Mechanics of Materials

Lecture 15 - Combined Loading

Dr. Nicholas Smith

Wichita State University, Department of Aerospace Engineering

25 October, 2021

1

schedule

- 25 Oct SPTE, Combined Loading
- 27 Oct Exam Return, Stress Transormation
- 1 Nov Mohr's Circle
- 29 Oct Project 2 Due, HW 6 Self-Grade Due
- 3 Nov Strain Transformation

outline

- pressure vessels
- combined loading
- group problems

pressure vessels

thin-walled pressure vessels

- If the radius to wall thickness ratio is 10 or more, we can treat a pressure vessel as "thin-walled"
- Cylindrical pressure vessels will have two primary sources of stress, and serve as an introduction to more general states of combined loading

4

cylindrical vessels

cylindrical vessels

 From equilibrium of a section of a cylindrical vessel, we see that

$$\sum F_x = 0$$

$$= 2(\sigma_1 t dy) - p(2r) dy$$

$$\sigma_1 = \frac{pr}{t}$$

2

cylindrical vessels

cylindrical vessels

Considering another section we can find the longitudinal stress

$$\sum F_y = 0$$

$$= \sigma_2(2\pi rt) - p(\pi r^2)$$

$$\sigma_2 = \frac{pr}{2t}$$

8

spherical vessels

 We can find the stress in spherical vessels using an identical section to the longitudinal section for a cylindrical vessel, and we find that

$$\sigma = \frac{pr}{2t}$$

• Which is valid everywhere in a cylindrical vessel

example 8.1

- A cylindrical pressure vessel has an inner diameter of 4 ft and a thickness of 1/2 in.
- Determine the maximum internal pressure it can sustain if the maximum stress it can support is 20 ksi.
- What is the maximum internal pressure a spherical pressure vessel could sustain under identical conditions?

10

combined loading

combined loading

 We can use the principle of superposition to treat various loading conditions separately and then add them together to find the total stress

11

procedure

- Section the member at the point of interest, internal force components should be drawn acting through the centroid of the section
- Moment components should be calculated about the centroidal axis

stress components

- Normal stress: $\sigma = N/A$
- Torsion: $\tau = \frac{T\rho}{J}$
- Bending: $\sigma = \frac{-My}{I}$
- Transverse Shear: $\tau = \frac{VQ}{It}$
- Pressure Vessels: $\sigma_1 = \frac{pr}{t}$, $\sigma_2 = \frac{pr}{2t}$

13

example 8.2

Neglect the weight of the member and find the stress at $\ensuremath{\mathsf{B}}$ and $\ensuremath{\mathsf{C}}.$

example 8.4

Determine the stress at C and D.

15

example 8.5

The rod shown has a radius of 0.75 in. Find the stress at A.

group problems

group one

Find the stress at the corners A and B for the column shown.

group two

Find the stress at point A for the cantilever beam shown.

18

group three

Find the load P that will cause a maximum normal stress of $\sigma=30$ ksi along the section a-a.