Introduction to Data Structures and Algorithm

Martzel P. Baste

Intended Learning Outcomes

- Understand the underlying concepts about data structures and algorithms
- Identify different types of Data Structures and its characteristics
- Discuss the need for choosing and selecting data structures
- Determine the Data Structure Philosophy

What is Data Structure?

Name	Age	Price
Cortana	7	7,500.00
Kodu	3	10,000.00
Summer	12	25,000.00
Satoshi	10	12,000.00

- Is a way to effectively perform operations of the data that has been collected and organized.
- It is about rendering data elements in terms of some relationship, for better organization and storage.

Types of Data Structures

Classification of Data Structures (Characteristics)

Linear

Array, Stack, Queue, LinkedList

Non-Linear

Hierarchical (Tree, Graph, Trie, Heaps), Matrix

Homogeneous

Array

Non-Homogeneous

Structure, Record, Classes, Union

Static

Array

Dynamic

Pointers, LinkedList

Attributes of Data Structures

Goals of Data Structures

Correctness

Efficiency

Features of Data Structure

- Robustness
- Adaptability
- Reusability

Efficiency

A solution is said to be efficient if it solves the problem within its resource constraints

The Need for Data Structures

Data structures organize data

more efficient programs

The Need for Data Structures

Any organization for a collection of records can be searched, processed in any order, or modified.

Ex: Simple unordered array of records

Choosing data structure and algorithm can make the difference between a program running in a few seconds or many days.

Selecting a Data Structure

Analyze the problem

Determine the basic operations that must be supported.

Quantify the resource constraints for each operation.

Select the data structure

Selecting a Data Structure

Some questions we might ask often help to narrow the possibilities.

beginning, middle, or end

Can data be deleted?

Order or random

Data Structure Philosophy

has costs and benefits.

doesn't solve all problems

Data Structure Philosophy

A data structure requires:

Data Structure Philosophy

Each problem has constraints on available space and time.

Only after a careful analysis of problem characteristics can we know the best data structure for the task.

How About Algorithm?

Instructions

- 1. Combine chicken, soy sauce, and garlic in a large bowl. Mix well. ...
- 2. Heat a cooking pot. ...
- 3. When the oil is hot enough, pan-fry the marinated chicken for 2 minutes per side.
- 4. Pour-in the remaining marinade, including garlic. ...
- 5. Add dried bay leaves and whole peppercorn. ...
- 6. Add vinegar. ...
- 7. Put-in the sugar, and salt.

*a method or a process followed to solve a problem

Properties of Algorithm

- Input
- Output
- Definiteness
- Finiteness
- Correctness
- Computer-implementable instructions

Examples of Algorithm?

Sorting

Merge Sort, Quick Sort, Tim Sort, etc.

Searching

Linear Search, Binary Search.

Shortest Path:

Dijkstra's algorithm, Bellman-Ford algorithm

Note to every Programmer

There are costs and benefits for every data structure.

Learn the commonly used data structures.

Measure the effectiveness of a data structure or program.

Summary

- 1.Data Structure is about organizing and managing data
- 2.Algorithm is a step-by-step procedure to be followed to reach the desired output.
- 3.Understanding of memory allocation and space and time complexity to perform a specific operation on it.
- 4.Data Structures can use the same internal memory management and organization
- 5.Steps in an algorithm can use one or many data structure(s) to solve a problem.

Thank You