1 GALOIS GROUPS III 1

1 Galois Groups III

Theorem 1.1 (Kronecker). Let $p \geq 3$ be a prime and $f \in \mathbb{Q}[x]$ be irreducible over \mathbb{Q} with deg f = p. If the equation f(x) = 0 is solvable by radicals, then the number of real roots of f is 1 or p.

Lemma 1.2. Let p be prime and $G \leq S_p$ such that G acts transitively on $\{1, \ldots, p\}$. Then G contains a cycle of order p.

Theorem 1.3. If L: K is a finite extension, then $|Gal_K(L)| \leq [L: K]$.