ความรู้สึก

Emotions

พชรพล แดงมณี , ภูริภัทร สุ่นสุข สาขาวิทยาการข้อมูลประยุกต์ คณะวิทยาการสารสนเทศ มหาวิทยาลัยมหาสารคาม Emails: 64011212040@msu.ac.th, 64011212033@msu.ac.th,

บทคัดย่อ

"Emotions" คือประสบการณ์ทางจิตใจที่เกิดขึ้นในตัว บุคคล ตามสถานการณ์ และ ประสบการณ์ ที่ ต่างๆ ใน ชีวิตประจำวัน. ความรู้สึกมีลักษณะหลายแบบ เช่น ความสุข, เศร้า, โกรธ, หรือเครียด เป็นต้น. มีผลกระทบต่อทั้งร่างกายและ จิตใจของบุคคล. ความรู้สึกสามารถแสดงออกผ่านทางภาษา, ท่าทาง, และพฤติกรรม. การเข้าใจและจัดการความรู้สึกมี ความสำคัญในการสร้างความสัมพันธ์ที่ดีและความเข้าใจใน สังคม. ความรู้สึกมีผลต่อความสุขและคุณภาพชีวิตของบุคคล.

"Emotions" ซึ่งเป็นคอลเลกชันข้อความ Twitterภาษาอังกฤษที่ อธิบายอย่างพิถีพิถันด้วยอารมณ์พื้นฐาน 6 อารมณ์ ได้แก่ ความ โกรธ ความกลัว ความสุข ความรัก ความเศร้า และความ ประหลาดใจ ชุดข้อมูลนี้ทำหน้าที่เป็นแหล่งข้อมูลอันมีค่าสำหรับ การทำความเข้าใจและวิเคราะห์อารมณ์ที่หลากหลายที่แสดง ออกมาในรูปแบบข้อความสั้นบนโซเชียลมีเดีย

คำสำคัญ -- ความโกรธ(anger), ความกลัว(fear), ความสุข(joy), ความรัก(love), ความเศร้า(sadness), ประหลาดใจ(surprise)

1. บทน้ำ

ความรู้สึกเป็นส่วนสำคัญของประสบการณ์มนุษย์ที่ เติบโตและมีอารมณ์ส่วนตัวที่หลากหลายต่อหลายสถานการณ์ การที่เราสามารถเข้าใจและจัดการกับความรู้สึกของเราเองเป็น พื้นฐานสำคัญในการพัฒนาทักษะสังคมและความสัมพันธ์กับผู้อื่น ความรู้สึกมีความหลากหลายตามสถานการณ์ที่เกิดขึ้นและ

ส่วนตัวของแต่ละบุคคล มันมีความผูกพันกับทั้งการรับรู้สิ่งต่างๆ ที่เกิดขึ้นภายนอกและกระบวนการในจิตใจของเราเอง

ในทางปฏิบัติ, ความรู้สึกมีบทบาทสำคัญในการสื่อสาร และสร้างความเข้าใจในความหมายของสิ่งต่างๆ ที่เกิดขึ้นใน ชีวิตประจำวัน การเข้าใจความรู้สึกของตนเองและผู้อื่นช่วยให้ สามารถจัดการกับสถานการณ์ที่ซับซ้อนได้อย่างมีประสิทธิภาพ การแสดงออกถึงความรู้สึกอาจเป็นทางภาษา, ท่าทาง, และ พฤติกรรมต่างๆ ซึ่งมีผลต่อทั้งระดับสังคมและระดับบุคคล

"Emotions" ซึ่งเป็นคอลเลกชันข้อความ Twitter ภาษาอังกฤษที่อธิบายอย่างพิถีพิถันด้วยอารมณ์พื้นฐาน 6 อารมณ์ ได้แก่ ความโกรธ ความกลัว ความสุข ความรัก ความ เศร้า และความประหลาดใจ ชุดข้อมูลนี้ทำหน้าที่เป็นแหล่งข้อมูล อันมีค่าสำหรับการทำความเข้าใจและวิเคราะห์อารมณ์ที่ หลากหลายที่แสดงออกมาในรูปแบบข้อความสั้นบนโซเชียลมีเดีย

คำสำคัญ - ความโกรธ(anger), ความกลัว(fear), ความสุข(joy), ความรัก(love), ความเศร้า(sadness), ประหลาดใจ(surprise)

Applied Data Science: Natural Language Processing.

2. ทฤษฎีที่เกี่ยวข้อง

2.1 การประมวลผลภาษาธรรมชาติ (Natural Language Processing)

การประมวลผลภาษาธรรมชาติ (Natural Language Processing: NLP) คือสาขาหนึ่งของปัญญาประดิษฐ์ ที่เกี่ยวข้อง กับการพัฒนาอัลกอริทึมเพื่อทำให้คอมพิวเตอร์สามารถเข้าใจ และประมวลผลภาษาธรรมชาติของมนุษย์ได้ ภาษาธรรมชาติ เป็นภาษาที่มนุษย์ใช้สื่อสารกัน ซึ่งมีลักษณะซับซ้อนและ หลากหลาย คอมพิวเตอร์จำเป็นต้องมีความสามารถในการเข้าใจ ภาษาธรรมชาติเพื่อที่จะสื่อสารกับมนุษย์ได้อย่างมีประสิทธิภาพ

2.2 Long Short-Term Memory (LSTM)

LSTM ย่อจาก Long Short-Term Memory ถือเป็นประเภท หนึ่งของสถาปัตยกรรมแบบ Recurrent Neural Network (RNN) อยู่ในกลุ่มของ Deep Learning ถูกออกแบบให้จดจำ Patterns ในช่วงเวลานานๆ มีประสิทธิภาพสำหรับปัญหาการ ทำนายที่เป็น Sequential เนื่องจากสามารถเก็บข้อมูลก่อนหน้า และนำมาร่วมใช้ในการประมวลผลได้สามารถแก้ปัญหา Long-term Dependency ได้ โดย RNN แบบดั้งเดิมจะเผชิญกับ ความท้าทายในเรื่อง Long-range Dependency และมีปัญหา Vanishing Gradient LSTM ถูกออกแบบมาให้จดจำ Long-term Information โดยใช้ Gating Mechanisms ที่ออกแบบมา เฉพาะมีความยืดหยุ่นที่ดี LSTM สามารใช้ Model ได้ทั้ง Long-term และ Short-term Temporal Sequences

2.3 Word Cloud

Word Cloud (คลาวด์คำ) เป็นวิธีที่นิยมในการแสดงข้อมูล ข้อความในรูปแบบกราฟิก โดยการนำเอาคำที่พบบ่อยใน ข้อความมาแสดงในขนาดที่ใหญ่กว่า ซึ่งทำให้สามารถดูได้ชัดเจน ถึงคำที่มีน้ำหนักมากที่สุดในข้อความนั้น ๆ

กระบวนการสร้าง Word Cloud มักจะประกอบด้วยขั้นตอน ต่อไปนี้:

Tokenization (ตัดคำ): แยกข้อความเป็นคำๆ ที่อยู่ใน ประโยคหรือเอกสาร. Counting (นับคำ): นับจำนวนครั้งที่แต่ละคำปรากฏใน ข้อความ.

Filtering (กรองคำ): กรองคำที่ไม่สนใจหรือไม่เกี่ยวข้อง เช่น คำที่ใช้บ่อยมากที่จะไม่ให้ปรากฏใน Word Cloud.

Visualization (การแสดงผล): นำคำที่ได้จากขั้นตอนก่อน หน้ามาสร้าง Word Cloud และแสดงผลกราฟิกที่ใหญ่ขึ้นตาม ความถี่ของคำ.

2.4 Visualization

"Visualization" หมายถึงกระบวนการแสดงผลข้อมูลใน รูปแบบกราฟิกหรือภาพเพื่อทำให้ข้อมูลที่ซับซ้อนเป็นมิตรและ เข้าใจได้ง่ายขึ้น โดยการใช้สื่อต่าง ๆ เช่น กราฟ, แผนภูมิ, แผน ที่, หรือภาพวีดีโอ เพื่อเน้นและสื่อความหมายของข้อมูล.

การทำ Visualization มีหลายวัตถุประสงค์ เช่น:

การสื่อสารข้อมูล: ทำให้ข้อมูลที่ซับซ้อนกลายเป็นเรื่องราวที่ เข้าใจได้ง่าย.

การค้นพบแนวโน้ม: ช่วยในการระบุแนวโน้ม, ความสัมพันธ์, หรือลำดับขั้นของข้อมูล.

การวิเคราะห์: ช่วยในการทำความเข้าใจลึกลงไปในข้อมูล, ค้นพบความสัมพันธ์, หรือลำดับเหตุการณ์.

การตัดสินใจ: สนับสนุนการตัดสินใจที่มีข้อมูลเป็นพื้นฐาน. การสร้างความสนใจ: ทำให้ข้อมูลน่าสนใจและน่าติดตาม.

2.5 Machine Learning

Machine Learning คือ การทำให้คอมพิวเตอร์ สามารถเรียนรู้สิ่งต่างๆ และพัฒนาการทำงานให้ดีขึ้นได้ด้วย ตัวเองจากข้อมูลและสภาพแวดล้อมที่ได้รับจากการเรียนรู้ของ ระบบ โดยไม่ต้องมีมนุษย์คอยกำกับหรือเขียนโปรแกรมเพิ่มเติม และไม่ว่าในอนาคตมันจะมีข้อมูลรูปแบบใหม่ๆ ที่เกิดขึ้นมา มนุษย์ก็ไม่จำเป็นที่จะต้องไปนั่งเขียนโปรแกรมใหม่ เพราะ คอมพิวเตอร์สามารถตีความและตอบสนองได้ด้วยตัวเอง

3. วิธีดำเนินการวิจัย

ในส่วนนี้จะอธิบายกระบวนการที่ใช้ในงานวิจัย ซึ่งประกอบ ไปด้วยขั้นตอนต่อไปนี้

3.1 การรวบรวมขอมูลและการเตรียมขอมูล

การเตรียมข้อมูลในงานวิจัยนี้ ข้อมูลประกอบด้วยชุดข้อมูล จำนวน 1 ชุดข้อมูล คือ Emotion จากเว็บไซต์ Kaggle ซึ่งข้อมูลที่รวบรวมประกอบไปด้วยข้อความที่แสดงข้อความ Twitter และป้ายกำกับที่เกี่ยวข้องซึ่งระบุถึงอารมณ์ความรู้สึก จำนวน 416809 ข้อความ ทำการจัดกลุ่มแต่ละข้อความ ตาม label โดยกำหนด 0 : ความเศร้า(sadness), 1: ความสุข (joy), 2 : ความรัก(love), 3 : ความโกรธ(anger), 4 : ความกลัว (fear) และ 5 : ประหลาดใจ(surprise) ข้อมูลทั้งหมดประกอบ ไปด้วยข้อความคิดเห็นความเศร้า(sadness) 121,187 ข้อความ ข้อความคิดเห็นความสุข(joy) 141,067 ข้อความ ข้อความ คิดเห็นความรัก(love) 34,554 ข้อความ ข้อความคิดเห็นความ โกรธ(anger) 57317 ข้อความ ข้อความคิดเห็นความกลัว(fear) 47712 ข้อความ และอความคิดเห็นประหลาดใจ(surprise) 14972 ข้อความ จากนั้นทำการปรับเปลี่ยนข้อมูลให้อยู่ใน รูปแบบที่เหมาะสมในการวิเคราะห์และประมวลผลข้อมูล ซึ่ง ข้อความเป็นข้อมูลที่ไม่มีโครงสร้าง ไม่สามารถนำไปประมวลผล ได้ทันที จำเป็นต้องผ่านกระบวนการเตรียมข้อมูล เพื่อให้ข้อมูล ต่าง ๆ อยู่ในรูปแบบเดียวกันโดยในงานวิจัยนี้มีขั้นตอนการ เตรียมข้อมูลด้วยวิธีการประมวลผลข้อความ(preprocess text) คือกระบวนการแปลงข้อความให้อยู่ในรูปแบบตัวพิมพ์เล็ก (lower case) จากนั้นทำการลบอักขระพิเศษ(special characters) ตัวเลข(number) และลิกง์(link)

3.2 การสรางโมเดล

หลังจากที่เตรียมข้อมูลเรียบร้อยแล้ว ขั้นตอนถัดไปจะเป็น การสร้างโมเดลเพื่อวิเคราะห์ความรู้สึก ซึ่งในงานวิจัยนี้ทำการ สร้างโมเดลจาก 2 อัลกอริทึม คือ K-Nearest Neighbors, Naive Bayes โดยอัลอริทึม K-Nearest Neighbors กำหนดค่า k=10 และวัดความใกล้เคียงของข้อมูลที่ต้องการจำแนก (X) กับข้อมูลเรียนรู้ (Y) โดยใช้การวัดระยะทางยูคลิเดียน (Euclidean distance) ดังสมการที่ 1 ส่วน Naive Bayes ใช้ พื้นฐานทฤษฎีของเบส์เพื่อคำนวณความน่าจะเป็นของแต่ละ คลาส โดยความน่าจะเป็นของแต่ละคลาสของข้อมูลที่ต้องการจะ จำแนก สามารถ คำนวณได้ดังสมการที่ 2 ถ้าความน่าจะเป็น คลาสใดมีค่ามากที่สุดคลาสดังกล่าวคือผลลัพธ์

$$d(X,Y)$$
 $\sqrt{\sum_{i=1}^{n}(x_i-y_i)^2}$

โดยที่

 $oldsymbol{\chi_i}$ คือ ค่าคุณลักษณะที่ i ของข้อมูล X (ข้อมูลที่ต้องการ จำแนก)

 $oldsymbol{y_i}$ คือ ค่าคุณลักษณะที่ i ของข้อมูล Y (ชุดข้อมูลเรียนรู้) n คือ จำนวนคุณลักษณะ

$$p(C|X) = p(C) \prod_{i=1}^{n} p(x_i|C)$$
สมการที่ 2

โดยที่

 $p(\mathcal{C}|X)$ คือ ความน่าจะเป็นที่ imes จะเป็นคลาส imes

 $p(\mathcal{C})$ คือ ความน่าจะเป็นคลาส C

 $p(x_i|C)$ คือ ความน่าจะเป็นคลาส \subset ที่มีค่า x_i

Applied Data Science: Natural Language Processing.

2.3 การวัดประสิทธิภาพโมเดล

งานวิจัยนี้ทำการทดสอบประสิทธิภาพของโมเดลโดยแบ่ง ข้อมูลด้วยเทคนิค Split Test โดยการแบ่งเป็นข้อมูลชุดเรียนรู้ 80% และข้อมูลชุดทดสอบ 20% และใช้ตาราง Confusion matrix เพื่อคำนวณค่าต่างๆ

ค่า Accuracy เป็นการวัดความถูกต้องของโมเดลโดย พิจารณารวมทุกคลาส ค่า Accuracy สามารถคำนวณได้ดัง สมการที่ 3

Accuracy =
$$\frac{(TP + TN)}{(TP + TN + FP + FN)}$$

สมการที่ 3

ค่า Precision เป็นการวัดความแม่นยำของโมเดล โดย พิจารณาแยกทีละคลาสดังสมการที่ 4

Precision =
$$\frac{TP}{(TP + FP)}$$

ค่า Recall เป็นการวัดความถูกต้องของโมเดลเมื่อ เปรียบเทียบกับข้อมูลจริงในแต่ละคลาส ค่า recall ของแต่ละ คลาสสามารถคำนวณได้ดังสมการที่ 5

Recall =
$$\frac{TP}{(TP + FN)}$$

สมการที่ 5

ค่า F1-SCORE เป็นการวัดค่า PRECISION และ RECALLพร้อมกันของโมเดลโดยพิจารณาแยกทีละคลาสดัง สมการที่ 6

$$F1 = \frac{2 * (Precision * Recall)}{(Precision + Recall)}$$

ตาราง 1 ผลการประเมินบน TF Weighting โดยใช้การแบ่ง ชุดข้อมูล 80:20

อัลกอริทึม		KNN	Bayes
Sadness	Precision	0.31	0.31
	Recall	0.48	0.44
	F1	0.38	0.36
Joy	Precision	0.36	0.37
	Recall	0.49	0.17
	F1	0.41	0.23
Love	Precision	0.11	0.10
	Recall	0.02	0.25
	F1	0.03	0.14
Anger	Precision	0.17	0.17
	Recall	0.06	0.08
	F1	0.09	0.11
Fear	Precision	0.15	0.12
	Recall	0.04	0.10
	F1	0.06	0.11
Surprise	Precision	0.10	0.04
	Recall	0.01	0.07
	F1	0.01	0.05

ตาราง 2 Confusion Matrix ของ KNN ใช้เทคนิคการให้ น้ำหนักคำแบบ TF Weighting แบ่งชุดข้อมูล 80:20

4. ผลการวิจัย

Applied Data Science: Natural Language Processing.

ตาราง - Confusion Matrix ของ Bayes ใช้เทคนิคการให้ น้ำหนักคำแบบ TF Weighting แบ่งชุดข้อมูล 80:20

[6] KongRuksiam Studio : สรุป Machine Learning(EP.5)
—การคำนวณเพื่อนบ้านใกล้สุด (K-nearest Neighbors)
https://kongruksiam.medium.com/%E0%B8%AA%E0%
B8%A3%E0%B8%B8%E0%B8%9B-machine-learning-ep4%E0%B9%80%E0%B8%9E%E0%B8%B7%E0%B9%88%

E0%B8%AD%E0%B8%99%E0%B8%9A%E0%B9%89%E0

%B8%B2%E0%B8%99%E0%B9%83%E0%B8%81%E0%

B8%A5%E0%B9%89%E0%B8%97%E0%B8%B5%E0%B9

%88%E0%B8%AA%E0%B8%B8%E0%B8%94-k-nearest-neighbors-787665f7c09d

[7] Machine Learning เทคโนโลยีประโยชน์ครอบจักรวาล https://www.cyberelite.co.th/blog/machine-learning/

เอกสารอ้างอิง

[1] Narut Soontranon : LSTM คือ อะไร https://www.nerd-data.com/deep_learning_lstm/

[2] Data Base Camp: Long Short-Term Memory Networks (LSTM)- simply explained! https://databasecamp.de/en/ml/lstms

[3] Wiki Pedia : แท็กคลาวด์

https://th.wikipedia.org/wiki/%E0%B9%81%E0%B8%97 %E0%B9%87%E0%B8%81%E0%B8%84%E0%B8%A 5%E0%B8%B2%E0%B8%A7%E0%B8%94%E0%B9% 8C

[4] Wiki Pedia : Visualization

https://en.wikipedia.org/wiki/Visualization

[5] Peachapong Poolpol: Naïve Bayes Classification

https://peachapong-

poolpol.medium.com/na%C3%AFve-bayes-

classification-cb6cf905505d