STAT0017: Selected Topics In Statistics

Topic 2: "Dependence modelling in finance using copulas"

Lecture 1

2019

Material and text books

Accessible Introduction

- J.-F. Mai and M. Scherer. Financial Engineering with Copulas Explained. Financial Engineering Explained. Palgrave Macmillan, 2014
- R.B. Nelsen. An Introduction to Copulas. Springer Series in Statistics. Springer, 2006

Vine Copulas

 Dorota Kurowicka and Roger Cooke. Uncertainty Analysis with High Dimensional Dependence Modelling.
 John Wiley Sons, Ltd, 2006

Articles

Kjersti Aas. Modelling the dependence structure of financial assets: A survey of four copulas.

Norwegian Computing Center, 2004

Material and text books

Other books

- F. Durante and C. Sempi. *Principles of Copula Theory*. Taylor & Francis, 2015
- H. Joe. Dependence Modeling with Copulas.
 Chapman & Hall/CRC Monographs on Statistics & Applied Probability.
 Taylor & Francis, 2014
- Harry Joe. Multivariate models and dependence concepts. Chapman Hall Ltd, London; New York, 1997

Assessment, computer practicals.

- **1 Assessment** 2 take-home ICAs
 - Extreme value theory and practice (50%). Set: 6/2/2019, Deadline: 21/3/2019
 - Dependence modelling in finance using copulas (50%) Set: 6/3/2019, Deadline: 24/4/2019
- Computer practicals in R: 2 practicals.
- Office hours:
 11:00-12.00 Wednesdays
 11:00-12.00 Fridays
 and by appointment outside office hours.
- **Discussion forum** on Moodle.

Course outline

Lecture 1

• Introduction to copula theory (bivariate case)

Lecture 2

- Simulation (bivariate case)
- Empirical Applications (bivariate case)

Lecture 3, 4

• Vine copulas (multivariate case)

Lecture 5

- Dynamic copulas
- Factor copulas

Value-at-Risk

Let the random variable L denote the loss of a portfolio over the period h.

Definition 2.1 (Value-at-Risk)

$$\operatorname{VaR}_{\alpha} = \inf\{l \in \mathbb{R} : P(L > l) \leq 1 - \alpha\} = \inf\{l \in \mathbb{R} : F_L(l) \geq \alpha\}$$

Given some confidence level $\alpha \in (0,1)$, the Value-at-Risk of a given portfolio is the threshold such that the probability of losing more than this threshold over a time horizon h is equal to $1-\alpha$.

Identical correlation $\rho=0.7$, but different dependence structure

Preliminaries

Definition 2.2 (Quantile function)

For a CDF $F_X : \mathbb{R} \to [0,1]$ of a r.v. X, the quantile function of F_X is the function F_X^{-1} :

$$F_X^{-1}(u) = \inf \left\{ x \in \mathbb{R} : F_X(x) \ge u \right\}$$

where $0 < u \le 1$, and $F_X^{-1}(0) = \inf \{x \in \mathbb{R} : F_X(x) > 0\}$

Preliminaries Preliminaries

Lemma 2.1 (The Probability Integral Transform)

Let X be a continuous r.v. with CDF $F_X(x)$ which is increasing over the range of X. Then $U \equiv F_X(x) \sim \mathrm{U}(0,1)$.

Proof:

$$F_{U}(u) = \mathbb{P}(U \le u)$$

$$= \mathbb{P}(F_{X}(X) \le u)$$

$$= \mathbb{P}(F_{X}^{-1}(F_{X}(X)) \le F_{X}^{-1}(u))$$

$$= \mathbb{P}(X \le F_{X}^{-1}(u))$$

$$= F_{X}(F_{X}^{-1}(u))$$

$$= u$$

where $u \in [0, 1]$

Preliminaries

Lemma 2.2 (The inverse Probability Integral Transform)

Let $U \sim \mathrm{U}(0,1),$ and F_X be any CDF. Then, $X \equiv F_X^{-1}(U) \sim F_X$

Proof:

$$\mathbb{P}(X \le x) = \mathbb{P}(F_X^{-1}(U) \le x)$$

$$= \mathbb{P}(F_X(F_X^{-1}(U)) \le F_X(x))$$

$$= \mathbb{P}(U \le F_X(x))$$

$$= F_X(x)$$

where $x \in \mathbb{R}$

Definition 2.3

Let S_1 and S_2 be nonempty subsets of $\overline{\mathbb{R}}$. A 2-place real function H is a function whose domain, $Dom\ H = S_1 \times S_2$, is a subset of $\overline{\mathbb{R}}^2$ and whose range, $Ran\ H$, is a subset of $\overline{\mathbb{R}}$.

Definition 2.4

A 2-place real function H is 2-increasing if $V_H([a_1, a_2] \times [b_1, b_2]) \ge 0$ for all rectangles B whose vertices lie in $Dom\ H$.

Note that the statement "H is 2-increasing" neither implies nor is implied by the statement "H is nondecreasing in each argument".

Example

Example 3.8. Let H be the function defined on $[0,1] \times [0,1]$ by H(x,y) = max(x,y). Then H is a nondecreasing function of x and of y. Nevertheless, $V_H([0,1] \times [0,1]) = -1$. Hence, H does not satisfy the 2-increasing property.

Example 3.9. Let H be the function defined on $[0,1] \times [0,1]$ by H(x,y) = (2x-1)(2y-1). Although H is 2-increasing, it is a decreasing function of x for each y in (0,1/2) and a decreasing function of y for each x in (0,1/2).

Lecture 1 STAT0017 12 / 40

Lemma 2.3

Let S_1 and S_2 be nonempty subsets of \mathbb{R} , and let H be a 2-increasing function with domain $S_1 \times S_2$. Let x_1 , x_2 be in S_1 with $x_1 \leq x_2$, and let y_1, y_2 be in S_2 with $y_1 \leq y_2$. Then the function $t \mapsto H(t, y_2) - H(t, y_1)$ is nondecreasing on S_1 , and the function $t \mapsto H(x_2, t) - H(x_1, t)$ is nondecreasing on S_2 .

Using Lemma 1.1, it can be shown that a 2-increasing function H is nondecreasing in each argument.

Lemma 2.4

Let S_1 and S_2 be nonempty subsets of \mathbb{R} , and let H be a grounded 2-increasing function with domain $S_1 \times S_2$. Then H is nondecreasing in each argument.

Now suppose that S_1 has a greatest element b_1 and that S_2 has a greatest element b_2 . We then say that a function H from $S_1 \times S_2$ into \mathbb{R} has margins, and that the margins of H are the functions F and G given by:

Dom
$$F = S_1$$
, and $F(x) = H(x, b_2)$ for all x in S_1

Dom
$$G = S_2$$
, and $G(y) = H(b_1, y)$ for all y in S_2

Example 3.12. Let H be the function with domain $[-1,1] \times [0,\infty]$ given by:

$$H(x,y) = \frac{(x+1)(e^y - 1)}{x + 2e^y - 1}$$

Then H is grounded because H(x,0) = 0 and H(-1,y) = 0.

The margins of H are F(x) and G(y) given by:

$$F(x) = H(x, \infty) = (x+1)/2$$
 (1)

$$G(y) = H(1, y) = 1 - e^{-y}$$
 (2)

Definition 2.5

A d-dimensional copula $C: [0,1]^d \to [0,1]$ is a joint cumulative distribution function (CDF) of a d-dimensional random vector with uniform marginals U(0,1).

- $C(u_1, ..., u_j, ..., u_d) = 0$ if $u_j = 0$ for at least one $j \in \{1, ..., d\}$
- ② $C(1,...,1,u_j,1,...,1) = u_j$ for all u_j and $j \in \{1,...,d\}$
- **3** C is d-increasing, that is, for all $\mathbf{a} = (a_1, \dots, a_d) \in [0, 1]^d$ and $\mathbf{b} = (b_1, \dots, b_d) \in [0, 1]^d$, where $a_i \leq b_i$:

$$V_C([\boldsymbol{a}, \boldsymbol{b}]) = \sum_{i_1=1}^2 \dots \sum_{i_d=1}^2 (-1)^{\sum_{j=1}^d i_j} C(u_{1i_1}, \dots, u_{di_d}) \ge 0$$

where $u_{j1} = a_j$ and $u_{j2} = b_j$ for all $j \in \{1, \ldots, d\}$

Using **Properties 1** and **Properties 3** in Definition 3.13 we can show that $C: [0,1]^2 \to [0,1]$ is nondecreasing in each argument.

Let a_1 , a_2 denote the least elements of [0,1], [0,1], respectively, and set $x_1 = a_1$, $y_1 = a_2$ in Lemma 1.1.

Sklar's Theorem

Theorem 2.1 (Sklar, 1959)

If $X_1, ..., X_d$ has joint distribution function $F_{1,...,d}(x_1, ..., x_d)$ and marginal distribution functions $F_1(x_1), ..., F_d(x_d)$, then there exists appropriate d-dimensional copula C such that, for all $x_1, ..., x_d$ in $\mathbb{R} = [-\infty, \infty]$:

$$F_{1,...,d}(x_1,...,x_d) = C_{1,...,d}(F_1(x_1),...,F_d(x_d))$$

The joint probability density function $f_{1,...,k}(x_1,...,x_d)$ for an absolutely continuous $F_{1,...,d}(x_1,...,x_d)$ with strictly increasing continuous margins $F_1(x_1),...,F_d(x_d)$ is:

$$f_{1,...,d}(x_1,...,x_d) = c_{1,...,d}(F_1(x_1),...,F_d(x_d)) \prod_{i=1}^d f_i(x_i)$$

for d-dimensional copula density c.

Lecture 1 STAT0017 18 /

Example 3.16 (Bivariate Bernoulli distribution)

Let (X_1, X_2) follow a bivariate Bernoulli distribution with $\mathbb{P}(X_1 = x_1, X_2 = x_2) = \frac{1}{4}, x_1, x_2 \in \{0, 1\}.$ This implies that $\mathbb{P}(X_i = x_i) = \frac{1}{2}, x_i \in \{0, 1\}. Ran F_i = \{0, \frac{1}{2}, 1\}, i \in \{1, 2\}.$

Any copula with $C(\frac{1}{2},\frac{1}{2})=\frac{1}{4}$

For example:

- \bullet $C(u_1, u_2) = u_1 u_2$
- $C(u_1, u_2) = \min \left\{ u_1, u_2, \frac{\delta(u_1) + \delta(u_2)}{2} \right\}$ where $\delta(u) = u^2$

Lecture 1 STAT0017

Invariance principle

Theorem 3.1

Let X_1 and X_2 be continuous random variables with copula $C_{X_1X_2}$. If α and β are strictly, monotonically increasing transformations of X_1 and X_2 , respectively, then $C_{\alpha(X_1),\beta(X_2)} = C_{X_1X_2}$. Thus C_{X_1,X_2} is invariant under strictly increasing transformations of X_1 and X_2 .

- \bullet (X_1,\ldots,X_d) has copula $C \iff (F_1(X_1),\ldots,F_d(X_d)) \sim C$
- 2 The copula of gross returns and the copula of log-returns is identical

Lecture 1 STAT0017

Example 4.2

The simple return, R_{it} , on the asset *i* between dates t-1 and *t* is defined as follows:

$$R_{it} \equiv \frac{P_{it}}{P_{it-1}} - 1 \tag{3}$$

The log-return r_{it} of an asset i is the natural logarithm of its gross return $(1 + R_t)$:

$$r_{it} \equiv \log(1 + R_{it}) = \log \frac{P_{it}}{P_{it-1}} = \log P_{it} - \log P_{it-1}$$
 (4)

Lecture 1 STAT0017 21 / 40

Example 4.2

Examples of copulas

- Fundamental copulas
- 2 Implicit copulas
- Second Second

Fundamental copulas

Independence Copula

- $\Pi(u_1, \dots, u_d) = \prod_{j=1}^d u_j$ since $C(F_1(x_1), \dots, F_d(x_d)) = F(x_1, \dots, x_d) = \prod_{j=1}^d F_j(x_j)$
- Therefore, X_1, \ldots, X_d are independent, if and only if, their copula is Π .
- The density is then $c(u_1, ..., u_d) = 1, (u_1, ..., u_d)' \in [0, 1]^d$

Fundamental copulas

Theorem 3.2 (Fréchet-Hoeffding bounds)

For any d-dimensional copula $C: [0,1]^d \to [0,1]$, and any $\boldsymbol{u} = (u_1, \dots, u_d) \in [0,1]^d$, the following inequalities hold:

$$W(u_1,\ldots,u_d)\leq C(u_1,\ldots,u_d)\leq M(u_1,\ldots,u_d)$$

where:

$$W(\boldsymbol{u}) = \max \left\{ \sum_{j=1}^{d} u_j - d + 1, 0 \right\} \text{ and } M(\boldsymbol{u}) = \min_{1 \le j \le d} \left\{ u_j \right\}$$

- $\bullet\,$ The comonotonicity copula is the Fréchet upper bound copula.
- The countermonotonicity copula is the two-dimensional Fre´chet lower bound copula.

- Note that the points (t,1) and (1,t) are each members of the level set corresponding to the constant t.
- Hence, the boundary conditions C(1,t) = t = C(t,1) readily provide the constant for each level set.

• It follows from (4.4) that for a given t in [0,1] the graph of the level set $\{(u_1,u_2) \in [0,1]^2 | C(u_1,u_2) = t\}$ must lie in the shaded triangle whose boundaries are the level sets determined by $M(u_1,u_2) = t$ and W(u,v) = t.

- Note that the comonotonicity and countermonotonicity copulas cannot be completely represented in terms of density.
- Hence, the following representation is not feasible:

$$\int_0^u \int_0^v \frac{\partial^2 C(s,t)}{\partial s \partial t} ds dt$$

• Here, the value of the double integral is equal to zero almost everywhere, and the copula is said to be *singular*.

Examples of copulas

- Fundamental copulas
- 2 Implicit copulas
- Second Second

Implicit Copulas

Gaussian (Normal) Copula

Normal copula has the linear correlation coefficient ρ as its dependence parameter, although it has no tail dependence.

$$C_G(u_1, u_2 | \rho) = \int_{-\infty}^{\Phi^{-1}(u_1)} \int_{-\infty}^{\Phi^{-1}(u_2)} \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left\{\frac{-(r^2 - 2\rho rs + s^2)}{2(1-\rho^2)}\right\} dr ds$$

where $\Phi^{-1}(\cdot)$ is the inverse cumulative distribution function of a standard normal, and $\rho \in (-1,1)$.

Implicit Copulas

Student (Student-t) copula

Student-t copula has also the linear correlation coefficient ρ as a measure of dependence. Although Student-t copula has tail dependence, it imposes symmetry in both tails.

$$C_t(u_1, u_2 | \rho, \nu) = \int_{-\infty}^{t_{\nu}^{-1}(u_1)} \int_{-\infty}^{t_{\nu}^{-1}(u_2)} \frac{1}{2\pi\sqrt{1-\rho^2}} \left(1 + \frac{r^2 - 2\rho rs + s^2}{\nu(1-\rho^2)}\right)^{-\frac{\nu+2}{2}} dr ds$$

where ν is the degree-of-freedom parameter, $t_{\nu}^{-1}(\cdot)$ is the inverse of the standard Student-t cumulative distribution function, and $\rho \in (-1,1)$.

Method of Inversion: Example

Let's consider the following joint distribution function $F(y_1, y_2)$ with marginal distributions $F_1(y_1)$ and $F_2(y_2)$:

$$F(y_1, y_2) = \exp\left\{-\left[e^{-y_1} + e^{-y_2} - \left(e^{-\theta y_1} + e^{-\theta y_2}\right)^{\frac{-1}{\theta}}\right]\right\}$$
 (5)

$$-\infty < y_1, y_2 < \infty, \ \theta \ge 0$$

The marginal distributions can then be found as follows:

$$\lim_{y_2 \to \infty} F(y_1, y_2) = F_1(y_1) = \exp(e^{-y_1}) \equiv u_1$$
 (6)

$$\lim_{y_1 \to \infty} F(y_1, y_2) = F_2(y_2) = \exp(e^{-y_2}) \equiv u_2 \tag{7}$$

$$y_1 = -\log(-\log(u_1))$$
 and $y_2 = -\log(-\log(u_2))$

Then the corresponding copula is given by:

$$c(u_1, u_2) = u_1 u_2 \exp \left\{ \left[\left(-\log (u_1) \right)^{\theta} + \left(-\log (u_2) \right)^{\theta} \right]^{-1/\theta} \right\}$$

If the copula $C(u_1, \ldots, u_d)$ has a density $c(u_1, \ldots, u_d)$, then it can be obtained as follows:

$$c(u_1,\ldots,u_d) = \frac{\partial^d C(u_1,\ldots,u_d)}{\partial u_1 \ldots \partial u_d}$$

If the copula is given in the form of (and the multivariate CDF $F_X(\cdot)$ is known):

$$C(u_1,\ldots,u_d) = F_{\mathbf{X}}\left(F_{X_1}^{-1}(u_1),\ldots,F_{X_d}^{-1}(u_d)\right)$$

Then the density can be written as follows:

$$c(u_1,\ldots,u_d) = \frac{f_X\left(F_{X_1}^{-1}(u_1),\ldots,F_{X_d}^{-1}(u_d)\right)}{f_1\left(F_{X_1}^{-1}(u_1)\right)\ldots f_d\left(F_{X_d}^{-1}(u_d)\right)}$$

Example 4.10

The density of the Gaussian copula can be written as:

$$c(u_1,\ldots,u_d) = \frac{1}{\sqrt{\det \mathbf{R}}} \exp \left(-\frac{1}{2} \begin{pmatrix} \Phi^{-1}(u_1) \\ \vdots \\ \Phi^{-1}(u_d) \end{pmatrix}^T \cdot \left(\mathbf{R}^{-1} - \mathbf{I}\right) \cdot \begin{pmatrix} \Phi^{-1}(u_1) \\ \vdots \\ \Phi^{-1}(u_d) \end{pmatrix}\right)$$

where I is the identity matrix, and R is the correlation matrix.

Examples of copulas

- Fundamental copulas
- 2 Implicit copulas
- Second Explicit Copulas

Explicit Copulas

Frank copula

The distribution of Frank copula has the following form:

$$C(u_1, u_2 | \theta) = -\theta^{-1} \log \left\{ 1 + \frac{(e^{-\theta u_1} - 1)(e^{-\theta u_2} - 1)}{e^{-\theta} - 1} \right\}$$

Frank copula density:

$$c(u_1, u_2) = \frac{\partial^2 C(u_1, u_2)}{\partial u_1 \partial u_2}$$

= $\theta (1 - e^{-\theta}) e^{-\theta(u_1 + u_2)} [(1 - e^{-\theta}) - (1 - e^{-\theta u_1}) (1 - e^{-\theta u_2})]^{-2}$

Explicit Copulas

Gumbel copula

The distribution of Gumbel copula has the following form:

$$C(u_1, u_2 | \theta) = \exp\left(-\left[(-\log u_1)^{\theta} + (-\log u_2)^{\theta}\right]^{\frac{1}{\theta}}\right)$$

Gumbel copula density:

$$c(u_1, u_1) = \frac{\partial^2 C(u_1, u_2)}{\partial u_1 \partial u_2}$$

$$= C(u_1, u_2) (u_1 u_2)^{-1} ((-\log u_1)^{\theta} + (-\log u_2)^{\theta})^{-2+2/\theta} (\log u_1 \log u_2)^{\theta-1}$$

$$\times \{1 + (\theta - 1) ((-\log u_1)^{\theta} + (-\log u_2)^{\theta})^{-1/\theta} \}$$

Explicit Copulas

Clayton copula

The distribution of Clayton copula has the following form:

$$C(u_1, u_2|\theta) = (u_1^{-\theta} + u_2^{-\theta} - 1)^{-\frac{1}{\theta}}$$

Clayton copula density:

$$c(u_1, u_2) = \frac{\partial^2 C(u_1, u_2)}{\partial u_1 \partial u_2} = (1 + \theta)(u_1 u_2)^{-1 - \theta} (u_1^{-\theta} + u_2^{-\theta} - 1)^{-1/\theta - 2}$$

Next week:

- Construction of Archimedian copulas
- Univariate models
- Simulation from bivariate copulas