Deuxième année de CPGE Mathématiques

Christophe NÉRAUD

Année 2017 – 2018

Table des matières

1	Réd	uction des matrices carrées	7			
1.1 Éléments propres						
		1.1.1 Définitions de base	7			
		1.1.2 Premières propriétés	8			
		1.1.3 Sous-espaces stables	9			
		1.1.4 Éléments propres des matrices carrées	.0			
	1.2	Polynôme caractéristique	. 1			
		1.2.1 Cas d'une matrice carrée	. 1			
		1.2.2 Cas particuliers	.2			
		1.2.3 Compléments				
		1.2.4 Cas d'un endomorphisme (en dimension finie)				
	1.3	Polynômes d'endomorphismes et de matrices				
		1.3.1 Structure d'algèbre				
		1.3.2 Action d'un polynôme sur une algèbre				
		1.3.3 Polynômes annulateurs				
		1.3.4 Compléments	8			
	1.4	Diagonalisation	9			
		1.4.1 Définition				
		1.4.2 Diagonalisabilité et sous-espaces propres	.9			
		1.4.3 Diagonalisabilité et polynômes annulateurs				
		1.4.4 Matrices diagonalisables	21			
	1.5	Trigonalisation	22			
		1.5.1 Endomorphismes				
		1.5.2 Matrices trigonalisables				
		1.5.3 Application à la nilpotence				
2	Con	apléments sur les séries numériques 2	5			
	2.1	Règle de d'Alembert	25			
	2.2	Séries alternées	26			
	2.3	Comparaison série-intégrale	26			
		2.3.1 Les théorèmes du programme				
			27			
	2.4		28			
	2.5	·	29			
	2.6	•	30			
			80			
		<u>*</u>	31			

	2.7	Produi	it de Cauchy (ou de convolution)	3	1					
3	Con	Convexité 33								
	3.1	Ensem	nbles convexes	3	3					
	3.2	Foncti	ions convexes	3	4					
		3.2.1	Généralités	3	4					
		3.2.2	Convexité et taux d'accroissements	3	5					
		3.2.3	Convexité et dérivées	30	6					
		3.2.4	Quelques inégalités de convexité	30	6					
4	Esp	aces ve	rectoriels normés	3′	7					
	4.1^{-}	Norme	es et distances	3	7					
		4.1.1	Norme	3	7					
		4.1.2	Exemples	3	7					
		4.1.3	Distance associée à une norme		9					
		4.1.4	Boules et sphères							
		4.1.5	Comparaisons de normes							
	4.2		$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
		4.2.1	Ensembles et fonctions bornés							
		4.2.2	Voisinages, ouverts, fermés							
		4.2.3	Intérieur et adhérence							
		4.2.4	Frontière et densité							
		4.2.5	Rôle de la norme							
		4.2.6	Espace vectoriel normé produit							
	4.3		dans un espace vectoriel normé							
	T.0	4.3.1	Suites convergentes							
		4.3.1	Propriétés élémentaires							
		4.3.2 $4.3.3$								
			Suites extraites et valeurs d'adhérence							
		4.3.4	Suites et topologie							
		4.3.5	Séries vectorielles en dimension finie							
	4.4		es et continuité							
		4.4.1	Etude locale							
		4.4.2	Continuité globale							
	4.5		acité							
		4.5.1	Ensembles compacts							
		4.5.2	Compacité et continuité							
		4.5.3	Preuve de l'équivalence des normes en dimension finie	50	6					
		4.5.4	Complément sur la dimension finie	5	7					
5	Suit	tes et s	séries de fonctions	59	9					
	5.1	Conve	ergence simple (ou ponctuelle)	59	9					
	5.2		ergence uniforme		0					
		5.2.1	La définition							
		5.2.2	Lien avec la norme uniforme							
		5.2.2	Premiers résultats							
		5.2.4	Deux exemples							
	5.3		ergence d'une série de fonctions							
	σ . σ	COHVE	180100 a une perie de fonedom	0	_					

	5.3.1	Convergence simple
	5.3.2	Convergence uniforme
	5.3.3	Convergence normale
5.4	Conve	rgence uniforme et passages aux limites
	5.4.1	Continuité
	5.4.2	Limites
	5.4.3	Intégrales ordinaires et primitives
	5.4.4	Dérivées
5.5	Appro	ximation uniforme sur un segment
	5.5.1	Introduction
	5.5.2	Fonctions continues par morceaux et fonctions en escalier
	5.5.3	Fonctions continues et fonctions polynômiales

Chapitre 1

Réduction des matrices carrées

Dans ce chapitre, on notera $\mathbb K$ un sous-corps de $\mathbb C$: en général, $\mathbb C$, $\mathbb R$ ou $\mathbb Q$. E sera un $\mathbb K$ -espace vectoriel non réduit à 0 quelconque.

1.1 Éléments propres

1.1.1 Définitions de base

Soit $u \in \mathcal{L}(E)$ et $\lambda \in \mathbb{K}$. On considère l'équation d'inconnue $x \in E$:

$$(\mathcal{P}_{u,\lambda}) : u(x) = \lambda x$$

Définition (Valeurs propres, vecteurs propres, sous-espaces propres).

On dit que λ est valeur propre de u si $(\mathcal{P}_{u,\lambda})$ possède des solutions non nulles.

Dans ce cas, les $x \in E \setminus \{0\}$ tels que $u(x) = \lambda x$ sont les **vecteurs propres** de u associés à λ , et l'ensemble des $x \in E$ tels que $u(x) = \lambda x$ (y compris 0) est le **sous-espace propre** de u associé à λ . On le note $E_{\lambda}(u)$ ou E_{λ} .

Remarques.

– Un vecteur propre est associé à une seule valeur propre. En effet, si $x \neq 0$ et $\lambda x = \mu x$, alors $\lambda = \mu$.

Cette propriété s'écrit également : si $\lambda \neq \mu$, alors $E_{\lambda} \cap E_{\mu} = \{0\}$.

– $(\mathcal{P}_{u,\lambda})$ s'écrit aussi : $u(x) - \lambda x = 0$, ou encore :

$$(u - \lambda \operatorname{id})(x) = 0$$

L'ensemble des solutions de cette équation est donc : $\ker(u - \lambda \operatorname{id})$. Ainsi, λ est valeur propre de u si, et seulement si, $u - \lambda \operatorname{id}$ n'est **pas** injective. Dans ce cas, on obtient :

$$E_{\lambda}(u) = \ker(u - \lambda \operatorname{id})$$

On constate que E_{λ} est donc bien un sous-espace vectoriel de E.

Définition (Spectre).

L'ensemble des valeurs propres de u est le **spectre** de u, noté Sp(u). En particulier, on a $\mathrm{Sp}(u) \subset \mathbb{K}, \ \mathrm{et} :$

$$\mathrm{Sp}(u) = \{ \lambda \in \mathbb{K} \mid \exists x \in E \setminus \{0\}, u(x) = \lambda x \}$$

Exemple (Les éléments propres de la dérivation).

<u>1ère version</u>: Sur les polynômes formels.

Soit
$$D: \mathbb{K}[X] \longrightarrow \mathbb{K}[X]$$

 $P \longmapsto D(P) = P'$

Alors: $(\mathcal{P}_{D,\lambda}): P' = \lambda P$. Or si $\lambda \neq 0$ et $P \neq 0$, alors $\deg(\lambda P) = \deg(P)$, **et** $\deg(P') < \deg(P)$.

Ainsi, l'égalité est impossible. On a donc :

 $- \operatorname{si} \lambda \neq 0$, alors $\lambda \notin \operatorname{Sp}(D)$,

- si $\lambda = 0$, alors l'équation devient P' = 0, dont les solutions sont les polynômes constants.

On en déduit :
$$\begin{cases} \operatorname{Sp}(D) &= \{0\} \\ E_0(D) &= \mathbb{K}_0[X] = \mathbb{K} \end{cases}$$

<u>2ème version</u>: Sur les fonctions

Soit I un intervalle de $\mathbb R$ et $E = \mathcal C^\infty(I,\mathbb K)$. On considère l'application $D: E \longrightarrow E$ $f \longmapsto D(f) = f'$

Alors :
$$(\mathcal{P}_{D,\lambda})$$
 : $f' = \lambda f$, et a pour solutions les fonctions de la forme $t \mapsto ce^{\lambda t}$, $c \in \mathbb{K}$.
On en déduit :
$$\begin{cases} \operatorname{Sp}(D) &= \mathbb{K} \\ \forall \lambda \in \mathbb{K}, \ E_{\lambda}(D) &= \operatorname{Vect}(t \mapsto e^{\lambda t}) \end{cases}$$

Premières propriétés 1.1.2

Théorème 1.1.

Soit $u \in \mathcal{L}(E)$ et $\lambda_1, \ldots, \lambda_p$ des valeurs propres de u toutes distinctes. Pour $i \in [1, p]$, on pose $E_i = E_{\lambda_i}(u)$. Alors:

La famille $(E_i)_{1 \le i \le p}$ est en somme directe.

 $D\acute{e}monstration$. Par récurrence sur p.

- p = 2: On le sait déjà, car $E_1 \cap E_2 = \{0\}$.
- $-\underline{p \to p+1}$: On suppose que $\sum_{i=1}^{p} x_i \stackrel{(*)}{=} 0$, $x_i \in E_i$. On veut montrer que : $\forall i \in [1,p], x_i = 0$.

On applique u à (*): $\sum_{i=1}^{p} u(x_i) = 0$, donc $\sum_{i=1}^{p} \lambda_i x_i \stackrel{(**)}{=} 0$. La combinaison linéaire $(**) - \lambda_p(*)$ donne:

$$\sum_{i=1}^{p-1} \underbrace{(\lambda_i - \lambda_p) x_i}_{\in E_i} = 0$$

Par hypothèse de récurrence, les E_i sont en somme directe, donc $\forall i \in [1, p-1], (\lambda_i - \lambda_p)x_i =$ 0. Or $\lambda_i - \lambda_p \neq 0$, donc $\forall i \in [1, p-1]$, $x_i = 0$. Enfin, par (*), $x_p = 0$. \square

Corollaire.

Soit $\lambda_1, \ldots, \lambda_p$ des valeurs propres distinctes de u. Pour chaque $i \in [1, p]$, soit x_i un vecteur propre associé à λ_i . Alors:

La famille
$$(x_i)_{1 \le i \le p}$$
 est libre.

Démonstration. Supposons $\sum_{i=1}^{p} \alpha_i x_i = 0$, $\alpha_i \in \mathbb{K}$. On veut montrer que $\forall i \in [1, p]$, $\alpha_i = 0$. Or $x_i \in E_i$, donc $\alpha_i x_i \in E_i$. Donc par le théorème précédent, $\forall i \in [1, p]$, $\alpha_i x_i = 0$. Or x_i est un vecteur propre donc $x_i \neq 0$. Donc $\forall i \in [1, p]$, $\alpha_i = 0$.

Conséquence. Si dim E=n, u possède au plus n valeurs propres.

Reprenons maintenant l'exemple de la dérivation, version 2. On note pour $\lambda \in \mathbb{K}, \ e_{\lambda}: \ I \longrightarrow \mathbb{K}$. $t \longmapsto e^{\lambda t}$

Alors, e_{λ} est un vecteur propre de D pour la valeur propre λ . Donc, la famille $(e_{\lambda})_{\lambda \in \mathbb{K}}$ est libre.

1.1.3 Sous-espaces stables

Soit $u \in \mathcal{L}(E)$ et F un sous-espace vectoriel de E. On dit que F est **stable** par u si, et seulement si, $u(F) \subset F$. Dans ce cas, on peut définir l'endomorphisme de F induit par u:

$$\begin{array}{ccc} u_F: & F & \longrightarrow & F \\ & x & \longmapsto & u(x) \end{array}$$

Interprétation matricielle : Ici, dim E = n et dim F = p. Soit $\mathcal{B} = \widehat{\mathcal{B}_1 \mathcal{C}}$ une base de E adaptée à F. Soit $A = \operatorname{Mat}_{\mathcal{B}}(u)$. Alors, F est stable par u si, et seulement si, A est de la forme :

$$A = \begin{pmatrix} A_1 & * \\ 0 & * \end{pmatrix},$$

où $A_1 = \operatorname{Mat}_{\mathcal{B}_1}(u_F)$ est une matrice de taille p.

Retour aux éléments propres : Soit $x \in E \setminus \{0\}$. Alors :

$$x$$
 est vecteur propre de $u \iff \exists \lambda \in \mathbb{K}, \ u(x) = \lambda x$
 $\iff u(x) \in \operatorname{Vect}(x)$
 $\iff \operatorname{Vect}(x) \text{ est stable par } u$
 $\iff \forall y \in \operatorname{Vect}(x), \ u(y) \in \operatorname{Vect}(x)$

On en déduit l'équivalence suivante :

$$x$$
 est vecteur propre de $u \iff \operatorname{Vect}(x)$ est stable par u

Propriété. Soit $(u,v) \in \mathcal{L}(E)^2$ tels que $u \circ v = v \circ u$. Alors, les sous-espaces propres de u sont stables par v.

Démonstration. Soit $\lambda \in \operatorname{Sp}(u)$ et $x \in E_{\lambda}(u)$. On veut montrer que $v(x) \in E_{\lambda}(u)$. Alors:

$$u(v(x)) = v(u(x)) = v(\lambda x) = \lambda v(x)$$

Ainsi,
$$(u \circ v)(x) = \lambda v(x)$$
, donc $v(x) \in E_{\lambda}(u)$.

Remarques.

- En particulier, ker(u) est stable par v.
- On a aussi Im(u) stable par v.

Démonstration. Soit $y \in \text{Im}(u)$. Il existe $x \in E$ tel que y = u(x). Donc $v(y) = v(u(x)) = u(v(x)) \in \text{Im}(u)$.

1.1.4 Éléments propres des matrices carrées

Dans cette partie, on redéfinit les concepts évoqués précédemment, mais dans le cas d'une matrice carrée.

Soit $A \in \mathcal{M}_n(\mathbb{K})$ et $\lambda \in \mathbb{K}$. On considère l'équation d'inconnue $X \in \mathcal{M}_{n,1}(\mathbb{K})$ suivante :

$$(\mathcal{P}_{A,\lambda}) : AX = \lambda X$$

On définit les concepts de valeur propre, vecteur propre, couple propre, sous-espace propre et spectre de manière évidente.

Remarques.

– L'équation $(\mathcal{P}_{A,\lambda})$ est équivalente à $(A - \lambda I_n)X = 0$. Ainsi, λ est valeur propre de A si, et seulement si, $A - \lambda I_n$ n'est **pas** inversible.

Cas particuliers: Si T est triangulaire, alors $\operatorname{Sp}(T) = \{t_{1,1}, t_{2,2}, \dots, t_{n,n}\}$, avec des notations évidentes.

- Les éléments propres de A dépendent du choix du corps de base. En effet, si $A \in \mathcal{M}_n(\mathbb{K})$ et si $\mathbb{K} \in \mathbb{L}$, on a aussi $A \in \mathcal{M}_n(\mathbb{L})$. On aura alors $\mathrm{Sp}_{\mathbb{K}}(A) \subset \mathrm{Sp}_{\mathbb{L}}(A)$, et général pas égalité.

Lien avec les endomorphismes:

- Soit E un \mathbb{K} espace vectoriel de dimension n, \mathcal{B} une base de E, et $u \in \mathcal{L}(E)$. On note $A = \operatorname{Mat}_{\mathcal{B}}(u) \in \mathcal{M}_n(\mathbb{K})$, et on représente $x \in E$ par $X = \operatorname{Mat}_{\mathcal{B}}(x) \in \mathcal{M}_{n,1}(\mathbb{K})$.

Alors,
$$AX = \text{Mat}_{\mathcal{B}}(u(x))$$
, donc : $u(x) = \lambda x \iff AX = \lambda X$.

Dans ce cas, $|\operatorname{Sp}(u) = \operatorname{Sp}_{\mathbb{K}}(A)$.

- Soit $A \in \mathcal{M}_n(\mathbb{K})$. On note u_A l'endomorphisme de \mathbb{K}^n canoniquement associé à A, et \mathcal{C} la base canonique de \mathbb{K}^n . Alors $\operatorname{Sp}(u_A) = \operatorname{Sp}_{\mathbb{K}}(A)$ et le vecteur $x = (x_1, x_2, \ldots, x_n) \in \mathbb{K}^n$ est

représenté dans $\mathcal C$ par la matrice colonne : $X=\begin{pmatrix}x_1\\\vdots\\x_n\end{pmatrix}$. Ainsi, les vecteurs propres de A

sont les images des vecteurs propres de u_A par l'isomorphisme de \mathbb{K}^n dans $\mathcal{M}_{n,1}(\mathbb{K})$ qui au

$$n$$
-uplet (x_1, \ldots, x_n) associé la matrice colonne $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$.

Si on identifie \mathbb{K}^n et $\mathcal{M}_{n,1}(\mathbb{K})$, les vecteurs propres de A et de u_A sont identiques, et de même pour les sous-espaces propres associés.

1.2 Polynôme caractéristique

1.2.1 Cas d'une matrice carrée

Définition (Polynôme caractéristique).

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Le polynôme caractéristique de A est :

$$\underbrace{\chi_A = \det(XI_n - A)}_{= a_{1,1}} = \begin{vmatrix} X - a_{1,1} & -a_{1,2} & \cdots & -a_{1,n} \\ -a_{2,1} & X - a_{2,2} & \cdots & \vdots \\ \vdots & \cdots & \ddots & \vdots \\ -a_{n,1} & \cdots & \cdots & X - a_{n,n} \end{vmatrix}$$

À priori, $\chi_A \in \mathbb{K}[X]$.

Théorème 1.2 (Expression du polynôme caractéristique).

$$\chi_A = X^n - (\operatorname{Tr} A)X^{n-1} + \dots + (-1)^n \det A$$
et unitaire de degré n .

En particulier, χ_A est unitaire de degré n.

Démonstration. On note $P_{i,j}$ le coefficient (i,j) de $XI_n - A$. Alors $P_{i,j} = \begin{cases} X - a_{i,i} & \text{si } i = j \\ -a_{i,j} & \text{si } i \neq j \end{cases}$.

Donc
$$\chi_A = \sum_{\sigma \in \mathfrak{S}_n} \left(\varepsilon(\sigma) \underbrace{\prod_{i=1}^n P_{i,\sigma(i)}}_{=Q_{\sigma}} \right)$$
. Or $\deg P_{i,j} < 1$ donc $\deg Q_{\sigma} \le n$, donc $\deg \chi_A \le n$.

Si $\sigma \neq id$, il existe au moins deux valeurs de i telles que $i \neq \sigma(i)$, et il existe au moins deux valeurs de i telles que $P_{i,\sigma(i)}$ est constant. Alors deg $Q_{\sigma} \leq n-2$.

Donc les termes de degré n et n-1 de χ_A sont ceux de Q_{id} . Or $Q_{id} = \prod_{i=1}^n P_{i,i} = \prod_{i=1}^n (X - a_{i,i}) = \prod_{i=1}^n (X - a_{i,i})$

$$X^{n} - \left(\sum_{i=1}^{n} a_{i,i}\right) X^{n-1} + \dots = X^{n} - (\operatorname{Tr} A) X^{n-1} + \dots$$

Pour le terme constant, voir le théorème suivant.

Théorème 1.3. $\forall \lambda \in \mathbb{K}, \ \chi_A(\lambda) = \det(\lambda I_n - A)$

Démonstration. Le coefficient (i,j) de $\lambda I_n - A$ est $P_{i,j}(\lambda)$. Alors :

$$\det(\lambda I_n - A) = \sum_{\sigma \in \mathfrak{S}_n} \left(\varepsilon(\sigma) \prod_{i=1}^n P_{i,\sigma(i)}(\lambda) \right)$$
$$= \sum_{\sigma \in \mathfrak{S}_n} \left(\varepsilon(\sigma) \left(\prod_{i=1}^n P_{i,\sigma(i)} \right) (\lambda) \right)$$

$$= \left[\sum_{\sigma \in \mathfrak{S}_n} \left(\varepsilon(\sigma) \prod_{i=1}^n P_{i,\sigma(i)} \right) \right] (\lambda)$$

$$= \chi_A(\lambda)$$

Théorème 1.4. λ est valeur propre de $A \iff \chi_A(\lambda) = 0$

Démonstration.

$$\lambda$$
 est valeur propre de $A \iff A - \lambda I_n$ non inversible
$$\iff \lambda I_n - A \text{ non inversible}$$

$$\iff \det(\lambda I_n - A) = 0$$

$$\iff \chi_A(\lambda) = 0$$

Remarque. Plus précisément, $\operatorname{Sp}_{\mathbb{K}}(A)$ est l'ensemble des racines de χ_A dans \mathbb{K} . Conséquences.

- 1) A possède au plus n valeurs propres.
- 2) A possède au moins une valeur propre dans \mathbb{C} (théorème de d'Alembert-Gauss).
- 3) Si $A \in \mathcal{M}_n(\mathbb{R})$ et si n est impair, alors A possède au moins une valeur propre réelle.

1.2.2 Cas particuliers

Taille 2: Soit $A \in \mathcal{M}_2(\mathbb{K})$. Alors $\chi_A = X^2 - (\operatorname{Tr} A)X + \det A$.

Taille 3: Soit $A \in \mathcal{M}_3(\mathbb{K})$. Par la règle de Sarrus, on trouve facilement le coefficient devant X, et on en déduit : $\chi_A = X^3 - (\operatorname{Tr} A)X^2 + (\operatorname{Tr} \widetilde{A})X - \det A$.

Matrices triangulaires : Soit T une matrice triangulaire. Alors $XI_n - T$ est triangulaire aussi, et avec pour coefficients diagonaux les $X - t_{i,i}$. Alors : $\chi_T = \prod_{i=1}^n (X - t_{i,i})$.

1.2.3 Compléments

Propriété. Si $A \sim_S B$, alors $\chi_A = \chi_B$.

Démonstration. En effet, $B = P^{-1}AP$ avec $P \in GL_n(\mathbb{K})$, donc $XI_n - B = P^{-1}(XI_n - A)P$, donc $\det(XI_n - B) = \det(P^{-1})\det(XI_n - A)\det(P) = \det(XI_n - A)$. \square

Propriété. $\chi_{A^{\top}} = \chi_A$.

Démonstration. En effet, XI_n est symétrique, donc : $XI_n - A^{\top} = (XI_n - A)^{\top}$, donc :

$$\det[XI_n - A^{\top}] = \det[(XI_n - A)^{\top}] = \det(XI_n - A)$$

Définition (Ordre de multiplicité).

L'ordre de multiplicité d'une valeur propre λ de A est son ordre en tant que racine de χ_A , noté $\omega(\lambda)$. Ainsi :

$$\omega(\lambda) = r \iff \begin{cases} (X - \lambda)^r | \chi_A \\ (X - \lambda)^{r+1} / \chi_A \end{cases}$$
$$\iff \chi_A = (X - \lambda)^r Q \text{ avec } Q(\lambda) \neq 0$$

Exemple. Pour une matrice triangulaire, $\chi_A = \prod_{i=1}^n (X - t_{i,i})$, donc l'ordre d'une valeur propre λ est le nombre de i tels que $t_{i,i} = \lambda$, autrement dit : le nombre d'occurrences de λ sur la diagonale.

Remarque. On sait que χ_A est toujours scindé dans $\mathbb{C}[X]$. Alors : la somme des ordres des valeurs propres de A dans \mathbb{C} est toujours égale à n.

Propriété. Soit $\lambda_1, \ldots, \lambda_n$ les valeurs propres de A dans \mathbb{C} répétées suivant leur ordre. On a:

$$\left[\sum_{i=1}^{n} \lambda_i = \operatorname{Tr} A\right] \quad \text{et} \quad \left[\prod_{i=1}^{n} \lambda_i = \det A\right]$$

Démonstration. Factorisation de χ_A dans $\mathbb{C}[X]$:

$$\chi_A = \prod_{i=1}^n (X - \lambda_i)$$

$$= X^n - \left(\sum_{i=1}^n \lambda_i\right) X^{n-1} + \dots + (-1)^n \prod_{i=1}^n \lambda_i$$

On identifie avec l'expression précédente de χ_A , d'où le résultat.

1.2.4 Cas d'un endomorphisme (en dimension finie)

Soit E un \mathbb{K} espace vectoriel de dimension n et $u \in \mathcal{L}(E)$. Les matrices de u dans les diverses bases de E sont toutes semblables, donc ont le même polynôme caractéristique.

Définition (Polynôme caractéristique). Soit \mathcal{B} une base quelconque de E, alors :

$$\chi_u = \chi_{\mathrm{Mat}_{\mathcal{B}}(u)}$$

Conséquences.

 $-\chi_u = X^n - (\operatorname{Tr} u)X^{n-1} + \dots + (-1)^n \det u.$ $-\operatorname{Si} A = \operatorname{Mat}_{\mathcal{B}}(u), \operatorname{alors} \lambda I_n - A = \operatorname{Mat}_{\mathcal{B}}(\lambda \operatorname{id} - u). \operatorname{Donc} \chi_u(\lambda) = \chi_A(\lambda) = \det(XI_n - A). \operatorname{Alors} \chi_u(\lambda) = \det(\lambda \operatorname{id} - u). \operatorname{D'où} : \operatorname{Sp}(u) = \{\lambda \in \mathbb{K} \mid \chi_u(\lambda) = 0\}.$

Définition (Ordre de multiplicité).

Soit $\lambda \in \operatorname{Sp}(u)$. L'ordre de λ est son ordre en tant que racine de χ_u . La somme des valeurs propres de u est inférieure à n. Si $\mathbb{K} = \mathbb{C}$, elle est égale à n.

Théorème 1.5.

Si F est stable par u, alors : $|\chi_{u_F}| \chi_u$.

Démonstration. Soit $p = \dim F$ et $\mathcal{B} = \widehat{\mathcal{B}_1 \mathcal{C}}$ une base de E adaptée à F. Soit $A = \operatorname{Mat}_{\mathcal{B}}(u)$. On sait que $A = \begin{pmatrix} A_1 & * \\ 0 & C \end{pmatrix}$, où $A_1 = \operatorname{Mat}_{\mathcal{B}_1}(u_F)$.

Donc
$$XI_n - A = \begin{pmatrix} XI_p - A_1 & * \\ 0 & XI_{n-p} - C \end{pmatrix}$$
. Donc :
$$\chi_u = \chi_A = \det(XI_n - A)$$
$$= \det(XI_p - A_1) \det(XI_{n-p} - C)$$
$$= \chi_{A_1} \det(XI_{n-p} - C)$$
$$= \chi_{A_1} \chi_C$$

Théorème 1.6.

Soit $\lambda \in \operatorname{Sp}(u)$. On a : $\dim E_{\lambda} \leq \omega(\lambda)$.

Démonstration. On pose $d(\lambda) = \dim E_{\lambda}$. On applique le premier théorème à E_{λ} , stable par u. Alors $u_{E_{\lambda}} = \lambda \operatorname{id}_{E_{\lambda}}$, l'homothétie de rapport λ . Alors $\chi_{u_{E_{\lambda}}} = (X - \lambda)^{d(\lambda)}$. Donc par le théorème précédent, $(X - \lambda)^{d(\lambda)} \mid \chi_u$, d'où $d(\lambda) \leq \omega(\lambda)$.

Si λ est une valeur propre simple, E_{λ} est une droite vectorielle. Cas particulier:

Polynômes d'endomorphismes et de matrices 1.3

1.3.1Structure d'algèbre

Définition (Algèbre).

Une K-algèbre est un ensemble muni de trois lois $+, *, \cdot$ telles que :

- 1) (A, +, *) est un anneau.
- 2) $(A, +, \cdot)$ est un \mathbb{K} -espace vectoriel. 3) $\forall (x, y) \in A^2, \ \forall \lambda \in \mathbb{K}, \ (\lambda \cdot x) * y = x * (\lambda \cdot y) = \lambda \cdot (x * y).$

Remarques.

- L'algèbre A est commutative lorsque * l'est.
- La multiplication interne $(x, y) \mapsto x * y$ est bilinéaire.

Exemples (de référence).

- $-\mathcal{F}(X,\mathbb{K})$ où X est un ensemble quelconque.
- $\mathbb{K}[X]$ l'algèbre des polynômes formels.
- $-\mathcal{M}_n(\mathbb{K})$ l'algèbre des matrices carrées.
- $-(\mathcal{L}(E), +, \circ, \cdot)$ où E est un \mathbb{K} -espace vectoriel.

Définition (Sous-algèbre).

Soit $(A, +, *, \cdot)$ une \mathbb{K} -algèbre, et $B \subset A$. Alors B est une sous-algèbre de A si, et seulement si, (B, +, *) est un sous-anneau de (A, +, *) et un sous-espace vectoriel de $(A, +, \cdot)$. Ce qui revient à :

- 1) $\forall (x,y) \in B^2, \ \forall (\lambda,\mu) \in \mathbb{K}^2, \ \lambda x + \mu y \in B.$
- 2) $\forall (x,y) \in B^2, \ x * y \in B.$
- 3) $1_A \in B$.

Exemples.

- $TS_n(\mathbb{K})$ est une sous-algèbre de $\mathcal{M}_n(\mathbb{K})$.
- Soit I un intervalle de \mathbb{R} , alors $\mathcal{C}(I,\mathbb{R})$ est une sous-algèbre de $\mathcal{F}(I,\mathbb{R})$.

Définition (Morphisme d'algèbres).

Soit $(A, +, *, \cdot)$ et $(B, +, *, \cdot)$ deux K-algèbres. Une application $f: A \to B$ est un morphisme d'algèbres si, et seulement si, f est un morphisme d'anneaux et un morphisme d'espaces vectoriels. C'est en fait une application linéaire. Ce qui revient à :

- 1) $\forall (x,y) \in A^2$, $\forall (\lambda,\mu) \in \mathbb{K}^2$, $f(\lambda x + \mu y) = \lambda f(x) + \mu f(y)$.
- 2) $\forall (x,y) \in A^2$, f(x*y) = f(x)*f(y).
- 3) $f(1_A) = 1_B$.

Exemples.

- Soit $A = \mathcal{F}(X, \mathbb{K})$ et $x_0 \in X$ fixé. L'évaluation $\operatorname{ev}_{x_0} : A \longrightarrow \mathbb{K}$ est un morphisme d'algèbres.
- Soit $P \in GL_n(\mathbb{K})$ fixé. L'application : $\mathcal{M}_n(\mathbb{K}) \longrightarrow \mathcal{M}_n(\mathbb{K})$ est un automorphisme $M \longmapsto P^{-1}MP$ d'algèbre.

1.3.2 Action d'un polynôme sur une algèbre

Soit
$$(A, +, *, \cdot)$$
 une \mathbb{K} -algèbre, $P = \sum_{k=0}^{n} \alpha_k X^k$ un polynôme et $a \in A$. On pose : $P(a) = \sum_{k=0}^{n} \alpha_k a^k$.

Remarque. Soit E un \mathbb{K} -espace vectoriel de dimension finie, alors si $M = \operatorname{Mat}_{\mathcal{B}}(u)$, on a $P(M) = \operatorname{Mat}_{\mathcal{B}} P(u)$.

Théorème fondamental. Soit $a \in A$ où A est une K-algèbre non supposée commutative. Alors, l'application $\phi_a: \mathbb{K}[X] \longrightarrow A$ est un morphisme d'algèbre.

Autrement dit, on a :
$$\begin{cases} (\lambda P + \mu Q)(a) = \lambda P(a) + \mu Q(a) & (1) \\ (PQ)(a) = P(a) * Q(a) = Q(a) * P(a) & (2) \\ 1(a) = 1_A & (3) \end{cases}$$

Démonstration. (3) est trivial : $\alpha_0 = 1$ et $\alpha_k = 0$ pour $k \ge 1$.

Pour (1):
$$P = \sum_{k=0}^{m} \alpha_k X^k$$
 et $Q = \sum_{k=0}^{n} \beta_k X^k$. Le résultat vient de la linéarité de la somme.
Pour (2): Avec les mêmes notations, on a $PQ = \sum_{(i,j) \in \llbracket 0,m \rrbracket \times \llbracket 0,n \rrbracket} \alpha_i \beta_j X^{i+j}$. Ainsi : $PQ(a) = \sum_{(i,j) \in \llbracket 0,m \rrbracket \times \llbracket 0,n \rrbracket} \alpha_i \beta_j a^{i+j} = \sum_{(i,j) \in \llbracket 0,m \rrbracket \times \llbracket 0,n \rrbracket} \alpha_i \beta_j a^i * a^j = \left(\sum_{i=0}^{m} \alpha_i a^i\right) * \left(\sum_{j=0}^{n} \beta_j a^j\right) = P(a) * Q(a)$. \square

Réécriture des formules (1), (2) et (3) dans les cas du programme :

$$\mathbf{A} = \mathcal{L}(\mathbf{E})$$

$$\begin{cases} (\lambda P + \mu Q)(u) = \lambda P(u) + \mu Q(u) & (1) \\ (PQ)(u) = P(u) \circ Q(u) = Q(u) \circ P(u) & (2) \\ 1(u) = \mathrm{id} & (3) \end{cases}$$

$$\mathbf{A} = \mathcal{M}_{p}(\mathbb{K})$$

$$\begin{cases} (\lambda P + \mu Q)(M) = \lambda P(M) + \mu Q(M) & (1) \\ (PQ)(M) = P(M)Q(M) = Q(M)P(M) & (2) \\ 1(M) = I_{p} & (3) \end{cases}$$

On pose $\mathbb{K}[a] = \{P(a) \mid P \in \mathbb{K}[X]\}$. D'après les formules du théorème fondamental, $\mathbb{K}[a]$ est une sous-algèbre commutative de A. Mieux, c'est même la plus petite sous-algèbre qui possède a.

1.3.3 Polynômes annulateurs

On reprend la fonction ϕ_a du théorème fondamental. Alors, $\ker \phi_a = \{P \in \mathbb{K}[X] \mid P(a) = 0_A\},\$ c'est donc l'ensemble des polynômes annulateurs de a.

Définition (Idéal).

Soit I un sous-espace vectoriel d'un espace vectoriel E. I est un idéal de E si, et seulement si, I est absorbant pour la multiplication i.e. $\forall (x,y) \in I \times E, \ x * y \in I.$

Propriété. $\ker \phi_a$ est un idéal de $\mathbb{K}[X]$.

Démonstration. Soit $P \in \ker \phi_a$ et $Q \in \mathbb{K}[X]$. On a $(PQ)(a) = P(a) * Q(a) = 0_A * Q(a) = 0_A$.

Alors, deux cas sont possibles:

- Ou bien $\ker \phi_a = \{0\}$, ce qui signifie que a n'a pas de polynôme annulateur non nul.
- Ou bien il existe un unique polynôme unitaire $\mu_a \in \mathbb{K}[X]$ tel que ker ϕ_a est l'ensemble de ses multiples, noté $\mu_a\mathbb{K}[X]$. Alors :

$$P(a) = 0 \iff \mu_a \mid P$$

 μ_a s'appelle le **polynôme minimal** de a.

Théorème 1.7. Si A est de **dimension finie**, on a toujours $\ker \phi_a \neq \{0\}$, donc μ_a est toujours défini.

En particulier, cela est vrai quand $A = \mathcal{M}_p(\mathbb{K})$ ou $A = \mathcal{L}(E)$ avec E de dimension finie.

Démonstration. On pose $d = \dim A$. La famille $(a^k)_{k \in [0,d]}$ est de cardinal d+1, donc est liée. Alors, il existe $(\alpha_0,\ldots,\alpha_d) \in \mathbb{K}^d$, non tous non nuls, tels que $\sum_{k=0}^d \alpha_k a^k = 0$. Posons $P = \sum_{k=0}^d \alpha_k X^k$, on a $P \neq 0$ et P(a) = 0.

Théorème 1.8. On suppose que $\ker \phi_a \neq \{0\}$ et $d = \deg \mu_a$.

Alors, la famille $(a^k)_{k \in [0,d-1]}$ est une base de $\mathbb{K}[a]$. En particulier, dim $\mathbb{K}[a] = \deg \mu_a$.

Démonstration. Liberté: On suppose $\sum_{k=0}^{d-1} \alpha_k a^k = 0$, $\alpha_k \in \mathbb{K}$. On a P(a) = 0, où $P = \sum_{k=0}^{d-1} \alpha_k X^k$. Donc $\mu_a \mid P$, or $\deg \mu_a = d$ et $\deg P \leq d$, donc P = 0 donc $\alpha_k = 0$.

<u>Génératrice</u>: Soit $b \in \mathbb{K}[a]$. Par définition de $\mathbb{K}[a]$, il existe $P \in \mathbb{K}[x]$ tel que b = P(a). Par division euclidienne de P par $\mu_a : P = \mu_a Q + R$, avec deg $R < \deg \mu_a$, donc deg $P \le d - 1$.

Alors $b = P(a) = (\mu_a Q)(a) + R(a)$. Or μ_a est annulateur de a, donc b = P(a) = R(a). On pose

$$R = \sum_{k=0}^{d-1} r_k X^k, \text{ alors } b = \sum_{k=0}^{d-1} r_k a^k, \text{ donc } b \text{ est bien combinaison linéaire de } (a^k)_{k \in [0, d-1]}.$$

Théorème [admis] (Cayley-Hamilton).

Le polynôme caractéristique est un polynôme annulateur.

1.3.4 Compléments

Polynômes et éléments propres

Théorème 1.9. Soit E un \mathbb{K} -espace vectoriel, $u \in \mathcal{L}(E)$, $\lambda \in \mathbb{K}$, $x \in E$ et $P \in \mathbb{K}[X]$. Si $u(x) = \lambda x$, alors $P(u)(x) = P(\lambda)(x)$.

Ou bien : (λ, x) couple propre de $u \implies (P(\lambda, x)$ couple propre de P(u).

Ou bien :
$$\lambda \in \operatorname{Sp}(u) \implies \begin{cases} P(\lambda) \in \operatorname{Sp}(P(u)) \\ E_{\lambda}(u) \subset E_{P(\lambda)}(P(u)) \end{cases}$$

Démonstration. Par récurrence, montrons que $\forall k \in \mathbb{N}, \ u^k(x) = \lambda^k x$.

• $\underline{k} = 0$: c'est évident.

• $\overline{k \to k + 1}$: $u^{k+1}(x) = u(u^k(x)) = u(\lambda^k x) = \lambda^k u(x) = \lambda^k \lambda x = \lambda^{k+1} x$. On pose $P = \sum_{k=0}^n \alpha_k X^k$. Alors $P(u) = \sum_{k=0}^n \alpha_k u^k$. Alors $P(u)(x) = \sum_{k=0}^n \alpha_k u^k (x) = \sum_{k=0}^n \alpha_k \lambda^k x = P(\lambda)(x)$.

Corollaire. Si P(u) = 0, le théorème devient : $\lambda \in \text{Sp}(u) \implies P(\lambda) = 0$.

Décomposition des noyaux

Théorème 1.10 (Lemme des noyaux). Soit $u \in \mathcal{L}(E)$, $(P,Q) \in \mathbb{K}[X]^2$ tels que $P \wedge Q = 1$. On a :

$$\ker [(PQ)(u)] = \ker [P(u)] \oplus \ker [Q(u)]$$

Démonstration.

- \supseteq : Il suffit de montrer que $\ker[P(u)] \subset \ker[(PQ)(u)]$, car P et Q ont un rôle symétrique. Or $(PQ)(u) = P(u) \circ Q(u) = Q(u) \circ P(u)$. D'où : $\ker[P(u)] \subset \ker[(PQ)(u)]$ et $\ker[Q(u)] \subset \ker[(PQ)(u)]$. Ainsi par somme, on a montré l'inclusion.
- $\underline{\oplus}$: Par théorème de Bézout, on a $(U,V) \in \mathbb{K}[X]^2$ tels que UP + VQ = 1. Donc $(UP)(u) + (VQ)(u) \stackrel{(*)}{=} id$, qu'on peut aussi écrire $U(u) \circ P(u) + V(u) \circ Q(u) = id$. D'où : $x \in \ker[P(u)] \cap \ker[Q(u)] \Longrightarrow x = 0$.
- \subseteq : Soit $x \in \ker[(PQ)(u)]$. Par la relation (*), on a $x = \underbrace{(UP)(u)(x)}_{=x} + \underbrace{(VQ)(u)(x)}_{=x}$.

Et:

$$P(u)(y) = P(u)[(VQ)(u)(x)]$$

$$= [P(u) \circ (VQ)(u)](x)$$

$$= [(VPQ)(u)](x) = 0 \text{ car } x \in \text{ker}[(PQ)(u)]$$

$$= [V(u) \circ (PQ)(u)](x)$$

$$= V(u)(0) = 0$$

Ainsi, on a montré que $y \in \ker[P(u)]$. On montre de même que $z \in \ker[Q(u)]$.

Remarque. Si en plus (PQ)(u) = 0, le théorème devient : $\ker[P(u)] \oplus \ker[Q(u)] = E$.

Exemple. Soit $u \in \mathcal{L}(E)$ tel que $u^3 = \text{id.}$ Alors, $X^3 - 1$ est annulateur de u. Or $X^3 - 1 = 0$ $(X-1)(X^2+X+1)$, et X-1 est premier avec X^2+X+1 . Par le théorème des noyaux, $E = \ker[(X - 1)(u)] \oplus \ker[(X^2 + X + 1)(u)].$

Ainsi,
$$E = \underbrace{\ker[u - \mathrm{id}]}_{=\mathrm{Inv}(u)} \oplus \ker[u^2 + u + \mathrm{id}].$$

On peut étendre le théorème par récurrence à un nombre fini de polynômes. Soit $(P_1,\ldots,P_k) \in$ $\mathbb{K}[X]^k$, deux à deux premiers entre eux, et $P = \prod_{i=1}^n P_i$. Alors :

$$\ker[P(u)] = \bigoplus_{i=1}^{k} \ker[P_i(u)]$$

Diagonalisation 1.4

Jusqu'au 1.4.3 inclus, E est un K-espace vectoriel de dimension n, et $u \in \mathcal{L}(E)$.

1.4.1Définition

Définition (Diagonalisabilité).

u est diagonalisable s'il existe une base \mathcal{B} de E telle que $\mathrm{Mat}_{\mathcal{B}}(u)$ est diagonale.

Remarques.

- $-\operatorname{Mat}_{\mathcal{B}}(u)$ est diagonale $\iff \mathcal{B}$ est formée de vecteurs propres de u. On dit que \mathcal{B} est une base propre.
- Si $\operatorname{Mat}_{\mathcal{B}}(u) = D \in \mathcal{D}_n(\mathbb{K})$, alors $\chi_u = \chi_D = \prod_{i=1}^n (X d_{i,i})$. Ainsi, χ_u est scindé sur \mathbb{K} et les termes diagonaux de D sont les valeurs propres de u répétées selon leur ordre.

Exemple. Si u possède n valeurs propres distinctes (i.e. chi_u est simplement scindé), alors u est diagonalisable.

1.4.2Diagonalisabilité et sous-espaces propres

Soit $\lambda_1, \ldots, \lambda_p$ les valeurs propres distinctes de u. On note $E_i = E_{\lambda_i}(u)$. On sait déjà par théorème que les E_i sont en somme directe.

Théorème 1.11.

On a équivalence entre :

- 1) u est diagonalisable. 2) $\bigoplus_{i=1}^{p} E_i = E$.

3)
$$\sum_{i=1}^{p} \dim E_i = n.$$

 $D\'{e}monstration.$ $1) \implies 2)$: Soit \mathcal{B} une base propre pour u. Chaque vecteur de B est un vecteur propre de u, donc appartient à l'un des E_i , et à fortiori à la somme $\bigoplus_{i=1}^p E_i$. Donc le sous-espace vectoriel $\bigoplus_{i=1}^p E_i$ contient la base \mathcal{B} , donc c'est E.

 $\underline{2) \implies 1}$: Soit \mathcal{B}_i une base de E_i , formée donc de vecteurs propres, et $\mathcal{B} = \widehat{\mathcal{B}_1 \dots \mathcal{B}_{p_i}}$ \mathcal{B} est une base de E formée de vecteurs propres de u: on a donc bien une base propre pour u.

3) n'est que la traduction de 2) en terme de dimension.

Théorème 1.12.

On a équivalence entre :

- 1) u est diagonalisable.
- 2) χ_u est scindé sur \mathbb{K} , **et** $\forall i \in [1, p]$, dim $E_i = \omega(\lambda_i)$.

Démonstration. On a : $\sum_{i=1}^{p} \dim E_i \leq \sum_{i=1}^{p} \omega(\lambda_i) \leq \deg \chi_u = n$.

Par le théorème précédent, u est diagonalisable si, et seulement si, $\sum_{i=1}^{p} \dim E_i = n$, donc il faut montrer que (1) et (2) sont des égalités.

Or, (2) est une égalité si, et seulement si, χ_u est scindé sur \mathbb{K} . Et, (1) est une égalité si, et seulement si, $\forall i \in [\![1,p]\!]$, dim $E_i = \omega(\lambda_i)$.

1.4.3 Diagonalisabilité et polynômes annulateurs

Théorème 1.13.

On a équivalence entre :

- 1) u est diagonalisable.
- 2) Il existe $P \in \mathbb{K}[X]$ simplement scindé sur \mathbb{K} tel que P(u) = 0.
- 3) μ_u est simplement scindé sur \mathbb{K} .

Il faut retenir que quand u est diagonalisable, on a :

$$\mu_u = \prod_{i=1}^p (X - \lambda_i)$$

$$\chi_u = \prod_{i=1}^p (X - \lambda_i)^{\dim E_i}$$

Corollaire. Si u est diagonalisable et F est stable par u, alors u_F est diagonalisable.

Démonstration. Soit P un annulateur de u simplement scindé. En tout généralité, $(P(u))_F = P(u_F)$. Ici, cela donne $P(u_F) = 0$ car P(u) = 0, donc u_F est diagonalisable.

Remarque. On en déduit également que $\mu_{u_F} \mid \mu_u$.

1.4.4 Matrices diagonalisables

Définition (Diagonalisabilité).

Soit $A \in \mathcal{M}_n(\mathbb{K})$. A est diagonalisable sur \mathbb{K} si A est semblable dans $\mathcal{M}_n(\mathbb{K})$ à une matrice diagonale.

Cela revient à dire : $\exists (D, P) \in \mathcal{D}_n(\mathbb{K}) \times GL_n(\mathbb{K}), \ D = P^{-1}AP$.

On fait les mêmes remarques que pour les endomorphismes.

Exemples.

- Soit $A \in \mathcal{M}_n(\mathbb{K})$ telle qu'il existe $p \in \mathbb{N}^*$ tel que $A^p = I_n$. Alors $X^p 1$ est annulateur de A et est simplement scindé sur \mathbb{C} . Donc A est diagonalisable sur \mathbb{C} , et $\mathrm{Sp}_{\mathbb{C}}(A) \subset \mathbb{U}_p$. Si de plus $X^p 1 = \mu_A$, alors on aurait $\mathrm{Sp}_{\mathbb{C}}(A) = \mathbb{U}_p$.
- Diagonalisons la matrice $A = \begin{pmatrix} 0 & 1 & 2 \\ -4 & 4 & 4 \\ 2 & -1 & 0 \end{pmatrix}$.

On calcule d'abord le polynôme caractéristique de A: Tr A=4, Tr $\widetilde{A}=4$ et det A=0. Ainsi, $\chi_A=X^3-4X^2+4X$. Par factorisation, on trouve :

$$\chi_A = X(X-2)^2$$

L'éventuelle diagonalisabilité de A dépend donc de dim E_2 . Soit $X \in E_2$. Alors :

$$AX = 2X \iff \begin{cases} y + 2z = 2x \\ -4x + 4y + 4z = 2y \\ 2x - y = 2z \end{cases}$$

$$\iff \begin{cases} 2x - y - 2z = 0 \\ 4x - 2y - 4z = 2y \\ 2x - y - 2z = 0 \end{cases}$$

$$\iff 2x - y - 2z = 0$$

Ainsi, dim $E_2 = 2$, donc A est diagonalisable. On choisit deux vecteurs indépendants dans E_2 , par exemple $e_1 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$ et $e_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$. De même, on choisit un vecteur dans E_0 (qui est

nécessairement une droite vectorielle car 0 est racine simple de χ_A) : $e_3 = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$.

Alors, $\mathcal{B} = (e_1, e_2, e_3)$ est une base propre. On a donc par application de la formule de changement de base à l'endomorphisme canoniquement associé :

On constate que les entrées entourées dans D sont les valeurs propres de A répétées suivant leur ordre, et que P est constituée des trois vecteurs de \mathcal{B} .

1.5 Trigonalisation

1.5.1 Endomorphismes

Définition (Trigonalisabilité).

u est trigonalisable s'il existe une base \mathcal{B} de E telle que $\mathrm{Mat}_{\mathcal{B}}(u)$ est triangulaire.

Remarques.

- Si $\operatorname{Mat}_{\mathcal{B}}(u) = T \in TS_n(\mathbb{K})$, alors $\chi_u = \chi_T = \prod_{i=1}^n (X t_{i,i})$. Donc χ_u est scindé sur \mathbb{K} , et la diagonale de T est formée des valeurs propres de u, comptées avec leur ordre.
- Posons $\mathcal{B} = (e_1, \dots, e_n)$. On pose $F_k = \text{Vect}(e_1, \dots, e_k)$. Alors : $\text{Mat}_{\mathcal{B}}(u)$ est triangulaire si, et seulement si, chaque F_k est stable par u.

Théorème 1.14.

On a équivalence entre :

- 1) u est trigonalisable.
- 2) χ_u est scindé sur \mathbb{K} .
- 3) μ_u est scindé sur \mathbb{K} .
- 4) Il existe $P \in \mathbb{K}[X]$ scindé sur \mathbb{K} tel que P(u) = 0.

Démonstration.

- 1) \Longrightarrow 2) : Vu à la remarque précédente.
- $\overline{2) \Longrightarrow 3}$: $\mu_u \mid \chi_u$ par Cayley-Hamilton, d'où le résultat.
- \bullet $\overline{3) \Longrightarrow 4) : P = \mu_u.$
- $\overline{4) \Longrightarrow 1}$: Par récurrence sur $n = \dim E$.

<u>Initialisation</u>: Pour n = 1, rien à prouver, u est une homothétie.

<u>Hérédité</u>: On commence par montrer que $Sp(u) \neq \emptyset$. On écrit $P = \prod_{i=1}^k (X - a_i)$. Ainsi,

 $0 = P(u) = [u - a_1 \text{ id}] \circ \cdots \circ [u - a_k \text{ id}]$. Donc l'un au moins des $u - a_i$ id n'est pas bijectif. Pour un tel $i, a_i \in \text{Sp}(u) \neq \emptyset$. On note λ cette valeur propre.

On pose $F = \text{Im}(u - \lambda \text{ id})$. Alors dim $F \leq n - 1$ et F est stable par u: on note u_F l'induit de u sur F. On a à fortiori $P(u_F) = 0$ car P(u) = 0. On note $p = \dim F$.

Si p = 0, $u = \lambda$ id donc u est trigonalisable.

Sinon, $p \in [1, n-1]$, et par hypothèse de récurrence, u_F est trigonalisable, donc il existe une base \mathcal{B}_1 de F telle que $\operatorname{Mat}_{\mathcal{B}_1}(u_F) = T \in TS_p(\mathbb{K})$. On complète \mathcal{B}_1 en une base $\mathcal{B} = (e_1, \ldots, e_n)$ de E. Or pour $j \in [p+1, n]$, $u(e_j) = (u - \lambda \operatorname{id})(e_j) + \lambda e_j$. Donc:

$$\operatorname{Mat}_{\mathcal{B}}(u) = \begin{pmatrix} T & * & \\ & \lambda & \cdots & 0 \\ 0 & \vdots & \ddots & \vdots \\ & 0 & \cdots & \lambda \end{pmatrix} \in TS_n(\mathbb{K})$$

Corollaire. Dans \mathbb{C} , χ_u est toujours scindé, donc si $\mathbb{K} = \mathbb{C}$, tout endomorphisme est trigonalisable.

1.5.2 Matrices trigonalisables

Définition (Trigonalisabilité).

Soit $A \in \mathcal{M}_n(\mathbb{K})$. A est trigonalisable sur \mathbb{K} s'il existe $(T, P) \in TS_n(\mathbb{K}) \times GL_n(\mathbb{K})$ telles que $T = P^{-1}AP$.

Les remarques faîtes sur les endomorphismes sont toujours valables.

Théorème 1.15.

On a équivalence entre :

- 1) A est trigonalisable.
- 2) χ_A est scindé sur \mathbb{K} .
- 3) μ_A est scindé sur \mathbb{K} .
- 4) Il existe $P \in \mathbb{K}[X]$ scindé sur \mathbb{K} tel que P(A) = 0.

Corollaire. Toute matrice est trigonalisable sur \mathbb{C} .

1.5.3 Application à la nilpotence

Théorème 1.16 (Version endomorphismes).

Soit E un K-espace vectoriel de dimension n et $u \in \mathcal{L}(E)$. On a équivalence entre :

- 1) $u^n = 0$.
- 2) u est nilpotente.
- 3) u est trigonalisable et $Sp(u) = \{0\}.$
- 4) u est représentable par une matrice triangulaire supérieure stricte.
- 5) $\chi_u = X^n$.

Démonstration. Très facile.

Théorème 1.17 (Version matrices).

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On a équivalence entre :

- 1) $A^n = 0$.
- 2) A est nilpotente.
- 3) A est trigonalisable et $Sp(A) = \{0\}.$
- 3') $\operatorname{Sp}_{\mathbb{C}}(A) = \{0\}.$
- 4) A est semblable dans $\mathcal{M}_n(\mathbb{K})$ à une matrice triangulaire supérieure stricte.
- 5) $\chi_A = X^n$.

Conséquence. L'indice de nilpotence est toujours inférieur ou égal à n.

Chapitre 2

Compléments sur les séries numériques

Dans ce chapitre, on remplacera sans ambiguïté la proposition $u_n \xrightarrow[n \to +\infty]{} l$ par $u_n \to l$.

2.1Règle de d'Alembert

Théorème 2.1 (de d'Alembert).

(H2)
$$\frac{a_{n+1}}{a_n} \longrightarrow \ell \in \mathbb{R}_+ \cup \{+\infty\}$$

- Soit $\sum a_n$ une série réelle telle que :

 (H1) $a_n > 0$ à partir d'un certain rang.

 (H2) $\frac{a_{n+1}}{a_n} \longrightarrow \ell \in \mathbb{R}_+ \cup \{+\infty\}$.

 Alors :

 si $\ell < 1$, alors $\sum a_n$ converge.

 si $\ell > 1$, alors $a_n \longrightarrow +\infty$. En particulier, $\sum a_n$ diverge grossièrement.

Exemple (Série exponentielle). Soit $z \in \mathbb{C}$. La série $\sum \frac{z^n}{n!}$ est absolument convergente, donc convergente. En effet:

- si z = 0, c'est trivial;
- si $z \neq 0$, alors on applique la règle de d'Alembert à la série $\sum \left| \frac{z^n}{n!} \right|$.

Alors:
$$\frac{\left|\frac{z^{n+1}}{(n+1)!}\right|}{\left|\frac{z^n}{n!}\right|} = \frac{|z|}{n+1} \longrightarrow 0$$
, et ce pour tout $z \in \mathbb{C}$. Ainsi, $\sum \left|\frac{z^n}{n!}\right|$ converge, d'où le résultat.

On admet provisoirement que : $\left| \sum_{n=0}^{+\infty} \frac{z^n}{n!} = e^z \right|$.

Remarque. Si $\ell=1$, le théorème ne permet pas de conclure. Prenons l'exemple des séries de Riemann $a_n = \frac{1}{n^{\alpha}}$. On sait que $\sum a_n$ converge si, et seulement si, $\alpha > 1$. Pourtant, pour tout $\alpha \in \mathbb{R}, \ \frac{a_{n+1}}{a_n} \longrightarrow 1.$

2.2 Séries alternées

Définition (Série alternée).

Une série réelle $\sum a_n$ est alternée si, et seulement si, $(-1)^n a_n$ est de signe constant.

Théorème 2.2 (Critère spécial des séries alternées, ou TSA).

On suppose:

- (H1) $\sum a_n$ est alternée.
- $(\mathbf{H2}) \ \overline{a_n} \longrightarrow 0.$
- (H3) La suite $(|a_n|)$ est décroissante.

Alors

- (C1) La série $\sum a_n$ converge.
- (C2) On pose $S = \sum_{n=0}^{+\infty} a_n$ et $R_n = \sum_{k=n+1}^{+\infty} a_k$.
 - a) On pose $A_n = \sum_{k=0}^n a_k$. Alors: $\forall n \in \mathbb{N}, \ A_n \leq S \leq A_{n+1} \text{ ou } A_{n+1} \leq S \leq A_n$.
 - b) S a le signe de a_0 et $|S| \leq |a_0|$.
 - c) R_n a le signe de a_{n+1} et $|R_n| \leq |a_{n+1}|$.

Remarque. La conclusion (C2) peut s'appliquer à une série absolument convergente, donc pour laquelle (C1) serait inutile.

Exemple (Séries de Riemann alternées). On considère la série $\sum \frac{(-1)^n}{n^{\alpha}}$.

- Pour $\alpha > 1$, on a convergence absolue, donc convergence.
- Pour $\alpha \leq 0$, on a divergence grossière.
- Pour $\alpha \in]0,1]$, il n'y a pas convergence absolue. Mais le théorème sur les séries alternées s'applique, donc la série converge.

En fait, le théorème s'applique pour tout $\alpha > 0$.

On peut en déduire : $\left| \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k^{\alpha}} \right| \leq \frac{1}{(n+1)^{\alpha}}.$

2.3 Comparaison série-intégrale

2.3.1 Les théorèmes du programme

Théorème 2.3. Soit $f \in \mathcal{CM}([a, +\infty[, \mathbb{R}_+) \text{ décroissante}, a \in \mathbb{R}. \text{ Pour } n \text{ assez grand, on pose :}$

$$\delta_n = \int_{n-1}^n f(t) dt - f(n).$$

Alors, $\delta_n \geq 0$ et $\sum \delta_n$ converge.

 $D\'{e}monstration$. Par décroissance de f, on a l'inégalité :

$$f(n) \le \int_{n-1}^{n} f(t) dt \le f(n-1),$$

d'où

$$0 \le \delta_n \le f(n-1) - f(n).$$

Par téléscopage, on obtient : $\sum_{n=n_0}^{N} [f(n-1) - f(n)] = f(n_0 - 1) - \underbrace{f(N)}_{> 0} \leq f(n_0 - 1) = \mathbf{constante}.$

Ainsi, $\sum f(n-1) - f(n)$ est une **série à termes positifs** à sommes partielles majorées. Donc elle converge. Par comparaison de séries à termes positifs, $\sum \delta_n$ converge.

Remarque. De même, si on pose $\delta'_n = f(n) - \int_n^{n+1} f(t) dt$, on trouve par la même méthode que $\delta'_n \geq 0$ et que $\sum \delta'_n$ converge.

Exemple (Constante d'Euler). On pose $f(t) = \frac{1}{t}$, avec a = 1. Alors le théorème s'applique, avec $\delta_n = \int_{n-1}^n \frac{\mathrm{d}t}{t} - \frac{1}{n}.$

On pose $\Delta_n = \sum_{k=2}^n \delta_k = \int_1^n \frac{\mathrm{d}t}{t} - (H(n) - 1)$. Alors $\Delta_n = \ln(n) - H_n + 1$, ou encore : $H_n - \ln n = 1$ $1-\Delta_n$. On sait que (Δ_n) converge, d'où : la suite $(H_n-\ln n)$ converge, et sa limite est appelée la constante d'Euler, notée γ .

Théorème 2.4 (Affaiblissement du théorème précédent).

On garde les mêmes hypothèses que précédemment. Pour n entier supérieur ou égal à a, on pose $I_n = \int_a^n f(t) dt$.

Alors, $\sum f(n)$ converge si, et seulement si, (I_n) converge.

Démonstration.
$$\sum_{k=n_0}^{n} f(k) = \sum_{k=n_0}^{n} \left(\int_{k-1}^{k} f(t) dt - \delta_k \right) = \int_{n_0-1}^{n} f(t) dt - \Delta_{n_0}.$$

Donc
$$\sum_{k=n_0}^n f(k) = I_n - \Delta_{n_0} +$$
constante.

Par le théorème précédent, Δ_n converge, donc :

$$\sum f(k)$$
 converge \iff (I_n) converge

Remarque. On verra au chapitre 6 que la convergence de (I_n) équivaut à **l'intégrabilité** de f sur $[a, +\infty[$.

Digression 2.3.2

Si f est **monotone**, il faut savoir encadrer par des intégrales des sommes du type $\sum f(k)$. Cette méthode sert notamment à trouver un équivalent de la somme.

Propriété. Si f est par exemple décroissante, on a :

$$\int_{k}^{k+1} f(t) dt \le f(k) \le \int_{k-1}^{k} f(t) dt$$

Ensuite, les intégrales se recollent par sommation.

Exemple (Équivalent du reste des séries de Riemann). On choisit $\alpha > 1$, et on cherche un équivalent quand n tend vers $+\infty$ de $\sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}}$. Par décroissance de $t \longmapsto \frac{1}{t^{\alpha}}$, on a :

$$\int_{k}^{k+1} \frac{\mathrm{d}t}{t^{\alpha}} \le \frac{1}{k^{\alpha}} \le \int_{k-1}^{k} \frac{\mathrm{d}t}{t^{\alpha}}$$

Soit $(n, N) \in \mathbb{N}^2$ avec n < N, par sommation de n + 1 à N:

$$\int_{n+1}^{N+1} \frac{\mathrm{d}t}{t^{\alpha}} \le \sum_{k=n+1}^{N} \frac{1}{k^{\alpha}} \le \int_{n}^{N} \frac{\mathrm{d}t}{t^{\alpha}}$$

Ainsi, on calcule les intégrales, et on trouve :

$$\frac{1}{1-\alpha} \left((N+1)^{1-\alpha} - (n+1)^{1-\alpha} \right) \le S \le \frac{1}{1-\alpha} \left(N^{1-\alpha} - n^{1-\alpha} \right)$$

Par passage à la limite quand N tend vers $+\infty$, on obtient :

$$\frac{(n+1)^{1-\alpha}}{\alpha-1} \le \sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}} \le \frac{n^{1-\alpha}}{\alpha-1}$$

On en déduit donc : $\sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}} \underset{n \to +\infty}{\sim} \frac{n^{1-\alpha}}{\alpha - 1}$

2.4 Sommation des relations de comparaisons

Soit $(a_n) \in \mathbb{C}^{\mathbb{N}}$ et $(b_n) \in \mathbb{R}_+^{\mathbb{N}}$. On note $A_n = \sum_{k=0}^n a_k$, $B_n = \sum_{k=0}^n b_k$, et en cas de convergence, $\alpha_n = \sum_{k=n+1}^{+\infty} a_k$ et $\beta_n = \sum_{k=n+1}^{+\infty} b_k$.

Théorème 2.5. On suppose que $\sum b_n$ est divergente.

- a) Si $a_n = \mathcal{O}(b_n)$, alors $A_n = \mathcal{O}(B_n)$.
- b) Si $a_n = o(b_n)$, alors $A_n = o(B_n)$.
- c) Si $a_n \sim b_n$, alors $A_n \sim B_n$.

Théorème 2.6. On suppose que $\sum b_n$ est convergente. a) Si $a_n = \mathcal{O}(b_n)$, alors $\alpha_n = \mathcal{O}(\beta_n)$. b) Si $a_n = o(b_n)$, alors $\alpha_n = o(\beta_n)$.

- c) Si $a_n \sim b_n$, alors $\alpha_n \sim \beta_n$.

Théorème 2.7 (de Césaro). Soit $(u_n) \in \mathbb{C}^{\mathbb{N}}$. On pose $\mu_n = \frac{1}{n} \sum_{k=0}^{n-1} u_k$. Alors :

 (u_n) converge $\Longrightarrow (\mu_n)$ converge vers la même limite

Démonstration. Soit ℓ la limite de (u_n) . Alors $u_n - \ell = o(1)$, et 1 > 0 et $\sum 1$ diverge. Donc par théorème, $\sum_{k=0}^{n-1} (u_k - \ell) = o(\sum_{k=0}^{n-1} 1) = o(n)$. Ainsi :

$$\frac{\sum_{k=0}^{n-1} (u_k - \ell)}{n} \longrightarrow 0, \text{ et ainsi } \mu_n \longrightarrow \ell$$

Equivalence suite-série 2.5

Soit $(u_n) \in \mathbb{C}^{\mathbb{N}}$. À cette suite, on associe la suite (a_n) définie par :

$$\begin{cases} a_0 = u_0 \\ \forall n \ge 1, \ a_n = u_n - u_{n-1}, \end{cases}$$

de sorte que $\left| \sum_{k=0}^{n} a_k = u_n \right|$

En particulier, (u_n) converge si, et seulement si, $\sum a_n$ converge. De plus, en cas de convergence, soit ℓ la limite de (u_n) , on a : $\ell = \sum_{k=0}^{\infty} a_k$. Ainsi, par différence :

$$\boxed{\ell - u_n = \sum_{k=n+1}^{+\infty} a_k}$$

Exemple (Équivalent plus précis de H_n). On pose $u_n = H_n - \ln n$. Ici, pour $n \geq 2$, $a_n =$ $u_n - u_{n-1} = \frac{1}{n} + \ln\left(1 - \frac{1}{n}\right)$. Par développement limité à l'ordre 2, on obtient :

$$a_n = \frac{1}{n} + \left(-\frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)\right) = -\frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)$$

Ainsi, $a_n \sim -\frac{1}{2n^2}$. Alors par comparaison, la série $\sum a_n$ converge, donc (u_n) converge. Posons $\gamma = \lim u_n$. On obtient :

$$\gamma - u_n = \sum_{k=n+1}^{+\infty} a_k$$

Comme $a_n \sim -\frac{1}{2n^2}$, par sommation des relations de comparaison :

$$\gamma - u_n \sim \sum_{k=n+1}^{+\infty} \left(-\frac{1}{2k^2} \right)$$
$$= -\frac{1}{2} \underbrace{\sum_{k=n+1}^{+\infty} \frac{1}{k^2}}_{\sim \frac{1}{n^2}}$$

Donc $\gamma - u_n \sim -\frac{1}{2n}$. On en déduit donc :

$$H_n \sim \ln n + \gamma + \frac{1}{2n}$$

2.6 Sommation des suites doubles

2.6.1 Cas « tout est positif »

Conventions: Si $\sum a_n$ est une série à termes positifs divergente, on pose : $\sum_{n=0}^{+\infty} a_n \stackrel{\text{def}}{=} +\infty$.

Si (a_n) est une suite à termes dans $\mathbb{R}_+ \cup \{+\infty\} = \overline{\mathbb{R}}_+$ et s'il existe au moins un $n_0 \in \mathbb{N}$ tel que $a_{n_0} = +\infty$, alors $\sum_{n=0}^{+\infty} a_n = +\infty$.

Théorème 2.8 (de Fubini, voir le chapitre sur les familles sommables). Soit $(a_{p,q})_{(p,q)\in\mathbb{N}^2}\in\mathbb{R}_+^{\mathbb{N}\times\mathbb{N}}$ une suite double positive. Alors :

$$\left|\sum_{p=0}^{+\infty} \left(\sum_{q=0}^{+\infty} a_{p,q}\right) = \sum_{q=0}^{+\infty} \left(\sum_{p=0}^{+\infty} a_{p,q}\right)\right| \in \overline{\mathbb{R}}_+$$

Définition (Suite positive sommable).

La suite double **positive** $(a_{p,q})$ est sommable quand ces sommes sont finies.

Exemple (Fonction zêta de Riemann). Pour $\alpha > 1$, on pose : $\zeta(\alpha) = \sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$.

Calculer $S = \sum_{n=0}^{+\infty} (\zeta(p) - 1)$. On a toujours $\zeta(\alpha) \ge 1$, donc $\zeta(p) - 1 \ge 0$, donc S est bien définie.

Ensuite, $\zeta(p) - 1 = \sum_{p=2}^{+\infty} \frac{1}{n^p}$. Donc:

$$S = \sum_{p=2}^{+\infty} \left(\sum_{n=2}^{+\infty} \frac{1}{n^p} \right)$$

Or $\left(\frac{1}{n^p}\right)$ est une suite double positive, donc par théorème :

$$S = \sum_{n=2}^{+\infty} \left(\sum_{p=2}^{+\infty} \frac{1}{n^p} \right)$$

Ainsi, on obtient $^1: S = \sum_{n=2}^{+\infty} \frac{\frac{1}{n^2}}{1-\frac{1}{n}} = \sum_{n=2}^{+\infty} \frac{1}{n(n-1)} = \sum_{n=2}^{+\infty} \left(\frac{1}{n-1} - \frac{1}{n}\right)$ Par téléscopage, on déduit : S = 1.

2.6.2Cas général

Définition (Suite complexe sommable).

Soit $(a_{p,q})_{(p,q)\in\mathbb{N}^2}\in\mathbb{C}^{\mathbb{N}\times\mathbb{N}}$. La suite double $(a_{p,q})$ est **sommable** lorsque la suite réelle positive $(|a_{p,q}|)$ l'est.

- **Théorème 2.9.** On suppose que $(a_{p,q})$ est sommable. Alors : * Pour tout $p \in \mathbb{N}$, la série $\sum_{q} a_{p,q}$ est absolument convergente.
 - * Pour tout $q \in \mathbb{N}$, la série $\sum_{p} a_{p,q}$ est absolument convergente.
 - * La série $\sum_{p} \left(\sum_{q=0}^{+\infty} a_{p,q} \right)$ est absolument convergente.
 - * La série $\sum_{q} \left(\sum_{p=0}^{+\infty} a_{p,q} \right)$ est absolument convergente.

*
$$\sum_{p=0}^{+\infty} \left(\sum_{q=0}^{+\infty} a_{p,q} \right) = \sum_{q=0}^{+\infty} \left(\sum_{p=0}^{+\infty} a_{p,q} \right)$$

Produit de Cauchy (ou de convolution) 2.7

^{1.} À ce stade, on voit déjà que $S<+\infty$ car $\sum \frac{1}{n(n-1)}$ converge

Définition (Produit de Cauchy).

Soit $((a_n), (b_n)) \in (\mathbb{C}^{\mathbb{N}})^2$. Leur **produit de Cauchy** est la suite (c_n) définie par :

$$c_n = \sum_{k=0}^n a_k b_{n-k} = \sum_{k=0}^n a_{n-k} b_k = \sum_{p+q=n} a_p b_q$$

Théorème 2.10. Soit $\sum a_n$ et $\sum b_n$ deux séries absolument convergentes. Alors, on a :

$$\sum c_n$$
 est absolument convergente, et $\sum_{n=0}^{+\infty} c_n = \left(\sum_{n=0}^{+\infty} a_n\right) \left(\sum_{n=0}^{+\infty} b_n\right)$

Chapitre 3

Convexité

3.1 Ensembles convexes

Soit E un \mathbb{R} -espace vectoriel.

Définition (Barycentre).

Soit $(a_i)_{1 \le i \le n} \in E^n$ et $(\alpha_i)_{1 \le i \le n} \in \mathbb{R}^n$. On pose $S = \sum_{i=1}^n \alpha_i$ et on suppose $S \ne 0$.

Le **barycentre** de $((a_i, \alpha_i))_{1 \leq i \leq n}$ est :

$$g = \frac{1}{S} \sum_{i=1}^{n} \alpha_i a_i.$$

Ainsi, le barycentre est «une combinaison linéaire avec une somme égale à 1».

Définition (Segment).

Soit $(a,b) \in E^2$. Le **segment** d'extrémités a et b est l'ensemble des barycentres de a et b à coefficients positifs. Ainsi:

$$\boxed{[a,b] = \{(1-t)a + tb \mid t \in [0,1]\}} = \{a + t(b-a) \mid t \in [0,1]\}$$

Remarques.

- [a,b]=[b,a]. Lorsque $E=\mathbb{R}_{,}$ il y a cohérence avec la définition habituelle d'un segment lorsque $a\leq b$. Si $a > b, [a, b] = \begin{cases} \emptyset \text{ au sens des intervalles de } \mathbb{R} \\ [b, a] \text{ au sens général} \end{cases}$

Définition (Ensemble convexe).

Soit $C \subset E$. C est **convexe** si, et seulement si, $\forall (a,b) \in C^2$, $[a,b] \subset C$, i.e. $\forall (a,b) \in C^2$, $\forall t \in [0,1], (1-t)a+tb \in C$.

Propriété. C est convexe si, et seulement si, tout barycentre à coefficients positifs (i.e. une combinaison convexe) d'éléments de C appartient à C. Ainsi :

C est convexe \iff C est stable par combinaison convexe

Démonstration. CS: évident (la définition est le cas de deux points).

CN: par récurrence sur le nombre de points.

Exemples.

- 1) Tout sous-espace vectoriel de E est convexe : en effet, ils sont stables par combinaison linéaire, donc en particulier par combinaison convexe.
- 2) Tout sous-espace affine de E est convexe.

Démonstration. En effet, soit
$$A = x_0 + F$$
 avec $x_0 \in E$ et F un sous-espace vectoriel de E .
Soit $(a,b) \in A^2$, $t \in [0,1]$. Alors $(1-t)a+tb=(1-t)(x_0+u)+t(x_0+v)$, avec $(u,v) \in F^2$.
Alors $(1-t)a+tb=x_0+\underbrace{(1-t)u+tv}_{\in F} \in A$.

- 3) Les parties convexes de \mathbb{R} sont \emptyset et les intervalles.
- 4) Soit $A \subset E$ quelconque. Soit $\mathcal{C}(A)$ l'ensemble des combinaisons convexes de points de A. Alors $\mathcal{C}(A)$ est convexe, et c'est le plus petit convexe contenant A. On l'appelle **enveloppe convexe** de A.

Théorème 3.1. Toute intersection d'ensembles convexes est convexe.

3.2 Fonctions convexes

3.2.1 Généralités

Définition (Fonction convexe).

Soit I un intervalle de \mathbb{R} et $f: I \longrightarrow \mathbb{R}$.

f est convexe si, et seulement si, $\forall (a,b) \in I^2$, $\forall t \in [0,1], \ f((1-t)a+tb) \leq (1-t)f(a)+tf(b)$.

Géométriquement, f est convexe si, et seulement si, tout arc de sa représentation graphique est situé sous sa courbe.

Définition (Fonction affine interpolatrice).

Pour $(a,b) \in I^2$ et $a \neq b$, on note $\varphi_{f,a,b}$ la fonction affine qui interpole f en a et b i.e. $\varphi_{f,a,b}(a) = f(a)$ et $\varphi_{f,a,b}(b) = f(b)$.

Alors, f est convexe si, et seulement si, pour tout $(a,b) \in I^2$ tels que $a \neq b$, $f(x) \leq \varphi_{f,a,b}(x)$ $\operatorname{sur} [a, b].$

On peut montrer que $f(x) \ge \varphi_{f,a,b}(x)$ pour $x \in I \setminus [a,b]$.

Définition (Concavité).

Soit $f: I \longrightarrow \mathbb{R}$. f est concave si, et seulement si, -f est convexe. Ainsi, toutes les inégalités énoncées précédemment changent de sens.

Remarque. Si f est convexe et concave, alors f est affine, et réciproquement.

Propriété. On pose $E_f = \{(x,y) \in I \times \mathbb{R} \mid y \geq f(x)\}$ l'épigraphe de f. Alors f est convexe si, et seulement si, E_f est convexe.

Théorème 3.2 (Inégalité de Jensen).

Une fonction $f: I \longrightarrow \mathbb{R}$ est convexe si, et seulement si, pour tout $(a_1, \ldots, a_n) \in I^n$ et pour tout $(t_1, \ldots, t_n) \in \mathbb{R}^n_+$ tels que $\sum_{i=1}^n t_i = 1$, on a l'inégalité :

$$f\left(\sum_{i=1}^{n} t_i a_i\right) \le \sum_{i=1}^{n} t_i f(a_i)$$

 $D\acute{e}monstration$. Par récurrence sur n.

Convexité et taux d'accroissements 3.2.2

Définition (Taux d'accroissement).

Soit $f: I \longrightarrow \mathbb{R}$ une fonction convexe. On fixe $a \in I$, et on définit la fonction taux d'accroissement par $\tau_a: I \setminus \{a\} \longrightarrow \mathbb{R}$ $x \longmapsto \frac{f(x) - f(a)}{x - a}$

$$x \longmapsto \frac{f(x) - f(a)}{x - a}$$

Théorème 3.3. La fonction τ_a est croissante.

Conséquence (Inégalité des trois pentes). Soit f une fonction convexe sur I, et $(a,b,c) \in I^3$ avec a < b < c. Alors on a:

$$\frac{f(b) - f(a)}{b - a} \le \frac{f(c) - f(a)}{c - a} \le \frac{f(c) - f(b)}{c - b}$$

C'est-à-dire, $|\tau_a(b)| \le \tau_a(c) = \tau_c(a) \le \tau_c(b)$.

3.2.3 Convexité et dérivées

Théorème 3.4.

Soit $f \in \mathcal{D}(I,\mathbb{R})$. Les propositions suivantes sont équivalentes :

- 1) f est convexe.
- 2) f' est croissante.
- 3) $\forall (a,x) \in I^2$, $f(x) \geq f(a) + f'(x)(x-a)$ (i.e. la courbe représentative de f est toujours au-dessus de sa tangente).

Conséquence. Si $f \in \mathcal{D}^2(I,\mathbb{R})$, f est convexe si, et seulement si, $f'' \geq 0$.

3.2.4 Quelques inégalités de convexité

Domaine de validité	Inégalité
$x \in \mathbb{R}$	$e^x \ge 1 + x$
$x \in \mathbb{R}_+^*$	$ \ln x \le x - 1 $
$u \in]-1;+\infty[$	$ \ln(1+u) \le u $
$x \in [0,\pi]$	$0 \le \sin x \le x$
$x \in [-\pi; \pi]$	$ \sin x \le x $
$x \in \left[0, \frac{\pi}{2}\right]$	$\sin x \ge \frac{2x}{\pi}$
$(x_1,\ldots,x_n)\in\mathbb{R}^n_+$	$\sqrt[n]{\prod_{k=1}^{n} x_k} \le \frac{1}{n} \sum_{k=1}^{n} x_k$

Chapitre 4

Espaces vectoriels normés

Dans ce chapitre, le corps \mathbb{K} désignera \mathbb{R} ou \mathbb{C} .

4.1Normes et distances

4.1.1Norme

Définition (Norme).

Soit E un K-espace vectoriel. Une **norme** sur E est une application $N: E \longrightarrow \mathbb{R}_+$ telle que :

- 1) $N(x) = 0 \iff x = 0$ (séparation).
- 2) $\forall (\lambda, x) \in \mathbb{K} \times E$, $N(\lambda x) = |\lambda| N(x)$ (homogénéité). 3) $\forall (x, y) \in E^2$, $N(x + y) \leq N(x) + N(y)$ (inégalité triangulaire).

Remarque. N est une **semi-norme** si elle ne vérifie que 2 et 3.

3 s'écrit également :
$$N\left(\sum_{i=1}^{n} x_i\right) \leq \sum_{i=1}^{n} N(x_i)$$
, ou encore $|N(x) - N(y)| \leq N(x-y)$.

Définition (Espace vectoriel normé).

Un espace vectoriel normé est un \mathbb{K} -espace vectoriel E muni d'une norme N. On le note (E,N).

4.1.2Exemples

- 1) $|\cdot|$ est une norme sur \mathbb{K} . Mieux, les seules normes sur \mathbb{R} sont les $c|\cdot|$ où $c\in\mathbb{R}_+^*$. En effet, si N est une norme sur \mathbb{R} , alors $\forall x \in \mathbb{R}$, $N(x) = N(x \cdot 1) = |x|N(1)$.
 - De même, les seules \mathbb{C} -normes sur \mathbb{C} (i.e. normes sur \mathbb{C} vues comme \mathbb{C} -espace vectoriel) sont les $c|\cdot|$ avec $c \in \mathbb{R}_+^*$.
- 2) Normes euclidiennes: Si $\langle \cdot | \cdot \rangle$ est un produit scalaire sur E, on définit une norme sur E par : $\forall x \in E, ||x|| = \sqrt{\langle x|x\rangle}$. Une telle norme est une **norme euclidienne**.
- 3) Trois normes usuelles sur \mathbb{K}^n : Soit $x = (x_1, \dots, x_n) \in \mathbb{K}^n$. On pose:

$$\mathcal{N}_{\infty}(x) = \max_{i=1}^{n} |x_i|, \ \mathcal{N}_1(x) = \sum_{i=1}^{n} |x_i| \ \text{et} \ \mathcal{N}_2(x) = \sqrt{\sum_{i=1}^{n} |x_i|^2}$$

 \mathcal{N}_{∞} , \mathcal{N}_{1} et \mathcal{N}_{2} sont des normes sur \mathbb{K}^{n} . En effet, tout est clair sauf l'inégalité triangulaire pour \mathcal{N}_{2} . Mais si $\mathbb{K} = \mathbb{R}$, \mathcal{N}_{2} est la norme euclidienne canonique. Si en revanche $\mathbb{K} = \mathbb{C}$,

$$\mathcal{N}_2(x+y) = \sqrt{\sum_{i=1}^n |x_i + y_i|^2}$$

$$\leq \sqrt{\sum_{i=1}^n (|x_i| + |y_i|)^2} \quad (*)$$

On pose $x' = (|x_1|, \dots, |x_n|) \in \mathbb{R}^n$ et $y' = (|y_1|, \dots, |y_n|) \in \mathbb{R}^n$. On remarque que (*) est alors $\mathcal{N}_2(x'+y')$, donc $\mathcal{N}_2(x'+y') \leq \mathcal{N}_2(x') + \mathcal{N}_2(y')$. Or $\mathcal{N}_2(x') = \mathcal{N}_2(y)$. D'où : $\boxed{\mathcal{N}_2(x+y) \leq \mathcal{N}_2(x) + \mathcal{N}_2(y)}$

3') Extension : Soit E un \mathbb{K} -espace vectoriel de dimension n, et $\mathcal{B} = (e_i)_{1 \leq i \leq n}$ une base de E. Pour $x = \sum_{i=1}^{n} x_i e_i \in E$, on pose :

$$\mathcal{N}_{\mathcal{B},\infty}(x) = \max_{i=1}^{n} |x_i|, \ \mathcal{N}_{\mathcal{B},1}(x) = \sum_{i=1}^{n} |x_i| \ \text{et} \ \mathcal{N}_{\mathcal{B},2}(x) = \sqrt{\sum_{i=1}^{n} |x_i|^2}$$

4) Normes uniformes : Soit X un ensemble non vide quelconque. Soit $\mathcal{B}(X,\mathbb{K})$ l'ensemble des applications bornées de X dans \mathbb{K} . Alors $\mathcal{B}(X,\mathbb{K})$ est un sous-espace vectoriel de $\mathcal{F}(X,\mathbb{K})$. Pour $f \in \mathcal{B}(X,\mathbb{K})$, on pose :

$$\mathcal{N}_{\infty}(f) = \sup_{x \in X} |f(x)|$$

Théorème 4.1 (Norme uniforme).

 \mathcal{N}_{∞} est une norme, appelée la **norme uniforme**.

Si $X = \mathbb{N}$, on note $\ell^{\infty}(\mathbb{K}) = \mathcal{B}(\mathbb{N}, \mathbb{K})$. Pour $u \in \ell^{\infty}(\mathbb{K})$, $\mathcal{N}_{\infty}(u) = \sup_{n \in \mathbb{N}} |u_n|$.

Remarque. En fait, $\mathcal{F}(X,\mathbb{K})$ est une \mathbb{K} -algèbre et $\mathcal{B}(X,\mathbb{K})$ en est une sous-algèbre. Pour $(f,g)\in\mathcal{B}(X,\mathbb{K})^2$, pour $x\in X$, on a :

$$\begin{aligned} |(fg)(x)| &= |f(x)g(x)| \\ &= |f(x)||g(x)| \\ &\leq \underbrace{\mathcal{N}_{\infty}(f)\mathcal{N}_{\infty}(g)}_{\text{indépendant de }x} \end{aligned}$$

Ainsi, $\mathcal{N}_{\infty}(fg) \leq \mathcal{N}_{\infty}(f)\mathcal{N}_{\infty}(g)$. De plus, $\mathcal{N}_{\infty}(1_{\mathcal{B}(X,\mathbb{K})}) = 1$. On dit alors que \mathcal{N}_{∞} est une norme d'algèbre.

Définition (Norme d'algèbre). Si $(A, +, \cdot, *)$ est une algèbre et N une norme sur A, alors N est une **norme d'algèbre** sur A si, et seulement si :

- 4) $\forall (x,y) \in A^2$, $N(x*y) \leq N(x) \cdot N(y)$ (sous-multiplicativité).
- 5) $N(1_A) = 1$.

5) On note $\ell^1(\mathbb{K}) = \{ u \in \mathbb{K}^{\mathbb{N}} \mid \sum |u_n| \text{ converge } \}.$ $\ell^1(\mathbb{K}) \text{ est un sous-espace vectoriel de } \mathbb{K}^{\mathbb{N}},$ ou de $\ell^{\infty}(\mathbb{K})$. Pour $u \in \ell^{1}(\mathbb{K})$, on pose : $\mathcal{N}_{1} = \sum_{n=0}^{+\infty} |u_{n}|$.

 \mathcal{N}_1 est une norme sur $\ell^1(\mathbb{K})$, on l'appelle **norme naturelle** sur $\ell^1(\mathbb{K})$.

6) Sur $\mathcal{C}([a,b],\mathbb{K})$, on pose :

$$\mathcal{N}_1(f) = \int_a^b |f(t)| dt, \text{ et } \mathcal{N}_2(f) = \sqrt{\int_a^b |f(t)|^2 dt}$$

 \mathcal{N}_1 et \mathcal{N}_2 sont des normes.

Remarques.

- Sur $\mathcal{CM}([a,b],\mathbb{K})$, \mathcal{N}_1 et \mathcal{N}_2 ne seraient que des semi-normes.
- $-\mathcal{C}([a,b],\mathbb{K})\subset\mathcal{B}([a,b],\mathbb{K})$, donc on peut aussi normer $\mathcal{C}([a,b],\mathbb{K})$ par \mathcal{N}_{∞} .

Distance associée à une norme 4.1.3

Soit (E, N) un espace vectoriel normé.

Définition (Distance d'un point à un autre).

Pour $(x,y) \in E^2$, on définit la **distance** de x à y par : d(x,y) = N(y-x).

Alors, l'application d vérifie les propriétés :

- 1) $d(x,y) = 0 \iff x = y$ (séparation).
- 2) d(y,x) = d(x,y) (symétrie).
- 3) $d(x,z) \le d(x,y) + d(y,z)$ (inégalité triangulaire).

D'où aussi, $|d(x,y) - d(x,z)| \le d(y,z)$.

Définition (Distance à un ensemble).

Pour $x \in E$ et $A \in \mathcal{P}(E) \setminus \{\varnothing\}$, on définit : $d(x,A) = \inf_{y \in A} d(x,y)$.

Théorème 4.2. On a : $|d(x, A) - d(y, A)| \le d(x, y)$.

Définition (Distance d'un ensemble à un autre).

Pour $(A, B) \in \mathcal{P}(E) \setminus \{\emptyset\}^2$, on définit : $d(A, B) = \inf_{(x,y) \in A \times B} d(x,y)$.

4.1.4 Boules et sphères

Définition (Boules et sphères).

Soit $a \in E$ et $r \in \mathbb{R}_+^*$. On définit la boule ouverte, boule fermée, sphère de centre a et de rayon r par, respectivement :

$$B(a,r) = \{x \in E \mid d(a,x) < r\}$$

$$B'(a,r) = \{x \in E \mid d(a,x) \le r\}$$

$$S(a,r) = \{x \in E \mid d(a,x) = r\}$$

<u>Cas particuliers</u>: Pour a = 0 et r = 1, on définit de la même manière la boule *unité* ouverte, fermée, et la sphère *unité*, en remplaçant d(0, x) par N(x).

Exemples.

- Dans $(\mathbb{R}, |\cdot|)$, les boules fermées sont les segments, et les boules ouvertes sont les intervalles ouverts bornés.
- Dans $(\mathbb{C}, |\cdot|)$, on dit disque plutôt que boule, et cercle plutôt que sphère.

Théorème 4.3. Toute boule est convexe.

4.1.5 Comparaisons de normes

Définition (Finesse et équivalence de normes).

Soit N et N' deux normes sur E. Alors :

- N est plus fine que N' s'il existe $k \in \mathbb{R}_+^*$ tel que $N' \leq kN$.
- -N est équivalente à N' si chacune des deux est plus fine que l'autre, i.e.

$$\exists (\alpha, \beta) \in (\mathbb{R}_+^*)^2, \ \alpha N \le N' \le \beta N.$$

On notera : $N \sim N'$.

Propriété. L'équivalence des normes est une relation d'équivalence sur l'ensemble des normes de E.

Exemple. Les trois normes usuelles sur \mathbb{K}^n , \mathcal{N}_1 , \mathcal{N}_2 et \mathcal{N}_∞ sont équivalentes entre elles. En effet, $\mathcal{N}_\infty \leq \mathcal{N}_1 \leq n\mathcal{N}_\infty$, et $\mathcal{N}_\infty \leq \mathcal{N}_2 \leq \sqrt{n}\mathcal{N}_\infty$.

Propriété. On suppose que $N \sim N'$. Alors :

- Toute N-boule (i.e. boule définie par N) est incluse dans une N'-boule de même centre.
- Toute N-boule contient une N'-boule de même centre.

Théorème fondamental (admis).

Dans un espace vectoriel de dimension finie, toutes les normes sont équivalentes.

4.2 Notions de base de topologie

Soit (E, N) un espace vectoriel normé.

4.2.1 Ensembles et fonctions bornés

Définition (Ensemble borné).

Soit $A \in \mathcal{P}(E)$. A est **bornée** pour N s'il existe $k \in \mathbb{R}_+$ tel que $\forall x \in A, \ N(x) \leq k$. On peut également dire que A est bornée pour N si A est incluse dans une N-boule.

Définition (Fonction bornée).

Soit $f: X \longrightarrow E$, où X est quelconque. f est **bornée** si f(x) est bornée, i.e. $\exists k \in \mathbb{R}_+, \ \forall x \in X, \ N(f(x)) \leq k$.

Remarques.

- Si $N \sim N'$, alors être borné pour N équivaut à être borné pour N'. Donc en dimension finie, la notion est intrinsèque.
- On peut définir sur $\mathcal{B}(X, E)$ une norme uniforme, associée à N par : $\mathcal{N}_{\infty}(f) = \sup_{x \in X} N(f(x))$. On voit facilement que si $N \sim N'$, alors $\mathcal{N}_{\infty} \sim \mathcal{N}'_{\infty}$. Donc, si E est de dimension finie, toutes les normes sur $\mathcal{B}(X, E)$ sont équivalentes.

4.2.2 Voisinages, ouverts, fermés

Définition (Voisinage).

Soit $a \in E$ et $V \in \mathcal{P}(E)$. V est un **voisinage** de a si V contient une boule de centre a (ainsi, on a nécessairement $a \in V$). On notera V(a) l'ensemble des voisinages de a.

Propriété (Stabilité par sur-ensemble). Si $V \in \mathcal{V}(a)$ et $V \subset W$, alors $W \in \mathcal{V}(a)$.

Propriété (Stabilité par intersection finie). $Si(V_1, \ldots, V_n) \in \mathcal{V}(a)^n$, alors $\bigcap_{i=1}^n V_i \in \mathcal{V}(a)$.

Définition (Ouvert).

Soit $\Omega \in \mathcal{P}(E)$. Ω est **ouvert** si Ω est voisinage de tous ses éléments. Ainsi, Ω est ouvert si, et seulement si, $\forall a \in \Omega$, $\Omega \in \mathcal{V}(a)$, ou encore si $\forall a \in \Omega$, $\exists r \in \mathbb{R}_+^*$, $B(a,r) \subset \Omega$.

Exemples.

- Toute boule ouverte est ouverte.
- \varnothing et E sont ouverts.

Théorème 4.4.

Toute réunion d'ouverts est un ouvert.

Toute intersection finie d'ouverts est un ouvert.

 $D\'{e}monstration$. On pose $\Omega = \bigcup_{i \in I} \Omega_i$, où les Ω_i sont des ouverts pour $i \in I$. Soit $a \in \Omega$. Soit $i_0 \in I$ tel que $a \in \Omega_{i_0}$.

 Ω_{i_0} est un ouvert, donc $\Omega_{i_0} \in \mathcal{V}(a)$. Puisque $\Omega_{i_0} \subset \Omega$, on a $\Omega \in \mathcal{V}(a)$.

Posons maintenant $\Omega = \bigcap_{i=1}^{n} \Omega_i$, où les Ω_i sont des ouverts pour $i \in I$. Soit $a \in \Omega$. On a alors,

pour tout
$$i \in [1, n]$$
, $a \in \Omega_i$. Ainsi, $\forall i \in [1, n]$, $\Omega_i \in \mathcal{V}(a)$, donc $\Omega \in \mathcal{V}(a)$.

Contre-exemple (Intersection infinie). On a l'égalité suivante :

$$\left| \bigcap_{n=1}^{+\infty} B\left(a, \frac{1}{n}\right) = \{a\} \right|$$

Or $B\left(a,\frac{1}{n}\right)$ est ouvert pour tout $n\in\mathbb{N}$, mais $\{a\}$ n'est pas ouvert.

Définition (Fermé).

Soit $F \in \mathcal{P}(E)$. F est **fermé** si $\mathfrak{C}_E(F) = E \setminus F = F^{\mathfrak{C}}$ est ouvert.

Exemple. Les singletons, les boules fermées, les sphères sont fermés.

Remarque. \emptyset et E sont ouverts **et** fermés. On peut montrer que ce sont les seuls ouverts fermés de E.

Théorème 4.5.

Toute réunion finie de fermés est un fermé.

Toute intersection de fermés est fermée.

Démonstration. Il suffit de passer au complémentaire pour se ramener au théorème 4.4.

4.2.3 Intérieur et adhérence

Définition (Intérieur).

Soit $A \in \mathcal{P}(E)$. L'**intérieur** de A est l'ensemble des éléments de E dont A est un voisinage. On le note $\overset{\circ}{A}$. Ainsi :

$$x \in \overset{\circ}{A} \overset{\text{def}}{\iff} A \in \mathcal{V}(x)$$

Théorème 4.6. $\overset{\circ}{A}$ est le plus grand ouvert inclus dans A. En particulier, A est ouvert si, et seulement si, $A = \overset{\circ}{A}$.

Exemple. $\widehat{B'(a,r)} = B(a,r)$.

En effet, $B(a,r)\subset B'(a,r)$, d'une part, donc comme B(a,r) est ouvert, on a $B(a,r)\subset \widehat{B'(a,r)}$. D'autre part, soit $x\in\widehat{B'(a,r)}$ on a par hypothèse un $\rho>0$ tel que $B'(x,\rho)\subset B'(a,r)$. Si x=a, le résultat est évident. Sinon, on pose $y=x+\rho\frac{x-a}{N(x-a)}$. Par construction, $N(y-x)=\rho$. Donc $y\in B'(x,\rho)$. Donc $y\in B'(a,r)$. Par conséquent, $N(y-a)\stackrel{(*)}{\leq} r$. Or $y-a=\left(1+\frac{\rho}{N(x-a)}\right)(x-a)$, d'où $N(y-a)=N(x-a)+\rho$. Donc par (*), $N(x-a)+\rho\leq r$, d'où : $N(x-a)\leq r-\rho < r$.

Définition (Adhérence).

Soit $A \in \mathcal{P}(E)$. L'adhérence de A est l'ensemble des éléments de E dont tous les voisinages rencontrent A (i.e. ne sont pas disjoints). On le note \overline{A} . Ainsi :

$$x \in \overline{A} \iff \forall V \in \mathcal{V}(x), \ A \cap V \neq \emptyset$$

Remarque. Dans la définition, on peut remplacer « tous les voisinages » par « toute boule de centre x ».

Propriété (Lien intérieur-adhérence). On a les deux égalités :

$$\left(\overline{A}\right)^{\complement} \stackrel{\circ}{=} \stackrel{\circ}{\widehat{A^{\complement}}} \quad et \ r\'{e}ciproquement \quad \left(\stackrel{\circ}{A}\right)^{\complement} \stackrel{=}{=} \overline{A^{\complement}}.$$

Théorème 4.7. \overline{A} est le plus petit fermé contenant A. En particulier, A est fermé si, et seulement si, $A = \overline{A}$.

Exemple. $\overline{B(a,r)} = B'(a,r)$.

 $\pmb{Exemple}$. Dans \mathbb{R} , si A est :

- non vide et majorée, alors sup $A \in \overline{A}$.
- non vide et minorée, alors inf $A \in \overline{A}$.

Théorème 4.8. $x \in \overline{A} \iff d(x, A) = 0$.

4.2.4 Frontière et densité

Définition (Frontière).

Soit $A \in \mathcal{P}(E)$. La **frontière** de A est l'ensemble $\partial A = \overline{A} \setminus \mathring{A}$.

On a aussi $\partial A = \overline{A} \cap (\mathring{A})^{\complement}$, d'où : $\overline{\partial A = \overline{A} \cap \overline{A^{\complement}}}$.

On en déduit en particulier que ∂A est fermé.

Exemple. $\partial B(a,r) = \partial B'(a,r) = B'(a,r) \setminus B(a,r) = S(a,r).$

Définition (Densité).

Soit $A \in \mathcal{P}(E)$. A est dense dans E si $\overline{A} = E$.

C'est-à-dire : $\forall x \in E, \ \forall r \in \mathbb{R}_+^*, \ A \cap B(x,r) \neq \emptyset$.

Ainsi, A est dense dans E si toute boule de E rencontre A.

Exemple. \mathbb{Q} et $\mathbb{R} \setminus \mathbb{Q}$ sont denses dans R.

4.2.5 Rôle de la norme

Toutes les notions des 4.2.2, 4.2.3 et 4.2.4 dépendent de la norme choisie. Mais, si $N \sim N'$, alors on sait que tout N-boule contient une N'-boule de même centre, et symétriquement toute N'-boule contient une N-boule de même centre. Donc tout $a \in E$ a les mêmes voisinages pour N' et pour N'.

Toutes les notions précédentes ont été définies à partir des voisinages :

En conséquence, toutes les notions étudiées précédemment sont invariantes si on remplace N par une norme équivalente. Elles sont intrinsèques en dimension finie.

4.2.6 Espace vectoriel normé produit

Soit $(E_i, N_i)_{1 \le i \le p}$ une famille d'espaces vectoriels normés, et $E = E_1 \times \cdots \times E_p$. Pour $x = (x_1, \dots, x_p) \in E$, on pose :

$$N(x) = \max_{i=1}^{p} N_i(x_i)$$

Remarque. Si pour tout $i \in [1, p]$, $(E_i, N_i) = (\mathbb{K}, |\cdot|)$, alors $E = \mathbb{K}^p$ et $N = \mathcal{N}_{\infty}$.

Propriété. N est une norme sur E.

N s'appelle **norme produit** des N_i . L'espace vectoriel normé (E, N) s'appelle **espace vectoriel normé** produit des (E_i, N_i) .

Remarques.

- Les (E_i, N_i) étant donnés, il sera sous-entendu que E est muni de la norme N.
- Si chaque E_i est de dimension finie, E l'est aussi, et N est équivalente à n'importe quelle autre norme.

Théorème 4.9.

Soit pour tout $i \in [1, p]$, $A_i \in \mathcal{P}(E_i)$. On pose $A = A_1 \times \cdots A_p \in \mathcal{P}(E)$. Si chaque A_i est ouvert (resp. fermé) dans E_i , alors A est ouvert (resp. fermé) dans E.

Lemme. Soit $a = (a_1, \ldots, a_p) \in E$ et $r \in \mathbb{R}_+^*$. Alors, $B(a, r) = B(a_1, r) \times \cdots \times B(a_p, r)$.

4.3 Suites dans un espace vectoriel normé

4.3.1 Suites convergentes

Définition (Convergence).

Soit $(u_n) \in E^{\mathbb{N}}$ et $\ell \in E$. La suite (u_n) **converge** vers ℓ si, et seulement si, la suite réelle $(N(u_n - \ell))$ converge vers 0. C'est-à-dire si :

$$\forall \varepsilon \in \mathbb{R}_{+}^{*}, \ \exists n \in \mathbb{N}, \ \forall n \geq n_{0}, \ N(u_{n} - \ell) \leq \varepsilon$$

Ou encore : $\forall \varepsilon \in \mathbb{R}_+^*$, $\exists n_0 \in \mathbb{N}$, $\forall n \geq n_0, u_n \in B'(\ell, \varepsilon)$.

Ou encore: $\forall V \in \mathcal{V}(\ell), \exists n_0 \in \mathbb{N}, \forall n \geq n_0, u_n \in V.$

Théorème 4.10 (Unicité de la limite).

Si (u_n) converge, alors sa limite est unique.

Démonstration. Supposons que (u_n) converge vers ℓ et ℓ' . Alors par inégalité triangulaire :

$$N(\ell - \ell') \le \underbrace{N(\ell - u_n)}_{\longrightarrow 0} + \underbrace{N(u_n - \ell')}_{\longrightarrow 0}$$

Par passage à la limite quand n tend vers $+\infty$, on en déduit $\ell = \ell'$.

Rôle de la norme : Convergence et limite dépendent de la norme. Mais, si N est plus fine que N', alors la convergence de (u_n) vers ℓ pour N entraîne sa convergence vers ℓ pour N'. Si $N \sim N'$, on a l'équivalence. Ainsi, en dimension finie, la convergence est intrinsèque.

Exemple (où la norme influe). On se place dans $E = \mathcal{C}([a,b],\mathbb{R})$ normé par \mathcal{N}_{∞} ou \mathcal{N}_1 . On considère la suite de fonctions (f_n) telle que $f_n(a) = 1$, f_n est nulle sur $\left| a + \frac{1}{n}, b \right|$ et f_n est affine

sur
$$\left[a, a + \frac{1}{n}\right]$$
.

Alors, $\mathcal{N}_{\infty}(f_n) = 1$, et $\mathcal{N}_1(f_n) = \frac{1}{2n} \longrightarrow 0$. Ainsi, $f_n \longrightarrow 0$ pour \mathcal{N}_1 , mais (f_n) diverge pour \mathcal{N}_{∞} .

4.3.2Propriétés élémentaires

Propriété. Une suite convergente est bornée.

Propriété. $Si\ u_n \longrightarrow \ell,\ alors\ N(u_n) \longrightarrow N(\ell).$

Propriété (Opérations).

Alors:

- $Soit((u_n),(v_n)) \in (E^{\mathbb{N}})^2$ et $(\lambda,\mu) \in \mathbb{K}^2$. $Siu_n \longrightarrow \ell$ et $v_n \longrightarrow \ell'$, $alors \lambda u_n + \mu v_n \longrightarrow \lambda \ell + \mu \ell'$. $Soit(\lambda_n) \in \mathbb{K}^{\mathbb{N}}$ et $(u_n) \in E^{\mathbb{N}}$. $Si\lambda_n \longrightarrow \alpha$ et $u_n \longrightarrow \ell$, $alors\lambda_n u_n \longrightarrow \alpha \ell$.

Propriété (Suites coordonnées).

Ici seulement, on pose dim E=p et $\mathcal{B}=(e_1,\ldots,e_p)$ une base de E. Soit $(u_n)\in E^{\mathbb{N}}$. Alors chaque u_n se décompose dans $\mathcal B$:

$$\forall n \in \mathbb{N}, \quad u_n = \sum_{i=1}^p u_{n,i} e_i, \quad u_{n,i} \in \mathbb{K}$$

Les p suites $(u_{n,i})_{n\in\mathbb{N}}$ s'appellent les **suites coordonnées** de (u_n) dans \mathcal{B} . Soit $\ell = \sum_{i=1}^{p} \ell_i e_i \in E$.

$$u_n \longrightarrow \ell \iff \forall i \in [1, p], \ u_{n,i} \longrightarrow \ell_i$$

Exemple. Soit $(M_n) \in \mathcal{M}_{p,q}(\mathbb{K})^{\mathbb{N}}$ et $L \in \mathcal{M}_{p,q}(\mathbb{K})$. On a :

$$M_n \longrightarrow L \iff \forall (i,j) \in [1,p] \times [1,q], M_n(i,j) \longrightarrow L(i,j)$$

Propriété (Suites composantes).

Ici, (E, N) est l'espace vectoriel produit $des(E_i, N_i)_{1 \le i \le p}$. $Soit(u_n) \in E^{\mathbb{N}}$. $Alors u_n = (u_{n,1}, u_{n,2}, \dots, u_{n,p})$ avec $u_{n,i} \in E_i$.

Les p suites $(u_{n,i})_{n\in\mathbb{N}}$ s'appellent les **suites composantes** de (u_n) . Soit $\ell=(\ell_1,\ldots,\ell_p)\in E$. Alors:

$$u_n \longrightarrow \ell \iff \forall i \in [1, p], \ u_{n,i} \longrightarrow \ell_i$$

4.3.3 Suites extraites et valeurs d'adhérence

Définition (Extraction).

Une **extraction** (ou extractrice) est une application strictement croissante de \mathbb{N} dans \mathbb{N} .

Propriété. Si φ est une extraction, on a $\forall n \in \mathbb{N}, \ \varphi(n) \geq n$.

Démonstration. Par récurrence : $\varphi(0) \in \mathbb{N}$ donc $\varphi(0) \geq 0$. Ensuite, si $\varphi(n) \geq n$, alors $\varphi(n+1) > \varphi(n) \geq n$, donc $\varphi(n+1) > n+1$.

Définition (Suite extraite, sous-suite).

Soit (u_n) et (v_n) deux suites d'un même ensemble. (v_n) est une **sous-suite** ou **suite extraite** de (u_n) s'il existe une extraction φ telle que $\forall n \in \mathbb{N}, \ v_n = u_{\varphi(n)}$.

Théorème 4.11. Si (u_n) converge, alors toutes ses sous-suites convergent vers la même limite ℓ de (u_n) .

Définition (Valeur d'adhérence).

Soit $(u_n) \in E^{\mathbb{N}}$ et $\lambda \in E$. λ est une valeur d'adhérence de (u_n) si :

- $-\forall \varepsilon \in \mathbb{R}_{+}^{*}, \ \forall n_{0} \in \mathbb{N}, \ \exists n \geq n_{0}, \ N(u_{n} \lambda) \leq \varepsilon, \ \text{ou}$
- $\forall V \in \mathcal{V}(\lambda), \ \forall n_0 \in \mathbb{N}, \ \exists n \ge n_0, \ u_n \in V.$

Commentaire: Pour $V \in \mathcal{V}(\ell)$, $u^{-1}(V) = \{n \in \mathbb{N}, u_n \in V\}$. Or pour V fixé, la proposition $\forall n_0 \in \mathbb{N}, \exists n \geq n_0, u_n \in V \text{ signifie exactement} : \forall u^{-1}(V) \text{ n'est pas majorée} \text{ w, ou encore, } \forall u^{-1}(V) \text{ est infinie} \text{ (en tant que partie non majorée de } \mathbb{N}). Ainsi :$

 λ est valeur d'adhérence de $(u_n) \iff \forall V \in \mathcal{V}(\lambda), \ u^{-1}(V)$ est infinie.

De même en étudiant la définition de la convergence, on montre que :

$$\ell = \lim u_n \iff \forall V \in \mathcal{V}(\ell), \ \left[u^{-1}(V)\right]^{\complement} \text{ est fini.}$$

Théorème 4.12. λ est valeur d'adhérence de (u_n) si, et seulement si, il existe une suite extraite de (u_n) qui converge vers λ .

Conséquence. Une suite convergente a une unique valeur d'adhérence, qui est sa limite.

4.3.4Suites et topologie

Théorème 4.13 (Caractérisation séquentielle des points adhérents).

Soit $A \in \mathcal{P}(E)$ et $x \in E$. On a l'équivalence :

 $x \in \overline{A} \iff x \text{ est la limite d'une suite à termes dans } A.$

Exemples.

- Soit A une partie non vide majorée de \mathbb{R} . Alors il existe une suite (u_n) de A qui converge vers $\sup A$.
- Soit A une partie non vide de E et $x \in E$. On a définie : $d(x,A) = \inf_{y \in A} d(x,y)$. Il existe donc une suite $(y_n) \in A^{\mathbb{N}}$ telle que $d(x, y_n) \longrightarrow d(x, A)$ (appelée suite minimisante). De même, si $(A, B) \in (\mathcal{P}(E) \setminus \{0\})^2$, il existe deux suites $((x_n), (y_n)) \in A^{\mathbb{N}} \times B^{\mathbb{N}}$ telles que $d(x_n, y_n) \longrightarrow d(A, B).$

Théorème 4.14 (Caractérisation séquentielle de la densité).

Soit $A \in \mathcal{P}(E)$. On a l'équivalence :

A est dense dans $E \iff \forall x \in E, \ \exists (u_n) \in A^{\mathbb{N}}, \ u_n \longrightarrow x.$

Exemple. Tout réel est limite d'une suite de rationnels.

Théorème 4.15 (Caractérisation séquentielle des fermés).

Soit $A \in \mathcal{P}(E)$. On a l'équivalence :

A est fermé \iff toute suite d'éléments de A qui **converge** dans E a sa limite dans A.

4.3.5Séries vectorielles en dimension finie

Généralités

Soit $(a_n) \in E^{\mathbb{N}}$. On définit comme dans le cas $E = \mathbb{K}$, les sommes partielles de $\sum a_n$, la convergence de $\sum a_n$ et en cas de convergence, la somme et les restes.

On a toujours:

- la condition nécessaire de convergence : $a_n \longrightarrow 0$; la linéarité de la convergence et de la somme : si $\sum a_n$ et $\sum b_n$ convergent, alors $\sum (\alpha a_n + \beta b_n)$
- l'équivalence suite-série : la suite (u_n) a même nature que la série $\sum (u_n u_{n-1})$.

Propriété (Séries coordonnées).

Soit $B = (e_i)_{1 \le i \le p}$ une base de E. Alors $a_n = \sum_{i=1}^p a_{n,i}e_i$. Alors $\sum a_n$ converge si, et seulement si, chaque série $\sum a_{n,i}$ converge. Dans ce cas, on $a:\sum_{n=0}^{+\infty}a_n=\sum_{i=1}^p\left(\sum_{n=0}^{+\infty}a_{n,i}\right)e_i$.

Convergence absolue

Propriété. Soit N une norme sur E. Alors la nature de $\sum N(a_n)$ ne dépend pas de N.

Définition (Convergence absolue).

La série $\sum a_n$ converge **absolument** si, et seulement si, la série $\sum N(a_n)$ converge.

Théorème 4.16. Une série absolument convergente est convergente.

Exemple (Séries géométriques matricielles). On sait déjà que pour tout $q \in \mathbb{K}$, $\sum q^n$ converge si, et seulement si, |q| < 1. Soit maintenant $A \in \mathcal{M}_p(\mathbb{K})$, que dire de la convergence de $\sum A^n$? Pour $p \in \mathbb{N}^*$ fixé :

1) On pose $C = \{A \in \mathcal{M}_p(\mathbb{K}) \mid \sum A^n \text{ converge absolument } \}$. Alors $C \in \mathcal{V}(0)$.

2) Si
$$\sum A^n$$
 converge, alors :
$$\begin{cases} I_p - A \in GL_p(\mathbb{K}) \\ \sum_{k=0}^{+\infty} A^k = (I_p - A)^{-1} \end{cases}$$

4.4 Limites et continuité

4.4.1 Étude locale

Voir annexe.

4.4.2 Continuité globale

Types de continuité

Soit (E, N) et (E', N') deux espaces vectoriels normés et $A \in \mathcal{P}(E) \setminus \{\emptyset\}$. Soit également $f: A \longrightarrow E'$.

Définition (Continuité).

f est **continue** sur A si f est continue en tout point de A, i.e.:

$$\forall x \in A, \ \forall \varepsilon \in \mathbb{R}_+^*, \ \exists \alpha \in \mathbb{R}_+^*, \ [(y \in A \ \text{ et } N(y-x) < \alpha) \Longrightarrow N(f(y) - f(x)) < \varepsilon].$$

Ou encore : $\forall \varepsilon \in \mathbb{R}_+^*, \ \forall x \in A, \ \exists \alpha \in \mathbb{R}_+^*, \ [(y \in A \ \text{et} \ N(y-x) < \alpha) \Longrightarrow N'(f(y)-f(x)) < \varepsilon].$

On note C(A, E') l'ensemble des fonctions continues de A dans E'.

Propriété. C(A, E') est un sous-espace vectoriel de $\mathcal{F}(A, E')$. $C(A, \mathbb{K})$ est une sous-algèbre de $\mathcal{F}(A, \mathbb{K})$.

Définition (Continuité uniforme).

f est uniformément continue sur A si :

$$\forall \varepsilon \in \mathbb{R}_+^*, \ \exists \alpha \in \mathbb{R}_+^*, \ [(x,y) \in A^2 \ \text{et} \ N(y-x) \le \alpha) \Longrightarrow N'(f(y)-f(x)) \le \varepsilon]$$

On a évidemment : f uniformément continue entraı̂ne f continue.

Contre-exemple (pour la réciproque). On considère $f: \mathbb{R} \longrightarrow \mathbb{R}$: cette application est $x \longmapsto x^2$ continue mais non uniformément continue.

Définition (Caractère lipschitzien).

Soit $k \in \mathbb{R}_+$. f est **k-lipschitzienne** pour N et N' si, et seulement si :

$$\forall (x,y) \in A^2, \ N'(f(x) - f(y)) \le kN(x - y)$$

f est **lipschitzienne** s'il existe $k \in \mathbb{R}_+$ tel que f est k-lipschitzienne.

Remarques.

- 1) f est 0-lipschitzienne si, et seulement si, f est constante.
- 2) Si f est k-lipschitzienne, alors k est un rapport de Lipschitz de f.
- 3) Si f est lipschitzienne, alors elle possède toujours un plus petit rapport de Lipschitz qui est $k_0 = \sup_{(x,y)\in A^2} \left[\frac{N'[f(y)-f(x)]}{N(y-x)}\right]$
- 4) Le caractère lipschitzien (mais **PAS** le caractère k-lipschitzien) est invariant par changement de normes équivalentes, donc intrinsèque en dimension finie.

Théorème 4.17. Si f est lipschitzienne, alors f est uniformément continue.

Contre-exemple (pour la réciproque). La fonction racine carrée est uniformément continue sur \mathbb{R}_+ , mais n'est pas lipschitzienne.

Montrons que $\forall (x,y) \in \mathbb{R}^2_+$, $|\sqrt{y}-\sqrt{x}| \stackrel{(*)}{\leq} \sqrt{|y-x|}$. On peut suppose sans restriction de généralité $y \geq x$. Alors :

$$(*) \iff |\sqrt{y} - \sqrt{x}|^2 \le |y - x|$$

$$\iff y + x - 2\sqrt{x}\sqrt{y} \le y - x$$

$$\iff 2x \le 2\sqrt{x}\sqrt{y}$$

$$\iff x \le \sqrt{x}\sqrt{y},$$

ce qui est vrai. Donc (*) est vraie.

Soit $\varepsilon \in \mathbb{R}_+^*$. En posant $\alpha = \varepsilon^2$, on remarque que $\sqrt{|y-x|} \le \varepsilon \implies |y-x| \le \alpha$, donc $\sqrt{\cdot}$ est uniformément continue sur \mathbb{R}_+ .

Enfin, supposons par l'absurde qu'il existe $k \in \mathbb{R}_+$ tel que $\forall (x,y) \in \mathbb{R}_+^2$, $|\sqrt{x} - \sqrt{y}| \le k|x-y|$. Alors on a en particulier quand y = 0, $\forall x \in \mathbb{R}_+$, $\sqrt{x} \le kx$ donc $\forall x \in \mathbb{R}_+$, $1 \le k\sqrt{x}$. Par passage à la limite quand x tend vers 0, on obtient : $1 \le 0$, contradiction. Ainsi, $\sqrt{\cdot}$ n'est pas lipschitzienne.

Exemples.

- 1) La norme N vue comme application de E dans \mathbb{R} est 1-lipschitzienne pour N et $|\cdot|$. En particulier, N est continue pour elle-même.
- 2) Soit $A \in \mathcal{P}(E) \setminus \{\emptyset\}$. Soit $d_A : E \longrightarrow \mathbb{R}$. On a vu que $\forall (x,y) \in E^2$, $|d_A(x) x \longmapsto d(x,A)$ $|d_A(y)| \leq N(x-y)$, donc d_A est 1-lipschitzienne pour N et $|\cdot|$. En particulier, d_A est continue sur E.
- 3) Soit $f \in \mathcal{C}^1([a,b],\mathbb{R})$. Alors f est $\mathcal{N}_{\infty}(f')$ -lipschitzienne (inégalité des accroissements finis).

Continuité des applications linéaires

Théorème 4.18.

Soit $u \in \mathcal{L}(E, E')$. On a l'équivalence :

$$u \text{ est continue } \iff \exists C \in \mathbb{R}_+, \ \forall x \in E, \ N'(u(x)) \leq CN(x)$$

Remarques.

- 1) La preuve montre que pour $u \in \mathcal{L}(E, E')$, u est continue en 0_E si, et seulement si, u est continue, si et seulement si, u est lipschitzienne.
- 2) Soit S la sphère unité de E. Alors :

$$\forall x \in E, \ N'(u(x)) \le CN(x) \iff \forall x \in S, \ N'(u(x)) \le C$$

On peut ainsi reformuler le théorème :

u est continue $\iff u$ est bornée sur la sphère unité de E.

Exemples.

- 1) Ici, on considère (E, N) l'espace vectoriel normé produit des $(E_i, N_i)_{1 \leq i \leq p}$. Les applications composantes $\gamma_i : E \longrightarrow E_i$ sont continues. $x \longmapsto x_i$
- 2) On se place dans $E = \mathcal{C}([a, b], \mathbb{R})$. Alors la forme linéaire $\text{ ev}_a : E \longrightarrow \mathbb{R}$ est continue pour \mathcal{N}_{∞} , mais discontinue pour \mathcal{N}_1 .

On notera $\mathcal{L}_c(E, E')$ l'ensemble des applications linéaires continues de E dans E'. C'est un sous-espace vectoriel de $\mathcal{L}(E, E')$. On notera de même $\mathcal{L}_c(E) \stackrel{\text{not}}{=} \mathcal{L}_c(E, E')$ qui est une sous-algèbre de $\mathcal{L}(E)$. Enfin, on notera $E' = \mathcal{L}_c(E, \mathbb{K})$ l'ensemble des formules linéaires continues. C'est le **dual topologique** de E. C'est un sous-espace vectoriel du dual algébrique $E* = \mathcal{L}(E, \mathbb{K})$ de E.

Théorème 4.19. Si E est de dimension finie, toutes les applications linéaires définies sur E sont continues.

Exemple. Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$. L'application : $\mathcal{M}_{n,p}(\mathbb{K}) \longrightarrow \mathcal{M}_{n,q}(\mathbb{K})$ est linéaire, donc conti- $M \longmapsto AM$ nue. En particulier, si $(M_n) \in \mathcal{M}_{p,q}(\mathbb{K})^{\mathbb{N}}$ et que $M_n \longrightarrow L$, alors $AM_n \longrightarrow AL$.

Fonctions polynomiales et rationnelles

Dans cette partie, on pose dim E = p. Soit \mathcal{B} une base de E, on a déjà défini les les formes linéaires coordonnées dans \mathcal{B} , qui sont les applications $\varphi_i : E \longrightarrow \mathbb{K}$. Alors les φ_i sont conti- $x \longmapsto x_i$

nues. Ainsi, d'après les théorèmes généraux :

- toute fonction polynomiale en les coordonnées dans la base \mathcal{B} (i.e. combinaison linéaire de produits de φ_i) est continue sur E;
- toute fonction rationnelle en les coordonnées dans la base \mathcal{B} est continue sur son ensemble de définition.

Exemples.

- 1) L'application det : $\mathcal{M}_n(\mathbb{K}) \longrightarrow \mathbb{K}$ est polynomiale en les $m_{i,j}$ (i.e. les coordonnées $M \longmapsto \det M$ de M dans la base canonique), donc est continue.
- 2) L'inversion matricielle Inv: $GL_n(\mathbb{K}) \longrightarrow \mathcal{M}_n(\mathbb{K})$ est continue. $M \longmapsto M^{-1}$

En effet, il suffit de montrer que chaque fonction coordonnée l'est. Or pour $(i,j) \in [1,n]^2$, $(M^{-1})_{i,j} = \frac{\Gamma_{j,i}}{\det M}$, où $\Gamma_{j,i}$ est le cofacteur de coordonnées (j,i). C'est alors une fonction rationnelle en les $m_{i,j}$, elle est donc continue.

Continuité des applications multilinéaires

Ici, (E, N) est l'espace vectoriel normé produit des $(E_i, N_i)_{1 \le i \le p}$. Soit $B: E \longrightarrow E'$ p-linéaire.

Théorème 4.20.

B est continue si, et seulement si, il existe $C \in \mathbb{R}_+$ telle que : $\forall x \in E, \ N'(B(x)) \leq C \prod_{i=1}^p N_i(x_i)$.

Exemples.

- 1) La multiplication externe : $\mathbb{K} \times E \longrightarrow E$ est bilinéaire, et $N(\lambda x) = |\lambda| N(x)$, donc $(\lambda, x) \longmapsto \lambda x$ elle est continue.
- 2) Sur E préhilbertien, muni de sa norme euclidienne, le produit scalaire $\langle \cdot | \cdot \rangle$: $E \times E \longrightarrow \mathbb{K}$ $(x,y) \longmapsto \langle x|y\rangle$ est bilinéaire, et par inégalité de Cauchy-Schwarz, $|\langle x|y\rangle| \leq ||x||||y||$, donc $\langle \cdot | \cdot \rangle$ est continue.

Théorème 4.21. Si chaque E_i est de dimension finie, toute application p-linéaire définie sur E est continue.

Exemples.

- 1) Le déterminant dans une base \det : $E^p \longrightarrow \mathbb{K}$ est p-linéaire, $x = (x_1, \dots, x_p) \longmapsto \det_{\mathcal{B}}(x_1, \dots, x_p)$ donc continue.
- 2) La multiplication des matrices : $\mathcal{M}_{n,p}(\mathbb{K}) \times \mathcal{M}_{p,q}(\mathbb{K}) \longrightarrow \mathcal{M}_{n,q}(\mathbb{K})$ est bilinéaire donc $(M,N) \longmapsto MN$ continue.
- 3) Soit $(A, +, *, \cdot)$ une \mathbb{K} -algèbre de dimension finie. La multiplication interne : $A \times A \longrightarrow A$ $(x, y) \longmapsto x * y$ est bilinéaire donc continue. On en déduit que pour toute norme N sur A, il existe une constante $C \in \mathbb{R}_+$ telle que $N(x * y) \leq CN(x)N(y)$.

Continuité et topologie

Définition (Ouvert et fermés relatifs).

Soit $A \in \mathcal{P}(E)$. Un ouvert (resp. un fermé) **relatif** de A est une partie de la forme $A \cap \Omega$ (resp. $A \cap F$), où Ω est un ouvert (resp. F un fermé) de E.

Remarque. Si A est un ouvert (resp. un fermé), alors un ouvert (resp. un fermé) relatif de A est un ouvert (resp. un fermé) inclus dans A.

Théorème 4.22.

Soit $A \in \mathcal{P}(E)$ et $f \in \mathcal{C}(A, E')$.

- 1) Pour tout ouvert Ω' de E', $f^{-1}(\Omega')$ est un ouvert relatif de A.
- 2) Pour tout fermé F' de E', $f^{-1}(F')$ est un fermé relatif de A.

Exemple. L'ensemble $GL_n(\mathbb{K})$ des matrices $n \times n$ inversibles est un ouvert de $\mathcal{M}_n(\mathbb{K})$. En effet, $GL_n(\mathbb{K}) = \det^{-1}(\mathbb{K} \setminus \{0\})$. Comme det est continue et que $\mathbb{K} \setminus \{0\}$ est un ouvert de \mathbb{K} , $GL_n(\mathbb{K})$ est ouvert.

Plus généralement, si $f \in \mathcal{C}(E, E')$, pour tout $c \in E'$, on a

- $-f^{-1}(\{c\})$ est un fermé de E.
- $-f^{-1}(E'\setminus\{c\})$ est un ouvert de E.

Théorème 4.23.

Soit $(f,g) \in \mathcal{C}(A,E')^2$, et $D \subset A$ où D est dense dans A. Alors :

$$f|_D = g|_D \implies f = g$$

Connexité par arcs

Définition (Chemin).

Un **chemin** de E est une application continue de [0,1] dans E.

Définition (Connexité par arcs).

Soit $C \in \mathcal{P}(E)$. C est **connexe par arcs** si pour tout $(a,b) \in C^2$, il existe un chemin γ tel que : $\begin{cases} \gamma(0) = a \\ \gamma(1) = b \\ \gamma\left([0,1]\right) \subset C \end{cases}$

 γ est un chemin qui joint a et b dans C.

Exemple. Si C est convexe, alors C est connexe par arcs : il suffit de prendre $\gamma(t) = (1-t)a + tb$.

Définition (Partie étoilée).

 $C \in \mathcal{P}(E)$ est **étoilée** s'il existe $c \in C$ tel que $\forall x \in C, [c, x] \subset C$.

On a alors : si C est étoilée, alors C est connexe par arcs. En effet, on joint a et b en passant par c.

Théorème 4.24. Dans \mathbb{R} , les parties connexes par arcs sont \emptyset et les intervalles.

Théorème 4.25. Soit $f \in \mathcal{C}(C, E')$ où $C \in \mathcal{P}(E)$. Si C est connexe par arcs, alors f(C) l'est aussi.

Théorème 4.26 (TVI généralisé).

- (H) Soit $f \in \mathcal{C}(C, \mathbb{R})$ où $C \in \mathcal{P}(E) \setminus \{\emptyset\}$ est connexe par arcs.
- (C) f(C) est un intervalle.

Exemple. Soit B une boule de $\mathcal{M}_n(\mathbb{R})$. L'ensemble $\{\det M \mid M \in B\}$ est un intervalle de \mathbb{R} car det est continue, et B est convexe donc connexe par arcs.

4.5. COMPACITÉ 55

4.5 Compacité

4.5.1 Ensembles compacts

Définition (Ensemble compact).

Soit $A \in \mathcal{P}(E)$. A est **compact** si toute suite de $A^{\mathbb{N}}$ possède une valeur d'adhérence dans A. De manière équivalente, A est compact si toute suite de $A^{\mathbb{N}}$ possède une sous-suite qui converge dans A.

C'est une notion invariante par changement de norme équivalente, donc intrinsèque en dimension finie.

Théorème 4.27. Si A est un ensemble compact, alors A est fermé et borné.

Théorème 4.28.

Soit A un compact et $B \subset A$ un fermé. Alors, B est compact.

Théorème 4.29. Une union finie de compacts est compacte.

Cons'equence. Toute partie finie de E est compacte, en tant que réunion fermée de singletons qui sont compacts.

Théorème 4.30.

Soit (E, N) l'espace vectoriel normé produit des $(E_i, N_i)_{1 \le i \le p}$. Soit A_i un compact de E_i , et on pose $A = A_1 \times \cdots \times A_p \in E$.

Alors, A est compact.

Théorème 4.31.

Soit A un compact et $(u_n) \in A^{\mathbb{N}}$. On a l'équivalence :

 (u_n) converge \iff (u_n) n'a qu'une valeur d'adhérence

Théorème 4.32 (Compacts de K). Les compacts de K sont les fermés bornés.

Exemple. Dans \mathbb{R} , les segments sont compacts. Dans \mathbb{C} , les disques fermés et les cercles (par exemple \mathbb{U}) sont compacts.

4.5.2 Compacité et continuité

Soit (E, N) et (E', N') deux espaces vectoriels normés.

Théorème 4.33.

Soit A une partie compacte de E et $f \in \mathcal{C}(A, E')$.

Alors f(A) est compact.

Théorème 4.34.

Soit A un compact de E non vide, et $f \in \mathcal{C}(A, \mathbb{R})$.

Alors f possède un minimum et un maximum.

Théorème 4.35 (de Heine).

Soit A un compact de E et $f \in \mathcal{C}(A, E')$.

Alors f est uniformément continue.

4.5.3 Preuve de l'équivalence des normes en dimension finie

Soit E un \mathbb{K} -espace vectoriel de dimension p.

Tout d'abord, il suffit de prouver le théorème sur \mathbb{K}^p . En effet, soit φ un isomorphisme de \mathbb{K}^p sur E. Si N est une norme sur E, alors $N \circ \varphi$ est une norme sur \mathbb{K}^p :

- $-(N \circ \varphi)(x) = 0 \Longrightarrow \varphi(x) = 0 \Longrightarrow x = 0$ par injectivité de φ .
- $-(N \circ \varphi)(\lambda x) = N(\varphi(\lambda x)) = N(\lambda \varphi(x)) = |\lambda|(N \circ \varphi)(x).$
- $-(N\circ\varphi)(x+y) = N[\varphi(x) + \varphi(y)] \le (N\circ\varphi)(x) + (N\circ\varphi)(y).$

Supposons le théorème démontré sur \mathbb{K}^p . Soit N et N' deux normes sur E. $N \circ \varphi$ et $N' \circ \varphi$ sont deux normes sur \mathbb{K}^p , donc elles sont équivalentes, d'où l'existence de $(\alpha, \beta) \in (\mathbb{R}_+^*)^2$ tels que $\alpha(N \circ \varphi) \leq N' \circ \varphi \leq \beta(N \circ \varphi)$. Ainsi, $\forall x \in \mathbb{K}^p$, $\alpha N(\varphi(x)) \leq N'(\varphi(x)) \leq \beta N(\varphi(x))$, ce qui devient par surjectivité de φ :

$$\forall y \in E, \ \alpha N(y) \le N'(y) \le \beta N(y)$$

Ainsi, on a bien $N \sim N'$.

Ensuite, il suffit de montrer que toute norme sur \mathbb{K}^p est équivalente à la norme \mathcal{N}_{∞} canonique. On se place dans l'espace vectoriel normé $(\mathbb{K}^p, \mathcal{N}_{\infty})$. Soit B'_{∞} sa boule unité fermée et S_{∞} sa sphère unité. Alors :

$$B'_{\infty} = \{ x \in \mathbb{K}^p \mid \mathcal{N}_{\infty}(x) \le 1 \}$$

= \{ x \in \mathbb{K}^p \ | \forall i \in \mathbb{I}_1, p \mathbb{I}_1, |x_i| \le 1 \}

Si $\mathbb{K} = \mathbb{R}$, alors $B'_{\infty} = [-1, 1]^p$. Si $\mathbb{K} = \mathbb{C}$, alors $B'_{\infty} = [D'(0, 1)]^p$. Or on sait que [-1, 1] (resp. D'(0, 1)) est un compact de \mathbb{R} (resp. de \mathbb{C}). Alors, comme un produit cartésien de compacts est compact, on en déduit que B'_{∞} est compacte.

 B'_{∞} est compacte, et S_{∞} est un fermé inclus dans B'_{∞} , donc S_{∞} est un compact. Soit N une norme quelconque sur \mathbb{K}^p . N est continue de $(\mathbb{K}^p, \mathcal{N}_{\infty})$ dans \mathbb{R} : en effet, soit $(x, y) \in (\mathbb{K}^p)^2$, on a:

$$|N(x) - N(y)| \le N(x - y)$$
 inégalité triangulaire pour N

4.5. COMPACITÉ 57

$$= N \left[\sum_{i=1}^{p} (x_i - y_i) \varepsilon_i \right] \quad (\varepsilon_i)_{1 \le i \le p} \text{ la base canonique}$$

$$\leq \sum_{i=1}^{p} |x_i - y_i| N(\varepsilon_i)$$

$$\leq \left[\sum_{i=1}^{p} N(\varepsilon_i) \right] \mathcal{N}_{\infty}(x - y)$$

On obtient donc que N est lipschitzienne, donc en particulier **continue**.

Donc $N|_{S_{\infty}}$ a un minimum α et un maximum β . Mais sur S_{∞} , N(x) > 0 car $0 \notin S_{\infty}$. **Donc** $\alpha > 0$.

On a donc : $\forall x \in S_{\infty}$, $0 < \alpha \le N(x) \le \beta$. Pour $x \in \mathbb{K}^p \setminus \{0\}$, $\frac{x}{\mathcal{N}_{\infty}(x)} \in S_{\infty}$, donc :

$$0 < \alpha \le N\left(\frac{x}{\mathcal{N}_{\infty}(x)}\right) \le \beta$$

$$\iff \alpha \le \frac{N(x)}{\mathcal{N}_{\infty}(x)} \le \beta$$

$$\iff \alpha \mathcal{N}_{\infty}(x) \le N(x) \le \beta \mathcal{N}_{\infty}(x)$$

Et cette inégalité reste vraie pour x=0, ainsi, comme $\alpha>0$ et $\beta>0$, on a :

$$\alpha \mathcal{N}_{\infty} \leq N \leq \beta \mathcal{N}_{\infty}$$

D'où:

$$N \sim \mathcal{N}_{\infty}$$

4.5.4 Complément sur la dimension finie

Théorème 4.36 (Bolzano-Weierstrass).

Soit E un \mathbb{K} -espace vectoriel de dimension finie.

Toute suite bornée de E possède une valeur d'adhérence (ou une sous-suite convergente).

Théorème 4.37.

Soit E un \mathbb{K} -espace vectoriel de dimension finie.

Les compacts de E sont **les** fermés bornés.

Exemple. En dimension finie, toute boule fermée, toute sphère est compacte.

Théorème 4.38.

Soit E un \mathbb{K} -espace vectoriel de dimension finie, et (u_n) une suite **bornée** de E. Si (u_n) n'a qu'une valeur d'adhérence, alors (u_n) converge.

Théorème 4.39.

Soit (E,N) un espace vectoriel normée quel conque. Soit $F\subset E$ un sous-espace vectoriel de dimension finie.

Alors F est fermé dans E. En particulier, si E est de dimension finie, tous les sous-espaces vectoriels de E sont fermés.

Chapitre 5

Suites et séries de fonctions

Dans ce chapitre, on considèrera A un ensemble non vide, F un \mathbb{K} -espace vectoriel de dimension finie, et $||\cdot||$ une norme sur F.

5.1 Convergence simple (ou ponctuelle)

Définition (Convergence simple, limite simple).

Soit (f_n) une suite de fonctions de A dans F. (f_n) converge simplement sur A si pour chaque $x \in A$, la suite $(f_n(x))$ converge dans F.

Dans ce cas, on peut définir $f: A \longrightarrow F$ $x \longmapsto \lim_{n \to +\infty} f_n(x)$. f est la **limite simple** de (f_n) .

On dira que (f_n) converge simplement vers f sur A, et on note : $f_n \xrightarrow{CS} f$. En résumé :

$$f_n \xrightarrow{\mathrm{CS}} f \iff \forall x \in A, \ f_n(x) \xrightarrow[n \to +\infty]{} f(x)$$

Propriétés qui passent à la limite simple :

- La croissance : si chaque f_n est croissante et si $f_n \xrightarrow{\text{CS}} f$, alors f est croissante.
- La convexité : si chaque f_n est convexe et si $f_n \xrightarrow{\text{CS}} f$, alors f est convexe.
- La T-périodicité **pour** T fixé.
- Le caractère k-lipschitzien pour k fixé.

Dans d'autre cas, la convergence simple ne permet pas le passage à la limite :

- Le caractère borné : considérons $f_n: \mathbb{R}_+^* \longrightarrow \mathbb{R}$. $x \longmapsto \frac{n}{1+nx}$
 - Chaque f_n est bornée car $0 \le f_n(x) \le n$, mais $f_n \xrightarrow{\text{CS}} \left(f: x \longmapsto \frac{1}{x}\right)$ qui n'est pas bornée.
- La continuité : considérons $f_n: [0,1] \longrightarrow \mathbb{R}$. $x \longmapsto x^n$

Alors $f_n \xrightarrow[[0,1]]{\text{CS}} \delta$ telle que $\delta(x) = \begin{cases} 1 & \text{si } x = 1 \\ 0 & \text{si } x \in [0,1[] \end{cases}$. Ainsi, chaque f_n est continue, mais δ est discontinue.

- L'intégrale. On définit f_n de la manière suivante : $f_n(0) = 0$, f_n est nulle sur $\left[\frac{2}{n}, 1\right]$, $f_n\left(\frac{1}{n}\right) = n^2$ et f_n est affine sur $\left[0, \frac{1}{n}\right]$ et sur $\left[\frac{1}{n}, \frac{2}{n}\right]$.

Alors, $f_n \xrightarrow[[0,1]]{\text{CS}} 0$, mais $\int_0^1 f_n = n \xrightarrow[n \to +\infty]{} +\infty$.

5.2 Convergence uniforme

5.2.1 La définition

Définition (Convergence uniforme, limite uniforme). (f_n) converge uniformément vers f sur A si :

$$\forall \varepsilon \in \mathbb{R}_{+}^{*}, \ \exists N \in \mathbb{N}, \ \forall x \in A, \ \forall n \geq N, \ ||f_{n}(x) - f(x)|| \leq \varepsilon$$

On dit que f est la **limite uniforme** de (f_n) , et on écrit : $f_n \xrightarrow{CU} f$.

Remarque. On a la suite d'équivalences :

$$f_n \xrightarrow{\mathrm{CU}} f \iff f_n - f \xrightarrow{\mathrm{CU}} 0 \quad (x \mapsto 0_F)$$

 $\iff ||f_n - f|| \xrightarrow{\mathrm{CU}} 0 \quad (x \mapsto 0_{\mathbb{R}}),$

où $||f_n - f||$ désigne la fonction : $A \longrightarrow \mathbb{R}$. $x \longmapsto ||f_n(x) - f(x)||$.

5.2.2 Lien avec la norme uniforme

Supposons d'abord que les f_n et f sont bornées. Alors :

$$f_n \xrightarrow{\text{CU}} f \iff \forall \varepsilon \in \mathbb{R}_+^*, \ \exists N \in \mathbb{N}, \ \forall n \geq N, \ \underbrace{\forall x \in A, \ ||f_n(x) - f(x)|| \leq \varepsilon}_{\mathcal{N}_{\infty}(f_n - f) \leq \varepsilon}$$

$$\underbrace{\mathcal{N}_{\infty}(f_n - f) \xrightarrow[n \to +\infty]{} 0}_{f_n \xrightarrow[n \to +\infty]{} f \text{ dans } (\mathcal{B}(A, F), \mathcal{N}_{\infty})}$$

Ainsi, dans $\mathcal{B}(A, F)$, la convergence uniforme est la convergence pour la norme uniforme.

 $\begin{aligned} \textit{Exemple}. & \text{ On considère } f_n: \ [0,1] \ \longrightarrow \ \mathbb{R} \\ x \ \longmapsto \ x^n \end{aligned}. & \text{ On a vu que } f_n \xrightarrow{\text{CS}} \delta \text{ telle que } \delta(x) = \begin{cases} 1 & \text{ si } x = 1 \\ 0 & \text{ si } x \in [0,1[\\ 0 & \text{ si } x = 1 \end{cases} \\ f_n \text{ et } \delta \text{ sont bornées, et } f_n(x) - \delta(x) = \begin{cases} x^n & \text{ si } x \in [0,1[\\ 0 & \text{ si } x = 1 \end{cases} \\ \text{ On en déduit } : \mathcal{N}_{\infty}(f_n - \delta) = 1 \underset{n \to +\infty}{\longleftrightarrow} 0. \text{ Donc, la convergence n'est pas uniforme.} \end{aligned}$

Dans le cas général, supposons que $f_n \xrightarrow{CU} f$. Alors d'après la définition, $f_n - f$ est bornée à partir d'un certain rang. D'où la propriété suivante :

Propriété. On suppose que $f_n \xrightarrow{\text{CU}} f$. Alors :

- $Si\ f_n\ est\ born\'ee\ à\ partir\ d'un\ certain\ rang,\ alors\ f\ est\ born\'ee.$
- $Si\ f$ est bornée, alors à partir d'un certain rang f_n est bornée.

Exemple. Considérons $f_n: \mathbb{R}^*_+ \longrightarrow \mathbb{R}$. On a vu que $f_n \xrightarrow{\mathrm{CS}} \left(f: x \longmapsto \frac{1}{x} \right)$.

On a donc f_n bornée, mais f ne l'est pas. Donc la convergence n'est pas uniforme.

En conclusion:

$$f_n \xrightarrow{\text{CU}} f \iff \begin{cases} \mathring{A} \text{ partir d'un certain rang, } f_n - f \text{ est born\'ee.} \\ \mathcal{N}_{\infty}(f_n - f) \underset{n \to +\infty}{\longrightarrow} 0. \end{cases}$$

5.2.3 Premiers résultats

Propriété. $Si \begin{cases} f_n \xrightarrow{CU} f \\ g_n \xrightarrow{CU} g \end{cases}$, $alors \lambda f_n + \mu g_n \xrightarrow{CU} \lambda f + \mu g$.

Propriété. On suppose que $f_n \xrightarrow{CU} f$. Soit $\varphi \in \mathcal{B}(A, \mathbb{K})$. Alors $\varphi f_n \xrightarrow{CU} \varphi f$.

Propriété (Caractérisation séquentielle de la convergence uniforme).

On suppose que $f_n \xrightarrow{\text{CU}} f$. Alors on a:

$$\forall (x_n) \in A^{\mathbb{N}}, \ f_n(x_n) - f(x_n) \xrightarrow{r \to +\infty} 0$$

Propriété (Critère usuel de convergence uniforme). On a l'équivalence suivante :

$$f_n \xrightarrow{\text{CU}} f \iff \begin{cases} \mathring{A} \text{ partir d'un certain rang, } \forall x \in A, ||f_n(x) - f(x)|| \leq \varepsilon_n \\ \varepsilon_n \xrightarrow[n \to +\infty]{} 0 \end{cases}$$

5.2.4 Deux exemples

1) <u>Un cas d'école</u>: $f_n: \mathbb{R}_+ \longrightarrow \mathbb{R}$. Il est évident que $f_n \xrightarrow{\mathrm{CS}} 0$. Mais la convergence $x \longmapsto xn^{-x}$

est-elle uniforme?

Ici, on va pouvoir calculer $\mathcal{N}_{\infty}(f_n)$ par étude de fonction. En effet, $f'_n(x) = n^{-x} - x(\ln n)n^{-x} = n^{-x}(1-x\ln n)$.

On remarque que f_1 n'est pas bornée. La fonction f_n est croissante sur $\left]-\infty, \frac{1}{\ln n}\right[$ et décroissante sur $\left]\frac{1}{\ln n}, +\infty\right[$. Elle admet le tableau de variation suivant :

On calcule donc : $\mathcal{N}_{\infty}(f_n) = f_n\left(\frac{1}{\ln n}\right) = \frac{1}{\ln n} \cdot n^{-\frac{1}{\ln n}} = \frac{1}{e \ln n}$. Ainsi, $\mathcal{N}_{\infty}(f_n) \underset{n \to +\infty}{\longrightarrow} 0$, et donc :

$$f_n \xrightarrow[\mathbb{R}_+]{\text{CU}} 0.$$

2) On considère $f_n: \mathbb{R} \longrightarrow \mathbb{R}$ $x \longmapsto n \sin\left(\frac{x}{n}\right)$

À x fixé, $f_n(x) \xrightarrow[n \to +\infty]{} x$, donc $f_n \xrightarrow[\mathbb{R}]{} \mathrm{id}_{\mathbb{R}}$. La convergence est-elle uniforme?

Méthode 1 : On remarque que chaque f_n est bornée, mais que $\mathrm{id}_{\mathbb{R}}$ ne l'est pas. Donc la convergence n'est pas uniforme.

convergence n est pas unnorme. <u>Méthode 2</u>: On trouve $(x_n) \in \mathbb{R}^{\mathbb{N}}$ telle que $f_n(x_n) - f(x_n) \underset{n \to +\infty}{\not\longrightarrow} 0$.

Prenons $x_n = n\pi$. Alors $f_n(n\pi) - n\pi = n\pi \not\longrightarrow_{n \to +\infty} 0$. Donc la convergence n'est pas uniforme.

Poursuivons tout de même : $f_n(x) - x = n\left(\sin\left(\frac{x}{n}\right) - \frac{x}{n}\right)$. Or $\forall t \in \mathbb{R}$, $|\sin(t) - t| \leq \frac{|t|^3}{6}$ (inégalité de Taylor-Lagrange à l'ordre 2 entre 0 et t).

(inégalité de Taylor-Lagrange à l'ordre 2 entre 0 et t).

Donc $|f_n(x) - x| \le \frac{n}{6} \left| \frac{x}{n} \right|^3 = \frac{|x|^3}{6n^2}$. Mais soit $A \in \mathbb{R}_+^*$, on a : $\forall n \in \mathbb{N}, \ \forall x \in [-A, A], \ |f_n(x) - x| \le \frac{A^3}{6n^2} \underset{n \to +\infty}{\longrightarrow} 0$. On en déduit :

$$\forall A \in \mathbb{R}_+^*, \ f_n \xrightarrow[-A,A]^{\mathrm{CU}} \mathrm{id}_{\mathbb{R}}$$

Ainsi, $f_n \xrightarrow{\text{CU}} \text{id}_{\mathbb{R}}$ si, et seulement si, X est un segment.

5.3 Convergence d'une série de fonctions

On considère ici $u_n:A\longrightarrow F$.

5.3.1 Convergence simple

Définition (Convergence simple d'une série de fonctions).

La série $\sum u_n$ converge simplement si pour tout $x \in A$, la série $\sum u_n(x)$ converge. On peut alors définir :

La somme
$$S: A \longrightarrow F$$
 et les restes $R_n: A \longrightarrow F$ $x \longmapsto \sum_{n=0}^{+\infty} u_n(x)$ $x \longmapsto \sum_{k=n+1}^{+\infty} u_k(x)$

De même que pour les suites de fonctions, on écrira $\sum u_n \stackrel{\text{CS}}{\xrightarrow{A}} S$, où $S = \sum_{n=0}^{+\infty} u_n$.

Remarque. Si $\sum u_n$ converge simplement sur A, alors $u_n \stackrel{\text{CS}}{\xrightarrow{A}} 0$ et $R_n \stackrel{\text{CS}}{\xrightarrow{A}} 0$.

Propriété. Si on pose $U_n = \sum_{k=0}^n u_k$, alors : $\sum u_n$ converge simplement sur A si, et seulement si, (U_n) converge simplement sur A.

5.3.2Convergence uniforme

Définition (Convergence uniforme d'une série de fonctions). La série $\sum u_n$ converge uniformément sur A si (U_n) converge uniformément sur A. En particulier, la convergence uniforme de $\sum u_n$ entraı̂ne sa convergence simple.

Propriété. Si $\sum u_n$ converge uniformément sur A, alors $u_n \stackrel{\text{CU}}{\xrightarrow{A}} 0$.

${ m Th\'eor\`eme}~5.1.$

On a les équivalences suivantes :

$$\sum u_n \text{ converge uniformément sur } A \iff \begin{cases} \sum u_n \text{ converge simplement sur } A \\ R_n \xrightarrow{\text{CU}} 0 \end{cases}$$

$$\iff \begin{cases} \sum u_n \text{ converge simplement sur } A \\ \text{La convergence de } R_n \text{ vers } 0 \text{ est uniforme} \end{cases}$$

Exemple (Séries de Riemann alternées). On considère $u_n: \mathbb{R}_+^* \longrightarrow \mathbb{R}$. $x \longmapsto \frac{(-1)^n}{n^x}$

On sait que $\sum u_n$ converge simplement sur \mathbb{R}_+^* par théorème des séries alternées. Ensuite, $|u_n(x)| = \frac{1}{n^x}$, donc $\mathcal{N}_{\infty}(u_n) = 1$, donc (u_n) ne converge pas uniformément vers 0 sur \mathbb{R}_+^* . À fortiori, $\sum u_n$ ne converge pas uniformément sur \mathbb{R}_+^* .

Poursuivons : par théorème des séries alternées, $|R_n(x)| \le \frac{1}{(n+1)^x}$. Fixons a > 0 : pour $x \ge a$, $|R_n(x)| \leq \frac{1}{(n+1)^a}$, qui est indépendant de x et tend vers 0 quand n tend vers $+\infty$.

Donc $R_n \xrightarrow[[0,+\infty[$ 0. Donc $\sum u_n$ converge uniformément sur $[a,+\infty[$ pour tout a>0.

5.3.3 Convergence normale

Définition (Convergence normale).

La série $\sum u_n$ converge normalement sur A si à partir d'un certain rang, u_n est bornée, et que $\sum \mathcal{N}_{\infty}(u_n)$ converge.

Théorème 5.2.

Si $\sum u_n$ converge normalement sur A, alors :

- $\sum u_n$ converge simplement absolument sur A i.e. $\forall x \in A, \sum u_n(x)$ converge absolument.
- $\sum u_n$ converge uniformément sur A.

Propriété (Critère usuel de convergence normale). On a l'équivalence suivante :

$$\sum u_n \ converge \ normalement \ sur \ A \iff \begin{cases} \grave{A} \ partir \ d'un \ certain \ rang, \ \forall x \in A, \ ||u_n(x)|| \leq a_n \\ \sum a_n \ converge \end{cases}$$

Exemple. Reprenons $u_n(x) = \frac{(-1)^n}{n^x}$ sur $[\alpha, +\infty[$ avec $0 < \alpha \le 1$. On a vu que $\sum u_n$ converge uniformément sur $[\alpha, +\infty[$. Mais $\sup_{x \in [\alpha, +\infty[} |u_n(x)| = \frac{1}{n^\alpha}$ qui est le **terme général d'une série** di**vergente** car $\alpha \in]0, 1]$. Donc, la convergence n'est pas normale sur $[\alpha, +\infty[$. Elle le serait cependant si $\alpha > 1$.

Exemple. Soit (f_n) une suite de fonctions quelconque de \mathbb{R} dans \mathbb{R} . On pose $u_n(x) = \frac{1}{n^2} \sin(f_n(x))$. Alors $||u_n(x)|| \leq \frac{1}{n^2}$, terme général d'une série convergente indépendant de x. Donc $\sum u_n$ converge normalement sur \mathbb{R} .

5.4 Convergence uniforme et passages aux limites

5.4.1 Continuité

On considère toujours F et $||\cdot||$ comme précédemment, et $A \in \mathcal{P}(E)$ où E est un espace vectoriel normé de dimension finie.

Théorème 5.3.

Soit (f_n) une suite de $\mathcal{F}(A, F)$. On suppose que $f_n \xrightarrow{CU} f$. Alors:

- (a) On fixe $a \in A$. Si chaque f_n est continue en a, f l'est aussi.
- (b) Si chaque f_n est continue, f l'est aussi.

Définition (Voisinage relatif).

Soit A une partie non vide de E et $a \in E$. V est un **voisinage relatif** de a dans A si, et seulement si, il est de la forme $A \cap V'$ où $V' \in \mathcal{V}(a)$. On écrira alors : $V \in \mathcal{V}_A(a)$.

Remarques.

- 1) Dans (a), il suffit en fait que $f_n \xrightarrow{\text{CU}} f$, où $V \in \mathcal{V}_A(a)$. En effet dans ce cas, le théorème appliqué aux $f_n|_V$ donne la continuité en a de $f|_V$. Ceci équivaut alors à la continuité en a de f (caractère local de la continuité).
- 2) Dans (b), il suffit que (f_n) converge localement uniformément vers f i.e. $\forall a \in A, \exists V \in \mathcal{V}_A(a), f_n \xrightarrow{\mathrm{CU}} f$.

Exemple. Soit A un intervalle de \mathbb{R} . On suppose les f_n continues sur A. Alors si (f_n) converge uniformément vers f sur tout segment de A, f est continue sur A.

- 3) Par contraposée, le théorème peut s'utiliser pour montrer qu'une convergence simple n'est pas uniforme $(f_n \text{ continues et } f \text{ discontinue})$.
- 4) Interprétation topologique : par caractérisation séquentielle des fermés on sait que $\mathcal{B}(A, F) \cap \mathcal{C}(A, F)$ est un fermé de $(\mathcal{B}(A, F), \mathcal{N}_{\infty})$. Ainsi, lorsque A est compact, $\mathcal{C}(A, F)$ est fermé dans $(\mathcal{B}(A, F), \mathcal{N}_{\infty})$.

Théorème 5.4 (Version série du théorème 5.3).

Soit $u_n: A \longrightarrow F$. On suppose que $\sum u_n \xrightarrow{\text{CU}} S$. Alors:

- a) On fixe $a \in A$. Si chaque u_n est continue en a, S l'est aussi.
- b) Si chaque u_n est continue, S l'est aussi.

Exemple (Continuité de ζ).

On pose $\forall x \in]1, +\infty[$, $\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$. On note $u_n(x) = \frac{1}{n^x}$. Chaque u_n est continue sur $]1, +\infty[$.

Soit alors $[a,b] \subset]1,+\infty[$. Pour $x \in [a,b]$, on a $0 \le u_n(x) \le \frac{1}{n^a}$, terme général d'une série convergente indépendant de x.

Ainsi, $\sum u_n$ converge normalement sur [a,b], donc $\sum u_n$ converge uniformément sur tout segment de $]1,+\infty[$. Donc ζ est continue par convergence uniforme locale.

<u>Digression</u>: Y a-t-il convergence uniforme sur]1, $+\infty$ [? Il est facile de montrer qu'il n'y a pas convergence normale sur]1, $+\infty$ [. Faisons une étude par les restes : $R_n(x) = \sum_{k=-1}^{+\infty} \frac{1}{k^x}$. On a :

$$R_n(x) = \sum_{k=n+1}^{+\infty} \frac{1}{k^x}$$

$$\geq \sum_{k=n+1}^{+\infty} \int_k^{k+1} \frac{1}{t^x} dt$$

$$= \int_{n+1}^{+\infty} \frac{dt}{t^x}$$

$$= \left[-\frac{1}{(x-1)t^{x-1}} \right]_{n+1}^{+\infty}$$
$$= \frac{1}{(x-1)(n+1)^{x-1}}$$

Ainsi, $R_n(x) \ge \frac{1}{(x-1)(n+1)^{x-1}}$. Or quand x tend vers 1, $\frac{1}{(x-1)(n+1)^{x-1}} \longrightarrow +\infty$. Donc $R_n(x) \xrightarrow[x \to 1]{} +\infty$. Ainsi, aucune fonction R_n n'est bornée, donc (R_n) ne converge pas uniformément vers 0 sur $]1, +\infty[$: $\sum u_n$ ne converge pas uniformément sur $]1, +\infty[$.

Limites 5.4.2

Théorème 5.5 (Double limite, interversion des limites).

- **(H)** Soit $f_n: A \longrightarrow F$. Soit $a \in \overline{A}$, ou $a = \pm \infty$ lorsque cela est possible. On suppose que $f_n \xrightarrow{CU} f$, et que chaque f_n admet en a une limite $\ell_n \in F$. (C) La suite (ℓ_n) converge vers une limite $\ell \in F$, et f admet ℓ pour limite en a. En résumé :

$$\underbrace{\lim_{x \to a} \left(\lim_{n \to +\infty} f_n(x) \right)}_{f(x)} = \lim_{n \to +\infty} \underbrace{\left(\lim_{x \to a} f_n(x) \right)}_{\ell_n}$$

Théorème 5.6 (Sommation des limites).

- (H) Soit $u_n: A \longrightarrow F$. On choisit a comme au théorème 5.5. On suppose que $u_n(x) \xrightarrow[x \to a]{} \lambda_n \in$
- F, et $\sum u_n \xrightarrow{\mathrm{CU}} S$. (C) $\sum \lambda_n$ converge et S admet $\sum_{n=0}^{+\infty} \lambda_n$ pour limite en a. En résumé :

$$\lim_{x \to a} \underbrace{\left(\sum_{n=0}^{+\infty} u_n(x)\right)}_{S(x)} = \sum_{n=0}^{+\infty} \underbrace{\left(\lim_{x \to a} u_n(x)\right)}_{\lambda_n}$$

Remarque. Par le caractère local de la limite, pour les deux théorèmes, on peut remplacer la convergence uniforme sur A par :

- la convergence uniforme sur un voisinage relatif de a dans A lorsque $a \in \overline{A}$,
- la convergence uniforme sur un $A \cap [M, +\infty]$ si $a = +\infty$,
- la convergence uniforme sur un $A \cap]-\infty, M]$ si $a=-\infty$.

Exemple. On revient à $u_n(x) = \frac{1}{n^x} \text{ sur }]1, +\infty[$. On sait que $\sum u_n \xrightarrow[]{1,+\infty[} \zeta$, et $u_n(x) \xrightarrow[x \to 1]{1} \frac{1}{n}$. Mais $\sum \frac{1}{n}$ diverge, donc par contraposée du théorème de sommation des limites, la convergence de $\sum u_n$ n'est pas uniforme sur $]1, +\infty[$, ni même sur]1, a] pour a > 1. (Cette preuve est beaucoup plus rapide que la précédente!)

Exemple. Pour $x \in \mathbb{R}$, on pose $f(x) = \sum_{n=1}^{+\infty} \frac{\operatorname{th}(x^n)}{2^n}$.

<u>Justification</u>: On pose $u_n(x) = \frac{\operatorname{th}(x^n)}{2^n}$. On fixe $x \in \mathbb{R}$. On a $|u_n(x)| \leq \frac{1}{2^n}$, donc par comparaison, $\sum u_n(x)$ converge absolument, donc f est bien définie.

Il se trouve que le majorant obtenu ne dépend pas de x, donc on a en même temps prouvé que $\sum u_n$ converge normalement donc uniformément sur \mathbb{R} .

Continuité de f: Chaque u_n étant continue par théorèmes généraux, f est continue.

$$\underline{\frac{\text{Calcul de } \lim_{x \to \pm \infty} f}{\text{Par le th\'eor\`eme } 5.6}} : \text{On a } u_n(x) \underset{x \to +\infty}{\longrightarrow} \frac{1}{2^n}, \text{ et } u_n(x) \underset{x \to -\infty}{\longrightarrow} \left(-\frac{1}{2}\right)^n.$$

5.4.3 Intégrales ordinaires et primitives

Théorème 5.7.

Soit $(f_n) \in \mathcal{CM}([a,b],F)^{\mathbb{N}}$. On suppose que $f_n \xrightarrow[a,b]{\text{CU}} f \in \mathcal{CM}([a,b],F)$. Alors:

$$\int_{a}^{b} f_{n} \xrightarrow[n \to +\infty]{} \int_{a}^{b} f$$

Théorème 5.8 (Intégration terme à terme).

Soit $(u_n) \in \mathcal{CM}([a,b],F)^{\mathbb{N}}$. On suppose que $\sum u_n$ converge uniformément sur [a,b] et que $\sum_{n=0}^{+\infty} u_n \in \mathcal{CM}([a,b],F)$. Alors :

$$\int_{a}^{b} \sum_{n=0}^{+\infty} u_n = \sum_{n=0}^{+\infty} \int_{a}^{b} u_n$$

Exemple. Calculer $I = \int_0^{2\pi} e^{e^{it}} dt$.

On écrit $I = \int_0^{2\pi} \left(\sum_{n=0}^{+\infty} \frac{e^{int}}{n!} \right) dt$. On note $u_n(t) = \frac{e^{int}}{n!}$, et on calcule $|u_n(t)| = \frac{1}{n!}$, terme général

d'une série convergente indépendant de t. Alors, $\sum u_n$ converge normalement donc $\sum u_n$ converge uniformément sur $[0, 2\pi]$. On peut donc intégrer terme à terme :

$$I = \sum_{n=0}^{+\infty} \left(\int_0^{2\pi} \frac{e^{int}}{n!} dt \right)$$
$$= \sum_{n=0}^{+\infty} \left(\frac{1}{n!} \underbrace{\int_0^{2\pi} e^{int} dt}_{2\pi\delta_{n,0}} \right)$$
$$= 2\pi$$

Théorème 5.9.

(H) Soit I un intervalle de \mathbb{R} . Soit $(f_n) \in \mathcal{C}(I,F)^{\mathbb{N}}$. On suppose que (f_n) converge uniformément sur tout segment vers f. On notera $f \xrightarrow{\text{CU}} f$. On fixe $a \in I$.

Soit p_n la primitive de f_n qui s'annule en a, et p la primitive de f qui s'annule en a. (C) $p_n \xrightarrow{\text{CU}} p$.

Théorème 5.10 (Primitivation terme à terme).

(H) Soit $(u_n) \in \mathcal{C}(I, F)^{\mathbb{N}}$. On suppose que $\sum u_n$ converge uniformément sur tout segment de I. Soit $a \in I$, et soit p_n la primitive nulle en a de u_n .

(C) $\sum p_n$ converge uniformément sur tout segment, et $\sum_{n=0}^{+\infty} p_n$ est la primitive nulle en a de

$$\sum_{n=0}^{+\infty} u_n.$$

Dérivées 5.4.4

Théorème 5.11.

(H) Soit I un intervalle de \mathbb{R} . Soit $(f_n) \in \mathcal{C}^1(I,F)^{\mathbb{N}}$. On suppose que :

$$\begin{cases} f_n \xrightarrow{\mathrm{CS}} g \\ f'_n \xrightarrow{\mathrm{CU}} g \in \mathcal{C}(I, F) \end{cases}$$

- 1) $f \in \mathcal{C}^1(I, F)$. 2) f' = g. 3) $f_n \xrightarrow{\text{CU}} f$.

Les conclusions 1 et 2 se réécrivent de la manière suivante : $\left(\lim_{n\to+\infty}f_n\right)'=\lim_{n\to+\infty}(f_n)'$.

Théorème 5.12 (Dérivation terme à terme).

(H) Soit $(u_n) \in \mathcal{C}^1(I,F)^{\mathbb{N}}$. On suppose que $\sum u_n$ converge simplement sur I et que $\sum u'_n$ converge uniformément sur tout segment de I.

- 1) $\sum_{n=0}^{+\infty} u_n \in \mathcal{C}^1(I, F).$ 2) $\left(\sum_{n=0}^{+\infty} u_n\right)' = \sum_{n=0}^{+\infty} u_n'.$

3) $\sum u_n$ converge uniformément sur tout segment.

Théorème 5.13.

(**H**) Soit I un intervalle de \mathbb{R} et $p \in \mathbb{N}^*$. Soit $(f_n) \in \mathcal{C}^p(I, F)^{\mathbb{N}}$. On suppose que :

$$\begin{cases} \forall k \in [0, p-1], \ f_n^{(k)} \xrightarrow{\text{CS}} g_k \\ f_n^{(p)} \xrightarrow{\text{CU}} g_p \end{cases}$$

On pose $f = g_0$.

- 1) $f \in \mathcal{C}^p(I, F)$. 2) $\forall k \in \llbracket 0, p \rrbracket, f^{(k)} = g_k$. 3) $\forall k \in \llbracket 0, p 1 \rrbracket, f_n^{(k)} \xrightarrow{\text{CU}} g_k$.

Théorème 5.14 (Dérivation terme à terme à l'ordre k).

(H) Soit $(u_n) \in \mathcal{C}^p(I,F)^{\mathbb{N}}$. On suppose que pour tout $k \in [0,p-1]$, $\sum u_n^{(k)}$ converge simplement sur I et que $\sum u_n^{(p)}$ converge uniformément sur tout segment de I.

1)
$$\sum_{n=0}^{+\infty} u_n \in \mathcal{C}^p(I, F).$$

2)
$$\forall k \in [0, p], \left(\sum_{n=0}^{+\infty} u_n\right)^{(k)} = \sum_{n=0}^{+\infty} u_n^{(k)}.$$

3) $\forall k \in [0, p-1], \sum u_n^{(k)}$ converge uniformément sur tout segment.

Exemple (Adaptation au cas \mathcal{C}^{∞}).

On pose $u_n(x) = \frac{1}{n^x}$. On veut montrer que $\zeta \in \mathcal{C}^{\infty}(]1, +\infty[, \mathbb{R})$.

On sait que chaque u_n est \mathcal{C}^{∞} sur $]1, +\infty[$, et :

$$\forall k \in \mathbb{N}, \ \forall x \in]1, +\infty[, \ u_n^{(k)} = \frac{(-\ln n)^k}{n^x}$$

Soit $[a,b] \subset]1, +\infty[$. Pour $x \in [a,b], |u_n^{(k)}(x)| = \frac{|\ln n|^k}{n^x} \le \frac{(\ln n)^k}{n^a}$. On fixe $\alpha \in]1, a[$. Alors:

$$\frac{(\ln n)^k}{n^{\alpha}} = \frac{(\ln n)^k}{n^{a-\alpha}} \cdot \frac{1}{n^{\alpha}} = o\left(\underbrace{\frac{1}{n^{\alpha}}}_{\text{TGSC}}\right)$$

Donc: $\sum \frac{(\ln n)^k}{n^a}$ converge, et donc $\sum u_n^{(k)}$ converge normalement donc uniformément sur tout segment de $]1, +\infty[$. Alors, le théorème 5.14 s'applique pour tout $p \in \mathbb{N}^*$. On en déduit :

$$\zeta \in \mathcal{C}^{\infty}(]1, +\infty[, \mathbb{R})$$
 et $\forall k \in \mathbb{N}, \ \forall x \in]1, +\infty[, \ \zeta^{(k)}(x) = \sum_{n=1}^{+\infty} \frac{(-\ln n)^k}{n^x}$

5.5 Approximation uniforme sur un segment

5.5.1 Introduction

On se place dans l'espace vectoriel normé $(\mathcal{B}([a,b],F), \mathcal{N}_{\infty})$. Étant donnés $f \in \mathcal{B}([a,b],F)$ et $P \subset \mathcal{B}([a,b],F)$, on a équivalence entre les propositions suivantes :

- 1) $f \in \overline{P}$.
- 2) f est uniformément approchable par des éléments de P i.e.

$$\forall \varepsilon \in \mathbb{R}_+^*, \ \exists \varphi \in P, \ \forall x \in [a, b], \ ||\varphi(x) - f(x)|| \le \varepsilon$$

Ou encore: $\forall \varepsilon \in \mathbb{R}_+^*, \exists \varphi \in P, \mathcal{N}_{\infty}(\varphi - f) \leq \varepsilon$.

3) f est limite uniforme sur [a, b] d'une suite d'éléments de P i.e.

$$\exists (\varphi_n) \in P^{\mathbb{N}}, \ \varphi_n \xrightarrow[[a,b]]{\text{CU}} f$$

5.5.2 Fonctions continues par morceaux et fonctions en escalier

Définition (Fonction en escalier).

Une fonction $\varphi : [a, b] \longrightarrow F$ est **en escalier** s'il existe une subdivision $\sigma = (x_i)_{0 \le i \le p}$ telle que $\varphi_{|]x_{i-1},x_i[}$ est constante.

Propriété. $\mathcal{E}([a,b],F)$ est un sous-espace vectoriel de $\mathcal{CM}([a,b],F)$. $\mathcal{E}([a,b],\mathbb{K})$ est une sous-algèbre de $\mathcal{CM}([a,b],\mathbb{K})$.

Théorème 5.15. On a l'inclusion :

$$\mathcal{CM}([a,b],F) \subset \overline{\mathcal{E}([a,b],F)}$$

C'est-à-dire : toute fonction continue par morceaux sur [a,b] est uniformément approchable par des fonctions en escalier.

Ou encore : toute fonction continue par morceaux sur [a,b] est limite uniforme d'une suite de fonctions en escalier.

5.5.3 Fonctions continues et fonctions polynômiales

Théorème [admis] (Weierstrass). On a l'égalité :

$$\overline{\operatorname{Pol}([a,b],\mathbb{K})} = \mathcal{C}([a,b],\mathbb{K})$$

C'est-à-dire : toute fonction continue sur [a, b] est uniformément approchable par des fonctions polynômiales, ou est limite uniforme d'une suite de fonctions polynômiales.