David Mareček, <u>Rudolf Rosa</u> marecek@ufal.mff.cuni.cz, rosa@ufal.mff.cuni.cz

From Balustrades to Pierre Vinken:

Looking for Syntax in Transformer Self-Attentions

Charles University, Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics
BlackboxNLP Workshop, Firenze, 1 August 2019

From balustrades to Pierre Vinken

http://clipart-library.com/clipart/28144.htm

by Jan Hein van Dierendonck

Transformer self-attentions → **syntactic trees**

Mareček & Rosa: From Balustrades to Pierre Vinken: Looking for Syntax in Transformer Self-Attentions

- Common pattern in Transformer NMT self-attention heads
 - "balusters"

- Common pattern in Transformer NMT self-attention heads
 - "balusters"
- Resemble syntactic phrases

- Common pattern in Transformer NMT self-attention heads
 - "balusters"
- Resemble syntactic phrases
 - To what extent?
 - → That's our research question!

1. Balusters → phrase candidates

- 1. Balusters → phrase candidates
- 2. Phrase candidates → constituency tree
 - Linguistically uninformed algorithm

- 1. Balusters → phrase candidates
- 2. Phrase candidates → constituency tree
 - Linguistically uninformed algorithm
- 3. Compare to standard syntactic trees

Experiment setup

- transformer neural machine translation encoder
 - 6 layers x 16 heads, 100k shared BPEs...
- 6 language pairs: fr ↔ en, de ↔ en, fr ↔ de
 - Europarl training data
- analyze encoder self-attention matrices
- extract constituency syntax trees
- compare against Stanford parser syntax trees
 - trained on linguistically annotated treebanks:
 Penn Treebank, Negra Corpus, French Treebank

Transformer NMT

- tady asi srtukturu tranformera trochu
- ať je jasný odkuď tahám ty self attention matrices
- positions ~ input words (actually subwords)
- each head attends to some words...
- one example sentence throughout all slides
 - Huge areas covering thousands of hectares of vineyards have been burned; this means that the vine-growers have suffered loss and that their plants have been damaged.

Diagonal (current word)

Shifted diagonal (previous word)

Short balusters ("phrases")

Long balusters ("phrases")

Partial balustrades + attend to end

Scattered attention (uninterpreted)

Phrase candidates & scoring

damaged

- keep only max on each line
- phrase candidate
 - each contiguous baluster
 - sequence of words attending to the same position
- phrase score
 - average attention weight
 - sum over all layers and heads
 - short phrases more common
 - → equalization

Binary constituency CKY parsing

- standard recursive algorithm
- constructs a binary constituency tree which maximizes the sum of scores of phrases in the tree
- split each phrase into a pair of subphrases so as to maximize the sum of phrase scores
- linguistically uninformed!

$$s_{a,b} = \max_{k} \frac{s_{a,k} + s_{k+1,b} + w_{a,k} + w_{k+1,b}}{4}$$

Results

Huge areas covering thousands of hectares of vineyards have been burned; this means that the vine-growers have suffered loss and that their plants have been damaged

Results

English				
	system	precision	recall	F1 score
	rbal	30.1%	24.3%	26.8%
	lbal	27.8%	20.8%	23.8%
	rand.init	25.1%	20.0%	22.3%
	en → de	35.4%	30.6%	32.8%
	en → fr	35.4%	30.2%	32.6%
	German			
	system	precision	recall	F1 score
	rbal	39.1%	31.3%	34.8%
	lbal	38.1%	27.6%	32.0%
	rand.init	33.7%	25.9%	29.3%
	de → en	46.1%	39.6%	42.6%
	de → fr	46.7%	40.9%	43.6%
	French			
	system	precision		F1 score
	rbal	34.3%	28.7%	31.3%
	lbal	32.5%	25.4%	28.5%
	rand.init	26.1%	24.4%	25.3%
	fr → en	44.4%	39.7%	41.9%
	$fr \rightarrow de$	46.9%	41.7%	44.2%

Table 2: Scores of baseline trees and our extracted trees using all attention heads, evaluated against standard

Summary

- Transformer NMT encoder self-attentions
 - diagonals, shifted diagonals, scattered attention...
 - balustrades: can be interpreted as phrases
- Linguistically uninformed syntax extraction
 - baluster → phrase, attention weight → phrase score
 - binary constituency parsing using CKY
 - no training, no hyperparameters, using all heads
 - see the paper for subselecting only some heads
- Resulting structures are quite syntactically sane
- F1 score 6-13 points above baseline (30% → 40%) Mareček & Rosa: From Balustrades to Pierre Vinken: Looking for Syntax in Transformer Self-Attentions

Thank you for your attention

David Mareček, <u>Rudolf Rosa</u> marecek@ufal.mff.cuni.cz, rosa@ufal.mff.cuni.cz

From Balustrades to Pierre Vinken: Looking for Syntax in Transformer Self-Attentions

Charles University, Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

ÚFAL

ufal.cz/grants/lsd