A class of SPDEs in fluid dynamics: Large and moderate deviation asymptotics.

Arnab Ganguly and Padma Sundar

Department of Mathematics Louisiana State University Baton Rouge, LA 70803

Motivation

Consider the two-dimensional Navier-Stokes equation:

$$\begin{cases} \frac{\partial u}{\partial t} - \triangle u + (u \cdot \nabla) u = -\nabla \rho + f \\ \nabla \cdot u = 0 \end{cases}$$

- ▶ $\mathbf{u} = 0$ on ∂G ; Initial condition: $\mathbf{u}(0, x) = \mathbf{u}_0(x)$ given.
- ▶ $t \ge 0$ and $x \in G \subset \mathbb{R}^2$
- ▶ $\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$ is a vector function of t and x
- ► The unknowns are **u** and *p*
- ▶ **f** is an external body force.

The Analytic Form

The functional analytic setup (see Temam)

$$\begin{cases} \frac{\partial \mathbf{u}(t)}{\partial t} + \mathbf{A}\mathbf{u}(t) + \mathbf{B}(\mathbf{u}(t)) = \mathbf{f}(t) \\ \mathbf{u}(0, x) = \mathbf{u}_0(x) \end{cases} \tag{1}$$

- ► Au is the dissipative term. A = Stokes operator.
- Au = −P(△u) where P is the Leray projection to the space of divergence free vector fields H
- ▶ The nonlinear term **B** is denoted by $B(u, v) = P((u \cdot \nabla)v)$
- ightharpoonup We abbreviate B(u) = B(u, u)

Function Spaces

Let $V = C_0^{\infty}(G)$ functions which are divergence free.

Define

H =the completion of \mathcal{V} in $L^2(G)$

V =the completion of \mathcal{V} in $H^1(G) \ (= W^{1,2}(G))$.

Let V' be the dual of V. We have the dense, continuous embedding:

$$V \subset_{\rightarrow} H = H^{'} \subset_{\rightarrow} V^{'}.$$

The operator $\mathbf{A}: V \to V'$ and $\mathbf{B}: V \times V \to V'$.

 $\mathbf{f}(t)$ is assumed to be V'-valued for all t.

Notation: Throughout, $||\cdot|| = V$ -norm whereas $|\cdot|$ will denote the H-norm.

Basic observations

- ▶ Define $b(\mathbf{u}, \mathbf{v}, \mathbf{w}) = \int_{\mathcal{G}} (\mathbf{u} \cdot \nabla \mathbf{v}, \mathbf{w}) dx$.
- ► $b(\mathbf{u}, \mathbf{v}, \mathbf{w}) = -b(\mathbf{u}, \mathbf{w}, \mathbf{v})$. Therefore, $b(\mathbf{u}, \mathbf{v}, \mathbf{v}) = 0$.
- $\blacktriangleright \ \ \text{By H\"older inequality, } |b(\mathbf{u},\mathbf{v},\mathbf{w})| \leq |\mathbf{u}|_{L^4} \, ||\mathbf{v}|| |\mathbf{w}|_{L^4}.$
 - By Sobolev embedding, $|b(\mathbf{u}, \mathbf{v}, \mathbf{w})| \le ||\mathbf{u}||_{H^{1/2}} ||\mathbf{v}|| ||\mathbf{w}||_{H^{1/2}}$.
 - Interpolation yields, $|b(\mathbf{u},\mathbf{v},\mathbf{w})| \leq ||\mathbf{u}||^{1/2} \, |\mathbf{u}|^{1/2} \, ||\mathbf{v}|| \, ||\mathbf{w}||^{1/2} \, |\mathbf{w}|^{1/2}.$
- ► In particular, $||\mathbf{B}(\mathbf{u})||_{V'} \le ||\mathbf{u}|| \, |\mathbf{u}|$.

Example 2

Shell Model of Turbulence (GOY):

$$\frac{du_n}{dt} + \nu k_n^2 u_n + i(ak_{n+1}u_{n+1}^*u_{n+2}^* + bk_nu_{n-1}^*u_{n+1}^* + ck_{n-1}u_{n-1}^*u_{n-2}^*) = f_n \quad (2)$$

for $n = 1, 2, \dots$, and $u_n \in \mathbb{C}$. The boundary conditions are $u_{-1} = u_0 = 0$.

$$H:=\Big\{u=(u_1,u_2,\ldots)\in\mathbb{C}^\infty:\sum_{n=1}^\infty|u_n|^2<\infty\Big\},\,$$

$$V:=\left\{u\in H: \sum_{n=1}^{\infty}k_n^2|u_n|^2<\infty\right\}$$

$$Au = ((Au)_1, (Au)_2, ...), \text{ where } (Au)_n = k_n^2 u_n, \\ B(u, v) = (B_1(u, v), B_2(u, v), ...), \text{ where }$$

$$B_n(u,v) = ik_n \big(\frac{1}{4}u_{n+1}^*v_{n-1}^* - \frac{1}{2}(u_{n+1}^*v_{n+2}^* + u_{n+2}^*v_{n+1}^*) + \frac{1}{8}u_{n-1}^*v_{n-2}^*\big).$$

Example 3

MHD equation:

$$\frac{\partial v}{\partial t} + (v \cdot \nabla)v - \frac{1}{R_e}\Delta v - S(B \cdot \nabla)B + \nabla(p + \frac{S|B|^2}{2}) = 0, \tag{3}$$

where v denotes the velocity, B, the magnetic field, and p, the pressure field. The Maxwell equation is

$$\frac{\partial B}{\partial t} + (v \cdot \nabla)B + \frac{1}{R_m} \operatorname{curl}(\operatorname{curl} B) - (B \cdot \nabla)v = 0, \tag{4}$$

where $\nabla \cdot \mathbf{v} = 0$ and $\nabla \cdot \mathbf{B} = 0$.

Boundary conditions:

v=0 on ∂G ; $B \cdot \mathbf{n} = 0$ and $\operatorname{curl} B = 0$ on ∂G , where \mathbf{n} is the unit outer normal on ∂G .

Initial conditions: $v(x,0) = v_0(x)$ and $B(x,0) = B_0(x)$ for $x \in G$.

General Class of PDEs

Let *H* and *V* be Hilbert spaces such that $V \subset_{\rightarrow} H$ is dense and continuous.

Let **A** be an unbounded self-adjoint operator in H with compact resolvent. Let **B** : $V \times V \rightarrow V'$ be a bilinear operator.

Hypotheses H:

- **H.1** The map $\mathbf{A}: V \to V'$ is a linear operator such that for all $u, v \in V$, $\langle \mathbf{A}u, v \rangle = ((u, v))$.
- **H.2** The map $\mathbf{B}: V \times V \to V'$ is a bilinear operator, and there exists a constant C>0 such that

$$|\mathbf{B}(u, v)|_{V'} \le C||u||||v|| \text{ for all } u, v \in V.$$

H.3 The operator **B** satisfies the condition

$$\langle \mathbf{B}(u, v), w \rangle = -\langle \mathbf{B}(u, w), v \rangle$$
 for all $u, v, w \in V$.

H.4 For every r > 0, there exists a constant L_r such that

$$|\mathbf{B}(u) - \mathbf{B}(v)|_{V'} \le L_r ||u - v|| \text{ for all } u, v \in V, \text{ and } ||u||, ||v|| \le r.$$

Class of SPDEs

Under hypotheses H, consider

$$\mathbf{u}(t) + \int_0^t [\mathbf{A}\mathbf{u}(s) + \mathbf{B}(\mathbf{u}(s))] ds = \mathbf{u}(0) + \int_0^t f(s) ds.$$

Random perturbations: White noise, jump noise, or both.

Integral form of noise: Brownian motion, Poisson random measure (Prm), or Lèvy process.

Multiplicative noise: stochastic integral with integrand as a function of ${\bf u}$.

We will consider SPDEs with stochastic integral wrt Prm.

Poisson Random Measures

We will consider the SPDE with small noise:

$$\mathbf{u}(t) + \int_0^t [\mathbf{A}\mathbf{u}(s) + \mathbf{B}(\mathbf{u}(s))] ds = \mathbf{u}(0) + \int_0^t f(s) ds + \epsilon \int_0^t \int_{\mathcal{Z}} g(s, \mathbf{u}(s-), z) \tilde{N}^{\epsilon^{-1}} (ds, dz).$$
 (5)

 $\tilde{N}^{\epsilon^{-1}}$ is a compensated Poisson random measure with compensator $\epsilon^{-1} d\nu ds$.

 $g: [0, T] \times H \times Z \rightarrow H$ satisfies a linear growth and Lipschitz condition.

H.5: Let ν be a σ -finite measure on a space (Z, \mathcal{Z}) . There exists an $L^2(\nu)$ function $M_g(z) > 0$ such that

$$|g(t, u, z)| \le M_g(z)(1 + |u|)$$
 for all $t \in [0, T]$ $u \in H$, and $z \in Z$.

H.6: For all $u_1, u_2 \in H$, and $t \in [0, T]$, there exists an $L^2(\nu)$ function $L_g(z) > 0$ such that

$$|g(t, u_1, z) - g(t, u_2, z)| \le L_g(z)|u_1 - u_2|$$
 for all $z \in Z$.

Problem

- Existence and uniqueness of solutions.
- ▶ LDP for the class of SPDEs as $\epsilon \to 0$.
- ▶ MDP for the class of SPDEs as $\epsilon \to 0$.

```
(Sritharan, S. (1999, 2006): MHD and LDP for SNSE;
Manna, Sritharan and S. (2009): LDP for Shell Model;
S. (2010): LDP for MHD system.
Hsu and S. (2021: preprint): 3-D SNSEs;
Wang, Zhai and Zhang (2014): MDP for SNSE;
Dong, Xiong, Zhai and Zhang (2017): MDP for SNSE) - a sampler!
```

Existence and Uniqueness

- ▶ Form Galerkin approximations \mathbf{u}_n .
- ▶ Using energy equality, obtain a priori estimates uniformly in *n*.
- ▶ Show convergence of martingale problems posed by \mathbf{u}_n to a limit.
- ▶ Identify the limit mg. problem with that posed by the SPDE.
- Prove pathwise uniqueness.

Existence and Uniqueness

Theorem

Assume hypotheses **H**. Let $E|\mathbf{u}(0)|^4 < \infty$, and **f** be in $L^4([0,T]:V')$. Then, for any $\epsilon > 0$, there exists a strong solution of (5) which is a cadlag adapted process taking values in $L^2(\Omega \times (0,T);V) \cap L^\infty(\Omega \times (0,T);H)$. It is pathwise unique.

We can write **u** as $\mathcal{G}^{\epsilon}(\epsilon N^{\epsilon^{-1}})$. If ϵ changes, we will call **u** as \mathbf{u}^{ϵ} .

Existence and Uniqueness

For a class of good φ , there is an equivalent change of probability measure, Q^{ϵ} under which $\epsilon N^{\epsilon^{-1}\varphi}$ has the same law as $\epsilon N^{\epsilon^{-1}}$ under P.

Hence, we have also solved the equation

$$\mathbf{v}(t) + \int_0^t [\mathbf{A}\mathbf{v}(s) + \mathbf{B}(\mathbf{v}(s))] ds$$

$$= \mathbf{v}(0) + \int_0^t f(s) ds + \epsilon \int_0^t \int_{\mathcal{Z}} g(s, \mathbf{v}(s-), z) \tilde{N}^{\epsilon^{-1}\varphi}(ds, dz)$$

$$+ \int_0^t \int_{\mathcal{Z}} g(s, \mathbf{v}(s), z) (\varphi(s, z) - 1) \nu(dz) ds$$

for a class of functions φ . We write \mathbf{v} as $\mathcal{G}^{\epsilon}(\epsilon N^{\epsilon^{-1}\varphi})$.

As $\epsilon \to 0$, the limit equation is

$$\mathbf{w}(t) + \int_0^t [\mathbf{A}\mathbf{w}(s) + \mathbf{B}(\mathbf{w}(s))] ds$$

$$= \mathbf{v}(0) + \int_0^t f(s) ds + \int_0^t \int_Z g(s, \mathbf{w}(s), z) (\varphi(s, z) - 1) \nu(dz) ds$$

We will call **w** as $\mathcal{G}^0(\nu_{\tau}^{\varphi})$.

LDP

Let $\{X^{\epsilon}\}$ be a family of random variables defined on (Ω, \mathcal{F}, P) with values in a Polish space (E, d). For several Borel sets A, $P\{X^{\epsilon} \in A\} \to 0$ exponentially fast. Our aim is to find the exponential rate.

Definition: $I: E \to [0, \infty]$ is called a rate function if I is lower semicontinuous. The function I is a good rate function if I has compact level sets.

$$I(A) := \inf_A I(x).$$

Definition: The sequence $\{X^{\epsilon}\}$ is said to satisfy the LDP on E with a good rate I if:

1. For each closed subset F in E,

$$\limsup_{\epsilon \to 0} \epsilon \log P\{X^{\epsilon} \in F\} \le -I(F).$$

2. For each open subset G in E,

$$\liminf_{\epsilon \to 0} \epsilon \log P\{X^{\epsilon} \in G\} \ge -I(G).$$

Laplace Principle

The Laplace method says that for $h \in C_b([0,1])$,

$$\lim_{n \to \infty} 1/n \log \int_0^1 e^{-nh(x)} dx = -\min_{[0,1]} h(x).$$

Theorem

(Varadhan) Let $\{X^{\epsilon}\}$ satisfy LDP on E with good rate function I. Then for all $h \in C_b(E)$,

$$\lim_{\epsilon \to 0} \epsilon \log \mathbb{E} \exp\{-\frac{h(X^{\epsilon})}{\epsilon}\} = -\inf_{x \in E} \{I(x) + h(x)\}.$$

(Laplace Principle with rate I)

Theorem

(Converse) LP implies LDP. i.e. If I is a rate function on E and the limit

$$\lim_{\epsilon \to 0} \epsilon \log \mathbb{E} \exp\{-\frac{h(X^{\epsilon})}{\epsilon}\} = -\inf_{\mathcal{E}} \{I(x) + h(x)\}$$

is valid for all $h \in C_b(E)$, then $\{X^{\epsilon}\}$ satisfies LDP with a good rate function I.

Sufficient conditions for LDP on $D([0, T]; H) \cap L^2(0, T; V)$:

- (1) Let φ_n, φ such that $\varphi_n \to \varphi$ in a certain bounded ball, as $n \to \infty$. Then, $\mathcal{G}^0(\nu_T^{\varphi_n}) \to \mathcal{G}^0(\nu_T^{\varphi})$.
- (2) Let $\varphi_{\epsilon}, \varphi$ be predictable processes taking values in a certain bounded ball such that $\varphi_{\epsilon} \to \varphi$ in distribution as $\epsilon \to 0$. Then, $\mathcal{G}^{\epsilon}(\epsilon N^{\epsilon^{-1}\varphi_{\epsilon}}) \implies \mathcal{G}^{0}(\nu_{T}^{\varphi})$.

(Budhiraja and Dupuis (2000))

Theorem

Assume hypotheses **H**. Let $\mathbf{v}(0) \in H$, and **f** be in $L^4([0,T]:V')$. Then the family $\{\mathbf{u}^\epsilon\}$ taking values in $D([0,T];V') \cap L^2(0,T;V)$ satisfies the Laplace principle with a good rate function

$$I(w) = \inf_{A_w} \{1/2 \int_0^T ||w(s)||^2 ds\}.$$

 $A_w := \{ \varphi : dw(t) + [\mathbf{A}w + \mathbf{B}(w) - f](t)dt = \int_Z g(t, w(t), z)(\varphi(t, z) - 1)\nu(dz)dt \}$ and w(0) = v(0).

Introduction

Let $\{X_i\}$ be an iid sequence.

Let $E(X_1) = 0$, and the MGF $M(\theta) < \infty$ for all θ .

Let $S_n := \sum_{i=1}^n X_i$.

Cramér's theorem: For any r > 0,

$$P(|S_n| > nr) \approx \exp\{-n \inf\{I(x) : |x| \ge r\}\}$$
 (6)

where $I(x) = \sup_{\theta} \{\theta x - \log M(\theta)\}.$

Let $a_n \to \infty$ and $\frac{a_n}{\sqrt{n}} \to 0$. Then MDP says

$$P\left(|S_n| > a_n n^{1/2} r\right) \approx \exp\{-a_n^2 \inf\{J(x) : |x| \ge r\}\}$$
 (7)

where $J(x) = \frac{1}{2}(x, \Sigma^{-1}x)$ where $\Sigma = \text{Cov}(X_1)$.

Scaling: Between SLLN and CLT; $\{a_n\}$ can approach ∞ slowly.

Then MDP for a family $\{Y^{\epsilon}\}_{\epsilon>0}$ is the same as LDP with speed $b(\epsilon)$. Hence it is equivalent to the Laplace principle (LP) with speed $b(\epsilon)$.

If the rate function is denoted by I, then, LP with speed $b(\epsilon)$ means that for all h on $C_b([0,T];H)$, we have I.

$$\limsup_{\epsilon \to 0} b(\epsilon) \log \mathbb{E} \left\{ \exp \left[-\frac{1}{b(\epsilon)} h(Y^{\epsilon}) \right] \right\} \le -\inf_{y \in \mathcal{H}} \{ h(y) + I(y) \}$$

II.

$$\liminf_{\epsilon \to 0} b(\epsilon) \log \mathbb{E} \left\{ \exp \left[-\frac{1}{b(\epsilon)} h(Y^{\epsilon}) \right] \right\} \ge -\inf_{y \in H} \{ h(y) + I(y) \}$$

(Budhiraja, Dupuis '00; Budhiraja, Dupuis, Ganguly '15)

Let $a: \mathbb{R}^+ \to (0,1)$ such that $a(\epsilon) \to 0$, and $b(\epsilon) := \frac{\epsilon}{a^2(\epsilon)}$ also goes to 0 as $\epsilon \to 0$. For $0 \le t \le T$, and for any $\epsilon > 0$, define the process

$$Y^{\epsilon}(t) = \frac{\mathbf{u}^{\epsilon}(t) - \mathbf{u}(t)}{a(\epsilon)}.$$

where

$$d\mathbf{u}^{\epsilon} + \left[\mathbf{A}\mathbf{u}^{\epsilon} + \mathbf{B}(\mathbf{u}^{\epsilon}, \mathbf{u}^{\epsilon})\right]dt = \mathbf{f}(t)dt + \epsilon \int_{\mathbf{z}} g(t, \mathbf{u}^{\epsilon}, z) \tilde{N}^{\epsilon^{-1}}(dt, dz).$$

and

$$d\mathbf{u} + [\mathbf{A}\mathbf{u} + \mathbf{B}(\mathbf{u}, \mathbf{u})] dt = \mathbf{f}(t) dt.$$

Aim: Prove MDP for $\{Y^{\epsilon}\}$, i.e., a LDP result with speed $b(\epsilon)$.

Notation: $\mathcal{H}^{\epsilon}(\epsilon N^{\epsilon^{-1}}) := Y^{\epsilon}$.

If we choose suitable functions φ , then $\epsilon N^{\epsilon^{-1}\varphi}$ has the same law as $\epsilon N^{\epsilon^{-1}}$ under a change of measure.

Define the process $\mathbf{u}^{\epsilon,\varphi}$ as the solution of

$$d\mathbf{u}^{\epsilon,\varphi} + \left[\nu A \mathbf{u}^{\epsilon,\varphi}(t) + B(\mathbf{u}^{\epsilon,\varphi}(t))\right] dt = f(t) dt + \epsilon \int_{Z} g(\mathbf{u}^{\epsilon,\varphi}(t),z) N^{\epsilon^{-1}\varphi}(dz,dt)$$

We use $\mathbf{u}^{\epsilon,\varphi}$ in the place of \mathbf{u}^{ϵ} in the definition of Y^{ϵ} .

In fact, define

$$Y^{\epsilon,\varphi}:=rac{\mathbf{u}^{\epsilon,\varphi}-\mathbf{u}}{a(\epsilon)}.$$

Recall that $Y^{\epsilon} = \mathcal{H}^{\epsilon}(\epsilon N^{\epsilon^{-1}})$. Hence, $Y^{\epsilon,\varphi} = \mathcal{H}^{\epsilon}(\epsilon N^{\epsilon^{-1}\varphi})$.

Define $\mathcal{H}^0(\varphi)$ is used to denote the solution of

$$dY^0(t) + \mathbf{A}Y^0(t)dt + \left[\mathbf{B}(Y^0(t), \mathbf{u}) + \mathbf{B}(\mathbf{u}, Y^0(t))\right]dt = \int_{\mathcal{Z}} g(t, \mathbf{u}(t), z)\varphi(t, z)\nu(dz)dt.$$

For \mathcal{H}_0 with values in $C([0, T]; H) \cap L^2([0, T]; V)$, the following two conditions hold:

I Suppose that $\varphi_{\epsilon}, \varphi$ are in the M-ball in $L^2(Z \times [0, T])$, and $\varphi_{\epsilon} \to \varphi$ weakly. Then

$$\mathcal{H}_0(\varphi_{\epsilon}) \to \mathcal{H}_0(\varphi).$$

II Given $\{\varphi_{\epsilon}\}_{\epsilon>0}$, define

$$\psi_{\epsilon}:=rac{arphi_{\epsilon}-1}{a(\epsilon)}.$$

Then, if for some $\beta \in [0,1]$, $\psi_{\epsilon} \mathbf{1}_{\{|\psi_{\epsilon}| \leq \beta/a(\epsilon)\}} \to \psi$ in law, then as $\epsilon \to 0$,

$$\mathcal{H}^{\epsilon}(\epsilon N^{\epsilon^{-1}\varphi_{\epsilon}}) \implies \mathcal{H}_{0}(\psi)$$

(cf. Budhiraja, Dupuis '00; Budhiraja, Dupuis, Ganguly '15)

MDP Result

Theorem

The sequence $\{Y^{\epsilon}\}_{\epsilon>0}$ satisfies LP with speed $b(\epsilon)$ and rate function

$$I(y) = \inf\{\int_0^T ||\psi||_2^2 ds\}$$

where infimum is over ψ such that y(0) = 0 and

$$dy + \mathbf{A}y + \mathbf{B}(y, \mathbf{u}) + \mathbf{B}(\mathbf{u}, y)]dt$$
$$= \int_{\mathcal{Z}} g(\mathbf{u}, z)\psi(z, t)\nu(dz)dt$$

