$\label{likerich} $$ \frac{\text{tikz/,/tikz/graphs/}}{\text{conversions/canvas coordinate/.code} = 1} \ \ , \ conversions/coordinate/.code = 1$ 

# ÃL'valuation de la confidentialitÃl' par un processus de diffusion de vulnÃl'rabilitÃl'

Aghiles DJOUDI

Sorbonne UniversitÃľ

July 18, 2019

- 1. Introduction
- DAl'veloppement
- 3. Conclusion

# Context

|                                              | Monde (2018)   | Monde (2022)  | France (2018) |
|----------------------------------------------|----------------|---------------|---------------|
| Nombre dâĂŹutilisateurs                      | 3,8 milliards  | 4,2 milliards | 25,9 millions |
| Nombre de comptes Ãľ mail                    | 4,4 milliards  | 5,6 milliards | 68 millions   |
| Nombre dâĂŹadresses Ãľ mail par utilisateurs | 1,7            | 1,9           | 2,1           |
| Nombre de mails reÃğus chaque jour           | 281 milliards  | 333 milliards | 1,4 milliard  |
| Le marchÃľ de lâĂŹÃľmail                     | 9,8 Mrds de \$ | 20,4 Mrds     | ?             |

Table 1: Les chiffres 2018 de lâĂŹÃľmail [BibEntry2014Sep].

1. Introduction | 1. Statistiques 1/11

# Context

|                                              | Monde (2018)   | Monde (2022)  | France (2018) |
|----------------------------------------------|----------------|---------------|---------------|
| Nombre dâĂŹutilisateurs                      | 3,8 milliards  | 4,2 milliards | 25,9 millions |
| Nombre de comptes Ãľ mail                    | 4,4 milliards  | 5,6 milliards | 68 millions   |
| Nombre dâĂŹadresses Ãľ mail par utilisateurs | 1,7            | 1,9           | 2,1           |
| Nombre de mails reÃğus chaque jour           | 281 milliards  | 333 milliards | 1,4 milliard  |
| Le marchÃľ de lâĂŹÃľmail                     | 9,8 Mrds de \$ | 20,4 Mrds     | ?             |

Table 1: Les chiffres 2018 de lâĂŹÃľmail [BibEntry2014Sep].

1. Introduction | 1. Statistiques 1/11

## Motivation

Introduction

- Donner un moyen aux utilisateurs de mesurer leur vulnÃirabilitÃi's
- → Aider les utilisateurs Ãă mieux configurer leur messagerie.
- Alerter les utilisateurs d'une nouvelle vulnÃ'rabilitÃ'.
- Sensibiliser les utilisateurs du niveau de diffusion des menaces.



Figure 1: Indice de confidentialitÃľ [1].

1. Introduction | 2. Motivation 2/11

## DÃľfis Introduction

- Recommander des mesures de s\(\tilde{A}\)l'curit\(\tilde{A}\)l' personnalis\(\tilde{A}\)l's
  - → Nouveau mot de passe chaque pÃl'riode de temps
  - → SÃľcuriser l'Ãľchange avec des comptes vulnÃľrables
  - Adapter les permissions aux changements
- Calculer la vulnÃ'rabilitÃ' de l'environnement social
  - → Calculer le niveau de vulnÃl'rabilitÃl' des interactions
  - Calculer le niveau d'influence entre les utilisateurs.
- Calculer la vulnÃľrabilitÃľ du chemin des messages
  - Identification des serveurs MTA
  - → Attribuer une note de confiance Ãă chaque serveur
  - Calculer la confiance moyenne du chemin.





Figure 2: Interaction sociale.

## DÃľfis Introduction

- Recommander des mesures de sÃl'curitÃl' personnalisÃl's
  - Nouveau mot de passe chaque p\( \tilde{A} \) iriode de temps
  - → SÃľcuriser l'Ãľchange avec des comptes vulnÃľrables
  - Adapter les permissions aux changements
- Calculer la vulnÃ'rabilitÃ' de l'environnement social
  - → Calculer le niveau de vulnÃl'rabilitÃl' des interactions
  - → Calculer le niveau d'influence entre les utilisateurs
- Calculer la vulnÃl'rabilitÃl' du chemin des messages
  - Identification des serveurs MTA
  - → Attribuer une note de confiance Ãă chaque serveur
  - Calculer la confiance moyenne du chemin.





Figure 2: Interaction sociale.

1. Introduction | 3. DĀl'fis Āǎ relever 3/11

### Contributions

Introduction

- Estimation de l'indice de confidentialitAl social.
  - → VulnÃľrabilitÃľ individuelle -> VulnÃľrabilitÃľ sociale.
  - Processus de diffusion de vulnÃ/rabilitÃ/.
  - Relation entre confiance et vulnÃ/rabilitÃ/.
  - → DonnÃl'es: ÃL'mails de Enron & Caliopen.



Figure 3: La vulnÃľrabilitÃľ d'un utilisateur est la vulnÃľrabilitÃľ de tous.

1. Introduction | 4. Contributions 4/11

- Introduction
- 2. DÃľ veloppement
- 3. Conclusion

- Introduction
- 2. DÃľ veloppement
- 3. Conclusion

- 1. Travaux connexes
- 2. Processus de diffusion
- 3. ExpÃl'rimentation

- Introduction
- 2. DÃľ veloppement
- 3. Conclusion

- 1. Travaux connexes
- 2. Processus de diffusion
- ExpAl'rimentation

# Travaux connexes

Comparaison

| Travaux            | Contribution                      | Performance                               |
|--------------------|-----------------------------------|-------------------------------------------|
| [2] Protect U      | Classification des interlocuteurs | Configuration des listes d'amis           |
| [3] Privacy Wizard | Classification des interlocuteurs | Configuration des permissions             |
| [4] SocialMarket   | IntÃľrÃłt communs                 | ÃL'valuation des relation de confiance    |
| [5] TAPE           | Fuite d'information               | ÃL'valuation de la diffusion de l'info    |
| [6] LENS           | Protection anti-spam              | ÃL'valuation des Ãl'metteurs de confiance |
| [7] SocialEmail    | Classer les chemins des msg       | ÃL'valuation de la fiabilitÃl' du message |
| [8] Privacy Index  | VisibilitÃľ, sensibilitÃľ         | ÃL'valuation de l'exposition des msg      |

Table 2: Contributions des travaux existants.

- Introduction
- 2. DÃľ veloppement
- 3. Conclusion

- Travaux connexes
- 2. Processus de diffusion
- ExpAl'rimentation

# Etape 1: Calcule de la vulnÃl'rabilitÃl' individuelle

MÃľthode

#### FntrÃľe:

- VulnĂl'rabilitĂl' de la machine utilisĂl'e.
  - \* Connexion rÃl'seaux (privÃl' (1) ou publique (2))
  - \* Type d'architecture: Ethernet, 5G, 4G, Wifi (1:4)
  - \* SystÃÍme d'exploitation (Windows, Unix) (1:2)
- Navigateur web (1:10)
   → VulnÃľrabilitÃľ du compte utilisÃľ
  - Mdp utilisÃľ, mode de rÃľcupÃľration des mdp (1:5)
  - \* Nombre de sessions ouvertes en m\( \text{A}\) tme temps.(1:nbr)
  - \* Mode de chiffrement, signature, version TLS

#### Sortie:

$$Pi = \sum_{i}^{n} \frac{w * V}{n}$$

- \* Pi: VulnÃl'rabilitÃl' individuelle
- \* w: Poids de chaque vulnÃl'rabilitÃl'
- V: Les vulnÃľrabilitÃľs citÃľs au dessus



(1) Figure 4: VulnÃl'rabilitÃl' individuelle.

# Etape 2: Calcule de la rÃl'putation des utilisateurs

MÃľthode

#### EntrÃl'e:

- FrÃl'quence d'utilisation de la messagerie.
- → Horaire, durÃl'e des Ãl'changes (1:5)
- → % des Ãl'changes chiffrÃl's, signÃl's, claires (1:3)
- → Importance des interlocuteurs: Liste favoris (2), noir(1)
- → Type de donnÃl'es: Texte, images, vidÃl'os, script (1:4)

#### MÃľthode:

- → Loi binomiale
- Output:

$$P(reputation) = P(X \ge 1) = 1 - (1 - P(trust))^n$$

- Where.
  - \* X: Niveau de confiance, X ~ B(n,p)n: deg(noeud)

P(X=1): La probabilit $\tilde{A}$ l' de se faire attribu $\tilde{A}$ l' une confiance par un interlocuteur



Figure 5: Niveau de rÃl'putation.

(2)

# Etape 3: Calcule de la vulnÃl'rabilitÃl' sociale

ThÃl'orie de l'influence sociale de Freidkin

- EntrÃľe:
  - Y<sup>(1)</sup> = Vecteur des vulnÃl'rabilitÃl's individuelles de N utilisateurs (eq 1)
- α = Leniveauder putation(d'influence) dechaqueutilisateur(eq2)M = Matriced' adjacenceNxN
- ModÃÍle:

$$Y^{(t)} = \alpha M Y^{(t-1)} + (1 - \alpha) Y^{(t-1)}$$
(3)

- Sortie:
  - $\rightarrow$   $Y^{(t)}$  = Vecteur des vulnÃl'rabilitÃl's sociales des N utilisateurs



P(infection) = P(reputation)

Figure 6: VulnÃl'rabilitÃl' Sociale.

# Etape 3: Calcule de la vulnÃl'rabilitÃl' sociale

ThÃl'orie de l'influence sociale de Freidkin

### PropriÃľtÃľs formelles du modÃÍle:

- Lorsque l'influence d'un utilisateur est Ãl'levÃl', le modÃlle se rÃl'duit aux:
  - vulnĀſrabilitĀſs moyennes de ses amis pondĀſrĀſes par leur niveaux de confiances.

$$Y^{(t)} = 1 * MY^{(t-1)} + (1-1)Y^{(t-1)}$$

$$Y^{(t)} = MY^{(t-1)}$$
(3)

- En absence d'influence, le modAlle se rAlduit Aa:
  - sa propre vulnă'rabilită' pondă'ră'e par le niveau de mă'fiance de ses amis

$$Y^{(t)} = 0 * MY^{(t-1)} + (1-0)Y^{(t-1)}$$

$$Y^{(t)} = Y^{(t-1)}$$
(3)



P(infection) = P(reputation)

Figure 7: VulnÃl'rabilitÃl' sociale.

- Introduction
- 2. DÃľ veloppement
- 3. Conclusion

- 1. Travaux connexes
- 2. Processus de diffusior
- 3. ExpÃl'rimentation

# **ExpÃ**l'rimentation

**ExpÃ**l'rimentation

| ParamÃÍtre          | Valeur   |
|---------------------|----------|
| Utilisateurs        | 958      |
| Messages            | 6966     |
| DiamÃĺtre           | 958      |
| # de msg en moyenne | 2.413361 |
| DensitÃľ des msg    | 0.00252  |
| ModularitÃľ         | 0.654600 |
| Distance moyenne    | 3.042114 |

Table 3: PropriÃľtÃľs des donnÃľes Enron.

| ParamÃÍtre          | Valeur   |
|---------------------|----------|
| Utilisateurs        | 5885     |
| Messages            | 26547    |
| DiamÃÍtre           | 2096     |
| # de msg en moyenne | 9.02192  |
| DensitÃľ des msg    | 0.001533 |
| ModularitÃľ         | 0.86526  |
| Distance moyenne    | 3.914097 |

Table 4: PropriÃľtÃľs des donnÃľes Caliopen.



Figure 8: Enron logo.



Figure 9: Caliopen logo.

- Introduction
- DAl'veloppement
- 3. Conclusion

### Conclusion

- → Le but de ce travail est de simuler un processus de contamination des vulnÃſrabilitÃſs individuelles.
  - → La vulnÃſrabilitÃſ d'un utilisateur est la vulnÃſrabilitÃſ de tous.
  - → A la fin de la diffusion, tous les utilisateurs auront un indice de vulnÃl'rabilitÃl' social.
- Travaux futures
  - → Proposer des mÃl'canismes pour amÃl'liorer la rÃl'putation des utilisateurs non-vulnÃl'rables.
    - \* SuggÃl'rer des interlocuteurs bien rÃl'putÃl's avec des indices de vulnÃl'rabilitÃl' acceptables.
  - → Proposer des mÃl'canismes pour amÃl'liorer la vulnÃl'rabilitÃl' des utilisateurs rÃl'putÃl's.
    - \* Recommander des configurations et des logiciels.

3. Conclusion | 1. Conclusion 11/11

## Conclusion

- Le but de ce travail est de simuler un processus de contamination des vulnÃlrabilitÃls individuelles.
  - → La vulnÃſrabilitÃſ d'un utilisateur est la vulnÃſrabilitÃſ de tous.
  - → A la fin de la diffusion, tous les utilisateurs auront un indice de vulnÃl'rabilitÃl' social.
- Travaux futures
  - → Proposer des mÃl'canismes pour amÃl'liorer la rÃl'putation des utilisateurs non-vulnÃl'rables.
    - \* SuggÃl'rer des interlocuteurs bien rÃl'putÃl's avec des indices de vulnÃl'rabilitÃl' acceptables.
  - Proposer des m\(\tilde{A}\) canismes pour am\(\tilde{A}\) liorer la vuln\(\tilde{A}\) rabilit\(\tilde{A}\) des utilisateurs r\(\tilde{A}\) put\(\tilde{A}\) is.
    - \* Recommander des configurations et des logiciels.

# Thank you!

3. Conclusion | 1. Conclusion 11/11

#### References

[6]

- E. Michael Maximilien et al. " Privacy-as-a-Service: Models. Algorithms, and Results on the Facebook Platform ". In: Proceedings of Web. Vol. 2, 00054, 2009 (p. 5).
- [2] Ala Eddine Gandouz. PROTECT\_U: Un Systeme Communautaire Pour La Protection Des Usagers de Facebook . In: (2012). 00001, p. 77 (p. 12).
- [3] Lujun Fang and Kristen LeFevre. \* Privacy Wizards for Social Networking Sites \*. In: 00397. ACM Press, 2010, p. 351 (p. 12).
- [4] Davide Frey, Arnaud JÅlgou, and Anne-Marie Kermarnec. \* Social Market: Combining Explicit and Implicit Social Networks \*. In: Stabilization, Safety, and Security of Distributed Systems. Symposium on Self-Stabilizing Systems. Lecture Notes in Computer Science. 00019. Springer, Berlin, Heidelberg, Oct. 10, 2011, pp. 193–207 (p. 12).
- [5] Yongbo Zeng et al. \* A Study of Online Social Network Privacy Via the TAPE Framework . In: IEEE Journal of Selected Topics in Signal Processing 9.7 (Oct. 2015). 00003, pp. 1270–1284 (p. 12).
  - Sufian Hameed et al. \* LENS: Leveraging Social Networking and Trust to Prevent Spam Transmission \*. In: Network Protocols (ICNP), 2011 19th IEEE International Conference On. 00019. IEEE, 2011, pp. 13–18 (p. 12).
- [7] Thomas Tran, Jeff Rowe, and S. Felix Wu. \* Social Email: A Framework and Application for More Socially-Aware Communications ". In: Social Informatics. Ed. by Leonard Bolc, Marek Makowski, and Adam Wierzbicki. Vol. 6430. 00000. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 203–215 (p. 12).
- [8] Raj Kumar Nepali and Yong Wang. "SONET: A SOcial NETwork Model for Privacy Monitoring and Ranking". In: 00021. IEEE, July 2013, pp. 162–166 (p. 12).