_3. Representing functions

3. Representing functions

Last time

- Representing integers: Binary expansions
- Representing rationals: Defining a composite type
- Representing reals: Floating-point numbers

$$x = \pm 2^{e}(1+f);$$
 $f = \sum_{n=1}^{d} 2^{-n}b_{n}$

Special rational numbers (denominator is power of 2)

Goal for today

- How can we calculate elementary functions, e.g. exp
- Calculate ⇒ approximate

Floating-point arithmetic

- What happens if we multiply two floating-point numbers?
- Could do the exact computation with rationals
- But the lengths of the resulting numbers grows too fast
- Instead, we round the exact result to the closest floating-point number
- \blacksquare +, -, *, / and $\sqrt{}$ have this **correct rounding** property
- NB: after several operations we may lose accuracy

Elementary functions

- How approximate functions like $\exp(x)$ and $\sin(x)$?
- Want results that are as close as possible to true real result
- Very hard to guarantee correct rounding: table-maker's dilemma
- Faithful rounding: Return one of two neighbouring floating-point numbers

Solving difficult problems

- ightharpoonup exp(x) is difficult to work with
- Idea: Approximate a hard problem with a simpler problem
- Solve simpler problem
- Hope result gives approximate solution for hard problem
- lacktriangle How can we approximate $\exp(x)$ with a simpler problem?

Polynomials

- lacktriangle Try to approximate $\exp(x)$ with a **polynomial**
- Polynomials: Simplest functions to work with
- Polynomials: one foundations of numerical analysis
- $f(x) = a_0 + a_1 \, x + \dots + a_n x^n \text{ is a (univariate)}$ polynomial of degree n
- Finite number of terms

Polynomials II

- Can evaluate just using basic arithmetic
- (Almost) the only functions we can actually calculate!
- There is a more efficient evaluation method: Horner method (PS 1)
- Which other functions can we calculate?

Can we approximate functions by polynomials?

- Weierstrass approximation theorem: any continuous function on a finite interval can be approximated uniformly by a polynomial to within any given distance
- "Uniformly" means that the maximum distance is bounded:

$$\max_{x \in [a,b]} |f(x) - p(x)| < \epsilon$$

- \blacksquare Or $\|f-p\|_{\infty}<\epsilon$
- This "uniform" condition fails for infinite intervals

How can we find polynomial approximations?

- lacksquare Will see several methods to *find* polynomials that approximate a function f
- \blacksquare Let's start with one that is motivated by looking at $y = \exp(x)$
- lacktriangle How is $\exp(x)$ defined?

exp

■ The function exp(x) is defined as a **power series**:

$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

- Recall: the **factorial** $n! := 1 \times 2 \times \cdots \times n$
- Alternative definition: $\exp' = \exp(f') := \text{the derivative of } f$

Reminder: Taylor series

- \blacksquare Try to calculate f(x) for x near 0
- lacksquare Suppose f is "nice" (smooth) so can expand as **power** series

$$f(x) = f_0 + f_1 x + f_2 x^2 + \dots = \sum_{n=0}^{\infty} f_n x^n$$

lacksquare By differentiating and evaluating at x=0, we see that

$$f_n = \frac{f^{(n)}(0)}{n!},$$

where $f^{(n)}(x)$ is the nth derivative of f

Taylor series II

- We can expand around other points
- lacksquare Suppose we want to calculate f(x) for x near a
- Set h := x a or x = a + h, so h is small
- $\blacksquare \mathsf{Set}\, g(h) := f(a+h).$
- lacktriangle We know how to expand g(h) in powers of h

Taylor series III

$$=g(h)=g_0+g_1h+g_2h^2+\cdots\dots$$

with
$$g_n = g^{(n)}(0) = f^{(n)}(a) =: f_n$$

$$\blacksquare$$
 So $f(x) = \sum_n \frac{1}{n!} f^{(n)}(a) \cdot (x-a)^n$

Implementing power series

- How can we numerically implement a power series?
- As usual we cannot, since there are an infinite number of terms
- Solution: truncate to finite number of terms get polynomial!

$$f_N(x) := \sum_{n=0}^{N} f_n x^n; \qquad f_n = f^{(n)}(a)/n!$$

Note that we have committed an error by truncating: truncation error

Implementing $\exp(x)$

- Now have a polynomial, but don't just use previous method to evaluate – why?
- By taking more terms, expect result to approach true value
- How close and how fast?
- Do numerical experiment
- And try to estimate size of error term

Estimating truncation error: Taylor theorem with Lagrange remainder

- \blacksquare Truncating to a polynomial of degree n leaves a remainder R_{N}
- $\blacksquare R_N(f,x) := \textstyle \sum_{N+1}^{\infty} f_n x^n$
- Fortunately there are finite expressions for this remainder
- Lagrange form:

$$R_N(f,x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}$$

■ Here, ξ is an *unknown* value in the interval [a, x]

Lagrange remainder II

- \blacksquare Bound (n+1) th derivative of f to estimate size of truncation error
- NB: there may be rounding error too since calculate with floating-point arithmetic
- Lagrange result is kind of generalized mean value theorem
- lacktriangle Mean value theorem: If f is differentiable on [a,b] then

$$\frac{f(b) - f(a)}{b - a} = f'(\xi)$$

 $\bullet \text{ So } f(a+h) = f(a) + hf'(\xi)$

Range reduction

- lacktriangle Where is the Taylor series of f(x) valid?
- For some functions, e.g. $\exp(x)$, it is valid **everywhere** in the complex plane!
- For e.g. log(1+x), finite radius of convergence
- \blacksquare To get fast convergence, want x close to 0 (why?),
- \blacksquare For larger values of x we should relate f(x) to f(r) for some $r \in [-a,a]$

Summary

- Key idea: Approximate functions using polynomials
- Can approximate as closely as desired (on finite interval) by taking higher degree
- Polynomials are the functions we best understand and can calculate
- One approximation method is via Taylor approximation