Разработка программы для расчета коэффициента диффузии

Дипломник: Свистельник Л.А.

Руководитель работы: Бажанов В.И.

Физический эксперимент

Membranes	Wt./S mg/cm	$= J_v / RT\Delta C \times 10^{14}$	ω_T $A = J_T / RT \Delta c_T \times 10^{15}$ $mol / \sec dyn$	$g = L_p/\omega_T \overline{V}_w$	ω_s $= J_s / RT \Delta c_s \times 10^{19}$ $mol/\sec dyn$	Water content φ_w %
Triacetin/Po rvic	74	0,17	0,043	2,1	1,60	7
TBP/Paper	9,1	1,36	0,42	1,8	1,53	6
PEA/Paper	8,0	0,19	0,10	1,1	2,20	1,8-2,0
Cellulose Acetate	5,8	3,18	0,70	2,5	20,0	10
Polyvinyl Alcohol	4,9	94	4,17	12,5	-	31
Cellophane	3,1	1940	13,54	80	-	39

Диффузия

$$J = -D\frac{\partial C}{\partial x} \quad (1)$$

$$\frac{\partial C}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial C}{\partial x} \right) + \frac{\partial}{\partial y} \left(D \frac{\partial C}{\partial y} \right) + \frac{\partial}{\partial z} \left(D \frac{\partial C}{\partial z} \right) \quad (2)$$

$$D = \frac{1}{3}ud \quad (3)$$

Модель мембраны с малым влагосодержанием

- 1. Одинаковые расстояния между «вакансиями», равные d.
- 2. «Вакансии» расположены в узлах кубической решетки с расстоянием а.
- 3. Направления движения молекул диффузанта от одного узла решетки к другому являются равновероятными.

Расчетные формулы

$$\frac{\Delta N}{\Delta t} = DS \frac{C}{\delta} \qquad (4)$$

$$C = \frac{1}{a^3} \qquad (5)$$

$$\overline{F}(t) = N' \int_{0}^{t} f(t - i\frac{a}{u}) di = \frac{u}{a} N'(F(t) - F(t - Ia/u))$$
 (6)

$$D = \frac{N'K}{N}ua = \gamma ua \qquad (7)$$

Результаты

$$y = 10$$

$$u_0 = \sqrt{3kT/m} \quad (8)$$

$$u = u_0 \exp(-E/RT) \quad (9)$$

$$D = \gamma a \sqrt{3kT/m} \exp(-E/RT)$$
 (10)

$$E = 7,7$$
 ккал/моль $a = 0,5$ нм (0,3 нм для воды)

Выводы

- 1. Предложена модель процесса диффузии молекул воды в мембранах.
- С использованием
 у рассчитан коэффициент диффузии для мембраны из ацетата целлюлозы, который в пределах 5% совпал с экспериментальной величиной.