Universidade Estadual Paulista – UNESP Faculdade de Engenharia de Bauru Graduação em Engenharia de Produção

Larissa de Souza Ghussn

## Relatório Científico Final

## CARACTERIZAÇÃO DA DEMANDA DO SAMU – BAURU/SP

Orientadora: Prof<sup>a</sup>. Dr<sup>a</sup>. Regiane Máximo de Souza

# SUMÁRIO

| 1. Introdução                                  | 3  |
|------------------------------------------------|----|
| 2. O SAMU – Bauru/SP                           | 4  |
| 3. Descrição dos atendimentos                  | 5  |
| 4. Validação das hipóteses do Modelo Hipercubo | 8  |
| 5. Regionalização                              | 17 |
| 6. Conclusões                                  | 21 |
| 7. Referências bibliográficas                  | 21 |

### 1. Introdução

Os Sistemas de Serviços de Atendimento Emergenciais (SAE´s) são projetados e operados com o objetivo de atender a população com o menor tempo de resposta possível, considerando as limitações dos seus recursos. Para reduzir o tempo de resposta, a maioria dos sistemas de emergência adaptam mudanças nas condições de utilização de "gestão de status do sistema" – um conjunto de estratégias que incluem o reposicionamento dinâmico, no qual se modifica a localização de ambulâncias a fim de obter uma maior cobertura na área de atendimento. (ALANIS; INGOLFSSON e KOLFAL, 2012). No Brasil, o governo federal adotou um tipo de serviço de atendimento emergencial conhecido como SAMU, que teve inicio através de um acordo bilateral, assinado entre o Brasil e a França, por meio de uma solicitação do Ministério da Saúde, em que as viaturas de suporte avançado possuem, obrigatoriamente, a presença de um médico (LOPES e FERNANDES, 1999).

O Serviço de Atendimento Móvel de Urgência (SAMU/192) é um programa do governo federal que tem como finalidade prestar socorro à população em casos de emergência. Esse serviço funciona 24 horas por dia com equipes de profissionais de saúde como médicos, enfermeiros, auxiliares de enfermagem e socorristas que atendem às urgências de natureza traumática, clínica, pediátrica, cirúrgica, gineco-obstétrica e de saúde mental da população. O SAMU realiza o atendimento de urgência e emergência em locais como: residências, locais de trabalho e vias públicas. O socorro é feito após chamada gratuita feita para o telefone 192 (SAMU-192). A demanda de usuários do SAMU em uma região urbana é, usualmente, separada por sub-regiões e classes de chamados de emergência. Essa demanda pode mudar significativamente ao longo do dia, geográfica e temporalmente, devido à sua natureza aleatória, mas também devido aos diferentes padrões de comportamento da população ao longo do dia.

O modelo hipercubo, proposto originalmente por Larson (1974) tem se mostrado eficiente e preciso para analisar SAE's como foi analisado, por exemplo, nos Estados Unidos, em Chelst e Barlach (1981), Brandeau e Larson (1986), Burwell *et. al.* (1993), Sacks e Grieff (1994), Swersey (1994) e Larson e Odoni (2007). No Brasil, alguns exemplos aparecem em Gonçalves *et. al.* (1995), Mendonça e Morabito (2000), Oliveira (2003), Chiyoshi *et. al.* (2000), Costa *et. al.* (2004), Figueiredo *et. al.* (2005), Takeda *et. al.* (2004, 2007) e Iannoni (2005). A aplicação original do modelo hipercubo foi desenvolvida para o problema de patrulhamento policial, mas depois, o modelo passou a

ser aplicado em vários sistemas de emergência como empresas de segurança, bombeiros, ambulâncias, reparos em redes de energia elétrica, entre outros (LARSON e ODONI, 2007).

Dada a importância dos SAMU's nas cidades brasileiras, os objetivos desse trabalho foram: (i) descrever os chamados e os atendimentos do SAMU – Bauru/SP e (ii) verificar a aplicabilidade do modelo hipercubo no sistema. Para isso, realizou-se um estudo de caso no Serviço de Atendimento Móvel de Urgência (SAMU) no município de Bauru, onde se localiza sua base, através da análise estatística dos chamados e atendimentos.

#### 2. O SAMU - Bauru/SP

O SAMU – Bauru/SP, onde o estudo se realizou, integra 16 cidades da região, numa parceria com suas prefeituras, tendo suas bases instaladas em sete delas. A regionalização abrange as cidades de Bauru, cidade sede, que se subdivide em mais regiões, tendo diariamente sete ambulâncias básicas e três avançadas em atendimento; Pederneiras, Lençóis Paulista, Agudos, Arealva, Pirajuí, Duartina, as quais possuem bases com uma ambulância básica; Macatuba, Borebi, Reginópolis, Presidente Alves, Cabrália Paulista, Lucianópolis e Avaí (Figura 1).



Figura 1 – Mapa da região de atendimento do SAMU – Bauru/SP.

Há dois tipos de ambulâncias no SAMU — Bauru/SP. As unidades de suporte básico (USBs) caracterizam-se por ter um motorista e um auxiliar de enfermagem, responsáveis pelo atendimento a pacientes em casos de baixo risco. Já as unidades de suporte avançado (USAs) possuem um motorista, um auxiliar de enfermagem, um enfermeiro e um médico, atendendo, portanto, aos chamados mais graves. Essas se localizam apenas no município de Bauru, sendo duas destinadas ao atendimento local e uma voltada para o atendimento regional.

Todos os chamados recebidos na base do SAMU – Bauru/SP passam por um médico regulador, que indica as providências a serem tomadas imediatamente com o paciente até que a ambulância chegue. Os chamados são divididos por cores (azul, verde, amarelo e vermelho, do mais leve para o mais grave, respectivamente), indicando o tipo de risco e o tempo de espera do paciente, possibilitando que um chamado mais grave seja atendido com prioridade em relação a um chamado de baixo risco.

#### 3. Descrição dos atendimentos

Os dados foram coletados por meio dos relatórios de síntese de atendimento, constituídos de dados secundários disponíveis no SAMU – Bauru/SP. A coleta de dados foi realizada em duas fases. Primeiramente, fez-se um levantamento do número de atendimentos, entre janeiro de 2012 a fevereiro de 2013, fornecido pelos gestores do SAMU – Bauru/SP a fim de verificar se havia diferenças estatísticas significativas no número de atendimentos em cada mês do ano analisado. Também foi feito o Boxplot dos chamados (Figura 2). Além disso, verificou-se a existência de diferenças com relação ao número de chamados das semanas. Para verificar se o número médio de atendimentos é estatisticamente igual em todos os casos, aplicou-se a Análise de Variância (ANOVA), escolhendo-se o nível de significância  $\alpha = 0,05$ . O banco de dados foi organizado pelo software Microsoft Excel® e a análise estatística dos dados feita pelo software Minitab®.

Verificou-se que há diferença entre os meses e, para identificar os meses diferentes, foi aplicado o teste de Tukey, realizado no Software Minitab®. Verificou-se que os meses Ago./12, Set./12, Out./12, Nov./12, dez/12. Jan/13 e Fev./13 foram agrupados como sendo estatisticamente iguais em relação à quantidade de chamados e com maior número de chamados atendidos nos meses analisados. Desses meses observados, foi sorteado o mês de setembro de 2012 para fazer a segunda fase de coleta

de dados. A Figura 3 mostra a frequência dos chamados desse período.



Figura 2 – Boxplot da quantidade de chamados por mês de 2012.

Além disso, no mês de Setembro de 2012, não foram verificadas diferenças significativas em relação à quantidade de chamados nas quatro semanas do mês, por meio da Análise de Variância (ANOVA), escolhendo-se o nível de significância  $\alpha = 0.05$ .



Figura 3 – Total de atendimentos por dia do mês de Setembro de 2012.

Sortearam-se 10 dias do mês de setembro de 2012 para proceder com a segunda fase da coleta de dados. Para cada um dos dez dias escolhidos, durante todo o dia, realizou-se um levantamento minucioso dos chamados, anotando: o horário do chamado, a região de origem, o tipo de urgência, a ambulância que atendeu, o tempo de envio de equipe e saída da base e tempos de viagens dos servidores.

No decorrer da coleta de dados, foram constatadas mudanças significativas no atendimento do SAMU – Bauru/SP. Houve alterações nas bases municipais (Figura 4) e

também ocorreu um aumento no número de chamados atendidos pelas unidades avançadas, as quais passaram a atender aos chamados graves com o auxílio de motos, agilizando o contato com o paciente. Devido a esses fatores, também foi realizada a coleta de dados em dez dias do mês de setembro de 2013. A partir dos dados obtidos na segunda fase da coleta de dados, procedeu-se a identificação do(s) período(s) de pico durante o dia, escolhido(s) de forma que apresente(m) maior taxa média de chegada e menor desvio-padrão a partir dos dados coletados em setembro de 2013, que é a configuração atual do SAMU — Bauru/SP. A Figura 5 mostra o número médio de chamados por hora dos 10 dias coletados de setembro de 2013.



Figura 4 - Mapa de Bauru/SP e as representações dos átomos geográficos de 2012 (a) e 2013 (b) com as respectivas ambulâncias utilizadas pelo SAMU — Bauru/SP.

Fonte: DAE Bauru – modificado por Guilherme Ghussn.



Figura 5 – Número médio de chamados por hora dos 10 dias de coleta de dados em Setembro de 2013.

A análise dos períodos de pico foi feita com os dados obtidos a partir do controle dos chamados do SAMU – Bauru/SP. A Tabela 1 mostra a taxa de chegada (número de chamados dividido pelo período de tempo considerado em minutos) para vários períodos do dia, durante os 10 dias estudados. Foram analisados vários períodos e o período de pico em cada parte do dia foi identificado pela análise feita a partir da média e do desvio padrão da taxa de chegada. O período escolhido (linha destacada da Tabela 1) foi o que apresentou maior taxa média de chegada e menor desvio-padrão, conforme o estudo em Takeda (2000) para o SAMU-Campinas e Souza (2010) para o SAMU-RP. Alguns períodos apresentaram a média e o desvio-padrão muito próximos, assim, escolhe-se aquele de maior duração, a fim de obter uma maior quantidade de dados no período. Pode-se observar que o período escolhido foi o das 12h às 18h.

Tabela 1 – Análise do período de pico.

|         | DIA   | A     |       |       |       |       |       |       |       |       |       |       |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Período | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | média | d-p   |
| 13-18h  | 0,047 | 0,063 | 0,060 | 0,063 | 0,080 | 0,073 | 0,087 | 0,050 | 0,050 | 0,100 | 0,067 | 0,017 |
| 12-18h  | 0,044 | 0,069 | 0,053 | 0,064 | 0,078 | 0,069 | 0,083 | 0,053 | 0,050 | 0,092 | 0,066 | 0,016 |
| 13-19h  | 0,050 | 0,067 | 0,058 | 0,067 | 0,075 | 0,067 | 0,081 | 0,047 | 0,050 | 0,092 | 0,065 | 0,014 |
| 13-17h  | 0,042 | 0,071 | 0,067 | 0,063 | 0,096 | 0,075 | 0,079 | 0,050 | 0,042 | 0,092 | 0,068 | 0,019 |

## 4. Validação das hipóteses do modelo hipercubo

Fez-se necessário verificar se o sistema atende às nove hipóteses do modelo hipercubo, considerando todas as características do SAMU – Bauru/SP.

## i) Área dividida em NA átomos geográficos

Há várias maneiras de se fazer a representação da área estudada em átomos geográficos, como: divisão política, bairros, setores policiais, entre outros. Neste trabalho, pretende-se utilizar a divisão por setores em 2013: Bela Vista, Boulevard, Geisel, Ipiranga, Mary Dota e Nações, utilizada pelo SAMU – Bauru/SP.

O SAMU – Bauru/SP possui classes diferenciadas de usuários do sistema, chamadas de classificação por risco e identificadas por cores (azul – a, verde – b, amarelo – c e, vermelho – d). O médico regulador é quem decide a gravidade do caso conforme a descrição do solicitante. Dessa forma, nesse trabalho, cada átomo geográfico (Nações – 1, Geisel – 2, Ipiranga – 3, Bela Vista – 4, Mary Dota – 5 e Boulevard – 6) será dividido em quatro sub-átomos (a, b, c e d), totalizando 24 sub-

átomos no sistema: Nações – 1a, Geisel – 2a, Ipiranga – 3a, Bela Vista – 4a, Mary Dota – 5a, Boulevard – 6a, Nações – 1b, Geisel – 2b, Ipiranga – 3b, Bela Vista – 4b, Mary Dota – 5b, Boulevard – 6b, Nações – 1c, Geisel – 2c, Ipiranga – 3c, Bela Vista – 4c, Mary Dota – 5c, Boulevard – 6c, Nações – 1d, Geisel – 2d, Ipiranga – 3d, Bela Vista – 4d, Mary Dota – 5d, Boulevard – 6d. Assim, são devidamente representadas no modelo as quatro classes de usuários do SAMU – Bauru/SP. Conforme a Figura 3a, pode-se observar a configuração do SAMU – Bauru/SP, em 2012, com cinco átomos geográficos e, na Figura 3b, a configuração, em 2013, com seis átomos geográficos.

#### ii) Processo de chegada

Faz-se necessário fazer um teste de aderência nos dados para verificar estatisticamente a hipótese de processo de chegada Poisson. Os métodos utilizados foram Kolmogorov-Smirnov, Anderson Darling e Qui-quadrado; ver Johnson et. al. (1994, 1995). Para fazer a análise do processo de chegada no período de pico, foram considerados os chamados neste período. A Tabela 2 mostra os resultados obtidos do número de chamadas em cada átomo e a proporção  $(p_j)$  com relação ao total observado no sistema, no período de pico. O gráfico ilustrado na Figura 6 mostra a porcentagem do número de chamados em cada sub-átomo.

Tabela 2 – Proporção e taxa de chegada em cada sub-átomo do sistema.

|    | Subátomo            | Nº de<br>chamados | $p_j$  |
|----|---------------------|-------------------|--------|
| 1a | Nações Azul         | 6                 | 0,0255 |
| 1b | Nações Verde        | 20                | 0,0851 |
| 1c | Nações Amarelo      | 31                | 0,1319 |
| 1d | Nações Vermelho     | 0                 | 0,0000 |
| 2a | Geisel Azul         | 1                 | 0,0043 |
| 2b | Geisel Verde        | 14                | 0,0596 |
| 2c | Geisel Amarelo      | 24                | 0,1021 |
| 2d | Geisel Vermelho     | 16                | 0,0681 |
| 3a | Ipiranga Azul       | 4                 | 0,017  |
| 3b | Ipiranga Verde      | 14                | 0,0596 |
| 3c | Ipiranga Amarelo    | 11                | 0,0468 |
| 3d | Ipiranga Vermelho   | 0                 | 0,0000 |
| 4a | Bela Vista Azul     | 7                 | 0,0298 |
| 4b | Bela Vista Verde    | 20                | 0,0851 |
| 4c | Bela Vista Amarelo  | 26                | 0,1106 |
| 4d | Bela Vista Vermelho | 1                 | 0,0043 |
| 5a | Mary Dota Azul      | 3                 | 0,0128 |

| 5b | Mary Dota Verde    | 15  | 0,0638 |
|----|--------------------|-----|--------|
| 5c | Mary Dota Amarelo  | 9   | 0,0383 |
| 5d | Mary Dota Vermelho | 0   | 0,0000 |
| 6a | Boulevard Azul     | 2   | 0,0085 |
| 6b | Boulevard Verde    | 3   | 0,0128 |
| 6c | Boulevard Amarelo  | 8   | 0,034  |
| 6d | Boulevard Vermelho | 0   | 0,0000 |
|    | Total              | 235 | 1,0000 |



Figura 6 - Porcentagem do número de chamados em cada subátomo nos períodos manhã, tarde e noite.

Foi feita a análise do processo de chegada para todos os dias de observação, divididos em manhã, tarde e noite (períodos de pico), a fim de verificar se o número de chamadas segue o padrão Poissoniano, uma vez que as chegadas das chamadas em cada átomo constituem processos de contagem com incrementos independentes. Os testes de aderência foram realizados utilizando-se o software Minitab. Feitos para os chamados agregados (em todos os átomos), esses testes mostraram que, a um nível de significância de 5%, não se pode rejeitar a hipótese de que os intervalos entre chegadas sucessivas tem distribuição exponencial. A Figura 7 mostra o resultado obtido do teste de aderência feito com a distribuição Exponencial.



Figura 7 – Teste de aderência para a distribuição exponencial.

## Cálculo dos $\lambda_{jk}$

A fim de determinar a taxa média de chegada dos chamados no sistema, foram considerados os intervalos médios de chegadas sucessivas para todos os dias de observação nos períodos de pico. A Tabela 3 apresenta o tempo médio, desvio-padrão e coeficiente de variação dos intervalos entre chamadas para cada dia.

Tabela 3 – Intervalos médios entre chegadas sucessivas no período de pico.

| Dia   | intervalo médio (min)         | Desvio-padrão      | Coeficiente de variação |
|-------|-------------------------------|--------------------|-------------------------|
| 1     | 20                            | 22                 | 1,1                     |
| 2     | 14                            | 12                 | 0,9                     |
| 3     | 17                            | 12                 | 0,7                     |
| 4     | 16                            | 19                 | 1,2                     |
| 5     | 11                            | 9                  | 0,8                     |
| 6     | 13                            | 10                 | 0,8                     |
| 7     | 11                            | 12                 | 1,1                     |
| 8     | 18                            | 19                 | 1,1                     |
| 9     | 22                            | 21                 | 1,0                     |
| 10    | 11                            | 12                 | 1,1                     |
| Média | 15,3 minutos<br>0,2542 (hora) | 14,8               | 1,0                     |
|       | $\lambda = 1/0.2$             | 2542 = 3,9333 cham | ados/hora               |

Pode-se verificar que em todos os casos, os desvios-padrão são, em geral, da ordem de grandeza das médias, ou seja, os coeficientes de variação são relativamente próximos de 1. Isso é mais um indicativo que o intervalo de tempo entre chegadas sucessivas dos chamados deve ser de fato exponencialmente distribuído. Considerando

as devidas proporções que representam as chegadas em cada subátomo do sistema, admitindo que os chamados chegam independentemente e de acordo com o Processo de Poisson, encontraram-se as taxas médias  $\lambda_{jk} = \lambda.p_{jk}$  ( $j = 1, 2, ..., 6, k \in C$ ). Pode-se ver na Tabela 4 as taxas de chegadas dos chamados considerando as devidas proporções que representam as chegadas dos chamados em cada subátomo do sistema no período de pico.

Tabela 4 – Taxas médias de chegada dos chamados (por hora) para cada subátomo.

|       | Átomo               | Nº de chamados | рj     | λj,k (chamados/hora) |
|-------|---------------------|----------------|--------|----------------------|
| 1     | Nações Azul         | 6              | 0,0255 | 0,1004               |
| 2     | Nações Verde        | 20             | 0,0851 | 0,3348               |
| 3     | Nações Amarelo      | 31             | 0,1319 | 0,5189               |
| 4     | Nações Vermelho     | 0              | 0,0000 | 0,0000               |
| 5     | Geisel Azul         | 1              | 0,0043 | 0,0167               |
| 6     | Geisel Verde        | 14             | 0,0596 | 0,2343               |
| 7     | Geisel Amarelo      | 24             | 0,1021 | 0,4017               |
| 8     | Geisel Vermelho     | 16             | 0,0681 | 0,2678               |
| 9     | Ipiranga Azul       | 4              | 0,0170 | 0,0670               |
| 10    | Ipiranga Verde      | 14             | 0,0596 | 0,2343               |
| 11    | Ipiranga Amarelo    | 11             | 0,0468 | 0,1841               |
| 12    | Ipiranga Vermelho   | 0              | 0,0000 | 0,0000               |
| 13    | Bela Vista Azul     | 7              | 0,0298 | 0,1172               |
| 14    | Bela Vista Verde    | 20             | 0,0851 | 0,3348               |
| 15    | Bela Vista Amarelo  | 26             | 0,1106 | 0,4352               |
| 16    | Bela Vista Vermelho | 1              | 0,0043 | 0,0167               |
| 17    | Mary Dota Azul      | 3              | 0,0128 | 0,0502               |
| 18    | Mary Dota Verde     | 15             | 0,0638 | 0,2511               |
| 19    | Mary Dota Amarelo   | 9              | 0,0383 | 0,1506               |
| 20    | Mary Dota Vermelho  | 0              | 0,0000 | 0,0000               |
| 21    | Boulevard Azul      | 2              | 0,0085 | 0,0335               |
| 22    | Boulevard Verde     | 3              | 0,0128 | 0,0502               |
| 23    | Boulevard Amarelo   | 8              | 0,0340 | 0,1339               |
| 24    | Boulevard Vermelho  | 0              | 0,0000 | 0,0000               |
| Total |                     | 235            | 1,0000 | 3,9333               |

#### iii) Tempos de viagem

Faz-se necessário calcular os tempos médios de viagem de cada ambulância para cada átomo, podendo ser obtidos no próprio sistema. Caso não haja dados suficientes, os tempos de viagem entre os átomos podem ser calculados. Os tempos de viagem foram obtidos a partir dos dados do próprio SAMU-Bauru. Os casos em que não foram encontradas observações do tempo de viagem entre dois átomos calculou-se a

distância entre os centróides dos átomos (a partir do software Google Earth) e, utilizando a velocidade média de 60 km/h, foi possível obter uma estimativa do tempo médio de viagem entre os átomos (indicados na tabela a seguir com asterisco "\*"). A matriz dos tempos de viagem entre todos os subátomos, pode ser vista na Tabela 5.

Tabela 5 – Tempo médio de viagem entre subátomos obtidos a partir de dados do SAMU-Bauru.

|               | Tubella 5 Tempo medio de viagem entre sucutomos obtatos a partir de dados do 5/11/10 Budia. |      |      |      |      |            |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|---------------|---------------------------------------------------------------------------------------------|------|------|------|------|------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Sub-<br>átomo | 1a                                                                                          | 1b   | 1c   | 1d   | 2a   | <b>2</b> b | 2c   | 2d   | 3a   | 3b   | 3c   | 3d   | 4a   | 4b   | 4c   | 4d   | 5a   | 5b   | 5c   | 5d   | 6a   | 6b   | 6c   | 6d   |
| 1a            | 8,2                                                                                         | 8,2  | 8,2  | 8,2  | 13,7 | 13,7       | 13,7 | 13,7 | 13,2 | 13,2 | 13,2 | 13,2 | 9,9  | 9,9  | 9,9  | 9,9  | 10,0 | 10,0 | 10,0 | 10,0 | 7,6  | 7,6  | 7,6  | 7,6  |
| 1b            | 8,2                                                                                         | 8,2  | 8,2  | 8,2  | 13,7 | 13,7       | 13,7 | 13,7 | 13,2 | 13,2 | 13,2 | 13,2 | 9,9  | 9,9  | 9,9  | 9,9  | 10,0 | 10,0 | 10,0 | 10,0 | 7,6  | 7,6  | 7,6  | 7,6  |
| 1c            | 8,2                                                                                         | 8,2  | 8,2  | 8,2  | 13,7 | 13,7       | 13,7 | 13,7 | 13,2 | 13,2 | 13,2 | 13,2 | 9,9  | 9,9  | 9,9  | 9,9  | 10,0 | 10,0 | 10,0 | 10,0 | 7,6  | 7,6  | 7,6  | 7,6  |
| 1d            | 8,2                                                                                         | 8,2  | 8,2  | 8,2  | 13,7 | 13,7       | 13,7 | 13,7 | 13,2 | 13,2 | 13,2 | 13,2 | 9,9  | 9,9  | 9,9  | 9,9  | 10,0 | 10,0 | 10,0 | 10,0 | 7,6  | 7,6  | 7,6  | 7,6  |
| 2a            | 13,7                                                                                        | 13,7 | 13,7 | 13,7 | 11,7 | 11,7       | 11,7 | 11,7 | 15,0 | 15,0 | 15,0 | 15,0 | 16,0 | 16,0 | 16,0 | 16,0 | 15,0 | 15,0 | 15,0 | 15,0 | 9,0  | 9,0  | 9,0  | 9,0  |
| <b>2</b> b    | 13,7                                                                                        | 13,7 | 13,7 | 13,7 | 11,7 | 11,7       | 11,7 | 11,7 | 15,0 | 15,0 | 15,0 | 15,0 | 16,0 | 16,0 | 16,0 | 16,0 | 15,0 | 15,0 | 15,0 | 15,0 | 9,0  | 9,0  | 9,0  | 9,0  |
| 2c            | 13,7                                                                                        | 13,7 | 13,7 | 13,7 | 11,7 | 11,7       | 11,7 | 11,7 | 15,0 | 15,0 | 15,0 | 15,0 | 16,0 | 16,0 | 16,0 | 16,0 | 15,0 | 15,0 | 15,0 | 15,0 | 9,0  | 9,0  | 9,0  | 9,0  |
| 2d            | 13,7                                                                                        | 13,7 | 13,7 | 13,7 | 11,7 | 11,7       | 11,7 | 11,7 | 15,0 | 15,0 | 15,0 | 15,0 | 16,0 | 16,0 | 16,0 | 16,0 | 15,0 | 15,0 | 15,0 | 15,0 | 9,0  | 9,0  | 9,0  | 9,0  |
| 3a            | 13,2                                                                                        | 13,2 | 13,2 | 13,2 | 15,0 | 15,0       | 15,0 | 15,0 | 8,7  | 8,7  | 8,7  | 8,7  | 15,3 | 15,3 | 15,3 | 15,3 | 17,0 | 17,0 | 17,0 | 17,0 | 11,0 | 11,0 | 11,0 | 11,0 |
| 3b            | 13,2                                                                                        | 13,2 | 13,2 | 13,2 | 15,0 | 15,0       | 15,0 | 15,0 | 8,7  | 8,7  | 8,7  | 8,7  | 15,3 | 15,3 | 15,3 | 15,3 | 17,0 | 17,0 | 17,0 | 17,0 | 11,0 | 11,0 | 11,0 | 11,0 |
| 3c            | 13,2                                                                                        | 13,2 | 13,2 | 13,2 | 15,0 | 15,0       | 15,0 | 15,0 | 8,7  | 8,7  | 8,7  | 8,7  | 15,3 | 15,3 | 15,3 | 15,3 | 17,0 |      |      | 17,0 |      |      |      |      |
| 3d            | 13,2                                                                                        | 13,2 | 13,2 | 13,2 | 15,0 | 15,0       | 15,0 | 15,0 | 8,7  | 8,7  | 8,7  | 8,7  | 15,3 | 15,3 | 15,3 | 15,3 | 17,0 |      |      | 17,0 |      |      |      |      |
| 4a            | 9,9                                                                                         | 9,9  | 9,9  | 9,9  | 16,0 | 16,0       | 16,0 | 16,0 | 15,3 | 15,3 | 15,3 | 15,3 | 10,8 | 10,8 | 10,8 | 10,8 | 15,0 | 15,0 | 15,0 | 15,0 | 7,4  | 7,4  | 7,4  | 7,4  |
| <b>4</b> b    | 9,9                                                                                         | 9,9  | 9,9  | 9,9  | 16,0 | 16,0       | 16,0 | 16,0 | 15,3 | 15,3 | 15,3 | 15,3 | 10,8 | 10,8 | 10,8 | 10,8 | 15,0 | 15,0 | 15,0 | 15,0 | 7,4  | 7,4  | 7,4  | 7,4  |
| 4c            | 9,9                                                                                         | 9,9  | 9,9  | 9,9  | 16,0 | 16,0       | 16,0 | 16,0 | 15,3 | 15,3 | 15,3 | 15,3 | 10,8 | 10,8 | 10,8 | 10,8 | 15,0 | 15,0 | 15,0 | 15,0 | 7,4  | 7,4  | 7,4  | 7,4  |
| 4d            | 9,9                                                                                         | 9,9  | 9,9  | 9,9  | 16,0 | 16,0       | 16,0 | 16,0 | 15,3 | 15,3 | 15,3 | 15,3 | 10,8 | 10,8 | 10,8 | 10,8 | 15,0 | 15,0 | 15,0 | 15,0 | 7,4  | 7,4  | 7,4  | 7,4  |
| 5a            | 10,0                                                                                        | 10,0 | 10,0 | 10,0 | 15,0 | 15,0       | 15,0 | 15,0 | 17,0 | 17,0 | 17,0 | 17,0 | 15,0 | 15,0 | 15,0 | 15,0 | 8,8  | 8,8  | 8,8  | 8,8  | 11,0 | 11,0 | 11,0 | 11,0 |
| 5b            | 10,0                                                                                        | 10,0 | 10,0 | 10,0 | 15,0 | 15,0       | 15,0 | 15,0 | 17,0 | 17,0 | 17,0 | 17,0 | 15,0 | 15,0 | 15,0 | 15,0 | 8,8  | 8,8  | 8,8  | 8,8  | 11,0 | 11,0 | 11,0 | 11,0 |
| 5c            | 10,0                                                                                        | 10,0 | 10,0 | 10,0 | 15,0 | 15,0       | 15,0 | 15,0 | 17,0 | 17,0 | 17,0 | 17,0 | 15,0 | 15,0 | 15,0 | 15,0 | 8,8  | 8,8  | 8,8  | 8,8  | 11,0 | 11,0 | 11,0 | 11,0 |
| 5d            | 10,0                                                                                        | 10,0 | 10,0 | 10,0 | 15,0 | 15,0       | 15,0 | 15,0 | 17,0 | 17,0 | 17,0 | 17,0 | 15,0 | 15,0 | 15,0 | 15,0 | 8,8  | 8,8  | 8,8  | 8,8  | 11,0 | 11,0 | 11,0 | 11,0 |
| 6a            | 7,6                                                                                         | 7,6  | 7,6  | 7,6  | 9,0  | 9,0        | 9,0  | 9,0  | 11,0 | 11,0 | 11,0 | 11,0 | 7,4  | 7,4  | 7,4  | 7,4  | 11,0 | 11,0 | 11,0 | 11,0 | 7,6  | 7,6  | 7,6  | 7,6  |
| 6b            | 7,6                                                                                         | 7,6  | 7,6  | 7,6  | 9,0  | 9,0        | 9,0  | 9,0  | 11,0 | 11,0 | 11,0 | 11,0 | 7,4  | 7,4  | 7,4  | 7,4  | 11,0 | 11,0 | 11,0 | 11,0 | 7,6  | 7,6  | 7,6  | 7,6  |
| 6c            | 7,6                                                                                         | 7,6  | 7,6  | 7,6  | 9,0  | 9,0        | 9,0  | 9,0  | 11,0 | 11,0 | 11,0 | 11,0 | 7,4  | 7,4  | 7,4  | 7,4  | 11,0 | 11,0 | 11,0 | 11,0 | 7,6  | 7,6  | 7,6  | 7,6  |
| 6 <b>d</b>    | 7,6                                                                                         | 7,6  | 7,6  | 7,6  | 9,0  | 9,0        | 9,0  | 9,0  | 11,0 | 11,0 | 11,0 | 11,0 | 7,4  | 7,4  | 7,4  | 7,4  | 11,0 | 11,0 | 11,0 | 11,0 | 7,6  | 7,6  | 7,6  | 7,6  |

Média do sistema = 11,89 minutos

#### iv) Servidores

O sistema do SAMU-Bauru é composto por uma frota de nove ambulâncias distintas: oito USB's e duas USA's. Em 2013, as ambulâncias estão descentralizadas, localizadas em seis postos de saúde distribuídos um em cada setor da cidade, podendo deslocar-se para qualquer átomo para realizar um atendimento. A ambulâncias estão distribuídas de acordo com a Figura 4.

#### v) Localização dos servidores

A matriz de localização (L) é obtida a partir da configuração original do sistema, de acordo com os critérios utilizados no SAMU-RP. Para generalizar a nomenclatura, a USA passa a ser chamado de veículo 1, enquanto as USB's passam a ser chamados de 2, 3, 4, 5, 6, 7, 8, 9 e 10, para os períodos da manhã e tarde. No período noturno há nove ambulâncias operando. A matriz de localização para o período da noite pode ser vista na Tabela 6.

Tabela 6 – Matriz de localização dos servidores nos átomos geográficos em 2013 no SAMU-Bauru.

|    | Nações | Geisel | Ipiranga | Bela Vista | Mary Dota | Boulevard |              |       |
|----|--------|--------|----------|------------|-----------|-----------|--------------|-------|
|    | 1      | 2      | 3        | 4          | 5         | 6         | •            |       |
|    | 0      | 1      | 0        | 0          | 0         | 0         | <b>1</b> GA1 | (VSA) |
|    | 0      | 1      | 0        | 0          | 0         | 0         | <b>2</b> GA2 | (VSA) |
|    | 0      | 1      | 0        | 0          | 0         | 0         | <b>3</b> GB  | (VSB) |
|    | 1      | 0      | 0        | 0          | 0         | 0         | 4 N          | (VSB) |
| L= | 0      | 0      | 1        | 0          | 0         | 0         | <b>5</b> IP  | (VSB) |
|    | 0      | 0      | 0        | 1          | 0         | 0         | <b>6</b> BV1 | (VSB) |
|    | 0      | 0      | 0        | 1          | 0         | 0         | <b>7</b> BV2 | (VSB) |
|    | 0      | 0      | 0        | 0          | 1         | 0         | 8 MD         | (VSB) |
|    | 0      | 0      | 0        | 0          | 0         | 1         | <b>9</b> BO  | (VSB) |

#### vi) Despacho dos servidores

O SAMU-Bauru admite enviar apenas uma equipe para atender um chamado, atendendo um dos requisitos para a aplicação do modelo hipercubo. As USA's atendem apenas chamados de emergência, caracterizando *backup* parcial. A formação de fila é permitida quando os usuários solicitam atendimento enquanto todas as ambulâncias estão ocupadas. A fila de espera é formada e a escolha do próximo usuário a ser atendido é feita a partir da prioridade do chamado, na ordem do menos grave para o mais grave: azul, verde, amarelo e vermelho. Observando-se ainda, que as USA's atendem apenas a chamados vermelhos, enquanto as USB's atendem a qualquer tipo de chamado.

#### vii) Política de despacho dos servidores

Ao receber um chamado e identificar a gravidade do caso, urgência (prioridade A) ou emergência (prioridades B, C ou D), o médico regulador decide se uma USA ou uma USB atenderá o chamado e entra em contato com os hospitais do município para verificar a disponibilidade de vagas para o caso em questão.

A política de despacho dos servidores depende da distribuição espacial e da localização dos servidores. Lembrando que, na cidade de Bauru, os servidores estão descentralizados, a escolha do servidor preferencial é feita analisando a origem e a gravidade do chamado, e a preferência é dada ao servidor localizado na mesma área (escolhido aleatoriamente). Se todos os servidores da área do chamado estiverem ocupados, é escolhido o primeiro servidor disponível mais próximo do chamado.

A lista de despacho em que um átomo tem mais de um servidor preferencial, ou seja, casos de desempate de prioridade entre ambulâncias de mesmo local, podem ser incorporadas no modelo hipercubo. Isso pode ser feito pela introdução da distribuição de frequências de despachos de cada servidor para cada átomo nas equações de balanço do sistema, ou considerando um número suficientemente grande de listas de preferências de despacho geradas aleatoriamente, representando, dessa forma, as possíveis chances dos servidores primários (e/ou *backup*) de cada átomo serem enviados para atender um chamado em cada cenário investigado (BURWELL, *et al.* 1993; TAKEDA, 2000).

#### viii) Tempos de atendimento

Os tempos de atendimento são obtidos a partir do intervalo de tempo entre os instantes de saída e retorno à base, esses valores estão disponíveis nas fichas de regulação médica. O tempo de atendimento é a soma dos tempos de preparo da equipe, viagem até o local da ocorrência (ida), em cena e viagem de retorno à base (volta). Incluem, portanto: o tempo de viagem, definido como a saída da base até a chegada no local; o tempo em cena, desde o momento em que a ambulância chega no local onde a equipe realiza o atendimento às vítimas, quando for o caso, até o momento que ela sai do local; o tempo de viagem de volta, que é o tempo desde o instante de saída do local até o momento em que a ambulância retorna à base. Para verificar estatisticamente a hipótese de que os tempos de atendimento são exponencialmente distribuídos, foi usado o teste de Kolmogorov-Smirnov no *software* Minitab. Em todas as ambulâncias, foi rejeitada a hipótese de que os tempos de serviço são exponencialmente distribuídos, com  $\alpha = 5\%$  de significância.

A Tabela 7 mostra os tempos médios de atendimento (em minutos), desviospadrão, coeficiente de variação e as taxas médias para cada ambulância. Para verificar a hipótese de diferenças nos tempos de atendimento entre os servidores, foi realizada a análise de variância ANOVA (COSTA NETO, 1977; MAGALHÃES e LIMA, 2002) com nível de significância  $\alpha=5\%$ . Os resultados mostraram que as diferenças entre as médias dos tempos de atendimento entre os servidores são significativas nos três períodos. Dessa forma, a aplicação do modelo hipercubo deve considerar que os servidores não são homogêneos para os três períodos considerados. De acordo com Larson (1974, 2007) e Jarvis (1985), este tipo de sistema pode ser analisado aproximadamente pelo modelo hipercubo sem que a análise seja muito comprometida. Esta aproximação também foi feita em Takeda (2007), Iannoni (2005), Iannoni *et. al.* (2006, 2008a, 2008b) e Souza (2010) sem que a análise dos sistemas fosse comprometida.

O tempo médio de atendimento é diferente do desvio-padrão, ou seja, o coeficiente de variação é bem menor que 1, indicando que os tempos de atendimento não são exponencialmente distribuídos.

Tabela 7 – Tempos e taxas médias de atendimento para cada ambulância.

| Ambulância | Tempo<br>médio de<br>atendimento<br>(minutos) | Desvio-padrão (*) | Coeficiente de<br>variação | μ<br>(horas) |
|------------|-----------------------------------------------|-------------------|----------------------------|--------------|
| 1 - GA1    | 55                                            | 12                | 0,2                        | 1,0856       |
| 2 - GA2    | 55                                            | 16                | 0,3                        | 1,0909       |
| 3 - GB     | 45                                            | 15                | 0,3                        | 1,3245       |
| 4 - N      | 40                                            | 14                | 0,3                        | 1,4957       |
| 5 - IP     | 41                                            | 11                | 0,3                        | 1,4683       |
| 6 - BV1    | 48                                            | 19                | 0,4                        | 1,2429       |
| 7 - BV2    | 43                                            | 16                | 0,4                        | 1,3907       |
| 8 - MD     | 46                                            | 19                | 0,4                        | 1,3034       |
| 9 - BO     | 43                                            | 15                | 0,3                        | 1,3863       |
| USA        | 55                                            | 14                | 0,3                        | 1,0883       |
| USB        | 44                                            | 15                | 0,3                        | 1,3731       |
| Total      | 46                                            | 15                | 0,3                        | 1,3098       |

#### ix) Relação entre o tempo de atendimento e o tempo de viagem

É necessário verificar se os tempos médios de viagem são pequenos em relação aos tempos médios de atendimento para cada ambulância. Em alguns sistemas, pode ocorrer que os tempos de viagem representem uma importante parcela no cálculo dos tempos médios de atendimento. Se isso ocorrer, é necessário fazer um processo de calibração dos tempos médios de atendimento, ajustando os tempos médios de viagem

separadamente de cada servidor, de forma a considerar os fatores geográficos que influenciam a viagem de cada servidor. Em Larson e Odoni (2007) há uma descrição de um processo iterativo para calibrar  $\mu^{-1}$ , a partir dos tempos médios de viagem ( $\overline{TU_j}$ ). O procedimento consiste em verificar a diferença entre os tempos que compõem  $\mu^{-1}$ , utilizados como entrada no modelo. Caso a diferença seja significativa, o modelo deve ser rodado novamente com os  $\mu^{-1}$  calculados pelo modelo. Em Chiyoshi *et al.*(2000) há diversos exemplos em que a convergência foi obtida na segunda ou terceira iterações, muito embora não haja prova dessa convergência.

A Tabela 8 mostra o tempo médio de serviço, o tempo médio de viagem e a relação entre o tempo médio de atendimento e o tempo médio de viagem para cada servidor. Pode-se notar que os tempos médios de viagem são relativamente pequenos com relação aos tempos médios de atendimento. Os tempos médios de viagem representam, no máximo, 40% do tempo total de atendimento das ambulâncias 2 e 3 (região central) no período da noite, de forma que a hipótese 9 do modelo hipercubo está validada.

Tabela 8 - Relação entre o tempo de atendimento e o tempo de viagem para as ambulâncias.

| Ambu | llâncias | Tempo médio<br>de viagem | Tempo médio de atendimento (minutos) | Relação: Tempo médio de<br>viagem/ Tempo médio de<br>atendimento |
|------|----------|--------------------------|--------------------------------------|------------------------------------------------------------------|
| 1 -  | GA1      | 13,6                     | 55                                   | 0,2473                                                           |
| 2 -  | GA2      | 11,5                     | 55                                   | 0,2091                                                           |
| 3 -  | GB       | 11,3                     | 45                                   | 0,2511                                                           |
| 4 -  | N        | 9,3                      | 40                                   | 0,2325                                                           |
| 5 -  | IP       | 10,1                     | 41                                   | 0,2463                                                           |
| 6 -  | BV1      | 12,5                     | 48                                   | 0,2604                                                           |
| 7 -  | BV2      | 9                        | 43                                   | 0,2093                                                           |
| 8 -  | MD       | 10,2                     | 46                                   | 0,2217                                                           |
| 9 -  | BO       | 7,2                      | 43                                   | 0,1674                                                           |
| U    | SB       | 9,9                      | 55                                   | 0,2270                                                           |
| U    | SA       | 12,6                     | 44                                   | 0,2282                                                           |
| Sist | tema     | 10,5                     | 46                                   | 0,2272                                                           |

### 5. Regionalização

Como enfatizado no projeto inicial, o SAMU-Bauru trabalha de forma regionalizada. As cidades atendidas pelo sistema são: Agudos – 1, Arealva – 2, Duartina – 3, Iacanga – 4, Lençóis Paulista – 5, Pederneiras – 6 e Pirajuí – 7. Cada cidade possui uma base com uma USB no local, além disso o SAMU reserva uma USA localizada na

cidade de Bauru na região Geisel especificamente para atender as referidas cidades. Além disso, cada USB atende apenas sua cidade onde está localizada, com raras exceções.

Como os veículos que atendem Bauru são independentes dos que atendem a região, é caracterizado dois sistemas independentes gerenciado pelo SAMU-Bauru. Um que atende apenas a cidade de Bauru e outro o seu entorno. A Figura 8 mostra a quantidade de chamados por região atendida pelo SAMU-Bauru por USB's enquanto que a Figura 9 mostra a quantidade de chamados atendida por USA's em Bauru e em seu entorno de janeiro de 2012 a fevereiro de 2013.

As informações referentes aos chamados do entorno de Bauru mostraram-se bastante incompletos, tornando inviável a análise dos dados como o processo de chegada e de atendimento dos mesmos. Uma das formas possíveis para estimar essas informações é por meio de entrevistas com as equipes do SAMU nas bases das cidades atendidas no entorno de Bauru.



Figura 8 – Quantidade de chamados em cada cidade do entorno de Bauru atendida pelo SAMU: Agudos – 1, Arealva – 2, Duartina – 3, Iacanga – 4, Lençóis Paulista – 5, Pederneiras – 6 e Pirajuí – 7.



Figura 9 – Quantidade de chamados atendida por USA's em Bauru e em seu entorno de janeiro de 2012 a fevereiro de 2013.

#### Medidas de Desempenho da amostra coletada

As medidas de desempenho foram calculadas para os dados dos atendimentos do SAMU-Bauru a partir da amostra coletada nos dez dias de setembro de 2013. A Tabela 9 mostra o *workload* das ambulâncias.

Tabela 9 – Workload das ambulâncias.

| Ambulâncias   | Workload |
|---------------|----------|
| 1 - GA1       | 0,2303   |
| 2 - GA2       | 0,1375   |
| 3 - GB        | 0,3775   |
| 4 - Nações    | 0,2897   |
| 5 - IP        | 0,2497   |
| 6 - BV1       | 0,3889   |
| 7 - BV2       | 0,3356   |
| 8 - MD        | 0,3964   |
| 9 - Boulevard | 0,3006   |
| USB           | 0,3340   |
| USA           | 0,1839   |
| Sistema       | 0,3007   |

As medidas de desempenho para cada tipo de chamado são importantes indicadores de desempenho do sistema e do nível de serviço oferecido a cada tipo de usuário. Na Tabela 10 temos o tempo médio de espera na fila, o tempo médio de viagem, o tempo médio de resposta e o tempo médio de serviço para cada tipo de

chamado. O tempo de resposta é uma medida importante do ponto de vista do usuário e é composta pelo tempo de espera na fila e o tempo de viagem.

Tabela 10 – Workload das ambulâncias.

| Tipo do<br>chamado | Tempo médio de<br>espera na fila | Tempo médio<br>de viagem | Tempo médio<br>de resposta | Tempo médio<br>de serviço |
|--------------------|----------------------------------|--------------------------|----------------------------|---------------------------|
| Azul               | 31,7                             | 16,1                     | 47,1                       | 37,6                      |
| Verde              | 23,9                             | 11,4                     | 33,8                       | 44,8                      |
| Amarelo            | 9,0                              | 7,9                      | 16,3                       | 45,5                      |
| Vermelho           | 9,8                              | 13,4                     | 23,2                       | 56,4                      |
| Sistema            | 16,7                             | 10,4                     | 26,1                       | 45,3                      |

A Tabela 11 mostra o tempo médio de espera na fila, o tempo médio de viagem, o tempo médio de resposta e o tempo médio de serviço para cada tipo de chamado para cada ambulância.

Tabela 11 – Workload das ambulâncias.

| Ambulâncias   | Tempo de<br>espera na<br>fila | Tempo<br>médio de<br>viagem | Tempo<br>de<br>resposta | Tempo de serviço |
|---------------|-------------------------------|-----------------------------|-------------------------|------------------|
| 1 - GA1       | 23,8                          | 13,6                        | 37,4                    | 55               |
| 2 - GA2       | 6,0                           | 11,5                        | 16,2                    | 55               |
| 3 - GB        | 12,0                          | 11,3                        | 22,5                    | 45               |
| 4 - Nações    | 15,3                          | 9,3                         | 23,6                    | 40               |
| 5 - IP        | 17,8                          | 10,1                        | 27,9                    | 41               |
| 6 - BV1       | 21,5                          | 12,5                        | 31,4                    | 48               |
| 7 - BV2       | 18,7                          | 9,0                         | 26,5                    | 43               |
| 8 - MD        | 15,4                          | 10,2                        | 25,0                    | 46               |
| 9 - Boulevard | 15,5                          | 7,2                         | 22,2                    | 43               |
| USB           | 16,6                          | 9,9                         | 25,6                    | 43,9             |
| USA           | 14,9                          | 12,6                        | 26,8                    | 55,1             |
| Sistema       | 16,2                          | 10,5                        | 25,8                    | 46,4             |

A Tabela 12 mostra o tempo médio de espera na fila, o tempo médio de viagem, o tempo médio de resposta e o tempo médio de serviço para cada tipo de chamado para cada Subátomo. Note que não foram encontradas observações nos subátomos 1d, 3d, 5d e 6d.

Tabela 12 – Workload das ambulâncias.

| Subátomos  | Tempo de<br>espera na fila | Tempo médio<br>de viagem | Tempo de<br>resposta | Tempo de<br>serviço |
|------------|----------------------------|--------------------------|----------------------|---------------------|
| 1a         | 27,7                       | 18,2                     | 45,8                 | 41,6                |
| <b>1</b> b | 25,0                       | 9,6                      | 32,7                 | 41,9                |
| 1c         | 7,3                        | 7,4                      | 14,5                 | 38,2                |
| 1d         | -                          | -                        | -                    | -                   |

| 2a 23,0 10,0 33,0 40,0   2b 20,1 13,8 33,9 47,2   2c 10,9 9,4 19,2 51,3   2d 10,1 13,8 23,8 57,1   3a 46,3 12,3 66,0 47,7   3b 27,4 12,3 37,9 42,2   3c 10,8 8,2 18,5 37,6   3d - - - -   4a 35,4 19,5 46,6 28,7   4b 26,3 11,4 35,5 46,9   4c 9,0 8,5 16,4 52,0   4d 5,0 8,0 13,0 47,0   5a 16,7 12,3 29,0 50,0   5b 19,8 9,9 29,1 45,1   5c 8,3 5,5 13,2 42,6   5d - - - -   6a 28,5 18,0 70,0 30,0   6b 21,3 14,0 3 |            |      |      |      |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|------|------|------|
| 2c 10,9 9,4 19,2 51,3   2d 10,1 13,8 23,8 57,1   3a 46,3 12,3 66,0 47,7   3b 27,4 12,3 37,9 42,2   3c 10,8 8,2 18,5 37,6   3d - - - -   4a 35,4 19,5 46,6 28,7   4b 26,3 11,4 35,5 46,9   4c 9,0 8,5 16,4 52,0   4d 5,0 8,0 13,0 47,0   5a 16,7 12,3 29,0 50,0   5b 19,8 9,9 29,1 45,1   5c 8,3 5,5 13,2 42,6   5d - - - -   6a 28,5 18,0 70,0 30,0   6b 21,3 14,0 35,3 48,7   6c 8,8 6,1 14,1 48,8                    | <b>2</b> a | 23,0 | 10,0 | 33,0 | 40,0 |
| 2d 10,1 13,8 23,8 57,1   3a 46,3 12,3 66,0 47,7   3b 27,4 12,3 37,9 42,2   3c 10,8 8,2 18,5 37,6   3d - - - -   4a 35,4 19,5 46,6 28,7   4b 26,3 11,4 35,5 46,9   4c 9,0 8,5 16,4 52,0   4d 5,0 8,0 13,0 47,0   5a 16,7 12,3 29,0 50,0   5b 19,8 9,9 29,1 45,1   5c 8,3 5,5 13,2 42,6   5d - - - -   6a 28,5 18,0 70,0 30,0   6b 21,3 14,0 35,3 48,7   6c 8,8 6,1 14,1 48,8                                            | <b>2</b> b | 20,1 | 13,8 | 33,9 | 47,2 |
| 3a 46,3 12,3 66,0 47,7   3b 27,4 12,3 37,9 42,2   3c 10,8 8,2 18,5 37,6   3d - - - -   4a 35,4 19,5 46,6 28,7   4b 26,3 11,4 35,5 46,9   4c 9,0 8,5 16,4 52,0   4d 5,0 8,0 13,0 47,0   5a 16,7 12,3 29,0 50,0   5b 19,8 9,9 29,1 45,1   5c 8,3 5,5 13,2 42,6   5d - - - -   6a 28,5 18,0 70,0 30,0   6b 21,3 14,0 35,3 48,7   6c 8,8 6,1 14,1 48,8                                                                     | <b>2</b> c | 10,9 | 9,4  | 19,2 | 51,3 |
| 3b 27,4 12,3 37,9 42,2   3c 10,8 8,2 18,5 37,6   3d - - - -   4a 35,4 19,5 46,6 28,7   4b 26,3 11,4 35,5 46,9   4c 9,0 8,5 16,4 52,0   4d 5,0 8,0 13,0 47,0   5a 16,7 12,3 29,0 50,0   5b 19,8 9,9 29,1 45,1   5c 8,3 5,5 13,2 42,6   5d - - - -   6a 28,5 18,0 70,0 30,0   6b 21,3 14,0 35,3 48,7   6c 8,8 6,1 14,1 48,8                                                                                              | <b>2d</b>  | 10,1 | 13,8 | 23,8 | 57,1 |
| 3c 10,8 8,2 18,5 37,6   3d - - - -   4a 35,4 19,5 46,6 28,7   4b 26,3 11,4 35,5 46,9   4c 9,0 8,5 16,4 52,0   4d 5,0 8,0 13,0 47,0   5a 16,7 12,3 29,0 50,0   5b 19,8 9,9 29,1 45,1   5c 8,3 5,5 13,2 42,6   5d - - - -   6a 28,5 18,0 70,0 30,0   6b 21,3 14,0 35,3 48,7   6c 8,8 6,1 14,1 48,8                                                                                                                       | 3a         | 46,3 | 12,3 | 66,0 | 47,7 |
| 3d - - - -   4a 35,4 19,5 46,6 28,7   4b 26,3 11,4 35,5 46,9   4c 9,0 8,5 16,4 52,0   4d 5,0 8,0 13,0 47,0   5a 16,7 12,3 29,0 50,0   5b 19,8 9,9 29,1 45,1   5c 8,3 5,5 13,2 42,6   5d - - -   6a 28,5 18,0 70,0 30,0   6b 21,3 14,0 35,3 48,7   6c 8,8 6,1 14,1 48,8                                                                                                                                                 | <b>3</b> b | 27,4 | 12,3 | 37,9 | 42,2 |
| 4a 35,4 19,5 46,6 28,7   4b 26,3 11,4 35,5 46,9   4c 9,0 8,5 16,4 52,0   4d 5,0 8,0 13,0 47,0   5a 16,7 12,3 29,0 50,0   5b 19,8 9,9 29,1 45,1   5c 8,3 5,5 13,2 42,6   5d - - -   6a 28,5 18,0 70,0 30,0   6b 21,3 14,0 35,3 48,7   6c 8,8 6,1 14,1 48,8                                                                                                                                                              | <b>3c</b>  | 10,8 | 8,2  | 18,5 | 37,6 |
| 4b 26,3 11,4 35,5 46,9   4c 9,0 8,5 16,4 52,0   4d 5,0 8,0 13,0 47,0   5a 16,7 12,3 29,0 50,0   5b 19,8 9,9 29,1 45,1   5c 8,3 5,5 13,2 42,6   5d - - - -   6a 28,5 18,0 70,0 30,0   6b 21,3 14,0 35,3 48,7   6c 8,8 6,1 14,1 48,8                                                                                                                                                                                     | 3d         | -    | -    | -    | -    |
| 4c 9,0 8,5 16,4 52,0   4d 5,0 8,0 13,0 47,0   5a 16,7 12,3 29,0 50,0   5b 19,8 9,9 29,1 45,1   5c 8,3 5,5 13,2 42,6   5d - - -   6a 28,5 18,0 70,0 30,0   6b 21,3 14,0 35,3 48,7   6c 8,8 6,1 14,1 48,8                                                                                                                                                                                                                | <b>4</b> a | 35,4 | 19,5 | 46,6 | 28,7 |
| 4d 5,0 8,0 13,0 47,0   5a 16,7 12,3 29,0 50,0   5b 19,8 9,9 29,1 45,1   5c 8,3 5,5 13,2 42,6   5d - - - -   6a 28,5 18,0 70,0 30,0   6b 21,3 14,0 35,3 48,7   6c 8,8 6,1 14,1 48,8                                                                                                                                                                                                                                     | <b>4</b> b | 26,3 | 11,4 | 35,5 | 46,9 |
| 5a 16,7 12,3 29,0 50,0   5b 19,8 9,9 29,1 45,1   5c 8,3 5,5 13,2 42,6   5d - - -   6a 28,5 18,0 70,0 30,0   6b 21,3 14,0 35,3 48,7   6c 8,8 6,1 14,1 48,8                                                                                                                                                                                                                                                              | <b>4c</b>  | 9,0  | 8,5  | 16,4 | 52,0 |
| 5b 19,8 9,9 29,1 45,1   5c 8,3 5,5 13,2 42,6   5d - - - -   6a 28,5 18,0 70,0 30,0   6b 21,3 14,0 35,3 48,7   6c 8,8 6,1 14,1 48,8                                                                                                                                                                                                                                                                                     | <b>4d</b>  | 5,0  | 8,0  | 13,0 | 47,0 |
| 5c 8,3 5,5 13,2 42,6   5d - - -   6a 28,5 18,0 70,0 30,0   6b 21,3 14,0 35,3 48,7   6c 8,8 6,1 14,1 48,8                                                                                                                                                                                                                                                                                                               | 5a         | 16,7 | 12,3 | 29,0 | 50,0 |
| 5d - - - -   6a 28,5 18,0 70,0 30,0   6b 21,3 14,0 35,3 48,7   6c 8,8 6,1 14,1 48,8                                                                                                                                                                                                                                                                                                                                    | <b>5</b> b | 19,8 | 9,9  | 29,1 | 45,1 |
| 6a 28,5 18,0 70,0 30,0   6b 21,3 14,0 35,3 48,7   6c 8,8 6,1 14,1 48,8                                                                                                                                                                                                                                                                                                                                                 | 5c         | 8,3  | 5,5  | 13,2 | 42,6 |
| 6b21,314,035,348,76c8,86,114,148,8                                                                                                                                                                                                                                                                                                                                                                                     | <b>5d</b>  | -    | -    | -    | -    |
| <b>6c</b> 8,8 6,1 14,1 48,8                                                                                                                                                                                                                                                                                                                                                                                            | 6a         | 28,5 | 18,0 | 70,0 | 30,0 |
|                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>6b</b>  | 21,3 | 14,0 | 35,3 | 48,7 |
| 6d                                                                                                                                                                                                                                                                                                                                                                                                                     | 6c         | 8,8  | 6,1  | 14,1 | 48,8 |
|                                                                                                                                                                                                                                                                                                                                                                                                                        | 6d         | -    | -    | -    | -    |

#### 6. Conclusões

Neste trabalho, avaliou-se a aplicabilidade do modelo hipercubo para analisar sistemas de atendimento médico de urgência em áreas urbanas por meio de um estudo de caso no SAMU – Bauru/SP. Foram descritos os chamados e os atendimentos do SAMU – Bauru/SP e verificada a aplicabilidade do modelo hipercubo no sistema. A partir dessa análise, será possível aplicar o modelo hipercubo e avaliar cenários alternativos para o sistema avaliado.

Agradecimento: Os autores agradecem ao SAMU – Bauru/SP pela colaboração com essa pesquisa, à Fapesp e ao CNPq.

#### 7. Referências Bibliográficas

ALANIS; INGOLFSSON; KOLFAL: EMS Repositioning. Production and Operations Management 22(1), pp. 216–231, © 2012 Production and Operations Management Society.

BRANDEAU M., LARSON R. C. (1986) Extending and applying the hypercube queueing model to deploy ambulances in Boston. In: SWERSEY A. J., INGNALL E. J. (eds). Delivery of Urban Services. TIMS *Studies in the Management Science* 22,

Elsevier, 121 - 153.

BURWELL T. H., JARVIS J. P., McKNEW M. A. (1993) Modeling co-located servers and dispatch ties in the hypercube model. *Computers & Operations Research* 20(2), 113 – 119.

CHELST K. R., BARLACH Z. (1981) Multiple unit dispatches in emergency services: models to estimate system performance. *Management Science* 27(12), p. 1390 – 1409.

CHIYOSHI F., GALVÃO R. D., MORABITO R. (2000) O uso do modelo hipercubo na solução de problemas de localização probabilísticos. *Gestão & Produção* 7(2), p. 146 – 174.

COSTA D. M. (2004) Uma metodologia iterativa para determinação de zonas de atendimento de serviços emergenciais. Universidade Federal de Santa Catarina. *Tese* (doutorado em Engenharia de Produção) – Departamento de Engenharia de Produção.

FIGUEIREDO A. P. S., LORENA L. A. N. (2005) Localização de ambulâncias: uma aplicação para a cidade de São José dos Campos. *Anais XXI Simpósio Brasileiro de Sensoriamento Remoto*, Goiânia, Brasil, INPE, p. 1695 – 1972.

GONÇALVES M. B., NOVAES A. G., ALBINO J. C. C. (1994) Modelos para localização de serviços emergenciais em rodovias. In: Simpósio Brasileiro de Pesquisa Operacional 26, Florianópolis, SC, 1994. Anais. Florianópolis, p. 591 – 596.

GONÇALVES M. B., NOVAES A. G., SCHMITZ R. (1995) Um modelo de otimização para localizar unidades de serviço emergenciais em rodovias. In: Congresso de Pesquisa e Ensino em Transportes 9, São Carlos, SP, 1995. Anais. São Carlos 3, p. 962 – 972.

IANNONI A. P., MORABITO R. (2006) Modelo hipercubo integrado a um algoritmo genético para análise de sistemas médicos emergenciais em rodovias. *Gestão & Produção*, 13(1), p. 93 – 104.

LARSON R. C. (1974) Hypercube queuing model for facility location and redistricting in urban emergency services. *Computers and operations research* 1, p.67 - 95.

LARSON R. C., ODONI A. R. (2007) Urban Operations Research. 2 ed. Dynamic Ideas, Belmont, Massachusetts.

LOPES SLB & FERNANDES RJ. Uma breve revisão do atendimento médico préhospitalar. **Medicina, Ribeirão Preto, 32:** 381-387, out./dez. 1999.

LUQUE L. (2006) Análise da aglutinação de estados em cadeias de markov do modelo hipercubo de filas com servidores co-localizados. Dissertação de Mestrado. INPE – São José dos Campos.

MENDONÇA F., MORABITO R. (2001) Analysing emergency medical servisse ambulance deployment on a Brazilian highway using the hypercube model, *Journal of the Operational Research Society* 52, p. 261 – 270.

OLIVEIRA L. K. (2003) Uma aplicação do modelo hipercubo de filas para avaliação do centro de emergência da polícia militar de Santa Catarina. Florianópolis. Dissertação (Mestrado em Engenharia de Produção) Departamento de Engenharia de Produção, Universidade Federal de Santa Catarina.

SACKS S. R., GRIEF S. (1994) Orlando Police Department uses OR/MS methodology, new software to design patrol districts. OS/MS Today, Baltimore, p. 30 – 32.

SOUZA, R. M.; Morabito, R; Chyioshi, Y. Fernando; IANONNI, A. P. . Análise da configuração de SAMU utilizando múltiplas alternativas de localização de ambulâncias. Gestão & Produção (UFSCAR. Impresso), v. 20, p. 287-302, 2013.

SWERSEY A. J. (1994) Handbooks in OR/MS. Amsterdam: Elsevier Science B. V., v. 6, p. 151 – 200.

TAKEDA R. A., WIDMER J. A., MORABITO R. (2007) Analysis of ambulance decentralization in an urban emergency medical service using the hypercube queueing model. *Computers & Operations Research* 34, p. 727 – 741.