2~4节电池串联用电池保护 IC (二级保护用)

S-8264A/B系列

S-8264A/B系列内置高精度电压检测电路和延迟电路,是用于锂离子可充电电池的二级保护IC。

通过将各节电池间短路,可适用于2~4节电池的串联连接。

■ 特点

- (1) 针对各节电池的高精度电压检测电路
 - 过充电检测电压n (n = 1 ~ 4)

4.30 V ~ 4.80 V (进阶单位为50 mV) 精度±25 mV (+25°C) 精度±30 mV (-5°C ~ +55°C)

• 过充电滞后电压n (n = 1 ~ 4)

-0.52±0.21 V、-0.39±0.16 V、-0.26±0.11 V、-0.13±0.06 V、无电压

- (2) 仅通过内置电路即可获得检测时的延迟时间 (不需要外接电容)
- (3) 通过CTL端子的输出控制功能 (S-8264A系列)
- (4) 过充电检测后的输出闩锁功能 (S-8264B系列)
- (5) 输出方式、输出逻辑 CMOS输出动态"H"
- (6) 高耐圧器件 绝对最大额定值26 V
- (7) 宽工作电压范围 3.6 V ~ 24 V
- (8) 宽工作温度范围 -40°C~+85°C
- (9) 低消耗电流
 - 各节电池3.5 V时 5.0 μA 最大值 (+25°C)
 各节电池2.3 V时 4.0 μA 最大值 (+25°C)
- (10) 无铅产品

■用途

• 锂离子可充电电池(二级保护用)

■ 封装

封装名		图面	号码	
到装石	封装图面	卷带图面	带卷图面	焊盘图面
SNT-8A	PH008-A	PH008-A	PH008-A	PH008-A
8-Pin TSSOP	FT008-A	FT008-E	FT008-E	_

■ 框图

(1) S-8264A系列

备注 图中所示的二极管为寄生二极管。

图1

(2) S-8264B系列

备注 图中所示的二极管为寄生二极管。

图2

■ 产品型号的构成

1. 产品名

A: 无CO端子的输出闩锁功能 B: 带CO端子的输出闩锁功能

- *1. 请参阅卷带图。
- *2. 请参阅"2. 产品名目录"。

2. 产品名目录

表1 S-8264A系列

产品名 / 项目	过充电检测电压 [Vcu]	过充电滞后电压 [V _{HC}]	过充电检测延迟时间 [tcu]	输出方式
S-8264AAA-I8T1G	4.45 ±0.025 V	-0.39 ±0.16 V	4.0 ±0.8 s	CMOS输出动态"H"
S-8264AAB-I8T1G	4.35 ±0.025 V	−0.39 ±0.16 V	4.0 ±0.8 s	CMOS输出动态"H"
S-8264AAC-I8T1G	4.50 ±0.025 V	-0.39 ±0.16 V	4.0 ±0.8 s	CMOS输出动态"H"
S-8264AAD-I8T1G	4.35 ±0.025 V	$-0.39 \pm 0.16 \text{ V}$	2.0 ±0.4 s	CMOS输出动态"H"
S-8264AAE-I8T1G	4.30 ±0.025 V	−0.39 ±0.16 V	4.0 ±0.8 s	CMOS输出动态"H"
S-8264AAF-I8T1G	4.45 ±0.025 V	$-0.39 \pm 0.16 \text{ V}$	2.0 ±0.4 s	CMOS输出动态"H"
S-8264AAG-I8T1G	4.30 ±0.025 V	−0.39 ±0.16 V	2.0 ±0.4 s	CMOS输出动态"H"

备注 除上述产品以外,其他产品的检测电压也是可以改变的。详情请向本公司营业部咨询。

表2 S-8264B系列

产品名/コ	项目	过充电检测电压 [Vcu]	过充电滞后电压 [Vнс]	过充电检测延迟时间 [tcu]	输出方式
S-8264BAA-	-I8T1G	4.45 ±0.025 V	-0.39 ±0.16 V	4.0 ±0.8 s	CMOS输出动态"H"
S-8264BAB-	-I8T1G	4.35 ±0.025 V	-0.39 ±0.16 V	4.0 ±0.8 s	CMOS输出动态"H"

备注 除上述产品以外,其他产品的检测电压也是可以改变的。详情请向本公司营业部咨询。

■ 引脚排列图

杈	3

引脚号	符号	描述
1	VDD	正电源输入端子
2	SENSE	电池1的正电压连接端子
3	VC1	电池1的负电压、电池2的正电压连接端子
4	VC2	电池2的负电压、电池3的正电压连接端子
5	VC3	电池3的负电压、电池4的正电压连接端子
6	VSS	负电源输入端子、电池4的负电压连接端子
7	CTL	CO输出控制端子(S-8264A系列)
/	CIL	过充电检测闩锁复位端子(S-8264B系列)
8	CO	充电控制用FET门极连接端子

图3

引脚号	符号	描述
1	VDD	正电源输入端子
2	SENSE	电池1的正电压连接端子
3	VC1	电池1的负电压、电池2的正电压连接端子
4	VC2	电池2的负电压、电池3的正电压连接端子
5	VC3	电池3的负电压、电池4的正电压连接端子
6	VSS	负电源输入端子、电池4的负电压连接端子
7	CTL	CO输出控制端子(S-8264A系列)
/	CIL	过充电检测闩锁复位端子(S-8264B系列)
8	CO	充电控制用FET门极连接端子

表4

图4

■ 绝对最大额定值

表5

(除特殊注明以外: Ta = 25°C)

				(**************************************	
项目		符号	适用端子	额定值	单位
VDD – VSS间	前输入电压	V_{DS} VDD V_{SS} V_{SS} V_{SS} V_{SS} V_{SS} V_{SS} V_{SS}		V _{SS} -0.3 ~ V _{SS} +26	V
输入端子电压		V _{IN}	SENSE, VC1, VC2, VC3, CTL	V _{SS} -0.3 ~ V _{DD} +0.3	
CO输出端子申	 包压	Vco	СО	$V_{SS}-0.3 \sim V_{DD}+0.3$	V
容许功耗	SNT-8A	D		450 ^{*1}	mW
各件切柱 8-Pin TSSOP		P _D	_	700 ^{*1}	mW
工作环境温度		Topr	_	−40 ~ +85	°C
保存温度		T_{stg}	_	−40 ~ +125	°C

*1. 基板安装时

[安装基板]

(1) 基板尺寸: 114.3 mm × 76.2 mm × t1.6 mm

(2) 名称: JEDEC STANDARD51-7

注意 绝对最大额定值是指无论在任何条件下都不能超过的额定值。万一超过此额定值,有可能造成产品劣化等物理性损伤。

图5 封装容许功耗 (基板安装时)

■ 电气特性

1. 检测延迟时间以外

表6

(除特殊注明以外: Ta = 25°C)

项目	符号	条件	最小值	典型值	最大值	单位	测定条件	测定电路	
检测电压									
过充电检测电压n (n = 1, 2, 3, 4)	V _{CUn}	可在4.30 V~4.80 V的范 围内调整, Ta = 25°C	V _{CUn} -0.025	V _{CUn}	V _{CUn} +0.025	V	1	1	
		可在4.30 V~4.80 V的范围内 调整, Ta = -5°C ~ +55°C *1	V _{CUn} -0.030	V_{CUn}	V _{CUn} +0.030	V	1	1	
过充电滞后电压n ^{*2} (n = 1, 2, 3, 4)	V _{HCn}	_	V _{HCn} -0.21	-0.52	V _{HCn} +0.21	V	1	1	
输入电压									
VDD – VSS间工作电压	V_{DSOP}	_	3.6	_	24	V	—	_	
CTL输入"H"电压	V_{CTLH}	_	$V_{DD} \times 0.95$		_	٧	6	2	
CTL输入"L"电压	V_{CTLL}	_		_	V _{DD} ×0.4	V	6	2	
输入电流									
工作时消耗电流	I _{OPE}	V1 = V2 = V3 = V4 = 3.5 V	_	2.5	5.0	μΑ	7	4	
过放电时消耗电流	I _{OPED}	V1 = V2 = V3 = V4 = 2.3 V		2.0	4.0	μA	7	4	
SENSE端子电流	I _{SENSE}	V1 = V2 = V3 = V4 = 3.5 V	_	1.5	3.2	μA	8	5	
VC1端子电流	I _{VC1}	V1 = V2 = V3 = V4 = 3.5 V	-0.3	0	0.3	μA	8	5	
VC2端子电流	I _{VC2}	V1 = V2 = V3 = V4 = 3.5 V	-0.3	0	0.3	μA	8	5	
VC3端子电流	I _{VC3}	V1 = V2 = V3 = V4 = 3.5 V	-0.3	0	0.3	μA	8	5	
CTL端子"H"电流	I _{CTLH}	V1 = V2 = V3 = V4 = 3.5 V, $V_{CTL} = V_{DD}$	1.1	1.5	1.8	μΑ	8	5	
CTL端子"L"电流	I _{CTLL}	V1 = V2 = V3 = V4 = 3.5 V, V _{CTL} = 0 V	-0.15	_	_	μΑ	8	5	
输出电流									
CO端子吸收电流	I _{COL}	$V_{COP} = V_{SS} + 0.5 \text{ V}$	0.4	_		mA	9	6	
CO端子源极电流	I _{COH}	$V_{COP} = V_{DD} - 0.5 V$	20	_	_	μΑ	9	6	

^{*1.} 并没有在高温以及低温的条件下进行筛选,因此只保证在此温度范围下的设计规格。

^{*2.} -0.52 V以外的情况下,其电压为 -0.39 ± 0.16 V、 -0.26 ± 0.11 V、 -0.13 ± 0.06 V或无电压。过充电解除电压=过充电检测电压(V_{CUn})+过充电滞后电压(V_{HCn})。

2. 检测延迟时间

(1) S-8264AAA, S-8264AAB, S-8264AAC, S-8264AAE, S-8264BAB

表7

(除特殊注明以外: Ta = 25°C)

项目	符号	条件	最小值	典型值	最大值	单位	测定条件	测定电路
延迟时间	_							
过充电检测延迟时间	t _{CU}	_	3.2	4.0	4.8	S	2	1
过充电定时复位 延迟时间	t _{TR}	_	6	12	20	ms	3	1
过充电解除延迟时间	t _{CL}	_	51	64	77	ms	2	1
CTL端子响应时间	t _{CTL}	_	_	_	2.5	ms	4	2
测试模式移行时间	t _{TST}	V1 = V2 = V3 = V4 = 3.5 V, $V_{DD} \ge V_{SENSE} + 8.5 \text{ V}$			80	ms	5	3

(2) S-8264AAD、S-8264AAF、S-8264AAG

表8

(除特殊注明以外: Ta = 25°C)

					(1)	かいかいエ	777/2/10 1	<u>u 200,</u>	
项目	符号	条件	最小值	典型值	最大值	单位	测定条件	测定电路	
延迟时间	延迟时间								
过充电检测延迟时间	t _{CU}	_	1.6	2.0	2.4	S	2	1	
过充电定时复位 延迟时间	t _{TR}	_	6	12	20	ms	3	1	
过充电解除延迟时间	t _{CL}	_	1.6	2.0	3.0	ms	2	1	
CTL端子响应时间	t _{CTL}	_			2.5	ms	4	2	
测试模式移行时间	t _{TST}	V1 = V2 = V3 = V4 = 3.5 V, $V_{DD} \ge V_{SENSE} + 8.5 \text{ V}$			80	ms	5	3	

■ 测定电路

(1) 测定条件1 测定电路1

在设定V1 = V2 = V3 = V4 = 3.5 V后,缓慢提升V1,CO变为"H"时的V1的电压即为过充电检测电压1(V_{CU1})。之后,缓慢降低V1的电压,CO变为"L"时的V1的电压与 V_{CU1} 之间的差,即为过充电滞后电压(V_{HC1})。

其他的过充电检测电压 $V_{CUn}(n=2\sim4)$ 、过充电滞后 $V_{HCn}(n=2\sim4)$,也可采用与n=1时同样的方法求出。

(2) 测定条件2 测定电路1

在设定V1 = V2 = V3 = V4 = 3.5 V后,在瞬间(10 μs以内)将V1提升到5.0 V为止,从V1达到5.0 V时开始到CO变为 "H"时为止的时间即为过充电检测延迟时间(t_{CU})。之后,在瞬间(10 μs以内)将V1降低到3.5 V为止,从V1变为3.5 V时开始到CO变为"L"为止的时间即为过充电解除延迟时间(t_{CL})。

(3) 测定条件3 测定电路1

在设定V1 = V2 = V3 = V4 = 3.5 V后,在瞬间(10 μ s以内)将V1提升到5.0 V为止。将其当作第1的上升门极。接着,在 t_{CU} -20 ms时间内,在瞬间(10 μ s以内)将V1降低到3.5 V为止,然后,在瞬间(10 μ s以内)再一次将V1提升到5.0 V为止。将其当作第2的上升门极。从V1降低开始到第2的上升为止的时间较短时,在第1的上升开始经过 t_{CU} 的时间之后,CO会变为"H",但从V1降低开始到第2的上升为止的时间慢慢变长时,在第2的上升开始经过 t_{CU} 的时间之后,CO方可变为"H"。此时,从V1降低开始到第2的上升为止的时间即为过充电定时复位延迟时间(t_{TR})。

(4) 测定条件4 测定电路2

S-8264A系列产品的情况下,在设定V1 = V2 = V3 = V4 = 3.5 V、V5为14 V后,在瞬间(10 μ s以内)将V5降低为0 V,从V5变为0 V开始到CO变为"H"为止的时间即为CTL端子响应时间(t_{CTL})。

S-8264B系列产品的情况下,在检测出过充电CO变为"H"后,设定V1 = V2 = V3 = V4 = 3.5 V、V5为 14 V,在瞬间(10 μ s以内)将V5从0 V提升到14 V,从V5变为14 V开始到CO变为"L"为止的时间即为CTL端子响应时间(t_{CTL})。

(5) 测定条件5 测定电路3

在设定V1 = V2 = V3 = V4 = 3.5 V、V5为0 V后,在瞬间(10 μ s以内)将V5提升到8.5 V,然后再将V5降低为0 V。在V5从提升到降低为止的时间较短的情况下,若接着进行过充电检测工作,那么过充电检测时间变为 t_{CU} ,如果V5从提升到降低为止的时间慢慢变长,之后所进行的过充电检测工作的过充电检测时间会比 t_{CU} 短。此时V5从提升到降低为止的时间即为测试模式移行时间(t_{TST})。

(6) 测定条件6 测定电路2

在设定V1 = V2 = V3 = V4 = 3.5 V、V5为0 V后,缓慢提升V5,CO变为"L"时的V5的最大电压即为CTL输入"H"电压(V_{CTLH})。接着,设定V5为14 V后,缓慢降低V5,CO变为"H"时的V5的最小电压即为CTL输入"L"电压(V_{CTLL})。

(7) 测定条件7 测定电路4

设定V1 = V2 = V3 = V4 = 3.5 V,流入VDD端子和SENSE端子的电流的总和即为工作时消耗电流(I_{OPE})。 设定V1 = V2 = V3 = V4 = 2.3V,流入VDD端子和SENSE端子的电流的总和即为过放电时消耗电流(I_{OPED})。

(8) 测定条件8 测定电路5

设定V1 = V2 = V3 = V4 = 3.5 V、V5 = 14 V,I1即为SENSE端子电流(I_{SENSE})、I2即为VC1端子电流(I_{VC1})、I3即为VC2端子电流(I_{VC2})、I4即为VC3端子电流(I_{VC3})、I5即为CTL端子"H"电流(I_{CTLH})。 设定V1 = V2 = V3 = V4 = 3.5 V、V5 = 0 V,I5即为CTL端子"L"电流(I_{CTL1})。

(9) 测定条件9 测定电路6

设定SW1为OFF、SW2为ON。设定V1 = V2 = V3 = V4 = 3.5 V、V6为0.5 V,I2即为CO端子泄漏电流(I_{COL})。 设定SW1及SW2为OFF。V1 = 5 V、V2 = V3 = V5 = 3.0 V、V5为0.5 V。经过 I_{Cu} 后,设定SW1位ON,SW2为OFF,I1即为CO端子的源极电流(I_{COH})。

图6

■ 工作说明

1. 过充电检测工作

在通常状态下进行充电中,如果任何一个电池的电池电压超过了过充电检测电压 (V_{CU}) ,且这种状态持续保持在过充电检测延迟时间 (t_{CU}) 以上时,CO转变为"H"。 这种状态称为过充电状态。通过在CO端子处连接FET,就可以进行充电控制以及二级保护。

S-8264A系列产品的所有电池的电压小于「过充电检测电压(V_{CU})+过充电滞后电压(V_{HC})」,且这种状态持续保持在过充电解除延迟时间(t_{CL})以上时,CO转变为"L"。

S-8264B系列产品的所有电池的电压小于「过充电检测电压(V_{CU})+过充电滞后电压(V_{HC})」,且这种状态持续保持在过充电解除延迟时间(t_{CL})以上时,可解除过充电状态,但是CO仍然保持为"H"。只有CTL端子从 "L" 切换到"H"时,CO才转变为"L"。

2. 过充电定时复位工作

从电压超过过充电检测电压(V_{CU})开始到停止充电为止的过充电检测延迟时间(t_{CU})中,在发生一时地输入低于 V_{CU} 的 过充电解除噪声的情况下,如果过充电解除噪声的时间未达到过充电定时复位延迟时间(t_{TR}),那么 t_{CU} 会继续计时。另一方面,在相同的状态下,如果过充电解除噪声的时间超过了 t_{TR} ,那么 t_{CU} 的计时会先复位,之后超过 V_{CU} 时再重新开始 t_{CU} 的计时。

3. 关于CTL端子

- S-8264A/B系列产品备有控制端子。CTL端子是用来控制CO端子的输出电压。
- S-8264A系列产品的CTL端子,优先用于过充电检测电路。
- S-8264B系列产品的CTL端子从 "L" 切换到"H"时,向过充电检测闩锁输出复位信号,使CO转变为"L"。

CTL端子	CO端子			
	S-8264A系列	S-8264B系列		
"H"	通常状态 ^{*1}	无闩锁		
Open	"H"	通常状态 ^{*1}		
"L"	"H"	通常状态 ^{*1}		
"L"→"H"	-	闩锁复位 ^{*2}		
"H"→"I "	_	_		

表9 通过CTL端子而设定的状态

- *1. 可通过过充电检测电路来控制状态。
- *2. 所有的电池的电压比「过充电检测电压(V_{CU})+过充电滞后电压(V_{HC})」小,并且经过过充电解除延迟(t_{CL})时间之后有效。

*1. CTL端子从"H"切换到"L"或者从"L"切换到"H"时的反向电压为VDD端子电压减去2.8 V(典型值)后的电压, 没有滞后。

图7 CTL端子的内部等效电路

- 注意 1. 由于CTL端子处内置了8 $M\Omega \sim 12 M\Omega$ 的下拉用高电阻,因此请注意防范来自外部的噪声干扰。如果受到外部的噪声干扰,CO有可能转变为"H"。请在实际的应用电路上进行充分的评价。
 - 2. S-8264B系列产品的CTL端子处于Open或"L"的状态时,会闩锁为CO = "H",只有将VDD端子电压设定为2 V(典型值)的UVLO电压以下时才能被复位。

4. 测试模式

S-8264A/B系列产品可以转换为测试模式来缩短过充电检测延迟时间(tcu)。

要转换为测试模式,与SENSE端子电压相比VDD端子电压需要高出8.5 V以上,且这种状态要保持80 ms(V1 = V2 = V3 = V4 = 3.5 V、Ta = 25 °C)以上。这种状态可利用内部闩锁来继续保持,即使VDD端子电压再一次恢复为与SENSE端子电压相同的电压,也可以继续保持为测试模式。

检测到过充电并经过延迟时间之后,CO转变为"H",由于测试模式保持用的闩锁被复位,因此可脱离测试模式。

*1. 通常状态下: t_{CU} = 4 s Typ.产品时,t_{CU} = 64 ms Typ.。 通常状态下: t_{CU} = 2 s Typ.产品时,t_{CU} = 32 ms Typ.。

图8

- 注意 1. 当VDD端子电压比2 V(典型值)的UVLO电压低时,恢复为通常模式。
 - 2. 要转变为测试模式,必须在所有电池处于非过充电状态下进行。
 - 3. 测试模式下,过充电解除延迟时间(tcl)不会被缩短。
 - 4. 测试模式下,过充电定时复位延迟时间(t_{TR})不会被缩短。

■ 时序图

1. 过充电检测工作

(1) S-8264A系列

(2) S-8264B系列

15

2. 过充电定时复位工作

图11

■ 电池保护IC的连接例

(1) 4节串联

表10 外接元器件参数

No.	元器件	最小值	典型值	最大值	单位
1	R1 ~ R4	0.1	1	10	kΩ
2	C1 ~ C4, C _{VDD}	0.01	0.1	1	μF
3	R _{VDD}	50	100	500	Ω
4	R _{CTL}	0	100	500	Ω

注意 1. 上述参数有可能未经预告而改变。

- 2. 除上述连接例以外,尚未确认在其他电路中的工作状况。此外,上述连接图以及仅供参考,并不作为保证工作的依据。请在进行充分的评价基础上设定实际的应用电路的参数。
- 3. 请将R1~R4、C1~C4以及CVDD设定为相同的参数。
- 4. 请将R_{VDD}、C1 ~ C4以及C_{VDD}设定为(R_{VDD})×(C1 ~ C4, C_{VDD})≥5×10⁻⁶。
- 5. 请将R1~R4、C1~C4以及C_{VDD}设定为(R1~R4)×(C1~C4, C_{VDD})≥1×10⁻⁴。
- 6. 关于外部输入,S-8264A系列产品通常输入"H",要使CO = "H"时,请输入"L"。此外,S-8264B系列产品通常输入"L",经过过充电检测之后,要解除保持CO = "H"的闩锁时,请输入"H"。
- 7. 电池连接中有过渡输出CO="H"的情况,为防止熔断三端保险丝,请在最后连接BAT1的正极。

(2) 3节串联

表11 外接元器件参数

No.	元器件	最小值	典型值	最大值	单位
1	R1 ~ R3	0.1	1	10	kΩ
2	C1 ~ C3, C _{VDD}	0.01	0.1	1	μF
3	R_{VDD}	50	100	500	Ω
4	R _{CTL}	0	100	500	Ω

注意 1. 上述参数有可能未经预告而改变。

- 2. 除上述连接例以外,尚未确认在其他电路中的工作状况。此外,上述连接图以及仅供参考,并不作为保证工作的依据。请在进行充分的评价基础上设定实际的应用电路的参数。
- 3. 请将R1~R3、C1~C3以及CVDD设定为相同的参数。
- 4. 请将R_{VDD}、C1 ~ C3以及C_{VDD}设定为(R_{VDD})×(C1 ~ C3, C_{VDD})≥5×10⁻⁶。
- 5. 请将R1~R3、C1~C3以及C_{VDD}设定为(R1~R3)×(C1~C3, C_{VDD})≥1×10⁻⁴。
- 6. 关于外部输入,S-8264A系列产品通常输入"H",要使CO = "H"时,请输入"L"。此外,S-8264B系列产品通常输入"L",经过过充电检测之后,要解除保持CO = "H"的闩锁时,请输入"H"。
- 7. 电池连接中有过渡输出CO="H"的情况,为防止熔断三端保险丝,请在最后连接BAT1的正极。

(3) 2节串联

表12 外接元器件参数

No.	元器件	最小值	典型值	最大值	单位
1	R1 ~ R2	0.1	1	10	kΩ
2	C1 ~ C2, C _{VDD}	0.01	0.1	1	μF
3	R_{VDD}	50	100	500	Ω
4	R _{CTL}	0	100	500	Ω

注意 1. 上述参数有可能未经预告而改变。

- 2. 除上述连接例以外,尚未确认在其他电路中的工作状况。此外,上述连接图以及仅供参考,并不作为保证工 作的依据。请在进行充分的评价基础上设定实际的应用电路的参数。
- 3. 请将R1~R2、C1~C2以及CVDD设定为相同的参数。
- 4. 请将R_{VDD}、C1 ~ C2以及C_{VDD}设定为(R_{VDD})×(C1 ~ C2, C_{VDD})≥5×10⁻⁶。
- 5. 请将R1~R2、C1~C2以及C_{VDD}设定为(R1~R2)×(C1~C2, C_{VDD})≥1×10⁻⁴。
- 6. 关于外部输入,S-8264A系列产品通常输入"H",要使CO = "H"时,请输入"L"。此外,S-8264B系列产品 通常输入"L",经过过充电检测之后,要解除保持CO = "H"的闩锁时,请输入"H"。
- 7. 电池连接中有过渡输出CO="H"的情况,为防止熔断三端保险丝,请在最后连接BAT1的正极。

■ 注意事项

- 请注意不要连接高于V_{CU}+V_{HC}的电池,即使所连接电池中只有一个高于V_{CU}+V_{HC}电压的电池,连接所有端子后,也会发生CO="H"的情况。
- 因应用电路的不同,即使是在不包含过充电电池的情况下,为了防止电池连接时输出过渡的CO检测脉冲,有可能限制电池的连接顺序,使用时请进行充分的评价。
- 连接S-8264B系列产品的所有端子后,有可能会输出CO="H",发生这种情况时,请将CTL端子从"L"切换为"H"。
- 电池保护IC的连接例图中RVDD及R1的电池侧的端子,请在电池连接前短路。
- 请注意输入输出电压、负载电流的使用条件,以便使IC内部的功耗不超过封装的容许功耗。
- 本IC虽内置防静电保护电路,但请不要对IC施加超过保护电路性能的过大静电。
- 使用本公司的IC生产产品时,如在其产品中对该IC的使用方法或产品的规格,或因与所进口国对包括本IC产品在内的制品发生专利纠纷时,本公司概不承担相应责任。

■ 应用电路例

1. 通过PTC进行过热保护时

- 注意 1. 上述连接图仅供参考,并不作为保证工作的依据。请在进行充分的评价基础上设定实际的应用电路的参数。
 - 2. 由于CTL端子内置了下拉电阻,因此S-8264A系列产品通过PTC进行过热保护时,在连接电池之前,请连接好PTC。
 - 3. 在电源变动较大的情况下,请将PTC的电源连接到本产品的VDD端子上。
 - 4. 电池连接中有过渡输出CO="H"的情况,为防止熔断三端保险丝,请在最后连接BAT1的正极。

【有关SC PROTECTOR的咨询处】

Sony Chemical & Information Device Corporation, Electronic Device Marketing & Sales Dept.

Gate City Osaki East Tower 8F, 1-11-2

Osaki, Shinagawa-ku, Tokyo, 141-0032 Japan

TEL +81-3-5435-3943

Contact Us: http://www.sonycid.jp/en/

【有关PTC的咨询处】

Murata Manufacturing Co., Ltd.

Thermistor Products Department

Nagaokakyo-shi, Kyoto 617-8555 Japan

TEL +81-75-955-6863

Contact Us: http://www.murata.com/contact/index.html

■ 各种特性数据(典型数据)

1. 检测电压的温度特性

(1) 过充电检测电压 温度依靠性

(2) 过充电解除电压 温度依靠性

2. 消耗电流的温度特性

(1) 通常工作消耗电流 温度依靠性

(2) 过放电时消耗电流 温度依靠性

3. 延迟时间的温度特性

(1) 过充电检测延迟时间 温度依靠性

(2) 过充电解除延迟时间 温度依靠性

4. 输出电流温度特性

(1) CO端子吸收电流 V_{DD}依靠性

(2) CO端子源极电流 V_{DD}依靠性

5. CTL端子温度特性

(1) CTL端子阈值电压 温度依靠性

(2) CTL端子输入电阻 温度依靠性

■ 标记规格

(1) SNT-8A

(1): 空白

(2)~(4): 产品简称 (请参阅产品名与产品简称的对照表)

(5), (6): 空白 (7)~(11): 批号

产品名与产品简称的对照表

产品名	产品简称		
7 111 11	(2)	(3)	(4)
S-8264AAA-I8T1G	Q	5	Α
S-8264AAB-I8T1G	Q	5	В
S-8264AAC-I8T1G	Q	5	С
S-8264AAD-I8T1G	Q	5	D
S-8264AAE-I8T1G	Q	5	Е
S-8264AAF-I8T1G	Q	5	F
S-8264AAG-I8T1G	Q	5	G

产品名	产品简称		
7 111 11	(2)	(3)	(4)
S-8264BAA-I8T1G	Q	6	Α
S-8264BAB-I8T1G	Q	6	В

(2) 8-Pin TSSOP

(1)~(5): 产品名: S8264 (固定)

(6)~(8): 功能简称

(9)~(14): 批号

No. PH008-A-P-SD-2.0

TITLE	SNT-8A-A-PKG Dimensions				
No.	PH008-A-P-SD-2.0				
SCALE					
UNIT	mm				
Seiko Instruments Inc.					

No. PH008-A-C-SD-1.0

TITLE	SNT-8A-A-Carrier Tape		
No.	PH008-A-C-SD-1.0		
SCALE			
UNIT	mm		
Seiko Instruments Inc.			

No. PH008-A-R-SD-1.0

TITLE	SNT-8A-A-Reel				
No.	PH008-A-R-SD-1.0				
SCALE	QTY. 5,000				
UNIT	mm				
Seiko Instruments Inc.					

Caution Making the wire pattern under the package is possible. However, note that the package may be upraised due to the thickness made by the silk screen printing and of a solder resist on the pattern because this package does not have the standoff.

注意 パッケージ下への配線パターン形成は可能ですが、本パッケージはスタンドオフが無いので、パターン上のレジスト厚み、シルク印刷の厚みによってパッケージが持ち上がることがありますのでご配慮ください。

No. PH008-A-L-SD-3.0

SNT-8A-A-Land Recommendation			
PH008-A-L-SD-3.0			
mm			
Seiko Instruments Inc.			

No. FT008-A-P-SD-1.1

TITLE	TSSOP8-E-PKG Dimensions			
No.	FT008-A-P-SD-1.1			
SCALE				
UNIT	mm			
Osilia Instrumenta Ins				
Seiko Instruments Inc.				

No. FT008-E-C-SD-1.0

TITLE	TSSOP8-E-Carrier Tape			
No.	FT008-E-C-SD-1.0			
SCALE				
UNIT	mm			
Seiko Instruments Inc.				

No. FT008-E-R-SD-1.0

TITLE	TSSOP8-E-Reel					
No.	FT008-E-R-SD-1.0					
SCALE			QTY.	3,000		
UNIT	mm					
Seiko Instruments Inc.						

- 本资料内容,随产品的改进,可能会有未经预告之更改。
- 本资料所记载设计图等因第三者的工业所有权而引发之诸问题,本公司不承担其责任。另外,应用电路示例为产品之代表性应用说明,非保证批量生产之设计。
- 本资料所记载产品,如属国外汇兑及外国贸易法中规定的限制货物(或劳务)时,基于该法律,需得到日本国政府之出口 许可。
- 本资料内容未经本公司许可,严禁以其他目的加以转载或复制等。
- 本资料所记载之产品,未经本公司书面许可,不得作为健康器械、医疗器械、防灾器械、瓦斯关联器械、车辆器械、航空器械及车载器械等对人体产生影响的器械或装置部件使用。
- 尽管本公司一向致力于提高质量与可靠性,但是半导体产品有可能按照某种概率发生故障或错误工作。为防止因故障或错误动作而产生人身事故、火灾事故、社会性损害等,请充分留心冗余设计、火势蔓延对策设计、防止错误动作设计等安全设计。