

Remote sensing and machine learning:

Towards a spatio-temporal continuous monitoring of the environment

Hanna Meyer

Remote Sensing & Spatial Modelling, Institute of Landscape Ecology, WWU Münster

Part 3: Training data for Land cover classification

How to use the spectral properties to classify land cover?

Define the response variable

- What are the dominant land cover types?
- How much detail is required?
- Example:
 - Urban
 - Open soil
 - Grassland
 - Forest
 - Water

How to use the spectral properties to classify land cover?

Reference data are required

- Training data from field work, expert knowledge, existing databases,...
- Typically polygons. Why?

Training polygons for land cover classification

- How many?
 - Hard to say;)
 - Here: at least 3 polygons per class
- Where?
 - Try to cover spectral variability of the classes
 - Keep in mind: Each pixel will be handled as ONE training point. No need to produce huge polygons on homogeneous areas

Example of "open soil" with various spectral properties

Training polygons for land cover classification

- Keep in mind:
 - Use only "pure" pixels
 - Google Earth as background useful but check for spatial and temporal differences

Get Basemaps:

https://gis.stackexchange.com/questions/20191/adding-basemaps-from-google-or-bing-in-qgis

Create training polygons

- In R: Mapedit
- ...or use QGIS to create a new vector layer
 - On the basis of the satellite image
 - Make use of high resolution background maps

Create training polygons (QGIS)

Create training polygons (QGIS)

Create training polygons

- Digitize training polygons for your region
 - Cover all relevant land cover classes
 - At least 3 polygons per class
 - Use the projection of the satellite image
 - Save the polygons as geopackage (.gpkg)
- Load the data into R (?sf::read_sf)

Combine predictors and response

How to do it in R

extr <- extract(sen,trainingsites)
trainingsites\$PolyID <- 1:nrow(trainingsites)
extr <- merge(extr,trainingsites,by.x="ID",by.y="PolyID")

