Polyatomic ions

Polyatomic ions	
ammonium	NH_4^+
sulfate	SO ₄ ²⁻
hydrogen sulfate	HSO ₄
sulfite	$\mathrm{SO}_3^{^{\ 2 ext{-}}}$
nitrate	NO_3^{-}
nitrite	NO_2^{-}
phosphate	PO ₄ 3-
hydrogen phosphate	HPO ₄ ²⁻
dihydrogen phosphate	$H_2PO_4^{-}$
phosphite	PO_3^{3-}
hydroxide	OH-
peroxide	O_2^{2-}
acetate	$C_2H_3O_2^{-1}$
perchlorate	ClO ₄
chlorate	ClO ₃
chlorite	ClO ₂
hypochlorite	ClO-
chromate	$\mathrm{CrO_4}^{^{2}}$
dichromate	$\operatorname{Cr_2O_7}^{^{2\text{-}}}$
permanganate	MnO_4^{-1}
cyanide	CN-
cyanate	CNO-
thiocyanate	SCN-
carbonate	$CO_3^{^{2-}}$
hydrogen carbonate/bicarbonate	HCO ₃
oxalate	$C_2O_4^{2-}$
thiosulfate	$S_2O_3^{-2-}$

<u>Useful constants</u>

 $1 \text{ mole} = 6.022 \times 10^{23}$

hydronium

Molarity of water = 1

<u>Useful molar masses</u>	
Water	18.02
Carbon dioxide(CO2)	44.01
Sodium chloride(NaCl)	58.44
Hydrochloric acid (HCl)	36.46
Sodium hydroxide (NaOH)	39.99
Silver chloride (AgCl)	143.32
Aluminum oxide (Al2O3)	101.96
Sulfuric acid (H2SO4)	98.08
Phosphoric acid(H3PO4)	97.99
Hydrogen peroxide (H2O2)	34.01
Potassium chlorate (KClO3)	122.55
Calcium hydroxide(Ca(OH)2)	74.09
Nitrogen dioxide (NO2)	46.01
Ammonia(NH3)	17.03

 $H_{2}O^{+}$

Solubility rules

- 1. All compounds with alkali metals are soluble
- 2. All compounds with ammonium(NH4+) are soluble
- 3. <u>All</u> compounds with nitrate(NO₃-), chlorate(ClO₃-), and perchorate(ClO₄-) are soluble
- 4. Most carbonate(CO3⁻²), phosphate(PO4⁻³), and sulfide (S⁻²) compounds are insoluble, except with alkali or ammonium.
- 5. Most hydroxide(OH-) compounds are insoluble, except Ba(OH)2 and alkali hydroxide compounds.
- 6. Most compounds with Cl-, Br-, and I- are soluble, except when with Ag+, Hg₂⁺², and Pb+2.
- 7. Most sulfate (SO4⁻²) compounds are soluble, except with Ba⁺², Hg⁺², and Pb⁺²

Types of equations

Combustion

General form: $C_aH_b + O_2 \rightarrow CO_2 + H_2O$ Example: $C_5H_{12} + O_2 \rightarrow CO_2 + H_2O$

Synthesis

General form: $A + B \rightarrow A_a B_b$ Example: $2Na + Cl_2 \rightarrow 2NaCl$

Decomposition

General form: $A_a B_b \rightarrow A + B$ Example: $H_c CO_a \rightarrow H_c O + CO_a$

Single displacement

General form: $AB + C \rightarrow AC + B$ Example: 2 Fe2O3 + 3 C \rightarrow Fe + CO2

Double displacement

General form: $AB + CD \rightarrow AC + BD$

Example: $2NaOH + FeCl2 \rightarrow 2NaCl + Fe(OH)2$

Equations

 $\overline{\text{Molarity (M)}}$ x Volume (V) = mol moles x molar mass = grams

Mole ratios are the coefficient ratios in a chemical equation.

They represent the ratios of moles that are needed to fuel a reaction and the number of moles that are produced from the reaction.

Dilution:
$$M_1V_1 = M_2V_2$$

Percents

Percent yield: theoretical yield/actual yield Percent mass: grams calculated/grams of sample

Error

Absolute error: |calculated value - actual value|

Relative error/percent error: |calculated value - actual value|/actual value

Percent yield + error = 100%

Concentration:

By mass: grams of solute/grams of solution By volume: vol of solute/vol of solution Molarity: moles of solute/L of solution