MH1820 Week 13 (Review)

MH1820 1 / 3

QUESTION 1.

(30 Marks)

(a) Let X be a continuous random variable with PDF given by

$$f(x) = \begin{cases} C(1-x^2), & \text{for } -1 \le x \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

- (i) What is the value of C?
- (ii) Compute $\mathbb{E}[X]$ and Var[X].
- (iii) Find the PDF of $Y = e^X$.
- (b) If X has a normal distribution with mean $\mu=3$ and variance $\sigma^2=9$, find $\mathbb{P}(|X-3|>6)$ in terms of $\Phi(z)$, the CDF of the standard normal random variable Z.

MH1820 2 / 8

- (c) Suppose X has the uniform distribution U(1,3) on the interval [1,3]. Using the definition of moment generating function (MGF), find the MGF $M_X(t)$ of X.
- (d) Each game you play is a win with probability 0.6. You plan to play 5 games, but if you win the fifth game, then you will keep on playing until you lose. Find the expected number of games that you will play.

MH1820 3 / 8

QUESTION 2.

(20 Marks)

(a) The weight X (in grams) of a randomly selected chocolate bar produced by a company is normally distributed with mean μ and variance σ^2 which is unknown. Due to a potential fault in a machine, the company suspects that the mean weight is less than 300 grams. We shall test the null hypothesis H_0 : $\mu=300$ against the alternative hypothesis H_1 : $\mu<300$, with a significance level of $\alpha=0.05$. A random sample of n=30 yielded a mean of $\overline{x}=280$ and standard deviation s=60.

- (i) What is the *p*-value of the test?
- (ii) What is the conclusion of the test?

MH1820 4 / 8

- (b) Let X_1, X_2, \ldots, X_{12} be a random sample of size n=12 from the normal distribution $N(\mu, \sigma^2)$. We shall test the null hypothesis H_0 : $\sigma^2=10$ against the alternative hypothesis H_1 : $\sigma^2=35$.
 - (i) Find a rejection criteria for the test, where the size of the test is $\alpha = 0.05$.
 - (ii) Estimate the probability of a Type II Error with the rejection criteria in (i).

MH1820 5 / 8

QUESTION 3.

(25 Marks)

(a) The joint PDF of two random variables X and Y is given by

$$f(x,y) = \begin{cases} \frac{x(1+3y^2)}{4}, & 0 < x < 2, \ 0 < y < 1; \\ 0, & \text{elsewhere.} \end{cases}$$

- (i) Find the marginal PDFs of X and Y.
- (ii) Are X and Y independent? Justify your answer.
- (iii) Compute $\mathbb{P}\left(\frac{1}{4} < X < \frac{1}{2} \mid Y = \frac{1}{3}\right)$.
- (iv) Compute $\mathbb{P}(X > Y)$.

MH1820 6 / 8

(b) In a number game, two participants make guesses of X and Y respectively. The joint PDF of X and Y is **uniform** (i.e. constant) on the region $1 \le x \le 10$, $1 \le y \le 9$. If |X-Y| < 1, then the two participants will be asked to guess again. What is the probability that they will be asked to guess again?

MH1820 7 / 8

QUESTION 4. (25 Marks)

(a) Let X_1, \ldots, X_n be i.i.d from $Poisson(\lambda)$, where λ is unknown. Find the maximum likelihood estimator for λ based on the observations $x_1 = 13$, $x_2 = 5$, $x_3 = 6$, $x_4 = 7$ (here n = 4). (Recall that if $X \sim Poisson(\lambda)$, then $\mathbb{P}(X = x) = e^{-\lambda \frac{\lambda^x}{x!}}$.)

MH1820 8 / 8

(b) Let D_{θ} , $0 < \theta < 1$, be the discrete distribution with the following PMF:

$$\begin{array}{c|c|c|c} x & 1 & 2 & 3 \\ \hline p(x) & \theta/3 & 2\theta/3 & 1-\theta \end{array}$$

Let X_1, \ldots, X_n be i.i.d drawn from D_{θ} and let \overline{X} be the sample mean. Consider an estimator for θ given by $\widehat{\theta} = \frac{1}{2}\overline{X}$.

- (i) Compute the bias and standard error for $\widehat{\theta}$.
- (ii) Find $\widehat{\theta}$ using the observations $x_1=2,\ x_2=2,\ x_3=1,\ x_4=3$ (here n=4).
- (iii) Find an estimator of θ which is unbiased, i.e. it has zero bias.

MH1820 9 / 8