1 Linear

The effective gravitational potential in Cubic Galileon theory at linear regime reads as (Eq. 29 of 1306.3219)

$$G_{\text{eff}} = G \left(1 - \frac{2}{3} \frac{c_3 \dot{\varphi}^2}{M_{\text{Pl}} \mathcal{M}^3 \beta_2} \right) \tag{1}$$

where $M_{\rm Pl}$ is the Planck mass, φ is the Galileon scalar field and $\mathcal{M}^3 \equiv M_{\rm Pl} H_0^2$, β_1 and β_2 are,

$$\beta_{1} = \frac{1}{6c_{3}} \left[-c_{2} - \frac{4c_{3}}{\mathcal{M}^{3}} (\ddot{\varphi} + 2H\dot{\varphi}) + 2\frac{\kappa c_{3}^{2}}{\mathcal{M}^{6}} \dot{\varphi}^{4} \right],$$

$$\beta_{2} = 2\frac{\mathcal{M}^{3} M_{\text{Pl}}}{\dot{\varphi}^{2}} \beta_{1}.$$

$$\kappa = \frac{1}{M_{\text{Pl}}^{2}} = 8\pi G$$

In our discussion we set $c_2 = -1$ (see discussion at page 5 of 1709.09135). We also use the tracker solution,

$$\xi \equiv \frac{\dot{\phi}H}{M_{\rm Pl}H_0^2} \tag{2}$$

where ξ is a constant. Following the discussion which leads to E. 18 in 1709.09135 we can deduce that ξ is a constant and can be obtained given c_3 ,

$$\xi = -\frac{1}{6c_3} \tag{3}$$

As a result we can write,

$$\dot{\varphi} = \frac{\xi M_{\rm Pl} H_0^2}{H} \tag{4}$$

$$\ddot{\varphi} = -\frac{\xi M_{\rm Pl} H_0^2 \dot{H}}{H^2} \tag{5}$$

Note that $H = \frac{da}{dt} = \mathcal{H}/a$, where \mathcal{H} is the conformal Hubble factor. Following the discussion presented in 1308.3699 for the background tracker solution we can derive the Hubble expansion rate as a function of a (Eq. 12 of 1308.3699)

$$\mathcal{H}^{2} = \frac{\mathcal{H}_{0}^{2}}{2} \left[\left(\Omega_{m0} a^{-1} + \Omega_{r0} a^{-2} \right) + a^{2} \sqrt{\left(\Omega_{m0} a^{-3} + \Omega_{r0} a^{-4} \right)^{2} + 4 \left(1 - \Omega_{m0} - \Omega_{r0} \right)} \right].$$
(6)

Where $H_0^2 = \frac{8\pi G}{3}$ in MG-evolution unit. Computing \mathcal{H}' results in,

$$\mathcal{H}' = -\frac{\mathcal{H}_0^2 (a\Omega_m + 2\Omega_r)}{4a^2} - \frac{\mathcal{H}_0^2 (a\Omega_m + \Omega_r)(3a\Omega_m + 4\Omega_r)}{4a^6 \sqrt{4(1 - \Omega_m - \Omega_r) + \frac{(a\Omega_m + \Omega_r)^2}{a^8}}} + \frac{\mathcal{H}_0^2 a^2}{2} \sqrt{4(1 - \Omega_m - \Omega_r) + \frac{(a\Omega_m + \Omega_r)^2}{a^8}}$$
(7)

We also have,

$$\dot{H} = \frac{\mathcal{H}' - \mathcal{H}^2}{a^2} \tag{8}$$

With all the previous expressions we can obtain the linear $\Delta G/G$ for the Cubic Galileon model.

2 Screening

Following the discussion which leads to Eq. 21 of 1306.3219 we can write,

$$\frac{\Delta G}{G}|_{\text{tot}} = \frac{\Delta G}{G}|_{\text{linear}} \times \frac{\Delta G}{G}|_{\text{Vainshtein}}$$
(9)

where $\frac{\Delta G}{G}|_{\text{linear}}$ is obtained following the discussion in the previous section and $\frac{\Delta G}{G}|_{\text{Vainshtein}}$ can be written in Fourier space as 2003.05927,

$$\frac{\Delta G}{G}|_{\text{Vainshtein}} = \frac{\sqrt{1+\epsilon} - 1}{\epsilon} \tag{10}$$

where,

$$\epsilon \equiv (\frac{r_V}{r})^3 \to (\frac{k_*}{k})^3 \tag{11}$$

where r_V the Vainshtein radius and k_* is the corresponding wavenumber in Fourier space. As a result we have two free parameters, namely k_* in the screening and c_3 in the linear modification.