CONTENTS COMP 2711H

COMP2711H - Honours discrete mathematics Spring 2023

Notes by Marcus Chan

May 28, 2023

Contents

1	Lecture 1 - proposition and logic					
	1.1	Introduction to Propositions	2			
	1.2	Compound propositions	2			
	1.3	Propositional Equivalence	3			
2	Lecture 2 - Predicate Logic (First-order logic)					
	2.1	Predicates	5			
	2.2	Quantifiers	5			
	2.3	Logical equivaleces	5			
	2.4	Negating Quantified Expressions	5			
\mathbf{In}	dex		5			

1 Lecture 1 - proposition and logic

1.1 Introduction to Propositions

Definition 1.1. proposition is either true or false

Remark 1.2 — contradiction is not a proposition

Definition 1.3 (Conditional statement). $p \to q$, p is the **hypothesis**, and q is the **conclusion**. If the statement is true, then p is the **necessary condition** and q is the **sufficient condition**

1.2 Compound propositions

1. converse: $p \to \neg q$

2. contrapositive: $\neg q \rightarrow \neg p$

3. inverse: $\neg p \rightarrow \neg q$

Definition 1.4 (Biconditional statement). $p \iff q$ means p if and only if q, also means $p \equiv q$

Operator	Precedence
	1
٨	2
V	3
\rightarrow	4
\leftrightarrow	5

Figure 1: precedence table

1.3 Propositional Equivalence

Definition 1.5 (tautology). A compound proposition that is always <u>true</u>, no matter what the truth values of the propositional variables that occur in it.

Definition 1.6 (contradiction). A compound proposition that is always false

Definition 1.7 (contingency). A compound proposition that is neither a tautology nor a contradiction

Equivalence	Name
$p \wedge T \equiv p$	Identity laws
$p \vee F \equiv p$	
$p \lor T \equiv T$	Domination laws
$p \wedge F \equiv F$	
$p \lor p \equiv p$	Idempotent laws
$p \wedge p \equiv p$	
$\neg(\neg p) \equiv p$	Double negation law
$p \lor q \equiv q \lor p$	Commutative laws
$p \wedge q \equiv q \wedge p$	

Figure 2: propositional equivalences

Equivalence	Name
$(p \lor q) \lor r \equiv p \lor (q \lor r)$	Associative laws
$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	Distributive laws
$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	
$\neg(p \land q) \equiv \neg p \lor \neg q$	De Morgan's laws
$\neg (p \lor q) \equiv \neg p \land \neg q$	
$p \lor (p \land q) \equiv p$	Absorption laws
$p \wedge (p \vee q) \equiv p$	
$p \lor \neg p \equiv T$	Negation laws
$p \land \neg p \equiv F$	

Figure 3: propositional equivalences

Equivalence	Name
$p \to q \equiv \neg p \lor q$	Involving conditional statements
$p o q \equiv \neg q o \neg p$	
$(p \to q) \land (p \to r) \equiv p \to (q \land r)$	
$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$	
$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$	
$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$	
$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$	Involving biconditional statements
$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$	<u> </u>
$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$	

Figure 4: propositional equivalences

2 Lecture 2 - Predicate Logic (First-order logic)

2.1 Predicates

Definition 2.1 (Predicate). A predicate is a statement that may be true or false depending on its variables

2.2 Quantifiers

Definition 2.2 (Universal qunatification). $\forall x P(x)$

Definition 2.3 (Domain). The set of all possible values of a variable. <u>Must be defined</u> when using quantification.

Definition 2.4 (Existential quantification). $\exists x P(x)$ (at least one x in domain)

2.3 Logical equivaleces

Fact 2.5. $\forall x P(x) \lor Q(x) \not\equiv \forall x P(x) \lor \forall x Q(x)$

Fact 2.6. $\exists x P(x) \land Q(x) \not\equiv \exists x P(x) \lor \exists x Q(x)$

2.4 Negating Quantified Expressions

$$\neg \forall x P(x) \equiv \exists x \neg P(x).$$

$$\neg \exists x Q(x) \equiv \forall x \neg Q(x).$$

2.5 Nested quantifiers