Конспекты по линейной алгебре, 2 сем

Пак Александр

8 февраля 2020 г.

Содержание

7 Линейные отображения																																	
	7.1	Основные определения																															2

7 Линейные отображения

7.1 Основные определения

Определение 1. U, V – линейные пространства над полем $K(\mathbb{R}/\mathbb{C})$

Линейным отображением A называется $A:U\to V$, обладающее свойством линейности: $\forall \lambda\in K, \forall u,v\in U$

$$A(u + \lambda v) = A(u) + \lambda A(v)$$

Замечание.

- 1. Записываем не A(u), а Au
- 2. "Поточечно" выполняются все арифметические операции, свойственные функциям
- 3. $A\mathbb{O}_U = \mathbb{O}_V$

Примеры.

1. \mathbb{O} – нулевое отображение $U \to V$

$$\forall u \in U: \mathbb{O}u = \mathbb{O}_v$$

2. \mathcal{E} – тождественное отображение: $V \to V$

$$\forall v \in V : \mathcal{E}v = v$$

3. $U=V=P_n$ – многочлены степени до n

$$A:V\to V$$

$$Ap = p'(t)$$
 – дифференциальный оператор

$$A(p_1 + \lambda p_2) = (p_1 + \lambda p_2)' = p_1' + \lambda p_2' = Ap_1 + \lambda Ap_2$$

Линейное отображение
$$A = \frac{d}{dt}$$

4.
$$U = \mathbb{R}^n \ V = \mathbb{R}^m$$

$$A = (a_{ij})_{m \times n}$$

$$A: x \in U \to y = Ax \in V$$

$$x_1 + \lambda x_2 \in \mathbb{R}^n \to y = A(x_1 + \lambda x_2) = Ax_1 + \lambda Ax_2$$

5. $U \cong V$. То есть отображение, на котором строится изоморфизм является линейным.

Определение 2. $\lambda \in K$ $A: U \to V$

Произведение линейного отображения на скаляр называется линейное отображение $B=\lambda A$

$$B: U \to V \ \forall u \in U \ Bu = \lambda Au$$

Определение 3. Суммой линейных отображений $A,B:U\to V$ называется $C:U\to V$ $\forall u\in U$ Cu=Au+Bu $\boxed{C=A+B}$

Определение 4. -A – отображение противоположное A

$$\forall u \in U \ (-A)u = -1 \cdot Au$$

$$L(U,V) = Hom_K(U,V) = Hom(U,V) = \mathcal{L}(U,V)$$

L(U,V) – множество всех линейных отображений из U в V.

Линейное отображение = гомоморфизм с операциями λA и A+B

Выполнены свойства 1–8 линейного пространства (проверить самим).

Значит L(U,V) – линейное пространство

Определение 5. $A \in L(U, V)$

 $KerA = \{u \in U \mid Au = \mathbb{O}_v\}$ – ядро линейного отображения.

Определение 6. $ImA = \{v \in V = Au \ \forall u \in U\} = ImA$

 $\{v \in V \mid \exists u \in U \ v = Au\}$ — образ линейного отображения.

Упр: Ker A и Im A - это подпространства соответственно пространств U и V. То есть они замкнуты относительно линейных операций.

Если KerA конечномерное подпространство U, то

 $|\overline{dim \ Ker A} = \overline{def A}|$ – дефект линейного отображения.

 $\overline{\text{Если } Im A}$ конечномерное подпространство V, то

 $\overline{dimImA = rgA}$ – ранг линейного отображения.

Утверждение. A изоморфно между U и $V \Leftrightarrow$

- 1. $A \in L(U, V)$
- 2. ImA = V
- 3. $KerA = \{0\}$ тривиально

Доказательство. A изоморфно \Leftrightarrow взаимнооднозначное соответствие + линейность - $A \in L(U,V)$

 $\mathbb{O}_u \leftrightarrow \mathbb{O}_v$, т. к. изоморфизм $\Rightarrow Ker A = \{\mathbb{O}\}$

Пусть $KerA = \{0\}$

Докажем инъективность $v_1 = v_2 \Leftrightarrow u_1 = u_2$

 $v_1 = Au_1 \ v_2 = Au_2$

 $\mathbb{O} = v_1 - v_2 = Au_1 - Au_2 = A(u_1 - u_2) = \mathbb{O}$ т. к. ядро тривиально.

Сюръективность. $ImA = V \Leftrightarrow \forall v \in V : \exists u \in UAu = v$. Последнее и означает сюръекцию.

Определение 7. $A \in L(U, V)$

- –ин σ ективно, если $KerA=\{\emptyset\}$
- -сюръективно, если ImA=v
- $-биективно \equiv изоморфизм, если интекция + сюр<math>$ текция.
- –эндоморфизм \equiv линейный оператор, если $U \equiv V$

 $End_k(V) = End(V) = L(V, V)$

 $-aвтоморфизм \equiv эндоморфизм + изоморфизм.$

 $Aut_k(V) = Aut(V)$

Определение 8. Произведением линейных отображений A,B

 $A \in L(W, V) \quad B \in L(U, W) \quad U \xrightarrow{B} W \xrightarrow{A} V$

называется $C \in L(U,V)$: $C = A \cdot B$, которое является композицией функций, определяющих отображения $A \ u \ B$.

$$A \cdot B = A \circ B$$

$$\forall u \in U : (AB)u = A(Bu)$$

Очевидно, C – линейное отображение.

$$\Omega \xrightarrow{C} U \xrightarrow{B_{1,2}} W \xrightarrow{A_{1,2}} V$$

Упр:

- 1. A, B изоморфизмы $\Rightarrow A \cdot B$ изоморфизм
- 2. $(A_1 + A_2)B = A_1B + A_2B$

$$A(B_1 + B_2) = AB_1 + AB_2$$
 – дистрибутивность

- 3. A(BC) = (AB)C ассоциативность
- 4. $\lambda AB = A\lambda B$

End(V) – ассоциативная унитарная алгебра \mathcal{E} – единица $\mathcal{E}A = A\mathcal{E}$

Определение 9. $A \in L(U, V)$ изоморфно.

 $\forall v \in V \exists ! u \in U : v = Au$

$$A^{-1}:V\to U$$

$$A^{-1}v = u$$

$$Ynp: A^{-1} \in L(V, U)$$

$$A^{-1}A = \mathcal{E}_v \quad AA^{-1} = \mathcal{E}_u$$

 $A \in End(U)$ – линейный оператор

 $A^{-1} \in End(V)$ – обратный оператор

Определение 10. $U_0 \subset U//A \in L(U,V)$

Cужением линейного отображения A на линейное подпространство U_0 называется $A|_{U_0}: U_0 \to V \quad \forall u \in U_0 \ A|_{U_0} u = Au$

Утверждение. A изоморфизм $\in L(U,V) \Rightarrow A|_{U_0} \in L(U_0,Im(A|_{U_0}))$ – изоморфизм

Примеры.

- 1. $0: U \to U$ не сюръекция, не инъекция, эндоморфизм, не автоморфизм.
- 2. $\mathcal{E}: U \to U$ автоморфизм
- 3. $A = \frac{d}{dt} \ A: P_n \to P_n$ эндоморфизм, не инъекция, не сюръекция. 4. $x \in \mathbb{R}^n \to y = Ax \in \mathbb{R}^n$ эндоморфизм.

Сюръекция $\Leftrightarrow rqA = n \Leftrightarrow \exists A^{-1} \Leftrightarrow$ инъекция.

То есть автоморфизм.

Теорема 1 (о rg и def линейного отображения). $A \in L(U,V)$

$$rgA + defA = dimU$$

Доказательство. $U_0 = KerA$

Дополним линейное пространство U_1 до пр-ва U:

$$U = U_0 \oplus U_1 \quad U_1 \cap U_0 = \{0\}$$

 $\forall u \in U : u = u_0 + u_1$ (единственным образом)

$$Au = Au_0 + Au_1 = Au_1 \quad ImA = A(U_1)$$

$$A_1 = A|_{U_1}: U_1 \to ImA$$

 A_1 – изоморфизм? $ImA_1 = ImA$ – сюръекция

 $\forall w \in Ker A_1 \in U_1 \\ Ker A_1 \subset Ker A = U_0 \end{cases} \Rightarrow w \in U_1 \cap U_0 = \{ \mathbb{O} \} \Rightarrow Ker A_1 = \{ \mathbb{O} \} \Rightarrow A_1$ изоморфизм.

 $U_1 \cong ImA \Leftrightarrow dimU_1 = dim(ImA)$ – инъекция.

T. K. $U = U_0 \oplus U_1$, To $dimU = dimU_0 + dimU_1 = dimKerA + dimImA$

Следствие 1 (Характеристика изоморфизма).

 $A \in L(U,V)$ Следующие условия эквивалентны:

- 1. А изоморфно
- 2. dimU = dimV = rgA
- 3. dimU = dimV

$$Ker A = \{0\} \Leftrightarrow def A = 0$$

Следствие 2. $A \in End(V)$ Следующие условия эквивалентны:

- 1. $A \in Aut(V)$
- 2. dimV = rgA
- 3. $Ker A = \{0\} \Leftrightarrow def A = 0$