Teoria e Aplicação de Grafos

Roteiro da aula:

- Cliques em Grafos
- Algoritmo Bron Kerbosch
- Exemplos
- Métricas em Grafos
- Coeficiente de Aglomeração
- Exemplos

 Definição: Um clique em um grafo não direcionado G=(V,E), é um subgrafo induzido completo (incluindo todos os vértices individualmente), e para 2 ou mais vértices, um subconjunto de vértices C ⊆ V, tal que para cada dois vértices em C existe uma aresta entre esses.

Cliques?

 Definição: Um clique máximo é o maior clique possível em um dado grafo.

 Definição: O número do clique ω(G) de um grafo G é o número de vértices de um clique máximo em G.

 Definição: Um clique maximal é um clique que não pode ser estendido pela inclusão de mais um vértice adjacente, ou seja, ele não é subconjunto de clique maior.

 Definição: Um clique maximal é um clique que não pode ser estendido pela inclusão de mais um vértice adjacente, ou seja, ele não é subconjunto de clique maior.

Maximais

 $\{A,B,F\}$

Maximais

 $\{A,B,F\}$

 $\{B,C,E,F\}$

Maximais

 $\{A,B,F\}$

 $\{B,C,E,F\}$

{*C*,*D*,*E*}

Maximais

Máximo

$$\{A,B,F\}$$

$$\{B,C,E,F\}$$

$$\{C,D,E\}$$

Maximais

Máximo

 $\{A,B,F\}$

 $\{B,C,E,F\}$ $\{B,C,E,F\}$

 $\{C,D,E\}$

OBS: Clique máximo é necessariamente um maximal, mas não o contrário.

23 cliques (1 vértice).

- 23 cliques (1 vértice).
- 42 cliques (2 vértices, i.e. arestas).

- 23 cliques (1 vértice).
- 42 cliques (2 vértices, i.e. arestas).
- 19 cliques (3 vértices, triângulos azuis (claros e escuros)).

- 23 cliques (1 vértice).
- 42 cliques (2 vértices, i.e. arestas).
- 19 cliques (3 vértices, triângulos azuis (claros e escuros)).
- 2 cliques (4 vértices, áreas azul-escuras).

- 23 cliques (1 vértice).
- 42 cliques (2 vértices, i.e. arestas).
- 19 cliques (3 vértices, triângulos azuis (claros e escuros)).
- 2 cliques (4 vértices, áreas azul-escuras).
- Os 11 triângulos azul-claros são cliques maximais.

- 23 cliques (1 vértice).
- 42 cliques (2 vértices, i.e. arestas).
- 19 cliques (3 vértices, triângulos azuis (claros e escuros)).
- 2 cliques (4 vértices, áreas azul-escuras).
- Os 11 triângulos azulclaros são cliques maximais.
- Os 2 cliques azulescuros são máximos e maximais.

- 23 cliques (1 vértice).
- 42 cliques (2 vértices, i.e. arestas).
- 19 cliques (3 vértices, triângulos azuis (claros e escuros)).
- 2 cliques (4 vértices, áreas azul-escuras).
- Os 11 triângulos azulclaros são cliques maximais.
- Os 2 cliques azul-escuros são máximos e maximais.
- O número ω(G) do clique do grafo é 4.

 Haveria em um grafo pelo menos um subgrafo de tamanho k cujos vértices sejam completamente conectados uns aos outros?

Um algoritmo (força bruta) poderia ser:

Um algoritmo (força bruta) poderia ser:

 Examinar todos subconjuntos de tamanho k, e determinar se há algum clique.

Um algoritmo (força bruta) poderia ser:

- Examinar todos subconjuntos de tamanho k, e determinar se há algum clique.
- Qual seria o número desses subconjuntos?

Um algoritmo (força bruta) poderia ser:

- Examinar todos subconjuntos de tamanho k, e determinar se há algum clique.
- Qual seria o número desses subconjuntos?

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} > \left(\frac{n}{k}\right)^k$$

Em um grafo de 100 vértices, se buscássemos por 10-cliques teríamos ?

subgrafos a examinar

Em um grafo de 100 vértices, se buscássemos por 10-cliques teríamos

$$\binom{100}{10} > \left(\frac{100}{10}\right)^{10} = 10^{10}$$

subgrafos a examinar

Problema: todos os cliques em um grafo

Encontrar todos os cliques em um grafo é um problema NP-completo

- Algoritmos eficientes são importantes
- Inúmeras aplicações em escalonamento, bioinformática, codificação, reconhecimento de padrões.

Algoritmo Bron-Kerbosch

- Bron, Coen; Kerbosch, Joep (1973),
 "Algorithm 457: finding all cliques of an undirected graph", *Commun. ACM*, ACM, 16 (9): 575–577, doi:10.1145/362342.362367.
- Gera apenas cliques maximais, evitando assim que cada conjunto gerado tenha que ser comparado com os previamente testados.
- Opções sem, e com pivotamento.

Algoritmo Bron-Kerbosch

 Conjunto R: vértices que seriam parte do clique (ps. inicia vazio).

 Conjunto P: vértices que têm ligação com todos os vértices de R (candidatos).

 Conjunto X: vértices já analisados e que não levam a uma extensão do conjunto R. Usado para evitar comparação excessiva (ps. inicia vazio).

Algoritmo Bron-Kerbosch

- Chamada inicial: R e X vazios e P contendo todos os vértices do grafo.
- Em cada chamada recursiva, se P está vazio, um clique maximal é encontrado (se X também estiver vazio). Se X não estiver vazio, o algoritmo realiza backtracking.
- Para cada vértice v escolhido, faz-se uma chamada recursiva adicionando v em R.
- Os conjuntos P e X são restritos aos vizinhos de v , possibilitando encontrar todas as extensões de R que contém v.
- Quando todas as extensões de R que contém v forem analisadas, v é movido de P para X.
- Assim, todos os cliques maximais contidos no grafo são encontrados.
- No pior caso, o algoritmo apresenta complexidade exponencial O(2™).

Algoritmo Bron-Kerbosch: com pivotamento

```
BronKerbosch(R, P, X)

if \{P = X = \emptyset\}

Report R as the Maximal Clique

Choose Pivot Vertex u in P \cup X

for each vertex v in P

BronKerbosch(R \cup \{v\}, P \cap N\{v\}, X \cap N\{v\})

P := P \setminus \{v\}

X := X \cup \{v\}
```

- $R = X = \emptyset, P = (1, 2, 3, 4, 5, 6)$
- Choosing the pivot element u as 4.
- 4 in $P \setminus N(v) = (1, 2, 3, 4, 5, 6) \setminus (1, 2, 3, 5, 6) = 4$ in 4
- Finds the values of R_{new} , P_{new} , X_{new}
- $P_{new} = P \cap N(v)$; $R_{new} = R \cup v$; $X_{new} = X \cap N(v)$
- $R_{new} = 4$; $P_{new} = (1, 2, 3, 5, 6)$; $X_{new} = \emptyset$ BronKerbosch $(4, (1, 2, 3, 5, 6), \emptyset)$ BronKerbosch $((4, 1), (2, 3), \emptyset)$ BronKerbosch $((4, 1, 2), \emptyset, \emptyset)$

Report (4,1,2) as one of the Maximal Clique

BronKerbosch(4,(1,2,3,5,6),Ø)

BronKerbosch $((4,3),(1),\emptyset)$

BronKerbosch($(4,3,1),\emptyset,\emptyset$)

Report (4,3,1) as one of the other Maximal Clique.

BronKerbosch(4,(1,2,3,5,6),∅)

BronKerbosch $((4,2),(1,5),\emptyset)$

BronKerbosch($(4,2,5),\emptyset,\emptyset$)

Report (4,2,5) as an other Maximal Clique.

• BronKerbosch(4,(1,2,3,5,6), \emptyset) BronKerbosch((4,6), \emptyset , \emptyset) Report (4,6) as the Maximal Clique.

Algoritmo Bron-Kerbosch: sem pivotamento

```
BronKerbosch(R, P, X)

if \{P = X = \emptyset\}

Report R as the Maximal Clique

for each vertex v in P

BronKerbosch(R \cup \{v\}, P \cap N\{v\}, X \cap N\{v\})

P := P \setminus \{v\}

X := X \cup \{v\}
```


Métricas em Grafos

- Medidas (métricas) típicas em grafos são:
 - Número de nós(vértices)
 - Número de arestas(elos)
 - Graus do vértices
 - Grau do grafo
 - Comprimento do menor caminho entre dois nós
 - Diâmetro: o maior dos menores caminhos entre dois nós de um grafo
 - +...

Outras métricas

Histogramas dos graus

Exemplo:

A tem grau 3, B tem grau 2, C tem grau 2, D tem grau 1

Outras métricas

Histogramas dos graus

Exemplo:

A tem grau 3, B tem grau 2, C tem grau 2, D tem grau 1

O histograma dos graus deste grafo é:

I.e. possui 0 nós de grau 0, 1 de grau 1, 2 de grau 2, 1 de grau 3, e 0 de grau >3.

Grau:	0	1	2	3	4	5
Frequência	0	1	2	1	0	0

Distribuição	0	0.25	0.5	0.25	0	0
Frequência	0	1	2	1	0	0
Grau	0	1	2	3	4	5

A distribuição do grau é uma função P(k), que fornece a probabilidade de um nó, randomicamente escolhido de um grafo, ter grau k.

Questões pertinentes:

Em um grafo qualquer, dado o número de nós, como seria a distribuição de probabilidade dos graus?

Se as arestas fossem adicionadas randomicamente, uma por uma?

Como seria o grau médio dos nós?

Exemplo:

Situação típica quando arestas são adicionadas randomicamente. Se houver n nós, e m arestas adicionadas, então o pico será em 2m/n, o grau médio. Ou seja, para um nó randomicamente escolhido, o grau mais provável é o médio.

Diferente de grafos randômicos, grafos reais produzem distribuições com caudas longas

Na região da cauda, seguindo uma relação exponencial

$$P(k) \approx k^{-\lambda} \Rightarrow \log(P(k)) \approx -\lambda \log(k)$$

Distribuição dos graus: 0.4 0.3 0.2 0.1 Maior caminho mais curto (diâmetro): DF 6

Distribuição dos graus: 0.6 0.2 0.0 0.1 0.0 0.1

Maior caminho mais curto (diâmetro): AE 4

Coeficiente de Aglomeração

Suponha que o nó i tenha n_i vizinhos.

Haverá portanto $n_i(n_i - 1)/2$

triângulos possíveis (arestas que ligam os vizinhos do nó i)

Suponha que t_i dessas arestas estejam no grafo.

O Coeficiente de Aglomeração do nó *i* é definido como:

$$2t_i / n_i (n_i - 1)$$

A média desse valor para um grafo é chamada de Coeficiente de Aglomeração do grafo, i.e.:

$$C = 1/N \sum_{i=1}^{N} c_i$$

onde c_i é o coeficiente de algomeração do nó i, e N é o número de nós do grafo.

Considere nó B.

B possui 5 vizinhos : D, G, J, C, I

Cada par distinto de vizinhos (há $5 \times 4 / 2 = 10$ pares distintos) formariam triângulos potenciais com B. O triângulo BJCB existe, porque a aresta CJ existe. Mas nenhum dos outros existem. O coeficiente de aglomeração de B é 1/10.

Considere nó B.

B possui 5 vizinhos : D, G, J, C, I

Cada par distinto de vizinhos (há $5 \times 4 / 2 = 10$ pares distintos) formariam triângulos potenciais com B. O triângulo BJCB existe, porque a aresta CJ existe. Mas nenhum dos outros existem. O coeficiente de aglomeração de B é 1/10.

Qual o coeficiente de aglomeração médio do grafo?

Considere nó B.

B possui 5 vizinhos : D, G, J, C, I

Cada par distinto de vizinhos (há $5 \times 4 / 2 = 10$ pares distintos) formariam triângulos potenciais com B. O triângulo BJCB existe, porque a aresta CJ existe. Mas nenhum dos outros existem. O coeficiente de aglomeração de B é 1/10.

Qual o coeficiente de aglomeração médio do grafo?

$$(0, 1/10, 1/3, 0, 0, 0, 0, 0, 0, 1) = (0,143)$$

TABLE I. The general characteristics of several real networks. For each network we have indicated the number of nodes, the average degree $\langle k \rangle$, the average path length ℓ , and the clustering coefficient C. For a comparison we have included the average path length ℓ_{rand} and clustering coefficient C_{rand} of a random graph of the same size and average degree. The numbers in the last

column are keyed to the symbols in Figs. 8 and 9.

Network	Size	$\langle k \rangle$	l	Prand	С	C_{rand}	Reference	
WWW, site level, undir.	153 127	35.21	3.1	3.35	0.1078	0.00023	Adamic, 1999	1
Internet, domain level	3015-6209	3.52-4.11	3.7-3.76	6.36-6.18	0.18-0.3	0.001	Yook et al., 2001a, Pastor-Satorras et al., 2001	
Movie actors	225 226	61	3.65	2.99	0.79	0.00027	Watts and Strogatz, 1998	3
LANL co-authorship	52 909	9.7	5.9	4.79	0.43	1.8×10^{-4}	Newman, 2001a, 2001b, 2001c	
MEDLINE co-authorship	1 520 251	18.1	4.6	4.91	0.066	1.1×10^{-5}	Newman, 2001a, 2001b, 2001c	
SPIRES co-authorship	56 627	173	4.0	2.12	0.726	0.003	Newman, 2001a, 2001b, 2001c	
NCSTRL co-authorship	11 994	3.59	9.7	7.34	0.496	3×10^{-4}	Newman, 2001a, 2001b, 2001c	7
Math. co-authorship	70 975	3.9	9.5	8.2	0.59	5.4×10^{-5}	Barabási <i>et al.</i> , 2001	
Neurosci. co-authorship	209 293	11.5	6	5.01	0.76	5.5×10^{-5}	Barabási et al., 2001	
E. coli, substrate graph	282	7.35	2.9	3.04	0.32	0.026	Wagner and Fell, 2000	
E. coli, reaction graph	315	28.3	2.62	1.98	0.59	0.09	Wagner and Fell, 2000	
Ythan estuary food web	134	8.7	2.43	2.26	0.22	0.06	Montoya and Solé, 2000	12
Silwood Park food web	154	4.75	3.40	3.23	0.15	0.03	Montoya and Solé, 2000	13
Words, co-occurrence	460.902	70.13	2.67	3.03	0.437	0.0001	Ferrer i Cancho and Solé, 2001	14
Words, synonyms	22311	13.48	4.5	3.84	0.7	0.0006	Yook et al., 2001b	
Power grid	4941	2.67	18.7	12.4	0.08	0.005	Watts and Strogatz, 1998	
C. Elegans	282	14	2.65	2.25	0.28	0.05	Watts and Strogatz, 1998	17
					1			

Coeficiente para redes/grafos reais em geral é muito maior do que para redes randômicas de mesmo número de nós e arestas. (Alb

(Albert & Barabasi, 02)

TABLE I. The general characteristics of several real networks. For each network we have indicated the number of nodes, the average degree $\langle k \rangle$, the average path length ℓ , and the clustering coefficient C. For a comparison we have included the average path length ℓ_{rand} and clustering coefficient C_{rand} of a random graph of the same size and average degree. The numbers in the last column are keyed to the symbols in Figs. 8 and 9.

Network	Size	$\langle k \rangle$	l	l rand	C	C_{rand}	Reference	
WWW, site level, undir.	153 127	35.21	3.1	3.35	0.1078	0.00023	Adamic, 1999	1
Internet, domain level	3015-6209	3.52-4.11	3.7-3.76	6.36-6.18	0.18 - 0.3	0.001	Yook et al., 2001a,	
							Pastor-Satorras et al., 2001	
Movie actors	225 226	61	3.65	2.99	0.79	0.00027	Watts and Strogatz, 1998	3
LANL co-authorship	52 909	9.7	5.9	4.79	0.43	1.8×10^{-4}	Newman, 2001a, 2001b, 2001c	4
MEDLINE co-authorship	1520251	18.1	4.6	4.91	0.066	1.1×10^{-5}	Newman, 2001a, 2001b, 2001c	
SPIRES co-authorship	56 627	173	4.0	2.12	0.726	0.003	Newman, 2001a, 2001b, 2001c	
NCSTRL co-authorship	11 994	3.59	9.7	7.34	0.496	3×10^{-4}	Newman, 2001a, 2001b, 2001c	7
Math. co-authorship	70 975	3.9	9.5	8.2	0.59	5.4×10^{-5}	Barabási et al., 2001	8
Neurosci. co-authorship	209 293	11.5	6	5.01	0.76	5.5×10^{-5}	Barabási et al., 2001	
E. coli, substrate graph	282	7.35	2.9	3.04	0.32	0.026	Wagner and Fell, 2000	
E. coli, reaction graph	315	28.3	2.62	1.98	0.59	0.09	Wagner and Fell, 2000	
Ythan estuary food web	134	8.7	2.43	2.26	0.22	0.06	Montoya and Solé, 2000	12
Silwood Park food web	154	4.75	3.40	3.23	0.15	0.03	Montoya and Solé, 2000	13
Words, co-occurrence	460.902	70.13	2.67	3.03	0.437	0.0001	Ferrer i Cancho and Solé, 2001	14
Words, synonyms	22311	13.48	4.5	3.84	0.7	0.0006	Yook et al., 2001b	15
Power grid	4941	2.67	18.7	12.4	0.08	0.005	Watts and Strogatz, 1998	
C. Elegans	282	14	2.65	2.25	0.28	0.05	Watts and Strogatz, 1998	17

Diâmetros de grafos grandes tendem a ser pequenos.

(Albert & Barabasi, 02)

Referências Bibliográficas

- Bron, Coen; Kerbosch, Joep (1973), "Algorithm 457: finding all cliques of an undirected graph", *Commun. ACM*, ACM, 16 (9):575–577, doi:10.1145/362342.362367.
- Sedgewick, R. & Wayne, K. Algorithms (4th ed.), Addison-Wesley, 2011.
- Wilson, R. & Watkins, J. *Graphs: An Introductory Approach.* John Wiley, 1990.
- Ziviani, N. *Projeto de algoritmos com implementações em pascal e C.* Cengage, 2011.