

Problème discret

Systèmes linéaire

Difficult

Exemples

données

Kelefence

MODÉLISATION ET INVERSION EN GÉOPHYSIQUE 4 - Inversion: Introduction

Bernard Giroux (bernard.giroux@ete.inrs.ca)

Institut national de la recherche scientifique Centre Eau Terre Environnement

> Version 1.0.2 Hiver 2018

blème disci

Systèmes linéaires

Difficulte

Exemple

données

Référence

Données et modèles

Aperçu

Données et modèles

oblème discre

Systèmes linéaire

Difficulté

Exemples

Nature aléatoire

Références

• Problème direct

Problème inverse

Données et modèles

roblème discre

Systèmes linéair

Difficult

Exemp

Nature aléatoir données

Reference

- Les données mesurées, notées *d*, constituent le point de départ de l'inversion.
- L'objectif est d'obtenir une information caractérisant l'objet étudié;
 - Cette information prends la forme de valeurs numériques : les paramètres du modèle, notés *m*.
- Les lois de la physique permettent de relier *m* et *d*;
 - Ces lois sont décrites par une fonction *G*, telle que

$$G(m) = d. (1)$$

 Les données peuvent être fonction du temps et/ou de l'espace, et sont généralement une série d'observations discrètes.

Données et modèles

Problèmo di

Systèmes lin

Difficulté:

Exemp

Nature aléatoire données

Kelefelice

- En pratique, les données mesurées contiennent une erreur expérimentale.
- On assume que les données sont la somme des mesures obtenues d'une expérience "parfaite", notées d_{vrai} , et d'un bruit η , i.e.

$$d = G(m_{\text{vrai}}) + \eta \tag{2}$$

$$=d_{\text{vrai}}+\eta,\tag{3}$$

où

- d_{vrai} satisfait l'éq. (1) lorsque m est égal au modèle vrai m_{vrai} ;
- la fonction *G* représente exactement la réalité.
- La présence de η , même faible, peut faire en sorte que m retrouvé par inversion soit très différent de m_{vrai} .
- En général, il existe un infinité de modèles m différents de m_{vrai} qui s'ajustent à d_{vrai} .

Problème discret

Svetàmae linásiros

Difficulté

Exemple:

Nature aléatoire de

Référence

Problème discret

Problème discret

Dominees et modele:

Problème discret

Systèmes lin

Difficulté

Exemple

Nature aléatoire

Ráfárancas

• La plupart du temps, le modèle est décrit par un nombre fini, *M*, de paramètres, i.e.

$$\mathbf{m} = [m_0, m_1, m_2, \dots, m_{M-1}] \tag{4}$$

De façon similaire, on dispose d'un nombre fini, *N*, de données

$$\mathbf{d} = [d_0, d_1, d_2, \dots, d_{N-1}] \tag{5}$$

• On a alors affaire à un problème inverse discret de la forme

$$G(\mathbf{m}) = \mathbf{d}.\tag{6}$$

- Dans le cas contraire où le modèle et les données sont des fct continues, l'estimation de *m* à partir de *d* est un problème inverse continu;
 - On peut souvent approximer un problème continu par un problème discret.

Problème discret

Données et modèles

Problème discret

Systèmes linéair

Difficulté

Exemple

Nature aléatoire données

donnees

- Lorsque le nombre de paramètres *M* est faible, on parle d'estimation de paramètres;
- A contrario, lorsque M est élevé et qu'il est nécessaire d'appliquer des contraintes pour stabiliser la solution, on parle de problème inverse;
 - On verra plus loin que des contraintes sont nécessaires lorsque le système à résoudre est *mal conditionné*.

blème disci

Systèmes linéaires

Difficulté

Exemples

Nature aléatoire de données

Référence

Systèmes linéaires

Systèmes linéaires

Données et modèle

roblème dis

Systèmes linéaires

Difficult

Exemp

Nature aléato: données

1101010100

- Les systèmes linéaires sont un type de modèle mathématique trouvant plusieurs applications;
- Les systèmes linéaires obéissent au principe de superposition :

$$G(m_1 + m_2) = G(m_1) + G(m_2)$$
(7)

et à la mise à l'échelle :

$$G(\alpha m) = \alpha G(m). \tag{8}$$

 Dans le cas des problèmes inverses discrets, le problème devient un système linéaire d'équations algébriques :

$$G(\mathbf{m}) = \mathbf{G}\mathbf{m} = \mathbf{d}.\tag{9}$$

où **G** est de taille $N \times M$.

Systèmes linéaires

Données et modèles

oblème disci

Systèmes linéaires

Difficult

données

Kelefelice

- En géophysique, les modèles linéaires sont souvent utilisables;
- La raison principale est que l'objet d'étude varie peu par rapport à son état d'équilibre;
- Une relation linéaire permet de décrire adéquatement le phénomène;
- Par exemple en sismique, les contraintes générées par le passage des ondes sont très faibles p/r aux modules d'élasticité;
 - La relation contrainte/déformation est alors quasi linéaire.
- La gravimétrie et le magnétisme sont d'autres exemples où les champs sont faibles et où des modèles linéaires s'appliquent.

blème discret

Systèmes linéaires

Difficultés

Exemple:

Nature aléatoire d données

Référence

Difficultés

Difficultés du problème inverse

Données et modèles

oblème discr

Systèmes linéaire

Difficultés

Exemp

Nature aléatoire d données

Keterenc

- Il est crucial de demeurer critique face aux résultats de l'inversion;
- La raison principale est qu'il peut y avoir plusieurs modèles qui s'ajustent aussi bien aux données;
- Les éléments à l'origine de ce phénomène sont :
 - l'existence d'une solution;
 - 2 la non unicité de la solution;
 - l'instabilité du système.

Existence de la solution

Données et modèles

oblème discr

Systèmes linéaire

Difficultés

Lacinpics

données

Kererence

- Il est possible qu'aucun modèle ne s'ajuste parfaitement aux données;
- Les raisons sont :
 - le modèle physique est approximatif;
 - les données contiennent du bruit.
- Si l'ajustement n'est pas parfait, il est fort probable que le modèle estimé ne soit qu'une approximation du modèle réel.

Non unicité de la solution

Données et modèles

Problème discret

Systèmes linéaire

Difficultés

Exemp

Nature aléatoire données

Kelefelice

- Advenant que des solutions exactes existent, elles peuvent être non uniques, *même pour un nombre infini de données*;
- L'exemple classique est la réponse d'une sphère en gravimétrie, qui dépend de la masse de la sphère et non de la distribution de densité.
 - Deux sphères donneront exactement la même réponse si

$$\rho_1 \frac{4}{3} \pi r_1^3 = \rho_2 \frac{4}{3} \pi r_2^3$$

- La non unicité est une caractéristique des systèmes linéaires pour lesquelles les équations ne sont pas toutes linéairement indépendantes;
 - Le degré d'indépendance peut être évalué par l'analyse de la résolution du modèle.

Instabilité

Données et modèles

oblème discr

Systèmes linéaire

Difficultés

Exemple

Nature aléatoire données

Référence

- Une solution est instable lorsqu'un faible changement dans une mesure (e.g., un faible bruit η) produit une variation importante du modèle estimé;
- De tels problèmes sont dits *mal conditionnés* dans le cas des problèmes discrets, ou *mal posés* dans le cas continu;
- Il est possible de stabiliser la solution en imposant des contraintes qui vont biaiser (d'une façon souhaitée) la solution;
 - on parle alors de régularisation.

blème disci

Systèmes linéaires

Difficulté

Exemples

Nature aleatoire de données

Référence

Exemples

Exemple 1: Ajuster une droite

Données et modèles

Problème discre

Systèmes linéair

Difficultés

Exemples

Références

 On dispose d'un certain nombre (N) de mesures de température prises à des temps t_i dans l'atmosphère.

- Ces données contsituent le vecteur $\mathbf{d} = [T_0, T_1, T_2, \dots, T_{N-1}]^T$.
- On assume que la température obéit à un modèle linéaire en fonction du temps : T = a + bt;
 - L'ordonnée à l'origine a et la pente b sont les deux paramètres du modèle, i.e. $\mathbf{m} = [a, b]^T$.

Exemple 1 : Ajuster une droite

Donnees et modeles

roblème dis

Systèmes linéa

Difficulte

Exemples

données

Références

• Selon le modèle linéaire, la température doit satisfaire

$$T_0 = a + bt_0 \tag{10}$$

$$T_1 = a + bt_1 \tag{11}$$

$$\vdots (12)$$

$$T_{N-1} = a + bt_{N-1} (13)$$

Sous forme matricielle, on a

$$\begin{bmatrix}
T_0 \\
T_1 \\
\vdots \\
T_{N-1}
\end{bmatrix} = \begin{bmatrix}
1 & t_0 \\
1 & t_1 \\
\vdots & \vdots \\
1 & t_{N-1}
\end{bmatrix} \underbrace{\begin{bmatrix} a \\ b \end{bmatrix}}_{\mathbf{m}} \tag{14}$$

Exemple 2: Profilage sismique vertical

Données et modèles

Problème discre

Systèmes linéair

Difficultés

Exemples

Références

- Avec le profilage sismique vertical, on cherche à déterminer la distribution verticale de la vitesse sismique V;
- Des géophones sont placés dans un forage et une source est actionnée à la surface;
- L'onde sismique est enregistrée aux géophones, ce qui permet de déterminer le temps de parcours t.

Exemple 2 : Profilage sismique vertical

Données et modèles

roblème discre

Systèmes linéair

Difficulté

Exemples

Nature al données

Référence

- Le problème est non linéaire lorsque défini en terme de vitesse;
- Le problème devient linéaire si exprimé en terme de *lenteur* (s), l'inverse de la vitesse, i.e. s = 1/V.
- Le temps de parcours à une profondeur z vaut

$$t(z) = \int_{0}^{z} s(l)dl \tag{15}$$

$$= \int_0^\infty s(l)H(z-l)dl \tag{16}$$

où H est la fonction de Heaviside, qui vaut 1 si $z-l \geq 0$ et 0 si z-l < 0.

Exemple 2: Profilage sismique vertical

Données et modèles

roblème disc

Systèmes linéair

Difficultes

Exemples

données

11010101100

- Le problème est résolu en discrétisant le milieu en couches
- Si le modèle compte M couches et le levé compte N géophones, l'intégrale devient, pour un i^e géophone à une position y_i

$$t_{i} = \sum_{j=0}^{M-1} H(y_{i} - z_{j}) s_{j} \Delta z$$
 (17)

où $N/M = \Delta y/\Delta z$ est un entier.

- Le vecteur des données est $\mathbf{d} = [t_0, t_1, t_2, \dots, t_{N-1}]^T$;
- Les paramètres du modèle est sont regroupés dans le vecteur $\mathbf{m} = [s_0, s_1, s_2, \dots, s_{M-1}]^T$;
- La matrice **G** sera alors de dimension $N \times M$ et contiendra les termes $H(y_i z_j)\Delta z$.

Exemple 2 : Profilage sismique vertical

Données et modèles

oblème disc

Systèmes linéair

Difficulté

Exemples

données

Référence

Exemple 2 : Profilage sismique vertical

Données et modèles

roblème disci

Systèmes linéair

Difficulté

Exemples

données

Kererence

• Sous forme matricielle, pour l'ensemble des données de la figure, on obtient

$$\begin{bmatrix}
t_0 \\
t_1 \\
\vdots \\
t_{10} \\
t_{11}
\end{bmatrix} = \Delta z \begin{bmatrix}
1 0 0 0 0 0 0 0 0 0 0 \\
1 1 0 0 0 0 0 0 0 0 \\
\vdots \\
1 1 1 1 1 1 1 1 1 1 \\
G
\end{bmatrix} \begin{bmatrix}
s_0 \\
s_1 \\
s_2 \\
\vdots \\
s_9
\end{bmatrix}$$
(18)

Exemple 3: Tomographie

Données et modèles

Problème discret

Systèmes

Difficultés

Exemples

Nature aléatoire d

Référence

- En tomographie, on cherche à évaluer la vitesse de propagation ou l'atténuation des ondes dans un milieu.
- Soit l'exemple d'un mur de briques de vitesses différentes :

Exemple 3: Tomographie

Exemples

- Deux séries de mesures sont faites, une première le long des colonnes et la seconde le long des lignes, pour un total de N=8 mesures.
- Le vecteur des données est $\mathbf{d} = [t_0, t_1, t_2, \dots, t_7]^T$
- On suppose que chaque brique est de vitesse *V* uniforme;
- Le temps de parcours dans une brique *j* est proportionnel à la distance parcourue dans la brique, h, et vaut $t_i = hs_i$, où sest la lenteur.
- Le modèle comporte *M*=16 paramètres, et est dans ce cas $\mathbf{m} = [s_0, s_1, s_2, \dots, s_{15}]^T$

Exemple 3: Tomographie

Données et modèle

roblème disc

Systèmes linéa

Difficulté

Exemples

Nature aléatoire d

Référence

• On relie les données aux paramètres du modèle par

colonne 1:
$$t_0 = hs_0 + hs_1 + hs_2 + hs_3$$

colonne 2: $t_1 = hs_4 + hs_5 + hs_6 + hs_7$
:
ligne 3: $t_6 = hs_2 + hs_6 + hs_{10} + hs_{14}$
ligne 4: $t_7 = hs_3 + hs_7 + hs_{11} + hs_{15}$

Sous forme matricielle, nous avons

(19)

robleme discret

Systèmes linéaires

Difficulté

Exemples

Nature aléatoire des données

Keterence

Nature aléatoire des données

Nature aléatoire des données

Données et modèles

Daniel San and Johnson

....

Exempl

Nature aléatoire des données

Ráfároncos

 Invariablement, une mesure expérimentale contient du bruit;

- Une observation répétée au même point donnera des mesures différentes;
 - On dit de la variable observée que c'est une variable aléatoire, et chaque mesure est une réalisation de cette variable aléatoire;
- Une variable aléatoire possède des propriétés précises qui dictent la distribution des valeurs observées;
 - Les réalisations permettent *d'estimer* ces propriétés.

Nature aléatoire des données

Données et modèles

roblàmo dicen

Systèmes linéair

Difficulté

Exempl

Nature aléatoire des données

Kererence

- Les propriétés d'une variables aléatoire d sont spécifiées par sa fonction de densité de probabilité (f.d.p), notée p(d);
 - Cette fonction donne la probabilité qu'une réalisation aura une valeur au voisinage de *d*.
- La fonction p(d) est souvent compliquée et ne peut pas être évaluée directement.
- On résume plutôt ses caractéristiques principales avec quelques grandeurs particulières, par exemple :
 - la moyenne, notée $\langle d \rangle$;
 - la variance, notée σ^2 .

Données corrélées

Données et modèles

Problème discre

Systèmes linéaire

Difficultés

Exemple

Nature aléatoire des données

Références

- Les levés géophysiques sont réalisés en prenant des mesures en plusieurs points;
- Il peut arriver que les mesures soient corrélées;
 - Des valeurs élevées en un point surviennent de façon consistante avec d'autre valeurs élevées (ou faibles) en un autre point.

Données corrélées

Données et modèles

ohlàma disc

Systèmes linéair

Difficultés

Exempl

Nature aléatoire des données

Dáfárancac

• Le degré de corrélation de deux variables d_1 et d_2 peut être quantifié en séparant la f.d.p. conjointe en 4 quadrants;

• Si les variables ne sont pas corrélées, la somme des valeurs de la f.d.p. conjointe de chaque quadrant sera nulle.

Données corrélées

Données et modèles

roblème disci

Systèmes linéair

Difficulté

Exempl

Nature aléatoire des données

Kererence

- Si la fonction permettant de construire les quadrants est $[d_1 \langle d_1 \rangle][d_2 \langle d_2 \rangle]$, la mesure du degré de corrélation est appelée covariance;
- Pour un ensemble de N données ayant chacune K réalisations regroupées dans une matrice \mathbf{D} de taille $K \times N$, la covariance expérimentale vaut

$$[\operatorname{cov} \mathbf{d}]_{ij}^{\operatorname{est}} = \frac{1}{K} \sum_{k=0}^{K-1} \left(D_{ki} - \langle D_i \rangle^{\operatorname{est}} \right) \left(D_{kj} - \langle D_j \rangle^{\operatorname{est}} \right). \tag{20}$$

où $\langle D_i \rangle^{\mathrm{est}}$ est la moyenne expérimentale de la i^e donnée.

Dienie discret

Systèmes linéaires

Difficult

Exemple

données

Références

Références

Références

Données et modèles

oblème disc

Systèmes linéair

Difficulté

Exemple

Nature aléatoire (données

Références

- Aster, R. C., Borchers, B., and Thurber, C. H. (2013). *Parameter Estimation and Inverse Problems*. Academic Press, 2nd edition
- Menke, W. (2012). *Geophysical Data Analysis : Discrete Inverse Theory*. Academic Press, 3rd edition