Connectionist Models

Consider humans:

- \bullet Neuron switching time $\tilde{\ }$.001 second
- \bullet Number of neurons $\tilde{}$ 10^{10}
- Connections per neuron ~ 10⁴⁻⁵
- \bullet Scene recognition time $\tilde{\ }$.1 second
- 100 inference steps doesn't seem like enough
- \rightarrow much parallel computation

Properties of artificial neural nets (ANN's):

- Many neuron-like threshold switching units
- Many weighted interconnections among units
- Highly parallel, distributed process
- \bullet Emphasis on tuning weights automatically

lecture slides for textbook $Machine\ Learning,$ T. Mitchell, McGraw Hill, 1997

ALVINN drives 70 mph on highways

lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

When to Consider Neural Networks

- Input is high-dimensional discrete or real-valued (e.g. raw sensor input)
- Output is discrete or real valued
- Output is a vector of values
- Possibly noisy data
- Form of target function is unknown
- Human readability of result is unimportant

Examples:

- Speech phoneme recognition [Waibel]
- Image classification [Kanade, Baluja, Rowley]
- Financial prediction

Perceptron

$$o(x_1,\ldots,x_n) = \begin{cases} 1 & \text{if } w_0 + w_1 x_1 + \cdots + w_n x_n > 0 \\ -1 & \text{otherwise.} \end{cases}$$

Sometimes we'll use simpler vector notation:

$$o(\vec{x}) = \left\{ \begin{array}{c} 1 \text{ if } \vec{w} \cdot \vec{x} > 0 \\ -1 \text{ otherwise.} \end{array} \right.$$

Decision Surface of a Perceptron

Represents some useful functions

• What weights represent $g(x_1, x_2) = AND(x_1, x_2)$?

But some functions not representable

- e.g., not linearly separable
- Therefore, we'll want networks of these...

Perceptron training rule

Can prove it will converge

- If training data is linearly separable
- \bullet and η sufficiently small

lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Gradient Descent

To understand, consider simpler linear unit, where

lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

$$o = w_0 + w_1 x_1 + \dots + w_n x_n$$

Let's learn w_i 's that minimize the squared error

$$E[\vec{w}] \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

Where D is set of training examples

Perceptron training rule

$$w_i \leftarrow w_i + \Delta w_i$$

where

$$\Delta w_i = \eta(t - o)x_i$$

Where:

- $t = c(\vec{x})$ is target value
- \bullet o is perceptron output
- η is small constant (e.g., .1) called learning rate

Gradient Descent

Gradient

$$\nabla E[\vec{w}] \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots \frac{\partial E}{\partial w_n} \right]$$

Training rule:

$$\Delta \vec{w} = -\eta \nabla E[\vec{w}]$$

i.e.,

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

3 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Gradient Descent

Gradient-Descent $(training_examples, \eta)$

Each training example is a pair of the form $\langle \vec{x}, t \rangle$, where \vec{x} is the vector of input values, and t is the target output value. η is the learning rate (e.g., .05).

- \bullet Initialize each w_i to some small random value
- Until the termination condition is met, Do
 - Initialize each Δw_i to zero.
 - For each $\langle \vec{x}, t \rangle$ in $training_examples$, Do
 - * Input the instance \vec{x} to the unit and compute the output o
 - * For each linear unit weight w_i , Do

$$\Delta w_i \leftarrow \Delta w_i + \eta(t - o)x_i$$

- For each linear unit weight w_i , Do

$$w_i \leftarrow w_i + \Delta w_i$$

lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Gradient Descent

$$\begin{split} \frac{\partial E}{\partial w_i} &= \frac{\partial}{\partial w_i} \frac{1}{2} \sum_d (t_d - o_d)^2 \\ &= \frac{1}{2} \sum_d \frac{\partial}{\partial w_i} (t_d - o_d)^2 \\ &= \frac{1}{2} \sum_d 2 (t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d) \\ &= \sum_d (t_d - o_d) \frac{\partial}{\partial w_i} (t_d - \vec{w} \cdot \vec{x_d}) \\ \frac{\partial E}{\partial w_i} &= \sum_d (t_d - o_d) (-x_{i,d}) \end{split}$$

Summary

Perceptron training rule guaranteed to succeed if

- Training examples are linearly separable
- Sufficiently small learning rate η

Linear unit training rule uses gradient descent

- Guaranteed to converge to hypothesis with minimum squared error
- Given sufficiently small learning rate η
- Even when training data contains noise
- \bullet Even when training data not separable by H

Incremental (Stochastic) Gradient Descent

Batch mode Gradient Descent:

Do until satisfied

1. Compute the gradient $\nabla E_D[\vec{w}]$

2.
$$\vec{w} \leftarrow \vec{w} - \eta \nabla E_D[\vec{w}]$$

Incremental mode Gradient Descent:

Do until satisfied

 \bullet For each training example d in D

1. Compute the gradient $\nabla E_d[\vec{w}]$

2. $\vec{w} \leftarrow \vec{w} - \eta \nabla E_d[\vec{w}]$

$$E_D[\vec{w}] \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$
$$E_d[\vec{w}] \equiv \frac{1}{2} (t_d - o_d)^2$$

Incremental Gradient Descent can approximate Batch Gradient Descent arbitrarily closely if η made small enough

lecture slides for textbook $Machine\ Learning,$ T. Mitchell, McGraw Hill, 1997

Sigmoid Unit

 $\sigma(x)$ is the sigmoid function

$$\frac{1}{1 + e^{-x}}$$

Nice property: $\frac{d\sigma(x)}{dx} = \sigma(x)(1 - \sigma(x))$

We can derive gradient decent rules to train

- One sigmoid unit

lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Multilayer Networks of Sigmoid Units

Error Gradient for a Sigmoid Unit

$$\begin{split} \frac{\partial E}{\partial w_i} &= \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2 \\ &= \frac{1}{2} \sum_d \frac{\partial}{\partial w_i} (t_d - o_d)^2 \\ &= \frac{1}{2} \sum_d 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d) \\ &= \sum_d (t_d - o_d) \left(-\frac{\partial o_d}{\partial w_i} \right) \\ &= -\sum_d (t_d - o_d) \frac{\partial o_d}{\partial net_d} \frac{\partial net_d}{\partial w_i} \end{split}$$

But we know

$$egin{aligned} rac{\partial o_d}{\partial net_d} &= rac{\partial \sigma(net_d)}{\partial net_d} = o_d(1-o_d) \ &rac{\partial net_d}{\partial w_i} &= rac{\partial (ec{w} \cdot ec{x}_d)}{\partial w_i} = x_{i,d} \end{aligned}$$

So:

$$\frac{\partial E}{\partial w_i} = -\sum_{d \in D} (t_d - o_d) o_d (1 - o_d) x_{i,d}$$

Backpropagation Algorithm

Initialize all weights to small random numbers. Until satisfied, Do

- For each training example, Do
 - 1. Input the training example to the network and compute the network outputs
 - 2. For each output unit k

$$\delta_k \leftarrow o_k (1 - o_k)(t_k - o_k)$$

3. For each hidden unit h

$$\delta_h \leftarrow o_h(1 - o_h) \sum_{k \in outputs} w_{h,k} \delta_k$$

4. Update each network weight $w_{i,j}$

$$w_{i,j} \leftarrow w_{i,j} + \Delta w_{i,j}$$

where

$$\Delta w_{i,j} = \eta \delta_j x_{i,j}$$

lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Learning Hidden Layer Representations

A target function:

Input		Output
10000000	\rightarrow	10000000
01000000	\rightarrow	01000000
00100000	\rightarrow	00100000
00010000	\rightarrow	00010000
00001000	\rightarrow	00001000
00000100	\rightarrow	00000100
00000010	\rightarrow	00000010
00000001	\rightarrow	00000001

Can this be learned??

lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

More on Backpropagation

- Gradient descent over entire *network* weight vector
- \bullet Easily generalized to arbitrary directed graphs
- Will find a local, not necessarily global error minimum
 - In practice, often works well (can run multiple times)
- \bullet Often include weight $momentum \ \alpha$

$$\Delta w_{i,j}(n) = \eta \delta_j x_{i,j} + \alpha \Delta w_{i,j}(n-1)$$

- Minimizes error over training examples
 - Will it generalize well to subsequent examples?
- Training can take thousands of iterations \rightarrow
- Using network after training is very fast

Learning Hidden Layer Representations

A network:

Learned hidden layer representation:

Innut		Т	:446	Output				
$_{ m Input}$		Hidden				Ծաւթաւ		
Values								
10000000	\rightarrow	.89	.04	.08	\rightarrow	10000000		
01000000	\rightarrow	.01	.11	.88	\rightarrow	01000000		
00100000	\rightarrow	.01	.97	.27	\rightarrow	00100000		
00010000	\rightarrow	.99	.97	.71	\rightarrow	00010000		
00001000	\rightarrow	.03	.05	.02	\rightarrow	00001000		
00000100	\rightarrow	.22	.99	.99	\rightarrow	00000100		
00000010	\rightarrow	.80	.01	.98	\rightarrow	00000010		
00000001	\rightarrow	.60	.94	.01	\rightarrow	00000001		

Training

Training

93

lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

97

lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Training

Convergence of Backpropagation

Gradient descent to some local minimum

- Perhaps not global minimum...
- ullet Add momentum
- Stochastic gradient descent
- \bullet Train multiple nets with different inital weights

Nature of convergence

- Initialize weights near zero
- Therefore, initial networks near-linear
- Increasingly non-linear functions possible as training progresses

Expressive Capabilities of ANNs

Boolean functions:

- Every boolean function can be represented by network with single hidden layer
- but might require exponential (in number of inputs) hidden units

Continuous functions:

- Every bounded continuous function can be approximated with arbitrarily small error, by network with one hidden layer [Cybenko 1989; Hornik et al. 1989]
- Any function can be approximated to arbitrary accuracy by a network with two hidden layers [Cybenko 1988].

Neural Nets for Face Recognition

Typical input images

90% accurate learning head pose, and recognizing 1-of-20 faces

lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Overfitting in ANNs

Learned Hidden Unit Weights

102

Typical input images

http://www.cs.cmu.edu/~tom/faces.html

Alternative Error Functions

Penalize large weights:

$$E(\vec{w}) \equiv \frac{1}{2} \sum\limits_{d \in D} \sum\limits_{k \in outputs} (t_{kd} - o_{kd})^2 + \gamma \sum\limits_{i,j} w_{ji}^2$$

Train on target slopes as well as values:

$$E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} \sum_{k \in outputs} \left[(t_{kd} - o_{kd})^2 + \mu \sum_{j \in inputs} \left(\frac{\partial t_{kd}}{\partial x_d^j} - \frac{\partial o_{kd}}{\partial x_d^j} \right)^2 \right]$$

Tie together weights:

 \bullet e.g., in phoneme recognition network

lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Recurrent Networks

(c) Recurrent network unfolded in time