<u>Claims</u>

We Claim:

5	1	A wavelength-selective optical transmission system comprising:				
3		a first waveguide for transmitting a multiplexed optical signal therethrough;				
10		a second waveguide coupled to said first waveguide wherein a least one of said first and second waveguides having a set of wavelength-selective Bragg gratings disposed near a coupling section between said first and second waveguides wherein one of said first and second waveguides having an aspect ratio defined by a thickness divided by a width is no greater than 0.75.				
15		,				
	2 wherein:	The wavelength-selective optical transmission system of claim 1				
	wherent.	said first waveguide having a larger cross sectional area than said second waveguide.				
20	3 wherein:	The wavelength-selective optical transmission system of claim 1				
		said first waveguide having a smaller cross sectional area than said second waveguide.				
25	4 wherein:	The wavelength-selective optical transmission system of claim 1				
		said first waveguide having a rectangular cross sectional area.				
30	5 wherein:	The wavelength-selective optical transmission system of claim 1				
		said second waveguide having a square cross sectional area.				

	6	The wavelength-selective optical transmission system of claim 1
	wherein:	
		said first waveguide having a non-square cross sectional area with
		a width W and thickness T where and an aspect ratio T/W ranging
5		from 0.8 to 0.01 and said second waveguide having a substantially
		square cross sectional area having a width and thickness equal to
		WT and WT is equal to or greater than T.
	7	The wavelength-selective optical transmission system of claim 1
10	wherein:	
		said first waveguide and said second waveguide are composed of a
		same material and having two different shapes of cross sectional
		areas.
15	8	The wavelength-selective optical transmission system of claim 1
	wherein:	
		said first waveguide and said second waveguide having two
		different optical propagation constants.
20	9	The wavelength-selective optical transmission system of claim 1
	wherein:	o i
		said Bragg gratings disposed on said first waveguide.
	10	The average ath colories antical transmission exists of claim 1
25	10 wherein:	The wavelength-selective optical transmission system of claim 1
		said Bragg gratings disposed on said second waveguide.
	11 wherein:	The wavelength-selective optical transmission system of claim 1
30	witerent.	said Bragg gratings disposed on said first and second waveguides.
	12	The wavelength-selective optical transmission system of claim 1
	wherein:	
25		said Bragg gratings disposed on a cladding surrounding said first
35		waveguide.

	13	The wavelength-selective optical transmission system of claim 1
	wherein:	said Bragg gratings disposed on a cladding surrounding said
		second waveguide.
5	1.4	
	14 wherein:	The wavelength-selective optical transmission system of claim 1
	witerent.	said Bragg gratings disposed on a cladding in the gap between said
		first and second waveguides.
10		
	15	A method for configuring a wavelength-selective optical
	transmissio	on system comprising:
		transmitting a multiplexed optical signal through a first waveguide
15		and coupling a second waveguide to said first waveguide; and
		forming a set of wavelength-selective Bragg gratings on a least one
		of said first and second waveguides near a coupling section
		between said first and second waveguides and configuring one of
20		said first and second waveguides having an aspect ratio defined by
		a thickness divided by a width is no greater than 0.75.
	16	The method of claim 15 wherein:
25		said step of coupling said second waveguide to said first
2.5		waveguide further comprising a step of configuring said first
		waveguide having a larger cross sectional area than said second
		waveguide.
30	17	The method of claim 15 wherein:
		said step of coupling said second waveguide to said first
		waveguide further comprising a step of configuring said first
		waveguide having a smaller cross sectional area than said second
35		waveguide.

4 ^	CETT	.1 1			4 -	1	•
18	I he t	nethod	റ† വ	$a_{1}m$	157	MA	rein
10	1111. 1	11CUICU	$o_1 c_1$	аш	101	/V I IC.	1646

said step of coupling said second waveguide to said first waveguide further comprising a step of configuring said first waveguide with a rectangular cross sectional area.

19 The method of claim 15 wherein:

said step of coupling said second waveguide to said first waveguide further comprising a step of configuring said first waveguide with a square cross sectional area.

20 The method of claim 15 wherein:

said step of coupling said second waveguide to said first waveguide further comprising a step of configuring said first waveguide having a non-square cross sectional area with a width W and thickness T where and an aspect ratio T/W ranging from 0.8 to 0.01 and said second waveguide having a substantially square cross sectional area having a width and thickness equal to WT and WT is equal to or greater than T.

21 The method of claim 15 wherein:

said step of coupling said second waveguide to said first waveguide further comprising a step of configuring said first waveguide and said second waveguide composed of a same material and having two different shapes of cross sectional areas.

The method of claim 15 wherein:

said step of coupling said second waveguide to said first waveguide further comprising a step of configuring said first waveguide and said second waveguide having two different optical propagation constants.

25

5

10

15

20

30

35

23	The	method	of	claim	15	wherein:
	* * * * * *	IIIC CI IC CI	\sim	CAMALLE		TITLE CALL

said step of forming wavelength-selective Bragg gratings on a least one of said first and second waveguides further comprising a step of forming said set of Bragg gratings on said first waveguide.

24 The method of claim 15 wherein:

said step of forming wavelength-selective Bragg gratings on a least one of said first and second waveguides further comprising a step of forming said set of Bragg gratings on said second waveguide.

25 The method of claim 15 wherein:

said step of forming wavelength-selective Bragg gratings on a least one of said first and second waveguides further comprising a step of forming said set of Bragg gratings on said first and second waveguides.

26 The method of claim 15 wherein:

said step of forming wavelength-selective Bragg gratings on a least one of said first and second waveguides further comprising a step of forming said set of Bragg gratings on a cladding surrounding said first waveguide.

27 The method of claim 15 wherein:

said step of forming wavelength-selective Bragg gratings on a least one of said first and second waveguides further comprising a step of forming said set of Bragg gratings on a cladding surrounding said second waveguide.

28 The method of claim 15 wherein:

said step of forming wavelength-selective Bragg gratings on a least one of said first and second waveguides further comprising a step of forming said set of Bragg gratings on a cladding in the gap between said first and second waveguides.

15

5

10

20

25

30

35

29 A wavelength-selective optical transmission system comprising:

a first waveguide coupled to a second waveguide through a set of Bragg gratings wherein said first and second waveguides having different aspect ratios defined by a waveguide thickness divided by a waveguide width.

30 wherein:

A wavelength-selective optical transmission system of claim 29

One of said first and second waveguides having an aspect ratio equal to or less than 0.75.

10

5