2020 级概率与数理统计试题

(本试卷共 2 页,八个大题,请将每道题的答案写在答题纸对应的位置上,并在答题纸上的 对应位置写上序号、姓名、学号等信息,答题纸共 5 页)

附表: $\Phi(1.96)=0.975$, $\Phi(1.64)=0.95$, $\Phi(1)=0.8413$, $\Phi(0.32)=0.0.6255$, $\Phi(0.8)=0.7881$, $\Phi(1.2)=0.8849$, $\Phi(0.4)=0.6554$, $\Phi(1.8)=0.9641$, $\Phi(8)=1$, $t_{0.05}(8)=1.8595$, $t_{0.05}(9)=1.8331$, $t_{0.025}(8)=2.3060$, $t_{0.025}(9)=2.2622$, $\chi^2_{0.05}(8)=15.507$, $\chi^2_{0.05}(9)=16.919$, $\chi^2_{0.95}(8)=2.733$, $\chi^2_{0.95}(9)=3.325$, $\chi^2_{0.025}(8)=17.535$, $\chi^2_{0.025}(9)=19.023$, $\chi^2_{0.975}(8)=2.180$, $\chi^2_{0.975}(9)=2.700$, $\chi^2_{0.975}(9)=0.32$

一、(14分)

- 1. 己知 A、B 为随机事件,且 P(A)=0.5, P(B)=0.6, P(AB)=0.4, 求 $P(\bar{A} \cup B)$.
- 2. 乒乓球盒中有 10 个球,其中 8 个新球, 2 个旧球。第一次比赛时任取 3 个使用,用后放回 (新球使用一次就成为旧球),第二次使用时任取 1 个球. (1) 求第二次取到新球的概率; (2) 若已知第二次取到的是新球,求第一次比赛取到 2 个新球的概率.

二、(14 分)

- 1. 设一袋子中有 3 个白球 3 个黑球,连续不放回的从袋子中取球,每次取 1 个,直到取到黑球为止,设此时取到白球的个数为随机变量 X. 求(1)X 的分布律;(2)X 的数学期望 EX.
- 2. 随机变量 X 服从数学期望为 1/2 的指数分布,令 $Y=1-e^{-2X}$. (1)写出 X 的概率密度函数 $f_X(x)$;(2)求 Y 的概率密度函数 $f_Y(y)$.

三、(16分)

1. 命题 A: 若二维随机变量 (X, Y) 服从二维正态分布,则 X 和 Y 都服从正态分布. 命题 B: 若 X 和 Y 都服从正态分布,则 (X, Y) 服从二维正态分布.

问: 命题 A 和命题 B 是否成立? 若不成立, 请加一个条件, 使得该命题成立.

2.设二维随机变量(X,Y)的概率密度函数为

$$f(x,y) = \begin{cases} c, & 0 < x \le y \le 1 \\ 0, & 其他 \end{cases}$$

其中 c>0 为常数. (1) 求常数 c 的值; (2) 求 X 和 Y 的边缘密度函数 f_X (x) 和 f_Y (y); (3) 判断 X 与 Y 是否相互独立? 说明理由; (4) 令 Z=X+Y,求 Z 的密度函数 $f_Z(z)$ 。

四、(14分)

- 1. 叙述两个随机变量相关系数 ρ 的含义。
- 2. 命题 A: 若随机变量 X 和 Y 相互独立,则 X 和 Y 不相关; 命题 B: 若随机变量 X 和 Y 不相关,则 X 和 Y 相互独立。问:命题 A 和命题 B 是否成立?若不成立,请举出一个反例.
- 3. 已知随机变量 X 和 Y 相互独立,且 $X \sim N(0,1)$, Y 服从方差为 4 的 χ^2 分布. 令 U = X + Y, V = X Y. (1) 求 E(X 2Y)和 D(X 2Y); (2) 求 E(XY)和 D(XY); (3) 求 U, V 的相关系数 ρ_{IV} ; (4) 判断 U 和 V 是否独立,说明理由.

五、(8分)

某零件的质量是随机变量,其数学期望为 0.5kg,标准差为 0.1kg,现采用有放回的抽取方式,从一批该零件中随机抽取 100 只. 求这 100 只零件的总质量超过 51kg 的概率.

六、(8分)

设总体 X 服从正态分布 $N(\mu, \sigma^2)$,从中抽取一样本 $X_1, X_2, ..., X_5, X_6$,记 $\bar{X} = \frac{1}{5} \sum_{i=1}^{5} X_i$,

 $S^2 = \frac{1}{4} \sum_{i=1}^{5} (X_i - \bar{X})^2$,令 $T = \frac{X_6 - \bar{X}}{S}$.求 a 的值,使得 aT 服从自由度为 4 的 t 分布(写出求解过程)。

七、(14分)

1. 设总体 X 服从参数为 λ 的泊松分布,其中 $\lambda>0$ 未知, $X_1, X_2, ..., X_n$ 为取自该总体的样本,现测得样本观测值为

求参数λ的矩估计值。

2. 设 $X_1, X_2, ..., X_n$ 为取自概率密度函数为

$$f(x;\theta) = \begin{cases} \theta x^{\theta-1}, & 0 < x < 1 \\ 0, & 其他 \end{cases}$$

的总体的样本, $x_1, x_2, ..., x_n$ 为相应的样本观测值, θ 未知. 求参数 θ 及 $\beta = e^{-1/\theta}$ 的最大似然估计. 3. 设 X_1, X_2, X_3 为取自总体 X 的样本,总体 X 均值 μ 、方差 σ^2 均存在,定义两个统计量 $\hat{\mu}_1 = \frac{1}{3}X_1 + \frac{1}{3}X_2 + \frac{1}{3}X_3$, $\hat{\mu}_2 = \frac{2}{3}X_1 - \frac{5}{9}X_2 + \frac{8}{9}X_3$. (1) 证明 $\hat{\mu}_1$ 和 $\hat{\mu}_2$ 都是 μ 的无偏估计; (2) 比较估计量 $\hat{\mu}_1$ 和 $\hat{\mu}_2$ 的有效性.

八、(12分)

- 1. 假设检验中,(1) 若检验的结果是接受了原假设,则可能犯第几类错误;(2) 若检验的结果是接受了备择假设,则可能犯第几类错误。
- 2. 某饮料厂生产罐装饮料,每罐的重量服从正态分布,要求其平均重量为 500 毫升,且已知标准差为 1.2 毫升。某日开工后,随机抽取 9 罐装饮料,测得样本均值 \bar{x} = 499.5 毫升。设方差不变,在显著性水平 α =0.05 下,问这天罐装饮料是否符合要求?