Assignment-01

EE24BTECH11036 - KRISHNA PATIL

SECTION B: JEE MAINS / AIEEE

- 1) Two common tangents to the circle $x^2 + y^2 =$ $2a^2$ and parabola $y^2 = 8ax$ are (2002)
 - (a) $x = \pm (y + 2a)$
- (c) $x = \pm (y + a)$
- (b) $y = \pm (x + 2a)$
- (d) $y = \pm (x + a)$
- 2) The normal at a point $(bt_1^2, 2bt_1)$ on a parabola meets the parabola again in the point $(bt_2^2, 2bt_2)$,then (2003)
- (a) $t_2 = t_1 + \frac{2}{t_1}$ (c) $t_2 = -t_1 + \frac{2}{t_1}$ (b) $t_2 = -t_1 \frac{2}{t_1}$ (d) $t_2 = t_1 \frac{2}{t_1}$
- 3) The foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{b}$ and the hyperbola $\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25}$ coincide. Then the value of b^2 is
 - (a) 9

(c) 5

(b) 1

- (d) 7
- 4) If $a \neq 0$ and the line 2bx + 3cy + 4d = 0passes through the points of intersection of the parabolas $y^2 = 4ax$ and $x^2 = 4ay$, then (2004)
 - (a) $d^2 + (3b 2c)^2 = 0$ (c) $d^2 + (2b 3c)^2 = 0$ (b) $d^2 + (3b + 2c)^2 = 0$ (d) $d^2 + (2b + 3c)^2 = 0$
- 5) The eccentricity of an ellipse, with its centre at the origin, is $\frac{1}{2}$. If one of the directrices is x = 4, then the equation of the ellipse is: (2004)

 - (a) $4x^2 + 3y^2 = 1$ (b) $3x^2 + 4y^2 = 12$ (c) $4x^2 + 3y^2 = 12$ (d) $3x^2 + 4y^2 = 1$
- 6) Let **P** be the point (1,0) and **Q** a point on the locus $y^2 = 8x$ The locus of mid point of **PQ** is (2)0051

 - (a) $y^2 4x = 2$ (b) $y^2 + 4x = 2$ (c) $x^2 + 4y = 2$ (d) $x^2 4y = 2$
- 7) The locus of a point **P** (α, β) moving under the condition that the line $y = \alpha x + \beta$ is a tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2}$ is

- (a) an ellipse
- (c) a parabola
- (b) a circle
- (d) a hyperbola
- 8) An ellipse has **OB** as semi minor axis, **F** and F' focii and the angle **FBF**' is a right angle · Then the eccentricity of the ellipse is (2005)

- (a) $\frac{1}{\sqrt{2}}$ (b) $\frac{1}{2}$
- (c) $\frac{1}{4}$ (d) $\frac{1}{\sqrt{3}}$
- 9) The locus of the vertices of the family of parabolas $y = \frac{a^3x^2}{3} + \frac{a^2x}{2} - 2a$ is
- (a) $xy = \frac{105}{64}$ (c) $xy = \frac{35}{164}$ (b) $xy = \frac{3}{4}$ (d) $xy = \frac{64}{104}$

- 10) In an ellipse, the distance between its foci is 6 and minor axis is 8. Then it's eccentricity is (2006)

- (a) $\frac{3}{5}$ (b) $\frac{1}{2}$
- (c) $\frac{4}{5}$ (d) $\frac{1}{\sqrt{5}}$
- 11) Angle between the tangents to the curve y = x^2-5x+6 at the points (2,0) and (3,0) is (2006)
 - (a) π

(c) $\frac{\pi}{6}$ (d) $\frac{\pi}{4}$

(b) $\frac{\pi}{2}$

- 12) For the Hyperbola $\frac{x^2}{\cos^2 \alpha} \frac{y^2}{\sin^2 \alpha} = 1$, which of the following remains constant when α varies (2007)
 - (a) abscissae of vertices
 - (b) abscissae of foci
 - (c) eccentricity
 - (d) directrix
- 13) The equation of a tangent to the parabola $y^2 = 8x$ is y = x + 2. The point on this line from which the other tangent to the parabola is perpendicular to the given tangent is (2007)
 - (a) (2,4)
- (c) (-1,1)
- (b) (-2,0)
- (d) (0,2)

- 14) The normal to a curve at P(x, y) meets the xaxis at $G \cdot If$ the distance of G from the origin is twice the abscissa of \mathbf{P} , then the curve is (2007)
 - (a) circle
- (c) ellipse
- (b) hyperbola
- (d) parabola
- 15) A focus of an ellipse is at the origin · The is $\frac{1}{2}$. Then the length of the semi-major axis is
 - (a) $\frac{8}{3}$ (b) $\frac{2}{3}$

- (c) $\frac{4}{3}$ (d) $\frac{5}{3}$