Отчёт по дифференциальным уравнениям Задача №3

19 апреля 2020 г.

1 Постановка задачи

Для Задачи Коши уравнения теплопроводности:

$$\begin{cases}
 u_t(t,x) - u_{xx}(t,x) + b(x)u(t,x) = f(t,x), (t,x) \in [0,1] \times [0,1], b(x) \ge 0, \\
 u(t,0) = u_x(t,1) = 0, u(0,x) = u^0(x)
\end{cases}$$
(1)

на равномерной сетке

$$\bar{D}_{h,\tau} = \{x_m = mh - \frac{h}{2}; \ m = 0, \dots, M; \ x_M = 1\} \times \{t_n = n\tau; \ n = 0, \dots, N; \ N\tau = T\}.$$

построить явную схему, неявную схему и схему Кранка-Николсон. Найти порядок аппроксимации, доказать устойчивость, обосновать сходимость. На примерах задач с известным решением подтвердить теоретические выкладки численными расчётами.

2 Явная схема

2.1 Теоретическое обоснование

Будем приближать дифференциальную задачу разностной схемой

$$\begin{cases}
\frac{u_m^{n+1} - u_m^n}{\tau} - \frac{u_{m+1}^n - 2u_m^n + u_{m-1}^n}{h^2} + b_m u_m^n = f_m^n, & n = \overline{0, N-1}, & m = \overline{1, M-1}; \\
u_0^n = -u_1^n, & n = \overline{0, N}; & u_m^0 = u^0(x_m), & m = \overline{0, M}; \\
\frac{u_M^n - u_{M-1}^n}{h} = -\frac{h}{2} \left(\frac{u_M^{n+1} - u_M^n}{\tau} + b_M u_M^n - f_M^n \right), & n = \overline{1, N},
\end{cases} \tag{2}$$

где
$$b_m = b(x_m)$$
 и $f_m^n = f(t_n, x_m)$.

Теорема 1. Разностная схема (2) аппроксимирует дифференциальную задачу (1) на решении с порядком $O(\tau + h^2)$.

Доказательство. В выражении

$$\frac{u(t_{n+1}, x_m) - u(t_n, x_m)}{\tau} - \frac{u(t_n, x_{m+1}) - 2u(t_n, x_m) + u(t_n, x_{m-1})}{h^2} + b_m u(t_n, x_m) - f_m^n = 0$$

будем раскладывать все функции в ряд Тейлора в точке (t_n, x_m) .

$$u(t_{n+1}, x_m) - u(t_n, x_m) = u_t(t_n, x_m)\tau + O(\tau^2)$$

$$u(t_n, x_{m+1}) - 2u(t_n, x_m) + u(t_n, x_{m-1}) = 2u_{xx}(t_n, x_m)\frac{h^2}{2} + O(h^4)$$

Продолжая равенство, получаем:

$$= u_t(t_n, x_m) + O(\tau) - u_{xx}(t_n, x_m) + O(h^2) + b(x_m)u(t_n, x_m) - f(t_n, x_m) =$$

$$= u_t(t_n, x_m) - u_{xx}(t_n, x_m) + b(x_m)u(t_n, x_m) - f(t_n, x_m) + O(\tau + h^2) =$$

$$= O(\tau + h^2)$$

Два краевых, снизу и слева, точные: $u_0^n = -u_1^n$, $n = \overline{0, N}$; $u_m^0 = u^0(x_m)$, $m = \overline{0, M}$. Третье условие выведем с самого начала. Пусть оно имеет вид

$$\frac{u_M^n - u_{M-1}^n}{h} = \delta.$$

Подберём δ так, чтобы присутствовал нужный порядок.

$$\frac{u(t_n, x_M) - u(t_n, x_{M-1})}{h} - \delta = u_x(t_n, x_M) - u_{xx}(t_n, x_M) \frac{h}{2} + O(h^2) - \delta =$$

$$= 0 - \frac{h}{2}(u_t(t_n, x_M) + b(x_M)u(t_n, x_M) - f(t_n, x_M)) + O(h^2) - \delta =$$

$$= -\frac{h}{2}(\frac{u(t_{n+1}, x_M) - u(t_n, x_M)}{\tau} + O(\tau) + b(x_M)u(t_n, x_M) - f(t_n, x_M)) + O(h^2) - \delta =$$

$$= -\frac{h}{2}(\frac{u(t_{n+1}, x_M) - u(t_n, x_M)}{\tau} + b(x_M)u(t_n, x_M) - f(t_n, x_M)) + O(\tau h) + O(h^2) - \delta$$

Воспользовавшись неравенством $\frac{\tau^2+h^2}{2} \ge \tau h$, легко видеть, что если взять

$$\delta = -\frac{h}{2} \left(\frac{u_M^{n+1} - u_M^n}{\tau} + b_M u_M^n - f_M^n \right),$$

то мы получим приближение порядка $O(\tau^2+h^2)$, что даже больше, чем нам сейчас нужно. \square

Определение 1. Разностная схема *устойчива в равномерной метрике*, если имеет место неравенство:

$$\max_{0 \le n \le N} \|u^n\| \le \|u^0\| + c \max_{0 \le n \le N} \|f^n\|,$$
 где $\|u^n\| = \max_{0 \le m \le M} |u^n_m|$

Теорема 2. Явная разностная схема (2) устойчива в равномерной метрике, если выполнено условие

$$\frac{2\tau}{h^2} + \max_{x \in [0,1]} (\tau \cdot b(x)) \le 1$$

Доказательство. Введём обозначение $\rho = \frac{\tau}{h^2}$ и перепишем схему в более удобном виде:

$$u_m^{n+1} = \rho(u_{m+1}^n - 2u_m^n + u_{m-1}^n) - \tau b_m u_m^n + \tau f_m^n + u_m^n =$$

$$= (1 - 2\rho - \tau b_m) u_m^n + \rho(u_{m+1}^n + u_{m-1}^n) + \tau f_m^n$$

Тогда для норм векторов при выполнении условия $2\rho + \max_{x \in [0,1]} (\tau \cdot b(x)) \le 1$ имеем:

$$||u^{n+1}|| \le \max_{m} (1 - 2\rho - \tau b_{m}) \cdot ||u^{n}|| + 2\rho ||u^{n}|| + \tau ||f^{n}|| =$$

$$= \max_{m} (1 - \tau b_{m}) \cdot ||u^{n}|| + \tau ||f^{n}|| \le ||u^{n}|| + \tau ||f^{n}|| \le \dots$$

$$\le ||u^{0}|| + \tau (||f^{n}|| + \dots + ||f^{0}||) \le ||u^{0}|| + (n+1)\tau \max_{0 \le k \le n} ||f^{k}||$$

Если максимум достигается на граничной точке с номером M, то всё можно расписать так же. Заметим, что $(n+1)\tau = n\tau + \tau \leq T + \tau$, то есть можем с запасом положить константу c = 2T. Получили устойчивость по определению.

Значит, по теореме Филиппова, разностная схема (2) сходится к решению исходной дифференциальной задачи (1) с порядком $O(\tau + h^2)$.

2.2 Алгоритм решения

Нулевой слой (N=0) у нас задан функцией $u^0(x)$. Алгоритм основан на последовательном переходе от одного слоя по t к следующему. Необходимо составить уравнений на переход. Уравнения для точек с номерами 0 и M получим из краевых условий, остальные из основного уравнения схемы:

$$u_0^{n+1} = 0, \ u_M^{n+1} = -\frac{2\tau}{h^2} (u_M^n - u_{M-1}^n) - \tau b_M u_M^n + \tau f_M^n + u_M^n$$
$$u_m^{n+1} = \frac{\tau}{h^2} (u_{m+1}^n - 2u_m^n + u_{m-1}^n) - \tau b_m u_m^n + \tau f_m^n + u_m^n, \ m = \overline{1, M-1}.$$

И таким образом шаг за шагом вычислим все слои по t, попутно записывая их в файл. В конце обратно прочитаем их из файла и посчитаем норму ошибки.

2.3 Описание работы программы

Для работы программы будем использовать два массива: \mathbf{u} для значений, вычисленных на предыдущем шаге, и \mathbf{u} **next** для значений, которые вычисляем сейчас.

В конце каждого шага меняем местами ссылки на эти массивы, чтобы текущие значения стали "прошлыми" для следующего шага.

Заполняем массив **u** краевыми значениями при t=0, затем запускаем в цикле функцию **step_implicit**, которая делает "шаг"от одного слоя к следующему по формулам из предыдущего раздела. В конце каждой итерации записываем значения в файл **output.txt**. После этого считаем ошибку как максимум модуля по всем узлам и выводим на экран её, делённую на $\tau + h^2$.

При нужном соотношении τ и h мы получим сходимость.

Все три алгоритма я объединил в одну программу с тремя функциями step. Переключаться между ними можно, комментируя и раскомментируя step'ы в середине кода. Значения M, N тоже задаются прописыванием вручную.

2.4 Численные результаты

Проверку производил на функциях:

$$b(x) = x; \ f(x) = 2tx(2-x) + 2t^2 + b(x)u(t,x);$$

$$u(t,x) = e^{-t\frac{\pi^2}{4}}sin(\frac{\pi x}{2}) + t^2x(2-x);$$

То есть постановка задачи:

$$u_t(t,x) - u_{xx}(t,x) + xu(t,x) = 2tx(2-x) + 2t^2 + xu(t,x)$$

График поведения отклонения в равномерной метрике, поделенного на $(\tau+h^2)$, в зависимости от M при $N=\frac{(2M-1)^2}{2}$:

3 Неявная схема

3.1 Теоретическое обоснование

Теперь схема выглядит так:

$$\begin{cases}
\frac{u_m^{n+1} - u_m^n}{\tau} - \frac{u_{m+1}^{n+1} - 2u_m^{n+1} + u_{m-1}^{n+1}}{h^2} + b_m u_m^{n+1} = f_m^{n+1}; \\
u_0^n = -u_1^n, \quad n = \overline{0, N}; \quad u_m^0 = u^0(x_m), \quad m = \overline{0, M}; \\
\frac{u_M^{n+1} - u_{M-1}^{n+1}}{h} = -\frac{h}{2} \left(\frac{u_M^{n+1} - u_M^n}{\tau} + b_M u_M^{n+1} - f_M^{n+1} \right), \quad n = \overline{1, N},
\end{cases}$$
(3)

где $b_m = b(x_m)$ и $f_m^n = f(t_n, x_m)$.

Теорема 3. Разностная схема (3) аппроксимирует дифференциальную задачу (1) на решении с порядком $O(\tau + h^2)$.

Доказательство. Доказательство почти дословно повторяет доказательство для явной схемы, только раскладываем в точке (t_{n+1}, x_m) , не буду переписывать. \square

Теорема 4. Полностью неявная схема (3) устойчива в равномерной метрике при любых значениях τ и h.

Доказательство. Снова положим $\rho = \frac{\tau}{h^2}$. В данном случае удобная для анализа форма записи имеет вид

$$(1+\tau b_m)u_m^{n+1} + \rho(-u_{m+1}^{n+1} + 2u_m^{n+1} - u_{m-1}^{n+1}) = u_m^n + \tau f_m^{n+1}$$

Из всех значений u_m^{n+1} , по модулю равных $\|u^{n+1}\|$, выберем такое, у которого индекс m принимает наименьшее значение. В силу граничных условий, $m \ge 1$. Также пока будем считать, что $m \le M-1$. В этом случае имеем:

$$|u_m^{n+1}|>|u_{m-1}^{n+1}| \quad \text{ if } \quad |u_m^{n+1}|\geq |u_{m+1}^{n+1}|.$$

Отсюда $|2u_m^{n+1}| > (|u_{m+1}^{n+1}| + |u_{m-1}^{n+1}|)$, и знак выражения $2u_m^{n+1} - u_{m+1}^{n+1} - u_{m-1}^{n+1}$ совпадает со знаком u_m^{n+1} , т.е.

$$||u^{n+1}|| = |u_m^{n+1}| < |(1+\tau b_m)u_m^{n+1} + \rho(2u_m^{n+1} - u_{m+1}^{n+1} - u_{m-1}^{n+1})| = |u_m^n + \tau f_m^{n+1}| \le$$

$$\leq |u_m^n| + |\tau f_m^{n+1}| \le ||u^n|| + \tau ||f^{n+1}||$$

Дальнейшее доказательство повторяет доказательство для явной схемы. Если же значение нормы достигается только на точке u_M^{n+1} , то можно аналогично расписать не схему в промежуточных точках, а краевое условие, и получить то же самое. \square

Следовательно, по теореме Филиппова, разностная схема (3) сходится к решению исходной дифференциальной задачи (1) с порядком $O(\tau + h^2)$.

3.2 Алгоритм решения

Здесь не получится так же посчитать по формулам, как в явном случае. Поэтому перепишем уравнения разностной схемы так, чтобы потом проще было представить их в виде матрицы:

$$\begin{aligned} u_0^{n+1} + u_1^{n+1} &= 0 \\ -\frac{1}{h^2} u_{m+1}^{n+1} + \left(\frac{2}{h^2} + \frac{1}{\tau} + b_m\right) u_m^{n+1} - \frac{1}{h^2} u_{m-1}^{n+1} &= f_m^{n+1} + \frac{u_m^n}{\tau} \\ -\frac{2}{h^2} u_{M-1}^{n+1} + \left(\frac{2}{h^2} + \frac{1}{\tau} + b_M\right) u_M^{n+1} &= f_M^{n+1} + \frac{u_M^n}{\tau} \end{aligned}$$

Легко видеть, что это СЛУ с трёхдиагональной матрицей. Решим её методом прогонки и тем самым перейдём на следующий слой по t.

3.3 Описание работы программы

Всё то же самое, что в явной, только переход от предыдущего шага к следующему делает функция **step_implicit**, которая работает по алгоритму, описанному выше. Прогонку выполняет функция **solver_progonka**.

3.4 Численные результаты

Проверку производил на тех же самых функциях, что и в явной функции. Постановка задачи:

$$u_t(t,x) - u_{xx}(t,x) + xu(t,x) = 2tx(2-x) + 2t^2 + xu(t,x)$$

График поведения отклонения полученного решения от настоящего в равномерной метрике, поделенного на $(\tau + h^2)$, в зависимости от M при N = M:

4 Схема Кранка-Николсон

4.1 Теоретическое обоснование

Эта схема является полусуммой явной и неявной.

$$\begin{cases} \frac{u_{m}^{n+1}-u_{m}^{n}}{\tau}-\frac{u_{m+1}^{n+1}-2u_{m}^{n+1}+u_{m-1}^{n+1}}{2h^{2}}-\frac{u_{m+1}^{n}-2u_{m}^{n}+u_{m-1}^{n}}{2h^{2}}+\frac{b_{m}}{2}(u_{m}^{n}+u_{m}^{n+1})=\frac{f_{m}^{n+1}+f_{m}^{n}}{2};\\ u_{0}^{n}=-u_{1}^{n},\ n=\overline{0,N};\ u_{m}^{0}=u^{0}(x_{m}),\ m=\overline{0,M};\\ \frac{u_{M}^{n+1}-u_{M-1}^{n+1}}{2h}+\frac{u_{M}^{n}-u_{M-1}^{n}}{2h}=-\frac{h}{2}\frac{u_{M}^{n+1}-u_{M}^{n}}{\tau}+\frac{hb_{M}}{4}(u_{M}^{n+1}+u_{M}^{n})-\frac{h}{2}(f_{M}^{n+1}+f_{M}^{n}),\ n=\overline{1,N},\\ \end{cases}$$

где $b_m = b(x_m)$ и $f_m^n = f(t_n, x_m)$.

Теорема 5. Разностная схема (4) аппроксимирует дифференциальную задачу (1) на решении с порядком $O(\tau^2 + h^2)$.

Доказательство. Теперь будем раскладывать функции не в точке (t_n, x_m) , а в точке $(t_n + \frac{\tau}{2}, x_m)$. порядок $O(h^2)$ у нас появлялся и в предыдущих ситуациях, а по t мы берём точку между узлами, поэтому получается вытянуть бОльший порядок аппроксимации. Не буду даже пытаться здесь это расписать, слишком громоздко.

Для доказательства устойчивости этой разностной схемы нам понадобится несколько вспомогательных утверждений.

Утверждение 6. Пусть для матрицы A выполняется: $\langle Ax, y \rangle_* = \langle x, Ay \rangle_*$ относительно некоторого скалярного произведения $\langle \cdot, \cdot \rangle_*$. Тогда для собственных векторов матрицы A выполняется

$$\langle \varphi_i, \varphi_j \rangle_* = \delta_{ij}, \quad (ecnu \ \lambda_i \neq \lambda_j).$$

Доказательство.

$$\lambda_i \langle \varphi_i, \varphi_j \rangle_* = \langle \lambda_i \varphi_i, \varphi_j \rangle_* = \langle A \varphi_i, \varphi_j \rangle_* = \langle \varphi_i, A \varphi_j \rangle_* = \langle \varphi_i, \lambda_j \varphi_j \rangle_* = \lambda_j \langle \varphi_i, \varphi_j \rangle_*$$

При $\lambda_i \neq \lambda_j$ это возможно, только если $\langle \varphi_i, \varphi_j \rangle_* = \delta_{ij}$. То есть, относительно этой нормы матрица становится "симметричной".

Утверждение 7. Пусть задано скалярное произведение $\langle \cdot, \cdot \rangle_*$ и векторная норма, порождённая этим скалярным произведением: $||x||_* = \langle x, x \rangle_*^{1/2}$. Тогда для матрицы $A, m.ч. \langle Ax, y \rangle_* = \langle x, Ay \rangle_*$ выполняется

$$||A||_* = \max_k \lambda_k(A),$$

где матричная норма $\|\cdot\|_*$ порождена векторной, определённой выше.

Доказательство. Возьмём произвольный вектор $x \neq 0$ и разложим его по базису, составленному из собственных векторов матрицы A:

$$x = \sum_{n=1}^{N} c_i \varphi_i$$

Тогда, используя предыдущее утверждение, получаем:

$$||A||_* = \sup_{x \neq 0} \frac{||Ax||}{||x||} = \sup \left(\frac{\langle \sum c_i A\varphi_i, \sum c_i A\varphi_i \rangle}{\langle \sum c_i \varphi_i, \sum c_i \varphi_i \rangle} \right)^{1/2} = \sup \left(\frac{\sum c_i^2 \lambda_i^2}{\sum c_i^2} \right)^{1/2} = \max_k |\lambda_k|$$

Для следующей теоремы будем использовать аналог нормы $\|\cdot\|_{L_{2,h}}$ (далее так и буду её и называть), порождённый скалярным произведением

$$\langle x, y \rangle_* = \sum_{n=1}^{N-1} x_i y_i \cdot h + x_N y_N \cdot \frac{h}{2}$$

Теорема 8. Схема Кранка-Николсон (4) устойчива в метрике $\|\cdot\|_{L_{2,h}}$ при любых значениях τ и h.

Доказательство. Введём обозначение

$$\Lambda u_m = -\frac{u_{m+1} - 2u_m + u_{m-1}}{h^2}$$

И теперь перепишем схему в соответствии с этим обозначением:

$$\frac{u_m^{n+1} - u_m^n}{\tau} + \frac{1}{2}\Lambda u_m^{n+1} + \frac{1}{2}\Lambda u_m^n + \frac{b_m}{2}(u_m^n + u_m^{n+1}) = \frac{f_m^{n+1} + f_m^n}{2}$$
$$(1 + \frac{\tau}{2}(\Lambda + b_m))u_m^{n+1} = (1 - \frac{\tau}{2}(\Lambda + b_m))u_m^n + \tau \frac{f_m^{n+1} + f_m^n}{2}.$$

В матричном виде это запишется как

$$(I + \frac{\tau}{2}(\Lambda + B))u^{n+1} = (I - \frac{\tau}{2}(\Lambda + B))u^n + \frac{\tau}{2}(f^{n+1} + f^n),$$

где $B=diag\{b_0,\dots,b_M\}$ и $\Lambda+B$ теперь представляет собой матрицу из задачи 2.1 при моих краевых условиях. Обозначу

$$S_1 = (I + \frac{\tau}{2}(\Lambda + B)), \quad S_2 = (I - \frac{\tau}{2}(\Lambda + B)).$$

Вручную можно проверить, что матрица Λ удовлетворяет условиям Утверждения 7 со скалярным произведением, приведённым перед теоремой. Для матрицы B и I эти условия, очевидно, тоже выполняются. Следовательно, для матриц S_1 и

 S_2 это тоже верно, и норма для этих матриц равна максимальному собственному значению. Для обратных матриц это, аналогично, $1/\lambda_{min}$.

Теперь выразим u^{n+1} и возьмём норму от обеих частей

$$||u^{n+1}|| \le ||S_1^{-1}S_2|| ||u^n|| + \frac{\tau}{2} ||S_1^{-1}|| (||f^{n+1}|| + ||f^n||)$$
 (5)

Собственные значения матрицы Λ нам известны по предыдущим задачам курса. В моём случае это

$$\lambda_k = \frac{4}{h^2} \sin^2 \frac{\pi (k+1/2)h}{2}$$

Далее, воспользуемся тем фактом, что матрица $(I + \beta \cdot A)$ имеет ту же систему собственных векторов, что и A. Тогда собственные значения матриц S_1 и S_2 это:

$$\lambda_k = 1 \pm \frac{\tau}{2} (\frac{4}{h^2} \sin^2 \frac{\pi (k+1/2)h}{2} + b_k)$$

Тогда можем найти оценки для норм матриц, участвующих в соотношении (5):

$$||S_1^{-1}|| = \frac{1}{\lambda_{\min}(S_1)} < 1, \quad ||S_1^{-1}S_2|| = \frac{\lambda_{\max}(S_2)}{\lambda_{\min}(S_1)} < 1$$

Продолжим оценку в (5):

$$||u^{n+1}|| \le ||S_1^{-1}S_2|| ||u^n|| + \frac{\tau}{2} ||S_1^{-1}|| (||f^{n+1}|| + ||f^n||) < ||u^n|| + \frac{\tau}{2} (||f^{n+1}|| + ||f^n||) < < ||u^{n-1}|| + \frac{\tau}{2} (||f^n|| + ||f^{n-1}||) + \frac{\tau}{2} (||f^{n+1}|| + ||f^n||) < \dots < ||u^0|| + (n+1)\tau \max_k ||f^k||$$

То есть, разностная схема устойчива относительно этой нормы вне зависимости от значений τ и h.

Следовательно, по теореме Филиппова, разностная схема (4) сходится к решению исходной дифференциальной задачи (1) с порядком $O(\tau^2 + h^2)$.

4.2 Алгоритм решения

Ситуация ровно как в неявной, только формулы сложнее. Перепишем уравнения разностной схемы так, чтобы потом проще было представить их в виде матрицы:

$$\begin{split} u_0^{n+1} + u_1^{n+1} &= 0 \\ -\frac{1}{2h^2} u_{m+1}^{n+1} + (\frac{1}{h^2} + \frac{1}{\tau} + \frac{b_m}{2}) u_m^{n+1} - \frac{1}{2h^2} u_{m-1}^{n+1} &= \frac{u_{m+1}^n - 2u_m^n + u_{m-1}^n}{2h^2} + \frac{u_m^n}{\tau} - \frac{b_m}{2} u_m^n + \frac{f_m^{n+1} + f_m^n}{2} \\ -\frac{1}{h^2} u_{M-1}^{n+1} + (\frac{1}{h^2} + \frac{1}{\tau} + \frac{b_M}{2}) u_M^{n+1} &= \frac{f_M^{n+1} + f_M^n}{2} + (\frac{1}{\tau} - \frac{1}{h^2} - \frac{b_M}{2}) u_M^n + \frac{u_{M-1}^n}{h^2} \end{split}$$

Легко видеть, что это СЛУ с трёхдиагональной матрицей. Решим её методом прогонки и тем самым перейдём на следующий слой по t.

4.3 Описание работы программы

Всё то же самое, что в явной, только переход от предыдущего шага к следующему делает функция **step_kranka_nikolson**, которая работает по алгоритму, описанному выше. Прогонку выполняет функция **solver progonka**.

Отличие от двух предыдущих схем в подсчёте порядка сходимости: делим норму не на $(\tau + h^2)$, а на $(\tau^2 + h^2)$.

В коде программы чтобы перейти к решению определённой разностной схемой: нужно раскомментировать функцию степ для этой схемы и закомментировать остальные. Так же нужно проверить, что в конце ошибка делится на то, что нужно в каждом конкретном случае.

4.4 Численные результаты

Проверку производил на всё тех же функциях, что и в самом начале. Постановка задачи:

$$u_t(t,x) - u_{xx}(t,x) + xu(t,x) = 2tx(2-x) + 2t^2 + xu(t,x)$$

График поведения отклонения полученного решения от настоящего в равномерной метрике, поделенного на $(\tau^2 + h^2)$, в зависимости от M при N = M:

