where A=4490000 & B=42A0000

- A=010001001001000000000000000
- B=010000101010000000000000000
 - A & B are +ve numbers

- MA= 001000....

- E'_{A=}89H= E_A=E'_A-127=10

Add single precision floating point numbers A & B where A=4490000 & B=42A0000

- - A & B are +ve numbers
 - E'_{A=} 89H= E_A=E'_A-127=10
 - M_{A=} 001000....
 E'_{B=}85H= F_B= F'_B-127₌6
 - E'_B=85H= E_B= E'_B-127=6
 MB=01000...
 - A=1.001*2^10
- B=1.010*2^6

Floating point arithmetic: MUL rule

- · Add the exponents.
- Subtract the bias.(127 in case of single precision & 1023 in case of d
- Multiply the mantissas and determine the sign of the result.
- Normalize the result (if necessary).
- Truncate/round the mantissa of the result.

A=36100000 B=D4100000

- A=0011011000010000000000000000000
- B=11010100000100000000000000000000
- A; S=0;E=6C=108(10);E=E'-127=108-127=-19
- A=+1.001*2^-19
- B; S=1; E'=A8=168(10); E=E'-127=168-127=41
- B= -1.001*2^41
- (-1.001*1.001)*2^41-19=-1.010001*26^22
- 11001010101000100000.....
- CAA20000

Divide A=36100000 by B=D4100000

- A=+1.001*2^-19
- B= -1.001*2^41
- 1.001/-1,001 *2^-19-41= -1.0000*2^60
- E=-60; E'=127-60=67
- 10100001100000000...