Assignment 4

Name – kajal

```
Reg no - 21BAC10039
                                      Campus – VIT Bhopal
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier # You can choose your preferred ML algorithm
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
data = pd.read_csv('winequality-red.csv') # Replace with the actual file path
# Example: Histogram of wine quality
```

Split the data into features (X) and target (y)

plt.title('Distribution of Wine Quality')

CODE:-

Import necessary libraries

import matplotlib.pyplot as plt

import pandas as pd

import numpy as np

Load the dataset

Data preprocessing

Check for missing values

print(data.isnull().sum())

Data visualization

plt.hist(data['quality'])

plt.ylabel('Frequency')

plt.show()

plt.xlabel('Wine Quality')

```
X = data.drop('quality', axis=1)
y = data['quality']
# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Standardize features (optional)
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
# Machine Learning Model building
model = RandomForestClassifier(n_estimators=100, random_state=42) # You can choose your preferred
hyperparameters
model.fit(X_train, y_train)
# Evaluate the model
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)
class_report = classification_report(y_test, y_pred)
print("Accuracy:", accuracy)
print("Confusion Matrix:\n", conf matrix)
print("Classification Report:\n", class report)
# Test with random observation (replace with your own data)
random_observation = np.array([10, 0.5, 0.5, 2.5, 0.1, 10, 25, 0.98, 3.0, 0.45, 9.5]).reshape(1, -1)
predicted quality = model.predict(random observation)
print("Predicted Wine Quality for Random Observation:", predicted quality[0])
OUTPUT:
fixed acidity
                                0
```

volatile acidity

0

citric acid	0
residual sugar	0
chlorides	0
free sulfur dioxide	0
total sulfur dioxide	0
density	0
рН	0
sulphates	0
alcohol	0
quality	0

dtype: int64

Distribution of Wine Quality

Accuracy: 0.659375 Confusion Matrix:

[[0 0 1 0 0 0] [0 0 7 3 0 0] [0 0 96 33 1 0] [0 0 31 92 8 1] [0 0 0 18 23 1] [0 0 0 1 4 0]]

Classification Report:

abbilicacion	repere.			
	precision	recall	f1-score	support
3	0.00	0.00	0.00	1
4	0.00	0.00	0.00	10
5	0.71	0.74	0.72	130
6	0.63	0.70	0.66	132
7	0.64	0.55	0.59	42
8	0.00	0.00	0.00	5
accuracv			0.66	320

 macro avg
 0.33
 0.33
 0.33
 320

 weighted avg
 0.63
 0.66
 0.64
 320

Predicted Wine Quality for Random Observation: 5