An Introduction of Sentence Embedding

Fan Jia

September 20, 2019

Contents

- Bag of Words(BOW)
- ② Deep Learning Methods
- Sentence2Vec
- Power Mean
- Attention
- Multi-task Learning

- Model based on Statistics
 - One-Hot
 - Bag of Words(BOW)
 - TF-IDF
- Model based on Word Vector
 - Average on Word Vector(Word2Vec, Glove, FastText)
 - Weighted Average based on TF-IDF

One-Hot

Figure: ont-hot encoding

Bag of Words(BOW)

Figure: Bag of Words encoding

Bag of Words(BOW)

Article ID	biolog	biopsi	biolab	biotin	almost	cancer-surviv	cancer-stage	Article Class breast-cancer	
00001	12	1	2	10	0	1	4		
00002	10	1	0	3	0	6	1	breast-cancer	
00014	4	1	1	1	0	28	0	breast-cancer	
00063	4	0	0	0	0	18	7	breast-cancer	
00319	0	1	0	9	0	20	1	breast-cancer	
00847	7	2	0	14	0	11	5	breast-cancer	
03042	3	1	3	1	0	19	8	lung-cancer	
05267	4	4	2	6	0	14	11	lung-cancer	
05970	8	0	4	9	0	9	17	lung-cancer	
30261	1	0	0	11	0	21	1	prostate-cancer	
41191	9	0	5	14	0	11	1	prostate-cancer	
52038	6	1	1	17	0	19	0	prostate-cancer	
73851	1	1	8	17	0	17	3	prostate-cancer	

Figure: frequency matrix

Bag of Words(BOW)

Figure: Bag of Words Encoding

- TF-IDF(Term Frequency–Inverse Document Frequency)
 - TF: Term Frequency

$$TF(t) = \frac{Number\ of\ times\ term\ t\ appears\ in\ a\ document}{Total\ number\ of\ terms\ in\ the\ document}$$

• IDF: Inverse Document Frequency

$$IDF(t) = log \frac{Total\ number\ of\ documents}{Number\ of\ documents\ with\ term\ t\ in\ it}$$

- Pros and Cons
 - Pros
 Fast calculation
 - Cons
 Poor performance in Sentiment Analysis because of the omission of words' order

- Deep Averaging Network(DAN)
- CNN for Sentence Modeling
- RNN for Sentence Modeling

 Deep Averaging Network(DAN): comparable sentiment accuracies to syntactic functions

Figure 1: On the left, a **RecNN** is given an input sentence for sentiment classification. Softmax layers are placed above every internal node to avoid vanishing gradient issues. On the right is a two-layer **DAN** taking the same input. While the **RecNN** has to compute a nonlinear representation (purple vectors) for every node in the parse tree of its input, this **DAN** only computes two nonlinear layers for every possible input.

Reference: ACL, Deep Unordered Composition Rivals Syntactic Methods for Text Classification, 2015

 Deep Averaging Network(DAN): comparable sentiment accuracies to syntactic functions

Figure 1: On the left, a **RecNN** is given an input sentence for sentiment classification. Softmax layers are placed above every internal node to avoid vanishing gradient issues. On the right is a two-layer **DAN** taking the same input. While the **RecNN** has to compute a nonlinear representation (purple vectors) for every node in the parse tree of its input, this **DAN** only computes two nonlinear layers for every possible input.

https://github.com/miyyer/dan keras:https://github.com/aravindsiv/dan_qa

CNN for Sentence Modeling

Reference:Kim Y. Convolutional neural networks for sentence classification[J]. arXiv preprint arXiv:1408.5882, 2014.

- CNN for Sentence Modeling
 - Input Layer $(n \times k)$
 - static
 - non static:BP fine tune
 - Convolution Layer($h \times k$)
 - Feature Map
 - Pooling layer
 - Max-over-time Pooling
 - Fully Connected Layer(FC) + Softmax
 - Softmax
 - Dropout(Dropout=0.5, L2<=3)

https://github.com/yoonkim/CNN_sentence

- RNN for Sentence Embedding
 - RNN for Long Term Sequence Modeling
 - LSTM(Long-Short Term Memory)

Figure: LSTM

- Pros and Cons
 - Capture the features of sequence
 - supervised task
 - inefficiently transferrable

Figure: RNN

2017 Supervised Learning of Universal Sentence Representations from Natural Language Inference Data https://blog.csdn.net/triplemeng/article/details/82106615

Doc2Vec

- Doc2Vec(Paragraph2Vec, Sentence Embeddings)
 - PV-DM Distributed Memory Model of paragraph vector
 - similar to CBOW of Word2Vec
 - PV-DBOW Distributed Bag of Words of parageaph vector
 - similar to Skip-Gram of Word2Vec
 - gensim.models.doc2vec

https://cs.stanford.edu/~quocle/paragraph_vector.pdf

Doc2Vec

PV-DM Distributed Memory Model of paragraph vector

Doc2Vec

• PV-DBOW Distributed Bag of Words of parageaph vector

- SIF(Smooth Inverse Frequency)
- Skip-though Vectors
- Quick-Thought Vectors

SIF(Smooth Inverse Frequency)

Algorithm 1 Sentence Embedding

Input: Word embeddings $\{v_w: w \in \mathcal{V}\}$, a set of sentences \mathcal{S} , parameter a and estimated probabilities $\{p(w): w \in \mathcal{V}\}$ of the words.

Output: Sentence embeddings $\{v_s : s \in \mathcal{S}\}$

- 1: for all sentence s in S do
- 2: $v_s \leftarrow \frac{1}{|s|} \sum_{w \in s} \frac{a}{a + p(w)} v_w$
- 3: end for
- 4: Form a matrix X whose columns are $\{v_s : s \in \mathcal{S}\}$, and let u be its first singular vector
- 5: for all sentence s in S do
- 6: $v_s \leftarrow v_s uu^\top v_s$
- 7: end for

https://github.com/peter3125/sentence2vec

Skip-though Vectors(NIPS15)

https://github.com/tensorflow/models/tree/master/research/skip_thoughts

Quick-Thought Vectors(2018)

(a) Conventional approach

(b) Proposed approach

https://arxiv.org/pdf/1803.02893.pdf

Quick-Thought Vectors(2018): outperform and fast

Power Mean

Power Mean(2018):much harder-to-beat baseline

$$\left(\frac{x_1^p + \dots + x_n^p}{n}\right)^{1/p}; \quad p \in \mathbb{R} \cup \{\pm \infty\}$$

for a sequence of numbers (x_1,\ldots,x_n) . This generalized form retrieves many well-known means such as the arithmetic mean (p=1), the geometric mean (p=0), and the harmonic mean (p=-1). In the extreme cases, when $p=\pm\infty$, the power mean specializes to the minimum $(p=-\infty)$ and maximum $(p=+\infty)$ of the sequence.

$$\mathbf{s}^{(i)} = H_{p_1}(\mathbf{W}^{(i)}) \oplus \cdots \oplus H_{p_K}(\mathbf{W}^{(i)})$$

https:

//github.com/UKPLab/arxiv2018-xling-sentence-embeddings

Power Mean

• Power Mean(2018):much harder-to-beat baseline

Model	Σ	AM	AC	CLS	MR	CR	SUBJ	MPQA	SST	TREC
Arithmetic mean										
GloVe (GV)	77.2	50.0	70.3	76.6	77.1	78.3	91.3	87.9	80.2	83.4
GoogleNews (GN)	76.1	50.6	69.4	75.2	76.3	74.6	89.7	88.2	79.9	81.0
Morph Specialized (MS)	73.5	47.1	64.6	74.1	73.0	73.1	86.9	88.8	78.3	76.0
Attract-Repel (AR)	74.1	50.3	63.8	75.3	73.7	72.4	88.0	89.1	78.3	76.0
$GV \oplus GN \oplus MS \oplus AR$	79.1	53.9	71.1	77.2	78.2	79.8	91.8	89.1	82.8	87.6
power mean [p-values]										
$GV[-\infty,1,\infty]$	77.9	54.4	69.5	76.4	76.9	78.6	92.1	87.4	80.3	85.6
$GN[-\infty, 1, \infty]$	77.9	55.6	71.4	75.8	76.4	78.0	90.4	88.4	80.0	85.2
$MS[-\infty, 1, \infty]$	75.8	52.1	66.6	73.9	73.1	75.8	89.7	87.1	79.1	84.8
$AR[-\infty,1,\infty]$	77.6	55.6	68.2	75.1	74.7	77.5	89.5	88.2	80.3	89.6
$GV \oplus GN \oplus MS \oplus AR [-\infty, 1, \infty]$	80.1	58.4	71.5	77.0	78.4	80.4	<u>93.1</u>	88.9	83.0	90.6
\rightarrow with z-norm [†]	81.1	60.5	<u>75.5</u>	77.3	78.9	80.8	93.0	89.5	83.6	<u>91.0</u>
Baselines										
GloVe + SIF	76.1	45.6	72.2	75.4	77.3	78.6	90.5	87.0	80.7	78.0
Siamese-CBOW	60.7	42.6	45.1	66.4	61.8	63.8	75.8	71.7	61.9	56.8
Sent2Vec	78.0	52.4	72.7	75.9	76.3	80.3	91.1	86.6	77.7	88.8
InferSent	81.7	60.9	72.4	78.0	81.2	86.7	92.6	90.6	85.0	88.2

Other Methods

- Attention-based Models
 - self-attention
 - Learning Sentence Representation with Guidance of Human Attention IJCAI
 - Hierarchical Attention
- Multi-task Learning
 - Multi-task Learning
 - Universal Sentence Encode(Google)
- from Conversations