HUSZAR

October 18, 2016

We want to demonstrate equation (5) of Ferenc Huszár, 2015

$$D_{alternative} [P \mid\mid Q] = KL [P_{x_1} \mid\mid Q_{x_1}] + \mathbb{E}_{y \sim P_{x_1}} \mathbb{E}_{z \sim Q_{x_1}} KL [P_{x_2 \mid x_1 = y} \mid\mid Q_{x_2 \mid x_1 = z}]$$
(4)
$$= KL [P_{x_1} \mid\mid Q_{x_1}] + \mathbb{E}_{z \sim Q_{x_1}} KL [P_{x_2} \mid\mid Q_{x_2 \mid x_1 = z}]$$
(5)

We study the second right hand side term of the first line (4)

$$\mathbb{E}_{y \sim P_{X_1}} \mathbb{E}_{z \sim Q_{X_1}} KL \left[P_{X_2 \mid X_1 = y} \mid\mid Q_{X_2 \mid X_1 = z} \right] = \mathbb{E}_{z \sim Q_{X_1}} \sum_{y \sim P_{X_1}} P_{X_1} (X_1 = y) \sum_{x_2 \sim P_{X_2 \mid X_1 = z} (\cdot \mid X_1 = y)} P_{X_2 \mid X_1 = y} (X_2 = x_2 \mid X_1 \mid X_2 \mid$$

Now by Bayes' Rule we know that:

$$P_{X_2 \mid X_1 = y}(X_2 = x_2 \mid X_1 = y) = \frac{P_{X_2}(X_2 = x_2)}{P_{X_1}(X_1 = y)} P_{X_1 \mid X_2 = x_2}(X_1 = y \mid X_2 = x_2)$$

So we can bring the terms that are only function of x_2 and z in our first sum to write our previous equation

$$\mathbb{E}_{y \sim P_{X_1}} \mathbb{E}_{z \sim Q_{X_1}} KL \left[P_{X_2 \mid X_1 = y} \mid\mid Q_{X_2 \mid X_1 = z} \right] = \mathbb{E}_{z \sim Q_{X_1}} \sum_{x_2 \sim P_{X_2}} P_{X_2} (X_2 = x_2) \log \left[\frac{P_{X_2} (X_2 = x_2)}{Q_{X_2 = x_2 \mid X_1 = z} (X_2 = x_2 \mid X_1 = z)} \right]$$

$$\sum_{y \sim P_{X_1 \mid X_2 = x_2} (\cdot \mid X_2 = x_2)} P_{X_1 \mid X_2 = x_2} (X_1 = y \mid X_2 = x_2) \log \left[\frac{P_{X_1 \mid X_2 = x_2} (X_1 = z)}{P_{X_1} (X_1 = z)} \right]$$

If this last coefficient

$$\sum_{y \sim P_{X_1 \mid X_2 = x_2}(\cdot \mid X_2 = x_2)} P_{X_1 \mid X_2 = x_2}(X_1 = y \mid X_2 = x_2) \log \left[\frac{P_{X_1 \mid X_2 = x_2}(X_1 = y \mid X_2 = x_2)}{P_{X_1}(X_1 = y)} \right] = KL \left[P_{X_1 \mid X_2 = x_2} \mid \mid P_{X_1} \mid P_{X_1} \mid P_{X_2} \mid \mid P_{X_2} \mid P_{X_3} \mid P_{X_4} \mid P_{X_4} \mid P_{X_4} \mid P_{X_5} \mid P_{X_5$$

is equal to one, we end up with the expression we were looking for

$$\mathbb{E}_{y \sim P_{X_1}} \mathbb{E}_{z \sim Q_{X_1}} KL \left[P_{X_2 \mid X_1 = y} \mid\mid Q_{X_2 \mid X_1 = z} \right] = \mathbb{E}_{z \sim Q_{x_1}} KL \left[P_{x_2} \mid\mid Q_{x_2 \mid x_1 = z} \right]$$

But I must confess it is not clear to me why this KL-divergence should be equal to one...

In []: