PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-224515

(43) Date of publication of application: 12.08.1994

(51)Int.CI.

H01S 3/18

(21)Application number: 05-010577

(71)Applicant: NEC CORP

(22)Date of filing:

26.01.1993

(72)Inventor: KASAHARA KENICHI

(54) SURFACE-EMISSION SEMICONDUCTOR LASER

(57) Abstract:

PURPOSE: To provide a surface-emission semiconductor laser the plane of polarization of which can be controlled to one direction.

CONSTITUTION: SiN films are respectively deposited at different temperatures on the side walls of a mesa in the x- and y-axis directions. At the time of depositing the films, the SiN film 191 on the side wall in the x-axis direction is deposited at a higher temperature than that of the SiN film 192 deposited on the side wall in the y-axis direction. Since the coefficient of thermal expansion of SiN is smaller than that of GaAs semiconductors, the tensile stress applied to an active layer in the x-axis direction at a room temperature becomes stronger than that in the y-axis direction. Therefore, the plane of polarization of this surface-emission semiconductor laser is oriented in the y-axis direction.

LEGAL STATUS

[Date of request for examination]

26.01.1993

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

2041563

[Date of registration]

09.04.1996

[Number of appeal against examiner's decision of rejection]

of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A) (11) 特許出願公開番号

特開平6-224515

(43)公開日 平成6年(1994)8月12日

(51) Int.Cl.5

識別記号 庁内整理番号 FΙ

技術表示箇所

H01S 3/18

審査請求 有 請求項の数6 OL (全 5 頁)

(21)出願番号

特顧平5-10577

(22)出願日

平成5年(1993)1月26日

(71)出願人 000004237

日本電気株式会社

東京都港区芝五丁目7番1号

(72)発明者 笠原 健一

東京都港区芝五丁目7番1号 日本電気株

式会社内

(74)代理人 弁理士 岩佐 義幸

(54) 【発明の名称】 面発光半導体レーザ

(57)【要約】

【目的】 面発光半導体レーザの偏波面を一方向に制御 できる面発光半導体レーザを提供する。

【構成】 メサのx軸方向、y軸方向の側壁に、異なる 温度でSiN膜を、堆積する。この場合、x軸方向の側 壁のSiN膜191を、y方向の側壁のSiN膜192 よりも高い温度で堆積する。SINの熱膨張係数は、G aAs系半導体のそれよりも小さいので、室温では活性 層に対するx軸方向への引っ張り応力がy軸方向よりも 大きくなる。その結果、y軸方向に偏波面が揃う。

【特許請求の範囲】

【請求項1】第一導伝型の第1クラッド層、活性層、第 二導伝型の第2クラッド層を含むメサ構造を半導体基板 上に有し、基板と垂直方向に光を出す面発光半導体レー ぜにおいて、

対向する一組の前記メサの側面に第1の温度条件で形成 された第1の絶縁膜を有し、前記一組の側面とは別の一 組の前記メサの側面に、前記第1の温度条件とは異なる 温度条件で形成された第2の絶縁膜を有することを特徴 とする面発光半導体レーザ。

【請求項2】前記第1の絶縁膜と前記第2の絶縁膜と は、同一または異なることを特徴とする請求項1記載の 面発光半導体レーザ。

【闘求項3】前記第1および第2の絶縁膜は、SIN膜 であることを特徴とする請求項2記載の面発光半導体レ

【請求項4】前記第1の絶縁膜はSiN膜であり、前記 第2の絶縁膜はSiOz膜であることを特徴とする請求 項2記載の面発光半導体レーザ。

【請求項5】前記第1の温度条件は、前記第2の温度条 20 件よりも高温であることを特徴とする請求項3または4 記載の面発光半導体レーザ。

【請求項6】前配一組のメサの側面と、前配別の一組の メサの側面とは、前記基板と平行な直交する2つの軸方 向にそれぞれ位置することを特徴とする請求項1~5の いずれかに記載の面発光半導体レーザ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、光インターコネクショ ザに関する。

[0002]

【従来の技術】面発光半導体レーザは、小型で2次元集 積化が可能な光源として内外の研究開発機関で研究が活 発に進められている。面発光半導体レーザの課題の一つ は、偏波方向の安定化である。等方的な面発光半導体レ ーザでは、直交する2つの軸方向に関して特性の差異が ないので、偏波方向はそれらの方向に対して等しい確率 で向くことになる。したがって、偏波は一方向に定まら ない。偏波が一方向に定まり、安定化されていないと、 偏波ビームスプリッターなど偏波依存性のある光学案子 が使えなくなる。光交換や光情報処理などの応用では、 偏波が一方向に決まっていたほうが使いやすい。

【0003】このような問題を解決するために図8に示 したような構造が提案されている。これは、GaAs/ AlGaAs 系面発光レーザであり、第39回応用物理 学関係連合講演会講演予稿集No. 3の923頁(講演 番号23a-SF-7) に示されている。この面発光半 導体レーザは、GaAs基板31上に、Alo.s Ga 0.7 As層32, GaAs活性層33, Alo.3 Ga 50 0.2 Gao.8 As活性層14、p-Alo.4 Gao.6 A

o., As層34を積層し、GaAs基板31に楕円形状 の穴35をエッチングで形成し、活性層33にストレス を与える。この方法では、光出射孔の長軸方向の引っ張 り応力が小さく、長軸方向に偏波する。

[0004]

【発明が解決しようとする課題】図8に示された従来例 の問題点は、GaAs基板にエッチング孔を掘り、活性 層の真下の層でエッチングを止めることが難しい点であ る。GaAs基板の厚さは通常、100μmあり、そこ にエッチング孔を形成し、しかも活性層を突き抜けない ように止めるのは容易ではない。素子の長期的な信頼性 を考えても、活性層近傍の半導体の厚さを数μmにして おくことは好ましくない。したがって、このようなエッ チング孔を形成せずに、活性層にストレスを異方的に与 えられる構造が望ましい。

【0005】本発明の目的は、簡単なプロセスで偏波面 を一方向に制御することができる面発光半導体レーザを 提供することにある。

[0006]

【課題を解決するための手段】本発明は、第一導伝型の 第1クラッド層、活性層、第二導伝型の第2クラッド層 を含むメサ構造を半導体基板上に有し、基板と垂直方向 に光を出す面発光半導体レーザにおいて、対向する一組 の前記メサの側面に第1の温度条件で形成された第1の 絶縁膜を有し、前記一組の側面とは別の一組の前記メサ の側面に、前配第1の温度条件とは異なる温度条件で形 成された第2の絶縁膜を有することを特徴とする。

[0007]

【作用】対向する一組の前配メサの側面に絶縁膜を形成 ンや、光交換、光情報処理に使われる面発光半導体レー 30 し、それとは異なる別の一組の前記メサの側面には別の 条件で絶縁膜を形成することによって、直交する2つの 方向で、異なるストレスを活性層に与えることができ る。それによって発振閾値利得に異方性を与えることが でき、閾値利得の小さい軸方向のモードだけを選択的に 立たせることができる。

[8000]

【実施例】図1, 図2, 図3は、本発明の一実施例を示 す図である。図1は平面図、図2は図1のA-A線断面 図、図3は図1のB-B線断面図である。

【0009】本実施例の面発光半導体レーザは、n-G aAs基板11と、n-AlAs/GaAs分布プラッ グ反射鏡 (DBR) 12と、n-Alo.4 Gao.6 As 層13と、Ino.2 Gao.8 As活性層14(厚さは1 00オングストローム、発振波長は9800オングスト ローム)、p-A10.4 Gao.6 As層15と、p-A 1As/GaAs DBR162. AuGe-Ni/A uからなるカソード電極17と、CrAuからなるアノ ード電極18とを有している。

[0010] n-Alo.4 Gao.6 As層13、In

s 層 15 の全層厚は、媒質内レーザ液長の 1/2 である。n-A1As/GaAs DBR 12、p-A1As/GaAs DBR 12、p-A1As/GaAs DBR 16 の周期数はそれぞれ 24. 5 対、15 対である。成長は分子線ビームエピタキシー (MBE) も用いて作製した。p 型、n 型のドーパントはそれぞれ、Be、Siである。 10μ m角の大きさに、素子を正方形状にメサエッチングしてある。19 1、192 はSiN膜である。

【0011】S1N膜は、次のようにして形成した。な お、以下の説明において、図1の面上において直交する 10 2つの軸、すなわちx軸、y軸をとり、図1に示すよう に方向を定義する。なお、x軸方向はA-A線方向に平 行であり、y軸方向はB-B線方向に平行である。図1 の平面図において、メサのx軸方向両側面にウェハーを 300℃に加熱した状態で、SIN膜191を1500 オングストロームの厚さで堆積させた。SiN膜形成の 方法としては、p-CVD法を用いた。SIN膜191 は、p-CVDで形成するとウェハー全面に堆積する が、フォトリソグラフィー、エッチング工程により、メ サの左右の側面と、それに続く左右のn-AlAs/G 20 aAs DBR12の上面にのみ残すようにする。その 後、ウェハーを100℃に加熱し、SiN層192を1 500オングストロームの厚さで全面に堆積させる。そ して、アノード電極18とp側とのコンタクトをとるた めに、メサ上部を正方形状に開口する。したがって、こ の状態でメサのx軸方向の側壁にはSIN膜191とS iN膜192が堆積していることになる。また、メサの y軸方向の側壁にはSiN膜192のみが堆積している ことになる。SIN膜191とSIN膜192はアノー ド電極18がn側半導体に接触しないようにするための 30 絶縁膜の役目を果たすが、同時に活性層のy軸方向、x 軸方向に異なるストレスを与える役目も果たす。これに よって、発振閾値利得に異方性を与えられ、閾値利得の 小さい方の軸方向のモードだけを立たせることができ

【0012】SiNの熱膨張係数は~2.5×10-6K 【符号である。図1~図3の実施例では、メサのx軸方向に対しては300℃と、y軸方向に対して相対的に高い温度でSiN膜が形成されるので、室温に戻った時に、活性の間にはx軸方向に強い引っ張り応力が働く。したがって、図4に示した電流-光出力特性の偏液方向依存性から分かるように、偏波は引っ張り応力が弱い、y軸方向に向く。発振閾値電流は、1mAで良く偏波制御されているのが分かる。

【0013】図5,図6,図7は、本発明の他の実施例を示す図である。図5は平面図、図6は図5のA-A線断面図、図7は図5のB-B線断面図である。

【0014】図1~図3の実施例では、x軸方向におい

てSiN膜191の上にSiN膜192が堆積している のでストレスの与え方の設計が少し難しくなる。そこで 本実施例では、x軸方向には300℃でSiN膜291 (組成比は3:4にする)だけを、また、y軸方向には 100℃でSi〇2 膜292だけ堆積した。

【0015】SIN膜およびSIOx 膜は、次のようにして形成した。最初にp-CVDでSIN膜291をウェハー全面に堆積し、ドライエッチングでx軸方向にのみ残すようにする。その後、SIOx 膜292を全面に堆積し、パッファードHFでウエットエッチングしてy軸方向にのみ残すようにする。SIN膜291の組成比を3:4にするとパッファードHFでウエットエッチングされないので、このようにx軸方向のSIN膜291はとれずに、y軸方向にだけSIOx 膜292を残すことができる。偏波は図1~図3の実施例と同じように、引っ張り応力が弱い、y軸方向に向く。なお、その他の構造は、図1~図3の実施例と同じであるので、同一の構成要素には同一の参照番号を付して示してある。

【0016】以上の実施例では、GaAs/AlGaA 0 s系半導体の面発光レーザの場合を示したが、他のIn P/InGaAsP系のような面発光レーザの場合にも 適用できることは言うまでもない。

[0017]

【発明の効果】本発明によれば、従来技術におけるよう にエッチング孔を形成することなく、簡単なプロセスで 個波面を一方向に制御することができる。

【図面の簡単な説明】

- 【図1】本発明の一実施例の平面図である。
- 【図2】図1のA-A線断面図である。
- 【図3】図1のB-B線断面図である。
 - 【図4】電流-光出力特性の偏波方向依存性を示す図である。
 - 【図5】本発明の他の実施例の平面図である。
 - 【図6】図5のA-A線断面図である。
 - 【図7】図5のB-B線断面図である。
 - 【図8】従来の構造を示す断面図である。

【符号の説明】

- 11 n-GaAs基板
- 12 n-AlAs/GaAs分析プラッグ反射鏡(D RR)
 - 13 n-Alo.4 Gao.6 As
 - 14 Ino.2 Gao.s As活性層
 - 15 p-Alo.4 Gao.6 As
 - 16 p-AlAs/GaAs DBR
 - 17 カソード電極
 - 18 アノード電極
 - 191, 192, 291 SiN層
 - 292 SiO2 層

