CPSC 304 – Administrative notes October 2 & October 3, 2024

- New "in class" exercise started today
- October 15: Milestone 2 due
- October 22: Midterm @ 6PM
 - Do you have a conflict? If so fill out the midterm conflict form on Piazza by the end of Monday
 - More information on Piazza ~1 week before the midterm.

Now where were we...

- We'd been discussing normalization
- We'd discussed BCNF (for all FDs of the form X→b, X must be a superkey for the relation)
- We'd discussed how to decompose relations into BCNF. Repeatedly do:

Let's revisit a discussion that we had about which FDs hold after a decomposition...

Revisiting a previous clicker question:

- Take the closure of the attributes using all FDs
- For an FD X→b, if the decomposed relation S contains {X U b}, then the FD holds for S:
- For example. Consider relation R(A,B,C,D,E) with functional dependencies AB → C, BC → D, CD → E, DE → A, and AE → B.
 Project these FD's onto the relation S(A,B,C,D).
- Which of the following hold in S?
- A. $A \rightarrow B$ A += A
- B. $AB \rightarrow E$ AB += ABCDE, but E is not in S
- C. $AE \rightarrow B$ AE+=ABCDE, but E is not in S
- D. BCD+A Yes. BCD+=ABCDE; all in S
- E. None of the above

Why do we need to consider FDs that aren't present in decomposed relations? (1/3)

Consider a relation R(A, B, C, D) with FDs $A \rightarrow B$, and $B \rightarrow C$.

Consider the following set of tuples that may or may not adhere to the FDs above:

Α	В	C	D
1	3	1	1
1	3	2	2
2	4	3	3
2	4	4	4

Which of the following FDs hold in the above tuples?

- A. A→B only
- B. $B \rightarrow C$ only
- c. Both $A \rightarrow B$ and $B \rightarrow C$
- D. Neither $A \rightarrow B$ nor $B \rightarrow C$

Does A→C hold? No!

Why do we need to consider FDs that aren't present in decomposed relations? (2/3)

Consider a relation R(A, B, C, D) with FDs $A \rightarrow B$, and $B \rightarrow C$.

Consider a new set of tuples where $A \rightarrow B$ and $B \rightarrow C$:

A	В	С	D
1	3	5	1
1	3	5	2
2	4	6	3
2	4	6	4

Does A→C hold for this instance of R?

- A. Yes
- B. No

Is it possible, given that $A \rightarrow B$ and $B \rightarrow C$, hold to create a set of tuples where $A \rightarrow C$ does NOT hold?

A. Yes

r No

Why do we need to consider FDs that aren't present in decomposed relations? (3/3)

Consider a relation R(A, B, C, D) with FDs $A \rightarrow B$, and $B \rightarrow C$.

Consider the same set of tuples where the FDs hold, including $A \rightarrow C$:

Let's assume that we decompose on $A \rightarrow B$, resulting in two relations:

$R_1(A)$	A,B),	$R_2(A$, C, E	R_1	Α	В	
A	В	С	D		1	3	
1	3	5	1		2	4	
1	3	5	2		Α	С	D
2	4	6	3	R_2	1	5	1
2	4	6	4		1	5	2
Doe		> C h	old fo	r this instance of R ₂ ?	2	6	3
A.	Yes				2	6	4
B.	No						

Is it possible to create a set of tuples for R_2 where $A \rightarrow C$ does NOT hold?

A. Yes

B. No

Yet Another BCNF Example: Is it in BCNF? If so, why? If not, decompose.

R(A,B,C,D,E,F)
FD = A
$$\rightarrow$$
B
DE \rightarrow F,
B \rightarrow C
A+ = {A,B,C}
B+ = {B,C}
DE+ = {D,E,F}
ADE is the only key
Decompose on A \rightarrow B
CDEF A B
R1(A, B), R2(A, C, D, E, F)

Decompose R2 on DE→F AC (DE) F R3(D,E, F), R4(A, C, D, E) What is A+ on R4? **A**. **A** AC c. ABC D. Other Decompose again: DE $R5(\underline{A},C), R6(\underline{A}, \underline{D}, \underline{E})$

Final answer: R1(<u>A</u>, B), R3(<u>D</u>, <u>E</u>, F), R5(<u>A</u>, C), R6(<u>A</u>, <u>D</u>, <u>E</u>)

Clicker exercise: More BCNF

- Let R(ABCD) be a relation with functional dependencies
 A → B, C → D, AD → C, BC → A
- Decompose into BCNF.

Clicker exercise: More BCNF

- Let R(ABCD) be a relation with functional dependencies
 A → B, C → D, AD → C, BC → A
- Decompose into BCNF. Which of the following is a lossless-join decomposition of R into BCNF?
- A. {AB, AC, BD}
- B. {AB, AC, CD}
- c. {AB, AC, BCD}
- D. All are
- E. None are

Clicker exercise: More BCNF Explained

- Let R(ABCD) be a relation with functional dependencies A →
 B, C → D, AD → C, BC → A
- Decompose into BCNF. Which of the following is a losslessjoin decomposition of R into BCNF?

Closures:

- $A + = \{AB\}$
- $C+ = \{CD\}$
- AD+ = {ADBC} ← Key
- BC+ = {BCDA} ← Key

A \rightarrow B violates BCNF in R: Decompose to R1(<u>A</u>, B), R2(<u>A</u>, <u>C</u>, D) C \rightarrow D violates BCNF in R2: Decompose to R3(<u>C</u>,D), R4(<u>C</u>, <u>A</u>) All are two attribute relations, all are in BCNF. Final answer: R1(<u>A</u>,B), R3(<u>C</u>,D), R4(<u>C</u>, <u>A</u>)

Clicker Exercise: Option 'A' exposed

Let R(ABCD) be a relation with functional dependencies
 A → B, C → D, AD → C, BC → A

Is {AB, AC, BD} a lossless join?

Imagine tuples:

Α	В
1	2
8	2

Α	С
1	5
1	3
8	9

join

A	В	С	D
1	2	5	6
1	2	3	7
8	2	9	4
1	2	3	4

Α	В	С	D
1	2	5	6
1	2	3	7
8	2	9	4

decompose

In class exercise

Do Normalization #2 now

This BCNF stuff is great and easy!

- Guaranteed that there will be no redundancy of data
- Easy to understand (just look for superkeys)
- Easy to do.
- So what is the main problem with BCNF?
 - For one thing, BCNF may not preserve all dependencies

An illustrative BCNF example

We lose the FD: Company, Product → Unit!!

So What's the Problem (1/2)?

Assume that we start with a table with a single tuple:

Unit	Company	Product
SKYWill	UBC	Databases

We decompose on Unit→Company:

<u>Unit</u>	Company
SKYWill	UBC

Unit	Product
SKYWill	Databases

Now someone adds a new team, Team Meat to each table:

<u>Unit</u>	Company
SKYWill	UBC
Team Meat	UBC

Unit	Product
SKYWill	Databases
Team Meat	Databases

So What's the Problem (2/2)?

<u>Unit</u>	Company
SKYWill	UBC
Team Meat	UBC

Unit	Product	
SKYWill	Databases	
Team Meat	Databases	

Unit → Company

No problem so far. All *local* FD's are satisfied. Let's put all the data back into a single table again:

Unit	Company	Product
SKYWill	UBC	Databases
Team Meat	UBC	Databases

Violates the FD:

Company, Product → Unit

3NF to the rescue!

A relation R is in 3NF if:

If X → b is a non-trivial dependency in R, then X is a superkey for R or b is part of a (minimal) key.

BCNF

(must be true for every such functional dependency)

Note: b must be part of a key not part of a superkey (if a key exists, all attributes are part of a superkey)

Example: R(Unit, Company, Product)

- Unit → Company
- Company, Product → Unit
 Keys: {Company, Product}, {Unit, Product}

BCNF or 3NF? The clicker question

- 3NF retains all functional dependencies
- Rule: for all non-trivial functional dependencies in a relation R of the form X→b, it must be the case that X is a superkey of R or b is part of a key
 - Ex: is R(ABCD) in BCNF, 3NF, or both given the following FDs:
 - \bullet AB \rightarrow C
 - \bullet CD \rightarrow A
 - A. Both BCNF and 3NF
 - B. BCNF but not 3NF
 - c. 3NF but not BCNF
 - D. Neither BCNF nor 3NF