Math 239

Vishesh Gupta

December 2, 2017

Contents

1	Combinatorial Analysis					
	1.1	Introduction	5			
	1.2	Sums and Products	5			
	1.3	Binomial Coefficients	5			
	1.4	Bijections(One-to-One Correspondence)	5			
	1.5	Combinatorial Proofs	5			
	1.6	Generating Series	5			
	1.7	Formal Power Series	5			
	1.8	The Sum and Product Lemmas	5			
2	Cor	npositions and Strings	7			
	2.1	Compositions of an Integer	7			
	2.2	Subsets with Restrictions	7			
	2.3	Binary Strings	7			
	2.4	Unambiguous Expressions	7			
	2.5	Some Decomposition Rules	7			
	2.6	Sum and Product Lemma Rules for Strings	7			
	2.7	Decomposition Using Blocks	7			
	2.8	Recursive Definition of Binary Strings	7			
3	Recurrences, Binary Trees and Sorting					
	3.1	Coefficients of Rational Functions	9			
	3.2	Solutions to Recurrence Equations	9			
4	Introduction to Graph Theory					
	4.1	Definitions	11			
	4.2	Isomorphism	11			
	4.3	Degree	12			
	4.4	Bipartite Graphs	12			
		4.4.1 N - Dimensional Cube (Q_n)	12			
	4.5	Connectness	13			
	4.6	Eulerian Circuits	13			
	4.7	Bridges	13			

4 CONTENTS

5	Trees 1				
	5.1	Trees	15		
	5.2	Spanning Trees	15		
	5.3	Characterizing Bipartite Graphs			
	5.4	Minimum Spanning Trees			
6	Plai	nar Graphs	17		
	6.1	Planarity	17		
	6.2	Euler's Formula	17		
	6.3	Platonic Solids	17		
	6.4	Colouring and Planar Graphs	18		
		6.4.1 Six Colour Theorem			
		6.4.2 Five Colour Theorem			
		6.4.3 $K_{3,3}$ is not planar			
	6.5	Kuratowski's Theorem:			
7	Mat	chings	21		
	7.1	Matching or Matching in Graphs	21		
		7.1.1 Covers or Covering the edges of a graph			
		7.1.2 Augmented Paths			
	7.2	Konig's Theorem			
	7.3	Applications of Konig's Theorem			
	7.4	System of Distinct Representatives			

Combinatorial Analysis

- 1.1 Introduction
- 1.2 Sums and Products
- 1.3 Binomial Coefficients
- 1.4 Bijections(One-to-One Correspondence)
- 1.5 Combinatorial Proofs
- 1.6 Generating Series
- 1.7 Formal Power Series
- 1.8 The Sum and Product Lemmas

Compositions and Strings

- 2.1 Compositions of an Integer
- 2.2 Subsets with Restrictions
- 2.3 Binary Strings
- 2.4 Unambiguous Expressions
- 2.5 Some Decomposition Rules
- 2.6 Sum and Product Lemma Rules for Strings
- 2.7 Decomposition Using Blocks
- 2.8 Recursive Definition of Binary Strings

Recurrences, Binary Trees and Sorting

- 3.1 Coefficients of Rational Functions
- 3.2 Solutions to Recurrence Equations

Introduction to Graph Theory

4.1 Definitions

A graph is an ordered pair $\{V(G), E(G)\}$ of finite sets V(G) and E(G) such that E is a subset of the set of unordered pairs of elements from V(G).

If $\{V(G), E(G)\}\$ is a graph then vertices v, w are adjacent in the graph G if $\{v,w\}$ ϵ E.

The degree of a vertex, v, is the number of vertices that are adjacent to v, and is denoted by d(v) or deg(v)

A graph G is considered r-regular if every vertex has a degree r.

4.2 Isomorphism

Two graphs $\{V(G), E(G)\}$ and $\{V(G), E'(G)\}$ are isomorphic if there is a bijection

$$\phi: V \to V'$$

such that $E'(G) = \{ \{ \phi(u), \phi(v) \mid \{u,v\} \in E \}.$

Examples

- Empty Graph (V(G), ϕ)
- Complete Graph $(V, {E \choose 2})$
- Path Graph
- Null Graph $\{\phi,\,\phi\}$
- Cycle Graph, denoted by C_n :

Theorem: Handhake Lemma

Suppose $\{V(G), E(G)\}\$ is a graph, then $\sum_{v \in V(G)} deg(v) = 2|E(G)|$.

$$\begin{aligned} \textbf{Proof:} \quad & \sum_{v \in V(G)} \, deg(v) = \sum_{v \in V(G)} \mid \{ \mathbf{u} \mid \{ \mathbf{u}, \, \mathbf{v} \} \in \mathbf{E}(\mathbf{G}) \} \mid \\ & = \sum_{v \in V(G)} \mid \{ \mathbf{e} \in \mathbf{E}(\mathbf{G}) \mid \mathbf{v} \in \mathbf{e} \} \\ & = \sum_{e \in E(G)} \sum_{v \in V(G)} 1 \\ & = \sum_{e \in E(G)} 2 = 2 |\mathbf{E}(\mathbf{G})| \end{aligned}$$

4.3 Degree

4.4 Bipartite Graphs

A graph G is bipartite if V(G) can be partitioned into two parts X, Y such that each edge has one vertex in X and one vertex in Y.

$$V = X \cup Y$$
$$\phi = X \cap Y$$

Empty Graphs are bipartite.

FACT: Even cycles are bipartite.

FACT: If H is a subgraph of a bipartite graph G, then H is bipartite.

Implication

If G has a subgraph that is an odd cycle, then G is not a bipartite graph.

Two More exmaples of Bipartite Graph

We already showed all the paths and all even cycles are bipartite.

 $K_{p,q}$ = Complete bipartite graphs of p and q vertices.

How many vertices? p+q What are the degrees? q p How many edges? p.q

4.4.1 N - Dimensional Cube (Q_n)

V(G) = All binary strings of length n

E(G) = Two strings that differ in exactly one place.

 Q_n has 2^n vertices. They have degrees, all n, and number of edges is $n2^{n-1}$

4.5. CONNECTNESS 13

FACT: Let G be a bipartite graph with bipartition (X,Y), i.e, $V(G) = X \cup Y$ and $X \cap Y = \phi$, and every edge consists of vertex in X and a vertex in Y.

Then
$$|E(G)| = \sum_{v \in X} deg(v) = \sum_{v \in Y} deg(v)$$
.

$$X = Odd \# 1$$
's and $Y = Even \# 1$'s

4.5 Connectness

Last time, we agreed that K_n is connected for any empty graph ≥ 2 is disconnected.

- A graph G is connected if, for every two vertices v,u there is a path in G joining u & v.
- A graph is disconnected if it is not connected. That means there exists a pair of vertices, u,v such that no path in the graph joins u and v.
- How do we prove that Q_{758} is connected?
- How do we prove some path is disconnected?

4.6 Eulerian Circuits

4.7 Bridges

Trees

- 5.1 Trees
- 5.2 Spanning Trees
- 5.3 Characterizing Bipartite Graphs
- 5.4 Minimum Spanning Trees

Planar Graphs

6.1 Planarity

6.2 Euler's Formula

Theorem: Proof:

6.3 Platonic Solids

Iamges of Tetrahedron, octahedroon, hexahedron, icosahedron, dodecahedron

Theorem: Let d and d* be integers, noth at least 3. If there is a planar graph such that all the vertices have degree d & all faces of length d*, then $(d, d^*) \in \{(3, 3), (3, 4), (3, 5), (4, 3), (5,3)\}$

Proof: Handshake Lemma says d|V(G)| = 2|E(G)|. For faces, let r be the number of faces. Then Handshaking lemma for faces says $d^*r = 2|E(G)|$. Also we have Eulers' formula:

$$p - q + r = 2$$

Therefore,

$$\frac{2}{d}|E(G)| - |E(G)| + \frac{2}{d*}|E(G)| = 2.$$

$$\frac{E(G)}{dd*}[2d* - dd* + 2d] = 2.$$

$$dd* - 2d - 2d* = \frac{-2dd*}{E(G)}$$

$$(d-2)(d*-2) - 4 = \frac{-2dd*}{E(G)}$$

$$(d-2)(d*-2) = 4 - \frac{2dd*}{E(G)}$$
ave a $h < 12$ where $a = (d-2)$ and

What positive integer pairs a,b have a,b < 4? where a = (d-2) and $b = (d^*-2) \rightarrow \{(1, 1), (1, 2), (1, 3), (2, 1), (3,1)\}$

So now when $a,b \in A$, we get (d, d^*) such that $\{(3, 3), (3, 4), (3, 5), (4, 3), (5,3)\}$

Let us take d = 3 and $d^* = 3$;

 $\frac{E(G)}{9}(6\text{-}9+6)=2,$ simplifying and solving for E(G) we get 6. Then 3V(G)=2E(G)~V(G)=4 and hence $G=K_4$

Let us take d = 3 and d* = 5; $\frac{E(G)}{15}$ (6-15+10) = 2, simplifying and solving for E(G) we get 30. Then 3V(G) = 2E(G). V(G) = 40, r = 12

Let us take d = 3 and d* = 4; $V(G) = 8, E(G) = 12 \text{ and } r = 6 \text{ Should be the same as hexahedron} \\ \triangle \text{ Joining the vertex of top triangle with bottom triangle} \\ \square \square \\ \triangle$

Colouring Planar Graphs Adjacent vertices get different colors

How many colours for K_n ? n If G is connected planar graph then G has a vertex with degree ≤ 5 $E(G) \leq 3V(G)$ - 6 Handshaking Lemma: $\sum deg(V(G)) = 2E(G) \leq 6V(G)$ - 12

6.4 Colouring and Planar Graphs

Colouring: assigns a colour to each vertex so that adjacent vertices get different colours.

- 1) Every bipartition in a bipartite graph can be coloured with two colours. Use different colour on each part of bipartition.
- 2) K_n can only be coloured with n colours.

Figures

K 100 K5

Peterson Graph Cross-Cover graph

6.4.1 Six Colour Theorem

Theorem: A planar graph can be coloured with six colours.

1) Every planar graph has a vertex with atmost 5.

Pf: Let C be a component of a planar graph G. If $V(C) \le 6$, then every vertex of G has a degree of at most 5. If $V(C) \ge 6$, then because it is a connected planar graph, we know that $E(C) \le 3V(G)$ - 6. There fore the average degree is $\sum_{v \in V(C)} \frac{deg(v)}{V(C)} \le \frac{6V(C)-12}{V(C)} = 6 - \frac{12}{V(C)} < 6$. There is a vertex v of C whose degree is at most the average. Thus $\deg(v) < 6$ and so $\deg(v) \le 5$.

2) To colour G, we proceed with induction on V(G)

Pf: If V(G) = 1, then G can be coloured with 1 (and therefore 6) colours.

For the induction step, choose a vertex V of G with degree at most 5. Colour $G\setminus V$ with at most 6 colours (using inductive assumption). The neighbours are coloured by the colouring of $G\setminus V$

Proof: Because $deg(v) \leq 5$, at most five of the 6 colours are used as colours for the neighbours of v. Thusm there is one of the six colours not used to colour a neighbour of v, we can use this colour to colour v. Hence proved.

6.4.2 Five Colour Theorem

Theorem: A planar graph can be coloured with five colours.

1) Every planar graph has a vertex with atmost 5.

Pf: Let C be a component of a planar graph G. If $V(C) \le 6$, then every vertex of G has a degree of at most 5. If $V(C) \ge 6$, then because it is a connected planar graph , we know that $E(C) \le 3V(G) - 6$. There fore the average degree is $\sum_{v \in V(C)} \frac{deg(v)}{V(C)} \le \frac{6V(C) - 12}{V(C)} = 6 - \frac{12}{V(C)} < 6$. There is a vertex v of C whose degree is at most the average. Thus deg(v) < 6 and so $deg(v) \le 5$.

2) To colour G, we proceed with induction on V(G)

Pf: If V(G) = 1, then G can be coloured with 1 (and therefore 6) colours.

For the induction step, choose a vertex V of G with degree at most 5. Colour $G\setminus V$ with at most 6 colours (using inductive assumption). The neighbours are coloured by the colouring of $G\setminus V$

Problem: Deg(v) = 5. Because K_5 ia not planar, some two of the neighbours of v are not adjacent.

Solution: Let there be u and v. There two are not adjacent. Delete the edges from u to the other three neighbours of v & contract to v the edge uv and v as to create a smaller graph G'.

Proof: Continuing further from the solution, we see that by colouring G' with 5 colours by induction and colouring u and w, with the colour of the contracted vertex, every one else with their colour in G'. Since u, w have the same colour, neighbours of u and v have at most 4 colours in $G \setminus v$. This leaves the fifth colour for v.

6.4.3 $K_{3,3}$ is not planar

Lemma: If a planar graph has no cycle and has at least three vertices, then every face boundary has length ≥ 4 .

Corollary: If G is a connected planar graph with ≥ 3 vertices and no 3 cycle, then $E(G) \leq 2V(G)$.

So by using this above corollary $K_{3,3}$ is not planar

6.5 Kuratowski's Theorem:

A graph is not planar if and only if it contains a subdivision of either K_5 or $K_{3,3}$ Fig 1 and Fig 2 to be embedded here.

Matchings

7.1 Matching or Matching in Graphs

A matching in a graph G is a set M of edges of G, no two of which are incident with a common vertex.

Fig 3 and Fig 4

For any matching M in a graph, $2|M| \le |V(G)|$.

A perfect Matching in a graph G is a matching M in G such that 2 = |V(G)|

The empty graph with at least one vertex has no perfect matching. Notice ϕ is a matching.

Note: Even cycles have perfect matching. If |V(G)| is odd then G does not have a perfect matching

In a $K_{p,q}$ graph we get the min $\{p, q\}$ giving us the largest matching size.

7.1.1 Covers or Covering the edges of a graph

A cover of a graph G is a set C of vertices such that every edge is incident with at least one vertex in G.

Fact: If M is a matching and C is a cover in G, then $|M| \leq |C|$.

In a *Cycle* of length n: the size of a largest matching is $\lfloor \frac{n}{2} \rfloor$ the size of a smallest cover is $\lceil \frac{n}{2} \rceil$

```
In a K_n graph:
the size of the matching \lfloor \frac{n}{2} \rfloor
the cover for the cycle is: n-1
In a K_{p,q} complete graph (with p \leq q):
the size of the matching is: p
```

the size of the cover is: p

Lemma: If M is a matching and C is a cover then |M| < |C|.

Proof: Let e = uv be an edge in M. By definition, either u or v is in C (or both), without loss of generality, assume it is u. Let e' be a different edge in M. One of the endpoints of e'(w) is in C. Can u = w? By definition of the matching, e and e' share no endpoints, so $u \neq to$ w. There are |M| edges un M. Each yields a unique vertex in $C \to |M| \leq |C|$

Maximum mathcing a alaregest matching G. (No matching exist with more edges) If the size os a maximum matching is $\frac{n}{2}$, then it is a perfect

Minimum cover is a smallest cover in C.

Lemma: If M is a matching and C is a |M| = |C| then, M is a maximum matching and C is the minimum cover.

Proof: Let M* be a maximum mathcing, then $| M^* | \le | C | = | M |$. M has at least as many edges as M*(which is a maximum matching). So M is also a maximum matching. Let C* be a minimum cover. $| C^* | \ge | M | = | C |$. So C is also a minimum cover.

Lemma: If M has an augmenting path then i is not a maximum matching

Proof: Let P be the augmenting path. The edges alternate between being in M and not being in M. The endpoints are unsaturated. More edges of P are not in M than are in M (one more). Replace the edges in $M \cap P$ with the edges in P set difference M. New matching M'. If $v \in P$ is saturated by M. We removing the edge in M is incident to v and replacing it with one in M'. If $v \in P$ is unsaturated, we only add one edge incident to v to form the matching M'.. M' is a matching |M'| = |M| is not a maximum matching.

7.1.2 Augmented Paths

An alternating Path is a path in G where the edges alternate between being in M and not being in M. An augmented Path is an alternating path where its endpoints are unsaturated. Odd length

First + Last edge not in the matching

A vertex is a saturated by a matching M if it is incident to an edge in M. Otherwies it is unsaturated which is also called exposed. In a perfect matching, all vertices are saturated. If there's no perfect matching, at least one vertex is unsaturated in any matchings.

Lemma: Let G be a graph with matching M. If there is a M - augmented path in G, then M is not a maximum matching(swap the edges of the ones in M with the edges which are not in M) **Lemma:** If M is not a max matching then it has an augmenting path. Will be done in tutorial Let G be a graph with bipartition A, B and let M be a matching of G.

- Let X_0 be the set of vertices in A not saturated by M.
- Let Z be the set of vertices in G joined to a vertex in X_0 by an alternating path.
- If there is an augmenting path use it to update the matching.
- Otherwise: $X = A \cap Z$.

$$X = B \cap Z$$

Cover: $C = Y \cup (A \setminus X)$

Figure here

$$X_0 = \{b, e\}$$

Alternating Paths (Start from b e) {b,e,4,5,a,d,1,2,3}

Figure 2 here

$$X_0 = \{e\}$$

$$Z = \{e, 4, 5, b, d\}$$

In order to have a augmenting path, Z must include an unsaturated vertex not in X_0 . Since Z does not contain 3 there is no augmenting path

$$X = A \cap Z = \{b, d, e\}$$

$$Y = B \cap Z = \{4, 5\}$$

$$C = Y \cup (A \setminus X) = \{4, 5\} \cup \{a, c\} = \{4, 5, a, c\}$$
 is a min cover.

Lemma: Let M be a matching of a bipartite graph with partition A, B. Then

- a) There is no edge from X to $B\Y$.
- b) $C = Y \cup (A \setminus X)$ is a cover.
- c) There is no edge of M from Y to $(A \setminus X)$.
- d) If u is the set of unsaturated vertices in Y then |M| = |C| |U|.
- e)there is an augmenting path to each vertex in U.

Proof: a) Suppose there is an edge where $u \in X$, $v \in B \setminus Y$. There is an alternating oath P from X_0 to $u \cdot P' = P + uv$. uv is not an edge of M. Alternating path to v. So V should be in Z. b) Edges from:

 $X \to Y$ - one end in Y and one end in C

 $X \to B \backslash Y$ - don't exist by part a of the proof

 $A \backslash X \to Y$ - both end in C

 $A \backslash X \to B \backslash Y$ - one end in C

Hence C is cover

c)Suppose the edge $vw \in M$, $v \in A \setminus X$, $w \in Y$, $w \in Z$, so there is an alternating path from X_0 to w $w \in B$, so P has odd length (So to travel to the other set it should have an odd length length 1, 3, 5, ...). Starting from X_0 , the first edge is not in M, so the last edge (incident edge to w) is also not in the matching. P' = P + vw is an alternating path and starts from X_0 to v. Thus v is in Z, hence it is in X. And since we said that $v \in A \setminus X$, it is a contradiction(\longrightarrow ! \longleftarrow)

d) $X \to Y *$ $X \to B \setminus Y - \text{does not } \exists$ $A \setminus X \to Y - \text{not in } M \text{ by part } c$ $A \setminus X \to B \setminus Y * - (2)$

Number of edges X to Y in M. |U| unsaturated vertices in Y. |Y| - |U| saturated vertices in Y. One edge in M for each in M for each of these. Number of edges from X to Y in M = |Y| - |U|.From (2) now, 0 unsaturated vertices in A\X. $|A\setminus X|$ saturated vertices in A\X. $X_0 \subseteq Z$.So $X_0 \subseteq X$. Number is equal to $|A\setminus X|$. So $|M| = |Y| - |U| + |A\setminus X|$. So by using part b of the proof, |M| = |C| - |U|.

e) Let $v \in U$. V is unsaturated and $v \in Y$ and since $Y \in B \cap Z$ then $v \in Z$. Then there is an alternating path from X_0 to v then it is an augmenting path. Hence proved the lemma.

7.2 Konig's Theorem

König's Theorem: In a bipartite graph, the maximum size of a mathcing is the minimum size of a cover.

Proof: Let M be a maximum matching. Then there is no augmenting path in G. Furthermore, |U| = 0. So by part b from the previous lemma, $C = Y \cup (A \setminus X)$ and then it is a cover. By part d) we get that M = C. \square .

D is a set of vertices.

Neighbour set, denoted by N(D), is the set of vertices adjacent to a vertex in D

Halls' Theorem: G is a bipartite graph with partition on A, B. G has a matching saturating every vertex in A if and only if every subset D of A satisfies

$$|N(D)| \ge |D|$$

Picture: $D = \{1, 2, 3\}$ $N(D) = \{a, c\}$ |N(D)| = 2 < 3 = |D|

7.3 Applications of Konig's Theorem

7.4 System of Distinct Represntatives