

DIODE APPROXIMATIONS

SEMICONDUCTOR DIODE

TOPIC OUTLINE

Diode Approximations

- Ideal Diode
- 2nd Approximation
- 3rd Approximation

Shockley's Equation

Reading Datasheet

DIODE APPROXIMATIONS

IDEAL DIODE

Using the ideal diode model, determine the load voltage, load current, and the power dissipated by the diode in the given circuit.

$$|KVLQLI|$$

$$-V0 + 2V0 + VL =$$

$$VL = V0$$

$$VL = GV$$

$$iL = G$$

$$iL = G$$

$$P_D = i_D y_D^{*D}$$

$$P_D = 0$$
ans

Using the ideal diode model, determine the load voltage, load current, and the power dissipated by the diode in the given circuit.

Solution

Hode Analysis Method

$$\nu_L = 6V$$

Using the ideal diode model, determine the load voltage, load current, and the power dissipated by the diode in the given circuit.

$$\frac{\text{KVLQL1}}{-V_0 + V_1 + V_2 = 6}$$

$$V_1 + V_2 = V_0 \quad (=g-1)$$

$$\frac{|kCL@a|}{-ii + i2 + i0 = 0}$$

$$-\frac{v_1}{k_1} + \frac{v_2}{k_2} + \frac{v_3}{k_3} = 0$$

$$-v_1G_1 + v_2G_2 + v_3G_1 = 0 \quad (eq. 2)$$

$$\frac{\text{KVLO 12}}{-V_2 + V_0} + V_1 = 0$$

$$-V_2 + V_1 = 0 \quad (eq.3)$$

Gaussian Elimination Method

_	V1 V2 VL		_
_	$-\frac{1}{0}$ $\frac{1}{3}$ $\frac{1}{3}$	0	n
	1 10	10	12 ← 6 V1 + V2
	0 -1	0	V 3

_				+	\vdash
	V_1	V2	VL		
	10	1/3	13	0	_U
	0	3	2	10	1/2
	0	-1	1	0	V 3

System of Linear Equations

$$\frac{v_1 + v_2 = v_0}{\sqrt{2}} \left(\frac{e_8 \cdot 1}{2} \right)$$

$$- v_1 \cdot c_1 + v_2 \cdot c_2 + v_1 \cdot c_1 = 0 \quad (e_8 \cdot 2)$$

$$- v_2 + v_1 = 0 \quad (e_8 \cdot 3)$$

Gaussian Elimination Method

_	Vι	V2	VL		
	-10	13	13	0	η,
	0	3	2	10	1/2
	0	0	\$	10	V 3

		<u></u>
V1 V2 VL		
$-\frac{1}{6}$ $\frac{1}{3}$ $\frac{1}{3}$	O	n
0 3 2	10	1 2
0 -1 1	0	13 < 12+313

System of Linear Equations

$$\frac{v_1 + v_2 = v_0}{-v_1G_1 + v_2G_2 + v_1G_1 = 0} (eg. 1)$$

$$-vz+v_{L}=0 \quad (eg.3)$$

Using the ideal diode model, determine the load voltage, load current, and the power dissipated by the diode in the given circuit.

$$i_{L} = \frac{\nu_{L}}{\nu_{L}}$$

$$i_{L} = \frac{2}{3\kappa}$$

$$i_{L} = 660.07 \text{ MA}$$
ans

Using the ideal diode model, determine the load voltage, load current, and the power dissipated by the diode in the given circuit.

Solution

Hode Analysis Method

$$\frac{|\mathcal{L} \mathcal{L} \mathcal{Q} \mathcal{Q}|}{-i_1 + i_2 + i_0} = 0$$

$$-\frac{v_1}{v_1} + \frac{v_2}{v_2} + \frac{v_1}{v_2} = 0$$

$$-\frac{v_0 - v_0}{v_1} + \frac{v_2}{v_2} + \frac{v_1}{v_2} = 0$$

$$-\frac{v_0 - v_0}{v_1} + \frac{v_1 + v_2}{v_2} + \frac{v_1}{v_2} = 0$$

$$-\frac{v_0 + v_1}{v_1} + \frac{v_1 + v_2}{v_2} + \frac{v_1 + v_2}{v_2} = 0$$

$$v_1 = \frac{v_0 + v_1}{v_1 + v_2} = 0$$

$$v_1 = \frac{v_0 + v_1}{v_1 + v_2} = 0$$

$$v_2 = \frac{v_0 + v_1}{v_1 + v_2} = 0$$

Using the ideal diode model, determine the load voltage, load current, and the power dissipated by the diode in the given circuit.

$$V_L = 2V$$

$$i_L = \frac{2}{3k}$$

2ND APPROXIMATION

The diode is modeled as an ideal **switch** in series with a **barrier potential**.

Circuit Equivalent

If $v_D \ge 0.7$ V, the switch is closed, and the diode conducts.

If v_D < 0.7 V, the switch is open, and the diode does not conduct.

Apply the second approximation of the diode model to determine the load voltage, load current, and the power dissipated by the diode in the given circuit.

$$\frac{|V| | |V| | |V| |}{|V| | |V| |} = 0$$

$$|V| = |V| | |V| |$$

$$|V| = |V| | |V| |$$

$$|V| = |V| |$$

$$|V|$$

Apply the second approximation of the diode model to determine the load voltage, load current, and the power dissipated by the diode in the given circuit.

$$\frac{k(u \circ a)}{-ii + i2 + i6} = 0$$

$$-\frac{v_1}{4} + \frac{v_2}{42} + \frac{v_1}{42} = 0$$

$$-v_16i + v_26i + v_16i = 0 \quad (81)$$

$$\frac{\text{KVLQL}}{-V_0 + V_1 + V_2 = 0}$$

$$\frac{V_1 + V_2 = 0}{(eg.2)}$$

$$\frac{\text{KVLOL2}}{-V2 + Vp + VL = 0}$$

$$-V2 + VL = -Vp \quad (\%.3)$$

Apply the second approximation of the diode model to determine the load voltage, load current, and the power dissipated by the diode in the given circuit.

$$-\frac{v_{1}G_{1} + v_{2}G_{2} + v_{1}G_{1} = 0}{v_{1} + v_{2} = v_{0}} (eg.2)$$

$$-v_{2} + v_{1} = -v_{0} (eg.2)$$

Gaussian Elimination Method

_	1		<u>_</u>
	V1 V2 VL		
	1-3	0	V 1
	1 1 0	10	r ₂ ← 6r ₁ + r ₂
	0 -1 1	-0.7	V 3

				1	L
	ν̈́	V2	VL		
_	- 6	13	13	0	V 1
	0	3	2	10	V ₂
	0	-1	1	-0.7	1 3

System of Linear Equations

$$-\frac{1}{2} \frac{1}{16} \frac$$

Gaussian Elimination Method

	1				l
_	ν _ι	V2	VL		
	- 6	13	13	0	V 1
	0	3	2	10	V2
	0	0	\$	7.9	V 3

			<u>_</u>
	V1 V2 VL		
_	-4 -3	0	V 1
	0 3 2	10	V ₂
	0 -1	-0.7	V3 ← V2+3V3

System of Linear Equations

$$-\nu_2 + \nu_L = -\nu_0^{0.7} (8.3)$$

Apply the second approximation of the diode model to determine the load voltage, load current, and the power dissipated by the diode in the given circuit.

$$i_{L} = \frac{VL}{4L}$$

$$i_{L} = \frac{1.58}{3K}$$

$$i_{L} = 526.67M$$

$$P_{D} = 526.67M(8.7)$$

$$P_{D} = 368.67MW$$
ans

Apply the second approximation of the diode model to determine the load voltage, load current, and the power dissipated by the diode in the given circuit.

Solution

Node Analysis Method

$$\frac{|U \cup Q \cap A|}{-i_1 + i_2 + i_3 = 0}$$

$$-\frac{v_1}{R_1} + \frac{v_2}{R_2} + \frac{v_2}{R_2} = 0$$

$$-\frac{v_0 - v_0}{R_1} + \frac{v_2}{R_2} + \frac{v_1}{R_2} = 0$$

$$-\frac{v_0 - v_0}{R_1} + \frac{v_0 - v_0}{R_2} + \frac{v_0 - v_0}{R_2} = 0$$

$$-\frac{v_0 - v_0}{R_1} + \frac{v_0 - v_0}{R_2} + \frac{v_0 - v_0}{R_2} = 0$$

$$-\frac{v_0 - v_0}{R_1} + \frac{v_0 - v_0}{R_2} + \frac{v_0 - v_0}{R_2} = 0$$

$$-\frac{v_0 - v_0}{R_1} + \frac{v_0 - v_0}{R_2} + \frac{v_0 - v_0}{R_2} = 0$$

$$-\frac{v_0 - v_0}{R_1} + \frac{v_0 - v_0}{R_2} + \frac{v_0 - v_0}{R_2} = 0$$

$$-\frac{v_0 - v_0}{R_1} + \frac{v_0 - v_0}{R_2} + \frac{v_0 - v_0}{R_2} = 0$$

$$-\frac{v_0 - v_0}{R_1} + \frac{v_0 - v_0}{R_2} + \frac{v_0 - v_0}{R_2} = 0$$

$$-\frac{v_0 - v_0}{R_1} + \frac{v_0 - v_0}{R_2} + \frac{v_0 - v_0}{R_2} = 0$$

$$-\frac{v_0 - v_0}{R_1} + \frac{v_0 - v_0}{R_2} + \frac{v_0 - v_0}{R_2} = 0$$

$$-\frac{v_0 - v_0}{R_1} + \frac{v_0 - v_0}{R_2} + \frac{v_0 - v_0}{R_2} = 0$$

$$-\frac{v_0 - v_0}{R_1} + \frac{v_0 - v_0}{R_2} + \frac{v_0 - v_0}{R_2} = 0$$

$$-\frac{v_0 - v_0}{R_1} + \frac{v_0 - v_0}{R_2} + \frac{v_0 - v_0}{R_2} = 0$$

$$-\frac{v_0 - v_0}{R_1} + \frac{v_0 - v_0}{R_2} + \frac{v_0 - v_0}{R_2} = 0$$

$$-\frac{v_0 - v_0}{R_1} + \frac{v_0 - v_0}{R_2} + \frac{v_0 - v_0}{R_2} = 0$$

$$-\frac{v_0 - v_0}{R_1} + \frac{v_0 - v_0}{R_2} + \frac{v_0 - v_0}{R_2} = 0$$

$$-\frac{v_0 - v_0}{R_1} + \frac{v_0 - v_0}{R_2} + \frac{v_0 - v_0}{R_2} = 0$$

$$-\frac{v_0 - v_0}{R_1} + \frac{v_0 - v_0}{R_2} + \frac{v_0 - v_0}{R_2} = 0$$

$$-\frac{v_0 - v_0}{R_1} + \frac{v_0 - v_0}{R_2} + \frac{v_0 - v_0}{R_2} = 0$$

$$-\frac{v_0 - v_0}{R_1} + \frac{v_0 - v_0}{R_2} + \frac{v_0 - v_0}{R_2} = 0$$

$$-\frac{v_0 - v_0}{R_1} + \frac{v_0 - v_0}{R_2} + \frac{v_0 - v_0}{R_2} = 0$$

$$-\frac{v_0 - v_0}{R_1} + \frac{v_0 - v_0}{R_2} + \frac{v_0 - v_0}{R_2} = 0$$

$$-\frac{v_0 - v_0}{R_1} + \frac{v_0 - v_0}{R_2} + \frac{v_0 - v_0}{R_2} = 0$$

$$-\frac{v_0 - v_0}{R_1} + \frac{v_0 - v_0}{R_2} + \frac{v_0 - v_0}{R_2} = 0$$

$$-\frac{v_0 - v_0}{R_1} + \frac{v_0 - v_0}{R_2} + \frac{v_0 - v_0}{R_2} = 0$$

$$-\frac{v_0 - v_0}{R_1} + \frac{v_0 - v_0}{R_2} + \frac{v_0 - v_0}{R_2} = 0$$

$$-\frac{v_0 - v_0}{R_1} + \frac{v_0 - v_0}{R_2} + \frac{v_0 - v_0}{R_2} = 0$$

$$-\frac{v_0 - v_0}{R_1} + \frac{v_0 - v_0}{R_2} + \frac{v_0 - v_0}{R_2} = 0$$

$$-\frac{v_0 - v_0}{R_1} + \frac{v_0 - v_0}{R_2} + \frac{v_0 - v_0}{R_2} = 0$$

$$-\frac{v_0 - v_0}{R_1} + \frac{v_0 - v_0}{R_2} + \frac{v_0 - v_0}{R_2} = 0$$

$$-\frac{v_0 - v_0}{R_1} +$$

Apply the second approximation of the diode model to determine the load voltage, load current, and the power dissipated by the diode in the given circuit.

$$\frac{\text{Solution}}{V_{L}} = \frac{V_{0}G_{1} - 0.7(G_{1} + G_{2})}{G_{1} + G_{2} + G_{L}}$$

$$V_{L} = \frac{10(\% \text{K}) - 0.7(\% \text{K} + \% \text{K})}{\% \text{K} + \% \text{K}}$$

$$V_{L} = \frac{1.58 \text{V}}{\text{V}}$$

$$i_{L} = \frac{y_{L}}{t_{L}}$$

$$i_{L} = \frac{1.58}{3k}$$

$$i_{L} = 526.67M$$
ans

ans

3RD APPROXIMATION

Characteristic Curve

The diode is modeled as an ideal <u>switch</u> in series with a <u>barrier potential</u> and a <u>bulk resistance</u>.

Circuit Equivalent

$$v_D = 0.7V + i_D R_B$$

Typical value of $R_B < 1\Omega$, and often ignored if $R_B < 0.01R_{TH}$

The 1N4001 of the given network has a bulk resistance of 0.23 Ω . What is the load voltage, load current, and the power dissipated by the diode?

Solution

Hode Analysis Method

$$V_{D} + V_{B} = V_{0} - V_{L}$$
 $V_{D} + i_{B} E_{B} = V_{0} - i_{L} R_{L}$
 $i_{L} R_{B} + i_{L} Z_{L} = V_{0} - V_{D}$
 $i_{L} (R_{B} + R_{L}) = V_{0} - V_{D}$
 $k_{B} + R_{L}$
 $k_{B} + R_{L}$

ans

The 1N4001 of the given network has a bulk resistance of 0.23 Ω . What is the load voltage, load current, and the power dissipated by the diode?

$$V_{L} = i_{L}R_{L}$$
 $V_{L} = 5.30 \text{ m} (11\text{ k})$
 $V_{L} = 5.30 \text{ V}$
 $V_{L} = 5.$

The 1N4001 of the given network has a bulk resistance of 0.23 Ω . What is the load voltage, load current, and the power dissipated by the diode?

Solution

Hode Analysis Method

$$V_{p} + V_{p} = V_{0} - V_{L}$$
 $V_{p} + V_{p} = V_{0} - V_{p}$
 $V_{p} + V_{p} = V_{p} - V_{p}$
 $V_{p} = V_{p} - V_$

The 1N4001 of the given network has a bulk resistance of 0.23 Ω . What is the load voltage, load current, and the power dissipated by the diode?

$$P_{0} = i_{0}V_{0} + i_{B}V_{B}$$
 $P_{0} = i_{0}V_{0} + i_{B}^{2}V_{B}$
 $P_{0} = i_{0}V_{0} + i_{B}^{2}V_{B}$
 $P_{0} = 518.08 \,\text{m}(0.7) + (518.08 \,\text{m})^{2}10$
 $P_{0} = 3.04 \,\text{W}$

The 1N4001 of the given network has a bulk resistance of 0.23 Ω . What is the load voltage, load current, and the power dissipated by the diode?

Solution

Hode Analysis Method

$$\frac{|V_{CL} \otimes a|}{-i_{1} + i_{2} + i_{5} = 0}$$

$$-\frac{v_{1}}{k_{1}} + \frac{v_{2}}{k_{2}} + \frac{v_{L}}{k_{L}} = 0$$

$$-\frac{v_{0} - v_{2}}{k_{1}} + \frac{v_{2}}{k_{2}} + \frac{v_{L}}{k_{L}} = 0$$

$$-\frac{v_{0} - v_{2}}{k_{1}} + \frac{v_{2}}{k_{2}} + \frac{v_{L}}{k_{L}} = 0$$

$$-\frac{v_{0} - v_{2}}{k_{1}} + \frac{v_{2} + v_{L}}{k_{2}} + \frac{v_{L}}{k_{L}} = 0$$

$$v_{2}(G_{1} + G_{2}) + v_{L}G_{1} = v_{0}G_{1} \text{ (eg.1)}$$

The 1N4001 of the given network has a bulk resistance of 0.23 Ω . What is the load voltage, load current, and the power dissipated by the diode?

$$V_{D} + V_{B} = V_{2} - V_{L}$$
 $V_{2} = V_{D} + V_{B} + V_{L}$
 $V_{2} = V_{D} + V_{B} + V_{L}$
 $V_{3} = V_{D} + V_{L} + V_{L}$
 $V_{4} = V_{D} + V_{L} + V_{L}$

$$V_2(G_1 + G_2) + V_1G_1 = V_0G_1 (eg.1)$$
 $V_0 \neq U_1 (R_B + R_1) (G_1 + G_2) + V_1G_1 = V_0G_1$
 $V_0(G_1 + G_2) + (i_1(R_B + R_1)(G_1 + G_2) + (i_1 = V_0G_1)$
 $i_1(R_B + R_1)(G_1 + G_2) + i_1 = V_0G_1 - V_0(G_1 + G_2)$

The 1N4001 of the given network has a bulk resistance of 0.23 Ω . What is the load voltage, load current, and the power dissipated by the diode?

SHOCKLEY'S EQUATION

SHOCKLEY'S EQUATION

Characteristic Curve

Shockley's Equation

$$i_D = i_S \left(e^{\frac{v_D}{nv_T}} - 1 \right)$$

where:

 i_D = diode current

 i_S = reverse saturation current

 v_D = voltage across the diode

 $n = \text{ideality factor } (1 \le n \le 2)$

• n = 1 for ideal diode

 v_T = thermal voltage ($\approx 25.85 mV$ at room temperature)

THERMAL VOLTAGE

Characteristic Curve

Thermal Voltage

$$v_T = \frac{kT}{q}$$

where:

 $k = \text{Boltzmann's constant } (1.38 \times 10^{-23} \text{ J/K})$

T = absolute temperature (°C + 273)

q =electron charge $(1.602 \times 10^{-19} \text{ C})$

Determine the diode current at 20°C for silicon diode with a reverse saturation current of 50nA and an ideality factor of 2, under the following applied voltages: $V_{+} = 25.24 \text{ mV}$

$$V_{T} = \frac{kT}{8}$$

$$V_{T} = \frac{1.38 \times 10^{-23}}{1.602 \times 10^{-19}}$$

$$V+=25.24 \,\mathrm{mV}$$

$$i_0 = i_0 \left(e^{\frac{y_0}{ny_1}} - 1 \right)$$

$$i_0 = t_0 \left(e^{\frac{(2)(2t \cdot 24 \text{ mV})}{-1}} - 1 \right)$$

$$i_0 = 0$$

Determine the diode current at 20°C for silicon diode with a reverse saturation current of 50nA and an ideality factor of 2, under the following applied voltages: $V_{+} = 25.24 \text{ mV}$

■ 0.7V

$$0.70 = 1$$
 $ib = 50n(e^{-2(2t.24m)} - 1)$
 $ib = 204$

$$\frac{0 \text{ No} = 0.5}{\text{ip} = \text{is}\left(e^{\frac{\text{No}}{\text{NNT}}} - 1\right)}$$

$$\frac{0 \text{ To} = \text{is}\left(e^{\frac{\text{No}}{2(2t \cdot 24m)}} - 1\right)}{\text{ip} = 50 \text{ n}\left(e^{\frac{\text{No}}{2(2t \cdot 24m)}} - 1\right)}$$

$$\frac{0 \text{ No} = 6.7 \text{V}}{\text{ip} = 50 \text{ n}\left(e^{\frac{\text{No}}{2(2t \cdot 24m)}} - 1\right)}$$

$$\frac{1}{\text{ip} = 52 \cdot 63 \text{ mA}}$$
ans

READING DATASHEET

REVERSE BREAKDOWN VOLTAGE

MAXIMUM RATINGS

Rating	Symbol	1N4001	1N4002	1N4003	1N4004	1N4005	1N4006	1N4007	Unit
†Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	200	400	600	800	1000	>
†Non-Repetitive Peak Reverse Voltage (halfwave, single phase, 60 Hz)	V _{RSM}	60	120	240	480	720	1000	1200	٧
†RMS Reverse Voltage	V _{R(RMS)}	35	70	140	280	420	560	700	V
†Average Rectified Forward Current (single phase, resistive load, 60 Hz, T _A = 75°C)	I _O				1.0				Α

<u>Destructive level</u> to avoid under all operating conditions.

Practice safety factor of 2.

MAXIMUM FORWARD CURRENT

MAXIMUM RATINGS

Rating	Symbol	1N4001	1N4002	1N4003	1N4004	1N4005	1N4006	1N4007	Unit
†Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	200	400	600	800	1000	<
†Non-Repetitive Peak Reverse Voltage (halfwave, single phase, 60 Hz)	V _{RSM}	60	120	240	480	720	1000	1200	٧
†RMS Reverse Voltage	V _{R(RMS)}	35	70	140	280	420	560	700	٧
†Average Rectified Forward Current (single phase, resistive load, 60 Hz, T _A = 75°C)	l _O		1.0				Α		

Level of forward current before the **diode burns out**

because of excessive power dissipation.

FORWARD VOLTAGE DROP

ELECTRICAL CHARACTERISTICS†

Rating	Symbol	Тур	Max	Unit
Maximum Instantaneous Forward Voltage Drop, (i _F = 1.0 Amp, T _J = 25°C)	v _F	0.93	1.1	V
Maximum Full-Cycle Average Forward Voltage Drop, ($I_O = 1.0$ Amp, $T_L = 75$ °C, 1 inch leads)	V _{F(AV)}	-	0.8	V
Maximum Reverse Current (rated DC voltage) $ (T_J = 25^{\circ}C) $ $ (T_J = 100^{\circ}C) $	I _R	0.05 1.0	10 50	μА
Maximum Full-Cycle Average Reverse Current, ($I_O = 1.0$ Amp, $T_L = 75$ °C, 1 inch leads)	I _{R(AV)}	_	30	μА

The typical voltage across the diode.

LABORATORY

