Qualitative Analysis

1. Anions

Reagenet addded	lons tested	Observations	Equations
Dilute Acid (i.e. HCl), heat	$\mathrm{CO_3}^{2-}$	$CO_2(g)$	
	NO_2^-	$NO_2(g)$	
	$\mathrm{SO_3}^{2-}$	$\mathrm{SO}_2(g)$	
$AgNO_3(aq),NH_3(aq)$ dropwise (Precipiation, complex formation)	Cl^-	White ppt, soluble	$\mathrm{AgX}\left(\mathrm{s} ight)+2\mathrm{NH_{3}}\left(\mathrm{aq} ight)\longrightarrow\left[\mathrm{Ag}(\mathrm{NH_{3}})_{2} ight]^{+}\left(\mathrm{aq} ight)+\mathrm{X}^{-}\left(\mathrm{aq} ight)$
	Br^-	Pale-cream ppt, partially soluble	
	I^-	Yellow ppt, insoluble	
$Ba(NO_3)_2(aq)$, $HNO_3(aq)$ dropwise (Precpitation)	CO_3^{2-}	White ppt of $BaCO3$ ppt Dissolved to form colourless solution, $CO_2(g)$	$\begin{aligned} \operatorname{BaCO_3(s)} + 2\operatorname{HNO_3(aq)} &\longrightarrow \\ \operatorname{Ba(NO_3)_2(aq)} + \operatorname{CO_2(g)} + \operatorname{H_2O(l)} \end{aligned}$
	SO_4^{2-}	White ppt, insoluble	
	SO_3^{2-}	White ppt Dissolved to form colourless solution, $SO_2(g)$	
$KMnO_4(aq)$ acidified with dilute $H_2SO_4(aq)$ (Redox)	Cl^-	$Cl_2(g)$ Decolourisation	$2\mathrm{MnO_4}^-\mathrm{(aq)} + 16\mathrm{H}^+\mathrm{(aq)} + 10\mathrm{X}^-\mathrm{(aq)} \longrightarrow \\ 5\mathrm{X_2}\mathrm{(aq)} + 2\mathrm{Mn}^{2+}\mathrm{(aq)} + 8\mathrm{H_2O}\mathrm{(l)}$
	Br^-	Orange colour, decolourisation	
	I^-	Brown colour, decolourisation	
NaOH(aq) with Al foil, heat (Redox)	NO_3^-	$H_2(g) \ NH_3(g)$ on heating	$3 \text{ NO}_3^- + 8 \text{ Al (s)} + 5 \text{ OH}^- (\text{aq}) + 18 \text{ H}_2 \text{O (l)}$ $\longrightarrow 3 \text{ NH}_3 (\text{g}) + 8 [\text{Al}(\text{OH})_4]^- (\text{aq})$
	NO_2^-	$H_2(g) \ NH_3(g)$ on heating	$egin{aligned} { m NO_2}^- + 2{ m Al}{ m (s)} + { m OH}^-{ m (aq)} + 5{ m H}_2{ m O}{ m (l)} \ &\longrightarrow { m NH}_3{ m (g)} + 2{ m [Al}({ m OH})_4]^-{ m (aq)} \end{aligned}$

2. Cations

Reagent	lon	General Observations	Equations
$NaCO_3(aq)$	H+	$CO_2(g)$	Acid-base
	M^{n+}	ppt formed	$\mathrm{M}^{2+}\mathrm{(aq)}+\mathrm{CO_3}^{2-}\mathrm{(aq)}\longrightarrow\mathrm{MCO_3}\mathrm{(s)}$
	M^{3+}	ppt formed with $CO_2(g)$	$2\mathrm{M}^{3+}(\mathrm{aq}) + 3\mathrm{CO_3}^{2-}(\mathrm{aq}) + 3\mathrm{H_2O}(\mathrm{l}) \longrightarrow \\ 2\mathrm{M}(\mathrm{OH})_3(\mathrm{s}) + 3\mathrm{CO_2}(\mathrm{g})$
	$NH_4^+(aq)$	$NH_3(g)$	$\mathrm{CO_3}^{2-}(\mathrm{aq}) + \mathrm{H}_2\mathrm{O}\left(\mathrm{l}\right) \Longrightarrow \mathrm{HCO}_3^{-}(\mathrm{aq}) + \mathrm{OH}^-(\mathrm{aq})$
KI(aq)	Oxidising agents like Cu^{2+}, Fe^{3+}	Blue Cu^{2+} turned brown, cream ppt of CuI in brown I_2 solution	$2\operatorname{Cu}^{2+}\left(\operatorname{aq} ight)+4\operatorname{I}^{-}\left(\operatorname{aq} ight)\longrightarrow 2\operatorname{CuI}\left(\operatorname{s} ight)+\operatorname{I}_{2}\left(\operatorname{aq} ight)$

3. Colours of Cations

Cation	Colour
$Mg^{2+}, Ba^{2+}, Zn^{2+}, Al^{3+}, NH_4^+, Ca^{2+}$	H+
Cr^{3+}	Green/Violet
Cu^{2+}	Blue
Fe^{2+}	Pale Green
Fe^{3+}	Yellow/Brown
Mn^{2+}	Pale Pink

Equations

- Oxidation in air to form brown prepcipitate
 - $\circ 4 M(OH)_2(s) + 2 H_2O(l) + O_2(g) \longrightarrow 4 M(OH)_3(s)$
- Soluble complex
 - \circ Al(OH)₃(s) + OH⁻(aq) \longrightarrow [Al(OH)₄]⁻(aq)
 - $Cu(OH)_2(s) + 4NH_3(aq) \longrightarrow [Cu(NH_3)_4]^{2+}(aq) + 2OH^-(aq)$
 - All soluble complexes have number of ions twice of charge, except for $[Al(OH)_4]^-(ag)$
- Reaction with $NH_3(aq)$ and $NH_4Cl(s)$
 - \circ Addition of NH_4Cl : hydroxide precipitate eventually dissolves completely to form colourless solution
 - o Applicable for cations which forms hydroxides with moderately high K_{sp} values (${
 m Mg^{2+},\,Mn^{2+},\,Zn^{2+}}$)
- NaOH H₂SO₄ Reaction (for any cation soluble in excess NH_3)
 - $\circ \ \ Al^{3+} + 3\,OH^- \longrightarrow Al(OH)_3 \ \text{precipitate}$
 - \circ Al $(OH)_3 + OH^- \longrightarrow [Al(OH)_4]^-$ aqueous complex
 - \circ Al(OH)₄ $^-$ + H $^+$ \longrightarrow Al(OH)₃ precipitate
 - \circ Al(OH)₃ + H⁺ \longrightarrow Al³⁺ solution
- ullet Reaction of $Na_2CO_3(aq)$ with M^{3+} ions
 - $[Al(H_2O)_6]^{3+}$ (aq) $+ H_2O(l) \rightleftharpoons [Al(OH)(H_2O)_5]^{2+}$ (aq) $+ H_3O^+$ (aq) (and 2 more equilibrium until formation of $[Al(OH)_3(H_2O)_3]$ (s)) due to acidic nature of Al^{3+} cation (as result of high charge density and polarising power)
 - Addition of $CO_3^{2-}(aq)$, effervescence observed as $CO_3^{2-}(aq) + 2 H_3 O^+(aq) \longrightarrow CO_2(g) + 3 H_2 O(l)$ (Acid carbonate reactions)
 - \circ Equilibrium shift to right, more H_3O+ ions removed, shifts all 3 equilibrium, white precipitate of $Al(OH)_3$ obtained together with evolution of $CO_2(g)$

Special Case

- ullet Cu^{2+} forms a blue solution of $[\mathrm{Cu}(\mathrm{H_2O})_6]^{2+}$ in aqueous medium.
- When concentrated HCl is added, yellow solution of $[CuCl_4]^{2-}$ is formed: $[Cu(H_2O)_6]^{2+} + 4 Cl^- \longrightarrow [CuCl_4]^{2-} + 6 H_2O$
- Appears as green originally due to mixture of blue and yellow but becomes yellow when heated

Observations

- When writing for metals, (ion) reacted with () to give a (colour) ppt of (formula), which was insoluble/soluble in excess to give (solution)
- Role of compound probably either oxidising or reducing agent, especially when cation is iron
 - $\circ \ \ \mbox{If H_2O_2 is added, test for O_2 evolved, likely a redox reaction$
- If gas evolved "Effervescence observed. (formula) gas evolved (passed test)"