Exercise 1 (Lesson 17, 5 points). Let X be a nonempty set and $\phi: X \to \mathcal{H}$ a feature map into a Hilbert space \mathcal{H} . Define $k: X \times X \to \mathbb{R}$ by $k(x,y) = \langle \phi(x), \varphi(y) \rangle$ for every $x,y \in X$. Prove k is a kernel.

In order to be a kernel, k must be symmetric and positive definite. These checks amount to just using the properties of inner products, which are

- 1. $\langle x, y \rangle = \langle x, y \rangle$;
- 2. $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$; and
- 3. $\langle x, x \rangle \ge 0$, with $\langle x, x \rangle = 0 \iff x = 0$.

Symmetric: Since inner products are symmetric (property (1) above),

$$k(x,y) = \langle \phi(x), \phi(y) \rangle = \langle \phi(y), \phi(x) \rangle = k(y,x).$$

Positive definite: Fix arbitrary $a_1, \ldots, a_n \in \mathbb{R}$ and $x_1, \ldots, x_n \in X$, then we want to show $\sum_{i,j} a_i a_j k(x_i, x_j) \geq 0$. From the properties of inner products,

$$\sum_{i,j} a_i a_j k(x_i, x_j) = \sum_{i,j} a_i a_j \langle \phi(x_i), \phi(x_j) \rangle$$

$$= \sum_i a_i \sum_j a_j \langle \phi(x_i), \phi(x_j) \rangle$$

$$= \sum_i a_i \left\langle \phi(x_i), \sum_j a_j \phi(x_j) \right\rangle$$
 (by property 2)
$$= \left\langle \sum_i a_i \phi(x_i), \sum_j a_j \phi(x_j) \right\rangle.$$
 (by property 2)

Since both i and j range over the same values, both sums are the same. Thus this becomes

$$=\left\langle \sum_i a_i \phi(x_i), \ \sum_i a_i \phi(x_i) \right\rangle$$

$$\geq 0. \tag{by property 3}$$

Exercise 2 (Lesson 18, 5 points). Prove using the Schoenberg Theorem that the function

$$k(x,y) = e^{\frac{-\|x-y\|^2}{2\sigma^2}}, \ x, y \in \mathbb{R}^d$$

is a kernel on \mathbb{R}^d for every $\sigma^2 > 0$.

For this problem, f(x, y) from the Schenberg theorem is

$$f(x,y) = ||x - y||^2$$
.

We must show that this f is symmetric and CNSD.

Symmetric: Our f is symmetric since

$$f(x,y) = ||x - y||^2 = (-1 ||x - y||)^2 = ||y - x||^2 = f(y,x).$$

CNSD: Let $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ such that $\sum_i \alpha_i = 0$, and let $x_1, \ldots, x_n \in X$. Then

$$\sum_{i,j} \alpha_i \alpha_j \|x_i - x_j\|^2 = \sum_i \alpha_i \left(\sum_j \alpha_j \|x_i - x_j\|^2 \right)$$

$$\leq \sum_i \alpha_i \left(\sum_j \alpha_j (\|x_i\| + \|x_j\|)^2 \right)$$

$$\leq \sum_i \alpha_i \left(\sum_j a_j \left(\sum_k \|x_k\| \right)^2 \right)$$

$$= \sum_i \alpha_i \left(\left(\sum_k \|x_k\| \right)^2 \left(\sum_j \alpha_j \right) \right)$$

$$= 0$$

where the last equality follows from $\sum_{j} \alpha_{j} = 0$.