Предел функции и непрерывность

Определение предела функции

Мы переходим к ещё одному ключевому понятию в математическом анализе — понятию предела функции. Понятие предела функции — это способ формализации таких важнейших концепций, как непрерывность и производная.

Определение. Проколотой ε -окрестностью точки x_0 называется множество

$$U'_{\varepsilon}(x_0) = \{x : 0 < |x - x_0| < \varepsilon\}.$$

Определение (Предел по Коши). Пусть функция f определена в некоторой проколотой окрестности точки x_0 . Пределом функции f в точке x_0 называется такое число a, что выполняется следующее. Для любого $\varepsilon > 0$ существует такое $\delta > 0$, что если x принадлежит проколотой δ -окрестности x_0 , то f(x) принадлежит ε -окрестности точки a.

Формально,

$$\forall \varepsilon > 0 \,\exists \delta > 0 \,\forall x \in U'_{\delta}(x_0) \, (|f(x) - a| < \varepsilon).$$

В таком случае пишут $a=\lim_{x\to x_0}f(x)$ или $f(x)\xrightarrow[x\to x_0]{}a.$

Определение (Предел по Гейне). Пусть функция f определена в некоторой проколотой окрестности точки x_0 . Пределом функции f в точке x_0 называется такое число a, что выполняется следующее. Для любой последовательности $\{x_n\}_{n=1}^{\infty}$, стремящейся к x_0 , но не достигающей её (то есть $x_n \neq x_0$ ни для какого n) справедливо

$$f(x_n) \xrightarrow[n \to \infty]{} a.$$

Замечание. Аналогично определяются пределы, равные $+\infty$ и $-\infty$.

Теорема 1 (Эквивалентность двух определений, 6/д). Определения по Коши и по Гейне эквивалентны.

- **1.** Найдите предел функции $f(x) = \frac{x^2-16}{x^2-4x}$ в точке $x_0 = 4$ и докажите наличие предела по определению (по Коши).
- **2.** Докажите, что у функции $f(x) = \sin\left(\frac{\pi}{x}\right)$ отсутствует предел в точке $x_0 = 0$. Используйте определение предела по Гейне.

Теорема 2 (Арифметические операции под знаком предела). Пусть f(x), g(x) — две функции, причём $\lim_{x\to x_0} f(x) = a$, $\lim_{x\to x_0} g(x) = b$. Тогда

- $f(x) \pm g(x) \rightarrow a \pm b$;
- $f(x)g(x) \to ab$;
- Ecnu $b \neq 0$, mo $\frac{f(x)}{g(x)} \rightarrow \frac{a}{b}$.

Непрерывные функции

Определение. Функция f называется непрерывной в точке x_0 , если

$$\lim_{x \to x_0} f(x) = f(x_0).$$

Функция f называется непрерывной, если она непрерывна в каждой своей точке.

Замечание. На интуитивном уровне непрерывность функции означает, что её график можно нарисовать, не отрывая ручки от бумаги.

- 3. Найдите
 - (a) $\lim_{x\to 1} \frac{x^2-4}{x^2-x-2}$;

(c) $\lim_{x \to +\infty} \frac{x^2 - 4}{x^2 - x - 2}$;

(b) $\lim_{x \to 2} \frac{x^2 - 4}{x^2 - x - 2}$; (d) $\lim_{x \to -1} \frac{x^2 - 4}{x^2 - x - 2}$.