

Задача моделирования РНК

Задача моделирования РНК

Definition 1 (RNA Design). Given a folding algorithm \mathcal{F} and a target RNA secondary structure ω , the RNA Design problem is to find an RNA sequence $\phi \in N^{|\omega|} = \{A, G, C, U\}^{|\omega|}$ that satisfies $\omega = \mathcal{F}(\phi)$.

Пространства действий и состояний

$$\mathcal{A} := \{0, 1, 2, 3\} \equiv \begin{cases} \{A, G, C, U\} & \text{for } \mathcal{C}_{\omega}(t) = . & \text{["dot"]} \\ \{GC, CG, AU, UA\} & \text{for } \mathcal{C}_{\omega}(t) = (& \text{["opening bracket"]} \end{cases}$$

$$S := \{0, 1, 2, 3\}^{2\kappa+1} \equiv (\mathcal{B} \cup \{\text{padding}\})^{2\kappa+1}$$

Пространство действий

Методы обучения и Reward

$$L_{\omega}(\mathcal{F}(\phi)) := \left(\frac{\mathrm{d}_{\mathrm{H}}(\mathcal{F}(\phi), \, \omega)}{|\omega|}\right)^{\alpha}$$

- LEARNA
- Meta-LEARNA
- Meta-LEARNA-Adapt

Результаты

МЕТНОО	SOLVED SEQUENCES [%]		
	ETERNA100	RFAM-TANEDA	RFAM-LEARN-TEST
MCTS-RNA	57	79	97
ANTARNA	58	66	100
RL-LS	59	62	62
RNAInverse	60	59	95
LEARNA-10min	=	79	95
LEARNA-30MIN	63	=	97
META-LEARNA-ADAPT	64	83	98
META-LEARNA	65	79	100

Результаты

Список литературы

- 1. https://arxiv.org/pdf/1812.11951.pdf
- 2. https://deepmind.com/blog/alphafold/
- 3. https://github.com/automl/learna