《计算机网络》实验报告

<u>信息</u> 学院 <u>智能科学与技术</u> 专业 <u>2020</u> 级 实验时间 <u>2022</u> 年 10 月 10 日

姓名	学号	_	
实验名称_	管理	MAC 地址转发表	
实验成绩		181	

一、实验目的

了解交换机的作用

通过 MAC 地址转发表,理解交换机基于 MAC 地址转发表的工作过程 掌握添加静态 MAC 地址的方法

二、实验仪器设备及软件

Packet Tracer 8.2.0

三、实验方案

在交换机中,MAC 地址转发表是一个映射 MAC 地址和交换机接口的表。最初交换机中没有转发表,在第一次两设备 ping 通之后,交换机会记录下两者的 MAC 和端口信息,即自学习数据帧源地址。

随后将 PC2 的信息设置为静态,修改 PC2 的接口,检测是否能连接。 最后取消静态消息,重新测试能否连接。

四、实验步骤

1.

网络拓扑结构如图所示, 具体连接情况如下:

名称	相连的接口	IP 地址
PC1	F0/1	192.168.1.1
PC2	F0/2	192.168.1.2

2.

 Switch>en
 switch#show mac-address-table
 首先在交换机的命令行查看转发表,

 Mac Address Table
 发现一开始并没有转发表,这是合理

 Vlan Mac Address
 Type Ports
 的。

 Switch#
 Switch#

3. 查看两台 PC 的 IP 配置,并且 PC1 ping PC2,成功。

```
PC Command Line 1.0
Cisco Packet Tracer
C:\>ipconfig /all
FastEthernet0 Connection: (default port)
   Connection-specific DNS Suffix..:
   Physical Address....: 0002.1660.1C39
Link-local IPv6 Address...: FE80::202:16FF:FE60:1C39
IPv6 Address...: ::
IPv4 Address...: 192.168.1.1
Subnet Mask...: 255.255.255.0
   Default Gateway....:::
   DNS Servers....::::
     Packet Tracer PC Command Line 1.0
C:\>ipconfig /all
FastEthernetO Connection: (default port)
   Connection-specific DNS Suffix..:
   Physical Address.....: 000C.CF72.B90C
Link-local IPv6 Address....: FE80::20C:CFFF:FE72:B90C
   IPv6 Address....: ::
IPv4 Address....: 192.168.1.2
   Subnet Mask..... 255.255.255.0
   Default Gateway....:::
0.0.0.0
   DHCP Servers..... 0.0.0.0
   DHCPv6 IAID.....
   DNS Servers....::: 0.0.0.0
              C:\>ping 192.168.1.2
            Pinging 192.168.1.2 with 32 bytes of data:
            Reply from 192.168.1.2: bytes=32 time<1ms TTL=128 Reply from 192.168.1.2: bytes=32 time<1ms TTL=128 Reply from 192.168.1.2: bytes=32 time<1ms TTL=128
             Reply from 192.168.1.2: bytes=32 time=1ms TTL=128
             Ping statistics for 192.168.1.2:
             Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
```

4. 再次查看 MAC 转发表,发现已经自动学习到了。

```
Switch>en
Switch#show mac-address-table
        Mac Address Table
Vlan
      Mac Address
                        Type
                                    Ports
Switch#
%LINK-5-CHANGED: Interface FastEthernet0/1, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed state to up
%LINK-5-CHANGED: Interface FastEthernet0/2, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/2, changed state to up
Switch#show mac-address-table
         Mac Address Table
Vlan
     Mac Address
                        Type
                                    Ports
  1
      0002.1660.1c39
                        DYNAMIC
                                    Fa0/1
  1
       000c.cf72.b90c
                        DYNAMIC
                                    Fa0/2
Switch#
```

5. 修改 P C 2 对应的类型为 s t a t i c, 即静态, 随后将 P C 2 从 F 0 / 2 修 改到 F 0 / 4, P C 1 将无法连接到 P C 2。

```
Switch#config t
Enter configuration commands, one per line. End with CNTL/Z. Switch(config) #mac address-table static 000c.cf72.b90c vlan 1 interface f0/2
Switch(config)#exit
%SYS-5-CONFIG_I: Configured from console by console
Switch#show mac-address-table
          Mac Address Table
Vlan
       Mac Address
                                           Ports
                             Type
         0002.1660.1c39
                             DYNAMIC
                                            Fa0/1
   1
         000c.cf72.b90c
                             STATIC
                                            Fa0/2
          C:\>ping 192.168.1.2
          Pinging 192.168.1.2 with 32 bytes of data:
          Request timed out.
          Request timed out.
Request timed out.
          Request timed out.
          Ping statistics for 192.168.1.2:
              Packets: Sent = 4, Received = 0, Lost = 4 (100% loss)
```

其主要原因是将该条记录设为静态的,无论怎么样,PC2的数据包都会转发到F0/2。

6. 将之前 static 的指令删除,会发现转发表又变成空了,此时 P C 1 p i n g P C 2 后,转发表将会更新, P C 2 的接口已经变成 F 0 / 4 了。

```
C:\>ping 192.168.1.2

Pinging 192.168.1.2 with 32 bytes of data:

Reply from 192.168.1.2: bytes=32 time<1ms TTL=128

Ping statistics for 192.168.1.2:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 0ms, Average = 0ms

C:\>
```

Switch#show mac-address-table Mac Address Table

.

Vlan	Mac Address	Type	Ports
1	0002.1660.1c39	DYNAMIC	Fa0/1
1	000c.cf72.b90c	DYNAMIC	Fa0/4
Switch#			

五、实验结果及分析

MAC 转发表是一个映射 MAC 地址和交换机接口的表。最初交换机中没有转发表,在第一次两设备 ping 通之后,交换机会记录下两者的 MAC 和端口信息,即自学习数据帧源地址。

设置为静态后,即使修改了该机器连接交换机的接口,转发表也不会动态 地更新。只有取消静态后,转发表被清空,发起 ping 的机器通过广播找到目标 机器后才会更新新的转发表。

六、实验总结及体会

在本次实验中,主要学习了 MAC 转发表的工作原理,同时对交换机的功能有更深的理解,有所收获。

七、教师评语