Encoding Numerical Columns

Discretization

Discretization:

- divide the range of a continuous attribute into intervals
- Some classification algorithms only accept categorical attributes.

• Experimental results indicate that with discretization

- data size can be reduced
- classification accuracy can be improved

Discretization

- Store only the interval labels
- Important for association rules and classification

age	5	6	6	9		15	16	16	17	20	 24	25	41	50	65	 67
own a car	0	0	0	0	;	0	1	0	1	1	 0	1	1	1	1	 1

Entropy-Based Discretization (Supervised)

 Given a set of samples S, if S is partitioned into two intervals S1 and S2 using boundary T, the entropy after partitioning is

$$E(S,T) = \frac{|S_1|}{|S|} Ent(S_1) + \frac{|S_2|}{|S|} Ent(S_2)$$

- The boundary that minimizes the entropy function over all possible boundaries is selected as a binary discretization.
- The process is recursively applied to partitions obtained until some stopping criterion is met, e.g.,

$$Ent(S) - E(T,S) > \delta$$

Example 1

ID	1	2	3	4	5	6	7	8	9
Age	21	(22)	24)	25	27	27	27	35	41
Grade	F	F	P	F	P	P	P	P	P

- Let Grade be the class attribute. Use entropy-based discretization to divide the range of ages into different (22+24) / 2 = 23
- There are 6 ble boundaries. They are 21.5, 23, 24.5, 26, 31, and (21+22) / 2 = 21.5
- Let us consider the boundary at T = 21.5.
 Let S1 = {21}
 S2 = {22, 24, 25, 27, 27, 27, 35, 41}

Example 1 (cont')

ID	1	2	3	4	5	6	7	8	9
Age	21	22	24	25	27	27	27	35	41
Grade	F	F	P	F	P	P	P	P	P

• The number of elements in S1 and S2 are:

$$|S1| = 1$$

 $|S2| = 8$

• The entropy of S1 is

$$Ent(S_1) = -P(Grade = F) \times \log_2 P(Grade = F) - P(Grade = P) \times \log_2 P(Grade = P)$$
$$= -(1) \times \log_2(1) - (0) \times \log_2(0)$$

• The entropy of S2 is

$$Ent(S_2) = -P(Grade = F) \times \log_2 P(Grade = F) - P(Grade = P) \times \log_2 P(Grade = P)$$
$$= -(2) \times \log_2(2) - (6) \times \log_2(6)$$

Example 1 (cont')

• Hence, the entropy after partitioning at T = 21.5 is

$$E(S,T) = \frac{|S_1|}{|S|} Ent(S_1) + \frac{|S_2|}{|S|} Ent(S_2)$$

$$= \frac{|1|}{|9|} Ent(S_1) + \frac{|8|}{|9|} Ent(S_2)$$

$$= \dots$$

Example 1 (cont')

The entropies after partitioning for all the boundaries are:

$$T = 21.5 = E(S, 21.5)$$

$$T = 23 = E(S,23)$$

Now recursively apply entropy discretization onto both partitions

$$T = 38 = E(S, 38)$$

Select the boundary with t'

mallest entropy

Suppose best is T = 23

ID	1	2	3	4	5	6	7	8	9
Age	21	22	24	25	27	27	27	35	41
Grade	F	F	P	F	P	P	P	P	P

Example 2

Age

10

15

18

19

24

29

30

31

40

44

55

64

Buy

No

No

Yes

Yes

No

Yes

Yes

Yes

No

No

No

No

Split point = 35.5

Recursively find the best partition that minimizes entropy

	Yes	No
< 35.5	5	3
>= 35.5	0	4

$$E_1 = -\frac{5}{8}\log_2\frac{5}{8} - \frac{3}{8}\log_2\frac{3}{8} = 0.9544$$

$$E_2 = -\frac{0}{4}\log_2\frac{0}{4} - \frac{4}{4}\log_2\frac{4}{4} = 0$$

$$E_T = \frac{8}{12}E_1 + \frac{4}{12}E_2 = 0.6363$$

Supervised Discretization

Age	Buy		
10	No		
15	No		
18	Yes		
19	Yes		
24	No		
29	Yes		
30	Yes		
31	Yes		
40	No		
44	No		
55	No		
64	No		

Supervised discretization:

	Yes	No
< 16.5	0	2
(16.5,35.5)	5	1
> 35.5	0	4

In supervised discretization, our goal is to ensure that each bin contains data points from one class.