АСТРАДЬ

Содержание

1	He6	есная механика	2
	1.1	Закон сохранения энергии и типы орбит	2

1 Небесная механика

1.1 Закон сохранения энергии и типы орбит

Для движения тела с массой m в гравитационном в поле тела с массой $M\gg m$ со скорость v на расстоянии r от гравитационного центра справедливо следующее соотношение:

$$\frac{mv^2}{2} - \frac{GMm}{r} = E_0, \tag{1}$$

где E_0 — постоянная величина, если на тело не действуют внешние силы кроме силы притяжения к центральному телу, равная сумме кинетической и потенциальной энергии тела.

Если $E_0 > 0$, то траектория тела — $\it eunep6ona$, ветви которой асимптотически приближаются к двум прямым.

Если $E_0=0$, то траектория тела — *парабола*. При параболической и гиперболический траекториях движение не ограничено (инфинитно).

Если $E_0 < 0$, то траектория тела — эмлипс. При эллиптической траектории движение ограничено (финитно).

Параболическая скорость — минимальная, при которой тело покидает центральное тело. Она также называется *вторая космическая скорость*. Выражение для нее имеет следующий вид:

$$v_2 = \sqrt{\frac{2GM}{r}} \tag{2}$$

На Рис. 1 представлены примеры возможных траекторий тела относительно центрального (точка C). При $v_0>v_2$ — тело движется по гиперболе, при $v_0=v_2$ — по параболе, а при $v_0< v_2$ — по эллипсу.

Рис. 1: Возможные траектории тела