Schema Design

Pictorial representation of database.

Scaler Case Study

- 1. There are several batches at scaler. Each batch has id, name, current instructor.
- 2. Each batch has multiple classes. Each class has id, name and instructor.
- 3. Every student has id, name, email, graduation year etc.
- 4. A student can move from one batch to another batch via pausing. We need to store entry and exit date of students related to each batch they were part of.
- 5. Each student has a mentor. Every mentor has name and date of birth.
- 6. Every instructor has name and date of birth.

Step Based Process

- 1. Handle Entities
- 2. Handle Relationships

Handle Entities

- 1. Identify Nouns in requirements.
- 2. If we are storing some information about it, create a table for it.

Scaler Case Study

- 1. There are several batches at scaler. Each batch has id, name, current instructor.
- 2. Each batch has multiple classes. Each class has id, name and instructor.
- 3. Every student has id, name, email, graduation year etc.
- 4. A student can move from one batch to another batch via pausing. We need to store entry and exit date of students related to each batch they were part of.
- 5. Each student has a mentor. Every mentor has name and date of birth.
- 6. Every instructor has name and date of birth.

Students	Batch	Classes
ID: Integer	ID: Integer	ID: Integer
Name: String	Name: String	Name: String
Email: String	Curr_Instructor	Instructor
Grad_Year: Integer	classes	
Prev_Batch		
Curr_Batch	Mentor	Instructor
Mentor	ID: Integer	ID: Integer
	Name: String	Name: String

Handle Relationships

- 1. Identify Relationships.
- 2. Identify Cardinality.

Process to determine Cardinality

1. Approach from both sides.

Cardinality: Cardinality tells us how many of one entity is related to how many of other entity.

One student can part of how many batches?

Ans: 1

One Batch can have how many students?

Ans: Many

Now, take maximum from both sides. i.e. M:1. Therefore, relationship from student to Batch is M:1.

How to model different cardinalities?

1:1

Husbands

	Id		
I			

Wives

Id		HID

Options

- 1. Put husband id in wives table.
- 2. Put wife id in husbands table.

1:M

Batches

Id		

Classes

Id		BID
		1
		2

Options

1. Store batch id in classes table.

Current Batch

Batches

Id		

Students

Id		BID
		1
		2

Options

1. Store batch id in students table.

M:M

Previous Batch

Students

Id		

Batches

Id		

Options 0

- 1. Create Mapping table and stick with composite key.
- 2. Create Mapping table and add a new id column as primary key.

Students-Previous-Batches

SID	PBID
1	127
1	1045
1	1896
2	188
2	256
2	10450

Here SID, PBID together makes a composite key. Here data is first stored by SID then it is stored by PBID.

Students-Previous-Batches

ID	SID	PBID
1	1	4
2	1	10

Create Mapping table and add a new id column as primary key.

1. Mapping table starts acting like an entity.

ID	SID	PBID	PB_start_date	PB_start_date
1	25	1	16 th Aug, 2022	18 th Sep, 2022
2	25	2	25 th Nov, 2022	3 rd Mar, 2023

2. When mapping table wants to create relationship with other table.

Batch-Class

ID	BID	CID

Batch-Class-Assignment with dedicated ID

BCID	AID

Batch-Class-Assignment with composite key

BID	CID	AID

Batch-Class-Assignment with dedicated ID is more easier to join.

Caveats

1. Sparse tables.

1:1

Husbands

Id		WID

Wives

Id		

Suppose we have 100 million husbands and 1 million wives then at max 1 million marriages are possible. When we store wife id in husband table there will be at least 99 million spare entries. Thus, we are wasting 396mb memory.

We can create Mapping Table instead of storing id.

Husband-Wife

HID	WID

1:M or M:1

Students

ID	Name	Email	Curr_BID

Now, Suppose scaler takes a master class and 25k enrolled with master class. Out of 25k, 1k registers with scaler. This will results in 24k nulls. So, Here also we can create mapping table.

Students

ID	Name	Email

Students-Current-Batch

SID	CBID

1:1

Wife

ID	Name

Husband

ID	Name	WID	Marriage_date	Marriage_city	Honeymoon_city

Wife

ID	Name

Husband

ID	Name

Husband-Wife-Marriage

ID	HID	WID	Marriage_date	Marriage_city	Honeymoon_city

1:M or M:1

Student

ID	Name	CBID	Curr_batch_joining_date

Student

ID	Name

Batch

ID	Name

Student-Batch

ID	SID	CBID	Curr_batch_joining_date

Condition	Normal	Caveat#1	Caveat#2
		Sparse Table	Relationship
			becomes entity
Cardinality			
1:1	Put id of any side	Mapping Table	Mapping Table
	on other side		
1:M or M:1	Put id of 1 side	Mapping Table	Mapping Table
	on M side		
M:M	Mapping Table	Mapping Table	Mapping Table

Final Scaler Schema Design

Students	
ID: Integer	
Name: String	
Email: String	
Grad_Year: Integer	
Mentor_ID: Integer	

Batch	
ID: Integer	
Name: String	
Curr_Instructor_ID	

Classes
ID: Integer
Name: String
InstructorID: Integer
BID: Integer

Mentor
ID: Integer
Name: String
DOB

Instructor
ID: Integer
Name: String
DOB

Student_Previous_Batch
ID: Integer
SID: Integer
BID: Integer
Batch_Joining_Date:
Batch_Ending_Date:

Student_Previous_Batch	
ID: Integer	
SID: Integer	
BID: Integer	
Batch_Joining_Date:	
Batch_Ending_Date:	

Student_Current_Batch
ID: Integer
SID: Integer
BID: Integer
Batch_Joining_Date: