UNIVERSIDAD POLITÉCNICA DE CATALUÑA DEP. DE TEORÍA DE LA SEÑAL Y COMUNICACIONES, E.T.S.E.T.B. COMUNICACIONES ÓPTICAS: 1er Control (20%), 29-10-2009, Grupo 20

No	ombre com	pleto (debajo):					
Apellidos:							
<u>Ej</u>	ercicio 1: ((Test)					
1.	De los con	ceptos de frecue	encia y long	itud de onda	se puede	e decir que	
a) b) c) d)	La frecuencia depende del medio donde se propaga la luz mientras que la longitud de onda no. Tanto la frecuencia como la longitud de onda dependen del medio donde se propaga la luz.						
		siones típicas d modo pueden so		del núcleo y	el revest	imiento de una fibra	
a)	50 μm/ 125	5 μm b) 125 μ	ım/ 10 μm	c) 10 µm/	125 μm	d) 125 μm/ 150 μm	
3.	De las fibr	as con perfil de	índice grad	lual se pued	e afirmar	que:	
a) b)	<u> </u>						
4.	Sobre los 1	parámetros que	caracteriza	ın a las fibra	as ópticas	se puede afirmar que:	
a)b)c)d)	parámetros estáticos. El perfil de índice, la apertura numérica y el diámetro del núcleo/revestimiento son parámetros dinámicos. La atenuación y el ancho de banda son parámetros estáticos.						
5.	¿Cuál de l	as siguientes afi	rmaciones	es falsa?			
a) b) c) d)	El ángulo de aceptación de una fibra depende del medio en el que se mide. El comportamiento monomodo de una fibra no depende de la frecuencia de trabajo.						
	índices de	_					
a)	84,27°	b) 71,81	O	c) 30°	d) 18	,19°	
		ora monomodo o alor índice de re				n del núcleo es n1=1.445,	
a)	1,44	b) 1,45	c) 1	d)	1.5		

8. Si una fibra estándar tienen un valor de frecuencia normalizada próximo a 2 se puede afirmar que

a) a ese valor la apertura numérica es óptima.

c) La dispersión cromática es mínima.

b) La dispersión modal es mínima.

d) Su comportamiento es monomodo.

9. La dispersión de guíaonda:

a) es siempre del mismo signo que la dispersión del material.

c) es mínima en tercera ventana.

b) es independiente del radio del núcleo.

d) todas son falsas.

10. ¿Cuál de las siguientes afirmaciones referentes a la apertura numérica es cierta?

- a) Si n₂ es mucho mayor que n₁ la apertura numérica se hace muy grande.
- b) La apertura numérica es menor en el agua que en el aire.
- c) La apertura numérica está relacionada con la dispersión modal.
- d) La apertura numérica en fibras de gradiente de índice es mayor que en fibras de salto de índice.

Ejercicio 2:

A una fibra óptica de salto de índice que tiene un índice de refracción del núcleo 1,47; una diferencia relativa de índices de 0,01 y un coeficiente de dispersión cromática de 25 ps/(km.nm) se le inyecta luz de un LED con longitud de onda 1550 nm y anchura espectral 80 nm. Calcular

- a) cuál es la máxima distancia a la que puede transmitirse una señal digital NRZ a 10 Mbit/s.
- b) cuál debería ser como máximo el tiempo de vida del portador para permitir la transmisión del apartado anterior.

Ejercicio 3:

Un LED es modulado en intensidad con una densidad de corriente: $J(t)=J_0+m_JJ_0$ sen?t, siendo Jo la corriente de polarización, m_J el índice de modulación de la corriente y ? la frecuencia angular moduladora. Con ayuda de la ecuación de ritmo para un LED demostrar que para frecuencias de modulación muy elevadas la potencia óptica emitida es:

$$P(t) \approx P_0 - \frac{P_0 m_J}{t_{sp}} \left(\frac{\cos \mathbf{w}t}{\mathbf{w}} \right)$$

Siendo P_0 la potencia óptica emitida en régimen estacionario con la corriente de polarización J_0 y t_{sp} el tiempo de vida del portador.

Ejercicio 4:

Se dispone de dos fibras ópticas monomodo una de 1 Km que tiene un ancho de banda óptico de 500 MHz y otra de 10 Km que tiene un ancho de banda eléctrico de 100 MHz. ¿Cuál es la relación entre sus dispersiones?.

Solución

Ejercicio 1 (test): a, c, c, a, c, a, a, d, d, c

Ejercicio 2:

Apartado (a):

Fibra óptica de salto de índice,

Comprobar su comportamiento: cálculo de la frecuencia normalizada (V)

$$V = \frac{2\mathbf{p}}{1} a \sqrt{n_1^2 - n_2^2} \approx \frac{2\mathbf{p}}{1} a n_1 \sqrt{2\Delta} = 21,06 > 2,405$$
? la fibra es multimodo

Cálculo de la dispersión. Comprobar que la dominante es la dispersión modal

$$\boldsymbol{t} = \sqrt{\boldsymbol{t}_{MOD}^2 + \boldsymbol{t}_{CROM}^2} \approx \boldsymbol{t}_{MOD}$$

$$t_{MOD} \approx \frac{\Delta n_1}{c} = 49[\frac{ns}{Km}]$$

$$\boldsymbol{t}_{CROM} = D_{CROM}(\Delta \boldsymbol{l}) = 2[\frac{ns}{Km}]$$

- En la fibra se verifica que: f_e(GHz·Km)s(ns/Km)=0.133 y 2s=t $f_e = 5.424 \text{ MHz} \cdot \text{Km}$
- Para transmitir una señal digital NRZ se necesita un Bw=R/2,

The transmittr una senal digital NRZ se necesità un BW=R/2,
$$Bw = \frac{f_e}{L} \ge \frac{R}{2} \rightarrow RL \le 2f_e = 10.85 \left[\frac{Mbit}{s} Km\right]$$

$$R = 10 \left[\frac{Mbit}{s}\right]$$

$$R = 10 \left[\frac{Mbit}{s}\right]$$

Apartado (b):

Para que el LED no límite el ritmo de bit anterior su ancho de banda debe ser = que el ancho de banda de la fibra.

Bw fibra=
$$f_e/L^{\sim}5$$
 MHz

Bw LED=
$$(2pt_{sp})^{-1} = 5$$
 MHz ? $t_{sp} = 31,83$ ns ? t_{sp} (max)=31,83 ns

Ejercicio 3:

LED modulado con $J(t)=J_0+m_JJ_0 \text{ sen }?t=J(t)=J_0+m_JJ_0 \cos (?t-p/2) ?$

?
$$J(t) = \text{Re}\left\{J_0(1 + m_J e^{j(wt - \frac{p}{2})})\right\}$$

? $N(t) = \text{Re}\left\{N_0(1 + m_N e^{j(wt - \frac{p}{2} - f)})\right\}$

en adelante se trabaja con la forma exponencial por simplicidad.

$$J(t) = J_0 + J_0 m_J e^{j(wt - \frac{\mathbf{p}}{2})} = J_0 + \Delta J(t)$$

$$N(t) = N_0 + N_0 m_N e^{j(wt - \frac{\mathbf{p}}{2} - \mathbf{f})} = N_0 + \Delta N(t)$$

$$IV(t) = IV_0 + IV_0 m_N e = IV_0 +$$

A partir de la Ecuación de Ritmo para el LED:

$$\frac{dN}{dt} = \frac{J}{qd} - \frac{N}{\mathbf{t}_{sp}}$$
; teniendo en cuenta que $\frac{J_0}{qd} = \frac{N_0}{\mathbf{t}_{sp}}$ se obtiene (Teoría clase)

$$m_N e^{-j\mathbf{f}} = \frac{m_J e^{-j\frac{\mathbf{p}}{2}}}{1 + j(\mathbf{w}\mathbf{t}_{sp})} = \frac{m_J}{\sqrt{1 + (\mathbf{w}\mathbf{t}_{sp})^2}} e^{-j(\frac{\mathbf{p}}{2} + arctg(\mathbf{w}\mathbf{t}_{sp}))}$$
; y la potencia óptica emitida es:

$$P(t) = \operatorname{Re}\left\{P_{0} + P_{0} \frac{m_{J}}{\sqrt{1 + (\mathbf{wt}_{sp})^{2}}} e^{j(\mathbf{wt} - \frac{\mathbf{p}}{2} - arctg(\mathbf{wt}_{sp}))}\right\} = P_{0} + P_{0} \frac{m_{J}}{\sqrt{1 + (\mathbf{wt}_{sp})^{2}}} \cos(\mathbf{wt} - \frac{\mathbf{p}}{2} - arctg(\mathbf{wt}_{sp})) \Rightarrow$$

$$P(t) = P_{0} + P_{0} \frac{m_{J}}{\sqrt{1 + (\mathbf{wt}_{sp})^{2}}} \operatorname{sen}(\mathbf{wt} - arctg(\mathbf{wt}_{sp}))$$

Si la frecuencia modula dora es muy elevada ? $t_{sp}>>1$?

$$\frac{m_J}{\sqrt{1+(\mathbf{w}\mathbf{t}_{sp})^2}} \approx \frac{m_J}{\mathbf{w}\mathbf{t}_{sp}}$$

$$? P(t) \approx P_0 + P_0 \frac{m_J}{\mathbf{w}\mathbf{t}_{sp}} sen(\mathbf{w}t - \frac{\mathbf{p}}{2}) = P_0 - \frac{P_0 m_J}{\mathbf{t}_{sp}} \frac{\cos(\mathbf{w}t)}{\mathbf{w}}$$

$$arctg(\mathbf{w}\mathbf{t}_{sp}) \approx \frac{\mathbf{p}}{2}$$

Ejercicio 4:

Dos fibras óptica monomodo:

• FO1: Bw₀₁=500MHz; L₁=1Km; t₁

• FO2: Bw_{e2}=100MHz; L₁=10Km; t₂

En FO1:

$$f_{o_{1}} \cdot \boldsymbol{s}_{1} = 0,1874 \rightarrow f_{o_{1}} \cdot \frac{\boldsymbol{t}_{1}}{2} = 0,1874 \rightarrow \boldsymbol{t}_{1} = \frac{2 \cdot 0,1874}{f_{o_{1}}} = \frac{2 \cdot 0,1874}{Bw_{o_{1}} \cdot L_{1}} = 0,7496[ns/Km]$$

$$f_{e_{2}} \cdot \boldsymbol{s}_{2} = 0,133 \rightarrow f_{e_{2}} \cdot \frac{\boldsymbol{t}_{2}}{2} = 0,133 \rightarrow \boldsymbol{t}_{2} = \frac{2 \cdot 0,133}{f_{e_{2}}} = \frac{2 \cdot 0,133}{Bw_{e_{2}} \cdot L_{2}} = 0.266[ns/Km]$$

$$\frac{\boldsymbol{t}_{1}}{\boldsymbol{t}_{2}} = 2,818;$$

La dispersión de FO1 es 2,818 veces la de la FO2