Ata Seren

21901575

Section-2

Homework 1 Answers

Q1)

- a) Names of the instructors that teaches CS102 in 2022 Spring semester.
- b) Names of the all instructors except instructors who teach a CS course in 2022 Spring semester.
- c) Number of instructors that teach the same CS course in Spring 2022 semester for each CS course.
- d) Name of the course that has been taught by more instructors than other courses

Q2)

- a) $\Pi_{\text{Title}}(\sigma_{\text{City="Ankara"}}(\text{Theater}) \bowtie \sigma_{\text{Date} \ge 01.01.2021 \land \text{Date} \le 31.12.2021}(\text{Schedule}))$
- b) $\Pi_{TName}(\sigma_{City="Ankara"}(Theater)) \bowtie Schedule \bowtie \sigma_{Year="2021"}(Movie))$
- c) $\Pi_{\text{TName}}(\sigma_{\text{City="Ankara"}}(\text{Theater}) \bowtie \text{Schedule} \bowtie \sigma_{\text{Year="2021"}}(\text{Movie})) \Pi_{\text{TName}}(\sigma_{\text{City="Ankara"}}(\text{Theater}) \bowtie \text{Schedule} \bowtie \sigma_{\text{Year\neq"2021"}}(\text{Movie}))$
- d) $\Pi_{\text{TicketPrice}}(\sigma_{\text{Rating}} > 4.0 (\text{Movie}) \bowtie \sigma_{\text{Date}} \ge 01.02.2022 \land \text{Date} \le 28.02.2022$ (Schedule) $\bowtie \sigma_{\text{City}=\text{"Ankara"}}$ (Theater))
- e) $\Pi_{\text{Name, Byear}}(\sigma_{\text{Rating}} > 2.5 \land \text{Year} = "2021"}(\text{Movie}) \bowtie \text{Acts} \bowtie \text{Actor})$
- f) $\Pi_{\text{Name}}(\sigma_{\text{Rating}} > 3.0(\text{Movie}) \bowtie \sigma_{\text{Date}} \ge 01.01.2021 \land \text{Date} \le 31.12.2021}(\text{Schedule}) \bowtie \sigma_{\text{City}} = \text{``Ankara''}(\text{Theater}) \bowtie \text{Acts} \bowtie \sigma_{\text{Byear}} > 1972}(\text{Actor}))$
- g) P1 $\leftarrow \Pi_{Title}$ (Movie \bowtie Acts $\bowtie \sigma_{Name="Anthony Hopkins"}$ (Actor)) Π_{TName} ((Schedule $\bowtie \sigma_{City="Ankara"}$ (Theater))/P1)
- h) P2 $\leftarrow \Pi_{Title}$ (Movie \bowtie Acts $\bowtie \sigma_{Name="Jodie Foster"}$ (Actor)) Π_{TName} (Schedule $\bowtie \sigma_{City="Ankara"}$ (Theater)) Π_{TName} (Schedule $\bowtie \sigma_{City="Ankara"}$ (Theater) $\bowtie P2$)

- i) Schedule $\leftarrow \Pi_{\text{TName, Title, Date, Time, TicketPrice}^*1.1}(\text{Schedule}) \bowtie \sigma_{\text{City="Ankara"}}(\text{Theater})) \cup \Pi_{\text{TName, Title, Date, Time,}}$ $\text{TicketPrice}(\text{Schedule} \bowtie \sigma_{\text{City}\neq\text{"Ankara"}}(\text{Theater}))$
- j) $mvs \leftarrow \sigma_{Year="2021"}(Movie)$ $notBest \leftarrow \Pi_{p1.Title}(\rho_{p1}(mvs))\bowtie_{p1.Rating < p2.Rating} \rho_{p2}(mvs))$ $\Pi_{Title}(mvs) - notBest$
- k) Best \leftarrow G_{max(Rating)}(σ Year="2021"(Movie)) Π Title(Best $\bowtie \sigma$ Year="2021"(Movie))
- I) Year G max(Rating) (Movie)
- m) Temp1 \leftarrow Year G count(*) as cnt (Movie) Π_{Year} (G_{max(cnt)} as cnt (Temp1) \bowtie Temp1)