

Machine Learning for NLP

Mouhcine MENDIL

Some Tasks in NLP: Classification

Assigning predefined labels or categories to text:

- Hate speech detection in social media
- Spam detection
- Topic categorization
- Named Entity Recognition
- •

Some Tasks in NLP: Text Generation

Producing coherent and contextually relevant text based on given input:

- Machine Translation
- Text Summarization
- Paraphrasing
- Chatbots
- ...

• Early approaches (60's): symbolic methods, hand-written rules

• Regular expressions: language for specifying a matching pattern in text search

- Regular expressions: language for specifying a matching pattern in text search
- Useful for text normalization and substitution

```
In [3]: import re
    text = "i love python and PYTHON is great for many tasks"
    pattern = r'\bpython\b'
    repl = "Python"
    result = re.sub(pattern, repl, text, flags=re.IGNORECASE)
In [4]: print(result)
    i love Python and Python is great for many tasks
```


ELIZA simulates a Rogerian psychologist

```
Welcome to
                   EEEEEE LL
                                          777777
                                   II ZZ
                   EEEEE
                                                 AAAAAAA
                                         ZZ
                                                  AA AA
                   EEEEEE LLLLLL
                                                  AA AA
 Eliza is a mock Rogerian psychotherapist.
 The original program was described by Joseph Weizenbaum in 1966.
 This implementation by Norbert Landsteiner 2005.
ELIZA: Is something troubling you?
YOU: Men are all alike.
ELIZA: What is the connection, do you suppose ?
      They're always bugging us about speething or other.
ELIZA: Can you think of a specific example ?
      Well, my boyfriend made me come here.
ELIZA: Is it important to you that your boyfriend made you come here ?
YOU: He says I'm depressed much of the time.
ELIZA: I am sorry to hear that you are depressed.
YOU: It's true. I am unhappy.
ELIZA: Can you explain what made you unhappy ?
YOU:
```


- ELIZA simulates a Rogerian psychologist
- Hard-coded rules based on pattern matching and substitution

```
Welcome to
                   EEEEEE LL
                                    II ZZ
                   EEEEE
                                                  AAAAAAA
                                                  AA AA
                                                     AA
 Eliza is a mock Rogerian psychotherapist.
 The original program was described by Joseph Weizenbaum in 1966.
 This implementation by Norbert Landsteiner 2005.
ELIZA: Is something troubling you ?
YOU: Men are all alike:
ELIZA: What is the connection, do you suppose ?
      They're always bugging us about sceething or other.
ELIZA: Can you think of a specific example ?
      Well, my boyfriend made me come here.
ELIZA: Is it important to you that your boyfriend made you come here?
      He says I'm depressed much of the time.
ELIZA: I am sorry to hear that you are depressed.
     It's true. I am unhappy.
ELIZA: Can you explain what made you unhappy ?
YOU:
```


- ELIZA simulates a Rogerian psychologist
- Hard-coded rules based on pattern matching and substitution

Example of a condition and possible answers:

```
"?*x I want ?*y": [

"What would it mean if you got ?y?",

"Why do you want ?y?",

"Suppose you got ?y soon."

...
]
```

```
Welcome to
                    EEEEEE
                                                   AAAAAAA
                                                      AA
                                                       AA
 Eliza is a mock Rogerian psychotherapist.
 The original program was described by Joseph Weizenbaum in 1966.
 This implementation by Norbert Landsteiner 2005.
ELIZA: Is something troubling you?
      Men are all alike:
ELIZA: What is the connection, do you suppose?
      They're always bugging us about sceething or other.
ELIZA: Can you think of a specific example
      Well, my boyfriend made me come here
ELIZA: Is it important to you that your boyfriend made you come here
      He says I'm depressed much of the time.
ELIZA: I am sorry to hear that you are depressed.
      It's true: I am unhappy.
ELIZA: Can you explain what made you unhappy ?
YOU:
```


- Early approaches (60's): symbolic methods, hand-written rules
- Advantages: based on expert knowledge, precise

- Early approaches (60's): symbolic methods, hand-written rules
- Advantages: based on expert knowledge, precise
- Downsides: lack of coverage, expensive to build and maintain

• Learn rules automatically: machine learning (90's), neural methods (2010's)

• Learn rules automatically: machine learning (90's), neural methods (2010's)

- Learn rules automatically: machine learning (90's), neural methods (2010's)
- Advantages: improved performance and generalization, fast

- Learn rules automatically: machine learning (90's), neural methods (2010's)
- Advantages: improved performance and generalization, fast
- Downsides: complex, hard to interpret

MONKEYUSER.COM

Questions so far?

How to split data into train/val/test subsets?

- How to split data into train/val/test subsets?
- Models need for numerical features. How to go from sentences/words/tokens to vector representation?

- How to split data into train/val/test subsets?
- Models need for numerical features. How to go from sentences/words/tokens to vector representation?
- Are there suitable models for learning?

- How to split data into train/val/test subsets?
- Models need for numerical features. How to go from sentences/words/tokens to vector representation?
- Are there suitable models for learning?
- Metrics for evaluation ?

ML Models for NLP: Splitting the data

ML Models for NLP: Splitting the data

Continuous text

• Random short sequences

Data Preparation

• Preprocessing & normlalization: lower case, special characters, stop words, stemming, tokenizing, ...

Data Preparation

- Preprocessing & normlalization: lower case, special characters, stop words, stemming, tokenizing, ...
- Numerical feature vectors: ML methods requires numerical features

Data Preparation

- Preprocessing & normlalization: lower case, special characters, stop words, stemming, tokenizing, ...
- Numerical feature vectors: ML methods requires numerical features

Data Preparation

- Preprocessing & normlalization: lower case, special characters, stop words, stemming, tokenizing, ...
- Numerical feature vectors: ML methods requires numerical features

Corpus

Document 1: "Cyber threats pose a risk to organizations."

Document 2: "Inadequate cyber defenses expose organizations to cyber risks."

Vocabulary (after lemmatization and sorting by alphabetical order)

[cyber, defense, expose, inadequate, organization, pose, risk, threats]

One-hot Encoding of Document 1 (with the Vocabulary)

Doc1\Voc	cyber	defense	expose	inadequate	organization	pose	risk	threats
Cyber	1	0	0	0	0	0	0	0
threats	0	0	0	0	0	0	0	1
pose	0	0	0	0	0	1	0	0
risk	0	0	0	0	0	0	1	0
organization	0	0	0	0	1	0	0	0

BoW(with the Vocabulary)

Doc\Voc	cyber	defense	expose	inadequate	organization	pose	risk	threats
Document 1	1	0	0	0	1	1	1	1
Document 2	2	1	1	1	1	0	1	1

TF-IDF of Document 2 (with the Corpus & Vocabulary)

	cyber	defense	expose	inadequate	organization	pose	risk	threats
# docs w/ the token	2	1	1	1	2	1	2	1
IDF	$\log(\frac{2}{2})$	$\log(\frac{2}{1})$	$\log(\frac{2}{1})$	$\log(\frac{2}{1})$	$\log(\frac{2}{2})$	$\log(\frac{2}{1})$	$\log(\frac{2}{2})$	$\log(\frac{2}{1})$
TF(*,Doc2)	$\frac{2}{7}$	$\frac{1}{7}$						
TF - IDF(*,Doc2)	0	0.043	0.043	0.043	0	0.043	0	0

ML Models for NLP: Classification

Input:

- a document d
- a fixed set of classes $C = \{c_1, c_2, \dots, c_K\}$
- A training set of n hand-labeled documents $(d_1, c_1), \dots, (d_n, c_n)$

- Output:
 - a learned classifier $\hat{f}: d \rightarrow c \in C$

ML Models for NLP: Classification

Input:

- a document d
- a fixed set of classes $C = \{c_1, c_2, \dots, c_K\}$
- A training set of n hand-labeled documents $(d_1, c_1), ..., (d_n, c_n)$

Output:

- a learned classifier $\hat{f}: d \rightarrow c \in C$
- Actually $\hat{f}: d \to (\pi_1, \dots, \pi_k) \in [0,1]^K$

ML Models for NLP: Classification

Any kind of classifier can be used:

- Naïve Bayes
- Logistic regression
- Support-vector machines
- Random Forest
- k-Nearest Neighbors
- ...

Metrics for Classification:

Usual classification metrics can be used:

Accuracy =
$$\frac{TP + TN}{TP + TN + FP + FN}$$
 = 0.75
Recall = $\frac{TP}{TP + FN}$ = 0.25
Precision = $\frac{TP}{TP + FP}$ = 0.33
F1 Score = $\frac{2 * Precision * Recall}{Precision + Recall}$ = 0.28

22/01/2025

ML Models for NLP: Language Models

P(table | The cat sat on the)

P(chair | The cat sat on the)

P(mat | The cat sat on the)

 $P(\text{table} \mid \text{The cat sat on the}) = ?$

P(table | The cat sat on the)

P(chair | The cat sat on the)

P(mat | The cat sat on the)

...

 $P(\text{table} \mid \text{The cat sat on the}) = ?$

To be estimated from data

$$P(\text{table} \mid \text{The cat sat on the}) = \frac{\# (The \ cat \ sat \ on \ the \ table)}{\# (The \ cat \ sat \ on \ the)}$$

$$P(\text{table} \mid \text{The cat sat on the}) = \frac{\# (The \ cat \ sat \ on \ the \ table)}{\# (The \ cat \ sat \ on \ the)}$$

We'll hardly see enough data for estimating these

P(table | The cat sat on the)

P(chair | The cat sat on the)

P(mat | The cat sat on the)

 $P(\text{table} \mid \text{The cat sat on the}) \approx \left\langle \right\rangle$

P(table) or $P(table \mid the)$ or $P(table \mid on the)$ or $P(table \mid sat on the)$ or $P(w_i \mid w_1w_2 \dots w_{i-1})$

Markov Assumption

P(table | The cat sat on the)

P(chair | The cat sat on the)

P(mat | The cat sat on the)

 $P(\text{table} \mid \text{The cat sat on the}) \approx \langle$

P(table) or $P(table \mid the)$ or $P(table \mid on the)$ or $P(table \mid sat on the)$ or $P(w_i \mid w_1w_2 \dots w_{i-1})$

Markov Assumption

Increasing context and complexity

Training corpus

$$P(w_i \mid w_{i-1}) = \frac{\#(w_{i-1}, w_i)}{\#(w_{i-1})}$$

<s> Student I am </s>

<s> I do like Machine Learning </s>

$$P(I \mid \langle s \rangle) =$$

$$P(Student \mid \langle s \rangle) =$$

$$P(am \mid I) =$$

$$P(| Student) =$$

$$P(Student \mid am) =$$

$$P(do \mid I) =$$

Training corpus

$$P(w_i \mid w_{i-1}) = \frac{\#(w_{i-1}, w_i)}{\#(w_{i-1})}$$

<s> Student I am </s>

<s> I do like Machine Learning </s>

$$P(I \mid \langle s \rangle) = \frac{2}{3}$$

$$P(| Student) = \frac{1}{2}$$

$$P(Student \mid < s >) = \frac{1}{3}$$

$$P(Student \mid am) = \frac{1}{2}$$

$$P(am \mid I) = \frac{2}{3}$$

$$P(do \mid I) = \frac{1}{3}$$

Metrics for text generation

- Perplexity: Measures how well the model predicts a (test) sequence (used for language models)
- BLEU (Bilingual Evaluation Understudy): Measures n-gram overlap between generated and reference text (used for machine translation).
- ROUGE (Recall-Oriented Understudy for Gisting Evaluation): Focuses on content overlap (used for summarization).

• ...

NLP Workflow

Data Collection

Data Cleaning

Pre-Processing

04. Feature Eng.

Open Source database Web scrapping Crowdsourcing Social Media data ...

Tokenization Lowercasing StopWord removal Stemming

Bag of Words TF-IDF N-grams Word Embedding

Deployment

Evaluation

05. **Model Building**

Naive Bayes SVM RNN, LSTM Transformers

Monitoring

...

When you penalize your Natural Language Generation model for large sentence lengths

