Advanced Scaling

Bitcoin-NG and Sharding

Keyblocks and microblocks

Keyblocks and microblocks

Keyblocks: Include a PoW. *No transactions*, a public key and the hash of the last Key- or Microblock

Microblocks: Include transactions, *no PoW*, and a signature matching the key of the last keyblock.

$$pk_{x} \leftarrow \sigma_{x} \leftarrow \sigma_{x} \leftarrow pk_{y} \leftarrow \sigma_{y}$$

Longest chain rule: Look only at Keyblocks

Bitcoin NG Advantages

Can adjust frequency of microblocks and keyblocks independently.

Bitcoin NG Advantages

Can adjust frequency of microblocks and keyblocks independently.

Throughput and latency: Can issue microblocks frequent, which give high throughput.

Security: Slow keyblocks give good security (few forks).

Bitcoin NG Incentives

Need to devide block reward (fees) for microblocks between current and next issuer/leader

Solution: 40% to pk_x and 60% to pk_y

Incentives - possible attacks

Steal microblocks:

$$pk_x$$
 pk_y σ_y

Incentives - possible attacks

Steal microblocks:

Big enough reward for next leader!

Incentives - possible attacks

Steal microblocks:

$$pk_x$$
 pk_y σ_y

Big enough reward for next leader!

Selfish mining: Secret microblocks

$$pk_{x}$$

Incentives - possible attacks

Steal microblocks:

$$pk_x$$
 pk_y σ_y

Big enough reward for next leader!

Selfish mining: Secret microblocks

$$pk_{x}$$

Big enough reward for previous leader!

Problems

Problems

If leader fails, no transactions.

Allow DDOS attacks on leader.

Sharding

Sharding Ideas and potential

Shard:

Potential:

Sharding Ideas and potential

Shard: Subsystem with a fraction of the state, processing transactions on this part of the state.

Potential: Scale throughput linearly with the number of shards.

Sharding Problems

Sharding

Problems

- A. How to distribute state?
- B. How to process transactions across shards?
- C. How to avoid mining power dillusion? Easier to attack a single shard than the complete system.

Sharding Solutions

A. How to distribute state?

Consistent hashing.

B. How to process transactions across shards?

Atomic commit?

C. How to avoid mining power dillusion?

- Disallow choosing, e.g. consistent hashing (difficult).
- Allow multiple shards as in Monoxide (will there be sharding?)

Sharding Uncles and sharding

Can executed transactions from uncles:

 Transactions in b, that are not in a, can be executed together with block c.

Not done in Ethereum!

- uncle reward
- o nephew reward