Engineering Economics

Lecture 5

Er. Sushant Raj Giri

B.E. (Industrial Engineering), MBA

Lecturer

Department of Industrial Engineering

Chapter 7 Present Worth Analysis

- Describing Project Cash Flows
- Initial Project Screening Method
- Present Worth Analysis
- Variations of Present Worth Analysis
- Comparing Mutually Exclusive Alternatives

Bank Loan vs. Investment Project

Bank Loan

Investment Project

Describing Project Cash Flows

Year (n)	Cash Inflows (Benefits)	Cash Outflows (Costs)	Net Cash Flows
0	0	\$650,000	-\$650,000
1	215,500	53,000	162,500
2	215,500	53,000	162,500
•••	•••	•••	•••
8	215,500	53,000	162,500

Payback Period

Principle:

How fast can I recover my initial investment?

Method:

Based on cumulative cash flow (or accounting profit)

Screening Guideline:

If the payback period is less than or equal to some specified payback period, the project would be considered for further analysis.

Weakness:

Does not consider the time value of money

Example 7.3 Payback Period

<u>N</u>	Cash Flow	Cum. Flow	
0	-\$105,000+\$20,000	-\$85,000	
1	\$35,000	-\$50,000	
2	\$45,000	-\$5,000	
3	\$50,000	\$45,000	1
4	\$50,000	\$95,000	
5	\$45,000	\$140,000	
6	\$35,000	\$175,000	

Payback period should occurs somewhere between N = 2 and N = 3.

Discounted Payback Period Calculation

Period	Cash Flow	Cost of Funds (15%)*	Cumulative Cash Flow
0	-\$85,000	0	-\$85,000
1	15,000	-\$85,000(0.15)= -\$12,750	-82,750
2	25,000	-\$82,750(0.15)= -12,413	-70,163
3	35,000	-\$70,163(0.15)= -10,524	-45,687
4	45,000	-\$45,687(0.15)=-6,853	-7,540
5	45,000	-\$7,540(0.15)= -1,131	36,329
6	35,000	\$36,329(0.15)= 5,449	76,778

Net Present Worth Measure

Principle: Compute the equivalent net surplus at n = 0 for a given interest rate of i.

Decision Rule: Accept the project if the net surplus is positive.

Example 7.5 - Tiger Machine Tool Company

Present Worth Amounts at Varying Interest Rates

i (%)	PW(i)	<i>i</i> (%)	PW(i)
0	\$32,500	20	-\$3,412
2	27,743	22	-5,924
4	23,309	24	-8,296
6	19,169	26	-10,539
8	15,296	28	-12,662
10	11,670	30	-14,673
12	8,270	32	-16,580
14	5,077	34	-18,360
16	2,076	36	-20,110
17.45*	0	38	-21,745
18	-751	40	-23,302

Present Worth Profile

Future Worth Criterion

• Given: Cash flows and MARR (i)

• Find: The net equivalent worth at the end of project life

Future Worth Criterion

Project Balance Concept

N	0	1	2	3
Beginning Balance		-\$75,000	-\$61,850	-\$43,788
Interest		-\$11,250	-\$9,278	-\$6,568
Payment	-\$75,000	+\$24,400	+\$27,340	+\$55,760
Project Balance	-\$75,000	-\$61,850	-\$43,788	+\$5,404
		Net future worth, FW(15%)		

PW(15%) = \$5,404 (P/F, 15%, 3) = \$3,553

15

Project Balance Diagram

Capitalized Equivalent Worth

Principle: PW for a project with an annual receipt of A over infinite service life

Equation:

$$CE(i) = A(P/A, i, \infty) = A/i$$

Given: i = 10%, $N = \infty$ Find: P or CE (10%)

Example 7.9 Mr. Bracewell's Investment Problem

- Built a hydroelectric plant using his personal savings of \$800,000
- Power generating capacity of 6 million kwhs
- Estimated annual power sales after taxes \$120,000
- Expected service life of 50 years

Was Bracewell's \$800,000 investment a wise one?

How long does he have to wait to recover his initial investment, and will he ever make a profit?

Mr. Brcewell's Hydro Project

Equivalent Worth at Plant Operation

• Equivalent lump sum investment

$$V_1 = \$50K(F/P, 8\%, 9) + \$50K(F/P, 8\%, 8) + \dots + \$100K(F/P, 8\%, 1) + \$60K$$

= \\$1,101K

• Equivalent lump sum benefits

$$V_2 = $120(P/A, 8\%, 50)$$

= \$1,468K

Equivalent net worth

$$FW(8\%) = V_1 - V_2$$

= \$367K > 0, Good Investment

With an Infinite Project Life

• Equivalent lump sum investment

$$V_1 = \$50K(F/P, 8\%, 9) + \$50K(F/P, 8\%, 8) + \dots + \$100K(F/P, 8\%, 1) + \$60K$$

= \\$1,101K

• Equivalent lump sum benefits assuming $N = \infty$

$$V_2 = $120(P/A, 8\%, \infty)$$

= \$120/0.08
= \$1,500K

Equivalent net worth

FW(8%) =
$$V_1 - V_2$$

= \$399K > 0
Difference = **\$32,000**

Problem 7.27 - Bridge Construction

 \mathbb{C} onstruction cost = \$2,000,000

Annual Maintenance cost = \$50,000

Renovation cost = \$500,000 every 15 years

Planning horizon = infinite period

Interest rate = 5%

Solution:

Construction Cost

$$P_1 = $2,000,000$$

Maintenance Costs

$$P_2 = \$50,000/0.05 = \$1,000,000$$

Renovation Costs

$$P_3 = \$500,000(P/F, 5\%, 15)$$

+ $\$500,000(P/F, 5\%, 30)$
+ $\$500,000(P/F, 5\%, 45)$
+ $\$500,000(P/F, 5\%, 60)$
.
= $\$500,000(A/F, 5\%, 15)\}/0.05$
= $\$463,423$

Total Present Worth

$$P = P_1 + P_2 + P_3 = $3,463,423$$

Alternate way to calculate P_3

• Concept: Find the effective interest rate per payment period

• Effective interest rate for a 15-year cycle

$$i = (1 + 0.05)^{15} - 1 = 107.893\%$$

Capitalized equivalent worth

$$P_3 = $500,000/1.07893$$

= \$463,423

Comparing Mutually Exclusive Projects

Mutually Exclusive Projects

Alternative vs. Project

Do-Nothing Alternative

Revenue Projects

Projects whose revenues depend on the choice of alternatives

Service Projects

Projects whose revenues do not depend on the choice of alternative

Analysis Period

The time span over which the economic effects of an investment will be evaluated (study period or planning horizon).

Required Service Period

The time span over which the service of an equipment (or investment) will be needed.

Comparing Mutually Exclusive Projects

- Principle: Projects must be compared over an equal time span.
- Rule of Thumb: If the required service period is given, the analysis period should be the same as the required service period.

Case 1: Analysis Period Equals Project Lives

Compute the PW for each project over its life

Case 2: Analysis Period Shorter than Project Lives

- Estimate the salvage value at the end of required service period.
- Compute the PW for each project over the required service period.

Comparison of unequal-lived service projects when the required service period is shorter than the individual project life

Case 3: Analysis Period Longer than Project Lives

- Come up with replacement projects that match or exceed the required service period.
- Compute the PW for each project over the required service period.

Comparison for Service Projects with Unequal Lives when the required service period is longer than the individual project life

Case 4: Analysis Period is Not Specified

Project Repeatability Unlikely

Use common service (revenue) period.

Project Repeatability Likely

Use the lowest common multiple of project lives.

Project Repeatability Unlikely

 $PW(15\%)_{drill} = $2,208,470$

$$PW(15\%)_{lease} = $2,180,210$$

Project Repeatability Likely

$$PW(15\%)_A = -\$53,657$$

Model A: 3 Years Model B: 4 years LCM (3,4) = 12 years

$$PW(15\%)_{B} = -\$48,534$$

Summary

- Present worth is an equivalence method of analysis in which a project's cash flows are discounted to a lump sum amount at present time.
- The MARR or minimum attractive rate of return is the interest rate at which a firm can always earn or borrow money.
- MARR is generally dictated by management and is the rate at which NPW analysis should be conducted.
- Two measures of investment, the net future worth and the capitalized equivalent worth, are variations to the NPW criterion.

- The term mutually exclusive means that, when one of several alternatives that meet the same need is selected, the others will be rejected.
- Revenue projects are those for which the income generated depends on the choice of project.
- Service projects are those for which income remains the same, regardless of which project is selected.
- The analysis period (study period) is the time span over which the economic effects of an investment will be evaluated.
- The required service period is the time span over which the service of an equipment (or investment) will be needed.

- The analysis period should be chosen to cover the required service period.
- When not specified by management or company policy, the analysis period to use in a comparison of mutually exclusive projects may be chosen by an individual analyst.

End of Lecture 5