

Datasets

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		* * *		F 6 1												
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0	0	0	0	0	0	0	0	0	٥	0	0	0	0	0	0
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1	1	1	1	1	1	1	1	/	1	1	1	1	-	1	1
4 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2	2	٦	2	2	2	2	2	2	q	2	2	2	X	2	2
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3	3	3	3	3	3	3	3	Ó	ŋ	13	3	3	3	3	3
06666666666666666	4	4	4	4	4	7	4	4	#	4	4	4	9	3	4	4
	5	5	5	5	5	S	5	5	5	5	V	9	4	5	5	5
T 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	6	G	6	6	و	B	9	9	ø	V	6	6	٥	6	6	Ь
* / / / / / 3 / / / / / / /	Ŧ	7	7	7	7	7	7	7	?	77	7	7	7	7	7	7
8 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8	g	8	ø	8	8	8	8	8	8	8	8	8	8	8	8
9999999999999	9	9	9	9	9	9	9	9	٩	P	9	9	9	9	9	9

60 000 images 20 933 images

10 classes 42 classes

Algos implémentés

	SUR MNIST DATASET	SUR SIMPSON DATASET
Kmeans	x	X
PCA	x	X
AutoEncoder	x	X
Kohonen	x	
VAE	X	X

01 K-means

Qu'est ce o que c'est?

- Détection de "clusters" de données
- Représentants
- Distance Euclidienne

Résultats sur le dataset Mnist

10.00 473 105±/c

Résultats sur le dataset simpson

PCA Principal Component Analysis o

PCA MUIST TEST

PCA SIMPSONS TEST

OS Auto Encoders

Qu'est-ce que c'est?

Auto Encoders

- 2 modules:
 - Encoder
 - · z = encode(x)
 - Decoder
 - · x' = decode(z)

z = espace latent

x' = reconstruction

Affichage des données (2D) MUIST

Génération d'images

MUIST

SIMPSONS

Compression / Decompression

MUIST

SIMPSONS

Meilleur modèle

Colonen Maps

Qu'est ce o que c'est?

- Reprise des kmeans => ajout d'une contrainte
- Ajout d'un "coordinate vector"
- Sélection d'un exemple aléatoire
- Modification de tout les features vectors des représentants
- Distance Euclidienne
- Mise à jour proportionnelle

• $W_i = W_i + \alpha \times e^{\frac{-||C_i - C_k||}{2\gamma}} \times (S_i - W_i)$

Résultats sur le dataset Mnist

Variational Auto Encoders

Qu'est-ce que c'est

Variational Auto Encoders

- · On repart de l'auto encoder
- · Idée :
 - L'encoder ne projette plus directement dans l'espace latent, mais produit les paramètres de plusieurs distributions de probabilités.
 - On choisit en général des Gaussiennes (cf. théorème central limite).
 - Pour générer, le générateur va échantillonner ('sampling') ces distributions de probabilités pour produire des valeurs dans l'espace latent et ensuite fonctionner comme précédemment.

Solution

- · Le 'Reparameterization Trick' :
 - Au lieu d'échantillonner la distribution d'espérance μ et d'écart type σ, on va échantillonner la distribution Normale standard : ℵ(0,1) puis multiplier le résultat par σ et ajouter μ.

Affichage des données (2D)

Muist

SIMPSONS

Génération d'images

MUIST

SIMPSONS

Compression / Decompression

MUIST

SIMPSONS

Meilleur modèle

