The file q4.txt defines kets, operators, and a measurement function for simulating a four qbit quantum computer. See eigenmath.org/q.c for the program that generates q4.txt.

Ket vectors have 16 elements, one element for each of the 16 states represented by four qbits. Qbit order is $|q_3q_2q_1q_0\rangle$. The following basis kets are defined in q4.txt.

$$\begin{split} |0\rangle &= |0000_2\rangle = (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) \\ |1\rangle &= |0001_2\rangle = (0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) \\ |2\rangle &= |0010_2\rangle = (0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0) \\ |3\rangle &= |0011_2\rangle = (0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0) \\ \vdots \\ |15\rangle &= |1111_2\rangle = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1) \end{split}$$

Operators are 16×16 matrices that rotate ket vectors. (A ket always has unit length.) The following operators are defined in q4.txt.

 C_{mn} Controlled not (CNOT) operator, m is the control qbit, n is the target qbit.

 H_n Hadamard operator on qbit n.

 X_n Pauli X (NOT) operator on qbit n.

 Y_n Pauli Y operator on qbit n.

 Z_n Pauli Z operator on qbit n.

Function M measures the final state by drawing a graph of the probability for each of 16 states.

$$M(\psi)$$

Quantum algorithms are expressed as sequences of operators applied to the initial state $|0\rangle$. The operator sequence should be read backwards, from right to left, although the direction makes no difference mathematically.

Deutsch-Jozsa algorithm

Let f be the oracle function. Then the Deutsch-Jozsa algorithm is

$$\psi = H_2 H_1 H_0 f H_3 X_3 H_2 H_1 H_0 |0\rangle$$

Bernstein-Vazirani algorithm

Let f be the oracle function. Then the Bernstein-Vazirani algorithm is

$$\psi = H_2 H_1 H_0 f Z_3 H_3 H_2 H_1 H_0 |0\rangle$$