Master's Thesis

F3

Faculty of Electrical Engineering Department of measurement

Implementation of actual version of DDSI-RTPS protocol for distributed control in Ethernet network

Jiri Hubacek
Open Informatics

January 2016

Supervisor: Pavel Pisa

Acknowledgement / **Declaration**

Podekovani	Prohlasuji

iii Draft: 2. 12. 2015

Abstrakt / Abstract

Czech abstract..

Klíčová slova: RTPS, ORTE, Ether-

net, Real-Time

Překlad titulu: Implementace aktuální verze protokolu DDSI-RTPS pro distribuované řízení v síti Ethernet

English abstract..

Keywords: RTPS, ORTE, Ethernet,

Real-Time

iv Draft: 2. 12. 2015

/ Contents

$\textbf{1} \ \textbf{Introduction} \ \dots $
1.1 DDS
1.2 DCPS1
1.3 RTPS
1.4 ORTE2
2 Versions comparation
3 Compatibility changes4
4 Testing of implementation5
5 Shape for Android 6
5.1 Shape demo6
5.2 Familiarization with ORTE6
5.3 Classes6
5.4 Compatibility
6 Security for DDS
References 10

[intro]

Chapter 1 Introduction

The Real-Time Publish-Subscribe (RTPS)[1] is the protocol of Data Distribution Service (DDS)[2] family, supporting Data-Centric Publish-Subscribe in real time and specifying communication in a decentralized network, where multiple nodes needs to send and/or receive data in real time. Specification of protocol is being developed by Object Management Group[3] - international, open membership, not-for-profit technology standards consortium, since version 1.0 on February 2002 till version 2.2 on September 2014.

This thesis aims on upgrading ORTE implementation of RTPS protocol to be compatible with the latest standard version 2.2. The structure is as follows. In Chapter 1, there is an introduction to RTPS and ORTE. Chapter 2 compares implemented RTPS 1.0 with the latest RTPS 2.2, chapter 3 covers changes needed for compatibility with version 2.2 of the RTPS protocol and chapter 4 covers testing of new implementation of RTPS protocol in ORTE. In chapter 5, demo application of ORTE called *Shape* for Android is introduced. The application was developed as part of familiarization with ORTE, therefore ORTE with RTPS 1.0 implementation is used in this application. Security for DDS is discussed in chapter 6.

1.1 **DDS**

There are two main models used in Data Distribution Services. *Centralized* model, where single server for the whole network is needed and all communication goes throw it, introduces single point of failure. When the server is unreachable, the whole network is non-functional. By contrast, *decentralized* approach has no central server, no single point of failure. When one node of the network is non-functional, the rest of the network can continue in data transfers.

1.2 DCPS

In the Data-Centric Publish-Subscribe network, data are sent by *Publishers* and received by *Subscribers*. Node can be *Publisher*, *Subscriber* or both and each node can be interested in different data, timing and reliability. Data-Centric Publish-Subscribe network is responsible for delivery of right data between right nodes with right parameters.

1.3 RTPS

Real-Time Publish-Subscribe is wire protocol developed to ensure interoperability between DDS implementations. It has been designed to be fault tolerant (decentralized), scalable, tunable, with plug-and-play connectivity and ability of best-effort and reliable communication in real time applications.

1 Introduction

1.4 **ORTE**

Open Real-Time Ethernet (ORTE)[4] is the implementation of RTPS 1.0. It's implemented in Application layer of UDP/IP stack, written in C, under open source license, with own API. Because there are no special requirements, it should be easy to port ORTE to many platforms, where UDP/IP stack is implemented.

[compare]

Chapter 2 Versions comparation

[upgrade]

Chapter 3 Compatibility changes

[test]

Chapter 4 Testing of implementation

[shape]

Chapter **5**Shape for Android

5.1 Shape demo

With ORTE implementation of RTPS 1.0 protocol, demo application called Shape is delivered. Shape demo demonstrates the functionality of ORTE - when the color (Blue, Green, Red, Black, Yellow) is choosen, the *Publisher* is created as random shape (Circle, Square, Triangle) moving on the screen. Then, under the topic of color name, object's shape, color and coordinates are published to the network. It's possible to receive and interpret object's data (to see colored shapes moving on the screen) by adding the *Subscribers* of specific topics (colors).

Figure 5.1. Shape demo - Publishers and Subscribers

5.2 Familiarization with ORTE

The familiarization with ORTE was done by creating demo application for Android compatible with Shape. Because the port of ORTE to Android has been already done in [5] and is available as library, the main task was application design and compatibility ensurance. The application was designed to be as simple as possible. *Publishers* view allows to create new *Publisher* of specific color and random shape, *Subscribers* view allows to set up *Subscribers* of specified colors. Finally, Settings and Help views are present.

5.3 Classes

As in Shape demo, in Shape for Android the BoxType class is presented, allowing to create, send and receive objects. BoxType consists of color (integer), shape (integer)

and rectangle (BoxRect), where BoxRect is class for storing coordinates - top_left_x (short), top_left_y (short), bottom_right_x (short), bottom_right_y (short). The BoxType is extension of MessageData class delivered with ORTE library for Android. It allows to send and receive objects.

PublisherShape class stores BoxType information about Publisher, it's properties needed for ORTE, methods for communication with object and prepares data to send. In Publisher view, Publisher objects are created, stored in ArrayList and drawed on screen. Data objects are sent in Publisher activity each time objects are redrawn.

SubscriberElement class receives BoxType object from ORTE and stores it's data and methods needed for presentation. In Subscriber view, all received objects are stored in ArrayList and periodically redrawn.

Settings view allows to set up scaling, needed because of various dimensions of screens. It also contains a list of managers - in RTPS 1.0 special application called manager is used for communication of available *Publishers/Subscribers* between nodes. In RTPS 2.2 Simple Participant Discovery Protocol (SPDP) and Simple Endpoint Discovery Protocol (SEDP) are used.

Help view contains information about ORTE, Shape and application usage.

5.4 Compatibility

BoxType in Shape and Shape for Android is a little bit different. The reason is just familiarization with ORTE implementation and RTPS protocol, where misunderstooding was not fully avoided. Suggestions for improvements follows.

The first property of BoxType is color. In Shape demo, color is typed as CORBA_octet (macro for uint8_t, 1 byte) and in Shape for Android, color is of integer type (4 bytes). The reason why this approach does not break the compatibility is following: each data-type serialized by CORBA is aligned to 4 byte boundary. In this case, object color is first byte and the rest until the boundary is filled by zero bytes. This data representation corresponds to Little Endian in which the message is encoded by default (endianness is operating system dependent), so when Shape for Android deserialize data, Little Endian encoded integer is obtained. It also works in opposite direction - value of the color is serialized as integer, encoded as Little Endian and on the side of Shape demo, CORBA_octet is describlized and 3 zero bytes skipped because of boundary alignment. The problem could arise when color would be sent as integer with Big Endian encoding and received as CORBA_octet, because the value of the first byte would be then zero. Also, the problem wouldn't persist in the opposite direction, because endianness is always part of the RTPS message so even node with Big Endian default encoding would receive Little Endian encoded message correctly.

The second property of *BoxType* is *shape*. The type in Shape demo is CORBA_long (macro for int32_t, 4 bytes) and integer (4 bytes) in Shape for Android. Therefore there is no problem with *shape* property.

The last property of *BoxType* is *BoxRect* consisting of coordinates of object. Each value of *BoxRect* is CORBA_short type (2 bytes) in Shape demo and short type (2 bytes) in Shape for Android. Because *BoxRect* is presented as CORBA autonomous data-type, the whole data-type (8 bytes) is aligned to 4 bytes boundary.

The suggestion for the future improvement of Shape demo and Shape for Android is the revision of BoxTupe data-type.

Figure 5.2. Shape for Android - Publishers view

[sec]

Chapter 6 Security for DDS

References

[OMG:DDSI-RTPS2[1]] Object Management Group (OMG). The Real-Time Publish-Subscribe Protocol (RTPS) DDS Interoperability Wire Protocol Specification . 2014 .

http://www.omg.org/spec/DDSI-RTPS/2.2/ .

 ${\tt [OMG:DD[\!\!\!2]}$ Object Management Group (OMG). Data Distribution Service for Real-Time Systems . 2007 .

http://www.omg.org/spec/DDS/ .

http://www.omg.org/index.htm .

[FEE:ORT] ORTE - Open Real-Time Ethernet .

http://orte.sourceforge.net/ .

[FEE:vajnar-bt] ORTE communication middleware for Android OS. 2014.

Requests for correction

[rfc-1] obrazek