LD INTELLECTUAL PROPERTY ORGANIZATIO. International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C07H 19/10, 19/20, A61K 31/70, C07F 9/6512, 9/6524, A61K 31/675

(11) International Publication Number: A1

WO 96/29336

(43) International Publication Date: 26 September 1996 (26.09.96)

(21) International Application Number:

PCT/GB96/00580

(22) International Filing Date:

13 March 1996 (13.03.96)

(30) Priority Data:

9505025.8

13 March 1995 (13.03.95)

GB

(71) Applicants (for all designated States except US): MEDICAL RESEARCH COUNCIL [GB/GB]: 20 Park Crescent, London W1N 4AL (GB). UNIVERSITY COLLEGE CARDIFF CONSULTANTS LTD. [GB/GB]; P.O. Box 923, Cardiff CF1 3TE (GB). REGA FOUNDATION [BE/BE]; Minderbroedersstraat 10, B-3000 Leuven (BE).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): McGUIGAN, Christopher [GB/GB]; 2 Alfreda Road, Whitchurch, Cardiff CF4 2EH (GB). BALZARINI, Jan [BE/BE]; Kapeldreef 20, B-3001 Heverlee (BE).
- (74) Agent: HOWARD, Paul, Nicholas; Carpmaels & Ransford, 43 Bloomsbury Square, London WC1A 2RA (GB).

(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD. MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN. ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, Cl. CM, GA, GN, MIL, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: CHEMICAL COMPOUNDS

(57) Abstract

The invention relates to masked monophosphate nucleoside analogues, their preparation and their therapeutic use in the treatment of viral infection, including infection by HIV. In particular, the invention relates to aryl phosphoramidate 2',3'-dideoxy and 2',3'dideoxydidehydro of nucleoside analogues and of PMEA.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	*				
AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Vmar	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
Ŋ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	, RO	Romania
BY	Belarus	KG	Кутдувал	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
a	Côte d'Ivoire	L	Liechtenstein	5K	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Scnegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lichuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Larvia	TJ	Tajikistan
DK	Denmark	мс	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Span	MG	Madagascar	UG	Uganda
FT	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

CHEMICAL COMPOUNDS

The present invention relates to a new class of nucleoside analogues and their therapeutic use in the prophylaxis and treatment of viral infection, for example by human immunodeficiency virus (HIV), which is believed to be the aetiological agent in human acquired immunodeficiency syndrome (AIDS).

- There has been much interest in the use of nucleoside analogues as inhibitors of HIV. 2',3'-dideoxy-2',3'-didehydrothymidine (d4T) and 3'-azido-3'-deoxythymidine (AZT) are both known inhibitors of HIV [Hitchcock et al., Antiviral Chem. Chemother. (1991), 2, 125; Mansuri et al., Antimicrob. Agents Chemother., (1990), 34, 637.]. The inhibition of HIV by these, and other nucleoside analogues, is conventionally thought to depend upon conversion of the nucleoside analogue in vivo to the corresponding 5'-triphosphate by (host-cell) kinase enzymes. However, this absolute dependence upon (host-cell) kinase-mediated activation can lead to poor activity, the emergence of resistance, and clinical toxicity.
- In order to reduce the dependence on kinase enzymes the use of masked phosphate pro-drugs of the bioactive nucleotide forms of several chemotherapeutic nucleoside analogues has been suggested (McGuigan et al., Nucleic Acids Res., (1989), 17, 6065; McGuigan et al., Ibid., (1989), 17, 7195; Chawla et al., J. Med. Chem., (1984), 27, 1733; Sergheraert et al., J. Med. Chem. (1993), 36, 826-830.]. In particular, McGuigan et al [J. Med. Chem. 36, 1048-1052 (1993)] have reported the preparation of aryl ester phosphoramidate derivatives of AZT. In vitro evaluation of these compounds revealed the compounds to have anti-HIV activity. However, in "normal" thymidine kinase rich (TK*) cells, the activity of such compounds was at least an order of magnitude less than the parent nucleoside AZT. Only in TK-deficient (TK) cells, in which the activity of the aryl ester -

phosphoramidate derivatives was virtually maintained but the activity of AZT was reduced, did the activity of the derivatives exceed that of AZT.

5 McGuigan et al [Bioorganic & Medical Chemistry Letters, 3,(6), 1203-1206 (1993)] have also reported preparation of triester phosphate derivatives of d4T. Again, in vitro evaluation of these compounds revealed that whilst the compounds have significant anti-HIV activity, the activity is less than that of the parent nucleoside d4T in TK+ cells.

Abraham and Wagner (Nucleosides and Nucleotides 13(9). 1891-1903 (1994)) have reported the preparation of nucleoside phosphoramidate diesters and triesters but do not report any biological activity.

The acyclic nucleoside analogue 9(2-phosphonomethoxyethyl) adenine (PMEA), and analogues thereof, have been demonstrated to show activity against herpes viruses and retroviruses including HIV (Calio et al., Antiviral Res., (1994), 23(1), 77-89; Balzarini et al., AIDS, (1991), 5(1), 21-28).

To date, the approach of providing masked phosphate prodrugs has failed to enhance the anti-viral activities of the parent nucleoside analogues such as AZT and d4T in TK⁺ cells. Furthermore, the emergence of resistance to the nucleoside analogues in their bioactive 5'-triphosphate form has rendered the reported masked phosphate pro-drugs and their parent nucleoside analogues potentially ineffective.

It has now been found that a particular class of masked nucleoside analogues are highly potent viral inhibitors in both TK and TK+ cells, and yet retain activity against nucleoside (e.g. d4T) - resistant virus.

According to the present invention there is provided a compound of the formula (1)

5

30

35

Ar—O—P—
$$X^2$$
— X^6
 X^1
 $C=X^4$
 Z
 J

10 wherein Ar is an aryl group;

Y is oxygen or sulphur;

X¹ is selected from O, NR³, S, CR³R⁴, CR³W¹ and CW¹W² where R³ and R⁴ are independently selected from hydrogen, alkyl and aryl groups; and W¹ and W² are heteroatoms;

X²-X⁶ may be absent; or X⁶ is CH₂ and X² is selected (independently of X¹) from O, NR³, S, CR³R⁴, CR³W¹ and CW¹W² where R³ and R⁴ are independently selected from hydrogen, alkyl and aryl groups; and W¹ and W² are heteroatoms;

25 X^3 is a C_{1-6} alkyl group;

 X^4 is oxygen or CH_2 ;

X⁵ may be absent or is CH₂;

Z is selected from O, NR⁵, S, alkyl and aryl groups, where R⁵ is selected from hydrogen, alkyl and aryl groups;

J is selected from hydrogen, alkyl, aryl, heterocyclic and polycyclic groups;

Q is selected from O, NR6, S, CR6R7, CR6W3 and

WO 96/29336

 CW^3W^4 , where R^6 and R^7 are independently selected from hydrogen, alkyl and aryl groups; and W^3 and W^4 are heteroatoms;

5

 T^1 and T^2 are independently selected from hydrogen and CH_2R^1 , where R^8 is selected from H, OH and F; or T^1 and T^2 are linked together and together are selected from the groups

10

$$C=C$$
 and $R^{10}C-C$ R^{11} R^{9} R^{12}

15

where R^9 is selected from H, halogen, CN, NH_2 , CO-alkyl and alkyl; and R^{10} , R^{11} , R^{12} are independently selected from H, N_3 , halogen, CN, NH_2 , CO-alkyl and alkyl;

20

B is a purine or pyrimidine base;

or a pharmaceutically acceptable derivative or metabolite thereof.

25

The compounds of the present invention are potent anti-viral agents. In particular, they are highly active against HIV in both TK and TK+ cells. Particularly surprising is the activity of the compounds of the present invention against nucleoside-resistant HIV. These observations indicate that the activity of these compounds is not wholly dependent upon the conventional mode of action (requiring hydrolysis of the phosphate aryl ester and P-X¹ bonds followed by kinase-dependent conversion to the 5'-triphosphate derivative), but arises from an entirely different mode of action. The experimental data presented herein indicates that the compounds and metabolites of the present invention are directly acting as reverse transcriptase (RT) inhibitors via

a previously unrecognised metabolic pathway and mechanism of action.

Reference in the present specification to an alkyl group means a branched or unbranched, cyclic or acyclic, saturated or unsaturated (e.g. alkenyl or alkynyl) hydrocarbyl radical. Where cyclic, the alkyl group is preferably C₃ to C₁₂, more preferably C₅ to C₁₀, more preferably C₅ to C₇. Where acyclic, the alkyl group is preferably C₁ to C₁₆, more preferably C₁ to C₆, more preferably methyl. Reference in the present specification to alkoxy and aryloxy groups means alkyl-O- and aryl-O- groups, respectively. Reference to alkoyl and aryloyl groups means alkyl-CO- and aryl-CO-, respectively.

Reference in the present specification to an aryl group means an aromatic group, such as phenyl or naphthyl, or a heteroaromatic group containing one or more, preferably one, heteroatom, such as pyridyl, pyrrolyl, furanyl and thiophenyl. Preferably, the aryl group comprises phenyl or substituted phenyl.

20 The alkyl and aryl groups may be substituted unsubstituted, preferably unsubstituted. Where substituted, there will generally be 1 to 3 substituents present, preferably 1 substituent. Substituents may include halogen atoms and halomethyl groups such as CF, and CCl,; oxygen 25 containing groups such hydroxy, carboxy, as oxo, carboxyalkyl, alkoxy, alkoyl, alkoyloxy, aryloxy, aryloyl and aryloyloxy; nitrogen containing groups such as amino, alkylamino, dialkylamino, cyano, azide and nitro; sulphur containing groups such as thiol, alkylthiol, sulphonyl and 30 sulphoxide; heterocyclic groups which may themselves be substituted; alkyl groups, which may themselves substituted; and aryl groups, which may themselves be substituted, such as phenyl and substituted phenyl. Alkyl includes substituted and unsubstituted benzyl.

Reference in the present specification to heterocyclic groups means groups containing one or more, imidazolyl, pyrazolyl, thiazolyl, isothiazolyl, oxazolyl, pyrrolidinyl, pyrrolinyl, imidazolidinyl, imidazolinyl, 5 pyrazolidinyl, tetrahydrofuranyl, pyranyl, pyronyl, pyridyl, pyrazinyl, pyridazinyl, piperidyl, piperazinyl, morpholinyl, thionaphthyl, benzofuranyl, isobenzofuryl, indolyl, oxyindolyl, isoindolyl, indazolyl, indolinyl, 7-azaindolyl, isoindazolyl, benzopyranyl, coumarinyl, isocoumarinyl, 10 quinolyl, isoquinolyl, naphthridinyl, cinnolinyl, quinazolinyl, pyridopyridyl, benzoxazinyl, quinoxadinyl, chromenyl, chromanyl, isochromanyl and carbolinyl.

References in the present specification to polycyclic groups

means a group comprising two or more non-aromatic carbcyclic

or heterocyclic rings which may themselves be substituted.

Reference in the present specification to halogen means a fluorine, chlorine, bromine or iodine radical, preferably 20 fluorine or chlorine radical.

The group Ar comprises a substituted or unsubstituted aryl group, wherein the term "aryl group" and the possible substitution of said group is as defined above. Preferably,

25 Ar is a substituted or unsubstituted phenyl group. Particularly preferred substituents are election withdrawing groups such as halogen (preferably chlorine or fluorine), trihalomethyl (preferably trifluoromethyl), cyano and nitro groups. Preferably, Ar is phenyl, 3,5-dichloro-phenyl, p
30 trifluoromethyl-phenyl, p-cyano-phenyl, or p-nitro-phenyl.

Y may be oxygen or sulphur. Preferably, Y is oxygen.

X¹ is from 0, NR³, S, CR³R⁴, CR³W¹ and CW¹W² where R³ and R⁴ are independently selected from hydrogen, alkyl and aryl groups; and W¹ and W² are heteroatoms. Preferably, X¹ is selected from 0,S and NR³. Preferably, X¹ is NR³. When present, R³ is preferably H. When present, W¹ and W² may independently comprise any heteroatom such as a halogen, preferably

fluorine.

X²-X⁶ may be absent; or X⁶ is CH₂ and X² is selected (independently of X¹) from O, NR³, S, CR³R⁴, CR³W¹ and CW¹W² where R³ and R⁴ are independently selected from H, alkyl and aryl groups; and W¹ and W² are heteroatoms. When present, X² is preferably oxygen. When present, R³ is preferably H. When present W¹ and W² may independently comprise any heteroatom such as halogen, preferably fluorine.

10

 X^4 is oxygen or CH_2 . Preferably, X^4 is oxygen.

X⁵ may be absent or is CH₂.

- Is Z may comprise O, NR⁵, S, alkyl or aryl groups, where R⁵ is selected from H, alkyl and aryl groups. Preferably, Z is O or NR⁵. Preferably, R⁵ is hydrogen. Most preferably, Z is oxygen.
- J is selected from hydrogen, alkyl, aryl, heterocyclic and polycyclic groups. Preferably, J is a substituted or unsubstituted alkyl group. Preferably, J is a substituted or unsubstituted $C_{1.6}$ alkyl group, preferably a benzyl or methyl group.

25

 X^3 is a $C_{1.6}$ alkyl group. X^3 may be a $C_{1.6}$ substituted or unsubstituted, branched or unbranched, methylene chain. Preferably, X^3 is a group CR^1R^2 where R^1 and R^2 are independently selected from hydrogen, alkyl and aryl groups.

- Preferably, at least one of R¹ and R² is hydrogen. It will be appreciated that if R¹ and R² are different, the carbon atom to which they are bonded is an asymmetric centre. The stereochemistry at this site may be R or S or mixed. When one of R³ and R⁴ is hydrogen, the stereochemistry is
- 35 preferably S.

Q is selected from O, NR⁶, S, CR⁶R⁷, CR⁶W³ and CW³W⁴, where R⁶ and R⁷ are independently selected from hydrogen, alkyl and aryl groups; and W² and W³ are heteroactoms such as halogen

atoms, preferably fluorine. Preferably, Q is 0, S, CH_2 or CF_2 . Most preferably, Q is oxygen.

T¹ and T² are independently selected from hydrogen and CH₂R³

5 where R³ is selected from H, OH and F; or T² and T² are linked together and together are selected from the groups:-

$$C=C \qquad \text{and} \qquad R^{10} C - C = R^{11}$$

15

where R^9 is selected from H, halogen, CN, NH_2 , CO-alkyl, and alkyl, preferably R^9 is H or F; and R^{10} , R^{11} , and R^{12} are independently selected from H, N₃, halogen, CN, NH_2 , CO-alkyl, and alkyl, preferably R^{10} , R^{11} and R^{12} are independently selected from H, F and N₃. It will be appreciated that R^9 corresponds to the 3' - α position and R^{10} corresponds to the 3' - β position. Preferably, T^1 and T^2 are linked together and together form the group:-

25

30 B comprises a purine or pyrimidine base, such as adenine thymine, uracil, cytosine or guanine and derivatives thereof. Derivatives thereof include substituted purine or pyrimidine bases wherein the substituents are as defined above. Examples of substituted bases include 5-substituted pyrimidine. Preferably, B is adenine or thymine.

Preferably, the present invention provides a compound of formula (2)

9

PCT/GB96/00580

(2)
$$Ar - O - P - X^2 - X^6 X^5 B$$

$$R^1 - CH T^1 T^2$$

$$C = O$$

$$O$$

$$O$$

$$NH$$

$$C = O$$

wherein Ar, R^1 , J, X^2 , X^5 , X^6 , Q, T^1 , T^2 and B are as defined above; or a pharmaceutically acceptable derivative or metabolite thereof.

will be appreciated that the group -NH-CHR1-CO,J 15 corresponds to a carboxy-protected α -amino Preferably, the group R1 corresponds to the side chain of a naturally occurring amino acid such as Alanine, Arginine, Asparagine, Aspartic Acid, Cysteine, Cystine, Glycine, Glutamic Acid, Glutamine, Histidine, Isoleucine, Leucine, 20 Methionine, Phenylalanine, Proline, Lysine, Threonine, Tryptophan, Tyrosine, Valine. Preferably, R1 is Me or PhCH; corresponding to the side chain of alanine or phenylalanine, Preferably, respectively. stereochemistry at the asymmetric centre -CHR'- corresponds 25 to an L-amino acid.

According to one preferred embodiment, the present invention provides a compound of formula (3):-

30

5

Ar-O-P-X2-QB
$$\begin{array}{c} X1 \\ X1 \\ C=X^4 \\ Z \\ J \end{array}$$

35

wherein Ar, Y, X^1 , X^2 , X^3 , X^4 , Z, Q and B are as defined above.

More preferably, the invention provides a compound, according to formula (3), of formula (4):-

10

20

15

wherein Ar, R¹ and J are as defined above; or a pharmaceutically acceptable derivative or metabolite thereof. Preferably, the invention provides a compound of formula (4) in which Ar, R¹ and J are defined in accordance with Table 1.

Table 1

	Compound	Ar	\mathbb{R}^{1}	J
	Reference			
5	323	4-EtPh	Me	Me
	324	Ph	Me	Me
	327	4-FPh	Me	Me
	526	3-CF ₃ Ph	Me	Me
	546	3,5-Cl ₂ Ph	Me	Me
10	730	Ph	Me	Bzl
	776	2,4-Br ₂ Ph	Me	Me
	779	F ₅ Ph	Me	Me
	862	Ph	Me	Hexyl
	863	Ph	Bzl	Me
. 15	864	Ph	CH ₂ iPr	Me
	865	Ph	iPr	Me
	866	Ph	H	Me
	867	Ph	$[CH_2]_2$ SMe	Me
	868	2,4Br ₂ Ph	Me	Bzl
.20	877	Ph	Bzl	Bzl
	878	Ph	Bzl	tBu
	892	Ph ·	Me	Cyclohexyl
	893	Ph .	Me	tBu
	1078	Ph	CH ₂ CO ₂ H	Me
25	1214	Ph	CH2CH2CH2NHC[NH2]NH	Me
	1218	Ph	Me	n-Pent
	1219	Ph	Me	neo-Pent
	1226	Ph	Me	1-Napthyl
	1227	Ph	Me	2-Napthyl
30	·			

According to a further preferred embodiment, the present invention provides a compound of formula (5)

Ar-O-P- X^2 Q
B X^1 $C=X^4$ R^9 R^{12}

10

wherein Ar, Y, X^1 , X^2 , X^3 , X^4 , Z, J, R^9 , R^{10} , R^{11} , R^{12} , Q and B as defined above.

More preferably, the invention provides a compound, 15 according to formula (5), of the formula (6):-

0,1

25 wherein Ar, R^1 , J, R^9 , R^{10} , R^{11} , R^{12} and B are as defined above.

According to a further preferred embodiment, the present invention provides a compound of formula (7):-

30

35

wherein Ar, Y, X¹, X³, X⁴, Z, J, Q and B are as defined above and T¹ and T² are independently selected from H and CH₂R¹ wherein R³ is as defined above. Preferably, B is a purine base. More preferably, B is adenine. Preferably, T¹ is hydrogen. Preferably, T² is CH₂R³. These compounds are analogues of the acyclic nucleoside analogue 9-(2-phosphonylmethoxyethyl) adenine (PMEA), which has been demonstrated to show activity against herpes viruses and retroviruses (Calio et al., Antiviral Res., (1994), 23(1), 77-89; Balzarini et al., AIDS, (1991), 5(1), 21-28).

More preferably, the invention provides a compound, according to formula (7), of formula (8):-

15

wherein Ar, R^1 , J, T^1 , T^2 and B are as defined above.

It is a feature of the aryl ester phosphate compounds (1) of 30 the present invention that they exhibit significantly enhanced anti-viral efficacy, in both <u>in vitro</u> and <u>in vivo</u> tests, in comparison to their corresponding nucleoside analogue (9)

35

$$(9) \qquad \begin{array}{c} HO - X^6 Q X^5 \\ \hline T^1 & T^2 \end{array}$$

In addition, the compounds of the present invention exhibit significantly reduced toxicity in comparison to their corresponding analogue (9).

The compounds of the present invention thus exhibit a greatly enhanced selectivity index (ratio of CC₅₀ (toxicity):EC₅₀ (activity)) in comparison to their corresponding nucleoside analogue.

Experiments with radiolabelled compounds of the present invention have shown that the compounds give enhanced intracellular levels of nucleoside 5'-triphosphate, the enhancement being particularly significant in TK cells. Thus, the compounds of the present invention may act in part by the known metabolic pathway.

However, it has been found that the compounds of the present invention show surprising activity against nucleoside resistant strains of HIV. This indicates that the compounds of the present invention are also acting by a pathway independent of a 5'-triphosphate metabolite.

25 It has been demonstrated that the compounds of the present invention lead to intracellular generation of high levels of a metabolite (10).

Metabolite (10) may also be prepared by treatment of the corresponding compound according to formula (1) with hog

15

liver esterase. Moreover, it has been shown that compounds formula direct inhibitors of of (10) are reverse transcriptase from HIV.

5 According to a further aspect of the present invention there is provided a compound of formula (10)

wherein Ar, Y, X^1 , X^2 , X^3 , X^4 , X^6 , T^1 , T^2 , Q, X^5 and B are as defined above, or a pharmaceutically acceptable derivative

or metabolite thereof. 20 The intracellular generation of $\mbox{\sc of}$ anti-viral metabolites such

as (10) is an important feature of the invention for several reasons. Firstly, the direct activity of (10) on RT removes the necessity for further nucleotide-kinase mediated 25 phosphorylation, which may be slow in many cases. In cases where the nucleoside monophosphate is not a substrate for host nucleotide kinases, activation will be poor and antiviral efficacy low, even if the triphosphate is an excellent RT inhibitor. In such cases, the generation of metabolites such as (10) may lead to a very significant enhancement in antiviral action. Such compounds may be acting directly in their own right or via a rearrangement, decomposition or disproportionation product or via a contaminant. Moreover, the structure of metabolites such as (10) may be further designed to optimise binding to the known structure of RT, metabolites could delivered be modified such intracellularly using technology herein described, to further enhance the anti-viral effect.

By "a pharmaceutically acceptable derivative" is meant any pharmaceutically acceptable salt, ester or salt of such ester or any other compound which upon administration to a recipient is capable of providing (directly or indirectly) a compound of formula (1) or (10). By "pharmaceutically acceptable metabolite" is meant a metabolite or residue of a compound of formula (1) or (10) which gives rise to a nucleoside-resistance independent or nucleoside 5'-triphosphate independent mode of reverse transcriptase inhibition exhibited by the compounds of formula (1) or (10).

According to a further aspect of the present invention there is provided a compound according to the present invention for use in a method of treatment, preferably in the prophylaxis or treatment of viral infection.

According to a further aspect of the present invention there is provided use of a compound according to the present invention in the manufacture of a medicament for the prophylaxis or treatment of viral infection.

According to a further aspect of the present invention there is provided a method of prophylaxis or treatment of viral infection comprising administration to a patient in need of such treatment an effective dose of a compound according to the present invention.

The viral infection may comprise any viral infection such as 30 HIV and herpes virus, including HSV 1 and HSV 2, CMV, VZV, EBV, HAV, HBV, HCV, HDV, papilloma, rabies and influenza.

Preferably, the viral infection comprises HIV infection, more preferably HIV-I or HIV-II. It is a feature of the present invention that the compounds exhibit good activity against both HIV-I and HIV-II.

According to a further aspect of the present invention there is provided use of a compound of the present invention in

the manufacture of a medicament for use in the inhibition of transcriptase nucleoside-resistance reverse a by independent or nucleoside 5'-triphosphate independent mode of action.

5

According to a further aspect of the present invention there is provided a pharmaceutical composition comprising a compound of the present invention in combination with a pharmaceutically acceptable excipient.

10

35

According to a further aspect of the present invention there is provided a method of preparing a pharmaceutical composition comprising the step of continuing a compound of of the present invention with a pharmaceutically acceptable 15 excipient.

The medicaments employed in the present invention can be administered by oral or parenteral routes, intravenous, intramuscular, intraperitoneal, subcutaneous, 20 transdermal, airway (aerosol), rectal, vaginal and topical (including buccal and sublingual) administration.

For oral administration, the compounds of the invention will generally be provided in the form of tablets or capsules, as 25 a powder or granules, or as an aqueous solution or suspension.

Tablets for oral use may include the active ingredient mixed with pharmaceutically acceptable excipients such as inert 30 diluents, disintegrating agents, binding agents, lubricating agents, sweetening agents, flavouring agents, colouring agents and preservatives. Suitable inert diluents include sodium and calcium carbonate, sodium and calcium phosphate, and lactose, while corn starch and alginic acid are suitable Binding agents may include starch disintegrating agents. and gelatin, while the lubricating agent, if present, will generally be magnesium stearate, stearic acid or talc. If desired, the tablets may be coated with a material such as glyceryl monostearate or glyceryl distearate, to delay

30

absorption in the gastrointestinal tract.

Capsules for oral use include hard gelatin capsules in which the active ingredient is mixed with a solid diluent, and soft gelatin capsules wherein the active ingredient is mixed with water or an oil such as peanut oil, liquid paraffin or olive oil.

Formulations for rectal administration may be presented as 10 a suppository with a suitable base comprising for example cocoa butter or a salicylate.

Formulations suitable for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams or spray formulations containing in addition to the active ingredient such carriers as are known in the art to be appropriate.

For intramuscular, intraperitoneal, subcutaneous and intravenous use, the compounds of the invention will generally be provided in sterile aqueous solutions or suspensions, buffered to an appropriate pH and isotonicity. Suitable aqueous vehicles include Ringer's solution and isotonic sodium chloride. Aqueous suspensions according to the invention may include suspending agents such as cellulose derivatives, sodium alginate, polyvinyl-pyrrolidone and gum tragacanth, and a wetting agent such as lecithin. Suitable preservatives for aqueous suspensions include ethyl and n-propyl p-hydroxybenzoate.

The compounds of the invention may also be presented as liposome formulations.

In general a suitable dose will be in the range of 0.1 to 35 300 mg per kilogram body weight of the recipient per day, preferably in the range of 6 to 150 mg per kilogram body weight per day and most preferably in the range 15 to 100 mg per kilogram body weight per day. The desired dose is preferably presented as two, three, four, five or six or

more sub-doses administered at appropriate intervals throughout the day. These sub-doses may be administered in unit dosage forms, for example, containing 10 to 1500 mg, preferably 20 to 1000 mg, and most preferably 50 to 700 mg of active ingredient per unit dosage form.

According to a further aspect of the present invention there is provided a process for the preparation of a compound according to the present invention, the process comprising reaction of a compound of formula (11)

$$HX^2$$
 Q B T^1 T^2

15

with a compound of formula (12)

20

(12) ArO-P-CI
$$\begin{array}{ccc}
X \\
1 \\
X \\
X \\
X \\
C = X^4 \\
Z \\
J
\end{array}$$

25

The reaction may be carried out in the tetrahydrofuran in the presence of N-methylimidazole.

30

Alternatively, the compounds of the present invention may be prepared by reaction of a compound of formula (13) or a suitable derivative thereof

3 5

(13)
$$HO-P$$
 OH
 T^{l}
 T^{2}

with ArOH and a compound of formula (14) or suitable 5 derivatives thereof

10

$$\begin{array}{ccc}
& & \text{HX}^{1} \\
& & \text{X}^{3} \\
& & \text{C} = \text{X}^{4} \\
& & \text{Z}
\end{array}$$

The invention will now be described with reference to the following Figures and Examples. It will be appreciated that what follows is by way of example only and that modifications to detail may be made whilst still falling within the scope of the invention.

20

Figure 1 illustrates the <u>in vivo</u> antiviral activity of d4T (comparative) and aryl ester phosphoramidate compound 324 in MSV infected mice. Drug doses are 50[low] or 200[high] mg/kg/day given i.p. for 4 days starting 1 hour before MSV inoculation.

EXPERIMENTAL

30

All experiments involving water sensitive compounds were conducted under scrupulously dry conditions. Tetrahydofuran was dried by heating under reflux over sodium and benzophenone followed by distallation and storage over active sieves. N-methylimidazole was purified by distillation. Nucleosides were dried at elevated temperature in vacuo over P2O5. Proton, carbon and phosphorus Nuclear Magnetic Resonance (1H, 13C, 31P nmr) spectra were recorded on a Bruker Avance DPX spectrometer

operating at 300 MHz, 75.5 MHz, and 121.5 MHz respectively. All nmr spectra were recorded in CDCl3 at room temperature (20°C +/-3°C). H and 13C chemical shifts are quoted in parts per million downfield from tetramethyisilane. 5 values refer to coupling constants and signal splitting patterns are described as singlet (s), broad singlet (bs), doublet (d), triplet (t), quartet (q), multiplet (m) or combinations thereof. 31P chemical shifts are quoted in parts per million relative to an external phosphoric acid 10 standard. Many NMR peaks were further split due to the presence of diastereoisomers at the [chiral] phosphate centre. Chromatography refers to flash chromotography and was carried out using Merck silica gel 60H (40-60 m, 230-400 mesh) as stationary phase. Thin layer 15 chromotography was performed using Alugram SIL G/UV_{254} aluminium backed silica gel plates.

Mass spectra were recorded by the fast atom bombardment (FAB) mode on a VG 70--250 spectrometer. HPLC data was recorded using an ACS quaternary system with an ODS5 column and an eluent of water/acetonitrile, with 82% water 0-10 mm, and then a linear gradient to 20% water at 30 min, with a flow rate of 2mL/min and detection by UV at 265 nm.

The test compounds were isolated as mixtures of diastereoisomers, with this isomerism arising from mixed stereochemistry at the phosphate centre. The resulting oils did not give useful microanalytical data but were found to be pure by high-field multinuclear NMR spectroscopy and rigorous HPLC analysis.

Preparation of Compounds

The compounds of the present invention were prepared according to the following general procedures.

<u>Preparation of aryl phosphorodichloridates</u> (general procedure)

A solution of the appropriate phenol (30.4 mmol) and

triethylamine (4.25ml, 30.5 mmol) in dry CH₂Cl₂ (25ml) was added to a solution of freshly distilled POCl₃ (10ml, 107mmol) in CH₂Cl₂ (30ml) at -50° and the mixture allowed to stir at ambient temperature overnight. The reaction mixture was filtered and the filtrate evaporated. Ether (20ml) was added and precipitate filtered again. After evaporation the residue was distilled if possible.

Phenyl N-methylalaninyl phosphorochloridate

10 A solution of triethylamine (lml-7.17mmol) in 15ml of dry CH₂Cl, was added dropwise to a mixture of phenyl phosphorodichloridate (757.4mg, 3.59mmol) and L-alanine methyl ester hydrochloride (500mg, 3.58mmol) in 50ml of dry CH2Cl2 at -80°C in one hour. The mixture was then stirred 15 vigorously at -50°C during five hours and CH2Cl2 evaporated. 25 ml of dry ether was added and precipitate filtered off under nitrogen. Evaporation of ether gave a colourless oil which was used without further purification for the next step.

20

<u>Preparation of aryl phosphates of nucleoside analogues</u> (general procedure)

Phenyl N-methylalaninyl phosphorochoridate (250 mg, 0.9 mmol, 2.0equivs) was added to a stirred solution of nucleoside analogue 0.45mmol) and N-methyl imidazole (0.37ml, 143.5\mul, 1.8 mmol, 4equivs) in THF (2ml). After 4 hours, the solvent was removed under reduced pressure. The gum was dissolved in chloroform (10ml), and washed with 1M HCl (8ml), sodium bicarbonate (10ml) and water (15ml). The organic phase was dried, and the solvent removed in vacuo. The residue was purified by column chromatography on silica with elution by chloroform-methanol (97:3). Pooling and evaporation of the eluent gave the product as a white solid.

35 Spectral data

323 - 2',3'-dideoxy-2',3'-didehydrothymidine 5'-(p-ethylphenyl methoxy alaninyl) phosphoramidate Yield = 79%

³¹P (CDCl₃): 3.43 ppm 'H (CDCl₃): 9.25 (0.5H, s, B, NH), 9.23 (0.5H, s, A, NH), 7.34 (0.5H, s, H-6, B), 7.33 (0.5H, s, H-6, A), 7.14 - 7.00 (5H, m, Ph, H-1'), 6.28 (1H, m, H-3'), 5.88 (1H, m, H-2'), 5 5.00 (1H, m, H-4'), 4.38 - 4.25 (2H, m, H-5'), 3.93 (2H, m, ala-NH, ala-CH), 3.70 (1.5H, s, OMe, A), 3.67 (1.5H, s, OMe, B), 2.60 (2H, q, CH_2CH_3 , J=7.5 Hz), 1.84 (1.5H, d, 5- CH_3 , J=1.2 Hz), 1.80 (1.5H, d, 5-CH₃, J=1.2 Hz), 1.31 (3H, m, CH_2CH_3), 1.19 (3H, m, ala- CH_3). ¹³C (CDCl₃): 174.25 (ala-CO, A), 174.12 (ala-CO, B), 164.22 .10 (C-4, B), 164.17 (C-4, A), 151.15 (C-2, B), 151.12 (C-2, A), 148.29 (i-Ph, B), 148.16 (i-Ph, A), 141.24 (p-Ph, A), 141.19 (p-Ph, B), 136.06 (C-6, B), 135.76 (C-6, A), 133.50 (C-3', A), 133.15 (C-3', B), 129.11 (o-Ph, A), 129.05 (o-Ph, B), 15 127.54 (C-2', A), 127.36 (C-2', B), 120.08 (d, m-Ph, B, J=3.9 Hz), 119.90 (d, m-Ph, A, J=4.9 Hz), 111.51 (C-5, A), 111.40 (C-5, B), 89.83 (C-1', B), 89.60 (C-1', A), 84.88 (d, C-4', B, J=8.8 Hz), 84.70 (d, C-4', A, J=8.8 Hz), 67.11 (d, C-5', A, J=4.9 Hz), 66.48 (d, C-5', B, J=4.9 Hz), 52.65(OMe), 50.26 (ala-CH, B), 50.13 (ala-CH, A), 28.19 (Ph-CH₂), 20.97 (d, ala-CH₃, B, J=4.9 Hz), 20.90 (d, ala-CH₃, A, J=4.9 Hz), 15.69 (Ph-CH₂CH₃), 12.45 (5-CH₃, A), 12.41 (5-CH₃, B). $MS : C_{22}H_{29}N_3O_8P : 494 (MH^+, 5), 368 (MH^+-thymine, 25), 228$

25 494.1692; found 494.1693 HPLC: RT = 27.23 and 27.48 min

324 - 2',3'-dideoxy-2',3'-didehydrothymidine 5'-(phenyl

(15), 81 (C,H,O, base peak) Accurate mass: expected

30 N-methoxy alaninyl) phosphoramidate

Yield = 88%

 ^{31}P (CDCl₃) : 3.20 and 3.86 ppm

 1 H (CDCl₃): 1.32 and 1.34 (d, 3H, J=6.8Hz, CH₃ ala); 1.81 and 1.84 (d, 3H, 5CH₃); 3.69 and 3.70 (s, 3H, OMe);

35 3.84-4.00 (m, 2H, CH ala + NH ala); 4.32 (m, 2H, H5'); 5.02 (m, 1H, H4'); 5.88 (m, 1H, H2'); 6.33 (m, 1H, H3'); 7.03 (m, 1H, H1'); 7.15-7.35 (m, 6H, Ar + H6); 9.22 and 9.26 (bs, 1H, NH)

^{LC}C (CDCl₃): 12.52 (5CH₃); 21.02 (CH₃ ala); 50.22-50.35 (CH

ala); 52.74 (OMe); 66.62-67.29 (C5'); 84.80-84.88 (C4'); 89.69-89.93 (C1'); 111.44-111.57 (C5); 120.13-120.31 (Ar ortho); 125.30 (Ar para); 127.49-127.65 (C2'); 129.87-129.93 (Ar meta); 133.19-133.50 (C3'); 135.77-136.06 (C6); 150.51 (Ar ipso); 151.16 (C2); 164.14 (C4); 174.12 (CO ala) MS: 466 (MH+°,7); 340 (MH+°-base); 200 (17); 136 (47); 89 (25); 81 (C₅H₅O, base peak)

HPLC: RT = 22.48 and 22.87 min

2',3'-dideoxy-2',3'-didehydrothymidine 10 327 5'-(p-fluorophenyl methoxy alaninyl) phosphoramidate Yield = 89%

 31 P (CDCl₃) : 3.16 ppm

"H (CDCl₃): 9.75 (1H, s, NH), 7.24 (0.5H, d, H-6, B, J=1.2 15 Hz), 7.17 (0.5H, d, H-6, A, J=1.2 Hz), 7.09 (5H, m, Ph, H-1'), 6.22 (1H, m, H-3'), 5.82 (1H, m, H-2'), 4.94 (1H, m, H-4'), 4.30-3.84 (4H, m, ala-NH, ala-CH, H-5'), 3.63 (1.5H, s, OMe, A), 3.62 (1.5H, s, OMe, B), 1.77 (1.5H, d, 5-CH, B, J=1.0 Hz), 1.74 (1.5H, d, 5-CH₃, A, J=1.0 Hz), 1.29 (1.5H, 20 d, ala-CH₃, B, J=7.0 Hz), 1.23 (1.5H, d, ala-CH₃, A, J=7.0

. Hz). 13 C (CDCl₃): 174.19 (d, ala-CO, B, J=6.8 Hz), 174.00 (d,

ala-CO, A, J=6.8 Hz), 164.25 (C-4, B), 164.20 (C-4, A), 159.77 (d, p-Ph, J=243.6 Hz), 151.14 (C-2), 146.25 (i-Ph),

- 25 135.99 (C-6, A), 135.70 (C-6, B), 133.40.(C-3', A), 133.05 (C-3', B), 127.61 (C-2', B), 127.45 (C-2', A), 121.70 (m, C-2', B)o-Ph), 116.37 (d, m-Ph, A, J=23.5 Hz), 116.34 (d, m-Ph, B, J=23.5 Hz), 111.45 (C-5, A), 111.32 (C-5, B), 89.87 (C-1', A), 89.63 (C-1', B), 84.66 (d, C-4', J=5.9 Hz), 67.29 (d,
- 30 C-5', A, J=4.9 Hz), 66.10 (d, C-5', B, J=4.9 Hz), 52.70 (OMe), 50.26 (ala-CH, A), 50.13 (ala-CH, B), 20.92 (d, ala-CH₃, A, J=4.8 Hz), 20.88 (d, ala-CH₃, B, J=4.8 Hz), 12.45 $(5-CH_1, B)$, 12.41 $(5-CH_1, A)$.

 $MB : C_{20}H_{24}N_3O_8PF : 484 (MH+, 11), 358 (MH+-thymine, 20), 218$

35 (13), 154 (32), 136 (28), 81 (C₅H₅O, base peak). Accurate

mass: expected 484.1285; found 484.1318

HPLC: RT = 25.17 and 25.40 min

5'-(m-trifluromethylphenyl methoxy alaninyl) phosphoramidate
Yield = 80%

 $^{-31}$ P (CDCl₃) : 2.49 and 3.16 ppm

- 'H (CDCl₃): 9.06 (1H, s, NH), 7.45 (5H, m, H-6, Ph), 7.03 (1H, m, H-1'), 6.31 (1H, m, H-3'), 5.92 (1H, m, H-2'), 5.03 (1H, m, H-4'), 4.32 (2H, m, H-5'), 3.97 (2H, m, ala-NH, ala-CH), 3.71 (1.5H, s, OMe, B), 3.70 (1.5H, s, OMe, A), 1.86 (1.5H, s, 5-CH₃, B), 1.80 (1.5H, d, 5-CH₃, A), 1.36 (3H, m, ala-CH₃).
- 10 13_C (CDCl₃): 174.06 (d, ala-Co, A, J=6.8 Hz), 173.89 (d, ala-Co, B, J=6.8 Hz), 163.91 (C-4, A), 163.86 (C-4, B), 150.96 (C-2), 150.71 (d, a-Ph, J=5.9 Hz), 135.86 (C-6, A), 135.66 (C-6, B), 133.30 (C-3', A), 133.02 (C-3', B), 132.00 (q, c-Ph, J=32.0 Hz), 130.66 (e-Ph), 127.84 (C-2', B),
- 15 127.74 (C-2', A), 123.98 (f-Ph, A), 123.84 (q, CF₃, J=272.0 Hz), 123.79 (f-Ph, B), 122.14 (d-Ph), 117.54 (d, b-Ph, J=3.9 Hz), 111.61 (C-5, B), 111.44 (C-5, A), 90.04 (C-1', B), 89.77 (C-1', A), 84.61 (d, C-4', J=7.8 Hz), 67.60 (d, C-5', B, J=4.9 Hz), 66.89 (d, C-5', A, J=4.9 Hz), 52.87 (OMe),
- 20 50.32 (d, ala-CH, A, J=4.8 Hz), 50.26 (d, ala-CH, B, J=4.8 Hz), 21.11 (d, ala-CH₃, B, J=4.9 Hz), 20.99 (d, ala-CH₃, A, J=4.9 Hz), 12.55 (5-CH₃, B), 12.47 (5-CH₃, A).

MS: $C_{21}H_{24}N_3O_8PF_3$: 534 (MH⁺, 6), 408 (MH⁺-thymine, 8), 268 (10), 149 (10), 81 (C_5H_5O , base peak). Accurate mass:

25 expected 534.1253; found 534.1201

HPLC : RT = 30.56 min

546 - 2',3'-dideoxy-2',3'-didehydrothymidine

30 <u>5'-(3,5-dichlorophenyl methoxy alaninyl) phosphoramidate</u> Yield = 70%

 ^{3i}P (CDCl₃): 2.83 and 3.42 ppm

"H (CDCl₃): 9.74 (1H, s, NH), 7.40 (1H, s, H-6), 7.29 (3H, m, Ph), 7.14 (1H, m, H-1'), 6.44 (1H, m, H-3'), 6.04 (1H, m,

- 35 H-2'), 5.14 (1H, m, H-4'), 4.48 4.07 (5H, m, ala-NH, ala-CH, H-5'), 3.84 (3H, s, OMe), 1.97 (1.5H, s, 5-CH₃, A), 1.92 (1.5H, s, 5-CH₃, B), 1.48 (3H, m, ala-CH₃).
 - ¹³C (CDCl₃): 173.93 (ala-CO), 164.09 (C-4), 151.27 (i-Ph), 151.06 (C-2), 136.01 (m-Ph), 135.60 (C-6), 133.14 (C-3', B),

132.89 (C-3', A), 127.83 (C-2'), 125.69 (p-Ph), 119.40 (O-Ph), 111.54 (C-5, A), 111.40 (C-5, B), 90.03 (C-1', A), 89.74 (C-1', B), 84.60 (C-4'), 67.68 (C-5', A), 66.98 (C-5', B), 52.85 (OMe), 50.26 (ala-CH), 20.93 (ala-CH₃), 5 12.51 (5-CH₃).

MB: $C_{20}H_{23}N_3O_8PCl_2$: 534 (MH⁺, 8), 408 (MH⁺-thymine, 12), 391 (10), 149 (12), 127 (thymineH+, 12), 81 (C_5H_5O , base peak). Accurate mass: expected 534.0600; found 534.0589 RPLC: RT = 32.19 min

10

730 - 2',3'-dideoxy-2',3'-didehydrothymidine-5'-(phenyl N-benzyloxy alaninyl) phosphoramidate

Yield = 92%

³¹P (CDCl₁): 3.40 and 4.04 ppm

- 15 H (CDCl₃): 1.24 and 1.26 (d, 3H, J=6.8Hz, CH₃ ala); 1.70 and 1.74 (s, 3H, 5CH₃); 3.86-4.28 (m, 4H, H5'+CH ala+NH); 4.85 (m, 1H, H4'); 5.04 and 5.06 (s, 2H, CH₂Ph); 5.74 (d, 1H, H2'); 6.16 (dd, 1H, H3'); 6.90 (m, 1H, H1'); 7.00-7.30 (m, 11H, Ar + H6); 9.61 (d, 1H, NH)
- 20 ¹³C (CDCl₃): 12.52 (5CH₃); 20.98 (CH₃ ala); 50.36-50.52 (CH ala); 66.70-67.18 (C5'); 67.46 (CH₂Ph); 84.63-84.76-84.88 (C4'); 89.68-89.88 (C1'); 111.44-111.55 (C5); 120.18-120.25-120.36-120.43 (Ar ortho, OPh); 125.31 (Ar para, OPh); 127.48-127.61 (C2'); 128.45-128.79-128.83 (Ar,
- 25 CH₂Ph); 129.87-129.93 (Ar meta, OPh); 133.16-133.45 (C3'); 135.35 (Ar1, CH₂Ph); 135.79-136.07 (C6); 150.44 (Ar1, OPh); 151.18 (C2); 164.21-164.28 (C4); 173.42-173.51-173.65 (C0 ala)

HPLC: RT = 34.96 and 35.07 min

- 30 MS: C₂₆H₂₈O₈N₃P: 542(MH^{+o}; 17); 416 (MH^{+o}base; 40); 81(100). Accurate mass: expected 542.1716; found 542.1712
 - 776 2',3'-dideoxy-2',3'- didehydrothymidine-5'(2,4-dibromophenyl N-methylalaninyl) phosphoramidate
- 35 Yield = 88%

³¹P (CDCl₃): 3.07 and 3.62 ppm

¹H (CDCl₃): 1.26 and 1.28 (d, 3H, J=6.8Hz, CH₃ ala); 1.75

and 1.80 (s, 3H, 5CH₃); 2.11 (s, 1H, NH); 3.64 (s, 3H, OMe);

3.92-4.30 (m, 3H, H5'+CHala); 4.98 (m, 1H, H4'); 5.87 (m,

1H, H2'); 6.26 (m, 1H, H3'); 6.96 (m, 1H, H1'); 7.30-7.60 (m, 4H, Ar + H6); 9.41 (bs, 1H, NH)

¹³C (CDCl₃): 12.51 (5CH₃); 21.00 (CH₃ ala); 50.24 (CHala); 52.80 (OMe); 67.37-67.83 (C5'); 84.49-84.61 (C4'); 89.80-89.92 (C1'); 111.60 (C5); 115.49 (Ar2); 118.26 (Ar4); 122.61-122.89 (Ar6); 127.70 (C2'); 131.86 (Ar5); 133.06-133.21 (C3'); 135.64 (Ar3); 135.75-135.88 (C6); 147.01 (Ar1); 151.07 (C2); 164.03 (C4); 173.71-173.82 (C0ala)

- 10 HPLC : RT = 41.17 and 41.30 min
 MS : C₂₀H₂₂O₈N₃PBr₂ : 622,624,626 (MH^{+o}; 3,6,3); 496,498,500
 (MH^{+o}base; 5,9,5); 81 (100). Accurate mass : expected
 621.9516; found 621.9507
- 15 779 2',3'-dideoxy-2',3'-didehydrothymidine-5'-(2,3,4,5,6-pentafluorophenyl-N-methylalaninyl)phosphoramidate

 Yield = 76%

 31P (CDCl₃): 4.74 and 5.66 ppm

¹H (CDCl₃): 1.34 and 1.36 (d, 3H, J=6.7Hz, CH₃ ala); 1.75 20 and 1.81 (s, 3H, 5CH₃); 3.69 (s, 3H, OMe); 3.92-4.40 (m, 4H, H5'+CH ala+NH); 4.97 (m, 1H, H4'); 5.85 (m, 1H, H2'); 6.29 (m, 1H, H3'); 6.93 (m, 1H, H1'); 7.19 (m, 1H, H6); 9.38 (bs, 1H, NH)

¹³C (CDCl₃): 12.23-12.43 (5CH₃); 20.83 (CH₃ ala); 50.22-50.34 25 (CH ala); 52.99 (OMe); 67.75-68.37 (C5'); 84.42-84.52 (C4'); 89.87-90.17 (C1'); 111.75 (C5); 127.69-127.93 (C2'); 132.86-133.13 (C3'); 132-143 (m, Ar); 135.74-135.96 (C6); 151.11 (C2); 164.15 (C4); 173.64-173.76 (COala)

30 Mass (NOBA matrix) : C₂₀H₁₉O₈N₃PF₅ : 556 (MH⁺°,31); 578 (M°⁺Na, 100) HPLC : RT = 35.90 min

862 - 2',3'-dideoxy-2',3'-didehydrothymidine 5'-(phenyl 35 N-hexyloxy alaninyl) phosphoramidate Yield = 88%

 ^{3i}P (CDCl₃): 3.99 and 4.60 ppm ^{1}H (CDCl₃): 0.94 (m, 3H, CH₃CH₂); 1.28-1.41 (m, 9H, CH₃ ala + 3xCH₂); 1.65 (m, 2H, CO₂CH₂CH₂); 1.90 and 1.93 (s, 3H,

28

 $5CH_1$); 4.00-4.20 (m, 4H, CH ala + NH ala + CO_2CH_2); 4.37 (m. 2H, H5'); 5.05 (m, 1H, H4'); 5.94 (m, 1H, H2'); 6.38 (m, 1H, H3'); 7.10 (m, 1H, H1'); 7.15-7.36 (m, 6H, Ar + H6); 9.48 and 9.51 (s, 1H, NH)

- 5 13 C (CDCl₃): 12.76 (5CH₃); 14.39 (\underline{C} H₃CH₂); 21.45 (CH₃ ala); 22.88, 25.82, 28.82 and 31.72 (CH₂); 50.63 (CH ala); 66.26 (OCH_2) ; 66.89-67.43 (C5'); 85.03 (C4'); 89.97 (C1'); 111.68-111.83 (C5); 120.55 (Ar ortho); 125.57 (Ar para); 127.86 (C2'); 130.15 (Ar meta); 133.47-133.70 136.03-136.31 (C6); 150.72 (Ar ipso); 151.37-151.39 (C2);
- 164.35-164.42 (C4); 174.02 (CO ala) **Mass** (NOBA matrix) : $C_{25}H_{14}O_{8}N_{1}P$: 536 (MH^{+o}, 24); 558 (M^{o+}Na. 37)
- 2',3'-dideoxy-2',3'-didehydrothymidine-5'-(phenyl 15 863 N-methoxy-phenylalaninyl) phosphoramidate

Yield = 89

 31 P (CDCl₃): 3.96 and 4.35 ppm

¹H (CDCl₃): 1.89 (s, 3H, 5CH₃); 3.00 (m, 2H, CH₂Ph); 3.74 (s,

3H, OMe); 3.80-4.28 (m, 4H, CH ala + NH ala + H5'); 4.94 (m, 1H, H4'); 5.91 (m, 1H, H2'); 6.21-6.30 (m, 1H, H3'); 7.04-7.32 (m, 12H, Ar + H1' + H6); 9.35 (s, 1H, NH)

 13 C (CDCl₃): 12.54 (5CH₃); 40.55 (CH₂Ph); 52.63 (OMe); 55.72-56.01 (CH ala); 66.50-67.10 (C5'); 84.78 (C4');

- 25 89.71-89.95 (C1'); 111.53-111.64 (C5); 120.28 (Ar ortho, OPh); 125.40 (Ar para, OPh); 127.52 (C2'); 128.86, 129.65 and 129.98 (Ar, CH,Ph); 129.86-129.92 (Ar meta, OPh); 133.18-133.50 (C3'); 135.72 (Ar ipso, CH₂Ph); 135.79-136.06 (C6); 150.46 (Ar ipso, OPh); 151.13-151.17 (C2);
- 30 164.12-164.18 (C4); 173.00 (CO ala) Mass (NOBA matrix) : $C_{26}H_{28}O_8N_3P$: 542 (MH $^{+\circ}$,77); 564 (M $^{\circ+}$ Na, 29)
- 2',3'-dideoxy-2',3'-didehydrothymidine-5'-(phenyl 35 N-methoxy-leucinyl) phosphoramidate

Yield = 87

 ^{31}P (CDCl₃): 4.18 and 4.83 ppm

¹H (CDCl₃): 0.91 (m, 6H, (C \underline{H}_3)₂CH); 1.42-1.70 (m, 3H, $CH_2CH(CH_3)_2$; 1.91 and 1.93 (s, 3H, 5CH₃); 3.73 (s, 3H, OMe); 3.76-3.98 (m, 2H, CH ala + NH ala); 4.28-4.46 (m, 2H, H5'); 5.08 (m, 1H, H4'); 5.96 (m, 1H, H2'); 6.36 (m, 1H, H3'); 7.09 (m, 1H, H1'); 7.18-7.35 (m, 6H, Ar + H6); 9.35 (s, 1H, NH)

5 ¹³C (CDCl₃): 12.76 (5CH₃); 22.23-23.01 ((CH₃)₂CH); 24.75 (CH(CH₃)₂); 43.86-44.11 (CH₂CH(CH₃)₂); 52.75 (OMe); 53.42-53.60 (CH ala); 66.92-67.55 (C5'); 85.62 (C4'); 89.92-90.19 (C1'); 111.69-111.83 (C5); 120.37-120.62 (Ar ortho); 125.55-125.58 (Ar para); 127.79 (C2'); 130.12 (Ar ipso); 133.51-133.70 (C3'); 136.00-136.36 (C6); 151.05 (Ar ipso); 151.38 (C2); 164.39-164.50 (C4); 174.55-174.88 (C0 ala)

Mass (NOBA matrix): $C_{23}H_{30}O_8N_3P$: 508 (MH^{+o},62); 530 (M^{o+}Na, 59)

15

865 - 2',3'-dideoxy-2',3'-didehydrothymidine-5'-(phenyl N-methoxyvalinyl) phosphoramidate

Yield = 86%

 31 P (CDCl₃): 4.85 and 5.40 ppm

- 20 H (CDCl₃): 0.92 (m, 6H, (CH₃)₂CH); 1.82 (m, 3H, CH(CH₃)₂); 1.89 and 1.91 (s, 3H, 5CH₃); 3.76 (s, 3H, OMe); 3.82 (m, 2H, CH ala + NH ala); 4.30-4.48 (m, 2H, H5'); 5.07 (m, 1H, H4'); 5.96 (m, 1H, H2'); 6.38 (m, 1H, H3'); 7.10 (m, 1H, H1'); 7.18-7.35 (m, 6H, Ar + H6); 9.31 (s, 1H, NH)
- 25 ¹³C (CDCl₃): 12.80 (5CH₃); 17.77-19.24 ((<u>C</u>H₃)₂CH); 32.43-32.62 (<u>C</u>H(CH₃)₂); 52.67 (OMe); 60.32-60.38 (CH ala); 66.92-67.65 (C5'); 85.04 (C4'); 89.98-90.24 (C1'); 111.76-111.87 (C5); 120.45-120.56 (Ar ortho); 125.54-125.59 (Ar para); 127.81-127.86 (C2'); 130.13-130.17 (Ar meta); 133.51-133.72
- 30 (C3'); 136.01-136.28 (C6); 150.83 (Ar ipso); 150.87-151.34 (C2); 164.30-164.37 (C4); 173.56-173.65 (C0 ala)

Mass: $C_{22}H_{28}O_8N_3P$: 493.6 (MH^{+o},100)

866 - 2',3'-dideoxy-2',3'-didehydrothymidine-5'-(pheny)

35 N-methoxyglycinyl) phosphoramidate

Yield = 90%

³¹P (CDCl₃): 4.89 and 5.52 ppm ¹H (CDCl₃): 1.79 and 1.83 (s, 3H, 5CH₃); 3.69 (s, 3H, OMe); 3.70-4.05 (m, 4H, CH₂NH + CH ala + NH ala); 4.32 (m, 2H, H5'); 4.99 (m, 1H, H4'); 5.92 (m, 1H, H2'); 6.38 (m, 1H, H3'); 6.98 (m, 1H, H1'); 7.05-7.38 (m, 6H, Ar + H6); 9.44 and 9.46 (s, 1H, NH)

GC (CDCl₃): 12.75 (5CH₃); 43.15 (CH₂NH); 52.94 (OMe); 66.78 5 -67.52 (C5'); 84.98-85.10 (C4'); 89.68-90.16 (C1'); 111.69-111.80 (C5); 120.46-120.59 (Ar ortho); 125.66 (Ar para); 127.66-127.91 (C2'); 130.22 (Ar meta); 133.48-133.87 (C3'); 136.11-136.40 (C6); 150.65 (Ar ipso); 151.45 (C2); 164.46 (C4); 171.41-171.51 (CO ala)

10 Mass (NOBA matrix) : $C_{19}H_{22}O_8N_3P$: 452 (MH^{+*},74); 474 (M^{*+}Na, 46)

867 - 2',3'-dideoxy-2',3'-didehydrothymidine-5'-(phenyl N-methoxymethioninyl) phosphoramidate

- 15 Yield = 81%
 - ³¹P (CDCl₃): 4.09 and 4.86 ppm

¹H (CDCl₃): 1.74 and 1.79 (s, 3H, CH₃S); 1.94 and 1.97 (s, 3H, 5CH₃); 1.80-2.40 (m, 5H, CHCH₂CH₂S); 3.72 and 3.74 (s, 3H, OMe); 3.98-4.32 (m, 4H, H5' + CH ala + NH ala); 4.96 (m,

- 20 1H, H4'); 5.84 (m, 1H, H2'); 6.26 (m, 1H, H3'); 6.96 (m, 1H, H1'); 7.05-7.25 (m, 6H, Ar + H6); 9.58 (bs, 1H, NH)

 ¹³C (CDCl₃) : 12.80 (5CH₃); 15.68 (CH₃S); 29.95 (<u>CH₂SCH₃</u>); 33.73-33.85 (<u>CH₂CH₂S</u>); 53.06 (OMe); 53.81-54.07 (NH<u>C</u>H); 67.05-67.70 (C5'); 84.90-85.03 (C4'); 89.98-90.23 (C1');
- 25 111.66-111.86 (C5); 120.39-120.66 (Ar ortho); 125.63 (Ar para); 127.81-127.91 (C2'); 130.18 (Ar meta); 133.44-133.69 (C3'); 136.00-136.38 (C6); 150.72-150.80 (Ar ipso); 151.41 (C2); 164.52 (C4); 173.61-173.94 (CO ala)
- 30 Mass (NOBA matrix) : C₂₂H₂₈O₈N₃PS : 526 (MH^{+*}, 46); 548 (M^{*+}6Na, 21)
 - 868 2',3'-dideoxy-2',3'- didehydrothymidine-5'- (2,4-dibromophenyl N-benzylalaninyl) phosphoramidate
- 35 Yield = 82%

³¹P (CDCl₃): 3.68 and 4.18 ppm

¹H (CDCl₃): 1.40 and 1.42 (d, 3H, J=6.7Hz, CH₃ ala); 1.90 and 1.92 (s, 3H, 5CH₃); 4.04-4.40 (m, 4H, H5'+CHala + NH ala); 4.98 (m, 1H, H4'); 5.20 (s, 2H, CH₂Ph); 5.91 (m, 1H,

H2'); 6.27 and 6.35 (m, 1H, H3'); 7.06 (bs, 1H, H1'); 7.30-7.70 (m, 9H, Ar + H6); 9.52 (s, 1H, NH)

Graph (CDCl₃): 12.86 (5CH₃); 21.35 (CH₃ ala); 50.68-50.76 (CHala); 67.67-68.03 (C5'); 67.88 (CH₂Ph); 84.85 (C4'); 90.10-90.20 (C1'); 111.88-111.92 (C5); 115.76-115.91 (Ar2); 118.62-118.72 (Ar4); 122.91-123.22 (Ar6); 127.98 (C2'); 128.75-129.01-129.12 (Ar o,m,p, CH₂Ph); 132.20 (Ar5); 133.38-133.51 (C3'); 135.48 (Ar ipso, CH₂Ph); 135.96 (Ar3); 136.21 (C6); 147.28 (Ar1); 151.39 (C2); 164.34-164.38 (C4); 173.47-173.62 (COala)

Mass (NOBA matrix): C₂₆H₂₆O₃N₃PBr₂: 699-700-701 (MH⁺⁺, 27-49-29); 721-722-723 (M⁺Na, 17-21-17)

877 - 2',3'-dideoxy-2',3'-didehydrothymidine-5'-(phenyl N-methoxyglycinyl) phosphoramidate

Yield = 83%

³¹P (CDCl₃): 3.91 and 4.33 ppm

¹H (CDCl₃): 1.83 and 1.85 (s, 3H, 5CH₃); 3.01 (m, 2H, CHCH₂Ph); 3.78-4.30 (m, 4H, H5' + HNCH); 4.92 (m, 1H, H4');

20 5.89 (m, 1H, H2'); 6.18 and 6.27 (m, 1H, H3'); 7.00-7.40 (m, 17H, Ar + H1' + H6); 9.35 (bs, 1H, NH)

¹³C (CDCl₃): 12.62-12.75 (5CH₃); 40.65-40.73 (CHCH₂Ph); 55.95-56.26 (NHCH); 66.79 -67.27 (C5'); 67.80 (CH₂Ph); 84.87-85.05 (C4'); 89.92-90.14 (C1'); 111.72-111.82 (C5);

25 120.45-120.52 (Ar ortho, OPh); 125.60 (Ar para, OPh); 127.73 (C2'); 129.01- 129.07-129.11-129.91- 130.15-130.38-135.29-135.85 (Ar, 2xCH₂Ph); 130.21 (Ar meta, OPh); 133.36-133.63 (C3'); 136.24 (C6); 150.68-150.77 (Ar ipso, OPh); 151.31-151.35 (C2); 164.28-164.34 (C4); 172.48-172.64 (C0 ala)

Mass (NOBA matrix) : $C_{32}H_{32}O_8N_3P$: 618 (MH⁺⁺, 78); 640 (M⁺⁺Na, 52)

878 - 2',3'-dideoxy-2',3'-didehydrothymidine-5'-(phenyl 35 N-tert-butylphenylalaninyl) phosphoramidate

Yield = 79%

³¹P (CDCl₃): 4.27 and 4.50 ppm

¹H (CDCl₃): 1.40 and 1.41 (s, 9H, tBu); 1.84 and 1.87 (s, 3H, 5CH₃); 3.00 (m, 2H, CH₂Ph); 3.76-4.28 (m, 4H, H5' +

HNCH); 4.95 (m, 1H, H4'); 5.86 and 5.91 (m, 1H, H2'); 6.26 and 6.30 (m, 1H, H3'); 7.04 (m, 1H, H1'); 7.12-7.25 (m, 11H, Ar + H6); 9.38 and 9.40 (bs, 1H, NH)

¹³C (CDCl₃): 12.76-12.79 (5CH₃); 28.31 (($\underline{C}H_3$)₃C); 40.96-41.04

5 (CH₂Ph); 56.31-56.65 (NHCH); 66.79 -67.28 (C5'); 82.90-82.92 ((CH₃)₃C); 84.94-85.03 (C4'); 89.93-90.11 (C1'); 111.67-111.86 (C5); 120.45 (Ar ortho, OPh); 125.52 (Ar para, OPh); 137.77 (C2'); 120.45 (Ar ortho, OPh); 125.52

OPh); 127.77 (C2'); 127.88-128.83-128.92-136.02 (Ar, CH₂Ph); 130.13 (Ar meta, OPh); 133.54-133.60 (C3'); 136.31 (C6);

10 150.75-150.84 (Ar ipso, OPh); 151.36 (C2); 164.32-164.37 (C4); 171.89 (CO ala)

Mass (NOBA matrix) : $C_{29}H_{34}O_8N_3P$: 584 (MH^{+*}, 26); 606 (M⁺Na, 41)

15 892 - 2'.3'-dideoxy-2',3'-didehydrothymidine 5'-(phenyl N-cyclohexyloxy alaninyl) phosphoramidate

Yield = 83%

 ^{31}P (CDCl₃): 4.11 and 4.71 ppm.

'H (CDCl₃): 1.08-1.82 (m, 16H, CH₃ ala + 5CH₃ + cyclohexyl);

20 3.79-4.14 (m, 2H, CH ala + NH ala); 4.27 (m, 2H, H5'); 4.69 (m, CH cyclohexyl); 4.96 (m, 1H, H4'); 5.80 (m, 1H, H2'); 6.24 (m, 1H, H3'); 6.98 (m, 1H, H1'); 7.04-7.32 (m, 6H, Ar + H6); 9.66 and 9.82 (bs, 1H, NH).

¹³C (CDCl₃): 12.58 (5CH₃); 21.18-21.32 (CH₃ ala);

- 25 23.73-25.40-31.49-31.58(CH₂ cyclohexyl); 50.47-50.61 (CH ala); 66.69-67.24 (C5'); 74.36(<u>CH</u> cyclohexyl); 84.87 (C4'); 89.72-89.92 (C1'); 111.48-111.63 (C5); 120.26-120.49 (Ar ortho); 125.32-125.37 (Ar para); 127.59-127.73 (C2'); 129.91-129.98 (Ar meta); 133.30-133.51 (C3'); 135.89-136.16
- 30 (C6); 150.53 (Ar ipso); 150.67 -151.31(C2); 164.36-164.41 (C4); 173.23 (C0 ala).

Mass (NOBA matrix) : $C_{25}H_{32}O_8N_3P$: 534 (MH^{+*}, 56); 556 (M·⁺Na, 42)

35 893 - 2',3'-dideoxy-2',3'-didehydrothymidine 5'-(phenyl N-tButyloxy alaninyl) phosphoramidate

Yield = 79%

³¹P (CDCl₃): 4.17 and 4.67 ppm.

H (CDCl₃): 1.34 (m, 3H, CH₃ ala); 1.46 (m, 9H, CH₃ tBu);

- 1.87 (d, 3H, 5CH₃); 3.82-4.06 (m, 2H, H5'); 4.29-4.49 (m, 2H, CH ala + NH ala); 5.05 (m, 1H, H4'); 5.91 (m, 1H, H2'); 6.35 (m, 1H, H3'); 7.06 (m, 1H, H1'); 7.15-7.40 (m, 6H, Ar +H6); 9.60 (bs, 1H, NH).
- 5 ¹³C (CDCl₃): 12.54 (5CH₃); 21.19-21.35 (CH₃ ala); 28.07 (C(CH₃)₃); 50.80-50.89 (CH ala); 66.60-67.18 (C5'); 82.41-82.45(C(Me)₃); 84.82 (C4'); 89.67-89.87 (C1'); 111.44-111.60 (C5); 120.22-120.41 (Ar ortho); 125.28-125.31 (Ar para); 127.54-127.65 (C2'); 129.88-129.94 (Ar meta);
- 10 133.33-133.47 (C3'); 135.84-136.10 (C6); 150.51 (Ar ipso); 150.65-151.20 (C4); 164.19 -164.23 (C2); 172.78-172.93 (C0 ala).

Mass (NOBA matrix) : $C_{23}H_{30}O_8N_3P$: 508 (MH^{+*}, 82); 530 (M^{*}+Na, 48).

2', 3'-Dideoxy-2', 3'-didhydrothymidine-5'-(phenyl methoxy-B-alaninyl) phosphate

Cf 1197

Yield=64%

 ^{31}P (CDCl₃): 6.44, 6.70(1:3)

- 20 1H (CDCl₃): 1.87° (s, 3H, 5-CH₃), 2.42(t, 2H, CH₂ ala), 3.22° (m, 2H, CH₂ ala), 3.62 (s, 3H, OCH₃), 4.09 (m, 1H, H4'), 4.18-4.39 (m, 2H, H5'), 4.97 (bs, 1H, NH ala), 5.88° (m, 1H, H2'), 6.32° (m, 1H, H3'), 6.99 (m, 1H, H1'), 7.08-7.38 (m, 5H, Ph and H6), 10.01 (bs, 1H, base NH)
- 25 13 C (CDCl₃): 14.52 (5-CH₃), 37.80° (CH₂ ala), 39.28° (CH₂ ala), 53.91° (OCH₃), 68.57° (d, J = 3.92 Hz, C5′), 86.90 (d, J = 8.38 Hz, C4′), 91.68° (C1′), 113.40° (C5), 122.34 (d, J = 4.68 Hz, ortho-Ph), 127.23 (C2′), 129.55° (para-Ph), 131.81° (meta-Ph), 135.45° (C6), 137.99° (C3′), 152.60° (d, J = 5.96
- 30 Hz, ipso-Ph), 153.44 (C2), 166.58 (C4), 174.55° (C00)
 Mass (NOBA matrix): $C_{20}H_{24}N_3O_8P$ 126 (thymine⁺,5), 127
 (thymineH⁺,4), 242 ($C_{10}H_{13}PO_4N^+,9$), 243 ($C_{10}H_{14}PO_4N^+,3$), 465
 (M⁺,4), 466 (MH⁺, 8), 467 (MHNa⁺, 20), 168 (MHNa⁺, ¹³O, 5),
 187 (MNa⁺, 3), 188 (MHNa⁺, 97), 189 (MHNa⁺, ¹³C, 21)
- 35 High Resolution MS: found 466.1379 (MH⁺), C₂₀H₂₅N₃O₂P requires 466.1379

HPLC: RT = 22.81, 23.27 mins (1:1)

2'.3'-Dideoxy-2'.3'-didehydrothymidine-5'-(phenyl methoxyq-aminobutylryl) phosphate

Cf 1198

Yield = 65%

5 ³¹P (CDCl₃): 6.11, 6.66 (1:2)

¹H (CDCl₃): 1.78 (m, 2H, CH₂ GABA), 1.85° (s,3H, 5-CH₃), 2.35 (t, 2H, J = 6.95 Hz, CH₂ GABA), 2.97° (m, 2H, CH₂ GABA), 3.68 (s, 3H, OCH₃), 3.93° (m, 1H, H4'), 4.28° (m, 1H, H5'), 4.35° (m, 1H, H5'), 5.02 (bs, 1H, NH GABA), 5.82° (m, 1H, H2'),

10 6.31 (m, 1H, H3'), 6.98 (m, 1H, H1'), 7.11-7.37 (m, 6H, Ph and H6), 9.91 (bs, 1H, base NH)

 13 C(CDCl₃): 12.64 (5-CH₃), 26.72° (CH₂ GABA), 32.25° (CH₂ GAPA), 40.98° (CH₂ GABA), 51.94 (OCH₃), 66.93° (C5'), 85.11 (d, J = 8.30 Hz, C4'), 111.40 (C5), 120.46° (d, J = 4.83 Hz, ortho-

15 PH), 125.24 (C2'), 127.59° (para-Ph), 129.88° (meta-Ph), 133.68° (C6), 136.28° (C3'), 150.86° (d, J = 6.45 Hz, ipso-Ph), 151.61 (C2), 164.80 (C4), 173.86° (C00)

Mass (matrix NOBA): $C_{21}H_{26}N_3O_8P$: 127 (thymineH⁺, 28), 479 (M⁺, 3), 480 (MH⁺, 59), 481 (MH⁺, ¹³C, 17), 501 (MNa⁺, 3), 502

20 (MHNa⁺, 59), 503 (MHNa⁺, ¹³C, 16)

High Resolution MS: found 480.1486 (MH $^+$), $C_{21}H_{27}N_3O_8P$ requires 480.1536

HPLC: RT 23.90, 24.33 mins (1:1)

2', 3'-Dideoxy-2', 3'-didehydrothymidine-5'-(phenyl methoxy-

25 2-aminoisobutylryl) phosphate

Cf 1200

Yield = 36

 ^{31}P (CDCl₃): 2.38, 3.05 (3:1)

 ^{1}H (CDCl₃): 1.53° (s, 6H, CMe₂), 1.91° (s, 3H, 5-CH₃), 3.71 (s,

30 3H, OCH₃), 4.31 (m, 2H, H5'), 4.23-4.41 (m, 3H, H4' and H5'), 5.03 (bs, 1H, P-NH) 5.89 (m, 1H, H2'), 6.28 (m, 1H, H3'), 6.99-7.31 (m, 7H, Ph, H0 and H1'), 9.09 (bs, 1H, base NH)

13C (CDCl₃): 14.27 (5-CH₃), 28.74° (CMe₂), 54.81° (OCH₃), 58.88°
35 (CMe₂), 69.03° (d, C', J = 5.58 Hz), 86.57° (d, J = 7.88 Hz, C4'), 91.51° (C1'), 113.24° (C5), 122.01° (d, J = 4.95 Hz, ortho-Ph), 126.88 (C2'), 129.25° (para-Ph), 131.57° (meta-Ph), 135.19° (C6), 137.68° (C3'), 152.52° (d, J = 3.09 Hz, ortho-Ph), 153.05 (C2), 166.12 (C4), 177.69° (C00)

MS (matrix NOBA): 354 ((MH - thymine) +, base peak), 479 (M+, 3), 480 (MH+, 64), 481 (MH+, ¹³C, 17), 482 (MH+, 2 X ¹³C, 3), 502 (MNa+, 92), 503 (MHNa+, 24)

High Resolution MS: found 480.1503 (MH $^+$), $C_{21}H_{27}N_3O_8P$ requires 480.1536

HPLC: RT 24.79, 25.29 mins (1:1)

2', 3'-Dideoxy-2', 3'-didehydrothymidine-5'-(phenyl methoxy-6-aminocaproyl) phosphate

10 Cf 1199

Yield = 80%

³¹P (CDCl₃): 6.90, 6.30 (1:1)

'H (CDCl₃): 1.28 (s, 2H, CH₂ caproyl), 1.45 (m, 2H, CH₂ caproyl), 1.58 (m, 2H, CH₂ caproyl), 1.82 (s, 3H, 5-CH₃),

- 15 2.28 (m, 2H, CH₂ caproyl), 2.87 (m, 2H, CH₂ caproyl), 3.65 (s, 3H, OCH₃), 3.81 (m, 1H, H4'), 4.25 (m, 2H, H5'), 4.95 (bs, 1H, NH caproyl), 5.86° (m, 1H, H2'), 6.31° (m, 1H, H3'), 6.98 (m, 1H H1'), 7.04-7.38° (m, 6H, Ph and H6), 10.12 (bs, 1H, base NH)
- 20 ¹³C (CDCl₃): 13.47° (5-CH₃), 25.43° (CH₂ caproyl), 27.04° (CH₂ caproyl), 32.15° (CH₂ caproyl), 34.85 (CH₂ caproyl), 42.30° (CH₂ caproyl), 52.61 (OCH₃), 67.92° (C5'), 85.80 (d, J = 8.22 Hz), 90.68° (C4'), 112.25° (C5), 121.17° (d, J = 4.58 Hz, ortho-Ph), 125.99 (C2'), 128.40° (para-Ph), 130.77 (meta-

High Resolution MS: found 508.1850 (MH $^+$), $C_{23}H_{31}N_3O_8P$ requires 30 508.1849

HPLC: RT 26.33 mins

2', 3'-Dideoxy-2', 3'-didehydrothymidine-5'-(β-alaninyl) phosphate ammonium salt

35 Cf1216

Yield = 62%

 ^{31}P (D₂O): 8.84

'H (D_2O): 1.73 (3H, s, 5- CH_3), 2.18 (2H, m, ala CH_2), 2.65 (m, 2H, ala CH_2), 3.79 (2m, H, H5'), 4.95 (m, 1H, H4'), 5.76 (m,

1H, H2'), 6.35 (m, 1H, H3'), 6.82 (m, 1H, H1'), 7.47 (s, 1H, H6)

 13 C (D₂O): 11.81 (5-CH₃), 38.51 (ala CH₂), 39.45 (d, ala CH₂, J = 6.64 Hz), 65.41 (d, C5', J = 4.91 Hz), 86.40 (d, J = 9.20 Hz, C4'), 90.20 (C1'), 111.07 (C5), 125.40 (C2'), 134.66 (C3'), 138.54 (C6), 152.53 (C2), 167.00 (C4), 181.04 (COO)

HPLC: RT = 32.74 mins.

2'. 3'-Dideoxy-2'. 3'-didehydrothymidine-5'(γ aminobutylryl) phosphate ammonium salt
Cf 1224

Yield = 54

 $^{31}P (D_2O): 10.03$

- 15 ${}^{1}H(D_{2}O): 1.47 \text{ (m, 2H, GABA CH}_{2}), 1.72 \text{ (s, 3H, 5-CH}_{3}), 1.98 \text{ (m, 2H, GABA CH}_{2}), 2.48 \text{ (m, 2H, GABA CH}_{2}), 3.72 \text{ (m, 2H, H5'), 4.91 (m, 1H, H4'), 5.72 (m, 1H, H2'), 6.26 (m, 1H, H3'), 6.72 (m, 1H, H1'), 7.45 (s, 1H, H6').

 <math>{}^{13}C \text{ (D}_{2}O): 11.79 \text{ (5-CH}_{3}), 27.99 \text{ (d, J = 7.25 Hz, GABA CH}_{2}), }$
- 20 34.47 (GABA CH_2), 41.17 (GABA CH_2), 65.35 (d, $J = 4.68 \ Hz$, C5'), 86.38 (d, $J = 9.36 \ Hz$, C4'), 90.27 (C1'), 111.47 (C5'), 125.29 (C2'), 134.70 (C3'), 138.68 (C6), 152.47 (C2), 166.95 (C4), 182.32 (COO)
- 25 2', 3'-Dideoxy-2', 3'-didehydrothymidine-5'-(caproyl)
 phosphate ammonium salt Cf 1217

Yield = 49%

 ^{31}P (D₂O): 10.18

¹H (D₂O): 1.01 (m, 2H, caproyl CH₂), 1.21 (m, 2H, caproyl

- 30 CH₂), 1.32 (m, 2H, caproyl CH₂), 1.78 (s, 3H, 5-CH₃), 2.05 (m, 2H, caproyl CH₂), 2.58 (m, 2H, caproyl CH₂), 3.78 (m, 2H, H5'), 4.99 (s, 1H, H4'), 6.32 (m, 1H, H3'), 6.82 (m, 1H, H2'), 7.51 (s, 1H, H6)
 - ¹³C (D₂O): 11.84 (5-CH₃), 25.66 (caproyl CH₂), 26.46 (caproyl
- 35 CH_2), 31.10 (d, J = 6.82 Hz, caproyl CH_2), 37.06 (caproyl CH_2), 41.47 (caproyl CH_2), 65.37 (d, J = 4.83 Hz, C5'), 86.45 (d, J = 9.74 Hz, C4'), 90.29 (C1'), 111.43 (C5), 125.27 (C2'), 134.80 (C3'), 138.89 (C6), 152.48 (C2), 166.94 (C4), 183.15 (C00).

2', 3'-dideoxycytidine-5'-(phenyl-N-methoxyalaninyl) phosphoramidate Cf 1221

Yield = 16.6%

³¹P (CDCl₃): 3.94, 4.00

- ¹H (CDCl₃): 1.33, 1.35 (2 x d, 3H, CH₃ ala); 1.92, 1.96, 2.41 (1H, 2H, 1H, 3 x m, H2', H3'); 3.66 (s, 3H, OMe); 3.86-4.35 (m, 5H, H4', H5', CH ala, NH ala); 5.63 (2 x d, J = 7.4 Hz, H6), 6.02 (m, 1H, H-1'), 7.12-7.32 (m, 5H, Ar), 7.73 (1H, 2 x d,
- 10 J = 7.4 Hz, H5)

 ¹³C (CDCl₃): 20.98 (CH₃ ala); 24.97, 25.11, 32.85 (C2', C3');

 50.12, 50.30 (CH₃ ala); 52.55 (OMe); 67.19, 67.26, 67.50 (C5'); 79.16, 79.27, 79.34 (C4'); 87.29, 87.46 (C1'); 93.48 (C5); 119.99, 120.04, 120.10, 125.05, 125.10, 129.73, 129.77 (CAr); 141.17 (C6); 150.48, 150.57 (C ipso Ar); 155.68 (C2);
- 13 (CA1); 141.17 (C6); 150.48, 150.57 (C ipso Ar); 155.68 (C2); 165.44 (C4); 173.84, 173.94 (C0ala)

 Mass (ES⁺): $C_{19}H_{25}N_4O_7P$: 475 (MNa⁺, 100); HPLC: RT = 20.53, 21.22 min
- 20 2', 3'-dideoxy-2', 3 -didehydrothymidine 5'
 -(phenylmethoxysarcosinyl phosphate) Cf 1098
 Yield = 65%

³¹P (CDCl₃): 6.80, 7.36 ppm

¹H (CDCl₃): 1.72 (s, 3H, 5CH₃); 2.64, 2.67 (s, 3H, NCH₃); 3.62

- 25 (s, 3H, OCH₃); 3.40-4.10 (m, 2H, CH₂); 4.20-4.50 (m, 2H, H5'); 4.97 (bs, 1H, H4'), 5.80-5.90 (m, 1H, H2'); 6.30-6.40 (m, 1H, H3'); 6.97 (bs, 1H, H1'); 7.00-7.30 (m, 6H, Ar + H6); 9.59 (bs, 1H, NH)
 - ¹³C (CDCl₃): 12.35 (5CH₃); 34.55-34.60-34.65 (NCH₃); 50.67-
- 30 50.78-50.87 (CH₂); 52.10-52.13 (OCH₃); 62.27-66.77-66.82 (C5'); 84.71-84.84 (C4'); 89.52-89.82 (C1'); 111.16-111.33 (C5); 120-150 (m, Ar); 127.17-127.40 (C2'); 133.25-133.62 (C3'); 135.73-136.11 (C6); 150.85-150.90 (C2); 163.84-163.87 (C4); 170.57-170.60-170.84 (COOCH₃)
- 35 Mass: $C_{20}H_{24}O_8N_3P$: 488 ((M+Na)+, 100); 466 ((M+H)⁺, 5) HPLC: RT = 25.17 and 25.59 min
 - 2', 3'-dideoxy-2', 3'-didehydrothymidine 5'-(phenylethoxysarcosinyl phosphate) Cf 1133

Yield = 65

³¹P (CDCl₃): 0.87, 7.41 ppm

¹H (CDCl₃): 1.18-1.24 (m, 2H, CH₃CH₂); 1.80 (s, 3H, 5CH₃); 2.68, 2.71 (s, 3H, NCH₃); 3.46-3.65 (m, 2H, NCH₂); 3.91-4.45

5 (m, 2H, H5'); 4.11, 4.13 (s, 3H, $CH_2C\underline{H}_3$); 5.00 (bs, 1H, H4'); 5.82-5.88 (m, 1H, H2'); 6.33-6.37 (m, 1H, H3'); 7.00 (bs,

1H, H1'); 7.10-7.50 (m, 6H, Ar + H6); 8.75 (bs, 1H, NH)

 13 C (CDCl₃): 12.86-12.89 (5CH₃); 14.69 (CH₂CH₃); 35.06-35.11 (NCH₃); 51.35-51.43-51.51 (NCH₂); 61.77 (CH₂CH₃); 66.77-67.27-

10 67.33 (C5'); 85.26-85.36 (C4'); 90.01-90.31 (C1'); 111.69-111.86 (C5); 120-151 (m, Ar); 127.73-127.96 (C2'); 133.73-134.10 (C3'); 136.27-136.64 (C6); 151.61 (C2); 164.70 (C4); 170.62-170.66-170.85 (COOCH₃)

Mass: $C_{21}H_{26}O_{2}N_{3}P$: 502 ((M+Na)⁺, 100); 480 ((M+H)⁺, 5)

15 HPLC: RT = 25.84 and 26.65 min

2', 3'-dideoxy-2', 3'-didehydrothymidine 5'-(methioninyl phosphate) Cf 1156

Yield = 52%

20 ³¹P (CDCl₃) : 7.77 ppm

¹H (CDCl₃): 1.75-1.85 (m, 2H, CH₂S); 1.90 (s, 3H, SCH₃); 2.01, 2.10 (s, 3H, 5CH₃); 2.30-2.50 (m, 2H, CH₂CH₂S); 3.45-3.60 (m, 1H CHNH); 3.94 (s, 2H, H5'); 5.05 (bs, 1H, H4'); 5.90-6.00 (m, 1H, H2'); 6.40-6.50 (m, 1H, H3'); 6.93 (bs,

- 25 1H, H1'); 7.68 (s, 1H, H6)

 ¹³C (CDCl₃): 11.91 (5CH₃); 14.46 (SCH₃); 29.58 (CH₃SCH₂CH₂);

 34.69 (SCH₂CH₂); 56.42 (CHNH); 65.07-65.13 (C5'); 86.39-86.52 (C4'); 90.14 (C1'); 111.70 (C5); 125.48 (C2'); 134.77 (C3');

 138.91 (C6); 152.61 (C2); 167.18 (C4); 180.84 (COOH)
- 30 Mass: $C_{15}H_{22}O_8N_3PS$: 434 ((M-1), 100); 435 ((M), 15) HPLC: RT = 31.38 min
 - 2', 3'-dideoxy-2', 3'-didehydrothymidine 5'-(glycinyl phosphate) Cf 1163
- 35 Yield = 75%

³¹P (CDCl₃) : 11.72 ppm

¹H (CDCl₃): 1.83 (s, 3H, 5CH₃); 3.29 (d, CH₂, J = 7.9Hz); 3.85-3.92 (m, 2H, H5'); 5.00 (s, 1H, H4'); 5.85-5.88 (m, 1H, H2'); 6.38-6.41 (m, 1H, H3'), 6.88-6.90 (bs, 1H H1'); 7.54

(s, 1H, H6)

¹³C (CDCl₃): 19.09 (5CH₃); 52.24 (CH₂); 72.74-72.81 (C5'); 93.61-93.73 (C4'); 97.57 (C1'); 119.08 (C5); 132.80 (C2'); 141.89 (C3'); 145.74 (C6); 159.87 (C2); 174.34 (C4); 186.03-5 186.15 (COOH)

Mass: $C_{12}H_{16}O_8N_3P$: 360 ((M-1), 100); 361 ((M), 15)

HPLC : RT = 32.57 min

2', 3'-dideoxy-2', 3'-didehydrothymidino 5'

10 -(phenylmethoxyisoleucinyl phosphate) Cf 1186
Yield = 82%

 ^{31}P (CDCl₃): 4.59, 5.16 ppm

¹H (CDCl₃): 0.91-0.99 (m, 6H, CH₃ + CH₃); 1.09-1.26 (CHCH₃); 1.28-1.56 (m, 2H, CH₂); 1.92, 1.97 (s, 3H, 5CH₃); 3.60-3.77

- 15 (m, 1H, CHNH); 3.77 (s, 3H, OCH₃); 3.88-3.99 (m, 1H, NHCH); 4.30-4.52 (m, 2H, H5'); 5.11-5.13 (m, 1H, H4'); 5.95-6.00 (m, 1H, H2'); 6.35-6.45 (m, 1H, H3'); 7.10-.7.13 (m, 1H, H1'); 7.16-7.45 (m, 6H, Ar + H6); 8.68 (bs, 1H, NH)
- ¹³C (CDCl₃); 11.90-11.92 (CH₂CH₃); 12.76-12.81 (5CH₃); 15.64

20 (CHCH₃); 25.06-25.14 (CH₂CHCH₃); 39.39-39.47-39.52-39.60 (CH₂); 52.61 (OCH₃); 59.38-59.54 (NHCH); 66.94-67.58-67.65 (C5'); 84.91-85.04-85.16 (C4'); 89.94-90.21 (C1'); 111.75-111.87 (C5'); 120-151 (m Ar); 127.82-127.87 (C2'); 133.49-133.69 (C3'); 135.99-136.28 (C6); 151.37 (C2); 164.40 (C4);

25 173.53-173.59-173.64 (COOCH₃)

Mass: $C_{23}H_{30}O_{3}N_{3}P$: 529.91 ((M + Na)⁺, 100)

HPLC : RT = 30.52 and 31.14 min

2', 3'-dideoxy-2', 3'-didehydrothymidine 5'-(phenylalaninyl phosphate) Cf 1187

Yield = 68%

³¹P (CDCl₃): 7.58 ppm

¹H (CDCl₃): 1.70 (s, 3H, 5CH₃); 2.64-2.80 (m, 2H, C \underline{H}_2 Ph);

- 35 3.57-3.64 (m, 1H, CHNH); 3.68-3.70 (m, 2H, H5'); 4.85 (s, 1H, H4'); 5.73-5.75 (m, 1H, H2'); 6.26-6.29 (m, 1H, H3'); 6.74-6.75 (m, 1H, H1'); 7.02-7.28 (m, 5H, CH₂Ph); 7.44 (s,
 - 1H, H6)

 ¹³C (CDCl₃): 11.88 (5CH₃); 40.92-40.97 (CH₂ ala); 58.27 (CH

ala); 65.22-65.28 (C5'); 86.36-86-49 (C4'); 90.22 (C1'); 111.63 (C5); 125.38 (C2'); 126-129 (m, Ar); 134.74 (C3');138.31-138.48 (C6); 152.40 (C2); 166.81 (C4); 180.87-180.96 (COOH)

15 Mass: $C_{19}H_{22}O_8N_3P$: 450 ((M-1), 100); 451 ((M, 20)) HPLC: RT = 32.11 min

2', 3'-dideoxy-2',3'-didehydrothymidine 5'-(valinyl phosphate) Cf 1190

pnosphate) Cf 1190

Yield = 67%

³¹P (CDCl₃) : 8.35 ppm

¹H (CDCl₃) : 0.72 (t, 6H, (CH₃)₂CH, J = 7.3 Hz); 1.62-1.73 (m, 1H, (CH₃)₂CH); 1.77 (s, 3H, 5CH₃); 3.12 (dd, 1H, NHCH, J = 5.6 Hz and 9.4 Hz); 3.80 (dd, 2H, H5', J = 3.5 Hz and 4.4 Hz); 4.92 (s, 1H, H4'); 5.76-5.78 (m, 1H, H2'); 6.31-6.35 (m, 1H, H3'); 6.79-6.81 (m, 1H, H1'); 7.53 (s, 1H, H6)

¹³C (CDCl₃) : 11.84 (5CH₃); 17.95-18.84 ((CH₃)₂CH); 32.30-32.38 ((CH₃)₂CH); 62.43 (CHNH); 65.18-65.24 (C5'); 86.43-86.58 (C4'); 90.25 (C1'); 111.65 (C5); 125.20 (C2'); 134.90 (C3');

20 138.73 (C6); 152.52 (C2); 167.05 (C4); 181.27-181.31 (C00H) Mass : C₁₅H₂₇O₁N₃P : 402 ((M-1)', 100); 403 ((M), 30)

2', 3'-dideoxy-2', 3'-didehydrothymidine 5'-(leucinyl

25 phosphate) Cf 1192

Yield = 83%

 ^{31}P (CDCl₃) : 7.98 ppm

HPLC : RT = 31.90 min

¹H (CDCl₃): 0.71 (d, 6H, (CH₃)₂CH, J = 6.5 Hz); 1.22-1.34 (m, 2H, CH₂); 1.34-1.71 (m, 1H, (CH₃)₂CH); 1.80 (s, 3H, 5CH₃);

30 3.30-3.38 (m, 1H, CHNH); 3.82-3.85 (m, 2H, H5'); 4.95 (s, 1H, H4'); 5.80-5.82 (m, 1H, H2'); 6.35-6.37 (m, 1H, H3'); 6.81-6.82 (m, 1H, H1'); 7.58 (s, 1H, H6)

¹³C (CDCl₃): 12.53 (5CH₃); 22.88-22.99 (($\underline{C}H_3$)₂CH); 25.28 (CH₂); 45.27-45.34 ((CH₃)₂CH); 56.38 (CHNH); 65.74-65.81

35 (C5'); 87.12-87.25 (C4'); 90.89 (C1'); 112.30 (C5); 125.99 (C2'); 135.49 (C3'); 139.44 (C6); 153.12 (C2); 167.70 (C4); 183.36-183.42 (COOH)

Mass: $C_{16}H_{24}O_8N_3P$: 416 ((M-1), 100); 417 ((M, 20)

HPLC : RT = 35.02 min

2', 3'-dideoxy-2', 3'-didehydrothymidine 5'
-(phenylmethoxyalaninyl phosphate) [fast diastereoisomer] Cf
1193

³¹P (CDCl₃) : 4.51 ppm

- 5 ¹H (CDCl₃): 1.25-1.40 (m, 3H, CHCH₃); 1.86-1.90 (m, 3H, 5CH₃); 3.74-3.90 (m, 4H, OCH₃ + CH ala); 4.37-4.47 (m, 2H, H5'); 5.08 (bs, 1H, H4'); 5.91-5.93 (m, 1H, H2'); 6.38-6.41 (m, 1H, H3'); 7.07-7.09 (m, 1H, H1'); 7.20-7.39 (m, 6H, Ar + H6); 9.04 (bs, 1H, NH)
- 10 ¹³C (CDCl₃): 10.85 (5CH₃); 19.38-19.45 (CHCH₃); 48.71 (CHCH₃); 51.14 (OCH₃); 64.91-64.97 (C5'); 83.11-83.22 (C4'); 88.03 (C1'); 109.77 (C5); 118-149 (m, Ar); 125.84 (C2'); 131.88 (C3'); 134.44 (C6); 149.34 (C2); 162.35 (C4); 172.53-172.62 (CO ala)

15

2', 3'-dideoxy-2',3'-didehydrothymidine 5'-(phenylprolinyl phosphate) Cf 1194

Yield = 41%

³¹P (CDCl₃) : 5.27 ppm

- ¹H (CDCl₃): 1.55 (s, 3H, 5CH₃); 1.56-2.15 (m, 4H, CHC<u>H₂CH₂</u>); 3.10-3.30 (m, 2H, NCH₂); 3.90-4.00 (m, 1H, NCH); 4.20-4.50 (m, 2H, H5'); 5.11 (s, 1H, H4'); 5.89-5.91 (m, 1H, H2'); 6.41-6.44 (m, 1H, H3'); 6.76-6.78 (m, 1H, H1'); 6.99-7.40 (m, 6H, Ar + H6)
- 25 ¹³C (CDCl₃): 11.84 (5CH₃); 25.44-25.56 (<u>C</u>H₂CH₂N); 31.94-32.06 (<u>C</u>H₂CHN); 47.40-47.46 (NCH₂); 63.31 (CHN); 67.14-67.21 (C5'); 85.56-85.68 (C4'); 90.69 (C1'); 111.00 (C5), 120-150 (m, Ar), 125.07 (C2'), 134.13 (C3'), 138.26 (C6), 152.67 (C2), 166.64 (C4), 181.32 (COOH)
- 30 Mass: $C_{21}H_{24}O_RN_3P$: 476 ((M-1), 100); 477 ((M), 25) HPLC: RT = 34.16 min

1001 2', 3'-dideoxy-2', 3' didehydroadenosine-5'-(phenyl methoxyalaninyl phosphoramidate:

Yield = 67%

H (dmso-d6): 8.14 (1H, s, H8), 8.06 (1H, d, H2), 7.07-7.40

(7H, m, Phe-H & NH₂), 6.93 (1H, s, H1'), 6.47 (1H, 2d, H3'),

6.21 (1H, d, H3'), 5.96 (1H, m, NH), 5.11 (1H, m, H4'), 4.10

(2H, m, H5'), 3.5-4.83 (1H, 2m, CH ala), 3.52 (3H, d, MeO),

1.08 (3H, 2d, CH, ala).

³¹P (dmso-d6): 4.92, 4.78.

13C (dmso-d6): 172.909-172.815 (CO ala), 154.663 (C-2),
152.238 (C-6), 149.524-149.442 (Ar-ipso), 148.782 (C-4),
5 138.006-137.907 (C-8), 132.286-132.205 (C-2'), 128.621 (Ar-meta), 125.384-125.210 (Ar para), 123.928 (C-3'), 119.067119.00 (Ar ortho), 118.508 (C-5), 87.311-87.060 (C-1'),
84.485-84.368 (C-4'), 66.093-65.324 (C-5'), 51.477-51.429
(OMe), 49.109-48.989 (C-H ala), 19.903-19.585 (CH, ala).

10 Mass. Calculated MH+: 475.149. Found: 475.151

1093 2', 3'-dideoxy adenosine 5'-(phenyl methoxyalaninyl) phosphoramidate

Yield = 42%

- 15 ¹H (CDC1₃): 8.32 (1H, s, H-8), 8.12 & 8.11 (1H, 2s, H-2), 7.22 (5H, m, Ar), 6.40 (2H, 2bs, NH₂), 6.30 (1H, t, H-1', J = 5.4 Hz), 4.42 (4H, m, N-H, 2H5' & H4'), 4.00 (1H, 2d, Ala C-H), 3.65 (3H, 2s, OMe), 2.52 (2H, m, H3'), 2.13 (2H, m, H2'), 1.31 (3H, 2d, CH₃ ala, J = 7.3 Hz).
- 20 ³¹P (CDCl₃): 4.26, 4.19.

 ¹³C nmr (CDCl₃): 174.534, 174.468, 174.441, 174.372 (O-C=O), 156.148 (C-2), 153.331 (C-6), 151.092 & 151.006 (2 Ar ipso), 149.674 & 149.599 (C-4), 139.211 & 139.103 (C-8), 130.040 (Ar meta), 125.325 (Ar para), 120.570 (C-5), 120.508 & 120.327 (Ar ortho), 85.994 & 85.746 (C-1'), 80.105, 79.985 & 79.874 (C-4'), 68.136, 68.067, 67.704 & 67.636 (C-5'), 52.868 (OMe), 50.628 & 50.531 (Ala C-H), 32.712 (C-2'), 26.339 & 26.106 (C-3'), 21.337, 21.264 & 21.190 (CH₃ ala).

30

1094 2', 3'-dideoxy-2', 3' didehydroadenosine 5'-(phenyl benzylalaninyl) phosphoramidate:

Mass: Calculated MH*: 477.165. Found: 477.164.

Yield = 65%

'H (CDCl₃): 8.32 (1H, bs, H-8), 7.99 (1H, bs, H-2), 7.21 (11H, m, Ar-H & H1'), 6.34 (1H, m, H3'), 6.07 (1H, m, H2'), 5.81 (2H, 2bs, NH₂), 5.08 (3H, 2bs, Bz-CH₂ & H4'), 4.05 (4H, m, NH, CH, H5'), 1.24 (3H, 2d, methyl ala, J = 6.9 Hz). (CDCl₃): 4.21, 3.98 (CDCl₃): 173.700 & 173.601 (0-C=0), 156.005 (C-2), 153.728 (C-6), 150.952 & 150.870 (Ar), 150.322 & 150.280 (C-4), 139.484 & 139.368 (C-8), 135.672 (Ar), 133.733 & 133.654 (C-2'), 130.066 (Ar), 129.041, 128.895, 128.635 & 128.601 (Ar), 126.751 & 126.598 (C-3'), 125.375 (Ar), 120.529, 120.463, 120.399, 120.119 & 120.051 (C-5 & Ar), 88.702 & 88.476 (C-1'), 85.907, 85.476, 85.791 & 85.736 (C-4'), 67.632, 67.475 & 67.403 (C-5' and Bz-CH₂), 66.805 & 66.745 (C-5'), 50.677 & 50.542 (Ala C-H), 21.399, 21.335, 21.083 & 21.019 (methyl Ala).

10 Mass: Calculated MH+: 551.181. Found: 551.179.

1168 2', 3'-dideoxy-2', 3'-didehydroadenosine 5'-alaninyl phoshoramidate

Yield = 69%

15 ¹H nmr (D₂0): 8.09 (1H, s, H8), 7.88 (1H, s, H2), 6.81 (1H, s, H1'), 6.33 (1H, d, H3'), 6.02 (1H, d, H3'), 5.01 (1H, m, H4'), 4.73 (2H, m, H5'), 3.5-4.83 (1H, 2m, CH ala), 0.89 (3H, 2d, CH₃ ala).

³¹P (D₂0): 8.34.

20 ¹³C (D₂0): 183.055 (CO ala), 155.549 (C-2), 152.745 (C-6), 148.643 (C-3), 140.928 (C-8), 134.730 (C-2'), 124.709 (C-3'), 118.527 (C-5), 88.299 (C-1'), 87.199 & 87.073 (C-4'), 65.215-65.149 (C-5'), 52.564 (Alal C-H), 21.435-21.381 (Ala CH₃).

25

1196 - 2', 3'-Dideoxy-2', 3'-didehydrothymidine-5'-(phenyl dimethoxy glutaminyl phosphoramidate

Yield 33%

 ^{31}P (CDCl₂) 4.14, 4.76

- 30 ¹H (CDCl₃) 1.81, 1.85 (5CH₃); 1.91-2.18 (m, 2H, CH₂ Gln); 2.24-2.36 (m, 2H, CH₂ Gln); 3.64 (s, 3H, NMe); 3.69 (s, 3H, OMe); 3.92-4.21 (m, 2H, H5'); 4.23-4.42 (m, 2H, CH Gln, NH Gln); 5.00 (m, 1H, H4'); 5.91 (m, 1H, H2'); 6.31 (m, 1H, H3'); 7.01 (m, 1H, H1'), 7.03-7.34 (m, 6H, Ph, H6); 9.49 (s,
- 35 1H, NH)

 ¹³C (CDCl₃) 12.32-12.36 (5CH₃); 29.01-29.42 (CH₂ Gln); 29.46 (NMe); 51.81 (CH Gln); 52.65 (OMe); 53.65-53.92 (CH₂ Gln); 66.63-67.33 (C5'); 84.48-84.71 (C4'); 89.57-89.83 (C1'); 111.29-111.44 (C5); 119.98-120.22 (Ph); 125.21-125.26 (Ph);

127.39-127.50 (C2'); 129.74-129.78 (Ph); 133.00-133.25 (C3'); 135.60-135.90 (C6); 150.98 (C2); 164.00-164.09 (C4); 172.96-173.23 (CO, CON)

Mass (ES): $C_{23}H_{29}N_4O_9P$: 536 (M⁺, 100); 537 (MH⁺, 32)

5

1214 - 2', 3'-Dideoxy-2', 3'-didehydrothymidine-5'-(phenyl dimethoxy asparaginyl) phosphoramidate

Yield 75%

³¹P (CDCl₃) 1.15, 2.20

- 10 'H (CDCl₃) 1.81, 1.86 (s, 3H, 5CH₃); 2.49-2.92 (m, 2H, CH₂ Asn); 3.64 (s, 3H, NMe); 3.72 (s, 3H, OMe); 4.04-4.26 (m, 2H, H5'); 4.28-4.43 (m, 2H, CH Asn, NH Asn); 5.05 (m, 1H, H4'); 5.89 (m, 1H, H2'); 6.31 (m, 1H, H3'); 7.01 (m, 1H, H1'); 7.14-7.33 (m, 6H, Ph, H6); 8.46 (s, 1H, NH)
- 15 ¹³C (CDCl₃) 12.28 (5CH₃); 51.01 (CH Asn); 52.09 (OMe); 52.94 (CH₂ Asn); 84.75 (C4'); 89.60 (C1'); 111.30 (C5); 125-130 (Ph); 127.32-127.48 (C2'); 133.10-133.41 (C3'); 135.94 (C6) Mass (ES): C₂₂H₂₇N₄O₉P: 522 (M⁺, 100); 523 (MH⁺, 31)

20 1215 - 2', 3'-Dideoxy-2', 3'-didehydrothymidine-5'-(phenyl methoxytryptophanyl) phosphoramidate

Yield 100%

³¹P (CDCl₃) 4.15, 4.57

25 3H, OMe); 3.75-4.05 (m, 2H, H5'); 4.10-4.33 (m, 2H, CH Trp NH Trp); 4.84 (m, 1H, H4'); 5.79 (m, 1H, H2'); 6.15 (m, 1H, H3'); 6.86 (m, 1H, H1'); 6.91 (m, 1H, H6); 7.00-7.49 (m, 10H, Ar); 8.45 (s, 1H, NH Trp); 9.14 (s, 1H, NH)

 ^{1}H (CDCl₃) 1.74 (s, 3H, 5CH₃); 3.16 (m, 2H, CH₂ Trp); 3.60 (s,

¹³C (CDCl₃) 14.75 (5CH₃); 32.46 (CH₂ Trp); 54.91 (CH Trp);

57.53-57.61 (OMe); 69 (C5'); 87.06 (C4'); 92.03-92.25 (C1'); 111.63 (C5); 127.60 (C2'); 135.45-135.83 (C3'); 138.11-138.62 (C6); 152.78-153.41 (C2); 166.28-166.40 (C4); 175.85 (CO)

Mass (ES): $C_{28}H_{28}N_4O_9P$: 579 (M⁺, 100); 580 (M⁺, 43)

35

462 3'-Deoxy-3'- β-azidothymidine 5'-(phenyl methoxylalaninyl)

phosphoramidate

H (CDCl₃): 1.39 (d, 3H, J = 7.2 Hz, CH₃ ala), 1.94 (s, 3H 5-

Me), 2.15 (d, 1H, J = 15.5 Hz, H2'), 2.68-2.79 (m, 1H, H2'), 3.72 (s, 3H, OMe), 3.90-4.50 (m, 6H, H3' + H4' + H5' + NH + CHala), 6.18 (dd, 1H, J = 7.5 and 3.1 Hz, H1'), 7.1-7.4 (m, 6H, Ph + H6), 8.82 (bs, 1H, NH).

- 5 ¹³C (CDCl₃): 12.67 (5-Me), 20.96, 21.29 (ala-Me), 38.50 (C2'), 50.16, 50.28 (CHala), 52.57 (OMeala), 60.74 (C3'), 64.43 (C5'), 80.17 (C4'), 83.93 (C1'), 111.21 (C5), 120.11 (Ar2), 125.18 (Ar4), 129.73 (Ar3), 135.18 (C6), 159.96 (Ar1), 150.30 (C4), 163.49 (C2), 173.84 (COala).
- 10 ³¹P (CDCl₃): 1.55

 IR (CDCl₃): 3216, 2113, 1685 cm-1.

 Mass 509.1543 (MH⁺, 40%, calculated 509.1549), 340(12), 250(17), 200(18).

 HPLC: RT = 28.48 min.

15

30 ³¹P: 2.69

536 3'-Deoxy-3' β-azidothymidine 5'-(m-trifluoromethylphenyl methoxylalaninyl) phosphoramidate

¹H (CDCl₃): 1.39, 1.40 (d, 3H, J = 7.2 Hz, Me-ala), 1.92, 1.93 (s, 3H, 5-CH₃), 2.15 (d, 1H, J = 15.1 Hz, H2'), 2.71-20 2.80 (m, 1H, H2'), 3.70, 3.71 (s, 3H, OMe), 3.90-4.50 (m, 6H, H3' + H4' + H5' + NH + CHala), 6.19 (dd, 1H, J = 7.7 and 3.3 Hz, H1'), 7.41-7.46 (m, 5H, Ph + H6), 9.52 (bs, 1H, NH).

¹³C (CDCl₃): 12.58 (5-Me), 20.75, 20.83 (CH₃ ala), 38.33, 38.44 (C2'), 50.15, 50.29 (CHala), 52.55 (OMeala), 60.77 (C3'), 64.72 (C5'), 80.05, 80.35 (d, J = 6.8 Hz, C4'), 83.94 (C1'), 111.25 (C5), 117.43 (Ar2), 121.81, 121.86 (Ar4), 123.37 (q, J = 273 Hz, CF₃), 123.74 (Ar6), 130.35 (Ar5), 132.11 (q, J = 33 Hz, Ar3), 135.11 (C6), 150.49 (C4), 150.62 (Ar1), 163.78 (C2), 173.68, 173.87 (d, J = 7.8 Hz, COala).

Mass 577 (MH⁺, 40%) 340 (13), 268 (14), 250 (12). HPLC: RT = 30.66 min.

550 3'-Deoxy-3'- β-azidothymidine 5'-(3, 5 -dichloropheny) methoxylalaninyl) phosphoramidate

¹H (CDCl₃): 1.42 (d, 3H, J = 6.8 Hz, Me-ala), 1.94, 1.95 (d, 3H, J = 1.2 Hz, 5-CH₃), 2.17, 2.18 (d, 1H, J = 15.1 Hz, H2'), 2.76-2.85 (m, 1H, H2'), 3.74, 3.75 (s, 3H, OMe), 3.90-4.50 (m, 6H, H3' + H4' + H5' + NH + CHala), 6.20 (dd, 1H, J

- = 7.7 and 3.3 Hz, H1'), 7.19 (m, 2H, Ar2), 7.27 (s, 1H, Ar4), 7.41, 7.42 (s, 1H, H6), 9.04 (bs, 1H, NH). 13 C: 12.65 (5-Me), 20.85, 20.91 (CH₃ ala), 38.38, 38.48 (C2'), 50.18, 50.29 (CHala), 52.68 (OMeala), 60.77 (C3'), 54.86, 64.93 (C5'), 79.80, 80.20 (d, J = 8Hz, C4'), 83.97
 - 64.86, 64.93 (C5'), 79.80, 80.20 (d, J = 8Hz, C4'), 83.97 (C1'), 111.35 (C5), 117.28, 119.38 (d, J = 6Hz, Ar2), 125. 58 (Ar4), 135.10 (C6), 135.46, 135.50 (Ar3), 145.35 (Ar1), 150.36 (C4), 163.61 (C2), 173.64, 173.79 (Coala).

 31P: 2.83
- 10 Mass 577, 579, 581 (MH⁺ 5:3:1:) 307, 309, 311 (12:8:2) 289 (10)

20

In vitro Testing

Cells were infected with HIV-1 as previously described 5 [Balzarini et al. AIDS (1991), 5, 21-28]. Briefly, 5 x 105 cells per milliliter were infected with HIV-1 or HIV-2 at 100 CCID₅₀ (50% cell culture infective dose) per milliliter of cell suspension. Then 100 μL of the infected cell suspension was transferred to microtiter plate wells 10 and mixed with 100 μL of the appropriate dilutions of the After 4 days giant cell formation was test compounds. recorded microscopically in the HIV-infected cell cultures [CEM], and after 5 days the number of viable cells was determined by trypan blue staining of the HIV-infected cell 15 cultures [MT4]. The 50% effective concentration (EC50) and 50% cytoxic concentration (CC50) were defined as the compound concentrations required to reduce by 50% the number of giant cells or viable cells in the virus-infected and mockinfected cell cultures, respectively.

The anti-HIV-1 activities and toxicities of compounds were also assessed in two cell lines:

C8166 cells. Cells were grown in RPMI 1640 with 10% calf serum. 4 x 10⁴ cells per microtiter plate well were mixed with 5-fold dilutions of compound prior to addition of 10 CCID₅₀ units of III-B strain of HIV-1 and incubated for 5-7 days (Betbeder et al. Antiviral Chem. Chemother. 1, 241-247, 1990). Formation of syncytia was examined from 2 days postinfection. Culture fluid was collected at 5-7 days and gp120 antigen production measured by ELISA (Mahmood and Hay, J. Immunol. Meth., 151, 9-13, 1992). The EC₅₀ is that concentration of drug [in μM] required to reduce gp120 production by 50%. Cell viability of infected and uninfected cells were assessed by the MTT-Formazen method (Pauwels et al. J. Virol. Meth. 20, 309-321, 1988).

JM cells JM cells, which are relatively resistant to the antiviral effects of AZT and a number of its derivatives,

were infected with HIV-1 strains and the antiviral and toxic effects of compounds assessed as for C8166 cells. Both GB8 or IIIB strains of HIV1 were used, with no detectable differences in the end-points noted.

5

Each assay was carried out in duplicate, on at least two separate occasions, and data quoted are the average of each separate assay.

The compounds of the present invention have been shown to be active against both HIV1 and HIV2 in both TK* and TK cells as illustrated in Table 2.

Table 2

15

	HIV1 in C	8166/JM	HIV2 in CEM	TKT/CEM TK
Compound	EC _{so} μM	EC ₅₀	EC ₅₀ μM	EC ₅₀
	C8166	JM	CEM TK	CEM TK
730	0.0008	0.0008	0.016	0.06
d4T	0.08	0.8	1.2	>100
(comparative)				

20

As expected, d4T (comparative) loses activity in the kinase deficient cells (especially CEM TK), whilst compound 730 of the invention retains good activity in both TK⁺ and TK against both HIV1 and HIV2. Compound 730 of the invention is >1000 times more potent than d4T in TK cells. Surprisingly, the compound is 100-fold more potent than d4T in CEM TK assays.

- The potent activity of the compounds of the invention is further supported by the data in Table 3, which illustrates activity, toxicity and selectivity index of a series of compounds of the present invention.
- 35 The enhanced anti-viral potency and reduced cytotoxicity of the phosphate derivatives lead to very large improvements in

The enhanced anti-viral potency and reduced cytotoxicity of the phosphate derivatives lead to very large improvements in selectivity index [defined as CC_{50}/EC_{50}] evidencing marked improvements in <u>in vivo</u> efficacy compared to d4T (comparative).

Evidence that the compounds of the present invention are acting via a pathway different to that of d4T or A2T is provided by the data of Table 4.

10

5

As can be seen, whilst the potency of d4T (comparative) is much reduced in nucleoside resistant strains, the potency of the compounds of the present invention is largely maintained. Thus, it is clear that the compounds of the present invention are not acting primarily via the conventional nucleoside 5'triphosphate derivative.

CEM and MT4 cells (at 400,000 cells/ml) and PBL cells (at 2,000,000 cells/ml) were exposed to different concentrations 20 of [3H] 324 and incubated at 37°C for 24 hours. Then cells were washed twice with cold PBS and to the cell pellet was added 400 μ l cold methanol 66%. After standing on ice for 10 min, the cell extract was centrifuged and the supernatent analayzed on HPLC. As shown in Table 5, intracellular D4T-25 MP (monophosphate) levels increased proportionally in function of the initial concentration of 324 in all three cell lines tested. However, the increase of D4T-TP slowed down at initial (triphosphate) levels concentrations that were higher than 25 μM (for CEM and MT4 30 cells) or higher than 1.0 μ M (for PBL). Surprisingly, a metabolite (designated X) accumulated substantially and predominantly in all three cell types. The accumulation was proportional to the initial 324 concentration, and, again, was lower in PBL than CEM and MT4 cells.

35

When 1mM 324 was incubated with high concentrations of hog liver esterase at 37°C in Tris-HCl buffer containing 5 mM MgCl₂, a time-dependent formation of a metabolite was observed. This metabolites co-eluted with the predominant

metabolite (X) that was found in the cell extracts after incubation of the intact cells with [3H] 324. metabolite X corresponds to a compound of formula (10), wherein Y is oxygen, X1 is NH, X2 is oxygen, B is thymine, R1 is Me, R2 is hydrogen.

Data on an expanded range of compounds is presented in Table 6 (d4T analogues) and Table 7 (dideoxy and 3' - β - substituted nucleoside analogues) in which:-

10

Cpd and Init : refer to the compound reference numbers;
Y : refers to the group:-

15

20

25

30

Z : refers to the 3' - substituent on a deoxyribose sugar wherein the substituent is in an " α " orientation (R^9) unless designated "up" which refers to a " β " orientation (R^{10});

B: refers to the heterocyclic nucleic acid base, present at C1' in β - orientation; conventional one-letter base codes are used; pyrimidine substituents are at C5.

The data columns are, in order:

HIV1 MT4: EC₅₀ in μ M for inhibition of HIV-1 in MT4 cells.

HIV2 MT4: EC₅₀ in μM for inhibition of HIV-2 in MT4 cells.

35 CC50 MT4: CC $_{50}$ in μ M for toxicity to MT-4 cells.

HIV1 CEM: EC₅₀ in μ M for inhibition of HIV-1 in CEM cells.

HIV2 CEM: EC₅₀ in μ M for inhibition of HIV-2 in CEM cells.

HIV2 CEM-TK: EC₅₀ in μ M for inhibition of HIV-2 in CEM/TK cells.

CC50 CEM: CC_{50} in μM for toxicity to CEM cells.

EC50 MSV: EC50 in μM for inhibition of MSV

MCC MSV: Minimum cytotoxic concentration in MSV assay

Where data of table 6 differs from that presented in Tables 2 to 5, the data of the former relates to the mean result obtained from two or more repeat experiments, whereas the latter relates to individual experimental results.

тар1е з					i.	
Entry	Ar	٦. ا	ņ	Activity	Toxicity	Selectivity
		^		EC_{50}	CC _{SII}	$CC_{50}/EC_{50} \times 10^3$
323	4 - Et Ph	Жe	Me	0.0032	50	15.6
324	Ph	Ме	Me	0.0032	150	46.9
327	4 - FPh	Μe	Me	0.0032	200	62.5
526	3-CF ₁ Ph	Me	Me	0.0008	200	250
546	3,5-Cl ₂ Ph	h Me	Ψ W	0.001	100	100
730	Ph	æ	Bzl	0.0008	400	200
776	$2, 4-Br_1Ph$	h Me	Me	0.0008	100	125
179	F,Ph	Me	Me	0.064	08.	1.25
862	Ph	Me	Нех	0.0012	200	417
863	Ph	Me	Me	0.016	200	31.2
864	Ph	CH, i Pr	Me	0.016	>1000	>62.5
865	Ph	iPr	Me	0.8	>1000	> 1.25
998	Ph	I	Z .	8.0	>1000	> 1.25
867	Ph	[CH ₁],SMe	Σ e	0.0016	>1000	>62.5
868	2,4Br ₁ Ph Me	h Me	B21	0.0032	200	156
877	Ph	B21	B21	0.0003	80	267
878	Ph	Bzl ·	tBu	0.16	150	6.0
892	Þħ	Me	Cyclohex	0.0016	200	312
893	Ph	M e	r.Bu	0.2	> 1.000	> 5.0
(data are By compar d4T	μΜ for H ison, sim -	(data are μM for HIV1 in C8166 By comparison, similar data fo d4T	66 cells! for d4T:	0.08	20	9.0

Compound	EC, in μΜ	ECs	IS	ECso	ECsa	EC.se	ECse
	HIV RT	8166	8166	СЕМ	CEM TK	НеГа	НеГа
		нгил	нгул	нгил	HIV2	HIV1 d4T-Sensitive	HIV1 d4T-Resistant
d4T	Inactive	0.08	625	0.5	>100	0.86	3.38
324	20	0.0032	62,500	0.18	0.08	n/d	n/d
526	n/d	0.0008	>250,000	0.08	0.06	0.04	0.05
546	p/u	0.001	>200,000	0.06	0.06	0.03	0.04
AZT	Inactive	0.008	>100,000	0.003	>100	p/u	p/u

Table,

rable 5

Metabolism of

				п	nmole/10° cells	cells			-		
Metabolite		·		CEM			Σ.	MT - 4		PBL	
			Initi	Initial concentra		tion of (³ H) 324 (μM)	324 (µ	Œ			
	0.2	1.0 5.0	5.0	25	100	500	0.2	25	0.2	1.0	25
E	1	1									
324 + D4T	9./	47.8	228	897	4,333	16,691	7.9	1,255	2.0	12.2	245
D4T-MP	3.9	10.8	54	490	2,259	11,359	29	394	7 0	1 6	י ו די ני
D4T-DP	1.5	5.1	21.6	75	214	430	2.0		7 · ·	7	, ccs
D4T-TP	10.3	37.6	177	553	691	938	22.6	א ה ה	D	۲٠۵	15.3
	133	628	3,164	16,193	66.359	204 402		י ר ר	0 1	/ 7	149
						7117		795'51	9./1	97.3	1,995

20	Ξ	ArO	_	7	8	1111 24	111V2 M	CS0 M	HIVE MILIVE MICCSO MILIVE CEMINIVE CEN	HV2 CEN		2.CEM. TK CCSU CEM ECSO MSY	ECSO MSY	MCCMSV
1	AS			**	, L				0.24	1.2	>100			
	ASSU	HexU	llexO	61	1				>42	>42	>42	36		
322	AS	ICEO	MeVallill	to I	1				29	112	59			
Ī	<u>-</u>	FIPNO	Medianii	#	1	0.057	0 063	×100	0.07	0.16	90.0	09		
Ī	ASYD	PhO	MeAiaNII		1	0.081	0 063	> 100	0.075	0.075	0 075	100		
i	AS	10£0	AlePheNII	**	_	0 44	0.5	>100		2	0.7			·
326		Pi0	Mediailli	n	1	36	3	>250	>230	>230	135	2 250		
345	AS	1C£U	MeMethii	19	1				•	=	01			
	AS	1CE0	PufNH	n	1				, 6	>40	>40			
401	AS	TCEO	PrNH	18	3-1 -				>210 ×	>210	>210			
405	AS	ICEO	BuNII	n	1				118	>204	191			
403	AS	1010	Entill	17	1	·			>216.	>216	>218			
1	\S	ICEO	P ₁ U .	4					>209	>209	>209			
1	A.S.	TCEO	Metichizu						>203	>203	>203			,
407	-	16:E0	16)	*	-			,	. 0 5	0.5	98			
	1			н	ח				>95	,95	>95			
寸	i	iPrO	iPrOS'PNH	81	_				>258	>258	>258			
Ī		BuO	Bu05.PMI	**	_				>48	>48	>48			
1	SI	BuO	BuOS: PNAte		-				>9	>9	>9			
T	i	1FE0	BuNH		-				7.3	116	≥ 226			
526		mCF3Ph0	MeAlaNII			0.05	=	2	0 15	0 15	0 12	30		
Ť	AS	3 S-C12Ph0	McAaNH	7	1	0 0 3 7	0	10 \$	0 12	0 15	0.12	6 92		
1	YS	m1FMPh0	Medialili		U				>3520	٠ ١٠	>35			
Ť	YS	110	E10		n	*			>58	>58	>58			
1	AS	Pho	LieAshii	*	n				>44	>44	>44			
T	AS	FPhO	MeAlathit	4	=				65	4	272			
295	AS	10,60	1050		n				>36	>36	>36		-2	
563	AS	FIU	Permi		_	Ī			>268	>268	>268			
Ī	YS	610	MediaMil			28 5	62.5	: 250	×48	>240	>48	≥ 250		
Ī	2	Pho	Braishii	-	_	İ			0 0 16	0 0 16	90 0	25		
	8	MeO	Mediafili		_	25.4	50.9	.250	92	50	>250	>250		
	2	110	110	M					0 8	0.95	33	174		
i	8	2,4Br2Ph0	MeAlafill	п					0.04	0 055	0 025	16		
77.0	ဗျ	FSPIIO	Medianii		_	172	40/	82	2.5	. 3.7	5 8	115		
Ī	20	lle 10	=	*	-			į	0 0	0.5	30	150		
Ī	8	MeUDigolU	=		-			ĺ	0 65	0.95	45	144		
788	2	610	=	-	1				0 65	0 6	30	115		

TABLE 6

				. ,																					1						, ,	, ,		_	
MCCAISV																																> 100	× 100	>100	>100
ECSO MSV MCCAISV																																>100	>100	52	>100
CCSO CEM E	64	177	90	137	170	25	146	14	23	≥ 250	115	153	>250	145	2 250	2250	48	216	> 250	>250	₹ 250	≥250	50	180	44	80	42.5	> 250		51.4	≥ 250	≥ 250	92	166	>250
2.CEM.TK	육	30	23	07	33	15	20			125	10	62	>250	>50	>250	17.5	0.033	0.33	0.4	-	7	0.34	0.2	12.5	0 24	0 65	>10	75		0 0	0.74	2.5	>50	0.15	>250
	0.65	0.0	90	0.0	0 65	0 65	0 55	9,	×10	100	15	0.7	>250		>250	0.95	0.055	1.35	2.23	12.5	9	0.8	0.2	>50	90	2	>10	25		0 075	1.1	2	12.5	03	ż 250
HIVT MINUZ MCCSO MINUT CEMINUZ CEM	0 65	0.65	0.4	0.55	0.65	0.85	0.7	>10	200	9-	. 23	0 65	>250	>50	>250	1.2	90.0	0.8	1.1	12.5	9	9.0	0.2	>50	90	2	>10	25		0 065	0.85	3	35	0.8	250
C50 M1			Ì															34	62	2250	2250	22													
IIV2 MC									-				<u>_</u>					0.4	0.5	112	29	0.4													
IN IN			j															0.2	0.2	36	1.3	0.2									:				
																														*					
8		1		_		_	1	1	1	1	U	1	-	_	1	1	1	1	-	-		1-	-	D	•	_	-	_	-	_	_		_	-	
							×																												
7		*	"	-	.,	Я	11	4	*	,,		н		•	H	n	111	9	-	- 11	н	- 1	"	н	-	*1	-	la I	- 1	<u>"</u>		. u {	* l		-
>					=	11	=	CIZNE	CBNH	Hunit	BIAIaNI	DII	PrNII	INAI	PotNII	CNEO	HABINH	MePheNII	MeLeufili	MeValNil	MeGlyNII	MeMettill	BzAlaNII	BZALINII	B2PheN1	MuPheMi	MeProNil	Pho	FII 12 AlaNiI	CHXAIANH	(BuAlaMH	Me D Alahit	DeProNil	EIMEINII	Et.pAlanii
Aro	Deco		000	Pnt0	Pro	C160	M±0		Pho	Pho	Pho	PhO	Pho	Pho	Pho	Pho	PhO	044	Pho	Pho	Pho	Pho	Br2Ph0.	Br2Ph0	PhO	Pho	Ph0	Pho	110	Pho	Pho	Ph0	Pho	PhO	Pho
Init	<u> </u>		20	nc I	20	1	<u></u>	1	<u>` </u>	20	; 	2	20		<u></u>	2	: 	2	2	20	2	20	20	2	2	20	ည	ည	20	0/05	0/09	ASS	30	20	8
Cod	7.89		107	792	793		817		1	<u> </u>		853	958		1	861	862	863	864	865	998	R67	868	870	877	878	879	980	881	892	893	932	933	949	950

TABLE 6 (CONTD.)

<u>≥</u>	1	1	ī	1	Ī	j	1	1	1	T	Ī	ī	1	1	1	ī	1	-	1	1	1	ī]	Ī	ī	T	1	$\overline{}$	ī	-	1	Ī	<u> </u>	1	<u> </u>	<u> </u>
MCCMS	200	× 18) 	\$ 100 100	× 100	200	×100	100	, 8	2 ^_	× 100	90.	Š	>100	\$ 100	100	>100	, 188	,20	>100																
ECSO MSV	25	>100	>100	>100	>100	14	>100	31.4	9.3	303	88.8	54.6	0.42	47.4	6.7	>100	100	15.7	>20	16.2		-														
2.CEM.TK CC50 CEM EC50 MSV MCCMSV	55	≥ 250	>250	>250	≥ 250	94	>250	209	≥ 250	2 250	2 250	2 250	>250	>250	≥ 250	2 250	>250	≥ 250	9.99	>250	>250															
2.CEM.TK	0 0 0	>250	160	>250	150	15	>250	0.33	70	110	1.6	>250	10	20	20	>250	17.5	50	>50	90	130															
HIV2 CEM	0.07	50	23	50	12.5	0 65	122	0.65	.2.5	5	5.33	5.5	1.6	4 5	9.0	87.5	15	1.6	15	0.7	5															
HIV1 M HIV2 MCC50 M HIV1 CEMHIV2 CEM	0.1	40	28	27.5	12.5	1.7	≥ 250	0.55	1.8	3.5	6 0	8 8	1.3	2	0.4	75	10	0.95	15	127	2	5	3.5	0.04	0.7	1.4		9	1.2	>250	>250	>250	0.12	90	-	2
ACC50 M																								_												
M HIV2 N					_																															
HIVI		×																																		
В	1	-		_				1	1					_			-			_		_	-	_	1	1	I [FAST ISOMER	į.	1	_		-	_	-		-
7	39		н	н	36	11	¥	я	#	10							1		*		m		N	37	н	=	n	17		.,					,	10
\	EIAIANII	Met acto	FilladO	MeGlyc()	Etglyco	MeMandu	heterocycle	Me2AspNH	AspNII	MeAspNI (SC)	Me2GL uNH	GluNH	D-AlaNii	MeAlaNH	HO	FIUGNIME	B! AlaNH	BrAlaNI1	0010011	Methii	GIYNII	Mellettil	PheNH	CHKCH2AlaNI	VaiNII	Leulis	Mealitil	ProMi	MeGlutamineMit	Me-[1-AloNI	Me-GABANH	MeCaproyINH	Me0COCMe2Ala	MeAsparagineN	MeTrypNI	13-AlaNH
ArO	Pho		Pho				M McEphedrin 1	Pho .	011			1:0			HO	PhO					01		1:0	Pho	HO	011	Pho	PhO	Pho	Pho	PhO	Pho	PhO	rho .	PhO	110
ii	20	- i	2	1	1		2	SV	S			VSS	Si	- i	SV	- 	-		= i	$\overline{}$	8	1	اع	҂	E3	81	8_1	E	Σ	<u>×</u>	<u>\$</u>	<u>≅</u>	₹	Σ	×	HW1
Cpd	951	978	979	980	186	982	983	1078	1079	1080	1081	1083	1095	1129	1:31	1133	1135	1137	1139	1156	1163	1186	1187	1189	1190	1192	1193	1194	1196	1197	1198	1199	1200	1214	1215	1216

TABLE 6 (CONTD.)

	CCMSV				8							
HIVE MILIVO MICCES LA LIVA CENTING CELL COSTI	SCS0 MSVIM				-	+						
	CC50 CEMIE		1			+						_
72.000	Z.CEM.IK								-			
1111100000	JUIVE CEM	;										
ANIVA CEN		1 4	90	\$0.00	×0.08	;	>	_		-0°		880>
2 MILLED	1 0000 I							_				
IVI MHIV				1	-		1		-			
8								-				
, ,		CaproyINH	PntAlaNH	DAC Dat A la Mid	TECT HEADING	Phenethylalan .		Me-GABANH	1-NanthMathAta	Pichiphinidan	2-NapthMethAla	***************************************
t ArO	110	1 OH	PS Pho	PS PhO	211	PS Pho	•	HWI UH	PS Pho	2:::	PS Pho	
Cpd Init ArO	4047	1 MH /171	1218 PS	1219 PS	-1	1220 PS	Γ	MH 6771	1226 PS	Т	1227 PS	1

TABLE 6 (CONTD.)

Cpd Init	Aro	٨	2	В	HIV1-MI	HIV2 MIC	C50 M	HIVI MIHIVZ MICCSO MIHIVI CEMIHIVZ CEM	11V2 CEM	2.CEM.TK CC50 CEM EC50 MSV MCCMSV	CSO CEM EC	SO MSV M	CCMSV
462 PB	Pho	MeAlaNH	N3-up	ļ	3.3	=	121	27.5	40	30			
499 PB			N3-up	1	0.9	2.3	>250	3	Þ	>250			
536 PB	тС F3Р h0	MeAlanh	N3-up	Ţ	0.45	0.9	50	-	2	3			
550 PB	3,5C12Ph0	MeAlaNH	N3-up	Į.	0.5	-	98	1.4	3	12	-		
569 PB	,	-	N3-up	n				>400	>400	>400			
571 PB	Pho	Mealanh	N3-up	n				>202	>202	117			
657 ASS	S Pho	HexNH	N3-up	1				>40	>40	>18		-	
659 ASS	S Pho	BUNH	N3-up	T				>42	>42	>42			
	S Pho	+	N3-up	1				>,7	>7	>7			
687 DC	·		N3-nb	821				2.5	2.8	>100	>100		
731 DC	Pho	BzAłaNH	N3-nb	_				0.28	0.7		88		
739 00	MeO	MeAlaNH	N3-nb	1				10	18	>250	>250		
774 ASS		MeAlaNH	N3-up	N-OctT				>10	>10		15		
777 000	2,4-Br2Ph0	MeAlaNH	N3-nb	1				0.5	0.55	0,19	55		
780 DC	-	MeAlaNH	N3-nb					23	33	100	106		
846 ASS	S Pho	CNEO	N3-up	•				, 13	14	>250	>250		
847 ASS	S TFEO	CNEO	N3-up	1				12	6	>250	>250		
850 ASS	SS Pho	ЮН	N3-up	-				-8	6	>250	>250		
855. AS	ASS TEO	ОН	N3-up					17.5	17.5	>250	>250		
856 AS	ASS HexO	CNEO	N3-up					13	25	>250	>250		
857 AS	ASS HexO	но	N3-up	_				5	10	>250	>250		
941 AS	ASS Pho	Me-D-PheNH	N3-up	-				>50	>50		115	>100	>100
1069 0	- M0	•	н	A				4	8	17.5	>250	24.3	>100
1071 AS	ASS HO	HOCIOJAIANH	N3-up	-				115	100	250	>250	>250	>100
1093 0\	ow Pho	MeAlaNH	エ	A				0.016	0.035	5 0.055	2.57	1.95	>20
1221 CY	Y Pho	MeAlaNH	Ŧ	ပ				0.6					
	ow Pho	MeAlaNH	Ξ	1	_			1.2					

In vivo Testing

Inhibitory effects of test compounds on the initiation of MSV-5 induced tumour formation in NRMI mice and on the survival of MSV innoculated NMRI mice.

Mice infected with Moloney Sarcoma Virus [MSV] were treated daily with either placebo, or d4T [at one of two doses] or with 10 compound 324 at one of the same [equi-molar] doses.

Two- to three-day old NMRI mice (weighing - 2 gram) were innoculated subcutaneously (s.c.) in the left hind leg with 50 μ l MSV (100 foci forming units, as measured by in vitro 15 determination of the virus-induced transformation of murine C3H embryo fibroblast cells). At 4 to 5 days post-infection, tumours develop and rapidly increase in volume upon further aging of the mice. Within 10 to 12 days post-infection, mice (then weighing - 5 to 6 gram) die from the viral infection. 20 Drug treatment started 1 hour prior to infection of the virus, and further compound administration was given daily i.p. for an additional 3 days. The mean day of tumour initiation (± standard deviation) and the mean day of survival of the mice standard deviation) was calculated and statistical 25 significance of the average delay of tumour formation and the mean day of survival in the treated groups versus the untreated (control) group was assessed by two-tailed student's t-test.

Whilst d4T failed to give any detectable delay in either tumour 30 appearance or death, a significant effect on both parameters was seen with high-dose compound 324, and an effect on the first disease parameter at low dose [Figure 1].

CLAIMS:

1. A compound of the formula (1)

5

10

Ar-O-P-
$$X^2$$
- X^6
 X^5

(1)

 X^3
 X^1
 $C=X^4$

15 wherein

Ar is an aryl group;

Y is oxygen or sulphur;

20

 X^{I} is selected from O, NR³, S, CR³R⁴, CR³W^I and CW^IW² where R³ and R⁴ are independently selected from hydrogen, alkyl and aryl groups; and W^I and W² are heteroatoms;

25

 X^2-X^6 may be absent; or X^6 is CH_2 and X^2 is selected (independently of X^1) from O, NR^3 , S, CR^3R^4 , CR^3W^1 and CW^1W^2 where R^3 and R^4 are independently selected from hydrogen, alkyl and aryl groups; and W^1 and W^2 are heteroatoms;

30

X³ is a C₁₋₆ alkyl group;

X4 is oxygen or CH2;

X's may be absent or is CH2;

35

Z is selected from 0, NR⁵, S, alkyl and aryl groups, where R⁵ is selected from hydrogen, alkyl and aryl groups;

20

35

J is selected from hydrogen, alkyl, aryl, heterocyclic and polycyclic groups;

Q is selected from 0, NR⁶, S, CR⁶R⁷, CR⁶W³ and CW³W⁴

where R⁶ and R⁷ are independently selected from hydrogen, alkyl and aryl groups; and W³ and W⁴ are heteroatoms;

 T^1 and T^2 are independently selected from hydrogen and CH_2R^8 , where R^8 is selected from H, OH and F; or T^1 and T^2 are linked together and together are selected from the groups

$$C=C \qquad \text{and} \qquad R^{10} C - C - R^{11}$$
H H R9 R12

where R^9 is selected from H, halogen, CN, NH_2 , CO-alkyl and alkyl; and R^{10} , R^{11} and R^{12} are independently selected from H, N₃, halogen, CN, NH_2 , CO-alkyl and alkyl;

B is a purine or pyrimidine base;

- or a pharmaceutically acceptable derivative or metabolite thereof.
 - 2. A compound according to claim 1 wherein

Y is oxygen;

X' is NH;

X' is CHR';

X' is oxygen; and

Z is oxygen.

3. A compound of formula (10)

$$\begin{array}{c|ccccc}
Y \\
HO-P-X^2-X^6 & X^5-B \\
X^1 & & & \\
X^3 & & T^1 & T^2
\end{array}$$

$$\begin{array}{c|ccccc}
C = X^4 & & & \\
OH & & & & \\
\end{array}$$

- or pharmaceutically acceptable derivative or metabolite thereof.
 - 4. A compound according to claim 3 wherein

Y is oxygen;

X¹ is NH;

X³ is CHR¹; and

X⁴ is oxygen

205. A compound according to any one of claims 1 to 4 wherein

X² is oxygen;
X6 is CH2;
25 Q is oxygen;
X5 is absent; and
T¹ and T² together comprise the group:-

C=C

- 35 6. A compound according to claim 5 wherein B is thymine.
 - 7. A compound according to claim 6 wherein Ar, R¹ and J are defined as follows:-

	Compound	Ar	R ^I	J
	Reference			
	323	4-EtPh	Me	Me
	324	Ph	Me	Me
	5 327	4-FPh	Me	Me
	526	3-CF ₃ Ph	Me	Me
	546	3,5-Cl ₂ Ph	Me	Me
	730	Ph	Me	Bzl
	776	2,4-Br ₂ Ph	Me	Me
10	779	F ₅ Ph	Me	Me
	862	Ph	Me	Hexyl
	863	Ph	Bzl	Me
	864	Ph	CH ₂ iPr	Me
	865	Ph	iPr	Me
15	866	Ph	H	Me
	867	Ph	[CH ₂] ₂ SMe	Me
	868	2,4Br ₂ Ph	Me	Bzl
	877	Ph	Bzl	Bzl
	878	Ph	Bzl	tBu
20	892	Ph ,	Me	Cyclohexyl
	893	Ph	Me .	tBu
	1078	Ph	CH ₂ CO ₂ H	Me
	1214	Ph	CH1CH1CH1NHC [NH1] NH	Me
	1218	Ph	Me	n-Pent
25	1219	Ph	Me	neo-Pent
	1225	Ph	Me	l-Napthyl
	1227	Ph	Me	2-Napthyl

308. A compound according to any one of claims 1 to 4 wherein

X² is oxygen;

X⁶ is CH₂;

Q is oxygen;

35 X⁵ is absent; and

 T^1 and T^2 together comprise the group:-

- 9. A compound according to claim 8 wherein B is adenine or thymine.
- 10. A compound according to any one of claims 1 to 4 wherein X^2-X^6 is absent

Q is oxygen;

 X^5 is CH_2 ;

 T^1 and T^2 are independently selected from hydrogen and CH_2R^8 wherein R^8 is selected from H, OH and F.

10

- 11. A compound according to claim 9 wherein B is adenine.
- 12. A compound according to any one of claims 1 to 11 for use in a method of treatment, prophylaxis or diagnosis.

15

- 13. Use of a compound according to any one of claims 1 to 11 in the manufacture of a medicament for the treatment or prophylaxis of a viral infection.
- 20 14. Use of a compound according to claim 13 wherein the viral infection comprises HIV.
- 15. A process for the preparation of a compound according to any one of claims 1 to 11 comprising reaction of a compound 25 of formula (11)

30

5

(12) ArO-P-CI
$$\begin{array}{c}
Y \\
| I \\
X \\
X \\
X \\
C = X^4 \\
Z
\end{array}$$

- 10 16. A method of prophylaxis or treatment of viral infection comprising administration to a patient in need of such treatment an effective dose of a compound according to any one of claims 1 to 11.
- 15 17. Use of a compound according to any one of claims 1 to 11 in the manufacture of a medicament for use in the inhibition of a reverse transcriptase by a nucleoside-resistance independent or nucleoside 5'-triphosphate independent mode of action.

20

18. A pharmaceutical composition comprising a compound according to any one of claims 1 to 11 in combination with a pharmaceutically acceptable excipient.

			PC1,7 = 0/00580
A. CLASS IPC 6	SIFICATION OF SUBJECT MATTER C07H19/10 C07H19/20 A61K3 A61K31/675	1/70 C07F9/65	512 C07F9/6524
According	to International Patent Classification (IPC) or to both national cl	lassification and IPC	
	S SEARCHED		
Minimum of IPC 6	documentation searched (classification system followed by classification s	fication symbols)	
Documenta	ation searched other than minimum documentation to the extent to	that such documents are include	led in the fields searched
Electronic d	data base consulted during the international search (name of data	i base and, where practical, se	urch terms used)
C. DOCUM	MENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of th	ne relevant passages	Relevant to claim No.
X	FEBS LETTERS, vol. 351, no. 1, 1994, AMSTERDA pages 11-14, XP000578147 MCGUIGAN, CHRISTOPHER ET AL: " phosphoramidate derivatives of uridine (ddU) are active agains successfully bypass thymidine k see the whole document	Certain dideoxy st HIV and	1,2,8,
X	JOURNAL OF MEDICINAL CHEMISTRY, vol. 36, no. 8, 1993, pages 1048-1052, XP000578135 MCGUIGAN, CHRISTOPHER ET AL: "Intracellular delivery of bioaconucleotides by aryl phosphate do of AZT" cited in the application see the whole document	ctive AZT	1,2,8,9,12-18
X Furth	ner documents are listed in the continuation of box C.	Patent family men	nbers are listed in annex.
"A" document consider defiling da "L" document which is creation "O" document other m "P" document later that	nt which may throw doubts on priority claim(s) or is cited to establish the publication date of another is or other special reason (as specified) ant referring to an oral disclosure, use, exhibition or nears int published prior to the international filing date but an the priority date claimed actual completion of the international search	or priority date and no cited to understand the invention "X" document of particular cannot be considered involve an inventive storage of the considered to document of particular cannot be considered to document is combined ments, such combinate in the art. "&" document member of the Date of mailing of the	sed after the international filing date of in conflict with the application but a principle or theory underlying the relevance; the claimed invention boved or cannot be considered to the when the document is taken alone relevance; the claimed invention to involve an inventive step when the lawful with one or more other such document being obvious to a person stolled the same patent family international search report -09-1996
14	August 1996		00 1000
Name and mu	Lailing address of the ISA European Patent Office, P.B. 5818 Patentian 2 NL - 2280 HV Ripswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Face (+31-70) 340-3016	Authorized officer Day, G	

		PC:/b= 96/00580
C-(Coupram	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 2, no. 7, 1992, OXFORD, UK, pages 701-704, XPO00578777 MCGUIGAN C ET AL: "Aryl phosphate derivatives of AZT inhibit HIV replication in cells where the nucleoside is poorly active" see the whole document	1,2,8,9,
	ANTIVIRAL RESEARCH, vol. 17, no. 4, 1992, pages 311-321, XP000578782 MCGUIGAN C ET AL: "Aryl phosphates derivatives of AZT retain activity against HIV1 in cell lines which are resistant to the; action of AZT" see: the whole document	1,2,8,9,
, X	ANTIVIRAL CHEMISTRY & CHEMOTHERAPY, vol. 7, no. 1, 1996, pages 31-36, XP000578787 MCGUIGAN C ET AL: "Phosphoramidates as potent prodrugs of anti-HIV nucleotides: studies in the amino region" see the whole document	1,2,5-7, 12-18
	JOURNAL OF MEDICINAL CHEMISTRY, vol. 37, no. 21, 1994, pages 3534-3541, XP000578132 FRANCHETTI P ET AL: "Synthesis and Evaluation of the Anti-HIV Activity of Aza and Deaza Analogs of IsoddA and Their Phosphates as Prodrugs" see page 3537	1,12-18
	JOURNAL OF MEDICINAL CHEMISTRY, vol. 37, no. 12, 10 June 1994, pages 1857-1864, XPOOO564485 STARRETT J E ET AL: "SYNTHESIS, ORAL BIOAVAILABILITY DETERMINATION, AND IN VITRO EVALUATION OF PRODRUGS OF THE ANTIVIRAL AGENT 3- 2-(PHOSPHONOMETHOXY) ETHYLADENINE (PMEA)" see page 1858	10,11

Internation No.

PCT/GB96/00580

INTERNATIONAL SEARCH REPORT

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:	
1. X	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claim 16 is directed to the treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compounds (rule 39.1 (iv) PCT).
2.	Claims Noz.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:	
	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.	As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
	*
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark •	The additional search fees were accompanied by the applicant's protest.
NUMBE *	No protest accompanied the payment of additional search fees.
	· · · · · · · · · · · · · · · · · · ·