α) Η εξίσωση (1) είναι της μορφής $Ax + By + \Gamma = 0$, όπου

$$A = \mu^2 - 1$$
, $B = 3\mu^2 - 2\mu - 1$, $\Gamma = -5\mu^2 + 4\mu + 1$

Για να παριστάνει ευθεία πρέπει οι Α, Β να μη γίνονται ταυτόχρονα 0.

$$A = 0 \Leftrightarrow \mu^2 - 1 = 0 \Leftrightarrow \mu = 1 \text{ \'n } \mu = -1$$
, $B = 0 \Leftrightarrow 3\mu^2 - 2\mu - 1 = 0 \Leftrightarrow \mu = 1 \text{ \'n } \mu = -\frac{1}{3}$

Συνεπώς η (1) παριστάνει ευθεία για κάθε πραγματική τιμή του μ εκτός από την τιμή μ=1.

β)

- i. Για να είναι παράλληλη στον xx' πρέπει $A=0 \Leftrightarrow \mu=1$ ή $\mu=-1$. Όμως η τιμή $\mu=1$ απορρίπτεται από το α) οπότε τελικά $\mu=-1$.
- ii. Για να είναι παράλληλη στον yy' πρέπει $B=0 \Leftrightarrow \mu=1$ ή $\mu=-\frac{1}{3}$. Όμως η τιμή $\mu=1$ απορρίπτεται από το α) οπότε τελικά $\mu=-\frac{1}{3}$.
- iii. Για να διέρχεται από το (0,0) πρέπει $\Gamma = 0 \Leftrightarrow -5\mu^2 + 4\mu + 1 = 0 \Leftrightarrow \mu = 1$ ή $\mu = -\frac{1}{5}$

Όμως η τιμή μ = 1 απορρίπτεται από το α) οπότε τελικά $\mu = -\frac{1}{5}$.

γ) Για $\mu = -1$ η (1) γίνεται 4y - 8 = 0 (ε₁).

Για $\mu = 0$ η (1) γίνεται -x - y + 1 = 0 (ε₂).

Oι (ε₁) και (ε₂) τέμνονται στο σημείο M με συντεταγμένες τη λύση του συστήματος $\begin{cases} 4y-8=0 \\ -x-y+1=0 \end{cases} \Leftrightarrow \begin{cases} y=2 \\ x=-1 \end{cases} \text{ οπότε M (-1,2)} \, .$

Οι συντεταγμένες του Μεπαληθεύουν την (1) για κάθε τιμή του μαφού

$$(\mu^2 - 1) \cdot (-1) + (3\mu^2 - 2\mu - 1) \cdot 2 - 5\mu^2 + 4\mu + 1 = -\mu^2 + 1 + 6\mu^2 - 4\mu - 2 - 5\mu^2 + 4\mu + 1 = 0$$

οπότε συμπεραίνουμε ότι όλες οι ευθείες που προκύπτουν από την (1), διέρχονται από το σταθερό σημείο M(-1,2).