

Contents

- 1. EDA
- 2. ML
- 3. 의의 및 한계

1. EDA

1-1. fnlwgt 변수

• 인구 조사 데이터에서 전체 인구로 일반화할 때 사용되는 가중치 변수

·모델링에서 가중치를 사용할 계획 X

→ drop 결정

1-2. Relationship, Martial.status II생 변수 생성

1-2. Relationship, Martial.status II생 변수 생성

20	What is this person's marital status?				
		Now married			
		Widowed			
		Divorced			
		Separated			
		Never married → SKIP to 1			
	_				

大士.	Cancus	인구통계조시
돌시.	Census	ひておりなべ

Now Married Married-civ-spouse, Married-Af-spouse Widowed Divorced Divorced Seperated Seperated, Married-spouse-absent Never married Never-married Spouse(No Kid) Husband, Wife Spouse(Yes Kid) Own-Child Unmarried Unmarried, Not-in-family Other relative	파생 변수의 범주	기존 데이터셋의 범주	
Divorced Seperated Seperated, Married-spouse- absent Never married Never-married Spouse(No Kid) Husband, Wife Spouse(Yes Kid) Own-Child Unmarried, Not-in-family	Now Married	- · · · · · · · · · · · · · · · · · · ·	
Seperated Seperated, Married-spouse- absent Never married Never-married Spouse(No Kid) Husband, Wife Spouse(Yes Kid) Own-Child Unmarried Unmarried, Not-in-family	Widowed	Widowed	
Never married Never-married Spouse(No Kid) Husband, Wife Spouse(Yes Kid) Own-Child Unmarried Unmarried, Not-in-family	Divorced	Divorced	
Spouse(No Kid) Husband, Wife Spouse(Yes Kid) Own-Child Unmarried, Not-in-family	Seperated	•	
Spouse(Yes Kid) Unmarried Unmarried, Not-in-family	Never married	Never-married	
Unmarried, Not-in-family	Spouse(No Kid)	Husband, Wife	
•	Spouse(Yes Kid)	Own-Child	
Other relative Other relative	Unmarried	Unmarried, Not-in-family	
	Other relative	Other relative	

1-3. Education.num, Education 변수

Education.num은 Education 을 숫자로 범주화한 변수

- 교육 수준이 높을수록 개인의 교육 수준이 높음을 의미
- Eudcation 변수 drop 결정

1+3. Education.num 변수 단순화

NEW!!

Education.num별 income이 1인 비율

- · 비슷한 값을 가지는 범주 확인
- 개범주화 집행
 (1~8, 9~12, 13, 14, 15~16)

1-3. Education.num 변수 단순화

	•	education,num	inco	me
education.num		1.000000	0.3341	47
	income	0.334147	1.0000	00
[26]	whole_data[['educat	ion,num_prep','income']],corr()	
₹		educat ion,num_prep	income	
	education.num_pre	1.000000	0.359988	th
	income	0.359988	1.000000	

Education.num별 income이 1인 비율

• 범주화 후 상관계수 증가

2-1 결측치 처리

2-2 workclass - occupation 결측치 처리

대중대치법활용

- 목적; 데이터셋의 결측치를 여러 번 대체하여 다양한 대체 데이터 생성
- 방법; 각 대체 데이터로 분석 후 결과를 결합해 결측치로 인한 불확실성 반영 (연쇄방정식 활용)

2-2 다중대치법

• MAR 전제:

데이터 자료의 결측이 그 문항 자체 때문이 아님.

따라서 다른 변수들을 통해 그 결측 여부와 생략된 응답을 추정할 수 있음

• 대치모델 형식:

workclass, occupation은 범주형 변수이므로 범주형 형식 사용

• 대체 과정에서의 iteration 횟수: 10

2-2 다중대치법 결과

2-4 native.country 결측치 처리

Fnlwg+ 변수 활용하여 클러스터링 진행 → 대실패

2-4 native.country 결측치 처리

Fnlwg+ 변수 활용하여 클러스터링 진행 → 대실패

2-4 native.country 결측치 처리

NEW!!

- Native.country와 race 상관관계 높음
- Country, race 클러스터링 활용하여 대푯값으로 채우기
- → 모든 결측치가 US로 채워져 대실패: 결측치 Unknown 처리

3-1. 범주형 변수 이상치 제거

- 범주형 변수별로 unique 값 → 각각의 비율을 계산
- 전체의 1% 미만인 경우: others로 묶어 처리

3-1. 수치형 변수 이상치 제거

- 1. 수치형 변수 정규분포 따르지 않아 box-cox 변환 실행
- 2. Kolmogorov-Smirnov 검정.
 Anderson-Darling 검정:
 정규분포 따르지 않음
- → isolation forest 사용 결정

3-1. 수치형 변수 이상치 제거

총 데이터 샘플 수: 22621

이상치로 탐지된 데이터 수: 2417

- 이상치 발견 후 제거
- 성능이 좋지 못함!
- → TEST 데이터의 문제가 있는 것 아닌가?

3-2. TEST 데이터 확인

```
# IQR 벗어난 train 데이터 비율 계산 및 출력
   outlier percentages = calculate outlier percentage(train df, numerical cols)
   for col, pct in outlier_percentages.items():
       print(f"{col}: {pct:.2f}% 이상의 데이터가 IQR을 벗어났습니다.")
→ age: 0.34% 이상의 데이터가 IQR을 벗어났습니다.
   capital.gain: 8.28% 이상의 데이터가 IOR을 벗어났습니다.
   capital.loss: 4.69% 이상의 데이터가 IQR을 벗어났습니다.
   hours.per.week: 28.11% 이상의 데이터가 IQR을 벗어났습니다.
   education.num_prep: 37.95% 이상의 데이터가 IQR을 벗어났습니다.
[ ] # IOR 벗어난 test 데이터 비율 계산 및 출력
   outlier_percentages = calculate_outlier_percentage(test_df, numerical_cols)
   for col, pct in outlier percentages.items():
       print(f"{col}: {pct:.2f}% 이상의 데이터가 IQR을 벗어났습니다.")
→ age: 0.74% 이상의 데이터가 IQR을 벗어났습니다.
    capital.gain: 8.49% 이상의 데이터가 IQR을 벗어났습니다.
   capital.loss: 4.57% 이상의 데이터가 IQR을 벗어났습니다.
   hours.per.week: 26.19% 이상의 데이터가 IQR을 벗어났습니다.
   education.num_prep: 37.48% 이상의 데이터가 IQR을 벗어났습니다.
```

Train, test 모두 iqr 방법으로 이상치 탐지하여 비교 각 변수별 이상치 비율이 유사

3-2. TEST 데이터 확인

2.0

3.0

3.5

4.0

4.5

5.0

범주형 변수 시각화: train-test 분포가 유사

Train, Test 이상치 데이터 전부 중앙값으로 대체

3-3. 라벨인코딩

• 라벨인코딩 방식 활용하여 인코딩

3-4. 다중공선성

```
₹
                                 VIF
                   Feature
                           1.091112
                       age
              capital.gain 1.010883
              capital.loss 1.001590
            hours.per.week 1.091638
                workclass 1.065723
           marital.status 1.280312
                occupation 1.053512
              relationship 1.395621
    8
9
                      race 1.114644
                       sex 1.243705
    10
            native.country 1.112406
        education.num_prep 1.028245
```

다중공선성 나타나지 않음

2. ML

1. Pycaret으로 최적의 모델 선정

$\mathbf{\Sigma}$		Model	Accuracy
	lightgbm	Light Gradient Boosting Machine	0.8547
	xgboost	Extreme Gradient Boosting	0.8506
	gbc	Gradient Boosting Classifier	0.8485
	ada	Ada Boost Classifier	0.8413
	rf	Random Forest Classifier	0.8332
	et	Extra Trees Classifier	0.8252
	knn	K Neighbors Classifier	0.8194
	dt	Decision Tree Classifier	0.8030
	ridge	Ridge Classifier	0.7902
	lr	Logistic Regression	0.7878
	lda	Linear Discriminant Analysis	0.7877
	nb	Naive Bayes	0.7871
	svm	SVM – Linear Kernel	0. 7835
	qda	Quadratic Discriminant Analysis	0.7797
	dummy	Dummy Classifier	0.7625
	·		

· lightbgm, xgboost, gradient boosting 모델로 사용

2. 하이페마라미터 튜닝

```
# LightGBM 하이퍼파라미터 탐색 공간 정의
lgbm_param_dist = {
    'num_leaves': np.arange(20, 150, 10),
    'max_depth': np.arange(3, 16),
    'learning_rate': [0.01, 0.05, 0.1, 0.2],
    'n_estimators': np.arange(50, 300, 50),
    'min_child_samples': np.arange(10, 100, 10),
    'subsample': [0.6, 0.7, 0.8, 0.9, 1.0],
    'colsample_bytree': [0.6, 0.7, 0.8, 0.9, 1.0]
# LightGBM 모델 객체 생성
lgbm = lgb.LGBMClassifier(random state=42)
# RandomizedSearchCV 설정 및 실행
lgbm search = RandomizedSearchCV(
    estimator=lgbm,
    param distributions=lgbm param dist,
    n iter=100,
    scoring='accuracy',
    cv=3.
    random_state=42,
    n_jobs=-1,
    verbose=1
# LightGBM 모델 튜닝
lgbm_search.fit(X_train, y_train)
# 최적 모델 추출
best_lgbm = lgbm_search.best_estimator_
print("Best LightGBM Parameters:", lgbm_search.best_params_)
```

• 랜덤서치 활용 lightgbm, xgboost, gradient boosting 최적의 하이퍼파라미터 탐색

3. 스태킹 앙상블

```
# 7. 스태킹 모델 구성 및 학습
print("\nConstructing and training the Stacking Classifier...")
# 메타 모델 정의 (로지스틱 회귀)
meta_model = LogisticRegression(random_state=42, max_iter=1000)
# 스태킹 모델 정의
stacking_clf = StackingClassifier(
    estimators=[
       ('lightgbm', best_lgbm),
       ('xgboost', best_xgboost),
       ('gbc', best_gbc)
   final_estimator=meta_model,
   cv=3,
   n_jobs=-1
# 스태킹 모델 학습
stacking_clf.fit(X_train, y_train)
print("Stacking Classifier training completed.")
```

• 스태킹 앙상블 기법 활용하여 세 개의 모델 모두 사용

〈스태킹 앙상블〉

- 1. 여러 개의 모델이 각각 예측을 수행
- 2. 예측된 결과들을 새로운 메타 모델
- 이 학습하여 최종 예측 수행

4. 결과

```
# 정확도 출력
stacking_accuracy = accuracy_score(y_test, stacking_pred)
print(f"Stacking Model Accuracy: {stacking_accuracy:.4f}")
Stacking Model Accuracy 0.8332
```

3. 일일 및 한계

감사합니다