Flight Price Prediction System

Spring 2022 CSYE 7200

Luo Chen

Project Description

Project: Flight Price Prediction System
 A system used to predict the price trend of a flight

Team Members:

• Yuhan Yang 1094267

• Luo Chen 1564677

• Kang Shentu 1569432

Project Description

Project: Flight Price Prediction System
 A system used to predict the price trend of a flight

- Factors
 - Different airline
 - Days before departure
 - Departure/Arrival time
 - Source/Destination city
 - Economy/Business class

Project Description

- Use Cases
 - To Customers
 find the best flight
 - when to purchase the air ticket
 - To Business
 - recommend flights for customers

- Algorithm
- Engineering

- Algorithm
 - Linear Regression
 - XGBoost (Cost-effective)
 - Transformer

- Engineering
 - Spark
 - Data Processing
 - Training
 - Inferring
 - Java
 - Web Service
 - Others
 - Operation
 - Docker

- Engineering
 - Usability
 - Accuracy
 - Reliability

- Engineering
 - Usability

A system can provide services for customers to use

- Offline Learning
 - Load preprocess data
 - Train
 - Save Model
- Static Predicting (synchronous/asynchronous/streaming)
 - Load Model
 - Receive and Transform data
 - Predict
 - Output

- Engineering
 - Accuracy

A system can revise the model by feeding new data

- Data crawling
- Online Learning
 - Feed data
 - Process data
 - Update parameters or train a new Model
 - Save Model
- Static Predicting
 - Load updated model time by time

- Engineering
 - Reliability

A System needs high availability and ease for operations

- Service containerization
- Auto Deployment
- Different components
- Etc.

Architecture

Architecture

- Repositories
 - Web Crawler (In Scala)
 - Online Learning (In Scala)
 - Streaming Predicting (In Scala)
 - Management Service (In Java)

These repositories will be pushed onto GitHub.

Data Source

Original Dataset:

Kaggle: https://www.kaggle.com/datasets/shubhambathwal/flight-price-prediction

Dataset contains information about flight booking options from the website EaseMyTrip for flight travel between India's top 6 metro cities.

There are 300261 datapoints and 11 features in the cleaned dataset.

Following Data:

Crawl from websites like EaseMyTrip, SkyScanner, etc.

Milestones

1st Week: Implement the basic system to perform offline training and batch predicting.

2nd Week: Add the service to manage data, models and predictions. Implement streaming processing for inferring service.

3rd Week: Complete crawler service. Update offline learning To online learning. Implement the workflow for the while system.

4th Week: Optional work. Strengthen reliability of our system.

Acceptance Criteria

- The response time of the API for prediction for one input is less than 1s
- Training time of static model (offline training) should less than 1 hour
- Updating model by new data retrieving from web-crawler every 2 hours
- The R2 score for the regression model should be higher than 0.70

Goals of the project

- Help us understand the characteristic of Scala and advantages of Spark.
- Learn to design and implement a big data system.
- Develop the ability to work with our teammates.
- Learn how to use machine learning to solve problems in real life.

Thank You!

Spring 2022 CSYE 7200 Luo Chen