Module-2: Differential Calculus - 2

Taylor's and Maclaurin's series expansion for one variable (Statement only) – problems. Indeterminate forms-L'Hospital's rule. Partial differentiation, total derivative-differentiation of composite functions. Jacobian and problems. Maxima and minima for a function of two variables. Problems.

Self-study: Euler's Theorem and problems. Method of Lagrange undetermined multipliers with single constraint.

(RBT Levels: L1, L2 and L3)

Taylor's theorem: If i) f(x) and its first (n-1) derivatives be continuous in the interval [a, a+h], and

ii) n^{th} derivative of f(x) exists for every values of x in (a, a+h), then there is at least one number θ in (0, 1) such that,

$$f(a+h) = f(a) + hf'(a) + \frac{h^2}{2!}f''(a) + \dots + \frac{h^n}{n!}f^n(a+\theta h)$$

If a=0 then the Taylor's theorem is called Maclaurin's theorem.

Taylor's series: Expansion of f(x) about x = a (or in powers of (x - a)) is

$$f(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2!}f''(a) + \frac{(x - a)^3}{3!}f'''(a) + \frac{(x - a)^4}{4!}f''v(a) + \cdots$$

Or
$$y = y(a) + y_1(a)(x - a) + \frac{y_2(a)}{2!}(x - a)^2 + \frac{y_3(a)}{3!}(x - a)^3 + \frac{y_4(a)}{4!}(x - a)^4 + \cdots$$

If a = 0 then series is called **Maclaurin's series** i.e.

Expansion of f(x) about x = 0 (or in powers of x) is

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \frac{x^4}{4!}f''(0) + \cdots$$

Or
$$y = y(0) + y_1(0)x + \frac{y_2(0)}{2!}x^2 + \frac{y_3(0)}{3!}x^3 + \frac{y_4(0)}{4!}x^4 + \cdots$$

Examples:

• Expand $y = \sin x$ in powers of $\left(x - \frac{\pi}{2}\right)$.

Clearly $a=\frac{\pi}{2}$ and $y=\sin x$, $y_1=\cos x$, $y_2=-\sin x$, $y_3=-\cos x$, $y_4=\sin x$ and so one

$$\therefore y\left(\frac{\pi}{2}\right) = 1, \quad y_1\left(\frac{\pi}{2}\right) = 0, \quad y_2\left(\frac{\pi}{2}\right) = -1, \quad y_3\left(\frac{\pi}{2}\right) = 0, \quad y_4\left(\frac{\pi}{2}\right) = 1 \quad \dots$$

Substituting in the Taylor's formula

$$y = y(a) + y_1(a)(x - a) + \frac{y_2(a)}{2!}(x - a)^2 + \frac{y_3(a)}{3!}(x - a)^3 + \frac{y_4(a)}{4!}(x - a)^4 + \cdots$$

$$\sin x = 1 - \frac{\left(x - \frac{\pi}{2}\right)^2}{2!} + \frac{\left(x - \frac{\pi}{2}\right)^4}{4!} - \dots$$

- Find Maclaurin's series of a) e^x b) $\cos x$ c) $\sin x$ d) $\tan x$ e) $\cosh x$ f) $\sinh x$ g) $\log(1+x)$ h) $\log \sec x$ i) $e^{\sin x}$ j) $\tan^{-1} x$ k) $\sqrt{(1+\sin 2x)}$.
- a) $y = e^x = y_1 = y_2 = y_3 = \cdots$ And hence $y(0) = 1 = y_1(0) = y_2(0) = y_3(0) = y_4(0) = \dots$ Maclaurin's series is $y = y(0) + y_1(0)x + \frac{y_2(0)}{2!}x^2 + \frac{y_3(0)}{3!}x^3 + \frac{y_4(0)}{4!}x^4 + \cdots$ $\Rightarrow e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$
- b) $y = \cos x$, $y_1 = -\sin x$, $y_2 = -\cos x$, $y_3 = \sin x$, $y_4 = \cos x$ y(0) = 1, $y_1(0) = 0$, $y_2(0) = -1$, $y_3(0) = 0$, $y_4(0) = 1$, $\Rightarrow \cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$
- c) $y = \sin x \implies y_1 = \cos x$, $y_2 = -\sin x$, $y_3 = -\cos x$, $y_4 = \sin x$ y(0) = 0, $y_1(0) = 1$, $y_2(0) = 0$, $y_3(0) = -1$, $y_4(0) = 0$, $\Rightarrow \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$
- d) $y = \tan x \implies y_1 = \sec^2 x = 1 + y^2$, $\implies y(0) = 0$, $y_1(0) = 1$ $y_2 = 2yy_1$, $\implies y_2(0) = 0$ $y_3 = 2yy_2 + 2y_1^2$, $\implies y_3(0) = 2$ $y_4 = 2yy_3 + 6y_1y_2$, $\implies y_4(0) = 0$ $y_5 = 2yy_4 + 8y_1y_3 + 6y_2^2$, $\implies y_5(0) = 16$ $\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \cdots$
- e) $y = \cosh x$ f) $\sinh x$ Since $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$ $\Rightarrow e^{-x} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$ $\cosh x = \frac{e^x + e^{-x}}{2} = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \cdots$ and $\sinh x = \frac{e^x - e^{-x}}{2} = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \cdots$
- g) $y = \log(1+x) \implies y_n = \frac{(-1)^{n-1}(n-1)!}{(1+x)^n}$ $\therefore y(0) = 0, \ y_1(0) = 1, \ y_2(0) = -1, \ y_3(0) = 2, \ y_4(0) = -6, \dots \dots$ $\implies \log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} \dots \dots$
- h) $y = \log \sec x \implies y_1 = \tan x \implies y(0) = 0, \quad y_1(0) = 0$ $y_2 = \sec^2 x = 1 + y_1^2, \quad \Rightarrow y_2(0) = 1$ $y_3 = 2y_1y_2, \quad \Rightarrow y_3(0) = 0$ $y_4 = 2y_1y_3 + 2y_2^2, \quad \Rightarrow y_4(0) = 2$

$$y_5 = 2y_1y_4 + 6y_2y_3, \qquad \Rightarrow y_5(0) = 0$$

$$y_6 = 2y_1y_5 + 8y_2y_4 + 6y_3^2, \qquad \Rightarrow y_6(0) = 16. \qquad \cdots$$

$$\therefore \log \sec x = \frac{x^2}{2} + \frac{x^4}{12} + \frac{x^6}{45} \cdots$$

i)
$$y = e^{\sin x} \implies y_1 = y \cos x$$
 $\implies y(0) = 1, \quad y_1(0) = 1$
 $y_2 = y_1 \cos x - y \sin x,$ $\implies y_2(0) = 1$
 $y_3 = y_2 \cos x - 2y_1 \sin x - y_1$ $\implies y_3(0) = 0$
 $y_4 = y_3 \cos x - 3y_2 \sin x - 2y_1 \cos x - y_2,$ $\implies y_4(0) = -3$
 $\implies e^{\sin x} = 1 + x + \frac{x^2}{2} - \frac{x^4}{8} \cdots$

j)
$$y = \tan^{-1} x \implies y_1 = \frac{1}{1+x^2}$$
 or $(1+x^2)y_1 = 1$ $\implies y(0) = 0$, $y_1(0) = 1$
 $(1+x^2)y_2 + 2xy_1 = 0$ $\implies y_2(0) = 0$
 $(1+x^2)y_3 + 4xy_2 + 2y_1 = 0$ $\implies y_3(0) = -2$
 $(1+x^2)y_4 + 6xy_3 + 6y_2 = 0$ $\implies y_4(0) = 0$
 $(1+x^2)y_5 + 8xy_4 + 12y_3 = 0$ $\implies y_5(0) = 24$
 $\implies \tan^{-1} x = x - \frac{x^3}{2} + \frac{x^5}{5} \cdots \cdots$

k)
$$y = \sqrt{(1 + \sin 2x)} = \sqrt{(\sin x + \cos x)^2} = \sin x + \cos x$$

 $y_1 = \cos x - \sin x$, $y_2 = -\sin x - \cos x$, $y_3 = -\cos x + \sin x$, $y_4 = \sin x + \cos x$.
 $\Rightarrow y(0) = 1$, $y_1(0) = 1$, $y_2(0) = -1$, $y_3(0) = -1$, $y_4(0) = -1$
 $\therefore \sqrt{(1 + \sin 2x)} = 1 + x - \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} - \cdots$

Exercise:

Using Maclaurin's series expand the following functions

1.
$$\log \sqrt{\frac{1+x}{1-x}}$$
 2. $\frac{x}{\sin x}$ 3. $\sec x$ 4. $\log(1+\sin x)$ 5. $\log(1+e^x)$ 6. $e^x \cos x$ 7. $e^{x \sin x}$ 8. $\frac{e^x}{e^{x+1}}$ 9. $\sin x \cosh x$

6.
$$e^x \cos x$$
 7. $e^{x \sin x}$ 8. $\frac{e^x}{e^{x+1}}$ 9. $\sin x \cosh x$

10. Find the Maclaurin's series of a)
$$\sin^{-1}(3x - 4x^3)$$
 b) $\log(\frac{\sin x}{x})$.

Indeterminate forms:

$$\left(\frac{0}{0}\right)$$
 form: If $f(a) = 0 = g(a)$ then $\lim_{x \to a} \frac{f(x)}{g(x)}$ is called $\frac{0}{0}$ form.

L'Hospital's rule: If
$$f(a) = 0 = g(a)$$
 then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$.

Note: Forms 1^{∞} , ∞^0 , 0^0 can be reducible to form $\left(\frac{0}{0}\right)$ or form $\frac{\infty}{\infty}$ by taking log.

Examples: Evaluate the following limits.

Taking log on both sides,

$$\log k = \frac{Lt}{x \to \frac{\pi}{2}} \frac{\log \sin x}{\cot x} \cdots \cdots \left(\frac{0}{0} form\right)$$
$$= \frac{Lt}{x \to \frac{\pi}{2}} \frac{\frac{\cos x}{\sin x}}{-\csc^2 x} = 0$$

Let
$$k = \frac{Lt}{x \to 0} \left(\frac{\tan x}{x}\right)^{\frac{1}{x^2}}$$

Taking log on both sides,

$$= \frac{Lt}{x \to \frac{\pi}{2}} \frac{\frac{\sin x}{-\cos c^2 x}}{-\csc^2 x} = 0$$
And hence $k = e^0 = 1$.
$$\left(\frac{\tan x}{x}\right)^{\frac{1}{x^2}} \quad \dots \dots (1^{\infty} form)$$
Let $k = \frac{Lt}{x \to 0} \left(\frac{\tan x}{x}\right)^{\frac{1}{x^2}}$
and log on both sides,
$$\log k = \frac{Lt}{x \to 0} \frac{\frac{\log \tan x - \log x}{x^2}}{x^2} \quad \dots \dots \left(\frac{0}{0} form\right)$$

$$= \frac{Lt}{x \to 0} \frac{\frac{\sec^2 x}{\tan x} - \frac{1}{x}}{2x} = \frac{Lt}{x \to 0} \frac{\frac{\sec^2 x}{\tan x} - \frac{1}{x}}{2x}$$

$$= \frac{Lt}{x \to 0} \frac{1}{2x} \left[\frac{1}{\sin x \cos x} - \frac{1}{x}\right] = \frac{Lt}{x \to 0} \frac{1}{2x} \left[\frac{2}{\sin 2x} - \frac{1}{x}\right]$$

$$= \frac{Lt}{x \to 0} \frac{2x - \sin 2x}{2x^2 \sin 2x} = \frac{Lt}{x \to 0} \frac{2x - \sin 2x}{2x^2 2x \frac{\sin 2x}{2x}} = \frac{Lt}{x \to 0} \frac{2x - \sin 2x}{4x^3} \quad \dots \dots \left(\frac{0}{0} form\right)$$

$$= \frac{Lt}{x \to 0} \frac{2 - 2\cos 2x}{12x^2} = \frac{Lt}{x \to 0} \frac{1 - \cos 2x}{6x^2}$$

$$= \frac{Lt}{x \to 0} \frac{2\sin^2 x}{6x^2} = \frac{1}{3}$$

And hence $k = e^{\frac{1}{3}}$

Or
$$Lt \atop x \to 0 \left(\frac{\tan x}{x}\right)^{\frac{1}{x^2}} = Lt \atop x \to 0 \left(\frac{x + \frac{x^3}{3} + \frac{2x^5}{15} + \dots}{x}\right)^{\frac{1}{x^2}}$$

$$= Lt \atop x \to 0} (1 + tx^2)^{\frac{1}{x^2}}, \text{ where } t = \frac{1}{3} + \frac{2x^2}{15} + \dots$$

$$= Lt \atop x \to 0} e^t = e^{\frac{1}{3}}. \qquad \therefore Lt \atop z \to 0} (1 + tz)^{\frac{1}{z}} = e^z$$

3.
$$\underset{x \to 0}{Lt} \left(\frac{\sin x}{x} \right)^{\frac{1}{x^2}} \cdots \cdots (1^{\infty} form)$$

Let
$$k = \frac{Lt}{x \to 0} \left(\frac{\sin x}{x}\right)^{\frac{1}{x^2}}$$

Taking log on both sides,

$$\log k = \frac{Lt}{x \to 0} \frac{\log \sin x - \log x}{x^2} \quad \dots \quad \dots \quad \left(\frac{0}{0} \text{ form}\right)$$

$$= \frac{Lt}{x \to 0} \frac{\frac{\cos x}{\sin x} - \frac{1}{x}}{2x}$$

$$= \frac{Lt}{x \to 0} \frac{1}{2x} \left[\frac{x \cos x - \sin x}{x \sin x} \right] = \frac{Lt}{x \to 0} \frac{x \cos x - \sin x}{2x^3} \quad \dots \quad \dots \quad \left(\frac{0}{0} \text{ form}\right)$$

$$= \frac{Lt}{x \to 0} \frac{\cos x - x \sin x - \cos x}{6x^2} = \frac{Lt}{x \to 0} \frac{-\sin x}{6x} = -\frac{1}{6}.$$
And hence $k = e^{-\frac{1}{6}}$.
$$\left(\frac{\sin x}{x}\right)^{\frac{1}{x^2}} = \frac{Lt}{x \to 0} \left(\frac{x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^2}{x^2}}{x}\right)^{\frac{1}{x^2}}$$

$$= \frac{Lt}{x \to 0} \left(1 + tx^2\right)^{\frac{1}{x^2}} \quad \text{where } t = -\frac{1}{x^2} + \frac{x^2}{x^2} + \dots +$$

And hence $k = e^{-\frac{1}{6}}$.

Or
$$x \to 0$$
 $\left(\frac{\sin x}{x}\right)^{\frac{1}{x^2}} = \frac{Lt}{x \to 0} \left(\frac{x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots}{x}\right)^{\frac{1}{x^2}}$

$$= \frac{Lt}{x \to 0} (1 + tx^2)^{\frac{1}{x^2}}, \text{ where } t = -\frac{1}{3!} + \frac{x^2}{5!} - \dots$$

$$= \frac{Lt}{x \to 0} e^t = e^{-\frac{1}{6}}. \qquad \because \frac{Lt}{z \to 0} (1 + tz)^{\frac{1}{z}} = e^z$$
4. $\frac{Lt}{x \to a} \left(2 - \frac{x}{a}\right)^{\tan(\frac{\pi x}{2a})} \dots (1^{\infty} form)$

Let
$$k = \frac{Lt}{x \to a} \left(2 - \frac{x}{a}\right)^{\tan\left(\frac{\pi x}{2a}\right)}$$

Taking log on both sides,

$$\log k = \frac{Lt}{x \to a} \frac{\log(2 - \frac{x}{a})}{\cot(\frac{\pi x}{2a})} \cdots \cdots (\frac{0}{0} form)$$
$$= \frac{Lt}{x \to a} \frac{\frac{1}{2 - \frac{x}{a}} \times (-\frac{1}{a})}{-(\frac{\pi}{2a}) \csc^2(\frac{\pi x}{2a})} = \frac{2}{\pi}.$$

5.
$$\underset{x \to 0}{Lt} \left(\frac{a^x + b^x + c^x}{3} \right)^{\frac{1}{x}} \cdots \cdots (1^{\infty} form)$$

Let
$$k = Lt \over x \to 0 \left(\frac{a^x + b^x + c^x}{3}\right)^{\frac{1}{x}}$$

Taking log on both sides,

$$\log k = \frac{Lt}{x \to 0} \frac{\log(a^x + b^x + c^x) - \log 3}{x} \cdots \cdots \left(\frac{0}{0} form\right)$$

$$= \frac{Lt}{x \to 0} \frac{\frac{1}{a^x + b^x + c^x} (a^x \log a + b^x \log b + c^x \log c)}{1} = \frac{1}{3} \log(abc) = \log(\sqrt[3]{abc}).$$

And hence $k = \sqrt[3]{abc}$.

Let
$$k = Lt (a^x + x)^{\frac{1}{x}}$$

Taking log on both sides,

$$\log k = \frac{Lt}{x \to 0} \frac{\log(a^x + x)}{x} \cdots \cdots \left(\frac{0}{0} form\right)$$

$$= \frac{Lt}{x \to 0} \frac{\frac{1}{a^x + x}(a^x \log a + 1)}{1} = \log a + 1 = \log a + \log e = \log(ea).$$
Hence $k = ea$.

Let
$$k = \frac{Lt}{x \to 0} (1 + \sin x)^{\cot x}$$

$$= \frac{Lt}{x \to 0} \frac{d^{n+x}}{1} = \log a + \log e = \log(ea).$$
Hence $k = ea$.

$$\frac{Lt}{x \to 0} (1 + \sin x)^{\cot x} \qquad \dots \dots (1^{\infty} form)$$
Let $k = \frac{Lt}{x \to 0} (1 + \sin x)^{\cot x}$
Taking log on both sides,
$$\log k = \frac{Lt}{x \to 0} \frac{\log(1 + \sin x)}{\tan x} \qquad \dots \dots \left(\frac{0}{0} form\right)$$

$$= \frac{Lt}{x \to 0} \frac{\frac{\cos x}{1 + \sin x}}{\sec^2 x} = 1.$$
And hence $k = e^1 = e$.

$$\frac{Lt}{x \to \frac{\pi}{2}} (\sec x)^{\cot x} \qquad \dots \dots (\infty^0 form)$$
Let $k = \frac{Lt}{x \to \frac{\pi}{2}} (\sec x)^{\cot x}$
Taking log on both sides,

8.
$$Lt \\ x \to \frac{\pi}{2} (\sec x)^{\cot x} \qquad \cdots \qquad (\infty^0 form)$$

Let
$$k = {Lt \over x \to {\pi \over 2}} (\sec x)^{\cot x}$$

$$\log k = \frac{Lt}{x \to \frac{\pi}{2}} \frac{\log(\sec x)}{\tan x} \quad \dots \dots \left(\frac{\infty}{\infty} form\right)$$

$$= \frac{Lt}{x \to \frac{\pi}{2}} \frac{\frac{\sec x \tan x}{\sec x}}{\sec^2 x} = \frac{Lt}{x \to \frac{\pi}{2}} \frac{\tan x}{\sec^2 x}.$$

$$= \frac{Lt}{x \to \frac{\pi}{2}} \sin x \cos x = 0.$$

And hence $k = e^0 = 1$.

Let
$$k = {Lt \over x \to 0} (\cot x)^{1 \over \log x}$$

Taking log on both sides,

$$\log k = \frac{Lt}{x \to 0} \frac{\log(\cot x)}{\log x} \cdots \cdots \left(\frac{\infty}{\infty} form\right)$$

$$= \frac{Lt}{x \to 0} \frac{-\frac{\csc^2 x}{\cot x}}{\frac{1}{x}} = \frac{Lt}{x \to 0} - \frac{x}{\sin x \cos x}.$$

$$= \frac{Lt}{x \to 0} - \frac{1}{\frac{\sin x}{x} \cos x} = -1.$$

And hence $k = e^{-1} = \frac{1}{e}$.

10.
$$\lim_{x \to \frac{\pi}{2}} (\tan x)^{\tan 2x} \qquad \cdots \qquad (\infty^0 form)$$

Let
$$k = \frac{Lt}{x \to \frac{\pi}{2}} (\tan x)^{\tan 2x}$$

Taking log on both sides,

10.
$$x \to \frac{\pi}{2} \text{ (tan } x)^{\tan 2x} \qquad \dots \dots \qquad (\infty^0 \text{ form})$$
Let $k = \frac{Lt}{x \to \frac{\pi}{2}} \text{ (tan } x)^{\tan 2x}$

Taking log on both sides,
$$\log k = \frac{Lt}{x \to \frac{\pi}{2}} \frac{\log(\tan x)}{\cot 2x} \qquad \dots \dots \qquad (\frac{\infty}{\infty} \text{ form})$$

$$= \frac{Lt}{x \to \frac{\pi}{2}} \frac{\frac{\sec^2 x}{\tan x}}{-2 \csc^2 2x} = \frac{Lt}{x \to \frac{\pi}{2}} - \frac{\sin^2 2x}{2\sin x \cos x}.$$

$$= \frac{Lt}{x \to \frac{\pi}{2}} - \frac{\sin^2 2x}{\sin 2x} = \frac{Lt}{x \to \frac{\pi}{2}} - \sin 2x = 0.$$
Hence $k = e^0 = 1$.

11.
$$\frac{Lt}{x \to \frac{\pi}{2}} (\cos x)^{\frac{\pi}{2} - x} \qquad \dots \dots \qquad (0^0 \text{ form})$$

11.
$$\lim_{x \to \frac{\pi}{2}} \frac{Lt}{(\cos x)^{\frac{\pi}{2} - x}} \qquad \cdots \qquad (0^0 \text{ form})$$

Let
$$k = \frac{Lt}{x \to \frac{\pi}{2}} (\cos x)^{\frac{\pi}{2} - x}$$

Taking log on both sides,

$$\log k = \frac{Lt}{x \to \frac{\pi}{2}} \frac{\frac{\log(\cos x)}{\frac{1}{\frac{\pi}{2} - x}} \qquad \dots \dots \left(\frac{\infty}{\infty} form\right)$$

$$= \frac{Lt}{x \to \frac{\pi}{2}} \frac{\frac{-\tan x}{\frac{1}{(\frac{\pi}{2} - x)^2}} = \frac{Lt}{x \to \frac{\pi}{2}} - \frac{\left(\frac{\pi}{2} - x\right)^2}{\cot x}.$$

$$= \frac{Lt}{x \to \frac{\pi}{2}} - \frac{\left(\frac{\pi}{2} - x\right)^2}{\tan\left(\frac{\pi}{2} - x\right)} = \frac{Lt}{x \to \frac{\pi}{2}} - \left(\frac{\pi}{2} - x\right) = 0.$$

Hence $k = e^0 = 1$.

Taking log on both sides,

$$\log k = \frac{Lt}{x \to 1} \frac{\log(1-x^2)}{\log(1-x)} \cdots \cdots \left(\frac{\infty}{\infty} form\right)$$

$$= \frac{Lt}{x \to 1} \frac{\frac{2x}{1-x^2}}{\frac{1}{(1-x)}} = \frac{Lt}{x \to 1} \frac{2x}{1+x}.$$

$$= 1$$

Hence $k = e^1 = e$.

Partial derivatives –

• Let z = f(x, y) be a function of two variables in x and y.

The first order partial derivative of z w.r.t. x, denoted by $\frac{\partial z}{\partial x}$ or z_x (i.e. Derivative of z w.r.to x keeping 'y' fixed.). Similarly $\frac{\partial z}{\partial y}$ or z_y is the derivative of z w.r.to y keeping 'x' fixed.

By
$$\frac{\partial z}{\partial y}$$
 or z_y is the derivative of \mathbf{z} w.r.to y keeping ' x ' fixed.
$$\frac{\partial z}{\partial x} = \frac{Lt}{h \to 0} \frac{f(x+h, y) - f(x,y)}{h} \quad \text{And} \quad \frac{\partial z}{\partial y} = \frac{Lt}{h \to 0} \frac{f(x, y+h) - f(x,y)}{h}$$
 order partial derivatives also obtained in the same way.

Higher order partial derivatives also obtained in the same way.

In all ordinary cases, it can be verified that $z_{xy} = z_{yx}$.

Total derivatives:

1. If
$$u = f(x, y)$$
 and $x = g(t)$, $y = h(t)$ then $\frac{du}{dt} = \frac{\partial u}{\partial x} \frac{dx}{dt} + \frac{\partial u}{\partial y} \frac{dy}{dt}$

2. If
$$f(x,y) = constant$$
, then $\frac{dy}{dx} = -\frac{f_x}{f_y}$.

3. If
$$u = f(x,y)$$
 subject to $\varphi(x,y) = c$. Then $\frac{du}{dx} = \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \frac{dy}{dx}$, where $\frac{dy}{dx} = -\frac{\varphi_x}{\varphi_y}$.

4. If u = f(r, s, t) where r, s and t are functions of (x, y, z), then by Chain rule $u_x = u_r r_x + u_s s_x + u_t t_x \text{ , } u_y = u_r r_y + u_s s_y + u_t t_y \text{ and } u_z = u_r r_z + u_s s_z + u_t t_z \text{ .}$

Jacobian:

an:
$$J = \frac{\partial(u, v, w)}{\partial(x, y, z)} = \begin{vmatrix} u_x & u_y & u_z \\ v_x & v_y & v_z \\ w_x & w_y & w_z \end{vmatrix}.$$

Note: 1. If u = f(r) and $r = \sqrt{x^2 + y^2}$ then $u_{xx} + u_{yy} = f''(r) + \frac{1}{r}f'(r)$.

2. If
$$u = f(r)$$
 and $r = \sqrt{x^2 + y^2 + z^2}$ then $u_{xx} + u_{yy} + u_{zz} = f''(r) + \frac{2}{r}f'(r)$.

Problems:

1. If $u = \sin\left(\frac{x}{y}\right)$, $x = e^t$ and $y = t^2$ find $\frac{du}{dt}$ as a function of t.

Solution:
$$\frac{du}{dt} = \frac{\partial u}{\partial x} \frac{dx}{dt} + \frac{\partial u}{\partial y} \frac{dy}{dt} = \frac{1}{y} \cos\left(\frac{x}{y}\right) e^t - \frac{x}{y^2} \cos\left(\frac{x}{y}\right) 2t$$
$$= \frac{1}{t^2} \cos\left(\frac{e^t}{t^2}\right) e^t - \frac{e^t}{t^4} \cos\left(\frac{e^t}{t^2}\right) 2t$$

$$= e^t \cos\left(\frac{e^t}{t^2}\right) \left[\frac{1}{t^2} - \frac{2}{t^3}\right]$$

2. If x increases at the rate of 2 cm/sec at the instant when x=3 cm. and y=1 cm., at what rate must y changing in order that the function $2xy-3x^2y$ shell be neither increasing nor decreasing?

Solution: Let $u=2xy-3x^2y$, given that $\frac{dx}{dt}=2$, $\frac{du}{dt}=0$, x=3 and y=1.

So that

$$\frac{du}{dt} = \frac{\partial u}{\partial x}\frac{dx}{dt} + \frac{\partial u}{\partial y}\frac{dy}{dt} = (2y - 6xy)\frac{dx}{dt} + (2x - 3x^2)\frac{dy}{dt}$$

$$\Rightarrow 0 = 2(2 - 18) + (6 - 27)\frac{dy}{dt} \Rightarrow \frac{dy}{dt} = -\frac{32}{21} \text{ cm/sec.}$$

Thus y is decreasing at the rate of $\frac{32}{21}$ cm/sec.

3. If $u = x \log xy$ where $x^3 + y^3 + 3xy = 1$ find $\frac{du}{dx}$.

Solution: If
$$u = f(x, y)$$
 subject to $\varphi(x, y) = c$. Then $\frac{du}{dx} = \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \frac{dy}{dx}$, where $\frac{dy}{dx} = -\frac{\varphi_x}{\varphi_y}$.

Given that $u = x \log xy$, $\varphi(x, y) = x^3 + y^3 + 3xy$

Clearly
$$\frac{dy}{dx} = -\frac{\varphi_x}{\varphi_y} = -\frac{3x^2 + 3y}{3y^2 + 3x} = -\frac{x^2 + y}{y^2 + x}$$
, $\frac{\partial u}{\partial x} = \log xy + 1$, $\frac{\partial u}{\partial y} = \frac{x}{y}$.

Hence
$$\frac{du}{dx} = \log xy + 1 - \frac{x(x^2 + y)}{y(y^2 + x)}$$

4. If $u = \sqrt{x^2 + y^2}$ and $x^3 + y^3 + 3axy = 5a^2$, find $\frac{du}{dx}$ when x = y = a.

Solution: If u=f(x,y) subject to $\varphi(x,y)=c$. Then $\frac{du}{dx}=\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}\frac{dy}{dx}$, where $\frac{dy}{dx}=-\frac{\varphi_x}{\varphi_y}$.

Hear
$$u = \sqrt{x^2 + y^2}$$
 and $\varphi = x^3 + y^3 + 3axy = 5a^2$

$$\Rightarrow \frac{dy}{dx} = -\frac{\varphi_x}{\varphi_y} = -\frac{3x^2 + 3ay}{3y^2 + 3ax} = -\frac{x^2 + ay}{y^2 + ax} = -1 \text{ at } x = y = a$$

Then
$$\frac{du}{dx} = \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \frac{dy}{dx} = \frac{x}{\sqrt{x^2 + y^2}} + \frac{y}{\sqrt{x^2 + y^2}} \left(-\frac{x^2 + ay}{y^2 + ax} \right)$$
$$= \frac{a}{\sqrt{2a^2}} - \frac{a}{\sqrt{2a^2}} = 0 \text{ , at } x = y = a.$$

5. If u = f(y - z, z - x, x - y), then prove that $u_x + u_y + u_z = 0$.

Proof: Let
$$r = y - z$$
, $s = z - x$, $t = x - y$

Then
$$r_x=0$$
, $r_y=1$, $r_z=-1$, $s_x=-1$, $s_y=0$, $s_z=1$, $t_x=1$, $t_y=-1$, $t_z=0$.

If u = f(r, s, t) where r, s and t are functions of (x, y, z), then by Chain rule

$$u_x = u_r r_x + u_s s_x + u_t t_x$$
, $u_y = u_r r_y + u_s s_y + u_t t_y$ and $u_z = u_r r_z + u_s s_z + u_t t_z$.

$$\implies u_x = 0 - u_s + u_t \ , \qquad u_y = u_r + 0 - u_t \quad \text{ and } \quad u_z = -u_r + u_s + 0 \ .$$

$$\therefore u_x + u_y + u_z = -u_s + u_t + u_r - u_t - u_r + u_s = 0.$$

6. If u = f(2x - 3y, 3y - 4z, 4z - 2x), then find the value of $\frac{1}{2}u_x + \frac{1}{3}u_y + \frac{1}{4}u_z$

Solution: Let r = 2x - 3y, s = 3y - 4z, t = 4z - 2x

Then $r_x=2$, $r_y=-3$, $r_z=0$, $s_x=0$, $s_v=4$, $s_z=-4$, $t_x=-2$, $t_v=0$, $t_z=4$.

If u = f(r, s, t) where r, s and t are functions of (x, y, z), then by Chain rule

 $u_x = u_r r_x + u_s s_x + u_t t_x$, $u_y = u_r r_y + u_s s_y + u_t t_y$ and $u_z = u_r r_z + u_s s_z + u_t t_z$.

 $\Rightarrow u_x = 2u_r + 0 - 2u_t$, $u_y = -3u_r + 3u_s + 0$ and $u_z = 0 - 4u_s + 4u_t$.

 $\therefore \frac{1}{2}u_x + \frac{1}{2}u_y + \frac{1}{2}u_z = u_r - u_t - u_r + u_s - u_s + u_t = 0.$

7. If $u = f\left(\frac{y-x}{xy}, \frac{z-x}{xz}\right)$, then show that $x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} + z^2 \frac{\partial u}{\partial z} = 0$.

Solution: Let $r = \frac{y-x}{ry} = \frac{1}{r} - \frac{1}{y}$, $s = \frac{z-x}{rz} = \frac{1}{r} - \frac{1}{z}$.

 $xy - x - \frac{1}{y}, \quad s = \frac{z-x}{xz} = \frac{1}{x} - \frac{1}{z}.$ Then $r_x = -\frac{1}{x^2}$, $r_y = \frac{1}{y^2}$, $r_z = 0$, $s_x = -\frac{1}{x^2}$, $s_y = 0$, $s_z = \frac{1}{z^2}$. If u = f(r,s) where r, and s are functions of f(r) $u_x = u_r r_r + v = r$

 $\Rightarrow u_x = -\tfrac{1}{r^2}u_r - \tfrac{1}{x^2}u_s \ , \qquad u_y = \tfrac{1}{y^2}u_r + 0 \quad \text{ and } u_z = 0 + \tfrac{1}{z^2}u_s$

 $\Longrightarrow x^2 \frac{\partial u}{\partial x} = -u_r - u_s, \quad y^2 \frac{\partial u}{\partial y} = u_r \quad \text{and} \quad z^2 \frac{\partial u}{\partial z} = u_s.$

Therefore $x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} + z^2 \frac{\partial u}{\partial z} = 0.$

8. If $x = r \cos \theta$, $y = r \sin \theta$, then verify that JJ' = 1.

 $x = r \cos \theta$, $y = r \sin \theta$ Solution:

$$J = \frac{\partial(x, y)}{\partial(r, \theta)} = \begin{vmatrix} x_r & x_\theta \\ y_r & y_\theta \end{vmatrix} = \begin{vmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{vmatrix} = r(\cos^2 \theta + \sin^2 \theta) = r.$$

 $x = r \cos \theta$, $y = r \sin \theta$

 $\Rightarrow r = \sqrt{x^2 + y^2} \quad \text{and} \quad \theta = \tan^{-1}\left(\frac{y}{x}\right)$

And
$$J' = \frac{\partial(r, \theta)}{\partial(x, y)} = \begin{vmatrix} r_x & r_y \\ \theta_x & \theta_y \end{vmatrix} = \begin{vmatrix} \frac{x}{\sqrt{x^2 + y^2}} & \frac{y}{\sqrt{x^2 + y^2}} \\ \frac{1}{1 + (\frac{y}{x})^2} (-\frac{y}{x^2}) & \frac{1}{1 + (\frac{y}{x})^2} (\frac{1}{x}) \end{vmatrix}$$
$$= \begin{vmatrix} \frac{x}{r} & \frac{y}{r} \\ \frac{-y}{x^2 + y^2} & \frac{x}{x^2 + y^2} \end{vmatrix} = \frac{x^2}{r(x^2 + y^2)} + \frac{y^2}{r(x^2 + y^2)} = \frac{1}{r}.$$

 $\therefore II' = 1.$

7. If $x = r \cos \varphi$, $y = r \sin \varphi$, z = z, then find $J = \frac{\partial (x \ y, \ z)}{\partial (r, \ \varphi, \ z)}$

$$\text{Solution: } J = \frac{\partial (x \ y, \ z)}{\partial (r, \ \varphi, \ z)} = \begin{vmatrix} x_r & x_\varphi & x_z \\ y_r & y_\varphi & y_z \\ z_r & z_\varphi & z_z \end{vmatrix} = \begin{vmatrix} \cos \varphi & -r \sin \varphi & 0 \\ \sin \varphi & r \cos \varphi & 0 \\ 0 & 0 & 1 \end{vmatrix} = r \cos^2 \varphi + r \sin^2 \varphi = r \ .$$

8. If x = u(1+v), y = v(1+u), show that $\frac{\partial(x, y)}{\partial(u, v)} = 1 + u + v$.

Solution: Given that x = u(1 + v), y = v(1 + u)

$$\frac{\partial(x, y)}{\partial(u, v)} = \begin{vmatrix} x_u & x_v \\ y_u & y_v \end{vmatrix} = \begin{vmatrix} (1+v) & u \\ v & (1+u) \end{vmatrix} = (1+v)(1+u) - uv = 1 + u + v + uv - uv = 1 + u + v.$$

9. If
$$u = x + y + z$$
, $v = x^2 + y^2 + z^2$ and $w = xy + yz + zx$, then find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$.

Solution: Given that, u = x + y + z, $v = x^2 + y^2 + z^2$ and w = xy + yz + zx

$$\frac{\partial(u, v, w)}{\partial(x, y, z)} = \begin{vmatrix} u_x & u_y & u_z \\ v_x & v_y & v_z \\ w_x & w_y & w_z \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 2x & 2y & 2z \\ y+z & x+z & x+y \end{vmatrix} = 2 \begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ y+z & x+z & x+y \end{vmatrix}$$

$$= 2 \begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ x+y+z & x+y+z & x+y+z \end{vmatrix}$$

$$= 2(x+y+z) \begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ 1 & 1 & 1 \end{vmatrix} = 0.$$

10. If $u=x^2-2y^2$, $v=2x^2-y^2$ and $x=r\cos\theta$, $y=r\sin\theta$, then show that $\frac{\partial(u,v)}{\partial(r,\theta)}=6r^3\sin2\theta$.

Solution: Since
$$\frac{\partial(u, v)}{\partial(r, \theta)} = \frac{\partial(u, v)}{\partial(x, y)} \times \frac{\partial(x, y)}{\partial(r, \theta)} = \begin{vmatrix} u_x & u_y \\ v_x & v_y \end{vmatrix} \times \begin{vmatrix} x_r & x_\theta \\ y_r & y_\theta \end{vmatrix}$$

$$= \begin{vmatrix} 2x & -4y \\ 4x & -2y \end{vmatrix} \times \begin{vmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{vmatrix} = 12xyr = 12r^3 \sin \theta \cos \theta = 6r^3 \sin 2\theta.$$

10. If z = f(x, y) and $x = r \cos \theta$, $y = r \sin \theta$ then show that, $(z_x)^2 + (z_y)^2 = (z_r)^2 + \frac{1}{r^2}(z_\theta)^2$.

Solution:
$$z_r = z_x x_r + z_y y_r = z_x \cos \theta + z_y \sin \theta$$
(1)

And
$$z_{\theta} = z_x x_{\theta} + z_y y_{\theta} = -r z_x \sin \theta + r z_y \cos \theta$$

$$\Rightarrow \frac{1}{r} z_{\theta} = -z_x \sin \theta + z_y \cos \theta \qquad \cdots \cdots (2)$$

$$(1)^{2} + (2)^{2} \implies (z_{r})^{2} + \frac{1}{r^{2}} (z_{\theta})^{2} = (z_{x})^{2} \cos^{2} \theta + (z_{y})^{2} \sin^{2} \theta + 2z_{x} z_{y} \cos \theta \sin \theta$$
$$+ (z_{x})^{2} \sin^{2} \theta + (z_{y})^{2} \cos^{2} \theta - 2z_{x} z_{y} \cos \theta \sin \theta$$
$$= (z_{x})^{2} + (z_{y})^{2}.$$

Exercise:

- 1. If $u = \sin(x^2 + y^2)$ where $a^2x^2 + b^2y^2 = c^2$ find $\frac{du}{dx}$.
- 2. If $u = \tan^{-1}\left(\frac{y}{x}\right)$, $x = e^t e^{-t}$ and $y = e^t + e^{-t}$ find $\frac{du}{dt}$ as a function of t.
- 3. If $\phi(cx az, cy bz) = 0$, then show that $a\frac{\partial z}{\partial x} + b\frac{\partial z}{\partial y} = c$.
- 4. If f(x, y) = 0, $\phi(y, z) = 0$, show that $\frac{\partial f}{\partial y} \cdot \frac{\partial \phi}{\partial z} \cdot \frac{dz}{dx} = \frac{\partial f}{\partial x} \cdot \frac{\partial \phi}{\partial y}$
- 5. If z = f(x, y) and $x = e^u + e^{-v}$, $y = e^{-u} e^v$, prove that $\frac{\partial z}{\partial u} \frac{\partial z}{\partial v} = x \frac{\partial z}{\partial x} y \frac{\partial z}{\partial y}$.
- 6. If $\phi\left(\frac{z}{x^3}, \frac{y}{x}\right) = 0$, then show that $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = 3z$.
- 7. If $J = \frac{\partial(u, v)}{\partial(x, y)}$ and $J' = \frac{\partial(x, y)}{\partial(u, v)}$ then show that JJ' = 1.
- 8. Prove that $\frac{\partial(u, v)}{\partial(x, y)} \times \frac{\partial(x, y)}{\partial(r, \theta)} = \frac{\partial(u, v)}{\partial(r, \theta)}$.
- 9. If $u = x^2 y^2$, v = 2xy and $x = r\cos\theta$, $y = r\sin\theta$ find $\frac{\partial(u, v)}{\partial(r, \theta)}$.
- 10. If ux = yz, vy = zx, wz = xy, then show that $\frac{\partial(u, v, w)}{\partial(x, y, z)} = 4$.
- 11. If u = x + y + z, uv = y + z and uvw = z, then find $\frac{\partial(x, y, z)}{\partial(u, v, w)}$
- 12. If $x = r \sin \theta \cos \emptyset$, $y = r \sin \theta \sin \emptyset$ and $z = r \cos \theta$, then find $J = \frac{\partial (x \ y, \ z)}{\partial (r, \ \theta, \ \emptyset)}$.
- 13. At a given instant the sides of a rectangle are 4ft and 3 ft, and they are increasing at the rate of 1.5ft/sec and 0.5ft/sec respectively. Find the rate at which the area is increasing at that instant.
- 14. If $u^3 + v^3 = x + y$ and $u^2 + v^2 = x^3 + y^3$, show that $\frac{\partial(u, v)}{\partial(x, y)} = \frac{1}{2} \frac{y^2 x^2}{uv(u v)}$.
- 15. If the kinetic energy T is given by $T=\frac{1}{2}mv^2$, find approximately the change in T, as the mass m changes from 49 to 49.5 and velocity v changes from 1600 to 1590.

Maxima and minima of functions of two variables:

- 1. f(x, y) is stationary at (a, b) i.e. f(a, b) is the stationary value of f if $f_x = 0 = f_y$ at (a, b).
- 2. f(x, y) is maximum at (a, b) i.e. f(a, b) is the maximum value of f
 - If at (a, b) i) $f_x = 0 = f_y$ ii) $f_{xx}f_{yy} f_{xy}^2 > 0$ iii) $f_{xx} < 0$.
- 3. f(x, y) is minimum at (a, b) i.e. f(a, b) is the minimum value of fIf at (a, b) i) $f_x = 0 = f_y$ ii) $f_{xx}f_{yy} f_{xy}^2 > 0$ iii) $f_{xx} > 0$.
- 4. (a, b) is said to be saddle point of f(x, y) if i) $f_x = 0 = f_y$ ii) $f_{xx}f_{yy} f_{xy}^2 < 0$ at (a, b).
- 5. If $f_x = 0 = f_y$ and $f_{xx}f_{yy} f_{xy}^2 = 0$ at (a, b), then by discussion find maxima and minima.

Examples:

1. Examine the function $f(x, y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$ for extreme values.

Solution: $f(x, y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$.

Differentiating partially we get, $f_x = 4x^3 - 4x + 4y$, $f_y = 4y^3 + 4x - 4y$,

$$f_{xx} = 12x^2 - 4$$
, $f_{yy} = 12y^2 - 4$ and $f_{xy} = 4$.

Now for extreme values $f_x = 0$, $f_y = 0$

$$\Rightarrow 4x^3 - 4x + 4y = 0$$
 and $4y^3 + 4x - 4y = 0$.

Adding these, we get $4(x^3 + y^3) = 0$ or y = -x.

Put
$$y = -x$$
 in $x^3 - x + y = 0$, we get $x^3 - 2x = 0$

 $\Rightarrow x = 0, \sqrt{2}, -\sqrt{2}$ and corresponding values of y are $0, -\sqrt{2}, \sqrt{2}$.

Point	f_{xx}	f_{yy}	f_{xy}	$f_{xx}f_{yy}-f_{xy}^2$	Conclusion
$(\sqrt{2}, -\sqrt{2})$	20 > 0	20	4	384 > 0	$f(\sqrt{2}, -\sqrt{2}) = -8$ is minimum
$\left(-\sqrt{2},\sqrt{2}\right)$	20 > 0	20	4	384 > 0	$f(-\sqrt{2}, \sqrt{2}) = -8$ is minimum
(0,0)	-4 < 0	-4	4	0	Since $f_{xx}f_{yy} - f_{xy}^2 = 0$
					Further investigation is needed.

Clearly
$$f(0, 0) = 0$$
, $f(0.1, 0) = -0.0199$, $f(0.1, 0.1) = 0.0002$.

Thus, in the neighborhood of (0, 0), f > f(0, 0) at some points and f < f(0, 0) at some points.

Hence f(0, 0) is not an extreme value. The point (0, 0) is saddle point.

2. Discuss the maxima and minima of $f(x, y) = x^3y^2(1 - x - y)$.

Solution:
$$f(x, y) = x^3y^2 - x^4y^2 - x^3y^3$$
.

Differentiating partially we get,
$$f_x = 3x^2y^2 - 4x^3y^2 - 3x^2y^3$$
, $f_y = 2x^3y - 2x^4y - 3x^3y^2$,

$$f_{xx} = 6xy^2 - 12x^2y^2 - 6xy^3$$
, $f_{yy} = 2x^3 - 2x^4 - 6x^3y$ and $f_{xy} = 6x^2y - 8x^3y - 9x^2y^2$.

Now for extreme values $f_x = 0$, $f_y = 0$

$$\Rightarrow 3x^2y^2 - 4x^3y^2 - 3x^2y^3 = 0 \text{ and } 2x^3y - 2x^4y - 3x^3y^2 = 0.$$

$$\Rightarrow 3 - 4x - 3y = 0 \text{ and } 2 - 2x - 3y = 0.$$

Therefore stationary points are $\left(\frac{1}{2}, \frac{1}{3}\right)$ and (0, 0).

Point	f_{xx}	f_{yy}	f_{xy}	$f_{xx}f_{yy}-f_{xy}^2$	Conclusion
$\left(\frac{1}{2}, \frac{1}{3}\right)$	$-\frac{1}{9} < 0$	$-\frac{1}{8}$	$-\frac{1}{12}$	$\frac{1}{144} > 0$	$f\left(\frac{1}{2}, \frac{1}{3}\right) = \frac{1}{432}$ is maximum
(0,0)	0	0	0	0	Since $f_{xx}f_{yy} - f_{xy}^2 = 0$ Further investigation is needed.

Clearly
$$f(0, 0) = 0$$
 , $f(0.1, 0.1) > 0$, $f(-0.1, -0.1) < 0$.

Thus in the neighborhood of (0, 0), f > f(0, 0) at some points and f < f(0, 0) at some points.

Hence f(0, 0) is not an extreme value. The point (0, 0) is saddle point.

Exercise:

Find the maximum and minimum values of

i)
$$x^3 + y^3 - 2x^2 - 3axy$$
. ii) $x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$. iii) $\sin x \sin y \sin(x + y)$.

Self-study: Euler's Theorem and problems. Method of Lagrange undetermined multipliers with single constraint.

Homogeneous Function:

If a function can be expressed in the form of $x^n \varphi\left(\frac{y}{x}\right)$ is called homogeneous of degree n.

Euler's theorem: If u is a homogenous function of x and y with degree n, then $xu_x + yu_y = nu$.

Differentiating 1 w.r.to x partially,
$$u_x = x^n \left(-\frac{y}{x^2} \right) \varphi' \left(\frac{y}{x} \right) + n x^{n-1} \varphi \left(\frac{y}{x} \right)$$

$$\Rightarrow xu_x = -x^{n-1}y\varphi'\left(\frac{y}{x}\right) + nu \cdots 2.$$

Differentiating 1 w.r.to y partially, $u_y = x^n \left(\frac{1}{x}\right) \varphi'\left(\frac{y}{x}\right)$

$$\Rightarrow yu_y = x^{n-1}y\varphi'\left(\frac{y}{x}\right) \cdots 3.$$

$$\Rightarrow yu_y = x^{n-1}y\varphi'\left(\frac{y}{x}\right) \cdots 3.$$

Adding 2 and 3 we get, $xu_x + yu_y = nu$.

2. If u is a homogenous function of x and y with degree n, then $x^2u_{xx} + 2xyu_{xy} + y^2u_{yy} = n(n-1)u$.

Proof: By Euler's theorem, $xu_x + yu_y = nu \cdots \cdots (1)$

Differentiating 1 w.r.to x partially, $xu_{xx} + u_x + yu_{xy} = nu_x \implies xu_{xx} + yu_{xy} = (n-1)u_x$.

$$\therefore x^2 u_{xx} + xy u_{xy} = (n-1)x u_x \cdots \cdots (2). \text{ Similarly } y^2 u_{yy} + xy u_{xy} = (n-1)y u_y \cdots \cdots (3).$$

Adding 2 and 3 we get, $x^2u_{xx} + 2xyu_{xy} + y^2u_{yy} = (n-1)[xu_x + yu_y] = n(n-1)u$.

3. If $u = \sin^{-1}\left(\frac{x^2y^2}{x+y}\right)$, then prove that $xu_x + yu_y = 3\tan u$.

$$u = \sin^{-1}\left(\frac{x^2y^2}{x+y}\right) \Longrightarrow \sin u = \frac{x^2y^2}{x+y} = \frac{x^4(y^2/x^2)}{x(1+y/x)} = x^3\varphi\left(\frac{y}{x}\right).$$

 $\therefore \sin u$ is homogenous function of degree 3,

Then by Euler's theorem, $x \frac{\partial \sin u}{\partial x} + y \frac{\partial \sin u}{\partial y} = 3 \sin u \implies \cos u \left(x u_x + y u_y \right) = 3 \sin u$ Or $x u_x + y u_y = 3 \tan u$.

4. If $u = \frac{x^3y^3}{x^3+y^3}$, then prove that $xu_x + yu_y = 3u$.

$$u = \frac{x^3 y^3}{x^3 + y^3} = \frac{x^6 (y^3 / x^3)}{x^3 (1 + y^3 / x^3)} = x^3 \varphi \left(\frac{y}{x}\right).$$

 $\therefore u$ is homogenous function of degree 3,

Then by Euler's theorem, $xu_x + yu_y = 3u$.

5. If $u = \frac{x^2y^2}{x+y}$, then find the value of $x^2u_{xx} + 2xyu_{xy} + y^2u_{yy}$.

If
$$u = \frac{x^2 y^2}{x+y} = \frac{x^4 (y^2/x^2)}{x(1+y/x)} = x^3 \varphi(\frac{y}{x}).$$

 $\therefore u$ is homogenous function of degree 3,

Then by Euler's theorem, $x^2u_{xx} + 2xyu_{xy} + y^2u_{yy} = n(n-1)u = 6u$.

Exercise:

1. If
$$u = \tan^{-1} \frac{x^3 + y^3}{x - y}$$
, then prove that $xu_x + yu_y = \sin 2u$ and $x^2 u_{xx} + 2xyu_{xy} + y^2 u_{yy} = 2\cos 3u \sin u$.

2. If
$$z=x\ \varphi\left(\frac{y}{x}\right)+\varphi\left(\frac{y}{x}\right)$$
 , prove that $x^2u_{xx}+2xyu_{xy}+y^2u_{yy}=0$.

3. If
$$u = \frac{x}{y+z} + \frac{y}{z+x} + \frac{z}{x+y}$$
, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$.

Extremum by Lagrange's multiplier method:

To find extremum of f(x, y, z) subject to $\emptyset(x, y, z) = c$, first we write $F = f(x, y, z) + \lambda \emptyset(x, y, z)$ Next we obtain the equations $F_x = 0$, $F_y = 0$, $F_z = 0$.

Then solve the above equations with $\emptyset(x, y, z) = c$.

The valve of x, y, z so obtained will give the stationary value of f(x, y, z).

Example:

1. A rectangular box open at top is to have volume 32 cubic ft. Find the dimension of the box requiring least material for its construction.

Solution: Clearly f(x, y, z) = xy + 2yz + 2zx (open at top) and $\emptyset(x, y, z) = xyz = 32$.

Let
$$F = xy + 2yz + 2zx + \lambda xyz$$

et
$$F = xy + 2yz + 2zx + \lambda xyz$$

 $F_x = 0, F_y = 0, F_z = 0 \Rightarrow y + 2z + \lambda yz = 0, \cdots$ (i)
 $x + 2z + \lambda xz = 0, \cdots$ (ii)
 $2y + 2x + \lambda xy = 0. \cdots$ (iii)

$$(i)x - (ii)y \implies 2z(x - y) = 0 \implies x = y,$$

$$(ii)y - (iii)z \implies x(y - 2z) = 0 \implies y = 2z.$$

$$xyz = 32 \implies 4z^3 = 32 \implies z = 2, x = 4, y = 4.$$

Therefore x = 4ft, y = 4ft, z = 2ft.

2. In a plane triangle find the maximum value of $\cos A \cos B \cos C$.

Solution: Let x = A, y = B, z = C.

Then the question is to find the maximum value of $f = \cos x \cos y \cos z$ subject to $x + y + z = \pi$

Let
$$F = \cos x \cos y \cos z + \lambda(x + y + z)$$

$$F_x = 0$$
, $F_y = 0$, $F_z = 0 \Rightarrow -\sin x \cos y \cos z + \lambda = 0$, ...(i)
 $-\cos x \sin y \cos z + \lambda = 0$, ...(ii)
 $-\cos x \cos y \sin z + \lambda = 0$ (iii)

$$\Rightarrow \lambda = \sin x \cos y \cos z = \cos x \sin y \cos z = \cos x \cos y \sin z$$

$$\Rightarrow \sin x \cos y = \cos x \sin y \text{ and } \sin y \cos z = \cos y \sin z$$

$$\Rightarrow \sin(x - y) = 0$$
 and $\sin(y - z) = 0$.

Therefore
$$x = y = z$$
 and $x + y + z = \pi \implies x = y = z = \frac{\pi}{3}$.

Hence the maximum value of $\cos A \cos B \cos C = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}$.

3. Find the maximum and minimum distances of the point (3, 4, 12) from the sphere $x^2 + y^2 + z^2 = 4$.

Solution: Let P(x, y, z) be any point on the sphere, and $A \equiv (3, 4, 12)$.

Then the distance
$$AP = \sqrt{(x-3)^2 + (y-4)^2 + (z-12)^2}$$

Without loss of generality consider $f = (x-3)^2 + (y-4)^2 + (z-12)^2$

and
$$\emptyset = x^2 + y^2 + z^2 = 4$$
.

Let
$$F = (x-3)^2 + (y-4)^2 + (z-12)^2 + \lambda(x^2 + y^2 + z^2)$$
.

$$F_x = 0, \ F_y = 0, \ F_z = 0 \Longrightarrow (x - 3) + x\lambda = 0, \cdots (i)$$

$$(y-4) + y\lambda = 0, \quad \cdots \text{(ii)}$$

$$(z-12)+z\lambda=0$$
 . ··· (iii)

(i)
$$y - (ii)x \implies 4x - 3y = 0$$
 and (ii) $z - (iii)y \implies 12y - 4z = 0$

$$\implies z = 3y \quad \& \quad x = \frac{3}{4}y$$

$$x^{2} + y^{2} + z^{2} = 4 \implies \left(\frac{9}{16} + 1 + 9\right)y^{2} = 4 \implies \left(\frac{169}{16}\right)y^{2} = 4$$

$$\Rightarrow y^2 = \frac{64}{169} \quad \Rightarrow y = \pm \frac{8}{13} \ .$$

When
$$y = \frac{8}{13}$$
, $x = \frac{6}{13}$, $z = \frac{24}{13}$ and when $y = -\frac{8}{13}$, $x = -\frac{6}{13}$, $z = -\frac{24}{13}$.

$$AP = \sqrt{\left(\frac{6}{13} - 3\right)^2 + \left(\frac{8}{13} - 4\right)^2 + \left(\frac{24}{13} - 12\right)^2} = 11.$$

And
$$AP = \sqrt{\left(-\frac{6}{13} - 3\right)^2 + \left(-\frac{8}{13} - 4\right)^2 + \left(-\frac{24}{13} - 12\right)^2} = 15.$$

Hence maximum distance is 15 and minimum distance is 11.

4. The temperature T at any point (x, y, z) in space is $T = 400xyz^2$. Find the highest temperature on the surface of the unit sphere $x^2 + y^2 + z^2 = 1$.

Solution: Let $F = xyz^2 + \lambda(x^2 + y^2 + z^2)$.

$$F_x = 0, \ F_y = 0, \ F_z = 0 \Longrightarrow yz^2 + 2x\lambda = 0, \cdots (i)$$

$$xz^2 + 2y\lambda = 0$$
, ... (ii)

$$2xyz + 2z\lambda = 0$$
 (iii)

(i)
$$y - (ii)x \implies y^2 z^2 - x^2 z^2 = 0$$
 and (ii) $z - (iii)y \implies xz^3 - 2xy^2 z = 0$
 $\implies y^2 = x^2 \quad \& \quad z^2 = 2y^2$
 $x^2 + y^2 + z^2 = 1 \implies y^2 + y^2 + 2y^2 = 1 \implies y^2 = \frac{1}{4}$.
 $\implies x = y = \frac{1}{2}$ and $z^2 = \frac{1}{2}$.

Therefore highest temperature is $T = 400xyz^2 = \frac{400}{8} = 50$ units.

Exercise:

- 1. Find the minimum value of $x^2 + y^2 + z^2$ subject to the condition, i) $xyz = a^3$ ii) $xy + yz + zx = 3a^2$.
- 2. Find the dimensions of the rectangular box, open at top, of maximum capacity whose surface is $432 cm^2$.

Assignment:

- 1. If $u = \sin^{-1}\left(\frac{x}{y}\right) + \tan^{-1}\left(\frac{y}{x}\right)$, prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 0$.
- 2. If $u = \cos^{-1} \frac{x+y}{\sqrt{x}+\sqrt{y}}$, then prove that $xu_x + yu_y = -\frac{1}{2}\cot u$.
- 3. Find the minimum value of $x^2 + y^2 + z^2$ subject to the condition ax + by + cz = p.
- 4. Find the maximum and minimum distances from the origin to the surface $5x^2 + 6xy + 5y^2 = 8$.