Properties of Regular Languages

For regular languages L_1 and L_2 we will prove that:

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: L_1*

Reversal: L_1^R

Complement: L_1

Intersection: $L_1 \cap L_2$

Are regular Languages

We say: Regular languages are closed under

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: L_1*

Reversal: L_1^R

Complement: $\overline{L_1}$

Intersection: $L_1 \cap L_2$

Regular language L_1

Regular language $\,L_{2}\,$

$$L(M_1) = L_1$$

$$L(M_2) = L_2$$

NFA M_2

Single accepting state

Single accepting state

Union

NFA for $L_1 \cup L_2$

NFA for
$$L_1 \cup L_2 = \{a^n b\} \cup \{ba\}$$

Concatenation

NFA for L_1L_2

NFA for
$$L_1L_2 = \{a^nb\}\{ba\} = \{a^nbba\}$$

$$L_{1} = \{a^{n}b\}$$

$$A \qquad L_{2} = \{ba\}$$

$$A \qquad b \qquad \lambda \qquad b \qquad \lambda$$

Star Operation

NFA for L_1*

NFA for
$$L_1^* = \{a^n b\}^*$$

$$w = w_1 w_2 \cdots w_k$$
$$w_i \in L_1$$

Reverse

- 1. Reverse all transitions
- 2. Make initial state accepting state and vice versa

$$L_1^R = \{ba^n\}$$

Complement

- 1. Take the ${\bf F}{m A}$ that accepts L_1
- 2. Make final states non-final, and vice-versa

Intersection

$$L_1$$
 regular $L_1 \cap L_2$ L_2 regular regular

DeMorgan's Law: $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$

$$L_1$$
, L_2 regular $\overline{L_1}$, $\overline{L_2}$ regular $\overline{L_1} \cup \overline{L_2}$ regular $\overline{L_1} \cup \overline{L_2}$ regular $\overline{L_1} \cup \overline{L_2}$ regular $\overline{L_1} \cap \overline{L_2}$ regular

$$L_1 = \{a^nb\} \quad \text{regular} \\ L_1 \cap L_2 = \{ab\} \\ L_2 = \{ab,ba\} \quad \text{regular} \\ \\ \text{regular}$$

Another Proof for Intersection Closure

Machine M_1 FA for L_1

Machine M_2 FA for L_2

Construct a new FA M that accepts $L_1 \cap L_2$

M simulates in parallel M_1 and M_2

States in M

Both constituents must be accepting states

$$L_{1} = \{a^{n}b\}$$

$$M_{1}$$

$$a$$

$$b$$

$$a,b$$

$$a_{2}$$

$$a,b$$

$$a_{3}$$

Automaton for intersection

$$L = \{a^n b\} \cap \{ab^n\} = \{ab\}$$

Question: Given regular languages L_1 and L_2 Is L_1-L_2 regular?

Answer:

$$(L1-L2) = (L1 \cap L2)$$