- 1. This question is about baby-step-giant-step.
 - (a) Use (only) baby-step-giant-step to compute $a \in \mathbb{Z}$ such that $9^a \equiv 17$ (mod 101). You may use without proof that 9 has order 50 in the multiplicative group \mathbb{F}_{101}^* .

$$\frac{q}{q} = \frac{q}{q}$$
 $p = |0|$

$$p=101$$

$$b_{i}=9^{i} \pmod{101} \frac{1}{1} 981229765801316$$

$$\frac{j}{C_{j}} = \frac{q^{2} - 5l \cdot j}{-8j} = 17 \cdot \frac{q}{4}$$

$$\frac{j}{C_{j}} = \frac{q^{3} - 5l \cdot j}{-8j} = 17 \cdot \frac{q}{4}$$

$$\frac{j}{C_{j}} = \frac{q^{3} - 5l \cdot j}{-8j} = 17 \cdot \frac{q}{4}$$

$$\frac{j}{C_{j}} = \frac{q^{3} - 5l \cdot j}{-8j} = 17 \cdot \frac{q}{4}$$

$$\frac{j}{C_{j}} = \frac{q^{3} - 5l \cdot j}{-8j} = 17 \cdot \frac{q}{4} =$$

This gives
$$a = i + \sqrt{2}j$$

 $= 3 + 4(8)$
 $= 35$.
Sure every, $9^{35} = 17 \pmod{01}$

2. (a) Use (only) Pollard- ρ to compute $a \in \mathbb{Z}$ such that $3^a \equiv 8 \pmod{17}$.

Siven:
$$g=3$$
, $p=17$
Note 3 has order 16, so $l=16$.

we now compute:

	1	(
i	Gi	10	Ci
0	ري م)	0
l	9	2	0
2_		3	
2 3 4 5	12	2 3 3)
4	2	4	1
5	4	8	2
6	15	8	2 3 3
7	1 1	9	3
78	2	18	0
			X

Then
$$a \equiv \frac{b_4 - b_8}{c_8 - c_4}$$
 (mod (16)

Then
$$a = \frac{b_4 - b_8}{c_8 - c_4} \pmod{16}$$

$$= \frac{-14}{5} \pmod{10} = 10$$
See every gh_1 $3^{10} = 8 \pmod{17}$.

3. (a) Using index calculus and a factor base of $\{2,3,5\}$, find a such that $31^a \equiv 39 \pmod{107}$.

•
$$p = 107$$
 • $q = 31$

•
$$g = 3$$

$$-9^9 = 39$$
 $n = 3$

_	•							
j	1 (2	3 1	4	5	6	71	8
213 (mod 107)	31	105	45	4/	17	99	<u> 73</u>	16
factor of 31, (mod 107)	31	3.57	32.5	2^2	17	32-11	173	24
facture of st (mas	'	10						
		75				_		

This gives:

$$31^{3} = 3^{2}.5 \pmod{107}$$

$$31^{3} = 3^{2}.5 \pmod{100}$$

$$31^{3} = 2\log_{31}(3) + \log_{31}(5) \pmod{100}$$

$$3 = 2 \log_{31}(3) + \log_{31}(5)$$

$$3 = 2 \log_{31}(3) + \log_{31}(5)$$

$$4 = 2^{2} \pmod{107}$$

$$4 = 2 \log_{31}(2) \pmod{106}$$

$$4 = 2 \log_{31}(2) \pmod{106}$$

$$4 = 2 \log_{31}(2) \pmod{107}$$

$$4 = 2 (2) \pmod{107}$$

$$4 = 2 (2) \pmod{107}$$

$$2^{10} = 3.5^{2} \pmod{107}$$

$$= \log_{21}(3) + 2\log_{21}(3)$$

$$2^{10} = 3.5^{2} \text{ (mod 107)}$$

$$\implies 10 = \log_{31}(2) + 2\log_{31}(5) \text{ (mod 106)}$$
We then solve:
$$\log_{31}(2) = 2 \text{ (mod 106)}$$

$$\log_{31}(2) = 2 \text{ (mod 106)}$$

$$\log_{31}(3) = 34 \text{ (mod 106)}$$

$$\log_{31}(5) = 41 \text{ (mod 106)}$$

$$31^2 = -2 \pmod{107}$$

$$10931(3) = 34 \pmod{100}$$

$$(3) = 39$$
 (mod 106)

$$\frac{j}{3!}, \frac{0}{3!}, \frac{1}{3!}, \frac{1}$$

(b) How would you alter the algorithm as given in the lecture notes to include a non ad-hoc way of choosing a factor base?

According to Wikipedia: can choose -1, and the first in primer starting at 2 (fir any desired value of n)

4. (a) Using SageMath, check that g=1178 is a multiplicative generator of \mathbb{F}_{2027}^* .

Mod (1178, 2027). multiplicative-order () == 2026, which confirms that g is a generator.

(b) Using SageMath and baby-step-giant-step, compute a in \mathbb{Z} such that $1178^a = 1728 \pmod{2027}$.

a=1736 (used the function I wrote for conservance)

(c) Using SageMath and Pollard-rho, re-solve part (b).

used fuction I made for coursework; got some result