ECON 512 project: Replicating Chernozhukov and Hong 2003

Chen Zhang

3/20/2018

Problem with EE estimator

Extremum estimator with nonsmooth objective function has nice theoretic asymptotics, but computing extremum is problematic.

Example (Censored quantile regression)

$$\hat{ heta}_{EE} = rg \max_{ heta \in \Theta} rac{1}{n} \sum_{i=1}^n
ho_ au(Y_i - \max(0, g(X_i, heta))).$$

The objective function has too many angles and flat area. Smoothing does not seem to help, because computation problem comes from flatness.

Quasi-Bayesian estimator

If the extremum estimator is MLE

$$\hat{\theta}_{MLE} = \arg\max_{\theta \in \Theta} L_n(Y_i, X_i, \theta),$$

where L_n is log-likelihood. We can do MCMC use $e^{L_n(Y_i,X_i,\theta)}$ as posterior.

Quasi-posterior

$$p_n(Y_i, X_i, \theta) = \frac{e^{nQ_n(Y_i, X_i, \theta)} \pi(Y_i, X_i, \theta)}{\int_{\Theta} e^{nQ_n(Y_i, X_i, \theta)} \pi(Y_i, X_i, \theta) d\theta}.$$

By this definition, $p_n(\theta)$ is a proper posterior.

Censored median regression

Data generating process:

$$Y^* = \theta_0 + X\theta + \varepsilon,$$

$$X \sim N(0, I_3),$$

$$\varepsilon \sim N(0, X_2^2 I),$$

$$Y = \max(0, Y^*).$$

Use $\theta_0=-6$, $\theta=(3,3,3)'$ to generate the data, which generates about 80% censoring.

median EE estimator

$$\hat{\theta} = \arg\max_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} |Y_i - \max(0, g(X_i, \theta))|.$$

Surface of objective function

Figure 1: Surface of objective function

Iterative linear programming

Buchinsky (1994) proposed ILP to solve censored quantile regression.

- 1. Start with some $\hat{\theta}^{(0)}$ for j = 0.
- 2. Compute $X\hat{\theta}^{(j)}$ and collect the subsample $S_j = \{i : x_i'\hat{\theta}^{(j)} \ge 0\}.$
- 3. Use only subsample S_j , run the standard quantile regression with linear programming. With new $\hat{\theta}^{(j+1)}$, compute S_{j+1} .
- 4. If $S_{j+1} = S_j$, then stop and set estimate to $\hat{\theta}^{(j+1)}$. Otherwise, set j = j+1 and repeat step.3.

Quasi-Bayesian method

Choose prior uniform over $\Theta = [\theta_0 - 10, \theta_0 + 10]$, use

$$p_n(Y_i, X_i, \theta) = \frac{e^{nQ_n(Y_i, X_i, \theta)} \pi(Y_i, X_i, \theta)}{\int_{\Theta} e^{nQ_n(Y_i, X_i, \theta)} \pi(Y_i, X_i, \theta) d\theta}$$

as posterior, run MCMC.

Each parameter is updated via Gibss-Metroplis procedure, which modifies slightly the basic Metroplis-Hastings algorithm: for each update, only update one component each time. Adjust variance of innovation every 200 draws so that the rejection probability is roughly 50%.

Performance of QBE and ILP

	RMSE	MAD	mean bias
n = 400			
QBE-mean	1.9882	0.5445	0.5651
QBE-median	1.6338	0.4796	0.4120
ILP (18)	0.9424	0.2867	0.0345
` ,	3.1080	0.9505	0.0845
n = 1600			
QBE-mean	0.3067	0.1051	0.0933
QBE-median	0.2913	0.1004	0.0717
ILP (11)	0.2236	0.0742	0.0071
` ,	2.6528	0.7371	0.0234

Table 1: ex