

ANÁLISIS MATEMÁTICO II Examen final 5/12/2023

Apellido y nombre:

Corrigió: Revisó:

T1	Т2	P1	P2	Р3	P4	Calificación

Todas las respuestas deben ser justificadas adecuadamente para ser tenidas en cuenta. No resolver el examen en lápiz. Duración del examen: 2 horas

Condición de aprobación (6 puntos): tres ejercicios correctamente resueltos (uno de T1 o T2 y dos de P1, P2, P3 o P4).

- T1. a) **Defina** solución, solución general, solución particular y solución singular de una ecuación diferencial ordinaria de orden 1.
 - b) Determine si la función y = 1 es una solución particular de la ecuación $y' = x(y 1)^2$.
- T2. Determine si las siguientes proposiciones son verdaderas o falsas. Justifque su respuesta.
 - a) El punto (-3,3,-6) es un punto regular de la la superficie Σ de ecuación $(x,y,z)=(u-v,\ u^2+v,\ 3uv)$.
 - b) La función f(x,y)=x+y no alcanza un máximo absoluto en el conjunto $D:x^2+3y^2\leq 3$.
- P1. Calcule el área de la superficie S definida por $z=\sqrt{x^2+y^2}$, $x^2+y^2\leq 6y$.
- P2. Sean $\vec{f} \colon \mathbb{R}^3 \to \mathbb{R}^3$ un campo C^1 tal que $\mathrm{rot}(\vec{f})(x,y,z) = (1,\ -2,\ -1)$ y los puntos A = (2,0,0) y B = (-2,0,0). Calcule la circulación de \vec{f} a lo largo de la curva $C : \left\{ \begin{array}{c} y = z, \\ x^2 + y^2 = 4, \\ z \ge 0, \end{array} \right.$ orientada de A a B, sabiendo que $\int_{\overline{AB}} \vec{f} \cdot \vec{ds} = -5\pi$.
- P3. Sea $g \in C^1$ y $\vec{f}(x, y, z) = (xy + g(x y), y + g(x y), x zy)$. Calcule el flujo saliente de \vec{f} a través de la superficie frontera del sólido V, definido por $x^2 + y^2 + z^2 \le 10$, $-2 \le z \le 2$.
- P4. Halle $g \in C^1$ tal que, para todo recinto elemental D, la circulación del campo $\vec{f}(x,y) = (yg(x),\ g'(x) x + y)$ a lo largo de la frontera de D, orientada en sentido positivo, es igual al área de D y que $\vec{f}(0,1) = (1,-2)$.