Welcome to the course!

MACHINE LEARNING WITH TREE-BASED MODELS IN R

Erin LeDell & Gabriela de Queiroz

Machine Learning Scientist & Data Scientist

Tree-based models

- Interpretability + Ease-of-Use + Accuracy
- Make Decisions + Numeric Predictions

What you'll learn:

- Interpret and explain decisions
- Explore different use cases
- Build and evaluate classification and regression models
- Tune model parameters for optimal performance

We will cover:

- Classification & Regression Trees
- Bagged Trees
- Random Forests
- Boosted Trees (GBM)

Decision tree terminology: nodes

Training Decision Trees in R

```
library("rpart")
help(package = "rpart")
```

Recursive Partitioning and Regression Trees

Documentation for package 'rpart' version 4.1-10

- DESCRIPTION file.
- User guides, package vignettes and other documentation.
- Package NEWS.

Help Pages

Training Decision Trees in R

rpart(response ~ ., data = dataset)

Let's practice!

MACHINE LEARNING WITH TREE-BASED MODELS IN R

Introduction to classification trees

MACHINE LEARNING WITH TREE-BASED MODELS IN R

Gabriela de Queiroz Instructor

Advantages

- ✓ Simple to understand, interpret, visualize
- ✓ Can handle both numerical and categorical features (inputs) natively
- ✓ Can handle missing data elegantly
- ✓ Robust to outliers
- ✔ Requires little data preparation
- Can model non-linearity in the data
- Can be trained quickly on large datasets

Disadvantages

- **★** Large trees can be hard to interpret
- * Trees have high variance, which causes model performance to be poor
- **★** Trees overfit easily

Will you wait for a table or go elsewhere?

customer	fri/sat	raining	reservation	wait estimate	will_wait?
1	No	No	Yes	0-10	Yes
2	No	No	No	30-60	No
3	No	No	No	0-10	Yes
4	Yes	No	No	10-30	Yes
5	Yes	No	Yes	> 60	No
6	No	Yes	Yes	0-10	Yes
	•••			•••	

Restaurant Example

customer	fri/sat	raining	reservation	wait estimate	will_wait?
1	No	No	Yes	0-10	Yes
2	No	No	No	30-60	No
3	No	No	No	0-10	Yes
4	Yes	No	No	10-30	Yes
5	Yes	No	Yes	> 60	No
6	No	Yes	Yes	0-10	Yes
					•••

Decision Tree in R

Prediction example

• The wait estimate is 20 minutes, no reservation was made, and it is Wednesday

Example

Let's practice!

MACHINE LEARNING WITH TREE-BASED MODELS IN R

Overview of the modeling process

MACHINE LEARNING WITH TREE-BASED MODELS IN R

Gabriela de Queiroz Instructor

Train/Test Split

80% 20%

Training Set Test Set

Train/test split in R

```
# Total number of rows in the restaurant data frame
n <- nrow(restaurant)</pre>
# Number of rows for the training set (80% of the dataset)
n_{train} \leftarrow round(0.80 * n)
# Set a random seed for reproducibility
set.seed(123)
# Create a vector of indices which is an 80% random sample
train_indices <- sample(1:n, n_train)</pre>
```


Train/test split in R

```
# Subset the data frame to training indices only
restaurant_train <- restaurant[train_indices, ]

# Exclude the training indices to create the test set
restaurant_test <- restaurant[-train_indices, ]</pre>
```

Train a Classification Tree

formula: response variable ~ predictor variables

Let's practice!

MACHINE LEARNING WITH TREE-BASED MODELS IN R

Evaluate Model Performance

MACHINE LEARNING WITH TREE-BASED MODELS IN R

Gabriela de Queiroz Instructor

Predicting class labels for test data

Evaluation Metrics for Binary Classification

- Accuracy
- Confusion Matrix
- Log-loss
- AUC

Accuracy

$$accuracy = \frac{\text{n of correct predictions}}{\text{n of total data points}}$$

Confusion Matrix

Confusion Matrix

Actual

Confusion Matrix

Let's practice!

MACHINE LEARNING WITH TREE-BASED MODELS IN R

Use of splitting criterion in trees

MACHINE LEARNING WITH TREE-BASED MODELS IN R

Gabriela de Queiroz Instructor

Split the data into "pure" regions

How to determine the best split?

Impurity Measure - Gini Index

Let's practice!

MACHINE LEARNING WITH TREE-BASED MODELS IN R

