Mini-Projet Etude et application de quelques schémas aux différences finies pour deux lois de conservation

AMECK GUY-MAX DESIRE DOSSEH & RIM ELMGHARI

2024-02-04

On souhaite étudier, appliquer et voir le comportement de quelques schémas aux différences finies pour deux équations relevant de lois de conservation 1D définies sur un domaine $\Omega = [0, L]$.

1. Equation de transport

On considère l'équation de transport soumise à des conditions aux limites periodiques:

$$(E_1) \begin{cases} \frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0, & \forall x \in]0, L[; \forall t > 0 \\ u(x, t = 0) = u_0(x), & \forall x \in [0, L] \\ u(0, t) = u(L, t); \frac{\partial u}{\partial x}(L, t) = 0 & \forall t > 0 \end{cases}$$

1) A l'aide de la methode des caracteristiques, determiner la solution exacte u(x,t) du probleme (E_1) .

Nous allons chercher une courbe caractéristique $\Gamma((t(s), x(s)))$, s'étant le paramètre qui décrit la courbe, le long de laquelle l'EDP devient un système d'EDO.

$$du = \frac{\partial u}{\partial t}dt + \frac{\partial u}{\partial x}dx$$

$$\frac{du}{ds} = \frac{\partial u}{\partial t}\frac{dt}{ds} + \frac{\partial u}{\partial x}\frac{dx}{ds}$$

$$\frac{du}{ds} = -a\frac{\partial u}{\partial x}\frac{dt}{ds} + \frac{\partial u}{\partial x}\frac{dx}{ds}$$

$$\frac{du}{ds} = \frac{\partial u}{\partial x}(\frac{dx}{ds} - a\frac{dt}{ds})$$

On voit que si on impose $\frac{dx}{ds} - a\frac{dt}{ds} = 0$, on a $\frac{du}{ds} = 0$, c'est à dire que u est constant le long de la courbe caractéristique.

On a donc le système d'EDO suivant a resoudre:

 $\left\{\begin{array}{l} \frac{dx}{dt}=a \text{ qui donne la courbe caractéristique }\Gamma\\ du=0 \text{ qui donne la solution }\mathrm{u}(\mathrm{x},\,\mathrm{t}) \text{ sur cette courbe caractéristique} \end{array}\right.$

Courbes caractéristiques:

$$\frac{dx}{dt} = a$$
 donne $x(t) = at + \xi(avec \ \xi)$ une constante reelle d'integration)

Solution

Sur chaque courbe caractéristique $(\Gamma): x-at=\xi,$ on a:

$$du = 0 \Rightarrow u(t, x) = cte = f(\xi) \leftarrow i.e.$$
 u ne depend que de ξ

Soit alors

$$u(t,x) = f(x - at)$$

Cette solution doit etre retrouvee aussi pour t=0.

Or a t = 0, on a:

$$u(0,x) = u_0(x) = f(x) \Rightarrow f(x) = u_0(x)$$

c'est a dire

$$f \equiv u_0$$

On obtient finalement la solution exacte du probleme (E_1) :

$$u(t,x) = u_0(x - at), \ \forall x \in [0, L], \ \forall t > 0$$

On discretise l'intervalle [0, L] en (N-1) sous-interalles $[x_i, x_{i+1}]$ (i = 1, ..., N-1) de tailles egales $\Delta x (\Delta x = \frac{L}{N-1}, x_{i+1} = x_i + \Delta x)$, et on note par u_i^n la solution approchee au noeud x_i a l'instant $t^n = n\Delta t (\Delta t$ etant le pas de chnage).

2) Etudier la consistance, la stabilite et la convergence de chacun des schemas numeriques suivants:

Schema 1 (centre):

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} + a \frac{u_{j+1}^n - u_{j-1}^n}{2\Delta x} = 0$$

Schema 2 (decentre):

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} + a \frac{u_j^n - u_{j-1}^n}{\Delta x} = 0 \text{ si } a > 0$$

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} + a \frac{u_{j+1}^n - u_j^n}{\Delta x} = 0 \text{ si } a < 0$$

Schema 3 (Lax-Friedrichs):

$$\frac{u_j^{n+1} - \frac{1}{2}(u_{j-1}^n + u_{j+1}^n)}{\Delta t} + a\frac{u_{j+1}^n - u_{j-1}^n}{2\Delta x} = 0$$

Schema 4 (Lax-Wendroff):

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} + a \frac{u_{j+1}^n - u_{j-1}^n}{2\Delta x} - \frac{a^2 \Delta t}{2(\Delta x)^2} (u_{j-1}^n - 2u_j^n + u_{j+1}^n) = 0$$

- 3) Implémenter chacun des schémas numériques pour évaluer la solution approchée, puis comparer cette solution avec la solution exacte. (Tracer les solutions aux temps physiques t1=2.5 s et t2=4.5 s en testant sur deux maillages différents formés de N=100 et N=200 points. Interpréter les résultats.
- 4) Evaluer l'erreur en norme L^1 de la solution numérique obtenue par chaque schéma au temps $t_1 = 2.5s$ et pour N = 100. Interpréter.

Données :

 $L = 10m, \ a = 2m/s, \ u_0(x) = 1 \ pour \ 3m < x < 4m \ et \ 0 \ ailleurs.$

Nombre de Courant : CFL = 0.8.

2. Equation de Burgers

On considere maintenant l'equation de Burgers suivante:

$$(E_2) \left\{ \begin{array}{ll} \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0, & \forall x \in]0, L[; \forall t > 0 \\ u(x, t = 0) = u_0(x), & \forall x \in [0, L] \\ \frac{\partial u}{\partial x}(0, t) = \frac{\partial u}{\partial x}(L, t) = 0 & \forall t > 0 \end{array} \right.$$

5) Reprendre les questions 1), 3) et 4).

Données :

 $L = 6m, \ u_0(x) = 0.4 \ pour \ x < 2m \ et \ 0.1 \ ailleurs. \ CFL = 0.8.$