Transformation et équilibre chimique

/1.5 The Expliquer en trois phrases succinctes la différence entre avancement final, avancement à l'équilibre et avancement maximal. Aucune comparaison mathématique sur des ξ n'est attendue.

Toute réaction chimique atteint un état final, caractérisé par un avancement final. Dans certains eas, on atteint un équilibre : les réactions en sens direct et indirect se compensent et il reste des réactifs et des produits. Si à l'état final on a consommé en totalité un (ou plusieurs réactifs, on atteint l'avancement **maximal** : la réaction ne peut plus avancer mais ce n'est pas un équilibre.

/8.5 2 On travaille dans une enceinte initialement vide de tout gaz, et de volume $V = 10 \,\mathrm{L}$. On insère $n_{\mathrm{BaO}_2}^0 = 0.10 \,\mathrm{mol}$ de peroxyde de baryum qui suit la réaction de dissociation suivante :

$$2 \operatorname{BaO}_{2(s)} \Longrightarrow 2 \operatorname{BaO}_{(s)} + \operatorname{O}_{2(g)}$$
 $K^{\circ}(795 \, ^{\circ}\text{C}) = 0,50$

a T

a – Dresser un tableau d'avancement et remplir les deux premières lignes.

b – Déterminez la quantité de matière $n_{O_2,eq}$ qui permet d'atteindre l'équilibre 1 .

c – Déterminer le sens d'évolution du système.

d – Déterminer ξ_f et remplir la dernière ligne du tableau. Comment s'appelle cette situation finale?

						•	
a –	Équation		$2BaO_{2(s)} =$	\doteq 2BaO _(s) -	$+$ $O_{2(g)}$	$n_{ m tot,gaz}$	
	Initial (mol)	$\xi = 0$	0,10	0,00	0,00	0,00] 1
	Interm. (mol)	ξ	$0,10-2\xi$	2ξ	ξ	ξ	٥
	Final (mol)	$\xi_f = \xi_{\text{max}}$	0,00	0,10	0,05	0,05] {

b - Avec la loi des gaz parfaits et la loi d'action des masses, on a

$$p_{\mathrm{O}_{2},\mathrm{eq}}V = n_{\mathrm{O}_{2},\mathrm{eq}}RT \Leftrightarrow n_{\mathrm{O}_{2},\mathrm{eq}} = \frac{p_{\mathrm{O}_{2},\mathrm{eq}}V}{RT}$$

$$\Leftrightarrow \boxed{n_{\mathrm{O}_{2},\mathrm{eq}} = \frac{K^{\circ}p^{\circ}V}{RT}} \text{ avec} \begin{cases} K^{\circ} = 0.50 \\ p^{\circ} = 1.00 \times 10^{5} \, \mathrm{Pa} \\ V = 10 \times 10^{-3} \, \mathrm{m}^{3} \\ T = 1068.15 \, \mathrm{K} \end{cases}$$

$$A.\mathrm{N.} : n_{\mathrm{O}_{2},\mathrm{eq}} = 0.056 \, \mathrm{mol}$$

c -

$$\boxed{Q_{r,0} = \frac{\stackrel{=0}{p_{\mathrm{O}_2,0}}}{p^{\circ}} = 0} \quad \boxed{\text{Ol}}$$

On a donc $Q_{r,0} < K^{\circ}$, et l'évolution se fait en <u>sens direct</u>.

d – S'il y a équilibre, ça veut dire que $n_{\rm O_2,eq}=0.056\,\mathrm{mol}$ comme déterminé au début. Or, le tableau nous indique que $n_{\rm O_2,f}=\xi_f$, donc si c'est un équilibre $\xi_{\rm eq}=0.056\,\mathrm{mol}$.

L'avancement est maximal si BaO₂ est limitant : on trouve donc ξ_{max} en résolvant $0.10 - 2\xi_{\text{max}} = 0$, c'est-à-dire $\xi_{\text{max}} = 0.050 \,\text{mol}$.

La valeur finale ξ_f est la plus petite valeur (en valeur absolue) de ξ_{eq} et ξ_{max} ; or ici $\xi_{eq} > \xi_{max}$: il n'y a donc **pas équilibre**, et on a

$$\frac{\xi_f = \xi_{\text{max}} = 0.050 \,\text{mol}}{\text{(2)}}$$

^{1.} On rappelle que $R = 8.314 \,\mathrm{J \cdot K^{-1} \cdot mol^{-1}}$.