Math 342 Tutorial May 21, 2025

Question 1. Prove every integer n with |n| > 1 is either prime or can be factored into a product of prime numbers [Hint: use the principle of strong mathematical induction].

We use induction, and we note it suffices to show the result for n > 0. Certainly, the result is true for n = 2. Next let n > 2. If n is prime, we're done. If n is composite, then there exists $a, b \ne 1$ such that n = ab. But 1 < a, b < n so that a and b are either prime or a product of prime numbers. But then n = ab is a product of prime numbers. By the principle of strong mathematical induction, the result follows.

Question 2. Use Question 1 to show there are infinitely many prime numbers [Hint. use contradiction and consider the number $N=1+p_1\cdots p_n$ where p_1,\ldots,p_n are the assumed finite number of primes].

Towards a contradiction, assume there are only a finite number of primes, say p_1, \ldots, p_n . Define $N=1+p_1\cdots p_n$. From Question 1, either N is a prime or a product of primes. But $N>p_i$ for all $i\in\{1,\ldots,n\}$, hence N cannot be prime. Therefore, N is a product of the primes p_1,\ldots,p_n . Observe, however, that no prime p_1,\ldots,p_n can divide N for if some $p_i\mid N$, then $p_i\mid 1$ which cannot be. So N cannot be a product of the primes p_1,\ldots,p_n , a contradiction. This establishes the result.

Question 3. The gcd of a multiset $\{a_1, \ldots, a_n\}$ of integers is defined inductively by $(a_1, a_2, \ldots, a_n) = (a_1, (a_2, \ldots, a_n))$. Show (a) the gcd of $\{a_1, \ldots, a_n\}$ is independent of the ordering chosen for the elements of the set, and (b) there exists integers x_1, \ldots, x_n such that $(a_1, a_2, \ldots, a_n) = x_1a_1 + \cdots + x_na_n$.

- (a) We show the following by induction:
 - (1) $(a_1, \ldots, a_n) \mid a_i$ for each $1 \le i \le n$, and
 - (2) if any $d \mid a_i$ for each $1 \le i \le n$, we have $d \mid (a_1, \ldots, a_n)$.

In particular, we start by showing that (a_1, \ldots, a_n) is the largest common divisor of a_1, \ldots, a_n . The base case (n=2) was shown in class. Let n>2, and assume the result for n-1, that is, the result holds for every multisubset of \mathbf{Z} of cardinality n-1. Let $\{b_1, \ldots, b_n\}$ be an arbitrary multisubset of \mathbf{Z} . Since

$$(b_1,\ldots,b_n)=(b_1,\,(b_2,\ldots,\,b_n)),$$

we have that (b_1,\ldots,b_n) divides both b_1 and (b_2,\ldots,b_n) . Since (b_2,\ldots,b_n) divides each of b_2,\ldots,b_n , so does (b_1,\ldots,b_n) . This shows (1) holds for $\{b_1,\ldots,b_n\}$. Next, let d be such that $d\mid a_i$ for each $1\leq i\leq n$. Since then $d\mid b_i$ for $i\geq 2$, we have that $d\mid (b_2,\ldots,b_n)$ by the inductive hypothesis. Since $d\mid b_1$ and $d\mid (b_2,\ldots,b_n)$, we have that $d\mid (b_1,(b_2,\ldots,b_n))=(b_1,\ldots,b_n)$. This shows that (2) holds for $\{b_1,\ldots,b_n\}$. Since $\{b_1,\ldots,b_n\}$ was an arbitrary multisubset of ${\bf Z}$ of cardinality n, it holds for every multisubset of cardinality n. It now follow that (1) and (2) hold for every multisubset of ${\bf Z}$ of finite order.

Let $\{a_1,\ldots,a_n\}$ be an arbitrary multisubset of \mathbf{Z} , and let σ be an arbitrary permutation of $\{a_1,\ldots,a_n\}$. From (1) and (2) above, we have that both $(a_1,\ldots,a_n)\mid (\sigma(a_1),\ldots,\sigma(a_n))$ and $(\sigma(a_1),\ldots,\sigma(a_n))\mid (a_1,\ldots,a_n)$. Therefore, $(a_1,\ldots,a_n)=(\sigma(a_1),\ldots,\sigma(a_n))$ as these are both positive values by assumption. Since $\{a_1,\ldots,a_n\}$ and σ were arbitrary, the result follows.

(b) Given a multisubset $\{a_1, \ldots, a_n\}$ of \mathbf{Z} , we assume the indexing is chosen so that $a_i \leq a_j$ whenever i < j. Note the logical form of the proposition we are required to prove. We must show for all n > 1, the result holds for every multisubset of \mathbf{Z} of cardinality n. We have shown the base case—that is, n = 2—in class already. Let n > 2, and suppose the result holds for n - 1; namely,

for every multisubset $\{a_1, \ldots, a_{n-1}\}$ of **Z** of cardinality n-1, there exists integers x_1, \ldots, x_{n-1} such that $a_1x_1 + \cdots + a_{n-1}x_{n-1} = (a_1, \ldots, a_{n-1})$. Let $\{b_1, \ldots, b_n\}$ be an arbitrary multisubset of **Z** of cardinality n. From the base case, there exists integers y_1, y_2 such that

$$(b_1,\ldots,b_n)=(b_1,(b_2,\ldots,b_n))=y_1b_1+y_2(b_2,\ldots,b_n).$$

From the inductive hypothesis, there exists integers z_2, \ldots, z_n such that

$$(b_2,\ldots,b_n)=z_2b_2+\cdots+z_nb_n.$$

Putting things together, we have

$$(b_1, \dots, b_n) = (b_1, (b_2, \dots, b_n))$$

= $y_1b_1 + y_2(b_2, \dots, b_n)$
= $y_1b_1 + y_2z_2b_2 + \dots + y_2z_nb_n$.

Since $\{b_1, \ldots, b_n\}$ was chosen arbitrarily, the result holds for n as well. The result now follows from the principle of mathematical induction.

Question 4. Let p be a prime. Show that if $p \mid ab$ then $p \mid a$ or $p \mid b$.

Suppose that p divides neither a nor b but $p \mid ab$. In particular, (a, p) = (b, p) = 1. Hence, there exists integers w, x, y, and z such that

$$1 = wp + xa = yp + zb.$$

Then

$$1 = (wp + xa)(yp + zb) = wyp^2 + (wzb + xay)p + xzab.$$

Since $p \mid ab$ by assumption, we have that $p \mid wyp^2 + (wzb + xay)p + xzab = 1$, a contradiction. Therefore, p does not divide ab.

Question 5. If (a, b) = 1, then (a + b, a - b) = 1 or 2.

Let d=(a+b,a-b). We have that $d\mid a+b$ and $d\mid a-b$. Therefore, $d\mid (a+b)+(a-b)=2a$ and $d\mid (a+b)-(a-b)=2b$. By assumption, there exists integers x,y such that ax+by=1 so that 2ax+2bx=2. Since $d\mid 2a,2b$, it must be that $d\mid 2ax+2bx=2$. Therefore, d=1 or 2 (up to negation).

Question 6. If (a, b) = 1, then $(a + b, a^2 - ab + b^2) = 1$ or 3.

Let $d=(a+b,\,a^2-ab+b^2)$, and note that $d=(a+b,\,a^2-ab+b^2)=(a+b,\,(a+b)^2-3ab)=(a+b,\,3ab)$. Suppose that d>1 and p is a prime divisor of d. Then $p\mid a+b$, and either $p\mid 3$ or $p\mid a$ or $p\mid b$. If $p\mid a$, then $p\mid (a+b)-a=b$ contradicting the fact that a and b are coprime. Thus, p does not divide a. Similarly, p does not divide b. Hence, p divides a. But a is prime so that a and a we have, therefore, that a and a or a for some a or a suppose next that a and a is prime divisor a of a such a suppose a suppose a such a suppose a

Question 7. If (a, b) = 1, then $(a^n, b^k) = 1$ for all $n, k \ge 1$.

Recall that (a, b) = 1 if and only if a and b have no common factors that are not 1. Let n, k > 1 be given, and suppose that $(a^n, b^k) = d$ with d > 1. Let p be a prime divisor of d. Then $p \mid a^n, b^k$; in

particular, $p \mid a, b$, a contradiction. Therefore, d = 1.

Question 8. If $2^n - 1$ is a prime, then n is a prime.

Towards a contradiction, suppose that n is composite, say n = xy with 1 < x, y < n. Then

$$2^{xy} - 1 = (2^x - 1)(2^{x(y-1)} + 2^{x(y-2)} + \dots + 2^x + 1).$$

However, $2^x - 1 > 1$ since x > 1, hence $2^x - 1$ is a nontrivial divisor of $2^n - 1$. This contradicts the assumption that $2^n - 1$ is prime; thus, it must be that n is prime.

Question 9. If $2^n + 1$ is a prime, then n is a power of 2.

Towards a contradiction, suppose that $n = 2^k m$ with m > 1 odd. Then

$$2^{2^{k}m} + 1 = (2^{2^{k}})^{m} + 1 = (2^{2^{k}} + 1)(2^{2^{k}(m-1)} - 2^{2^{k}(m-2)} + \dots - 2^{2^{k}} + 1).$$

But $2^{2^k}+1 \ge 2$. Since m>1, we have that $2^{2^km}+1>2^{2^k}+1$ and $2^{2^k(m-1)}-2^{2^k(m-2)}+\cdots-2^{2^k}+1>1$. We have exhibited factorization of 2^n+1 into a product of two nontrivial divisors contradicting the assumption that 2^n+1 is prime. Therefore, m=1 and n is a power of 2.

Question 10. (a) Suppose that (a, b) = (c, d) = 1 and $\frac{a}{b} + \frac{c}{d} = n$ is an integer. Show |b| = |d|. (b) Prove the sum $\sum_{k=1}^{n} \frac{1}{k}$ is not an integer for n > 1 [Hint. show the sum can be written as $\frac{a}{b}$ with a and b of opposite parity].

(a) We have that

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd} = n.$$

In particular, we have that $bd \mid ad + bc \Rightarrow b \mid ad + bc \Rightarrow b \mid ad$. Since (a, b) = 1, it follows that $b \mid d$. Similarly, $d \mid b$. Thus, |b| = |d|.

(b) We claim the sum always evaluates to a fraction $\frac{a}{b}$ with a odd and b even. The proof is by induction on n. For n=2, we have $1+\frac{1}{2}=\frac{3}{2}$, so the base case holds. Let n>2 be given, and suppose the result holds for all m with m< n and m< 2. Partitioning the sum $\sum_{k=1}^n \frac{1}{k}$ into whether the denominator is even or odd, we find that

$$\sum_{k=1}^{n} \frac{1}{k} = 1 + \dots + \frac{1}{k} = \sum_{k=2}^{\lceil n/2 \rceil} \frac{1}{2k-1} + \frac{1}{2} \sum_{k=1}^{\lfloor n/2 \rfloor} \frac{1}{k}.$$

By our inductive hypothesis, we can write $\frac{1}{2}\sum_{k=1}^{\lfloor n/2\rfloor}\frac{1}{k}$ as $\frac{a}{b}$ with a odd and b even. Next, observe that $\sum_{k=2}^{\lceil n/2\rceil}\frac{1}{2k-1}=\frac{f(k)}{(2k-1)!!}$ where f(k) is a polynomial in k. Since (2k-1)!! is odd, it follows that $\sum_{k=2}^{\lceil n/2\rceil}\frac{1}{2k-1}=\frac{f(k)}{(2k-1)!!}$ can be written as $\frac{c}{d}$ with d odd. Then

$$\sum_{k=1}^{n} \frac{1}{k} = \frac{c}{d} + \frac{a}{b} = \frac{cb + ad}{db}.$$

Since a and d are odd, ad is odd. Also, cb is even as b is even. Therefore, cb+ad is odd. Finally, db is even as b is even. Thus, the result holds for n as well and the proposition follows by the strong principle of mathematical induction.

3

Question 11. Prove: (a) For every integer k the numbers 2k + 1 and 9k + 4 are relatively prime. (b) For every integer k, express the gcd of 2k - 1 and 9k + 4 as a function of k.

- (a) We solve x(2k+1) + y(9k+4) = 1. This leads to the system 2x + 9y = 0, x + 4y of linear equations. This system has the unique solution x = 9 and y = -2. Therefore 9(2k+1) 2(9k+4) = 1, which shows (2k+1, 9k+4) = 1.
- **(b)** We have

$$(2k-1, 9k+4) = (2k-1, 4(2k-1)+(k+8)) = (k+8, 2k-1) = (k+8, 2(2k-1)-17) = (k+8, 17).$$

So (2k-1, 9k+4) = 1 or 17. But (2k-1, 9k+4) = 17 if and only if k = 17m+9 for some integer m. In all other cases, (2k-1, 9k+4) = 1.

Question 12. Prove that for positive integers m and a we have

$$\left(\frac{a^m-1}{a-1}, a-1\right) = (a-1, m).$$

Let $d = (\frac{a^m - 1}{a - 1}, a - 1)$, and observe

$$\frac{a^{m}-1}{a-1} = a^{m-1} + a^{m-2} + \dots + a + 1$$
$$= (a^{m-1}-1) + (a^{m-2}-1) + \dots + (a-1) + m.$$

Since $a-1\mid a^k-1$ for $k\geq 0$, we have that $d\mid m$ whereupon $d\mid (a-1,m)$. Conversely, since $(a,m)\mid a-1,m$, it follows that $(a,m)\mid \frac{a^m-1}{a-1}$ and hence $(a,m)\mid (\frac{a^m-1}{a-1},a-1)=d$. Thus d=(a-1,m).