Lista 5 - Sistemas de Comunicações Móveis

1) D'himite de prosabilidade é dado
Pon: $P_e < e$, logo dado que $E(R) = 1$, $m = 4$ $P_e < e$
dado que E(R) = 1, n = 4 Pe < e 1-4-1
=> Pe < 0,049.
Ou seja, a probabilidade de esso é limitada a 49%
Caso o onémero de dégitos da palasra for
ignal a n=8, Pe<0,09%.
Quanto maior a palasta de cidigo, manos
é a probabiliaçõe de esso.

2) Usando a mesong relação anterior,

$$0.01 < e^{1-8.E(R)} \Rightarrow -4.6 < 1-8.E(R)$$
,

Resolvendo a inequação, $E(R) < 0.7$

Por exemplo, a $E(R) = 10^{-9} R^2$,

 $10^{-9} R^2 < 0.7 \Rightarrow R < \sqrt{10^9.0.7}$.

Como $R < C$, $C > 26.46$ Kbps

8=3/8=37,5%

furrenta-se a probabilidade de acerto na detecca, pois se aumenta o ne de digitos de reducadacia. (4) Convertendo para sinario:

a: 0111 | 011 d [a, 5] = 3 b: | 011 | 0011 $a \oplus b = 0000 000$ c: 0000 0000 d: | 1111 | 1111

De modo similar, d[a,c]=6, d[a,d]=2 d[b,c] = 5, d[b,d] = 3, d[c,d] = 8.

Como a distância de Hamming e dada acima, a distância do código e a menor distância entre suas palatras.

D = 2

5) Dara a reguência E011/110/101/001

						・シン		
	4	< 1	K 2	k 3	CI	C2	C 3	CY
50		0	0	1	0	1	1	7
bı		0	}	1	}	0	}	0
b2		1	0	1	1	1	0	0
53		l	1	Û	ට	1	١	0
541		0	1	٨	1	0	1	0

Caso se ja recebida a sequencia [1010111] relativa a 1 bloco,

 $\alpha_1 = 0$, mas $k_1 \oplus k_2 = 1$

 $c_{2} = 1$, $k_{2} \oplus k_{3} = 1$ $c_{3} = 1$, was $k_{1} \oplus k_{3} = 0$

Cy = 1, mas KI + k2 + k3 = 0

$\mathcal{C}_{\mathcal{O}}$	M	

O receptor pode corrigin o croo em Ko, ou orja ko =0.

6) Um códique de stância de Hamming de permite destector d-1 erros, logo d-1=3 => d=4

Para corrigir Derros, o códiqo de destância De deve satisfazer 2t+1 < d, hogo, t=2, d> 8

7) Para corregir pelo menos e sits, d>,5. considerando código de repetico

k c1 c2 c3 c4 0 0 0 0 0 1 1 1 1 1

Portanto, a transmissão de BE secra B = 001, E = 100 => [00000000011111 ...

Induando o bit de paridade (paridade impar), [0001 00 10 0 100]

$$K3 = f(C_1, C_2)$$

$$KJ = f(C_1, C_4)$$

$$K3 = K3 \times C1$$

$$K3 \times C1$$

$$K3 \times C1$$

$$K3 \times C1$$

 $\begin{array}{c} L u q o \\ K_3 = K_5 = 00 \implies o_1 = 1 \quad (c_2 = 0) \quad c_4 = 0 \\ K_3 = 0 \quad K_5 = 1 \implies c_1 = 0 \quad c_2 = 1 \quad c_4 = 0 \\ K_3 = 1 \quad K_5 = 0 \implies c_1 = 0 \quad c_2 = 1 \quad c_4 = 1 \\ K_3 = 1 \quad K_5 = 1 \implies c_1 = 1 \quad c_2 = 1 \quad c_4 = 1 \end{array}$

ı [_]					
_	K 3	KJ.	<u></u>	C2	Cy
	0	O	1	O	0
	9	1	0	1	0
	4	0	D	0	٨
	1	1	1	4	1