Optimización Numérica I Laboratorio de Computo # 2 Programación Cuadrática Método del Espacio NUlo

1. El Método del Espacio Nulo

El problema convexo cuadrático que deseamos resolver es

Minimizar
$$\frac{1}{2}x^TQx + c^Tx$$

sujeto a $Ax = b$, (1)

donde $A \in \mathbb{R}^{mxn}, \ rango(A) = m, \ Q \in \mathbb{R}^{nxn}$ es simétrica positiva definida en \mathbb{R}^n .

La idea se basa en eliminar la restricción

$$Ax = b$$
.

usando el hecho de que, $x = x_p + x_h$, donde, $Ax_p = b$, es una solución particular y $Ax_h = 0$ es cualquier solución del sistema homegéneo, es decir $x_h \in Null(A)$.

Notemos que dim(Null(A)) = n - m.

Sean $x_p \in \mathbb{R}^n$ y $Z \in \mathbb{R}^{nx(n-m)}$ tales que rango(Z) = n-m y

$$Ax_p = b$$
, y $AZ = 0$.

L
s columnas de Z son una base de Null(A). De donde

$$x = x_p + Zx_z$$
, con $x_z \in \mathbb{R}^{n-m}$, (2)

satisface la restricción lineal en (1).

Realizando la sustitución de (2) en el problema (1), se reduce al problema cuadrático sin restricciones en \mathbb{R}^{n-m} ,

min
$$\frac{1}{2}x_z^T(Z^TQZ)x_z + [Z^T(Qx_p + c)]^Tx_z.$$
 (3)

Con nuestras hipótesis, la matriz Z^TQZ es simétrica y positiva definida. El único mínimo de (3) se obtiene al resolver el sistema lineal

$$(Z^T Q Z)x_z = -Z^T (Qx_p + c).$$

El valor óptimo en x se recupera con

$$x^* = x_p + Z(x_Z)^*.$$