DAFTAR ISI

DAFTAR ISIi
BAB 1 PENDAHULUAN
1.1 Latar Belakang1
1.2 Tujuan Khusus Riset1
1.3 Manfaat Riset2
1.4 Urgensi Riset2
1.5 Temuan yang Ditargetkan2
1.6 Kontribusi Riset
1.7 Luaran Riset
BAB 2 TINJAUAN PUSTAKA 2
2.1 Ferrofluid
2.2 Surfaktan2
2.3 Sekam Padi3
2.4 Air Sungai3
2.5 Aktivitas Antimikroba Ferrofluid
BAB 3 METODE RISET
3.1 Waktu dan Tempat4
3.2 Bahan dan Alat4
3.3 Variabel Riset4
3.3.1 Variabel Bebas4
3.3.2 Variabel Terikat4
3.4 Tahapan Riset4
3.5 Prosedur Riset4
3.5.1 Sintesis Natrium Lignosulfonat4
3.5.2 Sintesis Ferrofluid4
3.5.3 Karakterisasi Ferrofluid5
3.5.4 Uji Efektivitas Ferrofluid5
3.6 Luaran dan Indikator Capaian6
3.7 Analisis Data7
3.8 Cara Penafsiran7
3.9 Penyimpulan Hasil Riset7
BAB 4 BIAYA DAN JADWAL PELAKSANAAN8
4.1 Anggaran Biaya8
4.2 Jadwal Kegiatan8
DAFTAR PUSTAKA
LAMPIRAN
Lampiran 1. Biodata Ketua dan Anggota, serta Dosen Pendamping11
Lampiran 2. Justifikasi Anggaran Kegiatan
Lampiran 3. Susunan Organisasi Tim Pelaksana dan Pembagian Tugas .19
Lampiran 4. Surat Pernyataan Ketua Pelaksana20

BAB 1. PENDAHULUAN

1.1 Latar Belakang

Air merupakan sumber daya yang sangat diperlukan manusia. Akses yang mudah terhadap sumber air bersih berperan besar terhadap kesejahteraan manusia. Di Indonesia, sejumlah provinsi masih kesulitan akses terhadap layanan air minum yang layak dan berkelanjutan. Daerah yang paling disayangkan adalah Bengkulu dengan persentase aksesibilitas air minum yang layak hanya sebesar 45%. Sementara itu, di Sumatera Utara sekitar 16% dari jumlah rumah tangga yang ada belum memperoleh akses air bersih (BPS, 2019).

Pemanfaatan sumber daya air yang ada di masyarakat perlu ditingkatkan. Salah satu sumber air yang banyak ditemui namun belum maksimal pemanfaatannya adalah air sungai. Hal ini disebabkan karena banyak pertimbangan jika ingin mengkonsumsi air sungai di masa ini sejak terjadinya kontaminasi dari berbagai aktivitas manusia baik dalam bentuk limbah kimia maupun biologi.

Melihat data kualitas air sungai di berbagai daerah di Indonesia yang dikeluarkan oleh BPS (2017), dalam sembilan tahun terakhir (2007-2016), ditunjukkan bahwa kualitas air sungai hampir semua daerah yang diteliti terus-menerus memburuk. Pada tahun 2016, dari 291 titik sampling sungai yang diteliti, sebanyak 62,2% berstatus cemar berat, 20,96% cemar sedang-berat, 11,68% cemar ringan-sedang, 4,12% ringan berat, 1,03% cemar sedang. Artinya, air sungai sudah tidak layak lagi dikonsumsi oleh manusia. Namun, dengan penanganan yang baik, air yang sudah tercemar juga masih dapat diproses hingga layak untuk diminum.

Ferrofluid adalah suspensi dari partikel nano dari besi oksida yang terdispersi dalam cairan berair atau tidak berair dengan sifat magnet yang kuat. Nanopartikel besi oksida pada ferrofluid biasanya dilapisi dengan surfaktan untuk menstabilkan suspensinya dalam pelarut atau cairan pembawa sehingga dapat mencegah terjadinya aglomerasi (Oehlsen *et al.*, 2022).

Surfaktan adalah zat aktif permukaan. Surfaktan dapat menstabilkan suspensi karena memiliki gugus polar dan nonpolar sekaligus dalam strukturnya. Natrium lignosulfonat (NaLS) adalah salah satu surfaktan yang bisa diekstrak dari sekam padi. Beberapa keunggulan NaLS yakni toksisitasnya rendah, mudah disintesis, mudah terurai, larut dalam air, dan tidak merusak lingkungan (Lestari & Sukmawati, 2021). Yadav *et al.* (2022) melaporkan bahwa nanopartikel natrium lignosulfonat memiliki aktivitas antibakteri terhadap bakteri gram positif dan bakteri gram negatif.

Adsorptivitas ferrofluid cukup baik dikarenakan luas permukaannya yang besar dan mudah terikat dengan kontaminan dalam air termasuk mikroorganisme (Hatamie *et al.*, 2016). Zat ini juga dapat ditarik dengan medan magnet eksternal sehingga mempermudah pemanfaatannya dalam penanganan air.

Berdasarkan uraian di atas, maka riset terkait potensi ferrofluid dengan surfaktan NaLS dari sekam padi sebagai antibakteri air sungai dalam mewujudkan akses air bersih yang baik perlu dilakukan.

1.2 Tujuan Khusus Riset

Tujuan khusus dari riset ini adalah untuk melakukan sintesis ferrofluid dengan penstabil berupa surfaktan natrium lignosulfonat dari sekam padi dan meneliti efektifitasnya dalam membunuh bakteri gram negatif (*Coliform*, *E. Coli*, dan *Pseudomonas aeruginosa*) yang menjadi parameter biologi dalam syarat air minum layak konsumsi.

1.3 Manfaat Riset

Riset ini diharapkan menghasilkan informasi yang dapat dimanfaatkan untuk pengembangan penggunaan ferrofluid dalam pengolahan air serta pengembangan teknologi dalam penanganan air bersih. Dengan ini, diharapkan sumber daya yang ada di sekitar, dalam hal ini adalah sungai, dapat dimaksimalkan pemanfaatannya untuk kemudahan akses air layak minum dalam masyarakat.

1.4 Urgensi Riset

Riset ini penting untuk menangani kesulitan akses air bersih layak minum yang masih dirasakan oleh beberapa daerah di Indonesia, termasuk Sumatera Utara. Dengan demikian, tercipta masyarakat dengan akses air bersih layak minum yang memadai dan berkelanjutan.

1.5 Temuan yang Ditargetkan

Target yang dituju riset ini adalah terbentuknya ferrofluid-NaLS yang stabil dan tidak toksik dalam penggunaannya, mampu membunuh bakteri berbahaya dalam air sungai berdasarkan mekanisme destruksi.

1.6 Kontribusi Riset

Hasil penelitian ini akan berkontribusi dalam pengembangan pengetahuan tentang pemanfaatan limbah, keunggulan bahan nanopartikel, dan pengolahan air (*water treatment*).

1.7 Luaran Riset

Luaran yang dihasilkan dari kegiatan riset ini adalah berupa laporan kemajuan, laporan akhir, hak kekayaan intelektual, artikel ilmiah, dan nanopartikel besi oksida dengan surfaktan natrium lignosulfonat, dan dan akun media sosial yang berisi konten edukasi terkait kegiatan riset yang dilaksanakan dan diiklankan pada jadwal yang ditentukan (25 April 2023, 25 Mei 2023, 25 Juni 2023, 25 Juli 2023, dan 25 Agustus 2023, pukul 12.00 WIB).

BAB 2. TINJAUAN PUSTAKA

2.1 Ferrofluid

Ferrofluida adalah suspensi koloid dari partikel nano oksida besi yang disebut juga dengan *iron oxide nanoparticles* (IONPs) dalam cairan berair atau tidak berair yang menunjukkan sifat magnetik yang kuat. Ferrofluida terdiri dari IONPs yang bersifat magnetik seperti Fe₃O₄, surfaktan yang melapisi IONPs (untuk mencegah aglomerasi), dan cairan pembawa yang menangguhkan IONPs. Kopresipitasi dan dekomposisi termal adalah metode utama yang digunakan untuk sintesis IONPs. Terlepas dari kenyataan bahwa dekomposisi termal memberikan kontrol yang tepat

pada ukuran nanopartikel, kopresipitasi adalah metode yang paling banyak digunakan, walaupun oksidasi besi dapat terjadi jika dilakukan dengan metode ini. Oksidasi mengubah rasio magnetik yang mempengaruhi sifat ferrofluida (Oehlsen *et al.*, 2022).

Ferrofluid dimodifikasi menggunakan bahan organik maupun anorganik untuk menghasilkan material yang sifat kemagnetannya tinggi, supaya dapat memanfaatkan medan eksternal dalam kemudahan pengalikasiannya. Selain itu, hal ini bertujuan untuk memperoleh material yang berukuran lebih kecil (Rahmayanti, 2020).

2.2 Surfaktan

Surfaktan adalah zat aktif atau molekul yang bekerja pada bidang permukaan dan dapat menurunkan tegangan antara dua antarmuka cair yang tidak dapat bercampur (*immiscible*). Gugus hidrofilik surfaktan mudah bergabung dengan air karena sifatnya polar, sementara gugus lipofiliknya bersifat nonpolar dan mudah bergabung dengan minyak atau molekul nonpolar lain. Penambahan surfaktan menyebabkan penurunan tegangan permukaan pada suatu campuran. Pada konsentrasi tertentu, tegangan permukaan tetap konstan meskipun konsentrasi surfaktan dinaikkan (Oppusunggu *et al.*, 2015).

Surfaktan ditambahkan dalam ferrofluid untuk mencegah penggumpalan nanopartikel besi. Gugus polar pada surfaktan mengarah pada permukaan nanopartikel besi sedangkan gugus alkil berinteraksi dengan medium nonpolar. Surfaktan pada ferrofluid dipilih sesuai dengan aplikasi yang diharapkan karena akan mempengaruhi sifat ferrofluid (Oehlsen *et al.*, 2022).

2.3 Sekam Padi

Sekam padi adalah kulit padi yang telah terpisah dari bulirnya dan dihasilkan pada proses penggilingan padi. Sekam padi mengandung sebanyak 35% selulosa, 25% hemiselulosa, dan 20% lignin (Ma'Ruf, Pramudono & Aryanti, 2017). Lignin memiliki struktur yang lebih kompleks dari selulosa dan mengandung gugus-gugus-OH pada struktur cincin aromatiknya sehingga dapat berperan sebagai adsorben terutama pada ion logam (Utomo and Fadila, 2020). Lignin dapat disulfonasi menjadi lignosulfonat dengan menggunakan natrium bisulfit.

2.4 Air Minum

Air minum adalah air yang telah melalui proses pengolahan ataupun tanpa proses pengolahan, memenuhi syarat kesehatan, dan dapat langsung diminum. Air yang baik kualitasnya untuk diminum harus memenuhi Standar Nasional Indonesia (SNI). Air yang layak untuk diminum harus bebas dari sumber pencemaran, seperti mikroorganisme pembawa penyakit. Ada beberapa parameter yang digunakan sebagai standar dalam menentukan kualitas air minum yang baik. SNI tidak mensyaratkan pengujian terhadap bakteri *Escherichia coli* tetapi menetapkan *Pseudomonas aeruginosa*, total coliform, dan ALT sebagai persyaratan. SNI air mineral dan air demineral menetapkan cemaran total coliform, ALT dan

Pseudomonas aeruginosa tidak boleh terdeteksi per 250 ml AMDK (Agustini, 2017).

Satuan	IBWA (2015)	Menkes (2010)	WHO (2011)	Air Mineral SNI 3553:20	Air Demineral SNI 6241:201
Jml/250 ml	0	0	0	TTD	TTD
Jml/100 ml	0	0	0	-	-
Koloni/ ml	-	-	-	1×10^2	1×10^2
Koloni/ ml	-	-	-	1×10^5	1×10^5
	Jml/250 ml Jml/100 ml Koloni/ ml Koloni/	Satuan (2015)	Satuan (2015) (2010) Jml/250 ml 0 0 Jml/100 ml 0 0 Koloni/ ml - - Koloni/ ml - -	Satuan (2015) (2010) (2011) Jml/250 ml 0 0 0 Jml/100 ml 0 0 0 Koloni/ ml - - - Koloni/ ml - - -	Satuan IBWA (2015) Menkes (2010) WHO (2011) Mineral SNI 3553:20 15 Jml/250 ml 0 0 0 TTD Jml/100 ml 0 0 0 - Koloni/ ml - - - 1 × 10 ² Koloni/ ml - - - 1 × 10 ⁵

Tabel 2.1 Parameter Mikrobiologi Air Minum dan Standarnya

2.5 Aktivitas Antimikroba Ferrofluid

Koloni/

250 ml

Ferrofluid memiliki sifat antimikroba karena mengandung nanopartikel oksida logam yang dipercaya menghambat pertumbuhan bakteri dengan cara menghasilkan stres oksidatif dan reactive oxygen species (ROS) berupa H₂O₂. Karena permukaan mikroba bermuatan negatif, akan terjadi tarikan elektrostatis dengan nanopartikel yang bermuatan positif pada ferrofluid. ROS akan menembus sel mikroba melalui pori-pori dan berujung pada destruksi inti sel dan DNA patogenik (Taufiq *et al.*, 2020).

TTD

TTD

BAB 3. METODE RISET

3.1 Waktu dan Tempat Pelaksanaan Riset

Riset ini dilakukan selama 3 bulan di Laboratorium Kimia Anorganik FMIPA USU, dan Laboratorium Mikrobiologi Fakultas Teknik USU.

3.2 Bahan dan Alat

Pseudomonas A

Bahan-bahan yang digunakan dalam riset: sekam padi, NaHSO3, H2SO4, FeCl3·6H2O, FeSO4·7H2O, NaOH, NaLS, alkohol, kerosin, trifeniltetrazolium klorida (TTC), *Brilliant Green Lactose Broth* (BGLB), *eosin methylene-blue* (EMB), *Plate Count Agar* (PCA), *pepton dilution fluid* (PDF) dan *aquadest*. Alat yang digunakan dalam riset ini yaitu: ayakan 60 dan 44 mesh, beberapa peralatan kaca, rotary evaporator, oven, neraca analitik, pH meter, homogenizer, rotary evaporator, botol sampel, labu alas bulat, cawan petri, *vacuum chamber*, XRD, spektrofotometer FTIR, *stomacher bag*, *colony counter*, corong, tabung *Lactose Broth Triple Strength* dan termometer digital.

3.3 Variabel Riset

3.3.1 Variabel Bebas

Variabel bebas pada riset ini adalah ferrofluid-NaLS.

3.3.2 Variabel Terikat

Variabel terikat pada riset ini adalah bakteri *Coliform*, *E. coli*, *Pseudomonas aeruginosa*, dan Angka Lempeng Total (ALT) pada air sungai.

3.4 Tahapan Riset

Tahapan riset terbagi menjadi 4, yaitu: pembuatan surfaktan NaLS, sintesis Ferrofluid-NaLS, karakterisasi, dan uji efektivitas antibakteri Ferrofluid-NaLS.

3.5 Prosedur Riset

3.5.1 Sintesis Natrium Lignosulfonat

Sekam padi dihaluskan dengan ukuran 60 mesh dan tertahan pada ayakan mesh No.44 kemudian dimasukkan ke dalam beaker glass. Serbuk sekam padi dicampur dengan larutan NaHSO3 30% sebanyak 250mL dengan perbandingan 5:1 (sesuai berat sekam padi yang digunakan). Diukur pH campuran dengan pH meter, jika pH>4 ditambahkan H2SO4 sampai pH=4. Campuran dipindahkan ke dalam labu alas bulat dan dipasangkan pada alat rotary evaporator dengan kecepatan pengadukan 5 rpm, suhu 70°C selama 1 jam, suhu 85°C selama 1 jam, dan suhu 100°C selama 3 jam. Hasil reaksi kemudian dipindahkan kedalam beaker glass untuk disaring dengan kertas saring. Filtrat yang didapat kemudian di oven pada suhu 100°C sampai didapat serbuk natrium lignosulfonat.

3.5.2 Sintesis Ferrofluid

Sintesis ferrofluid dilakukan dengan metode kopresipitasi (Rahmayanti, 2020). Metode ini dibuat dengan campuran larutan Fe³⁺ (FeCl₃·6H₂O) dan Fe²⁺ (FeSO₄·7H₂O) dengan rasio mol 1.5: 1 ditetesi dengan 0.1 M NaOH yang disertai pengadukan pada suhu kamar. Reaksi dilakukan pada labu leher tiga tertutup selama 60 menit. Setelah itu ditambahkan larutan natrium lignosulfonat jenuh (dalam pelarut air) sebanyak 1% (v/v). Endapan yang terbentuk didekantasi menggunakan medan magnet eksternal, dibersihkan dengan aquades dan alkohol, dan dikeringkan dalam *vacuum chamber*. Setelah itu, padatan ditambahkan dengan kerosin hingga membentuk koloid yang stabil.

3.5.3 Karakterisasi Ferrofluid

Karakterisasi pertama dilakukan dengan instrumen *Particle Size Analyzer* untuk mengetahui ukuran nanopartikel yang terbentuk. Kedua, diuji dengan XRD untuk mengetahui kristalinitas nanopartikel besi oksida yang telah dilapisi NaLS. Terakhir, karakterisasi ferrofluid dilakukan dengan FTIR untuk mengamati serapan ikatan Fe-O dalam magnetit dan interaksi antara surfaktan NaLS dengan nanopartikel besi oksida.

3.4.4 Uji Efektivitas Ferrofluid

Tiga sampel air sungai yang berbeda diuji ALT, total *Coliform, E. coli*, dan *Pseudomonas aeruginosa*. Kandungan bakteri diuji sebelum dan sesudah diberi perlakuan dengan ferrofluid.

Pengujian total *Coliform* dilakukan dengan uji penduga (*Presumptive Test*) pada media *Lactose Broth* (LB) dan uji kepastian (*Confirmed Test*). Pada uji penduga, sampel diinkubasi pada suhu 35°C selama 48 jam. Tabung Durham yang menunjukkan positif ditandai dengan terbentuknya gas dan terjadinya perubahan warna. Pengujian berikutnya adalah uji kepastian. Tabung LB yang menunjukkan hasil positif kemudian diinokulasi ke dalam tabung yang berisi media *Briliant Green Lactose Broth* (BGLB). Inkubasi dilakukan pada suhu 45°C selama 48 jam dan jumlah bakteri yang muncul dihitung menggunakan alat *colony counter* yang kemudian dicatat dan dikalikan dengan besaran pengenceran yang telah dilakukan. Jumlah bakteri dinyatakan dalam satuan cfu/ml (colony-forming unit/ml) (Puspitasari *et al.*, 2016).

Uji kandungan E.Coli dilakukan dengan menggunakan metode MPN (Most Probable Number) yang terdiri atas uji penduga (presumptive test). Pada tahap ini, spesimen cair ditanam pada 5 tabung Lactose Broth Triple Strength (5 ml) masingmasing 10 ml, satu tabung Lactose Broth Triple Strength (10 ml) masing-masing 1 ml, dan satu tabung Lactose Broth Triple Strength (10 ml) masing-masing 0,1 ml. Tabung-tabung tersebut diinkubasi pada suhu 37°C selama 48 jam dan tabung yang menghasilkan gas dilanjutkan dengan uji penegasan. Pada tahap uji penegasan (confirmed test), tabung-tabung Lactose Broth Triple Strength pada uji penduga yang menghasilkan gas diambil sedikit dengan mencelupkan jarum ose ke dalamnya kemudian dicelupkan kembali ke dalam tabung Brilliant Green Lactose Bile Broth, lalu diinkubasi pada suhu 37°C selama 48 jam. Tabung-tabung yang menghasilkan gas dicatat dan dicocokkan dengan tabel MPN untuk menentukan jumlah bakteri Coliform yang terkandung dalam sampel. Selanjutnya, pada uji pelengkap (completed test), tabung Brilliant Green Lactose Bile Broth yang menghasilkan gas dicelupkan dengan ose setipis mungkin, kemudian ditanam pada agar EMB dan diinkubasi dalam inkubator 37°C selama 24 jam. Adanya E. coli ditandai dengan terbentuknya koloni bakteri yang rata dan mengkilap (merah kehijauan metalik) (Meylani & Putra, 2019).

Pengujian terhadap bakteri *Pseudomonas aeruginosa* menggunakan metode filter. Metode membran filter mampu mengisolasi koloni dan dapat menganalisa sampel dalam jumlah dan volume yang besar dalam waktu singkat dengan tingkat keakuratan yang tinggi. Dengan menggunakan teknik membran filter, sebanyak 100 mL sampel dapat melewati membran berukuran 0,45 m dengan menggunakan *filter funnel* dan *vacuum system*. Mikroorganisme yang ada dalam sampel akan tertahan pada permukaan membran. Selanjutnya, membran diletakkan di atas permukaan nutrien media (Aprila, 2017).

Pengujian ALT (Angka Lempeng Total) secara aseptik dipipet 25 ml sampel cuplikan kedalam kantong *stomacher* steril, ditambahkan 225 ml PDF (*Pepton Dilution Fluid*), dihomogenkan dengan *stomacher* selama 30 detik sehingga terbentuk suspensi homogen dengan pengenceran 10⁻¹. Lalu, disiapkan 5 buah tabung yang masing-masing telah terisi dengan PDF. Pipet 1 ml suspensi 10⁻¹

kedalam tabung berisi 9 ml pengencer PDF, kocok hingga diperoleh suspensi dengan pengenceran 10^{-2} , lakukan hal yang sama hingga pengenceran terakhir. Kedalam tiap cawan petri diinokulasi 1 ml suspensi dari setiap pengenceran, kemudian dituangkan 15-20 ml media PCA + TTC (suhu $45^{\circ} + 1^{\circ}$). Cawan petri diputar dan digoyang hingga homogen, didiamkan sampai media memadat, kemudian diinkubasi pada suhu 35° - 37° selama 24 - 48 jam dalam posisi dibalik dalam keadaan aerob maupun anaerob. Jumlah koloni yang tumbuh diamati dan dihitung (Watung *et al.*, 2014).

3.6 Luaran dan Indikator Capaian

Tabel 3.1 Daftar Luaran dan Indikator Capaian

No.	Kegiatan	Luaran	Indikator
1.	Studi literatur	Jurnal penelitian dan buku elektronik	Didapatkan jurnal penelitian dan buku berskala nasional maupun internasional.
2.	Pengurusan surat izin penelitian	Surat izin pemakaian laboratorium	Didapatkan surat izin untuk melakukan penelitian di Laboratorium Kimia Anorganik FMIPA USU dan Laboratorium Mikrobiologi Fakultas Teknik USU.
3.	Pembuatan akun media sosial dan upload konten	Akun dan konten Instagram	Akun Instagram terdaftar dan konten ter- <i>upload</i>
4.	Penyiapan alat, bahan dan sampel	Alat, bahan, dan sampel yang akan diuji	Didapatkan alat, bahan, dan sampel dari 3 titik variasi sungai di Medan, Sumatera Utara.
5.	Sintesis NaLS dan ferrofluid	Serbuk NaLS dan ferrofluid	Didapat serbuk NaLS berwarna kuning kecoklatan dan koloid ferrofluid berwarna hitam
6.	Pengambilan data	Data FTIR, XRD, dan ukuran ferrofluid yang disintesis.	Data FTIR, XRD, dan ukuran memiliki kemiripan dengan referensi.

		Data perbandingan total bakteri dalam air sebelum dan sesudah perlakuan ferrofluid.	Didapat perbandingan total bakteri.
7.	Pembuatan laporan kemajuan	Laporan kemajuan	Didapatkan laporan kemajuan
8.	Membuat laporan akhir penelitian	Laporan perkembangan penelitian, evaluasi kekurangan dari produk analisa, dan laporan akhir	Laporan perkembangan dan laporan akhir penelitian
9.	Hak Kekayaan Intelektual	Hak paten	Didapatkan hak paten secara elektronik
10.	Membuat artikel ilmiah	Artikel ilmiah	Artikel ilmiah hasil riset yang telah dilakukan dimuat pada jurnal

3.7 Analisis Data

Ferrofluid-NaLS yang dihasilkan kemudian dikarakterisasi dengan FTIR dan XRD untuk mengetahui gambaran molekul ferrofluid yang terbentuk. Setelah itu, dilakukan pengujian terhadap efektivitas ferrofluid dalam menghilangkan bakteri (antibakteri) yang terdapat dalam air sungai dengan menganalisis ALT, total *Coliform, E. Coli*, dan *Pseudomonas aeruginosa* setelah diberi perlakuan dengan ferrofluid.

3.8 Cara Penafsiran Data

Penafsiran data dilakukan dengan membandingkan data hasil pengujian yang diperoleh dengan standar SNI 3553:2015 tentang Air Mineral.

3.9 Penyimpulan Hasil Riset

Penyimpulan hasil riset dilakukan dengan menyatakan jumlah masing-masing bakteri yang bisa dihilangkan oleh adanya ferrofluid-NaLS sehingga dapat dinyatakan perannya dalam pengembangan inovasi dalam pemanfaatan sumber air minum untuk menuju ketersediaan air minum layak dan berkelanjutan.

Seluruh rangkaian kegiatan riset ini akan dipublikasikan secara reguler melalui akun media sosial berupa postingan mingguan. Sebanyak 5 postingan diantaranya akan diberi *adsense* (*ads*) yang ditayangkan pada tanggal 25 April 2023, 25 Mei 2023, 25 Juli 2023, dan 25 Agustus 2023, pukul 12.00 WIB.

BAB 4. BIAYA DAN JADWAL KEGIATAN

4.1 Anggaran Biaya

Berikut ini adalah rincian rekapitulasi rencana anggaran biaya yang disusun sesuai dengan kebutuhan yang dapat dilihat pada Tabel 4.1 sebagai berikut.

Tabel 4.1 Rekapitulasi Rencana Anggaran Biaya

No	Jenis Pengeluaran	Sumber Dana	Besaran Dana (Rp)
1	Bahan habis pakai dan alat	Belmawa	5.110.000
1	Banan naois pakai dan aiat	Perguruan Tinggi	500.000
2	G 1 :	Belmawa	1.000.000
2	Sewa dan jasa	Perguruan Tinggi	450.000
3	Transportasi lokal	Belmawa	2.010.000
3		Perguruan Tinggi	-
4	T . 1 .	Belmawa	1.575.000
4	Lain-lain	Perguruan Tinggi	-
	Jumlah	,	10.645.000
		Belmawa	9.695.000
	Rekap Sumber Dana	Perguruan Tinggi	950.000
		Jumlah	10.645.000

4.2 Jadwal Kegiatan

Rencana kegiatan yang akan dilaksanakan dapat dilihat pada Tabel 4.2.

Tabel 4.2 Jadwal Kegiatan

No	Ionia Vagiotan		Bulan				Person Penanggung
110	Jenis Kegiatan	1	2	3	4	5	Jawab
1	Studi literatur						Ica, Ferdianto
2	Persiapan alat, bahan, dan						Ferdianto, Josua
	sampel						
3	Sintesis NaLS						Angelica, Ferdianto
4	Sintesis ferrrofluid						Josua, Ica
5	Karakterisasi ferrofluid						Ica, Dewi,
6	Uji efektivitas ferrofluid						Josua, Dewi
7	Pengumpulan data						Angelica, Ferdianto
8	Posting konten PKM di akun						Dewi, Angelica
	media sosial						
9	Penulisan Laporan Kemajuan						Dewi
10	Penulisan Laporan Akhir						Ica
11	Penulisan artikel ilmiah						Angelica, Josua

DAFTAR PUSTAKA

- Agustini, S. (2017). Harmonisasi Standar Nasional (SNI) Air Minum Dalam Kemasan Dan Standar Internasional (The Harmonization on the requirement of National Standard (SNI) Bottled Drinking Water Against to International standard. *Majalah Teknologi Agro Industri (Tegi*). 9(2): 30-39
- Aprilia, A.I. (2017). Verifikasi Metode Analisis Pseudomonas aeruginosa Di PT Intertek Utama Services Sesuai SNI 01-3554-2015 (Cara Uji Air Minum Dalam Kemasan). *Skripsi*. Diploma III Program Studi Analis Kimia Jurusan Teknik Kimia Politeknik Negeri Bandung.
- Hatamie, A. *et al.* (2016). Evaluating Magnetic Nano-Ferrofluid as a Novel Coagulant for Surface Water Treatment. J. Mol. Liq. 219, 694–702.
- Ma'Ruf, A., Pramudono, B. & Aryanti, N. (2017). Lignin isolation process from rice husk by alkaline hydrogen peroxide: Lignin and silica extracted. *AIP Conference Proceedings*. American Institute of Physics Inc.
- Meylani, V. & Putra, R.R. 2019. Analisis E.Coli Pada Air Minum Dalam Kemasan Yang Beredar Di Kota Tasikmalaya. *Jurnal Bioeksperimen*. 5 (2): 121-125.
- Oehlsen, O. *et al.* (2022). Approaches on Ferrofluid Synthesis and Applications: Current Status and Future Perspectives. *ACS Omega*. 7(4), pp. 3134–3150.
- Oppusunggu, J. R. dkk. (2015). Pengaruh Jenis Pelarut Dan Temperatur Reaksi Pada Sintesis Surfaktan Dari Asam Oleat Dan n-Metil Glukamina Dengan Katalis Kimia. *Jurnal Teknik Kimia USU*. 4(1): 25-29
- Puspitasari, R. L. *et al.* (2016). Studi Kualitas Air Sungai Ciliwung Berdasarkan Bakteri Indikator Pencemaran Pasca Kegiatan Bersih Ciliwung 2015. *Jurnal AL-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI*. 3(3): 156-162
- Rahmayanti, M. (2020). Sintesis Dan Karakterisasi Magnetit (Fe₃0₄): Studi Komparasi Metode Konvensional Dan Metode Sonokimia. *Al Ulum Sains dan Teknologi*. 6(1): 26-31
- Sukmawati & Putri Lestari, P. (2021). Optimization of NaHSO3 Concentration and Feeding Time in the Making of Sodium Lignosulphonate (NaLS) Surfactant from rice Straw, *CHEDS: Journal of Chemistry, Education, and Science*, 5(1): 14-21
- Taufiq, A. *et al.* (2020). Synthesis of Fe3O4/Ag Nanohybrid Ferrofluids and Their Applications as Antimicrobial and Antifibrotic Agents. *Heliyon 2020*. 6, No. e05813.
- Utomo, Y. & Fadila, E.N. (2020). Isolasi Lignin dari Sekam Padi (Oryza Sativa L) Serta Pemanfaatannya Sebagai Adsorben Ion Cd(II). *Journal Cis-Trans*. 4(2): 19–26.
- Watung, A.T. *et al.* (2014). Komposisi Mikroorganisme Pada Beberapa Depot Air Minum Isi Ulang Di Kota Manado. J. Ilmu Teknologi Pangan. Vol. 2 No. 1
- Yadav, V. *et al.* (2022). Green synthesis of sodium lignosulfonate nanoparticles using chitosan for significantly enhanced multifunctional characteristics. *Int J Biol Macromol.* 211:380-389.

LAMPIRAN

Lampiran 1. Biodata Ketua, Anggota serta Dosen Pendamping Biodata Ketua

A. Identitas Diri

1	Nama Lengkap	Josua Pandiangan
2	Jenis Kelamin	Laki-laki
3	Program Studi	S1 Kimia
4	NIM	200802079
5	Tempat dan Tanggal Lahir	Rinte Pasir, 01 Desember 2003
6	Alamat Email	josuapand72@gmail.com
7	Nomor Telepon/HP	0859185887284

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Chemistry Goes to School	Ketua Tim	2021 - Siantar
2	Ikatan Mahasiswa Kimia	Anggota Bidang INFOKOM	2022 - FMIPA USU
3	Asisten Laboratorium	Asisten Laboratorium Kimia Anorganik	2022 - FMIPA USU

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	Favorit presentasi PIMNAS 35	Badan Pengembangan Talenta Indonesia	2022
2	-	-	-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Medan, 14-2-2023 Ketua Tim

Josua Pandiangan

A. Identitas Diri

1	Nama Lengkap	Ica Lamriyani Gultom
2	Jenis Kelamin	Perempuan
3	Program Studi	S1 Kimia
4	NIM	200802078
5	Tempat dan Tanggal Lahir	Purwodadi, 30 Maret 2002
6	Alamat Email	lamrianiica.methonam@gmail.com
7	Nomor Telepon/HP	081362821320

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Organisasi Ikatan Mahasiswa Kimia (IMK)	Anggota	2022-FMIPA USU
2	Asisten Laboratorium	Asisten Laboratorium Kimia Anorganik	2022-FMIPA USU
3	Chemistry Goes To School	Anggota	2021-FMIPA USU

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1		-	:=
2	.=	_	15

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Medan, 14-2-2023

Anggota Tim

Ica Lamriyani Gultom

A. Identitas Diri

1	Nama Lengkap	Dewi Novita Waruwu
2	Jenis Kelamin	Perempuan
3	Program Studi	S1 Teknik Kimia
4	NIM	200405065
5	Tempat dan Tanggal Lahir	Medan, 17 November 2002
6	Alamat Email	dnoviitaa@gmail.com
7	Nomor Telepon/HP	089513236758

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Gantari Engineering Research Club	Anggota Divisi Informasi dan Komunikasi	2021 – USU
2	Inkubator Sains USU	Anggota HRD	2021 -USU
3	Program MBKM Pertukaran Mahasiswa USU-UNDIP	Nest State of the Control of the Con	2022 – USU/UNDIP
4	Himpunan Mahasiswa Teknik Kimia USU	Anggota Divisi Seni dan Olahraga	2022 - USU

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1			
2			

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Medan, 14-2-2023 Anggota Tim

Dewi Novita Waruwu

A. Identitas Diri

1	Nama Lengkap	Angelica Febby Julianti Simanjuntak
2	Jenis Kelamin	Perempuan
3	Program Studi	S1 Kimia
4	NIM	210802089
5	Tempat dan Tanggal	Medan, 15 Juli 2002
	Lahir	
6	Alamat Email	angelicasimanjuntak085@gmail.com
7	Nomor Telepon/HP	081262341864

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

N	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
o			
1	Organisasi Ikatan	Anggota bidang PKP	2022-FMIPA USU
	Mahasiswa Kimia	Litbang	
	(IMK)		
2	Program MBKM	Mahasiswa Inbound	2022-FSM UNDIP
1	Pertukaran Mahasiswa		
	Merdeka USU-UNDIP		
3	-	-	-

C. Penghargaan yang Pernah Diterima

N	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
0			
l	<u>-</u>	<u>-</u>	-
2	-	-	-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Medan, 14-2-2023

Anggota Tim

Angelica Febby Julianti

Simanjuntak

A. Identitas Diri

1	Nama Lengkap	Ferdianto Sihotang
2	Jenis Kelamin	Laki-laki
3	Program Studi	S1 Kimia
4	NIM	210802019
5	Tempat dan Tanggal	Batam, 26 Januari 2002
	Lahir	
6	Alamat Email	ferdisihotang2601@gmail.com
7	Nomor Telepon/HP	085245304026

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

N	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat		
0					
1	Organisasi Ikatan Mahasiswa Kimia (IMK)	Anggota	2022-FMIPA USU		
2	•	•	•		
3	-	•	-		

C. Penghargaan yang Pernah Diterima

N	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
0			
1	-	-	-
2	•	-	-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Medan, 14-2-2023

Anggota Tim

Ferdianto Sihotang

Biodata Dosen Pendamping

A. Identitas Diri

1	Nama Lengkap	Muhammad Zulham Efendi Sinaga, S.Si., M.Si.
2	Jenis Kelamin	Laki-laki
3	Program Studi	Sarjana Kimia
4	NIP/NIDN	198507182015041002/0018078505
5	Tempat dan Tanggal Lahir	Berebes, 18 Juli 1985
6	Alamat E-mail	zulham.sinaga@gmail.com
		m.zulham.efTendi@usu.ac.id
7	Nomor Telepon/HP	081361622477

B. Riwayat Pendidikan

No	Jenjang	Bidang Ilmu	Institusi	Tahun Lulus
1	Sarjana (S1)	Kimia	Universitas Sumatera Utara	2008
2	Magister (S2)	Kimia	Universitas Sumatera Utara	2011
3	Doktor (S3)	_	-	-

C. Rekam Jejak Tri Dharma PT Pendidikan/Pengajaran

No	Nama Mata Kuliah	Wajib/Pilihan	sks
1	Biokimia	Wajib	2
2	Biokimia II	Wajib	2
3	Kimia Dasar	Wajib	3
4	Bioteknologi	Wajib	2
5	Rekayasa Genetika	Piliban	2

Risct

No	Judul Riset	Penyandang Dana	Tahun
1	Pembuatan Nanokomposit All-Cellulose	Talenta USU	2016
	dari Selulosa Limbah Tongkol Jagung		
:	Sebagai Bahan Pengemas Makanan		
2	Karakterisasi Ekologi Morfogenetik dan	DRPM	2017
1 1	Kimia Raru (Cotylelobium Melanoxylon)	Kemenristekdikti]
	Asal Sumatera Utara dan Potensi		
	Pemanfaatannya Untuk Obat-Obatan		i 1
3	Karakterisasi Bahan Kemasan Berbasis	Talenta USU	2018
	Rumput Laut (Gracillaria sp)		
	Menggunakan Kitosan Sebagai		
	Antimikroba		
4	Isolasi dan Potensi Enzim Amilase dari	Talenta USU	2019
	Kecambah Biji Durian Sebagai	2019	.
[Penghidrolisis Dalam Pembuatan Sirup		
L_	Glukosa		

5	Pembuatan dan Karakterisasi Film Penutup Luka Berbasis Rumput Laut- Kitosan-Kolagen	Talenta USU 2020	2020
6	Pembuatan Biofilm Berbasis Rumput Laut Gracilaria dan Hidrolisat Protein Ikan Sebagai Active Food Packaging	Talenta USU 2021	2021

Pengabdian Kepada Masyarakat

No	Judul Pengabdian Kepada Masyarakat	Penyandang Dana	Tahun
	Meningkatkan Minat Belajar Siswa	BPPTN USU	2018
	Melalui Percobaan Sederhana di		
1	Laboratorium pada Satuan Pendidikan		
	Dasar di Kota Medan		
2	Pembuatan Handwash dengan Penambahan	BPPTN USU	2019
	Kitosan sebagai Antimikroba Di sekolah		
L	Yayasan Almujahidah Sumatera Utara		
3	Pemanfaatan Ampas Tahu Terfermentasi	BPPTN USU	2020
	Sebagai Pakan Ternak Pada Peternakan		
	Kambing Di Desa Deli tua Kecamatan		
1	Namorambe		
4	Pembuatan Pupuk Cair Organik Berbasis	BPPTN USU	2021
	Limbah Rumali Tangga Di Desa Ujung		
	Sampun Kabupaten Karo		

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE.

Medan, 14-2-2023 Dosen Pendamping

Muhammad Zulham Efendi Sinaga

Lampiran 2. Justifikasi Anggaran Kegiatan

No	Jenis Pengeluaran	Volume	Harga Satuan (Rp)	Total (Rp)
1	Belanja Bahan		(1 /	
	Aquadest	18 L	5.000	90.000
	Sekam padi	4 Kg	15.000	60.000
	Natrium Bisulfit	400 gram	4.500	18.000
	Asam sulfat	1 L	30.000	30.000
	Ferric Chloride	50 gram	6.000	300.000
	Besi(II) Sulfat Heptahidrat	40 gram	6.000	240.000
	Trifeniltetrazolium klorida (TTC)	5 gram	171.000	855.000
	Natrium Hidroksida	10 gram	1.000	10.000
	Alkohol 96%	1 L	25.000	25.000
	Eosin methylene-blue (EMB)	50 gram	10.000	500.000
	Peptone	100 gram	7.500	750.000
	Plate Count Agar (PCA)	50 gram	6.000	300.000
	Kerosin	3 L	20.000	60.000
	Lactose broth	50 gram	9.500	475.000
	Briliant Green Lactose Broth	50 gram	10.000	500.000
	pH meter	1 kotak	48.000	48.000
	Ayakan 44 mesh	1 buah	180.000	180.000
	Ayakan 60 mesh	1 buah	200.000	200.000
	Wadah sampel 5 mL	50 pcs	700	35.000
	Tabung Durham	20 pcs	2.000	40.000
	Aluminium foil	10 m	3.000	30.000
	Termometer Digital	1	30.000	30.000
	Kertas Saring	30 lembar	7.000	210.000
	Tisu	4 kotak	11.000	44.000
	Sarung Tangan Lateks	2 kotak	150.000	300.000
	Masker	5 kotak	40.000	200.000
	Kertas	1 rim	50.000	50.000
	ATK	1 set	30.000	30.000
	SUB TOTAL			5.610.000
2	Belanja Sewa			
	Sewa Lab Kimia Anorganik FMIPA USU	3 bulan	250.000	750.000

Rupiah)

	Sewa Lab Mikrobiologi Fakultas	3 bulan	250.000	750.000
	Teknik USU			
	SUB TOTAL			1.500.000
3	Perjalanan lokal			
	Pengambilan sampel	3 kali	200.000	600.000
	Biaya transportasi pembelian	4 kali	250.000	1.000.000
	bahan dan peralatan			
	Kegiatan pengujian	3 kali	120.000	360.000
	SUB TOTAL			1.960.000
4	Lain-lain			
	Particle size analyzer	1 sampel	60.000	600.000
	Uji Karakterisasi FTIR	1 sampel	120.000	120.000
	Uji XRD	1 sampel	380.000	380.000
	Biaya Adsense Media Sosial	5	95.000	475.000
		postingan		
	SUB TOTAL			1.575.000
	GRAND TOTAL			10.645.000
GRA	ND TOTAL (Terbilang Sepuluh Juta	Enam Ratus	Empat Pulu	h Lima Ribu

Lampiran 3. Susunan Organisasi Tim Pelaksana dan Pembagian Tugas

No	Nama/NIM	Progra m Studi	Bidang Ilmu	Alokasi Waktu (jam/minggu)	Uraian Tugas
1	Josua Pandiangan 200802079	S-1	Kimia	9 jam/ minggu	 Persiapan alat, bahan dan sampel Sintesis ferrofluid Uji efektivitas ferrofluid Penulisan artikel ilmiah
2	Ica Lamriyani Gultom 200802078	S-1	Kimia	8 jam/ minggu	 Studi literatur Sintesis ferrofluid Karakterisasi ferrofluid Penulisan laporan akhir
3	Dewi Novita Waruwu 200405065	S-1	Teknik Kimia	8 jam/ minggu	 Karakterisasi ferrofluid Uji efektivitas ferrofluid Posting konten sosial media Penulisan laporan kemajuan
4	Angelica Febby Julianti Simanjuntak 210802089	S-1	Kimia	7 jam/ minggu	 Sintesis Natrium Lignosulfonat Pengumpulan data Posting konten sosial media Penulisan artikel ilmiah

5	Ferdianto Sihotang 210802019	S-1	Kimia	7 jam/ minggu	 Studi literatur Persiapan alat, bahan, dan sampel Sintesis NaLS Pengumpulan
					data

Lampiran 4. Surat Pernyataan Ketua Pelaksana

SURAT PERNYATAAN KETUA TIM PELAKSANA

Yang bertanda tangan di bawah ini:

Nama Ketua Tim	:	Josua Pandiangan
Nomor Induk Mahasiswa	:	200802079
Program Studi	:	S-1 Kimia
Nama Dosen Pendamping	:	M. Zulham Efendi Sinaga, S.Si., M.Si.
Perguruan Tinggi	1:	Universitas Sumatera Utara

Dengan ini menyatakan bahwa proposal PKM-RE saya dengan judul Potensi Ferrofluid dengan Surfaktan dari Sekam Padi sebagai Antibakteri Air Sungai dalam Upaya Mewujudkan Akses Air Layak Minum Berkelanjutan yang diusulkan untuk tahun anggaran 2023 adalah asli karya kami dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenar-benarnya.

Medan, 14-2-2023 Yang menyatakan,

METERAL TEMPA 6 186AKX227589066

> Josua Pandiangan NIM. 200802079