Application No.: 10/058,215
Office Action Dated: May 25, 2004

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1. (Currently Amended) A compound having the Formula IV:

wherein:

R¹, R², R³, R⁴ and R⁵ independently represent hydrogen, halogen, alkyl, aryl, aralkyl, heteroaryl or heteroarylalkyl;

R⁶, R⁷, R⁸ and R⁹ independently represent hydrogen, alkyl, hydroxyalkyl, aminoalkyl, monoalkylaminoalkyl, dialkylaminoalkyl, carboxyalkyl, aryl or aralkyl;

or R^6 and R^7 are taken together to form -(CH₂)_p-, where p is 2-8, while R^8 and R^9 are defined as above; or R^8 and R^9 are taken together to form -(CH₂)_q-, where q is 2-8, while R^6 and R^7 are defined as above; or R^6 and R^8 are taken together to form -(CH₂)_r-, while r is zero (a bond), 1 or 2, while R^7 and R^9 are defined as above;

X represents oxygen, sulfur, -CH₂-, -NH-, -(C=O)NH- or -NH(C=O)-;

n is from 0 to 4;

m is from 0 to 4;

a is 0 or 1;

D represents oxygen;

v is 0 or 1;

R¹⁰, R¹¹, R¹² and R¹³ independently represent: hydrogen; hydroxy; alkyl; alkoxy; cycloalkyl; aryl, optionally substituted with one or more of halogen, hydroxy, cyano, alkyl, aryl, alkoxy, haloalkyl, arylalkoxy, aryloxy, alkylsulfonyl, alkylsulfinyl, alkylalkoxyaryl, monoalkylamino, dialkylamino, aminoalkyl, monoalkylaminoalkyl,

DOCKET NO.: 3DP-0418 (1030002) **Application No.:** 10/058,215 **Office Action Dated:** May 25, 2004

dialkylaminoalkyl, alkanoyl; monoalkylamino; dialkylamino; aminoalkyl; monoalkylaminoalkyl; dialkylaminoalkyl; alkanoyl; heteroaryl having 5-14 ring members, optionally substituted with one or more of halogen, hydroxy, cyano, alkyl, aryl, alkoxy, haloalkyl, arylalkyl, arylalkoxy, aryloxy, alkylsulfonyl, alkylsulfinyl, alkylalkoxyaryl, monoalkylamino, dialkylamino, aminoalkyl, monoalkylaminoalkyl, dialkylaminoalkyl, alkanoyl; or

wherein R¹⁷ and R¹⁸ together form -CH₂CH₂-O-, -O-CH₂CH₂-, -O-CH₂-O- or -O-CH₂CH₂-O-; or

 R^{10} and R^{12} are taken together to form -(CH₂)_s-, wherein s is 0 (a bond) or 1 to 4, while R^{11} and R^{13} are as defined as above; or R^{10} and R^{12} are taken together to form a double bond when i is 0 and k is 1, while R^{11} and R^{13} are as defined above; or R^{10} and R^{11} are taken together to form -(CH₂)_t-, wherein t is 2 to 8, while R^{12} and R^{13} are as defined as above, or R^{12} and R^{13} are taken together to form -(CH₂)_u- wherein u is 2 to 8, while R^{10} and R^{11} are as defined as above;

i is from 0 to 4; j is from 0 to 4;

k is 0 or 1;

R¹⁴ is hydrogen, or a functionality that acts as a prodrug, including alkyl, aryl, aralkyl, dialkylaminoalkyl, 1-morpholinoalkyl, 1-piperidinylalkyl, pyridinylalkyl, alkoxy(alkoxy) alkoxyalkyl, or (alkoxycarbonyl)oxyethyl;

W is:

wherein:

 R^{16} is hydrogen, alkyl, haloalkyl or halogen; and

Page 3 of 19

DOCKET NO.: 3DP-0418 (1030002) **Application No.:** 10/058,215

Office Action Dated: May 25, 2004

R²⁷, R²⁸, and R²⁹ are independently hydrogen, halogen, alkyl, alkoxy or aryl.

- 2. (Original) The compound of claim 1, wherein R¹⁴ is a prodrug, selected from the group consisting of: alkyl, aryl, aralkyl, dialkylaminoalkyl, 1-morpholinoalkyl, 1-piperidinylalkyl, pyridinylalkyl, alkoxy(alkoxy) alkoxyalkyl, or (alkoxycarbonyl)oxyethyl.
- 3. (Previously Presented) The compound of claim 1, wherein:

 R^1 , R^2 , R^3 , R^4 and R^5 independently represent hydrogen, halogen, (C_{1-8}) alkyl, (C_{6-10}) aryl, (C_{6-10}) ar (C_{1-8}) alkyl, 5-14 member heteroaryl, or 5-14 member heteroaryl (C_{1-8}) alkyl;

 R^6 , R^7 , R^8 and R^9 independently represent hydrogen, (C_{1-8}) alkyl, hydroxy (C_{1-8}) alkyl, amino (C_{1-8}) alkyl, mono (C_{1-8}) alkylamino (C_{1-8}) alkyl, di (C_{1-8}) alkyl, di (C_{1-8}) alkyl, carboxy (C_{1-8}) alkyl, (C_{6-10}) aryl or (C_{6-10}) aryl or (C_{1-8}) alkyl;

or R^6 and R^7 are taken together to form -(CH₂)_p-, where p is 2-8, while R^8 and R^9 are defined as above; or R^8 and R^9 are taken together to form -(CH₂)_q-, where q is 2-8, while R^6 and R^7 are defined as above; or R^6 and R^8 are taken together to form -(CH₂)_r-, while r is zero (a bond), 1 or 2, while R^7 and R^9 are defined as above;

X represents oxygen, sulfur, -CH₂-, -NH-, -(C=O)NH- or -NH(C=O)-; n is from 0 to 4; m is from 0 to 4; a is from 0 or 1;

D represents oxygen;

v is from 0 or 1;

 R^{10} , R^{11} , R^{12} and R^{13} independently represent: hydrogen; hydroxy; (C_{1-8}) alkyl; (C_{1-8}) alkoxy; (C_{3-8}) cycloalkyl; (C_{6-10}) aryl, optionally substituted with one or more of halogen, hydroxy, cyano, (C_{1-8}) alkyl, (C_{6-10}) aryl, (C_{1-8}) alkoxy, halo (C_{1-8}) alkyl, (C_{6-10}) aryl (C_{1-8}) alkyl, (C_{6-10}) aryl (C_{1-8}) alkylsulfinyl, (C_{1-8}) alkylsulfinyl, (C_{1-8}) alkylsulfinyl, (C_{1-8}) alkylamino, di (C_{1-8}) alkylamino, amino (C_{1-8}) alkyl, mono (C_{1-8}) alkylamino (C_{1-8}) alkylamino (C_{1-8}) alkylamino; di (C_{1-8}) alkylamino; amino (C_{1-8}) alkyl (C_{1-8}) alkylamino (C_{1-8}) alkylamino (C_{1-8}) alkyl (C_{1-8}) alkylamino (C_{1-8}) alkyl (C_{1-8}) alky

DOCKET NO.: 3DP-0418 (1030002) **Application No.:** 10/058,215 **Office Action Dated:** May 25, 2004

8) alkoxy, halo(C_{1-8}) alkyl, (C_{6-10}) aryl(C_{1-8}) alkyl, (C_{6-10}) aryl(C_{1-8}) alkoxy, (C_{6-10}) aryloxy, (C_{1-8}) alkylsulfonyl, (C_{1-8}) alkylsulfinyl, (C_{1-8}) alkoxy(C_{6-10}) aryl(C_{1-8}) alkyl, mono(C_{1-8}) alkylamino, amino(C_{1-8}) alkyl, mono(C_{1-8}) alkylamino(C_{1-8}) alkyl, di(C_{1-8}) alkylamino(C_{1-8}) alkyl, (C_{1-8}) alk

wherein R¹⁷ and R¹⁸ together form -CH₂CH₂-O-, -O-CH₂CH₂-, -O-CH₂-O- or -O-CH₂CH₂-O-; or

 R^{10} and R^{12} are taken together to form -(CH₂)_s-, wherein s is 0 (a bond) or 1 to 4, while R^{11} and R^{13} are as defined as above; or R^{10} and R^{12} are taken together to form a double bond when i is 0 and k is 1, while R^{11} and R^{13} are as defined above; or R^{10} and R^{11} are taken together to form -(CH₂)_t-, wherein t is 2 to 8, while R^{12} and R^{13} are as defined as above, or R^{12} and R^{13} are taken together to form -(CH₂)_u- wherein u is 2 to 8, while R^{10} and R^{11} are as defined as above; or

i is from 0 to 4;

j is from 0 to 4; and

k is 0 or 1;

R¹⁴ is hydrogen or a functionality that acts as a prodrug;

W is:

wherein:

 R^{16} is hydrogen, (C_{1-8}) alkyl, halo (C_{1-8}) alkyl or halogen;

 R^{27} , R^{28} , and R^{29} are independently hydrogen, halogen, (C₁₋₈)alkyl, (C₁₋₈) alkoxy, or (C₆₋₁₀)aryl.

DOCKET NO.: 3DP-0418 (1030002) **Application No.:** 10/058,215 **Office Action Dated:** May 25, 2004

- 4. (Original) The compound of claim 1, wherein R^1 and R^2 independently represent hydrogen, halogen, (C_{1-6}) alkyl, (C_{6-10}) aryl, (C_{6-10}) aryl, (C_{1-6}) alkyl, 5-14 member heteroaryl, or 5-14 member heteroaryl (C_{1-8}) alkyl.
- 5. (Original) The compound of claim 4, wherein R¹ and R² independently represent hydrogen, methyl, ethyl, propyl, butyl, phenyl, benzyl or phenylethyl.
- 6. (Original) The compound of claim 5, wherein R^1 and R^2 independently represent hydrogen, methyl, ethyl or propyl.
- 7. (Original) The compound of claim 1, wherein R^3 , R^4 and R^5 independently represent hydrogen, (C_{1-6}) alkyl, (C_{6-10}) aryl, or (C_{6-10}) aryl, or (C_{1-6}) alkyl.
- 8. (Original) The compound of claim 7, wherein R^3 , R^4 and R^5 are hydrogen or (C_{1-4}) alkyl.
- 9. (Original) The compound of claim 1, wherein R^6 , R^7 , R^8 and R^9 independently represent hydrogen, halogen or (C_{1-6}) alkyl.
- 10. (Original) The compound of claim 1, wherein X is oxygen, -CH₂- or -(C=O)NH-.
- 11. (Original) The compound of claim 10, wherein X is oxygen or -CH₂-.
- 12. (Previously Presented) The compound of claim 1, wherein W is:

wherein:

 R^{16} is hydrogen, (C_{1-8}) alkyl, halo (C_{1-8}) alkyl or halogen; and R^{27} , R^{28} , and R^{29} are hydrogen, halogen, (C_{1-8}) alkyl, (C_{1-8}) alkoxy, or (C_{6-10}) aryl. Page 6 of 19

DOCKET NO.: 3DP-0418 (1030002)

Application No.: 10/058,215

Office Action Dated: May 25, 2004

13. (Previously Presented) The compound of claim 1, wherein W is

wherein:

 R^{16} is hydrogen, (C_{1-8}) alkyl, halo (C_{1-8}) alkyl or halogen; and R^{27} , R^{28} , and R^{29} are hydrogen, halogen, (C_{1-8}) alkyl, (C_{1-8}) alkoxy, or (C_{6-10}) aryl.

14. (Previously Presented) The compound of claim 13, wherein W is

- 15. (Original) The compound of claim 1, wherein R^{10} , R^{11} , R^{12} and R^{13} independently represent: hydrogen; hydroxy, (C_{1-12}) alkyl; (C_{3-6}) cycloalkyl; or (C_{6-10}) aryl, optionally substituted with one or more of halogen, hydroxy, cyano, (C_{1-8}) alkyl, (C_{6-10}) aryl, (C_{1-8}) alkoxy, halo (C_{1-8}) alkyl, (C_{6-10}) aryl (C_{1-8}) alkyl, (C_{6-10}) aryl (C_{1-8}) alkyl, (C_{6-10}) aryloxy.
- 16. (Original) The compound of claim 1, wherein R^{10} , R^{11} , R^{12} and R^{13} independently represent a heteroaryl having 5-14 ring members, optionally substituted with one or more of halogen, hydroxy, cyano, (C_{1-8}) alkyl, (C_{1-8}) alkoxy (C_{6-10}) aryl, (C_{1-8}) alkoxy, halo (C_{1-8}) alkyl, (C_{6-10}) aryl (C_{1-8}) alkyl, (C_{6-10}) aryl (C_{1-8}) alkyl, (C_{6-10}) aryl (C_{1-8}) alkylsulfinyl, (C_{1-8}) alkylamino, (C_{1-8}) alkylamino (C_{1-8}) alkylamino, di (C_{1-8}) alkylamino (C_{1-8}) alkyl, or carboxy (C_{1-8}) alkyl; or

Page 7 of 19

Application No.: 10/058,215

Office Action Dated: May 25, 2004

wherein R^{17} and R^{18} together form -CH₂CH₂-O-, -O-CH₂CH₂-, -O-CH₂-O- or -O-CH₂CH₂-O-.

17. (Original) The compound of claim 1, wherein R^{12} and R^{13} are independently thiazolyl, benzofuranyl,

PATENT

$$(R^{32})_b$$
 or $(R^{33})_b$

wherein:

b is from 0 to 4;

 R^{32} is halogen, (C_{1-6}) alkyl, halo (C_{1-6}) alkyl, (C_{1-6}) alkoxy,

(C₁₋₆)alkoxy(C₁₋₆)alkyl or halo(C₁₋₆)alkoxy;

R³³ is halogen; and

 R^{34} is (C_{1-6}) alkyl, hydroxy or (C_{1-6}) alkoxy, or

two of R³², or two of R³³, or one of R³³ and R³⁴, when attached to adjacent carbon atoms, may together form a ring, wherein the ring formed is an aliphatic, aryl or heteroaryl ring, each of which may be optionally substituted by one or more of halogen, hydroxy, cyano, alkyl, aryl, alkoxy, haloalkyl, arylalkyl, arylalkoxy, aryloxy, alkylsulfonyl, alkylsulfinyl, alkoxyarylalkyl, monoalkylamino, dialkylamino, aminoalkyl, monoalkylaminoalkyl, dialkylamino; dialkylamino; aminoalkyl; monoalkyl; dialkylaminoalkyl; alkanoyl.

- 18. (Original) The compound of claim 1, wherein R^{10} and R^{12} are taken together to form a double bond where i is 0 and k is 1, and R^{11} and R^{13} are each hydrogen.
- 19. (Original) The compound of claim 1, wherein R¹⁰ is an optionally substituted aryl or an optionally substituted heteroaryl.
- 20. (Original) The compound of claim 1, wherein i and i are each 0.

DOCKET NO.: 3DP-0418 (1030002) **Application No.:** 10/058,215

Office Action Dated: May 25, 2004

21. (Original) The compound of claim 1, wherein k is 1.

- 22. (Original) The compound of claim 1, wherein R¹⁴ is hydrogen.
- 23. (Original) The compound of claim 1, wherein i and j are each zero; k is one; R^{10} , R^{11} and R^{12} are each hydrogen; and R^{13} is hydrogen, (C_{1-6}) alkyl, (C_{6-10}) aryl or (C_{6-10}) ar(C_{1-4})alkyl.
- 24. (Previously Presented) The compound of claim 1, wherein:

 R^1 is hydrogen or (C_{1-4}) alkyl;

 R^2 , R^3 , R^4 , and R^5 are hydrogen or (C_{1-4})alkyl;

 R^6 , R^7 , R^8 and R^9 are hydrogen or (C_{1-4}) alkyl;

X is oxygen or -CH₂-;

n is 0 or 1;

m is 0 or 1;

 R^{10} , R^{11} , R^{12} and R^{13} independently represent hydrogen, (C_{1-6}) alkyl or (C_{6-10}) ar (C_{1-6}) alkyl; or

one of the combination R¹⁰ and R¹¹, R¹² and R¹³ or R¹⁰ and R¹² are taken together to form -(CH₂)_s-, wherein s is 1 or 2 while the remaining of R¹⁰-R¹³ are as defined above;

i is 0 or 1;

j is 0 or 1;

k is 0 or 1;

R¹⁴ is hydrogen, C₁₋₆ alkyl or benzyl;

W is:

wherein:

 R^{16} is hydrogen, (C_{1-8}) alkyl, halo (C_{1-8}) alkyl or halogen; and R^{27} , R^{28} , and R^{29} are hydrogen, halogen, (C_{1-8}) alkyl, (C_{1-8}) alkoxy, or (C_{6-10}) aryl.

Page 9 of 19

Application No.: 10/058,215

Office Action Dated: May 25, 2004

- 25. (Original) The compound of claim 24, wherein R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 , R^9 , R^{11} , R^{12} , R^{13} and R^{14} are hydrogen.
- 26. (Original) The compound of claim 1, wherein R^{10} and R^{11} are taken together to form $(CH_2)_t$ -, where t is 2 to 5 and R^{12} and R^{13} are each hydrogen.
- 27. (Original) The compound of claim 1, wherein R^{12} and R^{13} are taken together to form $(CH_2)_{u}$ -, where u is 2 to 5 and R^{10} and R^{11} are each hydrogen.
- 28. (Original) The compound of claim 1, wherein R^{10} and R^{12} are taken together to form $(CH_2)_s$ where s is zero or 1 to 4, and R^{11} and R^{13} are each hydrogen.
- 29. (Original) The compound of claim 1, wherein:

X is -(C=O)NH-; n, m, a and v are each 0; and R⁶, R⁷, R¹² and R¹³ are hydrogen.

30. (Original) The compound of claim 1, wherein:

X is oxygen;
n and m are each 0;
a and v are each 1;
D is oxygen; R^6 , R^7 , R^8 and R^9 are hydrogen.

31. (Original) The compound of claim 1, wherein:

X is oxygen;

n, m and v are each 0;

a is 1; and

R⁶, R⁷, R¹² and R¹³ are hydrogen.

DOCKET NO.: 3DP-0418 (1030002) **Application No.:** 10/058,215

Office Action Dated: May 25, 2004

32. (Original) The compound of claim 1, wherein:

X is -CH₂-;

n, m and v are each 0;

a is 1; and

 R^6 , R^7 , R^{12} and R^{13} are hydrogen.

- 33. (Original) The compound of claim 1, wherein v is 0.
- 34. (Previously Presented) The compound of claim 1, wherein

R¹ is hydrogen or -CH₃;

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ and R⁹ are hydrogen;

X is oxygen or -CH₂-;

n is 0 or 1;

m is 0 or 1;

R¹⁰, R¹¹, R¹² and R¹³ independently represent hydrogen,

 (C_1-C_6) alkyl or (C_{6-10}) ar (C_{1-6}) alkyl; or

one of the combination R^{10} and R^{11} , R^{12} and R^{13} or R^{10} and R^{12} are taken together to form -(CH₂)_s-, wherein s is 1 while the remaining of R^{10} - R^{13} are defined above;

i is 0 or 1;

j is 0 or 1;

k is 0 or 1;

R¹⁴ is hydrogen or alkyl;

W is:

wherein:

 R^{16} is hydrogen, (C_{1-8}) alkyl, halo (C_{1-8}) alkyl or halogen; and R^{27} , R^{28} , and R^{29} are hydrogen, halogen, (C_{1-8}) alkyl, (C_{1-8}) alkoxy, or (C_{6-10}) aryl.

DOCKET NO.: 3DP-0418 (1030002) **Application No.: 10/058,215**

Office Action Dated: May 25, 2004

35. (Original) The compound of claim 1, wherein:

v, m, n, i and j are 0;

a is 1;

 R^{1} , R^{2} , R^{3} , R^{4} , R^{5} , R^{6} , R^{7} , R^{8} , R^{9} , R^{11} , R^{12} , R^{13} and R^{14} are each hydrogen; and R¹⁰ is pyridinyl.

36. (Original) The compound of claim 1, wherein:

v, m, n, i and j are 0;

a is 1;

 R^{1} , R^{2} , R^{3} , R^{4} , R^{5} , R^{6} , R^{7} , R^{8} , R^{9} , R^{11} , R^{12} , R^{13} and R^{14} are each hydrogen: and R¹⁰ is quinolinyl.

37. (Original) The compound of claim 1, wherein:

v, m, n, i and j are 0;

a is 1;

 R^{1} , R^{2} , R^{3} , R^{4} , R^{5} , R^{6} , R^{7} , R^{8} , R^{9} , R^{11} , R^{12} , R^{13} and R^{14} are each hydrogen; and R¹⁰ is methoxyphenyl.

38. (Previously Presented) The compound of claim 1, which is one of:

- 3-[5-(2-5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl-acetylamino)-indol-1-yl]-hexanoic acid;
- 3-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-indol-1-yl}-hexanoic acid;
- 3-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-indol-1-yl}-propionic acid;
- 3-phenyl-3-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-indol-1-yl}propionic acid;
- 3-phenyl-3-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-indol-1-yl}propionic acid;

Application No.: 10/058,215 Office Action Dated: May 25, 2004

- 3-(3-benzyloxy-phenyl)-3-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-indol-1-yl}-propionic acid;
- 3-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-indol-1-yl}-3-p-tolyl-propionic acid;
- 3-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-indol-1-yl}-3-m-tolyl-propionic acid;
- 3-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-indol-1-yl}-3-o-tolyl-propionic acid;
- 3-biphenyl-4-yl-3-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-indol-1-yl}-propionic acid;
- 3-(3,5-dichloro-phenyl)-3-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-indol-1-yl}-propionic acid;
- 3-(3,5-difluoro-phenyl)-3-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-indol-1-yl}-propionic acid;
- 3-(3-cyano-phenyl)-3-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-indol-1-yl}-propionic acid;
- 3-(4-cyano-phenyl)-3-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-indol-1-yl}-propionic acid;
- 3-(2-methoxy-phenyl)-3-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-indol-1-yl}-propionic acid;
- 3-(3-methoxy-phenyl)-3-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-indol-1-yl}-propionic acid;
- 3-(4-methoxy-phenyl)-3-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-indol-1-yl}-propionic acid;
- 3-quinolin-3-yl-3-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-indol-1-yl}-propionic acid;
- 3-(3-chloro-phenyl)-3-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-indol-1-yl}-propionic acid;
- 3-naphthalen-2-yl-3-{5-[2-(5,6,7,8-Tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-indol-1-yl}-propionic acid;

Application No.: 10/058,215 Office Action Dated: May 25, 2004

Office Action Dated. May 23, 2004

- 3-(2-chloro-phenyl)-3-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-indol-1-yl}-propionic acid;
- 3-naphthalen-1-yl-3-{5-[2-(5,6,7,8-Tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-indol-1-yl}-propionic acid;
- 3-(4-fluoro-phenyl)-3-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-indol-1-yl}-propionic acid;
- 3-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-indol-1-yl}-3-(3-trifluoromethyl-phenyl)-propionic acid;
- 3-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-indol-1-yl}-3-(4-trifluoromethyl-phenyl)-propionic acid;
- 3-pyridin-3-yl-3-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-indol-1-yl}-propionic acid;
- 3-pyridin-2-yl-3-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-indol-1-yl}-propionic acid;
- 3-pyridin-4-yl-3-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-indol-1-yl}-acrylic acid;
- 3-(2,3-dihydro-benzofuran-5-yl)-3-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-indol-1-yl}-propionic acid;
- 3-benzo[1,3]dioxol-5-yl-3-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-indol-1-yl}-propionic acid;
- 3-(5-methanesulfonyl-pyridin-3-yl)-3-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethyoxy]-indol-1-yl}-propionic acid;
- 3-{5-[2-(2-methyl-5,6,7,8-tetrahydro-[1,8]naphthyridin-3-yl)-ethyl]-indol-1-yl}-propionic acid;
- 3-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-indol-1-yl}-propionic acid;
- 3-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-indol-1-yl}-hexanoic acid;
- 3-phenyl-3-{5-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-propyl]-indol-1-yl}-propionic acid;

Application No.: 10/058,215

Office Action Dated: May 25, 2004

3-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-indol-1-yl}-3-[5-(2,2,2-trifluoro-ethoxy)-pyridin-3-yl]-propionic acid;

PATENT

3-(5-ethoxy-pyridin-3-yl)-3-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-indol-1-yl}-propionic acid;

3-pyridin-4-yl-3-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-indol-1-yl}-propionic acid;

3-pyridin-2-yl-3-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-indol-1-yl}-acrylic acid;

or a pharmaceutically acceptable salt, hydrate, solvate or prodrug thereof.

39. (Previously Presented) The compound of claim 1, which is one of:

3-(3-methoxy-phenyl)-3-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-indol-1-yl}-propionic acid;

3-quinolin-3-yl-3-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-indol-1-yl}-propionic acid;

3-pyridin-3-yl-3-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-indol-1-yl}-propionic acid;

3-pyridin-2-yl-3-{5-[2-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl)-ethoxy]-indol-1-yl}-propionic acid;

or a pharmaceutically acceptable salt, hydrate, solvate or prodrug thereof.

- 40. (Original) A pharmaceutical composition comprising a compound of claim 1 and a pharmaceutically acceptable carrier or diluent.
- 41. (Previously Presented) A method of treating a pathological condition selected from the group consisting of osteoporosis, macular degeneration, diabetic retinopathy, rheumatoid arthritis and sickle cell anemia, in a mammal in need of such treatment, comprising administering to said mammal an effective amount of a compound of claim 1.

Application No.: 10/058,215

Office Action Dated: May 25, 2004

42. (Canceled)

43. (Original) The method of claim 41, wherein said condition is osteoporosis.

PATENT

- 44. (Canceled)
- 45. (Canceled)
- 46. (Original) The method of claim 41, wherein said condition is macular degeneration.
- 47. (Original) The method of claim 41, wherein said condition is diabetic retinopathy.
- 48. (Original) The method of claim 41, wherein said condition is rheumatoid arthritis.
- 49. (Original) The method of claim 41, wherein said condition is sickle cell anemia.
- 50. (Original) A process for preparing a substituted indole compound of claim 1, comprising:

reacting a compound of Formula V:

HO
$$R^{5}$$
 R^{1}
 R^{10}
 R^{11}
 R^{12}
 R^{13}
 R^{13}
 R^{14}
 R^{15}
 R^{14}

or a salt, hydrate or solvate thereof, wherein R¹, R², R³, R⁴, R⁵, R¹⁰, R¹¹, R¹², R¹³, R¹⁴, i and j are as defined in claim 1,

with the compound of Formula VI or Formula X:

Application No.: 10/058,215

Office Action Dated: May 25, 2004

$$R^{15}$$
 N OH VI R^{28} R^{16} X

PATENT

or a salt, hydrate or solvate thereof, wherein R^{15} , R^{16} , R^{27} , R^{28} and R^{29} are as defined in claim 1, to form a substituted indole compound of claim 1.

Claims 51-53 (Canceled)

- 54. (Currently Amended) A method for treating a central nervous system (CNS) related disorder, selected from the group consisting of: neuronal loss associated with stroke, ischemia, CNS trauma, hypoglycemia, surgery, a neurodegenerative disease, an adverse consequence of overstimulation of one or more excitatory amino acids, schizophrenia, anxiety, convulsions, chronic pain, psychosis, anesthesia, and opiate tolerance, in a mammal in need of such treatment, comprising administering to said mammal an effective amount of a compound of claim 1.
- 55. (Currently Amended) The method according to claim 54, wherein said CNS related disorder is neuronal loss associated with stroke ischemia, CNS trauma, hypoglycemia, surgery, or anesthesia.
- 56. (Original) The method according to claim 54, wherein said CNS related disorder is ischemia.
- 57. (Original) The method according to claim 54, wherein said CNS related disorder is CNS trauma.
- 58. (Original) The method according to claim 54, wherein said CNS related disorder is hypoglycemia.

Application No.: 10/058,215

Office Action Dated: May 25, 2004

59. (Original) The method according to claim 54, wherein said CNS related disorder is the result of surgery.

60-61. (Canceled)

- 62. (Original) The method according to claim 54, wherein said CNS related disorder is schizophrenia.
- 63. (Original) The method according to claim 41, wherein the activity of $\alpha 4$ integrin is inhibited.
- 64. (Original) The method according to claim 54, wherein the activity of $\alpha 4$ integrin is inhibited.
- 65. (Original) The compound according to claim 17, wherein R^{12} and R^{13} are independently selected from:

PATENT