Contents

1	Misc	1
-	1.1	Contest
	1.1	1.1.1 Debug List
		1.1.2 Makefile
		1.1.3 Default Code
		1.1.5 C++17 constexpr
		1.1.6 Changing Stack Size
	1.2	Utils 2
		1.2.1 SplitMix64 2
		1.2.2 Random
		1.2.3 Bit Twiddling 2
		1.2.4 Floating Point Comparison 2
		1.2.5 Floating Point Binary Search 2
	1.3	Misc Algorithms
		1.3.1 Mo's Algorithm on Tree 2
		1.3.2 Longest Increasing Subsequence 3
		1.3.3 Aliens Trick
2	Data	Structures 3
	2.1	GNU PBDS
	2.2	Segment Tree
	2.3	Line Container
	2.4	Heavy-Light Decomposition 4
	2.5	Link-cut Tree
	2.5	Link-cut lifee
3	Math	5
5	3.1	
	3.1	•
		3.1.1 Modular
		3.1.3 Chinese Remainder 5
		3.1.4 Sieve
		3.1.5 Miller-Rabin 5
		3.1.6 Pollard's Rho 5
		3.1.7 Tonelli-Shanks 5
		3.1.8 Baby-Step Giant-Step 6
		3.1.9 Multiplicative Function Sum 6
	3.2	Combinatorics 6
		3.2.1 De Brujin Sequence 6
		3.2.2 Multinomial 6
		3.2.3 Not Burnside's Lemma 6
		3.2.4 Matroid Intersection 6
	3.3	Theorems
	3.3	3.3.1 Kirchhoff's Theorem 6
		3.3.2 Tutte's Matrix 6
		3.3.3 Cayley's Formula 6 3.3.4 Erdős-Gallai Theorem 6
		3.3.4 Eruos-Gattal Meorem
4	Numer	ric 7
4	4.1	long long Multiplication
	4.2	
	4.2	
	4.4	Fast Fourier Transform
	4.5	Fast Walsh-Hadamard Transform
	4.6	FFT Convolution
	4.7	Linear Recurrence
		4.7.1 Calculation
		4.7.2 Berlekamp-Massey 8
		4.7.3 Composite Modulus Recurrence 8
	4.8	Matrix Determinant 8
	4.9	Matrix Inverse
	4.10	Linear Equations 9
	4.11	Simplex
5	Graph	
	5.1	Modeling
	5.2	Flow
		5.2.1 Dinic
		5.2.2 Gomory-Hu Tree
		5.2.3 Global Minimum Cut
		5.2.4 Min Cost Max Flow
	5.3	Matching
		5.3.1 Kuhn-Munkres
		5.3.2 Bipartite Minimum Vertex Cover 12
		5.3.3 Maximum General Matching
	F ,	5.3.5 Stable Marriage
	5.4	Centroid Decomposition
	5.5	Minimum Mean Cycle
	5.6	Bellman-Ford
	5.7	Directed Minimum Spanning Tree

	5.9	Tarjan							15			
		5.9.1 Strongly Connected Components							15			
		5.9.2 Articulation Point							16			
		5.9.3 Bridge							16			
	5.10	2-SAT							16			
	5.11	Dominator Tree							16			
	5.12	Biconnected Components							17			
	5.13								17			
	5.14	Manhattan MST							17			
	5.15	Notes	•	•	•	•	•	•	18			
5	Geome	netry							18			
	6.1	Basic 2D							18			
	6.2	Angular Sort							18			
	6.3	Convex Hull							18			
	6.4	Convex Polygon Point Inclusion							18			
	6.5	Convex Polygon Minkowski Sum							18			
	6.6	Closest Pair							19			
	6.7	Minimum Enclosing Circle							19			
	6.8	Half Plane Intersection							19			
	6.9	Delaunay Triangulation							19			
	6.10								26			
	6.11	Quaternion							26			
	6.12	3D Convex Hull	•	•			•	•	26			
,	Strings 21											
	7.1	Z-value							21			
	7.2	Manacher							21			
	7.3	Minimum Rotation							21			
	7.4	Aho-Corasick							21			
	7.5	Suffix Array							21			
	7.6	Suffix Tree							22			

1 Misc

1.1 Contest

1.1.1 Debug List

```
- Pre-submit:
  - Did you make a typo when copying a template?
  - Test more cases if unsure.
      Write a naive solution and check small cases.
  - Submit the correct file.
- General Debugging:
  - Read the whole problem again.
  - Have a teammate read the problem.
  - Have a teammate read your code.
    - Explain you solution to them (or a rubber duck).
  - Print the code and its output \!\!\!\!/ debug output.
  - Go to the toilet.
- Wrong Answer:
  - Any possible overflows?
    -> `_int128` ?
- Try `-ftrapv` or `#pragma GCC optimize("trapv")`
  - Floating point errors?
    - > `long double` ?
    - turn off math optimizations
  - check for `==`, `>=`, `acos(1.000000001)`, etc.
- Did you forget to sort or unique?

    Generate large and worst "corner" cases.
    Check your `m` / `n`, `i` / `j` and `x` / `y`.

  - Are everything initialized or reset properly?
  - Are you sure about the STL thing you are using?
    - Read cppreference (should be available).
  - Print everything and run it on pen and paper.
- Time Limit Exceeded:
  - Calculate your time complexity again.
  - Does the program actually end?
    - Check for `while(q.size())` etc.
  - Test the largest cases locally.
  - Did you do unnecessary stuff?
    - e.g. pass vectors by value
    - e.g. `memset` for every test case
  - Is your constant factor reasonable?
 Runtime Error:
  - Check memory usage.
    - Forget to clear or destroy stuff?
    - > `vector::shrink_to_fit()
  - Stack overflow?
  - Bad pointer / array access?
    - Try `-fsanitize=address
  - Division by zero? NaN's?
```

1.1.2 Makefile

```
.PRECIOUS: ./p%
%: p%
  ulimit -s unlimited && ./$<
p%: p%.cpp
  g++ -o $@ $< -std=gnu++17 -Wall -Wextra -Wshadow \
  -fsanitize=address -fsanitize=undefined

init:
  for i in a b c d e f g h; do \
    cp default.cpp "p$$i.cpp"; \
  done</pre>
```

1.1.3 Default Code

```
#include <bits/stdc++.h>

#define pb push_back
#define eb emplace_back
#define F first
#define S second
#define SZ(v) ((int)(v).size())
#define ALL(v) (v).begin(),(v).end()
#define MEM(a,b) memset(a,b,sizeof a)

using namespace std;
using ll = long long;
using ld = long double;
```

```
using LL = __int128;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
int main() {
   ios::sync_with_stdio(0), cin.tie(0);
}
```

1.1.4 acceleration yes

```
#pragma GCC optimize ("03", "unroll-loops")
// #pragma GCC optimize ("fast-math")
#pragma GCC target("avx,avx2,fma,mmx,abm,bmi,bmi2")
// tip: `lscpu` on the contest machine

// for math:
// - writing your own complex, etc. can increase speed
// - use Ofast on floating points with caution!
// stuff to put before a loop:
// - unroll count (0 or 1 -> no unroll)
#pragma GCC unroll 10
// - for a loop that you're sure can be vectorized
#pragma GCC ivdep

// to see what are optimized, call gcc with
// -fopt-info -fopt-info-loop -fopt-info-loop-missed
// -fopt-info-vec -fopt-info-vec-missed
```

1.1.5 C++17 constexpr

```
// constexpr array example
constexpr array<int, 100> fibonacci {
  [] {
    array<int, 100> a{};
    a[0] = a[1] = 1;
    for (int i = 2; i < 100; i++)
a[i] = (a[i - 1] + a[i - 2]) % 420;
    return a;
  }()
};
static_assert(fibonacci[9] == 55, "CE");
// some default limits in g++ (7.x - trunk):
// constexpr recursion depth: 512
// constexpr loop iteration (per function): 262144
// constexpr operation count (per function): 33554432
// template recursion depth: 900 (g++ might segfault)
// use recursion / unrolling / TMP for more calculations.
// WARNING:
// g++ 10 has a bug that incorrectly rejects some usages // g++ 11 has it fixed, and g++ 7.x - 9.x work fine
     g++ 11 has it fixed, and g++ 7.x - 9.x work fine
// "for constexpr"
template<typename F, typename INT, INT... S>
constexpr void
for_constexpr(integer_sequence<INT, S...>, F&& func) {
  int _[] = { (func(integral_constant<INT, S>{}), 0)... };
// example usage
template<typename ...T>
void print_tuple(tuple<T...> t) {
  for_constexpr(
    make_index_sequence<sizeof...(T)>{},
    [8](auto index) { cout << get<index>(t) << ' '; }
  cout << '\n';
```

1.1.6 Changing Stack Size

```
constexpr size_t size = 200 << 20; // 200MiB
int main() {
  register char* rsp asm("rsp");
  char* buf = new char[size];
  asm("movq %0, %%rsp\n"::"r"(buf + size));
  // do stuff
  asm("movq %0, %%rsp\n"::"r"(rsp));
}</pre>
```

1.2 Utils

1.2.1 SplitMix64

```
using ull = unsigned long long;
inline ull splitmix64(ull x) {
   // static ull x = seed;
   ull z = (x += 0x9E3779B97F4A7C15);
   z = (z ^ (z >> 30)) * 0xBF58476D1CE4E5B9;
   z = (z ^ (z >> 27)) * 0x94D049BB133111EB;
   return z ^ (z >> 31);
}
```

1.2.2 Random #include <random>

#include <chrono>

```
using namespace std;
// most judges and contest environments run linux
// but we should not trust anyone
#ifdef __unix
 random_device rd;
 mt19937_64 RNG(rd());
 const auto SEED = chrono::high_resolution_clock::now()
     .time_since_epoch().count();
 mt19937_64 RNG(SEED);
#endif
// usage:
// random long long: RNG();
// uniformly random ll in [l, r]:
// uniform_int_distribution<int> dt(l, r); dt(RNG);
// uniformly random double in [l, r]:
    uniform_real_distribution<double> dt(l, r); dt(RNG);
```

1.2.3 Bit Twiddling

```
ull next_permutation(ull x) {
  ull c = _builtin_ctzll(x), r = x + (1 << c);
  return (r ^ x) >> (c + 2) | r;
}
// iterate over all (proper) subsets of bitset s
void subsets(ull s) {
  for (ull x = s; x; ) { --x &= s; /* do stuff */ }
}
```

1.2.4 Floating Point Comparison

```
long long rc(double x) { return *(long long*)&x; }
// relative error: 2^-28 ~ 3.7e-9
// absolute error: 1e-8
bool is_equal(double a, double b) {
  return abs(rc(a) - rc(b)) < (1LL << (52 - 24)) ||
   abs(a - b) < 1e-8;
}</pre>
```

1.2.5 Floating Point Binary Search

```
union di { double d; ull i; };
bool check(double);
// binary search in [L, R) with relative error 2^-eps
double binary_search(double L, double R, int eps) {
  di l = {L}, r = {R}, m;
  while (r.i - l.i > 1LL << (52 - eps)) {
    m.i = (l.i + r.i) >> 1;
    if (check(m.d)) r = m;
    else l = m;
  }
  return l.d;
```

1.3 Misc Algorithms

1.3.1 Mo's Algorithm on Tree

```
void MoAlgoOnTree() {
  Dfs(0, -1);
```

```
vector<int> euler(tk);
  for (int i = 0; i < n; ++i) {
  euler[tin[i]] = i;</pre>
    euler[tout[i]] = i;
  vector<int> l(q), r(q), qr(q), sp(q, -1);
  for (int i = 0; i < q; ++i) {
  if (tin[u[i]] > tin[v[i]]) swap(u[i], v[i]);
    int z = GetLCA(u[i], v[i]);
    sp[i] = z[i];
    if (z == u) l[i] = tin[u[i]], r[i] = tin[v[i]];
    else l[i] = tout[u[i]], r[i] = tin[v[i]];
    qr[i] = i;
  sort(qr.begin(), qr.end(), [8](int i, int j) {
    if (l[i] / kB == l[j] / kB) return r[i] < r[j];</pre>
    return l[i] / kB < l[j] / kB;
  vector<bool> used(n);
  // Add(v): add/remove\ v\ to/from\ the\ path\ based\ on\ used[v]
  for (int i = 0, tl = 0, tr = -1; i < q; ++i) {
  while (tl < l[qr[i]]) Add(euler[tl++]);</pre>
    while (tl > l[qr[i]]) Add(euler[--tl]);
    while (tr > r[qr[i]]) Add(euler[tr--]);
    while (tr < r[qr[i]]) Add(euler[++tr]);</pre>
    // add/remove LCA(u, v) if necessary
  }
}
```

1.3.2 Longest Increasing Subsequence

```
// source: KACTL
template<class I> vi lis(const vector<I>∂ S) {
 if (S.empty()) return {};
 vi prev(sz(S));
 typedef pair<I, int> p;
 vector res;
 rep(i,0,sz(S)) {
    // change 0 -> i for longest non-decreasing subsequence
    auto it = lower_bound(all(res), p{S[i], 0});
   if (it == res.end()) res.emplace_back(), it =
    \hookrightarrow res.end()-1;
   *it = {S[i], i};
   prev[i] = it == res.begin() ? 0 : (it-1)->second;
 int L = sz(res), cur = res.back().second;
 vi ans(L);
 while (L--) ans[L] = cur, cur = prev[cur];
 return ans;
```

1.3.3 Aliens Trick

```
// min dp[i] value and its i (smallest one)
pll get_dp(int n);
ll aliens(int n) {
  int l = 0, r = 1000000;
  while (l != r) {
    int m = (l + r) / 2;
    pll res = get_dp(m);
    if (res.S == n) return res.F - m * n;
    if (res.S < n) r = m;
    else l = m + 1;
}
l--;
return get_dp(l).F - l * n;
}</pre>
```

2 Data Structures

2.1 GNU PBDS

```
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/priority_queue.hpp>
#include <ext/rope>
using namespace __gnu_pbds;

// most of std::map + order_of_key, find_by_order
template<typename T, typename U = null_type>
```

```
using ordered_map = tree<T, U, std::less<T>,
rb_tree_tag, tree_order_statistics_node_update>;
// rb_tree_tag can be changed to splay_tree_tag

template<typename T> struct myhash {
    size_t operator()(T x) const; // splitmix64, etc.
};
// mostly the same as std::unordered_map
template<typename T, typename U = null_type>
using hash_table = gp_hash_table<T, U, myhash<T>>;

// most of std::priority_queue + merge
using heap = priority_queue<int, std::less<int>>;
// the third template parameter is tag, useful ones are
// pairing_heap_tag, binary_heap_tag, binomial_heap_tag
// similar to treap, has insert/delete range, merge, etc.
using __gnu_cxx::rope;
```

2.2 Segment Tree

```
template<typename T> struct tree {
 static const T ID; // identity element
 T f(T, T); // associative operator
 int n:
 vector<T> v;
 tree(vector<T> \delta a) : n(a.size()), v(2 * n, ID) {
    copy_n(a.begin(), n, v.begin() + n);
    for(int i = n - 1; i > 0; i--)
      v[i] = f(v[i << 1], v[i << 1 | 1]);
 void update(int pos, T val) {
   for(v[pos += n] = val; pos > 1; pos >>= 1)
      v[pos >> 1] = f(v[pos & -2], v[(pos & -2) ^ 1]);
 T query(int l, int r) {
    T tl = ID, tr = ID;
    for(l += n, r += n; l < r; l >>= 1, r >>= 1) {
      if(l & 1) tl = f(tl, v[l++]);
      if(r \& 1) tr = f(v[--r], tr);
   return f(tl, tr);
```

2.3 Line Container

```
// source: kactl
struct Line {
  mutable ll k, m, p;
  bool operator<(const Line& o) const { return k < o.k; }</pre>
  bool operator<(ll x) const { return p < x; }</pre>
// add: line y=kx+m, query: maximum y of given x
struct LineContainer : multiset<Line, less<>>> {
  // (for doubles, use inf = 1/.0, div(a,b) = a/b)
  static const ll inf = LLONG_MAX;
  ll div(ll a, ll b) { // floored division return a / b - ((a ^ b) < 0 && a % b); }
  bool isect(iterator x, iterator y) {
    if (y == end()) return x -> p = inf, 0;
    if (x->k == y->k) x->p = x->m > y->m ? inf : -inf;
else x->p = div(y->m - x->m, x->k - y->k);
    return x->p >= y->p;
  void add(ll k, ll m) {
    auto z = insert(\{k, m, \theta\}), y = z++, x = y;
while (isect(y, z)) z = erase(z);
    if (x != begin() && isect(--x, y)) isect(x, y =
      → erase(y));
    while ((y = x) != begin() && (--x)->p >= y->p)
       isect(x, erase(y));
  ll query(ll x) {
    assert(!empty());
     auto l = *lower_bound(x);
    return l.k * x + l.m;
};
```

2.4 Heavy-Light Decomposition

```
// source: KACTL
template <bool VALS_EDGES> struct HLD {
  int N, tim = 0;
  vector<vi> adj;
  vi par, siz, depth, rt, pos;
  Node *tree;
  HLD(vector<vi> adj_)
   : N(sz(adj_)), adj(adj_), par(N, -1), siz(N, 1),

→ depth(N),

     rt(N),pos(N),tree(new Node(0, N)){ dfsSz(0);
      → dfsHld(0); }
  void dfsSz(int v) {
    if (par[v] != -1) adj[v].erase(find(all(adj[v]),
    \hookrightarrow par[v]));
    for (int& u : adj[v]) {
      par[u] = v, depth[u] = depth[v] + 1;
      dfsSz(u);
      siz[v] += siz[u];
      if (siz[u] > siz[adj[v][0]]) swap(u, adj[v][0]);
  void dfsHld(int v) {
    pos[v] = tim++
    for (int u : adj[v]) {
     rt[u] = (u == adj[v][0] ? rt[v] : u);
      dfsHld(u);
  template <class B> void process(int u, int v, B op) {
    for (; rt[u] != rt[v]; v = par[rt[v]]) {
      if (depth[rt[u]] > depth[rt[v]]) swap(u, v);
      op(pos[rt[v]], pos[v] + 1);
    if (depth[u] > depth[v]) swap(u, v);
    op(pos[u] + VALS_EDGES, pos[v] + 1);
  void modifyPath(int u, int v, int val) {
   process(u, v, [δ](int l, int r) { tree->add(l, r, val);
    → });
  int queryPath(int u, int v) { // Modify depending on
    int res = -1e9;
    process(u, v, [δ](int l, int r) {
        res = max(res, tree->query(l, r));
    }):
    return res;
  int querySubtree(int v) { // modifySubtree is similar
    return tree->query(pos[v] + VALS_EDGES, pos[v] + siz[v]);
};
```

2.5 Link-cut Tree

```
// source: bcw codebook
const int MXN = 100005;
const int MEM = 100005;
struct Splay {
  static Splay nil, mem[MEM], *pmem;
  Splay *ch[2], *f;
  int val, rev, size;
Splay () : val(-1), rev(0), size(0) {
    f = ch[0] = ch[1] = \delta nil;
  Splay (int _val) : val(_val), rev(0), size(1) {
  f = ch[0] = ch[1] = &nil;
  bool isr() {
    return f->ch[0] != this δδ f->ch[1] != this;
  int dir() {
    return f->ch[0] == this ? 0 : 1;
  void setCh(Splay *c, int d) {
    ch[d] = c;
    if (c != &nil) c->f = this;
    pull();
```

```
void push() {
    if (rev) {
      swap(ch[0], ch[1]);
      if (ch[0] != &nil) ch[0]->rev ^= 1;
      if (ch[1] != &nil) ch[1]->rev ^= 1;
    }
  }
  void pull() {
    size = ch[0]->size + ch[1]->size + 1;
    if (ch[\theta] != \delta nil) ch[\theta] -> f = this;
    if (ch[1] != δnil) ch[1]->f = this;
} Splay::nil, Splay::mem[MEM], *Splay::pmem = Splay::mem;
Splay *nil = &Splay::nil;
void rotate(Splay *x) {
  Splay *p = x->f;
  int d = x->dir();
  if (!p->isr()) p->f->setCh(x, p->dir());
  else x->f = p->f;
  p->setCh(x->ch[!d], d);
  x->setCh(p, !d);
  p->pull(); x->pull();
vector<Splay*> splayVec;
void splay(Splay *x) {
  splayVec.clear();
  for (Splay *q=x;; q=q->f) {
    splayVec.push_back(q);
    if (q->isr()) break;
  reverse(begin(splayVec), end(splayVec));
for (auto it : splayVec) it->push();
  while (!x->isr()) {
    if (x->f->isr()) rotate(x);
    else if (x->dir()==x->f->dir()) rotate(x->f),rotate(x);
    else rotate(x),rotate(x);
}
Splay* access(Splay *x) {
  Splay *q = nil;
  for (;x!=nil;x=x->f) {
    splay(x);
    x->setCh(q, 1);
    q = x;
  return q;
}
void evert(Splay *x) {
  access(x);
  splay(x);
  x->rev ^= 1;
  x->push(); x->pull();
void link(Splay *x, Splay *y) {
// evert(x);
  access(x);
  splay(x);
  evert(y);
  x->setCh(y, 1);
void cut(Splay *x, Splay *y) {
// evert(x);
  access(y);
  splay(y);
  y->push();
  y->ch[0] = y->ch[0]->f = nil;
int N, Q;
Splay *vt[MXN];
int ask(Splay *x, Splay *y) {
  access(x);
  access(y);
  splay(x);
  int res = x->f->val;
  if (res == -1) res=x->val;
  return res;
int main(int argc, char** argv) {
```

```
scanf("%d%d", &N, &Q);
  for (int i=1; i<=N; i++)
    vt[i] = new (Splay::pmem++) Splay(i);
  while (Q--) {
    char cmd[105];
    int u, v;
scanf("%s", cmd);
if (cmd[1] == 'i') {
       scanf("%d%d", &u, &v);
link(vt[v], vt[u]);
                             'c') {
    } else if (cmd[0] ==
       scanf("%d", &v);
       cut(vt[1], vt[v]);
    } else {
       scanf("%d%d", &u, &v);
       int res=ask(vt[u], vt[v]);
      printf("%d\n", res);
  }
}
```

3 Math

3.1 Number Theory

3.1.1 Modular

```
template<typename T> struct M {
  static T MOD;
  M() : v(0) \{ \}
  M(T x) {
    v = (-MOD \le x \&\& x \le MOD) ? x : x \% MOD;
    if (v < \Theta) v += MOD;
  explicit operator T() const { return v; }
  bool operator==(const M& b) const { return v == b.v;
  bool operator!=(const M& b) const { return v != b.v; }
  M operator-() { return M(-v); }
  M operator+(M b) { return M(v + b.v); }
  M operator (M b) { return M(v - b.v); }
M operator*(M b) { return M((__int128)v * b.v % MOD); }
M operator/(M b) { return *this * (b ^ (MOD - 2)); }
  friend M operator^(M a, ll b) {
    M ans(1);
    for (; b; b >>= 1, a *= a) if (b & 1) ans *= a;
    return ans;
  friend M& operator+=(M& a, M b) { return a = a + b; }
  friend M& operator-=(M& a, M b) { return a = a - b; }
  friend M& operator*=(M& a, M b) { return a = a * b; }
  friend Mô operator/=(Mô a, M b) { return a = a / b; }
using Mod = M<ll>;
template<>ll Mod::MOD = 10000000007;
ll &MOD = Mod::MOD;
/* Safe primes
* 21673, 26497, 22621, 21817, 28393, 26821, 30181, 22093
* 977680993, 971939533, 970479637, 910870273, 1041012121
 * 741266610070171837, 1110995545625882557
 * NTT prime
                           | p - 1
                                           | primitive root
                           (2^16)
 * 65537
                                           | 3
                           | (2^23)*119 | 3
 * 998244353
                           1 (2^39)*5
 * 2748779069441
                                           1 3
 * 1945555039024054273 | (2<sup>56</sup>)*27
                                           | 5
```

3.1.2 Extended GCD

```
tuple<ll, ll, ll> extgcd(ll a, ll b) {
  if (b == 0) return { 1, 0, a };
  else {
    auto [p, q, g] = extgcd(b, a % b);
    return { q, p - q * (a / b), g };
  }
}
```

3.1.3 Chinese Remainder

```
ll crt(ll a, ll m, ll b, ll n) {
  if (n > m) swap(a, b), swap(m, n);
```

auto [x, y, g] = extgcd(m, n);
assert((a - b) % g == 0); // no solution

```
x = ((b - a) / g * x) % (n / g) * m + a;
 return x < 0 ? x + m / g * n : x;
3.1.4 Sieve
constexpr ll MAXN = 1000000;
bitset<MAXN> is_prime;
vector<ll> primes;
ll mpf[MAXN], phi[MAXN], mu[MAXN];
void sieve() {
 is_prime.set();
 is_prime[1] = 0;
 mu[1] = phi[1] = 1;
 for(ll i = 2; i < MAXN; i++) {</pre>
    if(is_prime[i]) {
     mpf[i] = i;
      primes.push_back(i);
      phi[i] = i - 1;
     mu[i] = -1;
    for(ll p : primes) {
      if(p > mpf[i] \mid \mid i * p >= MAXN) break;
      is_prime[i * p] = 0;
      mpf[i * p] = p;
      mu[i * p] = -mu[i];
      if(i % p == 0)
       phi[i * p] = phi[i] * p, mu[i * p] = 0;
      else
       phi[i * p] = phi[i] * (p - 1);
 }
```

3.1.5 Miller-Rabin

```
// checks if Mod::MOD is prime
bool is_prime() {
   if (MOD <= 1 || MOD % 2 == 0) return MOD == 2;
   // Mod A[] = {2, 7, 61};
   Mod A[] = { 2,325,9375,28178,450775,9780504,1795265022 };
   int s = __builtin_ctzll(MOD - 1), i;
   for (Mod a : A) {
      Mod x = a ^ (MOD >> s);
      for (i = 0; i < s && ll(x + 1) > 2; i++, x *= x);
      if (i && x != -1) return 0;
   }
   return 1;
}
```

3.1.6 Pollard's Rho

```
Il f(ll x, ll mod) {
    return (x * x + 1) % mod;
}

// n should be composite

ll pollard_rho(ll n) {
    if (!(n & 1)) return 2;
    while (1) {
        ll y = 2, x = RNG() % (n - 1) + 1, res = 1;
        for (int sz = 2; res == 1; sz *= 2) {
            for (int i = 0; i < sz && res <= 1; i++) {
                x = f(x, n);
                res = __gcd(abs(x - y), n);
            }
            y = x;
        }
        if (res != 0 && res != n) return res;
    }
}</pre>
```

3.1.7 Tonelli-Shanks

```
int legendre(Mod a) {
   if (a == 0) return 0;
   return (a ^ ((MOD - 1) / 2)) == 1 ? 1 : -1;
}
Mod sqrt(Mod a) {
   assert(legendre(a) != -1); // no solution
```

```
ll p = MOD, s = p - 1;
if (a == 0) return 0;
if (p == 2) return 1;
if (p % 4 == 3) return a ^ ((p + 1) / 4);
int r, m;
for (r = 0; !(s & 1); r++) s >>= 1;
Mod n = 2;
while (legendre(n) != -1) n += 1;
Mod x = a ^ ((s + 1) / 2), b = a ^ s, g = n ^ s;
while (b != 1) {
   Mod t = b;
   for (m = 0; t != 1; m++) t *= t;
   Mod gs = g ^ (1LL << (r - m - 1));
   g = gs * gs, x *= gs, b *= g, r = m;
}
return x;
}</pre>
```

3.1.8 Baby-Step Giant-Step

```
// returns x such that a ^ x = b where x \in [l, r)
ll bsgs(Mod a, Mod b, ll l = θ, ll r = MOD - 1) {
   int m = sqrt(r - l) + 1, i;
   unordered_map<ll, ll> tb;
   Mod d = (a ^ l) / b;
   for (i = θ, d = (a ^ l) / b; i < m; i++, d *= a)
        if (d == 1) return l + i;
        else tb[(ll)d] = l + i;
   Mod c = Mod(1) / (a ^ m);
   for (i = θ, d = 1; i < m; i++, d *= c)
        if (auto j = tb.find((ll)d); j != tb.end())
        return j->second + i * m;
   return assert(θ), -1; // no solution
}
```

3.1.9 Multiplicative Function Sum

```
const ll N = 1000000;
ll pre_g(ll n);
ll pre_h(ll n);
// preprocessed prefix sum of f
ll pre_f[N];
// djs: prefix sum of multiplicative function f
ll djs_f(ll n) {
    static unordered_map<ll, ll> m;
    if (n < N) return pre_f[n];
    if (m.count(n)) return m[n];
    ll ans = pre_h(n);
    for (ll l = 2, r; l <= n; l = r + 1) {
        r = n / (n / l);
        ans -= (pre_g(r) - pre_g(l - 1)) * djs_f(n / l);
    }
    return m[n] = ans;
}</pre>
```

3.2 Combinatorics

3.2.1 De Brujin Sequence

```
int res[kN], aux[kN], a[kN], sz;
void Rec(int t, int p, int n, int k) {
  if (t > n) {
    if (n % p == 0)
       for (int i = 1; i <= p; ++i) res[sz++] = aux[i];</pre>
  } else {
    aux[t] = aux[t - p];
    Rec(t + 1, p, n, k);
for (aux[t] = aux[t - p] + 1; aux[t] < k; ++aux[t])
    \rightarrow Rec(t + 1, t, n, k);
 }
int DeBruijn(int k, int n) {
   // return cyclic string of length k^n such that every
  \,\hookrightarrow\, string of length n using k character appears as a
      substring.
  if (k == 1) return res[0] = 0, 1;
  fill(aux, aux + k * n, 0);
  return sz = 0, Rec(1, 1, n, k), sz;
```

3.2.2 Multinomial

```
// ways to permute v[i]
ll multinomial(vi& v) {
    ll c = 1, m = v.empty() ? 1 : v[0];
    for(int i = 1; i < v.size(); i++)
        for(int j = 0; i < v[i]; j++)
            c = c * ++m / (j+1);
    return c;
}</pre>
```

3.2.3 Not Burnside's Lemma

Let X be a set and G be a group that acts on X. For $g \in G$, denote by X^g the elements fixed by g:

$$X^g = \{x \in X \mid gx \in X\}$$

Then

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|.$$

3.2.4 Matroid Intersection

Let $M_1=(E,\mathcal{I}_1), M_2=(E,\mathcal{I}_2)$ be matroids. We want to find a set $S\in\mathcal{I}_1\cap\mathcal{I}_2$ with maximum cardinality.

Start with $S=\varnothing$. Repeat the following while feasible:

- 1. Let $Y_1 = \{x \notin S \mid S + x \in I_1\}$ and $Y_2 = \{x \notin S \mid S + x \in I_2\}$.
- 2. If $Y_1\cap Y_2\neq\varnothing$, we can choose any $x\in Y_1\cap Y_2$ and add x to S , then go back to step 1.
- 3. Build a directed bipartite graph. For each $x \in S, y \in E \backslash S$:
 - $x \rightarrow y$ iff $S x + y \in Y_1$.
 - $x \leftarrow y$ iff $S x + y \in Y_2$.
- 4. Find a augmenting path from Y_1 to Y_2 without shortcuts (using BFS), then set S to $S\Delta P$ for where P is the set of vertices on the path.

To find the maximum weighted S: For each $x \in S$, assign weight w(x) to vertex x, and for each $y \in E \backslash S$, assign weight -w(y) to vertex y. Then on step 4, find the minimum weighted path from Y_1 to Y_2 (using Bellman-Ford) instead, and if there are multiple, choose the one with the least edges.

3.3 Theorems

Source: waynedisonitau123

3.3.1 Kirchhoff's Theorem

Denote L be a $n\times n$ matrix as the Laplacian matrix of graph G, where $L_{ii}=d(i)$, $L_{ij}=-c$ where c is the number of edge (i,j) in G.

- The number of undirected spanning in G is $|\mathsf{det}(\tilde{L}_{11})|$.
- The number of directed spanning tree rooted at r in G is $|{\rm det}(\tilde{L}_{rr})|$.

3.3.2 Tutte's Matrix

Let D be a $n \times n$ matrix, where $d_{ij} = x_{ij}$ (x_{ij} is chosen uniformly at random) if i < j and $(i,j) \in E$, otherwise $d_{ij} = -d_{ji}$. $\frac{rank(D)}{2}$ is the maximum matching on G.

3.3.3 Cayley's Formula

- Given a degree sequence d_1,d_2,\ldots,d_n for each labeled vertices, there are $\frac{(n-2)!}{(d_1-1)!(d_2-1)!\cdots(d_n-1)!}$ spanning trees.
- Let $T_{n,k}$ be the number of labeled forests on n vertices with k components, such that vertex $1,2,\ldots,k$ belong to different components. Then $T_{n,k}=kn^{n-k-1}$.

3.3.4 Erdős-Gallai Theorem

A sequence of non-negative integers $d_1 \geq d_2 \geq \ldots \geq d_n$ can be represented as the degree sequence of a finite simple graph on n vertices if and only if $d_1+d_2+\ldots+d_n$ is even and

$$\sum_{i=1}^k d_i \leq k(k-1) + \sum_{i=k+1}^n \min(d_i,k)$$

holds for all $1 \le k \le n$.

4 Numeric

4.1 long long Multiplication

```
using ull = unsigned long long;
using ll = long long;
using ld = long double;
// returns a * b % M where a, b < M < 2**63
ull mult(ull a, ull b, ull M) {
    ll ret = a * b - M * ull(ld(a) * ld(b) / ld(M));
    return ret + M * (ret < 0) - M * (ret >= (ll)M);
}
```

4.2 Barrett Reduction

```
using ull = unsigned long long;
using uL = __uint128_t;
// very fast calculation of a % m
struct reduction {
  const ull m, d;
  reduction(ull m) : m(m), d(((uL)1 << 64) / m) {}
  inline ull operator()(ull a) const {
    ull q = (ull)(((uL)d * a) >> 64);
    return (a -= q * m) >= m ? a - m : a;
  }
};
```

4.3 Polynomial Interpolation

```
// source: KACTL

typedef vector<double> vd;
vd interpolate(vd x, vd y, int n) {
    vd res(n), temp(n);
    rep(k,0,n-1) rep(i,k+1,n)
        y[i] = (y[i] - y[k]) / (x[i] - x[k]);
    double last = 0; temp[0] = 1;
    rep(k,0,n) rep(i,0,n) {
        res[i] += y[k] * temp[i];
        swap(last, temp[i]);
        temp[i] -= last * x[k];
    }
    return res;
}
```

4.4 Fast Fourier Transform

```
template<tvpename T>
void work(int n, vector<T>& a, vector<T>& rt, bool inv) {
  for (int i = 1, r = 0; i < n; i++) {
  for (int bit = n; !(r & bit); bit >>= 1, r ^= bit);
    if (r > i) swap(a[i], a[r]);
  for (int len = 2; len <= n; len <<= 1)</pre>
     for (int i = 0; i < n; i += len)
       for (int j = 0; j < len / 2; j++) {
  int pos = n / len * (inv ? len - j : j);</pre>
         T u = a[i + j], v = a[i + j + len / 2] * rt[pos];
a[i + j] = u + v, a[i + j + len / 2] = u - v;
  if (inv) {
    T minv = T(1) / T(n);
    for (T8 \times : a) \times *= minv;
void FFT(vector<complex<double>>>& a, bool inv) {
  int n = a.size():
  vector<complex<double>> rt(n + 1);
  double arg = acos(-1) * 2 / n;
  for (int i = 0; i <= n; i++)
    rt[i] = { cos(arg * i), sin(arg * i) };
  work(n, a, rt, inv);
void NTT(vector<Mod>& a, bool inv, Mod p_root) {
  int n = a.size();
  Mod root = p_root ^ (MOD - 1) / n;
  vector<Mod> rt(n + 1, 1);
  for (int i = 0; i < n; i++) rt[i + 1] = rt[i] * root;
work(n, a, rt, inv);</pre>
```

4.5 Fast Walsh-Hadamard Transform

```
// source: waynedisonitau123
void xorfwt(int v[], int l, int r) {
  if (r - l == 1) return;
  int m = l + r >> 1;
  xorfwt(v, l, m), xorfwt(v, m, r);
  for (int i = l, j = m; i < m; ++i, ++j) {
  int x = v[i] + v[j];</pre>
    v[j] = v[i] - v[j], v[i] = x;
void xorifwt(int v[], int l, int r) {
  if (r - l == 1) return;
  int m = l + r >> 1;
  for (int i = l, j = m; i < m; ++i, ++j) {
    int x = (v[i] + v[j]) / 2;
    v[j] = (v[i] - v[j]) / 2, v[i] = x;
  xorifwt(v, l, m), xorifwt(v, m, r);
void andfwt(int v[], int l, int r) {
  if (r - l == 1) return;
  int m = l + r >> 1;
  andfwt(v, l, m), andfwt(v, m, r);
  for (int i = l, j = m; i < m; ++i, ++j) v[i] += v[j];
void andifwt(int v[], int l, int r) {
  if (r - l == 1) return;
  int m = l + r >> 1;
  andifwt(v, l, m), andifwt(v, m, r);
  for (int i = l, j = m; i < m; ++i, ++j) v[i] -= v[j];
void orfwt(int v[], int l, int r) {
  if (r - l == 1) return;
  int m = l + r >> 1;
  orfwt(v, l, m), orfwt(v, m, r);
for (int i = l, j = m; i < m; ++i, ++j) v[j] += v[i];</pre>
void orifwt(int v[], int l, int r) {
  if (r - l == 1) return;
  int m = l + r >> 1;
  orifwt(v, l, m), orifwt(v, m, r);
  for (int i = l, j = m; i < m; ++i, ++j) v[j] -= v[i];
```

4.6 FFT Convolution

```
// source: waynedisonitau123
vector<long long> convolution(const vector<int> &a, const
   vector<int> &b) {
  // Should be able to handle N <= 10^5, C <= 10^4
  while (sz < a.size() + b.size() - 1) sz <<= 1;</pre>
  vector<cplx> v(sz);
  for (int i = 0; i < sz; ++i) {
    double re = i < a.size() ? a[i] : 0;</pre>
    double im = i < b.size() ? b[i] : 0;</pre>
    v[i] = cplx(re, im);
  fft(v, sz);
  for (int i = 0; i <= sz / 2; ++i) {
  int j = (sz - i) & (sz - 1);</pre>
    cplx x = (v[i] + v[j].conj()) * (v[i] - v[j].conj()) *

    cplx(0, -0.25);
if (j != i) v[j] = (v[j] + v[i].conj()) * (v[j] -
        v[i].conj()) * cplx(0, -0.25);
    v[i] = x;
  ifft(v, sz);
 vector<long long> c(sz);
  for (int i = 0; i < sz; ++i) c[i] = round(v[i].re);</pre>
  return c;
vector<int> convolution_mod(const vector<int> &a, const
   vector<int> &b, int p) {
  int sz = 1;
```

```
while (sz < (int)a.size() + (int)b.size() - 1) sz <<= 1;
  vector<cplx> fa(sz), fb(sz);
  for (int i = \theta; i < (int)a.size(); ++i)
  fa[i] = cplx(a[i] & ((1 << 15) - 1), a[i] >> 15);
for (int i = 0; i < (int)b.size(); ++i)
     fb[i] = cplx(b[i] & ((1 << 15) - 1), b[i] >> 15);
  fft(fa, sz), fft(fb, sz);
  double r = 0.25 / sz;
  cplx r2(0, -1), r3(r, 0), r4(0, -r), r5(0, 1); for (int i = 0; i <= (sz >> 1); ++i) {
     int j = (sz - i) & (sz - 1);
     cplx a1 = (fa[i] + fa[j].conj());
     cplx a2 = (fa[i] - fa[j].conj()) * r2;
    cplx b1 = (fb[i] + fb[j].conj()) * r3;
cplx b2 = (fb[i] - fb[j].conj()) * r4;
    if (i != j) {
       cplx c1 = (fa[j] + fa[i].conj());
       cplx c2 = (fa[j] - fa[i].conj()) * r2;
       cplx d1 = (fb[j] + fb[i].conj()) * r3;
cplx d2 = (fb[j] - fb[i].conj()) * r4;
       fa[i] = c1 * d1 + c2 * d2 * r5;
fb[i] = c1 * d2 + c2 * d1;
     fa[j] = a1 * b1 + a2 * b2 * r5;
    fb[j] = a1 * b2 + a2 * b1;
  fft(fa, sz), fft(fb, sz);
  vector<int> res(sz);
  for (int i = 0; i < sz; ++i) {
    long long a = round(fa[i].re);
    long long b = round(fb[i].re);
    long long c = round(fa[i].im);
    res[i] = (a + ((b % p) << 15) + ((c % p) << 30)) % p;
  return res;
}}
```

4.7 Linear Recurrence

4.7.1 Calculation

```
template<typename T> struct lin_rec {
  using poly = vector<T>;
  poly mul(poly a, poly b, poly m) {
    int n = m.size();
    poly r(n);
    for (int i = n - 1; i >= 0; i--) {
      r.insert(r.begin(), 0), r.pop_back();
      T c = r[n - 1] + a[n - 1] * b[i];
      // c /= m[n - 1]; if m is not monic
for (int j = 0; j < n; j++)
         r[j] += a[j] * b[i] - c * m[j];
    }
    return r;
  poly pow(poly p, ll k, poly m) {
  poly r(m.size()); r[0] = 1;
    for (; k; k >>= 1, p = mul(p, p, m))
       if (k & 1) r = mul(r, p, m);
    return r;
  T calc(poly t, poly r, ll k) {
    int n = r.size();
    poly p(n); p[1] = 1;
    poly q = pow(p, k, r);
    T ans = 0;
    for (int i = 0; i < n; i++) ans += t[i] * q[i];
    return ans;
};
```

4.7.2 Berlekamp-Massey

```
template<typename T>
vector<T> berlekamp_massey(const vector<T>6 s) {
  int n = s.size(), l = 0, m = 1;
  vector<T> r(n), p(n); r[0] = p[0] = 1;
  T b = 1, d = 0;
  for (int i = 0; i < n; i++, m++, d = 0) {
    for (int j = 0; j <= l; j++) d += r[j] * s[i - j];
    if ((d /= b) == 0) continue; // change if T is float
    auto t = r;
  for (int j = m; j < n; j++) r[j] -= d * p[j - m];</pre>
```

```
if (l * 2 <= i) l = i + 1 - l, b *= d, m = 0, p = t;
}
return r.resize(l + 1), reverse(r.begin(), r.end()), r;
}</pre>
```

4.7.3 Composite Modulus Recurrence

// source: min-25

```
using i64 = long long;
using Matrix = vector< vector<int> >;
vector<int> linear_recurrence_mod(const vector<int>& terms,
const int N = terms.size() / 2;
  Matrix A(N, vector<int>(N + 1));
  for (int y = 0; y < N; ++y)
for (int x = 0; x < N + 1; ++x)</pre>
       if ((A[y][x] = terms[x + y] \% mod) < \theta) A[y][x] += mod;
  int r = 0;
  for (int x = 0; x < N; ++x, ++r) {
    for (int y = x + 1; y < N; ++y) {
  while (A[y][x] > 0) {
         if (A[y][x] < A[x][x] || A[x][x] == 0) {
           for (int x2 = x; x2 < N + 1; ++x2) swap(A[x][x2],
            \rightarrow A[y][x2]);
         int mq = mod - A[y][x] / A[x][x];
for (int x2 = x; x2 < N + 1; ++x2) A[y][x2] =</pre>
          \rightarrow (A[y][x2] + i64(mq) * A[x][x2]) % mod;
    if (A[x][x] == 0) break;
  vector<int> f(r + 1); f[0] = 1;
for (int x = r - 1; x >= 0; --x) if (A[x][x]) {
                gcd(mod, A[x][x]); assert(A[x][r] % g == 0);
    int mc = (mod - i64(A[x][r] / g) * mod_inv(A[x][x] / g,
     \rightarrow mod / g) % mod) % mod;
    f[r - x] = mc;
    for (int y = x - 1; y >= 0; --y) A[y][r] = (A[y][r] +
    \rightarrow i64(mc) * A[y][x]) % mod;
  }
  return f;
}
```

4.8 Matrix Determinant

```
Mod det(vector<vector<Mod>> a) {
  int n = a.size();
 Mod ans = 1;
  for(int i = 0; i < n; i++) {
    int b = i;
for(int j = i + 1; j < n; j++)</pre>
      if(a[j][i] != 0) {
        b = j;
        break:
    if(i != b) swap(a[i], a[b]), ans = -ans;
    ans *= a[i][i];
    if(ans == 0) return 0;
    for(int j = i + 1; j < n; j++) {
  Mod v = a[j][i] / a[i][i];</pre>
      if(v != 0)
        for(int k = i + 1; k < n; k++)
          a[j][k] = v * a[i][k];
   }
  }
  return ans;
double det(vector<vector<double>> a) {
  int n = a.size();
  double ans = 1;
  for(int i = 0; i < n; i++) {</pre>
    int b = i;
    for(int j = i + 1; j < n; j++)</pre>
      if(fabs(a[j][i]) > fabs(a[b][i]))
        b = j;
    if(i != b) swap(a[i], a[b]), ans = -ans;
    ans *= a[i][i];
    if(ans == 0) return 0;
    for(int j = i + 1; j < n; j++) {
```

```
double v = a[j][i] / a[i][i];
   if(v != 0)
      for(int k = i + 1; k < n; k++)
        a[j][k] -= v * a[i][k];
}
return ans;
}</pre>
```

4.9 Matrix Inverse

```
// source: KACTL
// Returns rank.
// Result is stored in A unless singular (rank < n).
// For prime powers, repeatedly set
\; \hookrightarrow \; \; A^{-1} = A^{-1}(2I - AA^{-1}) \; \; (\bmod \; \; p^k)
// where A^{-1} starts as the inverse of A mod p, and
// k is doubled in each step.
int matInv(vector<vector<double>>& A) {
  int n = sz(A); vi col(n);
  vector<vector<double>> tmp(n, vector<double>(n));
  rep(i,0,n) tmp[i][i] = 1, col[i] = i;
  rep(i,0,n) {
    int r = i, c = i;
    rep(j,i,n) rep(k,i,n)
      if (fabs(A[j][k]) > fabs(A[r][c]))
    if (fabs(A[r][c]) < 1e-12) return i;</pre>
    A[i].swap(A[r]); tmp[i].swap(tmp[r]);
    rep(j,0,n)
      swap(A[j][i], A[j][c]), swap(tmp[j][i], tmp[j][c]);
    swap(col[i], col[c]);
    double v = A[i][i];
    rep(j,i+1,n) {
      double f = A[j][i] / v;
      A[j][i] = 0;
      rep(k,i+1,n) A[j][k] -= f*A[i][k];
      rep(k,0,n) tmp[j][k] -= f*tmp[i][k];
    rep(j,i+1,n) A[i][j] /= v;
    rep(j,0,n) tmp[i][j] /= v;
    A[i][i] = 1;
  /// forget A at this point, just eliminate tmp backward
  for (int i = n-1; i > 0; --i) rep(j,0,i) {
    double v = A[j][i];
   rep(k,0,n) tmp[j][k] -= v*tmp[i][k];
  rep(i,0,n) rep(j,0,n) A[col[i]][col[j]] = tmp[i][j];
  return n;
int matInv_mod(vector<vector<ll>>% A) {
  int n = sz(A); vi col(n);
  vector<vector<ll>> tmp(n, vector<ll>(n));
  rep(i,0,n) tmp[i][i] = 1, col[i] = i;
  rep(i,0,n) {
    int r = i, c = i;
    rep(j,i,n) rep(k,i,n) if (A[j][k]) {
     r = j; c = k; goto found;
    }
   return i;
found:
    A[i].swap(A[r]); tmp[i].swap(tmp[r]);
    rep(j,0,n) swap(A[j][i], A[j][c]), swap(tmp[j][i],

    tmp[j][c]);

    swap(col[i], col[c]);
    ll v = modpow(A[i][i], mod - 2);
    rep(j,i+1,n)
      ll f = A[j][i] * v % mod;
      A[i][i] = 0:
      rep(k,i+1,n) A[j][k] = (A[j][k] - f*A[i][k]) % mod;
      rep(k,0,n) tmp[j][k] = (tmp[j][k] - f*tmp[i][k]) % mod;
    rep(j,i+1,n) A[i][j] = A[i][j] * v % mod;
    rep(j,0,n) tmp[i][j] = tmp[i][j] * v % mod;
    A[i][i] = 1;
```

4.10 Linear Equations

```
// source: KACTL
typedef vector<double> vd;
const double eps = 1e-12;
// solves for x: A * x = b
int solveLinear(vector<vd>& A, vd& b, vd& x) {
  int n = sz(A), m = sz(x), rank = 0, br, bc;
  if (n) assert(sz(A[0]) == m);
  vi col(m); iota(all(col), 0);
 rep(i,0,n) {
    double v, bv = 0;
    rep(r,i,n) rep(c,i,m)
      if ((v = fabs(A[r][c])) > bv)
        br = r, bc = c, bv = v;
    if (bv <= eps) {
      rep(j,i,n) if (fabs(b[j]) > eps) return -1;
    swap(A[i], A[br]);
    swap(b[i], b[br]);
    swap(col[i], col[bc]);
    rep(j,0,n) swap(A[j][i], A[j][bc]);
    bv = 1/A[i][i];
    rep(j,i+1,n) {
      double fac = A[j][i] * bv;
b[j] -= fac * b[i];
      rep(k,i+1,m) A[j][k] -= fac*A[i][k];
    rank++;
  }
  x.assign(m, 0);
  for (int i = rank; i--;) {
   b[i] /= A[i][i];
    x[col[i]] = b[i];
    rep(j,0,i) b[j] -= A[j][i] * b[i];
  return rank; // (multiple solutions if rank < m)</pre>
```

4.11 Simplex

```
// Two-phase simplex algorithm for solving linear programs
   of the form
//
//
                    c^T x
       maximize
//
       subject to
                   Ax <= b
//
                    x >= 0
// INPUT: A -- an m x n matrix
//
        b -- an m-dimensional vector
//
         c -- an n-dimensional vector
         x -- a vector where the optimal solution will be
//
// OUTPUT: value of the optimal solution (infinity if
   unbounded
11
           above, nan if infeasible)
// To use this code, create an LPSolver object with A, b,
   and c as
// arguments. Then, call Solve(x).
typedef long double ld;
typedef vector<ld> vd;
typedef vector<vd> vvd;
typedef vector<int> vi;
```

```
const ld EPS = 1e-9;
struct LPSolver {
  int m, n;
  vi B, N;
  vvd D;
  LPSolver(const vvd &A, const vd &b, const vd &c):
    m(b.size()), n(c.size()), N(n + 1), B(m), D(m + 2, vd(n + 1)
     → + 2)) {
    for (int i = 0; i < m; i++) for (int j = 0; j < n; j++)
     → D[i][j] = A[i][j];
    for (int j = 0; j < n; j++) { N[j] = j; D[m][j] = -c[j];
    N[n] = -1; D[m + 1][n] = 1;
  void Pivot(int r, int s) {
    double inv = 1.0 / D[r][s];
    for (int i = 0; i < m + 2; i++) if (i != r)
for (int j = 0; j < n + 2; j++) if (j != s)
        D[i][j] -= D[r][j] * D[i][s] * inv;
    for (int j = 0; j < n + 2; j++) if (j != s) D[r][j] *=
        inv;
    for (int i = 0; i < m + 2; i++) if (i != r) D[i][s] *=
    swap(B[r], N[s]);
  bool Simplex(int phase) {
    int x = phase == 1 ? m + 1 : m;
    while (true) {
      int s = -1;
      for (int j = 0; j <= n; j++) {
        if (phase == 2 88 N[j] == -1) continue;
if (s == -1 || D[x][j] < D[x][s] || D[x][j] ==
        \rightarrow D[x][s] && N[j] < N[s]) s = j;
      if (D[x][s] > -EPS) return true;
      int r = -1;
for (int i = 0; i < m; i++) {
        if (D[i][s] < EPS) continue;
if (r == -1 || D[i][n + 1] / D[i][s] < D[r][n + 1] /</pre>
           D[r][s] ||
          (D[i][n + 1] / D[i][s]) == (D[r][n + 1] / D[r][s])
          \hookrightarrow 88 B[i] < B[r]) r = i;
      if (r == -1) return false;
      Pivot(r, s);
  ld Solve(vd &x) {
    int r = 0;
    for (int i = 1; i < m; i++) if (D[i][n + 1] < D[r][n +
        1]) r = i;
    if (D[r][n + 1] < -EPS) {
      Pivot(r, n);
      if (!Simplex(1) || D[m + 1][n + 1] < -EPS) return</pre>
          -numeric_limits<ld>::infinity();
      for (int i = 0; i < m; i++) if (B[i] == -1) {
        int s = -1;
        for (int j = 0; j <= n; j++)
          if (s == -1 || D[i][j] < D[i][s] || D[i][j] ==</pre>
           → D[i][s] && N[j] < N[s]) s = j;</pre>
        Pivot(i. s):
      }
    if (!Simplex(2)) return numeric_limits<ld>::infinity();
    for (int i = 0; i < m; i++) if (B[i] < n) x[B[i]] =
    → D[i][n + 1];
    return D[m][n + 1];
int main() {
  const int m = 4;
  const int n = 3;
  ld _A[m][n] = {
```

```
\{6, -1, 0\},\
  \{-1, -5, 0\},
  { 1, 5, 1 },
  \{-1, -5, -1\}
ld _b[m] = { 10, -4, 5, -5 };
ld _c[n] = { 1, -1, 0 };
vvd A(m);
vd b(_b, _b + m);
vd c(_c, _c + n);
for (int i = 0; i < m; i++) A[i] = vd(_A[i], _A[i] + n);
LPSolver solver(A, b, c);
ld value = solver.Solve(x);
cerr << "VALUE: " << value << endl; // VALUE: 1.29032</pre>
cerr << "SOLUTION:"; // SOLUTION: 1.74194 0.451613 1
for (size_t i = 0; i < x.size(); i++) cerr << " " << x[i];</pre>
cerr << endl;</pre>
return 0;
```

5 Graph

5.1 Modeling

Source: waynedisonitau123

- ${\sf Maximum/Minimum}$ flow with lower bound / Circulation problem
 - 1. Construct super source S and sink T.
 - 2. For each edge (x,y,l,u), connect $x \to y$ with capacity u-l.
 - 3. For each vertex v, denote by in(v) the difference between the sum of incoming lower bounds and the sum of outgoing lower bounds.
 - 4. If in(v)>0, connect $S\to v$ with capacity in(v), otherwise, connect $v\to T$ with capacity -in(v).
 - To maximize, connect $t \to s$ with capacity ∞ (skip this in circulation problem), and let f be the maximum flow from S to T. If $f \neq \sum_{v \in V, in(v) > 0} in(v)$, there's no solution. Otherwise, the maximum flow from s to t is the answer.
 - To minimize, let f be the maximum flow from S to T. Connect $t \to s$ with capacity ∞ and let the flow from S to T be f'. If $f+f' \neq \sum_{v \in V, in(v)>0} in(v)$, there's no solution. Otherwise, f' is the answer.
 - 5. The solution of each edge e is l_e+f_e , where f_e corresponds to the flow of edge e on the graph.
- Construct minimum vertex cover from maximum matching M on bipartite graph (X,Y)
 - 1. Redirect every edge: $y \to x$ if $(x,y) \in M$, $x \to y$ otherwise.
 - 2. DFS from unmatched vertices in \boldsymbol{X} .
 - 3. $x \in X$ is chosen iff x is unvisited.
 - 4. $y \in Y$ is chosen iff y is visited.
- Minimum cost cyclic flow
 - 1. Consruct super source ${\it S}$ and sink ${\it T}$
 - 2. For each edge (x,y,c), connect $x\to y$ with (cost,cap)=(c,1) if c>0, otherwise connect $y\to x$ with (cost,cap)=(-c,1)
 - 3. For each edge with c<0, sum these cost as K, then increase d(y) by 1, decrease d(x) by 1
 - 4. For each vertex v with d(v)>0 , connect $S\to v$ with (cost,cap)=(0,d(v))
 - 5. For each vertex v with d(v)<0 , connect $v\to T$ with (cost,cap)=(0,-d(v))
 - 6. Flow from S to $T\mbox{,}$ the answer is the cost of the flow C+K
- · Maximum density induced subgraph
 - 1. Binary search on answer, suppose we're checking answer ${\cal T}$
 - 2. Construct a max flow model, let ${\cal K}$ be the sum of all weights
 - 3. Connect source $s \to v$, $v \in G$ with capacity K
 - 4. For each edge (u,v,w) in $G\text{, connect }u\rightarrow v$ and $v\rightarrow u$ with capacity w

- 5. For $v \in G$, connect it with sink $v \to t$ with capacity $K + 2T (\sum_{e \in E(v)} w(e)) 2w(v)$
- 6. T is a valid answer if the maximum flow f < K |V|
- Minimum weight edge cover
 - 1. For each $v \in V$ create a copy v' , and connect $u' \to v'$ with weight w(u,v) .
 - 2. Connect $v \to v'$ with weight $2\mu(v)$, where $\mu(v)$ is the cost of the cheapest edge incident to v.
 - 3. Find the minimum weight perfect matching on G'.
- Project selection problem
 - 1. If $p_v>0$, create edge (s,v) with capacity p_v ; otherwise, create edge (v,t) with capacity $-p_v$.
 - 2. Create edge (u,v) with capacity w with w being the cost of choosing u without choosing v.
 - The mincut is equivalent to the maximum profit of a subset of projects.
- 0/1 quadratic programming

$$\sum_{x} c_{x}x + \sum_{y} c_{y}\bar{y} + \sum_{xy} c_{xy}x\bar{y} + \sum_{xyx'y'} c_{xyx'y'}(x\bar{y} + x'\bar{y'})$$

can be minimized by the mincut of the following graph:

- 1. Create edge (x,t) with capacity c_x and create edge (s,y) with capacity $c_y\,\text{.}$
- 2. Create edge (x,y) with capacity c_{xy} .
- 3. Create edge (x,y) and edge (x^\prime,y^\prime) with capacity $c_{xyx^\prime y^\prime}$.

5.2 Flow

5.2.1 Dinic

```
struct Dinic {
  struct edge { int to, cap, flow, rev; };
  static constexpr int MAXN = 1000, MAXF = 1e9;
  vector<edge> v[MAXN];
  int top[MAXN], deep[MAXN], side[MAXN], s, t;
  void make_edge(int s, int t, int cap) {
    v[s].push_back({t, cap, 0, (int)v[t].size()});
    v[t].push_back({s, 0, 0, (int)}v[s].size() - 1});
  int dfs(int a, int flow) {
  if (a == t || !flow) return flow;
    for (int &i = top[a]; i < v[a].size(); i++) {</pre>
      edge &e = v[a][i];
      if (deep[a] + 1 == deep[e.to] \&\& e.cap - e.flow) {
        int x = dfs(e.to, min(e.cap - e.flow, flow));
        if (x) {
          e.flow += x, v[e.to][e.rev].flow -= x;
          return x;
        }
      }
    }
    deep[a] = -1;
    return 0;
  bool bfs() {
    queue<int> q;
    fill_n(deep, MAXN, 0);
    q.push(s), deep[s] = 1;
    int tmp;
    while (!q.empty()) {
      tmp = q.front(), q.pop();
      for (edge e : v[tmp])
        if (!deep[e.to] && e.cap != e.flow)
          deep[e.to] = deep[tmp] + 1, q.push(e.to);
    }
    return deep[t];
  int max_flow(int _s, int _t) {
    s = _s, t = _t;
    int flow = 0, tflow;
    while (bfs()) {
      fill_n(top, MAXN, 0);
      while ((tflow = dfs(s, MAXF)))
        flow += tflow;
    }
    return flow;
  void reset() {
    fill_n(side, MAXN, 0);
    for (auto &i : v) i.clear();
};
```

5.2.2 Gomory-Hu Tree

```
int e[MAXN][MAXN];
int p[MAXN];
Dinic D; // original graph
void gomory_hu() {
  fill(p, p+n, 0);
  fill(e[0], e[n], INF);
  for ( int s = 1 ; s < n ; s++ ) {
    int t = p[s];
    Dinic F = D;
    int tmp = F.max_flow(s, t);
    for ( int i = 1 ; i < s ; i++ )
        e[s][i] = e[i][s] = min(tmp, e[t][i]);
    for ( int i = s+1 ; i <= n ; i++ )
        if ( p[i] == t && F.side[i] ) p[i] = s;
  }
}</pre>
```

5.2.3 Global Minimum Cut

```
// source: waynedisonitau123
int w[kN][kN], g[kN], del[kN], v[kN];
void AddEdge(int x, int y, int c) {
  w[x][y] += c;
  w[y][x] += c;
pair<int, int> Phase(int n) {
  fill(v, v + n, 0), fill(g, g + n, 0);
  int s = -1, t = -1;
  while (true) {
    int c = -1;
    for (int i = 0; i < n; ++i) {
  if (del[i] || v[i]) continue;</pre>
       if (c == -1 \mid | g[i] > g[c]) c = i;
    if (c == -1) break;
    v[c] = 1, s = t, t = c;
for (int i = 0; i < n; ++i) {
   if (del[i] || v[i]) continue;</pre>
       g[i] += w[c][i];
  }
  return make_pair(s, t);
int GlobalMinCut(int n) {
  int cut = kInf;
  fill(del, 0, sizeof(del));
for (int i = 0; i < n - 1; ++i) {
    int s, t; tie(s, t) = Phase(n);
del[t] = 1, cut = min(cut, g[t]);
     for (int j = 0; j < n; ++j) {
       w[s][j] += w[t][j];
       w[j][s] += w[j][t];
    }
  return cut;
```

5.2.4 Min Cost Max Flow

```
// source: KACTL
const ll INF = numeric_limits<ll>::max() / 4;
typedef vector<ll> VL;
struct MCMF {
 int N:
 vector<vi> ed, red;
 vector<VL> cap, flow, cost;
 vi seen;
 VL dist, pi;
 vector<pii> par;
 MCMF(int N)
   N(N), ed(N), red(N), cap(N, VL(N)), flow(cap), cost(cap),
    seen(N), dist(N), pi(N), par(N) {}
 void addEdge(int from, int to, ll cap, ll cost) {
    this->cap[from][to] = cap;
    this->cost[from][to] = cost;
    ed[from].push_back(to);
```

```
red[to].push_back(from);
  void path(int s) {
     fill(all(seen), 0);
     fill(all(dist), INF);
     dist[s] = 0; ll di;
     __gnu_pbds::priority_queue<pair<ll, int>> q;
vector<decltype(q)::point_iterator> its(N);
     q.push({0, s});
     auto relax = [8](int i, ll cap, ll cost, int dir) {
       ll val = di - pi[i] + cost;
if (cap && val < dist[i]) {
          dist[i] = val;
          par[i] = {s, dir};
          if (its[i] == q.end()) its[i] = q.push({-dist[i],
          else q.modify(its[i], {-dist[i], i});
       }
     };
     while (!q.empty()) {
       s = q.top().second; q.pop();
       seen[s] = 1; di = dist[s] + pi[s];
       for (int i : ed[s]) if (!seen[i])
       relax(i, cap[s][i] - flow[s][i], cost[s][i], 1);
for (int i : red[s]) if (!seen[i])
          relax(i, flow[i][s], -cost[i][s], \theta);
     rep(i,0,N) pi[i] = min(pi[i] + dist[i], INF);
  pair<ll, ll> maxflow(int s, int t) {
     ll totflow = 0, totcost = 0;
     while (path(s), seen[t]) {
       ll fl = INF;
       for (int p,r,x = t; tie(p,r) = par[x], x != s; x = p)
  fl = min(fl, r ? cap[p][x] - flow[p][x] :
          \hookrightarrow flow[x][p]);
       totflow += fl;
       for (int p,r,x = t; tie(p,r) = par[x], x != s; x = p)
          if (r) flow[p][x] += fl;
          else flow[x][p] -= fl;
     rep(i,0,N) rep(j,0,N) totcost += cost[i][j] * flow[i][j];
     return {totflow, totcost};
  // If some costs can be negative, call this before maxflow:
void setpi(int s) { // (otherwise, leave this out)
     fill(all(pi), INF); pi[s] = 0;
    int it = N, ch = 1; ll v; while (ch-- && it--)
       rep(i,0,N) if (pi[i] != INF)
          for (int to : ed[i]) if (cap[i][to])
     if ((v = pi[i] + cost[i][to]) < pi[to])
    pi[to] = v, ch = 1;
assert(it >= 0); // negative cost cycle
  }
};
```

5.3 Matching

5.3.1 Kuhn-Munkres

```
// Maximum Weight Perfect Bipartite Matching
// Detect non-perfect-matching:
// 1. set all edge[i][j] as INF
// 2. if solve() >= INF, it is not perfect matching.

typedef long long ll;
struct KM {
    static const int MAXN = 1050;
    static const ll INF = 1LL<<60;
    int n, match[MAXN], vx[MAXN], vy[MAXN];
    ll edge[MAXN][MAXN], lx[MAXN], ly[MAXN], slack[MAXN];
    void init(int _n) {
        n = _n;
        for ( int i = 0 ; i < n ; i++ )
              for ( int j = 0; j < n ; j++ )
              edge[i][j] = 0;
}</pre>
```

```
void add_edge(int x, int y, ll w) {
    edge[x][y] = w;
  bool DFS(int x) {
    vx[x] = 1;
     for ( int y = 0 ; y < n ; y++ ) {
       if ( vy[y] ) continue;
       if ( lx[x] + ly[y] > edge[x][y] ) {
         slack[y] = min(slack[y], lx[x] + ly[y] - edge[x][y]);
         vy[y] = 1;
         if ( match[y] == -1 \mid \mid DFS(match[y]) ) {
           match[y] = x;
           return true:
      }
    }
    return false;
  ll solve() {
    fill(match, match + n, -1);
     fill(lx, lx + n, -INF);
     fill(ly, ly + n, \theta);
    for ( int i = 0; i < n; i++ )
for ( int j = 0; j < n; j++ )
         lx[i] = max(lx[i], edge[i][j]);
     for ( int i = 0 ; i < n; i++ ) {
       fill(slack, slack + n, INF);
       while (true) {
         fill(vx, vx + n, 0);
         fill(vy, vy + n, \theta);
         if ( DFS(i) ) break;
         ll d = INF;
         for ( int j = 0 ; j < n ; j++ )
  if ( !vy[j] ) d = min(d, slack[j]);
for ( int j = 0 ; j < n ; j++ ) {
  if (vx[j]) lx[j] -= d;</pre>
            if (vy[j]) ly[j] += d;
           else slack[j] -= d;
         }
      }
    ll res = 0;
    for ( int i = 0 ; i < n ; i + + ) {
      res += edge[ match[i] ][i];
    return res;
  }
} graph;
```

5.3.2 Bipartite Minimum Vertex Cover

```
// maximum independent set = all vertices not covered
// include Dinic, x : [0, n), y : [0, m]
struct Bipartite_vertex_cover {
 Dinic D;
 int n, m, s, t, x[maxn], y[maxn];
  void make_edge(int x, int y) {D.make_edge(x, y + n, 1);}
 int matching() {
    int re = D.max_flow(s, t);
    for(int i = 0; i < n; i++)</pre>
      for(Dinic::edge &e : D.v[i])
        if(e.to != s && e.flow == 1) {
          x[i] = e.to - n, y[e.to - n] = i;
          break;
       }
   return re;
 }
 // init() and matching() before use
 void solve(vector<int> &vx, vector<int> &vy) {
    bitset<maxn * 2 + 10> vis;
    queue<int> q;
    for(int i = 0; i < n; i ++)
      if(x[i] == -1)
        q.push(i), vis[i] = 1;
    while(!q.empty()) {
      int now = q.front();
      q.pop();
      if(now < n) {
        for(Dinic::edge &e : D.v[now])
          if(e.to != s && e.to - n != x[now] && !vis[e.to])
            vis[e.to] = 1, q.push(e.to);
      } else {
        if(!vis[y[now - n]])
          vis[y[now - n]] = 1, q.push(y[now - n]);
```

```
}
}
for(int i = 0; i < n; i++)
    if(!vis[i])
       vx.pb(i);
for(int i = 0; i < m; i++)
       if(vis[i + n])
       vy.pb(i);
}
void init(int _n, int _m) {
    n = _n, m = _m, s = n + m, t = s + 1;
    for(int i = 0; i < n; i++)
       x[i] = -1, D.make_edge(s, i, 1);
    for(int i = 0; i < m; i++)
       y[i] = -1, D.make_edge(i + n, t, 1);
}
};</pre>
```

5.3.3 Maximum General Matching

```
// source: Sergey Kopeliovich (burunduk30@gmail.com)
struct Edmonds {
  int n, T;
  vector<vector<int>> g;
  vector<int> pa, p, used, base;
  Edmonds(int n)
    n(n), T(\theta), g(n), pa(n, -1), p(n), used(n), base(n) {}
  void add(int a, int b) {
    g[a].push_back(b);
    g[b].push_back(a);
  int getBase(int i) {
    while (i != base[i])
      base[i] = base[base[i]], i = base[i];
    return i;
  vector<int> toJoin;
  void mark_path(int v, int x, int b, vector<int> &path) {
    for (; getBase(v) != b; v = p[x]) {
  p[v] = x, x = pa[v];
      toJoin.push_back(v);
      toJoin.push_back(x);
      if (!used[x])
        used[x] = ++T, path.push_back(x);
    }
  bool go(int v) {
    for (int x : g[v]) {
      int b, bv = getBase(v), bx = getBase(x);
      if (bv == bx) {
        continue;
      } else if (used[x]) {
        vector<int> path;
        toJoin.clear();
        if (used[bx] < used[bv])</pre>
          mark_path(v, x, b = bx, path);
        else
          mark_path(x, v, b = bv, path);
        for (int z : toJoin)
          base[getBase(z)] = b;
        for (int z : path)
          if (go(z))
            return 1:
      } else if (p[x] == -1) {
        p[x] = v;
        if (pa[x] == -1) {
          for (int y; x != -1; x = v)
            y = p[x], v = pa[y], pa[x] = y, pa[y] = x;
          return 1;
        if (!used[pa[x]]) {
          used[pa[x]] = ++T;
          if (go(pa[x]))
            return 1;
      }
    }
    return 0;
  void init_dfs() {
    for (int i = 0; i < n; i++)
      used[i] = 0, p[i] = -1, base[i] = i;
  bool dfs(int root) {
```

```
used[root] = ++T;
    return go(root);
  void match() {
    int ans = 0;
    for (int v = 0; v < n; v++)
      for (int x : g[v])
        if (pa[v] == -1 \ \delta\delta \ pa[x] == -1) {
          pa[v] = x, pa[x] = v, ans++;
          break;
        }
    init_dfs();
    for (int i = 0; i < n; i++)
if (pa[i] == -1 && dfs(i))
        ans++, init_dfs();
    cout << ans * 2 << "\n"
    for (int i = 0; i < n; i++)
      if (pa[i] > i)
        cout << i + 1 << " " << pa[i] + 1 << "\n";</pre>
};
5.3.4 Min Weight Perfect Matching
struct Graph {
```

```
static const int MAXN = 105;
int n, e[MAXN][MAXN];
\quad \textbf{int} \  \, \texttt{match[MAXN], d[MAXN], onstk[MAXN];} \\
vector<int> stk;
void init(int _n) {
  n = _n;
for( int i = 0 ; i < n ; i ++ )</pre>
    for( int j = 0; j < n; j ++)
      // change to appropriate infinity
      // if not complete graph
      e[i][j] = 0;
void add_edge(int u, int v, int w) {
  e[u][v] = e[v][u] = w;
bool SPFA(int u){
  if (onstk[u]) return true;
  stk.push_back(u);
onstk[u] = 1;
  for ( int v = 0 ; v < n ; v++ ) {
    if (u != v \delta\delta match[u] != v \delta\delta !onstk[v] ) {
      int m = match[v];
      if ( d[m] > d[u] - e[v][m] + e[u][v] ) {
        d[m] = d[u] - e[v][m] + e[u][v];
        onstk[v] = 1;
        stk.push_back(v);
        if (SPFA(m)) return true;
        stk.pop_back();
        onstk[v] = 0;
  onstk[u] = 0;
  stk.pop_back();
  return false;
int solve() {
  for ( int i = 0 ; i < n ; i += 2 ) {
    match[i] = i+1;
    match[i+1] = i;
  while (true){
    int found = 0;
    for ( int i = 0 ; i < n ; i++ )
      onstk[ i ] = d[ i ] = 0;
    for ( int i = 0 ; i < n ; i++ ) {
      stk.clear();
      if ( !onstk[i] && SPFA(i) ) {
        found = 1:
        while ( stk.size() >= 2 ) {
           int u = stk.back(); stk.pop_back();
           int v = stk.back(); stk.pop_back();
          match[u] = v;
          match[v] = u;
        }
      }
    if (!found) break;
  int ret = 0;
```

```
for ( int i = 0 ; i < n ; i++ )
     ret += e[i][match[i]];
    ret /= 2;
   return ret;
} graph;
```

```
5.3.5 Stable Marriage
// normal stable marriage problem
/* input:
Albert Laura Nancy Marcy
Brad Marcy Nancy Laura
Chuck Laura Marcy Nancy
Laura Chuck Albert Brad
Marcy Albert Chuck Brad
Nancy Brad Albert Chuck
*/
#include<bits/stdc++.h>
using namespace std:
const int MAXN = 505;
int favor[MAXN][MAXN]; // favor[boy_id][rank] = girl_id;
int order[MAXN][MAXN]; // order[girl_id][boy_id] = rank;
int current[MAXN]; // current[boy_id] = rank;
// boy_id will pursue current[boy_id] girl.
int girl_current[MAXN]; // girl[girl_id] = boy_id;
void initialize() {
  for ( int i = 0 ; i < n ; i++ ) {
   current[i] = 0;
    girl_current[i] = n;
    order[i][n] = n;
 }
map<string, int> male, female;
string bname[MAXN], gname[MAXN];
int fit = 0;
void stable_marriage() {
  queue<int> que;
  for ( int i = 0 ; i < n ; i++ ) que.push(i);
  while ( !que.empty() ) {
    int boy_id = que.front();
    que.pop();
    int girl_id = favor[boy_id][current[boy_id]];
    current[boy_id] ++;
    if (order[girl_id][boy_id] <</pre>
        order[girl_id][girl_current[girl_id]]) {
      if ( girl_current[girl_id] < n )</pre>
        que.push(girl_current[girl_id]);
      girl_current[girl_id] = boy_id;
    } else {
      que.push(boy_id);
  }
int main() {
  cin >> n;
  for ( int i = 0 ; i < n; i++ ) {
    string p, t;
    cin >> p;
    male[p] = i;
    bname[i] = p;
    for ( int j = 0 ; j < n ; j++ ) {
      cin >> t;
      if ( !female.count(t) ) {
        gname[fit] = t;
        female[t] = fit++;
      favor[i][j] = female[t];
```

for (int i = 0 ; i < n ; i++) {

5.4 Centroid Decomposition

```
void get_center(int now) {
  v[now] = true; vtx.push_back(now);
  sz[now] = 1; mx[now] = 0;
  for (int u : G[now]) if (!v[u]) {
    get_center(u);
    mx[now] = max(mx[now], sz[u]);
    sz[now] += sz[u];
void get_dis(int now, int d, int len) {
  dis[d][now] = cnt;
  v[now] = true;
  for (auto u : G[now]) if (!v[u.first]) {
    get_dis(u, d, len + u.second);
}
void dfs(int now, int fa, int d) {
  get_center(now);
  int c = -1;
  for (int i : vtx) {
    if (max(mx[i], (int)vtx.size() - sz[i]) <=</pre>
        (int)vtx.size() / 2) c = i;
    v[i] = false;
  get_dis(c, d, 0);
for (int i : vtx) v[i] = false;
  v[c] = true; vtx.clear();
  dep[c] = d; p[c] = fa;
  for (auto u : G[c]) if (u.first != fa && !v[u.first]) {
    dfs(u.first, c, d + 1);
}
```

5.5 Minimum Mean Cycle

```
// source: waynedisonitau123
// d[i][j] == 0 if {i,j} !in E
long long d[1003][1003],dp[1003][1003];
pair<long long,long long> MMWC(){
  memset(dp,0x3f,sizeof(dp));
  for(int i=1;i<=n;++i)dp[0][i]=0;</pre>
  for(int i=1;i<=n;++i){</pre>
    for(int j=1;j<=n;++j){</pre>
      for(int k=1;k<=n;++k){</pre>
        dp[i][k]=min(dp[i-1][j]+d[j][k],dp[i][k]);
    }
  long long au=1ll<<31,ad=1;</pre>
  for(int i=1;i<=n;++i){</pre>
    if(dp[n][i]==0x3f3f3f3f3f3f3f3f3f)continue;
    long long u=0,d=1;
    for(int j=n-1;j>=0;--j){
  if((dp[n][i]-dp[j][i])*d>u*(n-j)){
         u=dp[n][i]-dp[j][i];
         d=n-j;
      }
    if(u*ad<au*d)au=u,ad=d;</pre>
  long long g=__gcd(au,ad);
```

```
return make_pair(au/g,ad/g);
}
```

5.6 Bellman-Ford

```
// source: KACTL
const ll inf = LLONG_MAX;
struct Ed { int a, b, w, s() { return a < b ? a : -a; }};
struct Node { ll dist = inf; int prev = -1; };</pre>
void bellmanFord(vector<Node>& nodes, vector<Ed>& eds, int
\rightarrow s) {
  nodes[s].dist = 0;
  sort(all(eds), [](Ed a, Ed b) { return a.s() < b.s(); });</pre>
  int lim = sz(nodes) / 2 + 2; // /3+100 with shuffled
      vertices
  rep(i,0,lim) for (Ed ed : eds) {
    Node cur = nodes[ed.a], &dest = nodes[ed.b];
    if (abs(cur.dist) == inf) continue;
    ll d = cur.dist + ed.w;
    if (d < dest.dist) {</pre>
       dest.prev = ed.a;
       dest.dist = (i < lim-1 ? d : -inf);</pre>
    }
  rep(i,0,lim) for (Ed e : eds) {
    if (nodes[e.a].dist == -inf)
      nodes[e.b].dist = -inf;
}
```

5.7 Directed Minimum Spanning Tree

```
template <typename T> struct DMST {
  T g[maxn][maxn], fw[maxn];
  int n, fr[maxn];
  bool vis[maxn], inc[maxn];
 void clear() {
  for(int i = 0; i < maxn; ++i) {</pre>
      for(int j = 0; j < maxn; ++j) g[i][j] = inf;</pre>
      vis[i] = inc[i] = false;
  void addedge(int u, int v, T w) {
    g[u][v] = min(g[u][v], w);
  T operator()(int root, int _n) {
    if (dfs(root) != n) return -1;
    T ans = 0:
    while (true) {
      for (int i = 1; i <= n; ++i) fw[i] = inf, fr[i] = i;
      for (int i = 1; i <= n; ++i) if (!inc[i]) {</pre>
        for (int j = 1; j <= n; ++j) {
  if (!inc[j] && i != j && g[j][i] < fw[i]) {</pre>
             fw[i] = g[j][i];
             fr[i] = j;
        }
      }
      int x = -1;
      for (int i = 1; i <= n; ++i) if (i != root && !inc[i])
        int j = i, c = 0;
        while (j != root && fr[j] != i && c <= n) ++c, j =
            fr[j];
        if (j == root || c > n) continue;
        else { x = i; break; }
      if (!~x) {
        for (int i = 1; i \le n; ++i) if (i != root \delta \delta
         \rightarrow !inc[i]) ans += fw[i];
        return ans;
      int y = x;
      for (int i = 1; i <= n; ++i) vis[i] = false;</pre>
      do { ans += fw[y]; y = fr[y]; vis[y] = inc[y] = true;
          } while (y != x);
      inc[x] = false;
      for (int k = 1; k <= n; ++k) if (vis[k]) {</pre>
        for (int j = 1; j <= n; ++j) if (!vis[j]) {</pre>
```

5.8 Maximum Clique

```
// source: KACTL
typedef vector<bitset<200>> vb;
struct Maxclique {
  double limit=0.025, pk=0;
  struct Vertex { int i, d=0; };
  typedef vector<Vertex> vv;
  vb e;
 vv V;
  vector<vi> C;
  vi qmax, q, S, old;
  void init(vv& r) {
    for (auto8 v : r) v.d = 0;
for (auto8 v : r) for (auto j : r) v.d += e[v.i][j.i];
    sort(all(r), [](auto a, auto b) { return a.d > b.d; });
    int mxD = r[0].d;
    rep(i,0,sz(r)) r[i].d = min(i, mxD) + 1;
  void expand(vv& R, int lev = 1) {
   S[lev] += S[lev - 1] - old[lev];
    old[lev] = S[lev - 1];
    while (sz(R)) {
      if (sz(q) + R.back().d <= sz(qmax)) return;</pre>
      q.push_back(R.back().i);
      vv T:
      for(auto v:R) if (e[R.back().i][v.i])
          T.push_back({v.i});
      if (sz(T)) {
        if (S[lev]++ / ++pk < limit) init(T);</pre>
        int j = 0, mxk = 1, mnk = max(sz(qmax) - sz(q) + 1,
            1);
         C[1].clear(), C[2].clear();
         for (auto v : T) {
          int k = 1:
           auto f = [δ](int i) { return e[v.i][i]; };
           while (any_of(all(C[k]), f)) k++;
           if (k > mxk) mxk = k, C[mxk + 1].clear();
           if (k < mnk) T[j++].i = v.i;
          C[k].push_back(v.i);
        if (j > 0) T[j - 1].d = 0;
rep(k,mnk,mxk + 1) for (int i : C[k])
          T[j].i = i, T[j++].d = k;
      expand(T, lev + 1);
} else if (sz(q) > sz(qmax)) qmax = q;
      q.pop_back(), R.pop_back();
  vi maxClique() { init(V), expand(V); return qmax; }
  Maxclique(vb conn) : e(conn), C(sz(e)+1), S(sz(C)), old(S)
    rep(i,0,sz(e)) V.push_back({i});
```

5.9 Tarjan

5.9.1 Strongly Connected Components

```
struct Tarjan {
   static const int MAXN = 1000006;
   // 0-based
   int n, dfn[MAXN], low[MAXN], scc[MAXN], scn, count;
   vector<int> G[MAXN];
```

```
stack<int> stk;
  bool ins[MAXN];
  void tarjan(int u) {
    dfn[u] = low[u] = ++count;
    stk.push(u);
    ins[u] = true;
    for(auto v : G[u]) {
      if(!dfn[v]) {
        tarjan(v);
        low[u] = min(low[u], low[v]);
      } else if(ins[v]) {
        low[u] = min(low[u], dfn[v]);
    }
    if(dfn[u] == low[u]){
      int v;
      do {
        v = stk.top();
        stk.pop();
        scc[v] = scn;
        ins[v] = false;
      } while(v != u);
      scn++;
    }
  void getSCC() {
    memset(dfn,0,sizeof(dfn));
    memset(low,0,sizeof(low));
    memset(ins,0,sizeof(ins));
    memset(scc,0,sizeof(scc));
    count = scn = 0;
for (int i = 0; i < n; i++) {
      if(!dfn[i]) tarjan(i);
} SCC;
```

5.9.2 Articulation Point

```
void dfs(int x, int p) {
  tin[x] = low[x] = ++t;
  int ch = 0;
  for (auto u : g[x]) if (u.first != p) {
    if (!ins[u.second]) st.push(u.second), ins[u.second] =
        true;
    if (tin[u.first]) {
      low[x] = min(low[x], tin[u.first]);
      continue;
    }
    ++ch:
    dfs(u.first, x);
    low[x] = min(low[x], low[u.first]);
    if (low[u.first] >= tin[x]) {
      cut[x] = true;
      ++SZ;
      while (true) {
        int e = st.top(); st.pop();
        bcc[e] = sz;
        if (e == u.second) break;
      }
   }
  if (ch == 1 \delta\delta p == -1) cut[x] = false;
```

5.9.3 Bridge

```
// if there are multi-edges, then they are not bridges
void dfs(int x, int p) {
   tin[x] = low[x] = ++t;
   st.push(x);
   for (auto u : g[x]) if (u.first != p) {
      if (tin[u.first]) {
        low[x] = min(low[x], tin[u.first]);
        continue;
    }
   dfs(u.first, x);
   low[x] = min(low[x], low[u.first]);
   if (low[u.first] == tin[u.first]) br[u.second] = true;
}
```

if (tin[x] == low[x]) {

+sz;

```
while (st.size()) {
      int u = st.top(); st.pop();
      bcc[u] = sz;
                                                                     void init(int _n, int _s) {
      if (u == x) break;
                                                                       n = _n;
                                                                            _s;
                                                                       REP1(i,1,n) {
                                                                         g[i].clear();
                                                                         pred[i].clear();
                                                                         idom[i] = 0;
        2-SAT
5.10
                                                                       }
                                                                     void add_edge(int u, int v) {
const int MAXN = 2020;
                                                                       g[u].push_back(v);
                                                                       pred[v].push_back(u);
struct TwoSAT{
 static const int MAXv = 2*MAXN;
                                                                     void DFS(int u) {
 vector<int> GO[MAXv],BK[MAXv],stk;
                                                                       ts++:
 bool vis[MAXv];
                                                                       dfn[u] = ts;
 int SC[MAXv];
                                                                       nfd[ts] = u;
                                                                       for(int v:g[u]) if(dfn[v] == 0) {
 void imply(int u,int v){ // u imply v
                                                                         par[v] = u;
   GO[u].push_back(v);
                                                                         DFS(v);
    BK[v].push_back(u);
                                                                       }
                                                                     }
 int dfs(int u,vector<int>*G,int sc){
                                                                     void build() {
   vis[u]=1, SC[u]=sc;
                                                                       ts = 0;
    for (int v:G[u])if (!vis[v])
                                                                       REP1(i,1,n) {
      dfs(v,G,sc);
                                                                         dfn[i] = nfd[i] = 0;
    if (G==GO)stk.push_back(u);
                                                                         cov[i].clear();
                                                                         mom[i] = mn[i] = sdom[i] = i;
 int scc(int n=MAXv){
   memset(vis,0,sizeof(vis));
                                                                       DFS(s);
    for (int i=0; i<n; i++)if (!vis[i])</pre>
                                                                       for (int i=ts; i>=2; i--) {
     dfs(i,G0,-1);
                                                                         int u = nfd[i];
   memset(vis,0,sizeof(vis));
                                                                         if(u == 0) continue
   int sc=0;
                                                                         for(int v:pred[u]) if(dfn[v]) {
   while (!stk.empty()){
                                                                           eval(v);
      if (!vis[stk.back()])
                                                                           if(cmp(sdom[mn[v]],sdom[u])) sdom[u] = sdom[mn[v]];
        dfs(stk.back(),BK,sc++);
      stk.pop_back();
                                                                         cov[sdom[u]].push_back(u);
   }
                                                                         mom[u] = par[u];
                                                                         for(int w:cov[par[u]]) {
}SAT;
                                                                           eval(w):
                                                                           if(cmp(sdom[mn[w]],par[u])) idom[w] = mn[w];
int main(){
                                                                           else idom[w] = par[u];
 SAT.scc(2*n);
 bool ok=1;
                                                                         cov[par[u]].clear();
 for (int i=0; i<n; i++){</pre>
   if (SAT.SC[2*i]==SAT.SC[2*i+1])ok=0;
                                                                       REP1(i,2,ts) {
 if (ok){
                                                                         int u = nfd[i];
                                                                         if(u == 0) continue;
   for (int i=0; i<n; i++){
                                                                         if(idom[u] != sdom[u]) idom[u] = idom[idom[u]];
      if (SAT.SC[2*i]>SAT.SC[2*i+1]){
```

5.11 Dominator Tree

cout << i << endl;</pre>

}

else puts("NO");

```
// idom[n] is the unique node that strictly dominates n but
// not strictly dominate any other node that strictly
   dominates n.
// idom[n] = 0 if n is entry or the entry cannot reach n.
struct DominatorTree{
 static const int MAXN = 200010;
 int n.s:
 vector<int> g[MAXN],pred[MAXN];
 vector<int> cov[MAXN];
 int dfn[MAXN],nfd[MAXN],ts;
 int par[MAXN];
 int sdom[MAXN],idom[MAXN];
 int mom[MAXN],mn[MAXN];
 inline bool cmp(int u,int v) { return dfn[u] < dfn[v]; }</pre>
 int eval(int u) {
   if(mom[u] == u) return u;
    int res = eval(mom[u]);
    if(cmp(sdom[mn[mom[u]]],sdom[mn[u]]))
```

5.12 Biconnected Components

mn[u] = mn[mom[u]];

return mom[u] = res;

```
// source: KACTL
vi num, st;
vector<vector<pii>> ed;
template<class F>
int dfs(int at, int par, F& f) {
  int me = num[at] = ++Time, e, y, top = me;
  for (auto pa : ed[at]) if (pa.second != par) {
    tie(y, e) = pa;
    if (num[y]) {
      top = min(top, num[y]);
      if (num[y] < me)</pre>
        st.push_back(e);
    } else {
      int si = sz(st);
      int up = dfs(y, e, f);
      top = min(top, up);
      if (up == me) {
        st.push_back(e);
        f(vi(st.begin() + si, st.end()));
        st.resize(si);
      }
      else if (up < me) st.push_back(e);</pre>
```

}

}

}dom;

```
else { /* e is a bridge */ }
}
return top;
}

template<class F>
void bicomps(F f) {
  num.assign(sz(ed), 0);
  rep(i,0,sz(ed)) if (!num[i]) dfs(i, -1, f);
}
```

5.13 Edge BCC

```
struct BccEdge {
 static const int MXN = 100005;
  struct Edge { int v,eid; };
  int n,m,step,par[MXN],dfn[MXN],low[MXN];
  vector<Edge> E[MXN];
  DisjointSet djs;
  void init(int _n) {
    n = _n; m = 0;
for (int i=0; i<n; i++) E[i].clear();</pre>
    djs.init(n);
  void add_edge(int u, int v) {
    E[u].PB({v, m});
    E[v].PB({u, m});
  void DFS(int u, int f, int f_eid) {
    par[u] = f;
    dfn[u] = low[u] = step++;
    for (auto it:E[u]) {
      if (it.eid == f_eid) continue;
      int v = it.v;
      if (dfn[v] == -1) {
        DFS(v, u, it.eid);
        low[u] = min(low[u], low[v]);
      } else {
        low[u] = min(low[u], dfn[v]);
      }
   }
  }
  void solve() {
   step = 0:
    memset(dfn, -1, sizeof(int)*n);
    for (int i=0; i<n; i++) {
      if (dfn[i] == -1) DFS(i, i, -1);
    djs.init(n);
    for (int i=0; i< n; i++) {
      if (low[i] < dfn[i]) djs.uni(i, par[i]);</pre>
 }
}graph;
```

5.14 Manhattan MST

```
// source: KACTL
// returns [(dist, from, to), ...]
// then do normal mst afterwards
typedef Point<int> P;
vector<array<int, 3>> manhattanMST(vector<P> ps) {
  vi id(sz(ps));
 iota(all(id), 0);
 vector<array<int, 3>> edges;
 rep(k.0.4) {
    sort(all(id), [&](int i, int j) {
         return (ps[i]-ps[j]).x < (ps[j]-ps[i]).y;});</pre>
    map<int, int> sweep;
    for (int i : id) {
      for (auto it = sweep.lower_bound(-ps[i].y);
                it != sweep.end(); sweep.erase(it++)) {
        int j = it->second;
        P d = ps[i] - ps[j];
        if (d.y > d.x) break;
        edges.push_back(\{d.y + d.x, i, j\});
      sweep[-ps[i].y] = i;
    for (P\& p : ps) if (k \& 1) p.x = -p.x; else swap(p.x)
       p.v);
```

```
}
return edges;
```

5.15 Notes

```
Maximum Independent Set
General: [NPC] maximum clique of complement of G
Tree: [P] Greedy
Bipartite Graph: [P] Maximum Cardinality Bipartite Matching
Minimum Dominating Set
General: [NPC]
Tree: [P] DP
Bipartite Graph: [NPC]
Minimum Vertex Cover
General: [NPC] (?)maximum clique of complement of G
Tree: [P] Greedy, from leaf to root
Bipartite Graph: [P] Maximum Cardinality Bipartite Matching
Minimum Edge Cover
General: [P] V - Maximum Matching
Bipartite Graph: [P] Greedy, strategy: cover small degree
   node first.
(Min/Max)Weighted: [P]: Minimum/Minimum Weight Matching
```

6 Geometry

6.1 Basic 2D

```
using T = long long;
using pt = pair<T, T>;
#define x first
#define y second
pt operator-(pt a) { return { -a.x, -a.y }; }
pt operator+(pt a, pt b) {return { a.x + b.x, a.y + b.y};}
pt operator-(pt a, pt b) {return { a.x - b.x, a.y - b.y};}
pt operator*(pt a, T t) { return { a.x * t, a.y * t }; }
T abs2(pt a) { return a.x * a.x + a.y * a.y; }
T len(pt a) { return sqrt(abs2(a)); }
T dot(pt a, pt b) { return a.x * b.x + a.y * b.y; }
T cross(pt a, pt b) { return a.x * b.y - b.x * a.y; }
T cross(pt a, pt b, pt o) { return cross(a - o, b - o); }
// if segment AB and CD intersects
// for a nondegenrate version, change > to >=
bool intersects(pt a, pt b, pt c, pt d) {
  if(cross(b, c, a) * cross(b, d, a) > 0) return false;
  if(cross(d, a, c) * cross(d, b, c) > 0) return false;
  return true:
// the intersect pt of lines AB and CD
pt intersect(pt a, pt b, pt c, pt d) {
  auto x = cross(b, c, a), y = cross(b, d, a);
  if(x == y) {
  // if(abs(x, y) < 1e-8) {
     // is parallel
  } else {
     return d * (x/(x-y)) - c * (y/(x-y));
  }
}
```

6.2 Angular Sort

6.3 Convex Hull

```
// returns a convex hull in counterclockwise order
// for a non-strict one, change cross >= to >
```

```
vector<pt> convex_hull(vector<pt> p) {
   sort(ALL(p));
   if (p[0] == p.back()) return { p[0] };
   int n = p.size(), t = 0;
   vector<pt> h(n + 1);
   for (int _ = 2, s = 0; _--; s = --t, reverse(ALL(p)))
      for (pt i : p) {
      while (t > s+1 && cross(i, h[t-1], h[t-2]) >= 0) t--;
      h[t++] = i;
   }
   return h.resize(t), h;
}
```

6.4 Convex Polygon Point Inclusion

```
// no preprocessing version
  p must be a strict convex hull, counterclockwise
// if point is inside or on border
bool is_inside(const vector<pt>8 c, pt p) {
  int n = c.size(), l = 1, r = n - 1;
  if (cross(c[0], c[1], p) < 0) return false; if (cross(c[n-1], c[0], p) < 0) return false;
  while (l < r - 1) {
    int m = (l + r) / 2;
    T = cross(c[\theta], c[m], p);
    if (a > 0) l = m;
    else if (a < \theta) r = m;
    else return dot(c[\theta] - p, c[m] - p) \ll \theta;
 if (l == r) return dot(c[0] - p, c[l] - p) <= 0;</pre>
  else return cross(c[l], c[r], p) >= 0;
// with preprocessing version
vector<pt> vecs;
pt center;
// p must be a strict convex hull, counterclockwise
// BEWARE OF OVERFLOWS!!
void preprocess(vector<pt> p) {
  for (auto \delta v : p) v = v * 3;
  center = p[0] + p[1] + p[2];
  center.x /= 3, center.y /= 3; for (auto \delta v : p) v = v - center;
  vecs = (angular_sort(p), p);
bool intersect_strict(pt a, pt b, pt c, pt d) {
  if(cross(b, c, a) * cross(b, d, a) > 0) return false;
  if(cross(d, a, c) * cross(d, b, c) >= 0) return false;
  return true:
// if point is inside or on border
bool query(pt p) {
  p = p * 3 - center;
  auto pr = upper_bound(ALL(vecs), p, angle_cmp);
  if (pr == vecs.end()) pr = vecs.begin();
 auto pl = (pr == vecs.begin()) ? vecs.back() : *(pr - 1);
  return !intersect_strict({0, 0}, p, pl, *pr);
```

6.5 Convex Polygon Minkowski Sum

```
// O(n) convex polygon minkowski sum
// must be sorted and counterclockwise
vector<pt> minkowski_sum(vector<pt> p, vector<pt> q) {
 auto diff = [](vector<pt>& c) {
   auto rcmp = [](pt a, pt b) {
  return pt{a.y, a.x} < pt{b.y, b.x};</pre>
   rotate(c.begin(), min_element(ALL(c), rcmp), c.end());
   c.push_back(c[0]);
    vector<pt> ret;
   for (int i = 1; i < c.size(); i++)</pre>
      ret.push_back(c[i] - c[i - 1]);
   return ret;
 auto dp = diff(p), dq = diff(q);
 pt cur = p[0] + q[0];
  vector<pt> d(dp.size() + dq.size()), ret = {cur};
  // include angle_cmp from angular-sort.cpp
 merge(ALL(dp), ALL(dq), d.begin(), angle_cmp);
  // optional: make ret strictly convex (UB if degenerate)
 int now = 0;
 for (int i = 1; i < d.size(); i++) {</pre>
```

```
if (cross(d[i], d[now]) == 0) d[now] = d[now] + d[i];
  else d[++now] = d[i];
}
d.resize(now + 1);
// end optional part
for (pt v : d) ret.push_back(cur = cur + v);
return ret.pop_back(), ret;
}
```

6.6 Closest Pair

```
vector<pll> p; // sort by x first!
bool cmpy(const pll& a, const pll& b) const {
  return a.y < b.y;</pre>
ll sq(ll x) { return x * x; }
// returns (minimum dist)^2 in [l, r)
ll solve(int l, int r) {
  if (r - l <= 1) return 1e18;</pre>
  int m = (l + r) / 2;
  ll mid = p[m].x, d = min(solve(l, m), solve(m, r));
  auto pb = p.begin();
  inplace_merge(pb + l, pb + m, pb + r, cmpy);
  vector<pll> s;
  for (int i = l; i < r; i++)
    if (sq(p[i].x - mid) < d)
      s.push_back(p[i]);
  for (int i = 0; i < s.size(); i++)</pre>
    for (int j = i + 1; j < s.size() &&
      sq(s[j].y - s[i].y) < d; j++)
      d = min(d, dis(s[i], s[j]));
  return d:
}
```

6.7 Minimum Enclosing Circle

```
// source: waynedisonitau123
pt center(const pt &a, const pt &b, const pt &c) {
  pt p0 = b - a, p1 = c - a;
double c1 = abs2(p0) * 0.5, c2 = abs2(p1) * 0.5;
  double d = cross(p0, p1);
double x = a.x + (c1 * p1.y - c2 * p0.y) / d;
double y = a.y + (c2 * p0.x - c1 * p1.x) / d;
  return pt(x, y);
pair<double, double> solve(vector<pt> δp) {
  shuffle(p.begin(), p.end(), RNG);
  double r = 0.0;
  pt cent;
  for (int i = 0; i < p.size(); ++i) {</pre>
    if (abs2(cent - p[i]) <= r) continue;</pre>
    cent = p[i];
    r = 0.0;
    for (int j = 0; j < i; ++j) {
       if (abs2(cent - p[j]) <= r) continue;</pre>
       cent = (p[i] + p[j]) / 2;
r = abs2(p[j] - cent);
       for (int k = 0; k < j; ++k) {
         if (abs2(cent - p[k]) \le r) continue;
         cent = center(p[i], p[j], p[k]);
         r = abs2(p[k] - cent);
    }
  return {cent, sqrt(r)};
```

6.8 Half Plane Intersection

```
// availble area for L l is (l.pb-l.pa)^(p-l.pa)>0
vector<P> HPI(vector<L> &ls){
  sort(ls.begin(),ls.end(),cmp);
  vector<L> pls(1,ls[0]);
  for(int i=0;i<(int)ls.size();++i)if(!same(ls[i].o,pls.back|</pre>
  \leftrightarrow ().o))pls.push_back(ls[i]);
  deque<int> dq; dq.push_back(0); dq.push_back(1);
#define meow(a,b,c) while(dq.size()>1u &&
    jizz(pls[a],pls[b],pls[c]))
  for(int i=2;i<(int)pls.size();++i){</pre>
    meow(i,dq.back(),dq[dq.size()-2])dq.pop_back();
    meow(i,dq[0],dq[1])dq.pop_front();
    dq.push_back(i);
 meow(dq.front(),dq.back(),dq[dq.size()-2])dq.pop_back();
  \verb"meow(dq.back(),dq[0],dq[1])dq.pop_front();
  if(dq.size()<3u)return vector<P>(); // no solution or
     solution is not a convex
  vector<P> rt;
  for(int i=0;i<(int)dq.size();++i)rt.push_back(Intersect(pl | </pre>

    s[dq[i]],pls[dq[(i+1)%dq.size()]]));
  return rt;
}
```

6.9 Delaunay Triangulation

// source: KACTL

```
typedef Point<ll> P;
typedef struct Quad* Q;
typedef __int128 † 1111.
         _int128_t lll; // (can be ll if coords are < 2e4)
P arb(LLONG_MAX,LLONG_MAX); // not equal to any other point
struct Quad {
  bool mark; Q o, rot; P p;
  P F() { return r()->p; }
Q r() { return rot->rot; }
  Q prev() { return rot->o->rot; }
  Q next() { return r()->prev(); }
bool circ(P p, P a, P b, P c) { // is p in the circumcircle?
  lll p2 = p.dist2(), A = a.dist2()-p2,
      B = b.dist2()-p2, C = c.dist2()-p2;
  return p.cross(a,b)*C + p.cross(b,c)*A + p.cross(c,a)*B >
  → 0:
Q makeEdge(P orig, P dest) {
  Q q[] = {new Quad{0,0,0,orig}, new Quad{0,0,0,arb},
           new Quad{0,0,0,dest}, new Quad{0,0,0,arb}};
  rep(i.0.4)
   q[i]->o = q[-i \& 3], q[i]->rot = q[(i+1) \& 3];
  return *q;
void splice(Q a, Q b) {
  swap(a->o->rot->o, b->o->rot->o); swap(a->o, b->o);
Q connect(Q a, Q b) {
  Q q = makeEdge(a->F(), b->p);
  splice(q, a->next());
  splice(q->r(), b);
  return q;
pair<Q,Q> rec(const vector<P>& s) {
  if (sz(s) <= 3) {
    Q a = makeEdge(s[0], s[1]), b = makeEdge(s[1], s.back());
    if (sz(s) == 2) return { a, a->r() };
    splice(a->r(), b);
    auto side = s[\theta].cross(s[1], s[2]);
    Q c = side ? connect(b, a) : \theta;
    return {side < 0 ? c->r() : a, side < 0 ? c : b->r() };
#define H(e) e->F(), e->p
#define valid(e) (e->F().cross(H(base)) > 0)
  Q A, B, ra, rb;
  int half = sz(s) / 2;
  tie(ra, A) = rec({all(s) - half});
  tie(B, rb) = rec({sz(s) - half + all(s)});
  while ((B->p.cross(H(A)) < 0 88 (A = A->next())) ||
         (A->p.cross(H(B)) > 0 \& (B = B->r()->o)));
  Q base = connect(B->r(), A);
```

```
if (A->p == ra->p) ra = base->r();
 if (B->p == rb->p) rb = base;
#define DEL(e, init, dir) Q e = init->dir; if (valid(e)) \
   while (circ(e->dir->F(), H(base), e->F())) { \
      Q t = e->dir; \
      splice(e, e->prev()); \
      splice(e->r(), e->r()->prev()); \
      e = t; \
 for (;;) {
   DEL(LC, base->r(), o); DEL(RC, base, prev());
   if (!valid(LC) && !valid(RC)) break;
   if (!valid(LC) || (valid(RC) && circ(H(RC), H(LC))))
     base = connect(RC, base->r());
   else
     base = connect(base->r(), LC->r());
 return { ra, rb };
// returns [A_0, B_0, C_0, A_1, B_1, ...]
// where A_i, B_i, C_i are counter-clockwise triangles
vector<P> triangulate(vector<P> pts) {
 sort(all(pts)); assert(unique(all(pts)) == pts.end());
 if (sz(pts) < 2) return {};</pre>
 Q e = rec(pts).first;
 vector<Q> q = {e};
 int qi = 0;
 while (e->o->F().cross(e->F(), e->p) < 0) e = e->o;
#define ADD { Q c = e; do { c->mark = 1;
→ pts.push_back(c->p); \
 q.push_back(c->r()); c = c->next(); } while (c != e); }
 ADD: pts.clear();
 while (qi < sz(q)) if (!(e = q[qi++])->mark) ADD;
 return pts;
```

6.10 Spherical Coordinates

```
struct car_p { double x, y, z; };
struct sph_p { double r, theta, phi; };

sph_p conv(car_p p) {
    double r = sqrt(p.x*p.x + p.y*p.y + p.z*p.z);
    double theta = asin(p.y / r);
    double phi = atan2(p.y, p.x);
    return { r, theta, phi };
}
car_p conv(sph_p p) {
    double x = p.r * cos(p.theta) * sin(p.phi);
    double y = p.r * cos(p.theta) * cos(p.phi);
    double z = p.r * sin(p.theta);
    return { x, y, z };
}
```

6.11 Quaternion

```
struct Q {
 using T = double;
 T x, y, z, r;
Q(T r = 0) : x(0), y(0), z(0), r(r) {}
 Q(T x, T y, T z, T r = 0) : x(x), y(y), z(z), r(r){}
 friend bool operator==(const Q∂ a, const Q∂ b) {
   return (a - b).abs2() <= 1e-8; }
 friend bool operator!=(const Q\delta a, const Q\delta b) {
   return !(a == b); }
 Q operator-() { return Q(-x, -y, -z, -r); }
 Q operator+(const Q8 b) const {
   return Q(x + b.x, y + b.y, z + b.z, r + b.r); }
 Q operator-(const Q8 b) const {
   return Q(x - b.x, y - b.y, z - b.z, r - b.r);}
 Q operator*(const Tδ t) const {
   return Q(x * t, y * t, z * t, r * t); }
 Q operator*(const Q8 b) const {
   return Q(
     r * b.x + x * b.r + y * b.z - z * b.y
      r * b.y - x * b.z + y * b.r + z * b.x,
     r * b.z + x * b.y - y * b.x + z * b.r,
      r * b.r - x * b.x - y * b.y - z * b.z
   );
 }
 Q operator/(const Q8 b) const {
```

```
return *this * b.inv(); }
 T abs2() const {
    return r * r + x * x + y * y + z * z; }
  T len() const { return sqrt(abs2()); }
 Q conj() const { return Q(-x, -y, -z, r); } Q unit() const { return *this * (1.0 / len()); }
  Q inv() const { return conj() * (1.0 / abs2()); }
  friend T dot(Q a, Q b) {
  return a.x * b.x + a.y * b.y + a.z * b.z; }
  friend Q cross(Q a, Q b) {
    return Q(
      a.y * b.z - a.z * b.y,
      a.z * b.x - a.x * b.z,
      a.x * b.y - a.y * b.x
    ):
  friend Q rotation_around(Q axis, T angle) {
    return axis.unit() * sin(angle / 2) + cos(angle / 2);
  Q rotated_around(Q axis, T angle) {
    Q u = rotation_around(axis, angle);
    return u * *this / u;
  friend Q rotation_between(Q a, Q b) {
    a = a.unit(), b = b.unit();
    if(a == -b) {
      // degenerate case
      Q ortho;
      if(abs(a.y) > 1e-8) ortho = cross(a, Q(1, 0, 0));
      else ortho = cross(a, Q(\theta, 1, \theta));
      return rotation_around(ortho, pi);
    } else {
      return (a * (a + b)).conj();
    }
 }
};
```

6.12 3D Convex Hull

```
// source: KACTL
typedef Point3D<double> P3;
struct PR {
  void ins(int x) { (a == -1 ? a : b) = x; }
  void rem(int x) { (a == x ? a : b) = -1;
  int cnt() { return (a != -1) + (b != -1); }
  int a, b;
struct F { P3 q; int a, b, c; };
vector<F> hull3d(const vector<P3>& A) {
 assert(sz(A) >= 4);
  vector<vector<PR>>> E(sz(A), vector<PR>(sz(A), {-1, -1}));
#define E(x,y) E[f.x][f.y]
  vector<F> FS;
 auto mf = [8](int i, int j, int k, int l) {
  P3 q = (A[j] - A[i]).cross((A[k] - A[i]));
    if (q.dot(A[l]) > q.dot(A[i]))
    q = q * -1;
F f{q, i, j, k};
E(a,b).ins(k); E(a,c).ins(j); E(b,c).ins(i);
    FS.push_back(f);
  rep(i,0,4) rep(j,i+1,4) rep(k,j+1,4)
    mf(i, j, k, 6 - i - j - k);
  rep(i,4,sz(A)) {
    rep(j,0,sz(FS)) {
      F f = FS[j];
      if(f.q.dot(A[i]) > f.q.dot(A[f.a])) {
        E(a,b).rem(f.c);
        E(a,c).rem(f.b);
        E(b,c).rem(f.a);
        swap(FS[j--], FS.back());
        FS.pop_back();
     }
    }
    int nw = sz(FS);
    rep(j,0,nw) {
      F f = FS[j];
#define C(a, b, c) if (E(a,b).cnt() != 2) mf(f.a, f.b, i,
→ f.c);
```

7 Strings

7.1 Z-value

```
int z[n];
void zval(string s) {
    // z[i] => longest common prefix of s and s[i:], i > 0
    int n = s.size();
    z[0] = 0;
    for (int b = 0, i = 1; i < n; i++) {
        if (z[b] + b <= i) z[i] = 0;
        else z[i] = min(z[i - b], z[b] + b - i);
        while (s[i + z[i]] == s[z[i]]) z[i]++;
        if (i + z[i] > b + z[b]) b = i;
    }
}
```

7.2 Manacher

7.3 Minimum Rotation

```
int min_rotation(string s) {
   int a = 0, n = s.size();
   s += s;
   for(int b = 0; b < n; b++) {
      for(int k = 0; k < n; k++) {
        if (a + k == b || s[a + k] < s[b + k]) {
            b += max(0, k - 1); break;
        }
      if (s[a + k] > s[b + k]) {
            a = b; break;
      }
   }
}
return a;
}
```

7.4 Aho-Corasick

```
struct Aho_Corasick {
    static const int maxc = 26,maxn = 4e5;
    struct NODES {int Next[maxc], fail, ans;};
    NODES T[maxn];
    int top, qtop, q[maxn];
    int get_node(const int &fail) {
        fill_n(T[top].Next, maxc, 0);
        T[top].fail = fail;
        T[top].ans = 0;
        return top++;
    }
    int insert(const string &s) {
        int ptr = 1;
        for(char c : s) { // change char id
```

```
c -= 'a';
      if(!T[ptr].Next[c])
        T[ptr].Next[c] = get_node(ptr);
      ptr = T[ptr].Next[c];
    return ptr;
  }//return ans_last_place
  void build_fail(int ptr) {
    int tmp;
for(int i = 0; i < maxc; i++)</pre>
      if(T[ptr].Next[i]) {
         tmp = T[ptr].fail;
         while(tmp != 1 && !T[tmp].Next[i])
           tmp = T[tmp].fail;
         if(T[tmp].Next[i] != T[ptr].Next[i])
           if(T[tmp].Next[i])
             tmp = T[tmp].Next[i];
        T[T[ptr].Next[i]].fail = tmp;
        q[qtop++] = T[ptr].Next[i];
  void AC_auto(const string &s) {
    int ptr = 1;
    for(char c : s) {
  while(ptr != 1 δδ !T[ptr].Next[c])
         ptr=T[ptr].fail;
      if(T[ptr].Next[c]) {
        ptr = T[ptr].Next[c];
        T[ptr].ans++;
    }
  }
  void Solve(string &s) {
    for(char &c : s) // change char id
      c -= 'a';
    for(int i = 0; i < qtop; i++)
      build_fail(q[i]);
    AC_auto(s);
for(int i = qtop - 1; i > -1; i--)
      T[T[q[i]].fail].ans += T[q[i]].ans;
  void reset() {
    qtop = top = q[0] = 1;
    get_node(1);
} AC;
// usage example
string s, S;
int n, t, ans_place[50000];
int main() {Tie
  cin>>t;
  while(t--) {
    AC.reset();
    cin >> S >> n;
    for(int i = 0; i < n; i++) {
      cin >> s;
      ans_place[i] = AC.insert(s);
    AC.Solve(S);
for(int i = 0; i < n; i++)
      cout << AC.T[ans_place[i]].ans << '\n';</pre>
}
```

7.5 Suffix Array

7.6 Suffix Tree

```
struct SAM {
  static const int maxc = 26; // char range
  static const int maxn = 10010; // string len
  struct Node {
    Node *green, *edge[maxc];
    int max_len, in, times;
  }*root, *last, reg[maxn * 2];
  int top;
  Node* get_node(int _max) {
    Node *re = &reg[top++];
    re \rightarrow in = 0, re \rightarrow times = 1;
    re -> max_len = _max, re -> green = θ;
for(int i = θ; i < maxc; i++)
      re \rightarrow edge[i] = 0;
    return re;
  void insert(const char c) { // c in range [0, maxc)
    Node *p = last;
    last = get_node(p -> max_len + 1);
    while(p && !p -> edge[c])
      p \rightarrow edge[c] = last, p = p \rightarrow green;
    if(!p) last -> green = root;
    else {
      Node *pot_green = p -> edge[c];
      if((pot_green -> max_len) == (p -> max_len + 1))
        last -> green = pot_green;
      else {
        Node *wish = get_node(p -> max_len + 1);
        wish -> times = 0;
while(p && p -> edge[c] == pot_green)
          p -> edge[c] = wish, p = p -> green;
        for(int i = 0; i < maxc; i++)</pre>
          wish -> edge[i] = pot_green -> edge[i];
        wish -> green = pot_green -> green;
        pot_green -> green = wish;
        last -> green = wish;
    }
  Node *q[maxn * 2];
  int ql, qr;
  void get_times(Node *p) {
    ql = 0, qr = -1, reg[0].in = 1;
    for(int i = 1; i < top; i++)</pre>
      reg[i].green -> in++
    for(int i = 0; i < top; i++)</pre>
      if(!reg[i].in)
        q[++qr] = &reg[i];
    while(ql <= qr) {
      q[ql] -> green -> times += q[ql] -> times;
      if(!(--q[ql] -> green -> in))
        q[++qr] = q[ql] -> green;
      ql++;
    }
  }
  void build(const string &s) {
    root = last = get_node(0);
    for(char c : s)
  insert(c - 'a'); // change char id
    get_times(root);
  // call build before solve
  int solve(const string &s) {
    Node *p = root;
    for(char c : s)
      if(!(p = p \rightarrow edge[c - 'a'])) // change char id
        return 0;
    return p -> times;
};
```