Nome: Matricola:	
Matematica Discreta	
$Esame\ del\ 18-09-2012$	
Esercizio 1. Sia $F: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare, e la base naturale e b la base $(\vec{v}_1, \vec{v}_2, \vec{v}_3)$ dove F è data dalla matrice $[F]_e^e = \begin{pmatrix} 1 & 1 & 1 \\ 4 & 0 & -2 \\ 2 & 1 & -1 \end{pmatrix}$, $\vec{v}_1 = \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix}$, $\vec{v}_2 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$, $\vec{v}_3 = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}$.	(6 pt)
Trovare le matrici di cambiamento di base $[I]_e^b$ e $[I]_b^e$ e calcolare $[F]_b^b$.	
	(2 pt)
Esercizio 3. Risolvere in \mathbb{Z} il sistema dato da $\begin{cases} x \equiv 864 \pmod{69} \\ 40x \equiv 101 \pmod{73} \\ x \equiv -579 \pmod{79} \end{cases}$	(5 pt)
Esercizio 4. Consideriamo la ricorrenza $a_n = 6a_{n-1} - 8a_{n-2} - n + \frac{1}{3}$, per $n \ge 2$. a.) Dimostrare che $a_n = -\frac{1}{3}n - 1$, $n \ge 0$, è una soluzione della ricorrenza. b.) Trovare tutte le soluzioni della ricorrenza. c.) Trovare la soluzione con $a_0 = 1$ e $a_1 = 2$, e calcolare a_0 , a_1 , a_2 e a_3 usando la ricorrenza e la rispost	(5 pt)
Esercizio 5.	(4 pt)
 Quanti bit string di lunghezza 60 ci sono tale che a.) il bit string ha almeno trentotto 0, oltre si deve avere che il bit string corrispondente alle prime ventidue posizione contiene almeno dodieci 1 e il bit string corrispondente alle ultimi venticinque posizioni contiene al massimo diciassette 0 e al massimo nove 1. b.) il bit string ha esattamente nove 0 e il bit string corrispondente alle prime dieci posizioni contiene esattamete un zero e il bit string corrispondente alle ultime ventisette posizioni contiene lo string 101110 come sotto-string. 	
Esercizio 6. Sia (\vec{e}_1, \vec{e}_2) la base naturale di \mathbb{R}^2 . Sia $T : \mathbb{R}^2 \to \mathbb{R}^2$ l'applicazione lineare data $T : \vec{v} \mapsto -3\vec{v}$, per ogni $\vec{v} \in \mathbb{R}^2$ l'applicazione lineare definita tramite $S(\vec{e}_1 + 3\vec{e}_2) = \vec{e}_1 - \frac{1}{3}\vec{e}_2$, $S(3\vec{e}_1 - \vec{e}_2) = \frac{1}{3}\vec{e}_1 + \vec{e}_2$ Esiste un riflessione $R : \mathbb{R}^2 \to \mathbb{R}^2$ con $S \circ T = R$? In caso di si trovare l'equazione cartesiano della retta corrispondente a R .	
Esercizio 7.	(4 pt)
 a.) Quanti x ∈ ZZ con 100100 ≤ x ≤ 999000 ci sono tale x contiene 12 come sotto espressione e c'è esattamente una cifra repetutta almeno due volte. b.) Quante soluzioni ci sono dell'equazione x₁ + x₂ + x₃ + x₄ + x₅ + x₆ + x₇ + x₈ = 2021, dove x₁,, x₈ ∈ ZZ e x₁,, x₈ ≥ 0, con 50 ≤ x₂ ≤ 100, 30 ≤ x₃ ≤ 40, x₄ ≥ 10, 30 ≤ x₆ ≤ 70, x₁ + x₃ + x₅ = 789 e x₃ + x₆ ≠ 110? 	
Esercizio 8.	(2 pt)
8.1 Il numero $(10101010101000000010101010101010101010$	
8.2. Consideriamo in \mathbb{R}^2 il vettore $\vec{v} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. Le coordinate di \vec{v} rispetto alla base $b = (\begin{pmatrix} 5 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \end{pmatrix})$ sono):
(a) $[\vec{v}]_b = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$ (b) $[\vec{v}]_b = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$ (c) $[\vec{v}]_b = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ (d) $[\vec{v}]_b = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$	

Per gli esercizi 1, 2, 3, 4, 5 ,6 e 7 le risposte devono essere giustificate. Per l'esercizio 8, dove ogni parte vale 1 punto, basta solo rispondere. Ogni scorrettezza durante la prova comporterà l'immediato annullamento della prova e altre sanzioni in accordo con la presidenza del corso di Laurea.