Basics of Rep. Theory

Character Tables for Representations of Finite Groups

Jared Stewart

April 4, 2016

Table of contents

- Basics of Rep. Theory
 - Motivation
 - Subrepresentations
- 2 Reducibility
 - Direct sum
 - Maschke's Theorem
- Schur's Lemma
 - Vector Spaces of Linear Maps
 - Schur's Lemma
- 4 Isotypical Decomp.
- Duals and Tensors
- 6 Character Theory
 - Basics
 - Inner products of characters

Motivation

Groups arise naturally as sets of symmetries of some object which are closed under composition and taking inverses. For example,

- **1** The **symmetric group** of degree n, S_n , is the group of all symmetries of the set $\{1, \ldots, n\}$.
- ② The **dihedral group** of order 2n, D_n , is the group of all symmetries of the regular n-gon in the plane.

In these two examples, S_n acts on the set $\{1,\ldots,n\}$ and D_n acts on the regular n-gon in a natural manner. One may wonder more generally: Given an abstract group G, which objects X does G act on? This is the basic question of representation theory, which attempts to classify all such X up to isomorphism.

Group Actions

Definition

A **group action** of a group G on a set X is a map $\rho: G \times X \to X$ (written as $g \cdot x$, for all $g \in G$ and $x \in X$) that satisfies the following two axoims:

$$1 \cdot x = x \qquad \forall x \in X \tag{1}$$

$$(gh) \cdot x = g \cdot (h \cdot x)$$
 $\forall g, h \in G, x \in X$ (2)

The Definition of a Representation

Definition

Let G be a group, let F be a field, and let V be a vector space over F. A **linear representation** of G is an action of G on V that preserves the linear structure of V, i.e. an action of G on V such that

$$g \cdot (v_1 + v_2) = g \cdot v_1 + g \cdot v_2 \qquad \forall g \in G, v_1, v_2 \in V$$
 (3)

$$g \cdot (kv) = k(g \cdot v)$$
 $\forall g \in G, v \in V, k \in F$ (4)

Definition (Alternative definition)

Let G be a group, let F be a field, and let V be a vector space over F. A **linear representation** of G is any group homomorphism

$$\rho \colon G \to GL(V)$$
.

The two definitions we have given of a linear representation are equivalent.

Proof.

Basics of Rep. Theory

00000000000000

- (\rightarrow) Suppose that we have a homomorphism $\rho\colon G\to GL(V)$. We can obtain a linear action of G on V by defining $g \cdot v = \rho(g)(v)$.
- (\leftarrow) Suppose that we have a linear action of G on V. We obtain a homomorphism $\rho \colon G \to GL(V)$ by defining $\rho(g)(v) = g \cdot v$.

The Dimension of a Representation

Definition

Let $\rho\colon G\to GL(V)$ be a representation of G. The **dimension** of the representation is the dimension of the vector space V.

Example

Let V be an n-dimensional vector space. The map $\rho\colon G\to GL(V)$ defined by $\rho(g)=\operatorname{Id}_V$ for all $g\in G$ is a representation of G called the **trival representation** of dimension n.

Example

If G is a finite group that acts on a finite set X, and F is any field, then there is an associated **permutation representation** on the vector space V over F with basis $\{e_x\colon x\in X\}$. We let G act on the basis elements by the permutation $g\cdot e_x=e_{gx}$ for all $x\in X$ and $g\in G$. This representation has dimension |X|.

Example

A special case of a permutation representation is that when a finite group acts on itself by left multiplication. We take the vector space V_{reg} which has a basis given by the formal symbols $\{e_g|g\in G\}$, and let $h\in G$ act by

$$\rho_{\mathsf{reg}}(h)(e_g) = e_{hg}.$$

This representation is called the **regular representation** of G, and has dimension |G|.

Example

For any symmetric group S_n , the **alternating representation** on $\mathbb C$ is given by the map

$$\rho \colon S_n \to GL(\mathbb{C}) = \mathbb{C}^{\times}$$
$$\sigma \mapsto \operatorname{sgn}(\sigma).$$

More generally, for any group G with a subgroup H of index 2, we can define an **alternating representation** $\rho\colon G\to GL(\mathbb{C})$ by letting $\rho(g)=1$ if $g\in H$ and $\rho(g)=-1$ if $g\notin H$. (We recover our original example by taking $G=S_n$ and $H=A_n$.)

G-linear maps

Definition

A **homomorphism** between two representations $\rho_1: G \to GL(V)$ and $\rho_2 \colon G \to GL(W)$ is a linear map $\psi \colon V \to W$ that interwines with the action of G, i.e. such that

$$\psi \circ \rho_1(g) = \rho_2(g) \circ \psi \quad \forall g \in G.$$

In this case, we also refer to ψ as a G-linear map.

Definition

An **isomorphism** of representations is a G-linear map that is also invertible.

Representations as matrices

Example

Given any representation (ρ,V) , where V is a vector space of dimension n over the field K, we can fix a basis for V to obtain an isomorphism of vector spaces $\psi\colon V\to K^n$. This yields a representation ϕ of G on K^n by defining

$$\phi(g) = \psi \circ \rho(g) \circ \psi^{-1}$$

for all $g\in G$. This representation is isomorphic to our original representation (ρ,V) . In particular, we can always choose to view complex n-dimensional representations of G as representations on \mathbb{C}^n , where each $\phi(g)$ is given by an $n\times n$ matrix with entries in \mathbb{C} .

Representations as matrices

Example

Let $G = \{(1), (123), (132)\} \subset S_3$. Let $V = \mathbb{C}^3$. Then G acts on the standard basis by $g \cdot e_i = e_{gi}$. Thus, the permutation representation of G (with respect to the standard basis) is given by:

$$\rho((1)) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\rho((123)) = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\rho((132)) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$$

Example

Let $G = C_2 \times C_2 = \langle \sigma, \tau | \sigma^2 = \tau^2 = e, \sigma\tau = \tau\sigma \rangle$ be the Klein four-group. Let V be the vector space with basis $\{b_e, b_\sigma, b_\tau, b_{\sigma\tau}\}$. Left multiplication by σ gives a permutation

$$b_{e} \mapsto b_{\sigma}$$

$$b_{\sigma} \mapsto b_{e}$$

$$b_{\tau} \mapsto b_{\sigma\tau}$$

$$b_{\sigma\tau} \mapsto b_{\tau}.$$

We can similarly compute $\rho_{\rm reg}(au)$. Thus, in our basis, the regular representation $\rho_{\rm reg}\colon G\to GL(V)$ is given by the matrices

$$\rho_{\mathsf{reg}}(\sigma) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \rho_{\mathsf{reg}}(\tau) = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Let $G=D_4=\langle \sigma,\tau|\sigma^4=\tau^2=e,\tau\sigma\tau^{-1}=\sigma^{-1}\rangle$ be the symmetry group of the square.

Let $G = D_4 = \langle \sigma, \tau | \sigma^4 = \tau^2 = e, \tau \sigma \tau^{-1} = \sigma^{-1} \rangle$ be the symmetry group of the square. Consider a square in the plane with vertices at (1,1), (1,-1), (-1,-1), and (-1,1).

Let $G=D_4=\langle \sigma,\tau|\sigma^4=\tau^2=e,\tau\sigma\tau^{-1}=\sigma^{-1}\rangle$ be the symmetry group of the square. Consider a square in the plane with vertices at (1,1),(1,-1),(-1,-1), and (-1,1). We let σ act on the square as a rotation by $\frac{\pi}{2}$, and let τ act by reflection over the x-axis. This naturally gives rise to a linear action of G on all of \mathbb{C}^2 .

Let $G = D_4 = \langle \sigma, \tau | \sigma^4 = \tau^2 = e, \tau \sigma \tau^{-1} = \sigma^{-1} \rangle$ be the symmetry group of the square. Consider a square in the plane with vertices at (1,1), (1,-1), (-1,-1), and (-1,1). We let σ act on the square as a rotation by $\frac{\pi}{2}$, and let τ act by reflection over the

group of the square. Consider a square in the plane with vertices at
$$(1,1),(1,-1),(-1,-1),$$
 and $(-1,1).$ We let σ act on the square as a rotation by $\frac{\pi}{2}$, and let τ act by reflection over the x -axis. This naturally gives rise to a linear action of G on all of \mathbb{C}^2 . Under the standard basis, we get the matrices:
$$\rho(e) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \qquad \rho(\tau) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$\rho(\sigma) = \begin{bmatrix} 0 & -1 \\ 0 & 1 \end{bmatrix}$$

at
$$(1,1),(1,-1),(-1,-1)$$
, and $(-1,1)$. We let σ act on the square as a rotation by $\frac{\pi}{2}$, and let τ act by reflection over the x -axis. This naturally gives rise to a linear action of G on all of \mathbb{C}^2 . Under the standard basis, we get the matrices:
$$\rho(e) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \qquad \rho(\tau) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$\rho(\sigma) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \qquad \qquad \rho(\sigma\tau) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$x$$
-axis. This naturally gives rise to a linear action of G on all of \mathbb{C}^2 . Under the standard basis, we get the matrices:
$$\rho(e) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \qquad \rho(\tau) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$\rho(\sigma) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \qquad \qquad \rho(\sigma\tau) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$\rho(\sigma) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \qquad \rho(\sigma\tau) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$\rho(\sigma^2) = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \qquad \rho(\sigma^2\tau) = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\rho(\sigma^3) = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \qquad \rho(\sigma^3\tau) = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$$

$$\rho(\sigma) = \begin{bmatrix} 0 & 1 \end{bmatrix} \qquad \qquad \rho(\tau) = \begin{bmatrix} 0 & -1 \end{bmatrix}$$

$$\rho(\sigma) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \qquad \qquad \rho(\sigma\tau) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$\rho(\sigma\tau) = \begin{bmatrix} -1 & 0 \\ 1 & 0 \end{bmatrix} \qquad \qquad \rho(\sigma\tau) = \begin{bmatrix} -1 & 0 \\ 1 & 0 \end{bmatrix}$$

Subrepresentations

Definition

A subrepresentation of V is a G-invariant subspace $W\subseteq V$; that is, a subspace $W\subseteq V$ with the property that $\rho(g)(w)\in W$ for all $g\in G$ and $w\in W$. Note that W itself is a representation of G under the action $\rho(g)\upharpoonright_W$.

Representations of C^2

Example

Let $G = C_2 = \langle \tau | \tau^2 = e \rangle$ be the cyclic group of order 2. The regular representation of G written in the standard basis is given by

$$\rho_{\mathsf{reg}}(\tau) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

and $\rho_{\text{reg}}(e) = \text{Id}_2$. Let ρ_{sgn} be the alternating representation of G on \mathbb{C} , i.e.

$$\rho_{sgn} \colon G \to GL_1(\mathbb{C}) = \mathbb{C}^{\times}$$
$$\tau \mapsto -1$$
$$e \mapsto 1.$$

Representations of C^2

Example (Cont.)

Let $f \colon \mathbb{C}^2 \to \mathbb{C}$ be the linear map represented by the matrix

$$\begin{bmatrix} 1 & -1 \end{bmatrix}$$
 . Then for any $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{C}^2$, we have

$$f \circ \rho_{\mathsf{reg}}(\tau)(x) = \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
$$= \begin{bmatrix} -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
$$= \rho_{\mathsf{sgn}}(\tau) \circ f(x).$$

Also note that $f \circ \rho_{\text{reg}}(e) = \rho_{\text{sgn}}(e) \circ f$. Thus f is a G-linear map from ρ_{reg} to ρ_{sgn} (i.e. a homomorphism of representations).

Representations of C^2

Example (Cont.)

Now let W be the subspace of \mathbb{C}^2 spanned by the vector $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Then

$$\rho_{\mathsf{reg}}(\tau) \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

and $\rho_{\text{reg}}(e) \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, so W is a G-invariant subpace, i.e. W is a subrepresentation of ρ_{reg} . Note that W is precisely equal to the kernel of the map f, and that W is isomorphic to the 1-dimensional trivial representation of G.

Basics of Rep. Theory

000000000000000

We can generalize the G-invariant subspace from the previous example. Suppose we have a representation $\rho \colon G \to GL_n(\mathbb{C})$. If we can find a vector $x \in \mathbb{C}^n$ which is an eigenvector for every matrix $\rho(g), g \in G$, i.e. an $x \in \mathbb{C}^n$ such that

$$\rho(g)(x) = \lambda_g(x) \quad \forall g \in G$$

for some eigenvalues $\lambda_q \in \mathbb{C}$, then the span of x is a 1-dimensional G-invariant subspace of \mathbb{C}^n . It is isomorphic to the 1-dimensional representation

$$\rho_2 \colon G \to GL_1(\mathbb{C})$$
$$g \mapsto \lambda_q.$$

Basics of Rep. Theory

00000000000000

Let $f: V \to W$ be a homomorphism of representations of G. Then Ker(f) is a subrepresentation of V and Im(f) is a subrepresentation of W.

Proof.

- Let $x \in \text{Ker}(f)$. Then 0 = g0 = gf(x) = f(gx) for every $g \in G$. So $gx \in \text{Ker}(f)$ and Ker(f) is G-invariant.
- Now let $w \in \text{Im}(f)$. There exists $v \in V$ such that w = f(v), so gw = gf(v) = f(gv) for every $g \in G$. Thus $gw \in \text{Im}(f)$, and Im(f) is G-invariant.

The direct sum of representations

Note

We know from linear algebra that given two vector spaces V and W, we can form the **direct sum** $V \oplus W$ consisting of ordered pairs (v,w) where $v \in V, w \in W$.

The direct sum of representations

Note

We know from linear algebra that given two vector spaces V and W, we can form the **direct sum** $V \oplus W$ consisting of ordered pairs (v,w) where $v \in V, w \in W$.

Definition

Let V and W be representations of G. Then $V\oplus W$ admits a natural representation of G, called the **direct sum representation** of V and W, which we define by

$$\rho_{V \oplus W} \colon G \to GL(V \oplus W)$$
$$\rho_{V \oplus W}(g) \colon (x, y) \mapsto (\rho_V(g)(x), \rho_W(g)(y)).$$

Irreducible representations and complete reducibility

Definition

A representation is said to be **irreducible** if it has no subrepresentations other than the trivial subrepresentations $0 \subset V$ and $V \subset V$. A representation is called **completely reducible** if it decomposes into a direct sum of irreducible representations. We sometimes write **irrep** as shorthand for irreducible representation.

Note

- Any 1-dimensional representation V has no subspaces other than 0 and V itself, and is thus irreducible.
- Any irreducible representation is, in particular, completely reducible.

Basics of Rep. Theory

Example (A 2-dimensional irrep)

Let $G = D_3 = \langle \sigma, \tau | \sigma^3 = \tau^2 = e, \tau \sigma \tau^{-1} = \sigma^{-1} \rangle$. (Note that $D_3 \cong S_3$). Consider the regular triangle centered at the origin with vertices

$$(1,0), (-\frac{1}{2}, \frac{\sqrt{3}}{2}), (-\frac{1}{2}, -\frac{\sqrt{3}}{2}).$$

We can let σ act as rotation by $\frac{2\pi}{3}$ and let τ act as reflection over the x-axis to obtain an action of G on \mathbb{C}^2 given (under the standard basis) by the matrices

$$\rho(\sigma) = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}$$
$$\rho(\tau) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Basics of Rep. Theory

Suppose ρ has a non-trivial subrepresentation W. We must have dim W=1. Since W is invariant under the action of both $\rho(\sigma)$ and $\rho(\tau)$, there must be some mutual eigenvector for $\rho(\sigma)$ and $\rho(\tau)$ that spans W. The eigenvectors of $\rho(\sigma)$ are

$$\begin{bmatrix} 1 \\ -i \end{bmatrix} \quad (\lambda_1 = e^{\frac{2\pi i}{3}}) \quad \text{and} \quad \begin{bmatrix} 1 \\ i \end{bmatrix} \quad (\lambda_2 = e^{-\frac{2\pi i}{3}}).$$

The eigenvectors of $\rho(\tau)$ are

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad (\lambda_1 = 1) \quad \text{and} \quad \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad (\lambda_2 = -1).$$

Thus we see that there is no such W, and our representation is irreducible.

Representations of finite abelian groups

Theorem

If A_1,A_2,\ldots,A_r are linear operators on V and each A_i is diagonalizable, then $\{A_i\}$ are simultaneously diagonalizable if and only if they commute.

Representations of finite abelian groups

Theorem

Every complex representation of a finite abelian group is completely reducible into irreducible representations of dimension 1.

Proof.

Take an arbitrary element $g \in G$. Since G is finite, we can find an integer n such that $g^n = 1$ and $\rho(g)^n = Id$. The minimal polynomial of $\rho(g)$ divides $x^n - 1$, which has n distinct roots over $\mathbb C$, so it factors into linear factors only over $\mathbb C$, i.e. $\rho(g)$ is diagonalizable. We conclude that each $\rho(g)$ is (separately). Now, given any two elements $g_1, g_2 \in G$ we have $\rho(g_1)\rho(g_2) = \rho(g_2)\rho(g_1)$. Since the matrices $\{\rho(g)\}$ commute, $\{\rho(g)\}$ are simultaneously diagonalizable, say with basis $\{e_1, ..., e_k\}$. Then we have $V = \mathbb C e_1 \oplus \mathbb C e_2 \oplus \ldots \oplus \mathbb C e_n$, with each subspace $\mathbb C e_i$ invariant under the action of G.

Definition

Let W be a subspace of V. A **linear projection** V onto W is a linear map $f\colon V\to W$ such that $f\upharpoonright_W=\operatorname{Id}_W$. If W is a subrepresentation of V and the map f is G-invariant, then we say that f is a G-linear projection.

Lemma

Let $\rho\colon G\to GL(V)$ be a representation, and $W\subset V$ be a subrepresentation. Suppose we have a G-linear projection

$$f\colon V\to W$$
.

Then Ker(f) is a complementary subrepresentation to W, i.e. Ker(f) is a G-invariant subspace of V such that

$$V = \mathit{Ker}(f) \oplus W$$

Maschke's Theorem

Theorem (Maschke's Theorem)

Let G be a finite group and let F be a field such that $\operatorname{char}(F) \nmid |G|$. If V is any finite dimensional representation of G over F, and $W \subset V$ is a subrepresentation of V, then there exists a complementary subrepresentation $U \subset V$ to W, i.e. there is a G-invariant subspace $U \subset V$ such that

$$V = W \oplus U$$
.

Maschke's Theorem

Proof.

It will suffice to find a G-linear projection from V onto W. Fix a basis $\{b_1,\ldots,b_m\}$ for W and extend it to a basis $\{b_1,\ldots,b_m,b_{m+1},\ldots,b_n\}$ for V. Let $U=\langle b_{m+1},\ldots,b_n\rangle$. Then U is certainly a complementary subspace to W, and we have a natural projection $f\colon W\oplus U\to W$ of V onto W with kernel U. There is no reason to think that f should be G-linear, but we can fix this by averaging over G. Define $\widetilde{f}\colon V\to V$ by

$$\widetilde{f}(x) = \frac{1}{|G|} \sum_{g \in G} (\rho(g) \circ f \circ \rho(g^{-1}))(x).$$

We claim that \widetilde{f} is a G-linear projection from V onto W.

Maschke's Theorem

Proof.

First we check that $\operatorname{Im}(\tilde{f}) \subset W$. If $x \in V$ and $g \in G$, then

$$f(\rho(g^{-1})(x)) \in W$$

and so

$$\rho(g)(f(\rho(g^{-1})(x))) \in W$$

since W is G-invariant. Thus

$$\widetilde{f}(x) = \frac{1}{|G|} \sum_{g \in G} (\rho(g) \circ f \circ \rho(g^{-1}))(x) \in W.$$

Proof.

Basics of Rep. Theory

Next we check that $\widetilde{f}\upharpoonright_W=\operatorname{Id}_W$. Let $y\in W$. For any $g\in G$, we know that $\rho(g^{-1})(y)$ is also in W, so $f(\rho(g^{-1})(y))=\rho(g^{-1})(y)$. Then

$$\widetilde{f}(y) = \frac{1}{|G|} \sum_{g \in G} \rho(g) (f(\rho(g^{-1})(y)))$$

$$= \frac{1}{|G|} \sum_{g \in G} \rho(g) (\rho(g^{-1})(y))$$

$$= \frac{1}{|G|} \sum_{g \in G} (y) = \frac{|G|y}{|G|} = y$$

so indeed \widetilde{f} is a linear projection of V onto W.

Proof.

Basics of Rep. Theory

Finally, we check that \widetilde{f} is G-linear. If $x \in V$ and $h \in G$, then

$$(\widetilde{f} \circ \rho(h))(x) = \frac{1}{|G|} \sum_{g \in G} (\rho(g) \circ f \circ \rho(g^{-1}) \circ \rho(h))(x)$$

$$= \frac{1}{|G|} \sum_{g \in G} (\rho(g) \circ f \circ \rho(g^{-1}h))(x)$$

$$= \frac{1}{|G|} \sum_{g \in G} (\rho(hg) \circ f \circ \rho(g^{-1}))(x) \quad (g \mapsto hg)$$

$$= (\rho(h) \circ \widetilde{f})(x).$$

Let G be a finite group and let F be a field such that $char(F) \nmid |G|$. then any finite-dimensional representation of G over F is completely reducible.

Proof.

Let V be a representation of G over F of dimension n. If V is irreducible, then V is, in particular, completely reducible. If not, then V contains a proper subrepresentation $W \subset V$. From Maschke's Theorem, we know there exists a subrepresentation $U \subset V$ such that

$$V = W \oplus U. \tag{5}$$

Both W and U have dimension less than n, so by induction we know that W and U are completely reducible. We deduce that Vis completely reducible.

Example

Basics of Rep. Theory

Recall that for $G = C_2$, we found a 1-dim subrepresentation

$$W = \left\langle \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\rangle \subset V_{\mathsf{reg}} = \mathbb{C}^2.$$

We know a complementary subrepresentation to W exists by Machke's Theorem, so let's try to find one. Consider

$$U = \left\langle \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\rangle \subset V_{\text{reg}}.$$

Then

$$\rho_{\mathsf{reg}}(\tau) \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = - \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

so U is G-invariant. We see that $V = W \oplus U$, since $W \cap U = \{0\}$ and dim $U + \dim W = 2 = \dim V$. (Note U is isomorphic to the alternating representation ρ_{sgn} .)

Definition

Let V and W be vector spaces. Recall that the set $\mathbf{Hom}(\mathbf{V},\mathbf{W})$ of linear maps from V to W itself form a vector space where we define the addition of vectors by

$$(f_1 + f_2) \colon V \to W$$

 $x \mapsto f_1(x) + f_2(x)$

for $f_1,f_2\in \operatorname{Hom}(V,W)$ and scalar multiplication for $\lambda\in\mathbb{C}$ by

$$(\lambda f_1) \colon V \to W$$

 $x \mapsto \lambda f_1(x).$

Basics of Rep. Theory

Proposition

Suppose we have representations $\rho_V : G \to GL(V)$ and $\rho_W \colon G \to GL(W)$ of G. Then there is a natural representation of G on the vector space Hom(V,W) given for all $g \in G$ by

$$\begin{split} \rho_{\mathit{Hom}(V,W)}(g) \colon \mathit{Hom}(V,W) &\to \mathit{Hom}(V,W) \\ f &\mapsto \rho_W(g) \circ f \circ \rho_V(g^{-1}). \end{split}$$

Proof (sketch).

- \bullet $\rho_{\operatorname{Hom}(V,W)}(g)(f) \in \operatorname{Hom}(V,W)$ since the composition of linear maps is linear.
- **2** For every $g \in G$, $\rho_{\mathsf{Hom}(V,W)}(g)$ is invertible.
- **3** The map $g \mapsto \rho_{\mathsf{Hom}(V,W)}(g)$ is a homomorphism.

Definition

Let V and W be two representations of G. The set of G-linear maps from V to W forms a subspace of Hom(V, W), which we denote by $\mathbf{Hom}_{\mathbf{G}}(\mathbf{V},\mathbf{W})$. In other words, $\mathrm{Hom}_{\mathbf{G}}(V,W)$ is the vector space consisting of all homomorphisms of representations between V and W.

Definition

Let $\rho: G \to GL(V)$ be a representation. We define the **invariant** subrepresentation $V^G \subset V$ to be the set

$$\{v \in V \mid \rho(g)(v) = v, \quad \forall g \in G\}.$$

Proposition

Let $\rho_V \colon G \to GL(V)$ and $\rho_W \colon G \to GL(W)$ be representations of G. Then the subrepresentation

$$\operatorname{Hom}_G(V,W)\subset\operatorname{Hom}(V,W)$$

is precisely the invariant subrepresentation $\operatorname{Hom}(V,W)^G$ of $\operatorname{Hom}(V,W)$.

Proof.

Let $f \in \operatorname{Hom}(V,W)$. Then $f \in \operatorname{Hom}(V,W)^G$ iff we have

$$f = \rho_{\mathsf{Hom}(V,W)}(g)(f) \quad \forall g \in G$$

$$\iff f = \rho_W(g) \circ f \circ \rho_V(g^{-1}) \quad \forall g \in G$$

$$\iff f \circ \rho_V(g) = \rho_W(g) \circ f \quad \forall g \in G$$

which is exactly the condition that f is G-linear.

Theorem (Schur's Lemma over \mathbb{C} .)

If V is an irreducible representation of G over \mathbb{C} , then evey linear operator $\phi\colon V\to V$ commuting with G is a scalar.

Proof.

Let $\phi\colon V\to V$ be a linear operator commuting with G, and let λ be an eigenvalue of ϕ . Observe that the eigenspace E_λ is G-invariant: If $v\in E_\lambda$, then $\phi(v)=\lambda v$. This implies that $\phi(gv)=g\phi(v)=g(\lambda v)=\lambda(gv)$, i.e. $gv\in E_\lambda$. Since g was arbitrary, E_λ is indeed G-invariant. Now $E_\lambda\neq 0$, so since V is irreducible, $E_\lambda=V$. Thus $\phi=\lambda \operatorname{Id}$.

Corollary

Suppose V and W are irreducible. The space $\operatorname{Hom}_G(V,W)$ is 1-dimensional if the representations are isomorphic, and in this case any non-zero map is an isomorphism. Otherwise, $\operatorname{Hom}_G(V,W)=\{0\}.$

Proof.

Suppose $\operatorname{Hom}_G(V,W) \neq \{0\}$ and let $\phi \in \operatorname{Hom}_G(V,W)$. We have seen $\ker(\phi)$ and $\operatorname{im}(\phi)$ are both G-invariant. Irreducibility yields $\ker(\phi) = 0$ or V and $\operatorname{im}(\phi) = 0$ or W as the only possibilities. Since $\phi \neq 0$, then $\ker(\phi) = 0$, $\operatorname{im}(\phi) = W$, and ϕ is an isomorphism. Let ψ be another nonzero interwining operator from V to W. Then $\phi^{-1} \circ \psi \in \operatorname{Hom}_G(V,V)$. We can apply Schur's Lemma over $\mathbb C$ to see that $\phi^{-1} \circ \psi = \lambda \operatorname{Id}$, hence $\psi = \lambda \phi$. So ϕ spans $\operatorname{Hom}_G(V,W)$.

Proposition

Let V and W be irreducible representations of G. Then

$$\dim \operatorname{Hom}_G(V,W) = \begin{cases} 1 & \text{if } V \text{ and } W \text{ are isomorphic} \\ 0 & \text{if } V \text{ and } W \text{ are not isomorphic} \end{cases}$$

Proof.

Suppose V and W are not isomorphic. Then the Corollary to Schur's Lemma states that the only G-linear map from V to W is the zero map, hence $\operatorname{Hom}_G(V,W)=\{0\}.$

On the other hand, suppose that $f\colon V\to W$ is an isomorphism. Then for any $h\in \operatorname{Hom}_G(V,W)$, we have $f^{-1}\circ h\in \operatorname{Hom}_G(V,V)$. By Schur's Lemma, $f^{-1}\circ h=\lambda\operatorname{Id}_V$ for some $\lambda\in\mathbb{C}$, i.e. $h=\lambda f$. Thus f spans $\operatorname{Hom}_G(V,W)$.

Proposition

Let $\rho \colon G \to GL(V)$ be a representation, let

$$V = U_1 \oplus \ldots \oplus U_s$$

be a decomposition of V into irreps, and let W be any irrep of G. Then the number of irreps in the set $\{U_1, \ldots, U_s\}$ which are isomorphic to W equals the dimension of $\operatorname{Hom}_G(V, W)$.

Lemma

If U,V, and W are representations of G, then there are natural isomorphisms

- $\operatorname{\mathsf{Hom}}_G(V,U\oplus W)=\operatorname{\mathsf{Hom}}_G(V,U)\oplus\operatorname{\mathsf{Hom}}_G(V,W)$
- $\operatorname{\mathsf{Hom}}_G(U \oplus W, V) = \operatorname{\mathsf{Hom}}_G(U, V) \oplus \operatorname{\mathsf{Hom}}_G(W, V)$

Basics of Rep. Theory

We use the previous proposition to see that t he number of irreps in the set $\{U_1,\ldots,U_s\}$ which are isomorphic to W is equal to

$$\sum_{i=1}^{s} \dim \operatorname{Hom}_{G}(U_{i}, W).$$

Then

$$\operatorname{\mathsf{Hom}}_G(V,W) = \bigoplus_{i=1}^s \operatorname{\mathsf{Hom}}_G(U_i,W).$$

by our lemma, so taking the dimension of both sides yields

$$\dim \operatorname{Hom}_G(V,W) = \sum_{i=1}^s \dim \operatorname{Hom}_G(U_i,W).$$

Theorem (Uniqueness of decomposition into irreducibles.)

Let $\rho \colon G \to GL(V)$ be a representation, and let

$$V = U_1 \oplus \ldots \oplus U_s$$

$$V = \widetilde{U_1} \oplus \ldots \oplus \widetilde{U_r}$$

be two decompositions of V into irreducible subrepresentations. Then s=r, and (after reordering if necessary) U_i and \widetilde{U}_i are isomorphic for every $i\in\{1,\ldots,s\}$.

Proof.

For any irrep W of G, the number of irreps in either decomposition that are isomorphic to W is equal to dim $\operatorname{Hom}_G(V,W)$. So the two decompositions contain the same number of factors isomorphic to W for any irrep W of G.

The Dual Space

Definition

Let V be a vector space. Recall that we define the $\operatorname{\mathbf{dual}}$ vector $\operatorname{\mathbf{space}}$ to be

$$V^* = \operatorname{Hom}(V, \mathbb{C}).$$

If we fix a basis $\{b_1,\ldots,b_n\}$ for V, then the **dual** basis $\{f_1,\ldots,f_n\}$ for V^* is defined by

$$f_i(b_j) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}$$

The Dual Representation

Definition

Let $\rho_V \colon G \to GL(V)$ be a representation of G. Then we have seen that V^* carries a representation of G defined by

$$\rho_{\mathsf{Hom}(V,\mathbb{C})}(g)(f) = f \circ \rho_V(g^{-1})$$

We call this the **dual representation** to ρ_V , and denote it by ρ_V^* .

Proposition

If we fix a basis for V, then $ho_{V^*}(g)$ is given by the matrix

$$(\rho_V(g^{-1}))^T$$

with respect to the dual basis.

Character Theory

Definition

Basics of Rep. Theory

Suppose V and W are two vector spaces over a field K. Then we define a new vector space called the **tensor product** of V and W, denoted by $V \otimes_K W$. This space is the quotient of the free vector space on $V \times W$ (with basis given by formal symbols $v \otimes w, v \in V, w \in W$), by the subspace D spanned by all elements of the form

$$(v_1 + v_2, w) - (v_1, w) - (v_2, w)$$
$$(v, w_1 + w_2) - (v, w_1) - (v, w_2)$$
$$(k \cdot v, w) - (v, k \cdot w)$$

for $v, v_1, v_2 \in V, w, w_1, w_2 \in W$, and $k \in K$. When the ground field K is clear it can be omitted from the notation. The elements of $V \otimes W$ are called **tensors**, and the coset $v \otimes w$ of (v, w) in $V \otimes W$ is called a **simple tensor**.

Definition

We can define a representation of G on $V\otimes W$ called the **tensor product representation**. We define

$$\rho_{V\otimes W}(g)\colon V\otimes W\to V\otimes W$$

to be the linear map given by

$$\rho_{V\otimes W}(g)\colon a_i\otimes b_j\mapsto \rho_V(g)(a_i)\otimes \rho_W(g)(b_j).$$

Proposition

Let V and W be representations of G. Then $V \otimes W$ is isomorphic to $\operatorname{Hom}(V^*,W)$.

The definition of a Character

Definition

The **character** of a representation $\rho: G \to GL(V)$ is the function

$$\chi_V \colon G \to \mathbb{C}$$

defined by

$$\chi_V(g) = \mathsf{Tr}(\rho(g)).$$

Note

The character is of a representation is not a homomorphism in general, since $Tr(MN) \neq Tr(M)Tr(N)$ in general.

Basic properties of Characters

Proposition

Let V be a representation of G.

- χ_V is conjugation invariant: $\chi_V(hgh^{-1}) = \chi_V(g) \quad \forall g, h \in G$.
- $\chi_V(e) = \dim V$.
- $\chi_V(g^{-1}) = \overline{\chi_V(g)} \quad \forall g \in G.$
- $\bullet \ \chi_{V^*}(g) = \chi_V(g) \quad \forall g \in G.$

Proposition

Let V and W be representations of G.

- $\bullet \ \chi_{V \oplus W} = \chi_V + \chi_W.$
- $\bullet \ \chi_{V \otimes W} = \chi_V \cdot \chi_W.$

Proposition

Isomorphic representations have the same character.

Proof.

Isomorphic representations can be described by the same set of matrices with the right choice of bases. Thus each $\rho(g)$ has the same trace.

Duals and Tensors

Let \mathbb{C}^G denote the vector space of all functions from G to \mathbb{C} . A basis for \mathbb{C}^G is given by the set of functions

$$\{\delta_g|g\in G\}$$

defined by

$$\delta_g \colon h \mapsto \begin{cases} 1 & \text{if } h = g \\ 0 & \text{if } h \neq g. \end{cases}$$

Definition

Let $\varphi, \psi \in \mathbb{C}^G$. We define a **hermetian inner product** on \mathbb{C}^G by

$$\langle \varphi | \psi \rangle = \frac{1}{|G|} \sum_{g \in G} \varphi(g) \overline{\psi(g)}.$$

Inner product of Characters

Theorem

Let $\rho_V \colon G \to GL(V)$ and $\rho_W \colon G \to GL(W)$ be representations of G, and let χ_V, χ_W be their characters. Then

$$\langle \chi_W | \chi_V \rangle = \dim \operatorname{Hom}_G(V, W).$$

Corollary

Let χ_1, \ldots, χ_r be characters of pairwise non-isomorphic irreducible representations of G. Then

$$\langle \chi_i | \chi_j \rangle = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Proof.

Let χ_i and χ_j be the characters of the irreducible representations $U_i, U_j.$ Then

$$\langle \chi_i | \chi_j \rangle = \dim \ \mathrm{Hom}_G(U_i, U_j) = \begin{cases} 1 & \text{if } U_i, U_j \text{ are isomorphic} \\ 0 & \text{if } U_i, U_j \text{ are not isomorphic.} \end{cases}$$

Corollary

Let χ be any character of G. Then χ is irreducible if and only if

$$\langle \chi | \chi \rangle = 1$$

Proof.

Write χ as a linear combination of irreducible characters

$$\chi = m_1 \chi_1 + \ldots + m_k \chi_k$$

where each m_i is a non-negative integer. Then

$$\langle \chi | \chi \rangle = \sum_{i,j \in [1,k]} m_i m_j \langle \chi_i | \chi_j \rangle$$

= $m_1^2 + \ldots + m_k^2$.

So $\langle \chi | \chi \rangle = 1$ if and only if exactly one of the $m_i = 1$ and the rest are 0.

Lemma

Let $\rho \colon G \to GL(V)$ be any representation. Consider the linear map

$$\Psi \colon V \to V$$

$$x \mapsto \frac{1}{|G|} \sum_{g \in G} \rho(g)(x).$$

Then Ψ is a projection from V onto the invariant subspace V^G .

Lemma

Let V be a vector space with subspace $U \subset V$, and let $\pi \colon V \to V$ be a projection onto U. Then

$$Tr(\pi) = dim \ U.$$

Proof.

We have seen that

$$\operatorname{\mathsf{Hom}}_G(V,W)=\operatorname{\mathsf{Hom}}(V,W)^G\subset\operatorname{\mathsf{Hom}}(V,W).$$

By the first Lemma, we have a projection

$$\Psi \colon \operatorname{Hom}(V,W) \to \operatorname{Hom}(V,W)^G$$

$$f \mapsto \frac{1}{|G|} \sum_{g \in G} \rho_{\operatorname{Hom}(V,W)}(g)(f).$$

We claim that

$$\operatorname{Tr}(\Psi) = \langle \chi_W | \chi_V \rangle.$$

Once this claim is established, then the theorem will follow from our second Lemma, since ${\rm Tr}(\Psi)=\dim\,{\rm Hom}_G(V,W)$.

Proof.

We proceed by calculating $Tr(\Psi)$. Fix bases $\{a_1, \ldots, a_n\}$ for V and $\{b_1, \ldots, b_m\}$ for W. Then Hom(V, W) has an associated basis

$$\{f_{ji}|1\leq i\leq n, 1\leq j\leq m\}$$

where

$$f_{ji}(a_i) = \begin{cases} b_j & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}$$

We may calculate $\operatorname{Tr}(\Psi)$ as follows: For each i,j, compute the expression of $\Psi(f_{ji})$ in this basis, and take the coefficient of the basis element f_{ji} . This is a diagonal entry in the matrix for Ψ . Summing these values over all i and j will gives us $\operatorname{Tr}(\Psi)$.

Proof.

Let $\widetilde{\rho_V},\widetilde{\rho_W}$ be the matrix representations obtained by writing ρ_V and ρ_W in the given bases. We know that

$$\mathsf{Hom}(V,W) = V^* \otimes W$$

so if we write $\rho_{\mathsf{Hom}(V,W)}$ in the basis $\{f_{ji}\}$ then we get the tensor product of $\widetilde{\rho_{V^*}}$ and $\widetilde{\rho_{W}}$. Thus

$$\rho_{\mathsf{Hom}(V,W)}(g)(f_{ji}) = \rho_W(g) \circ f_{ji} \circ \rho_V(g^{-1})$$

$$= \sum_{\substack{k \in [1,n] \\ t \in [1,m]}} \widetilde{\rho_V}(g^{-1})_{ik} \widetilde{\rho_W}(g)_{tj} f_{kt}. \quad \mathsf{Show another step?}$$

```
Proof.
```