methode Biculique: Soit le point I (4, x), entoure du quadrillage de paints suivant :

I(0,0) I(0,1) I(0,2) I(0,3) $(1,0) \quad \overline{L}(1,1) \quad \underline{L}(1,2) \quad \underline{L}(1,3) \quad \Delta y = y - y_1 \quad \Delta y_0 = 1 + \Delta y$ I(1,2) I(1,1) I(1,2)AXOF HAX BX3 Z - AX L'interpolation Biculique se fait en deux étapes. D'abord une interpolation Cubique, selon une des oleux dimensions. Ensuite, une autre interpolation Cubique, ovec les resultats de la l'ère etape, pour l'autre demansion.

donc $f(AX, P_0, P_1, P_2, P_3) = \frac{1}{1} \cdot \frac{1}{2} \cdot \frac{1}{2$ Alors, pour le quadrillage complet: $\mathcal{L}_{0} = \mathcal{L}(0,0) \mathcal{L}(0,1) \mathcal{L}(0,2) \mathcal{L}(0,3) = \frac{1}{2} \quad 1 \quad -\frac{1}{2} \quad 0 \quad \Delta \chi^{3}$ $\mathcal{L}_{1} = \mathbb{D}(1, 0) \mathbb{D}(1, 1) \mathbb{D}(1, 2) \mathbb{D}(1, 3) = 3/2 + 5/2 0 \mathbb{D}(1, 3)$ f2 I(2,0) I(2,1) I(2,2) I(2,3) -3/2 2 1/2 0 AX [+3] [-1,0] [-1ceci donne une serie de points sur l'asce des 4. of Ces points sont ensuite interpoles avec la mêne equation. Pay, fo, f, fz, f3) = a sy 3+bay 2+cay+d où a = - = fo + 3 f 1 - 3 f z + 2 f 3 b= fo = 5 f + 2 f = 1 f 3 - 0 f3 c=-12f0+12f2

done f(Ay, f, f, f2, f3) = [fof, f2 f3,] [-1/2 1 -1/2 0] [Ay3] ce qui donne le résultat, cherche, c'est-à-dire l'interpolation Biculique de (y, x). Cette dernière équation donne un scalaire. Ponc, on peut la récerire de la façon suivante: $f(\Delta g) f_0, f_1, f_2, f_3) = [[f_0 f_1 f_2 f_3] - \frac{1}{2} 1 - \frac{1}{2} 0] [\Delta g^3]$ -3/2 2 1/2 0 Ay 1 1/2 -1/2 0 0 1 1 1/2 Soil F(Dy, fo, f, f2, f3) = [Dy3 Dy2 Dy Mais fo | Ioo Io1 Io2 Io3 | -1/2 1 -1/2 0 | AX3 = II0 II1 II2 II3 3/2 -5/2 0 1 1262 f2 | I20 I21 I22 I23 | -3/2 2 1/2 0 | AX f3 | LI30 I31 I32 I33 | 1/2 -1/2 0

Posons
$$\Delta y = \begin{bmatrix} 4q^3 \\ 4y^2 \\ Ay \end{bmatrix}$$
, $\Delta x = \begin{bmatrix} 4x^3 \\ 4x^2 \\ Ax^2 \\ Ay \end{bmatrix}$

And $\begin{bmatrix} \Delta y \\ Ay \\ Ay \\ Ay \end{bmatrix}$

And $\begin{bmatrix} \Delta x \\ Ay \\ Ay \\ Ay \end{bmatrix}$

And $\begin{bmatrix} \Delta x \\ Ay \\ Ay \\ Ay \end{bmatrix}$

And $\begin{bmatrix} \Delta x \\ Ay \\ Ay \\ Ay \end{bmatrix}$

And $\begin{bmatrix} -1/2 \\ 3/2 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alors $\begin{bmatrix} -1/2 \\ 1 \\ -5/2 \\ 2 \end{bmatrix}$

Alo