1 Forme Bilineari e Prodotti Scalari

1.1 Forme Bilineari

Sia $\mathbb{V}(\mathbb{K})$ uno spazio vettoriale sul campo \mathbb{K} . Una forma bilineare su \mathbb{V} è un'applicazione

$$*: \mathbb{V}(\mathbb{K}) \times \mathbb{V}(\mathbb{K}) \to \mathbb{K}$$

tale che $\forall \mathbf{v}, \mathbf{u}, \mathbf{w} \in \mathbb{V}$ e $k \in \mathbb{K}$

- 1. $(\mathbf{v} + \mathbf{u}) * \mathbf{w} = (\mathbf{v} * \mathbf{w}) + (\mathbf{u} * \mathbf{w})$
- 2. $\mathbf{v} * (\mathbf{u} + \mathbf{w}) = (\mathbf{v} * \mathbf{u}) + (\mathbf{v} * \mathbf{w})$
- 3. $(k\mathbf{v}) * \mathbf{u} = \mathbf{v} * (k\mathbf{u}) = k(\mathbf{v} * \mathbf{u})$

Si deduce che $0 * \mathbf{v} = \mathbf{v} * 0 = 0, \forall \mathbf{v} \in \mathbb{V}$.

1.2 Forma bilineare simmetrica

Una forma bilineare *, su uno spazio vettoriale $\mathbb{V}(\mathbb{K})$, si dice forma bilineare simmetrica o prodotto scalare se, comunque si considerino due vettori \mathbf{v} e \mathbf{w} in $\mathbb{V}(\mathbb{K})$, si ha:

$$\mathbf{v} * \mathbf{w} = \mathbf{w} * \mathbf{v}$$

1.3 Prodotti scalari e ortogonalità

In uno spazio vettoriale $\mathbb{V}(\mathbb{K})$, con prodotto scalare ".", due vettori \mathbf{v} e \mathbf{w} si dicono **ortogonali** e si scrive $\mathbf{v} \perp \mathbf{w}$ se $\mathbf{v} \cdot \mathbf{w} = 0$.

1.4 Complemento ortogonale

Sia $\mathbb{V}(\mathbb{K})$ uno spazio vettoriale con prodotto scalare "·" e sia A un sottoinsieme, non vuoto, di \mathbb{V} . Si dice **complemento ortogonale** di A in $\mathbb{V}_n(\mathbb{K})$, l'insieme (si legge A ortogonale)

$$A^{\perp} = \mathbf{v} \in \mathbb{V} \mid \mathbf{v} \cdot \mathbf{w} = 0, \forall \mathbf{w} \in A$$

1.4.1 Proposizione

Sia $\mathbb{V}(\mathbb{K})$ uno spazio vettoriale con prodotto scalare "." e sia \mathbf{w} un vettore di $\mathbb{V}(\mathbb{K})$ tale che $\mathbf{w} \cdot \mathbf{w} \neq 0$. Allora, ogni vettore \mathbf{v} di $\mathbb{V}(\mathbb{K})$ si può esprimere come somma di due vettori \mathbf{w}_1 e \mathbf{w}_2 , dove \mathbf{w}_1 è ortogonale a \mathbf{w} e \mathbf{w}_2 è proporzionale a \mathbf{w} . Dimostrazione: Ogni vettore $\mathbf{v} \in \mathbb{V}(\mathbb{K})$ si può scrivere come:

$$\mathbf{v} = \left(\mathbf{v} - \frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}\right) + \left(\frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w}\right)$$

Un calcolo diretto dimostra che $\mathbf{w}_1 = \mathbf{v} - \frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w}$ è ortogonale \mathbf{w} mentre, ovviamente, $\mathbf{w}_2 = \frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w}$ è proporzionale a \mathbf{w} , secondo lo scalare $\frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}$

1.5 Coefficiente di Fourier

Sia $\mathbb{V}(\mathbb{K})$ uno spazio vettoriale con prodotto scalare "·" e sia \mathbf{w} un vettore di \mathbb{V} tale che $\mathbf{w} \cdot \mathbf{w} \neq 0$. Se \mathbf{v} è un vettore di $\mathbb{V}(\mathbb{K})$, si dice **coefficiente** o **componente di Fourier** di \mathbf{v} lungo \mathbf{w} il numero reale

$$\mathbf{v}_w = rac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}$$

e si dice **proiezione** di \mathbf{v} su \mathbf{w} il vettore $\overrightarrow{\mathbf{v}} = \mathbf{v}_w \mathbf{w}$.

1.6 Forme Quadratiche

Sia $\mathbb{V}(\mathbb{K})$ uno spazio vettoriale con prodotto scalare ".". Si dice **forma quadratica**, associata al prodotto scalare ".", l'applicazione

$$q: \mathbb{V}(\mathbb{K}) \to \mathbb{K}$$

$$\mathbf{v} o \mathbf{v} \cdot \mathbf{v}$$

1.7 Spazi con prodotto scalare definito positivo

Un prodotto scalare, assegnato in uno spazio vettoriale $\mathbb{V}(\mathbb{K})$ su un campo ordinato, si dice **definito positivo** se $\forall \mathbf{v} \in \mathbb{V}, \mathbf{v} \cdot \mathbf{v} \geq 0$ e $\mathbf{v} \cdot \mathbf{v} = 0 \iff \mathbf{v} = 0$

Una forma quadratica si dice **definita positiva** se tale è il prodotto scalare cui essa è associata.

1.8 Norma

Dato un vettore $\mathbf{v} \in \mathbb{V}^{\circ}(\mathbb{R})$ si dice **norma** di \mathbf{v} il numero reale positivo o nullo

$$||\mathbf{v}|| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{\mathbf{v}^2} = \sqrt{q(\mathbf{v})}$$

1.9 Versore

Sia $\mathbf{v} \neq 0$ un vettore di $\mathbb{V}^{\circ}(\mathbb{R})$, si dice **versore** di \mathbf{v} il vettore

$$\mathbf{v}' = \frac{\mathbf{v}}{||\mathbf{v}||}$$

1.10 Disuguaglianza di Cauchy-Schwarz

Siano \mathbf{v} e \mathbf{u} due vettori di $\mathbb{V}^{\circ}(\mathbb{R})$. Allora

$$|\mathbf{v}\cdot\mathbf{u}| \leq ||\mathbf{v}||\cdot||\mathbf{u}||$$

ove $|v\cdot u|$ indica il valore assoluto di $\mathbf{v}\cdot\mathbf{u}.$

1.10.1 Dimostrazione

1.11 Disuguaglianza triangolare

1.11.1 Dimostrazione