INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO CEARÁ - IFCE - 2015-1 Disciplina: CÁLCULO I - LIMITES -

Noção intuitiva de limite

Seja a função f(x)=2x+1. Vamos dar valores a **x** que se aproximem de 1, pela sua direita (valores maiores que 1) e pela esquerda (valores menores que 1) e calcular o valor correspondente de **y**:

X	y = 2x + 1
1,3	3,6
1,1	3,2
1,05	3,1
1,02	3,04
1,01	3,02

X	y = 2x + 1
0,7	2,4
0,9	2,8
0,95	2,9
0,98	2,96
0,99	2,98

Notamos que à medida que x se aproxima de 1, y se aproxima de 3, ou seja, quando x tende para 1 ($x \rightarrow 1$), y tende para 3 ($y \rightarrow 3$), ou seja:

$$\lim_{x\to 1} (2x+1) = 3$$

Observamos que quando x tende para 1, y tende para 3 e o limite da função é 3.

Esse é o estudo do comportamento de f(x) quando x tende para 1 ($x \rightarrow 1$). Nem é preciso que x assuma o valor 1. Se f(x) tende para 3 ($f(x) \rightarrow 3$), dizemos que o limite de f(x) quando $x \rightarrow 1$ é 3, embora possam ocorrer casos em que para x = 1 o valor de f(x) não seja 3. De forma geral, escrevemos:

$$\lim_{x\to a} f(x) = b$$

se, quando x se aproxima de a ($x \rightarrow a$), f(x) se aproxima de b ($f(x) \rightarrow b$).

Seja, agora, a função
$$f(x) = \begin{cases} \frac{x^2 + x - 2}{x - 1}, & x \neq 1 \\ 2, & \text{se } x = 1 \end{cases}$$

Podemos notar que quando x se aproxima de 1 ($x \rightarrow 1$), f(x) se aproxima de 3, embora para x = 1 tenhamos f(x) = 2. o que ocorre é que procuramos o comportamento de y quando $x \rightarrow 1$. E, no caso, $y \rightarrow 3$. Logo, o limite de f(x) é 3. Escrevemos:

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{(x-1)(x+2)}{x-1} = \lim_{x \to 1} (x+2) = 1+2 = 3$$

Se g: IR \rightarrow IR e g(x) = x + 2, $\lim_{x \to 1} g(x) = \lim_{x \to 1} (x+2) = 3$, embora g(x) \neq f(x) em x = 1. No entanto, ambas têm o mesmo limite.

a). Para a existência de $\lim_{x\to a} f(x)$, o que interessa não é o particular valor que f (x) possa tomar no

Ex.:
$$f(x) = \begin{cases} 2x + 1, \text{ para } x \neq 1 \\ 4, \text{ para } x = 1 \end{cases}$$
 neste caso $\lim_{x \to 1} f(x) = \lim_{x \to 1} (2x + 1) = 3 \neq f(1)$.

Mesmo que f (1) não estivesse definido, o valor do limite seria 3.

b) Se as funções f (x) e g (x) são tais que : f(x) = g(x), para $x \neq a$ e f (a) $\neq g(a)$ elas possuem o mesmo comportamento em relação ao cálculo do limite quando x tende a "a".

 $F(x) = \frac{2x^2 - x - 1}{x - 1}$ definida em R – { 1 } e g(x) = 2x + 1 definida em R, apresentam o mesmo limite

- c) O fato de se definir f (a) não implica na existência do $\lim_{x \to a} f(x)$ Ex.: f (x) = $\begin{cases} 2x + 1 \text{ para } x \ge 1 \\ 2x 1 \text{ para } x < 1 \end{cases}$
- d) Pode acontecer que não se defina f (a) e também não exista $\lim_{x \to a} f(x)$

Ex.:
$$f(x) = \begin{cases} x & \text{para } x < 1 \\ 4 & \text{para } x > 1 \end{cases}$$

1) Considere a função f cujo gráfico é representado ao lado, calcule :

- a) $\lim_{x \to a} f(x)$
- e) lim f(x)
- i) lim f(x)
- m) lim f(x)

- n) lim f(x)

- 0) lim f(x)

- - Seja $h(x) = \begin{cases} \frac{|x-3|}{x-3}, & \text{se} \quad x \neq 3 \\ 0, & \text{se} \quad x = 3 \end{cases}$ a) Faça o gráfico de h(x). b) Achar, se existir: $\begin{cases} \lim_{x \to 3} h(x) & \lim_{x \to 3^{+}} h(x) \\ x \to 3^{+}, & x \to 3^{-} \end{cases} e \begin{cases} \lim_{x \to 3} h(x) \\ x \to 3 \end{cases}.$
- 4)Seja $h(x) = \begin{cases} \frac{x}{|x|}, & \text{se} \quad x \neq 0 \\ 0, & \text{se} \quad x = 0 \end{cases}$ Mostrar que h(x) não tem limite no ponto 0. $0, & \text{se} \quad x = 0 \end{cases}$ Seja f(x) = 2 + |5x 1|. Calcule se existir: a) $\frac{\lim_{x \to 1/5^+} f(x)}{x \to 1/5^+}$ b) $\frac{\lim_{x \to 1/5^-} f(x)}{x \to 1/5^-}$ c) $\frac{\lim_{x \to 1/5^-} f(x)}{x \to 1/5}$ 6) Dada $f(x) = \begin{cases} x^2, & \text{se} \quad x \leq -2 \\ 2x + b, & \text{se} \cdot -2 < x < 2 \end{cases}$. Ache os valores de a e b tais que $\lim_{x \to -2} f(x)$ e $\lim_{x \to -2} f(x)$ existam $\lim_{x \to -2} f(x)$ ax + 2b, se -3 $\lim_{x \to -2} f(x)$ ax + 2b, se -3 $\lim_{x \to -2} f(x)$ e $\lim_{x \to -3} f(x)$ existam $\lim_{x \to -3} f(x)$ e $\lim_{x \to -3} f(x)$ e $\lim_{x \to -3} f(x)$ existam $\lim_{x \to -3} f(x)$ e $\lim_{x \to -3} f(x)$ existam $\lim_{x \to -3} f(x)$ existan $\lim_{x \to -3} f$

DEFINIÇÃO: Dizemos que a função f tende ao limite L quando x tende a x_0 se, para qualquer número positvo ϵ , é possível encontrar um número positivo δ , tal que se $0 < |x - x_0| < \delta$, então $|f(x) - L| < \epsilon$

Prove que existe o limite $\lim(4x-5) = 7$.

Inicialmente, devemos achar um δ tal que $|(4x-5)-7| < \epsilon$ sempre que $0 < |x-3| < \delta$ Temos que:

$$\begin{aligned} &|(4x-5)-7| = |4x-12| = |4(x-3)| = 4|x-3|, \text{ então queremos} \\ &4|x-3| < \epsilon \text{ sempre que } 0 < |x-3| < \delta & \text{ou,} \\ &|x-3| < \frac{\epsilon}{4} \text{ sempre que } 0 < |x-3| < \delta \end{aligned}$$

Então podemos escolher $\delta = \frac{\varepsilon}{4}$.

Agora, devemos mostrar que a escolha de δ funciona.

Se
$$0 < |x-3| < \delta$$
, então:
 $|(4x-5)-7| = 4|x-3| < 4\delta = \epsilon$

Ou seja:

$$|(4x-5)-7| < \varepsilon$$
 sempre que $0 < |x-3| < \delta$

Portanto, pela definição de limite, $\lim_{x\to 0} (4x-5) = 7$

Graficamente, temos a ilustração do exemplo na figura abaixo:

- 1) Seja f: R \rightarrow R dada por f(x) = 2x 5. Prove que $\lim_{x \to 4} (2x 5) = 3$
- 2) Seja F: R {3} dada por f(x) = $\frac{x^2 9}{x 3}$. Prove que $\lim_{x \to 3} \frac{x^2 9}{x 3} = 6$
- 3) Seja F: R { 1 } dada por f(x) = $\frac{2x^2 + x 3}{x 1}$. Prove que $\lim_{x \to 1} \frac{2x^2 + x 3}{x 1} = 5$
- 4) Seja f: $R \rightarrow R$ dada por $f(x) = x^2$. Prove que $\lim_{x \to \infty} x^2 = 25$
- 5) Nos exercícios a,b,c e d são dados um número positivo ε e o limite L de cada função f no ponto a. Ache um número δ tal que $|f(x) - L| < \epsilon$ se $|x - a| < \delta$
 - a) $\lim_{x \to -1} (7x+5) = -2$ $\epsilon = 0.01$ b) $\lim_{x \to 2} \frac{x^2 4}{x 2} = 4$ $\epsilon = 0.05$ c) $\lim_{x \to 4} x^2 = 16$ $\epsilon = 0.001$ d) $\lim_{x \to 9} \sqrt{x} = 9$ $\epsilon = 0.001$ ei de Ohm para circuitos elétricos como $\epsilon = 0.001$
- 6. A lei de Ohm para circuitos elétricos, como na ilustração na fig. Abaixo, diz que V = RI. Nessa equação, V é uma voltagem constante, I é a corrente em ampéres e R é a resistência em ohms. Sua empresa recebeu um pedido para fornecer resistores para um circuito no qual V será 120V, sendo I = 5 ± 0.1 A. Em qual intervalo R deve ficar para que I esteja a $0,1^a$ do valor alvo $I_0 = 5A$?

- 7.No circuito RC, (circuito onde a corrente varia com o tempo, contendo um capacitor) tem-se um capacitor de capacitância C que está inicialmente descarregado. Deseja-se encontrar a carga q deste capacitor em um determinado tempo q(t). Conforme a equação da carga do capacitor $q = C \epsilon \left(1 e^{-\frac{t}{RC}}\right)$ estabeleça:
 - a)A carga de um capacitor quando t=0. R. q=0 **b)** A carga do capacitor quando $t\to\infty$, R. $q=C\epsilon$ $\epsilon\to$ força eletromotriz (tensão no RC) e $C\to$ capacitância.
- 8. Uma montadora de computadores determina que um empregado após x dias de treinamento, monta m Computadores por dia, onde: $m = \frac{20x^2}{x^2 + x + 5}$. Qual é o comportamento de m = m(x) para treinamentos longos?

R.: Após um longo treinamento, um empregado pode montar 20 computadores por dia.

- 9.O custo para produzir x unidades de um certo produto é dado por C(x) = 0.25 x + 3600 em reais.
 - (a) Determine o custo médio quando x cresce. R. Custo médio = $CM_e(x) = \frac{C(x)}{x} = 0.25 + \frac{3600}{x}$
 - (b) Interprete o resultado.
 R. quando o bem em questão é produzido em grande escala o custo médio tende a estabilizar-se em 0.25 reais.

- 10. Um governo determina que o custo para despoluir x% de metais pesados que contaminam uma reserva de água doce é dado por $C(x) = \frac{120000x}{100-x}$ medido em reais.
 - (a) Qual é o custo para eliminar a metade dos metais pesados? R. Calculamos C(50) = R\$ 120000,00.
 - (b) Com 1000000 reais, que percentual da reserva fica despoluida? R. x% = 89.2.
 - © É economicamente viável despoluir totalmente a reserva? Á medida que nos aproximamos para despoluir toda a reserva, os custos crescem arbitrariamente $\lim_{x\to 100^-} C(x) = +\infty$, isto é,

economicamente inviável, despoluir toda a reserva.

Limites Fundamentais

Para o estudo dos limites fundamentais é útil conhecer e saber aplicar as propriedades dos limites, que são: 1)O limite de uma constante é a própria constante:

$$\lim_{x \to a} K = K \quad \text{com } K \in R$$

Exemplo: $\lim_{n \to \infty} 7 = 7$

2)O limite da soma ou diferença é igual a soma ou diferença dos limites, caso estes limites existam:

$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

Exemplo:

$$\lim_{x \to 1} \left[x^2 \pm 3x^3 \right] = \lim_{x \to 1} x^2 + \lim_{x \to 1} 3x^3 = 1 + 3 = 4$$

3)O limite do produto é o produto dos limites, caso estes limites existam:

$$\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

Exemplo:

$$\lim_{x \to \pi} \left[3x^3 \cdot \cos x \right] = \lim_{x \to \pi} x^3 \cdot \lim_{x \to \pi} \cos x = \pi^3 \cdot \cos \pi = \pi^3 \cdot (-1) = -\pi^3$$

4)O limite do quociente é igual ao quociente dos limites, caso estes limites existam:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$

Exemplo:

$$\lim_{x \to 0} \frac{\cos x}{x^2 + 1} = \frac{\lim_{x \to 0} \cos x}{\lim_{x \to 0} x^2 + 1} = \frac{\cos 0}{0^2 + 1} = \frac{1}{1} = 1$$

5)O limite da potência de uma função f(x) é igual à potência do limite da função, caso esse exista:

$$\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n \text{ com } n \in N^*$$

$$\lim_{x \to 1} (x^2 + 3)^2 = \left(\lim_{x \to 1} (x^2 + 3)\right)^2 = (1 + 3)^2 = 16$$

6)O limite de uma constante vezes uma função é igual à constante vezes o limite da função, caso esse limite exista:

$$\lim_{x \to a} [K.f(x)] = K \cdot \lim_{x \to a} f(x)$$

7)O limite da raiz enésima de uma

função é a raiz enésima do limite da função:

$$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)} \quad \text{com } n \in N^* \quad \text{e } f(x) \ge 0 \text{ se } n \text{ for par}$$

Exemplo:

$$\lim_{x \to 2} \sqrt{x^3 + x^2 - 1} = \sqrt{\lim_{x \to 2} x^3 + x^2 - 1} = \sqrt{2^3 + 2^2 - 1} = \sqrt{11}$$

LIMITES COM USO DO MAPLE

Para calcular o limite de uma função quando a variável tende a certo valor, é necessário utilizar o comando limit. Por exemplo: limit(f(t), t=a), onde a é a variação. Limit é utilizado para deixar indicado o limite, já o comando limit é utilizado para resolver o limite. O uso do Limit combinado com o limit pode melhorar a apresentação do resultado:

>Limit(cos(a*x)/(b*x), x=1);
$$\lim_{x\to 1} \frac{\cos(ax)}{bx}$$
>limit(cos(a*x)/(b*x), x=1);
$$\frac{\cos(a)}{b}$$

>limit(cos(a*x)/(b*x), x=1);
$$\frac{\cos(a)}{b}$$

>Limit(cos(a*x)/(b*x), x=1)= limit(cos(a*x)/(b*x), x=1);

$$\lim_{x \to 1} \frac{\cos(ax)}{bx} = \frac{\cos(a)}{b}$$

.
$$\lim_{x\to 1} (x^2 - 5x + 3)$$
, procedimentos: R:=limit(x^2-5*x+3,x=1); R:= -1

$$\lim_{x\to 0} \frac{\sqrt[5]{1+x} - \sqrt[5]{1-x}}{\sqrt[3]{1+x} - \sqrt[3]{1-x}}, \text{ procedimentos:} > \textbf{S:=limit((root[5](1+x)-root[5](1-x))/(root[3](1+x)-root[3](1-x)),x=0);}$$
 S:=3/5

=3/5
$$\cdot \lim_{\theta \to \frac{\pi}{2}} \left(\frac{\ln(\cos(\theta))}{\ln(\tan(\theta))} \right), \text{ procedimentos: } > T:= \text{limit(In(cos(theta))/In(tan(theta)),theta=Pi/2); } T:= -1$$

Para calcular limites laterais acrescenta-se uma opção left ou right aos comandos limit e ou Limit. Se for Acrescentada a opção left, então, será calculado o limite lateral à esquerda. Se for acrescentado right, então o limite será lateral à direita.

>Limit(cos(Pi*x)/x, x=0, left)= limit(cos(Pi*x)/x, x=0, left);
$$\lim_{x\to 0^-} \frac{\cos \pi x}{x} = -\infty$$

>Limit(cos(Pi*x)/x, x=0, right)= limit(cos(Pi*x)/x, x=0, right);
$$\lim_{x\to 0+} \frac{\cos \pi x}{x} = \infty$$

>Limit(cos(Pi*x)/x, x=0)= limit(cos(Pi*x)/x, x=0);
$$\lim_{x\to 0} \frac{\cos \pi x}{x}$$
 = undefined

Para calcular limites no infinito, isto é, com a variável tendendo a +∞ ou -∞, utilizamos infinity ou infinity para a variável.

$$\lim_{x\to\infty} \left(\frac{x+7}{x+3}\right)^x, \text{ procedimentos: } > \text{S:=limit(((x+7)/(x+3))^x, x=infinity); } \text{ S:= e}^4$$