Lecture 25

Aakash Jog

Thursday 22nd January, 2015

Contents

1	Vector Form of Green's Theorem	2
2	Gauss Theorem	2

1 Vector Form of Green's Theorem

Theorem 1 (Green's Theorem).

$$\int\limits_{C} \overline{F} \cdot \hat{n} \, \mathrm{d}s = \iint\limits_{D} \mathrm{div} \, \overline{F} \, \mathrm{d}A$$

2 Gauss Theorem

Theorem 2 (Gauss Theorem). Let E be a solid bounded by a surface S with positive orientation. Let $\overline{F}(x,y,z) = (P(x,y,z),Q(x,y,z),R(x,y,z))$ be a vector field in \mathbb{R}^3 , s.t. there exist continuous first order partial derivatives of P, Q, R in some open domain which contain E. Then

$$\iint\limits_{S} \overline{F} \cdot \hat{n} \, \mathrm{d}S = \iiint\limits_{E} \mathrm{div} \, \overline{F} \, \mathrm{d}V$$

Remark 1. Gauss Theorem is an analogy of Green's Theorem

Example 1. Calculate the flux of $\overline{F} = (xy, xe^z, 2+z)$ through the surface S which is a boundary of a solid E bounded by two paraboloids

$$z = 12 - 2x^2 - 2y^2$$
$$z = x^2 + y^2$$

Solution. Let

$$g_1(x, y) = 12 - 2x^2 - 2y^2$$

 $g_2(x, y) = x^2 + y^2$

The intersection of $g_1(x, y)$ and $g_2(x, y)$ is $x^2 + y^2 = 4$.

$$\iint_{S} \overline{F} \cdot \hat{n} \, dS = \iiint_{E} \operatorname{div} \overline{F} \, dV$$

$$= \iiint_{E} (y+0+1) \, dV$$

$$= \int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{x^{2}+y^{2}}^{12-2x^{2}-2y^{2}} (y+1) \, dz \, dy \, dx$$

$$= \int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} (y+1)(12-3x^{2}-3y^{2}) \, dy \, dx$$

$$= \int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} (y(12-3x^{2}-3y^{2}) + (12-3x^{2}-3y^{2})) \, dy \, dx$$

 $y(12-3x^2-3y^2)$ is odd and $(12-3x^2-3y^2)$ is even.

$$\therefore \iint_{S} \overline{F} \cdot \hat{n} \, dS = \int_{-2}^{2} 2 \int_{0}^{\sqrt{4-x^{2}}} (12 - 3x^{2} - 3y^{2}) \, dy \, dx$$

$$= 6 \int_{-2}^{2} \int_{0}^{\sqrt{4-x^{2}}} (4 - x^{2} - y^{2}) \, dy \, dx$$

$$= 6 \int_{-2}^{2} \left((4 - x^{2})y - \frac{y^{3}}{3} \right) \Big|_{y=0}^{y=\sqrt{4-x^{2}}} dx$$

$$= 6 \int_{-2}^{2} (4 - x^{2}) \left(\sqrt{4 - x^{2}} - \frac{1}{3} (4 - x^{2}) \sqrt{4 - x^{2}} \right) dx$$

Let

$$x = 2\sin\theta$$
$$\therefore dx = 2\cos\theta d\theta$$

Therefore, solving,

$$\iint\limits_{S} \overline{F} \cdot \hat{n} \, \mathrm{d}S = 24\pi$$