Advanced Matrix Algebra and Applications - Python Module

18-22 September 2019

Problem Sheet - 1

- 1. Generate a random matrix A of order 4×4 and compute the following:
 - (a) $det(A^2 + A)$
 - (b) A^{-1} , if it exists
 - (c) $||A||_1$
- 2. Define a function which returns matrices of one of the below structures by taking the order and the required structure as its inputs.
 - (a) hermitian
 - (b) stochastic
- 3. Define a function which computes $||x||_p$ for any $x \in \mathbb{R}^n$; $1 \le p \le \infty$. (do not use numpy.linalg.norm or anything to that effect)
- 4. Write a function which achieves the following:
 - (a) Define a symmetric matrix A of order 3.
 - (b) Find its spectral decomposition (XDX^{-1}) . (you may use numpy.linalg.eig)
 - (c) Verify that $A = XDX^{-1}$.
- 5. Consider a simple model as below to find the probability of it raining on a given day.

Let
$$X_n = \begin{cases} 1, & \text{if it rains on the } n^{th} \text{ day} \\ 0, & \text{otherwise} \end{cases}$$

Let $X_n = \begin{cases} 1, & \text{if it rains on the } n^{th} \text{ day} \\ 0, & \text{otherwise} \end{cases}$. Let $P = \begin{bmatrix} 0.8 & 0.2 \\ 0.3 & 0.7 \end{bmatrix}$ where P_{ij} denotes the probability of $X_{n+1} = j$ given that $X_n = i$ where $i, j \in \{0, 1\}$ and $n \in \mathbb{N}$. Suppose that it was equally likely to rain or otherwise on the very first day of observation after building this model. We encode this information in the vector $\pi_0 = [0.5, 0.5]$, which is called as the probability distribution of X_0 . Then, $\forall n \in \mathbb{N}, \pi_n = \pi_0 P^n$ is the probability distribution of X_n . Note that $P(X_n = i) = \pi_{n,i}$.

- (a) For each of the first 100 days, compute the probability of it raining i.e. compute $P(X_n = 1)$ for $n = 1, 2, \dots, 100$.
- (b) Plot $P(X_n = 0)$ v\s $P(X_n = 1)$ for n = 1, 2, ..., 100. What do you observe?
- (c) Find the dominant eigenvalue and the corresponding eigenvector of P^T . Normalize this eigenvector in the sense that the sum of the components is 1. What do you observe?
- (d) What is/are your conclusion(s) based on this model?

- 6. Do the following for the iris data set. Let X be the data matrix.
 - (a) Find the dimensions of X.
 - (b) Find the rank of X and X^TX .
 - (c) Is X^TX invertible?
 - (d) Find the spectral decomposition of X^TX .
