

Discovering Informative Subgraphs in RDF Graphs

By: Willie Milnor

Advisors: Dr. John A Miller

Dr. Amit P. Sheth

Committee: Dr. Hamid R. Arabnia

Dr. Krysztof J. Kochut

Outline

- Background and Motivation
- Objective
- Algorithms
- Heuristics
- Experimentation
 - Dataset and Scenario
 - Results and Evaluation
- Conclusions and Future Work

Semantic Web

- A framework that allows **data** to be shared and reused across application, enterprise, and community boundaries W3C¹
 - ☐ Integration of heterogeneous data
- Semantic Web Technologies [7]
 - ontologies
 - KR (RDF/S, OWL)
 - entity identification and disambiguation
 - reasoning over relationships

Ontology

- Agreement over concepts and relationships
 - Specification of conceptualization [5]
- Represent meaning through relationships
 - semantics
- Semantic annotation of distributed information
- Populated through extraction
 - Identify entity objects and relationships
 - ☐ Disambiguate multiple mentions of same object

RDF/S

- W3C Recommendation
- Machine understandable representation
- Graph Model:
 - Nodes are entities
 - Edges are relationships
- Triple model: subject, predicate, object
- Schema definition language
- QL's and data storages

RDF Query Languages

RQL	select RESEARCHER, PUBLICATION from {RESEARCHER} Isdis:authors {PUBLICATION} using namespace Isdis = http://lsdis.cs.uga.edu/sample.rdf#
RDQL	SELECT ?researcher, ?publication WHERE (?researcher lsdis:authors ?publication)USING info FOR FOR <a< td=""></a<>
SPARQL	PREFIX Isdis: http://lsdis.cs.uga.edu/sample.rdf# SELECT ?researcher, ?publication WHERE { ?researcher Isdis:authors ?publication }

Semantic Analytics

- Automatic analysis of semantic metadata
- Mining and searching heterogeneous data sources
 - Millions of entities and explicit relationships
 - □ i.e. SWETO [2]
- Uncover meaningful complex relationships
- Application areas [8]
 - Terrorist threat assessment
 - Anti-money laundering
 - ☐ Financial compliance

Semantic Associations [3]

- Complex relationships between entities
 - Sequence of properties connecting intermediate entities

Semantic Associations Defined

- Semantic Connectivity
 - An alternating sequence of properties and entities (semantic path) exists between two entities
- Semantic Similarity
 - An existing pair of matching property sequences where entities in question are respective origins or respective terminuses
- Semantic Association
 - ☐ Two entities are semantically associated if they are either semantically connected or semantically similar

Why Undirected Edges?

- Consider 3 statements:
 - Actor → acts_in → Movie
 - 2) Studio \rightarrow produces \rightarrow Movie
 - 3) Studio → owned_by → Person
- Instances:

Association Identification

- Association matching
 - Patterns of schema properties/relationships
 - Inference rules
- Require explicit knowledge of ontology
 - ☐ Impractical for complex schemas

Association Discovery

- Discovering anomalous patterns, rules, complex relationships
- No predefined patterns or rules
- Limitations
 - Information overload—extremely large result sets
 - ☐ Cannot determine significance/relevance

Ranking

- User specified criteria
 - ☐ User specifies what is considered significant
 - ☐ Criteria can be statistical or semantic [1]
 - □ Relevance model
- Predefined criteria
 - Rank based on novelty or rarity [6]
 - May not be of interest

Semantic in Ranking

- Schematic context:
 - ☐ Specify classes and properties of interest
 - Create multiple contexts for a single search
- Schematic structure
 - Rank based on property and/or class subsumption
- Trust
 - ☐ How well trusted is an explicit relationships
 - How well can a complex relationship be trusted
- Refraction [3]
 - How well does a path conform to a given schema

Heuristic Based Discovery

- High complexity in uninformed search
- Informed (a priori knowledge):
 - Pruning of large search space
 - Certain associations ignored during processing
- Disadvantage: incomplete results
- Could utilize user configurable criteria

Semantic Visualization

- Ability to browse/visualize ontology is crucial to Semantic Analytics [8]
 - Ontological navigation
- Graphical interfaces for schema development
 - □ Protégé¹
 - Semagix Freedom²
 - Aid user in gaining cognitive understanding of schema
- Graphical representation of results

Development Interface

Graphical Visualization

Objective

- Heuristic based approach for computing Semantic Associations in Undirected edgeweighted graphs
- Adapt O(n³) time algorithm for *connection* subgraph problem [4].
 - Originally for single-typed edges in a social network
- Compute edge weights based on semantics
- Obtain relevant, visualizable subgraph

Algorithms

- Input is a weighted RDF graph
- Compute a candidate graph
 - Candidate to contain the most relevant associations
- Model graph as an electrical network
- Compute a display graph with at most b nodes
- $\blacksquare \rho$ -graph:
 - Subgraph composed of semantic associations between a pair of entities

Candidate p-Graph

- Given nodes S and T
- Expand nodes to grow neighborhoods around S and T
- Use a *pick heuristic* method to select next node for expansion
 - ☐ Pick pending node closest to respective root
 - Based on notion of distance for an edge (u,v)

$$distance(u,v) = log\left(\frac{(degree(u) + degree(v))^2}{w(u,v)^2}\right)$$

Candidate p-Graph

Abstract candidate graph structure

Display p-Graph

- Greedy algorithm
- Start with an empty subgraph
- Use dynamic programming to select next path to add to the subgraph
 - At each iteration, add the next path delivering maximum current to sink node proportional to the number of new nodes being added to the subgraph

- Model the *Candidate p*-*graph* as a network of electrical circuits
 - $\square S$ is source, T is sink
 - Edge weights are analogous to conductance
 - Need node voltages and edge currents

- Let:
 - \square C(u,v) be the conductance along edge (u,v)
 - \square C(u) be the total conductance of edges incident on u
 - \square V(u) be the voltage of node u
 - $\square I(u,v)$ be the current flow from u to v

■ Ohm's Law:

$$\forall u, v : I(u, v) = (V(u) - V(v))C(u, v)$$

■ Kirchoff's Law:

$$\forall v \neq s, t : \sum_{u} I(u, v) = 0$$

■ Given:

$$V(s) = 1$$

$$V(t) = 0$$

System of linear equations based on laws

$$V(u) = \sum_{v} \frac{V(v)C(u,v)}{C(u)} \qquad \forall u \neq s,t$$

Display p-Graph

- Successively add next path which maximizes ratio of delivered current to number of new nodes
- Delivered current $\hat{I}(u,v)$

$$\hat{I}(s,u) = I(s,u)
\hat{I}(s = u_1,...,u_i) = \hat{I}(s = u_1,...,u_{i-1}) \frac{I(u_{i-1},u_i)}{I_{out}(u_{i-1})}
I_{out}(u) = \sum_{v} I(u,v), \qquad \forall v: V(u) > V(v)$$

Heuristics

- Loosely based on semantics
- Define schemas S as union of class and property sets
- Define an RDF store as union of schemas and corresponding instance triples
- Edge weight is the sum of the heuristic values

Class and Property Specificity (CS, PS)

- More specific classes and properties convey more information
- Specificity of property p_i :
 - \Box $d(p_i)$ is the depth of p_i
 - \Box $d(p_i)$ is the depth of the branch containing p_i
- Specificity of class c_i :
 - \Box $d(p_{iH})$ is the depth of c_i
 - \Box $d(p_{iH'})$ is the depth of the branch containing c_i

 $\mu(p_i) = \frac{d(p_i)}{d(p_{i...})}$

Instance Participation Selectivity (ISP)

- Rare facts are more informative than frequent facts
- Define a *type* of an statement RDF <*s,p,o>*
 - $\Box \text{ Triple } \pi = \langle C_i, p_i, C_k \rangle$
 - \blacksquare typeOf(s) = C_i
 - $typeOf(t) = C_k$
- $\blacksquare / \pi / = \text{number of statements of type } \pi \text{ in an}$ RDF instance base
- *ISP* for a statement: $\sigma_{\pi} = 1/|\pi|$

- \blacksquare π = <*Person, lives_in, City*>
- \blacksquare $\pi' = \langle Person, council_member_of, City \rangle$
- \blacksquare σ_{π} =1/(k-m) and σ_{π} ' = 1/m, and if k-m>m then σ_{π} '> σ_{π}

Span Heuristic (SPAN)

- RDF allows Multiple classification of entities
 - Possibly classified in different schemas
 - ☐ Tie different schemas together
- Refraction [3] measures how well a path conforms to a schema
 - ☐ Indicative of anomalous paths
- SPAN favors *refracting* paths

Uncharted Schemas

- Schema classifications for u:
 - **□** {A}
- \blacksquare Schema classification for v_1
 - \square {A,B}
- \blacksquare Schema classification for v_2
 - \square {A}
- \blacksquare Schema classification for v_3
 - **□** {*A*,*B*,*C*}
- Order to favor: v_3 , v_1 , v_2

Schema Coverage

- *m* schemas
- How many schemas does *v* cover?

$$SchemaCover(v) = \{S | \exists C \in S \land typeOf(v) = C\}$$

■ How many schemas does (u,v) cover?

$$\alpha(u,v) = \frac{1}{2} \left(\frac{|SchemaCover(u)| + |SchemaCover(v)|}{m} \right)$$

Always Moving Forward

SchemaCover(u')={A,B} SchemaCover(u')={B} SchemaCover(u')={A,B} SchemaCover(u')={B,C}

- $\blacksquare \alpha(U, V_1) = \alpha(U, V_2)$
- But, more schemas are covered along (u',u,v_2) than along (u',u,v_1)

Cumulative Schema Coverage

Schema difference between nodes

$$SDiff(u,v) = |SchemaCover(v)-SchemaCover(u)|$$

- Cumulative schema difference
 - \square For a two hop path (u',u,v)

$$CSDiff(u,u',v) = 1 + SDiff(u,v) + SDiff(u',v)$$

$$\beta_{u'\to u\to v} = \frac{CSDiff}{1+2(m-1)}$$

Dataset

- Obstacle:
 - Few publicly available datasets
 - Many contain sensitive information
 - Datasets do not reflect real-world distributions
- Solution:
 - Developed synthetic instance base
 - Ability to control characteristics
 - ☐ Entities classified by 3 schemas

Business Schema

Entertainment Schema

Sports Schema

Scenario

- Insider trading example
- Fraud investigator is given:
 - Stock in Ent_Co_9991 plummeted
 - ☐ Prior to price drop:
 - Capt_8262 sold all shares
 - Actor_5567 sold 70% of shares
- Why did they both sell so many shares so quickly?

Queries for Evaluation

- 30 queries over synthetic dataset
 - Evaluation averaged over all queries
- **■** Evaluation:
 - All queries
 - Separate query types
- ρ -graphs for all combinations of heuristics
 - \square 4 heuristics \rightarrow 2⁴ \rightarrow 16 possible settings

Ranking/Scoring a p-Graph

- Need objective measure ρ -graph quality
- 3 ranking schemes
 - ☐ User specified criteria: [1]
 - ☐ rarity of an association type: RarityRank
 - ☐ Relevance model: [3]
- How well "ranked" is a ρ -graph?
 - Compare to each ranking scheme

Ranking a p-Graph

- \blacksquare *FGPaths*_k:
 - Set of all paths found in *k-hop* limited search
 - \square *CGPaths*_k: paths in *candidate* ρ -graph
 - \square DGPaths_k: paths in display ρ -graph
- Use k = 9 for feasible path enumeration
 - \square 60 million paths when k = 13
- Compare ρ -graph to $FGPaths_9$

Candidate p-Graph Quality

1. Score each path, $p_{candidate} \in CGpath_9$:

$$score(p_{candidate}) = |FGRankedPaths| - rank(p_{candidate})$$

2. Score a Candidate ρ -graph, $Q(CGPaths_9)$:

$$Q(CGPaths_{9}) = \frac{\sum_{\substack{p_{candidate} \in CGPaths_{9} \\ |CGPaths_{9}|}}{\sum_{r=1}^{|CGPaths_{9}|} |FGRankedPaths_{9}| - r)}$$

Types of Candidate p-Graph Quality

- 30 queries over synthetic dataset
 - ☐ 15 intra-domain queries
 - 15 inter-domain queries
- Quality averaged over all respective queries
- Compute Candidate p-graph quality for each type

Display p-Graph Quality

- Compute a *Pseudo Display ρ-graph:*
 - ☐ Given budget *b*
 - Start with an empty subgrpah
 - Enumerate paths in FGPaths₉
 - Add successive paths to subgraph
 - ☐ Stop when subgraph contains *b* nodes

Display p-Graph Quality

1. Score each path, $p_{display} \in DGpaths_9$:

$$score(p_{display}) = |FGRankedPaths| - rank(p_{display})|$$

2. Score each path, $p_{display}$ DGpaths₉:

$$Q(DGPaths) = \frac{\sum_{p_{display} \in DGPaths} score(p_{display})}{\sum_{p_{pseudo} \in Pseudo-Display} score(p_{pseudo})}$$

Current Flow Model

- 5 successive *Display* ρ-graphs
 - Compute the first Display ρ-graph as usual
 - Compute the second *Display ρ-graph* by starting with the next path of maximum delivered current
 - Continue in this manner
- Intuition:
 - Cumulative flow should decrease successively
 - Quality should decrease successively

Visualizable Scenario Query Result

Timing Evaluation

- Computed time for Candidate ρ-graph search
 - Candidate ρ-graph generation and subsequent exhaustive search
- Computed time for exhaustive search over full graph
- Bidirectional join algorithm for search
 - Database of triples (and corresponding inverses)
 - Secondary indexes on triple endpoints
 - ☐ Joined the table with itself in opposite directions
- Averaged time for all 30 queries and all 16 settings of heuristics

Timing Results

k-hop limit	Full graph search in ms (λ)	Candidate ρ -graph search in ms (φ)	Ratio: ϕ/λ
5	504	2,389.313	4.740699
6	1,686	2,617.063	1.552232
7	17,354	3,808.938	0.219485
8	1,261,099	7,6063.88	0.060316

Conclusions

- Developed heuristics loosely based on semantics for semantic association discovery
- Applied heuristics to compute edge weights
- Presented empirical evaluation of sugraph generation algorithms

Contributions

- Adapted algorithms in [4]:
 - Use degree(u) + degree(v) in distance measurement
 - Allowed by main-memory RDF representation
 - Apply algorithms to graphs with multiple edge types
 - Compute edge weights using semantic based heuristics

Future Work

- Use closeness centrality for Candidate ρgraph algorithm
 - Expand the next pending node which is closest to the given endpoints
- n-point operator
 - □ Compute a relevant subgraph given *n* endpoints

Future Work

- Formalize the notion of context
 - Context-aware subgraph discovery
 - Define context based on query results
- Evaluate based on distance thresholds
 - Given a threshold for maximum distance of a path
 - Compare two sets of paths:
 - 1. All paths in a ρ -graph not exceeding the threshold
 - 2. All paths in the full graph not exceeding the threshold
 - \square What is the quality of such paths in the ρ -graph?

References

- [1] Boanerges Aleman-Meza, Christian Halaschek-Wiener, I. Budak Arpinar, Cartic Ramakrishnan, and Amit Sheth. Ranking Complex Relationships on the Semantic Web. To Appear in *IEEE Internet Computing, Special Issue Information Discovery: Needles & Haystacks May-June 2005.*
- [2] B. Aleman-Meza, C. Halaschek, A. Sheth, I. B. Arpinar, and G. Sannapareddy, "SWETO: Large-Scale Semantic Web Test-bed", In Proceedings of the 16th International Conference on Software Engineering & Knowledge Engineering (SEKE2004): Workshop on Ontology in Action, Banff, Canada, June 21-24, 2004, pp. 490-493.
- [3] Kemafor Anyanwu, Angela Maduko, Amit Sheth, SemRank: Ranking Complex Relationship Search Results on the Semantic Web. The 14th International World Wide Web Conference, (WWW2005), Chiba, Japan, May 10-14, 2005

References

- [4] Christos Faloutsos, Kevin S. McCurley, Andrew Tomkins: Fast discovery of connection subgraphs. KDD 2004: 118-127.
- [5] Thomas Gruber. It Is What It Does: The Pragmatics of Ontology. Invited presentation to the meeting of the CIDOC Conceptual Reference Model committee, Smithsonian Museum, Washington, D.C., March 26, 2003.
- [6] Shou-de Lin, Hans Chalupsky: Unsupervised Link Discovery in Multirelational Data via Rarity Analysis. ICDM 2003: 171-178
- [7] I. Polikoff and D. Allemang, "Semantic Technology," TopQuadrant Technology Briefing v1.1, September 2003. http://www.topquadrant.com/documents/TQ04 Semantic Technolog y Briefing.PDF

References

[8] Amit Sheth. Enterprise Applications of Semantic Web: The Sweet Spot of Risk and Compliance. Invited paper: IFIP International Conference on Industrial Applications of Semantic Web (IASW2005), Jyväskylä, Finland, August 25-27, 2005. http://www.cs.jyu.fi/ai/OntoGroup/IASW-2005/

Question & Comments

Thank You!

