Number Systems

Decimal System

ten symbols: 0,1,2,3,4,5,6,7,8,9

called Arabic numerals

positional system = the value of a symbol depends on its position within the number

EX: 7 have value of 1 have value of 1

Sumerians were the first to use a positional system in 2100 BC

EX: Expand 161

$$|6| = | \times 100 + 6 \times 10 + | \times |$$

$$= | \times 10^{2} + 6 \times 10^{1} + | \times 10^{\circ}$$

powers of 10 .. decimal system

Computers work with the binary system.

base (or radix) = the number of different symbols which can occur in each position in the number system

e.g. the decimal system is a base 10 system

(note there is no single symbol for the
number 10)

Other number systems:

- Eskinos and North American Indians
 had a quinery system (base 5)
 had 5 symbols: 0,1,2,3,4
- Sumerians used a duodecimal
 system (base 12)
 we get 12 hour clock from them
 24 hr m aday
 360 days (or so they thought) in a year

To Convert From base r to base 10;

expand out the number and simplify

EX:
$$15_{12} = ?_{10}$$

one-five base 12
 $15_{12} = (1 \times 12^{1} + 5 \times 12^{0})_{10}$
 $= (12 + 5)_{10}$
 $= (17_{10})$

EX:
$$A7B_{12} = ?_{10}$$

$$A7B_{13} = (A^{10})_{10}^{10} + 7 \times 12^{1} + 8 \times 12^{0})_{10}$$

$$= (1440 + 84 + 11)_{10}$$

$$= (535_{10})$$

Octal System (base 8)

8 symbols:
$$0, 1, 2, 3, 4, 5, 6, 7$$

EX: $100_8 = ?_{10}$

onc-zero-zero octal

 $100_8 = (1 \times 8^2 + 0 \times 8^1 + 0 \times 8^6)_{10}$
 $= (64+0+0)_{10} = (64_{10})$

Binary Systems (base 2)

two symbols: 0, 1

computers have switches that can either be on or off

computers think of I as on and 0 as off

EX: Convert
$$342_5$$
 to base 10.
 $342_5 = (3 \times 5^2 + 4 \times 5^1 + 2 \times 5^9)_{10}$
 $= (3 \times 25 + 4 \times 5 + 2 \times 1)_{10}$
 $= (75 + 20 + 2)_{10}$
 $= (97_{10})$

EX: Convert 1011_2 to base 10, $1011_2 = (1 \times 2^3 + 0 \times 2^2 + (1 \times 2^4 + 1 \times 2^4))_{10}$ $= (8 + 0 + 2 + 1)_{10}$ $= (11_{10})$

Systems w/large bases have
"compactness"

while systems with small
bases have
"expandedness"

We call it a <u>radix point</u> in other number systems.

$$E^{\frac{1}{2}} = \frac{1}{10}$$

$$= \frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10} = \frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10} = \frac{1}{10} \cdot \frac{1}$$

Converting from base 10 to base r:

- 1. thinking/logical method
- 2. algorithm

EX:
$$53_{10} \rightarrow base 2$$
 $53_{10} = 100101_{2}$
 -32_{21}

-16

Thinking rethod

 $1 \quad 1 \quad 0 \quad 1 \quad 0$
 $32 \quad 16$

How many 325

in $53_{10} = 1$

algorithm base
$$2$$

whole # remainder

 $53/2$ 26 1
 $26/2$ 13 0
 $13/2$ 6 1
 $6/2$ 3 0
 $3/2$ 1 1
 $1/2$ 0

Stop:

 101012

EX:
$$53_{10} \rightarrow base 5$$
 $\frac{2}{5^{3}} = \frac{2}{5^{1}} = \frac{3}{5^{0}}$
 $\frac{53}{3} + 2 \times 15$
 $\frac{53}{3} = 203_{5}$

algorithm
$$53/s \qquad 10 \qquad 3$$

$$10/5 \qquad 2 \qquad 0 \qquad \uparrow$$

$$3/5 \qquad 0 \qquad 2 \qquad \uparrow$$

$$3/5 \qquad 0 \qquad 2 \qquad \uparrow$$

$$3/5 \qquad 0 \qquad 3 \qquad \uparrow$$

EX:
$$173_{10} \rightarrow base 12$$

logical $\frac{1}{12^{2}} \frac{2}{12^{1}} \frac{5}{12^{0}} \frac{173}{12^{0}}$

elgrithm $173/2$ 14 5

 $14/12$ 1 2 $14/12$ 1 2 14 5

 $14/12$ 1 2 1

Proof of why the algorithm works:

Let N_{10} be an arbitrary number in base 10

let r be the base we want $N_{10} = \left(d_n r^n + d_{n-1} r^{n-1} + ... + d_1 r + d_0 \right)_r$ $d_i = digit$ in ith position n = # of symbols fligits in N_{10}

