

Lecture 0 Introduction

Lecturer: Han Lin

⑥ 中山大學

Something about this course

课程成绩:平时成绩(作业+课堂提问)30% + 期末机考70%

平时作业:

https://leetcode.com/problemset/algorithms/

每周在这上面自选题目做,做完把程序和简要题解发到自己的博客上.

博客平台推荐<u>http://blog.csdn.net/</u> 请学委收集每位同学的网址,周末前发给我

推荐书籍

推荐书籍

特点: 有较多源代码,适合学习算法的同时提高编程能力

高深秋笈

Donald KnuthTuring Award (1974)

开课第一问

• 什么是算法?

Informally, an *algorithm* is any well-defined computational procedure that takes some value, or set of values, as *input* and produces some value, or set of values, as *output*.

- - 《算法导论》

Knuth Said · · ·

Knuth (1968, 1973) has given a list of five properties that are widely accepted as requirements for an algorithm:

Finiteness: "An algorithm must always terminate after a finite number of steps ... a *very* finite number, a reasonable number"

Definiteness: "Each step of an algorithm must be precisely defined; the actions to be carried out must be rigorously and unambiguously specified for each case"

Input: "...quantities which are given to it initially before the algorithm begins. These inputs are taken from specified sets of objects"

Output: "...quantities which have a specified relation to the inputs"

Effectiveness: "... all of the operations to be performed in the algorithm must be sufficiently basic that they can in principle be done exactly and in a finite length of time by a man using paper and pencil"

Finally · · ·

The word <u>algorithm</u> does not have a generally accepted definition.

From wikipedia

So, next question.

为什么学习算法?

原因之一:广泛的应用

- 网络与通信
- 人工智能
- 金融科技
- 信息安全
- 生物信息学
- 其他工业与商业领域
- 等等

为什么学习算法?

原因之二:强大的力量

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10²⁵ years, we simply record the algorithm as taking a very long time.

	n	$n \log_2 n$	n^2	n^3	1.5 ⁿ	2 ⁿ	n!
n = 10	< 1 sec	< l sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10^{25} years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10 ¹⁷ years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec		31,710 years	very long	very long	very long

为什么学习算法?

原因之三: Just for fun!

一个简单的例子: 求斐波那中山大學 契数列第n项的三个算法 斐波那契数列:

$$F_n = \begin{cases} F_{n-1} + F_{n-2} & \text{if } n > 1 \\ 1 & \text{if } n = 1 \\ 0 & \text{if } n = 0 \end{cases}.$$

斐波那契数列是呈指数增长的,事实上,我们有

$$F_n \approx 2^{0.694n}$$

算法一

function fibl(n)

if n = 0: return 0

if n=1: return 1

return fib1(n-1) + fib1(n-2)

运算次数为指数级!

算法二

```
\frac{\text{function fib2}(n)}{\text{if } n = 0 \text{ return } 0}
\text{create an array } f[0...n]
f[0] = 0, f[1] = 1
\text{for } i = 2...n:
f[i] = f[i-1] + f[i-2]
\text{return } f[n]
```

多项式时间复杂度的算法!

算法三

利用方阵的快速幂:

$$\begin{pmatrix} F_1 \\ F_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} F_0 \\ F_1 \end{pmatrix}.$$

$$\begin{pmatrix} F_2 \\ F_3 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} F_1 \\ F_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^2 \cdot \begin{pmatrix} F_0 \\ F_1 \end{pmatrix}$$

$$\begin{pmatrix} F_n \\ F_{n+1} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n \cdot \begin{pmatrix} F_0 \\ F_1 \end{pmatrix}.$$

关键:方阵的n次幂可以只做O(logn)次矩阵乘法

回顾: 大0符号

 $O(g(n)) = \{f(n): \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0\}.$

例如: $5 n^2 \in O(n^2)$,只需取c=5, n0=1.

Just as $O(\cdot)$ is an analog of \leq , we can also define analogs of \geq and = as follows:

$$f = \Omega(g) \text{ means } g = O(f)$$

$$f = \Theta(g) \text{ means } f = O(g) \text{ and } f = \Omega(g).$$

回顾: 小0符号

 $o(g(n)) = \{f(n) : \text{ for any positive constant } c > 0, \text{ there exists a constant } n_0 > 0 \text{ such that } 0 \le f(n) < cg(n) \text{ for all } n \ge n_0\}.$

$$f(n) \in o(g(n))$$
 等价于

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0.$$

For example, $2n = o(n^2)$, but $2n^2 \neq o(n^2)$.

回顾: 小ω符号

 $\omega(g(n)) = \{f(n): \text{ for any positive constant } c > 0, \text{ there exists a constant } n_0 > 0 \text{ such that } 0 \le cg(n) < f(n) \text{ for all } n \ge n_0\}.$

For example, $n^2/2 = \omega(n)$, but $n^2/2 \neq \omega(n^2)$. The relation $f(n) = \omega(g(n))$ implies that

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty,$$

类比

$$f(n) = O(g(n)) \approx a \le b,$$

$$f(n) = \Omega(g(n)) \approx a \ge b,$$

$$f(n) = \Theta(g(n)) \approx a = b,$$

$$f(n) = o(g(n)) \approx a < b,$$

$$f(n) = \omega(g(n)) \approx a > b.$$

We say that f(n) is asymptotically smaller than g(n) if f(n) = o(g(n)), and f(n) is asymptotically larger than g(n) if $f(n) = \omega(g(n))$.

比较函数的常用技巧

- 多项和中只取"分量"最重的
- 忽略常量因子
- 求极限
- 指数函数的增长快于幂函数,幂函数的增长快于对数函数

练习

下列每组中的两个函数谁"打败"谁?

f(n)	g(n)
J (10)	g(n)

(a)
$$n-100$$
 $n-200$

(b)
$$n^{1/2}$$
 $n^{2/3}$

(c)
$$100n + \log n \quad n + (\log n)^2$$

(d)
$$n \log n$$
 $10n \log 10n$

(e)
$$\log 2n$$
 $\log 3n$

(f)
$$10\log n$$
 $\log(n^2)$

(g)
$$n^{1.01}$$
 $n \log^2 n$

Reading

・ 课本第0章

• 预习第2章

See you next time!

