1. Preliminaries

1.1 Key Definitions

• A set $A \subseteq \mathbb{N}$ is **recursive** if its characteristic function χ_A is computable:

```
χ_A(x) = {
    1 if x ∈ A
    0 if x ∉ A
}
```

• A set $A \subseteq \mathbb{N}$ is **recursively enumerable (r.e.)** if its semi-characteristic function sc_A is computable:

```
sc_A(x) = {
  1 if x ∈ A
  ↑ if x ∉ A
}
```

• A set $A \subseteq \mathbb{N}$ is **saturated** if for all $x, y \in \mathbb{N}$:

```
x \in A \land \phi_{-}x = \phi_{-}y \implies y \in A
```

1.2 Key Theorems

- 1. **Rice's Theorem**: If A is saturated, $A \neq \emptyset$, and $A \neq \mathbb{N}$, then A is not recursive.
- 2. **Rice-Shapiro Theorem**: If $A \subseteq C$ is a set of computable functions and $A = \{x | \varphi_x \in A\}$ is r.e., then:

```
\forall f(f \in A \iff \exists \theta \text{ finite function, } \theta \subseteq f \land \theta \in A)
```

2. Analysis Framework

2.1 Is a Set Recursive?

To determine if set A is recursive, follow these steps:

- 1. Try to prove it's recursive by:
 - Writing a computable characteristic function
 - Showing both A and \bar{A} are r.e.
- 2. If you suspect it's not recursive:

- Try to reduce from a known non-recursive set (often K or \bar{K})
- Show $K \leq_m A$ or $\bar{K} \leq_m A$
- If the set is saturated, apply Rice's theorem

Example:

```
To prove A = \{x \mid \phi_{-}x \text{ is total}\} is not recursive:

1. Show it's saturated

2. Show A \neq \emptyset (e.g., constant functions are total)

3. Show A \neq \mathbb{N} (e.g., the always undefined function)

4. Apply Rice's theorem
```

2.2 Is a Set R.E.?

To determine if set A is r.e., follow these steps:

- 1. Try to prove it's r.e. by:
 - Writing a computable semi-characteristic function
 - Using closure properties (union, intersection of r.e. sets is r.e.)
- 2. If you suspect it's not r.e.:
 - Try to reduce from \bar{K} if possible $(\bar{K} \leq_m A)$
 - Apply Rice-Shapiro theorem for saturated sets
 - Show it contains a finite function but not its total extension (or vice versa)

Example:

```
To prove A = \{x \mid \phi_{-}x(x)\downarrow\} is r.e.:

sc_{-}A(x) = 1(\phi_{-}x(x)) = 1(\Psi_{-}U(x,x))

which is computable by definition
```

2.3 Is a Set Saturated?

To determine if set *A* is saturated, follow these steps:

- 1. Check if the set describes a property of the computed function rather than the program:
 - If it depends on the function's I/O behavior, likely saturated
 - If it depends on program specifics (steps, resources), likely not saturated
- 2. To prove it's not saturated:
 - Find x, y where $\varphi_x = \varphi_y$ but $x \in A$ and $y \notin A$
 - Often use the Second Recursion Theorem to construct such programs

Example:

3. Common Reduction Techniques

When reducing $A \leq_m B$:

- 1. Define a computable function f
- 2. Use the s-m-n theorem to get a computable total function s
- 3. Prove that $x \in A \iff s(x) \in B$

Example template:

```
    Define g(x,y) = {
        [something] if x ∈ K
        ↑ otherwise
    }
    By s-m-n theorem, ∃s: N→N total computable where
        φ_s(x)(y) = g(x,y)
    Prove x ∈ K ⇔ s(x) ∈ B
```

4. Common Pitfalls

- 1. Don't assume a set is recursive just because its complement is r.e.
- 2. Remember that Rice's theorem only applies to saturated sets
- 3. For Rice-Shapiro, check both conditions:
 - Functions in A with no finite subfunctions in A
 - Finite functions in A with no extension in A