

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Profesor: Mauricio Bustamante – Estudiante: Benjamín Mateluna

Topología Algebraica - MAT2850 Apuntes $05~{\rm de~agosto~de~2025}$

$\acute{\mathbf{I}}\mathbf{ndice}$

M	Motivación			
1.	Hon	nología Simplicial	5	
	1.1.	Complejos de Cadenas	5	
	1.2.	Complejos Simpliciales	7	
		Homología Simplicial	Ç	

Motivación

Dados dos espacios topológicos X e Y ¿Cuando son homeomorfos?. Decimos que dos espacios son **homeomorfos** si existe $f: X \to Y$ continua, biyectiva y con inversa constinua. La topología algebraica ataca esta pregunta de la siguiente forma:

- (1) Asigna a cada espacio topológico X un objeto algebraico G(X).
- (2) Aigna a cada función continua $f: X \to Y$ un homomorfismo $G(f): G(X) \to G(Y)$ tal que
 - (a) $G(f \circ g) = G(f) \circ G(g)$
 - (b) $G(id_X) = id_{G(X)}$

Observación: Ambas condiciones implican que si $f: X \to Y$ es homeomorfismo, entonces $G(f): G(X) \to G(Y)$ es isomorfismo. A veces los G que se construyen satisfacen la propiedad extra que si X se puede "deformar continuamente" en Y entonces $G(X) \cong G(Y)$.

Decimos que G es un **invariante homotópico**.

Ejemplos:

(1) Tenemos los espacios

Mas adelante veremos que la homología le asigna a la esfera el grupo $\{e\}$ y al toro \mathbb{Z}^2 . En general, una superficie de genero q tendrá el grupo \mathbb{Z}^{2g} .

- (2) ¿Cuando \mathbb{R}^n y \mathbb{R}^m son homeomorfos? Si $n \neq$, el grupo de homología de \mathbb{R}^n será $\{e\}$ y por el contrario, para \mathbb{R}^m va a ser \mathbb{Z} y por lo tanto \mathbb{R}^n y \mathbb{R}^m son homeomorfos si y solo si n = m.
- (3) Un ejemplo particular, para el circulo se tiene que $\pi_1(\mathbb{S}^1) = \mathbb{Z}$ pero $\pi_1(\mathbb{S}^2) = \{e\}$ y por lo tanto los espacios no son homeomorfos.

Definición: Una homotopía entre dos funciones continuas $f, g: X \to Y$ es una función continua $H: X \times [0,1] \to Y$ tal que H(x,0) = f(x) y H(x,1) = g(x) para todo $x \in X$.

Notación: La función $H_t: X \to Y$ esta dada por $H_t(x) := H(x,t)$. Una homotopía de f a g se denota por $f \sim g$.

Proposición 0.1: Ser homotópico es una relación de equivalencia en C(X,Y).

Demostración. Debemos probar tres cosas

(1) La relación es reflexiva. Sea $f: X \to Y$, consideramos la homotopía constante, esto es H(x,t) := f(x) es continua ya que

$$X \times [0,1] \xrightarrow{\pi_X} X \xrightarrow{f} Y$$

(2) Simetría. Supongamos que $f \sim g$, consideramos H'(x,t) = H(x,1-t) y es continua por que

$$X \times [0,1] \xrightarrow{id \times (1-t)} X \times [0,1] \xrightarrow{H} Y$$

(3) Por último, la transitividad. Sean $f \sim g \ y \ g \sim h$, Definimos $H * G : X \times [0,1] \to Y$ dada por

$$H * G(x,t) := \begin{cases} H(x,2t) & \text{si } 0 \le t \le \frac{1}{2} \\ G(x,2t-1) & \text{si } \frac{1}{2} \le t \le 1 \end{cases}$$

que resulta continua por el lema del pegado.

Definición: Decimos que $f: X \to Y$ es una equivalencia homotópica, si existe $g: Y \to X$ tal que $g \circ f \sim id_X$ y $f \circ g \sim id_Y$ En tal caso, X e Y se dicen homotópicamente equivalentes o que tienen el mismo tipo de homotopía y se denota por $X \sim Y$.

Ejemplo:

- (1) Sea $f: X \to Y$ un homeomorfismo, en particular, tomando $g = f^{-1}$, se sigue que es equivalencia homotópica.
- (2) Se tiene que $\{0\} \sim \mathbb{R}^n$, consideremos la inclusión $i : \to \{0\} \to \mathbb{R}^n$, afirmamos que es i es equivalencia homotópica. En efecto, se verifica que $\pi : \mathbb{R}^n \to \{0\}$ es una inversa homotópica. Por un lado $\pi \circ i = id_{\{0\}}$ y por otro $i \circ \pi = 0$. Notamos que H(x,t) = tx con $t \in [0,1]$ es una homotopía entre 0 y $id_{\mathbb{R}^n}$.
- (3) Veamos que $\mathbb{R}^n \setminus \{0\} \sim \mathbb{S}^{n-1}$. Probaremos que la función $i: \mathbb{S}^{n-1} \to \mathbb{R}^n \setminus \{0\}$ es equivalencia homotópica. En efecto,

$$\pi: \mathbb{R}^n \setminus \{0\} \to \mathbb{S}^{n-1}$$
$$x \to \frac{x}{|x|}$$

es inversa homotópica. Es claro que $\pi \circ i = id_{s^{n-1}}$. Definimos

$$H(x,t) := t \frac{x}{|x|} + (1-t)x$$

Notamos que H(x,0)=x y $H(x,1)=\frac{x}{|x|}$, es decir, H es una homotopia entre $i\circ\pi$ e $id_{\mathbb{R}^n\setminus\{0\}}$. Además, se verifica que $im(H)\subseteq\mathbb{R}^n\setminus\{0\}$.

1. Homología Simplicial

Queremos asignarle a un espacio topológico X arbitrario, grupos abelianos $H_0(X), H_1(X), \cdots$ tal que si $X \sim Y$, entonces $H_i(X) \cong H_i(Y)$ para todo i. Ituitivamente, $H_k(X)$ estará generado por ciertos subespacios de X de dimensión k.

Habrá una relación de equivalencia, $A, B \subseteq X$ de dimensión k serán equivalentes si hay un subespacio de X de dimensión k+1 cuyo borde es $A \cup B$.

Hay que restringir la clase de espacios a una con nociones de dimensión, borde, etc. Estos serán los complejos simpliciales. Necesitamos, adicionalmente, un objeto algebraico que capture esas nociones, esto corresponde a los complejos de cadenas.

1.1. Complejos de Cadenas

Definición: Un complejo de cadenas es una sucesión de grupos abelianos y homomorfismos

$$\cdots \longrightarrow C_3 \xrightarrow{\partial_3} C_2 \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_0 \longrightarrow 0$$

tal que $d_i \circ d_{i+1} = 0$ para todo i. Se denota por (C_*, d_*) .

Observación: Notemos que $im\ d_{i+1}\subseteq ker\ d_i\subseteq C_i$. Dado que los grupos son abelianos, esta observación permite definir el siguiente objeto.

Definición: El **i-ésimo grupo de homología** de (C_*, d_*) se define por

$$H_i(C_i) := \frac{ker \ d_i}{im \ d_{i+1}}$$

Ejemplos:

 \blacksquare Si A un grupo abeliano, entonces

$$\cdots \longrightarrow 0 \longrightarrow 0 \longrightarrow A \longrightarrow 0 \longrightarrow \cdots \longrightarrow 0$$

es un complejo de cadenas donde $C_i = A$. Entonces

$$H_j(C_*) = \begin{cases} 0 & \text{si } j \neq i \\ A & \text{si } j = i \end{cases}$$

■ Consideremos la cadena exacta

$$\cdots \longrightarrow 0 \longrightarrow \mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z} \xrightarrow{\pi} \mathbb{Z}_2 \longrightarrow 0$$

entonces $H_i(C_*) = 0$ para todo i.

Veamos que

$$\cdots \longrightarrow \mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z} \xrightarrow{\cdot 0} \mathbb{Z} \longrightarrow 0$$

es un complejo de cadenas. La homología asociadas son $H_0(C_*) = \mathbb{Z}, H_1(C_*) = \mathbb{Z}_2$ y $H_k(C_*) = 0$.

Definición: Sean (C_*, ∂_*) y (D_*, ∂_*) dos complejos de cadenas. Un **mapeo de cadenas** es una colección de homomorfismos $f_n: C_n \to D_n$ tal que $\partial_n f_n = f_{n-1}\partial_n$ para todo n, es decir, el siguiente diagrama conmuta

$$C_{n} \xrightarrow{\partial_{n}} C_{n-1}$$

$$\downarrow^{f_{n}} \qquad \downarrow^{f_{n-1}}$$

$$D_{n} \xrightarrow{\partial_{n}} D_{n-1}$$

y se denota por $(f): C_* \to D_*$.

Lema 1.1: Si $(f): C_* \to D_*$ es un mapeo de cadenas, entonces la asignación $f_*: H_n(C_*) \to H_n(D_*)$ dada por

$$f_*([x]) = [f_n(x)]$$

 $esta\ bien\ definida\ y\ es\ un\ homomorfismo\ de\ grupos.$

Demostración. Sea $x \in ker\partial_n$ entonces $\partial_n f_n(x) = f_{n-1}\partial_n(x) = f_{n-1}(0) = 0$. Así, $f_n(x) \in ker \partial_n$ y por tanto la expresión tiene sentido. Si [x] = [y] entonces $x - y = \partial_n(z)$ para $z \in C_{n+1}$, se sigue que $f_n(x) - f_n(y) = f_n\partial_{n+1}(z) = \partial_{n+1}f_{n+1}(z)$. Concluimos que $[f_n(x)] = [f_n(y)]$.

Ejemplo: Consideremos la siguiente situación

Entonces $f_*: H_2(C_*) = 0 \to H_2(D_*) = \mathbb{Z}$ es el morfismo trivial. Mientras que $\pi_*: H_1(C_*) = \mathbb{Z}_3 \to H_1(D_*) = \mathbb{Z}_3$ es la identidad.

Observación: Sea $(g): D_* \to G_*$ un mapeo de cadenas, entonces $(g \circ f): C_* \to G_*$ es un mapeo de cadenas y el siguiente diagrama conmuta

Notemos que $\partial_n g_n f_n = g_{n-1} \partial_n f_n = g_{n-1} f_{n-1} \partial_n$. Por otro lado, tenemos que $(g \circ f)_*([x]) = [(g \circ f)(x)] = g_*([f(x)]) = (g_* \circ f_*)([x])$, lo que prueba la afirmación.

Nuestro objetivo será asociar un complejo de cadenas a un espacio topológico X arbitrario, lo que nos dara un grupo de homología para cada dimensión, además dada $f: X \to Y$ una función continua, nos gustaría obtener un mapeo de cadenas y por tanto un homomorfismo entre los grupos de homología de cada espacio.

1.2. Complejos Simpliciales

Definición: Dados n+1 puntos $\{v_0, \dots, v_n\} \in \mathbb{R}^{\omega}$ son **afínmente independientes**, si generan un n-plano afín, es decir, $\{v_1 - v_0, \dots, v_n - v_0\}$ es un conjunto linealmente independiente, esto es

$$\sum_{i=0}^{n} t_i v_i = 0 \quad y \quad \sum_{i=0}^{n} t_i = 0 \quad entonces \quad t_i = 0 \quad para \ todo \ i$$

Ejemplo: Dos puntos son afínmente independientes. Tres puntos son afínmente independientes si y solo si no son colineales.

Definición: Si $\{v_0, \dots, v_n\}$ son afinmente independientes, ellos definen el n-simplejo

$$\sigma = \langle v_0, \cdots, v_n \rangle = \left\{ x = \sum_{i=0}^n t_i v_i, \sum_{i=0}^n t_i = 1 \quad y \quad t_i \ge 0 \right\}$$

Decimos que σ es el n-simplejo generado por v_0, \dots, v_n . Los puntos v_i se llaman **vértices** de σ . Una **cara** de un simplejo σ es un simplejo τ generado por un subconjunto de $\{v_0, \dots, v_n\}$ y lo denotamos por $\tau \leq \sigma$. Si el subconjunto es propio, se dice que τ es una **cara propia**.

La frontera de un n-simplejo σ es la unión de todas sus caras propias, se denota por $\partial \sigma$, el interior de σ es $int(\sigma) := \sigma \setminus \partial \sigma$.

Definición: Un complejo simplicial (geométrico) K es un conjunto de simplejos tales que

- (1) $Si \ \sigma \in K \ y \ \tau \leq \sigma \ entonces \ \tau \in K$.
- (2) Si $\sigma, \tau \in K$ entonces $\sigma \cap \tau = \emptyset$ ó $\sigma \cap \tau$ es una cara de σ y de τ .

El **poliedro** asociado a un complejo simplicial K es $|K| := \bigcup_{\sigma \in K} \sigma$. Un espacio topológico X se llama un poliedro si existe un complejo simplicial K y un homeomorfismo $f: |K| \to X$. Al par (K, f) se le llama una **triangulación** de X. Denotamos por V_K al conjunto de vértices de los simplices.

Observación: Si X es triangulable, entonces es Hausdorff por que |K| lo es.

La figura (1) corresponde a un complejo simplicial, mientras que la figura (2) no es un complejo simplicial ya que los simplices que la componen no se pegan bien.

Ejemplo: Consideremos el complejo simplicial K formado por los simplices $\sigma = \langle \pm e_1, \pm e_2, \pm e_3 \rangle$ y sus respectivas caras. Consideremos $f: |K| \to \mathbb{S}^2$ por f(x) := x/|x|, entonces (K, f) es una triangulación de la 2-esfera.

Definición: Sean K y L complejos simpliciales. Un **mapeo simplicial** de K a L es una función $f: V_K \to V_L$ tal que si $\sigma = \langle v_{\alpha_0}, \cdots, v_{\alpha_n} \rangle$ es un simplejo en K entonces

$$\{f(v_{\alpha_0}), \cdots, f(v_{\alpha_n})\}$$

genera un simplice en L, al cual llamamos $f(\sigma)$. Notación $f: K \to L$.

Ejemplo: Sea $\triangle^n = \langle e_1, \cdots, e_{n+1} \rangle \subseteq \mathbb{R}^{n+1} \subseteq \mathbb{R}^{\infty}$. Entonces las funciones $f : \triangle^1 \to \triangle^2$ y $g : \triangle^2 \to \triangle^1$ dadas por $f(e_i) = e_i$ y $g(e_1) = g(e_3) = e_1$, $g(e_2) = e_2$ son mapeos simpliciales.

Lema 1.2: Sea $f: K \to L$ un mapeo simplicial. Entonces induce una función continua $|f|: |K| \to |L|$.

Demostración. Sea $\sigma \in K$, digamos que $\sigma = \langle v_{\alpha_0}, \cdots, v_{\alpha_n} \rangle$ y Definimos

$$f_{\sigma}: \sigma \to |L|$$

$$\sum_{i=0}^{k} t_{i} v_{i} \to \sum_{i=0}^{k} t_{i} f(v_{i})$$

que es continua por que es lineal en los t_i . Se observa que si $\tau \leq \sigma$ entonces $f_{\tau} = f_{\sigma}|_{\tau}$. Ahora tomamos σ y σ' , entonces

$$f_{\sigma}\big|_{\sigma\cap\sigma'}=f_{\sigma\cap\sigma'}=f_{\sigma'}\big|_{\sigma\cap\sigma'}$$

entonces $|f| := \bigcup_{\sigma \in K} f_{\sigma}$ es una función continua de |K| en |L|.

Se verifica también que $|g \circ f| = |g| \circ |f|$. Un mapeo simplicial puede ser definido también como una función continua $f : |K| \to |L|$ que manda vértices en vértices y es lineal en sus caras.

1.3. Homología Simplicial

Dado K un complejo simplicial finito, esto es, que tiene un número finito de vértices. Elegimos un orden total en el conjunto de vértices, digamos $v_0 < v_1 < \cdots < v_n$.

Definición: (Complejo de cadenas simplicial) Consideremos los grupos abelianos

$$C_n(K) := \left\{ \sum n_{\sigma}\sigma : \sigma = \langle v_{\alpha_0}, \cdots, v_{\alpha_n} \rangle \ \ tal \ que \ \ v_{\alpha_0} < \cdots < v_{\alpha_n} \ \ y \ \ n_{\sigma} \in \mathbb{Z} \ \ nulo \ salvo \ finitos \ casos \right\}$$

y los diferenciales $\partial_n: C_n(K) \to C_{n-1}(K)$ se define en la base por

$$\partial_n \langle v_{\alpha_0}, \cdots, v_{\alpha_n} \rangle = \sum_{i=0}^n (-1)^i \langle v_{\alpha_0}, \cdots, \widehat{v_{\alpha_i}}, \cdots, v_{\alpha_n} \rangle$$

 $donde\ \langle v_{\alpha_0}, \cdots, \widehat{v_{\alpha_i}}, \cdots, v_{\alpha_n} \rangle := \langle v_{\alpha_0}, \cdots, v_{\alpha_{i-1}}, v_{\alpha_{i+1}}, \cdots, v_{\alpha_n} \rangle$. Se extiende linealmente al resto del grupo.

Teorema 1.3: La tupla $(C_*(K), \partial_*)$ es un complejo de cadenas, además, la homología del complejo no depende del orden en el conjunto de vértices.

Definición: Sea K un complejo simplicial finito. El i-ésimo grupo de homología simplicial de K es

$$H_i(K) := H_i(C_*(K)) = \frac{\ker \partial_i}{im \partial_{i+1}}$$

Ejemplos:

(1) Sea $K = \{\langle v_0, v_1 \rangle, \{v_0\}, \{v_1\}\}\$ y consideramos el orden $v_0 < v_1$. El complejo corresponde a un segmento de recta, notemos que $3v_0 - 5v_1 \in C_0(K)$, con la identificación $v_0 = (1,0)$ y $v_1 = (0,1)$ vemos que $C_0(K) \cong \mathbb{Z} \oplus \mathbb{Z}$, esta identificación no es canónica, es decir, depende de la base que escojamos y sus imagenes correspondientes.

Por otro lado, $C_1(K) \cong \mathbb{Z}$ con la identificación $\langle v_0, v_1 \rangle = 1$. Adicionalmente, se tiene que $C_i(K) = 0$ para i > 1. Luego,

$$0 \longrightarrow C_1(K) \xrightarrow{\partial_1} C_0(K) \xrightarrow{0} 0$$

donde $\partial_1 \langle v_0, v_1 \rangle = v_1 - v_2 \in C_0(K)$. Con las identificaciones que hicimos resulta que $\partial_1(1) = (-1, 1)$. De este modo queda la cadena

$$0 \longrightarrow \mathbb{Z} \xrightarrow{\partial_1} \mathbb{Z} \oplus \mathbb{Z} \xrightarrow{0} 0$$

Así $H_0(K) \cong \mathbb{Z}$, $H_1(K) = 0$, $H_i(K) = 0$ para i > 0.

(2) Sean v_0, v_1, v_2 puntos no colineales. Consideramos $\sigma = \langle v_0, v_1, v_2 \rangle$ y $K := \{\tau \leq \sigma\}$ definimos el orden $v_0 < v_1 < v_2$. Notemos que

$$C_0(K) = \mathbb{Z}\{v_0, v_1, v_2\}$$

$$C_1(K) = \mathbb{Z}\{\langle v_0, v_1 \rangle, \langle v_1, v_2 \rangle, \langle v_0, v_2 \rangle\}$$

$$C_2(K) = \mathbb{Z}\{\langle v_0, v_1, v_2 \rangle\}$$

Entonces $\partial_0 = 0$,

$$\partial_{1} = \begin{cases} \partial \langle v_{0}, v_{1} \rangle = v_{1} - v_{0} \\ \partial \langle v_{1}, v_{2} \rangle = v_{2} - v_{1} \\ \partial \langle v_{0}, v_{3} \rangle = v_{3} - v_{0} \end{cases} \quad \text{y} \quad \partial_{2} \langle v_{0}, v_{1}, v_{2} \rangle = \langle v_{1}, v_{2} \rangle - \langle v_{0}, v_{2} \rangle + \langle v_{0}, v_{1} \rangle$$

Realizando las identificaciones $v_i = e_{i+1}$ para $i = 0, 1, 2, \langle v_0, v_1, v_2 \rangle = 1, \langle v_0, v_1 \rangle = e_1, \langle v_1, v_2 \rangle = e_2$ y $\langle v_0, v_2 \rangle = e_3$ resulta que $C_0(K) \cong \mathbb{Z}^3, C_1(K) \cong \mathbb{Z}^3$ y $C_2(K) \cong \mathbb{Z}$. Tenemos

$$\cdots \longrightarrow 0 \longrightarrow C_2(K) \xrightarrow{\partial_2} C_1(K) \xrightarrow{\partial_1} C_0(K) \longrightarrow 0$$

donde

$$\partial_2 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \quad \mathbf{y} \quad \partial_1 = \begin{pmatrix} -1 & 0 & -1 \\ 1 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

Claramente $H_i(K) = 0$ para i > 2. Además, $ker \partial_2$, entonces $H_2(K) = 0$. Notemos que $im \partial_2 \cong \mathbb{Z}$ y $ker \partial_1 \cong \mathbb{Z}$, luego $H_1(K) = 0$. Por otro lado, $im \partial_1 \cong \mathbb{Z}^2$. Por ende $H_0(K) \cong \mathbb{Z}$.

Comentario: Se invita a calcular la homología de un n-simplejo. Hasta ahora hemos definido todo respecto a \mathbb{Z} , pero se puede definir homología simplicial de manera análoga para cualquier anillo R.

Lema 1.4: Sea $f: K \to L$ un mapeo simplicial, entonces las funciones

$$f_n: C_n(K) \to C_n(L)$$

$$\langle v_{\alpha_0}, \cdots, v_{\alpha_n} \rangle \to \begin{cases} \langle f(v_{\alpha_0}), \cdots, f(v_{\alpha_n}) \rangle & \text{si son distintos} \\ 0 & \text{si no lo son} \end{cases}$$

forman un mapeo de cadena.