Выступление

Слайд 1

Добрый день, меня зовут Гладков Егор, я студент направления "Физика". Тема моей работы "Динамика тороидальных тел в жидкости". Научный руководитель к. ф.-м. н., доцент кафедры теоретической физики Ветчанин Евгений Владимирович.

Слайд 2

Задача о движении тяжёлых твёрдых тел в жидкости рассматривалась в различных её вариациях: движение эллиптической пластинки, монетки, монетки с отверстием. Построенные математические модели не дают полного их согласования с результатами эксперимента. В этой работе математическая модель строится для тороидальных тел.

Тороидальные тела были выбраны из-за наличия стабилизирующего отверстия. При движении образуется дополнительный визрь, который обеспечивает стабилизацию движения и понижает циркуляцию жидкости. Это облегчает решения математической задачи.

Слайд 3

Была поставлена цель: построить математическую модель движения тороидальных тел в жидкости. Оценить её применимость в решении данной задачи.

Для достижения цели требуется решить следующие задачи:

- 1. изготовить натурные образцы торов для проведения эксперимент на натуральной модели тели;
- 2. проведение эксперимента по отслеживанию движения торов и

определению траекторий движения;

- 3. построение математической модели движения;
- 4. обработка полученных результатов.

Слайд 4

Рассмотрим движения однородного тора в безграничном объёме жидкости. Пусть тор под силой тяжести падает в жидкости с начальным углом наклона. На него в жидкости действуют силы вязкого трения. Требуется найти действующие на тело силы трения и моменты этих сил. Для описания движения тела ввёдем две системы координат: неподвижную Охуz, и подвижную O1e1e2e3, жёстко связанную с центром масс тела. Положение начала подвижной системы координат относительно недподвижной задаётся вектором r. Альфа, бета, гамма - орты неподвижной системы координат проекции которых на подвижные оси образуют ортогональную матрицу перехода (1). Также справедливы кинаматические соотношения (2).

Слайд 5

Для описания движения произвольного тела в идеальной жидкости будем использовать уравнения Кирхгофа, к которым добавим влияние внешних сил. Т - суммарная кинетическая энергия тела и жидкости, включая кинетическую энергию циркуляционного движения жидкости через отверстие. Кинетическая энергия тела состоит из кинетической энергии поступательного движения и кинетической энергии вращательного движения. Кинетическая энергия жидкости обусловлена эффектом присоединённых масс. Учитывая импульс, момент импульса, силы тяжести и вязкости уравнения движения примут вид.

Слайд 6

Данная работа проводилась с использованием лабораторного стенда, состоящего из бассейна с размерами 2*1.5*1.8 м, системы отслеживания

движения объектов Contemplas, которая состоит из:

- 1. 4 водонепроницаемые камеры;
- 2. калибровочного объекта;
- 3. специализированного ПО по отслеживанию движения.

В заполненный на один метр водой бассейн погружают калибровочный объект, который нужен нам, чтобы связать неподвижную систему координат с бассейном. Впоследствии, калибровочный объект вынимался из воды.

Слайд 7

Образцы представляют собой набор полноториев с радиусом образующей окружности R_2=0.015 м и внешними радиусами R_1=0.050; 0.060; 0.075 м. Было сделано 2 варианта торов: с отверстиями для маркеров и без них. С помощью программы SolidWorks были спроектированы 3D-модели тел, которые были реализованы на 3D-принтере с помощью технологии FDM-печати. Они использовались в качестве мастер-моделей для изготовления силиконовых форм. Данные образцы были изготовлены из химически отвердеваемого полиуретана с плотностью 1100 кг м^-3. С помощью маркеров и компьютерного ПО Templo и Vicon Motus были получены траектории движения объектов. Данные программы также позволяют определить по координатам маркеров направления подвижной оси е_1 и е_2, ось е_3 вычислялась через векторное произведение е_1 и е_2. Вследствие погрешностей измерений векторы е_1 и е_2 не ортогональны. Для дальнейшего их использования требуется выполнить ортогонализацию.

Слайд 8

С помощью весов была определена масса тел. С помощью программных пакетов SolidWorks и OpenFoam для тора без отверстий на поверхности с внешним радиусом R_1=0.050 м были получены следующие данные: прочитать со слайда.

Слайд 9

При численном интегрировании уравнений движения с начальными условиями, взятыми из эксперимента, значения динамических переменных в каждый момент времени зависят от параметров системы. Определим отклонение расчётных данных от экспериментальных следующим образом. Индекс "0" обозначает экспериментальные данные, а k - масштабные коэффициенты (для лучшего согласования). Поскольку экспериментальные данные неизбежно содержат некоторые погрешности, то перед их анализом было выполнено сглаживание методом Савицкого-Голая. Для наилучшего согласования экспериментальных данных и расчёте данных необходимо найти значения параметров a, b, f_i, g_i, доставляющие минимум функционалу L.

Слайд 10

Для минимизации функционала L применялся генетический алгоритм с вещественным кодированием. В результате минимизации для тора с внешним радиусом R_1=0.050 м были полученные следующие значения параметров: прочитать со слайда.

Слайд 11

Проекция траектории движения тора с радиусом R_1=0.050 м на координатные плоскости xz и yz. Экспериментальные данные показаны красной штрипунктиной кривой. Данные из численного решения - чёрной сплошной кривой.

Слайд 12

Приведены фотографии падения тора радиуса R_1=0.050 м под разными начальными углами.

Слайд 13

Приведены графики изменения компонент векторов альфа, бета и гамма во времени для тора с R_1=0.050 м.

Слайд 14

Полученные из эксперимента координаты каждого из 4-х маркеров и восстановленные по эти координатам координаты центра масс тора и векторы α , β , γ были сглажены с помощью метода Савицкого-Голая. Также были рассчитаны линейные и угловые скорости и их производные. Для расчёта компоненты сил и моментов сил, воздействующих, на тело были использованы следующие формулы. Данные формулы учитывают непостоянство векторов а и b. Для аппроксимации экспериментальных данных использовалась свёрточная глубокая нейронная сеть. Она хорошо подходит для этой задачи как нетривиальный универсальный аппроксиматор. С её помощью были аппроксимированы компоненты сил и моментов сил вязкости.

Слайд 15

Результаты аппроксимации сил вязкости для тора с внешним радиусом R_1=0.050 м. Аппроксимирующая кривая показана красной штрипунктирной кривой. Данные из эксперимента - чёрной сплошной кривой.

Слайд 16

Результаты аппроксимации моментов сил вязкости для тора с внешним радиусом R1=0.050 м. Аппроксимирующая кривая показана красной штрипунктирной кривой. Данные из эксперимента - чёрной сплошной кривой. На третьем графике можно наблюдать несовпадение кривых. Это обусловлено тем, что значения проекции момента сил на ось е_3 очень мало, что и привело к таким последствия. Предполагается, что это можно исправить, использовав дополнительные вычислительные мощности, которыми не располагали ранее.

Слайд 17

Качественные диаграмы нейронной сети для сил вязкости показывают зависимость аппроксимирующих данных от аппроксимируемых. Легко видеть, что данные лежать на биссектрисе координатной плоскости, что свидетельствует о том, что происходит практически полная корреляция данных.

Слайд 18

Качественные диаграмы нейронной сети для моментов сил вязкости показывают зависимость аппроксимирующих данных от аппроксимируемых. Легко видеть, что данные лежать на биссектрисе координатной плоскости, что свидетельствует о том, что происходит практически полная корреляция данных.

Слайд 19

В результате работы были получены следующие результаты.

- 1. Данная математическая модель удовлетворительно описывает движение тороидальных тел;
- 2. Метод минимизации показал свою эффективность в данной задаче;
- 3. Нейросеть успешно аппроксимирует экспериментальные данные;
- 4. Векторы циркуляции а и b могут быть непостоянны.

Картинка с осями на маркере. 14 слайд исправить