Exercise 3 – The Virus Challenge – Modeling

Winter is coming, and the national health authority asks for your assistance in the several classification tasks. For every patient:

- Detect virus type and presence
- Decide whether he is "at risk" patient
- Decide whether he is a potentially "super-spreader"
- Identify which factors (features) are more significant for the above classification tasks

Mandatory Assignment

Wet (80%)

First, do the data preparation task again (of the former exercise), focusing on the right set of features (see the first comment below). Specifically, write a script that implements the following:

- 1. Load the Virus Challenge data from the *virus_hw2.csv* file
 - The data is the same as in the 2nd exercise
- 2. Select the right set of features, and apply the data preparation tasks that you have carried out in the former exercise, on the train, validation, and test data sets
 - At the very least, fill up missing values
 - All other actions, such as outlier detection and normalization, are not mandatory. Still, you are encouraged to do them, as they should provide you added values for the modeling part
 - Whether to use the validation set for pre-processing steps is your call
- 3. Save the 3x2 data sets in CSV files

Next, write a Python script that can handle the following prediction tasks

- Detect virus type and presence
- Decide whether the patient is "at risk"
- Decide whether the patient is a potentially "super-spreader"

Such a process should implement and execute the following

- 1. Load the preprocessed training set
- 2. Train at least two models
 - Each training should be done via cross-validation on the training set, to maximize performance of the model while avoiding overfitting
- 3. Load the prepared validation set
- 4. Apply the trained models on the validation set and check performance
 - It is your call which performance measure to use, and it is possible to check multiple measures
- 5. Select the best model for the prediction tasks
 - The model selection can be "manual" (not an automatic process), but it should be based on the performance measurements

- 6. Use the test set to evaluate your model
 - For every patient in the test set:
 - i. Detect virus presence
 - ii. Decide whether he is classified as "at risk" patient
 - iii. Decide whether he is classified as a potential "super spreader"
 - Provide appropriate model metrics for every of the three classification tasks
- 7. Predict the classes for the new unlabeled data from the "virus_hw3_unlabeled.csv" file. Output your results to another csv file named "predicted.csv".
 - This file should contain 2 columns only ("PatientID", "TestResultsCode"). You
 can use the "predicted.csv" file from the HW3 section in the webcourse as a
 reference.

Please submit

- 1. The Python script file that implements the data preparation part using the right set of features
- 2. CSV files of the prepared train, validation, and test data sets
- 3. The Python script file that implements the modeling (training and model evaluation) part
- 4. A CSV file that contains the class predictions (predicted labels) for the unlabeled data from "virus_hw3_unlabeled.csv" file.
 - Use the file "predicted.csv" as a reference
- 5. A short documentation that
 - Explains your process and any significant decisions/insights you would like to share. Specifically, explain the following:
 - i. A concise description of your (updated?) process of data preparation
 - ii. Your choice of models and hyperparameters
 - iii. Your model evaluation strategy
 - Includes answers for the following
 - i. What features are more significant for each classification task (virus type/patients at risk/ potential super spreaders)? Explain how you identify these key factors.

Notes:

- 1. Provide a list that maps each of the 3 classification tasks to their corresponding significant features.
- 2. Handle this task strictly from a technical perspective, meaning please ignore the semantic of the features
- The answers to the dry part.

Dry (20%)

1. Consider the least squares problem with a matrix $\mathbf{X} \in \mathbb{R}^{m \times d}$ and a vector $\mathbf{y} \in \mathbb{R}^m$:

$$\operatorname{argmin}_{\boldsymbol{w}} \|\mathbf{X}\boldsymbol{w} - \boldsymbol{y}\|_{2}^{2}$$
.

Denote $r = \operatorname{rank}(\mathbf{X}) \le \min\{m, d\}$.

Denote the <u>full</u> SVD of the data matrix $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}} = \sum_{i=1}^{\min\{m,d\}} \sigma_{i,i} \mathbf{u}_i \mathbf{v}_i^{\mathsf{T}}$ where $\mathbf{\Sigma} \in \mathbb{R}^{m \times d}$ and \mathbf{U}, \mathbf{V} are square orthonormal matrices of appropriate sizes.

Prove that $\widehat{w} = \mathbf{V}(\mathbf{\Sigma}^+)^2 \mathbf{\Sigma}^\top \mathbf{U}^\top \mathbf{y}$ is an optimal solution to the least squares problem, where for the singular values matrix $\mathbf{\Sigma}$ we get $(\mathbf{\Sigma}^+)_{i,j} = \begin{cases} 1/\Sigma_{i,j} \,, & i=j \leq r \\ 0, & \text{otherwise} \end{cases}$.

2. We wish to better understand the SVM objective.

Recall that a valid kernel function K(x,x') must hold $K(x,x') = \langle \phi(x),\phi(x') \rangle$ for some feature map $\phi\colon \mathbb{R}^d \to \mathbb{R}^D$. A necessary and sufficient condition is that K is positive semidefinite. That is, for any set of points $x_1,\ldots,x_m \in \mathbb{R}^d$, the Gram matrix $\mathbf{G} \in \mathbb{R}^{m\times m}$ defined by $\mathbf{G}_{i,j} = K(x_i,x_j)$ is positive semidefinite. Recall that a symmetric \mathbf{G} is PSD if and only if $\forall \mathbf{z} \neq \mathbf{0}_m \colon \mathbf{z}^\mathsf{T} \mathbf{G} \mathbf{z} \geq \mathbf{0}$ (or equivalently, all its eigenvalues are non-negative).

Recall the SVM optimization problem from lecture 05 which uses the Gram matrix:

$$\min_{\alpha} \underbrace{\widetilde{\lambda}}^{\geq 0} \alpha^{\mathsf{T}} \mathbf{G} \alpha + \frac{1}{m} \sum_{i=1}^{m} \max\{0, 1 - y_{i}(\mathbf{G} \alpha)_{i}\}$$

$$= \mathcal{L}_{SVM}(\alpha)$$

2.1. Consider two valid kernels $K_i(x, x') = \langle \phi_i(x), \phi_i(x') \rangle$ for i = 1, 2.

Show that the following functions are also valid kernels by explicitly writing their respective feature maps ϕ_3 , ϕ_4 in terms of ϕ_1 , ϕ_2 .

- **2.1.1.** $K_3(x, x') = K_1(x, x') + K_2(x, x')$.
- 2.1.2. $K_4(x,x') = f(x) \cdot f(x') \cdot K_1(x,x')$ for any function $f: \mathbb{R}^d \to \mathbb{R}$.
- 2.2. We will now understand what can go wrong when $\mathbf{G} \not\geq \mathbf{0}$. Consider a trainset with two points $\{(x_i,y_i)\}_{i=1,2}$, a "kernel" holding $K(x_1,x_1)=K(x_2,x_2)=1$ and $K(x_1,x_2)=2$, and labels $y_1=1,y_2=-1$.
- 2.2.1. Write down the Gram matrix, its two eigenvectors and its two eigenvalues. You can use *numpy.linalg.eigh* to compute them numerically.
- 2.2.2. Find a vector $\boldsymbol{v} \in \mathbb{R}^m$ such that $\lim_{c \to \infty} \mathcal{L}_{SVM}(c \cdot \boldsymbol{v}) = -\infty$.

Prove that the vector you suggested holds the above limit.

Note: understand why this demonstrates that non-PSD "kernels" are problematic.

- 2.3. We will now show that this cannot happen for any $G \ge 0$.
- 2.3.1. Prove that $\min_{\alpha} \mathcal{L}_{SVM}(\alpha) \geq 0$.
- 2.3.2. Prove that $\min_{\alpha} \mathcal{L}_{SVM}(\alpha) \leq 1$.

Non-Mandatory Assignments (10%)

The following list includes additional, non-mandatory, assignments. You are highly encouraged to do at least some of them. Each functional implementation of ANY assignment will get a bonus

- A. Automate the model selection procedure, i.e. the selection of the best model based on the performance measurements of all the trained models (Step 5 of the mandatory process)
 - Provide a Python script file and a document that explains the process, your insights, and conclusions.
- B. It may very well be that "one size doesn't fit all", namely that different models may bring better results in different tasks Check this paradigm -
 - Use a different modeling procedure (train and test) for each of the three mandatory prediction tasks
 - Compare results with the results obtained using the one model approach
 - Note that "Better results" are not merely a higher accuracy, but also simpler models (why is it important?), stable predictions, etc.
 - Provide a Python script file for each of the tasks and a document that explains the process, your insights, and conclusions.

Comments

- The right feature set -
 - Since there is a redundancy in the original set of features, the "right" set of features is not unique (meaning, there are a few subsets of features that could have been selected). We may publish a mandatory feature set in the future.
- You may use a "balanced" training set (to handle imbalanced classes while training a model) but the test set should reflect the original data distribution, so that the reported performance measurements will be unbiased