Final Presentation

Anna - Emre - Francis - Irina

About Our Project

Target Group

Source: Harvard Business School https://www.hbs.edu/faculty/Pages/item.aspx?num=41233

Impact of Yelp Reviews on Businesses

Source: Harvard Business School https://www.hbs.edu/faculty/Pages/item.aspx?num=41233

Scope: Overview of Main Results

Working Environment I: Microsoft Azure

Cluster Configuration: Type & Storage

Cluster Configuration: Size & Pricing

Working Environment II: Databricks

Star rating prediction

Star rating distribution: Spark SQL

Data Pipeline: Classifiers

Review Rating Prediction: Business Value

Evaluation

Naive Bayes - the best model

```
tokenizer = Tokenizer(inputCol="text", outputCol="token text")
stopremove = StopWordsRemover(inputCol='token text',outputCol='stop tokens')
count vec = CountVectorizer(inputCol='stop_tokens',outputCol='c_vec')
idf = IDF(inputCol="c vec", outputCol="tf idf")
stars to label = StringIndexer(inputCol='stars', outputCol='label')
feature vector = VectorAssembler(inputCols=['tf idf', 'text length', 'useful', 'funny', 'cool'], outputCol='features')
nb = NaiveBaye | NaiveBayes (smoothing=2.0, modelType="multinomial")
# Create a pipeline
data prep pipe = Pipeline(stages=[stars to label, tokenizer, stopremove, count vec, idf, feature vector])
cleaner = data prep pipe.fit(review)
clean data = cleaner.transform(review)
clean data = clean data.select(['label', 'features'])
(train, test) = clean data.randomSplit([0.7,0.3], 1234)
stars predictor = nb.fit(train)
predictions = stars predictor.transform(test)
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
acc eval = MulticlassClassificationEvaluator(labelCol="label", predictionCol="prediction", metricName="accuracy")
acc nb = acc eval.evaluate(predictions)
print("Accuracy of the model at predicting stars rating is: {}".forma 0.5837902529989701
Accuracy of the model at predicting stars rating is: 0.583790252998976
```

Accuracy of 5-class star rating prediction: best predictive models

Best Predictive Model

Naive Bayes classifier

Customer preferences via LDA clustering (10)

Data Pipeline: LDA

Implementation

```
# Generate 10 Topics:
 lda = LDA(k=10, seed=1234, optimizer='online', featuresCol="features")
 ldamodel = lda.fit(rescaledData)
In [316]: pd.options.display.max rows=1000
          print(cities df)
                   City
                              Term Topic
                                            Weight
                                       1 0.012112
                Toronto
                             ramen
                             wings
                                       1 0.007514
                Toronto
                                       1 0.006947
                Toronto
                             great
                Toronto
                              beer
                                       1 0.006540
                                       1 0.005970
                Toronto
                             steak
                                       2 0.010772
                Toronto
                              tea
                                       2 0.006031
                Toronto
                             store
                Toronto
                              get
                                       2 0.005988
                Toronto
                             place
                                       2 0.005309
                             like
                Toronto
                                       2 0.005053
                             pizza
                                       3 0.015631
                Toronto
                             fish
                                       3 0.010228
          11
                Toronto
          12
                Toronto
                                       3 0.007007
                             tacos
          13
                Toronto
                              good
                                       3 0.006363
          14
                Toronto
                                        3 0.006210
                             vegan
                             sushi
                Toronto
                                       4 0.009223
          16
                Toronto
                             great
                                       4 0.007776
                              food
          17
                Toronto
                                       4 0.007011
                           service
                Toronto
                                       4 0.006892
```

Tableau Configuration

Tableau visualizations

Filtering fake reviews

Data Pipeline: Graph

What percentage of Yelp reviews are **fake**?

According to the Harvard Business School, **around 20%** of Yelp **reviews** have been potentially **manipulated**

Assumptions

Employees who work at competing businesses in the same area will rate their own business with a 5 star review, and rate competing businesses with a 1 star review

Potential fake reviews

The user with nickname
Randall gave two extreme
comments to two
restaurants: one with 5 stars
& another with 1 star

Two restaurants are in <u>same</u> city and category

Results

Identifying Influencers

Which consumers are the most important to your business?

Algorithms

Strongly Connected Components

PageRank

Strongly Connected Components

- Strongly connected components is a graph algorithm that finds group of nodes
- In this project this algorithm was used to partition users into groups
- Small independent businesses can make use of the algorithm to identify important user groups

Strongly Connected Components - Example Result

Ursula can help the business to directly reach 10 users as a group, and after these 10 users can reach more users in other groups.

PageRank

$$PR(A) = 1 - d + d\left(\frac{PR(B)}{L(B)} + \frac{PR(C)}{L(C)} + \frac{PR(D)}{L(D)} + \cdots\right).$$

PageRank - Results

PageRank gives a different point of view on the user importance

PageRank - Results

Users **Orlando** and **Kenneth** both **gave 1 star**. If business wants to **improve** the **reputation**, then **to which user** business should **respond first** when resources are limited?

Sentiment map (%)

Data Pipeline: Sentiment Analysis

Sentiment Analysis with Logistic Regression

```
Cmd 60
      #elastic net regularization to avoid overfitting
     lambda_par = 0.02
      alpha_par = 0.3
      en_lr = LogisticRegression().\
               setLabelCol('stars').\
               setFeaturesCol('tfidf').\
   6
               setRegParam(lambda_par).\
                                                     Cmd 74
               setMaxIter(100).
                                                        1 #our best model has a accuracy of 88.9%
               setElasticNetParam(alpha_par)
                                                          best_model = all_models[best_model_idx]
                                                          accuracies[best_model_idx]
                                                       Out[129]: 0.8894220196325396
```

16.07.2018 40

Overall Distribution of Sentiments

Timeline & Milestones

Timeline	Milestone	Difficulties & Solutions
11.04.18	Ideas brainstorming	Yelp dataset selected
18.05.18	Kick-off presentation	Roadmap, scope & technology selection
29.05.18	First prototype	Local machine: Hadoop cluster & Spark on Ubuntu -> very slow -> moved to Spark cluster on Azure
13.06.18	Review presentation	Azure HDInsight Neo4j Databricks for processing small tables < 2Gb
09.07.18	Intermediate technical solution & Final visualization	Tableau connected to HDInsight Spark Cluster
16.07.18	Final presentation	Finalizing all results

Sources

Images:

http://www.theuelphelpers.com/uelp-reviews/

https://www.yelp.de/berlin

https://www.yelp.com/brand

https://buildazure.com/2017/09/25/microsoft-azure-gets-a-new-logo-and-a-manifesto/

• https://venturebeat.com/2017/06/06/databricks-brings-deep-learning-to-apache-spark/

http://fondazionesvp.it/cosa-facciamo/network-icon-large/

Sources

Images:

https://commons.wikimedia.org/w/index.php?curid=2776582

https://commons.wikimedia.org/w/index.php?curid=647584

https://www.shutterstock.com/image-vector/customer-satisfaction-happy-sad-unhappy-smiley-

431184508?src=ZDsqkYtofCTIDtDSskOm9A-1-3

https://www.kisspng.com/png-business-hotel-restaurant-horeca-apni-rasoi-family-4596657/

