Topología

1. Bases de entornos de un punto

Una base de entornos de un punto x de un espacio topológico (X, τ) es una subfamilia $\mathcal{B}_x \neq \emptyset$ del sistema de entornos de x, \mathcal{U}_x , que verifica la propiedad:

Para todo
$$U \in \mathcal{U}_x$$
, existe $W \in \mathcal{B}_x$ tal que $W \subset U$.

Los elementos de la familia \mathcal{B}_x se llaman entornos básicos de x.

 \bullet Ejercicio. Sea (X,τ) un espacio topológico. Demuestra que

(1)
$$\mathcal{U}_x = \{ \Omega \subset X : \exists V \in \mathcal{B}_x \text{ tal que } W \subset \Omega \}$$

donde se han usado las notaciones de la definición anterior.

A continuación enunciaremos los resultados básicos respecto de las bases de entornos¹.

- (A) Sea (X, τ) un espacio topológico. Sea \mathcal{B}_x una base de entornos de un punto $x \in X$ para la topología τ . Entonces:
 - (i) Si $V \in \mathcal{B}_x$, entonces $x \in V$.
 - (ii) Si $V_1, V_2 \in \mathbb{B}_x$, entonces existe $V_3 \in \mathcal{B}_x$ tal que $V_3 \subset V_1 \cap V_2$.
 - (iii) Si $V \in \mathcal{B}_x$, entonces existe $V_0 \in \mathcal{B}_x$ tal que para cada $y \in V_0$ existe $W_y \in \mathcal{B}_y$ con $W_y \subset V$.
 - (iv) Un subconjunto G de X es abierto si y solo si G contiene a un entorno básico de cada uno de sus puntos.
- (B) Sea X un conjunto no vacío. Supongamos que para cada punto $x \in X$ está dada una familia \mathcal{B}_x verificando:
 - Si $V \in \mathcal{B}_x$, entonces $x \in V$.
 - Si $V_1, V_2 \in \mathbb{B}_x$, entonces existe $V_3 \in \mathcal{B}_x$ tal que $V_3 \subset V_1 \cap V_2$.
 - Si $V \in \mathcal{B}_x$, entonces existe $V_0 \in \mathcal{B}_x$ tal que para cada $y \in V_0$ existe $W_y \in \mathcal{B}_y$ con $W_y \subset V$.

Entonces, la familia definida por

(2)
$$\tau := \{ G \subset X : \forall g \in G , \exists \Omega_g \in \mathcal{B}_g , \Omega_g \subset G \}$$

define una topología sobre X y la familia \mathcal{B}_x es una base de entornos de x en X para la topología τ definida en (2).

¹Su demostración es un ejercicio.

Sea (X,τ) un espacio topológico. Una base para τ es una subfamilia $\mathcal{B} \subset \tau$ que verifica

$$\tau = \left\{ \bigcup_{\Omega \in \mathcal{C}} \Omega \ : \ \mathcal{C} \subset \mathcal{B} \right\}$$

A continuación enunciaremos los resultados básicos respecto de las bases².

- (A) Sea (X, τ) un espacio topológico. Sea $\mathcal B$ un subconjunto de la topología τ . Entonces, son equivalentes
 - (i) \mathcal{B} es una base para τ .
 - (ii) Para cada $x \in X$, la familia $\mathcal{B}_x := \{B \in \mathcal{B} : x \in \mathcal{B}\}$ es una base de entornos de x en la topología τ .
- (B) Sea X un conjunto no vacío. Sea $\mathcal B$ una familia de subconjuntos de X. Son equivalentes:
 - (i) \mathcal{B} es una base para una topología τ^* en X.
 - (ii) La familia \mathcal{B} satisface las condiciones:
 - $X = \bigcup_{\Omega \in \mathcal{B}} \Omega$.
 - Si $B_1, B_2 \in \mathcal{B}$, entonces para cada $x \in B_1 \cap B_2$ existe $B_3 \in \mathcal{B}$ tal que $x \in B_3 \subset B_1 \cap B_2$.
 - <u>Ejercicio</u>. Dado (X, τ) un espacio topológico, y dada una subfamilia \mathcal{C} de τ , diremos que \mathcal{C} es una sub-base para τ si la familia

$$\left\{ \bigcap_{j \in J} B_j : B_j \in \mathcal{C} , |J| < \aleph_0 \right\}$$

es una base para τ .

Argumenta si es cierto o falso el siguiente enunciado: "Cualquier colección de subconjuntos de X es una sub-base para una topología sobre X. Además la topología obtenida es la mínima topología que contiene a la familia dada."

 $^{^2\}mathrm{Su}$ demostración es un ejercicio.