PARTICIPEZ À UNE COMPÉTITION KAGGLE

Evaluating language knowledge of ELLs students from grades 8-12

Mestapha Oumouni

P8 OC parcours IML Mentor: Samir Tanfous 31/10/2022

Sommaire

- ☐ Présentation de la compétition
- ☐ Chargement des données et pré-processing
- ☐ Modèles de prédiction
- Conclusion

Kaggle: plateforme organisant des compétitions de Data Science

- Mission: participer à une compétition réelle et en cours
- Partager ses résultats avec la communauté

Présentation de la compétition

Context:

- L'expression écrite fondamentale dans l'apprentissage d'une seconde langue
- La population d'apprenants de l'anglais est en croissance rapide, l'évaluation des compétences linguistiques est une tâche fatigante pour les enseignants.
- Les outils de l'évaluation existants sont moins efficaces
- Évaluation parfois biaisée au détriment de l'apprenant.

Mission:

Développer un modèle de ML afin d'évaluer avec précision les compétences linguistiques des apprenants de la langue anglaise.

Données:

Des essais de rédaction (en anglais) notés selon six mesures analytiques : cohésion, syntaxe, vocabulaire, phraséologie, grammaire et conventions.

Chargement des données et pré-processing

Aperçu des données

f_trai	in.tail()							
	text_id	full_text	cohesion	syntax	vocabulary	phraseology	grammar	conventions
3906	FFD29828A873	I believe using cellphones in class for educat	2.5	3.0	3.0	3.5	2.5	2.5
3907	FFD9A83B0849	Working alone, students do not have to argue w	4.0	4.0	4.0	4.0	3.5	3.0
3908	FFDC4011AC9C	"A problem is a chance for you to do your best	2.5	3.0	3.0	3.0	3.5	3.0
3909	FFE16D704B16	Many people disagree with Albert Schweitzer's \dots	4.0	4.5	4.5	4.0	4.5	4.5
3910	FFED00D6E0BD	Do you think that failure is the main thing fo	3.5	2.5	3.5	3.0	3.0	3.

- 3911 Essais de textes
- Six variables d'évaluation dont les notes vont de 1,0 à 5,0 par incréments de 0,5
- > Objectif: Prédire l'évaluation d'un test pour les six composantes:
- Métrique: $\frac{1}{6} \sum_{i=1}^{6} \sqrt{\frac{1}{n}} \sum_{i=1}^{n} (y_{i,j} \hat{y}_{i,j})$

Exploration des données

- Pas de valeurs manquantes
- Pas de valeurs manquantes
- > 3910 de textes de test de writing en anglais
- > Pas de corrélation importante entre les variables
- > En moyenne le text contient 20 phrases

MODÈLES DE PRÉDICTION

- TfidfVectorizer + SVR
- Bert pré-entraîné
 - > avec extraction des features

TfidfVectorizer + SVR

```
param_grid = {'C': [ 0.1, 1, 10, 100], 'gamma': [1,0.1, 0.01],
      'kernel': ['rbf', 'poly', 'sigmoid'], 'epsilon': [1,0.1,0.01]}
svr clf = SVR()
grid = GridSearchCV(svr_clf,param_grid,refit=True,verbose=2)
grid.fit(X train, y train[:,-1])
grid.best_params_
{'C': 10, 'epsilon': 0.1, 'gamma': 1, 'kernel': 'rbf'}
%time
svr clf = SVR(**grid.best params )
error = []
for k in range(0, y train.shape[1]):
  svr clf.fit(X train, y train[:,k])
  rf preds = svr clf.predict(X test)
  error.append(rmse(rf preds,y test[:,k],squared=False))
np.mean(error)
CPU times: user 2 μs, sys: 0 ns, total: 2 μs
Wall time: 5.72 µs
0.5490805237617936
```

Bert pré-entraîné

```
bert model = transformers.TFBertModel.from pretrained("bert-base-uncased",
    attention probs dropout prob=0, hidden dropout prob=0)
# Freeze the BERT model to reuse the pretrained features without modifying them.
bert model.trainable = False
bert output = bert model.bert(
    input ids. attention_mask=attention_masks, token_type_ids=token_type_ids)
sequence output = bert output.last hidden state
pooled_output = bert_output.pooler_output
                 -----Add trainable layers on top of frozen layers
bi lstm = tf.keras.layers.Bidirectional(
tf.keras.layers.LSTM(128, return sequences=True))(sequence output)
# Applying hybrid pooling approach to bi lstm sequence output.
avg pool = tf.keras.layers.GlobalAveragePooling1D()(bi lstm)
max pool = tf.keras.layers.GlobalMaxPooling1D()(bi lstm)
concat = tf.keras.layers.concatenate([avg_pool, max_pool])
dropout = tf.keras.layers.Dropout(0.2)(concat)
x = tf.keras.layers.Dense(512, activation="relu")(dropout)
x = tf.keras.layers.Dense(512, activation="relu")(x)
dropout = tf.keras.layers.Dropout(0.1)(x)
output = tf.keras.layers.Dense(6)(dropout)
model = tf.keras.models.Model(
    inputs=[input ids, attention masks, token type ids], outputs=output
```


Bert pré-entraîné

accuracy: MRMSE

loss: huber_loss

Epochs =21

MRMSE = 0.47

Comparaison

	SVR	Bert
Score	0.55	0.47
temps (min) d'entraînement	2	59

SVR

cohesion	syntax	vocabulary	phraseology	grammar	conventions
2.866870	2.618208	2.991919	2.998066	2.531559	2.749256
2.936079	2.810271	2.859445	2.682595	2.800824	3.130826
3.555411	3.468012	3.620318	3.499729	3.429987	3.382408

Bert

cohesion	syntax	vocabulary	phraseology	grammar	conventions
2.920458	2.788875	3.050251	2.775156	2.665359	2.615009
2.958915	2.662622	2.901422	2.632174	2.451072	2.769485
3.692701	3.548685	3.664722	3.725807	3.507187	3.661301

Conclusion

- Compétences acquises:
 - Découverte et participation sur la plateforme Kaggle
 - Plus familier avec les algo NLP
- Le modèle Bert améliore nettement les résultats

Pistes d'améliorations

- Tester d'autres modèles avec différentes stratégies de pooling
- ☐ Intégrer une équipe de travail
- Combinaison des modèles

