Name: Kevin Zhang

Problem 1.

We want to design two sequences $b_1, b_2, ...$ and $s_1, s_2, ...$ such that for sufficiently large t, the two properties hold:

- 1. The values of stock and bond decreases over time: $b_1 \cdot b_2 \cdots b_t \leq 0.99^t$.
- 2. A strategy that rebalances across stock and bond after each day increases by at least 1.01^t .

A simple approach to accomplish this is to alternate gains. Suppose we have a large factor α and a small factor β . We can represent each sequence as follows:

$$b_1, b_2, b_3, \dots = \alpha, \beta, \alpha, \dots$$

 $s_1, s_2, s_3, \dots = \beta, \alpha, \beta, \dots$

Then, for sufficiently large t, each individual sequence converges to $(\alpha \beta)^{t/2}$, but the overall gain for each day converges to $(\alpha + \beta)^t$. This can be seen because $b_1 \cdot b_2 = \alpha \cdot \beta$. Furthermore, $b_1 + s_1 = \alpha + \beta$. It then suffices to have the following hold:

$$\alpha \cdot \beta \le 0.99^{1/2}$$
$$\alpha + \beta \ge 2.02$$

A simple example that satisfies this is $\alpha = 1.50$ and $\beta = 0.48$. The wealth growth of each day is 1.05, but each sequence decreases by 0.99.

Problem 2.

(a) Both the expert prediction and outcome is chosen uniformly randomly from $\{0,1\}$. This means that for any given t, the probability that a prediction is correct is 1/2. With 1 representing when a mistake was made and 0 representing when there wasn't a mistake, the expected number of mistakes for any given t is 1/2. Thus:

$$\mathbb{E}[\# \text{ of mistakes}] = \sum_{t=1}^{T} \mathbb{E}[\# \text{ of mistakes at t}] = T/2$$

The expected number of mistakes for any algorithm is T/2.

(b) Let's examine the probability that there exists an expert with no mistake. First, we can compute the probability that an indvidual expert *i* makes no mistakes:

Pr[expert i with no mistakes] =
$$\prod_{t=1}^{T} (1/2) = (1/2)^{T}$$

$$= 1/2^{logn - log(2lnn)}$$

$$= 2^{log(2lnn) - logn}$$

$$= \frac{2^{log(2lnn)}}{2^{logn}}$$

$$\approx \frac{2lnn}{n}$$

Then, we can express the probability no experts make no mistakes: (we use the fact that $1 - x \le e^{-x}$)

Pr[expert
$$i$$
 does not make no mistakes] = $1 - \frac{2lnn}{n}$

Pr[no experts make no mistakes] = $\prod_{i=1}^{n} (1 - \frac{2lnn}{n})$

= $(1 - \frac{2lnn}{n})^n$
 $\leq e^{-\frac{2lnn}{n} \cdot n}$
 $\leq e^{-2lnn}$
 $\leq \frac{1}{n^2}$

Thus, the probability there exists an expert that makes no mistakes is at least $1 - \frac{1}{n^2}$. As such, with high probability, there is a best expert that makes 0 mistakes. Since any algo makes T/2 expected mistakes, with T = logn - log(2lnn), with T being bounded by logn, any algorithm must make $\Omega(logn)$ more mistakes than the best expert.

Problem 3.

(a) We can express the probability that the number of zeros does not exceed $T/2 - \sqrt{T}/4$ as

Pr[number of 0s is exactly 0] =
$$(1/2)^0 \times {T \choose 0} \times (1/2)^T$$

Pr[number of 0s is exactly 1] = $(1/2)^1 \times {T \choose 1} \times (1/2)^{T-1}$
Pr[number of 0s is exactly 2] = $(1/2)^2 \times {T \choose 2} \times (1/2)^{T-2}$

Pr[number of 0s is exactly
$$T/2 - \sqrt{T}/4$$
] = $(1/2)^{T/2 - \sqrt{T}/4} \times {T \choose T/2 - \sqrt{T}/4} \times (1/2)^{T/2 + \sqrt{T}/4}$

Pr[number of 0s does not exceed $T/2 - \sqrt{T}/4$] = sum of the above

$$= \sum_{k=0}^{T/2 - \sqrt{T}/4} (1/2)^k \times {T \choose k} \times (1/2)^{T-k}$$

$$= \sum_{k=0}^{T/2 - \sqrt{T}/4} (1/2)^T \times {T \choose k}$$

$$= (1/2)^T \times \sum_{k=0}^{T/2 - \sqrt{T}/4} {T \choose k}$$

(b) First, we want to show $\binom{T}{T/2} \le \frac{2^T}{\sqrt{T}}$. This can be done using Stirling's formula $(n! \simeq (\frac{n}{e})^n \sqrt{2\pi n})$:

$$\begin{pmatrix} T \\ T/2 \end{pmatrix} = \frac{T!}{(T/2)!(T/2)!}$$

$$\simeq \frac{(\frac{T}{e})^T \sqrt{2\pi T}}{[(\frac{T/2}{e})^T/2\sqrt{2\pi T/2}]^2}$$

$$= \frac{(\frac{T}{e})^T \sqrt{2\pi T}}{[(\frac{T}{2e})^T \sqrt{\pi T}^2]}$$

$$= \frac{2^T \sqrt{2\pi T}}{\sqrt{\pi T}^2}$$

$$= \frac{2^T \sqrt{2}}{\sqrt{\pi T}}$$

$$= \sqrt{\frac{2}{\pi}} \frac{2^T}{\sqrt{T}}$$

$$\leq \frac{2^T}{\sqrt{T}}$$

Next, we want to use the above fact to show that the probability that the number of 0s does not exceed $T/2 - \sqrt{T}/4$ is at least 1/4. To do so, there's a couple of useful tricks that we can use.

First, the probability that the number of 0s does not exceed $T/2 - \sqrt{T}/4$ is the same as the probability that the number of zeroes is greater than $T/2 + \sqrt{T}/4$. This is because we are in a binomial distribution.

Pr[number of 0s does not exceed $T/2 - \sqrt{T}/4$] = Pr[number of 0s exceeds $T/2 + \sqrt{T}/4$]

$$(1/2)^T \times \sum_{k=0}^{T/2-\sqrt{T}/4} {T \choose k} = (1/2)^T \times \sum_{k=(T/2+\sqrt{T}/4)}^T {T \choose k}$$

Second, we can compute the probability as an *area under the curve* and approximate it using width and height computations. We can let width be $T/2 + \sqrt{T}/4$ and height be the highest point on the curve $(\frac{2^T}{\sqrt{T}})$. Thus:

$$(1/2)^{T} \times \sum_{k=(T/2+\sqrt{T}/4)}^{T} {T \choose k} \simeq (1/2)^{T} (T/2 + \sqrt{T}/4) (\frac{2^{T}}{\sqrt{T}})$$

$$= (T/2) (\frac{1}{\sqrt{T}}) + (\sqrt{T}/4) (\frac{1}{\sqrt{T}})$$

$$= (\frac{\sqrt{T}}{\sqrt{2}}) + (\frac{1}{4})$$

$$\geq \frac{1}{4}$$

Pr[number of 0s does not exceed $T/2 - \sqrt{T}/4$] $\geq \frac{1}{4}$

Thus, with probability of at least 1/4, the number of 0s does not exceed $T/2 - \sqrt{T}/4$.

Finally, we have shown that with constant probability, the number of 0s does not exceed $T/2 - \sqrt{T}/4$. Because our experts are optimistic and pessimistic, the better expert will simply be T minus the mistakes made by the worse expert. As such, the expected number of mistakes of the best expert is $T/2 - \sqrt{T}/4$. Since any algorithm has an expected number of mistakes of T/2, we have a $\Omega(\sqrt{T})$ bound.

Problem 4.

Let's consider a more adaptive version of the weighted majority algorithm, such that a weight $w_i^{(t)}$ only decreases when $w_i^{(t-1)} \geq \frac{\varepsilon \phi^{(t-1)}}{n(1-\varepsilon)}$. We want to find the number of mistakes the algorithm makes step T_1 to T_2 compared to an expert i. Let M^T be then number of mistakes the algorithm makes, and $m_i^{(T)}$ be the number of mistakes from the expert.

We can examine how $\phi^{(t)}$ changes. For each weight, we have three possibilities:

- 1. $w_i^{(t)} = w_i^{(t-1)}$ for when expert *i* is right.
- 2. $w_i^{(t)} = w_i^{(t-1)}$ for when expert *i* is wrong, but $w_i^{(t-1)} < \frac{\varepsilon \phi^{(t-1)}}{n(1-\varepsilon)}$.
- 3. $w_i^{(t)} = (1 \varepsilon)w_i^{(t-1)}$ for when expert i is wrong, and $w_i^{(t-1)} \ge \frac{\varepsilon\phi^{(t-1)}}{n(1-\varepsilon)}$.

If we substitute for the last condition, we get $w_i^t \ge \frac{\varepsilon}{n} \phi^{(t-1)}$. Since $\phi^{(t)}$ is the sum of weights, and the weights are decreasing by at most $\frac{\varepsilon}{n}$, we get the following:

$$\phi^{(t)} \le (1 - \frac{\varepsilon}{n})\phi^{(t-1)}$$

By induction over the interval T_1 to T_2 , we get:

$$\phi^{(T_2)} \le (1 - \frac{\varepsilon}{n})^{M^T} \phi^{(T_1)}$$

We can also find a lower bound for $\phi^{(T_2)}$: this is the case of an expert having their weight reduced for every iteration.

$$\phi^{(T_2)} \ge (1 - \varepsilon)^{m_i^{(T)}} \phi^{(T_1)}$$

Combining the two inequalities, we get:

$$\begin{split} (1-\varepsilon)^{m_i^{(T)}} \phi^{(T_1)} &\leq (1-\frac{\varepsilon}{n})^{M^T} \phi^{(T_1)} \\ (1-\varepsilon)^{m_i^{(T)}} &\leq (1-\frac{\varepsilon}{n})^{M^T} \\ m_i^{(T)} \ln{(1-\varepsilon)} &\leq M^T \ln{(1-\frac{\varepsilon}{n})} \\ M^T &\geq m_i^{(T)} \frac{\ln{(1-\varepsilon)}}{\ln{(1-\frac{\varepsilon}{n})}} \end{split}$$