PS#1 Solutions Math 355 Summer 1, 2009

p.11 #6. Let ℓ and m be distinct lines intersecting at the point Q. Let $\ell' = \sigma_m(\ell)$, let P and R be points on ℓ and ℓ' on the same side of m, respectively, and let S and T be the feet of the perpendiculars from P and R to m, respectively. Then $m \angle PQS = m \angle RQT$.

Proof: Let $P' = \sigma_m(P)$; then S is the midpoint of $\overline{PP'}$, by definition of σ_m . Thus $\triangle PQS \cong \triangle P'QS$ by SAS and $m \angle PQS = m \angle P'QS$ (CPCTC). But $m \angle P'QS = m \angle RQT$ since $\angle P'QS$ and $\angle RQT$ are vertical angles, and the conclusion follows.

p.13 #16. **Theorem 21.** Let ℓ be a line, let P and Q be distinct points, let $P' = \sigma_{\ell}(P)$ and let $Q' = \sigma_{\ell}(Q)$, then PQ = P'Q'.

Proof of Case 4: Assume P and Q are off of and on opposite sides of ℓ .

- (a) Subcase 4a. Assume $\overrightarrow{PQ} \perp \ell$. If Q = P', then P = Q' by definition of σ_{ℓ} , and PQ = PP' = Q'P' = P'Q' by substitution. If $Q \neq P'$, let $R = \ell \cap \overline{PQ}$. Then P' and Q' are on \overrightarrow{PQ} since $\overrightarrow{PQ} \perp \ell$ by assumption, PR = RP' and QR = RQ', by definition of σ_{ℓ} . Assume PR > QR (if not, interchange labels P and Q). Then PQ = PR + RQ = RP' + QR = RP' + RQ' = P'Q'.
- (b) Subcase 4b. Assume $\overrightarrow{PQ} \not\perp \ell$. Let $R = \overrightarrow{PP'} \cap \ell$, $S = \overrightarrow{QQ'} \cap \ell$, and $T = \overrightarrow{PQ} \cap \ell$. Then $\triangle PRT \cong \triangle P'RT$ and $\triangle QST \cong \triangle Q'ST$ by SAS so that PT = TP' and QT = TQ' (CPCTC). Therefore PQ = PT + TQ = TP' + QT = P'T + TQ' = P'Q'.

p.13 #17. For any line ℓ , $\sigma_{\ell}^{-1} = \sigma_{\ell}$.

Proof: If P is on ℓ , then $\sigma_{\ell}(P) = P$ by definition of σ_{ℓ} , and $(\sigma_{\ell} \circ \sigma_{\ell})(P) = P$. If P is off ℓ , let $P' = \sigma_{\ell}(P)$. Then ℓ is the perpendicular bisector of $\overline{PP'}$ and $\sigma_{\ell}(P') = P$ by definition of σ_{ℓ} , so that $(\sigma_{\ell} \circ \sigma_{\ell})(P) = \sigma_{\ell}(P') = P$. Thus $(\sigma_{\ell} \circ \sigma_{\ell})(P) = P$ for all P and $\sigma_{\ell} \circ \sigma_{\ell} = \iota$. Therefore $\sigma_{\ell}^{-1} = \sigma_{\ell}$, by definition of σ_{ℓ}^{-1} .

p.17 #5. Let τ be a translation, let P and Q be points, and let $P' = \tau(P)$ and $Q' = \tau(Q)$. If P, Q, P', and Q' are collinear, then PQ = P'Q'.

Proof: (This proof does not assume collinearity of P, Q, P', and Q'.) Note that $\mathbf{PP'} = \mathbf{QQ'}$ since $\tau = \tau_{\mathbf{PP'}} = \tau_{\mathbf{QQ'}}$ by Corollary 29. Therefore $\mathbf{PQ} = \mathbf{PP'} + \mathbf{P'Q} = \mathbf{QQ'} + \mathbf{P'Q} = \mathbf{P'Q} + \mathbf{QQ'} = \mathbf{P'Q'}$ and it follows that PQ = P'Q'.

p.17 #9. Let A and B be points. Then $\tau_{\mathbf{AB}}^{-1} = \tau_{\mathbf{BA}}$.

We first prove Proposition 33, part 1: Let P, Q, R, and S be points. Then $\tau_{RS} \circ \tau_{PQ} = \tau_{PQ+RS}$.

Proof of Proposition 33, part 1: Let A be any point. Then by Definition 27, $\tau_{\mathbf{PQ}}(A) = \mathbf{OA} + \mathbf{PQ}$. Let A' be the unique point such that $\mathbf{OA}' = \mathbf{OA} + \mathbf{PQ}$. Then $(\tau_{\mathbf{RS}} \circ \tau_{\mathbf{PQ}})(A) = \tau_{\mathbf{RS}}(A') = \mathbf{OA}' + \mathbf{RS} = \mathbf{OA} + \mathbf{PQ} + \mathbf{RS} = \tau_{\mathbf{PQ}+\mathbf{RS}}(A)$. Therefore $\tau_{\mathbf{RS}} \circ \tau_{\mathbf{PQ}} = \tau_{\mathbf{PQ}+\mathbf{RS}}$.

Proof: By Proposition 33, part 1, $\tau_{\mathbf{AB}} \circ \tau_{\mathbf{BA}} = \tau_{\mathbf{AB}+\mathbf{BA}} = \tau_{\mathbf{AA}} = \iota$. Therefore $\tau_{\mathbf{AB}}^{-1} = \tau_{\mathbf{BA}}$ by definition of $\tau_{\mathbf{AB}}^{-1}$.

- p.21 #4. If $\gamma = \sigma_c \circ \tau$ is a glide reflection with axis c, then
 - (a) $\gamma^{-1} = \sigma_c \circ \tau^{-1}$.
 - (b) γ^{-1} is a glide reflection with axis c.

We first prove **Proposition 39:** Let τ be a non-identity translation that fixes line c. Then $\sigma_c \circ \tau = \sigma_c \circ \tau$. **Proof of Proposition 39:** Let P be a point and let $P' = \tau(P)$. If P is on c, so is P' since $\tau(c) = c$, and $(\sigma_c \circ \tau)(P) = \sigma_c(P') = P' = \tau(P) = (\tau \circ \sigma_c)(P)$. If P is off c, let $Q = \sigma_c(P)$ and let $Q' = \tau(Q)$. Then $(\tau \circ \sigma_c)(P) = Q'$ and $\tau = \tau_{\mathbf{PP'}} = \tau_{\mathbf{QQ'}}$ so that $\mathbf{PP'} = \mathbf{QQ'}$ and $\Box PP'Q'Q$ is a parallelogram. But $\overrightarrow{PP'} \parallel c$ since $\tau_{\mathbf{PP'}}(c) = c$, and $\overrightarrow{PQ} \perp c$ by definition of σ_c . Therefore $\Box PP'Q'Q$ is a rectangle, and it follows that $(\sigma_c \circ \tau)(P) = \sigma_c(P') = Q'$. Thus for all P, $(\sigma_c \circ \tau)(P) = (\tau \circ \sigma_c)(P)$.

- **Proof:** (a) First, $\gamma^{-1} = (\sigma_c \circ \tau)^{-1} = \tau^{-1} \circ \sigma_c^{-1} = \tau^{-1} \circ \sigma_c$ by Exercises 1.1.8 and 1.3.17. Let $\tau = \tau_{\mathbf{v}}$; then $\tau^{-1} = \tau_{-\mathbf{v}}$ by Exercise 1.3.17. Since $\tau(c) = c$ by assumption, $\tau^{-1}(c) = c$ and we may apply Proposition 39 to τ^{-1} and conclude that $\gamma^{-1} = \tau^{-1} \circ \sigma_c = \sigma_c \circ \tau^{-1}$.
- (b) We observed in part (a) that τ^{-1} is a translation such that $\tau^{-1}(c) = c$. Therefore $\gamma^{-1} = \sigma_c \circ \tau^{-1}$ is a glide reflection by definition.
- p.21 #5. Let γ be a glide reflection with axis c and τ be a translation that fixes c. Then $\tau \circ \gamma = \gamma \circ \tau$.

We first prove **Proposition 33**, part 2: Let P, Q, R, and S be points. Then $\tau_{RS} \circ \tau_{PQ} = \tau_{PQ} \circ \tau_{RS}$. **Proof of Proposition 33, part 2:** By part 1 and commutativity of vector addition, $\tau_{RS} \circ \tau_{PQ} = \tau_{PQ+RS} =$ $\tau_{\mathbf{RS}+\mathbf{PQ}} = \tau_{\mathbf{PQ}} \circ \tau_{\mathbf{RS}}.$

Proof: By definition, $\gamma = \sigma_c \circ \tau'$ for some translation τ' that fixes c. By Proposition 33, part 2, Proposition 39, and Exercise 1.1.4 we have $\tau \circ \gamma = \tau \circ (\sigma_c \circ \tau') = (\tau \circ \sigma_c) \circ \tau' = (\sigma_c \circ \tau) \circ \tau' = \sigma_c \circ (\tau \circ \tau') = \sigma_c \circ (\tau' \circ \tau) =$ $(\sigma_c \circ \tau') \circ \tau = \gamma \circ \tau.$

p.25 #9. Let $P = \begin{bmatrix} a \\ b \end{bmatrix}$ and $Q = \begin{bmatrix} c \\ d \end{bmatrix}$ be distinct points. Then $\varphi_Q \circ \varphi_P = \tau_{2\mathbf{PQ}}$.

Proof: The equations for φ_P are x' = 2a - x and y' = 2b - y; and the equations for φ_Q are x' = 2c - x and y'=2d-y. Composing these equations gives x'=2c-(2a-x)=x+2(c-a) and y'=2d-(2b-y)=y + 2(d - b), which are the equations for $\tau_{2\mathbf{PQ}}$ with $2\mathbf{PQ} = \begin{bmatrix} 2(c-a) \\ 2(d-b) \end{bmatrix}$.

p.25 #12. If $\varphi_A \circ \varphi_B = \varphi_B \circ \varphi_A$, then A = B.

Proof: $\tau_{2AB} = \varphi_A \circ \varphi_B = \varphi_B \circ \varphi_A = \tau_{2BA}$ implies AB = BA = -AB. Thus AB = 0 and A = B.

p.31 #6. Let τ be a translation, let C be a point, let $C' = \tau(C)$, and let D be the midpoint of $\overline{CC'}$. Then

- (a) $\tau \circ \varphi_C = \varphi_D$ and
- (b) $\varphi_C \circ \tau = \varphi_E$, where $E = \tau^{-1}(D)$.

Proof: Note that $\tau = \tau_{2CD}$, since D is the midpoint of $\overline{CC'}$.

- (a) By Theorem 56, $\tau \circ \varphi_C = \tau_{\mathbf{2CD}} \circ \varphi_C = (\varphi_D \circ \varphi_C) \circ \varphi_C = \varphi_D$. (b) By Exercise 1.3.9, $\tau^{-1} = \tau_{\mathbf{2CD}}^{-1} = \tau_{\mathbf{2DC}}$, and $E = \tau^{-1}(D) = \tau_{\mathbf{2DC}}(D)$ implies $2\mathbf{DC} = \mathbf{DE}$. Furthermore, DE = DC + CE so that 2DC = DC + CE and DC = CE by cancellation. Equivalently, CD = EC and we have $\varphi_C \circ \tau = \varphi_C \circ \tau_{2\mathbf{CD}} = \varphi_C \circ \tau_{2\mathbf{EC}} = \varphi_C \circ \varphi_C \circ \varphi_E = \varphi_E$.