fundamentals of simulation methods

winter term 2019/2020

Lecturers: Ralf Klessen

Tutors: Loke Lönnblad Ohlin, Toni Peter, Marcelo Barraza

https://uebungen.physik.uni-heidelberg.de/vorlesung/20192/1062

- Homework assignments provided.
- Results and grades listed.

https://elearning2.uni-heidelberg.de/enrol/index.php?id=22625

- Enrollment key: To enrollment key for this lecture is "von Neumann".
- Homework and further information (script) provided.

Goals: After completion of this module, the students are endowed with the capacity to identify and classify numerical problems. They have reached active understanding of applicable numerical methods and algorithms. They are able to solve basic physical problems with adequate numerical techniques and to recognize the range of validity of numerical solutions.

Contents (from module description): Basic concepts of numerical simulations, continuous and discrete simulations

- Discretization of ordinary differential equations, integration schemes of different order
- N-body problems, molecular dynamics, collisionless systems
- Discretization of partial differential equations
- Finite element and finite volume methods
- Lattice methods
- Adaptive mesh refinement and multi-grid methods
- Matrix solvers and FFT methods
- Monte Carlo methods, Markov chains, applications in statistical physics

Module parts and teaching methods:

- Lecture on "Fundamentals of Simulation Methods" (4 hours/week)
- Exercise with homework (2 hours/week)

Workload and credit points: The workload for this module is 240 hours, corresponding to 8 credit points.

Practice groups

- Group G1 (Loke Ohlin Lönnblad)
 Phil 12 -- CIP Pool, Thu 11 13
- Group G2 (Toni Peter)
 Phil 12 -- CIP Pool, Thu 14 16
- Group G3 (Marcelo Barraza)
 Phil 12 -- CIP Pool, Fri 11 13

Homework

- Provided on Tuesday
- Hand in by Wednesday noon the following week
- Discussed and given back in tutorials after one more week.

Schedule

WEEK	HW out	HW in	TUTORIALS	COMMENTS
14.10.	HW1			
21.10.	HW2	HW1	general discussi	on
28.10.	HW3	HW2	HW1 discussion	
04.11.	HW4	HW3	HW2 discussion	
11.11.	HW5	HW4	HW3 discussion	
18.11.	HW6	HW5	HW4 discussion	
25.11.	HW7	HW6	HW5 discussion	
02.12.	HW8	HW7	HW6 discussion	
09.12.	HW9	HW8	HW7 discussion	
16.12.	HW10	HW9	HW8 discussion	
23.12.				Christmas
30.12.				Christmas
06.01.	HW11	HW10	HW9 discussion	
13.01.	HW12	HW11	HW10 discussion	
20.01.		HW12	HW11 discussion	
27.01.			HW12 discussion	
03.02.				Exam Week

ASCII (American Standard Code for Information Interchange)

b ₇				-		0	0	0	0	1	1	1	1
b ₆ —					→	0 0	0 1	1 0	1 1	0 0	0 1	1 0	1 1
Bits	b₄ ↓	b₃ ↓	b ₂ ↓	b ₁ ↓	Column → Row ↓	0	1	2	3	4	5	6	7
	0	0	0	0	0	NUL	DLE	SP	0	@	Р	•	р
	0	0	0	1	1	SOH	DC1	ļ	1	Α	Q	a	q
	0	0	1	0	2	STX	DC2		2	В	R	b	r
	0	0	1	1	3	ETX	DC3	#	3	С	S	С	S
	0	1	0	0	4	EOT	DC4	\$	4	D	T	d	t
	0	1	0	1	5	ENQ	NAK	%	5	Е	U	е	u
	0	1	1	0	6	ACK	SYN	&	6	F	V	f	V
	0	1	1	1	7	BEL	ETB	•	7	G	W	g	W
	1	0	0	0	8	BS	CAN	(8	Н	X	h	X
	1	0	0	1	9	HT	EM)	9	1	Υ	į	у
	1	0	1	0	10	LF	SUB	*	:	J	Z	j	Z
	1	0	1	1	11	VT	ESC	+	. 1	K]	k	{
	1	1	0	0	12	FF	FC	1	٧	L	\		
	1	1	0	1	13	CR	GS	-	=	M]	m	}
	1	1	1	0	14	SO	RS	-	>	N	۸	n	~
	1	1	1	1	15	SI	US	/	?	0	_	0	DEL

1000100 = A = A

INTEGER

example 4 bit integer:

- this is the standard representation!
- unique definition of zero
- attention: overflow!!

Representation Representation Representation Representation Representation Representation +8 1000 — — — 1111 +7 0111 0111 0111 0111 1110 +6 0110 0110 0110 0110 1101 +5 0101 0101 0101 0101 1100 +4 0100 0100 0100 0100 1011 +3 0011 0011 0011 0011 1010 +2 0010 0010 0010 0010 1001 +1 0001 0001 0001 0001 1000 +0 0000 0000 0000 0000 0000 0111 -0 — 1000 1111 — — — -1 — 1000 1111 — — — -1 — 1010 1101 1110 0101 0101	Decimal	Unsigned	Signed-Magnitude	Ones Complement	Twos-Complement	Biased
+7 0111 0111 0111 0111 1110 +6 0110 0110 0110 0110 1101 +5 0101 0100 0100 0100 1100 +4 0100 0100 0100 0100 1011 +3 0011 0011 0011 0011 1010 +2 0010 0010 0010 0010 1001 +1 0001 0001 0001 0001 1000 +0 0000 0000 0000 0000 0000 011 -0 — 1000 1111 — — -1 — 1001 1110 1111 010 -2 — 1010 1101 1110 0101 -3 — 1011 1100 1101 0100 -4 — 1100 1011 1100 0011 -5 — 1101 1010 1011 0010 -6 — 1110 1001 1001 0001 <td>Representation</td> <td>Representation</td> <td>Representation</td> <td>Representation</td> <td>Representation</td> <td>Representation</td>	Representation	Representation	Representation	Representation	Representation	Representation
+6 0110 0110 0110 1101 +5 0101 0101 0101 0101 1100 +4 0100 0100 0100 0100 1011 +3 0011 0011 0011 0011 1010 +2 0010 0010 0010 0010 1001 +1 0001 0001 0001 0001 1000 +0 0000 0000 0000 0000 0111 -0 — 1000 1111 — — -1 — 1001 1110 1111 0110 -2 — 1010 1101 1110 0101 -3 — 1011 1100 1101 0100 -4 — 1100 1011 1100 0011 -5 — 1101 1010 1011 0010 -6 — 1110 1001 1001 0001 -7 — 1111 1000 1001 0001	+8	1000				1111
+5 0101 0101 0101 0101 1100 +4 0100 0100 0100 0100 1011 +3 0011 0011 0011 0011 1010 +2 0010 0010 0010 1001 1001 +1 0001 0001 0001 1000 1000 +0 0000 0000 0000 0000 011 -0 — 1000 1111 — — -1 — 1001 1110 1111 0110 -2 — 1010 1101 1101 0101 -3 — 1011 1100 1101 0100 -4 — 1100 1011 1100 0011 -5 — 1101 1010 1011 0010 -6 — 1110 1001 1001 0001 -7 — 11111 1000 1001 0001 <td>+7</td> <td>0111</td> <td>0111</td> <td>0111</td> <td>0111</td> <td>1110</td>	+7	0111	0111	0111	0111	1110
+4 0100 0100 0100 0100 1011 +3 0011 0011 0011 0011 1010 +2 0010 0010 0010 0010 1001 +1 0001 0001 0001 0001 1000 +0 0000 0000 0000 0000 0111 -0 — 1000 1111 — — -1 — 1001 1110 1111 0110 -2 — 1010 1101 1110 0101 -3 — 1011 1100 1101 0100 -4 — 1100 1011 1100 0011 -5 — 1101 1010 1011 0010 -6 — 1110 1001 1001 0000	+6	0110	0110	0110	0110	1101
+3 0011 0011 0011 1010 +2 0010 0010 0010 1001 +1 0001 0001 0001 1000 +0 0000 0000 0000 0000 0111 -0 — 1000 1111 — — -1 — 1001 1110 1111 0110 -2 — 1010 1101 1110 0101 -3 — 1011 1100 1101 0100 -4 — 1100 1011 1100 0011 -5 — 1101 1010 1011 0010 -6 — 1110 1001 1001 0001 -7 — 1111 1000 1001 0000	+5	0101	0101	0101	0101	1100
+2 0010 0010 0010 1001 +1 0001 0001 0001 1000 +0 0000 0000 0000 0000 0111 -0 — 1000 1111 — — -1 — 1001 1110 1111 0110 -2 — 1010 1101 1110 0101 -3 — 1011 1100 1101 0100 -4 — 1100 1011 1100 0011 -5 — 1101 1010 1011 0010 -6 — 1110 1001 1001 0001 -7 — 1111 1000 1001 0000	+4	0100	0100	0100	0100	1011
+1 0001 0001 0001 1000 +0 0000 0000 0000 0111 -0 — 1000 1111 — — -1 — 1001 1110 1111 0110 -2 — 1010 1101 1110 0101 -3 — 1011 1100 1101 0100 -4 — 1100 1011 1100 0011 -5 — 1101 1010 1011 0010 -6 — 1110 1001 1001 0001 -7 — 1111 1000 1001 0000	+3	0011	0011	0011	0011	1010
+0 0000 0000 0000 0111 -0 — 1000 1111 — — -1 — 1001 1110 1111 0110 -2 — 1010 1101 1110 0101 -3 — 1011 1100 1101 0100 -4 — 1100 1011 1100 0011 -5 — 1101 1010 1011 0010 -6 — 1110 1001 1001 0001 -7 — 1111 1000 1001 0000	+2	0010	0010	0010	0010	1001
-0 — 1000 1111 — — -1 — 1001 1110 1111 0110 -2 — 1010 1101 1110 0101 -3 — 1011 1100 1101 0100 -4 — 1100 1011 1100 0011 -5 — 1101 1001 1011 0000 -6 — 1110 1001 1001 0001 -7 — 1111 1000 1001 0000	+1	0001	0001	0001	0001	1000
-1 — 1001 1110 1111 0110 -2 — 1010 1101 1110 0101 -3 — 1011 1100 1101 0100 -4 — 1100 1011 1100 0011 -5 — 1101 1010 1011 0010 -6 — 1110 1001 1001 0001 -7 — 1111 1000 1001 0000	+0	0000	0000	0000	0000	0111
-2 — 1010 1101 1110 0101 -3 — 1011 1100 1101 0100 -4 — 1100 1011 1100 0011 -5 — 1101 1010 1011 0001 -6 — 1110 1001 1001 0001 -7 — 1111 1000 1001 0000	-0		1000	1111		
-3 — 1011 1100 1101 0100 -4 — 1100 1011 1100 0011 -5 — 1101 1010 1011 0010 -6 — 1110 1001 1001 0001 -7 — 1111 1000 1001 0000	-1		1001	1110	1111	0110
-4 — 1100 1011 1100 0011 -5 — 1101 1010 1011 0010 -6 — 1110 1001 1010 0001 -7 — 1111 1000 1001 0000	-2		1010	1101	1110	0101
-5 — 1101 1010 1011 0010 -6 — 1110 1001 1010 0001 -7 — 1111 1000 1001 0000	-3		1011	1100	1101	0100
-6 — 1110 1001 1010 0001 -7 — 1111 1000 1001 0000	-4		1100	1011	1100	0011
-7 — 1111 1000 1001 0000	-5		1101	1010	1011	0010
	-6		1110	1001	1010	0001
-8 — — 1000 —	-7		1111	1000	1001	0000
	-8	_			1000	

INTEGER

Größe			Grenzen des Werteberei	Dezimalstellen	
(Bit)	Typische Namen		min	max	(ohne Vorzeichen)
8	char, Byte/byte	signed	-128	127	3
0	char, bylerbyle	unsigned	0	255	3
16	Word Short/short Integer	signed	-32.768	32.767	5
10	Word, Short/short, Integer	unsigned	0	65.535	5
32	DWord/Double Word, int, long (Windows auf 16/32/64-Bit Systemen; ^[5]	signed	-2.147.483.648	2.147.483.647	10
32	Unix/Linux/C99 auf 16/32-Bit Systemen ^[5])	unsigned	0	4.294.967.295	10
64	Int64, QWord/Quadword, long long, Long/long (Unix/Linux/C99 auf 64-Bit	signed	-9.223.372.036.854.775.808	9.223.372.036.854.775.807	19
04	Systemen ^{[5][6][7]})	unsigned	0	18.446.744.073.709.551.615	20
100	Intt 09 Octowerd Double Ouedward	signed	≈ -1,70141·10 ³⁸	≈ 1,70141·10 ³⁸	39
128 Int1	nt128, Octaword, Double Quadword	unsigned	0	≈ 3,40282·10 ³⁸	39
n	BigInteger	signed	-2 ⁿ⁻¹	2 ⁿ⁻¹ - 1	rlog ₁₀ 2 ^{n−1} ¬
n B		unsigned	0	2 ⁿ – 1	rlog ₁₀ 2 ⁿ ₁

number representation:

s = significant (integer representation of mantissa)

b = base (usually 2)

e = exponent

FLOATING POINT (Decimals) Organization depends on word length. For **32 bit**:

$$f = (d_0, d_1, d_2, \dots, d_{23}) \cdot 2^e$$

$$\equiv (d_0 \cdot 2^0 + d_1 \cdot 2^{-1} + d_2 \cdot 2^{-2} + \dots + d_{23} \cdot 2^{-23}) \cdot 2^e.$$

with e an 8 bit integer, $e = e_0 - 127$, and $e_0 = 0$ and $e_0 = 255$ represent f = 0 and $f = \infty$; so for finite non-zero $f - 126 \le e \le 127$. Convention: $d_0 \equiv 1$ for normalization. thus d_0 free as sign bit.

- largest representable f

$$f_{\text{max}} = (1, 1, 1, 1, \dots, 1) \cdot 2^{127} \simeq 3.40 \cdot 10^{38}$$
.

- smallest representable f

$$f_{\min} = (1, 0, 0, \dots, 0) \cdot 2^{-126} \simeq 1.18 \cdot 10^{-38}$$

– machine precision ε_m : smallest Increment of mantissa $\varepsilon_m = 2^{-23} \simeq 1.19 \cdot 10^{-7}$, consequence:

$$1 + \varepsilon = 1$$

number representation:

s = significant (integer representation of mantissa)

b = base (usually 2)

e = exponent

$$s \times b^e$$

$$\frac{s}{b^{p-1}} \times b^e$$

floating point components:

	Sign	Exponent	Fraction
Single Precision	1 [31]	8 [30–23]	23 [22–00]
Double Precision	1 [63]	11 [62–52]	52 [51–00]

ambiguity in number representation:

normalized representation: 5.000 × 100

example 5 with 4 significant digits:

 $.5000 \times 10^{2}$

 0.050×10^3

 $5000. \times 10^{-2}$

number representation:

s = significant (integer representation of mantissa)

b = base (usually 2)

e = exponent

$$s \times b^e \qquad \qquad \frac{s}{b^{p-1}} \times b^e$$

floating point components:

	Sign	Exponent	Fraction
Single Precision	1 [31]	8 [30–23]	23 [22–00]
Double Precision	1 [63]	11 [62–52]	52 [51–00]

floating point range:

	Denormalized	Normalized	Approximate Decimal
Single Precision	$\pm 2^{-149}$ to $(1-2^{-23}) \times 2^{-126}$	$\pm 2^{-126}$ to $(2-2^{-23}) \times 2^{-127}$	$\pm \approx 10^{-44.85} \text{ to } \approx 10^{38.53}$
Double Precision	$\pm 2^{-1074}$ to $(1-2^{-52}) \times 2^{-1022}$	$\pm 2^{-1022}$ to $(2-2^{-52}) \times 2^{-1023}$	$\pm \approx 10^{-323.3} \text{ to } \approx 10^{308.3}$

number representation:

s = significant (integer representation of mantissa)

b = base (usually 2)

e = exponent

IMPORTANT not all numbers can be represented!

Example: 0.1 = 1/10 in decimal, but there is no "finite" representation in binary:

$$e = -4$$
; $s = 110011001100110011001100110011...,$

where, as previously, *s* is the significand and *e* is the exponent.

When rounded to 24 bits this becomes

$$e = -4$$
; $s = 11001100110011001101$,

which is actually 0.100000001490116119384765625 in decimal.

As a further example, the real number $\boldsymbol{\pi}\!,$ represented in binary as an infinite series of bits is

but is

11.0010010000111111011011

when approximated by rounding to a precision of 24 bits.

number representation:

s = significant (integer representation of mantissa)

b = base (usually 2)

e = exponent

$$s \times b^e$$
 $\frac{s}{b^{p-1}} \times b^e$

Example: π

$$\pi = \left(1 + \sum_{n=1}^{p-1} \operatorname{bit}_n \times 2^{-n}\right) \times 2^e$$

$$= \left(1 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-4} + 1 \times 2^{-7} + \dots + 1 \times 2^{-23}\right) \times 2^1$$

$$= 1.5707964 \times 2$$

In binary single-precision floating-point, this is represented as s = 1.10010010000111111011011 with e = 1. This has a decimal value of

3.1415927410125732421875,

whereas a more accurate approximation of the true value of π is

3.14159265358979323846264338327950...

Adding floating point numbers

A simple method to add floating-point numbers is to first represent them with the same exponent. In the example below, the second number is shifted right by three digits, and we then proceed with the usual addition method:

```
123456.7 = 1.234567 × 10^5

101.7654 = 1.017654 × 10^2 = 0.001017654 × 10^5

Hence:

123456.7 + 101.7654 = (1.234567 \times 10^5) + (1.017654 \times 10^2)

= (1.234567 \times 10^5) + (0.001017654 \times 10^5)

= (1.234567 + 0.001017654) \times 10^5

= 1.235584654 \times 10^5
```

In detail:

number representation:

s = significant (integer representation of mantissa)
$$s \times b^e$$
 $\frac{s}{b^{p-1}} \times b^e$ b = base (usually 2)

e = exponent

Computing with floating point numbers

Floating point numbers are *commutative*:

$$a + b = b + a$$
 and $a * b = b * a$

BUT, they are not necessarily associative a + (b + c) = (a + b) + c

```
a = 1234.567, b = 45.67834, c = 0.0004

(a + b) + c:
    1234.567 (a)
    + 45.67834 (b)

    1280.24534 rounds to 1280.245

1280.245 (a + b)
    + 0.0004 (c)

    1280.2454 rounds to 1280.245 <--- (a + b) + c

a + (b + c):
    45.67834 (b)
    + 0.0004 (c)

    45.67874

45.67874 (b + c)
    + 1234.567 (a)

1280.24574 rounds to 1280.246 <--- a + (b + c)
```

Computing with floating point numbers

AND, they are not necessarily *distributive*(a + b) * c = a*c + b*c

```
1234.567 × 3.333333 = 4115.223

1.234567 × 3.333333 = 4.115223

4115.223 + 4.115223 = 4119.338

but

1234.567 + 1.234567 = 1235.802

1235.802 × 3.333333 = 4119.340
```

Computing with floating point numbers

Example: solution of quadratic formula

Solution of $ax^2 + bx + c = 0$:

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

If $ac \ll b^2$, so $b^2 - 4ac = b^2$ due to finite machine prec., computer gives $x_1 = 0$ instead of

$$x_1 = \frac{-b + b\sqrt{1 - 4ac/b^2}}{2a} \simeq \frac{-b + b(1 - 2ac/b^2 + \dots)}{2a} \simeq -\frac{c}{b}$$

which can be $\mathcal{O}(1)$!

Take round-off errors into account in your calculations! Example: Archimedes approach to calculate π

Example: calculation of π

$$t_0 = \frac{1}{\sqrt{3}}$$

$$\text{first form}: \qquad t_{i+1} = \frac{\sqrt{t_i^2+1}-1}{t_i} \qquad \text{second form}: \qquad t_{i+1} = \frac{t_i}{\sqrt{t_i^2+1}+1}$$

$$\pi \sim 6 \times 2^i \times t_i$$
, converging as $i \to \infty$

Here is a computation using IEEE "double" (a significand with 53 bits of precision) arithmetic:

Take round-off errors into account in your calculations! Example: Archimedes approach to calculate π

$$t_0 = \frac{1}{\sqrt{3}}$$

first form:
$$t_{i+1} = \frac{\sqrt{t_i^2 + 1} - 1}{t_i}$$
 second form: $t_{i+1} = \frac{t_i}{\sqrt{t_i^2 + 1} + 1}$

$$\pi \sim 6 \times 2^i \times t_i$$
, converging as $i \to \infty$

Here is a computation using IEEE "double" (a significand with 53 bits of precision) arithmetic:

$$x_n/R = (e_n - e_{2n})/e_{2n}$$

 $(x_n + R)/R = e_n/e_{2n}$
 $(x_n + R)/e_n = R/e_{2n}$
 $x_n^2 = R^2 + e_n^2$

$$a_n \stackrel{\text{def}}{=} R/e_n$$

$$a_{2n} = a_n + \sqrt{a_n^2 + 1}$$

recursive formula for an

set $t_n = 1/a_n$ to obtain

$$t_{i+1} = \frac{t_i}{\sqrt{t_i^2 + 1} + 1}$$

$$\begin{array}{rcl} 1 & x_n/R & = & (e_n-e_{2n})/e_{2n} & +1 \\ (x_n+R)/R & = & e_n/e_{2n} & & \\ (x_n+R)/e_n & = & R/e_{2n} & & \\ \end{array}$$

$$x_n^2 = R^2 + e_n^2$$

$$\frac{\chi_n^2}{e_n^2} = \frac{R^2}{e_n^2} + 1 = \alpha_n^2 + 1$$

$$a_n \stackrel{\text{def}}{=} R/e_n$$

$$a_{2n} = \frac{R}{e_{2n}} = \frac{x_n + R}{e_n} = \frac{x_n}{e_n} + \alpha_n$$

$$a_{2n} = a_n + \sqrt{a_n^2 + 1}$$

recursive formula for an

5 set
$$t_n = 1/a_n$$
 to obtain

$$t_{i+1} = \frac{t_i}{\sqrt{t_i^2 + 1} + 1}$$

Take round-off errors into account in your calculations! Example: Archimedes approach to calculate π

$$t_0 = \frac{1}{\sqrt{3}}$$

first form:
$$t_{i+1} = \frac{\sqrt{t_i^2 + 1} - 1}{t_i}$$
 second form: $t_{i+1} = \frac{t_i}{\sqrt{t_i^2 + 1} + 1}$

$$\pi \sim 6 \times 2^i \times t_i$$
, converging as $i \to \infty$

Here is a computation using IEEE "double" (a significand with 53 bits of precision) arithmetic:

```
6 \times 2^{i} \times t_{i}, first form 6 \times 2^{i} \times t_{i}, second form
     3.4641016151377543863
                                 3.4641016151377543863
     3.2153903091734710173
                                 3.2153903091734723496
     3.1596599420974940120
                                 3.1596599420975006733
     3.1460862151314012979
                                 3.1460862151314352708
     3.1427145996453136334
                                 3.1427145996453689225
     3.1418730499801259536
                                 3.1418730499798241950
     3.1416627470548084133
                                 3.1416627470568494473
     3.1416101765997805905
                                 3.1416101766046906629
     3.1415970343230776862
                                 3.1415970343215275928
     3.1415937488171150615
                                 3.1415937487713536668
     3.1415929278733740748
                                 3.1415929273850979885
     3.1415927256228504127
                                 3.1415927220386148377
     3.1415926717412858693
                                 3.1415926707019992125
     3.1415926189011456060
                                 3.1415926578678454728
     3.1415926717412858693
                                 3.1415926546593073709
     3.1415919358822321783
                                 3.1415926538571730119
     3.1415926717412858693
                                 3.1415926536566394222
     3.1415810075796233302
                                 3.1415926536065061913
     3.1415926717412858693
                                 3.1415926535939728836
     3.1414061547378810956
                                 3.1415926535908393901
     3.1405434924008406305
                                 3.1415926535900560168
     3.1400068646912273617
                                 3.1415926535898608396
     3.1349453756585929919
                                 3.1415926535898122118
     3.1400068646912273617
     3.2245152435345525443
                                 3.1415926535897968907
25
                                 3.1415926535897962246
26
                                 3.1415926535897962246
27
                                 3.1415926535897962246
                                 3.1415926535897962246
              The true value is 3.14159265358979323846264338327...
```

some links

some interesting links for the lecture:

floating point numbers:

- (1) http://www.h-schmidt.net/FloatConverter/IEEE754.html further information on Archimedes' approach to calculate pi:
 - (2) http://www.pbs.org/wgbh/nova/physics/approximating-pi.html
 - (3) http://betterexplained.com/articles/prehistoric-calculus-discovering-pi/
 - (4) https://illuminations.nctm.org/Activity.aspx?id=3548