CSE-170 Computer Graphics

Lecture 13
Rasterization

Dr. Renato Farias rfarias 2@ucmerced.edu

Rasterization

- Also known as scan-conversion
- All primitives considered by a graphics system have to be rasterized at some point
 - Lines
 - Lines with thickness
 - Polygonal lines with thickness
 - Triangles
 - Polygons
 - Circles
 - etc

Scan Converting Lines

- Determine the sequence of pixels that lie as close to the ideal line as possible
 - No gaps, best approximation, consistency, etc.

Scan Converting Lines

- Simplest approach (example considers *m* in [0,1])
 - Given endpoints, compute slope $m = \Delta y/\Delta x$
 - Increment x by 1, starting with leftmost point
 - Calculate $y_i = mx_i + B$
 - Paint pixel (x_i , round(y_i))

INEFFICIENT: too many floating-point operations!

(Note: for simplicity we consider the line as going from left to right and up but extending to any quadrant is easy)

Scan Converting Lines

• Incremental Algorithm / DDA (digital differential analyzer)

```
void line ( int x0, int y0, int x1, int y1 )
   int x;
   float deltay = y1 - y0;
   float deltax = x1 - x0;
   float m = deltay / deltax;
   float y = y0;

for ( x = x0; x <= x1; x++ )
   { paint ( x, round(y) ); // round(y): int(y+0.5f), y>0
     y = y + m;
   }
```


- Ok for most (short) lines, but can accumulate error
- Needs floating-point operations

Bresenham

- Bresenham (1965)
 - Classic algorithm using only integer arithmetic
 - No round function, incremental calculation
 - Applicable as well to circles, but not conics
 - Best fit, minimizes error (dist. to true shape)
- Extension/variation: Midpoint algorithm
 - For lines and circles it selects the same pixels as Bresenham
 - Handles conics

- Midpoint Line Algorithm (example considers m in [0,1])
 - Test: on which side of the midpoint M does the line lie?
 - If above, NE cell is chosen, otherwise E cell is chosen

 $M = (x_p+1, y_p+0.5)$

• NE chosen

Test E and NE

• E chosen

Test E and NE

• NE chosen

Test E and NE

• E chosen

Midpoint Test

- Midpoint test
 - Implicit line: F(x,y): ax+by+c=0

- Let
$$\Delta x = x1-x0$$
, $\Delta y = y1-y0$
 $y = (\Delta y/\Delta x)x + B$ (B is the Y intercept, for ex., B = y1-m*x1)

$$F(x,y)$$
: $\Delta y \times -\Delta x y + B\Delta x = 0$

F(x,y) is:

- 0, on the line
- >0, for points below the line
- <0, for points above the line

midpoint criterion: evaluate sign of $F(x_p+1, y_p+0.5)$

Midpoint Test

F(x,y): ax+by+c=0, d is our decision variable:

$$d_{cur} = F(x_p+1, y_p+0.5) = a(x_p+1)+b(y_p+0.5)+c$$

If E is taken:

$$d_{next} = a(x_p+2)+b(y_p+0.5)+c = d_{cur} + a$$
 (green point)

If NE is taken:

$$d_{\text{next}} = a(x_p+2)+b(y_p+1.5)+c = d_{\text{cur}} + a + b$$
 (red point)

 $M = (x_p + 1, y_p + 0.5)$

Midpoint Test

Start:
$$(x_0, y_0)$$
 1st midpoint: $(x_0+1, y_0+0.5)$

$$F(x_0+1, y_0+0.5) = a(x_0+1)+b(y_0+0.5)+c$$

$$= ax_0 + by_0 + c + a + b/2$$

$$= F(x_0, y_0) + a + b/2$$

$$= > d_{start} = dy - dx/2$$

To eliminate the fraction, we multiply F by 2:

$$=> d_{start} = 2dy - dx$$

If E is taken:

$$d_{next} = d_{cur} + 2a$$

If NE is taken:

$$d_{\text{next}} = d_{\text{cur}} + 2(a + b)$$
 reminder: $a = \Delta y$, $b = -\Delta x$

Midpoint Algorithm

```
void midpointline ( int x0, int y0, int x1, int y1 )
int deltax = x1-x0;
int deltay = y1-y0;
int d = deltay+deltay - deltax; // initial value of d (2dy-dx)
int incE = deltay+deltay; // increment to move to E (2dy)
int incNE = deltay+deltay-deltax-deltax; // inc to move to NE (2dy-2dx)
x = x0;
y = y0;
paint (x, y);
                                // first point
while ( x < x1 )
 { if ( d<0 )
    {d = d + incE;}
                                // great, only integer arithmetic !!!
     x = x + 1;
   else
   {d = d + incNE;}
      x = x + 1;
     y = y + 1;
   paint (x, y);
                                // paint current point
```

Issues

- Endpoint order
 - Ensure that p0,p1 and p1,p0 generates same pixels:
 - Change choice used when d=0, or
 - Switch endpoints to ensure same result

- So far, we considered integer endpoints
 - Closest pixel from real points can be used
 - Additional care needed when drawing clipped lines, to ensure the slope remains the same

Other primitives

- Now that we know how to efficiently scanconvert lines
 - Same principles can be used to scan-convert other primitives
 - Polylines
 - Rectangles
 - Polygons
 - etc.

Scan Converting Circles

- Circle has eight-way symmetry
 - CirclePaint (x, y)

```
Paint ( x, y );
Paint ( y, x );
Paint ( y, -x );
Paint ( x, -y );
Paint ( -x, -y );
Paint ( -y, -x );
Paint ( -y, x );
Paint ( -x, y );
```


Exactly same logic as the midpoint line algorithm!

Note: this arc is just for illustration, it is not a true circle octant!

Filling Primitives

- Scan Line
 - Computes spans that lie between left and right edges of the polygon
 - Handles convex and concave polygons

Scan Line

Example of spans

(Note: here, pixels are the intersection points in the grids, and not the grid cells)

Scan Line

- Same midpoint technique is used to calculate and update the extremes of the spans
 - No need to calculate analytically the intersections between the polygon edges and the scan line
- Spans are filled in 3 step process
 - Find scan line intersections with polygon edges
 - Sort intersections by increasing x
 - Fill pixels using the odd-parity rule:
 - Initially even
 - invert on each intersection
 - » draw when odd
 - » do not draw when even

- Data Structure
 - Active-Edge Table (AET)
 - Edges sorted on their x intersection values
 - Edges are inserted/removed as the scan line traverses the polygon

- To make addition of edges to the EAT efficient,
 a global Edge Table ET containing all edges
 sorted by their smallest y coordinate is used
 - Use bucket sort, buckets are the number of scan lines
 - Within each bucket, edges are in increasing x order of the lower endpoint

- Edge Table:
 - 1 Bucket for each scan line, sorted by smallest y

Issues

- Horizontal edges
- Slivers
- Calculating the intersections
- Exploiting edge coherence
- etc.

Convex Polygons

- It is simpler to deal with convex polygons
 - Easier management of scan lines
 - Triangles even simpler (OpenGL case)
- How to decompose arbitrary polygons in convex pieces?
 - Scan line algorithm for trapezoidal decomposition
 - Polygon triangulation methods
 - Optimal method is O(n)
 - Simplest approach: triangulation by "ear cuts"
 - O(n²)

Related Topics

- Thick primitives
 - Effects of using different "pens"
- Connections between thick lines
 - Round
 - Sharp, etc

Related Topics

- Pattern filling
 - Several options here, but no support in OpenGL 4
- Antialiasing
 - All systems support it, but sometimes it is preferable to not do antialiasing
 - Ex: some fonts are sharper without antialiasing

