8 класс Рациональное и иррациональное 29 сентября 2018

- 1. Рационально ли число 0, 123456789101112131415...?
- **2.** Докажите, что высота в треугольнике с рациональными длинами сторон делит противоположную сторону на отрезки рациональной длины.
- **3.** Докажите, что в десятичной записи числа $\sqrt{2018}$ можно переставить цифры так, что полученная дробь станет рациональным числом.
- **4.** Найдите все значения a, для которых выражения $a + \sqrt{15}$ и $\frac{1}{a} \sqrt{15}$ одновременно принимают целые значения.
- **5.** Докажите, что существуют иррациональные α и β такие, что число α^{β} рационально.
- **6.** Найдите все x такие, при которых среди четырёх чисел $a=x-\sqrt{2},$ $b=x-\frac{1}{x},$ $c=x+\frac{1}{x},$ $d=x^2+2\sqrt{2}$ ровно одно не является целым.
- 7. Можно ли нарисовать правильный треугольник с вершинами в узлах целочисленной решётки?
- **8.** Десять попарно различных ненулевых чисел таковы, что для каждых двух из них либо сумма этих чисел, либо их произведение рациональное число. Докажите, что квадраты всех чисел рациональны.
- 9. Олег нарисовал пустую таблицу 50×50 и написал сверху от каждого столбца и слева от каждой строки по числу. Оказалось, что все 100 написанных чисел различны, причём ровно 50 из них рациональные. Затем в каждую клетку таблицы он записал произведение чисел, написанных около её строки и её столбца ("таблица умножения"). Какое наибольшее количество произведений в этой таблице могли оказаться рациональными числами?
- **10.** Даны числа x_1, x_2, \ldots, x_n , причем $x_1 \cdot x_2 \cdot \ldots \cdot x_n = a$. Известно, что число $|x_i a|$ нечетно для всех $i = 1, 2, \ldots, n$. Докажите, что все x_i иррациональны.
- 11. Докажите, что существуют $m,n\in\mathbb{N}$ такие, что $|m\sqrt{2}-n|<\frac{1}{10^{100}}$.

8 класс Рациональное и иррациональное 29 сентября 2018

- 1. Рационально ли число 0, 123456789101112131415...?
- **2.** Докажите, что высота в треугольнике с рациональными длинами сторон делит противоположную сторону на отрезки рациональной длины.
- **3.** Докажите, что в десятичной записи числа $\sqrt{2018}$ можно переставить цифры так, что полученная дробь станет рациональным числом.
- **4.** Найдите все значения a, для которых выражения $a + \sqrt{15}$ и $\frac{1}{a} \sqrt{15}$ одновременно принимают целые значения.
- **5.** Докажите, что существуют иррациональные α и β такие, что число α^{β} рационально.
- **6.** Найдите все x такие, при которых среди четырёх чисел $a=x-\sqrt{2}$, $b=x-\frac{1}{x},\,c=x+\frac{1}{x},\,d=x^2+2\sqrt{2}$ ровно одно не является целым.
- **7.** Можно ли нарисовать правильный треугольник с вершинами в узлах целочисленной решётки?
- **8.** Десять попарно различных ненулевых чисел таковы, что для каждых двух из них либо сумма этих чисел, либо их произведение рациональное число. Докажите, что квадраты всех чисел рациональны.
- 9. Олег нарисовал пустую таблицу 50 × 50 и написал сверху от каждого столбца и слева от каждой строки по числу. Оказалось, что все 100 написанных чисел различны, причём ровно 50 из них рациональные. Затем в каждую клетку таблицы он записал произведение чисел, написанных около её строки и её столбца ("таблица умножения"). Какое наибольшее количество произведений в этой таблице могли оказаться рациональными числами?
- **10.** Даны числа $x_1, x_2, ..., x_n$, причем $x_1 \cdot x_2 \cdot ... \cdot x_n = a$. Известно, что число $|x_i a|$ нечетно для всех i = 1, 2, ..., n. Докажите, что все x_i иррациональны.
- 11. Докажите, что существуют $m,n\in\mathbb{N}$ такие, что $|m\sqrt{2}-n|<rac{1}{10^{100}}$.