TRƯỜNG ĐẠI HỌC GIAO THÔNG VẬN TẢI THÀNH PHỐ HỒ CHÍ MINH KHOA CƠ BẢN – BỘ MÔN TOÁN

BÀI GIẢNG GIẢI TÍCH 1

CHƯƠNG IV. PHÉP TÍNH VI PHÂN HÀM NHIỀU BIẾN

§1. Đạo hàm và vi phân hàm nhiều biến ThS. Đinh Tiến Dũng

NỘI DUNG CHÍNH

- * Bài 1. Không gian n chiều, khái niệm hàm nhiều biến trong không gian n chiều, giới hạn và sự liên tục hàm 2 biến. Đạo hàm riêng cấp 1, đạo hàm hàm hợp, vi phân toàn phần cấp 1, đạo hàm riêng cấp cao của hàm 2 biến.
- * Bài 2. Hàm ẩn, đạo hàm của hàm ẩn, đạo hàm theo hướng, vector gradient.
- * Bài 3. Cực trị địa phương; bài toán GTLN,GTNN trên miền compact.

CHƯƠNG IV. PHÉP TÍNH VI PHÂN HÀM NHIỀU BIẾN

§1. Đạo hàm và vi phân hàm nhiều biến

I. CÁC KHÁI NIỆM CƠ BẢN

1. Khái niệm không gian n chiều Rⁿ

Cho tập hợp: $R^n = \{x = (x_1; x_2;; x_n) / x_1; x_2;; x_n \in R\}$, mỗi phần tử x được gọi là một điểm n - chiều.

Ta trang bị cho R^n một công thức tính khoảng cách giữa hai điểm $M(x_1, x_2, ..., x_n)$, $N(y_1, y_2, ..., y_n)$ thuộc R^n :

$$d(M,N) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}$$

Khi đó, người ta gọi R^n là không gian thực n chiều bởi nó mang đầy đủ các đặc tính của không gian hình học, vật lý.

❖ Đặc biệt:

$$\begin{aligned} & Kh\hat{o}ng \; gian \\ R^3 &= \{M(x;y;z)/x;y;z \in R\} \end{aligned}$$

Không gian

$$R^2 = \{M(x; y)/x; y \in R\}$$

Không gian
$$R^1 = R$$

2. Các khái niệm thường dùng trên không gian n chiều R^n

- a) Hình cầu mở tâm I bán kính r: $B(I,r) = \{M \in \mathbb{R}^n : d(I,M) < r\}$
- b) Hình cầu đóng tâm I bán kính r: $B[I,r] = \{M \in \mathbb{R}^n : d(I,M) \leq r\}$

c) Lân cận:

Trong \mathbb{R}^n , cho điểm x_0 và một tập V chứa x_0 .

Khi đó, V gọi là một lân cận của điểm x_0 nếu tồn tại số dương r sao cho $B(x_0,r) \subset V$.

Lân cận V của điểm x_0

 \Leftrightarrow Chú ý: $B(x_0, r)$ ta còn gọi là lân cận mở bán kính r của điểm x_0 .

d) Điểm trong:

- Cho $A \subset R^n, x_0 \in R^n$. Ta nói x_0 là điểm trong của A nếu có r > 0 sao cho $B(x_0, r) \subset A$.
- Tập hợp tất cả các điểm trong của tập hợp A gọi là phần trong của A, ký hiệu là A⁰ hoặc intA.

Điểm trong

e) Điểm ngoài:

Cho $A \subseteq R^n, x_0 \in R^n$. Điểm x_0 được gọi là điểm ngoài của A nếu có r > 0 sao cho $B(x_0, r) \cap A = \emptyset$.

f) Điểm biên:

• Cho $A \subset \mathbb{R}^n$, $x_0 \in \mathbb{R}^n$. Điểm x_0 được gọi là điểm biên của A nếu

$$\begin{cases} B(x_0, r) \cap A \neq \emptyset \\ B(x_0, r) \cap (\mathbf{R}^n \backslash A) \neq \emptyset \end{cases}, \forall r > 0.$$

• Tập hợp các điểm biên của A gọi là biên của A, ký hiệu là ∂A .

Điểm ngoài

g) Tập mở:

Cho tập $A \subset R^n$. Tập A gọi là tập mở trong R^n nếu $A = A^0$.

h) Tập đóng:

Cho tập $B \subset R^n$. Tập B gọi là tập đóng trong R^n nếu $\partial B \subset B$.

k) Tập giới nội:

Một tập hợp gọi là giới nội (bị chặn) nếu có một hình cầu nào đó chứa nó.

h) Tập compact:

Một tập hợp gọi là tập compact nếu nó vừa đóng vừa giới nội.

Tập mở Chỉ chứa điểm trong

Tập đóng Chứa điểm trong và cả biên

3. Khái niệm hàm nhiều biến

* Định nghĩa

Cho D là một tập con khác rỗng của không gian \mathbb{R}^n . Hàm nhiều biến f xác định trên D là một quy tắc cho tương ứng mỗi phần tử $x = (x_1, ..., x_n) \in D$ với một số thực duy nhất, ký hiệu là:

$$w = f(x) hay w = f(x_1, ..., x_n).$$

Trong đó:

- $x_1, ..., x_n$ gọi là n biến độc lập của hàm f;
- Tập hợp $D\{M(x_1,...,x_n) \in \mathbb{R}^n | f(x) có nghĩa \}$ gọi là tập xác định của hàm f;
- $T\hat{a}p \ hop \ f(D) = \{f(x)/x \in D\} \ goi \ là t\hat{a}p \ giá \ trị của hàm f.$
- $T\hat{a}p \ hop \left\{ \mathbf{M}'(x_1, ..., x_n, f(x)) \in \mathbb{R}^{n+1} \ \middle| x = (x_1, ..., x_n) \in \mathbf{D} \right\}$ gọi là đồ thị của hàm f.
- Chú ý: Về mặt nguyên tắc, lý thuyết tổng quát về hàm n biến tương tự như hàm 2,3 biến. Do vậy trong bài giảng GT1 chúng ta chỉ cần nghiên cứu về hàm 2 biến.

❖ Ví dụ 1

- a) f(x,y) = 2x-3y+5 là hàm hai biến x, y.
- b) z = ln(x + y 1) là hàm hai biến x, y.
- c) $\mathbf{u} = \sqrt{1 x^2 y^2 z^2} \, la \, ham \, ba \, biến \, x, y, z.$
- d) $f(x_1, x_2, x_3, x_4) = 2x_1^2 3x_2x_3 x_4$ là hàm bốn biến x_1, x_2, x_3, x_4 .

* Ví dụ 2

$$z = f(x, y) = \sqrt{x^2 + y^2}$$
 là hàm 2 biến.
Trong đó:

- z là hàm phụ thuộc các biến số x, y.
- Tập xác định:

$$\mathbf{D} = \left\{ \mathbf{M}(\mathbf{x}; \mathbf{y}) \in \mathbb{R}^2 | \sqrt{x^2 + y^2} \text{ c\'o nghĩa} \right\}$$

$$\Rightarrow D = \mathbb{R}^2$$
.

• Tập gía trị:

$$f(\mathbf{D}) = \{ f(\mathbf{x}, \mathbf{y}) / (\mathbf{x}, \mathbf{y}) \in \mathbf{D} \}$$
$$= \{ \sqrt{x^2 + y^2} / (\mathbf{x}, \mathbf{y}) \in \mathbb{R}^2 \} = [\mathbf{0}; \infty)$$

■ Đồ thị $\left\{ \mathbf{M}'(\mathbf{x}; \mathbf{y}; \mathbf{z}) \in \mathbb{R}^3 \mid \mathbf{z} = \sqrt{x^2 + y^2} \right\}$ gọi là đồ thị của hàm f.

Đồ thị hàm hai biến $z = \sqrt{x^2 + y^2}$

❖ Ví dụ 3

$$z = f(x, y) = x^2 + y^2 là hàm 2 biến.$$

Trong đó:

- z là hàm phụ thuộc các biến số x, y.
- $\blacksquare T\hat{a}p x d: D = \mathbb{R}^2.$
- $T\hat{a}p \ gt \ f(\mathbf{D}) = [\mathbf{0}; \infty).$
- Đồ thị

$$\{M'(x; y; z) \in \mathbb{R}^3 | z = x^2 + y^2\}.$$

* Ví dụ 4

$$z = \sqrt{1 - x^2 - y^2}$$
 là hàm 2 biến.

- z là hàm phụ thuộc các biến số x, y.
- Tập xác định:

$$D = \{M(x; y) \in \mathbb{R}^2 | 1 - x^2 - y^2 \ge 0 \}$$

$$\Rightarrow D = \{M(x; y) \in \mathbb{R}^2 | x^2 + y^2 \le 1\} = B[0, 1]$$

Tập gía trị:

$$f(\mathbf{D}) = \left\{ \sqrt{1 - x^2 - y^2} / (\mathbf{x}, \mathbf{y}) \in \mathbf{D} \right\}$$

$$= \left\{ \mathbf{z} = \sqrt{1 - x^2 - y^2} | x^2 + y^2 \le 1 \right\}$$

$$= [\mathbf{0}; \mathbf{1}]$$

• Đồ thị:

$$\left\{ \mathbf{M}'(\boldsymbol{x};\boldsymbol{y};\boldsymbol{z}) \in \mathbb{R}^3 \ \middle| \boldsymbol{z} = \sqrt{1 - x^2 - y^2} \right\}$$

HOẠT ĐỘNG NHÓM

Tìm và vẽ hình biểu diễn tập xác định các hàm số:

a)
$$f(x,y) = ln(x+y+1)$$

b)
$$u = \sqrt{1 - x^2 - y^2 - z^2}$$

II. GIỚI HẠN CỦA HÀM HAI BIẾN

1. Khái niệm giới hạn

Dịnh nghĩa

Cho hàm số f(x,y)xác định trong một lân cận của điểm(x,y)(có thể không xác định tại (x_0,y_0)). Ta nói hàm số f có giới hạn L khi (x,y) dần tới (x_0,y_0) nếu với mọi số $\varepsilon>0$, tồn tại số $\delta>0$ sao cho với mọi (x,y) mà $0<\sqrt{(x-x_0)^2+(y-y_0)^2}<\delta$ thì ta có $|f(x,y)-L|<\varepsilon$.

 $Ki hi\hat{\varrho}u: \lim_{(x,y)\to(x_0,y_0)} f(x,y) = \mathbf{L} hoặc <math>f\to \mathbf{L} khi(x,y)\to(x_0,y_0).$

* Chú ý: Nếu (x, y) tiến $v \in (x_0, y_0)$ từ hai hướng khác nhau nằm trong tập xác định của f mà giá trị hàm f tiến tới hai giá trị khác nhau thì ta nói hàm f không tồn tại giới hạn khi (x, y) dần tới (x_0, y_0) .

2. Các tính chất của giới hạn của hàm hai biến

* Định lý 1 (Quy tắc tính giới hạn)

Giả sử $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L$, $\lim_{(x,y)\to(x_0,y_0)} g(x,y) = M$ với L, M là các số thực và k là một số thực tùy \acute{y} . Ta có:

- 1. Quy tắc cộng: $\lim_{(x,y)\to(x_0,y_0)} (f(x,y) \pm g(x,y)) = L \pm M$
- 2. Quy tắc nhân vô hướng: $\lim_{(x,y)\to(x_0,y_0)} (kf(x,y)) = k. L$
- 3. Quy tắc nhân: $\lim_{(x,y)\to(x_0,y_0)} (f(x,y)\cdot g(x,y)) = L\cdot M$
- 4. Quy tắc lũy thừa: $\lim_{(x,y)\to(x_0,y_0)} [f(x,y)]^n = L^n$
- 5. Quy tắc khai căn: $\lim_{(\mathbf{x},\mathbf{y})\to(x_0,y_0)} \sqrt[n]{f(\mathbf{x},\mathbf{y})} = \sqrt[n]{L}$

(ĐK: L > 0 khi n chẵn)

❖ Định lý 2 (Giới hạn kẹp)

Cho ba hàm số f, g, h cùng xác định trên miền

$$D = \left\{ (x; y) \in \mathbb{R}^2 : 0 < \sqrt{(x - x_0)^2 + (y - y_0)^2} < \delta \right\} v \acute{o}i \ \delta > 0.$$

Giả sử $g(x,y) \le f(x,y) \le h(x,y), \forall (x,y) \in D$.

Khi đó, nếu
$$\lim_{(x,y)\to(x_0,y_0)} g(x,y) = \lim_{(x,y)\to(x_0,y_0)} h(x,y) = L thì$$

 $\lim_{(\mathbf{x},\mathbf{y})\to(\mathbf{x_0},\mathbf{y_0})} \mathbf{f}(\mathbf{x},\mathbf{y}) = \mathbf{L}.$

III. TÍNH LIÊN TỤC CỦA HÀM HAI BIẾN

* Định nghĩa

Cho hàm f xác định trong một lân cận của điểm (x_0, y_0) . Hàm f gọi là liên tục tại điểm (x_0, y_0) nếu $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0, y_0)$.

Một hàm số được gọi là liên tục nếu nó liên tục tại mọi điểm trong miền xác định của nó.

IV. ĐẠO HÀM VÀ VI PHÂN CỦA HÀM HAI BIẾN

1. Khái niệm đạo hàm riêng cấp 1.

* Định nghĩa:

Cho z = f(x, y) là một hàm số xác định trong lân cận D của điểm $M(x_0, y_0)$. Nếu hàm một biến $f(x, y_0)$ có đạo hàm tại x_0 , thì đạo hàm đó được gọi là đạo hàm riêng của f(x; y) theo biến x tại điểm $M(x_0, y_0)$. Ký hiệu:

$$f'_{x}(M), f'_{x}(x_{0}, y_{0}), \frac{\partial f}{\partial x}(x_{0}, y_{0}), z'_{x}(x_{0}, y_{0}), \frac{\partial z}{\partial x}(x_{0}, y_{0})$$

Và được định nghĩa là:
$$f'_{\mathbf{x}}(x_0, y_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}.$$

Tương tự ta cũng có đạo hàm riêng của f theo biến y, ký hiệu:

$$f'_{y}(M), f'_{y}(x_{0}, y_{0}), \frac{\partial f}{\partial v}(x_{0}, y_{0}), z'_{y}(x_{0}, y_{0}), \frac{\partial z}{\partial v}(x_{0}, y_{0})$$

Và được định nghĩa là:
$$f'_{y}(x_0, y_0) = \lim_{\Delta y \to 0} \frac{f(x_0, y_0 + \Delta y) - f(x_0, y_0)}{\Delta y}$$

 \square Chú ý: Đạo hàm riêng theo biến x_1 của hàm n biến $f(x_1, ..., x_n)$ tại điểm $M(x_{01}, ..., x_{0n})$ được định nghĩa bởi công thức:

$$f'_{x_1}(M) = \lim_{\Delta x \to 0} \frac{f(x_{01} + \Delta x, x_{02}, \dots, x_{0n}) - f(x_{01}, x_{02}, \dots, x_{0n})}{\Delta x}.$$

Định nghĩa tương tự cho đạo hàm riêng theo các biến còn lại.

Ý nghĩa

- $f'_x(M_0)$: Độ dốc của đồ thị hàm f tại điểm M_0 theo hướng Ox.
- $f'_y(M_0)$: Độ dốc của đồ thị hàm f tại điểm M_0 theo hướng Oy.

2. Qui tắc tìm đạo hàm riêng.

Khi tính đạo hàm riêng của hàm f(x,y) theo biến x thì ta xem y là hằng số và ngược lại.

* Ví du 1

a) Cho
$$z = x^2 - 3xy + y^2$$
. Tính $z'_x, z'_y, z'_x(3, 1), z'_y(3, 1)$.

b) Cho
$$f(x,y) = x^3 - 3xy + 2y^3$$
. Tính $\frac{\partial f}{\partial x}(1,0), \frac{\partial f}{\partial y}(1,1)$.

a)
$$z = x^2 - 3xy + y^2$$

$$\Rightarrow \begin{cases} z'_x = 2x - 3y \\ z'_y = 2y - 3x \end{cases} \Rightarrow \begin{cases} z'_x(3,1) = 2x - 3y \\ z'_y(3,1) = 2y - 3x \end{cases} = 3$$

b) Cho
$$f(x,y) = x^3 - 3xy + 2y^3$$
. Tính $\frac{\partial f}{\partial x}(1,0), \frac{\partial f}{\partial y}(1,1)$.

$$f(x,y) = x^{3} - 3xy + 2y^{3} \Rightarrow \begin{cases} \frac{\partial f}{\partial x}(x,y) = 3x^{2} - 3y\\ \frac{\partial f}{\partial y}(x,y) = -3x + 6y^{2} \end{cases}$$

$$\Rightarrow \begin{cases} \frac{\partial f}{\partial x}(1,0) = 3.1^2 - 3.0 = 3\\ \frac{\partial f}{\partial y}(1,1) = -3.1 + 6.1^2 = 3 \end{cases}$$

3. Đạo hàm riêng của hàm số hợp (Qui tắc xích)

💠 Định lý 1. (Quy tắc xích cho hàm 1 biến)

1) Nếu hàm $\mathbf{w} = f(x, y)$ khả vi theo từng biến và x = x(t), y = y(t) là các hàm một biến khả vi thì hàm số hợp $\mathbf{w}(t) = f(x(t), y(t))$ cũng khả vi và:

$$w_t' = w_x' \cdot x_t' + w_y' \cdot y_t'$$

2) Nếu hàm $\mathbf{w} = f(x, y, z)$ khả vi theo từng biến và $\mathbf{x} = \mathbf{x}(t)$, $\mathbf{y} = \mathbf{y}(t)$, $\mathbf{z}(t)$ là các hàm một biến khả vi thì hàm số hợp $\mathbf{w}(t) = f(\mathbf{x}(t), \mathbf{y}(t), \mathbf{z}(t))$ cũng khả vi và:

$$w'_{t} = w'_{x}.x'_{t} + w'_{y}.y'_{t} + w'_{z}.z'_{t}$$

* Ví dụ:

Tính w'(t) của mỗi hàm số sau đây bằng hai cách:

a)
$$w = x^2y - xy$$
, biết rằng $x = t^2$, $y = \sin t$

b)
$$w = xyz$$
, biết rằng $x = t^2$, $y = \sin t$, $z = e^{2t}$

Giải

* Cách 1: Áp dụng quy tắc xích

a)
$$w'_{t} = w'_{x} \cdot x'_{t} + w'_{y} \cdot y'_{t}$$

$$= (x^{2}y - xy)'_{x} \cdot (t^{2})'_{t} + (x^{2}y - xy)'_{y} \cdot (sint)'_{t}$$

$$= (2xy - y)(2t) + (x^{2} - x)\cos t$$

$$= 2t(2t^{2} - 1)\sin t + (t^{4} - t^{2})\cos t$$

b)
$$w'_t = w'_x \cdot x'_t + w'_y \cdot y'_t + w'_z \cdot z'_t = yz(2t) + xz\cos t + xy(2e^{2t})$$

= $2te^{2t}\sin t + t^2e^{2t}\cos t + 2t^2e^{2t}\sin t$.
= $te^{2t}(2\sin t + t\cos t + 2t\sin t)$

* Ví dụ:

Tính w'(t) của mỗi hàm số sau đây bằng hai cách:

a)
$$w = x^2y - xy$$
, biết rằng $x = t^2$, $y = \sin t$

b)
$$w = xyz$$
, biết rằng $x = t^2$, $y = \sin t$, $z = e^{2t}$

Giải

* Cách 2: Thế x, y, z vào hàm w để đưa về hàm một biến t.

a)
$$w = x^2y - xy = (x^2 - x)y = (t^4 - t^2)\sin t$$

 $\Rightarrow w'(t) = (4t^3 - 2t)\sin t + (t^4 - t^2)\cos t$.

$$b) \quad w = xyz = t^2e^{2t}sint$$

$$\Rightarrow w'(t) = (t^2)'e^{2t}\sin t + t^2(e^{2t})'\sin t + t^2e^{2t}(\sin t)'$$

$$=2te^{2t}sint+2t^2e^{2t}sint+t^2e^{2t}cost.$$

Định lý 2. (Quy tắc xích cho hàm 2 biến độc lập)

1) Nếu các hàm w = f(x, y), x = x(r, s), y = y(r, s) khả vi theo từng biến thì hàm số hợp w(r, s) = f(x(r, s), y(r, s)) cũng khả vi theo từng biến r, s và:

$$w'_{r} = w'_{x}. x'_{r} + w'_{y}. y'_{r}$$

 $w'_{s} = w'_{x}. x'_{s} + w'_{y}. y'_{s}$

2) Nếu các hàm số w = f(x, y, z), x = x(r, s), y = y(r, s), z = z(r, s) khả vi theo từng biến thì hàm số hợp w(r, s) = f(x(r, s), y(r, s), z(r, s)) cũng khả vi theo từng biến u, v và:

$$w'_{r} = w'_{x}. x'_{r} + w'_{y}. y'_{r} + w'_{z}. z'_{r}$$

 $w'_{s} = w'_{x}. x'_{s} + w'_{y}. y'_{s} + w'_{z}. z'_{s}$

* Ví dụ:

Tính các đạo hàm riêng w'_r , w'_s của hàm số sau: $w = x \sin y$, biết rằng x = 2r - 3s, y = rs

Giải

- * Cách 1: Áp dụng quy tắc xích
 - $w'_{r} = w'_{x}. x'_{r} + w'_{y}. y'_{r}$ $= (x \sin y)'_{x}. (2r 3s)'_{r} + (x \sin y)'_{y}. (rs)'_{r}$ $= \sin y. 2 + x \cos y. s = 2 \sin(rs) + s(2r 3s) \cos(rs).$
 - $w'_{s} = w'_{x}. x'_{s} + w'_{y}. y'_{s}$ $= (x sin y)'_{x}. (2r 3s)'_{s} + (x sin y)'_{y}. (rs)'_{s}$ = siny. (-3) + x cosy. r = -3 sin(rs) + r(2r 3s) cos(rs).
- * Cách 2: Thế x, y, z vào hàm w rồi SV tự tính.

BÀI TẬP TẠI LỚP

Dùng quy	tắc xích	tính cá	c đạo	hàm	riêng	w_r', w_s'	của hàn	ı số
$w = x_1$	ysin <mark>z</mark> , b	iết rằng	g x =	<u>2r</u> –	3 <i>s</i> , <i>y</i>	= rs, z	= r - s.	

• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			•••••	• • • • • • • • • • • • • • • • • • • •
••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
								• • • • • • • • • • • • • • • • • • • •
								• • • • • • • • • • • • • • • • • • • •
••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •			•••••	
								• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •				•••••
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •			•••••	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •						

V. ĐẠO HÀM RIÊNG CẤP CAO

- 1. Khái niệm đạo hàm riêng cấp cao.
- Dịnh nghĩa:
- Nếu các đạo hàm riêng cấp một f'_x , f'_y của hàm f(x;y) có đạo hàm riêng thì ta gọi đó là đạo hàm riêng cấp 2 của hàm f(x;y). Ta có các đạo hàm riêng cấp hai với các ký hiệu sau đây:

$$f_{x^{2}}^{"}(x,y) = f_{xx}^{"}(x,y) = \frac{\partial^{2} f(x,y)}{\partial x^{2}} = \frac{\partial}{\partial x} \left(\frac{\partial f(x,y)}{\partial x} \right);$$

$$f_{xy}^{"}(x,y) = \frac{\partial^{2} f(x,y)}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial f(x,y)}{\partial x} \right);$$

$$f_{yx}^{"}(x,y) = \frac{\partial^{2} f(x,y)}{\partial y \partial x} = \frac{\partial}{\partial x} \left(\frac{\partial f(x,y)}{\partial y} \right);$$

$$f_{y^{2}}^{"}(x,y) = f_{yy}^{"}(x,y) = \frac{\partial^{2} f(x,y)}{\partial y^{2}} = \frac{\partial}{\partial y} \left(\frac{\partial f(x,y)}{\partial y} \right).$$

Các đạo hàm riêng cấp n được định nghĩa tương tự. Chẳng hạn:

$$f'''_{x^2y}(x,y) = f'''_{xxy}(x,y) = \frac{\partial^3 f(x,y)}{\partial x^2 \partial y} = \frac{\partial}{\partial y} \left[\frac{\partial}{\partial x} \left(\frac{\partial f(x,y)}{\partial x} \right) \right].$$

❖ Ví dụ 1:

Cho hàm
$$f(x,y) = x^3 - 3xy + 2y^3$$
. Tính $\frac{\partial^2 f}{\partial x^2}(1,2), \frac{\partial^2 f}{\partial x \partial y}(0,1)$.

Giải

$$f(x,y) = x^3 - 3xy + 2y^3 \Rightarrow \frac{\partial f}{\partial x}(x,y) = 3x^2 - 3y$$

Ta có:
$$\frac{\partial^2 f}{\partial x^2}(x, y) = 6x \implies \frac{\partial^2 f}{\partial x^2}(1, 2) = 6.1 = 6.$$

$$\frac{\partial^2 f}{\partial x \partial y}(x, y) = -3 \Rightarrow \frac{\partial^2 f}{\partial x \partial y}(0, 1) = -3.$$

❖ Ví du 2:

Cho
$$f(x, y) = x^2y - 5xy^3 + 2x - y + 1$$
. Tinh $f''_{xx}, f''_{xy}, f''_{yx}, f''_{yy}$.

Giải

$$f'_{x} = 2xy - 5y^{3} + 2$$
 $f''_{xx} = 2y$
 $f'_{y} = x^{2} - 15xy^{2} - 1$ $f''_{xy} = 2x - 15y^{2}$
 $f''_{yy} = -30xy$ $f''_{yx} = 2x - 15y^{2}$

- * Nhận xét: $f_{xy}^{"} = 2x 15y^2 = f_{yx}^{"}, \forall (x, y).$
- 2. Tính chất đạo hàm hỗn hợp

❖ Định lý

Nếu hàm f(x, y) và các đạo hàm riêng f'_x , f'_y , f''_{xy} , f''_{yx} xác định trong lân cận của điểm (x_0, y_0) và liên tục tại (x_0, y_0) , khi đó: $f''_{xy}(x_0, y_0) = f''_{yx}(x_0, y_0)$.

VI. HÀM KHẢ VI, VI PHÂN TOÀN PHẦN

1. Hàm khả vi

Dịnh nghĩa

• Hàm f được gọi là khả vi tại điểm (x_0, y_0) nếu số gia toàn phần $\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)$ có thể biểu diễn dạng:

$$\Delta z = A.\Delta x + B.\Delta y + \alpha.\Delta x + \beta.\Delta y$$

trong đó A, B chỉ phụ thuộc vào (x_0, y_0) và $f; \alpha, \beta$ là các vô cùng bé khi $(\Delta x, \Delta y) \rightarrow (0, 0)$.

■ Hàm f được gọi là khả vi trên miền mở D nếu nó khả vi tại mọi điểm $(x,y) \in D$, và nói rằng đồ thị của f là mặt trơn.

❖ Định lý

- a) Nếu f(x, y) khả vi tại (x_0, y_0) thì nó liên tục tại đó.
- b) Nếu f(x, y) khả vi tại (x_0, y_0) thì nó có các đạo hàm riêng tại

$$(x_0, y_0) \ v \mathring{a} \ A = \frac{\partial f}{\partial x}(x_0, y_0), B = \frac{\partial f}{\partial y}(x_0, y_0).$$

c) Nếu f'_x và f'_y liên tục tại (x_0, y_0) thì f khả vi tại (x_0, y_0) .

2. Vi phân toàn phần

* Định nghĩa

Nếu hàm f khả vi tại (x, y) thì biểu thức

$$df(x,y) = \frac{\partial f}{\partial x}(x,y) \cdot \Delta x + \frac{\partial f}{\partial y}(x,y) \cdot \Delta y$$

được gọi là vi phân toàn phần của f tại điểm (x, y).

* Đặc biệt: Chọn $h(x, y) = x \ va \ g(x, y) = y \ thì ta có:$ $\begin{cases} dh(x, y) = dx = 1. \ \Delta x = \Delta x \\ dg(x, y) = dy = 1. \ \Delta y = \Delta y \end{cases}$

Vậy vi phân toàn phần của f(x, y) tại (x, y) có thể biểu diễn là:

$$df(x,y) = \frac{\partial f}{\partial x}(x,y)dx + \frac{\partial f}{\partial y}(x,y)dy.$$

* Tóm lại: Công thức tính vi phân toàn phần của f(x, y) tại (x, y) có thể được viết ở các dạng:

$$df(x,y) = \frac{\partial f}{\partial x}(x,y)dx + \frac{\partial f}{\partial y}(x,y)dy.$$

$$df(x,y) = f'_{x}(x,y) \cdot dx + f'_{y}(x,y) dy.$$

Viết tắt là:

$$df = f'_{x}.dx + f'_{y}.dy.$$

* Công thức tính vi phân toàn phần của hàm ba biến f(x,y,z) được xây dựng và phát biểu tương tự:

$$df = f'_{x}. dx + f'_{y}. dy + f'_{z}. dz.$$

❖ Ví dụ

- a) Tính vi phân toàn phần df của hàm: $f(x,y) = x^2y + xy^3 2$.
- b) Cho hàm $f(x, y, z) = x^2 + xyz$. Tính df(1,2,3).

Giải

a) ADCT
$$df = f'_{x} \cdot dx + f'_{y} \cdot dy \ ta \ cos$$

$$df(x,y) = (x^{2}y + xy^{3} - 2)'_{x} dx + (x^{2}y + xy^{3} - 2)'_{y} \cdot dy$$

$$\Rightarrow df(x,y) = (2xy + y^{3}) \cdot dx + (x^{2} + 3xy^{2}) \cdot dy$$

b) ADCT
$$df = f'_{x} \cdot dx + f'_{y} \cdot dy + f'_{z} \cdot dz \ ta \ cos$$

$$df(x, y, z) = (x^{2} + xyz)'_{x} dx + (x^{2} + xyz)'_{y} \cdot dy + (x^{2} + xyz)'_{z} \cdot dz$$

$$= (2x + yz)dx + xzdy + xydz$$

$$\Rightarrow df(1,2,3) = (2.1 + 2.3)dx + 1.3dy + 1.2dz$$

$$= 8. dx + 3dy + 2dz.$$

BÀI TẬP VỀ NHÀ

<u>Câu 1:</u> Tìm vi phân toàn phần tại điểm M(1,2) của hàm số $f(x,y) = y^2 e^{y-2x}$.

<u>Câu 2:</u> Tìm vi phân toàn phần tại điểm M(0,4) của hàm số $f(x,y) = (x^2 + \sqrt{y})e^x$.

<u>Câu 3:</u> Tìm vi phân toàn phần tại điểm M(5, -2,0) của hàm số:

$$f(x, y, z) = (3x - y^2 + 7)\cos z - \frac{z}{2}.$$

<u>Câu 4:</u>Tìm vi phân toàn phần của hàm số sau:

$$f(x,y,z) = (3x + z^2)e^{4y} - 2x + \frac{7}{z} + 2022$$

<u>Câu 5:</u> Cho hàm số $z(x,y) = x \ln(x+y)$. Chứng minh rằng: $x(z'_x - z'_y) = z$.

<u>Câu 6:</u> Tính giá trị của biểu thức $A = 3\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y}$ tại điểm M(9,4), biết: $z(x,y) = \frac{2y+1}{y-5} + y\sqrt{x} - 3186$.

Câu 7: Tìm hàm số hai biến số thực u(x, y) thỏa:

$$\begin{cases} u_x' = (4x + 2y - 7)e^{2x} + y \\ u_y' = e^{2x} + x + e^{2y} - y \end{cases}$$

Câu 8: Tìm hàm hai biến u(x, y), biết:

$$\begin{cases} u'_x = e^y (3 - 2x) - y \\ u'_y = e^y (3x - x^2) - x + 4y \end{cases}$$

Câu 9: Tìm hàm hai biến u(x, y), biết:

$$\begin{cases} u'_x = 3x^2 - ye^x + y^2 \\ u'_y = -e^x + 2xy + 4y^3 \end{cases}.$$

ĐÁP ÁN

<u>Câu 1:</u> Tìm vi phân toàn phần tại điểm M(1,2) của $f(x,y) = y^2 e^{y-2x}$. <u>Giải:</u>

		•••••	
	•••••		
• • • • • • • • • • • • • • • • • • • •		•••••	•••••
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •			
•••••			

ĐÁP ÁN

Câu 2:

Tìm vi phân toàn phần tại điểm M(0,4) của $f(x,y) = (x^2 + \sqrt{y})e^x$. Giải:

	 •	
• • • • • • • • • • • • • • • • • • • •	 	
		•••••
• • • • • • • • • • • • • • • • • • • •	 •	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	 	• • • • • • • • • • • • • • • • • • • •
		•••••
• • • • • • • • • • • • • • • • • • • •	 	
• • • • • • • • • • • • • • • • • • • •	 	

<u>Câu 4:</u> Tìm vi phân toàn phần của hàm số sau:

$$f(x,y,z) = (3x + z^2)e^{4y} - 2x + \frac{7}{z} + 2022$$
Giải:

											• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••
• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • •		• • • • •
	• • • • • • •				• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • •		• • • • •
	•••••	• • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••
					• • • • • • • • • •	• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •		• • • • • • • • • •		• • • • •
					• • • • • • • • • •	• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •		• • • • • • • • • •		• • • • •
					• • • • • • • • • •	• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •		• • • • • • • • • •		• • • • •
• • • • • • • •	• • • • • •	• • • • • • • •	• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •	• • • • • • • • •	• • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • •

<u>Câu 5:</u> Cho hàm số $z(x, y) = x \ln(x + y)$. CMR: $x(z'_x - z'_y) = z$.

<u>Giải:</u>

	 •		
• • • • • • • • • • • • • • • • • • • •	 •		• • • • • • • • • • • • • • • • • • • •
	 •		
	 •		
		• • • • • • • • • • • • • • • • • • • •	
•••••	 •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •

<u>Câu 6:</u> Tính giá trị của biểu thức $A = 3\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y}$ tại điểm M(9,4), biết: $z(x,y) = \frac{2y+1}{y-5} + y\sqrt{x} - 3186$.

	•	?	•	
	1		1	•
U	1	a	л,	•

 	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
 	• • • • • • • • • • • • • • • • • • • •		
 	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	

Câu 7: Tìm hàm số hai biến số thực u(x, y) thỏa: $\begin{cases} u_x' = (4x + 2y - 7)e^{2x} + y \\ u_y' = e^{2x} + x + e^{2y} - y \end{cases}$ Giải:

Câu 8: Tìm hàm hai biến u(x, y), biết:

$$\begin{cases} u'_{x} = e^{y}(3 - 2x) - y & (1) \\ u'_{y} = e^{y}(3x - x^{2}) - x + 4y & (2) \end{cases}$$

Giải:

•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •	
••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •

Câu 9: Tìm hàm hai biến u(x, y), biết:

$$\begin{cases} u'_x = 3x^2 - ye^x + y^2 & (1) \\ u'_y = -e^x + 2xy + 4y^3 & (2) \end{cases}$$

Giải:

•••••		
•••••		
•••••	•••••	•••••
•••••	•••••	•••••