

LINEAR REGRESSION MODEL

IRONHACK'S 10.2020
DATA ANALYTICS COHORT
CHARLOTTE VELILLA

- I. MySQL
- II. Understanding Data
- III. EDA
- IV. Linear Regression Model
- V. Tableau
- VI. Insights, Challenges, Further possibilities

- I. MySQL
- II. Understanding Data
- III. EDA
- IV. Linear Regression Model
- V. Tableau
- VI. Insights, Challenges, Further possibilities

- 11. One of the customers is only interested in the following houses:
 - Number of bedrooms either 3 or 4
 - Bathrooms more than 3
 - One Floor
 - No waterfront
 - · Condition should be 3 at least
 - Grade should be 5 at least
 - Price less than 300000
- 12. For the rest of the things, they are not too concerned. Write a simple query to find what are the options available for them?

```
In [16]: query = """SELECT *
    FROM house_price_data d
    WHERE d.bedrooms = 3 OR 4
    AND d.bathrooms > 3
    AND d.floors = 1
    AND d.waterfront = 0
    AND d.condition >= 3
    AND d.grade >= 5
    AND d.price < 300000;"""
    answer_11= pd.read_sql_query(query, engine)
    answer_11</pre>
```

- I. MySQL
- II. Understanding Data
- III. EDA
- IV. Linear Regression Model
- V. Tableau
- VI. Insights, Challenges, Further possibilities

```
In [29]: #The only types of data present in our data frame are: floats and integers
         data.dtypes
Out[29]: id
                            int64
                            int64
         bedrooms
         bathrooms
                          float64
                            int64
         sqft living
         sqft lot
                            int64
         floors
                            int64
                            int64
         waterfront
         view
                            int64
         condition
                            int64
         grade
                            int64
         sqft above
                            int64
         sqft basement
                            int64
         yr built
                            int64
         yr renovated
                            int64
                            int64
         zipcode
         lat
                          float64
                          float64
         long
         sqft living15
                            int64
         sqft lot15
                            int64
In [30]: #It's expected latitude and longitute data to be of float type, bathroom data makes no sense when it's 2.25
         #checking values in bathrooms column
         data['bathrooms'].unique()
Out[30]: array([1. , 2.25, 3. , 2. , 4.5 , 1.5 , 2.5 , 1.75, 2.75, 3.25, 4. ,
```

3.5 , 0.75, 4.75, 5. , 4.25, 3.75, 1.25, 5.25, 6. , 0.5 , 5.5 ,

6.75, 5.75, 8. , 7.5, 7.75, 6.25, 6.5

```
In [31]: #As expected from .dtypes, all columns have numeric data
          data. get numeric data().columns
Out[31]: Index(['id', 'bedrooms', 'bathrooms', 'sqft living', 'sqft lot', 'floors',
                  'waterfront', 'view', 'condition', 'grade', 'sqft_above',
                  'sqft_basement', 'yr_built', 'yr_renovated', 'zipcode', 'lat', 'long',
                  'sqft living15', 'sqft lot15', 'price'],
                dtype='object')
                                     In [32]: #Checking for Null values, data doesn't contain Null values
                                             data.isna().sum()
                                     Out[32]: id
                                             bedrooms
                                             bathrooms
                                             sqft living
                                             sqft lot
                                             floors
                                             waterfront
                                             view
                                             condition
                                             grade
                                             sqft above
                                             sqft basement
                                             yr built
                                             yr renovated
                                             zipcode
                                             lat
                                             long
                                             sqft living15
                                             sqft lot15
                                             price
                                             dtype: int64
```

```
In [31]: #As expected from .dtypes, all columns have numeric data
          data. get numeric data().columns
Out[31]: Index(['id', 'bedrooms', 'bathrooms', 'sqft living', 'sqft lot', 'floors',
                  'waterfront', 'view', 'condition', 'grade', 'sqft_above',
                  'sqft_basement', 'yr_built', 'yr_renovated', 'zipcode', 'lat', 'long',
                  'sqft living15', 'sqft lot15', 'price'],
                dtype='object')
                                     In [32]: #Checking for Null values, data doesn't contain Null values
                                             data.isna().sum()
                                     Out[32]: id
                                             bedrooms
                                             bathrooms
                                             sqft living
                                             sqft lot
                                             floors
                                             waterfront
                                             view
                                             condition
                                             grade
                                             sqft above
                                             sqft basement
                                             yr built
                                             yr renovated
                                             zipcode
                                             lat
                                             long
                                             sqft living15
                                             sqft lot15
                                             price
                                             dtype: int64
```

- I. MySQL
- II. Understanding Data
- III. EDA
- IV. Linear Regression Model
- V. Tableau
- VI. Insights, Challenges, Further possibilities

OUTLIERS?

In [37]: #Understanding outlier, seems to be a data entry error since it's not probable
#a property of 33 rooms and 6,000ft2 lot has only 1.75 bahtrooms and a price of \$640,000
data.loc[data['bedrooms']== 33]

Out[37]:

	id	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	grade	sqft_above	sqft_basement	yr_built	yr_renovated	Z
15856 2402100	895	33	1.75	1620	6000	1	0	0	5	7	1040	580	1947	0	

In [38]: #Comparing outlier with most expensive property on dataset with a price of \$7,700,000
data.loc[data['id']== 6762700020]

Out[38]:

	id	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	grade	sqft_above	sqft_basement	yr_built	yr_renovated	ziţ
7245	6762700020	6	8.0	12050	27600	3	0	3	4	13	8570	3480	1910	1987	!

In [37]: #Understanding outlier, seems to be a data entry error since it's not probable #a property of 33 rooms and 6,000ft2 lot has only 1.75 bahtrooms and a price of \$640,000 data.loc[data['bedrooms']== 33] Out[37]: id bedrooms bathrooms sqft_living sqft_lot floors waterfront view condition grade sqft_above sqft_basement yr_built yr_renovated z 2402100895 1.75 In [38]: #Comparing outlier with most expensive property on dataset with a price of \$7,700,000 data.loc[data['id']== 6762700020] Out[38]: id bedrooms bathrooms sqft_living sqft_lot floors waterfront view condition grade sqft_above sqft_basement yr_built yr_renovated zir. 8.0 6762700020

ANYWAYS...

In [56]: #checking correlation matrix for strenght of collinearity of the data with all comlumns #(using Pearson correlation) fig, ax = plt.subplots(figsize=(15,15)) sns.heatmap(data.corr(), annot=True) Out[56]: <AxesSubplot:> 00120.0052-0.012 -0.13 0.017-0.00270.012 -0.0240.0082-0.011-0.00520.022 -0.017-0.00820.00180.021-0.0027-0.14 -0.01 51 0.58 0.032 0.18 0.0068 0.08 0.026 0.36 0.48 0.3 0.16 0.018 0.15 0.01 0.13 0.39 0.031 0.31 bedrooms -1 0.76 0.088 0.45 0.064 0.19 -0.13 0.67 0.69 0.28 0.51 0.051 -0.2 0.024 0.22 0.57 0.088 0.5 bathrooms sqft_living -0.012 58 0.76 1 0.17 0.33 0.1 0.28 0.059 0.76 0.88 0.44 0.32 0.055 0.2 0.052 0.24 0.76 0.18 0.7 sqft lot -0.13 0.032 0.088 0.17 1 0.000790.022 0.075-0.0088 0.11 0.18 0.015 0.053 0.0077-0.13 0.086 0.23 0.14 0.72 0.09 floors -0.017 0.18 0.45 0.33-0.0007 1 0.026 0.031 0.22 0.41 0.49 -0.24 0.37 0.02 -0.019 0.065 0.085 0.24 -0.008 0.26 waterfront -0.00270.00680.064 0.1 0.022 0.026 1 0.4 0.017 0.083 0.072 0.081 -0.026 0.093 0.03 -0.014 -0.042 0.087 0.031 0.27 view -0.012 0.08 0.19 0.28 0.075 0.031 0.4 1 0.046 0.25 0.17 0.28 -0.054 0.1 0.085 0.0059 0.078 0.28 0.073 0.4 condition -0.024 0.026 -0.13 -0.0590.0088-0.22 0.017 0.046 1 -0.15 -0.16 0.17 -0.36 -0.0610.0029-0.015 -0.11 -0.0930.00310.036 grade -0.0082 0.36 0.67 0.76 0.11 0.41 0.083 0.25 -0.15 1 0.76 0.17 0.45 0.014 0.19 0.11 0.2 0.71 0.12 0.67 sqft above -0.011 0.48 0.69 0.88 0.18 0.49 0.072 0.17 -0.16 0.76 1 -0.052 0.42 0.023 -0.26-0.0012 0.34 0.73 0.2 sqft basement 0.0052 0.3 0.28 0.44 0.015 0.24 0.081 0.28 0.17 0.17 0.052 1 0.13 0.071 0.075 0.11 0.14 0.2 0.018 0.32 yr built 0.022 0.16 0.51 0.32 0.053 0.37 0.026-0.054 0.36 0.45 0.42 0.13 1 0.22 0.35 0.15 0.41 0.33 0.071 0.054 yr_renovated =0.017 0.018 0.051 0.055 0.0077 0.02 0.093 0.1 0.061 0.014 0.023 0.071 0.22 1 0.064 0.029 0.0680.00270.0079 0.13 -0.2 lat -0.0018-0.01 0.024 0.052 -0.086 0.065 -0.0140.0059-0.015 0.11 -0.0012 0.11 -0.15 0.029 0.27 1 -0.14 0.049 -0.086 0.3 long -0.021 0.13 0.22 0.24 0.23 0.085 -0.042 -0.078 -0.11 0.2 0.34 -0.14 0.41 -0.068 -0.56 -0.14 sqft_living15 -0.0027 0.39 0.57 0.76 0.14 0.24 0.087 0.28 -0.093 0.71 0.73 0.2 0.33 -0.0027 0.28 0.049 0.34 1 sqft_lot15 - 0.14 0.031 0.088 0.18 0.72 0.008 0.031 0.073-0.0031 0.12 0.2 0.018 0.071 0.0079 0.15 0.086 0.26 0.18 price -0.017 0.31 0.53 0.7 0.09 0.26 0.27 0.4 0.036 0.67 0.61 0.32 0.054 0.13 0.053 0.31 0.022 0.59 0.083

fig, ax = plt.subplots(figsize=(15,15))
sns.heatmap(data_model.corr(), annot=True)

Out[58]: <AxesSubplot:>

bedrooms	- 1	0.51		0.032	0.18	-0.0068	0.08	0.026	0.36	0.48	0.3	0.16	0.018	0.39	0.031	0.31
bathrooms	0.51	1	0.76	0.088	0.45	0.064	0.19	-0.13			0.28		0.051		0.088	
sqft_living	0.58	0.76	1	0.17	0.33	0.1	0.28	-0.059	0.76	0.88	0.44	0.32	0.055	0.76	0.18	0.7
sqft_lot	0.032	0.088	0.17	1	0.00079	0.022	0.075	-0.0088	0.11	0.18	0.015	0.053	0.0077	0.14	0.72	0.09
floors	0.18	0.45	0.33	-0.00079	1	0.026	0.031	-0.22	0.41		-0.24	0.37	0.02	0.24	-0.008	0.26
waterfront	-0.0068	0.064	0.1	0.022	0.026	1	0.4	0.017	0.083	0.072	0.081	-0.026	0.093	0.087	0.031	0.27
view ·	- 0.08	0.19	0.28	0.075	0.031	0.4	1	0.046	0.25	0.17	0.28	-0.054	0.1	0.28	0.073	
condition	0.026	-0.13	-0.059	-0.0088	-0.22	0.017	0.046	1	-0.15	-0.16	0.17	-0.36	-0.061	-0.093	-0.0031	0.036
grade	0.36	0.67	0.76	0.11	0.41	0.083	0.25	-0.15	1	0.76	0.17	0.45	0.014	0.71	0.12	0.67
sqft_above	0.48		0.88	0.18		0.072	0.17	-0.16	0.76	1	-0.052	0.42	0.023	0.73	0.2	
qft_basement	0.3	0.28	0.44	0.015	-0.24	0.081	0.28	0.17	0.17	-0.052	1	-0.13	0.071	0.2	0.018	0.32
yr_built	0.16		0.32	0.053	0.37	-0.026	-0.054	-0.36	0.45	0.42	-0.13	1	-0.22	0.33	0.071	0.054
yr_renovated	- 0.018	0.051	0.055	0.0077	0.02	0.093	0.1	-0.061	0.014	0.023	0.071	-0.22	1	-0.0027	0.0079	0.13
sqft_living15	0.39	0.57	0.76	0.14	0.24	0.087	0.28	-0.093	0.71	0.73	0.2	0.33	-0.0027	1	0.18	0.59
sqft_lot15	- 0.031	0.088	0.18	0.72	-0.008	0.031	0.073	-0.0031	0.12	0.2	0.018	0.071	0.0079	0.18	1	0.083
price ·	0.31	0.53	0.7	0.09	0.26	0.27	0.4	0.036	0.67	0.61	0.32	0.054	0.13	0.59	0.083	1
	- pedrooms	bathrooms -	sqft_living -	sqft_lot -	floors -	waterfront -	view -	condition -	grade -	sqft_above -	qft_basement -	yr_built -	yr_renovated -	sqft_living15 -	sqft_lot15 -	price -

- 0.8

-0.2

```
In [77]: #column 'condition'
         bins2 = [1,2,3,5]
         group_names2 = ['low', 'average',
                                                  Dd. Cit (datar grade ) J. bins, labels group names)
In [78]: data_model['condition_bin'] = pd.cut(da)
                                                                          labels=group_names2)
In [79]: data_model['condition_bin'].value_counts()
Out[79]: average
                     14020
         high
                      7378
                      170
         low
         Name: condition_bin, dtype: int64
```


In [109]: data_model

Out[109]:

rice	condition_bin_low	condition_bin_average	condition_bin_high	grade_bin_low	grade_bin_average	grade_bin_high	yr_built_bin_old	yr_built_bin_average	yr_bui
1900	0	1	0	0	1	0	0	1	
3000	0	1	0	0	1	0	0	1	
0000	0	1	0	0	1	0	1	0	
4000	0	0	1	0	1	0	0	1	
0000	0	1	0	0	1	0	0	1	
0000	0	1	0	0	1	0	0	0	
0000	0	1	0	0	1	0	0	0	
2101	0	1	0	0	1	0	0	0	
0000	0	1	0	0	1	0	0	0	
5000	0	1	0	0	1	0	0	0	

- I. MySQL
- II. Understanding Data
- III. EDA
- IV. Linear Regression Model
- V. Tableau
- VI. Insights, Challenges, Further possibilities

Name: price, Length: 21597, dtype: int64 X = data_model.drop(['price'], axis=1)

```
Y
         221900
0
         538000
         180000
         604000
         510000
          . . .
21592
         360000
21593
         400000
21594
         402101
21595
         400000
21596
         325000
Name: price, Length: 21597, dtype:
```

Linear Regression Model

#Dependent Variable

Y = data model['price'] #Independent Variables

	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	grade	sqft_above	 sqft_lot15	condition_bin_low	condition_bin_avera
0	3	1.00	1180	5650	1	0	0	3	7	1180	 5650	0	
1	3	2.25	2570	7242	2	0	0	3	7	2170	 7639	0	
2	2	1.00	770	10000	1	0	0	3	6	770	 8062	0	
3	4	3.00	1960	5000	1	0	0	5	7	1050	 5000	0	
4	3	2.00	1680	8080	1	0	0	3	8	1680	 7503	0	
21592	3	2.50	1530	1131	3	0	0	3	8	1530	 1509	0	
21593	4	2.50	2310	5813	2	0	0	3	8	2310	 7200	0	X
21594	2	0.75	1020	1350	2	0	0	3	7	1020	 2007	0	/ \
21595	3	2.50	1600	2388	2	0	0	3	8	1600	 1287	0	
21596	2	0.75	1020	1076	2	0	0	3	7	1020	 1357	0	

21597 rows × 24 columns

In [112]: X

Out[112]:

```
from sklearn.preprocessing import Normalizer
from sklearn.preprocessing import StandardScaler
from sklearn.model selection import train test split
from sklearn.linear model import LinearRegression
from sklearn.datasets import load iris
from sklearn import datasets, linear model, metrics
from sklearn import linear model
from sklearn.metrics import mean squared error, r2 score
```

```
Splitting Train/Test
#Splitting 40% data as testing data
X_train, X_test, Y_train, Y_test = train_test split(X,Y, test size=0.4)
#Checking split
for data in (X train, X test, Y train, Y test):
   print(len(data))
12958
8639
12958
                   lm.coef
8639
                   array([-2.78407057e+04, 4.27722541e+04, 9.70174841e+01, -1.19350573e-02,
                            9.91650853e+03, 5.65247862e+05, 4.14125609e+04, 3.39871683e+04,
                            1.14645304e+05, 3.98078311e+01, 5.72096532e+01, -3.46770235e+03,
                            1.80309655e+01, 2.76998317e+01, -4.58697647e-01, -1.22073152e+04,
                           -3.31683841e+04, -4.18102601e+04, -3.36938522e+04, -1.31214740e+05,
                            1.64908592e+05, 6.20452044e+04, 3.24100601e+04, 1.08626776e+051)
```

Normalizing Data

```
In [133]: transformer = Normalizer().fit(X)
    x_normalized = transformer.transform(X)
    x = pd.DataFrame(x_normalized)
```

```
lm = linear_model.LinearRegression()
model = lm.fit(X,Y)
lm.score(X,Y)
```

0.6715839085011694

Normalizing Data

```
In [126]: #apply the machine learn model with normalized
          model = lm.fit(x_train, y_train)
           predictions = lm.predict(x_test)
           r2_score(y_test, predictions)
  out[126]: 0.4560691494926651
```

- I. MySQL
- II. Understanding Data
- III. EDA
- IV. Linear Regression Model
- V. Tableau
- VI. Insights, Challenges, Further possibilities

- I. MySQL
- II. Understanding Data
- III. EDA
- IV. Linear Regression Model
- V. Tableau
- VI. Insights, Challenges, Further possibilities