Project Euler

Oliver Krischer

September 2021

Contents

1	Prob	olem 002	1
		Recursive Implementation with Memoization	
	1.2	Iterative Implementation	2
	1.3	Further Improving	2
	1.4	Fibonacci Numbers	3
		1.4.1 Theorem	3
		1.4.2 Proof	3

1 Problem 002

Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be:

$$1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \dots$$

By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms!

1.1 Recursive Implementation with Memoization

This recursive implementation with memoization ist substancially faster then a naive recursive implementation, which would follow the mathematical rule: fib(n) = fib(n-1) + fib(n-2).

1.2 Iterative Implementation

While the recursive implementation was based on working with lists, the following implementation mimics an iterative solution in which the values of (a=n-2) and (b=n-1) and the accumulated *sum* are passed to the next recursive call:

1.3 Further Improving

Looking at the Fibonacci sequence

```
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \dots
```

we can easily see that every third Fibonacci number is even. If this holds true for all Fibonacci numbers, we can get rid of the test for *even* like this:

```
fibOpt :: Int -> Int
fibOpt limit = run limit (1,1,2) 0
   where
   run limit (a, b, c) sum
   | c > limit = sum
   | otherwise = run limit (a', b', c') (sum + c)
   where
   a' = c + b
   b' = a' + c
   c' = a' + b'
```

1.4 Fibonacci Numbers

1.4.1 Theorem

Every third Fibonacci number is even.

1.4.2 Proof

Following the rule for Fibonacci numbers that every next number is the sum of it's two predecessors or more rigourus

$$fib(n) = fib(n-1) + fib(n-2), where fib\{0,1\} = 1$$

we get an *even* number if both preceding numbers are odd, and an *odd* number if only one of the predecessors is odd. Given the starting values of fib(n) with $\{1,1\}$ (both *odd*), we get '2' as the first successor, which is *even*. We now have a sequence of $\{1,1,2\}$, which is $\{odd,odd,even\}$. Given this sequence of the first three Fibonacci numbers $\{a,b,c\}$, we can deduce that every following sequence of three numbers $\{a',b',c'\}$ must also be $\{odd,odd,even\}$:

$$\{a,b,c\} = \{odd,odd,even\} \implies \{a',b',c'\} = \{odd,odd,even\}$$

$$\{a', b', c'\} = \{(c+b), (a'+c), (a'+b')\}$$
(1a)

$$= \{(even + odd), (a' + c), (a' + b')\}$$
(1b)

$$= \{odd, (odd + even), (a' + b')\}$$

$$(1c)$$

$$= \{odd, odd, (odd + odd)\} \tag{1d}$$

$$= \{odd, odd, even\} \tag{1e}$$