Exercise 3 b)

Suppose \mathcal{B} is a subbasis for a topology \mathcal{T} on a set X. Given another topological space Y, show that a map $f: Y \longrightarrow X$ is continuous if and only if for every $\mathcal{U} \in \mathcal{B}$, $f^{-1}(\mathcal{U})$ is open in Y.

Solution. Denote the topology of Y by S.

" \Rightarrow ": Let $f: Y \longrightarrow X$ be continuous and fix an $\mathcal{U} \in \mathcal{B}$. Since \mathcal{B} is subbasis, all its elements are open subsets, thus \mathcal{U} is open. Then by definition of continuous maps, the preimage $f^{-1}(\mathcal{U})$ is also open in Y. As we have fixed an arbitary $\mathcal{U} \in \mathcal{B}$, we may conclude the desired result.

" \Leftarrow ": On the other hand, let for every $\mathcal{U} \in \mathcal{B}$ the preimage $f^{-1}(\mathcal{U})$ be open in Y. Consider an arbitary open subset $\mathcal{V} \in \mathcal{T}$. By the definition of a subbasis, \mathcal{V} is a finite intersection of members of \mathcal{B} , i.e.

$$\mathcal{V} = \mathcal{U}_1 \cap \cdots \cap \mathcal{U}_n$$

with $n \in \mathbb{N}$. The preimage of \mathcal{V} therefore is

$$f^{-1}(\mathcal{V}) = f^{-1}(\mathcal{U}_1 \cap \ldots \cap \mathcal{U}_n)$$

= $f^{-1}(\mathcal{U}_1) \cap \ldots \cap f^{-1}(\mathcal{U}_n)$

where we applied the lemma on the last step. Now, $f^{-1}(\mathcal{U}_i)$ are open subsets for all $1 \leq i \leq n$. By the definition of topological spaces, finite intersections of open subsets are also open, hence $f^{-1}(\mathcal{V})$ is open. Thus, f is continuous.