$\begin{array}{c} \textbf{The Four Fundamental Subspaces} \\ A \text{ is } m \times n \text{ matrix of rank } r \\ R = \text{rref}(A), \, M = \text{rref}(A^T), & \text{The SVD of } A \text{ is } U\Sigma V^T \end{array}$

Nullspace: $N(A)$	Row space: $C(A^T)$
• definition:	• definition:
• subspace of of dimension	• subspace of of dimension
• orthogonal complement:	• orthogonal complement:
\bullet relation to $N(R)$ or $N(M^T)$:	• relation to $C(R^T)$ or $C(M)$:
• if $N(A) = 0$ then we say that A has	• if $C(A^T) = \mathbb{R}^n$ then we say that A has
• an orthonormal basis given by:	• an orthonormal basis given by:
Column space: $C(A)$	Left null space: $C = N(A^T)$
• definition:	• definition:
• subspace of of dimension	• subspace of of dimension
• orthogonal complement:	• orthogonal complement:
• relation to $C(R)$ or $C(M^T)$:	• relation to $N(R^T)$ or $N(M)$:
• if $C(A) = \mathbb{R}^m$ then we say that A has	• if $N(A^T) = 0$ then we say that A has
• an orthonormal basis given by:	• an orthonormal basis given by:

Number of Operations

1.	Multiplying an $m \times n$ matrix A by an n component vector v :
2.	Multiplying an $m \times n$ matrix A by an $n \times r$ matrix B :
3.	Computing the dot product of two m component vectors v and w :
4.	Finding the inverse of a matrix A using the Gauss-Jordan method:
5.	Finding the LU factorization of an $m \times m$ matrix A using Gaussian elimination:
6.	Finding the LU factorization of an $m \times m$ upper-triangular matrix A using Gaussian elimination:
7.	Finding the LU factorization of an $m \times m$ matrix A such that $a_{ij} = 0$ if $i > j+1$ using Gaussian elimination
8.	Finding the LU factorization of an $m \times m$ matrix A such that $a_{ij} = 0$ if $i > j+1$ or $j > i+1$ using Gaussian elimination:
9.	Solving an upper-triangular system $Ux = b$, where U is an $m \times m$ upper-triangular matrix and b is an m component vector:
10.	Solving an upper-triangular system $Ux = b$, where U is an $m \times m$ upper-bidiagonal matrix (so $u_{ij} = 0$ if $i > j$ or $j > i + 1$) and b is an m component vector:

Linear Algebraic Algorithms

Gaussian Elimination:
• Purpose:
• Input:
• Any assumptions on the input?
• Output:
• Approximate # of operations (based on size of input):
rr
• Factorizations?
• Pactorizations:
• Pattern of nonzero entries if input is:
- tridiagonal
- lower triangular
– upper triangular
Gram-Schmidt:
• Purpose:
• Input:
• Any assumptions on the input?
- Out-out
• Output:
• Approximate # of operations (based on size of input):
• Factorizations?
• Pattern of nonzero entries if input is:
- tridiagonal

lower triangularupper triangular

 \circ

	-A	A^{2017}	$A^4 + 3A + I$	A^T	e^{A^2}	$(A+I)^{-1}$	SAS^{-1}
eigenvalues							
eigenvectors							

Suppose instead that A is 3×3 and not diagonalizable, with a basis of generalized eigenvectors v_1, j_1, v_2 , so that $Aj_1 = \lambda_1 j_1 + v_1$. Now write down as much as you know about the eigenvalues, (generalized) eigenvectors, and diagonalizability of the following matrices:

6

	-A	A^2	A+I	A^T	e^A	A^{-1}	SAS^{-1}
eigenvalues							
(generalized) eigenvectors							
diagonalizable?							

Suppose that A is an $(m+1) \times (m+1)$ nondiagonalizable matrix with eigenvalues λ_1 (with multiplicity 2), $\lambda_2, \ldots, \lambda_m$, and a corresponding basis of (generalized) eigenvectors $x_1, j_1, x_2, \ldots, x_m$ (so $Aj_1 = \lambda_1 j_1 + x_1$ and $Ax_i = \lambda_i x_i$).

- 1. What is the solution to the differential equation $\frac{dx}{dt} = Ax$ with initial condition x(0)?
- 2. For generic x(0), under what conditions does:
 - (a) $|x(t)| \to \infty$, as $t \to \infty$?
 - (b) $|x(t)| \to 0$, as $t \to \infty$?
 - (c) $|x(t)| \to a$ nonzero constant, as $t \to \infty$?
 - (d) $x(t) \to a$ nonzero constant, as $t \to \infty$?
 - (e) x(t) oscillates, as $t \to \infty$?
- 3. For some choice of x(0), under what conditions does:
 - (a) $|x(t)| \to \infty$, as $t \to \infty$?
 - (b) $|x(t)| \to 0$, as $t \to \infty$?
 - (c) $|x(t)| \to \text{a nonzero constant, as } t \to \infty$?
 - (d) $x(t) \to a$ nonzero constant, as $t \to \infty$?
 - (e) x(t) oscillate, as $t \to \infty$?

- 4. What is the solution to the recurrence $x_k = Ax_{k-1}$ with initial condition x_0 ?
- 5. For generic x_0 , under what conditions does:
 - (a) $|x_n| \to \infty$, as $n \to \infty$?
 - (b) $|x_n| \to 0$, as $n \to \infty$?
 - (c) $|x_n| \to \text{a nonzero constant}$, as $n \to \infty$?
 - (d) $x_n \to a$ nonzero constant, as $n \to \infty$?
 - (e) x_n oscillates, as $n \to \infty$?
- 6. For some choice of x_0 , under what conditions does:
 - (a) $|x_n| \to \infty$, as $n \to \infty$?
 - (b) $|x_n| \to 0$, as $n \to \infty$?
 - (c) $|x_n| \to \text{a nonzero constant}$, as $n \to \infty$?
 - (d) $x_n \to a$ nonzero constant, as $n \to \infty$?
 - (e) x_n oscillates, as $n \to \infty$?