Qualificação

Hevans Vinicius Pereira hevansvgmail.com

DEPARTAMENTO DE ESTATÍSTICA
UNIVERSIDADE ESTADUAL DE MARINGÁ – UEM

31/08/2023

Descrição do Problema

Descrição dos Dados

Análise Bidimensional

Modelos

Descrição do Problema

Desde o seu surgimento em dezembro de 2019 (HUANG C.; WANG, 2020), o novo coronavírus se espalhou rapidamente. Em março de 2020, o governo federal decretou estado de emergência em saúde pública em razão da pandemia de COVID-19.

Neste trabalho iremos utilizar dados públicos, obtidos no Open Data SUS, sobre Síndrome Respiratória Aguda Grave e COVID para criar modelos de classificação que nos permitam estimar quais pacientes tem mais chance de vir a óbito com base em diversas características coletadas.

Para isso, consideramos apenas os casos de pacientes adultos, isto é, com 18 anos ou mais, hospitalizados por Covid-19 e que foram notificados no ano de 2022. O questionário que monitora a Síndrome Respiratória Aguda Grave já existia antes da COVID, mas foi alterado em virtude desta.

Descrição do Problema

Os modelos serão criados usandos técnicas de aprendizado supervisionado com o objetivo de predizer o desfecho de um paciente internado com COVID-19.

Além do modelo preditivo em si, haverá um ganho de informação se conseguirmos extrair do modelo as informações referentes à importância das variáveis, a fim de identificar os fatores que mais influenciam no desfecho dos pacientes.

Descrição dos Dados

- 👠 O dataset contém 556445 linhas e 173 colunas;
- ✓ Vamos usar apenas dados referentes ao ano de 2022;
- Namos usar apenas as colunas que julgamos relevantes: sexo, idade, raça, escolaridade, região, sintomas e fatores associados;

Tratamento de Dados

- √ Vamos trabalhar apenas com pacientes hospitalizados;
- √ Vamos trabalhar apenas com pacientes com idade maior ou igual a 18 anos;
- √ Vamos trabalhar apenas com pacientes que tiveram COVID-19;
- Namos substituir dados faltantes e as observações não registradas (9 − Ignorado) para todas as variáveis de fatores associados pelo valor 0 (zero), considerando que não foi registrado porque não havia fator presente;
- No conjunto de dados, nas variáveis binárias o valor 2 indica 'Não', trocaremos para 0 (zero).

Tratamento de Dados

- Não temos como imputar valores para as variáveis de escolaridade, raça, zona urbana/rural e vacina então vamos trocar 'Ignorado' por valor faltante;
 - A variável alvo é a 'EVOLUCAO', então vamos excluir dados faltante ou preenchidos com '9 Ignorado';
- Na variável 'EVOLUCAO' as observações '2-Óbito' e '3-Óbito por outras causas' serão juntadas na mesma categorias;
- Namos juntar as observações '1-Sim, invasivo' e '2-Sim, não invasivo' na mesma categoria;

Tratamento de Dados

- Com os tratamentos aplicados até o momento não sobrou nenhuma observação na classe '2-Rural' para a variável 'CS_ZONA', portanto vamos descartá-la.
- Na variável raça, vamos juntar as classes 'Preta' e 'Parda';
- La Vamos descartar todas as observações que contenham dados faltantes;
- ▲ As variáveis restantes não apresentam correlação (de Spearman) relevante;

Asma

Cardiopatia

Desconforto Respiratório

Diabetes

Perda de Olfato

Perda de Paladar

Vacina

Modelos

- Como a variável EVOLUCAO está desbalanceada, vamos usar a técnica chamada de under sampling para fazer o balanceamento;
- √ Vamos usar Regressão Logística, Floresta Aleatória e Rede Neural;
- ★ Foi usado validação cruzada com 5 folds;
- As variáveis categóricas foram transformadas em variáveis dummy.

Regressão Logística

Matriz de Confusão

Regressão Logística

Floresta Aleatória

Matriz de Confusão

Floresta Aleatória

Rede Neural

Matriz de Confusão

Rede Neural

Comparando Modelos

Tabela: Métricas de Avaliação dos Modelos

Modelo	Acurácia	Recall	Precision	f1 score	ROC-AUC
Regressão Logística	0,73	0,70	0,75	0,72	0,73
Floresta Aleatória	0,74	0,69	0,76	0,72	0,74
Rede Neural	0,74	0,73	0,74	0,73	0,74

Para a sequência deste trabalho, consideraremos os seguintes pontos:

- mudar a categorização de algumas covariáveis (idade, uso de suporte ventilatório, entre outros) a fim de obter um maior poder preditivo;
- avaliar o efeito dos fatores associados na probabilidade de óbito dos pacientes;
- utilizar outras técnicas de aprendizado supervisionado.

