Cuantificadores

Matemática estructural y lógica

ISIS-1104

Operadores binarios

Un operador binario sobre elementos de tipo T es una función $T \times T \to T$

$$+: Int \times Int \rightarrow Int$$

- . Decimos que un operador $\oplus: T \times T \to T$ es:
 - Asociativo si $(a \oplus b) \oplus c = a \oplus (b \oplus c)$
 - Conmutativo si $(a \oplus b) = (b \oplus a)$
 - Con n como identidad si $(a \oplus n) = (n \oplus a) = a$

Algunos ejemplos

- + en *Int*, es asociativo, conmutativo y con 0 como identidad.
- / en Real, es no asociativo, no conmutativo y sin identidad.
- V en Bool, es asociativo, conmutativo y con False como identidad.
- ≡ en Bool, es asociativo, conmutativo y con True como identidad.

Ahora ustedes!

- - en *Int*?
- * en *Int*?
- ∧ en *Bool*?
- \Rightarrow en *Bool*?

Cuantificadores

Si $\oplus: T \to T \times T$ es conmutativo, asociativo y con identidad. Definimos su cuantificación como

$$(\oplus t: T \mid Q: E)$$

Lo cual se interpreta como

sobre todos los t que cumplan Q(t), agregar el resultado de E(t) usando \oplus

 $Q: T \rightarrow Bool$ se conoce como el *rango*.

 $E: T \rightarrow T$ se conoce como el cuerpo.

Cuantificadores vs. funciones de alto orden

En realidad un cuantificador es una combinación de funciones de alto orden

$$(\oplus t: T \mid Q: E)$$

es lo mismo que

```
static T quantifier(⊕, Q, E, list) {
    List<T> filtered = filter(Q, list);
    List<T> mapped = map(E, filtered);
    T folded = fold(⊕, mapped);
    return folded;
}
```

Un cuantificador aplica sobre todos los elementos de tipo T mientras que quantifier no.

Un ejemplo

$$(+i: Int \mid i \ge 0 \land i < 6: 2i)$$

Podemos pensarlo como

■ Filtramos: Nos quedamos con los i que cumplan $i \ge 0 \land i < 6$.

Mapeamos: Transformamos estos i a 2i

Reducimos: Operamos usando +

$$0 + 2 + 4 + 6 + 8 + 10 = 30$$

Ahora ustedes

$$(*i : Int | i > 0 \land i < 10 \land esPar(i) : i/2)$$

Algunos casos particulares

Si no queremos filtrar hacemos el rango siempre verdadero:

$$(\oplus t: T \mid True: E)$$
 o más corto $(\oplus t: T \mid : E)$

Las cuantificaciones pueden depender de otros valores:

$$(*i: Int \mid i > 0 \land i < n:i)$$

Podemos operar infinitos elementos

$$(+i: Int \mid i > 0: 1/2^i) = \frac{1}{2^1} + \frac{1}{2^2} + \frac{1}{2^3} + \dots = 2$$

Pero no siempre tenemos que obtener un valor finito

$$(+i: Int \mid i > 0: i)$$
 diverge

q

¿Cómo evaluar cuantificadores? Axiomas

Rango vacío:

$$(\oplus t \mid \mathit{False} : \mathit{E}) = \mathsf{identidad} \ \mathsf{de} \ \oplus$$

Regla de un punto:

$$(\oplus t \mid t = s : E) = E(s)$$

Distributividad*:

$$(\oplus t \mid Q: E_1) \oplus (\oplus t \mid Q: E_2) = (\oplus t \mid Q: E_1 \oplus E_2)$$

¿Cómo evaluar cuantificadores? Axiomas

■ Partir rango disyunto*: Si $Q \land S \equiv False$ para todos los t

$$(\oplus t \mid Q \lor S : E) = (\oplus t \mid Q : E) \oplus (\oplus t \mid S : E)$$

• Partir rango idempotente*: Si $t \oplus t = t$ para todos los t

$$(\oplus t \mid Q \lor S : E) = (\oplus t \mid Q : E) \oplus (\oplus t \mid S : E)$$

Partir rango general*:

$$(\oplus t \mid Q \lor S : E) \oplus (\oplus t \mid Q \land S : E) = (\oplus t \mid Q : E) \oplus (\oplus t \mid S : E)$$

¿Cómo evaluar cuantificadores? Axiomas

 Intercambio de variables*: Si Q no depende de v y S no depende de t

$$(\oplus t \mid Q : (\oplus v \mid S : E)) = (\oplus v \mid S : (\oplus t \mid Q : E))$$

Anidamiento*: Si Q no depende de v

$$(\oplus t, v \mid Q \land S : E) = (\oplus t \mid Q : (\oplus v \mid S : E))$$

ullet Renombramiento de variables: Si Q y E no dependen de v

$$(\oplus t \mid Q : E) = (\oplus v \mid Q : E)$$