Solitons

Meeting 2022-01-27 3pm

Progress

- Analytic:
 - Found coefficients for u2 and higher
- Numeric:
 - Reran the simulations with more round trips to achieve saturation

Analytic

$$L\left[\sum_{j=0}^n u^{(j)}
ight] + N\left[\sum_{j=0}^{n-1} u^{(j)}
ight] \equiv 0 ext{ up to } (2n+1) ext{th order}$$

u2 (fifth order):

$$\left\{ \begin{array}{l} d\,[\,0\,] \,\rightarrow\, \frac{A}{8} \,+\, \frac{\left(-\,95\,A^{5}\,+\,86\,A^{4}\,B\,+\,98\,A^{3}\,B^{2}\,+\,352\,A^{2}\,B^{3}\,+\,273\,A\,B^{4}\,+\,266\,B^{5}\right)\,\,\Gamma^{2}}{21\,299\,200\,\,\sigma^{8}} \,-\, \frac{3\,\times\,\left(2\,A^{3}\,+\,9\,A^{2}\,B\,+\,6\,A\,B^{2}\,+\,9\,B^{3}\right)\,\,\Gamma}{5120\,\,\sigma^{4}} \,, \\ \\ d\,[\,1\,] \,\rightarrow\, -\, \frac{B}{8} \,-\, \frac{\left(86\,A^{5}\,+\,671\,A^{4}\,B\,+\,712\,A^{3}\,B^{2}\,+\,798\,A^{2}\,B^{3}\,+\,626\,A\,B^{4}\,-\,273\,B^{5}\right)\,\,\Gamma^{2}}{21\,299\,200\,\,\sigma^{8}} \,+\, \frac{3\,\times\,\left(3\,A^{3}\,+\,2\,A^{2}\,B\,+\,3\,A\,B^{2}\,-\,2\,B^{3}\right)\,\,\Gamma}{5120\,\,\sigma^{4}} \,, \\ \\ d\,[\,2\,] \,\rightarrow\, \frac{\Gamma\,\left(\left(49\,A^{5}\,+\,356\,A^{4}\,B\,+\,50\,A^{3}\,B^{2}\,+\,532\,A^{2}\,B^{3}\,-\,399\,A\,B^{4}\,+\,176\,B^{5}\right)\,\,\Gamma\,-\,12\,480\,B\,\left(3\,A^{2}\,+\,4\,A\,B\,+\,3\,B^{2}\right)\,\,\sigma^{4}\right)}{10\,649\,600\,\,\sigma^{8}} \,, \\ \\ d\,[\,3\,] \,\rightarrow\, \frac{\Gamma\,\left(-\left(\left(176\,A^{5}\,+\,399\,A^{4}\,B\,+\,532\,A^{3}\,B^{2}\,-\,50\,A^{2}\,B^{3}\,+\,356\,A\,B^{4}\,-\,49\,B^{5}\right)\,\,\Gamma\right)\,-\,12\,480\,A\,\left(3\,A^{2}\,-\,4\,A\,B\,+\,3\,B^{2}\right)\,\,\sigma^{4}\right)}{10\,649\,600\,\,\sigma^{8}} \,, \\ \\ d\,[\,4\,] \,\rightarrow\, -\, \frac{A}{8} \,+\, \frac{\left(273\,A^{5}\,+\,626\,A^{4}\,B\,-\,798\,A^{3}\,B^{2}\,+\,712\,A^{2}\,B^{3}\,-\,671\,A\,B^{4}\,+\,86\,B^{5}\right)\,\,\Gamma^{2}}{21\,299\,200\,\,\sigma^{8}} \,+\, \frac{3\,\times\,\left(2\,A^{3}\,+\,3\,A^{2}\,B\,-\,2\,A\,B^{2}\,+\,3\,B^{3}\right)\,\,\Gamma}{5120\,\,\sigma^{4}} \,, \\ \\ d\,[\,5\,] \,\rightarrow\, \frac{B}{8} \,-\, \frac{\left(266\,A^{5}\,-\,273\,A^{4}\,B\,+\,352\,A^{3}\,B^{2}\,-\,98\,A^{2}\,B^{3}\,+\,86\,A\,B^{4}\,+\,95\,B^{5}\right)\,\,\Gamma^{2}}{21\,299\,200\,\,\sigma^{8}} \,+\, \frac{3\,\times\,\left(-\,9\,A^{3}\,+\,6\,A^{2}\,B\,-\,9\,A\,B^{2}\,+\,2\,B^{3}\right)\,\,\Gamma}{5120\,\,\sigma^{4}} \,, \\ \\ \end{array}$$

Analytic

Linear terms:

- The middle coefficients of the evennumbered functions do not have linear terms
- The coefficients are mirrored, with A <—>
 B for u1, u3 etc
- And A <-> B for u2, u4 etc
- The signs for a column are repeating (A,-B, -A, B)
- Looking at the actual values of the coefficients, the linear terms are not dominating the other terms

Function	$u^{(1)}$	$u^{(2)}$	$u^{(3)}$	$u^{(4)}$	$u^{(5)}$	$u^{(6)}$
Order	3	5	7	9	11	13
Coefficients	A/4	A/8	5A/64	7A/128	21A/512	33A/1024
	-B/4	-B/8	-5B/64	-7B/128	-21B/512	-33B/1024
	A/4		-A/64	-A/64	-7A/512	-3A/256
	-B/4		B/64	B/64	7B/512	3B/256
		-A/8	-A/64		A/256	5A/1024
		B/8	B/64		-B/256	-5B/1024
			5A/64	A/64	A/256	
			-5B/64	-B/64	-B/256	
				-7A/128	-7A/512	-5A/1024
				7B/128	7B/512	5B/1024
					21A/512	3A/256
					-21B/512	-3B/256
						-33A/1024
						33B/1024

- Ellipsis indicates that there is no linear term for those coefficients
- The first row is the pure \cos/\cosh term (e.g. c_0)

Numeric

"OC: 0.3" or "30% energy feedback per trip" means that 30% of the energy returns to the loop after each round trip, 70% exits via the output coupler

Numeric

Numeric

"OC: 0.3" or "30% energy feedback per trip" means that 30% of the energy returns to the loop after each round trip, 70% exits via the output coupler

