

Home Gameboard Chemistry Foundations Stoichiometry Empirical Formulae 1

Empirical Formulae 1

GCSE P P P

Essential Pre-Uni Chemistry A1.1

Find the empirical formulae for the ten compounds in Parts A - J, from the data given below. No compound contains more than 15 atoms in total in its formula. All compositions are by mass.

Element	Atomic Mass	Element	Atomic Mass
Hydrogen	1.0	Chlorine	35.5
Carbon	12.0	Potassium	39.1
Nitrogen	14.0	Vanadium	50.9
Oxygen	16.0	Chromium	52.0
Sulfur	32.1	Lead	207.2

Part A 35.0% Nitrogen, 5.0% Hydrogen, 60.0% Oxygen

35.0% Nitrogen, 5.0% Hydrogen, 60.0% Oxygen

Part B 90.7% Lead, 9.3% Oxygen

90.7% Lead, 9.3% Oxygen

26.6% Potassium, 35.3% Chromium, 38.1% Oxygen Part C 26.6% Potassium, 35.3% Chromium, 38.1% Oxygen 40.3% Potassium, 26.8% Chromium, 32.9% Oxygen Part D 40.3% Potassium, 26.8% Chromium, 32.9% Oxygen 29.4% Vanadium, 9.2% Oxygen, 61.4% Chlorine Part E 29.4% Vanadium, 9.2% Oxygen, 61.4% Chlorine 81.8% Carbon, 18.2% Hydrogen Part F 81.8% Carbon, 18.2% Hydrogen 38.7% Carbon, 9.7% Hydrogen, 51.6% Oxygen Part G 38.7% Carbon, 9.7% Hydrogen, 51.6% Oxygen

Part J 29.7% Carbon, 5.8% Hydrogen, 26.5% Sulfur, 11.6% Nitrogen, 26.4% Oxygen

29.7% Carbon, 5.8% Hydrogen, 26.5% Sulfur, 11.6% Nitrogen, 26.4% Oxygen. In your answer, place the elements in the order just given.

Home Gameboard Chemistry Foundations Stoichiometry Empirical Formulae 2

Empirical Formulae 2

Essential Pre-Uni Chemistry A1.2

Complete combustion of $6.4\,\mathrm{g}$ of compound K produced $8.8\,\mathrm{g}$ of carbon dioxide and $7.2\,\mathrm{g}$ of water.

Calculate the empirical formula of K.

Gameboard:

STEM SMART Chemistry Week 4

Home Gameboard Chemistry Foundations Stoichiometry Empirical Formulae 3

Empirical Formulae 3

GCSE A Level

Essential Pre-Uni Chemistry A1.3

Complete combustion of $1.80\,\mathrm{g}$ of compound L produced $2.64\,\mathrm{g}$ of carbon dioxide, $1.08\,\mathrm{g}$ of water and $1.92\,\mathrm{g}$ of sulfur dioxide.

Calculate the empirical formula of L.

Gameboard:

STEM SMART Chemistry Week 4

Home Gameboard Chemistry Foundations Stoichiometry Ar & Mr and Molecular Formula 6

Ar & Mr and Molecular Formula 6

Essential Pre-Uni Chemistry A2.6

Assume that the mass of an isotope in \mathbf{amu} to 3 significant figures is equal to its mass number.

The relative molecular mass of compound M is $135\,\mathrm{amu}$. M contains 3.7% hydrogen, 44.4% carbon and 51.9% nitrogen by mass.

Find the molecular formula of M.

Gameboard:

STEM SMART Chemistry Week 4

Home Gameboard Chemistry Foundations Stoichiometry Ar & Mr and Molecular Formula 7

Ar & Mr and Molecular Formula 7

Essential Pre-Uni Chemistry A2.7

Assume that the mass of an isotope in \mathbf{amu} to 3 significant figures is equal to its mass number.

Complete combustion of compound N occurs in a stoichiometric ratio of 1:6 with oxygen gas. Complete combustion of $4.2\,\mathrm{g}$ of compound N produces $13.2\,\mathrm{g}$ of carbon dioxide and $5.4\,\mathrm{g}$ of water.

Find the molecular formula of N.

Gameboard:

STEM SMART Chemistry Week 4

Home Gameboard Chemistry Foundations Stoichiometry Relative formula mass

Relative formula mass

Find the relative formula mass of the following substances, giving your answer to the nearest integer.

Part D Propanol

What is the relative formula mass of propanol?

Part E Sodium carbonate

What is the relative formula mass of sodium carbonate?

Created for isaacphysics.org by Andrea Chlebikova

Gameboard:

STEM SMART Chemistry Week 4

<u>Home</u> <u>Gameboard</u> Chemistry Foundations Stoichiometry Solids 2

Solids 2

GCSE A Level

Essential Pre-Uni Chemistry B4.2

Calculate the mass of the following compounds. Give your answers to the appropriate number of significant figures.

Part D (d)

 $20.0 \,\mathrm{moles}$ of $\mathrm{Sr}\,(\mathrm{s})$, to 3 significant figures.

Part E (e)
$1.20\mathrm{moles}$ of aluminium oxide, to 3 significant figures.
Part F (f)
$7.4\mathrm{moles}$ of ammonium sulfate, to 2 significant figures.
Gameboard:
STEM SMART Chemistry Week 4

Chemistry Foundations Stoichiometry Solutions 1 <u>Home</u> <u>Gameboard</u>

Solutions 1

Essential Pre-Uni Chemistry B5.1

Calculate the concentration in $\mathrm{mol}\,\mathrm{dm}^{-3}$ of the following solutions:

(a) Part A $0.40\,\mathrm{g}\;NaOH$ in $100\,\mathrm{ml}$ water (b) Part B

$7.3\,\mathrm{g}\;\mathrm{HCl}$ in $1000\,\mathrm{ml}$ water

Part C (c)

 $2.5\,\mathrm{g}\;H_2SO_4$ in $50\,\mathrm{ml}$ water

(d) Part D

 $15\,\mathrm{g}\; FeSO_4$ in $500\,\mathrm{ml}$ water, to 2 significant figures

Part E (e)

 $0.16\,\mathrm{g}\;KMnO_4$ in $200\,\mathrm{ml}$

Gameboard:

STEM SMART Chemistry Week 4

Home Gameboard Chemistry Foundations Stoichiometry Homeopathy

Homeopathy

Part A Arsenous acid

 As_2O_3 is moderately soluble in water: one dm^3 of a saturated solution at $25\,^{\circ}\mathrm{C}$ contains $20.6\,\mathrm{g}$. When dissolved in water, the oxide reacts to form arsenous acid, H_3AsO_3 .

Balance the equation for the formation of arsenous acid from As_2O_3 , using the smallest possible integer coefficients (do not include state symbols).

Part B Saturated solution concentration

 As_2O_3 is moderately soluble in water: one dm^3 of a saturated solution at $25\,^\circ C$ contains $20.6\,g$. When dissolved in water, the oxide reacts to form arsenous acid, H_3AsO_3 .

Calculate the concentration of the arsenous acid in $m mol\,dm^{-3}$ in the saturated solution, giving your answer to 3 significant figures.

Part C Mass in glass

In homeopathy, a decimal-scale is often used to specify the dilution of a given sample: D1 (sometimes labelled 1X) means the sample has been diluted 1 part in 10. D2 (or 2X) means the sample has been diluted 1 in 10, then 1 part of that solution has been further diluted 1 in 10 again to give a 1 in 100 dilution. A D6 (or 6X) solution has repeated this process six times to give a final dilution of 1 in 10^6 .

Arsenicum album is often sold as a D30 preparation. Let us assume that the initial stock solution before dilution was the saturated solution containing $20.6\,\mathrm{g\,dm^{-3}}$ of $\mathrm{As_2O_3}$.

Calculate the mass (in g) of As_2O_3 present in a $100\,\mathrm{cm^3}$ glass of the D30 *Arsenicum album* remedy, giving your answer to 3 significant figures.

Part D Fatal dose

In homeopathy, a decimal-scale is often used to specify the dilution of a given sample: D1 (sometimes labelled 1X) means the sample has been diluted 1 part in 10. D2 (or 2X) means the sample has been diluted 1 in 10, then 1 part of that solution has been further diluted 1 in 10 again to give al in 100 dilution. A D6 (or 6X) solution has repeated this process six times to give a final dilution of 1 in 10⁶.

Arsenicum album is often sold as a D30 preparation. Let us assume that the initial stock solution before dilution was the saturated solution containing 20.6 g dm $^{-3}$ of As_2O_3 .

Given that $0.1 \,\mathrm{g}$ of $\mathrm{As_2O_3}$ is usually fatal, calculate the volume (in $\mathrm{m^3}$) of the D30 solution that would be needed for a fatal dose of $\mathrm{As_2O_3}$, giving your answer to 3 significant figures.

Part E Volume equivalent

In homeopathy, a decimal-scale is often used to specify the dilution of a given sample: D1 (sometimes labelled 1X) means the sample has been diluted 1 part in 10. D2 (or 2X) means the sample has been diluted 1 in 10, then 1 part of that solution has been further diluted 1 in 10 again to give a 1 in 100 dilution. A D6 (or 6X) solution has repeated this process six times to give a final dilution of 1 in 10^6 .

Arsenicum album is often sold as a D30 preparation. Let us assume that the initial stock solution before dilution was the saturated solution containing $20.6 \,\mathrm{g}\,\mathrm{dm}^{-3}$ of $\mathrm{As_2O_3}$.

Given that $0.1\,\mathrm{g}$ of $\mathrm{As_2O_3}$ is usually fatal, calculate the volume of the D30 solution that would be needed for a fatal dose of $\mathrm{As_2O_3}$, expressing your answer as a multiple of the volume of the Earth (approximately $1.08\times10^{12}\,\mathrm{km^3}$), i.e. how many Earths would fill the same volume, to 2 significant figures.

Part F Bottles for one atom

In homeopathy, a decimal-scale is often used to specify the dilution of a given sample: D1 (sometimes labelled 1X) means the sample has been diluted 1 part in 10. D2 (or 2X) means the sample has been diluted 1 in 10, then 1 part of that solution has been further diluted 1 in 10 again to give a 1 in 100 dilution. A D6 (or 6X) solution has repeated this process six times to give a final dilution of 1 in 10^6 .

Arsenicum album is often sold as a D30 preparation. Let us assume that the initial stock solution before dilution was the saturated solution containing $20.6 \,\mathrm{g}\,\mathrm{dm}^{-3}$ of $\mathrm{As_2O_3}$.

The preparations are usually sold in one ounce bottles ($1 \text{ ounce} = 28 \text{ cm}^3$).

Calculate how many bottles of the D30 solution need to be bought in order, on average, to include one atom of arsenic.

Part G D2

In homeopathy, a decimal-scale is often used to specify the dilution of a given sample: D1 (sometimes labelled 1X) means the sample has been diluted 1 part in 10. D2 (or 2X) means the sample has been diluted 1 in 10, then 1 part of that solution has been further diluted 1 in 10 again to give a 1 in 100 dilution. A D6 (or 6X) solution has repeated this process six times to give a final dilution of 1 in 10^6 .

Another 'remedy' is *Muriaticum acidum* which is actually diluted hydrochloric acid. This is available in various dilutions up to the extremely 'potent' D2000 preparation.

Assuming the original stock solution before dilution was $1.0\,\mathrm{mol\,dm^{-3}}$, what is the concentration of HCl in D2?

Part H D4

In homeopathy, a decimal-scale is often used to specify the dilution of a given sample: D1 (sometimes labelled 1X) means the sample has been diluted 1 part in 10. D2 (or 2X) means the sample has been diluted 1 in 10, then 1 part of that solution has been further diluted 1 in 10 again to give a 1 in 100 dilution. A D6 (or 6X) solution has repeated this process six times to give a final dilution of 1 in 10^6 .

Another 'remedy' is *Muriaticum acidum* which is actually diluted hydrochloric acid. This is available in various dilutions up to the extremely 'potent' D2000 preparation.

Assuming the original stock solution before dilution was $1.0\,\mathrm{mol\,dm^{-3}}$, what is the concentration of HCl in D4?

Part I D6

In homeopathy, a decimal-scale is often used to specify the dilution of a given sample: D1 (sometimes labelled 1X) means the sample has been diluted 1 part in 10. D2 (or 2X) means the sample has been diluted 1 in 10, then 1 part of that solution has been further diluted 1 in 10 again to give a 1 in 100 dilution. A D6 (or 6X) solution has repeated this process six times to give a final dilution of 1 in 10^6 .

Another 'remedy' is *Muriaticum acidum* which is actually diluted hydrochloric acid. This is available in various dilutions up to the extremely 'potent' D2000 preparation.

Assuming the original stock solution before dilution was $1.0\,\mathrm{mol\,dm^{-3}}$, what is the concentration of HCl in D6?

Part J D8

In homeopathy, a decimal-scale is often used to specify the dilution of a given sample: D1 (sometimes labelled 1X) means the sample has been diluted 1 part in 10. D2 (or 2X) means the sample has been diluted 1 in 10, then 1 part of that solution has been further diluted 1 in 10 again to give a 1 in 100 dilution. A D6 (or 6X) solution has repeated this process six times to give a final dilution of 1 in 10^6 .

Another 'remedy' is *Muriaticum acidum* which is actually diluted hydrochloric acid. This is available in various dilutions up to the extremely 'potent' D2000 preparation.

Assuming the original stock solution before dilution was $1.0\,\mathrm{mol\,dm^{-3}}$, what is the concentration of HCl in D8?

Part K D10

In homeopathy, a decimal-scale is often used to specify the dilution of a given sample: D1 (sometimes labelled 1X) means the sample has been diluted 1 part in 10. D2 (or 2X) means the sample has been diluted 1 in 10, then 1 part of that solution has been further diluted 1 in 10 again to give a 1 in 100 dilution. A D6 (or 6X) solution has repeated this process six times to give a final dilution of 1 in 10^6 .

Another 'remedy' is *Muriaticum acidum* which is actually diluted hydrochloric acid. This is available in various dilutions up to the extremely 'potent' D2000 preparation.

Assuming the original stock solution before dilution was $1.0\,\mathrm{mol\,dm^{-3}}$, what is the concentration of HCl in D10?

Adapted with permission from the Cambridge Chemistry Challenge 2012, Question 1