

Quadrilaterals Ex 14.3 Q4

Answer:

The rectangle is given as follows with $\angle ABD = 40^{\circ}$ We have to find $\angle DBC$.

An angle of a rectangle is equal to 90°.

Therefore,

$$\angle ABC = 90^{\circ}$$

$$\angle ABD + \angle DBC = 90^{\circ}$$

$$40^{\circ} + \angle DBC = 90^{\circ}$$

$$\angle DBC = \boxed{50^{\circ}}$$

Hence, the measure for $\angle DBC$ is $\boxed{50^{\circ}}$.

Quadrilaterals Ex 14.3 Q5

Answer:

Figure is given as follows:

It is given that ABCD is a parallelogram.

E is the mid point of AB

Thus,

$$AE = BE$$
,
 $BE = \frac{1}{2}AB$ (i)

Similarly,

$$DF = FC$$

 $DF = \frac{1}{2}CD$ (ii)

From (i) and (ii)

$$DF = BE$$

Also, $DC \parallel AB$

Thus, $DF \parallel BE$

Therefore, EBFD is a parallelogram.

Quadrilaterals Ex 14.3 Q6

Answer:

Figure can be drawn as follows:

We have P and Q as the points of trisection of the diagonal BD of parallelogram ABCD.

We need to prove that AC bisects PQ. That is, OP = OQ.

Since diagonals of a parallelogram bisect each other.

Therefore, we get:

$$OA = OC$$
 and $OB = OD$

P and Q as the points of trisection of the diagonal BD.

Therefore,

$$BP = PQ$$
 and $PQ = QD$

Now,
$$OB = OD$$
 and $BP = QD$

Thus

$$OB - BP = OD - OQ$$

OP = OQ

AC bisects PQ.

Hence proved.

********* END ********