Binary Floating Point #(BFPN) Representation: Single Precision BFPN

Single Precision (단 정밀도) BFPN: 32 bits

31	30 23	22 0
Sign	Exponent(8)	Mantissa(23)

- 기본형: ±0.1M×2^E
- > 만일 1.1010×2⁴이라면 0.1101×2⁵로 Normalization(정규화)
 - S=0
 - E=0000_0101(2's Complement 표현)
 - M=101_0000_0000_0000_0000(Unsigned 표현)
- 결국 S와 M을 합쳐서 Signed Magnitude로 표현

Binary Floating Point #(BFPN) Representation: Double Precision BFPN

- Sign = 1 (음수), 0 (양수)
- Mantissa의 범위: 0.5≤Mantissa≤1 → 정밀도 결정
- Exponent 의 범위: -2⁷⟨Exponent⟨2⁷-1 → 표현 가능한
 수의 범위 결정
- Mantissa와 Exponent간 길이조절 필요

Double Precision (배 정밀도) BFPN: 64bits

 63
 62
 52
 51
 0

 Sign
 Exponent(11)
 Mantissa(52)

BFPN Representation: Single Precision BFPN의 표현가능 범위

BFPN Representation: Single Precision BFPN의 표현가능 범위

BFPN Representation: Single Precision BFPN with Biased Exponent

Bias=128일 때, N=-13.625에 대한 BFPN 표현

- $313.625_{10} = 1101.101_2 = 0.1101101 \times 24$

 - M = 10110100000000000000000(소수점 우측의 첫 번째 1 제외)
 - E = 00000100 + 10000000 = 10000100 (Bias 128을 더함)

5(1)	E(8)	M(23)
1	1000_0100	101_1010_0000_0000_0000

BFPN Representation: Single Precision BFPN with Biased Exponent

Why Biased Exponent?

- E의 값이 아주 작은 음수라면 전체 숫자는 거의 0에 가까워 짐
 - 0에 대한 표현에서 모든 Bit들이 0이 되게 하여, Zero-Test(ZT)가 정수에서와 같은 방법으로 가능하게 하기 위함
 - If M = 000_0000_0000_0000_0000 then BFPN=0
 - : 일반적인 정수와 동일한 방법으로 ZT 가능
 - If E = 1000_0000(BFPN에서 가장 작은 음수) then BFPN=0
 - : 일반적인 정수와 동일한 방법으로 ZT 불가능
 - If E = 0000_0000(BFPN with Biased 128에서 가장 작은 음수) then BFPN=0
 - : 일반적인 정수와 동일한 방법으로 ZT 가능

Evpoport IIUE1	절대값	실제 Exponent 값	
Exponent 패턴		Bias=127	Bias=128
11111111	255	+128	+127
11111110	254	+127	+126
	•	•	:
1000001	129	+2	+1
1000000	128	+1	0
01111111	127	0	-1
01111110	126	-1	-2
:	•	•	:
0000001	1	-126	-127
0000000	0	-127	-128

BFPN Representation: IEEE 754 Standard - Format, Example, and Exceptions

Format

- Single Precision: $N = (-1)^{S} \times 2^{E-127} \times (1.M) \rightarrow 1$ 은 Hidden Bits
- \circ Double Precision : N= (-1)^S×2^{E-1023}×(1.M)
- Signed Magnitude Representation(Sign + Mantissa),
 Biased-127/1023 Exponent

Example

 $N = -13.625_{10} = -1101.101_2 = -1.101101 \times 2^3$

1 10000010

BFPN Representation: IEEE 754 Standard - Format, Example, and Exceptions

Exceptions

	Ε	М	Representation
NaN	E = 255/2047	M ≠ 0	N = NaN (0 나누기)
Overflow	E = 255/2047	M = 0	$N = (-1)^s \times \infty \times (1.0)$
일반식	0 <e<255 2047<="" td=""><td></td><td>$N = (-1)^{s} \times 2^{E-127/1023} \times (1.M)$</td></e<255>		$N = (-1)^{s} \times 2^{E-127/1023} \times (1.M)$
Underflow	E = 0	M ≠ 0	$N = (-1)^s \times 0 \times (1.M)$
Zero	E = 0	M = 0	$N = (-1)^s \times 0$