

Report No: CCIS15120096202

FCC REPORT

(BLE)

Applicant: Grand Electronics, INC

Address of Applicant: 11650 Brentcross Dr Tomball, TX 77377, United States

Equipment Under Test (EUT)

Product Name: Tablet

Model No.: K1, King10, K1x, K1x plus, K-pad

Trade mark: NeuTab, neutab.

FCC ID: 2AGNKK1

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 15 Dec., 2015

Date of Test: 15 Dec., 2015 to 12 Jan., 2016

Date of report issued: 12 Jan., 2016

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	12 Jan., 2016	Original

Tested by:	Lora Lee	Date:	12 Jan., 2016
	Test Engineer		

Reviewed by: Date: 12 Jan., 2016

Project Engineer

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3		ITENTS	
4		T SUMMARY	
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	
	5.3	TEST ENVIRONMENT ANDMODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	LABORATORY FACILITY	7
	5.6	LABORATORY LOCATION	7
	5.7	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS ANDMEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	
	6.5	Power Spectral Density	18
	6.6	BAND EDGE	
	6.6.1	0000	
	6.6.2		
	6.7	Spurious Emission	
	6.7.1		
	6.7.2	Radiated Emission Method	30
7	TES	T SETUP PHOTO	35
8	EUT	CONSTRUCTIONAL DETAILS	36

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Grand Electronics, INC
Address of Applicant:	11650 Brentcross Dr Tomball, TX 77377,United States
Manufacturer:	GRAND ELECTRI-TECH GLOBAL TRADING LIMITED
Address of Manufacturer:	UNIT 04, 7/F, BRIGHT WAY TOWER, NO. 33 MONG KOK ROAD, KOWLOON, HK.
Factory:	SHENZHEN JRAY HIGH TECHNOLOGYCO., LTD
Address of Factory:	1-4F, PerfectSciencePark, Shang Hang Lang, Big Wave, Longhua, Baoan Shenzhen

5.2 General Description of E.U.T.

Product Name:	Tablet
Model No.:	K1, King10, K1x, K1x plus, K-pad
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	2.0dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V-4500mAh
AC adapter:	Model: HT-003-050200 Input:100-240V AC, 50/60Hz 0.35A Max Output: 5V DC Max2000mA
Remark:	The model No.: K1, King10, K1x, K1x plus, K-pad were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being different model name.

Operation	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

Report No: CCIS15120096202

5.3 Test environment andmode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode Keep the EUT in continuous transmitting with modulation				

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

N/A

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Test Instruments list

Rad	Radiated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-28-2015	03-28-2016
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2015	03-28-2016
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2015	03-28-2016
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016

Con	Conducted Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC

FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively forfixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBiprovided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The BLE antennais aninternal antennawhich cannot replace by end-user, the best case gain of the antennais2.0dBi.

6.2 Conducted Emission

<u> </u>	2 Conducted Emission			
	Test Requirement:	FCC Part15 C Section 15.207		
	Test Method:	ANSI C63.4: 2009		
	TestFrequencyRange:	150 kHz to 30MHz		
	Class / Severity:	Class B		
	Receiver setup:	RBW=9kHz, VBW=30kHz		
	Limit:	Limit (dRu\/)		
		Frequency range (MHz) Quasi-peak Average		
		0.15-0.5 66 to 56* 56 to 46*		
		0.5-5 56 46		
		5-30 60 50		
		* Decreases with the logarithm of the frequency.		
	Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. 		
	Test setup:	Reference Plane		
		AUX Equipment E.U.T Remark E.U.T Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m		
	Test Uncertainty:	±3.28 dB		
	Test Instruments:	Refer to section 5.7 for details		
	Test mode:	Refer to section 5.3 for details		
	Test results:	Passed		

Measurement Data

Neutral:

Trace: 13

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : Tablet Condition

EUT Model : K1 Test Mode : BLE mode
Power Rating : AC120/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Zora

Remark

NOMALK	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark	
	MHz	dBu∀	<u>dB</u>	₫B	dBu₹	dBu∀	<u>ab</u>		27.5
1	0.154	31.66	0.25	10.78	42.69	65.78	-23.09	QP	
2	0.190	12.00	0.25	10.76	23.01	54.02	-31.01	Average	
3	0.238	12.33	0.25	10.75	23.33	52.17	-28.84	Average	
4	0.242	26.12	0.25	10.75	37.12	62.04	-24.92	QP	
1 2 3 4 5 6 7 8	0.286	11.62	0.26	10.74	22.62	50.63	-28.01	Average	
6	0.307	23.43	0.26	10.74	34.43	60.06	-25.63	QP	
7	0.334	11.20	0.26	10.73	22.19	49.35	-27.16	Average	
8	0.431	10.26	0.26	10.73	21.25	47.24	-25.99	Average	
	1.403	20.38	0.25	10.91	31.54	56.00	-24.46	QP	
10	2.500	25.09	0.29	10.94	36.32	56.00	-19.68	QP	
11	2.527	8.67	0.29	10.94	19.90	46.00	-26.10	Average	
12	3.623	24.70	0.29	10.90	35.89	56.00	-20.11	QP	

Line:

Trace: 15 Site

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Condition

EUT : Tablet Model : K1 : BLE mode Test Mode Power Rating : AC120/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: Zora

Remark

	Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark
_	MHz	dBu∜	<u>dB</u>		dBu∜	dBu∜	<u>dB</u>	
1	0.150	28.62	0.27	10.78	39.67	66.00	-26.33	QP
2	0.182	28.54	0.28	10.77	39.59	64.42	-24.83	QP
3	0.186	11.12	0.28	10.76	22.16	54.20	-32.04	Average
4	0.238	24.52	0.27	10.75	35.54	62.17	-26.63	QP
2 3 4 5	0.238	10.12	0.27	10.75	21.14	52.17	-31.03	Average
6	0.299	10.96	0.26	10.74	21.96	50.28	-28.32	Average
6 7 8 9	0.318	11.00	0.26	10.74	22.00	49.75	-27.75	Average
8	0.330	22.18	0.27	10.73	33.18	59.44	-26.26	QP
9	2.513	21.11	0.27	10.94	32.32	56.00	-23.68	QP
10	2.527	7.82	0.27	10.94	19.03	46.00	-26.97	Average
11	3.759	22.95	0.28	10.90	34.13	56.00	-21.87	QP
12	15.970	9.64	0.32	10.91	20.87	50.00	-29.13	Average

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peakemission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)					
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 9.2.2					
Limit:	30dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-3.68		
Middle	-3.04	30.00	Pass
Highest	-3.09		

Test plot as follows:

Date: 18.DEC.2015 10:18:03 Lowest channel

Date: 18.DEC.2015 10:18:28 Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)					
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 8.1					
Limit:	>500kHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	0.720		
Middle	0.732	>500	Pass
Highest	0.732		

Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	1.032		
Middle	1.032	N/A	N/A
Highest	1.032		

Test plot as follows:

6dB EBW

Date: 18.DEC.2015 10:22:18

Lowest channel

Date: 18.DEC.2015 10:23:38

Middle channel

Date: 18.DEC.2015 10:25:19

Highest channel

99% OBW

Date: 18.DEC.2015 10:27:50

Lowest channel

Date: 18.DEC.2015 10:26:46

Middle channel

Date: 18.DEC.2015 10:26:15

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)					
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 10.2					
Limit:	8dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-7.68		
Middle	-7.01	8.00	Pass
Highest	-7.03		

Test plots as follow:

Date: 18.DEC.2015 10:21:10

Lowest channel

Date: 18.DEC.2015 10:20:50

Middle channel

Date: 18.DEC.2015 10:20:22

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 13					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spreadspectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer					
	E.U.T					
	Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plots as follow:

Date: 18.DEC.2015 10:29:19

Lowest channel

Date: 18.DEC.2015 10:30:22

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10: 2013and KDB 558074v03r03 section 12.1							
TestFrequencyRange:	2.3GHz to 2.5GHz Measurement Distance: 3m							
Test site:	Measurement D	Distance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
		RMS	1MHz	3MHz	Average Value			
Limit:	Freque	ency	Limit (dBuV		Remark			
	Above 1	IGHz	54.0 74.0		Average Value Peak Value			
Test Procedure:	the ground todetermin 2. The EUT wantenna, watower. 3. The antenre the ground Both horizon make the result of find the specified Both the limits per of the EUT have 10dB	at a 3 meter of the position was set 3 meter of the position was set 3 meter of the position was set 3 meter of the position and vertime as well and vertime and the rotatable maximum real the rotatable maximum real ceiver system and width with sion level of the ceified, then the would be reported to the position of t	camber. The tage of the highes ers away from need on the to aried from one the maximum cal polarizations soin, the EU has was turned from the maximum drown was set to Polarization was set to Polariz	able was ro t radiation. the interfer p of a varia e meter to for a value of the ons of the act T was arran to heights f om 0 degree eak Detect old Mode. ak mode wa e stopped a se the emis one by one	e 0.8 meters above stated 360 degrees rence-receiving able-height antenna our meters above he field strength. Intenna are set to rom 1 meter to 4 res to 360 degrees Function and as 10dB lower than and the peak values assions that did not using peak, quasi-ported in a data			
Test setup:	AE SOCM TO	EUT Gro	Horn Anta	Antenna To Controller	wer			
Test Instruments:	Refer to section	5.7 for detail	S					
Test mode:	Refer to section	5.3 for detail	s					
Test results:	Passed							

Test channel:Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Tablet

Model : K1
Test mode : BLE-L Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Zora REMARK :

	Freq		Antenna Factor						
	MHz	dBu∇	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	 -
1 2	2390.000 2390.000								

Test channel:Lowest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Tablet : K1 Model Test mode : BLE-L Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Zora

REMARK

	Freq		Antenna Factor						Remark
,	MHz	dBu₹	dB/m	ā	<u>d</u> B	dBuV/m	dBuV/m	dB	
	2390.000 2390.000								

Test channel:Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Tablet Model : K1

Test mode : BLE-H Mode Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: Zora

REMARK

	Freq		Antenna Factor					
	MHz	—dBu∜	— <u>dB</u> /m	 <u>dB</u>	$\overline{dBuV/m}$	dBu√/m	<u>ab</u>	
1 2	2483.500 2483.500							

Test channel:Highest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Tablet Model

: K1 : BLE-H Mode Test mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55% Test Engineer: Zora

REMARK

			Antenna Factor						
-	MHz	dBu∜	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2483.500 2483.500					54.68 41.94			

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2009 and KDB558074 section 11						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spreadspectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Lowest channel

Date: 14.DEC.2015 09:01:21

30MHz~25GHz

Middle channel

Date: 14.DEC.2015 09:02:20

30MHz~25GHz

Highest channel

Date: 14.DEC.2015 09:02:51

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10:20	009						
TestFrequencyRange:	9kHz to 25GHz							
Test site:	Measurement D	istance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
·	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	Above IGIIZ	RMS	1MHz	3MHz	Average Value			
Limit:	Frequency		Limit (dBuV/m	@3m)	Remark			
	30MHz-88MHz		40.0		Quasi-peak Value			
	88MHz-216MHz		43.5		Quasi-peak Value			
		z	46.0		Quasi-peak Value			
	960MHz-1GHz				Quasi-peak Value			
	Above 1GHz	-			•			
Test Procedure:								

Below 1GHz

Horizontal:

Site : 3m chamber

Condition : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL

EUT : Tablet : K1
Test mode : BLE Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Zora
REMARK :

Freq						Limit Line	Over Limit	
1104	20101		2000		20102	22110	DIMIT C	Homazi
MHz	dBu∜	∃dB/m	₫B	d₿	dBuV/m	dBu√/m	dB	
46.340	40.47	13.46	0.57	29.85	24.65	40.00	-15.35	QP
74.396	44.42	7.87	0.82	29.68	23.43	40.00	-16.57	QP
168.414	43.33	8.92	1.34	29.06	24.53	43.50	-18.97	QP
254.728	41.47	12.06	1.63	28.53	26.63	46.00	-19.37	QP
368.112	38.16	14.49	2.01	28.64	26.02	46.00	-19.98	QP
443.294	37.57	15.57	2.23	28.86	26.51	46.00	-19.49	QP
	MHz 46.340 74.396 168.414 254.728 368.112	Freq Level MHz dBuV 46.340 40.47 74.396 44.42 168.414 43.33 254.728 41.47 368.112 38.16	Freq Level Factor MHz dBuV dB/m 46.340 40.47 13.46 74.396 44.42 7.87 168.414 43.33 8.92 254.728 41.47 12.06 368.112 38.16 14.49	Freq Level Factor Loss MHz dBuV dB/m dB 46.340 40.47 13.46 0.57 74.396 44.42 7.87 0.82 168.414 43.33 8.92 1.34 254.728 41.47 12.06 1.63 368.112 38.16 14.49 2.01	MHz dBuV dB/m dB dB 46.340 40.47 13.46 0.57 29.85 74.396 44.42 7.87 0.82 29.68 168.414 43.33 8.92 1.34 29.06 254.728 41.47 12.06 1.63 28.53 368.112 38.16 14.49 2.01 28.64	MHz dBuV dB/m dB dB dBuV/m 46.340 40.47 13.46 0.57 29.85 24.65 74.396 44.42 7.87 0.82 29.68 23.43 168.414 43.33 8.92 1.34 29.06 24.53 254.728 41.47 12.06 1.63 28.53 26.63 368.112 38.16 14.49 2.01 28.64 26.02	MHz dBuV dB/m dB dB dB dBuV/m dBuV/m dBuV/m 46.340 40.47 13.46 0.57 29.85 24.65 40.00 74.396 44.42 7.87 0.82 29.68 23.43 40.00 168.414 43.33 8.92 1.34 29.06 24.53 43.50 254.728 41.47 12.06 1.63 28.53 26.63 46.00 368.112 38.16 14.49 2.01 28.64 26.02 46.00	MHz dBuV dB/m dB dB dB dBuV/m dBuV/m dBuV/m dB 46.340 40.47 13.46 0.57 29.85 24.65 40.00 -15.35 74.396 44.42 7.87 0.82 29.68 23.43 40.00 -16.57 168.414 43.33 8.92 1.34 29.06 24.53 43.50 -18.97 254.728 41.47 12.06 1.63 28.53 26.63 46.00 -19.37 368.112 38.16 14.49 2.01 28.64 26.02 46.00 -19.98

Vertical:

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : Tablet Condition

EUT Model : K1 : BLE Mode Test mode

Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: Zora REMARK :

ышшаг					_				
		Kead	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
-	MHz	—dBu∜	<u>dB</u> /m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	47.160	47.57	13.42	0.58	29.84	31.73	40.00	-8.27	QP
2	75.446	51.71	7.91	0.82	29.68	30.76	40.00	-9.24	QP
2	80.644	47.45	8.84	0.85	29.64	27.50	40.00	-12.50	QP
4	168.414	42.19	8.92	1.34	29.06	23.39	43.50	-20.11	QP
5	408.946	34.06	15.27	2.14	28.80	22.67	46.00	-23.33	QP
5 6	510.044	35.89				26.13			

Above 1GHz

Т	est channel	:	Lo	west	Le	vel:		Limit (dB) Polarization 24.64 Vertical 25.05 Horizontal Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	47.50	31.53	10.57	40.24	49.36	74.00	-24.64	Vertical	
4804.00	47.09	31.53	10.57	40.24	48.95	74.00	-25.05	Horizontal	
Т	est channel	•	Lo	west	Le	vel:	Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	38.27	31.53	10.57	40.24	40.13	54.00	-13.87	Vertical	
4804.00	38.17	31.53	10.57	40.24	40.03	54.00	-13.97	Horizontal	

Т	est channel	:	Mi	iddle	Le	vel:		Peak
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	47.40	31.58	10.66	40.15	49.49	74.00	-24.51	Vertical
4884.00	47.21	31.58	10.66	40.15	49.30	74.00	-24.70	Horizontal
Т	est channel	:	Mi	iddle	Le	vel:	A	verage
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	38.47	31.58	10.66	40.15	40.56	54.00	-13.44	Vertical
4884.00	38.56	31.58	10.66	40.15	40.65	54.00	-13.35	Horizontal

Т	est channel	:	Hiç	ghest	Le	vel:		Limit (dB) 23.82 Vertical 24.53 Horizontal Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4960.00	47.79	31.69	10.73	40.03	50.18	74.00	-23.82	Vertical		
4960.00	47.08	31.69	10.73	40.03	49.47	74.00	-24.53	Horizontal		
Т	est channel	•	Hiç	ghest	Le	vel:	A	-23.82 Vertical -24.53 Horizontal Average Over		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Limit	Polarization		
4960.00	38.39	31.69	10.73	40.03	40.78	54.00	-13.22	Vertical		
4960.00	38.15	31.69	10.73	40.03	40.54	54.00	-13.46	Horizontal		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.