

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Limitation of SLR(1) Parsing

• We illustrate the limitations of SLR(1) parsing by using the pointer assignment grammar given below

$$S \rightarrow L = R \mid R$$

 $L \rightarrow *R \mid id$
 $R \rightarrow L$

- We compute the FOLLOW sets and sets of LR(0) items to demonstrate the problem
- We explain the cause of the problem
- This explanation leads us to a more precise method of CLR(1) parsing (Canonical LR(1) parsing that uses the LR(1) items)

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

$$S' \rightarrow S$$

$$S \rightarrow L = R \mid R$$

$$\begin{array}{ccc}
L & \rightarrow & *R \mid \text{id} \\
R & \rightarrow & L
\end{array}$$

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Computing the FOLLOW Sets for Pointer Assignment Grammar

$$S' \rightarrow S$$
 \Rightarrow FOLLOW(S') \supseteq {\$} FOLLOW(S')

$$L \rightarrow *R \mid id$$

 $R \rightarrow I$

 $S \rightarrow L = R \mid R$

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

$$S' \rightarrow S$$
 \Rightarrow FOLLOW(S') \supseteq {\$}
FOLLOW(S) \supseteq FOLLOW(S')
 $S \rightarrow L = R \mid R \Rightarrow$ FOLLOW(L) \supseteq {=}
FOLLOW(R) \supseteq FOLLOW(R)
 $L \rightarrow *R \mid id$
 $R \rightarrow L$

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

$$S' \rightarrow S$$
 \Rightarrow FOLLOW(S') \supseteq {\$}
FOLLOW(S) \supseteq FOLLOW(S')
 $S \rightarrow L = R \mid R \Rightarrow$ FOLLOW(L) \supseteq {=}
FOLLOW(R) \supseteq FOLLOW(S)
 $L \rightarrow *R \mid id \Rightarrow$ FOLLOW(R) \supseteq FOLLOW(L)

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

$$S' \rightarrow S$$
 \Rightarrow FOLLOW(S') \supseteq {\$}
FOLLOW(S) \supseteq FOLLOW(S')
 $S \rightarrow L = R \mid R \Rightarrow$ FOLLOW(L) \supseteq {=}
FOLLOW(R) \supseteq FOLLOW(S)
 $L \rightarrow *R \mid id \Rightarrow$ FOLLOW(R) \supseteq FOLLOW(L)
 $R \rightarrow L \Rightarrow$ FOLLOW(L) \supseteq FOLLOW(R)

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

$$S' o S$$
 \Rightarrow FOLLOW(S') \supseteq {\$}
FOLLOW(S) \supseteq FOLLOW(S')
 $S o L = R \mid R \Rightarrow$ FOLLOW(L) \supseteq {=}
FOLLOW(R) \supseteq FOLLOW(R)
 $L o *R \mid id \Rightarrow$ FOLLOW(R) \supseteq FOLLOW(R)
 $R o L \Rightarrow$ FOLLOW(R) \supseteq FOLLOW(R)

	FOLLOW
S'	{\$ }
S	{\$ }
R	$\{=,\$\}$
L	$\{=,\$\}$

Topic:

Syntax Analysis

Section:

Derivations, and Pars Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

	I_0	
S′	$\rightarrow ullet S$	
S	$\rightarrow \bullet L = R$	
S	ightarrow ullet R	
L	$\rightarrow ullet *R$	
L	ightarrow ulletid	
R	ightarrow ullet L	

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

 $\mathsf{CLR}(1)$ Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

 $\mathsf{CLR}(1)$ Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

 $\mathsf{CLR}(1)$ Parsing

LALR(1) Parsing

IIT Bombay cs302: Implementation

cs302: Implementation of Programming Languages

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

 $\mathsf{CLR}(1)$ Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

 $\mathsf{CLR}(1)$ Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Languages

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

Topic:

Syntax Analysis
Section:

Grammars.

Derivations, and Parse Trees

Languages

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

Syntax Analysis
Section:

Grammars,

Languages

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Limitation of SLR(1) Parsing

1	5	\rightarrow	L =
2	S	\rightarrow	R
3	L	\rightarrow	*R
4	L	\rightarrow	id
5	R	\rightarrow	L

	FOLLOW
S'	{\$ }
S	{\$}
R	$\{=,\$\}$
L	$\{=,\$\}$

Input

Stack

cs302: Implementation of Programming Languages

Topic:

Syntax Analysis

Section:

Derivations, and Parse

SLR(1) Parsing

CLR(1) Parsing

Limitation of SLR(1) Parsing

id = id\$

cs302: Implementation of Programming Languages

Topic:

Syntax Analysis

Section:

Derivations, and Parse

SLR(1) Parsing

CLR(1) Parsing

Limitation of SLR(1) Parsing

1	5	\rightarrow	L =
2	S	\rightarrow	R
3	L	\rightarrow	*R
4	L	\rightarrow	id
5	R	\rightarrow	L

	FOLLOW
S'	{\$ }
S	{\$ }
R	$\{=,\$\}$
L	$\{=,\$\}$

Reduce by 4

Input

= id\$

cs302: Implementation of Programming Languages

Topic:

Syntax Analysis

Section:

Derivations, and Parse

SLR(1) Parsing

CLR(1) Parsing

Limitation of SLR(1) Parsing

Cover by 2

Input

= id\$

cs302: Implementation of Programming Languages

Topic:

Syntax Analysis

Section:

Derivations, and Parse

SLR(1) Parsing

CLR(1) Parsing

Limitation of SLR(1) Parsing

Reduce by 5

Input

= id\$

cs302: Implementation of Programming Languages

Topic:

Syntax Analysis

Section:

Derivations, and Parse

SLR(1) Parsing

CLR(1) Parsing

Limitation of SLR(1) Parsing

1	5	\rightarrow	L = I
2	S	\rightarrow	R
3	L	\rightarrow	*R
4	L	\rightarrow	id
5	R	\rightarrow	L

	FOLLOW
S'	{\$}
S	{\$ }
R	$\{=,\$\}$
L	$\{=,\$\}$

Cover by 3

Input

= id\$

cs302: Implementation of Programming Languages

Topic:

Syntax Analysis

Section:

Derivations, and Parse

SLR(1) Parsing

CLR(1) Parsing

Limitation of SLR(1) Parsing

Error

No action on =

Input

= id\$

3 R

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Limitation of SLR(1) Parsing: Use of FOLLOW Information

• Let FOLLOW(A) = {b, c}. Then b may follow A in some right sentential forms whereas in some other right sentential form, c may follow A

A symbol in follow set need not follow A in every right sentential form

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsin

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Limitation of SLR(1) Parsing: Use of FOLLOW Information

• Let FOLLOW(A) = {b, c}. Then b may follow A in some right sentential forms whereas in some other right sentential form, c may follow A

A symbol in follow set need not follow A in every right sentential form

• We should declare handle $A \to \alpha$ in a viable prefix γ only if the follow symbols actually follows A in the right sentential form containing γ

Topic:

Syntax Analysis

Section:

Derivations, and Pars Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Limitation of SLR(1) Parsing: Use of FOLLOW Information

• Let $FOLLOW(A) = \{b, c\}$. Then b may follow A in some right sentential forms whereas in some other right sentential form, c may follow A

A symbol in follow set need not follow A in every right sentential form

- We should declare handle $A \to \alpha$ in a viable prefix γ only if the follow symbols actually follows A in the right sentential form containing γ
- In our grammar, there is no right sentential form with a prefix 'R ='

Topic: Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Limitation of SLR(1) Parsing: Use of FOLLOW Information

• Let FOLLOW(A) = {b, c}. Then b may follow A in some right sentential forms whereas in some other right sentential form, c may follow A

A symbol in follow set need not follow A in every right sentential form

- We should declare handle $A \to \alpha$ in a viable prefix γ only if the follow symbols actually follows A in the right sentential form containing γ
- In our grammar, there is no right sentential form with a prefix 'R = 1
 - Every right sentential form containing 'R =' begins with a '*' and has a viable prefix '*R'

We will never see '=' after an R without seeing a '*' before the 'R'

Topic: Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Limitation of SLR(1) Parsing: Use of FOLLOW Information

• Let $FOLLOW(A) = \{b, c\}$. Then b may follow A in some right sentential forms whereas in some other right sentential form, c may follow A

A symbol in follow set need not follow A in every right sentential form

- We should declare handle $A \to \alpha$ in a viable prefix γ only if the follow symbols actually follows A in the right sentential form containing γ
- In our grammar, there is no right sentential form with a prefix 'R ='
 - Every right sentential form containing 'R =' begins with a '*' and has a viable prefix '*R'

We will never see '=' after an R without seeing a '*' before the 'R'

 \circ $S \stackrel{rm}{\Rightarrow} L = R \stackrel{rm}{\Rightarrow} L = L \stackrel{rm}{\Rightarrow} L = id \stackrel{rm}{\Rightarrow} id = id$

 $S \stackrel{rm}{\Rightarrow} L = R \stackrel{rm}{\Rightarrow} L = id \stackrel{rm}{\Rightarrow} *R = id \stackrel{rm}{\Rightarrow} *id = id$

 $S \stackrel{rm}{\Rightarrow} L = R \stackrel{rm}{\Rightarrow} L = id \stackrel{rm}{\Rightarrow} *R = id \stackrel{rm}{\Rightarrow} *L = id \stackrel{rm}{\Rightarrow} *id = id$

. . .

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

Limitation of SLR(1) Parsing: Use of FOLLOW Information

• Let FOLLOW(A) = {b, c}. Then b may follow A in some right sentential forms whereas in some other right sentential form, c may follow A

A symbol in follow set need not follow A in every right sentential form

- We should declare handle $A \to \alpha$ in a viable prefix γ only if the follow symbols actually follows A in the right sentential form containing γ
- In our grammar, there is no right sentential form with a prefix 'R = 1
 - Every right sentential form containing 'R =' begins with a '*' and has a viable prefix '*R'

We will never see '=' after an R without seeing a '*' before the 'R'

$$S \stackrel{m}{\Rightarrow} L = R \stackrel{m}{\Rightarrow} L = L \stackrel{m}{\Rightarrow} L = id \stackrel{m}{\Rightarrow} id = id$$

$$S \stackrel{m}{\Rightarrow} L = R \stackrel{m}{\Rightarrow} L = id \stackrel{m}{\Rightarrow} *R = id \stackrel{m}{\Rightarrow} *id = id$$

$$S \stackrel{m}{\Rightarrow} L = R \stackrel{m}{\Rightarrow} L = id \stackrel{m}{\Rightarrow} *R = id \stackrel{m}{\Rightarrow} *I = id \stackrel{m}{\Rightarrow} *id = id$$

. . .

 \circ '=' is in FOLLOW(R) only for the right sentential forms that begin with a '*'

Input 'id = id' does not begin with a '*' so L cannot be reduced to R on '='

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Pars Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

LR(1) Item Sets for Pointer Assignment Grammar

Two changes from LR(0) construction

- Items are of the form $A \to \alpha \bullet \beta$, a consisting of
 - \circ the core $A \to \alpha \bullet \beta$ and
 - o the *lookahead a*

If S is the start symbol, then I_0 contains $S' \to \bullet S$,\$

• Closure of an item $A \to \alpha \bullet B\beta$, a contains the items of the form $B \to \bullet \gamma$, FIRST(βa)

Transition of an item $A \rightarrow \alpha \bullet B\beta, a$ on B gives an item

$${\it A}
ightarrow lpha {\it B} ullet eta, {\it a}$$

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Pars
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

LR(1) Item Sets for Pointer Assignment Grammar

Two changes from LR(0) construction

- Items are of the form $A \to \alpha \bullet \beta, a$ consisting of
 - \circ the *core* $A \rightarrow \alpha \bullet \beta$ and
 - o the lookahead a

If S is the start symbol, then I_0 contains $S' \to \bullet S$,\$

• Closure of an item $A \to \alpha \bullet B\beta$, a contains the items of the form $B \to \bullet \gamma$, FIRST(βa)

Transition of an item $A \to \alpha \bullet B\beta, a$ on B gives an item

$$A \rightarrow \alpha B \bullet \beta, a$$

Topic:

Syntax Analysis

Section:

Derivations, and Pars Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues i Parsing

CLR(1) Parsing

LALR(1) Parsir

LR(1) Item Sets for Pointer Assignment Grammar

Two changes from LR(0) construction

- Items are of the form $A \to \alpha \bullet \beta$, a consisting of
 - \circ the *core* $A \rightarrow \alpha \bullet \beta$ and
 - o the lookahead a

If S is the start symbol, then I_0 contains $S' \to \bullet S$,\$

• Closure of an item $A \to \alpha \bullet B\beta$, a contains the items of the form $B \to \bullet \gamma$, FIRST(βa)

Transition of an item $A \rightarrow \alpha \bullet B\beta, a$ on B gives an item

$$A \rightarrow \alpha B \bullet \beta, a$$

The lookahead does not change during a transition

 I_0

Topic:

Syntax Analysis

Section:

Derivations, and Pars Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues i Parsing

CLR(1) Parsing

LALR(1) Parsir

LR(1) Item Sets for Pointer Assignment Grammar

Two changes from LR(0) construction

- Items are of the form $A \to \alpha \bullet \beta$, a consisting of
 - \circ the *core* $A \rightarrow \alpha \bullet \beta$ and
 - o the lookahead a

If S is the start symbol, then I_0 contains $S' \to \bullet S$, \$

• Closure of an item $A \to \alpha \bullet B\beta$, a contains the items of the form $B \to \bullet \gamma$, FIRST(βa)

Transition of an item $A \to \alpha \bullet B\beta, a$ on B gives an item

$$A \rightarrow \alpha B \bullet \beta, a$$

Topic: Syntax Analysis

Syntax Analys

Section

Derivations, and Pars Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

LR(1) Item Sets for Pointer Assignment Grammar

Two changes from LR(0) construction

- Items are of the form $A \to \alpha \bullet \beta$, a consisting of
 - \circ the *core* $A \rightarrow \alpha \bullet \beta$ and
 - o the lookahead a

If S is the start symbol, then I_0 contains $S' \to \bullet S$, \$

• Closure of an item $A \to \alpha \bullet B\beta$, a contains the items of the form $B \to \bullet \gamma$, FIRST(βa)

Transition of an item $A \rightarrow \alpha \bullet B\beta$, a on B gives an item

$$A \rightarrow \alpha B \bullet \beta, a$$

Topic: Syntax Analysis

Sylicax Allaly

Section:

Derivations, and Pars Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

LR(1) Item Sets for Pointer Assignment Grammar

Two changes from LR(0) construction

- Items are of the form $A \to \alpha \bullet \beta$, a consisting of
 - \circ the *core* $A \rightarrow \alpha \bullet \beta$ and
 - o the lookahead a

If S is the start symbol, then I_0 contains $S' \to \bullet S, \$$

• Closure of an item $A \to \alpha \bullet B\beta$, a contains the items of the form $B \to \bullet \gamma$, FIRST(βa)

Transition of an item $A \to \alpha \bullet B\beta, a$ on B gives an item

$$A \rightarrow \alpha B \bullet \beta, a$$

$S' \to \bullet S$,	\$	
$S \rightarrow \bullet L = F$	₹, \$	
$S \rightarrow \bullet R$,	\$	
$L \to \bullet * R$,	=	,
$L \rightarrow \bullet id,$	=	I_0
$R \rightarrow \bullet L$,	\$	
$L \to \bullet * R$,	\$	
$L \rightarrow \bullet id$,	\$	

Topic:

Syntax Analysis

Section

Derivations, and Pars Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues i Parsing

CLR(1) Parsing

LALR(1) Parsin

LR(1) Item Sets for Pointer Assignment Grammar

Two changes from LR(0) construction

- Items are of the form $A \to \alpha \bullet \beta$, a consisting of
 - \circ the core $A \to \alpha \bullet \beta$ and
 - o the *lookahead a*

If S is the start symbol, then I_0 contains $S' \to \bullet S, \$$

• Closure of an item $A \to \alpha \bullet B\beta$, a contains the items of the form $B \to \bullet \gamma$, FIRST(βa)

 $S \rightarrow \bullet L = R, \$$ $S \rightarrow \bullet R, \$$ $L \rightarrow \bullet * R, =$ $L \rightarrow \bullet \text{id}, =$ $R \rightarrow \bullet L, \$$ $L \rightarrow \bullet * R, \$$ $L \rightarrow \bullet \text{id}, \$$

 $S' \rightarrow \bullet S$

Transition of an item $A \to \alpha \bullet B\beta, a$ on B gives an item

$$A \rightarrow \alpha B \bullet \beta, a$$

Topic:

Syntax Analysis

Section

Derivations, and Pars Trees

Shift Reduce Parsing

SLR(1) Parsing

Parsing Parsing

CLR(1) Parsing

LALR(1) Parsing

LR(1) Item Sets for Pointer Assignment Grammar

Two changes from LR(0) construction

- Items are of the form $A \to \alpha \bullet \beta$, a consisting of
 - \circ the *core* $A \rightarrow \alpha \bullet \beta$ and
 - o the lookahead a

If S is the start symbol, then I_0 contains $S' \to \bullet S, \$$

• Closure of an item $A \to \alpha \bullet B\beta$, a contains the items of the form $B \to \bullet \gamma$, FIRST(βa)

$S' \rightarrow \bullet S$,	\$	
$S \rightarrow \bullet L = R$	\$	
$S \rightarrow \bullet R$,	\$	
$L \to \bullet * R$,	=	,
$L \rightarrow \bullet id,$	=	<i>I</i> ₀
$R \rightarrow \bullet L$,	\$	
$L \to \bullet * R$,	\$	
$L \rightarrow \bullet id,$	\$	
L		
$S \to L \bullet = R$, \$	L
$R \rightarrow L \bullet$.	\$	12

Transition of an item $A \rightarrow \alpha \bullet B\beta$, a on B gives an item

$$A \rightarrow \alpha B \bullet \beta, a$$

The lookahead does not change during a transition

Reduction by $R \to L \bullet$ only on \$ and not on = No shift reduce conflict

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

LR(1) Sets of Items for Pointer Assignment Grammar

 I_0

$S' \to \bullet S$,	\$
$S \rightarrow \bullet L = R$, \$
$S \rightarrow \bullet R$,	\$
$L \to \bullet * R$,	= /\$
$L \rightarrow \bullet id,$	= /\$
$R \to \bullet L$,	\$

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

$\mathsf{CLR}(1)$ Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

 $\mathsf{CLR}(1)$ Parsing

LALR(1) Parsing

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

 $\mathsf{CLR}(1)$ Parsing

LALR(1) Parsing

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Parsing Parsing

CLR(1) Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Parsing Parsing

 $\mathsf{CLR}(1)$ Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

 $\mathsf{CLR}(1)$ Parsing

LALR(1) Parsing

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

 $\mathsf{CLR}(1)$ Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

 $\mathsf{CLR}(1)$ Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

 $\mathsf{CLR}(1)$ Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parso
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

LR(1) (aka CLR(1)) Parsing Table for Pointer Assignment Grammar

0	$\mathcal{S}' o \mathcal{S}$
1	$S \rightarrow L =$
2	S o R
3	$L \to *R$
4	L o id
5	R o L

R

State		Acti	ion			Goto	
State	id	*	=	\$	S	L	R
0	<i>s</i> 5	<i>s</i> 4			<i>c</i> 1	<i>c</i> 2	<i>c</i> 3
1				acc			
2			<i>s</i> 6	<i>r</i> 5			
3				r2			
4	<i>s</i> 5	<i>s</i> 4				<i>c</i> 8	c7
5			r4	<i>r</i> 4			
6	<i>s</i> 11	<i>s</i> 12				<i>c</i> 10	<i>c</i> 9
7			<i>r</i> 3	<i>r</i> 3			
8			<i>r</i> 5	<i>r</i> 5			
9				<i>r</i> 1			
10				<i>r</i> 5			
11				r4			
12	<i>s</i> 11	<i>s</i> 12				c10	c13
13				<i>r</i> 3			

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

LR(1) (aka CLR(1)) Parsing for the Pointer Assignment Grammar

State		Acti	on			Goto	
State	id	*	=	\$	S	L	R
0	<i>s</i> 5	<i>s</i> 4			<i>c</i> 1	<i>c</i> 2	<i>c</i> 3
1				acc			
2			<i>s</i> 6	<i>r</i> 5			
3				r2			
4	<i>s</i> 5	<i>s</i> 4				<i>c</i> 8	c7
5			r4	r4			
6	<i>s</i> 11	<i>s</i> 12				c10	<i>c</i> 9
7			<i>r</i> 3	<i>r</i> 3			
8			<i>r</i> 5	<i>r</i> 5			
9				<i>r</i> 1			
10				<i>r</i> 5			
11				r4			
12	<i>s</i> 11	<i>s</i> 12				c10	c13
13		·		r3			, and the second

$$S' \rightarrow S$$

$$S \rightarrow L = R$$

$$S \rightarrow R$$

$$L \rightarrow *R$$

$$L \rightarrow id$$

$$R \rightarrow L$$

Input

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

LR(1) (aka CLR(1)) Parsing for the Pointer Assignment Grammar

State		Acti	ion	Goto			
State	id	*	=	\$	S	L	R
0	<i>s</i> 5	<i>s</i> 4			<i>c</i> 1	<i>c</i> 2	<i>c</i> 3
1				acc			
2			<i>s</i> 6	<i>r</i> 5			
3				r2			
4	<i>s</i> 5	<i>s</i> 4				<i>c</i> 8	<i>c</i> 7
5			r4	r4			
6	<i>s</i> 11	<i>s</i> 12				c10	<i>c</i> 9
7			<i>r</i> 3	<i>r</i> 3			
8			<i>r</i> 5	<i>r</i> 5			
9				r1			
10				<i>r</i> 5			
11				r4			
12	<i>s</i> 11	<i>s</i> 12				c10	c13
13				<i>r</i> 3			

$$S' \rightarrow S$$

$$S \rightarrow L = R$$

$$S \rightarrow R$$

$$L \rightarrow * R$$

$$L \rightarrow id$$

$$R \rightarrow L$$

Input

id = id\$

Shift 5

0

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

LR(1) (aka CLR(1)) Parsing for the Pointer Assignment Grammar

	ı	۸ - ۲		1	1	Cata	
State		Acti	on			Goto	
State	id	*	=	\$	S	L	R
0	<i>s</i> 5	<i>s</i> 4			<i>c</i> 1	<i>c</i> 2	<i>c</i> 3
1				acc			
2			<i>s</i> 6	<i>r</i> 5			
3				r2			
4	<i>s</i> 5	<i>s</i> 4				<i>c</i> 8	<i>c</i> 7
5			r4	r4			
6	<i>s</i> 11	<i>s</i> 12				c10	<i>c</i> 9
7			<i>r</i> 3	<i>r</i> 3			
8			<i>r</i> 5	<i>r</i> 5			
9				<i>r</i> 1			
10				<i>r</i> 5			
11				r4			
12	<i>s</i> 11	<i>s</i> 12				c10	c13
13				r3			

$$S' \rightarrow S$$

$$S \rightarrow L = R$$

$$S \rightarrow R$$

$$L \rightarrow *R$$

$$L \rightarrow id$$

$$R \rightarrow L$$

Input

= id\$

Reduce by 4

5 id

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

LR(1) (aka CLR(1)) Parsing for the Pointer Assignment Grammar

Ctata		Act	ion			Goto	
State	id	*	=	\$	S	L	R
0	<i>s</i> 5	<i>s</i> 4			<i>c</i> 1	<i>c</i> 2	<i>c</i> 3
1				acc			
2			<i>s</i> 6	<i>r</i> 5			
3				r2			
4	<i>s</i> 5	<i>s</i> 4				<i>c</i> 8	<i>c</i> 7
5			r4	r4			
6	<i>s</i> 11	<i>s</i> 12				c10	<i>c</i> 9
7			<i>r</i> 3	<i>r</i> 3			
8			<i>r</i> 5	<i>r</i> 5			
9				<i>r</i> 1			
10				<i>r</i> 5			
11				r4			
12	s11	<i>s</i> 12				c10	c13
13				r3			

$$S' \rightarrow S$$

$$S \rightarrow L = R$$

$$S \rightarrow R$$

$$L \rightarrow R$$

$$L \rightarrow id$$

$$R \rightarrow L$$

Input

= id\$

Cover by 2

L 0

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

LR(1) (aka CLR(1)) Parsing for the Pointer Assignment Grammar

State		Acti	on	Goto			
State	id	*	=	\$	S	L	R
0	<i>s</i> 5	<i>s</i> 4			<i>c</i> 1	<i>c</i> 2	<i>c</i> 3
1				acc			
2			<i>s</i> 6	<i>r</i> 5			
3				r2			
4	<i>s</i> 5	<i>s</i> 4				<i>c</i> 8	<i>c</i> 7
5			r4	r4			
6	<i>s</i> 11	<i>s</i> 12				c10	<i>c</i> 9
7			<i>r</i> 3	<i>r</i> 3			
8			<i>r</i> 5	<i>r</i> 5			
9				<i>r</i> 1			
10				<i>r</i> 5			
11				r4			
12	<i>s</i> 11	<i>s</i> 12				c10	c13
13				<i>r</i> 3			

$$S' \rightarrow S$$

 $S \rightarrow L = R$
 $S \rightarrow R$
 $L \rightarrow *R$
 $L \rightarrow id$
 $R \rightarrow L$

Input

= id\$

Shift 6

2 *L*

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

LR(1) (aka CLR(1)) Parsing for the Pointer Assignment Grammar

State		Act	ion			Goto	
State	id	*	=	\$	S	L	R
0	<i>s</i> 5	<i>s</i> 4			<i>c</i> 1	<i>c</i> 2	<i>c</i> 3
1				acc			
2			<i>s</i> 6	<i>r</i> 5			
3				r2			
4	<i>s</i> 5	<i>s</i> 4				<i>c</i> 8	<i>c</i> 7
5			r4	r4			
6	<i>s</i> 11	<i>s</i> 12				c10	<i>c</i> 9
7			<i>r</i> 3	<i>r</i> 3			
8			<i>r</i> 5	<i>r</i> 5			
9				<i>r</i> 1			
10				<i>r</i> 5			
11				r4			
12	<i>s</i> 11	<i>s</i> 12				c10	c13
13				r3			

$$S' \rightarrow S$$

$$S \rightarrow L = R$$

$$S \rightarrow R$$

$$L \rightarrow R$$

$$L \rightarrow id$$

$$R \rightarrow L$$

Input

id\$

Shift 11

6 = 2 *L* 0

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

LR(1) (aka CLR(1)) Parsing for the Pointer Assignment Grammar

State		Acti	ion			Goto	
State	id	*	=	\$	S	L	R
0	<i>s</i> 5	<i>s</i> 4			<i>c</i> 1	<i>c</i> 2	<i>c</i> 3
1				acc			
2			<i>s</i> 6	<i>r</i> 5			
3				<i>r</i> 2			
4	<i>s</i> 5	<i>s</i> 4				<i>c</i> 8	<i>c</i> 7
5			r4	r4			
6	<i>s</i> 11	<i>s</i> 12				c10	<i>c</i> 9
7			<i>r</i> 3	<i>r</i> 3			
8			<i>r</i> 5	<i>r</i> 5			
9				r1			
10				<i>r</i> 5			
11				r4			
12	<i>s</i> 11	<i>s</i> 12				c10	c13
13				<i>r</i> 3			

$$S' \rightarrow S$$

$$S \rightarrow L = R$$

$$S \rightarrow R$$

$$L \rightarrow R$$

$$L \rightarrow id$$

$$R \rightarrow L$$

Input

\$

Reduce by 4

Stack

11

id

6 =

2

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

LR(1) (aka CLR(1)) Parsing for the Pointer Assignment Grammar

State	Action				Goto		
	id	*	=	\$	S	L	R
0	<i>s</i> 5	<i>s</i> 4			<i>c</i> 1	<i>c</i> 2	<i>c</i> 3
1				acc			
2			<i>s</i> 6	<i>r</i> 5			
3				r2			
4	<i>s</i> 5	<i>s</i> 4				<i>c</i> 8	<i>c</i> 7
5			r4	r4			
6	<i>s</i> 11	<i>s</i> 12				c10	<i>c</i> 9
7			<i>r</i> 3	<i>r</i> 3			
8			<i>r</i> 5	<i>r</i> 5			
9				<i>r</i> 1			
10				<i>r</i> 5			
11				r4			
12	<i>s</i> 11	<i>s</i> 12				c10	c13
13				r3			

$$S' \rightarrow S$$

$$S \rightarrow L = R$$

$$S \rightarrow R$$

$$L \rightarrow R$$

$$L \rightarrow id$$

$$R \rightarrow L$$

Input

\$

Cover by 10

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

LR(1) (aka CLR(1)) Parsing for the Pointer Assignment Grammar

State		Acti	ion		Goto		
State	id	*	=	\$	S	L	R
0	<i>s</i> 5	<i>s</i> 4			<i>c</i> 1	<i>c</i> 2	<i>c</i> 3
1				acc			
2			<i>s</i> 6	<i>r</i> 5			
3				r2			
4	<i>s</i> 5	<i>s</i> 4				<i>c</i> 8	<i>c</i> 7
5			r4	r4			
6	<i>s</i> 11	<i>s</i> 12				c10	<i>c</i> 9
7			<i>r</i> 3	<i>r</i> 3			
8			<i>r</i> 5	<i>r</i> 5			
9				r1			
10				<i>r</i> 5			
11				r4			
12	<i>s</i> 11	<i>s</i> 12				c10	c13
13				<i>r</i> 3			

$$S' \rightarrow S$$

$$S \rightarrow L = R$$

$$S \rightarrow R$$

$$L \rightarrow R$$

$$L \rightarrow id$$

$$R \rightarrow L$$

Input

\$

Reduce by 5

Stack

10

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

LR(1) (aka CLR(1)) Parsing for the Pointer Assignment Grammar

State		Acti	ion		Goto		
State	id	*	=	\$	S	L	R
0	<i>s</i> 5	<i>s</i> 4			<i>c</i> 1	<i>c</i> 2	<i>c</i> 3
1				acc			
2			<i>s</i> 6	<i>r</i> 5			
3				r2			
4	<i>s</i> 5	<i>s</i> 4				<i>c</i> 8	<i>c</i> 7
5			r4	r4			
6	<i>s</i> 11	<i>s</i> 12				c10	<i>c</i> 9
7			<i>r</i> 3	<i>r</i> 3			
8			<i>r</i> 5	<i>r</i> 5			
9				r1			
10				<i>r</i> 5			
11				r4			
12	<i>s</i> 11	<i>s</i> 12				c10	c13
13				<i>r</i> 3			

$$S' \rightarrow S$$

 $S \rightarrow L = R$
 $S \rightarrow R$
 $L \rightarrow *R$
 $L \rightarrow id$
 $R \rightarrow L$

Input

\$

Cover by 9

Stack

R

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

LR(1) (aka CLR(1)) Parsing for the Pointer Assignment Grammar

State		Act	ion		Goto		
State	id	*	=	\$	S	L	R
0	<i>s</i> 5	<i>s</i> 4			<i>c</i> 1	<i>c</i> 2	<i>c</i> 3
1				acc			
2			<i>s</i> 6	<i>r</i> 5			
3				r2			
4	<i>s</i> 5	<i>s</i> 4				<i>c</i> 8	<i>c</i> 7
5			r4	r4			
6	<i>s</i> 11	<i>s</i> 12				c10	<i>c</i> 9
7			<i>r</i> 3	<i>r</i> 3			
8			<i>r</i> 5	<i>r</i> 5			
9				<i>r</i> 1			
10				<i>r</i> 5			
11				r4			
12	<i>s</i> 11	<i>s</i> 12				c10	c13
13				<i>r</i> 3			

$$S' \rightarrow S$$

$$S \rightarrow L = R$$

$$S \rightarrow R$$

$$L \rightarrow R$$

$$L \rightarrow id$$

$$R \rightarrow L$$

Input

\$

Reduce by 1

Stack

R

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

LR(1) (aka CLR(1)) Parsing for the Pointer Assignment Grammar

State		Acti	on		Goto		
State	id	*	=	\$	S	L	R
0	<i>s</i> 5	<i>s</i> 4			<i>c</i> 1	<i>c</i> 2	<i>c</i> 3
1				acc			
2			<i>s</i> 6	<i>r</i> 5			
3				r2			
4	<i>s</i> 5	<i>s</i> 4				<i>c</i> 8	<i>c</i> 7
5			r4	r4			
6	<i>s</i> 11	<i>s</i> 12				c10	<i>c</i> 9
7			<i>r</i> 3	<i>r</i> 3			
8			<i>r</i> 5	<i>r</i> 5			
9				<i>r</i> 1			
10				<i>r</i> 5			
11				r4			
12	<i>s</i> 11	<i>s</i> 12				c10	c13
13				<i>r</i> 3			

$$S' \rightarrow S$$

$$S \rightarrow L = R$$

$$S \rightarrow R$$

$$L \rightarrow R$$

$$L \rightarrow id$$

$$R \rightarrow L$$

Input

\$

Cover by 1

S

Stack

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

LR(1) (aka CLR(1)) Parsing for the Pointer Assignment Grammar

State		Acti	ion		Goto		
State	id	*	=	\$	S	L	R
0	<i>s</i> 5	<i>s</i> 4			<i>c</i> 1	<i>c</i> 2	<i>c</i> 3
1				acc			
2			<i>s</i> 6	<i>r</i> 5			
3				r2			
4	<i>s</i> 5	<i>s</i> 4				<i>c</i> 8	<i>c</i> 7
5			r4	r4			
6	<i>s</i> 11	<i>s</i> 12				c10	<i>c</i> 9
7			<i>r</i> 3	<i>r</i> 3			
8			<i>r</i> 5	<i>r</i> 5			
9				<i>r</i> 1			
10				<i>r</i> 5			
11				r4			
12	<i>s</i> 11	<i>s</i> 12				c10	c13
13				r3			

$$S' \rightarrow S$$

$$S \rightarrow L = R$$

$$S \rightarrow R$$

$$L \rightarrow R$$

$$L \rightarrow id$$

$$R \rightarrow L$$

Stack

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Another Example of LR(1) (aka CLR(1)) Parsing

A
ightarrow aBe

A
ightarrow aCd

 $A \rightarrow bBd$ $A \rightarrow bCe$

 $B \rightarrow f$

 $C \rightarrow f$

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

$$A \rightarrow aBe$$

 $A \rightarrow aCd$
 $A \rightarrow bBd$

$$B \rightarrow f$$

 $C \rightarrow f$

I_0	
${\mathcal A}' o ullet {\mathcal A},$	\$
$A \rightarrow ullet aBe,$	\$
$A \rightarrow \bullet aCd$,	\$
$A \rightarrow \bullet bBd$,	\$
$A \rightarrow ullet bCe$,	\$

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

$$A \rightarrow aBe$$

 $A \rightarrow aCd$
 $A \rightarrow bBd$
 $A \rightarrow bCe$

$$B \to f$$
$$C \to f$$

Topic: Syntax Analysis

Section:

Grammars, Derivations, and Pars Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

Another Example of LR(1) (aka CLR(1)) Parsing

Closure of
$$P o lpha ullet Qeta, p$$
 contains items of the form $Q o ullet \gamma, \ \mathsf{FIRST}(eta p)$

In our example

- For Q = B, β is e and p is \$

 If we expect to see a string derivable from B in this state, the string must be followed by

 FIRST(βp) = FIRST(e\$) = e
- For Q = C, β is d and p is \$

 If we expect to see a string derivable from C in this state, the string must be followed by

 FIRST(βp) = FIRST(d\$) = d

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parso
Trees

Shift Reduce Parsin

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Another Example of LR(1) (aka CLR(1)) Parsing

Closure of P o lpha ullet Qeta, p contains items of the form $Q o ullet \gamma, \ \mathsf{FIRST}(eta p)$

In our example

- For Q = B, β is d and p is \$

 If we expect to see a string derivable from B in this state, the string must be followed by

 FIRST(βp) = FIRST(d\$) = d
- For Q = C, β is e and p is \$

 If we expect to see a string derivable from C in this state, the string must be followed by

 FIRST(βp) = FIRST(e\$) = e

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parso
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Derivations, and Parse

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in

CLR(1) Parsing

LALR(1) Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

LALR(1) Parsing

• Merge item sets with identical cores (may have different lookaheads)

States $I_i: A \to \alpha \bullet \beta, a$ and $I_j: A \to \alpha \bullet \beta, b$

can be merged to create a new state I_{ij} : $A \rightarrow \alpha \bullet \beta, a/b$

• In practice, we do not construct LR(1) items to construct LALR(1) parser We construct LR(0) items and use a look-ahead propagation algorithm

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Pars
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

$$\begin{array}{ll} 0 & S' \rightarrow S \\ 1 & S \rightarrow L = R \\ 2 & S \rightarrow R \\ 3 & L \rightarrow *R \\ 4 & L \rightarrow \mathrm{id} \\ 5 & R \rightarrow L \end{array}$$

State		Ac	tion		Goto		
State	id	*	=	\$	S	L	R
0	<i>s</i> 5	<i>s</i> 4			<i>c</i> 1	<i>c</i> 2	<i>c</i> 3
1				acc			
2			<i>s</i> 6	<i>r</i> 5			
3				<i>r</i> 2			
4	<i>s</i> 5	<i>s</i> 4				<i>c</i> 8	<i>c</i> 7
5			r4	r4			
6	<i>s</i> 5	<i>s</i> 4				<i>c</i> 8	<i>c</i> 9
7			<i>r</i> 3	<i>r</i> 3			
8			<i>r</i> 5	<i>r</i> 5			
9				<i>r</i> 1			

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsir

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

LALR(1) Vs CLR(1) Parsing

- Can merging of LR(1) states introduce shift-reduce conflict?
- Can merging of LR(1) states introduce reduce-reduce conflict?

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Can Merging LR(1) Sets of Items Introduce Shift-Reduce Conflict?

• To merge states l_i and l_j , they should have identical cores but different lookaheads (if the lookaheads are same then the states will not be distinct)

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Can Merging LR(1) Sets of Items Introduce Shift-Reduce Conflict?

• To merge states l_i and l_j , they should have identical cores but different lookaheads (if the lookaheads are same then the states will not be distinct)

• Let $I_i: \begin{bmatrix} A \to \alpha \bullet a\beta, & p \\ B \to \gamma \bullet, & q \end{bmatrix}$ and $I_j: \begin{bmatrix} A \to \alpha \bullet a\beta, & r \\ B \to \gamma \bullet, & s \end{bmatrix}$ where p, q, r, s are arbitrary terminals

So that the merged state is $I_{ij}: egin{array}{cccc} A
ightarrow lpha & \mathbf{a}eta, & \mathbf{p}/r \\ B
ightarrow \gamma ullet, & q/s \end{array}$

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Can Merging LR(1) Sets of Items Introduce Shift-Reduce Conflict?

• To merge states l_i and l_j , they should have identical cores but different lookaheads (if the lookaheads are same then the states will not be distinct)

• Let $I_i: \begin{bmatrix} A \to \alpha \bullet a\beta, & p \\ B \to \gamma \bullet, & q \end{bmatrix}$ and $I_j: \begin{bmatrix} A \to \alpha \bullet a\beta, & r \\ B \to \gamma \bullet, & s \end{bmatrix}$ where p, q, r, s are arbitrary terminals

So that the merged state is
$$I_{ij}: \begin{bmatrix} A \to \alpha \bullet a\beta, & p/r \\ B \to \gamma \bullet, & q/s \end{bmatrix}$$

• For a shift-reduce conflict in I_{ii} , either q or s must be a.

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Can Merging LR(1) Sets of Items Introduce Shift-Reduce Conflict?

• To merge states l_i and l_j , they should have identical cores but different lookaheads (if the lookaheads are same then the states will not be distinct)

• Let $I_i: \begin{bmatrix} A \to \alpha \bullet a\beta, & p \\ B \to \gamma \bullet, & q \end{bmatrix}$ and $I_j: \begin{bmatrix} A \to \alpha \bullet a\beta, & r \\ B \to \gamma \bullet, & s \end{bmatrix}$ where p, q, r, s are arbitrary terminals

So that the merged state is $I_{ij}: \begin{array}{c} A \to \alpha \bullet a\beta, & p/r \\ B \to \gamma \bullet, & q/s \end{array}$

• For a shift-reduce conflict in I_{ij} , either q or s must be a.

o If q is a, then I_i is $A \to \alpha \bullet a\beta$, $p \to \gamma \bullet$, $A \to \alpha \bullet a\beta$, $A \to \alpha \bullet a\beta$, $A \to \alpha \bullet a\beta$, and thus $A \to \alpha \bullet a\beta$, $A \to \alpha \bullet \alpha$, $A \to \alpha \bullet$

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Can Merging LR(1) Sets of Items Introduce Shift-Reduce Conflict?

• To merge states I_i and I_j , they should have identical cores but different lookaheads (if the lookaheads are same then the states will not be distinct)

• Let $I_i: \begin{bmatrix} A \to \alpha \bullet a\beta, & p \\ B \to \gamma \bullet, & q \end{bmatrix}$ and $I_j: \begin{bmatrix} A \to \alpha \bullet a\beta, & r \\ B \to \gamma \bullet, & s \end{bmatrix}$ where p, q, r, s are arbitrary terminals

So that the merged state is $I_{ij}: A \to \alpha \bullet a\beta$, p/r $B \to \gamma \bullet$, q/s

• For a shift-reduce conflict in I_{ii} , either q or s must be a.

- $\circ \text{ If } q \text{ is } a \text{, then } I_i \text{ is } \begin{array}{c} A \to \alpha \bullet a\beta, & p \\ B \to \gamma \bullet, & a \end{array}$
- o If s is a, then I_j is $A \to \alpha \bullet a\beta$, $A \to \alpha \bullet \alpha$, $A \to \alpha \bullet$

and thus I_j has a shift-reduce conflict

and thus I_i has a shift-reduce conflict

Topic:

Syntax Analysis
Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Can Merging LR(1) Sets of Items Introduce Shift-Reduce Conflict?

• To merge states l_i and l_j , they should have identical cores but different lookaheads (if the lookaheads are same then the states will not be distinct)

Let I_i: A → B → arbitrary tern
 So that the r
 For a shift-re
 If q is a
 A set I_{ij} of items in an LALR(1) parser can have a shift-reduce conflict if and only if a set I_i of LR(1) items merged to form I_{ij} has the same shift-reduce conflict

o If s is a, then I_j is $A \to \alpha \bullet a\beta$, $A \to \alpha \bullet a\beta$, and thus I_j has a shift-reduce conflict

Topic:

Syntax Analysis

Section:

Derivations, and Parse

SLR(1) Parsing

CLR(1) Parsing

LALR(1) Parsing

Can Merging LR(1) Sets of Items Introduce Reduce-Reduce Conflict?

$$A \to \alpha \bullet$$
, p
 $B \to \alpha \bullet$, q

So that the merged state is I_{ii} :

$$A \to \alpha \bullet$$
, p/r
 $B \to \alpha \bullet$, q/s

Topic:

Syntax Analysis

Section:

Derivations, and Pars Trees

Shift Reduce Parsin

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Can Merging LR(1) Sets of Items Introduce Reduce-Reduce Conflict?

• Let $I_i: egin{array}{cccc} A
ightarrow lpha iglet, & p \ B
ightarrow lpha iglet, & q \end{array}$ and $I_j: egin{array}{cccc} A
ightarrow lpha iglet, & r \ B
ightarrow lpha iglet, & s \end{array}$

So that the merged state is I_{ij} :

$$A \to \alpha \bullet$$
, p/r
 $B \to \alpha \bullet$, q/s

- For a reduce-reduce conflict in I_{ij} such that there is no reduce-reduce conflict in I_i or I_i ,
 - o p = s. This is possible without a reduce-reduce conflict in I_i and I_j
 - \circ r=q. This is also possible without a reduce-reduce conflict in I_i and I_j

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Can Merging LR(1) Sets of Items Introduce Reduce-Reduce Conflict?

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Example of Reduce-Reduce Conflict Caused by Merging LR(1) Sets of Items

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Example of Reduce-Reduce Conflict Caused by Merging LR(1) Sets of Items I_4 I_{10}

 $B \rightarrow f \bullet . d$

Topic:

Syntax Analysis

Section:

Derivations, and Parse

SLR(1) Parsing

CLR(1) Parsing

LALR(1) Parsing

A Practical Example of Reduce-Reduce Conflict in LR(1) Parsing

program → func_decl var_decl program \rightarrow var_decl func_decl $var_decl \rightarrow data_type ID$; $data_type \rightarrow INT$

func_decl \rightarrow return_type ID ()

return_type \rightarrow INT return_type → VOID

For the input "int f . . . ", when we see the token INT, the next token is ID

In this situation, the parser does not know if it should reduce INT to return_type or data_type

State I_0 contains the following items

```
data_type \rightarrow \bullet INT. ID
return_type \rightarrow • INT, ID
```

The transition on INT gives the following set of items showing a reduce-reduce conflict on ID

```
data_type \rightarrow INT \bullet, ID
return_type → INT •. ID
```


Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

A Practical Example of Reduce-Reduce Conflict in LR(1) Parsing

In this particular case, the conflict can be removed by replacing every occurrence of the non-terminals data_type and return_type by every RHS of the non-terminal

Original Grammar	Transformed Grammar		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} program & \to & func_decl \ var_decl \\ program & \to & var_decl \ func_decl \\ var_decl & \to & INT \ ID \ ; \\ func_decl & \to & INT \ ID \ (\) \\ func_decl & \to & VOID \ ID \ (\) \end{array}$		

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Pars
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

A Summary of Bottom Up Parsing Methods

Parsing Method	Items Used	Reduction by $A \rightarrow \alpha$	Remarks
SLR(0)	LR(0)	On any terminal	
SLR(1)	LR(0)	On the terminals in $FOLLOW(A)$	
LR(1), also known as Canonical LR(1) or CLR(1)	LR(1)	On lookahead a in the item " $A \rightarrow \alpha \bullet$, a "	
LALR(1)	LR(1)	On lookahead a in the item " $A o lpha ullet , a$ "	Conceptually, the sets of items are obtained by merging LR(1) item sets that differ only in the lookahead symbols Practically, lookaheads are propagated starting from \$ on LR(0) items

Topic: Svntax Analysis

Section:

Grammars,
Derivations, and Pars
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Comparison of Bottom-Up Methods and Corresponding Grammars

- A grammar G is accepted by a parsing method P if a conflict-free parser can be constructed for G using P
- An ambiguous grammar is not accepted by any parsing method
- A grammar is called SLR(0), SLR(1), LR(1), or LALR(1) if it is accepted respectively, by the SLR(0), SLR(1), LR(1), or LALR(1) parsing method
 - o Every SLR(0) grammar is also SLR(1) grammar but not vice-versa
 - o Every SLR(1) grammar is also LALR(1) grammar but not vice-versa
 - Every LALR(1) grammar is also LR(1) grammar but not vice-versa
- The expressions grammar (E → E + E | E * E | id) is not accepted by any parsing method because it is ambiguous
 (without post-facto instrumentation of parsing tables using precedences and associativities)