Currently and Soon-to-be Available TRIUMPHS PSPs

 $Descriptions \ of \ all \ PSPs \ available \ at: \ \ \underline{http://webpages.ursinus.edu/nscoville/(Numbered)\%20IUSE\%20Project\%20Descriptions.pdf}$

Complete versions of most of the following are available at: http://webpages.ursinus.edu/nscoville/projects.html

The Notes to Instructors section at the end of each PSP includes further information about its goals and design.

Full-length PSPs (numbers correlate with posted PSP Descriptions)

To obtain a preliminary copy of any PSP not yet posted on the TRIUMPHS website (listed in italics below), please contact the author.

* indicates a PSP that is suitable for use in History of Mathematics Courses and/or Capstone Courses for Pre-service Secondary Teachers.

Intended Course(s)

Author

F 02. Determining the Determinant F 03. Solving a System of Linear Equations Using Elimination F 04. Investigating Difference Equations F 05. Quantifying Certainty: the p-value F 06. Pythagorean Theorem and Exigency of Parallel Postulate F 07. Failure of the Parallel Postulate F 08. Dedekind and the Creation of Ideals	Linear Algebra Linear Algebra* Discrete Mathematics Statistics Geometry*	Danny Otero Mary Flagg Dave Ruch Dominic Klyve
F 04. Investigating Difference Equations F 05. Quantifying Certainty: the p-value F 06. Pythagorean Theorem and Exigency of Parallel Postulate F 07. Failure of the Parallel Postulate	Discrete Mathematics Statistics Geometry*	Dave Ruch
F 05. Quantifying Certainty: the p-value F 06. Pythagorean Theorem and Exigency of Parallel Postulate F 07. Failure of the Parallel Postulate	Statistics Geometry*	
F 06. Pythagorean Theorem and Exigency of Parallel Postulate F 07. Failure of the Parallel Postulate	Geometry*	Dominic Klyve
F 07. Failure of the Parallel Postulate	•	•
	<u> </u>	Jerry Lodder
F 08. Dedekind and the Creation of Ideals	Geometry*	Jerry Lodder
T -	Abstract Algebra	Janet Barnett
F 09. Primes, Divisibility & Factoring	Number Theory*	Dominic Klyve
F 10. The Pell Equation in Indian Mathematics	Number Theory*	Toke Knudsen & Keith Jones
F 13. Bolzano's Definition of Continuity, his Bounded Set Theorem, and an Application to Continuous Functions	Introductory Analysis	Dave Ruch
F 14. Rigorous Debates over Debatable Rigor: Monster Functions in Intro. Analysis	Introductory Analysis	Janet Barnett
F 16. Nearness without distance— three approaches	Topology	Nick Scoville
F 18. Construction of Figurate Numbers	General Education*	Jerry Lodder
F 19. Pascal's Triangle and Mathematical Induction	General Education*	Jerry Lodder
F 20. Investigations Into d'Alembert's Definition of Limit	Introductory Analysis	Dave Ruch
F 21. An Introduction to a Rigorous Definition of Derivative	Introductory Analysis	Dave Ruch
F 22. Investigations Into Bolzano's Formulation of the Least Upper Bound Property	Introductory Analysis	Dave Ruch
F 23. The Mean Value Theorem	Introductory Analysis	Dave Ruch
F 24. Abel and Cauchy on a Rigorous Approach to Infinite Series	Introductory Analysis	Dave Ruch
F 25. The Definite Integrals of Cauchy and Riemann	Introductory Analysis	Dave Ruch
F 26. Gaussian Integers and Dedekind Ideals: A Number Theory Project	Number Theory*	Janet Barnett
F 27. Developing an Understanding of the Quotient Group Concept	Abstract Algebra	Janet Barnett
F 28. Roots of Early Group Theory in the Works of Lagrange	Abstract Algebra*	Janet Barnett
Mini-PSPs (numbers correlate with posted PSP Descriptions)	Intended Course(s)	Author
M 01. Babylonian Numeration	Gen. Ed / Elem. Ed. Courses*	Dominic Klyve
M 03. Derivatives of Trigonometric Functions	Calculus I*	Dominic Klyve
M 04. Beyond Riemann Sums	Calculus I*	Dominic Klyve
M 09. How to Calculate π , Part 4: Inverse Tangents	Calculus 2*	Dominic Klyve
M 13. Integration via trigonometric and other substitutions	Calculus 2	Janet Barnett
M 14. Polar coordinates and arc length	Calculus 2	Janet Barnett
M 15. Gaussian Guesswork: Sequences & the Arithmetic-Geometric Mean	Calculus 2	Janet Barnett
M 17. Why be so critical? Origins of Analysis in 19 th Century Mathematics	Introductory Analysis*	Janet Barnett
M 18. Topology from Analysis: Making the Connection	Topology / Introductory Analysis	Nick Scoville
M 19. Connecting Connectedness	Topology	Nick Scoville
M 20. The Cantor Set before Cantor	Topology	Nick Scoville
M 21. A Compact Introduction to a Generalized Extreme Value Theorem	Topology	Nick Scoville
M 22. From sets to metric spaces to topological spaces	Topology	Nick Scoville
M 23. The Closure Operation as the Foundation of Topology	Topology	Nick Scoville
M 24. Euler's Rediscovery of <i>e</i>	Introductory Analysis / Calc. 2	Dave Ruch
M 25. Henri Lebesgue and the Integral Concept	Introductory Analysis	Janet Barnett
M 26. Generating Pythagorean Triples via Gnomons - two versions available Nur	umber Theory/Elem. Ed. Courses *	Janet Barnett