PB. 48 - Soluzione

Sono dati:

- O = 4 organi e P = 5 posizioni.
- Indichiamo con indice i = 0, ..., O, gli organi, dove i = 0 indica il tumore; con indice j = 1, ..., P le posizioni.
- Indichiamo con m_i la massima intensità di radiazione ammissibile per ogni organo.
- Indichiamo con r_i la massima intensità di radiazione erogabile da ogni posizione.
- Indichiamo con a_{ij} la percentuale di radiazione assorbita dall'organo i dalla posizione j.
- Indichiamo con R = 60 la massima quantità complessiva di radiazione erogabile.

Variabili. Il problema decisionale consiste nel decidere la quantità di radiazione da erogare da ogni posizione. Definiamo quindi una variabile continua e non-negativa per ogni posizione, per indicare tale quantità. Abbiamo quindi variabili continue non-negative $x_j \ \forall j = 1, ..., P$.

Vincoli. I vincoli del problema impongono che:

- la radiazione complessiva sia non superiore a R: ∑_{j=1}^P x_j ≤ R;
- la radiazione erogata da ogni posizione j = 1,..., P non sia superiore al limite massimo r_j: x_j ≤ r_j ∀j = 1,..., P;
- la radiazione assorbita da ogni organo i = 1,..., O non sia superiore al limite massimo m_i: ∑_{j=1}^P a_{ij}x_j ≤ m_i ∀i = 1,..., O.

Funzione obiettivo. Si vuole massimizzare la radiazione che colpisce il tumore: max $\sum_{j=1}^{P} a_{0j}x_{j}$.

Il modello matematico completo risulta quindi:

$$\begin{aligned} & \text{maximize} & \ z = \sum_{j=1}^{P} a_{0j} x_j \\ & \text{subject to} \ \sum_{j=1}^{P} a_{ij} x_j \leq m_i \\ & x_j \leq r_j \\ & \sum_{j=1}^{P} x_j \leq R \\ & x_j \geq 0 \end{aligned} \qquad \forall i = 1, \dots, O \ \forall j = 1, \dots, P.$$