MODULE 7

Estimation

PERCENTILES

DEFINING PERCENTILES

- A percentile is the value at a particular rank.
- Let p be a number between 0 and 100. The pth percentile of a collection is the smallest value in the collection that is at least as large as p% of all the values.
- Practically, suppose there are n elements in the collection.
 To find the pth percentile:
 - Sort the collection in increasing order.
 - Find p% of n: $(p/100)\times n$. Call that k.
 - If k is an integer, take the kth element of the sorted collection.
 - If k is not an integer, round it up to the next integer, and take that element of the sorted collection.

COMPUTING PERCENTILES

The **pth** percentile is the first value on the sorted list that is at least as large as p% of the elements.

Example:
$$s = [1, 7, 3, 9, 5]$$

$$s_sin = [1, 3, 5, 7, 9]$$
 and

The 80th percentile is the 4th ordered element: (80/100) * 5

 For a percentile that does not exactly correspond to an element, take the next greater element instead

THE PERCENTILE FUNCTION

- The pth percentile is the smallest value in a set that is at least as large as p% of the elements in the set
- Function in the datascience module:

percentile(p, values)

p is between 0 and 100

Returns the pth percentile of the array

(Demo – notebook 7.1, Percentiles)

DISCUSSION QUESTION

```
Which are True, when s = [1, 7, 3, 9, 5]?
```

```
percentile(10, s) == 0

percentile(39, s) == percentile(40, s)

percentile(40, s) == percentile(41, s)

percentile(50, s) == 5
```

(Demo – notebook 7.1, Percentiles in class)

ESTIMATION

INFERENCE: ESTIMATION

- How do we calculate the value of an unknown parameter?
- If you have a census (that is, the whole population):
 - Just calculate the parameter and you're done
- If you don't have a census:
 - Take a random sample from the population
 - Use a statistic as an estimate of the parameter

(Demo – Notebook 7.1, Estimating Median - Sample Median)

VARIABILITY OF THE ESTIMATE

- One sample → One estimate
- But the random sample could have come out differently
- And so the estimate could have been different
- Big question:
 - How different would it be if we did it again?

(Demo – Notebook 7.1, Variability of the Estimate)

QUANTIFYING UNCERTAINTY

• The estimate is usually not exactly right:

- How accurate is the estimate, usually?
- How big is a typical error?
- When we have a census, we can do this by simulation

(Demo – Notebook 7.1, Quantifying Uncertainty)

WHERE TO GET ANOTHER SAMPLE?

- We want to understand errors of our estimate
- Given the **population**, we could simulate
 - ...but we only have the sample!
- To get many values of the estimate, we needed many random samples
- Can't go back and sample again from the population:
 - No time, no money
- Stuck?

THE BOOTSTRAP

THE BOOTSTRAP

A technique for simulating repeated random sampling

- All that we have is the original sample
 - ... which is large and random
 - Therefore, it probably resembles the population

- So, we sample at random from the original sample!
 - AKA, resampling

WHY THE BOOTSTRAP WORKS

All of these look pretty similar, most likely.

WHY WE NEED THE BOOTSTRAP

REAL WORLD VS. BOOTSTRAP WORLD

Real world:

- True probability distribution (population)
 - \circ \rightarrow Random sample 1
 - \rightarrow Estimate 1
 - \circ \rightarrow Random sample 2
 - \rightarrow Estimate 2
 - 0 ...
 - \circ \rightarrow Random sample 10000
 - \rightarrow Estimate 10000

Bootstrap world:

- Empirical distribution of original sample ("population")
 - \circ \rightarrow Bootstrap sample 1
 - \rightarrow Estimate 1
 - \circ \rightarrow Bootstrap sample 2
 - \rightarrow Estimate 2
 - 0 ...
 - \circ \rightarrow Bootstrap sample 1000
 - \rightarrow Estimate 1000

Hope: these two scenarios are analogous

Real vs. Bootstrap World

Real world (what we want):

- True probability distribution (population)
 - → Random sample 1
 - → Estimate 1
 - → Random sample 2
- Can't get the ese : (\blacksquare \rightarrow Estimate 2
 - O ...
 - O → Random sample 10000
 - → Estimate 10000

Bootstrap world:

- Empirical distribution of original sample ("population")
 - → Bootstrap sample 1
 - → Estimate 1
 - → Bootstrap sample 2
 - → Estimate 2
 - 0 ...
 - → Bootstrap sample 1000
 - → Estimate 1000

Hope: these two scenarios are analogous

THE BOOTSTRAP PRINCIPLE

- The bootstrap principle:
 - Bootstrap-world sampling ≈ Real-world sampling
- Not always true!
 - ... but reasonable if sample is large enough
- We hope that:
 - a. Variability of bootstrap estimate
 - b. Distribution of bootstrap errors
 - ...are similar to what they are in the real world

KEY TO RESAMPLING

- From the original sample,
 - draw at random
 - with replacement
 - as many values as the original sample contained

 The size of the new sample has to be the same as the original one, so that the two estimates are comparable

(Demo – notebook 7.1, Bootstrap)

CONFIDENCE INTERVALS

DO THE ESTIMATES CAPTURE THE PARAMETER?

Q: How often does the empirical histogram of the resampled medians **contain our parameter?**

For instance, how often does the middle 95% of the resampled medians contain our parameter?

95% CONFIDENCE INTERVAL

- Interval of a parameter
- Based on random sampling
- 95% is called the *confidence level*
 - Could be any percent between 0 and 100
 - Higher level means wider intervals
- The **confidence** is in the process that gives the interval:
 - It generates a "good" interval about 95% of the time.

(Demo – notebook 7.1, Confidence Intervals)

Each line here is a confidence interval from a fresh sample from the population

95% CI: Usage vs Interpretation

- How to create it
 - Middle 95% of the bootstrapped estimates

- How to interpret it
 - 95% of samples will give a 95% CI that contains the true parameter

USE METHODS APPROPRIATELY

CAN YOU USE A CI LIKE THIS?

By our calculation, an approximate 95% confidence interval for the average age of the mothers in the population is (26.9, 27.6) years.

True or False:

 About 95% of the mothers in the population were between 26.9 years and 27.6 years old.

Answer: False. We're estimating that their average age is in this interval.

IS THIS WHAT A CI MEANS?

An approximate 95% confidence interval for the average age of the mothers in the population is (26.9, 27.6) years.

True or False:

 There is a 0.95 probability that the average age of mothers in the population is in the range 26.9 to 27.6 years.

Answer: False. The average age of the mothers in the population is unknown but it's a constant. It's not random. No chances involved.

WHEN NOT TO USE THE BOOTSTRAP

- If you're trying to estimate very high or very low percentiles, or min and max
- If you're trying to estimate any parameter that's greatly affected by rare elements of the population
- If the probability distribution of your statistic is not roughly bell shaped (the shape of the empirical distribution will be a clue)
- If the original sample is very small

CONFIDENCE INTERVALS FOR TESTING

USING A CI FOR TESTING

- Null hypothesis: Population average = x
- Alternative hypothesis: Population average $\neq x$
- Cutoff for P-value: p%
- Method:
 - Construct a (100-p)% confidence interval for the population average
 - If x is not in the interval, reject the null
 - If x is in the interval, can't reject the null

QUESTIONS?