Introduction to Linear Algebra Final Review Class

 $\mathsf{Wang}\ \mathsf{Tianyu}^1$

Fall, 2019

Outline

- Content
- Metric & Normed
- Inner
- Orthogonality
- 5 Eigens
- Similar & Diag
- Mermitian
- Unitary & Normal
- SVD
- Quadratic

Content

- 10' True / False
 - look carefully at questions on slides
- 38' General Question & Calculation & Simple Justification
 - focus on EVD and SVD
- 12' Proof

Metric

Metric, denoted as d(x, y), is a generalization of the concept "distance for an arbitrary set.

Constraints on Metric:

- **1** $d(x,y) \ge 0$
- $d(x,y) = 0 \leftrightarrow x = y$
- d(x,y) = d(y,x)
- $d(y,z) \leq d(x,y) + d(x,z)$

So a set S containing those x, y, z together with a valid metric d is called a **metric space**.

Convergence of Point Sequence

A sequence of points $\{a_n\}$ in a set $\mathcal S$ is said to **converge** to $a\in\mathcal S$ if

$$\lim_{n\to\infty}d(a,a_n)=0$$

From the definition, it can be easily seen that this concept is associated with the choice of metric.

Cauchy Sequence

A sequence $\{a_n\}$ in a metric space S is said to be a **Cauchy sequence** if for any $\epsilon>0$ there exists an N such that

$$d(a_m, a_n) < \epsilon$$
 whenever $m, n \ge N$

- Any convergent sequence is Cauchy sequence (Proof using triangular inequality);
- Not every Cauchy sequence is convergent.

Norm

Norm, denoted as ||x|| is a generalization of the concept "length" for an arbitrary vector space.

Constraints on Norm:

- $||x|| \ge 0$
- ||ax|| = |a|||x||
- $||x + y|| \le ||x|| + ||y||$

So a vector space with a valid norm is called a **normed vector space**.

Special Norms

p-norm

$$||\mathbf{v}||_p = \left(\sum_{i=1}^n |v_i|^p\right)^{1/p}$$

Frobenius Norm

$$||\mathbf{A}||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2}$$

Compatible & Sub-multiplicative

A matrix norm on $\mathbb{R}^{n\times n}$ is said to be **compatible** to another norm for \mathbb{R} if

$$\forall \mathbf{A} \in \mathbb{R}^{n \times n}, \mathbf{v} \in \mathbb{R}^{n}, ||\mathbf{A}\mathbf{v}|| \leq ||\mathbf{A}|| \cdot ||\mathbf{v}||$$

A matrix norm on $\mathbb{R}^{n \times n}$ is said to be **sub-multiplicative** if

$$\forall A, B \in \mathbb{R}^{n \times n}, ||AB|| \leq ||A|| \cdot ||B||$$

Operator Norm

The matrix norm $||\cdot||_o: \mathbf{R}^{n\times n} \to \mathbf{R}$,

$$||\mathbf{A}||_o = \max_{\hat{\mathbf{x}}} ||\mathbf{A}\hat{\mathbf{x}}||$$

is known as the **operator norm** induced by the vector norm $||\cdot||$ on \mathbf{R}^n .

- $||\mathbf{A}||_1 = \max_{\mathbf{M}}$ sum over some column in \mathbf{A}
- $||\mathbf{A}||_{\infty} = \max \text{ sum over some row in } \mathbf{A}$
- $||\mathbf{A}||_2 = \max \text{ singular value in } \mathbf{A}$

Inner Product

Inner product, denoted as $\langle u, v \rangle$, is a generalization of the concept dot product for an arbitrary set.

Constraints on Inner Product:

- $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$
- $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$
- $\langle \alpha \mathbf{u}, \mathbf{v} \rangle = \alpha \langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{u}, \alpha \mathbf{v} \rangle$
- $\langle \mathbf{u}, \mathbf{u} \rangle \ge 0$ and $\langle \mathbf{u}, \mathbf{u} \rangle = 0$ iff $\mathbf{u} = \mathbf{0}$

So a vector space with a valid inner product is called a **inner product** space.

Redefined Terms

Basic terms for inner product space:

- length: $||\mathbf{v}|| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$;
- distance: $d(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} \mathbf{v}|| = \sqrt{\langle \mathbf{u} \mathbf{v}, \mathbf{u} \mathbf{v} \rangle}$;
- orthogonal: $\langle \mathbf{u}, \mathbf{v} \rangle = 0$;
- angle: $\cos \theta = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{||\mathbf{u}|| \cdot ||\mathbf{v}||}$

Based on these redefined terms, theorems like *Cauchy-Schwarz inequality*, *Triangle inequality* and *Parallelogram law* are still satisfied.

Some Notes

- Inner product of a vector space is NOT unique.
- 2 Every inner product space is a metric space as well as a normed space.
- **3** \mathcal{L}_p -norm for $p \neq 2$ does not correspond to any inner product. In such cases, *Pythagorean law* will not hold.
- **②** An inner product space \mathcal{H} is called a **Hilbert space** if every Cauchy sequence in \mathcal{H} converges to an element of \mathcal{H} with respect to the induced norm.

Orthogonal Set

A set of vectors in an inner product space is called an **orthogonal set** if any two different vectors in it are orthogonal. And if all vectors in this set are unit, then it is also called **orthonormal set**.

Parsevals Theorem

If in an inner product space, $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n$ is an orthonormal basis, then

$$||\mathbf{v}||^2 = \sum_{i=1}^n c_i^2$$
 where $\mathbf{v} = \sum_{i=1}^n c_i \mathbf{u}_i$

Orthogonal Matrix

An $n \times n$ matrix **Q** is said to be an **orthogonal matrix** if its columns form an orthonormal set.

 $n \times n$ Orthogonal matrices have several properties:

- ullet $\mathbf{Q}^{\mathrm{T}}\mathbf{Q}=\mathbf{I}$
- $\mathbf{Q}^{\mathrm{T}} = \mathbf{Q}^{-1}$
- $\bullet \ \langle \mathbf{Q}\mathbf{x}, \mathbf{Q}\mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle$
- $||\mathbf{Q}\mathbf{x}|| = ||\mathbf{x}||$
- ullet \mathbf{Q}^{T} is also orthogonal

Projection

The **vector projection** of a vector **y** onto another vector **u** is defined as

$$\operatorname{proj}_{\mathbf{u}}\mathbf{y} = ||\mathbf{y}|| \cos \theta \frac{\mathbf{u}}{||\mathbf{u}||} = \frac{\langle \mathbf{u}, \mathbf{y} \rangle}{\langle \mathbf{u}, \mathbf{u} \rangle} \mathbf{u},$$

and the vector $(\mathbf{y} - \operatorname{proj}_{\mathbf{u}} \mathbf{y})$ is called the **vector component** of \mathbf{y} orthogonal to **u**.

Orthogonality between Vector & Space

A vector \mathbf{x} in a inner product space $\mathcal V$ is orthogonal to a subspace of $\mathcal V$ if it it orthogonal to any vector in that space.

For a vector \mathbf{x} in \mathcal{V} and a subspace \mathcal{W} of \mathcal{V} , we can **uniquely** write

$$\mathbf{x} = \mathbf{x}^{\parallel} + \mathbf{x}^{\perp}$$

where \mathbf{x}^{\parallel} is in \mathcal{W} and \mathbf{x}^{\perp} is orthogonal to \mathcal{W} .

For an orthonormal basis $\mathcal{B} = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_m\}$,

$$\mathbf{x}^{\parallel} = \mathrm{proj}_{\mathcal{W}}(\mathbf{x}) = \langle \mathbf{u}_1, \mathbf{x} \rangle \mathbf{u}_1 + \langle \mathbf{u}_2, \mathbf{x} \rangle \mathbf{u}_2 + \cdots + \langle \mathbf{u}_m, \mathbf{x} \rangle \mathbf{u}_m$$

Orthogonality between Spaces

For two subspace \mathcal{X} , \mathcal{Y} of an inner product space \mathcal{V} , if any vector in \mathcal{X} is orthogonal to any vector in \mathcal{Y} , then we write

$$\mathcal{X} \perp \mathcal{Y}$$

For a subspace $\mathcal W$ of an inner product space $\mathcal V$, the set of all vectors in $\mathcal V$ which is orthogonal to $\mathcal W$ is defined as its **orthogonal complement**.

- The orthogonal complement \mathcal{W}^{\perp} of \mathcal{W} is a subspace of \mathcal{V} .
- 3 $\dim \mathcal{W} + \dim \mathcal{W}^{\perp} = n$.

$$\mathsf{null}(\mathbf{A}) = (\mathrm{col}(\mathbf{A}^\mathrm{T}))^\perp$$
 and $\mathsf{null}(\mathbf{A}^\mathrm{T}) = (\mathrm{col}(\mathbf{A}))^\perp$

Direct Sum

The direct sum of two subspaces $\mathcal X$, $\mathcal Y$ of $\mathcal W$ is the set of vectors in $\mathcal W$ which can be **uniquely** represented as sum of a vector in $\mathcal X$ and a vector in $\mathcal Y$.

If S is a subspace of W, then

$$\mathcal{W} = \mathcal{S} \oplus \mathcal{S}^\perp$$

Gram-Schmidt QR Factorization

If **A** is an $m \times n$ matrix of rank n, then **A** can be factored into a product

$$\mathbf{A} = \mathbf{Q}\mathbf{R}$$

where **Q** is an $m \times n$ matrix with orthonormal column vectors and **R** is an upper triangular $n \times n$ matrix whose diagonal entries are all positive.

QR factorization is often used to solve the linear least squares problem and is the basis for a particular eigenvalue algorithm, the QR algorithm.

Motivation

The vector reaches the **steady-state** regardless of the initial state, that is, $\exists t_0 \geq 0 \ \forall t \geq t_0, \mathbf{Aw}_t = \mathbf{w}_t$ for any choice of \mathbf{w}_0 .

In general, if a linear transformation is represented by an $n \times n$ matrix \mathbf{A} and we can find a nonzero vector \mathbf{x} so that $\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$, for some scalar λ , then, for this transformation, \mathbf{x} is a natural choice to use as a basis vector for \mathbb{R}^n .

For an $n \times n$ matrix **A**, a scalar λ is said to be an **eigenvalue** of **A** if there exists a nonzero vector **x** such that

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

The vector \mathbf{x} is said to be an **eigenvector** corresponding to λ .

Key Concepts

- **Eigenspace**: the subspace null($\mathbf{A} \lambda \mathbf{I}$)
- Characteristic Polynomial: $p(\lambda) = \det(\mathbf{A} \lambda \mathbf{I})$
- Algebraic Multiplicity & Geometric Multiplicity: the degree of a root in the characteristic polynomial & the dimension of the eigenspace (>)
- Complex Vector Space: the one in which the scalars are complex numbers (\mathbb{R}^n is not a subspace of \mathbb{C}^n)

If λ is an eigenvalue of a **real** $n \times n$ matrix **A**, and if x is a eigenvector belonging to λ , then $\bar{\lambda}$ is also an eigenvalue of **A**, and $\bar{\mathbf{x}}$ is a corresponding eigenvector.

Some Properties of Eigens

Assume for a $n \times n$ square matrix **A**,

- Eigenvectors with distinct eigenvalues are linearly independent.
- The number of non-zero eigenvalues is equal to the rank.
- **3** If λ is an eigenvalue of **A**, then
 - $\alpha\lambda, \alpha \neq 0$ is an eigenvalue of αA ;
 - $\lambda^s, s \in \mathbb{Z}^+$ is an eigenvalue of \mathbf{A}^s ;
 - $p(\lambda)$ is an eigenvalue of $p(\mathbf{A})$, where $p(\cdot)$ is a polynomial function;
 - λ is an eigenvalue of transpose matrix \mathbf{A}^{T} ;
 - if **A** is invertible, λ^{-1} is an eigenvalue of **A**⁻¹.
- if A is diagonal or triangular, the eigenvalues are the diagonal elements.

Similarity Transformation

For two $n \times n$ matrices **A** and **B**, if there exists a nonsingular matrix **P** such that $\mathbf{B} = \mathbf{P}^{-1}\mathbf{AP}$, then **B** is **similar** to **A**. **A** and **B** are similar matrices then.

Similarity Invariants

Some properties preserved by a similarity transformation:

- the same eigenvalues
- 2 the same determinant
- the same trace
- the same rank
- the same nullity
- the same invertibility
- $oldsymbol{0}$ the same eigenspace dimension corresponding to some λ

Diagonal

Now we can approach a special case of the similarity transformation, namely diagonalization.

A matrix $\mathbf{A}_{n \times n}$ is **diagonalizable** if there is an invertible matrix \mathbf{P} and a diagonal matrix \mathbf{D} such that $\mathbf{D} = \mathbf{P}^{-1}\mathbf{AP}$.

- **1** Diagonalizable $\leftrightarrow n$ linearly independent eigenvectors
- ② Diagonalizable → columns of P are the n eigenvectors; diagonal elements of D are corresponding eigenvalues
- Oiagonalizing matrix P is not unique.

In this sense, $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$ and $\mathbf{A}^k = \mathbf{P}\mathbf{D}^k\mathbf{P}^{-1}$. We can easily calculate $e^{\mathbf{A}} = \mathbf{I} + \mathbf{A} + \frac{1}{21}\mathbf{A}^2 + \frac{1}{31}\mathbf{A}^3 + \cdots = \mathbf{P}e^{\mathbf{D}}\mathbf{P}^{-1}$ now!

Real Matrix with Complex Eigenvalues

- Consider the real matrix $\mathbf{C} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ where $b \ge 0$. If a and b are not both zero, then $\mathbf{C} = \begin{bmatrix} r & 0 \\ 0 & r \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ where $\theta = \arg(\lambda_1)$, $r = \operatorname{mod}(\lambda_1)$.
- ② For a real 2×2 matrix **C** with complex eigenvalues $\lambda = a \pm bi, b > 0$, $\mathbf{P} = [\operatorname{Re}(\mathbf{x}) \operatorname{Im}(\mathbf{x})]$ is invertible and $\mathbf{A} = \mathbf{P} \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \mathbf{P}^{-1}$ where **x** is an eigenvector corresponding to a bi.

Combining the two facts above gives us, for every real 2×2 matrix **C** with complex eigenvalues, $\mathbf{C} = \mathbf{PSR}_{\theta}\mathbf{P}^{-1}$.

Complex Notation

For
$$\mathbf{u} = [u_1, \cdots, u_n]^{\mathrm{T}}$$
 and $\mathbf{v} = [v_1, \cdots, v_n]^{\mathrm{T}}$ in \mathbb{C}^n ,

- $\bullet \ \langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^{\mathrm{T}} \mathbf{\bar{v}} = \mathbf{\bar{v}}^{\mathrm{T}} \mathbf{u}$
- $||\mathbf{v}|| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle} = \sqrt{|v_1|^2 + \dots + |v_n|^2}, \ |v_i| = \operatorname{mod}(v_i)$

If
$$\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$$
 is an orthonormal basis and $\mathbf{z} = \sum_{i=1}^n \alpha_i \mathbf{u}_i$, then $\alpha_i = \langle \mathbf{z}, \mathbf{u}_i \rangle$

and
$$||\mathbf{z}||^2 = \sum_{i=1}^n \alpha_i \bar{\alpha}_i$$
.

Hermitian Matrix - Symmetric Matrix

A matrix $\bf A$ is said to be **Hermitian** if $\bf A = \bf A^H$. Hermitian matrices can be viewed as the complex analogue of symmetric real matrices. Some nice properties hold for Hermitian matrices,

- The eigenvalues are all real. In other sense, the main diagonal entries are all real.
- The eigenvectors belonging to distinct eigenvalues are orthogonal.
- $oldsymbol{0}$ $\mathbf{A} + \mathbf{A}^{\mathrm{H}}$, $\mathbf{A}\mathbf{A}^{\mathrm{H}}$ and $\mathbf{A}^{\mathrm{H}}\mathbf{A}$ are all Hermitian.
- **4 A** is Hermitian for all $k = 1, 2, \dots$; if **A** is invertible, then \mathbf{A}^{-1} is also Hermitian.
- **1** If **A**, **B** are Hermitian, then α **A** + β **B** is Hermitian for all real scalars α, β .

Unitary Matrix - Orthogonal Matrix

An $n \times n$ matrix \mathbf{U} is said to be **unitary** if its columns are orthonormal in \mathbb{C}^n , i.e., $\mathbf{U}^H\mathbf{U} = \mathbf{I}$. It follows that $\mathbf{U}^{-1} = \mathbf{U}^H$.

If the eigenvalues of a Hermitian matrix ${\bf A}$ are **distinct**, then there exists a unitary matrix ${\bf U}$ such that ${\bf D}={\bf U}^{-1}{\bf A}{\bf U}={\bf U}^{\rm H}{\bf A}{\bf U}$.

For each $n \times n$ matrix \mathbf{A} , there exists a unitary matrix \mathbf{U} such that $\mathbf{R} = \mathbf{U}^H \mathbf{A} \mathbf{U}$ is upper triangular. The factorization $\mathbf{A} = \mathbf{U} \mathbf{R} \mathbf{U}^H$ is **Schur Decomposition** of \mathbf{A} .

Hermitian matrix always has a unitary matrix **U** that diagonalizes it.

Normal

If **A** can be factored into $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{U}^H$ where **U** is unitary and **D** is diagonal, then $\mathbf{A}\mathbf{A}^H = \mathbf{A}^H\mathbf{A}$. A matrix that satisfies this is called **normal** (**if and only if**).

- A normal matrix is Hermitian if and only if all its eigenvalues are real.
- ② If A and B are normal with AB = BA, then both AB and A + B are also normal. Moreover, there exists a unitary matrix U such that UAU^H and UBU^H , which is called **simultaneously diagonalizable**.

Background

For a $m \times n$ matrix,

- \bullet A and A^TA have the same null space.
- **2** A and A^TA have the same row space.
- \bullet \mathbf{A}^{T} and $\mathbf{A}^{\mathrm{T}}\mathbf{A}$ have the same column space.
- lacktriangle **A** and **A**^T**A** have the same rank

If **A** is an $m \times n$ matrix, then

- **1 A**^T**A** is orthogonally diagonalizable.
- The eigenvalues of A^TA are nonnegative.

Square roots of eigenvalues of $\mathbf{A}^{\mathrm{T}}\mathbf{A}$ are called the **singular values** of \mathbf{A} .

Singular Value Decomposition

If **A** is an $m \times n$ of rank k, then **A** can be factored as

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathrm{T}}$$

$$= \begin{bmatrix} \mathbf{u}_1 & \cdots & \mathbf{u}_k \mid \mathbf{u}_{k+1} & \cdots & \mathbf{u}_m \end{bmatrix} \begin{bmatrix} \sigma_1 & \cdots & 0 & & & & & \\ \vdots & \ddots & \vdots & & \mathbf{o}_{k \times (n-k)} & & & & \\ & 0 & \cdots & \sigma_k & & & & & & \\ \hline & \mathbf{o}_{(m-k) \times k} & & \mathbf{o}_{(m-k) \times (n-k)} \end{bmatrix} \begin{bmatrix} \mathbf{v}_1^{\mathrm{T}} & & & & \\ \vdots & & & \ddots & & \\ & \mathbf{v}_k^{\mathrm{T}} & & & & \\ \hline & \mathbf{v}_{k+1}^{\mathrm{T}} & & & & \\ \vdots & & & & \ddots & \\ \hline & \mathbf{v}_n^{\mathrm{T}} \end{bmatrix}$$

in which U, Σ and V are matrices of size $m \times m$, $m \times n$, and $n \times n$, respectively.

Singular Value Decomposition

• The nonzero diagonal entries of Σ are nonzero singular values of A,

$$\sigma_1 = \sqrt{\lambda_1}, \quad \sigma_2 = \sqrt{\lambda_2}, \dots, \quad \sigma_k = \sqrt{\lambda_k}$$

where λ_i are the nonzero eigenvalues of $\mathbf{A}^{\mathrm{T}}\mathbf{A}$ in order of decreasing size, so

$$\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_k > 0$$

• Vector \mathbf{u}_i is defined as the normalized image of \mathbf{v}_i under \mathbf{A}

$$\mathbf{u}_j = \frac{\mathbf{A}\mathbf{v}_j}{\|\mathbf{A}\mathbf{v}_j\|} = \frac{1}{\sigma_j}\mathbf{A}\mathbf{v}_j$$
 for $j = 1, 2, \dots, k$

• The set $\{\mathbf{u}_{k+1},\ldots,\mathbf{u}_m\}$ is an extension set of $\{\mathbf{u}_1,\ldots,\mathbf{u}_k\}$ so that

$$\{\mathbf{u}_1,\ldots\mathbf{u}_k,\mathbf{u}_{k+1},\ldots,\mathbf{u}_m\}$$

forms an orthonormal basis for \mathbb{R}^m .

Singular Value Decomposition

For every linear map $T:\mathbb{K}^n\to\mathbb{K}^m$ we can find orthonormal bases of them such that T maps the i-th basis vector of \mathbb{K}^n to a non-negative multiple of the i-th basis vector of \mathbb{K}^m , and sends the left-over basis vectors to zero. With respect to these bases, the map T is represented by a diagonal matrix with non-negative real diagonal entries.

Reduced Singular Value Decomposition

For matrix **A** whose rank k < n, it is often sufficient to consider $\mathbf{A} = \mathbf{U}_k \mathbf{\Sigma}_k \mathbf{V}_k^{\mathrm{T}}$, where $\mathbf{U}_k = [\mathbf{u}_1, \cdots, \mathbf{u}_k]$, $\mathbf{V}_k = [\mathbf{v}_1, \cdots, \mathbf{v}_k]$, $\mathbf{\Sigma}_k$ is the diagonal matrix containing nonzero singular values of **A**.

Instead of storing the whole matrix **A**, we store the σ_j 's, \mathbf{u}_j 's and \mathbf{v}_j 's up to rank k.

With SVD, we can diagonalize a rectangular system (not restricted to square system as EVD does),

$$\mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{A} \in \mathbb{R}^{m \times n}$$

$$\pmb{\Sigma}(\pmb{\mathsf{V}}^{\mathrm{T}}\pmb{\mathsf{x}}) = (\pmb{\mathsf{U}}^{\mathrm{T}}\pmb{\mathsf{b}})$$

General Picture

Generalized Inverse

For an $m \times n$ matrix **A** of rank k, the generalized inverse **A**⁺ is defined as

$$\mathbf{A}^+ = \mathbf{V} \mathbf{\Sigma}^+ \mathbf{U}^{\mathrm{T}} = \mathbf{V}_k \mathbf{\Sigma}_k^{-1} \mathbf{U}_k^{\mathrm{T}}$$

If A has linearly independent columns, then $A^{T}A$ is invertible and,

$$\mathbf{A}^+ = (\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{T}}$$

Motivation

A quadratic form in n variables is a function $f : \mathbb{R}^n \to \mathbb{R}$ such that $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$ where \mathbf{A} is a symmetric $n \times n$ matrix.

To find the matrix associated with some quadratic form:

- Occidents of squared terms correspond to the diagonal elements;
- ② coefficients of cross-product terms are averaged among elements at corresponding indices.

For every quadratic form $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$, the substitution $\mathbf{x} = \mathbf{Q} \mathbf{y}$ results in $\mathbf{x}^T \mathbf{A} \mathbf{x} = \mathbf{y}^T \mathbf{D} \mathbf{y} = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2$, where \mathbf{Q} is the orthogonal matrix such that $\mathbf{Q}^T \mathbf{A} \mathbf{Q} = \mathbf{D}$.

Key Concepts

For $n \times n$ real symmetric matrix **A**, the quadratic form is,

- Positive definite: $f(\mathbf{x}) > 0$ for all $\mathbf{x} \neq \mathbf{0}$ (all of the eigenvalues are positive);
- ② Negative definite: $f(\mathbf{x}) < 0$ for all $\mathbf{x} \neq \mathbf{0}$ (all of the eigenvalues are negative);
- **3** Positive semidefinite: $f(\mathbf{x}) \geq 0$ for all \mathbf{x} (all of the eigenvalues are nonnegative);
- **1** Negative semidefinite: $f(\mathbf{x}) \leq 0$ for all \mathbf{x} (all of the eigenvalues are nonpositive);
- Indefinite: f(x) alters between positive and negative (both positive and negative eigenvalues);

Application

For $f(\mathbf{x}) = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}$, subject to $||\mathbf{x}|| = 1$, we have

- **1** $f(\mathbf{x})$ is bounded between the minimum and maximum eigenvalues;
- The minimum value is attained when x is a unit eigenvector corresponding to minimum eigenvalue;
- The maximum value is attained when x is a unit eigenvector corresponding to maximum eigenvalue.

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is three times differentiable, and f has a critical point at **a**. If **H** is positive definite at **a**, then f(a) is a local minimum for f.