r-statistics.co (/) by Selva Prabhakaran

Search..

•

Tutorial

R Tutorial (R-Tutorial.html)

ggplot2

ggplot2 Short Tutorial (ggplot2-Tutorial-With-R.html)

ggplot2 Tutorial 1 - Intro (Complete-Ggplot2-Tutorial-Part1-With-R-Code.html)

ggplot2 Tutorial 2 - Theme (Complete-Ggplot2-Tutorial-Part2-Customizing-Theme-With-R-

Code.html)

ggplot2 Tutorial 3 - Masterlist (Top50-Ggplot2-Visualizations-MasterList-R-Code.html)

ggplot2 Quickref (ggplot2-cheatsheet.html)

Foundations

Linear Regression (Linear-Regression.html)

Statistical Tests (Statistical-Tests-in-R.html)

Missing Value Treatment (Missing-Value-Treatment-With-R.html)

Outlier Analysis (Outlier-Treatment-With-R.html)

Feature Selection (Variable-Selection-and-Importance-With-R.html)

Model Selection (Model-Selection-in-R.html)

Logistic Regression (Logistic-Regression-With-R.html)

Advanced Linear Regression (Environments.html)

Advanced Regression Models

Advanced Regression Models (adv-regression-models.html)

Time Series

Time Series Analysis (Time-Series-Analysis-With-R.html)

Time Series Forecasting (Time-Series-Forecasting-With-R.html)

More Time Series Forecasting (Time-Series-Forecasting-With-R-part2.html)

High Performance Computing

Parallel computing (Parallel-Computing-With-R.html)

Strategies to Speedup R code (Strategies-To-Improve-And-Speedup-R-Code.html)

Useful Techniques

Association Mining (Association-Mining-With-R.html)

Multi Dimensional Scaling (Multi-Dimensional-Scaling-With-R.html)

Optimization (Profiling.html)

InformationValue package (Information-Value-With-R.html)

Stay up-to-date. Subscribe!

(https://docs.google.com/forms/d/1xkMYkLNFU9U39Dd8S 2JC0p8B5t6 Yq6zUQjanQQJpY/viewform)

Chat! (https://docs.google.com/forms/d/13GrkCFcNa-TOIIIQghsz2SIEbc-

YqY9eJX02B19I5Ow/viewform)

Contents

Introduction

How to Implement Poisson Regression?

How to Implement Negative Binomial Regression?

Poisson and Negative Binomial Regression

Poisson regression models count variables that assumes poisson distribution. When the count variable is over dispersed, having to much variation, *Negative Binomial* regression is more suitable.

Introduction

A count variable is something that can take only non-negative integer values. Some examples of count variables could be: 1. Number of vehicles manufactured. 1. Number of phone calls arriving at a call center. 1. Number of patents granted.

How to Implement Poisson Regression?

Poisson regression can be implemented in a similar manner as other *Generalised Linear Models* (*GLMs*), by adjusting the family argument to poisson.

```
library (MASS)
poissonModel <- glm(countResponse ~ pred1 + pred2, family="poisson", data=inputData) # p
oisson Model
summary (poissonModel) # model summary
predict(poissonModel, newdata, type="response") # predict on new data</pre>
```

How to Implement Negative Binomial Regression?

```
library (MASS)
negBinomModel <- glm.nb(countResponse ~ pred1 + pred2, data = inputData)) # negative Bin
omial model
summary (negBinomModel) # Model summary
predict (negBinomModel, newdata, type="response") # predict on new data</pre>
```

© 2016-17 Selva Prabhakaran. Powered by jekyll (http://jekyllrb.com/), knitr (http://yihui.name/knitr/), and pandoc (http://johnmacfarlane.net/pandoc/). This work is licensed under the Creative Commons License. (http://creativecommons.org/licenses/by-nc/3.0/)