$12a_{0241} \ (K12a_{0241})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{63} - u^{62} + \dots + 2u^2 - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 63 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{63} - u^{62} + \dots + 2u^2 - 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{8} - u^{6} + 3u^{4} - 2u^{2} + 1 \\ u^{6} + u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{8} - u^{6} + 3u^{4} - 2u^{2} + 1 \\ -u^{8} - 2u^{4} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{10} + u^{8} - 4u^{6} + 3u^{4} - 3u^{2} + 1 \\ -u^{12} + 2u^{10} - 4u^{8} + 6u^{6} - 3u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{19} - 2u^{17} + 8u^{15} - 12u^{13} + 21u^{11} - 22u^{9} + 20u^{7} - 12u^{5} + 5u^{3} - 2u \\ u^{21} - 3u^{19} + \dots - 3u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{48} - 5u^{46} + \dots - 4u^{2} + 1 \\ u^{50} - 6u^{48} + \dots - 10u^{4} + u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{28} - 3u^{26} + \dots - 5u^{2} + 1 \\ -u^{28} + 2u^{26} + \dots - 3u^{4} + 2u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^{62} 28u^{60} + \cdots + 16u + 6$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{63} + 29u^{62} + \dots + 4u + 1$
c_2, c_5	$u^{63} + u^{62} + \dots + 2u - 1$
c_3, c_7	$u^{63} - u^{62} + \dots + 420u - 97$
c_4, c_{10}	$u^{63} - u^{62} + \dots + 2u^2 - 1$
c_6	$u^{63} + 3u^{62} + \dots + 34u - 5$
c_8, c_9, c_{11} c_{12}	$u^{63} - 13u^{62} + \dots + 4u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{63} + 11y^{62} + \dots + 16y - 1$
c_2, c_5	$y^{63} - 29y^{62} + \dots + 4y - 1$
c_{3}, c_{7}	$y^{63} - 37y^{62} + \dots - 58340y - 9409$
c_4,c_{10}	$y^{63} - 13y^{62} + \dots + 4y - 1$
	$y^{63} + 7y^{62} + \dots - 164y - 25$
c_8, c_9, c_{11} c_{12}	$y^{63} + 75y^{62} + \dots - 8y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.906180 + 0.422177I	1.99168 + 1.38995I	8.07559 + 0.94279I
u = -0.906180 - 0.422177I	1.99168 - 1.38995I	8.07559 - 0.94279I
u = 0.784033 + 0.600648I	-4.27567 + 5.81688I	-0.70813 - 8.29875I
u = 0.784033 - 0.600648I	-4.27567 - 5.81688I	-0.70813 + 8.29875I
u = 0.909103 + 0.447406I	3.51366 + 3.59358I	10.41272 - 6.28502I
u = 0.909103 - 0.447406I	3.51366 - 3.59358I	10.41272 + 6.28502I
u = -0.886115 + 0.506891I	-1.82319 - 4.09825I	2.15651 + 6.10462I
u = -0.886115 - 0.506891I	-1.82319 + 4.09825I	2.15651 - 6.10462I
u = 0.922893 + 0.488111I	2.97083 + 6.11707I	9.16199 - 6.56976I
u = 0.922893 - 0.488111I	2.97083 - 6.11707I	9.16199 + 6.56976I
u = -0.930909 + 0.500771I	0.97651 - 11.21790I	6.00000 + 10.77314I
u = -0.930909 - 0.500771I	0.97651 + 11.21790I	6.00000 - 10.77314I
u = 0.693202 + 0.621062I	-4.56079 - 1.25575I	-2.19329 + 0.63310I
u = 0.693202 - 0.621062I	-4.56079 + 1.25575I	-2.19329 - 0.63310I
u = 0.928590 + 0.045314I	4.01932 + 6.32514I	11.57164 - 5.86598I
u = 0.928590 - 0.045314I	4.01932 - 6.32514I	11.57164 + 5.86598I
u = -0.922742 + 0.024554I	5.80192 - 1.27063I	14.7143 + 0.7560I
u = -0.922742 - 0.024554I	5.80192 + 1.27063I	14.7143 - 0.7560I
u = -0.733886 + 0.550039I	-1.66010 - 2.08982I	2.72200 + 4.60622I
u = -0.733886 - 0.550039I	-1.66010 + 2.08982I	2.72200 - 4.60622I
u = -0.778547 + 0.292819I	0.09263 - 3.54491I	8.23338 + 8.37976I
u = -0.778547 - 0.292819I	0.09263 + 3.54491I	8.23338 - 8.37976I
u = 0.817837	1.00618	9.44630
u = -0.524223 + 0.608616I	-2.97072 - 0.11505I	-1.75022 + 0.66782I
u = -0.524223 - 0.608616I	-2.97072 + 0.11505I	-1.75022 - 0.66782I
u = -0.453370 + 0.659277I	-0.53569 + 6.90071I	1.90400 - 5.03856I
u = -0.453370 - 0.659277I	-0.53569 - 6.90071I	1.90400 + 5.03856I
u = 0.438773 + 0.630314I	1.46155 - 1.93140I	5.21037 + 0.69413I
u = 0.438773 - 0.630314I	1.46155 + 1.93140I	5.21037 - 0.69413I
u = 0.884768 + 0.873290I	-6.09691 + 4.77546I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.884768 - 0.873290I	-6.09691 - 4.77546I	0
u = -0.881328 + 0.885625I	-4.93494 + 0.19327I	0
u = -0.881328 - 0.885625I	-4.93494 - 0.19327I	0
u = -0.881069 + 0.903523I	-6.02303 + 2.71306I	0
u = -0.881069 - 0.903523I	-6.02303 - 2.71306I	0
u = 0.880732 + 0.909053I	-8.19478 - 7.84444I	0
u = 0.880732 - 0.909053I	-8.19478 + 7.84444I	0
u = 0.892755 + 0.903388I	-10.84960 - 0.25881I	0
u = 0.892755 - 0.903388I	-10.84960 + 0.25881I	0
u = 0.945495 + 0.850520I	-5.90653 + 1.61727I	0
u = 0.945495 - 0.850520I	-5.90653 - 1.61727I	0
u = -0.954008 + 0.855513I	-4.70515 - 6.63865I	0
u = -0.954008 - 0.855513I	-4.70515 + 6.63865I	0
u = 0.927641 + 0.889208I	-10.23000 + 3.28333I	0
u = 0.927641 - 0.889208I	-10.23000 - 3.28333I	0
u = -0.924436 + 0.899708I	-13.41990 + 0.59197I	0
u = -0.924436 - 0.899708I	-13.41990 - 0.59197I	0
u = 0.702440 + 0.074381I	0.950672 + 0.027060I	11.34231 - 0.59705I
u = 0.702440 - 0.074381I	0.950672 - 0.027060I	11.34231 + 0.59705I
u = -0.937504 + 0.893407I	-13.3778 - 7.2055I	0
u = -0.937504 - 0.893407I	-13.3778 + 7.2055I	0
u = -0.965088 + 0.864759I	-5.75398 - 9.24348I	0
u = -0.965088 - 0.864759I	-5.75398 + 9.24348I	0
u = 0.958623 + 0.872225I	-10.63780 + 6.81425I	0
u = 0.958623 - 0.872225I	-10.63780 - 6.81425I	0
u = 0.968793 + 0.867363I	-7.9118 + 14.4004I	0
u = 0.968793 - 0.867363I	-7.9118 - 14.4004I	0
u = 0.350486 + 0.566383I	1.88232 + 0.20853I	5.90645 - 0.29596I
u = 0.350486 - 0.566383I	1.88232 - 0.20853I	5.90645 + 0.29596I
u = -0.285841 + 0.571386I	0.19917 - 5.00950I	2.45073 + 5.54298I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.285841 - 0.571386I	0.19917 + 5.00950I	2.45073 - 5.54298I
u = -0.132000 + 0.431030I	-1.65849 + 1.14871I	-1.62308 - 0.85275I
u = -0.132000 - 0.431030I	-1.65849 - 1.14871I	-1.62308 + 0.85275I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u^{63} + 29u^{62} + \dots + 4u + 1$
c_2, c_5	$u^{63} + u^{62} + \dots + 2u - 1$
c_3, c_7	$u^{63} - u^{62} + \dots + 420u - 97$
c_4, c_{10}	$u^{63} - u^{62} + \dots + 2u^2 - 1$
<i>c</i> ₆	$u^{63} + 3u^{62} + \dots + 34u - 5$
c_8, c_9, c_{11} c_{12}	$u^{63} - 13u^{62} + \dots + 4u - 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y^{63} + 11y^{62} + \dots + 16y - 1$
c_2, c_5	$y^{63} - 29y^{62} + \dots + 4y - 1$
c_3, c_7	$y^{63} - 37y^{62} + \dots - 58340y - 9409$
c_4, c_{10}	$y^{63} - 13y^{62} + \dots + 4y - 1$
c_6	$y^{63} + 7y^{62} + \dots - 164y - 25$
c_8, c_9, c_{11} c_{12}	$y^{63} + 75y^{62} + \dots - 8y - 1$