1. Guaphang Functions

- (b) One collision as it would only intersect me x-axis once. (fi(x) > 0 4 x)
- (c) f'(2) = 1/8 NOT POSSIBLE OR f"(N) <0 thus the slape can only decrease as we increase or. (Note: $f(3) = \frac{1}{2}$)

$$A_{11}(x) = \frac{x_{11}}{-8} \frac{(e-x)_{219}}{-8}$$

DOWOTH: , LK

Sores of f: 0 and 6

increasing interval.

$$\frac{4-x}{\alpha^{1/3}(6-x)^{2/3}}>0$$

Decreasing interval (-0,0), (4,00)

Interval	4-2	243	(6-n)	f(x)
(-∞,0)	+	K. 18. 18. 18	+	
(0,4)	+	+	+	+
(4,6)	-	+	+	
(6,10)		4	+	

	•						
R	(-10,0)	(0)	(0,4)	4	(4,6)	6	(6,00)
b	7	. V	71	^	7	à	7 (
+'	_	Local	+	Local	_		
f"	_		_			IP	

fort servolive test

(second derivative could be used at 4 but not at 0 at 6 as \$" DNE at 0,6)

concounty. changes from - - + at 6 => 6 as the point of inflection.

Vertical Tongents at 0 and 6 or 1/(x)) - so as x - o and x - 6

II. Optimization

1200 cm2 Material

Volume =
$$x.x.h = x^2.\left(\frac{1200-x^2}{4x}\right)$$

$$300 - 3x^2 \ge 0$$

$$N = 20 \text{ cm}$$
 $N = \frac{1200 - 400}{4(20)} = \frac{800}{80} = 10 \text{ cm}$

largest possible volume -> x.x. in = (20)2, 10 cm3

III. L'HOSPITOLS RULE

(a)
$$\lim_{t\to 0} \frac{5^t - 3^t}{t} = \lim_{t\to 0} \frac{5^t - 3^t}{t} = \lim_{t\to 0} \frac{5^t \ln 5}{t} = \lim_{t\to 0} \frac{$$

(b)
$$\frac{1}{1} \frac{1}{1} \frac{1}{1}$$

since $x\to\infty$ and $e^{x^2}\to\infty$ as $x\to\infty$, the white on the eight hand side is also indeterminate. It second application of the

$$\lim_{N\to\infty} \frac{3n}{e^{N^2}, 2} = \lim_{N\to\infty} \frac{(3n)'}{(e^{N^2}, 2)} = \lim_{N\to\infty} \frac{3}{2e^{N^2}, 2n} = \lim_{N\to\infty} \frac{3}{4} \cdot \frac{\left(\frac{1}{e^{N^2}}\right)}{n}$$

$$= \frac{3}{4} \cdot \lim_{N\to\infty} \frac{n}{n}$$

$$\lim_{N\to\infty} n$$

(c)
$$vm = \frac{x}{\sqrt{x^2+1}} = \frac{x+\infty}{x+\infty} = \frac{x}{\sqrt{1+\frac{1}{x}}}$$

$$\frac{1}{1+\frac{1}{2}} = \frac{1}{\sqrt{1+\frac{1}{2}}} = \frac{1}{\sqrt{1+\frac$$

$$= \lim_{x \to \infty} x \left(1 - \frac{y_{x}x}{x} \right) = \lim_{x \to \infty} x \cdot \lim_{x \to \infty} \left(1 - \frac{y_{x}x}{x} \right)$$

$$= \lim_{x \to \infty} x \cdot \lim_{x \to \infty} \left(1 - \frac{y_{x}x}{x} \right)$$

$$f(x) = xe^{-x} = \frac{x}{e^x}$$

- · Voitcal Asymptote a found where denominator = 0. Not possible here
- · Houseoutal Asymptote is found by calculating km at +00 and -10.

$$\frac{um}{x\rightarrow +\infty} = \frac{\frac{\omega}{m}}{e^{x}} = \frac{(x)'}{(e^{x})'} = \frac{um}{x\rightarrow +\infty} = \frac{1}{e^{x}} = \frac{1}{\infty} = 0$$
 [HA of y=0]

$$\frac{1}{1}$$
 $\frac{1}{1}$ $\frac{1}$

$$t' = (xe^{-x})' = e^{-x} + x.e^{-x}.(-1)$$
 $e^{-x}(1-x)$

$$f'' = (e^{-x}(1-x))' = -e^{-x}(1-x) + e^{-x}(-1)$$

$$= e^{-x}(x-1-1)$$

$$= e^{-x}(x-2)$$

Increasing / becreasing intervals.

$$(1-x) > 0$$
 $(1-x) > 0$
 $(1-x) > 0$

concounty.

Y.	(-w,1)	1	(1,2)	2_	(2,0)
+	7/	-	>	1	7
F'	+	local	_		-
t"	÷		_	1P	+

HA OF 4=0

1

`