OR-Assignment #4 NJU SME

作业 #4

(提交日期: 2023/11/28)

1. 红星日用化工厂为发运产品,下一年度需6种不同容积的包装箱。每种包装箱的需求量及生产一个的可变费用如下表。

包装箱代号	1	2	3	4	5	6
容积(m³)	0.08	0.1	0.12	0.15	0.20	0.25
需求量(个)	500	550	700	900	450	400
可变费用 (元/个)	5.0	8.0	10.0	12.1	16.3	18.2

由于生产不用容积包装箱时需进行专门准备、下料等,生产某一容积包装箱的固定费用均为 1200 元。又若某一容积包装箱数量不够时,可以用比它容积大的代替。试问该化工厂应订做哪几种代号的包装箱各多少个使费用最节省。请为该问题建立整数线性规划模型,无需求解。

2. 某城市有6个区,要确定在哪些区修建消防站。要求保证至少有一个消防站在每个区的 15 分钟(行驶时间)车程内,并希望修建的消防站最少。下表给出了在该城市的各区之间行驶所需要的时间(单位:分钟)。请为该问题建立整数线性规划模型,无需求解。

到达出发	区 1	区 2	区 3	区 4	区 5	区 6
区 1	0	12	15	30	30	20
区 2	12	0	25	35	20	10
区 3	15	25	0	15	30	20
区 4	30	35	15	0	15	25
区 5	30	20	30	15	0	12
区 6	20	10	20	25	12	0

3. 分别用割平面法和分支定界法解下列整数规划:

$$\max \quad z = 2x_1 + x_2$$
 s.t.
$$\begin{cases} x_1 + x_2 \le 5 \\ -x_1 + x_2 \le 0 \\ 6x_1 + 2x_2 \le 21 \\ x_1, x_2 \ge 0, 且为整数 \end{cases}$$

OR-Assignment #4 NJU SME

4. 需要分派 5 人做 5 项工作,每人做各项工作的能力评分见下表。应如何分派,才能使总的得分最大?试分别用表上作业法和匈牙利法求解。

业务 人员	B_1	B_2	B_3	B_4	B_5
A_1	1.3	0.8	0	0	1.0
A_2	0	1.2	1.3	1.3	0
A_3	1.0	0	0	1.2	0
A_4	0	1.05	0	0.2	1.4
A_5	1.0	0.9	0.6	0	1.1

5. 有甲、乙、丙、丁四人和 A、B、C、D、E 五项任务,每人完成任务的时间如下表所示。由于任务数多于人数,故规定其中有一人可兼完成两项任务,其余三人每人完成一项,请确定总时间最少的指派方案。

	A	В	С	D	Е
甲	15	19	21	32	27
乙	29	28	16	10	23
丙	24	17	18	30	22
丁	14	32	26	13	35