

SCALE-Sim Systolic CNN Accelerator Simulator

Open sourced at

https://github.com/ARM-software/SCALE-Sim

Project website

https://scalesim-project.github.io/

ASPLOS 2021

April 16, 2021

Kind notice

Please note that all the sessions of this tutorial is being recorded

Outline

1. Simulating for DNN accelerator

- Motivation
- Metrics of interest

2. SCALE-Sim

- Overview
- Modelling compute, memory, and interface
- Modelling GEMM
- Modelling Convolutions
- Dataflows
- Outputs

3. Demos

Systolic arrays

High parallelism

Efficient data reuse

Simple implementation

High scalability

Metrics of interest

Modeling compute

Modeling memory

Efficiency

Modeling interface

System level implications

Performance

Outline

1. Simulating for DNN accelerator

- Motivation
- Metrics of interest

2. SCALE-Sim

- Overview
- Modelling compute, memory, and interface
- Modelling GEMM
- Modelling Convolutions
- Dataflows
- Outputs

3. Demos

SCALE-Sim: Overview

Inputs: Config file

```
[general]
     run_name = "GoogleTPU_os"
     [architecture_presets]
    ArrayHeight:
                      256
 6
    ArrayWidth:
                      256
    IfmapSramSz:
                      8192
    FilterSramSz:
                      8192
9
    OfmapSramSz:
                      8192
     IfmapOffset:
10
                      0
    FilterOffset:
                      10000000
    OfmapOffset:
12
                      20000000
    Dataflow:
13
                      05
```

Array microarchitecture

Memory Sizes

Matrix offsets

Data flow

Inputs: Topology CSV file

1	Layer name	IFMAP Height	IFMAP Width	Filter Height	Filter Width	Channels	Num Filter	Strides
2	Conv1	224	224	7	7	3	64	2
3	Conv2red	56	56	1	1	64	64	1
4	Conv2	56	56	3	3	64	192	1
5	Inc3a_1x1	28	28	1	1	192	64	1
6	Inc3a_3x3red	28	28	1	1	192	96	1
7	Inc3a_3x3	28	28	3	3	96	128	1

Layer-by-layer configuration

Network hyperparameters

SCALE-Sim

Modelling compute

- Support for non-square arrays
- Support for multiple dataflows
- Fast execution by tracking the edges
- Layer by layer execution
- Intrinsic folding of big compute

SCALE Sim

Modelling on-chip memory

- Double buffered memories
- Models three memory regions one for each matrix
- No replication of matrix elements in SRAM buffers

Modelling system interface

Tool outputs the required DRAM read and write bandwidth requirements

Outline

1. Simulating for DNN accelerator

- Motivation
- Metrics of interest

2. SCALE-Sim

- Overview
- Modelling compute, memory, and interface
- Modelling GEMM
- Modelling Convolutions
- Dataflows
- Outputs

3. Demos

Modelling GEMM

Convolution in CNN

Input Image

Filter

Output Image

Convolution in CNN

Convolution in CNN

Convolution in CNNs

SCALE-Sim: Modelling convolutions

Dataflows: Output Stationary

Each MAC unit responsible for particular output pixels

Accumulation of partial sums done locally

Each column generates pixels from different output channel

SCALE-Sim assumes output collection is not on critical path

Maximum usable dimensions

Rows: Pixels per output channel

Cols: Number of filters

Dataflows: Weight Stationary

Elements of filters are pre-filled into MAC units

Every column is assigned unique filter

Reduction is done across the rows within a column

Critical path contains time to fill in weights, partial sum generation and reduction time

Maximum usable dimensions

Rows: Partial sums per pixel

Cols: Number of filters

Dataflows: Input Stationary

Elements of convolution windows are pre-filled into MAC units

Every column is assigned output pixel

Reduction is done across the rows within a column

Critical path contains time to fill in input elements, partial sum generation and reduction time

Maximum usable dimensions

Rows: Partial sums per pixel

Cols: Number of output pixels per

output channel

Supporting other layer types

Fully connected

- Can be modelled as matrix vector multiplication
- SCALE-Sim models as convolution with input dimension same as weight dimension

Elementwise
operations
Not efficient on
systolic arrays

Outline

1. Simulating for DNN accelerator

- Motivation
- Metrics of interest

2. SCALE-Sim

- Overview
- Modelling compute, memory, and interface
- Modelling GEMM
- Modelling Convolutions
- Dataflows
- Outputs

3. Demos

```
Array Size:
              32x32
SRAM IFMAP (kB):
                      64
SRAM Filter (kB):
SRAM OFMAP (kB):
                      64
Dataflow:
              Weight Stationary
CSV file path: /content/drive/MyDrive/scalesim_resources/topologies/conv_nets/alexnet_part.csv
Number of Remote Memory Banks: 1
Bandwidth:
              10
Working in USE USER BANDWIDTH mode.
Running Layer 0
              | 112284/112284 [00:59<00:00, 1893.41it/s]
Compute cycles: 439609
Stall cycles: 327326
Overall utilization: 23.42%
Mapping efficiency: 94.53%
Average IFMAP DRAM BW: 9.997 words/cycle
Average Filter DRAM BW: 9.998 words/cycle
Average OFMAP DRAM BW: 7.907 words/cycle
Saving traces: Done!
******* SCALE SIM Run Complete *********
```

Summary of input configurations

```
Array Size:
              32x32
SRAM IFMAP (kB):
                      64
SRAM Filter (kB):
SRAM OFMAP (kB):
                      64
Dataflow:
              Weight Stationary
CSV file path: /content/drive/MyDrive/scalesim_resources/topologies/conv_nets/alexnet_part.csv
Number of Remote Memory Banks: 1
Bandwidth:
              10
Working in USE USER BANDWIDTH mode.
Running Layer 0
              | 112284/112284 [00:59<00:00, 1893.41it/s]
100%|
Compute cycles: 439609
Stall cycles: 327326
Overall utilization: 23.42%
Mapping efficiency: 94.53%
Average IFMAP DRAM BW: 9.997 words/cycle
Average Filter DRAM BW: 9.998 words/cycle
Average OFMAP DRAM BW: 7.907 words/cycle
Saving traces: Done!
******* SCALE SIM Run Complete *********
```

- **Summary of input configurations**
- Run and stall cycles

```
************* SCALE SIM *********
Array Size:
               32x32
SRAM IFMAP (kB):
                       64
SRAM Filter (kB):
SRAM OFMAP (kB):
                       64
Dataflow:
               Weight Stationary
CSV file path: /content/drive/MyDrive/scalesim_resources/topologies/conv_nets/alexnet_part.csv
Number of Remote Memory Banks: 1
Bandwidth:
               10
Working in USE USER BANDWIDTH mode.
Running Layer 0
               | 112284/112284 [00:59<00:00, 1893.41it/s]
Compute cycles: 439609
Stall cycles: 327326
Overall utilization: 23.42%
Mapping efficiency: 94.53%
Average IFMAP DRAM BW: 9.997 words/cycle
Average Filter DRAM BW: 9.998 words/cycle
Average OFMAP DRAM BW: 7.907 words/cycle
Saving traces: Done!
******* SCALE SIM Run Complete *********
```

- **Summary of input configurations**
- Run and stall cycles
- Mapping efficiency and compute utilization

```
************* SCALE SIM *********
Array Size:
               32x32
SRAM IFMAP (kB):
                       64
SRAM Filter (kB):
SRAM OFMAP (kB):
                       64
Dataflow:
               Weight Stationary
CSV file path: /content/drive/MyDrive/scalesim_resources/topologies/conv_nets/alexnet_part.csv
Number of Remote Memory Banks: 1
Bandwidth:
               10
Working in USE USER BANDWIDTH mode.
Running Layer 0
               | 112284/112284 [00:59<00:00, 1893.41it/s]
Compute cycles: 439609
Stall cycles: 327326
Overall utilization: 23.42%
Mapping efficiency: 94.53%
Average IFMAP DRAM BW: 9.997 words/cycle
Average Filter DRAM BW: 9.998 words/cycle
Average OFMAP DRAM BW: 7.907 words/cycle
Saving traces: Done!
******* SCALE SIM Run Complete *********
```

- **Summary of input configurations**
- Run and stall cycles
- Mapping efficiency and compute utilization
- Off chip access bandwidth

Generated outputs

- scale_example_run_32x32_ws_user
 - layer0
 - FILTER_DRAM_TRACE.csv
 - FILTER_SRAM_TRACE.csv
 - IFMAP_DRAM_TRACE.csv
 - IFMAP_SRAM_TRACE.csv
 - OFMAP_DRAM_TRACE.csv
 - OFMAP_SRAM_TRACE.csv
 - BANDWIDTH_REPORT.csv
 - COMPUTE_REPORT.csv
 - DETAILED_ACCESS_REPORT.csv

Cycle accurate traces per operand

Generated outputs

scale_example_run_32x32_ws_user layer0 FILTER_DRAM_TRACE.csv Cycle accurate traces per operand FILTER_SRAM_TRACE.csv IFMAP_DRAM_TRACE.csv IFMAP_SRAM_TRACE.csv OFMAP_DRAM_TRACE.csv OFMAP_SRAM_TRACE.csv BANDWIDTH_REPORT.csv COMPUTE_REPORT.csv Summary files DETAILED_ACCESS_REPORT.csv

Summary Files

Filename	Attributes			
COMPUTE_REPORT.csv	Layer wise compute cycles, stall cycles, mapping utilization etc			
BANDWIDTH_REPORT.csv	Layer wise SRAM and DRAM access bandwidths for operands			
DETAILED_ACCESS_REPORT.csv	Access counts and timing informataion			

Announcement!

SCALE-Sim v2 Release (Beta)

We are releasing a new version of SCALE-Sim: https://github.com/scalesim-project/scale-sim-v2

We will soon have a stable version repo in ARM's Github

Announcement!

SCALE-Sim v2 Release (Beta)

We are releasing a new version of SCALE-Sim: https://github.com/scalesim-project/scale-sim-v2

We will soon have a stable version repo in ARM's Github

New features

- 1. Tool can be run in both stall free and bandwidth limited mode
- 2. New metrics like mapping efficiency, stall count added
- 3. Modular code
- 4. Available as python package
- 5. More enhancements in the pipeline!

Announcement!

SCALE-Sim v2 Release (Beta)

We are releasing a new version of SCALE-Sim: https://github.com/scalesim-project/scale-sim-v2

We will soon have a stable version repo in ARM's Github

New features

- Tool can be run in both stall free and bandwidth limited mode
- New metrics like mapping efficiency, stall count added
- 3. Modular code
- 4. Available as python package
- 5. More enhancements in the pipeline!

We also have a new website

https://scalesim-project.github.io

Outline

1. Simulating for DNN accelerator

- Motivation
- Metrics of interest

2. SCALE-Sim

- Overview
- Modelling compute, memory, and interface
- Modelling GEMM
- Modelling Convolutions
- Dataflows
- Outputs

3. Demos

Demos

We will showcase SCALE-Sim v2 capabilities with 3 tutorials

1. Using SCALE-Sim as a package

Design space exploration of a systolic accelerator

2. Adding new features to Simulator

Adding new buffer hierarchies in SCALE-Sim

3. Using SCALE-Sim as a library to build bigger simulators

Building a Scaled-out simulator using SCALE-Sim API