Hadoop Internals

Pietro Michiardi

Eurecom

Introduction and Recap

From Theory to Practice

The story so far

- Principles behind the MapReduce Framework
- Programming model
- Algorithm design and patterns

Hadoop implementation of MapReduce

- HDFS in details
- Hadoop MapReduce
 - ★ Implementation details
 - Types and Formats
- Hadoop I/O

Hadoop Deployments

The BigFoot platform

Terminology

MapReduce:

- ▶ Job: an execution of a Mapper and Reducer across a data set
- Task: an execution of a Mapper or a Reducer on a slice of data
- ▶ Task Attempt: instance of an attempt to execute a task

Example:

- * Running "Word Count" across 20 files is one job
- ★ 20 files to be mapped = 20 map tasks + some number of reduce tasks
- * At least 20 attempts will be performed... more if a machine crashes

Task Attempts

- Task attempted at least once, possibly more
- Multiple crashes on input imply discarding it
- Multiple attempts may occur in parallel (a.k.a. speculative execution)
- ► Task ID from TaskInProgress is not a unique identifier

Hadoop Distributed File-System

Collocate data and computation!

- As dataset sizes increase, more computing capacity is required for processing
- As compute capacity grows, the link between the compute nodes and the storage nodes becomes a bottleneck
 - One could eventually think of special-purpose interconnects for high-performance networking
 - This is often a costly solution as cost does not increase linearly with performance
- Key idea: abandon the separation between compute and storage nodes
 - This is exactly what happens in current implementations of the MapReduce framework
 - ▶ A distributed filesystem is not mandatory, but highly desirable

The Hadoop Distributed Filesystem

- Large dataset(s) outgrowing the storage capacity of a single physical machine
 - Need to partition it across a number of separate machines
 - Network-based system, with all its complications
 - Tolerate failures of machines

Distributed filesystems are not new!

- HDFS builds upon previous results, tailored to the specific requirements of MapReduce
- Write once, read many workloads
- Does not handle concurrency, but allow replication
- Optimized for throughput, not latency

Hadoop Distributed Filesystem[1, 2]

- Very large files
- Streaming data access
- Commodity hardware

Blocks

HDFS Blocks

(Big) files are broken into block-sized chunks

- Blocks are big! [64, 128] MB
- Avoids problems related to metadata management
- ▶ NOTE: A file that is smaller than a single block does not occupy a full block's worth of underlying storage

Blocks are stored on independent machines

- Replicate across the local disks of nodes in the cluster
- Reliability and parallel access
- Replication is handled by storage nodes themselves (similar to chain replication)

• Why is a block so large?

- Make transfer times larger than seek latency
- ► E.g.: Assume seek time is 10ms and the transfer rate is 100 MB/s, if you want seek time to be 1% of transfer time, then the block size should be 100MB

NameNodes and DataNodes

NameNode

- Keeps metadata in RAM
- Each block information occupies roughly 150 bytes of memory
- ▶ Without NameNode, the filesystem cannot be used
 - ★ Persistence of metadata: synchronous and atomic writes to NFS
- Maintains overall health of the file system

Secondary NameNode

- Merges the namespace with the edit log
- ► A useful trick to recover from a failure of the NameNode is to use the NFS copy of metadata and switch the secondary to primary

DataNode

- They store data and talk to clients
- ▶ They report periodically to the NameNode the list of blocks they hold

Architecture Illustration

Figure: Architecture sketch of HDFS operations.

Anatomy of a File Read

NameNode is only used to get block location

- Unresponsive DataNode are discarded by clients
- Batch reading of blocks is allowed

"External" clients

- For each block, the NameNode returns a set of DataNodes holding a copy thereof
- DataNodes are sorted according to their proximity to the client

"MapReduce" clients

- TaskTracker and DataNodes are collocated
- ► For each block, the NameNode usually¹ returns the local DataNode

¹Exceptions exist due to stragglers.

Anatomy of a File Write

Details on replication

- Clients ask NameNode for a list of suitable DataNodes
- ➤ This list forms a pipeline: first DataNode stores a copy of a block, then forwards it to the second, and so on

Replica Placement

- Tradeoff between reliability and bandwidth
- Default placement:
 - First copy on the "same" node of the client, second replica is off-rack, third replica is on the same rack as the second but on a different node
 - ★ Since Hadoop 0.21, replica placement can be customized

Chain Replication and Distance Metrics

HDFS Coherency Model

Read your writes is not guaranteed

- The namespace is updated
- Block contents may not be visible after a write is finished
- Application design (other than MapReduce) should use sync() to force synchronization
- sync() involves some overhead: tradeoff between robustness/consistency and throughput

Multiple writers (for the same block) are not supported

 Instead, different blocks can be written in parallel (using MapReduce)

Hadoop MapReduce

Disclaimer

- MapReduce APIs
 - Fast evolving
 - Sometimes confusing

- Do NOT rely on this slide deck as a reference
 - Use appropriate API docs
 - Use Eclipse

Anatomy of a MapReduce Job Run

Job Submission

- JobClient class
 - ► The runJob() method creates a new instance of a JobClient
 - ▶ Then it calls the submitJob() on this class
- Simple verifications on the Job
 - Is there an output directory?
 - Are there any input splits?
 - Can I copy the JAR of the job to HDFS?

NOTE: the JAR of the job is replicated 10 times

Job Initialization

• The JobTracker is responsible for:

- Create an object for the job
- Encapsulate its tasks
- Bookkeeping with the tasks' status and progress

This is where the scheduling happens

- JobTracker performs scheduling by maintaining a queue
- Queuing disciplines are pluggable

Compute mappers and reducers

- JobTracker retrieves input splits (computed by JobClient)
- Determines the number of Mappers based on the number of input splits
- Reads the configuration file to set the number of Reducers

Scheduling

Task Assignment

Heartbeat-based mechanism

- TaskTrackers periodically send heartbeats to the JobTracker
- ► TaskTracker is alive
- Heartbeat contains also information on availability of the TaskTrackers to execute a task
- ▶ JobTracker piggybacks a task if TaskTracker is available

Selecting a task

- JobTracker first needs to select a job (i.e. Job scheduling)
- TaskTrackers have a fixed number of slots for map and reduce tasks
- JobTracker gives priority to map tasks (WHY?)

Data locality

- JobTracker is topology aware
 - ★ Useful for map tasks
 - ★ Unused for reduce tasks (WHY?)

Task Execution

Task Assignment is done, now TaskTrackers can execute

- Copy the JAR from HDFS
- Create a local working directory
- ▶ Create an instance of TaskRunner

TaskRunner launches a child JVM

- This prevents bugs from stalling the TaskTracker
- A new child JVM is created per InputSplit
 - * Can be overridden by specifying JVM Reuse option, which is very useful for custom, in-memory, combiners

Streaming and Pipes

- User-defined map and reduce methods need not to be in Java
- ► Streaming and Pipes allow C++ or python mappers and reducers
- NOTE: this feature is heavily used in industry, with some tricky downsides

Scheduling in detail

FIFO Scheduler (default in vanilla Hadoop)

- First-come-first-served
 - ★ Long jobs monopolize the cluster

• Fair Scheduler (default in Cloudera)

- Every user gets a fair share of the cluster capacity over time
- Jobs are placed into pools, one for each user
 - ★ Users that submit more jobs have no more resources than oterhs
 - ★ Can guarantee minimum capacity per pool

Capacity Scheduler (heavily used in Yahoo)

- Hierarchical queues (mimic an organization)
- FIFO scheduling in each queue
- Supports priority

Failures

Handling Failures

In the real world, code is buggy, processes crash and machines fail

Task Failure

- Case 1: map or reduce task throws a runtime exception
 - The child JVM reports back to the parent TaskTracker
 - ★ TaskTracker logs the error and marks the TaskAttempt as failed
 - ★ TaskTracker frees up a slot to run another task
- Case 2: Hanging tasks
 - ★ TaskTracker notices no progress updates (timeout = 10 minutes)
 - ★ TaskTracker kills the child JVM²
- JobTracker is notified of a failed task
 - Avoids rescheduling the task on the same TaskTracker
 - If a task fails 4 times, it is not re-scheduled³
 - Default behavior: if any task fails 4 times, the job fails

²With streaming, you need to take care of the orphaned process.

³Exception is made for speculative execution

Handling Failures

TaskTracker Failure

- Types: crash, running very slowly
- ▶ Heartbeats will not be sent to JobTracker
- JobTracker waits for a timeout (10 minutes), then it removes the TaskTracker from its scheduling pool
- JobTracker needs to reschedule even completed tasks (WHY?)
- JobTracker needs to reschedule tasks in progress
- JobTracker may even blacklist a TaskTracker if too many tasks failed

JobTracker Failure

- Currently, Hadoop has no mechanism for this kind of failure
- In future (and commercial) releases:
 - ★ Multiple JobTrackers
 - ★ Use ZooKeeper as a coordination mechanisms
 - → High Availability

Internals

Shuffle and Sort

- The MapReduce framework guarantees the input to every reducer to be sorted by key
 - ► The process by which the system sorts and transfers map outputs to reducers is known as shuffle

- Shuffle is the most important part of the framework, where the "magic" happens
 - Good understanding allows optimizing both the framework and the execution time of MapReduce jobs
- Subject to continuous refinements

Shuffle and Sort: Map Side

Shuffle and Sort: the Map Side

The output of a map task is not simply written to disk

- In memory buffering
- Pre-sorting

Circular memory buffer

- 100 MB by default
- Threshold based mechanism to spill buffer content to disk
- Map output written to the buffer while spilling to disk
- If buffer fills up while spilling, the map task is blocked

Disk spills

- Written in round-robin to a local dir
- Output data is partitioned corresponding to the reducers they will be sent to
- Within each partition, data is sorted (in-memory)
- Optionally, if there is a combiner, it is executed just after the sort phase (WHY?)

Shuffle and Sort: the Map Side

- More on spills and memory buffer
 - Each time the buffer is full, a new spill is created
 - Once the map task finishes, there are many spills
 - Such spills are merged into a single partitioned and sorted output file

- The output file partitions are made available to reducers over HTTP
 - There are 40 (default) threads dedicated to serve the file partitions to reducers

Details on local spill files

Shuffle and Sort: Reduce Side

Shuffle and Sort: the Reduce Side

- The map output file is located on the local disk of TaskTracker
- Another TaskTracker (in charge of a reduce task) requires input from many other TaskTracker (that finished their map tasks)
 - How do reducers know which TaskTrackers to fetch map output from?
 - ★ When a map task finishes it notifies the parent TaskTracker
 - The TaskTracker notifies (with the heartbeat mechanism) the JobTracker
 - ★ A thread in the reducer polls periodically the JobTracker
 - * TaskTrackers do not delete local map output as soon as a reduce task has fetched them (WHY?)
- Copy phase: a pull approach
 - ► There is a small number (5) of copy threads that can fetch map outputs in parallel

Shuffle and Sort: the Reduce Side

- The map output are copied to the the TraskTracker running the reducer in memory (if they fit)
 - Otherwise they are copied to disk

Input consolidation

- A background thread merges all partial inputs into larger, sorted files
- Note that if compression was used (for map outputs to save bandwidth), decompression will take place in memory

Sorting the input

- When all map outputs have been copied a merge phase starts
- All map outputs are sorted maintaining their sort ordering, in rounds

Types and Formats

MapReduce Types

Recall: Input / output to mappers and reducers

- map: (k1, v1) → [(k2, v2)]
 reduce: (k2, [v2]) → [(k3, v3)]
- In Hadoop, a mapper is created as follows:
 - ▶ void map(K1 key, V1 value, Context context)
- Types:
 - ▶ K types implement WritableComparable
 - V types implement Writable

What is a Writable

- Hadoop defines its own classes for strings (Text), integers (intWritable), etc...
- All keys are instances of WritableComparable
 - Why comparable?

All values are instances of Writable

Getting Data to the Mapper

Reading Data

Datasets are specified by InputFormats

- InputFormats define input data (e.g. a file, a directory)
- ► InputFormats is a factory for RecordReader objects to extract key-value records from the input source

InputFormats identify partitions of the data that form an InputSplit

- InputSplit is a (reference to a) chunk of the input processed by a single map
 - ★ Largest split is processed first
- ► Each split is divided into records, and the map processes each record (a key-value pair) in turn
- ► Splits and records are logical, they are not physically bound to a file

InputFormat

TextInputFormat

Treats each newline-terminated line of a file as a value

KeyValueTextInputFormat

Maps newline-terminated text lines of "key" SEPARATOR "value"

SequenceFileInputFormat

Binary file of key-value pairs with some additional metadata

SequenceFileAsTextInputFormat

Same as before but, maps (k.toString(), v.toString())

InputSplit

- FileInputFormat divides large files into chunks
 - Exact size controlled by mapred.min.split.size
- Record readers receive file, offset, and length of chunk
 - Example

On the top of the Crumpetty Tree→
The Quangle Wangle sat,→
But his face you could not see,→
On account of his Beaver Hat.→

- (0, On the top of the Crumpetty Tree)
- (33, The Quangle Wangle sat,)
- (57, But his face you could not see,)
- (89, On account of his Beaver Hat.)

Custom InputFormat implementations may override split size

The relationship between an InputSplit and an HDFS block

Record Readers

- Each InputFormat provides its own RecordReader implementation
- LineRecordReader
 - Reads a line from a text file

- KeyValueRecordReader
 - Used by KeyValueTextInputFormat

Sending Data to Reducers

- Map function receives Context object
 - Context.write() receives key-value elements

- Any (WritableComparable, Writable) can be used
- By default, mapper output type assumed to be the same as the reducer output type

WritableComparator

- Compares WritableComparable data
 - ▶ Will call the WritableComparable.compare() method
 - Can provide fast path for serialized data

Configured through:

JobConf.setOutputValueGroupingComparator()

Partitioner

- int getPartition(key, value, numPartitions)
 - Outputs the partition number for a given key
 - One partition == all values sent to a single reduce task
- HashPartitioner used by default
 - Uses key.hashCode() to return partition number

JobConf used to set Partitioner implementation

The Reducer

- void reduce(k2 key, Iterator<v2> values, Context context)
- Keys and values sent to one partition all go to the same reduce task
- Calls are sorted by key
 - "Early" keys are reduced and output before "late" keys

Writing the Output

- Analogous to InputFormat
- TextOutputFormat writes "key value <newline>" strings to output file
- SequenceFileOutputFormat uses a binary format to pack key-value pairs
- NullOutputFormat discards output

Hadoop I/O

I/O operations in Hadoop

Reading and writing data

- From/to HDFS
- From/to local disk drives
- Across machines (inter-process communication)

Customized tools for large amounts of data

- Hadoop does not use Java native classes
- Allows flexibility for dealing with custom data (e.g. binary)

What's next

- Overview of what Hadoop offers
- For an in depth knowledge, use [2]

Data Integrity

- Every I/O operation on disks or the network may corrupt data
 - Users expect data not to be corrupted during storage or processing
 - Data integrity usually achieved with a simple checksum mechanism

HDFS transparently checksums all data during I/O

- HDFS makes sure that storage overhead is roughly 1%
- DataNodes are in charge of checksumming
 - ★ With replication, the last replica performs the check
 - ★ Checksums are timestamped and logged for statistics on disks
- Checksumming is also run periodically in a separate thread
 - Note that thanks to replication, error correction is possible in addition to detection

Compression

Why using compression

- Reduce storage requirements
- Speed up data transfers (across the network or from disks)

Compression and Input Splits

► IMPORTANT: use compression that supports splitting (e.g. bzip2)

Splittable files, Example 1

- Consider an uncompressed file of 1GB
- HDFS will split it in 16 blocks, 64MB each, to be processed by separate Mappers

Compression

Unsplittable files, Example 2 (gzip)

- Consider a compressed file of 1GB
- HDFS will split it in 16 blocks of 64MB each
- Creating an InputSplit for each block will not work, since it is not possible to read at an arbitrary point

• What's the problem?

- This forces MapReduce to treat the file as a single split
- Then, a single Mapper is fired by the framework
- For this Mapper, only 1/16-th is local, the rest comes from the network

Which compression format to use?

- ▶ Use bzip2
- ▶ Otherwise, use SequenceFiles
- See Chapter 4 [2]

Serialization

Transforms structured objects into a byte stream

- For transmission over the network: Hadoop uses RPC
- For persistent storage on disks

• Hadoop uses its own serialization format, Writable

- Comparison of types is crucial (Shuffle and Sort phase): Hadoop provides a custom RawComparator, which avoids deserialization
- Custom Writable for having full control on the binary representation of data
- Also "external" frameworks are allowed: enter Avro

Fixed-length or variable-length encoding?

- Fixed-length: when the distribution of values is uniform
- Variable-length: when the distribution of values is not uniform

Sequence Files

- Specialized data structure to hold custom input data
 - Using blobs of binaries is not efficient

SequenceFiles

- Provide a persistent data structure for binary key-value pairs
- Also work well as containers for smaller files so that the framework is more happy (remember, better few large files than lots of small files)
- ► They come with the sync() method to introduce sync points to help managing InputSplits for MapReduce

Hadoop Deployments

Setting up a Hadoop Cluster

Cluster deployment

- Private cluster
- Cloud-based cluster
- AWS Elastic MapReduce

Outlook:

- Cluster specification
 - * Hardware
 - ★ Network Topology
- Hadoop Configuration
 - Memory considerations

Cluster Specification

Commodity Hardware

- ▶ Commodity ≠ Low-end
 - ★ False economy due to failure rate and maintenance costs
- Commodity ≠ High-end
 - High-end machines perform better, which would imply a smaller cluster
 - A single machine failure would compromise a large fraction of the cluster

A 2012 specification:

- Dual socket, Two exacore
- 128 GB ECC RAM
- 8 × 1 TB disks⁴
- ▶ {1,10} Gigabit Ethernet

⁴Why not using RAID instead of JBOD?

Cluster Specification

Example:

- Assume your data grows by 1 TB per week
- Assume you have three-way replication in HDFS
- → You need additional 3TB of raw storage per week
- Allow for some overhead (temporary files, logs)
- → This is a new machine per week

• How to dimension a cluster?

- Obviously, you won't buy a machine per week!!
- ► The idea is that the above back-of-the-envelope calculation is that you can project over a 2 year life-time of your system
- → You would need a 100-machine cluster

• Where should you put the various components?

- Small cluster: NameNode and JobTracker can be collocated
- Large cluster: requires more RAM at the NameNode

Cluster Specification

Should we use 64-bit or 32-bit machines?

NameNode should run on a 64-bit machine: this avoids the 3GB Java heap size limit on 32-bit machines

• What's the role of Java?

- Recent releases (Java6) implement some optimization to eliminate large pointer overhead
- → A cluster of 64-bit machines has no downside

Network Topology

Network Topology

Two-level network topology

Switch redundancy is not shown in the figure

Typical configuration

- 30-40 servers per rack
- 10 GB switch TOR
- Core switch or router with 10GB or better

Features

- Aggregate bandwidth between nodes on the same rack is much larger than for nodes on different racks
- Rack awareness
 - Hadoop should know the cluster topology
 - ★ Benefits both HDFS (data placement) and MapReduce (locality)

Hadoop Configuration

- There are a handful of files for controlling the operation of an Hadoop Cluster
 - Hundreds of parameters!!
 - See next slide for a summary table
- Managing the configuration across several machines
 - All machines of an Hadoop cluster must be in sync!
 - What happens if you dispatch an update and some machines are down?
 - What happens when you add (new) machines to your cluster?
 - What if you need to patch MapReduce?
- Common practice: use configuration management tools
 - ► Chef, Puppet, ...
 - Declarative language to specify configurations
 - Allow also to install software

Hadoop Configuration

Filename	Format	Description
hadoop-env.sh	Bash script	Environment variables that are used in the scripts to run Hadoop.
core-site.xml	Hadoop configuration XML	I/O settings that are common to HDFS and MapReduce.
hdfs-site.xml	Hadoop configuration XML	Namenode, the secondary namenode, and the datanodes.
mapred-site.xml	Hadoop configuration XML	Jobtracker, and the tasktrackers.
masters	Plain text	A list of machines that each run a secondary namenode.
slaves	Plain text	A list of machines that each run a datanode and a tasktracker.

Table: Hadoop Configuration Files

Hadoop Configuration: memory utilization

Hadoop uses a lot of memory

Default values, for a typical cluster configuration

DataNode: 1 GBTaskTracker: 1 GB

Child JVM map task: 2 × 200MB
 Child JVM reduce task: 2 × 200MB

All the moving parts of Hadoop (HDFS and MapReduce) can be individually configured

 This is true for cluster configuration but also for job specific configurations

Hadoop is fast when using RAM

- Generally, MapReduce Jobs are not CPU-bound
- Avoid I/O on disk as much as you can
- Minimize network traffic
 - Customize the partitioner
 - ★ Use compression (→ decompression is in RAM)

Elephants in the cloud!

- Many organizations run Hadoop in private clusters
 - Pros and cons

- Cloud based Hadoop installations (Amazon biased)
 - Use Cloudera + {Whirr, boto, ...}
 - Use Elastic MapReduce

Hadoop on EC2

Launch instances of a cluster on demand, paying by hour

 CPU, in general bandwidth is used from within a datacenter, hence it's free

Apache Whirr project

- Launch, terminate, modify a running cluster
- Requires AWS credentials

Example

- Launch a cluster test-hadoop-cluster, with one master node (JobTracker and NameNode) and 5 worker nodes (DataNodes and TaskTrackers)
- \rightarrow hadoop-ec2 launch-cluster test-hadoop-cluster 5
 - See Chapter 9 [2]

AWS Elastic MapReduce

Hadoop as a service

- Amazon handles everything, which becomes transparent
- How this is done remains a mystery

Focus on What not How

- All you need to do is to package a MapReduce Job in a JAR and upload it using a Web Interface
- Other Jobs are available: python, pig, hive, ...
- Test your jobs locally!!!

References

References I

[1] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler.

The hadoop distributed file system.

In Proc. of the 26th IEEE Symposium on Massive Storage Systems and Technologies (MSST). IEEE, 2010.

[2] Tom White.

Hadoop, The Definitive Guide.

O'Reilly, Yahoo, 2010.