文件编号: 002 项目名称: EMSC Lib 项目版本:	版本: 4.0	密级: [] 绝密 [] 机密 [] 受控 [] 流通
页数:共9页	注:	

EMSC Lib 简明设计报告

编	制 : -	蔡文锋	日	期:	2015.11
审	核 :	羊箭锋	日	期:	2015.11
批	准:	刘学观	日	期:	2015.11

发布日期: <u>2015.12</u> 版本编号: <u>4.0</u> 控制状态: ______

苏州大学

版权所有 不得拷贝

修订记录

撰写修订日期	修订版本编号	修订内容描述	作者	审核
2004.12	1.0	MoM 串行计算	蔡文锋	刘学观
2006.09	2.0	MoM 并行及涂覆目标计算	蔡文锋	羊箭锋
2009.08	3.0	时域正交积分方法	蔡文锋	刘学观
2012.11	4.0	时域方法的全并行化	蔡文锋	羊箭锋

目录

第1章	引言	1
1.1	编写目的	1
1.2	定义	1
1.3	参考资料	1
第2章	EMSC Lib 整体架构	2
2.1	系统平台	2
2.2	代码组织架构	2
第3章	EMSC Lib 移植及优化说明	3
第4章	EMSC Lib 调用接口	4
4.1	Libmom 函数库接口	
4.2	其余子函数库	5
第5章	EMSC Lib 运行时配置	6

第1章引言

1.1 编写目的

本文档主要说明针对隐身导体目标电磁散射的高效算法库 EMSC Lib 的设计,该算法库基于频域矩量法(MoM)和时域正交积分的方法。本文档简要说明了其基本原理、设计架构及使用方法。

1.2 定义

1.3 参考资料

- [1] Wenfeng Cai, Xueguan Liu, Huiping Guo, Honglong Cao. Weighted Laguerre polynomials and its applications in transient RCS analysis. Proceedings 4th International Symposium on Electromagnetic Compatibility 2007, p 421-3, 2007.
- [2] Hong Lin, Wenfeng Cai, Huiping Guo, Xueguan Liu. Analysis of large-scale EM scattering using the parallel characteristic basis function method. 2006 7th International Symposium on Antennas, Propagation & EM Theory, p 4 pp., 2006.
- [3] Xueguan Liu, Wenfeng Cai, Huiping Guo, Hongcheng Yin. The application of the equivalent dipole-moment method to electromagnetic scattering of 3D objects. 2005 Asia-Pacific Microwave Conference, p 3 pp., 2006.

苏州大学 设计文档

第2章 EMSC Lib 整体架构

2.1 系统平台

EMSC Lib 算法库核心计算代码采用 Fortran 90 开发,在任何支持 Fortran 90/C/C++的操作系统上都可以正常使用。本算法库依赖于 ScaLapack、Lapack、BLACS、ATLAS 等数学库,也可以换用 Intel Math Kernel Library 的版本。并行算法代码需要有 MPI 环境支持。

2.2 代码组织架构

本算法库主要提供了几种高效计算方法的函数调用接口。用户可以编译成独立的库函数 及头文件使用,也可以讲算法代码集成到自己的计算程序当中。算法库由 6 个子库组成,每 个目录下除核心算法库外,另有一个测试用的主函数。几个算法库简列如下:

Libmom: MoM 方法串行算法库

Libpcoating: 涂覆目标 MoM 并行算法库,基于电流的计算 Libpmcoating: 涂覆目标 MoM 并行算法库,基于磁流的计算

Libtdefie: 时域正交分解串行算法,基于电场积分方程 Libtdmfie: 时域正交分解串行算法,基于磁场积分方程

Libtdemfie: 时域正交分解串行算法,电场、磁场混合积分方程

Libptdmfie: 时域正交分解并行算法, 磁场积分方程

Libptdemfile: 时域正交分解并行算法, 电场、磁场混合积分方程

算法库的理论基础见 1.3 节资料及其参考文献。算法的实现较直白地基于数学表达式, 在此不再赘述理论细节。有关数值算法实现的部分可以参见代码仓库的注释。

第3章 EMSC Lib 移植及优化说明

要使得 EMSC Lib 在目标系统上运行,需要具备 Fortran 90 编译环境,并具有 scalapack、Lapack、BLACS、ATLAS 等数学库,并具有 MPI 并行计算的工具及函数库。

不同的编译环境及函数库可以在 Makefile 里更改,内有部分说明,针对各平台架构的优化参数请参考使用的编译器文档。

苏州大学 设计文档

第4章 EMSC Lib 调用接口

每个子算法库有各自和核心函数调用接口,分别介绍如下。

4.1 Libmom 函数库接口

```
subroutine momcond( frq, nf, thi, phi, ths, phs, na, &
                eincth, eincph, dataname, escath, &
                escaph, phath, phaph)
! 参数说明:
! fra
         (输入) real (nf)
        入射波频率序列;单位: GHz;范围: [0, 100]
! nf
         (输入) integer
        入射频率序列点数;单位:无;范围:(0, Infty]
! thi
         (输入) real (na)
        入射 theta 角序列; 单位: 度; 范围: [0, 180]
         (输入) real (na)
! phi
        入射 phi 角序列; 单位: 度; 范围: [0, 360)
         (输入) real (na)
! ths
        散射 theta 角序列; 单位: 度; 范围: [0, 180]
        (输入) real (na)
! phs
        散射 phi 角序列;单位:度;范围:[0,360)
        (输入) integer
! na
        上述各角度序列对数;单位:无;范围: (0, Infty)
! eincth
         (输入) complex
        入射电场 theta 分量; 单位: V/m; 实虚部范围: [-1000, 1000]
         (输入) complex
! eincph
        入射电场 phi 分量; 单位: V/m; 实虚部范围: [-1000, 1000]
! dataname (输入) character
        三角面元剖分输出数据文件名;限制: 255 个以内 ASCII 字符
1
         (输出) real (nf*na)
! escath
        theta 极化的散射电场幅度序列;单位: V/m; 范围: [0, 2000]
         (输出) real (nf*na)
! escaph
        phi 极化的散射电场幅度序列; 单位: V/m; 范围: [0, 2000]
         (输出) real (nf*na)
! phath
        theta 极化的散射电场相位序列;单位:度;范围:[0,360)
```

4.2 其余子函数库

其余子函数库接口基本统一形式, 具体参数说见合并后的头文件。

苏州大学 设计文档

第5章 EMSC Lib 运行时配置

EMSC Lib 并行函数库在运行时需满足相应的并行环境要求,具体可参考 MPI 库的环境配置。各计算函数的参数设置应符合实际运行场景,在调用时应预先设置好。算法库中的测试程序采用的是读配置文件的方式来进行相应设置。一个典型的配置文件如下所示,期中"!"后为该设置信息的注释。

```
! 处理机行、列数
1 2
.1 3.3 30 ! 最高频率 (GHz); 时间因子 (光速几倍); Laguerre最高阶数
90. 1 90. ! 入射 theta 初始角, 角总数, 角间隔
          ! 入射 phi 初始角,角总数,角间隔
90. 1 90.! 散射 theta 初始角, 角总数, 角间隔
          ! 散射 phi 初始角,角总数,角间隔
        ! 单站 true, 其余 .false.
.true.
         ! 数据文件名, .tri 和 .part 的数据文件, 时域RCS信息:
qiu
.rcst
        !涂敷材料的 mu r 和 epsilon r
11111111111111
! $URL: svn://land/projects/ptdmfie/ptdemfie.conf-dist $
! $Id: ptdemfie.conf-dist 97 2008-03-20 13:49:57Z cai $
! 单站时散射角不起作用, 同入射角; 其余情况最后结果为入射角度x散射角度数
! 入射角度数: nthi*nphi; 散射角度数: nths*nphs; 散射角先变
```