ГУАП

КАФЕДРА № 23

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ							
ПРЕПОДАВАТЕЛЬ							
доц. д-р техн. наук			А. Л. Ляшенко				
должность, уч. степень, звание		подпись, дата	инициалы, фамилия				
ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ № 4							
OTH			I D 3/2 4				
Исследование устойчивости системы управления с помощью критерия Михайлова							
по курсу: Автоматика и управление							
no kypoj. i iziomarima ir jirpaiziomo							
РАБОТУ ВЫПОЛНИЛ							
СТУДЕНТ гр. №2	210		В. В. Мази				
		подпись, дата	инициалы, фамилия				

1. Цель работы

Исследовать устойчивость системы управления методом Михайлова.

2. Исходные данные

Рисунок 1 - Структурная схема исследуемой системы

Таблица 1 - Параметры исследуемой системы (Вр. 10)

Кп	Ки	К1	T1	К2	T2	КЗ
0,8	0,03	5	0,6	1,5	6	0,4

3. Результаты выполнения работы.

Рисунок 2 - Схема исследуемой системы с данными параметрами

Далее следует упростить схему исследуемой системы.

Рисунок 3 - Схема исследуемой системы с данными параметрами (упростили параллельное соединение)

Рисунок 4 - Схема исследуемой системы с данными параметрами (упростили последовательное соединение)

Рисунок 5 - Схема исследуемой системы с данными параметрами (упростили отрицательную обратную связь)

Задание 1 - Вывести характеристический полином для исследуемой системы.

Передаточная функция:
$$W(s) = \frac{1200s + 45}{720s^3 + 1320s^2 + 680s + 18}$$

Характеристический полином: $A(s) = 720s^3 + 1320s^2 + 680s + 18$

Характеристический комплекс: $A(j\omega) = 720(j\omega)^3 + 1320(j\omega)^2 + 680(j\omega) + 18$

$$A(j\omega) = -720j\omega^3 - 1320\omega^2 + 680j\omega + 18$$

$$X(\omega) = Re A = -1320\omega^2 + 18$$

$$Y(\omega) = Im A = -720\omega^3 + 680\omega$$

Таблица 2 - Вычисленные точек для построения годографа

ω	0	0,5	1	1,5
Χ(ω)	18	-312	-1302	-2952
Υ(ω)	0	250	-40	-1410

Задание 2 - Определить с помощью критерия Михайлова устойчивость системы.

Формулировка критерия:

Для устойчивой САУ необходимо и достаточно, чтобы годограф Михайлова, начинаясь при $\omega = 0$ на положительной вещественной полуоси, обходил последовательно против часовой стрелки при возрастании ω от 0 до ∞ п квадрантов, где n - степень характеристического полинома (порядок системы).

Рисунок 6 - Годограф для заданной системы

На графике видно, что годограф характеристического вектора (кривая Михайлова), начинаясь на положительной части действительной оси, обходит последовательно в направлении против часовой стрелки 3 квадранта. Система является устойчивой.

Задание 3 - Набрать модель исследуемой системы и получить графики переходных процессов.

Рисунок 7 - Проверка переходных процессов данной схемы

Рисунок 8 - Переходный процесс для единичного скачка

Рисунок 9 - Параметры единичного скачка

Рисунок 10 - Переходный процесс для импульсного сигнала

Рисунок 11 - Параметры импульсного сигнала

Рисунок 12 - Переходный процесс для синусоидального сигнала

Рисунок 13 - Параметры синусоидального сигнала

4. Вывод

В ходе выполнения лабораторной работы было проведено исследование устойчивости системы управления с помощью критерия Михайлова. Исследована система с заданными параметрами. В ходе выполнения работы были получены графики переходных процессов для единичного скачка, импульсного и синусоидального сигналов.