SEMESTER 6

ELECTRONICS & COMMUNICATION ENGINEERING

SEMESTER S6
ADVANCED COMMUNICATION THEORY

Course Code	PCECT 601	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	ADC (PCECT 502)	Course Type	Theory

Course Objectives:

- 1. To impart basics of information theory introducing both source coding and channel coding.
- 2. To impart the basic concepts of wireless communication system.

Module	Syllabus Description			
No.				
	Entropy: Entropy, Properties of Entropy, Joint and Conditional			
	Entropy, Mutual Information, Properties of Mutual Information			
	Discrete memoryless sources, Source code, Average length of source			
	code, Bounds on average length, uniquely decodable and prefix-free			
1	source codes. Kraft Inequality (with proof)			
1	Shannon's source coding theorem (both achievability and converse),	11		
	Huffman code, operational meaning of entropy.			
	Channel capacity, Capacity of discrete memoryless channels, Binary			
	symmetric channels (BSC), Binary Erasure channels (BEC). Capacity			
	of BSC and BEC, Shannon's channel coding theorem			
	Channel Capacity of AWGN Channel: Differential entropy,			
	Differential Entropy of Gaussian random variable, Shannon-Hartley			
2	theorem (with proof), Shannon limit			
	Block codes: Error detecting and correcting capability. Linear block	11		
	codes. Generator and parity-check matrix. (Systematic form only).			
	Encoding circuit, Maximum likelihood decoding of linear block codes.			

	Bounded distance decoding. Syndrome, Standard array decoding.	
	Convolutional Codes. State diagram. Trellis diagram. Maximum	
	likelihood decoding. Viterbi algorithm.	
	Introduction to Wireless Communication: - Introduction, Evolution,	
	Paging. Wireless LAN, Bluetooth, Zig-Bee and Personal Area	
	networks. Broadband Wireless Access-WiMax Technology. Wireless	
	Spectrum allocation, Standards.	
	Cellular System Design Fundamentals: Frequency Reuse, channel	
3	assignment strategies, Handoff strategies, Interference and system	11
	capacity, trunking and grade off service, improving coverage and	
	capacity – cell splitting, sectoring, microcells	
	Introduction to Multiple Access techniques: FDMA, TDMA, Code-	
	Division Multiple Access (CDMA), Orthogonal Frequency-Division	
	Multiple Access (OFDMA)	
	Path loss and shadowing: Free space path loss, Two-Ray model,	
	Shadowing	
	Statistical Multipath Channel Models: Time-varying channel impulse	
	response (Analysis not required) , Narrowband fading, Wideband	
	fading models, Delay spread and Coherence bandwidth, Doppler	
	spread and Coherence time, Flat fading versus frequency selective	
	fading, Slow fading versus fast fading	
4	Multi-carrier Modulation: Data transmission using multicarrier	11
	modulation for frequency-selective fading channels, overlapping	11
	subchannels, Mitigation of Subcarrier Fading, Discrete	
	Implementation of multicarrier – OFDM	
	Diversity: Receiver diversity – selection combining and maximal ratio	
	combining. Transmitter diversity – Alamouti scheme for 2x2 MIMO.	
	Equalization: Equalization – Linear and non-linear equalization,	
	MMSE equalizers.	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain information theory measures such as entropy, conditional entropy, mutual information	К2
CO2	Apply source coding theorem for data compression.	К3
CO3	Apply channel coding for error detection and correction	К3
CO4	Explain the basic Principle of wireless communication techniques	K2
CO5	Describe the wireless channel models and analyse the performance of the modulation techniques for flat fading channels	К2
CO6	Identify the advantages of various diversity and equalization techniques for improving the wireless receiver performance.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping od Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2									2
CO2	3	2	2									2
CO3	3	2	2									2
CO4	3	2	2									2
CO5	3	2	2									2
CO6	3	2	2									2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Wireless Communications	Andrea Goldsmith	Cambridge University Press	1/e, 2005		
2	Wireless communication: Principles and Practice	Theodore S. Rappaport	Pearson Education	2/e, 2022		
3	Elements of Information Theory	Joy A Thomas, Thomas M Cover	Wiley-Interscience	2/e 2006		
4	Communication Systems	Simon Haykin	John Wiley and Sons Inc	4e, 2020		

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Fundamentals of Wireless Communication	David Tse and Pramod Viswanath	Cambridge University Press	1st Edition 2005		
2	Mobile Communications	Jochen Schiller	Pearson	2nd Edition 2008		
3	Wireless Communications	Andreas F Molish	Wiley India Publications	2nd Edition 2013		
4	Principles of Mobile Communication	Gordon L. Stuber	Springer	4th Edition 2017		
5	Error Control Coding: Fundamentals and Applications	Shu Lin & Daniel J. Costello. Jr.	Prentice Hall Inc	2nd Edition 2011		
6	Digital Communication Systems, An Indian Adaptation	Simon Haykin	Wiley India	1/e. 2021		

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://nptel.ac.in/courses/117101053						
2	https://nptel.ac.in/courses/117101053						
3	https://onlinecourses.nptel.ac.in/noc21_ee66/preview						
4	https://onlinecourses.nptel.ac.in/noc21_ee66/preview						

MICROWAVES & ANTENNAS

Course Code	PCECT602	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Electromagnetics (PCECT501)	Course Type	Theory

Course Objectives:

- 1. To gain knowledge on the basic parameters, types and design of antennas
- **2.** To gain an insight into the principles of operations of microwave sources, hybrid circuits and semiconductor devices.

No.	Syllabus Description				
Microwaves	: Electromagnetic spectrum, Frequency Bands, Features of				
microwaves	advantages & disadvantages, Applications, Atmospheric				
propagation	effects.				
Cavity Res	onator: TE and TM modes in waveguides (Review only)-				
Rectangular	Cavity Resonator- Resonance frequency, Q factor, Excitation				
and Tuning,	Re-entrant cavity.				
1 Microwave	Hybrid Circuits: E plane Tee, H plane Tee, Hybrid Tee, Hybrid				
Ring, Two-	hole directional coupler, Isolator, Circulator, Phase shifter,	9			
Attenuator					
Scattering 1	parameters: Properties of S matrix, S matrix formulation of E				
plane Tee, H	plane Tee, Magic Tee, Directional coupler.				
Microwave	Semiconductor Devices: Principle of operation of Tunnel				
diode, Gunn	diode- Different modes.				
Microwavo	e tubes: Types, Structure and Principles of operation of				
Two Cavity	Klystron- Velocity Modulation, Bunching	9			

	Reflex Klystron- Velocity Modulation, Power output and efficiency	
	Traveling Wave Tube Amplifier- Slow wave structures, Helix TWT	
	amplification process.	
	Magnetron Oscillator- Cylindrical magnetron, Cyclotron angular	
	frequency,	
	Microwave measurements: Measurement of Power, VSWR, frequency,	
	wavelength, insertion loss, impedance and attenuation; Basic concept of	
	Network Analyzer and Anechoic chamber	
	Antennas: Definition, Radiation mechanism, Polarisation, Types,	
	Applications	
	Basic antenna parameters: Radiation Pattern, Radiation Power Density,	
	Radiation Intensity, Radiation resistance, Beamwidth, Directivity, Antenna	
	Efficiency, Gain, Beam Efficiency, Bandwidth, Input Impedance, Antenna	
3	Radiation Efficiency, Effective aperture area, Effective height, Antenna	9
	noise temperature	
	Reciprocity theorem, Helmholtz theorem, Duality Theorem (No proof	
	required)	
	Field, directivity and radiation resistance of a short dipole and half wave	
	dipole (far field derivation).	
	Antenna arrays: Field of two isotropic point sources, Principle of pattern	
	multiplication, Array factor, Linear arrays of 'n' isotropic point sources	
	with equal amplitude, Grating lobes, Design of Broadside and End fire	
	arrays, Phased array principle, Adaptive antenna array principle.	
	Broad band antennas : Log periodic antenna array – Principle and design	
	equations	
4	Helical antenna: Design equations, modes	
•	Micro strip Rectangular Patch Antennas -Design equations, important	9
	feeding methods.	
	Horn antenna- Types, principles, expressions for E, H and gain (no	
	derivation required)	
	Parabolic dish antenna -Principle, Cassegrain feed, expression for E, H and	
	Gain without derivation,	
	Mobile phone antenna – Inverted F antenna.	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0
carrying 3 marks	Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the basic mechanism of operation of cavity resonator and microwave sources	K2
CO2	Apply the S parameter theory to obtain the S matrices of various microwave hybrid circuits	К3
CO3	Illustrate the basic concepts of antenna radiation antenna parameters and their measurement techniques	К2
CO4	Design important broadband antennas and arrays	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping od Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											2
CO2	3	3	3	2	2							2
CO3	3			2	2	1						2
CO4	3	3	3	2	2	1						2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books								
Sl. No	Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year					
1	Microwave Engineering,	Annapurna Das and Sisir K Das	McGraw Hill	4 th edition					
2	Microwave Devices & Circuits,	Samuel Y Liao,	Pearson Education	3 rd edition					
3	Antennas for all Applications,	John D. Krauss,Marhefka,Khan	Tata McGraw Hill	4 th edition					
4	Antennas and Wave Propagation	G S N Raju	Pearson Education	3 rd edition					

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Electromagnetic Waves and Radiating Systems	Jordan and Balmain, E	Pearson Education	2 nd edition				
2	Concepts & Applications of Microwave Engineering	Sanjay Kumar Saurabh Shukla	PHI	2014				
3	Microwave Engineering	R.S.Rao	PHI	2nd edition 2015				
4	Antennas and Wave Propagation	R L yadava	PHI	2 nd edition				
5	Microwave Engineering: Fundamentals, Design and Applications	Subal Kar	Universities press	2022				

	Video Links (NPTEL, SWAYAM)							
Module No.	Link ID							
1	https://youtu.be/I2OxOOmE0h8							
2	https://youtu.be/NW1NXoM4q5c							
3	https://youtu.be/h51mFbIgZRI							
4	https://youtu.be/t-AP3ya8Pao							

COMPUTER NETWORKS

Course Code	PEECT 631	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None/ (Course code)	Course Type	Theory

Course Objectives:

1. The course aims to expose students to computer networks taking a top-down approach of viewing from the layer of user applications and zooming into link layer protocols. The principles of various protocols used in every layer are studied in detail.

Module No.	Syllabus Description					
1	Introduction to Computer Networks Components of computer networks. Transmission modes in computer communication. Switching: circuit switching and packet switching. Performance analysis of packet switched network: Throughput analysis, Delay and loss in packet-switched networks, Types of delay, Packet loss. Introduction to Queueing models in computer networks. Littles theorem. Networks: Network criteria, physical structures, network models, categories of networks, Interconnection of Networks. Layered Architecture: Protocol layering, Internet protocol stack. TCP/IP protocol suite.	9				
2	Application Layer: Communication between processes, Web application: HTTP, Message format, Email application: SMTP, Message format, MIME, POP3, Domain Name System (DNS).	9				

Transport Layer connectionless and connection-oriented protocols. UDP-	
Protocols for reliable data transfer: ARQ protocols, stop-and-wait protocol,	
alternating-bit protocol, Go-back- N, Selective Repeat. TCP Connection,	
segment structure, RTT estimate, Flow control.	
Congestion control mechanisms and Quality of service.	
Network Layer: Datagram versus virtual-circuit network service, Router	
architecture, Routing and Forwarding, Static routing and Dynamic routing.	
Address Resolution protocols (ARP, RARP)	
Subnetting, Classless Routing(CIDR), ICMP.	
IPv4: Datagram format, Fragmentation and reassembly, addressing, address assignment – manual and DHCP. IPv6- Datagram format, Transitioning from IPv4 to IPv6, IP security.	10
Routing Algorithms Link-State (Dijkstra's) Algorithm, Distance vector algorithm. Routing in Internet – RIP, OSPF, BGP.	
Link Layer Services of link layer, Error detection and correction – checksum, CRC.	
Multiple access protocols – Channel partitioning, random access. ALOHA – pure and slotted, efficiency, CSMA, CSMA/CA, CSMA/CD. Link layer addressing: MAC address, Ethernet. Wireless Networks IEEE 802.11 wireless LAN.	8
Physical Layer: Guided and unguided transmission media	
(Co-axial cable, UTP, STP, Fiber optic cable)	
	Protocols for reliable data transfer: ARQ protocols, stop-and-wait protocol, alternating-bit protocol, Go-back- N, Selective Repeat. TCP Connection, segment structure, RTT estimate, Flow control. Congestion Control General approaches. TCP congestion control. Congestion control mechanisms and Quality of service. Network Layer: Datagram versus virtual-circuit network service, Router architecture, Routing and Forwarding, Static routing and Dynamic routing. Address Resolution protocols (ARP, RARP) Subnetting, Classless Routing(CIDR), ICMP. IPv4: Datagram format, Fragmentation and reassembly, addressing, address assignment – manual and DHCP. IPv6- Datagram format, Transitioning from IPv4 to IPv6, IP security. Routing Algorithms Link-State (Dijkstra's) Algorithm, Distance vector algorithm. Routing in Internet – RIP, OSPF, BGP. Link Layer Services of link layer, Error detection and correction – checksum, CRC. Multiple access protocols – Channel partitioning, random access. ALOHA – pure and slotted, efficiency, CSMA, CSMA/CA, CSMA/CD. Link layer addressing: MAC address, Ethernet. Wireless Networks IEEE 802.11 wireless LAN. Physical Layer: Guided and unguided transmission media

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome		
CO1	Summarize the principles and components of computer networks, switching, basic concepts of delay analysis and the layered network architecture.	K2	
CO2	Demonstrate protocols and the functions of different layers.	K2	
CO3	Analyse the concept of routing and addressing protocols in the context of computer networking.	К3	
CO4	Make use of different physical communication standards in computer networks.	К3	

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3					-	-	-	-	-	-	2
CO2	3					-	-	-	-	-	-	2
CO3	3	2	2	2	2	-	-	-	-	-		3
CO4	3	2	2	2	2	-	-	_	-	-	-	3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Computer Networking: A Top- Down Approach Featuring the Internet.	James F. Kurose, Keith W. Ross,	Pearson	Sixth Edition, 2017		
2	Data Communications and Networking	Behrouz A Forouzan	Tata McGraw-Hill	Fourth Edition , 2008		

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Computer Networks – A Systems Approach,	Larry L. Peterson, Bruce S. Davie,	Elsevier,	2012		
2	Communication Networking – An Analytical Approach,	A. Kumar, D. Manjunath, J. Kuri,	Morgan Kauffman Series	2004		
3	Computer Networks	A. S. Tanenbaum, D. J. Wetherall	Pearson	Fifth		
4	Data Networks	D. Bertsekas, RG Gallager	Pearson	2nd		

	Video Links (NPTEL, SWAYAM)					
Module	Link ID					
No.						
1	https://onlinecourses.nptel.ac.in/noc22_cs19/preview					
2	https://archive.nptel.ac.in/courses/106/105/106105183/					
3	https://onlinecourses.swayam2.ac.in/cec21_cs04/preview					

DIGITAL IMAGE PROCESSING

Course Code	PEECT 632	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None/ (Course code)	Course Type	Theory

Course Objectives:

- 1. To introduce the fundamental concepts of Digital Image Processing and study the various transforms required for image processing.
- 2. To study spatial and frequency domain image enhancement and image restoration methods.
- 3. To understand image compression and segmentation techniques.,

Module No.	Syllabus Description		
1	Digital Image Fundamentals: Image representation, Types of images, Elements of DIP system, Basic relationship between pixels, Distance Measures, Simple image formation model. Brightness, contrast, hue, saturation, Mach band effect. Colour image fundamentals-RGB, CMY, HIS models, 2D sampling and quantization.	9	
2	2D Image transforms: DFT, Properties, Walsh transform, Hadamard transform, Haar transform, DCT, KL transform and Singular Value Decomposition. Image Compression: Image compression model, Lossy, lossless compression, Concept of transform coding, JPEG Image compression standard.	9	
3	Image Enhancement: Spatial domain methods: Basic Gray Level Transformations, Histogram Processing, Enhancement Using Arithmetic/Logic Operations, Basics of Spatial Filtering, Smoothing spatial Filters, Sharpening spatial Filters.	9	

	Frequency domain methods: low pass filtering, high pass filtering, homomorphic filtering.	
4	Image Restoration: Degradation model, Inverse filtering- removal of blur caused by uniform linear motion, Minimum Mean Square Error (Wiener) Filtering. Image segmentation: Region based approach, clustering, Segmentation based on thresholding, edge based segmentation, Hough Transform.	9

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	Each question can have a maximum of 3 sub	00
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain different components of image processing system	K2
CO2	Analyse the various concepts and mathematical transforms necessary for image processing	К3
CO3	Illustrate the various schemes of image compression	К3
CO4	Analyze the filtering and restoration of images	К3
CO5	Describe the basic image segmentation techniques	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3		1							2
CO2	3	3	3		1							2
CO3	3	3	3		1							2
CO4	3	3	3		1							2
CO5	3	3	3		1							2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Digital Image Processing	Gonzalez Rafel C	PEARSON	4TH					
2	Digital Image Processing	S Jayaraman, S Esakkirajan, T Veerakumar	McGraw Hill	Ist					

	Reference Books								
Sl. No	Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year					
1	Digital Image Processing	Kenneth R Castleman	Pearson Education	2/e,2003					
2	Fundamentals of digital image processing	Anil K Jain	РНІ	1988					
3	Digital Image Processing	Pratt William K	John Wiley	4/e,2007					

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://onlinecourses.nptel.ac.in/noc24_ee133/preview						
2	https://nptel.ac.in/courses/117105135						
3	https://www.youtube.com/watch?v=KiJo4-IijL4						
4	https://archive.nptel.ac.in/courses/117/105/117105135/						

SECURE COMMUNICATION

Course Code	PEECT 633	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hr. 30 Min.
Prerequisites (if any)	None/ (Course code)	Course Type	Theory

Course Objectives:

- 1. Understand and discuss the fundamental concepts of encryption
- 2. Provide insight into different types of encryption standards
- 3. Understand basic concepts of Cryptography

Module	Syllabus Description	Contact					
No.	Synabus Description						
	Introduction and Classic Encryption Techniques:-OSI security architecture,						
	Security attacks - Passive attacks, Active attacks, Security services-						
	Authentication, Access Control, Data Confidentiality, Data integrity,						
	Nonrepudiation, Availability service. Model for network security.						
1	Symmetric cipher model, Cryptography, Substitution techniques- Hill						
	Cipher, Transposition Techniques.	9					
	Finite Fields: -Groups, Rings and Fields, Modular arithmetic, Euclidian						
	algorithm, Finite Fields of the form GF(p), Polynomial arithmetic						
	Block Ciphers: - Data Encryption Standard, Block Cipher Principles -						
	Stream Ciphers and Block Ciphers, Feistel Cipher, Feistel Decryption						
2	algorithm, The Data encryption standard, DES Decryption, The AES Cipher,	9					
	substitute bytes transformation, Shift row transformation, Mix Column						
	transformation.						
	Public Key Cryptography: -RSA and Key Management, Principles of public						
3	key cryptosystems-Public key cryptosystems, Application for Public key						
İ	cryptosystem requirements, Fermat's theorem, Euler's Totient Function,						

	Euler's theorem, RSA algorithm, Key management, Distribution of public					
	keys, Publicly available directory, Public key authority, public key					
	certificates, Distribution of secret keys using public key cryptography.					
	Message Authentication and Hash Function: - Authentication requirements,					
4	Authentication functions- Message Encryption, Public Key Encryption,	9				
	Message Authentication Code, Hash function					

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain network security services and mechanisms and the types of attacks they are designed for and apply the concepts of modular arithmetic, Euclidean algorithm, polynomial arithmetic.	К3
CO2	Illustrate the principles of modern symmetric ciphers like Data Encryption Standard and Advanced Encryption Standard.	К3
СОЗ	Outline the concepts of public key cryptography, RSA algorithm, key distribution, and management for public key systems.	K2
CO4	Explain the requirements for authentication and the types of functions used to produce an authenticator	К2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										2
CO2	3	3										2
CO3	3	3										2
CO4	3	3										2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Cryptography and Network security: principles and practice	William Stallings	Prentice Hall of India	4 th Edition, 2006						

	Reference Books				
Sl. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year	
1	Cryptography and Network security	Behrouz A. Forouzan	Tata McGraw-Hill	2008	
2	Abstract Algebra	David S. Dummit & Richard M Foote	Wiley India Pvt. Ltd	2 nd Edition, 2008.	
3	Cryptography, Theory and Practice	Douglas A. Stinson,	Chapman & Hall CRC Press Company	2 nd Edition, 2005.	
4	Elliptic Curves: Theory and Cryptography	Lawrence C. Washington	Chapman & Hall, CRCPress Company, Washington	2008	
5	A course in Number theory and Cryptography	N. Koeblitz		2008	
6	Elementary Number Theory with Applications	Thomas Koshy	Academic Press	2 nd Edition, 2007	
7	Cryptography and network security	Tyagi and Yadav	Dhanpat Rai & Co	2012	

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	1 https://onlinecourses.nptel.ac.in/noc21_cs91/preview				
2	https://nptel.ac.in/courses/108102117				
3	https://onlinecourses.nptel.ac.in/noc22_cs90/preview				

NANOELECTRONICS

Course Code	РЕЕСТ634	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None/ (Course code)	Course Type	Theory

Course Objectives:

- 1. To understand the challenges of scaling of devices to Nano-meter scales
- 2. To design novel transistor devices to reduce the short channel effects and to improve the performance
- **3.** To understand the Nano-scale quantum transport in Nano electronic devices from atom to transistor
- 4. To apply quantum mechanics in materials and quantum devices

Module	Syllabus Description	Contact
No.	System as Description	
	Introduction to Nano electronics-Review of MOSFETs- Band diagram-	
	operation-threshold voltage- current-MOSFET parameters.	
	Challenges going to sub-100 nm MOSFETs- Technological and physical	
	limits of Nano electronic systems, characteristic lengths	
	Scaling and short channel effects-Channel length, Oxide layer thickness,	
1	tunneling, power density, non-uniform dopant concentration, threshold	
	voltage scaling, hot electron effects, sub threshold current, velocity	9
	saturation, DIBL, channel length modulation.	
	High-K gate dielectrics- Effective oxide thickness, Effects of high-K gate	
	dielectrics on MOSFET performance	
	(Text books 1,2,3)	
2	Novel MOS Devices and Performance Optimization	
2	Silicon-on-insulator devicesFD SOI, PD SOI	

	Multiple gate MOSFETsDouble gate MOSFETs, FinFETs, Nanowires-	9
	Multi gate MOSFET physics-natural length and short channel effects.	
	Multi Gate MOSFET performance optimization: Fins, Fin Width, Fin	
	Height and Fin Pitch, Fin Surface Crystal Orientation, Fins on Bulk Silicon,	
	Nano-wires. Gate Stack, Gate Patterning, Threshold Voltage and Gate Work	
	function requirements, Poly silicon Gate, Metal Gate, Tunable Work	
	function metal gate, Mobility and Strain Engineering, Nitride Stress Liners,	
	Embedded SiGe and SiC Source and Drain, Local Strain from Gate	
	Electrode, Substrate Strain, Strained Silicon on Insulator.	
	(Text books 1,4)	
	Quantum Transport	
	Atomistic view of electrical Resistance-Energy level diagram- What makes	
	electrons flow- The quantum of conductance - Potential profile- Coulomb	
	blockade - Towards Ohm's law	
	Schrodinger equation- Method of finite differences – Examples (particle in	
	a box only)	
3	Band structure - 1-D examples- General result with basis- 2-D example	9
	Sub bands - Quantum wells, wires, dots, graphene and "carbon nanotubes"	
	Density of states-Minimum resistance of a wire	
	Ballistic to Diffusive Transport-Landauer formula, Landauer-Buttiker	
	formula. Ballistic and Diffusive transport – transmission.	
	(Text books 3,5,6. Use MATLAB codes in the text book "Quantum transport	
	atom to transistor" to illustrate the concepts)	
	Applications of Quantum mechanics and Quantum devices	
	Tunneling and applications of quantum mechanics- solution of	
	Schrodinger equation: Free space, Potential well, tunneling through a	
	potential barrier. Potential energy profiles for material interfaces,	
	Applications of tunneling.	
4	Hetero junctions -Modulation-doped hetero junctions- SiGe strained hetero	
•	structures- MODFET- Resonant tunnelling-Resonant tunnelling transistor	9
	Single electron devices -Coulomb blockade in a Nano capacitor, tunnel	
	junctions, Double tunnel junctionCoulomb staircase, Single electron	
	transistor.	
	Spintronics -Transport of spin, GMR-TMR, applications, Spin Transistor	
	(Text books 3,6)	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Describe the challenges of scaling of electron devices to Nano meter scales	K2
CO2	Design novel transistor devices to reduce the short channel effects and improve performance	К3
CO3	Outline the Nano scale quantum transport in Nano electronic devices from atom to transistor	К2
CO4	Apply quantum mechanics in materials and quantum devices	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2									3
CO2	3	3	3									3
CO3	3	3	2									3
CO4	3	3	3									3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books			
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Fundamentals of Modern VLSI Devices	Yuan Taur, Tak H Ning	Cambridge University Press,	Second edition 2009
2	Nanoelectronics and Nanosystems	Karl Goser· Peter GlÖsekötter· Jan Dienstuhl	Springer-Verlag Berlin Heide1berg	First Edition, 2004
3	Nanotechnology for microelectronics and optoelectronics,	J M Martinez Duart, R J Martin Palma, F Agullo Rueda	Elsevier,	First Edition,
4	FinFETs and Other multigate Transistors	J-P Colinge	Springer	First Edition, 2008
5	Quantum Transport Atom to Transistor	Supriyo Datta	Cambridge University Press	First Edition, 2005
6	Fundamentals of nano electronics,	George W.Hanson,	Pearson Education.	First Edition 2009

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Fundamentals of Carrier Transport	Mark Lundstrom	Cambridge University Press	Second Edition, 2000
2	High Dielectric Constant materials VLSI MOSFET Applications,	H R Huff, D C Gilmer,	Springer	First Edition, 2004
3	Nanoelectronics and nanosystems From Transistors to Molecular and Quantum Devices	Karl Goser· Peter GlÖsekötter· Jan Dienstuhl	Springer	First Edition, 2004
4	NANOSCALE TRANSISTORS Device Physics, Modeling and Simulation	Mark S. Lundstrom, Jing Guo	Springer	First Edition, 2006
5	Fundamentals of Ultra-Thin-Body MOSFETs and FinFETs	Jerry G. Fossum, Vishal P. Trivedi	Cambridge University Press	First Edition, 2013
6	Introduction to Nanotechnology	Charles P Poole jr. Frank J Owens	John Wiley and Sons	First Edition, 2003
7	Introduction to Quantum Mechanics	David J Griffiths, Darrel F schroetter	Cambridge University Press	Third Edition, 2018

	Video Links (NPTEL, SWAYAM)			
Module No.	Link ID			
1	https://nptel.ac.in/courses/117108047, https://nanohub.org/resources/5328			
2	https://nptel.ac.in/courses/117108047			
3	https://nptel.ac.in/courses/117107149, https://nanohub.org/resources/8086,, https://nanohub.org/courses/FON1, https://nanohub.org/resources/5306			
4	https://nptel.ac.in/courses/117107149, https://nanohub.org/resources/8086			

SEMESTER S6 OPTICAL COMMUNICATION

Course Code	PEECT636	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PHYSICS	Course Type	Theory

Course Objectives:

- 1. To introduce the concepts of light transmission through optical fibers
- 2. To introduce the working of optical components and its usage in optical communication systems

Module	Syllabus Description	Contact
No.	Syllabus Description	
	Optical fiber Communications: Structure of Optical fiber, materials,	
	General block diagram of optical communication system, Advantages.	
	Optical fiber waveguides: Principle of light guidance, Numerical Aperture,	
1	V number, Step and Graded index fibers, Single and Multi mode fibers.	
1	Transmission Characteristics: Attenuation, Absorption losses, Linear and	9
	Non linear scattering losses, bend losses. Dispersion- Intermodal dispersion,	
	Chromatic dispersion, Dispersion modified fibers, Photonic crystal fibers,	
	Polarization mode dispersion, Nonlinear effects, Solitons.	
	Optical fibers and Cables - Fabrication Techniques- Double crucible	
	method, Outside Vapour phase oxidation, Modified Chemical Vapour	
2	Deposition. Optical Fiber Cables- Single and Multi fiber cables.	
2	Optical Fiber Connections: splices, connectors & couplers.	9
	Optical Fiber Measurements:- Attenuation and dispersion measurements,	
	MZ interferometer, Optical Time Domain Reflectometer – Applications	
	Optical sources: LEDs and LDs, general structures, characteristics,	
3	modulators using LEDs and LDs. coupling with fibres,	9
	Optical detectors: Quantum efficiency and Responsivity, Structure and	

	working of PIN and APD	
	Optical Receivers: - Direct detection- noise in detectors, SNR, BER	
	analysis	
	Coherent detection principles.	
	Optical Amplifiers: EDFA - Principle, structure and working, Raman	
	amplifiers	
	Multiplexing Strategies: OTDM, SCM, OFDM, WDM and Optical CDMA:	
	concepts, components - couplers, splitters, Add/ Drop multiplexers, Fiber	
	grating filters, tunable filters.	
4	Optical networks – General description of SONET/SDH	
_	Free space optics: Principle of LiFi technology. Visible Light	9
	Communication	
	Other applications of optical fibers: Entertainment, Sensors – Types &	
	principles	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject Internal Examination-1 (Written)		Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge
	Course outcome	Level (KL)
CO1	Explain the structure, fabrication, principle of operation and classifications of optical fibers	K2
CO2	Describe the transmission characteristics and evaluate losses in optical fiber	K2
CO3	Illustrate the working of sources, detectors and optical amplifiers used in optical communication system	К2
CO4	Explainthe concepts of Multiplexing, Optical Networks and Free Space Communication	К2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1									1
CO2	3	3	2	2	1							1
CO3	3	1	2	1	1							1
CO4	3	1	2	2	1							1

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Optical Fiber Communications	Gerd Keiser	McGraw Hill	5th/e, 2021			
2	Optical Fiber Communication: Principles and Practice	John M Senior	Pearson Education	3rd/e, 2014			
3	Fibre Optic Communications	Joseph C. Palais	Pearson Education	5th/e, 2013			
4	Fibre optic Communication: Systems and Components	Mishra and Ugale,	Wiley	2019			
5	Fibre Optic Communications Systems	G P Agrawal	WILEY	4 th Ed			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Fibre Optic Communication: Optical Waveguides, Devices and Applications	Sanjeev Kumar Raghuwanshi	University Press	2015			
2	Optical Communication	M Mukunda Rao	University Press	2000			

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://www.youtube.com/watch?v=ougKUUM3hJA					
2	https://www.digimat.in/nptel/courses/video/117104127/L01.html					
3	https://www.youtube.com/watch?v=seHmi6AMWy4					
4	https://www.youtube.com/watch?v=4W7hieXDAmc					

SEMESTER S6
OPTIMIZATION TECHNIQUES

Course Code	PEECT637	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None/ (Course code)	Course Type	Theory

Course Objectives:

- **1.** Enable the learner to formulate engineering minima/maxima problems as optimization problems
- 2. Enable the learner to deploy various constrained and unconstrained optimization algorithms to obtain the minima/maxima of engineering problems

Module	Syllabus Description	
No.		
1	Engineering application of Optimization – Statement of an Optimization problem–Classification, Review of basic calculus concepts –Stationary points; Functions of single and two variables; Convexity and concavity of functions –Definition of Global and Local optima – Optimality criteria, Linear programming methods for optimum design – Standard form of linear programming (LP) problem; Canonical form of LP problem; Simplex Method, Duality, Application of LPP models in engineering	9
2	Optimization algorithms for solving unconstrained nonlinear optimization problems – Search based techniques: Direct search: Fibonacci and golden section search , Hookes and Jeeves , Gradient based method: Newton's method	9
3	Optimization algorithms for solving constrained optimization problems—direct methods – penalty function methods, barrier method -Optimization of function of multiple variables subject to equality constraints; Lagrangian function— Inequality constrained techniques-KKT conditions-constrained	9

	steepest descent method	
4	Modern methods of Optimization— Metaheuristic techniques: Genetic Algorithms — Simulated Annealing — Particle Swarm optimization —Ant colony optimization—: Use of Matlab/Scilab to solve optimization problem	9

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0
carrying 3 marks	Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Formulate an optimization problem to optimize an engineering application using the principles of basic calculus.	K2
CO2	Apply the Simplex method to solve a linear programming problem	К3
CO3	Solve the unconstrained optimization problems using gradient based method.	К3
CO4	Apply the various optimization techniques to solve a constrained optimization problem	К3
CO5	Use metaheuristic algorithms to solve constrained and unconstrained optimization problems	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2									2
CO2	3	3	3									2
CO3	3	2	3									2
CO4	3	2	3									2
CO5	3	2	3									2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Engineering Optimization, Theory and Practice	S.S RAO	New Age International Publishers	4 th Edition ,2012					

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Optimization Techniques and Applications with Examples	Xin-She Yang	John Wiley & Sons	2018			
2	Optimization for Engineering Design Algorithms and Examples	Deb K	Prentice Hall India	2000			
3	Introduction to Optimization Design	Arora J	Elsevier Academic Press, New Delhi	2004			
4	Linear Programming	Hardley G	Narosa Book Distributors Private Ltd	2002			
5	Genetic Algorithms and engineering optimization	Mitsuo Gen, Runwei Cheng	John Wiley & Sons	2002			
6	An introduction to optimization	Edwin KP Chong, Stanislaw, H Hak	John Wiley & Sons	Fourth Edition, 2013			

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	NPTEL https://www.youtube.com/watch?v=a2QgdDk4Xjw					
2	NPTEL https://www.youtube.com/watch?v=dPQKltPBLfc					
3	NPTEL https://www.youtube.com/watch?v=qY-gKL7GxYk					
4	NPTEL https://www.youtube.com/watch?v=Z_8MpZeMdD4 https://www.youtube.com/watch?v=FKBgCpJlX48					

SEMESTER S6

IMAGE PROCESSING APPLICATIONS

Course Code	PEECT 635	CIE Marks	40
Teaching Hours/Week	3:0:0:0	ESE Marks	60
(L: T:P: R)			
Credits	5/3	Exam Hours	2Hrs. 30 Min.
Prerequisites (if any)	PBECT504 Digital Signal Processing	Course Type	Theory

Course Objectives:

- 1. To introduce the fundamental concepts of Digital Image Processing and study the various transforms required for image processing.
- **2.** To study spatial and frequency domain image enhancement and image restoration methods.
- 3. To understand image compression and segmentation techniques.
- **4.** To apply the principles of image processing techniques in real life images.

SYLLABUS

Module	Syllabus Description					
No.						
1	Digital Image Fundamentals: Image representation, Types of images, Elements of DIP system, Basic relationship between pixels, Distance Measures, Simple image formation model. Brightness, contrast, hue, saturation, Mach band effect. Colour image fundamentals-RGB, CMY, HIS models, 2D sampling and quantization.	9				
2	2D Image transforms: DFT, Properties, Walsh transform, Hadamard transform, Haar transform, DCT, KL transform and Singular Value Decomposition. Image Compression: Image compression model, Lossy, lossless compression, Concept of transform coding, JPEG Image compression standard.	9				

3	Image Enhancement: Spatial domain methods: Basic Gray Level Transformations, Histogram Processing, Enhancement Using Arithmetic/Logic Operations, Basics of Spatial Filtering, Smoothing spatial Filters, Sharpening spatial Filters. Frequency domain methods: low pass filtering, high pass filtering, homomorphic filtering.	9
4	Image Restoration: Degradation model, Inverse filtering- removal of blur caused by uniform linear motion, Minimum Mean Square Error (Wiener) Filtering. Constrained Least square filtering, geometric mean filtering. Image segmentation: Region based approach, clustering, Segmentation based on thresholding, edge based segmentation, Hough Transform.	9

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Internal Ex	Evaluate	Analyse	Total
5	15	10	10	40

Criteria for Evaluation (Evaluate and Analyse): 20 marks

Students should analyze real world image processing problems and implement using Matlab or any other programming language.

Evaluation Methods:

- 1. Experiments using software tools: (10 marks)
- 2. Course Project applying the principles of image processing techniques:(10 marks)

Project phases: Proposal, Implementation, Testing, Final Report, Presentations and Viva Voce:

The following topics may be identified for project.

- 1. Illustration of different colour image models and its application.
- 2. Implementation of image transforms and compression algorithms
- 3. Examine different spatial and frequency domain filtering techniques on real world example images.
- 4. Implement image restoration techniques, adjust parameters, and evaluate results qualitatively and quantitatively

End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from	2 questions will be given from each module, out of	
each module.	which 1 question should be answered. Each	
• Total of 8	question can have a maximum of 3 sub divisions.	60
Questions, each	Each question carries 9 marks.	60
carrying 3 marks	(4x9 = 36 marks)	
(8x3 = 24marks)		

Course Outcomes (COs)

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)	
CO1	Compare different colour model representations of image processing system	K4
CO2	Analyse the various concepts and mathematical transforms and compression schemes necessary for image processing	K4
CO3	Illustrate the various schemes of image filtering	K5
CO4	Determine the techniques for restoration of images	K5

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									2
CO2	3	3	3									2
CO3	3	3	3									2
CO4	3	3	3									2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Digital Image Processing	Gonzalez Rafel C	Pearson Education	2009			
2	Digital Image Processing	S Jayaraman, S Esakkirajan, T Veerakumar	Tata Mc Graw Hill	2015			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Digital Image Processing	Kenneth R Castleman	Pearson Education	2/e,2003			
2	Fundamentals of digital image processing	Anil K Jain	РНІ	1988			
3	Digital Image Processing	Pratt William K	John Wiley	4/e,2007			

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://nptel.ac.in/courses/117105079 https://nptel.ac.in/courses/117104069					
2	same as above					
3	same as above					
4	same as above					

SEMESTER S6

VLSI CIRCUIT DESIGN

Course Code	PBECT604	CIE Marks	60
Teaching Hours/Week (L: T:P: R)	3:0:0:1	ESE Marks	40
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCECT302 Solid State Devices, PCECT303 Analog Circuits, PBECT304 Logic Circuit Design	Course Type	Theory

Course Objectives:

- 1. To provide a comprehensive understanding of VLSI design methodologies, including ASIC types, SoCs and FPGA devices, design flows, methodologies.
- 2. To provide a comprehensive understanding of VLSI fabrication techniques.
- **3.** To provide a solid foundation in static CMOS logic design and analysis, layout design and the application of design rules in layout design.
- 4. To cover dynamic logic design principles and the design and operation of storage cells.

SYLLABUS

Module No.	Syllabus Description		
1	VLSI Design Methodologies: Introduction, Moore's law, ASIC design, Full custom ASICs, Standard cell based ASICs, Gate array based ASICs, SoCs, FPGA devices, ASIC and FPGA Design flows, Top-Down and Bottom-Up design methodologies, Logical and Physical design.	6	
2	Fabrication techniques: Material Preparation Purification and Crystal growth (CZ process), Wafer preparation, Epitaxy - molecular beam epitaxy, Thermal Oxidation- Dry and Wet oxidation, Diffusion and ion implantation techniques, Lithography- Photo lithographic sequence, Electron Beam Lithography, Etching, Chemical Vapor Deposition and Physical Vapor Deposition. MOSFET Fabrication techniques: Twin-Tub fabrication sequence, Fabrication process flow.	8	

3	Static CMOS Logic Design: MOSFET Logic Design - NMOS Inverter (Static analysis only), basic logic gates, CMOS logic, Static and transient analysis of CMOS inverter, Static and dynamic power dissipation (detailed analysis not required), Propagation delays. Realization of logic functions with static CMOS logic. Layout Design and Design rules: Stick Diagram and Design rules-micron rules and Lambda rules. (definitions only). Layout of CMOS Inverter, two input NAND and NOR gates.	11
4	Pass transistors and Transmission gate logic: Basic concepts, Realisation of logic gates using pass transistors and complementary pass transistors. Dynamic logic Design: Pre charge, Logic evaluation, Issues in dynamic logic, Domino Logic, NP domino logic, Realisation of logic gates circuits using dynamic logic (NAND and NOR). Sequential Logic and Memory design: Behaviour of bistable elements, CMOS D latch and edge triggered flip flop, Read Only Memory- 4x4 MOS ROM Cell Arrays (NOR, NAND), Random Access Memory- SRAM-Six transistor CMOS SRAM cell, DRAM-Three transistor and One transistor Dynamic Memory Cell.	11

Suggestion on Project Topics

Sample Projects:

1. Create a standard cell library including basic logic gates, flip-flops, and multiplexers.

Tasks:

- Design cells using schematic capture.
- Perform logic synthesis to verify functionality.
- Simulate the cells using Verilog testbenches.
- 2. Design and implement a simple RISC processor on an FPGA.

Tasks:

- •Design the processor architecture using Verilog.
- •Implement and synthesize the design using FPGA tools (e.g., Xilinx Vivado).
- Verify functionality through simulation and hardware testing.
- 3. Simulate the fabrication process of a MOSFET using TCAD tools.

Tasks:

- Model the different stages of MOSFET fabrication (e.g., oxidation, lithography, doping).
- Analyze the effects of various parameters on device characteristics.

4. Create the layout of CMOS logic gates and perform design rule checking.

Tasks:

- Draw the stick diagrams for a CMOS inverter and two-input NAND/NOR gates.
- Create the corresponding layout using layout tools.
- Verify the layout against micron and lambda design rules.
- 5. Design and simulate basic memory cells including SRAM and DRAM.

Tasks:

- Design a 4x4 MOS ROM cell array and SRAM/DRAM cells using Verilog.
- Simulate the memory cells to verify their read and write operations.
- Analyze the performance and area of different memory cell designs.

Course Assessment Method

(CIE: 60 marks, ESE: 40 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Project	Internal Ex-1	Internal Ex-2	Total
5	30	12.5	12.5	60

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	2 questions will be given from each module, out of which 1	
module.	question should be answered. Each question can have a	
Total of 8 Questions, each	maximum of 2 sub divisions. Each question carries 6 marks.	40
carrying 2 marks	(4x6 = 24 marks)	
(8x2 =16 marks)		

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain VLSI design methodologies including ASIC types, SoC and FPGA devices, design flows, methodologies.	К2
CO2	Describe VLSI fabrication techniques.	K2
CO3	Design, analyse and create the layout of static CMOS logic circuits adhering to design rules and specifications.	К3
CO4	Design and analysis of dynamic logic circuits and the implementation of basic storage cells.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2			1							
CO2	3											
CO3	3	3	3		2							
CO4	3	3	3		2							

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	CMOS Digital Integrated Circuits- Analysis & Design	Sung-Mo Kang, Yusuf Leblebici, Chulwoo Kim	Mc Graw Hill	4/e, Indian Edition, 2016			
2	VLSI Technology	S.M. SZE	Mc Graw Hill	2/e, Indian Edition, 2017			
3	Modern VLSI Design	Wayne Wolf	Prentice Hall; 4th edition	4/e, 2008			

Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Application Specific Integrated Circuits	Michael John Sebastian Smith	Pearson	1/e, 2002		
2	Principles of CMOS VLSI Design -A Systems Perspective	Neil H. E. Weste, Kamran Eshraghian	Pearson	2/e, 2007		
3	Digital Integrated Circuits	Jan M. Rabaey	Pearson	2/e, 2016		
4	Design of Analog CMOS Integrated Circuits	Behzad Razavi	McGraw Hill Education	2/e, 2017		

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://nptel.ac.in/courses/117106092 https://nptel.ac.in/courses/106103116					
2	https://nptel.ac.in/courses/108101089					
3	https://nptel.ac.in/courses/108107129 https://nptel.ac.in/courses/117101105 Lecture 26 - Layout of Analog Circuit					
4	https://nptel.ac.in/courses/108107129					

PBL Course Elements

L: Lecture	R: Project (1 Hr.), 2 Faculty Members				
(3 Hrs.)	Tutorial	Practical	Presentation		
Lecture delivery	Project identification	Simulation/ Laboratory Work/ Workshops	Presentation (Progress and Final Presentations)		
Group discussion	Project Analysis	Data Collection	Evaluation		
Question answer Sessions/ Brainstorming Sessions	Analytical thinking and self-learning	Testing	Project Milestone Reviews, Feedback, Project reformation (If required)		
Guest Speakers (Industry Experts)	Case Study/ Field Survey Report	Prototyping	Poster Presentation/ Video Presentation: Students present their results in a 2 to 5 minutes video		

Assessment and Evaluation for Project Activity

Sl. No	Evaluation for	Allotted
		Marks
1	Project Planning and Proposal	5
2	Contribution in Progress Presentations and Question Answer	4
	Sessions	
3	Involvement in the project work and Team Work	3
4	Execution and Implementation	10
5	Final Presentations	5
6	Project Quality, Innovation and Creativity	3
	Total	30

1. Project Planning and Proposal (5 Marks)

- Clarity and feasibility of the project plan
- Research and background understanding
- Defined objectives and methodology

2. Contribution in Progress Presentation and Question Answer Sessions (4 Marks)

- Individual contribution to the presentation
- Effectiveness in answering questions and handling feedback

3. Involvement in the Project Work and Team Work (3 Marks)

- Active participation and individual contribution
- Teamwork and collaboration

4. Execution and Implementation (10 Marks)

- Adherence to the project timeline and milestones
- Application of theoretical knowledge and problem-solving
- Final Result

5. Final Presentation (5 Marks)

- Quality and clarity of the overall presentation
- Individual contribution to the presentation
- Effectiveness in answering questions

6. Project Quality, Innovation, and Creativity (3 Marks)

- Overall quality and technical excellence of the project
- Innovation and originality in the project

Creativity in solutions and approaches

SEMESTER S6
ENTERTAINMENT ELECTRONICS

Course Code	OEECT611	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None/ (Course code)	Course Type	Theory

Course Objectives:

1. To provide broad knowledge on various industry standards, algorithms and technologies used to carry out digital audio and video broadcasting in infotainment industry.

SYLLABUS

Module	Syllabus Description		
No.			
1	Review of Analog Television: Scanning, Horizontal and Vertical Synchronization, Color information, Transmission methods. NTSC and PAL standards. Digital media streaming: Packetized elementary stream of audiovideo data, MPEG data stream, MPEG-2 transport stream packet, Accessing a program, scrambled programs, program synchronization. PSI, Additional (Network information and service description) information in data streams for set-top boxes.	9	
2	Digital Video Broadcasting (DVB): Satellite TV broadcasting – DVB-S Parameters, DVB-S Modulator, DVB-S set-top box, DVB-S2. Cable TV broadcasting – DVB-C Standard, DVB-C Modulator, DVB-C set-top box. Terrestrial TV broadcasting – DVB-T Standard, DVB-T Modulator, DVB-T Carriers and System Parameters, DVB-T receiver. Broadcasting for Handheld devices – DVB-H Standard DVB tele-text, DVB subtitling system. Digital Audio Broadcasting (DAB): Comparison of DAB with DVB. Physical layer of DAB. DAB Modulator, DAB Data Structure, DAB single frequency networks, Data broad casting using DAB.	9	
3	High Definition Video and Audio: Pixel resolution, Comparison with	9	

	Standard Definition TV, Review of Discrete Cosine Transforms (DCT),	
	Video Compression - Quantization levels, Horizontal/Vertical blanking	
	interval, Vertical Color resolution, DPCM of moving pictures, DCT, Run-	
	length coding. MPEG-4 Video coding.	
	Display Technology: Block diagram of video reproduction system in a TV,	
	Cathode Ray tubes, Basic principle of Plasma displays, LC displays, Light-	
4	emitting diode displays, Field emission displays, Organic light emitting	9
	device displays. Television of future: Holographic TV, Virtual Reality,	
	Augmented Reality.	

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain packetized streaming of digital media happens in the field of infotainment industry.	K2
CO2	Realise the critical aspects of DVB and DAB standards used for media broadcasting	K2
CO3	Apply video coding/compression algorithms are used to produce high-definition video in MPEG-4 standard	К3
CO4	Describe modern display technologies for video reproduction	К2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										2
CO2	3	3			2						2	2
CO3	3	3			3						2	2
CO4	3	3										2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Digital Video and Audio Broadcasting Technology: A Practical Engineering Guide (Signals and Communication Technology)	W. Fischer	Springer	2020					
2	Understanding Digital Television An Introduction to DVB Systems with Satellite, Cable, Broadband and Terrestrial TV,.	Lars-Ingemar Lundström	Focal Press,Elsevier	2006					
3	Newnes Guide to Televeision and Video Technology	K F Ibrahim	Newnes	2007					
4	Introduction to Flat Panel Displays	Jiun-Haw Lee, David N. Liu, Shin-Tson Wu	Wiley	2008					

Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Digital Video and HD Algorithms and Interfaces,"	C. Poynton	Morgan Kaufmann	2012.				
2	Digital audio broadcasting: principles and applications of DAB, DAB+ and DMB	Wolfgang Hoeg, Thomas Lauterbach	Wiley	2009.				
3	Introduction to Digital Audio	John Watkinson	Focal Press	1994.				
4	Art of Digital Video,	John Watkinson	Focal Press	2008				
5	Introduction to Digital Video,	John Watkinson	Focal Press	2001				

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://www.youtube.com/watch?v=M_nTmRtAD98						
2	https://www.youtube.com/watch?v=aTDr79yvUus						
3	https://www.youtube.com/watch?v=g_ysg46q-jQ						
4	https://www.youtube.com/watch?v=4BaDaGTUgIY						

SEMESTER S6

COMPUTER NETWORKS

Course Code	OEECT 612	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None/ (Course code)	Course Type	Theory

Course Objectives:

1. The course aims to expose students to computer networks taking a top-down approach of viewing from the layer of user applications and zooming into link layer protocols. The principles of various protocols used in every layer are studied in detail,

SYLLABUS

Module No.	Syllabus Description	Contact Hours
	Introduction to Computer Networks Components of computer networks.	
	Transmission modes - serial and parallel transmission, asynchronous,	
	synchronous, simplex, half duplex, full duplex communication.	
1	Switching: circuit switching and packet switching.	
1	Networks: Network criteria, physical structures, network models, categories	9
	of networks, Interconnection of Networks.	
	Delay and loss in packet-switched networks, Types of delay, Packet loss.	
	Layered Architecture: OSI model	
	TCP/IP protocol suite: Introduction	
	Application Layer: Communication between processes, Web application:	
	HTTP, Message format, Email application: SMTP, Message format, MIME,	
2	POP3, Domain Name System (DNS).	
	Transport Layer connectionless and connection-oriented protocols. UDP-	9
	Protocols for reliable data transfer: ARQ	
	protocols, stop-and-wait protocol, alternating-bit protocol, Go-back- N,	

	Selective Repeat. TCP Connection, segment structure, RTT estimate, Flow control.	
	Congestion Control General approaches. TCP congestion control.	
	Network Layer: Datagram versus virtual-circuit network service, Router	
	architecture, Routing and Forwarding, Static routing and Dynamic routing.	
	Address Resolution protocols (ARP, RARP)	
	Subnetting, Classless Routing(CIDR), ICMP.	
3	IPv4: Datagram format, Fragmentation and reassembly, addressing, address	10
	assignment – manual and DHCP. IPv6- Datagram format, Transitioning from	
	IPv4 to IPv6, IP security.	
	Routing Algorithms Link-State (Dijkstra's) Algorithm, Distance vector	
	algorithm. Routing in Internet – RIP, OSPF, BGP.	
	Link Layer Services of link layer, Error detection and correction -	
	checksum, CRC.	
	Multiple access protocols – Channel partitioning, random access. ALOHA –	
4	pure and slotted, efficiency, CSMA, CSMA/CA, CSMA/CD. Link layer	
4	addressing: MAC address, Ethernet. Wireless Networks IEEE 802.11	8
	wireless LAN.	
	Physical Layer: Guided and unguided transmission media	
	(Co-axial cable, UTP,STP, Fiber optic cable)	

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
601	Summarize the principles and components of computer	K2			
CO1	networks, switching, basic concepts of delay analysis and the layered network architecture.				
	•				
CO2	Demonstrate protocols and the functions of different layers.	K2			
CO3	Analyse the concept of routing and addressing protocols in the	К3			
	context of computer networking.				
CO4	Make use of different physical communication standards in	К3			
C04	computer networks.				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3					-	-	-	-	-	-	2
CO2	3					-	-	-	-	-	-	2
CO3	3	2	2	2	2	-	-	-	-	-		3
CO4	3	2	2	2	2	-	-	-	-	-	-	3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Computer Networking: A Top- Down Approach Featuring the Internet.	James F. Kurose, Keith W. Ross,	Pearson	Sixth Edition, 2017					
2	Data Communications and Networking	Behrouz A Forouzan	Tata McGraw-Hill	Fourth Edition, 2008					

	Reference Books													
Sl. No	Title of the Book Name of the Author/s		o Title of the Book Name of the Author/s		o Title of the Book Name of the Author/s		o Title of the Book Name of the Author/s		Title of the Book Name of the Author/s		o Title of the Book Name of the Au		Name of the Publisher	Edition and Year
1	Computer Networks – A Systems Approach,	Larry L. Peterson, Bruce S. Davie,	Morgan Kauffman											
2	Communication Networking – An Analytical Approach,	A. Kumar, D. Manjunath, J. Kuri,	Morgan Kauffman Series											
3	Computer Networks	A. S. Tanenbaum, D. J. Wetherall	Pearson											
4	Data Networks	D. Bertsekas, RG Gallager	Prentice Hall											

	Video Links (NPTEL, SWAYAM)				
Module	Module Link ID				
No.					
1	https://onlinecourses.nptel.ac.in/noc22_cs19/preview				
2	https://archive.nptel.ac.in/courses/106/105/106105183/				
3	https://onlinecourses.swayam2.ac.in/cec21_cs04/preview				

SEMESTER S6

BIOMEDICAL ENGINEERING

Course Code	OEECT613	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3-0-00	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. This course will introduce the various aspects of biomedical engineering and its applications escribed using engineering principles
- 2. The student will be able to understand the techniques and uses of modern diagnostic and therapeutic equipment.

SYLLABUS

Module No.	Syllabus Description			
1	Introduction to bio-medical engineering, Sources of bio-electric potential: Resting and action potential, propagation of action potentials. Various bioelectric potentials (ECG, EEG, EMG, ERG, EOG, EGG concept only.) Electrode theory: Nernst equation, Electrode skin interface Bio-potential electrodes: Microelectrodes, skin surface electrodes, needle electrodes Bio-potential amplifiers: instrumentation amplifiers, carrier amplifiers, isolation amplifiers, chopper amplifiers	9		

2	Heart and cardiovascular system: electro conduction system of the heart, ECG lead configurations, Einthoven triangle, Electrocardiography, ECG machine - block diagram, ECG recording system The human nervous system: Neurons, action potential of brain, brain waves, placement of electrodes, EEG recording, evoked potential, Electrical activity of muscles: EMG signal acquisition and analysis.Myoelectric control system. Electrical stimulation of the muscle and nerve, Applications of EMG	9
3	Instruments for clinical laboratory: Oxymeters, blood cell counter, flame photometer, Spectrophotometer Therapeutic Equipments: Principles, block schematic diagram, working and applications of pacemakers, cardiac defibrillators, heart—lung machine, dialyzers, surgical diathermy equipment, ventilators Biomedical Telemetry system: Components of biotelemetry system, application of telemetry in medicine, single channel telemetry system for ECG.	9
4	Medical Imaging systems (Basic Principle only): X-ray imaging - X-ray machine, applications of X-rays in medicine. Computed Tomograpy: Principle, image reconstruction, scanning system and applications Ultrasonic imaging systems: Basic pulse echo system, Different types of Ultrasonics systems:, A-Scan, B-Scan, M-Scan, applications, real-time ultrasonic imaging systems and probes. Magnetic Resonance Imaging – Basic NMR components, Biological effects and advantages of NMR imaging	9

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	al of 8 Questions, each of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 = 24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Outline the basic bioelectric potentials and their implications in diagnostics	KL2
CO2	Summarize the principles used for diagnosis of abnormalities in the cardiovascular system	KL2
CO3	Identify the techniques used for diagnosis and therapy in the neuromuscular and myoelectric systems.	KL2
CO4	Illustrate the principle and working of different types of bio medical equipment/devices	KL2
CO5	State various diagnostic medical imaging techniques.	KL2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3					2						2
CO2	3					2						2
CO3	3					2	2					2
CO4	3					2	2					2
CO5	3					2	2					2

Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	, Handbook of Biomedical Instrumentation	R. S. Khandpur	Tata Mc Graw Hill	Third edition	
2	Biomedical Instrumentation and Measurement	Leslie Cromwell, Fred J. Weibell, Erich A. Pfeiffer,	, PHI	2nd Edition, 2004	

	Reference Books				
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	"Medical Instrumentation application and design",	John G Webster,	John Wiley	3 rd edition	
2	Introduction to Biomedical Equipment Technology	J. J. Carr,	Pearson Education	4 th edition	
3	Principle of Biomedical Instrumentation and Measurement	Richard Aston,	Merrill Education/Prentice Hall		
4	Introduction to Biomedical Instrumentation	Barbara Christe	Cambridge University Press,	2008	

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://www.youtube.com/watch?v=_fD9gOqiBVE					
2	http://www.digimat.in/nptel/courses/video/127106134/L16.html					

SEMESTER S6 COMMUNICATION LAB II

Course Code	PCECL607	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0-0-3-0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 min.
Prerequisites (if any)	None/ (Course code)	Course Type	Theory

Course Objectives:

- 1. Develop practical skills in microwave and optical communication systems through hands-on experiments involving microwave sources, fiber optics, and optoelectronic components.
- **2.** Enhance understanding and application of antenna and waveguide theories by designing, simulating, and measuring various antenna types and waveguide characteristics.

Details of Experiment

Expt. No	Experiment		
	MICROWAVE EXPERIMENTS (Minimum four experiments are mandatory)		
1	Reflex Klystron Mode Characteristics.		
2	GUNN diode characteristics.		
3	VSWR and Frequency measurement.		
4	Verify the relation between Guide wave length, free space wave length and cut off wave length for rectangular wave guide.		
5	Unknown load impedance measurement using smith chart and verification using transmission line equation.		
6	Measurement of Magic Tee characteristics.		
7	Directional Coupler Characteristics.		
	OPTICAL EXPERIMENTS (Minimum three experiments are mandatory)		
1	Setting up of Fiber optic Digital link.		
2	Measurement of Numerical Aperture of an Optical fiber		

3	Study of losses in Optical fiber
4	Voltage vs. Current (V-I) characteristics of Laser Diode.
5	Voltage vs. Current (V-I) characteristics of LED.
6	Characteristics of Photodiode
	ANTENNA EXPERIMENTS (Minimum three experiments are mandatory)
1	Familiarization of any antenna simulation software
2	Simulation of Dipole Antenna
3	Simulation of Patch Antenna
4	Simulation of Antenna Array.
5	Study of Vector Network Analyzer.
6	Antenna Pattern Measurement

Course Assessment Method (CIE: 50 Marks, ESE 50 Marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work, experiments, Viva and Timely completion of Lab Reports / Record. (Continuous Assessment)	Internal Exam	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

Mandatory requirements for ESE:

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record.

Course Outcomes (COs)

At the end of the course the student will be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Familiarize the basic Microwave components and to analyse a few microwave measurements and its parameters.	K4
CO2	Describe the principles of fiber-optic communications and the different kinds of losses, signal distortion and other signal degradation factors.	К2
CO3	Design and simulate basic antenna experiments with simulation tools.	К6

K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	-	-	-	-	-	3	-	-	3
CO2	3	3	3	-	-	-	-	-	3	-	-	3
CO3	3	3	3	2	3	-	-	-	3	-	-	3

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), : No Correlation

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Microwave Devices and Circuits	Samuel Y. Liao	Prentice-Hall Of India Pvt. Limited	3 rd Edition, 2008
2	Optical Fiber Communication	Gred Keiser	Mc Graw Hill	5 th Edition, 2013
3	Antenna Theory and Design	Constantine A. Balanis Balanis	Wiley Publications	4 th Edition, 2016

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Antennas for all Applications	John D. Krauss	McGraw-Hill	4th Edition, 2010
2	Modern Antenna Design	Thomas A. Milligan	Wiley-IEEE Press	2 nd Edition, 2005
3	Principles of Electromagnetics	N.O. Sadiku and S.V. Kulkarni	Oxford University Press, India	6 th Edition, 2015

	Video Links (NPTEL, SWAYAM)				
Sl. No.	Link ID				
1	https://youtu.be/F07ApLj12sE?si=wN5Al8ERbd52xJ6h				
2	https://youtu.be/h51mFbIgZRI?si=GsXQ2sQmaq1HIYui				
3	https://www.youtube.com/live/G4DCS2T-hqs?si=3sTAjLEfGR11fNVd				

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

 Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted