# 人工智能

# Square loss 与 logistic loss 的比较

# 孔静-2014K8009929022

October 23, 2016

# Contents

| 1 | 问题                      |                      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 2                |
|---|-------------------------|----------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|------------------|
| 2 | 分析<br>2.1<br>2.2        | 线性回归<br>逻辑回归         |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 2<br>2<br>2      |
| 3 | 结果<br>3.1<br>3.2<br>3.3 | 无异常点<br>有异常点<br>分析结果 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 3<br>3<br>3<br>3 |

## 1 问题

构造 X 为 2 维的 2 分类数据 (0, 1), 计算线性分类的直线和 Logistic Regression 的分类直线 (考虑正则化 L2), 说明 Logistic Regression 的鲁棒性

## 2 分析

#### 2.1 线性回归

估计函数

$$h(x) = h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 = \theta^T X, (x_0 = 1)$$

损失函数

$$J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \left[ h_{\theta}(x^{(i)}) - y^{(i)} \right]^{2}$$

选取梯度下降法

$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta) = \theta_j - \frac{\alpha}{n} \sum_{i=1}^n [h_{\theta}(x_i) - y_i] x_i^j$$

得到结果

#### 2.2 逻辑回归

假设函数

$$h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T} x}$$
  
 $g(z) = \frac{1}{1 + e^{-z}}$ 

损失函数

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} \text{Cost}(h_{\theta}(x_i), y_i)$$
  
=  $-\frac{1}{n} \sum_{i=1}^{n} [y_i \log h_{\theta}(x_i) + (1 - y_i) \log(1 - h_{\theta}(x_i))]$ 

L2 正则化的损失函数

$$J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} \left[ h_{\theta}(x^{(i)}) - y^{(i)} \right]^{2} + C \sum_{i=1}^{n} \theta_{j}^{2}$$

梯度下降法

$$\theta_j = \theta_j - \alpha \frac{\delta}{\delta_{\theta_j}} J(\theta) = \theta_j - \frac{\alpha}{n} \left( \sum_{i=1}^n \left( h_{\theta}(x_i) - y_i \right) x_i^{(j)} - C\theta_j \right)$$

得到结果

# 3 结果

## 3.1 无异常点



#### 3.2 有异常点



## 3.3 分析结果

黄点为异常点,正常数据为绿点和蓝点,绿点和黄点同为 class1 类,蓝点为 class0 类,红线为线性回归,紫线为逻辑回归。从下两图,可明显看出,当不加入异常点时,两者均与实际差不多;加入异常点时,线性回归偏转较大,并不正确,逻辑回归因为异常数据有偏转,但仍能体现数据分布,可见其鲁棒性。