CSC373S: Algorithm Design, Analysis & Complexity

# LECTURE 18

### Wednesday February 15, 2017

based on notes by Denis Pankratov

# Network Flows (continued)

<u>Last time:</u> Proof of correctness of FF Max-Flow Min-Cut Theorem ⇒ algorithm to compute min-cut

- 1. compute max flor f
- 2. compute  $S = \{v|v \text{ is reachable from } s \text{ in } G_f\}$  (BFS) Runtime:  $\mathcal{O}(|V| + |E|) = O(|E|)$  if no redundant nodes

Example: More Complex Now



Figure 1: After  $P_1...P_4$ ; S vertices to the left, T to the right

| P                    | $C_f(P)$ |
|----------------------|----------|
| $P_1 = (s, b, d, t)$ | 3        |
| $P_2 = (s, b, c, t)$ | 2        |
| $P_3 = (s, a, c, t)$ | 4        |
| $P_4 = (s, a, d, t)$ | 2        |



Figure 2: Residual Graph

Overall, we have that:

$$|f| = 6 + 5 = 11$$
  
 $c(S,T) = 4 + 2 + 2 + 3 = 11$ 

#### Runtime of FF method:

(worst-case over inputs & choice of augmenting paths)

Case 1: Capacities are arbitrary positive real numbers.

If some capacities are irrational, FF might not terminate. Moreover, such examples FF might converge to a flow that is not maximum,

#### Case 2: Capacities are $\mathbb{N}$

Let f\* be a max flow, FF can be made ro run  $\mathcal{O}(|f*||E|)$  each time we augment w/ path P, value of the flow increases by  $c(P) \geq 1$ .

 $\Rightarrow$  number of augmentations  $\leq |f*|$ 

Each augmentation path can be found by DFS/BFS in time  $\mathcal{O}(|E|)$  assuming no redundant nodes (not polynomial time).





(a) After 2 augmentation paths,  $P_1, P_2$ 

(b) Residual Graph

Figure 3: Example

| P                    | $C_f(P)$ |
|----------------------|----------|
| $P_1 = (s, a, b, t)$ | 1        |
| $P_2 = (s, b, a, t)$ | 1        |

Need to perform these steps  $2^{100}$  times to get max-flow!

Can we make FF run in polynomial time?

Yes! Edmonds-Karp Algorithm: run FF, use shortest unweighted path for augmentation. Can be done by BFS!

Claim: EK runs in  $\mathcal{O}(|V||E|^2)$  times

<u>Definition:</u> Let G, s, t, c a flow network

f – a flow

 $d_f(u,v) = \text{length of shortest unweighted path in } G_f$ 

Lemma 1: Let f be a flow, f' be an augmented flow after 1 step of EK. Then,  $\forall v, d_f(s, v) \leq d_{f'}(s, v)$ .

Proof (by contradiction): Assume  $\exists v, d_f(s, v) > d_{f'}(s, v)$ .

Pick such v with smallest value of  $d_{f'}(s, v)$ .

Let u be the node immediately preceding v on shortest path in  $G_{f'}$ .



Figure 4: Visualization

- 1. by choice of  $v, d_f(s, u) \le d_{f'}(s, u) = d_{f'}(s, v) 1$
- 2.  $(u, v) \notin E_f$ if  $(u, v) \in E_f$ ,  $d_f(s, v) \le d_f(s, u) + 1 \le d_{f'}(s, u) + 1 = d_{f'}(s, v)$

$$(u, v) \notin E_f, (u, v) \in E_{f'}$$
  
  $\Rightarrow (v, u)$  was on the augmenting path.

By the way EK chooses paths: (Keeping in mind that  $d_f(s, u) \leq d_{f'}(s, u)$ )

1. 
$$d_f(s, u) = d_f(s, v) + 1$$

2. 
$$d_{f'}(s, u) = d_{f'}(s, v) - 1$$

With both (1) and (2):

$$\Rightarrow d_{f'}(s, v) \ge d_f(s, v) + 2G_f$$
$$d_{f'}(s, v) > d_f(s, v)$$

<u>Definition:</u> An edge (u, v) is *critical* for augmenting path P if  $C_f(P) = c_f(u, v)$ 

Lemma 2: An edge e can become critical  $\leq |V|/2$  times throughout the entire run of EK.

Aside: Whenever we have an augmenting path, some edge becomes critical  $\Rightarrow$  number of augmentations  $\leq$  number of times some edge becomes critical  $\leq \mathcal{O}(|V||E|)$   $\Rightarrow$  overall runtime  $\mathcal{O}(|V||E|^2)$ 

<u>Proof:</u> Let f be a flow when (u, v) becomes critical.

Then,

$$d_f(s, v) = d_f(s, u) + 1$$



Figure 5: Needs to be *undone* to become critical again

Before (u, v) becomes critical again, some flow on u to v needs to be undone.

Let f' be the flow immediately before flow on (u, v) gets undone.

$$d_{f'}(s, u) = d_{f'}(s, v) + 1$$
  
 $\geq d_f(s, v) + 1$  (by previous lemma)  
 $\geq d_f(s, u) + 2$ 

 $\Rightarrow$  shortest path from s to u in  $G_f$  increases by at least 2 each time (u, v) becomes critical. This can start at 1 and end at  $\leq |V| \Rightarrow |V|/2$  times (u, v) can be critical