Дисциплина электроника Лабораторный практикум №3

по теме: «Исследование полупроводниковых диодов в Multisim»

Работу выполнила:

студентка группы ИУ7-34Б

Татаринова Дарья

Работу проверил:

Оглоблин Д.И.

Экспериментальная часть

Эксперимент 1

В работе использовался диод D2C456A (вариант 93).

Внесение диода в пользовательскую базу данных в программу Multisim.

Эксперимент 2

Исходная схема:

Составляем ВАХ для прямого контура:

Составляем ВАХ для обратного контура:

Эксперимент 3

Получаем ВАХ на экране осциллографа:

Сохраняем получившиеся значения в файл:

Читаем полученную в Multisim BAX программой Mathcad. С помощью блока Given-Minerr находим параметры диода. Строим графики по данным из Multisim и по полученным с помощью Given-Minerr данным:

		0	1
VAX =	0	0.401	5.352·10-8
	1	0.351	7.895·10 ⁻⁹
	2	0.301	1.122·10-9
	3	0.249	1.544·10-10
	4	0.197	2.079·10-11
	5	0.145	2.83·10-12
	6	0.092	4.287·10 ⁻¹³
	7	0.038	7.265·10 ⁻¹⁴
	8	-0.015	-1.934·10 ⁻¹⁴
	9	-0.068	-7.759·10 ⁻¹⁴
	10	-0.121	-1.314·10 ⁻¹³
	11	-0.174	-1.843·10 ⁻¹³
	12	-0.227	-2.366·10 ⁻¹³
	13	-0.278	-2.883·10 ⁻¹³
	14	-0.329	-3.391·10 ⁻¹³
	15	-0.379	

Ud1 := 0.48644

Is0 := 0.00000001 Is0 := 0.00000001 $Ud1 = Id1 \cdot Rb + ln \left[\frac{(Is0 + Id1)}{Is0} \right] \cdot m \cdot Ft$ $Ud2 = Id2 \cdot Rb + ln \left[\frac{(Is0 + Id2)}{Is0} \right] \cdot m \cdot Ft$ $\left[(Is0 + Id3) \right]$

$$Ud3 = Id3 \cdot Rb + ln \left[\frac{(Is0 + Id3)}{Is0} \right] \cdot m \cdot Ft$$

$$Ud4 = Id4 \cdot Rb + ln \left[\frac{(Is0 + Id4)}{Is0} \right] \cdot m \cdot Ft$$

 $Diod_P := Minerr(Is0, Rb, m, Ft)$

$$Diod_P = \begin{pmatrix} 1.001 \times 10^{-14} \\ 2.79 \times 10^{-4} \\ 1.572 \\ 0.016 \end{pmatrix}$$

Ud2 := 0.58542

 $Id1 := 1.47241e\text{-}006 \hspace{0.5cm} Id2 := 6.76083e\text{-}005 \hspace{0.5cm} Id3 := 0.000187398$

 $NFt := m {\cdot} Ft$

 $NFt := m \cdot Ft$

 $\mathbf{Idiod} := \mathrm{VAX}^{\left<1\right>}$

 $U diod(I diod) := I diod \cdot Rb + NFt \cdot In \left[\frac{(I diod + Is0)}{Is0} \right]$

