TÉCNICAS PARA MELHORAR O DESEMPENHO DE ROBÔ SEGUIDOR DE LINHA

Acadêmicos: João Pedro Schmitt

Fabrício Ronchi Konell

Emiliano Adamski Stack

Igor Affonso Augustin

Orientador: Manfred Heil Junior

Coorientador: Maurício Henning

Curso: Bacharelado em Sistemas

de Informação e Engenharia

Mecânica

Agenda

- 1. Introdução;
- 2. Justificativa;
- 3. Problematização;
- 4. Objetivos;
- 5. Metodologia;
- 6. Projeto;
- 7. Considerações finais;

Introdução

- Aumento da presença de sistemas robóticos inteligentes no mercado.
- Desenvolver um robô capaz de seguir a linha.
- Estudo de uso das placas controladoras Arduíno.
- Teste na competição da Robocore.

Justificativa

- Ascensão dos sistemas robóticos no mercado atual.
- Soluções para mecanismos de seguir linha.
- Integração entre diversas áreas da ciência como: mecânica, eletrônica e informática.
- Avançar no estudo de algoritmos para sistemas robóticos.

Problematização

- Como aplicar o conhecimento da faculdade em cenários reais?
- Que tipo de algoritmo se aplica ao controle do seguidor de linha?
- Desenvolver um algoritmo para cálculo do erro ponderado dos sensores de linha.

Objetivos

Geral

• Desenvolver um robô seguidor de linha capaz de terminar o percurso no menor tempo possível.

Especifico

- Especializarmo-nos no desenvolvimento de aplicações com Arduino.
- Desenvolver a mecânica e o circuito do robô.
- Criar um cálculo de erro do array de sensores de linha.
- Utilizar o algoritmo de PID baseado no resultado do cálculo de erro desenvolvido.

Metodologia

- Realizar o estudo das técnicas avançadas de robótica e inteligência artificial.
- Construir o protótipo mecânico.
- Desenvolver os circuitos elétricos.
- Desenvolver o cálculo de erro do array de sensores.
- Integrar o cálculo ao algoritmo de PID.

Projeto - Físico

- Componentes utilizados.
 - Ponte H L298N
 - Arduino Nano.
 - Micro Metal Gearmotors Single Shaft.
 - Sensor de Refletância com 8 IR Analógico

 Array de sensor não calcula a relação de erro central do sensor de refletância.

$$MP_{1,4} = \begin{bmatrix} 4 & 3 & 2 & 1 \end{bmatrix}$$

$$MLA_{1,4} = \begin{bmatrix} MP_{1,1} * -x & MP_{1,2} * -y & MP_{1,3} * -z & MP_{1,4} * -w \end{bmatrix}$$

$$MRA_{1,4} = \begin{bmatrix} MP_{1,1} * x' & MP_{1,2} * y' & MP_{1,3} * z' & MP_{1,4} * w' \end{bmatrix}$$

$$MLI_{1,7} = \begin{bmatrix} MLA_{1,4} & \frac{MLA_{1,4} + MLA_{1,3}}{2} & MLA_{1,3} & \frac{MLA_{1,3} + MLA_{1,2}}{2} & MLA_{1,2} & \frac{MLA_{1,2} + MLA_{1,1}}{2} & MLA_{1,1} \end{bmatrix}$$

$$MRI_{1,7} = \begin{bmatrix} MRA_{1,4} & \frac{MRA_{1,4} + MRA_{1,3}}{2} & MRA_{1,3} & \frac{MRA_{1,3} + MRA_{1,2}}{2} & MRA_{1,2} & \frac{MRA_{1,2} + MRA_{1,1}}{2} & MRA_{1,1} \end{bmatrix}$$

$$\forall A \in \mathbb{R} \land j \geqslant 1 \land j \leq 7 \mid MLI_{i,j} > A \land A = j$$

$$\forall B \in \mathbb{R} \land j \geqslant 1 \land j \leq 7 \mid MRI_{i,j} > B \land B = j$$

$$CLS = \sum_{x=1}^{A} MLI_{i,x} - \sum_{x=A}^{7} MLI_{i,x}$$

$$CRS = \sum_{x=1}^{B} MRI_{i,x} - \sum_{x=B}^{7} MRI_{i,x}$$

$$ERROR = ((CLS + CRS) * 100)/14849.5$$

LIMITE		LIMITE										
MAX	5633,5	MIN	9216									
										LEFT	RIGHT	
A[0]	A_I[1]	A[2]	A_I[3]	A[4]	A[5]	A_I[6]	A[7]	A_I[8]	A[9]	WEIGHT	WEIGHT	ERROR
-3072	-2560	-2048	-1536	-1024	1024	1536	2048	2560	3072	9216	-9216	0
-3072	-2560	-2048	-1024,5	-1	1024	1536	2048	2560	3072	8704,5	-9216	-3,444560423
-3072	-1537	-2	-1,5	-1	1024	1536	2048	2560	3072	4612,5	-9216	-31,00104381
-3072	-1537	-2	-513	-1024	1024	1536	2048	2560	3072	3072	-9216	-41,37513048
-3	-2,5	-2	-513	-1024	1024	1536	2048	2560	3072	-1531,5	-9216	-72,37617428
-3	-1025,5	-2048	-1536	-1024	1024	1536	2048	2560	3072	-5633,5	-9216	-100
-3072	-2560	-2048	-1536	-1024	1	1024,5	2048	2560	3072	9216	-8704,5	3,444560423
-3072	-2560	-2048	-1536	-1024	1	1,5	2	1537	3072	9216	-4612,5	31,00104381
-3072	-2560	-2048	-1536	-1024	1024	513	2	1537	3072	9216	-3072	41,37513048
-3072	-2560	-2048	-1536	-1024	1024	513	2	2,5	3	9216	1531,5	72,37617428
-3072	-2560	-2048	-1536	-1024	1024	1536	2048	1025,5	3	9216	5633,5	100

-150.000000

$$u(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau + K_d \frac{de}{dt}$$

Considerações finais

- Vasta aplicabilidade de sistemas robóticos atualmente.
- A funcionalidade de sistemas de seguidor de linha estão em constante desenvolvimento.
- Complexidade para todo o desenvolvimento do sistema e cálculo.

Principais referências bibliográficas.

- ARDUINO: **Arduino.** Disponível em:
 - <www.arduino.cc>. Acesso em: 15/10/2013

KERNIGHAN Brian W., RITCHIE Dennis M. C
Programação ANSI. Rio de Janeiro: CAMPUS. 1989.

 MCROBERTS Michael. Arduino Básico. São Paulo: NOVATEC. 2011

Agradecimentos

WEG Automação Dulcio (Eng. Mecânica)

Obrigado

João Pedro Schmitt

joao.schmitt@catolicasc.org.br

Emiliano Adamski Stack

emiliano.stack@catolicasc.org.br

Fabrício Matheus Konell Ronchi

fabricio.konell@catolicasc.org.br

Igor Affonso Augustin

Igor.augustin@catolicasc.org.br

