The Way we balance est also affects
$$K$$
 $N_2O_4G_1 \rightleftharpoons 2NO_2G_1$
 $K_c = \frac{[NO_2]^2}{[N_2O_4]}$
 $2N_2O_4G_1 \rightleftharpoons 4NO_2G_1$
 $K_c' = \frac{[NO_2]^4}{[N_2O_4]^2}$
 $= \frac{[NO_2]^2}{[N_2O_4]^2}$

Rules of Ke: 1. reverse rxn: invert K K → 1/K 2. multiply own by so, mise K to x! K>K× $N_2O_4 \rightleftharpoons 2NO_2$, $K_e^2 = 4.63 \times 10^{-3}$ 10^{12} 10^{12} 10^{12} 10^{12} 10^{12} 10^{12} 10^{12} 10^{12} 10^{12} 10^{12} 10^{12} 10^{12} 10^{12} 10^{12} 10^{12} 1 2NO2 = N2O+, K= = 1/K= = 216

What we is Ke?

-can predict direction of a clum. IXM!

ex: $H_2(g) + I_2(g) \rightleftharpoons 2HIg$) $K_c = 54.3 \quad (@4302)$

not @ ??

O.243mol Hz
O.146mol Iz
I.98mol HI

?? mol Hz
?? HI mol.

 $K_c = [HI]^2 = 54.3$ $H_2 + I_2 = 2HI$ $[H_2] \cdot [I_2]_{co}$ equ constant.

Reaction Chotiat.

or actual value

if $Q_c = K_c @ eom$.

if $Q_c > K_c$ not @ eom.

Calculating egm concs.

-if we know ke, and init concs,

Out's calculate ear concs!

Ex: cis-stillen = trans-stillen

let's say we start up a soly of 0.850 M cis-stilbene and OM trans-shilbene 3 course be 1 cis = 1 trans Equillium (0.850M-2) (x) Kc = [trans]ea [cis]ea

can solve for
$$x \dots x = 0.816$$

$$[tans]_{eq} = x = 0.816 M$$

More examples...

Hz + Brz
$$\rightleftharpoons$$
 2HBr, Kc=78.2
if we place 0.282mol Hz (Grach)
0.282mol Brz. (Grach)
into an empty 2-L flast.

$$E (0.|\psi|-x) (0.|\psi|-x) (2x)$$

$$78.2 = \frac{(2x)^2}{(0.141-x)(0.141-x)}$$