Embedded OS Implementation, Fall 2022

Project #1 (due November 2nd, 2022 (Wednesday) at 12:00)

[PART I] Task Control Block Linked List

Objective:

Following the previous homework (HW1), please add some code to the μ C/OS-II scheduler <u>in</u> the kernel level to observe the operations of the task control block (TCB) and TCB linked list.

※ The TCB address is dynamic.

The output results are shown below:

```
OSTick created, Thread ID 15568
Task[63] created, TCB Address bdf680
-----After TCB[63] being linked-----
Previous TCB point to address 0
Current TCB point to address bdf680
Next TCB point to address 0
the file 'TaskSet.txt'was opened
Task[ 1] created, TCB Address bdf6dc
-----After TCB[ 1] being linked-----
Previous TCB point to address 0
Current TCB point to address bdf6dc
Next TCB point to address bdf680
Task[ 2] created, TCB Address bdf680
Task[ 2] created, TCB Address bdf738
-----After TCB[ 2] being linked-----
Previous TCB point to address bdf738
Next TCB point to address bdf738
Next TCB point to address bdf6dc

-----TCB linked list
-----TCB addr
Data Prev_TCB_addr
Data Ddf738 bdf6dc
Ddf680
Ddf680
```

[PART II] RM Scheduler Implementation

Objective:

To implement the Rate Monotonic (RM) scheduler for periodic tasks and observe the scheduling behaviors.

Problem Definition:

Implement the following three task sets of periodic tasks. Add necessary code to the μ C/OS-II scheduler <u>in the kernel level</u> to observe how the task suffers from the scheduler. We give the files for the parameter of the task.

Periodic Task Set = $\{\tau_{ID}$ (ID, arrival time, execution time, period) $\}$

```
Example Task Set 1 = \{\tau_1 \ (1, 1, 2, 4), \tau_2 \ (2, 0, 4, 10)\}

Example Task Set 2 = \{\tau_1 \ (1, 3, 4, 14), \tau_2 \ (2, 0, 2, 8), \tau_3 \ (3, 0, 4, 10), \tau_4(4, 24, 2, 12)\}

Example Task Set 3 = \{\tau_1 \ (1, 2, 2, 10), \tau_2 \ (2, 1, 1, 5), \tau_3 \ (3, 0, 8, 15)\}
```

★ The priority of the task is set according to the RM scheduling rules.

The input file format:

Task	Arrive	Execution	Task
ID	Time	Time	Periodic
##	##	##	##

Example of task set file 1:

Evaluation:

The output format:

Ti ck	Event	CurrentTask ID	NextTask ID	Response Time	# of Context Switch	Preemp tion Time	OSTimeDly
##	Preemption	task(ID)(job number)	task(ID)(job number)				
##	Completion	task(ID)(job number)	task(ID)(job number)	##	##	##	##
##	MissDeadline	task(ID)(job number)					

※ If the task is Idle Task, print "task(priority)".

The output results of Task Set 1:

Tick	Event	CurrentTask ID	NextTask ID	ResponseTime	#of ContextSwitch	PreemptionTime	OSTimeDly
3	Preemption Completion	task(2)(0) task(1)(0)	task(1)(0) task(2)(0)	2	2	0	2
7	Preemption Completion	task(2)(0) task(1)(1)	task(1)(1) task(2)(0)	2	2	0	2 2
8	Completion Preemption	task(2)(0) task(63)	task(63) task(1)(2)	8	5	4	2
11	Completion	task(1)(2)	task(2)(1)	2	2	0	2
13 15	Preemption Completion	task(2)(1) task(1)(3)	task(1)(3) task(2)(1)	2	2	0	2
17	Completion	task(2)(1)	task(1)(4)	$\bar{7}$	4	3	2 3
19 20	Completion Preemption	task(1)(4) task(63)	task(63) task(2)(2)	2	2	0	2
21	Preemption	task(2)(2)	task(1)(5)		0		
23 25	Completion Preemption	task(1)(5) task(2)(2)	task(2)(2) task(1)(6)	2	2	0	2
27	Completion	task(1)(6)	task(2)(2) task(63)	2 8	2 6	0 4	2 2
28 29	Completion Preemption	task(2)(2) task(63)	task(03) task(1)(7)	٥	0	4	2

The output results of Task Set 2:

Tick	Event	CurrentTask ID	NextTask ID	ResponseTime	#of ContextSwitch	PreemptionTime	OSTimeDly
2	Completion	task(2)(0)	task(3)(0)	2	1	0	6
6	Completion	task(3)(0)	task(1)(0)	6	2	2	4
8	Preemption	task(1)(0)	task(2)(1)				
10	Completion	task(2)(1)	task(3)(1)	2	2	0	6
14	Completion	task(3)(1)	task(1)(0)	4	2	0	6
16	Completion	task(1)(0)	task(2)(2)	13	4	9	1
18	Completion	task(2)(2)	task(1)(1)	2	2	0	6
20	Preemption	task(1)(1)	task(3)(2)				
24	Completion	task(3)(2)	task(2)(3)	4	2	0	6
26	Completion	task(2)(3)	task(4)(0)	2	2	0	6
28	Completion	task(4)(0)	task(1)(1)	4	2	2	8
30	Completion	task(1)(1)	task(3)(3)	13	4	9	1

The output results of Task Set 3:

TaskSet 3	C	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
$\tau_1(1, 2, 2, 10)$				0										1										2							
τ ₂ (2, 1 , 1 , 5)			0					1					2					3					4					5			
$\tau_3(3, 0, 8, 15)$		0															1														
Result(RM)		0	0	0		0		1	0				2	1		0	- 1	3	1				4	2		1		5	1		

Tịck	Event	CurrentTask ID	NextTask ID	ResponseTime	#of ContextSwitch	PreemptionTime	OSTimeDly
1 2	Preemption Completion	task(3)(0) task(2)(0)	task(2)(0) task(1)(0)	1	2	0	4
4	Completion	task(1)(0)	task(3)(0)	Ž	$\bar{2}$	Ö	8
7	Preemption Completion	task(3)(0) task(2)(1)	task(2)(1) task(3)(0)		2	0	4
11 12	Preemption Completion	task(3)(0) task(2)(2)	task(2)(2) task(1)(1)	1	2	0	4
14 15	Completion Completion	task(1)(1) task(3)(0)	task(3)(0) task(3)(1)	2 15	6	0 7	8
16 17	Preemption Completion	task(3)(1) task(2)(3)	task(2)(3) task(3)(1)	1	2		4
21	Preemption	task(3)(1)	task(2)(4)	1			4
22 24	Completion Completion	task(2)(4) task(1)(2)	task(1)(2) task(3)(1)	1 2	2 2	0 0	4 8
26 27	Preemption	task(3)(1)	task(2)(5)		2	0	4
28	Completion Completion	task(2)(5) task(3)(1)	task(3)(1) task(63)	13	7	5	2
30	Preemption	task(63)	task(3)(2)				

[Bonus] FIFO Scheduler Implementation

Objective:

To implement the non-preemptive First In First Out (FIFO) scheduling for periodic tasks, and handle the miss deadline behaviors.

Problem Definition:

Implement the following task set of periodic tasks. Add necessary code to the μ C/OS-II scheduler in the kernel level to observe how the task suffers the schedule delay.

Periodic Task Set = $\{\tau_{ID}$ (ID, arrival time, execution time, period) $\}$

Task set $1 = \{\tau_1 (1, 1, 2, 6), \tau_2 (2, 0, 4, 10)\}$

*If tasks arrive simultaneously, the task with the longest execution time will be executed first.

Evaluation:

The output format:

Ti ck	Event	CurrentTask ID	NextTask ID	Response Time	# of Context Switch	Preemp tion Time	OSTimeDly
##	Preemption	task(ID)(job number)	task(ID)(job number)				
##	Completion	task(ID)(job number)	task(ID)(job number)	##	##	##	##
##	MissDeadline	task(ID)(job number)					

[※] If the task is Idle Task, print "task(priority)".

The output results of Task Set 1:

Consider two tasks $\tau_1(1, 1, 2, 6)$ and $\tau_2(2, 0, 4, 10)$:

Credit:

[PART I] Task Control Block Linked List [20%]

- The screenshot results. (10%)
- A report that describes your implementation (please attach the screenshot of the code and MARK the modified part). (10%)

[PART II] RM Scheduler Implementation [80%]

- The correctness of schedule results of examples. Note the testing task set might not be the same as the given example task set. (40%)
- A report that describes your implementation (please attach the screenshot of the code and MARK the modified part). (40%)

[Bonus I] FIFO Scheduler Implementation [10%]

- The correctness of schedule results of examples. Note the testing task set might not be the same as the given example task set. (5%)
- Implement FIFO and compare the schedule results with that of RM (please attach the screenshot of the code and MARK the modified part). (3%)
- Implement and describe how to handle the deadline missing situation under FIFO. (2%)
- **X** You must modify the source code!
- **X** Standard input and output filenames in the project are necessary for the checker. Please check the file names before submitting.

```
#define INPUT_FILE_NAME "./TaskSet.txt"
#define OUTPUT FILE NAME "./Output.txt"
```

X Please set the system end time as 30 seconds in this project.

```
#define SYSTEM_END_TIME 30
```

- ***** We will use **different task sets** to verify your code.
- **X** When the current task is completed, the completion information shall be printed even if there is one task missing its deadline.

Project submit:

Submit to Moodle2.

Submit deadline: November 2nd, 2022 (Wednesday) at 12:00

File name format: RTOS_Myyyddxxx_PA1.zip

RTOS_Myyyddxxx_PA1.zip includes (The tree structure of files is shown as hints):

- The report (RTOS_Myyyddxxx_PA1.pdf).
- Folder with the executable μC/OS-II project (RTOS_Myyyddxxx_PA1).
- X Plagiarizing is strictly prohibited.

Hints:

1. Preemption time is introduced in multiple tasking.

2. RTOS_Myyyddxxx_PA1.zip include files as follows:

```
RTOS_Myyyddxxx_PA1.pdf
---RTOS_Myyyddxxx_PA1
         ReadMe.txt
        -Micrium
         \---Software
               +---uC-CPU
                         cpu_cache.h
cpu_core.c
cpu_core.h
                          cpu_def.h
                         -Win32
                          \---Visual_Studio
                                     cpu.h
                                     cpu_c.c
               +---uC-LIB
                         lib_ascii.c
lib_ascii.h
lib_def.h
                         lib_math.c
lib_math.h
lib_mem.c
                          lib_mem.h
                          lib_str.c
lib_str.h
                ---uCOS-II
                         -Ports
                          \---Win32
                                \---Visual Studio
                                          os_cpu.h
                                          os_cpu_c.c
                         -Source
                               os.h
                               os_cfg_r.h
os_core.c
                               os_dbg_r.c
                               os_flag.c
os_mbox.c
                               os_mem.c
                               os_mutex.c
                               os_q.c
os_sem.c
                               os_task.c
                               os_time.c
os_tmr.c
os_trace.h
                               ucos_ii.c
ucos_ii.h
```