

Introduction

- ► The Domain Problem: Is school performance predicted by socioeconomic factors?
- We are focusing on average student performance on the ACT or SAT exams that students take as part of the college application process and if socioeconomic factors may be used to predict school performance.

Data Used

- ► EdGap includes information about average ACT or SAT scores for schools and several socioeconomic characteristics of the school district in 2016.
- National Center for Education Statistics includes basic information about each school.
- Education Commission of the States provides reports that compare educational policies across 50 states from 2016-2017.
- ► Education Week provides a table with the 2016-2017 data of the states that require SAT/ACT and other exams.

Analysis Methods

- Multiple Linear Regression
- Best Subset Selection

Multiple Linear Regression

- High r-squared value indicates good fit.
- Low p-value (p<0.5) indicates statistically significant.
- Low standard error indicates important predictor.
- R-squared with 63% variance for average_act.
- Lowest significance in the model are median_income and percent_married.
- Lowest standard of error is percent_lunch with 0.108.

Dep. Variable:	average_act		R-squared:		0.632		
Model:	OLS		Adj. R-square	ed:	0.632		
Method:	Least Squares		F-statistic:		1985.		
Date:	Wed, 07	Jun 2023	Prob (F-stati	.stic):	0.00		
Time:		01:07:14	Log-Likelihoo	d:	-10654.		
No. Observations:		5781	AIC:		2.132e+04		
Df Residuals:		5775	BIC:		2.136e+04		
Df Model:	5						
Covariance Type:	nonrobust						
	coef	std err	t	P> t	[0.025	0.975]	
Intercept	22.7774	0.154	147.937	0.000	22.476	23.079	
percent_lunch	-7.7132	0.108	-71.109	0.000	-7.926	-7.501	
median_income	1.067e-06	1.34e-06	0.799	0.425	-1.55e-06	3.69e-06	
-	-0.0961		-0.640	0.522		0.198	
percent_college	1.5641			0.000	1.217	1.911	
rate_unemployment	-2.0735	0.453	-4.575	0.000	-2.962	-1.185	
Omnibus:				:=====================================	2.014		
Prob(Omnibus):	0.000		Jarque-Bera (JB):		2546.433		
Skew:		0.632	Prob(JB):		0.00		
Kurtosis:		5.996	Cond. No.		1.36e	+06	

Best Subset Selection

- ► Higher r-squared values indicate better performance.
- Lower AIC/BIC values indicate better fit.
- The best predictors are colored red.
 - The most effective predictor is percent_lunch.
 - Best subset is percent_college, percent_lunch, and rate_unemployment on average act.

Additional Step Analysis

- What is the relationship between the requirement for students to take the ACT/SAT and the average scores on these tests across different states?
- There is a strong negative relationship between average ACT and percent lunch.
- Students who receive free or reduced lunch are more likely to be associated with low average ACT.

Additional Step Analysis

- What is the relationship between the requirement for students to take the ACT/SAT and the average scores on these tests across different states?
- New York had the highest average ACT score at 29.2.
- Louisiana had the lowest average ACT score at 16.8.

ACT Scores by State

Additional Step Analysis

➤ Since the data does not include all the states, does this affect the relationship between ACT performance and socioeconomic factors? Can the inclusion of ACT/SAT requirements help counteract this bias?

Required by State

Not Required by State

OLS Regression Results							
Dep. Variable: Model: Method: Date: Time: No. Observations:	average_act OLS Least Squares Wed, 07 Jun 2023 01:07:20 5781	Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood:		0.620 0.620 4714. 0.00 -10748. 2.150e+04			
Df Residuals: Df Model: Covariance Type:	5778 2 nonrobust	BIC:		2.1	52e+04		
	coef	std err	t	P> t	[0.025	0.975]	
Intercept required_yes == 1[T. percent_lunch	23.8396 [True] -0.1228 -8.4940	0.042	529.607 -2.945 -97.094		23.751 -0.204 -8.665	-0.041	
Omnibus: Prob(Omnibus): Skew: Kurtosis:	710.866 0.000 0.630 5.801	Durbin-Watson: Jarque-Bera (JB): Prob(JB): Cond. No.		1.744 2272.882 0.00 5.47			

OLS Regression Results								
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	average_act OLS Least Squares Wed, 07 Jun 2023 01:07:20 5781 5778 2 nonrobust	R-squared: Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC: BIC:		0.620 0.620 4714. 0.00 -10748. 2.150e+04 2.152e+04				
	coef	std err	t	P> t	[0.025			
Intercept required_yes == 0[T.' percent_lunch	23.7168 Irue] 0.1228 -8.4940	0.047 0.042 0.087	499.916 2.945	0.000 0.003	23.624 0.041	23.810 0.204		
Omnibus: Prob(Omnibus): Skew: Kurtosis:	710.866 0.000 0.630	Durbin-Watson: Jarque-Bera (JB): Prob(JB): Cond. No.		1.744 2272.882 0.00 5.87				

Additional Step Conclusion

We found a strong negative relationship between average_act and percent_lunch.

We created regression models using these predictors to determine if the ACT requirement is useful for our analysis. However, we found that there is only a 0.001 difference between the two groups where ACT was required and not required.

We can conclude that the ACT requirement has little to no impact when finding relationships between ACT performance and socioeconomic factors.

There are limitations to our analysis due to missing significant predictors.

Conclusion

The data provided did not include all the states and does not take the recent SAT changes from 2018 into account. These factors may have affected our results.

Using the states included in this data set as a predictor is not useful when finding relationships between ACT performance and socioeconomic factors.