Probabilistic Topic Models: Expectation-Maximization Algorithm

ChengXiang "Cheng" Zhai
Department of Computer Science
University of Illinois at Urbana-Champaign

Probabilistic Topic Models: Expectation-Maximization (EM) Algorithm

Estimation of One Topic: $P(w \mid \theta_d)$

How to set θ_d to maximize p(d| Λ)? (all other parameters are known)

d

... text mining... is... clustering... we.... Text.. the

If we know which word is from which distribution...

Given all the parameters, infer the distribution a word is from...

The Expectation-Maximization (EM) Algorithm

Initialize $p(w|\theta_d)$ with random values.

Then iteratively improve it using E-step & M-step.

Stop when likelihood doesn't change.

$$p^{(n)}(z=0 \mid w) = \frac{p(\theta_d)p^{(n)}(w \mid \theta_d)}{p(\theta_d)p^{(n)}(w \mid \theta_d) + p(\theta_B)p(w \mid \theta_B)} \quad \text{E-step}$$

$$\text{How likely w is from } \theta_d \quad \text{Possible for the possible po$$

EM Computation in Action

$$\text{E-step} \ p^{(n)}(z=0 \,|\, w) = \frac{p(\theta_{d})p^{(n)}(w \,|\, \theta_{d})}{p(\theta_{d})p^{(n)}(w \,|\, \theta_{d}) + p(\theta_{B})p(w \,|\, \theta_{B})}$$

$$\text{M-step} \quad p^{(n+1)}(w \mid \theta_d) = \frac{c(w,d)p^{(n)}(z=0 \mid w)}{\sum_{w' \in V} c(w',d)p^{(n)}(z=0 \mid w')} \quad \begin{array}{l} \text{Assume} \\ p(\theta_d) = p(\theta_B) = 0.5 \\ \text{and } p(w \mid \theta_B) \text{ is known} \end{array}$$

Word	#	$p(w \theta_B)$	Iteration 1		Iteration 2		Iteration 3	
			$P(w \theta)$	p(z=0 w)	$P(w \theta)$	P(z=0 w)	$P(w \theta)$	P(z=0 w)
The	4	0.5	0.25	0.33	0.20	0.29	0.18	0.26
Paper	2	0.3	0.25	0.45	0.14	0.32	0.10	0.25
Text	4	0.1	0.25	0.71	0.44	0.81	0.50	0.93
Mining	2	0.1	0.25	0.71	0.22	0.69	0.22	0.69
Log-Likelihood			-16.96		-16.13		-16.02	

Likelihood increasing 作本作的是(~1)···· 6~9~0.

"By products": Are they also useful? ¬

EM As Hill-Climbing → Converge to Local Maximum

Summary

- Expectation-Maximization (EM) algorithm
 - General algorithm for computing ML estimate of mixture models
 - Hill-climbing, so can only converge to a local maximum (depending on initial points) 美子格子及
- M-step: exploit the "augmented data" to improve estimate of parameters ("improve" is guaranteed in terms of likelihood)
- "Data augmentation" is probabilistic → Split counts of events probabilistically

9