

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 2002206910 A

(43) Date of publication of application: 26.07.02

(51) Int. CI

G01B 7/30 G01D 5/12 G01D 5/18 // G01B 11/26

(21) Application number: 2001003314

(22) Date of filing: 11.01.01

(71) Applicant:

MATSUSHITA ELECTRIC IND CO

LTD

(72) Inventor:

ICHIMURA TAKASHI NISHIKAWA HISASHI TATEISHI ICHIRO **FUKUI SATORU**

ONISHI KENEI

(54) ROTATION ANGLE DETECTOR

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a rotation angle detector used in the detection of a rotation angle in steering of an automobile and capable of reducing a detection error and facilitating processing of a detection circuit.

SOLUTION: This rotation angle detector is constituted such that the travel of a moving body 13 in accordance with the rotation of a detection gear 12 meshing with a driving gear 1A of a rotary body 1 is detected as a gradually increasing or decreasing detection signal by a magnet 14 and a magnetism detection element 16 to detect a rotation angle of the rotary body 1 so as to reduce the detection error and facilitate arithmetic processing of the detection circuit.

COPYRIGHT: (C)2002, JPO

/ 回転体 13 移動体 IA 駆動歯車 134 内 孔 18 係合部 仏磁 石 12 検出歯車 15 配線基板 12A 軸 部 16 磁気検出素子 128 螺旋ねじ 17. 検出回路

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2002-206910 (P2002-206910A)

(43)公開日 平成14年7月26日(2002.7.26)

(51) Int.Cl.7		識別記号	FΙ		7	7]ト*(<u>参考</u>)
G 0 1 B	7/30	101	G01B	7/30	 101A	2F063
. G01D	5/12		G01D	5/12	Α	2F065
	5/18			5/18	L	2F077
// G01B	11/26		G 0 1 B	11/26	Z	

審査請求 未請求 請求項の数3 OL (全 6 頁)

(21)出願番号	特願2001-3314(P2001-3314)	(71)出願人 (000005821
			松下電器産業株式会社
(22)出願日	平成13年1月11日(2001.1.11)		大阪府門真市大字門真1006番地
		(72)発明者 ī	市村 孝
		-	大阪府門真市大字門真1006番地 松下電器
		į į	産業株式会社内
		(72)発明者 7	西川寿
		-	大阪府門真市大字門真1006番地 松下電器
		Į į	産業株式会社内
		(74)代理人 1	100097445
		.	弁理士 岩橋 文雄 (外2名)

最終頁に続く

(54) 【発明の名称】 回転角度検出装置

(57)【要約】

自動車のステアリングの回転角度検出等に用 いられる回転角度検出装置に関し、検出誤差が少なく、 検出回路の演算処理の容易なものを提供することを目的 とする。

【解決手段】 回転体1の駆動歯車1Aに噛合した検出 歯車12の回転に伴う移動体13の移動を、磁石14と 磁気検出素子16によって、漸次増加または減少する検 出信号として検出して、回転体1の回転角度を検出する ように回転角度検出装置を構成することによって、検出 誤差が少なく、検出回路の演算処理の容易なものを得る ことができる。

/ 回転体 /3 移動体 IA 駆動歯車 134 内 孔 14 磁 石 18 係合部 15 配線基板 12 検出歯車 12A 軸 部 16 磁気検出素子 128 螺旋ねじ

10

30

【特許請求の範囲】

【請求項1】 外周に駆動歯車が形成された回転体と、 この駆動歯車に噛合する検出歯車と、この検出歯車の回 転に伴って移動する移動体と、この移動体の移動を検出 する検出手段からなり、上記検出手段が上記移動体の移 動を漸次増加または減少する検出信号として検出し、上 記回転体の回転角度を検出する回転角度検出装置。

【請求項2】 検出手段を磁石と磁気検出素子で構成し た請求項1記載の回転角度検出装置。

【請求項3】 変換歯車を設け、この変換歯車を介して 回転体の駆動歯車と検出歯車を噛合した請求項1記載の 回転角度検出装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、自動車のステアリ ングの回転角度検出等に用いられる回転角度検出装置に 関するものである。

[0002]

【従来の技術】近年、自動車の高機能化が進む中、各種 制御のため様々な回転角度検出装置を用いてステアリン グの回転角度を検出するものが増えている。

【0003】このような、従来の回転角度検出装置につ いて、図7~図10を用いて説明する。

【0004】図7は従来の回転角度検出装置の要部斜視 図、図8は同断面図であり、同図において、1は外周に 駆動歯車1Aが形成された回転体で、この駆動歯車1A には各々歯数の異なる第一の検出歯車2及び第二の検出 歯車3が噛合している。

【0005】そして、第一の検出歯車2と第二の検出歯 車3の歯数は、回転体1の所定の回転角度、例えば、回 転体1が中立位置から左方向に2回転した位置と、右方 向に2回転した位置では、最初の噛合位置に戻るよう に、一定の回転角度で周期性を有した歯数に設定されて いる。

【0006】また、回転体1には、中央部に挿通するス テアリング (図示せず) の軸と係合する係合部1Bが設 けられると共に、第一の検出歯車2と第二の検出歯車3 の中央部には、各々磁石4、5が装着されている。

【0007】そして、これらの上面には配線基板6が配 置され、この配線基板6には、第一の検出歯車2と第二 の検出歯車3の中央部に対向する箇所に、角度センサ 7, 8が装着されると共に、角度センサ7, 8からの検 出信号を処理するマイコン等からなる検出回路9が形成 されて、回転角度検出装置が構成されている。

【0008】以上の構成において、ステアリングを回転 すると、これに伴って回転体1が回転し、この駆動歯車 1 Aに噛合した第一の検出歯車2と第二の検出歯車3も 各々回転する。

【0009】そして、この第一の検出歯車2と第二の検 出歯車3の回転を、各々に装着された磁石4,5に対向 50 たものであり、簡易な構成で、無接触式の安定した検出

した角度センサ7,8が検出することによって、回転体 1の、つまりステアリングの回転角度の検出が行われ

【0010】この時、その検出信号は、第一の検出歯車 2と第二の検出歯車3の歯数が異なっているため、図9 の電圧波形図に示すように、回転体1が左方向に2回 転、及び右方向に2回転する間の範囲では、図9(a) の角度センサ7の位相と、図9 (b) の角度センサ8の 位相は差異のある電圧波形となる。

【0011】そして、図10の拡大電圧波形図に示すよ うに、この位相の差異から、回転体1の任意の回転角度 θは、この時の角度センサ7の電圧V1と角度センサ8 の電圧 V 2 を検出回路 9 が検出し、その電圧値と、第一 の検出歯車2と第二の検出歯車3の歯数を演算処理する ことによって、検出されるように構成されているもので あった。

[0012]

【発明が解決しようとする課題】しかしながら上記従来 の回転角度検出装置においては、回転体1の回転角度の 検出を、これに噛合した第一の検出歯車2と第二の検出 歯車3の、二つの歯車の回転を検出して行うため、特に 回転動作開始時や逆回転を行った場合に、回転体1の駆 動歯車1Aと第一の検出歯車2と第二の検出歯車3の、 二箇所の隙間によるがたつきによって、角度検出に誤差 が生じ易いうえ、検出回路9による回転角度検出にも、 複雑な演算処理を要するという課題があった。

【0013】また、検出しようとする回転角度の範囲が 大きくなると、回転体1と二つの検出歯車の周期的関係 から、各々の歯車の歯数を多くする必要があり、装置全 体の小型化を図ることが困難であるという課題もあっ た。

【0014】本発明は、このような従来の課題を解決す るものであり、検出誤差が少なく、検出回路の演算処理 の容易な回転角度検出装置を提供することを目的とす る。

[0015]

【課題を解決するための手段】上記目的を達成するため に本発明は、以下の構成を有するものである。

【0016】本発明の請求項1に記載の発明は、回転体 の駆動歯車に噛合した検出歯車の回転に伴う移動体の移 動を、検出手段が漸次増加または減少する検出信号とし て検出することによって、回転体の回転角度を検出する ように回転角度検出装置を構成したものであり、一つの 検出手段によって、また、漸次増加または減少する検出 信号として回転体の回転角度を検出しているため、簡易 な構成で、検出誤差が少なく演算処理の容易な回転角度 検出装置を得ることができるという作用を有する。

【0017】請求項2に記載の発明は、請求項1記載の 発明において、検出手段を磁石と磁気検出素子で構成し 20

を行うことができるという作用を有する。

【0018】請求項3に記載の発明は、請求項1記載の 発明において、変換歯車を設け、この変換歯車を介して 回転体の駆動歯車と検出歯車を噛合したものであり、変 換歯車と検出歯車の噛合方向を変えることによって、回 転角度検出装置が使用される状態に合わせ、移動体の移 動方向を容易に変換し、装置の小型化や薄型化を図るこ とができるという作用を有する。

[0019]

【発明の実施の形態】以下、本発明の実施の形態につい て、図1~図6を用いて説明する。

【0020】なお、従来の技術の項で説明した構成と同 一構成の部分には同一符号を付して、詳細な説明を省略

【0021】(実施の形態)図1は本発明の一実施の形 態による回転角度検出装置の要部斜視図、図2は同断面 図、図3は同分解斜視図であり、同図において、1は外 周に駆動歯車1Aが形成された回転体で、この駆動歯車 1 Aには、中央に下方へ延出する軸部 1 2 Aが形成され た検出歯車12が噛合している。

【0022】そして、検出歯車12の軸部12Aには螺 旋ねじ12Bが形成され、この螺旋ねじ12Bに、内孔 13Aに同様の螺旋ねじが形成された移動体13が、上 下動可能に噛合している。

【0023】また、回転体1には、中央部に挿通するス テアリング (図示せず) の軸と係合する係合部 1 B が設 けられると共に、移動体13の側面には磁石14が装着 されている。

【0024】そして、移動体13の側方には配線基板1 5が配置され、この配線基板15には、移動体13の側 面に対向する箇所に、検出手段としての、例えばGMR 素子(逆並行磁気抵抗素子)等の磁気検出素子16が装 着されると共に、磁気検出素子16からの検出信号を処 理するマイコン等からなる検出回路17が形成されてい る。

【0025】また、18は絶縁樹脂製のケース、19, 20はカバーで、回転体1や検出歯車12、配線基板1 5等はこれらによって各々位置決めされ、収納されて回 転角度検出装置が構成されている。

【0026】以上の構成において、ステアリングを回転 すると、これによって回転体1が回転し、この駆動歯車 1Aに噛合した検出歯車12が回転するため、軸部12 Aの螺旋ねじ12Bに内孔13Aが噛合した移動体13 が、上または下方向に移動する。

【0027】なお、回転体1や検出歯車12、及び螺旋 ねじ12Bと移動体13の内孔13Aの螺旋ねじ等の歯 数は、回転体1の所定の回転角度、例えば、ステアリン グが中立位置から左右方向に各々3回転した場合に、移 動体13が上下方向に約10mm移動するように設定さ れている。

【0028】そして、この移動体13に装着された磁石 14の磁気を磁気検出素子16が検出することによっ て、回転体1の、つまりステアリングの回転角度の検出 が行われる。

【0029】この時、その検出信号は、図4の電圧波形 図に示すように、移動体13の直線的な移動を、磁石1 4と磁気検出素子16の検出手段によって、磁気の強弱 として検出しているため、漸次増加する直線状の電圧波 形となる。

【0030】そして、この直線状の電圧波形から、回転 体1の任意の回転角度 θ は、電圧Vとして検出され、こ れを検出回路17が回転体1の回転角度として検出し て、ステアリングの回転角度の検出が行われるように構 成されている。

【0031】このように本実施の形態によれば、検出歯 車12の回転に伴う移動体13の直線的な移動を、検出 回路17が漸次増加または減少する検出信号として検出 して、回転体1の回転角度を検出しているため、簡易な 構成で、検出誤差が少なく、検出回路17の演算処理も 容易な回転角度検出装置を得ることができるものであ る。

【0032】そして、検出手段を磁石14と磁気検出素 子16で構成することによって、簡易な構成で、無接触 式の安定した検出を行うことができる。

【0033】なお、以上の説明では、検出歯車12の軸 部12Aを下方へ延出し、この螺旋ねじ12Bに移動体 13を上下動可能に噛合させる構成として説明したが、 回転角度検出装置が使用される状態に合わせ、図5の要 部斜視図に示すように、回転体21の駆動歯車21A及 び検出歯車22をかざ歯車とし、移動体13を側方に移 動させる構成としても、本発明の実施は可能である。

【0034】また、図6の要部斜視図に示すように、平 歯車部23Aとかさ歯車部23Bの二つの歯車が形成さ れた変換歯車23を設け、この変換歯車23を介して回 転体1の駆動歯車1Aと検出歯車を噛合することによっ て、例えば図6に示すように、かさ歯車の検出歯車22 をかさ歯車部23Bに噛合させて、移動体13が側方に 移動するようにしたり、平歯車部23Aに図1に示した ような平歯車の検出歯車12を噛合させて、移動体13 が上下方向に移動する構成とする等、使用される状態に 合わせ、移動体13の移動方向を容易に変換し、回転角 度検出装置の小型化や薄型化を図ることができる。

【0035】なお、以上の説明では、検出歯車12の軸 部12Aに螺旋ねじ12Bを形成し、この螺旋ねじ12 Bに移動体13の内孔13Aを噛合させて、検出歯車1 2の回転に伴って移動体13が移動する構成として説明 したが、検出歯車12の軸部12A外周に螺旋状のカム 溝を形成し、このカム溝内を移動体13に設けた突起が 移動することによって、移動体13を移動させる等、他

50 の方法を用いても本発明の実施は可能である。

【0036】また、検出手段を磁石14と磁気検出素子 16で構成し、磁気によって移動体13の移動を検出し たが、これ以外にも、やや構造は複雑になるが、移動体 13に複数の凹凸や孔を設け、配線基板15に装着した 光検出素子を用いて、光によって移動体13の移動を検 出したり、或いは、配線基板15に抵抗体素子を印刷 し、この上を摺動するブラシ等を移動体13に装着し て、抵抗体素子の抵抗値の変化によって移動体13の移 動を検出する構成としてもよい。

[0037]

【発明の効果】以上のように本発明によれば、簡易な構 成で、検出誤差が少なく演算処理の容易な回転角度検出 装置を得ることができるという有利な効果が得られる。

【図面の簡単な説明】

【図1】本発明の一実施の形態による回転角度検出装置 の要部斜視図

- 【図2】同断面図
- 【図3】同分解斜視図
- 【図4】同電圧波形図
- 【図5】同他の実施の形態による要部斜視図
- 【図6】同要部斜視図
- 【図7】従来の回転角度検出装置の要部斜視図

【図8】同断面図

【図9】同電圧波形図

【図10】同拡大電圧波形図

【符号の説明】

- 1,21 回転体
- 1A, 21A 駆動歯車
- 1 B 係合部
- 12,22 検出歯車
- 12A 軸部
- 12B 螺旋ねじ
 - 13 移動体
 - 13A 内孔
 - 14 磁石
 - 15 配線基板
 - 16 磁気検出素子
 - 17 検出回路
 - 18 ケース
 - 19,20 カバー
 - 23 変換歯車
- 20 23A 平歯車部

12A

23B かさ歯車部

[図1]

13 移動体 回転体 IA 駆動歯車 134 内 18 係合部 12 検出歯車 15 配線基板 16 磁気検出素子 12A 軸 部 128 螺旋わじ 17 検出回路

【図2】

【図10】

フロントページの続き

(72)発明者 立石 一郎

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72)発明者 福井 覚

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72) 発明者 大西 賢英

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

Fターム(参考) 2F063 AA35 AA36 BA08 DA05 DC04

FA01 GA52 KA01 KA03 KA05

2F065 AA42 FF16 FF39

2F077 AA49 DD05 DD18 JJ01 JJ03

JJ09 JJ23 W01