Happy Planet Index clustering script

HarvardX Data Science Capstone Own Project

Codrin Kruijne 2019-06-03

```
# PLEASE NOTE
# THIS SCRIPT HAS ONLY BEEN TESTED ON A 6-CORE (12-THREAD), 64GB MEMORY MACHINE
# AND WILL PROBABLY NOT RUN WITH LOWER COMPUTER SPECIFICATIONS.
parallel::detectCores()
## [1] 12
memory.limit()
## [1] 65471
# Script settings
knitr::opts_chunk$set(
    message = FALSE,
   warning = FALSE,
    cache = TRUE,
    tidy.opts = list(width.cutoff = 100),
    tidy = TRUE
script_start <- Sys.time()</pre>
# Load required packages
library(tidyverse)
library(gridExtra)
library(readxl)
library(tidyimpute)
library(cluster)
```

Loading data

```
sheet = "2016",
                  range = "A1:BQ147", # data for countries that are in the index
                  trim ws = TRUE)
SPI[3:76] <- lapply(SPI[3:69], as.numeric)</pre>
SPI[1:2] <- lapply(SPI[1:2], as.factor)</pre>
SPI <- SPI %>% select(-Code)
# Explore differing countries ### FIX DIFFERENT SPELLINGS
diff_countries <- HPI %>% anti_join(SPI, by = "Country") %>% select(Country)
# Join data
raw <- HPI %>% inner_join(SPI, by = "Country") %>%
                mutate(Country = as.factor(Country))
# Impute scaled data
imputed <- raw %>% impute_all(.na = mean, na.rm = TRUE)
# Scale numeric data
scaled <- imputed %>% mutate_if(is.numeric, scale) %>%
                      rename_if(is.numeric, paste, "SCALED")
# Let's have a quick look at the HPI data
hpi_hist_3 <- ggplot(raw, aes(`Happy Planet Index`)) + geom_histogram(binwidth = 3)
saveRDS(hpi_hist_3, "graphs/hpi_hist_3.rds")
hpi_hist_1 <- ggplot(raw, aes(`Happy Planet Index`)) + geom_histogram(binwidth = 1)
saveRDS(hpi_hist_1, "graphs/hpi_hist_1.rds")
hpi_region_hist <- ggplot(raw, aes(`Happy Planet Index`)) + facet_wrap(~Region) +
                                         geom_histogram(binwidth = 3)
saveRDS(hpi region hist, "graphs/hpi region hist.rds")
hpi_scatter <- ggplot(raw, aes(x = `Happy Life Years`, y = 1.73 - `Footprint\r\n(gha/capita)`, size = `
 geom_point()
saveRDS(hpi_scatter, "graphs/hpi_scatter.rds")
plot(hpi_hist_3)
```


plot(hpi_hist_1)

plot(hpi_region_hist)

plot(hpi_scatter)

Cluster modeling

```
data_clusters <- kmeans(scaled[, -c(1, 2)], 6, nstart = 20)

raw_clustered <- mutate(raw, cluster = as.factor(data_clusters$cluster))
scaled_clustered <- mutate(scaled, cluster = as.factor(data_clusters$cluster))

cluster_expl <- ggplot(raw_clustered, aes(x = `Happy Life Years`, y = 1.73 - `Footprint\r\n(gha/capita)
saveRDS(cluster_expl, "graphs/cluster_expl.rds")

plot(cluster_expl)</pre>
```



```
# Using the elbow method

tot_withinss <- map_dbl(1:10,     function(k){
    model <- kmeans(x = scaled[, -c(1, 2)],     centers = k)
    model$tot.withinss
})

elbow_df <- data.frame(
    k = 1:10,
    tot_withinss = tot_withinss
)

print(elbow_df)</pre>
```

```
##
       k tot_withinss
## 1
             9828.000
## 2
       2
             5543.768
## 3
       3
             3992.840
## 4
       4
             3755.259
## 5
       5
             3523.340
## 6
             3264.431
       6
## 7
       7
             3312.782
## 8
             3012.013
       8
## 9
       9
             2811.984
             2743.001
## 10 10
```

```
elbow_plot <- ggplot(elbow_df, aes(x = k, y = tot_withinss)) +</pre>
                geom_line() +
                scale_x_continuous(breaks = 1:10)
saveRDS(elbow_plot, "graphs/elbow_plot.rds")
# Silhouette width method https://campus.datacamp.com/courses/cluster-analysis-in-r/k-means-clustering?
sil_width <- map_dbl(2:10, function(k){</pre>
  model \leftarrow pam(x = scaled[, -c(1, 2)], k = k)
 model$silinfo$avg.width
})
sil_df <- data.frame(</pre>
k = 2:10,
 sil_width = sil_width
print(sil_df)
##
     k sil_width
## 1 2 0.38997707
## 2 3 0.29268417
## 3 4 0.20113895
## 4 5 0.16974180
## 5 6 0.17077939
## 6 7 0.11441110
## 7 8 0.10339666
## 8 9 0.11525771
## 9 10 0.09892183
sil_width_plot <- ggplot(sil_df, aes(x = k, y = sil_width)) +</pre>
                    geom_line() +
                    scale_x_continuous(breaks = 2:10)
saveRDS(sil_width_plot, "graphs/sil_width_plot.rds")
# Plot
plot(elbow_plot)
```


plot(sil_width_plot)

Visualising clustered data

```
# It seems 2 or 3 clusters is optimal, let's have a look
bi_clusters <- kmeans(scaled[, -c(1, 2)], centers = 2, nstart = 20)
raw_clustered <- raw_clustered %>% mutate(final_cluster = as.factor(bi_clusters$cluster))
bi_plot_hpi <- ggplot(raw_clustered, aes(x = `Happy Life Years`, y = 1.73 - `Footprint\r\n(gha/capita)` saveRDS(bi_plot_hpi, "bi_plot_hpi.rds")
bi_plot_spi <- ggplot(raw_clustered, aes(x = `Happy Life Years`, y = 1.73 - `Footprint\r\n(gha/capita)` saveRDS(bi_plot_spi, "bi_plot_spi.rds")
# Arrange plots
plot(bi_plot_hpi)</pre>
```


plot(bi_plot_spi)

Cluster analysis

```
# Lets combina all data for analysis and visualisation
data <- raw_clustered %>% inner_join(scaled_clustered, by = c("Country", "Region"))
# Statistics per bi_cluster to compare
fct_order <- c("Basic Human Needs SCALED",</pre>
               "Foundations of Wellbeing SCALED",
               "Opportunity SCALED",
               "Social Progress Index SCALED",
               "Happy Life Years SCALED",
               "Footprint\r\n(gha/capita) SCALED",
               "Happy Planet Index SCALED")
bi_averages <- data %>% select(`Happy Life Years SCALED`,
                               `Footprint\r\n(gha/capita) SCALED`,
                               'Happy Planet Index SCALED',
                               Basic Human Needs SCALED,
                               Foundations of Wellbeing SCALED,
                               Opportunity SCALED,
                               `Social Progress Index SCALED`,
                                final_cluster) %>%
                        group_by(final_cluster) %>%
```

How do countires in clusters differ? Indicator avereges for countries per cluster

Appendix

```
# Which countries are in these cluster?
cluster_1 <- data %>% filter(final_cluster == 1) %>% select(Country)
cluster_2 <- data %>% filter(final_cluster == 2) %>% select(Country)

k1 = cluster_1[1:(nrow(cluster_1)/2),] %>% rename("Cluster 1" = "Country")
k2 = cluster_1[(nrow(cluster_1)/2+1):nrow(cluster_1),] %>% rename("countries" = "Country")
k3 = cluster_2[1:(nrow(cluster_2)/2),] %>% rename("Cluster 2" = "Country")
```

```
k4 = cluster_2[(nrow(cluster_2)/2+1):nrow(cluster_2),]%>% rename("countries" = "Country")
knitr::kable(list(k1, k2, k3, k4))

# How long did the whole script take?
script_end <- Sys.time()
print(paste("Total script running time: ", round(difftime(script_end, script_start, units = "mins"), 1)
## [1] "Total script running time: 0 minutes"</pre>
```

		Cluster 2	countries
		Albania	Latvia
		Algeria	Lebanon
		Argentina	Lithuania
		Armenia	Luxembourg
		Australia	Macedonia
		Austria	Malaysia
		Belarus	Mauritius
		Belgium	Mexico
<u> </u>		Bhutan	Mongolia
Cluster 1	countries	Bolivia	Montenegro
Afghanistan	Lesotho	Brazil	Morocco
Bangladesh	Liberia	Bulgaria	Netherlands
Benin	Malawi	Canada	New Zealand
Botswana	Mauritania	Chile	Nicaragua
Burkina Faso	Mozambique	China	Norway
Burundi	Myanmar	Colombia	Oman
Cambodia	Nepal	Costa Rica	Panama
Cameroon	Niger	Croatia	Paraguay
Chad	Nigeria	Cyprus	Peru
Comoros	Pakistan	Czech Republic	Philippines
Djibouti	Rwanda	Denmark	Poland
Egypt	Senegal	Dominican Republic	Portugal
Ethiopia	Sierra Leone	Ecuador	Romania
Ghana	Swaziland	El Salvador	Russia
Guatemala	Tajikistan	Estonia	Serbia
Guinea	Tanzania	Finland	Slovakia
Honduras	Togo	France	Slovakia
India	Uzbekistan		South Africa
Indonesia	Yemen	Georgia	
Kenya	Zimbabwe	Germany	Spain
·		Greece	Sri Lanka
		Hungary	Suriname
		Iceland	Sweden
		Iran	Switzerland
		Ireland	Thailand
		Israel	Tunisia
		Italy	Turkey
		Japan	Ukraine
		Kazakhstan	United Kingdom
		Kyrgyzstan	Uruguay