- Diet score:
 - What we tried
 - Issues
 - Final diet score
- Environment score

Selecting persistently lean individuals with an obesogenic lifestyle

Data

- All datasets consist of subjects who:
 - have nationality data available and are Swedish
 - have the visit variable(besok) available
 - have sufficient diet data in the first place(looking at the variable exclude)
 - have a plausible energy intake, based on their basal metabolic rate(looking at the variable FIL)
 - have values of basic variables like height, weight, waist, etc. inside the recommended limit values
 - have all the basic data and the macro and micro nutrient, PA and alcohol data available.
- Two datasets were constructed, an independent dataset and a dataset containing subjects with two visits [9,11] years apart.
- Out of 111505 subjects total, independent dataset has 44735 subjects, dataset with two visits has 30380 subjects.

We had tried:

- constructing diet score using categorized macro and micro nutrients,
 based on the guidelines stated at Nordic Nutrition Recommendations,
 multiplied with the appropriate effect size on bmi and summed up,
- constructing diet score using combined food items based on the healthy diet score used in publications, multiplied with the appropriate effect size on bmi and summed up,
- constructing diet score using continuous macro and micro nutrient,
 multiplied with the appropriate effect size on bmi and summed up

Issues:

- Recommendations and published diet scores do not completely fit our needs to construct an obesogenic diet score,
- Recommendations did not cover all the macro or micro nutrients,
- Categorization of continuous variables resulted in loss of information,
- Recommendations, published diet scores and diet models are simple and general, not considering food synergy or antagonism and not considering nutrient effect by food source,
- Observed unexpected directions of association with bmi,
- Many model selection and effect size estimation methods,
- Even the best model did not have very good results(low R² and AUC).

• Results for categorized BMI (0=Normal or underweight, 1=overweight, 2=obese):

Visit 1	Diet effec	t size	Diet p-value	AUC	R ²	AIC
Basic model	-	-	-	0.6206	0.0286	54,872
Separate effects	0.273 (1)	0.556 (2)	<2e-16	0.6354	0.0365	54,431
Shrunken joint effects(best $\alpha = 0.2$)	1.807 (1)	3.675 (2)	<2e-16	0.6471	0.0439	54,009
Joint effects	1.263 (1)	2.530 (2)	<2e-16	0.6488	0.0449	53,955

Visit 2	Diet effect	size	Diet p-value	AUC	R ²	AIC
Basic model	-	-	-	0.6040	0.0197	61,884
Separate effects	0.350 (1)	0.783 (2)	<2e-16	0.6259	0.0294	61,279
Shrunken joint effects(best $\alpha = 0.2$)	1.651 (1)	3.671 (2)	<2e-16	0.6394	0.0376	60,757
Joint effects	1.358 (1)	3.005 (2)	<2e-16	0.6417	0.0392	60,656

- Final diet score was constructed using the unshrunken effect sizes where all the macro and micro nutrients were fitted together to model the residuals from modeling BMI with basic covariates.
- Significant macro nutrients and TEI:

	effect size	p-value	vif
Polyunsaturated fat	0.172	2.868733e-06	33.072674
Saturated fat	-0.225	7.580582e-06	44.209620
Sucrose	-0.098	1.122240e-09	8.593770
Carbohydrates	-0.102	2.062294e-03	14.823591
Essential fatty acids	-0.195	5.187166e-10	25.861051
Animal proteins	0.213	8.985754e-16	15.442719
Fiber	0.080	2.030805e-05	10.879772
Disaccharides	0.170	1.569436e-15	12.106861
Trans fat	-0.032	1.116558e-04	2.307944
Salt (sodium)	0.203	5.061785e-35	3.603837
Total energy intake	0.013	4.211870e-03	1.000033

Environment score

 Similar was done for diet score, PA and alcohol consumption, obtaining effect sizes and using them to multiply corresponding variable and then summing all up:

	effect size	p-value	Variable summary
Diet score	0.876992	<2e-16	[-1.719 , 1.383]
PA	-0.081397	<2e-16	[1, 2, 3, 4, 5]
alcohol	-0.041880*	<2e-16	[-3.496 , 1.093]

^{*}we tried to investigate confounding factors influencing the effect of alcohol on bmi, focusing on the socio-economic status, represented by the variable for education, but were not able to confirm confounding.

Diet score per BMI category in independent data

Environment score

Results for the model:

	continous			
	R ²	Environment effect size	p-value	
Visit 1	0.04057	0.866377	<2e-16	
Visit 2	0.05668	1.002757	<2e-16	

	discrete				
	R ²	Environment effect size		p-value	AUC
Visit 1	0.0496214	1.369 (1)	2.893 (2)	<2e-16	0.655383
Visit 2	0.0450873	1.248 (1)	2.976 (2)	<2e-16	0.6491333

Selecting subjects of interest

• Based on the environment score and bmi in both visits, we have to select subjects that are persistently lean/normal weight, despite having an obesogenic environment score.

We had considered:

- Setting a cut-off point in the environment score and defining all values above as obesogenic and select lean/normal weight subjects with the environment score above that value,
- Obtain the ratio $\frac{bmi\ Z\ score}{environment\ Z\ score}$ and set a cut-off point somewhere below one, to select those subjects whose environment z-score is substantially larger than their bmi z-score,

 Selecting those lean/normal weight subjects that are persistently misclassified as overweight or obese.

predicted	0	1	2
0	14090	7122	1771
1	<mark>2688</mark>	3632	809
2	<mark>5</mark>	0	1