Digital IC Design

Lec 4-2:

Combinational Circuits – Logic Families

黃柏蒼 Po-Tsang (Bug) Huang bughuang@nycu.edu.tw

International College of Semiconductor Technology National Chiao Tung Yang Ming University

Logic Family

- Static CMOS
 - ◆ Complementary CMOS logic
 - **♦** Pass Transistor Logic
 - Ratioed circuits
 - > Pseudo-nMOS Logic
 - **♦ CVSL (Cascode voltage switch logic)**
- Dynamic Logic

Review of Static CMOS

- Number of transistor of a logic is 2N where N is number of inputs
- Capacitance loading of each input is the gate capacitance of one PMOS and one NMOS
- No DC current if there is no logic change
- Rail-to-rail voltage swing, restoring and ratioless design
- Most robust logic style and used in standard cell

Tristates

Tristate buffer produces Z when not enabled

EN	А	Υ
0	0	Z
0	1	Z
1	0	0
1	1	1

$$\begin{array}{c|c}
EN \\
A & \hline
\hline
EN \\
\hline
EN \\
\end{array}$$

Tristate Inverter

- Tristate inverter produces restored output
 - ◆ Violates conduction complement rule
 - ◆ Because we want a Z output

Multiplexers

■ 2:1 multiplexer chooses between two inputs

S	D1	D0	Υ
0	X	0	0
0	X	1	1
1	0	X	0
1	1	X	1

Inverting Mux

- Inverting multiplexer
 - ◆ Use compound AOI22
 - Or pair of tristate inverters
 - Essentially the same thing
- Noninverting multiplexer adds an inverter

Pass Transistors

Transistors can be used as switches

$$g = 0$$

$$s \multimap d$$

$$g = 1$$

$$s \multimap d$$

$$g = 0$$

$$s \rightarrow 0$$

$$g = 1$$

Input
$$g = 1$$
 Output $0 \rightarrow -strong 0$

$$g = 1$$

$$1 \rightarrow -s \rightarrow -degraded 1$$

Input
$$g = 0$$
 Output $0 \longrightarrow -$ degraded 0

$$g = 0$$

1 \rightarrow strong 1

NMOS Transistors in Series/Parallel

Primary inputs drive both gate and source/drain terminals

NMOS switch closes when the gate input is

high

Remember - NMOS transistors pass a strong 0 but a weak 1

PMOS Transistors in Series/Parallel

- Primary inputs drive both gate and source/drain terminals
- PMOS switch closes when the gate input is low
 A
 B

Remember - PMOS transistors pass a strong 1 but a weak 0

Pass Transistor (PT) Logic

- Gate is static a low-impedance path exists to both supply rails under all circumstances
- N transistors instead of 2N
- No static power consumption
- Ratioless
- Bidirectional (versus undirectional)

VTC of Pass Transistor AND Gate

Pure PT logic is not regenerative - the signal gradually degrades after passing through a number of PTs (can fix with static CMOS inverter insertion)

NMOS Only PT Driving an Inverter

- \blacksquare V_x does not pull up to V_{DD}, but V_{DD} V_{Tn}
 - ◆ Threshold voltage drop causes static power consumption (M₂ may be weakly conducting forming a path from V_{DD} to GND)
 - ◆ Notice V_{Tn} increases for pass transistor due to body effect (V_{SB})

Voltage Swing of PT Driving an Inverter

- Body effect large V_{SB} at x when pulling high (B is tied to GND and S charged up close to V_{DD})
- So the voltage drop is even worse

$$V_x = V_{DD} - (V_{Tn0} + \gamma(\sqrt{(|2\phi_f| + V_x)} - \sqrt{|2\phi_f|}))$$

Cascaded NMOS Only PTs

Swing on
$$y = V_{DD} - V_{Tn1} - V_{Tn2}$$

Swing on
$$y = V_{DD} - V_{Tn1}$$

- Pass transistor gates should never be cascaded as on the left
- Logic on the right suffers from static power dissipation and reduced noise margins

Solution 1: Level Restorer

- Full swing on x (due to Level Restorer) so no static power consumption by inverter
- No static backward current path through Level Restorer and PT since Restorer is only active when A is high

For correct operation M_r must be sized correctly (ratioed)

Solution 2: Multiple V_T Transistors

Technology solution: Use (near) zero V_T devices for the NMOS PTs to eliminate most of the threshold drop (body effect still in force preventing full swing to V_{DD})

Impacts static power consumption due to subthreshold currents flowing through the PTs (even if V_{GS} is below V_T)

Solution 3: Transmission Gates (TGs)

Most widely used solution

■ Full swing bidirectional switch controlled by the gate signal C, A = B if C = 1

Transmission Gates

- Pass transistors produce degraded outputs
- Transmission gates pass both 0 and 1 well

$$g = 0$$
, $gb = 1$
 $a - b$

$$g = 1$$
, $gb = 0$
 $a \rightarrow b$

$$g = 1$$
, $gb = 0$
 $0 \rightarrow \infty$ strong 0

$$g = 1$$
, $gb = 0$
 $1 \rightarrow \infty$ strong 1

TG Multiplexer

TG-Based XOR function

TG Full Adder

Differential TG Logic (DPL)

Double Pass-Transistor Logic (DPL)

Differential/Complemental PT Logic (CPL)

CPL NAND2/NOR2 gates

CPL XOR and Sum

- NMOS logic network (V_T drop)
- Fast
- Efficient implementation of arithmetic

CPL Properties

- Differential so complementary data inputs and outputs are always available (so don't need extra inverters)
- Still static, since the output defining nodes are always tied to V_{DD} or GND through a low resistance path
- Design is modular; all gates use the same topology, only the inputs are permuted.
- Simple XOR makes it attractive for structures like adders
- Fast (assuming number of transistors in series is small)
- Additional routing overhead for complementary signals
- Still have static power dissipation problems

CPL Full Adder

Circuit Diagram of a CPL full adder

Ratioed Logic

Goal: to reduce the number of devices over complementary CMOS

Pseudo-nMOS

- In the old days, nMOS processes had no pMOS
 - ◆ Instead, use pull-up transistor that is always ON
- In CMOS, use a pMOS that is always ON
 - ◆ Ratio issue
 - Make pMOS about ¼ effective strength of pulldown network

Pseudo-nMOS Power

- Pseudo-nMOS draws power whenever Y = 0
 - ◆ Called static power $P = I_{DD}V_{DD}$
 - ◆ A few mA / gate * 1M gates would be a problem
 - Explains why nMOS went extinct
- Use pseudo-nMOS sparingly for wide NORs
- Turn off pMOS when not in use

Different Restoration Schemes

Swing-restored pass-transistor logic

Differential Cascode Voltage Switch Logic

- Differential Cascode Voltage Switch (DCVS)
 - ◆ Differential Level Restoring
 - **◆** Complement outputs

DCVS Logic

- PDN1 and PDN2 are mutually exclusive
 - No DC power dissipation
 - Regenerative action sets PMOS latch to static outputs Q and Q' of full VDD and GND logic level
 - NMOS rich =>increasing current and reducing load capacitance

DCVS Concept

$$Y(A,B,C,D,E,E,F,G) = \overline{G}\overline{A}\overline{F} + \overline{G}\overline{B}\overline{D}\overline{E} + \overline{G}\overline{B}\overline{C}\overline{F} + \overline{G}\overline{B}\overline{C}\overline{E} + \overline{G}\overline{C}\overline{D}\overline{E}$$

◆ Using complementary static logic: 38 transistor

$$Y(A,B,C,D,E,E,F,G) = \overline{G}(\overline{A}\overline{F} + \overline{B}\overline{D}\overline{E} + \overline{C}(\overline{B}\overline{F} + \overline{E}(\overline{B} + \overline{D})))$$

- ◆ Using complementary static logic with cascade tree : 24 transistor
- The cascade tree can be used in any logic type: try to extract as many common subexpression as possible.

DCVS Example

XOR-XNOR gate in only 8 transistors as opposed to 10 in complement static CMOS

DCVS+CPL XOR gate

- DCVS+CPL
 - or called DCVS + pass gate (DCVSPG)

