STEPPER

Node for simple to use, feature-rich, Stepping Motor Control.

Will work with: SilentStepstick, StepStick, or a any Step/Dir driven Step Motor driver

Category: Motor

HAL: mbed

Tested: with LPC1768 and TMC2130 Silentstepstick

Author: N. Chalikias

Implementation Details

EndSwitch Input stops the movement automatically and captures/outputs the stopPosition as a number of executed steps.

If TMC2130 driver is used, then Stall Detection and stopPosition reporting is supported by connecting TMC2130 DIAG1 pin to EndSwitch Input.

Simple commands

For simple use-cases, 4 commands are implemented as in the Input section below for input1 (Schematic pin 1). The same commands are implemented in the DC-Motor control Node L298, so a use-case scenario can be implemented with DC or stepping motor, just changing the motor Node in the Design. Example:

[Ticker]-->[Counter]-->[STEPPER] for stepping-motor
[Ticker]-->[Counter]-->[L298] for DC-Motor

Gcode commands

For more complex use-cases, Gcodes G0 and G1 are implemeted for input 2 (Schematic pin 2).

Motion impementation

The SteppingCounter is set for the desired number of steps. A Motion_Timer is set to the desired stepping frequency. A Motion_Timer ISR is attached to the Motion_Timer. The Motion_Timer ISR pulses the pinSTEP for a single step and decrements the SteppingCounter by 1. When the SteppingCounter reaches value 0 the Motion_Timer is stopped and the motion stops

Stop_Detection

The microprocessor pin assigned for pinSTOP *is connected to an endStop microswitch*, and is configured to create an interrupt. The pinSTOP ISR stops the Motion_Timer (this stops the movement) and Captures the SteppingCounter value to a StopPosition parameter. The next endFrame, outputs the StopPosition to the Node output, creating a Stop event.

Stall Detection

By configuring TMC2130 registers TCOOLTHRS and GCONF via SPI, the TMC2130 DIAG1 pin is set to signal the Stall condition. The microprocessor pin assigned for pinSTOP is *connected to TMC2130 DIAG1 pin*. Then when the TMC2130 detects and signals a Stall, the responce is as in the Stop_Detection

Accessing TMC2130 Registers

Registers are accesed with 40bit SPI transactions, sending a 40 bit command and getting back 40 bit status.

Input Connections

```
* (Schematic pin 1) integer: Value

* 0 or 0x30 STOP

* 1 or 0x31 RIGHT STATE MACHINE: ACTIVATED ONLY IF IN STOP

* 2 or 0x32 LEFT STATE MACHINE: ACTIVATED ONLY IF MOVING RIGHT

* 3 or 0x33 BRAKE

* (Schematic pin 2) * string: Gcode string
```

Output Connections

* (Schematic pin 2)

* int: `stopPosition'

Node Parameters

```
* PinName: pinMOSI

* PinName: pinMISO

* PinName: pinSCK

* PinName: pinSTEP

* PinName: pinDIR

* PinName: pinEN

* PinName: pinEN

* PinName: pinStop: Connect to a microswitch-end-Stop or TMC2130 DIAG1 pin

* float: speed: Default speed in s/step (0.001-->1KHz) limited to min 0.00002(50KHz), max 1 (1Hz)

* uint32_t:Accel: The Default acceration

* char8_t: Axis: Executes Gcode only for the specified axis: 1=X,2=Y,3=Z,4=E,5=A,6=B,7=C,8=D

* bool: TMC2130
```

Usage Example

```
[GPIN]-->[ValueTrig]-->(1)[STEPPER]

[Ticker]-->[Counter]-->(1)[STEPPER] simple motion demo

[PC_Serial "G0 X100"]-->[StringSerial]-->(2)[STEPPER] executes Gcode
```