

1 What is structure? How to declare a Structure? Explain with Example

- Structure is a collection of logically related data items of different data types grouped together under a single name.
- Structure is a user defined data type.
- Structure helps to organize complex data in a more meaningful way.

Syntax of Structure:

```
struct structure_name
{
    data_type member1;
    data_type member2;
};
```

- **struct** is a keyword.
- **structure_name** is a tag name of a structure.
- member1, member2 are members of structure.

Example:

```
#include<stdio.h>
#include<conio.h>
struct book
     char title[100];
     char author[50];
     int pages;
     float price;
};
void main()
     struct book book1;
     printf("enter title, author name, pages and price of
book");
     scanf("%s",book1.title);
     scanf("%s", book1.author);
     scanf("%d",&book1.pages);
     scanf("%f",&book1.price);
     printf("\n detail of the book");
     printf("%s",book1.title);
     printf("%s",book1.author);
     printf("%d",book1.pages);
     printf("%f",book1.price);
     getch();
```

- book is structure whose members are title, author, pages and price.
- book1 is a structure variable.

2 How do we declare and access structure variables?

Declaration of structure:

- A structure variable declaration is similar to the declaration of variables of any other data type. It includes the following elements:
 - 1) The keyword **struct.**
 - 2) The structure tag name.
 - 3) List of variable names separated by commas.
 - 4) A terminating semicolon.

Example:

```
struct book
{
     char title[100];
     char author[50];
     int pages;
     float price;
} book1;
struct book book2;
```

We can declare structure variable in two ways:

- 1) Just after the structure body like book1.
- 2) With struct keyword and structure tag name like book2.

Accessing structure members:

The following syntax is used to access the member of structure.

structure_variable.member_name

- structure_variable is a variable of structure and member_name is the name of variable which is a member of a structure.
- The "." (dot) operator or 'period operator' connects the member name to structure name.
- Example:

book1.price represents price of book1.

We can assign values to the member of the structure variable book1 as below,

```
strcpy(book1.title,"ANSI C");
strcpy(book1.author,"Balagurusamy");
book1.pages=250;
book1.price=120.50;
```

We can also use scanf function to assign value through a keyboard.

```
scanf("%s",book1.title);
scanf("%d",&book1.pages);
```

3 What is Union?

- Union is user defined data type just like structure.
- Each member in structure is assigned its own unique storage area where as in Union, all the members share common storage area.
- All members share the common area so only one member can be active at a time.
- Unions are used when all the members are not assigned value at the same time.


```
Example:
```

```
union book
{
    char title[100];
    char author[50];
    int pages;
    float price;
};
```

4 Difference between Structure and Array

	Array		Structure
0	An array behave like a built-in datatype all we have to do is to declare an array variable and use it.	0	First we have to design and declare a data structure before the variables of that type are declared and use.
0	An array is a collection of related data	0	Structure can have elements of different
	element of same type.		type.
0	An array is derived datatype.	0	Structure is programmer defined.

5 Difference between Structure and Union

Structure	Union	
o Each member is assigned its own unique	o All members share the same storage area.	
storage area.		
o Total memory required by all members is	 Maximum memory required by the 	
allocated.	member is allocated.	
o All members are active at a time.	 Only one member is active a time. 	
o All members can be initialized.	 Only the first member can be initialized. 	
o Requires more memory.	o Requires less memory.	
Example:	Example:	
struct SS	union UU	
{	{	
int a;	int a;	
float b;	float b;	
char c;	char c;	
};	};	
1 byte for c	4 bytes for c,b,a a c	
2 bytes for a		
4 bytes for b	b	
 Total bytes = 1 + 2 + 4 = 7 bytes. 	o 4 bytes are there between a,b and c	
	because largest memory occupies by float	
	which is 4 bytes.	

6 Explain nested structure with example.

- A structure that contains another structure as a member variable is known as nested structure or structure within a structure.
- Structure which is part of other structure must be declared before the structure in which it is used.

Example:

```
#include<stdio.h>
#include<conio.h>
struct address
     char add1[50];
     char add2[50];
     char city[25];
};
struct employee
     char name[100];
     struct address a;
     int salary;
};
void main()
     struct employee e;
     printf("enter name, address, city, salary");
     scanf("%s",e.name);
     scanf("%s",e.a.add1);
     scanf("%s",e.a.add2);
     scanf("%s",e.a.city);
     scanf("%d", &e.salary);
     printf("detail of employaee:");
     printf("%s",e.name);
     printf("%s",e.a.add1);
     printf("%s",e.a.add2);
     printf("%s",e.a.city);
     printf("%d",e.salary);
     qetch();
```

7 Explain Array of Structure with Example?

- Array of structure mean collection of structures.
- Array storing different type of structure of variables.
- As we have an array of basic data types, same way we can have an array variable of structure.

Following example shows how an array of structure can be used,

```
#include<stdio.h>
#include<conio.h>
struct result
```



```
char name[100];
     int rollno;
     float cpi;
};
void main()
     struct result r[66];
     int i;
     printf("enter detail of student :");
     for(i=0;i<66;i++)
          printf("\nenter name, roll no, cpi");
          scanf("%s",r[i].name);
          scanf("%d%f",&r[i].rollno,&r[i].cpi);
     printf("\n detail of student:\n");
     for(i=0;i<66;i++)
          printf("%s",r[i].name);
          printf("\t%d",r[i].rollno);
          printf("\t%f\n",r[i].cpi);
     getch();
```

8 Explain Pointers to Structure with example.

 We can define pointers to structure in very similar way as you define pointer to any other variable.

Syntax:

```
struct structure_name
{
    Member 1;
    Member 2;
    .
    .
};
struct structure_name *structure_pointer;
Example:
struct books
{
    char title[100];
    };
struct books *struct_pointer,book1;
```

- Now we can store the address of a structure variable in the above defined pointer variable.
- To find the address of a structure variable, place the '&' operator before the structure 's name

Darshan

Unit 5 Structure & Union

as follow:

- struct pointer = &book1;
- To access the member of a structure using a pointer to that structure you must use the -> operator as follow:

structure_pointer->title;

```
#include<stdio.h>
#include<conio.h>
struct name
     int a;
     float b;
};
void main()
     struct
             name
                     *ptr, p;
                             /* Referencing pointer to memory
    ptr = &p;
     address of
    printf("Enter Integer:
     scanf("%d",&(*ptr).a);
    printf("Enter number:
     scanf("%f",&(*ptr).b);
    printf("Displaying: ");
    printf("%d \n %f",(*ptr).a,(*ptr).b);
     getch();
```

Structure pointer member can also be accessed using -> operator.

```
(*ptr).a is same as ptr-> a. (*ptr).b is same as ptr-> b.
```

9 What is Typedef?

- **Typedef** is a keyword in the C language, it is used to define own identifiers that can be used in place of type specifiers such as int,float, and double.
- The names you define using typedef are not new data types, but synonyms for the data types or combinations of data types they represent.
- The name space for a typedef name is the same as other identifier.
- A typedef can be used to simplify the declaration for a structure.

Example:-

```
typedef struct
{
      Char firstName[20];
      Char lastName[20];
      int no;
}student;
```

 Now we can use student directly to define variables of student type without using struct keyword. Following is the example:-

student student_a;

• It is also possible to use type definitions with structures. The name of the type definition of a structure is usually in uppercase letters.

Example:

```
#include<stdio.h>
typedef struct telephone
{
    char *name;
    int number;
}TELEPHONE;
int main()
{
    TELEPHONE indx;
    index.name="xyz";
    index.number=12345;
    printf("Name : %s\n", index.name);
    printf("Telephone number: %d\n",index.number);
    return 0;
}
```

10 What is Enumeration?

- Enumeration type allows programmer to define their own data type. Keyword **enum** is used to defined enumerated data type.
- enum type_name{ value1, value2, . . . , valueN };
- Here, **type_name** is the name of enumerated data type or tag. And value1,value2,....,valueN are values of type type_name.
- By default, value1 will be equal to 0, value2 will be 1 and so on but, the programmer can change the default value as below:

```
enum suit
{
    club=0;
    diamonds=10;
    hearts=20;
        spades=3;
};
```

Declaration of enumerated variable:

Above code defines the type of the data but, no any variable is created. Variable of type enum
can be created as:

```
enum Boolean
{
    false;
    true;
};
```

enum Boolean check;

• Here, a variable check is declared which is of type enum boolean.


```
Example:
    #include<stdio.h>
    enum week
{
```

```
enum week
{
    sunday, moday, tuesday, wednesday, thursday, friday,
    saturday
};
int main()
{
        enum week today;
        today=wednesday;
        printf("%d day",today+1);
        return 0;
}
t:
```

Output:

4 day