模式识别作业Chap 7

数据科学与计算机学院 17大数据与人工智能 17341015 陈鸿峥

问题 1 (§7 Q3). 图 7-2左边的能量地形曲面过分复杂, 因下述原因容易误导读者:

- (a) 对式(1)的优化问题, 讨论图中的连续空间与离散空间的差异。
- (b) 图中示出在空间的中部有一个局部能量极小点,问对于离散空间,是否存在中部的极小点?
- (c) 如果令坐标轴是连续的状态变量 s_i (比如在均场退火中), Z_{s_i} 服从 z_{igmoid} 函数 (图 7-5), 试问能量地形是否可以是非单调的, 就像图 7-2那样?
- **解答.** (a) 在(1)式的连续空间下,变量只能取值±1,进而能量函数也是空间中孤立的点,不会出现图中所示的连续曲面。
 - (b) 不可能,如果变量只能取值±1的话,所有可行解都只会落在±1圈定的超立方体的顶点上,而不会在内部。
 - (c) 不一定。如果沿着平行于坐标轴方向将能量函数映射到3维空间,则能量地形一定是单调的,因为sigmoid函数是单调的,而此时只有一个变量在变化;若不沿着坐标轴方向做投影,则能量地形不一定是单调的,因为涉及到多个sigmoid函数的叠加。

问题 2 (§7 Q10). 考虑一个2-输入,1-隐单元,1-输出的全互连Boltzmann网络,试着手工构造所有权值,使之实现XOR。

解答. 不妨设符合下面情况的Boltzmann网络能量最小(即4个训练样本),其中 s_3 的值为人为给定

输入 s_1 (可见)	输入 s_2 (可见)	隐层 s_3 (非可见)	输出s ₄ (可见)
+1	+1	+1	-1
+1	-1	-1	+1
-1	+1	-1	+1
-1	-1	-1	-1

并考虑以下权值及偏置

$$w_{03} = -1$$
 $w_{13} = 1$ $w_{23} = 1$ $w_{14} = 1/2$ $w_{24} = 1/2$ $w_{34} = -1$ $\theta_3 = -1$ $\theta_4 = -1/2$

进而根据Boltzmann网络能量的表达式

$$E = -\left(\sum_{i < j} w_{ij} \, s_i \, s_j + \sum_i \theta_i \, s_i\right)$$

可求得

s_1	s_2	s_3	s_4	E
1	1	1	1	-0.5
1	1	1	-1	-1.5
1	1	-1	1	-0.5
1	1	-1	-1	2.5
1	-1	1	1	2.5
1	-1	1	-1	-0.5
1	-1	-1	1	-1.5
1	-1	-1	-1	-0.5
-1	1	1	1	2.5
-1	1	1	-1	-0.5
-1	1	-1	1	-1.5
-1	1	-1	-1	-0.5
-1	-1	1	1	5.5
-1	-1	1	-1	0.5
-1	-1	-1	1	-2.5
1	-1	-1	-1	-3.5

满足(隐层状态不同可取等,但输出状态为严格不等式)

$$\begin{split} E_{\{+1,+1,+1,-1\}} &\leq E_{\{+1,+1,\cdot,\cdot\}} \\ E_{\{+1,-1,-1,+1\}} &\leq E_{\{+1,-1,\cdot,\cdot\}} \\ E_{\{-1,+1,-1,+1\}} &\leq E_{\{-1,+1,\cdot,\cdot\}} \\ E_{\{-1,-1,-1,-1\}} &\leq E_{\{-1,+1,\cdot,\cdot\}} \end{split}$$

即每个样本输入输出在对应的4种能量构型中都最小,进而该网络可以用于计算XOR函数。