Habib Gammar

Mathématiques

2e Sc

2020-2021

1 Heure

Exercice 1 (3 points)

Pour chacune des questions suivantes une seule des trois réponses proposées est exacte.
 Indiquer le numéro de la question et la lettre correspondant à la réponse choisie.
 Aucune justification n'est demandée.

1) Soit la somme $S = 1 + 2 + 3 + \cdots + 1000$ alors :

a)
$$S = 1006$$

b)
$$S = 500500$$

c)
$$S = 500000$$

2) Soit a, b et c trois termes consécutifs d'une suite géométrique alors :

a)
$$a \times c = b^2$$

b)
$$a \times c = 2b$$

c)
$$a+c=b^2$$

3) Si B est l'image du point A par l'homothétie de centre I et de rapport -3 alors :

a)
$$\overrightarrow{IB} = 3 \overrightarrow{IA}$$

b)
$$\overrightarrow{IA} = -3 \overrightarrow{IB}$$

c)
$$\overrightarrow{IB} = -3 \overrightarrow{IA}$$

Exercice 2 (8 points)

Soit (U_n) une suite définie sur \mathbb{N} par : $\begin{cases} U_0 = -6 \\ U_1 = 3U \end{cases}$

1) a) Calculer
$$U_1$$
 et U_2 .

b) Justifier que la suite (U_n) n'est ni arithmétique ni géométrique.

2) Soit (V_n) la suite définie sur \mathbb{N} par $V_n = U_n - 4$

a) Montrer que (V_n) est une suite géométrique de raison 3 . Préciser son premier terme V_0 .

b) Exprimer V_n en fonction de n , En déduire U_n en fonction de n .

3) a) Calculer $S = V_0 + V_1 + ... + V_{59}$.

b) Calculer $T = U_0 + U_1 + ... + U_{59}$.

c) Soit $R = V_0 \times V_1 \times \cdots \times V_{59}$. Montrer que $R = 30^{60} \times 3^{1710}$.

Exercice 3 (9 points)

Dans la figure ci-contre :

- A, B et C sont trois points du plan tels que $\overrightarrow{AB} = 2\overrightarrow{BC}$;
- (%) est le cercle de diamètre [AB];
- (%') est le cercle de diamètre [AC] ;
- $M \in (\mathcal{C})$ et (AM) recoupe (\mathcal{C}') en N;
- Les droites (CM) et (BN) se coupent en I.

1) Soit h l'homothétie de centre A tel que h(B) = C.

Montrer que le rapport de h est égal à $\frac{3}{2}$.

- 2) Prouver que l'image du cercle (\mathscr{C}) par l'homothétie h est le cercle (\mathscr{C}').
- 3) a) Déterminer h(M).
 - **b)** En déduire que les droites (BM) et (CN) sont parallèles.
- 4) Soit h' l'homothétie de centre I tel que h'(B) = N
 - a) Déterminer l'image de la droite (BM) par l'homothétie h'.
 - **b**) En déduire h'(M).
- 5) Soit G le centre de gravité du triangle ABM.

Déterminer l'ensemble des points G lorsque M varie sur le cercle (\mathscr{C}) privé de A et B.

Lycée Rue Ahmed Amara Le Kef
♦♦♦
Habib Gammar

ELÉMENTS DE CORRECTION

Devoir de Contrôle Nº3

Mathématiques

2e Sc

2020-2021

Exercice 1

- 1) b)
- 2) a)
- 3) c)

Exercice 2

$$(U_n)$$
 définie sur $\mathbb N$ par :
$$\begin{cases} U_0 = -6 \\ U_{n+1} = 3U_n - 8 \end{cases}$$

1) a) •
$$U_1 = 3U_0 - 8 = 3 \times (-6) - 8 = -26$$
.

•
$$U_2 = 3U_1 - 8 = 3 \times (-26) - 8 = -86$$
.

1) b) •
$$U_1 - U_0 = -26 - (-6) = -20$$
 $U_2 - U_1 = -86 - (-26) = -60$ $U_1 - U_0 \neq U_2 - U_1$ alors (U_n) n'est pas arithmétique.

$$\begin{array}{l} \begin{array}{l} \begin{array}{l} \displaystyle \frac{U_1}{U_0} = \frac{-26}{-6} = \frac{13}{3} \\ \\ \displaystyle \frac{U_2}{U_1} = \frac{-86}{-26} = \frac{43}{13} \end{array} \end{array} \right\} \Rightarrow \frac{U_1}{U_0} \neq \frac{U_2}{U_1} \ \ \text{alors (U_n) n'est pas géométrique.} \end{array}$$

2)
$$(V_n)$$
 la suite définie sur \mathbb{N} par $V_n = U_n - 4$

2) a) • Pour tout
$$n \in \mathbb{N}$$
, $V_{n+1} = U_{n+1} - 4 = 3U_n - 8 - 4 = 3U_n - 12 = 3(U_n - 4) = 3V_n$ alors (V_n) est une suite géométrique de raison 3.

•
$$V_0 = U_0 - 4 = -6 - 4 = -10$$

2) b) •
$$V_n = V_0 \times q^n = -10 \times 3^n$$
.

• On a
$$V_n = U_n - 4$$
 alors $U_n = V_n + 4 = -10 \times 3^n + 4$.

3) a) •
$$S = V_0 + V_1 + ... + V_{59} = V_0 \left(\frac{1 - q^{60}}{1 - q} \right) = -10 \left(\frac{1 - 3^{60}}{1 - 3} \right) = 5(1 - 3^{60})$$
.

3) b) •
$$T = U_0 + U_1 + ... + U_{59} = (V_0 + 4) + (V_1 + 4) + ... + (V_{59} + 4)$$
.

$$= \underbrace{V_0 + V_1 + ... + V_{59}}_{S} + \underbrace{4 + 4 + \cdots + 4}_{60 \ fois} = S + 4 \times 60 = 5(1 - 3^{60}) + 240$$

3) c) •
$$R = V_0 \times V_1 \times \cdots \times V_{59} = (-10 \times 3^0) \times (-10 \times 3^1) \times (-10 \times 3^2) \times \cdots \times (-10 \times 3^{59})$$

$$R = \underbrace{(-10) \times (-10) \times \dots \times (-10)}_{60 \text{ fois}} \times 3^{1+2+\dots+59} = (-10)^{60} \times 3^{\frac{59}{2}(1+59)} = 10^{60} \times 3^{1770}$$

$$R = 10^{60} \times 3^{60} \times 3^{1710} = 30^{60} \times 3^{1710}$$

2e Sc

Exercice 3

h l'homothétie de centre A et de rapport k.

- 1) On a $\overrightarrow{AB} = 2\overrightarrow{BC} \Leftrightarrow \overrightarrow{AB} = 2\overrightarrow{BA} + 2\overrightarrow{AC} \Leftrightarrow 3\overrightarrow{AB} = 2\overrightarrow{AC} \Leftrightarrow \overrightarrow{AC} = \frac{3}{9}\overrightarrow{AB}$ Comme $h(B) = C \Leftrightarrow \overline{AC} = k | \overline{AB} |$ alors le rapport de h est égal à $\frac{3}{2}$.
- 2) (\mathscr{C}) est le cercle de diamètre [AB], comme h(B) = C et h(A) = Aalors $h((\mathscr{C}))$ est le cercle de diamètre [AC] d'où $h((\mathscr{C})) = (\mathscr{C}')$.
- 3) a) On a $M \in (\mathcal{C}) \cap (AM)$ alors $h(M) \in h((\mathcal{C})) \cap h((AM))$ d'où $h(M) \in (\mathcal{C}') \cap (AM) = \{A, N\}$ et comme h(A) = A alors h(M) = N.
- 3) b) On a $\frac{h(B) = C}{h(M) = N}$ alors $\overrightarrow{CN} = \frac{3}{2} \overrightarrow{BM}$ d'où les droites (BM) et (CN) sont parallèles
- 4) h' l'homothétie de centre I tel que h'(B) = N.
- 4) a) h'((BM)) est la droite parallèle à (BM) passant par h'(B) = N alors h'((BM)) = (CN)
- **4) b)** On a $\{M\} = (CI) \cap (BM)$ alors $\{h'(M)\} = h'((CI)) \cap h'((BM))$ d'où $\{h'(M)\}=(CI)\cap(CN)=\{C\}$ alors h'(M)=C.
- 5) Soit O = A * B, comme G est le centre de gravité du triangle ABM alors $\overrightarrow{OG} = \frac{1}{3}\overrightarrow{OM}$ d'où G est l'image du point M par l'homothétie h_2 de centre O et de rapport $\frac{1}{3}$.
 - $\bullet \text{ Soit } h_2(A) = A' \text{ , } h_2(B) = B' \text{ et } h_2\left((\mathscr{C})\right) = (\mathscr{C}_2) \text{ alors } (\mathscr{C}_2) \text{ est le cercle diamètre } [A'B']$

Comme M varie sur le cercle (\mathscr{C}) privé de A et B alors G varie sur le cercle (\mathscr{C}_2) privé de A' et B'.

