Advanced Data Analysis HW6

Ao Liu, al3472

1.

A random variable T is said to have a Weibull distribution is its survival function is give by $S(t) = e(\alpha t)\beta$ where $\alpha > 0$ and $\beta > 0$.

(a)

Find the density, $f_T(t)$ of T

Answer:

$$f_T(t) = -\frac{dS(t)}{dt} = (\beta \alpha^{\beta} t^{\beta - 1}) e^{-(\alpha t)^{\beta}}$$

(b)

Find the hazard function $\lambda(t)$ of T

Answer:

$$\lambda(t) = \frac{f(t)}{S(t)} = \beta \alpha^{\beta} t^{\beta - 1}$$

(c)

Show that

$$log(-log(S(t))) = \beta log(\alpha) + \beta log(t)$$

Based on this, describe a graphical method for checking whether or not the data is from a Weibull distribution.

Answer:

$$log(-log(S(t))) = log((\alpha t)^{\beta})$$
$$= \beta log(\alpha t)$$
$$= \beta log(\alpha) + \beta log(t)$$

Here we get a graphical method for checking whether or not the data is from a Weibull distribution: By plotting all the (log(t), log(-log(S(t)))), the points from the same Weibull distribution should lie in a straight line.

 (\mathbf{d})

Consider the following data

143, 164, 188, 188, 190, 192, 206, 209, 213, 216, 220, 227, 230, 234, 246, 265, 304

and use as an estimate of S(t(i))

$$S(t(i)) = 1(i - 0.5)/n$$

were t(i) is the ith ordered value and n is the sample size. Use the graphical technique in the previous question to check if a Weibull distribution is appropriate for these data

Answer:

Follow the technique in (c), we plot all the $(log(t_i), log(-log(\hat{S}(t_i))))$ in an axis:

We can tell from the plot that a Weibull distribution is appropriate for these data.

(e)
Assume that the Weibull distribution is a good fit, use least squares approach to estimate its parameters.

Answer:

```
fit = lm(log(-log(result))^{\sim}log(data))
     abline (fit)
2
    summary (fit)
2 \operatorname{lm}(\operatorname{formula} = \log(-\log(\operatorname{result})) \sim \log(\operatorname{data})
  Residuals:
        Min
                    1Q
                          Median
                                          3Q
                                                    Max
   -0.68997 -0.12226
                         0.09174
                                    0.19153
                                               0.30116
  Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
  (Intercept) -37.2330
                                2.1806
                                          -17.07 \quad 3.08e - 11
                   6.8538
                                 0.4073
                                           16.83 \ 3.80e - 11 ***
  Signif. codes: 0
                                    0.001
                                                       0.01
                                                                      0.05
                                                                                      0.1
                                                                                                     1
13
  Residual standard error: 0.2871 on 15 degrees of freedom
  Multiple R-squared: 0.9497, Adjusted R-squared:
  F-statistic: 283.1 on 1 and 15 DF, p-value: 3.796e-11
```

Assume that the Weibull distribution is a good fit, by using least squares approach, we have the following estimation for its parameters:

$$\beta = 6.8538$$

$$\alpha = e^{\frac{-37.2330}{\beta}} = 0.0044$$

2.

The data below show survival times in months of patients with Hodgkins disease who were treated with nitrogen mustard. Group A patients received little or no prior therapy whereas Group B patients received heavy prior therapy. Starred are observations are censoring times.

$$Group A: 1.25, 1.41, 4.98, 5.25, 5.38, 6.92, 8.89, 10.98, 11.18, 13.11, 13.21, 16.33, 19.77, \\ 21.08, 21.84^*, 22.07, 31.38, 32.61^*, 37.18^*, 42.92$$

$$Group B: 1.05, 2.92, 3.61, 4.20, 4.49, 6.72, 7.31, 9.08, 9.11, 14.49^*, \\ 16.85, 18.82^*, 26.59^*, 30.26^*, 41.34^*$$

(a)

Obtain and plot the Kaplan Meier estimates of S_A and S_B , the corresponding survival functions.

Answer:

For group A, we have:

So the Kaplan-Meier estimator of S(t) is:

$$\hat{S}_A(t) = \prod_{y_A(j) \le t} (1 - \frac{d_A(j)}{N_A(j)})$$

For group B, we have:

$$y_B(i)$$
 1.05 2.92 3.61 4.20 4.49 6.72 7.31 9.08 9.11 16.85 $d_B(i)$ 1 1 1 1 1 1 1 1 1 1 1 1 $N_B(i)$ 15 14 13 12 11 10 9 8 7 5

So the Kaplan-Meier estimator of S(t) is:

$$\hat{S}_B(t) = \Pi_{y_B(j) \le t} (1 - \frac{d_B(j)}{N_B(j)})$$

(b) Estimate $S_A(10)$ and $S_B(10)$ using a 95% confidence interval.

Answer:

> summary(fit)

1	Call:	survf	it (formu	la = Surv	(time, st	tatus) ~ group	, type = "kapl	an-meier")	
2									
3			group=	=1					
4			n.event			lower 95% CI			
5	1.25	20	1	0.95	0.0487	0.859	1.000		
6	1.41	19	1	0.90	0.0671	0.778	1.000		
7	4.98	18	1	0.85	0.0798	0.707	1.000		
8	5.25	17	1	0.80	0.0894	0.643	0.996		
9	5.38	16	1	0.75	0.0968	0.582	0.966		
10	6.92	15	1	0.70	0.1025	0.525	0.933		
11	8.89	14	1	0.65	0.1067	0.471	0.897		
12	10.98	13	1	0.60	0.1095	0.420	0.858		
13	11.18	12	1	0.55	0.1112	0.370	0.818		
14	13.11	11	1	0.50	0.1118	0.323	0.775		
15	13.21	10	1	0.45	0.1112	0.277	0.731		
16	16.33	9	1	0.40	0.1095	0.234	0.684		
17	19.77	8	1	0.35	0.1067	0.193	0.636		
18	21.08	7	1	0.30	0.1025	0.154	0.586		
19	22.07	5	1	0.24	0.0980	0.108	0.534		
20	42.92	1	1	0.00	NaN	NA	NA		
21									
22		group=2 time n.risk n.event survival std.err lower 95% CI upper 95% CI							
23			n.event						
24	1.05	15	1	0.933	0.0644	0.815	1.000		
25	2.92	14	1	0.867	0.0878	0.711	1.000		
26	3.61	13	1	0.800	0.1033	0.621	1.000		
27	4.20	12	1	0.733	0.1142	0.540	0.995		
28	4.49	11	1	0.667	0.1217	0.466	0.953		
29	6.72	10	1	0.600	0.1265	0.397	0.907		
30	7.31	9	1	0.533	0.1288	0.332	0.856		
31	9.08	8	1	0.467	0.1288	0.272	0.802		
32	9.11	7	1	0.400	0.1265	0.215	0.743		
33	16.85	5	1	0.320	0.1239	0.150	0.684		

According to the output from above,

$$\hat{S}_A(10) = \hat{S}_A(8.89) = 0.65$$

the 95% CI for $\hat{S}_A(10)$ is:

$$\hat{S}_B(10) = \hat{S}_B(9.11) = 0.40$$

the 95% CI for $\hat{S}_B(10)$ is:

(c) Test $H_0: S_A = S_B$ against $H_a: S_A \neq S_B$. Use $\alpha = 0.05$.

Answer:

To test the hypothesis, we do the following test in R:

1 > survdiff(Surv(time, status)~group, rho=0)

Since the p-value is 0.784 > 0.05, we cannot reject the Null Hypothesis that $S_A = S_B$.