### Однородность нескольких выборок

Непараметрические методы составляют одно из наиболее успешных направлений современной статистики. Они широко применимы, быстры в исполнении и легко усваиваются.

Я. Гаек

### Диаграмма размахов

UBV (Up Boundary Value) — верхняя выборочная квартиль

LBV (Low Boundary Value) — нижняя выборочная квартиль

Верхний и нижний «усы» ограничивают диапазон невыделяющихся значений

H = UBV – LBV — межквартильный размах

Горизонтальная линия внутри межквартильного диапазона — выборочная медиана

Кружки — возможные «выбросы»

Звёздочки — экстремальные значения или безусловные «выбросы»

Строки таблицы данных, содержащие экстремальные значения, как правило, рекомендуется исключить из дальнейшего статистического анализа.



### Детское восприятие



Данные были получены в результате психологического эксперимента, в ходе которого 36 маленьких детей были случайно разбиты на 3 группы. Каждому ребенку были показаны несколько карточек с изображениями пар нарисованных объектов: геометрических фигур, цветов, машинок и т. п. Задача состояла в том, чтобы выбрать одну из карточек. В случае «правильного» выбора дети получали награду. В первой группе характеристикой, которую необходимо было принимать во внимание, чтобы сделать правильный выбор, являлась форма объектов, во второй группе — цвет, в третьей группе — размер.

Признак PERFRMNC представляет собой число попыток, потребовавшихся детям для выбора карточки, представляющей соответствующую характеристику.

### Что важнее: форма, цвет или размер?



#### Выводы:

- 1) Больше всего попыток потребовалось детям, чтобы увидеть различие в размере объектов.
- 2) В первую очередь дети при сравнении объектов обращают внимание на форму (FORM), затем на цвет (COLOR), а только потом на размер (SIZE).

### Однофакторная модель

<u>Данные</u>. Данные состоят из  $N = \sum_{j=1}^k n_j$  чисел  $x_{ij}$ , по  $n_j$  чисел в j-й выборке (обработке),  $j = 1, \ldots, k$ . Будем считать их реализацией случайных величин (наблюдений)  $X_{ij}$ , где

$$X_{ij} = \mu + \beta_j + \varepsilon_{ij}, \quad i = 1, \ldots, n_j; \quad j = 1, \ldots, k.$$

Здесь  $\mu$  — (неизвестное) общее среднее,  $\beta_j$  — (неизвестный) эффект от воздействия фактора\*) для j-й выборки,  $\varepsilon_{ij}$  — случайная ошибка. Положим  $\mu_j = \mu + \beta_j$ .

#### Допущения:

 $\mathbf{Д1}.$  Все ошибки  $\varepsilon_{ij}$  независимы.

**Д2**. Все  $\varepsilon_{ij}$  имеют одинаковое непрерывное (неизвестное) распределение. Для проверки гипотезы однородности обработок

$$H_0: \mu_1 = \ldots = \mu_k$$

используются критерий Краскела—Уоллиса или (для альтернативы возрастания  $\mu_i$ ) критерий Джонкхиера—Терпстры.

| Обработки    |              |   |             |  |
|--------------|--------------|---|-------------|--|
| 1            | 2            |   | k           |  |
| $x_{11}$     | $x_{12}$     |   | $x_{1k}$    |  |
| $x_{21}$     | $x_{22}$     |   | $x_{2k}$    |  |
| :            | :            | : | :           |  |
| $x_{n_{1}1}$ | $x_{n_{2}2}$ |   | $x_{n_k k}$ |  |

 $<sup>*^{0}</sup>$  Фактором называется некоторая характеристика, которая оказывает влияние на значения наблюдений. Она одинакова внутри каждой группы, но может меняться от группы к группе. Скажем, в примере 2 ниже в качестве интересующего исследователя фактора выступает мотивация (знание цели работы): исследуется ее влияние на производительность при выполнении монотонных производственных операций.

### Критерий Краскела — Уоллиса

Критерий Краскела — Уоллиса применяется для проверки гипотезы  $H_0$  против альтернативы

 $H_1$ : не все  $\mu_i$  равны между собой.

#### Выполним следующие шаги.

- 1) Ранжируем все N наблюдений вместе от меньшего к большему. Пусть  $R_{ij}$  обозначает ранг  $X_{ij}$  в этой совместной ранжировке.

  Ранги  $R_{ij}$  пробегают
  - 2) Положим для  $j=1,\ldots,k$

все значения от 1 до N.

$$S_j = \sum_{i=1}^{n_j} R_{ij}, \ R_{\cdot j} = S_j/n_j, \ R_{\cdot i} = \frac{1}{N} \sum_{i=1}^{N} \overline{R_{ij}} = \frac{1}{N} \frac{N(N+1)}{2} = \frac{N+1}{2}.$$

Таким образом,  $R_{\cdot j}$  — это средний ранг наблюдений  $X_{ij}$ , относящихся к обработке j,  $R_{\cdot \cdot}$  — общий средний ранг.

3) Вычислим значение *статистики критерия Краскела* — Уоллиса W, определяемой формулой

$$W = \frac{12}{N(N+1)} \sum_{j=1}^{k} n_j (R_{\cdot j} - R_{\cdot \cdot})^2 \longrightarrow \chi_{k-1}^2$$

### Медианный критерий

Медианный тест служит альтернативой критерию Краскела — Уоллиса в однофакторной модели (см. §1 темы 4). Статистикой критерия является

$$M=\sum_{j=1}^k rac{(m_j-n_j/2)^2}{n_j/4},$$
 где  $n_j$  обозначает размер  $j$ -й выборки,  $j=1,\ldots,k;$ 



$$m_j = \sum_{i=1}^{n_j} I_{\{X_{ij} \geqslant MED\}},$$

где MED — выборочная медиана объединенной выборки. Если гипотеза однородности верна, то при увеличении всех  $n_j$  распределение статистики M сходится к закону  $\chi_{k-1}^2$ .

Медианный тест обычно обладает меньшей мощностью по сравнению с Краскела — Уоллиса, однако его можно использовать для цензурированных (например, по времени) наблюдений, для которых не выполняется предположение о непрерывности функции распределения наблюдений.

# Пример данных для однофакторной модели

Пример 1. Содержание влаги в продукте. 14 образцов некоторого продукта случайным образом разбили на пять групп заданных размеров. Все группы хранились в разных условиях, а после хранения у всех образцов определили содержание влаги. Данные (в %) приведены в следующей таблице (в скобках указаны ранги  $R_{ij}$ ):

| Условия хранения продукта                                  |                                 |                     |                                  |                |  |
|------------------------------------------------------------|---------------------------------|---------------------|----------------------------------|----------------|--|
| 1                                                          | 2                               | 3                   | 4                                | 5              |  |
| 7,8 (7)<br>8,3 (10,5)<br>7,6 (6)<br>8,4 (12)<br>8,3 (10,5) | 5,4 (1)<br>7,4 (5)<br>7,1 (3,5) | 8,1 (9)<br>6,4 (2)  | 7,9 (8)<br>9,5 (13)<br>10,0 (14) | 7,1 (3,5)      |  |
| $S_1 = 46$                                                 | $S_2 = 9.5$                     | $S_3 = 11$          | $S_4 = 35$                       | $S_5 = 3.5$    |  |
| $R_{\cdot 1} = 9,2$                                        | $R_{\cdot 2} = 3,17$            | $R_{\cdot 3} = 5,5$ | $R_{\cdot 4} = 11,67$            | $R_{.5} = 3.5$ |  |

Данные содержатся в файле Moisture.txt. Проверьте гипотезу однородности групп по содержанию влаги в продукте: установите и подключите пакет coin, примените функции kruskal\_test и median\_test с аргументом distribution=approximate(100000)

### Множественные сравнения

Когда гипотеза однородности отвергнута, интересно узнать, в каких именно парах выборок есть значимое различие. Для выявления таких пар можно использовать критерий Данна:

на уровне значимости, <u>не превосходящем lpha</u>, принять решение  $\mu_r 
eq \mu_s$ , если

$$|R_{r}-R_{s}|>C_{\alpha}\sqrt{N(N+1)(1/n_{r}+1/n_{s})/12},$$

где  $C_{\alpha} = \Phi^{-1}(1 - \alpha / k / (k - 1)), \ \Phi(x)$  — функция распределения закона N(0, 1).

#### Практическое задание 1

- 1) Установите пакет pgirmess, подключите его, поставив перед ним «галку» на вкладке Packages
- 2) Найдите все пары выборок в каждой из таблиц Kruskal и Moisture, значимо различающиеся на уровне  $\alpha$  = 0,05, с помощью функции kruskalmc [Kruskal multiple comparisons]
- 3) Перебором найдите с точностью 0,01 уровень значимости, при котором критерий Данна обнаруживает значимые различия в таблице Moisture

### Вычисление контрастов

Контрастом Δ<sub>і і</sub> называют разность уровней фактора в *і*-й и *ј*-й выборках, т. е. Δ<sub>і і</sub> = μ<sub>і</sub> – μ<sub>і</sub>. Уточнённые оценки контрастов определяются следующим образом:

сначала вычисляются k(k-1)/2 первичных оценок контрастов

$$V_{rs} = MED\{X_{ir} - X_{js}, 1 \le i \le n_r, 1 \le j \le n_s\}, 1 \le r < s \le k,$$

$$V_{rr}=0, \quad V_{sr}=-V_{rs}.$$

Затем вычисляются взвешенные суммы  $W_r = \frac{1}{N} \sum_{s=1}^k n_s V_{rs}, \ 1 \leq r \leq k.$ 

Уточнённые оценки контрастов определяются как  $\hat{\Delta}_{rs} = W_r - W_s$  .

Практическое задание 2\* (выполните его дома, если захотите)

- 1) Напишите программу для вычисления уточнённых оценок контрастов
- 2) Перекодируйте коды групп из 1-го столбца таблицы Kruskal с помощью команды as.numeric в числа 1, 2, 3
- 3) Вычислите уточнённые оценки контрастов для групп из таблицы Kruskal

### Типы критериев

 $P(T > t_0) = \alpha_0$  **Точные.** Для выборки заданного размера *n* известно распределение статистики критерия. На основе этого распределения вычисляется фактический уровень значимости  $\alpha_0$  (*p*-level).

[Например, критерий Стьюдента из темы 4.]

 $\mathbf{P}(T > t_0) \rightarrow \alpha_0$  **Асимптомические.** При увеличении размера выборки распределение статистики критерия сходится к некоторому известному закону. Фактический уровень значимости вычисляется приближённо.

[Например, критерий Колмогорова из темы 3.]

 $\mathbf{P}(T > x_{1-\alpha}) \le \alpha$  **Консервативные.** Известна только оценка сверху  $\alpha$  на уровень значимости. Для заданного  $\alpha$  наблюдаемое значение статистики критерия сравнивается с критическим  $x_{1-\alpha}$ .

[Например, критерий Данна.]

# Классический однофакторный дисперсионный анализ (ANOVA)

Предполагается, что наблюдения нормально распределены:

Analysis of Variance

$$X_{ij} \sim \mathcal{N}(\mu_j, \sigma_j^2) \ (i = 1, \dots, n_j, j = 1, \dots, k),$$

причём дисперсии  $\sigma_j^2$  одинаковы для всех j. Проверяется гипотеза

$$\mu_1 = \ldots = \mu_k$$
.

Рассмотрим суммы

$$V_{tot} = \sum_{j=1}^{k} \sum_{i=1}^{n_j} (X_{ij} - X_{..})^2$$
 — общая изменчивость (total),

**Распределение Фишера** 

$$V_{int} = \sum_{j=1}^{k} \sum_{i=1}^{n_j} (X_{ij} - X_{\cdot j})^2$$
 — изменчивость внутри выборок (interior),

$$V_{out} = \sum_{j=1}^k n_j (X_{\cdot j} - X_{\cdot \cdot})^2$$
 — изменчивость между выборками (outer).

Тогда 
$$V_{tot} = V_{int} + V_{out}$$
. Статистика критерия  $R = \frac{\frac{1}{k-1} V_{out}}{\frac{1}{N-k} V_{int}} \sim F_{k-1,N-k}$ .

Инвариантна к сдвигу и масштабированию

### Критика ANOVA

При проверке однородности нескольких независимых *нор-мальных* выборок с помощью ANOVA предполагается, что дисперсии наблюдений во всех выборках *одинаковы*. Для контроля этого обычно применяется **критерий Бартлетта**, статистикой которого служит отношение взвешенных среднего арифметического и среднего геометрического выборочных дисперсий:

$$B = \left(\frac{1}{N} \sum_{j=1}^{k} n_{j} S_{j}^{2}\right) / \sqrt[N]{\prod_{j=1}^{k} (S_{j}^{2})^{n_{j}}}.$$



Предполагалось, что отклонения от идеальных моделей можно игнорировать как несущественные; что статистические процедуры, оптимальные в строгой модели, останутся примерно таковыми и в приближенной модели. К сожалению, оказалось, что такие надежды зачастую не имеют под собой никакой почвы; даже безобидные отклонения часто имеют следствием эффекты гораздо более сильные, нежели это предвидело большинство статистиков.

Хампель Ф., Рончетти Э., Рауссеу П., Штаэль В. «Робастность в статистике»

### Критерий Джонкхиера — Терпстры

Если исследователь надеется выявить значимое возрастание уровня интересующего его фактора от выборки к выборке, надо применять не критерий Краскела — Уоллиса, а более чувствительный критерий Джонкхиера — Терпстры.

Он используется для проверки гипотезы однородности  $H_0$  против альтернативы возрастания уровня фактора

$$H_2: \mu_1 \leqslant \ldots \leqslant \mu_k,$$

где хотя бы одно из неравенств строгое.

1) Вычисляются k(k-1)/2 статистик Манна — Уитни  $U_{rs}$ ,  $1 \leqslant r < s \leqslant k$ , где

$$U_{rs} = \sum_{i=1}^{n_r} \sum_{l=1}^{n_s} I_{\{X_{ir} < X_{ls}\}}.$$
 (1)

2) В качестве статистики критерия Джонкхиера берется

$$J = \sum_{r < s} U_{rs} = \sum_{r=1}^{k-1} \sum_{s=r+1}^{k} U_{rs}.$$
 (2)

Если верна  $H_0$ , то статистика  $J^* = (J - \mathbf{M}J)/\sqrt{\mathbf{D}J}$  имеет асимптотическое распределение  $\mathcal{N}(0, 1)$ .

### L-критерий (линейно растущие веса)

В однофакторной модели против альтернативы  $H_2$  возрастания уровня фактора также применяется L-критерий, статистика L которого имеет вид

$$L = \frac{1}{\sqrt{N}} \sum_{j=1}^{k} \left( j - \frac{k+1}{2} \right) \left( R_{\cdot j} - \frac{N+1}{2} \right),$$

где  $R_{.j}$  — средний ранг наблюдений из j-й выборки,  $N = n_1 + \ldots + n_k$  — общее число наблюдений в k выборках. Таким образом, L — сумма центрированных средних рангов с nune ino растущими весами, что объясняет название критерия: linear (англ.) — линейный.

Известно, что при справедливости гипотезы  $H_0$  однородности выборок  $\mathbf{M} L = 0$  и

$$\mathbf{D}L = \frac{N+1}{12} \sum_{j=1}^{k} \frac{1}{n_j} \left( j - \frac{k+1}{2} \right)^2,$$

причём статистика  $L^* = L/\sqrt{\mathbf{D}L}$  имеет асимптотическое распределение  $\mathcal{N}(0, 1)$  при увеличении размеров всех выборок:  $n_i \to \infty$ ,  $n_i/N \to p_i$ ,  $0 < p_i < 1$ , j = 1, ..., k.

## Пример данных для альтернативы возрастания уровня фактора

**Пример 2.** Роль мотивации. П. Хандел в 1969 г. исследовал влияние чистой мотивации (знания цели работы) на выполне-

| $\Gamma$ руппа $A$   | $\Gamma$ руппа $B$   | $\Gamma$ руппа $C$ |
|----------------------|----------------------|--------------------|
| 40 (5,5)             | 38 (2,5)             | 48 (18)            |
|                      | 40 (5,5)             | 40 (5,5)           |
| 38 (2,5)             | 47 (17)              | 45 (15)            |
| 43 (10,5)            | 44 (13)              | 43 (10,5)          |
| 44 (13)              | 40 (5,5)             | 46 (16)            |
| 41 (8)               | 42 (9)               | 44 (13)            |
| $S_1 = 40,5$         | $S_2 = 52,5$         | $S_3 = 78$         |
| $R_{\cdot 1} = 6,75$ | $R_{\cdot 2} = 8,75$ | $R_{\cdot 3} = 13$ |

ние монотонных производственных операций (вытачивание металлических заготовок определенных форм и размеров). 18 мужчин были случайным образом разделены на 3 группы. Рабочие, попавшие в контрольную группу A, не имели информации о требуемой производительности, в группе B они получили лишь общее представление

о том, что должны делать, наконец, в группе C рабочие имели точную информацию о задании и могли контролировать себя по графику, лежащему перед ними. В таблице приведены числа заготовок, обработанных каждым из рабочих за время эксперимента (в скобках указаны ранги  $R_{ij}$ ).

Данные содержатся в файле Motivat.txt. Проверьте гипотезу однородности групп:

- 1) Постройте диаграммы размахов для всех групп на одном рисунке
- 2) Установите пакет NSM3 и подключите его, примените функцию pJCK

### Двухфакторная модель

**Данные**. В каждом из n блоков содержится по одному наблюдению  $x_{ij}$  на каждую из k обработок. Будем считать наблюдения реализацией случайных величин  $X_{ij}$  в модели

| Блоки | Обработки |          |   |          |
|-------|-----------|----------|---|----------|
|       | 1         | 2        |   | k        |
| 1     | $x_{11}$  | $x_{12}$ |   | $x_{1k}$ |
| 2     | $x_{21}$  | $x_{22}$ |   | $x_{2k}$ |
| :     | :         | :        | : | :        |
| n     | $x_{n1}$  | $x_{n2}$ |   | $x_{nk}$ |

$$X_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij}, \quad i = 1, \dots, n; \quad j = 1, \dots, k.$$

Здесь  $\mu$  — неизвестное общее среднее,  $\alpha_i$  — эффект блока i (неизвестный мешающий параметр),  $\beta_j$  — эффект обработки j (интересующий нас параметр),  $\varepsilon_{ij}$  — случайная ошибка.

Пусть справедливы те же самые, что и в однофакторной модели, допущения Д1 и Д2.

Для проверки гипотезы

$$H_0$$
:  $\beta_1 = \ldots = \beta_k$ 

используются критерии Фридмана или (для альтернативы возрастания  $\beta_j$ ) Пейджа.

### Критерий Фридмана

Для проверки гипотезы

$$H_0: \beta_1 = \ldots = \beta_k$$

против альтернативы

 $H_1$ : не все  $\beta_j$  равны между собой

применяется критерий Фридмана.

| Блоки | Обработки |          |   |          |  |
|-------|-----------|----------|---|----------|--|
|       | 1         | 2        |   | k        |  |
| 1     | $Q_{11}$  | $Q_{12}$ |   | $Q_{1k}$ |  |
| $^2$  | $Q_{21}$  | $Q_{22}$ |   | $Q_{2k}$ |  |
| :     | :         | :        | : | :        |  |
| n     | $Q_{n1}$  | $Q_{n2}$ |   | $Q_{nk}$ |  |

критерия

- 1) Отдельно для каждого i-го блока (строки таблицы) ранжируем k наблюдений внутри него от меньшего к большему. Обозначим через  $Q_{ij}$  ранг  $X_{ij}$  в совместной ранкировке  $X_{i1}, \ldots, X_{ik}$ .
  - 2) Положим для  $j=1,\ldots,k$

$$T_j = \sum\limits_{i=1}^n Q_{ij}, \quad Q_{\cdot j} = T_j/n, \quad Q_{\cdot \cdot} = \frac{1}{nk} \cdot n$$
 функцией friedman.test

Здесь  $Q_{\cdot j}$  — это средний ранг по всем n блокам наблюдений, относящихся к j-й обработке (столбцу таблицы),  $Q_{\cdot \cdot}$  — средний ранг по всей таблице.

3) В качестве статистики критерия Фридмана возьмем

$$F = \frac{12n}{k(k+1)} \sum_{j=1}^{k} (Q_{\cdot j} - Q_{\cdot \cdot})^2 \qquad \longrightarrow \chi_{k-1}^2$$

Данные содержатся в файле Animals.txt

#### Интеллект животных

Д. Хэбб и К. Уильямс разработали тест эстакадного лабиринта для сравнительной оценки "сообразительности" животных. Он состоит из 12 заданий. В таблице даны средние числа ошибок при выполнении этих заданий крысами, кроликами и кошками (в скобках указаны ранги  $Q_{ij}$  внутри каждой строки).







В языке R алгоритм критерия Фридмана реализован функцией friedman.test

| Номер   | $T_1 = 26,$ | $T_2 = 29$ , | $T_3 = 17$ |
|---------|-------------|--------------|------------|
| задания | Крысы       | Кролики      | Кошки      |
| 1       | 1,5 (2)     | 1,7 (3)      | 0,3 (1)    |
| 2       | 1,1 (2)     | 1,5(3)       | 1,0 (1)    |
| 3       | 1,8 (1)     | 8,1 (3)      | 3,6(2)     |
| 4       | 1,9(3)      | 1,3(2)       | 0,0 (1)    |
| 5       | 4,3(3)      | 4,0 (2)      | 0,6 (1)    |
| 6       | 2,0(1)      | 4,6(2)       | 5,5(3)     |
| 7       | 8,4 (3)     | 4,0(2)       | 1,0 (1)    |
| 8       | 6,6(3)      | 5,1(2)       | 3,1 (1)    |
| 9       | 2,4(2)      | 2,5(3)       | 0,1(1)     |
| 10      | 6,5(2)      | 6,9(3)       | 1,6 (1)    |
| 11      | 2,6 (2)     | 2,5(1)       | 4,3(3)     |
| 12      | 6,5(2)      | 6,8 (3)      | 1,0 (1)    |



## Классический двухфакторный дисперсионный анализ

Двухфакторный дисперсионный анализ. Пусть ошибки  $\varepsilon_{ij}$  распределены по закону  $\mathcal{N}(0, \sigma^2)$ . В этом случае оптимальным критерием для проверки  $H_0$  является F-критерий двухфакторного дисперсионного анализа, основанный на статистике

$$\left[\frac{n}{k-1}\sum_{j=1}^{k}(X_{\cdot j}-X_{\cdot \cdot})^{2}\right] / \left[\frac{1}{(n-1)(k-1)}\sum_{i=1}^{n}\sum_{j=1}^{k}(X_{ij}-X_{i\cdot}-X_{\cdot j}+X_{\cdot \cdot})^{2}\right],$$
 где  $X_{i\cdot}=\frac{1}{k}\sum_{j=1}^{k}X_{ij}, \quad X_{\cdot j}=\frac{1}{n}\sum_{i=1}^{n}X_{ij}, \quad X_{\cdot \cdot}=\frac{1}{nk}\sum_{i=1}^{n}\sum_{j=1}^{k}X_{ij},$ 

имеющей при  $H_0$  распределение Фишера  $F_{k-1,(n-1)(k-1)}$ .

Можно доказать, что справедливо следующее тождество:

$$\sum_{i=1}^{n} \sum_{j=1}^{k} (X_{ij} - X_{..})^{2} = k \sum_{i=1}^{n} (X_{i.} - X_{..})^{2} + n \sum_{j=1}^{k} (X_{.j} - X_{..})^{2} + \sum_{i=1}^{n} \sum_{j=1}^{k} (X_{ij} - X_{i.} - X_{.j} + X_{..})^{2}.$$

Оно показывает, что общая изменчивость распадается на части, обусловленные влиянием эффектов блоков, эффектов обработок, и часть, связанную с изменчивостью самих данных.

### Критерий Пейджа

Иногда обработки упорядочены естественным образом, например, по интенсивности стимулов, сложности заданий и т. п. Критерий Пейджа, в отличие от критерия Фридмана, учитывает информацию, содержащуюся в предполагаемой упорядоченности.

Для проверки гипотезы однородности  $H_0$ 

$$H_0: \beta_1 = \ldots = \beta_k$$

против альтернативы возрастания эффектов обработок

$$H_2: \beta_1 \leqslant \ldots \leqslant \beta_k,$$

где хотя бы одно из неравенств строгое, вычисляется статистика критерия Пейджа

$$L = \sum_{j=1}^{k} jT_j = T_1 + 2T_2 + \ldots + kT_k,$$

Взвешенная  $cymma T_j$ 

где  $T_j = \sum_{i=1}^n Q_{ij}$  — сумма рангов по всем n блокам (строкам), относящихся к j-й обработке (столбцу).

Если верна  $H_0$ , то распределение стандартизованной статистики  $L^* = (L - \mathbf{M}L)/\sqrt{\mathbf{D}L}$  сходится к  $\mathcal{N}(0, 1)$  при  $n \to \infty$ .

## Зависимость прочности волокон хлопка от количества удобрения

Пример 3. Прочность волокон хлопка. В опыте, описанном в книге Cochran W. G., Cox G. M. "Experimental Designs", изучалось влияние количества калийного удобрения, вносимого в почву, на разрывную прочность волокон хлопка. При n=3 блоках использовалось k=5 уровней удобрений. С каждой делянки отбирался один образец хлопка, на котором производилось 4 измерения показателя прочности по Прессли. В таблице приведены средние по этим четырем замерам, а в круглых скобках — ранги  $Q_{ij}$  внутриблочного ранжирования.

| Блоки | Калийное удобрение (кг/га) |           |           |            |            |
|-------|----------------------------|-----------|-----------|------------|------------|
|       | 163 122 82 61 41           |           |           |            |            |
| 1     | 7,46 (2)                   | 7,17 (1)  | 7,76 (4)  | 8,14 (5)   | 7,62 (3)   |
| 2     | 7,68 (2)<br>7,21 (1)       | 7,57(1)   | 7,73 (3)  | 8,15(5)    | 8,00 (4)   |
| 3     | 7,21(1)                    | 7,80 (3)  | 7,74 (2)  | 7,87 (4)   | 7,93(5)    |
|       | $T_1 = 5$                  | $T_2 = 5$ | $T_3 = 9$ | $T_4 = 14$ | $T_5 = 12$ |

Данные содержатся в файле Cotton.txt. Проверьте критерием Пейджа гипотезу об отсутствии влияния количества удобрения на прочность нити против альтернативы убывания прочности с ростом количества удобрения. Для проверки используйте функцию pPage из пакета NSM3 [используйте команду as.matrix]

### Правильный выбор критерия

Повторные наблюдения?

1 фактор

2 фактора

Влияние фактора возрастает?

Эффекты обработок упорядочены?





Her





Краскел — Уоллис Джонкхиер — Терпстра, *L*-критерий

Фридман

Пейдж



## Зачем нужны многовыборочные критерии, когда есть двухвыборочные?

Казалось бы, можно применить такую стратегию: на диаграмме размахов увидеть две наиболее отличающиеся выборки и проверить их однородность с помощью какого-нибудь двухвыборочного критерия.

- 1) Однако при этом отбрасывается информация о разбросе наблюдений, содержащаяся в других выборках, и поэтому происходит потеря в чувствительности.
- 2) Кроме того, меняется уровень значимости, так как распределение максимального различия средних отличается от распределения различия средних выборок с заранее фиксированными номерами.

Если выборок много (7), то и различных пар тоже много (7 \* 6 / 2 = 21). Вероятность, что хотя бы в одной из пар случайно будет наблюдаться неоднородность, можно только оценить суммой соответствующих вероятностей, вычисленных для одной пары (консервативность).

Пусть  $X_1, ..., X_n$  — случайные числа. Тогда

 $\mathbf{M} |X_n - X_1| = 1/3,$ 

 $\mathbf{M} | X_{(n)} - X_{(1)} | \to 1$  при  $n \to \infty$ .

### Главное в теме

- Перед применением критериев полезно построить диаграммы размахов для выявления «выбросов» или существенного различия в межквартильных размахах выборок
- Важно научиться различать случаи, когда следует применять однофакторную модель (обычно она используется для независимых групп), а когда двухфакторную (обычно она применяется для повторных наблюдений), а также различать упорядоченные и неупорядоченные альтернативы
- После выявления общей неоднородности, следует выполнить множественные сравнения выборок (обработок) и вычислить контрасты между значимо различающимися выборками
- Дисперсионный анализ (ANOVA) рекомендуется использовать только как *вспомогательный инструмент*. На практике его обычно вполне могут заменить непараметрические критерии