# **SBML Model Report**

# Model name: "Benson2013 - Identification of key drug targets in nerve growth factor pathway"



May 5, 2016

## 1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Vijayalakshmi Chelliah<sup>1</sup> and Niel Benson<sup>2</sup> at January 29<sup>th</sup> 2016 at 2:30 p.m. and last time modified at February 16<sup>th</sup> 2016 at 7:29 p.m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

| Element           | Quantity | Element              | Quantity |
|-------------------|----------|----------------------|----------|
| compartment types | 0        | compartments         | 2        |
| species types     | 0        | species              | 76       |
| events            | 0        | constraints          | 0        |
| reactions         | 157      | function definitions | 0        |
| global parameters | 222      | unit definitions     | 7        |
| rules             | 0        | initial assignments  | 0        |

## **Model Notes**

Benson2013 - Identification of key drug targets in nerve growth factor pathway

<sup>&</sup>lt;sup>1</sup>EMBL-EBI, viji@ebi.ac.uk

<sup>&</sup>lt;sup>2</sup>Xenologiq, Canterbury, Kent, UK, neil@xenologiq.com

This model is described in the article: Systems pharmacology of the nerve growth factor pathway: use of a systems biology model for the identification of key drug targets using sensitivity analysis and the integration of physiology and pharmacology. Benson N, Matsuura T, Smirnov S, Demin O, Jones HM, Dua P, van der Graaf PH. Interface Focus 2013 Apr; 3(2): 20120071 Abstract:

The nerve growth factor (NGF) pathway is of great interest as a potential source of drug targets, for example in the management of certain types of pain. However, selecting targets from this pathway either by intuition or by non-contextual measures is likely to be challenging. An alternative approach is to construct a mathematical model of the system and via sensitivity analysis rank order the targets in the known pathway, with respect to an endpoint such as the diphosphorylated extracellular signal-regulated kinase concentration in the nucleus. Using the published literature, a model was created and, via sensitivity analysis, it was concluded that, after NGF itself, tropomyosin receptor kinase A (TrkA) was one of the most sensitive druggable targets. This initial model was subsequently used to develop a further model incorporating physiological and pharmacological parameters. This allowed the exploration of the characteristics required for a successful hypothetical TrkA inhibitor. Using these systems models, we were able to identify candidates for the optimal drug targets in the known pathway. These conclusions were consistent with clinical and human genetic data. We also found that incorporating appropriate physiological context was essential to drawing accurate conclusions about important parameters such as the drug dose required to give pathway inhibition. Furthermore, the importance of the concentration of key reactants such as TrkA kinase means that appropriate contextual data are required before clear conclusions can be drawn. Such models could be of great utility in selecting optimal targets and in the clinical evaluation of novel drugs.

This model is hosted on BioModels Database and identified by: BIOMD0000000588.

To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

# 2 Unit Definitions

This is an overview of twelve unit definitions of which five are predefined by SBML and not mentioned in the model.

#### 2.1 Unit MWBUILTINUNIT\_liter

Name liter

**Definition**  $m^3 \cdot 0.0010$  dimensionless

#### 2.2 Unit MWBUILTINPREFIX\_micro\_MWBUILTINUNIT\_mole

Name micromole

**Definition**  $10^{-6}$  mol

## 2.3 Unit MWBUILTINPREFIX\_micro\_MWBUILTINUNIT\_molarity

Name micromolarity

**Definition**  $m^{-3} \cdot mol \cdot 0.0010$  dimensionless

## 2.4 Unit MWDERIVEDUNIT\_1\_minute

Name 1/minute

# 2.5 Unit MWDERIVEDUNIT\_1\_micromolarity\_minute

Name 1/(micromolarity\*minute)

**Definition**  $m^3 \cdot mol^{-1} \cdot s^{-1} \cdot 16.66666666666667$  dimensionless

## 2.6 Unit MWDERIVEDUNIT\_1\_molarity\_second

Name 1/(molarity\*second)

**Definition**  $m^3 \cdot mol^{-1} \cdot s^{-1} \cdot 0.0010$  dimensionless

## 2.7 Unit MWDERIVEDUNIT\_1\_second

Name 1/second

**Definition**  $s^{-1} \cdot \text{dimensionless}$ 

## 2.8 Unit substance

**Notes** Mole is the predefined SBML unit for substance.

**Definition** mol

## 2.9 Unit volume

**Notes** Litre is the predefined SBML unit for volume.

**Definition** 1

## 2.10 Unit area

**Notes** Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

**Definition** m<sup>2</sup>

## 2.11 Unit length

**Notes** Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

**Definition** m

## 2.12 Unit time

**Notes** Second is the predefined SBML unit for time.

**Definition** s

# 3 Compartments

This model contains two compartments.

Table 2: Properties of all compartments.

| Id                                     | Name               | SBO | Spatial Dimensions | Size   | Unit                  |
|----------------------------------------|--------------------|-----|--------------------|--------|-----------------------|
| mw3bc142df_1951_4fa9_b0a7_011c95012bbf | Neuron             |     | 3                  | 0.0010 | $m^3 \cdot 0.0010 di$ |
| mwc2fe3668_8fb0_4cfb_b795_99057e61e290 | Interstitial fluid |     | 3                  | 12     | $m^3 \cdot 0.0010 di$ |

# **3.1 Compartment** mw3bc142df\_1951\_4fa9\_b0a7\_011c95012bbf

This is a three dimensional compartment with a constant size of  $0.0010\,\mathrm{m}^3 \cdot 0.0010$  dimensionless.

Name Neuron

# **3.2 Compartment** mwc2fe3668\_8fb0\_4cfb\_b795\_99057e61e290

This is a three dimensional compartment with a constant size of twelve  $m^3 \cdot 0.0010$  dimensionless.

Name Interstitial fluid

# 4 Species

This model contains 76 species. The boundary condition of two of these species is set to true so that these species' amount cannot be changed by any reaction. Section 7 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

| Name                     | Compartment                                                                                            | Derived Unit Constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Boundary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ivaine                   | Compartment                                                                                            | Derived Offic Constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Condi-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                          |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| NGFR                     | mw3bc142df_1951_4fa9-                                                                                  | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                          | _b0a7_011c95012bbf                                                                                     | $(0.0010  \mathrm{dimensionless})^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $L_NGFR$                 | mw3bc142df_1951_4fa9-                                                                                  | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                          | _b0a7_011c95012bbf                                                                                     | $(0.0010  \mathrm{dimensionless})^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| pTrkA                    | mw3bc142df_1951_4fa9-                                                                                  | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                          | _b0a7_011c95012bbf                                                                                     | $(0.0010  \mathrm{dimensionless})^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| pTrkA_endo               | mw3bc142df_1951_4fa9-                                                                                  | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                          | _b0a7_011c95012bbf                                                                                     | $(0.0010 \text{ dimensionless})^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Shc_pTrkA                | mw3bc142df_1951_4fa9-                                                                                  | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -                        | _b0a7_011c95012bbf                                                                                     | $(0.0010  \mathrm{dimensionless})^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Shc_pTrkA_endo           | mw3bc142df_1951_4fa9-                                                                                  | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| _                        | _b0a7_011c95012bbf                                                                                     | $(0.0010 \text{ dimensionless})^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| pShc_pTrkA               | mw3bc142df_1951_4fa9-                                                                                  | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                          | _b0a7_011c95012bbf                                                                                     | $(0.0010 \text{ dimensionless})^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| pShc_pTrkA_endo          | mw3bc142df_1951_4fa9-                                                                                  | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                          | _b0a7_011c95012bbf                                                                                     | $(0.0010  \mathrm{dimensionless})^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Grb2_SOS_pShc_pTrkA      | mw3bc142df_1951_4fa9-                                                                                  | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                          | _b0a7_011c95012bbf                                                                                     | $(0.0010  \text{dimensionless})^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Grb2_SOS_pShc_pTrkA_endo | mw3bc142df_1951_4fa9-                                                                                  | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| - •                      | _b0a7_011c95012bbf                                                                                     | $(0.0010  \mathrm{dimensionless})^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                          | L_NGFR  pTrkA  pTrkA_endo  Shc_pTrkA  Shc_pTrkA_endo  pShc_pTrkA  pShc_pTrkA_endo  Grb2_SOS_pShc_pTrkA | NGFR b0a7_011c95012bbf  L_NGFR b0a7_011c95012bbf  pTrkA b0a7_011c95012bbf  pTrkA_endo b0a7_011c95012bbf  pTrkA_endo b0a7_011c95012bbf  shc_pTrkA b0a7_011c95012bbf  Shc_pTrkA_endo b0a7_011c95012bbf  Shc_pTrkA_endo b0a7_011c95012bbf  shc_pTrkA_endo b0a7_011c95012bbf  pShc_pTrkA_endo b0a7_011c95012bbf  pShc_pTrkA b0a7_011c95012bbf  pShc_pTrkA_endo b0a7_011c95012bbf  pShc_pTrkA_endo b0a7_011c95012bbf  pShc_pTrkA_endo b0a7_011c95012bbf  mw3bc142df_1951_4fa9b0a7_011c95012bbf  mw3bc142df_1951_4fa9b0a7_011c95012bbf | NGFR    Doa7_011c95012bbf   (0.0010 dimensionless)^{-1}     LNGFR   mw3bc142df_1951_4fa9-   10^{-6} mol · m <sup>-3</sup> · □     Doa7_011c95012bbf   (0.0010 dimensionless)^{-1}     pTrkA   mw3bc142df_1951_4fa9-   10^{-6} mol · m <sup>-3</sup> · □     Doa7_011c95012bbf   (0.0010 dimensionless)^{-1}     pTrkA_endo   mw3bc142df_1951_4fa9-   10^{-6} mol · m <sup>-3</sup> · □     Doa7_011c95012bbf   (0.0010 dimensionless)^{-1}     pTrkA_endo   mw3bc142df_1951_4fa9-   10^{-6} mol · m <sup>-3</sup> · □     Doa7_011c95012bbf   (0.0010 dimensionless)^{-1}     Shc_pTrkA   mw3bc142df_1951_4fa9-   10^{-6} mol · m <sup>-3</sup> · □     Doa7_011c95012bbf   (0.0010 dimensionless)^{-1}     pShc_pTrkA   mw3bc142df_1951_4fa9-   10^{-6} mol · m <sup>-3</sup> · □     Doa7_011c95012bbf   (0.0010 dimensionless)^{-1}     pShc_pTrkA_endo   mw3bc142df_1951_4fa9-   10^{-6} mol · m <sup>-3</sup> · □     Doa7_011c95012bbf   (0.0010 dimensionless)^{-1}     pShc_pTrkA_endo   mw3bc142df_1951_4fa9-   10^{-6} mol · m <sup>-3</sup> · □     Doa7_011c95012bbf   (0.0010 dimensionless)^{-1}     Grb2_SOS_pShc_pTrkA   mw3bc142df_1951_4fa9-   10^{-6} mol · m <sup>-3</sup> · □     Doa7_011c95012bbf   (0.0010 dimensionless)^{-1}     Grb2_SOS_pShc_pTrkA_endo   mw3bc142df_1951_4fa9-   10^{-6} mol · m <sup>-3</sup> · □     Doa7_011c95012bbf   (0.0010 dimensionless)^{-1}     Grb2_SOS_pShc_pTrkA_endo   mw3bc142df_1951_4fa9-   10^{-6} mol · m <sup>-3</sup> · □     Doa7_011c95012bbf   (0.0010 dimensionless)^{-1}     Grb2_SOS_pShc_pTrkA_endo   mw3bc142df_1951_4fa9-   10^{-6} mol · m <sup>-3</sup> · □     Doa7_011c95012bbf   (0.0010 dimensionless)^{-1} |

| Id               | Name                     | Compartment           | Derived Unit Constant Boundary<br>Condi-<br>tion                                         |
|------------------|--------------------------|-----------------------|------------------------------------------------------------------------------------------|
| FRS2_pTrkA       | FRS2_pTrkA               | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square \square$                          |
|                  |                          | _b0a7_011c95012bbf    | $(0.0010 \text{ dimensionless})^{-1}$                                                    |
| FRS2_pTrkA_endo  | FRS2_pTrkA_endo          | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$                                  |
|                  |                          | _b0a7_011c95012bbf    | $(0.0010 \text{ dimensionless})^{-1}$                                                    |
| pFRS2_pTrkA      | pFRS2_pTrkA              | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \qquad \boxminus \qquad \qquad \boxminus$ |
|                  |                          | _b0a7_011c95012bbf    | $(0.0010 \text{ dimensionless})^{-1}$                                                    |
| pFRS2_pTrkA_endo | pFRS2_pTrkA_endo         | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \qquad \boxminus \qquad \qquad \boxminus$ |
|                  |                          | _b0a7_011c95012bbf    | $(0.0010 \text{ dimensionless})^{-1}$                                                    |
| Crk_C3G_pFRS2-   | Crk_C3G_pFRS2_pTrkA      | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$                                  |
| _pTrkA           |                          | _b0a7_011c95012bbf    | $(0.0010 \text{ dimensionless})^{-1}$                                                    |
| Crk_C3G_pFRS2-   | Crk_C3G_pFRS2_pTrkA_endo | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$                                  |
| _pTrkA_endo      |                          | _b0a7_011c95012bbf    | $(0.0010 \text{ dimensionless})^{-1}$                                                    |
| Shc              | Shc                      | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \qquad \boxminus \qquad \qquad \boxminus$ |
|                  |                          | _b0a7_011c95012bbf    | $(0.0010 \text{ dimensionless})^{-1}$                                                    |
| Grb2_SOS_pShc    | Grb2_SOS_pShc            | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \qquad \boxminus \qquad \qquad \boxminus$ |
|                  |                          | _b0a7_011c95012bbf    | $(0.0010 \text{ dimensionless})^{-1}$                                                    |
| FRS2             | FRS2                     | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \qquad \boxminus \qquad \qquad \boxminus$ |
|                  |                          | _b0a7_011c95012bbf    | $(0.0010 \text{ dimensionless})^{-1}$                                                    |
| $Crk_C3G$        | Crk_C3G                  | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \qquad \boxminus \qquad \qquad \boxminus$ |
|                  |                          | _b0a7_011c95012bbf    | $(0.0010 \text{ dimensionless})^{-1}$                                                    |
| Dok              | Dok                      | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$                                  |
|                  |                          | _b0a7_011c95012bbf    | $(0.0010 \text{ dimensionless})^{-1}$                                                    |
| pDok             | pDok                     | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$                                  |
|                  |                          | _b0a7_011c95012bbf    | $(0.0010 \text{ dimensionless})^{-1}$                                                    |
| Grb2             | Grb2                     | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$                                  |
|                  |                          | _b0a7_011c95012bbf    | $(0.0010 \text{ dimensionless})^{-1}$                                                    |
|                  |                          |                       |                                                                                          |

| Id                       | Name            | Compartment           | Derived Unit Constant                                   | Boundary<br>Condi-<br>tion |
|--------------------------|-----------------|-----------------------|---------------------------------------------------------|----------------------------|
| SOS                      | SOS             | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$ | $\Box$                     |
|                          |                 | _b0a7_011c95012bbf    | $(0.0010  \mathrm{dimensionless})^{-1}$                 |                            |
| Grb2_SOS                 | Grb2_SOS        | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$ |                            |
|                          |                 | _b0a7_011c95012bbf    | $(0.0010 \text{ dimensionless})^{-1}$                   |                            |
| Ras_GTP                  | Ras_GTP         | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$ |                            |
|                          |                 | _b0a7_011c95012bbf    | $(0.0010  \mathrm{dimensionless})^{-1}$                 |                            |
| $Ras\_GDP$               | Ras_GDP         | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$ |                            |
|                          |                 | _b0a7_011c95012bbf    | $(0.0010  \mathrm{dimensionless})^{-1}$                 |                            |
| B_Raf_Ras_GTP            | B_Raf_Ras_GTP   | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$ |                            |
|                          |                 | _b0a7_011c95012bbf    | $(0.0010  \mathrm{dimensionless})^{-1}$                 |                            |
| B_Raf                    | B_Raf           | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$ |                            |
|                          |                 | _b0a7_011c95012bbf    | $(0.0010  \mathrm{dimensionless})^{-1}$                 |                            |
| c_Raf                    | c_Raf           | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$ |                            |
|                          |                 | _b0a7_011c95012bbf    | $(0.0010  \mathrm{dimensionless})^{-1}$                 |                            |
| Rap1_GTP                 | Rap1_GTP        | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$ |                            |
|                          |                 | _b0a7_011c95012bbf    | $(0.0010  \mathrm{dimensionless})^{-1}$                 |                            |
| ${\tt ppMEKcyt\_ERKcyt}$ | ppMEKcyt_ERKcyt | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$ |                            |
|                          |                 | _b0a7_011c95012bbf    | $(0.0010  \mathrm{dimensionless})^{-1}$                 |                            |
| ppMEKcyt                 | ppMEKcyt        | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$ |                            |
|                          |                 | _b0a7_011c95012bbf    | $(0.0010  \mathrm{dimensionless})^{-1}$                 |                            |
| ppERKcyt                 | ppERKcyt        | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$ |                            |
|                          |                 | _b0a7_011c95012bbf    | $(0.0010  \mathrm{dimensionless})^{-1}$                 |                            |
| dppERKcyt                | dppERKcyt       | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$ |                            |
|                          |                 | _b0a7_011c95012bbf    | $(0.0010  \mathrm{dimensionless})^{-1}$                 |                            |
| MEKcyt                   | MEKcyt          | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$ | $\Box$                     |
|                          |                 | _b0a7_011c95012bbf    | $(0.0010  \mathrm{dimensionless})^{-1}$                 |                            |

| Id                      | Name            | Compartment           | Derived Unit Constant                                   | Boundary<br>Condi-<br>tion |
|-------------------------|-----------------|-----------------------|---------------------------------------------------------|----------------------------|
| ERKcyt                  | ERKcyt          | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$ |                            |
|                         |                 | _b0a7_011c95012bbf    | $(0.0010  \mathrm{dimensionless})^{-1}$                 |                            |
| ${	t MEKcyt\_ERKcyt}$   | MEKcyt_ERKcyt   | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$ |                            |
|                         |                 | _b0a7_011c95012bbf    | $(0.0010  \mathrm{dimensionless})^{-1}$                 |                            |
| pMEKcyt                 | pMEKcyt         | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$ |                            |
|                         |                 | _b0a7_011c95012bbf    | $(0.0010  \mathrm{dimensionless})^{-1}$                 |                            |
| ${\tt pMEKcyt\_ERKcyt}$ | pMEKcyt_ERKcyt  | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$ |                            |
|                         |                 | _b0a7_011c95012bbf    | $(0.0010  \mathrm{dimensionless})^{-1}$                 |                            |
| ppMEKnuc_ERKnuc         | ppMEKnuc_ERKnuc | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$ |                            |
|                         |                 | _b0a7_011c95012bbf    | $(0.0010  \mathrm{dimensionless})^{-1}$                 |                            |
| ppMEKnuc                | ppMEKnuc        | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$ |                            |
|                         |                 | _b0a7_011c95012bbf    | $(0.0010  \mathrm{dimensionless})^{-1}$                 |                            |
| ppERKnuc                | ppERKnuc        | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$ |                            |
|                         |                 | _b0a7_011c95012bbf    | $(0.0010  \mathrm{dimensionless})^{-1}$                 |                            |
| dppERKnuc               | dppERKnuc       | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$ |                            |
|                         |                 | _b0a7_011c95012bbf    | $(0.0010  \mathrm{dimensionless})^{-1}$                 |                            |
| MEKnuc                  | MEKnuc          | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$ |                            |
|                         |                 | _b0a7_011c95012bbf    | $(0.0010  \mathrm{dimensionless})^{-1}$                 |                            |
| ERKnuc                  | ERKnuc          | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$ |                            |
|                         |                 | _b0a7_011c95012bbf    | $(0.0010  \mathrm{dimensionless})^{-1}$                 |                            |
| MEKnuc_ERKnuc           | MEKnuc_ERKnuc   | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$ |                            |
|                         |                 | _b0a7_011c95012bbf    | $(0.0010  \mathrm{dimensionless})^{-1}$                 |                            |
| pMEKnuc                 | pMEKnuc         | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$ | $\Box$                     |
|                         |                 | _b0a7_011c95012bbf    | $(0.0010 \text{ dimensionless})^{-1}$                   |                            |
| pMEKnuc_ERKnuc          | pMEKnuc_ERKnuc  | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$ | $\Box$                     |
|                         |                 | _b0a7_011c95012bbf    | $(0.0010  \mathrm{dimensionless})^{-1}$                 |                            |

| Id                                | Name               | Compartment           | Derived Unit Constant                                   | Boundary<br>Condi-<br>tion |
|-----------------------------------|--------------------|-----------------------|---------------------------------------------------------|----------------------------|
| c_Raf_Ras_GTP                     | c_Raf_Ras_GTP      | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$ | $\Box$                     |
|                                   |                    | _b0a7_011c95012bbf    | $(0.0010  \mathrm{dimensionless})^{-1}$                 |                            |
| $B_Raf_Rap1_GTP$                  | B_Raf_Rap1_GTP     | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$ | $\Box$                     |
|                                   |                    | _b0a7_011c95012bbf    | $(0.0010  \mathrm{dimensionless})^{-1}$                 |                            |
| $Rap1\_GDP$                       | Rap1_GDP           | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$ | $\Box$                     |
|                                   |                    | _b0a7_011c95012bbf    | $(0.0010  \mathrm{dimensionless})^{-1}$                 |                            |
| Crk                               | Crk                | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$ |                            |
|                                   |                    | _b0a7_011c95012bbf    | $(0.0010  \mathrm{dimensionless})^{-1}$                 |                            |
| C3G                               | C3G                | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$ | $\Box$                     |
|                                   |                    | _b0a7_011c95012bbf    | $(0.0010  \mathrm{dimensionless})^{-1}$                 |                            |
| pDok_RasGAP                       | pDok_RasGAP        | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$ |                            |
|                                   |                    | _b0a7_011c95012bbf    | $(0.0010  \mathrm{dimensionless})^{-1}$                 |                            |
| RasGAP                            | RasGAP             | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$ |                            |
|                                   |                    | _b0a7_011c95012bbf    | $(0.0010  \mathrm{dimensionless})^{-1}$                 |                            |
| Grb2_pSOS                         | Grb2_pSOS          | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$ |                            |
|                                   |                    | _b0a7_011c95012bbf    | $(0.0010  \mathrm{dimensionless})^{-1}$                 |                            |
| pShc                              | pShc               | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$ |                            |
|                                   |                    | _b0a7_011c95012bbf    | $(0.0010  \mathrm{dimensionless})^{-1}$                 |                            |
| pSOS                              | pSOS               | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$ | $\Box$                     |
|                                   |                    | _b0a7_011c95012bbf    | $(0.0010 \text{ dimensionless})^{-1}$                   |                            |
| pFRS2                             | pFRS2              | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \Box$    | $\Box$                     |
| -                                 | _                  | _b0a7_011c95012bbf    | $(0.0010  \mathrm{dimensionless})^{-1}$                 |                            |
| mwd4cc05d6-                       | trka <b>I_in</b> t | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \Box$    | $\Box$                     |
| _6e19_4e2e_b540-<br>_45954f2df4f0 |                    | _b0a7_011c95012bbf    | $(0.0010 \text{ dimensionless})^{-1}$                   |                            |

| Id                                | Name                    | Compartment           | Derived Unit Constant                                    | Boundary<br>Condi-<br>tion |
|-----------------------------------|-------------------------|-----------------------|----------------------------------------------------------|----------------------------|
| mwf82ad06a-                       | pro_TrkA                | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \text{2}$ |                            |
| _b8aa_40fa_a532-<br>_a1da44e3425f |                         | _b0a7_011c95012bbf    | $(0.0010 \text{ dimensionless})^{-1}$                    |                            |
| mwe009ad7f-                       | L_NGFR_I                | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$  |                            |
| _90fd_4186_8855-                  |                         | _b0a7_011c95012bbf    | $(0.0010 \text{ dimensionless})^{-1}$                    |                            |
| _77780724ddb8                     |                         |                       | ,                                                        |                            |
| mw5afa8250-                       | NGFR_I                  | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$  |                            |
| _0cf0_40a2_a97a-                  |                         | _b0a7_011c95012bbf    | $(0.0010 \text{ dimensionless})^{-1}$                    |                            |
| _f7cf20a9cfbd                     |                         |                       | ,                                                        |                            |
| mwb4295eb0-                       | NGFR_I_deg              | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$  |                            |
| _bd92_4221_b49d-                  |                         | _b0a7_011c95012bbf    | $(0.0010 \text{ dimensionless})^{-1}$                    |                            |
| _bbbd48ca25bc                     |                         |                       | ,                                                        |                            |
| mwa4903466-                       | L_NGFR_I_deg            | mw3bc142df_1951_4fa9- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$  |                            |
| _fc58_4bfe_b3ec-                  | -                       | _b0a7_011c95012bbf    | $(0.0010  \mathrm{dimensionless})^{-1}$                  |                            |
| _76a90f9d20e2                     |                         |                       | ,                                                        |                            |
| mwe979ec8f-                       | NGFR_interstitial_fluid | mwc2fe3668_8fb0_4cfb- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$  | $\Box$                     |
| _a55c_470c_a554-                  |                         | _b795_99057e61e290    | $(0.0010 \text{ dimensionless})^{-1}$                    |                            |
| _9fa8013eab74                     |                         |                       |                                                          |                            |
| mw4478fbeb-                       | source                  | mwc2fe3668_8fb0_4cfb- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$  |                            |
| _51b1_4764_92ad-                  |                         | _b795_99057e61e290    | $(0.0010  \mathrm{dimensionless})^{-1}$                  | _                          |
| _a86d314ae0eb                     |                         |                       | ,                                                        |                            |
| mw29fa4e00-                       | NGF                     | mwc2fe3668_8fb0_4cfb- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$  | $\Box$                     |
| _a430_4f11_b62e-                  |                         | _b795_99057e61e290    | $(0.0010 \text{ dimensionless})^{-1}$                    |                            |
| _1bcbc0a767a0                     |                         |                       |                                                          |                            |
| mwa81400ac-                       | NGFdeg                  | mwc2fe3668_8fb0_4cfb- | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \square$  |                            |
| _76f5_4446_8a4d-                  | -                       | _b795_99057e61e290    | $(0.0010  \mathrm{dimensionless})^{-1}$                  |                            |
| _6446ab4b11c9                     |                         |                       |                                                          |                            |

| Id                                               | Name                      | Compartment                                 | Derived Unit Constant                                                                                                  | Boundary<br>Condi-<br>tion |
|--------------------------------------------------|---------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------|
| mw6782adfa-<br>_29ee_41a8_acbb-<br>_4c86c6c81596 | NGFR_L_interstitial_fluid | mwc2fe3668_8fb0_4cfb-<br>_b795_99057e61e290 | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \\ (0.0010 \text{ dimensionless})^{-1}$                                 | В                          |
| mwe599c4c1-<br>_2d8e_446c_bf3f-<br>_4c97baced8a9 | tanezumab                 | mwc2fe3668_8fb0_4cfb-<br>_b795_99057e61e290 | $\begin{array}{ccc} 10^{-6} & \text{mol} \cdot \text{m}^{-3} \cdot \\ (0.0010 \text{ dimensionless})^{-1} \end{array}$ | В                          |
| mw46e8693e-<br>_348e_4f1d_8c49-<br>_c13485fae7ba | NGF_tanezumab             | mwc2fe3668_8fb0_4cfb-<br>_b795_99057e61e290 | $\begin{array}{ccc} 10^{-6} & \text{mol} \cdot \text{m}^{-3} \cdot \\ (0.0010 \text{ dimensionless})^{-1} \end{array}$ | В                          |
| mwe0b9d340-<br>_24f5_4c7e_a80f-<br>_4faadae6c0fc | tz_deg                    | mwc2fe3668_8fb0_4cfb-<br>_b795_99057e61e290 | $10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot \\ (0.0010 \text{ dimensionless})^{-1}$                                 | B                          |
| mw89ebbe2d-<br>_1ec2_457a_9367-<br>_6c5e86a1a924 | trkaI                     | mwc2fe3668_8fb0_4cfb-<br>_b795_99057e61e290 | $\begin{array}{ccc} 10^{-6} & \text{mol} \cdot \text{m}^{-3} \cdot \\ (0.0010 \text{ dimensionless})^{-1} \end{array}$ | B                          |
| mw555a08dc-<br>_922d_4b35_8f69-<br>_5c6e8a4ad614 | trkaI_deg                 | mwc2fe3668_8fb0_4cfb-<br>_b795_99057e61e290 | $\begin{array}{ccc} 10^{-6} & \text{mol} \cdot \text{m}^{-3} \cdot \\ (0.0010 \text{ dimensionless})^{-1} \end{array}$ | ⊟                          |

# **5 Parameters**

This model contains 222 global parameters.

Table 4: Properties of each parameter.

| Id              | Name        | SBO | Value  | Unit (                               | Constant                     |
|-----------------|-------------|-----|--------|--------------------------------------|------------------------------|
| Km_104          | Km_104      |     | 15.657 | $m^{-3}$ · $mol$ ·                   | $\checkmark$                 |
|                 |             |     |        | 0.0010 dimensionless                 |                              |
| $\rm Km105$     | $Km_{-}105$ |     | 15.657 | $\mathrm{m}^{-3}$ · $\mathrm{mol}$ · |                              |
|                 |             |     |        | 0.0010 dimensionless                 |                              |
| $\rm Km106$     | $Km_{-}106$ |     | 15.657 | $m^{-3}$ · $mol$ ·                   |                              |
|                 |             |     |        | 0.0010 dimensionless                 |                              |
| $\rm Km_{-}107$ | $Km_{-}107$ |     | 15.657 | $m^{-3}$ · $mol$ ·                   |                              |
|                 |             |     |        | 0.0010 dimensionless                 |                              |
| $\rm Km_{-}108$ | $Km_{-}108$ |     | 0.020  | $m^{-3}$ · $mol$ ·                   |                              |
|                 |             |     |        | 0.0010 dimensionless                 | _                            |
| $\rm Km_{-}109$ | Km_109      |     | 0.020  | $m^{-3}$ · $mol$ ·                   |                              |
|                 |             |     |        | 0.0010 dimensionless                 |                              |
| Km_39           | Km_39       |     | 0.100  | $m^{-3}$ · $mol$ ·                   |                              |
|                 |             |     |        | 0.0010 dimensionless                 |                              |
| $Km_40$         | Km_40       |     | 0.100  | $\mathrm{m}^{-3}$ · $\mathrm{mol}$ · |                              |
|                 |             |     |        | 0.0010 dimensionless                 |                              |
| Km_41           | Km_41       |     | 0.100  | $\mathrm{m}^{-3}$ · $\mathrm{mol}$ · |                              |
|                 |             |     |        | 0.0010 dimensionless                 |                              |
| $Km_42$         | Km_42       |     | 0.100  | $\mathrm{m}^{-3}$ · $\mathrm{mol}$ · |                              |
|                 |             |     |        | 0.0010 dimensionless                 |                              |
| Km_43           | Km_43       |     | 0.100  | $\mathrm{m}^{-3}$ · $\mathrm{mol}$ · |                              |
|                 |             |     |        | 0.0010 dimensionless                 |                              |
| Km_44           | Km_44       |     | 0.100  | $\mathrm{m}^{-3}$ · $\mathrm{mol}$ · |                              |
|                 |             |     |        | 0.0010 dimensionless                 |                              |
| Km_45           | Km_45       |     | 0.100  | $\mathrm{m}^{-3}$ · $\mathrm{mol}$ · |                              |
|                 |             |     |        | 0.0010 dimensionless                 |                              |
| Km_58           | Km_58       |     | 0.020  | $\mathrm{m}^{-3}$ · $\mathrm{mol}$ · | $   \overline{\mathcal{L}} $ |
|                 |             |     | ****   | 0.0010 dimensionless                 |                              |
| Km_59           | Km_59       |     | 25.641 | $m^{-3} \cdot mol \cdot$             |                              |
|                 |             |     |        | 0.0010 dimensionless                 |                              |
| Km_60           | Km_60       |     | 25.641 | $m^{-3} \cdot mol \cdot$             |                              |
|                 |             |     |        | 0.0010 dimensionless                 |                              |
| Km_61           | Km_61       |     | 25.641 | $m^{-3} \cdot mol \cdot$             |                              |
|                 |             |     |        | 0.0010 dimensionless                 |                              |
| Km_62           | Km_62       |     | 1.000  | $m^{-3} \cdot mol \cdot$             | $   \sqrt{} $                |
|                 |             |     | 2.000  | 0.0010 dimensionless                 |                              |

| Id             | Name       | SBO | Value  | Unit                                 | Constant                     |
|----------------|------------|-----|--------|--------------------------------------|------------------------------|
| Km_63          | Km_63      |     | 1.000  | $\mathrm{m}^{-3}$ · $\mathrm{mol}$ · |                              |
|                |            |     |        | 0.0010 dimensionless                 |                              |
| ${\rm Km\_64}$ | $Km_{-}64$ |     | 1.000  | $m^{-3}$ · $mol$ ·                   |                              |
|                |            |     |        | 0.0010 dimensionless                 |                              |
| Km_70          | $Km_{-}70$ |     | 0.010  | $m^{-3}$ · $mol$ ·                   |                              |
|                |            |     |        | 0.0010 dimensionless                 |                              |
| Km_71          | Km_71      |     | 1.000  | $m^{-3}$ · $mol$ ·                   |                              |
|                |            |     |        | 0.0010 dimensionless                 |                              |
| Km_72          | $Km_{-}72$ |     | 1.000  | $m^{-3}$ · $mol$ ·                   | $\checkmark$                 |
|                |            |     |        | 0.0010 dimensionless                 |                              |
| Km_81          | Km_81      |     | 0.160  | $m^{-3}$ · $mol$ ·                   |                              |
|                |            |     |        | 0.0010 dimensionless                 |                              |
| Km_82          | Km_82      |     | 0.160  |                                      |                              |
|                |            |     | 00     | 0.0010 dimensionless                 |                              |
| Km_83          | Km_83      |     | 0.160  | _                                    |                              |
| 1.m00          | 1111203    |     | 0.100  | 0.0010 dimensionless                 |                              |
| Km_84          | Km_84      |     | 0.160  | •                                    |                              |
| IMI_O-I        | KIII_0+    |     | 0.100  | 0.0010 dimensionless                 |                              |
| Km_85          | Km_85      |     | 0.160  | •                                    | <b>—</b>                     |
| VIII 65        | KIII_0J    |     | 0.100  | 0.0010 dimensionless                 |                              |
| Vm 06          | Vm 96      |     | 0.160  |                                      | <b>-</b>                     |
| Km_86          | Km_86      |     | 0.100  |                                      | $   \overline{\mathcal{L}} $ |
| V 07           | IZ 07      |     | 0.160  | 0.0010 dimensionless                 |                              |
| Km_87          | Km87       |     | 0.160  |                                      |                              |
|                | *** 00     |     | 0.160  | 0.0010 dimensionless                 |                              |
| Km_88          | $Km_{-}88$ |     | 0.160  |                                      |                              |
|                | ** 00      |     | 0.460  | 0.0010 dimensionless                 |                              |
| Km_89          | Km_89      |     | 0.160  | $m^{-3}$ · $mol$ ·                   |                              |
|                |            |     |        | 0.0010 dimensionless                 |                              |
| Km_90          | Km_90      |     | 0.160  |                                      |                              |
|                |            |     |        | 0.0010 dimensionless                 |                              |
| $Km_91$        | Km_91      |     | 0.160  | $\mathrm{m}^{-3}$ · $\mathrm{mol}$ · |                              |
|                |            |     |        | 0.0010 dimensionless                 |                              |
| $Km_92$        | Km_92      |     | 0.160  |                                      |                              |
|                |            |     |        | 0.0010 dimensionless                 |                              |
| $\rm Km_{-}93$ | Km_93      |     | 15.657 |                                      |                              |
|                |            |     |        | 0.0010 dimensionless                 |                              |
| $\rm Km_{-}94$ | $Km_{-}94$ |     | 15.657 | $m^{-3}$ · $mol$ ·                   |                              |
|                |            |     |        | 0.0010 dimensionless                 |                              |
| $Km_95$        | Km_95      |     | 15.657 | $m^{-3}$ · $mol$ ·                   |                              |
|                |            |     |        | 0.0010 dimensionless                 | <del>_</del>                 |
| Km_96          | Km_96      |     | 15.657 | $m^{-3}$ · $mol$ ·                   | $\checkmark$                 |
|                |            |     |        |                                      |                              |

| Id            | Name                  | SBO | Value   | Unit Constant                           |
|---------------|-----------------------|-----|---------|-----------------------------------------|
| Km_97         | Km_97                 |     | 0.020   | $m^{-3}$ · mol · $\checkmark$           |
|               |                       |     |         | 0.0010 dimensionless                    |
| Km_98         | Km_98                 |     | 0.020   | $m^{-3}$ · mol ·                        |
|               |                       |     |         | 0.0010 dimensionless                    |
| MKP3cyt       | MKP3cyt               |     | 0.018   | $m^{-3}$ · mol ·                        |
| J             | ·                     |     |         | 0.0010 dimensionless                    |
| MKP3nuc       | MKP3nuc               |     | 0.006   | $m^{-3}$ · $mol$ ·                      |
|               |                       |     |         | 0.0010 dimensionless                    |
| PP2Acyt       | PP2Acyt               |     | 0.240   | $m^{-3} \cdot mol \cdot $               |
| 11 2110 9 0   | 1121050               |     | 0.2.10  | 0.0010 dimensionless                    |
| PP2Anuc       | PP2Anuc               |     | 0.080   | $m^{-3} \cdot mol \cdot \checkmark$     |
| 11 ZAHUC      | 112Anuc               |     | 0.000   | 0.0010 dimensionless                    |
| Dom 1 CAD     | Don1CAD               |     | 0.012   | 2                                       |
| Rap1GAP       | Rap1GAP               |     | 0.012   |                                         |
| 17 404        | V 104                 |     | 100.000 | 0.0010 dimensionless                    |
| $Vmax_104$    | Vmax <sub>104</sub>   |     | 180.000 | s <sup>-1</sup> . ✓                     |
|               |                       |     |         | 0.01666666666666667 dimensionle         |
| $Vmax_{-}105$ | Vmax <sub>-</sub> 105 |     | 180.000 | s <sup>-1</sup> · <b>✓</b>              |
|               |                       |     |         | 0.01666666666666667 dimensionle         |
| $Vmax_106$    | Vmax_106              |     | 180.000 | $s^{-1}$ .                              |
|               |                       |     |         | 0.0166666666666667 dimensionle          |
| $Vmax_107$    | Vmax_107              |     | 180.000 | $s^{-1}$ · $\mathbf{Z}$                 |
|               |                       |     |         | 0.0166666666666667 dimensionle          |
| $Vmax_108$    | $Vmax_108$            |     | 3.600   | $\mathrm{s}^{-1}$ · $\checkmark$        |
|               |                       |     |         | 0.0166666666666667 dimensionle          |
| $Vmax_109$    | Vmax_109              |     | 3.600   | $\mathrm{s}^{-1}$ ·                     |
|               |                       |     |         | 0.0166666666666667 dimensionle          |
| Vmax_39       | Vmax_39               |     | 1.200   | $s^{-1}$ · $\checkmark$                 |
|               |                       |     |         | 0.0166666666666666666666666666666666666 |
| Vmax_40       | Vmax_40               |     | 1.200   | $s^{-1}$ .                              |
|               |                       |     |         | 0.0166666666666667 dimensionle          |
| Vmax_41       | Vmax_41               |     | 1.200   | $s^{-1}$ · $\mathbf{Z}$                 |
| VIII CARE II  | VIIIuX_II             |     | 1.200   | 0.01666666666666667 dimensionle         |
| Vmax_42       | Vmax_42               |     | 1.200   | $s^{-1}$ :                              |
| VIIIdX_42     | v IIIax_¬Z            |     | 1.200   | 0.0166666666666666666666666666666666666 |
| V 42          | Vmor 12               |     | 1 200   | 1                                       |
| $Vmax_43$     | Vmax_43               |     | 1.200   |                                         |
|               | **                    |     | 1.200   | 0.0166666666666666666666666666666666666 |
| $Vmax_44$     | Vmax <sub>44</sub>    |     | 1.200   | s <sup>-1</sup> · <b>Z</b>              |
|               |                       |     |         | 0.01666666666666667 dimensionle         |
| $Vmax_45$     | Vmax_45               |     | 1.200   | $s^{-1}$ .                              |
|               |                       |     |         | 0.01666666666666667 dimensionle         |
| $Vmax_58$     | Vmax_58               |     | 120.000 | $s^{-1}$ . $\checkmark$                 |
|               |                       |     |         | 0.0166666666666667 dimensionle          |

| Id               | Name                 | SBO | Value   | Unit         | Constant                         |
|------------------|----------------------|-----|---------|--------------|----------------------------------|
| Vmax_59          | Vmax_59              |     | 60.000  | $s^{-1}$     | · 🗸                              |
|                  |                      |     |         | 0.016666666  | 6666667 dimensionle              |
| Vmax_60          | Vmax_60              |     | 60.000  | $s^{-1}$     | · 🗸                              |
|                  |                      |     |         | 0.016666666  | 6666667 dimensionle              |
| Vmax_61          | Vmax_61              |     | 60.000  | $s^{-1}$     | · 🗾                              |
|                  |                      |     |         |              | 6666667 dimensionle              |
| Vmax_62          | Vmax_62              |     | 600.000 | $s^{-1}$     | · 🗸                              |
|                  |                      |     |         | 0.016666666  | 6666667 dimensionle              |
| Vmax_63          | Vmax_63              |     | 600.000 | $s^{-1}$     | · 🗸                              |
| vman_oo          | VIIIuX_03            |     | 000.000 |              | <b>v</b><br>6666667 dimensionle  |
| Vmax_64          | Vmax_64              |     | 600.000 | $s^{-1}$     | ·                                |
| VIIIAX_U4        | VIIIax_O+            |     | 000.000 | ~            | <b>⊌</b><br>6666667 dimensionle  |
| Vmax_70          | Umar 70              |     | 2.880   | $s^{-1}$     |                                  |
| VIIIax_/U        | Vmax_70              |     | 2.000   | 5            | · <b>V</b>                       |
| 17 74            | V 71                 |     | 120,000 | $s^{-1}$     | 6666667 dimensionle              |
| Vmax_71          | Vmax_71              |     | 120.000 | ~            | . 🗹                              |
|                  |                      |     | 100000  |              | 6666667 dimensionle              |
| $Vmax_{-}72$     | Vmax <sub>-</sub> 72 |     | 120.000 | $s^{-1}$     | ·                                |
|                  |                      |     |         |              | 6666667 dimensionle              |
| Vmax_81          | Vmax_81              |     | 30.000  | $s^{-1}$     | · 🗹                              |
|                  |                      |     |         |              | 6666667 dimensionle              |
| $Vmax_82$        | Vmax_82              |     | 30.000  | $s^{-1}$     | · 🗹                              |
|                  |                      |     |         |              | 6666667 dimensionle              |
| $Vmax_83$        | Vmax_83              |     | 30.000  | $s^{-1}$     | · 🗹                              |
|                  |                      |     |         | 0.016666666  | 6666667 dimensionle              |
| ${\tt Vmax\_84}$ | Vmax_84              |     | 30.000  | $s^{-1}$     | · 🗹                              |
|                  |                      |     |         | 0.0166666666 | 6666667 dimensionle              |
| Vmax_85          | Vmax_85              |     | 12.000  | $s^{-1}$     | · 🖊                              |
|                  |                      |     |         | 0.0166666666 | 6666667 dimensionle              |
| Vmax_86          | Vmax_86              |     | 12.000  | $s^{-1}$     | · 🛮                              |
|                  |                      |     |         | 0.016666666  | 6666667 dimensionle              |
| Vmax_87          | Vmax_87              |     | 12.000  | $s^{-1}$     | · 🗹                              |
|                  |                      |     |         | 0.016666666  | 6666667 dimensionle              |
| Vmax_88          | Vmax_88              |     | 12.000  | $s^{-1}$     | ·                                |
| vinari_00        | V IIIda              |     | 12.000  | 5            | 6666667 dimensionle              |
| Vmax_89          | Vmax_89              |     | 18.000  | $s^{-1}$     | ·                                |
| VIII.AX_O3       | VIIIax_0)            |     | 10.000  |              | <b>⊯</b><br>6666667 dimensionle  |
| Vm 0 0 0         | Vmax_90              |     | 18.000  | $s^{-1}$     | _                                |
| $Vmax_90$        | v iliax_90           |     | 10.000  |              | · <b>Z</b><br>6666667 dimension1 |
| V 04             | V                    |     | 10.000  |              | 6666667 dimensionle              |
| Vmax_91          | Vmax_91              |     | 18.000  | $s^{-1}$     | · <b>/</b>                       |
|                  | **                   |     | 10.000  |              | 6666667 dimensionle              |
| Vmax_92          | Vmax_92              |     | 18.000  | $s^{-1}$     |                                  |
|                  |                      |     |         | 0.016666666  | 6666667 dimensionle              |

| Id               | Name                                    | SBO | Value   | Unit         | Constant                        |
|------------------|-----------------------------------------|-----|---------|--------------|---------------------------------|
| Vmax_93          | Vmax_93                                 |     | 180.000 | $s^{-1}$     | · 🗸                             |
|                  |                                         |     |         | 0.0166666666 | 666667 dimensionl               |
| Vmax_94          | Vmax_94                                 |     | 180.000 | $s^{-1}$     | · 🗸                             |
|                  | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |     | 100.000 | ~            | 666667 dimensionl               |
| Vmax_95          | Vmax_95                                 |     | 180.000 | $s^{-1}$     |                                 |
| VIII.dX_50       | V mux_>S                                |     | 100.000 | ~            | <b>v</b><br>666667 dimensionl   |
| Vmax 96          | Vmax_96                                 |     | 180.000 | $s^{-1}$     |                                 |
| vmax_96          | villax_90                               |     | 100.000 | 5            | · <b>☑</b><br>666667 dimensionl |
| 07               | N 07                                    |     | 2.600   |              |                                 |
| Vmax_97          | Vmax_97                                 |     | 3.600   | $s^{-1}$     |                                 |
|                  |                                         |     |         |              | 666667 dimensionl               |
| ${\tt Vmax\_98}$ | Vmax_98                                 |     | 3.600   | $s^{-1}$     | · 🗹                             |
|                  |                                         |     |         | 0.0166666666 | 666667 dimensionl               |
| kb_1             | kb_1                                    |     | 0.017   | $s^{-1}$     | · 🗹                             |
|                  |                                         |     |         | 0.0166666666 | 666667 dimensionl               |
| kb_100           | kb_100                                  |     | 4.500   | $s^{-1}$     |                                 |
|                  |                                         |     |         | 0.0166666666 | 666667 dimensionl               |
| kb_101           | kb_101                                  |     | 36.000  | $s^{-1}$     | . 🗸                             |
|                  | ROLIGI                                  |     | 20.000  |              | 666667 dimensionl               |
| kb_102           | kb_102                                  |     | 36.000  | $s^{-1}$     | ·                               |
| KD_102           | KU_1U2                                  |     | 30.000  | ~            | · <b>∠</b><br>666667 dimensionl |
| 1-1- 400         | 1.1. 102                                |     | 26,000  | $s^{-1}$     |                                 |
| kb_103           | kb_103                                  |     | 36.000  | ~            | . 🔽                             |
|                  |                                         |     |         |              | 666667 dimensionl               |
| kb_18            | $kb_{-}18$                              |     | 12.000  | $s^{-1}$     | · 🗹                             |
|                  |                                         |     |         |              | 666667 dimensionl               |
| kb_19            | kb_19                                   |     | 12.000  | $s^{-1}$     | · 🗹                             |
|                  |                                         |     |         | 0.0166666666 | 666667 dimensionl               |
| kb_20            | kb_20                                   |     | 12.000  | $s^{-1}$     | · 🗸                             |
|                  |                                         |     |         | 0.0166666666 | 666667 dimensionl               |
| kb_21            | kb_21                                   |     | 12.000  | $s^{-1}$     |                                 |
|                  |                                         |     |         | 0.0166666666 | 666667 dimensionl               |
| kb_22            | kb_22                                   |     | 12.000  | $s^{-1}$     | . 🗹                             |
|                  | R0-22                                   |     | 12.000  | ~            | 666667 dimensionl               |
| kb_23            | kb_23                                   |     | 12.000  | $s^{-1}$     |                                 |
| KU_23            | KU_23                                   |     | 12.000  | 5            | · <b>∠</b><br>666667 dimensionl |
| 11.04            | 11. 24                                  |     | ( 000   |              |                                 |
| kb_24            | kb_24                                   |     | 6.000   | $s^{-1}$     |                                 |
|                  |                                         |     |         |              | 666667 dimensionl               |
| kb_25            | kb_25                                   |     | 6.000   | $s^{-1}$     | · 🗹                             |
|                  |                                         |     |         |              | 666667 dimensionl               |
| kb_26            | kb_26                                   |     | 6.000   | $s^{-1}$     | · 🗹                             |
|                  |                                         |     |         | 0.0166666666 | 666667 dimensionl               |
| kb_27            | kb_27                                   |     | 6.000   | $s^{-1}$     |                                 |
|                  |                                         |     |         | 0.016666666  | 666667 dimensionl               |

| nsionles<br>nsionles<br>nsionles<br>nsionles<br>nsionles |
|----------------------------------------------------------|
| nsionles<br>nsionles<br>nsionles<br>nsionles<br>nsionles |
| nsionles<br>nsionles<br>nsionles<br>nsionles<br>nsionles |
| nsionles<br>nsionles<br>nsionles<br>nsionles<br>nsionles |
| nsionles<br>nsionles<br>nsionles<br>nsionles             |
| nsionles<br>nsionles<br>nsionles<br>nsionles             |
| nsionles<br>nsionles<br>nsionles                         |
| nsionles<br>nsionles<br>nsionles                         |
| nsionles<br>nsionles<br>nsionles                         |
| nsionles<br>nsionles<br>nsionles                         |
| nsionles<br>nsionles                                     |
| nsionles<br>nsionles                                     |
| nsionles                                                 |
| nsionles                                                 |
|                                                          |
|                                                          |
| nsionles                                                 |
| _                                                        |
|                                                          |
| nsionles                                                 |
| . 1                                                      |
| nsionles                                                 |
| . 1                                                      |
| nsionles                                                 |
|                                                          |
| nsionles                                                 |
|                                                          |
| nsionles                                                 |
| ,                                                        |
| nsionles                                                 |
|                                                          |
| nsionles                                                 |
| •                                                        |
| nsionles                                                 |
| ,                                                        |
| nsionles                                                 |
| ,                                                        |
| nsionles                                                 |
| •                                                        |
|                                                          |
| nsionles                                                 |
|                                                          |
| •                                                        |
|                                                          |
|                                                          |

| Id      | Name     | SBO | Value   | Unit                                                     | Constant        |
|---------|----------|-----|---------|----------------------------------------------------------|-----------------|
| kf_102  | kf_102   |     | 978.240 | $m^3 \cdot mol^{-1} \cdot s^{-1}$                        | · 🗹             |
|         |          |     |         | 16.6666666666666                                         | dimensionless   |
| kf_103  | kf_103   |     | 978.240 | $\mathrm{m^3}\cdot\mathrm{mol^{-1}}\cdot\mathrm{s^{-1}}$ | . 🗸             |
|         |          |     |         | 16.666666666666                                          |                 |
| kf_11   | kf_11    |     | 0.025   | $s^{-1}$                                                 | · 🗸             |
|         |          |     |         | 0.01666666666666                                         |                 |
| kf_110  | kf_110   |     | 6.480   | $s^{-1}$                                                 |                 |
|         | 111_110  |     | 000     | 0.0166666666666                                          |                 |
| kf_111  | kf_111   |     | 32.400  | $s^{-1}$                                                 | ·               |
| KI_III  | KI_I I I |     | 32.400  | 0.01666666666666                                         | _               |
| l-f 110 | lef 112  |     | 0.480   | $s^{-1}$                                                 | _               |
| kf_112  | kf_112   |     | 0.480   |                                                          | . 2             |
|         | 16110    |     | 2 400   | 0.0166666666666666666666666666666666666                  | _               |
| kf_113  | kf_113   |     | 2.400   | $s^{-1}$                                                 |                 |
|         |          |     |         | 0.0166666666666666666666666666666666666                  |                 |
| kf_114  | kf_114   |     | 3.120   | $s^{-1}$                                                 | · 🗹             |
|         |          |     |         | 0.016666666666666                                        | 667 dimensionle |
| kf_115  | kf_115   |     | 15.600  | $s^{-1}$                                                 | . 🗸             |
|         |          |     |         | 0.016666666666666                                        | 667 dimensionle |
| kf_116  | kf_116   |     | 0.420   | $s^{-1}$                                                 | . 🗸             |
|         |          |     |         | 0.01666666666666                                         | 667 dimensionle |
| kf_117  | kf_117   |     | 2.100   | $s^{-1}$                                                 | . 🗸             |
|         |          |     |         | 0.01666666666666                                         |                 |
| kf_118  | kf_118   |     | 0.216   | $s^{-1}$                                                 | . 🛮             |
|         | MI_IIO   |     | 0.210   | 0.01666666666666                                         | _               |
| kf_119  | kf_119   |     | 1.080   | $s^{-1}$                                                 | ·               |
| KI_IIJ  | KI_II/   |     | 1.000   | 0.01666666666666                                         | _               |
| kf_12   | kf_12    |     | 0.025   | $s^{-1}$                                                 |                 |
| KI_IZ   | K1_12    |     | 0.023   | 0.01666666666666                                         | · <b>/</b>      |
| 1.6.400 | 1.6.120  |     | 0.102   | 1                                                        | _               |
| kf_120  | kf_120   |     | 0.103   | ~                                                        |                 |
|         | 10101    |     | 0 716   | 0.0166666666666666666666666666666666666                  | _               |
| kf_121  | kf_121   |     | 0.516   | $s^{-1}$                                                 | . 🔼             |
|         |          |     |         | 0.0166666666666666666666666666666666666                  | 667 dimensionle |
| kf_122  | kf_122   |     | 7.320   | $s^{-1}$                                                 | · 🗹             |
|         |          |     |         | 0.016666666666666                                        | 667 dimensionle |
| kf_123  | kf_123   |     | 36.600  | $s^{-1}$                                                 | . 🛮             |
|         |          |     |         | 0.016666666666666                                        | 667 dimensionle |
| kf_124  | kf_124   |     | 0.552   | $s^{-1}$                                                 | . 🗸             |
|         |          |     |         | 0.01666666666666                                         |                 |
| kf_125  | kf_125   |     | 2.760   | $s^{-1}$                                                 | · 🗖             |
| •       |          |     |         | 0.0166666666666                                          |                 |
|         | kf_126   |     | 0.156   | $s^{-1}$                                                 | · <b>Z</b>      |
| kf_126  | KT I /h  |     |         |                                                          |                 |

| Id          | Name        | SBO | Value  | Unit         | Constant            |
|-------------|-------------|-----|--------|--------------|---------------------|
| $kf_127$    | kf_127      |     | 0.780  | $s^{-1}$     | · 🗹                 |
|             |             |     |        | 0.0166666666 | 6666667 dimensionle |
| $kf_{-}128$ | kf_128      |     | 0.084  | $s^{-1}$     | · 🗹                 |
|             |             |     |        |              | 6666667 dimensionle |
| kf_129      | kf_129      |     | 0.420  | $s^{-1}$     | · 🗹                 |
|             |             |     |        |              | 6666667 dimensionle |
| $kf_13$     | $kf_{-}13$  |     | 0.025  | $s^{-1}$     | · 🗹                 |
|             |             |     |        |              | 6666667 dimensionle |
| $kf_{-}130$ | $kf_{-}130$ |     | 6.480  | $s^{-1}$     |                     |
|             |             |     |        | 0.0166666666 | 6666667 dimensionle |
| $kf_{-}131$ | kf_131      |     | 32.400 | $s^{-1}$     | · 🗹                 |
|             |             |     |        | 0.0166666666 | 6666667 dimensionle |
| kf_132      | kf_132      |     | 0.480  | $s^{-1}$     | · 🗹                 |
|             |             |     |        | 0.0166666666 | 6666667 dimensionle |
| $kf_{-}133$ | kf_133      |     | 2.400  | $s^{-1}$     | · 🗹                 |
|             |             |     |        | 0.0166666666 | 6666667 dimensionle |
| $kf_{-}134$ | $kf_{-}134$ |     | 3.120  | $s^{-1}$     |                     |
|             |             |     |        | 0.0166666666 | 6666667 dimensionle |
| kf_135      | kf_135      |     | 15.600 | $s^{-1}$     | · 🖊                 |
|             |             |     |        | 0.0166666666 | 6666667 dimensionle |
| kf_136      | kf_136      |     | 0.420  | $s^{-1}$     | · 🗾                 |
|             |             |     |        | 0.0166666666 | 6666667 dimensionle |
| kf_137      | $kf_{-}137$ |     | 2.100  | $s^{-1}$     | · 🖊                 |
|             |             |     |        | 0.0166666666 | 6666667 dimensionle |
| kf_138      | kf_138      |     | 0.156  | $s^{-1}$     | · 🗾                 |
|             |             |     |        | 0.0166666666 | 6666667 dimensionle |
| kf_139      | kf_139      |     | 0.780  | $s^{-1}$     |                     |
|             |             |     |        | 0.0166666666 | 6666667 dimensionle |
| kf_14       | $kf_{-}14$  |     | 0.025  | $s^{-1}$     | · 🗾                 |
|             |             |     |        | 0.0166666666 | 6666667 dimensionle |
| kf_140      | $kf_{-}140$ |     | 0.084  | $s^{-1}$     | · 🗾                 |
|             |             |     |        | 0.0166666666 | 6666667 dimensionle |
| kf_141      | kf_141      |     | 0.420  | $s^{-1}$     | · 🗾                 |
|             |             |     |        | 0.0166666666 | 6666667 dimensionle |
| kf_142      | kf_142      |     | 3.120  | $s^{-1}$     | · 🖊                 |
|             |             |     |        | 0.0166666666 | 6666667 dimensionle |
| kf_143      | kf_143      |     | 15.600 | $s^{-1}$     | · 🔽                 |
| _           |             |     |        |              | 6666667 dimensionle |
| kf_144      | kf_144      |     | 0.420  | $s^{-1}$     | · 🔽                 |
|             | · ·         |     |        |              | 6666667 dimensionle |
| kf_145      | kf_145      |     | 2.100  | $s^{-1}$     | · <b>7</b>          |
|             |             |     |        |              | 6666667 dimensionle |

| Id         | Name       | SBO | Value   | Unit                                                         | Constant                        |
|------------|------------|-----|---------|--------------------------------------------------------------|---------------------------------|
| kf_15      | kf_15      |     | 0.025   | $s^{-1}$                                                     | · 🛛                             |
|            |            |     |         | 0.016666666666                                               | 66667 dimensionle               |
| kf_16      | $kf_{-}16$ |     | 0.025   | $s^{-1}$                                                     | . 🗹                             |
|            |            |     |         | 0.016666666666                                               | 66667 dimensionle               |
| $kf_{-}17$ | $kf_{-}17$ |     | 0.025   | $s^{-1}$                                                     | · 🗸                             |
|            |            |     |         | 0.016666666666                                               | 66667 dimensionle               |
| kf_19      | kf_19      |     | 600.000 | $\mathrm{m^3 \cdot mol^{-1} \cdot s^{-}}$                    | 1 · 🖊                           |
|            |            |     |         |                                                              | 667 dimensionless               |
| kf_20      | kf_20      |     | 600.000 | $\text{m}^3 \cdot \text{mol}^{-1} \cdot \text{s}^{-}$        | 1 · 🗸                           |
|            |            |     |         |                                                              | 667 dimensionless               |
| kf_21      | kf_21      |     | 600.000 | $m^3 \cdot mol^{-1} \cdot s^-$                               |                                 |
| 111 _2 1   | K1=21      |     | 000.000 |                                                              | 667 dimensionless               |
| kf_22      | kf_22      |     | 600.000 | $m^3 \cdot mol^{-1} \cdot s^-$                               |                                 |
| KI_ZZ      | KI_ZZ      |     | 000.000 |                                                              | 67 dimensionless                |
| kf_23      | kf_23      |     | 600.000 | $m^3 \cdot mol^{-1} \cdot s^-$                               |                                 |
| K1 _23     | KI_23      |     | 000.000 |                                                              | . <b>V</b><br>667 dimensionless |
| 1-4 04     | 1-6 24     |     | 200,000 |                                                              |                                 |
| kf_24      | kf_24      |     | 300.000 | $m^3 \cdot mol^{-1} \cdot s^-$                               |                                 |
|            | 1.005      |     | 200.000 |                                                              | 667 dimensionless               |
| kf_25      | kf_25      |     | 300.000 | $m^3 \cdot mol^{-1} \cdot s^-$                               |                                 |
|            |            |     |         |                                                              | 667 dimensionless               |
| kf_26      | kf_26      |     | 300.000 | $m^3 \cdot mol^{-1} \cdot s^-$                               |                                 |
|            |            |     |         |                                                              | 667 dimensionless               |
| kf_27      | kf_27      |     | 300.000 | $\mathrm{m}^3 \cdot \mathrm{mol}^{-1} \cdot \mathrm{s}^{-1}$ |                                 |
|            |            |     |         |                                                              | 667 dimensionless               |
| kf_28      | kf_28      |     | 6.000   | $s^{-1}$                                                     |                                 |
|            |            |     |         |                                                              | 66667 dimensionle               |
| kf_29      | kf_29      |     | 6.000   | $s^{-1}$                                                     | · 🗹                             |
|            |            |     |         | 0.016666666666                                               | 66667 dimensionle               |
| $kf_3$     | kf_3       |     | 60.000  | $s^{-1}$                                                     | · 🗹                             |
|            |            |     |         |                                                              | 66667 dimensionle               |
| kf_30      | kf_30      |     | 120.000 | $s^{-1}$                                                     |                                 |
|            |            |     |         |                                                              | 66667 dimensionle               |
| kf_31      | kf_31      |     | 120.000 | $s^{-1}$                                                     | · 🗾                             |
|            |            |     |         | 0.016666666666                                               | 66667 dimensionle               |
| kf_32      | kf_32      |     | 0.132   | $s^{-1}$                                                     | · 🗹                             |
|            |            |     | *****   |                                                              | 66667 dimensionle               |
| kf_33      | kf_33      |     | 0.132   | $s^{-1}$                                                     | · 🗸                             |
|            |            |     | J.122   |                                                              | 66667 dimensionle               |
| kf_34      | kf_34      |     | 0.132   | $s^{-1}$                                                     |                                 |
| 11 _O T    | KI_JT      |     | 0.132   | ~                                                            | <b>v</b><br>66667 dimensionle   |
| kf_35      | kf_35      |     | 0.132   | $s^{-1}$                                                     |                                 |
| VT _00     | KI_JJ      |     | 0.132   |                                                              | ·   66667 dimensionle           |
|            |            |     |         | 0.0100000000000                                              | 66667 dimensionle               |

| Id     | Name           | SBO | Value         | Unit                                                         | Constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------|----------------|-----|---------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| kf_36  | kf_36          |     | 0.132         | $s^{-1}$                                                     | · 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        |                |     |               | 0.016666666666                                               | 66667 dimensionle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| kf_37  | kf_37          |     | 0.132         | $s^{-1}$                                                     | . 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        |                |     |               | 0.016666666666                                               | 66667 dimensionle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| kf_38  | kf_38          |     | 0.132         | $s^{-1}$                                                     | · 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        |                |     |               | 0.016666666666                                               | 66667 dimensionle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $kf_4$ | kf_4           |     | 0.038         | $s^{-1}$                                                     | . 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        |                |     |               | 0.016666666666                                               | 66667 dimensionle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| kf_46  | kf_46          |     | 1.800         | $m^3 \cdot mol^{-1} \cdot s^{-1}$                            | <sup>-1</sup> · <b>✓</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        |                |     |               |                                                              | 667 dimensionless                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| kf_47  | kf_47          |     | 1.800         | $m^3 \cdot mol^{-1} \cdot s^{-1}$                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        | RI_I/          |     | 1.000         |                                                              | 667 dimensionless                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| kf_48  | kf_48          |     | 600.000       | $m^3 \cdot mol^{-1} \cdot s^{-1}$                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| KI_IO  | KI_TO          |     | 000.000       |                                                              | لعا<br>667 dimensionless                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| kf_49  | kf_49          |     | 600.000       | $m^3 \cdot mol^{-1} \cdot s^{-1}$                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| KI _43 | KI_T/          |     | 000.000       |                                                              | 667 dimensionless                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| kf 5   | kf_5           |     | 0.038         | $s^{-1}$                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| KI_5   | KI_J           |     | 0.036         |                                                              | · <b>Z</b><br>66667 dimensionle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| kf_50  | kf_50          |     | 600.000       | $m^3 \cdot mol^{-1} \cdot s^{-1}$                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| K1_50  | KI_JU          |     | 000.000       |                                                              | -1 · <b>✓</b><br>667 dimensionless                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1-£ F1 | 1-£ <b>5</b> 1 |     | 0.300         | $s^{-1}$                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| kf_51  | kf_51          |     | 0.300         | 5                                                            | · <b>Z</b><br>66667 dimensionle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1-£ EO | 1.f 50         |     | 0.300         | $s^{-1}$                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| kf_52  | kf_52          |     | 0.300         |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.6.50 | 1.6.52         |     | 0.120         | $s^{-1}$                                                     | 66667 dimensionle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| kf_53  | kf_53          |     | 0.120         | ~                                                            | . 🛮                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1654   | 1.6.54         |     | 0.120         |                                                              | 66667 dimensionle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| kf_54  | kf_54          |     | 0.120         | $s^{-1}$                                                     | . 🗹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        | 1055           |     | 2 000         |                                                              | 66667 dimensionle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| kf_55  | kf_55          |     | 3.000         | $m^3 \cdot mol^{-1} \cdot s^{-1}$                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        | 1.6.7.6        |     | 0.120         |                                                              | 667 dimensionless                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| kf_56  | kf_56          |     | 0.120         | $s^{-1}$                                                     | . <b>\[\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\o</b> |
|        | 1.0.75         |     | 0 00 <b>=</b> |                                                              | 66667 dimensionle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| kf_57  | kf_57          |     | 0.007         | $s^{-1}$                                                     | . 🛮                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        |                |     |               |                                                              | 66667 dimensionle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| kf_6   | kf_6           |     | 0.038         | $s^{-1}$                                                     | . 🛮 🗖                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |                |     |               |                                                              | 66667 dimensionle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| kf_65  | kf_65          |     | 60.000        | $m^3 \cdot mol^{-1} \cdot s^{-1}$                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        |                |     |               |                                                              | 667 dimensionless                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| kf_66  | $kf_{-}66$     |     | 60.000        | $\mathrm{m}^3 \cdot \mathrm{mol}^{-1} \cdot \mathrm{s}^{-1}$ | $^{-1}$ · $oldsymbol{ ot}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        |                |     |               |                                                              | 667 dimensionless                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| kf_67  | $kf_67$        |     | 60.000        | $\mathrm{m}^3\cdot\mathrm{mol}^{-1}\cdot\mathrm{s}^{-1}$     | $lue{oldsymbol{Z}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        |                |     |               | 16.66666666666                                               | 667 dimensionless                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| Id            | Name       | SBO Va | llue  | Unit                 | Constant                                          |
|---------------|------------|--------|-------|----------------------|---------------------------------------------------|
| kf_68         | kf_68      |        | 0.300 | $s^{-1}$             | · 🗸                                               |
|               |            |        |       | 0.01666666           | 666666667 dimensionle                             |
| kf_69         | kf_69      | (      | 0.007 | $s^{-1}$             | · 🗸                                               |
|               |            |        |       | 0.01666666           | 666666667 dimensionle                             |
| $kf_{-}7$     | $kf_{-}7$  | (      | 0.038 | $s^{-1}$             | · 🗹                                               |
|               |            |        |       | 0.01666666           | 666666667 dimensionle                             |
| kf_73         | kf_73      | 3600   | 0.000 | $m^3 \cdot mol^{-1}$ | $\cdot  \mathrm{s}^{-1}  \cdot                  $ |
|               |            |        |       | 16.666666            | 6666667 dimensionless                             |
| kf_74         | $kf_{-}74$ | 3600   | 0.000 | $m^3 \cdot mol^{-1}$ | $\cdot  \mathrm{s}^{-1}  \cdot                  $ |
|               |            |        |       | 16.666666            | 6666667 dimensionless                             |
| kf_75         | $kf_{-}75$ | 3600   | 0.000 | $m^3 \cdot mol^{-1}$ | $\cdot  \mathrm{s}^{-1}  \cdot $                  |
|               |            |        |       | 16.666666            | 6666667 dimensionless                             |
| kf_76         | kf_76      | 9      | 9.000 | $s^{-1}$             | · 🗸                                               |
|               |            |        |       | 0.01666666           | 666666667 dimensionle                             |
| kf_77         | $kf_{-}77$ | 600    | 0.000 | $m^3 \cdot mol^{-1}$ | $\cdot  \mathrm{s}^{-1}  \cdot $                  |
|               |            |        |       | 16.666666            | 6666667 dimensionless                             |
| kf_78         | $kf_{-}78$ | 978    | 8.240 | $m^3 \cdot mol^{-1}$ | $\cdot  \mathrm{s}^{-1}  \cdot $                  |
|               |            |        |       | 16.666666            | 6666667 dimensionless                             |
| kf_79         | kf_79      | 978    | 8.240 | $m^3 \cdot mol^{-1}$ | $\cdot  \mathrm{s}^{-1}  \cdot $                  |
|               |            |        |       | 16.666666            | 6666667 dimensionless                             |
| kf_8          | kf_8       | (      | 0.038 | $s^{-1}$             | · 🗾                                               |
|               |            |        |       | 0.01666666           | 666666667 dimensionle                             |
| kf_80         | kf_80      | 978    | 8.240 | $m^3 \cdot mol^{-1}$ | $\cdot  \mathrm{s}^{-1}  \cdot                  $ |
|               |            |        |       | 16.6666666           | 6666667 dimensionless                             |
| kf_9          | kf_9       | (      | 0.038 | $s^{-1}$             | · 🗹                                               |
|               |            |        |       | 0.01666666           | 666666667 dimensionle                             |
| kf_99         | kf_99      | 9      | 9.000 | $s^{-1}$             | · 🗸                                               |
|               |            |        |       | 0.01666666           | 66666666666666666666666666666666666666            |
| mwdfa3719d-   | kf_18      | 600    | 0.000 | $m^3 \cdot mol^{-1}$ |                                                   |
| _20cc-        |            |        |       |                      | 6666667 dimensionless                             |
| _4f14_b45e-   |            |        |       |                      |                                                   |
| _3f097c3aff65 |            |        |       |                      |                                                   |

# **6 Reactions**

This model contains 157 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

| N₀ | Id  | Name | Reaction Equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SBO                                           |
|----|-----|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 1  | R1  | R1   | mwf82ad06a_b8aa_40fa_a532_a1da44e3425f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2ad06a_b8aa_40fa_a532_a1da44e3                |
|    | 101 |      | mwf82ad06a_b8aa_40fa_a532_a1da44e3425f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |
| 2  | R3  | R3   | $L\_NGFR \xrightarrow{L\_NGFR} pTrkA$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               |
| 3  | R4  | R4   | $pTrkA \xrightarrow{pTrkA} pTrkA\_endo$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               |
| 4  | R5  | R5   | $Shc\_pTrkA \xrightarrow{Shc\_pTrkA} Shc\_pTrkA\_endo$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |
| 5  | R6  | R6   | $pShc\_pTrkA \xrightarrow{pShc\_pTrkA} pShc\_pTrkA\_endo$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                               |
| 6  | R7  | R7   | $Grb2\_SOS\_pShc\_pTrkA \xrightarrow{Grb2\_SOS\_pShc\_pTrkA} Grb2\_SOS\_pShc\_pTrkA G$ | rb2_SOS_pShc_pTrkA_endo                       |
| 7  | R8  | R8   | $FRS2\_pTrkA \xrightarrow{FRS2\_pTrkA} FRS2\_pTrkA\_endo$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                               |
| 8  | R9  | R9   | $pFRS2\_pTrkA \xrightarrow{pFRS2\_pTrkA} pFRS2\_pTrkA\_endo$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |
| 9  | R10 | R10  | Crk_C3G_pFRS2_pTrkA Crk_C3G_pFRS2_pTrkA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Crk_C3G_pFRS2_pTrkA_endo                      |
| 10 | R11 | R11  | $pTrkA\_endo \xrightarrow{pTrkA\_endo} \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               |
| 11 | R12 | R12  | $Shc\_pTrkA\_endo \xrightarrow{Shc\_pTrkA\_endo} Shc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               |
| 12 | R13 | R13  | $pShc\_pTrkA\_endo \xrightarrow{pShc\_pTrkA\_endo} pShc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               |
| 13 | R14 | R14  | Grb2_SOS_pShc_pTrkA_endo Grb2_SOS_pShc_pTr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\xrightarrow{\text{kA\_endo}}$ Grb2_SOS_pShc |
| 14 | R15 | R15  | $FRS2\_pTrkA\_endo \xrightarrow{FRS2\_pTrkA\_endo} FRS2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               |
| 15 | R16 | R16  | pFRS2_pTrkA_endo $\xrightarrow{pFRS2_pTrkA\_endo}$ pFRS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               |
|    |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |

| 24                    |                |     |      |                                                                                               |
|-----------------------|----------------|-----|------|-----------------------------------------------------------------------------------------------|
| 4                     | N <sub>⊙</sub> | Id  | Name | Reaction Equation SBO                                                                         |
|                       | 16             | R17 | R17  |                                                                                               |
|                       | 17             | R18 | R18  | $pTrkA + Shc \xrightarrow{Shc, pTrkA, Shc\_pTrkA} Shc\_pTrkA$                                 |
|                       | 18             | R19 | R19  | $pTrkA + pShc \xrightarrow{pShc, pTrkA, pShc\_pTrkA} pShc\_pTrkA$                             |
|                       | 19             | R20 | R20  | pTrkA+Grb2_SOS_pShc Grb2_SOS_pShc, pTrkA, Grb2_SOS_pShc_pTrkA Grb2_SO                         |
|                       | 20             | R21 | R21  | $pTrkA\_endo + Shc \xrightarrow{Shc, pTrkA\_endo, Shc\_pTrkA\_endo} Shc\_pTrkA\_endo$         |
| 1                     | 21             | R22 | R22  | $pTrkA\_endo + pShc \xrightarrow{pShc, pTrkA\_endo, pShc\_pTrkA\_endo} pShc\_pTrkA\_endo$     |
| Produ                 | 22             | R23 | R23  | pTrkA_endo+Grb2_SOS_pShc Grb2_SOS_pShc, pTrkA_endo, Grb2_SOS_pShc_pTrk                        |
| uced                  | 23             | R24 | R24  | $pTrkA + FRS2 \xrightarrow{FRS2, pTrkA, FRS2\_pTrkA} FRS2\_pTrkA$                             |
| by S                  | 24             | R25 | R25  | $pTrkA + pFRS2 \xrightarrow{pFRS2, pTrkA, pFRS2\_pTrkA} pFRS2\_pTrkA$                         |
| BML                   | 25             | R26 | R26  | $pTrkA\_endo + FRS2 \xrightarrow{FRS2, pTrkA\_endo, FRS2\_pTrkA\_endo} FRS2\_pTrkA\_endo$     |
| Produced by SBML2ATEX | 26             | R27 | R27  | $pTrkA\_endo + pFRS2 \xrightarrow{pFRS2, pTrkA\_endo, pFRS2\_pTrkA\_endo} pFRS2\_pTrkA\_endo$ |
| ×                     | 27             | R28 | R28  | $Shc_pTrkA \xrightarrow{Shc_pTrkA} pShc_pTrkA$                                                |
|                       | 28             | R29 | R29  | $Shc_pTrkA_endo \xrightarrow{Shc_pTrkA_endo} pShc_pTrkA_endo$                                 |
|                       | 29             | R30 | R30  | $FRS2\_pTrkA \xrightarrow{FRS2\_pTrkA} pFRS2\_pTrkA$                                          |
|                       | 30             | R31 | R31  | $FRS2\_pTrkA\_endo \xrightarrow{FRS2\_pTrkA\_endo} pFRS2\_pTrkA\_endo$                        |
|                       | 31             | R32 | R32  | $pTrkA \xrightarrow{pTrkA} \emptyset$                                                         |
|                       | 32             | R33 | R33  | $Shc_pTrkA \xrightarrow{Shc_pTrkA} Shc$                                                       |
|                       | 33             | R34 | R34  | $pShc_pTrkA \xrightarrow{pShc_pTrkA} pShc$                                                    |
|                       | 34             | R35 | R35  | $Grb2\_SOS\_pShc\_pTrkA \xrightarrow{Grb2\_SOS\_pShc\_pTrkA} Grb2\_SOS\_pShc$                 |
|                       |                |     |      |                                                                                               |

| N⁰ | Id  | Name | Reaction Equation                                                                                                                                    | SBO                                                                          |
|----|-----|------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 35 | R36 | R36  | $FRS2\_pTrkA \xrightarrow{FRS2\_pTrkA} FRS2$                                                                                                         |                                                                              |
| 36 | R37 | R37  | pFRS2_pTrkA $\xrightarrow{pFRS2\_pTrkA}$ pFRS2                                                                                                       |                                                                              |
| 37 | R38 | R38  | Crk_C3G_pFRS2_pTrkA Crk_C3G_pFRS2_pTrkA pFRS2                                                                                                        | Crk_C3G+                                                                     |
| 38 | R39 | R39  | $Dok + pTrkA \xrightarrow{pTrkA, Dok} pDok + pTrkA$                                                                                                  |                                                                              |
| 39 | R40 | R40  | $\begin{array}{ccc} Dok & + & Shc\_pTrkA \xrightarrow{Shc\_pTrkA, \ Dok} pDok & + \\ Shc\_pTrkA & & & \end{array}$                                   | -                                                                            |
| 40 | R41 | R41  | $\begin{array}{ccc} Dok & + & pShc\_pTrkA & \xrightarrow{pShc\_pTrkA, \ Dok \\ pShc\_pTrkA & & & & \end{array} + \\ pShc\_pTrkA & & & & \end{array}$ |                                                                              |
| 41 | R42 | R42  | Dok+Grb2_SOS_pShc_pTrkA Grb2_SOS_pShc_pTr<br>Grb2_SOS_pShc_pTrkA                                                                                     | $\xrightarrow{\operatorname{rkA},\ \operatorname{Dok}}\operatorname{pDok} +$ |
| 42 | R43 | R43  | $\begin{array}{ccc} Dok & + & FRS2\_pTrkA & \xrightarrow{FRS2\_pTrkA, \ Dok} & pDok & + \\ FRS2\_pTrkA & & & \end{array}$                            | -                                                                            |
| 43 | R44 | R44  | $\begin{array}{c} Dok + pFRS2\_pTrkA \xrightarrow{pFRS2\_pTrkA, \ Dok} pDok + \\ pFRS2\_pTrkA \end{array}$                                           | -                                                                            |
| 44 | R45 | R45  | Dok+Crk_C3G_pFRS2_pTrkA Crk_C3G_pFRS2_p Crk_C3G_pFRS2_pTrkA                                                                                          | $\xrightarrow{\text{TrkA, Dok}} \text{pDok} +$                               |
| 45 | R46 | R46  | $Grb2 + SOS \xrightarrow{Grb2, SOS, Grb2\_SOS} Grb2\_SOS$                                                                                            |                                                                              |
| 46 | R47 | R47  | $Grb2+pSOS \xrightarrow{Grb2, pSOS, Grb2-pSOS} Grb2-pSOS$                                                                                            | S                                                                            |
| 47 | R48 | R48  | $Grb2\_SOS + pShc$ $\frac{Grb2\_SOS, pShc, Grb2\_SOS\_pShc}{}$                                                                                       | $\xrightarrow{nc}$ Grb2_SOS_pShc                                             |
| 48 | R49 | R49  | pShc_pTrkA+Grb2_SOS Grb2_SOS, pShc_pTrkA,                                                                                                            | Grb2_SOS_pShc_p7                                                             |
|    |     |      |                                                                                                                                                      |                                                                              |

| 26                      | No         | Id     | Name | Reaction Equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SBO                                                          |
|-------------------------|------------|--------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
|                         | 49         | R50    | R50  | pShc_pTrkA_endo +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              |
|                         |            |        |      | Grb2_SOS Grb2_SOS, pShc_pTrkA_endo, Grb2_SO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{\text{S_pShc_pTrkA_endo}}{\text{Grb2\_SOS\_p}}$       |
|                         | 50         | R51    | R51  | $pShc \xrightarrow{pShc} Shc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              |
|                         | 51         | R52    | R52  | $Grb2\_SOS\_pShc \xrightarrow{Grb2\_SOS\_pShc} Shc + Grb2\_SOS$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |
|                         | 52         | R53    | R53  | $pSOS \xrightarrow{pSOS} SOS$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              |
|                         | 53         | R54    | R54  | $Grb2\_pSOS \xrightarrow{Grb2\_pSOS} Grb2\_SOS$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |
| _                       | 54         | R55    | R55  | $pDok + RasGAP \xrightarrow{pDok, RasGAP, pDok\_RasGAP} pl$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dok_RasGAP                                                   |
| Prodi                   | 55         | R56    | R56  | $pDok \xrightarrow{pDok, Dok} Dok$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              |
| uced                    | 56         | R57    | R57  | $Ras\_GTP \xrightarrow{Ras\_GTP} Ras\_GDP$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              |
| Produced by SBML2leTEX  | 57         | R58    | R58  | Ras_GDP+Grb2_SOS_pShc_pTrkA Grb2_SOS_pSh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\xrightarrow{\text{ic\_pTrkA}, Ras\_GDP} Ras\_GTP +$        |
| <u>₹</u>                |            |        |      | Grb2_SOS_pShc_pTrkA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |
|                         | 58         | R59    | R59  | $SOS + dppERKcyt \xrightarrow{dppERKcyt, SOS} pSOS +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                            |
| $\overline{\mathbb{R}}$ | 50         | D.C.O. | DZO  | dppERKcyt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              |
|                         | 59         | R60    | R60  | Grb2_SOS_pShc +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                                            |
|                         |            |        |      | dppERKcyt dppERKcyt, Grb2_SOS_pShc Grb2_pSc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OS+                                                          |
|                         |            |        |      | pShc + dppERKcyt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                            |
|                         | 60         | R61    | R61  | $Grb2\_SOS + dppERKcyt \xrightarrow{dppERKcyt, Grb2\_SOS} Grb2\_SOS + dppERKcyt + dppERKcyt$ | trh2 nSOS+                                                   |
|                         | 00         | 1101   | KUI  | dppERKcyt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 102_psO5                                                     |
|                         | <i>C</i> 1 |        | 7.0  | Ras_GTP+pDok_RasGAP pDok_RasGAP, Ras_GT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AP                                                           |
|                         | 61         | R62    | R62  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\rightarrow$ Ras_GDP+                                       |
|                         |            |        |      | pDok_RasGAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D Def Dec CTD                                                |
|                         | 62         | R63    | R63  | B_Raf_Ras_GTP+pDok_RasGAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\xrightarrow{3 \text{-Raf}_{Ras}_{GDP}} \text{Ras}_{GDP} +$ |
|                         |            |        |      | $B_Raf + pDok_RasGAP$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | l                                                            |
|                         |            |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |

| N⁰ | Id  | Name  | Reaction Equation                                                                  | SBO                                                                                        |
|----|-----|-------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| 63 | R64 | R64   | c_Raf_Ras_GTP+pDok_RasGAP pDok_Ras                                                 | $GAP, c\_Raf\_Ras\_GTP$ $Ras\_GDP+$                                                        |
|    |     | 7.4   | c_Raf + pDok_RasGAP  Crk + C3G C3G, Crk, Crk_C3G Crk_C3G                           |                                                                                            |
| 64 | R65 | R65   | $Crk + C3G \xrightarrow{\qquad} Crk \_C3G$                                         |                                                                                            |
| 65 | R66 | R66   | pFRS2_pTrkA+Crk_C3G Crk_C3G, pFRS2                                                 | $\xrightarrow{\text{2-p1rkA}, \text{Crk}\_\text{C3G\_pFRS2\_p1rkA}} \text{Crk}\_\text{C3}$ |
| 66 | R67 | R67   | pFRS2_pTrkA_endo                                                                   | +                                                                                          |
|    |     |       | Crk_C3G Crk_C3G, pFRS2_pTrkA_endo, C                                               | $rk\_C3G\_pFRS2\_pTrkA\_endo$ $Crk\_C3G\_pF$                                               |
| 67 | R68 | R68   | $pFRS2 \xrightarrow{pFRS2} FRS2$                                                   |                                                                                            |
| 68 | R69 | R69   | $Rap1\_GTP \xrightarrow{Rap1\_GTP} Rap1\_GDP$                                      |                                                                                            |
| 69 | R70 | R70   | Rap1_GDP+Crk_C3G_pFRS2_pTrkA_endo                                                  | Crk_C3G_pFRS2_pTrkA_endo, Rap1_GD                                                          |
| 0, |     | 21, 0 | Crk_C3G_pFRS2_pTrkA_endo                                                           |                                                                                            |
| 70 | R71 | R71   | $Rap1\_GTP \xrightarrow{Rap1\_GTP} Rap1\_GDP$                                      |                                                                                            |
| 71 | R72 | R72   | $B_Raf_Rap1_GTP \xrightarrow{B_Raf_Rap1_GTP} B_Raf$                                | +                                                                                          |
|    |     |       | Rap1_GDP                                                                           |                                                                                            |
| 72 | R73 | R73   | Ras_GTP+c_Raf c_Raf, Ras_GTP, c_Raf_R                                              | as_GTP<br>c_Raf_Ras_GTP                                                                    |
| 73 | R74 | R74   | $Ras\_GTP + B\_Raf = \frac{B\_Raf, Ras\_GTP, B\_Raf\_B\_Raf}{B\_Raf}$              | $\xrightarrow{\text{Ras\_GTP}} \text{B\_Raf\_Ras\_GTP}$                                    |
| 74 | R75 | R75   | $B_Raf + Rap1_GTP = \frac{B_Raf, Rap1_GTP, B_R}{B_Raf}$                            |                                                                                            |
| 75 | R76 | R76   | $ppMEKcyt\_ERKcyt \xrightarrow{ppMEKcyt\_ERKcyt} pp$                               | MEKcyt+                                                                                    |
|    |     |       | ppERKcyt                                                                           |                                                                                            |
| 76 | R77 | R77   | $2 \text{ ppERKcyt} \xrightarrow{\text{ppERKcyt}, \text{ dppERKcyt}} \text{dppER}$ | Kcyt                                                                                       |
| 77 | R78 | R78   | MEKcyt+ERKcyt MEKcyt, ERKcyt, MEK                                                  |                                                                                            |
| 78 | R79 | R79   | ERKcyt+pMEKcyt pMEKcyt, ERKcyt, pM                                                 | $\xrightarrow{\text{IEKcyt\_ERKcyt}} \text{pMEKcyt\_ERKcyt}$                               |
|    |     |       |                                                                                    |                                                                                            |

| 28                   | No | Id  | Name | Reaction Equation                                                                                               | SBO                                                     |
|----------------------|----|-----|------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| •                    | 79 | R80 | R80  | ppMEKcyt+ERKcyt ppMEKcyt, ERKcyt, ppMEKc                                                                        | yt_ERKcyt<br>→ ppMEKcyt_ERKcyt                          |
|                      | 80 | R81 | R81  | MEKcyt+c_Raf_Ras_GTP                                                                                            | pMEKcyt+                                                |
|                      | 81 | R82 | R82  | pMEKcyt+c_Raf_Ras_GTP                                                                                           | $\stackrel{\mathrm{cyt}}{\longrightarrow}$ ppMEKcyt $+$ |
|                      | 82 | R83 | R83  | MEKcyt_ERKcyt +                                                                                                 |                                                         |
| Produced by SML⊉ATEX | 83 | R84 | R84  | c_Raf_Ras_GTP                                                                                                   | , ,                                                     |
| by SBMI              | 84 | R85 | R85  | MEKcyt+B_Raf_Ras_GTP B_Raf_Ras_GTP, MEKcytB_Raf_Ras_GTP                                                         | yt<br>→ pMEKcyt+                                        |
| ZATEX                | 85 | R86 | R86  | pMEKcyt+B_Raf_Ras_GTP B_Raf_Ras_GTP, pMER<br>B_Raf_Ras_GTP                                                      | $\xrightarrow{\text{Kcyt}}$ ppMEKcyt+                   |
|                      | 86 | R87 | R87  | MEKcyt_ERKcyt +                                                                                                 |                                                         |
|                      | 87 | R88 | R88  | B_Raf_Ras_GTP  B_Raf_Ras_GTP  pMEKcyt_ERKcyt  +  B_Raf_Ras_GTP, MEKcyt_ERKcyt  +  B_Raf_Ras_GTP, pMEKcyt_ERKcyt |                                                         |
|                      | 88 | R89 | R89  | B_Raf_Ras_GTP  MEKcyt+B_Raf_Rap1_GTP  B_Raf_Rap1_GTP                                                            | $\xrightarrow{\text{Kcyt}} \text{pMEKcyt} +$            |

| 20          | N₀  | Id   | Name | Reaction Equation                                          | SBO       |
|-------------|-----|------|------|------------------------------------------------------------|-----------|
|             | 104 | R105 | R105 | ppMEKnuc ppMEKnuc pMEKnuc                                  |           |
|             | 105 | R106 | R106 | pMEKnuc_ERKnuc                                             |           |
|             | 106 | R107 | R107 | ppMEKnuc_ERKnuc ppMEKnuc_ERKnuc pMEKnuc                    | uc_ERKnuc |
|             | 107 | R108 | R108 | $ppERKnuc \xrightarrow{ppERKnuc} ERKnuc$                   |           |
|             | 108 | R109 | R109 | $dppERKnuc \xrightarrow{dppERKnuc} ppERKnuc + ERKnuc$      |           |
|             | 109 | R110 | R110 | $pMEKcyt \xrightarrow{pMEKcyt} \emptyset$                  |           |
| J           | 110 | R111 | R111 | $pMEKcyt \xrightarrow{pMEKcyt} pMEKnuc + pMEKcyt$          |           |
| 4           | 111 | R112 | R112 | $pMEKnuc \xrightarrow{pMEKnuc} pMEKcyt + pMEKnuc$          |           |
| 4.          | 112 | R113 | R113 | pMEKnuc $\xrightarrow{\text{pMEKnuc}} \emptyset$           |           |
|             | 113 | R114 | R114 | $MEKcyt\_ERKcyt \xrightarrow{MEKcyt\_ERKcyt} \emptyset$    |           |
| :<br>:<br>: | 114 | R115 | R115 | MEKcyt_ERKcyt MEKnuc_ERKr                                  | nuc+      |
| ,           | 115 | R116 | R116 | MEKcyt_ERKcyt  MEKnuc_ERKnuc  MEKnuc_ERKnuc  MEKnuc_ERKnuc | ζcyt+     |
|             | 116 | R117 | R117 | $MEKnuc\_ERKnuc \xrightarrow{MEKnuc\_ERKnuc} \emptyset$    |           |
|             | 117 | R118 | R118 | $ERKcyt \xrightarrow{ERKcyt} \emptyset$                    |           |
|             | 118 | R119 | R119 | $ERKcyt \xrightarrow{ERKcyt} ERKnuc + ERKcyt$              |           |
|             | 119 | R120 | R120 | $ERKnuc \xrightarrow{ERKnuc} ERKcyt + ERKnuc$              |           |
|             | 120 | R121 | R121 | $ERKnuc \xrightarrow{ERKnuc} \emptyset$                    |           |
|             | 121 | R122 | R122 | $MEKcyt \xrightarrow{MEKcyt} \emptyset$                    |           |

| N⁰  | Id   | Name | Reaction Equation SBO                                                                                                            |      |
|-----|------|------|----------------------------------------------------------------------------------------------------------------------------------|------|
| 122 | R123 | R123 | $MEKcyt \xrightarrow{MEKcyt} MEKnuc + MEKcyt$                                                                                    |      |
|     |      |      | $MEKnuc \xrightarrow{MEKnuc} MEKcyt + MEKnuc$                                                                                    |      |
| 123 | R124 | R124 |                                                                                                                                  |      |
| 124 | R125 | R125 | $MEKnuc \xrightarrow{MEKnuc} \emptyset$                                                                                          |      |
| 125 | R126 | R126 | $ppERKcyt \xrightarrow{ppERKcyt} \emptyset$                                                                                      |      |
| 126 | R127 | R127 | $ppERKcyt \xrightarrow{ppERKcyt} ppERKnuc + ppERKcyt$                                                                            |      |
| 127 | R128 | R128 | $ppERKnuc \xrightarrow{ppERKnuc} ppERKcyt + ppERKnuc$                                                                            |      |
| 128 | R129 | R129 | $ppERKnuc \xrightarrow{ppERKnuc} \emptyset$                                                                                      |      |
| 129 | R130 | R130 | $ppMEKcyt \xrightarrow{ppMEKcyt} \emptyset$                                                                                      |      |
| 130 | R131 | R131 | $ppMEKcyt \xrightarrow{ppMEKcyt} ppMEKnuc + ppMEKcyt$                                                                            |      |
| 131 | R132 | R132 | $ppMEKnuc \xrightarrow{ppMEKnuc} ppMEKcyt + ppMEKnuc$                                                                            |      |
| 132 | R133 | R133 | $ppMEKnuc \xrightarrow{ppMEKnuc} \emptyset$                                                                                      |      |
| 133 | R134 | R134 | $ppMEKcyt\_ERKcyt \xrightarrow{ppMEKcyt\_ERKcyt} \emptyset$                                                                      |      |
| 134 | R135 | R135 | ppMEKcyt_ERKcyt ppMEKcyt_ERKcyt ppMEKnuc_ERKnu                                                                                   | uc+  |
|     |      |      | ppMEKcyt_ERKcyt                                                                                                                  |      |
| 135 | R136 | R136 | ppMEKnuc_ERKnuc ppMEKnuc_ERKnuc ppMEKcyt_ERK                                                                                     | cyt+ |
|     |      |      | ppMEKnuc_ERKnuc                                                                                                                  | •    |
| 136 | R137 | R137 | ppMEKnuc_ERKnuc $\xrightarrow{ppMEKnuc\_ERKnuc} \emptyset$                                                                       |      |
| 137 | R138 | R138 | $dppERKcyt \xrightarrow{dppERKcyt} \emptyset$                                                                                    |      |
| 138 | R139 | R139 | $dppERKcyt \xrightarrow{dppERKcyt} dppERKnuc + dppERKcyt$                                                                        |      |
| 139 | R140 | R140 | $ \frac{\text{dppERKnuc}}{\text{dppERKnuc}} \xrightarrow{\text{dppERKcyt}} + \\ \frac{\text{dppERKnuc}}{\text{dppERKnuc}} + \\ $ |      |
|     |      |      |                                                                                                                                  |      |

| N⁰         | Id                                                    | Name       | Reaction Equation                                                                | SBO                        |
|------------|-------------------------------------------------------|------------|----------------------------------------------------------------------------------|----------------------------|
| 140        | R141                                                  | R141       | $dppERKnuc \xrightarrow{dppERKnuc} \emptyset$                                    |                            |
| 141        | R142                                                  | R142       | $pMEKcyt\_ERKcyt \xrightarrow{pMEKcyt\_ERKcyt} \emptyset$                        |                            |
| 142        | R143                                                  | R143       | $pMEKcyt\_ERKcyt \xrightarrow{pMEKcyt\_ERKcyt} pMEK$ $pMEKcyt\_ERKcyt$           | nuc_ERKnuc+                |
| 143        | R144                                                  | R144       | pMEKnuc_ERKnuc                                                                   | EKcyt_ERKcyt+              |
| 144        | R145                                                  | R145       | pMEKnuc_ERKnuc pMEKnuc_ERKnuc Ø                                                  |                            |
| 145        | mwe8ee00ff-<br>_3d59-<br>_44d5_8d7f-<br>_a2074823f29d | reaction_1 | mw4478fbeb_51b1_4764_92ad_a86d314ae0eb                                           |                            |
| 145<br>146 | mw711542fd-<br>_b235-<br>_40f7_9782-<br>_f78eb654d773 | reaction_2 | mw29fa4e00_a430_4f11_b62e_1bcbc0a767a0                                           | mw29fa4e00_a430_4f11       |
| 147        | mwc7ff2b7b-<br>_e2c9-<br>_4420_87bc-<br>_f285d98de30b | reaction_3 | mwe979ec8f_a55c_470c_a554_9fa8013eab74<br>mw29fa4e00_a430_4f11_b62e_1bcbc0a767a0 | +<br>mwe979ec8f_a55c_470c  |
| 148        | mw02775189-<br>_5c04-<br>_4c2f_a5f4-                  | reaction_4 | mw29fa4e00_a430_4f11_b62e_1bcbc0a767a0<br>mwe599c4c1_2d8e_446c_bf3f_4c97baced8a9 | +<br>mw29fa4e00_a430_4f11_ |

\_2f15723e1ece

| N⁰  | Id                                                    | Name                    | Reaction Equation                        | SBO               |                        |
|-----|-------------------------------------------------------|-------------------------|------------------------------------------|-------------------|------------------------|
| 149 | mwfb02ea2a-<br>_1f06-<br>_4f8f_80a0-<br>_721149f213ff | reaction_5              | mwe599c4c1_2d8e_446c_bf3f_4c97baced8a9   |                   |                        |
| 150 | mw12b652db-<br>_d0da-<br>_4723_b160-<br>_001fa36f9190 | reaction_6              | mw89ebbe2d_1ec2_457a_9367_6c5e86a1a924   |                   |                        |
| 151 | mwffc6fab3-<br>_9f90-<br>_4da4_bf71-<br>_214b9b723899 | reaction_7              | mw89ebbe2d_1ec2_457a_9367_6c5e86a1a924   | mw89ebbe2d_1ec2_4 | 157a_9367_6c5e86       |
| 152 | mwf371eb20-<br>_7bda-<br>_4140_9a43-<br>_dfad70900057 | reaction_8              | mw6782adfa_29ee_41a8_acbb_4c86c6c81596 = | mw6782adfa_29ee_4 | <u>a8_acbb_4c86c6c</u> |
| 153 | mw8105f0dc-<br>_19ad-<br>_4f7a_80df-<br>_3f84de216c42 | Intercomp mass transfer | NGFR                                     |                   |                        |
| 154 | mw9da48a51-<br>_bbd0-<br>_4395_9883-<br>_8441d8153b00 | reaction_9              | L_NGFR+mwd4cc05d6_6e19_4e2e_b540_459     | 54f2df4f0 L_NGFR, | mwd4cc05d6_6e1         |

| N⁰  | Id                                                    | Name        | Reaction Equation                                                                    | SBO                           |
|-----|-------------------------------------------------------|-------------|--------------------------------------------------------------------------------------|-------------------------------|
| 155 | mwc467edb6-<br>_a255-<br>_45d6_8014-<br>_33bd0209b36f | reaction_10 | mwd4cc05d6_6e19_4e2e_b540_45954f2df4f0 + mwd4cc05d6_6e19_4e2e_b540_45954f2df4f0 NGFR |                               |
| 156 | mwe4f77287-<br>_e0fe-<br>_47f7_a74e-<br>_312151e578a4 | reaction_14 | mw5afa8250_0cf0_40a2_a97a_f7cf20a9cfbd                                               |                               |
| 157 | mw4f0ee780-<br>_12f5-<br>_436d_a227-<br>_c5e7cd420259 | reaction_15 | mwe009ad7f_90fd_4186_8855_77780724ddb8                                               | 009ad7f_90fd_4186_8855_777807 |

## **6.1 Reaction R1**

This is a fast reversible reaction of one reactant forming two products influenced by two modifiers.

## Name R1

## **Reaction equation**

$$mwf82ad06a\_b8aa\_40fa\_a532\_a1da44e3425f \xrightarrow{mwf82ad06a\_b8aa\_40fa\_a532\_a1da44e3425f, \ NGFR} NGFR + mwf82ad06a\_b8aa\_40fa\_a532\_a1da44e3425f \xrightarrow{mwf82ad06a\_b8aa\_40fa\_a532\_a1da44e3425f, \ NGFR} (1)$$

## Reactant

Table 6: Properties of each reactant.

| Id                                     | Name     | SBO |
|----------------------------------------|----------|-----|
| mwf82ad06a_b8aa_40fa_a532_a1da44e3425f | pro_TrkA |     |

## **Modifiers**

Table 7: Properties of each modifier.

| Id                                             | Name             | SBO |
|------------------------------------------------|------------------|-----|
| mwf82ad06a_b8aa_40fa_a532_a1da44e3425f<br>NGFR | pro_TrkA<br>NGFR |     |

## **Products**

Table 8: Properties of each product.

| Id                                     | Name     | SBO |
|----------------------------------------|----------|-----|
| NGFR                                   | NGFR     |     |
| mwf82ad06a_b8aa_40fa_a532_a1da44e3425f | pro_TrkA |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_1 = kf_1 \cdot [mwf82ad06a_b8aa_40fa_a532_a1da44e3425f] - kb_1 \cdot [NGFR]$$
 (2)

## 6.2 Reaction R3

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

Name R3

## **Reaction equation**

$$L\_NGFR \xrightarrow{L\_NGFR} pTrkA$$
 (3)

#### Reactant

Table 9: Properties of each reactant.

| Id       | Name   | SBO |
|----------|--------|-----|
| $L_NGFR$ | L_NGFR |     |

## **Modifier**

Table 10: Properties of each modifier.

| Id     | Name   | SBO |
|--------|--------|-----|
| L_NGFR | L_NGFR |     |

## **Product**

Table 11: Properties of each product.

| Id    | Name  | SBO |
|-------|-------|-----|
| pTrkA | pTrkA |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_2 = \text{kf}.3 \cdot [\text{L\_NGFR}] \tag{4}$$

## 6.3 Reaction R4

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

Name R4

# **Reaction equation**

$$pTrkA \xrightarrow{pTrkA} pTrkA\_endo$$
 (5)

## Reactant

Table 12: Properties of each reactant.

| Id    | Name  | SBO |
|-------|-------|-----|
| pTrkA | pTrkA |     |

## **Modifier**

Table 13: Properties of each modifier.

| Id    | Name  | SBO |
|-------|-------|-----|
| pTrkA | pTrkA |     |

## **Product**

Table 14: Properties of each product.

| Id         | Name       | SBO |
|------------|------------|-----|
| pTrkA_endo | pTrkA_endo |     |

# **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_3 = kf_4 \cdot [pTrkA] \tag{6}$$

# **6.4 Reaction R5**

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

# Name R5

# **Reaction equation**

$$Shc\_pTrkA \xrightarrow{Shc\_pTrkA} Shc\_pTrkA\_endo$$
 (7)

## Reactant

Table 15: Properties of each reactant.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| Shc_pTrkA | Shc_pTrkA |     |

## **Modifier**

Table 16: Properties of each modifier.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| Shc_pTrkA | Shc_pTrkA |     |

## **Product**

Table 17: Properties of each product.

| Id             | Name           | SBO |
|----------------|----------------|-----|
| Shc_pTrkA_endo | Shc_pTrkA_endo |     |

# **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \ mol \cdot m^{-3}$ 

$$v_4 = kf_5 \cdot [Shc_pTrkA]$$
 (8)

## 6.5 Reaction R6

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

#### Name R6

# **Reaction equation**

$$pShc\_pTrkA \xrightarrow{pShc\_pTrkA} pShc\_pTrkA\_endo \tag{9}$$

Table 18: Properties of each reactant.

| Id         | Name       | SBO |
|------------|------------|-----|
| pShc_pTrkA | pShc_pTrkA |     |

Table 19: Properties of each modifier.

| Id         | Name       | SBO |
|------------|------------|-----|
| pShc_pTrkA | pShc_pTrkA |     |

# **Product**

Table 20: Properties of each product.

| Id              | Name            | SBO |
|-----------------|-----------------|-----|
| pShc_pTrkA_endo | pShc_pTrkA_endo |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \ mol \cdot m^{-3}$ 

$$v_5 = kf_-6 \cdot [pShc_-pTrkA]$$
 (10)

# **6.6 Reaction R7**

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

## Name R7

# **Reaction equation**

$$Grb2\_SOS\_pShc\_pTrkA \xrightarrow{Grb2\_SOS\_pShc\_pTrkA} Grb2\_SOS\_pShc\_pTrkA\_endo \qquad (11)$$

Table 21: Properties of each reactant.

| Id                  | Name                | SBO |
|---------------------|---------------------|-----|
| Grb2_SOS_pShc_pTrkA | Grb2_SOS_pShc_pTrkA |     |

Table 22: Properties of each modifier.

| Id                  | Name                | SBO |
|---------------------|---------------------|-----|
| Grb2_SOS_pShc_pTrkA | Grb2_SOS_pShc_pTrkA |     |

# **Product**

Table 23: Properties of each product.

| Id                       | Name                     | SBO |
|--------------------------|--------------------------|-----|
| Grb2_SOS_pShc_pTrkA_endo | Grb2_SOS_pShc_pTrkA_endo |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \ mol \cdot m^{-3}$ 

$$v_6 = kf_-7 \cdot [Grb2\_SOS\_pShc\_pTrkA]$$
 (12)

# 6.7 Reaction R8

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

## Name R8

# **Reaction equation**

$$FRS2\_pTrkA \xrightarrow{FRS2\_pTrkA} FRS2\_pTrkA\_endo$$
 (13)

Table 24: Properties of each reactant.

| Table 24. I Toperties of each reactant. |            |     |
|-----------------------------------------|------------|-----|
| Id                                      | Name       | SBO |
| FRS2_pTrkA                              | FRS2_pTrkA |     |

Table 25: Properties of each modifier.

| Id         | Name       | SBO |
|------------|------------|-----|
| FRS2_pTrkA | FRS2_pTrkA |     |

# **Product**

Table 26: Properties of each product.

| Id              | Name            | SBO |
|-----------------|-----------------|-----|
| FRS2_pTrkA_endo | FRS2_pTrkA_endo |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \ mol \cdot m^{-3}$ 

$$v_7 = kf_-8 \cdot [FRS2\_pTrkA] \tag{14}$$

# **6.8 Reaction R9**

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

## Name R9

# **Reaction equation**

$$pFRS2\_pTrkA \xrightarrow{pFRS2\_pTrkA} pFRS2\_pTrkA\_endo \tag{15}$$

Table 27: Properties of each reactant.

| Id          | Name        | SBO |
|-------------|-------------|-----|
| pFRS2_pTrkA | pFRS2_pTrkA |     |

Table 28: Properties of each modifier.

| Id          | Name        | SBO |
|-------------|-------------|-----|
| pFRS2_pTrkA | pFRS2_pTrkA |     |

# **Product**

Table 29: Properties of each product.

| Id               | Name             | SBO |
|------------------|------------------|-----|
| pFRS2_pTrkA_endo | pFRS2_pTrkA_endo |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \ mol \cdot m^{-3}$ 

$$v_8 = kf_-9 \cdot [pFRS2\_pTrkA] \tag{16}$$

# 6.9 Reaction R10

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

## Name R10

# **Reaction equation**

$$Crk\_C3G\_pFRS2\_pTrkA \xrightarrow{Crk\_C3G\_pFRS2\_pTrkA} Crk\_C3G\_pFRS2\_pTrkA\_endo \qquad (17)$$

Table 30: Properties of each reactant.

| Id                  | Name                | SBO |
|---------------------|---------------------|-----|
| Crk_C3G_pFRS2_pTrkA | Crk_C3G_pFRS2_pTrkA |     |

Table 31: Properties of each modifier.

| Id                  | Name                | SBO |
|---------------------|---------------------|-----|
| Crk_C3G_pFRS2_pTrkA | Crk_C3G_pFRS2_pTrkA |     |

# **Product**

Table 32: Properties of each product.

| Id                       | Name                     | SBO |
|--------------------------|--------------------------|-----|
| Crk_C3G_pFRS2_pTrkA_endo | Crk_C3G_pFRS2_pTrkA_endo |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \ mol \cdot m^{-3}$ 

$$v_9 = kf_1 \cdot [Crk_C \cdot G_p FRS_2 \cdot p TrkA]$$
(18)

# 6.10 Reaction R11

This is a fast irreversible reaction of one reactant forming no product influenced by one modifier.

## Name R11

# **Reaction equation**

$$pTrkA\_endo \xrightarrow{pTrkA\_endo} \emptyset$$
 (19)

Table 33: Properties of each reactant.

| Id         | Name       | SBO |
|------------|------------|-----|
| pTrkA_endo | pTrkA_endo |     |

Table 34: Properties of each modifier.

| Id         | Name       | SBO |
|------------|------------|-----|
| pTrkA_endo | pTrkA_endo |     |

## **Kinetic Law**

Derived unit  $\,s^{-1}\cdot 10^{-6}\;mol\cdot m^{-3}$ 

$$v_{10} = kf_{-}11 \cdot [pTrkA\_endo]$$
 (20)

## 6.11 Reaction R12

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

#### Name R12

# **Reaction equation**

$$Shc\_pTrkA\_endo \xrightarrow{Shc\_pTrkA\_endo} Shc$$
 (21)

# Reactant

Table 35: Properties of each reactant.

| Id             | Name           | SBO |
|----------------|----------------|-----|
| Shc_pTrkA_endo | Shc_pTrkA_endo |     |

# **Modifier**

Table 36: Properties of each modifier.

| Id             | Name           | SBO |
|----------------|----------------|-----|
| Shc_pTrkA_endo | Shc_pTrkA_endo |     |

Table 37: Properties of each product.

| Id  | Name | SBO |
|-----|------|-----|
| Shc | Shc  |     |

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{11} = kf_{-}12 \cdot [Shc_{-}pTrkA_{-}endo]$$
 (22)

## 6.12 Reaction R13

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

## Name R13

## **Reaction equation**

$$pShc\_pTrkA\_endo \xrightarrow{pShc\_pTrkA\_endo} pShc$$
 (23)

#### Reactant

Table 38: Properties of each reactant.

| Id              | Name            | SBO |
|-----------------|-----------------|-----|
| pShc_pTrkA_endo | pShc_pTrkA_endo |     |

## **Modifier**

Table 39: Properties of each modifier.

| Id              | Name            | SBO |
|-----------------|-----------------|-----|
| pShc_pTrkA_endo | pShc_pTrkA_endo |     |

Table 40: Properties of each product.

| Id   | Name | SBO |
|------|------|-----|
| pShc | pShc |     |

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{12} = kf_{-}13 \cdot [pShc_{-}pTrkA_{-}endo]$$
 (24)

## 6.13 Reaction R14

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

#### Name R14

## **Reaction equation**

$$Grb2\_SOS\_pShc\_pTrkA\_endo \xrightarrow{Grb2\_SOS\_pShc\_pTrkA\_endo} Grb2\_SOS\_pShc \qquad (25)$$

## Reactant

Table 41: Properties of each reactant.

| Table 11. Hoperites of each feacture. |                          |     |
|---------------------------------------|--------------------------|-----|
| Id                                    | Name                     | SBO |
| Grb2_SOS_pShc_pTrkA_endo              | Grb2_SOS_pShc_pTrkA_endo |     |

## **Modifier**

Table 42: Properties of each modifier.

| Id                       | Name                     | SBO |
|--------------------------|--------------------------|-----|
| Grb2_SOS_pShc_pTrkA_endo | Grb2_SOS_pShc_pTrkA_endo |     |

Table 43: Properties of each product

| Id            | Name          | SBO |
|---------------|---------------|-----|
| Grb2_SOS_pShc | Grb2_SOS_pShc |     |

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{13} = \text{kf}_{-}14 \cdot [\text{Grb2}_{-}\text{SOS}_{-}\text{pShc}_{-}\text{pTrkA}_{-}\text{endo}]$$
 (26)

## 6.14 Reaction R15

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

## Name R15

# **Reaction equation**

$$FRS2\_pTrkA\_endo \xrightarrow{FRS2\_pTrkA\_endo} FRS2$$
 FRS2 (27)

#### Reactant

Table 44: Properties of each reactant.

| Id              | Name            | SBO |
|-----------------|-----------------|-----|
| FRS2_pTrkA_endo | FRS2_pTrkA_endo |     |

## **Modifier**

Table 45: Properties of each modifier.

| Id              | Name            | SBO |
|-----------------|-----------------|-----|
| FRS2_pTrkA_endo | FRS2_pTrkA_endo |     |

Table 46: Properties of each product.

| Id   | Name | SBO |
|------|------|-----|
| FRS2 | FRS2 |     |

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{14} = kf_{-}15 \cdot [FRS2\_pTrkA\_endo]$$
 (28)

## 6.15 Reaction R16

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

## Name R16

## **Reaction equation**

pFRS2\_pTrkA\_endo 
$$\xrightarrow{pFRS2_pTrkA\_endo}$$
 pFRS2 (29)

#### Reactant

Table 47: Properties of each reactant.

| Table 17.11operates of cach reactain. |                  |     |
|---------------------------------------|------------------|-----|
| Id                                    | Name             | SBO |
| pFRS2_pTrkA_endo                      | pFRS2_pTrkA_endo |     |

## **Modifier**

Table 48: Properties of each modifier.

| Id               | Name             | SBO |
|------------------|------------------|-----|
| pFRS2_pTrkA_endo | pFRS2_pTrkA_endo |     |

Table 49: Properties of each product.

| Id    | Name  | SBO |
|-------|-------|-----|
| pFRS2 | pFRS2 |     |

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{15} = kf_{-}16 \cdot [pFRS2\_pTrkA\_endo]$$
 (30)

## 6.16 Reaction R17

This is a fast irreversible reaction of one reactant forming two products influenced by one modifier.

#### Name R17

# **Reaction equation**

$$Crk\_C3G\_pFRS2\_pTrkA\_endo \xrightarrow{Crk\_C3G\_pFRS2\_pTrkA\_endo} Crk\_C3G+pFRS2 \qquad (31)$$

## Reactant

Table 50: Properties of each reactant

| Id                       | Name                     | SBO |  |
|--------------------------|--------------------------|-----|--|
| Crk_C3G_pFRS2_pTrkA_endo | Crk_C3G_pFRS2_pTrkA_endo |     |  |

## **Modifier**

Table 51: Properties of each modifier.

| Id                       | Name                     | SBO |
|--------------------------|--------------------------|-----|
| Crk_C3G_pFRS2_pTrkA_endo | Crk_C3G_pFRS2_pTrkA_endo |     |

Table 52: Properties of each product.

| Id      | Name    | SBO |
|---------|---------|-----|
| Crk_C3G | Crk_C3G |     |
| pFRS2   | pFRS2   |     |

Derived unit  $s^{-1} \cdot 10^{-6} \ mol \cdot m^{-3}$ 

$$v_{16} = kf_{-}17 \cdot [Crk_{-}C3G_{-}pFRS2_{-}pTrkA_{-}endo]$$
 (32)

## 6.17 Reaction R18

This is a fast irreversible reaction of two reactants forming one product influenced by three modifiers.

#### Name R18

# **Reaction equation**

$$pTrkA + Shc \xrightarrow{Shc, pTrkA, Shc\_pTrkA} Shc\_pTrkA$$
 (33)

## **Reactants**

Table 53: Properties of each reactant.

| Id           | Name         | SBO |
|--------------|--------------|-----|
| pTrkA<br>Shc | pTrkA<br>Shc |     |

# **Modifiers**

Table 54: Properties of each modifier.

| Id                 | Name      | SBO |
|--------------------|-----------|-----|
| Shc                | Shc       |     |
| pTrkA              | pTrkA     |     |
| ${\tt Shc\_pTrkA}$ | Shc_pTrkA |     |

Table 55: Properties of each product.

|           |           | 1   |
|-----------|-----------|-----|
| Id        | Name      | SBO |
| Shc_pTrkA | Shc_pTrkA |     |

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

 $v_{17} = \text{mwdfa3719d}\_20\text{cc}\_4\text{f}14\_\text{b}45\text{e}\_3\text{f}097\text{c}3\text{aff}65 \cdot [\text{Shc}] \cdot [\text{pTrkA}] - \text{kb}\_18 \cdot [\text{Shc}\_\text{pTrkA}]$  (34)

#### **6.18 Reaction R19**

This is a fast irreversible reaction of two reactants forming one product influenced by three modifiers.

## Name R19

## **Reaction equation**

$$pTrkA + pShc \xrightarrow{pShc, pTrkA, pShc\_pTrkA} pShc\_pTrkA$$
 (35)

#### **Reactants**

Table 56: Properties of each reactant.

| Id            | Name          | SBO |
|---------------|---------------|-----|
| pTrkA<br>pShc | pTrkA<br>pShc |     |

# **Modifiers**

Table 57: Properties of each modifier.

| Id         | Name       | SBO |
|------------|------------|-----|
| pShc       | pShc       |     |
| pTrkA      | pTrkA      |     |
| pShc_pTrkA | pShc_pTrkA |     |

Table 58: Properties of each product.

| Id         | Name       | SBO |
|------------|------------|-----|
| pShc_pTrkA | pShc_pTrkA |     |

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{18} = kf_{-}19 \cdot [pShc] \cdot [pTrkA] - kb_{-}19 \cdot [pShc_{-}pTrkA]$$
(36)

#### **6.19 Reaction R20**

This is a fast irreversible reaction of two reactants forming one product influenced by three modifiers.

#### Name R20

# **Reaction equation**

$$pTrkA + Grb2\_SOS\_pShc \xrightarrow{Grb2\_SOS\_pShc, pTrkA, Grb2\_SOS\_pShc\_pTrkA} Grb2\_SOS\_pShc\_pTrkA \xrightarrow{(37)}$$

## **Reactants**

Table 59: Properties of each reactant.

| Id                     | Name                   | SBO |
|------------------------|------------------------|-----|
| pTrkA<br>Grb2_SOS_pShc | pTrkA<br>Grb2_SOS_pShc |     |

#### **Modifiers**

Table 60: Properties of each modifier.

| Id                  | Name                | SBO |
|---------------------|---------------------|-----|
| Grb2_SOS_pShc       | Grb2_SOS_pShc       |     |
| pTrkA               | pTrkA               |     |
| Grb2_SOS_pShc_pTrkA | Grb2_SOS_pShc_pTrkA |     |

Table 61: Properties of each product.

| Id                  | Name                | SBO |
|---------------------|---------------------|-----|
| Grb2_SOS_pShc_pTrkA | Grb2_SOS_pShc_pTrkA |     |

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{19} = \text{kf}_20 \cdot [\text{Grb2}_S\text{OS}_p\text{Shc}] \cdot [\text{pTrkA}] - \text{kb}_20 \cdot [\text{Grb2}_S\text{OS}_p\text{Shc}_p\text{TrkA}]$$
(38)

#### **6.20 Reaction R21**

This is a fast irreversible reaction of two reactants forming one product influenced by three modifiers.

## Name R21

## **Reaction equation**

$$pTrkA\_endo + Shc \xrightarrow{Shc, pTrkA\_endo, Shc\_pTrkA\_endo} Shc\_pTrkA\_endo$$
 (39)

#### **Reactants**

Table 62: Properties of each reactant.

| Id                | Name              | SBO |
|-------------------|-------------------|-----|
| pTrkA_endo<br>Shc | pTrkA_endo<br>Shc |     |

## **Modifiers**

Table 63: Properties of each modifier.

| Name           | SBO               |
|----------------|-------------------|
| Shc            |                   |
| pTrkA_endo     |                   |
| Shc_pTrkA_endo |                   |
|                | Shc<br>pTrkA_endo |

Table 64: Properties of each product.

| Id             | Name           | SBO |
|----------------|----------------|-----|
| Shc_pTrkA_endo | Shc_pTrkA_endo |     |

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{20} = \text{kf}_2 \cdot [\text{Shc}] \cdot [\text{pTrkA\_endo}] - \text{kb}_2 \cdot [\text{Shc\_pTrkA\_endo}]$$
 (40)

#### **6.21 Reaction R22**

This is a fast irreversible reaction of two reactants forming one product influenced by three modifiers.

#### Name R22

# **Reaction equation**

$$pTrkA\_endo + pShc \xrightarrow{pShc, pTrkA\_endo, pShc\_pTrkA\_endo} pShc\_pTrkA\_endo \qquad (41)$$

#### **Reactants**

Table 65: Properties of each reactant.

| Id                 | Name               | SBO |
|--------------------|--------------------|-----|
| pTrkA_endo<br>pShc | pTrkA_endo<br>pShc |     |

# **Modifiers**

Table 66: Properties of each modifier.

| Id                                    | Name                                  | SBO |
|---------------------------------------|---------------------------------------|-----|
| pShc<br>pTrkA_endo<br>pShc_pTrkA_endo | pShc<br>pTrkA_endo<br>pShc_pTrkA_endo |     |

Table 67: Properties of each product.

| Id              | Name            | SBO |
|-----------------|-----------------|-----|
| pShc_pTrkA_endo | pShc_pTrkA_endo |     |

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{21} = \text{kf}_2 \cdot [\text{pShc}] \cdot [\text{pTrkA\_endo}] - \text{kb}_2 \cdot [\text{pShc}_p \text{TrkA\_endo}]$$
 (42)

#### **6.22 Reaction R23**

This is a fast irreversible reaction of two reactants forming one product influenced by three modifiers.

## Name R23

## **Reaction equation**

$$pTrkA\_endo + Grb2\_SOS\_pShc \xrightarrow{Grb2\_SOS\_pShc, pTrkA\_endo, Grb2\_SOS\_pShc\_pTrkA\_endo} Grb2\_SOS\_pShc\_pTrkA\_endo + Grb2\_SOS\_endo + Grb2\_endo + G$$

## **Reactants**

Table 68: Properties of each reactant.

| Id                          | Name                        | SBO |
|-----------------------------|-----------------------------|-----|
| pTrkA_endo<br>Grb2_SOS_pShc | pTrkA_endo<br>Grb2_SOS_pShc |     |

# **Modifiers**

Table 69: Properties of each modifier.

| Id                          | Name                        | SBO |
|-----------------------------|-----------------------------|-----|
| Grb2_SOS_pShc<br>pTrkA_endo | Grb2_SOS_pShc<br>pTrkA_endo |     |
| Grb2_SOS_pShc_pTrkA_endo    | •                           |     |

Table 70: Properties of each product.

| Id                       | Name                     | SBO |
|--------------------------|--------------------------|-----|
| Grb2_SOS_pShc_pTrkA_endo | Grb2_SOS_pShc_pTrkA_endo |     |

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{22} = \text{kf}_2 \cdot [\text{Grb2\_SOS\_pShc}] \cdot [\text{pTrkA\_endo}] - \text{kb}_2 \cdot (\text{Grb2\_SOS\_pShc\_pTrkA\_endo}] \quad (44)$$

#### **6.23 Reaction R24**

This is a fast irreversible reaction of two reactants forming one product influenced by three modifiers.

## Name R24

## **Reaction equation**

$$pTrkA + FRS2 \xrightarrow{FRS2, pTrkA, FRS2\_pTrkA} FRS2\_pTrkA \tag{45}$$

#### **Reactants**

Table 71: Properties of each reactant.

| Id            | Name          | SBO |
|---------------|---------------|-----|
| pTrkA<br>FRS2 | pTrkA<br>FRS2 |     |

## **Modifiers**

Table 72: Properties of each modifier.

| Id         | Name       | SBO |
|------------|------------|-----|
| FRS2       | FRS2       |     |
| pTrkA      | pTrkA      |     |
| FRS2_pTrkA | FRS2_pTrkA |     |

Table 73: Properties of each product.

| Tueste 75: Troperties of each product: |            |     |
|----------------------------------------|------------|-----|
| Id                                     | Name       | SBO |
| FRS2_pTrkA                             | FRS2_pTrkA |     |

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{23} = \text{kf}_2 \cdot [\text{FRS2}] \cdot [\text{pTrkA}] - \text{kb}_2 \cdot (\text{FRS2}_p \text{TrkA})$$
(46)

#### 6.24 Reaction R25

This is a fast irreversible reaction of two reactants forming one product influenced by three modifiers.

## Name R25

# **Reaction equation**

$$pTrkA + pFRS2 \xrightarrow{pFRS2, pTrkA, pFRS2\_pTrkA} pFRS2\_pTrkA \tag{47}$$

#### **Reactants**

Table 74: Properties of each reactant.

| Id             | Name           | SBO |
|----------------|----------------|-----|
| pTrkA<br>pFRS2 | pTrkA<br>pFRS2 |     |

## **Modifiers**

Table 75: Properties of each modifier.

| Id                            | Name                          | SBO |
|-------------------------------|-------------------------------|-----|
| pFRS2<br>pTrkA<br>pFRS2_pTrkA | pFRS2<br>pTrkA<br>pFRS2_pTrkA |     |

Table 76: Properties of each product.

| Id          | Name        | SBO |
|-------------|-------------|-----|
| pFRS2_pTrkA | pFRS2_pTrkA |     |

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{24} = \text{kf}_2 \cdot [\text{pFRS2}] \cdot [\text{pTrkA}] - \text{kb}_2 \cdot [\text{pFRS2}_p \text{TrkA}]$$
(48)

#### **6.25 Reaction R26**

This is a fast irreversible reaction of two reactants forming one product influenced by three modifiers.

## Name R26

# **Reaction equation**

$$pTrkA\_endo + FRS2 \xrightarrow{FRS2, pTrkA\_endo, FRS2\_pTrkA\_endo} FRS2\_pTrkA\_endo \qquad (49)$$

#### **Reactants**

Table 77: Properties of each reactant.

| Id                 | Name               | SBO |
|--------------------|--------------------|-----|
| pTrkA_endo<br>FRS2 | pTrkA_endo<br>FRS2 |     |

# **Modifiers**

Table 78: Properties of each modifier.

| Id                                    | Name                                  | SBO |
|---------------------------------------|---------------------------------------|-----|
| FRS2<br>pTrkA_endo<br>FRS2_pTrkA_endo | FRS2<br>pTrkA_endo<br>FRS2_pTrkA_endo |     |

Table 79: Properties of each product.

| Id              | Name            | SBO |
|-----------------|-----------------|-----|
| FRS2_pTrkA_endo | FRS2_pTrkA_endo |     |

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{25} = \text{kf}_2 \cdot [\text{FRS2}] \cdot [\text{pTrkA\_endo}] - \text{kb}_2 \cdot [\text{FRS2\_pTrkA\_endo}]$$
 (50)

#### **6.26 Reaction R27**

This is a fast irreversible reaction of two reactants forming one product influenced by three modifiers.

## Name R27

# **Reaction equation**

$$pTrkA\_endo + pFRS2 \xrightarrow{pFRS2, pTrkA\_endo, pFRS2\_pTrkA\_endo} pFRS2\_pTrkA\_endo \quad (51)$$

#### **Reactants**

Table 80: Properties of each reactant.

| Id                  | Name                | SBO |
|---------------------|---------------------|-----|
| pTrkA_endo<br>pFRS2 | pTrkA_endo<br>pFRS2 |     |

# **Modifiers**

Table 81: Properties of each modifier.

| Id                                      | Name                                    | SBO |
|-----------------------------------------|-----------------------------------------|-----|
| pFRS2<br>pTrkA_endo<br>pFRS2_pTrkA_endo | pFRS2<br>pTrkA_endo<br>pFRS2_pTrkA_endo |     |

Table 82: Properties of each product.

| Id               | Name             | SBO |
|------------------|------------------|-----|
| pFRS2_pTrkA_endo | pFRS2_pTrkA_endo |     |

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{26} = \text{kf}_2 \cdot [\text{pFRS2}] \cdot [\text{pTrkA}_e \text{ndo}] - \text{kb}_2 \cdot (\text{pFRS2}_p \text{TrkA}_e \text{ndo}]$$
 (52)

## **6.27 Reaction R28**

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

## Name R28

## **Reaction equation**

$$Shc\_pTrkA \xrightarrow{Shc\_pTrkA} pShc\_pTrkA$$
 (53)

#### Reactant

Table 83: Properties of each reactant.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| Shc_pTrkA | Shc_pTrkA |     |

## **Modifier**

Table 84: Properties of each modifier.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| Shc_pTrkA | Shc_pTrkA |     |

Table 85: Properties of each product.

| Id         | Name       | SBO |
|------------|------------|-----|
| pShc_pTrkA | pShc_pTrkA |     |

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{27} = \text{kf}_2 \cdot [\text{Shc}_p \text{TrkA}] \tag{54}$$

## **6.28 Reaction R29**

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

## Name R29

# **Reaction equation**

$$Shc\_pTrkA\_endo \xrightarrow{Shc\_pTrkA\_endo} pShc\_pTrkA\_endo$$
 (55)

#### Reactant

Table 86: Properties of each reactant.

| Id             | Name           | SBO |
|----------------|----------------|-----|
| Shc_pTrkA_endo | Shc_pTrkA_endo |     |

## **Modifier**

Table 87: Properties of each modifier.

| Id             | Name           |  |
|----------------|----------------|--|
| Shc_pTrkA_endo | Shc_pTrkA_endo |  |

Table 88: Properties of each product.

| Id              | Name            | SBO |
|-----------------|-----------------|-----|
| pShc_pTrkA_endo | pShc_pTrkA_endo |     |

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{28} = \text{kf}_2 \cdot [\text{Shc}_p \text{TrkA}_e \text{ndo}]$$
 (56)

## 6.29 Reaction R30

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

## Name R30

# **Reaction equation**

$$FRS2\_pTrkA \xrightarrow{FRS2\_pTrkA} pFRS2\_pTrkA$$
 (57)

#### Reactant

Table 89: Properties of each reactant.

| Id         | Name       | SBO |
|------------|------------|-----|
| FRS2_pTrkA | FRS2_pTrkA |     |

## **Modifier**

Table 90: Properties of each modifier.

| Id         | Name       | SBO |
|------------|------------|-----|
| FRS2_pTrkA | FRS2_pTrkA |     |

Table 91: Properties of each product

| Id          | Name        | SBO |
|-------------|-------------|-----|
| pFRS2_pTrkA | pFRS2_pTrkA |     |

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{29} = kf_{30} \cdot [FRS2_pTrkA]$$
 (58)

## 6.30 Reaction R31

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

## Name R31

# **Reaction equation**

$$FRS2\_pTrkA\_endo \xrightarrow{FRS2\_pTrkA\_endo} pFRS2\_pTrkA\_endo$$
 (59)

#### Reactant

Table 92: Properties of each reactant.

| Id              | Name            | SBO |  |
|-----------------|-----------------|-----|--|
| FRS2_pTrkA_endo | FRS2_pTrkA_endo |     |  |

## **Modifier**

Table 93: Properties of each modifier.

| Id              | Name            | SBO |
|-----------------|-----------------|-----|
| FRS2_pTrkA_endo | FRS2_pTrkA_endo |     |

Table 94: Properties of each product.

| Id               | Name             | SBO |
|------------------|------------------|-----|
| pFRS2_pTrkA_endo | pFRS2_pTrkA_endo |     |

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{30} = \text{kf}_{-}31 \cdot [\text{FRS2}_{-}\text{pTrkA}_{-}\text{endo}] \tag{60}$$

## **6.31 Reaction R32**

This is a fast irreversible reaction of one reactant forming no product influenced by one modifier.

## Name R32

# **Reaction equation**

$$pTrkA \xrightarrow{pTrkA} \emptyset$$
 (61)

## Reactant

Table 95: Properties of each reactant.

| Id    | Name  | SBO |
|-------|-------|-----|
| pTrkA | pTrkA |     |

#### **Modifier**

Table 96: Properties of each modifier.

| Id    | Name  | SBO |
|-------|-------|-----|
| pTrkA | pTrkA |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{31} = kf_{32} \cdot [pTrkA] \tag{62}$$

## 6.32 Reaction R33

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier

Name R33

# **Reaction equation**

$$Shc_pTrkA \xrightarrow{Shc_pTrkA} Shc$$
 (63)

## Reactant

Table 97: Properties of each reactant.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| Shc_pTrkA | Shc_pTrkA |     |

#### **Modifier**

Table 98: Properties of each modifier.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| Shc_pTrkA | Shc_pTrkA |     |

#### **Product**

Table 99: Properties of each product.

| Id  | Name | SBO |
|-----|------|-----|
| Shc | Shc  |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{32} = kf_{-}33 \cdot [Shc_{-}pTrkA] \tag{64}$$

## 6.33 Reaction R34

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

# Name R34

# **Reaction equation**

$$pShc\_pTrkA \xrightarrow{pShc\_pTrkA} pShc$$
 (65)

#### Reactant

Table 100: Properties of each reactant.

| Id         | Name       | SBO |
|------------|------------|-----|
| pShc_pTrkA | pShc_pTrkA |     |

#### **Modifier**

Table 101: Properties of each modifier.

| Id         | Name       | SBO |
|------------|------------|-----|
| pShc_pTrkA | pShc_pTrkA |     |

## **Product**

Table 102: Properties of each product.

| Id   | Name | SBO |
|------|------|-----|
| pShc | pShc |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \; mol \cdot m^{-3}$ 

$$v_{33} = \text{kf}_{-}34 \cdot [\text{pShc}_{-}\text{pTrkA}] \tag{66}$$

## 6.34 Reaction R35

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

# Name R35

# **Reaction equation**

$$Grb2\_SOS\_pShc\_pTrkA \xrightarrow{Grb2\_SOS\_pShc\_pTrkA} Grb2\_SOS\_pShc \qquad (67)$$

## Reactant

Table 103: Properties of each reactant.

| Id                  | Name                | SBO |
|---------------------|---------------------|-----|
| Grb2_SOS_pShc_pTrkA | Grb2_SOS_pShc_pTrkA |     |

## **Modifier**

Table 104: Properties of each modifier.

| Id                  | Name                | SBO |
|---------------------|---------------------|-----|
| Grb2_SOS_pShc_pTrkA | Grb2_SOS_pShc_pTrkA |     |

## **Product**

Table 105: Properties of each product.

| Id            | Name          | SBO |
|---------------|---------------|-----|
| Grb2_SOS_pShc | Grb2_SOS_pShc |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{34} = \text{kf}_{-35} \cdot [\text{Grb2}_{-}\text{SOS}_{-}\text{pShc}_{-}\text{pTrkA}]$$
 (68)

## 6.35 Reaction R36

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

#### Name R36

# **Reaction equation**

$$FRS2\_pTrkA \xrightarrow{FRS2\_pTrkA} FRS2$$
 (69)

## Reactant

Table 106: Properties of each reactant.

|            | L          |     |
|------------|------------|-----|
| Id         | Name       | SBO |
| FRS2_pTrkA | FRS2_pTrkA |     |

## **Modifier**

Table 107: Properties of each modifier.

| Id         | Name       | SBO |
|------------|------------|-----|
| FRS2_pTrkA | FRS2_pTrkA |     |

## **Product**

Table 108: Properties of each product.

| Id   | Name | SBO |
|------|------|-----|
| FRS2 | FRS2 |     |

# **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \ mol \cdot m^{-3}$ 

$$v_{35} = \text{kf}_{36} \cdot [\text{FRS2}_{p}\text{TrkA}] \tag{70}$$

## 6.36 Reaction R37

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

#### Name R37

# **Reaction equation**

$$pFRS2\_pTrkA \xrightarrow{pFRS2\_pTrkA} pFRS2$$
 (71)

Table 109: Properties of each reactant.

| Two to 1000 Troportions of Cutoff Toucounts |             |     |
|---------------------------------------------|-------------|-----|
| Id                                          | Name        | SBO |
|                                             |             |     |
| pFRS2_pTrkA                                 | pFRS2_pTrkA |     |

Table 110: Properties of each modifier.

| Id Name SBC |             | SBO |
|-------------|-------------|-----|
| pFRS2_pTrkA | pFRS2_pTrkA |     |

## **Product**

Table 111: Properties of each product.

| Id    | Name  | SBO |
|-------|-------|-----|
| pFRS2 | pFRS2 |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \ mol \cdot m^{-3}$ 

$$v_{36} = kf_{37} \cdot [pFRS2_pTrkA] \tag{72}$$

# 6.37 Reaction R38

This is a fast irreversible reaction of one reactant forming two products influenced by one modifier.

#### Name R38

# **Reaction equation**

$$Crk\_C3G\_pFRS2\_pTrkA \xrightarrow{Crk\_C3G\_pFRS2\_pTrkA} Crk\_C3G + pFRS2 \tag{73}$$

Table 112: Properties of each reactant.

| Id                  | Name                | SBO |
|---------------------|---------------------|-----|
| Crk_C3G_pFRS2_pTrkA | Crk_C3G_pFRS2_pTrkA |     |

Table 113: Properties of each modifier.

| Id                  | Name                | SBO |
|---------------------|---------------------|-----|
| Crk_C3G_pFRS2_pTrkA | Crk_C3G_pFRS2_pTrkA |     |

## **Products**

Table 114: Properties of each product.

| Id      | Name    | SBO |
|---------|---------|-----|
| Crk_C3G | Crk_C3G | _   |
| pFRS2   | pFRS2   |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{37} = \text{kf}_{38} \cdot [\text{Crk}_{3}\text{C3G}_{p}\text{FRS2}_{p}\text{TrkA}] \tag{74}$$

## 6.38 Reaction R39

This is a fast irreversible reaction of two reactants forming two products influenced by two modifiers.

#### Name R39

# **Reaction equation**

$$Dok + pTrkA \xrightarrow{pTrkA, Dok} pDok + pTrkA$$
 (75)

Table 115: Properties of each reactant.

| Id    | Name  | SBO |
|-------|-------|-----|
| Dok   | Dok   |     |
| pTrkA | pTrkA |     |

Table 116: Properties of each modifier.

| Id           | Name         | SBO |
|--------------|--------------|-----|
| pTrkA<br>Dok | pTrkA<br>Dok |     |

## **Products**

Table 117: Properties of each product.

| Id            | Name          | SBO |
|---------------|---------------|-----|
| pDok<br>pTrkA | pDok<br>pTrkA |     |

## **Kinetic Law**

Derived unit  $~s^{-1}\cdot 10^{-12}~mol\cdot m^{-3}$ 

$$v_{38} = \frac{\text{Vmax}_{39} \cdot [\text{pTrkA}] \cdot [\text{Dok}]}{\text{Km}_{39} + [\text{Dok}]}$$
(76)

## 6.39 Reaction R40

This is a fast irreversible reaction of two reactants forming two products influenced by two modifiers.

#### Name R40

# **Reaction equation**

$$Dok + Shc_pTrkA \xrightarrow{Shc_pTrkA, Dok} pDok + Shc_pTrkA$$
 (77)

Table 118: Properties of each reactant.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| Dok       | Dok       |     |
| Shc_pTrkA | Shc_pTrkA |     |

Table 119: Properties of each modifier.

| Id        | Name             | SBO |
|-----------|------------------|-----|
| Shc_pTrkA | Shc_pTrkA<br>Dok |     |
| Dok       | DOK              |     |

#### **Products**

Table 120: Properties of each product.

| Id                | Name              | SBO |
|-------------------|-------------------|-----|
| pDok<br>Shc_pTrkA | pDok<br>Shc_pTrkA |     |

## **Kinetic Law**

Derived unit  $~s^{-1}\cdot 10^{-12}~mol\cdot m^{-3}$ 

$$v_{39} = \frac{\text{Vmax\_40} \cdot [\text{Shc\_pTrkA}] \cdot [\text{Dok}]}{\text{Km\_40} + [\text{Dok}]}$$
(78)

#### **6.40 Reaction R41**

This is a fast irreversible reaction of two reactants forming two products influenced by two modifiers.

#### Name R41

# **Reaction equation**

$$Dok + pShc_pTrkA \xrightarrow{pShc_pTrkA, Dok} pDok + pShc_pTrkA$$
 (79)

Table 121: Properties of each reactant.

| Id                  | Name       | SBO |
|---------------------|------------|-----|
| Dok                 | Dok        |     |
| ${\tt pShc\_pTrkA}$ | pShc_pTrkA |     |

Table 122: Properties of each modifier.

| Id                | Name              | SBO |
|-------------------|-------------------|-----|
| pShc_pTrkA<br>Dok | pShc_pTrkA<br>Dok |     |

#### **Products**

Table 123: Properties of each product.

| Id                 | Name               | SBO |
|--------------------|--------------------|-----|
| pDok<br>pShc_pTrkA | pDok<br>pShc_pTrkA |     |

# **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-12} \; mol \cdot m^{-3}$ 

$$v_{40} = \frac{\text{Vmax\_41} \cdot [\text{pShc\_pTrkA}] \cdot [\text{Dok}]}{\text{Km\_41} + [\text{Dok}]}$$
(80)

### **6.41 Reaction R42**

This is a fast irreversible reaction of two reactants forming two products influenced by two modifiers.

### Name R42

# **Reaction equation**

$$Dok + Grb2\_SOS\_pShc\_pTrkA \xrightarrow{Grb2\_SOS\_pShc\_pTrkA, \ Dok} pDok + Grb2\_SOS\_pShc\_pTrkA \xrightarrow{(81)}$$

Table 124: Properties of each reactant.

| Id                         | Name                       | SBO |
|----------------------------|----------------------------|-----|
| Dok<br>Grb2_SOS_pShc_pTrkA | Dok<br>Grb2_SOS_pShc_pTrkA |     |

Table 125: Properties of each modifier.

| Id                         | Name                       | SBO |
|----------------------------|----------------------------|-----|
| Grb2_SOS_pShc_pTrkA<br>Dok | Grb2_SOS_pShc_pTrkA<br>Dok |     |

### **Products**

Table 126: Properties of each product.

| Id                          | Name                        | SBO |
|-----------------------------|-----------------------------|-----|
| pDok<br>Grb2_SOS_pShc_pTrkA | pDok<br>Grb2_SOS_pShc_pTrkA |     |

### **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-12} \ mol \cdot m^{-3}$ 

$$v_{41} = \frac{\text{Vmax\_42} \cdot [\text{Grb2\_SOS\_pShc\_pTrkA}] \cdot [\text{Dok}]}{\text{Km\_42} + [\text{Dok}]}$$
(82)

#### 6.42 Reaction R43

This is a fast irreversible reaction of two reactants forming two products influenced by two modifiers.

#### Name R43

# **Reaction equation**

$$Dok + FRS2\_pTrkA \xrightarrow{FRS2\_pTrkA, Dok} pDok + FRS2\_pTrkA$$
 (83)

Table 127: Properties of each reactant.

| Id                | Name              | SBO |
|-------------------|-------------------|-----|
| Dok<br>FRS2_pTrkA | Dok<br>FRS2_pTrkA |     |

Table 128: Properties of each modifier.

| Id         | Name       | SBO |
|------------|------------|-----|
| FRS2_pTrkA | FRS2_pTrkA |     |
| Dok        | Dok        |     |

### **Products**

Table 129: Properties of each product.

| Id                 | Name               | SBO |
|--------------------|--------------------|-----|
| pDok<br>FRS2_pTrkA | pDok<br>FRS2_pTrkA |     |

### **Kinetic Law**

Derived unit  $~s^{-1}\cdot 10^{-12}~mol\cdot m^{-3}$ 

$$v_{42} = \frac{\text{Vmax}\_43 \cdot [\text{FRS2}\_p\text{TrkA}] \cdot [\text{Dok}]}{\text{Km}\_43 + [\text{Dok}]}$$
(84)

#### **6.43 Reaction R44**

This is a fast irreversible reaction of two reactants forming two products influenced by two modifiers.

#### Name R44

# **Reaction equation**

$$Dok + pFRS2\_pTrkA \xrightarrow{pFRS2\_pTrkA, \ Dok} pDok + pFRS2\_pTrkA$$
 (85)

Table 130: Properties of each reactant.

| Id                 | Name               | SBO |
|--------------------|--------------------|-----|
| Dok<br>pFRS2_pTrkA | Dok<br>pFRS2_pTrkA |     |

Table 131: Properties of each modifier.

| Id                 | Name               | SBO |
|--------------------|--------------------|-----|
| pFRS2_pTrkA<br>Dok | pFRS2_pTrkA<br>Dok |     |

#### **Products**

Table 132: Properties of each product.

| The real region of the production |                     |     |
|-----------------------------------|---------------------|-----|
| Id                                | Name                | SBO |
| pDok<br>pFRS2_pTrkA               | pDok<br>pFRS2_pTrkA |     |

#### **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-12} \; mol \cdot m^{-3}$ 

$$v_{43} = \frac{\text{Vmax}\_44 \cdot [\text{pFRS2}\_\text{pTrkA}] \cdot [\text{Dok}]}{\text{Km}\_44 + [\text{Dok}]}$$
(86)

#### 6.44 Reaction R45

This is a fast irreversible reaction of two reactants forming two products influenced by two modifiers.

### Name R45

# **Reaction equation**

$$Dok + Crk\_C3G\_pFRS2\_pTrkA \xrightarrow{Crk\_C3G\_pFRS2\_pTrkA, \ Dok} pDok + Crk\_C3G\_pFRS2\_pTrkA \xrightarrow{(87)}$$

Table 133: Properties of each reactant.

| Id                         | Name                       | SBO |
|----------------------------|----------------------------|-----|
| Dok<br>Crk_C3G_pFRS2_pTrkA | Dok<br>Crk_C3G_pFRS2_pTrkA |     |

Table 134: Properties of each modifier.

| Id                         | Name                       | SBO |
|----------------------------|----------------------------|-----|
| Crk_C3G_pFRS2_pTrkA<br>Dok | Crk_C3G_pFRS2_pTrkA<br>Dok |     |

### **Products**

Table 135: Properties of each product.

| Id                          | Name                        | SBO |
|-----------------------------|-----------------------------|-----|
| pDok<br>Crk_C3G_pFRS2_pTrkA | pDok<br>Crk_C3G_pFRS2_pTrkA |     |

### **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-12} \ mol \cdot m^{-3}$ 

$$v_{44} = \frac{Vmax\_45 \cdot [Crk\_C3G\_pFRS2\_pTrkA] \cdot [Dok]}{Km\_45 + [Dok]}$$
(88)

### 6.45 Reaction R46

This is a fast irreversible reaction of two reactants forming one product influenced by three modifiers.

#### Name R46

### **Reaction equation**

$$Grb2 + SOS \xrightarrow{Grb2, SOS, Grb2\_SOS} Grb2\_SOS$$
 (89)

Table 136: Properties of each reactant.

| Name        | SBO  |
|-------------|------|
| Grb2<br>SOS |      |
|             | Grb2 |

Table 137: Properties of each modifier.

| Id                | Name     | SBO |
|-------------------|----------|-----|
| Grb2              | Grb2     |     |
| SOS               | SOS      |     |
| ${\tt Grb2\_SOS}$ | Grb2_SOS |     |

#### **Product**

Table 138: Properties of each product.

| Id       | Name     | SBO |
|----------|----------|-----|
| Grb2_SOS | Grb2_SOS |     |

# **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{45} = \text{kf}_{-}46 \cdot [\text{Grb2}] \cdot [\text{SOS}] - \text{kb}_{-}46 \cdot [\text{Grb2}_{-}\text{SOS}]$$

$$\tag{90}$$

# 6.46 Reaction R47

This is a fast irreversible reaction of two reactants forming one product influenced by three modifiers.

### Name R47

# **Reaction equation**

$$Grb2 + pSOS \xrightarrow{Grb2, pSOS, Grb2\_pSOS} Grb2\_pSOS$$
 Grb2\_pSOS (91)

Table 139: Properties of each reactant.

| Id   | Name | SBO |
|------|------|-----|
| Grb2 | Grb2 |     |
| pSOS | pSOS |     |

Table 140: Properties of each modifier.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| Grb2      | Grb2      |     |
| pS0S      | pSOS      |     |
| Grb2_pSOS | Grb2_pSOS |     |

#### **Product**

Table 141: Properties of each product.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| Grb2_pSOS | Grb2_pSOS |     |

# **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{46} = \text{kf}\_47 \cdot [\text{Grb2}] \cdot [\text{pSOS}] - \text{kb}\_47 \cdot [\text{Grb2}\_\text{pSOS}]$$

$$(92)$$

# 6.47 Reaction R48

This is a fast irreversible reaction of two reactants forming one product influenced by three modifiers.

### Name R48

# **Reaction equation**

$$Grb2\_SOS + pShc \xrightarrow{Grb2\_SOS}, pShc, Grb2\_SOS\_pShc \xrightarrow{Grb2\_SOS\_pShc} Grb2\_SOS\_pShc$$
(93)

Table 142: Properties of each reactant.

| Id       | Name     | SBO |
|----------|----------|-----|
| Grb2_SOS | Grb2_SOS |     |
| pShc     | pShc     |     |

Table 143: Properties of each modifier.

| Id            | Name          | SBO |
|---------------|---------------|-----|
| Grb2_SOS      | Grb2_SOS      |     |
| pShc          | pShc          |     |
| Grb2_SOS_pShc | Grb2_SOS_pShc |     |

#### **Product**

Table 144: Properties of each product.

| Id            | Name          | SBO |
|---------------|---------------|-----|
| Grb2_SOS_pShc | Grb2_SOS_pShc |     |

### **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \ mol \cdot m^{-3}$ 

$$v_{47} = \text{kf}_{-}48 \cdot [\text{Grb2}_{-}\text{SOS}] \cdot [\text{pShc}] - \text{kb}_{-}48 \cdot [\text{Grb2}_{-}\text{SOS}_{-}\text{pShc}]$$

$$\tag{94}$$

### 6.48 Reaction R49

This is a fast irreversible reaction of two reactants forming one product influenced by three modifiers.

#### Name R49

# **Reaction equation**

$$pShc\_pTrkA + Grb2\_SOS \xrightarrow{Grb2\_SOS, pShc\_pTrkA, Grb2\_SOS\_pShc\_pTrkA} Grb2\_SOS\_pShc\_pTrkA \xrightarrow{(95)}$$

Table 145: Properties of each reactant.

| Id                     | Name                   | SBO |
|------------------------|------------------------|-----|
| pShc_pTrkA<br>Grb2_SOS | pShc_pTrkA<br>Grb2_SOS |     |

Table 146: Properties of each modifier.

| Id                  | Name                | SBO |
|---------------------|---------------------|-----|
| Grb2_SOS            | Grb2_SOS            |     |
| pShc_pTrkA          | pShc_pTrkA          |     |
| Grb2_SOS_pShc_pTrkA | Grb2_SOS_pShc_pTrkA |     |

#### **Product**

Table 147: Properties of each product.

| Id                  | Name                | SBO |
|---------------------|---------------------|-----|
| Grb2_SOS_pShc_pTrkA | Grb2_SOS_pShc_pTrkA |     |

### **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \ mol \cdot m^{-3}$ 

$$v_{48} = \text{kf}\_49 \cdot [\text{Grb2\_SOS}] \cdot [\text{pShc\_pTrkA}] - \text{kb}\_49 \cdot [\text{Grb2\_SOS\_pShc\_pTrkA}]$$
 (96)

### 6.49 Reaction R50

This is a fast irreversible reaction of two reactants forming one product influenced by three modifiers.

#### Name R50

# **Reaction equation**

$$pShc\_pTrkA\_endo + Grb2\_SOS \xrightarrow{Grb2\_SOS, pShc\_pTrkA\_endo, Grb2\_SOS\_pShc\_pTrkA\_endo} Grb2\_SOS\_pShc\_pTrkA \xrightarrow{(97)} Grb2\_SOS\_pShc\_pTrkA$$

Table 148: Properties of each reactant.

| Id                          | Name                        | SBO |
|-----------------------------|-----------------------------|-----|
| pShc_pTrkA_endo<br>Grb2_SOS | pShc_pTrkA_endo<br>Grb2_SOS |     |

Table 149: Properties of each modifier.

| Id                       | Name                     | SBO |
|--------------------------|--------------------------|-----|
| Grb2_SOS                 | Grb2_SOS                 | _   |
| pShc_pTrkA_endo          | pShc_pTrkA_endo          |     |
| Grb2_SOS_pShc_pTrkA_endo | Grb2_SOS_pShc_pTrkA_endo |     |

#### **Product**

Table 150: Properties of each product.

| Id                       | Name                     | SBO |
|--------------------------|--------------------------|-----|
| Grb2_SOS_pShc_pTrkA_endo | Grb2_SOS_pShc_pTrkA_endo |     |

# **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{49} = \text{kf\_50} \cdot [\text{Grb2\_SOS}] \cdot [\text{pShc\_pTrkA\_endo}] - \text{kb\_50} \cdot [\text{Grb2\_SOS\_pShc\_pTrkA\_endo}] \quad (98)$$

# 6.50 Reaction R51

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

### Name R51

# **Reaction equation**

$$pShc \xrightarrow{pShc} Shc \tag{99}$$

Table 151: Properties of each reactant.

| Id   | Name | SBO |
|------|------|-----|
| pShc | pShc |     |

Table 152: Properties of each modifier.

| Id   | Name | SBO |
|------|------|-----|
| pShc | pShc |     |

# **Product**

Table 153: Properties of each product.

| Id  | Name | SBO |
|-----|------|-----|
| Shc | Shc  |     |

### **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \ mol \cdot m^{-3}$ 

$$v_{50} = \text{kf}_{-}51 \cdot [\text{pShc}] \tag{100}$$

# **6.51 Reaction R52**

This is a fast irreversible reaction of one reactant forming two products influenced by one modifier.

### Name R52

# **Reaction equation**

$$Grb2\_SOS\_pShc \xrightarrow{Grb2\_SOS\_pShc} Shc + Grb2\_SOS$$
 (101)

Table 154: Properties of each reactant.

| Id            | Name          | SBO |
|---------------|---------------|-----|
| Grb2_SOS_pShc | Grb2_SOS_pShc |     |

Table 155: Properties of each modifier.

| Id Name SBO   |               | SBO |
|---------------|---------------|-----|
| Grb2_SOS_pShc | Grb2_SOS_pShc |     |

# **Products**

Table 156: Properties of each product.

| Id       | Name     | SBO |
|----------|----------|-----|
| Shc      | Shc      |     |
| Grb2_SOS | Grb2_SOS |     |

### **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{51} = \text{kf}\_52 \cdot [\text{Grb2}\_\text{SOS}\_\text{pShc}] \tag{102}$$

# 6.52 Reaction R53

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

#### Name R53

# **Reaction equation**

$$pSOS \xrightarrow{pSOS} SOS \tag{103}$$

Table 157: Properties of each reactant.

| Id   | Name | SBO |
|------|------|-----|
| pSOS | pSOS |     |

Table 158: Properties of each modifier.

| Id   | Name | SBO |
|------|------|-----|
| pSOS | pSOS |     |

# **Product**

Table 159: Properties of each product.

| Id  | Name | SBO |
|-----|------|-----|
| SOS | SOS  |     |

### **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \ mol \cdot m^{-3}$ 

$$v_{52} = \text{kf.53} \cdot [\text{pSOS}] \tag{104}$$

# 6.53 Reaction R54

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

### Name R54

# **Reaction equation**

$$Grb2\_pSOS \xrightarrow{Grb2\_pSOS} Grb2\_SOS$$
 (105)

Table 160: Properties of each reactant.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| Grb2_pSOS | Grb2_pSOS |     |

Table 161: Properties of each modifier.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| Grb2_pSOS | Grb2_pSOS |     |

# **Product**

Table 162: Properties of each product.

| Id       | Name     | SBO |
|----------|----------|-----|
| Grb2_SOS | Grb2_SOS |     |

### **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \ mol \cdot m^{-3}$ 

$$v_{53} = \text{kf}_{-}54 \cdot [\text{Grb2}_{-}\text{pSOS}] \tag{106}$$

# 6.54 Reaction R55

This is a fast irreversible reaction of two reactants forming one product influenced by three modifiers.

### Name R55

# **Reaction equation**

$$pDok + RasGAP \xrightarrow{pDok, RasGAP, pDok\_RasGAP} pDok\_RasGAP$$
 (107)

Table 163: Properties of each reactant.

| Id             | Name           | SBO |
|----------------|----------------|-----|
| pDok<br>RasGAP | pDok<br>RasGAP |     |

Table 164: Properties of each modifier.

| Id                            | Name                          | SBO |
|-------------------------------|-------------------------------|-----|
| pDok<br>RasGAP<br>pDok_RasGAP | pDok<br>RasGAP<br>pDok_RasGAP |     |

#### **Product**

Table 165: Properties of each product.

| Id          | Name        | SBO |
|-------------|-------------|-----|
| pDok_RasGAP | pDok_RasGAP |     |

# **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{54} = \text{kf}\_55 \cdot [\text{pDok}] \cdot [\text{RasGAP}] - \text{kb}\_55 \cdot [\text{pDok}\_\text{RasGAP}]$$
 (108)

# 6.55 Reaction R56

This is a fast irreversible reaction of one reactant forming one product influenced by two modifiers.

Name R56

# **Reaction equation**

$$pDok \xrightarrow{pDok, Dok} Dok$$
 (109)

Table 166: Properties of each reactant.

| Id   | Name | SBO |
|------|------|-----|
| pDok | pDok |     |

Table 167: Properties of each modifier.

| Id          | Name        | SBO |
|-------------|-------------|-----|
| pDok<br>Dok | pDok<br>Dok |     |

### **Product**

Table 168: Properties of each product.

| Id  | Name | SBO |
|-----|------|-----|
| Dok | Dok  |     |

### **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{55} = \text{kf}\_56 \cdot [\text{pDok}] - \text{kb}\_56 \cdot [\text{Dok}]$$

$$(110)$$

### 6.56 Reaction R57

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

#### Name R57

# **Reaction equation**

$$Ras\_GTP \xrightarrow{Ras\_GTP} Ras\_GDP$$
 (111)

Table 169: Properties of each reactant.

| Id      | Name    | SBO |
|---------|---------|-----|
| Ras_GTP | Ras_GTP |     |

Table 170: Properties of each modifier.

| Id      | Name    | SBO |
|---------|---------|-----|
| Ras_GTP | Ras_GTP |     |

### **Product**

Table 171: Properties of each product.

| Id      | Name    | SBO |
|---------|---------|-----|
| Ras_GDP | Ras_GDP |     |

### **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \ mol \cdot m^{-3}$ 

$$v_{56} = \text{kf}\_57 \cdot [\text{Ras}\_\text{GTP}] \tag{112}$$

# 6.57 Reaction R58

This is a fast irreversible reaction of two reactants forming two products influenced by two modifiers.

#### Name R58

# **Reaction equation**

$$Ras\_GDP + Grb2\_SOS\_pShc\_pTrkA \xrightarrow{Grb2\_SOS\_pShc\_pTrkA, Ras\_GDP} Ras\_GTP + Grb2\_SOS\_pShc\_pTrkA \xrightarrow{(113)}$$

Table 172: Properties of each reactant.

| Id                             | Name                        | SBO |
|--------------------------------|-----------------------------|-----|
| Ras_GDP<br>Grb2_SOS_pShc_pTrkA | Ras_GDP Grb2_SOS_pShc_pTrkA |     |

Table 173: Properties of each modifier.

| Id                             | Name                           | SBO |
|--------------------------------|--------------------------------|-----|
| Grb2_SOS_pShc_pTrkA<br>Ras_GDP | Grb2_SOS_pShc_pTrkA<br>Ras_GDP |     |

### **Products**

Table 174: Properties of each product.

| Id                             | Name                | SBO |
|--------------------------------|---------------------|-----|
| $Ras\_GTP$                     | Ras_GTP             |     |
| <pre>Grb2_SOS_pShc_pTrkA</pre> | Grb2_SOS_pShc_pTrkA |     |

### **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-12} \ mol \cdot m^{-3}$ 

$$v_{57} = \frac{Vmax\_58 \cdot [Grb2\_SOS\_pShc\_pTrkA] \cdot [Ras\_GDP]}{Km\_58 + [Ras\_GDP]}$$
(114)

#### **6.58 Reaction R59**

This is a fast irreversible reaction of two reactants forming two products influenced by two modifiers.

#### Name R59

# **Reaction equation**

$$SOS + dppERKcyt \xrightarrow{dppERKcyt, SOS} pSOS + dppERKcyt$$
 (115)

Table 175: Properties of each reactant.

| Id                | Name      | SBO |
|-------------------|-----------|-----|
| SOS               | SOS       |     |
| ${\tt dppERKcyt}$ | dppERKcyt |     |

Table 176: Properties of each modifier.

| Id               | Name             | SBO |
|------------------|------------------|-----|
| dppERKcyt<br>SOS | dppERKcyt<br>SOS |     |

#### **Products**

Table 177: Properties of each product.

| Id               | Name      | SBO |
|------------------|-----------|-----|
| pSOS             | pSOS      |     |
| ${	t dppERKcyt}$ | dppERKcyt |     |

# **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-12} \; mol \cdot m^{-3}$ 

$$v_{58} = \frac{\text{Vmax\_59} \cdot [\text{dppERKcyt}] \cdot [\text{SOS}]}{\text{Km\_59} + [\text{SOS}]}$$
(116)

#### 6.59 Reaction R60

This is a fast irreversible reaction of two reactants forming three products influenced by two modifiers.

### Name R60

# **Reaction equation**

$$Grb2\_SOS\_pShc + dppERKcyt \xrightarrow{dppERKcyt, Grb2\_SOS\_pShc} Grb2\_pSOS + pShc + dppERKcyt \xrightarrow{(117)}$$

Table 178: Properties of each reactant.

| Tuble 170: 110perties of each feactaint. |                            |     |
|------------------------------------------|----------------------------|-----|
| Id                                       | Name                       | SBO |
| Grb2_SOS_pShc<br>dppERKcyt               | Grb2_SOS_pShc<br>dppERKcyt |     |

Table 179: Properties of each modifier.

| Id                         | Name                       | SBO |
|----------------------------|----------------------------|-----|
| dppERKcyt<br>Grb2_SOS_pShc | dppERKcyt<br>Grb2_SOS_pShc |     |

#### **Products**

Table 180: Properties of each product.

| Id                | Name      | SBO |
|-------------------|-----------|-----|
| Grb2_pSOS         | Grb2_pSOS |     |
| pShc              | pShc      |     |
| ${\tt dppERKcyt}$ | dppERKcyt |     |

#### **Kinetic Law**

Derived unit  $~s^{-1}\cdot 10^{-12}~mol\cdot m^{-3}$ 

$$v_{59} = \frac{\text{Vmax\_60} \cdot [\text{dppERKcyt}] \cdot [\text{Grb2\_SOS\_pShc}]}{\text{Km\_60} + [\text{Grb2\_SOS\_pShc}]}$$
(118)

#### 6.60 Reaction R61

This is a fast irreversible reaction of two reactants forming two products influenced by two modifiers.

Name R61

# **Reaction equation**

$$Grb2\_SOS + dppERKcyt \xrightarrow{dppERKcyt, Grb2\_SOS} Grb2\_pSOS + dppERKcyt$$
 (119)

Table 181: Properties of each reactant.

| Id                | Name      | SBO |
|-------------------|-----------|-----|
| Grb2_SOS          | Grb2_SOS  |     |
| ${\tt dppERKcyt}$ | dppERKcyt |     |

Table 182: Properties of each modifier.

| Id                    | Name                  | SBO |
|-----------------------|-----------------------|-----|
| dppERKcyt<br>Grb2_SOS | dppERKcyt<br>Grb2_SOS |     |

#### **Products**

Table 183: Properties of each product.

| Id                | Name      | SBO |
|-------------------|-----------|-----|
| Grb2_pSOS         | Grb2_pSOS |     |
| ${\tt dppERKcyt}$ | dppERKcyt |     |

### **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-12} \ mol \cdot m^{-3}$ 

$$v_{60} = \frac{\text{Vmax\_61} \cdot [\text{dppERKcyt}] \cdot [\text{Grb2\_SOS}]}{\text{Km\_61} + [\text{Grb2\_SOS}]}$$
(120)

#### **6.61 Reaction R62**

This is a fast irreversible reaction of two reactants forming two products influenced by two modifiers.

#### Name R62

# **Reaction equation**

$$Ras\_GTP + pDok\_RasGAP \xrightarrow{pDok\_RasGAP, \ Ras\_GTP} Ras\_GDP + pDok\_RasGAP \qquad (121)$$

Table 184: Properties of each reactant.

|                        | <u> </u>               |     |
|------------------------|------------------------|-----|
| Id                     | Name                   | SBO |
| Ras_GTP<br>pDok_RasGAP | Ras_GTP<br>pDok_RasGAP |     |

Table 185: Properties of each modifier.

| Id                     | Name                   | SBO |
|------------------------|------------------------|-----|
| pDok_RasGAP<br>Ras_GTP | pDok_RasGAP<br>Ras_GTP |     |

#### **Products**

Table 186: Properties of each product.

| Id          | Name        | SBO |
|-------------|-------------|-----|
| Ras_GDP     | Ras_GDP     |     |
| pDok_RasGAP | pDok_RasGAP |     |

# **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-12} \; mol \cdot m^{-3}$ 

$$v_{61} = \frac{\text{Vmax\_62} \cdot [\text{pDok\_RasGAP}] \cdot [\text{Ras\_GTP}]}{\text{Km\_62} + [\text{Ras\_GTP}]}$$
(122)

### 6.62 Reaction R63

This is a fast irreversible reaction of two reactants forming three products influenced by two modifiers.

### Name R63

# **Reaction equation**

$$B\_Raf\_Ras\_GTP + pDok\_RasGAP \xrightarrow{pDok\_RasGAP, B\_Raf\_Ras\_GTP} Ras\_GDP + B\_Raf + pDok\_RasGAP \tag{123}$$

Table 187: Properties of each reactant.

| Id            | Name          | SBO |
|---------------|---------------|-----|
| B_Raf_Ras_GTP | B_Raf_Ras_GTP |     |
| pDok_RasGAP   | pDok_RasGAP   |     |

Table 188: Properties of each modifier.

| Id                           | Name                         | SBO |
|------------------------------|------------------------------|-----|
| pDok_RasGAP<br>B_Raf_Ras_GTP | pDok_RasGAP<br>B_Raf_Ras_GTP |     |

### **Products**

Table 189: Properties of each product.

| Id          | Name        | SBO |
|-------------|-------------|-----|
| Ras_GDP     | Ras_GDP     |     |
| B_Raf       | B_Raf       |     |
| pDok_RasGAP | pDok_RasGAP |     |

### **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-12} \; mol \cdot m^{-3}$ 

$$v_{62} = \frac{Vmax\_63 \cdot [pDok\_RasGAP] \cdot [B\_Raf\_Ras\_GTP]}{Km\_63 + [B\_Raf\_Ras\_GTP]}$$
(124)

### 6.63 Reaction R64

This is a fast irreversible reaction of two reactants forming three products influenced by two modifiers.

### Name R64

### **Reaction equation**

$$c\_Raf\_Ras\_GTP + pDok\_RasGAP \xrightarrow{pDok\_RasGAP, c\_Raf\_Ras\_GTP} Ras\_GDP + c\_Raf + pDok\_RasGAP \xrightarrow{(125)}$$

Table 190: Properties of each reactant.

| Id                           | Name                         | SBO |
|------------------------------|------------------------------|-----|
| c_Raf_Ras_GTP<br>pDok_RasGAP | c_Raf_Ras_GTP<br>pDok_RasGAP |     |

Table 191: Properties of each modifier.

| Id                           | Name                         | SBO |
|------------------------------|------------------------------|-----|
| pDok_RasGAP<br>c_Raf_Ras_GTP | pDok_RasGAP<br>c_Raf_Ras_GTP |     |

### **Products**

Table 192: Properties of each product.

| Id          | Name        | SBO |
|-------------|-------------|-----|
| Ras_GDP     | Ras_GDP     |     |
| c_Raf       | c_Raf       |     |
| pDok_RasGAP | pDok_RasGAP |     |

### **Kinetic Law**

Derived unit  $~s^{-1}\cdot 10^{-12}~mol\cdot m^{-3}$ 

$$v_{63} = \frac{Vmax\_64 \cdot [pDok\_RasGAP] \cdot [c\_Raf\_Ras\_GTP]}{Km\_64 + [c\_Raf\_Ras\_GTP]}$$
(126)

#### 6.64 Reaction R65

This is a fast irreversible reaction of two reactants forming one product influenced by three modifiers.

#### Name R65

# **Reaction equation**

$$Crk + C3G \xrightarrow{C3G, Crk, Crk\_C3G} Crk\_C3G$$
 (127)

Table 193: Properties of each reactant.

| Id | Name       | SBO |
|----|------------|-----|
| 0  | Crk<br>C3G |     |

Table 194: Properties of each modifier.

| Id        | Name    | SBO |
|-----------|---------|-----|
| C3G       | C3G     |     |
| Crk       | Crk     |     |
| $Crk_C3G$ | Crk_C3G |     |

#### **Product**

Table 195: Properties of each product.

| Id      | Name    | SBO |
|---------|---------|-----|
| Crk_C3G | Crk_C3G |     |

### **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \ mol \cdot m^{-3}$ 

$$v_{64} = \text{kf}\_65 \cdot [\text{C3G}] \cdot [\text{Crk}] - \text{kb}\_65 \cdot [\text{Crk}\_\text{C3G}]$$
 (128)

#### **6.65 Reaction R66**

This is a fast irreversible reaction of two reactants forming one product influenced by three modifiers.

#### Name R66

# **Reaction equation**

$$pFRS2\_pTrkA + Crk\_C3G \xrightarrow{Crk\_C3G, pFRS2\_pTrkA, Crk\_C3G\_pFRS2\_pTrkA} Crk\_C3G\_pFRS2\_pTrkA \xrightarrow{(129)}$$

Table 196: Properties of each reactant.

| ruble 150. Froperties of each reactant. |                        |     |  |
|-----------------------------------------|------------------------|-----|--|
| Id                                      | Name                   | SBO |  |
| pFRS2_pTrkA<br>Crk_C3G                  | pFRS2_pTrkA<br>Crk_C3G |     |  |

Table 197: Properties of each modifier.

| Id                  | Name                | SBO |
|---------------------|---------------------|-----|
| Crk_C3G             | Crk_C3G             |     |
| pFRS2_pTrkA         | pFRS2_pTrkA         |     |
| Crk_C3G_pFRS2_pTrkA | Crk_C3G_pFRS2_pTrkA |     |

#### **Product**

Table 198: Properties of each product.

| Id                  | Name                | SBO |
|---------------------|---------------------|-----|
| Crk_C3G_pFRS2_pTrkA | Crk_C3G_pFRS2_pTrkA |     |

### **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \ mol \cdot m^{-3}$ 

$$v_{65} = \text{kf\_66} \cdot [\text{Crk\_C3G}] \cdot [\text{pFRS2\_pTrkA}] - \text{kb\_66} \cdot [\text{Crk\_C3G\_pFRS2\_pTrkA}] \quad (130)$$

#### **6.66 Reaction R67**

This is a fast irreversible reaction of two reactants forming one product influenced by three modifiers.

#### Name R67

# **Reaction equation**

$$pFRS2\_pTrkA\_endo + Crk\_C3G \xrightarrow{Crk\_C3G, pFRS2\_pTrkA\_endo, Crk\_C3G\_pFRS2\_pTrkA\_endo} Crk\_C3G\_pFRS2\_pTrkA\_endo + Crk\_C3G\_pFRS2\_endo + Crk\_C3G\_pFRS2\_endo + Crk\_C3G\_endo + Crk\_C3G\_e$$

Table 199: Properties of each reactant.

| Id                          | Name                        | SBO |
|-----------------------------|-----------------------------|-----|
| pFRS2_pTrkA_endo<br>Crk_C3G | pFRS2_pTrkA_endo<br>Crk_C3G |     |

Table 200: Properties of each modifier.

| Id                          | Name                        | SBO |
|-----------------------------|-----------------------------|-----|
| Crk_C3G<br>pFRS2_pTrkA_endo | Crk_C3G<br>pFRS2_pTrkA_endo |     |
| Crk_C3G_pFRS2_pTrkA_endo    | Crk_C3G_pFRS2_pTrkA_endo    |     |

#### **Product**

Table 201: Properties of each product.

| Id                       | Name                     | SBO |
|--------------------------|--------------------------|-----|
| Crk_C3G_pFRS2_pTrkA_endo | Crk_C3G_pFRS2_pTrkA_endo |     |

#### **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{66} = kf_{-}67 \cdot [Crk_{-}C3G] \cdot [pFRS2\_pTrkA\_endo] - kb_{-}67 \cdot [Crk_{-}C3G\_pFRS2\_pTrkA\_endo] \quad (132)$$

# 6.67 Reaction R68

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

### Name R68

# **Reaction equation**

$$pFRS2 \xrightarrow{pFRS2} FRS2 \tag{133}$$

Table 202: Properties of each reactant.

| Id    | Name  | SBO |
|-------|-------|-----|
| pFRS2 | pFRS2 |     |

Table 203: Properties of each modifier.

| Id    | Name  | SBO |
|-------|-------|-----|
| pFRS2 | pFRS2 |     |

# **Product**

Table 204: Properties of each product.

| Id   | Name | SBO |
|------|------|-----|
| FRS2 | FRS2 |     |

### **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \ mol \cdot m^{-3}$ 

$$v_{67} = \text{kf}_{-}68 \cdot [\text{pFRS2}] \tag{134}$$

# 6.68 Reaction R69

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

Name R69

# **Reaction equation**

$$Rap1\_GTP \xrightarrow{Rap1\_GTP} Rap1\_GDP$$
 (135)

Table 205: Properties of each reactant.

| Id       | Name     | SBO |
|----------|----------|-----|
| Rap1_GTP | Rap1_GTP | _   |

Table 206: Properties of each modifier.

| Id       | Name     | SBO |
|----------|----------|-----|
| Rap1_GTP | Rap1_GTP |     |

### **Product**

Table 207: Properties of each product.

| Id       | Name     | SBO |
|----------|----------|-----|
| Rap1_GDP | Rap1_GDP |     |

### **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \ mol \cdot m^{-3}$ 

$$v_{68} = \text{kf}\_69 \cdot [\text{Rap1}\_\text{GTP}] \tag{136}$$

# 6.69 Reaction R70

This is a fast irreversible reaction of two reactants forming two products influenced by two modifiers.

Name R70

# **Reaction equation**

$$Rap1\_GDP + Crk\_C3G\_pFRS2\_pTrkA\_endo \xrightarrow{Crk\_C3G\_pFRS2\_pTrkA\_endo, Rap1\_GDP} Rap1\_GTP + Crk\_C3G\_pFRCS2\_pTrkA\_endo \xrightarrow{Rap1\_GDP} Rap1\_gTP + Crk\_C3G\_pTP +$$

Table 208: Properties of each reactant.

| Id                                   | Name                                 | SBO |
|--------------------------------------|--------------------------------------|-----|
| Rap1_GDP<br>Crk_C3G_pFRS2_pTrkA_endo | Rap1_GDP<br>Crk_C3G_pFRS2_pTrkA_endo |     |

Table 209: Properties of each modifier.

| Id                                   | Name                                 | SBO |
|--------------------------------------|--------------------------------------|-----|
| Crk_C3G_pFRS2_pTrkA_endo<br>Rap1_GDP | Crk_C3G_pFRS2_pTrkA_endo<br>Rap1_GDP |     |

### **Products**

Table 210: Properties of each product.

| Id                                   | Name                              | SBO |
|--------------------------------------|-----------------------------------|-----|
| Rap1_GTP<br>Crk_C3G_pFRS2_pTrkA_endo | Rap1_GTP Crk_C3G_pFRS2_pTrkA_endo |     |

### **Kinetic Law**

Derived unit  $~s^{-1}\cdot 10^{-12}~mol\cdot m^{-3}$ 

$$v_{69} = \frac{Vmax\_70 \cdot [Crk\_C3G\_pFRS2\_pTrkA\_endo] \cdot [Rap1\_GDP]}{Km\_70 + [Rap1\_GDP]}$$
 (138)

#### **6.70 Reaction R71**

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

#### Name R71

# **Reaction equation**

$$Rap1\_GTP \xrightarrow{Rap1\_GTP} Rap1\_GDP$$
 (139)

Table 211: Properties of each reactant.

| Id       | Name     | SBO |
|----------|----------|-----|
| Rap1_GTP | Rap1_GTP |     |

Table 212: Properties of each modifier.

| Id       | Name     | SBO |
|----------|----------|-----|
| Rap1_GTP | Rap1_GTP |     |

### **Product**

Table 213: Properties of each product.

| Id       | Name     | SBO |
|----------|----------|-----|
| Rap1_GDP | Rap1_GDP |     |

### **Kinetic Law**

Derived unit  $~s^{-1}\cdot m^{-3}\cdot 10^{-6}~mol$ 

$$v_{70} = \frac{Vmax\_71 \cdot Rap1GAP \cdot [Rap1\_GTP]}{Km\_71 + [Rap1\_GTP]}$$
(140)

### **6.71 Reaction R72**

This is a fast irreversible reaction of one reactant forming two products influenced by one modifier.

# Name R72

# **Reaction equation**

$$B_Raf_Rap1_GTP \xrightarrow{B_Raf_Rap1_GTP} B_Raf_Rap1_GDP$$
 (141)

Table 214: Properties of each reactant.

| Id             | Name           | SBO |
|----------------|----------------|-----|
| B_Raf_Rap1_GTP | B_Raf_Rap1_GTP |     |

Table 215: Properties of each modifier.

| Id             | Name           | SBO |
|----------------|----------------|-----|
| B_Raf_Rap1_GTP | B_Raf_Rap1_GTP |     |

### **Products**

Table 216: Properties of each product.

| Id                   | Name     | SBO |
|----------------------|----------|-----|
| B_Raf                | B_Raf    |     |
| $\mathtt{Rap1\_GDP}$ | Rap1_GDP |     |

### **Kinetic Law**

**Derived unit**  $s^{-1} \cdot m^{-3} \cdot 10^{-6} \text{ mol}$ 

$$v_{71} = \frac{Vmax\_72 \cdot Rap1GAP \cdot [B\_Raf\_Rap1\_GTP]}{Km\_72 + [B\_Raf\_Rap1\_GTP]}$$
(142)

#### 6.72 Reaction R73

This is a fast irreversible reaction of two reactants forming one product influenced by three modifiers.

### Name R73

# **Reaction equation**

$$Ras\_GTP + c\_Raf \xrightarrow{c\_Raf, Ras\_GTP, c\_Raf\_Ras\_GTP} c\_Raf\_Ras\_GTP$$
 (143)

Table 217: Properties of each reactant.

| Id      | Name    | SBO |
|---------|---------|-----|
| Ras_GTP | Ras_GTP |     |
| c_Raf   | $c_Raf$ |     |

Table 218: Properties of each modifier.

| Id            | Name          | SBO |
|---------------|---------------|-----|
| c_Raf         | c_Raf         |     |
| Ras_GTP       | Ras_GTP       |     |
| c_Raf_Ras_GTP | c_Raf_Ras_GTP |     |

### **Product**

Table 219: Properties of each product.

| Id            | Name          | SBO |
|---------------|---------------|-----|
| c_Raf_Ras_GTP | c_Raf_Ras_GTP |     |

# **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{72} = \text{kf}_{-}73 \cdot [\text{c}_{-}\text{Raf}] \cdot [\text{Ras}_{-}\text{GTP}] - \text{kb}_{-}73 \cdot [\text{c}_{-}\text{Raf}_{-}\text{Ras}_{-}\text{GTP}]$$
 (144)

# 6.73 Reaction R74

This is a fast irreversible reaction of two reactants forming one product influenced by three modifiers.

### Name R74

# **Reaction equation**

$$Ras\_GTP + B\_Raf \xrightarrow{B\_Raf, Ras\_GTP, B\_Raf\_Ras\_GTP} B\_Raf\_Ras\_GTP \qquad (145)$$

Table 220: Properties of each reactant.

| Id               | Name             | SBO |
|------------------|------------------|-----|
| Ras_GTP<br>B_Raf | Ras_GTP<br>B_Raf |     |

Table 221: Properties of each modifier.

| Id            | Name          | SBO |
|---------------|---------------|-----|
| B_Raf         | B_Raf         |     |
| $Ras\_GTP$    | Ras_GTP       |     |
| B_Raf_Ras_GTP | B_Raf_Ras_GTP |     |

### **Product**

Table 222: Properties of each product.

| Id            | Name          | SBO |
|---------------|---------------|-----|
| B_Raf_Ras_GTP | B_Raf_Ras_GTP |     |

# **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{73} = \text{kf}_{-}74 \cdot [\text{B}_{-}\text{Raf}] \cdot [\text{Ras}_{-}\text{GTP}] - \text{kb}_{-}74 \cdot [\text{B}_{-}\text{Raf}_{-}\text{Ras}_{-}\text{GTP}]$$
 (146)

# 6.74 Reaction R75

This is a fast irreversible reaction of two reactants forming one product influenced by three modifiers.

### Name R75

# **Reaction equation**

$$B\_Raf + Rap1\_GTP \xrightarrow{B\_Raf} Rap1\_GTP, B\_Raf\_Rap1\_GTP \xrightarrow{B\_Raf\_Rap1\_GTP} B\_Raf\_Rap1\_GTP \tag{147}$$

Table 223: Properties of each reactant.

| Id          | Name     | SBO |
|-------------|----------|-----|
| B_Raf       | B_Raf    |     |
| $Rap1\_GTP$ | Rap1_GTP |     |

Table 224: Properties of each modifier.

| Id               | Name           | SBO |
|------------------|----------------|-----|
| B_Raf            | B_Raf          |     |
| $Rap1\_GTP$      | Rap1_GTP       |     |
| $B_Raf_Rap1_GTP$ | B_Raf_Rap1_GTP |     |

#### **Product**

Table 225: Properties of each product.

| Id             | Name           | SBO |
|----------------|----------------|-----|
| B_Raf_Rap1_GTP | B_Raf_Rap1_GTP |     |

# **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{74} = \text{kf}_{-}75 \cdot [\text{B}_{-}\text{Raf}] \cdot [\text{Rap1}_{-}\text{GTP}] - \text{kb}_{-}75 \cdot [\text{B}_{-}\text{Raf}_{-}\text{Rap1}_{-}\text{GTP}]$$
(148)

# 6.75 Reaction R76

This is a fast irreversible reaction of one reactant forming two products influenced by one modifier.

### Name R76

# **Reaction equation**

$$ppMEKcyt\_ERKcyt \xrightarrow{ppMEKcyt\_ERKcyt} ppMEKcyt + ppERKcyt$$
 (149)

Table 226: Properties of each reactant.

| Id              | Name            | SBO |
|-----------------|-----------------|-----|
| ppMEKcyt_ERKcyt | ppMEKcyt_ERKcyt |     |

Table 227: Properties of each modifier.

| Id              | Name            | SBO |
|-----------------|-----------------|-----|
| ppMEKcyt_ERKcyt | ppMEKcyt_ERKcyt |     |

### **Products**

Table 228: Properties of each product.

| Id                   | Name                 | SBO |
|----------------------|----------------------|-----|
| ppMEKcyt<br>ppERKcyt | ppMEKcyt<br>ppERKcyt |     |

### **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{75} = \text{kf}_{-}76 \cdot [\text{ppMEKcyt}_{-}\text{ERKcyt}]$$
 (150)

### **6.76 Reaction R77**

This is a fast irreversible reaction of one reactant forming one product influenced by two modifiers.

#### Name R77

# **Reaction equation**

$$2ppERKcyt \xrightarrow{ppERKcyt, dppERKcyt} dppERKcyt$$
 (151)

Table 229: Properties of each reactant.

| Id       | Name     | SBO |
|----------|----------|-----|
| ppERKcyt | ppERKcyt |     |

Table 230: Properties of each modifier.

| Id                    | Name                  | SBO |
|-----------------------|-----------------------|-----|
| ppERKcyt<br>dppERKcyt | ppERKcyt<br>dppERKcyt |     |

#### **Product**

Table 231: Properties of each product.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| dppERKcyt | dppERKcyt |     |

### **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{76} = \text{kf}_{-}77 \cdot [\text{ppERKcyt}] \cdot [\text{ppERKcyt}] - \text{kb}_{-}77 \cdot [\text{dppERKcyt}]$$
 (152)

### 6.77 Reaction R78

This is a fast irreversible reaction of two reactants forming one product influenced by three modifiers.

#### Name R78

# **Reaction equation**

$$MEKcyt + ERKcyt \xrightarrow{MEKcyt, ERKcyt, MEKcyt\_ERKcyt} MEKcyt\_ERKcyt$$
 (153)

Table 232: Properties of each reactant.

| Id | Name             | SBO |
|----|------------------|-----|
| •  | MEKcyt<br>ERKcyt |     |

Table 233: Properties of each modifier.

| Id            | Name          | SBO |
|---------------|---------------|-----|
| MEKcyt        | MEKcyt        |     |
| ERKcyt        | ERKcyt        |     |
| MEKcyt_ERKcyt | MEKcyt_ERKcyt |     |

#### **Product**

Table 234: Properties of each product.

| Id            | Name          | SBO |
|---------------|---------------|-----|
| MEKcyt_ERKcyt | MEKcyt_ERKcyt |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{77} = \text{kf}_{-}78 \cdot [\text{MEKcyt}] \cdot [\text{ERKcyt}] - \text{kb}_{-}78 \cdot [\text{MEKcyt}_{-}\text{ERKcyt}]$$
 (154)

## 6.78 Reaction R79

This is a fast irreversible reaction of two reactants forming one product influenced by three modifiers.

### Name R79

# **Reaction equation**

$$ERKcyt + pMEKcyt \xrightarrow{pMEKcyt, ERKcyt, pMEKcyt\_ERKcyt} pMEKcyt\_ERKcyt \qquad (155)$$

Table 235: Properties of each reactant.

| Id         | Name    | SBO |
|------------|---------|-----|
| ERKcyt     | ERKcyt  |     |
| pMEK $cyt$ | pMEKcyt |     |

Table 236: Properties of each modifier.

| Id                                  | Name                                | SBO |
|-------------------------------------|-------------------------------------|-----|
| pMEKcyt<br>ERKcyt<br>pMEKcyt_ERKcyt | pMEKcyt<br>ERKcyt<br>pMEKcyt_ERKcyt |     |

#### **Product**

Table 237: Properties of each product.

| Id             | Name           | SBO |
|----------------|----------------|-----|
| pMEKcyt_ERKcyt | pMEKcyt_ERKcyt |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{78} = \text{kf}_{-}79 \cdot [\text{pMEKcyt}] \cdot [\text{ERKcyt}] - \text{kb}_{-}79 \cdot [\text{pMEKcyt}_{-}\text{ERKcyt}]$$
 (156)

## 6.79 Reaction R80

This is a fast irreversible reaction of two reactants forming one product influenced by three modifiers.

### Name R80

# **Reaction equation**

$$ppMEKcyt + ERKcyt \xrightarrow{ppMEKcyt, ERKcyt, ppMEKcyt\_ERKcyt} ppMEKcyt\_ERKcyt \xrightarrow{(157)}$$

Table 238: Properties of each reactant.

| Id                 | Name               | SBO |
|--------------------|--------------------|-----|
| ppMEKcyt<br>ERKcyt | ppMEKcyt<br>ERKcyt |     |

Table 239: Properties of each modifier.

| Id                                    | Name                                  | SBO |
|---------------------------------------|---------------------------------------|-----|
| ppMEKcyt<br>ERKcyt<br>ppMEKcyt_ERKcyt | ppMEKcyt<br>ERKcyt<br>ppMEKcyt_ERKcyt |     |

#### **Product**

Table 240: Properties of each product.

| Id              | Name            | SBO |
|-----------------|-----------------|-----|
| ppMEKcyt_ERKcyt | ppMEKcyt_ERKcyt |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{79} = \text{kf}_{-}80 \cdot [\text{ppMEKcyt}] \cdot [\text{ERKcyt}] - \text{kb}_{-}80 \cdot [\text{ppMEKcyt}_{-}\text{ERKcyt}]$$
 (158)

## 6.80 Reaction R81

This is a fast irreversible reaction of two reactants forming two products influenced by two modifiers.

### Name R81

# **Reaction equation**

$$MEKcyt + c\_Raf\_Ras\_GTP \xrightarrow{c\_Raf\_Ras\_GTP, \ MEKcyt} pMEKcyt + c\_Raf\_Ras\_GTP \qquad (159)$$

Table 241: Properties of each reactant.

| Id                      | Name                    | SBO |
|-------------------------|-------------------------|-----|
| MEKcyt<br>c_Raf_Ras_GTP | MEKcyt<br>c_Raf_Ras_GTP |     |

Table 242: Properties of each modifier.

| Id                      | Name                    | SBO |
|-------------------------|-------------------------|-----|
| c_Raf_Ras_GTP<br>MEKcyt | c_Raf_Ras_GTP<br>MEKcyt |     |

#### **Products**

Table 243: Properties of each product.

| Id                       | Name                     | SBO |
|--------------------------|--------------------------|-----|
| pMEKcyt<br>c_Raf_Ras_GTP | pMEKcyt<br>c_Raf_Ras_GTP |     |

### **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-12} \ mol \cdot m^{-3}$ 

$$v_{80} = \frac{Vmax\_81 \cdot [c\_Raf\_Ras\_GTP] \cdot [MEKcyt]}{Km\_81 + [MEKcyt]}$$
(160)

#### 6.81 Reaction R82

This is a fast irreversible reaction of two reactants forming two products influenced by two modifiers.

#### Name R82

### **Reaction equation**

$$pMEKcyt + c\_Raf\_Ras\_GTP \xrightarrow{c\_Raf\_Ras\_GTP, \ pMEKcyt} ppMEKcyt + c\_Raf\_Ras\_GTP \quad (161)$$

Table 244: Properties of each reactant.

| Id                       | Name                     | SBO |
|--------------------------|--------------------------|-----|
| pMEKcyt<br>c_Raf_Ras_GTP | pMEKcyt<br>c_Raf_Ras_GTP |     |

Table 245: Properties of each modifier.

| Id                       | Name                     | SBO |
|--------------------------|--------------------------|-----|
| c_Raf_Ras_GTP<br>pMEKcyt | c_Raf_Ras_GTP<br>pMEKcyt |     |

#### **Products**

Table 246: Properties of each product.

| Id                        | Name                      | SBO |
|---------------------------|---------------------------|-----|
| ppMEKcyt<br>c_Raf_Ras_GTP | ppMEKcyt<br>c_Raf_Ras_GTP |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-12} \; mol \cdot m^{-3}$ 

$$v_{81} = \frac{Vmax\_82 \cdot [c\_Raf\_Ras\_GTP] \cdot [pMEKcyt]}{Km\_82 + [pMEKcyt]}$$
(162)

### 6.82 Reaction R83

This is a fast irreversible reaction of two reactants forming two products influenced by two modifiers.

### Name R83

## **Reaction equation**

$$MEKcyt\_ERKcyt + c\_Raf\_Ras\_GTP \xrightarrow{c\_Raf\_Ras\_GTP, MEKcyt\_ERKcyt} pMEKcyt\_ERKcyt + c\_Raf\_Ras\_GTP \xrightarrow{(163)}$$

Table 247: Properties of each reactant.

| Id                             | Name                           | SBO |
|--------------------------------|--------------------------------|-----|
| MEKcyt_ERKcyt<br>c_Raf_Ras_GTP | MEKcyt_ERKcyt<br>c_Raf_Ras_GTP |     |

Table 248: Properties of each modifier.

| Id                             | Name                           | SBO |
|--------------------------------|--------------------------------|-----|
| c_Raf_Ras_GTP<br>MEKcyt_ERKcyt | c_Raf_Ras_GTP<br>MEKcyt_ERKcyt |     |

#### **Products**

Table 249: Properties of each product.

| Id                              | Name                            | SBO |
|---------------------------------|---------------------------------|-----|
| pMEKcyt_ERKcyt<br>c_Raf_Ras_GTP | pMEKcyt_ERKcyt<br>c_Raf_Ras_GTP |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-12} \; mol \cdot m^{-3}$ 

$$v_{82} = \frac{Vmax\_83 \cdot [c\_Raf\_Ras\_GTP] \cdot [MEKcyt\_ERKcyt]}{Km\_83 + [MEKcyt\_ERKcyt]}$$
(164)

#### 6.83 Reaction R84

This is a fast irreversible reaction of two reactants forming two products influenced by two modifiers.

## Name R84

## **Reaction equation**

$$pMEKcyt\_ERKcyt + c\_Raf\_Ras\_GTP \xrightarrow{c\_Raf\_Ras\_GTP, \ pMEKcyt\_ERKcyt} ppMEKcyt\_ERKcyt + c\_Raf\_Ras\_GTP \xrightarrow{(165)}$$

Table 250: Properties of each reactant.

| Id                              | Name                            | SBO |
|---------------------------------|---------------------------------|-----|
| pMEKcyt_ERKcyt<br>c_Raf_Ras_GTP | pMEKcyt_ERKcyt<br>c_Raf_Ras_GTP |     |

Table 251: Properties of each modifier.

| Id                              | Name                            | SBO |
|---------------------------------|---------------------------------|-----|
| c_Raf_Ras_GTP<br>pMEKcyt_ERKcyt | c_Raf_Ras_GTP<br>pMEKcyt_ERKcyt |     |

### **Products**

Table 252: Properties of each product.

| Id                               | Name                             | SBO |
|----------------------------------|----------------------------------|-----|
| ppMEKcyt_ERKcyt<br>c_Raf_Ras_GTP | ppMEKcyt_ERKcyt<br>c_Raf_Ras_GTP |     |

### **Kinetic Law**

Derived unit  $~s^{-1}\cdot 10^{-12}~mol\cdot m^{-3}$ 

$$v_{83} = \frac{Vmax\_84 \cdot [c\_Raf\_Ras\_GTP] \cdot [pMEKcyt\_ERKcyt]}{Km\_84 + [pMEKcyt\_ERKcyt]}$$
(166)

#### 6.84 Reaction R85

This is a fast irreversible reaction of two reactants forming two products influenced by two modifiers.

#### Name R85

### **Reaction equation**

$$MEKcyt + B\_Raf\_Ras\_GTP \xrightarrow{B\_Raf\_Ras\_GTP, MEKcyt} pMEKcyt + B\_Raf\_Ras\_GTP \quad (167)$$

Table 253: Properties of each reactant.

| Id                      | Name                    | SBO |
|-------------------------|-------------------------|-----|
| MEKcyt<br>B_Raf_Ras_GTP | MEKcyt<br>B_Raf_Ras_GTP |     |

Table 254: Properties of each modifier.

| Id                      | Name                    | SBO |
|-------------------------|-------------------------|-----|
| B_Raf_Ras_GTP<br>MEKcyt | B_Raf_Ras_GTP<br>MEKcyt |     |

#### **Products**

Table 255: Properties of each product.

| Id                       | Name                     | SBO |
|--------------------------|--------------------------|-----|
| pMEKcyt<br>B_Raf_Ras_GTP | pMEKcyt<br>B_Raf_Ras_GTP |     |

#### **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-12} \; mol \cdot m^{-3}$ 

$$v_{84} = \frac{\text{Vmax\_85} \cdot [\text{B\_Raf\_Ras\_GTP}] \cdot [\text{MEKcyt}]}{\text{Km\_85} + [\text{MEKcyt}]}$$
(168)

## 6.85 Reaction R86

This is a fast irreversible reaction of two reactants forming two products influenced by two modifiers.

### Name R86

## **Reaction equation**

$$pMEKcyt + B_Raf_Ras_GTP \xrightarrow{B_Raf_Ras_GTP, pMEKcyt} ppMEKcyt + B_Raf_Ras_GTP \xrightarrow{(169)}$$

Table 256: Properties of each reactant.

| Id                       | Name                     | SBO |
|--------------------------|--------------------------|-----|
| pMEKcyt<br>B_Raf_Ras_GTP | pMEKcyt<br>B_Raf_Ras_GTP |     |

Table 257: Properties of each modifier.

| Id            | Name          | SBO |
|---------------|---------------|-----|
| B_Raf_Ras_GTP | B_Raf_Ras_GTP |     |
| pMEKcyt       | pMEKcyt       |     |

#### **Products**

Table 258: Properties of each product.

| Id                        | Name                      | SBO |
|---------------------------|---------------------------|-----|
| ppMEKcyt<br>B_Raf_Ras_GTP | ppMEKcyt<br>B_Raf_Ras_GTP |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-12} \; mol \cdot m^{-3}$ 

$$v_{85} = \frac{\text{Vmax\_86} \cdot [\text{B\_Raf\_Ras\_GTP}] \cdot [\text{pMEKcyt}]}{\text{Km\_86} + [\text{pMEKcyt}]}$$
(170)

#### 6.86 Reaction R87

This is a fast irreversible reaction of two reactants forming two products influenced by two modifiers.

Name R87

## **Reaction equation**

$$MEKcyt\_ERKcyt + B\_Raf\_Ras\_GTP \xrightarrow{B\_Raf\_Ras\_GTP, MEKcyt\_ERKcyt} pMEKcyt\_ERKcyt + B\_Raf\_Ras\_GTP \xrightarrow{(171)}$$

Table 259: Properties of each reactant.

| Id                             | Name                           | SBO |
|--------------------------------|--------------------------------|-----|
| MEKcyt_ERKcyt<br>B_Raf_Ras_GTP | MEKcyt_ERKcyt<br>B_Raf_Ras_GTP |     |

Table 260: Properties of each modifier.

| Id                             | Name                           | SBO |
|--------------------------------|--------------------------------|-----|
| B_Raf_Ras_GTP<br>MEKcyt_ERKcyt | B_Raf_Ras_GTP<br>MEKcyt_ERKcyt |     |

#### **Products**

Table 261: Properties of each product.

| Id                              | Name                            | SBO |
|---------------------------------|---------------------------------|-----|
| pMEKcyt_ERKcyt<br>B_Raf_Ras_GTP | pMEKcyt_ERKcyt<br>B_Raf_Ras_GTP |     |

# **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-12} \; mol \cdot m^{-3}$ 

$$v_{86} = \frac{Vmax\_87 \cdot [B\_Raf\_Ras\_GTP] \cdot [MEKcyt\_ERKcyt]}{Km\_87 + [MEKcyt\_ERKcyt]}$$
(172)

#### 6.87 Reaction R88

This is a fast irreversible reaction of two reactants forming two products influenced by two modifiers.

### Name R88

## **Reaction equation**

$$pMEKcyt\_ERKcyt + B\_Raf\_Ras\_GTP \xrightarrow{B\_Raf\_Ras\_GTP, \ pMEKcyt\_ERKcyt} ppMEKcyt\_ERKcyt + B\_Raf\_Ras\_GTP \xrightarrow{(173)}$$

Table 262: Properties of each reactant.

| Id                              | Name                            | SBO |
|---------------------------------|---------------------------------|-----|
| pMEKcyt_ERKcyt<br>B_Raf_Ras_GTP | pMEKcyt_ERKcyt<br>B_Raf_Ras_GTP |     |

Table 263: Properties of each modifier.

| Id             | Name           | SBO |
|----------------|----------------|-----|
| B_Raf_Ras_GTP  | B_Raf_Ras_GTP  |     |
| pMEKcyt_ERKcyt | pMEKcyt_ERKcyt |     |

#### **Products**

Table 264: Properties of each product.

| Id                               | Name                             | SBO |
|----------------------------------|----------------------------------|-----|
| ppMEKcyt_ERKcyt<br>B_Raf_Ras_GTP | ppMEKcyt_ERKcyt<br>B_Raf_Ras_GTP |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-12} \; mol \cdot m^{-3}$ 

$$v_{87} = \frac{Vmax\_88 \cdot [B\_Raf\_Ras\_GTP] \cdot [pMEKcyt\_ERKcyt]}{Km\_88 + [pMEKcyt\_ERKcyt]}$$
(174)

#### 6.88 Reaction R89

This is a fast irreversible reaction of two reactants forming two products influenced by two modifiers.

### Name R89

## **Reaction equation**

$$MEKcyt + B\_Raf\_Rap1\_GTP \xrightarrow{B\_Raf\_Rap1\_GTP, MEKcyt} pMEKcyt + B\_Raf\_Rap1\_GTP \tag{175}$$

Table 265: Properties of each reactant.

| Id                       | Name                     | SBO |
|--------------------------|--------------------------|-----|
| MEKcyt<br>B_Raf_Rap1_GTP | MEKcyt<br>B_Raf_Rap1_GTP |     |

Table 266: Properties of each modifier.

| Id                       | Name                     | SBO |
|--------------------------|--------------------------|-----|
| B_Raf_Rap1_GTP<br>MEKcyt | B_Raf_Rap1_GTP<br>MEKcyt |     |

#### **Products**

Table 267: Properties of each product.

| Id                        | Name                      | SBO |
|---------------------------|---------------------------|-----|
| pMEKcyt<br>B_Raf_Rap1_GTP | pMEKcyt<br>B_Raf_Rap1_GTP |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-12} \; mol \cdot m^{-3}$ 

$$v_{88} = \frac{Vmax\_89 \cdot [B\_Raf\_Rap1\_GTP] \cdot [MEKcyt]}{Km\_89 + [MEKcyt]}$$
(176)

#### **6.89 Reaction R90**

This is a fast irreversible reaction of two reactants forming two products influenced by two modifiers.

### Name R90

## **Reaction equation**

$$pMEKcyt + B\_Raf\_Rap1\_GTP \xrightarrow{B\_Raf\_Rap1\_GTP, \ pMEKcyt} ppMEKcyt + B\_Raf\_Rap1\_GTP \xrightarrow{(177)}$$

Table 268: Properties of each reactant.

| Id                        | Name                      | SBO |
|---------------------------|---------------------------|-----|
| pMEKcyt<br>B_Raf_Rap1_GTP | pMEKcyt<br>B_Raf_Rap1_GTP |     |

Table 269: Properties of each modifier.

| Id                        | Name                      | SBO |
|---------------------------|---------------------------|-----|
| B_Raf_Rap1_GTP<br>pMEKcyt | B_Raf_Rap1_GTP<br>pMEKcyt |     |

#### **Products**

Table 270: Properties of each product.

| Id                         | Name                       | SBO |
|----------------------------|----------------------------|-----|
| ppMEKcyt<br>B_Raf_Rap1_GTP | ppMEKcyt<br>B_Raf_Rap1_GTP |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-12} \; mol \cdot m^{-3}$ 

$$v_{89} = \frac{\text{Vmax\_90} \cdot [\text{B\_Raf\_Rap1\_GTP}] \cdot [\text{pMEKcyt}]}{\text{Km\_90} + [\text{pMEKcyt}]}$$
(178)

#### 6.90 Reaction R91

This is a fast irreversible reaction of two reactants forming two products influenced by two modifiers.

Name R91

## **Reaction equation**

Table 271: Properties of each reactant.

| Id                              | Name                            | SBO |
|---------------------------------|---------------------------------|-----|
| MEKcyt_ERKcyt<br>B_Raf_Rap1_GTP | MEKcyt_ERKcyt<br>B_Raf_Rap1_GTP |     |

Table 272: Properties of each modifier.

| Id                              | Name                            | SBO |
|---------------------------------|---------------------------------|-----|
| B_Raf_Rap1_GTP<br>MEKcyt_ERKcyt | B_Raf_Rap1_GTP<br>MEKcyt_ERKcyt |     |

#### **Products**

Table 273: Properties of each product.

| Id                               | Name                             | SBO |
|----------------------------------|----------------------------------|-----|
| pMEKcyt_ERKcyt<br>B_Raf_Rap1_GTP | pMEKcyt_ERKcyt<br>B_Raf_Rap1_GTP |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-12} \; mol \cdot m^{-3}$ 

$$v_{90} = \frac{Vmax\_91 \cdot [B\_Raf\_Rap1\_GTP] \cdot [MEKcyt\_ERKcyt]}{Km\_91 + [MEKcyt\_ERKcyt]}$$
(180)

#### **6.91 Reaction R92**

This is a fast irreversible reaction of two reactants forming two products influenced by two modifiers.

Name R92

## **Reaction equation**

$$pMEKcyt\_ERKcyt + B\_Raf\_Rap1\_GTP \xrightarrow{B\_Raf\_Rap1\_GTP, \ pMEKcyt\_ERKcyt} ppMEKcyt\_ERKcyt + B\_Raf\_Rap1\_GTP \xrightarrow{(181)}$$

Table 274: Properties of each reactant.

| Id                               | Name                             | SBO |
|----------------------------------|----------------------------------|-----|
| pMEKcyt_ERKcyt<br>B_Raf_Rap1_GTP | pMEKcyt_ERKcyt<br>B_Raf_Rap1_GTP |     |

Table 275: Properties of each modifier.

| Id                               | Name                             | SBO |
|----------------------------------|----------------------------------|-----|
| B_Raf_Rap1_GTP<br>pMEKcyt_ERKcyt | B_Raf_Rap1_GTP<br>pMEKcyt_ERKcyt |     |

### **Products**

Table 276: Properties of each product.

| Id                                | Name                              | SBO |
|-----------------------------------|-----------------------------------|-----|
| ppMEKcyt_ERKcyt<br>B_Raf_Rap1_GTP | ppMEKcyt_ERKcyt<br>B_Raf_Rap1_GTP |     |

### **Kinetic Law**

Derived unit  $~s^{-1}\cdot 10^{-12}~mol\cdot m^{-3}$ 

$$v_{91} = \frac{Vmax\_92 \cdot [B\_Raf\_Rap1\_GTP] \cdot [pMEKcyt\_ERKcyt]}{Km\_92 + [pMEKcyt\_ERKcyt]}$$
(182)

### **6.92 Reaction R93**

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

#### Name R93

## **Reaction equation**

$$pMEKcyt \xrightarrow{pMEKcyt} MEKcyt$$
 (183)

Table 277: Properties of each reactant.

| Id      | Name    | SBO |
|---------|---------|-----|
| pMEKcyt | pMEKcyt |     |

Table 278: Properties of each modifier.

| Id      | Name    | SBO |
|---------|---------|-----|
| pMEKcyt | pMEKcyt |     |

### **Product**

Table 279: Properties of each product.

| Id     | Name   | SBO |
|--------|--------|-----|
| MEKcyt | MEKcyt |     |

### **Kinetic Law**

Derived unit  $~s^{-1}\cdot m^{-3}\cdot 10^{-6}~mol$ 

$$v_{92} = \frac{\text{Vmax\_93} \cdot \text{PP2Acyt} \cdot [\text{pMEKcyt}]}{\text{Km\_93} + [\text{pMEKcyt}]}$$
(184)

### 6.93 Reaction R94

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

#### Name R94

## **Reaction equation**

$$ppMEKcyt \xrightarrow{ppMEKcyt} pMEKcyt$$
 (185)

Table 280: Properties of each reactant.

| Id       | Name     | SBO |
|----------|----------|-----|
| ppMEKcyt | ppMEKcyt |     |

Table 281: Properties of each modifier.

| Id       | Name     | SBO |
|----------|----------|-----|
| ppMEKcyt | ppMEKcyt |     |

### **Product**

Table 282: Properties of each product.

| Id      | Name    | SBO |
|---------|---------|-----|
| pMEKcyt | pMEKcyt |     |

### **Kinetic Law**

Derived unit  $~s^{-1}\cdot m^{-3}\cdot 10^{-6}~mol$ 

$$v_{93} = \frac{Vmax\_94 \cdot PP2Acyt \cdot [ppMEKcyt]}{Km\_94 + [ppMEKcyt]}$$
(186)

### 6.94 Reaction R95

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

## Name R95

## **Reaction equation**

$$pMEKcyt\_ERKcyt \xrightarrow{pMEKcyt\_ERKcyt} MEKcyt\_ERKcyt$$
 (187)

Table 283: Properties of each reactant.

| Id             | Name           | SBO |
|----------------|----------------|-----|
| pMEKcyt_ERKcyt | pMEKcyt_ERKcyt |     |

Table 284: Properties of each modifier.

| Id             | Name           | SBO |
|----------------|----------------|-----|
| pMEKcyt_ERKcyt | pMEKcyt_ERKcyt |     |

### **Product**

Table 285: Properties of each product.

| Id            | Name          | SBO |
|---------------|---------------|-----|
| MEKcyt_ERKcyt | MEKcyt_ERKcyt |     |

### **Kinetic Law**

Derived unit  $s^{-1} \cdot m^{-3} \cdot 10^{-6} \text{ mol}$ 

$$v_{94} = \frac{Vmax\_95 \cdot PP2Acyt \cdot [pMEKcyt\_ERKcyt]}{Km\_95 + [pMEKcyt\_ERKcyt]}$$
(188)

### 6.95 Reaction R96

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

## Name R96

## **Reaction equation**

$$ppMEKcyt\_ERKcyt \xrightarrow{ppMEKcyt\_ERKcyt} pMEKcyt\_ERKcyt$$
 (189)

Table 286: Properties of each reactant.

| Id              | Name            | SBO |
|-----------------|-----------------|-----|
| ppMEKcyt_ERKcyt | ppMEKcyt_ERKcyt |     |

Table 287: Properties of each modifier.

| Id              | Name            | SBO |
|-----------------|-----------------|-----|
| ppMEKcyt_ERKcyt | ppMEKcyt_ERKcyt |     |

### **Product**

Table 288: Properties of each product.

| Id             | Name           | SBO |
|----------------|----------------|-----|
| pMEKcyt_ERKcyt | pMEKcyt_ERKcyt |     |

### **Kinetic Law**

Derived unit  $~s^{-1}\cdot m^{-3}\cdot 10^{-6}~mol$ 

$$v_{95} = \frac{\text{Vmax\_96} \cdot \text{PP2Acyt} \cdot [\text{ppMEKcyt\_ERKcyt}]}{\text{Km\_96} + [\text{ppMEKcyt\_ERKcyt}]}$$
(190)

### 6.96 Reaction R97

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

# Name R97

## **Reaction equation**

$$ppERKcyt \xrightarrow{ppERKcyt} ERKcyt$$
 (191)

Table 289: Properties of each reactant.

| Id       | Name     | SBO |
|----------|----------|-----|
| ppERKcyt | ppERKcyt |     |

Table 290: Properties of each modifier.

| Id       | Name     | SBO |
|----------|----------|-----|
| ppERKcyt | ppERKcyt |     |

### **Product**

Table 291: Properties of each product.

| Id     | Name   | SBO |
|--------|--------|-----|
| ERKcyt | ERKcyt |     |

### **Kinetic Law**

Derived unit  $~s^{-1}\cdot m^{-3}\cdot 10^{-6}~mol$ 

$$v_{96} = \frac{\text{Vmax\_97} \cdot \text{MKP3cyt} \cdot [\text{ppERKcyt}]}{\text{Km\_97} + [\text{ppERKcyt}]}$$
(192)

### 6.97 Reaction R98

This is a fast irreversible reaction of one reactant forming two products influenced by one modifier.

#### Name R98

## **Reaction equation**

$$dppERKcyt \xrightarrow{dppERKcyt} ppERKcyt + ERKcyt$$
 (193)

Table 292: Properties of each reactant.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| dppERKcyt | dppERKcyt |     |

Table 293: Properties of each modifier.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| dppERKcyt | dppERKcyt |     |

### **Products**

Table 294: Properties of each product.

| Id                 | Name               | SBO |
|--------------------|--------------------|-----|
| ppERKcyt<br>ERKcyt | ppERKcyt<br>ERKcyt |     |

### **Kinetic Law**

**Derived unit**  $s^{-1} \cdot m^{-3} \cdot 10^{-6} \text{ mol}$ 

$$v_{97} = \frac{\text{Vmax\_98} \cdot \text{MKP3cyt} \cdot [\text{dppERKcyt}]}{\text{Km\_98} + [\text{dppERKcyt}]}$$
(194)

### 6.98 Reaction R99

This is a fast irreversible reaction of one reactant forming two products influenced by one modifier.

## Name R99

## **Reaction equation**

$$ppMEKnuc\_ERKnuc \xrightarrow{ppMEKnuc\_ERKnuc} ppMEKnuc + ppERKnuc$$
 (195)

Table 295: Properties of each reactant.

| Id              | Name            | SBO |
|-----------------|-----------------|-----|
| ppMEKnuc_ERKnuc | ppMEKnuc_ERKnuc |     |

Table 296: Properties of each modifier.

| Id              | Name            | SBO |
|-----------------|-----------------|-----|
| ppMEKnuc_ERKnuc | ppMEKnuc_ERKnuc |     |

### **Products**

Table 297: Properties of each product.

| Id                   | Name                 | SBO |
|----------------------|----------------------|-----|
| ppMEKnuc<br>ppERKnuc | ppMEKnuc<br>ppERKnuc |     |

### **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{98} = \text{kf\_99} \cdot [\text{ppMEKnuc\_ERKnuc}] \tag{196}$$

### **6.99 Reaction R100**

This is a fast irreversible reaction of one reactant forming one product influenced by two modifiers.

#### Name R100

# **Reaction equation**

$$2 ppERKnuc \xrightarrow{ppERKnuc, dppERKnuc} dppERKnuc$$
 (197)

Table 298: Properties of each reactant.

| Id       | Name     | SBO |
|----------|----------|-----|
| ppERKnuc | ppERKnuc |     |

Table 299: Properties of each modifier.

| Id                    | Name                  | SBO |
|-----------------------|-----------------------|-----|
| ppERKnuc<br>dppERKnuc | ppERKnuc<br>dppERKnuc |     |

#### **Product**

Table 300: Properties of each product.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| dppERKnuc | dppERKnuc |     |

### **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{99} = \text{kf}_{-}100 \cdot [\text{ppERKnuc}] \cdot [\text{ppERKnuc}] - \text{kb}_{-}100 \cdot [\text{dppERKnuc}]$$
(198)

### **6.100 Reaction R101**

This is a fast irreversible reaction of two reactants forming one product influenced by three modifiers.

#### Name R101

# **Reaction equation**

$$MEKnuc + ERKnuc \xrightarrow{MEKnuc, ERKnuc, MEKnuc ERKnuc} MEKnuc ERKnuc$$
 (199)

Table 301: Properties of each reactant.

| lame | SBO              |
|------|------------------|
|      |                  |
|      | MEKnuc<br>ERKnuc |

Table 302: Properties of each modifier.

| Id                                 | Name          | SBO |
|------------------------------------|---------------|-----|
| MEKnuc                             | MEKnuc        |     |
| ERKnuc                             | ERKnuc        |     |
| $\texttt{MEKnuc}\_\texttt{ERKnuc}$ | MEKnuc_ERKnuc |     |

#### **Product**

Table 303: Properties of each product.

| Id            | Name          | SBO |
|---------------|---------------|-----|
| MEKnuc_ERKnuc | MEKnuc_ERKnuc |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{100} = kf_{-}101 \cdot [MEKnuc] \cdot [ERKnuc] - kb_{-}101 \cdot [MEKnuc\_ERKnuc]$$
 (200)

# **6.101 Reaction** R102

This is a fast irreversible reaction of two reactants forming one product influenced by three modifiers.

### Name R102

# **Reaction equation**

$$ERKnuc + pMEKnuc \xrightarrow{pMEKnuc}, ERKnuc, pMEKnuc\_ERKnuc \xrightarrow{pMEKnuc} pMEKnuc\_ERKnuc \tag{201}$$

Table 304: Properties of each reactant.

| Id      | Name    | SBO |
|---------|---------|-----|
| ERKnuc  | ERKnuc  |     |
| pMEKnuc | pMEKnuc |     |

Table 305: Properties of each modifier.

| Id                      | Name              | SBO |
|-------------------------|-------------------|-----|
| pMEKnuc<br>ERKnuc       | pMEKnuc<br>ERKnuc |     |
| ${\tt pMEKnuc\_ERKnuc}$ | pMEKnuc_ERKnuc    |     |

#### **Product**

Table 306: Properties of each product.

| Id             | Name           | SBO |
|----------------|----------------|-----|
| pMEKnuc_ERKnuc | pMEKnuc_ERKnuc |     |

### **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \ mol \cdot m^{-3}$ 

$$v_{101} = \text{kf}_{-}102 \cdot [\text{pMEKnuc}] \cdot [\text{ERKnuc}] - \text{kb}_{-}102 \cdot [\text{pMEKnuc}_{-}\text{ERKnuc}]$$
 (202)

### **6.102 Reaction R103**

This is a fast irreversible reaction of two reactants forming one product influenced by three modifiers.

Name R103

## **Reaction equation**

$$ppMEKnuc + ERKnuc \xrightarrow{ppMEKnuc, ERKnuc, ppMEKnuc\_ERKnuc} ppMEKnuc\_ERKnuc \xrightarrow{ppMEKnuc} ppMEKnuc\_ERKnuc \xrightarrow{ppMEKnuc} (203)$$

Table 307: Properties of each reactant.

| Id                 | Name               | SBO |
|--------------------|--------------------|-----|
| ppMEKnuc<br>ERKnuc | ppMEKnuc<br>ERKnuc |     |

Table 308: Properties of each modifier.

| Id                       | Name               | SBO |
|--------------------------|--------------------|-----|
| ppMEKnuc<br>ERKnuc       | ppMEKnuc<br>ERKnuc |     |
| ${\tt ppMEKnuc\_ERKnuc}$ | ppMEKnuc_ERKnuc    |     |

### **Product**

Table 309: Properties of each product.

| Id              | Name            | SBO |
|-----------------|-----------------|-----|
| ppMEKnuc_ERKnuc | ppMEKnuc_ERKnuc |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{102} = \text{kf}_{-}103 \cdot [\text{ppMEKnuc}] \cdot [\text{ERKnuc}] - \text{kb}_{-}103 \cdot [\text{ppMEKnuc}_{-}\text{ERKnuc}]$$
 (204)

## **6.103 Reaction R104**

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

Name R104

## **Reaction equation**

$$pMEKnuc \xrightarrow{pMEKnuc} MEKnuc$$
 (205)

Table 310: Properties of each reactant.

| Id      | Name    | SBO |
|---------|---------|-----|
| pMEKnuc | pMEKnuc |     |

Table 311: Properties of each modifier.

| Id      | Name    | SBO |
|---------|---------|-----|
| pMEKnuc | pMEKnuc |     |

### **Product**

Table 312: Properties of each product.

| Id     | Name   | SBO |
|--------|--------|-----|
| MEKnuc | MEKnuc |     |

### **Kinetic Law**

Derived unit  $~s^{-1}\cdot m^{-3}\cdot 10^{-6}~mol$ 

$$v_{103} = \frac{Vmax\_104 \cdot PP2Anuc \cdot [pMEKnuc]}{Km\_104 + [pMEKnuc]}$$
(206)

### **6.104 Reaction R105**

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

## **Name** R105

## **Reaction equation**

$$ppMEKnuc \xrightarrow{ppMEKnuc} pMEKnuc$$
 (207)

Table 313: Properties of each reactant.

| Id       | Name     | SBO |
|----------|----------|-----|
| ppMEKnuc | ppMEKnuc | _   |

Table 314: Properties of each modifier.

| Id       | Name     | SBO |
|----------|----------|-----|
| ppMEKnuc | ppMEKnuc |     |

### **Product**

Table 315: Properties of each product.

| Id      | Name    | SBO |
|---------|---------|-----|
| pMEKnuc | pMEKnuc |     |

### **Kinetic Law**

Derived unit  $\,s^{-1}\cdot m^{-3}\cdot 10^{-6}\;mol$ 

$$v_{104} = \frac{Vmax\_105 \cdot PP2Anuc \cdot [ppMEKnuc]}{Km\_105 + [ppMEKnuc]}$$
(208)

### **6.105 Reaction R106**

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

#### Name R106

## **Reaction equation**

$$pMEKnuc\_ERKnuc \xrightarrow{pMEKnuc\_ERKnuc} MEKnuc\_ERKnuc$$
 (209)

Table 316: Properties of each reactant.

| Id             | Name           | SBO |
|----------------|----------------|-----|
| pMEKnuc_ERKnuc | pMEKnuc_ERKnuc |     |

Table 317: Properties of each modifier.

| Id             | Name           | SBO |
|----------------|----------------|-----|
| pMEKnuc_ERKnuc | pMEKnuc_ERKnuc |     |

### **Product**

Table 318: Properties of each product.

| Id            | Name          | SBO |
|---------------|---------------|-----|
| MEKnuc_ERKnuc | MEKnuc_ERKnuc |     |

### **Kinetic Law**

Derived unit  $s^{-1} \cdot m^{-3} \cdot 10^{-6} \text{ mol}$ 

$$v_{105} = \frac{Vmax\_106 \cdot PP2Anuc \cdot [pMEKnuc\_ERKnuc]}{Km\_106 + [pMEKnuc\_ERKnuc]}$$
(210)

### **6.106 Reaction R107**

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

## Name R107

## **Reaction equation**

$$ppMEKnuc\_ERKnuc \xrightarrow{ppMEKnuc\_ERKnuc} pMEKnuc\_ERKnuc$$
 (211)

Table 319: Properties of each reactant.

| Id              | Name            | SBO |
|-----------------|-----------------|-----|
| ppMEKnuc_ERKnuc | ppMEKnuc_ERKnuc |     |

Table 320: Properties of each modifier.

| Id              | Name            | SBO |
|-----------------|-----------------|-----|
| ppMEKnuc_ERKnuc | ppMEKnuc_ERKnuc |     |

### **Product**

Table 321: Properties of each product.

| Id             | Name           | SBO |
|----------------|----------------|-----|
| pMEKnuc_ERKnuc | pMEKnuc_ERKnuc |     |

### **Kinetic Law**

Derived unit  $~s^{-1}\cdot m^{-3}\cdot 10^{-6}~mol$ 

$$v_{106} = \frac{Vmax\_107 \cdot PP2Anuc \cdot [ppMEKnuc\_ERKnuc]}{Km\_107 + [ppMEKnuc\_ERKnuc]}$$
(212)

### **6.107 Reaction R108**

This is a fast irreversible reaction of one reactant forming one product influenced by one modifier.

## Name R108

## **Reaction equation**

$$ppERKnuc \xrightarrow{ppERKnuc} ERKnuc$$
 (213)

Table 322: Properties of each reactant.

| Id       | Name     | SBO |
|----------|----------|-----|
| ppERKnuc | ppERKnuc |     |

Table 323: Properties of each modifier.

| Id       | Name     | SBO |
|----------|----------|-----|
| ppERKnuc | ppERKnuc |     |

### **Product**

Table 324: Properties of each product.

| Id     | Name   | SBO |
|--------|--------|-----|
| ERKnuc | ERKnuc |     |

### **Kinetic Law**

Derived unit  $s^{-1} \cdot m^{-3} \cdot 10^{-6} \text{ mol}$ 

$$v_{107} = \frac{Vmax\_108 \cdot MKP3nuc \cdot [ppERKnuc]}{Km\_108 + [ppERKnuc]}$$
(214)

### **6.108 Reaction R109**

This is a fast irreversible reaction of one reactant forming two products influenced by one modifier.

#### Name R109

## **Reaction equation**

$$dppERKnuc \xrightarrow{dppERKnuc} ppERKnuc + ERKnuc$$
 (215)

Table 325: Properties of each reactant.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| dppERKnuc | dppERKnuc |     |

Table 326: Properties of each modifier.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| dppERKnuc | dppERKnuc |     |

### **Products**

Table 327: Properties of each product.

| Id                 | Name               | SBO |
|--------------------|--------------------|-----|
| ppERKnuc<br>ERKnuc | ppERKnuc<br>ERKnuc |     |

### **Kinetic Law**

Derived unit  $s^{-1} \cdot m^{-3} \cdot 10^{-6} \text{ mol}$ 

$$v_{108} = \frac{Vmax\_109 \cdot MKP3nuc \cdot [dppERKnuc]}{Km\_109 + [dppERKnuc]}$$
(216)

### **6.109 Reaction R110**

This is a fast irreversible reaction of one reactant forming no product influenced by one modifier.

## **Name** R110

## **Reaction equation**

$$pMEKcyt \xrightarrow{pMEKcyt} \emptyset$$
 (217)

Table 328: Properties of each reactant.

| Id      | Name    | SBO |
|---------|---------|-----|
| pMEKcyt | pMEKcyt |     |

Table 329: Properties of each modifier.

| Id      | Name    | SBO |
|---------|---------|-----|
| pMEKcyt | pMEKcyt |     |

### **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{109} = \text{kf}_{-}110 \cdot [\text{pMEKcyt}] \tag{218}$$

#### **6.110 Reaction R111**

This is a fast irreversible reaction of one reactant forming two products influenced by one modifier.

### Name R111

## **Reaction equation**

$$pMEKcyt \xrightarrow{pMEKcyt} pMEKnuc + pMEKcyt$$
 (219)

### Reactant

Table 330: Properties of each reactant.

| Id      | Name    | SBO |
|---------|---------|-----|
| pMEKcyt | pMEKcyt |     |

### **Modifier**

Table 331: Properties of each modifier.

| Id      | Name    | SBO |
|---------|---------|-----|
| pMEKcyt | pMEKcyt |     |

### **Products**

Table 332: Properties of each product.

| Id      | Name    | SBO |
|---------|---------|-----|
| pMEKnuc | pMEKnuc |     |
| pMEKcyt | pMEKcyt |     |

#### **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{110} = \text{kf}_{-1}11 \cdot [\text{pMEKcyt}]$$
 (220)

### **6.111 Reaction R112**

This is a fast irreversible reaction of one reactant forming two products influenced by one modifier.

#### Name R112

# **Reaction equation**

$$pMEKnuc \xrightarrow{pMEKnuc} pMEKcyt + pMEKnuc$$
 (221)

## Reactant

Table 333: Properties of each reactant.

| Id      | Name    | SBO |
|---------|---------|-----|
| pMEKnuc | pMEKnuc |     |

# Modifier

Table 334: Properties of each modifier.

| Id      | Name    | SBO |
|---------|---------|-----|
| pMEKnuc | pMEKnuc |     |

## **Products**

Table 335: Properties of each product.

| Id                 | Name               | SBO |
|--------------------|--------------------|-----|
| pMEKcyt<br>pMEKnuc | pMEKcyt<br>pMEKnuc |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \ mol \cdot m^{-3}$ 

$$v_{111} = kf_{-}112 \cdot [pMEKnuc] \tag{222}$$

# **6.112 Reaction R113**

This is a fast irreversible reaction of one reactant forming no product influenced by one modifier.

# Name R113

# **Reaction equation**

$$pMEKnuc \xrightarrow{pMEKnuc} \emptyset$$
 (223)

## Reactant

Table 336: Properties of each reactant.

| Id      | Name    | SBO |
|---------|---------|-----|
| pMEKnuc | pMEKnuc |     |

Table 337: Properties of each modifier.

| Id      | Name    | SBO |
|---------|---------|-----|
| pMEKnuc | pMEKnuc |     |

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{112} = \text{kf}_{-}113 \cdot [\text{pMEKnuc}]$$
 (224)

### **6.113 Reaction R114**

This is a fast irreversible reaction of one reactant forming no product influenced by one modifier.

## Name R114

# **Reaction equation**

$$MEKcyt\_ERKcyt \xrightarrow{MEKcyt\_ERKcyt} \emptyset$$
 (225)

### Reactant

Table 338: Properties of each reactant.

| Id            | Name          | SBO |
|---------------|---------------|-----|
| MEKcyt_ERKcyt | MEKcyt_ERKcyt |     |

### **Modifier**

Table 339: Properties of each modifier.

| Id            | Name          | SBO |
|---------------|---------------|-----|
| MEKcyt_ERKcyt | MEKcyt_ERKcyt |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \ mol \cdot m^{-3}$ 

$$v_{113} = \text{kf}_{-}114 \cdot [\text{MEKcyt}_{-}\text{ERKcyt}]$$
 (226)

## **6.114 Reaction R115**

This is a fast irreversible reaction of one reactant forming two products influenced by one modifier.

### Name R115

# **Reaction equation**

### Reactant

Table 340: Properties of each reactant.

| Id            | Name          | SBO |
|---------------|---------------|-----|
| MEKcyt_ERKcyt | MEKcyt_ERKcyt |     |

#### **Modifier**

Table 341: Properties of each modifier.

| Id            | Name          | SBO |
|---------------|---------------|-----|
| MEKcyt_ERKcyt | MEKcyt_ERKcyt |     |

## **Products**

Table 342: Properties of each product.

| Id                             | Name                           | SBO |
|--------------------------------|--------------------------------|-----|
| MEKnuc_ERKnuc<br>MEKcyt_ERKcyt | MEKnuc_ERKnuc<br>MEKcyt_ERKcyt |     |

### **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{114} = kf_{-}115 \cdot [MEKcyt\_ERKcyt]$$
 (228)

### **6.115 Reaction R116**

This is a fast irreversible reaction of one reactant forming two products influenced by one modifier.

## Name R116

# **Reaction equation**

$$MEKnuc\_ERKnuc \xrightarrow{MEKnuc\_ERKnuc} MEKcyt\_ERKcyt + MEKnuc\_ERKnuc \qquad (229)$$

## Reactant

Table 343: Properties of each reactant.

| Id            | Name          | SBO |
|---------------|---------------|-----|
| MEKnuc_ERKnuc | MEKnuc_ERKnuc |     |

## **Modifier**

Table 344: Properties of each modifier.

| Id            | Name          | SBO |
|---------------|---------------|-----|
| MEKnuc_ERKnuc | MEKnuc_ERKnuc |     |

## **Products**

Table 345: Properties of each product.

| Id                             | Name                           | SBO |
|--------------------------------|--------------------------------|-----|
| MEKcyt_ERKcyt<br>MEKnuc_ERKnuc | MEKcyt_ERKcyt<br>MEKnuc_ERKnuc |     |

### **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \ mol \cdot m^{-3}$ 

$$v_{115} = \text{kf}_{-}116 \cdot [\text{MEKnuc}\_\text{ERKnuc}] \tag{230}$$

## **6.116 Reaction R117**

This is a fast irreversible reaction of one reactant forming no product influenced by one modifier.

## Name R117

# **Reaction equation**

$$MEKnuc\_ERKnuc \xrightarrow{MEKnuc\_ERKnuc} \emptyset$$
 (231)

## Reactant

Table 346: Properties of each reactant.

| Id Name       |               | SBO |
|---------------|---------------|-----|
| MEKnuc_ERKnuc | MEKnuc_ERKnuc |     |

## Modifier

Table 347: Properties of each modifier.

| Id            | Name          | SBO |
|---------------|---------------|-----|
| MEKnuc_ERKnuc | MEKnuc_ERKnuc |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \ mol \cdot m^{-3}$ 

$$v_{116} = \text{kf}_{-}117 \cdot [\text{MEKnuc}\_\text{ERKnuc}] \tag{232}$$

# **6.117 Reaction R118**

This is a fast irreversible reaction of one reactant forming no product influenced by one modifier.

## Name R118

# **Reaction equation**

$$ERKcyt \xrightarrow{ERKcyt} \emptyset$$
 (233)

## Reactant

Table 348: Properties of each reactant.

| Id     | Name   | SBO |
|--------|--------|-----|
| ERKcyt | ERKcyt |     |

Table 349: Properties of each modifier.

| Id     | Name   | SBO |
|--------|--------|-----|
| ERKcyt | ERKcyt |     |

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{117} = \text{kf}\_118 \cdot [\text{ERKcyt}] \tag{234}$$

## **6.118 Reaction R119**

This is a fast irreversible reaction of one reactant forming two products influenced by one modifier.

# Name R119

# **Reaction equation**

$$ERKcyt \xrightarrow{ERKcyt} ERKnuc + ERKcyt$$
 (235)

## Reactant

Table 350: Properties of each reactant.

| Id     | Name   | SBO |
|--------|--------|-----|
| ERKcyt | ERKcyt |     |

## **Modifier**

Table 351: Properties of each modifier.

| Id     | Name   | SBO |
|--------|--------|-----|
| ERKcyt | ERKcyt |     |

## **Products**

Table 352: Properties of each product.

| Id | Name             | SBO |
|----|------------------|-----|
|    | ERKnuc<br>ERKcyt |     |

Derived unit  $s^{-1} \cdot 10^{-6} \ mol \cdot m^{-3}$ 

$$v_{118} = \text{kf}_{-}119 \cdot [\text{ERKcyt}] \tag{236}$$

## **6.119 Reaction R120**

This is a fast irreversible reaction of one reactant forming two products influenced by one modifier.

Name R120

# **Reaction equation**

$$ERKnuc \xrightarrow{ERKnuc} ERKcyt + ERKnuc$$
 (237)

### Reactant

Table 353: Properties of each reactant.

| Id     | Name   | SBO |
|--------|--------|-----|
| ERKnuc | ERKnuc |     |

### **Modifier**

Table 354: Properties of each modifier.

| Id     | Name   | SBO |
|--------|--------|-----|
| ERKnuc | ERKnuc |     |

### **Products**

Table 355: Properties of each product.

| Id               | Name             | SBO |
|------------------|------------------|-----|
| ERKcyt<br>ERKnuc | ERKcyt<br>ERKnuc |     |

Derived unit  $s^{-1} \cdot 10^{-6} \ mol \cdot m^{-3}$ 

$$v_{119} = \text{kf}_{-120} \cdot [\text{ERKnuc}] \tag{238}$$

## **6.120 Reaction R121**

This is a fast irreversible reaction of one reactant forming no product influenced by one modifier.

## Name R121

# **Reaction equation**

$$ERKnuc \xrightarrow{ERKnuc} \emptyset$$
 (239)

### Reactant

Table 356: Properties of each reactant.

| Id     | Name   | SBO |
|--------|--------|-----|
| ERKnuc | ERKnuc |     |

### **Modifier**

Table 357: Properties of each modifier.

| Id     | Name   | SBO |
|--------|--------|-----|
| ERKnuc | ERKnuc |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{120} = kf_{-}121 \cdot [ERKnuc] \tag{240}$$

## **6.121 Reaction R122**

This is a fast irreversible reaction of one reactant forming no product influenced by one modifier.

Name R122

# **Reaction equation**

$$MEKcyt \xrightarrow{MEKcyt} \emptyset$$
 (241)

### Reactant

Table 358: Properties of each reactant.

| Id     | Name   | SBO |
|--------|--------|-----|
| MEKcyt | MEKcyt |     |

## **Modifier**

Table 359: Properties of each modifier.

| Id     | Name   | SBO |
|--------|--------|-----|
| MEKcyt | MEKcyt |     |

### **Kinetic Law**

Derived unit  $\,s^{-1}\cdot 10^{-6}\;mol\cdot m^{-3}$ 

$$v_{121} = kf_{-}122 \cdot [MEKcyt] \tag{242}$$

### **6.122 Reaction R123**

This is a fast irreversible reaction of one reactant forming two products influenced by one modifier.

Name R123

## **Reaction equation**

$$MEKcyt \xrightarrow{MEKcyt} MEKnuc + MEKcyt$$
 (243)

Table 360: Properties of each reactant.

| Id     | Name   | SBO |
|--------|--------|-----|
| MEKcyt | MEKcyt |     |

Table 361: Properties of each modifier.

| Id     | Name   | SBO |
|--------|--------|-----|
| MEKcyt | MEKcyt |     |

## **Products**

Table 362: Properties of each product.

| Id     | Name   | SBO |
|--------|--------|-----|
| MEKnuc | MEKnuc |     |
| MEKcyt | MEKcyt |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{122} = \text{kf}_{-}123 \cdot [\text{MEKcyt}] \tag{244}$$

## **6.123 Reaction R124**

This is a fast irreversible reaction of one reactant forming two products influenced by one modifier.

### Name R124

# **Reaction equation**

$$MEKnuc \xrightarrow{MEKnuc} MEKcyt + MEKnuc$$
 (245)

Table 363: Properties of each reactant.

| Id     | Name   | SBO |
|--------|--------|-----|
| MEKnuc | MEKnuc |     |

Table 364: Properties of each modifier.

| Id     | Name   | SBO |
|--------|--------|-----|
| MEKnuc | MEKnuc |     |

## **Products**

Table 365: Properties of each product.

| Id               | Name             | SBO |
|------------------|------------------|-----|
| MEKcyt<br>MEKnuc | MEKcyt<br>MEKnuc |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{123} = \text{kf}_{-}124 \cdot [\text{MEKnuc}] \tag{246}$$

# **6.124 Reaction R125**

This is a fast irreversible reaction of one reactant forming no product influenced by one modifier.

## Name R125

# **Reaction equation**

$$MEKnuc \xrightarrow{MEKnuc} \emptyset$$
 (247)

Table 366: Properties of each reactant.

| Id     | Name   | SBO |
|--------|--------|-----|
| MEKnuc | MEKnuc |     |

Table 367: Properties of each modifier.

| Id     | Name   | SBO |
|--------|--------|-----|
| MEKnuc | MEKnuc |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \ mol \cdot m^{-3}$ 

$$v_{124} = \text{kf}_{-125} \cdot [\text{MEKnuc}] \tag{248}$$

### **6.125 Reaction R126**

This is a fast irreversible reaction of one reactant forming no product influenced by one modifier.

## Name R126

# **Reaction equation**

$$ppERKcyt \xrightarrow{ppERKcyt} \emptyset$$
 (249)

#### Reactant

Table 368: Properties of each reactant.

| Id       | Name     | SBO |
|----------|----------|-----|
| ppERKcyt | ppERKcyt |     |

Table 369: Properties of each modifier.

| Id       | Name     | SBO |
|----------|----------|-----|
| ppERKcyt | ppERKcyt |     |

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{125} = \text{kf}_{-1}26 \cdot [\text{ppERKcyt}] \tag{250}$$

## **6.126 Reaction R127**

This is a fast irreversible reaction of one reactant forming two products influenced by one modifier.

Name R127

# **Reaction equation**

$$ppERKcyt \xrightarrow{ppERKcyt} ppERKnuc + ppERKcyt$$
 (251)

## Reactant

Table 370: Properties of each reactant.

| Id       | Name     | SBO |
|----------|----------|-----|
| ppERKcyt | ppERKcyt |     |

## **Modifier**

Table 371: Properties of each modifier.

| Id       | Name     | SBO |
|----------|----------|-----|
| ppERKcyt | ppERKcyt |     |

# **Products**

Table 372: Properties of each product.

| Id       | Name     | SBO |
|----------|----------|-----|
| ppERKnuc | ppERKnuc |     |
| ppERKcyt | ppERKcyt |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \ mol \cdot m^{-3}$ 

$$v_{126} = \text{kf}_{-}127 \cdot [\text{ppERKcyt}] \tag{252}$$

### **6.127 Reaction R128**

This is a fast irreversible reaction of one reactant forming two products influenced by one modifier.

Name R128

# **Reaction equation**

$$ppERKnuc \xrightarrow{ppERKnuc} ppERKcyt + ppERKnuc$$
 (253)

### Reactant

Table 373: Properties of each reactant.

| Id       | Name     | SBO |
|----------|----------|-----|
| ppERKnuc | ppERKnuc |     |

#### **Modifier**

Table 374: Properties of each modifier.

| Id       | Name     | SBO |
|----------|----------|-----|
| ppERKnuc | ppERKnuc |     |

## **Products**

Table 375: Properties of each product.

| Id                   | Name                 | SBO |
|----------------------|----------------------|-----|
| ppERKcyt<br>ppERKnuc | ppERKcyt<br>ppERKnuc |     |

# **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \ mol \cdot m^{-3}$ 

$$v_{127} = \text{kf}_{-}128 \cdot [\text{ppERKnuc}] \tag{254}$$

## **6.128 Reaction R129**

This is a fast irreversible reaction of one reactant forming no product influenced by one modifier.

Name R129

# **Reaction equation**

$$ppERKnuc \xrightarrow{ppERKnuc} \emptyset$$
 (255)

### Reactant

Table 376: Properties of each reactant.

| Id       | Name     | SBO |
|----------|----------|-----|
| ppERKnuc | ppERKnuc |     |

## **Modifier**

Table 377: Properties of each modifier.

| Id       | Name     | SBO |
|----------|----------|-----|
| ppERKnuc | ppERKnuc |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \ mol \cdot m^{-3}$ 

$$v_{128} = \text{kf}_{-}129 \cdot [\text{ppERKnuc}] \tag{256}$$

## **6.129 Reaction R130**

This is a fast irreversible reaction of one reactant forming no product influenced by one modifier.

Name R130

## **Reaction equation**

$$ppMEKcyt \xrightarrow{ppMEKcyt} \emptyset$$
 (257)

Table 378: Properties of each reactant.

| Id       | Name     | SBO |
|----------|----------|-----|
| ppMEKcyt | ppMEKcyt |     |

Table 379: Properties of each modifier.

| Id       | Name     | SBO |
|----------|----------|-----|
| ppMEKcyt | ppMEKcyt |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{129} = \text{kf}_{-}130 \cdot [\text{ppMEKcyt}] \tag{258}$$

### **6.130 Reaction R131**

This is a fast irreversible reaction of one reactant forming two products influenced by one modifier.

### Name R131

# **Reaction equation**

$$ppMEKcyt \xrightarrow{ppMEKcyt} ppMEKnuc + ppMEKcyt$$
 (259)

## Reactant

Table 380: Properties of each reactant.

| Id       | Name     | SBO |
|----------|----------|-----|
| ppMEKcyt | ppMEKcyt |     |

Table 381: Properties of each modifier.

| Id       | Name     | SBO |
|----------|----------|-----|
| ppMEKcyt | ppMEKcyt |     |

## **Products**

Table 382: Properties of each product.

| Id                   | Name                 | SBO |
|----------------------|----------------------|-----|
| ppMEKnuc<br>ppMEKcyt | ppMEKnuc<br>ppMEKcyt |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{130} = \text{kf}_{-}131 \cdot [\text{ppMEKcyt}] \tag{260}$$

## **6.131 Reaction R132**

This is a fast irreversible reaction of one reactant forming two products influenced by one modifier.

### Name R132

# **Reaction equation**

$$ppMEKnuc \xrightarrow{ppMEKnuc} ppMEKcyt + ppMEKnuc$$
 (261)

# Reactant

Table 383: Properties of each reactant.

| Id       | Name     | SBO |
|----------|----------|-----|
| ppMEKnuc | ppMEKnuc |     |

Table 384: Properties of each modifier.

| Id       | Name     | SBO |
|----------|----------|-----|
| ppMEKnuc | ppMEKnuc |     |

## **Products**

Table 385: Properties of each product.

| Id                   | Name                 | SBO |
|----------------------|----------------------|-----|
| ppMEKcyt<br>ppMEKnuc | ppMEKcyt<br>ppMEKnuc |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \ mol \cdot m^{-3}$ 

$$v_{131} = \text{kf}_{-}132 \cdot [\text{ppMEKnuc}] \tag{262}$$

## **6.132 Reaction R133**

This is a fast irreversible reaction of one reactant forming no product influenced by one modifier.

# Name R133

# **Reaction equation**

$$ppMEKnuc \xrightarrow{ppMEKnuc} \emptyset$$
 (263)

## Reactant

Table 386: Properties of each reactant.

| Id       | Name     | SBO |
|----------|----------|-----|
| ppMEKnuc | ppMEKnuc |     |

Table 387: Properties of each modifier.

| Id       | Name     | SBO |
|----------|----------|-----|
| ppMEKnuc | ppMEKnuc |     |

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{132} = \text{kf}_{-133} \cdot [\text{ppMEKnuc}] \tag{264}$$

### **6.133 Reaction R134**

This is a fast irreversible reaction of one reactant forming no product influenced by one modifier.

## Name R134

# **Reaction equation**

$$ppMEKcyt\_ERKcyt \xrightarrow{ppMEKcyt\_ERKcyt} \emptyset$$
 (265)

### Reactant

Table 388: Properties of each reactant.

| Id              | Name            | SBO |
|-----------------|-----------------|-----|
| ppMEKcyt_ERKcyt | ppMEKcyt_ERKcyt |     |

### **Modifier**

Table 389: Properties of each modifier.

| Id              | Name            | SBO |
|-----------------|-----------------|-----|
| ppMEKcyt_ERKcyt | ppMEKcyt_ERKcyt |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \ mol \cdot m^{-3}$ 

$$v_{133} = \text{kf}_{-}134 \cdot [\text{ppMEKcyt}_{-}\text{ERKcyt}]$$
 (266)

## **6.134 Reaction R135**

This is a fast irreversible reaction of one reactant forming two products influenced by one modifier

### Name R135

# **Reaction equation**

$$ppMEKcyt\_ERKcyt \xrightarrow{ppMEKcyt\_ERKcyt} ppMEKnuc\_ERKnuc + ppMEKcyt\_ERKcyt \quad (267)$$

### Reactant

Table 390: Properties of each reactant.

| Id              | Name            | SBO |
|-----------------|-----------------|-----|
| ppMEKcyt_ERKcyt | ppMEKcyt_ERKcyt |     |

#### **Modifier**

Table 391: Properties of each modifier.

| Id              | Name            | SBO |
|-----------------|-----------------|-----|
| ppMEKcyt_ERKcyt | ppMEKcyt_ERKcyt |     |

## **Products**

Table 392: Properties of each product.

| Id                    | Name            | SBO |
|-----------------------|-----------------|-----|
|                       | ppMEKnuc_ERKnuc |     |
| $	t ppMEKcyt\_ERKcyt$ | ppMEKcyt_ERKcyt |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{134} = kf_{-}135 \cdot [ppMEKcyt\_ERKcyt]$$
 (268)

### **6.135 Reaction R136**

This is a fast irreversible reaction of one reactant forming two products influenced by one modifier.

## Name R136

# **Reaction equation**

$$ppMEKnuc\_ERKnuc \xrightarrow{ppMEKnuc\_ERKnuc} ppMEKcyt\_ERKcyt + ppMEKnuc\_ERKnuc \ \ (269)$$

#### Reactant

Table 393: Properties of each reactant.

| Id              | Name            | SBO |
|-----------------|-----------------|-----|
| ppMEKnuc_ERKnuc | ppMEKnuc_ERKnuc |     |

#### Modifier

Table 394: Properties of each modifier.

| Id              | Name            | SBO |
|-----------------|-----------------|-----|
| ppMEKnuc_ERKnuc | ppMEKnuc_ERKnuc |     |

## **Products**

Table 395: Properties of each product.

| Id                                 | Name                               | SBO |
|------------------------------------|------------------------------------|-----|
| ppMEKcyt_ERKcyt<br>ppMEKnuc_ERKnuc | ppMEKcyt_ERKcyt<br>ppMEKnuc_ERKnuc |     |

### **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \ mol \cdot m^{-3}$ 

$$v_{135} = \text{kf}_{-136} \cdot [\text{ppMEKnuc}_{-}\text{ERKnuc}]$$
 (270)

## **6.136 Reaction R137**

This is a fast irreversible reaction of one reactant forming no product influenced by one modifier.

## Name R137

# **Reaction equation**

$$ppMEKnuc\_ERKnuc \xrightarrow{ppMEKnuc\_ERKnuc} \emptyset$$
 (271)

## Reactant

Table 396: Properties of each reactant.

| Id              | Name            | SBO |
|-----------------|-----------------|-----|
| ppMEKnuc_ERKnuc | ppMEKnuc_ERKnuc |     |

## **Modifier**

Table 397: Properties of each modifier.

| Id              | Name            | SBO |
|-----------------|-----------------|-----|
| ppMEKnuc_ERKnuc | ppMEKnuc_ERKnuc |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \; mol \cdot m^{-3}$ 

$$v_{136} = \text{kf}_{-}137 \cdot [\text{ppMEKnuc}_{-}\text{ERKnuc}]$$
 (272)

## **6.137 Reaction R138**

This is a fast irreversible reaction of one reactant forming no product influenced by one modifier.

## Name R138

# **Reaction equation**

$$dppERKcyt \xrightarrow{dppERKcyt} \emptyset$$
 (273)

Table 398: Properties of each reactant.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| dppERKcyt | dppERKcyt |     |

Table 399: Properties of each modifier.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| dppERKcyt | dppERKcyt |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{137} = \text{kf}_{-138} \cdot [\text{dppERKcyt}] \tag{274}$$

## **6.138 Reaction R139**

This is a fast irreversible reaction of one reactant forming two products influenced by one modifier.

### Name R139

# **Reaction equation**

$$dppERKcyt \xrightarrow{dppERKcyt} dppERKnuc + dppERKcyt$$
 (275)

# Reactant

Table 400: Properties of each reactant.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| dppERKcyt | dppERKcyt |     |

## **Modifier**

Table 401: Properties of each modifier.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| dppERKcyt | dppERKcyt |     |

# **Products**

Table 402: Properties of each product.

| Id                     | Name                   | SBO |
|------------------------|------------------------|-----|
| dppERKnuc<br>dppERKcyt | dppERKnuc<br>dppERKcyt |     |

Derived unit  $s^{-1} \cdot 10^{-6} \ mol \cdot m^{-3}$ 

$$v_{138} = kf_{-}139 \cdot [dppERKcyt]$$
 (276)

# **6.139 Reaction R140**

This is a fast irreversible reaction of one reactant forming two products influenced by one modifier.

Name R140

# **Reaction equation**

$$dppERKnuc \xrightarrow{dppERKnuc} dppERKcyt + dppERKnuc$$
 (277)

## Reactant

Table 403: Properties of each reactant.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| dppERKnuc | dppERKnuc |     |

## Modifier

Table 404: Properties of each modifier.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| dppERKnuc | dppERKnuc |     |

# **Products**

Table 405: Properties of each product.

| Id                     | Name                   | SBO |
|------------------------|------------------------|-----|
| dppERKcyt<br>dppERKnuc | dppERKcyt<br>dppERKnuc |     |

Derived unit  $s^{-1} \cdot 10^{-6} \ mol \cdot m^{-3}$ 

$$v_{139} = kf_{-}140 \cdot [dppERKnuc]$$
 (278)

## **6.140 Reaction R141**

This is a fast irreversible reaction of one reactant forming no product influenced by one modifier.

### Name R141

# **Reaction equation**

$$dppERKnuc \xrightarrow{dppERKnuc} \emptyset$$
 (279)

### Reactant

Table 406: Properties of each reactant.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| dppERKnuc | dppERKnuc |     |

## **Modifier**

Table 407: Properties of each modifier.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| dppERKnuc | dppERKnuc |     |

# **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{140} = \text{kf}_{-}141 \cdot [\text{dppERKnuc}] \tag{280}$$

## **6.141 Reaction R142**

This is a fast irreversible reaction of one reactant forming no product influenced by one modifier.

### Name R142

# **Reaction equation**

$$pMEKcyt\_ERKcyt \xrightarrow{pMEKcyt\_ERKcyt} \emptyset$$
 (281)

### Reactant

Table 408: Properties of each reactant.

| Id             | Name           | SBO |
|----------------|----------------|-----|
| pMEKcyt_ERKcyt | pMEKcyt_ERKcyt |     |

## **Modifier**

Table 409: Properties of each modifier.

| Id             | Name           | SBO |
|----------------|----------------|-----|
| pMEKcyt_ERKcyt | pMEKcyt_ERKcyt |     |

### **Kinetic Law**

Derived unit  $\,s^{-1}\cdot 10^{-6}\;mol\cdot m^{-3}$ 

$$v_{141} = kf_{-}142 \cdot [pMEKcyt\_ERKcyt]$$
 (282)

### **6.142 Reaction R143**

This is a fast irreversible reaction of one reactant forming two products influenced by one modifier.

### Name R143

## **Reaction equation**

$$pMEKcyt\_ERKcyt \xrightarrow{pMEKcyt\_ERKcyt} pMEKnuc\_ERKnuc + pMEKcyt\_ERKcyt \qquad (283)$$

Table 410: Properties of each reactant.

| Id             | Name           | SBO |
|----------------|----------------|-----|
| pMEKcyt_ERKcyt | pMEKcyt_ERKcyt |     |

Table 411: Properties of each modifier.

| Id             | Name           | SBO |
|----------------|----------------|-----|
| pMEKcyt_ERKcyt | pMEKcyt_ERKcyt |     |

## **Products**

Table 412: Properties of each product.

| Id | Name                             | SBO |
|----|----------------------------------|-----|
| •  | pMEKnuc_ERKnuc<br>pMEKcyt_ERKcyt |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{142} = \text{kf}_{-}143 \cdot [\text{pMEKcyt\_ERKcyt}]$$
 (284)

## **6.143 Reaction R144**

This is a fast irreversible reaction of one reactant forming two products influenced by one modifier.

### Name R144

# **Reaction equation**

$$pMEKnuc\_ERKnuc \xrightarrow{pMEKnuc\_ERKnuc} pMEKcyt\_ERKcyt + pMEKnuc\_ERKnuc \qquad (285)$$

Table 413: Properties of each reactant.

| Id             | Name           | SBO |
|----------------|----------------|-----|
| pMEKnuc_ERKnuc | pMEKnuc_ERKnuc |     |

Table 414: Properties of each modifier.

| Id             | Name           | SBO |
|----------------|----------------|-----|
| pMEKnuc_ERKnuc | pMEKnuc_ERKnuc |     |

## **Products**

Table 415: Properties of each product.

| Id                      | Name           | SBO |
|-------------------------|----------------|-----|
| pMEKcyt_ERKcyt          | pMEKcyt_ERKcyt |     |
| ${\tt pMEKnuc\_ERKnuc}$ | pMEKnuc_ERKnuc |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{143} = kf_{-}144 \cdot [pMEKnuc\_ERKnuc]$$
 (286)

## **6.144 Reaction R145**

This is a fast irreversible reaction of one reactant forming no product influenced by one modifier.

### **Name** R145

# **Reaction equation**

$$pMEKnuc\_ERKnuc \xrightarrow{pMEKnuc\_ERKnuc} \emptyset$$
 (287)

Table 416: Properties of each reactant.

| Id             | Name           | SBO |
|----------------|----------------|-----|
| pMEKnuc_ERKnuc | pMEKnuc_ERKnuc |     |

Table 417: Properties of each modifier.

| Id             | Name           | SBO |
|----------------|----------------|-----|
| pMEKnuc_ERKnuc | pMEKnuc_ERKnuc |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \ mol \cdot m^{-3}$ 

$$v_{144} = kf_{-}145 \cdot [pMEKnuc\_ERKnuc]$$
 (288)

## **6.145 Reaction** mwe8ee00ff\_3d59\_44d5\_8d7f\_a2074823f29d

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name reaction\_1

# **Reaction equation**

 $mw4478fbeb\_51b1\_4764\_92ad\_a86d314ae0eb \xrightarrow{mw4478fbeb\_51b1\_4764\_92ad\_a86d314ae0eb} mw29fa4e00\_a430\_4fae0eb \xrightarrow{mw4478fbeb\_51b1\_4764\_92ad\_a86d314ae0eb} mw29fa4e00\_a430\_4fae0eb$ 

#### Reactant

Table 418: Properties of each reactant.

| Id                                     | Name   | SBO |
|----------------------------------------|--------|-----|
| mw4478fbeb_51b1_4764_92ad_a86d314ae0eb | source |     |

Table 419: Properties of each modifier.

| Id                                     | Name   | SBO |
|----------------------------------------|--------|-----|
| mw4478fbeb_51b1_4764_92ad_a86d314ae0eb | source |     |

## **Product**

Table 420: Properties of each product.

| Id                    |             |        | Name | SBO |
|-----------------------|-------------|--------|------|-----|
| mw29fa4e00_a430_4f11_ | b62e_1bcbc0 | a767a0 | NGF  |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \ mol \cdot m^{-3}$ 

$$v_{145} = \text{mw7d6fb5c7\_061a\_49ff\_99a2\_d76de2f025f7}$$

$$\cdot [\text{mw4478fbeb\_51b1\_4764\_92ad\_a86d314ae0eb}]$$
(290)

Table 421: Properties of each parameter.

| Id                                                    | Name      | SBO | Value                 | Unit                                                    | Constant         |
|-------------------------------------------------------|-----------|-----|-----------------------|---------------------------------------------------------|------------------|
| mw7d6fb5c7-<br>_061a-<br>_49ff_99a2-<br>_d76de2f025f7 | ksynthngf |     | $3.849 \cdot 10^{-8}$ | s <sup>-1</sup> . 0.01666666666666666666666666666666666 | 67 dimensionless |

### **6.146 Reaction** mw711542fd\_b235\_40f7\_9782\_f78eb654d773

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name reaction\_2

## **Reaction equation**

Table 422: Properties of each reactant.

| Id                                     | Name | SBO |
|----------------------------------------|------|-----|
| mw29fa4e00_a430_4f11_b62e_1bcbc0a767a0 | NGF  |     |

Table 423: Properties of each modifier.

| Id                                     | Name | SBO |
|----------------------------------------|------|-----|
| mw29fa4e00_a430_4f11_b62e_1bcbc0a767a0 | NGF  |     |

# **Product**

Table 424: Properties of each product.

| Id                                     | Name   | SBO |
|----------------------------------------|--------|-----|
| mwa81400ac_76f5_4446_8a4d_6446ab4b11c9 | NGFdeg |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \ mol \cdot m^{-3}$ 

$$v_{146} = \text{mw}65c9272f\_da7a\_4626\_86c0\_f834524601e6}$$

$$\cdot [\text{mw}29\text{fa}4e00\_a430\_4f11\_b62e\_1bcbc0a767a0}]$$
(292)

Table 425: Properties of each parameter.

| Id                                                    | Name    | SBO | Value | Unit                                                    | Constant        |
|-------------------------------------------------------|---------|-----|-------|---------------------------------------------------------|-----------------|
| mw65c9272f-<br>_da7a-<br>_4626_86c0-<br>_f834524601e6 | kdegnfg |     | 0.001 | s <sup>-1</sup> . 0.01666666666666666666666666666666666 | 7 dimensionless |

# **6.147 Reaction** mwc7ff2b7b\_e2c9\_4420\_87bc\_f285d98de30b

This is a reversible reaction of two reactants forming one product influenced by three modifiers.

Name reaction\_3

# **Reaction equation**

 $mwe979ec8f\_a55c\_470c\_a554\_9fa8013eab74 + mw29fa4e00\_a430\_4f11\_b62e\_1bcbc0a767a0 \\ \begin{array}{c} \underline{mwe979ec8f\_a55c\_470c} \\ \underline{mwe97$ 

(293)

### **Reactants**

Table 426: Properties of each reactant.

| Id                                                                               | Name | SBO |
|----------------------------------------------------------------------------------|------|-----|
| mwe979ec8f_a55c_470c_a554_9fa8013eab74<br>mw29fa4e00_a430_4f11_b62e_1bcbc0a767a0 |      |     |

### **Modifiers**

Table 427: Properties of each modifier.

| Id                                     | Name                      | SBO |
|----------------------------------------|---------------------------|-----|
| mwe979ec8f_a55c_470c_a554_9fa8013eab74 |                           |     |
| mw29fa4e00_a430_4f11_b62e_1bcbc0a767a0 | NGF                       |     |
| mw6782adfa_29ee_41a8_acbb_4c86c6c81596 | NGFR_L_interstitial_fluid |     |

### **Product**

Table 428: Properties of each product.

|                                        | 1                         |     |
|----------------------------------------|---------------------------|-----|
| Id                                     | Name                      | SBO |
| mw6782adfa_29ee_41a8_acbb_4c86c6c81596 | NGFR_L_interstitial_fluid |     |

### **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

 $v_{147} = \text{mw4b2ef456\_cb6c\_46b8\_919b\_734f320058c1}$ · [mwe979ec8f\_a55c\_470c\_a554\_9fa8013eab74] (294) $\cdot [mw29fa4e00\_a430\_4f11\_b62e\_1bcbc0a767a0]$ - mw3d826840\_83ab\_4394\_ae58\_99f8d7180f29 · [mw6782adfa\_29ee\_41a8\_acbb\_4c86c6c81596]

Table 429: Properties of each parameter.

| Id                                                                     | Name    | SBO | Value   | Unit                                                                          | Constant                   |
|------------------------------------------------------------------------|---------|-----|---------|-------------------------------------------------------------------------------|----------------------------|
| mw4b2ef456-<br>_cb6c-<br>_46b8_919b-                                   | konngf  |     | 372.000 | $m^3 \cdot mol^{-1} \cdot s^{-1} \cdot 16.6666666666666666666666666666666666$ | ☑<br>limensionless         |
| _734f320058c1<br>mw3d826840-<br>_83ab-<br>_4394_ae58-<br>_99f8d7180f29 | koffngf |     | 0.004   | s <sup>-1</sup> . 0.01666666666666666666666666666666666                       | <b>✓</b><br>7 dimensionles |

# **6.148 Reaction** mw02775189\_5c04\_4c2f\_a5f4\_2f15723e1ece

This is a reversible reaction of two reactants forming one product influenced by three modifiers.

Name reaction\_4

# **Reaction equation**

 $mw29fa4e00\_a430\_4f11\_b62e\_1bcbc0a767a0 + mwe599c4c1\_2d8e\_446c\_bf3f\_4c97baced8a9 \xrightarrow{mw29fa4e00\_a430\_4f1} (295)$ 

### **Reactants**

Table 430: Properties of each reactant.

| Id                                                 | Name      | SBO |
|----------------------------------------------------|-----------|-----|
| mw29fa4e00_a430_4f11_b62e_1bcbc0a767a0             | NGF       |     |
| ${\tt mwe599c4c1\_2d8e\_446c\_bf3f\_4c97baced8a9}$ | tanezumab |     |

### **Modifiers**

Table 431: Properties of each modifier.

| Id                                     | Name          | SBO |
|----------------------------------------|---------------|-----|
| mw29fa4e00_a430_4f11_b62e_1bcbc0a767a0 | NGF           |     |
| mwe599c4c1_2d8e_446c_bf3f_4c97baced8a9 | tanezumab     |     |
| mw46e8693e_348e_4f1d_8c49_c13485fae7ba | NGF_tanezumab |     |

### **Product**

Table 432: Properties of each product.

| Id                         | Name                 | SBO |
|----------------------------|----------------------|-----|
| mw46e8693e_348e_4f1d_8c49_ | fae7ba NGF_tanezumab |     |

Derived unit  $s^{-1} \cdot 10^{-6} \ mol \cdot m^{-3}$ 

 $v_{148} = \text{mw748e0940\_792f\_4420\_8ece\_0de52ecaa556}$   $\cdot [\text{mw29fa4e00\_a430\_4f11\_b62e\_1bcbc0a767a0}]$   $\cdot [\text{mwe599c4c1\_2d8e\_446c\_bf3f\_4c97baced8a9}]$   $- \text{mw87c66aa4\_69ab\_4cad\_aa55\_4b28455f804a}$   $\cdot [\text{mw46e8693e\_348e\_4f1d\_8c49\_c13485fae7ba}]$  (296)

Table 433: Properties of each parameter.

|               |        | 1   |                     |                                         |                 |
|---------------|--------|-----|---------------------|-----------------------------------------|-----------------|
| Id            | Name   | SBO | Value               | Unit                                    | Constant        |
| mw748e0940-   | kontz  |     | 16.200              | $m^3 \cdot mol^{-1} \cdot s^{-1} \cdot$ | $\overline{Z}$  |
| _792f-        |        |     |                     | 16.6666666666667                        | dimensionless   |
| _4420_8ece-   |        |     |                     |                                         |                 |
| _0de52ecaa556 |        |     |                     |                                         |                 |
| mw87c66aa4-   | kofftz |     | $1.8 \cdot 10^{-4}$ | $s^{-1}$ .                              |                 |
| _69ab-        |        |     |                     | 0.0166666666666666                      | 7 dimensionless |
| _4cad_aa55-   |        |     |                     |                                         |                 |
| _4b28455f804a |        |     |                     |                                         |                 |

## **6.149 Reaction** mwfb02ea2a\_1f06\_4f8f\_80a0\_721149f213ff

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name reaction\_5

# **Reaction equation**

 $mwe599c4c1\_2d8e\_446c\_bf3f\_4c97baced8a9 \xrightarrow{mwe599c4c1\_2d8e\_446c\_bf3f\_4c97baced8a9} mwe0b9d340\_24f5\_4c7eq(297)$ 

Table 434: Properties of each reactant.

| Id                                     | Name      | SBO |
|----------------------------------------|-----------|-----|
| mwe599c4c1_2d8e_446c_bf3f_4c97baced8a9 | tanezumab |     |

Table 435: Properties of each modifier.

| Id                                     | Name      | SBO |
|----------------------------------------|-----------|-----|
| mwe599c4c1_2d8e_446c_bf3f_4c97baced8a9 | tanezumab |     |

## **Product**

Table 436: Properties of each product.

| Id                                     | Name   | SBO |
|----------------------------------------|--------|-----|
| mwe0b9d340_24f5_4c7e_a80f_4faadae6c0fc | tz_deg |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \ mol \cdot m^{-3}$ 

$$v_{149} = \text{mw}27805\text{dbc\_be}23\_402\text{e\_95ec\_fab5}1829\text{ca5}1$$
  
  $\cdot [\text{mwe}599\text{c4c}1\_2\text{d8e\_446c\_bf}3f\_4\text{c97baced8a9}]$  (298)

Table 437: Properties of each parameter.

| Id                                                    | Name   | SBO | Value               | Unit | Constant               |
|-------------------------------------------------------|--------|-----|---------------------|------|------------------------|
| mw27805dbc-<br>_be23-<br>_402e_95ec-<br>_fab51829ca51 | kdegtz |     | $2.3 \cdot 10^{-5}$ | ~    | .   6667 dimensionless |

# **6.150 Reaction** mw12b652db\_d0da\_4723\_b160\_001fa36f9190

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name reaction\_6

# **Reaction equation**

 $mw89ebbe2d\_1ec2\_457a\_9367\_6c5e86a1a924 \xrightarrow{mw89ebbe2d\_1ec2\_457a\_9367\_6c5e86a1a924} mw555a08dc\_922d\_4bac2d\_1ec2\_457a\_9367\_6c5e86a1a924 \xrightarrow{mw89ebbe2d\_1ec2\_457a\_9367\_6c5e86a1a924} mw555a08dc\_922d\_4bac2d\_1ec2\_457a\_9a67\_6c5e86a1a924 \xrightarrow{mw89ebbe2d\_1ec2\_457a\_9367\_6c5e86a1a924} mw555a08dc\_922d\_4bac2d\_1ec2\_457a\_9a67\_6c5e86a1a924 \xrightarrow{mw89ebbe2d\_1ec2\_457a\_9a67\_6c5e86a1a924} mw555a08dc\_922d\_4bac2d\_1ec2\_457a\_9a67\_6c5e86a1a924 \xrightarrow{mw89ebbe2d\_1ec2\_457a\_9a67\_6c5e86a1a924} mw555a08a1a924 \xrightarrow{mw89ebbe2d\_1ec2\_457a\_9a67\_6c5e86a1a924} mw555a08a1a924 \xrightarrow{mw89ebbe2d\_1ec2\_457a\_9a67\_6c5e86a1a924} mw555a08a1a924 \xrightarrow{mw89ebbe2d\_1ec2\_457a\_9a67\_6c5e86a1a924} mw555a08a1a924 \xrightarrow{mw89ebbe2d\_1ec2\_457a\_9a67\_6c5e86a1a924} mw555a08a1a924 \xrightarrow{mw89ebbe2d\_1ec2\_457\_6c5e86a1a924} mw555a08a1a924 \xrightarrow{mw89ebbe2d\_1ec2\_457\_6c5e86a1a924} mw555a08a1a924 \xrightarrow{mw89ebbe2d\_1ec2\_457\_6c5e86a1a924} mw555a08a1a924 \xrightarrow{mw89ebbe2d\_1ec2\_457\_6c5e86a1a924} mw555a08a1a924 \xrightarrow{mw89ebbe2d\_1ec2\_457\_6c5e86a1a924} mw555a08a1a924 \xrightarrow{mw89ebbe2d\_1ec2\_457\_6c5e86a1a924} mw556a1a924 \xrightarrow{mw89ebbe2d\_1ec2\_457\_6c5e86a1a924} mw556a1a924 \xrightarrow{mw89ebbe2d\_1ec2\_457\_6c5e86a1a924} mw556a1a924 \xrightarrow{mw89ebbe2d\_1ec2\_457\_6c5e86a1a924} mw556a1a924 \xrightarrow{mw89ebbe2d\_1ec2\_457\_6c5e86a1a924} mw556a1a924 \xrightarrow{mw89ebbe2d\_1ec2\_457\_6c5e86a1a924} mw556a1a924 \xrightarrow{mw89ebbe2d\_1ec2\_457\_6c5e86a1a924} mw566a1a924 mw566a1a92 mw566a1a92 mw566a1a92 mw566a1a92 mw566a1a92 mw566a1a92 m$ 

### Reactant

Table 438: Properties of each reactant.

| Id                                     | Name  | SBO |
|----------------------------------------|-------|-----|
| mw89ebbe2d_1ec2_457a_9367_6c5e86a1a924 | trkaI |     |

#### **Modifier**

Table 439: Properties of each modifier.

| Id                                     | Name  | SBO |
|----------------------------------------|-------|-----|
| mw89ebbe2d_1ec2_457a_9367_6c5e86a1a924 | trkaI |     |

### **Product**

Table 440: Properties of each product.

| Id                                     | Name      | SBO |
|----------------------------------------|-----------|-----|
| mw555a08dc_922d_4b35_8f69_5c6e8a4ad614 | trkaI_deg |     |

## **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{150} = \text{mw2bbef0c4\_48a5\_4757\_8f66\_81da5c6894bd}$$

$$\cdot [\text{mw89ebbe2d\_1ec2\_457a\_9367\_6c5e86a1a924}]$$
(300)

Table 441: Properties of each parameter.

| Id                                                    | Name      | SBO | Value | Unit                                                    | Constant                    |
|-------------------------------------------------------|-----------|-----|-------|---------------------------------------------------------|-----------------------------|
| mw2bbef0c4-<br>_48a5-<br>_4757_8f66-<br>_81da5c6894bd | kdegtrkaI |     | 0.002 | s <sup>-1</sup> . 0.01666666666666666666666666666666666 | <b>✓</b><br>7 dimensionless |

# **6.151 Reaction** mwffc6fab3\_9f90\_4da4\_bf71\_214b9b723899

This is a reversible reaction of one reactant forming one product influenced by two modifiers.

Name reaction\_7

# **Reaction equation**

 $mw89ebbe2d\_1ec2\_457a\_9367\_6c5e86a1a924 \xrightarrow{mw89ebbe2d\_1ec2\_457a\_9367\_6c5e86a1a924, \ mwd4cc05d6\_6e19\_4} \tag{301}$ 

#### Reactant

Table 442: Properties of each reactant.

| Id                                     | Name  | SBO |
|----------------------------------------|-------|-----|
| mw89ebbe2d_1ec2_457a_9367_6c5e86a1a924 | trkaI |     |

#### **Modifiers**

Table 443: Properties of each modifier.

| Id                                     | Name      | SBO |
|----------------------------------------|-----------|-----|
| mw89ebbe2d_1ec2_457a_9367_6c5e86a1a924 | trkaI     |     |
| mwd4cc05d6_6e19_4e2e_b540_45954f2df4f0 | trkaI_int |     |

#### **Product**

Table 444: Properties of each product.

|                        | 1            | 1     |           |     |
|------------------------|--------------|-------|-----------|-----|
| Id                     |              |       | Name      | SBO |
| mwd4cc05d6_6e19_4e2e_b | 540_45954f2d | df4f0 | trkaI_int |     |

#### **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol}$ 

 $v_{151} = \text{mw}307\text{c}003\text{f}\_3906\_4\text{fa}9\_a1a8\_bafaa3d0d901$ 

- $\cdot [mw89ebbe2d\_1ec2\_457a\_9367\_6c5e86a1a924]$
- · vol (mwc2fe3668\_8fb0\_4cfb\_b795\_99057e61e290)

(302)

- mw6208f472\_c677\_43ef\_a590\_554bc0d88d2c
- $\cdot [mwd4cc05d6\_6e19\_4e2e\_b540\_45954f2df4f0]$
- · vol (mw3bc142df\_1951\_4fa9\_b0a7\_011c95012bbf)

Table 445: Properties of each parameter.

| Id                                                                     | Name      | SBO | Value      | Unit                                                    | Constant                     |
|------------------------------------------------------------------------|-----------|-----|------------|---------------------------------------------------------|------------------------------|
| mw307c003f-<br>_3906-<br>4fa9 a1a8-                                    | ktrkaiin  |     | 83.33      | s <sup>-1</sup> . 0.01666666666666666666666666666666666 | √<br>67 dimensionless        |
| _bafaa3d0d901<br>mw6208f472-<br>_c677-<br>_43ef_a590-<br>_554bc0d88d2c | ktrkaiout |     | 1000000.00 | s <sup>-1</sup> . 0.01666666666666666666666666666666666 | <b>☑</b><br>57 dimensionless |

#### **6.152 Reaction** mwf371eb20\_7bda\_4140\_9a43\_dfad70900057

This is a reversible reaction of one reactant forming one product influenced by two modifiers.

Name reaction\_8

#### **Reaction equation**

$$mw6782adfa\_29ee\_41a8\_acbb\_4c86c6c81596 \xrightarrow{mw6782adfa\_29ee\_41a8\_acbb\_4c86c6c81596, L\_NGFR} L\_NGFR \tag{303}$$

#### Reactant

Table 446: Properties of each reactant.

| Id                                     | Name                      | SBO |
|----------------------------------------|---------------------------|-----|
| mw6782adfa_29ee_41a8_acbb_4c86c6c81596 | NGFR_L_interstitial_fluid |     |

#### **Modifiers**

Table 447: Properties of each modifier.

| Id                                               | Name                                | SBO |
|--------------------------------------------------|-------------------------------------|-----|
| mw6782adfa_29ee_41a8_acbb_4c86c6c81596<br>L_NGFR | NGFR_L_interstitial_fluid<br>L_NGFR |     |

#### **Product**

Table 448: Properties of each product.

| Id     | Name   | SBO |
|--------|--------|-----|
| L_NGFR | L_NGFR |     |

#### **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol}$ 

 $v_{152} = \text{mw5d69c45e\_20e6\_4a18\_b22a\_b79692b9c57d}$ 

- · [mw6782adfa\_29ee\_41a8\_acbb\_4c86c6c81596]
- · vol (mwc2fe3668\_8fb0\_4cfb\_b795\_99057e61e290)
- $mw88063cbd\_d06b\_40bd\_bbed\_3f8a4a9ee082 \cdot [L\_NGFR]$
- · vol (mw3bc142df\_1951\_4fa9\_b0a7\_011c95012bbf)

Table 449: Properties of each parameter.

| Id                                                    | Name            | SBO | Value  | Unit                                                       | Constant                          |
|-------------------------------------------------------|-----------------|-----|--------|------------------------------------------------------------|-----------------------------------|
| mw5d69c45e-<br>_20e6-<br>_4a18_b22a-<br>_b79692b9c57d | ktranstngfrlout |     | 2000.0 | s <sup>-1</sup><br>0.0166666666666666666666666666666666666 | . ✓<br>66667 dimensionless        |
| mw88063cbd-<br>_d06b-<br>_40bd_bbed-<br>_3f8a4a9ee082 | ktransngfrlin   |     | 2000.0 | s <sup>-1</sup><br>0.0166666666666666666666666666666666666 | · <b>☑</b><br>66667 dimensionless |

#### **6.153 Reaction** mw8105f0dc\_19ad\_4f7a\_80df\_3f84de216c42

This is a reversible reaction of one reactant forming one product influenced by two modifiers.

Name Intercomp mass transfer

(304)

# **Reaction equation**

NGFR, mwe979ec8f\_a55c\_470c\_a554\_9fa8013eab74 mwe979ec8f\_a55c\_470c\_a554\_9fa8013eab74 (305)

#### Reactant

Table 450: Properties of each reactant.

| Id   | Name | SBO |
|------|------|-----|
| NGFR | NGFR |     |

#### **Modifiers**

Table 451: Properties of each modifier.

| Id   | Name                            | SBO |
|------|---------------------------------|-----|
| NGFR | NGFR<br>NGER interstition fluid |     |

#### **Product**

Table 452: Properties of each product.

| Id                              | Name                           | SBO |
|---------------------------------|--------------------------------|-----|
| mwe979ec8f_a55c_470c_a554_9fa80 | 3eab74 NGFR_interstitial_fluid |     |

#### **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol}$ 

 $v_{153} = \text{mwc3897a3e\_bec3\_478d\_9450\_afc4751c2775} \cdot [\text{NGFR}]$ 

· vol (mw3bc142df\_1951\_4fa9\_b0a7\_011c95012bbf)

(306)

- mwda0271e2\_458c\_4419\_9c7d\_8fb1bf692c13

· [mwe979ec8f\_a55c\_470c\_a554\_9fa8013eab74]

· vol (mwc2fe3668\_8fb0\_4cfb\_b795\_99057e61e290)

Table 453: Properties of each parameter.

|               |                 | _   |        |                   |                           |
|---------------|-----------------|-----|--------|-------------------|---------------------------|
| Id            | Name            | SBO | Value  | Unit              | Constant                  |
| mwc3897a3e-   | ktransinneuron  |     | 2000.0 | $s^{-1}$ .        | $\overline{\hspace{1cm}}$ |
| _bec3-        |                 |     |        | 0.016666666666666 | 67 dimensionless          |
| _478d_9450-   |                 |     |        |                   |                           |
| _afc4751c2775 |                 |     |        |                   |                           |
| mwda0271e2-   | ktransoutneuron |     | 2000.0 | $s^{-1}$ .        | $\square$                 |
| _458c-        |                 |     |        | 0.016666666666666 | 67 dimensionless          |
| _4419_9c7d-   |                 |     |        |                   |                           |
| _8fb1bf692c13 |                 |     |        |                   |                           |

#### **6.154 Reaction** mw9da48a51\_bbd0\_4395\_9883\_8441d8153b00

This is a reversible reaction of two reactants forming one product influenced by three modifiers.

Name reaction\_9

# **Reaction equation**

 $L\_NGFR + mwd4cc05d6\_6e19\_4e2e\_b540\_45954f2df4f0 \\ \leftarrow \\ \frac{L\_NGFR, mwd4cc05d6\_6e19\_4e2e\_b540\_45954f2df4f0, r}{(307)}$ 

#### **Reactants**

Table 454: Properties of each reactant.

| Id                                                 | Name      | SBO |
|----------------------------------------------------|-----------|-----|
| L_NGFR                                             | L_NGFR    |     |
| ${\tt mwd4cc05d6\_6e19\_4e2e\_b540\_45954f2df4f0}$ | trkaI_int |     |

### **Modifiers**

Table 455: Properties of each modifier.

| Id                                     | Name      | SBO |
|----------------------------------------|-----------|-----|
| L_NGFR                                 | L_NGFR    |     |
| mwd4cc05d6_6e19_4e2e_b540_45954f2df4f0 | trkaI_int |     |
| mwe009ad7f_90fd_4186_8855_77780724ddb8 | L_NGFR_I  |     |

#### **Product**

Table 456: Properties of each product.

| Id                      |                 | Name     | SBO |
|-------------------------|-----------------|----------|-----|
| mwe009ad7f_90fd_4186_88 | 55_77780724ddb8 | L_NGFR_I |     |

#### **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \ mol \cdot m^{-3}$ 

$$v_{154} = \text{mwfc8fe87e\_6841\_4214\_9c2f\_5d821794f38d} \cdot [\text{L\_NGFR}] \\ \cdot [\text{mwd4cc05d6\_6e19\_4e2e\_b540\_45954f2df4f0}] \\ - \text{mw3716109a\_c83e\_4fd4\_911e\_ccc67b036bb7} \\ \cdot [\text{mwe009ad7f\_90fd\_4186\_8855\_77780724ddb8}]$$
 (308)

Table 457: Properties of each parameter.

| Tuesto le , l'Iroportion et euch purumoter.           |           |     |                 |                                                              |          |
|-------------------------------------------------------|-----------|-----|-----------------|--------------------------------------------------------------|----------|
| Id                                                    | Name      | SBO | Value           | Unit                                                         | Constant |
| mwfc8fe87e-<br>_6841-<br>_4214_9c2f-<br>_5d821794f38d | kontrkaI  |     | 10 <sup>7</sup> | $m^3 \cdot mol^{-1} \cdot s^{-1} \cdot 0.0010$ dimensionless | <b>✓</b> |
| mw3716109a-<br>_c83e-<br>_4fd4_911e-<br>_ccc67b036bb7 | kofftrkaI |     | 0.001           | $s^{-1} \cdot dimensionless$                                 | Ø        |

#### **6.155 Reaction** mwc467edb6\_a255\_45d6\_8014\_33bd0209b36f

This is a reversible reaction of two reactants forming one product influenced by three modifiers.

Name reaction\_10

# **Reaction equation**

$$mwd4cc05d6\_6e19\_4e2e\_b540\_45954f2df4f0 + NGFR \\ \xleftarrow{mwd4cc05d6\_6e19\_4e2e\_b540\_45954f2df4f0, NGFR, mw5a} \\ (309)$$

### **Reactants**

Table 458: Properties of each reactant.

| Id                                             | Name              | SBO |
|------------------------------------------------|-------------------|-----|
| mwd4cc05d6_6e19_4e2e_b540_45954f2df4f0<br>NGFR | trkaI_int<br>NGFR |     |

#### **Modifiers**

Table 459: Properties of each modifier.

| Id                                                 | Name            | SBO |
|----------------------------------------------------|-----------------|-----|
| mwd4cc05d6_6e19_4e2e_b540_45954f2df4f0             | trkaI_int       |     |
| NGFR                                               | NGFR            |     |
| ${\tt mw5afa8250\_0cf0\_40a2\_a97a\_f7cf20a9cfbd}$ | $NGFR_{\perp}I$ |     |

#### **Product**

Table 460: Properties of each product.

| Id                                     | Name   | SBO |
|----------------------------------------|--------|-----|
| mw5afa8250_0cf0_40a2_a97a_f7cf20a9cfbd | NGFR_I |     |

#### **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

 $v_{155} = \text{mwd74ca4a6\_566f\_4161\_859e\_2b05bf2851fc}$ 

- $\cdot [mwd4cc05d6\_6e19\_4e2e\_b540\_45954f2df4f0]$
- $\cdot$  [NGFR] mw924e0439\_7ac5\_4812\_b1c2\_11e46b4737b8
- $\cdot [mw5afa8250\_0cf0\_40a2\_a97a\_f7cf20a9cfbd]$

Table 461: Properties of each parameter.

| Id            | Name     | SBO | Value           | Unit                                    | Constant |
|---------------|----------|-----|-----------------|-----------------------------------------|----------|
| mwd74ca4a6-   | kontrkaI |     | 10 <sup>7</sup> | $m^3 \cdot mol^{-1} \cdot s^{-1} \cdot$ |          |
| _566f-        |          |     |                 | 0.0010 dimensionles                     | S        |
| _4161_859e-   |          |     |                 |                                         |          |
| _2b05bf2851fc |          |     |                 |                                         |          |

(310)

| Id                                                    | Name      | SBO | Value | Unit                     | Constant |
|-------------------------------------------------------|-----------|-----|-------|--------------------------|----------|
| mw924e0439-<br>_7ac5-<br>_4812_b1c2-<br>_11e46b4737b8 | kofftrkaI |     | 0.001 | $s^{-1}$ · dimensionless | Ø        |

#### **6.156 Reaction** mwe4f77287\_e0fe\_47f7\_a74e\_312151e578a4

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name reaction\_14

# **Reaction equation**

 $mw5afa8250\_0cf0\_40a2\_a97a\_f7cf20a9cfbd \xrightarrow{mw5afa8250\_0cf0\_40a2\_a97a\_f7cf20a9cfbd} mwb4295eb0\_bd92\_4221\_(311)$ 

#### Reactant

Table 462: Properties of each reactant.

| Id                                     | Name   | SBO |
|----------------------------------------|--------|-----|
| mw5afa8250_0cf0_40a2_a97a_f7cf20a9cfbd | NGFR_I |     |

#### Modifier

Table 463: Properties of each modifier.

| rable 403. I roperties of each modifier. |        |     |
|------------------------------------------|--------|-----|
| Id                                       | Name   | SBO |
| mw5afa8250_0cf0_40a2_a97a_f7cf20a9cfbd   | NGFR_I |     |

#### **Product**

Table 464: Properties of each product.

| Id                                     | Name       | SBO |
|----------------------------------------|------------|-----|
| mwb4295eb0_bd92_4221_b49d_bbbd48ca25bc | NGFR_I_deg |     |

#### **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \ mol \cdot m^{-3}$ 

 $v_{156} = mwee585562\_2580\_4943\_bd3e\_731f12217004$  $\cdot [mw5afa8250\_0cf0\_40a2\_a97a\_f7cf20a9cfbd]$ 

(312)

Table 465: Properties of each parameter.

| Id            | Name   | SBO | Value | Unit               | Constant         |
|---------------|--------|-----|-------|--------------------|------------------|
| mwee585562-   | kdegEI |     | 0.017 | $s^{-1}$ .         |                  |
| _2580-        |        |     |       | 0.0166666666666666 | 67 dimensionless |
| _4943_bd3e-   |        |     |       |                    |                  |
| _731f12217004 |        |     |       |                    |                  |

#### **6.157 Reaction** mw4f0ee780\_12f5\_436d\_a227\_c5e7cd420259

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name reaction\_15

# **Reaction equation**

 $mwe009ad7f\_90fd\_4186\_8855\_77780724ddb8 \xrightarrow{mwe009ad7f\_90fd\_4186\_8855\_77780724ddb8} mwa4903466\_fc58\_4bg (313)$ 

#### Reactant

Table 466: Properties of each reactant.

| Id                                     | Name     | SBO |
|----------------------------------------|----------|-----|
| mwe009ad7f_90fd_4186_8855_77780724ddb8 | L_NGFR_I |     |

# **Modifier**

Table 467: Properties of each modifier.

| Id                                     | Name     | SBO |
|----------------------------------------|----------|-----|
| mwe009ad7f_90fd_4186_8855_77780724ddb8 | L_NGFR_I |     |

#### **Product**

Table 468: Properties of each product.

| Id                        |               | Name         | SBO |
|---------------------------|---------------|--------------|-----|
| mwa4903466_fc58_4bfe_b3ec | _76a90f9d20e2 | L_NGFR_I_deg |     |

#### **Kinetic Law**

Derived unit  $s^{-1} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3}$ 

$$v_{157} = \text{mwfbeb575a\_0864\_4d0d\_b862\_240f7f6506c1}$$

$$\cdot [\text{mwe009ad7f\_90fd\_4186\_8855\_77780724ddb8}]$$
(314)

Table 469: Properties of each parameter.

| Id                                                    | Name   | SBO | Value | Unit                                                    | Constant         |
|-------------------------------------------------------|--------|-----|-------|---------------------------------------------------------|------------------|
| mwfbeb575a-<br>_0864-<br>_4d0d_b862-<br>_240f7f6506c1 | kdegEI |     | 0.017 | s <sup>-1</sup> . 0.01666666666666666666666666666666666 | 67 dimensionless |
|                                                       |        |     |       |                                                         |                  |

# 7 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

#### 7.1 Species NGFR

#### Name NGFR

Initial concentration  $0.06189368 \ 10^{-6} \ \text{mol} \cdot \text{m}^{-3} \cdot (0.0010 \ \text{dimensionless})^{-1}$ 

This species takes part in six reactions (as a reactant in mw8105f0dc\_19ad\_4f7a\_80df\_3f84de216c42, mwc467edb6\_a255\_45d6\_8014\_33bd0209b36f and as a product in R1 and as a modifier in R1, mw8105f0dc\_19ad\_4f7a\_80df\_3f84de216c42, mwc467edb6\_a255\_45d6\_8014\_33bd0209b36f).

$$\frac{d}{dt}NGFR = v_1 - v_{153} - v_{155}$$
 (315)

### 7.2 Species L\_NGFR

#### Name L\_NGFR

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in six reactions (as a reactant in R3, mw9da48a51\_bbd0\_4395\_9883-8441d8153b00 and as a product in mwf371eb20\_7bda\_4140\_9a43\_dfad70900057 and as a modifier in R3, mwf371eb20\_7bda\_4140\_9a43\_dfad70900057, mw9da48a51\_bbd0\_4395-9883\_8441d8153b00).

$$\frac{d}{dt}L_NGFR = v_{152} - |v_2| - |v_{154}|$$
 (316)

### 7.3 Species pTrkA

#### Name pTrkA

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in 18 reactions (as a reactant in R4, R18, R19, R20, R24, R25, R32, R39 and as a product in R3, R39 and as a modifier in R4, R18, R19, R20, R24, R25, R32, R39).

$$\frac{d}{dt}pTrkA = |v_2| + |v_{38}| - |v_3| - |v_{17}| - |v_{18}| - |v_{19}| - |v_{23}| - |v_{24}| - |v_{31}| - |v_{38}|$$
(317)

#### 7.4 Species pTrkA\_endo

Name pTrkA\_endo

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in 13 reactions (as a reactant in R11, R21, R22, R23, R26, R27 and as a product in R4 and as a modifier in R11, R21, R22, R23, R26, R27).

$$\frac{d}{dt} p TrkA\_endo = |v_3| - |v_{10}| - |v_{20}| - |v_{21}| - |v_{22}| - |v_{25}| - |v_{26}|$$
(318)

#### 7.5 Species Shc\_pTrkA

Name Shc\_pTrkA

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in eleven reactions (as a reactant in R5, R28, R33, R40 and as a product in R18, R40 and as a modifier in R5, R18, R28, R33, R40).

$$\frac{d}{dt}Shc_pTrkA = |v_{17}| + |v_{39}| - |v_4| - |v_{27}| - |v_{32}| - |v_{39}|$$
(319)

### 7.6 Species Shc\_pTrkA\_endo

Name Shc\_pTrkA\_endo

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in seven reactions (as a reactant in R12, R29 and as a product in R5, R21 and as a modifier in R12, R21, R29).

$$\frac{d}{dt}Shc_pTrkA_endo = v_4 + v_{20} - v_{11} - v_{28}$$
 (320)

#### 7.7 Species pShc\_pTrkA

Name pShc\_pTrkA

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in twelve reactions (as a reactant in R6, R34, R41, R49 and as a product in R19, R28, R41 and as a modifier in R6, R19, R34, R41, R49).

$$\frac{d}{dt}pShc_pTrkA = v_{18} + v_{27} + v_{40} - v_5 - v_{33} - v_{40} - v_{48}$$
(321)

### 7.8 Species pShc\_pTrkA\_endo

Name pShc\_pTrkA\_endo

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in eight reactions (as a reactant in R13, R50 and as a product in R6, R22, R29 and as a modifier in R13, R22, R50).

$$\frac{d}{dt}pShc_pTrkA_endo = v_5 + v_{21} + v_{28} - v_{12} - v_{49}$$
(322)

### 7.9 Species Grb2\_SOS\_pShc\_pTrkA

Name Grb2\_SOS\_pShc\_pTrkA

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in 14 reactions (as a reactant in R7, R35, R42, R58 and as a product in R20, R42, R49, R58 and as a modifier in R7, R20, R35, R42, R49, R58).

$$\frac{d}{dt}Grb2\_SOS\_pShc\_pTrkA = |v_{19}| + |v_{41}| + |v_{48}| + |v_{57}| - |v_{6}| - |v_{34}| - |v_{41}| - |v_{57}|$$
(323)

### 7.10 Species Grb2\_SOS\_pShc\_pTrkA\_endo

Name Grb2\_SOS\_pShc\_pTrkA\_endo

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in seven reactions (as a reactant in R14 and as a product in R7, R23, R50 and as a modifier in R14, R23, R50).

$$\frac{d}{dt}Grb2\_SOS\_pShc\_pTrkA\_endo = v_6 + v_{22} + v_{49} - v_{13}$$
 (324)

# 7.11 Species FRS2\_pTrkA

Name FRS2\_pTrkA

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in eleven reactions (as a reactant in R8, R30, R36, R43 and as a product in R24, R43 and as a modifier in R8, R24, R30, R36, R43).

$$\frac{d}{dt}FRS2_pTrkA = |v_{23}| + |v_{42}| - |v_7| - |v_{29}| - |v_{35}| - |v_{42}|$$
(325)

### 7.12 Species FRS2\_pTrkA\_endo

Name FRS2\_pTrkA\_endo

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in seven reactions (as a reactant in R15, R31 and as a product in R8, R26 and as a modifier in R15, R26, R31).

$$\frac{d}{dt}FRS2_pTrkA\_endo = |v_7| + |v_{25}| - |v_{14}| - |v_{30}|$$
(326)

### 7.13 Species pFRS2\_pTrkA

Name pFRS2\_pTrkA

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in twelve reactions (as a reactant in R9, R37, R44, R66 and as a product in R25, R30, R44 and as a modifier in R9, R25, R37, R44, R66).

$$\frac{d}{dt}pFRS2_pTrkA = |v_{24}| + |v_{29}| + |v_{43}| - |v_{8}| - |v_{36}| - |v_{43}| - |v_{65}|$$
(327)

### 7.14 Species pFRS2\_pTrkA\_endo

Name pFRS2\_pTrkA\_endo

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in eight reactions (as a reactant in R16, R67 and as a product in R9, R27, R31 and as a modifier in R16, R27, R67).

$$\frac{d}{dt} pFRS2_p TrkA_e ndo = |v_8| + |v_{26}| + |v_{30}| - |v_{15}| - |v_{66}|$$
(328)

# 7.15 Species Crk\_C3G\_pFRS2\_pTrkA

Name Crk\_C3G\_pFRS2\_pTrkA

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in nine reactions (as a reactant in R10, R38, R45 and as a product in R45, R66 and as a modifier in R10, R38, R45, R66).

$$\frac{d}{dt} Crk_{-}C3G_{-}pFRS2_{-}pTrkA = v_{44} + v_{65} - v_{9} - v_{37} - v_{44}$$
(329)

### 7.16 Species Crk\_C3G\_pFRS2\_pTrkA\_endo

Name Crk\_C3G\_pFRS2\_pTrkA\_endo

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in eight reactions (as a reactant in R17, R70 and as a product in R10, R67, R70 and as a modifier in R17, R67, R70).

$$\frac{d}{dt} Crk_{-}C3G_{-}pFRS2_{-}pTrkA_{-}endo = |v_{9}| + |v_{66}| + |v_{69}| - |v_{16}| - |v_{69}|$$
(330)

### 7.17 Species Shc

Name Shc

Initial concentration  $1\ 10^{-6}\ \mathrm{mol}\cdot\mathrm{m}^{-3}\cdot(0.0010\ \mathrm{dimensionless})^{-1}$ 

This species takes part in eight reactions (as a reactant in R18, R21 and as a product in R12, R33, R51, R52 and as a modifier in R18, R21).

$$\frac{d}{dt}Shc = |v_{11}| + |v_{32}| + |v_{50}| + |v_{51}| - |v_{17}| - |v_{20}|$$
(331)

### 7.18 Species Grb2\_SOS\_pShc

Name Grb2\_SOS\_pShc

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in twelve reactions (as a reactant in R20, R23, R52, R60 and as a product in R14, R35, R48 and as a modifier in R20, R23, R48, R52, R60).

$$\frac{d}{dt}Grb2\_SOS\_pShc = |v_{13}| + |v_{34}| + |v_{47}| - |v_{19}| - |v_{22}| - |v_{51}| - |v_{59}|$$
(332)

#### **7.19 Species** FRS2

Name FRS2

Initial concentration  $1 \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in seven reactions (as a reactant in R24, R26 and as a product in R15, R36, R68 and as a modifier in R24, R26).

$$\frac{d}{dt}FRS2 = |v_{14}| + |v_{35}| + |v_{67}| - |v_{23}| - |v_{25}|$$
(333)

# 7.20 Species Crk\_C3G

Name Crk\_C3G

Initial concentration  $0.4980158 \ 10^{-6} \ \text{mol} \cdot \text{m}^{-3} \cdot (0.0010 \ \text{dimensionless})^{-1}$ 

This species takes part in eight reactions (as a reactant in R66, R67 and as a product in R17, R38, R65 and as a modifier in R65, R66, R67).

$$\frac{d}{dt}Crk_{-}C3G = |v_{16}| + |v_{37}| + |v_{64}| - |v_{65}| - |v_{66}|$$
(334)

### 7.21 Species Dok

Name Dok

Initial concentration  $0.2993032 \ 10^{-6} \ \text{mol} \cdot \text{m}^{-3} \cdot (0.0010 \ \text{dimensionless})^{-1}$ 

This species takes part in 16 reactions (as a reactant in R39, R40, R41, R42, R43, R44, R45 and as a product in R56 and as a modifier in R39, R40, R41, R42, R43, R44, R45, R56).

$$\frac{d}{dt}Dok = |v_{55}| - |v_{38}| - |v_{39}| - |v_{40}| - |v_{41}| - |v_{42}| - |v_{43}| - |v_{44}|$$
(335)

### 7.22 Species pDok

Name pDok

**Initial concentration**  $6.12296 \cdot 10^{-4} \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in eleven reactions (as a reactant in R55, R56 and as a product in R39, R40, R41, R42, R43, R44, R45 and as a modifier in R55, R56).

$$\frac{d}{dt}pDok = v_{38} + v_{39} + v_{40} + v_{41} + v_{42} + v_{43} + v_{44} - v_{54} - v_{55}$$
 (336)

### 7.23 Species Grb2

Name Grb2

Initial concentration  $0.9373994 \ 10^{-6} \ \text{mol} \cdot \text{m}^{-3} \cdot (0.0010 \ \text{dimensionless})^{-1}$ 

This species takes part in four reactions (as a reactant in R46, R47 and as a modifier in R46, R47).

$$\frac{d}{dt}Grb2 = -|v_{45}| - |v_{46}| \tag{337}$$

#### 7.24 Species SOS

Name SOS

Initial concentration  $0.03739938 \ 10^{-6} \ \text{mol} \cdot \text{m}^{-3} \cdot (0.0010 \ \text{dimensionless})^{-1}$ 

This species takes part in five reactions (as a reactant in R46, R59 and as a product in R53 and as a modifier in R46, R59).

$$\frac{d}{dt}SOS = |v_{52}| - |v_{45}| - |v_{58}| \tag{338}$$

#### 7.25 Species Grb2\_SOS

Name Grb2\_SOS

Initial concentration  $0.06260062\ 10^{-6}\ mol \cdot m^{-3} \cdot (0.0010\ dimensionless)^{-1}$ 

This species takes part in twelve reactions (as a reactant in R48, R49, R50, R61 and as a product in R46, R52, R54 and as a modifier in R46, R48, R49, R50, R61).

$$\frac{d}{dt}Grb2\_SOS = v_{45} + v_{51} + v_{53} - v_{47} - v_{48} - v_{49} - v_{60}$$
(339)

### 7.26 Species Ras\_GTP

Name Ras\_GTP

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in nine reactions (as a reactant in R57, R62, R73, R74 and as a product in R58 and as a modifier in R57, R62, R73, R74).

$$\frac{d}{dt}Ras\_GTP = |v_{57}| - |v_{56}| - |v_{61}| - |v_{72}| - |v_{73}|$$
(340)

#### 7.27 Species Ras\_GDP

Name Ras\_GDP

Initial concentration  $0.1 \ 10^{-6} \ \text{mol} \cdot \text{m}^{-3} \cdot (0.0010 \ \text{dimensionless})^{-1}$ 

This species takes part in six reactions (as a reactant in R58 and as a product in R57, R62, R63, R64 and as a modifier in R58).

$$\frac{d}{dt}Ras\_GDP = |v_{56}| + |v_{61}| + |v_{62}| + |v_{63}| - |v_{57}|$$
(341)

### 7.28 Species B\_Raf\_Ras\_GTP

Name B\_Raf\_Ras\_GTP

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in 16 reactions (as a reactant in R63, R85, R86, R87, R88 and as a product in R74, R85, R86, R87, R88 and as a modifier in R63, R74, R85, R86, R87, R88).

$$\frac{d}{dt}B_{Raf_{Ras_{GTP}}} = v_{73} + v_{84} + v_{85} + v_{86} + v_{87} - v_{62} - v_{84} - v_{85} - v_{86} - v_{87}$$
 (342)

### 7.29 Species B\_Raf

Name B\_Raf

Initial concentration  $0.2\ 10^{-6}\ \mathrm{mol}\cdot\mathrm{m}^{-3}\cdot(0.0010\ \mathrm{dimensionless})^{-1}$ 

This species takes part in six reactions (as a reactant in R74, R75 and as a product in R63, R72 and as a modifier in R74, R75).

$$\frac{d}{dt}B_{Raf} = |v_{62}| + |v_{71}| - |v_{73}| - |v_{74}|$$
(343)

#### 7.30 Species c\_Raf

Name c\_Raf

Initial concentration  $0.5 \ 10^{-6} \ \text{mol} \cdot \text{m}^{-3} \cdot (0.0010 \ \text{dimensionless})^{-1}$ 

This species takes part in three reactions (as a reactant in R73 and as a product in R64 and as a modifier in R73).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{c}_{-}\mathrm{Raf} = v_{63} - v_{72} \tag{344}$$

# 7.31 Species Rap1\_GTP

Name Rap1\_GTP

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in seven reactions (as a reactant in R69, R71, R75 and as a product in R70 and as a modifier in R69, R71, R75).

$$\frac{d}{dt} Rap1\_GTP = |v_{69}| - |v_{68}| - |v_{70}| - |v_{74}|$$
(345)

#### 7.32 Species ppMEKcyt\_ERKcyt

Name ppMEKcyt\_ERKcyt

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in 15 reactions (as a reactant in R76, R96, R134, R135 and as a product in R80, R84, R88, R92, R135, R136 and as a modifier in R76, R80, R96, R134, R135).

$$\frac{d}{dt}ppMEKcyt\_ERKcyt = v_{79} + v_{83} + v_{87} + v_{91} + v_{134} + v_{135} - v_{75} - v_{95} - v_{133} - v_{134}$$
(346)

#### 7.33 Species ppMEKcyt

Name ppMEKcyt

Initial concentration  $0.10^{-6}~\text{mol}\cdot\text{m}^{-3}\cdot(0.0010~\text{dimensionless})^{-1}$ 

This species takes part in 14 reactions (as a reactant in R80, R94, R130, R131 and as a product in R76, R82, R86, R90, R131, R132 and as a modifier in R80, R94, R130, R131).

$$\frac{d}{dt}ppMEKcyt = v_{75} + v_{81} + v_{85} + v_{89} + v_{130} + v_{131} - v_{79} - v_{93} - v_{129} - v_{130}$$
 (347)

### 7.34 Species ppERKcyt

Name ppERKcyt

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in twelve reactions (as a reactant in R77, R97, R126, R127 and as a product in R76, R98, R127, R128 and as a modifier in R77, R97, R126, R127).

$$\frac{d}{dt}ppERKcyt = v_{75} + v_{97} + v_{126} + v_{127} - 2v_{76} - v_{96} - v_{125} - v_{126}$$
 (348)

### 7.35 Species dppERKcyt

Name dppERKcyt

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in 19 reactions (as a reactant in R59, R60, R61, R98, R138, R139 and as a product in R59, R60, R61, R77, R139, R140 and as a modifier in R59, R60, R61, R77, R98, R138, R139).

$$\frac{d}{dt}dppERKcyt = |v_{58}| + |v_{59}| + |v_{60}| + |v_{76}| + |v_{138}| + |v_{139}| - |v_{58}| - |v_{59}| - |v_{60}| - |v_{97}| - |v_{137}| - |v_{138}|$$
(349)

#### 7.36 Species MEKcyt

Name MEKcyt

Initial concentration  $0.1469897 \ 10^{-6} \ \text{mol} \cdot \text{m}^{-3} \cdot (0.0010 \ \text{dimensionless})^{-1}$ 

This species takes part in 15 reactions (as a reactant in R78, R81, R85, R89, R122, R123 and as a product in R93, R123, R124 and as a modifier in R78, R81, R85, R89, R122, R123).

$$\frac{d}{dt}MEKcyt = |v_{92}| + |v_{122}| + |v_{123}| - |v_{77}| - |v_{80}| - |v_{84}| - |v_{88}| - |v_{121}| - |v_{122}|$$
(350)

#### 7.37 Species ERKcyt

Name ERKcyt

Initial concentration  $0.02803697 \ 10^{-6} \ \text{mol} \cdot \text{m}^{-3} \cdot (0.0010 \ \text{dimensionless})^{-1}$ 

This species takes part in 14 reactions (as a reactant in R78, R79, R80, R118, R119 and as a product in R97, R98, R119, R120 and as a modifier in R78, R79, R80, R118, R119).

$$\frac{d}{dt}ERKcyt = v_{96} + v_{97} + v_{118} + v_{119} - v_{77} - v_{78} - v_{79} - v_{117} - v_{118}$$
 (351)

# 7.38 Species MEKcyt\_ERKcyt

Name MEKcyt\_ERKcyt

Initial concentration  $0.1121076 \ 10^{-6} \ \text{mol} \cdot \text{m}^{-3} \cdot (0.0010 \ \text{dimensionless})^{-1}$ 

This species takes part in 15 reactions (as a reactant in R83, R87, R91, R114, R115 and as a product in R78, R95, R115, R116 and as a modifier in R78, R83, R87, R91, R114, R115).

$$\frac{d}{dt} MEKcyt\_ERKcyt = v_{77} + v_{94} + v_{114} + v_{115} - v_{82} - v_{86} - v_{90} - v_{113} - v_{114}$$
 (352)

## 7.39 Species pMEKcyt

Name pMEKcyt

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in 20 reactions (as a reactant in R79, R82, R86, R90, R93, R110, R111 and as a product in R81, R85, R89, R94, R111, R112 and as a modifier in R79, R82, R86, R90, R93, R110, R111).

$$\frac{d}{dt}pMEKcyt = v_{80} + v_{84} + v_{88} + v_{93} + v_{110} + v_{111} - v_{78} - v_{81} - v_{85} - v_{89} - v_{92} - v_{109} - v_{110}$$
(353)

# 7.40 Species pMEKcyt\_ERKcyt

Name pMEKcyt\_ERKcyt

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in 20 reactions (as a reactant in R84, R88, R92, R95, R142, R143 and as a product in R79, R83, R87, R91, R96, R143, R144 and as a modifier in R79, R84, R88, R92, R95, R142, R143).

$$\frac{d}{dt}pMEKcyt\_ERKcyt = v_{78} + v_{82} + v_{86} + v_{90} + v_{95} + v_{142} + v_{143}$$

$$- v_{83} - v_{87} - v_{91} - v_{94} - v_{141} - v_{142}$$
(354)

# 7.41 Species ppMEKnuc\_ERKnuc

Name ppMEKnuc\_ERKnuc

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in twelve reactions (as a reactant in R99, R107, R136, R137 and as a product in R103, R135, R136 and as a modifier in R99, R103, R107, R136, R137).

$$\frac{d}{dt}ppMEKnuc\_ERKnuc = |v_{102}| + |v_{134}| + |v_{135}| - |v_{98}| - |v_{106}| - |v_{135}| - |v_{136}|$$
(355)

### 7.42 Species ppMEKnuc

Name ppMEKnuc

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in eleven reactions (as a reactant in R103, R105, R132, R133 and as a product in R99, R131, R132 and as a modifier in R103, R105, R132, R133).

$$\frac{d}{dt}ppMEKnuc = |v_{98}| + |v_{130}| + |v_{131}| - |v_{102}| - |v_{104}| - |v_{131}| - |v_{132}|$$
(356)

# 7.43 Species ppERKnuc

Name ppERKnuc

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in twelve reactions (as a reactant in R100, R108, R128, R129 and as a product in R99, R109, R127, R128 and as a modifier in R100, R108, R128, R129).

$$\frac{d}{dt}ppERKnuc = |v_{98}| + |v_{108}| + |v_{126}| + |v_{127}| - 2|v_{99}| - |v_{107}| - |v_{127}| - |v_{128}|$$
(357)

# 7.44 Species dppERKnuc

Name dppERKnuc

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in ten reactions (as a reactant in R109, R140, R141 and as a product in R100, R139, R140 and as a modifier in R100, R109, R140, R141).

$$\frac{d}{dt}dppERKnuc = |v_{99}| + |v_{138}| + |v_{139}| - |v_{108}| - |v_{139}| - |v_{140}|$$
(358)

## 7.45 Species MEKnuc

Name MEKnuc

Initial concentration  $1.941234 \ 10^{-6} \ mol \cdot m^{-3} \cdot (0.0010 \ dimensionless)^{-1}$ 

This species takes part in nine reactions (as a reactant in R101, R124, R125 and as a product in R104, R123, R124 and as a modifier in R101, R124, R125).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{MEKnuc} = |v_{103}| + |v_{122}| + |v_{123}| - |v_{100}| - |v_{123}| - |v_{124}|$$
(359)

#### 7.46 Species ERKnuc

Name ERKnuc

Initial concentration  $0.01599799 \ 10^{-6} \ \text{mol} \cdot \text{m}^{-3} \cdot (0.0010 \ \text{dimensionless})^{-1}$ 

This species takes part in 14 reactions (as a reactant in R101, R102, R103, R120, R121 and as a product in R108, R109, R119, R120 and as a modifier in R101, R102, R103, R120, R121).

$$\frac{d}{dt}ERKnuc = |v_{107} + v_{108} + v_{118} + v_{119}| - |v_{100}| - |v_{101}| - |v_{102}| - |v_{119}| - |v_{120}|$$
(360)

#### 7.47 Species MEKnuc\_ERKnuc

Name MEKnuc\_ERKnuc

Initial concentration  $0.8432791 \ 10^{-6} \ \text{mol} \cdot \text{m}^{-3} \cdot (0.0010 \ \text{dimensionless})^{-1}$ 

This species takes part in nine reactions (as a reactant in R116, R117 and as a product in R101, R106, R115, R116 and as a modifier in R101, R116, R117).

$$\frac{d}{dt}MEKnuc\_ERKnuc = |v_{100}| + |v_{105}| + |v_{114}| + |v_{115}| - |v_{115}| - |v_{116}|$$
(361)

# 7.48 Species pMEKnuc

Name pMEKnuc

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in eleven reactions (as a reactant in R102, R104, R112, R113 and as a product in R105, R111, R112 and as a modifier in R102, R104, R112, R113).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{pMEKnuc} = |v_{104}| + |v_{110}| + |v_{111}| - |v_{101}| - |v_{103}| - |v_{111}| - |v_{112}|$$
(362)

### 7.49 Species pMEKnuc\_ERKnuc

Name pMEKnuc\_ERKnuc

Initial concentration  $0.10^{-6}~\text{mol}\cdot\text{m}^{-3}\cdot(0.0010~\text{dimensionless})^{-1}$ 

This species takes part in eleven reactions (as a reactant in R106, R144, R145 and as a product in R102, R107, R143, R144 and as a modifier in R102, R106, R144, R145).

$$\frac{d}{dt}pMEKnuc\_ERKnuc = |v_{101}| + |v_{106}| + |v_{142}| + |v_{143}| - |v_{105}| - |v_{143}| - |v_{144}|$$
(363)

### 7.50 Species c\_Raf\_Ras\_GTP

Name c\_Raf\_Ras\_GTP

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in 16 reactions (as a reactant in R64, R81, R82, R83, R84 and as a product in R73, R81, R82, R83, R84 and as a modifier in R64, R73, R81, R82, R83, R84).

$$\frac{d}{dt}c_{Raf_{Ras_{GTP}}} = v_{72} + v_{80} + v_{81} + v_{82} + v_{83} - v_{63} - v_{80} - v_{81} - v_{82} - v_{83}$$
 (364)

### 7.51 Species B\_Raf\_Rap1\_GTP

Name B\_Raf\_Rap1\_GTP

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in 16 reactions (as a reactant in R72, R89, R90, R91, R92 and as a product in R75, R89, R90, R91, R92 and as a modifier in R72, R75, R89, R90, R91, R92).

$$\frac{d}{dt}B_{Raf}Rap_{1}GTP = v_{74} + v_{88} + v_{89} + v_{90} + v_{91} - v_{71} - v_{88} - v_{89} - v_{90} - v_{91}$$
(365)

#### 7.52 Species Rap1\_GDP

Name Rap1\_GDP

Initial concentration  $0.2 \ 10^{-6} \ \text{mol} \cdot \text{m}^{-3} \cdot (0.0010 \ \text{dimensionless})^{-1}$ 

This species takes part in five reactions (as a reactant in R70 and as a product in R69, R71, R72 and as a modifier in R70).

$$\frac{d}{dt} Rap1\_GDP = |v_{68}| + |v_{70}| + |v_{71}| - |v_{69}|$$
(366)

#### 7.53 Species Crk

Name Crk

Initial concentration  $0.5019842 \ 10^{-6} \ \text{mol} \cdot \text{m}^{-3} \cdot (0.0010 \ \text{dimensionless})^{-1}$ 

This species takes part in two reactions (as a reactant in R65 and as a modifier in R65).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Crk} = -v_{64} \tag{367}$$

#### 7.54 Species C3G

Name C3G

Initial concentration  $0.001984189 \ 10^{-6} \ \text{mol} \cdot \text{m}^{-3} \cdot (0.0010 \ \text{dimensionless})^{-1}$ 

This species takes part in two reactions (as a reactant in R65 and as a modifier in R65).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{C3G} = -v_{64} \tag{368}$$

# 7.55 Species pDok\_RasGAP

Name pDok\_RasGAP

**Initial concentration**  $8.45291 \cdot 10^{-5} \ 10^{-6} \ \text{mol} \cdot \text{m}^{-3} \cdot (0.0010 \ \text{dimensionless})^{-1}$ 

This species takes part in eleven reactions (as a reactant in R62, R63, R64 and as a product in R55, R62, R63, R64 and as a modifier in R55, R62, R63, R64).

$$\frac{d}{dt}pDok\_RasGAP = |v_{54}| + |v_{61}| + |v_{62}| + |v_{63}| - |v_{61}| - |v_{62}| - |v_{63}|$$
(369)

# 7.56 Species RasGAP

Name RasGAP

Initial concentration  $0.09991547 \ 10^{-6} \ \text{mol} \cdot \text{m}^{-3} \cdot (0.0010 \ \text{dimensionless})^{-1}$ 

This species takes part in two reactions (as a reactant in R55 and as a modifier in R55).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{RasGAP} = -v_{54} \tag{370}$$

#### 7.57 Species Grb2\_pSOS

Name Grb2\_pSOS

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in six reactions (as a reactant in R54 and as a product in R47, R60, R61 and as a modifier in R47, R54).

$$\frac{d}{dt}Grb2\_pSOS = |v_{46}| + |v_{59}| + |v_{60}| - |v_{53}|$$
(371)

### 7.58 Species pShc

Name pShc

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in eleven reactions (as a reactant in R19, R22, R48, R51 and as a product in R13, R34, R60 and as a modifier in R19, R22, R48, R51).

$$\frac{d}{dt}pShc = |v_{12}| + |v_{33}| + |v_{59}| - |v_{18}| - |v_{21}| - |v_{47}| - |v_{50}|$$
(372)

### 7.59 Species pSOS

Name pSOS

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in five reactions (as a reactant in R47, R53 and as a product in R59 and as a modifier in R47, R53).

$$\frac{d}{dt}pSOS = |v_{58}| - |v_{46}| - |v_{52}|$$
 (373)

#### 7.60 Species pFRS2

Name pFRS2

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in ten reactions (as a reactant in R25, R27, R68 and as a product in R16, R17, R37, R38 and as a modifier in R25, R27, R68).

$$\frac{d}{dt}pFRS2 = |v_{15}| + |v_{16}| + |v_{36}| + |v_{37}| - |v_{24}| - |v_{26}| - |v_{67}|$$
(374)

#### 7.61 Species mwd4cc05d6\_6e19\_4e2e\_b540\_45954f2df4f0

Name trkal int

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in six reactions (as a reactant in mw9da48a51\_bbd0\_4395\_9883\_8441d8153b00, mwc467edb6\_a255\_45d6\_8014\_33bd0209b36f and as a product in mwffc6fab3\_9f90\_4da4-bf71\_214b9b723899 and as a modifier in mwffc6fab3\_9f90\_4da4\_bf71\_214b9b723899, mw9da48a51\_bbd0\_4395\_9883\_8441d8153b00, mwc467edb6\_a255\_45d6\_8014\_33bd0209b36f).

$$\frac{d}{dt} \text{mwd4cc05d6\_6e19\_4e2e\_b540\_45954f2df4f0} = v_{151} - v_{154} - v_{155}$$
 (375)

### 7.62 Species mwf82ad06a\_b8aa\_40fa\_a532\_a1da44e3425f

Name pro\_TrkA

Initial concentration  $0.020631 \ 10^{-6} \ \text{mol} \cdot \text{m}^{-3} \cdot (0.0010 \ \text{dimensionless})^{-1}$ 

This species takes part in three reactions (as a reactant in R1 and as a product in R1 and as a modifier in R1), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{d}{dt} mwf82ad06a_b8aa_40fa_a532_a1da44e3425f = 0$$
 (376)

#### **7.63 Species** mwe009ad7f\_90fd\_4186\_8855\_77780724ddb8

Name L\_NGFR\_I

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in four reactions (as a reactant in mw4f0ee780\_12f5\_436d\_a227\_c5e7cd420259 and as a product in mw9da48a51\_bbd0\_4395\_9883\_8441d8153b00 and as a modifier in mw9da48a51\_bbd0\_4395\_9883\_8441d8153b00, mw4f0ee780\_12f5\_436d\_a227\_c5e7cd420259).

$$\frac{d}{dt} \text{mwe009ad7f\_90fd\_4186\_8855\_77780724ddb8} = v_{154} - v_{157}$$
 (377)

# **7.64 Species** mw5afa8250\_0cf0\_40a2\_a97a\_f7cf20a9cfbd

Name NGFR\_I

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in four reactions (as a reactant in  $mwe4f77287_e0fe_47f7_a74e_312151e578a4$  and as a product in  $mwc467edb6_a255_45d6_8014_33bd0209b36f$  and as a modifier in  $mwc467edb6_a255_45d6_8014_33bd0209b36f$  and as a modifier in  $mwc467edb6_a255_45d6_8014_33bd0209b36f$ ,  $mwe4f77287_e0fe_47f7_a74e_312151e578a4$ ).

$$\frac{d}{dt} mw5afa8250\_0cf0\_40a2\_a97a\_f7cf20a9cfbd = v_{155} - v_{156}$$
(378)

# **7.65** Species mwb4295eb0\_bd92\_4221\_b49d\_bbbd48ca25bc

Name NGFR\_I\_deg

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in one reaction (as a product in mwe4f77287\_e0fe\_47f7\_a74e\_312151e578a4).

$$\frac{d}{dt} \text{mwb4295eb0\_bd92\_4221\_b49d\_bbbd48ca25bc} = v_{156}$$
 (379)

### **7.66 Species** mwa4903466\_fc58\_4bfe\_b3ec\_76a90f9d20e2

Name L\_NGFR\_I\_deg

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in one reaction (as a product in mw4f0ee780\_12f5\_436d\_a227\_c5e7cd420259).

$$\frac{d}{dt} mwa4903466 fc58_4 bfe_b 3ec_7 6a90f9 d20e2 = v_{157}$$
(380)

# **7.67 Species** mwe979ec8f\_a55c\_470c\_a554\_9fa8013eab74

Name NGFR\_interstitial\_fluid

Initial concentration  $5 \cdot 10^{-6} \ 10^{-6} \ mol \cdot m^{-3} \cdot (0.0010 \ dimensionless)^{-1}$ 

This species takes part in four reactions (as a reactant in mwc7ff2b7b\_e2c9\_4420\_87bc\_f285d98de30b and as a product in mw8105f0dc\_19ad\_4f7a\_80df\_3f84de216c42 and as a modifier in mwc7ff2b7b-e2c9\_4420\_87bc\_f285d98de30b, mw8105f0dc\_19ad\_4f7a\_80df\_3f84de216c42).

$$\frac{d}{dt} \text{mwe} 979 \text{ec} 8f_a 55 \text{c}_4 70 \text{c}_a 554_9 \text{fa} 8013 \text{eab} 74 = v_{153} - v_{147}$$
(381)

#### **7.68 Species** mw4478fbeb\_51b1\_4764\_92ad\_a86d314ae0eb

Name source

Initial concentration  $1 \cdot 10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in two reactions (as a reactant in mwe8ee00ff\_3d59\_44d5\_8d7f\_a2074823f29d and as a modifier in mwe8ee00ff\_3d59\_44d5\_8d7f\_a2074823f29d), which do not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{d}{dt}mw4478fbeb_51b1_4764_92ad_a86d314ae0eb = 0$$
 (382)

#### **7.69 Species** mw29fa4e00\_a430\_4f11\_b62e\_1bcbc0a767a0

Name NGF

Initial concentration  $3 \cdot 10^{-5} \ 10^{-6} \ \text{mol} \cdot \text{m}^{-3} \cdot (0.0010 \ \text{dimensionless})^{-1}$ 

This species takes part in seven reactions (as a reactant in mw711542fd\_b235\_40f7\_9782-\_f78eb654d773, mwc7ff2b7b\_e2c9\_4420\_87bc\_f285d98de30b, mw02775189\_5c04\_4c2f\_a5f4-\_2f15723e1ece and as a product in mwe8ee00ff\_3d59\_44d5\_8d7f\_a2074823f29d and as a modifier in mw711542fd\_b235\_40f7\_9782\_f78eb654d773, mwc7ff2b7b\_e2c9\_4420\_87bc-\_f285d98de30b, mw02775189\_5c04\_4c2f\_a5f4\_2f15723e1ece).

$$\frac{d}{dt} mw29 fa4e00_a430_4f11_b62 e_1 bcbc0 a767 a0 = v_{145} - v_{146} - v_{147} - v_{148}$$
 (383)

### **7.70 Species** mwa81400ac\_76f5\_4446\_8a4d\_6446ab4b11c9

Name NGFdeg

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in one reaction (as a product in mw711542fd\_b235\_40f7\_9782\_f78eb654d773).

$$\frac{d}{dt} mwa81400ac_76f5_4446_8a4d_6446ab4b11c9 = v_{146}$$
(384)

#### **7.71 Species** mw6782adfa\_29ee\_41a8\_acbb\_4c86c6c81596

Name NGFR\_L\_interstitial\_fluid

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in four reactions (as a reactant in  $mwf371eb20_7bda_4140_9a43_dfad70900057$  and as a product in  $mwc7ff2b7b_e2c9_4420_87bc_f285d98de30b$  and as a modifier in  $mwc7ff2b7b_e2c9_4420_87bc_f285d98de30b$ ,  $mwf371eb20_7bda_4140_9a43_dfad70900057$ ).

$$\frac{d}{dt}mw6782adfa_29ee_41a8_acbb_4c86c6c81596 = v_{147} - v_{152}$$
(385)

#### **7.72 Species** mwe599c4c1\_2d8e\_446c\_bf3f\_4c97baced8a9

Name tanezumab

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in four reactions (as a reactant in mw02775189\_5c04\_4c2f\_a5f4\_2f15723e1ece, mwfb02ea2a\_1f06\_4f8f\_80a0\_721149f213ff and as a modifier in mw02775189\_5c04\_4c2f\_a5f4\_2f15723e1ece, mwfb02ea2a\_1f06\_4f8f\_80a0\_721149f213ff).

$$\frac{d}{dt} \text{mwe} 599\text{c4c1}_2 d8e_4 46\text{c}_b f 3f_4 c 97 baced 8a 9 = -v_{148} - v_{149}$$
(386)

### **7.73 Species** mw46e8693e\_348e\_4f1d\_8c49\_c13485fae7ba

Name NGF\_tanezumab

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in two reactions (as a product in mw02775189\_5c04\_4c2f\_a5f4\_2f15723e1ece and as a modifier in mw02775189\_5c04\_4c2f\_a5f4\_2f15723e1ece).

$$\frac{d}{dt}mw46e8693e\_348e\_4f1d\_8c49\_c13485fae7ba = v_{148}$$
(387)

# **7.74 Species** mwe0b9d340\_24f5\_4c7e\_a80f\_4faadae6c0fc

Name tz\_deg

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in one reaction (as a product in mwfb02ea2a\_1f06\_4f8f\_80a0\_721149f213ff).

$$\frac{d}{dt} \text{mwe0b9d340}\_24f5\_4c7e\_a80f\_4faadae6c0fc} = v_{149}$$
 (388)

#### **7.75 Species** mw89ebbe2d\_1ec2\_457a\_9367\_6c5e86a1a924

Name trkaI

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in four reactions (as a reactant in mw12b652db\_d0da\_4723\_b160\_001fa36f9190, mwffc6fab3\_9f90\_4da4\_bf71\_214b9b723899 and as a modifier in mw12b652db\_d0da\_4723\_b160\_001fa36f9190, mwffc6fab3\_9f90\_4da4\_bf71\_214b9b723899).

$$\frac{d}{dt} mw89 ebbe2 d_1 ec2_4 57 a_9 367_6 c5 e86 a1 a924 = -v_{150} - v_{151}$$
(389)

#### **7.76 Species** mw555a08dc\_922d\_4b35\_8f69\_5c6e8a4ad614

Name trkaI\_deg

Initial concentration  $0.10^{-6} \text{ mol} \cdot \text{m}^{-3} \cdot (0.0010 \text{ dimensionless})^{-1}$ 

This species takes part in one reaction (as a product in mw12b652db\_d0da\_4723\_b160\_001fa36f9190).

$$\frac{d}{dt} \text{mw555a08dc\_922d\_4b35\_8f69\_5c6e8a4ad614} = v_{150}$$
 (390)

SML2ATEX was developed by Andreas Dräger<sup>a</sup>, Hannes Planatscher<sup>a</sup>, Dieudonné M Wouamba<sup>a</sup>, Adrian Schröder<sup>a</sup>, Michael Hucka<sup>b</sup>, Lukas Endler<sup>c</sup>, Martin Golebiewski<sup>d</sup> and Andreas Zell<sup>a</sup>. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

<sup>&</sup>lt;sup>a</sup>Center for Bioinformatics Tübingen (ZBIT), Germany

<sup>&</sup>lt;sup>b</sup>California Institute of Technology, Beckman Institute BNMC, Pasadena, United States

<sup>&</sup>lt;sup>c</sup>European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

<sup>&</sup>lt;sup>d</sup>EML Research gGmbH, Heidelberg, Germany