3.1 Llenguatges: Àlgebra relacional

- Introducció
- Operacions de l'àlgebra relacional
 - Unió
 - Reanomenament
 - Intersecció
 - Diferència
 - Producte cartesià
 - Selecció
 - Projecció
 - Combinació (join)
- Seqüència d'operacions de l'àlgebra relacional

Introducció

- Els **Ilenguatges relacionals de manipulació** (DML) es poden classificar en:
 - llenguatges basats en l'àlgebra relacional
 - llenguatges basats en el càlcul relacional (p.e.: SQL) encara que molts agafen elements de totes dues línies (SQL també incorpora elements de l'àlgebra).

• Càlcul relacional: Té el seu fonament en el càlcul de predicats

Declaratiu Que?

• Àlgebra relacional: Té el seu fonament en la teoria de conjunts (recordar que les relacions són conjunts)

Procedimental Com?

- Interés de l'àlgebra relacional:
 - ajuda a entendre quines funcionalitats de consulta ha de proporcionar un llenguatge relacional
 - la versió estandard actual de SQL incorpora operacions de l'àlgebra relacional
 - els SGBD processen i optimitzen les consultes basant-se en l'àlgebra relacional (recordar que l'àlgebra és procedimental i, per exemple, l'SQL és declaratiu)

SQL: QUÈ?

Operacions de l'àlgebra relacional

• 1a classif.: Operacions conjuntistes

Unió

Intersecció

Diferència

Producte Cartesià

Operacions específicament relacionals

Selecció

Projecció

Combinació (join) Reanomenament

• 2a classif.: Operacions primitives

Unió

Diferència

Producte Cartesià

Selecció

Projecció

Reanomenament

Operacions no primitives

Intersecció

Combinació (join)

• 3a classif.: Operacions binàries

Unió

Intersecció

Diferència

Producte Cartesià

Combinació (join)

Operacions unàries

Selecció

Projecció

Reanomenament

• **Tancament relacional**: Tant els operands com el resultat d'una operació de l'àlgebra relacional són relacions

Ex: $T = R \cup S$

Exemple

MODUL-CN(<u>modul</u>, sup-promig-de)

B6

B2 20

10

OFICINA(modul-de, num-de, superfície)

B6 25 10

B6 27 10

B2 25 15

B2 30 25

PERSONAL-ADM(<u>num-per</u>, nom, cognom, modul, num)

100 Joan Soler150 Clara Bellsolà

B6 25 B6 25

PERSONAL-LAB(<u>num-per</u>, nom, cognom, modul, num)

150 Clara Bellsolà B6 25

110 Núria Nogué B2 25

200 Jordi Moles B6 27

230 Pere Roig NULL NULL

{modul-de} és una clau forana que referencia MODUL-CN

(modul, num) és una clau forana que referencia OFICINA

{modul, num} és una clau forana que referencia OFICINA

Unió

PERSONAL-ADM(num-pe	er, nom,	cognom,	modul,	num)
100	Joan	Soler	B6	25
150	Clara	Bellsolà	B6	25

PERSONAL-LAB(r	num-p	er, nom	, cognom,	modul,	num)
	150	Clara	Bellsolà	B6	25
	110	Núria	Nogué	B2	25
	200	Jordi	Moles	B6	27
	230	Pere	Roig	NULL	NULL

R =PERSONAL-ADM ∪ PERSONAL-LAB

R(num-per,	nom, d	cognom,	modul	, num)
100	Joan	Soler	B6	25
150	Clara	Bellsolà	B6	25
110	Núria	Nogué	B2	25
200	Jordi	Moles	B6	27
230	Pere	Roig	NULL	NULL

No hi ha tuples repetides!!!

- Els atributs de l'**esquema** de la relació resultant deT ∪ S coincideixen amb els atributs de l'esquema de la relació T o de la relació S.
- L'extensió de la relació resultant de T ∪ S és el conjunt de tuples que pertanyen a l'extensió de T o que pertanyen a l'extensió de S o que pertanyen a l'extensió d'ambdues relacions
- Per fer la unió de dues relacions T i S cal que T i S siguin relacions compatibles.
- En cas de que els atributs de T i S no coincideixin cal reanomenar els atributs d'una de les dues relacions per tal de que siguin compatibles.

Relacions compatibles

- Algunes operacions de l'àlgebra relacional, com ara la unió, només té sentit que s'apliquin a relacions que siguin compatibles (que tinguin tuples "similars")
- Exemple: pot fer-se la unió
 PERSONAL-ADM ∪ PERSONAL-LAB
 perquè les tuples de les dues relacions s'assemblen en canvi no té sentit fer la unió
 PERSONAL-ADM ∪ OFICINES
- Diem que dues relacions T i S són compatibles si:

- tenen esquemes amb un conjunt d'atributs idèntic, i els dominis de cada parella d'atributs són els mateixos a T i a S.

Exemple:

PERSONAL-ADM i PERSONAL-LAB són clarament compatibles:

Reanomenament

R =PERSONAL-DOC {modul-de -> modul, num-de -> num}

R(num-per, nom, cognom,		modul,	num)	
400	Jaume	Cases	Omega	119
500	Pau	Pou	B6	123

- L'esquema de la relació resultant és el mateix, exceptuant el canvi de nom dels atributs que han estat reanomenats.
- L'extensió de la relació resultant no canvia.

Intersecció

PERSONAL-ADM(num-per, nom, cognom, modul, num) 100 Joan Soler B6 25 150 Clara Bellsolà B6 25

PERSONAL-LAB(num-	oer, nom	, cognom,	modul,	num)
150) Clara	Bellsolà	B6	25
110) Núria	Nogué	B2	25
200) Jordi	Moles	B6	27
230) Pere	Roig	NULL	NULL

R = PERSONAL-ADM
PERSONAL-LAB

R(num-per, nom, cognom, modul, num) 150 Clara Bellsolà B6 25

- Els atributs de l'**esquema** de la relació resultant deT ∩ S coincideixen amb els atributs de l'esquema de la relació T o la relació S.
- L'extensió de la relació resultant de T ∩ S és el conjunt de tuples que pertanyen a l'extensió d'ambdues relacions
- Per fer la intersecció de dues relacions T i S cal que T i S siguin relacions compatibles.
- En cas de que els atributs de T i S no coincideixin cal reanomenar els atributs d'una de les dues relacions per tal de que siguin compatibles.

Diferència

PERSONAL-ADM(num-per, nom, cognom, modul, num) 100 Joan Soler B6 25 150 Clara Bellsolà B6 25

	PERSONAL-LAB(num-pe	er, nom,	cognom,	modul,	num)
l	150	Clara	Bellsolà	B6	25
l	110	Núria	Nogué	B2	25
l	200	Jordi	Moles	B6	27
l	230	Pere	Roig	NULL	NULL

R = PERSONAL-ADM - PERSONAL-LAB

R(num-per, nom, cognom, modul, num) 100 Joan Soler B6 25

- Els atributs de l'**esquema** de la relació resultant de T S coincideixen amb els atributs de l'esquema de la relació T o la relació S.
- L'extensió de la relació resultant de T S és el conjunt de tuples que pertanyen a l'extensió de T però no a la de S.
- Per fer la diferència de dues relacions T i S cal que T i S siguin relacions compatibles.
- En cas de que els atributs de T i S no coincideixin cal reanomenar els atributs d'una de les dues relacions per tal de que siguin compatibles.

Producte Cartesià

R(modul,	sup-promi	g-of, modul-d	le, num-	de, superfície)
B6	10	B6	25	10
B6	10	B6	27	10
B6	10	B2	25	15
B6	10	B2	30	25
B2	20	B6	25	10
B2	20	B6	27	10
B2	20	B2	25	15
B2	20	B2	30	25

- Els atributs de l'**esquema** de la relació resultant de T × S són tots els atributs de T i tots els atributs de S.
- Si T i S tenen algun nom d'atribut idèntic, s'haurà de fer prèviament una operació de reanomenament d'una de les dues relacions per eliminar l'ambigüitat.
- L'**extensió** de la relació resultant de T × S és el conjunt de totes les tuples de la forma <v₁, v₂, ..., v_n, w₁, w₂, ..., w_m> on es compleix que <v₁, v₂, ..., v_n> pertany a l'extensió de T i que <w₁, w₂, ..., w_m> pertany a l'extensió de S.
- Per fer el producte cartesià de dues relacions T i S no cal que T i S siguin relacions compatibles

Selecció

R =OFICINA(modul-de='B2' AND superfície>16)

- T(C) indica la selecció de T amb la condició C, essent C una condició de selecció
- La condició C està formada per una o més comparacions de la forma:

on Ai i Aj són atributs de la relació T, Vj és un valor constant, i θ és un operador de comparació (=, <>, <, <= , >, >=). Les comparacions han d'estar relacionades entre elles per un dels operadors lògics AND (\wedge), OR (\vee).

- Els atributs de l'**esquema** de la relació resultant de T(C), coincideixen amb els atributs l'esquema de la relació T
- L'extensió de la relació resultant de T(C) és el conjunt de tuples que pertanyen a l'extensió de T i que satisfan la condició de selecció C.

Projecció

R(modul, num) B6 25 En àlgebra relacional,
NO HI HA TUPLES REPETIDES
perquè el resultat de les
operacions són conjunts.

- $T[A_i, A_j, ..., A_k]$ indica la projecció de T sobre $\{A_i, A_j, ..., A_k\}$, essent $\{A_i, A_j, ..., A_k\}$ un subconjunt dels atributs de l'esquema de la relació T.
- Els atributs de l'**esquema** de la relació resultant de T[A_i, A_j, ..., A_k], són els atributs {A_i, A_j, ..., A_k}
- L'**extensió** de la relació resultant de $T[A_i, A_j, ..., A_k]$ és el conjunt de totes les tuples de la forma $< t.A_i, t.A_j, ..., t.A_k >$ on es compleix que t és una tupla de l'extensió de T i on $t.A_p$ denota el valor per l'atribut A_p de la tupla t.

- T[B]S indica la combinació de T i S amb la condició B
- La condició B d'una combinació T [B] S està formada per una o més comparacions de la forma:

$$A_i \theta A_i$$

on A_i és un atribut de la relació T, A_j és un atribut de la relació S, θ és un operador de comparació $(=, \neq, <, \leq, >, \geq)$ i es compleix que A_i i A_j tenen el mateix domini.

• Les comparacions d'una condició de combinació se separen per comes.

Combinació (join)

OFICINA(modul-de,	num-de	, superfície)
B6	25	10
B6	27	10
B2	25	15
B2	30	25
	/	

R = MODUL-CN[modul=modul-de, sup-promig-of <= superfície]OFICINA

R(modul,	sup-promig	g-of, modul-de,	num-	de, superfície)
B6	10	B6	25	10
B6	10	B6	27	10
B2	20	B2	30	25

- Els atributs de l'**esquema** de la relació resultant deT[B]S són tots els atributs de T i tots els atributs de S.
- Si T i S tenen algun nom d'atribut idèntic, s'haurà de fer prèviament una operació de reanomenament d'una de les dues relacions per eliminar l'ambigüitat.
- L'extensió de la relació resultant de T [B] S és el conjunt de tuples que pertanyen a l'extensió del producte cartesià T × S i que satisfan totes les comparacions que formen la condició de combinació B.

Combinació (join): Tipus de "joins"

- "θ-join": La "join" s'anomena també "θ-join"
- "Equi-join": Cas particular de "join" en què totes les comparacions de la condició tenen l'operador '='.

PERSONAL-ADM(num-per, nom, cognom, modul, num) 100 Joan Soler B6 25 150 Clara Bellsolà B6 25 OFICINA(modul-de, num-de, superfície)

B6 25 10

B6 27 10

B2 25 15

B2 30 25

R = PERSONAL-ADM[modul=modul-de, num=num-de]OFICINA

R(num-per, nom, cognom, modul, num, modul-de, num-de, superfície) 100 Joan Soler B6 25 B6 25 10 150 Clara Bellsolà B6 25 **B6** 25 10

• "Natural join": Variant de la "equi-join" en la qual s'eliminen els atributs superflus. Es denota mitjançant un *. La diferència amb la "equi-join" és en l'esquema de la relació resultant, ja que no hi apareix el segon atribut de la comparació.

PERSONAL-ADM(num-per, nom, cognom, modul, num) 100 Joan Soler B6 25 150 Clara Bellsolà B6 25 OFICINA(modul-de, num-de, superfície)

B6 25 10

B6 27 10

B2 25 15

B2 30 25

R =PERSONAL-ADM[modul*modul-de, num*num-de]OFICINA

R(num-per, nom, cognom, modul, num, superfície)
100 Joan Soler B6 25 10
150 Clara Bellsolà B6 25 10

Combinació (join): "Natural join" implícita

PERSONAL-ADM(num-per, nom, cognom, modul, num) 100 Joan Soler B6 25 150 Clara Bellsolà B6 25 MODUL-CN(modul, sup-promig-de)
B6 10
B2 20

R = PERSONAL-ADM * MODUL-CN

R(num-per, nom, cognom, modul, num, sup-promig-de)
100 Joan Soler B6 25 10
150 Clara Bellsolà B6 25 10

- La "natural join" ímplicita: Variant de la "natural-join" en la qual no s'especifica la condició de combinació i aleshores s'assumeix per defecte que la condició de combinació correspon a la d'una "natural join" on s'igualen tots els parells d'atributs que tenen el mateix nom a les dues relacions.
- T * S denota la "natural join" ímplicita de T i S.

Sequències d'operacions de l'àlgebra relacional

Exemple: Obtenir les oficines (modul i número) dels moduls que tenen una superfície promig més gran que 15.

MODUL-CN(modul, sup-promig-of)					
	B6	10			
	B2	20			
		10			

OFICINA(modul-de, num-de, superfície)					
B6	25	10			
B6	27	10			
B2	25	15			
B2	30	25			

A =MODUL-CN(sup-promig-of>15)

B = A{modul -> modul-de}

C = OFICINA * B

R = C[modul-de, num-de]

- Les **consultes** a una BD relacional es poden expressar en termes de **seqüències d'operacions** de l'àlgebra relacional.
- Les sequències d'operacions ens permeten definir una relació que conté precisament allò que es desitja consultar.