## T-301-REIR, REIKNIRIT/ALGORITHMS HAUST/FALL 2019 D4 - SYMBOL TABLES (AND SORTING)

Problems 4 through 7 are of the problem solving type. You are to give an efficient algorithmic method that solves the given problem. Give answers as a clear but *succinct* text description (few lines each). Grade is given for serious effort.

If not specified, you should assume that input numbers can have a very large range.

**Problem 1.** What is the most frequent word in "A tale of two cities" (tale.txt) of length at least 7 that starts with the same letter as your first name? How frequent is it? [Hint: Consider FrequencyCounter.java]

**Problem 2.** (Problem 3.2.4) Suppose that a certain BST has keys that are integers between 1 and 10, and we search for 5. Which sequence below cannot be the sequence of keys examined?

- (1) 10, 9, 8, 7, 6, 5
- (2) 4, 10, 8, 6, 5
- (3) 1, 10, 2, 9, 3, 8, 4, 7, 6, 5
- (4) 2, 7, 3, 8, 4, 5
- (5) 1, 2, 10, 4, 8, 5

**Problem 3.** Write the constructor BST(double a[]), that converts the unsorted array of numbers into a corresponding (properly ordered) binary search tree. The tree should be of minimum height, and the method efficient. You may use support functions.

Problem 4. Josie needs a data structure that can handle the following operations: push, pop, contains, remove, where contains(Item x) answers whether a given item is in the data structure and remove(Item x) removes the given item from the data structure. How can this be implemented efficiently?

**Problem 5.** We are given k sorted arrays, with a total of N (distinct) elements, where k < N. How can we output all the numbers in sorted order, using time  $O(N \log k)$ ?

**Problem 6.** Given a collection of intervals (on the real line) and a real value x, a stabbing count query is the number of intervals that contain x. Design a data structure that supports interval insertions intermixed with stabbing count queries, in logarithmic time per operation.

**Problem 7.** Give a sequence of N insertions into a red-black tree that lead to the tree having height  $\sim 2 \log N$ . (You may assume  $N = 2^k - 2$ , for some k).

Date: September 27, 2019.

T-301-REIR, REIKNIRIT/ALGORITHMS HAUST/FALL 2019 D4 - SYMBOL TABLES (AND SORTING)

**Problem 8.** Suppose that the keys A through G, with the hash keys given below, are inserted in some order into an initially empty table of size 7 using linear probing (M=7, no resizing).

Which of the following (more than one might apply) could not possibly result from inserting these keys? Explain briefly.

- (1) BEAGDFC
- (2) C F A G D E B
- (3) FBGAECD
- (4) F C B G A D E

Class Problems. These problems will be discussed in the exercise sections. Please attempt all these problems before that class, as this is essential to understanding the fundamentals.

**Problem 9.** (Problem 3.3.16) Show the result of inserting the letter n into the red-black BST shown on page 450 (only the search path is shown, and you need to include only these nodes in your answer).



**Problem 10.** (Problem 3.3.5, shortened) Draw all structurally different 2-3 trees for N = 7, 8, and 9. (The trees for N from 1 to 6 are shown on p. 449)

SCHOOL OF COMPUTER SCIENCE, REYKJAVIK UNIVERSITY, MENNTAVEGI 1, 101 REYKJAVIK

Email address: mmh@ru.is