

Datenkompetenz für alle

Ein Werkstattbericht zum FOM-Statistik-Curriculum – Sebastian Sauer

Contents

- Datenkompetenz
- Inhalt: Statistical Thinking (Statistikverständnis)

- 3 Didaktik: Aktivierung
- 4 Projektmanagement 1: Markdown
- 5 Projektmanagement 2: Github
- 6 Abschluss

Lernziel Datenkompetenz

Unter *Datenkompetenz* versteht man versteht man die Fähigkeit, Daten auf kritische Art und Weise zu sammeln, zu managen, zu bewerten und anzuwenden (Ridsdale et al., 2015).

Warum ist Datenkompetenz wichtig?

Work across nearly all domains is becoming more data driven, affecting both the jobs that are available and the skills that are required. As more data and ways of analyzing them become available, more aspects of the economy, society, and daily life will become dependent on data. It is imperative that educators, administrators, and students begin today to consider how to best prepare for and keep pace with this data-driven era of tomorrow¹.

¹National Academies of Sciences, Engineering, and Medicine (2018), vgl. Kirchherr et al. (2018) oder Engel (2017).

Haben Studenten² ein klares Bild von Statistik?³

 $^{^{2}}$ w/m/d

³Chance and Tintle (2016): Teaching the statistical investigation process with simulation-based inference

Eher ein "impressionistisches" Verständnis von Statistik?⁴

⁴Chance and Tintle (2016): Teaching the statistical investigation process with simulation-based inference

Oder eher: Viele Details

... ohne Überblick?⁵

 $^{^5}$ Chance and Tintle (2016): Teaching the statistical investigation process with simulation-based inference

Unsere Studenten sollen das Wesentliche sehen

Inhalt: statistical thinking

- Modellierung
- (An)Erkennen von Unsicherheit
- Prinzipien stattRegelbaum

Didaktik: Aktivierung

- Quizze
- Live-Coding
- ► Fallstudien
- . . .
- . . .

Projektmanagement: Git

- Gemeinschaftsprojekt
- Änderungsmanagement mit Git
- Nutzerfreundliches Skript

Idee 1: Ungewissheit (an)erkennen

Kenntnis einer Stichprobe ist nicht identisch zu Kenntnis der Population

Idee 2: Übergreifendes Prinzip

Nur ein statistischer Test: Simulation der Teststatistik

Anstatt vieler Bäume

Die Auswahl statistischer Tests und Maße

Sven Blankenberger, Institut für Psychologie der Martin-Luther-Universität Halle-Wittenberg Dirk Vorberg, Institut für Psychologie der Technischen Universität Braunschweig

- ▶ Klassisch: Leite Stichprobenverteilung aus Theorie ab
- lacktriangle Simulationsbasiert: Führe das Experiment laut H_0 häufig aus

Idee 3: Modellierung

Versuche, die Streuung zu erklären (verringern):

Geschicktes Modellieren verringert die Ungewissheit.⁶

⁶Quelle: https://data-se.netlify.com/2019/03/26/reducing-residual-variance-in-modeling/

Mittelwert als "Modell"

Idee:

$$Daten = Modell + Rest.$$

[1] 19.78594

- Für Beobachtung i gilt: $x_i = \bar{x} + (x_i \bar{x})$.
- ▶ Der "Rest" $x_i \bar{x}$ beschreibt die Abweichung⁷ der Beobachtung zum Mittelwert \bar{x} (hier: "Modell").

 $^{^{7}}$ Zur Einschätzung, ob die Abweichung groß oder klein ist, wird die Streuung (s. u.) der Daten herangezogen.

3 Didaktik: Aktivierung

Idee 1: Computerorientierte Statistik mit mosaic

3. Didaktik: Aktivierung

Idee 2: Quizze

8. Inferenzstatistik Übung 106: Simulation (II / II)

Bei welchem Wert für x würden Sie bei n=34 am stärksten vermuten, dass ein Geschmacksunterschied vorliegt, d. h., dass $\pi>\frac{1}{3}$ ist?

- A. Bei x = 5.
- B. Bei x = 10.
- C. Bei x = 15.
- D. Bei x = 20.

SoSe 2019

Dipl.-Math. Norman Markgraf | Datenerhebung und Statistik

370

3. Didaktik: Aktivierung

Idee 3: Apps⁸

⁸z. B. https://fomshinyapps.shinyapps.io/Modellierung/

3. Didaktik: Aktivierung

Und mehr

- ► Fallstudien-Webseite
- ► Auflockerung: Cartoons, Songs, Videos, . . .

Kein Powerpoint⁹, sondern RMarkdown

(R)Markdown ist nicht HTML


```
<a href="/about/">About</a>
   <a href="/">Blog</a>
     <a href="/privacy/">Data privacy</a>
       </nav>
       </header>
       <main class="content" role="main">
         <article class="article">
           <span class="article-duration">40 min read</span>
             <h1 class="article-title">
 Bayesian modeling of populist party success in German federal elections -
 A notebook from the lab</h1>
               <span class="article-date">2018/08/25</span>
                <div class="article-content">
                  Following up on an <a href="https://data-se.netlify.com/2017/10/10/afd-map/">earl:
we will model the voting success of the (most prominent) populist party,
AfD, in the recent federal elections. This time,
Bayesian modeling techniques will be used, drawing on the
<a href="https://xcelab.net/rm/statistical-rethinking/">excellent textbook</a> by McElreath.
                    <hr />
```

(R)Markdown ist nicht LATEX


```
\makeatletter
\newenvironment{kframe}{%
 \medskip{}
 \setlength{\fboxsep}{.8em}
 \def\at@end@of@kframe{}%
 \ifinner\ifhmode%
 \def\at@end@of@kframe{\end{minipage}}%
 \begin{minipage}{\columnwidth}%
 \fi\fi%
 \def\FrameCommand##1{\hskip\@totalleftmargin \hskip-\fboxsep
 \colorbox{shadecolor}{##1}\hskip-\fboxsep
   % There is no \\@totalrightmargin, so:
     \hskip-\linewidth \hskip-\@totalleftmargin \hskip\columnwidth}%
 \MakeFramed {\advance\hsize-\width
   \@totalleftmargin\z@ \linewidth\hsize
   \@setminipage}}%
{\par\unskip\endMakeFramed%
 \at@end@of@kframe}
\makeatother
```

Markdown ist eine einfache Auszeichnungssprache


```
This is a sentence.
Now a list begins:
- no importance
- again
- repeat
A numbered list:
1. first
2. second
3. third
bold , italic ,
~~strike through~~
```

This is a sentence.

Now a list begins:

- no importance
- again
- repeat

A numbered list:

- 1. first
- 2. second
- 3. third

bold, *italic*, strike through

Markdowns Philosophie

Ein Markdown kann in (fast) alle anderen Auszeichnungssprachen übersetzt werden: LEX(PDF), HTML, Powerpoint, Word, . . .

Einfach. Einfach.

- Keine Formatierung. Nur Inhalt.
- ► Kaum Steuerzeichen-Müll
- Plattformunabhängig

RMarkdown Arbeitsschritte

Einfacher Markdown-Code


```
Sie kennen mich:
curve(dnorm(x), from = -2, to = 2)
```

Sie kennen mich:

5 Projektmanagement 2: Github

Dokumentieren Sie Änderungen in Ihren Dateien

PROTIP: NEVER LOOK IN SOMEONE. ELSE'S DOCUMENTS FOLDER.

Emails zum Austausch gemeinsamer Dateien?

Schicken Sie Ihre Dokument-Varianten nicht in der Arbeitgruppe umher

Nutzen Sie eine gemeinsame Datei-Ablage

Git ist eine Software zur Versionsverwaltung

Git dokumentiert Änderungen im Text

5. Projektmanagement 2: Github

Live-Beispiel zu Git

https://github.com/luebby/Vorlesungen

Guter Einstieg: https://happygitwithr.com/

Abschluss

6. Abschluss

Hinweise

Entwicklungsteam: Karsten Lübke, Norman Markgraf, Oliver Gansser, Matthias

Gehrke, Bianca Krol, Sebastian Sauer

Kontakt: sebastian.sauer@fom.de

Das Statistikskript ist verfügbar als CC-BY-SA-NC 3.0:

https://github.com/luebby/Vorlesungsfolien.

Die Beamer-Templates stammen aus dem NPBT-Projekt von Norman Markgraf und stehen wie der Source Code unter der Lizenz GNU General Public License v3.0.

Dieses Projekt baut auf vielen Open-Source-Projekten auf, z.B. R, RStudio, Markdown, La Extended R-Paketen wie mosaic und ggplot2 – und vielen weiteren. Danke an alle Open-Source-Entwickler! icon::fa("rocket")

7. Abschluss

References I

- Joachim Engel. Statistical literacy for active citizenship: A call for data science education. *Statistics Education Research Journal*, 16(1):44–49, 2017.
- Julian Kirchherr, Julia Klier, Cornels Lehmann-Brauns, and Matthias Winde. Future skill: Which skills are lacking in germany. Technical report, Stifterverband and McKinsey, 2018. URL https://www.future-skills.net/download/file/fid/204.
- National Academies of Sciences, Engineering, and Medicine. *Data Science for Undergraduates: Opportunities and Options*. The National Academies Press, 2018. doi:10.17226/25104.
- Chantel Ridsdale, James Rothwell, Michael Smit, Hossam Ali-Hassan, Michael Bliemel, Dean Irvine, Daniel Kelley, Stan Matwin, and Bradley Wuetherick. Strategies and best practices for data literacy education: Knowledge synthesis report. Technical report, Dalhousie University, 2015.