MAT473 Homework 1

- 1. Let R be a ring. Prove the following basics:
 - (a) $0 \cdot a = 0$ for all $a \in R$.
 - (b) If $a, b \in R$, then $a \cdot (-b) = -(a \cdot b)$. (Be careful as this isn't just "moving around a minus sign"; it says that a times the additive inverse of b is suppose to be the additive inverse of ab, and that's what you must prove.)
- 2. Let n be a positive integer. Prove that the set of zero divisors of $\mathbb{Z}/n\mathbb{Z}$ is precisely the set of elements in $\mathbb{Z}/n\mathbb{Z}$ that are not relatively prime to n, and that the set of units in $\mathbb{Z}/n\mathbb{Z}$ is the set of elements that are relatively prime to n.
- 3. Prove that if R is an integral domain and the cardinality of R is finite, then R is a field.
- 4. Let R be an integral domain, and $a, b \in R$ be elements with $a \neq 0$. Prove that the equation $ax^2 = b$ has at most two solutions in R. Then find an example of an integral domain R and an equation $ax^2 = b$ that has no solutions, one that has exactly one solution, and one that has exactly two solutions.
- 5. Let $\varphi: R \to R'$ be a ring homomorphism. Prove that $\ker \varphi$ is a subring with the additional absorbtion property. That is, if $x \in \ker \varphi$ and $r \in R$, then $rx \in \ker \varphi$ and $xr \in \ker \varphi$. Such a subring is called a two-sided ideal in R. Find all two-sided ideals in $\mathbb{Z}/60\mathbb{Z}$.
- 6. Consider the ring \mathbb{Z} and a two-sided ideal $I \subset \mathbb{Z}$. Prove that $x, y \in I$ if and only if $gcd(x, y) \in I$.
- 7. Let F be a field and $a \in F$ be an arbitrary element. Define the function $\operatorname{ev}_a : F[x] \to F$ via $\operatorname{ev}_a(f) = f(a)$ (i.e., just replace x with a and evaluate).
 - (a) Prove that ev_a is a ring homomorphism.
 - (b) Compute the kernel of ev_a and prove your result.

Name:	1
-------	---