

Cónicas y Cuádricas

Tema 7

Mar Angulo Martínez mar.angulo@u-tad.com

Tema 7. Cónicas y cuádricas

- 7.1. Cónicas: ecuación general y ecuación reducida de una cónica
- 7.2. Clasificación de cónicas
- 7.3. Cuádricas: ecuación general y ecuación reducida de una cuádrica
- 7.4. Clasificación de cuádricas

□ Elipse

Consideramos el espacio afín métrico R^2

- Una elipse es el lugar geométrico de los puntos del plano tales que la suma de distancias a dos puntos fijos denominados focos es constante e igual a 2a
- La ecuación de cualquier punto que pertenece a la elipse es por tanto $d(P, F_1) + d(P, F_1) = 2a$
- Considerando SPG que los focos están sobre el eje de abscisas y equidistantes del origen de coordenadas (son los puntos (c,0) y (-c,0) la ecuación expresada en coordenadas será $\sqrt{(x-c)^2+y^2}+\sqrt{(x+c)^2+y^2}$ =2a

Reordenando y elevando al cuadrado $\left(2a - \sqrt{(x+c)^2 + y^2}\right)^2 = (x-c)^2 + y^2$

$$4a^2+x^2+c^2+2cx+y^2-4a\sqrt{(x+c)^2+y^2}=x^2+c^2-2cx+y^2$$
 $a^2+cx=a\sqrt{(x+c)^2+y^2}$

Simplificando y volviendo a reordenar $a^2(a^2-c^2)=x^2(a^2-c^2)+y^2a^2$ y haciendo

$$a^2-c^2=b^2$$
 obtenemos $a^2b^2=x^2b^2+y^2a^2\longrightarrow \frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ Ecuación reducida de la elipse

☐ Hipérbola

Consideramos el espacio afín métrico R^2

- Una elipse es el lugar geométrico de los puntos del plano tales que la diferencia de distancias a dos puntos fijos denominados focos es constante e igual a 2a
- La ecuación de cualquier punto que pertenece a la hipérbola es por tanto $|d(P, F_1)-d(P, F_1)|=2a$
- Considerando SPG que los focos están sobre el eje de abscisas y equidistantes del origen de coordenadas (son los puntos (c,0) y (-c,0) la ecuación expresada en coordenadas será $\sqrt{(x-c)^2+y^2}-\sqrt{(x+c)^2+y^2}=\pm 2a$

Reordenando y elevando al cuadrado $\left(\pm 2a - \sqrt{(x+c)^2 + y^2}\right)^2 = (x-c)^2 + y^2$

$$\longrightarrow 4a^2 + x^2 + c^2 + 2cx + y^2 \pm 4a\sqrt{(x+c)^2 + y^2} = x^2 + c^2 - 2cx + y^2 \longrightarrow a^2 + cx = \pm a\sqrt{(x+c)^2 + y^2}$$

Simplificando y volviendo a reordenar $a^2(a^2-c^2)=x^2(a^2-c^2)+y^2a^2$ y haciendo

$$c^2$$
- a^2 = b^2 obtenemos a^2b^2 = $x^2b^2+y^2a^2$ $\frac{x^2}{a^2}-\frac{y^2}{b^2}$ =1 Ecuación reducida de la hipérbola

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 Ecuación reducida de la elipse

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 Ecuación reducida de la hipérbola

□ Parábola

- ☐ Una parábola es el lugar geométrico de los puntos del plano que equidistan de un punto F denominado foco y de una recta r que se llama directriz
- La ecuación de cualquier punto que pertenece a la parábola es por tanto
 - $d(P, F_1) = d(P, r)$
- Considerando SPG que el foco es el punto F=(p/2, 0) y la directriz es la recta vertical de ecuación x=-p/2 tenemos

$$x+p/2=d(X,r)=d(X,F)=\sqrt{(x-p/2)^2+y^2}$$

Y si elevamos al cuadrado y simplificamos obtenemos

$$y^2 = 2px$$
 Ecuación reducida de la parábola

- **☐** Secciones cónicas
- Elipse, hípérbola y parábola son las secciones que se obtienen al cortar mediante un plano el cono de ecuación $x^2+y^2-z^2=0$
 - \square Cortando con el plano $\pi \equiv z = 1$ se obtiene $x^2+y^2=1$ que es una circunferencia (una forma particular de elipse)
 - \square Cortando con el plano $\pi \equiv y = 1$ se obtiene $x^2-y^2=-1$ que es una hipérbola
 - \square Cortando con el plano $\pi \equiv x z = 1$ se obtiene y^2 =-2x+1 que es una parábola

Cónicas degeneradas

- \Box Cortando con el plano $\pi \equiv z = 0$ se obtiene $x^2 + y^2 = 0$ sólo un punto verifica la ecuación
- Cortando con el plano $\pi \equiv y = 0$ se obtiene $x^2-z^2=0 \iff (x-z)(x+z)=0$ son 2 rectas que se cortan
- \square Cortando con el plano $\pi \equiv x z = 0$ se obtiene y^2 =0 que es una recta doble (dos rectas coincidentes)

Ecuación general de una cónica

Una cónica es el lugar geométrico de los puntos del plano que verifican una ecuación de segundo grado en dos variables:

$$a_{11}x^2 + a_{22}y^2 + 2a_{12}xy + 2a_1x + 2a_2y + a_0 = 0$$

☐ Su expresión matricial

Α

Ejemplo 1 Ecuación general de una cónica **

$$9x^2 - 4xy + 6y^2 - 10x - 29y - 5 = 0$$

☐ Su expresión matricial

$$(1 \times y) \begin{pmatrix} -5 & -5 & -29/2 \\ -5 & 9 & -2 \\ -29/2 & -2 & 6 \end{pmatrix} \begin{pmatrix} 1 \\ x \\ y \end{pmatrix} = 0 \longrightarrow X^{t} \widetilde{A} X = 0$$

$$\widetilde{A}$$

$$\Box (x y) \begin{pmatrix} 9 & -2 \\ -2 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + (-10 & -29) \begin{pmatrix} x \\ y \end{pmatrix} - 5 = 0 \longrightarrow X^{t} AX + BX + a_{0} = 0$$

$$\Box$$
 (x y) $\begin{pmatrix} 9 & -2 \\ -2 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + (-10 & -29) \begin{pmatrix} x \\ y \end{pmatrix} - 5 = 0$ $X^t A X + B X + a_0 = 0$

Ecuación reducida de una cónica

- \Box $X^tAX + BX + a_0 = 0$ es la ecuación reducida de la cónica si:
 - > La matriz A es diagonal
 - ➤ Si 0 no es autovalor de A, entonces B=0
 - \triangleright Si 0 es autovalor de A, entonces entre los elementos a_i hay como máximo uno no nulo.
- ☐ La obtención de la ecuación reducida de una cónica a partir de su ecuación general consiste en un cambio de sistema de referencia (rectangular) a través de un movimiento rígido (que conserva distancias y ángulos)

Paso 1 Diagonalización ortogonal de la matriz A

- ✓ Toda matriz simétrica real A de orden n es ortogonalmente diagonalizable, es decir, existen una matriz ortogonal P y una D diagonal tal que $D=P^{-1}AP=P^{t}AP$
- ✓ La expresión X = PXrepresenta una rotación en la que el origen queda fijo
- ✓ X = PX' es por tanto un cambio de sistema de referencia donde el origen no varía
- ✓ *Mediante el cambio X=PX′ obtenemos*

$$X^{t}AX + BX + a_{0} = 0$$

 $(PX')^{t}A(PX') + BPX' + a_{0} = 0$
 $(X')^{t}P^{t}APX' + BPX' + a_{0} = 0$
 $(X')^{t}DX' + BPX' + a_{0} = 0$

Ejemplo 2 Ecuación reducida de una cónica

$$x^2 - 7y^2 - 6xy + 10x + 2y + 9 = 0$$

- Su ecuación matricial es (x y) $\begin{pmatrix} 1 & -3 \\ -3 & -7 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + (10 \ 2) \begin{pmatrix} x \\ y \end{pmatrix} + 9 = 0$
- Paso 1: Diagonalización ortogonal de A

Cálculo de los autovalores y autovectores de f

► 1º) Planteamos la ecuación característica $P(\lambda) = |A - \lambda I| = 0$

$$\begin{vmatrix} 1-\lambda & -3 \\ -3 & -7-\lambda \end{vmatrix} = (1-\lambda)(-7-\lambda)-9=0$$

- Autovalores: λ_1 =2, λ_2 =-8 cada uno con multiplicidad 1
- > Calculamos ahora los subespacios propios y una base de autovectores asociada a cada autovalor:

$$ightharpoonup S(2) = \ker (A-2I) = \{v = (x, y) \in R^2/(A-2I)v = 0\} = \{v \in R^2/(A-2I)v = 0\}$$

• (A-2I)v=0
$$\begin{pmatrix} -1 & -3 \\ -3 & -9 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad x + 3y = 0$$

• S(2) ={(-3y,y,)/y \in R} dimS(2)=1 Tomamos un primer vector $v_1 =$ (-3, 1)

$$ightharpoonup$$
 S(-8) = ker (A+8I)= {v=(x, y, z) $\in R^2/(A+8I)v=v$ }= {v $\in R^2/(A+8I)v=0$ }

• (A+8I)v=0
$$\binom{9}{-3} \binom{-3}{y} = \binom{0}{0} -3x + y = 0$$

• S(-8) =
$$\{(x,3x)/x \in R\}$$
 Tomamos un segundo vector $v_1 = (1,3)$

✓ Tenemos ya por tanto una base ortogonal de vectores

$$B=\{v_1=(-3,1); v_2=(1,3)\}$$

✓ Construimos ahora una base ortonormal :

B'={
$$e_1$$
=($-\frac{3}{\sqrt{10}}$, $\frac{1}{\sqrt{10}}$); e_2 =($\frac{1}{\sqrt{10}}$, $\frac{3}{\sqrt{10}}$);)}

✓ La matriz P es la que obtenemos al escribir los vectores de B´en columnas y D es la matriz que en la diagonal contiene los autovalores del endomorfismo

$$\mathbf{P} = \begin{pmatrix} -\frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}} \\ \frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \end{pmatrix} \qquad \mathbf{D} = \begin{pmatrix} 2 & \\ & -8 \end{pmatrix}$$

✓ Ahora la expresión matricial de la cónica es:

$$(X')^t D X' + \mathsf{BPX'} + a_0 = 0 \Longrightarrow (\mathsf{x'} \ \mathsf{y'}) \begin{pmatrix} 2 \\ -8 \end{pmatrix} \begin{pmatrix} \chi' \\ y' \end{pmatrix} + (10 \ 2) \begin{pmatrix} -\frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}} \\ \frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \end{pmatrix} \begin{pmatrix} \chi' \\ y' \end{pmatrix} + 9 = 0$$

✓ y la expresión analítica es $2x'^2-8y'^2-\frac{28}{\sqrt{10}}x'+\frac{16}{\sqrt{10}}y'+9=0$

Paso 2 Eliminar los términos en x e y

- ✓ Eliminamos los términos en x e y (si los valores propios son no nulos) o al menos uno de ellos (si algún valor propio es 0)
- ✓ Se trata de hacer una traslación: cambio de sistema de referencia en el que sólo cambia el origen
- ✓ El método que utilizamos es "completar cuadrados"

$$x'^2 + 2b_1 x = (x' + b_1)^2 - b_1^2$$
 $y'^2 + 2b_2 y' = (y' + b_2)^2 - b_2^2$

✓ Se trata por tanto de hacer el cambio x''= $x' + b_1$ y''= $y' + b_2$

Volviendo al ejemplo 2...

Si partimos de
$$2x'^2-8y'^2-\frac{28}{\sqrt{10}}x'+\frac{16}{\sqrt{10}}y'+9=0$$

$$2x'^{2} - \frac{28}{\sqrt{10}}x' = 2(x'^{2} - \frac{14}{\sqrt{10}}x') = 2\left[\left(x' - \frac{7}{\sqrt{10}}\right)^{2} - \frac{49}{10}\right] = 2(x'')^{2} - \frac{98}{10}$$

$$x'' = x' - \frac{7}{\sqrt{10}}$$

$$-8y'^2 + \frac{16}{\sqrt{10}}y' = -8(y'^2 - \frac{2}{\sqrt{10}}y') = -8[(y' - \frac{1}{\sqrt{10}})^2 - \frac{1}{10}] = -8(y'')^2 + \frac{8}{10}$$

$$y^{\prime\prime} = y^{\prime} - \frac{1}{\sqrt{10}}$$

- ✓ $2(x'')^2 \frac{98}{10} 8(y'')^2 + \frac{8}{10} + 9 = 0$ $\longrightarrow 2x''^2 8y''^2 = 0$ Ecuación reducida de la cónica
- ✓ Se trata de un par de rectas que se cortan.

☐ Proceso para obtener la ecuación reducida de una cónica

Partiendo de una ecuación general $X^tAX + BX + a_0 = 0$

- 1) Se efectúa una rotación X´=PX que nos permite obtener una matriz diagonal
- 2) Se efectúa una traslación X´´=C+IX´
- 3) La composición de los dos movimientos rígidos es $X''=C+P^tX$

□ Teorema

Cualquier ecuación de una cónica $X^tAX + BX + a_0 = 0$ se puede transformar en una ecuación reducida mediante un cambio de sistema de referencia del tipo $X''=C+P^tX$ con $det(P)=\pm 1$

Clasificación de las cónicas

☐ Si la ecuación reducida queda del tipo

$$\lambda_1 x^{\prime\prime 2} + \lambda_2 y^{\prime\prime 2} - c = 0$$

- \triangleright Si λ_1 λ_2 >0 se trata de una cónica de tipo elíptico
 - ➤ Si c=0 es un punto
 - \triangleright Si λ_1 c>0 se trata de una elipse real
 - \triangleright Si λ_1 c<0 se trata de una elipse imaginaria
- \succ Si λ_1 λ_2 <0 se trata de una cónica de tipo hiperbólico
 - Si c≠0 la cónica es una hipérbola
 - \triangleright Si c = 0 se trata de dos rectas que se cortan

- \square Si λ_1 λ_2 =0 se trata de una cónica de tipo parabólico
- \square Suponemos SPG $que\ \lambda_1$ =0 y que $\lambda_2 \neq 0\ de\ modo$ que la ecuación tras diagonalizar queda

$$\lambda_2 y'^2 + 2b_1 x + 2b_2 y + a_0 = 0$$

- \triangleright Si $b_1 \neq 0$ es una parábola
- ightharpoonup Si b_1 =0 llegamos a una ecuación reducida de la forma $\lambda_2 y^{\prime\prime 2}$ =c
 - ➤ Si c=0 se trata de dos rectas coincidentes
 - ightharpoonup Si $\frac{c}{\lambda_2}$ >0 se trata de dos rectas paralelas
 - ightharpoonup Si $\frac{c}{\lambda_2}$ <0 se trata de dos rectas imaginarias paralelas

Ecuación	\widetilde{A}	Tipo de cónica
$\alpha^2 x^2 + \beta^2 y^2 = c^2$	$\begin{pmatrix} -c^2 & & \\ & \alpha^2 & \\ & & \beta^2 \end{pmatrix}$	Elipse real
$\alpha^2 x^2 + \beta^2 y^2 = -c^2$	$egin{pmatrix} c^2 & & & \ & lpha^2 & & \ & & eta^2 \end{pmatrix}$	Elipse imaginaria
$\alpha^2 x^2 - \beta^2 y^2 = \pm c^2$	$\begin{pmatrix} \pm c^2 & & \\ & \alpha^2 & \\ & & -\beta^2 \end{pmatrix}$	Hipérbola
<i>y</i> ² =2px	$\left(egin{matrix} 0 & -p & \ -p & 0 & \ & & 1 \end{array} ight)$	Parábola

Ecuación	\widetilde{A}	Tipo de cónica
$\alpha^2 x^2 + \beta^2 y^2 = 0$	$\left(egin{array}{ccc} 0 & & & & \ & lpha^2 & & \ & & eta^2 \end{array} ight)$	Un punto
$\alpha^2 x^2 - \beta^2 y^2 = 0$	$egin{pmatrix} 0 & & & \ & lpha^2 & & \ & & -eta^2 \end{pmatrix}$	Par de rectas que se cortan
y ² =0	$\begin{pmatrix} 0 & & \\ & 0 & \\ & & 1 \end{pmatrix}$	Recta doble
$y^2=c^2$	$\begin{pmatrix} -c^2 & & \\ & 0 & \\ & & 1 \end{pmatrix}$	Par de rectas paralelas
$y^2=-c^2$	$\begin{pmatrix}c^2&&\\&0&\\&&1\end{pmatrix}$	Par de rectas imaginarias paralelas

☐ Invariantes métricos de las cónicas

$$(x \ y) \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + (2a_1 \ 2a_2) \begin{pmatrix} x \\ y \end{pmatrix} + a_0 = 0$$
 $X^t A X + B X + a_0 = 0$

- $\Box I_3 = \det(\tilde{A})$ $I_2 = \det(A)$ $I_1 = tr(A) = a_{11} + a_{22}$
- ☐ Invariantes métricos de las cónicas

Los números I_1 , I_2 , I_3 no varían cuando la cónica es afectada por un movimiento rígido

Clasificación de las cónicas por invariantes

	$I_2 > 0$	Elipse	<i>I</i> ₁ <i>I</i> ₃ <0	Elipse real
$I_3 eq 0$ (no degeneradas)			$I_1I_3 > 0$	Elipse imaginaria
acgeneradas				
	<i>I</i> ₂ <0	Hipérbola Parábola		
	<i>I</i> ₂ =0			
	$I_2 > 0$	$I_2 > 0$ Un punto		
$I_3 = 0$ (degeneradas)	$I_2 < 0$	Dos rectas secantes		
	$I_2 = 0$	Dos rectas paralelas		

Ejemplo 3 Clasificación de una cónica a través de sus invariantes

$$x^2 + y^2 - 2xy - \sqrt{2}x - \sqrt{2}y - 3 = 0$$

$$I_{3} = \det \left(\tilde{A} \right) = \det \begin{pmatrix} -3 & -\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & 1 & -1 \\ -\frac{\sqrt{2}}{2} & -1 & 1 \end{pmatrix} = -2 < 0 \quad (I_{3} \neq 0)$$

 \square I_2 = det (A)= det $\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} = 0$ $(I_2 = 0)$ Se trata de una parábola

$$\Box I_1 = tr(A) = a_{11} + a_{22} = 1 + 1 = 2$$

☐ Ecuación general de una cuádrica

Una cuádrica es el lugar geométrico de los puntos del espacio \mathbb{R}^3 que verifican una ecuación de segundo grado en tres variables:

$$a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz + 2a_{23}yz + 2a_1x + 2a_2y + 2a_3z + a_0 = 0$$

☐ Su expresión matricial

Α

Paso 1 Diagonalización ortogonal de la matriz A

✓ Toda matriz simétrica real A de orden n es ortogonalmente diagonalizable, es decir, existen una matriz ortogonal P y una D diagonal tal que $D=P^{-1}AP=P^tAP$ $X^tAX+BX+a_0=0$

$$(PX')^t A(PX') + BPX' + a_0 = 0$$

$$(X')^t P^t APX' + BPX' + a_0 = 0$$

$$(X')^{t}DX' + BPX' + a_{0} = 0 \implies \text{donde D=} \begin{pmatrix} \lambda_{1} & & \\ & \lambda_{2} & \\ & & \lambda_{3} \end{pmatrix}$$

y la expresión analítica de la cuádrica será $\lambda_1x'^2+\lambda_2y'^2+\lambda_3z'^2+2b_1x'+2b_2y'+2b_3z'+b_0=0$

☐ Paso 2 Eliminar los términos en xy, xz e yz

- ✓ Eliminamos todos esos términos (si los valores propios son no nulos) o al menos alguno de ellos (si algún valor propio es 0)
- ✓ El método que utilizamos es "completar cuadrados"

$$x'^2 + 2b_1 x = (x' + b_1)^2 - b_1^2$$
 $y'^2 + 2b_2 y' = (y' + b_2)^2 - b_2^2$ $z'^2 + 2b_3 z' = (z' + b_3)^2 - b_3^2$

✓ Se trata por tanto de hacer el cambio x'=x' + b_1 y'=y' + b_2 z'=z'+ b_3

Ejemplo 4 Ecuación reducida de una cuádrica

$$2xy+2xz+2yz - 6a_1x-6y-4a_3z+9=0$$

- Su ecuación matricial es (x y z) $\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + (-6 & -6 & -4) \begin{pmatrix} x \\ y \\ z \end{pmatrix} + 9 = 0$
- Paso 1: Diagonalización ortogonal de A

Cálculo de los autovalores y autovectores de f

ho 1º) Planteamos la ecuación característica $P(\lambda) = |A - \lambda I| = 0$

$$\begin{vmatrix} -\lambda & 1 & 1 \\ 1 & -\lambda & 1 \\ 1 & 1 & -\lambda \end{vmatrix} = -\lambda^3 + 3\lambda + 2 = 0$$

- ightharpoonup Autovalores: λ_1 =-1 con multiplicidad 2 y λ_2 =2 con multiplicidad 1
- > Calculamos ahora los subespacios propios y una base de autovectores asociada a cada autovalor:

> Calculamos ahora los subespacios propios y una base de autovectores asociada a cada autovalor:

> S(-1) = ker (A+I)= {v=(x, y, z) ∈
$$R^3/(A+I)v=0$$
}=
$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad x + y + z = 0;$$

 $S(-1) = \{(x,y,-x-y)/(x,y) \in \mathbb{R}\}$ dimS(-1)=2 Tenemos que elegir dos vectores de este subespacio que... ¡podrían no ser ortogonales!

Elegimos un primer vector u_1 =(1,-1,0) y un segundo vector que tiene que verificar: x+y+z=0 y además (x,y,z)(1,-1,0)=0 $\longrightarrow u_2$ =(1,1,-2)

$$S(2) = \ker(A-2I) = \{v = (x, y, z) \in R^3/(A-2I)v = 0\} = \begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} -2x + y + z = 0; x + y - 2z = 0 \qquad u_3 = (1,1,1)$$

- ✓ Tenemos ya por tanto una base de vectores $B=\{u_1=(1,-1,0); u_2=(1,1,-2); u_3=(1,1,1)\}$ que es una base ortogonal
- ✓ Construimos ahora una base ortonormal :

B'={
$$e_1$$
=($\frac{1}{\sqrt{2}}$,- $\frac{1}{\sqrt{2}}$,0); e_2 =($\frac{1}{\sqrt{6}}$, $\frac{1}{\sqrt{6}}$, $\frac{-2}{\sqrt{6}}$); e_3 =($\frac{1}{\sqrt{3}}$, $\frac{1}{\sqrt{3}}$)}

✓ La matriz P es la que obtenemos al escribir los vectores de B'en columnas y D es la matriz que en la diagonal contiene los autovalores del endomorfismo

$$\mathbf{P} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{-2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix} \qquad \mathbf{D} = \begin{pmatrix} -\mathbf{1} \\ 0 & 2 \end{pmatrix}$$

✓ La nueva expresión de nuestra cuádrica es:

$$(X')^t D X' + \mathsf{BPX'} + a_0 = 0 \qquad (\mathsf{x'} \ \mathsf{y'} \ \mathsf{z'}) \begin{pmatrix} -\mathbf{1} \\ \mathbf{0} \end{pmatrix} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} + (-6 \ -6 \ -4) \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{-2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} + 9 = 0$$

• Expresión analítica de la cuádrica $-x'^2-y'^2+2z'^2-\frac{4}{\sqrt{6}}y'-\frac{16}{\sqrt{3}}z'+9=0$

$$-y'^2 - \frac{4}{\sqrt{6}}y' = -(y'^2 + \frac{4}{\sqrt{6}}y') = -[(y' + \frac{2}{\sqrt{6}})^2 - \frac{4}{6}] = -(y'')^2 + \frac{2}{3}$$

$$x^{\prime\prime}=x^{\prime}$$

$$x'' = x'$$

$$y'' = y' + \frac{2}{\sqrt{6}}$$

$$2z'^2 - \frac{16}{\sqrt{3}}z' = 2(z'^2 - \frac{8}{\sqrt{3}}z') = 2[\left(z' - \frac{4}{\sqrt{3}}\right)^2 - \frac{16}{3}] = 2(z'')^2 - \frac{32}{3}$$

$$z^{\prime\prime} = z^{\prime} - \frac{4}{\sqrt{3}}$$

$$\sqrt{-x^{2}-(y^{2})^{2}+\frac{2}{3}+2(z^{2})^{2}-\frac{32}{3}}+9=0$$
 \longrightarrow $-x^{2}-(y^{2})^{2}+2(z^{2})^{2}-1=0$

✓ Ecuación reducida de la cónica. Se trata de un hiperboloide de dos hojas

☐ Clasificación de las cuádricas

 \square Si la ecuación reducida queda del tipo (los 3 autovalores son $\neq 0$)

$$\lambda_1 x^{2} + \lambda_2 y^{2} + \lambda_3 z^{2} + c = 0$$

- \triangleright Si c < 0
 - \triangleright Si $\lambda_1 > 0$, $\lambda_2 > 0$, $\lambda_3 > 0$ es un elipsoide real
 - \triangleright Si $\lambda_1 > 0$, $\lambda_2 > 0$, $\lambda_3 < 0$ es un hiperboloide de una hoja
 - \triangleright Si $\lambda_1 > 0$, $\lambda_2 < 0$, $\lambda_3 < 0$ es un hiperboloide de dos hojas
 - \triangleright Si λ_1 <0 , λ_2 <0 , λ_3 <0 se trata de un elipsoide imaginario
- \triangleright Si c=0
 - Si los 3 autovalores tienen el mismo signo, se trata de un punto (cono imaginario)
 - > Si hay 2 autovalores positivos o dos negativos, se trata de un cono

Elipsoide

Paraboloide elíptico

 \square Si uno de los autovalores es 0 (SPG $\lambda_1 = 0$)

$$\lambda_2 y'^2 + \lambda_3 z'^2 + 2b_1 x' + b = 0$$

- \triangleright Si $b_1 \neq 0$
 - \triangleright Si $\lambda_2 \lambda_3 > 0$ es un paraboloide elíptico
 - $\triangleright \lambda_2 \lambda_3$ <0 es un paraboloide hiperbólico
- > Si $b_1 = 0$ $\lambda_2 y''^2 + \lambda_3 z''^2 + c = 0$
 - ➤ Si *c*<0 es un cilindro elíptico real
 - ightharpoonup Si c>0 es un cilindro elíptico imaginario

- \square Si dos de los autovalores son 0 (SPG $\lambda_1=0=\lambda_2$) $\lambda_3 z'^2 + 2b_1 x' + 2b_2 y' + b=0$
- ightharpoonup Si $b_1 \neq 0$ y $b_2 \neq 0$ se trata de un cilindro parabólico
- ightharpoonup Si $b_1 = 0 = b_2$ son dos planos paralelos
 - \triangleright Si λ_3 b<0 dos planos reales que se cortan
 - \triangleright Si λ_3 b>0 dos planos imaginarios que se cortan
 - ➤ Si b= 0 planos coincidentes

Ecuación	\widetilde{A}	Tipo de cónica
$\alpha^2 x^2 + \beta^2 y^2 + \gamma^2 z^2 - c^2 = 0$	$\begin{pmatrix} -c^2 & 0 & 0 & 0 \\ 0 & \alpha^2 & 0 & 0 \\ 0 & 0 & \beta^2 & 0 \\ 0 & 0 & 0 & \gamma^2 \end{pmatrix}$	Elipsoide real
$\alpha^2 x^2 + \beta^2 y^2 + \gamma^2 z^2 + c^2 = 0$	$\begin{pmatrix}c^2 & 0 & 0 & 0 \\ 0 & \alpha^2 & 0 & 0 \\ 0 & 0 & \beta^2 & 0 \\ 0 & 0 & 0 & \gamma^2\end{pmatrix}$	Elipsoide imaginario
$\alpha^2 x^2 + \beta^2 y^2 - \gamma^2 z^2 - c^2 = 0$	$\begin{pmatrix} -c^2 & 0 & 0 & 0 \\ 0 & \alpha^2 & 0 & 0 \\ 0 & 0 & \beta^2 & 0 \\ 0 & 0 & 0 & -\gamma^2 \end{pmatrix}$	Hiperboloide de una hoja
$\alpha^2 x^2 + \beta^2 y^2 - \gamma^2 z^2 + c^2 = 0$	$\begin{pmatrix} c^2 & 0 & 0 & 0 \\ 0 & \alpha^2 & 0 & 0 \\ 0 & 0 & \beta^2 & 0 \\ 0 & 0 & 0 & -\gamma^2 \end{pmatrix}$	Hiperboloide de dos hojas

Ecuación	\widetilde{A}	Tipo de cónica
$\alpha^2 x^2 + \beta^2 y^2 - \gamma^2 z^2 = 0$	$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & \alpha^2 & 0 & 0 \\ 0 & 0 & \beta^2 & 0 \\ 0 & 0 & 0 & -\gamma^2 \end{pmatrix}$	Cono real
$\alpha^2 x^2 + \beta^2 y^2 + \gamma^2 z^2 = 0$	$egin{pmatrix} 0 & 0 & 0 & 0 \ 0 & lpha^2 & 0 & 0 \ 0 & 0 & eta^2 & 0 \ 0 & 0 & 0 & \gamma^2 \end{pmatrix}$	Cono imaginario
$\alpha^2 x^2 + \beta^2 y^2 - 2cz = 0$	$\begin{pmatrix} 0 & 0 & 0 & -c \\ 0 & \alpha^2 & 0 & 0 \\ 0 & 0 & \beta^2 & 0 \\ -c & 0 & 0 & 0 \end{pmatrix}$	Paraboloide elíptico
$\alpha^2 x^2 - \beta^2 y^2 - 2cz = 0$	$ \begin{pmatrix} 0 & 0 & 0 & -c \\ 0 & \alpha^2 & 0 & 0 \\ 0 & 0 & -\beta^2 & 0 \\ -c & 0 & 0 & -\gamma^2 \end{pmatrix} $	Paraboloide hiperbólico

Ecuación	\widetilde{A}	Tipo de cónica
$\alpha^2 x^2 + \beta^2 y^2 - c^2 = 0$	$\begin{pmatrix} -c^2 & 0 & 0 & 0 \\ 0 & \alpha^2 & 0 & 0 \\ 0 & 0 & \beta^2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$	Cilindro elíptico real
$\alpha^2 x^2 + \beta^2 y^2 + c^2 = 0$	$\begin{pmatrix} c^2 & 0 & 0 & 0 \\ 0 & \alpha^2 & 0 & 0 \\ 0 & 0 & \beta^2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$	Cilindro elíptico imaginario
$\alpha^2 x^2 - \beta^2 y^2 - c^2 = 0$	$\begin{pmatrix} -c^2 & 0 & 0 & 0 \\ 0 & \alpha^2 & 0 & 0 \\ 0 & 0 & -\beta^2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$	Cilindro hiperbólico
$\alpha^2 x^2 - \beta^2 y^2 = 0$	$\left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & \alpha^2 & 0 & 0 \\ 0 & 0 & -\beta^2 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$	Par de planos que se cortan
$\alpha^2 x^2 + \beta^2 y^2 = 0$	$\left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & \alpha^2 & 0 & 0 \\ 0 & 0 & \beta^2 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$	Par de planos imaginarios que se cortan

Ecuación	\widetilde{A}	Tipo de cónica
<i>y</i> ² =2px	$\begin{pmatrix} 0 & -p & 0 & 0 \\ -p & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$	Cilindro parabólico
$x^2-c^2=0$	$\begin{pmatrix} -c^2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$	Par de planos paralelos
$x^2+c^2=0$	$\begin{pmatrix} c^2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$	Par de planos imaginarios paralelos
x ² =0	$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$	Plano doble

☐ Invariantes métricos de las cuádricas

$$\Box \text{ O bien (x y z)} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix} \begin{pmatrix} \chi \\ \mathcal{Y} \\ Z \end{pmatrix} + (2a_1 \ 2a_2 \ 2a_3) \begin{pmatrix} \chi \\ \mathcal{Y} \\ Z \end{pmatrix} + a_0 = 0$$

$$X^t AX + BX + a_0 = 0$$

$$\square I_4 = \det \left(\tilde{A} \right) \qquad I_3 = \det \left(A \right)$$

$$\square I_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{13} \\ a_{13} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{33} \end{vmatrix}$$

$$\Box I_1 = tr(A) = a_{11} + a_{22} + a_{33}$$

Clasificación de las cuádricas por invariantes

$L \neq 0$	<i>I</i> ₃ <i>I</i> ₁ >0 e <i>I</i> ₂ >0	<i>I</i> ₄ >0	Elipsoide imaginario	
	$I_3 \neq 0$		<i>I</i> ₄ <0	Elipsoide real
	13 / 0	$I_3I_1 \ge 0$ e $I_2 < 0$ Ó $I_3I_1 < 0$	<i>I</i> ₄ >0	Hiperboloide de una hoja
$I_4 \neq 0$			<i>I</i> ₄ <0	Hiperboloide de dos hojas
			<i>I</i> ₄ >0	Paraboloide hiperbólico
I_3		$_{i}=0$	I ₄ <0	Paraboloide elíptico
$I_4 = 0$	$I_4 = 0 I_3 \neq 0$		<i>I</i> ₃ <i>I</i> ₁ >0 e <i>I</i> ₂ >0	Cono imaginario
			Otro caso	Cono real
	$I_3 = 0$		Cilindro	o o un par de planos

Ejemplo 5 Clasificación de una cuádrica a través de sus invariantes

$$2xy-6x+10y + z - 31 = 0$$

$$I_4 = \det \begin{pmatrix} \tilde{A} \end{pmatrix} = \det \begin{pmatrix} -31 & -3 & 5 & 1/2 \\ -3 & 0 & 1 & 0 \\ 5 & 1 & 0 & 0 \\ 1/2 & 0 & 0 & 0 \end{pmatrix} = \frac{1}{4} > 0$$

$$\square I_3 = \det (A) = \det \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 0 (I_3 = 0)$$

☐ Es por tanto un paraboloide hiperbólico.