ClustVarLV:

A package for the clustering of variables around latent variables

Evelyne Vigneau, Mingkun Chen, El Mostafa Qannari

Outline

- Context: the clustering of variables
- CLV method: data structure / types of groups
- Algorithms et main functions in « ClustVarLV »
- Illustration 1: psychological scales
- Illustration 2: preference mapping
- ClustVarLV et ClustOfVar
- Conclusion and perspectives

The clustering of variables

The clustering of variables

Factor analysis / exploratory approaches: Identifying groups of variables defined around Latent Variables (LV)

CLV (Clustering of variables around Latent Variables) available on R

VARCLUS: procédure SAS/STAT

Highlighting the inter-correlations structure between the variables

Principal Components Analysis (PCA)

⇒ analysis of the linear relationships between the variables and dimensionality reduction using the first Principal Components (PC).

Principal Components with rotation (RC)

⇒ Linear combinations of the initial variables more easy to interpret than the PC.

CLV approach

- ⇒ dimensionality reduction (K latent variables (LV) associated with groups of variables).
- ⇒ easier interpretation (each LV is a linear combination of the variables belonging to the associated group).

CLV method for various data structures

 c_k : latent variable of group G_k

CLV method for various data structures

3èmes rencontres R, Montpellier, 25-27 juin 2014

CLV method for various data structures

CLV method for various data structures (L-shaped data)

CLV method: two types of groups

Directional groups

High positive or negative correlations ⇒ agreement

Local groups

High positive correlations ⇒ agreement High negative correlations ⇒ disagrrement

CLV method: two types of groups

<u>Directional groups</u>

High positive or negative correlations ⇒ agreement

method = 1 or method="directional"

Local groups

High positive correlations ⇒ agreement High negative correlations ⇒ disagrrement

___method = 2 or method= "local"

> CLV(X, method= ...)

CLV method: two types of groups

Directionnal groups method = 1

Local groups method = 2

Maximization of

Algorithm (1)

Partitioning algorithm

• Initialization : user's choice (...) or at random (nstart)

• Estimation of the LV

 $\begin{tabular}{ll} \textbf{method=1}, matrix \textbf{X} : \textbf{c}_k \ (k=1,...K) \ is the first standardized principal component of X_k \\ \hline \\ \end{tabular}$

method=2, matrix $\mathbf{X} : \mathbf{c_k} \ (k=1,...K)$ is proportional to the averaged variable $\overline{\mathbf{X}}_k$

2 Etape d'affectation des variables

cas method=1, matrix \mathbf{X} : $\delta_{kj} = 1$ if $\max_{l=1,\dots,K} \{ \cos^2(x_j, c_l) \} = \cos^2(x_j, c_k)$

cas method=2, matrix \mathbf{X} : $\delta_{kj} = 1$ if $\max_{l=1,\dots,K} \{ \operatorname{cov}(x_j, c_l) \} = \operatorname{cov}(x_j, c_k)$

until convergence

Function (1)

Partitioning algorithm

> CLV_kmeans(X, method=1 , sX=TRUE, clust= K,nstart=100)

data matrix (n x p)

type of groups:
-method=1 or « directional »
-method=2 or « local » sX=TRUE / FALSE
standardization of the variables,
or not

nb of repetitions of the algorithm. (nstart=1 if initialization by a partition given by the user)

- if **clust** is a scalar, say *K* : nb de groups in the partition
- if clust is a vector of p integers ∈{1,...,K} : initial partition

Outputs:

- ⇒ partition into *K* groups (if nstart>1, optimal partition among the nstart solutions is given)
- ⇒ Latent variables for each group of variables (not standardized)
- + value of the criterion at convergence, nb of iterations before convergence, summary for the nstart solutions

Algorithm (2)

Ascendant hierarchical algorithm

- At the beginning (step 1) : each variable is a group by itself (K=p)
- At the end (step p): all the variables are in the same group (K=1)

illustration for
method=
"directional"

- At step j value of the criterion T_j partition : {A, B,}

- At step j+1 value of the criterion $T_{j+1} < T_j$ partition : $\{A \cup B, ...\}$

aggregation criterion: $\Delta T_j = (T_j - T_{j+1}) > 0$

Rule: at each step, j, the two groups, A et B, for which ΔT_j is minimized are merged together (loss of within-group coherence as small as possible)

Advantages:

- Initialization of the partitioning algorithm
- Help for choosing the number of groups, K, on the basis of the variations of ΔT_i

Function (2)

Ascendant hierarchical algorithm with consolidation by the *k-means* algorithm

> resclv<-CLV(X,method= "directional", sX=TRUE, nmax= 20)</pre>

Maximal size of the partition for which a *k-means* consolidation is performed (20, by default).

Outputs:

- ⇒ partitions into 1, 2, 3, ..., nmax groups before consolidation (by cutting the dendrogram) and after consolidation (*k-means*).
- ⇒ Latent variables for each group associated to each partition.
- ⇒ detailed results of the hierarchy.

Functions (3)

The same functions are used with or without external variables

```
Example (available with the package):
```

Illustration 1 : exploratory analysis for psychological scales

- AUPALESENS project (France, 2010-2014)
 - "Making eating more enjoyable for seniors to promote healthy aging and prevent malnutrition"
- n=559 subjects (>65 ans)
- Pluridisciplinary questionnaire ... only considered here
 scales used for assessing psychological behaviour (5-points Likert scale)

*Bailly, Maitre, Amand, Hervé, Alaphilippe (2012). Appetite, 59(853-858)

Eating behaviour (based on DEBQ)

- « Emotional eating » (E) : 6 items
- « eXternal eating » (X) : 5
- « Restrained eating» (R) : 5 items
- « Food enjoyment» (P) : 5 items
- « Self estime» (S) : 10 items

```
> load("AUPA_psycho.rda")
> X<-AUPA_psycho
> dim(X)
[1] 559  31
> res.clv<-CLV(X,method= "directional",sX=TRUE)
> plot(res.clv, type= "dendrogram")
> plot(res.clv, type= "delta")
```



```
> summary_clv(res.clv,K=5)
$number 1 2 3 4 5
        6 5 5 5 10
$prop_within
                                          Within-group variability explained
Group.1 Group.2 Group.3 Group.4 Group.5
                                          by the Latent Variable of the group
0.6036 0.4077 0.4653 0.388 0.3614
                                          Total variability explained by the 5
$prop_tot
           0.4368
                                          Latent Variables
$cormatrix
     Comp1 Comp2 Comp3 Comp4 Comp5
Comp1 1.00 0.36 0.27 0.08
                            0.20
                                          Correlation matrix between the
Comp2 0.36 1.00 0.23 0.23
                            0.11
                                          Latent Variables
Comp3 0.27 0.23 1.00 0.14 0.05
```

Comp4 0.08 0.23 0.14 1.00 -0.16

Comp5 0.20 0.11 0.05 -0.16 1.00

> Summary_clv(res.clv,K=5)

\$groups[[1]]				
cor	in group	cor next group		
E_5	0.85	0.25		
E_4	0.80	0.34		
E_6	0.80	0.25		
E_2	0.79	0.25		
E_3	0.73	0.31		
E_1	0.68	0.29		
\$groups[[2]]				
cor in group		cor next group		
X_2	0.76	0.38		
X_4	0.67	0.30		
X_5	0.65	0.19		
X_1	0.58	0.17		
X_3	0.51	0.22		

\$groups[[3]] cor in g R_5 R_3 R_2 R_4 R_1	cor next	group 0.25 0.21 0.23 0.11 0.14
\$groups[[4]] cor in 6 P_1 P_3 P_2 P_4 P_5	cor next -	group 0.18 0.14 0.10 0.14 0.19
\$groups[[5]] cor in S_3 S_1 S_6 S_7 S_10 S_5 S_4 S_9 S_2 S_8	cor next	group 0.21 -0.10 0.17 -0.17 0.07 -0.12 0.10 -0.10 0.14 0.23

Illustration 1: exploratory analysis of the scales

- > plot_var(res.clv,K=5,axeh=1,axev=2,label=TRUE)
- > plot_var(res.clv,K=5,axeh=3,axev=4,label=TRUE)

The groups of variables perfectly coincide with the underlying psychological scales

Illustration 2: preference mapping of apple using L-CLV

Consumers questionnaire

 Xu^t

- Frequency of consumption,
- Apple cultivars known
- Important sensory attributes,
- Modalities of consumption (peeled/during meal/ ...)
- Purchase criteria
- Age, gender, professional activity....

Vigneau, Charles, Chen (2013). Food Quality and Preference, 22(4), 83-92

hedonic test

X

224 regular apple consumers 31 apples varieties

Liking scores on a 9-points scale

Sensory descriptive analysis Xr

15 assessors, 15 attributes

A_Pineapple/Banana Crunchy

A_Sweet/Rose Juicy A_Woody/Earthy Fondant

A Rustic

A Lemon **Sweet**

A White flowers Acid

A_Ripe fruit

Odour intensity

Aroma intensity

A Green

produits

> get_partition(resL,K=3)

Segment L3-1 Segment L3-2 Segment L3-3 82 consumers 96 consumers 46 consumers (37%) (43%)

(20%)

- > plot_var(resL,K=3,axeh=1,axev=2,label=FALSE)
- > plot_var(resL,K=3,axeh=2,axev=3,label=FALSE)

Interpretation of the segmentation of consumers panel

- > get_load(resL,K=3)
- * According to the sensory *drivers*

loadings (a_k) associated with the variables in Xr

- Consumers in the segments **1** and **2** appreciated the juicy and sweet varieties of apple, with « ananas/banana » aroma.
- Consumers in the segment 3 appreciated more fondant apples, with « rustic » and « ripe fruit » aroma. They dislike acifity and « green » aroma in apples.

- ❖ According to the Usage & Attitude items and the socio-demographic characteristics of the consumers
- Segment **1** : mainly, the youngest in the panel
- Segment 2 et 3: in majority, > 40 years old

loadings (u_k) associated with the variables in Xu

are attentive to appearance, color, packaging cultivar, origin.

• • • •

ClustVarLV et ClustOfVar

Both based on the CLV approach Similar algorithms (hierarchical and k-means)

Type of groups

directional or local

directional, only

Standardization

choice

quantitative variables are standardized

Categorical variables

data coding with dummy variables, clustering of the modalities

integrated clustering criterion updated

Variables externes

integrated, associated with the obs. and/or the variables

Conclusion et perspectives

ClustVarLV: clustering of variables

... but not only that:

- data dimensionality reduction (latent variables)
 - CLV components easier to understand

Many different areas of application: sensory analysis and consumer's preference analysis, chemometry (IR, RMN spectroscopy), omic- data, psychometry, satisfaction questionnaires ...

Developpments in progress

- « discarding » the atypical variables / the variables which are not well associated with the group's structure in the dataset.
 - Supervised clustering of variables
 (by taking into account of a response variable)