Supervised Learning I – Intro

Big Data Analysis I

Christoph Kern¹ Frauke Kreuter Marcel Neunhoeffer Sebastian Sternberg

March 25, 2019

¹c.kern@uni-mannheim.de

Table of contents

- 1. Machine Learning basics
- 1.1 Training and test error
- 1.2 Bias-Variance Trade-Off
- 2. Validation set, test set, CV
- 3. Performance measures
- 3.1 Regression
- 3.2 Classification
- 4. Software Resources
- 5. References

Machine Learning basics

What is Machine Learning?

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

- Tom Mitchell (1997)

Introduction

Machine Learning

- "Machine Learning is the field of scientific study that concentrates on induction algorithms and on other algorithms that can be said to "learn"." (Kohavi & Provost 1998)
 - Algorithms based on statistical criteria which focus on making predictions based on a data-driven learning process
- · Combines Computer Science and Statistics

Statistical Learning

Machine Learning from a "statistical perspective"

ML process

Unsupervised Learning

• Finding patterns in data using a set of input variables X

- Predicting an output variable Y based on a set of input variables
 X
 - Learn the relationship between input and output using training data (with X and Y)

$$Y = f(X) + \varepsilon$$

- 2. Predict the output based on the prediction model (of step 1) for new test data (∼only X available)
- · continuous Y: regression, categorical Y: classificatior
- Focus on prediction

Unsupervised Learning

• Finding patterns in data using a set of input variables X

- Predicting an output variable Y based on a set of input variables
 X
 - Learn the relationship between input and output using training data (with X and Y)

$$Y = f(X) + \varepsilon$$

- Predict the output based on the prediction model (of step 1) for new test data (~only X available)
- · continuous Y: regression, categorical Y: classificatior
- Focus on prediction

Unsupervised Learning

• Finding patterns in data using a set of input variables X

- Predicting an output variable Y based on a set of input variables
 X
 - Learn the relationship between input and output using training data (with X and Y)

$$Y = f(X) + \varepsilon$$

- Predict the output based on the prediction model (of step 1) for new test data (~only X available)
- · continuous Y: regression, categorical Y: classification
- Focus on prediction

Unsupervised Learning

• Finding patterns in data using a set of input variables X

- Predicting an output variable Y based on a set of input variables
 X
 - Learn the relationship between input and output using training data (with X and Y)

$$Y = f(X) + \varepsilon$$

- Predict the output based on the prediction model (of step 1) for new test data (~only X available)
- · continuous Y: regression, categorical Y: classification
- Focus on prediction

Supervised Learning: Find function f(x) that makes optimal predictions in a new data set

- Representation: What is the hypothesis space, the family of functions to search over?
 - Describes possible relationships between X and Y
 - Examples: $f(x) = x'\beta$ is linear, or f is a tree.
- Evaluation: What is the criterion to choose between different functions?
 - · Measures predictive performance
 - · Examples: Mean Squared Error, Logistic Loss
- Computation: How is f actually calculated?
 - · Speed and memory space may be limiting factors

Supervised Learning: Find function f(x) that makes optimal predictions in a new data set

- Representation: What is the *hypothesis space*, the family of functions to search over?
 - Describes possible relationships between X and Y
 - Examples: $f(x) = x'\beta$ is linear, or f is a tree.
- Evaluation: What is the criterion to choose between different functions?
 - Measures predictive performance
 - · Examples: Mean Squared Error, Logistic Loss
- Computation: How is f actually calculated?
 - · Speed and memory space may be limiting factors

Supervised Learning: Find function f(x) that makes optimal predictions in a **new data set**

- Representation: What is the *hypothesis space*, the family of functions to search over?
 - Describes possible relationships between X and Y
 - Examples: $f(x) = x'\beta$ is linear, or f is a tree.
- Evaluation: What is the criterion to choose between different functions?
 - · Measures predictive performance
 - Examples: Mean Squared Error, Logistic Loss
- Computation: How is f actually calculated?
 - · Speed and memory space may be limiting factors

Supervised Learning: Find function f(x) that makes optimal predictions in a **new data set**

- Representation: What is the *hypothesis space*, the family of functions to search over?
 - Describes possible relationships between X and Y
 - Examples: $f(x) = x'\beta$ is linear, or f is a tree.
- Evaluation: What is the criterion to choose between different functions?
 - · Measures predictive performance
 - Examples: Mean Squared Error, Logistic Loss
- Computation: How is f actually calculated?
 - Speed and memory space may be limiting factors

Table 1: Estimating f(x)

Regression methods	(tree-based) ML methods		
parametric	non-parametric		
linearity, additivity	flexible functional form		
prior model specification	"built-in" feature selection data-driven		
theory-driven			
\rightarrow Inference	ightarrow Prediction		

Training and test error

Training error

$$\overline{\text{err}} = \frac{1}{N} \sum_{i=1}^{N} L(y_i, \hat{f}(x_i))$$

- Prediction error based on training data
- with e.g. squared error loss L

Test error

$$\mathsf{Err}_{\mathcal{T}} = \mathsf{E}(\mathsf{L}(\mathsf{Y},\hat{f}(\mathsf{X}))|\mathcal{T})$$

 \cdot Prediction error using **test data** (given training data \mathcal{T})

Training and test error

Training error

$$\overline{\text{err}} = \frac{1}{N} \sum_{i=1}^{N} L(y_i, \hat{f}(x_i))$$

- Prediction error based on training data
- with e.g. squared error loss L

Test error

$$Err_{\mathcal{T}} = E(L(Y, \hat{f}(X))|\mathcal{T})$$

 \cdot Prediction error using **test data** (given training data \mathcal{T})

Training and test error

Expected test error decomposition

$$Err(x_0) = Bias^2(\hat{f}(x_0)) + Var(\hat{f}(x_0)) + Var(\varepsilon)$$

- Minimizing the (expected) test error requires
 - · Low bias ($[E\hat{f}(x_0) f(x_0)]^2$) and
 - · Low variance $(E[\hat{f}(x_0) E\hat{f}(x_0)]^2)$

Figure 1: Bias and variance illustration

Figure 2: High Variance in Trees

- High Variance = Different data would lead to a different function
- Overfitting = Poor generalization to new data

Figure 3: High Bias in Trees

- High Bias = Blue points are poorly predicted
- Underfitting = Function should adapt better to the data

Figure 4: Optimal Solution

 $\boldsymbol{\cdot}$ Goal: Find optimal compromise between bias and variance

Figure 5: Training error and test error by model complexity

Goal of prediction (again): Minimal test error

$$\arg\min_{f\in\mathcal{F}}\mathbb{E}(L(f(x),y))$$

but we cannot simply minimize its empirical analogue in **training** data

$$\arg\min_{f\in\mathcal{F}}\frac{1}{N}\sum_{i=1}^{N}L(f(x_i),y_i)$$

because this would overfit if the capacity of f is high enough.

Solution: Solve (as before)

$$\arg\min_{f\in\mathcal{F}_K}\frac{1}{N}\sum_{i=1}^N L(f(x_i),y_i)$$

but f must come from a restricted hypothesis space (limited capacity)

- Tree with at most K leaves
- Regression with $\sum |\beta_i| < K$
- General form: Penalty(f) < K

This is **regularization** – in general form:

$$\arg\min_{f\in\mathcal{F}}\frac{1}{N}\sum_{i=1}^{N}L(f(x_i),y_i)+\lambda\cdot \text{Penalty}(f)$$

Quiz

If we have a high bias problem (underfitting), what can be done?

- Add more predictors (= collect more variables or transform existing ones)?
- Allow higher function capacity (= reduce regularization parameter)?
- Use more flexible algorithms (e.g., a tree instead of linear regression)?

If we have a high variance problem (overfitting), what can be done?

- Add more predictors (= collect more variables or transform existing ones)?
- Allow higher function capacity (= reduce regularization parameter)?
- Use more flexible algorithms (e.g., a tree instead of linear regression)?
- · Collect more training data?

Validation set, test set, CV

In-sample prediction error

Estimating the test error with training data

 \cdot Setup: Add training optimism $\hat{\omega}$ to training error

$$\widehat{\operatorname{Err}}_{in} = \overline{\operatorname{err}} + \hat{\omega}$$

Corrected fit measure for OLS regression

$$C_p = \overline{\operatorname{err}} + 2\frac{d}{n}\hat{\sigma}_{\varepsilon}^2$$

Corrected fit measures for ML-based methods

$$AIC = -\frac{2}{n}LL + 2\frac{d}{n}$$
$$BIC = -2LL + \log(n)d$$

Validation set, test set

Validation set approach

- Training set & validation set
 - 1. Fit model using one part of training data
 - 2. Compute test error for the excluded section
- → Model assessment
 - · Training set, validation set & test set
 - 1. Fit models using training part of training data
 - 2. Choose best model using validation set
 - 3. Evaluate final model using test set
- → Model tuning & assessment

- LOOCV (Leave-One-Out Cross-Validation)
 - 1. Fit model on training data while excluding one case
 - 2. Compute test error for the excluded case
 - 3. Repeat step 1 & 2 n times
- k-Fold Cross-Validation
 - 1. Fit model on training data while excluding one group
 - 2. Compute test error for the excluded group
 - 3. Repeat step 1 & 2 k times (e.g. k = 5, k = 10)
- · Outlook: nested CV, repeated CV, ...

$$CV(\hat{f}) = \frac{1}{n} \sum_{i=1}^{n} L(y_i, \hat{f}^{-\kappa(i)}(x_i))$$

Standard Errors for CV

$$\frac{1}{\sqrt{K}} sd\{CV_1(\hat{f}^{-(1)}), ..., CV_K(\hat{f}^{-(K)})\}$$

Model selection using k-Fold Cross-Validation

- · Choose model with smallest cross-validated error
- Choose smallest model within one standard error of the smallest cross-validated error (1-SE Rule)

More on data splitting

- · Simple random splits
 - · General approach for "unstructured" data
 - Typically 75% or 80% go into training set
- · Stratified splits
 - · For classification problems with class imbalance
 - · Sampling within each class of Y to preserve class distribution
- Splitting by groups
 - · For (temporal) structured data
 - Use specific groups (temporal holdouts) for validation

Figure 6: 5-Fold Cross-Validation with training set and validation set (example)

James et al. (2013)

Performance measures

Performance measures for regression

 r^2 score:

$$r^2 = \operatorname{corr}(y_i, \hat{f}(x_i))^2$$

Mean of squared errors (MSE):

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2$$

Root mean squared error (RMSE):

$$\sqrt{\frac{1}{n}\sum_{i=1}^n(y_i-\hat{f}(x_i))^2}$$

Performance measures for regression

Mean of absolute errors (MAE):

$$\frac{1}{n}\sum_{i=1}^n|(y_i-\hat{f}(x_i))|$$

Median of absolute errors (MEDAE):

median(
$$|y_1 - \hat{f}(x_1)|, ..., |y_n - \hat{f}(x_n)|$$
)

Median of squared errors (MEDSE):

median
$$((y_1 - \hat{f}(x_1))^2, ..., (y_n - \hat{f}(x_n))^2)$$

Probabilities, thresholds and prediction for classification

$$y_i = \begin{cases} 1 & \text{if} \quad p_i > c \\ 0 & \text{if} \quad p_i \le c \end{cases}$$

Table 2: Confusion matrix

		Prediction			
		0	1		
Reference	0	True	False	N'	
		Negatives (TN)	Positives (FP)	IN	
	1	False	True	P'	
		Negatives (FN)	Positives (TP)	Р	
		N	Р		

Confusion matrix metrics

- Global performance
 - Accuracy: TP+TN TP+FP+TN+FN
 - Misclassification rate:

- · No Information rate
- · Row / column performance
 - Sensitivity (Recall): $\frac{TP}{TP+FN}$
 - Specificity: $\frac{TN}{TN+FP}$
 - Positive predictive value (Precision): TP TPLLED
 - Negative predictive value:
 - False positive rate: FP FP+TN
 - False negative rate: $\frac{FN}{FN+TP}$

Table 3: Confusion matrix

	Prediction			
		0	1	
Reference	0	TN	FP	N'
	1	FN	TP	P'
		NI	D	

Combined measures

Balanced Accuracy

• F1

$$2 \times \frac{Precision \times Recall}{Precision + Recall}$$

- Cohen's κ
 - · Compares observed (p_0) and random (p_e) accuracy

•
$$p_e = \frac{(N' \times N) + (P' \times P)}{(TP + FP + TN + FN)^2}$$

$$1 - \frac{1 - p_0}{1 - p_e}$$

Figure 7: Varying the classification threshold I

Figure 8: Varying the classification threshold II

- ightarrow AUC-ROC: Area under the receiver operating characteristic curve
- ightarrow AUC-PR: Area under the precision–recall curve

How many true positives are among the high risk observations?

- Rank observations by risk scores
- 2. Classify top K % as positive/ relevant
- 3. Compute precision

Figure 9: Precision at top K

Software Resources

Software Resources

Resources for R

- Overview
 - https://cran.r-project.org/web/views/ MachineLearning.html
- caret
 - http://topepo.github.io/caret/index.html
- · mlr
 - . https: //mlr-org.github.io/mlr-tutorial/devel/html/

References

References

- Domingos, P. (2012). A few useful things to know about machine learning. *Communications of the ACM 55*(10), 78–87.
- Hastie, T., Tibshirani, R., Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. New York, NY: Springer.
- James, G., Witten, D., Hastie, T., Tibshirani, R. (2013). *An Introduction to Statistical Learning*. New York, NY: Springer.
- Kohavi, R., Provost, F. (1998). Glossary of Terms. *Machine Learning* 30(2), 271–274.
- Mitchell, T. M. (1997). Machine Learning. Maidenhead: McGraw-Hill.