COORDINATION AND CONTROL OF MULTI-AGENT SYSTEMS

086730

Daniel Zelazo

October 25, 2025

Introduction to Graph Theory

ABSTRACTION USING GRAPHS

ABSTRACTION USING GRAPHS

- ▶ ∘ nodes
- ► → edges (directed or undirected)

ABSTRACTION USING GRAPHS

Definition

A graph is an ordered pair comprised of a set of vertices (or nodes), and a set of edges (or links).

- ▶ a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- ightharpoonup vertex set $\mathcal{V} = \{v_1, \dots, v_n\}$
- ightharpoonup edge set $\mathcal{E} \subseteq [\mathcal{V}]^2$ (all 2-element subsets of \mathcal{V})

2

UNDIRECTED GRAPHS

$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$

- $\triangleright [\mathcal{V}]^2 = \begin{cases} \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_1, v_4\}, \{v_1, v_5\}, \{v_2, v_3\}, \{v_2, v_4\}, \{v_2, v_5\}, \{v_3, v_4\}, \{v_3, v_5\}, \{v_4, v_5\}\} \end{cases}$
- $\triangleright \mathcal{E} = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_4\}, \{v_3, v_4\}, \{v_2, v_5\}\}\$

UNDIRECTED GRAPHS

more terminology...

- ▶ adjacent nodes : $v_1 \sim v_2 \Leftrightarrow \{v_1, v_2\} \in \mathcal{E} \Leftrightarrow v_1 v_2 \in \mathcal{E}$
- ▶ incident nodes : $v_i \in \mathcal{V}$ is incident to edge $e_j \in \mathcal{E}$, i.e., $e_j = \{v_i, v_k\} \in \mathcal{E}$ for some $v_k \in \mathcal{V}$
- $\qquad \text{neighborhood of a node: } \mathcal{N}(v_i) = \mathcal{N}_{v_i} = \{v_j \in \mathcal{V} \,:\, \{v_i, v_j\} \in \mathcal{E}\}$

UNDIRECTED GRAPHS

Example: graphs can model social interactions

DIRECTED GRAPHS

$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$

- $ightharpoonup \mathcal{V} = \{v_1, v_2, v_3, v_4, v_5\}$
- $\triangleright \mathcal{E} = \{(v_1, v_2), (v_3, v_2), (v_3, v_4)\}$
 - o edges are ordered pairs with a tail (initial) and head (terminal) node
 - edges are said to have an orientation
- can define (in)- and (out)-Neighborhoods

WEIGHTED GRAPHS

$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$

- weights can be assigned to each edge (directed or undirected)
- $\blacktriangleright \ \mathcal{W}: \mathcal{E} \to \mathbb{R}$
 - \circ i.e., $W((v_3, v_4)) = w_{43}$
 - o can collect weights into a diagonal matrix

$$W = \begin{bmatrix} \ddots & & & \\ & w_{ji} & & \\ & & \ddots & \end{bmatrix} \in \mathbb{R}^{|\mathcal{E}| \times |\mathcal{E}|}$$

PATHS AND WALKS

Definition

A (simple) path is a sequence of distinct vertices such that consecutive vertices are adjacent.

Example: path from v_1 to v_7

$$P(v_1, v_7) = v_1 v_9 v_2 v_{10} v_7$$

- path length is the number of edges traversed
- paths are not unique!
 - o shortest path

PATHS AND WALKS

Definition

A (simple) path is a sequence of distinct vertices such that consecutive vertices are adjacent.

Example: path from v_1 to v_7

$$P(v_1, v_7) = v_1 v_9 v_2 v_{10} v_7$$

Example: Shortest Path Problem

Given a graph with two nodes identified as the *start* node and the *terminal* node, find the shortest length path between them.

- Waze and other navigation software
- optimization over graphs (Network Optimization)

PATHS AND WALKS

Definition

A walk (of length k) is a non-empty alternating sequence $v_0e_0v_1e_1\cdots e_{k1}v_k$ of vertices and edges in $\mathcal G$ such that $e_i=\{v_i,v_{i+1}\}$ for all i< k. If $v_0=v_k$, the walk is closed.

Example: possible walk from v_4 to v_6

$$v_4e_{45}v_5e_{56}v_6$$
 (length:2)

or

 $v_4e_{45}v_5e_{58}v_8e_{81}v_1e_{81}v_8e_{58}v_5e_{56}v_6$ (length:6)

SEVEN BRIDGES OF KÖNIGSBERG

► 7 bridges problem led to the development of graph theory

Is there a walk through the city of Königsberg that crosses each bridge once and only once?

CONNECTIVITY OF GRAPHS

Undirected Graphs

Connected Graph

an undirected graph is connected if for every pair of vertices, there exists a path connecting them

Directed Graphs

Strongly Connected Graph

a directed graph is strongly connected if for every pair of vertices, there exists a directed path connecting them

CONNECTIVITY OF GRAPHS

Undirected Graphs

Disconnected Graph

a graph is disconnected if it is not (weakly) connected

Directed Graphs

Weakly Connected Graph

a directed graph is weakly connected if the graph obtained by replacing each directed edge with an undirected edge is connected

NODE DEGREE

Undirected Graphs

▶ degree of a vertex $v_i \in \mathcal{V}$ is the cardinality of its neighbor set

$$d_{v_i} = |\mathcal{V}(v_i)|$$

Directed Graphs

▶ in-degree of a vertex $v_i \in \mathcal{V}$ is the cardinality of its in-neighbor set

$$d_{v_i}^{in} = |\mathcal{V}^{in}(v_i)|$$

• out-degree of a vertex $v_i \in \mathcal{V}$ is the cardinality of its out-neighbor set

$$d_{v_i}^{out} = |\mathcal{V}^{out}(v_i)|$$

Graphs are a set-theoretic object!

$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$
$$\mathcal{V} = \{v_1, \dots, v_8\}$$

Graphs are a set-theoretic object!

$$G = (V, \mathcal{E})$$
$$V = \{v_1, \dots, v_8\}$$

Subgraph

$$\begin{split} \mathcal{G}' &= (\mathcal{V}', \mathcal{E}') \subset \mathcal{G} \\ \Rightarrow \mathcal{V}' \subseteq \mathcal{V} \text{ and } \mathcal{E}' \subseteq \mathcal{E} \\ \mathcal{V}' &= \{v_1, v_2, v_4, v_6, v_8\} \\ \mathcal{E}' &= \{\{v_1, v_2\}, \{v_2, v_4\}, \{v_6, v_8\}\} \end{split}$$

Graphs are a set-theoretic object!

$$\mathcal{G}_{\mathcal{S}} = (\mathcal{S}, \mathcal{E}_{\mathcal{S}}) \subseteq \mathcal{G}$$

$$\mathcal{E}_{\mathcal{S}} = \{ \{v_i, v_j\} \in \mathcal{E} \mid v_i, v_j \in \mathcal{S} \}$$

Generate a subgraph that is induced by a set of nodes

$$\mathcal{S} = \{v_1, v_3, v_4, v_5\}$$

Graphs are a set-theoretic object!

Generate a subgraph that is induced by a set of nodes

$$\mathcal{S} = \{v_1, v_3, v_4, v_5\}$$

$$\begin{split} \mathcal{G}_{\mathcal{S}} &= (\mathcal{S}, \mathcal{E}_{\mathcal{S}}) \subseteq \mathcal{G} \\ \mathcal{E}_{\mathcal{S}} &= \{\{v_i, v_j\} \in \mathcal{E} \mid v_i, v_j \in \mathcal{S}\} \\ \textbf{Boundary of a subgraph} \\ \partial \mathcal{G}_{\mathcal{S}} &= (\partial \mathcal{S}, \mathcal{E}_{\partial \mathcal{S}}) \\ \partial \mathcal{S} &= \{v_i \in \mathcal{V} \mid v_i \notin \mathcal{S}, \ \exists v_j \in \mathcal{S} \ \text{s.t.} \{v_i, v_j\} \in \mathcal{E}\} \ = \\ \{v_2, v_7, v_7\} \\ \mathcal{E}_{\partial \mathcal{S}} &= \{\{v_i, v_j\} \in \mathcal{E} \mid v_i, v_j \in \partial \mathcal{S}\} \end{split}$$

Graphs are a set-theoretic object!

Generate a subgraph that is induced by a set of nodes

$$\mathcal{S} = \{v_1, v_3, v_4, v_5\}$$

$$\begin{split} \mathcal{G}_{\mathcal{S}} &= (\mathcal{S}, \mathcal{E}_{\mathcal{S}}) \subseteq \mathcal{G} \\ \mathcal{E}_{\mathcal{S}} &= \{\{v_i, v_j\} \in \mathcal{E} \,|\, v_i, v_j \in \mathcal{S}\} \\ \text{Closure of a subgraph} \\ \mathrm{cl}\mathcal{G}_{\mathcal{S}} &= \mathcal{G}_{S \cup \partial S} \end{split}$$

Trees and Cycles

A cycle is a connected graph where each node has degree 2

A tree is a connected graph containing no cycles (acyclic)

Trees and Cycles

A graph contains cycles if there is a subgraph that is a cycle

A spanning tree of a connected graph is a subgraph that is a tree

Forests

A spanning forest is a maximal acyclic subgraph

Connected Components

A connected component is a connected subgraph of \mathcal{G}

$$\mathcal{G} = \mathcal{G}_1 \cup \mathcal{G}_2 \cup \mathcal{G}_3$$

 ${\cal G}$ has 3 connected components

Star Graph

k-Regular Graph

Complete Graph

Path Graph

Wheel Graph

Bipartite Graph

Peterson Graph

Payley Graph

so many named graphs!

GRAPHS AND MATRICES

All square matrices have a (directed) graph representation!

$$M = \begin{bmatrix} 3 & 3 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 10 \\ 2 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} \Leftrightarrow$$

For a matrix $M \in \mathbb{R}^{n \times n}$

$$\mathcal{G}(M) = (\mathcal{V}(M), \mathcal{E}(M))$$
$$|\mathcal{V}(M)| = n$$

$$e = (v_i, v_j) \in \mathcal{E}(M) \Leftrightarrow [M]_{ij} \neq 0$$

WHEN GRAPH THEORY AND LINEAR ALGEBRA MEET

Definition

A matrix $M \in \mathbb{R}^{n \times n}$ is said to be irreducible if there does not exist a permutation matrix P and an integer r such that

$$P^T M P = \begin{bmatrix} B & C \\ 0 & D \end{bmatrix},$$

with $B \in \mathbb{R}^{r \times r}, \ C \in \mathbb{R}^{r \times n - r}$, and $D \in \mathbb{R}^{n - r \times n - r}$.

WHEN GRAPH THEORY AND LINEAR ALGEBRA MEET

Definition

A matrix $M \in \mathbb{R}^{n \times n}$ is said to be irreducible if there does not exist a permutation matrix P and an integer r such that

$$P^T M P = \begin{bmatrix} B & C \\ 0 & D \end{bmatrix},$$

with $B \in \mathbb{R}^{r \times r}, \ C \in \mathbb{R}^{r \times n - r}$, and $D \in \mathbb{R}^{n - r \times n - r}$.

What is a permutation matrix?

Definition

A permutation matrix P is a square matrix or order n such that each row and column contains one element equal to 1, with remaining elements equal to 0. Furthermore, permutation matrices satisfy the property $P^T = P^{-1}$.

Example:

$$P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}_{2}$$

WHEN GRAPH THEORY AND LINEAR ALGEBRA MEET

Definition

A matrix $M \in \mathbb{R}^{n \times n}$ is said to be irreducible if there does not exist a permutation matrix P and an integer r such that

$$P^T M P = \begin{bmatrix} B & C \\ 0 & D \end{bmatrix},$$

with $B \in \mathbb{R}^{r \times r}, \ C \in \mathbb{R}^{r \times n - r}$, and $D \in \mathbb{R}^{n - r \times n - r}$.

Which matrix is irreducible?

$$M = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \quad \text{or} \quad M = \begin{bmatrix} 0 & 0 \\ 1 & 2 \end{bmatrix}$$

what is the permutation matrix?

IRREDUCIBILITY AND STRONG CONNECTEDNESS

Theorem

Let $M \in \mathbb{R}^{n \times n}$. The following statements are equivalent:

- i) M is irreducible.
- ii) The digraph associated with M, $\mathcal{G}(M)$, is strongly connected.

IRREDUCIBILITY AND STRONG CONNECTEDNESS

Structured Linear Systems

A structured linear system is a description of a dynamic system that considers only the interaction and influence between system states, control, and outputs independent on any realization of parameter values.

STRUCTURED LINEAR SYSTEMS

Structured Linear Systems

A structured linear system is a description of a dynamic system that considers only the interaction and influence between system states, control, and outputs independent on any realization of parameter values.

Express dynamics as a matrix

$$\begin{bmatrix} \dot{\mathbf{x}} \\ y \end{bmatrix} = \underbrace{\begin{bmatrix} A & B \\ C & 0 \end{bmatrix}}_{M} \begin{bmatrix} \mathbf{x} \\ F \end{bmatrix}$$

ightharpoonup Define the digraph associated with M

$$\mathcal{V} = \{F, p, \dot{p}, \theta, \dot{\theta}, y_1, y_2\}$$

STRUCTURAL CONTROLLABILITY

the strucure of a system

- system states and controls are either related (non-zero entry in state-space) or not (0-entry)
- ► values of parameters are neglected

$$\begin{bmatrix} \dot{p} \\ \dot{\theta} \\ \ddot{p} \\ \ddot{\theta} \end{bmatrix} = \begin{bmatrix} 0 & 0 & \star & 0 \\ 0 & 0 & 0 & \star \\ 0 & \star & \star & 0 \\ 0 & \star & \star & 0 \end{bmatrix} \begin{bmatrix} p \\ \theta \\ \dot{p} \\ \dot{\theta} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \star \\ \star \end{bmatrix} F$$

Definition

A system (A,B) is structurally controllable if there exists a system structurally equivalent to (A,B) which is controllable in the usual sense.

STRUCTURAL CONTROLLABILITY

Theorem [Lin '74]

The following statements for a structured system (A,B) are equivalent:

- i) (A, B) is structurally controllable
- ii) In the graph $\mathcal{G}(A,B)$, there exists a disjoint union of cacti that covers all the state vertices.

a cactus graph with 3 buds

STRUCTURAL CONTROLLABILITY

the graph of the system contains a cactus! the system is structurally controllable!

Graphs and their properties can be studied using matrices and constructs from linear algebra

Degree Matrix: $\Delta(\mathcal{G}) \in \mathbb{R}^{|\mathcal{V}| \times |\mathcal{V}|}$ A diagonal matrix with the degree of each node on the diagonal

$$[\Delta(\mathcal{G})]_{ij} = \begin{cases} d(v_i), & i = j \\ 0, & \text{otherwise} \end{cases}$$

$$\Delta(\mathcal{G}) = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Graphs and their properties can be studied using matrices and constructs from linear algebra

Adjacency Matrix: $A(\mathcal{G}) \in \mathbb{R}^{|\mathcal{V}| \times |\mathcal{V}|}$ A symmetric matrix encoding the adjacency relationship of nodes in the graph

$$[A(\mathcal{G})]_{ij} = \begin{cases} 1, & i \sim j \\ 0, & \text{otherwise} \end{cases}$$

$$A(\mathcal{G}) = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

NUMBER OF WALKS LEMMA

Lemma

Let \mathcal{G} be a graph with adjacency matrix $A(\mathcal{G})$. The number of walks from node v_i to v_j of length r is $[A(\mathcal{G})^r]_{ij}$.

Proof:

Homework

ADJACENCY MATRIX RESULTS

Corollary

Let $\mathcal G$ be an undirected graph with e edges, t triangles, and adjacency matrix $A(\mathcal G)$. Then

- i) $\operatorname{tr} A(\mathcal{G}) = 0$
- ii) $\operatorname{tr} A(\mathcal{G})^2 = 2e$
- iii) $\operatorname{tr} A(\mathcal{G})^3 = 6t$

Graphs and their properties can be studied using matrices and constructs from linear algebra

Incidence Matrix: $E(\mathcal{G}) \in \mathbb{R}^{|\mathcal{V}| \times |\mathcal{E}|}$ A matrix encoding the incidence relation between nodes and edges

$$[E(\mathcal{G})]_{ij} = \begin{cases} 1, & v_i \text{ is tail of edge } e_j \\ -1, & v_i \text{ is head of edge } e_j \\ 0, & \text{otherwise} \end{cases}$$

$$E(\mathcal{G}) = \begin{bmatrix} -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & -1 & 0 \\ 0 & -1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & -1 \end{bmatrix}$$

Graphs and their properties can be studied using matrices and constructs from linear algebra

assign an arbitrary orientation to each edge

Incidence Matrix: $E(\mathcal{G}) \in \mathbb{R}^{|\mathcal{V}| \times |\mathcal{E}|}$ A matrix encoding the incidence relation between nodes and edges

$$[E(\mathcal{G})]_{ij} = \begin{cases} 1, & v_i \text{ is tail of edge } e_j \\ -1, & v_i \text{ is head of edge } e_j \\ 0, & \text{otherwise} \end{cases}$$

$$E(\mathcal{G}) = \begin{bmatrix} -1 & 1 & 0 & 0 & 0\\ 0 & 0 & -1 & -1 & 0\\ 0 & -1 & 0 & 1 & 0\\ 1 & 0 & 1 & 0 & 1\\ 0 & 0 & 0 & 0 & -1 \end{bmatrix}$$

Theorem

Let $\mathcal G$ be a graph with n vertices, c connected components, and an arbitrary orientation assigned to each edge. Then $\operatorname{rank} E(\mathcal G) = n - c$.

Theorem

Let $\mathcal G$ be a graph with n vertices, c connected components, and an arbitrary orientation assigned to each edge. Then $\operatorname{rank} E(\mathcal G) = n - c$.

Proof:

Theorem

Let $\mathcal G$ be a graph with n vertices, c connected components, and an arbitrary orientation assigned to each edge. Then $\operatorname{rank} E(\mathcal G) = n - c$.

Proof:

 $lackbox{}{}$ \mathcal{G} has c connected components: $\mathcal{G} = \cup_{i=1}^c \mathcal{G}_i$

Theorem

Let $\mathcal G$ be a graph with n vertices, c connected components, and an arbitrary orientation assigned to each edge. Then $\operatorname{rank} E(\mathcal G) = n - c$.

Proof:

- $lackbox{} \mathcal{G}$ has c connected components: $\mathcal{G} = \cup_{i=1}^c \mathcal{G}_i$
- ▶ with appropriate relabelling of nodes/edges, can write

$$E(\mathcal{G}) = \begin{bmatrix} E(\mathcal{G}_1) & & \\ & \ddots & \\ & & E(\mathcal{G}_c) \end{bmatrix}$$

Theorem

Let $\mathcal G$ be a graph with n vertices, c connected components, and an arbitrary orientation assigned to each edge. Then $\operatorname{rank} E(\mathcal G) = n - c$.

Proof:

- lacksquare $\mathcal G$ has c connected components: $\mathcal G = \cup_{i=1}^c \mathcal G_i$
- ▶ with appropriate relabelling of nodes/edges, can write

$$E(\mathcal{G}) = \begin{bmatrix} E(\mathcal{G}_1) & & & \\ & \ddots & & \\ & & E(\mathcal{G}_c) \end{bmatrix}$$

▶ let $\mathcal{H} = (\mathcal{V}, \mathcal{E})$ be a connected graph. Show that $\operatorname{rank} E(\mathcal{H}) = |\mathcal{V}| - 1$

RELATIVE SENSING NETWORKS

Interferometry is a technique used for imaging in deep space. Rather than using 1 large (and expensive!) telescope, a team of smaller (and cheaper!) sensors can achieve the same goal. This requires high accuracy and precision of relative spacing between satellites.

$$\dot{x} = f(x_i, u_i)$$

$$y = \begin{bmatrix} \vdots \\ x_i - x_j \\ \vdots \end{bmatrix}$$

For the sensing graph $\mathcal{G}=(\mathcal{V},\mathcal{E})$, each edge $e_i=(v_i,v_j)\in\mathcal{E}$ encodes the relative measurement x_i-x_j

$$y = E(\mathcal{G})^T x$$

Graphs and their properties can be studied using matrices and constructs from linear algebra

Combinatorial Graph Laplacian: $L(\mathcal{G}) \in \mathbb{R}^{|\mathcal{V}| \times |\mathcal{V}|}$ A symmetric matrix

$$[L(\mathcal{G})]_{ij} = \begin{cases} d(v_i), & i = j \\ -1, & \{i, j\} \in \mathcal{E} \end{cases}$$

$$L(\mathcal{G}) = \begin{bmatrix} 2 & 0 & -1 & -1 & 0 \\ 0 & 2 & -1 & -1 & 0 \\ -1 & -1 & 2 & 0 & 0 \\ -1 & -1 & 0 & 3 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix}$$

Graphs and their properties can be studied using matrices and constructs from linear algebra

Combinatorial Graph Laplacian: $L(\mathcal{G}) \in \mathbb{R}^{|\mathcal{V}| \times |\mathcal{V}|}$ Constructions

$$L(\mathcal{G}) = \Delta(\mathcal{G}) - A(\mathcal{G})$$
$$= E(\mathcal{G})E(\mathcal{G})^{T}$$

using incidence matrix, construction is independent of the edge orientation!

Graphs and their properties can be studied using matrices and constructs from linear algebra

Combinatorial Graph Laplacian: $L(\mathcal{G}) \in \mathbb{R}^{|\mathcal{V}| \times |\mathcal{V}|}$

- $ightharpoonup \operatorname{rank} L(\mathcal{G}) = |\mathcal{V}| 1 \Leftrightarrow \mathcal{G} \text{ is connected}$
- $ightharpoonup \mathcal{G}$ is connected, then 0 is a simple eigenvalue and $L(\mathcal{G})\mathbb{1}=0$
- $ightharpoonup L(\mathcal{G})$ is a positive semi-definite matrix

$$x^T L(\mathcal{G}) x \ge 0 \, \forall x \in \mathbb{R}^{|\mathcal{V}|}$$

ordered eigenvalues

$$0 = \lambda_1(\mathcal{G}) \le \frac{\lambda_2(\mathcal{G})}{2} \le \dots \le \lambda_{|\mathcal{V}|}(\mathcal{G})$$

► Algebraic Connectivity (Fiedler Eigenvalue) : $\lambda_2(\mathcal{G})$

GRAPH LAPLACIAN

Theorem

For a graph \mathcal{G} , the following statements are equivalent:

- i) \mathcal{G} is connected
- ii) $\lambda_2(\mathcal{G}) > 0$.

MATRIX-TREE THEOREM

Theorem

Let $\tau(\mathcal{G})$ be the number of spanning trees in \mathcal{G} . Then

$$\tau(\mathcal{G}) = \det L(\mathcal{G})_{(ij)}.$$

For a matrix $M\in\mathbb{R}^{n\times n}$, $M_{(ij)}\in\mathbb{R}^{n-1\times n-1}$ is obtained by deleting the ith row and jth column of M

$$M = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{bmatrix} \Rightarrow M_{(23)} = \begin{bmatrix} 1 & 2 & 4 \\ 9 & 10 & 12 \\ 13 & 14 & 16 \end{bmatrix}$$

▶ $\det M_{(ij)}$ is called the ij-minor of M

MATRIX-TREE THEOREM

Theorem

Let $\tau(\mathcal{G})$ be the number of spanning trees in \mathcal{G} . Then

$$\tau(\mathcal{G}) = \det L(\mathcal{G})_{(ij)}.$$

$$L(\mathcal{G}) = \begin{bmatrix} 3 & -1 & -1 & -1 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 3 & -1 \\ -1 & -1 & -1 & 3 \end{bmatrix} \quad \tau(\mathcal{G}) = 16$$

