(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

庁内整理番号

(11)特許出願公開番号

特開平7-201223

(43)公開日 平成7年(1995)8月4日

(51) Int.Cl.⁶

識別記号

FΙ

技術表示箇所

H01B 3/12 C 0 4 B 35/46

304

C 0 4 B 35/46

Z

審査請求 未請求 請求項の数2 FD (全 6 頁)

(21)出願番号

特願平5-350480

(71) 出顧人 000004547

日本特殊陶業株式会社

愛知県名古屋市瑞穂区高辻町14番18号

平成5年(1993)12月29日 (22)出願日

(72)発明者 加藤 宗臣

爱知県名古屋市瑞穂区高辻町14番18号 日

本特殊陶業株式会社内

(72)発明者 尾関 博文

愛知県名古屋市瑞穂区高辻町14番18号 日

本特殊陶業株式会社内

(74)代理人 弁理士 小島 清路

(54) 【発明の名称】 マイクロ波誘電体磁器組成物及びその製造方法

(57)【要約】

【目的】 Qu、 ϵ ,及び τ ,をいずれも実用的な特性 範囲に維持しつつ、高い焼結密度を示す、単純組成のマ イクロ波誘電体磁器組成物を提供する。

【構成】 本組成物は、組成式(1-x) TiO₂-x SnO₂ 〔但し、0.8≤x<1.0〕で表される組成 からなる。特にxが0.9で且つ焼成温度が1375℃ C_{u} v_{v} v_{v 0、τ, =+1.2ppm/°Cとなり、ε, はやや小さ いものの、Quは最大値を示し、で、もO付近となり、 極めて優れた性能を示す。この組成物は、所定の組成に なるように酸化チタン(IV)粉末及び酸化錫(IV) 粉末を混合し、その後、仮焼し仮焼粉末を製造し、該仮 焼粉末を粉砕し、所定形状に成形し、次いで、1275 ~1400℃にて焼成して製造される。

1

【特許請求の範囲】

【請求項1】 組成式(1-x)TiO, -xSnO, (但し、 $0.8 \le x < 1.0$)で表される組成からなる ことを特徴とするマイクロ波誘電体磁器組成物。

【請求項2】 組成式 (1-x) TiO, -xSnO, 【但し、0.8≤x<1.0】で示される組成になるように酸化チタン (IV) 粉末及び酸化錫 (IV) 粉末を混合し、その後、仮焼し仮焼粉末を製造し、該仮焼粉末を粉砕し、所定形状に成形し、次いで、1275~1400℃にて焼成することを特徴とするマイクロ波誘電体 10 磁器組成物の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、マイクロ波誘電体磁器組成物に関し、更に詳しく言えば、無負荷Q(以下、単にQuという。)、比誘電率(以下、単にε,という。)及び共振周波数の温度係数(以下、単にτ,という。)をいずれも実用的な特性範囲で維持しつつ、高い焼結密度を示すマイクロ波誘電体磁器組成物に関するものである。本発明は、マイクロ波領域において誘電体共 20振器、マイクロ波集積回路基板、各種マイクロ波回路のインビーダンス整合等に利用される。

[0002]

【従来の技術】一般にマイクロ波やミリ波等の高周波領域に使用される誘電体共振器や誘電体基板には、高い無負荷Q及び高い誘電率を有し、しかも共振周波数の絶対値が小さいものが望まれている。つまり、マイクロ波誘電体磁器組成物(以下、単に誘電体磁器組成物という。)は、使用周波数が高周波となるに従って誘電損失が大きくなる傾向にあるので、マイクロ波領域でQuの30大きな誘電体磁器組成物が望まれている。また組成式(1-x)TiO,-xSnO,系誘電体磁器材料としては、xが0.5のものが知られている(「セラミック工学ハンドブック」(発行:日本セラミックス協会、P.1885)。

[0003]

【発明が解決しようとする課題】しかし、上記TiO。 -SnO。 系誘電体磁器材料では、Q(7GHz)が450O、 ε ,が43と大きいものの、 τf が+25Op pm/でと非常に大きく、0付近の小さな値に調整する 40 ことが困難であるという問題があった。

[0004]本発明は、上記問題点を解決するものであり、Qu、 ϵ ,及び τ ,をいずれも実用的な特性範囲に維持しつつ、高い焼結密度を示す、単純組成の誘電体磁器組成物及びその製造方法を提供することを目的とする。

[0005]

【課題を解決するための手段】本発明者らは、単純組成 約0.4 T o r r 、 凍結温度 - 20 \sim - 40 $^{\circ}$ 、乾燥温の誘電体磁器組成物において、Q u 、 ϵ 、及び τ 、をい 度40 \sim 50 $^{\circ}$ 、真空乾燥時間約20時間)により造粒ずれも実用的な特性範囲に維持しつつ、高い焼結密度を 50 し、この造粒された原料を用いて1 トン/ c m^2 のプレ

示す組成について種々検討した結果、 $TiO_1 - SnO_1$ 系において所定の組成割合にすることにより、飛躍的にQuが大きくなり、且つてfが0近辺に調節可能な組成範囲を見出して、本発明を完成するに至ったのである。即ち、本第1発明の誘電体磁器組成物は、組成式(1-x) TiO_2-xSnO_2 〔但し、 $0.8 \le x < 1.0$ 〕で表される組成からなることを特徴とする。 [0006]本第2発明の誘電体磁器組成物の製造方法は、組成式(1-x) TiO_2-xSnO_2 〔但し、 $0.8 \le x < 1.0$ 〕で示される組成になるように酸化チタン(IV)粉末及び酸化錫(IV)粉末を混合し、その後、仮焼、粉砕を行って所定形状に成形し、次いで、 $1275\sim1400$ °Cにて焼成することを特徴とする。

【0007】組成式 (1-x) TiO, -xSnO, に おいて、xの範囲を0.8以上1.0未満としたのは、xが0.8未満の場合はで、が大きな正の値をとり、Q uが相対的に小さな値を示す(即ちxが0.9の場合飛躍的に大きな値となる。)からである。逆にてれが1.0の場合は1400℃においてもうまく緻密化しないからである。焼成温度を1275~1400℃の範囲としたのは、1275℃より低い温度ではうまく緻密化しない場合があり、逆に1400℃を越えると特性が徐々に 劣化するからである。

【0008】特に、表1に示す実験結果によれば、焼成温度が1375 ℃及び1325 ℃の場合(x が0.9)では、Qu が飛躍的に増大した。例えば、x が0.9で且つ焼成温度が1375 ℃では、Qu が5040 (7.1 GHz)、 ε ,=14.0、 τ ,=+1.2 p p m/℃となり、 ε ,はやや小さいものの、Qu は最大値を示し、 τ ,も0付近となり、極めて優れたバランス性能を示している。更に、焼成温度に関しては、 $1275\sim1400$ ℃という広い温度範囲内にて焼成しても、各性能のバラツキが比較的少ないとともに優れた性能を示している。

[0009]

【実施例】以下、実施例により本発明を具体的に説明する。 TiO、粉末(純度:99.95%)、SnO、粉末(純度:99.3%)を出発原料として、組成式(1-x)TiO、-xSnO、のxが変化した組成になるように、所定量(全量として約500g)を秤量、混合した。その後、ミキサーで乾式による混合(20~30分)及び一次粉砕を施した後、大気雰囲気中にて1050℃の温度で2時間仮焼した。次いで、この仮焼粉末に適量の有機パインダー(29g)と水(400~450g)を加え、20mm中のアルミナボールで、90rpm、23時間粉砕した。その後、真空凍結乾燥(真空度約0.4Torr、凍結温度-20~-40℃、乾燥温度40~50℃、真空乾燥時間約20時間)により造粒し、この造粒された原料を用いて1トン/cm²のプレ

3

ス圧で $19mm\phi \times 11mmt$ (高さ)の円柱状に成形した。

【0010】次に、との成形体を大気中、500℃、3時間にて脱脂し、その後、1275~1400℃の範囲の各温度で、4時間焼成し、最後に両端面を約16mm φ×8mmt(高さ)の円柱状に研磨して、誘電体試料(表1~3のNo.1~1~1~22、2~1~2~22及び3~1~3~22)とした。尚、上記仮焼工程における昇温速度は200℃/h、との脱脂工程における昇温速度は50℃/h、焼成工程における昇温速度は100℃/h及び降温速度は-100℃/hであった。

* 誘電体円柱共振器法 (TE., MODE) により、Qu. ε, 及びτfを測定した。焼結密度はアルキメデス法により測定した。尚、共振周波数は2.6~7.1GHzである。また、τ,は23~80℃の温度領域で測定し、τ,=(f.,-f.,)/(f.,×ΔT)、ΔT=80℃-23℃=57℃にて算出した。これらの結果を表1~3(焼成温度;1275~1400℃)及び図1~4(焼成温度;1375℃)に示す。尚、SnO、粉末単独(xが1.0)の場合は、1400℃でも焼結しなかった。

【0012】 【表1】

【0011】そして、上記各試料につき、平行導体板型*

要1 [(1-x)TiO₂-xSnO₂]磁器組成物

No.	×	烧成温度	"Qu	比誘電率	τſ	烧粘密度
		(೮)	(2. 7~ 7. 1611z)	εr	(ppe/℃)	(g/cm ^c)
1-1	0	1400	3590	97.1	+ 507	3. 98
1-2	0. 1	1400	3520	84.8	+ 457	4. 22
1-3	0. 2	1400	3280	74. 4	+ 423	4. 55
1-4	0.3	140D	3440	58.7	+ 343	5. 02
1-5	0.4	1400	3400	50.2	+ 304	5. 35
1 - 6	0.5	140D	3360	42.5	+ 275	5. 55
1-7	0.6	1400	3300	34.8	+ 232	5.86
1-8	0. 7	1400	3200	27. 3	+ 175	6.04
1-9	0.8	1400	3490	20.2	+84.3	6. 25
1-10	0. 9	1400	4970	14.0	+ 0.7	6.30
1-11	1. 0	1400		栽	竞結	
1-12	0	1375	3760	97.7	+ 504	3. 9.7
1-13	0. 1	1375	3630	84.5	+ 461	4. 21
1-14	0. 2	1375	3400	74.6	+ 422	4. 53
1 -15	0. 3	1375	3510	59.7	+ 342	5.03
1 -16	0. 4	1375	3410	51.6	+ 319	5. 28
1 -17	0. 5	1375	3420	43.3	+ 283	5.63
1 -18	0. 6	1375	3390	35.0	+ 237	5. 87
1 -19	0. 7	1375	3240	27. 5	+ 181	6.06
1 -20	0.8	1375	3530	20.5	+ 85	6. 25
1 -21	0. 9	1375	5040	14.0	+ 1.2	6.30
1 -22	0. 95	1375	4880	8. 5	-32.4	6.33

【表2】

_
•
_

表 2 [(1-x)TiO₂-xSnO₂]磁器組成物

No.	x	烧成温度	Qu	比誘電率	τf	烧结密度
		(3)	(2.6~ 7.1GHz)	e r	(ppm/t)	(g/cm²)
2-1	0	1350	3670	97.8	+ 506	3.98
2-2	0. 1	1350	3670	84.5	+ 450	4.21
2-3	0. 2	1350	3350	74.6	+ 424	4.55
2-4	0. 3	1350	3350	60.4	+ 343	5. 0.6
2-5	0.4	1350	3180	5 3. 1	+ 334	5. 33
2-6	0. 5	1350	3140	43.9	+ 292	5.62
2-7	0.6	1350	3210	34.9	+ 231	5.85
2-8	Ó. 7	1350	3210	27.4	+ 172	6.08
2 – 9	0.8	1350	3380	20.5	+83.4	6. 25
2-10	0. 9	1,350	4050	14. 1	- 1.3	6.30
2-11	0.95	1350	3920	8. 4	-29.2	6.32
2-12	0	1 3 2 5	3760	97.9	+ 504	3. 97
2-13	0. 1	1 3 2 5	3640	84.0	+ 453	4.20
2-14	0. 2	1325	3370	74.6	+ 422	4.55
2-15	0. 3	1325	3330	62.3	+ 360	5.06
2-16	0.4	1325	3320	53.7	+ 339	5. 35
2-17	0. 5	1 3 2 5	3420	43.4	+ 289	5.63
2-18	0. 6	1325	3330	34.4	+ 225	5.88
2 -19	0. 7	1 3 2 5	3190	27.4	+ 160	6. 13
2 -20	0.8	1325	3350	20.6	+82.5	6.34
2-21	0. 9	1325	4270	14.3	- 1.6	6.37
2 -22	0. 95	1325	3120	8. 0	-20.0	6.30

【表3】

[0014]

表3 [(1-x)fi02-xSn02]磁器組成物

No.	ж .	烧成温度	Q u (2.6~	比誘電率	τſ	烧結 皮
İ		(t)	7. 06Hz)	εr	(ppm/℃)	(g/cm ³)
3 – 1	0	1300	3700	97. 7	+ 510	3. 97
3-2	0. 1	1300	3650	83.8	+ 453	4.19
3 – 3	0. 2	1300	3370	74. 7	+ 430	4.55
3 – 4	0. 3	1300	3330	64.1	+ 375	5.04
3-5	0.4	1300	3260	54. 1	+ 342	5. 33
3-6	0. 5	1300	3390	43. 2	+ 283	5.62
3 – 7	0. 6	1300	3350	34.2	+ 220	5.88
3 – 8	0. 7	1300	2850	26.4	+ 154	6.02
3 - 9	0.8	1300	3170	20.1	+83.7	6. 21
3-10	0. 9	1300	3180	13.8	- 1.0	6. 25
3-11	0. 95	1300	1770	6. 5	- 2.5	6.10
3 -12	0	1275	3770	97.7	+ 505	3. 97
3-13	0. 1	1275	3510	83.0	+ 45.4	4. 15
3-14	0. 2	1275	3340	75. 1	+ 430	4. 55
3-15	0.3	1275	3200	65.0	+ 385	5.00
3-16	0.4	1275	3320	53.6	+ 341	5. 30
3-17	0. 5	1275	3260	42.7	+ 284	5. 57
3-18	0.6	1275	3100	33.5	+ 220	5.80
3-19	0. 7	1275	2580	26. 2	+ 153	6.01
3 - 20	0.8	1275	3040	20.1	+81.1	6. 19
3 -21	0.9	1275	3120	13.6	+ 0.1	6. 18
3 – 22	0.95	1 2 7 5		未烧結	~	5. 94

【0015】 これらの結果によれば、xが0.9では、 Quが飛躍的に増大し(図1及び表1のNo. 1-2 1、表2のNo. 2-21) した。また、でfは表1~ 3に示すxが0.9のいずれの場合も飛躍的に減少し て、-1.6~+1.2ppm/℃となり、0近辺の極 めて優れた性能を示した。特に、焼成温度が1375℃ 及び1325°Cの場合は、各々、Quが5040、42 70、εrが14.0、14.3、τfが+1.2pp m/℃、-1. 6ppm/℃となり、εrが小さ目であ るものの、全体して大変優れたバランス性能を示した。 【0016】xが0.8~0.9の場合は、Quが14 10~5040 (xが0.9のNo.3-10及びxが 40 0.9のNo.3-22を除くと、3040~504 0)、ε r が13.6~20.6及びτ,が-1.6~ +85ppm/℃となり、パランスのとれた性能を示 す。また、 τ fを0近辺の値に自由に調整できる。尚、 本発明においては、前記具体的実施例に示すものに限ら れず、目的、用途に応じて本発明の範囲内で種々変更し た実施例とすることができる。

[0017]

【発明の効果】本第1発明の誘電体磁器組成物は、Qu、 ε,及びτ,をいずれも実用的な特性範囲に維持しつつ、高い焼結密度を示し、更に単純組成である。また、本第2発明の製造方法によれば、広い温度範囲内において焼成温度を種々変動させても、上記有用な誘電体磁器組成物を安定して製造できるとともに、τfを0近辺に自由に調整できる。

【図面の簡単な説明】

【図1】焼成温度1375℃における(1-x) TiO, -xSnO, 磁器組成物のxとQuとの関係を示すグラフである。

【図2】図1にて示す磁器組成物において、xと ϵ 、との関係を示すグラフである。

【図3】図1にて示す磁器組成物において、xとて、との関係を示すグラフである。

【図4】図1にて示す磁器組成物において、xと焼結密度との関係を示すグラフである。

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-201223

(43) Date of publication of application: 04.08.1995

(51)Int.CI.

H01B 3/12 C04B 35/46

(21)Application number : 05-350480

(71)Applicant: NGK SPARK PLUG CO LTD

(22)Date of filing:

29.12.1993

(72)Inventor: KATOU MUNEOMI

OZEKI HIROBUMI

(54) MICROWAVE DIELECTRIC PORCELAIN COMPOSITE, AND ITS MANUFACTURE.

(57) Abstract:

PURPOSE: To provide a microwave dielectric porcelain composite of simple composition in which Qu, εr, and τf are all maintained within practical characteristic ranges, while indicating a high sintering density.

CONSTITUTION: A composite is expressed by a composition formula of (1-x)TiO2- xSnO2, where 0.8≤ x<1.0. Espacially, with x=0.9, and a baking temperature of 1375°C, then Qu=5040 (7.1GHz). εr=14.0, and τ f=+1.2ppm/°C, which achieves excellent performance of the maximum Qu value and τf around 0, though εr is relatively small. This composite is manufactured by mixing titanium oxide (IV) powder with tin oxide (IV) powder, temporarily baking this mix to be temporarily baked powder, moulding it in a specified form, and then baking it at 1275-1400°C.

LEGAL STATUS

[Date of request for examination]

11.08.2000

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than

the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3322742

[Date of registration]

28.06.2002

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] Empirical-formula (1-x) TiO2-xSnO2 Dielectric-ceramics-for-microwave porcelain constituent characterized by the bird clapper from the composition expressed with [, however 0.8 <=x<1.0].

[Claim 2] Empirical-formula (1-x) TiO2-xSnO2 The manufacture method of the dielectric-ceramics-formicrowave porcelain constituent which mixes titanium oxide (IV) powder and tin-oxide (IV) powder so that it may become [, however the composition shown by 0.8 <=x<1.0], carries out temporary quenching after that, manufactures temporary-quenching powder, grinds this temporary-quenching powder, fabricates in a predetermined configuration, and is subsequently characterized by calcinating at 1275-1400 degrees C.

[Translation done.]

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.*** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention] [0001]

[Industrial Application] this invention relates to the dielectric-ceramics-for-microwave porcelain constituent in which high sintered density is shown, maintaining each of unloaded Qs (only henceforth Qu), specific inductive capacity (only henceforth epsilonr), and temperature coefficients (only henceforth tauf) of resonance frequency in the practical property range, if it says in more detail about a dielectric-ceramics-for-microwave porcelain constituent, this invention is used for the impedance matching of a dielectric resonator, a microwave-integrated-circuit substrate, and various microwave circuits etc. in a microwave range.

[0002]

[Description of the Prior Art] It has a high unloaded Q and a high dielectric constant in the dielectric resonator and dielectric substrate which are generally used for RF fields, such as microwave and a millimeter wave, and, moreover, they are expected what has the small absolute value of resonance frequency. That is, since a dielectric-ceramics-for-microwave porcelain constituent (only henceforth a dielectric porcelain constituent) is in the inclination for dielectric loss to become large as operating frequency serves as a RF, a big dielectric porcelain constituent of Qu is desired by the microwave range. Moreover, as an empirical-formula (1-x) TiO2-xSnO2 system dielectric porcelain material, the thing of 0.5 is known for x ("ceramic engineering handbook" (issue : Ceramic Society of Japan, P.1885).). [0003]

[Problem(s) to be Solved by the Invention] However, above-mentioned TiO2-SnO2 At system dielectric porcelain material, Q (7GHz) is 4500 and epsilonr. Although it was as large as 43, tauf was very as large as +250ppm/degree C, and there was a problem that it was difficult to adjust to the small value of the zero neighborhood.

[0004] this invention solves the above-mentioned trouble and is Qu and epsilonr. And tauf It aims at offering the dielectric porcelain constituent and its manufacture method of the simple composition which shows high sintered density, maintaining each in the practical property range.

[0005]

[Means for Solving the Problem] This invention persons set to the dielectric porcelain constituent of simple composition, and are Qu and epsilonr. And tauf Maintaining each in the practical property range As a result of examining many things about the composition which shows high sintered density, it is TiO2-SnO2. By making it a predetermined composition rate in a system, Qu becomes large by leaps and bounds, and tauf finds out the composition range which can be adjusted in the 0 neighborhood, and it came to complete this invention. That is, the dielectric porcelain constituent of **** 1 invention is empirical-formula (1-x) TiO2-xSnO2. It is characterized by the bird clapper from the composition expressed with [, however 0.8 <=x<1.0].

[0006] The manufacture method of the dielectric porcelain constituent **** 2 invention is empirical-formula (1-x) TiO2-xSnO2. Titanium oxide (IV) powder and tin-oxide (IV) powder are mixed so that it may become [, however the composition shown by 0.8 <=x<1.0], temporary quenching and trituration

are performed after that, and it fabricates in a predetermined configuration, and, subsequently is characterized by calcinating at 1275-1400 degrees C.

[0007] Empirical-formula (1-x) TiO2-xSnO2 It is tauf to have set and to have made the range of x less than [0.8 or more] into 1.0 when x is less than 0.8. A positive big value is taken and Qu is from a small value being shown relatively (that is, it becoming a big value by leaps and bounds, when x is 0.9.). Conversely, when this is 1.0, also in 1400 degrees C, it is because it does not change precisely well. Burning temperature was precisely made into the range of 1275-1400 degrees C better [in low temperature] than 1275 degrees C because a property would deteriorate gradually, if it may not change and 1400 degrees C was exceeded conversely.

[0008] According to the experimental result especially shown in Table 1, by the case (x is 0.9) where burning temperature is 1375 degrees C and 1325 degrees C, Qu increased by leaps and bounds. For example, x is 0.9, and burning temperature becomes 5040 (7.1GHz), epsilonr =14.0, and tauf =+1.2ppm/degree C at 1375 degrees C, and Qu is epsilonr. Although it is a little small, Qu shows maximum, and it is tauf. It becomes the zero neighborhood and the extremely excellent balance performance is shown. Furthermore, the performance which was excellent while there was comparatively little variation in each performance, even if calcinated within the latus temperature requirement of 1275-1400 degrees C about burning temperature is shown.

[Example] Hereafter, an example explains this invention concretely. TiO2 Powder (purity; 99.95%) and SnO2 powder (purity; 99.3%) -- a start raw material -- carrying out -- empirical-formula (1-x) TiO2-xSnO2 it becomes the composition from which x changed -- as -- the specified quantity (about 500g as the whole quantity) -- weighing capacity -- it mixed Then, after giving the mixture (20 - 30 minutes) and primary trituration by dry type by the mixer, temporary quenching was carried out at the temperature of 1050 degrees C in air atmosphere for 2 hours. Subsequently, the organic binder (29g) and water (400-450g) of optimum dose were added to this temporary-quenching powder, and the alumina balls of 20mmphi ground 90 rpm for 23 hours. Then, it corns by freeze-drying (about 0.4 degree of vacuum Torr (s), freezing-point-20--40 degree C, drying temperature of 40-50 degrees C, vacuum-drying time about 20 hours), this raw material by which the granulation was carried out is used, and it is 2 1t/cm. It fabricated by press ** in the shape of [of 19mmphix11mmt (height)] a pillar.

[0010] This Plastic solid is degreased among the atmosphere in 500 degrees C and 3 hours. next, at each temperature of the range of 1275-1400 degrees C after that It calcinated for 4 hours, finally the ends side was ground in the shape of [of abbreviation 16mmphix8mmt (height)] a pillar, and it considered as the dielectric sample (No.1-1-1-22, 2-1 to 2-22, and 3-1 to 3-22 of Tables 1-3). In addition, 100 degrees C [h] /and the temperature fall speed of the programming rate [in / 50 degrees C / h / /and a baking process / in a programming rate / in / -200 degrees C / h / /and this degreasing process / programming rate / in the above-mentioned temporary-quenching process / in 200 degrees C /h / /and temperature fall speed] were -100 degrees C/h.

[0011] and parallel about each above-mentioned sample -- a conductor -- a stencil dielectric pillar resonator method (TE011 MODE) -- Qu and epsilonr And tauf was measured. Sintered density was measured by the Archimedes method. In addition, resonance frequency is 2.6-7.1GHz. Moreover, tauf It measured in the 23-80-degree C temperature field, and computed at tauf =(f80-f23)/(f23xdeltaT) and deltaT=80 degree-C-23 degree-C=57 degree C. These results are shown in Tables 1-3 (burning-temperature; 1275-1400 degrees C) and drawing 1 -4 (burning-temperature; 1375 degrees C). In addition, SnO2 When it was powder independent (x is 1.0), at least 1400 degrees C were not sintered. [0012]

[Table 1]

表 1 [(1-x)TiO2-xSnO2]磁器組成物

No.	x	烧成温度	Qu	比誘電率	τf	烧結密度
		(७)	(2.7~ 7.1GHz)	εг	(ppm/℃)	(g/cm³)
1-1	0	1400	3590	97.1	+ 507	3. 98
1-2	0. 1	1400	3520	84.8	+ 457	4. 22
1-3	0. 2	1400	3280	74.4	+ 423	4. 55
1 – 4	0.3	140D	3440	58. 7	+ 343	5.02
1 - 5	0.4	1400	3400	50.2	+ 304	5. 35
1-6	0.5	1400	3360	42.5	+ 275	5. 55
1-7	0.6	1400	3300	34.8	+ 232	5.86
1-8	0.7	1400	3200	27.3	+ 175	6.04
1-9	0.8	1400	3490	20.2	+84.3	6. 25
1-10	0. 9	1400	4970	14.0	+ 0.7	6.30
1-11	1. 0	1400		未	克結	
1-12	0	1375	3760	97.7	+ 504	3. 97
1-13	0.1	1375	3630	84.5	+ 461	4.21
1-14	0. 2	1375	3 4 0 0	74.6	+ 422	4. 53
1 -15	0.3	1375	3510	59.7	+ 342	5.03
1 – 16	0.4	1375	3410	51.6	+ 319	5. 28
1-17	0.5	1375	3 4 2 0	43.3	+ 283	5. 63
1 - 18	0.6	1375	3390	35.0	+ 237	5. 87
1-19	0.7	1 3 7 5	3 2 4 0	27.5	+ 181	6.06
1-20	0.8	1375	3530	20.5	+ 85	6. 25
1 -21	0. 9	1375	5040	14.0	+ 1. 2	6.30
1 -22	0.95	1375	4880	8. 5	-32.4	6.33

[0013] [Table 2]

表 2 [(1-x)TiO₂-xSnO₂]磁器組成物

No.	х	烧成温度	Qu	比誘電率	τf	烧結密度
		(७)	(2.6~ 7.1GHz)	εr	(₽₽@/ <i>C</i>)	(g/cm³)
2-1	0	1350	3670	97.8	+ 506	3. 98
2-2	0. 1	1350	3670	84.5	+ 450	4. 21
2 - 3	0. 2	1350	3350	74.6	+ 424	4. 55
2-4	0.3	1350	3350	60.4	+ 343	5.06
2 – 5	0.4	1350	3180	53.1	+ 334	5. 33
2-6	0.5	1350	3140	43.9	+ 292	5. 62
2-7	0.6	1350	3210	34.9	+ 231	5. 85
2-8	0.7	1350	3210	27.4	+ 172	6.08
2-9	0.8	1350	3380	20.5	+83.4	6. 25
2-10	0.9	1350	4050	14.1	- 1.3	6.30
2-11	0.95	1350	3920	8. 4	-29.2	6.32
2-12	0	1325	3760	97.9	+ 504	3. 97
2-13	0.1	1325	3640	84. D	+ 453	4.20
2-14	0. 2	1325	3370	74.6	+ 422	4.55
2-15	0.3	1325	3 3 3 0	62.3	+ 360	5.06
2-16	0.4	1325	3320	53.7	+ 339	5. 35
2-17	0.5	1 3 2 5	3420	43.4,	+ 289	5.63
2-18	0.6	1 3 2 5	3330	34.4	+ 225	5.88
2-19	0.7	1325	3190	27.4	+ 160	6. 13
2 -20	0.8	1325	3 3 5 0	20.6	+82.5	6.34
2-21	0. 9	1325	4270	14.3	- 1.6	6.37
2 -22	0.95	1325	3 1 2 0	8. 0	-20.0	6.30

[0014] [Table 3]

表 3 [(1-x)TiO2-xSnO2] 磁器組成物

No.	х	焼成温度	Qu	比誘電率	τſ	烧結密度
		(७)	(2.6~ 7.0GHz)	εr	(ppm/で)	(g/co ^s)
3-1	0	1300	3700	97. 7	+ 510	3. 97
3-2	0.1	1300	3650	83.8	+ 453	4. 19
3 – 3	0. 2	1300	3370	74.7	+ 430	4. 55
3 – 4	0.3	1 3 0 0	3330	64.1	+ 375	5.04
3 – 5	0.4	1300	3260	54.1	+ 342	5. 33
3 - 6	0.5	1300	3390	43. 2	+ 283	5.62
3-7	0.6	1300	3350	34.2	+ 220	5.88
3-8	0. 7	1300	2850	26.4	+ 154	6.02
3 – 9	0.8	1300	3170	20.1	+83.7	6. 21
3-10	0.9	1300	3180	13.8	- 1.0	6. 25
3-11	0.95	1300	1770	6. 5	- 2.5	6. 10
3-12	0	1275	3770	97.7	+ 505	3. 97
3-13	0.1	1275	3510	83.0	+ 454	4. 15
3-14	0.2	1275	3 3 4 0	75.1	+ 430	4. 55
3-15	0.3	1275	3200	65.0	+ 385	5.00
3-16	0.4	1275	3 3 2 0	53.6	+ 341	5.30
3-17	0.5	1275	3260	42.7	+ 284	5. 57
3-18	0.6	1275	3100	33.5	+ 220	5.80
3 - 19	0.7	1275	2580	26.2	+ 153	6.01
3-20	0.8	1275	3040	20.1	+81.1	6. 19
3-21	0.9	1275	3120	13.6	+ 0.1	6. 18
3 - 22	0.95	1275		未烧結		5. 94

[0015] According to these results, by 0.9, Qu increased by leaps and bounds and x carried out (No.1-21 of drawing 1 and Table 1, No.2-21 of Table 2). Moreover, tauf decreased by leaps and bounds, when x shown in Tables 1-3 was any of 0.9, it became in degree C and -1.6-+1.2 ppm /, and showed the performance which was extremely excellent in the 0 neighborhood. Especially when burning temperature was 1375 degrees C and 1325 degrees C, Qu showed respectively the balance performance which 14.0, 14.3, and tauf became [5040, 4270, and epsilonr] in +1.2ppm/degree C and degree C and -1.6 ppm /, carried out the whole although epsilonr was eye small **, and was very excellent. [0016] When x is 0.8-0.9, for Qu, 1410-5040 (x No.3- of 0.9 10 and x No. of 0.9 3 if -22 is removed 3040-5040), and epsilonr are 13.6-20.6, and tauf. It becomes in degree C and -1.6-+85 ppm /, and the well-balanced performance is shown. Moreover, tauf can be freely adjusted to the value of the 0 neighborhood. In addition, in this invention, it is not restricted to what is shown in the aforementioned concrete example, but can consider as the example variously changed within the limits of this invention according to the purpose and the use. [0017]

[Effect of the Invention] The dielectric porcelain constituent of **** 1 invention is Qu and epsilonr. And tauf Maintaining each in the practical property range, high sintered density is shown and it is simple composition further. moreover -- even if it fluctuates various burning temperature in a latus temperature requirement according to the manufacture method of **** 2 invention -- the above -- while being stabilized and being able to manufacture a useful dielectric porcelain constituent, tauf can be freely adjusted to the 0 neighborhood

[Translation done.]