Guía de Problemas n^0 2

October 15, 2024

Problema 1

a) Demuestre que el conjunto de todas las matrices unitarias nxn constituye un grupo. (Para demostrar la clausura, por ejemplo, hay que demostrar que el producto de dos matrices unitarias es a su vez unitario). b) Demuestre que el conjunto de todas las matrices unitarias nxn con detenninante 1 constituye un grupo. c) Demuestre que O(n) es un grupo. d) Demuestre que SO(n) es un grupo.

Problema 2

Supongamos que interpretamos el electrón literalmente como una esfera sólida clásica de radio r y masa m, que gira con momento angular. $\frac{1}{2}\bar{h}$ ¿Cuál es la velocidad, v, de un punto de su "ecuador"? Experimentalmente, se sabe que r es inferior a $10^{-16}cm$. ¿Cuál es la velocidad ecuatorial correspondiente? ¿Qué se deduce de ello?

Problema 3

Demuestre que la reacción "original" de desintegración beta $n \to p + e$ violaría la conservación del momento angular (las tres partículas tienen espín 1/2). Si usted fuera Pauli y propusiera que la reacción es realmente $n \to p + e + \bar{\nu_e}$, ¿qué espín asignaría al neutrino?

Problema 4

Demuestre que:

- a) El conmutador, [A, B] = AB BA, de dos matrices de Pauli es $[\sigma_i, \sigma_j] = 2i\epsilon_{ijk}\sigma_k$.
- b) El anticonmutador $\{A, B\} = AB + BA$ es $\{\sigma_i, \sigma_j = 2i\delta_{ij}\}$.
- c) Para dos vectores cualesquiera a y b, $(\sigma.a)(\sigma.b) = ab + i\sigma.(a \times b)$.

Problema 5

- a) Demuestre que $e^{i\pi\sigma_z/2} = i\sigma_z$.
- b) Encuentre la matriz U que representa la rotación en 180^0 alrededor del eje y, y demuestre que convierte el "spin up" en "spin down", como cabría esperar.
- c) De forma más general, demuestre que

$$U(\theta) = \cos(\frac{\theta}{2}) - i(\widehat{\theta} \cdot \sigma)\sin(\frac{\theta}{2}) \tag{1}$$

Problema 6

- a) Utilizando la ecuación $P^2 = I$ demuestre que los valores propios de P son 1.
- b) Demuestre que cualquier función escalar f(x,y,z) puede expresarse como la suma de una función propia $f_+(x,y,z)$ con valor propio +1 y una función propia $f_-(x,y,z)$ con valor propio -1. Construye las funciones f_+ y f_- , en términos de f.

Problema 7

Las desintegraciones dominantes del mesón η son:

$$\eta \longrightarrow 2\gamma(39\%), \eta \longrightarrow 3\pi(55\%), \eta \longrightarrow \pi\pi\gamma(59\%)$$

y se clasifica como partícula "estable", por lo que evidentemente ninguna de ellas es una interacción puramente fuerte. A primera vista, esto parece extraño, ya que a $549 MeV/c^2$, el η tiene masa de sobra para decaer fuertemente en 2π o 3π .

- a) Explique por qué el modo 2π está prohibido, tanto para las interacciones fuertes como para las electromagnéticas.
- b) Explique por qué el modo 3π está prohibido como interacción fuerte, pero permitido como desintegración electromagnética.