

Machine Learning with Tensorflow

Prediction Model for Direct Marketing Campaign Conversion on Term Deposit Product in Banking Sector

Group FIN7

INTRODUCTION

BACKGROUND SUMMARY

Problem Statement

Recent studies suggest that as of June 2020, companies and organizations within the banking and financial sector are spending an **average of 13% of their overall budget on marketing**. One of alternative in marketing is telemarketing or direct marketing by telephone. Telemarketing can be an effective method for reaching your customers. The telephone can be used to contact new customers, to maintain contact with current customers and to remind slow payers personally. One advantage to telemarketing is that you will get an instant response.

However, as seen at Figure 1-1, cost per contact for telemarketing has rising up from 2003 to 2007 and expected to be much higher now at 2022. Therefore, **to maximize profitability, we need to reduce these marketing cost** or increase the effectiveness of the cost with higher conversion.

Proposed Solution

To be cost effective, companies must target their marketing plan. It is more cost effective for companies to spend resource on customers which more likely to convert or subscribe to their products. We will develop a model based on historical marketing campaign efforts and results to predict with high accuracy whether a potential customer will subscribe to our products upon contact. Using this model, companies can save resources on marketing cost by focusing marketing efforts on customers which yield positive result.

Business Formulation

Predict the customer who will subscribe a term deposit upon contact

Call only potential customers, Give treatment to customers who are likely

to reject the campaign

Values

Reduce marketing cost or increase the effectiveness of the cost with higher conversion, Maximize profitability

DATA UNDERSTANDING

Dataset

The data is related with direct marketing campaigns of a Portuguese banking institution. The marketing campaigns were based on phone calls. Often, more than one contact to the same client was required, in order to access if the product (bank term deposit) would be ('yes') or not ('no') subscribed.

The data folder contains two data sets:

- train.csv: 45,211 rows and 18 columns sorted by date (from May 2008 to November 2010)
- test.csv: 4521 rows and 18 columns with 10% examples (4521), randomly selected from train .csv

Dataset

	age	job	marital	education	default	balance	housing	loan	contact	day	month	duration	campaign	pdays	previous	poutcome	У
0	58	management	married	tertiary	no	2143	yes	no	unknown	5	may	261	1	-1	0	unknown	no
1	44	technician	single	secondary	no	29	yes	no	unknown	5	may	151	1	-1	0	unknown	no
2	33	entrepreneur	married	secondary	no	2	yes	yes	unknown	5	may	76	1	-1	0	unknown	no
3	47	blue-collar	married	unknown	no	1506	yes	no	unknown	5	may	92	1	-1	0	unknown	no
4	33	unknown	single	unknown	no	1	no	no	unknown	5	may	198	1	-1	0	unknown	no
	***	(***)	***	(***)	***		***	***	(***)	***	***	***		***			
45206	51	technician	married	tertiary	no	825	no	no	cellular	17	nov	977	3	-1	0	unknown	yes
45207	71	retired	divorced	primary	no	1729	no	no	cellular	17	nov	456	2	-1	0	unknown	yes
45208	72	retired	married	secondary	no	5715	no	no	cellular	17	nov	1127	5	184	3	success	yes
45209	57	blue-collar	married	secondary	no	668	no	no	telephone	17	nov	508	4	-1	0	unknown	no
45210	37	entrepreneur	married	secondary	no	2971	no	no	cellular	17	nov	361	2	188	11	other	no

Bank (Bank Client Data					
1	age	numeric	(in years)			
2	job	categorical	"admin", "unknown", "unemployed", "management", "housemaid", "entrepreneur", "student", "blue-collar", "self-employed", "retired", "technician", "services"			
3	marital	categorical	"married","divorced","single" (divorced means divorced or widowed)			
4	education	categorical	"unknown","secondary","primary","tertiary"			
5	default	binary	Has credit in default? ("yes" or "no")			
6	balance	numeric	Average yearly balance (in euros)			
7	housing	binary	Has housing loan? ("yes" or "no")			
8	loan	binary	Has personal loan? ("yes" or "no")			

Relat	Related with the last contact of the current campaign				
9	contact	categorical	Contact communication type ("unknown", "telephone", "cellular")		
10	day	numeric	Last contact day of the month (1 - 31)		
11	month	categorical	Last contact month of the year ("jan", "feb", "mar",, "nov", "dec")		
12	duration	numeric	Last contact duration (in seconds)		
13	campaign	numerical	Number of contacts performed during this campaign for this client (include last contact)		
14	pdays	numeric	Number of days passed by after last contact from previous campaign (in days) (-1 means client was not previously contacted)		
15	previous	numeric	Number of contacts performed before this campaign for this client		
16	poutcome	categorical	Outcome of previous marketing campaign ("unknown", "other", "failure", "success")		

Output	t variable (de	esired target)	
17	у	binary	has the client subscribed a term deposit? ("yes" or "no")

df_train.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 45211 entries, 0 to 45210 Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype
0	age	45211 non-null	int64
1	job	45211 non-null	object
2	marital	45211 non-null	object
3	education	45211 non-null	object
4	default	45211 non-null	object
5	balance	45211 non-null	int64
6	housing	45211 non-null	object
7	loan	45211 non-null	object
8	contact	45211 non-null	object
9	day	45211 non-null	int64
10	month	45211 non-null	object
11	duration	45211 non-null	int64
12	campaign	45211 non-null	int64
13	pdays	45211 non-null	int64
14	previous	45211 non-null	int64
15	poutcome	45211 non-null	object
16	У	45211 non-null	object
dtyp	es: int64(7), object(10)	

memory usage: 5.9+ MB

Count of Loan category, separated by subscription outcome y

Count of Default category, separated by subscription outcome y

Count of Housing category, separated by subscription outcome y

DATA MODELING

Preprocessing

- Replace unknown data
 - Education, Contact, and Poutcome columns.
- Object type to Integer type
 - Month and Job columns.
- Integer type to Categorial type
 - Age, Campaign, Pdays, and Previous columns.
- Standard Scaler
 - Balance column.

Preprocessing Education column

education
tertiary
secondary
unknown
primary

education	edu_imput
tertiary	0
secondary	0
secondary	1
primary	0

Preprocessing Cellular column

cellular
unknown
cellular
unknown
telephone

cellular	cell_imput
cellular	1
cellular	0
cellular	1
telephone	0

Preprocessing Poutcome column

Preprocessing Month and Job columns

- Month column
["jan", "feb", "mar", ..., "nov", "dec]
[1, 2, 3, ..., 11, 12]

- Job column

Preprocessing Age column

Age categories:

- Lower than equal 32
- Between 32 and 39
- Between 40 and 48
- Between 49 and 70
- Larger than 70

Preprocessing Campaign column

Campaign categories :

- Exactly 1
- Between 2 and 3
- Between 4 and 6
- Larger than 7

Preprocessing Pdays column

- Pdays

Pdays without -1

Pdays categories:

- Exactly -1
- Between 0 and 133
- Between 134 and 194
- Between 195 and 327
- Larger than 328

Preprocessing Previous column

- Previous

Previous without 0

Previous categories :

- Exactly 0
- Exactly 1
- Exactly 2
- Between 3 and 4
- Larger than 4

Preprocessing Balance column

$$z = \frac{x - \mu}{\sigma}$$

Oversampling Train Data

One Hot Encoding for Categorical Data

Cat	Cat_A	Cat_B	Cat_C	Cat_A	Cat_B
Α	1	0	0	1	0
В	0	1	0	0	1
С	0	0	1	0	0
В	0	1	0	0	1
С	0	0	1	0	0
С	0	0	1	0	0

Modeling with ANN

INPUT

Callback: ModelCheckPoint

no

yes

Results

Confusion Matrix

PREDICT

no yes 3952 48 2 519

Classification Report

no

yes

Precision	Recall	F1-Score
1.00	0.99	0.99
0.92	1	0.95

BUSINESS IMPLICATIONS

Confusion Matrix Interpretation

Customers who predicted to subscribe and actually subscribe (TP): 519

Customers who predicted to NOT subscribe and actually NOT subscribe (TN): 3952

Customers who predicted to subscribe but actually NOT subscribe (FN): 48

Customers who predicted to NOT subscribe but actually subscribe (FP): 2

	PREDICT			
	no	yes		
no L	3952	48		
yes Y	2	519		

Number of People to Contact

From the 4,521 customers, we only have contact 567 (519+48) customers.

Supposed there are 100 total listed customers. Rather than contacting all those 100 customers, we only have to contact 13 customers (based on confusion matrix). This means our model will decrease number of people to contact up to 87%. This means we can save energy and resources which used to contact the customers.

From

Only

100

13

listed customers

are contacted

The ML model will help to decrease the number of people contact up to

87%

Reduce Marketing Cost

Supposed we spend 5 euros for each contact. Before applying ML we spend:

4,521 x 5 = 22,605 €

After applying ML we spend only: 567 x 5 euros = 2,835 €

We save 19.770 € or 87% less than before applying ML model

Spend

22,605

€ of marketing cost **before** applying ML

Spend only

2,835

€ of marketing cost after applying ML

The ML model will help to decrease the marketing cost up to

Increase Profit

Supposed we spend 5 euros for each contact and every customers who decide to subscribe will lead to 50 euros revenue.

	Actual	After Applying ML
Spending	4,521 x 5 = 22,605 €	567 x 5 euros = 2,835 €
Revenue	521 x 50 = 26,050 €	519 x 50 = 25,950 €
Profit	26,050 - 22,605 = 3,445 €	25,950 - 2,835 = 23,115 €

Note that we also lose 2 customers by applying ML. Let's do a calculation.

= Profit after applying ML - Lost profit 23,115 - (2x50) = **23,015**

See... at the end we still earn more when applying ML, even earning almost **7 times** than before applying ML model

Comparison With oversampling vs Without oversampling

Confusion Matrix			EDICT
no		no	yes
A L	no	3952	48
ACTUAL	yes	2	519

Clas	ssificat	ion R	eport
Oldi	Jonnoat		OPOIL

	Precision	Recall	F1-Score
no	1.00	0.99	0.99
yes	0.92	1	0.95

Accuracy = 0.99

Con	fusion Ma	atrix PRE	DICT
		no	yes
IAL	no	3946	54
ACTUAL	yes	432	89

Classification Report

	Precision	Recall	F1-Score
no	0.90	0.99	0.94
yes	0.62	0.17	0.27

Comparison (Vs ML based model: KNN)

Confusion Matrix		atrix PRE	DICT
		no	yes
IAL	no	3952	48
ACTUAL	yes	2	519

Classification Report

	Precision	Recall	F1-Score
no	1.00	0.99	0.99
yes	0.92	1	0.95

Accuracy = 0.99

Confusion Matrix PREDICT			
		no	yes
IAL	no	3162	838
ACTUAL	yes	135	386

Classification Report

	Precision	Recall	F1-Score
no	0.96	0.79	0.87
yes	0.32	0.74	0.44

Comparison (Vs ML based model: Logistic Regression)

Confusion Matrix		etrix PRE	PREDICT	
		no	yes	
TUAL	no	3952	48	
ACTL	yes	2	519	

Classification Report

	Precision	Recall	F1-Score
no	1.00	0.99	0.99
yes	0.92	1.00	0.95

Accuracy = 0.99

Con	fusion M	latrix _F	PREDICT
		no	yes
TUAL	no	3056	944
ACTU	yes	246	275

Classification Report

	Precision	Recall	F1-Score
no	0.96	0.79	0.87
yes	0.23	0.53	0.32

Comparison (Vs ML based model: Decision Tree)

Con	fusion Ma	itrix PRE	DICT
		no	yes
TUAL	no	3952	48
ACTL	yes	2	519

Classification Report

	Precision	Recall	F1-Score
no	1.00	0.99	0.99
yes	0.92	1.00	0.95

Accuracy = 0.99

Con	fusion M	latrix	PREDICT	
		no	yes	
TUAL	no	3974	26	
ACTL	yes	0	521	

Classification Report

	Precision	Recall	F1-Score
no	1.00	0.99	1.00
yes	0.95	1.00	0.98

Comparison (Vs TensorFlow Decision Forest)

Con	fusion Ma	atrix PRE	DICT
no		no	yes
TUAL	no	3952	48
ACTL	yes	2	519

Classification Report

	Precision	Recall	F1-Score
no	1.00	0.99	0.99
yes	0.92	1.00	0.95

Accuracy = 0.99

Con	fusion Ma	atrix PRE	DICT
		no	yes
IAL	no	3640	360
ACTUAL	yes	14	507

Classification Report

	Precision	Recall	F1-Score
no	1.00	0.91	0.95
yes	0.58	0.97	0.73

CONCLUSIONS

06

Conclusions

- NN Model managed to predict the customer who will subscribe with the accuracy of 99% (f1-score 95%, precision 92%, recall 100%)
- The application of this model is potential to reduce marketing costs by up to 87%

THANK YOU!