INTELLIGENT TARGETING OF CELL-AWARE-FAULTS BY THE USE OF MANDATORY CONDITIONS

Micah A. Thornton mathornton@smu.edu Fanchen Zhang fzhang@smu.edu Jennifer Dworak jdworak@smu.edu

Southern Methodist University
Department of Computer Science and Engineering

Functional Simulation Motivation

- Introduction
 - Cell-Aware-Type Faults
 - Cell Aware Type Example
 - Functional Simulation
 - Motivation

- Introduction
 - Cell-Aware-Type Faults
 - Cell Aware Type Example
 - Functional Simulation
 - Motivation
- 2 Experiment
 - Cell-Aware-Type UDFM Generation
 - Mandatory Condition Extraction
 - Circuit Goodstate Extraction Functional Simulation
 - Mandatory Counts During Functional Simulation

Functional Simulation Motivation

- Introduction
 - Cell-Aware-Type Faults
 - Cell Aware Type Example
 - Functional Simulation
 - Motivation
- Experiment
 - Cell-Aware-Type UDFM Generation
 - Mandatory Condition Extraction
 - Circuit Goodstate Extraction Functional Simulation
 - Mandatory Counts During Functional Simulation
- Results & Analysis
 - Mandatory Counts as Fault Classifiers
 - Regression Analysis

Functional Simulation
Motivation

- Introduction
 - Cell-Aware-Type Faults
 - Cell Aware Type Example
 - Functional Simulation
 - Motivation
- Experiment
 - Cell-Aware-Type UDFM Generation
 - Mandatory Condition Extraction
 - Circuit Goodstate Extraction Functional Simulation
 - Mandatory Counts During Functional Simulation
- Results & Analysis
 - Mandatory Counts as Fault Classifiers
 - Regression Analysis
- Conclusion

Functional Simulation
Motivation

- Introduction
 - Cell-Aware-Type Faults
 - Cell Aware Type Example
 - Functional Simulation
 - Motivation
- Experiment
 - Cell-Aware-Type UDFM Generation
 - Mandatory Condition Extraction
 - Circuit Goodstate Extraction Functional Simulation
 - Mandatory Counts During Functional Simulation
- Results & Analysis
 - Mandatory Counts as Fault Classifiers
 - Regression Analysis
- Conclusion
- 6 Acknowledgement

Functional Simulation Motivation

- Introduction
 - Cell-Aware-Type Faults
 - Cell Aware Type Example
 - Functional Simulation
 - Motivation
- 2 Experiment
 - Cell-Aware-Type UDFM Generation
 - Mandatory Condition Extraction
 - Circuit Goodstate Extraction Functional Simulation
 - Mandatory Counts During Functional Simulation
- Results & Analysis
 - Mandatory Counts as Fault Classifiers
 - Regression Analysis
- Conclusion
- 5 Acknowledgement

Cell-Aware-Type Faults Cell Aware Type Example

Functional Simulation Motivation

Cell-Aware-Type Faults Cell Aware Type Example

Functional Simulation Motivation

Previous Work

Cell-Aware Fault Model

Functional Simulation Motivation

- Cell-Aware Fault Model
 - Proposed by Hapke et. al

Functional Simulation
Motivation

- Cell-Aware Fault Model
 - Proposed by Hapke et. al
 - Models Analog Faults

Functional Simulation
Motivation

- Cell-Aware Fault Model
 - Proposed by Hapke et. al
 - Models Analog Faults
 - Difficult to do ATPG

Functional Simulation Motivation

- Cell-Aware Fault Model
 - Proposed by Hapke et. al
 - Models Analog Faults
 - Difficult to do ATPG
 - Models faults as occurring within standard cells (logic gates)

Functional Simulation Motivation

- Cell-Aware Fault Model
 - Proposed by Hapke et. al
 - Models Analog Faults
 - Difficult to do ATPG
 - Models faults as occurring within standard cells (logic gates)
 - different from "Cell-Aware-Type." (More on this to come)

- Cell-Aware Fault Model
 - Proposed by Hapke et. al
 - Models Analog Faults
 - Difficult to do ATPG
 - Models faults as occurring within standard cells (logic gates)
 - different from "Cell-Aware-Type." (More on this to come)
- Functional Simulation

Functional Simulation Motivation

- Cell-Aware Fault Model
 - Proposed by Hapke et. al
 - Models Analog Faults
 - Difficult to do ATPG
 - Models faults as occurring within standard cells (logic gates)
 - different from "Cell-Aware-Type." (More on this to come)
- Functional Simulation
 - Used to Determine Fault Coverage (Shi '11)

- Cell-Aware Fault Model
 - Proposed by Hapke et. al
 - Models Analog Faults
 - Difficult to do ATPG
 - Models faults as occurring within standard cells (logic gates)
 - different from "Cell-Aware-Type." (More on this to come)
- Functional Simulation
 - Used to Determine Fault Coverage (Shi '11)
 - Overview valid state space

- Cell-Aware Fault Model
 - Proposed by Hapke et. al
 - Models Analog Faults
 - Difficult to do ATPG
 - Models faults as occurring within standard cells (logic gates)
 - different from "Cell-Aware-Type." (More on this to come)
- Functional Simulation
 - Used to Determine Fault Coverage (Shi '11)
 - Overview valid state space
- Extension of work on targeting very difficult stuck-at faults

Cell-Aware-Type Faults Cell Aware Type Example

Functional Simulation Motivation

Cell-Aware-Type Faults Cell Aware Type Example

Functional Simulation Motivation

CAT Faults

Cell-Aware Type faults

Cell-Aware-Type Faults Cell Aware Type Example

Functional Simulation
Motivation

- Cell-Aware Type faults
 - Discussed in Paper by Zhang et. al

Cell-Aware-Type Faults Cell Aware Type Example

Functional Simulation
Motivation

- Cell-Aware Type faults
 - Discussed in Paper by Zhang et. al
 - Model Cell-Aware Faults

Functional Simulation
Motivation

- Cell-Aware Type faults
 - Discussed in Paper by Zhang et. al
 - Model Cell-Aware Faults
 - Use Stuck-At-ATPG to differentiate cell-aware-type faults.

Functional Simulation
Motivation

CAT Faults

- Cell-Aware Type faults
 - Discussed in Paper by Zhang et. al
 - Model Cell-Aware Faults
 - \bullet Use Stuck-At-ATPG to differentiate cell-aware-type faults.

Note

This type of fault is considered different than a pure cell-aware fault because no Analog analysis is required to generate tests. This will be illustrated during the next example

Cell-Aware-Type Faults
Cell Aware Type Example

Functional Simulation Motivation

CAT Example

Cell-Aware-Type Faults
Cell Aware Type Example

Functional Simulation Motivation

CAT Example

imagine you have an inverter...

Cell-Aware-Type Faults
Cell Aware Type Example

Functional Simulation Motivation

CAT Example

Cell-Aware-Type Faults
Cell Aware Type Example

Functional Simulation Motivation

CAT Example

CAT Example

Transistor Parameters

$$V_{tn} = V_{tp} = 0.7$$
 Volts.

Cell-Aware-Type Faults
Cell Aware Type Example

Functional Simulation
Motivation

CAT Example

But Transistors are not linear elements, so our model is still not perfect...

Cell-Aware-Type Faults
Cell Aware Type Example

unctional Simulation Motivation

CAT Example

During the manufacture of this inverter...

Cell-Aware-Type Faults
Cell Aware Type Example

Functional Simulation Motivation

CAT Example

Functional Simulation Motivation

CAT Example

In this simple example cell...

CAT Example

In this simple example cell... Set $V_{in}=1$, and observe $V_{out}=1$

Functional Simulation
Motivation

CAT Example

In this simple example cell... Set $V_{in}=1$, and observe $V_{out}=1$ This analysis is difficult to perform on millions of transistors

Cell-Aware-Type Faults Cell Aware Type Example

Functional Simulation
Motivation

CAT Example

With Cell-Aware-Type faults, we examine stuck-at ATPG test patterns...

Cell-Aware-Type Faults Cell Aware Type Example

Functional Simulation
Motivation

CAT Example

With Cell-Aware-Type faults, we examine stuck-at ATPG test patterns...

And add patterns that cause conflict, but might not be choosen by ATPG tool.

Cell-Aware-Type Faults Cell Aware Type Example

Functional Simulation

Functional Simulation

Recall that the state space of an automaton refers to...

Cell-Aware-Type Faults Cell Aware Type Example

Functional Simulation Motivation

Functional Simulation

Recall that the state space of an automaton refers to...
All possible configurations of the memory elements in a device.

Cell-Aware-Type Faults Cell Aware Type Example

Functional Simulation Motivation

Functional Simulation

Recall that the state space of an automaton refers to...
All possible configurations of the memory elements in a device.
Consider a general purpose device that contains fault F as shown:

Cell-Aware-Type Faults Cell Aware Type Example

Functional Simulation

Cell-Aware-Type Faults Cell Aware Type Example

Functional Simulation Motivation

CAT Example

ATPG for pure Cell-Aware Faults is Hard...

Cell-Aware-Type Faults Cell Aware Type Example

Functional Simulation Motivation

CAT Example

ATPG for pure Cell-Aware Faults is Hard... It requires many resources (time/computational power)

Cell-Aware-Type Faults Cell Aware Type Example

Functional Simulation Motivation

CAT Example

ATPG for pure Cell-Aware Faults is Hard... It requires many resources (time/computational power) Let's prioritize faults using functional analysis of faults.

- Introduction
 - Cell-Aware-Type Faults
 - Cell Aware Type Example
 - Functional Simulation
 - Motivation
- Experiment
 - Cell-Aware-Type UDFM Generation
 - Mandatory Condition Extraction
 - Circuit Goodstate Extraction Functional Simulation
 - Mandatory Counts During Functional Simulation
- Results & Analysis
 - Mandatory Counts as Fault Classifiers
 - Regression Analysis
- Conclusion
- 5 Acknowledgement

Flow Chart


```
model s_faddx1_CO_(CO, CI, B, A)(
 model_source = verilog_udp;
  input (CI) ()
  input (B) ()
  input (A) ( )
  output (CO) (
    primitive = _and mlc_sop_product_gate0 (B, A,
        mlc_product_net0_0);
    primitive = _and mlc_sop_product_gate1 (CI, A,
        mlc_product_net0_1);
    primitive = _and mlc_sop_product_gate2 (CI, B,
        mlc_product_net0_2);
    primitive = _or mlc_sop_sum_gate0 (mlc_product_net0_0,
        mlc_product_net0_1, mlc_product_net0_2, CO);
  ))
```


Α	В	C _{in}	C_{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

```
Cell ( "FADDX1" ) {
    Fault ( "FADDX1_i000_o1" ) {
        Test {
                StaticFault { "S" : 1; }
                Conditions { "A" : 0; "B": 0; "CI":
                    0:}
    Fault ( "FADDX1_i000_o1" ) {
        Test {
                StaticFault { "CO" : 1; }
                Conditions { "A" : 0; "B": 0; "CI":
                    0;}
```

Imagine you are testing a circuit with...

Imagine you are testing a circuit with...
6 Primary Inputs

Imagine you are testing a circuit with...

- 6 Primary Inputs
- 2 State Elements

Imagine you are testing a circuit with...
6 Primary Inputs
2 State Elements
you are looking for a fault f

Cell-Aware-Type UDFM Generation Mandatory Condition Extraction Circuit Goodstate Extraction Functional Simulation Mandatory Counts During Functional Simulation

Mandatory Condition Extraction

Imagine you are testing a circuit with...

6 Primary Inputs

2 State Elements

you are looking for a fault f

and perform stuck-at-ATPG 4 times (or with n=4 on n-detect)

	Inputs	Flip-Flops
Pattern 1	<mark>0</mark> 10111	00
Pattern 2	001001	10
Pattern 3	011111	00
Pattern 4	000001	10

	Inputs	Flip-Flops
Pattern 1	<mark>0</mark> 10111	00
Pattern 2	001001	10
Pattern 3	011111	00
Pattern 4	000001	10

$$MC(f) =$$

	Inputs	Flip-Flops
Pattern 1	0 10111	00
Pattern 2	001001	10
Pattern 3	011111	00
Pattern 4	000001	10

$$MC(f) = \overline{p_0}$$

	Inputs	Flip-Flops
Pattern 1	0 10111	00
Pattern 2	001001	10
Pattern 3	011111	00
Pattern 4	000001	10

$$MC(f) = \overline{p_0}p_5$$

	Inputs	Flip-Flops
Pattern 1	0 10111	00
Pattern 2	001001	10
Pattern 3	011111	00
Pattern 4	000001	10

$$MC(f) = \overline{p_0}p_5\overline{d_1}$$

Cell-Aware-Type UDFM Generation Mandatory Condition Extraction Circuit Goodstate Extraction Functional Simulation Mandatory Counts During Functional Simulation

• This was reported on in the last publication.

- This was reported on in the last publication.
- we inserted scanchains into circuits (ISCAS/DES56)

- This was reported on in the last publication.
- we inserted scanchains into circuits (ISCAS/DES56)
- Random inputs for ISCAS circuits

- This was reported on in the last publication.
- we inserted scanchains into circuits (ISCAS/DES56)
- Random inputs for ISCAS circuits
- Functional Testbench patterns for DES (both encryption and decryption)

- This was reported on in the last publication.
- we inserted scanchains into circuits (ISCAS/DES56)
- Random inputs for ISCAS circuits
- Functional Testbench patterns for DES (both encryption and decryption)
- Captured state after every clock cycle, and had functional states for circuits.

Cell-Aware-Type UDFM Generation Mandatory Condition Extraction Circuit Goodstate Extraction Functional Simulation Mandatory Counts During Functional Simulation

Mandatory Counts During Functional Simulation

• After determining the mandatory conditions for each circuit

- After determining the mandatory conditions for each circuit
- Mandatory-Condition checking and gates were added to each circuit

- After determining the mandatory conditions for each circuit
- Mandatory-Condition checking and gates were added to each circuit
- Using the goodstates we extracted

- After determining the mandatory conditions for each circuit
- Mandatory-Condition checking and gates were added to each circuit
- Using the goodstates we extracted
- We performed functional simulation on the circuit,

- After determining the mandatory conditions for each circuit
- Mandatory-Condition checking and gates were added to each circuit
- Using the goodstates we extracted
- We performed functional simulation on the circuit,
- and counted the number of times the mandatory conditions occurred.

MAND gates

Figure: Mandatory Condition Detector for fault f

- Introduction
 - Cell-Aware-Type Faults
 - Cell Aware Type Example
 - Functional Simulation
 - Motivation
- 2 Experiment
 - Cell-Aware-Type UDFM Generation
 - Mandatory Condition Extraction
 - Circuit Goodstate Extraction Functional Simulation
 - Mandatory Counts During Functional Simulation
- Results & Analysis
 - Mandatory Counts as Fault Classifiers
 - Regression Analysis
- Conclusion
- 5 Acknowledgement

ISCAS s9234

		Dete	ected
		Т	F
Predicted	Т	453 (TP)	119 (FP)
	F	0 (FN)	462 (TN)

Statistic	Value	
Precision	79%	
Accuracy	88%	
Specificity	79%	
Fall-out	20.5%	

DES 56

		Detected		
		Т	F	
Predicted	Т	461 (TP)	2 (FP)	
	F	0 (FN)	14 (TN)	

Statistic	Value			
Sensitivity	100%			
Accuracy	99.5%			
Specificity	87.5%			
Fall-out	14.2%			
Precision	99.5%			

ISCAS s9234

Linear Regression Model for s9234

DES 56

Linear Regression Model for DES56

- Introduction
 - Cell-Aware-Type Faults
 - Cell Aware Type Example
 - Functional Simulation
 - Motivation
- 2 Experiment
 - Cell-Aware-Type UDFM Generation
 - Mandatory Condition Extraction
 - Circuit Goodstate Extraction Functional Simulation
 - Mandatory Counts During Functional Simulation
- Results & Analysis
 - Mandatory Counts as Fault Classifiers
 - Regression Analysis
- Conclusion
- 6 Acknowledgement

Introduction
Experiment
Results & Analysis
Conclusion
Acknowledgement

Introduction Experiment Results & Analysis Conclusion Acknowledgement

Conclusion

Cell-Aware fault model describes faults within cells

- Cell-Aware fault model describes faults within cells
- Large number of C.A. Faults for given circuits

- Cell-Aware fault model describes faults within cells
- Large number of C.A. Faults for given circuits
- Functional Simulation and Mandatory Conditions allow us to prioritize fault detections

- Cell-Aware fault model describes faults within cells
- Large number of C.A. Faults for given circuits
- Functional Simulation and Mandatory Conditions allow us to prioritize fault detections
- We provided examples of mandatory condition calculations, and showed how they could be used to predict whether or not a cell-aware fault is functional

- Introduction
 - Cell-Aware-Type Faults
 - Cell Aware Type Example
 - Functional Simulation
 - Motivation
- 2 Experiment
 - Cell-Aware-Type UDFM Generation
 - Mandatory Condition Extraction
 - Circuit Goodstate Extraction Functional Simulation
 - Mandatory Counts During Functional Simulation
- Results & Analysis
 - Mandatory Counts as Fault Classifiers
 - Regression Analysis
- Conclusion
- 5 Acknowledgement

Acknowledgement

The authors would like to thank Semiconductor Research Corporation who supports this research under Task ID 2465.001. The authors are also grateful for the support of our industrial liaisons.

Thank You

Introduction Experiment Results & Analysis Conclusion Acknowledgement

QUESTIONS?