Name: Date: 2/27/2018

M20580 L.A. and D.E. Tutorial Worksheet 6

Sections 4.3-4.6

1. Let $\mathcal{B} = \{(1, 1, 0), (1, 0, 1), (0, 1, 1)\}$. Show that \mathcal{B} is a basis and find the coordinates of the vector $\vec{v} = (a, b, c)$ with respect to \mathcal{B} .

- 2. Let \mathbb{P}_3 be the set of all polynomials of degree at most 3. We know \mathbb{P}_3 is a vector space and $\mathcal{B}_1 = \{1, t, t^2, t^3\}$ is the standard basis for \mathbb{P}_3 .
 - (a) Find the coordinates of $3t^2 + t 1$ relative to the basis \mathcal{B}_1 .

(b) Let $\mathcal{B}_2 = \{1, 1+t, t+t^2, t^2+t^3\}$. Show that \mathcal{B}_2 is a basis for \mathbb{P}_3 .

(c) Find the coordinates of $3t^2 + t - 1$ relative to the new basis \mathcal{B}_2 .

3. Let $C[-\pi,\pi]$ be the vector space of all real-valued continuous functions on $[-\pi,\pi]$. Show that the set of all solutions of the differential equation y''+25y=0 is a subspace of $C[-\pi,\pi]$.

4. Let W be the subset of all polynomials $\mathbf{p}(t)$ in \mathbb{P}_3 such that $\mathbf{p}(1) = \mathbf{p}(0)$. Is W a subspace of \mathbb{P}_3 ? If the answer is yes, what is the dimension of W?