به نام خدا

امتحان چهارم درس طراحی و تحلیل الگوریتمها _ زمستان ۹۹ مدت امتحان: ۱۲۰ دقیقه

امتحان شامل سه بخش است و از هر بخش شما باید فقط و فقط یک سوال را حل کنید. برای انتخاب سوال مربوط به خود به توضیحات بالای هر بخش توجه کنید. برای انتخاب سوال خود فرض کنید شماره دانشجویی شما ABCDEFGHI باشد و مقادیر A تا I را با توجه به شماره دانشجویی خود در هر بخش جایگزین کنید. برای مثال اگر شماره دانشجویی شما A 894456123 است مقدار A A و مقدار A A خواهد بود. لطفا در بالای برگه جواب حتما علاوه بر نام و نامخانوادگی شماره دانشجوی و شماره سوال مربوط به خود را بنوسید

بخش اول (\mathbf{r} نمره): ا توجه به شماره دانشجویی خود مقدار H را محاسبه کنید. اگر باقیمانده H بر 2 به ترتیب 0 ، 1 بود به ترتیب سوال 1 یا 2 را حل کنید.

- ۱. درستی یا نادرستی هریک از گزارههای زیر را تعیین کنید. برای ادعای خود اثبات مختصری ارائه دهید.
 - $B \in \text{NP-Hard}$ و $A \leq_p B$ آنگاه ميتوان نتيجه گرفت $A \in \text{NP-Hard}$ آنگاه ميتوان نتيجه گرفت
- (ب) اگر یک از مسئلههای کلاس NP-Complete در زمان چندجملهای حل شود، آنگاه تمام مسائل کلاس NP-Complete در زمان چندجملهای حل خواهند شد.
 - NP-Complete $\subseteq NP$ -Hard (τ)
- (د) در صورتی که یک مسئله از کلاس NP-Complete در زمان خطی حل شود، آنگاه تمام مسئلههای کلاس NP در زمان خطی حل خواهد شد.
 - ۲. درستی یا نادرستی هریک از گزارههای زیر را تعیین کنید. برای ادعای خود اثبات مختصری ارائه دهید.
 - NP-Complete $\subseteq NP$ (\tilde{I})
 - $B \in \text{NP-Complete}$ و $A \leq_p B$ آنگاه می توان نتیجه گرفت $A \leq_p B$ و $A \in \text{NP-Complete}$
- (ج) اگریک از مسئلههای کلاس NP-Hard در زمان چندجملهای حل شود، آنگاه تمام مسائل کلاس NP-Hard در زمان چندجملهای حل خواهند شد.
 - (د) در صورتی که یک مسئله از کلاس NP در زمان چندجملهای حل شود آنگاه P=NP.

بخش دوم (۳۰ نمره): با توجه به شماره دانشجویی خود مقدار H+I را محاسبه کنید. اگر باقیمانده H+I بر L به ترتیب L به ترتیب L با با درا حل کنید.

٣. مسئله هاي SET-COVER و VERTEX-COVER به اين صورت تعريف شدهاند:

- auth SET-COVER: مجموعه U، مجموعه U مبناه U به نام U به نام U به عنوان ورودی داده شدهاند. $\mathcal{S}\subseteq\mathcal{A}$ با نام $\mathcal{S}\subseteq\mathcal{A}$ از \mathcal{S} به عضو وجود دارد که مجموعه U را پوشش دهد. به بیان دقیق تر آیا $\mathcal{S}\subseteq\mathcal{A}$ وجود دارد که خواص زیر را داشته باشد:
 - $|\mathcal{S}| = k$ -
 - $\bigcup_{s \in S} s = U$ -
- مسئله VERTEX-COVER: گراف بدون جهت G و عدد k به عنوان ورودی داده شدهاند. مسئله این است که آیا می توان k راس از گراف را رنگ کرد به طوری به ازای هر یال حداقل یکی از دو سر آن یال رنگ شده باشد.

.VERTEX-COVER \leq_p SET-COVER ثابت کنید

۴. مسئله های SUBSET-SUM و KNAPSACK به این صورت تعریف شدهاند:

- مسئله SUBSET-SUM: مجموعه A از اعداد طبیعی و عدد k به عنوان ورودی داده شدهاند. مسئله این است که آیا زیرمجموعه ای از مجموعه A وجود دارد که جمع اعداد آن برابر عدد k شود.
- مسئله KNAPSACK: تعداد n کالا، یک کوله پشتی با حجم V، و عدد k به عنوان ورودی داده شدهاند. می دانیم حجم کالای v_i برابر v_i و ارزش آن برابر w_i است. مسئله این است که آیا زیر مجموعهای از کالاها وجود دارد که مجموع حجم آنها کمتر مساوی V_i و مجموع ارزش آنها بیشتر مساوی v_i شود.

 $SUBSET-SUM \leq_p KNAPSACK$ ثابت کنید

بخش سوم (۴۰ نمره): با توجه به شماره دانشجویی خود مقدار G+H را محاسبه کنید. اگر باقیمانده G+H بر G+H بر G+H بر G+H بر G+H به ترتیب G+H به ترتیب سوال G+H

۵. مسئله های TRIANGLE-FREE و IND-SET به این صورت تعریف شدهاند:

- مسئله TRIANGLE-FREE: گراف ساده و بدون جهت G و عدد k به عنوان ورودی داده شدهاند. مسئله این است که آیا زیر مجموعه ای از رئوس G با اندازه k وجود دارد که مثلث نداشته باشد. یک گراف مثلث ندارد اگر بین هر سه راس آن حداکثر دو یال وجود داشته باشد.
- مسئله IND-SET: گراف ساده و بدون جهت G و عدد k به عنوان ورودی داده شدهاند. مسئله این است که آیا زیر مجموعهای از رئوس G با اندازه k وجود دارد که هیچ یالی نداشته باشد.

هدف از این سوال این است که اثبات کنید مسئله TRIANGLE-FREE در کلاس NP-Complete قرار دارد.

- رآ) ثابت كنيد TRIANGLE-FREE ∈ NP.
- .IND-SET \leq_p TRIANGLE-FREE (ب) ثابت کنید
- مسئلههای FANCY-SET و ۳-SAT به این صورت تعریف شدهاند:
- **number** separation in the property of the property of the property of S and S and S and S and S and S in the property of S and S a
- مسئله C_1, C_2, \cdots, C_m و عبارت منطقی C_1, C_2, \cdots, C_n و C_2, \cdots, C_n و C_3, C_2, \cdots, C_n و C_3, C_2, \cdots, C_n و عبارت منطقی منطقی حداکثر از C_3, C_3, \cdots, C_n منطقی حداکثر از C_3, C_4, \cdots, C_n منطقی میتواند به صورت C_4, C_3, \cdots, C_n باشد. مسئله این است که آیان امکان مقداردهی به متغیرها وجود دارد به طوری که تمام عبارتهای منطقی در نهایت مساوی C_3, C_4, \cdots, C_n شوند.

هدف از این سوال این است که اثبات کنید مسئله FANCY-SET در کلاس NP-Complete قرار دارد.

- رآ) ثانت كند FANCY-SET ∈ NP
- $-SAT \leq_p FANCY-SET$ ثابت کنید (پ) ثابت کنید