\right)=0$, alors $P\left([Z_{k+1}=i]\cap[Z_k=i]\right)=0$ donc dans tous les cas,

$$P([Z_{k+1} = i] \cap [Z_k = i - 1]) = 2\frac{i}{n} \left(1 - \frac{i}{n}\right) P(Z_k = i).$$

• Si $P\left(Z_k=i+1\right) \neq 0$, alors $P_{[Z_k=i+1]}\left(Z_{k+1}=i\right)$ est la probabilité que, sachant qu'il y a i+1 boules rouges dans l'urne rouge, il y en ait i au tour suivant. Cela signifie que l'on a sorti une rouge de l'urne rouge et une bleue de l'urne bleue, or il y a i+1 boules rouges dans l'urne rouge donc, par équiprobabilité, on en pioche une avec la probabilité $\frac{i+1}{n}$. Pour l'urne bleue, c'est la même probabilité par symétrie donc $P_{[Z_k=i+1]}\left(Z_{k+1}=i\right)=\left(\frac{i+1}{n}\right)^2$. Si $P\left(Z_k=i+1\right)=0$, alors $P\left([Z_{k+1}=i]\cap [Z_k=i+1]\right)=0$ donc dans tous les cas,

$$P([Z_{k+1} = i] \cap [Z_k = i+1]) = \left(\frac{i+1}{n}\right)^2 P(Z_k = i+1).$$

Finalement

$$P(Z_{k+1} = i) = \left(1 - \frac{i-1}{n}\right)^2 P(Z_k = i-1) + 2\frac{i}{n}\left(1 - \frac{i}{n}\right) P(Z_k = i) + \left(\frac{i+1}{n}\right)^2 P(Z_k = i+1).$$

```
11. (a) function Z=simule(n,k)
          R=n
          for j=1:k
              aleaR=rand()
              aleaB=rand()
               if aleaR \leq (R/n) & aleaB \leq (R/n) then // on enlève une rouge de
                   //l'urne rouge et une bleue de l'urne bleue
                   R=R-1
              elseif aleaR > (R/n) & aleaB > (R/n) then // on enlève une bleue de
                   //l'urne rouge et une rouge de l'urne bleue
                   R=R+1
                   // dans les autres cas le nombre de rouge est constant l'urne
                   // rouge
               end
          end
          Z=R
```

endfunction

(b) On s'appuie sur la méthode de Monte-Carlo. On utilise la loi faible des grands nombres, on simule un grand nombre de fois la variable Z_k de façon indépendante et on fait la moyenne des valeurs obtenues, cette moyenne dite empirique converge en probabilité vers $E(Z_k)$. On fixe 10 000 simulations.

```
function E=esperance(n,k)
    S=0
    for k=1:10000
        S=S+simule(n,k)
    end
    E=S/10000
endfunction
```

- (c) Les associations $30 \to 15, 20 \to 10, 10 \to 5$ suggèrent la relation $n \mapsto \frac{n}{2}$. Donc $\lim_{k \to +\infty} (E(Z_k)) = \frac{n}{2}$.
- 12. (a) Pour k = 0, on sait que $[Z_0 = n]$, $[Z_1 = n 1]$ sont certains donc $\Delta_0(\Omega) = \{-1\}$. Pour k = 1, on sait que $[Z_1 = n - 1]$ est certain et $Z_2(\Omega) = \{n - 2, n - 1, n\}$ donc $\Delta_1(\Omega) = \{-1, 0, 1\}$. Pour $k \ge 2$, on montre par récurrence que $\Delta_k(\Omega) = \{-1, 0, 1\}$. En effet, après un échange la variation du nombre de boules rouges est compris entre -1 et 1.
 - (b) Soit $k \in \mathbb{N}$, on reprend la formule des probabilités totales avec le quasi-système complet dévénements $\{[Z=i]\}_{0 \le i \le n}$,

$$P(\Delta_k = -1) = \sum_{i=0}^n P([\Delta_k = -1] \cap [Z_k = i]) = \sum_{i=0}^n P([Z_{k+1} - Z_k = -1] \cap [Z_k = i])$$
$$= \sum_{i=0}^n P([Z_{k+1} = i - 1] \cap [Z_k = i]).$$

Si $P(Z_k=i) \neq 0$, alors $P_{[Z_k=i]}(Z_{k+1}=i-1)$ est la probabilité que, sachant qu'il y a i boules rouges dans l'urne rouge, il y en ait i-1 au tour suivant. Cela signifie que l'on a sorti une rouge de l'urne rouge et une bleue de l'urne bleue, or il y a i boules rouges dans l'urne rouge donc, par équiprobabilité, on en pioche une avec la probabilité $\frac{i}{n}$. Pour l'urne bleue, c'est la même probabilité par symétrie donc $P_{[Z_k=i+1]}(Z_{k+1}=i)=\left(\frac{i}{n}\right)^2$.

Si $P(Z_k = i) = 0$, alors $P([Z_{k+1} = i - 1] \cap [Z_k = i]) = 0$ donc dans tous les cas,

$$P([Z_{k+1} = i - 1] \cap [Z_k = i]) = \left(\frac{i}{n}\right)^2 P(Z_k = i).$$

Finalement

$$P(\Delta_k = -1) = \sum_{i=0}^n \left(\frac{i}{n}\right)^2 P(Z_k = i).$$

De façon analogue,

$$P(\Delta_k = 1) = \sum_{i=0}^n P([\Delta_k = 1] \cap [Z_k = i]) = \sum_{i=0}^n P([Z_{k+1} - Z_k = 1] \cap [Z_k = i])$$
$$= \sum_{i=0}^n P([Z_{k+1} = i + 1] \cap [Z_k = i]).$$

Si $P(Z_k=i) \neq 0$, alors $P_{[Z_k=i]}(Z_{k+1}=i+1)$ est la probabilité que, sachant qu'il y a i boules rouges dans l'urne rouge, il y en ait i+1 au tour suivant. Cela signifie que l'on a sorti une bleue de l'urne rouge et une rouge de l'urne bleue, or il y a n-i boules bleues dans l'urne rouge donc, par équiprobabilité, on en pioche une avec la probabilité $\frac{n-i}{n}$. Pour l'urne bleue, c'est la même probabilité par symétrie donc $P_{[Z_k=i+1]}(Z_{k+1}=i)=\left(\frac{n-i}{n}\right)^2$.

Si $P(Z_k = i) = 0$, alors $P([Z_{k+1} = i+1] \cap [Z_k = i]) = 0$ donc dans tous les cas,

$$P([Z_{k+1} = i+1] \cap [Z_k = i]) = \left(1 - \frac{i}{n}\right)^2 P(Z_k = i).$$

Finalement

$$P(\Delta_k = 1) = \sum_{i=0}^{n} \left(1 - \frac{i}{n}\right)^2 P(Z_k = i).$$

(c) Le support de Δ_k contient au plus 3 valeurs donc Δ_k a une espérance et

$$E(\Delta_k) = -P(\Delta_k = -1) + 0 \times P(\Delta_k = 0) + P(\Delta_k = 1) = \sum_{i=0}^n \left(-\left(\frac{i}{n}\right)^2 + \left(1 - \frac{i}{n}\right)^2 \right) P(Z_k = i)$$
$$= \sum_{i=0}^n \left(1 - 2\frac{i}{n} \right) P(Z_k = i) = \sum_{i=0}^n P(Z_k = i) - \frac{2}{n} \sum_{i=0}^n i P(Z_k = i)$$

or $Z_k(\Omega) \subset [0, n]$ donc $\sum_{i=0}^n P(Z_k = i) = 1$ et $\sum_{i=0}^n i P(Z_k = i) = E(Z_k)$ finalement

$$E(\Delta_k) = 1 - \frac{2}{n}E(Z_k).$$

Par linéarité de l'epérance, $E(\Delta_k) = E(Z_{k+1}) - E(Z_k) = 1 - \frac{2}{n}E(Z_k)$ donc

$$E(Z_{k+1}) = 1 + \left(1 - \frac{2}{n}\right)E(Z_k)$$

(d) On pose, pour $k \in \mathbb{N}^*$, $u_k = E(Z_k)$, on a $u_{k+1} = 1 + \left(1 - \frac{2}{n}\right) u_k$ avec $\left(1 - \frac{2}{n}\right)$ indépendant de k, on voit que la suite (u_k) suit une relation de récurrence linéaire d'ordre 2. Le point fixe ℓ est solution de $\ell = 1 + \left(1 - \frac{2}{n}\right) \ell \iff \ell - \left(1 - \frac{2}{n}\right) \ell = 1 \iff \frac{2}{n} \ell = 1 \iff \ell = \frac{n}{2}$. Par soustraction terme à terme de $\ell = 1 + \left(1 - \frac{2}{n}\right) \ell$ et $u_{k+1} = 1 + \left(1 - \frac{2}{n}\right) u_k$, on a

$$u_{k+1} - \ell = \left(1 - \frac{2}{n}\right)(u_k - \ell)$$

donc la suite $(u_k - \ell)_{k \in \mathbb{N}^*}$ est géométrique de raison $(1 - \frac{2}{n})$.

Et pour tout $k \in \mathbb{N}^*, u_k - \ell = (1 - \frac{2}{n})^{k-1} (u_1 - \ell).$

On sait que $n \ge 2$, donc $0 < \frac{2}{n} \le 1$ et $0 \le 1 - \frac{2}{n} < 1$ donc $\left(1 - \frac{2}{n}\right)^{k-1} \xrightarrow[k \to +\infty]{} 0$ donc $u_k - \ell \xrightarrow[k \to +\infty]{} 0$ donc

$$u_k = E(Z_k) \underset{k \to +\infty}{\to} \ell = \frac{n}{2}.$$

Il est naturel de s'attendre à un équilibre des boules rouges et bleues dans les deux urnes après un grand nombre d'échanges étant entendu qu'il y a au total autant de rouges que de bleues dans le jeu.

- 13. Soit $k \in \mathbb{N}$.
 - (a) Avec 1(a),

$$\begin{split} \varphi_n\left(Q_k\right) &= \sum_{i=0}^n P\left(Z_k = i\right) \varphi_n\left(X^i\right) = P\left(Z_k = 0\right) \varphi_n\left(1\right) + \\ &\sum_{i=1}^n P\left(Z_k = i\right) \left(\frac{(n-i)^2}{n^2} X^{i+1} + \frac{2i(n-i)}{n^2} X^i + \frac{i^2}{n^2} X^{i-1}\right) \\ &= P\left(Z_k = 0\right) X + \sum_{i=1}^n \left(1 - \frac{i}{n}\right)^2 P\left(Z_k = i\right) X^{i+1} + \sum_{i=1}^n 2\frac{i}{n} \left(\frac{n-i}{n}\right) P\left(Z_k = i\right) X^i + \sum_{i=1}^n \left(\frac{i}{n}\right)^2 P\left(Z_k = i\right) X^{i-1}. \end{split}$$

On enlève les termes nuls,

$$\varphi_n(Q_k) = P(Z_k = 0) X + \sum_{i=1}^{n-1} \left(1 - \frac{i}{n}\right)^2 P(Z_k = i) X^{i+1}$$

$$+\sum_{i=1}^{n-1} 2\frac{i}{n} \left(\frac{n-i}{n}\right) P(Z_k = i) X^i + \sum_{i=1}^{n} \left(\frac{i}{n}\right)^2 P(Z_k = i) X^{i-1}.$$

On fait des changements de variables

$$\varphi_n(Q_k) = P(Z_k = 0) X + \sum_{j=2}^n \left(1 - \frac{j-1}{n}\right)^2 P(Z_k = j-1) X^j + \sum_{i=1}^{n-1} 2\frac{i}{n} \left(\frac{n-i}{n}\right) P(Z_k = i) X^i + \sum_{j=0}^{n-1} \left(\frac{j+1}{n}\right)^2 P(Z_k = j+1) X^j.$$

Pour n=2,

$$\varphi_{2}(Q_{k}) = P(Z_{k} = 0) X + \left(1 - \frac{1}{2}\right)^{2} P(Z_{k} = 1) X^{2} + 2\frac{1}{2}\left(\frac{2-1}{2}\right) P(Z_{k} = 1) X^{1}$$

$$+ \sum_{j=0}^{1} \left(\frac{j+1}{2}\right)^{2} P(Z_{k} = j+1) X^{j}$$

$$= \left(\frac{1}{2}\right)^{2} P(Z_{k} = 1) + \left(P(Z_{k} = 0) + 2\frac{1}{2}\left(\frac{2-1}{2}\right) P(Z_{k} = 1) + \left(\frac{1+1}{2}\right)^{2} P(Z_{k} = 1+1)\right) X$$

$$+ \left(\left(1 - \frac{1}{2}\right)^{2} P(Z_{k} = 1)\right) X^{2}.$$

On applique la question 10, avec i = 0, on a $P(Z_{k+1} = 0) = \left(\frac{1}{2}\right)^2 P(Z_k = 1)$ puis avec i = 1, $P(Z_{k+1} = 1) = P(Z_k = 0) + 2\frac{1}{2}\left(\frac{2-1}{2}\right)P(Z_k = 1) + \left(\frac{1+1}{2}\right)^2 P(Z_k = 1+1)$ puis avec i = 2, $P(Z_{k+1} = 2) = \left(\left(1 - \frac{1}{2}\right)^2 P(Z_k = 1)\right)$ car $P(Z_k = 3) = 0$ donc

$$\varphi_2(Q_k) = P(Z_{k+1} = 0) + P(Z_{k+1} = 1) X + P(Z_{k+1} = 2) X^2 = Q_{k+1}.$$

Pour $n \ge 3$, la plage commune d'indexation est [2, n-1],

$$\varphi_{n}\left(Q_{k}\right) = P\left(Z_{k} = 0\right)X + \left(1 - \frac{n-1}{n}\right)^{2}P\left(Z_{k} = n-1\right)X^{n}$$

$$+ \sum_{j=2}^{n-1} \left(1 - \frac{j-1}{n}\right)^{2}P\left(Z_{k} = j-1\right)X^{j} + \sum_{i=2}^{n-1} 2\frac{i}{n}\left(\frac{n-i}{n}\right)P\left(Z_{k} = i\right)X^{i} + 2\frac{1}{n}\left(\frac{n-1}{n}\right)P\left(Z_{k} = 1\right)X$$

$$+ \left(\frac{1}{n}\right)^{2}P\left(Z_{k} = 1\right)X^{0} + \left(\frac{2}{n}\right)^{2}P\left(Z_{k} = 2\right)X^{1} + \sum_{j=0}^{n-1} \left(\frac{j+1}{n}\right)^{2}P\left(Z_{k} = j+1\right)X^{j}.$$

On urbanise selon les puissances de X,

$$\varphi_{n}(Q_{k}) = \left(\frac{1}{n}\right)^{2} P(Z_{k} = 1) + \left(P(Z_{k} = 0) + 2\frac{1}{n}\left(\frac{n-1}{n}\right)P(Z_{k} = 1) + \left(\frac{2}{n}\right)^{2} P(Z_{k} = 2)\right) X + \sum_{i=2}^{n-1} \left(2\frac{i}{n}\left(\frac{n-i}{n}\right)P(Z_{k} = i) + \left(1 - \frac{i-1}{n}\right)^{2} P(Z_{k} = i-1) + \left(\frac{i+1}{n}\right)^{2} P(Z_{k} = i+1)\right) X^{i}$$

$$+\left(1-\frac{n-1}{n}\right)^{2}P(Z_{k}=n-1)X^{n}.$$

Dans le sigma, on utilise la question 10

$$\varphi_n(Q_k) = \left(\frac{1}{n}\right)^2 P(Z_k = 1) + \left(P(Z_k = 0) + 2\frac{1}{n}\left(\frac{n-1}{n}\right)P(Z_k = 1) + \left(\frac{2}{n}\right)^2 P(Z_k = 2)\right) X$$
$$+ \sum_{i=2}^{n-1} P(Z_{k+1} = i) X^i + \left(1 - \frac{n-1}{n}\right)^2 P(Z_k = n-1) X^n.$$

Avec la question 10, en remplaçant i par n avec $P(Z_k = n + 1) = 0$ on a

$$P(Z_{k+1} = n) = \left(1 - \frac{n-1}{n}\right)^2 P(Z_k = n-1)$$

donc

$$\varphi_n(Q_k) = \left(\frac{1}{n}\right)^2 P(Z_k = 1) + \left(P(Z_k = 0) + 2\frac{1}{n}\left(\frac{n-1}{n}\right)P(Z_k = 1) + \left(\frac{2}{n}\right)^2 P(Z_k = 2)\right) X + \sum_{i=2}^{n-1} P(Z_{k+1} = i) X^i + P(Z_{k+1} = n) X^n.$$

Avec la question 10, en remplaçant i par 0 avec $P(Z_k = -1) = 0$ on a

$$P(Z_{k+1} = 0) = \left(\frac{1}{n}\right)^2 P(Z_k = 1)$$

donc

$$\varphi_{n}(Q_{k}) = P(Z_{k+1} = 0) + \left(P(Z_{k} = 0) + 2\frac{1}{n}\left(\frac{n-1}{n}\right)P(Z_{k} = 1) + \left(\frac{2}{n}\right)^{2}P(Z_{k} = 2)\right)X$$
$$+ \sum_{i=2}^{n} P(Z_{k+1} = i)X^{i}.$$

Avec la question 10, en remplaçant i par 1 on a

$$P(Z_{k+1} = 1) = P(Z_k = 0) + 2\frac{1}{n} \left(\frac{n-1}{n}\right) P(Z_k = 1) + \left(\frac{2}{n}\right)^2 P(Z_k = 2)$$

donc finalement

$$\varphi_n(Q_k) = \sum_{i=0}^n P(Z_{k+1} = i) X^i = Q_{k+1}.$$

(b) On applique la question 8(b), avec $Q_0 = X^n \in \mathbb{R}_n[X]$ et $n \ge 2$, on sait qu'il existe $\alpha \in \mathbb{R}$ tel que $\lim_{k \to +\infty} \varphi_n^k(Q_0) = \alpha \Pi_n$ or par récurrence facile $\varphi_n^k(Q_0) = Q_k$ donc

$$\lim_{k \to +\infty} Q_k = \alpha \Pi_n$$

14. (a) Soit $i \in [0, n]$, on utilise l'indication du début de sujet qui nous dit que

$$\lim_{k \to +\infty} a_{k,i} = b_i$$

ici $a_{k,i} = P(Z_k = i)$ et $b_i = \alpha \binom{n}{i}^2$ d'après les définition de Q_k et $\alpha \Pi_n$.

(b) On a $Z_k(\Omega) = [0, n]$ donc $\sum_{i=0}^n P(Z_k = i) = 1$ donc par somme de limites quand $k \to +\infty$ avec une somme de n+1 termes et n indépendant de k il vient

$$1 = \lim_{k \to +\infty} \left(\sum_{i=0}^{n} P(Z_k = i) \right) = \sum_{i=0}^{n} \lim_{k \to +\infty} \left(P(Z_k = i) \right) = \sum_{i=0}^{n} \alpha \binom{n}{i}^2$$

donc avec $\binom{n}{i}^2 > 0$ il vient $\sum_{i=0}^n \binom{n}{i}^2 \neq 0$ et $\alpha = \frac{1}{\sum\limits_{i=0}^n \binom{n}{i}^2}$.

Ensuite on sait que $\binom{n}{i} = \binom{n}{n-i}$ donc $\sum_{i=0}^{n} \binom{n}{i}^2 = \sum_{i=0}^{n} \binom{n}{i} \binom{n}{n-i} = \binom{n+n}{n}$ avec le rappel de la formule de Van der Monde. Finalement $\alpha = \frac{1}{\binom{2n}{n}}$.

(c) (Z_k) est une suite de variables discrètes à support dans [0, n] donc avec 14(a), (Z_k) converge en loi vers une variable T telle que $T(\Omega) = [0, n]$ et, pour tout $i \in [0, n]$, $P(T = i) = \alpha \binom{n}{i}^2$. Les upport de T est fini donc T a une espérance et

$$E(T) = \alpha \sum_{i=0}^{n} i \binom{n}{i}^2 = \alpha \sum_{i=1}^{n} i \binom{n}{i}^2 = \alpha \sum_{i=1}^{n} n \binom{n-1}{i-1} \binom{n}{i}$$

avec $i\binom{n}{i} = n\binom{n-1}{i-1}$ et comme $\binom{n-1}{i-1} = \binom{n-1}{n-i}$,

$$E(T) = n\alpha \sum_{i=1}^{n} \binom{n-1}{n-i} \binom{n}{i}.$$

Sachant $\binom{n-1}{n-0} = 0$, et la formule de Van der Monde,

$$E(T) = n\alpha \sum_{i=0}^{n} \binom{n-1}{n-i} \binom{n}{i} = n\alpha \binom{2n-1}{n}.$$

Pour conclure

$$E(T) = \frac{n\binom{2n-1}{n}}{\binom{2n}{n}}.$$

On pourrait aussi calculer la variance...