Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

1 Input Parameters

26.1	,		<u> </u>	Dr. Dl.
Modu				Fin Plate
MainMo				Shear Connection
Connectivity			Beam-Beam	
Shear(k				50.0
		Supporting Se	ection	
		ng Section		UB $305 \times 127 \times 48$
~	Material *			E 250 (Fe 410 W)A
т—		ngth, fu (MPa)		410
	Yield Streng	th , fy (MPa)		250
$(B-t)$ α	Mass	48.1	Iz(cm4)	95750000.0
ZZ D	Area(cm2) - A	6120.0	Iy(cm4)	4610000.0
	D(mm)	311.0	rz(cm)	125.0
R ₁	B(mm)	125.3	ry(cm)	27.0
-R ₂	t(mm)	9.0	Zz(cm3)	616000.0
В	T(mm)	14.0	Zy(cm3)	74000.0
•	FlangeSlope	90	Zpz(cm3)	711000.0
	R1(mm)	8.9	Zpy(cm3)	74000.0
	R2(mm)	0.0		
		Supported Se	ction	
	Supporte	ed Section		NPB 250x175x43.9
	Material *		E 250 (Fe 410 W)A	
т т	Ultimate strength, fu (MPa)		410	
	Yield Strength , fy (MPa)		250	
$(B-t)$ α	Mass	43.94	Iz(cm4)	60914000.0
ZZ D	Area(cm2) - A	5600.0	Iy(cm4)	9836100.0
	D(mm)	244.0	rz(cm)	104.3
R_1	B(mm)	175.0	ry(cm)	41.900000000000006
	t(mm)	7.0	Zz(cm3)	499290.0
В	T(mm)	11.0	Zy(cm3)	112410.0
•	FlangeSlope	90	Zpz(cm3)	555560.0
	R1(mm)	1.5	Zpy(cm3)	112410.0
	R2(mm)	0.0		
		Bolt Detai	ils	
Diameter	` '			[12.0, 16.0, 20.0]
Grade	e *		[3.6, 4.6,	[12.0, 16.0, 20.0] 4.8, 5.6, 5.8, 6.8, 8.8, 9.8, 10.9, 12.9]
	e *		[3.6, 4.6,	
Grade	e *		[3.6, 4.6,	4.8, 5.6, 5.8, 6.8, 8.8, 9.8, 10.9, 12.9]
Grade Type	e * e type		[3.6, 4.6,	4.8, 5.6, 5.8, 6.8, 8.8, 9.8, 10.9, 12.9] Bearing Bolt
Grade Type Bolt hole	e * e type r (µ_f)			4.8, 5.6, 5.8, 6.8, 8.8, 9.8, 10.9, 12.9] Bearing Bolt Standard

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

Gap between beam and support (mm)	10.0
Are the members exposed to corrosive influences	False
Plate Det	ails
Thickness(mm)*	[3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0]
Material *	E 250 (Fe 410 W)A
Ultimate strength, fu (MPa)	410
Yield Strength , fy (MPa)	250
Weld Det	ails
Weld Type	Fillet
Type of weld fabrication	Shop Weld
Material grade overwrite (MPa) Fu	410.0

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	18 /05 /2020	Client	LoremIpsum

2 Design Checks

2.1 Bolt Design Checks

Check	Required	Provided	Remarks
Diameter (mm)*		16.0	
Grade *		6.8	
Shear Capacity (kN)		$V_{dsb} = \frac{f_u b \ n_n \ A_{nb}}{\sqrt{3} \ \gamma_{mb}}$ $= \frac{600.0 * 1 * 157}{\sqrt{3} \ * 1.25}$ $= 43.51$	
Bearing Capacity (kN)		$V_{dpb} = \frac{2.5 \ k_b \ d \ t \ f_u}{\gamma_{mb}}$ $= \frac{2.5 \ * 0.49 * 16.0 * 7.0 * 410}{1.25}$ $= 45.0$	
Capacity (kN)		$V_{db} = min (V_{dsb}, V_{dpb})$ $= min (43.51, 45.0)$ $= 43.51$	
No of Bolts	$R_{u} = \sqrt{V_{u}^{2} + A_{u}^{2}}$ $n_{trial} = R_{u}/V_{bolt}$ $R_{u} = \frac{\sqrt{50.0^{2} + 50.0^{2}}}{43.51}$ $= 2$	3	
No of Columns		1	
No of Rows		3	
Min. Pitch (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 16.0 = 40.0$	0.0	N/A
Max. Pitch (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 7.0, \ 300 \ mm)$ = 300	0.0	N/A
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 16.0 = 40.0$	45	Pass
Max. Gauge (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ $= \min(32 * 7.0, \ 300 \ mm)$ $= 300$	45	Pass
Min. End Distance (mm)	$e/e^{\circ}_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 18.0 = 30.6	35	Pass
Max. End Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *8.0 * \sqrt{\frac{250}{250}}$ $= 96.0$	35	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

Check	Required	Provided	Remarks
Min. Edge Distance (mm)	$e/e^{\circ}_{min} = [1.5 \text{ or } 1.7] * d_0$	35	Pass
	= 1.7 * 18.0 = 30.6		
Max. Edge Distance (mm)	$e/e'_{max} = 12 t \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 *8.0 * \sqrt{\frac{250}{250}}$ $= 96.0$	35	Pass
Capacity (kN)	44.88	45.0	Pass

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	18 /05 /2020	Client	LoremIpsum

2.2 Plate Design Checks

Check	Required	Provided	Remarks
Min. Plate Height (mm)	$0.6 * d_b = 0.6 * 244.0 = 146.4$	160	Pass
	$d_b - t_{bf} + r_{b1} - notch_h$		
Max. Plate Height (mm)	= 244.0 - 11.0 + 1.5 - 30	160	Pass
	= 194.0		
	$2*e_{min} + (n \ c - 1)*p_{min})$		_
Min. Plate Length (mm)	= 2 * 30.6 + (1 - 1) * 40.0	80.0	Pass
No. Div. Co.	= 71.2		D
Min.Plate Thickness (mm)	$t_w = 7.0$	8.0	Pass
		$V_{dg} = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo}}$	
		$\sqrt{3} * \gamma_{mo}$	
Shear yielding Capacity (V_dy) (kN)		$= \frac{160 * 8.0 * 250}{\sqrt{3} * 1.1}$	
(• _uy) (m· ·)		1.07.00	
		$V_{dn} = \frac{0.75 * A_{vn} * f_u}{\sqrt{3} * \gamma_{mo}}$	
		$V_{dn} \equiv \frac{1}{\sqrt{3} * \gamma_{mo}}$	
Shear Rupture Capacity (V_dn) (kN)		= 1 * (160 - (3 * 18.0)) * 8.0 * 410)
(Vdii) (kiv)		=260.76	
Block Shear Capacity in Shear (V_db) (kN)		172.71	
		$V_d = Min(V_{dy}, V_{dn}, V_{db})$	
Shear Capacity (V_d)	50.0	= Min(167.96, 260.76, 172.71)	Pass
(kN)		= 167.96	
		$T_{dg} = \frac{l * t_p * f_y}{\gamma_{mo}}$	
Tension Yielding Capacity		γ_{mo} 160 * 8.0 * 250	
(kN)		$=\frac{160*8.0*250}{1.1}$	
		= 290.91	
		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$	
		γ_{m1}	
Tension Rupture Capacity (kN)		$= \frac{0.9 * (160 - 3 * 18.0) * 8.0 * 410}{1.25}$	0
(KIV)		= 335.35	
Block Shear Capacity in		217.28	
Tension (T_db) (kN)		3	
		$T_d = Min(T_{dg}, T_{dn}, T_{db})$	
Tension Capacity (kN)	50.0	= Min(290.91, 335.35, 217.28)	Pass
		=217.28	
Moment Capacity (kN-m)	2.25	11.64	Pass
Interaction Ratio	≤ 1	$\frac{2.25}{11.64} + \frac{50.0}{217.28} = 0.42$	Pass
		11.64 217.28 0.12	

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	18 /05 /2020	Client	LoremIpsum

2.3 Weld Checks

Check	Required	Provided	Remarks
Min Weld Size (mm)		3	Pass
Max Weld Size (mm)	$Thickness of Thinner part$ $= Min(9.0, 8.0) = 8.0$ $t_{w_{max}} = 8.0$	3	Pass
Weld Strength (kN/mm)	$R_{w} = \sqrt{(T_{wh} + A_{wh})^{2} + (T_{wv} + V_{wv})^{2}}$ $T_{wh} = \frac{M * y_{max}}{Ipw} = \frac{2250000.0 * 77.0}{608710.67}$ $T_{wv} = \frac{M * x_{max}}{Ipw} = \frac{2250000.0 * 0.0}{608710.67}$ $V_{wv} = \frac{V}{l_{w}} = \frac{50000.0}{308}$ $A_{wh} = \frac{A}{l_{w}} = \frac{50000.0}{308}$ $R_{w} = \sqrt{(284.62 + 162.34)^{2} + (0.0 + 162.34)^{2}}$ $= 475.52$	$f_w = \frac{t_t * f_u}{\sqrt{3} * \gamma_{mw}}$ $= \frac{3 * 410}{\sqrt{3} * 1.25}$ $= 568.11$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

3 3D View

Figure 1: 3D View