Firms	Quantity2010	Quantity2018	Price2010	Price2018
Pizza	50	100	8	10
Beer	100	200	4	5
Coffee	150	300	1	2

$$\frac{1}{2010} = 50 \times 10 + 100 \times 5 + 150 \times 200$$

$$= 500 + 500 + 300$$

$$= 1300$$

GDP 2018 evaluated in 2010 Price
$$\sqrt{\frac{2010}{2018}} = 100 \times 8 + 200 \times 4 + 300 \times 1$$

$$= 800 + 800 + 300$$

$$= 1900$$

Suppose in an **imaginary country**, the basket of goods only contains **pizza**, **beer**, **coffee**, and the base year is **2010**. The consumption quantities and prices are given by

Firms /	Quantity	Price2010	Price2015	Price2018
Pizza	50	8) 8	(10
Beer	100) 4	3	5
Coffee	150	1	2	2

Firms Qua	ntity Price	2010 Pri	ce2015 P	rice2018			
Pizza	50	(8)	8	[10			
Beer	100	4	3	5			
Coffee	150	1	2	2			
(Step 1:						

$$\sqrt{2015}$$
: $50 \times 8 + 100 + 3 + 150 \times 2 = 1000$

Step 2: Inflation between
$$2010 - 2010$$

USC 2015 base

$$CPI 2018 = \frac{1300}{1000} = 113$$

$$CPI 2015 = \frac{1300}{1000} = 113$$

$$CPI 2015 = \frac{1300}{1000} = 0.95$$