Theory of Automata UNIT-1 (TAFZ)	0
Study of Abstract Computing devices.	
1- Finite Automata (1943) by McCullock & Walterfills. REL	RES
2- Pashdown Automotor (1917) by Gensburg & Gréidech.	
3- Linear Bounded Automate (1960) by John Mykill.	
4- Turing Machine (1936) by A. Turing,	
1 H/W	
S/w	
Study of Abstract programming concepts.	
1- Regular Longuege d'Rogular Grammer.	
2- Content Free Language & content free frammer. 3- Content-Sensitive lenguage Content Southire grammer.	
4- Recursive Enumerable language & grummer, by Noem Chamsky 1956	

Symbol 0--9 A-Z +,-,1, M./ Alphabets, string, and language Set of list of Symbol Set of Symbols from alphabet String. Alphabet Alphabet: An alphabet is a firste, non empty String Set of symbol it is denoted by E language String: - A string is finite Sequence of symbol chosen from an Alphabet manish is string from Z= 50,13 (1) Empty String = E (ii) length of string = 1011/=3, 161=0 (ii) Power of an alphabet &k £3 = { aga, bbb, ccc, gab, agc, aba, abb, abc - 3 = 33 { in set of all string su, | == 1 uz2 uz3 u-- =] (iv) Concotenation of string: Suppose x=011, y=101 xy = 01110), yx=101011 [: xy # yx] Language: A set of strings all of which are chosen from some Is anything the set of the set o En: The language of string consisting of nois followed by n's for 50, \(\xeta = \{0,1\} \) \(\xeta^* = \{\xeta,0\},\,\text{ooll,000||11,000||11} \) - \(\xeta \) L= { E, 01, 00 11, 000 111 8:- Set of binary number whose value is prime L= {10,11,101,111,1011 --- 3

Automata: An automata in defined as a system where energy, materials and Information ove transfered, transmitted and used for performing some function without directly participation of human eg. Automatic machine, Automatic pocking machine etc.

Choractristics of Automata:

(i) gaput: Finite number of input from \(\in \text{I}_1, \text{I}_2 - - \text{Ip} \)

(ii) output: Finite number of output 0,-02 -- 09.

(ii) State: At any instant of time Automaton can be in one of state.

eg. 9, 9, - 9,

iv) State Relation - Relation between present input and present state.

(v) output Relation; - Either state only or both state and input.

Mobioutput Depends input state machine Automation e.g.,

Without memory DFA &

With memory PDA, LBA, 7M.

X Moore Machine.

At any instart V Melay Machine.

of time

Grammer: The mathematical model of grammer was given by Norm
Chamsky in 1956. it turn out to be useful for Computer language BNF
(Bakess-Naur-Form) used to describe the definition of grammer.

A grammer in defined as 4- tuple. G= (V. E. P. S)

1) V -> finite Non-empty set whose elements are called Non-termin -nal. (11) Z - finite Non-empty set whose elements are called terminal. (h)) VNZ= d (in S is special non-terminal (SEV) is start symbol. (v) P is a set of production rule eg. a ->B where & has at least one Non-terminal. Not:-is Reverse substitution not permitted eg. S -> AB (11) No inversion operation permitted if s > AB then AB-sx eg. G= ({S,A,B,E3, {a, b, c3, P, s) P. S-AB $A \rightarrow q$ B -> b BNF Notation Developed by John Beckes and peter Naur ∠ symbol> = -expression— Zsymbol > - Non terminal. - expression - - Contains one or more symbol stage

Seprated by "/" (Reduced by) := left side must be replace with the expression of Right side. L Number > := Zdigit > | Zdigit > < number > ∠digit7 := 0/1/2/---9 digit can be replaced by these symbol.

Chomsky hierarchy	olse,			•
Jammer Type	Typeo	Typei	Type2	Type3
+ grammer Accepted	Unrishickd grommer.	Context Sensitive	Context Free grammer.	Regular
2 Language Accepted	Recursivelly Enomerable	Context Sensitive	Context Free.	Regular Language
3- Automotion.	Thing Machin	1 2 11	Pushdown Automata.	First Ste Automota
4. Example	$ \mathcal{L} \longrightarrow \beta $ $ Sab \longrightarrow ba $	ZAβ→ZYβ AEV	AEV	$x \rightarrow q$ or $x \rightarrow q$
	$A \rightarrow S$ $S \rightarrow A Co S$	B AB→ABB A→BCA	3c () x > a	aG € S→N
		B - b o Akosal	×→V	× → a / a y

FA - A finite automata has a set of states and its control move from State to state in response to external input

Deterministic finite Automata (OFA)

In DFA an each input there is only one state which the automote con transition from its current state.

A DFA consult 5-tuple (O, E, S, 90, F)

O→ Finite non-empty set of state Z→ Finite non-empty set of input

S- transetion function OXE - 0

eg. S(90,0) → 9,

% → he a is githal state.

FCO a set of final state called Acroftonce state.

(01) should be there for occept Example:-L={01,0011,101,11011__}a lograge So design a machine for this. 200 0 1 1 DFA for particular laggrage DFA A=({\$90,9,923 fo,13, 800,90,92) $\delta = \mathcal{S}(\mathcal{Q}_0, 1) \rightarrow \mathcal{Q}_0$ S(20,0) -> 21 8(2,00) -> 9, S(9,1) -> 92 8(92,0) - 9, $S(92,1) \rightarrow 92$ Notation of DEA -1- Transation Diggram 2- Transition Table. Example:-DFA A= ({20,2,92}, {0,1], S, 20, 22) S:-S(20,1)->20 8 (90,0) - 9, 8 (9,0)-9, $S(9,1) \rightarrow 92$ 8 (92,0) -12 S(2,1) -> 2 Transition Diagram -

Transition Table

Properties of Transition function of DFA S(2, w) = 8

No of Warsition function in DFA = QXX INO. Suppose {90,9,923 {0,1} => 3x2=6 No of transition function. en (90,1) -9,

Properties: 1- S(9,1)=9

2- [S(9, W)=F] W= 1101

S(9,1101) for this wan be written as.

Soil w= xq $\omega = xq$ $\omega = xq$ $\omega = xq$ $\omega = qz$ $\omega = qz$

for w= ax ⇒ S(q, ax) ⇒ S(S(q, a), x)

Example: DFA. Ad[9.2,2,2,3], {0,13,5,9,12.)

String w= 110101

$$S(9_0, w) = S(9_0, 110101)$$

$$= S(9_0, 0101)$$

$$= S(9_2, 101)$$

$$= S(9_3, 01)$$

$$= S(9_1, 1) = S(9_0, 1)$$

$$= S(9_0, 1) = 9_0$$

So the string 110101 in acceptable by this machine.

Define as L(A) = { w/\$ (20, w) in in F3}

wing string, 90 in initial state.

And the language which is acceptable in DFA is Regular language.

DFA basically accept or reject a language.

How & to construct DFA for particular language.

QT- Construct a DFA that Accept all string over {a, b} (i) |W| = 2 (ii) |W| > 2 (iii) |W| < 2

(li) (w1 > 2 , L= { a0, ab, b0, bb, abb, aaq , _ 3

(iii) IWI 52 1-86, a, ob, aa, ba, bb3

Q2: Construct DFA WE fa, 63 (1) | w | mod 2 = 0 (11) | w | mod 2 = 1

(1) IW/med 2 = 0, L= [E, ab, ba, aa, bb, acca, bbb, abab

(1) Iwi mod 2 = 1 , L= [4, b, aaa, bbb, abb, aab, aabbb -

03: Construct DFA accepting following language over E. [0.1]

- (i) No. of is is odd and no of o's is odd.

(1) L= {E,

Non-Deterministic Finik A dominals (MDFA/NFA)

A NFA has the power to be in several states at once for MFA & so a function that takes a stake and input symbol as organized but return at Zero, one or more state

Suppose- 2001

NFA Consists 5 typles $(0, \xi, S, \xi, F)$ Where $Q \rightarrow Set$ finite non empty set of states. $Z \rightarrow finite$ non empty set of ignits. $2_0 \rightarrow Element$ of Q $2_0 \in Q$ and in initial state $F \rightarrow F \subseteq Q$ and it is final state. $S \rightarrow Q \times Z \rightarrow 2^Q$

Q1- Construct NFA accepting the string {0,13, whose second last symbol in '1'. Sol:- 7 = {10, 11, 1010, 1110, 0010-(Po) (P2) Transition table: $0 \times 2 \rightarrow 2^{0}$ 5(90,0) S(90,1) \$ 1907 5 (9,0)

Q2:- Construct the NFA that accept all string over {0,13 where.

- (i) String contain 1'
 (ii) Start with 01

- (iv) End with ol

Solin (1) L= {1,01,10,110,001---}

> (i) L= {01,0100,0111,0101---(2) × (2) × 0,1

(iii) L= { 01; 0010, 0010100 -(Po) 0,1 0 (P) 1 (P2) 0,1

(Construct DFA equivalent to NFA m. ((90.93, fo.11, 5,9. (4.3)

		Name of the last o	
Sho	Shately	0	1
	-9	9.	9,
	9,	91	9.9,

Solution - DFA 1- {2, 8,} = f. (8.). (9.3. [9. 9,3 => Power let

- 90 in initial (9. dentify initial state)
- 1 [9.3. (2. 9.] [9 dentity final state]
- (S table (Trasifien table)

Statels	0	1	0 16
d d	\$	d	Q(903) - (19
10)	[9.]	193 -	41
12,5	(91)	(10 =>	(60.00)
(80,9.1)	[9.2]	59.23	(10.1.3)

Minimischin & DFA

Q' Convert minumen state automoto equivalent to finite Automoto describe by

Statels	O	1
-90	9,	95
91	9.	82
(B)	90	92
23	92	86
94	92	25
Ts.	92	%
h	26	94
97	9.	92.

