#### Homework 4

Due: June 21, 18:00

### Problem 1. (Stochastic game for simplified grid game)

Consider the following stochastic game with two players n = 1,2.



#### Game's rule:

- -Refer the lecture note "22. Stochastic Game with Nash Equilibrium concept"
- -Note that there is only one semi wall at the lower-left corner.
- (1) Find the Nash equilibrium policies  $\pi^* = (\pi_1^*, \pi_2^*)$  such that for all  $s \in S$  and i = 1, ... 2,

$$V_i(s,\pi_i^*,\pi_{-i}^*) \geq V_i(s,\pi_i^*,\pi_{-i}^*) \ \text{ for all } \pi_i \in \Pi_i$$

You can draw the Nash equilibrium trajectories for the two player (you don't have to show the computation procedure). Draw your found Nash Trajectory on the bellow figure

| 6    | 7 \$ | 8        |
|------|------|----------|
| 3    | 4    | 5        |
| 0ag1 | 1    | 2<br>ag2 |

(2). Compute  $V_1((0,2),\pi_1^*,\pi_2^*)$  and  $V_2((0,2),\pi_1^*,\pi_2^*)$  using the Nash equilibrium strategies  $\pi^*=(\pi_1^*,\pi_2^*)$  you found in problem (1).

(3). Compute the Nash Q values,  $Q_1^*(s_0, a_1, a_2)$  and  $2(s_0, a_1, a_2)$  for the two players at **the starting state**  $s_0 = (0,2)$ .

|                         |       | Player 2's action $a_2$                           |      |      |       |  |
|-------------------------|-------|---------------------------------------------------|------|------|-------|--|
|                         |       | Up                                                | Down | Left | Right |  |
| Player 1's action $a_1$ | Up    | $Q_1^*(s_0, a_1, a_2) =$ $Q_2^*(s_0, a_1, a_2) =$ |      |      |       |  |
|                         | Down  |                                                   |      |      |       |  |
|                         | Left  |                                                   |      |      |       |  |
|                         | Right |                                                   |      |      |       |  |

(4). Compute Nash equilibria for the above stochastic game  $\{Q_1^*(s_0,a_1,\ a_2),Q_2^*(s_0,a_1,\ a_2)\}$ . What is the Nash equilibrium actions and Nash equilibrium values? are these values correspond to those you found in problem (2)?

# **Problem 2. (Individual Q-learning for Stochastic Games)**

Refer the uploaded "HW4\_Code\_Assigment.ipynb" file

## **Problem 3. (Nash Q-learning for Stochastic Games)**

Refer the uploaded "HW4\_Code\_Assigment.ipynb" file