

Swin Transformer

Hierarchical Vision Transformer using Shifted Windows

Su Hyung Choi

Korea University
Research Intern @ Computer Vision Lab
Dept. of Computer Science & Engineering

Authors {v-zeliu1,v-yutlin,yuecao,hanhu,v-yixwe,zhez,stevelin,bainguo}@microsoft.com

Attention is now what the real SOTA needs.

Swin Transformer (2021 ICCV Award)

Image Classification: 90.17 top-6 accuracy on ImageNet-1K (SwinV2-G) 2022.1.6 Present

Object Detection: 63.1 top-1 box AP on COCO test-dev (SwinV2-G) 2022.1.6 Present

Semantic Segmentation: 59.9 top-1 mlouU on ADE20K (SwinV2-G) 2022.1.6 Present

Why Transformer Anyway?

"Everyone wants a universal model to solve different tasks with accuracy and speed"

Transformer models are universal approximators of sequence-to-sequence functions.

For a CNN, both of these pictures are almost same. CNN does not encode the relative position of different features.

Large receptive fields are required in order to track long-range dependencies within an image.

[Self-Attention] The Core of the Transformer

Self-Attention on NLP

Attention between Patches on ViT

Basically, a self-attention layer updates **each component** of a sequence by **aggregating global information from the complete input sequence.**

The Problem of Vision Transformer

Previous Problem

- ViT suggested for classification
- No Well Featured for Image compared to Text
 - Resolution
 - The scale of visual entities
- Computation Complexity rises as increases of Tokens

Solution

Adapt Local Window to Model

The Problem of Vision Transformer

Computation Complexity rises as increases of Tokens

Swin Transformer

Purpose

- Suggest the BackBone for Multi Tasks
- Suggest the method of Transformer to adapt the Images
- Suggest the method having less computation than ViT

Vision Transformer vs Swin Transformer

Vision Transformer vs Swin Transformer

$$\Omega(\mathsf{MSA}) = 4hwC^2 + 2(hw)^2C$$

$$\Omega(W-MSA) = 4hwC^2 + 2M^2hwC$$

Swin Transformer Architecture

W-MSA (Window Multi-head Self Attention)

SW-MSA (Shifted Window Multi-head self Attention)

Swin Transformer Block

(c) Two Successive Swin Transformer Blocks

Shifted Window based Self-Attention

Self-attention is applied on each patch, here referred to as windows. In layer 1 (left), a regular window partitioning sheeme is adapted, and self-attention within each window.

Then, the windows are shifted, resulting in a new window configuration to apply self attention again. This allows the creation of connections between windows while maintaining the computation efficiency of this windowed architecture.

Cyclic-Shift

The paper propose an efficient batch computation approach by cyclic-shifting toward the top-left direction.

After this shift, a batched window may be composed of several sub-windows that are not adjacent in the feature map, so a masking mechanism is employed to limit self-attention computation to within each sub-window.

Experiments

Setting

- Experiment with ImageNet 1K for Classification
- Used ImageNet-22K for pre-train
- Experiment with COCO 2017 for Object Detection
- Experiment with ADE20K for Semantic Segmentation
- Required various Augmentation and Regularization -> INDUCTIVE BIAS
- EMA and repeated augmentation was not required compared at Vit
- Used AdamW optimizer

Experiments

Vision Tasks

- Classification
- Object Detection
- Semantic Segmentation

Others

- Relative Positional Bias
- Shifted Window
- Speed Comparison for different Window Adaption
- Comparison between Sliding Window and Shifted Window

Experiments

Baseline Models

- CNN based Models
 - RegNetY
 - EfficientNet
- ViT based Models
 - Vit
 - DeiT

(a) Regu	lar In	nageNet-	1K train	ned models	Ğ.
method	image size	#param.	FLOPs	throughput (image / s)	
RegNetY-4G [48]	224 ²	21M	4.0G	1156.7	80.0
RegNetY-8G [48]	2242	39M	8.0G	591.6	81.7
RegNetY-16G [48]	224 ²	84M	16.0G	334.7	82.9
EffNet-B3 [58]	300^{2}	12M	1.8G	732.1	81.6
EffNet-B4 [58]	380 ²	19M	4.2G	349.4	82.9
EffNet-B5 [58]	456 ²	30M	9.9G	169.1	83.6
EffNet-B6 [58]	528 ²	43M	19.0G	96.9	84.0
EffNet-B7 [58]	600 ²	66M	37.0G	55.1	84.3
ViT-B/16 [20]	384 ²	86M	55.4G	85.9	77.9
ViT-L/16 [20]	384 ²	307M	190.7G	27.3	76.5
DeiT-S [63]	224 ²	22M	4.6G	940.4	79.8
DeiT-B [63]	224 ²	86M	17.5G	292.3	81.8
DeiT-B [63]	384 ²	86M	55.4G	85.9	83.1
Swin-T	224 ²	29M	4.5G	755.2	81.3
Swin-S	2242	50M	8.7G	436.9	83.0
Swin-B	224 ²	88M	15.4G	278.1	83.5
Swin-B	384 ²	88M	47.0G	84.7	84.5

(b) ImageNet-22K pre-trained models

method	image size	#param.	FLOPs	throughput (image / s)	ImageNet top-1 acc.
R-101x3 [38]	384 ²	388M	204.6G	0.00	84.4
R-152x4 [38]	480 ²	937M	840.5G	-	85.4
ViT-B/16 [20]	384 ²	86M	55.4G	85.9	84.0
ViT-L/16 [20]	384 ²	307M	190.7G	27.3	85.2
Swin-B	2242	88M	15.4G	278.1	85.2
Swin-B	384 ²	88M	47.0G	84.7	86.4
Swin-L	384 ²	197M	103.9G	42.1	87.3

Table 1. Comparison of different backbones on ImageNet-1K classification. Throughput is measured using the GitHub repository of [68] and a V100 GPU, following [63].

Experiment[Classification]

ImageNet 1K

- DeiT vs Swin
- CNN based Models vs Swin
 - Less Trade-off between Performance and Training Time

ImageNet 22K

- ViT vs Swin
 - Better Performance with less Params

Rank	Model	Top 1 Accuracy	↑ Top 5 Accuracy	Number of params	Extra Training Data	Paper	Code	Result	Year	Tags 🗹
1	CoAtNet-7	90.88%		2440M	✓	CoAtNet: Marrying Convolution and Attention for All Data Sizes	O	Ð	2021	CONV+Transformer JFT-3B
2	ViT-G/14	90.45%		1843M	✓	Scaling Vision Transformers		Ð	2021	Transformer JFT-3B
3	CoAtNet-6	90.45%		1470M	✓	CoAtNet: Marrying Convolution and Attention for All Data Sizes	0	Ð	2021	Conv+Transformer JFT-3B
4	ViT-MoE-15B (Every-2)	90.35%		14700M	✓	Scaling Vision with Sparse Mixture of Experts		Ð	2021	Transformer JFT-3B
5	Meta Pseudo Labels (EfficientNet-L2)	90.2%	98.8%	480M	✓	Meta Pseudo Labels	O	Ð	2021	EfficientNet JFT-300M
6	SwinV2-G	90.17%			✓	Swin Transformer V2: Scaling Up Capacity and Resolution	O	Ð	2021	

Experiment[Object Detection]

Based on Frameworks

- ResNet-50 vs Swin
 - + 3.4 ~ 4.2 box AP

Based on Backbone

- CNN based Model vs Swin
- Dominating Leaderboard (+ SwinV2) 2022.1.6 Present [COCO test Dev]

Rank	Model	box ↑ AP AP50 AP75	APS APM APL	Extra Training Data	Paper	Code	Result	Year	Tags 🗷
1	SwinV2-G (HTC++)	63.1		~	Swin Transformer V2: Scaling Up Capacity and Resolution	0	Ð	2021	Swin-Transformer
2	Florence-CoSwin-H	62.4		✓	Florence: A New Foundation Model for Computer Vision		Ð	2021	Swin-Transformer
3	GLIP (Swin-L, multi-scale)	61.5 79.5 67.7	45.3 64.9 75.0	~	Grounded Language-Image Pre-training	C	Ð	2021	multiscale Vision Language Dynamic Head BERT-Base

(a) Various frameworks										
Method	Backbone	APbox	AP ₅₀	AP ₇₅	#param.	FLOPs	FPS			
Cascade	R-50	46.3	64.3	50.5	82M	739G	18.0			
Mask R-CNN	Swin-T	50.5	69.3	54.9	86M	745G	15.3			
ATTOC	R-50	43.5	61.9	47.0	32M	205G	28.3			
ATSS	Swin-T	47.2	66.5	51.3	36M	215G	22.3			
Dambainta V/2	R-50	46.5	64.6	50.3	42M	274G	13.6			
RepPointsV2	Swin-T	50.0	68.5	54.2	45M	283G	12.0			
Sparse	R-50	44.5	63.4	48.2	106M	166G	21.0			
R-CNN	Swin-T	47.9	67.3	52.3	110M	172G	18.4			

(c) System-level Comparison

Method	mini-val AP ^{box} AP ^{mask}			t-dev AP ^{mask}	#param.	FLOPs	
RepPointsV2* [12]	-	-	52.1	-	-	-	
GCNet* [7]	51.8	44.7	52.3	45.4	-	1041G	
RelationNet++* [13]	-	-	52.7	-	-	-	
SpineNet-190 [21]	52.6	-	52.8	-	164M	1885G	
ResNeSt-200* [78]	52.5	-	53.3	47.1	-	-	
EfficientDet-D7 [59]	54.4	-	55.1	-	77M	410G	
DetectoRS* [46]	-	-	55.7	48.5	-	-	
YOLOv4 P7* [4]	-	-	55.8	-	-	-	
Copy-paste [26]	55.9	47.2	56.0	47.4	185M	1440G	
X101-64 (HTC++)	52.3	46.0	2	-	155M	1033G	
Swin-B (HTC++)	56.4	49.1	-	-	160M	1043G	
Swin-L (HTC++)	57.1	49.5	57.7	50.2	284M	1470G	
Swin-L (HTC++)*	58.0	50.4	58.7	51.1	284M		

Table 2. Results on COCO object detection and instance segmentation. †denotes that additional decovolution layers are used to produce hierarchical feature maps. * indicates multi-scale testing.

ADE	20K	val	test	Hnaram	EI ODe	EDC
Method	Backbone	mIoU	score	#param.	FLOPs	rrs
DANet [23]	ResNet-101	45.2	- 1	69M	1119G	15.2
DLab.v3+[11]	ResNet-101	44.1	-	63M	1021G	16.0
ACNet [24]	ResNet-101	45.9	38.5	-27		
DNL [71]	ResNet-101	46.0	56.2	69M	1249G	14.8
OCRNet [73]	ResNet-101	45.3	56.0	56M	923G	19.3
UperNet [69]	ResNet-101	44.9	5/	86M	1029G	20.1
OCRNet [73]	HRNet-w48	45.7	27	71M	664G	12.5
DLab.v3+ [11]	ResNeSt-101	46.9	55.1	66M	1051G	11.9
DLab.v3+ [11]	ResNeSt-200	48.4	-	88M	1381G	8.1
SETR [81]	T-Large [‡]	50.3	61.7	308M		E
UperNet	DeiT-S	44.0	€/r	52M	1099G	16.2
UperNet	Swin-T	46.1	3	60M	945G	18.5
UperNet	Swin-S	49.3	-	81M	1038G	15.2
UperNet	Swin-B [‡]	51.6	-	121M	1841G	8.7
UperNet	Swin-L [‡]	53.5	62.8	234M	3230G	6.2

Table 3. Results of semantic segmentation on the ADE20K val and test set. † indicates additional deconvolution layers are used to produce hierarchical feature maps. ‡ indicates that the model is pre-trained on ImageNet-22K.

Experiment[Semantic Segmentation]

SETR + T-Large vs UperNet + Swin-L

Better Performance with LESS PARAMS

ALL MOST DOMINAT LEADERBOARD on ADE20K Datasets (1-4 and 6-7) - 2022.1.6 Present

Rank	Model	Validation ↑ mloU	Test Score	Extra Training Data	Paper	Code	Result	Year	Tags 🗗
1	SwinV2-G (UperNet)	59.9		✓	Swin Transformer V2: Scaling Up Capacity and Resolution	0	Ð	2021	Swin-Transformer
2	SeMask (SeMask Swin-L MSFaPN-Mask2Former)	58.2		✓	SeMask: Semantically Masked Transformers for Semantic Segmentation	0	Ð	2021	Swin-Transformer
3	SeMask (SeMask Swin-L FaPN-Mask2Former)	58.0		✓	SeMask: Semantically Masked Transformers for Semantic Segmentation	0	Ð	2021	Swin-Transformer

Simple Code Review

<u>@JonyChoi</u> <u>Computer-Vision-Paper-Reviews</u>

Conclusion

- This paper presents Swin Transformer, a new vision Transformer which produces a hierarchical feature representation and has linear computational complexity with respect to input image size.
- As a key element of Swin Transformer, the shifted window self-attention is shown to be
 effective and efficient on vision problems.
- Using a similar architecture for both NLP and computer vision could significantly accelerate the research process.

Thank You

Su Hyung Choi CVLAB Intern

