

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

СТАЛЬ ТЕПЛОУСТОЙЧИВАЯ

ТЕХНИЧЕСКИЕ УСЛОВИЯ

ΓΟCT 20072—74

Издание официальное

30r-95

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ Москва

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА CCP

СТАЛЬ ТЕПЛОУСТОЙЧИВАЯ Технические условия

ГОСТ 20072-74*

Heat-resistant steel. Specifications

Взамен ГОСТ 10500-63 в части теплоустойчивой стали и ГОСТ 5632-72 в части марок 15Х5, 15X5M, 15X5BФ, 12X8BФ

ОКП 09 6001

Постановлением Государственного комитета стандартов Совета Министров СССР от 13 августа 1974 г. № 1966 срок введения установлен

до 01.01.93

Постановлением Госстандарта от 20.12.85 № 4519 срок действия продлен

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на легированную теплоустойчивую сталь перлитного и мартенситного классов таную и кованую диаметром или толщиной до 200 мм, калиброванную, изготовляемую в прутках, полосах и мотках.

Сталь предназначается для изготовления деталей, работающих в нагруженном состоянии при температуре до 600°C

ллительного времени.

В части норм химического состава стандарт распространяется

на слитки, все виды проката, поковки и штамповки.

Показатели технического уровня, установленные стандартом, предусмотрены для высшей и первой категорий качества.

(Измененная редакция, Изм. № 2).

1. КЛАССИФИКАЦИЯ

1.1. По видам обработки сталь подразделяют:

горячекатаная; кованая:

калиброванная;

калиброванная шлифованная.

Издание официальное

Перепечатка воспрещена

[★] * Переиздание (август 1987 г.) с Изменениями № 1, 2, утвержденными в октябре 1980 г., январе 1985 г. (ИУС 12—80, 3—86).

1.2. По состоянию материала сталь подразделяют:

без термической обработки:

термически обработанная — Т:

нагартованная — Н (для калиброванной стали).

- 1.3. В зависимости от назначения горячекатаная и кованая сталь подразделяется на подгруппы:
 - а для горячей обработки давлением:
- б для холодной механической обработки (обточки, строжки, фрезерования и другой обработки по всей поверхности);

в — для холодного волочения (подкат).

Назначение стали (подгруппа) должно быть указано в заказе.

2a COPTAMENT

2.1а. Сортамент стали должен соответствовать требованиям:

ГОСТ 2590—71 — для горячекатаной круглой;

ГОСТ 2591—71 и ГОСТ 4693—77 — для горячекатаной квалратной:

ГОСТ 1133—71 — для кованой круглой и квадратной; ГОСТ 103-76 и ГОСТ 4405—75 — для горячекатаной полосовой:

ГОСТ 7417—75 — для калиброванной круглой:

ГОСТ 14955—77 — для калиброванной круглой со специальной отлелкой поверхности:

ГОСТ 8559—75 — для калиброванной квадратной;

ГОСТ 8560—78 — для калиброванной шестигранной.

Примечания:

1. Допускается изготовлять горячекатаную квадратную сталь со стороной квадрата до 100 мм по ГОСТ 2591—71 с углами, закругленными радиусом, не превышающим 0,15 стороны квадрата.

2. Допускается поставлять круглую калиброванную шлифованную сталь

длиной не менее 2 м.

Примеры условных обозначений

Сталь горячекатаная квадратная, со стороной квадрата 30 мм, обычной точности проката В по ГОСТ 2591-71 марки 20ХЗМВФ, для горячей обработки, без термической обработки:

Сталь горячекатаная полосовая, толщиной 36 мм, шириной мм, по ГОСТ 103-76 марки 20Х1М1Ф1БР-Ш, для холодной механической обработки, термически обработанная:

Полоса
$$\frac{36 \times 90\ \Gamma OCT\ 103-76}{20 X 1 M 1 \Phi\ 15 P - III - 6 - T\ \Gamma OCT\ 20072-74}$$

Сталь калиброванная круглая диаметром 25 мм, класса точности 4, ГОСТ 7417—75, марки 12X1МФ, качество поверхности группы В, нагартованная:

Разд. 2а. (Введен дополнительно, Изм. № 2).

2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

- 2.1. Легированную теплоустойчивую сталь изготовляют в соответствии с требованиями настоящего стандарта по технологическому регламенту, утвержденному в установленном порядке.
- 2.2. Марки и химический состав стали должны соответствовать указанным в табл. 1.

Массовая доля серы и фосфора в стали высшей категории качества должна быть на 0,005% меньше значений, приведенных в табл. 1.

- 2.1; 2.2. (Измененная редакция, Изм. № 2).
- 2.3. В готовом прокате и изделиях при соблюдении норм механических свойств и других требований настоящего стандарта допускаются отклонения по химическому составу, не превышающие норм, указанных в табл. 2.
- 2.4. Горячекатаную и кованую сталь перлитного класса изготовляют термически обработанной (отожженной, отпущенной или нормализованной с высоким отпуском) или без термической обработки.

По соглашению между потребителем и изготовителем сталь перлитного класса может изготовляться после закалки с высоким отпуском.

Горячекатаную и кованую сталь мартенситного класса изготовляют термически обработанной (отожженной, отпущенной или нормализованной с высоким отпуском).

Калиброванную сталь в соответствии с заказом изготовляют термически обработанной или нагартованной (за исключением стали марки 20X3MBФ).

ица 1		йий	Це́р		1	1	. 1	Рас- чет- ное 0,05— 0,10	1	i	1	
Табли			gob		1	ı	Рас- чет- ное	0,005 Pac- yer- Hoe 0,005	1.	1	ı	
		фоф	более		0;030	0.030	0:030	0,030	0,030	0:030	00,030	
		Cepa	He 6		0,025	0,025	0,030	0,030	0,025	0,025	0,025	
		йиден	Baı		1	0,15— 0,30	0.7—	0.7-1.0	0,15— 0,30	0,05-	0,60— 0,85	
	тов, %	йндо	иН	класся	1	l	1.	0,05— 0,15	ı	ı	1 /	
	элементов,	нэдоиг	οW	1. Стали перлитного класса	0,4	0,25-0,35	0,8—	0,8—1,1	0,25 0,35	0.5 - 0.7	0,35— 0,55	,
	зая доля	пьфрам	вo	ли пер.	1	1	1	1	1	0,5	0,3	
	Массовая	нвт	гиТ	1. Cra	1		0,05— 0,12	Рас- чет- ное 0,06	1	1	1	
		ік бир	нН		Не более	0,30 Не более	0,30 Не 6олее 0,30	Не более 0,30	Не более 0,30	Не более	0,30 Не боле е 0,3 0	
	. ,	МО	ďχ		0,4	0,9—	0,9—	1,0—	1,5—	2,5— 3,0	3,3	,
		врганец	?w		$\begin{vmatrix} 0,4-\\ 0,7 \end{vmatrix}$	0,4—	Не б олее 0,5	0,5-	0,4—	0,25— 0,50	0,25— 0,50	
		осмний	Κū		$\begin{vmatrix} 0,17-\\ 0,37 \end{vmatrix}$	0,17—	Не более 0,37	Не более 0,37	0,17— 0,37	0,17— 0,37	0,17— 0,37	
		лерод	Λı		0,09—	0,10-0,15	0,17— 0,24	0,18— 0,25	0,22— 0,29	0,15— 0,20	0,15— 0,23	
	ЛИ	Старое обозначе- ние			1	12ХМФ	ЭП182	20ХМФБ ЭП44	9И10	815ИЄ	ЭИ415, ЭИ579	
	Марки стали	Новое обозначение			12MX	12X1MΦ	20X1M1Φ1TP	20X1M1Φ1BP	25X1MΦ	18X3MB	20X3MB Φ	

	/ Серий		I	1	ı	ľ
	g o p		I	ľ	I	1
	фос-		0,025 0,030	0,030	0,030	0,030
	Сера фод		0,025	0,025	0,025	0,025
	Ванадий	ď	1	1	0,4—	0,3—
тов, %	йидоиН	э класс	I	1.	1	
Массовая доля элементов,	мэддигоМ	2. Стали мартенситного класса	I	0,45-	ľ	ı
ая доля	Вольфрам	мартен	Ī	l	0,4-	0,6—
Массов	нетиТ	Стали	ı	1	1	1
	Никель	l	Не более 0,6	Не более 0,6	Не болев 0,6	Не более 0,6
	жодх		4,5— 6,0	5,0	4,5— 6,0	7,0— 8,5
	Марганец		He He 4,5— 100 6	е более (0,5	Не более 0,5	Не Не более 0,6
	Кремний		Не более 5 0,5	Не 6оле 0,5	0,3—	Не более 0,6
	Углерод	7	Не более 0,15	Не более 0,15	Не более 0,15	0,08— 0,15
ли	Старое обозначе- ние		X5	X5M	Х5ВФ	1Х8ВФ
Марки стали	Новое обозначение		15X5	15X5M	15X5BФ	12Х8ВФ

Примечания:

M - Mo1. Химические элементы в марках стали обозначены сле дующими буквами: В — ниобий, В — вольфрам, либден, Н — никель, Р — бор, Т — титан, Ф — ванадий, Х — хром.

Наименование марок сталей состоит из обозначения эле ментов и следующих за ними цифр. Цифры, стоящие после букв, указывают среднюю массовую долю легирующего элемента в целых единицах, кроме элементов, присутствующих в стали в малых количествах. Цифры перед буквенным обозначением указывают среднюю или максимальную (при отсутствии нижнего предела) массовую долю углерода в стали в сотых долях процента.

C. 6 FOCT 20072-74

Сталь, полученную методом электрошлакового переплава, дополнительно обозначают через тире в конце наименования марки буквой — III.

- 2. Указанное в таблице количество бора и церия химическим анализом не определяется.
- 3. Примесь меди не должна превышать 0,20%, а в стали, изготовленной скрап-процессом, не более 0,30%.
- 4. Сталь марки $25X1M\Phi$ может изготовляться с массовой долей молибдена в пределах 0.6-0.8%, в этом случае она обозначается маркой $25X1M1\Phi$ (P2).
- 5. Допускается наличие вольфрама до 0,2%, ванадия до 0,05%, титана до 0,03% (за исключением стали марки 20X1M1Ф1БР) в сталях перлитного класса, не легированных этими элементами, если иное количество этих элементов не оговорено в документации, утвержденной в установленном порядке. В стали марки 20X1М1Ф1БР титан химическим анализом не определяется.
- 6. Допускается наличие вольфрама до 0,3%, ванадия до 0,05%, молибдена до 0,2% и титана до 0,03% в сталях мартенситного класса, не легированных этими элементами, если иное количество этих элементов не оговорено в документации, утвержденной в установленном порядке.
- 7. Массовая доля серы в стали, выплавленной методом электрошлакового переплава, должно быть не более 0,015%.

Таблица 2

Наименования элементов	Верхняя предельная массовая доля элементов, %	Допускаемые отклонения, %
Углерод Кремний Марганец Хром	По табл. 1 То же → Менее 1,0 1,0—5,0	$egin{array}{c} \pm 0.01 \\ \pm 0.02 \\ \pm 0.02 \\ \pm 0.02 \\ \pm 0.05 \\ \hline \end{array}$
Молибден	Более 5,0 Менее 1,0 1,0 и более	$ \begin{array}{r} \pm 0.1 \\ \pm 0.02 \\ \pm 0.05 \end{array} $
Вольфрам	Менее 1,0 1,0	±0,05 ±0,1
Ванадий Титан Ниобий Сера Фосфор	По табл. 1 То же * * *	± 0.02 ± 0.02 ± 0.02 $+ 0.005$ $+ 0.005$
		•

2.5. Твердость горячекатаной и кованой отожженной, отпущенной или нормализованной с высоким отпуском стали, должна соответствовать нормам, указанным в табл. 3.

Таблица 3

Марки	стали		
Новое обозначение	Старое обозначени е	Диаметр отпечатка, мм. не менее	Число твердости, НВ, не более
12Х1МФ	12ХМФ	4,1	217
20Х1М1Ф1ТР	ЭП182	4,0	229
20Х1М1Ф1БР	20ХМФБР, ЭП44	4,0	229
25Х1МФ	ЭИ10	4.0	229
20Х3МВФ	ЭИ415, ЭИ579	4,0 3,7	269
15X5	X5	4,1	217
12Х8ВФ	1Х8ВФ	4,1	217
12MX 15X5M	X5M	4,1 4,1	217 217

Нормы твердости горячекатаной и кованой термически обработанной стали марки 18ХЗМВ, а также калиброванной и калиброванной шлифованной термически обработанной или нагартованной стали устанавливаются по согласованию между потребителем и изготовителем.

Твердость калиброванной термически обработанной стали марки $25X1M\Phi$ должна быть не более 255~HB (диаметр отпечатка не менее 3.8) мм.

2.6. На поверхности горячекатаных и кованых прутков, предназначенных для горячей обработки давлением и холодного волочения (подгруппы а и в), местные дефекты должны быть удалены пологой вырубкой или зачисткой, ширина которой должна быть не менее пятикратной глубины.

Глубина зачистки дефектов не должна превышать следующих величин:

- 8% размера (диаметра или толщины) для размеров св. 140 до 200 мм;
- 5% размера (диаметра или толщины) для размеров св. 40 до 140 мм;

суммы предельных отклонений — для размеров 40 мм и менее. Глубина зачистки дефектов считается от фактического размера.

На поверхности прутков допускаются без зачистки отдельные риски, отпечатки и рябизна в пределах половины суммы предельных отклонений, а также волосовины глубиной, не превышающей $^{1}/_{4}$ суммы предельных отклонений.

По соглашению между потребителем и изготовителем круглые прутки изготовляют с обточенной или ободранной поверхностью.

2.7. На поверхности горячекатаных и кованых прутков, предназначенных для холодной механической обработки (подгруппы б),

местные дефекты не допускаются, если их глубина превышает:

3/4 суммы предельных отклонений — для размеров до 80 мм; 4% размера (диаметра или толщины) — для размеров св. 80 до 150 мм;

5% размера (диаметра или толщины) — для размеров

св. 150 мм.

Глубина залегания дефектов считается от номинального размера.

2.4—2.7. (Измененная редакция, Изм. № 2).

2.8. Качество поверхности калиброванной стали должно соответствовать требованиям ГОСТ 1051—73 для группы В, калиброванной шлифованной — для групп Б и В.

2.9. Прутки и полосы должны быть ровно обрезаны. При резке на прессах, ножницах и под молотами допускаются смятые концы

и заусенцы.

По требованию потребителя заусенцы должны быть зачищены.

2.10. Горячекатаная, кованая и калиброванная сталь, предназначенная для осадки, горячей высадки и штамповки, должна быть испытана на осадку в горячем состоянии.

На осаженных образцах не должно быть надрывов и трещин. 2.11. Механические свойства стали должны соответствовать

требованиям, указанным в табл. 4.

В стали высшей категории качества ограничивается временное сопротивление разрыву: минимальное допустимое значение должно соответствовать значениям, указанным в табл. 4, а максимальное не должно быть больше минимального на 196 H/мм² (20 кгс/мм²).

Для стали марки 12X1MФ высшей категории качества временное сопротивление разрыву установить в пределах 470—640 H/мм² (48—65 кгс/мм²), а предел текучести не менее 275 H/мм²

 $(28 \text{ krc/mm}^2).$

(Измененная редакция, Изм. № 2).

2.12. Макроструктура стали должна соответствовать требова-

ниям, указанным в табл. 5.

Макроструктура не должна иметь усадочной раковины, подусадочной ликвации, рыхлоты, газовых раковин, трещин, флокенов, шлаковых включений, заворота корочки, видимых без увеличительных приборов.

2.13. По требованию потребителя сталь изготовляют:

а) с травленой поверхностью;

б) с суженными пределами по содержанию углерода противуказанных в табл. 1;

в) с нормированной чистотой стали, предназначенной для изготовления крепежных деталей, по волосовинам, выявляемым на поверхности деталей у потребителя магнитным методом, в соответствии с требованиями табл. 6.

Марки стали	али	Рекомент	Vemble D	Рекомениуемые режимы термической	эской		Механи	Механические свойства	войства	
			dgo	обработки						
Новое	Cranoe	Закалка, нормали- зация, отжиг	мали- Киг	Отпуск или старение	старение	Предел текучести б Н/мм²	Временное сопротив-	Отно- ситель- пое уд-		Ударная вязкость КСU,
обозначение	обозначение	Температура нагрева, °C	Среда охлаж-	Температура нагрева, °C	Среда	(KFC/MM ²)	(Krc/mm²) 65, %	ние 85, %	ного сече- ния Ф. %	Дж/см ² (кгс·м/см ²)
			дения		дения			не менее	енее	
12MX	1	Нормализа-	Воз-		Воздух					:
12X1MΦ	12XMΦ	910—930 Нормали-	Воз-	069—029	Воздух	235(24)	410(42)	21	45	59(6)
20XIMIФITP	ЭП182	зация 960—980	дул Масло	700—750	Вознич	255(26)	470 (48)	21	55	98(10)
20X1M1Φ15P	20ХМФБР		Масло	680—720	Dosaya	(89) 299	780 (80)	15	20	29(6)
	31144			выдержка 6 т	Воздух	(89) 599	780 (80)	14	20	(9)69
		970—990 Вариант 2 Нормали-	Воз-	O F @	Воздух	(89) 299	780 (80)	14	20	29(6)
25X1M Φ	ЭИ10	Д	Macino	700—720/6ч	Вознук					
			Масло	640660	Воздух	735 (75)	(06) 088	14	20	(9)69
18X3MB	ЭИ578	930—950	Масло	620—660	Воздух	(89) 299	780(80)	16	20	29(6)
20X3MBФ	3N415	950—970	Масло	089—099	Воздух	440 (45)	640 (65)	18	ſ	118(12)
	9И579	1030-1060		002-099		735(75)	(06)088	12	40	29(6)

Марки стали	али	ſ			2000		Механич	Механические свойства	зойства	
		Рекоменд	уемые ре обра	Рекомендуемые режимы термической обработки	Chor					
•		Закалка, нормали- зация, отжиг	мали-	Отпуск или старение	. 1	Предел текучести от, Н/мм²	Временное Отно- сопротив- ное ул- ление лине-	Отно- ситель- ное уд- лине-	тельное сужение попереч-	Ударная вязкость КСU,
новое обозначение	обозначение		Среда	Температура	Среда охлаж-	(Krc/mm²)	(Krc/MM ²)	б5, %	ного сече- ния Ф. %	(Krc·m/cm²)
		Harpesa, C	дения		дения			не менее	нее	
1585	X5	Отжиг	С пе-	lander.		165(17)	390 (40)	24	20	98(10)
15X5M 15X5B	X5M X5BФ	840—860 To же	чью То же *	1 1		215(22) 215(22)	390 (40) 390 (40)	222	200	118(12) 118(12) 98(10)
12X8B Φ	1X8BФ	*	*	1	l	(11)601	(0±)0ee	1	3	(21) 22

Примечания:

толщиной до сравнению с нормами, указанными в табл. 4. Для прутков диаметром или толщиной 151 мм и выше допускает-ся понижение относительного удлинения на 3 абс. %, относительного сужения на 10 абс. % и ударной вязкости на 90 мм включ. При испытании прутков диаметром или тол щиной свыше 90 до 150 мм допускается понижение носительного удлинения на 2 абс. %, относительного сужения на 5 абс. %, и ударной вязкости на 10 отн. % 15 отн. %. Нормы механических свойств прутков диаметром или толщиной свыше 90 мм, перекатанных или 1. Нормы механических свойств относятся к образцам, отобранным от прутков диаметром ванных на круг или квадрат размером 90 мм, должны соответствовать требованиям табл. 4

2. Вариант термической обработки и механических свойств (I или II) стали марки 25X1МФ оговаривается в за-

3. Ударная вязкость определяется по требованию потребителя.

4. Сталь марки 20X1МІФІБР (ЭП44) обрабатывается по режиму термообработки, вариант 1. В случае получения неудовлетворительных свойств металла по варианту термообработки 1 допускается до варя 1987 г. принимать металл по режиму термообработки варианта 2.

Таблица 5

		Макроструктура в	баллах, не бол	ree
Способ выплавки стали	Центральная пористость	Точечная неоднородность	Ликвацион- мый квадрат	Общая пятни- стая ликвация
Открытая вы- плавка	2	2	2	2
Метод электро- шлакового пере- плава	1	1	1	1

Примечания:

1. В стали, полученной методом электрошлакового переплава, допускается послойная кристаллизация и светлый контур не более балла 3 по ГОСТ 10243—75.

2. (Исключено, Изм. № 1).

Таблица 6

Общая площадь		во волосовин, не более	Максималь-	Суммарная пр волосовин, м	отяженность им, не более
контролируемой обработанной поверхности детали, см ²	Мета лл открытой выплавки	Металл элек- трошлакового переплава	ная длина волосовин, мм. не более	Металл открытой вы- плавки	Металл элек- трошлакового переплава
До 50 Св. 50 до 100 » 100 » 200 » 200 » 300 » 300 » 400 » 400 » 600 » 600 » 800 » 800 » 1000	2 3 4 8 8 10 10 12	1 2 2 4 4 5 5	3 3 4 5 5 6 6 7	5 8 10 20 20 40 40 50	3 5 6 10 10 24 24 24 30

Примечания:

1. На каждые последующие 200 см² контролируемой поверхности готовых деталей, площадь которых превышает 1000 см², допускается дополнительно не более одной волосовины протяженностью не более указанной для площади 1000 см², с соответствующим увеличением суммарной протяженности волосовин.

2. (Исключено, Изм. № 1).

- г) с нормированной характеристикой длительной прочности σ_{100} не менее 343 H/мм² (35 кгс/см²) при температуре 550°С для стали марки 20Х3МВФ;
- д) с нормированной величиной зерна, которая должна быть не крупнее номера 5 по ГОСТ 5639—82;
- е) с контролем на загрязненность неметаллическими включениями для стали, предназначенной для изготовления крепежных деталей:
- ж) с контролем на внутренние дефекты металла методом ультразвукового контроля (УЗК);

з) с контролем механических свойств, определяемых на образцах, отобранных от термически обработанных заготовок указанного в заказе размера, но не более 100 мм.

Примечание. Требования по подпункту a, нормы при испытании стали по подпунктам e, w, и s, а также методы контроля чистоты стали на загрязненность волосовинами и УЗК (подгруппы e и e) устанавливаются соответствующей документацией, утвержденной в установленном порядке или по соглашению между потребителем и изготовителем.

(Измененная редакция, Изм. № 2).

2.14. Рекомендации по применению, ориентировочные рабочие температуры и продолжительность работы, а также справочные характеристики ползучести и длительной жаропрочности стали приведены в рекомендуемом приложении 1 и справочном приложении 2.

3. ПРАВИЛА ПРИЕМКИ

- 3.1. Повторные правила приемки по ГОСТ 7566—81.
- 3.2. Прутки, полосы и мотки изготовляются партиями, состоящими из стали одной плавки, одного размера и одного режима термической обработки (при поставке в термически обработанном состоянии) и оформляются одним документом о качестве по ГОСТ 7566—81.

Примечание. По соглашению между потребителем и изготовителем устанавливается минимальная масса прутков, полос и мотков одной партии.

- 3.3. Для проверки качества стали от партии отбирают:
- а) для проверки качества поверхности все прутки, полосы или мотки;
- б) для проверки твердости не более 5%, но не менее пяти прутков, полос или мотков;
- в) для испытания на осадку по три прутка, полосы или мотка;
- г) для испытания на растяжение, ударную вязкость, длительную прочность по два прутка, полосы или мотка;
- д) для определения величины зерна одну пробу от плавки-ковша;
- е) для контроля макроструктуры по два прутка, полосы, мотка;
- ж) для определения неметаллических включений по шесть прутков, полос или мотков;
 - и) для химического анализа пробы по ГОСТ 7565—81.
 - 3.1—3.3. (Измененная редакция, Изм. № 2).

4. МЕТОДЫ ИСПЫТАНИЙ

4.1. От каждого контрольного прутка, полосы или мотка отбирают по одному образцу для испытания на твердость, осадку, растяжение, ударную вязкость, для определения величины зерна, длительной прочности, макроструктуры и неметаллических включений.

(Измененная редакция, Изм. № 2).

4.2. Химический анализ проводят по ГОСТ 20560—81, ГОСТ 12344—78, ГОСТ 12345—80, ГОСТ 12346—78, ГОСТ 12347—77, ГОСТ 12348—78, ГОСТ 12349—83, ГОСТ 12350—78, ГОСТ 12351—81, ГОСТ 12352—81, ГОСТ 12354—81, ГОСТ 12355—78, ГОСТ 12356—81, ГОСТ 12361—82 или другими методами, обеспечивающими необходимую точность.

(Измененная редакция, Изм. № 1).

- 4.3. Твердость по Бринеллю определяют по ГОСТ 9012—59.
- 4.4. Қачество поверхности проверяют без применения увеличительных приборов.

В случае необходимости проводят светление или травление поверхности.

- 4.5. Отбор проб для испытания на осадку прутков размером менее 80 мм проводят по ГОСТ 7564—73.
 - 4.6. Испытание на осадку проводят по ГОСТ 8817-73.

Образцы нагревают до температуры ковки и осаживают до 1/3 первоначальной высоты.

4.7. Отбор проб для определения механических свойств и длительной прочности проводят по ГОСТ 7564—73 (1 вариант).

Для профилей размером (диаметром или толщиной) более 25 мм размер сечения заготовки, подвергаемой термической обработке, должен быть 20—25 мм, для профилей размером 25 мм и менее — в поставляемом профиле.

Примечание. Для прутков и полос размером (диаметром или толщиной) более 90 мм образцы для механических испытаний (в том числе и на длительную прочность) допускается вырезать из перекованных или перекатанных круглых или квадратных заготовок размером 90 мм.

Отбор проб для испытаний механических свойств п. 2.13 «з»— по ГОСТ 7564—73 (2 вариант).

- 4.8. Испытание механических свойств и длительной прочности при высоких температурах проводят на продольных образцах, вырезанных из заготовок, термически обработанных по режиму, указанному в табл. 4.
- 4.9. Испытание на растяжение проводят по ГОСТ 1497—84 при температуре ($+20\,^{+10}_{-5}$) °C на образцах пятикратной длины диаметром 5 или 10 мм. Допускается применять неразрушающие методы контроля по согласованной методике.

C. 14 FOCT 20072-74

Испытание на ударную вязкость проводят по ГОСТ 9454—78 на образцах типа 1.

4.10. Испытание на длительную прочность при высоких температурах проводят по ГОСТ 10145—62.

4.11. Контроль макроструктуры проводят на протравленных поперечных темплетах по ГОСТ 10243—75.

Допускается применять УЗК по методике предприятия-изготовителя и другие неразрушающие методы контроля.

4.12. Определение величины зерна проводят по ГОСТ 5639—65 методом окисления или цементации.

4.13. Определение неметаллических включений проводят по ГОСТ 1778—70 (методом Ш1 или Ш4).

4.14. Сталь одной плавки, прошедшую испытание макроструктуры и механических свойств (в том числе и длительной прочности) на крупных профилях проката, при поставке в более мелких профилях перечисленным испытаниям допускается не подвергать.

5. МАРКИРОВКА, УПАКОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

5.1. Маркировка, упаковка, транспортирование и хранение — по ГОСТ 7566—81.

Упаковка калиброванной стали — по ГОСТ 1051—73.

5.2. Металлопродукция транспортируется железнодорожным транспортом на платформах и в полувагонах. Вид отправки — повагонная и мелкая.

Разд. 5. (Измененная редакция, Изм. № 2).

Рекомендации по применению стали

		геломендации по применению стали			
Маркі	Марки стали				Температура
Ново е обозначение	Старое обозначение	Назначен ие	Рекомен- дуемая температура применения	Срок работы	накала интенсивного окалинообра- зования, °C
12MX	I	Трубы пароперегревателей, трубо- проводов и коллекторных установок высокого давления, поковки для па- ровых коглов и паропроводов, дета- ли цилиндров газовых турбин	510	Весьма длительный	570
12X1MΦ	12ХМФ	То же	570—585	Тоже	009
20XIMIФITP	3M182	Крепежные детали турбин и флан- цевых соединений паропроводов и аппаратуры	500—580	ı	1
20X1M1Φ15P	20ХМФБР, ЭП44	То же	500—580	- 1	1
25X1MΦ	ЭИ10	Болты, плоские пружины, шпиль- ки и другие крепежные детали	510	Весьма длительный	009
18X3MB	ЭИ578	Трубы для гидрогенизационных установок	450—500	Длитель- ный	009
•	•				

Марки стали	стали				
Новое обозначение	Старое	Назначение	Рекомен- дуемая температура применения	Срок работы	Температура накала интенсивного окалинообра- зования, °C
20Х3МВФ	9H415, 9H579	Роторы, диски, поковки, болты. Трубы высокого давления для хими- ческой аппаратуры и гидрогениза- ционных установок	500—560	Длитель- ный	009
	X5	Трубы, детали насосов, лопатки турбомашин, подвески котлов	009	i .	650
5X5 M , 5X5 B Φ	Х5М , Х5ВФ	Для корпусов и внутренних элементов аппаратуры нефтеперерабатывающих заводов и крегинговых труб, детали насосов, задвижки, крепеж	009	Весьма длительный	650
12Х8ВФ	1Х8ВФ	Трубы печей, аппаратов и комму- никаций нефтезаводов	500	Длитель- ный	650

Примечание. Под длительным сроком работы условно понимают время службы детали от 1000 до 10000 ч. (в отдельных случаях до 20000 ч.), под весьма длительным сроком работы — время значительно более 10000 ч. (обычно от 50000 до 100000 ч.).

Характеристики ползучести и длительной жаропрочности легированной и высоколегированной стали, применяемой для длительных сроков службы под напряжением

				The second second						
Марки стали	зли	Рекомендуе	Mble pex	Рекомендуемые режимы термической	йo		Предел длительной проч-	льной проч-	Предел ползучести, соответствующий 1%	лзучести, ующий 1%
	-		обработки	отки		;	ности (неразрушающее напряжение), Н/мм²	е), Н/мм ²	общей деформации, Н/мм² (кгс/мм²), за	рормации, c/мм²), за
						o _e C	(кгс/мм²), за время, ч	а время, ч	время,	Я, ц
Новое	Старое	закалка (нормали- зация)	мали-	Отпуск (старение)	ение)	туть , вин	00001	000001	00001	000001
обозначение	ние	Томпература	Среда		Среда	ипер Втіді	10000	10000	10001	100001
		нагрева, °С	охлаж- дения	нагрева, °С	охлаж- дения	иэТ пэн		не менее	ee	
12MX	-	920	Воз-	069-089	Воз-	480	245(25,0) 157(16,0)	196(20,0) $118(12,0)$	$ \begin{array}{c c} 216(22,0) & 147(15,0) \\$	147 (15,0) $69 (7,0)$
12X1 M Φ	12ХМФ	086096	Воз-	740—760	Воз-	540 520 560	108 (11,0) 196 (20,0) 137 (14,0)	69 (7,0) 157 (16,0) 106 (10,8)	177 (18,0) 116 (11,8)	34(3,5) $127(13,0)$ $82(8,4)$ $61(6,9)$
25X1MΦ	эи10	880—900	мас-	640—660	Вода	200	255—284 (26,0—29,0)	(9,0-10,0)	(0,6)00	78(8,0)
20XIMIФITP	ЭП182	066—026	Мас- ло	680—720	Воз-	550 500 500	98—147 (10,0—15,0) 471(48) 382(39)	441 (45) 324 (33)	88 (9,0)	29(3,0)
20XIMIФITP	ЭП182	970—990	Мас-	680—720	Воз-	280 280	224 (55) 284 (29) 265 (27)	245 (25) 196 (20)	1 1 1	ΙŢΊ
20X1M1Φ1BP	ЭП44	06—026	Мас	680—720 выдержка 6 ч	Воз-	450 500 525	481 (49) 343 (35) 304 (31)	392 (40) 294 (30) 260 (26,5)	111	111
				1						

										2000
Марки стали	али	Рекомендуе	мые реж	Рекомендуемые режимы термической	ro#		Препел плительной проч-	-нод прои-	Предел ползучести,	лзучести,
			обработки	отки			ности (неразрушающее напряжение). Н/мм²	зрушающее в) Н/мм²	соответствующий 1% общей деформации,	ующий 1% рормации,
	(Закалка (нормали-	мали-	Councagno, vount	1	ာ。 ၁၈	(кгс/мм²), за время,	а время, ч	H/MM² (Krc/M Bpemя,	с/мм²), за я, ч
Новое обозначение	Старое обозначе-	зация)		Cinyen (ciap		Гұты Вин				
	ние	Температура	Среда	Температура	Среда	ипер	10000	100000	10000	100000
		li li	дения			тет 19и		не менее	ee	
20X1M1Φ15P	ЭП44	066026	Мас- ло	680—720 выдержка	Воз-	550	270 (27,5) 255 (26)	230 (23,5) 216 (22)		
18X3MB	9И578	890—910	Мас- ло	089—099 h G	Воз-	200 200 500	235(24) 	196(20)	$\frac{226(23,0)}{118(12,0)}$	157 (16,0)
20X3MB Φ	ЭИ415 ЭИ579	1030—1080	Мас-	002099	Воз-	550 550 550	333 (34,0) 196 (20,0)	294(30,0) 157(16,0)	74(7,5) 177(18,0) 127(13,0)	$\frac{147(15,0)}{98(10,0)}$
15X5M	X5M	086026	Bo3.	840—\$80	Воз-	280 480 540	137 (14,0) 177 (18,0) 98 (10,0)	98(10,0) $147(15,0)$	$\frac{103(10,5)}{65(65)}$	49(5,0) 69(7,0)
15Х5ВФ	Х5ВФ	l	1	Отжиг 850—870	СС	500 550	118(12,0) 87(8,9)	90 (9,2) 69 (7,0)	83 (8,5) 49 (5,0)	59(5,0) 37(3,8)
					до 700°С	009	64(6,5)	51 (5,2)	37 (3,8)	27 (2,8)

Примечание. Знак «--» в графах означает отсутствие статистических данных. (Измененная редакция, Изм. № 2).