Chapter 2 - Operations

December 3, 2020

From "Book of Abstract Algebra" by Charles C. Pinter

A. Examples of Operations

Which of the following rules are operations on the indicated set? (\mathbb{Z} designates the set of integers, \mathbb{Q} the rational numbers, and \mathbb{R} the real numbers.) For each rule which is not an operation, explain why it is not.

- 1 $a * b = \sqrt{|ab|}$, on the set \mathbb{Q} .
- $2 \ a * b = a \ln b$, on the set $\{x \in \mathbb{R} : x > 0\}$.
- 3 a * b is a root of the equation $x^2 a^2b^2 = 0$, on the set \mathbb{R} .
- 4 Subtraction, on the set \mathbb{Z} .
- 5 Subtraction, on the set $\{n \in \mathbb{Z} : n \geq 0\}$.
- 6 a * b = |a b|, on the set $\{n \in \mathbb{Z} : n \ge 0\}$.

Solution

1 This is not an operation on \mathbb{Q} because a*b is not uniquely defined and \mathbb{Q} is not closed under *. If a and b are rational numbers they can be written as $a=\frac{c}{d}$ and $b=\frac{e}{f}$ where c,d,e, and f are integers, $d\neq 0$, and $f\neq 0$. If we let c=2, d=1, e=2, and f=1 then

$$\sqrt{\frac{2}{1} \cdot \frac{2}{1}} = \sqrt{2 \cdot 2} = \sqrt{4}$$

and since $\sqrt{4} = \pm 2$ we see that a*b is not uniquely defined. Now let c=3, d=1, e=2, and f=1 then

$$\sqrt{\frac{3}{1} \cdot \frac{2}{1}} = \sqrt{6}$$

and we see that there is no rational number f such that $f \cdot f = 6$, therefore $\sqrt{6}$ is not a rational number. Thus, \mathbb{Q} is not closed under *.

2 This is not an operation on the set $\{x \in \mathbb{R} : x > 0\}$ because the set $\{x \in \mathbb{R} : x > 0\}$ is not closed under *. For example, if we let a = 2 and b = 1 then

$$a \ln b = 2 \ln 1 = 0$$

and $0 \notin \{x \in \mathbb{R} : x > 0\}$. Therefore the set $\{x \in \mathbb{R} : x > 0\}$ is not closed under * and * is not an operation on the set $\{x \in \mathbb{R} : x > 0\}$.

3 This is not an operation on \mathbb{R} because a*b is not uniquely defined. If we solve for x we see

$$x^2 - a^2b^2 = 0$$
$$x^2 = a^2b^2$$

since a^2 and b^2 will always be positive numbers, then a^2b^2 will be positive as well. Then solving for x we have

$$x = (ab, -ab)$$

and we see that a * b is not uniquely defined and therefore * is not an operation on \mathbb{R} .

- 4 This is an operation on \mathbb{Z} .
- 5 This is not an operation on \mathbb{Z} because the set $\{n \in \mathbb{Z} : n \geq 0\}$ is not closed under *. For example, if we let a = 10 and b = 5 then 5 10 = -5 and $-5 \notin \{n \in \mathbb{Z} : n \geq 0\}$. Therefore the set $\{n \in \mathbb{Z} : n \geq 0\}$ is not closed under *.
- 6 This is an operation on the set $\{n \in \mathbb{Z} : n \geq 0\}$.

B. Properties of Operations

Each of the following is an operation * on \mathbb{R} . Indicate whether or not

- (i) it is commutative,
- (ii) it is associative,
- (iii) \mathbb{R} has and identity element with respect to *,
- (iv) every $x \in \mathbb{R}$ has an inverse with respect to *.

Instructions For (i), compute x * y and y * x, and verify whether or not they are equal. For (ii), compute x * (y * z) and (x * y) * z, and verify whether or not they are equal. For (iii), first solve the equation x * e = x for e; if the equation cannot be solved, there is identity element. If it can be solved, it is still necessary to check that e * x = x * e = x for any $x \in \mathbb{R}$. If it checks, then e is an identity element. For (iv), first not that it there is no identity element, there can be no inverses. If there is an identity element e, first solve the equation x * x' = e for x'; if the equation cannot be solved, x does not have an inverse. If it can be solved, check to make sure that x * x' = x' * x = e. If this checks, x' is the inverse of x.

1) $x*y = \sqrt{x^2 + y^2}$ Solution Although the instructions for this section state that $x*y = \sqrt{x^2 + y^2}$ is an operation on \mathbb{R} , I don't think it is an operation on \mathbb{R} because $\sqrt{x^2 + y^2}$ is not uniquely defined on \mathbb{R} . For example, if we let x = 1 and y = 0, then $x*y = \sqrt{1^2 + 0^2} = \sqrt{1} = (-1,1)$ and we see that $\sqrt{x^2 + y^2}$ is not uniquely defined on \mathbb{R} . Therefore, $x*y = \sqrt{x^2 + y^2}$ is not an operation on \mathbb{R} .

2)
$$x * y = |x + y|$$
Solution Commutative Associative Identity Inverses
Yes \boxtimes No \square Yes \square No \boxtimes Yes \square No \boxtimes

- (a) x * y = |x + y| y * x = |y + x| = |x + y| because + is a commutative operation on \mathbb{R} Therefore * is commutative on \mathbb{R} .
- (b) x*(y*z) = x*|y+z| = |x+|y+z||Let x = -5, y = 10, and z = -20, then |-5+|10-20|| = |-5+|-10|| = |-5+10| = |5| = 5 (x*y)*z = |x+y|*z = ||x+y|+z|Again, let x = -5, y = 10, and z = -20, then ||-5+10|-20| = ||5|-20| = |5-20| = |-15| = 15Since $5 \neq 15$ then * is not associative on \mathbb{R}
- (c) There is no identity element with respect to * on \mathbb{R} because there is no $e \in \mathbb{R}$ such that e*a=a and a*e=a for every element a in \mathbb{R} . For example, if a=-1 there is no $e \in \mathbb{R}$ such that |e+(-1)|=-1 because the operation * defined by x*y=|x+y| always returns a positive number.
- (d) Since there is no identity element with respect to * on \mathbb{R} then there is no inverse with respect to * on \mathbb{R} .

3)
$$x * y = |xy|$$

$$Solution \quad \begin{array}{cccc} Commutative & Associative & Identity & Inverses \\ Yes \boxtimes No \square & Yes \boxtimes No \square & Yes \square No \boxtimes & Yes \square No \boxtimes \end{array}$$

(a)
$$x * y = |xy| = \begin{cases} xy & \text{if } xy \ge 0 \\ -(xy) & \text{if } xy < 0 \end{cases}$$

$$y * x = |xy| = \begin{cases} yx & \text{if } yx \ge 0 \\ -(yx) & \text{if } yx < 0 \end{cases}$$

Assuming multiplication is commutative on \mathbb{R} (not proven here) then xy = yx and -(xy) = -(yx). Therefore, * is commutative on \mathbb{R} .

(b)
$$x*(y*z) = x*|yz| = |x|yz|| = xyz$$

 $(x*y)*z = |xy|*z = ||xy|z| = xyz$
Therefore * is associative on \mathbb{R} .

- (c) There is no identity element with respect to * on \mathbb{R} because there is no $e \in \mathbb{R}$ such that e*a=a and a*e=a for every element a in \mathbb{R} . For example, if a=-5 there is no $e \in \mathbb{R}$ such that |-5e|=-5. Therefore there is no identity element with respect to * on \mathbb{R} .
- (d) Since there is no identity element with respect to * on \mathbb{R} then there is no inverse with respect to * on \mathbb{R} .
- 4) x * y = x y $Solution \quad \begin{array}{cccc} Commutative & Associative & Identity & Inverses \\ Yes & \square & No & \square & Yes & \square & No & \square &$
 - (a) The operation * defined by x*y = x-y is not commutative because $x-y \neq y-x$ for all x and y in \mathbb{R} . For example, if x=1 and y=2, then x-y=1-2=-1 and y-x=2-1=1. Since $-1 \neq 1$ then the operation * defined by x*y=x-y is not commutative on \mathbb{R} .
 - (b) The operation * defined by x*y = x-y is not associative on \mathbb{R} because $x*(y*z) \neq (x*y)*z$ for all x, y, and z in \mathbb{R} . For example, if x=5, y=-1, and z=2 then x*(y*z)=5-(-1-2)=8 and (x*y)*z=(5-(-1))-2)=4. Since $8\neq 4$ then the operation * defined by x*y=x-y is not associative on \mathbb{R} .
 - (c) Solving x * e = x for e we have that $x e = x \Rightarrow e = 0$. However checking that x * e = e * x = x we see that x 0 = x and 0 x = -x. Since $x \neq -x$ then 0 is not the identity element with respect to the operation * defined by x * y = x y on \mathbb{R} . Therefore there is no identity element with respect to the operation * defined by x * y = x y on \mathbb{R} .
 - (d) Since there is no identity element with respect to * on \mathbb{R} then there is no inverse with respect to * on \mathbb{R} .
- 5) x * y = xy + 1Solution Commutative Associative Identity InversesYes $No \square$ Yes $No \square$
 - (a) x * y = xy + 1 y * x = yx + 1 = xy + 1 because \times is commutative on \mathbb{R} . Therefore, the operation * defined by xy + 1 is commutative on \mathbb{R} .
 - (b) The operation * defined by x*y = x-y is not associative on \mathbb{R} because $x*(y*z) \neq (x*y)*z$. x*(y*z) = x*(yz+1) = x(yz+1) + 1 = xyz + x + 1 (x*y)*z = (xy+1)*z = (xy+1)z + 1 = xyz + z + 1 Since $xyz + x + 1 \neq xyz + z + 1$ then the operation * defined by x*y = x-y is not associative on \mathbb{R} .
 - (c) Since there is no identity element with respect to * on \mathbb{R} then there is no inverse with respect to * on \mathbb{R} .

6)
$$x*y = \max\{x,y\}$$
 Solution Commutative Associative Identity Inverses Yes \boxtimes No \square Yes \boxtimes No \square Yes \square No \boxtimes Yes \square No \boxtimes

(a) If
$$x \neq y$$
 then $x * y = \max(x, y) = \begin{cases} x & \text{if } x > y \\ y & \text{if } y > x \end{cases}$

$$y * x = \max(y, x) = \begin{cases} y & \text{if } y > x \\ x & \text{if } x > y \end{cases}$$

If x = y then $\max(x, y) = z$ where z = x = y.

Therefore x * y = y * x and the operation * defined by $\max\{x,y\}$ is commutative on \mathbb{R} .

- (b) The operation * defined by $\max\{x,y\}$ is associative on \mathbb{R} $x*(y*z)=x*\max\{y,z\}=\max\{x,\max\{y,z\}\}=\max\{x,y,z\}$ $(x*y)*z=\max\{x,y\}*z=\max\{\max\{x,y\},z\}=\max\{x,y,z\}$ Since $\max\{x,y,z\}=\max\{x,y,z\}$ the operation * defined by $\max\{x,y\}$ is associative on \mathbb{R} .
- (c) Solving x*e=x for e we see that $\max\{x,e\}=x\Rightarrow e=-\infty$ However, $-\infty\notin\mathbb{R}$ as is required for an identity element. There is no other $e\in\mathbb{R}$ such that e*a=a and a*e=a for every element a in \mathbb{R} . Therefore there is not an identity element with respect to the operation * defined by $\max\{x,y\}$ on \mathbb{R} .
- (d) Since there is no identity element with respect to * on \mathbb{R} then there is no inverse with respect to * on \mathbb{R} .

7)
$$x * y = \frac{xy}{x+y+1}$$
 Commutative Associative Identity Inverses Yes \boxtimes No \square Yes \boxtimes No \square Yes \square No \boxtimes

- (a) $x*y = \frac{xy}{x+y+1}$; $y*x = \frac{yx}{y+x+1}$ Since \times and + are commutative on $\mathbb R$ then $\frac{xy}{x+y+1} = \frac{yx}{y+x+1}$. Therefore, the operation * defined by $x*y = \frac{xy}{x+y+1}$ is commutative on $\mathbb R$.
- (b) The operation * defined by $x * y = \frac{xy}{x+y+1}$ is associative on \mathbb{R} .

$$x * (y * z) = x * \frac{yz}{y+z+1} = \frac{x\left(\frac{yz}{y+z+1}\right)}{x + \frac{yz}{y+z+1} + 1} = \frac{xyz}{1+x+y+z+xy+xz+yz}$$
$$(x * y) * z = \frac{xy}{x+y+1} * z = \frac{z\left(\frac{xy}{x+y+1}\right)}{\frac{xy}{x+y+1} + z+1} = \frac{xyz}{1+x+y+z+xy+xz+yz}$$

x*(y*z)=(x*y)*z and therefore the operation * defined by $x*y=\frac{xy}{x+y+1}$ is associative on \mathbb{R} .

(c) Solving x*e=x for e we see that $\frac{xe}{x+e+1}=x\Rightarrow x=-1$ and therefore there is no $e\in\mathbb{R}$ such that e*a=a and a*e=a for every element a in \mathbb{R} . Therefore there is not an identity element with respect to the operation * defined by $x*y=\frac{xy}{x+y+1}$ on \mathbb{R} .

(d) Since there is no identity element with respect to * on \mathbb{R} then there is no inverse with respect to * on \mathbb{R} .

C. Operations on a Two-Element Set

Let A be the two-element set $A = \{a, b\}$.

1) Write the tables of all 16 operations on A Solution

- 2) Identify which of the operations O_1 to O_{16} are commutative. The operations O_1 , O_2 , O_3 , O_5 , O_6 , O_8 , O_{11} , and O_{12} are commutative.
- 3) Identify which operations, among O_1 to O_{16} , are associative. The operations O_1 , O_2 , O_3 , O_4 , O_5 , O_9 , O_{11} , and O_{12} are associative
- 4) For which of the operations O_1 to O_{16} is there an identity element? There is and identity element for O_3 , O_5 , O_{11} , and O_{12} with respect to the operation * on A
- 5) For which of the operations O_1 to O_{16} does every element have and inverse? We only need to consider the operations that have an identity element. For the operations O_{11} and O_{12} every element has an inverse. For operation O_3 , there is no inverse for b and for operation O_5 there is no inverse for a.

6

D. Automata: The Algebra of Input/Output Sequences (2nd edition)

The set of all sequences of symbols in the alphabet A is denoted by A^* .

There is an operation on A^* called *concatenation*: if **a** and **b** are in A^* , say $\mathbf{a} = a_1 a_2 ... a_n$ and $\mathbf{b} = b_1 b_2 ... b_m$, then

$$\mathbf{a} * \mathbf{b} = a_1 a_2 ... a_n b_1 b_2 ... b_m$$
.

The symbol λ denotes the empty sequence.

(a)

Proposition. The operation * defined by $ab = a_1a_2...a_nb_1b_2...b_m$ is associative.

Proof. To prove that * is associative, let $\mathbf{x}, \mathbf{y}, \mathbf{z} \in A$. Then

$$\mathbf{x} * (\mathbf{y} * \mathbf{z}) = \mathbf{x} * y_1 y_2 ... y_n z_1 z_2 ... z_m = x_1 x_2 ... x_k y_1 y_2 ... y_n z_1 z_2 ... z_m$$

and

$$(\mathbf{x} * \mathbf{y}) * \mathbf{z} = x_1 x_2 ... x_k y_1 y_2 ... y_n * \mathbf{z} = x_1 x_2 ... x_k y_1 y_2 ... y_n z_1 z_2 ... z_m.$$

Since the two results are the same, the operation * is associative.

- (b) The operation * defined by $\mathbf{a} * \mathbf{b} = a_1 a_2 ... a_n b_1 b_2 ... b_m$ is not commutative because switching the order of \mathbf{a} and \mathbf{b} in the operation will lead to different results.
- (c)

Proposition. There is an identity element with respect to the operation * defined by $ab = a_1a_2...a_nb_1b_2...b_m$ on A^* .

Proof. We must show that there is an element $e \in A^*$ such that e * a = a and a * e = a for every $a \in A^*$. Let **a** be an arbitrary element of A^* , $e = \lambda$, and $e \in A^*$. Since λ is the empty sequence, then

$$\mathbf{a} * e = \mathbf{a} * \lambda = a_1 a_2 ... a_m \lambda = a_1 a_2 ... a_m = \mathbf{a}$$

and

$$e * \mathbf{a} = \lambda * \mathbf{a} = \lambda a_1 a_2 ... a_m = a_1 a_2 ... a_m = \mathbf{a}.$$

Therefore we conclude that λ is the identity element with respect to the operation * defined by $\mathbf{ab} = a_1 a_2 ... a_n b_1 b_2 ... b_m$ on A^* .