Tutorial – Mathematics for Social Scientists

Winter semester 2024/25

Optimization & Multivariate calculus

To do

- weekly recap
- real world applications
- hands on practice
- questions

Chapter 15 | Multivariate Calculus and Optimization

Multidimensional differentiation

→ follows the rules of one-dimensional differentiation ©

- we are interested in the slope in direction of x, while keeping y fixed – and vice versa
 - same rules, treat every variable as a constant to whose respect we are not differentiating!
 - to denote a **partial derivative**, we either use $\frac{\partial}{\partial x}$ or $f_{\chi}'(x)$

exampel:

$$f(x, y, z) = 3y^2z^4 - 5xz^2 + 2x^3$$

$$f'_{x}(x, y, z) = -5z^{2} + 6x^{2}$$

$$f'_{y}(x, y, z) = 6yz^{4}$$

$$f'_{z}(x, y, z) = 12y^{2}z^{3} - 10xz$$

Hands on – partial derivatives

Task: Find the partial derivatives of the following functions!

1)
$$\frac{\partial}{\partial z} 9x^2 + 3z^2$$

2)
$$\frac{\partial}{\partial z} 8xyz^2 + 10x^2y^2 + 12x^2y + 14x^2z^2$$

Hands on – partial derivatives

Solution:

$$1) \frac{\partial}{\partial z} 9x^2 + 3z^2 = 6z$$

2)
$$\frac{\partial}{\partial z} 8xyz^2 + 10x^2y^2 + 12x^2y + 14x^2z^2 = 16xyz + 28x^2z$$

Gradient

Is a function partially differentiable, we can summarize its (first order) partial derivatives under the gradient

- ALWAYS describes steepest increase/descent!
- →that's why we are interested in it optimization
- example: $f(x, y, z) = z \cdot \exp(x^2 + xy)$ gradient: $\nabla f(x, y, z) = \begin{pmatrix} z \exp(x^2 + xy)(2x + y) \\ z \exp(x^2 + xy)x \end{pmatrix}$ • $f_x(x, y, z) = z \cdot \exp(x^2 + xy) \cdot (2x + y)$
 - $f_v(x, y, z) = z \cdot \exp(x^2 + xy) \cdot x$
 - $f_Z(x, y, z) = \exp(x^2 + xy)$

Real world applications – Gradient

Which hill would you rather climb?

→ the gradient denotes the direction of steepest increase/decrease!

Source: https://undergroundmathematics.org/introducing-calculus/gradients-important-real-world, 28.10.2023

Real world applications – Gradient

Applications of the gradient:

- rate of change of **distance** with respect to **time** velocity
- there is the rate of change of energy with respect to time
 power
- the rate of change of chemical concentrations with respect to time
 rate of a reaction
- rate of change of money owing with respect to time
 compound interest

Source: https://undergroundmathematics.org/introducing-calculus/gradients-important-real-world, 28.10.2023

The Jacobian

Let's do the example from the previous section that we just mentioned. Recall that the function f has components

$$f_1(x, y, z) = 3xy - y^2z + 2,$$

$$f_2(x, y, z) = x^y - xy,$$

$$f_3(x, y, z) = z(xz + y) - 2y(e^{x+y}) - 15z,$$

$$f_4(x, y, z) = xyz - 1.$$

Then the Jacobian matrix J is

$$J = \begin{pmatrix} 3y & 3x - 2yz & -y^2 \\ yx^{y-1} - y & \ln(x)x^y - x & 0 \\ z^2 - 2y(e^{x+y}) & z - 2(e^{x+y}) - 2y(e^{x+y}) & 2xz + y - 15 \\ yz & xz & xy \end{pmatrix}.$$

$$f(x_1, x_2, \dots, x_n) = (f_1, f_2, \dots, f_m)$$

$$J_{f} = \begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}} \end{pmatrix}$$

The Hessian – Hesse matrix

The Hessian or Hesse matrix is a quadratic matrix that represents the second derivatives of a multivariate function in calculus

$$H_f = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 x_2} \\ \frac{\partial^2 f}{\partial x_2 x_1} & \frac{\partial^2 f}{\partial x_2^2} \end{bmatrix}$$

- The entry of row i and column j is: $(H_f)_{i,j} = \frac{\partial^2 f}{\partial x_i x_j}$
- **Note**: the Hesse matrix of f is the transpose of the Jacobian of f's gradient!

$$H(f(x)) = J(\nabla f(x))^{T}$$

Example: Find *H* for $f(x, y) = \ln(2x) + 3xy^2$

Algorithm:

- 1) find first order partial derivatives
- 2) find second order partial derivatives
- 3) arrange based on row and column order

$$\left(H_f\right)_{i,j} = \frac{\partial^2 f}{\partial x_i x_j}$$

$$H_f = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 x_2} \\ \frac{\partial^2 f}{\partial x_2 x_1} & \frac{\partial^2 f}{\partial x_2^2} \end{bmatrix}$$

1) find first order partial derivatives 2) of:

$$f(x, y, z) = ln(2x) + 3xy^2$$

$$f_x(x,y) = \frac{2}{2x} + 3y^2 = \frac{1}{x} + 3y^2$$

$$f_{y}(x,y) = 6xy$$

$$f_{xx}(x,y) = \frac{-1}{x^2}$$

$$f_{yy}(x,y) = 6x$$

$$f_{xy}(x,y) = 6y$$

$$f_{yx}(x,y) = 6y$$

Example: Find *H* for $f(x, y) = \ln(2x) + 3xy^2$

3) arrange based on row and column order

$$H_f = \begin{bmatrix} f_{xx}(x,y) = \frac{-1}{x^2} & f_{xy}(x,y) = 6y \\ f_{yx}(x,y) = 6y & f_{yy}(x,y) = 6x \end{bmatrix}$$

→ Do you notice something?

Example: Find *H* for $f(x, y) = \ln(2x) + 3xy^2$

3) arrange based on row and column order

$$H_f = \begin{bmatrix} f_{xx}(x,y) = \frac{-1}{x^2} & f_{xy}(x,y) = 6y \\ f_{yx}(x,y) = 6y & f_{yy}(x,y) = 6x \end{bmatrix}$$

→ The second order partial derivatives are the same!

Satz von Schwarz

 Note: For second order derivatives, the 'order of differentiation' across different variables does NOT matter

$$H_f = \begin{bmatrix} f_{xx}(x,y) = \frac{-1}{x^2} & f_{xy}(x,y) = 6y \\ f_{yx}(x,y) = 6y & f_{yy}(x,y) = 6x \end{bmatrix}$$

- we can differentiate by x first and by y second and vice versa
- → this will make your lives easier ©

Logarithms... a reminder!

How do we differentiate logarithms?

$$f(x) = \ln(some \ x) \rightarrow f'(x) = \frac{inner\ derivative\ of\ some\ x}{some\ x}$$

How do we find higher order derivatives?

$$x^{n}(t) = \frac{(-1)^{n-1}(n-1)!}{t^{n}}$$

Hands on – Hesse matrix

Task: Find the Hesse matrix for the following functions!

1)
$$f(x,y) = 5x^2y^3 - \ln(3x)$$

2)
$$f(x,y) = 12 - 3x^2 - 6x - y^2 + 12y$$

Hands on – Hesse matrix – Solution

$$f(x,y) = 5x^2y^3 - \ln(3x)$$

•
$$f_x(x,y) = 10y^3x - \frac{1}{x}$$

$$f_y(x,y) = 15x^2y^2$$

$$\bullet \ H = \begin{bmatrix} \frac{1}{x^2} + 10y^3 & 30xy^2 \\ 30xy^2 & 30x^2y \end{bmatrix}$$

•
$$f(x,y) = 12 - 3x^2 - 6x - y^2 + 12y$$

•
$$f_x(x,y) = -6x - 6$$

•
$$f_y(x, y) = -2y + 12$$

$$\bullet \ H = \begin{bmatrix} -6 & 0 \\ 0 & -2 \end{bmatrix}$$

Definiteness

Vector spaces

For vector space *V* over real/complex numbers holds:

- $\langle \vec{v}, \vec{v} \rangle > 0 \rightarrow$ positive definite
- $\langle \vec{v}, \vec{v} \rangle < 0 \rightarrow$ negative definite
- $\langle \vec{v}, \vec{v} \rangle \ge 0 \rightarrow$ positive semidefinite
- $\langle \vec{v}, \vec{v} \rangle \leq 0$ \rightarrow negative semidefinite

NOTE: we can use definiteness to assess whether a critical points is a minimum, a maximum or a saddle!

Matrices

- For quadratic symmetrical matrix A with eigenvalues λ holds:
 - $\lambda > 0 \rightarrow$ positive definite
 - $\lambda < 0 \rightarrow$ negative definite
 - $\lambda \ge 0 \rightarrow$ positive semidefinite
 - $\lambda \leq 0 \rightarrow$ negative semidefinite
 - indefinite

 both positive and negative eigenvalues

Optimization (wo. constraints)

Algorithm:

- 1) find $\nabla f(x)$
- 2) $set \nabla f(x^*) = 0$ and solve for all $\xrightarrow{x^*}$ stationary points
- 3) find Hesse matrix H for f(x)
- 4) for each stationary point x*, substitute x* into H
 → assess definiteness
- compare local maxima and minima to find global extreme points

- if H is negative definite:

 → local maximum
- if H is negative definite:

 → local minimum
- if H is indefinite:

 → saddle point
- if H is semidefinite:

 → inconclusive... use e.g. eigenvalues

Optimization (wo. constraints)

Example: Find the extreme points of $f(x, y) = x^2 - 3xy + y$

1) find $\nabla f(x,y)$

- $f_x(x,y) = 2x 3y$
- $f_{v}(x,y) = -3x + 1$

$$\Rightarrow \nabla f(x,y) = \begin{pmatrix} 2x - 3y \\ -3x + 1 \end{pmatrix}$$

2) set $\nabla f(x^*) = 0$ and solve for all x^*

- $2x 3y = 0 \rightarrow 2\left(\frac{1}{3}\right) 3y = 0 \rightarrow y = \frac{2}{9}$
- $-3x + 1 = 0 \rightarrow x = \frac{1}{3}$

Optimization (wo. constraints)

Example: Find the extreme points of $f(x, y) = x^2 - 3xy + y$

3) find Hesse matrix H for f(x)

- $f_{xx}(x,y) = 2$

•
$$f_{yy}(x,y) = 0$$
 $\Rightarrow H = \begin{pmatrix} 2 & -3 \\ -3 & 0 \end{pmatrix}$

- $\bullet \ f_{xy}(x,y) = -3$
- $\bullet \ f_{vx}(x,y) = -3$

4) substitute x^* into H

- no variables left in H
- H consists of both positive and negative values \rightarrow indefinite \rightarrow saddle point at $f(\frac{1}{2}|\frac{2}{6})$

Hands on — Optimization (wo. constraints)

Task: Find the extrema of the following functions!

1)
$$f(x,y) = 12 - 3x^2 - 6x - y^2 + 12y$$

2)
$$f(x,y) = x^2y - 4y + \ln(x)$$

Hands on — Optimization (wo. constraints)

Solution: Find the extrema of the following functions!

1)
$$f(x,y) = 12 - 3x^2 - 6x - y^2 + 12y$$

 \rightarrow Maximum at (-1, 6)

2)
$$f(x,y) = x^2y - 4y + \ln(x)$$

 \rightarrow Saddle at (-2, -1/8) and Saddle at (2, -1/8)

Solution – Extrema $f(x, y) = 12 - 3x^2 - 6x - y^2 + 12y$

Solution – Extrema $f(x,y) = x^2y - 4y + \ln(x)$

1) Gud
$$\nabla f(x,y)$$

 $f_{X}(x,y) = zxy + \frac{1}{X}$ $\nabla f(x,y) = \begin{pmatrix} zxy + \frac{1}{X} \\ x^{2}y \end{pmatrix}$
2) $set \nabla f(x,y) = qual + 6$
 $2xy + \frac{1}{X} = 6$ $2 \cdot (-2)y - \frac{1}{Z} = -4y = \frac{1}{Z} - 2y = -\frac{1}{Z}$
 $x^{2} - y = 6 - 7 \times \frac{1}{Z} = 4 = 2 \times 1 - 2 \times 1 -$

Solution – Extrema $f(x,y) = x^2y - 4y + \ln(x)$

$$Y = 2, y = \frac{1}{8}$$

$$H = \begin{pmatrix} -\frac{2}{8} - \frac{1}{4} & y \\ y & 6 \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & y \\ y & 0 \end{pmatrix} \Rightarrow \text{ indefinite.}$$

$$= \int f(x,y) \text{ has two saddle points}$$

$$= a + f(-2, -\frac{1}{8}) \text{ and } f(2, -\frac{1}{8})$$

$f(x,y) = x^2y - 4y + \ln(x)$ plotted in R using Plotly

Multidimensional integration

Intuition:

- univariate integrals give the area under the curve
- bivariate integrals give the volume under the surface
- ... is also pretty much the same as one-dimensional integration
 - → at least given the problems we will solve in this class
- let's visualize ©
 - https://matheistkeinarschloch.de/mehrdimensionale-integration/

Sentence of Fubini

 if one of the two integrals exists and is defined, the other integral exists as well...

$$\int_{a}^{b} \int_{c}^{d} |f(x,y)| \, dx \, dy = \int_{c}^{d} \int_{a}^{b} |f(x,y)| \, dy \, dx$$

- when may we switch integrals around?
 - ullet when f is non-negative over the area of integration
 - when f is not complicated ... e.g. a polynomial, exponentials, sin(x), cos(x),...

Multidimensional integration

Example:

$$\int_{0}^{1} \int_{0}^{3} 6x + 4xy + 2y^{2} + 2dy \, dx = \int_{0}^{1} \left(\int_{0}^{3} 6x + 4xy + 2y^{2} + 2dy \right) \, dx$$

$$= \int_{0}^{1} \left[6xy + 2xy^{2} + \frac{2}{3}xy^{3} + 2y \right]_{y=0}^{3} \, dx$$

$$= \int_{0}^{1} 18x + 18x + 18 + 6 \, dx$$

$$= \left[18x^{2} + 24x \right]_{x=0}^{1} = 42$$

Time for your questions

- Any questions during the week?
 - joerdis.strack@uni-konstanz.de

