X - Python

Commentaire

Insertion de commentaire | # Cette ligne ne sera pas lue par Python

Nombres

I - Structures élémentaires

I.1 - Types élémentaires

3.4 + 2 renvoie 5.4
3.4 - 2 renvoie 1.4
3.4 * 2 renvoie 6.8

Multiplication
Division
Puissance

3.4 * 2 renvoie 6.8
3.4/2 renvoie 1.7
3.4**2 renvoie (presque) 11.56

Boolé	ens

Addition Soustraction

		
True, False	Valeurs booléennes vrai, faux	
==	Égal	4 == 2*2 renvoie True
>	Strictement supérieur	4 > 2 renvoie True
<	Strictement inférieur	4 < 2 renvoie False
>=	Supérieur ou égal	4 >= 2 * 2 renvoie True
<	Inférieur ou égal	4 <= 2 * 2 renvoie True

Connecteurs logiques

and	Et logique	(3 == 0) and (4 == 2*2) renvoie False
or	Ou logique	(3 == 0) or (4 == 2*2) renvoie True
not	Non logique	not (3 == 0) renvoie False

${\rm I.2}$ - Structures de contrôle

Affectation

=	Affectation		x = 3	
			stocke la valeur 3 dans la variable nommée x.	
	Appel du contenu		2 * x + 3 renvoie 9	
	Écrasement du contenu	de	x = 25 + 3 * 12	
		Instruction conditionnelle		
			x = 20	
if c1:	-1 -0 gant dag bagléar	ng.	if x < 20:	
i 1	c1, c2 sont des booléer i1, i2, i3 sont des ins		print("Riri")	
elif c2:	Attention aux indentat		elif x < 50:	
i 2			<pre>print("Fifi")</pre>	
else:	Attention aux deux-po		else:	
i3	elii (sinon mais si) et	s else (sinon) sont optionnels	<pre>print("Loulou")</pre>	
			Affiche Fifi	
		Boucle itérative		
	Nombre prédéterminé	d'itérations		
	i1 est une suite	d'instructions	for i in [3, 12, 1, 4]:	
	Attention aux	indentations	print(i)	
for element in liste:	Attention aux	deux-points:	Affiche 3 12 1 4	
i1	Liste peut être	une liste [3, 12, 1, 4]	for i in range $(3, 7)$:	
		un intervalle d'entiers range(a, b)	print(i)	
		un intervalle de réels np.arange(a, b, pas)	Affiche 3 4 5 6	
		<pre>np.linspace(a, b, nombre)</pre>		
Boucle conditionnelle				
while c:	c est un booléen		: 2	
	i1 est une suite d'instructions		i = 3	
	Attention aux indentat	tions	while i < 48:	
	Attention aux deux-po	ints:	i = 2 * i	
	Attention à modifier la	a condition à chaque passage	print(i)	
	pour qu'elle devienne f	fausse	Affiche 6, 12, 24, 48	

Fonctions

1-6 6 () .	x, y sont les paramètres formels	$\mathbf{def} \ \ \mathbf{f}(\mathbf{x})$:
$\mathbf{def} \ \mathbf{f}(\mathbf{x}, \mathbf{y})$:	i1 est une suite d'instructions	y = x**2 + 1
notume a	z est la valeur renvoyée	return 3 * y
return z	Attention aux deux-points:	Affiche f(3) renvoie 30

I.3 - Modules

Importer of	les	modules
-------------	-----	---------

	<u> </u>
from numpy import *	Importe toutes les fonctions de numpy
log(2)	Appel sans préciser la provenance
import numpy as np	Charge le module numpy.
np.log(2)	Appel en précisant le module d'appartenance.

I.4 - Numpy - Calculs numériques

Module pour effectuer des calculs numériques : import numpy as np

Constantes

np.e	Constante e	Vaut environ 2.718
np.pi	Constante π	Vaut environ 3.14
	Fonctions	
np.exp	Exponentielle	np.exp(1) renvoie environ 2.718
np.log	Logarithme népérien	np.log(1) renvoie 0
np.sqrt	Racine carré	np.sqrt(4) renvoie 2.0
np.abs	Valeur absolue	np.abs(-3) renvoie 3
np.floor	Partie entière	np.floor(3.14) renvoie 3.0
Création de tableaux / matrices		
np.array	Crée un tableau à partir de la liste des éléments	np.array([[1, 2, 3], [4, 5, 6]]) définit $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$
np.zeros((n, p))	Crée une matrice à n lignes et p colonnes ne contenant que des zéros	np.zeros((2, 3)) définit $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

np.ones((n, p))	Crée une matrice à n lignes et p colonnes ne contenant que des 1	np.ones((2, 3)) définit $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$
np.eye(n)	Crée la matrice identité d'ordre n	np.eye(3) définit $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
np.arange(a, b, pas)	Crée un vecteur ligne d'éléments de a (inclus) à b (exclus) espacés de pas	np.arange(1.2, 2, 0.2) définit (1.2 1.4 1.6 1.8)
np.linspace(a, b, nbre)	Crée un vecteur ligne d'éléments régulièrement espacés de a (inclus) à b (inclus) contenant nbre éléments	np.linspace(1.2, 2, 5) définit (1.2 1.4 1.6 1.8 2.)
	Manipulation de matrices	
t[i][j]	Accède à la ligne i colonnes j de t Numérotation à partir de 0	t = np.array([[1, 2, 3], [4, 5, 6]]) t[1][2] renvoie 6
np.shape	Renvoie le nombre de lignes et le nombre de colonnes	<pre>t = np.array([[1, 2, 3], [4, 5, 6]]) a, b = np.shape(t) a contient 2, b contient 3</pre>
np.reshape	Aplatit puis redimensionne un tableau	a = np.array([[1, 2, 3], [4, 5, 6]]) np.reshape(a, (3, 2)) renvoie $\begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}$
	Opérations sur les matrices	
		<pre>a = np.array([[1, 2], [3, 4]]) b = np.array([[-1, 1], [0, 1]])</pre>
+	Addition élément par élément	$a + b \text{ renvoie} \begin{pmatrix} 0 & 3 \\ 3 & 5 \end{pmatrix}$
-	Soustraction élément par élément	a - b renvoie $\begin{pmatrix} 2 & 1 \\ 3 & 3 \end{pmatrix}$
*	Multiplication d'une matrice par un réel	$2 * a renvoie \begin{pmatrix} 2 & 4 \\ 6 & 8 \end{pmatrix}$
np.dot	Produit matriciel	np.dot(a, b) renvoie $\begin{pmatrix} -1 & 3 \\ -3 & 7 \end{pmatrix}$
Les fonctions np.exp, np.sqrt,s'effectuent élément par élément		

Stastitiques

, /, ** **ATTENTION! Opérations élément par élément * a renvoic \$\begin{array}{c} -1 \ 0 \ 1 \end{array} \text{ [[1, 2, 3], [4, 5, 6]])} \\ *** np. sum (t) renvoic 21 \\ *** np. sum(t) renvoic 21 \\ *** np. sum(t) renvoic (5 7 9) \\ *** np. sum(t, 1) renvoic (6 \\ *** np. min(t, 1) renvoic (1 \\ *** np. min(t, 0) renvoic (1 2 3) \\ *** np. min(t, 1) renvoic (1 \\ ** np. max(t) renvoic (1 \\ *** np. max(t) renvoic (1 \\ *** np. max(t, 1) renvoic (\frac{1}{4}\) *** np. max(t, 1) renvoic (\frac{1}{4}\) *** np. max(t, 1) renvoic (\frac{3}{6}\) *** np. mean(t, 1) renvoic (\frac{3}{5}\) *** np. mean(t, 0) renvoic (2.5 3.5 4.5) \\ *** np. mean(t, 1) renvoic (2.5 3.5 4.5) \\ *** np. median(t, 0) renvoic (2.5 3.5 4.5) \\ *** np. median(t, 0) renvoic (2.5 3.5 4.5) \\ *** np. median(t, 0) renvoic (2.5 3.5 4.5) \\ *** np. median(t, 1) renvoic (\frac{2}{5}\) *** np. var(t) renvoic (2.5 3.5 4.5) \\ *** np. var(t) renvoic (0.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3		2 555 555 4 555	
np. sum	*, /, **	ATTENTION! Opérations élément par élément	$b**a renvoie \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}$
$\begin{array}{c} \text{np.sum} & \text{Somme des éléments d'un tableau} & \begin{array}{c} \text{np.sum(t) renvoie } \left(5 \ 7 \ 9\right) \\ \text{np.sum(t, 0) renvoie } \left(5 \ 7 \ 9\right) \\ \text{np.sum(t, 1) renvoie } \left(\frac{6}{15}\right) \\ \\ \text{np.min } & \text{Minimum des éléments d'un tableau} & \begin{array}{c} \text{np.min(t) renvoie } 1 \\ \text{np.min(t, 0) reuvoie } (1 \ 2 \ 3) \\ \text{np.min(t, 1) renvoie } \left(\frac{1}{4}\right) \\ \\ \text{np.max} & \text{Maximum des éléments d'un tableau} & \begin{array}{c} \text{np.max(t) renvoie } (1 \ 2 \ 3) \\ \text{np.max(t, 0) renvoie } (1 \ 2 \ 3) \\ \\ \text{np.max(t, 0) renvoie } \left(\frac{1}{4}\right) \\ \\ \text{np.max(t, 1) renvoie } \left(\frac{3}{6}\right) \\ \\ \text{np.max(t, 1) renvoie } \left(\frac{3}{6}\right) \\ \\ \text{np.mean(t) renvoie } 3.5 \\ \\ \text{np.mean(t, 0) renvoie } (2.5 \ 3.5 \ 4.5) \\ \\ \text{np.mean(t, 1) renvoie } \left(\frac{2}{5}\right) \\ \\ \text{np.median(t, 1) renvoie } \left(\frac{2}{5}\right) \\ \\ \text{np.median(t, 1) renvoie } \left(\frac{2}{5}\right) \\ \\ \text{np.median(t, 1) renvoie } \left(\frac{2}{5}\right) \\ \\ \text{np.war(t) renvoie } (2.5 \ 3.5 \ 4.5) \\ \\ \text{np.war(t) renvoie } (2.95 \ 2.25 \ 2.25 \ 2.25) \\ \\ \text{np.war(t, 0) renvoie } \left(\frac{2.25 \ 2.25 \ 2.25}{2.25}\right) \\ \\ \text{np.war(t, 0) renvoie } \left(\frac{1.5 \ 1.5 \ 1.5}{1.5}\right) \\ \\ \text{np.std(t, 0) renvoie } \left(\frac{1.5 \ 1.5 \ 1.5}{1.5}\right) \\ \\ \text{np.std(t, 0) renvoie } \left(\frac{1.5 \ 1.5 \ 1.5}{1.5}\right) \\ \\ \text{np.std(t, 1) renvoie} \left(\frac{0.816 \dots}{0.816 \dots}\right) \\ \\ \text{np.cumsum(t) renvoie } \left(1 \ 3 \ 6 \ 10 \ 15 \ 21\right) \\ \\ \end{array}$			t = np.array([[1, 2, 3], [4, 5, 6]])
np.sum (t, 1) renvoie $\begin{pmatrix} 6 \\ 15 \end{pmatrix}$ np.min (minimum des éléments d'un tableau (np.min(t) renvoie 1 np.min(t, 0) renvoie (1 2 3) np.min(t, 1) renvoie $\begin{pmatrix} 1 \\ 4 \end{pmatrix}$ np.max (minimum des éléments d'un tableau (np.max(t) renvoie $\begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$ np.max(t) renvoie $\begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$ np.mean (mp.max(t) renvoie $\begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$ np.mean (mp.max(t) renvoie $\begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$ np.mean(t) renvoie $\begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$ np.mean(t) renvoie $\begin{pmatrix} 2 \\ 5 \end{pmatrix}$ np.mean(t) renvoie $\begin{pmatrix} 2 \\ 5 \end{pmatrix}$ np.median(t) renvoie $\begin{pmatrix} 2 \\ 5 \end{pmatrix}$ np.median(t) renvoie $\begin{pmatrix} 2 \\ 5 \end{pmatrix}$ np.median(t, 0) renvoie $\begin{pmatrix} 2 \\ 5 \end{pmatrix}$ np.median(t, 1) renvoie $\begin{pmatrix} 2 \\ 5 \end{pmatrix}$ np.var(t) renvoie $\begin{pmatrix} 2 \\ 5 \end{pmatrix}$ np.std(t) renvoie $\begin{pmatrix} 2 \\ 5 \end{pmatrix}$			
np.sum (t, 1) renvoie $\begin{pmatrix} 6 \\ 15 \end{pmatrix}$ np.min (minimum des éléments d'un tableau (np.min(t) renvoie 1 np.min(t, 0) renvoie (1 2 3) np.min(t, 1) renvoie $\begin{pmatrix} 1 \\ 4 \end{pmatrix}$ np.max (maximum des éléments d'un tableau (np.max(t, 1) renvoie $\begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$ np.mean (mp.max(t) renvoie $\begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$ np.mean (mp.mean(t) renvoie $\begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$ np.mean (mp.mean(t) renvoie $\begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$ np.mean (mp.mean(t) renvoie $\begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$ np.mean (mp.mean(t) renvoie $\begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$ np.mean (mp.mean(t) renvoie $\begin{pmatrix} 2 \\ 5 \\ 5 \end{pmatrix}$ np.median (mp.median(t) renvoie $\begin{pmatrix} 2 \\ 5 \\ 5 \end{pmatrix}$ np.median (mp.median(t) renvoie $\begin{pmatrix} 2 \\ 5 \\ 5 \end{pmatrix}$ np.median (mp.median(t) renvoie $\begin{pmatrix} 2 \\ 5 \\ 5 \end{pmatrix}$ np.median (mp.median(t) renvoie $\begin{pmatrix} 2 \\ 5 \\ 5 \end{pmatrix}$ np.median (mp.median(t) renvoie $\begin{pmatrix} 2 \\ 5 \\ 5 \end{pmatrix}$ np.median (mp.median(t) renvoie $\begin{pmatrix} 2 \\ 5 \\ 5 \end{pmatrix}$ np.median (mp.median(t) renvoie $\begin{pmatrix} 2 \\ 5 \\ 5 \end{pmatrix}$ np.median (mp.median(t) renvoie $\begin{pmatrix} 2 \\ 5 \\ 5 \end{pmatrix}$ np.median (mp.median(t) renvoie $\begin{pmatrix} 2 \\ 5 \\ 5 \end{pmatrix}$ np.median (mp.median(t) renvoie $\begin{pmatrix} 2 \\ 5 \\ 5 \end{pmatrix}$ np.median (mp.median(t) renvoie $\begin{pmatrix} 2 \\ 5 \\ 5 \end{pmatrix}$ np.median (mp.median(t) renvoie $\begin{pmatrix} 2 \\ 5 \\ 5 \end{pmatrix}$ np.median (mp.median(t) renvoie $\begin{pmatrix} 2 \\ 5 \\ 5 \end{pmatrix}$ np.median (mp.median(t) renvoie $\begin{pmatrix} 2 \\ 5 \\ 5 \end{pmatrix}$ np.median (mp.median(t) renvoie $\begin{pmatrix} 2 \\ 5 \\ 5 \end{pmatrix}$ np.median (mp.median(t) renvoie $\begin{pmatrix} 2 \\ 5 \\ 5 \end{pmatrix}$ np.median (mp.median(t) renvoie $\begin{pmatrix} 2 \\ 5 \\ 5 \end{pmatrix}$ np.median (mp.median(t) renvoie $\begin{pmatrix} 2 \\ 5 \\ 5 \end{pmatrix}$ np.median (mp.median(t) renvoie $\begin{pmatrix} 2 \\ 5 \\ 5 \end{pmatrix}$ np.median (mp.median(t) renvoie $\begin{pmatrix} 2 \\ 5 \\ 5 \end{pmatrix}$ np.median (mp.median(t) renvoie $\begin{pmatrix} 2 \\ 5 \\ 5 \end{pmatrix}$ np.median (mp.median(t) renvoie $\begin{pmatrix} 2 \\ 5 \\ 5 \end{pmatrix}$ np.median (mp.median(t) renvoie $\begin{pmatrix} 2 \\ 5 \\ 5 \end{pmatrix}$ np.median (mp.median(t) renvoie $\begin{pmatrix} 2 \\ 5 \\ 5 \end{pmatrix}$ np.median (mp.median(t) renvoie $\begin{pmatrix} 2 \\ 5 \\ 5 \end{pmatrix}$ np.median (mp.median(t) renvoie $\begin{pmatrix} 2 \\ 5 \\ 5 \end{pmatrix}$ np.median (mp.median(t) renvoie $\begin{pmatrix} 2 \\ 5 \\ 5 \end{pmatrix}$ np.median (mp.median(t) renvoie $\begin{pmatrix} 2 \\ 5 \\ 5 \end{pmatrix}$ np.median (mp.median(t) renvoie $\begin{pmatrix} 2 \\ 5 \\ 5 \end{pmatrix}$ np.median (mp.median(t) renvoie $\begin{pmatrix} 2 \\ 5 \\ 5 \end{pmatrix}$ np.median (mp.median(t) renvoie $\begin{pmatrix} 2 \\ 5 \\ 5 \end{pmatrix}$ np.median (mp.			np.sum(t, 0) renvoie (5 7 9)
np.min () renvoie 15 np.min(t) renvoie 15 np.min(t) renvoie 15 np.min(t) renvoie 15 np.min(t) np.min(t) np.min(t) np.min(t) np.min(t) np.min(t) np.min(t, 0) renvoie 15 np.min(t, 1) renvoie 15 np.min(t, 1) renvoie 15 np.max(t) renvoie 15 np.max(t) np.max(t, 0) renvoie 15 np.max(t, 1) renvoie 15 np.mean(t) renvoie 15 np.mean(t) renvoie 15 np.mean(t) renvoie 15 np.mean(t, 1) renvoie 15 np.mean(t, 1) renvoie 15 np.mean(t, 1) renvoie 15 np.median(t) renvoie 15 np.median(t) renvoie 15 np.median(t, 0) renvoie 15 np.median(t, 1) r	np.sum	Somme des elements d'un tableau	(6)
np.min Minimum des éléments d'un tableau np.min(t, 0) renvoie $(1 \ 2 \ 3)$ np.min(t, 1) renvoie $(1 \ 4)$ np.max(t) renvoie $(1 \ 4)$ np.max(t, 0) renvoie $(1 \ 5)$ np.max(t, 1) renvoie $(1 \ 5)$ np.mean(t) renvoie $(1 \ 5)$ np.mean(t) renvoie $(1 \ 5)$ np.mean(t, 0) renvoie $(1 \ 5)$ np.mean(t, 1) renvoie $(1 \ 5)$ np.median(t) renvoie $(1 \ 5)$ np.median(t) renvoie $(1 \ 5)$ np.median(t, 0) renvoie $(1 \ 5)$ np.median(t, 1) renvoie $(1 \ 5)$ np.median(t, 1) renvoie $(1 \ 5)$ np.var(t) renvoie $(1 \ 5)$ np.std(t) renvoie $(1 $			15
np.min Minimum des elements d'un tableau np.min(t, 1) renvoie $\begin{pmatrix} 1\\4 \end{pmatrix}$ np.max(t) renvoie 6 np.max(t) renvoie (4 5 6) np.max(t, 0) renvoie (4 5 6) np.mean(t) renvoie 3.5 np.mean(t) renvoie (2.5 3.5 4.5) np.mean(t, 1) renvoie $\begin{pmatrix} 2\\5 \end{pmatrix}$ np.median Médiane des éléments d'un tableau Ne var Variance des éléments d'un tableau Ne var(t) renvoie (2.5 3.5 4.5) np.median(t, 1) renvoie $\begin{pmatrix} 2\\5 \end{pmatrix}$ np.var(t) renvoie (2.5 3.5 4.5) np.var(t) renvoie (3.5 1.5 1.5 1.5) np.std(t) renvoie (1.5 1.5 1.5) np.cumsum(t) renvoie			
$\begin{array}{c} & \text{np.min(t, 1) renvoie} \begin{pmatrix} 1 \\ 4 \end{pmatrix} \\ & \text{np.max(t) renvoie} \begin{pmatrix} 6 \\ 6 \end{pmatrix} \\ & \text{np.max(t, 0) renvoie} \begin{pmatrix} (4 - 5 - 6) \\ 6 \end{pmatrix} \\ & \text{np.max(t, 1) renvoie} \begin{pmatrix} (3 - 6) \\ 6 \end{pmatrix} \\ & \text{np.max(t, 1) renvoie} \begin{pmatrix} (3 - 6) \\ 6 \end{pmatrix} \\ & \text{np.mean(t) renvoie} \begin{pmatrix} (3 - 6) \\ 6 \end{pmatrix} \\ & \text{np.mean(t, 1) renvoie} \begin{pmatrix} (2 - 5) \\ 5 \end{pmatrix} \\ & \text{np.mean(t, 1) renvoie} \begin{pmatrix} (2 - 5) \\ 5 \end{pmatrix} \\ & \text{np.mean(t, 1) renvoie} \begin{pmatrix} (2 - 5) \\ 5 \end{pmatrix} \\ & \text{np.median(t, 1) renvoie} \begin{pmatrix} (2 - 5) \\ 5 \end{pmatrix} \\ & \text{np.median(t, 1) renvoie} \begin{pmatrix} (2 - 5) \\ 5 \end{pmatrix} \\ & \text{np.median(t, 1) renvoie} \begin{pmatrix} (2 - 5) \\ 5 \end{pmatrix} \\ & \text{np.var(t) renvoie} \begin{pmatrix} (2 - 5) \\ 5 \end{pmatrix} \\ & \text{np.var(t) renvoie} \begin{pmatrix} (2 - 5) \\ 5 \end{pmatrix} \\ & \text{np.var(t, 0) renvoie} \begin{pmatrix} (2 - 5) \\ (2 - 5) \end{pmatrix} \\ & \text{np.var(t, 1) renvoie} \begin{pmatrix} (0 - 6) \\ (0 - 6) \\ (0 - 6) \end{pmatrix} \\ & \text{np.std} \begin{pmatrix} (1 - 5) \\ 5 \end{pmatrix} \\ $	nn min	Minimum des éléments d'un tableau	$np.min(t, 0)$ renvoie $\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$
np.max (4) np.max(t) renvoie 6 np.max(t, 0) renvoie (4 5 6) np.max(t, 1) renvoie (3 6) np.max(t, 1) renvoie (2.5 3.5 4.5) np.mean(t) renvoie 3.5 np.mean(t, 0) renvoie (2.5 3.5 4.5) np.median (1) renvoie (2.5 3.5 4.5) np.median(t) renvoie 3.5 np.median(t, 0) renvoie (2.5 3.5 4.5) np.median(t, 0) renvoie (2.5 3.5 4.5) np.median(t, 1) renvoie $\left(\frac{2}{5}\right)$ np.war(t) renvoie 2.916 np.var(t) renvoie 2.916 np.var(t, 0) renvoie (2.25 2.25 2.25) np.var(t, 1) renvoie $\left(\frac{0.6 \dots}{0.6 \dots}\right)$ np.std (2) renvoie (1.5 1.5 1.5) np.std(t, 1) renvoie (0.816) np.std(t, 1) renvoie (1 3 6 10 15 21)	пр.штп	Minimum des elements d'un tableau	$n_{\text{n}} = n_{\text{n}} + 1$ reprojection
np.max Maximum des éléments d'un tableau np.max(t, 0) renvoie $\begin{pmatrix} 4 & 5 & 6 \\ np.max(t, 1) renvoie & 3.5 \\ np.mean(t) renvoie 3.5 \\ np.mean(t, 0) renvoie & (2.5 & 3.5 & 4.5) \\ np.median & Médiane des éléments d'un tableau & np.median(t, 1) renvoie & (2.5 & 3.5 & 4.5) \\ np.median(t, 0) renvoie & (2.5 & 3.5 & 4.5) \\ np.median(t, 0) renvoie & (2.5 & 3.5 & 4.5) \\ np.median(t, 1) renvoie & (2.5 & 3.5 & 4.5) \\ np.median(t, 1) renvoie & (2.5 & 3.5 & 4.5) \\ np.var(t) renvoie & 2.916 \dots \\ np.var(t, 0) renvoie & (2.25 & 2.25 & 2.25) \\ np.var(t, 1) renvoie & (0.66 \dots \\ 0.66 \dots \\ 0.61 \dots \\ 0.816 \dots \\ np.std(t, 1) renvoie & (0.816 \dots \\ 0.816 \dots \\ 0$			4/
np.max Maximum des elements d'un tableau np.max(t, 1) renvoie $\binom{3}{6}$ np.mean(t) renvoie 3.5 np.mean(t, 0) renvoie (2.5 3.5 4.5) np.mean(t, 1) renvoie $\binom{2}{5}$ np.median(t) renvoie 3.5 np.median(t) renvoie 3.5 np.median(t) renvoie 3.5 np.median(t, 0) renvoie (2.5 3.5 4.5) np.median(t, 0) renvoie (2.5 3.5 4.5) np.median(t, 1) renvoie $\binom{2}{5}$ np.var(t) renvoie 2.916 np.var(t, 0) renvoie (2.25 2.25 2.25) np.var(t, 1) renvoie $\binom{0.6}{0.6}$ np.std Êcart-type des éléments d'un tableau np.std(t, 0) renvoie (1.5 1.5 1.5) np.std(t, 0) renvoie (0.816) np.std(t, 1) renvoie $\binom{0.816}{0.816}$ np.cumsum(t) renvoie (1 3 6 10 15 21)			
np.mean Moyenne des éléments d'un tableau np.mean(t, 1) renvoie $\binom{3}{6}$ np.mean(t) renvoie 3.5 np.mean(t, 0) renvoie (2.5 3.5 4.5) np.mean(t, 1) renvoie $\binom{2}{5}$ np.median(t) renvoie 3.5 np.median(t) renvoie 3.5 np.median(t) renvoie 3.5 np.median(t, 0) renvoie (2.5 3.5 4.5) np.median(t, 1) renvoie $\binom{2}{5}$ np.median(t, 1) renvoie $\binom{2}{5}$ np.median(t, 1) renvoie $\binom{2}{5}$ np.var(t) renvoie 2.916 np.var(t, 0) renvoie (2.25 2.25 2.25) np.var(t, 1) renvoie $\binom{0.6}{0.6}$ np.std(t) renvoie 1.707 np.std(t, 0) renvoie (1.5 1.5 1.5) np.std(t, 0) renvoie (1.5 1.5 1.5) np.std(t, 1) renvoie $\binom{0.816}{0.816}$ np.cumsum(t) renvoie (1 3 6 10 15 21)	np.max	Maximum des éléments d'un tableau	$np.max(t, 0) renvoie \begin{pmatrix} 4 & 5 & 6 \end{pmatrix}$
np.mean (t) renvoie 3.5 np.mean(t, 0) renvoie $(2.5 \ 3.5 \ 4.5)$ np.mean(t, 1) renvoie $(2.5 \ 3.5 \ 4.5)$ np.median(t) renvoie 3.5 np.median(t) renvoie 3.5 np.median(t) renvoie $(2.5 \ 3.5 \ 4.5)$ np.median(t, 0) renvoie $(2.5 \ 3.5 \ 4.5)$ np.median(t, 1) renvoie $(2.5 \ 3.5 \ 4.5)$ np.median(t, 1) renvoie $(2.5 \ 3.5 \ 4.5)$ np.median(t, 1) renvoie $(2.5 \ 3.5 \ 4.5)$ np.war(t) renvoie 2.916 np.var(t) renvoie 2.916 np.var(t, 0) renvoie $(2.25 \ 2.25 \ 2.25)$ np.var(t, 1) renvoie $(0.6 \)$ np.std(t) renvoie 1.707 np.std(t) renvoie 1.707 np.std(t, 0) renvoie $(1.5 \ 1.5 \ 1.5)$ np.std(t, 1) renvoie $(0.816 \)$ np.std(t, 1) renvoie $(0.816 \)$ np.cumsum(t) renvoie $(1 \ 3 \ 6 \ 10 \ 15 \ 21)$	inp . mair	Manifelli des ciclients d'un tubicad	$np.max(t. 1) renvoie \binom{3}{3}$
np.mean Moyenne des éléments d'un tableau np.mean(t, 0) renvoie $(2.5 \ 3.5 \ 4.5)$ np.mean(t, 1) renvoie $\begin{pmatrix} 2 \\ 5 \end{pmatrix}$ np.median(t) renvoie 3.5 np.median(t, 0) renvoie $(2.5 \ 3.5 \ 4.5)$ np.median(t, 0) renvoie $(2.5 \ 3.5 \ 4.5)$ np.median(t, 1) renvoie $\begin{pmatrix} 2 \\ 5 \end{pmatrix}$ np.var(t) renvoie 2.916 np.var(t, 0) renvoie 2.916 np.var(t, 0) renvoie 2.916 np.var(t, 1) renvoi			
np.mean Moyenne des elements d'un tableau np.mean(t, 1) renvoie $\begin{pmatrix} 2 \\ 5 \end{pmatrix}$ np.median(t) renvoie 3.5 np.median(t, 0) renvoie $\begin{pmatrix} 2.5 \\ 3.5 \end{pmatrix}$ np.median(t, 1) renvoie $\begin{pmatrix} 2.5 \\ 5 \end{pmatrix}$ np.var(t) renvoie 2.916 np.var(t, 0) renvoie $\begin{pmatrix} 2.25 \\ 5 \end{pmatrix}$ np.var(t, 1) renvoie $\begin{pmatrix} 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \end{pmatrix}$ np.std Écart-type des éléments d'un tableau np.std(t, 0) renvoie $\begin{pmatrix} 0.6 \\ 0.6 \\ 0.6 \\ 0.816$			
np.median $(t, 1) \text{ renvoie } \begin{pmatrix} 2 \\ 5 \end{pmatrix}$ np.median(t) renvoie 3.5 np.median(t, 0) renvoie $(2.5 \ 3.5 \ 4.5)$ np.median(t, 1) renvoie $\begin{pmatrix} 2 \\ 5 \end{pmatrix}$ np.var(t) renvoie 2.916 np.var(t, 0) renvoie $(2.25 \ 2.25 \ 2.25)$ np.var(t, 1) renvoie $\begin{pmatrix} 0.6 \\ 0.6 \\ 0.6 \end{pmatrix}$ np.std $(t, 1) \text{ renvoie } (t, 2) \text{ renvoie } (t, 3) $	np.mean	Movenne des éléments d'un tableau	np.mean(t, 0) renvoie $(2.5 3.5 4.5)$
np.median (t) renvoie 3.5 np.median(t) renvoie $(2.5 \ 3.5 \ 4.5)$ np.median(t, 0) renvoie $(2.5 \ 3.5 \ 4.5)$ np.median(t, 1) renvoie $(2.5 \ 3.5 \ 4.5)$ np.war(t) renvoie $(2.5 \ 3.5 \ 4.5)$ np.var(t) renvoie $(2.25 \ 2.25 \ 2.25)$ np.var(t, 0) renvoie $(2.25 \ 2.25 \ 2.25)$ np.var(t, 1) renvoie $(0.6 \dots)$ np.std(t) renvoie $1.707 \dots$ np.std(t, 0) renvoie $1.707 \dots$ np.std(t, 0) renvoie $1.707 \dots$ np.std(t, 1) renvoie $1.707 \dots$ n	1		$np.mean(t, 1) renvoie {2 \choose z}$
np.median Médiane des éléments d'un tableau np.median(t, 0) renvoie $(2.5 \ 3.5 \ 4.5)$ np.median(t, 1) renvoie $\begin{pmatrix} 2 \\ 5 \end{pmatrix}$ np.var(t) renvoie 2.916 np.var(t, 0) renvoie $(2.25 \ 2.25 \ 2.25)$ np.var(t, 1) renvoie $\begin{pmatrix} 0.6 \\ 0.6 \end{pmatrix}$ np.std Écart-type des éléments d'un tableau np.std(t) renvoie $(1.5 \ 1.5 \ 1.5)$ np.std(t, 1) renvoie $\begin{pmatrix} 0.816 \\ 0.816 \end{pmatrix}$ np.cumsum(t) renvoie $(1 \ 3 \ 6 \ 10 \ 15 \ 21)$			
np.median mp.median(t, 1) renvoie $\binom{2}{5}$ np.var(t) renvoie 2.916 np.var(t, 0) renvoie $(2.25 \ 2.25 \ 2.25)$ np.var(t, 1) renvoie $\binom{0.6 \dots}{0.6 \dots}$ np.std Ecart-type des éléments d'un tableau pp.std(t) renvoie 1.707 np.std(t, 0) renvoie $\binom{0.816 \dots}{0.816 \dots}$ np.cumsum(t) renvoie $1.3 \ 6 \ 10 \ 15 \ 21$			_
np.var	np.median	Médiane des éléments d'un tableau	(a)
np.var			np.median(t, 1) renvoie $\binom{2}{5}$
np.var $ \begin{array}{c} \text{np.var(t, 0) renvoie } (2.25 \ 2.25 \ 2.25) \\ \text{np.var(t, 1) renvoie } \begin{pmatrix} 0.6 \dots \\ 0.6 \dots \end{pmatrix} \\ \text{np.std(t) renvoie } 1.707\dots \\ \text{np.std(t, 0) renvoie } (1.5 \ 1.5 \ 1.5) \\ \text{np.std(t, 0) renvoie } \begin{pmatrix} 0.816 \dots \\ 0.816 \dots \end{pmatrix} \\ \text{np.cumsum(t) renvoie } (1 \ 3 \ 6 \ 10 \ 15 \ 21) \\ \end{array} $			
np.var (t, 1) renvoie $\begin{pmatrix} 0.6 \dots \\ 0.6 \dots \end{pmatrix}$ np.std (t) renvoie 1.707 np.std(t, 0) renvoie $\begin{pmatrix} 0.816 \dots \\ 0.816 \dots \end{pmatrix}$ np.std(t, 1) renvoie $\begin{pmatrix} 0.816 \dots \\ 0.816 \dots \end{pmatrix}$			
np.std $\stackrel{\text{f.cart-type des \'el\'ements d'un tableau}}{\text{Ecart-type des \'el\'ements d'un tableau}}$ $\stackrel{\text{np.std(t) renvoie } 1.707}{\text{np.std(t, 0) renvoie } (1.5 1.5 1.5)}$ $\stackrel{\text{np.std(t, 1) renvoie }}{\text{(0.816)}}$ $\stackrel{\text{np.std(t) renvoie } (1.5 1.5 1.5)}{\text{(0.816)}}$	np.var	Variance des éléments d'un tableau	
np.std $\stackrel{\text{f.cart-type des \'el\'ements d'un tableau}}{\text{Ecart-type des \'el\'ements d'un tableau}}$ $\stackrel{\text{np.std(t) renvoie } 1.707}{\text{np.std(t, 0) renvoie } (1.5 1.5 1.5)}$ $\stackrel{\text{np.std(t, 1) renvoie }}{\text{(0.816)}}$ $\stackrel{\text{np.std(t) renvoie } (1.5 1.5 1.5)}{\text{(0.816)}}$			np.var(t, 1) renvoie $\begin{pmatrix} 0.0 \dots \\ 0.6 \end{pmatrix}$
np.std $\stackrel{\text{Écart-type des éléments d'un tableau}}{\text{Ecart-type des éléments d'un tableau}}$ $\stackrel{\text{np.std(t, 0) renvoie (1.5 1.5 1.5)}}{\text{np.std(t, 1) renvoie (0.816)}}$ $\stackrel{\text{np.std(t, np.std(t, 1) renvoie (1.5 1.5 1.5)}}{\text{np.cumsum(t) renvoie (1.5 1.5 1.5)}}$			/
np.std np.std (0.816) np.std(t, 1) renvoie (0.816) np.cumsum(t) renvoie $(1 \ 3 \ 6 \ 10 \ 15 \ 21)$		4	•
np.cumsum(t) renvoie (1 3 6 10 15 21)	np.std	Ecart-type des éléments d'un tableau	
np.cumsum(t) renvoie (1 3 6 10 15 21)			np.std(t, 1) renvoie $\begin{pmatrix} 0.816 \end{pmatrix}$
Nommo aumulée des éléments		Commo aumulán dos áláments	
np. cumsum Apletit le tebleco di pércessire	np.cumsum	Somme cumulée des éléments Aplatit le tableau si nécessaire	$\frac{\text{np.cumsum(t, 0) renvoie}}{5 7 9}$
Aplatit le tableau si necessaire			$\frac{1}{2}$ no sum sum $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
$\begin{array}{c c} \text{np.cumsum(t, 1) renvoie} & 4 & 9 & 15 \end{array}$			$\begin{bmatrix} \text{np.cumsum(t, 1) renvoie} \\ 4 & 9 & 15 \end{bmatrix}$

${\bf I.5}$ - Pyplot - ${\bf Graphiques}$

Module pour effectuer des rendus graphiques : import matplotlib.pyplot as plt

Tracé		
	X: liste des abscisses	
<pre>plt.plot(X, Y)</pre>	Y : liste des ordonnées	
	Crée le graphique contenant le tracé de la suite de points	
plt.show()	Montre le graphique	
	Compléments	
<pre>plt.xlim(xmin, xmax)</pre>	xmin: abscisse minimale	
pit.xiim(xmin, xmax)	xmax : abscisse maximale	
<pre>plt.ylim(ymin, ymax)</pre>	ymin : ordonnée minimale	
pic.yiim(ymin, ymax)	ymax : ordonnée maximale	
<pre>plt.axis([xmin, xmax, ymin, ymax])</pre>	Fixe les abscisses / ordonnées minimales / maximales	
plt.grid(True)	Affiche le quadrillage	
<pre>plt.grid(False)</pre>	Masque le quadrillage	
plt.legend()	Affiche la légende.	
Graphiques particuliers		
plt.hist(x)	Crée un histogramme avec les valeurs de x	
	Choix des critères automatique ou à préciser avec une option	
plt.bar(x, hauteur)	x liste des abscisses des barres	
height liste des hauteurs des barres		
plt.boxplot	Boîtes à moustaches	

I.6 - Random - Pseudo-alea

Module pour utiliser des nombres pseudo-aléatoires : import numpy.random as rd

Loi uniforme	
rd.rand(n, p)	Renvoie un tableau à n lignes et p colonnes
	Chaque élément est la réalisation d'une variable aléatoire de loi uniforme sur $[0,1]$

I.7 - Pandas - Panel data - Gestion des données

Module pour manipuler des données : import pandas as pd

Statistiques	
pd.mean	Moyenne des éléments du tableau par catégorie
pd.std	Écart-type des éléments du tableau par catégorie