Prof. A. Meyer 13.02.2006

Klausur zur Experimentalphysik 1

WS 2005/2006 Bearbeitungszeit: 90 Minuten

Hilfsmittel: Ein beschriebenes DinA4 Blatt und ein nichtprogrammierbarer Taschenrechner

Aufgabe 1

Eine Tonne ist mit Glyzerin (Dichte $\rho_G = 1.3 \,\mathrm{g/cm^3}$, Viskosität $\eta = 1.5 \,\mathrm{Pa}$ s) gefüllt. Zum Zeitpunkt t = 0 wird eine kleine Kugel aus Holz (Dichte $\rho_H = 0.8 \,\mathrm{g/cm^3}$, Radius $r = 3 \,\mathrm{cm}$) vom Boden der Tonne losgelassen.

- a) Fertigen Sie eine Skizze an. Die z Achse zeige nach oben. Stellen Sie die Bewegungsgleichung für die Kugel auf.
- b) Leiten Sie die Geschwindigkeit v(t) der Kugel als Funktion der Zeit her. Welche Geschwindigkeit hat die Kugel nach $t=0.1\,\mathrm{s}$?
- c) Leiten Sie den Ort z(t) der Kugel als Funktion der Zeit her.
- d) Nehmen Sie nun an, dass sich die Kugel mit konstanter Geschwindigkeit v_0 bewegt. Berechnen Sie die Wärmeleistung P für diesen Fall.

Aufgabe 2

Eine Seifenblase mit dem Radius $r=4\,\mathrm{cm}$ hat eine Oberflächenspannung von $\gamma=0.05\,\mathrm{N/m}$.

- a) Wie groß ist die Druckdifferenz ΔP zwischen Innen- und Außendruck (Herleitung)?
- b) Fassen Sie die Luft innerhalb und außerhalb der Seifenblase als ein ideales Gas auf. Wie groß ist der Druck P_i innerhalb der Seifenblase, wenn der Außendruck $P_a=10^5$ Pa beträgt? Wie groß ist die Dichte ρ_i innerhalb und ρ_a außerhalb der Seifenblase, wenn die Innentemperatur $T_i=300\,\mathrm{K}$, die Außentempertur $T_a=290\,\mathrm{K}$ und die Molmasse der Luft $M_N=29\,\mathrm{g/mol}$ beträgt? [Gaskonstante: $R=8.31\,\mathrm{J/(mol\,K)}$]
- c) Welche Auftriebskraft erfährt die Seifenblase? Welche Masse m hat die Seifenblasenhaut, wenn Sie unter den oben angegebenen Bedingungen schwebt?

Aufgabe 3

Ein Feuerwerkskörper besteht aus einem Kreuz aus vier dünnen Stäben, das um die Achse A reibungsfrei gelagert ist. Die Achse A geht senkrecht zur Kreuzebene durch dessen Schwerpunkt. An jedem Ende der Stäbe der Länge $l=0.5\,\mathrm{m}$ und der Masse $m_1=10\,\mathrm{g}$ sind jeweils baugleiche Treibsätze montiert. Nach dem Zünden strömt heißes Gas mit einer konstanten Rate \dot{m} und konstanter Geschwindigkeit ($v_e=20\,\mathrm{m/s}$) senkrecht zu den Stäben im Uhrzeigersinn aus den Treibsätzen und der Feuerwerkskörper beginnt sich zu drehen. Alle vier Treibsätze werden gleichzeitig gezündet. Die Startmasse eines Treibsatzes beträgt $m_0=100\,\mathrm{g}$. Die Ausdehnung der Treibsätze sowie ihre Masse nach dem Brennschluss soll vernachlässigt werden. Die Brenndauer beträgt $T=100\,\mathrm{s}$.

- a) Leiten Sie das Trägheitsmoment $\Theta(t)$ des Feuerwerkskörpers für $0 \le t \le T$ als Funktion der Zeit her.
- b) Berechnen Sie die Schubkraft F_s und das Drehmoment M_1 eines Treibsatzes auf den Feuerwerkskörper. Geben Sie den Drehimpuls als Funktion der Zeit an.
- c) Zum Zündzeitpunkt t=0 ruht der Feuerwerkskörper. Bestimmen Sie den Drehimpuls L und die Winkelgeschwindigkeit ω nach Brennschluss.

Aufgabe 4

In einem U-Rohr aus Glas mit konstantem Innendurchmesser befindet sich Quecksilber ($\rho=13.5\,\mathrm{g/cm^3}$). Das U-Rohr ist an einer Seite offen und auf der anderen Seite mit einem Stopfen verschlossen. Infolge des Überdrucks auf der verschlossenen Seite steigt die Flüssigkeit auf der offenen Seite um $x_0=3.5\,\mathrm{cm}$ gegenüber der Ruhelage x=0. Die Quecksilbersäule hat eine Länge von $l=30\,\mathrm{cm}$ und kann sich reibungsfrei im Rohr bewegen. [Normfallbeschleunigung: $g=9.81\,\mathrm{m/s^2}$]

- a) Zum Zeitpunkt t=0 wird der Stopfen auf der verschlossenen Seite entfernt. Stellen Sie die Bewegungsgleichung auf und lösen Sie diese. Berechnen Sie die Kreisfrequenz ω_0 der Schwingung.
- b) Berechnen Sie die Anfangsbeschleunigung und die maximale Geschwindigkeit.
- c) Der Stopfen wird nun durch einen Kolben ersetzt. Dieser erzeugt einen periodischen Druck $P=P_0\cos(\omega t)$ mit der Kreisfrequenz $\omega=0.5\,\omega_0$. Die Quecksilbersäule schwingt mit derselben Kreisfrequenz ω und mit der Amplitude $x_0=5\,\mathrm{cm}$. Stellen Sie die Bewegungsgleichung auf und leiten Sie einen Zusammenhang zwischen der Schwingungsamplitude x_0 und der Druckamplitude P_0 her. Wie groß ist der maximale Druck im U-Rohr?