

SILVER OAK UNIVERSITY

College of Technology (01)

Degree Engineering Course (Computer Engineering)
Subject Name: Analysis and Design of Algorithms
Subject Code: 1010043316

Semester: 5th

Prerequisite:

- 1. Programming (C or C++)
- 2. Data and file structure

Objectives:

- 1. Analyze the asymptotic performance of algorithms.
- 2. Demonstrate a familiarity with major algorithm design techniques.
- 3. Apply important algorithmic design paradigms and methods of analysis.
- 4. Solve simple to moderately difficult algorithmic problems arising in applications.
- 5. Able to demonstrate the hardness of simple NP-complete problems.

Teaching and Examination Scheme:

Teaching Scheme					Evaluation Scheme				Total Marks
L	Т	P	Contact	Credits	Theory Practical				
			Hours		CIE (TH)	ESE (TH)	CIE (PR)	ESE (PR)	
4	0	2	6	5	40	60	20	30	150

Content:

Unit No.	Course Contents	Teaching Hours	Weightage
1	Basics of Algorithms and Mathematics: What is an algorithm?, Properties of Algorithm, Time and Space Complexity, detailed analysis of algorithm, Mathematics for Algorithmic Sets, Functions and Relations, Vectors and Matrices, Linear Inequalities and Linear Equations.	4	3

2	Analysis of Algorithm: The efficient algorithm, Average, Best and worst case analysis, Amortized analysis, Asymptotic Notations(Big-O, Big-Ω and Big-Θ Notations their Geometrical Interpretation and Examples.), Recurrences: Recursive Algorithms and Recurrence Relations, Solving Recurrences, Analyzing control statement, Loop invariant and the correctness of the algorithm, Sorting Algorithms and analysis: Bubble sort, Selection sort, Insertion sort, Shell sort Heap sort, Sorting in linear time: Bucket sort, Radix sort and Counting sort	10	20
3	Divide and Conquer Algorithm: Introduction, Recurrence and different methods to solve recurrence, Multiplying large Integers Problem, Problem Solving using divide and conquer algorithm - Binary Search, Max-Min problem, Sorting (Merge Sort, Quick Sort), Matrix Multiplication, Exponential.	8	15
4	Dynamic Programming: Introduction, The Principle of Optimality, Problem Solving using Dynamic Programming – Calculating the Binomial Coefficient, Making Change Problem, Assembly Line-Scheduling, Knapsack problem, All Points Shortest path, Matrix chain multiplication, Longest Common Subsequence.	7	15
5	Greedy Algorithm General Characteristics of greedy algorithms, Problem solving using Greedy Algorithm - Activity selection problem, Elements of Greedy Strategy, Minimum Spanning trees (Kruskal's algorithm, Prim's algorithm), Graphs: Shortest paths, The Knapsack Problem, Job Scheduling Problem, Huffman code.	7	15
6	Exploring Graphs: An introduction using graphs and games, Undirected Graph, Directed Graph, Traversing Graphs, Depth First Search, Breath First Search, Topological sort, Connected components	6	10
7	Backtracking and Branch and Bound: Introduction, The Eight queens problem, Knapsack problem, Travelling Salesman problem, Minimax principle	4	10
8	String Matching:	4	5

	Introduction, The naive string matching algorithm, The Rabin-Karp algorithm, String Matching with finite automata, The Knuth-Morris-Pratt algorithm.		
9	Introduction to NP-Completeness: The class P and NP, Polynomial reduction, NP- Completeness Problem, NP-Hard Problems. Travelling Salesman problem, Hamiltonian problem, Approximation algorithms, Randomized algorithms, Class of problems beyond NP – P SPACE	5	7

Course Outcome:

Sr. No.	CO statement	Unit No	Weightage %
CO-1	Analyze the asymptotic performance of algorithms.	1,2	15%
СО-2	Derive and solve recurrences describing the performance of divide-and-conquer algorithms.	3	15%
CO-3	Find optimal solution by applying various methods.	4,5	30%
CO-4	Explain the major graph algorithms and their analyses. Employ graphs to model engineering problems, when appropriate.	6,7	30%
CO-5	Apply pattern matching algorithms to find particular pattern.	8	5%
CO-6	Differentiate polynomial and nonpolynomial problems.	9	5%

• Teaching and Learning Mode:

- 1. The course includes a laboratory, where students get the opportunity to practically apply the theoretical knowledge they have acquired in the lectures.
- 2. Lectures with attractive PowerPoint presentations
- 3. Different experiments shall be carried out during the practical sessions.

• List of Experiments/Tutorials:

1. Implementation and Time analysis of sorting algorithms.

- Bubble sort, Selection sort, Insertion sort, Merge sort and Quicksort
- 2. Implementation and Time analysis of linear and binary search algorithm.
- 3. Implementation of max-heap sort algorithm
- 4. Implementation and Time analysis of factorial program using iterative and recursive method
- 5. Implementation of a knapsack problem using dynamic programming.
- 6. Implementation of chain matrix multiplication using dynamic programming.
- 7. Implementation of making a change problem using dynamic programming
- 8. Implementation of a knapsack problem using greedy algorithm
- 9. Implementation of Graph and Searching (DFS and BFS).
- 10. Implement prim's algorithm
- 11. Implement kruskal's algorithm.
- 12. Implement LCS problem.

• Major Equipment/ Instrument(Software/Hardware):

Computers with latest software configuration, Turbo C

• Books Recommended:

- Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivestand Clifford Stein, PHI.
- 2. Fundamentals of Algorithms E. Horowitz et al.
- 3. Fundamental of Algorithms by Gills Brassard, Paul Bratley, PHI.
- 4. Introduction to Design and Analysis of Algorithms, Anany Levitin, Pearson.
- 5. Foundations of Algorithms, Shailesh R Sathe, Penram
- 6. Design and Analysis of Algorithms, Dave and Dave, Pearson.

• List of Open Source Software/learning website:

- 1. NPTEL tutorials
- 2. http://www.coursera.org/