Updated Report: Phishing Website Classification

Updated Report

Project discussion: Phishing Website Dataset

The dataset contains 1353 websites, each described using 10 attributes:

SFH, popUpWindow, SSLfinal_State, Request_URL, URL_of_Anchor, web_traffic, URL_Length, age_of_domain, having_IP_Address, Result

Data Preprocessing, Exploratory Analysis, and Feature Selection

Prepared by Yuliia Nykyporets

- Data extraction from .arff
- Type conversion and cleaning
- Correlation analysis and matrix
- PCA (Principal Component Analysis)
- Feature selection using SelectFromModel

Result: removal of web_traffic, PCA reduction to 5 components, and identification of top features via Decision Tree.

Main Analysis: ML Models and Classification

ML implementation by Olena Polishchuk

To classify websites into phishing / suspicious / legitimate categories, several ML models were implemented:

- Random Forest
- Gradient Boosting
- Support Vector Machine (SVM)
- Neural Networks

Updated Report: Phishing Website Classification

- Ensemble combinations				
All models were implemented and validated using scikit-learn in Python. Cross-validation was applied.				
Cross-validation				
Conducted by Olena Polishchuk				
Pipelines were developed to test models under consistent settings and ensure robustness.				
Classification Tree				
Designed and implemented by Yuliia Nykyporets				
Two approaches tested:				
- Recursive Binary Splitting				
- Pruning with alpha via GridSearchCV				
SVM				
Implemented by Olena Polishchuk				
Used SVC with RBF kernel, with and without feature selection.				
Neural Networks & Ensembles				
Implemented by Olena Polishchuk				
- MLPClassifier used				
- Voting/stacking ensemble approaches tested				
Summary of Results				
Model Train Accuracy Test Accuracy Author				

Updated Report: Phishing Website Classification

Decision Tree	-	- Yu	liia Nykyporets
SVM (RBF)	0.9536	0.8837	Olena Polishchuk
Random Forest	0.9691	0.8904	Olena Polishchuk
Gradient Boosting	0.9448	0.9172	Olena Polishchuk
Neural Networks	0.9294	0.9083	Olena Polishchuk
Ensemble	0.9636	0.8613	Olena Polishchuk

Conclusion

This project explored ML models for phishing detection. Responsibilities were divided between feature engineering (Yuliia Nykyporets) and model implementation (Olena Polishchuk).