# 1 Short Questions

Part (a) (5 pts) Give an asymptotically tight solution to the following recurrence. No justification required.

$$T(n) = T(n/4) + T(3n/4) + n^3$$
 for  $n \ge 4$  and  $T(n) = 1$  for  $n = 1, 2, 3$ .

**Solution:** Building out the recursion tree we find the work at level k is  $(\frac{7}{16})^k n^3$ . This results in a decreasing geometric series, which converges to  $\Theta(n^3)$ 

**Part (b) (5 pts)** Let G = (V, E) be a *directed* graph. Given an edge e = (u, v) describe a linear time algorithm to find the shortest cycle in G that contains e or report that there is no cycle containing e. The length of the cycle is simply the number of edges in it.

**Solution:** The shortest directed cycle containing e consists of e along with the shortest path  $v \leadsto u$ . Thus to find this shortest cycle (or report that none exists), we simply run *breadth-first search* from v to find the shortest path  $v \leadsto u$  in O(V + E) *time*.

- 5 points for part (a): all or nothing.
- 5 points for part (b):
  - 4 points for the algorithm. 2 points for a superlinear algorithm.
  - 1 point for time analysis
  - -1 for a minor error, -2 for a major error.

## 2 Directed Graphs

Let G = (V, E) be a directed graph. Each vertex  $v \in V$  has a weight w(v) associated with it. Given a vertex  $s \in V$  let  $\alpha(s) = \min\{w(v) \mid s \text{ can reach } v \text{ in } G\}$  be the minimum weight among the weights of all nodes that s can reach in G. In the figure below  $\alpha(a) = 3$  and  $\alpha(g) = 6$ .



• List the strongly connected components in the example graph and draw the meta-graph of *G*.

**Solution:** The strongly connected components are  $\{a,b,f\},\{c\},\{d,e\},\{g\},\{h\},\{i\}$ . The meta-graph is shown below:

• Suppose *G* is DAG. Describe a linear-time algorithm that computes  $\alpha(s)$  for *every*  $s \in V$ .

**Solution:** Let  $v_1, ..., v_n$  be a topological ordering of the vertices of G. For  $1 \le i \le n$ ,  $\alpha(v_i)$  satisfies the recurrence

$$\alpha(\nu_i) = \min \left\{ w(\nu_i), \min_{\nu_i \to \nu_j \in E} \left\{ \alpha(\nu_j) \right\} \right\}.$$

Note that when  $v_i$  is a sink, the second term is a min over an empty set, which we interpret to be  $\infty$ , so no explicit base case is necessary. Since  $\alpha(v_i)$  only depends on  $\alpha(v_j)$  where i < j (due to the topological ordering), we can memoize this into a one-dimensional array, in order from n down to 1 (i.e., in *reverse topological order*). We return the entire memoization structure, since we are asked to compute  $\alpha(s)$  for all  $s \in V$ . The running time is O(V + E).

```
COMPUTEALPHALPHA(G):
v_1, \dots, v_n \leftarrow \text{a topological ordering of the vertices of } G
for i from n down to 1
\alpha[v_i] \leftarrow w(v_i)
for each edge v_i \rightarrow v_j
\alpha[v_i] \leftarrow \min\left\{\alpha[v_i], \alpha[v_j]\right\}
return \alpha
```

• Extend the algorithm in the previous part to the case of a general directed graph. If you cannot figure out the previous part, you can use it as a black box in this part.

**Solution:** Note that for a strongly-connected component S,  $\alpha(s)$  is the same for all  $s \in S$ , since the set  $\operatorname{rch}(G,s) = \{v \in V \mid s \text{ can reach } v\}$  is the same for all  $s \in S$ . Moreover, for any other vertex u, if u can reach any vertex of S than also u can reach the minimum-weight vertex of S.

Thus we take the strongly-connected component metagraph  $G^{SCC}$ , and for each metavertex  $\bar{v}$ , we set  $w(\bar{v}) = \min_{u \in \text{comp}(\bar{v})} w(u)$ , where  $\text{comp}(\bar{v})$  is the strongly-connected component associated with  $\bar{v}$ . We then run the algorithm for the previous part on  $G^{SCC}$  with these vertex weights, and then for each vertex u in G, we will set  $\alpha(u)$  to be the  $\alpha$ -value found for the metavertex corresponding to the strongly-connected component containing u.

Forming the metagraph  $G^{SCC}$  and computing its weights takes O(V + E) time, as does running the linear-time algorithm for the previous part, for a total of O(V + E) time.

- 2 points for the first part: 1 point for the vertices (i.e. the list of strongly connected components), 1 point for the edges.
- 5 points for the second part
  - 2 points max for a super-linear algorithm.
  - Scaled Dynamic programming rubric if appropriate
  - Otherwise, 4 points for the algorithm, 1 point for time analysis. −1 for minor errors, −2 for major errors.
- 3 points for the last part: 2 points for the algorithm, 1 point for time analysis. -1 for minor errors.

## 3 Many points further away

Let  $P = \{p_1, p_2, \dots, p_n\}$  be n points in the 2-dimesional plane where each point  $p_i$  is specified as a tuple  $(x_i, y_i)$ :  $x_i$  is the x-coordinate value and  $y_i$  is the y-coordinate value for  $p_i$ . Given two points p = (a, b) and q = (c, d) in the plane, the  $L_2$  distance (also called the Euclidean distance) between p and q is defined as  $\sqrt{|a-c|^2 + |b-d|^2}$  (note that distance is always non-negative). Given the set P of p points and a point q = (a, b), describe an Q(n) time algorithm to find a point  $p_i \in P$  such that there are at least p points in P that are at least as far away from p as p. An  $Q(n \log n)$  time algorithm will get you half the points (you may want to think about the slower algorithm first).

**Solution (If it looks like Selection, and quacks like Selection...):** We need to return a point in P whose distance from q is at most the n/5-th largest (i.e., 4n/5-th smallest) distance from q. We do this by computing all of the distances from q to points in P, letting r be the distance of rank 4n/5, and returning some point whose distance from q is smaller than r. Note that since distances are non-negative, it is equivalent to work with *squared* distances to avoid needing to take square roots.

```
THRESHOLDPOINT(P[1..n], q = (a, b)):

allocate array A of length n

for i \leftarrow 1 to n

A[i] \leftarrow (x_i - a)^2 + (y_i - b)^2
r \leftarrow \text{Select}(A[1..n], 4n/5)
for i \leftarrow 1 to n

if A[i] \leq r

return p_i
```

Using a linear-time selection algorithm (as shown in lecture), the algorithm takes O(n) time.

**Solution (...there might be a cleverer solution):** The closest point to q *trivially* satisfies the requirement. The following algorithm scans through the list and finds this element in O(n) *time*:

```
CLOSESTPOINT(P[1..n], q = (a, b)):

minDist \leftarrow \infty

closest \leftarrow Null

for i \leftarrow 1 to n

dist \leftarrow (x_i - a)^2 + (y_i - b)^2

if dist < minDist

minDist \leftarrow dist

closest \leftarrow p_i

return closest
```

- 8 points for the algorithm:
  - 5 points max for an  $O(n \log n)$  algorithm.
  - 3 points max for a correct  $\omega(n \log n)$  algorithm.
  - $-\ -1$  for minor errors, -2 for major errors.
- 2 points for the time analysis.

## 4 Division

Let x and y be two positive integers with at most n digits each. Let  $x \div y$  denote the maximum integer k such that  $yk \le x$ . For instance  $341873418723478137 \div 234334234324747 = 1458$ . Describe an algorithm to compute  $x \div y$  in time polynomial in n and justify its running time. You can assume that adding and subtracting (and hence comparision) of n digit numbers takes O(n) time and that multiplication of two n digit numbers takes M(n) time where M(n) is at most  $O(n^2)$ . Your running time can be expressed in terms of M(n). For this problem you should assume that single digit operations take O(1) time but not general arithmetic operations; if you use such operations the time should be accounted for. You can assume that x and y are in binary if it helps you.

**Solution:** Note that  $1 \le x \div y \le x$ , so we can binary search over this space for the correct number. To divide by two, we use a bit-shift operation *shift*, that can be implemented to run in O(n) time by simply copying bits over one by one. (We thus assume that x and y are given in binary.)

In each iteration of the while loop, we perform at most two additions (O(n) each), one shift (O(n)), one multiplication (M(n)), and one comparison (O(n)), for a total of O(n+M(n)) time per iteration. The number of iterations is  $O(\log_2(x)) = O(n)$ , for a total running time of  $O(n^2 + nM(n))$ .

- 8 points for the algorithm:
  - 6 points max for  $\omega(n^2 + nM(n))$  time algorithm.
  - 2 points max for a algorithm that is exponential in n (e.g., "linear" scan)
  - -1 for a minor errors, -2 for major errors. A small number of off-by-ones collectively count as one minor error.
- · 2 points for the time analysis.

### 5 Fire Stations

A long straight country road can be modeled as a line starting at 0. The road has n houses at locations  $x_1 < x_2 < \ldots < x_n$  on the line. The city wants to build fire stations along the road such that every house is within distance D from some fire station. Fire stations cannot be built at arbitrary locations. The city has figured m potential locations on the road at  $y_1 < y_2 < \ldots < y_m$ . For simplicity assume that all the x and y values are distinct. The cost of building a fire station at location  $y_j$  is  $c_j$ . Describe an efficient algorithm that minimizes the total cost of building the fire stations with the constraint that each house is within a distance D of some fire station. Note that it is relatively easy to check whether a feasible solution exists.

#### **Solution:**

- We will add sentinel fire stations at locations  $y_0 < x_1$  and  $y_{m+1} = \infty$ , each of cost  $\infty$ , and a sentinel house at location  $x_{n+1} = \infty$ . Let MinFire(i, j) denote the minimum cost to cover the houses at locations  $x_i, \ldots, x_n$  using potential fire stations at locations  $y_i, \ldots, y_m$ .
- We want to return *MinFire*(0, 1).
- For  $0 \le i \le m$ , let  $Right(i) = \min\{j \mid x_j > y_i + D\}$  be the index of the first house to the right of  $y_i$  that is not covered by  $y_i$ .

Then MinFire satisfies the recurrence

$$MinFire(i,j) = \begin{cases} 0 & \text{if } j > n \\ \infty & \text{if } x_j < y_i - D \\ \min \begin{cases} c_i + MinFire(i+1, Right(i)) \\ MinFire(i+1, j) \end{cases} & \text{otherwise} \end{cases}$$

(These cases correspond to: not needing to cover any more houses; the j-th house cannot be covered with the remaining stations; and choosing whether or not to open the station at  $y_i$ .)

- MinFire(i, j) depends on entries of the form (i + 1, k). We memoize into a two-dimensional array, for i in descending order in the outer loop and for j in any order in the inner loop.
- Right(i) can be precomputed for  $0 \le i \le m$  as follows:

```
 \frac{\text{KNowYourRights}(x,y):}{j \leftarrow 1} 
 \text{for } i \leftarrow 0 \text{ to } m 
 \text{while } x_j < y_i + D 
 j \leftarrow j + 1 
 \text{Right}[i] \leftarrow j 
 \text{return } \text{Right}
```

The running time of the precomputation is O(m + n) since within the nested loops, j cannot be incremented more than n times.

With this precomputation filling each entry of the memoization structure takes O(1) time, for a total of O(mn) time.

For completeness, we include the iterative pseudocode on the next page.

**Rubric:** 10 points. Standard Dynamic programming rubric. No penalty for slower polynomial time algorithms.

### 6 Shortest Paths

Let G = (V, E) be a directed graph with non-negative edge lengths;  $\ell(e)$  denotes the length of edge e. Suppose you have computed the shortest path distance from s to t and are not too happy about it. You have the ability to add one edge to the graph G to reduce the shortest path distance but you have to choose this edge from a given list of edges  $E' = \{e_1 = (u_1, v_1), e_2 = (u_2, v_2), \dots, e_k = (u_k, v_k)\}$  where each of these edges also has its length  $\ell(e_i)$  specified to you. Design an algorithm that finds the best edge to add so that the resulting graph has the smallest shortest path distance from s to t. Ideally your algorithm's running time should be O(k) plus the asymptotic time to run Dijkstra's algorithm. Slower algorithms get fewer points but incorrect algorithms get few points if at all.

**Solution (Graph Modeling):** We will create two copies of the graph, one representing not having taken one of the edges in E', and one representing having taken of them.

- $V^* := V \times \{\text{No}, \text{Yes}\}$
- $E^* := \{(u, a) \to (v, a) \mid u \to v \in E, a \in \{\text{No}, \text{Yes}\}\} \cup \{(u, \text{No}) \to (v, \text{Yes}) \mid u \to v \in E'\}$ . For all edges,  $\ell^*((u, a) \to (v, b)) = \ell(u \to v)$ .
- We need to find the shortest path from (s, No) to (t, Yes), and extract the edge in  $E^*$  corresponding to some  $e_i \in E'$  that this path passes through.
- Since all edge lengths are non-negative, we will run Dijkstra's algorithm from (s, No).
- Building  $G^* = (V^*, E^*)$  by brute force takes  $O(V^* + E^*) = O(V + E + k)$  time, and running Dijkstra's algorithm on  $G^*$  takes  $O(E^* + V^* \log V^*) = O(k + E + V \log V)$  time.

**Solution (Combining Shortest Paths):** For each  $e_i = u_i \rightarrow v_i \in E'$ , the length of the shortest path going through  $e_i$  has length  $dist(s, u_i) + \ell(e_i) + dist(v_i, t)$ . Thus if we compute dist(s, v) and dist(v, t) for all  $v \in V$ , we can then iterate over E' to find the edge that minimizes the relevant length.

```
WRINKLEINTIME(G, E'):
compute dist(s, u) for all u via Dijkstra's algorithm
compute dist(v, t) for all v via Dijkstra's algorithm on G^{rev}
return arg \min_{e, \in E'} \{ dist(s, u_i) + \ell(e_i) + dist(v_i, t) \}
```

Finding the correct edge takes O(k) time, so overall the algorithm takes  $O(k+E+V\log V)$  time.

- No penalty for citing Dijkstra's algorithm as  $O(E \log V)$  (and thus getting  $O(k \log V)$  plus Dijkstra's).
- 8 points max for an  $O(kE \log V)$  time algorithm (e.g., overly large graph construction if using graph reduction, or making O(k) calls to Dijkstra's algorithm if combining multiple shortest path computations).
- 6 points max for a polynomial time algorithm slower than  $O(kE \log V)$ .
- For a graph reduction solution, use the Standard graph reduction rubric.
- For a combining multiple shortest path computations solution:
  - 4 points for finding the relevant shortest paths computations
  - 4 points for combining them in the correct ways
  - 2 point for time analysis in terms of the input parameters
  - -1 for each minor error, -2 for each major error