ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ - ΑΣΚΗΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ $27 \ \textbf{Απριλίου} \ \textbf{2017}$

Α' ΛΥΚΕΙΟΥ

Αλγεβρα

ΟΡΙΣΜΟΙ ΚΑΙ ΘΕΩΡΗΜΑΤΑ

ΑΝΑΛΥΤΙΚΌ ΤΥΠΟΛΟΓΙΟ ΓΙΑ ΤΗ ΘΕΩΡΙΑ ΤΗΣ ΑΛΓΕΒΡΑΣ Α΄ ΛΥΚΕΙΟΥ

Αεί ο Θεός ο Μέγας γεωμετρεί, το κύκλου μήκος ίνα ορίση διαμέτρω, παρήγαγεν αριθμόν απέραντον, καί όν, φεύ, ουδέποτε όλον θνητοί θα εύρωσι.

 $\pi = 3,1415926535897932384626$

Το πλήθος των γραμμάτων κάθε λέξης στην παραπάνω πρόταση φτιάχνουν διαδοχικά τα 23 πρώτα ψηφία του αριθμού π .

1 Σύνολα - Πιθανότητες

- 1. Σύνολο: Συλλογή όμοιων αντικειμένων.
 - Τα αντικείμενα λέγονται **στοιχεία**.
 - Τα σύνολα τα συμβολίζουμε με ένα κεφαλαίο γράμμα.
 - Το x ανήκει στο σύνολο A: $x \in A$.
 - Κενό: Το σύνολο χωρίς στοιχεία : Ø.
 - Βασικό: Το σύνολο που περιέχει όλα τα στοιχεία: Ω.

ΒΑΣΙΚΑ ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ

- **i.** Φυσικοί Αριθμοί : $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$. **iv.** Άρρητοι Αριθμοί : Κάθε αριθμός που δεν είναι
- ii. Ακέραιοι Αριθμοί: $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$. ρητός.
- iii. Ρητοί Αριθμοί : $\mathbb{Q}=\left\{\frac{a}{\beta}\left|\,a,\beta\in\mathbb{Z},\beta\neq0\right.\right\}$. **ν.** Πραγματικοί Αριθμοί : $\mathbb{R} = \{ \dot{0} \lambda o_i \ o_i \ a \rho_i \theta_{\mu} o_i \}$.
- 2. Ίσα σύνολα: A = B αν έχουν τα ίδια στοιχεία.
- 3. Υποσύνολο: $A \subseteq B$.
- 4. Πράξεις μεταξύ συνόλων
 - i. Evwon: $A \cup B = \{x \in \Omega \mid x \in A \text{ if } x \in B\}$
 - ii. Toµ η : $A \cap B = \{x \in \Omega \mid x \in A \text{ kal } x \in B\}$
 - iii. Συμπλήρωμα: $A' = \{x \in \Omega \mid x \notin A\}$
 - iv. Διαφορά: $A B = \{x \in \Omega \mid x \in A \text{ και } x \notin B\}$

Πραγματικοί Αριθμοί

- 1. Δύναμη πραγματικου αριθμου: $a \cdot a \cdot ... a = a^{\nu}$. Ο a λέγεται βάση και ο ν εκθέτης.
- 2. Ταυτότητα: Μια ισότητα που περιέχει μεταβλητές και επαληθεύεται για κάθε τιμή των μεταβλητών.
 - 1. Άθροισμα στο τετράγωνο

$$(a + \beta)^2 = a^2 + 2a\beta + \beta^2$$

- 2. Διαφορά στο τετράγωνο $(a-\beta)^2 = a^2 - 2a\beta + \beta^2$
- 3. Άθροισμα στον κύβο
- $(a + β)^3 = a^3 + 3a^2β + 3aβ^2 + β^3$ **4.** Διαφορά στον κύβο $(a β)^3 = a^3 3a^2β + 3aβ^2 β^3$
- 5. Γινόμενο αθροίσματος επί διαφορά $(a+\beta)(a-\beta) = a^2 - \beta^2$
- 6. Άθροισμα κύβων

$$(a + \beta) (a^2 - a\beta + \beta^2) = a^3 + \beta^3$$

7. Διαφορά κύβων

$$(a-\beta)(a^2+a\beta+\beta^2) = a^3 - \beta^3$$

- 3. Παραγοντοποίηση αλγεβρικών παραστάσεων Η διαδικασία με την οποία μια αλγεβρική παράσταση μετατρέπεται από άθροισμα σε γινόμενο.
- 4. Διάστημα κεντρο ακτινα διαστηματος
 - Ο αριθμός $x_0 = \frac{a+\beta}{2}$ ονομάζεται **κέντρο**, ο αριθμός $\mu = \beta a$ ονομάζεται **μήκος** και ο αριθμός $\rho=\frac{\beta-a}{2}$ ονομάζεται ακτίνα του διαστήματος.

1

Διάστημα	Ανισότητα	Σχή]μα	Περιγραφή
$[a, \beta]$	$a \le x \le \beta$	a	β x	Κλειστό a, eta
(a,β)	$a < x < \beta$	a	β x	Ανοιχτό a, β
$[a,\beta)$	$a \le x < \beta$	a	$\beta \longrightarrow x$	Κλειστό a ανοιχτό eta
$(a,\beta]$	$a < x \le \beta$	a	β x	Ανοιχτό a κλειστό $oldsymbol{eta}$
$[a, +\infty)$	$x \ge a$	a	<i>x</i>	Κλειστό <i>α</i> συν άπειρο
$(a, +\infty)$	x > a	- a	<i>x</i>	Ανοιχτό <i>a</i> συν άπειρο
$(-\infty, a]$	$x \le a$	1	$a \rightarrow x$	Μείον άπειρο <i>a</i> κλειστό
$(-\infty,a)$	x < a	4	$a \rightarrow x$	Μείον άπειρο <i>α</i> ανοιχτό

5.

6. απολυτη τιμη πραγματικου αριθμου απόστασή του απο το 0.

$$|a| = \begin{cases} a, & a \ge 0 \\ -a, & a < 0 \end{cases} \xrightarrow[-1]{|3| = 3} \xrightarrow[-1]{|3| = 3} \xrightarrow[-1]{A(3)} x$$

Η απόσταση δύο αριθμών μεταξύ τους ορίζεται ως η απόλυτη τιμή της διαφοράς τους.

$$|a - \beta| = d(a, \beta)$$

ΟΡΙΣΜΟΣ 1: ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ:

$$\sqrt{x} = a$$
 , όπου $x \ge 0$ και $a \ge 0$

- Ο αριθμός *x* ονομάζεται υπόριζο.
- Δεν ορίζεται ρίζα αρνητικού αριθμού.
- 7. ριζα ν-ταξησ πραγματικου αριθμου $\sqrt[\nu]{x}=a$, όπου $x\geq 0$ και $a\geq 0$.
- 8. Δυναμη με ρητό εκθετη $a^{\frac{\mu}{\nu}}=\sqrt[\nu]{a^{\mu}}$, όπου a>0

ΘΕΩΡΗΜΑΤΑ

ΘΕΩΡΗΜΑ 1: ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΠΡΑΞΕΩΝ

Ιδιότητα	Πρόσθεση	Πολλαπλασιασμός
Αντιμεταθετική	$a + \beta = \beta + a$	$a \cdot \beta = \beta \cdot a$
Προσεταιριστική	$a + (\beta + \gamma) = (a + \beta) + \gamma$	$a \cdot (\beta \cdot \gamma) = (a \cdot \beta) \cdot \gamma$
Ουδέτερο στοιχείο	a + 0 = a	$a \cdot 1 = a$
Αντίθετοι / Αντίστροφοι	a + (-a) = 0	$a \cdot \frac{1}{a} = 1$
Επιμεριστική	$a \cdot (\beta \pm \gamma) = a$	$\cdot \beta \pm a \cdot \gamma$

Ισχύουν επίσης:

- Για κάθε πραγματικό αριθμό a ισχύει $a \cdot 0 = 0$
- Δύο αριθμοί που έχουν άθροισμα 0 λέγονται αντίθετοι.
- Το 0 λέγεται ουδέτερο στοιχείο της πρόσθεσης.
- Δύο αριθμοί που έχουν γινόμενο 1 λέγονται αντίστροφοι.
- Το 1 λέγεται ουδέτερο στοιχείο του πολλαπλασιασμού.
- Το 0 δεν έχει αντίστροφο.

ΘΕΩΡΗΜΑ 2: ΙΔΙΟΤΗΤΕΣ ΙΣΟΤΗΤΩΝ

 Τοποθετούμε τον ίδιο αριθμό και στα δύο μέλη της με πρόσθεση, αφαίρεση, πολλαπλασιασμό ή διαίρεση.

$$a = \beta \Rightarrow \begin{cases} a + \gamma = \beta + \gamma \\ a - \gamma = \beta - \gamma \end{cases} \quad \text{kai} \quad \frac{a \cdot \gamma = \beta \cdot \gamma}{\gamma} \quad , \quad \gamma \neq 0$$

ii. Εαν δύο πραγματικοί αριθμοί $a, \beta \in \mathbb{R}$ είναι ίσοι τότε και οι ν-οστές δυνάμεις τους, $\nu \in \mathbb{N}$, θα είναι ίσες. Το αντίστροφο δεν ισχύει πάντα.

$$a = \beta \Rightarrow a^{\nu} = \beta^{\nu}$$

iii. Εαν δύο θετικοί πραγματικοί αριθμοί $a, \beta > 0$ είναι ίσοι τότε και οι ν-οστές ρίζες τους, $\nu \in \mathbb{N}$, θα είναι με ίσες και αντίστροφα.

$$a = \beta \Leftrightarrow \sqrt[\nu]{a} = \sqrt[\nu]{\beta}$$

ΘΕΩΡΗΜΑ 3: ΠΡΑΞΕΙΣ ΜΕΤΑΞΥ ΙΣΟΤΗΤΩΝ

ΘΕΩΡΗΜΑ 4: ΝΟΜΟΣ ΔΙΑΓΡΑΦΗΣ ΠΡΟΣΘΕΣΗΣ & ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ

$$a + x = a + y \Rightarrow x = y$$
 kal $a \cdot x = a \cdot y \Rightarrow x = y$

ΘΕΩΡΗΜΑ 5: ΜΗΔΕΝΙΚΟ ΓΙΝΟΜΕΝΟ

$$a \cdot \beta = 0 \Leftrightarrow a = 0 \dot{\mathbf{\eta}} \beta = 0$$

ΘΕΩΡΗΜΑ 6: ΜΗ ΜΗΔΕΝΙΚΟ ΓΙΝΟΜΕΝΟ

$$a \cdot \beta \neq 0 \Leftrightarrow a \neq 0$$
 kai $\beta \neq 0$

ΘΕΩΡΗΜΑ 7: ΙΔΙΟΤΗΤΕΣ ΔΥΝΑΜΕΩΝ

$$a^{1} = a$$
 , $a^{0} = 1$, όπου $a \neq 0$, $a^{-\nu} = \frac{1}{a^{\nu}}$, όπου $a \neq 0$

	Ιδιότητα	Συνθήκη
1	Γινόμενο δυνάμεων με κοινή βάση	$a^{\nu} \cdot a^{\mu} = a^{\nu + \mu}$
2	Πηλίκο δυνάμεων με κοινή βάση	$a^{\nu}: a^{\mu} = a^{\nu - \mu}$
3	Γινόμενο δυνάμεων με κοινό εκθέτη	$(a \cdot \beta)^{\nu} = a^{\nu} \cdot \beta^{\nu}$
4	Πηλίκο δυνάμεων με κοινό εκθέτη	$\left(\frac{a}{\beta}\right)^{\nu} = \frac{a^{\nu}}{\beta^{\nu}} \ , \ \beta \neq 0$
5	Δύναμη υψωμένη σε δύναμη	$(a^{\nu})^{\mu} = a^{\nu \cdot \mu}$
6	Κλάσμα με αρνητικό εκθέτη	$\left(\frac{a}{\beta}\right)^{-\nu} = \left(\frac{\beta}{a}\right)^{\nu} , \ a, \beta \neq 0$

ΘΕΩΡΗΜΑ 8: ΙΔΙΟΤΗΤΕΣ ΔΙΑΤΑΞΗΣ

(α') Αν $a > \beta$ και $\beta > \gamma \Rightarrow a > \gamma$. (Μεταβατική ιδιότητα).

(β') i. Αν
$$a > 0$$
 και $\beta > 0$ τότε $a + \beta > 0$.

ii. Αν
$$a < 0$$
 και $\beta < 0$ τότε $a + \beta < 0$.

$$(γ')$$
 Αν $a, β$ ομόσημοι $\Leftrightarrow a \cdot β > 0$ και $\frac{a}{β} > 0$.

(δ') Αν
$$a, \beta$$
 ετερόσημοι $\Leftrightarrow a \cdot \beta < 0$ και $\frac{a}{\beta} < 0$.

$$(\epsilon') \ \ \mathrm{An} \ a > \beta \Leftrightarrow a + \gamma > \beta + \gamma \ \mathrm{kal} \ a - \gamma > \beta - \gamma.$$

$$(στ') \quad \text{ i. Aν } \gamma > 0 \text{ τότε } a > \beta \Leftrightarrow a \cdot \gamma > \beta \cdot \gamma \text{ και } \frac{a}{\gamma} > \frac{\beta}{\gamma}$$

$$\text{ ii. Aν } \gamma < 0 \text{ τότε } a > \beta \Leftrightarrow a \cdot \gamma < \beta \cdot \gamma \text{ και } \frac{a}{\gamma} < \frac{\beta}{\gamma}$$

(ζ') i. Αν
$$a$$
, β ομόσημοι τότε $a > \beta \Leftrightarrow \frac{1}{a} < \frac{1}{\beta}$
ii. Αν a , β ετερόσημοι τότε $a > \beta \Leftrightarrow \frac{1}{a} > \frac{1}{\beta}$

Ανάλογα συμπεράσματα ισχύουν και για τις ανισότητες $a < \beta, a \ge \beta$ και $a \le \beta$.

ΘΕΩΡΗΜΑ 9: ΠΡΑΞΕΙΣ ΚΑΤΑ ΜΕΛΗ ΑΝΙΣΟΤΗΤΩΝ

$$a> eta$$
 και $\gamma>\delta \Rightarrow egin{cases} {\bf 1.}$ Πρόσθεση κατά μέλη $a+\gamma> eta+\delta \ {\bf 2.}$ Πολλαπλασιασμός κατά μέλη $a\cdot \gamma> eta\cdot \delta$, μ ε $a, eta, \gamma, \delta>0$

4

Δεν μπορούμε να αφαιρέσουμε ή να διαιρέσουμε ανισότητες κατά μέλη.

ΘΕΩΡΗΜΑ 10: ΔΥΝΑΜΗ ΜΕ ΑΡΤΙΟ ΕΚΘΕΤΗ

$$a^2 \ge 0$$
 , $a^{2\kappa} \ge 0$, $\kappa \in \mathbb{Z}$

ΘΕΩΡΗΜΑ 11: ΑΘΡΟΙΣΜΑ ΔΥΝΑΜΕΩΝ ΜΕ ΑΡΤΙΟ ΕΚΘΕΤΗ

$$a^2 + \beta^2 \ge 0$$

ΘΕΩΡΗΜΑ 12: ΙΔΙΟΤΗΤΕΣ ΑΠΟΛΥΤΩΝ ΤΙΜΩΝ

	Ιδιότητα	Συνθήκη
1	Πρόσημο απόλυτης τιμής	$ a = -a \ge 0$
2	Απόλυτη τιμή μηδενός	$ a = 0 \Leftrightarrow a = 0$
3	Όρια αριθμού	$- a \le a \le a $
4	Απόλυτη τιμή γινομένου	$ a \cdot \beta = a \cdot \beta $
5	Απόλυτη τιμή πηλίκου	$\left \frac{a}{\beta}\right = \frac{ a }{ \beta }$
6	Τετράγωνο απόλυτης τιμής	$ a ^2 = a^2$
7	Τριγωνική ανισότητα	$ a - \beta \le a \pm \beta \le a + \beta $

ΘΕΩΡΗΜΑ 13: ΙΔΙΟΤΗΤΕΣ ΡΙΖΩΝ

	Ιδιότητα	Συνθήκη
1	Τετράγωνο ρίζας	$\left(\sqrt{x}\right)^2 = x \ , \ x \ge 0$
2	Ν-οστή δύναμη ν-οστής ρίζας	$\left(\sqrt[\nu]{x}\right)^{\nu} = x \ , \ x \ge 0$
3	Ρίζα τετραγώνου	$\sqrt{x^2} = x \ , \ x \in \mathbb{R}$
4	Ν-οστή ρίζα ν-οστής δύναμης	$\sqrt[\nu]{x^{\nu}} = \begin{cases} x & x \in \mathbb{R} \text{ an } \nu \text{ άρτιος} \\ x & x \ge 0 \text{ και } \nu \in \mathbb{N} \end{cases}$
5	Ρίζα γινομένου	$\sqrt{x \cdot y} = \sqrt{x} \cdot \sqrt{y} , x, y \ge 0$ $\sqrt[\nu]{x \cdot y} = \sqrt[\nu]{x} \cdot \sqrt[\nu]{y} , x, y \ge 0$
6	Ρίζα πηλίκου	$\sqrt{\frac{x}{y}} = \frac{\sqrt{x}}{\sqrt{y}} , x \ge 0 \text{ kal } y > 0$ $\sqrt[y]{\frac{x}{y}} = \frac{\sqrt[y]{x}}{\sqrt[y]{y}} , x \ge 0 \text{ kal } y > 0$

3 Εξισώσεις

- 1. Εξίσωση Εξίσωση ονομάζεται κάθε ισότητα που περιέχει τουλάχιστον μια μεταβλητή
- 2. εξισωση 1 ου βαθμου

$$ax + \beta = 0$$

όπου $a, β ∈ \mathbb{R}$.

- 3. Klasmatikh exiswsh $\frac{P(x)}{Q(x)}+R(x)=0$ me $Q(x)\neq 0.$
- 4. εξίσωση 2^{ov} βαθμού $ax^2 + \beta x + \gamma = 0$, $a \neq 0$
- 5. Ditetraywun exiswsh $ax^4 + \beta x^2 + \gamma = 0$

ΘΕΩΡΗΜΑΤΑ

ΘΕΩΡΗΜΑ 1: ΛΥΣΕΙΣ ΕΞΙΣΩΣΗΣ 1ου ΒΑΘΜΟΥ

- (α') Αν $a \neq 0$ τότε η εξίσωση έχει **μοναδική λύση** την $x = -\frac{\beta}{a}$.
- (β') Av a = 0 και
 - i. $\beta = 0$ τότε η εξίσωση παίρνει τη μορφή 0x = 0 η οποία έχει λύσεις όλους τους αριθμούς οπότε είναι **αόριστη**.
 - ii. $\beta \neq 0$ τότε η εξίσωση παίρνει τη μορφή $0x = \beta$ η οποία δεν έχει καμία λύση άρα είναι **αδύνατη**.

Συντελεστές		Λύσεις	
a =	≠ 0	$x = -\frac{\beta}{a}$ μοναδική λύση	
a = 0	$\beta = 0$	0x = 0 αόριστη - άπειρες λύσεις	
a = 0	$\beta \neq 0$	$0x = \beta$ αδύνατη - καμία λύση	

ΘΕΩΡΗΜΑ 2: ΕΞΙΣΩΣΕΙΣ ΜΕ ΑΠΟΛΥΤΕΣ ΤΙΜΕΣ

Οι βασικές μορφές των εξισώσεων με απόλυτες τιμές είναι οι ακόλουθες:

- (α΄) Για κάθε εξίσωση της μορφής |x|=a διακρίνουμε τις παρακάτω περιπτώσεις για τις λύσεις της :
 - i. Αν a>0 τότε η εξίσωση έχει 2 αντίθετες λύσεις : $|x|=a \Leftrightarrow x=\pm a$
 - ii. Αν a=0 τότε η εξίσωση έχει λύση το $0:|x|=0 \Leftrightarrow x=0$
 - iii. Αν a < 0 τότε η εξίσωση είναι αδύνατη.
- (β') Για τις εξισώσεις της μορφής |x|=|a| ισχύει : $|x|=|a| \Leftrightarrow x=\pm a$
- (γ') Με τη βοήθεια των παραπάνω, μπορούμε να λύσουμε και εξισώσεις της μορφής |f(x)| = g(x) και |f(x)| = |g(x)| όπου f(x), g(x) αλγεβρικές παραστάσεις :

i. $|f(x)| = g(x) \Leftrightarrow f(x) = \pm g(x)$ όπου θα πρέπει να ισχύει $g(x) \ge 0$.

ii. $|f(x)| = |g(x)| \Leftrightarrow f(x) = \pm g(x)$.

ΘΕΩΡΗΜΑ 3: ΕΞΙΣΩΣΕΙΣ ΤΗΣ ΜΟΡΦΗΣ $x^{\nu} = a$

ΘΕΩΡΗΜΑ 4: ΕΞΙΣΩΣΕΙΣ ΤΗΣ ΜΟΡΦΗΣ $x^{\nu} = a^{\nu}$

ΘΕΩΡΗΜΑ 5: ΛΥΣΕΙΣ ΕΞΙΣΩΣΗΣ 200 ΒΑΘΜΟΥ

Διακρίνουσα	Πλήθος λύσεων	Λύσεις
$\Delta > 0$	2 πραγματικές άνισες λύσεις	$x_{1,2} = \frac{-\beta \pm \sqrt{\Delta}}{2a}$
$\Delta = 0$	1 διπλή πραγματική λύση	$x = -\frac{\beta}{2a}$
$\Delta < 0$	Καμία πραγματική λύση -	Αδύνατη στο $\mathbb R$

ΘΕΩΡΗΜΑ 6: ΤΥΠΟΙ VIETA

$$S = x_1 + x_2 = -\frac{\beta}{a}$$
, $P = x_1 \cdot x_2 = \frac{\gamma}{a}$

ΘΕΩΡΗΜΑ 7 : ΕΞΙΣΩΣΗ 2^{ου} ΒΑΘΜΟΥ ΜΕ ΔΟΣΜΕΝΕΣ ΛΥΣΕΙΣ

Εαν $x_1, x_2 \in \mathbb{R}$ είναι δύο πραγματικοί αριθμοί τότε η εξίσωση 2^{ov} βαθμού η οποία έχει λύσεις τους αριθμούς αυτούς δίνεται από τον τύπο :

$$x^2 - Sx + P = 0$$

ΘΕΩΡΗΜΑ 8: ΕΙΔΟΣ ΛΥΣΕΩΝ ΕΞΙΣΩΣΗΣ 200 ΒΑΘΜΟΥ

Εαν $ax^2 + \beta x + \gamma = 0$ με $a \neq 0$ μια εξίσωση 2^{ov} βαθμού, $x_1, x_2 \in \mathbb{R}$ είναι οι λύσεις της, S το άθροισμα και P το γινομενό τους τότε ισχύουν οι παρακάτω συνθήκες για το είδος των λύσεων της :

Δ	P	S	Είδος λύσεων	Συμβολισμός
		S > 0	Δύο θετικές πραγματικές	$x_1 > x_2 > 0$
	P > 0	S < 0	Δύο αρνητικές λύσεις	$x_1 < x_2 < 0$
		S = 0	Αδύνατη	περίπτωση
		S > 0	Ετερόσημες (όχι αντίθετες)	$x_1 < 0 < x_2$, $ x_1 < x_2 $
4 > 0	P < 0	S < 0	Ετεροσημες (σχι αντισετες)	$x_1 < 0 < x_2$, $ x_1 > x_2 $
$\Delta > 0$	$\Delta > 0$	S = 0	Αντίθετες	$x_1 = -x_2$
		S > 0	Μηδενική και θετική	$x_1 = 0$, $x_2 > 0$
	P=0	S < 0	Μηδενική και αρνητική	$x_1 = 0$, $x_2 < 0$
		S = 0	Αδύνατη	περίπτωση
	P =	= 1	Αντίστροφες	$x_1 = \frac{1}{x_2}$
	P > 0	S > 0	Θετικές και ίσες	$x_1 = x_2 > 0$
$\Delta = 0$ $P > 0$	S < 0	Αρνητικές και ίσες	$x_1 = x_2 < 0$	
	P = 0	S = 0	Μηδενικές	$x_1 = x_2 = 0$
$\Delta < 0$			Αδύνατη στο $\mathbb R$	

4 Ανισώσεις ΟΡΙΣΜΟΙ

ΟΡΙΣΜΟΣ 1: ΑΝΙΣΩΣΗ

Ανίσωση ονομάζεται κάθε ανισότητα η οποία περιέχει τουλάχιστον μια μεταβλητή, κάθε σχέση της μορφής :

$$P(x, y, ..., z) > 0$$
, $P(x, y, ..., z) < 0$

όπου $P(x,y,\ldots,z)$ είναι μια αλγεβρική παράσταση πολλών μεταβλητών. ΟΡΙΣΜΟΣ 2 : ΑΝΙΣΩΣΗ $\mathbf{1}^{\mathbf{ov}}$ ΒΑΘΜΟΥ

$$ax + \beta > 0$$
, $ax + \beta < 0$

ΟΡΙΣΜΟΣ 3: ΑΝΙΣΩΣΗ 2ου ΒΑΘΜΟΥ

$$ax^2 + \beta x + \gamma > 0$$
 . $ax^2 + \beta x + \gamma < 0$

ΘΕΩΡΗΜΑΤΑ

ΘΕΩΡΗΜΑ 1: ΛΥΣΕΙΣ ΑΝΙΣΩΣΗΣ 1ου ΒΑΘΜΟΥ

Οι λύσεις της ανίσωσης $ax + \beta > 0$ (ή $ax + \beta < 0$) φαίνονται στις παρακάτω περιπτώσεις.

- 1. Αν a>0 τότε οι ανίσωση έχει λύσεις τις $x>-\frac{\beta}{a}$ (ή $x<-\frac{\beta}{a}$ αντίστοιχα).
- 2. Αν a<0 τότε οι ανίσωση έχει λύσεις τις $x<-\frac{\beta}{a}$ (ή $x>-\frac{\beta}{a}$ αντίστοιχα).
- 3. Aν a=0 τότε
 - i. Αν $\beta > 0$ τότε η ανίσωση $0x > \beta$ είναι αδύνατη ενώ η $0x < \beta$ είναι αόριστη.
 - ii. Αν $\beta < 0$ τότε η ανίσωση $0x > \beta$ είναι αόριστη ενώ η $0x < \beta$ είναι αδύνατη.
 - iii. Αν $\beta = 0$ τότε οι ανισώσεις 0x > 0 και 0x < 0 είναι αδύνατες.

ΘΕΩΡΗΜΑ 2: ΑΝΙΣΩΣΕΙΣ ΜΕ ΑΠΟΛΥΤΕΣ ΤΙΜΕΣ

Για τις ανισώσεις που περιέχουν παραστάσεις μέσα σε απόλυτες τιμές μελετάμε τις εξής μορφές. Έστω f(x), g(x) αλγεβρικές παραστάσεις και $\theta>0$ θετκός πραγματικός αριθμός.

- 1. Για τις ανισώσεις της μορφής |x| < a οι λύσεις θα είναι : -a < x < a.
- 2. Για τις ανισώσεις της μορφής |x| > a οι λύσεις θα είναι : x > a ή x < -a.
- 3. Για τις ανισώσεις της μορφής $|f(x)| < \theta$ οι λύσεις δίνονται από τη σχέση $-\theta < f(x) < \theta$.
- 4. Για τις ανισώσεις της μορφής $|f(x)| > \theta$ οι λύσεις δίνονται από τη σχέση $f(x) > \theta$ και $f(x) < -\theta$.
- 5. Για τις ανισώσεις της μορφής |f(x)| < g(x) οι λύσεις δίνονται από τη σχέση -g(x) < f(x) < g(x) όπου θα πρέπει να ισχύει $g(x) \ge 0$.
- 6. Για τις ανισώσεις της μορφής |f(x)| > g(x) οι λύσεις δίνονται από τις σχέσεις f(x) > g(x) και f(x) < -g(x).

ΘΕΩΡΗΜΑ 3: ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗ ΤΡΙΩΝΥΜΟΥ

- 1. Αν $\Delta > 0$ τότε $ax^2 + \beta x + \gamma = a(x x_1)(x x_2)$ όπου x_1, x_2 είναι οι ρίζες του τριωνύμου.
- 2. Αν $\Delta = 0$ τότε $ax^2 + \beta x + \gamma = a (x x_0)^2 = a \left(x + \frac{\beta}{2a}\right)^2$ όπου x_0 είναι η διπλή ρίζα του τριωνύμου.
- 3. Αν $\Delta < 0$ τότε δεν παραγοντοποιείται

ΘΕΩΡΗΜΑ 4: ΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ

- 1. Αν η διακρίνουσα είναι θετική $(\Delta > 0)$ τότε το τριώνυμο είναι
 - i. ομόσημο του συντελεστή a στα διαστήματα που βρίσκονται έξω από τις ρίζες x_1, x_2 .
 - ii. ετερόσημο του a στο διάστημα ανάμεσα στις ρίζες.
 - iii. ίσο με το μηδέν στις ρίζες.

х	$-\infty$	x_1	<i>x</i> ₂	+∞
$ax^2 + \beta x + \gamma$	Ομόο τοι	V	ρόσημο $\stackrel{\downarrow}{0}$ Ομ	ιόσημο του <i>α</i>

- 2. Αν η διακρίνουσα είναι μηδενική ($\Delta = 0$) τότε το τριώνυμο είναι
 - i. ομόσημο του συντελεστή a στα διαστήματα που βρίσκονται δεξιά και αριστερά της ρίζας x_0 .

ii. ίσο με το μηδέν στη ρίζα.

Х	$-\infty$ x	$+\infty$
$ax^2 + \beta x + \gamma$	Ομόσημο του <i>α</i>	Ομόσημο του <i>a</i>

3. Αν η διακρίνουσα είναι αρνητική ($\Delta < 0$) τότε το τριώνυμο είναι ομόσημο του συντελεστή a για κάθε $x \in \mathbb{R}$.

х	$-\infty$ $+\infty$
$ax^2 + \beta x + \gamma$	Ομόσημο του <i>α</i>

5 Πρόοδοι ΟΡΙΣΜΟΙ

ΟΡΙΣΜΟΣ 1: ΑΚΟΛΟΥΘΙΑ

Ακολουθία πραγματικών αριθμών ονομάζεται κάθε συνάρτηση της μορφής $a: \mathbb{N}^* \to \mathbb{R}$ όπου κάθε φυσικός αριθμός $v \in \mathbb{N}^*$, εκτός του μηδενός, αντιστοιχεί σε ένα πραγματικό αριθμό $a(v) \in \mathbb{R}$ ή πιο απλά a_v .

- Η ακολουθία των πραγματικών αριθμών συμβολίζεται (a_v).
- Οι πραγματικοί αριθμοί $a_1, a_2, \ldots, a_{\nu}$ ονομάζονται **όροι** της ακολουθίας.
- Ο όρος a_{ν} ονομάζεται **ν-οστός** ή **γενικός** όρος της ακολουθίας.
- Οι όροι μιας ακολουθίας μπορούν να δίνονται είτε από
 - έναν **γενικό τύπο** της μορφής $a_{\nu}=f(\nu)$, όπου δίνεται κατευθείαν ο γενικός όρος της
 - είτε από **αναδρομικό τύπο** όπου κάθε όρος δίνεται με τη βοήθεια ενός ή περισσότερων προηγούμενων όρων. Θα είναι της μορφής

$$a_{\nu+i} = f(a_{\nu+i-1}, \dots, a_{\nu+1}, a_{\nu})$$
, a_1, a_2, \dots, a_i γνωστοί όροι.

Στον αναδρομικό τύπο, ο αριθμός $i\in\mathbb{N}$ είναι το πλήθος των προηγούμενων όρων από τους οποίους εξαρτάται ο όρος $a_{\nu+i}$. Είναι επίσης αναγκαίο να γνωρίζουμε τις τιμές των i πρώτων όρων της προκειμένου να υπολογίσουμε τους υπόλοιπους.

• Μια ακολουθία της οποίας όλοι οι όροι είναι ίσοι ονομάζεται σταθερή.

ΟΡΙΣΜΟΣ 2: ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ

Αριθμητική πρόοδος ονομάζεται κάθε ακολουθία (a_v) , $v \in \mathbb{N}^*$ πραγματικών αριθμών στην οποία κάθε όρος της προκύπτει από τον προηγούμενο, προσθέτοντας κάθε φορά τον ίδιο σταθερό αριθμό. Ισχύει δηλαδή

$$a_{\nu+1} = a_{\nu} + \omega$$

Ο αριθμός $\omega = a_{\nu+1} - a_{\nu}$ ονομάζεται **διαφορά** της αριθμητικής προόδου και είναι σταθερός.

ΟΡΙΣΜΟΣ 3: ΑΡΙΘΜΗΤΙΚΟΣ ΜΕΣΟΣ

Αριθμητικός μέσος τριών διαδοχικών όρων a, β, γ μιας αριθμητικής προόδου (a_{ν}) ονομάζεται ο μεσαίος όρος β για τον οποίο έχουμε

$$2\beta = a + \gamma \quad \dot{\eta} \quad \beta = \frac{a + \gamma}{2}$$

ΟΡΙΣΜΟΣ 4: ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟΣ

Γεωμετρική πρόοδος ονομάζεται κάθε ακολουθία (a_v) , $v \in \mathbb{N}^*$ πραγματικών αριθμών στην οποία κάθε όρος της προκύπτει πολλαπλασιάζοντας κάθε φορά τον προηγούμενο όρο με τον ίδιο σταθερό αριθμό. Θα ισχύει

$$a_{\nu+1} = \lambda \cdot a_{\nu}$$

Ο αριθμός $\lambda = \frac{a_{\nu+1}}{a_{\nu}}$ ονομάζεται **λόγος** της γεωμετρικής προόδου.

ΟΡΙΣΜΟΣ 5: ΓΕΩΜΕΤΡΙΚΟΣ ΜΕΣΟΣ

Γεωμετρικός μέσος τριών διαδοχικών όρων a, β, γ μιας γεωμετρικής προόδου (a_v) ονομάζεται ο μεσαίος όρος β για τον οποίο ισχύει

$$\beta^2 = a \cdot \gamma$$

ΘΕΩΡΗΜΑΤΑ

ΘΕΩΡΗΜΑ 1: ΓΕΝΙΚΟΣ ΟΡΟΣ ΑΡΙΘΜΗΤΙΚΗΣ ΠΡΟΟΔΟΥ

Εαν (a_{ν}) μια αριθμητική πρόοδος με διαφορά ω τότε ο γενικός όρος της a_{ν} θα δίνεται από τον τύπο

$$a_{\nu} = a_1 + (\nu - 1)\omega$$

ΘΕΩΡΗΜΑ 2: ΑΡΙΘΜΗΤΙΚΟΣ ΜΕΣΟΣ

Τρεις πραγματικοί αριθμοί a, β, γ αποτελούν διαδοχικούς όρους αριθμητικής προόδου αν και μόνο αν ισχύει

$$2\beta = a + \gamma$$
 ή ισοδύναμα $\beta = \frac{a + \gamma}{2}$

ΘΕΩΡΗΜΑ 3: ΓΕΝΙΚΟΣ ΟΡΟΣ ΓΕΩΜΕΤΡΙΚΗΣ ΠΡΟΟΔΟΥ

Εαν (a_{ν}) είναι μια γεωμετρική πρόοδος με λόγο λ τότε ο γενικός όρος της a_{ν} θα δίνεται από τον τύπο

$$a_{\nu} = a_1 \cdot \lambda^{\nu-1}$$

ΘΕΩΡΗΜΑ 4: ΓΕΩΜΕΤΡΙΚΟΣ ΜΕΣΟΣ

Τρεις πραγματικοί αριθμοί a, β, γ αποτελούν διαδοχικούς όρους γεωμετρικής προόδου αν και μόνο αν ισχύει

$$\beta^2 = a \cdot \gamma$$

	Αριθμιτική Πρόοδος	Γεωμετρική Πρόοδος
Όροι	$a_{\nu+1} = a_{\nu} + \omega$	$a_{\nu+1} = \lambda \cdot a_{\nu}$
Διαφορά / Λόγος	$\omega = a_{\nu+1} - a_{\nu}$	$\lambda = \frac{a_{\nu+1}}{a_{\nu}}$
Μέσος	$2\beta = a + \gamma \dot{\eta} \beta = \frac{a + \gamma}{2}$	$\beta^2 = a \cdot \gamma$
Γενικός Όρος	$a_{\nu} = a_1 + (\nu - 1)\omega$	$a_{\nu} = a_1 \cdot \lambda^{\nu - 1}$

6 Συναρτήσεις ΟΡΙΣΜΟΙ

ΟΡΙΣΜΟΣ 1: ΣΥΝΑΡΤΗΣΗ

Συνάρτηση ονομάζεται η διαδικασία (αντιστοίχηση) με την οποία κάθε στοιχείο ενός συνόλου A αντιστοιχεί σε ένα μόνο στοιχείο ενός συνόλου B.

- Η μεταβλητή x του συνόλου A ονομάζεται ανεξάρτητη ενώ η y εξαρτημένη.
- Η τιμή της y ονομάζεται **τιμή** της f στο x και συμβολίζεται y = f(x).
- Ο κανόνας της συνάρτησης, με τον οποίο γίνεται η αντιστοίχηση από το x στο f(x), εκφράζεται συμβολικά με την ισότητα y = f(x) που περιέχει τις δύο μεταβλητές και ονομάζεται τύπος της συνάρτησης.
- Το σύνολο A λέγεται πεδίο ορισμού της συνάρτησης f και συμβολίζεται D_f . Είναι το σύνολο των δυνατών τιμών την ανεξάρτητης μεταβλητής της συνάρτησης.
- Το σύνολο με στοιχεία όλες τις δυνατές τιμές f(x) της εξαρτημένης μεταβλητής για κάθε $x \in D_f$ λέγεται σύνολο τιμών της f, συμβολίζεται $f(D_f)$ και ισχύει $f(D_f) \subseteq B$.
- Οι συναρτήσεις των οποίων ο τύπος δίνεται από δύο ή περισσότερες αλγεβρικές παραστάσεις ονομάζονται συναρτήσεις πολλαπλού τύπου.

$$f(x) = \begin{cases} f_1(x) & \text{av } x \in D_{f_1} \subseteq D_f \\ f_2(x) & \text{av } x \in D_{f_2} \subseteq D_f \\ \vdots & \vdots \\ f_{\nu}(x) & \text{av } x \in D_{f_{\nu}} \subseteq D_f \end{cases}$$

όπου $D_{f_1}, D_{f_2}, \ldots, D_{f_v}$ είναι υποσύνολα του πεδίου ορισμού ολόκληρης της συνάρτησης f με $D_{f_1} \cup D_{f_2} \cup \ldots \cup D_{f_v} = D_f$ και $D_{f_1} \cap D_{f_2} \cap \ldots \cap D_{f_v} = \emptyset$.

Είδος	Τύπος	Πεδίο Ορισμού
Πολυωνυμική	$f(x) = a_{\nu}x^{\nu} + \ldots + a_0$	$D_f = \mathbb{R}$
Ρητή	$f(x) = \frac{P(x)}{Q(x)}$	$D_f = \{ x \in \mathbb{R} \ Q(x) \neq 0 \}$
Άρρητη	$f(x) = \sqrt{A(x)}$	$D_f = \{ x \in \mathbb{R} A(x) \ge 0 \}$

Επιπλέον, ειδικές περιπτώσεις πολυωνιμικών συναρτήσεων αποτελούν οι παρακάτω συναρτήσεις:

Ταυτοτική	Σταθερή	Μηδενική
f(x) = x	f(x) = c	f(x) = 0

ΟΡΙΣΜΟΣ 2: ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ

Γραφική παράσταση μιας συνάρτησης $f:A\to\mathbb{R}$ ονομάζεται το σύνολο των σημείων του επιπέδου με συντεταγμένες M(x,y) όπου

$$x \in A$$
 , $y = f(x)$

Το σύνολο των σημείων της γραφικής παράστασης είναι

$$C_f = \{M(x, y)|y = f(x)$$
 για κάθε $x \in A\}$

- Συμβολίζεται με C_f και το σύνολο των σημείων της παριστάνει σχήμα.
- Τα σημεία της γραφικής παράσταστασης είναι της μορφής (x, f(x)).
- Η εξίσωση y = f(x) είναι η εξίσωση της γραφικής παραστασης την οποία επαληθεύουν οι συντεταγμένες των σημείων της.
- Κάθε κατακόρυφη ευθεία $\varepsilon \parallel y'y$ της μορφής $x = \kappa$ τέμνει τη C_f σε ένα το πολύ σημείο.

ΟΡΙΣΜΟΣ 3: ΣΥΝΤΕΛΕΣΤΗΣ ΔΙΕΥΘΥΝΣΗΣ ΕΥΘΕΙΑΣ

Συντελεστής διεύθυνσης λ μιας ευθείας με εξίσωση $y=\lambda x+\beta$, ονομάζεται η εφαπτομένη της γωνίας ω που σχηματίζει η ευθεία με τον οριζόντιο άξονα x'x του συστήματος συντεταγμένων.

ΘΕΩΡΗΜΑΤΑ

ΘΕΩΡΗΜΑ 1: ΣΗΜΕΙΑ ΤΟΜΗΣ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ

Έστω δύο συναρτήσεις f,g με πεδία ορισμού D_f και D_g αντίστοιχα. Για τις γραφικές παραστάσεις των συναρτήσεων αυτών θα ισχύουν οι εξής προτάσεις.

i. Τα σημεία τομής της γραφικής παράστασης C_f της συνάρτησης f με τον οριζόντιο άξονα x'x έχουν τεταγμένη ίση με το 0. Οι τετμημένες των σημείων είναι ρίζες της εξίσωσης :

$$f(x) = 0$$

- ii. Το μοναδικό σημείο τομής της γραφικής παράστασης C_f της συνάρτησης f με τον κατακόρυφο άξονα y'y έχουν τετμημένη ίση με το 0. Θα είναι της μορφής M(0, f(0)).
- iii. Στα κοινά σημεία των γραφικών παραστάσεων C_f και C_g ισχύει f(x)=g(x). Οι τετμημένες x_0 των σημείων αυτών είναι ρίζες της παραπάνω εξίσωσης ενώ ισχύει $x_0\in D_f\cap D_g$.

ΘΕΩΡΗΜΑ 2: ΣΧΕΤΙΚΗ ΘΕΣΗ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ

Έστω δύο συναρτήσεις f,g με πεδία ορισμού D_f και D_g αντίστοιχα. Για τις γραφικές παραστάσεις των συναρτήσεων αυτών θα ισχύουν οι εξής προτάσεις.

i. Τα σημεία της γραφικής παράστασης C_f της συνάρτησης f που βρίσκονται πάνω από τον οριζόντιο άξονα x'x έχουν θετική τεταγμένη. Οι τετμημένες των σημείων είναι λύσεις της ανίσωσης :

$$f(x) > 0$$

ii. Τα σημεία της γραφικής παράστασης C_f της συνάρτησης f που βρίσκονται κάτω από τον οριζόντιο άξονα x'x έχουν αρνητική τεταγμένη. Οι τετμημένες των σημείων είναι λύσεις της ανίσωσης :

iii. Τα διαστήματα στα οποία η γραφική παράσταση της συνάρτησης f βρίσκεται πάνω από τη γραφική παράσταση της g είναι λύσεις της ανίσωσης

$$f(x) > g(x)$$
, $x \in D_f \cap D_g$

iv. Τα διαστήματα στα οποία η γραφική παράσταση της συνάρτησης f βρίσκεται κάτω από τη γραφική παράσταση της g είναι λύσεις της ανίσωσης

$$f(x) < g(x)$$
, $x \in D_f \cap D_g$

ΘΕΩΡΗΜΑ 3: Η ΣΥΝΑΡΤΗΣΗ $f(x) = ax + \beta$

Για κάθε πολυωνυμική συνάρτηση 1^{ov} βαθμού της μορφής $f(x) = ax + \beta$ με πραγματικούς συντελεστές $a, \beta \in \mathbb{R}$ ισχύουν οι παρακάτω ιδιότητες.

- i. Το πεδίο ορισμού της f έιναι το σύνολο \mathbb{R} .
- ii. Ο συντελεστής *a* ισούται με την εφαπτομένη της γωνίας την οποία σχηματίζει η ευθεία με τον οριζόντιο άξονα x'x.

$$a = \varepsilon \varphi \theta$$
 , $0 \le \theta \le 180^{\circ}$

- iii. Αν $a \neq 0$ τότε το σύνολο τιμών της f είναι το σύνολο \mathbb{R} , ενώ αν a = 0 η συνάρτηση έιναι σταθερή $f(x) = \beta$ οπότε έχει σύνολο τιμών το μονοσύνολο $f(D_f) = \{\beta\}$.
- iv. Αν $a \neq 0$ η γραφική παράσταση της συνάρτησης είναι ευθεία παράλληλη με τον άξονα x'x, ενώ αν a=0η ευθεία ταυτίζεται με τον άξονα.
- ν. Αν $\beta = 0$ τότε η συνάρτηση είναι της μορφής f(x) = ax με την ευθεία της να διέρχεται από την αρχή των αξόνων.
- vi. Αν $a \neq 0$ και $\beta \neq 0$ η συνάρτηση έχει μοναδική ρίζα την $x = -\frac{\beta}{a}$, αν a = 0 και $\beta \neq 0$ δεν έχει ρίζες, ενώ αν a=0 και $\beta=0$ έχει άπειρες ρίζες.
- vii. Αν $a \neq 0$ και $\beta \neq 0$ η γραφική παράσταση της συνάρτησης τέμνει τον οριζόντιο άξονα στο σημείο $A\left(-\frac{\beta}{a},0\right)$ και τον κατακόρυφο άξονα στο σημείο $B\left(-\frac{\beta}{a},0\right)$. νίιι. Αν a>0 τότε η συνάρτηση είναι γνησίως αύξουσα στο $\mathbb R$, ενώ αν a<0 η συνάρτηση είναι γνησίως
- φθίνουσα.

