МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

КАФЕДРА №41

защищена с о	ЦЕНКОИ		
РУКОВОДИТЕЛЬ			
К.т.н., доц.			Е.Л. Турнецкая
должность, уч. степен	ь, звание	подпись, дата	инициалы, фамилия
	ОТЧЕТ О ЛА	АБОРАТОРНОЙ РАБОТ	E №2
Анализ с	вязей между	признаками двумерного	набора данных
по курсу: Мет	одология и те	ехнология проектирован	ия информационных
		систем	
РАБОТУ ВЫПОЛНИ.	п		
TADOTY DDITTOMENT.	/1		
СТУДЕНТ ГР. №	M320M	Lymboney	П. Е. Лукьянец

подпись, дата инициалы, фамилия

Цель работы: изучение связи между признаками двумерного набора данных.

Ход выполнения работы

Для работы был выбран шестой датасет из списка под названием «6 games». В данном датасете представлена информация о видеоиграх: названии, платформе, годе выпуска, жанре, продажах в разных регионах и оценках. Чтобы начать работу, импортируем библиотеку, а затем считываем CSV файл. Выведем первые 20 строк с помощью метода head. Часть данных этого датасета представлена на рисунке 1.

Рисунок 1 – используемый датасет

Для работы с ним использовалась библиотека Pandas.

Работа была выполнена при помощи Visual Studio Code, а также Jupyter Notebook.

Ссылка на GitHub репозиторий с файлами: https://github.com/NinjaCaratist/MTPIS

Чтобы начать работу, импортируем библиотеку, а затем считываем CSV файл.

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sb

df = pd.read_csv("6games.csv")
```

Рисунок 2 – скриншот кода

Выведем первые 20 строк с помощью метода head. На рисунке 3 показан код, а на рисунке 4 – результат его работы.

```
print(df.head(20))
```

Рисунок 3 – скриншот кода

	Name	Platform	Year of Release '
0	Wii Sports	Wii	2006.0
1	Super Mario Bros.	NES	1985.0
2	Mario Kart Wii	Wii	2008.0
3	Wii Sports Resort	Wii	2009.0
4	Pokemon Red/Pokemon Blue	GB	1996.0
5	Tetris	GB	1989.0
6	New Super Mario Bros.	DS	2006.0
7	Wii Play	Wii	2006.0
8	New Super Mario Bros. Wii	Wii	2009.0
9	Duck Hunt	NES	1984.0
10	Nintendogs	DS	2005.0
11	Mario Kart DS	DS	2005.0
12	Pokemon Gold/Pokemon Silver	GB	1999.0
13	Wii Fit	Wii	2007.0
14	Kinect Adventures!	X360	2010.0
15	Wii Fit Plus	Wii	2009.0
16	Grand Theft Auto V	PS3	2013.0
17	Grand Theft Auto: San Andreas	PS2	2004.0
18	Super Mario World	SNES	1990.0
19	Brain Age: Train Your Brain in Minutes a Day	DS	2005.0

		_	_	_			_
	Genre	NA_sales	EU_sales	JP_sales	Other_sales	Critic_Score	\
0	Sports	41.36	28.96	3.77	8.45	76.0	
1	Platform	29.08	3.58	6.81	0.77	NaN	
2	Racing	15.68	12.76	3.79	3.29	82.0	
3	Sports	15.61	10.93	3.28	2.95	80.0	
4	Role-Playing	11.27	8.89	10.22	1.00	NaN	
5	Puzzle	23.20	2.26	4.22	0.58	NaN	
6	Platform	11.28	9.14	6.50	2.88	89.0	
7	Misc	13.96	9.18	2.93	2.84	58.0	
8	Platform	14.44	6.94	4.70	2.24	87.0	
9	Shooter	26.93	0.63	0.28	0.47	NaN	
10	Simulation	9.05	10.95	1.93	2.74	NaN	
11	Racing	9.71	7.47	4.13	1.90	91.0	
12	Role-Playing	9.00	6.18	7.20	0.71	NaN	
13	Sports	8.92	8.03	3.60	2.15	80.0	
14	Misc	15.00	4.89	0.24	1.69	61.0	
15	Sports	9.01	8.49	2.53	1.77	80.0	
16	Action	7.02	9.09	0.98	3.96	97.0	
17	Action	9.43	0.40	0.41	10.57	95.0	
18	Platform	12.78	3.75	3.54	0.55	NaN	
19	Misc	4.74	9.20	4.16	2.04	77.0	

	User_Score	Rating	
a	_	Kacting	
0	8		
1	NaN		
2	8.3	E	
3	8	E	
4	NaN	NaN	
5	NaN	NaN	
6	8.5	Е	
7	6.6	Е	
8	8.4	Е	
9	NaN	NaN	
10	NaN	NaN	
11	8.6	Е	
12	NaN	NaN	
13	7.7	Е	
14	6.3	Е	
15	7.4	Е	
16	8.2	М	
17	9	М	
18	NaN	NaN	
19	7.9	Е	

Рисунок 4 – результат вывода

Как уже было сказано, данная таблица содержит информацию о продаваемых автомобилях. Предметная область — автомобили и продажи. Опишем колонки подробнее:

Name – Название

Platform - Платформа

Year – год выпуска

Genre - Жанр

NA_Sales, EU_sales, JP_Sales, Other_SalesПродажи в разных регионах

Critic_Store - Оценка

Теперь с помощью метода «.info» оценим данные. Этот метод возвращает название столбцов, типы данных, количество ненулевых объектов каждом столбце. Результат работы метода представлен на рисунке 5.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 16715 entries, 0 to 16714
Data columns (total 11 columns):
    Column
                     Non-Null Count Dtype
0
    Name
                     16713 non-null object
    Platform
                     16715 non-null object
 1
2
    Year_of_Release 16446 non-null float64
                    16713 non-null object
 3
    Genre
4
    NA sales
                    16715 non-null float64
    EU sales
                    16715 non-null float64
5
    Other_sales 16715 non-null float64
Critic_Score 8137 non-null float64
    JP_sales
6
                    16715 non-null float64
 7
8
    User_Score
9
                    10014 non-null object
10 Rating
                     9949 non-null
                                     object
dtypes: float64(6), object(5)
memory usage: 1.4+ MB
```

Рисунок 5 – результат вывода

Теперь выведем на экран названия столбцов с помощью df.columns. Названия всех колонк приемлимы.

```
print(df.columns)
```

Рисунок 6 – скриншот кода

Рисунок 7 – результат вывода

Найдём пропуски и устраним их. При помощи метода «isna» найдём все пропуски в таблице, а также при помощи sum выведем количество пропусков в каждом столбце. Как мы можем увидеть присутствуют пропуски в столбцах названия, жанра, года выпуска, оценок и рейтинга. Так как важным столбцом является лишь название, строки без информации в нём не имеют смысла, поэтому их стоит удалить при помощи метода «dropna». Однако можно не удалять строки без данных в дргугих столбцах. Поэтому при помощи метода fillna заполним пустые значения оценок нулями, жанра и рейтинга строкой

'none', а года выпуска 1950 годом, в котором ещё не выпускались игры. Проверяем пропуски еще раз и их больше нет. Код представлен на рисунке 8. Проверяем пропуски еще раз и их больше нет.

```
print(df.isna())
print(df.isna().sum())

df = df.dropna(subset=['Name'])

df['Genre'] = df['Genre'].fillna('none')

df['Year_of_Release'] = df['Year_of_Release'].fillna(1950)

df['Rating'] = df['Rating'].fillna('none')

tmp_df = df

df['Critic_Score'] = df['Critic_Score'].fillna(0)

df['User_Score'] = df['User_Score'].fillna(0)
```

Рисунок 8 – скриншот кода

	Name	Platform	Year_of_R	elease	Genre	NA_sales	EU_sales	JP_sales	\
0	False	False		False	False	False	False	False	
1	False	False		False	False	False	False	False	
2	False	False		False	False	False	False	False	
3	False	False		False	False	False	False	False	
4	False	False		False	False	False	False	False	
16710	False	False		False	False	False	False	False	
16711	False	False		False	False	False	False	False	
16712	False	False		False	False	False	False	False	
16713	False	False		False	False	False	False	False	
16714	False	False		False	False	False	False	False	
	Other_	sales Cri	itic_Score	User_S	core 1	Rating			
0		False	False	F	alse	False			
1		False	True		True	True			
2		False	False	F	alse	False			
3		False	False	F	alse	False			
4		False	True		True	True			
16710		False	True		True	True			
16711		False	True		True	True			
16712		False	True		True	True			
16713		False	True		True	True			
16714		False	True		True	True			

[16715 rows x 11	columns]
Name	2
Platform	0
Year_of_Release	269
Genre	2
NA_sales	0
EU_sales	0
JP_sales	0
Other_sales	0
Critic_Score	8578
User_Score	6701
Rating	6766
dtype: int64	
Name	0
Platform	0
Year_of_Release	0
Genre	0
NA_sales	0
EU_sales	0
JP_sales	0
Other_sales	0
Critic_Score	0
User_Score	0
Rating	0

Рисунок 9 – результат вывода

Проверим данные на наличие дубликатов — рисунок 10. Полностью повторяющихся строк нет, результат представлен на рисунке 11. Уникальным значением в данном наборе является название, а точнее название, платформа и год выпуска, только в таком сочетании строка уникальна. Получается составной перивчный ключ. Уникальных значений по имени 11559.

```
print("Количество дубликатов: " + str(df.duplicated().sum()))
df.info()
```

Рисунок 10 – скриншот кода

```
Количесвто дубликатов: 0
```

Рисунок 11 – результат вывода

При помощи метода drop_duplicates удаляем дубликаты по столбцам Названия, платформы и года — рисунок 12. После переиндексации и вывода информации видим, что на одну запись стало меньше - рисунок 13. В записях остальных колонок ошибок нет.

```
print(df['Name'].nunique(), "\n")
df = df.drop_duplicates(subset=['Name', 'Platform', 'Year_of_Release']).reset_index()
df.info()
print( "\n")
print(df['Year_of_Release'].unique())
print(df['Platform'].unique())
print(df['Genre'].unique())
print(df['Rating'].unique())
```

Рисунок 12 – скриншот кода

```
0 Name 16713 non-null object
1 Platform 16713 non-null object
 2 Year_of_Release 16713 non-null float64
 3 Genre 16713 non-null object
4 NA_sales 16713 non-null float64
5 EU_sales 16713 non-null float64
6 JP_sales 16713 non-null float64
7 Other_sales 16713 non-null float64
8 Critic_Score 16713 non-null float64
9 User_Score 16713 non-null object
10 Rating 16713 non-null object
dtypes: float64(6), object(5)
memory usage: 1.5+ MB
11559
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 16712 entries, 0 to 16711
Data columns (total 12 columns):
 # Column Non-Null Count Dtype
 0 index 16712 non-null int64
1 Name 16712 non-null object
2 Platform 16712 non-null object
 3 Year of Release 16712 non-null float64
4 Genre 16712 non-null object
5 NA_sales 16712 non-null float64
6 EU_sales 16712 non-null float64
7 JP_sales 16712 non-null float64
8 Other_sales 16712 non-null float64
9 Critic_Score 16712 non-null float64
10 User_Score 16712 non-null object
11 Rating 16712 non-null object
dtypes: float64(6), int64(1), object(5)
memory usage: 1.5+ MB
[2006. 1985. 2008. 2009. 1996. 1989. 1984. 2005. 1999. 2007. 2010. 2013.
 2004. 1990. 1988. 2002. 2001. 2011. 1998. 2015. 2012. 2014. 1992. 1997.
 1993. 1994. 1982. 2016. 2003. 1986. 2000. 1950. 1995. 1991. 1981. 1987.
 1980. 1983.]
['Wii' 'NES' 'GB' 'DS' 'X360' 'PS3' 'PS2' 'SNES' 'GBA' 'PS4' '3DS' 'N64'
  'PS' 'XB' 'PC' '2600' 'PSP' 'XOne' 'WiiU' 'GC' 'GEN' 'DC' 'PSV' 'SAT'
 'SCD' 'WS' 'NG' 'TG16' '3D0' 'GG' 'PCFX']
['Sports' 'Platform' 'Racing' 'Role-Playing' 'Puzzle' 'Misc' 'Shooter'
  'Simulation' 'Action' 'Fighting' 'Adventure' 'Strategy']
'E' 'none' 'M' 'T' 'E10+' 'K-A' 'AO' 'EC' 'RP']
```

Рисунок 13 – результат вывода

Проверим все ли типы данных соответствуют действительности. Все столбцы, кроме года выпуска и оценки пользователей соответствуют своему типу. Поэтому при помощи метода «to_datetime» изменяем тип на временной. А при помощи метода "to numeric" приводим оценки к формату с плавающей точкой, при этом прописывая условия о не превращающихся значениях в NaN

(см. рис. 14). Затем эти значения приравниваем к нулю и выводим информацию (см. рис. 15).

```
df['Year_of_Release'] = pd.to_datetime(df['Year_of_Release'], format='%Y')
df['User_Score'] = pd.to_numeric(df['User_Score'], errors='coerce')
df['User_Score'] = df['User_Score'].fillna(0)
print(df['Year_of_Release'].unique())
print(df['User_Score'].unique())
df.info()
```

Рисунок 14 – скриншот кода

```
['2006-01-01T00:00:00.000000000' '1985-01-01T00:00:00.000000000
 '2008-01-01T00:00:00.0000000000' '2009-01-01T00:00:00.000000000'
 '1996-01-01T00:00:00.000000000' '1989-01-01T00:00:00.000000000
 '1984-01-01T00:00:00.0000000000' '2005-01-01T00:00:00.000000000
 '1999-01-01T00:00:00.0000000000' '2007-01-01T00:00:00.000000000
 '2010-01-01T00:00:00.0000000000' '2013-01-01T00:00:00.000000000
 '2004-01-01T00:00:00.0000000000' '1990-01-01T00:00:00.000000000
 '1988-01-01T00:00:00.0000000000' '2002-01-01T00:00:00.000000000
 '2001-01-01T00:00:00.0000000000' '2011-01-01T00:00:00.000000000
 '1998-01-01T00:00:00.0000000000' '2015-01-01T00:00:00.000000000
 '2012-01-01T00:00:00.0000000000' '2014-01-01T00:00:00.000000000
 '1992-01-01T00:00:00.0000000000' '1997-01-01T00:00:00.0000000000
 '1993-01-01T00:00:00.0000000000' '1994-01-01T00:00:00.000000000'
 '1982-01-01T00:00:00.0000000000' '2016-01-01T00:00:00.000000000'
 '2003-01-01T00:00:00.0000000000' '1986-01-01T00:00:00.000000000'
 '2000-01-01T00:00:00.0000000000' '1950-01-01T00:00:00.000000000'
 '1995-01-01T00:00:00.0000000000' '1991-01-01T00:00:00.000000000'
 '1981-01-01T00:00:00.000000000' '1987-01-01T00:00:00.0000000000' '1980-01-01T00:00:00.000000000' '1983-01-01T00:00:00.000000000']
[8. 0. 8.3 8.5 6.6 8.4 8.6 7.7 6.3 7.4 8.2 9. 7.9 8.1 8.7 7.1 3.4 5.3
 4.8 3.2 8.9 6.4 7.8 7.5 2.6 7.2 9.2 7. 7.3 4.3 7.6 5.7 5. 9.1 6.5 8.8
 6.9 9.4 6.8 6.1 6.7 5.4 4. 4.9 4.5 9.3 6.2 4.2 6. 3.7 4.1 5.8 5.6 5.5
4.4 4.6 5.9 3.9 3.1 2.9 5.2 3.3 4.7 5.1 3.5 2.5 1.9 3. 2.7 2.2 2. 9.5
 2.1 3.6 2.8 1.8 3.8 1.6 9.6 2.4 1.7 1.1 0.3 1.5 0.7 1.2 2.3 0.5 1.3 0.2
0.6 1.4 0.9 1. 9.7]
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 16712 entries, 0 to 16711
Data columns (total 12 columns):
# Column Non-Null Count Dtype
0 index 16712 non-null int64
1 Name 16712 non-null object
2 Platform 16712 non-null object
3 Year_of_Release 16712 non-null datetime64[ns]
4 Genre 16712 non-null object
5 NA_sales 16712 non-null float64
6 EU_sales 16712 non-null float64
7 JP_sales 16712 non-null float64
8 Other_sales 16712 non-null float64
9 Critic_Score 16712 non-null float64
10 User_Score 16712 non-null float64
11 Rating 16712 non-null object
dtypes: datetime64[ns](1), float64(6), int64(1), object(4)
memory usage: 1.5+ MB
```

Рисунок 15 – результат вывода

Создадим сводную таблицу при помощи метода «data_pivot», код представлен на рисунке 16. Индексацию возьмём по платформам, а колонки по жанрам игр. Подсчёт будет по сумме продаж в Северной Америке. Таким образом, получится таблица, показывающая, на какой жанр и с какой консолью приходится больше всего сумма продаж. Это шутеры на хbox360, что ожидаемо. Это можно увидеть на рисунке 17.

```
data_pivot = df.pivot_table(index=['Platform'], columns='Genre', values='NA_sales', aggfunc='sum')
print(data_pivot)
```

Рисунок 16 – скриншот кода

TG16	NaN	0.00	NaN	Na	N	NaN NaN	NaN
WS	NaN	NaN	NaN	Na	N .	NaN NaN	NaN
Wii	68.07	10.86	12.83	118.8	2 47	.23 9.10	30.95
WiiU	9.69	0.07	3.28	5.5	9 9	.94 0.62	3.47
X360	141.66	8.44	24.61	63.6	6 6	.09 0.62	33.10
XB	34.34	2.22	10.01	7.1	.9 6	.58 0.32	21.48
X0ne	21.37	1.27	1.65	4.7	7 0	.51 NaN	4.36
Genre	Role-Playi	ing Shooter	• Simu]	lation	Sports	Strategy	
Platform							
2600	4	laN 24.68	;	0.42	3.22	NaN	
3D0	1	laN NaN	ı	0.00	NaN	NaN	
3DS	23.	76 0.66	,	7.58	1.66	0.78	
DC	0.	.00 0.00)	0.00	2.14	NaN	
DS	46.	14 6.46	,	67.42	15.48	8.67	
GB	28.	71 0.46)	0.00	3.64	1.49	
GBA	28.	29 2.39	;	3.61	10.30	4.21	
GC	7.	91 10.01		5.37	18.37	2.23	
GEN	0.	00 0.00)	NaN	2.70	0.00	
GG	1	laN NaN	ı	NaN	NaN	NaN	
N64		34 13.96		5.77	22.07	4.64	
NES	1.	14 29.03	;	NaN	7.00	NaN	
NG	1	laN NaN	ı	NaN	0.00	NaN	
PC	17.	35 18.81		20.08	0.38	19.63	
PCFX	0.	.00 NaN	ı	NaN	NaN	NaN	
PS	20.	73 21.16	,	6.79	64.02	6.65	
PS2	32.	85 57.53	;	19.37	134.12	3.57	
PS3	29.	.93 82.03	;	4.30	60.91	1.88	
PS4	9.	34 32.66	,	0.21	19.78	0.17	
PSP	11.	46 10.26	5	1.90	17.54	2.67	
PSV	2.	24 1.48	3	0.01	1.15	0.03	
SAT	0.	.00 0.00)	0.00	0.00	0.00	
SCD	0.	.00 NaN	ı	NaN	NaN	0.00	
SNES	2.	.29 2.67	,	1.39	2.10	0.30	
TG16	N	laN 0.00)	NaN	NaN	NaN	
WS	0.	.00 NaN	I	NaN	NaN	0.00	
Wii	5.	48 18.22	2	23.30	149.72	2.32	
WiiU	1.	.06 2.34	ļ	0.14	1.50	0.49	
X360	44.	75 174.51		8.51	90.02	6.50	
XB	9.	89 46.16	,	5.43	41.02	2.05	
X0ne	6.	15 36.86	,	0.32	15.59	0.27	

Рисунок 17 – результат вывода

Теперь при помощи метода describe выведем описание статистики по всем атрибутам. После этого построим несколько графиков: по количеству значений различных атрибутов, по количеству продаж в Америке в различные года, а также по зависимости переменных друг от друга.

```
print(df.describe(include='all',datetime_is_numeric=True))
df.hist()
plt.show()

df.plot(x='Year_of_Release', y='NA_sales', kind='scatter')
plt.show()

pd.plotting.scatter_matrix(df)
plt.show()
```

Рисунок 18 – скриншот кода

Рисунок 19 – построенные гистограммы

Рисунок 20 – построенный график

Рисунок 21 – построенная матрица зависимомтей

Теперь исследуем взаимосвязь между переменными с помощью оценки коэффициента корреляции и ковариации, а также построим тепловую карту по этим значениям. В созданном заранее временном дата фрейме, удалим строки с отсутсвующими значениями оценок для лучшей оценки корелляции и

ковариации. Интерпретируем результаты. По результатам ковариации можно сказать, что большинство числовых параметров изменяются в одном направлении, кроме продаж в Японии от оценок критиков и пользователей. По результатам корреляции, что самая близкая к линейной является зависимость оценок пользователей от оценок критиков. Также немалый коэффициент зависимости между собой имеют продажи в СА, Европе и остальном мире. У Японцев какой-то свой отдельный мир.

Один столбец с целевым признаком выделить сложно, скорее можно выделить группу атрибутов, связанных с продажами, так как главным для любого продукта является его окупаемость. Продажи, как показывает корреляция, не сильно зависит от оценок. Поэтому следует предположить, что влияют другие показатели, такие как: маркетинг, популярность серии или выпускающей корпорации, выпуск на разных платформах и т.д.

```
tmp_df = tmp_df.dropna(subset=['Critic_Score'])
tmp_df['Year_of_Release'] = pd.to_datetime(tmp_df['Year_of_Release'], format='%Y')
tmp_df['User_Score'] = pd.to_numeric(tmp_df['User_Score'], errors='coerce')
tmp_df = tmp_df.dropna(subset=['User_Score'])

corr = tmp_df.corr(method = 'pearson')
print(corr)
sb.heatmap(corr, cmap="Blues", annot=True)
plt.show()

cov = tmp_df.cov()
print(cov)
sb.heatmap(cov, cmap="Blues", annot=True)
plt.show()
```

Рисунок 22 – скриншот кода

Рисунок 23 – построенная тепловая карта корреляции

Рисунок 24 — построенная тепловая карта ковариации

Вывод: Вывод: Таким образом, в ходе выполнения лабораторной работы был выбран и описан выбранный датасет про продажи и оценки консольных игр, изучен интерфейс и возможности Jupyter Notebook, изучены базовые функции библиотеки Pandas и разработана программа, которая считывает данные, выводит о них информацию, удаляет дубликаты, пропуски, изменяет тип данных и создаёт сводную таблицу и графики, а также высчитывает коэффициенты корелляции и ковариации и строет тепловые карты по ним.