

	WYPEŁNIA ZDAJĄCY	Miejsce na naklejkę.
KOD	PESEL	Sprawdź, czy kod na naklejce to E-100 .
		Jeżeli tak – przyklej naklejkę. Jeżeli nie – zgłoś to nauczycielowi.

EGZAMIN MATURALNY MATEMATYKA – POZIOM PODSTAWOWY

TEST DIAGNOSTYCZNY

TERMIN: marzec 2021 r. Czas pracy: 170 minut

LICZBA PUNKTÓW DO UZYSKANIA: 45

WYPEŁNIA ZESPÓŁ NADZORUJĄCY

Uprawnienia zdającego do:

nieprzenoszenia zaznaczeń na kartę

> dostosowania zasad oceniania

dostosowania w zw. z dyskalkulią.

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 23 strony (zadania 1–35). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamkniętych (1–28) zaznacz na karcie odpowiedzi w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 4. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (29–35) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 5. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 7. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.
- 9. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 10. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

W każdym z zadań od 1. do 28. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (0-1)

Liczba $(\sqrt{6} - \sqrt{2})^2 - 2\sqrt{3}$ jest równa

A.
$$8 - 6\sqrt{3}$$

B.
$$8 - 2\sqrt{3}$$
 C. $4 - 2\sqrt{3}$

C.
$$4 - 2\sqrt{3}$$

D.
$$8 - 4\sqrt{3}$$

Zadanie 2. (0-1)

Liczba $2\log_5 4 - 3\log_5 \frac{1}{2}$ jest równa

A.
$$-\log_5 \frac{7}{2}$$

B.
$$7 \log_5 2$$
 C. $-\log_5 2$

$$\mathbf{C}$$
. $-\log_5 2$

$$D. \log_5 2$$

Zadanie 3. (0-1)

Medyczna maseczka ochronna wielokrotnego użytku z wymiennymi filtrami wskutek podwyżki zdrożała o 40% i kosztuje obecnie 106,40 zł. Cena maseczki przed podwyżką była równa

Zadanie 4. (0-1)

Dla każdej dodatniej liczby b wyrażenie $\left(\sqrt[2]{b}\cdot\sqrt[4]{b}\right)^{\frac{1}{3}}$ jest równe

A.
$$b^2$$

B.
$$h^{0,25}$$

C.
$$b^{\frac{8}{3}}$$

D.
$$b^{\frac{4}{3}}$$

Zadanie 5. (0-1)

Para liczb x=1, y=-3 spełnia układ równań $\begin{cases} x-y=a^2\\ (1+a)x-3y=-4a \end{cases}$

Wtedy a jest równe

c.
$$\sqrt{2}$$

D.
$$-\sqrt{2}$$

Zadanie 6. (0-1)

Iloczyn wszystkich rozwiązań równania $2(x-4)(x^2-1)=0$ jest równy

Zadanie 7. (0-1)

Zbiorem rozwiązań nierówności $\frac{12-5x}{2} < 3\left(1-\frac{1}{2}x\right) + 7x$ jest

A.
$$\left(-\infty, \frac{2}{7}\right)$$

B.
$$\left(\frac{2}{7}, +\infty\right)$$

c.
$$\left(-\infty, \frac{3}{8}\right)$$

A.
$$\left(-\infty, \frac{2}{7}\right)$$
 B. $\left(\frac{2}{7}, +\infty\right)$ C. $\left(-\infty, \frac{3}{8}\right)$ D. $\left(\frac{3}{8}, +\infty\right)$

Zadanie 8. (0-1)

Funkcja liniowa f(x) = (a-1)x + 3 osiąga wartość najmniejszą równą 3. Wtedy

A. a = -1

B. a = 0

C. a = 1

D. a = 3

Zadanie 9. (0-1)

Na wykresie przedstawiono wykres funkcji f.

Wskaż zdanie prawdziwe.

A. Dziedziną funkcji f jest przedział (-4,5).

 ${f B.}$ Funkcja f ma dwa miejsca zerowe.

 ${f C.}$ Funkcja f dla argumentu 1 przyjmuje wartość (-1).

D. Zbiorem wartości funkcji f jest przedział (-4, 5).

Zadanie 10. (0-1)

Funkcja f jest określona wzorem $f(x) = \frac{8x-7}{2x^2+1}$ dla każdej liczby rzeczywistej x. Wartość funkcji f dla argumentu 1 jest równa

A. $\frac{1}{5}$

B. $\frac{1}{3}$

C. 1

D. 2

Zadanie 11. (0-1)

Ciąg (x,y,z) jest geometryczny. Iloczyn wszystkich wyrazów tego ciągu jest równy 64. Stąd wynika, że y jest równe

A. 3 · 64

B. $\frac{64}{3}$

C. 4

D. 3

Zadanie 12. (0-1)

Ciąg (a_n) , określony dla każdej liczby naturalnej $n \geq 1$, jest arytmetyczny. Różnica tego ciągu jest równa 5, a pierwszy wyraz tego ciągu jest równy (-3). Wtedy iloraz $\frac{a_4}{a_2}$ jest równy

A. $\frac{5}{3}$

B. 2

C. 6

D. 25

Zadanie 13. (0-1)

Trójkąt ABC jest wpisany w okrąg o środku O. Miara kąta CAO jest równa 70° (zobacz rysunek). Wtedy miara kąta ABC jest równa

A. 20°

B. 25°

C. 30°

D. 35°

Zadanie 14. (0-1)

Ciągi (a_n) , (b_n) oraz (c_n) są określone dla każdej liczby naturalnej $n \ge 1$ następująco:

$$\bullet \quad a_n = 6n^2 - n^3$$

•
$$b_n = 2n + 13$$

$$\bullet \quad c_n = 2^n$$

Wskaż zdanie prawdziwe.

A. Ciąg (a_n) jest arytmetyczny.

B. Ciąg (b_n) jest arytmetyczny.

C. Ciąg (c_n) jest arytmetyczny.

D. Wśród ciągów (a_n) , (b_n) , (c_n) nie ma ciągu arytmetycznego.

Zadanie 15. (0-1)

Ciąg (a_n) jest określony wzorem $a_n=(-2)^n\cdot n+1$ dla każdej liczby naturalnej $n\geq 1$. Wtedy trzeci wyraz tego ciągu jest równy

A. -24

B. −17

C. -32

D. -23

Zadanie 16. (0-1)

W romb o boku $2\sqrt{3}\,$ i kącie $60^{\circ}\,$ wpisano okrąg. Promień tego okręgu jest równy

A. 3

B. $\frac{1}{2}$

c. $\frac{3}{4}$

D. $\frac{3}{2}$

Zadanie 17. (0-1)

Przez punkt przecięcia wysokości trójkąta równobocznego ABC poprowadzono prostą DE równoległą do podstawy AB (zobacz rysunek).

Stosunek pola trójkąta ABC do pola trójkąta CDE jest równy

A. 9:4

B. 4 : 1

C. 4 : 9

D. 3 : 2

Zadanie 18. (0-1)

Końcami odcinka PR są punkty P=(4,7) i R=(-2,-3). Odległość punktu T=(3,-1) od środka odcinka PR jest równa

A. $\sqrt{3}$

B. $\sqrt{13}$

C. $\sqrt{17}$

D. $6\sqrt{2}$

Zadanie 19. (0-1)

Kąt α jest ostry oraz $\sin \alpha = \frac{4}{5}$. Wtedy

A.
$$\cos \alpha = \frac{1}{5}$$

A.
$$\cos \alpha = \frac{1}{5}$$
 B. $\cos \alpha = -\frac{1}{5}$ **C.** $\cos \alpha = -\frac{3}{5}$ **D.** $\cos \alpha = \frac{3}{5}$

C.
$$\cos \alpha = -\frac{3}{5}$$

D.
$$\cos \alpha = \frac{3}{5}$$

Zadanie 20. (0-1)

Dane są punkty M = (6,0), N = (6,8) oraz O = (0,0). Tangens kata ostrego MON jest równy

A.
$$\frac{4}{3}$$

B.
$$\frac{6}{10}$$
 C. $\frac{3}{4}$

c.
$$\frac{3}{4}$$

D.
$$\frac{8}{10}$$

Zadanie 21. (0-1)

Proste o równaniach y = 3ax - 2 i y = 2x + 3a są prostopadłe. Wtedy a jest równe

A.
$$\frac{2}{3}$$

B.
$$-\frac{1}{6}$$
 C. $\frac{3}{2}$

c.
$$\frac{3}{2}$$

Zadanie 22. (0-1)

Dany jest trapez ABCD, w którym boki AB i CD są równoległe oraz C=(3,5). Wierzchołki A i B tego trapezu leżą na prostej o równaniu y = 5x + 3. Wtedy bok CD tego trapezu zawiera się w prostej o równaniu

A.
$$y = 3x + 5$$

B.
$$y = -\frac{1}{5}x + 3$$

C.
$$y = 5x - 10$$

A.
$$y = 3x + 5$$
 B. $y = -\frac{1}{5}x + 3$ **C.** $y = 5x - 10$ **D.** $y = -\frac{1}{5}x + \frac{28}{5}$

Zadanie 23. (0-1)

W trapezie równoramiennym ABCD podstawy AB i CD mają długości równe odpowiednio a i b (przy czym a > b). Miara kąta ostrego trapezu jest równa 30° . Wtedy wysokość tego trapezu jest równa

A.
$$\frac{a-b}{2} \cdot \sqrt{3}$$
 B. $\frac{a-b}{6} \cdot \sqrt{3}$ **C.** $\frac{a+b}{2}$

B.
$$\frac{a-b}{6} \cdot \sqrt{3}$$

c.
$$\frac{a+b}{2}$$

D.
$$\frac{a+b}{4}$$

Zadanie 24. (0-1)

Przekątna sześcianu ma długość $5\sqrt{3}$. Wtedy objętość tego sześcianu jest równa

C.
$$375\sqrt{3}$$

D.
$$125\sqrt{3}$$

Zadanie 25. (0-1)

Ostrosłupy prawidłowe trójkątne O_1 i O_2 mają takie same wysokości. Długość krawędzi podstawy ostrosłupa O_1 jest trzy razy dłuższa od długości krawędzi podstawy ostrosłupa O_2 . Stosunek objętości ostrosłupa O_1 do objętości ostrosłupa O_2 jest równy

A. 3 : 1

B. 1 : 3

C. 9:1

D. 1:9

Zadanie 26. (0-1)

Wszystkich liczb naturalnych trzycyfrowych parzystych, w których cyfra 7 występuje dokładnie jeden raz, jest

A. 85

B. 90

C. 100

D. 150

Zadanie 27. (0-1)

Ze zbioru liczb naturalnych dwucyfrowych losujemy jedną liczbę. Prawdopodobieństwo zdarzenia polegającego na tym, że wylosowana liczba jest podzielna przez 5, jest równe

A. $\frac{2}{5}$

B. $\frac{5}{100}$

c. $\frac{5}{90}$

D. $\frac{18}{90}$

Zadanie 28. (0-1)

Liczba x jest dodatnia. Mediana zestawu czterech liczb: 1+x, 1+2x, 4+3x, 1, jest równa 10. Wtedy

A. x = 6

B. x = 5.5 **C.** x = 2.5 **D.** x = 1

Zadanie 29. (0-2)

Rozwiąż nierówność:

$$3x(x+1) > x^2 + x + 24$$

Zadanie 30. (0-2)

Rozwiąż równanie:

$$\frac{6x - 1}{3x - 2} = 3x + 2$$

	Nr zadania	29.	30.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 31. (0-2)

Dany jest trójkąt prostokątny, którego przyprostokątne mają długości a i b. Punkt 0 leży na przeciwprostokątnej tego trójkąta i jest środkiem okręgu stycznego do przyprostokątnych tego trójkąta (zobacz rysunek).

Wykaż, że promień r tego okręgu jest równy $\frac{ab}{a+b}$.

Zadanie 32. (0-2)

Kąt α jest ostry i $\sin \alpha + \cos \alpha = \frac{7}{5}$. Oblicz wartość wyrażenia $2 \sin \alpha \cos \alpha$.

14/	Nr zadania	31.	32.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 33. (0-2)

Dany jest czworokąt ABCD, w którym |BC| = |CD| = |AD| = 13 (zobacz rysunek). Przekątna BD tego czworokąta ma długość 10 i jest prostopadła do boku AD. Oblicz pole czworokąta ABCD.

Zadanie 34. (0-2)

Funkcja kwadratowa $f(x) = x^2 + bx + c$ nie ma miejsc zerowych. Wykaż, że 1 + c > b.

Wypełnia egzaminator	Nr zadania	33.	34
	Maks. liczba pkt	2	2
	Uzyskana liczba pkt		

Zadanie 35. (0-5)

Rosnący ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej $n \ge 1$. Suma pierwszych pięciu wyrazów tego ciągu jest równa 10. Wyrazy a_3 , a_5 , a_{13} tworzą – w podanej kolejności – ciąg geometryczny. Wyznacz wzór na n-ty wyraz ciągu arytmetycznego (a_n) .

14/	Nr zadania	35.
Wypełnia	Maks. liczba pkt	5
egzaminator	Uzyskana liczba pkt	

