Analog Electronic Circuits (EC2.103): Assignment-2

(Instructor: Prof. Zia Abbas, CVEST, IIIT Hyderabad)

Spring 2025, IIIT Hyderabad

Instructions:

- 1. Circuits of all questions mentioned at the end of the assignment.
- 2. Submit your assignment as a single pdf (Name_RollNo.pdf) at moodle on or before the due date
- 3. Hand-written/typed (notion/latex/word) submissions are allowed
- 4. Report should be self explanatory and must carry complete solution Answers with schematics, SPICE directives, annotated waveforms, inference/discussion on results as asked in the questions.
- 5. Use BC547B for circuits with BJTs.
- 6. Post your queries on moodle. Discussions are highly encouraged on moodle
- 7. Any form of copying/cheating will result in immediate F grade

1. BJT formula based

- (1.1) Measurement of an npn BJT in a particular circuit shows the base current to be $14.46\mu A$, the emitter current to be 1.460mA, and the base-emitter voltage to be 0.7V. For these conditions, calculate α, β and I_s .
- (1.2) A transistor for which $I_s = 10^{-16} A$ and $\beta = 100$ is conducting a collector current of 1mA. Find v_{BE} . Also, find I_{SE} and I_{SB} for this transistor.
- (1.3) For the circuit in Figure.1 , it is given that $\beta=100$ and $V_a=\infty$. Design the circuit such that $I_{CQ}=0.25mA$ and $V_{CEQ}=3V$. Find the small-signal voltage gain A_v and the input resistance as seen from the source v_s .

Figure 1: Figure corresponding to Question 1.3

2. BJT circuits at DC

Figure 2: Figure corresponding to Question 2

- (2.1) Determine the voltages at all nodes and the currents through all branches in the circuit given in Fig.2. Assume $\beta = 100$. Given, $R_{B_1} = 100k\Omega$, $R_{B_2} = 50k\Omega$, $R_C = 5k\Omega$, $R_E = 3k\Omega$.
- (2.2) If the transistor in the circuit of Fig.2 is replaced with another having half the value of β (i.e., $\beta = 50$), find the new value of all node voltages and currents, and express the change in the values as a percentage. Tabulate all the results as follows:

	I_C	I_B	I_E	V_C	V_B	V_E
$\beta = 100$						
$\beta = 50$						
%						

Table 1: Currents and Voltages for Different β Values

(2.3) Comment about region of operation of BJT in both cases. Explain your observations.

3. BJT characterization

- (3.1) Take BC547B npn transistor from the LTSPICE library and make a circuit as shown in Fig. 3(a). Use VCC = 12 V, sweep IB from 0μ A to $100~\mu$ A in step size of 10μ A and plot V_{BE} with respect to I_B . What is the forward bias emitter-base junction (EBJ) voltage obtained from the plot? Repeat experiment for $V_{CC} = 0$ to 12 V in step size of 2 V and give superimposed plots for different V_{CC} on same graph. (Hint: .dc IB 0 100u 10u V_{CC} 0 12 2)
- (3.2) Use the schematic shown in Fig. 3 in LTSPICE and plot I_C vs V_{BE} for $V_{CC} = 12$ V at 20° C, 30° C, 40° C, 50° C by sweeping V_{BE} from 0 to 0.7 V in step size of 0.01 V. All plots should overlay on same graphical axis. (Hint: .dc VBE 0 0.7 0.01, .step TEMP 20 50 10 or .step TEMP LIST 20 30 40 50)

(3.3) For Fig. 3(a), plot I_C vs V_{CE} by sweeping V_{CC} from 0 to 12 V in step size of 0.01 V and sweeping $I_B=0\mu A$ to $100\mu A$ in step size of $10\mu A$. Clearly mark cut-off, saturation and active modes in your characteristic plot. Find and tabulate incremental current gain $\beta=\frac{\Delta I_C}{\Delta I_B}$ in saturation (at $V_{CE}=100$ mV) and active (at $V_{CE}=600$ mV) modes for $I_{B1}=50\mu A$ to $I_{B1}=60\mu A$. Comment on the reason for the difference observed. Tabulate the current gain $\beta=\frac{I_C}{I_B}$ at $V_{CE}=1$ V for different values of I_B . Do you observe Early effect. Estimate the value of early voltage (V_A) from your simulations. (Hint: slope at a point $I_{CE}=I_{CE}/I_{CE}$)

Figure 3: Figure corresponding to Question 3