## Exercícios de avaliação

**Exercício 5.1** Uma porta lógica inversora está sendo excitada na sua entrada por uma onda quadrada de frequência  $f_c$ . Dependendo da tecnologia empregada, a porta inversora possui diferentes valores de  $t_{\rm PHL}$  e  $t_{\rm PLH}$ . Determine a máxima frequência de operação  $f_c$  que a onda quadrada pode operar em uma porta inversora que possui  $t_{\rm PHL} = 8$  ns e  $t_{\rm PLH} = 9$  ns.

## Solução:

O maior tempo de retardo é o tempo que restringe a velocidade de operação da porta lógica. No caso, o maior tempo de retardo é o tempo  $t_{\rm PLH}=9\,{\rm ns}$ . No limite de operação, meio período da onda quadrada não pode ser menor que  $t_{\rm PLH}$ . Impondo a condição mencionada e chamando de  $T_c$  o período da onda quadrada vem:

$$\frac{T_c}{2} \ge 9 \, \mathrm{ns} \rightarrow T_c \ge 18 \, \mathrm{ns}.$$

Sabe-se que o período e a frequencia estaão realcionados por  $f_c = \frac{1}{T_c}$ , ou seja,  $f_c \le \frac{1}{18 \, \text{ns}} = 55,55 \, \text{MHz}$ .

**Exercício 5.2** O circuito mostrado na figura pode ser implementado usando exatamente 3 circuitos integrados. Escolha uma tenologia (CMOS ou TTL) e encontre as referencias dos três circuitos integrados que você usaria para implementar o circuito. Faça um esquema indicando como deve ser ligado cada pino do CI para realizar a implementação do circuito.



## Solução:

Escolhendo portas da família CMOS da série 4000 encontra-se o seguinte cenário de CIs disponíveis:

| Referência | Função lógica | entradas em cada porta | portas no CI |
|------------|---------------|------------------------|--------------|
| 4075       | OR            | 3                      | 3            |
| 4082       | AND           | 4                      | 2            |
| 4009       | NOT           | 1                      | 6            |

Usando as três unidades de CI listadas acima é possível implementar as três portas inversoras necessárias (sobram 3 das 6 portas no 4009), três portas das quatro portas OR de 3 entradas, e

um porta AND de 4 entradas. Note que sobra uma porta AND de 4 entradas no 4082 e falta uma porta OR de 3 entradas para completar a implementação do circuito.

É possível se implementar a porta OR de três entradas usando a porta AND de 4 entradas usando o teorema de De Morgam.

A última porta OR (quarta de cima para baixo) tem como saída z<sub>4</sub> a seguinte expressão:

$$z_4 = \overline{x_2} + x_1 + x_0.$$

Aplicando o teorema de De Morgan na expressão acima se obtém:

$$z_4 = \overline{x_2} + x_1 + x_0 = \overline{x_2 \cdot \overline{x_1} \cdot \overline{x_0}}$$

Uma porta AND qualquer de 4 entradas  $(y_3, y_2, y_1y_0)$  tem como saída  $y_3 \cdot y_2 \cdot y_1 \cdot y_0$ . Fazendo:  $y_0 = \overline{x_0}$ ,  $y_1 = \overline{x_1}$ ,  $y_2 = x_2$  e  $y_3 = 1$  e acoplando uma porta inversora à essa saida se obtem a seguinte expressão:  $\overline{x_2 \cdot \overline{x_1} \cdot \overline{x_0}}$  que é igual a expressão de  $z_4$  obtida anteriormente.

A conclusão é que uma porta OR de 3 entradas pode ser implementada com uma porta AND de 4 entradas colocando uma entrada da AND fixa no nível lógico 1, adicionando um inversor à saída da porta AND e fazendo os devidos complementos nas entradas de interesse. Com isso, se usa porta AND de 4 entradas que sobrou no CI 4082 mais um dos inversores que sobraram no CI 4009 para implementar a quarta porta AND de três entradas que estava faltando ser implementada.