Student Information

Full Name : Berk Ulutaş Id Number : 2522084

Answer 1

Suppose that $f: A \to B$

- To show that f is injective Show that if f(x) = f(y) for arbitrary $x, y \in A$ with $x \neq y$, then x = y.
- To show that f is not injective Find particular elements $x, y \in A$ such that $x \neq y$ and f(x) = f(y).
- To show that f is surjective Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that f(x) = y.
- To show that f is not surjective Find a particular $y \in B$ such that $f(x) \neq y$ for all $x \in A$.
- a) $f_1: \mathbb{R} \to \mathbb{R}, f(x) = x^2$
 - a) Consider $-5 \in \mathbb{R}$ (codomain) there is no $x \in \mathbb{R}$ (domain) such that $x^2 = -5$ ($x^2 \ge 0$ for every $x \in \mathbb{R}$.) so f_1 is not surjective.
 - b) Note that $-1, 1 \in \mathbb{R}(\text{domain})$ are distinct and f(1) = 1 = f(-1). Hence f_1 is not injective.
- b) $f_2: \mathbb{R}_{\geq 0} \to \mathbb{R}, f(x) = x^2$
 - a) Consider $-5 \in \mathbb{R}$ (codomain) there is no $x \in \mathbb{R}_{\geq 0}$ (domain) such that $x^2 = -5$ ($x^2 \geq 0$ for every $x \in \mathbb{R}_{\geq 0}$.) so f_2 is not surjective.
 - b) to show f_2 is injective we need to show $\forall a, b \in \mathbb{R}_{\geq 0}, f(a) = f(b) \implies a = b$
 - suppose f(a) = f(b) for some arbitrary $a, b \in \mathbb{R}_{\geq 0}(\text{domain})$
 - $f(a) = a^2$ and $f(b) = b^2$, $a^2 = b^2$
 - |a| = |b| (take square root of both sides)
 - a = b (note $a, b \ge 0$ because $a, b \in \mathbb{R}_{>0}$)
 - since a, b were arbitrary this holds $\forall a, b \in \mathbb{R}_{\geq 0}$ thus f_2 is injective
- c) $f_3: \mathbb{R} \to \mathbb{R}_{\geq 0}, f(x) = x^2$
 - a) to show f_3 is surjective we need to show $\forall y \in \mathbb{R}_{\geq 0} \exists x \in \mathbb{R}_{\geq 0} (y = f(x))$
 - take any $y \in \mathbb{R}_{\geq 0}(\text{codomain})$
 - choose $x = \sqrt{y}$ and $x \in \mathbb{R}(domain)$

- $f(x) = f(\sqrt{y}) = (\sqrt{y})^2 = y$ so f_3 is surjective
- b) Note that $-1, 1 \in \mathbb{R}(\text{domain})$ are distinct and f(1) = 1 = f(-1). Hence f_3 is not injective.
- d) $f_4: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}, f(x) = x^2$
 - a) to show f_4 is surjective we need to show $\forall y \in \mathbb{R}_{>0} \exists x \in \mathbb{R}_{>0} (y = f(x))$
 - take any $y \in \mathbb{R}_{>0}(\text{codomain})$
 - choose $x = \sqrt{y}$ and $x \in \mathbb{R}_{\geq 0}(\text{domain})$
 - $f(x) = f(\sqrt{y}) = (\sqrt{y})^2 = y$ so f_4 is surjective
 - b) to show f_4 is injective we need to show $\forall a, b \in \mathbb{R}_{\geq 0}, f(a) = f(b) \implies a = b$
 - suppose f(a) = f(b) for some arbitrary $a, b \in \mathbb{R}_{>0}$
 - $f(a) = a^2$ and $f(b) = b^2$, $a^2 = b^2$
 - |a| = |b| (take square root of both sides)
 - a = b (note $a, b \ge 0$ because $a, b \in \mathbb{R}_{>0}$)
 - since a, b were arbitrary this holds $\forall a, b \in \mathbb{R}_{\geq 0}$ thus f_4 is injective

Answer 2

- a) show that every function $f:A\subset\mathbb{Z}\to\mathbb{R}$ is continuous
 - $\forall \epsilon \in \mathbb{R}^+ \exists \delta \in \mathbb{R}^+ \forall x \in A(|x x_0| < \delta \to |f(x) f(x_0)| < \epsilon)$
 - let $\epsilon > 0$ and choose arbitrary $x_0 \in A$
 - if we take $\delta = 1$ the only point which fulfills $|x x_0| < \delta$ must be $x = x_0$ itself
 - also $|f(x) f(x_0)| = 0 < \epsilon$ since $x = x_0$
 - this equation holds since $x_0 \in A$ was arbitrary choice
 - so we have shown $f:A\subset\mathbb{Z}\to\mathbb{R}$ is continuous
- b) show that a necessary and sufficient condition for a function $f: \mathbb{R} \to \mathbb{Z}$ to be continuous is that f is a constant function
 - ullet suppose f is not constant
 - $\exists x_1, x_2 \in \mathbb{R}$ such that $x_1 \neq x_2$ and $f(x_1) \neq f(x_2)$
 - assume $f(x_2) > f(x_1)$ then $f(x_2) f(x_1) > 1$ and there should be $f(x_2) > f(x_1) + 0.2 > f(x_1)$
 - $f(x_1) + 0.2 \notin \mathbb{Z}$, so $\nexists x \in \mathbb{R}$ such that $f(x) = f(x_1) + 0.2$
 - by intermediate value theorem f is not continuous this is a contradiction, therefore f is necessary to be constant function

Answer 3

- a) $X_n = A_1 \times A_2 \times \ldots \times A_n$ for all $n \geq 2$ is countable
 - we have given that in question $|\mathbb{Z} \times \mathbb{Z}| = |Z| = \aleph_0$ so cartesian product of two countable set is also countable
 - so, for n = 2, $X_2 = A_1 \times A_2$ is countable
 - assume that 2 < k < n, and $B = X_k = A_1 \times A_2 \times \cdots \times A_k$ is countable
 - $B \times A_{k+1} = A_1 \times A_2 \times \cdots \times A_k \times A_{k+1}$ is countable (since B and A_{k+1} is countable)
 - so, by induction X_n is also countable
- b) infinite countable product of the set $X = \{0, 1\}$ with itself is uncountable
 - suppose that the infinite countable product of the set $X = \{0,1\}$ with itself countable
 - under this assumption we can list all all possible products $r_1, r_2, r_3 \dots$
 - $r_1 = 00000...$ $- r_2 = 11111...$
 - $r_3 = 01010...$
 - $r_4 = 10101...$
 - $r_5 = 11001...$
 - ...
 - we can construct a new product with choosing the complementary of the r_x 's (x,x)th entry such that r = 10110...
 - \bullet contradiction since newly constructed r not in the list
 - so by using Carter's diagonalization the infinite countable product of the set $X = \{0, 1\}$ with itself is uncountable

Answer 4

$$(\log n)^2, \sqrt{n}\log n, n^{50}, n^{51} + n^{49}, 2^n, 5^n, (n!)^2$$

- a) $(\log n)^2$ is $O(\sqrt{n} \log n)$
 - 1) $\log n \le \sqrt{n}$ for n > 1
 - 2) $(\log n)^2 \le \sqrt{n} \log n$ (multiply each side with $\log n$)
 - 3) we have choosen k=1 and C=1 to show $(\log n)^2$ is $O(\sqrt{n}\log n)$
- b) $(\sqrt{n} \log n)$ is $O(n^{50})$
 - 1) $\sqrt{n} \le n$ and $\log n \le n$ for n > 1
 - 2) $\sqrt{n} \log n \le n^2 \le n^{50}$ (multiply previous equations)

- 3) we have choosen k=1 and C=1 to show $(\sqrt{n}\log n)$ is $O(n^{50})$
- c) (n^{50}) is $O(n^{51} + n^{49})$
 - 1) $n \le (n^2 + 1)$ for n > 1
 - 2) $n^{50} \le n^{49}(n^2 + 1)$ (multiply both sides with n^{49})
 - 3) $n^{50} \le (n^{51} + n^{49})$
 - 4) we have choosen k=1 and C=1 to show (n^{50}) is $O(n^{51}+n^{49})$
- d) $(n^{51} + n^{49})$ is $O(2^n)$
 - 1) $n^{51} + n^{49} \le 2n^{51}$ for n > 1
 - 2) $\lim_{n \to \infty} \frac{2n^{51}}{2^n} = 2 \lim_{n \to \infty} \frac{n^{51}}{2^n}$
 - 3) $2 \cdot \lim_{n \to \infty} \frac{51!}{(\ln 2)^{51} 2^n}$ (apply L Hospital's Rule until to get n^0)
 - 4) $\frac{2 \cdot 51!}{(\ln 2)^{51}} \cdot \lim_{n \to \infty} \frac{1}{2^n} = 0$ from ratio test we observed that 2^n grows faster than $n^{51} + n^{49}$
 - 5) so we have shown that $(n^{51} + n^{49})$ is $O(2^n)$
- e) (2^n) is $O(5^n)$
 - 1) $2 \le 5$
 - 2) $2^n \le 5^n \text{(take nth exponent)}$
 - 3) so we have shown that (2^n) is $O(5^n)$
- f) (5^n) is $O((n!)^2)$
 - 1) let $f(n) = \frac{(n!)^2}{5^n}$
 - 2) $L = \lim_{n \to \infty} \frac{f(n+1)}{f(n)} = \lim_{n \to \infty} \frac{((n+1)!)^2}{5^{(n+1)}} \cdot \frac{5^n}{(n!)^2} = \lim_{n \to \infty} \frac{(n+1)^2}{5} = \infty$
 - 3) for $n \in \mathbb{Z}^+, L \ge 1$
 - 4) as a result from ratio test $(n!)^2$ is grows faster than 5^n
 - 5) so we have shown that (5^n) is $O((n!)^2)$

Answer 5

- a) gcd(94,134) = 2
 - 1) $134 = 94 \times 1 + 40$
 - 2) $94 = 40 \times 2 + 14$

- 3) $40 = 14 \times 2 + 12$
- 4) $14 = 12 \times 1 + 2$
- 5) $12 = 2 \times 6 + 0$
- b) Goldbach's conjecture states that every even integer greater than 2 is the sum of two primes. We will show that this statement is equivalent to that every integer greater than 5 is the sum of three primes
 - 1) let n be an integer greater than 5
 - 2) if n is odd
 - 2.1) we can write n = 3 + (n 3) and (n 3) must be even.
 - 2.2) n-3=p+q where p and q prime numbers (since (n-3) is an even integer greater than 2 we can use Goldbach's conjecture)
 - 2.3) therefore we have written n = 3 + p + q as the sum of three primes
 - 3) if n is even
 - 3.1) we can write n = 2 + (n-2) and (n-2) must be even.
 - 3.2) n-2=p+q where p and q prime numbers (since (n-2) is an even integer greater than 2 we can use Goldbach's conjecture)
 - 3.3) therefore we have written n = 2 + p + q as the sum of three primes
 - 4) for the converse assume that every integer greater than 5 is the sum of three primes
 - 4.1) let n be an even integer greater than 2
 - 4.2) by assumption we can write (n+2) as the sum of three primes (n+2) = p+q+r p,q,r prime numbers
 - 4.3) since (n+2) is even one of the prime numbers should be 2 (say r=2)
 - 4.4) so we have n + 2 = 2 + p + q
 - 4.5) we have shown that n = p + q