G12 : Correction rapide de la deuxième session.

Exercice 1. 1. On a, pour tout réel s,

$$\mathbb{E}\left[e^{sX_1}\right] = \frac{1}{\sqrt{2\pi}} \int_{\mathbf{R}} e^{sx} e^{-x^2/2} dx = \frac{e^{s^2/2}}{\sqrt{2\pi}} \int_{\mathbf{R}} e^{-(x-s)^2/2} dx = e^{s^2/2}$$

puisqu'on reconnaît la densité de la la loi gaussienne $\mathcal{N}(s,1)$.

2. Comme les variables $(X_n)_{n \in \mathbb{N}^*}$ sont i.i.d. il en est de même des variables $(X_n^2)_{n \geq 1}$ et $\left(e^{X_n}\right)_{n \geq 1}$; X_1^2 et e^{X_1} étant intégrables, la loi forte des grands nombres donne la convergence presque sûre des suites de terme général

$$\frac{1}{n}\sum_{k=1}^{n}X_k^2 \quad \text{ et } \quad \frac{1}{n}\sum_{k=1}^{n}e^{X_k}$$

respectivement vers $\mathbb{E}\left[X_1^2\right]=1$ et $\mathbb{E}\left[e^{X_1}\right]=e^{1/2}$. La suite $(Y_n)_{n\geq 1}$ converge presque sûrement vers $e^{-1/2}$.

Exercice 2. 1. Un calcul élémentaire donne

$$\forall t \in \mathbf{R}, \qquad \varphi(t) = \mathbb{E}\left[e^{itX_1}\right] = \frac{1}{2}\left(1 + e^{it}\right) = \frac{1}{2}e^{it/2}\left(e^{-it/2} + e^{it/2}\right) = e^{it/2}\cos(t/2),$$

et comme $\sin t = 2\cos(t/2)\sin(t/2)$, pour $t \neq 0 \mod 2\pi$,

$$\varphi(t) = \frac{e^{it/2}}{2} \frac{\sin t}{\sin(t/2)}.$$

2. Puisque les variables $(X_n)_{n\geq 1}$ sont i.i.d., nous avons, pour $n\geq 1$ et $t\in \mathbf{R}$,

$$\mathbb{E}\left[e^{itU_n}\right] = \mathbb{E}\left[\prod_{1 \le k \le n} e^{it2^{-k}X_k}\right] \stackrel{i.}{=} \prod_{1 \le k \le n} \mathbb{E}\left[e^{it2^{-k}X_k}\right] \stackrel{i.d.}{=} \prod_{1 \le k \le n} \varphi(2^{-k}t).$$

D'après la question précédente, pour $t \neq 0 \mod 4\pi$,

$$\mathbb{E}\left[e^{itU_n}\right] = \prod_{1 \le k \le n} \frac{e^{it2^{-(k+1)}}}{2} \frac{\sin\left(2^{-k}t\right)}{\sin\left(2^{-(k+1)}t\right)} = 2^{-n} \frac{\sin(t/2)}{\sin\left(2^{-(n+1)}t\right)} e^{it\left(1-2^{-n}\right)/2}.$$

Par continuité, cette formule est valable dès que $t \neq 0 \mod 2^{(n+1)}\pi$.

Si $t \neq 0$, pour n suffisamment grand, $t \neq 0 \mod 2^{(n+1)}\pi$ et

$$\lim_{n \to +\infty} \mathbb{E}\left[e^{itU_n}\right] = \lim_{n \to +\infty} 2^{-n} \frac{\sin(t/2)}{\sin\left(2^{-(n+1)}t\right)} e^{it\left(1-2^{-n}\right)/2} = e^{it/2} \frac{\sin(t/2)}{t/2}$$

qui est la fonction caractéristique de U. Pour t=0, $\varphi_{U_n}(t)=\varphi_U(t)=1$. La convergence en loi de la suite $(U_n)_{n\geq 1}$ vers U résulte du théorème de Paul Lévy.

Exercice 3. 1. (a) On a $\mathbb{P}(Y_n \neq 0) = 1 - \mathbb{P}(Y_n = 0) = \frac{1}{n^2}$ qui est le terme général d'une série convergente. Le lemme de Borel-Cantelli donne $\mathbb{P}(\limsup\{Y_n \neq 0\}) = 0$.

- (b) Si $\omega \in \liminf\{Y_n = 0\} = (\limsup\{Y_n \neq 0\})^c$, il existe $n_\omega \geq 1$ tel que, pour tout $n > n_\omega$, $Y_n(\omega) = 0$ et $T_n(\omega) = T_{n_\omega}(\omega)$; en particulier, $\sup_{n \geq 1} |T_n(\omega)| = \max_{1 \leq n \leq n_\omega} |T_n(\omega)| < +\infty$. Comme $\mathbb{P}(\liminf\{Y_n = 0\}) = 1$, la variable aléatoire $\sup_{n \geq 1} |T_n|$ est finie presque sûrement.
- 2. D'après le TCL $\frac{1}{\sqrt{n}} \sum_{1 \leq k \leq n} X_k$ converge en loi vers une variable aléatoire Z de loi $\mathcal{N}(0, \sigma^2)$ puisque les $(X_n)_{n\geq 1}$ sont i.i.d. de carré intégrable et centrées. Comme la suite $(T_n)_{n\geq 1}$ est bornée presque sûrement, $\frac{1}{\sqrt{n}} \sum_{1 \leq k \leq n} Y_k = \frac{T_n}{\sqrt{n}}$ converge vers 0 presque sûrement et donc en probabilité. Le lemme de Slutsky et la continuité de l'application $(x, y) \longmapsto x + y$ justifient la convergence en loi de $\frac{1}{\sqrt{n}} \sum_{1 \leq k \leq n} (X_k + Y_k)$ vers Z.

Exercice 4. 1. (a) Soient $n \in \mathbb{N}$ et $z \in \mathbb{C}$ tel que $|z| \leq 1$. On a par indépendance et identique distribution des variables X_2, \ldots, X_{n+2} ,

$$\mathbb{E}\left[z^{S_n}\right] = \prod_{0 \le k \le n} \mathbb{E}\left[z^{X_{k+2}}\right] = G(z)^{n+1} = e^{\lambda(n+1)(z-1)}.$$

On reconnaît la fonction génératrice de la loi de Poisson de paramètre $(n+1)\lambda$.

(b) z^S est intégrable pour tout $|z| \le 1$ puisque S est à valeurs entières. Comme les événements $\{X_1 = n\}, n \in \mathbb{N}$, forment une partition de Ω , nous avons

$$\mathbb{E}\left[z^S\right] = \sum_{n \geq 0} \mathbb{E}\left[z^S \mathbf{1}_{\{X_1 = n\}}\right] = \sum_{n \geq 0} \mathbb{E}\left[z^{S_n} \mathbf{1}_{\{X_1 = n\}}\right],$$

et par indépendance de X_1 et S_n (qui dépend de X_2, \ldots, X_{n+2}) on a

$$\mathbb{E}\left[z^{S}\right] = \sum_{n \ge 0} \mathbb{E}\left[z^{S_{n}}\right] \mathbb{P}(X_{1} = n) = \sum_{n \ge 0} G(z)^{n+1} e^{-\lambda} \frac{\lambda^{n}}{n!} = G(z)e^{\lambda(G(z)-1)}.$$

2. (a) On a, comme les variables $(X_n)_{n\geq 1}$ sont i.i.d.,

$$\mathbb{P}(Y_n \neq 0) = \mathbb{P}(X_1 \neq 0, \dots, X_n \neq 0) = \mathbb{P}(X_1 \neq 0)^n = (1 - \mathbb{P}(X_1 = 0))^n = (1 - e^{-\lambda})^n$$

(b) Puisque Y_n est une variable entière, pour $0 < \varepsilon < 1$,

$$\mathbb{P}(|Y_n| > \varepsilon) = \mathbb{P}(Y_n > \varepsilon) = \mathbb{P}(Y_n \ge 1) = \mathbb{P}(Y_n \ne 0) = \left(1 - e^{-\lambda}\right)^n \longrightarrow 0.$$

D'où la convergence en probabilité.

(c) $(Y_n)_{n\geq 1}$ converge presque sûrement vers 0 pour tout $\lambda>0$ puisque (voir cours), pour tout $\varepsilon>0$,

$$\sum_{n\geq 1} \mathbb{P}(Y_n > \varepsilon) = \sum_{n\geq 1} \mathbb{P}(|Y_n| > \varepsilon) < +\infty.$$

(d) Si $(Y_n)_{n\geq 1}$ converge dans L¹ vers Y, alors on a également convergence en probabilité de sorte que $(Y_n)_{n\geq 1}$ ne peut converger dans L¹ que vers 0. Mais comme les v.a. $(X_n)_{n\geq 1}$ sont i.i.d.

$$\mathbb{E}[|Y_n|] = \mathbb{E}[Y_n] = \prod_{1 \le k \le n} \mathbb{E}[X_k] = \mathbb{E}[X_1]^n = \lambda^n.$$

On a donc convergence dans L¹ si et seulement si $0 < \lambda < 1$.