Simulating Treatment for Obesity-Induced Type II Diabetes with GLP-1 Agonist Drugs

By Eli Bullock-Papa

In this presentation:

- 1. What is diabetes
- 2. Overview of how it forms
- 3. A more complete model (we'll breeze through it this time)
- 4. My Work

What is Diabetes?

Diabetes Overview

Complex condition diagnosed by having too much glucose in your blood

Major Components Overview

Blood Glucose: sugar your body produces when you eat.

Insulin: a hormone produced to tell cell they should absorb glucose from the bloodstream.

Beta cells: cells in the pancreas that produce insulin.

Type 2 Diabetes

In type 2 diabetes, the pancreas makes some insulin but it is not working as well as it used to.

How does it develop?

Diabetes Development and Obesity

Views have **changed over time** but this is the modern overview of **how we think Type 2 Diabetes (T2D) is developed in youth** (people under 40):

- Due to the combination of diet and lack of exercise, a person starts to gain excessive weight, potentially leading to obesity.
- 2. In response to high blood sugar levels, the **pancreas produces more insulin** than normal to try to lower blood sugar levels.

Diabetes Development and Obesity

- 3. The body **begins to develop insulin resistance as a protective response**. It's theorized that this resistance helps shield the body's cells from excessive sugar intake and the stress of high insulin levels
- 4. The insulin resistance means that cells aren't taking up all of the blood glucose, and **blood sugar remains high** even with high insulin levels.
- 5. High blood sugar levels **keep beta cells producing insulin levels in overdrive**.
- Over long stretches of time, this overwork causes beta cells to begin dysfunctioning or even die.
- 7. This plus continued insulin resistance means blood glucose levels continue to spiral upwards

A more complete model

Journal Article

Model source:

iScience. 2023 Nov 17; 26(11): 108324.

Published online 2023 Oct 23. doi: 10.1016/j.isci.2023.108324

PMCID: PMC10665812

PMID: 38026205

A data-driven computational model for obesity-driven diabetes onset and remission through weight loss

<u>Vehpi Yildirim</u>, ^{1,2,9,*} <u>Vivek M. Sheraton</u>, ^{2,3,4} <u>Ruud Brands</u>, ^{5,6} <u>Loes Crielaard</u>, ^{1,2} <u>Rick Quax</u>, ^{2,3} <u>Natal A.W. van Riel</u>, ^{7,8} <u>Karien Stronks</u>, ^{1,2} <u>Mary Nicolaou</u>, ^{1,2} and <u>Peter M.A. Sloot</u> ^{2,3}

▶ Author information ▶ Article notes ▶ Copyright and License information PMC Disclaimer

My work

Understanding and labeling the source code

```
pars={}
pars['eq0'] = 24.48 # Endogenous glucose production rate (mg/dl)
pars['k'] = 700 # Glucose elimination constant or sensitivity (dimensionless)
pars['bv'] = 5 # Blood volume (liters) assumed for the insulin and glucose distribution
pars['mmax'] = 1 # Maximum metabolic rate (mg/dl/day)
pars['alpha m'] = 140 # Half-saturation constant for glucose effect on metabolic rate (mg/dl)
pars['km'] = 2 # Hill coefficient for glucose effect on metabolic rate (dimensionless)
pars['alpha isr'] = 1.2 # Insulin secretion rate modulation factor (dimensionless)
pars['kisr'] = 2 # Insulin secretion rate sensitivity to metabolic rate changes (dimensionless)
pars['pmax'] = 4.55  # Maximum rate of beta-cell proliferation (mg/day)
pars['kp'] = 4 # Sensitivity parameter for insulin's effect on beta-cell proliferation (dimensionless)
pars['alpha p'] = 35  # Half-saturation constant for insulin effect on beta-cell proliferation (uU/ml)
pars['p b'] = 0 # Baseline beta-cell proliferation rate when insulin is minimal (mg/day)
pars['amax'] = 5  # Maximum rate of beta-cell apoptosis (mg/day)
pars['alpha a'] = 0.37 # Half-saturation constant for glucose effect on beta-cell apoptosis (mg/dl)
pars['ka'] = 6  # Hill coefficient for glucose effect on beta-cell apoptosis (dimensionless)
pars['a b'] = 0.9 # Baseline apoptosis rate of beta-cells when glucose is minimal (mg/day)
pars['tau b'] = 1800  # Time constant for beta-cell mass dynamics (days)
pars['height'] = 1.8 # Subject's height (meters)
pars['age b'] = 30 # Baseline age of the subject (years)
pars['sex'] = 1 # Sex of the subject (1 for male, 0 for female)
pars['cage'] = 0  # Age change coefficient, for dynamic aging effects (dimensionless)
pars['target_si'] = 1.4 # Target whole body insulin sensitivity (uU/ml/day)
pars['tau_si'] = 1  # Time constant for insulin sensitivity dynamics (days)
pars['bmi h'] = 25  # Threshold BMI for health risk assessment (kg/m^2)
pars['mffa'] = 0.8 # Modulation factor for FFA's effect on insulin sensitivity (dimensionless)
pars['ksi infl'] = 1.8 # Inflammatory status modulation constant for insulin sensitivity (dimensionless)
```

Experimental data on GLP-1 agonist Wegovy

Patients taking Wegovy® achieved¹

15% or 35lb

Mean Weight Loss Reduction

at 2 years

vs 2.6% (~6 lb) weight loss with placebo

Mean baseline body weight:

Wegovy®=232.8 lb; placebo=234.8 lb.

Mean baseline BMI: 38.5 kg/m².

Data issues

The published drug test results <u>do not show how many calories participants ate</u>, instead they <u>focused on weight as an endpoint</u>. Therefore, I can't get experimental information on calorie reduction (or an accompanying timeline).

Therefore, I had to <u>estimate calorie reductions in order to replicate the weight</u> <u>findings</u>

Defining a function to mimic GLP-1 Agonist treatment

```
def adjust_for_wegovy(t, pars):
    if t > 365: # Assuming drug introduction after one year, expressed in days
        ramp_duration = 180 # duration over which the drug effect ramps up in days
        ramp_factor = min((t - 365) / ramp_duration, 1) # caps at 1 when the full effect is reached
        pars['inc_i1'] = max(pars['inc_i1'] - ramp_factor, pars['inc_i1'] - 0.15) # Gradually apply the reduction in caloric intake
```

Important parts of this function

- Treatment start time (in this case 365 days)
- Ramp duration to increase to full dose (in this case 180 days)
- Minimum calorie intake (in this case 15% below the original amount)

Reproducing the results in the paper

Reproducing the results in the paper

Extending the results in the paper

Doubled length of time to 10 years

Trying to replicate Wegovy medical trials

Treatment start time

- Year 5

Ramp duration

- 120 days

Ending calorie intake

- 15% less than what they've been eating for the past 5 years

Trying to replicate Wegovy medical trials

Treatment start time

- Year 5

Ramp duration

- 120 days

Ending calorie intake

- 30% less than what they've been eating for the past 5 years

Trying to replicate Wegovy medical trials

Treatment start time

- Year 5

Ramp duration

- 365 days

Ending calorie intake

 1% calorie deficit below baseline needs based on height

Important Caveats

- Wegovy and other GLP-1 agonists have additional blood sugar controlling effects independent of weight loss effects.
- Anecdotally at least, people with **severe** diabetes (200mg/dl +) have seen their blood sugar lowered to more reasonable levels in less than a year

Any Questions?