int[] right = mergeSort(arr, mid + 1, hi);

int[] merged = mergeTwoSortedArrays(left, right);

return merged;

N ->
$$\frac{n}{2}$$
 -> $\frac{n}{4}$ -> $\frac{n}{8}$ --- $\frac{1}{2}$

dash $\frac{1}{2}$ --- $\frac{1}{2}$
 $\frac{1}{2}$ --- $\frac{1}{2}$ --- $\frac{1}{2}$
 $\frac{1}{2}$ --- $\frac{1}{2}$ --- $\frac{1}{2}$
 $\frac{1}{2}$ --- $\frac{1}$

(lug2 n+1)

$$T(n) = 2T(\frac{n}{2}) + n \qquad \text{T}$$

$$2T(\frac{n}{2}) = 4T(\frac{n}{4}) + n \qquad \text{3} \times 2$$

$$4T(\frac{n}{4}) = 8T(\frac{n}{8}) + n \qquad \text{3} \times 4$$

$$T(1) = C$$

$$T(n) = C + \times n$$

 $T\left(\frac{n}{2}\right) + T\left(\frac{n}{2}\right) + n$

X

$$T(n) = c$$
 $T(n) = c + xn$
 $T(n) = c + (l_{0}q_{2}n + l_{1})n$
 $T(n) = c + nl_{0}q_{2}n + n$

T(n) & nlog2n

Q=1

Y= 2

XIN

5 =

a(1"-1)

8-1

z 2(2ⁿ-1)

z 2ⁿ-1

$$T(n) = n + 2T(n-1) \longrightarrow 0$$

$$2T(n-1) = 2(n-1) + 4T(n-2) \longrightarrow 2 \times 2$$

$$4T(n-2) = 4(n-2) + 8T(n-3) \longrightarrow 3 \times 4$$

$$T(n) = n + 2(n-1) + 4(n-2) + \dots + C$$

$$T(n) = n + 2n - 2 + 4n - 8 + 8(n-3) + \frac{16(n-4) + \dots}{2}$$

$$T(n) = n + 2n + 4n + 8n + \frac{16n + \dots}{2} + \frac{16(n-4) + \dots}{2}$$

$$T(n) = n (2 + 2 + 4 + 8 + 16 + \dots + (-2 - 8 - 24 - 48 + 16 + \dots + (-2 - 8 - 24 + 16 + \dots + (-2 - 8 - 24 + 16 + \dots + (-2 - 8 - 24 + 16 + \dots + (-2 - 8 - 24 + 16 + \dots + (-2 - 8 - 24 + 16 + \dots + (-2 - 8 - 24 + 16 + \dots + (-2 - 8 - 24 +$$

n-> str. leath abc (n=3)

T(n) = n + T(n-1) + T(n-1)

Mast= 2 n-1

Einany Search

$$T(n) := c + T(\frac{n}{2})$$

$$\log_{2} n + 1$$

$$T(n) = c + T(\frac{n}{2}) - 0$$

$$T(\frac{1}{2})^{x-1}$$

$$T(n) = c + T(\frac{n}{2}) - 0$$

$$T(\frac{1}{2})^{x-1}$$

$$T(\frac{1}{2}) = c + T(\frac{n}{2}) - 0$$

$$T(\frac{1}{2}) = c + T(\frac{n}$$

T(n) = c + T(n-1) + T(n-1)X = M T(1) = c T(n) = c + 2c + 4c + 8c + = ((1+2+ 4+ ... +2ⁿ⁻¹) T(n) 2 2 dex (int i= 1) i <= n ;) { Jos () { for (in+ 5=2) j <= n) j++)8 3 3 10 r () -> 0 (n2) doo (In+ 1= 2, 5=2) i = n) } n-3 i=1, j=1 n-2 1=2 , 3=2,2 else E i + +; n i=4, j=1,2,3,4 3 145, j=2 T(n) x n2

$$T(n) = N-1+N-2+N-3+N-4$$

$$T(n) = S(N-1) = (N-1)(n)$$

$$T(n) \propto o(n^2)$$

Complexity	Recommence	G -
log n	$T(n) = c + T\left(\frac{n}{2}\right)$	Birany Seanch, 10wor-lag
nlogn	$T(n) = n + 2T\left(\frac{n}{2}\right)$	mage sort, quich sort
n ²	T(n) = C(n-1) + T(n-1)	bubble, suction
2 n	T(n) = c + 2T(n-1)	Subseq
~	T(n) = c + T(n-1)	power-dinears many, winder-Scarch.

All solutions and probable (tail) are, and by, and by, and by (
$$r$$
) are r and r and r a

TT (n) & n

space - complexity;

recursion

×O(1) -> call stack

extra space

- (1). roverse as away -> × O(1)
- 2). invose an away -, o(n)
- (3) 80 + ate ar amay -) X O(17