

COURS

D'ANALYSE

DE

L'ÉCOLE POLYTECHNIQUE.

Mademoiselle Anna Sturm, propriétaire des OEuvres posthumes de son frère, et M. Mallet-Bachelier, éditeur, se réservent le droit de traduire ou de faire traduire cet Ouvrage en toutes langues. Ils poursuivront, en vertu des Lois, Décrets et Traités internationaux, toutes contrefaçons ou toutes traductions faites au mépris de leurs droits.

Le dépôt légal de cet Ouvrage (tome II) a été fait à Paris dans le cours du mois de Juillet 1859, et toutes les formalités prescrites par les Traités sont remplies dans les divers États avec lesquels la France a conclu des conventions littéraires.

Tout exemplaire du présent Ouvrage qui ne porterait pas, comme cidessous, la griffe de l'Éditeur, sera réputé contrefait. Les mesures nécessaires seront prises pour atteindre, conformément à la loi, les fabricants et les débitants de ces exemplaires.

COURS

D'ANALYSE

DE

L'ÉCOLE POLYTECHNIQUE,

PAR M. STURM,

Membre de l'Institut,

PUBLIÉ D'APRÈS LE VOEU DE L'AUTEUR

PAR M. E. PROUHET,

Professeur de Mathématiques.

TOME SECOND.

PARIS.

MALLET-BACHELIER, IMPRIMEUR-LIBRAIRE

DU BUREAU DES LONGITUDES, DE L'ÉCOLE IMPÉRIALE POLYTECHNIQUE,

QUAI DES AUGUSTINS, 55.

1859

(Mademoiselle Anna Sturm, propriétaire des OEuvres posthumes de son frère, et M. Mallet Bachelier, éditeur, se réservent le droit de traduction.)

Pages.

TABLE DES MATIÈRES.

SUITE DU

CALCUL INTÉGRAL.

TRENTE-SEPTIÈME LECON.

Différentiation et intégration sous le signe. Différentiation d'une intégrale définie par rapport à ses limites. — Interprétation géométrique. — Différentiation d'une intégrale définie par rapport à un paramètre variable. — Interprétation géométrique. — Différentiation d'une intégrale indéfinie. — Intégration sous le signe.

— Détermination des intégrales définies. — $\int_0^{\pi/2} \sin^n x dx$. — Formule de Wallis.

TRENTE-HUITIÈME LECON.

TRENTE-NEUVIÈME LEÇON.

Suite de la détermination des intégrales définies: méthode de M. Cauchy.

— Formule fondamentale. — Applications. — Développements en série. — Intégrales eulériennes. — Définition. — Propriétés des intégrales de première espèce. — Relations entre les intégrales eulériennes. — Intégrales multiples qui s'expriment à l'aide des fonctions Γ . — Applications aux volumes et aux centres de gravité.

QUARANTIÈME LEÇON.

Intégration des différentielles totales des fonctions de plusieurs variables. — Condition d'intégrabilité et intégration dans le cas de deux variables. — Extension au cas d'un nombre queleonque de variables. — Intégration des équations différentielles. — Équations du premier ordre. — Séparation des variables. — Équations homogènes. — Équations rendues homogènes.

. . . .

56

85

97

QUARANTE ET U	JNIEME	LECON.
---------------	--------	--------

QUARANTE-DEUXIÈME LEÇON.

QUARANTE-TROISIÈME LECON.

Solutions singulières des équations à deux variables. — Comment elles se déduisent de l'intégrale générale. — Solutions singulières obtenues au moyen du facteur qui rend intégrable le premier membre de l'équation. — Exemples de solutions singulières. — La solution singulière est en général l'enveloppe des courbes représentées par l'équation intégrale.

QUARANTE-QUATRIÈME LEÇON.

Équations différentielles d'un ordre quelconque. — Existence de l'intégrale d'une équation différentielle quelconque. — Conditions que doivent remplir les constantes qui entrent dans l'intégrale générale. — Intégrale de divers ordres d'une équation différentielle.

QUARANTE-CINQUIÈME LECON.

Intégration de quelques équations d'un ordre supérieur. — Équations de la forme $f\left(\frac{d^{m-1}y}{dx^{m-1}}, \frac{d^my}{dx^m}\right) = 0$. — Équations de la forme $f\left(\frac{d^{m-2}y}{dx^{m-2}}, \frac{d^my}{dx^m}\right) = 0$. — Équations susceptibles d'abaissement. — Applications géométriques. — Équations homogènes.

OUARANTE-SIXIÈME LECON.

Intégration des équations linéaires sans second membre. — Définition.
— Propriétés de l'équation privée de second membre. — Équations à coefficients constants. — Cas des racipes imaginaires inégales.
— Cas des racines égales. Méthode de d'Alembert. — Autres méthodes.

QUARAL	NTE-SEPTIÈ	ME LEÇON.
--------	------------	-----------

Southern Proof.	
Intégration de l'équation linéaire complète. — Réduction de l'équation complète à l'équation privée de second membre. — Cas où les coefficients du premier membre sont constants. — Abaissement de l'équation linéaire quand on connaît un certain nombre d'intégrales de l'équation privée de second membre. — Autre méthode. — Équations linéaires que l'on sait intégrer. — Propriétés de l'équation du second ordre.	10
QUARANTE-HUITIÈME LEÇON.	
Résolution des équations différentielles par les séries. — Développement par la série de Maclaurin. — Méthode des coefficients indéterminés. — Autre forme de développement. — Intégration d'une équation différentielle par des intégrales défifies	12
QUARANTE-NEUVIÈME LEÇON.	
Équations différentielles simultanées. — Élimination d'une variable entre deux équations différentielles. — Systèmes d'équations du premier ordre équivalents à une ou plusieurs équations d'un ordre quelconque. — Théorèmes sur les intégrales des équations simultanées du premier ordre. — Intégration des équations simultanées du premier ordre.	14
CINQUANTIÈME LEÇON.	
Suite des équations simultanées. — Équations linéaires : cas de deux équations; — cas de trois équations. — Réduction du cas général au cas où les équations sont privées de second membre. — Méthode de M. Cauchy. — Remarque sur les équations linéaires	15:
CINQUANTE ET UNIÈME LEÇON.	
Intégration des équations aux différentielles partielles. — Équations qui se ramènent aux équations différentielles ordinaires. — Élimination des fonctions arbitraires. — Équations linéaires et du premier ordre à deux variables indépendantes. — Cas de trois variables indépendantes.	16:
CINQUANTE-DEUXIÈME LEÇON.	
Application de la théorie des équations aux différentielles partielles. — Surfaces cylindriques, coniques, conoïdes. — Surfaces de révolution. — Lignes de niveau, de plus grande pente	17
CINQUANTE-TROISIÈME LEÇON.	
O it was a large to describe and diffinance mentially discussed	

Pages.

	Page
CINQUANTE-QUATRIÈME LEÇON.	rage
Courbure des surfaces. — Courbure d'une ligne située sur une sur- face. — Théorème de Meunier. — Courbure d'une section nor- male. — Sections principales. — Variation des rayons de cour- bure des sections normales faites en un même point d'une surface. — Détermination des ombilics	20
CINQUANTE-CINQUIÈME LEÇON.	
Suite de la courbure des surfaces. — Surface dont tous les points sont des ombilies. — Théorie de l'indicatrice. — Conséquences géométriques. — Cas où l'expression du rayon de courbure se présente sous une forme illusoire. — Tangentes conjuguées	21
CINQUANTE-SIXIÈME LEÇON.	
Suite de la courbure des surfaces. — Lignes de courbure. — Pro- priétés des lignes de courbure. — Centres de courbure des sections principales. — Rayons de courbure principaux. — Applications	22
CINQUANTE-SEPTIÈME LEÇON.	
Calcul des différences finies. — Notions préliminaires. — Différence n^{teme} du premier terme d'une suite en fonction des termes de cette suite. — Terme général d'une suite en fonction du premier et de ses différences successives. — Différences des fonctions entières. — Différences de quelques fonctions fractionnaires ou transcendantes. — Calcul inverse des différences. — Théorèmes généraux. — Intégration de quelques fonctions.	23
CINQUANTE-HUITIÈME LEÇON.	
Suite du calcul inverse des différences. — Intégration des fonctions entières. — Évaluation des sommes par les intégrales ordinaires et des intégrales par les sommes. — Formules d'interpolation. — Formule de Newton. — Formule de Lagrange. — Approximation des quadratures	2 1
CALCUL DES VARIATIONS.	
CINQUANTE-NEUVIÈME LEÇON.	
But du calcul des variations. — Définitions et notations. — Théo-	
rèmes sur la permutation des signes d et δ , \int et δ . — Variation	
d'une intégrale définie $\int V dx$. — Cas où V ne dépend pas des	
limites. — Cas où V contient deux fonctions de x. — Cas où V dépend des limites	25

		÷
Paş	se:	3.

SOIXANTIEME LECON

Suite de la variation d'une intégrale définie. — Autre moyen d'obtenir	
la variation d'une intégrale définie. — Maximum et minimum	
d'une intégrale définie. — Conditions relatives aux limites. — Cas	
où la fonction V contient deux fonctions de x. — Applications. —	4
Ligne la plus courte entre deux points, - d'un point à une	
courbe, — entre deux courbes	270
SOIXANTE ET UNIÈME LÉÇON.	
Suite des applications du calcul des variations Autre manière de	
résoudre les problèmes précédents. — Ligne la plus courte entre	
deux points, dans l'espace Ligne la plus courte sur une sur-	
face donnée Surface de révolution minimum	283
SOIXANTE-DEUXIÈME LEÇON.	

Suite des applications du calcul des variations. — Brachistochrone. —	
Remarques sur l'équation K = o Maximum ou minimum re-	
latif. — Problèmes sur les isopérimètres	296

NOTES.

Note I. — Exercices de calcul différentiel et intégral, tirés des papiers de M. Sturm	15
Note II. — Sur un cas particulier de la formule du binôme, par M. E. Catalan	26
Note III. — Sur les fonctions elliptiques, par M. Sturm, d'après un Mémoire de M. Despeyrous	29
Note IV. — Sur les propriétés de quelques fonctions et sur la représentation des racines des équations par des intersections de courbes, par M. E. Prouhet	32
	49
	54 x1

FIN DE LA TABLE DES MATIÈRES DU TOME SECOND.

ERRATA.

PREMIER VOLUME.

PAGE.	LIGNE.	AU LIEU DE :	LISEZ:
20	11	$\frac{a}{\sqrt{x^2 - a^2}} dx$	$\frac{x}{\sqrt{x^2 - a^2}} dx$
24	13	mx^{m-1} ,	$mx^{m-1}dx$
25	17	$-\frac{nu^{n-1}}{u^{2n}}$ $\frac{a^2}{y^2}$	$-\frac{nu^{n-1}du}{u^{2n}}$
29	7	$\frac{a^2}{y^2}$	$\frac{a^2}{y^2} dy$
34	25	limites	quantités
36	19	$\sqrt{u_n}$,	$\sqrt[n]{u_n}$
36	22	$\frac{1-k^{i+1}}{1-k}$	$\frac{k-k^{i+1}}{1-k}$
39	4		$\frac{x^n}{1,2.3n}$
53	16	$\frac{2x - \sin 2x}{x^2 \cos^2 x}$	$\frac{2x - \sin 2x}{2x^2 \cos^2 x} dr$
70	dernière.	$a(1-\sin t)$	$a(t-\sin t)$
75	6	$\alpha \Delta x + \beta'' \Delta y + \gamma'' \Delta z$	$\alpha + \beta'' \frac{\Delta y}{\Delta x} + \gamma'' \frac{\Delta z}{\Delta x}$
107	dernière.	$\frac{1}{2} \mathcal{Y}^2$	$\frac{1}{2\mathcal{Y}^2}$
011	10	+ hm	hm
131	19	$\frac{f(x)}{\varphi(x)}$	$\frac{\varphi\left(x\right)}{f(x)}$
160	20	2 E kl	2 E h l
162	2	2 F l	2 Fk l
164	3, 5	id	id.
167	dernière	<u>δ'</u> α'	$\frac{\delta'}{\beta}$
168	ı	id	id

PAGE	LIGNÉ.	AU LIEU DÉ:	LISEZ :
184	r4	x 3	$x^{\frac{3}{2}}$
222	dernière	1K	10
234	7	(1)	(4)
307	2?	A	$\frac{A}{2}$
317			$z^{-m-np-2}$
318 319	3, 16	x^{m-n-1}	<i>x</i> ^{<i>m</i>←<i>n</i>+1}
		np + n + 1	np+m+1
321	16	$\frac{np(m+1)a}{b(np+m+1)}$	$\frac{anp}{np+m+1}$
323	7	$(a+bx^n)^{p-1}$	$(a+bx^n)^{p+1}$
325	10, 13	Mettre le signe — devar	nt le second membre
333	6	$\sqrt{1 + \cos x}$	$\sqrt{1-\cos x}$
Ib.	9	$\sqrt{1-\cos x}$	$\sqrt{1 + \cos x}$
338	Formule (E)	$\cos^{n-1}x$	$\cos^{n+1}x$
Ib.	${\it Ib}$.	m + n - 2	m 2
3/12	3	$\frac{3}{10 + \sqrt{14}}$	$\frac{\sqrt{14}}{8}$
362	1	$\sin \frac{\pi}{6}$	$\sin \frac{\pi}{2}$
408	2	$-1\frac{a^2}{be}$	$-\frac{\pi b^2 c}{a^2} \left(\frac{a^2}{bc} \right)$
I b.	3	$\frac{a^2}{b^2}$	$\frac{a^2}{bc}$
1 b.	5	2π b*	$2\pi b$
SECOND VÖLUME,			

11 12 { l'exposant de
$$x$$
 doit n doit être positif

12 12 $\Gamma(n-2) = (n-1)\Gamma(n-2)$ $\Gamma(n-1) = (n-2)\Gamma(n-2)$

25 14 correspondent correspondant

16e 9 $\int_{0}^{\infty} \frac{dY}{dx} dx$ $\int_{0}^{\infty} \frac{dY}{dx} dx$

COURS

D'ANALYSE.

SUITE DU

CALCUL INTÉGRAL.

TRENTE-SEPTIÈME LEÇON.

Différentiation et intégration sous le signe. — Différentiation d'une intégrale définie par rapport à ses limites. — Interprétation géométrique. — Différentiation d'une intégrale définie par rapport à un paramètre variable. — Interprétation géométrique. — Différentiation d'une intégrale indéfinie. — Intégration sous le signe. — Détermination des intégrales

définies. —
$$\int_0^{\frac{\pi}{2}} \sin^{\frac{\pi}{2}} x dx$$
. — Formule de Wallis.

DIFFÉRENTIATION D'UNE INTÉGRALE DÉFINIE PAR RAPPORT
A SES LIMITES.

443. On sait qu'étant donnée une fonction quelconque de x, f(x), il existe toujours une autre fonction $\varphi(x)$ telle que l'on ait

 $\varphi'(x) = f(x),$

et que l'intégrale générale de $f\left(x\right)dx$ est alors représentée par

 $\varphi(x) + c$

c étant une constante arbitraire.

Désignons par u l'intégrale de f(x) dx, prise entre deux limites a et b; on aura

$$u = \int_{a}^{b} f(x) dx = \varphi(b) - \varphi(a).$$

L'intégrale définie u ne dépend plus de x, mais elle est une fonction des limites a et b, et l'on peut se proposer de la différentier par rapport à l'une ou à l'autre de ces limites. On y parvient aisément sans effectuer l'intégration. En effet, de l'égalité

$$u = \varphi(b) - \varphi(a),$$

on déduit

$$\frac{du}{da} = -\varphi'(a), \quad \frac{du}{db} = \varphi'(b),$$

et puisque $\varphi'(x) = f(x)$,

(1)
$$\frac{du}{da} = -f(a), \quad \frac{du}{db} = f(b).$$

444. Si a et b sont des fonctions d'une certaine variable t, indépendante de x, en désignant par du la différentielle totale de u considérée comme fonction de la variable indépendante t, on aura (I, 40) [*]

$$du = \frac{du}{da} da + \frac{du}{db} db,$$

et, par conséquent,

$$du = -f(a) da + f(b) db.$$

On obtiendra ensuite du en fonction de t en remplaçant dans cette formule, a, b, da, db, par leurs valeurs en fonction de t.

INTERPRÉTATION GÉOMÉTRIQUE.

Fig. 104.

$$y = f(x),$$

l'équation en coordonnées rectangulaires de la courbe CD' : l'intégrale définie

$$u = \int_a^b f(x) \, dx$$

^{[*] (}I, 40) indique un renvoi au nº 40 du premier volume. Les renvois au second volume seront simplement indiqués par le numéro du paragraphe.

représente l'aire ABCD. Donnons aux limites a et b les accroissements infiniment petits

$$AA' = da$$
, $BB' = db$:

on aura

$$A'C'D'B' = u + du$$

et

$$du = -AA'CC' + BB'DD'.$$

Or on peut remplacer AA'CC' et BB'DD' par les rectangles ACEA' et BDFB' qui n'en diffèrent que de quantités infiniment petites du second ordre (I, 194); on aura donc

$$AA'CC' = f(a)da$$
, $DBB'D' = f(b)db$,

et, par suite,

$$du = -f(a) da + f(b) db.$$

DIFFÉRENTIATION D'UNE INTÉGRALE DÉFINIE PAR RAPPORT
A UN PARAMÈTRE VARIABLE.

446. Supposons que la fonction placée sous le signe \int dépende d'une variable t, autre que x, et soit

$$u = \int_{a}^{b} f(x, t) dx.$$

Si les limites a et b sont indépendantes de t, on aura, en donnant à t l'accroissement Δt ,

$$u + \Delta u = \int_a^b f(x, t + \Delta t) dx,$$

$$\text{d'où} \quad \Delta u = \int_a^b f(x, t + \Delta t) dx - \int_a^b f(x, t) dx$$

$$= \int_a^b \left[f(x, t + \Delta t) - f(x, t) \right] dx;$$

par suite

$$\frac{\Delta u}{\Delta t} = \int_{a}^{b} \frac{f(x, t + \Delta t) - f(x, t)}{\Delta t} \, dx$$

et, si l'on fait décroître indéfiniment Δt , on aura à la

limite

(2)
$$\frac{du}{dt} = \int_a^b \frac{df(x, t)}{dt} dx.$$

447. Quand a et b dépendent de t, du désignant la différentielle totale de u, et $\frac{du}{da}$, $\frac{du}{db}$, $\frac{du}{dt}$ les dérivées partielles de cette fonction, on a

$$du = \frac{du}{da}da + \frac{du}{db}db + \frac{du}{dt}dt:$$

mais (443, 446)

$$\frac{du}{da} = -f(a,t), \quad \frac{du}{db} = f(b,t), \quad \frac{du}{dt} = \int_a^b \frac{df}{dt} dx;$$

done

$$du = -f(a,t) da + f(b,t) db + dt \int_a^b \frac{df}{dt} dx.$$

INTERPRÉTATION GÉOMÉTRIQUE.

448. Soit CD la courbe dont l'équation est, en coordonnées rectangulaires,

Si
$$OA = a$$
, $OB = b$, on aura
$$u = \int_{a}^{b} f(x, t) dx = \text{aire ABCD.}$$
Donnons à t l'accroissemen

Donnons à t l'accroissement

infiniment petit dt: a et b qui sont des fonctions de t recoivent des accroissements $\Lambda \Lambda' = da$, BB' = db. En même temps la courbe CD se change en une autre courbe EH infiniment voisine, et l'on a

$$u + du = \int_{a+da}^{b+db} f(x, t + dt) dx = \text{aire A' GHB'};$$
Mais aire A' GHB' = AEFB - AEGA' + BFHB',
$$done \quad du = A' GHB' - ACDB$$

$$= (AEFB - ACDB) - AEGA' + BFHB',$$

ou, en négligeant des infiniment petits du second ordre,

$$du = \int_a^b f(x, t + dt) dx - \int_a^b f(x, t) dx$$
$$-f(a, t) da + f(b, t) db,$$

et enfin

$$du = dt \int_a^b \frac{df(x,t)}{dt} dx - f(a,t) da + f(b,t) db.$$

DIFFÉRENTIATION D'UNE INTÉGRALE INDÉFINIE PAR RAPPORT
A UN PARAMÈTRE VARIABLE.

449. Soit u l'intégrale indéfinie de f(x, t) dx, dans laquelle t désigne un paramètre variable qui ne dépend pas de x; on peut, sans rien ôter à la généralité de cette intégrale, l'écrire sous la forme

$$u = \int_a^x f(x,t) dx + \psi(t),$$

 $\psi(t)$ étant une fonction arbitraire de t. Différentions maintenant par rapport à t, en supposant que t ne dépende pas de a: nous aurons (446)

$$\frac{du}{dt} = \int_{a}^{x} \frac{df(x,t)}{dt} dx + \psi'(t);$$

mais comme $\psi'(t)$ est une constante par rapport à x, le second membre revient à l'intégrale indéfinie de $\frac{df}{dt}dx$, et l'on peut écrire

 $\frac{du}{dt} = \int \frac{df(x,t)}{dt} dx.$

Ainsi, pour différentier une intégrale indéfinie par rapport à un paramètre variable, il suffit de différentier, par rapport à ce paramètre, la fonction placée sous le signe \int .

INTÉGRATION SOUS LE SIGNE.

450. Si l'on multiplie par dy l'intégrale définie

$$\int_a^b f(x,y)dx,$$

et que l'on intègre ensuite par rapport à y, on aura

$$\int dy \, \int_a^b f(x,y) \, dx.$$

Or je dis que l'on peut intervertir l'ordre des intégrations, c'est-à-dire que l'on aura la formule

$$\int dy \int_a^b f(x, y) dx = \int_a^b dx \int f(x, y) dy.$$

En effet, on a (449)

$$\frac{d}{dy} \int_{a}^{b} dx \int f(x, y) dy = \int_{a}^{b} dx \frac{d \int f(x, y) dy}{dy}$$
$$= \int_{a}^{b} f(x, y) dx;$$

donc, en intégrant les deux membres de cette équation par rapport à γ , il en résultera

$$\int_{a}^{b} dx \int f(x, y) dx = \int dy \int_{a}^{b} f(x, y) dx.$$

et, si l'on prend pour limites de γ les constantes c et d, on aura

$$\int_a^b dx \int_c^d f(x, y) dy = \int_c^d dy \int_a^b f(x, y) dx.$$

451. L'interprétation géométrique de cette formule est facile; car ses deux membres représentent également le

volume ABCD A'B'C'D' compris entre la surface qui a pour équation z = f(x,y), le plan des xy et les quatre plans qui ont pour équations

$$x = a, \qquad x = b,$$

$$y = c, \qquad y = d$$

DÉTERMINATION DE L'INTÉGRALE

$$\int_0^{\frac{\pi}{2}} \sin^n x \, dx.$$

452. On peut déterminer une intégrale définie quand on connaît l'intégrale indéfinie; mais il y a souvent des simplifications. Ainsi, quand on a

$$\int f(x) dx = \varphi(x) + \int \psi(x) dx,$$

il en résulte

$$\int_{a}^{b} f(x) dx = \varphi(b) - \varphi(a) + \int_{a}^{b} \psi(x) dx,$$

et si $\psi(x)$ est plus simple que f(x), l'intégrale cherchée sera ramenée par cette formule à une intégrale plus simple.

Soit, par exemple, l'intégrale

$$u_n = \int_0^{\frac{\pi}{2}} \sin^n x \, dx.$$

En intégrant par parties, on a

$$\int \sin^{n} x \, dx = \int \sin^{n-1} x \, d \, (-\cos x)$$

$$= -\sin^{n-1} x \cos x + (n-1) \int \sin^{n-2} x \cos^{2} x \, dx;$$

ou bien, en remplaçant $\cos^2 x$ par $1 - \sin^2 x$,

$$\int \sin^n x \, dx = -\sin^{n-1} x \cos x + (n-1) \int \sin^{n-2} x \, dx$$
$$= (n-1) \int \sin^n x \, dx.$$

De là on tire

$$\int \sin^n x \, dx = -\frac{1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} \int \sin^{n-2} x \, dx.$$

Intégrons maintenant entre les limites o et $\frac{\pi}{2}$ et observons

que le premier terme du second membre s'annule à ces deux limites, n étant plus grand que 1, il viendra

$$(1) \qquad u_n = \frac{n-1}{n} u_{n-2}.$$

Soit n pair: nous aurons successivement

$$u_{n-2} = \frac{n-3}{n-2} u_{n-4},$$

$$u_{n-4} = \frac{n-5}{n-4} u_{n-6},$$

$$u_{1} = \frac{1}{2} u_{0},$$

$$u_{0} = \int_{0}^{\frac{\pi}{2}} dx = \frac{\pi}{2}.$$

Si l'on multiplie toutes ces équations membre a membre, il vient

$$u_n = \frac{\pi}{2} \cdot \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdots \frac{n-1}{n}.$$

En changeaut n en n + 1 dans la formule (1), on aura

$$u_{n+1} = \frac{n}{n+1} u_{n+1},$$

et ensuite

$$u_{n-1} = \frac{n-2}{n-1} u_{n-3},$$

$$u_{n-3} = \frac{n-4}{n-3} u_{n-5},$$

$$u_3 = \frac{2}{3} u_1,$$

$$u_4 = \int_0^{\frac{\pi}{2}} \sin x dx = 1.$$

En multipliant toutes ces équations membre à membre, on aura

(3)
$$u_{n+1} = \frac{2}{3} \cdot \frac{4}{5} \cdot \frac{6}{7} \cdot \dots \cdot \frac{n}{n+1}$$

453. La formule (1) ne peut plus servir à la détermination de u_n quand n n'est plus un nombre entier; mais on peut l'employer à réduire cet indice au-dessous de l'unité. Dans tous les cas, en faisant $\gamma = \sin x$, l'intégrale

$$\int_{0}^{\frac{\pi}{2}} \sin^n x \, dx$$

se ramène à la suivante

$$\int_0^1 \frac{y^n dy}{\sqrt{1-y^2}},$$

qui est algébrique.

FORMULE DE WALLIS.

454. On peut déduire de ces formules la valeur de $\frac{\pi}{2}$ exprimée par un produit d'une infinité de facteurs. En effet, puisque sin x est moindre que l'unité, on à

$$\sin^n x > \sin^{n+1} x$$

pour toutes les valeurs de x comprises entre o et $\frac{\pi}{2}$; donc on a

$$\int_{0}^{\frac{\pi}{2}} \sin^{n} x \, dx > \int_{0}^{\frac{\pi}{2}} \sin^{n+1} x \, dx \,,$$

c'est-à-dire

$$u_n > u_{n+1}$$
.

De là, et des formules (2) et (3) trouvées plus haut (452), on tire

$$\frac{\pi}{2} > \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \cdot \cdot \cdot \frac{n}{n-1} \cdot \frac{n}{n+1} \cdot \cdot \quad \bullet$$

On aura de même

$$u_{n+2} < u_{n+1}$$

ou bien

$$\frac{\pi}{2} < \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \cdots \cdot \frac{n}{n-1} \cdot \frac{n}{n+1} \cdot \frac{n+2}{n+1}$$

Donc si, l'on pose

$$A = \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \dots \cdot \frac{n}{n-1} \cdot \frac{n}{n+1}$$

on aura

$$\frac{\pi}{2} > A$$
 et $\frac{\pi}{2} < A \cdot \frac{n+2}{n+1} = A \left(1 + \frac{1}{n+1} \right)$.

Il en résulte que

$$\frac{\pi}{2} = A(1 + \alpha),$$

 α étant une quantité plus petite que $\frac{1}{n+1}$, et comme ceci est vrai, quelque grand que soit n, on aura, en supposant $n=\infty$,

$$\frac{\pi}{2} = \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \dots$$

Cette formule remarquable a été découverte par Wallis.

TRENTE-HUITIÈME LEÇON.

Suite de la détermination des intégrales définies, — Intégrales eulériennes de deuxième espèce. — Intégrales obtenues par la différentiation ou l'intégration sous le signe, — par des considérations géométriques, — par la séparation des quantités réelles et des imaginaires, — par une équation différentielle.

INTÉGRALES EULÉRIENNES DE SECONDE ESPÈCE.

455. On donne le nom d'intégrale eulérienne de seconde espèce à l'intégrale définie

$$\Gamma(n) = \int_{0}^{\infty} x^{n-1} e^{-x} dx.$$

L'exposant de x doit être supposé positif; car si n était égal au nombre négatif — p, l'intégrale considérée aurait une valeur infinie. En effet, on a, a étant compris entre o et 1,

$$\int_{a}^{1} e^{-x} \frac{dx}{x^{n+p}} > \int_{a}^{1} \frac{1}{c} \frac{dx}{x} = \frac{1}{c} \frac{1}{a};$$

or pour a = 0, $\frac{1}{e} l \frac{1}{a}$ est infini : l'intégrale $\int_0^{-1} e^{-x} x^{-p-1} dx$ est donc infinie, et il en est de même, à fortiori, de l'intégrale $\int_0^{\infty} x^{-p-1} e^{-x} dx$.

456. L'intégrale $\Gamma(n+1)$ peut se ramener à $\Gamma(n)$. En intégrant par parties, on a

$$\int x^n e^{-x} dx = -x^n e^{-x} + n \int e^{-x} x^{n-1} dx.$$

Or $x^n e^{-x}$ s'annule pour x = 0 et aussi pour $x = \infty$. En effet, puisque

$$c^x = 1 + \frac{x}{1} + \dots + \frac{x^i}{1 \dots i} + \dots,$$

on a, quel que soit i,

$$e^{\tau} > \frac{x'}{1} \frac{x'}{2 \cdot 3 \cdot \dots i}$$

par conséquent

$$x^{-n}e^x > \frac{x^{i-n}}{1 \cdot 2 \cdot i}$$

Or, quand on prend i > n, ce qui est évidemment permis, le second membre devient ∞ pour $x = \infty$. Donc le produit $x^{-n}e^x$ devient aussi infini, et par conséquent son inverse x^ne^{-x} devient nul pour $x = \infty$.

D'après cela, si l'on intègre entre les limites o et ∞ , on aura

$$\int_0^\infty x^n e^{-x} dx = n \int_0^\infty e^{-x} x^{n-1} dx,$$
$$\Gamma(n+1) = n \Gamma(n).$$

ou

457. On aura de même

 $\Gamma(n) = (n-1)\Gamma(n-1), \quad \Gamma(n-2) = (n-1)\Gamma(n-2),$ et si n est entier, on arrivera à

$$\Gamma\left(2\right) = 1 \Gamma\left(1\right),$$

$$\Gamma\left(1\right) = \int_{0}^{\infty} e^{-x} dx = 1.$$

Par conséquent, on aura pour n entier et positif

$$\Gamma(n) = 1 \cdot 2 \cdot 3 \cdot \dots (n-1).$$

Si n, sans être entier, est plus grand que 1, la formule

$$\Gamma(n) = (n-1)\Gamma(n-1)$$

permettra de réduire l'intégrale $\Gamma(n)$ à l'intégrale $\Gamma(\nu)$, dans laquelle ν désigne un nombre positif moindre que ι ; de sorte que pour calculer la fonction $\Gamma(n)$ il suffit d'avoir les valeurs de cette fonction pour les valeurs de l'indice n comprises entre 0 et ι .

458. L'intégrale $\Gamma(n)$ peut prendre une autre forme , en posant $e^{-x} = y$, on a

$$x = 1\frac{1}{y}, \quad dx = -\frac{dy}{y},$$

$$\int_0^\infty r^{n+1} e^{-x} dx = -\int_1^\infty \left(1\frac{1}{y}\right)^{n-1} dy = \int_0^\infty \left(1\frac{1}{y}\right)^{n-1} dy,$$

ou

$$\Gamma(n) = \int_0^1 \left(\left(\frac{1}{y} \right)^{n-1} dy.$$

INTÉGRALES QUI SE DÉDUISENT D'UNE INTÉGRALE CONNUE PAR LA DIFFÉRENTIATION SOUS LE SIGNE.

459. La différentiation sous le signe permet de déduire * d'une intégrale définie connue de nouvelles intégrales.

En voici quelques exemples:

$$\int_0^\infty \frac{dx}{x^2 + a} = \frac{\pi}{2} a^{-\frac{1}{2}}.$$

Différentions n fois par rapport à a: il en résulte

$$\int_0^\infty \frac{1 \cdot 2 \cdot 3 \cdot \dots n}{(x^2 + a)^{n+1}} dx = \frac{1}{2} \cdot \frac{3}{2} \cdot \frac{5}{2} \cdot \dots \cdot \frac{2n-1}{2} \cdot \frac{1}{a^{n+\frac{1}{2}}} \cdot \frac{\pi}{2},$$

et, par suite,

$$\int_{0}^{\infty} \frac{dx}{(x^{2} + a)^{n+1}} = \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2 \cdot n - n)}{2 \cdot 4 \cdot 6 \cdot \dots \cdot 2 \cdot n} \cdot \frac{\pi}{2 \cdot a^{n+\frac{1}{2}}}.$$

$$2^{\circ}. \text{ Soit} \qquad \int_{0}^{\infty} e^{-ax} dx = \frac{1}{a}.$$

Si l'on différentie les deux membres de cette égalité n-1 fois par rapport à a, on aura

$$\int_0^\infty e^{-ax} x^{n-1} dx = 1 \cdot 2 \cdot 3 \dots (n-1) a^{-n},$$

ou bien

$$\int_0^\infty e^{-ax} x^{n-1} dx = \frac{\Gamma(n)}{a^n}.$$

460. Ce dernier résultat subsiste quand on remplace la quantité réelle a par l'expression imaginaire $a + b\sqrt{-1}$, dans laquelle la partie réelle a est positive.

En effet, on a

$$\int e^{-(a+b\sqrt{-1})x} dx = \frac{-e^{-(a+b\sqrt{-1})x}}{a+b\sqrt{-1}} + c$$

$$= \frac{-e^{-ax} (\cos bx - \sqrt{-1}\sin bx)}{a+b\sqrt{-1}} + c,$$

et, par conséquent,

$$\int_0^\infty e^{-(a+b\sqrt{-1})x} dx = \frac{1}{a+b\sqrt{-1}}.$$

Si maintenant on différentie cette égalité n-1 fois par rapport à a_3 on aura

$$\int_0^\infty e^{-(a+b\sqrt{-1})x} x^{n-1} dx = \frac{1 \cdot 2 \cdot 3 \cdot \dots (n-1)}{(a+b\sqrt{-1})^n},$$

ce qui est la dernière formule du n° 459 étendue au cas où a est imaginaire.

461. Cette formule fournira d'autres intégrales, au moyen de la séparation des quantités réelles et des imaginaires. Posons

$$(a+b\sqrt{-1}) = \rho(\cos\theta + \sqrt{-1}\sin\theta),$$

c'est-à-dire

$$\rho = \sqrt{a^2 + b^2}, \quad \cos \theta = \frac{a}{\sqrt{a^2 + b^2}}, \quad \sin \theta = \frac{b}{\sqrt{a^2 + b^2}}$$

la dernière équation devient

$$\int_{0}^{\infty} e^{-ax} \left(\cos bx - \sqrt{-1}\sin bx\right) x^{n-1} dx$$

$$= \frac{\Gamma(n)}{\rho^{n}} \left(\cos n\theta - \sqrt{-1}\sin n\theta\right),$$

équation qui se partage en deux autres :

$$\int_0^\infty e^{-ax} x^{n-1} \sin bx \, dx = \frac{\Gamma(n)}{\rho^n} \sin n\theta,$$
$$\int_0^\infty e^{-ax} x^{n-1} \cos bx \, dx = \frac{\Gamma(n)}{\rho^n} \cos n\theta.$$

Notre démonstration suppose que n est un nombre entier; mais ces formules subsistent quel que soit n.

INTÉGRALES DÉDUITES D'AUTRES INTÉGRALES AU MOYEN DE L'INTÉGRATION SOUS LE SIGNE.

462. L'intégration des intégrales définies par rapport

aux constantes qu'elles renferment fournit encore de nouvelles intégrales. Ainsi, soit

$$\int_0^\infty e^{-ax}\cos bx \, dx = \frac{a}{a^2 + b^2},$$

intégrale qui se déduit de la dernière formule (461) en faisant n = 1. Il en résulte, c étant une constante moindre que a,

$$\int_c^a da \int_0^{\infty} e^{-ax} \cos bx \, dx = \int_c^a \frac{ada}{a^2 + b^2}.$$

Mais

$$\int_{c}^{a} da \int_{0}^{\infty} e^{-ax} \cos bx \, dx = \int_{0}^{\infty} \frac{dx}{dx} \int_{c}^{a} e^{-ax} \cos bx \, da$$
$$= \int_{0}^{\infty} \frac{e^{-cx} - e^{-ax}}{x} \cos bx \, dx;$$

d'un autre côté,

$$\int_{c}^{a} \frac{ada}{a^{2} + b^{2}} = \frac{1}{2} \left| \frac{a^{2} + b^{2}}{c^{2} + b^{2}} \right|.$$

Done

$$\int_{0}^{\infty} \frac{e^{-cx} - e^{-ax}}{x} \cos bx \, dx = \frac{1}{2} \left[\frac{a^{2} + b^{2}}{c^{2} + b^{2}} \right]$$

463. Si l'on fait b = 0, on a

$$\int_0^\infty \frac{e^{-cx} - e^{-ax}}{x} dx = \frac{1}{c}.$$

On obtiendrait encore ce résultat en intégrant relativement à a, entre les limites c et a, les deux membres de la formule

$$\int_0^\infty e^{-ax} dx = \frac{1}{a}.$$

464. Par le même procédé, de la formule

$$\int_{a}^{\infty} e^{-ax} \sin bx \, dx = \frac{b}{a^2 + b^2},$$

on déduira

$$\int_{c}^{a} da \int_{0}^{\infty} e^{-ax} \sin bx \, dx = \int_{c}^{a} \frac{bda}{a^{2} + b^{2}}$$

$$= \arctan \frac{a}{b} - \arctan \frac{c}{b}.$$

Mais

$$\int_{c}^{a} da \int_{0}^{\infty} e^{-ax} \sin bx \, dx = \int_{0}^{\infty} dx \int_{c}^{a} \sin bx \, e^{-ax} \, da$$
$$= \int_{0}^{\infty} \frac{e^{-cx} - e^{-ax}}{x} \sin bx \, dx;$$

donc

$$\int_{0}^{\infty} \frac{e^{-cx} - e^{-ax}}{x} \sin bx \, dx = \arctan \frac{a}{b} - \arctan \frac{c}{b}$$

465. Si l'on fait $a = \infty$, c = 0, on a

$$\int_0^\infty \frac{\sin bx}{x} dx = \frac{\pi}{2},$$

pourvu que b soit > o. Si l'on avait b < o, le second membre serait $-\frac{\pi}{2}$. Cette intégrale présente donc une discontinuité remarquable : constante, lorsque b varie en conservant le même signe, elle passe brusquement de $-\frac{\pi}{2}$ à $\frac{\pi}{2}$ lorsque b, en s'évanouissant, passe du négatif au positif.

EMPLOI DE CONSIDÉRATIONS GÉOMÉTRIQUES POUR LA DÉTERMINATION DE CERTAINES INTÉGRALES DÉFINIES.

466. L'intégrale

$$A = \int_0^\infty e^{-x^2} dx$$

a été déterminée par M. Poisson à l'aide d'un procédé très-remarquable. Si l'on change x en y, on aura encore

$$A = \int_0^\infty e^{-y^2} dy,$$

et, par suite,

$$A^{2} = \int_{0}^{\infty} e^{-x^{2}} dx \cdot \int_{0}^{\infty} e^{-y^{2}} dy = \int_{0}^{\infty} \int_{0}^{\infty} e^{-x^{2}-y^{2}} dx dy.$$

Soient maintenant trois axes rectangulaires Ox, Oy, Oz et

Fig. 107.

$$y = 0$$
, $z = e^{-x^2}$,

les équations d'une courbe située dans le plan zOx. Si cette courbe tourne autour de l'axe Oz, elle engendrera une surface ayant pour équation

$$z = e^{-x^2 - y^2},$$

et l'intégrale double

$$\int_0^\infty \int_0^\infty e^{-x^4-y^4} \, dx \, dy,$$

représentera le quart du volume compris entre la surface et le plan x Oy. On peut évaluer ce volume en le partageant en une infinité de tranches cylindriques dont Oz soit l'axe commun. La tranche dont les surfaces extérieures ont pour rayons r et r+dr est égale à sa base $2 \pi r dr$ multipliée par sa hauteur z ou e^{-r^2} : on a donc

$$A^{2} = \frac{1}{4} \int_{0}^{\infty} e^{-r^{2}} \times 2\pi r dr = \frac{1}{4}\pi;$$

$$A = \frac{1}{2} \sqrt{\pi}.$$

d'où

467. Un procédé analogue peut être employé pour la détermination d'autres intégrales. Supposons que l'on ait à évaluer

$$\int_0^\infty dy \, \int_0^\infty f(x,y) \, dx.$$

Cette intégrale représente la portion située dans l'angle des coordonnées positives du volume compris entre la surface qui a pour équation

$$z = f(x, y)$$

et le plan xOy. Décomposons ce volume en éléments infiniment petits par des plans zOS, zOR menés par l'axe des z et par des cylindres PQ, RS ayant Oz pour axe commun. Si l'on pose OP = r, $PO x = \theta$, le

prisme infiniment petit MPQRS ayant pour base le rectangle PORS = $r d\theta dr$, et pour hauteur

$$z = f(x, y) = f(r \cos \theta, \dot{r} \sin \theta),$$

aura pour volume

$$rd\theta dr f(r\cos\theta, r\sin\theta).$$

L'intégrale proposée pourra donc être remplacée par la suivante

$$\int_0^{\infty} \int_0^{\frac{\pi}{2}} f(r\cos\theta, r\sin\theta) r d\theta dr,$$

dont la valeur sera quelquefois plus facile à trouver.

468. L'intégrale $\int_{0}^{\infty} e^{-\pi^{2}} dx = \frac{1}{2} \sqrt{\pi}$ conduit à la suivante

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}.$$

En effet,

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \int_{-\infty}^{0} e^{-x^2} dx + \int_{0}^{\infty} e^{-x^2} dx.$$

Si l'on change x en -x, on a

$$\int_{-\infty}^{0} e^{-x^{2}} dx = \int_{0}^{\infty} e^{-x^{2}} dx = \frac{1}{2} \sqrt{\pi};$$

$$\int_{-\infty}^{\infty} e^{-x^{2}} dx = \sqrt{\pi}.$$

done

469. Plus généralement, si f(x) est une fonction paire

de x, c'est-à-dire une fonction telle, que l'on ait identiquement f(x) = f(-x), on aura

$$\int_{-\infty}^{\infty} f(x) dx = 2 \int_{0}^{\infty} f(x) dx.$$

En effet,

$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{0} f(x) dx + \int_{0}^{\infty} f(x) dx.$$

Mais

$$\int_{-\infty}^{0} f(x) dx = \int_{0}^{\infty} f(-x) dx = \int_{0}^{\infty} f(x) dx;$$

done

$$\int_{-\infty}^{\infty} f(x) dx = 2 \int_{0}^{\infty} f(x) dx.$$

On prouverait de la même manière que si f(x) est une fonction impaire, c'est-à-dire si f(x) = -f(x), on aura

$$\int_{-\infty}^{\infty} f(x) \, dx = 0.$$

470. Si, dans l'intégrale

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi},$$

on remplace x par $x\sqrt{a}$, on aura

$$\int_{-\infty}^{\infty} e^{-a\tau^2} dx = \frac{\sqrt{\pi}}{\sqrt{a}}.$$

En différentiant cette dernière équation n fois de suite par rapport à a, on aura

$$\int_{-\infty}^{\infty} e^{-ax^2} x^{2n} dx = \sqrt{\pi} \cdot \frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{2^n} a^{-\left(n+\frac{1}{2}\right)},$$

et, si l'on fait a = F,

$$\int_{-\infty}^{\infty} e^{-x^2} x^{2n} dx = \sqrt{\pi} \cdot \frac{1 \cdot 3 \cdot 5 \dots (2 n - 1)}{2^n}.$$

EMPLOI DES IMAGINAIRES.

471. En changeant x en x + a dans l'équation (ι) , elle devient

$$\int_{-\infty}^{\infty} e^{-(x+a)^2} dx = \sqrt{\pi},$$

$$\int_{-\infty}^{\infty} e^{-x^2 - 2ax} dx = e^{a^2} \sqrt{\pi};$$

ou

mais on a

$$\int_{-\infty}^{\infty} e^{-x^{2}-2ax} dx = \int_{-\infty}^{\infty} e^{-x^{2}} (e^{-2ax}) dx$$

$$= \int_{0}^{\infty} e^{-x^{2}} (e^{-2ax} + e^{-2ax}) dx;$$

done on aura

$$\int_0^\infty e^{-x^2} \left(e^{2ax} + e^{-2ax} \right) dx = e^{a^2} \sqrt{\pi}.$$

Les deux membres de cette équation peuvent être développés en séries convergentes, sulvant les puissances entières et ascendantes de a, et comme l'équation a lieu pour toutes les valeurs réelles de a, les coefficients des mêmes puissances de a doivent être égaux dans les deux membres; d'où il suit que l'équation subsistera si l'on y remplace a par une expression imaginaire. En posant $a = \alpha \sqrt{-1}$, d'où $e^{2ax} + e^{-2ax} = 2\cos 2\alpha x$, elle devient

$$\int_0^\infty e^{-x^2}\cos 2\alpha \, x \, dx = \frac{1}{2}e^{-\alpha^2}\sqrt{\pi}.$$

Ainsi-le passage des quantités réelles aux imaginaires peut faire découvrir de nouvelles intégrales, comme on l'a déjà remarqué au n° 460.

INTÉGRALE OBTENUE A L'AIDE D'UNE ÉQUATION DIFFÉRENTIELLE.°

472. Un autre procédé consiste à former, entre l'intégrale proposée et l'une des indéterminées qu'elle ren-

ferme, une équation dissérentielle qu'on puisse intégrer. Soit, par exemple,

$$u = \int_0^\infty e^{-x^2} \cos 2 \,\alpha \, x \, dx.$$

On a

$$\frac{du}{d\alpha} = -\int_0^\infty \sin 2\alpha x \cdot e^{-x^2} \cdot 2x dx = \int_0^\infty \sin 2\alpha x \cdot d \cdot e^{-x^2}.$$

En intégrant par parties et en observant que sin 2 a x.eest nulle aux deux limites, on aura

$$\frac{du}{d\alpha} = -\int_0^\infty e^{-x^2} \cos 2 \, \alpha \, x^2 \, 2 \, \alpha \, dx,$$

e'est-à-dire $\frac{du}{da} = -2\alpha u$, ou $\frac{du}{u} = -2\alpha d\alpha$; $u = re^{-\alpha^2}$

d'où

Pour déterminer
$$c$$
, on fait $\alpha = 0$: alors

$$u = \int_0^\infty e^{-x^2} dx = \frac{1}{2} \sqrt{\pi} = c;$$

done

$$\int_0^\infty e^{-x^2} \cos 2 \, \alpha x \, dx = \frac{1}{2} \, e^{-\alpha^2} \sqrt{\pi}.$$

TRENTE-NEUVIÈME LEÇON.

Suite de la détermination des intégrales définies: méthode de M. Cauchy. —
Formule fondamentale. — Applications. — Développements en série.

Intégrales eulériennes. — Définition. — Propriétés des intégrales de première espèce. — Relations entre les intégrales eulériennes. — Intégrales multiples qui s'expriment à l'aide des fonctions Γ. — Applications aux volumes et aux centres de gravité.

MÉTHODE DE M. CAUCHY. - FORMULE FONDAMENTALE.

473. Soient z une variable imaginaire, r son module et p son argument, en sorte qu'on ait

$$z = r(\cos p + \sqrt{-1}\sin p) = re^{p\sqrt{-1}}.$$

Soient f(z) une fonction de z qui reste finie et continue, ainsi que sa dérivée, pour toute valeur de z dont le module r est inférieur à une certaine limite R. Supposons, en outre, qu'en laissant le module constant et en faisant croître l'angle p d'une manière continue depuis une valeur quelconque α jusqu'à la valeur $\alpha + 2\pi$, la fonction reprenne, pour $p = \alpha + 2\pi$, la valeur qu'elle avait pour $p = \alpha$. Cette condition, que M. Cauchy omet dans ses énoncés, mais qu'il suppose dans ses démonstrations, n'est pas toujours remplie quand la fonction f(z) a plusieurs valeurs différentes pour une même valeur de z. On ne considère ici qu'une des valeurs de f(z) et la valeur correspondante de sa dérivée.

Cela posé, je dis qu'on a la formule

(1
$$f(\mathbf{o}) = \frac{1}{2\pi} \int_{\alpha}^{\alpha + 2\pi} f(z) dp,$$

$$ou \qquad f(\mathbf{o}) = \frac{1}{2\pi} \int_{\alpha}^{\alpha + 2\pi} f(re^{p\sqrt{-1}}) dp,$$

pour tout module r moindre que R.

En esset, z étant une sonction de r et de p, si l'on dis

férentie $f\left(z\right)$ tour à tour par rapport à r et à p, on aura

$$\frac{d f(z)}{dr} = f'(z) \frac{dz}{dr} = f'(z) e^{p\sqrt{-1}},$$

$$\frac{d f(z)}{dp} = f'(z) \frac{dz}{dp} = f'(z) re^{p\sqrt{-1}} \sqrt{-1},$$

ct, par conséquent,

$$\frac{d f(z)}{dr} = \frac{1}{r\sqrt{-1}} \frac{d f(z)}{dp}.$$

Comme, par hypothèse, f'(z) reste finie et continue pour toute valeur de z dont le module est moindre que R, la même propriété appartient aux deux membres de cette dernière équation. En les multipliant par dr. dp, et les intégrant par rapport à r depuis o jusqu'à r, et par rapport à p depuis α jusqu'à $\alpha + 2\pi$, on α

$$\int_{\alpha}^{\alpha+2\pi} dp \int_{0}^{r} \frac{df(z)}{dr} dr = \int_{0}^{r} \frac{dr}{r\sqrt{-1}} \int_{\alpha}^{\alpha+2\pi} \frac{df(z)}{dp} dp;$$
or on a
$$\int_{0}^{r} \frac{df(z)}{dr} dr = f(z) - f(o),$$

et puisque

$$\int \frac{df(z)}{dp} dp = f(z) = f(re^{p\sqrt{-1}}),$$

on a

$$\int_{\alpha}^{\alpha + 2\pi} \frac{df(z)}{dp} dp = f \left[re^{\langle \alpha + 2\pi \rangle \sqrt{-1}} \right] - f \left(re^{\alpha \sqrt{-1}} \right).$$

Mais le second membre est nul par hypothèse; par conséquent

$$\int_{0}^{r} \frac{dr}{r\sqrt{-1}} \int_{\alpha}^{\alpha+2\pi} \frac{df(z)}{dp} dp = 0,$$
et
$$\int_{\alpha}^{\alpha+2\pi} [f(z) - f(0)] dp = 0;$$
done
$$f(0) \int_{\alpha}^{\alpha+2\pi} dp = \int_{\alpha}^{\alpha+2\pi} f(z) dp,$$

911

(I)
$$f(\mathbf{o}) = \frac{1}{2\pi} \int_{\alpha}^{\alpha + 2\pi} f(z) dp,$$

ce qu'il fallait démontrer.

474. Si f(z) et f'(z) restent finies et continues pour toutes les valeurs de z dont le module est compris entre r et ρ , en appelant ζ la valeur de z qui a ρ pour module, on aura

$$\int_{\alpha}^{\alpha+2\pi} f(z) dp = \int_{\alpha}^{\alpha+2\pi} f(\zeta) dp:$$

ainsi la valeur de $\int f(z) dp$ est indépendante du module r, ce qu'on vérifie en différentiant.

475. En faisant $\alpha = 0$ dans la formule (I), on aura

(II)
$$f(0) = \frac{1}{2\pi} \int_0^{2\pi} f(re^{p\sqrt{-1}}) dp,$$

et si l'on fait ensuite $\alpha = -2\pi$ et que l'on change p en -p, on aura

$$f(0) = \frac{1}{2\pi} \int_0^{2\pi} f(re^{-p\sqrt{-1}}) dp.$$

476. En remplaçant f(z) par f(x+p) dans la formule (I), on en déduit

$$f(x) = \frac{1}{2\pi} \int_{\alpha}^{\alpha + 2\pi} f(x + re^{p\sqrt{-1}}) dp,$$

car on a f(0) = f(x). Ainsi une fonction f(x) d'une variable x, réelle ou imaginaire, peut être représentée par une intégrale définie, pourvu que $f(x + re^{p\sqrt{-1}})$ reste finie et continue ainsi que sa dérivée pour la valeur attribuée à r et pour toute valeur moindre, et que cette fonction reprenne la même valeur quand p augmente de 2π .

APPLICATIONS.

477. Les formules précédentes donnent les valeurs d'une classe nombreuse d'intégrales définies. Prenons d'abord

$$f(z) = \frac{1}{1-z}.$$

Cette fonction et sa dérivée deviennent infinies pour z=1, valeur dont le module est r=1; mais elles sont finies et continues pour toute valeur moindre attribuée au module. On peut donc appliquer la formule (II) qui donne, pour r < 1,

(1)
$$1 = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{dp}{1 - z},$$
ou
$$2\pi = \int_{0}^{2\pi} \frac{dp}{1 - r\cos p - \sqrt{-1} r\sin p},$$

$$= \int_{0}^{2\pi} \frac{(1 - r\cos p + \sqrt{-1} r\sin p)}{1 - 2r\cos p + r^{2}} dp,$$

et, en séparant les parties réelles et les imaginaires,

$$\int_0^{2\pi} \frac{(1 - r\cos p) dp}{1 - 2r\cos p + r^2} \stackrel{?}{=} 2\pi,$$

$$\int_0^{2\pi} \frac{\sin p dp}{1 - 2r\cos p + r^2} = 0.$$

Cette dernière formule est d'ailleurs évidente, puisque les éléments de l'intégrale correspondent à des valeurs de p dont la somme est 2π , sont égaux et de signes contraires.

478. On trouve directement la formule (1) en observant que la fonction $\frac{1}{1-z}$ peut être développée en une série convergente quand le module de z est moindre que l'unité. On a, en effet, dans ce cas,

$$\frac{1}{1-z} = 1 + z + z^2 + z^2 + \dots ,$$

d'où résulte la série convergente

$$\int_0^{2\pi} \frac{dp}{1-z} = \int_0^{2\pi} dp + \int_0^{2\pi} z dp + \int_0^{2\pi} z^2 dp + \dots$$

Mais on a
$$\int_0^{2\pi} dp = 2\pi,$$

et, d'ailleurs, pour tout exposant positif différent de zéro,

$$\int_{0}^{2\pi} z^{n} dp = r^{n} \int_{0}^{2\pi} e^{np\sqrt{-1}} dp = 0;$$

$$\int_{0}^{2\pi} \frac{dp}{1-z} = 2\pi.$$

done

479. Faisons dans la formule (II) $f(z) = e^{az}$. Cette fonction, ainsi que sa dérivée, est finie et continue pour toute valeur de z et n'a qu'une seule valeur. On a donc, quel que soit le module r,

$$1 = \frac{1}{2\pi} \int_0^{2\pi} e^{2r\cos p + \sqrt{-1} \arcsin p} dp,$$

d'où l'on tire, en faisant ar = b et en séparant les quantités réelles d'avec les imaginaires,

$$\int_0^{2\pi} e^{b\cos p} \cos(b\sin p) dp = 2\pi,$$

$$\int_0^{2\pi} e^{b\cos p} \sin(b\sin p) dp = 0.$$

480. Soit encore

$$f(z) = 1(1-z),$$
 d'où $f'(z) = -\frac{1}{1-z}$

La fonction et sa dérivée deviennent infinies pour la valeur z=1 dont le module est 1. Il faut donc, dans la formule (II), supposer r<1. D'ailleurs en faisant croître p d'une manière continue depuis une valeur quelconque α jusqu'à la valeur $\alpha+2\pi$, la fonction 1(1-z) reprendra pour $p=\alpha+2\pi$ la valeur qu'elle avait pour $p=\alpha$.

En effet, posons

$$1-z=\rho(\cos\theta+\sqrt{-1}\sin\theta),$$

ρ et θ scront déterminés par les équations '

$$\rho \cos \theta = 1 - r \cos p$$
, $\rho \sin \theta = -r \sin p$;

on en déduit

$$\rho = +\sqrt{1 - 2r\cos p + r^2},$$

$$-r\cos p = -r\sin p$$

$$\cos\theta = \frac{1 - r\cos p}{\sqrt{1 - 2r\cos p + r^2}}, \quad \sin\theta = \frac{-r\sin p}{\sqrt{1 - 2r\cos p + r^2}}.$$

On connaît donc $\cos\theta$ et $\sin\theta$ en fonction de p. Si l'on donne à p une première valeur arbitraire α , on a, par ces formules, la valeur de $\cos\theta$ et celle de $\sin\theta$ auxquelles correspondent une infinité de valeurs de l'arc θ . Choisissons à volonté une de ces valeurs que nous désignerons par θ . En faisant croître p d'une manière continue depuis α jusqu'à $\alpha+2\pi$, les valeurs de $\cos\theta$ et de $\sin\theta$ varieront par degrés insensibles, et redeviendront, pour $p=\alpha+2\pi$, égales à leurs valeurs initiales pour $p=\alpha$. Par conséquent, l'arc θ variera aussi d'anne manière continue à partir de sa valeur initiale θ qui correspond à $p=\alpha$, et quand p atteindra la limite supérieure $\alpha+2\pi$, θ sera revenu à sa valeur initiale θ , ou bien il en différera d'une ou de plusieurs circonférences.

Mais si l'on suppose r < 1, je dis qu'on aura $\theta = 6$ pour $p = \alpha + 2\pi$ comme pour $p = \alpha$; car la formule

$$\cos\theta = \frac{1 - r\cos p}{\sqrt{1 - 2r\cos p + r^2}}$$

fait voir que si l'on a r < 1, $\cos \theta$ reste positif pour toutes les valeurs de p. Donc l'extrémité mobile de l'arc variable θ , mesuré à partir d'une origine fixe sur un cercle, se trouvera toujours dans le premier ou dans le quatrième quart de cercle, et puisque son sinus et son cosinus reprennent pour $p = \alpha + 2\pi$ leurs valeurs pour $p = \alpha$, l'arc θ lui-même reprendra pour $p = \alpha + 2\pi$ la valeur θ qu'on lui avait assignée pour $p = \alpha$.

Ayant posé

$$1 - z = \rho \left(\cos\theta + \sqrt{-1}\sin\theta\right) = \rho e^{\theta\sqrt{-1}},$$
$$1(1 - z) = 1\rho + \theta\sqrt{-1},$$

on a

et la formule (II) nous donne

$$o = \int_0^{2\pi} (l\rho + \theta \sqrt{-1}) d\rho,$$

équation qui revient aux suivantes :

$$\int_0^{2\pi} l\left(\sqrt{1 - 2r\cos p + r^2}\right) dp = 0,$$

$$\int_0^{2\pi} \arctan \frac{-r\sin p}{1 - r\cos p} dp = 0.$$

DÉVELOPPEMENT DES FONCTIONS.

481. M. Cauchy a fait servir la formule (I) au développement des fonctions en série et il en a déduit les conditions sous lesquelles ces développements sont convergents. Il est arrivé ainsi à ce théorème remarquable :

Une fonction F(x) d'une variable x réelle ou imaginaire peut être développée en série convergente suivant les puissances entières et positives de x, tant que le module de x est moindre que celui pour lequel la fonction ou sa dérivée première devient infinie ou discontinue.

D'après ce théorème, pour la démonstration duquel nous renverrons aux ouvrages mêmes de M. Cauchy, les fonctions

$$e^x$$
, $\sin x$, e^{x^2} , $\cos(1-x^2)$

ne cessant jamais d'être finies et continues, seront toujours développables suivant les puissances ascendantes de x. Mais les fonctions

$$\frac{1}{1-x}$$
, $\frac{x}{1+\sqrt{1-x^2}}$, $1(1+x)$, are tang x ,

et leurs dérivées cessant d'être continues quand le module de x devient égal à l'unité, ne seront développables que si ce module est moindre que l'unité. Les séries obtenues pourront devenir et deviendront en effet divergentes si le module de x surpasse l'unité. Enfin les fonctions 1x, e^x , $\cos \frac{1}{x}$ devenant discontinues avec leurs dérivées pour x = 0 et par conséquent lorsque le module de x est le plus petit possible, elles ne seront jamais développables en séries convergentes ordonnées suivant les puissances ascendantes de x.

482. Les dérivées des fonctions que nous venons de nommer deviennent infinies et discontinues en même temps que ces fonctions. S'il en était téujours ainsi, on pourrait, dans l'énoncé du théorème général, omettre la condition relative à la dérivée première; mais on n'a pas, à cet égard, une certitude suffisante.

DES INTÉCRALES EULÉRIENNES. — DÉFINITION. — PROPRIÉ-TÉS DE L'INTÉGRALE DE PREMIÈRE ESPÈCE.

483. On nomme intégrale eulérienne de première espèce et l'on représente par B(p,q) l'intégrale

$$\int_0^1 x^{p-1} (1-x)^{q-1} dx,$$

dans laquelle p et q désignent des nombres positifs. On verra, comme dans une autre occasion (455), que l'intégrale précédente aurait une valeur infinie si p ou q était négatif.

On nomme intégrale eulérienne de seconde espèce, l'expression déjà considérée (455, 458)

$$\Gamma(n) = \int_0^\infty e^{-x} x^{n-1} dx = \int_0^{\infty} \left(1 \frac{1}{z}\right)^{n-1} dz.$$

484. L'intégrale de première espèce peut se mettre sous l'une des deux formes

$$\int_0^\infty \frac{y^{p-1} dy}{(1+y)^{p+q}}, \quad 2\int_0^{\frac{\pi}{2}} \sin^{2p-1}\theta \cos^{2q-1}\theta d\theta,$$

en posant $x = \frac{y}{1+y}$ dans le premier cas, $x = \sin^2 \theta$ dans le second.

185. L'intégrale de première espèce est une fonction symétrique de p et de q; car si l'on pose $x = \mathbf{1} - y$, on a

$$\mathbf{B}\left(p,q\right) = \int_{0}^{1} \left(1-y\right)^{p-1} y^{q-1} dy = \mathbf{B}\left(q,p\right).$$

On a done

$$B(p,q) = B(q,p)$$

486. On peut diminuer d'une unité chacun des exposants p et q. Car, en intégrant par parties, on a

$$\begin{split} \int x^{p} (\mathbf{1} - x)^{q-1} dx &= -\frac{x^{p} (\mathbf{1} - x)^{q}}{q} + \frac{p}{q} \int x^{p-1} (\mathbf{1} - x)^{q-1} (\mathbf{1} - x) \, dx \\ &= -\frac{x^{p} (\mathbf{1} - x)^{q}}{q} + \frac{p}{q} \int x^{p-1} (\mathbf{1} - x)^{q-1} - \frac{p}{q} \int x^{p} (\mathbf{1} - x)^{q-1} \, dx \end{split}$$

on aura donc, en prenant pour limites o et 1,

$$B(p+1,q) = \frac{p}{q} B(p,q) - \frac{p}{q} B(p+1,q);$$

$$B(p+1,q) = \frac{p}{p+q} B(p,q),$$

d'où

on aura de même

$$B(p, q + 1) = \frac{q}{p+q} B(p, q).$$

RELATIONS ENTRE LES INTÉGRALES DE PREMIÈRE ET DE SECONDE ESPÈCE.

487. Toute intégrale de première espèce peut s'exprimer au moyen de deux intégrales de seconde espèce.

En effet, si dans l'intégrale $\Gamma(p)$ on change x en j^2 , on aura

$$\Gamma\left(p\right)=2\int_{0}^{\infty}e^{-y^{z}}\,\gamma^{2p-1}\,d\gamma\,.$$

On aura aussi $\Gamma(q) = 2 \int_0^{\infty} e^{-x^2} x^{2q-1} dx;$

donc
$$\Gamma(p)\Gamma(q) = 4 \int_0^\infty \int_0^\infty e^{-x^2-y^2} x^{2q-1} y^{2p-1} dx dy$$
.

Le second membre représente le volume compris entre la surface qui a pour équation

et les plans coordonnés; en prenant des coordonnées polaires r et θ , ce volume sera encore représenté par

$$2\int_{0}^{\frac{\pi}{2}}\sin^{2p-1}\theta\cos^{2q-1}\theta\,d\theta\times 2\int_{0}^{\infty}e^{-r^{2}}r^{2p+2}e^{-t}\,dr.$$

Or le premier facteur est égal à B (p, q) (483), et le se sond à $\Gamma(p+q)$; on a donc

$$\Gamma\left(p\right)\Gamma\left(q\right)=\mathrm{B}\left(p,q\right)\Gamma\left(p\neq q\right),$$

d'où

(1)
$$B(p, q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}.$$

488. Si dans le premier membre de l'équation précédente on pose $x = \frac{u}{a}$, on aura

$$\int_{0}^{a} \frac{u^{p-1}}{a^{p-1}} \cdot \frac{(a-u)^{q-1}}{a^{q-1}} \cdot \frac{du}{a} = \frac{\Gamma\left(p\right)\Gamma\left(q\right)}{\Gamma\left(p+q\right)};$$

d'où

(2)
$$\int_0^{\mathfrak{m}} u^{p+1} (a-u)^{q+1} du = a^{p+q+1} \frac{\Gamma(p) \Gamma(q)}{\Gamma(p+q)}$$

intégrales multiples qui s'expriment a l'aide des fonctions Γ .

489. La formule (2) est un cas particulier d'une formule plus générale au moyen de laquelle on exprime par des fonctions Γ l'intégrale multiple

$$\iiint \dots x^{p-1} y^{q-1} z^{p-1} \dots (a-x-y-z-1)^{s-1} dx dy dz \dots,$$

étendue à toutes les valeurs positives de x, y, z, \ldots , qui satisfont à l'inégalité

$$x + y + z + \ldots < a$$

En effet, en se bornant à trois variables, pour fixer les idées, soit

$$\mathbf{A} = \int_{0}^{a} x^{p-1} dx \int_{0}^{a-x} y^{q-1} dy \int_{0}^{a-x-y} z^{p-1} (a-x-y-z)^{s-1} dz.$$

ou

J'intègre d'abord par rapport à z, et j'ai pour résultat

$$(a-x-y)^{r+s-1}\frac{\Gamma(r)\hat{\Gamma}(s)}{\Gamma(r+s)}$$

Multiplions par $\gamma^{q-1} dy$ et intégrons par rapport à γ depuis $\gamma = 0$ jusqu'à $\gamma = a - x$, nous aurons

$$(a-x)^{q+r+s-1} \frac{\Gamma(q)\Gamma(r+s)}{\Gamma(q+r+s)} \cdot \frac{\Gamma(r)\Gamma(s)}{\Gamma(r+s)},$$

$$(a-x)^{q+r+s-1} \frac{\Gamma(q)\Gamma(r)\Gamma(s)}{\Gamma(q+r+s)}.$$

Enfin, multiplions par $x^{p-1}dx$ et intégrons de x = 0 à x = a, il vient

(1)
$$A = a^{p+q+r+s-1} \frac{\Gamma(p)\Gamma(q)\Gamma(r)\Gamma(s)}{\Gamma(p+q+r+s)}.$$

Si dans cette formule on fait s = 1, a = 1, on aura

$$\iiint x^{p-1} y^{q-1} z^{r-1} dx dy dz = \frac{\Gamma(p) \Gamma(q) \Gamma(r)}{\Gamma(p+q+r+1)},$$

l'intégrale du premier membre étant prise pour toutes les valeurs positives de $x,\,\gamma,\,z$ qui satisfont à l'inégalité

$$x+y+z<1$$
.

490. De là on déduit la valeur de l'intégrale

$$B = \iiint x^{p-1} y^{q-1} z^{r-1} dx dy dz,$$

étendue à toutes les valeurs positives de x, y, z pour lesquelles la somme $\left(\frac{x}{a}\right)^{\alpha} + \left(\frac{y}{b}\right)^{\beta} + \left(\frac{z}{c}\right)^{\gamma}$ reste inférieure ou au plus égale à 1. Car, en posant

$$\left(\frac{x}{a}\right)^{\alpha} = \xi, \quad \left(\frac{y}{b}\right)^{\beta} = \eta, \quad \left(\frac{z}{c}\right)^{\gamma} = \zeta,$$

l'intégrale cherchée devient

$$\frac{a^p \, b^q \, c^r}{\alpha \, \beta \, \gamma} \int \int \int \xi^{\frac{p}{\alpha} - 1} \frac{q}{\eta^{\beta}} - \frac{r}{\zeta^{\gamma}} \frac{r}{d\xi \, d\eta \, d\zeta},$$

avec la condition $\xi + \eta + \zeta < 1$. Donc

(2)
$$B = \frac{a^p b^q c^r}{\alpha \beta \gamma} \frac{\Gamma\left(\frac{p}{\alpha}\right) \Gamma\left(\frac{q}{\beta}\right) \Gamma\left(\frac{r}{\gamma}\right)}{\Gamma\left(\frac{p}{\alpha} + \frac{q}{\beta} + \frac{r}{\gamma} + 1\right)}.$$

APPLICATIONS À LA RECHERCHE DES VOLUMES ET DES CENTRES DE GRAVITÉ.

491. La formule (2) permet d'obtenir le volume compris entre les plans coordonnés et la surface dont l'équation est

$$\left(\frac{x}{a}\right)^{\alpha} + \left(\frac{y}{b}\right)^{\beta} + \left(\frac{z}{c}\right)^{\gamma} = 1.$$

Par exemple, en faisant $\alpha=\beta=\gamma=2$, p=q=r=1, l'intégrale désignée par B (490) représentera le volume V du $\frac{1}{8}$ de l'ellipsoïde dont les axes sont 2a, 2b, 2c. On aura donc

$$V = \frac{abc}{8} \frac{\Gamma\left(\frac{1}{2}\right)^3}{\Gamma\left(\frac{3}{2} + 1\right)};$$

mais (456) $\Gamma\left(\frac{3}{2}+\Gamma\right) = \frac{3}{2}\Gamma\left(\frac{3}{2}\right) = \frac{3}{4}\Gamma\left(\frac{1}{2}\right)$

d'ailleurs (487, 466)

$$\Gamma\left(\frac{1}{2}\right) = 2 \int_0^\infty e^{-x^2} dx = \sqrt{\tau};$$

done

 $\mathbf{V} = \frac{\pi \, abc}{6}.$

492. Si l'on demande les coordonnées x_1, y_1, z_1 du centre de gravité de ce volume, il faudra prendre la formule

$$Vx_1 = \iiint x \, dx \, dy \, dz,$$

et l'on aura, en faisant $\alpha = \beta = \gamma = 2$, p = 2, q = r = 1,

$$V x_1 = \frac{a^2 bc}{8} \cdot \frac{\Gamma(1) \Gamma(\frac{1}{2})^2}{\Gamma(3)} = \frac{\pi a^2 bc}{16},$$

d'où

$$x_{1} = \frac{3}{8} a;$$

on trouverait de la même manière $y_1 = \frac{3}{8}b$, $z_1 = \frac{3}{8}c$.

II.

QUARANTIÈME LEÇON.

Intégration des différentielles totales des fonctions de plusieurs variables. —
Condition d'intégrabilité et intégration dans le cas de deux variables. —
Extension au cas d'un nombre quelconque de variables. — Intégration des équations différentielles. — Équations du premier ordre. — Séparation des variables. — Équations homogènes. — Équations rendues homogènes.

CONDITION D'INTÉGRABILITÉ DES FONCTIONS DE DEUX VARIABLES.

493. Intégrer une expression différentielle de la forme $M dx + N dy + P dz \dots$, c'est chercher une fonction de x, y, z, \dots , dont cette expression soit la différentielle totale.

Une différentielle relative à une seule variable a toujours une intégrale (I, 316); il n'en est pas toujours ainsi d'une fonction différentielle de plusieurs variables, et certaines conditions doivent être remplies pour qu'une telle expression soit la différentielle totale d'une fonction. En effet, si $u = f(x, \gamma)$, on a

$$du = \frac{du}{dx} dx + \frac{du}{dy} dy,$$
$$\frac{d}{dx} = \frac{d}{dx} \frac{du}{dy} = \frac{du}{dx} \frac{du}{dx}$$

et

mais si l'on désigne par M dx + N dy la différentielle totale de la fonction u, on aura

$$M = \frac{du}{dx}, \quad N = \frac{du}{dy};$$

done

$$\frac{d\mathbf{M}}{dy} = \frac{d\mathbf{N}}{dx}.$$

L'expression M dx + N dy ne pourra donc être intégrée si la dernière relation n'a pas lieu.

494. Si cette condition est remplie, Mdx + Ndy sera la différentielle totale d'une fonction u. En d'autres termes, il existera une fonction u telle, que l'on ait

$$\frac{du}{dx} = M, \quad \frac{du}{d\gamma} = N.$$

En effet, cherchons, si cela est possible, une fonction u telle, que l'on ait

$$du = \mathbf{M} \, dx + \mathbf{N} \, d\hat{y}.$$

La fonction cherchée devant avoir M dx pour différentielle par rapport à x, sera égale à l'intégrale de M dx augmentée d'une quantité $\varphi(y)$ indépendante de x, mais fonction de y; u sera donc de la forme

$$u = \int M dx + \varphi(y) = v + \varphi(y),$$

en posant $v = \int M dx$.

Il reste à déterminer $\varphi(y)$ de manière que $\frac{du}{dy} = N$. Or on a

$$\frac{du}{dy} = \frac{dv}{dy} + \frac{d \cdot \varphi(y)}{dy}$$
:

d'où

$$\frac{d \cdot \varphi(y)}{dy} = \mathbf{N} - \frac{dv}{dy}.$$

On voit par là que $N - \frac{dv}{dy}$ ne doit pas contenir x. On aura donc

$$\frac{d\left(\mathbf{N}-\frac{dv}{d\gamma}\right)}{dx}=0,$$

ou

$$\frac{dN}{dx} = \frac{d\frac{dv}{dy}}{dx} = \frac{d\frac{dv}{dx}}{dy} = \frac{dM}{dy}.$$

On retrouve ainsi la condition

$$\frac{d\mathbf{N}}{dx} = \frac{d\mathbf{M}}{dy}:$$

si cette condition est remplie, on aura

$$\varphi\left(y\right) = \int \left(\mathbf{N} - \frac{d\mathbf{v}}{dy}\right) \, dy$$

et, par suite,

(2)
$$u = \int M dx + \int \left(N - \frac{dv}{dy}\right) dy.$$

EXTENSION AU CAS DE PLUSIEURS VARIABLES.

495. Soit

$$M dx + N dy + P dz = du,$$

c'est-à-dire

$$\frac{du}{dx} = \mathbf{M}, \quad \frac{du}{dy} = \mathbf{N}, \quad \frac{du}{dz} = \mathbf{P};$$

on aura

$$\frac{d\frac{du}{dx}}{dy} = \frac{d\frac{du}{dy}}{dx}, \quad \frac{d\frac{du}{dx}}{dz} = \frac{d\frac{du}{dz}}{dx}, \quad \frac{d\frac{du}{dy}}{dz} = \frac{d\frac{du}{dz}}{dy},$$

ou bien

(II)
$$\frac{d\mathbf{M}}{dy} = \frac{d\mathbf{N}}{dx}, \quad \frac{d\mathbf{M}}{dz} = \frac{d\mathbf{P}}{dx}, \quad \frac{d\mathbf{N}}{dz} = \frac{d\mathbf{P}}{dy}.$$

Telles sont les conditions que doit remplir la formule proposée pour être intégrable.

496. Réciproquement si ccs conditions sont remplies, je dis que la formule proposée est intégrable. En effet, cherchons une fonction u telle, que

$$(1)' du = M dx + N dy + P dz.$$

Puisque la différentielle de u, par rapport à x, doit être $\mathbf{M} dx$, on aura

$$u = \int M dx + \varphi(y, z) = v + \varphi(y, z),$$

en posant $\nu = \int M dx$,

Maintenant il faudra que l'on ait

$$\frac{du}{dy} = N, \quad \frac{du}{dz} = P,$$

c'est-à-dire

$$\frac{dv}{dy} + \frac{d\varphi}{dy} = N, \quad \frac{d\varphi}{dz} + \frac{d\varphi}{dz} = V.$$

$$\frac{d\varphi}{d\gamma} = N - \frac{dv}{d\gamma}, \quad \frac{d\varphi}{dz} = P - \frac{dv}{dz}.$$

Or $\frac{d\varphi}{dy}$ et $\frac{d\varphi}{dz}$ ne doivent contenir que y et z, par hypothèse; donc on aura

$$\frac{d\left(\mathbf{N} - \frac{d\mathbf{v}}{d\mathbf{y}}\right)}{dx} = \mathbf{0}, \quad \frac{d\left(\mathbf{P} - \frac{d\mathbf{v}}{d\mathbf{z}}\right)}{dx} = \mathbf{0}$$

ou

(2)
$$\frac{dN}{dx} = \frac{dM}{dy}, \quad \frac{dP}{dx} = \frac{dM}{dz}.$$

En outre, la fonction \u03c4 doit satisfaire à la condition

on aura donc
$$\frac{d \cdot \frac{d\varphi}{dy}}{dz} = \frac{d \cdot \frac{d\varphi}{dz}}{dy};$$

$$\frac{d \left(N - \frac{dv}{dy}\right)}{dz} = \frac{d \left(P - \frac{dv}{dz}\right)}{dy} \text{ ou}$$

$$\frac{dN}{dz} = \frac{dP}{dy}.$$

Si ces trois conditions (2) et (3) sont remplies, il existera une fonction de y et de z telle, que

$$d\varphi = \left(\mathbf{N} - \frac{dv}{dy}\right)dy + \left(\mathbf{P} - \frac{dv}{dz}\right)dz,$$

et l'on aura

$$u = v + \varphi$$

497. La méthode que nous venons d'employer s'étend à un nombre quelconque de variables. En général $\frac{n(n-1)}{2}$ est le nombre des conditions nécessaires et suffisantes pour l'intégrabilité d'une formule, n étant le nombre des variables.

498. Exemples.

10.
$$du = \left[\frac{1}{x} - \frac{y^2}{(x - y)^2}\right] dx + \left[\frac{x^2}{(x - y)^2} - \frac{1}{y}\right] dy$$
.
40 $du = \left(\sqrt{x^2 + \frac{y^2}{\sqrt{x^2 + y^2}}}\right) dx - \left(\frac{xy}{\sqrt{x^2 + y^2}} + 1\right) dy = 0$

$$u \ge \sqrt{x^2 + y^2} - y = 0$$

On a
$$\frac{dM}{dy} = -\frac{2xy}{(x-y)^3} = \frac{dN}{dx},$$

$$v = \int M dx = 1x + \frac{y^2}{x-y} + \varphi(y),$$

$$\frac{du}{dy} = \frac{2xy - y^2}{(x-y)^2} + \frac{d\varphi}{dy} = \frac{x^2}{(x-y)^2} - \frac{1}{y},$$

$$\frac{d\varphi}{dy} = 1 - \frac{1}{y}, \quad \varphi = y - 1y + c,$$

$$u = \frac{xy}{x-y} + 1\frac{x}{y} + c.$$

$$2^{\circ}.$$

$$du = \frac{y dx - x dy}{x^2 + y^2}.$$

Solution: $u = \arctan \frac{x}{y} + c$.

3°.
$$(y+z) dx + (z+x) dy + (x+y) dz = du.$$
Solution:
$$u = xy + xz + yz + c.$$

ÉQUATIONS DIFFÉRENTIELLES. - DÉFINITIONS.

- 499. On nomme équation différentielle du nième ordre une relation entre une variable, une fonction de cette variable et les dérivées ou différentielles de divers ordres de cette fonction jusqu'au nieme ordre inclusivement.
- 500. Une équation différentielle du premier ordre à deux variables sera donc de la forme

$$F\left(x, y, \frac{dy}{dx}\right) = 0.$$

En la résolvant par rapport à $\frac{dy}{dx}$, on aura une ou plusieurs équations de la forme

$$\frac{dy}{dx} = f(x, y) \quad \text{ou} \quad M dx + N dy = 0,$$

M et N étant des fonctions connues de x et de y?

INTÉGRATION DES ÉQUATIONS DU PREMIER ORDRE. — SÉPARATION DES VARIABLES.

501. L'intégration s'effectue immédiatement quand les variables peuvent être séparées, c'est-à-dire quand il est possible de mettre l'équation sous la forme

$$\varphi(x) dx = \psi(y) d\hat{y};$$

ou aura

$$\int \varphi(x) dx = \int \psi(y) dy + c.$$

C'est ce qui arrive si l'équation est de la forme

$$\frac{dy}{dx} = \varphi\left(x \setminus \psi\left(y\right)\right):$$

on sépare les variables en écrivant

$$\varphi\left(x\right)dx = \frac{dy}{\psi\left(y\right)}.$$

502. Exemples.

1°.
$$x^{m} dx + y^{n} dy = 0,$$
$$\frac{x^{m+1}}{m+1} + \frac{y^{n+1}}{n+1} = c.$$
$$x^{2} dy = (y+a) dx;$$

cette équation revient à

$$\frac{dy}{y+a} = \frac{dx}{x^2}.$$

On en déduit

$$l(y+a) = c - \frac{1}{x}$$

ou
$$y + a = e^{c - \frac{1}{x}},$$
3°.
$$xy dx = (a - x)(y - b) dy,$$

$$x - b = x dx$$

d'où $\frac{y-b}{y}dy = \frac{x dx}{a-x}$

On en tire $y^b c (a-x)^{-a} = e^{x+y}.$

ÉQUATIONS HOMOGÈNES.

503. On peut encore séparer les variables lorsque l'équation

$$(1) M dx + N dy = 0$$

est homogène, c'est-à-dire quand M et N sont des fonctions homogènes et du même degré des variables x et y. On a, dans ce cas, m étant le degré de l'homogénéité,

$$\mathbf{M} = x^m \varphi\left(\frac{y}{x}\right), \quad \mathbf{N} = x^m \psi\left(\frac{y}{x}\right).$$

L'équation différentielle, divisée par x^m , devient donc

(2)
$$\varphi\left(\frac{y}{x}\right)dx + \psi\left(\frac{y}{x}\right)dy = 0.$$

Si l'on pose

$$\frac{y}{x} = z$$
, d'où $dy = xdz + zdx$,

Téquation (2) deviendra, en divisant par $x[\varphi(z)+z\psi(z)]$,

$$\frac{dx}{x} + \frac{\psi(z) dz}{\varphi(z) + z\psi(z)} = 0;$$

d'où

(3)
$$1x + \int \frac{\psi(z) dz}{\varphi(z) + z\psi(z)} = c.$$

504. Exemples.

$$1^{\circ}. xdy - \gamma dx = dx \sqrt{x^2 + \gamma^2}.$$

Cette équation est homogène et du premier degré. En appliquant la méthode précédente, on la ramène d'abord à

$$\frac{dx}{x} = \frac{dz}{\sqrt{1+z^2}},$$

d'où l'on tire, en intégrant,

$$1x = 1c\left(z + \sqrt{1+z^2}\right),$$

ou
$$\frac{x}{z + \sqrt{1 + z^2}} = c;$$

ce qui donne, en remplaçant z par $\frac{y}{x}$ et en faisant dis-

paraître le radical,

$$(1) x^2 = 2cy + c^2.$$

On parvient à l'équation différentielle que nous venons

d'intégrer en cherchant à résondre ce problème: Trouver une courbe MNP telle, que le rayon vecteur OM soit égal au segment OT compris entre l'origine et le point où la tangente MT rencoutre l'axe des y. D'après l'équation (1), cette propriété appartient à toutes les pa-

raboles qui ont pour axe l'axe Oy et pour foyer le point O.

$$2^{\circ}. xdx + ydy = 2nydx.$$

On trouve

$$\int \frac{zdz}{1 - 2nz + z^2} = c,$$

ou
$$1x + \frac{1}{2}1(1 - 2nz + z^2) + \int \frac{ndz}{1 - 2nz + z^2} = c.$$

Dans le cas de n=1, on arrive à l'équation intégrale

$$(x-y)e^{\frac{x}{x-y}} = c.$$

$$3^{\circ}. \qquad \int y dx = \frac{y^{\circ}}{x}.$$

En différentiant, on a

$$ydx = \frac{3y^2xdy - y^3dx}{x^2},$$

équation homogène dont l'intégrale est

$$(x^{2}-2y^{2})^{3} = cx^{2}.$$

$$(mx + ny) dx + (px + qy) dy = 0.$$
On a
$$1x + \int \frac{(p+qz) dz}{m + (n+p)z + qz^{2}} = c,$$

et l'intégration peut toujours s'achever.

ÉQUATIONS QUE L'ON PEUT RENDRE HOMOGÈNES.

505. On peut quelquefois rendre homogène une équation qui ne présente pas ce caractère. C'est ce qui arrive pour l'équation

(1)
$$(a + mx + ny) dx + (b + px + qy) dy = 0.$$

En posant

$$x = x' + \alpha, \qquad y = y' + 6,$$

on a

$$(a + m\alpha + n6 + mx' + ny') dx' + (b + p\alpha + q6 + px' + qy') dy'.$$

Il suffira, pour rendre cette équation homogène, de poser

$$a + m\alpha + n6 = 0,$$

$$b + p\alpha + q6 = 0;$$

d'où l'on tire

$$a = \frac{bn - aq}{mq - np}, \qquad \varsigma = \frac{ap - bm}{mq - np},$$

et il restera l'équation

$$(mx' + ny') dx' + (px' + qy') dy' = 0.$$

506. Cette transformation est impossible si mq-np=0.

Dans ce cas, on a $q = \frac{np}{m}$, et l'équation (1) devient

$$m(a + mx + ny) dx + [mb + (mx + ny)'p] dy = 0.$$

On pose mx + ny = z; d'où $dy = \frac{dz - mdx}{n}$: il en résulte

$$m(a+z)dx + (bm+pz)\frac{dz - mdx}{n} = 0$$

et $mdx = \frac{(bm + pz) dz}{bm - an + (p - n) z},$

équation où les variables sont séparées.

Si, en même temps que mq - np = 0, on a q = 0, il faut que n ou p = 0, et les variables se séparent immédiatement.

507. L'équation (1) peut encore s'intégrer en posant

$$a + mx + ny = u$$
, $b + px + qy = v$;

d'où

$$mdx + ndy = du$$
, $pdx + qdy = dv$.

Les valeurs de x, y, dx, dy tirées de ces équations et substituées dans la proposée, conduisent à une équation homogène en u et v.

QUARANTE ET UNIÈME LEÇON.

Suite de l'intégration des équations du premier ordre. — Équations linéaires. Équations qui se ramènent aux équations linéaires. — Problème de de Beaune. — Problème des trajectoires. — Équations du premier ordre et d'un degré quelconque. — Cas où l'équation ne renferme pas les variables. — Cas où l'équation peut être résolue par rapport à l'une des variables.

ÉQUATIONS LINÉAIRES.

508. On appelle équation linéaire du premier ordre une équation de la forme

$$\frac{dy}{dx} + Py = Q,$$

dans laquelle P et Q désignent des fonctions de x. Pour l'intégrer on pose

y = uz;

d'où l'on tire

(2)
$$u \frac{dz}{dx} + \left(\frac{du}{dx} + Pu\right)z = Q.$$

On peut prendre à volonté l'un des facteurs de y: posons donc

$$\frac{du}{dx} + Pu = 0.$$

L'équation (2) se réduit à

$$(4) u \frac{dz}{dx} = Q.$$

L'équation (3) donne $\frac{du}{u} = -Pdx$, d'où

$$1u = -\int P dx$$
, ou $u = e^{-\int P dx}$.

On n'ajoute pas de constante à cette intégrale parce qu'il suffit qu'une valeur particulière de u satisfasse à l'équation (3).

En remplaçant u par $e^{-\int P dx}$ dans l'équation (4), en

aura

$$\frac{dz}{dx} = Q e^{\int \mathbf{P} dx}, \quad \text{d'où} \quad z = \int Q e^{\int \mathbf{P} dx} dx + c,$$

et, par conséquent,

$$y = e^{-\int \mathbf{P} dx} \left(\int \mathbf{Q} e^{\int \mathbf{P} dx} dx + c \right).$$

509. EXEMPLES.

ou
$$\frac{dy}{dx} + y = x^3,$$
$$y = e^{-\int dx} \left(\int x^3 e^{\int dx} dx + c \right),$$
$$y = ce^{-x} + x^3 - 3x^2 + 6x - 6.$$

$$2^{\circ} (1+x^2)\frac{dy}{dx} - xy = a.$$

Ici

$$P = \frac{-x}{1 + x^{2}}, \quad -\int P dx = \int \frac{x dx}{1 + x^{2}} = 1\sqrt{1 + x^{2}};$$

$$mc \qquad y = \sqrt{1 + x^{2}} \left[\int \frac{a dx}{(1 + x^{2})^{\frac{3}{2}}} + c \right].$$

Mais

$$\int \frac{a dx}{\left(1 + x^2\right)^{\frac{3}{2}}} = \frac{ax}{\sqrt{1 + x^2}} + c;$$

done

ÉQUATIONS QUI SE RAMÈNENT AUX ÉQUATIONS LINÉAIRES.

 $y = ax + c\sqrt{1 + x^2}$

510. On ramène aux équations linéaires les équations de la forme

$$\frac{dy}{dx} + Py = Qy^{n},$$
$$y^{-n}\frac{dy}{dx} + Py^{\frac{n}{2}-n} = Q.$$

ou

En effet, si l'on pose $\frac{y^{1-n}}{1-n} = z$, d'où $y^{-n}dy = dz$, on aura l'équation linéaire

$$\frac{dz}{dx} + 1 - n_j \mathbf{P}z = \mathbf{Q}$$

511. On peut encore opérer directement sur l'équation proposée comme on l'a fait au n° 508. En posant y=uz, on aura

$$u\frac{dz}{dx} + z\left(\frac{du}{dx} + Pu\right) = Qu^n z^n,$$

équation qui se partage en deux,

$$\frac{du}{dx} + Pu = 0, \quad \frac{dz}{dx} = Qu^{n-1}z^{n}.$$

On en tire

$$u = e^{-\int \mathbf{P} dx}, \quad \frac{dz}{z^n} = \mathbf{Q} e^{(1-n)\int \mathbf{P} dx} dx$$

$$z^{1-n} = (1-n) \left(\int Q e^{(1-n) \int P dx} dx + c \right),$$

et enfin

$$\gamma^{(-n)} = (1-n) e^{(n-1)\int \mathbf{P} dx} \left(\int \mathbf{Q} e^{(1-n)\int \mathbf{P} dx} dx + c \right) \cdot$$

512. On peut obtenir l'intégrale générale de l'équation

(1)
$$\frac{dy}{dx} + Py = Qy^2 + R,$$

quand on en connaît une intégrale particulière. Soit u une fonction qui satisfasse à cette équation sans renfermer de constante arbitraire. Posons y = u + z, il vient

$$\frac{du}{dx} + \frac{dz}{dx} + Pu + Pz = Qu^{2} + 2Quz + Qz^{2} + R:$$

mais on a, par hypothèse,

$$\frac{du}{dx} + Pu = Qu^2 + R;$$

l'équation (1) se réduit donc à

(2)
$$\frac{dz}{dx} + (P - 2Qu)z = Qz^2,$$

qu'on sait intégrer (510).

Si l'équation renfermait une puissance de $\underline{\jmath}$ supérieure à \jmath^2 , la même substitution ferait disparaître R. mais elle introduirait de nouvelles puissances de z.

513. Exemple. L'équation

$$\frac{dy}{dx} + Py = Qy^2 + 1 + Px - Qx^2$$

est satisfaite par y = x et se ramène à l'équation

$$\frac{dz}{dx} + (P - 2 Q x) z = Q z^2.$$

PROBLÈME DE DE BEAUNE.

514. Trouver une courbe telle, que la sous-tangente soit à l'ordonnée comme une ligne constante est à la différence entre l'ordonnée et l'abscisse.

L'équation différentielle de la courbe est

rentiefie de la courbe est
$$\frac{dy}{dx} = \frac{y - x}{a},$$

$$\frac{dy}{dx} - \frac{1}{a}y = -\frac{1}{a}x,$$

$$\frac{dy}{dx} - \frac{1}{a}x = -\frac{1}{a}x,$$

ou

équation linéaire et du premier ordre. En appliquant la formule du n° 508, on trouve pour son intégrale

$$y = x + a + ce^{\frac{x}{a}}.$$

Cette équation se simplifie, quand on prend pour axe des

$$y = x + a$$
,

en conservant le même axe des y: les formules de transformation sont dans ce cas

$$y = y' + \frac{x'}{\sqrt{2}} + a, \quad x = \frac{x'}{\sqrt{2}},$$

et l'équation de la courbe devient

$$y' = ee^{\frac{x'}{a\sqrt{2}}}.$$

PROBLÈME DES TRAJECTOIRES.

515. Trouver une courbe qui coupe sous un angle

donné toutes les courbes renfermées dans l'équation

$$(1) F(x, y, a) = 0,$$

a étant un paramètre variable.

Soient x, y les coordonnées du point M commun à l'une des courbes AB et à la trajectoire CD, m la tangente de l'angle donné, ensin T et T' les angles que les tangentes à la courbe AB et à la trajectoire au point (x, y)

font avec l'axe des x; on a

$$m = \frac{\tan T - \tan T'}{1 + \tan T \tan T'}.$$

Mais
$$\tan T^* = \frac{dy}{dx}$$
, $\tan T' = -\frac{\frac{dF}{dx}}{\frac{dF}{dy}}$;

done

$$m\left(1 - \frac{dy}{dx}\frac{\frac{d\mathbf{F}}{dx}}{\frac{d\mathbf{F}}{dy}}\right) = \frac{dy}{dx} + \frac{\frac{d\mathbf{F}}{dx}}{\frac{d\mathbf{F}}{dy}},$$

ou encore

$$(2) m\left(\frac{d\mathbf{F}}{dy} - \frac{d\mathbf{F}}{dx}\frac{dy}{dx}\right) = \frac{d\mathbf{F}}{dx} + \frac{d\mathbf{F}}{dy}\frac{dy}{dx}.$$

L'élimination de a entre les équations (1) et (2) donners l'équation différentielle du lieu.

516. Soit, par exemple,

$$y^n = ax^p.$$

On aura

$$m\left(ny^{n-1}+apx^{p-1}\frac{dy}{dx}\right)+apx^{p-1}-ny^{n-1}\frac{dy}{dx}=0.$$

En éliminant a, après avoir multiplié la dernière pac

x, on aura

$$m\left(nx + py\frac{dy}{dx}\right) - nx\frac{dy}{dx} + py = 0,$$

$$(mpy - nx)\frac{dy}{dx} + mnx + py = 0,$$

ou

équation homogène que l'on sait intégrer.

En particulier, si l'on suppose n=p=1, c'est-à-dire si l'on demande les trajectoires des droites représentées par l'équation

$$y = ax$$

l'équation différentielle sera

$$m(xdx + ydy) + ydx - xdy = 0;$$

en divisant par $x^2 + y^2$ et intégrant, on a

$$m \ln (x^2 + y^2)^{\frac{1}{2}} = c$$
 arc tang $\frac{y}{x}$,

et en prenant des coordonnées polaires,

$$m1r = c\theta;$$

ou

$$r = e^{\frac{c \theta}{m}}$$

Donc les courbes qui coupent sous le même angle toutes les droites nrenées par l'origine sont des spirales logarithmiques ayant cette origine pour point asymptote.

517. Le problème des trajectoires se simplifie quand l'angle donné est droit. Dans ce cas, les trajectoires sont dites orthogonales. L'équation différentielle s'obtient alors en éliminant a entre les deux équations

$$F(x, y, a) = 0, \quad \frac{dF}{dx} dy - \frac{dF}{dy} dx = 0.$$

Ainsi dans l'exemple du nº 516, il faut éliminer a entre les équations

$$y^n = ax^p, \quad ny^{n-1} + pax^{p-1}\frac{dy}{dx} = 0,$$

ce qui donne l'équation

$$nx + py \frac{dy}{dx} = 0,$$

dont l'intégrale est

$$nx^2 + py^2 =: c.$$

Suivant que n et p seront de même signe ou de signes contraires, cette équation représentera une infinité d'ellipses ou d'hyperboles semblables et concentriques.

Si l'on se proposait de chercher les trajectoires orthogonales des courbes données par l'équation

$$nx^2 + py^2 = c,$$

on devrait évidemment retrouver les courbes

$$y'' = ax''$$

dans lesquelles a serait une constante arbitraire.

ÉQUATION DU PREMIER ORDRE ET D'UN DEGRÉ QUELCONQUE.

- CAS OU L'ÉQUATION NE CONTIENT PAS EXPLICITEMENT

518. Soit

ou, en posant
$$\frac{dy}{dx} = p$$
,

 $F(x, \gamma, p) = 0$

unc équation différentielle du premier ordre et d'un degré quelconque par rapport à $\frac{dy}{dx}$. S'il est possible de la résoudre par rapport à $\frac{dy}{dx}$, on aura une ou plusieurs équations du premier degré que l'on tâchera d'intégrer.

519. Si l'équation se réduit à

$$F(p) = 0$$

et qu'on puisse la résoudre par rapport à p, on aura plusieurs valeurs de p:

$$p = \alpha$$
, $p = \alpha'$, $p = \alpha''$;

de là les solutions

$$y = \alpha x + c$$
, $y = \alpha' x + c'$,...

comprises dans l'équation unique

$$(y - \alpha x - c)(y - \alpha' x - c')(y - \alpha'' x - c'')... = 0.$$

On ne diminue pas la généralité de cette intégrale en admettant que la même constante arbitraire e entre dans tous les facteurs; l'équation précédente peut alors s'écrire

$$\left(\frac{y-c}{x}-\alpha\right)\left(\frac{y-c}{x}-\alpha'\right)\dots=0,$$

$$F\left(\frac{y-c}{x}\right)\neq0,$$

ou-bien

résultat qu'on obtiendrait encore en éliminant α entre les équations

F(
$$\alpha$$
) = 0, $y = \alpha x^{s} + c$.

Exemple. $\left(\frac{dy}{dx}\right)^{2} - a^{2} = 0$,

on aura $\left(\frac{y - c}{x}\right)^{2} - a^{2} = 0$,

d'où $y = \pm ax + c$.

ÉQUATIONS QUI NE RENFERMENT PAS L'UNE DES VARIABLES.

520. Supposons maintenant que l'équation différentielle ne renferme pas y et qu'elle soit de la forme

$$F\left(\frac{dy}{dx}, x\right) = 0.$$

Si l'on peut la résoudre par rapport à $\frac{dy}{dx}$ et en tirer

$$\frac{dy}{dx} = f(x),$$

on aura $\gamma = \int f(x) dx$, et le problème sera ramené a une quadrature.

Exemples.

$$\frac{dy}{dx} = ax = 0.$$

On en tire

$$\frac{dy}{dx} = \pm \sqrt{ax},$$

$$y = \pm \int \sqrt{ax} \, dx = \pm \frac{2}{3} x \sqrt{ax} + c,$$
ou
$$(y - c)^2 - \frac{4}{9} ax^3 = 0.$$

$$2^0. \qquad \frac{dy^2}{dx^2} - (a + x) \frac{dy}{dx} + ax = 0.$$

On déduit de cette équation

$$\frac{dy}{dx} = a, \quad \frac{dy}{dx} = x,$$

d'où les deux solutions

d'où

$$y = ax + c, \quad y = \frac{x^2}{2} + c.$$

524. Si l'équation ne peut pas être résolue par rapport à p, mais qu'on la puisse résondre par rapport à x, on aura

(1)
$$x = f(p),$$

$$dy = pdx = pdf(p),$$
ou
$$y = \int pdf(p) + c,$$
ou
$$y = pf(p) - \int f(p) dp + c;$$

on aura l'intégrale en éliminant p entre les équations (1) et (2).

522. Si l'équation différentielle ne contient pas x et qu'on puisse la résoudre par rapport à y, on aura

$$y = f(p), \quad dx = \frac{d \cdot f(p)}{p} = \frac{f'(p)dp}{p},$$
$$x = \int \frac{f'(p)}{p} dp + c.$$

CAS OU L'ÉQUATION PEUT ÊTRE RÉSOLUE PAR RAPPORT A L'UNE DES VARIABLES.

523. Si l'équation contient x, y et p, et qu'elle puisse se résoudre par rapport à l'une des variables, y par exemple, en sorte que l'on ait

$$y = f(x, p), \quad f(x, p)$$

on aura

$$dy$$
 ou $pdx = \frac{df}{dx}dx + \frac{df}{dp}dp$.

Si l'on peut intégrer cette équation, qui est du premier ordre et du premier degré, la relation cherchée s'obtiendra en éliminant p entre l'équation intégrale et l'équation y = f(x, p).

524. Prenons pour exemple l'équation

$$y = x f(p) + \varphi(p)$$

qui ne renferme x et y qu'au premier degré. On a

$$pdx = xf'(p)dp + f(p)dx + \varphi'(p)dp$$
$$\frac{dx}{dp} + \frac{f'(p)}{f(p) - p}x = -\frac{\varphi'(p)}{f(p) - p},$$

équation qui donne

ou

(2)
$$x = -e^{-\int \frac{f'(p)'dp}{f(p)-p}} \left[\int \frac{\varphi'(p)dp}{f(p)-p} e^{\int \frac{f'(p)dp}{f(p)-p} + c} \right].$$

En éliminant p entre les équations (1) et (2), on aura l'intégrale demandée. Ordinairement cette élimination n'est pas praticable, parce que l'équation (2) contient des fonctions transcendantes de p; mais alors en donnant à p une suite de valeurs arbitraires, les équations (1) et (2) détermineront les valeurs correspondantes de x et de y.

525. Quand f(p) = p, l'équation (2) devient illusoire. Mais dans ce cas l'équation (1) se réduit à

$$(x) y = px + \varphi(p),$$

et en différentiant par rapport à p, on aura

$$pdx = pdx + xdp + \varphi'(p)dp',$$

ďoù

$$dp\left[x+\varphi'\left(p\right)\right]=0.$$

Cette équation peut être satisfaite de deux manières : 1° en posant

$$dp = 0$$
, d'où $p = c$,

et, par suite,

$$\beta = ex + \varphi(c);$$

2º en posant

$$(\gamma) x + \varphi'(p) = 0,$$

d'où, en éliminant p entre (α) et (γ) , on aura

relation qui ne contient aucune constante arbitraire et qui n'est pas comprise dans la première solution

$$y = cx + \varphi(c)$$
.

C'est ce que l'on nomme une solution singulière.

526. Les droites représentées par l'intégrale

$$y = cx + \varphi(c)$$

sont tangentes à la courbe (∂) . En effet, si l'on prend sur la courbe un point (x, γ) correspondant à une valeur arbitraire de p, on a

$$\frac{dy}{dx} = p + [x + \varphi'(p)] \frac{dp}{dx} = p.$$

Donc, en donnant à p une valeur quelconque c, on a pour ce point de la courbe $y = cx + \varphi(c)$ et $\frac{dy}{dx} = c$. Donc la tangente en ce point est la droite qui a pour écuation $y = cx + \varphi(c)$.

527. Nous avons dit que la deuxième solution ne pouvait pas être déduite de l'intégrale générale en donnant à la constante une valeur convenable. Cela suppose que $\varphi'(p)$ n'est pas constant. Si $\varphi'(p)$ était égal à une constante b, on aurait

$$x+b=0$$
,

solution comprise dans l'intégrale générale en y faisant $c = \infty$ et $\frac{\varphi(c)}{c} = b$.

QUARANTE-DEUXIÈME LEÇON.

Suite des équations du premier ordre.— Existence de l'intégrale d'une équation différentielle du premier ordre.— Existence d'un facteur propre à rendre intégrable le premier membre de l'équation. — Détermination de ce facteur.

TOUTE ÉQUATION DIFFÉRENTIELLE DU PREMIER ORDRE ADMET UNE INTÉGRALE.

528. Toute équation différentielle du premier ordre

$$\frac{dy}{dx} = f(x, y) \quad \text{ou} \quad M dx + N dy = 0$$

admet une intégrale contenant une constante arbitraire, c'est-à-dire qu'il existe toujours une équation contenant x, y et une constante arbitraire, telle qu'en la différentiant et éliminant la constante, on retrouve l'équation proposée.

En effet, l'intégration de l'équation proposée consiste à trouver une fonction de x, désignée par y, telle, que sa dérivée soit égale à f(x,y), ou, en d'autres termes, telle, qu'en donnant à x l'accroissement infiniment petit dx, l'accroissement correspondant dy soit égal à f(x,y) dx. Puisque l'équation différentielle dy = f(x,y) dx ne détermine que l'accroissement de y, on peut se donner arbitrairement la valeur de y pour une valeur particulière de x. Si l'on prend y = b pour x = a, f(a,b)h sera l'accroissement infiniment petit de y lorsque x passera de la valeur a à une valeur infiniment voisine a + h. En posant

$$a + h = a'$$
 et $b' = b + f(a, b)h$,

f(a',b')h sera de même l'accroissement de y lorsque x passera de a' à a'+h. En continuant ainsi à faire croître x par degrés insensibles jusqu'à une valeur quelconque, s

l'équation différentielle déterminera les accroissements successifs de y, de sorte que la valeur de y correspondant à chaque valeur de x sera complétement déterminée. Par conséquent y sera une certaine fonction de x, et cette fonction dépendra nécessairement de la constante arbitraire b; ce qu'il fallait démontrer.

EXISTENCE D'UN FACTEUR PROPRE A, RENDRE DIFFÉREN-TIELLE EXACTE LE PREMIER MEMBRE D'UNE ÉQUATION DU PREMIER ORDRE.

529. On a démontré que l'équation différentielle

$$\mathbf{M}\,dx + \mathbf{N}\,dy = \mathbf{0}$$

admet toujours une intégrale contenant une constante arbitraire c. Cette équation intégrale, résolue par rapport à c, prendra la forme

$$(2) u = c,$$

u étant une fonction de x et de y qui ne renferme pas c. On tire de l'équation (2)

$$\frac{du}{dx} dx + \frac{du}{dy} dy = 0, \quad \text{d'où} \quad \frac{dy}{dx} = -\frac{\frac{du}{dx}}{\frac{du}{dy}}$$

Or l'équation (1) donne $\frac{dy}{dx} = -\frac{M}{N}$. On doit donc avoir

(3)
$$\frac{\frac{du}{dx}}{\frac{du}{dy}} = \frac{M}{N}.$$

Cette équation doit être identique, car s'il en était autrement, elle établirait entre les variables une relation en vertu de laquelle y serait une fonction de x sans constante arbitraire, puisque M, N, $\frac{du}{dx}$, $\frac{du}{dy}$ n'en contiennent pas. Or, à cause de l'équation u=c, y doit dépendre de x et de la constante c.

11

L'équation (3) peut être mise sous la forme

$$\frac{du}{\frac{dx}{M}} = \frac{du}{\frac{dy}{N}} = v,$$

en désignant par v chacun de ces quotients. On tire de là

$$\frac{du}{dx} = Me, \quad \frac{du}{dv} = Ne;$$

donc

$$du = o(M dx + N dy).$$

Ainsi, il existe toujours un facteur v, fonction de x et de y, propre à rendre le premier membre de l'équation une différentielle exacte. Quand on saura trouver ce facteur et l'intégrale u de v (Mdx + Ndy), u = c sera l'intégrale cherchée.

530. Il existe une infinité de facteurs propres à rendre le premier membre de l'équation (1) une différentielle exacte. En effet, si nous multiplions les deux membres de l'équation

$$\rho\left(\mathbf{M}\,dx+\mathbf{N}dy\right)=du\,,$$

par une fonction quelconque de u, $\varphi(u)$, il vient

$$v \varphi(u) (M dx + N dy) = \varphi(u) du = d \int \varphi(u) du.$$

Ainsi le premier membre de l'équation est encore une différentielle exacte et le facteur $v \circ (u)$ jouit de la même propriété que le facteur v.

Exemple. xdy - ydx = 0. Cette équation donne

$$\frac{dy}{y} = \frac{dx}{x}$$
, d'où $y = cx$ ou $\frac{y}{x} = c = u$.

Le facteur le plus simple qui rend xdy - y dx une différentielle exacte est donc $\frac{1}{x}$. Tout autre facteur est de la forme $\frac{1}{x^i} \varphi\left(\frac{y}{x}\right)$.

Ainsi $\varphi(u) = u$ donne le facteur $\frac{y}{x^s}$ et l'on a

$$\frac{rydy - r^2dx}{x^2} = d \cdot \frac{2r^2}{x}.$$

$$\varphi(u) = \frac{1}{u}$$
 donne le facteur $\frac{1}{xy}$

et
$$\frac{dy}{y} - \frac{dx}{x} = d.1 \frac{y}{x};$$

$$\varphi(u) = \frac{1}{1+u^2}$$
 donne le facteur $\frac{1}{x^2+y^2}$

et
$$\frac{xdy - ydx}{x^2 + y^2} = d. \text{ arc tang } \frac{y}{x}.$$

531. Réciproquement tout facteur V propre à rendre M dx + N dy une différentielle exacte est de la forme $v \varphi(u)$. En effet, soit

on a
$$V(Mdx + Ndy) = dU:$$

$$v(Mdx + Ndy) = du;$$

$$du = \frac{V}{v} du.$$

Cette relation équivaut aux deux suivantes :

(1)
$$\frac{d\mathbf{U}}{dx} = \frac{\mathbf{V}}{v} \frac{d\mathbf{u}}{dx}, \quad \frac{d\mathbf{U}}{dy} = \frac{\mathbf{V}}{v} \frac{d\mathbf{u}}{dy}$$

Soit u = f(x, y). Si l'on tire de cette équation la valeur de y en fonction de u et de x et qu'on la porte dans la valeur de U, on aura

$$\mathbf{U} = \psi(u, x).$$

Différentiant cette équation, il vient

$$\frac{d\mathbf{U}}{dx} = \frac{d\psi}{du} \frac{du}{dx} + \frac{d\psi}{dx},$$

$$\frac{d\mathbf{U}}{dy} = \frac{d\psi}{du} \frac{du}{dy}.$$

En ayant égard aux relations (1), ces équations donnent

$$\frac{d\psi}{du} = \frac{V}{v}, \quad \frac{d\psi}{dx} = 0.$$

Cette dernière relation montre que x n'entre pas explicitement dans la fonction ψ . Donc ψ et par suite $\frac{d\psi}{du}$ ou

 $\frac{V}{v}$ sont des fonctions de u et l'on a

$$\frac{\mathbf{v}}{e} = \varphi(u)$$

ou

$$(2) V = \dot{v} \varphi(u);$$

ce qu'il fallait démontrer.

532. On peut encore établir ce théorème de la manière suivante :

Pour que l'équation différentielle soit satisfaite, il faut que x et y varient de telle sorte, que l'on ait u=c, on aura alors du=0 et par conséquent dU=0 à cause de la relation $dU=\frac{V}{c}du$. Il suit de là que U devra toujours conserver la même valeur tant que u conserver aussi sa valeur c, ce qui ne pourrait avoir lieu si U étant mise sous la forme $\psi(u,x)$, x restait explicitement dans la fonction.

533. Le principe sur lequel repose cette seconde démonstration peut être généralisé : u, U, q étant des fonctions d'un nombre quelconque de variables, si l'on a d U = qdu, on aura U = φ (u); car en éliminant une de ces variables, x par exemple, on pourrait écrire

$$U = \psi(u, y, z, \ldots).$$

Or, pour toutes les valeurs de x, y, z, ... qui conservent à u une valeur constante, on a du = 0 et par conséquent dU = 0, ce qui ne pourrait avoir lieu si y, z, ... entraient dans la fonction φ .

334. Si deux facteurs V et v rendent différentielle exacte M dx + N dy, leur rapport égalé à une constante sera l'intégrale de l'équation

$$M dx + N dy = 0$$
.

Car de

$$\frac{\mathbf{V}}{c} \quad \text{ou} \quad \varphi(\mathbf{u}) = \mathbf{c}$$

on tire u = c.

DÉTERMINATION DU FACTEUR V.

535. La condition nécessaire et suffisante pour que v(M dx + N dy) soit une différentielle exacte est

$$\frac{d.vM}{dy} = \frac{d.vN}{dx},$$

ce qui revient à l'équation

(1)
$$N \frac{dv}{dx} - M \frac{dv}{dy} = v \left(\frac{dM}{dy} - \frac{dN}{dx} \right).$$

Quoique la résolution de cette équation soit en général aussi difficile que celle de la proposée, elle peut cependant dans quelques cas servir à trouver le facteur ν :

1°. Si ν ne doit dépendre que d'une seule variable, x par exemple, on a $\frac{dv}{dy}$ = 0, et l'équation (1) se réduit à

(2)
$$\frac{1}{e} \frac{dv}{dx} = \frac{\frac{dM}{dy} - \frac{dN}{dx}}{N}.$$

Par hypothèse, le premier membre ne dépend que de x; donc on doit avoir

$$\frac{\frac{d\mathbf{M}}{dy} - \frac{d\mathbf{N}}{dx}}{\mathbf{N}} = f(x).$$

Cette condition est suffisante; car si elle est remplie, on satisfera à l'équation (2) en prenant

$$c = e^{\int f(x) dx}$$
.

Le calcul est plus simple si l'on suppose N=1, c'està-dire si l'on met l'équation proposée sous la forme dy+Mdx=0, ce qui est permis. On doit alors avoir

$$\frac{d\mathbf{M}}{dy} = f(x) = \mathbf{P},$$

d'où

$$M = Py + Q.$$

d'où

p.45.

L'équation devient

$$\frac{dy}{dx} + Py + Q = 0.$$

Il sussit donc, pour rendre cette équation intégrable, de la multiplier par $e^{\int P dx}$. On a

$$e^{\int Pdx} \frac{dy}{dx} + P y e^{\int Pdx} + Q e^{\int Pdx} = 0;$$

$$e^{\int Pdx} y + \int Q e^{\int Pdx} dx = c.$$

C'est le cas de l'équation linéaire (508).

2°. Si le facteur ν est de la forme XY, X étant une sonction de x, et Y une fonction de y, on a

$$\frac{dv}{dx} = \mathbf{Y} \frac{d\mathbf{X}}{dx}, \quad \frac{dv}{dy} = \mathbf{X} \frac{d\mathbf{Y}}{dy},$$

et l'équation (1) revient à

$$N \frac{dX}{X dx} - M \frac{dY}{Y dy} = \frac{dM}{dy} - \frac{dN}{dx}.$$
Or
$$\frac{dX}{X dx} = \varphi(x), \frac{dY}{Y dy} = \psi(y); \text{ done}$$

$$\frac{dM}{dy} - \frac{dN}{dx} = N\varphi(x) - M\psi(y).$$

Si cette condition est remplie, on aura

$$\mathbf{X} = e^{\int \varphi(x)dx}, \quad \mathbf{Y} = e^{\int \psi(y)dy}.$$

536. L'emploi du facteur v redonne les méthodes précédemment exposées : ainsi la séparation des variables dans l'équation

$$XY dx + X_1 Y_1 dy = 0,$$

où X et X_1 désignent des fonctions de x, et Y, Y_1 des fonctions de y, revient à multiplier l'équation proposée par le facteur $\frac{1}{X_1 Y}$.

La transformation employée dans l'intégration de l'équation homogène revient aussi à la détermination d'un facteur qui rend le premier membre intégrable. En effet, l'équation (2) du n° 503 n'est autre chose que l'équation proposée divisée par $x^{m+1}\left[\varphi(z)+z\psi(z)\right]$. En remplaçant z par $\frac{\gamma}{x}$, $x^m\varphi\left(\frac{\gamma}{x}\right)$ par M, $x^m\psi\left(\frac{\gamma}{x}\right)$ par N, on voit que le facteur ν est, dans ce cas,

$$\frac{1}{Mx + Ny}$$

Il est d'ailleurs facile de vérifier que

$$\frac{M\,dx + N\,dy}{Mx + N\,\gamma}$$

est alors une différentielle exacte. Il suffit, pour cela, de démontrer que

$$\frac{d \frac{\mathbf{M}}{\mathbf{M}x + \mathbf{N}y}}{dy} = \frac{d \frac{\mathbf{N}}{\mathbf{M}x + \mathbf{N}y}}{dx}.$$

Cette équation revient. après quelques transformations, à la suivante:

$$N\left(x\frac{dM}{dx} + y\frac{dM}{dy}\right) - M\left(x\frac{dN}{dx} + y\frac{dN}{dy}\right) = 0,$$

$$NMm - NMm = 0,$$

ou

quent,

car les fonctions M et N étant homogènes et de degré m_{π} on a identiquement (I, 169)

$$x\frac{dM}{dx} + y\frac{dM}{dy} = Mm,$$

$$x\frac{d\mathbf{N}}{dx} + y\frac{d\mathbf{N}}{dy} = \mathbf{N}m.$$

Si le premier membre de l'équation homogène est une différentielle exacte, on pourra prendre pour premier facteur i et pour second $\frac{1}{Mx + Ny}$. Leur rapport, égalé à une constante, donnera l'intégrale qui sera, par consé-

Mx + Ny = c.

15.60 6.

QUARANTE-TROISIÈME LEÇON.

Solutions singulières des équations à deux variables. — Comment elles se déduisent de l'intégrale générale. — Solutions singulières obtenues au moyen du facteur qui rend intégrable le premier membre de l'équation. — Exemples de solutions singulières. — La solution singulière est en général l'enveloppe des courbes représentées par l'équation intégrale.

SOLUTIONS SINGULIÈRES DES ÉQUATIONS A DEUX VARIABLES.

— COMMENT ELLES SE DÉDUISENT DE L'INTÉGRALE GÉ-NÉRALE.

537. Soit

(1)
$$\mathbf{M} dx + \mathbf{N} dy = \mathbf{0} \quad \text{ou} \quad \frac{dy}{dx} = f(x, y)$$

une équation différentielle et

$$\mathbf{F}(x, y, c) = \mathbf{0}$$

son intégrale. Différentions cette dernière équation par rapport à x; nous aurons

(3)
$$\frac{dy}{dx} = -\frac{\frac{d\mathbf{F}}{dx}}{\frac{d\mathbf{F}}{dy}}$$

Si l'on élimine c entre cette équation et la précédente,

nous devons obtenir l'équation (1), ce qui exige que $\frac{\frac{d\mathbf{F}}{dx}}{\frac{d\mathbf{F}}{dy}}$

devienne identique à $\frac{M}{N}$ quand on remplacera dans ce quotient c par sa valeur tirée de l'équation (2), et cette élimination devait encore conduire à une identité, lors même que c scrait remplacée par une fonction de x et de γ .

538. Cela posé, je dis que si l'on connaît l'integrale

F(x, y, e) = o d'une équation différentielle, on peut déterminer les solutions singulières de cette équation.

Soit

$$\varphi(x,y) = 0$$

une solution singulière, c'est-à-dire une équation qui satisfasse à l'équation (1), mais qui ne puisse se déduire de l'intégrale générale en attribuant à la constante une valeur particulière. On pourra faire rentrer l'équation $\varphi(x, y) = 0$ dans cette intégrale, en y remplaçant c par une fonction convenable, car il suffit de poser

(5)
$$\mathbf{F}(x,y,c) = \varphi(x,y);$$

d'où l'on déduit la valeur de c en fonction de x et de y. Cette valeur étant déterminée, si l'on différentie l'équation (2) par rapport à x, on aura

$$\frac{d\mathbf{F}}{dx} + \frac{d\mathbf{F}}{dy}\frac{dy}{dx} + \frac{d\mathbf{F}}{dc}\frac{dc}{dx} = 0;$$

doù l'on tire

(6)
$$\frac{dy}{dx} = -\frac{\frac{dF}{dx}}{\frac{dF}{dy}} - \frac{\frac{dF}{dc}}{\frac{dF}{dy}} \cdot \frac{dc}{dx}.$$

L'élimination de c entre les équations (2) et (6) doit conduire à l'équation $\frac{dy}{dx} = f(x, y)$. Donc l'équation (6)

se reduit à
$$\frac{dy}{dx} = f(x, y)$$
. Or $\frac{d\mathbf{F}}{dx}$ se réduit à $f(x, y)$

quand on remplace c par sa valeur tirée de l'équation $F(x, \dot{y}, c) = o$ (537); donc on doit avoir

$$\frac{d\mathbf{F}}{\frac{dc}{d\mathbf{F}}} \cdot \frac{dc}{dx} = 0,$$

équation à laquelle il faut joindre F(x, y, c) = 0.

II.

Le système de ces deux équations se ramène aux deux suivants:

(1)
$$\begin{cases} \frac{dc}{dx} = 0, \\ F(x, y, c) = 0, \end{cases}$$
 (II)
$$\begin{cases} \frac{dF}{dc} \\ \frac{dF}{dz} \\ F(x, y, c) = 0. \end{cases}$$

Or le premier système donne c = une constante, et, par suite, on retombe sur l'intégrale générale.

Le second se partage en deux :

$$(\text{III}) \qquad \begin{cases} \frac{d\mathbf{F}}{dc} = \mathbf{o}_{\,0} \\ \mathbf{F}\left(x, y, c\right) = \mathbf{o}_{\,0} \end{cases} \qquad (\text{IV}) \begin{cases} \frac{d\mathbf{F}}{dy} = \infty \,, \\ \mathbf{F}\left(x, y, c\right) = \mathbf{o}_{\,0} \end{cases}$$

En éliminant c entre les deux équations de chaque système, on obtiendra les intégrales singulières de l'équation proposée, pourvu qu'on omette les valeurs de c qui rendent simultanément nulles ou infinies les deux fonctions $\frac{d\mathbf{F}}{dc}$, $\frac{d\mathbf{F}}{d\gamma}$, parce que la première des équations (II)

se présenterait sous la forme illusoire $\frac{0}{0} = 0$ ou $\frac{\infty}{\infty} = 0$; il faudra aussi rejeter les solutions qui rentreraient dans l'intégrale générale en attribuant à c une valeur constante.

Ainsi, on obtiendra les solutions singulières d'une équation différentielle du premier ordre en éliminant la constante entre l'intégrale générale et sa dérivée par rapport à la constante égalée à zéro, ou bien entre cette même intégrale et sa dérivée par rapport à y égalée à l'infini.

539. Quelle que soit la forme sous laquelle se présente l'équation intégrale F(x, y, c) = o, l'application des règles précédentes doit toujours conduire aux mêmes

solutions. En effet, le rapport $\frac{d\vec{c}}{d\vec{r}}$ restera toujours le même $\frac{d\vec{r}}{dy}$

quand on éliminera c au moyen de l'équation F=o, quoique chacune de ces dérivées change quand on transforme cette équation. Car en regardant γ comme une fonction de c, on a

$$-\frac{\frac{d\mathbf{F}}{dc}}{\frac{d\mathbf{F}}{dy}} = \frac{dy}{dc},$$

valeur qui sera toujours la même, quel que soit F. Ainsi, lorsqu'une transformation de l'équation F(x, y, c) = 0 fera perdre des solutions à l'équation $\frac{dF}{dc} = 0$, elle les fera acquérir à l'autre équation $\frac{dF}{dy} = \infty$.

SOLUTIONS SINGULIÈRES DÉDUITES DU FACTEUR QUI REND INTÉGRABLE LE PREMIER MEMBRE DE L'ÉQUATION.

540. Si l'on met l'intégrale sous la forme u-c=o, on aura

$$\frac{\frac{d\mathbf{F}}{dc}}{\frac{d\mathbf{F}}{dy}} = -\frac{\mathbf{I}}{\frac{du}{dy}}.$$

Ainsi toutes les solutions singulières, seront données par l'équation $\frac{1}{\frac{du}{dy}} = 0$ Mais $\frac{du}{dy}$ n'est autre que le facteur v par

lequel dy-f(x,y) devient une différentielle exacte (529). Donc l'équation

$$\frac{1}{v} = 0$$
 on $v = \infty$

contient toutes les solutions singulières.

EXEMPLES DE SOLUTIONS SINGULIÈRES.

541. 1°.

$$xdx + ydy = dy\sqrt{x^2 + y^2 - a^2}.$$

Divisons par $\sqrt{x^2 + y^2 - a^2}$, il vient

$$dy = \frac{xdx + ydy^{2}}{\sqrt{x^{2} + y^{2} - a^{2}}} = d \cdot \sqrt{x^{2} + y^{2} - a^{2}},$$

dont l'intégrale est

$$y + c = \sqrt{x^2 + y^2 - a^2},$$

$$2cy + c^2 + a^2 - x^2 = 0$$

on

on aura done

$$\frac{d\mathbf{F}}{dc} = 2y + 2c = 0$$
, ou $\frac{d\mathbf{F}}{dy} = 2c = \infty$.

Cette dernière ne conduirait qu'à la valeur illusoire $\gamma = \infty$. La première donne $c = -\gamma$, et, par suite,

$$x^2 + y^2 - a^2 = 0,$$

solution singulière. Cette solution, qui représente une circonférence, n'est pas comprise dans l'intégrale générale, puisque celle-ci représente une suite de paraboles.

Comme le facteur ν est $\frac{1}{\sqrt{x^2 + y^2 - a^2}}$, on voit bien que la solution singulière correspond à $\nu = \infty$.

542. 2°. Trouver la courbe dont la normale est constante. L'équation différentielle est

$$(1) y^2 + y^2 \frac{dy^2}{dx^2} = a^2,$$

d'où $dx = \frac{ydy}{\sqrt{a^2 - y^2}},$

et, par suite,

$$(2) (x-c)^2 + y^2 = a^2,$$

équation d'un cercle. Pour avoir les solutions singulières, il faut poser

$$\frac{d\mathbf{F}}{\frac{dc}{d\mathbf{F}}} = -\frac{x-c}{y} = 0; \quad \text{d'où} \quad x = c,$$

et, par snite,

$$(3) y^2 = a^2.$$

On obtiendrait encore cette solution en égalant à l'infini le facteur $\frac{1}{\sqrt{r^2-a^2}}$ par lequel il faut multiplier l'équation proposée pour séparer les variables.

Il est à remarquer que les deux droites représentées par l'équation (3) sont tangentes à toutes les circonférences que représente l'intégrale générale (2).

543. 3°. Trouver une courbe dont les tangentes soient à une distance constante a de l'origine.

L'équation de la tangente menée par un point quelconque (x, y) de la courbe, étant

$$\mathbf{Y} - \mathbf{y} = p\left(\mathbf{X} - \mathbf{x}\right),$$

l'équation différentielle du problème sera

$$\frac{y - px}{\sqrt{1 + p^2}} = a$$

ou

$$(1) y = px + a\sqrt{1 + p^2}.$$

En différentiant par rapport à x, on a

$$o = dp \left(x + \frac{ap}{\sqrt{1 + p^2}} \right),$$

équation qui se décompose en deux

$$dp = 0, \quad x + \frac{ap}{\sqrt{1 + p^2}} = 0.$$

La première donne p = c, d'où

$$y = cx + a\sqrt{1 + c^2}$$

La seconde donne

(3)
$$x = -\frac{ap}{\sqrt{1+p^2}}$$
:

1.p. 3.2%

cette valeur étant portée dans l'équation (1), il en résulte

$$y = \frac{a}{\sqrt{1 + p^2}};$$

élevant au carré et ajoutant les équations (3) et (4),

$$(5) x^2 + y^2 = a^2.$$

La solution générale (2) représente une infinité de droites, et la solution singulière (5) une circonférence à laquelle toutes ces droites sont tangentes.

544. 4°.
$$\frac{dy}{dx} = (y - a^{n}).$$

Les variables se séparent immédiatement et l'on trouve pour l'intégrale générale

$$(2) (y-a)^{1-n}-(1-n)(x-c)=0.$$

Pour obtenir les solutions singulières, on posera

$$\frac{d\mathbf{F}}{\frac{d\mathbf{c}}{d\mathbf{F}}} = \frac{1}{(y-a)^{-n}} = (y-a)^n = 0,$$

d'où l'on déduit, en supposant n > 0,

$$y = a.$$

Cette équation représente une solution singulière si n est < 1, car on ne peut pas déduire y = a de l'intégrale générale. Si n est > 1, y = a n'est plus une solution singulière, puisque l'équation intégrale étant mise sous la forme

$$(1-n)(y-a)^{n-1} = \frac{1}{x-c}$$

on obtient $\chi = a$ en faisant $c = \infty$. Enfin si n = 1, l'intégrale générale est $\gamma - a = ce^{\alpha}$, qui devient $\gamma = a$ pour c = 0 et il n'y a pas non plus, dans ce cas, de solution singulière.

On verra facilement que l'hypothèse n < o ne donne aucune solution singulière.

345. 5°. Trouver une courbe telle, que le produit des perpendiculaires abaissées de deux points fixes F et F' sur la tangente soit constant et égal à b².

Prenons pour axes la droite FF' et une perpendiculaire élevée par le milieu de cette ligne. L'équation de la tangente est

$$\mathbf{Y} - \mathbf{y} = p\left(\mathbf{X} - \mathbf{x}\right),$$

et parsuite les perpendiculaires abaissées des points

donnés sur la tangente seront, en désignant OF par c,

$$FH = \frac{y - px + pc}{\sqrt{1 + p^2}}, \quad F'H' = \frac{y - px - pc}{\sqrt{1 + p^2}},$$

on aura donc
$$b^2 = \frac{(y - px)^2 - p^2 c^2}{1 + p^2}$$
, d'où $(y - px)^2 = b^2 + (b^2 + c^2) p^2$,

et, si l'on pose $b^{2} + c^{2} = a^{2}$,

$$y = px + \sqrt{b^2 + a^2 p^2},$$

équation d'une forme connue (525). En la différentiant, on aura

(2)
$$o = dp \left(x + \frac{a^2 p}{\sqrt{b^2 + a^2 p^2}} \right),$$

ce qui donne d'abord dp = 0 ou p = constante = m. L'intégrale générale est donc

$$(3) \gamma = mx + \sqrt{a^2m^2 + b^2}.$$

On satisfait encore à l'équation (2) en posant

(4)
$$x + \frac{a^2 p}{\sqrt{b^2 + a^2 p^2}} = 0.$$

En éliminant p entre les équations (1) et (4), on aura la solution singulière

$$\frac{x}{a^2} + \frac{y^2}{b^2} = 1,$$

ellipse qui a pour tangentes les droites représentées par l'intégrale générale.

546. 6°. Trouver une courbe telle, que la portion de la

tangente TS comprise entre les deux axes soit égale à une longueur constante a.

L'équation de la tangente est

$$\mathbf{Y} - \mathbf{y} = p(\mathbf{X} - \mathbf{x})$$

et l'on a

$$OT = \frac{p \cdot x - y}{p}, \quad OS = y - p x;$$

d'où, à cause de $OT^2 + \overline{OS}^2 = \overline{TS}^2$,

$$(y-px)^2(1+p^2)=a^2p^2.$$

On aura done

$$y = px + \frac{ap}{\sqrt{1 + p^2}};$$

par suite, en dissérentiant,

$$o = dp \left[x + \frac{a}{\left(1 + p^2\right)^{\frac{3}{2}}} \right].$$

dp = 0, donne p = c, et, par suite,

$$y = cx + \frac{ac}{\sqrt{1+c^2}};$$

l'intégrale générale représente donc une infinité de droites La solution singulière sera donnée par l'équation

$$x = \frac{-a}{\left(1 + p^2\right)^{\frac{3}{2}}}.$$

Si l'on substitue cette valeur dans l'équation (1), on aura

$$y = -\frac{ap}{(1+p^2)^{\frac{3}{2}}} + \frac{ap}{(1+p^2)^{\frac{1}{2}}};$$

éliminant p, on aura

(3)
$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}.$$

Cette courbe est l'épicycloïde obtenuc en faisant rouler

un cercle dans un autre cercle de rayon quadruple. En effet, soit M le point de la circonférence mobile qui était placé primitivement en A, et K le point de contact actuel. On sait que KM est la normale à l'épicycloïde au point M, et par suite que MH est la tangente. Or l'angle THK, qui, dans le petit cercle, a pour mesure $\frac{1}{2}$ arc kM ou $\frac{1}{2}$ AK, aura pour mesure 2 AK dans le grand cercle. Donc l'angle THK est double de l'angle AOK et le triangle TOH est isocèle. On a donc OH = HT. Il résulte de là qu'on a également OH = HS et, par suite f TS = 2 OH = OK. Ainsi TS conserve bien une grandeur constante.

LA SOLUTION SINGULIÈRE REPRÉSENTE L'ENVELOPPE DES COURBES DONNÉES PAR L'INTÉGRALE GÉNÉRALE.

547. Quand une courbe se meut sur un plan, en changeant de forme suivant une loi déterminée, elle est, en général, constamment tangente à une courbe fixe qu'on nomme son *enveloppe*. On peut supposer que la courbe donnée est représentée par une équation de la forme

$$\mathbf{F}(x, y, c) = \mathbf{0},$$

dans laquelle c est un paramètre que l'on fait varier d'une manière continue. Donnons à ce paramètre deux valeurs voisines c et $c + \Delta c$. Les courbes représentées par les équations

$$F(x, y, c) = 0, F(x, y, c + \Delta c) = 0$$

se couperont en un point (x, y) pour lequel on aura

$$\mathbf{F}(x, y, c + \Delta c) - \mathbf{F}(x, y, c) = 0,$$

et, par conséquent,

(2)
$$\frac{\mathbf{F}(x, y, c + \Delta c) - \mathbf{F}(x, y, c)}{\Delta c} = 0.$$

Si l'on suppose que Δc diminue indéfiniment, les coordonnées de ce point, qui ne cessent pas de satisfaire aux

équations (1) et (2), satisferont à la limite aux équations

(3)
$$\mathbf{F}(x, y, c) = \mathbf{0}, \quad \frac{d\mathbf{F}}{dc} = \mathbf{0}.$$

On obtiendra le point limite M, c'est-à-dire le point où l'une des courbes est coupée par la courbe infiniment voisine, en résolvant les équations (3); et si l'on élimine c entre ces équations, on aura le lieu des points M ou le lieu des intersections successives des courbes représentées par l'équation (1).

Je dis que ce lieu est l'enveloppe cherchée. En effet, chaque courbe de l'équation (1) est coupée par celle qui la précède et celle qui la suit en deux points qui finissent par se confondre : la droite qui joint ces deux points tend donc à devenir tangente à la première courbe; elle tend d'ailleurs à devenir tangente au lieu des intersections successives. Donc celle-ci est tangente à toutes les courbes représentées par l'équation (1).

548. On a dù remarquer que dans tous les exemples traités plus haut (541 et suiv.), la solution singulière était l'enveloppe des courbes représentées par l'intégrale générale. Nous allons démontrer qu'il doit toujours en être ainsi.

Soit
$$F(x, y, c) = 0$$

l'intégrale générale. Elle représente une suite de courbes dont l'enveloppe s'obtient en éliminant c entre cette équation et sa dérivée par rapport à c. Or c'est précisément le calcul qui fournit la solution singulière. Le théorème est donc démontré.

On peut d'ailleurs établir ce théorème de la manière suivante. Par chaque point de la courbe Λ qui représente la solution singulière passe l'une des courbes B comprises dans l'intégrale générale. Or en ce point $\frac{dy}{dx}$ a la même valeur pour les deux courbes Λ et B, puisque leurs équations satisfont toutes les deux à l'équation différentielle. Donc les courbes Λ et B ont la même tangente au point qui leur est commun.

QUARANTE-QUATRIÈME LECON.

Équations différentielles d'un ordre quelconque. — Existence de l'intégrale d'une équation différentielle quelconque. — Conditions que doivent remplir les constantes qui entrent dans l'intégrale générale. — Intégrale de divers ordres d'une équation différentielle. — Intégration de l'équation $\frac{d^m y}{dx^m} = v$.

TOUTE ÉQUATION DIFFÉRENTIELLE ADMET UNE INTÉGRALE.

549. Considérons une équation différentielle de l'ordre m résolue par rapport à la dérivée de l'ordre le plus élevé

$$(1) \qquad \frac{d^m y}{dx^m} = f\left(x, y, \frac{dy}{dx}, \frac{d^2 y}{dx^2}, \dots, \frac{d^{m-1} y}{dx^{m-1}}\right).$$

Cette équation fait connaître $\frac{d^m y}{dx^m}$ ou $d \cdot \frac{d^{m-1} y}{dx^{m-1}}$, quand on connaît les valeurs de y, $\frac{dy}{dx}$, ..., $\frac{d^{m-1} y}{dx^{m-1}}$ pour une valeur de x. On peut donc se donner pour x = a des valeurs arbitraires b, b', b'', ..., $b^{(m-1)}$ de y, $\frac{dy}{dx}$, $\frac{d^2 y}{dx^2}$, ..., $\frac{d^{m-1} y}{dx^{m-1}}$.

Maintenant si l'on donne à x un accroissement dx, les accroissements de y, $\frac{dy}{dx}$, ..., seront

$$dy = b'dx$$
, $d\frac{dy}{dx} = b''dx$, ..., $d\frac{d^{m-2}y}{dx^m} = b^{(m-1)}dx$,

et l'accroissement de $\frac{d^m \hat{y}}{dx^{m-1}}$ sera ensuite donné par l'équation (1).

On déterminera de même la valeur de γ et de ses dérivées pour x = a + 2 dx, x = a + 3 dx,... Ainsi les valeurs successives de γ sont déterminées et, par conséquent, γ dépend de x et des m constantes b, b',..., $b^{(m-1)}$.

550. On peut encore démontrer l'existence de l'intégrale, au moyen du développement de y en série. En différentiant l'équation (1), on obtiendra successivement les coefficients différentiels $\frac{d^{m+1}y}{dx^{m+1}}$, $\frac{d^{m+2}y}{dx^{m+2}}$ en fonction de x,

$$y, \frac{dy}{dx}, \dots, \frac{d^{m-1}y}{dx^{m-1}} : \text{soit}$$

$$\frac{d^{m+1}y}{dx^{m+1}} = f_i\left(x, y, \frac{dy}{dx}, \dots, \frac{d^{m-1}y}{dx^{m-1}}\right),$$

$$\frac{d^{m+2}y}{dx^{m+2}} = f_2\left(x, y, \frac{dy}{dx}, \dots, \frac{d^{m-1}y}{dx^{m-1}}\right).$$

Mais on a (I, 114)

$$\varphi(x) = \varphi(a) + \varphi'(a)(x-a) + \varphi''(a)\frac{(x-a)^{\varepsilon}}{1-2} + \dots$$

Remplaçant $\varphi(x)$ par γ , $\varphi(a)$ par b, $\varphi'(a)$ par b',..., on aura donc

$$(2) \begin{cases} y = b + b'(x - a) + b'' \frac{(x - a)^2}{1 \cdot 2} + \dots + b^{(m-1)} \frac{(x - a)^{m-1}}{1 \cdot 2 \dots (m-1)} \\ + f(a, b, b', \dots, b^{(m-1)}) \frac{(x - a)^m}{1 \cdot 2 \dots m}, \\ + f_1(a, b, b', \dots, b^{(m-1)}) \frac{(x - a)^{m+1}}{1 \cdot 2 \dots m (m+1)}, \\ + f_2(a, b, b', \dots, b^{(m-1)}) \frac{(x - a)^{m+2}}{1 \cdot 2 \dots (m+2)} + \dots \end{cases}$$

On voit encore par là que la valeur de γ renferme m constantes arbitraires.

En faisant a=0, on aurait le développement de l'intégrale suivant les puissances ascendantes de x: mais cette valeur pourrait rendre infinie la fonction ou quelques-unes de ses dérivées, et le développement deviendrait alors impossible sous cette forme. Il vaut donc mieux conserver la série sous sa forme la plus générale, en choisissant la valeur arbitraire a de telle sorte, qu'aucune des fonctions ne soit infinie pour x=a.

551. Réciproquement toute équation

(3)
$$\mathbf{F}(x, y, c, c', \ldots, c^{(m-1)}) = 0,$$

qui satisfait à l'équation différentielle donnée et qui renferme m constantes arbitraires au moyen desquelles il soit possible de donner, pour x=a, des valeurs arbitraires $b,b',\ldots,b^{(m-1)}$ à $y,\frac{dy}{dx},\ldots,\frac{d^{m-1}y}{dx^{m-1}}$, sera identique à l'intégrale générale. En effet, si l'on détermine ainsi les constantes, on aura encore pour y le développement (2), puisque l'équation (3) satisfaisant à l'équation (1), les valeurs de $\frac{d^my}{dx^m}$, $\frac{d^{m+1}y}{dx^{m+1}}$, \cdots pour x=a, ne dépendront que des valeurs b, b', b'', \ldots , $b^{(m-1)}$.

CONDITIONS QUE DOIT REMPLIR UNE FONCTION POUR ÊTRE L'INTÉGRALE D'UNE ÉQUATION DU $m^{i \`eme}$ ordre.

552. Pour qu'une fonction renfermant m constantes soit l'intégrale d'une équation différentielle du $m^{lème}$ ordre, il faut que ces constantes soient bien distinctes, c'est-à-dire qu'elles ne puissent se réduire à un nombre inférieur à m. Par exemple l'équation

$$y = ce^{\alpha x + 6} + c'e^{\alpha x + 6'}$$

semble contenir deux constantes arbitraires, mais en la mettant sous la forme

$$y = e^{\alpha x} (ce^{6} + c'e^{6'}),$$

on voit qu'elle n'en renferme qu'une : elle ne peut donc pas être l'intégrale générale d'une équation différentielle du second ordre.

Pour s'assurer que les constantes renfermées dans l'équation intégrale sont distinctes, il suffira de chercher si elles peuvent être déterminées de telle sorte, que y et ses m-1 premières dérivées aient des valeurs données quelconques $b, b', \ldots, b^{(m-1)}$, pour une valeur donnée de x.

553. Par exemple, soit

$$\gamma = ce^{xx} + c'e^{x'y},$$

on en tire
$$\frac{dy}{dx} = c \alpha e^{\alpha x} + c' \alpha' e^{\alpha' x},$$

et si l'on résout ces deux équations par rapport à c et c', le dénominateur commun des inconnues sera

$$(\alpha - \alpha') e^{(\alpha + \alpha') x}$$
.

Les valeurs de c et de c' seront donc finies et déterminées si α est différent de α' , et dans ce cas l'équation (1) sera l'intégrale générale d'une équation différentielle du second ordre. Il n'en est plus ainsi quand $\alpha = \alpha'$, comme on l'a vu dans l'exemple précédent.

554. On reconnaîtra de même que

$$y = c \sin \alpha x + c' \sin \alpha' x$$

est l'intégrale générale d'une équation différentielle du second ordre; mais l'équation

(i) $y = c \sin(x + \alpha) + c' \sin(x + \alpha') + c'' \sin(x + \alpha'')$ ne peut pas être l'intégrale d'une équation différentielle du troisième ordre, car on a

(2)
$$\frac{dy}{dx} = c\cos(x+\alpha) + c'\cos(x+\alpha') + c''\cos(x+\alpha''),$$

(3)
$$\frac{d^{2}y}{dx^{2}} = -c\sin(x+\alpha) - c'\sin(x+\alpha') - c''\sin(x+\alpha'').$$

Or il résulte des équations (1) et (3)

$$\frac{d^2y}{dx^2} = -y,$$

et la valeur de y étant déterminée, on ne peut pas donner de valeur arbitraire à $\frac{d^2y}{dx^2}$. On le voit d'ailleurs sur l'équation même en l'écrivant sous cette forme

$$y = (c \cos \alpha + c' \cos \alpha' + c'' \cos \alpha'') \sin x + (c \sin \alpha + c' \sin \alpha' + c'' \sin \alpha'') \cos x,$$

ou $y = A \sin x + B \cos x$,

et elle ne renferme que deux constantes arbitraires A et B.

INTÉGRALES DE DIVERS ORDRES D'UNE ÉQUATION DIFFÉRENTIELLE.

555. Une équation différentielle de l'ordre m a pour intégrale une équation de la forme

(1)
$$\mathbf{F}[x, y, c, c', c'', \ldots, c^{(m-1)}] = 0.$$

Puisque les constantes $c, c', \ldots,$ n'entrent pas dans l'équation différentielle, celle-ci ne peut sé déduire de F=o qu'en la différentiant $m-\iota$ fois, et éliminant ces m constantes entre l'équation (ι) et les $m-\iota$ équations différentielles ainsi obtenues. Or cette élimination peut se faire de plusieurs manières.

Si d'abord on ne veut éliminer qu'une constante c, on pourra différentier l'équation F=0 après l'avoir mise préalablement sous telle forme qu'on voudra, puis on éliminera c entre l'équation F=0 et sa différentielle. On peut, en particulier, résoudre l'équation F=0 par rapport à c, soit u=c, puis différentier cette dernière, ce qui fait disparaitre la constante. En éliminant ainsi tour à tour c, c', \ldots , on obtient m équations différentielles du premier ordre dont chacune contient seulement m-1 constantes. Ces équations sont dites des intégrales de l'ordre m-1.

556. Pour éliminer deux constantes c et c', on peut différentier deux fois de suite l'équation F=0: on a ainsi trois équations

$$F = 0$$
, $dF = 0$, $d^2F = 0$,

entre lesquelles on élimine c et c'. On peut aussi éliminer c entre F=o et dF=o, puis éliminer c' entre l'équation ainsi obtenue et sa différentielle. De quelque manière que l'on opère, on doit retomber sur la même équation différentielle du second ordre; car si l'on obtenait deux équations du deuxième ordre, en éliminant entre elles $\frac{d^2y}{dx^2}$, on aurait une équation du premier ordre

de la forme

$$\varphi\left(x,y,\frac{dy}{dx},c'',c''',...,c^{(m-1)}\right)=\mathbf{0}.$$

On ne pourrait pas alors se donner les valeurs de y, $\frac{dy}{dx}$,..., $\frac{d^{m-1}y}{dx^{m-1}}$ pour x=a; car, en différentiant m-2 fois cette équation, on aurait m-1 équations entre x, y, $\frac{dy}{dx}$,..., $\frac{d^{m-1}y}{dx^{m-1}}$ et m-2 constantes, c'est-à-dire plus d'équations que d'inconnues.

En éliminant successivement deux des m constantes, on aura $\frac{m(m-1)}{1\cdot 2}$ équations différentielles du deuxième ordre contenant chacune m-2 constantes et qu'on nomme intégrales de l'ordre m-2. Trois intégrales de cet ordre peuvent remplacer l'intégrale générale, car on la reproduit en éliminant entre elles $\frac{dy}{dx}$ et $\frac{d^2y}{dx^2}$.

557. On pourra de même éliminer un nombre quelconque de constantes et parvenir ainsi à des intégrales de
l'ordre m-3, de l'ordre m-4, etc. Si l'on élimine
toutes les constantes moins une, on aura m intégrales dupremier ordre. Si entre ces m équations on élimine les m-1 dérivées $\frac{dy}{dx}, \frac{d^2y}{dx^2}, \dots, \frac{d^{m-1}y}{dx^{m-1}}$, on retrouvera l'équation primitive F=0 entre $x, y, c, c', \dots, c^{(m-1)}$. Il suffira
donc, pour intégrer l'équation

$$\frac{d^m y}{dx^m} = f\left(x, y, \frac{dx}{dy}, \dots, \frac{d^{m-1} y}{dx^{m-1}}\right),\,$$

d'avoir les m équations intégrales du premier ordre.

558. Les intégrales du premier ordre permettent de déterminer les constantes $c, c', \ldots, c^{(m-1)}$ en fonction de $x, y, \frac{dy}{dx}, \ldots, \frac{d^{m-1}y}{dx^{m-1}}$. En les résolvant par rapport aux constantes et en désignant, pour abréger, les dérivées

de y par y', y'', \ldots , on aura m équations de la forme

$$c = f(x, y, y', \ldots, y^{(m-1)}) = u;$$

d'où l'on tire

$$\frac{du}{dx} + \frac{du}{dy}y' + \frac{du}{dy'}y'' + \ldots + \frac{du}{dy^{(m-1)}}\frac{d^my}{dx^m} = 0.$$

Mais on a $\frac{d^m y}{dx^m} = f(x, y, y', \dots, y^{(m-1)});$

on aura donc

$$\frac{du}{dx} + \frac{du}{dy}y' + \frac{du}{dy'}y'' + \ldots + \frac{du}{dy^{(m-1)}}f(x,y,y',\ldots,y^{(m-1)}) = 0.$$

Cette équation doit être identique, car autrement elle établirait une relation entre $x, y, y', \dots, y^{(m-1)}$, et l'on ne pourrait plus se donner les valeurs de $y, y', \dots, y^{(m-1)}$ pour x = a.

Ainsi les équations du premier ordre étant mises sous la forme

$$u=c$$
, $u_1=c'$, $u_2=c''$, etc.,

toutes les fonctions u, u_1, \ldots , devront satisfaire à une même équation aux dérivées partielles.

INTÉGRATION DE L'ÉQUATION $\frac{d^m \gamma}{dx^m} = \rho$.

559. Soit proposé d'intégrer l'équation

$$\frac{d^m y}{dx^m} = o,$$

vétant une fonction de x. On en déduit

$$\frac{d^{m-1}\gamma}{dx^{m-1}} = \int vdx + c,$$

$$\frac{d^{m-2}\gamma}{dx^{m-2}} = \int dx \int vdx + cx + c',$$

$$\frac{d^{m-3}\gamma}{dx^{m-3}} = \int dx \int dx \int vdx + cx^2 + c'x + c'',$$
II.

et ainsi de suite. Donc, si l'on désigne en général par $\int v dx^n$ l'intégrale $\int dx \int dx \dots \int v dx$ qui résulte de n intégrations successives par rapport à x, on aura

$$y = \int v dx^m + cx^{m-1} + c'x^{m-2} + \ldots + c^{(m-1)}$$

560. L'intégrale multiple qui entre dans la valeur de γ peut s'exprimer à l'aide d'un certain nombre d'intégrales simples. En effet, en intégrant par parties, on a successivement

$$\int dx \int v dx = x \int v dx - \int v x dx,$$

$$\int v dx^3 = \frac{1}{1 \cdot 2} \left(x^2 \int v dx - 2x \int v dx + \int v x^2 dx \right),$$

$$\int v dx^4 = \frac{1}{1 \cdot 2 \cdot 3} \left(\begin{array}{c} x^3 \int v dx - 3x^2 \int v x dx \\ + 3x \int v x^2 dx - \int v x^3 dx \end{array} \right),$$

et ainsi de suite; d'où l'on conclut, par induction,

(2)
$$\int v dx^n = \frac{1}{1 \cdot 2 \cdot \cdot \cdot \cdot (n-1)} \left[\begin{array}{c} x^{n-1} \int v dx - (n-1) x^{n-2} \int v x dx \\ + \frac{(n-1)(n-2)}{1 \cdot 2} x^{n-3} \int v x^2 dx \cdot \cdot \cdot \pm \int v x^{n-1} dx \end{array} \right].$$

Pour démontrer la généralité de cette formule, il suffit de montrer que si elle est vraie pour une intégrale de l'ordre n, elle conviendra encore à une intégrale de l'ordre n+1. Or on peut mettre l'équation (2) sous cette forme

$$\int e \, dx^{n} = \frac{1}{1 \cdot 2 \cdot \dots \cdot n} \left[\frac{nx^{n-1} \int e \, dx - n(n-1) \, x^{n-2} \int e \, x \, dx}{+ \frac{n(n-1)(n-2)}{1 \cdot 2} x^{n-3} \int e \, x^{2} \, dx \dots \pm n \int e \, x^{n-1} \, dx} \right].$$

Si l'on multiplie les deux membres par dx et que l'on intègre par parties, on aura

$$\int v \, dx^{n+1} = \frac{1}{1 \cdot 2 \cdot ... n} \begin{bmatrix} x^n \int v \, dx - nx^{n-1} \int vx \, dx \\ + \frac{n(n-1)}{1 \cdot 2} x^{n-2} \int vx^2 \, dx \cdot ... \pm n \int vx^{n-1} \, dx \end{bmatrix} - \frac{1}{1 \cdot 2 \cdot ... n} \begin{bmatrix} 1 - n + \frac{n(n-1)}{1 \cdot 2} \cdot ... \pm n \end{bmatrix} \int vx^n \, dx;$$

mais

$$1-n+\frac{n(n-1)}{1\cdot 2}\cdots \pm n=(1-1)^n \pm 1=\pm 1:$$

done

$$\int \sigma \, dx^{n+1} = \frac{1}{1 \cdot 2 \cdot \dots n} \left[\begin{array}{c} x^n \int \sigma \, dx - n x^{n-1} \int \sigma x \, dx \\ + \frac{n \, (n-1)}{1 \cdot 2} x^{n-2} \int \sigma x^n \, dx + \dots + \int \sigma x^n \, dx \end{array} \right],$$

ce qui établit la généralité de la formule.

561. Enfin on peut exprimer l'intégrale multiple $\int \nu dx^n$ par une seule intégrale simple. En effet, donnons aux intégrales qui entrent dans l'égalité (2) les limites a et x; posons $\nu = f(x)$, et, dans le second membre, remplaçons x par z sous le signe \int : nous aurons

$$\int_{a}^{x} f(x) dx^{n} = \frac{1}{1 \dots (n-1)} \begin{bmatrix} x^{n-1} \int_{a}^{x} f(z) dz - (n-1) x^{n-2} \int_{a}^{x} z f(z) dz \\ + \frac{(n-1)(n-2)}{1} x^{n-3} \int_{a}^{x} z^{2} f(z) dz \dots \end{bmatrix},$$

ou bien, en faisant passer les facteurs constants sous le signe \int , et remplaçant la somme des intégrales par une intégrale unique,

(3)
$$\int_{a}^{x} f(x) dx^{n} = \frac{1}{1 \cdot 2 \dots (n-1)} \int_{a}^{x} f(z) (x-z)^{n-1} dz.$$

562. Cette dernière formule conduit à une nouvelle démonstration de la série de Taylor. En remplaçant f(x) par $f^{(n+1)}(x)$ et n par n+1, on aura

$$\int_{a}^{x} f^{(n+1)}(x) dx^{n+1} = \frac{1}{1 \cdot 2 \cdot ... n} \int_{a}^{x} f^{(n+1)}(z) (x-z)^{n} dz.$$

D'un autre côté,

$$\int_{a}^{x} f^{(n+1)}(x) dx^{n+1} = f(x) - f(a) - f'(a) (x - a)$$
$$-f''(a) \frac{(x - a)^{2}}{1 \cdot 2} \cdot \dots - f^{n}(a) \frac{(x - a)^{n}}{1 \cdot 2 \cdot \dots \cdot n};$$

donc on aura

$$f(x) = f(a) + f'(a)(x-a) + f''(a)\frac{(x-a)^2}{1 \cdot 2} + \dots + f''(a)\frac{(x-a)^2}{1 \cdot 2 \cdot \dots n} + \frac{1}{1 \cdot 2 \cdot \dots n} \int_a^x f^{(n+1)}(z)(x-z)^n dx,$$

et, si l'on pose x = a + h, z = a + h - t,

$$f(x) = f(a) + f'(a)h + f''(a)\frac{h^2}{1 \cdot 2} + \dots + f^{(n)}(a)\frac{h^n}{1 \cdot 2 \cdot \dots n} + \frac{1}{1 \cdot 2 \cdot \dots n} \int_a^h f^{(n+1)}(a+h-t)t^n dt.$$

QUARANTE-CINQUIÈME LEÇON.

Intégration de quelques équations d'un ordre supérieur. — Équations de la forme $f\left(\frac{d^{m-1}y}{dx^{m-1}}, \frac{d^my}{dx^m}\right) = 0$. — Équations de la forme $f\left(\frac{d^{m-2}y}{dx^{m-2}}, \frac{d^my}{dx^m}\right) = 0$. — Équations susceptibles d'abaissement. — Applications géométriques. — Équations homogènes.

EQUATIONS DE LA FORME
$$f\left(\frac{d^{m-1}y}{dx^{m-1}}, \frac{d^my}{dx^m}\right) = 0.$$

563. Soit d'abord l'équation

$$\frac{d^{1}y}{dx^{2}} = f\left(\frac{dy}{dx}\right).$$

En posant $\frac{dy}{dx} = p$, on aura $\frac{dp}{dx} = f(p)$; d'où

$$(2) x = \int \frac{dp}{f(p)} + c.$$

Si l'on peut tirer de cette équation p en fonction de x, on aura

$$p = \varphi(x) \quad \text{on} \quad dy = \varphi(x) dx;$$

d'où

$$y = \int \varphi(x) \, dx + c'.$$

Cette équation est l'intégrale générale, car elle contient deux constantes arbitraires c et c'.

564. Si l'on ne peut pas tirer de l'équation (2) la valeur de p en fonction de x, on aura

$$dy = \rho dx = \frac{\rho dp}{f(p)},$$

d'où

(3)
$$y = \int \frac{pdp}{f(p)} + c';$$

on éliminera ensuite p entre les équations (2) et (3).

565. Exemple. Trouver la courbe dont le rayon de courbure est constant et égal à a.

L'équation différentielle du problème est

$$\frac{\left(1+p^2\right)^3}{\frac{dp}{dx}} = a,$$

On aura done $dx = \frac{adp}{(1+p^2)^2}$: d'où

$$(1) x = \frac{ap}{\sqrt{1+p^2}} + c$$

et ensuite $dy = pdx = \frac{apdp}{(1 + p^2)^{\frac{3}{2}}}$. d'où l'on tire

$$y = -\frac{a}{\sqrt{1+p^2}} + c'.$$

En éliminant p entre les équations (1) et (2), on aura

$$(x-c)^2 + (y-c')^2 = a^2,$$

équation d'un cercle dont a est le rayon.

On peut aussi tirer de l'équation (1) la valeur de ρ en fonction de x; on a

$$p = \frac{x - c}{\sqrt{a^2 - (x - c)^2}},$$

e'est-à-dire

$$dy = \frac{(x-c) dx}{\sqrt{a^2 - (x-c)^2}},$$

d'où, en intégrant,

$$y - c' = -\sqrt{a^2 - (x - c)^2}$$
$$(x - c)^2 + (y - c')^2 = a^2.$$

et enfin

566. Plus généralement, si l'on avait l'équation

$$f\left(\frac{d^{m-1}y}{dx^{m-1}}, \frac{d^my}{dx^m}\right) = 0$$

ne contenant que deux dérivées consécutives, en posant

$$\frac{d^{m-1}y}{dx^{m-1}} = p, \quad d^{n}ou \quad \frac{d^{m}y}{dx^{m}} = \frac{dp}{dx},$$

l'équation proposée se réduirait à

$$f\left(p,\frac{dp}{dx}\right) = o,$$

on déduira de là

$$\frac{dp}{dx} = f(p)$$
, d'où $dx = \frac{dp}{f(p)}$ et $x = \int \frac{dp}{f(p)} + c$.

Si cette équation peut être résolue par rapport à p, on aura $p = \varphi(x)$ et

$$y = \int \int \dots \varphi(x) dx^{m-1} + c'x^{m-2} + c''x^{m-3} \dots + c^{(m-2)}.$$

Si l'on ne peut pas exprimer p én fonction de x, on aura

$$\frac{d^{m-1}y}{dx^{m-1}} = p$$

ou

$$d. \frac{d^{m-2}y}{dx^{m-2}} = pdx = \frac{pdp}{f(p)},$$

done

$$\frac{d^{m-2}y}{dx^{m-2}} = \int \frac{pdp}{f(p)} + c',$$

en multipliant par $dx = \frac{dp}{f(p)}$ et intégrant de nouveau

$$\frac{d^{m-3}\gamma}{dx^{m-3}} = \int \frac{dp}{f(p)} \int \frac{pdp}{f(p)} + c'x + c'',$$

et ainsi de suite.

EQUATIONS DE LA FORME
$$f\left(\frac{d^{m-1}y}{dx^{m-2}}, \frac{d^my}{dx^m}\right) = 0$$
.

567. Soit d'abord
$$\frac{d^2 y}{dx^2} = f(y).$$

En multipliant les deux membres par 2 dy et intégrant, on aura

$$\left(\frac{dy}{dx}\right)^2 = 2\int f(y) \, dy + c,$$

d'où l'on tire $dx = \frac{dy}{\sqrt{c + 2 \int f(y) dy}}$

et enfin
$$x = c' + \int \frac{dy}{\sqrt{c + 2 \int f(y) dy}}$$

568. EXEMPLES.

$$\frac{d^2y}{dx^2} + n^2y = 0.$$

On aura

$$\left(\frac{dy}{dx}\right)^{2} + n^{2}(y^{2} - c^{2}) = 0,$$

$$ndx = \frac{dy}{\sqrt{c^{2} - y^{2}}},$$

$$y = c \sin(nx + c')$$

OU

$$y = A \sin nx + B \cos nx$$
,

A et B désignant deux constantes arbitraires,

2°.
$$\frac{d^{2}y}{dx^{2}} - n^{2}y = 0,$$

$$\left(\frac{dy}{dx}\right)^{2} - n^{2}(y^{2} + c^{2}) = 0, \quad ndx = \frac{dy}{\sqrt{y^{2} + c^{2}}},$$
(1)
$$y + \sqrt{y^{2} + c^{2}} = c'e^{nx};$$

on a d'ailleurs

$$(y+\sqrt{y^2+c^2})(-y+\sqrt{y^2+c^2})=c^2,$$

d'où

$$(2) - y + \sqrt{y^2 + c^2} = \frac{c^2}{c'} e^{-nx}.$$

On tire des équations (1) et (2),

$$y = \frac{1}{2} c' e^{nx} - \frac{1}{2} \frac{c^2}{c'} e^{-nx}$$

ou

$$y = A e^{nx} + B e^{-nx}$$
.

569. Pour ramener au cas précédent (567) les équations de la forme

$$f\left(\frac{d^{m-2}y}{dx^{m-2}}, \frac{d^my}{dx^m}\right) = 0,$$

il suffit de poser $\frac{d^{m-2}y}{dx^{m-2}} = p$, d'où

$$f\left(p, \frac{d^2p}{dx^2}\right) = 0 \quad \text{ou} \quad \frac{d^2p}{dx^2} = f(p):$$

on aura donc

$$\frac{dp}{dx} = \sqrt{c + 2 \int f(p) dp} = \psi(p),$$

d'où

$$(2) x = \int \frac{dp}{\psi(p)} + c'.$$

Si l'on peut résoudre cette équation par rapport à p et en tirer p ou $\frac{d^{m-2}y}{dx^{m-2}} = \varphi(x)$, l'intégrale générale s'obtiendra par m-2 quadratures qui introduiront m-2nouvelles constantes arbitraires.

Quand l'équation ne peut pas être résolue par rapport à p, on opère de la manière suivante.

On a
$$\frac{d^{m-2}y}{dx^{m-2}} = p$$
, d'où résulte
$$d\frac{d^{m-3}y}{dx^{m-3}} = pdx = \frac{pdp}{\psi(\hat{p})};$$
 onc
$$\frac{d^{m-3}p}{dx^{m-3}} = \int \frac{pdp}{\psi(p)} + c''.$$

done

On trouvera de même

$$\frac{d^{m-4}y}{dx^{m-4}} = \int \frac{pdp}{\psi(p)} \int \frac{dp}{\psi(p)} + c'' \int \frac{dp}{\psi(p)} + c''',$$

et ainsi de suite. On arrivera donc à une certaine équation

$$(3) y = F(p),$$

contenant m constantes arbitraires. L'élimination de p entre les équations (2) et (3) donnera l'intégrale générale.

ÉOUATIONS OUI PEUVENT S'ABAISSER A UN ORDRE INFÉRIEUR.

570. Soit l'équation de l'ordre m

$$f\left(y, \frac{d^n y}{dx^n}, \frac{d^{n+1} y}{dx^{n+1}}, \dots, \frac{d^m y}{dx^m}\right) = 0.$$

En posant $\frac{d^n y}{dx^n} = p$, on la réduit à

$$f\left(y, p, \frac{dp}{dx}, \dots, \frac{d^{m-n}p}{dx^{m-n}}\right) = 0.$$

Si l'on peut intégrer cette équation qui n'est que de l'ordre m-n, et ensuite la résoudre par rapport à x ou à p, le calcul s'achèvera comme dans le cas précédent.

571. Soit l'équation

(1)
$$f\left(y, \frac{dy}{dx}, \frac{d^2y}{dx^2}, \dots, \frac{d^my}{dx^m}\right) = 0,$$

qui ne contient pas x. On pourra en abaisser l'ordre d'une unité en prenant y pour variable indépendante et fai-

sant
$$\frac{dy}{dx} = p$$
. On aura

$$\frac{d^2 y}{dx^2} = \frac{dp}{dx} = p \frac{dp}{dy},$$

$$\frac{d}{dx} \left(p \frac{dp}{dx} \right)$$

$$\frac{d^3y}{dx^3} = \frac{d \cdot \left(p \frac{dp}{dy}\right)}{dx} = p^3 \frac{d^3p}{dy^2} + p \left(\frac{dp}{dy}\right)^2,$$

En général, $\frac{d^n y}{dx^n}$, considérée comme fonction de p, sera du $(n-1)^{i\hat{e}mc}$ ordre; en substituant ces valeurs dans l'équation (1) on arrivera donc à une équation de l'ordre m-1

$$\varphi\left(y, p, \frac{dp}{dy}, \dots, \frac{d^{m-1}p}{dy^{m-1}}\right) = 0,$$

dont l'intégrale renfermera m-1 constantes arbitraires, et l'intégration de l'équation dy = pdx fournira encore une autre constante.

APPLICATIONS GÉOMÉTRIQUES.

572. Quelle est la courbe dont le rayon de courbure est en raison inverse de l'abscisse?

L'équation différentielle du problème est

$$\frac{(1+p^{\alpha})^{\frac{1}{2}}}{dp} = \frac{a^2}{2x},$$

en appelant $\frac{a^2}{2}$ le produit constant du rayon de courbure par l'abscisse du point correspondant de la courbe. On déduit de là

$$2 x dx = \frac{a^2 dp}{(1 + p^2)^{\frac{3}{2}}},$$

et, en intégrant,

$$x^{2} + c = \frac{a^{2}p}{\sqrt{1 + p^{2}}},$$

d'où

$$p = \frac{x^2 + c}{\sqrt{a^4 - (x^2 + c)^2}},$$

et, en intégrant de nouveau,

$$y = \int \frac{(x^2 + c) dx}{\sqrt{a^4 - (x^2 + c_0)^2}} + c'.$$

Cette équation représente la courbe affectée par une lame élastique, quand une de ses extrémités étant fixée, l'autre extrémité supporte un poids : on lui donne, pour cette raison, le nom de courbe élastique.

573. Plus généralement, si le rayon de courbure doit être une fonction f(x) de l'abscisse, on aura l'équation

$$\frac{\left(1+p^2\right)^{\frac{3}{2}}}{\frac{dp}{dx}} = f(x),$$

d'où l'on déduira

$$\frac{p}{\sqrt{1+p^2}} = \int \frac{dx}{f(x)} + c.$$

Cette équation étant du second degré, pourra être résolue par rapport à p. Soit alors $p = \varphi(x)$, on aura

$$y = \int \varphi(x) \, dx + c',$$

équation de la courbe cherchée, qui renferme deux constantes arbitraires c et c'.

574. Trouver une courbe dont le rayon de courbure

soit proportionnel à la longueur de la normale comprise entre la courbe et l'axe des x.

L'équation différentielle du problème est

(1)
$$\frac{(1+p^2)^{\frac{3}{2}}}{\frac{dp}{dx}} = ny (1+p^2)^{\frac{1}{2}},$$

n désignant une constante positive ou négative, selon que la courbe est convexe ou concave par rapport à l'axe des x (I, 233).

En prenant y pour variable indépendante et remplaçant $\frac{dp}{dx}$ par $\frac{pdp}{dx}$, on aura

 $\frac{dy}{\gamma} = \frac{np \ dp}{1 + p^2}.$

On tire de là

$$1\frac{y}{c} = \frac{n}{2} 1(1+p^2) = 1(1+p^2)^{\frac{n}{2}},$$
$$\frac{y}{c} = (1+p^2)^{\frac{n}{2}};$$
$$p = \sqrt{\left(\frac{y}{c}\right)^{\frac{n}{n}} - 1},$$

done

ou

et en remplaçant p par $\frac{dy}{dx}$,

(2)
$$dx = \frac{dy}{\sqrt{\left(\frac{y}{c}\right)^{\frac{2}{n}} - 1}} = \left[\left(\frac{y}{c}\right)^{\frac{2}{n}} - 1\right]^{-\frac{1}{2}}.$$

Il suffit de prendre ce radical avec le signe +, car le signe - conduirait à la même intégrale.

Cette équation peut s'intégrer d'après la théorie des intégrales binòmes:

1°. Quand $\frac{n}{2}$ est un nombre entier (I, 348), c'est-à-dire quand n est un nombre entier pair; 2° quand $\frac{n}{2} = \frac{1}{2}$ est

un nombre entier (I, 349), et, par suite, quand n est un nombre entier impair. En résumé, n doit être un nombre entier.

Examinons les cas particuliers de $n = \pm 1$, $n = \pm 2$. 1°. n = -1: l'équation différentielle sera

$$dx = \frac{y \, dy}{\sqrt{c^2 - y^2}}; \qquad .$$

d'où

$$(x-c')^2+y^2=c^2$$
.

Cette équation représente tous les cercles qui ont leur centre sur l'axe des x.

2°. n=1: dans ce cas, où la courbe est convexe vers l'axe des x, on a

$$dx = \frac{c \, dy}{\sqrt{r^2 - c^2}};$$

d'où

$$x = c \cdot 1 \left(y + \sqrt{y^2 - c^2} \right) + k.$$

Si l'on détermine k de manière que pour y = c on ait x = c', il faudra que

$$c' = c \mid c + k;$$

ďoù

$$\frac{x-c'}{c} = 1 \frac{y+\sqrt{y^2-c^2}}{c};$$

ce qui revient à

$$(\alpha) \qquad \qquad \gamma + \sqrt{\gamma^2 - c^2} = ce^{\frac{x - c'}{c}}.$$

Mais on a

$$(y+\sqrt{y^2-c^2})(y-\sqrt{y^2-c^2})=c^2;$$

donc on aura

$$(\beta) \qquad \qquad y - \sqrt{y^2 - c^2} = c e^{-\frac{x - c'}{c}}.$$

Donc, en ajoutant membre à membre les équations (α) et (β) , on aura pour l'équation de la courbe

$$y = \frac{1}{2} c \left(e^{\frac{x-c'}{c}} + e^{-\frac{x-c'}{c}} \right).$$

Cette équation est celle d'une chaînette. Par conséquent

le cercle et la chaînette sont les seules courbes dans Fig. 114.

lesquelles le rayon de courbure soit égal à la normale, avec cette différence que ces deux lignes coïncident dans le cercle, tandis qu'elles sont situées de part et d'autre du point de contact dans la chaînette.

la normale MN.

 3° , n = -2: on a l'équation différentielle

$$dx = \frac{dy}{\sqrt{\left(\frac{y}{c}\right)^{-1} - 1}}$$
, ou $\frac{dy}{dx} = \frac{\sqrt{cy - y^2}}{y}$.

Or, cette équation représente (1, 246) une cycloïde dont la base est sur l'axe Fig. 115. des x et dont le cercle géy nérateur a $\frac{c}{2}$ pour rayon. On sait en effet que, dans courbure MK est double de

 4° . n=2:

$$dx = \frac{\sqrt{c} \, dy}{\sqrt{y - c}};$$
$$(x - c')^2 = 4 \, c \, (y - c);$$

d'où

cette équation représente toutes les paraboles qui ont l'axe des x pour directrice.

ÉQUATIONS HOMOGÈNES.

575. On peut abaisser d'une unité l'ordre d'une équation différentielle lorsqu'elle est homogène par rapport à y et à ses dérivées; soit

(1)
$$f\left(x, y, \frac{dy}{dx}, \dots, \frac{d^m y}{dx^m}\right) = 0,$$

une telle équation, et soit n le degré de l'homogénéité.

On pourra la mettre sous cette forme

(2)
$$y^{n} \varphi \left(x, \frac{dy}{dx}, \frac{d^{2}y}{dx^{2}}, \dots, \frac{d^{m}y}{dx^{m}} \right) = 0.$$
Faisons $y = e^{\int u dx}, \text{ d'où}$

$$\frac{dy}{dx} = e^{\int u dx} u,$$

$$\frac{d^{2}y}{dx^{2}} = e^{\int u dx} \left(\frac{du}{dx} + u^{2} \right),$$

$$\frac{d^{3}y}{dx^{3}} = e^{\int u dx} \left(\frac{d^{2}u}{dx^{2}} + 3 u_{j} \frac{du_{j}}{dx} + u^{3} \right),$$

En substituant ces valeurs dans l'équation (2), on aura évidemment une équation différentielle de l'ordre m-1.

576. Exemple.

$$\frac{d^2y}{dx^2} + \frac{1}{x}\frac{dy}{dx} - \frac{y}{x^2} = 0.$$

Posant $y = e^{\int u dx}$ et substituant les valeurs de $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ trouvées plus haut, on aura

$$\frac{du}{dx} + u^{2} + \frac{1}{x}u - \frac{1}{x^{3}} = 0,$$

$$\frac{xdu + udx}{dx} + \frac{u^{2}x^{2} - 1}{x} = 0.$$

ou

Posons ux = z, il vient

$$\frac{dz}{dx} + \frac{z^2 - 1}{x} = 0,$$

ou, en séparant les variables,

$$\frac{dx}{x} + \frac{ilz}{z^2 - 1} = 0;$$

d'où l'on tire

$$x^{2} \cdot \frac{z-1}{z+1} = c, \quad z = \frac{x^{2}+c}{x^{2}-c}, \quad u = \frac{x^{2}+c}{x(x^{2}-c)},$$

et, ensuite,

$$y = e^{\int u dx} = c' \frac{x^2 - c}{x} = c' x - \frac{c}{x}$$

577. On traite de la même manière toute équation

$$f\left(y, \frac{dy}{dz}, \frac{d^2y}{dx^2}, \cdots\right) = 0,$$

qui est homogène par rapport aux indices des différentielles, c'est-à-dire dans laquelle la somme des indices des différentielles de y est toujours la même; car si on pose $\frac{dy}{dx} = p$, l'équation deviendra homogène par rapport à p, $\frac{dp}{dy}$, $\frac{d^2p}{dy^2}$

578. Exemple. Soit

$$\frac{d^2y}{dx^2} = f(y) \left(\frac{dy}{dx}\right)^2.$$

Cette équation revient à $p \frac{dp}{d\gamma} = f(y) p^2$, ou

(2)
$$\frac{dp}{dy} - pf(y) = 0,$$

équation homogène par rapport à p et à $\frac{dp}{d\gamma}$. Si l'on fait

$$p = e^{\int u dy}$$
, d'où $\frac{dp}{dy} = e^{\int u dy} u$,

on aura, en portant ces valeurs dans l'équation (2) et supprimant le facteur commun $e^{\int u dy}$,

$$u = f(y);$$

done

$$p = \frac{1}{c} e^{\int f(y) dy},$$

et, en intégrant de nouveau,

$$x = c' + c \int e^{-ff(y)dy} dy.$$

QUARANTE-SIXIÈME LECON.

Intégration des équations linéaires sans second membre. — Définition — Propriétés de l'équation privée de second membre. — Équations à coefficients constants. — Cas des racines imaginaires inégales. — Cas des racines égales. Méthode de d'Alembert. — Autres méthodes.

DÉFINITION.,

578. On appelle équations linéaures les équations différentielles dans lesquelles la fonction cherchée et ses dérivées n'entrent qu'au premier degré et ne sont pas multipliées entre elles.

Leur forme générale est

(I)
$$\frac{d^m y}{dx^m} + P \frac{d^{m-1} y}{dx^{m-1}} + Q \frac{d^{m-2} y}{dx^{m-2}} + \ldots + T \frac{dy}{dx} + U y = V,$$

P, Q...T, U, V désignant des fonctions de x.

PROPRIÉTÉS DES ÉQUATIONS LINÉAIRES PRIVÉES DE SECOND MEMBRE.

579. Nous considérerons d'abord l'équation privée de second membre

(II)
$$\frac{d^m y}{dx^m} + P \frac{d^{m-1} y}{dx^{m-1}} + Q \frac{d^{m-2} y}{dx^{m-2}} + \dots + T \frac{dy}{dx} + U y = 0.$$

Si des fonctions particulières y_1, y_2, \ldots, y_n satisfont à cette équation, la somme de ces fonctions et même la somme des produits de ces fonctions par des constantes quelconques c_1, c_2, \ldots, y satisfera également.

En effet si l'on pose

$$y = c_1 y_1 + c_2 y_2 + \ldots + c_n y_n,$$

on aura

$$\frac{dy}{dx} = c_1 \frac{dy_1}{dx} + c_2 \frac{dy_2}{dx} + \dots + c_n \frac{dy_n}{dx},$$

$$\frac{d^2y}{dx^2} = c_1 \frac{d^2y_1}{dx^2} + c_2 \frac{d^2y_2}{dx^2} + \dots + c_n \frac{d^2y_n}{dx^2},$$

$$\dots$$

$$\frac{d^my}{dx^m} = c_1 \frac{d^my_1}{dx^m} + c_2 \frac{d^my_2}{dx^m} + \dots + c_n \frac{d^my_n}{dx^m}.$$

La substitution de ces valeurs dans l'équation (II) lui fait prendre la forme

$$c_1 \left(\frac{d^m y_1}{dx^m} + P \frac{d^{m-1} y_1}{dx^{m-1}} + \dots + T \frac{dy_1}{dx} + U y_1 \right)$$

$$+ c_2 \left(\frac{d^m y_2}{dx^m} + P \frac{d^{m-1} y_2}{dx^{m-1}} + \dots + T \frac{dy_2}{dx} + U y_2 \right)$$

$$+ \dots = 0$$

Or chacune des parenthèses étant nulle par hypothèse, l'équation se trouvera satisfaite. Cette propriété n'appartient qu'à l'équation privée de second membre.

580. Il suit de là que si l'on connaît m solutions particulières de l'équation (II), on aura l'intégrale générale en posant

$$y = c_1 y_1 + c_2 y_2 + \dots + c_m y_m$$

pourvu que l'on puisse déterminer les constantes de manière à donner à y, $\frac{dy}{dx}$, ..., $\frac{d^{m-1}y}{dx^{m-1}}$ des valeurs arbitraires pour une valeur quelconque de x.

Ces conditions ne pourraient pas être remplies s'il existait une relation linéaire entre quelques-unes des fonctions $y_1, y_2, ..., y_m$. Par exemple si l'on avait

$$y_3 = ay_1 + by_2,$$

on aurait

$$y = (c_1 + ac_3) y_1 + (c_2 + bc_3) y_2 + c_4 y_4 + \dots$$

et cette expression ne renfermant que m-1 constantes arbitraires puisque $c_1 + a c_3$, $c_2 + b c_3$ ne doivent compter que pour deux constantes, ne peut pas être l'intégrale générale de l'équation (II).

581. L'équation linéaire étant homogène par rapport à y et à ses dérivées, on peut en abaisser l'ordre d'une unité, en posant $y=e^{\int u dx}$ (575); mais elle cesse d'être linéaire. Elle prend alors la forme

(III)
$$\frac{d^{m-1}u}{dx^{m-1}} + \ldots + (u^m + P_n u^{m-1} + Q_n u^{m-2} + \ldots + U) = 0.$$

Cette équation est plus compliquée que la proposée; mais elle fait découvrir plus facilement certaines intégrales particulières. Ainsi quand une valeur u=r, indépendante de x, annule le polynôme!

$$(1) u^m + P u^{m-1} + \ldots + U = f(u)$$

l'équation (III) est satisfaite par u=r, car les dérivées $\frac{du}{dx}$, $\frac{d^{i}u}{dx^{2}}$, ..., sont nulles : par conséquent l'équation (II) est satisfaite par $\gamma=ce^{\int u dx}=ce^{rx}$.

ÉQUATIONS LINÉAIRES A COEFFICIENTS CONSTANTS.

582. Dans le cas où P, Q,...,T, U sont des constantes, l'équation f(u) = 0 n'admet que des racines constantes r_1, r_2, \ldots, r_m . En les supposant toutes différentes, on aura donc m solutions particulières $e^{r_1x}, e^{r_2x}, \ldots, e^{r_mx}$ et l'intégrale générale sera

(2)
$$\gamma = c_1 e^{r_1 x} + c_2 e^{r_2 x}, \ldots + c_m e^{r_m x}.$$

Pour le démontrer il suffit de faire voir qu'on peut déterminer les constantes c_1, c_2, \ldots, c_m de manière que, pour une certaine valeur de x, par exemple x = 0, y et ses m-1 premières dérivées aient des valeurs arbitraires $b, b', \ldots, b^{(m-1)}$. En effet, de l'équation (2) on

7.

100

tire

(3)
$$\frac{dy}{dx} = c_1 r_1 e^{r_1 x} + c_2 r_2 e^{r_2 x} + \dots + c_m r_m e^{r_m x},$$
(4)
$$\frac{d^2 y}{dx^2} = c_1 r_1^2 e^{r_1 x} + c_2 r_2^2 e^{r_2 x} + \dots + c_m r_n^2 e^{r_m x},$$

(4)
$$\frac{d^2 y}{dx^2} = c_1 r_1^2 e^{r_1 x} + c_2 r_2^2 e^{r_2 x} + \dots + c_m r_m^2 e^{r_m x},$$

et, par conséquent, en faisant x=0 dans les équations $(2), (3), (4), \ldots,$ on aura

(C)
$$\begin{cases} c_1 + c_2 + c_3 + \dots + c_m = b, \\ c_1 r_1 + c_2 r_2 + c_3 r_3 + \dots + c_m r_m = b', \\ c_1 r_1^2 + c_2 r_2^2 + c_3 r_3^2 + \dots + c_m r_m^2 = b'', \\ \vdots \\ c_1 r_1^{m-1} + c_2 r_2^{m-1} + c_3 r_3^{m-1} \dots + c_m r_m^{m-1} = b^{(m-1)}. \end{cases}$$

Multiplions ces équations respectivement par k, k', k'', \ldots $k^{(m-2)}$ et 1, et ajoutons-les : en posant

$$k + k' r + k'' r^{2} + \ldots + k^{(m-2)} r^{m-2} + r^{m-1} = \varphi(r),$$
on aura
$$c_{1} \varphi(r_{1}) + c_{2} \varphi(r_{2}) + \ldots + c_{m} \varphi(r_{m})$$

$$= kb + k'b' + k''b'' + \ldots + b^{(m-1)}.$$

On éliminera c_2, c_3, \ldots, c_m , en prenant pour $\varphi(r)$ une fonction telle que $\varphi(r_2)$, $\varphi(r_3)$,..., soient nulles, mais que $\varphi(r_1)$ soit différente de zéro. Ces conditions seront remplies si l'on pose

$$\varphi(r) = (r - r_2)(r - r_3) \dots (r - r_m) = \frac{f(r)}{r - r_1},$$

$$\varphi(r_1) = f'(r_1)$$
et
$$c_1 = \frac{b^{(m-1)} + \dots + k''b'' + k'b' + kb}{f'(r_1)}.$$

On aurait de même c_2, c_3, \ldots Toutes ces constantes ont des valeurs finies et déterminées, puisque $f'(r_1), f'(r_2), \dots$ ne sont pas nulles.

Si l'on donnait les valeurs $b, b', \ldots, de_{\gamma}$ et de ses dérivées pour x = a, il suffirait de changer dans la valeur de γ , x en x-a sans toucher aux constantes, car l'intégrale (2) peut évidemment s'écrire

$$y = c_1 e^{r_1(r-a)} + c_2 e^{r_2(a-a)} + \dots$$

En prenant ensuite les dérivées et faisant x=a on retrouverait les mèmes équations (C) pour déterminer c_1 , c_2 , ..., c_m .

EXEMPLE.
$$\frac{d^2y}{dx^2} - n^2y = 0,$$
on a
$$r^2 - n^2 = 0,$$
d'où
$$r = \pm n$$
et
$$y = c_1 e^{nx} + c_2 e^{-nx}.$$

CAS DES RACINES IMAGINAIRES INÉGALES.

583. Lorsque l'équation

$$f(r) = r^m + P r^{m-1} + ... + T r + U = 0$$

a des racines imaginaires, la formule

$$y = c_1 e^{r_1 x} + c_2 e^{r_2 x} + \ldots + c_m e^{r_m x}$$

représente encore l'intégrale générale, mais elle renferme des imaginaires. Pour mettre l'intégrale sous une forme réelle, observons que les racines imaginaires doivent être conjuguées deux à deux en supposant que P, Q,..., T, U soient des quantités réelles. Soient donc

$$r_1 = \alpha + 6\sqrt{-1}, \quad r_2 = \alpha - 6\sqrt{-1},$$

on aura

$$c_1 e^{r_1 x} + c_2 e^{r_2 x} = c_1 e^{\alpha x} + 6 x \sqrt{-1} + c_2 e^{\alpha x} - 6 x \sqrt{-1}$$
$$= e^{\alpha x} [(c_1 + c_2) \cos 6 x + \sqrt{-1} (c_1 - c_2) \sin 6 x],$$

ou bien

$$c_1 e^{r_1 x} + c_2 e^{r_2 x} = (A \cos 6 x + B \sin 6 x) e^{\alpha x},$$

en posant $A = c_1 + c_2$, $B = (c_1 - c_2)\sqrt{-1}$: A et B désignent des constantes arbitraires que l'on peut toujours supposer réelles.

On peut encore écrire la somme des termes qui correspondent à deux racines conjuguées sous cette forme

$$ce^{\alpha x}\sin(\beta x + c')$$
.

584. Exemples.

1°.
$$\frac{d^3 y}{dx^2} + n^2 y = 0,$$

$$r = \pm n \sqrt{-1},$$

$$y = c_1 e^{nx\sqrt{-1}} + c_2 e^{-nx\sqrt{-1}} = A \cos nx + B \sin nx.$$
2°.
$$\frac{d^3 y}{dx^3} - \frac{dy}{dx} - 6y = 0;$$

l'équation en r est

$$r^3 - r - 6 = 0$$
:

on en tire

$$r_1 = 2$$
, $r_2 = -1 + \sqrt{-2}$, $r_2 = -1 - \sqrt{-2}$,

et par suite

$$y = c e^{ix} + e^{-x} \left[A \cos \left(x \sqrt{2} \right) + B \sin \left(x \sqrt{2} \right) \right].$$

CAS DES RACINES ÉGALES. - MÉTHODE DE D'ALEMBERT.

585. Lorsque l'équation

(1)
$$r^m + Pr^{m-1} + Qr^{m-2} + ... + Tr + U = 0$$

a des racines égales, les termes correspondants à ces racines dans la formule

$$y = c_1 e^{r_1 x} + c_2 e^{r_{1^d}} + \dots,$$

se confondent en un seul et l'on n'a plus l'intégrale générale, puisque le nombre des constantes arbitraires est inférieur à m. On peut cependant déduire de cette mème formule l'intégrale générale en considérant d'abord les racines comme ayant une différence qu'on rend nulle ensuite après avoir fait subir à l'expression une transformation convenable.

Pour faire comprendre ce procédé par un exemple trèssimple, proposons-nous de déduire l'intégrale $\int \frac{dx}{x} = 1x$ de l'intégrale $\int x^m dx = \frac{x^{m+1}}{m+1} + C$, qui devient illusoire

quand m = -1. Posons m = -1 + h; nous aurons

$$\int \frac{dx}{x^{1-h}} = C + \frac{x^h}{h}.$$

Mais

$$x^h = \tau + h \, 1 \, x + \frac{h^2}{1 \cdot 2} (1 \, x)^2 + \dots;$$

done

$$\int \frac{dx}{x^{1-h}} = \left[C + \frac{1}{h} + 1x + \frac{h}{1 \cdot 2} (1x)^2 + \frac{h^2}{1 \cdot 2 \cdot 3} (1x)^3 + \dots \right],$$

et, en représentant $C + \frac{1}{h} \operatorname{par} c$,

$$\int \frac{dx}{x^{1-h}} = c + 1x + \frac{h}{1 \cdot 2} (1x)^2 + \frac{h^2}{1 \cdot 2 \cdot 3} (1x)^3 + \dots$$

Donc si l'on fait h = 0, on aura

$$\int \frac{dx}{x} = 1x + c.$$

586. Revenons maintenant aux équations linéaires et supposons $r_2 = r_1$. On peut altérer les coefficients de l'équation (II), de manière que l'équation (1) n'ait plus de racines égales. Alors on a $r_2 = r_1 + h$, et

$$y = C_1 e^{r_1 x} + C_2 e^{r_1 x + h x} + c_3 e^{r_3 x} + \dots,$$

ou

$$y = (\mathbf{C}_1 + \mathbf{C}_2 e^{hx}) e^{r_1 x} + c_3 e^{r_3 x} + \dots$$

$$= e^{r_1 x} \left(\mathbf{C}_1 + \mathbf{C}_2 + \mathbf{C}_2 hx + \mathbf{C}_2 \frac{h^2}{1 \cdot 2} x^2 + \dots \right) + c_3 e^{r_3 x} + \dots,$$

ou bien, en posant

$$C_1 + C_2 = c$$
, $C_2 h = c'$,

on aura

$$y = c^{r_1 x} \left(c + c' x + c' h \frac{x^2}{1 \cdot 2} + c' h^2 \frac{x^3}{1 \cdot 2 \cdot 3} + \dots \right)$$

$$+ c_3 e^{r_3 x} + \dots;$$

cette valeur satisfait à l'équation différentielle quel que soit h. Donc en faisant h=0, on aura

(3)
$$y = e^{r_1 x} (c + c' x) + e_3 e^{r_3 x} + \dots,$$

expression qui renferme m constantes arbitraires distinctes quand r_1, r_3, r_4, \ldots , sont des racines différentes.

Quand trois racines sont égales, on suppose d'abord l'équation modifiée de manière que deux racines seulement soient égales, ce qui donne à l'intégrale la forme

$$y = e^{r_1 x} (\mathbf{C} + \mathbf{C}' x) + \mathbf{C}_3 e^{r_2 x} + \dots$$

Puis, supposant $r_3 = r_1 + h$, on aura

$$\gamma = e^{r_1 x} \left[C + C_3 + (C' + C_3 h) x + \frac{C_3 h^2}{1 \cdot 2} x^2 + \frac{C_3 h^3}{1 \cdot 2 \cdot 3} x^3 + \dots \right] + c_4 e^{r_4 x} + \dots$$

ou, en posant
$$C + C_3 = c$$
, $C' + C_3 h = c'$, $\frac{C_3 h^2}{1 \cdot 2} = c''$.

$$y = e^{r_4 x} \left(c + c' x + c'' x^2 + \frac{c'' h}{3} x^3 + \dots \right) + c_4 e^{r_4 x} + \dots,$$

et, en faisant h = 0,

On trouverait, de la même manière, que si la racine $r_{\rm t}$ était quadruple, il faudrait remplacer les termes qui s'y rapportent par

$$e^{r_1x}(c + c'x + c''x^2 + c'''x^3),$$

expression qui renferme quatre constantes arbitraires.

DEUXIÈME MÉTHODE.

587. Lemme. u et v étant des fonctions de x, si l'on cherche les différentielles successives de uv, on arrive par induction à la formule

$$d^{n}(uv) = ud^{n}v + ndud^{n-1}v + \frac{n(n-1)}{1 \cdot 2}d^{2}ud^{n-2}v + \dots + nd^{n-1}udv + vd^{n}u,$$

ou à la formule symbolique

$$d^n, uv = (du + dv)^{(n)},$$

en remplaçant dans le développement du second membre les exposants des puissances par des indices de différentiation, et en admettant que $d^{\circ}u = u$.

Pour faire voir que cette formule est générale, il sussit de montrer que si elle est vraie pour l'indice n, elle est encore vraie pour l'indice n+1. En effet, soit $kd^pu\,d^{n-p}v$ un terme quelconque du développement de $d^n.uv$. On aura

$$d^n$$
. $uv = \sum k d^p u d^{n-p} v$,

De là on tire

$$d^{n+1}$$
. $uv = \sum_{i=1}^{n} (k d^{n+1} u d^{n-p} v + k d^{n} u d^{n-p+1} v),$

ou sous une forme symbolique

$$d^{n+1}. uv = \sum_{i} k du^{p} dv^{n-p} (du + dv) = (du + dv) \sum_{i} k du^{p} dv^{n-p}.$$

Mais, par hypothèse,

$$\sum_{n} k du^{p} dv^{n-p} = (du + dv)^{(n)};$$

on aura done

$$d^{n+1}. uv = (du + dv)(du + dv)^{(n)} = (du + dv)^{(n+1)}$$

Ce qu'il fallait démontrer. On démontrerait de la même manière la formule plus générale

$$d^{n}.(uv...z) = (du + dv + ... + dz)^{(n)}.$$

588. Autrement. Le coefficient k dans l'équation

$$(1) d^n \cdot uv = \sum k d^p u d^q v$$

est un nombre indépendant de la nature des fonctions u et v. Soit alors $u = e^{ax}$, $v = e^{bx}$, on aura

$$d^{n}$$
, $uv = d^{n}$, $e^{(a+b)c} = e^{(a+b)r}(a+b)^{n}dx^{n}$,

et l'équation (1) devient

$$(a+b)^n dx^n = \sum ka^p b^q dx^{p+q},$$

et puisque p + q = n,

$$(a+b)^n = \sum ka^n b^{n-p}.$$

Ainsi les coefficients de d^n , uv ne sont autre chose que les coefficients de la n^{iemo} puissance d'un binôme.

589. Revenons à l'équation

(II)
$$\frac{d^m y}{dx^m} + P \frac{d^{m-1} y}{dx^{m-1}} + Q \frac{d^{m-2} y}{dx^{m-2}} + ... + T \frac{dy}{dx} + U y = 0.$$

Remplaçons γ par $u\nu$. L'équation ordonnée par rapport à la fonction u et à ses dérivées, deviendra

$$\left(\frac{d^{m} v}{dx^{m}} + P \frac{d^{m-1} v}{dx^{m-2}} + Q \frac{d^{m-2} v}{dx^{m-2}} + \ldots + T v \frac{dv}{dx} + U v \right) u$$

$$+ \frac{1}{1} \left[m \frac{d^{m-1} v}{dx^{m-1}} + (m-1) P \frac{d^{m-1} v}{dx^{m-2}} + (m-2) Q \frac{d^{m-2} v}{dx^{m-3}} + \ldots + T v \right] \frac{du}{dx}$$

$$+ \frac{1}{1 \cdot 2} \left[m(m-1) \frac{d^{m-2} v}{dx^{m-2}} + (m-1) (m-2) P \frac{d^{m-3} v}{dx^{m-3}} + \ldots + S v \right] \frac{d^{2} u}{dx^{2}}$$

$$+ \frac{1}{1 \cdot 2 \cdot \ldots \cdot m} \left[m(m-1) (m-2) \cdot \ldots \cdot 2 \cdot 1 \cdot v \right] \frac{d^{m} u}{dx^{m}}$$

ou bien

$$(2) V_0 u + V_1 \frac{du}{dx} + \frac{V_2}{1 \cdot 2} \frac{d^2 u}{dx^2} + \dots + \frac{V_m}{1 \cdot 2 \cdot 3 \dots m} \frac{d^m u}{dx^m} = 0,$$

en posant

$$\begin{aligned} \mathbf{V}_{0} &= \frac{d^{m} \, \rho}{dx^{m}} + \mathbf{P} \frac{d^{m-1} \, \rho}{dx^{m-1}} + \mathbf{Q} \frac{d^{m-2} \, \rho}{dx^{m-2}} + \ldots + \mathbf{T} \frac{d^{\nu}}{dx} + \mathbf{U} \, \rho \\ \\ \mathbf{V}_{1} &= m \frac{d^{m-1} \, \rho}{dx^{m-1}} + (m-1) \, \mathbf{P} \frac{d^{m-2} \, \rho}{dx^{m-2}} + (m-2) \, \mathbf{Q} \frac{d^{m-3} \, \rho}{dx^{m-3}} + \ldots + \mathbf{T} \, \rho \, , \\ \\ \mathbf{V}_{2} &= m \, (m-1) \frac{d^{m-2} \, \rho}{dx^{m-2}} + (m-1) \, (m-2) \, \mathbf{P} \frac{d^{m-3} \, \rho}{dx^{m-3}} + \ldots + \mathbf{S} \, \rho \, , \end{aligned}$$

Le développement (2) est analogue à celui d'une fonction de x dans laquelle on remplace x par x + h. On voit en effet que les polynômes $V_0, V_1, V_2, \ldots, sp$ dé-

duisent du polynôme

$$o^m + P o^{m-1} + \ldots + T o + U$$
.

et de ses dérivées en remplaçant ν^m , ν^{m-1} ,..., ν , ν^0 par $\frac{d^m \nu}{dx^m}$, $\frac{d^{m-1} \nu}{dx^{m-1}}$, $\frac{d\nu}{dx}$, ν .

590. Maintenant, si l'on pose $v=e^{rz}$, et que l'on supprime le facteur commun e^{rz} , l'équation (2) prendra la forme

(3)
$$f(r)u + f'(r)\frac{du}{dx} + f''(r)\frac{d^2u}{dx^2} + \dots + \frac{d^mu}{dx^m} = 0$$
,

f(r) désignant, comme plus haut, le polynôme

$$r^m + Pr^{m-1} + \ldots + Tr + U$$
.

De là résultent les conséquences suivantes :

1°. Si r₁ est racine simple de l'équation

$$f(r) = 0$$
,

on satisfera à l'équation (3) en faisant

$$r = r_1, \quad u = c_1,$$

 c_1 désignant une constante, d'où $\gamma = c_1 e^{r_1 x}$.

Donc si toutes les racines sont inégales, on aura m intégrales particulières contenant chacune une constante arbitraire et dont la somme formera l'intégrale générale.

2°. Si r_1 est une racine double, $f(r_1)$, $f'(r_1)$ seront nulles et l'on satisfera à l'équation (3) en posant

$$r=r_1, \quad \frac{d^2u}{dx^2}=0,$$

d'où u = c + c'x, $y = e^{r_1 x} (c + c'x)$.

3°. Si r_1 est racine triple, $f(r_1)$, $f'(r_1)$, $f''(r_1)$ seront nulles et l'on satisfera à l'équation en faisant

$$r=r_1, \quad \frac{d^3u}{dx^3}=0,$$

d'où

$$u = c + c'x + c''x^2$$

$$\gamma = c^{r_1x} \left(c + c'x + c''x^2 \right),$$

et ainsi de suite.

TROISIÈME MÉTHODE.

591. En substituant e^{rx} à y dans le premier membre de l'équation (II), on a identiquement

$$(\mathfrak{l}) \quad \frac{d^m \cdot e^{rx}}{dx^m} + P \frac{d^{m-1} \cdot e^{rx}}{dx^{m-1}} + \ldots + T \frac{d \cdot e^{rx}}{dx} + U e^{rx} = e^{rx} f(r).$$

Différentiant par rapport à r, on aura

$$(2) \frac{d^{m} \cdot e^{rx} x}{dx^{m}} + P \frac{d^{m-1} \cdot e^{rx} x}{dx^{m-1}} + \dots + U e^{rx} x = e^{rx} [f'(r) + xf(r)]$$

et

(3)
$$\begin{cases} \frac{d^{m} \cdot e^{rx} x^{2}}{dx^{m}} + P \frac{d^{m-1} \cdot e^{rx} x^{2}}{dx^{m-1}} + \ldots + U e^{rx} x^{2} \\ = e^{rx} [f''(r) + 2 x f'(r) + x^{2} f(r)], \end{cases}$$

et ainsi de suite.

L'équation (1) montre que l'on satisfera à l'équation différentielle en posant $y = e^{r_1 x}$, r_1 étant une des racines de l'équation f(r) = 0.

Si r_i est racine double, on a $f'(r_i) = 0$, et la relation (2) montre que l'on peut prendre $\gamma = e^{r_i x} x$, ce qui avec $e^{r_i x}$ fait deux solutions.

Si r_1 est racine triple, outre les deux solutions distinctes déjà obtenues, on déduira de l'équation (3) la solution $y = e^{r_1x} x^2$, et ainsi de suite. Ainsi à chaque racine multiple correspondra un nombre de solutions égal à son degré de multiplicité. En multipliant toutes ces solutions par des constantes et les ajoutant, on aura donc l'intégrale générale.

QUARANTE-SEPTIÈME LEÇON.

Intégration de l'équation linéaire complète. — Réduction de l'équation ; complète à l'équation privée de second membre. — Cas où les coefficients du premier membre sont constants. — Abaissement de l'équation linéaire quand on connaît un certain nombre d'intégrales de l'équation privée de second membre. — Autre méthode. — Équations linéaires que l'on sait intégrer. — Propriétés de l'équation du second ordre.

RÉDUCTION DE L'ÉQUATION COMPLÈTE A L'ÉQUATION PRIVÉE DE SECOND MEMBRE.

592. Soit

(I)
$$\frac{d^m y}{dx^m} + P \frac{d^{m-1} y}{dx^{m-1}} + \ldots + U y = F(x).$$

Posons $y = \int_0^{\tau} z \, d\alpha$, z étant une fonction de x et de α tellement choisie, que z, $\frac{dz}{dx}$, $\frac{d^2z}{dx^2}$, ..., $\frac{d^{m-1}z}{dx^{m-1}}$ soient nulles pour $\alpha = x$ et que l'on ait pour cette même valeur

$$\frac{d^m z}{dx^m} = \mathbb{F}(x).$$

Ces conditions étant remplies, on aura

$$\frac{dy}{dx} = \int_0^x \frac{dz}{dx} d\alpha + z_x,$$

 z_x désignant la valeur que prend z lorsque z=x; mais, par hypothèse, cette substitution annule z; donc

$$\frac{dy}{dx} = \int_0^x \frac{dz}{dx} d\alpha;$$

on aura ensuite

$$\frac{d^2y}{dx^2} = \int_0^x \frac{d^2z}{dx^2} d\alpha + \left(\frac{dz}{dx}\right)_x;$$

mais $\left(\frac{dz}{dx}\right)_z = 0$; par conséquent l'équation précédente

deviendra

$$\frac{d^2y}{dx^2} = \int_0^x \frac{d^2z}{dx^2} d\alpha;$$

on trouve de la même manière

$$\frac{d^3y}{dx^3} = \int_0^x \frac{d^3z}{dx^3} d\alpha, \dots, \frac{d^{m-1}y}{dx^{m-1}} = \int_0^x \frac{d^{m-1}z}{dx^{m-1}} d\alpha,$$

$$\frac{d^my}{dx^m} = \int_0^x \frac{d^mz}{dx^m} d\alpha + F(x).$$

En substituant ces valeurs dans l'équation proposée, on a

$$\int_0^x \left(\frac{d^m z}{dx^m} + P \frac{d^{m-1} z}{dx^{m-1}} + \ldots + U z\right) d\alpha = 0,$$

et il suffit, pour que l'équation soit satisfaite, que l'on ait

$$\frac{d^m z}{dx^m} + P \frac{d^{m-1} z}{dx^{m-1}} + \ldots + Uz = 0.$$

Si, outre les conditions citées plus haut, z remplit cette nouvelle condition, $y=\int_0^x zd\alpha$ sera une intégrale particulière; en la désignant par u et posant y=u+v, l'équation deviendra

$$\left[\frac{d^{m}u}{dx^{m}}+P\frac{d^{m-1}u}{dx^{m-1}}+\ldots+Uu-F(x)\right]+\frac{d^{m}v}{dx^{m}}+\ldots+Uv=0.$$

Or la première partie est nulle par hypothèse; donc l'équation se réduit à

(II)
$$\frac{d^m o}{dx^m} + P \frac{d^{m-1} o}{dx^{m-1}} + \ldots + U o = o.$$

Et si l'on peut intégrer généralement cette équation, $u + \nu$ sera l'intégrale de l'équation (I).

cas ou les coefficients de l'équation (II) sont constants.

593. Quand on connaîtra l'intégrale générale de l'équation (II), en y remplaçant x par $x-\alpha$, on pourra pro-

fiter de l'indétermination des constantes arbitraires qu'elle renferme pour remplir les conditions indiquées plus haut. C'est ce qui arrive lorsque les coefficients P, Q,..., U sont constants.

En effet, en désignant par r_1, r_2, r_3, \ldots , les racines de l'équation

(1)
$$f(r) = r^m + Pr^{m-1} + ... + Vr + U = 0,$$
 on pourra écrire

$$z = C_1 e^{r_1(x-\alpha)} + C_2 e^{r_2(x-\alpha)} + \dots + C_m e^{r_m(x-\alpha)},$$

et pour que les équations indiquées plus haut soient satisfaites, il faudra poser

$$C_{1} + C_{2} + \dots + C_{m} = 0,$$

$$C_{1} r_{1} + C_{2} r_{2} + \dots + C_{m} r_{m} = 0,$$

$$C_{1} r_{1}^{2} + C_{2} r_{2}^{2} + \dots + C_{m} r_{m}^{2} = 0,$$

$$\vdots$$

$$C_{1} r_{1}^{m-2} + C_{2} r_{2}^{m-2} + \dots + C_{m} r_{m}^{m-2} = 0,$$

$$C_{1} r_{1}^{m-4} + C_{2} r_{2}^{m-4} + \dots + C_{m} r_{m}^{m-1} = F(z).$$

En opérant comme au nº 582, on trouvera

$$C_1 = \frac{F(\alpha)}{f'(r_1)}, \quad C_2 = \frac{F(\alpha)}{f'(r_2)}, \dots, \quad C_m = \frac{F(\alpha)}{f'(r_m)},$$

et, par conséquent,

$$z = \frac{\mathbf{F}(\alpha) e^{r_1(x-\alpha)}}{f'(r_1)} + \frac{\mathbf{F}(\alpha) e^{r_2(x-\alpha)}}{f'(r_2)} + \dots + \frac{\mathbf{F}(\alpha) e^{r_m(x-\alpha)}}{f'(r_m)},$$

On aura donc $\int_0^x z d\alpha$, ou

(2)
$$\begin{cases} y = \int_{0}^{x} \frac{e^{r_{1}(x-\alpha)} \mathbf{F}(\alpha)}{f'(r_{1})} d\alpha + \int_{0}^{x} \frac{e^{r_{2}(x-\alpha)} \mathbf{F}(\alpha)}{f'(r_{2})} d\alpha + \dots \\ + \int_{0}^{x} \frac{e^{r_{m}(x-\alpha)} \mathbf{F}(\alpha)}{f'(r_{m})}. \end{cases}$$

Mais on n'a ainsi qu'une valeur particulière à laquelle il faut ajouter l'intégrale générale de l'équation

$$\frac{d^m \rho}{dx^m} + P \frac{d^{m-1} \rho}{dx^{m-1}} + \ldots + T \frac{d\rho}{dx} + U \rho = 0,$$

laquelle est

$$v = c_1 e^{r_1 x} + c_2 e^{r_2 x} + \ldots + c_m e^{r_m x}$$

 c_1, c_2, \ldots, c_m désignant des constantes arbitraires. Ajoutons cette valeur au deuxième membre de l'équation (2) et observons que

$$\int_0^{\infty} \frac{e^{(x-\alpha)} \mathbf{F}(\alpha) d\alpha}{f'(r_1)} + c_1 e^{r_1 x}$$

peut s'écrire

$$\frac{e^{r_1x}\left[c_1f'(r_1)+\int_0^x e^{-r_1x}F(x)dx\right]}{f'(r_1)}.$$

ou, en remplaçant $c_i f'(r_i)$ par c_i ,

$$\frac{e^{r_1x}\left[c_1+\int_0^x e^{-r_1\alpha}\mathbf{F}(\alpha)d\alpha\right]}{f'(r_1)}$$

on aura done

(3)
$$y = \frac{e^{r_1 x} \left[c_1 + \int_0^x e^{-r_1 \alpha} \mathbf{F}(\alpha) d\alpha \right]}{f'(r_1)} + \frac{e^{r_2 x} \left[c_2 + \int_0^x e^{-r_2 \alpha} \mathbf{F}(\alpha) d\alpha \right]}{f'(r_2)} + \cdots + \frac{e^{r_m x} \left[c_m + \int_0^x e^{-r_m \alpha} \mathbf{F}(\alpha) d\alpha \right]}{f'(r_m)}.$$

Ainsi, dans le cas des coefficients constants, l'intégrale de l'équation (I) s'obtient par des quadratures.

CAS OU L'ON CONNAIT UN CERTAIN NOMBRE D'INTÉGRALES DE L'ÉQUATION PRIVÉE DU SECOND MEMBRE.

594. Si l'on connaît m intégrales particulières de l'ésquation

(II)
$$\frac{d^m y}{dx^m} + P \frac{d^{m-1} y}{dx^{m-1}} + Q \frac{d^{m-2} y}{dx^{m-2}} + \dots + T \frac{dy}{dx} + U y = 0$$
,

on aura

$$y = C_1 y_1 + C_2 y_2 + \ldots + C_m y_m$$

 C_1, C_2, \ldots, C_m étant des constantes arbitraires. Or on peut supposer que cette expression satisfasse à l'équation

(I)
$$\frac{d^m y}{dx^m} + P \frac{d^{m-1} y}{dx^{m-1}} + \dots + T \frac{dy}{dx} + Uy = V,$$

en regardant C_1, C_2, \ldots, C_m non plus comme des constantes, mais comme des fonctions inconnues de x, qui n'ayant à remplir qu'une seule condition, savoir que la valeur de y satisfasse à l'équation (I), peuvent être liées entre elles par m-1 relations tout à fait arbitraires. On choisit ces relations de manière que la détermination des fonctions C_1, C_2, \ldots, C_m n'exige que de simples quadratures.

On a

$$\frac{dy}{dx} = C_1 \frac{dy_1}{dx} + C_2 \frac{dy_2}{dx} + \dots + C_m \frac{dy_m}{dx} + y_1 \frac{dC_1}{dx} + y_2 \frac{dC_2}{dx} + \dots + y_m \frac{dC_m}{dx}$$

Posons

$$(1) y_1 \frac{dC_1}{dx} + y_2 \frac{dC_2}{dx} + \ldots + y_m \frac{dC_m}{dx} = 0.$$

Alors on aura simplement .

$$\frac{dy}{dx} = C_1 \frac{dy_1}{dx} + C_2 \frac{dy_2}{dx} + \dots + C_m \frac{dy_m}{dx},$$

et $\frac{dy}{dx}$ aura la même forme que si C_1, C_2, \ldots, C_m étaient des constantes.

On aura de même

$$\frac{d^2 y}{dx^2} = C_1 \frac{d^2 y_1}{dx^2} + C_2 \frac{d^2 y_2}{dx^2} + \ldots + C_m \frac{d^2 y_m}{dx^2}$$

en posant

(2)
$$\frac{dy_1}{dx}\frac{dC_1}{dx} + \frac{dy_2}{dx}\frac{dC_2}{dx} + \ldots + \frac{dy_m}{dx}\frac{dC_m}{dx} = 0;$$

puis

$$\frac{d^3 y}{dx^3} = C_1 \frac{d^3 y_1}{dx^3} + C_2 \frac{d^3 y_2}{dx^2} + \ldots + C_m \frac{d^3 y_m}{dx^3},$$

en posant

$$(3) \qquad \frac{d^2 \gamma_1}{dx^2} \frac{dC_1}{dx} + \frac{d^2 \gamma_2}{dx^2} \frac{dC_2}{dx} + \ldots + \frac{d^2 \gamma_m}{dx^2} \frac{dC_m}{dx} = 0.$$

On continuera ainsi jusqu'à $\frac{d^{m-1}y}{dx^{m-1}}$ inclusivement, en égalant toujours à zéro la somme des termes qui renferment les différentielles de C_1, C_2, \ldots, C_m . Enfin on aura

$$\frac{d^{m} y}{dx^{m}} = C_{1} \frac{d^{m} y_{1}}{dx^{m}} + C_{2} \frac{d^{m} y_{2}}{dx^{m}} + \ldots + C_{m} \frac{d^{m} y_{m}}{dx^{m}} + \frac{d^{m-1} y_{1}}{dx^{m-1}} \frac{d C_{1}}{dx} + \frac{d^{m-1} y_{2}}{dx^{m-1}} \frac{d C_{2}}{dx} + \ldots + \frac{d^{m-1} y_{m}}{dx^{m-1}} \frac{d C_{m}}{dx}$$

On a, en substituant ces valeurs de y, $\frac{dy}{dx}$, etc., dans Véquation (I),

$$\mathbf{C}_{1} \left(\frac{d^{m} y_{1}}{dx^{m}} + \mathbf{P} \frac{d^{m-1} y_{1}}{dx^{m-1}} + \ldots + \mathbf{U} y_{1} \right) \\
+ \mathbf{C}_{2} \left(\frac{d^{m} y_{2}}{dx^{m}} + \mathbf{P} \frac{d^{m-1} y_{2}}{dx^{m-1}} + \ldots + \mathbf{U} y_{2} \right) \\
+ \ldots \\
+ \frac{d^{m-1} y_{1}}{dx^{m-1}} \frac{d\mathbf{C}_{1}}{dx} + \frac{d^{m-1} y_{2}}{dx^{m-1}} \frac{d\mathbf{C}_{2}}{dx} + \ldots + \frac{d^{m-1} y_{m}}{dx^{m-1}} \frac{d\mathbf{C}_{m}}{dx} \right)$$

Or les polynômes qui multiplient C_1, C_2, \ldots , sont nuls par hypothèse : l'équation précédente se réduit donc à

$$(m) \frac{d^{m-1}y_1}{dx^{m-1}} \frac{dC_1}{dx} + \frac{d^{m-1}y_2}{dx^{m-1}} \frac{dC_1}{dx} + \ldots + \frac{d^{m-1}y_m}{dx^{m-1}} \frac{dC_m}{dx} = V.$$

On a ainsi, pour déterminer $\frac{dC_1}{dx}$, $\frac{dC_2}{dx}$, ..., $\frac{dC_m}{dx}$ les m équations (1), (2),..., (m). Supposons qu'en les résolvant on ait trouvé

$$\frac{d\mathbf{C}_1}{dx} = \mathbf{X}_1, \quad \frac{d\mathbf{C}_2}{dx} = \mathbf{X}_2, \dots, \quad \frac{d\mathbf{C}_m}{dx} = \mathbf{X}_m:$$
on aura $\mathbf{C}_1 = c_1 + \int \mathbf{X}_1 dx, \quad \mathbf{C}_2 = c_2 + \int \mathbf{X}_2 dx \dots,$

et, par suite,

$$y = \left(c_1 + \int \mathbf{X}_1 dx\right) y_1 + \left(c_2 + \int \mathbf{X}_2 dx\right) y_2 + \dots$$

595. Si P, Q,..., U sont des constantes, on peut prendre $\gamma_1 = e^{r_1 x}$, $\gamma_2 = e^{r_2 x}$,..., $\gamma_m = e^{r_m x}$; r_1, r_2, \ldots, r_m étant les racines de l'équation

$$f(r) = r^m + Pr^{m-1} + Qr^{m-2} + \dots + Tr + U = 0.$$

Dès lors les équations (1), (2), ..., (m) deviennent

$$e^{r_{1}x}\frac{d\mathbf{C}_{1}}{dx} + e^{r_{2}x}\frac{d\mathbf{C}_{2}}{dx} + \dots + e^{r_{m}x}\frac{d\mathbf{C}_{m}}{dx} = 0,$$

$$r_{1}e^{r_{1}x}\frac{d\mathbf{C}_{1}}{dx} + r_{2}e^{r_{2}x}\frac{d\mathbf{C}_{2}}{dx} + \dots + r_{m}e^{r_{m}x}\frac{d\mathbf{C}_{m}}{dx} = 0,$$

$$r_{1}^{m-1}e^{r_{1}x}\frac{d\mathbf{C}_{1}}{dx} + r_{2}^{m-1}e^{x_{2}x}\frac{d\mathbf{C}_{2}}{dx} + \dots + r_{m}^{m-1}e^{r_{m}x}\frac{d\mathbf{C}_{m}}{dx} = V.$$

En employant la méthode d'élimination qui nous a déjà servi plusieurs fois, on aura $e^{r_1x} \frac{dC_1}{dx} = \frac{V}{f'(r_1)}$,

 $\operatorname{d'où} \qquad C_{1} = \frac{c_{1} + \int \operatorname{V} e^{-r_{1}x} dx}{f'(r_{1})}$

On aurait de même C2, C3,..., et, par suite,

$$y = \frac{\left(c_1 + \int Ve^{-r_1x}dx\right)e^{r_1x}}{f'(r_1)} + \frac{\left(c_2 + \int Ve^{-r_2x}dx\right)e^{r_2x}}{f'(r_2)} + \dots,$$

ce qui est au fond la formule (3) du nº 593.

596. Exemple:

$$\frac{d^2y}{dx^2} - n^2y = V.$$

Ici m=2, $r_1=n$, $r_2=-n$. L'intégrale générale sera donc

$$y = e^{nx} \left(c_1 + \frac{1}{2n} \int V e^{-nx} dr \right) + e^{-nx} \left(c_2 - \frac{1}{2n} \int V e^{nx} dx \right).$$

597. Si l'on connaît seulement m-1 intégrales particulières de l'équation (II), il sera possible de ramener l'intégration de l'équation (I) à celle d'une équation linéaire et du premier ordre.

En effet, supposons, pour simplifier, que l'on ait à intégrer l'équation du quatrième ordre

(1)
$$\frac{d^4y}{dx^4} + P\frac{d^3y}{dx^5} + Q\frac{d^2y}{dx^2} + T\frac{dy}{dx} + Uy = V,$$

et que l'on connaisse trois intégrales y_1, y_2, y_3 de l'équation privée de second membre

(II)
$$\frac{d^4y}{dx^4} + P\frac{d^3y}{dx^3} + Q\frac{d^2y}{dx^2} + T\frac{dy}{dx} + Uy = 0.$$

On représentera encore l'intégrale générale de l'équation (I) par

 $y = C_1 y_1 + C_2 y_2 + C_3 y_3,$

C₁, C₂, C₃ étant des fonctions de x qui, n'ayant à remplir qu'une condition, peuvent être assujetties à vérifier deux relations arbitraires.

Si nous prenons ces fonctions de telle sorte que $\frac{dy}{dx}$

et $\frac{d^2y}{dx^2}$ aient la même forme que si C_1 , C_3 et C_3 étaient des constantes, nous aurons

$$\frac{dy}{dx} = C_1 \frac{dy_1}{dx} + C_2 \frac{dy_2}{dx} + C_3 \frac{dy_3}{dx},$$

$$\frac{d^2y}{dx^2} = C_1 \frac{d^2y_1}{dx^2} + C_2 \frac{d^2y_2}{dx^2} + C_3 \frac{d^2y_3}{dx^3},$$

$$\frac{d^3y}{dx^3} = C_1 \frac{d^3y_1}{dx^3} + \dots + \frac{d^2y_1}{dx^2} \frac{dC_1}{dx} + \dots,$$

$$\frac{d^4 y}{dx^4} = C_1 \frac{d^4 y_1}{dx^4} + \ldots + 2 \frac{d C_1}{dx} \cdot \frac{d^3 y_1}{dx^5} + \ldots + \frac{d^3 y_1}{dx^2} \frac{d^2 C_1}{dx^2} \cdots$$

En substituant ces valeurs dans l'équation (I), et supprimant les termes qui se détruisent par hypothèse, nous aurons

(1)
$$\left(2\frac{d^3y_1}{dx^3} + P\frac{d^2y_1}{dx^2}\right)\frac{dC_1}{dx} + \ldots + \frac{d^2y_1^2}{dx^2}\frac{d^2C_1}{dx^2} + \ldots = V,$$

et il faudra joindre à cette équation les deux suivantes :

(2)
$$\frac{d\mathbf{C}_1}{dx} \, \mathcal{Y}_1 + \frac{d\mathbf{C}_2}{dx} \, \mathcal{Y}_2 + \frac{d\mathbf{C}_3}{dx} \, \mathcal{Y}_3 = 0,$$

(3)
$$\frac{dC_1}{dx}\frac{dy_1}{dx} + \frac{dC_2}{dx}\frac{dy_2}{dx} + \frac{dC_3}{dx}\frac{dy_3}{dx} = 0.$$

De ces deux équations , on tirera pour $\frac{dC_2}{dx}$ et $\frac{dC_3}{dx}$ des valeurs de la forme

$$\frac{dC_2}{dx} = X_2 \frac{dC_1}{dx}, \quad \frac{dC_3}{dx} = X_3 \frac{dC_1}{dx}.$$

Si on les porte dans l'équation (1), on obtiendra, en posant $\frac{d\mathbf{C}_1}{dx} = z$, une équation linéaire de la forme

$$\frac{dz}{dx} + pz = q:$$

on aura ensuite $C_1 = c_1 + \int z dx$,

$$C_2 = c_2 + \int X_1 z dx$$
, $C_3 = c_3 + \int X_3 z dx$.

La valeur de z contenant déjà une constante arbitraire, la valeur de y en contiendra quatre. Ce sera donc l'intégrale générale.

598. Si l'on ne connaissait que m-2 intégrales particulières de l'équation (II), on serait ramené à l'intégration d'une équation linéaire du second ordre. En effet, soient y_1 et y_2 les intégrales connucs, et représentons par

$$y = C_1 y_1 + C_2 y_2$$

l'intégrale cherchée; comme on ne peut établir entre C_1 et C_2 qu'une seule relation arbitraire, exprimons que $\frac{dy}{dx}$ a la même forme que si C_1 et C_2 étaient des constantes.

Les fonctions C₁ et C₂ seront déterminées par les équations

$$(1) y_1 \frac{dC_1}{dx} + y_2 \frac{dC_2}{dx} = 0,$$

(2)
$$G \frac{d^3C_1}{dx^3} + H \frac{d^2C_1}{dx^2} + I \frac{dC_1}{dx} + K \frac{d^bC_2}{dx} + \ldots = V,$$

G, H,... étant des fonctions de x. De la première, on déduira $\frac{dC_2}{dx} = X_2 \frac{dC_1}{dx}$, et substituant dans la seconde, on aura une équation où C_1 n'entrera que par ses dérivées $\frac{dC_1}{dx}$, $\frac{d^2C_1}{dx^2}$, $\frac{d^3C_1}{dx^3}$. Alors en posant $\frac{dC_1}{dx} = z$, cette équation prendra la forme

$$\frac{d^2z}{dx^2} + p\frac{dz}{dx} + qz = r.$$

Cette équation étant intégrée, on aura $C_1 = c_1 + \int z \, dx$, et ensuite $C_2 = c_2 + \int X_2 z \, dx$. Comme z renferme deux constantes arbitraires, on voit bien que $C_1 y_1 + C_2 y_2$ en contiendra quatre.

599. En général, si l'on connaît n intégrales distinctes de l'équation linéaire privée de second membre, op pourra ramener l'équation complète à une équation linéaire du (m-n)^e ordre.

La démonstration de ce théorème général est suffisamment indiquée par ce qui précède, c'est pourquei nous nous bornerons à examiner le cas particulier où l'on ne connaît qu'une seule intégrale y_1 de l'équation (II). Nous poserons alors

$$y = C_i y_i$$

et en exprimant que c'est une solution de l'équation (1), nous aurons

$$\frac{d^m C_1}{dx^m} + P_1 \frac{d^{m-1} C_1}{dx^{m-1}} + \dots + T_1 \frac{d C_1}{dx} = V,$$

les nouveaux coefficients P_1, \ldots, T_n se formant, comme on l'a dit au n° 589. Si l'on pose

$$\frac{d\mathbf{C}_{1}}{dx}=u,$$

cette équation se réduit à

(2)
$$\frac{d^{m-1}u}{dx^{m-1}} + P_1 \frac{d^{m-2}u}{dx^{m-2}} + \ldots + T_1 u = V,$$

équation différentielle de l'ordre m-1. Ainsi l'ordre de l'équation proposée sera abaissé d'une unité. L'équation (2) en u étant intégrée, on aura

$$C_1 = a + \int u \, dx,$$
 et, par suite,
$$y = ay_1 + y_1 \int u \, dx.$$

AUTRE MÉTHODE.

600. Le cas particulier que nous venons d'examiner permet de démontrer le théorème général énoncé plus haut (599), et fournit une autre méthode pour abaisser l'ordre d'une équation linéaire. En effet, appliquons le

même procédé à l'équation

(1)
$$\frac{d^{m-1}u}{dx^{m-1}} + P_1 \frac{d^{m-2}u}{dx^{m-2}} + \ldots + T_1 u = V.$$

Soit u₁ une solution de l'équation

$$\frac{d^{m-1}u}{dx^{m-1}} + P_1 \frac{d^{m-2}u}{dx^{m-2}} + \ldots + T_1 u = 0.$$

En faisant

$$z = \frac{d\left(\frac{u}{u_1}\right)}{dx},$$

z dépendra d'une équation linéaire de l'ordre m-2,

$$\frac{d^{m-2}z}{dx^{m-2}} + P_2 \frac{d^{m-3}z}{dx^{m-3}} + Q_2 \frac{d^{m-4}z}{dx^{m-4}} + \ldots = V,$$

et l'on aura

ou

$$u = bu_1 + u_1 \int z \, dx,$$

et, par suite,

$$y = ay_1 + by_1 \int u_1 dx + y_1 \int u_1 dx \int z dx,$$

$$y = ay_1 + by_2 + \zeta,$$

en faisant $y_2 = y_1 \int u_1 dx$, $\zeta = y_1 \int u_1 dx \int z dx$.

La fonction désignée par γ_2 satisfait à l'équation

(3)
$$\frac{d^m y}{dx^m} + P \frac{d^{m-1} y}{dx^{m-1}} + \ldots + U y = 0,$$

car si l'on suppose V nulle, on peut prendre z = 0, et par conséquent $\zeta = 0$, ce qui réduit y à $ay_1 + by_2$, expression dont y_2 est une valeur particulière.

Réciproquement, on trouvers une fonction telle que u_1 , si l'on connaît une fonction y_2 , différente de y_1 , qui satisfasse à l'équation (3). Il suffira, en effet, de prendre

$$u_1 = \frac{d \cdot \left(\frac{y_2}{y_1}\right)}{dx},$$

puisque $u = \frac{d\left(\frac{y}{y_1}\right)}{dx}$ se change en u_1 si V = 0, et qu'alors y_2 est une valeur particulière de y.

L'équation en z étant de l'ordre m-2, on cherchera une valeur z1 qui satisfasse à l'équation

(4)
$$\frac{d^{m-2}z}{dx^{m-2}} + P_2 \frac{d^{m-3}z}{dx^{m-3}} + \dots + S_2 z = 0,$$

et l'on aura
$$z = cz_1 + z_1 \int tdz$$
,

en faisant
$$t = \frac{d\left(\frac{z}{z_1}\right)}{dx}$$
, d'où

$$y = ay_1 + by_2 + cy_3 + \theta,$$

y3 étant encore une solution particulière de l'équation (3), et ainsi de suite.

On voit donc qu'on pourra abaisser l'ordre de l'équation (I) d'autant d'unités qu'on connaîtra de solutions particulières de l'équation (3), et en outre que l'intégrale générale de l'équation (I) est dé la forme

$$y = ay_1 + by_2 + \ldots + ly_m + \lambda,$$

λ étant une solution quelconque de l'équation (I).

L'équation linéaire n'admet pas de solution singulière, puisque la solution quelconque $\gamma = \lambda$ se déduit de l'intégrale générale en faisant nulles les constantes a, b, ..., l.

DE QUELQUES CAS OU L'ON PEUT INTÉGRER L'ÉQUATION LINÉAIRE A SECOND MEMBRE.

601. Si dans l'équation

(1)
$$\frac{d^m y}{dx^m} + P \frac{d^{m-1} y}{dx^{m-1}} + \dots + T \frac{dy}{dx} + U y = V,$$

 P,Q,\ldots,U,V sont des constantes, on fera $y=rac{V}{\Pi}+z$, et l'on aura

$$\frac{d^m z}{dx^m} + P \frac{d^{m-1} z}{dx^{m-1}} + \ldots + T \frac{dz}{dx} + Uz = 0,$$

équation que l'on sait intégrer.

602. Les coefficients du premier membre de l'équa-

tion (1) étant constants, si V est une fonction entière de x,

$$A x^n + B x^{n-1} + \ldots + C x + H$$

on posera

$$y = ax^n + bx^{n-1} + \ldots + h = u,$$

et l'on déterminera a, b, \ldots, h , en exprimant que cette valeur satisfait à l'équation proposée, ce qui formera autant d'équations qu'il y a d'inconnues. Une première intégrale étant obtenue, on posera $y = u + \nu$, et ν ne dépendra que d'une équation linéaire à coefficients constants et privée de second membre.

603. Si

$$V = A \cos nx + B \sin nx,$$

A et B étant des constantes, ainsi que les coefficients du premier membre de l'équation (1), on fera

$$y = a\cos nx + b\sin nx,$$

ce qui réduit l'équation (1) à

$$(aG + bH)\cos nx + (aK + bL)\sin nx = A\cos nx + B\sin nx,$$

G, II, K, L étant des fonctions de n et des coefficients de l'équation. Pour que l'équation soit satisfaite, il faudra que l'on ait

$$aG + bH = A$$
, $aK + bL = B$,

ce qui détermine a et b, à moins que GL — HK ne soit nul. L'intégrale générale sera

$$y = a\cos nx + b\sin nx + z,$$

z étant l'intégrale de l'équation

$$\frac{d^m z}{dx^m} + P \frac{d^{m-1}z}{dx^{m-1}} + \dots + Uz = 0.$$

604. La méthode précédente tombe en défaut lorsque GL—IIK=0. Dans ce cas, l'intégrale s'obtient par un artifice de calcul dont voici un exemple. Soit

$$\frac{d^2y}{dx^2} + y = \cos x,$$

on ne peut y satisfaire en posant

$$y = a\cos x + b\sin x$$
,

car on trouverait

$$-a\cos x - b\sin x + a\cos x + b\sin x = \cos x,$$

ou

$$o = \cos x$$
,

équation qu'il est impossible de rendre identique. Mais si l'on prend l'équation plus générale

$$\frac{d^2y}{dx^2} + y = \cos nx_{\frac{3}{2}},$$

en posant $\gamma = a \cos nx + b \sin nx$, on a

$$a(1-n^2)\cos nx + b(1-n^2)\sin nx = \cos nx,$$

d'où

$$a = \frac{1}{1 - n^2}, \quad b = 0,$$

ce qui donne la valeur particulière

$$y = \frac{\cos nx}{1 - n^2}.$$

La valeur générale de y sera donc (592)

$$y = \frac{\cos nx}{1 - n^2} + C\cos x + C'\sin x.$$

Cette valeur deviendrait illusoire si l'on faisait n = 1; mais on peut écrire, en posant $C = C'' - \frac{1}{1 - n^2}$,

$$y = \frac{\cos nx - \cos x}{1 - n^2} + C'' \cos x + C' \sin x.$$

Faisant n=1, le premier terme prend la forme $\frac{o}{o}$, mais sa vraic valeur est $\frac{x \sin x}{2}$; donc l'intégrale générale de l'équation (1) est

$$y = \frac{x \sin x}{2} + C' \sin x + C'' \cos x.$$

605. On peut eucore poser n=1-h et faire ensuite h=0 après avoir fait subir à l'intégrale une transformation convenable. On a

$$y = \frac{\cos(x - hx)}{h(2 - h)} + C\cos x + C'\sin x,$$

ou bien

$$y = \left(C + \frac{\cos hx}{h(2-h)}\right)\cos x + \left(C' + \frac{\sin hx}{h(2-h)}\right)\sin x.$$

En développant en séries $\cos hx$ et $\sin hx$, on aura

$$y = \left[C + \frac{1 - \frac{1}{2}h^2x^2 + \dots}{h(2 - h)}\right] \cos x + \left[C' + \frac{hx - \frac{1}{6}h^3x^3 + \dots}{h(2 - h)}\right] \sin x,$$

ou bien, en posant $C'' = C - \frac{h(2-h)}{1}$

$$y = \left(C'' - \frac{hx^2}{2-h} + \dots\right)\cos x + \left[C' + \frac{x}{2-h} - \frac{h^2x^2}{6(2-h)}\dots\right]\sin x.$$

Si maintenant on fait h = 0, on retrouvera encore

$$y = \frac{x \sin x}{2} + C' \sin x + C'' \cos x.$$

606. L'équation

$$\frac{d^m y}{dx^m} + P \frac{d^{m-1} y}{dx^{m-1}} + \ldots = V$$

se ramènera au cas précédent (603) lorsque l'on aura

 $V = A\cos nx + B\sin nx + A'\cos n'x + B'\sin n'x + \dots$

En posant $y=u+u'+\ldots$, il suffira de satisfaire séparément aux équations

$$\frac{d^m u}{dx^m} + P \frac{d^{m-1} u}{dx^{m-1}} + \dots = A \cos nx + B \sin nx,$$

$$\frac{d^m u'}{dx^m} + P \frac{d^{m-1} u'}{dx^{m-1}} + \dots = A' \cos n' x + B' \sin n' x,$$

607. On ne sait que très-rarement intégrer une équation linéaire à coefficients variables. Voici un exemple où l'intégration peut s'achever.

Soit l'équation

(1)
$$\begin{cases} (ax+b)^{m} \frac{d^{m} y}{dx^{m}} + P(ax+b)^{m-1} \frac{d^{m-1} y}{dx^{m-1}} + \dots \\ + T(ax+b) \frac{dy}{dx} + Uy = 0, \end{cases}$$

P, Q,..., T, U étant des constantes.

Posons $y = (ax + b)^r$; substituons cette valeur dans l'équation et divisons les deux membres par le facteur commun $(ax + b)^r$, nous aurons

$$(2) \begin{cases} r(r-1)(r-2)...(r-m+1)a^{m} \\ + P(r-1)...(r-m+2)a^{m-1} + ... + U = 0. \end{cases}$$

Cette équation étant du degré m, donnera en général m valeurs constantes et inégales pour r; en les désignant par r_1, r_2, \ldots, r_m , alors $(ax+b)^{r_1}, (ax+b)^{r_2}, \ldots, (ax+b)^{r_m}$ seront des solutions particulières de l'équation, d'où l'on déduira pour l'intégrale générale

$$y = C_1(ax + b)^{r_1} + C_2(ax + b)^{r_2} + \ldots + C_m(ax + b)^{r_m}$$

Toutefois la forme de cette intégrale serait modifiée si quelques-unes des racines étaient égales ou imaginaires. Il faudrait alors se servir de procédés analogues à ceux que l'on a employés aux nos 604 et 603.

Au reste, on ramènerait cette équation à une équation linéaire à coefficients constants en posant $ax + b = e^t$.

PROPRIÉTÉS DE L'ÉQUATION DU SECOND ORDRE.

608. Quand on connaît une intégrale particulière y_i de l'équation

$$\frac{d^2 y}{dx^2} + P \frac{dy}{dx} + Q y = 0,$$

les procédés des n° 598 et 600 permettent de l'abaisser au premier ordre, et, par suite, de l'intégrer complétement. On peut encore opérer de la manière suivante. On a identiquement

(2)
$$\frac{d^2 y_1}{dx^2} + P \frac{dy_1}{dx} + Q y_1 = 0.$$

Éliminant Q entre ces deux équations, il vient

(3)
$$y_1 \frac{d^2 y}{dx^2} - y \frac{d^2 y_1}{dx^2} + P\left(y_1 \frac{dy}{dx} - y \frac{dy_1}{dx}\right) = 0,$$

et si l'on pose

$$y_1 \frac{dy}{dx} - y \frac{dy_1}{dx} = u$$
, d'où $y_1 \frac{d^2y}{dx^2} - y \frac{d^2y_1}{dx^2} = \frac{du}{dx}$,

l'équation (3) devient

$$\frac{du}{dx} + Pu = 0,$$

d'où

$$u = C e^{-\int \mathbf{P} dx}$$

On aura donc

(5)
$$y_1 \frac{dy}{dx} - y \frac{dy_1}{dx} = C e^{-\int P dx},$$

ou

$$d.\frac{y}{y_1} = \frac{Ce^{-\int \Gamma dx} dx}{y_1^2},$$

et enfin

(6)
$$y = C' y_1 + C y_1 \int \frac{e^{-\int \mathbf{P} dx} dx}{y_1^2} .$$

609. L'équation (5) fait connaître plusieurs propriétés de l'équation (1).

La constante C n'étant pas nulle, en général, supposons C > o ; on aura

(7)
$$y_i \frac{dy}{dx} - y \frac{dy_i}{dx} > 0;$$

par conséquent y et $\frac{dy}{dx}$ ne peuvent pas être nulles en même temps. La même propriété appartient aux fonctions y_4 et $\frac{dy_4}{dx}$.

Deux valeurs de x qui annulent y_1 , comprennent une valeur de x qui annule y. En effet si y_1 s'annule pour

x = a et pour x = b, on a dans ces deux cas, d'après l'inégalité (7),

$$y \frac{dy_1}{dx} < 0.$$

Ainsi y et $\frac{dy_1}{dx}$ sont de signes contraires; mais quand x croît de a à b, $\frac{dy_1}{dx}$ change de signe pour une certaine valeur x = z; done y doit aussi changer de signe avant que x devienne égal à b. Par conséquent la fonction y doit s'évanouir par une valeur de x compris entre a et b.

Il suit de la que si l'on fait croître x, les deux fonctions y et y, s'annuleront l'une après l'autre alternativement. C'est ce qu'on peut vérifier sur l'équation

De même entre deux valeurs de $\frac{1}{x}$ qui annulent γ se

$$\frac{d^2y}{dx^2} + y = 0,$$

qui a pour intégrale

trouve une valeur qui annule γ_1 .

$$y = C \sin x + C' \cos x$$
.

QUARANTE-HUITIÈME LEÇON.

Résolution des équations différentielles par les séries. — Développement par la série de Maclaurin. — Méthode des coefficients indéterminés. — Autre forme de développement. — Intégration d'une équation différentielle par des intégrales définies.

DÉVELOPPEMENT PAR LA SÉRIE DE MACLAURIN.

610. Étant donnée une équation entre y et quelquesunes de ses dérivées par rapport à x, on peut, comme on l'a vu, développer y suivant les puissances ascendantes de x-a, et ce développement contient m constantes arbitraires qui sont les valeurs de y et de ses m-1 premières dérivées pour x=a. En faisant a=0, on a une série ordonnée suivant les puissances ascendantes de x. Mais il peut arriver que certaines dérivées devenant infinies pour x=0, la série tombe en défaut, à moins qu'on n'attribue certaines valeurs convenables à d'autres dérivées qui ne sont plus arbitraires. Dans ce cas, la série contenant moins de m constantes arbitraires ne représente plus l'intégrale générale, mais seulement une intégrale particulière.

En voici un exemple. Soit

$$x\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + n^2xy = 0.$$

En dissérentiant cette équation plusieurs sois, on aura

$$x\frac{d^{3}y}{dx^{3}} + 3\frac{d^{2}y}{dx^{2}} + n^{2}x\frac{dy}{dx} + n^{2}y = 0,$$

$$x\frac{d^{4}y}{dx^{4}} + 4\frac{d^{3}y}{dx^{3}} + n^{2}x\frac{d^{2}y}{dx^{2}} + 2n^{2}\frac{dy}{dx} = 0,$$

$$x\frac{d^{5}y}{dx^{5}} + 5\frac{d^{4}y}{dx^{4}} + n^{2}x\frac{d^{3}y}{dx^{3}} + 3n^{2}\frac{d^{2}y}{dx^{2}} = 0,$$

La loi de formation est évidente. Or si dans la première équation on fait x=0, y=b, $\frac{dy}{dx}=b'$, on en déduit $\frac{d^2y}{dx^2}=\infty$, à moins que b' ne soit nul. Il faut donc faire $\frac{dy}{dx}=0$ pour x=0, et alors les équations suivantes donnent

$$\frac{d^3y}{dx^2} = -\frac{n^2b}{3}, \quad \frac{d^3y}{dx^3} = 0, \quad \frac{d^4y}{dx^4} = \frac{n^4b}{5}, \dots,$$

et, par conséquent,

$$y = b \left(1 - \frac{n^2 x^2}{1 \cdot 2 \cdot 3} + \frac{n^4 x^4}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} - \dots \right) = b \frac{\sin nx}{nx},$$

ou en faisant $\frac{b}{n} = c$,

$$y = c \frac{\sin nx}{x}.$$

On n'obtient ainsi qu'une intégrale particulière. Pour avoir l'intégrale générale, il faut poser

$$y = C \frac{\sin nx}{x},$$

C étant une fonction de x. La recherche de cette fonction conduit à une équation linéaire du premier ordre d'où l'on déduit

$$C = c' + c'' \cot nx,$$

et, par suite,

$$y = \frac{c' \sin nx + c'' \cos nx}{r}.$$

On serait parvenu tout d'abord à ce résultat si l'on avait développé y suivant les puissances de x-a, en se donnant les valeurs de y et de $\frac{dy}{dx}$ pour x=a.

MÉTHODE DES COEFFICIENTS INDÉTERMINÉS.

611. On peut encore employer la méthode des coefficients indéterminés pour développer en série l'intégrale d'une équation différentielle. On obtient souvent par ce

moyen des développements qui renferment des puissances négatives de x, ce que ne peut donner la série de Taylor.

Reprenons l'équation précédente sous la forme

(1)
$$\frac{d^2\gamma}{dx^2} + \frac{2}{x}\frac{dy}{dx} + n^2\gamma = 0.$$

Supposons que l'intégrale soit

$$(2) y = Ax^{\alpha} + Bx^{\beta} + Cx^{\gamma} + \dots,$$

 $\alpha, 6, \gamma, \ldots$ étant des nombres croissants : on aura

$$\frac{dy}{dx} = \alpha \mathbf{A} x^{\alpha - 1} + 6 \mathbf{B} x^{6 - 1} + \gamma \mathbf{C} x^{7 - 1} + \dots,$$

$$\frac{d^2 y}{dx^2} = \alpha (\alpha - 1) \mathbf{A} x^{\alpha - 2} + 6 (6 - 1) \mathbf{B} x^{6 - 2} + \dots,$$

et en substituant ces valeurs dans l'équation proposée,

$$(3) \quad \begin{cases} A \alpha (\alpha + 1) x^{\alpha - 2} + A n^{2} x^{\alpha} + B 6 (6 + 1) x^{6 - 2} \\ + B n^{2} x^{6} + C \gamma (\gamma + 1) x^{\gamma - 2} + C n^{2} x^{\gamma} + \ldots = 0. \end{cases}$$

Pour que cette équation soit identique, il faut que les coefficients des différentes puissances de x soient nuls séparément. Or puisque α , β , γ ,... sont des nombres croissants, $\alpha - 2$ est le plus petit exposant de x dans l'équation (3). On doit donc avoir

$$A\alpha(\alpha+1)=0,$$

et, comme A ne peut pas être nul, il faut que l'on ait

$$\alpha = 0$$
, ou $\alpha = -1$.

Prenons $\alpha = -1$. Les deux plus petits exposants qui viennent ensuite sont α et 6-2. Ils peuvent être égaux ou inégaux : s'ils sont inégaux, le terme B 6 (6+1) x^{6-2} ne pouvant se réduire avec un autre devra être nul de lui-même, ce qui donnera 6=0 ou 6=-1. Mais on ne peut supposer 6=-1, puisqu'on a déjà $\alpha=-1$ et que α est supposé moindre que 6: donc 6=0. Parmi les exposants qui suivent, les plus petits sont α et $\gamma \leftarrow 2$:

nous devons les supposer égaux, car le terme $\Lambda n^2 x^{\alpha}$ doit se réduire avec un autre, puisque A ne peut être nul. De là résulte

$$\gamma = 1$$
, $n^2 A + C \gamma (\gamma + 1) = 0$.

On trouvera de même

$$\delta = 2$$
, $n^2 B + D \delta (\delta + 1) = 0$,
 $\epsilon = 3$, $n^2 C + E \epsilon (\epsilon + 1) = 0$,

et ainsi de suite; on en conclut

$$C = -\frac{n^2 A}{1.2},$$
 $D = -\frac{n^2 B}{1.2.3},$ $E = \frac{n^4 A}{1.2.3 4},$ $F = \frac{n^6 B}{1.2.3.4.5},$ etc.

Par conséquent

$$y = A \left(\frac{1}{x} - \frac{n^2 x}{1 \cdot 2} + \frac{n^4 x^2}{1 \cdot 2 \cdot 3 \cdot 4} - \dots \right) + B \left(1 - \frac{n^2 x^2}{1 \cdot 2 \cdot 3} + \frac{n^4 x^4}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} - \dots \right),$$

$$y = \frac{A \cos nx}{x} + \frac{B \sin nx}{nx},$$

ou

ou bien, en posant A = c, $\frac{B}{n} = c'$.

$$y = \frac{c \cos nx + c' \sin nx}{x}.$$

612. Si au lieu de supposer 6-2 différent de α , on fait $6-2=\alpha=-1$, d'où 6=1,

le terme $C\gamma(\gamma+1)$ $x^{\gamma-2}$ n'étant pas nul, puisqu'on a $\gamma > 6 > 1$, doit être détruit par $Bn^2 x^6$. On a donc $\gamma - 2 = 6$; on aura de même $\delta - 2 = \gamma$, $\varepsilon - 2 = \delta$, etc. Par conséquent,

$$\delta = 1, \quad \gamma = 3, \quad \delta = 5, \dots,$$

et ensuite

$$B = -\frac{n^2 A}{1.2}$$
, $C = \frac{n^4 A}{1.2.3.4}$, $D = -\frac{n^6 A}{1.2...6}$,...

Il en résulte

$$\gamma = A\left(\frac{1}{x} - \frac{n^2 x}{1 \cdot 2} + \frac{n^4 x^3}{1 \cdot 2 \cdot 3 \cdot 4} - \cdots\right) = \frac{A \cos nx}{x};$$

mais on n'obtient ainsi qu'une intégrale particulière. L'hypothèse $\alpha=0$ conduit aussi à une intégrale particulière

$$y = \frac{A \sin nx}{nx}.$$

En appliquant la même méthode à l'équation

$$\frac{d^{3}y}{dx^{2}} + \frac{1}{x}\frac{dy}{dx} + y = 0, \text{ ou } \frac{d \cdot x}{dx}\frac{dy}{dx} + xy = 0,$$

on trouvera la série très-convergente

$$y = A \left(\mathbf{1} - \frac{x^2}{2^2} + \frac{x^4}{2^2 \cdot 4^2} - \frac{x^6}{2^2 \cdot 4^2 \cdot 6^2} + \dots \right)$$

AUTRE FORME DE DÉVELOPPEMENT.

613. L'équation linéaire du second ordre

(1)
$$\frac{d^2 y}{dx^2} + P \frac{dy}{dx} + Q y = 0,$$

peut toujours se ramener à une équation à deux termes. En effet, posons y = uz. L'équation proposée deviendra

$$(2) u \frac{d^2 z}{dx^2} + \left(2 \frac{du}{dx} + Pu\right) \frac{dz}{dx} + z \left(\frac{d^2 u}{dx^2} + P \frac{du}{dx} + Qu\right) = 0.$$

Déterminons u par la condition

$$2\frac{du}{dx} + Pu = 0,$$

d'où $u = e^{-\frac{1}{2} \int \mathbf{P} dx} :$

cette valeur étant substituée dans l'équation (2), on aura

$$\frac{d^2z}{dx^2} = \mathbf{R}z,$$

R étant une fonction connue de x.

614. Désignons par A et B les valeurs de z et de $\frac{dz}{dx}$, correspondant à une valeur arbitraire x = a. Nous aurons, en intégrant deux fois de suite, entre les limites a et x, les deux membres de l'équation (4),

$$\frac{dz}{dx} = B + \int_{a}^{x} Rz dx,$$

$$z = A + B(x - a) + \int_{a}^{x} dx \int_{a}^{x} Rz dx,$$

ou bien, en posant t = A + B(x - a),

(5)
$$z = t + \int_{a}^{x} dx \int_{a}^{x} \mathbf{R} z dx.$$

Si dans le second membre de cette équation on remplace z par la valeur que donne cette même équation, on aura

(6)
$$\begin{cases} z = t + \int_{a}^{x} dx \int_{a}^{x} \mathbf{R} t dx \\ + \int_{a}^{x} dx \int_{a}^{x} \mathbf{R} dx \int_{a}^{x} dx \int_{a}^{x} \mathbf{R} z dx, \end{cases}$$

et en remplacant encore z par la valeur (5)

et en remplaçant encore z par la valeur (5)
$$\begin{cases} z = t + \int_{a}^{x} dx \int_{a}^{x} R t dx + \int_{a}^{x} dx \int_{a}^{x} R dx \int_{a}^{x} dx \int_{a}^{x} R t dx \\ + \int_{a}^{x} dx \int_{a}^{x} R dx \int_{a}^{x} dx \int_{a}^{x} R dx \int_{a}^{x} R dx \int_{a}^{x} R z dx. \end{cases}$$

615. En continuant ainsi, on obtient une suite indéfinie

(8)
$$z = t + \int_{a}^{x} dx \int_{a}^{x} \mathbf{R} t dx + \dots$$

dont chaque terme se déduit du précédent en le multipliant par Rdx2, et en intégrant deux fois entre les limites a et x. Le dernier terme se forme d'après une loi analogue, mais il contient toujours la fonction inconnue z. Cependant on pourra faire servir le développement (8) au calcul de la valeur approchée de z, si à mesure que le nombre des termes augmente, le dernier tend vers o. C'est, en effet, ce qui arrive quand R ne devient pas infinie dans l'intervalle où l'on fait varier x.

Pour le démontrer, supposons que x croisse d'une manière continue depuis la valeur a jusqu'à une valeur quelconque b. Soient M, μ , C les valeurs maximums de R, z, t, dans l'intervalle considéré. On aura en valeur absolue,

$$R < M$$
, $z < \mu$, $t < C$:

le signe < n'excluant pas l'égalité. Si l'on trouve pour μ une valeur finie, il sera démontré que z ne peut pas devenir infinie entre les limites a et b.

Or, en premier lieu, on a, dans cet intervalle,

De là on tire, en intégrant successivement,

$$\int_{a}^{x} dx \int_{a}^{x} R t dx < CM \frac{(x-a)^{2}}{1 \cdot 2},$$

$$\int_{a}^{x} dx \int_{a}^{x} R dx \int_{a}^{x} Ax \int_{a}^{x} R t dx < CM^{2} \frac{(x-a)^{6}}{1 \cdot \cdot \cdot 4},$$

$$\int_{a}^{x} dx \int_{a}^{x} R dx \int_{a}^{x} Ax \int_{a}^{x} R t dx < CM^{3} \frac{(x-a)^{6}}{1 \cdot \cdot \cdot 6}.$$

et ainsi de suite.

D'un autre côté, on a

$$Rz < \mu M$$
,

$$\int_a^x \mathbf{R} \, z \, dx < \mu \, \mathbf{M} \, (x - a),$$

$$\int_a^x dx \int_a^x \mathbf{R} \, z \, dx < \mu \, \mathbf{M} \, \frac{(x-a)^2}{\mathbf{1.2}},$$

$$\int_a^{\infty} dx \int_a^x \mathbf{R} dx \int_a^x dx \int_a^x \mathbf{R} z dx < \mu \, \mathbf{M}^2 \frac{(x-a)^4}{1 \dots 4},$$

et ainsi de suite. Donc en arrêtant le développement de z à n+1 termes, le dernier sera moindre que $\mu M^n \frac{(x-a)^{2n}}{1 \cdot 2 \cdot \dots \cdot 2^n}$

D'après ces inégalités, on déduira de l'équation (8)

$$z < C + CM \frac{(x-a)^2}{1 \cdot 2} + CM^2 \frac{(x-a)^4}{1 \cdot 2 \cdot 3 \cdot 4} + \dots$$

$$+ CM^n \frac{(x-a)^{2n}}{1 \cdot 2 \cdot \dots \cdot 2n} + \mu M^n \frac{(x-a)^{2n}}{1 \cdot 2 \cdot \dots \cdot 2n},$$

c'est-à-dire, à fortiori,

$$z < \frac{1}{2} C \left[e^{(x-a)^{\sqrt{\mathbf{M}}}} + e^{-(x-a)^{\sqrt{\mathbf{M}}}} \right] + \frac{\mu \mathbf{M}^n (x-a)^{2n}}{f \cdot 2 \dots 2n},$$

car on a

$$\mathbb{C} + \mathbb{C}\mathbf{M} \frac{(x-a)^2}{1 \cdot 2} + \mathbb{C}\mathbf{M}^2 \frac{(x-a)^4}{1 \cdot 2 \cdot 3 \cdot 4} + \ldots = \frac{1}{2} \mathbb{C} \left[e^{(x-a)^{\sqrt{\mathbf{M}}}} + e^{-(x-a)^{\sqrt{\mathbf{M}}}} \right].$$

On sait que
$$\frac{M^n (x-a)^{2n}}{1 \cdot 2 \cdot \dots 2^n}$$
 ou $\frac{[(x-a)\sqrt{M}]^{2n}}{1 \cdot 2 \cdot \dots 2^n}$ peut devenir

moindre que toute quantité donnée ε quand n est suffisamment grand. Donc si on désigne par K la plus grande valeur de $\frac{1}{2}$ C $\left[e^{(z-a)\sqrt{M}}+e^{-(x-a)\sqrt{M}}\right]$, quand x varie de a à b, valeur qui est indépendante de n, on aura

$$z < K + \mu \epsilon$$
.

Cette inégalité ayant lieu pour toutes les valeurs de x comprises entre a et b, on peut remplacer z par sa valeur maximum μ et l'on aura $\mu < K + \mu \varepsilon$,

d'où

$$\mu < \frac{K}{1-\epsilon}$$

Ainsi μ ne peut pas devenir infini, et, par suite, le reste de la série (8) qui est moindre que $\mu M^n \frac{(x-a)^{2n}}{1 \cdot 2 \cdot \dots \cdot 2^n}$, tend vers o, ce qu'il fallait démontrer.

616. On arrive encore à la formule (8) (615) par la méthode suivante.

Posons

$$z = u_0 + u_1 + u_2 + \dots,$$

 u_0, u_1, u_2, \dots étant des fonctions de x que nous allons déterminer. On doit avoir $\frac{d^2z}{dx^2} = \mathbf{R}z$ ou

$$\frac{d^2 u_0}{dx^2} + \frac{d^2 u_1}{dx^2} + \frac{d^2 u_2}{dx^2} + \ldots = \mathbf{R} u_0 + \mathbf{R} u_1 + \ldots$$

Or on satisfera à cette équation en posant

$$\frac{d^2 u_0}{dx^2} = 0$$
, $\frac{d^2 u_1}{dx^2} = R u_0$, $\frac{d^2 u_2}{dx^2} = R u_1$,...

En supposant que l'on ait $u_0 = \Lambda$, $\frac{du_0}{dx} = B$ pour x = a, et que $u_1, u_2, \ldots, \frac{du_1}{dx}, \frac{du_2}{dx}, \cdots$ s'annulent pour x = a. on tire de là

$$u_0 = A + B(x - a) = t,$$

$$u_1 = \int_a^x dx \int_a^x R t dx,$$

$$u_2 = \int_a^x dx \int_a^x R dx \int_a^x dx \int_a^x R t dx,$$

On démontrera ensuite la convergence de la série

$$z = u_0 + u_1 + u_2 + \ldots,$$

comme on l'a fait plus haut.

On traitera de la même manière l'équation $\frac{d^mz}{dz^m} = Rz$,

et l'on aura une série où chaque terme s'obtiendra en multipliant le précédent par R dx^m et intégrant m fois.

617. Comme application de cette méthode, considérons l'équation du second ordre

$$\frac{d^2z}{dx^2} = \alpha x^m z,$$

à laquelle se réduit l'équation dite de Riccati

(2)
$$\frac{dy}{dx} + y^2 = \alpha x^m,$$
 en posant
$$y = \frac{1}{z} \frac{dz}{dx}.$$

Pour plus de simplicité, supposons $\alpha = 1$, et prenons toutes les intégrales indiquées au numéro précédent, entre les limites o et x: nous aurons

$$t = A + Bx$$
.

Multipliant par $x^m dx^2$ et intégrant deux fois entre les limites o et x, il viendra

$$u_1 = \frac{\mathbf{A} x^{m+2}}{(m+1)(m+2)} + \frac{\mathbf{B} x^{m+3}}{(m+2)(m+3)}$$

Nous aurons de même successivement

$$u_{2} = \frac{A x^{2m+4}}{(m+1)(m+2)(2m+3)(2m+4)} + \frac{B x^{2m+5}}{(m+2)(m+3)(2m+4)(2m+5)},$$

$$u_{3} = \frac{A x^{3m+6}}{(m+1)(m+2)(2m+3)(2m+4)(3m+5)(3m+6)} + \frac{B x^{3m+7}}{(m+2)(m+3)(2m+4)(2m+5)(3m+6)(3m+7)},$$

et ainsi de suite.

Par conséquent la valeur de z sera

$$z = \Lambda \left[1 + \frac{x^{m+2}}{(m+1)(m+2)} + \frac{x^{2m+4}}{(m+1)(m+2)(2m+3)(2m+4)} + \frac{x^{2m+6}}{(m+1)(m+2)(2m+3)(2m+4)(3m+5)(3m+6)} + \dots \right]$$

$$+ B \left[x + \frac{x^{m+3}}{(m+2)(m+3)} + \frac{x^{2m+5}}{(m+2)(m+3)(2m+4)(2m+5)} + \frac{x^{3m+5}}{(m+2)(m+3)(2m+4)(2m+5)(3m+6)(3m+7)} + \dots \right].$$

Dans le cas où m = 0, cette formule se réduit à

$$z = A \frac{e^{x} + e^{-x}}{2} + B \frac{e^{x} - e^{-x}}{2} = A'e^{x} + B'e^{-x}$$

qui est bien l'intégrale de l'équation

$$\frac{d^2z}{dx^2} = z.$$

INTÉGRATION D'UNE ÉQUATION DIFFÉRENTIFULE À L'AIDE D'INTÉGRALES DÉFINIES

618. Soit l'équation

$$\frac{d^2y}{dx^2} + \frac{m}{x}\frac{dy}{dx} + 2h^2y = 0,$$

m et h^2 désignant deux constantes : admettons que son intégrale puisse être développée en série convergente procédant suivant les puissances ascendantes de x, et posons

$$\gamma = A x^{\alpha} + B x^{6} + \ldots + L x^{\lambda} + M x^{\mu} + \ldots$$

En substituant cette valeur dans l'équation, on aura

$$\begin{vmatrix}
A \alpha (\alpha - 1) & x^{\alpha - 2} + B 6 (6 - 1) & x^{6 - 2} + ... + M \mu (\mu - 1) & x^{\mu - 2} + ... \\
+ m A \alpha & + m B 6 & + m M \mu
\end{vmatrix} = 0.$$

$$+ 2 h^2 A x^2 + 2 h^2 B x^6 + ... + 2 h^2 L x^{\lambda} + 2 h^2 M x^{\mu} + ...$$

Pour que cette équation soit identique, il faut d'abord que l'on ait

$$\alpha (\alpha - \mathbf{I} + m) = 0,$$

c'est-à-dire $\alpha = 0$ ou $\alpha = 1 - m$.

Si l'on prend d'abord z = 0 et que l'on procède comme il a_sété indiqué au n° 611, on trouvera la série

$$y_1 = A \left[1 - \frac{h^2 x^2}{m+1} + \frac{h^4 x^4}{1.2(m+1)(m+3)} - \dots \right]$$

Si l'on fait au contraire $\alpha = 1 - m$, ce qui revient à changer m en 2 - m, on aura

$$y_1 = \Lambda' x^{1-m} \left[1 - \frac{h^2 x^2}{3-m} + \frac{h^4 x^6}{1 \cdot 2 \cdot (3-m)(5-m)} - \dots \right];$$

 y_1 et y_2 sont deux intégrales particulières contenant chacune une constante arbitraire. Leur somme $y_1 + y_2$ sera donc l'intégrale générale.

619. On peut remplacer les séries y_1 et y_2 par des intégrales définies. En effet, entre les coefficients L et M de deux termes consécutifs dans la ségie y_1 , on a la relation

$$h^2 M = Lp(1 - m - 2p).$$

Or on déduit de la formule (D) (I. 338) une relation analogue entre deux intégrales définies, savoir:

$$\int_0^{2\pi} \cos^{2p} \alpha \sin^{m-1} \alpha d\alpha = \frac{2p-1}{2p+m-1} \int_0^{2\pi} \cos^{2p-2} \alpha \sin^{m-1} \alpha d\alpha.$$

Le rapport de ces deux intégrales est, à un facteur constant près, égal au rapport $\frac{M}{L}$; si donc on pose

$$\mathbf{M} = \mathbf{A}_p \int_0^{2\pi} \cos^{2p} \alpha \sin^{m-1} \alpha \, d\alpha,$$

$$\mathbf{L} = \mathbf{A}_{p-1} \int_0^{2\pi} \cos^{2p-2} \alpha \sin^{m-1} \alpha \, d\alpha,$$

on aura

$$\frac{\mathbf{M}}{\mathbf{L}} = \frac{\mathbf{A}_{p}}{\mathbf{A}_{p-1}} \cdot \frac{2p-1}{2p+m-1} = \frac{h^{2}}{p(1-m-2p)};$$

$$\mathbf{A}_{p} = -\frac{h}{(2p-1)p} \mathbf{A}_{p-1}.$$

done

D'après cette formule et observant que A, n'est autre

chose que A, on aura

$$A_1 = -\frac{2h^2}{1.2}A$$
, $A_2 = \frac{4h^2A}{1.2.3.4}$, ..., $A_p = A\frac{(-2h^p)^p}{1.2...2p}$,

et, par conséquent,

$$\mathbf{M}_{p} = \mathbf{A} \frac{(-2h^{2})^{p}}{\mathbf{r} \cdot \mathbf{2} \cdot \mathbf{L} \cdot \mathbf{2} p} \int_{0}^{\pi} \cos^{2p} \alpha \sin^{m-1} \alpha d\alpha,$$

et

$$y_1 = \sum_{n=1}^{\infty} A_n \frac{(-2h^2)^p x^{2p}}{1 \cdot 2 \cdot \dots 2p} \int_0^{\pi} \cos^{2p} \alpha \sin^{m-1} \alpha d\alpha,$$

ou bien

$$y_1 = A \int_0^{\pi} \sin^{m-1} \alpha d\alpha \left(1 - \frac{2 h^2 x^2 \cos^2 \alpha}{1 \cdot 2} + \frac{4 h^4 x^4 \cos^4 \alpha}{1 \cdot 2 \cdot 3 \cdot 4} - \dots \right)$$

Mais l'expression entre parenthèses égale $\cos (hx\sqrt{2}\cos \alpha)$. On a donc enfin

$$y_1 = A \int_0^{\pi} \cos(hx \sqrt{2} \cos \alpha) \sin^{m-1} \alpha d\alpha.$$

La seconde série se déduit de la première en changeant m en 2 - m. On aura donc

$$y_2 = A' \int_0^{\pi} \cos(hx\sqrt{2}\cos\alpha) \sin^{1-m}\alpha d\alpha.$$

620. La valeur de y_1 devient illusoire quand on a m = 0 ou m < 0. En effet, si m = 0, l'intégrale

$$\int_0^{\pi} \cos(hx\sqrt{2}\cos\alpha)\sin^{m-1}\alpha\,d\alpha$$

est plus grande que

$$k\int_0^{\pi} \frac{d\alpha}{\alpha}$$
,

h désignant une quantité moindre que la plus petite valeur de $\cos\left(hx\sqrt{2}\cos\alpha\right)$ quand α varie de 0 à π . Or $\int_0^{\pi} \frac{d\alpha}{\alpha} = \infty$. Donc la première intégrale est infinie quand m = 0, et à plus forte raison quand on a m < 0.

De même la seconde intégrale n'aura une valeur finie que si 2-m est positif. Donc y_1+y_2 ne représentera l'intégrale générale que si m est compris entre o et 2. En dehors de ces deux limites, l'une des deux formules tombera en défaut, mais l'autre pourra être admise et ser vira à trouver l'intégrale générale par le procédé du n^0 608.

621. Examinons maintenant quelques cas particuliers. n = 0. L'équation se réduit à

$$\frac{d^2y}{dx^2} + 2h^2y = 0.$$

Pour déduire son intégrale des formules précédentes, observons que la valeur de y_2 , qui est encore admissible, se réduit à

$$y_2 = \mathbf{A}' x \int_0^{\pi} \cos(hx \sqrt{2} \cos \alpha) \sin \alpha d\alpha$$

$$= \frac{\mathbf{A}'}{2 h^2} \int_0^{\pi} \cos(hx \sqrt{2} \cos \alpha) d \cdot (hx \sqrt{2} \cos \alpha)$$

$$= \mathbf{C} \sin(hx \sqrt{2}).$$

Au moyen de cette première intégrale on trouvera

$$y = c \sin(hx\sqrt{2}) + c' \cos(hx\sqrt{2}).$$

2°. m=2. La valeur de y_2 est illusoire, mais celle de y_1 subsiste et donne $C\sin(hx\sqrt{2})$ pour intégrale particulière. On en déduit l'intégrale générale

$$y = \frac{c \sin(hx \sqrt{2}) + c' \cos(hx \sqrt{2})}{x}.$$

3°. m = 1. Le rapport de y_1 à y_2 est constant, et ces deux intégrales ne sont plus distinctes. Dans ce cas, on posera m = 1 + h et l'on appliquera le procédé de d'Alembert.

QUARANTE-NEUVIÈME LEÇON.

Équations différentielles simultanées. — Elimination d'une variable entre deux équations différentielles. — Systèmes d'équations du premier ordre équivalents à une ou à plusieurs équations d'un ordre quelconque. — Théorèmes sur les intégrales des équations simultanées du premier ordre. — Intégration des équations simultanées du premier ordre.

ÉLIMINATION D'UNE VARIABLE ENTRE DEUX ÉQUATIONS DIFFÉRENTIELLES.

622. Soient

$$f\left(x, y, \frac{dy}{dx}, \dots, \frac{d^n y}{dx^m}, z, \frac{dz}{dx}, \dots, \frac{d^p z}{dx^p}\right) = 0,$$

$$F\left(x, y, \frac{dy}{dx}, \dots, \frac{d^n y}{dx^n}, z, \frac{dz}{dx}, \dots, \frac{d^q z}{dx^q}\right) = 0,$$

deux équations qui renferment deux fonctions γ et z d'une variable indépendante x et leurs dérivées de divers ordres. En éliminant γ entre ces équations, on obtiendra une équation différentielle à une seule variable et dont l'intégration fera connaître z.

Pour opérer cette élimination, on différentiera n fois la première équation et m fois la seconde; on aura ainsi m+n+2 équations entre lesquelles il sera possible d'éliminer par les moyens ordinaires de l'algèbre les m+n+1 inconnues $y, \frac{dy}{dx}, \frac{d^2y}{dx^2}, \cdots, \frac{d^{m+n}y}{dx^{m+n}}$. L'équation finale à laquelle on parviendra sera, en général, d'un ordre égal au plus grand des deux nombres n+p, m+q; cet ordre peut toutefois être moindre, si l'élimination a pu s'effectuer sans employer les m+n+2 équations.

623. Plus généralement, si l'on avait r équations différentielles contenant une variable indépendante x et r fonctions y, z, u, \ldots de cette variable, on éliminerait y entre ces r équations, ce qui donnerait r-1 équations entre z, u, etc. On éliminerait ensuite z entre ces r-1

équations, et ainsi de suite. On arriverait ainsi à une équation différentielle ne renfermant plus qu'une seule des fonctions inconnues.

SYSTÈMES D'ÉQUATIONS DU PREMIER ORDRE ÉQUIVALENTS À UNE OU PLUSIEURS ÉQUATIONS D'UN ORDRE QUELCONQUE.

624. On peut remplacer une équation différentielle d'un ordre quelconque à deux variables par un système d'équations simultanées du premier ordre, en représentant par une lettre chacune des dérivées, excepté celle qui est de l'ordre le plus élevé. Ainsi l'équation

(1)
$$f\left(x, y, \frac{dy}{dx}, \frac{d^2y}{dx^2}, \frac{d^3y}{dx^3}\right)$$

est évidemment équivalente aux équations suivantes :

$$\left(\frac{dy}{dx} = y', \frac{dy'}{dx} = y'', \frac{dy''}{dx}\right) = 0.$$

$$\left(f\left(x, y, y', y'', \frac{dy''}{dx}\right) = 0.
\right)$$

625. De mème les équations

(3)
$$\begin{cases} f\left(x, y, \frac{dy}{dx}, \dots, \frac{d^n y}{dx^m}, z, \frac{dz}{dx}, \dots, \frac{d^p z}{dx^p}\right), \\ F\left(x, y, \frac{dy}{dx}, \dots, \frac{d^n y}{dx^n}, z, \frac{dz}{dx}, \dots, \frac{d^q z}{dx^q}\right). \end{cases}$$

dans lesquelles nous supposerons $m>n,\ q>p,$ peuvent être remplacées par le système des équations du premier ordre

(4)
$$\begin{cases} \frac{dy}{dx} = y', & \frac{dy'}{dx} = y'', \dots, \frac{d \cdot y^{(m-1)}}{dx} = y^{(m-1)}, \\ \frac{dz}{dx} = z', & \frac{dz'}{dx} = z'', \dots, \frac{d \cdot z^{(q-2)}}{dx} = z^{(q-1)}, \\ f\left(x, y, y', \dots, \frac{d \cdot y^{(m-1)}}{dx}, z, z', \dots, z^{(p-1)}\right) = 0, \\ F\left(x, y, y', \dots, y^{(n-1)}, z, z', \dots, \frac{d \cdot z^{(q-1)}}{dx}\right) = 0. \end{cases}$$

En général, étant donné un nombre quelconque d'équations différentielles renfermant une variable indépendante et plusieurs fonctions de cette variable, si l'on représente ces dérivées, à l'exception de celles dont l'ordre est le plus élevé, par des lettres, on aura un système d'équations simultanées et du premier ordre qui sera équivalent aux équations proposées.

THÉORÈMES SUR LES INTÉGRALES DES ÉQUATIONS SIMULTANÉES DU PREMIER ORDRE.

626. Supposons, pour fixer les idées, que l'on ait à intégrer trois équations différentielles simultanées et du premier ordre entre une variable indépendante x et trois fonctions y, z, u de cette variable. On pourra en général résoudre ces équations par rapport aux dérivées $\frac{dy}{dx}$, $\frac{dz}{dx}$, $\frac{du}{dx}$ et les remplacer par des équations de la forme

$$\frac{dy}{dx} = \frac{Q}{P}, \quad \frac{dz}{dx} = \frac{R}{P}, \quad \frac{du}{dx} = \frac{V}{P}$$

on

(1)
$$\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R} = \frac{du}{V}.$$

P, Q, R, V étant des fonctions déterminées. Le problème proposé revient donc à établir entre les variables x, y, z, u des relations telles, que les différentielles de ces variables soient proportionnelles aux fonctions P, Q, R, V.

Je dis maintenant que les relations cherchées doivent contenir trois constantes arbitraires. En estet, les équations (1) déterminent seulement les accroissements infiniment petits des variables y, z, u pour un accroissement infiniment petit de x. On peut donc prendre à volonté les valeurs de y, z et u pour x=a. En raisonnant comme on l'a fait pour une équation différentielle à deux variables, on voit que y, z et u sont des fonc-

tions déterminées de x, dépendant nécessairement de leurs valeurs initiales, tout à fait arbitraires. Les équations intégrales doivent donc contenir trois constantes arbitraires. Ces constantes peuvent d'ailleurs être remplacées par d'autres ayant avec elles des relations arbitraires; pourvu qu'on puisse déterminer les nouvelles constantes de manière que y, z et u aient des valeurs données correspondant à une valeur donnée de x.

627. On arrive à la même conclusion par la série de Taylor. En effet, si l'on représente par y_a , $\left(\frac{dy}{dx}\right)_a$, etc., les valeurs de y et de ses dérivées pour x=a, on aura

$$y = y_a + \left(\frac{dy}{dx}\right)_a (x-a) + \left(\frac{d^2y}{dx^2}\right)_a \frac{(x-a)^2}{1\cdot 2} + \dots$$

Ensuite des équations

$$\frac{dy}{dx} = \frac{Q}{P}, \quad \frac{dz}{dx} = \frac{R}{P}, \quad \frac{du}{dx} = \frac{V}{P},$$

on peut déduire $\frac{d^n y}{dx^n}$ en fonction de x, y, z, u; par con-

séquent $\left(\frac{d^n \gamma}{dx^n}\right)_a$ dépendra des valeurs arbitraires attribuées à γ , z, u pour x=a. Donc le développement de γ contiendra trois constantes arbitraires. Les valeurs de z et de u dépendront aussi des mêmes constantes.

Les raisonnements que nous venons de faire s'étendent évidemment à un nombre quelconque d'équations. Par conséquent m équations du premier ordre entre m+1 variables et qui peuvent être mises sous la forme (1), admettent toujours m intégrales contenant m constantes arbitraires. Ces constantes doivent être telles, que l'on puisse donner à m des variables des valeurs arbitraires pour une valeur quelconque attribuée à la $(m+1)^n$ variable.

628. Dans ce qui précède on a supposé que les équa-

tions proposées pouvaient être résolues par rapport aux dérivées $\frac{dy}{dx}$, $\frac{dz}{dx}$... Dans certains cas particuliers cette résolution est impossible. Par exemple, si l'on avait

$$\begin{cases} \frac{dy}{dx} + \frac{dz}{dx} + x = 0, \\ x\frac{dy}{dx} + x\frac{dz}{dx} + y - x^2 = 0, \end{cases}$$

en cherchant à éliminer l'une des dérivées, on trouverait l'équation

$$(2) y - 2x^2 = 0.$$

Cette équation peut remplacer l'une des deux proposées. En portant la valeur de γ qu'elle fournit dans la première des équations (1), on aura

$$\frac{dz}{dx} + 5x = 0,$$

d'où l'on déduit

$$z = C - \frac{5x^2}{2}.$$

Ainsi quand on ne peut pas résoudre le système proposé par rapport à toutes les dérivées, le problème se simplifie, parce qu'il existe alors entre les variables un certain nombre de relations algébriques, au moyen desquelles on peut faire disparaître les dérivées dont le système n'a pu fournir la valeur. Seulement dans ce cas le nombre des constantes n'est pas égal au nombre des fonctions.

INTÉGRATION DES ÉQUATIONS SIMULTANÉES DU PREMIER ORDRE.

629. Soit

(1)
$$\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R} = \frac{du}{V}$$

un système d'équations simultanées. Nous avons vu qu'il

existait trois équations intégrales,

(2)
$$\begin{cases} F_{1}(x, y, z, u, c, c', c'') = 0, \\ F_{2}(x, y, z, u, c, c', c'') = 0, \\ F_{3}(x, y, z, u, c, c', c'') = 0, \end{cases}$$

c, c', c'' étant des constantes arbitraires. Ces équations, résolues par rapport aux constantes, peuvent être remplacées par le système

(3)
$$\alpha = c, \quad \beta = c', \quad \gamma = c'';$$

z, δ , γ désignant trois fonctions de x, y, z et u sans constantes arbitraires. On peut donc trouver trois fonctions de x, y, z, u qui conservent des valeurs constantes quand on y fait varier simultanément toutes les variables.

Remarquons d'abord que les fonctions P, Q, R, V ne peuvent pas être à la fois identiquement nulles, car alors les équations (1) n'offriraient aucun sens.

Admettons donc que P ne soit pas identiquement nul et prenons x pour variable indépendante. Je dis que P ne pourra pas même s'annuler en vertu des équations (3). En effet, l'équation P = 0 ne renfermant pas de constante arbitraire, on ne pourrait pas se donner à volonté des valeurs de y, z, u pour une valeur quelconque de x.

Supposons donc P différent de o, excepté pour des valeurs particulières de x. En différentiant l'équation $\alpha = c$, on a

$$\frac{d\alpha}{dx}dx + \frac{d\alpha}{d\gamma}d\gamma + \frac{d\alpha}{dz}dz + \frac{d\alpha}{du}du = 0.$$

Mais $\alpha = c$ étant une intégrale des équations (1), les différentielles dx, dy, dz, du doivent être proportionnelles à P, Q, R, V; on aura donc

(5)
$$P \frac{d\alpha}{dx} + Q \frac{d\alpha}{d\gamma} + R \frac{d\alpha}{dz} + V \frac{d\alpha}{du} = 0.$$

Cette équation doit être identique; autrement elle établirait une relation entre les variables x, y, z et u et l'on ne pourrait pas donner des valeurs arbitraires à y, z, u pour une valeur particulière de x.

On aura donc les trois équations identiques

(6)
$$P \frac{d\alpha}{dx} + Q \frac{d\alpha}{dy} + R \frac{d\alpha}{dz} + V \frac{d\alpha}{du} = 0,$$

$$P \frac{d\theta}{dx} + Q \frac{d\theta}{dy} + R \frac{d\theta}{dz} + V \frac{d\theta}{du} = 0,$$

$$P \frac{d\gamma}{dx} + Q \frac{d\gamma}{dy} + R \frac{d\gamma}{dz} + V \frac{d\gamma}{du} = 0.$$

630. Réciproquement si l'on trouve une fonction θ des variables x, y, z, u, sans constante arbitraire, telle, que l'on ait identiquement

(1)
$$P \frac{d\theta}{dx} + Q \frac{d\theta}{dr} + R \frac{d\theta}{dz} + V \frac{d\theta}{du} = 0,$$

l'équation

$$\theta = c$$

sera une intégrale des équations simultanées

(2)
$$\frac{dx}{P} = \frac{dy}{O} = \frac{dz}{R} = \frac{du}{V}.$$

En effet, on a

$$d\theta = dx \left(\frac{d\theta}{dx} + \frac{d\theta}{dy} \frac{dy}{dx} + \frac{d\theta}{dz} \frac{dz}{dx} + \frac{d\theta}{du} \frac{du}{dx} \right);$$

donc y, z et u étant des fonctions de x telles, que l'on ait

$$\frac{dy}{dx} = \frac{Q}{P}, \quad \frac{dz}{dx} = \frac{R}{P}, \quad \frac{du}{dx} = \frac{V}{P},$$

on aura

$$d\theta = \frac{dx}{P} \left(P \frac{d\theta}{dx} + Q \frac{d\theta}{dy} + R \frac{d\theta}{dz} + V \frac{d\theta}{du} \right) :$$

mais la quantité renfermée entre parenthèses est nulle

par hypothèse, donc

$$d\theta = 0$$
, ou $\theta = c$.

Il suit de là que si l'on trouve trois fonctions α , β , γ qui substituées à θ satisfassent identiquement à l'équation (1), les équations

(3)
$$\alpha = c, \quad 6 = c', \quad \gamma = e''$$

seront les intégrales cherchées.

631. Des intégrales (3) peuvent se déduire une infinité d'autres, car x, y, z, u variant de manière que les fonctions α , β , γ conservent une valeur constante, toute fonction de la forme φ (α, β, γ) conservera aussi une valeur constante.

On peut d'ailleurs vérifier directement que l'équation

(4)
$$\varphi(\alpha, 6, \gamma) = c$$

est une intégrale des équations (2). En effet on a

(5)
$$\begin{vmatrix}
\frac{d\varphi}{dx} = \frac{d\varphi}{d\alpha}\frac{d\alpha}{dx} + \frac{d\varphi}{d\theta}\frac{d\theta}{dx} + \frac{d\varphi}{d\gamma}\frac{d\gamma}{dx}, \\
\frac{d\varphi}{dy} = \frac{d\varphi}{d\alpha}\frac{d\alpha}{dy} + \frac{d\varphi}{d\theta}\frac{d\theta}{dy} + \frac{d\varphi}{d\gamma}\frac{d\gamma}{dy}, \\
\frac{d\varphi}{dz} = \frac{d\varphi}{d\alpha}\frac{d\alpha}{dz} + \frac{d\varphi}{d\theta}\frac{d\theta}{dz} + \frac{d\varphi}{d\gamma}\frac{d\gamma}{dz}, \\
\frac{d\varphi}{du} = \frac{d\varphi}{d\alpha}\frac{d\alpha}{du} + \frac{d\varphi}{d\theta}\frac{d\theta}{du} + \frac{d\varphi}{d\gamma}\frac{d\gamma}{du},
\end{vmatrix}$$

Si l'on multiplie ces équations respectivement par P, Q, R, V et qu'on les ajoute, le second membre sera nul en vertu des équations (6) du n° 629. On aura donc

$$P \frac{d\varphi}{dx} + Q \frac{d\varphi}{dy} + R \frac{d\varphi}{dz} + V \frac{d\varphi}{du} = 0,$$

c'est-à-dire que φ mis à la place de θ satisfait à l'équation (1). Donc $\varphi=c$ est bien une intégrale des équations proposées.

632. On peut même démontrer que toute fonction 6

de x, y, z, u qui satisfait à l'équation

(1)
$$P\frac{d\theta}{dx} + Q\frac{d\theta}{dy} + R\frac{d\theta}{dz} + V\frac{d\theta}{du} = 0,$$

doit se réduire à une fonction de a,6,7. En esset, soit

(2)
$$\theta = \varpi(x, y, z, u);$$

posons

(3) $\alpha = f_1(x, y, z, u)$, $\theta = f_2(x, y, z, u)$, $\gamma = f_3(x, y, z, u)$, on peut tirer de là les valeurs de y, z, u en fonction de α , θ , γ et α ; en les substituant dans la valeur de θ , on aura

(4)
$$\theta = \pi (\alpha, \beta, \gamma, x).$$

Or je dis que x ne doit pas entrer explicitement dans cette équation. En effet, en mettant cette valeur de θ dans l'équation (1), on aura

(5)
$$P\left(\frac{d\pi}{d\alpha}\frac{d\alpha}{dx} + \frac{d\pi}{d6}\frac{d6}{dx} + \frac{d\pi}{d\gamma}\frac{d\gamma}{dx} + \frac{d\pi}{dx}\right) + Q\left(\frac{d\pi}{d\alpha}\frac{d\alpha}{dy} + \frac{d\pi}{d6}\frac{d6}{dy} + \frac{d\pi}{d\gamma}\frac{d\gamma}{dy}\right) + R\left(\frac{d\pi}{d\alpha}\frac{d\alpha}{dz} + \frac{d\pi}{d6}\frac{d6}{dz} + \frac{d\pi}{d\gamma}\frac{d\gamma}{dz}\right) + V\left(\frac{d\pi}{d\alpha}\frac{d\alpha}{du} + \frac{d\pi}{d6}\frac{d6}{du} + \frac{d\pi}{d\gamma}\frac{d\gamma}{du}\right)$$

Mais les fonctions $\alpha, 6, \gamma$ satisfaisant à l'équation (1), l'équation (5) se réduit à

$$P\frac{d\pi}{dx} = 0,$$

ou à

$$\frac{d\pi}{dx} = 0,$$

puisque P ne peut être nul que pour des valeurs particulières des variables. Ainsi la fonction π ne contient pas x explicitement et se réduit à une fonction de α , \hat{c} , γ .

CINQUANTIÈME LECON.

Suite des équations simultanées. — Equations linéaires : cas de deux équations; — cas de trois équations. — Réduction du cas général au cas où les équations sont privees de second membre. — Méthode de M. Cauchy. — Remarque sur les équations linéaires.

ÉQUATIONS LINÉAIRES SIMULTANÉES. — CAS DE DEUX ÉQUATIONS.

633. Si l'on a deux équations linéaires du premier ordre entre une variable indépendante x et deux fonctions y et z de cette variable, en éliminant tour à tour $\frac{dz}{dx}$ et $\frac{dy}{dx}$, on obtiendra deux équations de la forme suivante :

(1)
$$\begin{cases} \frac{dy}{dx} + Py + Q'z = V, \\ \frac{dz}{dx} + P'y + Q'z = V', \end{cases}$$

P, Q, V, P', etc., désignant des fonctions de x.

On pourrait appliquer à ces équations le procédé d'élimination exposé plus haut (622), et l'on parviendrait à une équation linéaire du second ordre à deux variables; mais il est plus avantageux d'employer la méthode suivante qui a été imaginée par d'Alembert et perfectionnée par Ampère.

Ajoutons les équations (1) après avoir multiplié la seconde par une indéterminée θ : nous aurons

(2)
$$\frac{dy}{dx} + \theta \frac{dz}{dx} + (\mathbf{P} + \mathbf{P}' \theta) \dot{y} + (\mathbf{Q} + \mathbf{Q}' \theta) z = \mathbf{V} + \mathbf{V}' \theta.$$

Si θ était une constante, $\frac{dy}{dx} + \theta \frac{dz}{dx}$ serait la dérivée de $y + \theta z$; posons donc

$$(3) t = y + \theta z,$$

il en résulte $y = t - \theta z$ et

$$\frac{dy}{dx} + \frac{\theta dz}{dx} = \frac{dt}{dx} - z \frac{d\theta}{dx}.$$

L'équation (2) devient alors

$$(4)\;\frac{dt}{dx}-z\frac{d\,\theta}{dx}+\left(\mathbf{P}+\,\mathbf{P}'\,\theta\right)\left(t-\theta\,z\right)+\left(\mathbf{Q}+\,\mathbf{Q}'\,\theta\right)\,z=\mathbf{V}+\mathbf{V}'\,\theta.$$

Or z n'entrant dans cette équation qu'à la première puissance, on éliminera cette fonction en égalant son coefficient à zéro et l'on aura les deux équations

(5)
$$\frac{d\theta}{dx} + (P + P'\theta)\theta - Q - Q'\theta = 0,$$

(6)
$$\frac{dt}{dx} + (\mathbf{P} + \mathbf{P}'\theta) t - \mathbf{V} - \mathbf{V}'\theta = 0.$$

L'équation (5) ne contient que θ et x; elle détermine donc θ . Mais, quoique du premier ordre, elle n'est pas linéaire, et l'on ne saura pas en général l'intégrer. Cependant si l'on connaît seulement deux intégrales particulières θ_1 et θ_2 de cette équation, la question proposée pourra être résolue.

En effet, ces valeurs étant mises à la place de θ dans l'équation (6) qui est linéaire, on en déduira deux valeurs correspondantes de t, t_1 et t_2 , contenant chacune une constante arbitraire. On aura ensuite y et z au moyen des deux équations

$$y + \theta_1 z = t_1, \quad y + \theta_2 z = t_2.$$

Les valeurs de y et de z ainsi obtenues contiendront deux constantes arbitraires, puisque t_1 et t_2 en contiennent chacun une.

634. Dans le cas où les coefficients P, Q, P', Q' sont constants, on peut supposer θ constant dans l'équation (5), qui se réduit alors à

$$(7) \qquad (P + P'\theta)\theta - Q - Q'\theta = 0.$$

Cette équation est du second degré et donne deux razines

constantes que l'on peut prendre pour θ_1 et θ_2 , si ces racines sont inégales.

Si les racines de l'équation (7) étaient égales, on n'aurait qu'une valeur de θ . Mais dans ce cas l'équation (5) peut se mettre sous la forme

$$\frac{d\theta}{dx} + P'(\theta - \alpha)^2 = 0,$$

$$\frac{d\theta}{(\theta - \alpha)^2} + P'dx = 0,$$

ou

équation dont l'intégrale générale est

$$\theta = \alpha + \frac{1}{P'x + c}$$

Comme on n'a besoin que de deux valeurs particulières de θ , on les choisira de la manière la plus simple en faisant successivement c = 0, $c = \infty$, d'où

$$\theta_1 = \alpha + \frac{1}{P'x}, \quad \theta_2 = \alpha.$$

Les équations (1) peuvent donc toujours être intégrées quand les coefficients P, Q, P', Q' sont constants.

INTÉGRATION DE TROIS ÉQUATIONS LINÉAIRES.

635. La méthode précédente s'applique avec quelques modifications à l'intégration de trois équations linéaires simultanées à quatre variables x, y, z, u. Ces équations peuvent d'abord être mises sous la forme

(I)
$$\begin{cases} \frac{dy}{dx} + Py + Qz + Ru = V, \\ \frac{dz}{dx} + P'y + Q'z + R'u = V', \\ \frac{du}{dx} + P''y + Q''z + R''u = V''. \end{cases}$$

Ajoutons ces trois équations après avoir multiplié la

seconde par θ, la troisième par λ. On a ainsi

$$\begin{cases}
\frac{dy}{dx} + \theta \frac{dz}{dx} + \lambda \frac{dy}{dx} + (P + P'\theta + P''\lambda) y \\
+ (Q + Q'\theta + Q''\lambda) z + (R + R'\theta + R''\lambda) u \\
= V + V'\theta + V''\lambda.
\end{cases}$$

Posons

(2)
$$y + \theta z + \lambda u = t,$$

$$d'où \frac{dy}{dx} + \theta \frac{dz}{dx} + \lambda \frac{du}{dx} = \frac{dt}{dx} - z \frac{d\theta}{dx} - u \frac{d\lambda}{dx}.$$

L'équation (1) devient

$$(3) \begin{cases} \frac{dt}{dx} - z \frac{d\theta}{dx} - u \frac{d\lambda}{dx} + (P + P'\theta + P''\lambda)(t - \theta z - \lambda u) \\ + (Q + Q'\theta + Q''\lambda)z + (R + R'\theta + R''\lambda)u \\ = V + V'\theta + V''\lambda \end{cases}$$

Cette équation ne renferme z et u qu'au premier degré. En égalant à zéro les coefficients de ces variables, on réduira donc l'équation (3) aux suivantes:

(4)
$$\frac{d\theta}{dx} + (\mathbf{P} + \mathbf{P}'\theta + \mathbf{P}''\lambda)\theta - \mathbf{Q} - \mathbf{Q}'\theta - \mathbf{Q}''\lambda = 0,$$

(5)
$$\frac{d\lambda}{dx} + (\mathbf{P} + \mathbf{P}'\theta + \mathbf{P}''\lambda)\lambda - \mathbf{R} - \mathbf{R}'\theta - \mathbf{R}''\lambda = \mathbf{0},$$

(6)
$$\frac{dt}{dx} + (\mathbf{P} + \mathbf{P}'\theta + \mathbf{P}''\lambda)t - \mathbf{V} - \mathbf{V}'\theta - \mathbf{V}''\lambda = 0.$$

Les deux premières équations ne contiennent que θ et λ : elles sont du premier ordre, mais non linéaires. On ne sait donc pas les intégrer en général. Néanmoins, si l'on connaît trois intégrales particulières θ_1 , θ_2 , θ_3 et trois valeurs correspondantes λ_1 , λ_2 , λ_3 , on pourra déterminer les intégrales cherchées. En effet, pour un système de valeurs simultanées θ_4 et λ_1 , l'équation (6) qui est linéaire et du premier ordre donnera une intégrale correspondante t_1 , contenant une constante arbitraire. On aura de même deux autres valeurs t_2 et t_3 correspondant aux deux autres

systèmes θ_2 et λ_2 , θ_3 et λ_3 . Les trois intégrales seront donc

(7)
$$\begin{cases} y + \theta_1 z + \lambda_1 u = t_1, \\ y + \theta_2 z + \lambda_2 u = t_2, \\ y + \theta_3 z + \lambda_3 u = t_3. \end{cases}$$

Les valeurs de y, z, u qu'on en déduira contiendront chacune trois constantes arbitraires.

636. Dans le cas où les coefficients P, Q, R, P', etc., sont constants, les équations (4) et (5) sont satisfaites par les valeurs constantes de θ et de λ que déterminent les équations

(8)
$$(P + P'\theta + P''\lambda)\theta - Q - Q'\theta - Q''\lambda = 0,$$

(9)
$$(P + P'\theta + P''\lambda)\lambda - R - R'\theta - R''\lambda = 0.$$

En portant dans la seconde équation la valeur de λ tirée de la première, on aura une équation du troisième degré en θ , qui fournira, en général, trois valeurs distinctes de cette variable, θ_1 , θ_2 , θ_3 . L'équation (8) étant du premier degré en λ , fournira trois valeurs correspondantes λ_1 , λ_2 , λ_3 .

L'élimination peut se faire de la manière suivante. En posant

$$(10) P + P' \theta + P'' \lambda = \rho,$$

on aura les trois équations

(11)
$$\begin{cases} P - \rho + P'\theta + P''\lambda = 0, \\ Q + (Q' - \rho)\theta + Q''\lambda = 0, \\ R + R'\theta + (R'' - \rho)\lambda = 0. \end{cases}$$

L'élimination de θ et de λ entre ces trois équations donne l'équation finale

$$\begin{array}{c} (\rho - P) (\rho - Q') (\rho - R'') \\ - R' Q'' (\rho - P) - RP'' (\rho - Q') - QP' (\rho - R'') \\ - QR' P'' - RP' Q'' \end{array}$$

Soient ρ_1 , ρ_2 , ρ_3 les trois racines de cette équation.

L'équation (6) prenant la forme

$$\frac{dt}{d.c} + \rho t = \mathbf{V} + \mathbf{V}' \theta + \mathbf{V}'' \lambda,$$

on aura

$$t = e^{-\rho x} \left[c + \int (\mathbf{V} + \mathbf{V}' \mathbf{\theta} + \mathbf{V}'' \lambda) e^{\rho x} dx \right].$$

On en déduira, en remplaçant tour à tour ρ par ρ_1 , ρ_2 , ρ_3 , trois valeurs de t, savoir t_1 , t_2 , t_3 contenant chacune une constante arbitraire. On aura donc pour les intégrales cherchées les trois équations

$$\begin{cases} y + \theta_1 z + \lambda_1 u = e^{-\rho_1 x} \left[c_1 + \int (V + V' \theta_1 + V'' \lambda_1) e^{\rho_1 x} dx \right] = 0, \\ y + \theta_2 z + \lambda_2 u = e^{-\rho_2 x} \left[c_2 + \int (V + V' \theta_2 + V'' \lambda_2) e^{\rho_2 x} dx \right] = 0, \\ y + \theta_3 z + \lambda_3 u = e^{-\rho_3 x} \left[c_3 + \int (V + V' \theta_3 + V'' \lambda_3) e^{\rho_3 x} dx \right] = 0 \end{cases}$$

AUTRE MÉTHODE.

637. On peut suivre dans l'intégration des équations linéaires simultanées la même marche que dans les équations différentielles ordinaires, c'est-à-dire ramener le cas général au cas plus simple où les équations proposées seraient privées de second membre. Nous allons effectuer cette réduction dans le cas où les coefficients des premiers membres sont constants.

Remarquons d'abord que si l'on connaissait trois systèmes de fonctions, (y_1, z_1, u_1) , (y_2, z_2, u_2) , (y_3, z_3, u_3) satisfaisant aux équations

(1)
$$\begin{cases} \frac{dy}{dx} + Py + Qz + Ru = 0, \\ \frac{dz}{dx} + P'y + Q'z + R'u = 0, \\ \frac{du}{dx} + P''y + Q''z + R''u = 0, \end{cases}$$

on y satisferait encore en posant

$$y = c_1 y_1 + c_2 y_2 + c_3 y_3,$$

 $z = c_1 z_1 + c_2 z_2 + c_3 z_3,$
 $u = c_1 u_1 + c_2 u_2 + c_3 u_3,$

comme on s'en assure par la substitution, et l'on aurait les intégrales générales puisque ces formules contiennent trois constantes arbitraires c_1, c_2, c_3 .

Cherchons maintenant à résoudre les équations (I) par des valeurs de la forme

(1)
$$y = e^{-\rho x}$$
, $z = \mu e^{-\rho x}$, $u = \nu e^{-\rho x}$, ρ , μ , ν désignant des constantes inconnues. La substitu-

tion de ces valeurs donnera les équations

(2)
$$\begin{cases} P - \rho + Q \mu + R \nu = 0, \\ P' + (Q' - \rho) \mu + R' \nu \neq 0, \\ P'' + Q'' \mu + (R'' - \rho) \nu = 0. \end{cases}$$

L'élimination de µ et de v entre ces équations conduit à une équation du troisième degré en p, la même que l'on a déduite, par l'élimination de θ et de λ , des équations

(3)
$$\begin{cases} P - \rho + P'\theta + P''\lambda = 0, \\ Q + (Q' - \rho)\theta + Q''\lambda = 0, \\ R + R'\theta + (R'' - \rho)\lambda = 0, \end{cases}$$

car on arriverait à ce dernier système en ajoutant les équations (2) respectivement multipliées par θ, λ et 1, et en déterminant θ et à de manière que les termes qui contiennent \(\mu \) et \(\nu \) disparaissent d'eux-mêmes.

Les trois valeurs de o étant désignées par p1, p2, p3, et les valeurs correspondantes de μ et de ν par μ_1 , μ_2 , μ_3 ; ν₁, ν₂, ν₃, on aura trois solutions particulières d'où l'on déduira la solution générale

(4)
$$\begin{cases} y = c_1 e^{-\rho_1 x} + c_2 e^{-\rho_2 x} + c_3 e^{-\rho_3 x}, \\ z = c_1 \mu_1 e^{-\rho_1 x} + c_2 \mu_2 e^{-\rho_2 x} + c_3 \mu_3 e^{-\rho_3 x}, \\ u = c_1 \nu_1 e^{-\rho_1 x} + c_2 \nu_2 e^{-\rho_2 x} + c_3 \nu_3 e^{-\rho_3 x}. \end{cases}$$

638. Prenons maintenant trois équations avec second membre

(II)
$$\begin{cases} \frac{dy}{dx} + Py + Qz + Ru = V, \\ \frac{dz}{dx} + P'y + Q'z + R'u = V', \\ \frac{du}{dx} + P''y + Q''z + R''u = V''. \end{cases}$$

Cherchons s'il est possible de satisfaire à ces équations par les expressions (4), mais en regardant c_1 , c_2 , c_3 comme des fonctions convenables de x. On aura

$$\frac{dy}{dx} = -{}^{c}\rho_{1}c_{1}e^{-\rho_{1}x} - \rho_{2}c_{2}e^{-\rho_{2}x} - \rho_{3}c_{3}e^{-\rho_{3}x} + e^{-\rho_{1}x}\frac{dc_{1}}{dx} + e^{-\rho_{3}x}\frac{dc_{2}}{dx} + e^{-\rho_{3}x}\frac{dc_{3}}{dx}.$$

On aurait de même $\frac{dz}{dx}$ et $\frac{du}{dx}$. En substituant ces valeurs dans les équations (II), les termes qui renferment c_1, c_2, c_3 sont nuls en vertu des équations (4), et il reste

(5)
$$\begin{cases} e^{-\rho_1 x} \frac{dc_1}{dx} + e^{-\rho_2 x} \frac{dc_2}{dx} + e^{-\rho_3 x} \frac{dc_3}{dx} = V, \\ \mu_1 e^{-\rho_1 x} \frac{dc_1}{dx} + \mu_2 e^{-\rho_2 x} \frac{dc_2}{dx} + \mu_3 e^{-\rho_3 x} \frac{dc_3}{dx} = V', \\ \nu_1 e^{-\rho_1 x} \frac{dc_1}{dx} + \nu_2 e^{-\rho_2 x} \frac{dc_2}{dx} + \nu_3 e^{-\rho_3 x} \frac{dc_3}{dx} = V''. \end{cases}$$

De ces équations on tirera les valeurs

(6)
$$\frac{dc_1}{dx} = \chi_1, \quad \frac{dc_2}{dx} = \chi_2, \quad \frac{dc_1}{dx} = \chi_3,$$

 χ_1, χ_2, χ_3 étant des fonctions de x: d'où l'on conclura

(7)
$$\begin{cases} c_1 = \int \chi_1 dx + C_1, \\ c_2 = \int \chi_2 dx + C_2, \\ c_3 = \int \chi_3 dx + C_3. \end{cases}$$

Ces valeurs, substituées dans les formules (4), donneront les intégrales du système (II).

MÉTHODE DE M. CAUCHY.

639. Soit proposé d'intégrer le système

(1)
$$\begin{cases} \frac{dy}{dx} + Py + Qz + Ru = F(x), \\ \frac{dz}{dx} + P'y + Q'z + R'u = F_1(x), \\ \frac{du}{dx} + P''y + Q''z + R'''u = F_2(x). \end{cases}$$

Cherchons des fonctions Y, Z, U qui, substituées à la place de γ, z, u vérifient les équations

(2)
$$\frac{dy}{dx} + Py + Qz + Ru = 0,$$

$$\frac{dz}{dx} + P'y + Q'z + R'u = 0,$$

$$\frac{du}{dx} + P''y + Q''z + R''u = 0,$$

et telles, que pour $x = \alpha$ on ait

$$Y = F(\alpha), Z = F_1(\alpha), U = F_2(\alpha).$$

Pour trouver des fonctions Y, Z, U qui remplissent ces conditions, il suffira de déterminer les constantes qui entrent dans les intégrales générales du système (2).

(3)
$$\begin{cases} y = \varphi(x, c_1, c_2, c_3), \\ z = \varphi_1(x, c_1, c_2, c_3), \\ u = \varphi_2(x, c_1, c_2, c_3), \end{cases}$$

de manière que l'on ait

(4)
$$\begin{cases} \mathbf{F}(\alpha) = \varphi(\alpha, c_1, c_2, c_3), \\ \mathbf{F}_1(\alpha) = \varphi_1(\alpha, c_1, c_2, c_3), \\ \mathbf{F}_2(\alpha) = \varphi_2(\alpha, c_1, c_2, c_3). \end{cases}$$

On aura les fonctions cherchées en portant dans les équa-

tions (3) les valeurs de c_1 , c_2 , c_3 déduites des équations (4).

640. Maintenant je dis que les équations (1) seront satisfaites en posant

(5)
$$y = \int_0^x \mathbf{Y} d\alpha, \quad z = \int_0^x \mathbf{Z} d\alpha, \quad u = \int_0^x \mathbf{U} d\alpha.$$

En effet, d'après l'hypothèse, on aura

$$\frac{dy}{dx} = \int_{0}^{x} \frac{d\mathbf{Y}}{dx} d\alpha + \mathbf{F}(x),$$

et, en substituant dans la première des équations (1).

$$\mathbf{F}(x) = \int_{0}^{x} \frac{d\mathbf{Y}}{dx} d\alpha + \mathbf{P} \int_{0}^{x} \mathbf{Y} d\alpha + \mathbf{Q} \int_{0}^{x} \mathbf{Z} d\alpha$$
$$+ \mathbf{R} \int_{0}^{x} \mathbf{U} d\alpha + \mathbf{F}(x).$$

Cette équation est identique, car elle revient à

$$\int_{0}^{x} d\alpha \left(\frac{d\mathbf{Y}}{dx} + \mathbf{P}\mathbf{Y} + \mathbf{Q}\mathbf{Z} + \mathbf{R}\mathbf{U} \right) = \mathbf{0},$$

et la quantité renfermée entre parenthèses est nulle par hypothèse. On vérifiera de mème que les deux autres équations du système sont satisfaites.

On a donc une solution particulière du système (1): désignons-la par (y_1, z_1, u_1) . Mais si dans les équations (1) on remplace y, z, u par $y + y_1$, $z + z_1$, $u + u_1$, on obtiendra le système (2). Donc, en ajoutant aux valeurs (5) les intégrales générales (y, z, u), des équations privées de second membre, on aura intégré complétement le système (1).

REMARQUE SUR LES ÉQUATIONS SIMULTANÉES,

641. Soient

(1)
$$\begin{cases} f(x, y, y', z, z') = 0 \\ F(x, y, \hat{y}', z, z') = 0, \end{cases}$$

deux équations simultanées du premier ordre, dans lesquelles y' et z' désignent $\frac{dy}{dx}$ et $\frac{dz}{dx}$. Soient

(2)
$$\begin{cases} y = \varphi(x, a, b) \\ z = \psi(x, a, b), \end{cases}$$

les intégrales complètes du système (1), a et b étant deux constantes arbitraires. Les équations (1) doivent devenir identiques quand on y remplace y et z par les valeurs (2). Donc si l'on pose

(3)
$$u = \frac{dy}{da}, \quad v = \frac{dz}{da},$$

$$\frac{du}{dx} = \frac{d^{2}y}{dadx} = \frac{dy'}{da},$$

$$\frac{du}{dx} = \frac{d^{2}z}{dadx} = \frac{dz'}{da},$$

on aura, en différentiant par rapport à a les équations (1),

(4)
$$\begin{cases} \frac{d\mathbf{f}}{dy} u + \frac{d\mathbf{f}}{dy'} \frac{du}{dx} + \frac{d\mathbf{f}}{dz} v + \frac{d\mathbf{f}}{dz'} \frac{dv}{dx} = 0, \\ \frac{d\mathbf{F}}{dy} u + \frac{d\mathbf{F}}{dy'} \frac{du}{dx} + \frac{d\mathbf{F}}{dz} v + \frac{d\mathbf{F}}{dz'} \frac{dv}{dx} = 0. \end{cases}$$

On arriverait encore aux équations (4) en posant

(5)
$$u = \frac{dy}{db}, \quad v = \frac{dz}{db}$$

et en différentiant les équations (1) par rapport à b. Il suit de là que si l'on considère u et ν comme des fonctions inconnues, le système (4) admettra les solutions particulières (3) et (5). Donc ses intégrales générales seront (637)

(6)
$$\begin{cases} u = A \frac{dy}{da} + B \frac{dy}{db}, \\ v = A \frac{dz}{da} + B \frac{dz}{db}, \end{cases}$$

A et B désignant deux constantes arbitraires.

CINQUANTE ET UNIÈME LEÇON.

Intégration des équations aux différentielles partielles. - Équations qui se ramènent aux équations différentielles ordinaires. - Élimination des fonctions arbitraires. - Équations linéaires et du premier ordre à deux variables indépendantes. - Cas de trois variables indépendantes,

ÉQUATIONS QUI SE RAMÈNENT AUX ÉQUATIONS DIFFÉREN-TIELLES ORDINAIRES.

- 642. Le problème qui fait l'objet du calcul inverse des différences ou des différentielles partielles consiste à chercher une fonction connaissant une relation entre cette fonction, les variables dont elle dépend, et une ou plusieurs dérivées partielles de cette fonction, prises par rapport à ces variables.
- 643. Nous commencerons par un cas particulier trèssimple, celui où l'équation donnée ne renferme que des dérivées relatives à une seule variable. Il faut alors traiter l'équation comme une équation différentielle ordinaire, mais en avant soin de remplacer les constantes arbitraires qui entrent dans l'intégrale par des fonctions arbitraires des autres variables. Soit, par exemple,

$$\frac{du}{dx} = 3x^2y;$$

en regardant y comme une constante, on a,

$$u = x^3 y + C$$

et en remplaçant la constante C par une fonction arbitraire de y,

$$u = x^3 y + \varphi(y).$$

On trouvera de même que l'intégrale de l'équation

$$xy \frac{du}{dy} + au = 0$$
$$y^a u^x = \varphi(x),$$

est

$$y^a u^x = \varphi(x),$$

 $\varphi(x)$ désignant une fonction arbitraire de x.

644. Ce procédé peut quelquefois s'étendre à des équations où entrent des dérivées partielles relatives à deux variables. Soit, par exemple,

$$\frac{d^2u}{dxdy} + a\frac{du}{dx} = xy.$$

En posant $\frac{du}{dx} = p$, on a

$$\frac{dp}{dy} + a p = xy, \quad ,$$

équation linéaire et du premier ordre qui donne

$$(2) p = e^{-ay} \left(\varphi(x) + x \int_{-\infty}^{y} e^{ay} \, dy \right),$$

d'après la dernière formule du n° 508, la constante arbitraire c étant remplacée par la fonction arbitraire $\varphi(x)$.

Si maintenant on intègre l'équation (2) par rapport à x, on aura

$$u=e^{-ay}\int\varphi\left(x\right)dx+\frac{1}{2}x^{2}e^{-ay}\int\gamma e^{ay}\,d\gamma+\psi\left(\gamma\right),$$

 $\psi(\gamma)$ désignant une fonction arbitraire de γ . Comme d'ailleurs

$$\int y e^{ay} dy = \frac{e^{ay}}{a^2} (ay - 1),$$

et que $\int \varphi(x) dx$ peut être remplacé par une fonction arbitraire $\chi(x)$, on aura définitivement

$$u = \psi(y) + e^{-ay}\chi(x) + \frac{1}{2}\frac{x^2}{a^2}(ay - 1).$$

ÉLIMINATION DES FONCTIONS ARBITRAIRES.

645. Si entre l'équation

$$(1) F(x, y, c) = 0,$$

où c désigne une constante arbitraire, et sa différentielle

$$\frac{d\mathbf{F}}{dx}\,dx + \frac{d\mathbf{F}}{dy}\,dy = \mathbf{0},$$

on élimine c, l'équation résultante

$$f\left(x, y, \frac{dy}{dx}\right) = 0$$

exprime une propriété commune à toutes les équations que l'on obtient en donnant à c différentes valeurs, et, par suite, une propriété relative à la tangente de toutes les courbes représentées par l'équation (1).

Un théorème analogue a lieu pour les équations où entre une fonction arbitraire de deux fonctions des mêmes variables. Soient, en effet,

$$\alpha = f_1(x, y, z), \quad 6 = f_2(x, y, z),$$

deux fonctions déterminées des variables x, y, z; établissons entre α et θ une relation arbitraire

(3)
$$6 = \varphi(\alpha).$$
Posons
$$\frac{dz}{dx} = p, \quad \frac{dz}{dy} = q,$$

et différentions tour à tour l'équation (3) par rapport à x et par rapport à y; nous aurons

(4)
$$\begin{pmatrix} \frac{d6}{dx} + \frac{d6}{dz} p = \varphi'(\alpha) \left(\frac{d\alpha}{dx} + \frac{d\alpha}{dz} p \right), \\ \frac{d6}{dy} + \frac{d6}{dz} q = \varphi'(\alpha) \left(\frac{d\alpha}{dy} + \frac{d\alpha}{dz} q \right), \end{pmatrix}$$

et en éliminant la fonction $\phi'(\alpha)$ entre ces deux équations, nous obtiendrons une équation de la forme

$$Pp + Qq = V$$

P, Q, V étant des fonctions de x, y et z.

Cette équation exprime une propriété commune à toutes les équations de la forme

$$6 = \varphi(\alpha)$$

et, par conséquent, une propriété commune au plan tangent de toutes les surfaces que ces équations représentent. 646. On arriverait encore à l'équation

$$Pp + Qq = V$$

si les fonctions \(\pi \) et \(\cep \) étaient liées entre elles par une équation de la forme

$$\varphi\left(\alpha,\,\,6\right)=0,$$

En effet, on aurait, en différentiant l'équation (1) par rapport à x et à y,

(2)
$$\begin{pmatrix} \frac{d\varphi}{d\alpha} \left(\frac{d\alpha}{dx} + \frac{d\alpha}{dz} p \right) + \frac{d\varphi}{d6} \left(\frac{d6}{dx} + \frac{d6}{dz} p \right) = 0, \\ \frac{d\varphi}{d\alpha} \left(\frac{d\alpha}{dy} + \frac{d\alpha}{dz} q \right) + \frac{d\varphi}{d6} \left(\frac{d6}{dy} + \frac{d6}{dz} q \right) = 0.$$

Ces deux équations ne renferment que le rapport des deux dérivées partielles $\frac{d\varphi}{d\alpha}$, $\frac{d\varphi}{d\beta}$. En éliminant ce rapport, on retombera évidemment sur une équation de la forme

$$Pp + Qq = V$$
.

647. On ramène à l'un des cas précédents l'équation

(1)
$$F[x, y, z, \varphi(\alpha)] = 0,$$

F étant une fonction déterminée, $\varphi(\alpha)$ une fonction arbitraire, et α une fonction déterminée $f_1(x, y, z)$. En effet, si l'on pose

$$\varphi\left(\alpha\right)=6,$$

on aura

$$F(x, y, z, 6) = 0,$$

d'où résulte

(3)
$$\theta = f_2(x, y, z).$$

Ainsi l'équation (2) établit une relation arbitraire entre deux fonctions déterminées des variables x, y et z.

648. Soient maintenant trois functions de quatre variables, x, y, z et u, savoir:

(1)
$$\alpha = f_1(x, y, z, u), \quad \beta = f_2(x, y, z, u), \quad \gamma = f_2(x, y, z, u),$$

et, ϕ désignant une fonction àrbitraîre, supposons que l'on ait l'équation

(2)
$$\varphi(\alpha, \beta, \gamma) = 0.$$

Posons, pour abréger,

$$\frac{du}{dx} = p, \quad \frac{du}{dy} = q, \quad \frac{du}{dz} = r,$$

et différentions l'équation (2) tour à tour par rapport à x, y et z; nous aurons

$$(3) \begin{cases} \frac{d\varphi}{d\alpha} \left(\frac{d\alpha}{dx} + \frac{d\alpha}{du} P \right) + \frac{d\varphi}{d\theta} \left(\frac{d\theta}{dx} + \frac{d\theta}{du} P \right) + \frac{d\varphi}{d\gamma} \left(\frac{d\gamma}{dx} + \frac{d\gamma}{du} P \right) = 0, \\ \frac{d\varphi}{d\alpha} \left(\frac{d\alpha}{dy} + \frac{d\alpha}{du} q \right) + \frac{d\varphi}{d\theta} \left(\frac{d\theta}{dy} + \frac{d\theta}{du} q \right) + \frac{d\varphi}{d\gamma} \left(\frac{d\gamma}{dy} + \frac{d\gamma}{du} q \right) = 0, \\ \frac{d\varphi}{d\alpha} \left(\frac{d\alpha}{dz} + \frac{d\alpha}{du} r \right) + \frac{d\varphi}{d\theta} \left(\frac{d\theta}{dz} + \frac{d\theta}{du} r \right) + \frac{d\varphi}{d\gamma} \left(\frac{d\gamma}{dz} + \frac{d\gamma}{du} r \right) = 0. \end{cases}$$

L'élimination des rapports $\frac{d\varphi}{d\alpha}$: $\frac{d\varphi}{d\gamma}$, $\frac{d\varphi}{d\theta}$: $\frac{d\varphi}{d\gamma}$ entre ces trois équations, conduira évidenment à une équation aux dérivées partielles de la forme

$$(4) Pp + Qq + Rr = V.$$

649. Plus généralement toute équation

$$\varphi(\alpha, 6, \ldots, \lambda, \mu) = 0,$$

où φ désigne une fonction arbitraire et α , ε ,..., λ , μ , des fonctions déterminées de m+1 variables, conduira, par le mème procédé, à une équation linéaire aux différentielles partielles à laquelle devront satisfaire les fonctions α , ε ,..., μ , quelle que soit la fonction φ .

650. Exemples:

$$z + x = \varphi(x + y).$$

En différentiant tour à tour par rapport à x et à γ , on aura

$$p+1=\varphi'(x+y'),$$

$$q=\varphi'(x+y');$$

d'où l'on conclut

$$p - q + t = 0,$$

$$z = x^m \varphi\left(\frac{y}{x}\right).$$

On aura par la différentiation

$$p = mx^{m-1} \varphi\left(\frac{y}{x}\right) - yx^{m-2} \varphi'_{z}\left(\frac{y}{x}\right),$$

$$q = x^{m-1} \varphi'\left(\frac{y}{x}\right).$$

En éliminant $\varphi\left(\frac{y}{x}\right)$ et $\varphi'\left(\frac{x}{x}\right)$ entre les trois équations précédentes, on aura

ou
$$px + qy = mz,$$
$$x \frac{dz}{dx} + y \frac{dz}{dy} = mz,$$

On retrouve ainsi une propriété connue des fonctions homogènes (I, 169).

ÉQUATIONS LINÉAIRES ET DU PREMIER ORDRE A DEUX VARIABLES INDÉPENDANTES,

651. Soit

tion

$$(1) Pp + Qq = R$$

une équation dans laquelle P et Q désignent des fonctions données de x, y et z, p et q les dérivées partielles $\frac{dz}{dx}$, $\frac{dz}{dx}$. Intégrer cette équation, c'est trouver une autre équa-

 $(2) F_{\varepsilon}(x, y, z) = 0,$

telle que les valeurs de p et de q qui s'en déduisent rendent identique l'équation (1). Or nous venons de voir qu'on parvient à une équation telle que (1) lorsque deux fonctions

(3)
$$\alpha = f(x, y, z), \quad 6 = f_i(x, y, z),$$

étant liées par une relation quelconque

$$(4) \qquad \qquad \alpha = \varphi(6),$$

on élimine la fonction arbitraire φ . Dès lors il est naturel de chercher à satisfaire à l'équation (1) par une équation de la forme (4).

652. Supposons donc que l'intégrale de l'équation

$$(1) Pp + Qq = R$$

soit

$$(2) \alpha = \varphi(6),$$

 α et 6 étant des fonctions inconnues de x, y, et z. On tire de l'équation (2)

(3)
$$\begin{pmatrix} \frac{d\alpha}{dx} + \frac{d\alpha}{dz}p = \varphi'(6) \left(\frac{d6}{dx} + \frac{d6}{dz}p \right), \\ \frac{d\alpha}{dy} + \frac{d\alpha}{dz}q = \varphi'(6) \left(\frac{d6}{dy} + \frac{d6}{dz}q \right).$$

Il faut qu'en éliminant p et q entre les équations (1) et (3) on retombe sur une équation identique ou qui devienne identique en ayant égard à l'équation (2).

Si l'on ajoute les équations (3) après les avoir multipliées respectivement par P et Q, on aura

$$\begin{aligned} &\mathbf{P}\frac{d\alpha}{dx} + \mathbf{Q}\frac{d\alpha}{dy} + (\mathbf{P}p + \mathbf{Q}q)\frac{d\alpha}{dz} \\ &= \phi'(6)\left[\mathbf{P}\frac{d6}{dx} + \mathbf{Q}\frac{d6}{dy} + (\mathbf{P}p + \mathbf{Q}q)\frac{d6}{dz}\right], \end{aligned}$$

ou bien, en ayant égard à l'équation (1),

$$(4) \ \ \mathbf{P} \frac{d\mathbf{a}}{dx} + \mathbf{Q} \frac{d\mathbf{a}}{dy} + \mathbf{R} \frac{d\mathbf{a}}{dz} = \mathbf{p}' \ (\mathbf{G}) \ \Big(\ \mathbf{P} \frac{d\mathbf{G}}{dx} + \mathbf{Q} \frac{d\mathbf{G}}{dy} + \mathbf{R} \frac{d\mathbf{G}}{dz} \Big).$$

Or on satisfera identiquement à cette équation, quelle que soit la fonction φ , en choisissant les fonctions α et ε

de telle sorte que l'on ait

(5)
$$\begin{pmatrix}
P \frac{d\alpha}{dx} + Q \frac{d\alpha}{dy} + R \frac{d\alpha}{dz} = 0, \\
P \frac{d6}{dx} + Q \frac{d6}{dy} + R \frac{d6}{dz} = 0,
\end{cases}$$

et ces conditions seront remplies (629) si l'on prend pour α et θ les fonctions f(x, y, z), $f_1(x, y, z)$ qui, égalées à des constantes, donnent les intégrales des équations simultanées

$$\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R},$$

D'ailleurs, toute intégrale

$$(6) F(x, y, z) = 0$$

de l'équation (1) peut être mise sous la forme (2). En effet, on tire de l'équation (6)

$$p = -\frac{d\mathbf{F}}{dx} : \frac{d\mathbf{F}}{dz}, \quad q = -\frac{d\mathbf{F}}{dx} : \frac{d\mathbf{F}}{dz},$$

ct ces valeurs étant portées dans l'équation (1) qu'elles doivent rendre identique, puisque F=o est une intégrale, on aura

$$P\frac{dF}{dx} + Q\frac{dF}{d\gamma} + R\frac{dF}{dz} = 0,$$

d'où l'on conclut (632) que F est une fonction de α et de 6. Donc l'équation (6) équivaut à une relation, $\alpha = \phi$ (6), entre ces deux fonctions.

De là résulte que non-seulement l'équation (2)

$$\alpha = \varphi(6),$$

dans laquelle α et 6 désignent des fonctions qui remplissent les conditions (5) et φ une fonction arbitraire, satisfait à l'équation (1), mais encore que c'est l'équation la plus générale qui résolve le problème.

On arrive donc à cette conclusion :

Si

$$f(x, y, z) = c$$
, $f(x, y, z) = c'$,

sont les intégrales du système

$$\frac{dx}{P} = \frac{dy}{O} = \frac{dz}{R},$$

et si l'on pose

$$a = f(x, y, z), 6 = f(x, y, z),$$

l'intégrale de l'équation

$$Pp + Qq = R,$$

sera

$$\alpha = \varphi(6)$$
,

o désignant une fonction arbitraire.

653. On satisferait encore à l'équation

$$P\frac{d\alpha}{dx} + Q\frac{d\alpha}{dy} + R\frac{d\alpha}{dz} = \varphi'(\theta)\left(P\frac{d\theta}{dx} + Q\frac{d\theta}{dy} + R\frac{d\theta}{dz}\right).$$

en posant

$$P\frac{d\alpha}{dx} + Q\frac{d\alpha}{d\gamma} + R\frac{d\alpha}{dz} = 0, \quad \varphi'(6) = 0,$$

ou bien

$$P\frac{d6}{dx} + Q\frac{d6}{dy} + R\frac{d6}{dz} = 0, \frac{1}{\varphi'(6)} = 0.$$

Mais ces nouvelles solutions, n'établissant pas en général de relation entre les fonctions α et β , ne rentrent pas dans l'intégrale

$$\alpha = \varphi(6),$$

et constituent le plus souvent des solutions singulières.

654. On doit remarquer que l'intégrale $\alpha = \varphi$ (6) conviendrait encore aux équations

$$P\frac{dy}{dx} + R\frac{dy}{dz} = Q,$$

$$Q\frac{dx}{dx} + R\frac{dx}{dz} = P,$$

dont l'intégration dépend du même système d'équations simultanées

$$\frac{dx}{P} = \frac{dy}{O} = \frac{dz}{R}.$$

655. Exemples:

$$xp - yq = 0.$$

Il faut chercher les intégrales des équations

$$\frac{dx}{x} = -\frac{dy}{y} = \frac{dz}{o} ,$$

qui sont

$$z=c$$
, $xy=c'$.

Donc l'équation proposée est satisfaite par

$$z = \varphi(xy),$$

o désignant une fonction arbitraire.

$$px^2 - qxy = -y^2.$$

Il faut intégrer les équations

$$\frac{dx}{x^2} = -\frac{dy}{xy}, \quad \frac{dx}{x^2} = -\frac{dz}{y^2}.$$

La première revient à

$$\frac{dx}{x} = -\frac{dy}{y}, \quad \text{d'où} \quad \theta = xy.$$

La seconde revient à

$$\frac{dx}{x^2} = -\frac{x^2 dz}{6^2}.$$

On en conclut

$$z = \frac{1}{3} 6^2 x^{-3} + \alpha,$$

d'où

$$\alpha = z - \frac{y^2}{3x}.$$

Donc l'intégrale cherchée est

$$z - \frac{y^2}{3x} = \varphi(xy),$$

 φ désignant une fonction arbitraire.

3°.
$$p-q=0.$$
Solution.
$$z=\varphi (x+y).$$
4°.
$$py-qx=0.$$
Solution.
$$z=\varphi (x^2+y^2).$$

ÉQUATIONS QUI RENFERMENT LES DÉRIVÉES D'UNE FONCTION DE TROIS VARIABLES INDÉPENDANTES.

656. La méthode suivie dans le cas de deux variables indépendantes s'étend facilement au cas d'un nombre quelconque de variables. Nous examinerons seulement le cas d'une équation du premier ordre renfermant les dérivées d'une fonction de trois variables indépendantes.

657. Soit proposé d'intégrer l'équation

$$(1) Pp + Qq + Rr = V$$

dans laquelle P, Q, R, V sont des fonctions de quatre variables x, y, z, u, et p, q, r désignent les dérivées partielles de u, considérée comme fonction de x, y, z, savoir

$$p = \frac{du}{dx}$$
, $q = \frac{du}{dy}$, $r = \frac{du}{dz}$.

Posons

(2)
$$\begin{cases} \alpha = f(x, y, z, u), \\ 6 = f_1(x, y, z, u), \\ \gamma = f_2(x, y, z, u), \end{cases}$$

f, f_1 , f_2 étant des fonctions inconnues de x, y, z, u. Soit

(3)
$$\alpha = \varphi(6, \gamma)$$

l'intégrale de l'équation (1).

On tire de l'équation (3)

On tire de l'equation (3)
$$\begin{pmatrix}
\frac{d\alpha}{dx} + \frac{d\alpha}{du}p = \frac{d\varphi}{d\theta} \left(\frac{d\theta}{dx} + \frac{d\theta}{du}p \right) + \frac{d\varphi}{d\gamma} \left(\frac{d\gamma}{dx} + \frac{d\gamma}{du}p \right), \\
\frac{d\alpha}{dy} + \frac{d\alpha}{du}q = \frac{d\varphi}{d\theta} \left(\frac{d\theta}{dy} + \frac{d\theta}{du}q \right) + \frac{d\varphi}{d\gamma} \left(\frac{d\gamma}{dy} + \frac{d\gamma}{du}q \right), \\
\frac{d\alpha}{dz} + \frac{d\alpha}{du}r = \frac{d\varphi}{d\theta} \left(\frac{d\theta}{dz} + \frac{d\theta}{du}r \right) + \frac{d\varphi}{d\gamma} \left(\frac{d\gamma}{dz} + \frac{d\gamma}{du}r \right).$$

Ajoutons ces équations, après les avoir respectivement multipliées par P, Q, R. Il en résultera, en ayant égard à l'équation (1),

(5)
$$\begin{cases} P \frac{d\alpha}{dx} + Q \frac{d\alpha}{dy} + R \frac{d\alpha}{dz} + V \frac{d\alpha}{du} \\ = \frac{d\varphi}{d\theta} \left(P \frac{d\theta}{dx} + Q \frac{d\theta}{dy} + R \frac{d\theta}{dz} + V \frac{d\theta}{du} \right) \\ + \frac{d\varphi}{d\gamma} \left(P \frac{d\gamma}{dx} + Q \frac{d\gamma}{dy} + R \frac{d\gamma}{dz} + V \frac{d\gamma}{du} \right). \end{cases}$$

Or cette équation sera satisfaite, quels que soient $\frac{d\varphi}{d\xi}$ et, par conséquent, quelle que soit la fonction $\phi,$ si l'on prend les fonctions inconnues α , β , γ , de telle sorte que

$$(6) \qquad \alpha = c, \quad 6 = c', \quad \gamma = c''$$

soient les intégrales du système

(7)
$$\frac{dx}{P} = \frac{dy}{O} = \frac{dz}{R} = \frac{du}{V},$$

puisque les trois fonctions (6) rendent identique l'équation

$$P\frac{d\theta}{dx} + Q\frac{d\theta}{dy} + R\frac{d\theta}{dz} + V\frac{d\theta}{du} = 0.$$

Dès lors α, 6, γ étant ainsi déterminées et φ désignant une fonction arbitraire, l'équation (3) sera l'intégrale de l'équation proposée (1).

On prouvera, d'ailleurs, qu'on a la solution la plus générale du problème proposé en faisant voir, comme au n° 652, que toute intégrale de l'équation (1) équivaut à une relation entre les fonctions α , δ , γ .

658. On remarquera, comme dans le cas de trois variables (654), que la résolution du système (6) fournira l'intégrale des équations suivantes

$$P \frac{dz}{dx} + Q \frac{dz}{dy} + V \frac{dz}{du} = R,$$

$$P \frac{dy}{dx} + R \frac{dy}{dz} + V \frac{dy}{du} = Q,$$

$$Q \frac{dx}{dy} + R \frac{dx}{dz} + V \frac{dx}{du} = P.$$

659. Exemple:

$$(t) x \frac{du}{dx} + y \frac{du}{dy} + z \frac{du}{dz} = mu.$$

Il faut d'abord intégrer le système

$$\frac{dx}{x} = \frac{dy}{y} = \frac{dz}{z} = \frac{du}{mu},$$

d'où l'on déduit

$$\frac{y}{x} = c, \quad \frac{z}{x} = c', \quad \frac{u}{x^m} = c'',$$

et, par suite,

$$u=x^m\varphi\left(\frac{y}{x},\frac{z}{x}\right),$$

c'est-à-dire que u est une fonction homogène et du degré m, des variables x, y, z. L'équation (1) exprime, en effet, une propriété connue des fonctions homogènes (I, 169).

CINQUANTE-DEUXIÈME LECON.

Application de la théorie des équations aux différentielles partielles. — «
Surfaces cylindriques, — coniques, — conoïdes. — Surfaces de révolution. — Lignes de niveau, — de plus grande pente.

SURFACES CYLINDRIQUES.

660. On appelle surface cylindrique, toute surface engendrée par une droite indéfinie MN qui se meut parallèlement à une droite donnée OD, en s'appuyant constamment sur une courbe donnée AB, nommée directrice.

Soient

les équations de la génératrice MN : a et b sont des coefficients constants qui expriment que MN est parallèle à

OD; α et 6 sont des paramètres variables avec la position de la génératrice. Soient

$$\begin{array}{ccc}
 & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & &$$

les équations de la directrice AB. On exprimera que cette courbe

et la génératrice se rencontrent, en éliminant x, y et z entre les équations (1) et (2). Si

$$\varphi\left(\alpha,6\right)=0$$

est le résultat de cette élimination, il faudra pour avoir l'équation de la surface cylindrique éliminer α et 6 entre les équations (1), et (3), ce qui donne

$$\varphi(x-az, y-bz)=0,$$

176 COURS D'ANALYSE.

ou

$$(4) y - bz = \Phi(x - az),$$

Φ désignant une fonction quelconque.

661. Réciproquement toute surface dont l'équation a la forme (4) est cylindrique, car cette surface contient les droites parallèles qui ont pour équations

$$x - az = \alpha,$$
$$y - bz = \ell,$$

les constantes α et δ satisfaisant à l'équation $\delta = \Phi(\alpha)$.

662. Pour avoir l'équation aux différentielles partielles des surfaces cylindriques, on différentiera l'équation (4) tour à tour par rapport à x et à y: en posant

$$p = \frac{dz}{dx}, \quad q = \frac{dz}{dy},$$

on aura

$$-bp = \Phi'(x - az)(1 - ap),$$

$$1 - bq = -\Phi'(x - az) \times aq,$$

d'où résulte

$$(5) ap + bq = 1.$$

663. Cette équation exprime que le plan tangent à la surface est toujours parallèle aux génératrices.

En effet, le plan tangent en un point quelconque x, y, z de la surface a pour équation

$$\mathbf{Z} - z = p\left(\mathbf{X} - x\right) + q\left(\mathbf{Y} - y\right),$$

et la condition pour que ce plan soit parallèle à la droite

$$x = az$$
, $y = bz$,

est, comme l'on sait,

$$ap + bq = 1$$
.

664. Pour intégrer l'équation des surfaces cylindriques,

ap + bq = 1

il faut d'abord intégrer le système

$$\frac{dx}{a} = \frac{dy}{b} = dz,$$

ce qui donne

$$x - az = c,$$

$$y - bz = c';$$

par conséquent l'équation $\varphi(x-az, y-bz) = 0$, ou $x-az = \Phi(y-bz)$,

est l'intégrale cherchée.

665. La fonction arbitraire Φ, qui entre dans l'intégrale générale, peut être déterminée par diverses conditions.

Si, par exemple, on veut que la surface cylindrique passe par une courbe donnée

(1)
$$F(x, y, z) = 0, F_1(x, y, z) = 0,$$

on fera

$$(2) x - az = \alpha, \quad y - bz = 6.$$

Les équations (1) et (2) doivent être satisfaites par les mêmes valeurs de x, y, z, pour que tous les points de la courbe soient sur la surface. En éliminant x, y, z entre ces quatre équations, on trouvera une relation telle que $\varphi(\alpha, \beta) = 0$, d'où $\beta = \Phi(\alpha)$; on aura donc par ce calcul la forme particulière de la fonction Φ .

666. Si la surface cylindrique doit être circonscrite à une surface donnée

(1)
$$F(x, y, z) = 0,$$

on commencera par déterminer la courbe de contact, ce qui ramènera le nouveau problème au précédent. Or (1) est déjà une des équations de cette courbe. On obtiendra une seconde équation en exprimant que la surface donnée et le cylindre ont le même plan tangent en tous les points de cette courbe. Le plan tangent à la surface (1) a pour équation

$$\frac{d\mathbf{F}}{dx}(\mathbf{X}-x)+\frac{d\mathbf{F}}{dy}(\mathbf{Y}-y)+\frac{d\mathbf{F}}{dz}(\mathbf{Z}-z)=\mathbf{0}\,.$$

L'équation du plan tangent au cylindre est

$$Z - z = p(X - x) + q(Y - y)$$
:

on aura donc

$$p = -\frac{\frac{d\mathbf{F}}{dx}}{\frac{d\mathbf{F}}{dz}}, \quad q = -\frac{\frac{d\mathbf{F}}{dy}}{\frac{d\mathbf{F}}{dz}}$$

En portant ces valeurs dans l'équation

$$ap + bq = 1$$
,

on aura

(2)
$$a\frac{d\mathbf{F}}{dx} + b\frac{d\mathbf{F}}{dy} + \frac{d\mathbf{F}}{dz} = 0.$$

Les équations (1) et (2) déterminent complétement la courbe de contact.

SURFACES CONIQUES.

667. On appelle surface conique une surface engendrée par une droite indéfinie KN, qui passe par un point fixe K et rencontre constamment une courbe donnée ANB.

Soient a,b,c les coordonnées du point K. La généra-

trice KN sera représentée, dans une de ses positions, par les équations

(1)
$$\begin{cases} x - a = \alpha (z - c), \\ y - b = 6 (z - c), \end{cases}$$

a et 6 étant deux paramètres qui varient avec la position de la génératrice. Pour trouver la re-

lation qui existe entre ces paramètres, on éliminera x, x

et z entre les équations (1) et les équations

(2)
$$F(x, y, z) = 0, F_1(x, y, z) = 0,$$

qui représentent la directrice ANB. On obtiendra ainsi une relation

$$\varphi\left(\alpha,6\right)=0,$$

et si ensuite on élimine α et 6 entre (1) et (3), on aura $\varphi\left(\frac{x-a}{z-c}, \frac{y-b}{z-c}\right) = 0$, ou

(4)
$$\frac{y-b}{z-c} = \Phi\left(\frac{x-a}{z-c}\right),$$

équation générale, en quantités finies, des surfaces coniques.

668. L'équation (4), différentiée pær rapport à x et à y, donne

$$\frac{-\left(y-b\right)p}{\left(z-c\right)^{2}} = \Phi'\left(\frac{x-a}{z-c}\right) \left[\frac{z-c-\left(x-a\right)p}{\left(z-c\right)^{2}}\right],$$

$$\frac{\left(z-c\right)-\left(y-b\right)q}{\left(z-c\right)^{2}} = \Phi'\left(\frac{x-a}{z-c}\right) \left[\frac{-\left(x-a\right)q}{\left(z-c\right)^{2}}\right].$$

En éliminant $\Phi'\left(\frac{x-a}{z-c}\right)$ entre ces équations, on aura

$$\frac{(y-b)p}{z-c-(y-b)q} = \frac{z-c-(x-a)p}{(x-a)q},$$

ou

(5)
$$z - c = (x - a) p + (y - b) q,$$

équation aux différences partielles des surfaces coniques.

669. Pour intégrer directement l'équation (5), on résoudra le système

$$\frac{dx}{x-a} = \frac{dy}{y-b} = \frac{dz}{z-c},$$

qui a pour intégrales

$$\frac{x-a}{z-c} = C, \quad \frac{y-b}{z-c} = C',$$

180

d'où l'on conclut

$$\frac{y-b}{z-c} = \Phi\left(\frac{x-a}{z-c}\right),$$

c'est-à-dire l'équation (4). La fonction arbitraire Φ sera déterminée par la condition que la surface conique passe par une courbe donnée ou soit tangente à une surface donnée. La marche à suivre pour résoudre ces problèmes est indiquée aux n° 665 et 666.

SURFACES CONOÏDES.

670. On appelle surface conoïde toute surface engendrée par une droite qui est toujours parallèle à un plan donné, nommé plan directeur, et assujettie à rencontrer une droite et une courbe données.

Prenons pour plan des xy un plan parallèle au plan

Fig. 118. directeur, et pour axe des z la directrice rectiligne.

Soient

(1)
$$\begin{cases} \mathbf{F}(x, y, z) = \mathbf{0}, \\ \mathbf{F}_1(x, y, z) = \mathbf{0}, \end{cases}$$

les équations de la directrice curviligne AB.

Les équations de la génératrice MN seront

$$(2) z = \alpha, \quad y = 6 x,$$

et si l'on élimine x, y, z entre les quatre équations (1) et (2), on aura une certaine équation

$$\varphi\left(\alpha,\,6\right)=\mathbf{0}$$

exprimant que la génératrice rencontre la directrice AB. Si donc on élimine α et 6 entre les équations (2) et (3),

on aura
$$\varphi\left(z, \frac{y}{x}\right) = 0$$
, ou

$$(4) z = \Phi\left(\frac{y}{x}\right):$$

c'est l'équation cherchée.

671. En différentiant l'équation (4), on aura

$$p = -\Phi'\left(\frac{y}{x}\right)\frac{r}{x^2},$$

$$q = \Phi'\left(\frac{y}{x}\right)\frac{1}{x},$$

d'où l'on conclut

$$(5) px + qy = 0,$$

équation aux différences partielles des surfaces conoïdes. Cette équation exprime que le plan tangent en un point quelconque contient la génératrice *correspondante. En effet, si dans l'équation du plan tangent

on fait
$$\mathbf{X} = \mathbf{o}$$
, $\mathbf{Y} = \mathbf{o}$, on a
$$\mathbf{Z} - \mathbf{z} = -p\mathbf{x} - q\mathbf{y} = \mathbf{o}.$$

Le plan tangent rencontre donc l'axe des z au même point que la génératrice KM, et, par suite, il contient cette droite avec laquelle il a déjà le point M commun.

SURFACES DE RÉVOLUTION.

672. Les surfaces de révolution sont celles que l'on obtient en faisant tourner une certaine courbe autour d'une droite fixe.

Pour plus de simplicité prenons l'origine sur l'axe OD.

Soit AMB la courbe génératrice. Dans le mouvement de cette ligne chacun de ses points décrit un cercle et l'on peut considérer la surface de révolution comme le lieu des circonférences de cercle qui ont leur centre

sur l'axe, leur plan perpendiculaire à cet axe et qui rencontrent la courbe AB. Soient

$$x = -\frac{a}{c}z, \quad y = -\frac{b}{c}z$$

les équations de la droite OD et

(2)
$$\begin{cases} x^{2} + y^{2} + z^{2} = \alpha, \\ ax + by + cz = 6, \end{cases}$$

les équations du cercle mobile, considéré comme l'intersection d'une sphère ayant son centre au point O et d'un plan perpendiculaire à l'axe OD.

Soient

(3)
$$\begin{cases} F(x, y, z) = 0, \\ F_1(x, y, z) = 0, \end{cases}$$

les équations de la courbe AB. En exprimant que le cercle et la courbe se rencontrent, on parviendra à une certaine relation

$$\varphi(\alpha, 6) = 0,$$

et si l'on élimine ensuite α et θ entre les équations (2) et (4), on aura

$$\varphi(x^2 + y^2 + z^2, ax + by + cz) = 0$$

ou

(5)
$$ax + by + cz = \Phi(x^2 + y^2 + z^2),$$

équation générale, en quantités finies, des surfaces de révolution.

673. Pour obtenir l'équation aux différences partielles on différentiera l'équation (5). On aura

$$a + cp = 2 \Phi'(x^2 + y^2 + z^2)[x + zp],$$

$$b + cq = 2 \Phi'(x^2 + y^2 + z^2)(y + zq),$$

d'où, en éliminant la fonction Φ' ,

$$\frac{a+cp}{b+cq} = \frac{x+zp}{y+zq},$$

ou

(6)
$$(cy - bz)p + (az - cx)q = bx - ay,$$

équation aux différences partielles des surfaces de révolution.

674. Cette équation exprime que toutes les normales d'une surface de révolution rencontrent l'axe.

En effet, si l'on élimine X, Y, Z entre les équations de la normale

(7)
$$\begin{cases} \mathbf{X} - x + p(\mathbf{Z} - z) = \mathbf{0}, \\ \mathbf{Y} - y + q(\mathbf{Z} - z) = \mathbf{0}, \end{cases}$$

et les équations de l'axe

(8)
$$\mathbf{X} = \frac{a}{c} \mathbf{Z}, \quad \mathbf{Y} = \frac{b}{c} \mathbf{Z},$$

on retrouve précisément l'équation (6).

675. Pour intégrer l'équation

$$(i) \qquad (cy - bz)p + (az - cx)q = bx - ay,$$

il faut commencer par intégrer les équations simultanées

$$\frac{dx}{cy - bz} = \frac{dy}{az - cx} = \frac{dz}{bx - ay}$$

Or, si l'on représente par dt la valeur commune de ces trois rapports, ces équations reviennent aux suivantes :

(2)
$$\begin{cases} dx = (cy - bz) dt, \\ dy = (az - cx) dt, \\ dz = (bx - ay) dt. \end{cases}$$

En ajoutant ces équations multipliées respectivement par x, y, z, on trouve

$$xdx + ydy + zdz = 0,$$
d'où
$$x^2 + y^2 + z^2 = 0.$$

Ensuite si l'on ajoute les mêmes équations respective - ment multipliées par a, b, c, qu a

$$adx + bdy + cdz = 0,$$

$$ax + by + cz = C'.$$

d'où

Donc l'intégrale générale de l'équation (1) sera

(3)
$$ax + by + cz = \Phi(x^2 + y^2 + z^2).$$

4676. Les équations (1) et (3) prennent une forme plus simple quand OD est l'axe des z. Elles se réduisent à

$$z = \Phi(x^2 + y^2),$$
$$py - qx = 0.$$

On pourrait les trouver directement.

DES LIGNES DE NIVEAU ET DES LIGNES DE PLUS GRANDE PENTE.

677. Soit une surface

$$z = f(x, y)$$

rapportée à trois axes de coordonnées rectangulaires et supposons le plan des xy horizontal. On appelle *lignes de niveau* les sections de cette surface faites par des plans horizontaux. Une ligne de niveau aura donc pour équations

$$z = h$$
, $f(x, y) = h$,

h désignant une constante. On tire de la seconde équation

$$\frac{df}{dx} + \frac{df}{dy}\frac{dy}{dx} = 0$$

ou

 $\frac{dy}{dx} = -\frac{p}{q},$

et cette relation entre les dérivées partielles p et q aura lieu quel que soit h. Elle exprime que la tangente à la ligne de niveau, en un point M de la surface, est parallèle à la trace horizontale du plan tangent mené à la surface par ce point.

Si l'équation de la surface était F(x, y, z) = 0, on obtiendrait l'équation dissérentielle des lignes de niveau en éliminant h entre les équations

$$F(x, y, h) = 0, \quad \frac{dF}{dx} + \frac{dF}{dy} \cdot \frac{dy}{dx} = 0.$$

678. On appelle ligne de plus grande pente d'une surface une courbe qui, en chacun de ses points, a pour tangente celle des tangentes à la surface, en ce même point, qui fait le plus grand angle avec le plan horizontal. Quand la surface est plane, la ligne de plus grande pente est une droite perpendiculaire à la trace horizontale du plan. Dans le cas général, la tangente à la ligne de plus grande pente, en un point M de la surface, doit donc être perpendiculaire à la trace horizontale du plan tangent au point M. Par conséquent, la projection horizontale de cette tangente sera aussi perpendiculaire à la trace du plan tangent.

Or le plan tangent au point M(x, y, z) a pour équation

$$\mathbf{Z} - \mathbf{z} = p(\mathbf{X} - \mathbf{x}) + q(\mathbf{Y} - \mathbf{y}),$$

sa trace aura donc pour équations

$$Z = 0, -z = p(X - x) + q(Y - y).$$

Donc le coefficient angulaire de cette trace est $-\frac{p}{q}$. Celui de la projection de la courbe de niveau est $\frac{dy}{dx}$. On aura

done

OU

$$\frac{dy}{dx} = \frac{q}{p}$$

pdy = qdx,

équation différentielle qui représente la projection, sur le plan horizontal, de toutes les courbes de niveau.

679. La tangente à la courbe de plus grande pente qui passe par le point M étant perpendiculaire à la trace horizontale du plan tangent, est aussi perpendiculaire à la tangente menée à la courbe de niveau par le point M; de sorte qu'une ligne de plus grande pente coupe à angle droit toutes les lignes de niveau, et réciproquement toute courbe qui jouit de cette propriété est une ligne de plus grande pente.

Il résulte de là que dans une surface de révolution dont l'axe est perpendiculaire au plan des xy, tous les méridiens sont des lignes de plus grande pente, puisqu'ils coupent à angle droit les parallèles qui sont évidemment des courbes de niveau.

680. Appliquons les théories précédentes à l'ellipsoïde

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

Les lignes de niveau seront représentées par les équations

$$z = h, \quad \frac{x^2}{a^2} + \frac{x^2}{b^2} = 1 - \frac{h^2}{c^2};$$

elles ont donc pour projections, sur le plan des xy, des ellipses semblables à l'ellipse principale qui est située dans ce plan.

Pour obtenir les lignes de plus grande pente, il faut intégrer l'équation

$$(1) pdy = qdx.$$

Mais ici on a

$$p = -\frac{c^2 x}{a^2 z}$$
, $q = -\frac{c^2 y}{b^2 z}$

En substituant dans l'équation (1) et simplifiant, on aura

$$\frac{xdy}{a^2} = \frac{ydx}{b^2},$$

équation dans laquelle les variables se séparent immédiatement. On a

$$b^{z} \frac{dy}{y} = a^{z} \frac{dx}{x},$$

d'où

$$y^{b^2} = (\gamma x)^{a^2}.$$

y est une constante qu'on détermine en exprimant que la courbe cherchée passe par un point donné. Par exemple, si l'on veut avoir la ligne de plus grande pente qui passe par le point dont les coordonnées sont

$$x = a$$
, $y = 0$, $z = 0$,

on aura, en substituant dans l'équation (3),

$$o = (\gamma a)^{a^2},$$

d'où $\gamma = 0$. Donc

$$y = 0$$

est l'équation de la projection horizontale de la ligne cherchée: en d'autres termes, la ligne de plus grande pente est l'ellipse principale située dans le plan des zx. Il est évident, en effet, que cette ellipse coupe à augle droit toutes les courbes de niveau. La même chose peut se dire de l'intersection de la surface par le plan des zy.

681. Si l'on cherchait la courbe de riveau passant par le sommet situé sur l'axe des z, l'équation (3) se réduirait pour ce point à

$$0 = 0,$$

et ne déterminerait pas 7. Et cela doit être, car en ce point le plan tangent à la surface est horizontal, et la courbe de niveau se réduit à un point. Toute droite passant par ce sommet et située dans le plan tangent peut être considérée comme tangente à une ligne de plus grande pente.

CINQUANTE-TROISIÈME LEÇON.

Questions qui conduisent à des équations aux différences partielles d'un ordre supérieur au premier. — Surfaces développables. — Intégration de l'équation des surfaces développables. — Surfaces réglées. — Équation de la corde vibrante.

DES SURFACES DÉVELOPPABLES.

682. On nomme surfaces développables celles qui étant supposées flexibles et inextensibles peuvent s'appliquer sur un plan sans déchirure ni duplicature. Telles sont les surfaces cylindriques et les surfaces coniques.

Toute surface développable peut être considérée comme étant le lieu des tangentes à une certaine courbe, nommée aréte de rebroussement de la surface. Il n'y a d'exception que pour le cône, où l'arête de rebroussement se réduit à un point, et pour le cylindre, où cette courbe passe à l'infini; mais comme nous avons déjà examiné ces cas particuliers, nous en ferons abstraction dans ce qui suit.

683. Soient

$$(1) x = f(z), y = \varphi(z),$$

les équations de l'arête de rebroussement. Les équations de sa tangente en un point (α, β, γ) seront

(2)
$$\begin{cases} x - f(\gamma) = f'(\gamma)(z - \gamma), \\ y - \varphi(\gamma) = \varphi'(\gamma)(z - \gamma). \end{cases}$$

En éliminant γ entre ces équations, on aura l'équation de la surface développable. Mais au lieu d'opérer cette élimination qui ne peut se faire qu'en particularisant la forme des fonctions f et φ , nous allons chercher une équation aux dérivées partielles, indépendante de ces fonctions, et qui exprimera une propriété commune à toutes les surfaces développables.

684. Les équations (2) déterminent z et γ quand x et γ sont connus. On peut donc considérer z et γ comme des fonctions de x et de γ . En différentiant ces équations par rapport à x et à γ , on aura

$$(3) \begin{cases} 1 - f'(\gamma) \frac{d\gamma}{dx} = f'(\gamma) \left(p - \frac{d\gamma}{dx} \right) + f''(\gamma) (z - \gamma) \frac{d\gamma}{dx}, \\ - f'(\gamma) \frac{d\gamma}{dy} = f'(\gamma) \left(q - \frac{d\gamma}{dy} \right) + f''(\gamma) (z - \gamma) \frac{d\gamma}{dy}, \\ - \varphi'(\gamma) \frac{d\gamma}{dx} = \varphi'(\gamma) \left(p - \frac{d\gamma}{dx} \right) + \varphi''(\gamma) (z - \gamma) \frac{d\gamma}{dx}, \\ 1 - \varphi'(\gamma) \frac{d\gamma}{dy} = \varphi'(\gamma) \left(q - \frac{d\gamma}{dy} \right) + \varphi''(\gamma) (z - \gamma) \frac{d\gamma}{dy}, \end{cases}$$

ou bien, en simplifiant,

(4)
$$\begin{cases} \mathbf{I} = pf'(\gamma) + f''(\gamma)(z - \gamma)\frac{d\gamma}{dx}, \\ \mathbf{O} = qf'(\gamma) + f''(\gamma)(z - \gamma)\frac{d\gamma}{dy}, \\ \mathbf{O} = p\varphi'(\gamma) + \varphi''(\gamma)(z - \gamma)\frac{d\gamma}{dx}, \\ \mathbf{I} = q\varphi'(\gamma) + \varphi''(\gamma)(z - \gamma)\frac{d\gamma}{dy}. \end{cases}$$

Or on peut éliminer entre ces quatre équations $(z-\gamma)\frac{d\gamma}{dz}$, $(z-\gamma)\frac{d\gamma}{dy}$ et γ , et il restera une relation entre p et q, (5) $p=\varpi(q)$,

équation du premier ordre qui convient à toutes les surfaces développables, mais dans laquelle il entre encore une fonction arbitraire.

685. Ce résultat s'accorde avec ce que nous avons trouvé pour les surfaces cylindriques dont l'équation aux différences partielles est

$$ap + bq = 1$$
.

Il semble qu'il y ait exception pour les surfaces coniques dont l'équation aux différences partielles est

$$(x-a)p + (y-b)q = z-c;$$

mais si l'on prend l'équation en quantités finies

$$z-c=\varphi\left(\frac{\gamma-b}{x-a}\right)(x-a)\,,$$

on voit que z-c étant une fonction homogène du premier degré de y-b et de x-a, p et q seront des fonctions homogènes et du degré o des mêmes différences (I, 169); on aura donc

$$p = F\left(\frac{y-b}{x-a}\right), \quad q = F_1\left(\frac{y-b}{x-a}\right),$$

et en éliminant $\frac{y-b}{x-a}$ on obtiendra une relation entre p et q. Cette relation dépendra de la fonction φ , tandis que dans le cylindre la relation entre p et q ne dépend que des constantes qui définissent la direction des génératrices.

686. L'élimination indiquée au numéro précédent peut se faire comme il suit. En ajoutant la première et la troisième équation du système (4), respectivement multipliées par $\phi''(\gamma)$ et $-f''(\gamma)$, on aura

(5)
$$\varphi''(\gamma) = p \left[f'(\gamma) \varphi''(\gamma) - \varphi'(\gamma) f''(\gamma) \right].$$

La seconde et la quatrième équation traitées de la même manière, donnent

(6)
$$f''(\gamma) = q \left[\varphi'(\gamma) f''(\gamma) - f'(\gamma) \varphi''(\gamma) \right].$$

Il ne restera donc plus qu'à éliminer 7 entre les deux dernières équations.

687. Soit

$$(7) p = \varpi(q)$$

l'équation aux dérivées partielles et du premier ordre, résultant de l'élimination précédente. Posons

$$\frac{dp}{dx} = \frac{d^3z}{dx^2} = r,$$

$$\frac{dp}{dy} = \frac{dq}{dx} = \frac{d^3z}{dxdy} = s,$$

$$\frac{dq}{dy} = \frac{d^2z}{dy^2} = t.$$

En différentiant l'équation (7), nous aurons

$$r = \varpi'(q) s,$$

$$s = \varpi'(q) t,$$

d'où, en éliminant $\varpi'(q)$,

$$(8) s^2 - rt = 0,$$

équation qui ne renferme aucune trace des fonctions particulières f et φ . C'est l'équation aux dérivées partielles et du second ordre des surfaces développables.

INTÉGRATION DE L'ÉQUATION AUX DIFFÉRENCES PARTIELLES DES SURFACES DÉVELOPPABLES.

688. Puisque
$$s = \frac{dp}{dy} = \frac{dq}{dx}$$
. l'équation

$$(1) s^2 - rt = 0$$

revient à la suivante

(2)
$$\frac{dp}{dy} \cdot \frac{dq}{dx} - \frac{dp}{dx} \cdot \frac{dq}{dy} = 0$$

De là résulte que les différentielles partielles des fonctions p et q sont proportionnelles, et, par suite, que leurs différentielles totales sont en même temps ou nulles ou différentes de zéro. Donc p et q sont ou variables toutes les deux ou constantes toutes les deux, ce qui revient à dire que p est une certaine fonction de q. Soit

$$(3) p = \varpi(q):$$

on aura
$$\frac{dp}{dx} = \varpi'(q) \frac{dq}{dx};$$

mais
$$\frac{dq}{dx} = \frac{dp}{dy}$$
:

donc

(4)
$$\frac{dp}{dx} = \varpi'(q) \frac{dp}{dy},$$

équation linéaire par rapport à p. Pour l'intégrer, il faut résoudre le système

$$dx = -\frac{dy}{\varpi'(q)} = \frac{dp}{o},$$

dont les intégrales sont

$$p = c,$$

$$x \varpi'(q) + y = c'.$$

L'intégrale de l'équation (1) est donc

(5)
$$x \varpi'(q) + \gamma = F(p),$$

F désignant une fonction arbitraire, ou bien, à cause de l'équation (4),

$$xdp + ydq = F(p) dq.$$

Mais xdp + ydq est la différentielle de px + qy - z. Donc

(6)
$$px + qy - z = \int F(p) dq.$$

En éliminant p et q entre les équations (3), (4) et (5), on aura l'équation de la surface,

$$\chi(x,y,z)=0,$$

qui renfermera deux fonctions arbitraires.

689. Démontrons maintenant que l'équation

$$(1) s^2 - rt \stackrel{*}{=} 0$$

ne convient qu'aux surfaces développables.

Soient

$$(2) p = \varpi(q)$$

l'équation aux différences partielles du premier ordre qui résulte d'une première intégration, et

$$\chi(x, y, z) = 0$$

l'équation obtenue en intégrant une seconde fois. Pour démontrer que la surface qu'elle représente est développable, il faut faire voir qu'on peut la considérer comme le lieu des tangentes à une certaine courbe :

(4)
$$x = f(z), \quad y = \varphi(z).$$

Or α , δ , γ étant les coordonnées d'un point de cette courbe, on a vu (686) qu'on obtenait une relation entre p et q en éliminant γ entre les deux équations

(5)
$$\begin{cases} \varphi''(\gamma) = p \left[f'(\gamma) \varphi''(\gamma) - \varphi'(\gamma) f''(\gamma) \right], \\ f''(\gamma) = q \left[\varphi'(\gamma) f''(\gamma) - f'(\gamma) \varphi''(\gamma) \right]. \end{cases}$$

Pour que la surface développable dont l'arête de rebroussement est la courbe (4) coïncide avec la surface (3), il faut que cette élimination conduise à l'équation (2); par conséquent, on devra obtenir une identité si l'on porte dans l'équation (2) les valeurs de p et de q tirées des équations (5), et l'on aura ainsi une première relation

(6)
$$\mathbf{F}[f'(\gamma), f''(\gamma), \varphi'(\gamma), \varphi''(\gamma)] = \mathbf{0}$$

entre les fonctions f et \varphi. On en obtiendra une seconde

(7)
$$\chi[\gamma, f(\gamma), \varphi(\gamma)] = 0$$

en exprimant que la courbe (4) est sur la surface (3). Les équations (6) et (7) font connaître $f(\gamma)$ et $\varphi(\gamma)$. L'arête de rebroussement est donc complétement déterminée, d'où résulte que l'équation (3) représente bien une surface développable.

II.

DES SURFACES RÉGLÉES.

690. Les surfaces développables sont un cas particulier des surfaces réglées, c'est-à-dire de celles qui s'engendrent par le mouvement d'une ligne droite. On nomme surface gauche toute surface réglée qui n'est pas développable.

Soient

$$\begin{cases}
 x = az + \alpha, \\
 y = bz + 6,
\end{cases}$$

les équations d'une droite : si a, b, α , δ sont des fonctions d'une même indéterminée γ , en faisant varier γ d'une manière continue, la droite (1) se déplacera successivement dans l'espace et engendrera une surface réglée. Il est clair qu'on aurait l'équation de la surface en éliminant γ entre les deux équations (1).

Les quatre paramètres variables a, b, α, β étant des fonctions d'une même indéterminée, on peut considérer trois d'entre eux comme fonctions du quatrième. On peut mème considérer a, b, α, β comme des fonctions de x et de y. Car si l'on élimine z entre les deux équations (1), on aura une relation entre x, y et les paramètres a, b, α, β qui sont des fonctions de y. On peut donc dire que y, et, par suite, a, b, α, β sont des fonctions de x et de y.

691. Différentions l'équation

$$x = az + \alpha$$

tour à tour par rapport à x et à y, en regardant a et α comme des fonctions de ces deux variables : nous aurons

$$(2) 1 = ap + z \frac{da}{dx} + \frac{d\alpha}{dx},$$

(3)
$$o = aq + z \frac{da}{d} + \frac{da}{d}$$

Ajoutons ces équations respectivement multipliées par $\frac{da}{dy}$

et $-\frac{da}{dx}$: en observant que

$$\frac{d\alpha}{dx}\frac{da}{dy} - \frac{d\alpha}{dy}\frac{da}{dx} = 0,$$

puisque a est fonction de α (692), nouş aurons

$$\frac{da}{dy} = a \left(p \frac{da}{dy} - q \frac{da}{dx} \right)$$

On aurait de même, en différentiant l'équation y = bz + 6,

(5)
$$\frac{db}{dx} = b \left(q \frac{db}{dx} - p \frac{db}{dy} \right),$$

ou, puisque $\frac{db}{dx}$ et $\frac{db}{dy}$ sont proportionnelles à $\frac{da}{dx}$ et $\frac{da}{dy}$,

(6)
$$\frac{da}{dx} = b \left(q \frac{da}{dx} - p \frac{da}{dy} \right).$$

Si maintenant on élimine le rapport $\frac{da}{dx}$: $\frac{da}{dy}$ entre les équations (4) et (6), mises sous la forme

$$\frac{da}{dy}(1-ap)+aq\frac{da}{dx}=0,$$

$$\frac{da}{dy}bp + (1 - bq)\frac{da}{dx} = 0,$$

on aura

$$(\mathbf{1} - ap)(\mathbf{1} - bq) - abpq = 0,$$

ou

$$(7) ap + bq = 1,$$

équation dissérentielle du premier ordre, renfermant seulement deux fonctions de l'indéterminée 7. En ayant égard à cette relation, les équations (4) et (5) peuvent s'écrire

$$(8) b \frac{da}{dy} + a \frac{da}{dx} = 0,$$

$$b \frac{db}{dy} + a \frac{db}{dx} = 0.$$

692. Dans ce qui précède, nous nous sommes appuyé sur la proportionnalité des dérivées partielles de a et de α . On peut l'établir comme il suit.

Soit

$$a = \varphi(\gamma),$$
on a
$$\frac{da}{dx} = \varphi'(\gamma) \frac{d\gamma}{dx}, \quad \frac{da}{dy} = \varphi'(\gamma) \frac{d\gamma}{dy};$$
donc
$$\frac{da}{dx} : \frac{da}{dy} = \frac{d\gamma}{dx} : \frac{d\gamma}{dy}.$$

On trouverait de même

$$\frac{d\alpha}{dx} : \frac{d\alpha}{dy} = \frac{d\gamma}{dx} : \frac{d\gamma}{dy};$$

$$\frac{da}{dx} : \frac{da}{dy} = \frac{d\alpha}{dx} : \frac{d\alpha}{dy}$$

donc

693. Cherchons maintenant l'équation aux différences partielles du second ordre. En différentiant tour à tour l'équation

$$ap + bq = 1$$

par rapport à x et à y, nous aurons

$$ar + bs + p \frac{da}{dx} + q \frac{db}{dx} = 0,$$

$$as + bt + p \frac{da}{dy} + q \frac{db}{dy} = 0.$$

En ajoutant ces équations multipliées, la première par a, la seconde par b, et en ayant égard aux équations (8) et (9), nous aurons

$$a^2r + 2abs + b^2t = 0$$

ou, en posant $\frac{a}{b} = c$,

$$(10) c^2 r + 2 cs + t = 0,$$

équation du second ordre ne renfermant plus qu'une scule fonction arbitraire c, qu'on éliminera par le procédé du n° 639. Nous nous contentons d'indiquer ce dernier «al-

cul, qui conduirait à une équation du troisième ordre.

ÉQUATION DE LA CORDE VIBRANTE.

694. On démontre en Mécanique que le mouvement des différents points d'une corde vibrante, fixée à ses deux extrémités, est représenté par l'équation aux dérivées

partielles du second ordre

$$\frac{d^2u}{dy^2} = a^2 \frac{d^2u}{dx^2};$$

données rectangulaires d'un point quelconque de la corde, l'origine étant prise à l'extrémité A; enfin y désigne le temps.

Pour intégrer l'équation (1), prenons deux nouvelles variables α et 6, liées aux variables x et γ par les équations

(2)
$$\alpha = x + a\gamma, \quad 6 = x - a\gamma.$$

Si de ces équations on tirait les valeurs de x et de y en α et 6 et qu'on les portât dans la fonction cherchée u, cette dernière deviendrait une fonction explicite de a et de 6. On peut donc considérer u comme une fonction de α et de 6. On aura alors, à cause des équations (2),

$$\frac{du}{dx} = \frac{du}{d\alpha} + \frac{du}{d\theta},$$

$$\frac{d^2u}{dx^2} = \frac{d^2u}{d\alpha^2} + 2\frac{d^2u}{d\alpha d\theta} + \frac{d^2u}{d\theta^2}.$$

On trouverait de même,

$$\frac{d^2u}{dy^2} = a^2 \left(\frac{d^2u}{d\alpha^2} - 2 \frac{d^2u}{d\alpha d\beta} + \frac{d^2u}{d6^2} \right).$$

En portant ces valcurs dans l'équation (1), on aura, après les réductions

$$\frac{d^2u}{d\alpha d\theta} = 0.$$

Cette équation est facile à intégrer. Elle peut s'écrire :

$$\frac{d \cdot \frac{du}{d6}}{d\alpha} = 0,$$

donc $\frac{du}{d\theta}$ ne dépend pas de α , et l'on a

$$\frac{du}{d6} = \varpi (6),$$

w désignant une fonction arbitraire. On en déduit

$$u = \int_{\Xi} \varpi(6) d6 + \varphi(\alpha),$$

et par conséquent, en représentant par $\psi(6)$ l'intégrale $\int \varpi(6) d6$, ψ désignant encore une fonction arbitraire, on aura

$$u = \varphi(\alpha) + \psi(6),$$

c'est-à-dire

$$(4) u = \varphi(x + ay) + \psi(x - ay).$$

Telle est l'intégrale générale de l'équation (1); on peut d'ailleurs la vérifier par la différentiation. On trouve:

$$\frac{d^{2}u}{dx^{2}} = \varphi''(x + ay) + \psi''(x - ay),$$

$$\frac{d^{2}u}{dy^{2}} = a^{2} \left[\varphi''(x + ay) + \psi''(x - ay) \right] \cdot$$

On a done bien

$$\frac{d^2u}{dx^2} = a^2 \frac{d^2u}{dx^2}.$$

695. L'intégrale générale contient deux fonctions arbitraires φ et ψ qui se déterminent par deux conditions distinctes. Ordinairement on suppose connues l'ordonnée u et sa dérivée $\frac{du}{dy}$ pour tous les points de la corde, à l'origine du temps, c'est-à-dire pour y=0. Alors u et la vitesse verticale $\frac{du}{dy}$ de chaque point sont des fonctions don-

nées de x. Posons

$$u = f(x)$$
, $\frac{du}{dy} = f_i(x)$, pour $y = 0$.

On aura, en faisant y = 0 dans l'équation (4) et dans sa dérivée

$$\varphi(x) + \psi(x) = f(x),$$

$$\varphi'(x) - \psi'(x) = \frac{1}{a} f_1(x) \delta$$

De cette dernière on déduit

$$\varphi(x) - \psi(x) = \frac{1}{a} \int f(x) dx + C = F(x) + C,$$

F(x) étant une fonction connue et C une constante arbitraire. Par conséquent on a

$$\begin{split} &\varphi\left(x\right) = \frac{\mathrm{I}}{2} \left[f(x) + \mathrm{F}\left(x\right) + \mathrm{C} \right], \\ &\psi\left(x\right) = \frac{\mathrm{I}}{2} \left[f(x) - \mathrm{F}\left(x\right) - \mathrm{C} \right]; \end{split}$$

on aura done

$$u = \frac{1}{2} \left[f(x + ay) + f(x - ay) + F(x + ay) - F(x - ay) \right]$$

La valeur de u est complétement déterminée. Comme on devait s'y attendre, la constante C, introduite dans le cours du calcul, a disparu d'elle-même.

CINQUANTE-QUATRIÈME LEÇON.

Courbure des surfaces. — Courbure d'une ligne située sur une surface. —
Théorème de Meunier. — Courbure d'une section normale. — Sections
principales. — Variation des rayons de courbure des sections normales
faites en un même point d'une surface. — Détermination des ombilics.

COURBURE D'UNE LIGNE SITUÉE SUR UNE SURFACE DONNÉE.

696. Soit

$$f(x, y, z) = 0$$

l'équation d'une surface. Posons, pour abréger,

$$\frac{dz}{dx} = p, \quad \frac{dz}{dy} = q,$$

$$\frac{d^2z}{dx^2} = r, \quad \frac{d^2z}{dxdy} = s, \quad \frac{d^2z}{dy^2} = t.$$

Considérons une certaine courbe CL passant par un

point M (x, y, z) de la surface (1). Soit θ l'angle que le rayon de courbure R de cette courbe au point M, dirigé suivant la droite MN, fait avec la normale MP à la surface au même point.

La normale MP ayant pour équations

$$X - x = -p (Z - z),$$

$$Y - y = -q (Z - z),$$

fait avec les axes des angles dont les cosinus sont respectivement

$$\frac{-p}{\sqrt{1+p^2+q^2}}, \frac{-q^{\frac{1}{2}}}{\sqrt{1+p^2+q^2}}, \frac{1}{\sqrt{1+p^2+q^2}}$$

Le rayon de courbure MN fait avec les axes des angles qui ont pour cosinus

$$\mathbf{R}\,\frac{d\frac{dx}{dl}}{dl},\quad \mathbf{R}\,\frac{d\frac{dy}{dl}}{dl},\quad \mathbf{R}\,\frac{d\frac{dz}{dl}}{dl},$$

en désignant par dl la différentielle de l'arc de courbe. On aura donc

(2)
$$\cos \theta = \mathbf{R} \frac{\left(-p \frac{d \frac{dx}{dl}}{dl} - q \frac{d \frac{dy}{dl}}{dl} + \frac{d \frac{dz}{dl}}{dl}\right)}{\sqrt{1 + p^2 + q^2}}.$$

Or on a

$$dz = pdx + qdy,$$

d'où

$$d\frac{dz}{dl} = pd\frac{dx}{dl} + qd\frac{dy}{dl} + dp\frac{dx}{dl} + dq\frac{dy}{dl}$$

Mais

$$dp = rdx + sdy, \quad dq = sdx + tdy;$$

donc

$$d\frac{dz}{dl} - pd\frac{dx}{dl} - qd\frac{dy}{dl} = (rdx + sdy)\frac{dx}{dl} + (sdx + tdy)\frac{dy}{dl}$$

ou

$$\frac{d\frac{dz}{dl}}{dl} - p\frac{d\frac{dx}{dl}}{dl} - q\frac{d\frac{dy}{dl}}{dl} = r\left(\frac{dx}{dl}\right)^{2} + 2s\frac{dx}{dl}\frac{dy}{dl} + t\left(\frac{dy}{dl}\right)^{2}$$

On a, par conséquent,

$$\cos\theta = R \frac{r\left(\frac{dx}{dt}\right)^2 + 2s\frac{dx}{dt}\frac{dy}{dt} + t\left(\frac{dy}{dt}\right)^2}{\sqrt{1 + p^2 + q^2}},$$

d'où

(3)
$$R = \frac{\sqrt{1 + p^2 + q^2 \cos \theta}}{r\left(\frac{dx}{dl}\right)^2 + 2s\frac{dx}{dl}\frac{dy}{dl} + t\left(\frac{dy}{dl}\right)^2}.$$

Mais $\frac{dx}{dl}$, $\frac{dy}{dl}$ sont les cosinus des angles que la tangente à la courbe considérée fait avec les axes des x et des y. En désignant ces angles par α et β , on aura

(4)
$$R = \frac{\sqrt{1 + p^2 + q^2 \cos \theta}}{r \cos^2 \alpha + 2 s \cos \alpha \cos \theta + t \cos^2 \theta}.$$

Telle est la formule qui fait connaître le rayon de courbure d'une section quelconque faite dans une surface, en un point donné.

697. La valeur de R devant être positive, il faut que $\cos\theta$ soit de même signe que le dénominateur. Ainsi l'angle θ doit être aigu selon que ce dénominateur est positif ou négatif, ce qui détermine dans quel sens le rayon de courbure doit être porté sur la direction de la normale située dans le plan osculateur.

THÉORÈME DE MEUNIER.

698. Si, dans la formule précédente, on suppose $\cos\theta = \pm 1$, c'est-à-dire si le plan osculateur passe par la normale à la surface, on aura, en désignant par ρ le rayon de courbure de la section normale

et, par suite,

(6)
$$R = \rho \cos \theta.$$

De là ce théorème dù à Mennier: Le rayon de courburc en un point d'une courbe quelconque tracée sur une surface, est égal au produit du rayon de courbure de la section normale qui contient la tangente à la courbe, multiplié par le cosinus de l'angle que ce plan fait avec le plan osculateur de la courbe.

699. En considérant deux courbes planes, l'une obli:

que, l'autre normale, qui ont la même tangente au point M, le théorème de Meunier peut encore s'énoncer en disant que le rayon de courbure d'une section oblique est la projection sur le plan de cette courbe du rayon de courbure de la section normale.

Par conséquent, si l'on imagine une sphère ayant le même centre et le même rayon que le cercle de courbure de la section normale, tous les plans menés par la tangente à cette courbe couperont cette sphère suivant de petits cercles qui seront les cercles osculateurs des sections obliques faites dans la surface par ces différents plans.

COURBURE DES SECTIONS NORMALES.

700. La formule (3) du nº 696 peut s'écrire

(1)
$$\mathbf{R} = \frac{\sqrt{1 + p^2 + q^2} \cos \theta \left(\frac{dl}{dx}\right)^2}{r + 2 s \frac{dy}{dx} + t \left(\frac{dy}{dx}\right)^2}.$$

Prenons maintenant le point (x, y, z) pour origine des coordonnées, et pour plan des xy le plan tangent à la surface en ce point. L'axe des z sera la normale et l'on

aura p = 0, q = 0. En désignant par φ l'angle que la tangente OT fait avec l'axe des x, on a

$$\frac{dx}{dl} = \cos\varphi, \quad \frac{dy}{dl} = \sin\varphi.$$

D'ailleurs, puisque le plans osculateur est normal, on a

 $\cos\theta = \pm 1$, selon que le rayon de courbure est dirigé dans le sens de l'axe des z ou dans le sens opposé. On aura donc

$$\rho = \frac{\pm 1}{r \cos^2 \varphi + 2 s \sin \varphi \cos \varphi + t \sin^2 \varphi},$$

mais on peut supprimer le double signe et écrire simple-

204

COURS D'ANALYSE.

ment

(2)
$$\rho = \frac{1}{r \cos^2 \varphi + 2 \sin \varphi \cos \varphi + t \sin^2 \varphi},$$

pourvu que l'on convienne de porter la valeur absolue du rayon sur l'axe des z dans le sens des z positifs si le dénominateur est positif, et dans le sens opposé si ce dénominateur est négatif.

SECTIONS PRINCIPALES.

701. Si le plan normal tourne autour de l'axe des z, le rayon ρ variera en même temps que φ . Proposons-nous de trouver la plus grande et la plus petite valeur de ce rayon. Comme ces valeurs correspondent au minimum et au maximum du dénominateur dans la formule (2), il faudra égaler à o la dérivée de ce dénominateur; on aura

$$(t-r) 2 \sin \varphi \cos \varphi + 2 s (\cos^2 \varphi - \sin^2 \varphi) = 0,$$
 ou, ce qui revient au même,

(3)
$$s \tan^2 \varphi + (r-t) \tan \varphi - s = 0.$$

Cette équation donne pour tang p deux valeurs réelles,

dont le produit est égal à -1. Comme d'ailleurs, en faisant varier l'angle φ de o à π , on obtient tous les plans normaux qui passent par le point O, il suffira de considérer les deux angles plus petits que 180° qui correspondent aux

deux racines de l'équation. L'un étant désigné par α , l'autre sera nécessairement $\frac{\pi}{2} + \alpha$.

Par conséquent, si l'on trace sur le plan des xy deux droites OH et OK, faisant avec Ox les angles α et $\alpha + \frac{\pi}{2}$, les sections normales situées dans les plans z OH, z OK,

correspondront aux rayons de courbure maximum et minimum. En effet, la dérivée du second ordre de $\frac{1}{\rho}$ est

$$2(t-r)(\cos^2\varphi-\sin^2\varphi)-8s\sin\varphi\cos\varphi,$$

et cette expression prend des valeurs égales et de signes contraires quand on y remplace φ par α et par $\alpha + \frac{\pi}{2}$. Remarquons qu'il s'agit ici d'un maximum et d'un minimum analytiques, en sorte que si les deux valeurs précédentes étaient de signes contraires, celle qui serait un minimum négatif pourrait être un maximum en valeur absolue.

Les droites OH et OK, faisant avec l'axe Ox des angles dont la différence est $\frac{\pi}{2}$ sont perpendiculaires entre elles. Donc les plans z OH et z OK qui déterminent sur la surface deux courbes planes à courbure maximum ou minimum sont perpendiculaires entre eux. On donne aux sections faites par ces plans le nom de sections principales.

VARIATION DE COURBURE DES SECTIONS NORMALES.

702. Prenons maintenant pour plans des xz et des yz, les plans des sections principales. Les valeurs de φ correspondant au maximum et au minimum du rayon de courbure devront être o et $\frac{\pi}{2}$. Or l'équation

$$s \tan^2 \varphi + (r - t) \tan \varphi - s = 0$$

ne donnera pour tang φ les valeurs o et ∞ que si s=o. Par conséquent, la valeur de φ prendra la forme plus simple

$$\rho = \frac{1}{r\cos^2\varphi + t\sin^2\varphi},$$

et l'on déduira de cette expression les deux rayons de courbure principaux ρ' et ρ'' , en faisant tour à tour $\varphi = 0$

et $\varphi = \frac{\pi}{2}$, ce qui donnera

$$\rho' = \frac{1}{r}, \quad \rho'' = \frac{1}{t},$$

ou bien

$$\frac{1}{\rho'}=r, \quad \frac{1}{\rho''}=t.$$

Ainsi, les dérivées partielles r et t représentent les deux courbures principales au point O.

703. Les valeurs de ρ' et de ρ'' peuvent être introduites dans l'expression générale de la courbure $\frac{1}{\rho}$. On a

$$\frac{1}{\rho} = r \cos^2 \varphi + t \sin^2 \varphi;$$

on aura donc

(2)
$$\frac{1}{\rho} = \frac{1}{\rho'} \cos^2 \varphi + \frac{1}{\rho''} \sin^2 \varphi,$$

formule qui donne la courbure d'une section déterminée par un plan normal faisant, avec la section principale z O x, un angle φ .

De là les conséquences suivantes. En premier lieu, l'expression (2) ne change pas quand on met à la place de φ son supplément: donc deux sections normales également inclinées sur une section principale ont des rayons de courbure égaux et de même signe.

Si l'on désigne par ρ_1 le rayon de courbure d'une section normale perpendiculaire à celle qui fait avec le plan principal $z \circ x$ l'angle φ , on aura

(3)
$$\frac{1}{\rho_1} = \frac{1}{\rho'} \sin^2 \varphi + \frac{1}{\rho''} \cos^2 \varphi,$$

et si l'on ajoute les équations (2) et (3),

$$\frac{1}{\rho} + \frac{1}{\rho_1} = \frac{1}{\rho'} + \frac{1}{\rho''}$$

Donc la somme des courbures de deux sections nornales perpendiculaires entre elles est constante.

704. Nous allons maintenant discuter la valeur géné-

rale de p en nous servant de la formule

$$\frac{1}{\rho} = \frac{\cos^2 \varphi}{\rho'} + \frac{\sin^2 \varphi}{\rho''}.$$

Supposons d'abord ρ' et ρ'' tous deux positifs, et $\rho' > \rho''$. Dans ce cas, la formule (τ) donne pour ρ une valeur toujours positive. Par conséquent, toutes les sections normales sont situées au-dessus du plan tangent et la surface est convexe autour du point O. Si ρ' et ρ'' étaient négatifs, la surface serait encore convexe, mais située au-dessous du plan tangent.

En mettant l'équation (1) sous la forme

(2)
$$\frac{1}{\rho} = \frac{1}{\rho'} + \left(\frac{1}{\rho''} - \frac{1}{\rho'}\right) \sin^2 \varphi,$$

on voit que $\frac{1}{\rho}$ augmente depuis $\frac{1}{\rho'}$ jusqu'à $\frac{1}{\rho''}$, quand φ croît de o à $\frac{\pi}{2}$, et que $\frac{1}{\rho}$ décroît depuis $\frac{1}{\rho''}$ jusqu'à $\frac{1}{\rho'}$, quand φ varie de $\frac{\pi}{2}$ à π .

Dans le cas où $\rho' = \rho''$, la formule (2) donne

$$\frac{1}{\rho} = \frac{1}{\rho'},$$

ou $\rho = \rho'$ quel que soit φ . Toutes les sections normales au point O ont donc la même courbure. On dit alors que ce point est un *ombilic*.

705. Supposons maintenant que ρ' et ρ'' aient des signes contraires et que ρ'' soit négatif. En mettant les signes en évidence dans l'équation (1), nous aurons

(3)
$$\frac{1}{\rho} = \frac{\cos^2 \varphi}{\rho'} - \frac{\sin^2 \varphi}{\rho''}$$

Pour $\varphi = 0$, on a $\rho = \rho'$. L'angle φ croissant de 0 à la valeur 6 donnée par l'équation

$$tang^2 6 = \frac{\rho''}{\rho'},$$

 ρ croît depuis ρ' jusqu'à l'infini. Au delà de $\varphi = \hat{\sigma}$, ρ devient négatif et décroît jusqu'à ρ'' , valeur qui correspond à $\varphi = \frac{\pi}{2}$. Les valeurs de ρ se reproduisent ensuite dans l'ordre inverse.

Dans ce cas, la surface est en partie au-dessus du plan tangent, en partie au-dessous.

DÉTERMINATION DES OMBILICS.

706. Pour trouver les ombilics d'une surface, il faut chercher les points où le rayon de courbure des sections normales a la même valeur, quel que soit le plan mené par la normale.

Reprenons la formule (1) du n° 700 en y supposant $\cos \theta = 1$ et en remplaçant dl^2 par $dx^2 + dy^2 + dz^2$: nous aurons

(1)
$$R = \frac{\sqrt{1 + p^2 + q^2} \left[1 + \left(\frac{dy}{dx} \right)^2 + \left(\frac{dz}{dx} \right)^2 \right]}{r + 2s \frac{dy}{dx} + t \left(\frac{dy}{dx} \right)^2}.$$

Désignons par m, $\frac{dy}{dx}$ ou le rapport des cosinus des angles que la tangente à la courbe au point considéré fait avec l'axe des x et l'axe des y. Comme on a

$$dz = pdx + qdy,$$
$$\frac{dz}{dz} = p + qm,$$

on a**u**ra

et la formule (1) pourra s'écrire

$$R = \frac{\sqrt{1 + p^2 + q^2} \left[1 + m^2 + (p + qm)^2\right]}{r + 2 sm + tm^2},$$

ou bien

(2)
$$R = \sqrt{1 + p^2 + q^2} \frac{1 + p^2 + 2pqm + (1 + q^2)m^2}{r + 2sm + tm^2}$$

Quand le point est un ombilie, ce rayon est indépendant du rapport m qui détermine le plan normat où sest

située la courbe considérée. On doit donc avoir

$$\frac{\mathbf{1}+p^2}{r} = \frac{pq}{s} = \frac{\mathbf{1}+q^2}{t},$$

ce qui donne, en général, deux équations distinctes. En y joignant l'équation de la surface, on aura le nombre de relations nécessaires pour déterminer les coordonnées du point cherché.

707. Appliquons ces principes au paraboloïde elliptique

$$z = \frac{x^2}{2a} + \frac{y^2}{2b}, \quad a > b > 0.$$

On a ici

$$p = \frac{x}{a}, \quad q = \frac{y}{b},$$

$$r = \frac{1}{a}, \quad t = \frac{1}{b}, \quad s = 0.$$

Les équations (3) sont, dans ce cas,

$$\frac{1+\frac{x^2}{a^2}}{\frac{1}{a}} = \frac{\frac{xy}{ab}}{\frac{1}{b}} = \frac{1+\frac{y^2}{b^2}}{\frac{1}{b}}.$$

On peut y satisfaire d'abord en posant

$$x = \mathbf{0}, \quad a = b + \frac{y^2}{b},$$

$$y = \sqrt{b(a - b)}, \quad z = \frac{a - b}{2}.$$

Les valeurs de y et de z étant réelles, il existe deux ombilics situés dans le plan y O z. Ce sont d'ailleurs les seuls : car l'hypothèse y = 0 donnerait une valeur de x qui serait imaginaire.

CINQUANTE-CINQUIÈME LECON.

Suite de la courbure des surfaces. — Surface dont tous les points sont des ombilics. — Théorie de l'indicatrice. — Conséquences géométriques. — Cas où l'expression du rayon de courbure se présente sous une forme illusoire. — Tangentes conjuguées.

SUR LA SURFACE DONT TOUS LES POINTS SONT DES OMBILICS.

708. Lorsque les équations

(1)
$$\frac{1+p^2}{r} = \frac{pq}{s} = \frac{1+q^2}{t}$$
,

qui servent à déterminer les ombilics d'une surface donnée, se réduisent à une seule, la surface a une infinite d'ombilies situés sur une ligne qu'on nomme la ligne des courbures sphériques. Si les équations (1) sont identiques, tous les points de la surface sont alors des ombilies.

Pour trouver une surface qui jouisse de cette propriété, observons que les équations (1) mises sous la forme

(2)
$$\frac{p}{1+p^2} \cdot \frac{dp}{dx} = \frac{1}{q} \frac{dq}{dx}, \quad \frac{q}{1+q^2} \cdot \frac{dq}{dy} = \frac{1}{p} \frac{dp}{dy},$$

peuvent s'intégrer comme des équations ordinaires (643). On aura ainsi

(3)
$$1 + p^2 = Yq^2, \quad 1 + q^2 = Xp^2,$$

Y étant une fonction arbitraire de y, et X une fonction arbitraire de x. On tire de ces équations

(4)
$$p = \sqrt{\frac{1+Y}{XY-1}}, \quad q = \sqrt{\frac{1+X}{XY-1}}.$$

Mais p et q doivent satisfaire à l'équation $\frac{dp}{dy} = \frac{dq}{dx}$ on

aura done

$$\frac{1}{(\mathbf{I} + \mathbf{X})^{\frac{3}{4}}} \frac{d\mathbf{X}}{dx} = \frac{1}{(\mathbf{I} + \mathbf{Y})^{\frac{3}{2}}} \cdot \frac{d\mathbf{Y}}{dy}.$$

Le premier membre étant fonction de x seulement, et le second fonction de y, cette équation ne peut subsister qu'autant que chaque membre se réduit à une constante.

Soit $\frac{2}{R}$ cette constante. On a donc /

$$\frac{d\mathbf{X}}{\left(\mathbf{1}+\mathbf{X}\right)^{\frac{3}{2}}} = \frac{2\,dx}{\mathbf{R}}, \quad \frac{d\mathbf{Y}}{\left(\mathbf{1}+\mathbf{Y}\right)^{\frac{3}{2}}} = \frac{2\,dy}{\mathbf{R}},$$

et, en intégrant,

$$\frac{\mathbf{R}}{\sqrt{\mathbf{I} + \mathbf{X}}} = a - x, \quad \frac{\mathbf{R}}{\sqrt{\mathbf{I} + \mathbf{Y}}} = b - y,$$

a et b étant des constantes arbitraires. En portant les valeurs de X et de Y tirées de ces équations, dans (4), on aura

$$p = \frac{a - x}{\sqrt{R^2 - (a - x)^2 - (b - y)^2}},$$

$$q = \frac{b - y}{\sqrt{R^2 - (a - x)^2 - (b - y)^2}}.$$

Il en résultera

$$dz = \frac{(a-x) dx + (b-y) dy}{\sqrt{R^2 - (a-x)^2 - (b-y)^2}},$$

et, en intégrant de nouveau,

$$z-c=\sqrt{\mathbf{R}^2-(a-x)^2-(b-y)^2},$$

équation d'une sphère. Ainsi la sphère est la seule surface dont tous les points soient des ombilics.

THÉORIE DE L'INDICATRICE.

709. La courbure des surfaces peut être présentée sous un autre point de vue, qui donne une idée plus nette de la manière dont varient les rayons de courbure des sections normales autour d'un même point.

Prenons toujours pour plan des xy le plan tangent à la surface au point O, et pour axe des z la normale en ce

point.

Si l'on coupe la surface par un plan parallèle au plan tangent et infiniment voisin de ce plan, la section obtenue sera une courbe infiniment petite et du deuxième degré, en négligeant des quantités infiniment petites par rapport à ses dimensions. En d'autres termes, une courbe semblable à la section faite par un plan parallèle au plan tangent, à une distance h, tend, à mesure que h diminue, vers une section conique.

En effet, si l'on développe l'ordonnée z de la surface par la série de Maclaurin, on aura

$$z = z_0 + px + qy + \frac{1}{2}rr^2 + sxy + \frac{1}{2}y^2 + \dots$$

Mais z_0 , p, q qui représentent les valeurs de z, $\frac{dz}{dx}$, $\frac{dz}{dy}$ quand on fait simultanément x = 0, y = 0, sont nulles d'après le choix des axes. Donc on a

$$z = \frac{1}{2} rx^2 + sxy + \frac{1}{2} ty^2 + \omega,$$

ω désignant une somme de termes dont le degré, par rap-

port à x et à y, est supérieur au second. Si maintenant on remplace z par la constante OO' = h, on aura l'équation de la section B'M'A', et si l'on fait h trèspetite, ω devient négligeable comparativement aux termes qui le précèdent. Par 'conséquent, on a

(1)
$$rx^2 + 2 sxy + ty^2 = 2 h$$
,

équation d'une ellipse ou d'une hyperbole infiniment petite dont le centre est au point O. 710. Si l'on remplace h par z, on aura

(2)
$$z = \frac{1}{2} (rx^2 + 2 sxy + ty^2).$$

Cette équation représente un paraboloïde passant par la section A'M'B' et ayant pour sommet le point O. Ce paraboloïde va nous servir à calculer le rayon de courbure d'une section quelconque OM'C.

Menons M'L perpendiculaire à OM' et nommons ρ le rayon de courbure en M'. On a

$$\rho = \lim \frac{OM'^2}{2 \cdot OO'} = \lim \frac{OM'^2}{2 \cdot h}.$$

Pour déduire de là la valeur de ρ , faisons , dans l'équation (2),

 $x = OM'\cos\varphi, \quad y = OM'\sin\varphi,$

 φ désignant l'angle x ON. On aura

$$OM'^{2}(r\cos^{2}\varphi + 2s\sin\varphi\cos\varphi + t\sin^{2}\varphi) = 2h,$$

d'où

(3)
$$\rho = \frac{1}{r\cos^2\varphi + 2s\sin\varphi\cos\varphi + t\sin^2\varphi},$$

comme on l'avait obtenu par une autre méthode.

711. La formule $\rho = \frac{OM'^2}{2h}$ fait voir que les rayons de courbure des différentes sections normales sont proportionnels à OM'^2 . Supposons donc que sur la trace du plan z ON dans le plan des xy on prenne $ON = \frac{OM'}{\sqrt{2h}}$, on aura $\rho = ON^2$. Par suite, le rapport $\frac{OM'}{ON}$ sera constant pour

 $ho = ON^2$. Par suite, le rapport $\frac{1}{ON}$ sera constant pour toutes les sections normales. La courbe ANB ainsi obtenue sera donc semblable à A'M'B' et aura pour centre le point O. Cette courbe, qui donne tous les rayons de courbure des sections normales faites au point O est nommée l'indicatrice de la surface en ce point.

712. Quand l'intersection de la surface par un plan parallèle au plan tangent et infiniment voisin est une hyperbole, il faut, en même temps, considérer une autre section produite par un second plan parallèle au plan tangent de l'autre côté de ce plan. On obtient par là une hyperbole conjuguée de la première. Dans ce cas, l'indicatrice se compose de deux hyperboles conjuguées et l'on a $\rho = \pm \, \mathrm{ON^2}$, suivant que l'hyperbole sur laquelle se trouve le point N correspond à une section faite au-dessus ou au-dessous du plan xy. Le rayon de courbure de la surface devient infini et change de signe quand le plan sécant, en tournant autour de la normale, vient passer par une asymptote commune aux deux hyperboles.

conséquences géométriques.

- 713. Toute courbe du second degré douée d'un centre ayant un diamètre maximum et un diamètre minimum, on en conclut que la surface a deux sections normales perpendiculaires entre elles et dans lesquelles le rayon de courbure est un maximum ou un minimum. La somme des carrés des inverses de deux diamètres perpendiculaires étant constante, il en résulte immédiatement que la somme des courbures de deux sections normales est constante. En un mot, à toute propriété des diamètres d'une section conique, correspond une propriété des rayons de courbure des sections normales faites par les diamètres de l'indicatrice.
- 714. Quand l'indicatrice est un cercle, le point considéré est un ombilic. Cela arrive sur les surfaces du second ordre aux points où le plan tangent est parallèle aux sections circulaires. En effet, tous les plans parallèles déterminent, dans une pareille surface, des sections semblables. Il en résulte que l'indicatrice, qui en général n'ests

semblable qu'aux sections faites parallèlement au plan tangent à une distance infiniment petite, sera, dans les surfaces du second ordre, rigoureusement semblable aux sections, quelle que soit leur distance au plan tangent.

Ainsi dans l'ellipsoïde

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1, \quad a > b > c,$$

il y a quatre ombilies dont les coordonnées sont

$$y = 0$$
, $x = b \cos \theta$, $z = b \sin \theta$,

 θ désignant un angle dont la tangente est égale à

$$\pm \frac{c}{a} \sqrt{\frac{a^2 - b^2}{b^2 - c^2}}.$$

CAS OU L'EXPRESSION DU RAYON DE COURBURE SE PRÉSENTE SOUS UNE FORME ILLUSOIRE.

715. La formule

$$\rho = \frac{1}{r\cos^2\varphi + 2s\sin\varphi\cos\varphi + t\sin^2\varphi},$$

précédemment obtenue pour le rayon de courbure d'une section normale faisant avec le plan des xz un angle φ , dépend des valeurs des dérivées partielles du second ordre au point considéré de la surface. Nous avons tacitement admis que r, s et t avaient, en ce point, des valeurs déterminées et indépendantes de l'angle φ . Mais ces fonctions se présentent quelquefois sous l'une des formes $\frac{0}{0}$ ou $\frac{\infty}{\infty}$, quand x, y et z deviennent nulles. Pour éviter l'indétermination, on posera

$$y \doteq x \operatorname{tang} \varphi$$
,

relation qui convient à tous les points situés dans le plan normal mené par le point (x, y, z) de la surface, puis on fera x = 0.

Soit, par exemple, l'équation

$$z = \dot{x^2} f\left(\frac{y}{x}\right),$$

f désignant une fonction quelconque. Elle représente une surface dont les sections normales à l'origine sont des paraboles ayant pour axe commun l'axe des z. Les dérivées partielles du premier ordre sont

$$p = 2 x f\left(\frac{y}{x}\right) - y f'\left(\frac{y}{x}\right),$$
$$q = x f'\left(\frac{y}{x}\right),$$

et les dérivées du second ordre :

$$\begin{split} r &= 2 f\left(\frac{y}{x}\right) - 2 \frac{y}{x} f'\left(\frac{y}{x}\right) + \frac{y^2}{x^2} f''\left(\frac{y}{x}\right), \\ s &= f'\left(\frac{y}{x}\right) - \frac{y}{x} f''\left(\frac{y}{x}\right), \\ t &= f''\left(\frac{y}{x}\right). \end{split}$$

On a bien, en général, par ces formules, p = 0, q = 0 pour x = 0, y = 0; mais les valeurs de r, s, t se présentent sous une forme indéterminée quand on laisse x et y indépendants entre eux. Mais si l'on y remplace $\frac{y}{x}$ par tang φ , elles donnent

$$\begin{split} r &= 2 f (\tan \varphi) - 2 \tan \varphi f' (\tan \varphi) + \tan \varphi^2 \varphi f'' (\tan \varphi), \\ s &= f' (\tan \varphi) - \tan \varphi f'' (\tan \varphi), \\ t &= f'' (\tan \varphi). \end{split}$$

Il faut maintenant porter ces valeurs de r, s, t qui, comme on le voit, dépendent de φ , dans la formule

$$\rho = \frac{1}{r\cos^2\varphi + 2s\sin\varphi\cos\varphi + t\sin^2\varphi}$$

On doit remarquer qu'en faisant varier l'angle φ , le rayon de courbure peut avoir, selon la forme de la fonction f, un nombre quelconque de valeurs maximums ou minimums, et il y aura autant de maximums que de minimums ,

puisque ces valeurs doivent se succéder alternativement quand on fait varier φ de 0 à 2π , et que la section normale revient à sa position primitive.

TANGENTES CONJUGUÉES.

716. Soit MM' une courbe quelconque située sur une surface: imaginons les plans tangents menés par les points

M et M'. Si le second point se rapproche indéfiniment du premier, l'intersection des deux plans variera de position et deviendra à la limite une certaine tangente à la surface passant par le point M. Cette droite limite et la tan-

gente MT à la courbe sont dites tangentes conjuguées.

Prenons pour origine le point M et pour plans des zx et des zy les plans des sections principales correspondant à ce point. Il faudra supposer x = 0, y = 0, z = 0, s = 0

L'équation du plan tangent en M' (x', y', z') est

$$\mathbf{Z} - \mathbf{z}' = p'(\mathbf{X} - \mathbf{x}') + q'(\mathbf{Y} - \mathbf{y}'),$$

p' et q' désignant les valeurs de p et de q relatives au point M'. D'après la formule de Maclaurin, on a

$$z' = px' + qy' + \frac{1}{2}(rx'^2 + 2 sx'y' + ty'^2) + \dots$$

On aura donc, en vertu des hypothèses et en négligeant des infiniment petits du troisième ordre,

$$z' = \frac{1}{2} (rx'^2 + ty'^2).$$

On trouvera de même

$$p' = rx', \quad q' = ty'.$$

Par suite, les équations des plans tangents en M et M'

seront

$$Z = 0$$
,

$$rx'(X-x') + ty'(Y-y') + \frac{1}{2}(rx'^{2} + ty'^{2}) - Z = 0.$$

Ces deux équations représentent l'intersection des deux plans tangents. Or, si l'on porte dans la seconde la valeur Z = 0, on aura, en réduisant,

$$rx'X + ty'Y - \frac{1}{2}(rx'^{2} + ty'^{2}) = 0.$$

Posons y' = mx', m étant le coefficient angulaire de la projection de la droite MM', qui, à la limite, se confond avec la tangente MT. L'équation précédente devient

$$r\mathbf{X} + tm\mathbf{Y} - \frac{1}{2}x'(r + tm^2) = 0,$$

et quand le point M' se réunit au point M,

$$rX + tmY = 0$$
,

équation de la tangente conjuguée définie plus haut. On voit que si m' désigne son coefficient angulaire, on a

$$m' = -\frac{r}{tm}$$

ou

$$mm' = -\frac{r}{t}$$

Telle est la relation qui doit exister entre les coefficients angulaires de deux tangentes conjuguées, quand ou prend pour axes la normale et les intersections du plan tangent avec les plans principaux.

717. Deux tangentes conjuguées sont parallèles à deux diamètres conjugués de l'indicatrice.

En effet, si

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \qquad$$

est l'équation de l'indicatrice, on a, entre les coefficients

angulaires de deux diamètres conjugués, la relation

$$mm' = -\frac{b^2}{a^2}.$$

On a d'ailleurs

$$a^2 = \frac{1}{r}$$
, $b^2 = \frac{1}{t}$;

par conséquent,

Water 21

$$mm' = -\frac{b^2}{a^2} = -\frac{r}{t} \cdot$$

Ce qui démontre le théorème annoncé. Comme d'ailleurs les rayons de courbure sont proportionnels aux carrés des diamètres de l'indicatrice, il résulte d'une propriété bien connue des sections coniques que la somme algébrique des rayons de courbure correspondant à deux tangentes coujuguées est constante.

CINQUANTE-SIXIÈME LEÇON.

Suite de la courbure des surfaces. — Lignes de courbure. — Propriétés des lignes de courbure. — Centres de courbure des sections principales. — Rayons de courbure principalex. — Applications.

LIGNES DE COURBURE.

718. Soient S une surface rapportée à trois axes rectangulaires quelconques, M(x, y, z), un point de la sur-

face, et MN la normale en ce point. Si M'(x', y', z') est un point de la surface, voisin de M, la normale M'N' n'ira pas, en général, rencontrer la première normale MN. Il faut pour cela qu'il y ait entre les coordonnées de ces deux points une certaine relation que nous allons chercher.

La normale MN a pour équations

$$(1) X-x+p(Z-z)=0,$$

$$\mathbf{Y} - \mathbf{y} + q \left(\mathbf{Z} - \mathbf{z} \right) = \mathbf{0}.$$

Si p' et q' désignent les valeurs de p et de q au point M', la normale M'N' aura pour équations

(3)
$$X - x' + p'(Z - z') = 0$$
,

(4)
$$Y - y' + g'(Z - z') = 0.$$

En éliminant X entre (1) et (3), on a

$$Z = \frac{x' - x + p'z' - pz}{p' - p}.$$

L'élimination de Y entre (2) et (4) donne

$$Z = \frac{y' - y + q'z' - qz}{q' - q}.$$

On a donc l'équation de condition,

(5)
$$\frac{x'-x+p'z'-pz}{p'-p} = \frac{y'-y+q'z'-qz}{q'-q}.$$

Cette équation et celle de la surface

$$(6) z' = f(x', y')$$

représentent une courbe MM' située sur la surface et passant par le point M. Toutes les normales à la surface menées par les divers points de cetté courbe iront rencontrer la normale MN.

719. Concevons maintenant que le point M' se rapproche de plus en plus du point M : la droîte MM' deviendra la tangente, et les différences x'-x, y'-y, z'-z, p'-p, q'-q devront être remplacées par les différentielles dx, dy, dz, dp, dq. De même p'z'-pz=d(pz), q'z'-qz=d(qz). On aura donc à la limite

$$\frac{dx + pdz + zdp}{dp} = \frac{dy + qdz + zdq}{dq},$$

ou simplement

$$\frac{dx + pdz}{dp} = \frac{dy + qdz}{dq}.$$

Mais on a

$$dz = pdx + qdy,$$

$$dp = rdx + sdy,$$

$$dq = tdy + sdx;$$

done

$$\frac{1+p^2+pq\frac{dy}{dx}}{r+s\frac{dy}{dx}} = \frac{pq+(1+q^2)\frac{dy}{dx}}{s+t\frac{dy}{dx}},$$

ou bien

(8)
$$\left\{ \left[(1+q^2)s - pqt \right] \left(\frac{dy}{dx} \right)^2 + \left[(1+q^2)r - (1+p^2)t \right] \left(\frac{dy}{dx} \right) + \left[pqr - (1+p^2)s \right] = 0. \right.$$

Cette équation donne pour $\frac{dy}{dx}$ deux valeurs fonctions de x et de y. Elle indique deux directions suivant lesquelles il faut passer du point M à un second point infiniment voisin, sur la surface, pour que la normale en ce point rencontre la normale au point M. Prenons l'une des valeurs de $\frac{dy}{dx}$ et la valeur correspondante de $\frac{dz}{dx}$. Soit M' le point correspondant. On passera de même du point M' à un troisième point M'', et ainsi de suite. On aura donc une ligne MM'M''... telle, que toute normale à la surface menée par un de ses points rencontre la normale infiniment voisine. La seconde valeur de $\frac{dy}{dx}$ aurait donné une autre ligne jouissant de la même propriété.

On nomme ligne de courbure le lieu des points d'une surface pour lesquels les normales infiniment voisines se rencontrent consécutivement. L'analyse précédente montre qu'en chaque point d'une surface, il passe deux lignes de courbure représentées par l'équation différentielle (8) et par l'équation de la surface. En éliminant z, on aura l'équation de la projection de la ligne de courbure sur le plan des xy. L'intégration donnera deux équations contenant deux constantes arbitraires qu'on déterminera, en faisant passer la ligne par un point donné de la surface.

PROPRIÉTÉS DES LIGNES DE COURBURE.

720. Prenons la normale MN pour axe des z : l'équation (8) devient

(9)
$$s \left(\frac{dy}{dx}\right)^2 + (r-t)\frac{dy}{dx} - s = 0.$$

Le produit des racines de cette équation est égal à — 1; donc les tangentes menées aux lignes de courbure qui se croisent au point M sont perpendiculaires entre elles.

Si maintenant on preud les plans principaux pour

plan des zx et des z_1 , on a s = 0. L'équation (9) a une racine nulle et l'autre infinie : donc les deux lignes de courbure ont pour tangentes l'axe des x et l'axe des z, c'est-à-dire les tangentes aux sections principales.

Si l'on avait à la fois s = 0, r = t, les deux valeurs de $\frac{dy}{dx}$ seraient indéterminées. Il y aurait donc une infinité de lignes de courbure passant par le point de la surface, autour duquel toutes les courbures seraient égales : ce serait donc un ombilic. Ce caractère peut servir à trouver les ombilics d'une surface, car si l'on exprime que l'équation générale (8) donne pour $\frac{dy}{dx}$ une infinité de valeurs, on aura les deux conditions

$$\frac{1+p^2}{r} = \frac{1+q^2}{r} = \frac{pq}{s},$$

déjà trouvées par une autre méthode (706).

721. Soient O un point de la surface, Oz la normale, OA et OB les deux lignes de courbure, Ox et Oy leurs tangentes. Si O' et O'' sont deux points infiniment voisins du point O sur les lignes OA et OB, on sait que les normales O'K et O''L rencontreront Oz: soient K et L les

points d'intersection. Je dis que OK et OL sont précisément les rayons de courbure, au point O, des sections principales zOx, zOy. En effet, puisque Ox est tangente à la courbe OA, le point O' infiniment voisin du point O sur OA peut être considéré comme appartenant au plan

zOx. Donc la droite O'K qui est normale à la courbe OA, comme l'étant à la surface, déterminera, par sa rencontre avec la normale Oz, le centre de courbure de la section principale située dans le plan zOx. On ferait

voir de la même manière que OL est le rayon de courbure de la section principale faite par le plan zOy.

722. C'est ce qu'il est facile de vérifier par le calcul. Soient

(1)
$$\begin{cases} X - x + p(Z - z) = 0, \\ Y - y + q(Z - z) = 0; \\ X - x' + p'(Z - z') = 0, \\ Y - y' + q'(Z - z') = 0, \end{cases}$$

les équations de deux normales. Si le point (x, y, z) coïncide avec l'origine et que le point (x', y', z') soit infiniment voisin, les équations (1) se réduisent à

$$X = 0$$
, $Y = 0$,

et les deux autres donnent, au point commun,

$$-dx + Z r dx = 0,$$

$$-dy + Z t dy = 0,$$

ou bien

$$dx (\mathbf{Z}r - \mathbf{I}) = \mathbf{0},$$

$$dy (\mathbf{Z}t - \mathbf{I}) = \mathbf{0}.$$

On ne peut pas supposer dx et dy nulles à la fois, mais on peut satisfaire à ces deux équations soit en posant

$$(3) dx = 0, Z = \frac{1}{t},$$

ou bien

$$(4) dy = 0, Z = \frac{1}{r}.$$

Dans le premier cas, puisque dx = 0, la tangente coïncide avec l'axe des y, et $Z = \frac{1}{t}$ est le rayon de courbure principal. Même conclusion à tirer du second système.

723. Il faut bien se garder de croire que les points de rencontre des normales soient les centres des cercles oscu-

lateurs des lignes de courbure, car ces normales se coupent consécutivement et sont tangentes à une même courbe, propriété qui n'appartient jamais aux normales menées par les centres de courbure d'une courbe gauche. Et même les lignes de courbure peuvent être planes sans que leurs cercles osculateurs se confondent avec ceux des sections principales. Il faut pour cela que leurs plans osculateurs soient normaux et que, par conséquent, les lignes de courbure soient les lignes de plus courte distance sur la surface (61° Leçon). Par exemple, dans les surfaces de révolution, les lignes de courbure sont les méridiens et les parallèles. Les méridiens sont des sections principales, parce que leurs plans osculateurs sont normaux à la surface. Les parallèles sont des lignes de courbure planes sans être des sections principales.

CALCUL DES RAYONS DE COURBURE PRINCIPAUX EN UN POINT QUELCONQUE D'UNE SURFACE.

724. Le théorème démontré (722) permet de calculer les courbures principales en un point d'une surface, l'origine étant quelconque.

La normale menée au point M de la surface a pour équations

equations
$$\begin{cases}
X - x + p(Z - z) = 0, \\
Y - y + q(Z - z) = 0.
\end{cases}$$

Si M' est un point voisin, pris sur la ligne de courbure, la normale correspondante rencontrera la première normale en un point dont le Z sera donné par l'une des deux équations

(2)
$$\mathbf{Z} - \mathbf{z} = \frac{1 + p^2 + pq \frac{dy}{dx}}{r + s \frac{dy}{dx}},$$

(3)
$$Z - z = \frac{pq + (1 + q^2)\frac{dy}{dx}}{s + t\frac{dy}{dx}}$$

En éliminant $\frac{dy}{dx}$ entre ces deux équations, on aura

(4)
$$\begin{cases} (rt - s^2)(Z - z)^2 \\ -[(1 + p^2)t + (1 + q^2)r - 2pqs](Z - z) \\ +1 + p^2 + q^2 = 0. \end{cases}$$

Cette équation donne deux valeurs de Z-z, et, par suite, de Z, qui correspondent aux centres de courbure des deux sections principales. Appelons ρ l'un des rayons de courbure, on aura

$$\rho = \sqrt{(X-x)^2 + (Y-y)^2 + (Z-z)^2}$$

valeur qui se réduit, en vertu des équations (1), à

$$\rho = (Z - z) \sqrt{1 + p^2 + q^2},$$

$$Z - z = \frac{\rho}{\sqrt{1 + p^2 + q^2}}.$$

d'où

Si l'on substitue cette valeur de Z-z dans l'équation (4), on aura, en réduisant et ordonnant,

(5)
$$\begin{cases} (rt - s^2) \rho^2 \\ - [(1+p^2)t + (1+q^2)r - 2pqs] \sqrt{1+p^2+q^2} \cdot \rho \\ + (1+p^2+q^2)^2 = 0, \end{cases}$$
d'où l'on déduire les valeurs des donv ravons de comb

d'où l'on déduira les valeurs des deux rayons de courbure principaux.

725. Les normales d'une surface, menées par les diffèrents points d'une ligne de courbure, forment une surface développable, puisque deux normales consécutives se rencontrent. Pour avoir l'équation de cette surface, il faut éliminer x, y, z entre l'équation de la surface proposée, les équations d'une normale (1) et l'équation (8) du n° 715 qui exprime que le point (x, y, z) est sur la ligne de courbure.

On obtiendra le lieu des centres de courbure de toutes les sections principales d'une surface

$$F(x, y, z) = 0,$$

en éliminant x, y, z entre cette équation, celles de la normale et l'équation (4) où Z se rapporte au point de concours de deux normales infiniment voisines. Cette surface se composerait de deux nappes, puisque chaque normale contient deux centres de courbure.

APPLICATION DES THÉORIES PRÉCÉDENTES AU PARABOLOIDE ELLIPTIQUE.

726. Équation différentielle des lignes de courbure.

— Soit

(1)
$$z = \frac{x^2}{2a} + \frac{y^2}{2b}, \quad a > b > 0,$$

l'équation d'un paraboloïde elliptique. On a, dans cet exemple,

(2)
$$p = \frac{x}{a}, q = \frac{y}{b}, r = \frac{1}{a}, s = 0, t = \frac{1}{b}.$$

L'équation générale (718)

$$\frac{(1+p^2) dx + pq dy}{r dx + s dy} = \frac{(1+q^2) dy + pq dx}{s dx + t dy}$$

devient

$$\frac{dy}{b} \left[\frac{xy}{ab} \, dy + dx \left(1 + \frac{x^2}{a^2} \right) \right] = \frac{dx}{a} \left[\frac{xy}{ab} \, dx + dy \left(1 + \frac{y^2}{b^2} \right) \right],$$

ou, en ordonnant,

$$\frac{xy}{ab^2} \cdot \frac{dy^2}{dx^2} + \left(\frac{1}{b} - \frac{1}{a} + \frac{x^2}{a^2b} - \frac{y^2}{ab^2}\right) \frac{dy}{dx} - \frac{xy}{a^2b} = 0,$$

et, en multipliant par $\frac{y}{x^3}$,

(3)
$$\begin{cases} \frac{1}{ab^2} \cdot \frac{y^2 dy^2}{x^2 dx^2} + \left(\frac{1}{b} - \frac{1}{a} + \frac{x^2}{a^2 b} - \frac{y^2}{ab^2}\right) \frac{1}{x^2} \frac{y dy}{x^2 x dx} \\ - \frac{1}{a^2 b} \cdot \frac{y^2}{x^2} = 0, \end{cases}$$

c'est l'équation différentielle des lignes de courbure du paraboloïde elliptique.

Intégration de l'équation (3). — Si l'on fait $x^2 = v$, $y^2 = u$, cette équation devient

$$(4) \quad \frac{1}{ab^2} \rho \left(\frac{du}{d\rho}\right)^2 + \left(\frac{1}{b} - \frac{1}{a} + \frac{\rho}{a^2b} - \frac{u}{ab^2}\right) \frac{du}{d\rho} - \frac{u}{a^2b} = 0.$$

Comme u et v n'entrent qu'à la première puissance, on peut y satisfaire en substituant à u une fonction linéaire de v. Posons

$$u = cv + c'$$
, d'où $\frac{du}{dv} = c$.

En substituant dans l'équation (4), les termes qui multiplient v se détruisent et il reste

$$\left(\frac{1}{b} - \frac{1}{a} - \frac{c'}{ab^2}\right)c - \frac{c'}{a^2b} = 0,$$

d'où

$$c' = \frac{ab(a-b)c}{b+ac}.$$

La constante c reste donc arbitraire, et comme l'intégrale ne doit en renfermer qu'une, il en résulte que u = cv + c' ou

(5)
$$y' = cx' + \frac{ab(a-b)c}{b+ac}$$

est l'intégrale générale de l'équation (3). En faisant varier c, on aura les projections sur le plan des xy de toutes les lignes de courbure. Ces projections sont des ellipses si l'on a c < o, des hyperboles quand c est > o. Elles ont toutes leur centre à l'origine.

Détermination de la constante c. — Si l'on veut avoir les lignes de courbure qui passent par un point (x', y', z') de la surface, on déterminera c par l'équation

$$y'^2 = cx'^2 + \frac{ab(a-b)c}{b+ac},$$

011

$$ax'^{2}c^{2} + [bx'^{2} - ay'^{2} + ab(a - b)]c - by'^{2} = 0.$$

On en tire deux valeurs de c réelles et de signes contraires,

puisque a et b sont de même signe. Ces deux racines étant désignées par m et -n, les projections des lignes de courbure seront représentées par les équations

(6)
$$y^{2} = mx^{2} + \frac{ab(a-b)m}{b+am}.$$

(7)
$$y^2 = -nx^2 + \frac{ab(a-b)n}{an-b}$$

La première courbe est une hyperbole, la seconde une ellipse.

Discussion. — La constante m peut varier de o à l'infini, mais n doit être plus grande que $\frac{b}{a}$ et ne peut varier que de $\frac{b}{a}$ à l'infini. En effet, l'équation (7) étant mise sous la forme

$$y^2 + nx^2 = \frac{ab(a-b)n}{an-b},$$

le second membre doit être positif : donc, puisque a est >b, il faut que l'on ait an-b>o ou $n>\frac{b}{a}$

Examinons maintenant les hyperboles représentées par l'équation (6). A cause de l'hypothèse a>b, toutes ont leur axe réel dirigé suivant l'axe des γ . La valeur du demiaxe transverse est

$$\sqrt{\frac{ab(a-b)m}{b+am}},$$

ou bien

$$\sqrt{\frac{ab(a-b)}{a+\frac{b}{m}}}.$$

Si m varie de o à l'infini, cet axe augmente de o à $\sqrt{b(a-b)}$. En mettant l'équation (1) sous la forme

$$\frac{y^2}{m} = x^2 + \frac{ab(a-b)}{b+am},$$

on voit que pour $m = \infty$ elle se réduit à x = 0. L'hyperbole se confond alors avec l'axe des y ou plutôt avec la portion de l'axe des y qui commence à une distance de l'origine égale à $\pm \sqrt{b(a-b)}$.

Les ellipses représentées par l'équation (7) ont leurs axes dirigés suivant l'axe des x et l'axe des y.

Les demi-axes ont pour expressions

$$\sqrt{\frac{ab(a-b)}{an-b}}, \quad \sqrt{\frac{ab(a-b)}{a-\frac{b}{n}}}.$$

Le premier, dirigé suivant l'axe des x, diminue donc de l'infini à o quand x augmente de $\frac{b}{a}$ à ∞ . L'autre demi-

axe diminue de l'infini jusqu'à $\sqrt{b}(a-b)$. Donc tout point situé sur l'axe des γ et à une distance de l'origine plus grande que $\sqrt{b}(a-b)$ sera le sommet d'une de ces ellipses. Pour $n=\infty$ l'ellipse se réduit à l'axe des γ comme le montre l'équation (7) mise sous la forme

$$\frac{y^2}{n} = -x^2 + \frac{ab(a-b)}{an-b}:$$

cela résulte encore de ce que l'autre axe se réduit alors à o.

Si x'=0, une des valeurs de c est infinie et l'autre est positive ou négative suivant que y' est > ou < que $\sqrt{b(a-b)}$. Les projections des lignes de courbure sont alors l'axe des y et des hyperboles ou des ellipses, selon que y' est plus grand ou plus petit que $\sqrt{b(a-b)}$.

Si y' = 0, une des valeurs de c est nulle et l'autre toujours négative. Dans ce cas, les lignes de courbure se projettent suivant l'axe des x et suivant des ellipses.

CINQUANTE-SEPTIÈME LEÇON.

Calcul des différences finies. — Notions préliminaires. — Différence nième du premier terme d'une suite en fonction des termes de cette suite. — Terme général d'une suite en fonction du premier et de ses différences successives. — Différences des fonctions entières. — Différences de quelques fonctions fractionnaires ou transcendantes. — Calcul inverse des différences. — Théorèmes généraux. — Intégration de quelques fonctions.

CALCUL DES DIFFÉRENCES FINIES. - NOTIONS PRÉLIMINAIRES.

727. Le but général du calcul différentiel est de chercher les limites des rapports des accroissements simultanés de plusieurs quantités variables, ce que l'on peut faire sans considérer les valeurs numériques de ces accroissements. Dans le calcul aux différences finies, on s'occupe au contraire de ces valeurs numériques et l'on cherche à en déterminer la loi.

Soient

$$u_0$$
, u_1 , u_2 , ..., u_n , ...

une suite de valeurs successives que reçoit une quantité variable. Si l'on retranche chacune de ces valeurs de celle qui la suit, on obtient ce qu'on appelle les différences premières de ces valeurs, et on les représente par

$$\Delta u_0$$
, Δu_1 , Δu_2 , ..., Δu_n ,

en sorte que l'on a

$$u_1 - u_0 = \Delta u_0$$
, $u_2 - u_1 = \Delta u_1, \ldots, u_{n+1} - u_n = \Delta u_n, \ldots$

En opérant de la même manière sur la suite des différences premières, on obtient une suite de différences deuxièmes, qu'on représente par

$$\Delta^2 u_0$$
, $\Delta^2 u_1$, $\Delta^2 \dot{u_2}$, ..., $\Delta^2 u_n$, ...

On a donc, par définition,

$$\Delta u_1 - \Delta u_0 = \Delta^2 u_0, \quad \Delta u_2 - \Delta u_1 = \Delta^2 u_1, \dots$$

On formera de la même manière des différences troisiemes, quatrièmes, etc.

Par exemple, la suite des carrés des nombres entiers

a pour différences premières

et pour différences secondes

les différences troisièmes, et par suite les différences d'un ordre supérieur, sont nulles.

Dans cet exemple, toutes les différences secondes sont égales à 2. Si l'on admet la généralité de cette loi, on pourra prolonger indéfiniment la suite des différences premières, et, par leur moyen, celle des nombres carrés.

728. Le calcul des différences est fondé sur quelques principes analogues à ceux qui forment la base du calcul différentiel.

En premier lieu , u, v, z étant des quantités variables , on a

$$\Delta (u + v - z) = \Delta u + \Delta v - \Delta z,$$

c'est-à-dire que la différence d'une somme est égale à la somme algébrique des différences de ses parties. En esset,

$$\Delta(u + v - z) = (u_1 + v_1 - z_1) - (u + v - z)$$

= $(u_1 - u) + (v_1 - v) - (z_1 - z)$
= $\Delta u + \Delta v - \Delta z$,

La différence d'une constante est nulle. Donc

(2)
$$\Delta(u+a) = \Delta u.$$

On a encore

(3)
$$\Delta au = a\Delta u, \qquad ,$$

$$\operatorname{car} \Delta au = au_1 - au = a(u_1 - u) = a\Delta u.$$

EXPRESSION DE $\Delta^n u$.

729. Proposons-nous de trouver l'expression de $\Delta^n u$ en fonction de u, u_1, \ldots, u_n . On a d'abord

$$\Delta u = u_1 - u,$$

$$\Delta u_1 = u_2 - u_1.$$

$$\Delta^2 u = \Delta u_1 - \Delta u:$$

$$\Delta^2 u = u_2 - 2u_1 + u.$$

Mais donc

 $\Delta^2 u_1$ doit être composé avec u_3 , u_2 , u_1 , comme $\Delta^2 u$ avec u_2 , u_1 , u. On a donc

$$\Delta^2 u_1 = u_3 - 2 u_2 + u_1;$$

et en retranchant $\Delta^2 u$ de $\Delta^2 u_1$,

$$\Delta^3 u = u_3 - 3 u_2 + 3 u_1 - u.$$

On trouvera de la même manière

$$\Delta^4 u = u_4 - 4 u_3 + 6 u_2 - 4 u_1 + u_2$$

et ainsi de suite. On voit que les coefficients numériques qui entrent dans $\Delta^a u$, $\Delta^a u$, $\Delta^a u$, l'expression des différences sont les coefficients des puissances deuxième, troisième, quatrième du binôme, d'où l'on conclut, en généralisant,

(1)
$$\Delta^n u = u_n - nu_{n-1} + \frac{n(n-1)}{1 \cdot 2} u_{n-2} - \dots \pm u$$
,

ou, sous une forme symbolique,

$$\Delta^n u = (u - 1)^{(n)},$$

égalité qui tiendra lieu de la précédente, pourvu qu'après avoir développé le second membre par la formule du binôme, on remplace u^0 , u^1 , u^2 ... par u, u_1 , u_2 ...

Pour démontrer la généralité de cette loi, posons

(2)
$$\Delta^n u = u_n - \Lambda u_{n-1} + B u_{n-2} - C u_{n-3} + \ldots \pm u$$
.

On aura également

(3) $\Delta^n u_1 = u_{n+1} - A u_n + B u_{n-1} - C u_{n-2} + \dots \pm u_1,$ et en retranchant (2) de (3),

$$\Delta^{n+1} u = u_{n+1} - A \begin{vmatrix} u_n + B \end{vmatrix} u_{n+1} - C \begin{vmatrix} u_{n-2} + \dots + u \end{vmatrix} u_{n-2} + \dots + u.$$

. Or on sait que si 1, A, B,... sont les coefficients de $(x+1)^n$, 1+A, A+B,... sont les coefficients de $(x+1)^{n+1}$. De là résulte que si la formule (1) est vraie pour l'indice n, elle l'est encore pour l'indice n+1, ce qui démontre sa généralité.

730. Autrement, supposons la loi démontrée pour l'indice n et posons

$$\Delta^n u = \sum K u_p = (u - 1)^{(n)},$$

on aura

$$\Delta^n u_1 = \sum K u_{p+1}.$$

Done

$$\Delta^{n+1}u = \sum K u_{p+1} - \sum K u_p,$$

$$= \sum K (u_{p+1} - u_p),$$

ou, sous une forme symbolique,

$$\Delta^{n+1} u = \sum K u^p (u-1).$$

Il résulte de là

$$\Delta^{n+1}u = (u-1) \sum Ku^p = (u-1)(u-1)^{(n)},$$

et, par conséquent,

$$\Delta^{n+1}u=(u-1)^{(n+1)}.$$

EXPRESSION DU TERME GÉNÉRAL D'UNE SUITE EN FONCTION DU PREMIER TERME ET DE SES DIFFÉRENCES SUCCESSIVES.

731. On a, par définition,

$$u_1 = u + \Delta u,$$

$$u_2 = u_1 + \Delta u_1,$$

$$\Delta u_1 = \Delta u + \Delta^2 u.$$

En ajoutant ces équations membre à membre, on a

$$u_2 = u + 2 \Delta u + \Delta^2 u.$$

On aurait de même

$$\Delta u_2 = \Delta u + 2 \Delta^2 u + \Delta^3 u,$$

d'où, en ajoutant ces deux équations,

$$u_3 = u + 3\Delta u + 3\Delta^2 u + \Delta^3 u,$$

et ainsi de suite. On est ainsi conduit par induction à la formule

$$(1) u_n = u + n \Delta u + \frac{n (n-1)}{1 \cdot 2} \Delta^2 u + \ldots + \Delta^n u,$$

ou à la formule symbolique

$$u_n = (1 + \Delta)^n u$$
,

dont l'exactitude se démontrerait par le mode de raisonnement employé aux nos 729 et 730.

DIFFÉRENCES DES FONCTIONS ENTIÈRES.

732. Supposons maintenant que u soit une fonction entière de x du degré m, et que u_1 , d_2 ,... représentent les valeurs successives que prend cette fonction, quand on donne à x une suite d'accroissements égaux représentés par h. Soit

$$u = A x^m + B x^{m-1} + C x^{m-2} + \dots$$

On aura

$$\Delta u = A [(x+h)^m - x^m] + B [(x+h)^{m-1} - x^{m-1}] + C [(x+h)^{m-2} - x^{m-2}] + \dots$$

En développant et ordonnant par rapport à x, on aura un résultat de la forme

$$\Delta u = m A h x^{m-1} + B' x^{m-1} + C' x^{m-3} + \dots$$

Le premier terme est du $(m-1)^{i emc}$ degré et son coefficient se forme en multipliant le coefficient du premier terme de u par l'exposant de ce terme et par h.

En opérant de la même manière sur la différence première, on aura

$$\Delta^2 u = m(m-1) A h^2 x^{m-2} + B'' x^{m-3} + \dots,$$

on trouvera de même

$$\Delta^3 u = m(m-1)(m-2) \Lambda h^3 x^{m-3} + B^m x^{m-4} + \dots,$$
 et ainsi de suite.

Le degré de chaque différence va en diminuant d'une unité, d'où l'on conclut que la $m^{ième}$ sera constante et se réduira au premier terme, dont la loi est connue. On aura donc

$$\Delta^m u = 1.2.3...m \, A \, h^m.$$

Ainsi les différences mièmes d'une fonction entière de degré m sont constantes, lorsque la variable croît par degrés égaux. Les différences suivantes sont donc nulles.

733. Soit $u = x^m$. Alors

$$\Delta^m u = 1 \cdot 2 \cdot 3 \dots mh^m,$$

 $u_1 = (x + h)^m, \quad u_2 = (x + 2 \cdot h)^m, \dots$

Si l'on substitue ces valeurs dans la formule

(1)
$$\Delta^n u = u_n - n u_{n-1} + \frac{n(n-1)}{1 \cdot 2} u_{n-2} + \dots, (731)$$

on aura, si n=m,

(2)
$$\begin{cases} 1 \cdot 2 \cdot 3 \dots mh^m = (x + mh)^m \\ -m [x + (m-1)h]^m + \dots \pm x^m. \end{cases}$$

Faisant x = 0, h = 1,

(3)
$$\begin{cases} 1 \cdot 2 \cdot 3 \dots m = m^m - m \ (m-1)^m \\ + \frac{m \ (m-1)}{1 \cdot 2} \ (m-2)^m \dots \pm m. \end{cases}$$

Si l'on suppose n > m, alors on a $\Delta^n u = 0$, et la formule (1), en faisant encore, x = 0, h = 1, donne

(4)
$$0 = n^m - n(n-1)^m + \frac{n(n-1)}{12}(n-2)^m \dots$$

734. Prenons u égal à un produit de facteurs équidifférents. Soit

$$u = x(x + h)(x + 2h)...[x + (n - 1)h],$$

on aura

(1)
$$\Delta u = (x + h)(x + 2h)...[x + (n - 1)h]nh$$
,

$$(2 \cdot \Delta^{2} u = (x + 2 h) \dots [x + (n - 1) h] \dots n(n - 1) h$$

La loi de formation est évidente.

DIFFÉRENCES DE QUELQUES FONCTIONS FRACTIONNAIRES OU TRANSCENDANTES.

735. Voici encore quelques exemples de différences de fonctions non entières :

1°.
$$u = \frac{1}{x(x+h)(x+2h)\dots[x+(n-1)h]},$$

$$\Delta u = \frac{-nh}{x(x+h)(x+2h)\dots(x+nh)},$$

$$\Delta^2 u = \frac{n(n+1)h^2s}{x(x+h)\dots(x+nh)[x+(n+1)h]},$$

et ainsi de suite.

2°.
$$u = a^{x},$$

$$\Delta u = a^{x} (a^{h} - 1),$$

$$\Delta^{2} u = u^{x} (a^{h} - 1)^{2},$$

et, en général,

$$\Delta^n u == a^x (a^h - 1)^n.$$

3°.
$$u = \sin(ax + b),$$

$$\Delta u = \sin(ax + ah + b) - \sin(ax + b),$$

$$\Delta \sin(ax + b) = 2\sin\frac{1}{2}ah\cos\left(ax + b + \frac{ah}{2}\right).$$

On trouverait de même

$$\Delta\cos(ax+b) = -2\sin\frac{1}{2}ah\sin\left(ax+b+\frac{ah}{2}\right).$$

On trouvers ensuite

$$\Delta^{2}\sin\left(ax+b\right)=2\sin\frac{1}{2}ah.\Delta\cos\left(ax+b+\frac{ah}{2}\right),$$

et, à cause de la seconde formule,

$$\Delta^2 \sin(ax+b) = -4 \sin^2 \frac{ah}{2} \sin(ax+b+ah),$$

et ainsi de suite.

CALCUL INVERSE DES DIFFÉRENCES. — DÉFINITIONS ET NOTATIONS.

736. Le calcul inverse des différences a pour objet de déterminer une fonction quand on connaît sa différence finie, ou lorsqu'on a une relation entre cette fonction, la variable dont elle dépend et quelques-unes de ses différences. Mais nous nous bornerons au premier cas.

Soit x la variable indépendante dont l'accroissement Δx est supposé constant et égal à h; soit F(x) la fonction inconnue et f'(x) la différence donnée : on doit avoir

$$\Delta \mathbf{F}(x) = f(x)$$
, ou $\mathbf{F}(x+h) - \mathbf{F}(x) = f(x)$.

La fonction F(x) dont la différence est f(x) se représente par $\sum f(x)$ et se nomme l'intégrale aux différences finies de f(x). Il est clair, d'après ces notations, que les caractéristiques \sum et Δ appliquées à la même fonction se détruisent, et que l'on a

$$\Delta \sum f(x) = f(x), \quad \sum \Delta f(x) = f(x).$$

737. Dans le calcul intégral ordinaire, quand on a obtenu une intégrale particulière d'une différentielle donnée, on ajoute à cette première solution une constante arbitraire pour former l'intégrale générale. Dans le calcul intégral aux différences finies, ce n'est pas une constante arbitraire qu'il faut ajouter à une intégrale particulière, mais la fonction la plus générale dont la différence est nulle. Ainsi $\varphi(x)$ étant une fonction dont la différence est f(x), il faudra que l'on ait

$$\mathbf{F}(x) = \varphi(x) + \varpi(x),$$

 $\varpi(x)$ devant satisfaire à l'équation

$$\varpi(x+h)-\varpi(x)=0.$$

La valeur de la fonction $\varpi(x)$ est complétement arbitraire quand x passe d'une valeur quelconque a à la valeur a+h. Pour les valeurs de x, qui ne sont pas comprises dars cet

intervalle, $\varpi(x)$ sera déterminée par la condition de reprendre la même valeur quand x augmente de h. On la nomme pour cette raison une fonction périodique.

Cette fonction peut être représentée par une courbe.

Prenons sur l'axe Ox des intervalles AA', A'A'', A''A''',... égaux à h; puis élevons les perpendiculaires

égales AB, A'B', Λ'' B",.... Tracons à volonté l'arc BMB', et soit BB' B'' B'''...
une ligne composée d'un nombreindéfini d'arcs égaux à BMB'. L'ordonnée de cette

courbe aura la même valeur pour des valeurs de x qui diffèrent de h et représentera la fonction cherchée.

On aurait une fonction jouissant de la propriété en question, si l'on prenait

$$\sigma(x) = \Psi\left(\sin\frac{2\pi x}{h}, \cos\frac{2\pi x}{h}\right),$$

Y désignant une fonction tout à fait arbitraire.

THÉORÈMES SUR LES INTÉGRALES AUX DIFFÉRENCES FINIES.

738. Dans le calcul intégral, $\int f(x) dx$ représente la somme des valeurs de la différentielle f(x) dx quand xvarie de a à b. L'intégrale aux différences jouit d'une propriété analogue.

Soit F(x) une fonction dont la dissérence finie est f(x). On a, quel que soit x,

$$\Delta F(x)$$
 ou $F(x+h) - F(x) = f(x)$.

Appelons $x_0, x_1, x_2, \ldots, x_n$ des valeurs de x croissant par intervalles constants et égaux à h. On aura

$$\mathbf{F}(x_1) - \mathbf{F}(x_0) = f(x_0),$$

$$\mathbf{F}(x_2) - \mathbf{F}(x_1) = f(x_1),$$

$$\mathbf{F}(x_n) - \mathbf{F}(x_{n-1}) = f(x_{n-1}).$$

d'où

(1)
$$\mathbf{F}(x_n) - \mathbf{F}(x_0) = f(x_0) + f(x_1) + \ldots + f(x_{n-1}),$$
 ce qu'il fallait démontrer.

Notons encore, comme exemples de l'analogie des deux calculs, les formules

$$(2) \qquad \sum (u+v-z) = \sum u + \sum v - \sum z,$$

$$\sum au = a \sum u,$$

conséquences évidentes des formules (2) et (3) du nº 728.

INTÉGRATION DE QUELQUES FONCTIONS.

739. On a trouvé (735, 2°)

$$\Delta \cdot a^x = a^x (a^h - 1),$$

d'où l'on tire, en intégrant,

$$\sum a^x = \frac{a^x}{a^h - 1} + C.$$

Si l'on donne à x les valeurs $0, 1, 2, \ldots, n-1$, on a h = 1, et en appliquant la formule (1), on aura

$$1 + a + a^{2} + \ldots + a^{n-1} = \frac{a^{n}}{a-1} - \frac{1}{a-1} = \frac{a^{n}-1}{a-1}$$

C'est la formule connue qui donne la somme des termes d'une progression géométrique.

740. On a trouvé (735, 3°)

$$\Delta \sin(ax+b) = 2\sin\frac{1}{2}ah\cos\left(ax+\frac{ah}{2}+b\right)$$

changeons $x \text{ en } x - \frac{h}{2}$, il vient

$$\Delta \sin\left(ax - \frac{ah}{2} + b\right) = 2\sin\frac{1}{2}ah\cos(ax + b),$$

d'où

$$\sum \cos(ax+b) = \frac{\sin\left(ax - \frac{ah}{2} + b\right)}{2\sin\frac{1}{2}ah}.$$

En faisant $x = 0, 1, 2, \ldots, n-1$, on aura

$$\cos b + \cos (a+b) + \cos (2a+b) + \dots + \cos [(n-1)a+b]$$

$$= \frac{\sin \left[\left(n-\frac{1}{2}\right)a+b\right] - \sin \left(b-\frac{a}{2}\right)}{2\sin \frac{1}{2}a},$$

c'est-à-dire,

$$\cos b + \cos (a+b) + \cos (2 a+b) + \dots + \cos [(n-1)a+b]$$

$$= \frac{\sin \frac{na}{2} \cos \left(\frac{n-1}{2} a + b\right)}{\sin \frac{1}{2} a}.$$

On trouverait de la même manière

$$\sin b + \sin (a + b) + \sin (2 a + b) + \dots + \sin [(n - 1) a + b]$$

$$= \frac{\sin \frac{na}{2} \sin \left(\frac{n - 1}{2} a + b\right)}{\sin \frac{1}{2} a}.$$

741. En intégrant la formule du n° 734, et remplaçant x par x - h, et n par n + 1, on a

(1)
$$\begin{cases} \sum x (x+h) \dots [x+(n-1)h] \\ = \frac{(x-h)x(x+h) \dots [x+(n-1)h]}{(n+1)h} + C. \end{cases}$$

On tire de la seconde formule du nº 735,

(2)
$$\begin{cases} \sum \frac{1}{x(x+h)...[x+(n-1)h]} \\ = -\frac{1}{(n-1)h} \times \frac{1}{x(x+h)(x+2h)...[x+(n-2)h]} + C. \end{cases}$$

En changeant x en m + h, dans la formule (1), puis faisant h = 1, on aura

(3)
$$\begin{cases} 1.2.3...n + 2.3.4...(n+1) + 3.4.5...(n+2) + ... \\ + m(m+1)(m+2)...(m+n-1) \\ = \frac{m(m+1)(m+2)...(m+n)}{n+1}. \end{cases}$$

16

Ici la constante est nulle parce que le premier membre est nul pour m = 0.

Par exemple, si n=3, on a

$$1.2.3 + 2.3.4 + 3.4.5 + ... + m (m + 1) (m + 2)$$

$$= \frac{1}{4} m (m + 1) (m + 2) (m + 3).$$

On tirera de même de la formule (2)

(4)
$$\begin{cases} \frac{1}{1 \cdot 2 \cdot ...n} + \frac{1}{2 \cdot 3 \cdot ...(n+1)} + \dots + \frac{1}{m(m+1) \cdot ...(m+n-1)} \\ = \frac{1}{n-1} \left[\frac{1}{1 \cdot 2 \cdot 3 \cdot ...(n-1)} - \frac{1}{m(m+1) \cdot ...m+n} \right].$$

Par exemple, on a, pour n = 3,

$$=\frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{2 \cdot 3 \cdot 4} + \frac{1}{3 \cdot 4 \cdot 5} + \dots + \frac{1}{m(m+1)(m+2)}$$
$$=\frac{1}{4} - \frac{1}{2m(m+1)(m+2)};$$

pour n=2,

$$\frac{1}{1.2} + \frac{1}{2.3} + \ldots + \frac{1}{m(m+1)} = 1 - \frac{1}{m+1}$$

Il est facile de vérifier ce dérnier résultat, car le premier membre peut se mettre sous la forme

$$\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\ldots+\left(\frac{1}{m}-\frac{1}{m+1}\right),$$

et la somme de ces termes est évidemment égale à $1 - \frac{1}{m+1}$.

CINQUANTE-HUITIÈME LEÇON.

Suite du calcul inverse des différences. — Intégration des fonctions entières. — Évaluation des sommes par les intégrales ordinaires et des intégrales par les sommes. — Formules d'interpolation. — Formule de Newton. — Formule de Lagrange. — Approximation des quadratures.

INTÉGRATION DES FONCTIONS ENTIÈRES.

742. L'intégrale d'un polynôme du degré m

$$f(x) = \mathbf{A} x^m + \mathbf{B} x^{m+1} + \mathbf{C} x^{m+2} + \dots,$$

devant ètre un polynôme du degré m+1, posons

$$\sum f(x) = A' x^{m+1} + B' x^m + C' x^{m+1} + \dots,$$

A', B', C',... désignant des coefficients inconnus. On doit avoir

$$A'[(x+h)^{m+1}-x^{m+1}]+B'[(x+h)^m-x^m]+\dots$$
= $Ax^m+Bx^{m-1}+Cx^{m-2}+\dots$

ou bien

$$\left| \begin{array}{c} (m+1) \, A' h \, \left| \, x^m + \frac{(m+1) \, m}{1 \cdot 2} \, A' h^2 \, \right| \, x^{m-1} \\ + \, B' \, m h & \\ + \, \frac{(m+1) \, m \, (m-1)}{1 \cdot 2 \cdot 3} \, A' h^3 \, \right| \, x^{m-2} \\ + \, \frac{m \, (m-1)}{1 \cdot 2} \, B' \, h^2 \\ + \, (m-1) \, C' \, h & \\ \vdots \\ = \, A \, x^m + \, B \, x^{m-1} + \, C \, x^{m-2} \cdot \dots$$

En égalant les coefficients des mêmes puissances de x

dans les deux membres, on aura

$$A' = \frac{A}{(m+1)h},$$

$$B' = \frac{B}{mh} - \frac{1}{2}A,$$

$$C' = \frac{Ch}{m+1} - \frac{1}{2}B + \frac{mAh}{2},$$

et ainsi de suite.

Pour trouver $\sum x^m$, il suffit de faire A = 1, B = 0, C = 0, etc., et l'on a

$$A' = \frac{1}{(m+1)h},$$

$$B' = -\frac{1}{2},$$

$$C' = \frac{mh}{2}, \dots,$$

d'où

$$\sum x^{m} = \frac{1}{(m+1)h} x^{m+1} - \frac{1}{2} x^{m} + \frac{1}{12} mhx^{m-1} - \dots$$

On voit que le premier terme est égal à l'intégrale de $x^m dx$ divisée par h et que le coefficient du second est égal à $-\frac{1}{2}$.

743. On peut trouver $\sum x^m$ et plus généralement

 $\sum f(x)$ par la série de Taylor. On a

$$f(x+h) - f(x)$$
 ou
$$\Delta f(x) = hf'(x) + \frac{h^2}{1 \cdot 2} f''(x) + \dots;$$

ce développement se termine de lui-même quand f(x) est une fonction entière de x.

Si l'on intègre les deux membres, on a

$$f(x) = h \sum f'(x) + \frac{h^2}{1.2} \sum f''(x) + \dots,$$

et si l'on pose $f(x) = x^{m+1}$,

$$x^{m+1} = (m+1)h\sum x^{m} + (m+1)m\frac{h^{2}}{1\cdot 2}\sum x^{m-1} + \frac{(m+1)m(m-1)}{1\cdot 2\cdot 3}h^{3}\sum x^{m-2} + \dots$$

Pour déduire de là $\sum x^m$, il faut faire successivement m = 0, 1, 2, 3...; on aura

$$\sum x^{0} = \frac{x}{h} + C,$$

$$\sum x = \frac{x^{2}}{2h} - \frac{x}{2} + C,$$

$$\sum x^{2} = \frac{x^{3}}{3h} - \frac{1}{2}x^{2} + \frac{h}{6}x + C,$$

$$\sum x^{3} = \frac{x^{4}}{4h} - \frac{1}{2}x^{3} + \frac{h}{4}x^{2} + C,$$

$$\sum x^{4} = \frac{x^{5}}{5h} - \frac{1}{2}x^{4} + \frac{h}{3}x^{3} - \frac{h^{3}}{30}x + C.$$

Si l'on fait h = 1, et qu'on donne à x les valeurs 0, 1, 2, $3 \dots n$, ce qui change $\sum x^m$ en $\sum x^m + x^m$, on aura les sommes des puissances des nombres 1, 2, 3, ..., n, savoir:

$$S_{1} = \frac{1}{2} n^{2} + \frac{1}{2} n = \frac{n(n+1)}{2},$$

$$S_{2} = \frac{1}{3} n^{3} + \frac{1}{2} n^{2} + \frac{1}{6} n = \frac{n(n+1)(2n+1)}{1 \cdot 2 \cdot 3},$$

$$S_{3} = \frac{1}{4} n^{4} + \frac{1}{2} n^{3} + \frac{1}{4} n^{2} = \frac{n^{2}(n+1)^{2}}{4},$$

$$S_{4} = \frac{1}{5} n^{5} + \frac{1}{2} n^{4} + \frac{1}{3} n^{3} - \frac{1}{30} n.$$

On remarquera que la somme des cubes des *n* premiers nombres est le carré de la somme de ces nombres.

SOMMATION DES PILES DE BOULETS.

744. Considérons d'abord une pile à base triangulaire. Soit n le nombre des boulets contenus sur un côté de la base, la base contiendra un nombre de boulets égal à

$$1 + 2 + 3 \dots + n = \frac{n(n+1)}{2}$$

Pour avoir le nombre total N des boulets, il faut faire successivement n=1, 2, 3, etc., ce qui donnera les boulets contenus dans les diverses tranches à partir du sommet. Le nombre cherché est donc égal à

$$\frac{1.2}{2} + \frac{2.3}{2} + \frac{3.4}{2} + \cdots + \frac{n(n+1)}{2}$$

ou, d'après la formule (1) du nº 741,

(1)
$$N = \frac{n(n+1)(n+2)}{1.2.3}.$$

Si la base de la pile est un carré dont chaque côté renferme n boulets, le nombre des boulets de cette tranche sera n^2 . La somme de toutes les tranches sera donc

$$1+2^2+3^2+\ldots+n^2$$
,

et l'on aura (743)

(2)
$$N = \frac{n(n+1)(2n+1)}{6}$$
.

Soit enfin une pile rectangulaire. Appelons n le nombre des boulets contenus dans le petit côté de la base et a+1 le nombre des boulets qui forment la rangée supérieure de la pile. Par l'une des extrémités de cette rangée, concevons un plan parallèle au plan du triangle équilatéral qui aboutit à l'autre extrémité. La pile se trouve alors partagée en une pile à base carrée et un prisme dont l'arête la plus élevée contient a boulets. Donc si l'on nomme N le nombre des boulets de la pile, on aura

$$N = \frac{n(n+1)(2n+1)}{6} + a\frac{n(n+1)}{2}$$

(3)
$$N = \frac{n(n+1)}{2} \left[\frac{a+1+2(n+a)}{3} \right];$$

or a+1 est le nombre des boulets de l'arête supérieure et n+a le nombre des boulets d'un côté de la base : donc le nombre des boulets d'une pile triangulaire est égal au nombre des boulets contenus dans l'une des faces triangulaires, multiplié par le tiers de la somme des nombres de boulets contenus dans les côtés parallèles de la pile.

Il existe une analogie évidenté entre la formule (3) et celle qui donne le volume d'un prisme tronqué.

ÉVALUATION DES SOMMES PAR LES INTÉGRALES ORDINAIRES ET DES INTÉGRALES PAR LES SOMMES.

745. Soit

$$F(x) = \int f(x) dx$$
$$f(x) = \frac{dF(x)}{dx}$$

ou.

On a, par la formule de Taylor,

$$F(x+h) - F(x) = hf(x) + \frac{h^2}{1 \cdot 2} f'(x) + \frac{h^3}{1 \cdot 2 \cdot 3} f''(x) + \dots$$

Donnant à x les valeurs $x_0, x_1, x_2, \ldots, x_{n-1}$ et désignant x_n par X, on a

$$F(x_{1}) - F(x_{0})$$

$$= hf_{\bullet}(x_{0}) + \frac{h^{2}}{1 \cdot 2}f'(x_{0}) + \frac{h^{3}}{1 \cdot 2 \cdot 3}f''(x_{0}) + \dots,$$

$$F(x_{2}) - F(x_{1})$$

$$= hf(x_{1}) + \frac{h^{2}}{1 \cdot 2}f'(x_{1}) + \frac{h^{3}}{1 \cdot 2 \cdot 3}f''(x_{1}) + \dots,$$

$$F(X) - F(x_{n-1})$$

$$= hf(x_{n-1}) + \frac{h^{2}}{1 \cdot 2}f'(x_{n-1}) + \frac{h^{3}}{1 \cdot 2 \cdot 3}f''(x_{n-1})$$

et, en ajoutant membre à membre,

$$F(X) - F(x_0) = h[f(x_0) + f(x_1) + \dots + f(x_{n-1})] + \frac{h^2}{1 \cdot 2} [f'(x_0) + f'(x_1) + \dots + f'(x_{n-1})]$$

Posons

$$f(x_0) + f(x_1) + \ldots + f(x_{n-1}) = Sf(x),$$

 $f'(x_0) + f'(x_1) + \ldots + f'(x_{n-1}) = Sf'(x),$

Comme $F(X) - F(x_0)$ n'est autre chose que l'intégralc définie de f(x) dx, prise entre les limites x_0 et X, l'égalité précédente pourra s'écrire

$$\int_{x_{\mathrm{o}}}^{\mathbf{X}} f(x) \, dx = h \, \mathbf{S} \, f(x) + \frac{h^{\mathrm{o}}}{1.2} \mathbf{S} f'(x) + \frac{h^{\mathrm{o}}}{1.2.3} \mathbf{S} f''(x) + \dots$$

Remplaçant f(x) successivement par $f'(x), f''(x), \dots$ on aura

$$f'(X) - f'(x_0) = h S f'(x) + \frac{h^2}{1.2} S f'''(x) + \frac{h^3}{1.2.3} S f'''(x) + \dots$$

$$f'(X) - f'(x_0) = h S f''(x) + \frac{h^2}{1.2} S f'''(x) + \frac{h^3}{1.2.3} S f^{iv}(x) + \dots$$

$$f''(X) - f''(x_0) = h S f'''(x) + \frac{h^2}{1.2.3} S f^{iv}(x) + \dots$$

 $J(x) = J(x_0) = nsJ(x_0) + \frac{1}{1.2}sJ(x_0) + \dots$

Multipliant ces égalités par I, Ah, Bh^2 , Ch^3 ..., et ajoutant, il vient

$$\begin{cases} \int_{x_0}^{X} f(x) dx + Ah[f(X) - f(x_0)] + Bh^2[f'(X) - f'(x_0)] \\ + Ch^3[f''(X) - f''(x_0)] + \dots \\ = hSf(x) + h^2Sf'(x) \left(\frac{1}{1 \cdot 2} + A\right) \\ + h^3Sf''(x) \left(\frac{1}{1 \cdot 2 \cdot 3} + \frac{A}{1 \cdot 2} + B\right) \\ + h^4Sf'''(x) \left(\frac{1}{1 \cdot 2 \cdot 3 \cdot 4} + \frac{A}{1 \cdot 2 \cdot 3} + \frac{B}{1 \cdot 2} + G\right) + \dots \end{cases}$$

Le second membre de cette égalité se réduit à h S f(x), si l'on pose

$$\frac{1}{1.2} + A = 0,$$

$$\frac{1}{1.2.3} + \frac{A}{1.2} + B = 0,$$

$$\frac{1}{1.2.3.4} + \frac{A}{1.2.3} + \frac{B}{1.2} + C = 0,$$

d'où l'on tire

$$A = -\frac{1}{2},$$

$$B = \frac{1}{12},$$

$$C = 0,$$

$$D = \frac{1}{720}, = -\frac{1}{6},$$

$$E = 0, \dots$$

de là résulte

(2)
$$\begin{cases} Sf(x) = \frac{1}{h} \int_{x_0}^{X} f(x) dx - \frac{1}{2} [f(X) - f(x_0)] \\ + \frac{1}{12} h [f'(X) - f'(x_0)] \\ - \frac{1}{720} h^3 [f'''(X) - f'''(x_0)] + \dots, \end{cases}$$

formule qui sert à représenter une somme au moyen d'une intégrale définie.

746. L'équation (2), résolue par rapport à $\int_{x_0}^{X} f(x) dx$, fiera dépendre la détermination d'une intégrale ordinaire de celle d'une intégrale aux différences finies. En remplaçant $\mathbf{S}f(x)$ par $f(x_0) + f(x_1) + f(x_2) + \ldots$, on

aura

(3)
$$\begin{cases} \int_{x_{0}}^{X} f(x) dx = h \left[\frac{f(x_{0})}{2} + f(x_{1}) + f(x_{2}) + \dots + \frac{f(X)}{2} \right] \\ - \frac{1}{12} h^{2} [f'(X) - f'(x_{0})] \\ + \frac{1}{720} h^{4} [f'''(X) - f'''(x_{8})] + \dots \end{cases}$$

On remarquera que le coefficient de h est égal à la somme des trapèzes inscrits dans la courbe y = f(x), et déterminés par des ordonnées équidistantes. Quant au premier membre, il représente l'aire de cette courbe.

747. La détermination des coefficients A, B, C,..., peut se faire au moyen d'une fonction particulière, puisque leur valeur numérique doit être indépendante de la fonction f(x). Si-l'on prend

$$f(x) = e^x,$$

on a

$$\int_{x_0}^{X} f(x) dx = e^{-x_0} - c^{x_0},$$

$$\mathbf{S}f(x) = e^{x_0} + e^{x_0 + h} + \ldots + e^{x_0 + (n-1)h} = \frac{e^{\mathbf{X}} - e^{\mathbf{I}_n}}{e^h - \mathbf{I}},$$

puisque $X = x_0 + nh$.

Si l'on porte les valeurs précédentes dans l'équation (1), le facteur $e^{x} - e^{x_0}$ se trouvera commun aux deux membres, et, en le supprimant, on aura

(4)
$$\frac{h}{c^h - 1} = 1 + Ah + Bh^2 + Ch^3 + \dots$$

Il suffit donc de développer $\frac{h}{e^h-1}$ suivant les puissances de h, ce qui se fera par la formule de Maclaurin.

On sait déjà que $\Lambda = -\frac{1}{2}$: l'égalité (4) revient donc à .

la suivante,

$$1 + B h^2 + C h^3 + \ldots = \frac{h}{e^h - 1} + \frac{h}{2} = \frac{h (e^h + 1)}{2 (e^h - 1)},$$

ou bien

$$1 + Bh^{2} + Ch^{3} + Dh^{4} + \dots = \frac{h}{2} \cdot \frac{e^{\frac{h}{2}} + e^{-\frac{h}{2}}}{h - h} \cdot e^{\frac{h}{2}} - e^{-\frac{h}{2}}$$

Le second membre ne change pas quand h est remplacé par — h. Il en résulte que le premier membre ne doit renfermer que des puissances paires de h. On a donc

$$C = 0$$
, $E = 0$,....

FORMULES D'INTERPOLATION. - FORMULE DE NEWTON.

748. L'interpolation a pour objet de trouver une fonction d'une variable, connaissant les valeurs de cette fonction qui correspondent à un certain nombre de valeurs données de la variable. Ce problème est indéterminé tant qu'on ne fixe pas la forme de la fonction cherchée, car il revient à faire passer une courbe par des points donnés, ce qui peut se faire d'une infinité de manières, tant que la courbe n'est pas définie. Le problème de l'interpolation devient déterminé quand la fonction est donnée de forme et qu'elle renferme autant de paramètres distincts qu'il y a de valeurs données de la fonction. Par exemple, si l'on se donne n+1 valeurs d'une fonction entière du degré n, pour n+1 valeurs de la variable, on aura n+1 équations pour déterminer les n+1 coefficients inconnus.

Nous examinerons d'abord le cas où les valeurs de la variable sont équidistantes.

Soient donc

$$x_0, x_1, x_2, \ldots, x_n,$$

n + 1 valeurs équidistantes d'une variable, et soit h leur

différence constante. En choisissant convenablement l'origine des x, on pourra faire en sorte que

$$x_0 = 0$$
, $x_1 = h$, $x_2 = 2h$,..., $x_n = nh$.

Soient

$$u_0, \qquad u_1, \qquad u_2, \ldots, \qquad u_n$$

les valeurs correspondantes d'une fonction u, que nous supposerons entière et du $n^{i\acute{e}mr}$ degré. A l'aide de ces valeurs on pourra former les différences successives Δu_0 , $\Delta^2 u_0$, $\Delta^3 u_0$,.... Mais on a (731)

$$u_m = u_{\emptyset} + m \Delta u_{\emptyset} + \frac{m (m-1)}{1 \cdot 2} \Delta^2 u_{\emptyset} + \dots$$

Ce développement de u_m s'arrête de lui-même au terme qui contient $\Delta^m u_0$, parce que les coefficients des termes suivants se trouvent nuls. Ainsi on peut le prolonger indéfiniment. En supposant m < n ou au plus égal à n, on peut écrire

$$(1) \begin{cases} u_{m} = u_{0} + m \Delta u_{0} + \frac{m(m-1)}{1 \cdot 2} \Delta^{2} u_{0} + \dots \\ + \frac{m(m-1)(m-2)\dots(m-n+1)}{1 \cdot 2 \cdot 3 \dots n} \Delta^{n} u_{0}. \end{cases}$$

Remplaçons m par $\frac{x}{h}$, et posons

(2)
$$\begin{pmatrix} u = u_0 + \frac{x}{h} \Delta u_0 + \frac{x}{h} \left(\frac{x}{h} - 1 \right) \frac{\Delta^2 u_0}{1 \cdot 2} + \dots \\ + \frac{x}{h} \left(\frac{x}{h} - 1 \right) \cdots \left(\frac{x}{h} - n + 1 \right) \frac{\Delta^n u_0}{1 \cdot 2 \cdot \dots n}$$

Le polynôme u se réduira évidemment à u_m pour x = mh; par conséquent, il aura les valeurs

$$u_0, u_1, u_2, \ldots, u_n,$$

pour x égal à

$$0, \quad h, \quad 2h, \ldots, \quad nh,$$

et comme il est du n^{ame} degré, ce sera donc le polynòme demandé.

La formule (2) est connue sous le nom de formule d'interpolation de Newton.

FORMULE DE LAGRANGE.

749. Supposons maintenant que les valeurs données à de x,

$$x_0, x_1, x_2, \ldots, x_n,$$

soient quelconques. Posons

$$(1) u = \mathbf{A} + \mathbf{B}x + \mathbf{C}x^2 + \ldots + \mathbf{G}x^n.$$

On a pour déterminer les n + 1 coefficients A, B,..., G, les n + 1 conditions

$$(2) \begin{cases} u_0 = A + Bx_0 + Cx_0^2 + \dots + Gx_0^n, \\ u_1 = A + Bx_1 + Cx_1^2 + \dots + Gx_1^n, \\ u_2 = A + Bx_2 + Cx_2^2 + \dots + Gx_2^n, \\ \dots & \dots & \dots \\ u_n = A + Bx_n + Cx_n^2 + \dots + Gx_n^n. \end{cases}$$

D'après les formules de résolution des équations du premier degré, les inconnues A, B, C,... contiendront u_0, u_1, \ldots, u_n au premier degré. En remplaçant A, B, C,...par leurs valeurs dans la fonction u, et réunissant tous les termes qui renferment u_0, u_1, \ldots , on aura

$$u = P_0 u_0 + P_1 u_1 + P_2 u_2 + \ldots + P_n u_n,$$

 P_0 , P_1 , P_2 ... étant des fonctions de x et de x_0 , x_1 , x_2 ..., x_n . Si l'on fait $x = x_0$, dans la formule, on doit trouver $u = u_0$, ce qui exige que l'on ait

$$P_0 = 1$$
, $P_1 = 0$, $P_2 = 0$,..., pour $x = x_0$,

car les quantités $u_0, u_1, u_2, ...,$ n'ont aucune dépendance entre elles. De même, on aura

$$P_0 = 0$$
, $P_1 = 1$, $P_2 = 0$,..., $P_n = 0$, pour $x = x_1$, et ainsi de suite.

La fonction P_0 devra donc être nulle pour $x = x_1$, $x = x_2, \ldots, x = x_n$, et comme elle est du $n^{i \hat{c} me}$

degré, on peut écrire

$$P_0 = A(x - x_1)(x - x_2)...(x - x_n),$$

A étant un coefficient numérique. Mais P_{ϑ} doit être 1 pour $x = x_{\vartheta}$, donc

$$\mathbf{I} = \mathbf{A} (x_0 - x_1) (x_0 - x_2) \dots (x_0 - x_n),$$

d'où résulte

$$\mathbf{P}_{0} = \frac{(x - x_{1})(x - x_{2})...(x - x_{n})}{(x_{0} - x_{1})(x_{0} - x_{2})...(x_{0} - x_{n})}$$

On trouvera de même

$$\begin{aligned} \mathbf{P}_{1} &= \frac{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)\ldots\left(x_{1}-x_{n}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)\ldots\left(x_{1}-x_{n}\right)}, \\ \mathbf{P}_{2} &= \frac{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{1}\right)\left(x_{1}-x_{3}\right)\ldots\left(x_{1}-x_{n}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)\ldots\left(x_{2}-x_{n}\right)}, \end{aligned}$$

et ainsi de suite. En portant ces valeurs dans l'expression de u, on aura la formule d'interpolation de Lagrange,

(3)
$$\begin{cases} u = \frac{(x - x_1)(x - x_2) \dots (x - x_n)}{(x_0 - x_1)(x_0 - x_2) \dots (x_0 - x_n)} u_0 \\ + \frac{(x - x_0)(x - x_2) \dots (x - x_n)}{(x_1 - x_0)(x_1 - x_2) \dots (x_1 - x_n)} u_1 \\ + \dots & \dots \\ + \frac{(x - x_0)(x - x_1) \dots (x - x_{n-1})}{(x_n - x_0)(x_n - x_1) \dots (x_n - x_{n-1})} u_n. \end{cases}$$

Il n'existe pas d'autres fonctions du n^{teme} degré remplissant les conditions énoncées, car si l'on avait encore

$$u = A' + B' x + \ldots + G' x^n,$$

il faudrait que la différence

$$A - A' + (B - B')x + ... + (G - G')x^n$$

devint nulle pour les n+1 valeurs $x_0, x_1, x_2, \ldots, x_n$. Ce qui est impossible, car une équation du n^{iime} degré ne peut pas admettre plus de n racines.

750. La formule de Lagrange peut se déduire de la décomposition, en fractions simples, d'une fraction algébrique rationnelle $\frac{\varphi(x)}{f(x)}$, dans laquelle le degré de $\varphi(x)$ est moindre que celui de f(x), et dont le dénominateur a toutes ses racines inégales.

Posons

$$\varphi(x) = u, \quad f(x) = (x - x_0) (x - x_1) \dots (x - x_n),$$

on a

$$(4) \begin{cases} \frac{\varphi(x)}{f(x)} = \frac{\varphi(x_0)}{f'(x_0)} \cdot \frac{1}{x - x_0} + \frac{\varphi(x_1)}{f'(x_1)} \cdot \frac{1}{x - x_1} + \dots \\ + \frac{\varphi(x_n)}{f'(x_n)} \cdot \frac{1}{(x - x_n)} \end{cases}$$

Mais $\varphi(x_0) = u_0$ et

$$f'(x_0) = (x_0 - x_1)(x_0 - x_2) + \ldots + (x_0 - x_n).$$

Donc, si l'on multiplie les deux membres de l'égalité (4) par f(x), on trouvera que $\varphi(x)$ ou u est la somme de plusieurs termes de la forme

$$\frac{(x-x_1)(x-x_2)...(x-x_n)}{(x_0-x_1)(x_0-x_2)...(x_0-x_n)}u_0.$$

FORMULES D'APPROXIMATION POUR LES QUADRATURES, RECTIFICATIONS, CUBATURES.

751. L'évaluation des aires, des longueurs, des volumes se ramène, en dernière analyse, à la détermination d'une ou de plusieurs intégrales définies relatives à une seule variable. Mais il est souvent impossible d'effectuer l'intégration indiquée et il faut recourir à des formules d'approximation.

Supposons qu'il s'agisse d'évaluer l'intégrale

$$\int_{x_0}^x f(x)dx,$$

ou l'aire de la courbe y = f(x).

La formule d'Euler (746) offre un premier moyen d'obtenir une valeur approchée de cette intégrale. On peut aussi, à l'aide des formules d'interpolation, remplacer f(x) par une fonction entière du $n^{ième}$ degré que l'on intégrera, ce qui revient à remplacer la courbe y = f(x) par une parabole du $n^{ième}$ degré qui a n points communs avec elle. On peut encore prendre une suite de paraboles du deuxième degré, et remplacer les parties correspondantes de l'aire cherchée par celles de ces paraboles. C'est cette dernière méthode que nous allons développer.

Partageons l'intervalle $x-x_0$ en un nombre pair n de parties égales. Par les trois points de la courbe, (x_0, y_0) , $(x_0 + h, y_1)$, $(x_0 + 2h, y_2)$, faisons passer une parabole du second degré dont l'axe soit parallèle à l'axe des y, ce qui est toujours possible, comme l'on sait. Désignons par z l'abscisse comptée à partir du pied de la première ordonnée. L'équation de la parabole sera

$$y = A + Bz + Cz^2$$
,

et nous aurons

$$y_0 = A$$
,
 $y_1 = A + Bh + Ch^2$,
 $y_2 = A + 2Bh + 4Ch^2$,

et ensuite

$$\int_{0}^{2h} y dz = \frac{2h}{3} (3A + 3Bh + 4Ch^{2})$$

$$= \frac{h}{3} [A + 4A + 4Bh + 4Ch^{2} + A + 2Bh + 4Ch^{2}]:$$

par conséquent,

$$\int_{0}^{2h} y dz = \frac{h}{3} [y_0 + 4y_1 + y_2].$$

On opérera de la même manière sur les autres parties de l'aire, et l'on aura une valeur approchée de cette aire en faisant la somme de ces parties, savoir

$$\frac{h}{3}(y_0 + 4y_1 + y_2) + \frac{h}{3} v_2 + 4y_3 + y_4) + \frac{h}{3}(y_4 + 4y_5 + y_6) + \dots + \frac{h}{3}(y_{n-2} + 4y_{n-1} + y_n),$$

ce qui revient à

$$\mathbf{S} = \frac{\hbar}{3} [\mathbf{y}_0 + \mathbf{y}_n + 2(\mathbf{y}_2 + \mathbf{y}_1 + \dots + \mathbf{y}_{n-2}) + 4(\mathbf{y}_1 + \mathbf{y}_3 + \dots + \mathbf{y}_{n-1})].$$

Cette formule est due à Thomas Simpson.

CALCUL DES VARIATIONS.

CINQUANTE-NEUVIÈME LEÇON.

But du calcul des variations. — Définitions et notations. — Théorèmes sur la permutation des signes d et δ , $\int_{-\infty}^{\infty}$ et δ . — Variation d'une intégrale définie $\int_{-\infty}^{\infty} V dx$. — Cas où .V ne dépend pas des limites. — Cas où V contient deux fonctions de x. — Cas où V dépend des limites.

BUT DU CALCUL DES VARIATIONS.

752. Dans les questions ordinaires de maximum et de minimum, on donne la forme d'une fonction d'une ou de plusieurs variables, et l'on cherche les valeurs qu'il faut attribuer aux variables pour que la valeur de cette fonction diminue ou augmente lorsqu'on modifie très-peu ces variables. Dans le calcul des variations, on considère une intégrale définie

$$\int_{x_0}^{x_1} f\left(x, \, \mathcal{Y}, \frac{dy}{dx}, \frac{d^2y}{dx^2}, \cdots\right)$$

qui renferme sous le signe \int une variable x, une fonction incounuc f de cette variable, et quelques-unes de ses dérivées, et il faut trouver pour f une fonction f(x) telle, que cette intégrale ait une valeur plus grande ou plus petite que si l'on remplaçait f(x) par une fonction d'une forme tant soit peu différente. On voit en quoi les nouvelles questions se distinguent des questions ordinaires. Ce n'est pas une ou plusieurs valeurs particulières

qu'il faut déterminer, mais la forme d'une certaine fonction inconnue ou la valeur de y en fonction de x.

753. Plusieurs problèmes de géométrie conduisent à chercher le maximum ou le minimum d'une intégrale définie. En voici un exemple : Étant donnés deux points & C et D, trouver une courbe plane CMD telle, que la surface de révolution engendrée par le mouvement de cette courbe autour d'un axe situé Ox dans son plan soit un maximum ou un minimum.

Soit S la surface : en posant $OA = x_0$, $QB = x_1$, on aura

$$S = 2\pi \int_{x_0}^{x_1} y \frac{ds}{dx} dx.$$

tion f(x) telle, qu'en faisant

 $\gamma = f(x)$, l'intégrale précédente ait une valeur plus grande ou plus petite que toutes celles qu'on obtiendrait en modifiant infiniment peu la forme de la fonction f(x).

754. La marche à suivre pour résoudre ces nouvelles questions dissère peu de celle qu'on a déjà suivie dans les questions ordinaires de maximum et de minimum. On suppose connue la fonction cherchée : on la fait varier infiniment peu, et l'on exprime que la valeur de l'intégrale augmente si cette intégrale doit être un minimum, ou diminue si elle doit être un maximum. Mais pour arriver à ce résultat il faut trouver les accroissements ou variations de y et des quantités qui en dépendent, quand on change la fonction de x qui exprime γ .

DÉFINITIONS ET NOTATIONS.

755. Soit

$$y = f(x)$$

l'équation d'une courbe CMD, et

$$y = \mathcal{F}(x)$$

l'équation d'une autre courbe C'ND' qu'on obtiendrait en faisant varier extrêmement peu la fonction f(x). Si l'on appelle dy l'accroissement de l'ordonnée MP quand

Fig. 130.

on passe à la seconde courbe, l'abscisse restant la même, on aura

$$\delta y = \text{NP} - \text{MP},$$
 ou
$$\delta y = \hat{f}(x) - f(x).$$

Cette différence dy est ce que l'on nomme la variation de l'ordonnée ou de la fonction.

On voit par là que la différentielle est l'accroissement de l'ordonnée quand on passe du point M à un point infiniment voisin sur la même courbe, tandis que la variation est l'accroissement de cette même ordonnée quand on passe du point M à un point infiniment voisin sur une courbe infiniment peu différente de la courbe donnée.

756. On ramène les variations aux différentielles en regardant y comme une fonction de x et d'un paramètre arbitraire t. Soit

$$y = \varphi(x, t),$$

et supposons que $\varphi(x, t)$ devienne f(x) pour une certaine valeur de t, et que pour une valeur peu différente $t+\delta t$, cette fonction devienne $\hat{\pi}(x)$. En appelant δy l'accroissement infiniment petit de y, lorsque t reçoit l'accroissement δt , on aura

$$\delta y = \frac{d\varphi}{dt} \, \delta t.$$

Si au contraire t reste constant, on a

$$dy = \frac{d\varphi}{dx}dx.$$

Ainsi δy et dy sont les différentielles d'une même quantité; mais δy est la différentielle de y, considérée comme fonction de t, x restant la même; tandis que dy est la différentielle de y, considérée comme fonction de x, t ne changeant pas.

757. Il est souvent nécessaire de faire varier à la fois x et y, quand ou passe de la courbe proposée à la courbe infiniment voisine. On représente alors par ∂x et par ∂y les accroissements. d'ailleurs arbitraires, de ces deux variables. On peut, sans établir de liaison entre ces accroissements, regarder x et y comme des fonctions d'une variable indépendante u, et d'un certain paramètre t: soit

$$x = \varphi(u, t), \quad y = \psi(u, t).$$

On supposera ensuite que pour une valeur particulière de t, par exemple t = 0, y devienne une certaine fonction de x, f(x) et que x devienne une fonction quelconque de u, f(u). On aurait donc

$$\varphi(u, o) = f(u), \quad \psi(u, o) = f[f(u)].$$

En faisant ensuite varier t d'une manière continue, à partir de o, la forme de la fonction de x, représentée par γ , changera insensiblement.

Pour avoir les variations de x et de y, on multipliera par δt les dérivées de $\varphi(u, t)$ et de $\psi(u, t)$ par rapport à t, et l'on aura

$$\delta x = \left(\frac{d\varphi}{dt}\right)_{\theta} \delta t, \quad \delta y = \left(\frac{d\psi}{dt}\right)_{\theta} \delta t,$$

au lieu que, si laissant à t une valeur constante on faisait varier u, on aurait

$$dx = \frac{d\varphi}{du}du, \quad dy = \frac{d\psi}{du}du.$$

758. Lorsque x et y prennent les accroissements ∂x et ∂y , toute fonction U, qui dépend de x, de y, et d'une ou de plusieurs dérivées de y par rapport à x, prend un accroissement correspondant ΔU . On appelle variation de U la partie de ΔU qui ne dépend que des premières puissances des variations ∂x et ∂y .

Or, d'après la formule de Taylor, on a

$$\Delta \mathbf{U} = \frac{d\mathbf{U}}{dx} \delta x + \frac{d\mathbf{U}}{dy} \delta y$$

$$+ \frac{1}{1 \cdot 2} \left[\frac{d^2 \mathbf{U}}{dx^2} \delta x^2 + \frac{d^2 \mathbf{U}}{dx dy} \delta x \delta y + \frac{d^2 \mathbf{U}}{dy^2} \delta y^2 \right] + \cdots$$

On aura donc

$$\delta \mathbf{U} = \frac{d\mathbf{U}}{dx} \, \delta x + \frac{d\mathbf{U}}{dy} \, \delta y.$$

Si l'on considère x et y comme des fonctions d'une variable indépendante u et d'un paramètre t, on aura

$$\delta \mathbf{U} = \frac{d\mathbf{U}}{dt} \, \delta t,$$

 $\frac{d\,\mathbf{U}}{dt}$ désignant la dérivée, par rapport à t, de \mathbf{U} considérée

comme fonction de x, y, $\frac{dy}{dx}$, $\frac{d\frac{dy}{dx}}{dx}$..., et ces dernières quantités comme des fonctions de t.

759. On appelle variation seconde d'une fonction U, la variation de ∂U : on la désigne par $\partial^2 U$. La variation de cette dernière est appelée variation troisième de U et se désigne par $\partial^3 U$: et ainsi de suite.

THÉORÈMES SUR LA PERMUTATION DES SIGNES

$$d \text{ et } \delta$$
, $\int \text{et } \delta$.

760. La variation de la différentielle d'une fonction de x est égale à la différentielle de la variation.

En effet on a (758)

$$\delta \cdot d\mathbf{U} = \frac{d \cdot \frac{d\mathbf{U}}{du}}{dt} du \, \delta t,$$

$$d \cdot \delta \mathbf{U} = \frac{d \cdot \frac{d\mathbf{U}}{dt}}{du} du \, \delta t.$$

Done

$$\delta . d\mathbf{U} = d . \delta \mathbf{U},$$

ce qu'il fallait démontrer.

761. On conclut de là

$$\delta \cdot d^2 \mathbf{U} = d^2 \cdot \delta \mathbf{U}$$
.

puisque

$$\delta \cdot d^2 \mathbf{U} = \delta d \ d\mathbf{U} = d \cdot \delta d\mathbf{U} = d \cdot d \cdot \delta \mathbf{U}$$

et généralement

$$\delta^m d^n \mathbf{U} = d^n \delta^m \mathbf{U}$$
.

762. Réciproquement, on peut aussi intervertir l'ordre des signes d et si

En effet, soit

$$\mathbf{U} = \int_{x_{i}}^{x_{i}} \mathbf{V} \, dx;$$

soient u_0 et u_1 les valeurs de la variable indépendante u qui correspondent aux limites x_0 et x_1 : on aura

$$\int_{x_0}^{x_1} \nabla dx = \int_{u_0}^{u_1} \nabla \frac{dx}{du} du.$$

Supposons maintenant que t se change en $t + \partial t$: on aura

$$\delta \mathbf{U} = \delta \int_{u_0}^{u_1} \mathbf{V} \frac{dx}{du} \, du.$$

Puisque les limites u_0 et u_1 sont indépendantes de la variable t à laquelle se rapportent les différentiations indiquées par la caractéristique δ , on peut différentier sous

le signe∫et l'on aúra

$$\delta \mathbf{U} = \int_{u_0}^{u_1} \delta \left(\mathbf{V} \frac{dx}{du} \right) du;$$

mais u ne variant pas avec t, on a

$$\delta\left(\mathbf{V}\frac{dx}{du}\right) = \frac{\delta\left(\mathbf{V}\,dx\right)}{du},$$

et si l'on opère l'intégration par rapport à x, il vien-

COURS D'ANALYSE.

dra

$$\delta \mathbf{U} = \int_{x_0}^{x_1} \delta(\mathbf{V} dx),$$

ou bien

$$\delta \int_{x_0}^{x_1} \mathbf{V} dx = \int_{x_0}^{x_1} \delta(\mathbf{V} dx),$$

ce qu'il fallait démontrer.

variation d'une intégrale définie. — cas ou la fonction sous le signe \int ne dépend pas des limites.

763. Proposons-nous de trouver la variation de l'intégrale définie

$$U = \int_{x_0}^{x_1} V dx,$$

où V désigne une fonction quelconque de x, de y et d'un certain nombre de dérivées de y prises par rapport à x. Pour simplifier, nous supposerons que le nombre de ces dérivées se réduise à deux : soit

$$V = f(x, y, p, q), \quad p = \frac{dy}{dx}, \quad q = \frac{d \cdot \frac{dy}{dx}}{dx}.$$

D'après le théorème démontré (762), on a d'abord

$$\delta \mathbf{U} = \int_{x_0}^{x_1} \delta\left(\mathbf{V} \, dx\right).$$

Mais

$$\delta \cdot \mathbf{V} dx = \delta \mathbf{V} \cdot dx + \mathbf{V} \cdot \delta \cdot dx = \delta \mathbf{V} \cdot dx + \mathbf{V} \cdot d\delta x$$

Or on a en général

$$\int V d\delta x = V \delta x - \int \delta x dV + C.$$

Donc, si l'on appelle $(V \partial x)_0$ et $(V \partial x)_1$ les valeurs de $V \partial x$ pour $x = x_0$ et pour $x = x_1$, et si l'on pese, pour

abréger,

$$(\mathbf{V}\delta x)_0^{\mathfrak{t}} = (\mathbf{V}\delta x)_{\mathfrak{t}} - (\mathbf{V}\delta x)_{\mathfrak{o}},$$

on aura

(2)
$$\int_{x_0}^{x_1} \mathbf{V} d\delta x = (\mathbf{V} \delta x)_0^1 - \int_{x_0}^{x_1} \delta x d\mathbf{V}.$$

Substituant cette valeur dans l'équation (1) qui revient à

$$\delta \mathbf{U} = \int_{x}^{x_{1}} (\delta \mathbf{V} dx + \mathbf{V} d\delta x),$$

il en résultera

(3)
$$\delta \mathbf{U} = (\mathbf{V}\delta x)_0^1 + \int_{x_0}^{x_1} (\delta \mathbf{V} dx - \delta x d\mathbf{V}).$$

Par cette première transformation, la fonction V n'entre plus sous le signe \int que par sa variation et par sa différentielle.

764. Posons maintenant

(4)
$$M = \frac{dV}{dx}$$
, $N = \frac{dV}{dy}$, $P = \frac{dV}{dp}$, $Q = \frac{dV}{dq}$

on a

$$dV = M dx + N dy + P dp + Q dq,$$

$$\delta V = M \delta x + N \delta y + P \delta p + Q \delta q.$$

Portant ces valeurs dans l'équation (3) et remplaçant $\frac{dy}{dx}$, $\frac{dp}{dx}$, $\frac{dq}{dx}$ par p, q, r, il vient

(5)
$$\int_{x_0}^{x_1} \left[N \left(\delta y - p \delta x \right) + P \left(\delta p - q \delta x \right) + Q \left(\delta q - r \delta x \right) \right] dx.$$

On voit que la fonction V n'entre plus sous le signe d'intégration.

765. Pour simplifier encore cette expression, posons

$$(6) \qquad \omega = \delta y - p \, \delta x,$$

 ∞ représentant la différence des ordonnées qui correspondent, dans les deux courbes (755), à l'abscisse x+dx: on aura

$$d\omega = d\delta y - p d\delta x - dp \delta x,$$

ou

$$d\omega = \delta dy - p d\delta x - dp \delta x.$$

Mais, à cause de dy = pdx, on a

$$\delta dy = p\delta dx + \delta p dx = p d\delta x + \delta p dx,$$

donc

$$d\omega = \delta p dx - dp \, \delta x,$$

d'où

$$\frac{d\omega}{dx} = \delta p - q \,\delta x.$$

On trouvera de la même manière

(8)
$$\frac{d^2\omega}{dx^2} = \delta q - r\delta x.$$

On peut donc mettre l'équation (5) sous cette forme

$$(9) \ \hat{\boldsymbol{\sigma}} \int_{x_0}^{x_1} \mathbf{V} dx = (\mathbf{V} \, \hat{\boldsymbol{\sigma}} \, x)_{\scriptscriptstyle 0}^{\scriptscriptstyle 1} + \int_{x_0}^{x_1} \left(\mathbf{N} \, \boldsymbol{\omega} + \mathbf{P} \, \frac{d \, \boldsymbol{\omega}}{d x} + \mathbf{Q} \, \frac{d^2 \, \boldsymbol{\omega}}{d x^2} \right) dx.$$

766. On peut encore simplifier le second membre de cette égalité et faire sortir du signe \int les dérivées de la fonction arbitraire ω . On a, en intégrant par parties,

$$\int P \frac{d\omega}{dx} dx = P\omega - \int \omega \frac{dP}{dx} dx.$$

De même, en intégrant deux fois par parties,

$$\int Q \frac{d^2 \omega}{dx^2} dx = Q \frac{d\omega}{dx} - \omega \frac{dQ}{dx} + \int \omega \frac{d^2 Q}{dx^2} dx.$$

Substituant ces valeurs dans l'équation (9), on aura

(10)
$$\delta \int_{x_0}^{x_1} \mathbf{V} dx = \left[\mathbf{V} \delta x + \left(\mathbf{P} - \frac{d\mathbf{Q}}{dx} \right) \omega + \mathbf{Q} \frac{d\omega}{dx} \right]_0^1$$
$$+ \int_{x_0}^{x_1} \left(\mathbf{N} - \frac{d\mathbf{P}}{dx} + \frac{d^2\mathbf{Q}}{dx^2} \right) \omega dx,$$

formule dans laquelle $\frac{dP}{dx}$, $\frac{d^2Q}{dx^2}$ sont les dérivées de P et de Q, par rapport à x, en considérant y, p, q comme liées à x, au moyen de l'équation inconnue y = f(x).

En posant, pour abréger,

(11)
$$\Gamma = \left[V \delta x + \left(P - \frac{dQ}{dx} \right) \omega + Q \frac{d\omega}{dx} \right]_{0}^{1},$$
(12)
$$K = N - \frac{dP}{dx} + \frac{d^{2}Q}{dx^{2}},$$

la formule (10) pourra s'écrire plus simplement

$${}^{\circ}(\mathbf{I}) \qquad \qquad {}^{\delta} \int_{x_0}^{x_1} \mathbf{V} \, dx = \Gamma + \int_{x_0}^{x_1} \mathbf{K} \, \omega \, dx \,,$$

ou bien

(I)
$$\delta \int_{x_0}^{x_1} \mathbf{V} dx = \Gamma + \int_{x_0}^{x_1} (\mathbf{K} \delta y - \mathbf{K} p \, \delta x) \, dx,$$

puisque l'on a $\omega = \delta \gamma - p \delta x$.

767. On peut mettre Γ sous une autre forme, en remplaçant ω et $\frac{d\omega}{dx}$ par les valeurs

$$\omega = \delta y - p \, \delta x,$$

$$\frac{d\omega}{dx} = \delta p - q \, \delta x.$$

Il vient alors

$$\Gamma = \left\{ \left| V - \left(P - \frac{dQ}{dx} \right) p - Qq \right| \delta x + \left(P - \frac{dQ}{dx} \right) \delta \gamma + Q \delta p \right\}^{\epsilon}$$

CAS OU LA FONCTION V RENFERME DEUX FONCTIONS DE x.

768. S'il entrait dans V une autre fonction z contenant x et quelques-unes de ses dérivées, on obtiendrait la variation de $\int_{x_0}^{x_1} V dx$ par un calcul analogue au précédent. Soit

$$V = f\left(x, y, \frac{dy}{dx}, \frac{d^2y}{dx^2}, z, \frac{dz}{dx}, \frac{d^2z}{dx^2}\right):$$

on aura

$$\delta \int_{x_{o}}^{x_{1}} \mathbf{V} d\mathbf{x} = \Gamma' + \int_{x_{o}}^{x_{1}} (\mathbf{K} \omega + \mathbf{K}' \omega') d\mathbf{x},$$

en posant

$$\begin{split} \frac{dz}{dx} &= p', \quad \frac{d^2z}{dx^2} = q', \\ \frac{dV}{dz} &= N', \quad \frac{dV}{dp'} = P', \quad \frac{dV}{dy'} = Q', \\ \omega' &= \delta z - p' \delta x, \\ K' &= N' - \frac{dP'}{dx} + \frac{d^2Q'}{dx^2}. \end{split}$$

Quant à la partie désignée par Γ' , on l'obtiendrait en ajoutant à Γ les termes qui résultent du changement des quantités P, Q, p, \ldots en $P', Q', p' \ldots$ dans l'expression (11) du n° 766.

CAS OU LA FONCTION V DÉPEND DES LIMITES DE L'INTÉGRATION.

769. Revenons au cas où la fonction V ne contient qu'une seule fonction de x, mais supposons maintenant qu'elle dépende des limites x_0 et x_1 de l'intégration. Il faut, dans ce cas, ajouter à la variation de l'intégrale les termes qui proviennent de la variation de ces limites, sa-

voir

$$\begin{split} &\int_{x_0}^{x_1} \left(\frac{d\mathbf{V}}{dx_0} \, \delta \, x_0 + \frac{d\mathbf{V}}{dy_0} \, \delta \, y_0 + \frac{d\mathbf{V}}{dp_0} \, \delta \, p_0 + \frac{d\mathbf{V}}{dq_0} \, \delta \, q_0 \, \right) dx \\ &+ \int_{x_0}^{x_1} \left(\frac{d\mathbf{V}}{dx_1} \, \delta x_1 + \frac{d\mathbf{V}}{dy_1} \, \delta y_1 + \frac{d\mathbf{V}}{dp_1} \, \delta p_1 + \frac{d\mathbf{V}}{dq} \, \delta q_1 \right) dx. \end{split}$$

Mais comme ∂x_0 , ∂y_0 ,..., ∂x_1 , ∂y_1 ,... sont des constantes dans l'intégration relative à x, on peut écrite sons la forme suivante

$$\delta x_0 \int_{x_0}^{x_1} \frac{d\mathbf{V}}{dx_0} dx + \delta y_0 \int_{x_0}^{x_1} \frac{d\mathbf{V}}{dy_0} dx + \ldots + \delta x_1 \int_{x_0}^{x_1} \frac{d\mathbf{V}}{dx_1} dx \ldots$$

les termes qu'il faudrait ajouter à Γ . Les intégrales $\int_{x_0}^{x_1} \frac{d\mathbf{V}}{dx_0} dx$, $\int_{x_0}^{x_1} \frac{d\mathbf{V}}{dy_0} dx$,..., ne contiennent plus rien qui dépende des variations.

On compléterait de la même manière la valeur de $\partial \int_{x_0}^{x_1} V dx$, si V contenait deux fonctions, y, z avec les dérivées de ces fonctions, et leurs valeurs aux limites.

SOIXANTIÈME LEÇON.

Suite de la variation d'une intégrale définie. — Autre moyen d'obtenir la variation d'une intégrale définie. — Maximum et minimum d'une intégrale définie — Conditions relatives aux limites. — Cas où la fonction V contient deux fonctions de x. — Applications. — Ligne la plus courte entre deux points, — d'un point à une courbe, — entre deux courbes.

AUTRE MOYEN D'OBTENIR LA VARIATION D'UNE INTÉGRALE DÉFINIE.

770. Les calculs par lesquels nous venons d'évaluer la variation d'une intégrale définie peuvent être modifiés dans les applications.

On a obtenu la formule

$$\delta \int_{x_0}^{x_1} \mathbf{V} \, dx = \int_{x_0}^{x_1} \delta \left(\mathbf{V} \, dx \right).$$

Après avoir remplacé dans V, qui est une fonction de x, 1,

p et q, ces deux dernières quantités par $\frac{d\gamma}{dx}$, $\frac{d\cdot\frac{d\gamma}{dx}}{dx}$, on prendra la variation de Vdx en considérant x, γ , dx, $d\gamma$, $d\frac{d\gamma}{dx}$ comme des fonctions du paramètre t. Le résultat contiendra, sous forme linéaire, les variations δx , $\delta \gamma$ et δdx , $\delta d\gamma$,..., ou les différentielles $d\delta x$, $d\delta \gamma$,.... Comme on doit ensuite intégrer, par rapport à x, on fera sortir du signe \int , au moyen de l'intégration par parties, les différentielles des variations δx , $\delta \gamma$, de sorte qu'il ne restera, sous le signe, que ces variations multipliées par des quantités qui en sont indépendantes. Le

résultat sera de la forme

(II)
$$\delta \int_{x_0}^{x_1} V dx = \Gamma + \int_{x_0}^{x_1} (H \delta x + K \delta y) dx,$$

H et K étant des fonctions connues de x, y et des dérivées de y, mais ne contenant pas les variations de ces variables. Si l'on compare ce résultat avec celui qu'on a trouvé plus haut (766)

(I)
$$\delta \int_{x_0}^{x_1} V dx = \Gamma + \int_{x_0}^{x_1} (K \delta y - K \rho \delta x) dx,$$

on en conclut que Γ et K doivent être les mêmes dans les deux expressions, et l'on a identiquement

$$H = -Kp$$
.

771. Le calcul qui a donné l'équation (J) n'a servi qu'à mettre en évidence cette relation. Dans les applications, on suivra la marche qui a donné la relation (II), sans passer par l'intermédiaire de la quantité auxiliaire ω et sans recourir aux formules générales (766).

Si l'on ne faisait varier que y sans faire varier x, la fonction ω se réduirait à ∂y et l'on trouverait

 Γ' se déduisant de Γ , par la suppression des termes qui renferment ∂x_0 et ∂x_1 .

Si l'on faisait varier x sans faire varier y, on aurait

$$\begin{split} \delta \int_{x_0}^{x_1} \mathbf{V} dx &= \Gamma'' + \int_{x_0}^{x_1} \mathbf{H} \, \delta x dx \\ &= \Gamma'' - \int_{x_0}^{x_1} \mathbf{K} \, p \, \delta \, x dx, \end{split}$$

 Γ'' étant ce que devient Γ quand on y fait $\partial y_0 = 0$, $\partial y_1 = 0$.

772. Les mêmes remarques s'appliquent au cas où il entre dans la fonction V une autre fonction z de x avec

ses dérivées p' et q'. On arriverait à une équation telle que

Mais la marche suivie pour trouver la relation (II) donnerait encore

et ces valeurs devront être identiques. Il faut donc que l'on ait

$$\mathbf{H} = -\left(\mathbf{K}\boldsymbol{\rho} + \mathbf{K}'\boldsymbol{p}'\right).$$

MAXIMUM ET MINIMUM D'UNE INTÉGRALE DÉFINIE.

773. Proposons-nous maintenant de déterminer la valeur de y en fonction de x qui rendra l'intégrale

$$\mathbf{U} = \int_{x_0}^{x_1} \mathbf{V} dx$$

un maximum ou un minimum. Pour fixer les idées, supposons que L doive être un minimum et soit y = f(x) la fonction cherchée. Il faut qu'en donnant à x et à y des accroissements arbitraires et infiniment petits ∂x et

 $\delta y,$ l'accroissement correspondant de l'intégrale $\int_{x_n}^{x_n} \mathbf{V} \, dx$

soit constamment positif, quels que soient les valeurs et les signes de δx et de δy . Or l'accroissement de cette intégrale se compose de deux parties. Si l'on pose

$$\Delta U = \delta U + \rho$$

la première partie d'U renferme les variations δx , δy , δp , δq au premier degré et sous forme linéaire; la seconde partie contient les puissances de ces variations supérieures à la première et leurs produits. Quand d'U n'est pas nulle, le rapport de ρ à δ U a pour limite σ . Donc si

l'on suppose ∂x et ∂y infiniment petites, le signe de ΔU sera le même que celui de ∂U . Il faut donc, pour que l'ait une valeur minimum, que l'on ait $\partial U = 0$: car autrement, en changeant les signes des variations ∂x et ∂y sans changer leurs valeurs absolues, le signe de ∂U et par conséquent celui de ΔU serait changé et U ne serait pas un minimum. Ainsi

$$\partial U = 0$$

est la condition du minimum; c'est aussi celle du maximum, car la différence ΔU doit aussi, dans ce cas, être toujours de même signe, ce qui ne pourrait avoir lieu si la variation de U était différente de o.

La condition d'U = o n'est pas suffisante pour qu'il y ait maximum ou minimum. En effet, d'après la série de Taylor, on a

$$\Delta U = \delta U + \frac{1}{1 \cdot 2} \delta^2 U + \frac{1}{1 \cdot 2 \cdot 3} \delta^2 U + \dots;$$

si ∂U est nulle, le signe de ΔU dépendra de celui de $\partial^2 U$ pour de petites valeurs de ∂x et de ∂y . Par conséquent, si $\partial^2 U$ reste toujours positive, lorsque les variations ∂x et ∂y chaugent d'une manière quelconque, tout en restant infiniment petites, U sera un minimum. Si, au contraire, $\partial^2 U$ reste négative, quels que soient ∂x et ∂y , U sera un maximum. Enfin U ne sera ni un maximum ni un minimum si $\partial^2 U$ peut chauger de signe. Mais on est souvent dispensé de cet examen par la nature de la question, qui indique clairement l'existence d'un maximum ou d'un minimum.

774. L'équation d'U = o revient à

(1)
$$\Gamma + \int_{x_0}^{x_1} \mathbf{K} \, \omega \, dx = 0.$$

Je dis que cette équation entraîne les deux suivantes

(2)
$$\Gamma = 0, K = 0.$$

Et d'abord la fonction K doit être nulle. En effet, supposons qu'il n'en soit pas ainsi. On peut, pour chaque valeur de x comprise entre x_0 et x_1 , changer à volonté les valeurs de ∂x et de ∂y qui sont arbitraires, et conséquemment celle de ω ou $\partial y - p \partial x$, en supposant constantes les valeurs de ∂x_0 , ∂y_0 , ∂p_0 , ∂x_1 , ∂y_1 , ∂p_1 qui sont relatives aux limites x_0 et x_1 . Mais le terme Γ , qui ne contient que les variations relatives aux limites, resterait

constant, tandis que l'intégrale $\int_{x_0}^{x_1} \mathbf{K} \omega dx$, contenant la

fonction arbitraire ω , ne pourrait pas toujours conserver la même valeur quelle que fut cette fonction ω , et par conséquent l'équation (1) ne serait pas toujours satisfaite si K n'était pas zéro.

On peut d'ailleurs établir ce point de la manière suivante. Comme ω est une fonction arbitraire, en la choisissant de manière qu'elle ait le même signe que K pour chaque valeur de x, si la quantité finie Γ est positive ou nulle, ou qu'elle soit de signe contraire à K, si Γ est

négative, la somme $\Gamma + \int_{x_0}^{x_1} K\omega dx$ serait positive dans le premier cas, négative dans le second, au lieu d'être nulle. Il faut donc qu'on ait K=0, d'où résulte aussi $\Gamma=0$.

CONDITIONS RELATIVES AUX LIMITES.

775. Dans le cas où V ne contient que x, y, p et q, l'équation

ou
$$N - \frac{dP}{dx} + \frac{d^{3}Q}{dx^{2}} = 0,$$

est du quatrième ordre, puisque $\frac{d^2Q}{dx^2}$ contient $\frac{d^2q}{dx^2}$ ou $\frac{d^3y}{dx^4}$. Il faudra intégrer cette équation, et l'on aura un résultat de la forme

$$y = f(x, C, C', C'', C'''),$$

contenant quatre constantes arbitraires. Pour les déterminer il faut avoir égard à l'équation

$$\Gamma = 0$$

relative aux limites de l'intégration. Mais il est néceşsaire de distinguer plusieurs cas.

1°. Si l'on se donne les valeurs de x, y, p, q aux deux limites, les variations de ces quantités étant nulles à ces limites, l'équation $\Gamma = 0$ est identiquement satisfaite, et si l'on représente par f'(x, C, C', C'', C''') la dérivée de f(x, C, C', C'', C'', C'''), on aura

$$y_0 = f(x_0, C, C'; C'', C''),
p_0 = f'(x_0, C, C', C'', C''),
y_1 = f(x_1, C, C', C'', C''),
p_1 = f'(x_1, C, C', C'', C''),$$

c'est-à-dire quatre équations qui déterminent les quatre constantes inconnues.

2°. Si l'une des six quantités x_0 , y_0 , p_0 , x_1 , y_1 , p_1 reste arbitraire, p_1 par exemple, l'équation $\Gamma = 0$ se réduit à $Q_1 = 0$, ce qui, avec les équations (1), fait cinq équations pour déterminer les quatre constantes et la valeur de p_1 .

 3° . Si l'on avait entre les valeurs de x, y, p, relatives aux limites, une équation

$$\varphi(x_0, y_0, p_0, x_i, y_i, p_i) = 0,$$

on différentierait cette équation par rapport au paramètre t, et l'on aurait

$$\frac{d\varphi}{dx_0}\delta x_0 + \frac{d\varphi}{dy_0}\delta y_0 + \frac{d\varphi}{dp_0}\delta p_0 + \frac{d\varphi}{dx_1}\delta x_1 + \frac{d\varphi}{dy_1}\delta y_1 + \frac{d\varphi}{dp_1}\delta p_1 = 0.$$

En portant la valeur de δp_1 , tirée de cette équation, dans l'équation $\Gamma = 0$, il faudra égaler à 0 les coefficients de δx_0 , δy_0 , δp_0 , δx_1 et δy_1 . On aura donc cinq équations qui, réunies aux équations (1) et (2), suffirent pour déterminer les dix inconnucs C, C', C'', C''', x_0 , y_0 , p_0 ,

Ces exemples suffisent pour montrer comment on devrait opérer si l'on avait deux on un plus grand nombre d'équations relatives aux limites.

cas ou la fonction V contient deux fonctions de x.

776. Supposons maintenant que la fonction V contienne deux fonctions y et z de la variable x. On aurait alors

(1)
$$\delta \int_{x_0}^{x_1} \nabla dx = \Gamma + \int_{x_0}^{x_1} (K\omega + K'\omega') dx = 0.$$

Cette équation équivaut aux suivantes

(2)
$$\Gamma = 0, K = 0, K' = 0.$$

En effet, ω et ω' sont deux fonctions de x arbitraires et indépendantes l'une de l'autre, et Γ ne contient que les valeurs des variations relatives aux limites de l'intégrale ; donc, si K et K' u'étaient pas nulles, en laissant constantes les valeurs des variations relatives aux limites, on aurait $\Gamma = 0$, tandis qu'on pourrait faire varier ω et ω'

de telle sorte que l'intégrale $\int_{x_u}^{x_t} \left(K\omega + K'\omega' \right) dx$ ne fût pas égale à o. On doit donc avoir

$$K = 0, \quad K' = 0,$$

et par conséquent

$$\Gamma = 0$$

Les deux premières équations déterminent y et z en fonction de x. La troisième sert à déterminer les constantes introduites par l'intégration des deux premières.

777. Nous avons supposé que y et z étaient des fonctions indépendantes l'une de l'autre. S'il existait entre elles une relation

$$\mathbf{F}(x, y, z) = 0,$$

les variations dy et dz ne seraient plus indépendantes.

On doit avoir, dans ce cas,

$$\frac{d\mathbf{F}}{dx}\delta x + \frac{d\mathbf{F}}{dy}\delta y + \frac{d\mathbf{F}}{dz}\delta z = 0,$$

équation que l'on obtient en différentiant l'équation (f) par rapport à t. Remplaçons ∂y et ∂z par leurs valeurs

$$\delta y = p \delta x + \omega, \quad \delta z = p' \delta \dot{x} + \omega'$$
:

il vient

$$\frac{d\mathbf{F}}{dx}\delta x + \frac{d\mathbf{F}}{dy}(p\delta x + \omega) + \frac{d\mathbf{F}}{dz}(p'\delta x + \omega') = 0,$$

ou

$$\left(\frac{d\mathbf{F}}{dx} + \frac{d\mathbf{F}}{dy}p + \frac{d\mathbf{F}}{dz}p'\right)\delta x + \frac{d\mathbf{F}}{dy}\omega + \frac{d\mathbf{F}}{dz}\omega' = \alpha,$$

ou enfin

$$\frac{d\mathbf{F}}{dr}\omega + \frac{d\mathbf{F}}{dz}\omega' = 0,$$

car on a

$$\frac{d\mathbf{F}}{dx} + \frac{d\mathbf{F}}{dy}p + \frac{d\mathbf{F}}{dz}p' = 0,$$

en différentiant l'équation (1), par rapport à x. De l'équation (2) on déduit

$$\omega' = -\frac{\frac{d\mathbf{F}}{d\bar{y}}}{\frac{d\mathbf{F}}{dz}}\omega,$$

et, par conséquent,

$$\delta \int_{x_0}^{x_1} \mathbf{V} \, dx = \Gamma + \int_{x_0}^{x_1} \left(\mathbf{K} - \mathbf{K}' \frac{\frac{d \, \mathbf{F}}{dy}}{\frac{d \, \mathbf{F}}{dz}} \right) \omega \, dx.$$

Pour que cette variation soit nulle, il faut que l'on ait

$$\Gamma = 0$$
, $K \frac{dF}{dz} - K' \frac{dF}{dr} = 0$.

Cette dernière équation et l'équation (1) feront connai-

tre y et z en fonction de x. Quant à l'équation $\Gamma = 0$, elle servira à déterminer les constantes.

778. On peut aussi éliminer l'une des quantités ω , ω' au moyen d'un facteur indéterminé. En multipliant par λ l'équation (2), et ajoutant le produit à la fonction qui est sous le signe \int dans l'expression de $\partial \int_{x_0}^{x_1} V dx$, on a

$$\delta \int_{x_0}^{x_1} \mathbf{V} dx = \mathbf{\Gamma} + \int_{x_0}^{x_1} \left[-\frac{(\mathbf{K} \omega + \mathbf{K}' \omega') dx}{+ \lambda \left(\frac{d\mathbf{F}}{dy} \omega + \frac{d\mathbf{F}}{dz} \omega' \right) dx} \right],$$

ou bien

$$\delta \int_{x_0}^{x_1} \mathbf{V} dx = \Gamma + \int_{x_0}^{x_1} \left[\frac{\left(\mathbf{K} + \lambda \frac{d\mathbf{F}}{dy} \right) \omega}{+ \left(\mathbf{K}' + \lambda \frac{d\mathbf{F}}{dz} \right) \omega'} \right] dx.$$

On profite de l'indétermination de λ pour faire disparaître ω' , en posant

(3)
$$K' + \lambda \frac{dF}{dz} = 0;$$

et comme ω , qui reste encore sous le signe \int_{γ} est tout à fait arbitraire, il faut égaler à σ la quantité qui le multiplie, ce qui donne

(4)
$$\mathbf{K} + \lambda \frac{d\mathbf{F}}{dy} = \mathbf{o}.$$

En éliminant λ entre les équations (3) et (4), on obtient l'équation déjà trouvée

$$\mathbf{K} \frac{d\mathbf{F}}{dz} - \mathbf{K}' \frac{d\mathbf{F}}{dy} = \mathbf{0}.$$

779. Les différents cas qui viennent d'être examinés montrent la marche à suivre dans le cas le plus général, c'est-à-dire dans celui où la fonction V contiert un nombre quelconque de variables liées entre elles pa des

équations données, les valeurs des variations qui se rapportent aux límites de l'intégration devant satisfaire à certaines relations données. Passons maintenant aux exemples.

LIGNE LA PLUS COURTE ENTRE DEUX POINTS.

780. On demande la ligne la plus courte entre deux points Λ et B, et située dans un plan qui contient ces deux points.

Prenons deux axes rectangulaires dans ce plan et soient v_0, y_0, x_1, y_1 les coordonnées des points A et B. Dans cet exemple on doit avoir

$$\delta \int_{x_0}^{x_1} \sqrt{1+p^2} \, dx = 0.$$

Il faut maintenant poser

$$K = N - \frac{dP}{dx} + \frac{d^2Q}{dx^2} = 0;$$

mais (764)

$$N = 0, \quad P = \frac{p}{\sqrt{1 + p^2}}, \quad Q = 0.$$

Done on doit avoir

$$\frac{d}{dx}\left(\frac{p}{\sqrt{1+p^2}}\right) = 0,$$

ou
$$\frac{p}{\sqrt{1+p^2}} = \text{const.},$$

ou, ce qui revient au même,

$$p = C$$

d'où

$$y = Cx + C',$$

C et C' étant deux constantes. D'ailleurs il suffit que l'équation K=0 soit satisfaite, puisque les valeurs de x et de y, relatives aux limites, étant fixes, les variations δx_0 , δy_0 , δx_1 , δy_1 sont nulles, et, par suite, on a

identiquement $\Gamma = 0$. La ligne cherchée est donc une ligne droite; les constantes C et C' se détermineront par les équations

$$y_0 := Cx_0 + C', \quad y_1 = Cx_1 + C'.$$

LIGNE LA PLUS COURTE D'UN POINT A UNE COURBE PLANE.

781. Soient A le point donné et BB' la courbe donnée située dans le plan $xO\gamma$, et Fig. 131. ayant pour équation

$$(1) y = \psi(x).$$

Soit AB la ligne la plus courte. fixe; l'autre extrémité peut va-

rier de position sur la courbe BB'.

En conservant les mêmes notations que dans le cas précédent, on arrivera encore à l'équation

$$y = Cx + C',$$

et en conséquence la ligne cherchée est encore une ligne droite.

Il faut maintenant déterminer les constantes C et C'. Or on a

$$\delta x_0 = 0$$
, $\delta y_0 = 0$, $Q = 0$;

mais les variations ∂x_1 et ∂y_1 ne sont assujetties qu'à la scule condition que le point $(x_1 + \delta x_1, y_1 + \delta y_1)$ soit sur la courbe donnée. On a donc

$$y_1 = \psi(x_1),$$

d'où

$$\delta y_{\scriptscriptstyle 1} = \psi'(x_{\scriptscriptstyle 1}) \delta x_{\scriptscriptstyle 1};$$

et comme

$$\delta x_1 + p_1 \delta y_4 = 0,$$

on en conclut

$$1+p_1\psi'(x_1)=0,$$

ou

$$(3) 1 + C \psi'(x_i) = 0,$$

puisque

$$p_1 = C$$
.

On déterminera ensuite les constantes au moyen des équations

$$y_0 = Cx_0 + C', \quad v + C\psi'(x_1) = 0,$$

 $y_1 = Cx_1 + C', \quad y_1 = \psi(x_1).$

Il résulte de l'équation (3) que la ligne la plus courte entre un point et une courbe est une droite normale à cette courbe.

LIGNE LA PLUS COURTE ENTRE DEUX COURBES.

782. Soient

$$(1) y = \varphi(x),$$

$$y = \psi(x),$$

les équations de deux courbes situées dans le même plan. En raisonnant comme dans le cas précédent, on trouve

que la ligne cherchée est encore une ligne droite,

$$(3) y = Cx + C';$$

mais la détermination des constantes ne se fait plus de la même manière. Dans ce cas ∂x_0 , ∂y_0 , ∂x_1 , ∂y_1 peuvent varier, avec

les conditions que le point $A'(x_0 + \partial x_0, y_0 + \partial y_0)$ soit sur la courbe (1) et le point $B'(x_1 + \partial x_1, y_1 + \partial y_1)$ sur la courbe (2). Mais l'équation $\Gamma = 0$ se réduit à

$$\frac{\delta x_1 + p_1 \delta y_1}{\sqrt{1 + p_1^2}} - \frac{\delta x_0 + p_0 \delta y_0}{\sqrt{1 + p_0^2}} = 0,$$

qui se change, comme dans le cas précédent, en celle-ci

(4)
$$\delta x_{i} \left[1 + C \psi'(x_{i}) \right] - \delta x_{0} \left[1 + C \varphi'(x_{0}) \right] = 0,$$

à cause des équations

$$y_0 = \varphi(x_0), \quad y_1 = \psi(x_1).$$

Or les variations ∂x_0 et ∂x_1 étant indépendantes l'une de l'autre, l'équation (4) se partage en deux,

(5)
$$\begin{cases} \mathbf{1} + \mathbf{C}\dot{\psi}'(x_1) = \mathbf{0}, \\ \mathbf{1} + \mathbf{C}\varphi'(x_0) = \mathbf{0}, \end{cases}$$

qui réunies aux suivantes

$$\gamma_0 = \mathbf{C}x_0 + \mathbf{C}', \quad \gamma_0 = \varphi(x_0),$$

$$\gamma_1 = \mathbf{C}x_1 + \mathbf{C}', \quad \gamma_1 = \psi(x_1),$$

déterminent complétement les constantes C et C' et les coordonnées x_0, y_0, x_1, y_1 des extrémités de la droite minimum.

Les équations (5) font voir que la ligne la plus courte est une normale commune aux deux courbes proposées.

SOIXANTE ET UNIÈME LEÇON.

Suite des applications du calcul des variations. — Autre manière de résoudre les problèmes précédents. — Ligne la plus courte entre deux points, dans l'espace. — Ligne la plus courte sur une surface donnée. — Surface de révolution minimum.

AUTRE MANIÈRE DE RÉSOUDRE LES PROBLÈMES PRÉCÉDENTS.

783. Au lieu d'appliquer les formules générales, on peut opérer directement comme il a été expliqué au n° 770. Dans les trois problèmes qui précèdent on doit avoir

$$\delta \int_{x_0}^{x_1} \sqrt{dx^2 + dy^2} = 0; \quad \delta \int_{x_0}^{x_1} \sqrt{dx^2 + dy^2} = 0$$

mais en posant $ds = \sqrt{dx^2 + dy^2}$, on a

$$\int_{x_0}^{x_1} \delta \sqrt{dx^2 + dy^2} = \int_{x_0}^{x_1} \frac{dx d\delta x + dy d\delta y}{ds},$$

et comme l'intégration par parties donne

$$\int \frac{dx}{ds} d\delta x = \frac{dx}{ds} \delta x - \int \delta x d\frac{dx}{ds},$$
$$\int \frac{dy}{dx} d\delta y = \frac{dy}{ds} \delta y - \int \delta y d\frac{dy}{ds},$$

l'équation (1) prend la forme

$$\left(\frac{dx}{ds}\,\delta x + \frac{dy}{ds}\,\delta y\right)_{1} - \left(\frac{dx}{ds}\,\delta x + \frac{dy}{ds}\,\delta y\right)_{0} - \int_{x_{0}}^{x_{1}} \left(\delta x d\frac{dx}{ds} + \delta y d\frac{dy}{ds}\right) = 0.$$

Mais de l'identité

$$\left(\frac{dx}{ds}\right)^2 + \left(\frac{dy}{ds}\right)^2 = 1$$

on tire

$$\frac{dx}{ds} d\frac{dx}{ds} + \frac{dy}{ds} d\frac{dy}{ds} = 0,$$

d'où

$$d\frac{dx}{ds} = -\frac{dy}{dx}d\frac{dy}{ds} = -pd\frac{dy}{ds}.$$

Par suite, pour que la quantité placée sous le signe d'intégration soit nulle, il suffit que l'on ait $d\frac{dx}{ds} = 0$ ou $d\frac{dy}{ds} = 0$. Supposons

$$d\frac{dx}{ds} = 0;$$

il en résulte

$$\frac{1}{\sqrt{1+p^2}} = \text{const.},$$

d'où

$$p = \frac{dy}{dx} = C,$$

et

$$(4) y = Cx + C',$$

équation d'une ligne droite.

784. Déterminons maintenant les constantes d'après la nature du problème proposé.

1°. Si les deux points (x_0, y_0) , (x_1, y_1) sont donnés, les variations des limites ∂x_0 , ∂y_0 , ∂x_1 , ∂y_1 sont nulles et l'équation $\Gamma = 0$ ou

$$\left(\frac{dx}{ds}\,\delta x + \frac{dy}{ds}\,\delta y\right) - \left(\frac{dx}{ds}\,\delta x + \frac{dy}{ds}\,\delta y\right)_0 = 0,$$

est satisfaite identiquement. Les constantes se déterminent par les équations

$$y_0 = Cx_0 + C', \quad y_1 = Cx_1 + C'.$$

2°. Si le point A (x_0, y_0) est fixe, et que l'autre point B (x_1, y_1) doive se trouver sur une courbe donnée,

$$(5) y = \psi(x),$$

on a

$$\delta x_0 = 0, \quad \delta y_0 = 0,$$

' et l'équation $\Gamma =$ o se réduit à

$$dx_1 \delta x_1 + dy_1 \delta y_1 = 0,$$

$$1 + \frac{dy_1}{dx_1} \frac{\delta y_1}{\delta x_1} = 0;$$

ou

ce qui montre que la droite (4) est normale à la courbe (5), car de $y_1 = \psi(x_1)$ on tire $\partial y_1 = \psi'(x_1) \partial x_1$.

Les constantes C, C' et les coordonnées du point extrème B sont déterminées par les équations

$$y_0 = Cx_0 + C', \quad \mathbf{i} + C\psi'(x_1) = 0,$$

 $y_1 = Cx_1 + C', \quad y_1 = \psi(x_1).$

3°. Enfin si les deux points A et B doivent se tronver sur deux courbes données

on aura

$$y_1 = \psi(x_1), \quad y_0 \stackrel{\cdot}{=} \varphi(x_0),$$

ce qui donne

$$\delta y_{i} = \psi'(x_{i}) \delta x_{i},$$

$$\delta y_{0} \stackrel{\cdot}{=} \varphi'(x_{0}) \delta x_{0}.$$

L'équation Γ=0 se réduit alors à

$$\left[dx_{1}+dy_{1}\psi'\left(x_{1}\right)\right]\delta x_{1}-\left[dx_{0}+dy_{0}\varphi'\left(x_{0}\right)\right]\delta x_{0}$$

et se partage en deux :

$$\mathbf{I} + \frac{dy_1}{dx_1} \psi'(x_1) = 0,$$

$$\mathbf{I} + \frac{dy_0}{dx_1} \varphi'(x_0) = 0,$$

parce que ∂x_0 et ∂x_1 sont des quantités indépendantes et arbitraires. On conclut de ces deux équations que la droite cherchée est normale aux courbes données.

Les constantes C et C', les coordonnées x_0 , y_0 , x_1 , y_1 des extrémités de la droite minimum sont déterminées par les six équations

$$y_0 = Cx_0 + C', \quad y_0 = \varphi(x_0), \quad 1 + C\varphi'(x_0) = 0,$$

 $y_1 = Cx_1 + C', \quad y_1 = \psi(x_1), \quad 1 + C\psi'(x_1) = 0.$

LIGNE LA PLUS COURTE ENTRE DEUX POINTS, DANS L'ESPACE.

785. Jusqu'à présent nous avons supposé qu'on cher-

chait la ligne minimum parmi toutes les lignes situées dans un plan donné. Cherchons maintenant quelle est, dans l'espace, la ligne la plus courte réunissant les deux points A et B.

Soient x_0, y_0, z_0 les coordonnées du premier point et x_1, y_1, z_1 celles du second. La longueur

de l'arc AMB sera représentée par

$$\int_{x_0}^{x_1} dx \sqrt{1 + \left(\frac{dy}{dx}\right)^2 + \left(\frac{dz}{dx}\right)^2}.$$

Nous aurons donc, dans cet exemple,

$$V dx = \sqrt{dx^2 + dy^2 + dz^2} = ds,$$

d'où

$$\delta V dx = \frac{dx d\delta x + dy d\delta y + dz d\delta z}{ds};$$

et par conséquent, en intégrant par parties,

$$\int_{x_{a}}^{x_{1}} V dx = \left(\frac{dx}{ds} \delta x + \frac{dy}{ds} \delta y + \frac{dz}{ds} \delta z\right)_{1} \\
- \left(\frac{dx}{ds} \delta x + \frac{dy}{ds} \delta y + \frac{dz}{ds} \delta z\right)_{0} \\
- \int_{x_{0}}^{x_{1}} \left(\delta x d \frac{dx}{ds} + \delta y d \frac{dy}{ds} + \delta z d \frac{dz}{ds}\right).$$

Il faut maintenant égaler à o l'expression sous le signe \int_{γ}^{γ} et comme les variations ∂x , ∂y , ∂z sont indépendantes et arbitraires, on aura

$$d\frac{dx}{ds} = 0, \quad d\frac{dy}{ds} = 0, \quad d\frac{dz}{ds} = 0$$

Mais ces trois équations se réduisent à deux distinctes. En effet, de l'identité

$$\frac{dx^2}{ds^2} + \frac{dy^2}{ds^2} + \frac{dz^2}{ds^2} = 1$$

on tire

$$\frac{dx}{ds} d\frac{dx}{ds} + \frac{dy}{ds} d\frac{dy}{ds} + \frac{dz}{ds} d\frac{dz}{ds} = 0$$

donc si l'on a $d\frac{dx}{ds} = 0$, $d\frac{dy}{ds} = 0$, il en résultera

$$d\frac{dz}{ds} = 0.$$

Des équations

$$d\frac{dy}{ds} = 0, \quad d\frac{dz}{ds} = 0,$$

on tire, par une première intégration,

$$\frac{dy}{ds} = a, \quad \frac{dz}{ds} = a',$$

ou, ce qui revient au même,

$$\frac{dy}{dx} = c, \quad \frac{dz}{dx} = c',$$

et, en intégrant de nouveau,

(3)
$$y = cx + C, \quad z = c'x + C',$$

équations d'une ligne droite.

- 786. Pour déterminer les constantes c, C, c', C', il faut distinguer plusieurs cas.
- 1°. Si les points A et B sont donnés, les variations ∂x_0 , ∂y_0 ,..., sont nulles, et l'équation $\Gamma = 0$ est satisfaite. Les quatre constantes se déterminent en substituant les coordonnées des points A et B, dans les équations de la droite.
- 2°. Supposons que les points A et B doivent se trouver sur deux courbes IK, LN, ayant pour équations, la pre-

288 · · · cours d'analyse.

$$(4) y = \varphi(x), \quad z = \psi(x),$$

et la seconde

(5)
$$y = \Phi(x), \quad z = \Psi(x):$$

l'équation $\Gamma = 0$, formée au moyen de l'équation (1), se réduira aux deux suivantes,

(6)
$$\left\{ \left(\frac{dx}{ds} \delta x + \frac{dy}{ds} \delta y + \frac{dz}{ds} \delta z \right)_{i} = 0, \\ \left(\frac{dx}{ds} \delta x + \frac{dy}{ds} \delta y + \frac{dz}{ds} \delta z \right)_{0} = 0. \right\}$$

En effet, appelons $\partial \sigma_0$ et $\partial \sigma_1$ les deux arcs infiniment petits AA' et BB', situés sur les courbes données, A'B' étant une courbe quelconque infiniment voisine de la droite AB. On pourra mettre Γ sous la forme

Les facteurs entre parenthèses ont des valeurs fixes, car ils représentent les cosinus des angles que la droite ΛB fait avec les courbes aux points Λ et B. Comme d'ailleurs $\partial \sigma_0$ et $\partial \sigma_1$ sont des quantités indépendantes l'une de l'autre, on voit bien que l'équation $\Gamma = 0$ entraîne les suivantes

$$\left(\frac{dx}{ds}\frac{\delta x}{\delta \sigma} + \frac{dy}{ds}\frac{\delta y}{\delta \sigma} + \frac{dz}{ds}\frac{\delta z}{\delta \sigma}\right)_{i} = 0,
\left(\frac{dx}{ds}\frac{\delta x}{\delta \sigma} + \frac{dy}{ds}\frac{\delta y}{\delta \sigma} + \frac{dz}{ds}\frac{\delta z}{\delta \sigma}\right)_{0} = 0,$$

et ces équations, qui sont au fond les mêmes que les équations (6), expriment que la droite AB est normale aux deux courbes.

A cause des équations (3); on a

$$\frac{dy}{dx} = c, \quad \frac{dz}{dx} = c',$$

et, puisque les extrémités de la ligne AB doivent rester sur les courbes (4) et (5), on aura

$$\delta y_{i} = \Phi'(x_{i}) \delta x_{i},$$

$$\delta z_{i} = \Psi'(x_{i}) \delta x_{i},$$

$$\delta y_{0} = \varphi'(x_{0}) \delta x_{0},$$

$$\delta z_{0} = \psi'(x_{0}) \delta x_{0}.$$

Les équations (6) peuvent donc se mettre sous la forme

$$1 + c\Phi'(x_1) + c'\Psi'(x_1) \stackrel{f}{=} 0,$$

 $1 + c\varphi'(x_0) + c'\Psi'(x_0) = 0,$

et, réunies aux huit suivantes,

$$y_0 = c \ x_0 + C, \quad y_1 = cx_1 + C,$$
 $z_0 = c' x_0 + C', \quad z_1 = c'x_1 + C',$
 $y_0 = \varphi(x_0), \quad y_1 = \Phi(x_1),$
 $z_0 = \psi(x_0), \quad z_1 = \Psi(x_1),$

elles forment un système de dix équations propres à déterminer les quatre constantes et les six coordonnées des points extrêmes de la droite.

3°. Supposons que les points A et B doivent être sur deux surfaces données. On pourra encore mettre Γ sous la forme (7), en appelant $\partial \sigma_0$ et $\partial \sigma_1$ deux arcs infiniment petits AA', BB', situés sur les deux surfaces; et comme ces déplacements des points A et B sont indépendants l'un de l'autre, on aura encore

$$\left(\frac{dx}{ds}\frac{\delta x}{\delta \sigma} + \frac{dy}{ds}\frac{\delta y}{\delta \sigma} + \frac{dz}{ds}\frac{\delta z}{\delta \sigma}\right)_{\delta} = 0,
\left(\frac{dx}{ds}\frac{\delta x}{\delta \sigma} + \frac{dy}{ds}\frac{\delta y}{\delta \sigma} + \frac{dz}{ds}\frac{\delta z}{\delta \sigma}\right)_{\delta} = 0.$$

La première équation exprime que la droite AB est normale à une courbe quelconque située sur la première surface et passant par le point A: donc la droite AB est normale à la première surface. Cette droite est, par la même raison, normale à la seconde surface.

Les constantes et les coordonnées des points A et B se détermineront comme dans le cas précédent.

LIGNE LA PLUS COURTE SUR UNE SURFACE DONNÉE.

787. Soit

$$\mathbf{F}\left(x,\,y,\,z\right) = \mathbf{0}$$

l'équation d'une surface courbe, et proposons-nous de trouver la ligne la plus courte AMB que l'on puisse tracer sur cette surface entre deux de ses points

$$A(x_0, y_0, z_0)$$
 et $B(x_1, y_1, z_1)$.

Toutes les courbes que l'on doit comparer dans cette question étant sur la surface (1), les variations des coordonnées doivent satisfaire à l'équation

(2)
$$\frac{d\mathbf{F}}{dx}\delta x + \frac{d\mathbf{F}}{dy}\delta y + \frac{d\mathbf{F}}{dz}\delta z = 0.$$

L'une des conditions du minimum est

(3)
$$K = \delta x d \frac{dx}{ds} + \delta y d \frac{dy}{ds} + \delta z d \frac{dz}{ds} = 0.$$

Mais de l'équation (2) on peut tirer la valeur de δz , et la porter dans l'équation (3), qui devient

$$\delta x \left(d \frac{dx}{ds} - \frac{\frac{dF}{dx}}{\frac{dF}{dz}} d \frac{dz}{ds} \right) + \delta y \left(d \frac{dy}{ds} - \frac{\frac{dF}{dy}}{\frac{dF}{dz}} d \frac{dz}{ds} \right) = 0,$$

et cette équation, à cause de l'indépendance des variations ∂x et $\partial \gamma$, revient aux deux suivantes

(4)
$$\begin{cases} d\frac{dx}{ds} - \frac{dF}{dx} d\frac{dz}{ds} = 0, \\ d\frac{dy}{ds} - \frac{dF}{dy} d\frac{dz}{ds} = 0. \end{cases}$$

On a en outre l'équation de la surface, ce qui fait trois équations pour déterminer les deux fonctions y et z. Mais on doit observer que l'une des équations (4) est une conséquence de l'autre et de l'équation (1). En effet, on a

$$\frac{d\frac{dx}{ds}}{\frac{d\mathbf{F}}{dx}} = \frac{d\frac{dy}{ds}}{\frac{d\mathbf{F}}{dy}} = \frac{d\frac{dz}{ds}}{\frac{d\mathbf{F}}{dz}},$$

ou bien, en désignant par $d\lambda$ la valeur commune de ces trois rapports,

$$d \frac{dx}{ds} = \frac{dF}{dx} d\lambda,$$

$$d \frac{dy}{ds} = \frac{dF}{dy} d\lambda,$$

$$d \frac{dz}{ds} = \frac{dF}{dz} d\lambda.$$

Ajoutons ces équations, après les avoir multipliées respectivement par $\frac{dx}{ds}$, $\frac{dy}{ds}$, $\frac{dz}{ds}$: nous aurons

(5)
$$\frac{dx}{ds}d\frac{dx}{ds} + \frac{dy}{ds}d\frac{dy}{ds} + \frac{dz}{ds}d\frac{dz}{ds} = \left(\frac{dF}{dx}dx + \frac{dF}{dy}dy + \frac{dF}{dz}dz\right)\frac{d\lambda}{ds}$$

Or le premier membre est nul puisqu'on l'obtiendrait en différentiant l'équation

$$\frac{dx^2}{ds^2} + \frac{dy^2}{ds^2} + \frac{dz^2}{ds^2} = 1;$$

le coefficient de $\frac{d\lambda}{ds}$ dans le second membre, est aussi nul à cause de l'équation (1). Donc l'équation (5) est une identité. Par conséquent l'une des équations (1) et (4) est une conséquence des deux autres. Il suffira d'en considérer deux pour que la ligne cherchée soit déterminée.

788. Les lignes les plus courtes sur une surface sont nommées lignes géodésiques de cette surface : elles jouis-

sent de cette propriété, que tous leurs plans osculateurs sont normaux à la surface. En effet, soit K le centre de cour-

bure de AMB au point M. La droite MK fait avec les axes des angles dont les cosinus sont proportionnels à

(6)
$$d\frac{dx}{ds}$$
, $d\frac{dy}{ds}$, $d\frac{dz}{ds}$.

D'un autre côté la normale à la surface, au point

M, fait, avec les axes, des angles dont les cosinus sont proportionnels à.

$$\frac{d\mathbf{F}}{dx}$$
, $\frac{d\mathbf{F}}{dy}$, $\frac{d\mathbf{F}}{dz}$.

Mais, d'après les équations (4), ces trois dérivées sont proportionnelles aux quantités (6). Donc les angles formés par les deux droites avec les axes sont égaux, et la normale à la surface coïncide en direction avec le rayon de courbure, ou, en d'autres termes, le plan osculateur en un point quelconque M, d'une ligne géodésique, est normal à la surface.

Les constantes se détermineront comme dans le problème précédent, et l'on verra de la même manière que si la ligne cherchée doit aboutir à deux courbes données sur la surface, la courbe AMB les coupera à angle droit.

789. Il est bon d'observer que la propriété d'être la ligne la plus courte entre deux points quelconques d'une surface peut n'exister que pour une certaine portion d'une courbe. Par exemple, sur la sphère, le plan de tout grand cerele (qui est en mème temps son plan osculateur) est normal à la surface. Mais la propriété du minimum appartient seulement aux arcs de grand cerele moindres qu'une demi-circonférence.

SURFACE DE RÉVOLUTION MINIMUM.

790. Etant donnés, dans le mème plan, deux points A et B, et une droite CD, trouver une courbe AMB, située dans ce plan, et qui, en tournant autour de CD, engendre une surface de révolution dont l'aire soit la plus petite possible.

Prenons pour axe des x la droite CD, et pour axe des y une perpendiculaire à cette droite. Soient x_0, y_0 les coordonnées du point A, et x_1, y_1 celles du point B. La surface engendrée par AMB étant représentée par

minimum de
$$\int_{x_0}^{x_1} y ds$$
. Or on a

$$\delta \int_{x_0}^{x_1} y ds = \int_{x_0}^{x_1} \delta (y ds) = \int_{x_0}^{x_1} (\delta y ds + y \delta ds);$$

$$ds^2 = dx^2 + dy^2.$$

mais d'où

$$ds \delta ds = dx \delta dx + dy \delta dy = dx d\delta x + dy d\delta y :$$

done

$$\delta \int_{x_0}^{x_1} y \, ds = \int_{x_0}^{x_1} \left(\delta y \, ds + y \, \frac{dx}{ds} \, d\delta x + y \, \frac{dy}{ds} \, d\delta y \right),$$

et, en intégrant par parties,

$$\delta \int_{x_0}^{x_1} y \, ds = \left(y \frac{dx}{ds} \, \delta x + y \frac{dy}{ds} \delta y \right)_1 - \left(y \frac{dx}{ds} \delta x + y \frac{dy}{ds} \delta y \right)_2 - \int_{x_0}^{x_0} \left[\delta x d \left(y \frac{dx}{ds} \right) + \delta y d \left(y \frac{dy}{ds} \right) - \delta y ds \right]_2.$$

Il faut égaler à zéro la quantité placée sous le signe f.

dans le second membre, ce qui donne

$$d\left(y\frac{dx}{ds}\right) = 0,$$

(2)
$$ds - d\left(y\frac{dy}{ds}\right) = 0,$$

mais la seconde équation est une conséquence de la première. En effet, on a identiquement

$$d\left(y\frac{dx}{ds}\right) = \left[ds - d\left(y\frac{dy}{dx}\right)\right]\frac{dy}{dx},$$

car cette équation revient à

$$\frac{dx}{ds} d\left(y \frac{dx}{ds}\right) - \frac{dy}{ds} ds + \frac{dy}{ds} d\frac{y dy}{dx} = 0,$$

ou

$$dy\left(\frac{dx^2}{ds^2} + \frac{dy^2}{ds^2}\right) - dy + y\left(\frac{dx}{ds}d\frac{dx}{ds} + \frac{dy}{ds}d\frac{dy}{ds}\right) = 0,$$

conséquence des équations

$$\frac{dx^2}{ds^2} + \frac{dy^2}{ds^2} = 1,$$

$$\frac{dx}{ds}d\frac{dx}{ds} + \frac{dy}{ds}d\frac{dy}{ds} = 0.$$

Il suffit donc de considérer l'équation (1), qui donne

$$y \frac{dx}{ds} = c;$$

d'où

$$y = c\sqrt{1 + \frac{dy^2}{dx^2}},$$

et en résolvant, par rapport à dx,

$$dx = \frac{cdy}{\sqrt{y^2 - c^2}}.$$

L'intégrale de cette équation est

$$x - c' = c \cdot \left(\frac{y + \sqrt{y^2 - c^2}}{c} \right),$$

d'où l'on tire

équation d'une chaînette (574, 2°).

Les constantes c et c' se déterminent comme dans l'exemple précédent. Si l'on fait passer l'axe des j par le point le plus bas de la courbe, on a c' = 0, et

$$y = \frac{c}{2} \left(e^{\frac{x}{c}} + e^{-\frac{x}{c}} \right).$$

Si les points A et B, au lieu d'être fixes, devaient se trouver sur deux courbes données, on obtiendrait encore une chaînette normale aux deux courbes données.

SOIXANTE-DEUXIÈME LEÇON.

Suite des applications du calcul des variations. — Brachistochrone. — Remarques sur l'équation K = 0, — Maximum ou minimum relatif. — Problèmes sur les isopérimètres.

BRACHISTOCHRONE.

791. Étant donnés deux points A et B, trouver la courbe AMB que doit suivre un point pesant pour aller du point A au point B dans le temps le plus court possible. Cette courbe s'appelle la brachistochrone ou courbe de plus vite descente.

Prenons une verticale quelconque pour axe des x, et

deux axes rectangulaires Oz et Oy dans un plan horizontal quelconque. Si l'on suppose que le mobile soit parti du point $A(x_0, y_0, z_0)$, sans vitesse initiale, on aura, en désignant par V sa vitesse au point M(x, y, z),

(1)
$$V^2 = 2g(x - x_0).$$

Mais s étant l'arc parcouru, et t le temps écoulé, on a

$$V = \frac{ds}{dt}$$

valeur qu'il faut prendre positivement, parce que l'arc augmente continuellement avec le temps. Il en résulte

$$\frac{ds}{dt} = \sqrt{2g(x - x_0)},$$

$$dt = \frac{1}{\sqrt{2g}}, \frac{ds}{\sqrt{x - x_0}}.$$

d'où

On aura donc, en appelant T le temps nécessaire pour

parcourir l'arc AB, et x1, l'abscisse du point B,

$$T = \frac{1}{\sqrt{2g}} \int_{x_0}^{x_1} \frac{ds}{\sqrt{x - x_0}}.$$

Il faut maintenant chercher la variation de l'intégrale «

$$\int_{x_0}^{x_1} \frac{ds}{\sqrt{x-x_0}}.$$

In posani

$$X = \frac{1}{\sqrt{x - x_0}},$$

on aura

$$\delta \int \mathbf{X} \, ds = \int (\delta \mathbf{X} \, ds + \mathbf{X} \, \delta \, ds).$$

Mais

$$\delta \mathbf{X} = -\frac{1}{2} (x - x_0)^{-\frac{3}{2}} (\delta x \rightarrow \delta x_0);$$

d'un autre côté,

$$\delta ds = \frac{dx}{ds} d\delta x + \frac{dy}{ds} d\delta y + \frac{dz}{ds} d\delta z.$$

Mettant ces valeurs dans l'équation

$$\delta \int X ds = 0,$$

on a

$$\delta x_0 \int \frac{1}{2} (x - x_0)^{-\frac{3}{2}} ds$$

$$- \int \left[\frac{1}{2} (x - x_0)^{-\frac{3}{2}} \delta x ds - X \left(\frac{dx}{ds} d\delta x + \frac{dy}{ds} d\delta y + \frac{dz}{ds} d\delta z \right) \right] = 0.$$

Intégrant par parties, et faisant sortir du signe \int les différentielles des variations, on a définitivement,

$$\left[X\left(\frac{dx}{ds}\delta x + \frac{dy}{ds}\delta y + \frac{dz}{ds}\delta z\right)\right]_{0}^{1} + \frac{1}{2}\delta x_{0} \int_{x_{0}}^{x_{1}} (x - x_{0})^{-\frac{5}{2}} ds$$

$$-\int_{x_0}^{x_0} \left[\frac{\delta x d \left(\mathbf{X} \frac{dx}{ds} \right) + \delta y d \left(\mathbf{X} \frac{dy}{ds} \right) + \delta z d \left(\mathbf{X} \frac{dz}{ds} \right)}{+ \frac{1}{2} \delta x (x - x_0)^{-\frac{3}{2}} ds} \right] = 0.$$

Pour que la quantité placée sous le signe \int dans la deuxième intégrale soit nulle, il faut égaler à o les coefficients des variations ∂x , ∂y , ∂z , ce qui donne

$$\begin{split} \frac{1}{2}\left(x-x_{0}\right)^{-\frac{3}{2}}ds+d\left(\mathbf{X}\frac{dx}{ds}\right)&=0\,,\\ d\left(\mathbf{X}\frac{dy}{ds}\right)&=0\,,\\ d\left(\mathbf{X}\frac{dz}{ds}\right)&=0\,. \end{split}$$

Les deux dernières équations sont suffisantes. En effet, on a

$$d\left(\mathbf{X}\frac{dx}{ds}\right) + \frac{dy}{dx}d\left(\mathbf{X}\frac{dy}{ds}\right) + \frac{dz}{dx}d\left(\mathbf{X}\frac{dz}{ds}\right) + \frac{1}{2}\frac{ds}{\left(x-x_{0}\right)^{\frac{3}{2}}} = 0,$$

car

$$\begin{split} \frac{dx}{ds} \, d\left(\mathbf{X} \frac{dx}{ds}\right) + \frac{dy}{ds} \, d\left(\mathbf{X} \frac{dy}{ds}\right) + \frac{d\mathbf{z}}{ds} \, d\left(\mathbf{X} \frac{dz}{ds}\right) + \frac{1}{2} \frac{dx}{\left(x - x_0\right)^{\frac{3}{2}}} \\ &= d\mathbf{X} + \frac{1}{2} \frac{dx}{\left(x - x_0\right)^{\frac{3}{2}}} = \mathbf{o}. \end{split}$$

Il suit de là qu'on aura

$$X \frac{dy}{ds} = C, \quad X \frac{dz}{ds} = C',$$

ou

(4)
$$\frac{1}{\sqrt{x-x_0}} \cdot \frac{dy}{ds} = C, \quad \frac{1}{\sqrt{x-x_0}} \cdot \frac{dz}{ds} = C';$$

d'où l'on déduit

$$\frac{dy}{dz} = \frac{C}{C'}$$

et

$$\mathcal{J} = \frac{\mathbf{C}}{\mathbf{C}'} z' + \mathbf{C}''.$$

792. Cette équation montre d'abord que tous les points de la courbe sont dans un même plan vertical.

En remplaçant ds par $\sqrt{dx^2 + dy^2}$ et C par $\frac{r}{\sqrt{a}}$ pour l'homogénéité, on déduit de la première des équations (4)

$$dy = dx \sqrt{\frac{x - x_0}{a - x + x_0}}.$$

Si l'on prend le plan de la courbe pour plan des xy, et le point de départ A pour origine des coordonnées, on a $x_0 = 0$, et l'équation différentielle de la courbe se réduit à

(6)
$$dy = dx \sqrt{\frac{x}{a - x}},$$

équation d'une cycloïde dont le sommet est au point A, dont la base est horizontale, et dont le diamètre du cercle générateur est égal à a.

En intégrant (6), on a

$$y = \frac{1}{2} a \arccos \frac{a - 2x}{a} - \sqrt{ax - x^2}.$$

On déterminera la constante a ou le diamètre du cercle générateur en exprimant que la courbe passe par le point B (x_1, y_1) . On peut aussi obtenir cette ligne par la construction suivante. Décrivons une cycloïde quelconque

ayant son sommet en A et pour base Al, et soit b le point où AB rencontre cette courbe. A cause de la similitude des deux cycloïdes, c et C étant les centres des circonférences génératrices qui correspondent aux

· deux points b et B, les triangles ABC, abc sont semblables. Or b, B et c étant connus, il suffira pour avoir C de mener BC parallèle à bc jusqu'à la rencontre de Ac prolongé.

Le temps employé par le mobile pour aller de A en B,

est égal à $\frac{1}{2\sqrt{g}} \int_0^{x_1} \frac{ds}{\sqrt{x}}$ (791), en prenant l'origine des coordonnées au point A. On aura donc, d'après l'équation de la courbe,

$$T = \frac{1}{\sqrt{2 g}} \int_0^{x_1} \frac{\sqrt{a} \, dx}{\sqrt{ax - x^2}} = \sqrt{\frac{a}{2 g}} \arccos \frac{a - 2 x_1}{a}.$$

793. Supposons maintenant que les deux points A et B, au lieu d'être donnés, soient assujettis à se trouver sur deux courbes données CD, EF. On obtiendrait encore une cycloïde AMB, située dans un plan vertical. Pour déterminer les points A et B qui fixent sa position, il faut avoir recours à l'équation générale $\Gamma = 0$ qui est ici

$$\begin{split} & \left[\mathbf{X} \left(\frac{dx}{ds} \, \delta \, x + \frac{dy}{ds} \, \delta \, y + \frac{dz}{ds} \, \delta \, z \right) \right]_{\mathbf{I}} \\ & - \left[\mathbf{X} \left(\frac{dx}{ds} \, \delta \, x + \frac{dy}{ds} \, \delta \, y + \frac{dz}{ds} \, \delta \, z \right) \right]_{\mathbf{I}} + \delta \, x_{\mathbf{I}} \int_{x_{\mathbf{I}}}^{\mathbf{I} x_{\mathbf{I}}} \frac{\mathbf{I}}{2} \frac{ds}{\left(x - x_{\mathbf{I}} \right)^{\frac{3}{2}}} = \mathbf{o} \, . \end{split}$$

Comme les déplacements des points A et B sur les deux courbes sont indépendants l'un de l'autre, on a d'abord

(1)
$$\left[X \left(\frac{dx}{ds} \delta x + \frac{dy}{ds} \delta y + \frac{dz}{ds} \delta z \right) \right]_{1} = 0.$$

Cette équation exprime que le cosinus de l'angle TBU est Fig. 137. nul, BT et BU étant les tan-

nul, BT et BU étant les tangentes menées par le point B aux deux courbes EF et AB: donc la cycloïde AMB coupe EF à angle droit.

Il faut maintenant égaler à o le reste du premier membre de l'équation $\Gamma = 0$; mais aupara-

vant on peut la simplifier. En effet, on a pour tous les points de la courbe AMB (791)

$$\frac{dx}{ds} d\left(X\frac{dx}{ds}\right) + \frac{r}{2} \frac{dx}{\left(x - x_{\theta}\right)^{2}} = 0,$$

SOIXANTE-DEUXIÈME LEÇON.

ou

$$d\left(\mathbf{X}\frac{dx}{dx}\right) + \frac{1}{2}\frac{ds}{\left(x - x_0\right)^{\frac{3}{2}}} = 0;$$

d'où l'on tire en intégrant

$$\int_{x_0}^{x_1} \frac{1}{2} \frac{ds}{\left(x - x_0\right)^{\frac{3}{2}}} = -\left(\mathbf{X} \frac{dx}{ds}\right)_1 + \left(\mathbf{X} \frac{dx}{ds}\right)_0$$

Substituant cette valeur dans l'équation F = o, elle se réduit à

(2)
$$\left(\mathbf{X}\frac{dx}{ds}\right)_{0}\delta x_{0} + \left(\mathbf{X}\frac{dy}{ds}\right)_{0}\delta y_{0} + \left(\mathbf{X}\frac{dz}{ds}\right)_{0}\delta z_{0} = 0.$$

Cette équation ne paraît pas symétrique par rapport aux variables; mais on peut rétablir la symétrie de la manière suivante. On a trouvé, C et C' étant deux constantes,

$$X\frac{dy}{ds} = C, \quad X\frac{dz}{ds} = C';$$

donc on peut écrire $\left(\mathbf{X}\frac{dy}{ds}\right)_{\mathbf{1}}$ et $\left(\mathbf{X}\frac{dz}{ds}\right)_{\mathbf{1}}$ à la place de $\left(\mathbf{X}\frac{dy}{ds}\right)_{\mathbf{0}}$ et $\left(\mathbf{X}\frac{dz}{ds}\right)_{\mathbf{0}}$. L'équation (2) devient alors en divisant par $\mathbf{X}_{\mathbf{1}}$, facteur commun,

$$\left(\frac{dx}{ds}\right)_{1}\delta x_{0} + \left(\frac{dy}{ds}\right)_{1}\delta y_{0} + \left(\frac{dz}{ds}\right)_{1}\delta z_{0} = 0.$$

Cette équation exprime que la cycloïde coupe à angle droit la courbe CD.

Les constantes et les inconnues $x_0, y_0, z_0, x_1, y_1, z_1$ se détermineront comme dans les exemples précédents.

REMARQUES SUR L'INTÉGRATION DE L'ÉQUATION K=0.

794. C'est ici le lieu de placer quelques observations sur l'équation différentielle

(1)
$$K = N - \frac{dP}{dx} + \frac{d^2Q}{dx^2} = 0,$$

qui, dans certains cas particuliers, peut être intégrée plus facilement que dans le cas général.

1°. Supposons d'abord que N soit nulle, c'est-à-dire que y n'entre pas explicitement dans V. L'équation (1) se réduit alors à

$$-\frac{dP}{dx} + \frac{d^2Q}{dx^2} = 0;$$

d'où résulte

$$P - \frac{dQ}{dx} = C.$$

Cette équation n'est plus que du troisième ordre, en supposant toujours que V ne contienne pas de dérivées d'un ordre supérieur au second.

2°. Si M = o, c'est-à-dire si x n'entre pas explicitement dans V, l'équation K = o se réduira encore au troisième ordre, en prenant y pour variable indépendante; mais on peut encore y parvenir de la manière suivante. A cause de M = o, on a

$$dV = N d\dot{y} + P dp + Q dq,$$

d'ailleurs

$$N - \frac{dP}{dx} + \frac{d^2Q}{dx^2} = 0.$$

Éliminant N entre ces équations, on aura

$$d\mathbf{V} = d\left(\mathbf{P}p\right) + d\left(\mathbf{Q}\frac{dp}{dx} - p\frac{d\mathbf{Q}}{dx}\right);$$

d'où

(3)
$$V = Pp + Q \frac{dp}{dz} - p \frac{dQ}{dx} + c,$$

équation du troisième ordre seulement.

3°. Si l'on avait à la fois

$$M = 0$$
, $N = 0$,

l'équation (3) se ramènerait au deuxième ordre. On aurait alors

$$\frac{d\mathbf{P}}{dx} - \frac{d^2\mathbf{Q}}{dx^2} = \mathbf{o},$$

d'où

$$P - \frac{dQ}{dx} = c',$$

et l'équation (3) deviendrait

$$(4) V = c'p + Qq + c.$$

Voici un problème dans lequel ces simplifications se présentent.

795. PROBLÈME. Trouver une courbe plane AMB telle, que l'aire ACBD comprise entre l'arc AMB, les rayons de courbure AC et BD qui correspondent aux deux points extrêmes A et B, et la portion de développée CD comprise entre les centres de courbure C et D soit un minimum.

Il ne peut pas y avoir de maximum, puisque AB devenant une ligne droite, la surface correspondante scrait infinie. En prenant une courbe peu différente de cette droite, on aurait donc une aire aussi grande qu'on voudrait.

Soient MK et M'K' les rayons de courbure de deux

points infiniment voisins M et M'. Le triangle infiniment petit MK'M' est égal à $\frac{1}{2}\rho ds$; en appelant ρ le rayon de courbure MK et ds l'arc infini-

ment petit MM'. On en conclut aisément que la surface en question a pour mesure

$$\int_{x_0^{-1}}^{x_1} \frac{1}{2} \frac{(1+p^2)^2}{q} dx,$$

 x_0 et x_1 étant les abscisses des points extrêmes A et B. Comme la fonction V ne contient explicitement ni x

$$V = Qq + c'p + c:$$

or
$$Q = -\frac{(1+p^2)^2}{2q^2};$$

on a donc

$$\frac{(1+p^2)^2}{2q} = -\frac{(1+p^2)^2}{2q} + c'p + c,$$

ou

(2)
$$\frac{(1+p^2)^2}{q} = c'p + c.$$

Pour intégrer cette équation il faut changer les axes; mais il est nécessaire de la mettre d'abord sous une autre

forme. Comme $\rho = \frac{(1+\rho^2)^{\frac{3}{2}}}{q}$, l'équation (2) revient à

$$\rho = \frac{c'p + c}{\sqrt{1 + p^2}}.$$

Soit θ l'angle MTx que fait la tangente MT au point M (x,y) avec l'axe Ox; on a tang $\theta = p$, d'où

$$\sin \theta = \frac{p}{\sqrt{1+p^2}}, \cos \theta = \frac{1}{\sqrt{1+p^2}}$$
 Par conséquent,

$$\rho = c' \sin \theta + c \cos \theta.$$

Soient maintenant a et α deux nouvelles constantes, telles que

$$c = -2a \sin \alpha$$
, $c' = 2a \cos \alpha$,

on aura

$$a = \frac{1}{2}\sqrt{c^1 + c'^2},$$

$$c \qquad c'$$

$$\sin \alpha = -\frac{c}{\sqrt{c^2 + c'^2}}, \quad \cos \alpha = \frac{c'}{\sqrt{c^2 + c'^2}};$$

on a ainsi

$$\rho = 2 a \sin(\theta - \alpha).$$

Prenons maintenant deux nouveaux axes rectangulaires Ox' et Oy', tels que $x'Ox = \alpha$.

Si l'on fait $\theta - \alpha = \theta'$, on aura

$$\rho = 2a \sin \theta'$$
.

Formons maintenant l'équation différentielle qui convient à ces nouveaux axes. On a

$$\tan\theta' = \frac{dy}{dx},$$

d'où

$$\sin \theta' = \frac{\frac{dy}{dx}}{\sqrt{1 + \frac{dy^2}{dx^2}}},$$

Remplaçons ρ par $\frac{\left(1+\frac{dy^2}{dx^2}\right)^{\frac{3}{2}}}{-\frac{d^2y}{dx^2}}$, valeur qui suppose la

courbe concave vers l'axe des x: on a

$$\left(1+\frac{dy^2}{dx^2}\right)^2=-a\frac{d\frac{dy^2}{dx^2}}{dx},$$

équation différentielle de la courbe cherchée, par rapport aux nouveaux axes. On tire de cette équation

$$dx = -\frac{ad\frac{dy^2}{dx^2}}{\left(1 + \frac{dy^2}{dx^2}\right)^2},$$

d'où

$$(4) x - c = \frac{a}{1 + \frac{dy^2}{dx^2}}.$$

En supposant la constante c conuue, on peut imaginer que l'axe des y soit transporté parallèlement à lui-même, de telle sorte que toutes les anciennes abscisses soient diminuées de c. L'équation différentielle de la courbe est alors

$$x = \frac{a}{1 + \frac{dy^2}{dx^2}},$$

ou

(5)
$$dy = dx \sqrt{\frac{a}{x} - 1}.$$

La courbe cherchée est donc une cycloïde dont l'axe est dirigé suivant l'axe des x; et dont la tangente au sommet est l'axe des γ.

Pour déterminer les constantes, au nombre de quatre, que renferme l'équation de la courbe rapportée aux anciens axes, il faut distinguer plusieurs cas:

- 1°. Si les points A et B sont donnés ainsi que les tangentes à la courbe en ces points, l'équation $\Gamma = 0$ est sasatisfaite identiquement, car on a $\delta x_0 = 0$, $\delta y_0 = 0$, $\delta p_0 = 0, \dots$ On aura les quatre constantes en substituant les coordonnées des points A et B dans l'équation de la courbe, et en exprimant que les tangentes en ces points sont données.
- 2°. Si l'on donne les points A et B, sans donner les tangentes à la courbe en ces deux points, l'équation $\Gamma = 0$ deviendra

$$Q_{\scriptscriptstyle 1}\,\delta\,p_{\scriptscriptstyle 1}-Q_{\scriptscriptstyle 0}\,\delta\,p_{\scriptscriptstyle 0}=0\,,$$

et comme les variations δp_1 et δp_0 sont indépendantes l'une de l'autre, il faut que l'on ait séparément

$$Q_1 = 0$$
, $Q_0 = 0$;

on a trouvé, généralement,

$$Q = -\frac{(1+p^2)^2}{2q^2},$$

et comme $1 + p^2$ ne peut pas être nul, il faut que l'on ait $q_1 = \infty$, $q_0 = \infty$.

On déduit de là que les points A et B, sont les points de rebroussement de la cycloïde, car $q = \infty$ indique que le rayon de courbure est nul aux points A et B.

3.º On peut se donner le point A ainsi que la tangente à la cycloïde en ce point, et supposer que le point B doive se trouver sur une courbe donnée,

$$v = \Phi(x)$$

Dans ce cas l'équation $\Gamma = 0$ se compose de deux parties : un terme contenant ∂x_1 , et le terme $Q_1 \partial p_1$; ∂x_1 et ∂p_1 étant des variables indépendantes, on doit avoir $Q_1 = 0$, d'où $q_1 = \infty$. Ainsi le point B est encore un point de rebroussement de la cycloïde.

MAXIMUM OU MINIMUM RELATIF.

796. Dans les questions précédentes, il s'agissait de rendre maximum ou minimum une intégrale définie $\int_{x_0}^{x_1} V dx$, sans autre condition. On peut ajouter an problème la condition qu'une autre intégrale définie $\int_{x_0}^{x_1} U dx$ ait une valeur déterminée l. Par exemple, soit proposé de trouver parmi toutes les courbes de même longueur l, terminées à deux points A et B, celle dont l'aire comprise entre cette courbe, l'axe des abscisses et les deux ordonnées extrèmes est un maximum. La question consiste à déterminer y en fonction de x, de telle sorte qu'ayant

$$\int_{x_0}^{x_1} dx \sqrt{1 + p^2} = l,$$

l'intégrale $\int_{x_0}^{x_1} y \, dx$ ait une valeur plus grande ou plus petite que si l'on remplaçait y par toute autre fonction de x, satisfaisant à l'équation précédente. On dit alors que l'intégrale admet un maximum ou un minimum relatif.

797. Supposons qu'il s'agisse de rendre maximum l'intégrale $\int_{x_n}^{x_1} \nabla dx$, avec la condition

$$\int_{x_0}^{x_1} \mathbf{U} \, dx = l \cdot$$

Les variations de ces intégrales doivent être nulles,

si l'on compare la fonction de x cherchée avec celles qui conservent à $\int_{x_0}^{x_1} \mathbf{U} \, dx$ la même valeur. On doit donc avoir

(2)
$$\delta \int_{x_0}^{x_1} V dx = 0, \quad \delta \int_{x_0}^{x_1} U dx = 0.$$

En développant ces deux conditions comme on l'a fait pour le maximum absolu, on a deux équations, telles que

(3)
$$\Gamma + \int_{x_0}^{x_1} \mathbb{K}\omega \, dx = 0,$$

(4)
$$\Theta + \int_{x_0}^{ix_1} \mathbf{L} \, \omega \, dx = 0;$$

 Γ , Θ , K et L sont des fonctions que l'on formera comme il a été dit plus haut. Mais ici il ne faut plus poser séparément $\Gamma = 0$, K = 0, car ω n'est plus une fonction entièrement arbitraire de x. Pour trouver les conditions qui doivent être remplies dans ce cas, il faut d'abord éliminer ω . Posons

(5)
$$\int_{x_0}^{x} L \omega dx = \varphi(x),$$
d'où
$$\varphi(x_0) = 0, \quad \int_{x_0}^{x_1} L \omega dx = \varphi(x_1).$$

Par conséquent,

$$\Theta + \varphi(x_1) = 0$$
, ou $\varphi(x_1) = -\Theta$.

Il résulte de là, à cause de l'indétermination de ω , que $\varphi(x)$ est une fonction arbitraire de x, assujettie seulement à s'annuler pour $x = x_0$, et à devenir égale à $-\Theta$ pour $x = x_1$. Or on a, à cause de l'équation (5),

$$\omega = \frac{1}{\mathbf{L}} \frac{d\varphi\left(x\right)}{dx}.$$

Portant cette valeur dans l'équation (3), on a

$$\Gamma + \int_{x_0}^{x_1} \frac{\mathbf{K}}{\mathbf{L}} \dot{d} \varphi(x) = 0,$$

ou, en intégrant par parties,

(6)
$$\Gamma - \left(\frac{K}{L}\right)_{1} \Theta - \int_{x_{0}}^{x_{1}} \varphi(x) d\left(\frac{K}{L}\right) = 0.$$

Comme $\varphi(x)$ est une fonction arbitraire dont on donne; les valeurs sculement pour $x = x_0$, $x = x_i$, on doit avoir séparément

$$d\left(\frac{\mathbf{K}}{\mathbf{L}}\right) = \mathbf{o} , \qquad \mathbf{A}$$

(8)
$$\cdot \Gamma - \left(\frac{K}{L}\right)_{1} \Theta = 0;$$

la première donne

$$\frac{K}{L} = -a \quad \text{ou} \quad K + a L = 0,$$

a désignant une constante arbitraire.

La seconde condition devient $\Gamma + a\Theta = 0$, puisque $\frac{K}{L}$ ayant une valeur constante -a, on aura $\left(\frac{K}{L}\right)_1 = -a$. On a done les deux équations

(9)
$$\Gamma + a \circ = 0, \quad K + a L = 0.$$

On voit que l'on aura une constante de plus que dans le cas où l'on recherche un minimum absolu, mais on a aussi une équation de plus

$$\int_{x_0}^{x_1} \mathbf{U} \, dx = l.$$

798. Si l'on avait cherché le maximum de l'intégrale définie

$$\int_{x_0}^{x_1} (\mathbf{V} + a\mathbf{U}) \, dx,$$

on aurait été conduit aux deux équations (9). Par conséquent la recherche du maximum relatif de l'intégrale

 $\int_{x_0}^{x_1} V dx$, l'intégrale $\int_{x_0}^{x_1} U dx$ devant conserver une valeur constante, revient à chercher le maximum ab-

solu de l'intégrale $\int (V + aU) dx$; c'est ce qu'on peut d'ailleurs justifier par le raisonnement suivant.

Si $\int_{x}^{x_1} (V + aU) dx$ est un maximum, pendant que $\int_{x}^{x_{1}} U dx$ conserve une valeur constante et égale à l, U'et V' désignant des fonctions peu dissérentes de U et de V, on doit avoir

(1)
$$\int_{x_0}^{x_1} (V + a U) dx > \int_{x_0}^{x_1} (V' + a U') dx,$$
(2)
$$\int_{x_0}^{x_1} U dx = \int_{x_0}^{x_1} U' dx = l;$$
donc

ce qui montre bien que $\int_x^{x_1} V dx$ est un maximum lorsque la condition $\int_{x_1}^{x_1} U dx = l$ est remplie. Réciproquement, de l'inégalité (3) et de l'égalité (2) on déduirait l'inégalité (1).

PROBLÈMES SUR LES ISOPÉRIMÈTRES.

799. Étant donnés deux points C et D sur un plan, Fig. 138. trouver, parmi toutes les courbes de même longueur situées dans ce plan et terminées en C
et D, celle pour laquelle l'aire
ABDC est un maximum.
On doit avoir

On doit avoir

$$\int_{x_1}^{x_1} \sqrt{dx^2 + dy^2} = l,$$

et il faut chercher le maximum de l'intégrale $\int_{x_0}^{x_1} y \, dx$. D'après la théorie précédente, on devra chercher le maximum absolu de l'intégrale $\int_{x_0}^{x_1} (y \, dx + a \sqrt{dx^2 + dy^2})$, c'est-à-dire poser

(1)
$$\delta \int_{x_0}^{x_1} \left(y \, dx + a \sqrt{dx^2 + dy^2} \right) = 0.$$

Comme les limites x_0 et x_1 sont fixes, la partie de la variation désignée par Γ est identiquement nulle. On peut en outre ne faire varier que x. On a ainsi

(2)
$$\int_{x_0}^{x_1} \left(y + a \frac{dx}{ds} \right) d\delta x = 0,$$

ou, en intégrant par parties et négligeant la quantité placée en dehors du signe \int , qui est nulle,

$$\int_{x_0}^{x_1} \delta x \cdot d \left(y + a \frac{dx}{ds} \right) = 0,$$

et, en égalant à o le coefficient de ∂x ,

$$d\left(y+a\frac{dx}{ds}\right)=0;$$

d'où

$$(3) y + a \frac{dx}{ds} = c'.$$

Remplaçons ds par $\sqrt{dx^2 + dy^2}$, et résolvons par rapport à dx. Il viendra

$$dx = \frac{(y - c') dy}{\sqrt{a^2 - (y - c')^2}};$$

d'où
$$x-c=\sqrt{a^2-(y-c')^2}$$

et

(4)
$$(x-c)^2 + (y-c')^2 = a^2.$$

Ainsi la courbe cherchée est un arc de cercle.

800. Problème. De toutes les courbes isopérimètres que l'on peut tracer sur un plan entre deux points donnés A et B, trouver celle qui, en tournant autour de la droite Ox, engendre la plus grande ou la plus petite surface de révolution.

Il faut chercher le maximum ou le minimum relatif de

l'intégrale $\int_{x_0}^{x_1} y ds$, avec la condition

$$\int_{x_0}^{x_1} ds = l.$$

La question se ramène à la recherche du maximum ou du minimum absolu de

$$\int_{x_n}^{x_1} (y + a) ds,$$

et comme a est une constante, on obtiendra le même résultat qu'en cherchant le minimum absolu de $\int y \, ds$, problème déjà traité (790), et qui donne la chaînette.

801. Problème. De toutes les courbes isopérimètres, trouver celle qui engendre le volume de révolution nunimum.

L'équation du problème est, dans ce cas,

$$\delta \int_{x_0}^{x_1} (y^2 dx + a ds) = 0;$$

comme les deux points A et B sont donnés, on peut ne faire varier que x et faire abstraction de la partie Γ , qui est identiquement nulle, puisqu'il n'y a pas de dérivée d'un ordre supérieur au premier. D'après cela on aura

$$d\left(y^{2} + a\frac{dx}{ds}\right) = \mathbf{0},$$
$$y^{2} + a\frac{dx}{ds} = c.$$

ďoù

On en déduit, en remplaçant ds par $\sqrt{dx^2 + dy^2}$

$$dx = \frac{(y^2 - c) dy}{\sqrt{a^2 - (y^2 - c)^2}},$$

équation différentielle de la courbe élastique (572)

802. Problème. Déterminer la courbe qui, par sa révolution autour d'un axe (l'axe des x) engendre la surface minimum qui renferme un volume donné.

Ce volume étant $\pi \int y^s dx$, et l'aire $2\pi \int y ds$, il faut poser

(1)
$$\delta \int (y^2 dx + 2ay ds) = 0,$$

a étant une constante.

En considérant comme fixes les deux extrémités de la courbe, on peut ne faire varier que x, et comme la formule

$$ds^{2} = dx^{2} + dy^{2}$$

$$\delta ds = \frac{dx}{ds} d\delta x,$$

$$\int \left(y^{2} + 2ay \frac{dx}{ds} \right) d\delta x = 0.$$

donne

En intégrant par parties, et faisant $\delta x = 0$ aux deux limites, on a

$$\int \delta x \, d\left(y^2 + 2ay\frac{dx}{ds}\right) = 0;$$

d'où l'on conclut

$$y^2 + 2 ay \frac{dx}{ds} =$$
une constante C.

Chacune des constantes a et C pouvant être positive ou négative, on peut écrire

$$y^2 \pm 2 a y \frac{dx}{ds} \pm b^2 = 0,$$

et de là résulte

(2)
$$dx = \frac{(y^2 \pm b^2) dy}{\sqrt{4 a^2 y^2 - (y^2 \pm b^2)^2}};$$

c'est l'équation différentielle de la courbe cherchée; le radical doit être tantôt positif, tantôt négatif; il change de signe quand γ devient un maximum ou un minimum.

Si la constante b est nulle, on a un cercle ou l'axe des x.

Si b n'est pas nulle, l'équation dissérentielle (2) appartient à la courbe décrite par l'un des foyers d'une ellipse ou d'une hyperbole qui roule sans glisser sur l'axe des x, comme l'a démontré M. Delaunay, dans le Journal de Mathématiques de M. Liouville (*).

^(*) Tome VI, page 309.

NOTES.

NOTE I.

EXERCICES DE CALCUL DIFFÉRENTIEL ET INTÉGRAL, tirés des papiers de M. Sturm.

MAXIMUMS ET MINIMUMS.

1. Quel est le plus grand quadrilatère que l'on puisse former avec quatre côtés donnés?

Solution. Le quadrilatère doit être inscriptible.

2. Trouver sur une circonférence donnée un point tel, que la somme de ses distances à deux points donnés F et F' soit un minimum ou un maximum.

Solution. Le point cherché est le point de contact de la circonférence et d'une ellipse, tangente au cercle, ayant pour foyers les deux points donnés.

3. Trouver la plus courte distance de deux droites dans l'espace, données par leurs équations.

Solution. Les équations des droites étant

$$\begin{cases} x = az + p, \\ y = bz + q, \end{cases}$$
 $\begin{cases} x = a'z + p', \\ y = b'z + q', \end{cases}$

la plus courte distance est

$$\frac{(a-a')\,(q-q')-(b-b')\,(p-p')}{\sqrt{(a-a')^2+(b-b')^2+(ab'-ba')^2}}\cdot$$

4. Parmi les parallélipipédes de même surface assigner celui que a le plus grand volume.

SOLUTION. Le cube.

5. Mener par un point donné la ligne droite la plus courte entre deux courbes données.

Solution. Les normales aux extrémités de la droite minimum doivent rencontrer au même point la perpendiculaire à cette droite menée par le point donné.

6. Inscrire dans une sphère donnée un cône dout la surface totale soit un maximum.

Solution. x désignant la hauteur du cône, r le rayon de la sphère, on a

$$x = \frac{23 - \sqrt{17}}{16} r.$$

7. Circonscrire à une sphère donnée un cône dont le volume soit un minimum.

SOLUTION. Mêmes notations.

$$x = 4r$$
, vol. max. $= \frac{8}{3}\pi r^3$.

8. Parmi toutes les paraboles que peuvent décrire des corps pesants partant d'un point donné avec une vitesse donnée, trouver celle qui a l'aire la plus grande.

Solution. C'est la parabole décrite par un corps lancé dans une direction inclinée de 60 degrés à l'horizon.

- 9. Deux roues circulaires extérieures l'une à l'autre sur un même plan tournent uniformément autour de leurs centres fixes, l'une faisant deux tours. l'autre trois tours par seconde. Déterminer les époques et les positions des deux roues pour lesquelles deux points marqués sur leurs circonférences seront à la plus petite ou à la plus grande distance l'un de l'autre.
- 10. Parmi toutes les cordes d'une même longueur inscrites dans une courbe donnée, déterminer celle qui retranche le plus grand ou le plus petit segment.

Solution. La corde doit faire des angles égaux avec les tangentes menées à la courbe par ses extrémités.

- 11. Déterminer, dans une surface du second degré, le plus grand et le plus petit des rayons vecteurs pariant du centre.
- 12. Déterminer dans l'espace un point tel, qu'une fonction de ses distances à des points donnés soit un maximum ou un minimum.

APPLICATIONS GÉOMÉTRIQUES DU CALCUL DIFFÉRENTIEL.

13. Déterminer les points d'inflexion d'une conchoïde (courbe qu'on obtient en prolongeant d'une quantité constante les droites menées d'un point fixe à une droite fixe).

Solution. On prend pour axe des y la droite fixe et pour axe des x la perpendiculaire menée par le pôle. a étant la distance du pôle à la droite, b la quantité dont on prolonge les rayons vecteurs menés à la droite, les abscisses des points d'inflexion sont données par l'équation

 $x^{2} + 3ax^{2} - 2ab^{2} = 0.$

14. Une courbe est donnée par une relation entre les distances r et r' de chacun de ses points à deux points fixes. Trouver l'expression de la différentielle de son arc en fonction des distances r et r' et de leurs différentielles. Application aux sections coniques.

SOLUTION.

$$ds^2 = \frac{4rr' [rr' (dr^2 + dr'^2) - (r^2 + r'^2 - u^2) dr dr']}{(r + r' + a)(r + r' - a)(a + r - r')(a + r' - r)},$$

a désigne la distance des deux pôles.

15. Une courbe est donnée par une relation entre les deux angles θ et θ' que les droites menées d'un point quelconque M de cette courbe à deux points fixes A et B font avec la droite AB. On demande de déterminer la tangente à cette courbe et d'exprimer la différentielle de son arc en fonction des angles θ et θ' et de leurs différentielles.

Appliquer les résultats à la courbe décrite par l'intersection de deux droites mobiles qui tournent autour de deux points fixes avec des vitesses de rotation uniformes.

Solution. μ et μ' désignant les angles que la normale fait avec les deux rayons vecteurs MA et MB, on a

$$\sin^2 \mu + \sin^2 \mu' - 2\sin \mu \sin \mu' \cos (\theta + \theta') - \sin^2 (\theta + \theta') = 0,$$

$$ds = \frac{a}{\sin^2(\theta + \theta')} \sqrt{\sin^2\theta' d\theta^2 + \sin^2\theta d\theta'^2 - 2\sin\theta \sin\theta' \cos(\theta + \theta') d\theta d\theta'}.$$

Dans le cas particulier, n et n' étant les vitesses angulaires des deux mouvements, on a

 $\frac{\sin\mu}{\sin\mu'} = \frac{n\sin\theta'}{n'\sin\theta}.$

16. Une courbe est donnée par deux relations entre les distances r d'un quelconque de ses points M à un point fixe 0, l'angle 0 que

le rayon vecteur OM fait avec une droite fixe Ox et l'angle φ que le plan MOx fait avec un plan fixe xOy: trouver la différentielle de son arc en fonction de r, θ , θ' et de leurs différentielles.

Solution.
$$ds = \sqrt{dr^2 + r^2 d\theta^2 + r^2 \sin^2 \varphi d\varphi^2}$$
.

17. Construire et discuter la courbe $y^x = x^y$.

Solution. Courbe ayant pour asymptotes deux parallèles aux axes menées à une distance égale à l'unité.

18. Le rayon vecteur FM mené d'un foyer F d'une hyperbole à la courbe, tourne en décrivant dans un temps quelconque une aire proportionnelle à ce temps. On demande de calculer la vitesse du point M sur l'hyperbole en fonction de ce rayon vecteur.

Solution. 1er cus. Le foyer F est intérieur à la branche parcourue par le point M. On désigne par r le rayon vecteur, 2a l'axe transverse, $\frac{1}{2}$ k l'aire du secteur décrit dans l'unité de temps. On a

$$v^2 = \frac{k^2}{a^2(e^2-1)} \left(\frac{2a}{r} + 1\right)$$

 $2^{\rm c}\, cas.$ Le foyer est ext'erieur à la branche décrite. Mêmes notations,

$$\mathrm{e}^{2} + \frac{\hbar^{2}}{a^{2}\left(e^{2}-1\right)}\left(1-\frac{2a}{r}\right).$$

19. Méme problème pour la parabole.

Solution. Le paramètre étant désigné par 2p, on a

$$e^{\alpha} = \frac{2k^2}{p} \cdot \frac{1}{r}$$

20. Une courbe tracée sur la surface d'un cône droit a pour projection orthogonale, sur un plan perpendiculaire à l'axe du cône et passant par son sommet, une spirale logarithmique dont ce sommet est le pôle. On demande les équations de la tangente à cette courbe, et l'équation de son plan normal en un point donné. Prouver que cette courbe coupé toutes les arêtes du cône sous un angle constant.

Solution. $r=e^{m\theta}$ étant l'équation de la spirale logarithmique, α l'angle du cône, la tangente à la courbe fait avec l'axe des angles dont les cosinus sont

$$\frac{m\cos\theta-\sin\theta}{\sqrt{1+\frac{m^2}{\sin^2\alpha}}},\quad \frac{m\sin\theta+\cos\theta}{\sqrt{1+\frac{m^2}{\sin^2\alpha}}},\quad \frac{m\cot\alpha}{\sqrt{1+\frac{m^2}{\sin^2\alpha}}}$$

La tangente fait avec l'arête du cône un angle dont la cotangente est $\frac{m}{\sin\alpha}$.

L'équation du plan normal est

$$(\mathbf{X} - x)(mx - y) + (\mathbf{Y} - y)(my + x) + (\mathbf{Z} - z)mz = 0.$$

21. Si l'on désigne par s un arc de courbe, par c sa corde, par p le rayon de courbure en l'une de ses extrémités, la seconde extrémité venant se réunir à la première, on aura

$$\lim \frac{s-c}{s^3} = \frac{1}{24s^2}$$

- 22. Une surface convexe étant coupée par un plan, soient σ l'aire de la surface courbe, et a l'aire de la surface plane du segment déterminé; si l'on fait mouvoir le plan de sorte que la section tende à se réduire à un point M, la limite du rapport $\frac{\sigma}{a^3}$ sera proportionnelle à $\left(\frac{\mathbf{I}}{\mathbf{R}\mathbf{R}'}\right)^2$, R et R' étant les rayons de courbure principaux de la surface au point M.
 - 23. Trouver l'équation du lieu des normales à la surface

$$u^2 y^2 \stackrel{\circ}{=} x^2 (b^2 - z^2),$$

menées par tous les points de la droite

$$z = k$$
, $ay = x\sqrt{b^2 - k^2}$,

qui est tout entière sur la surface.

SOLUTION.

$$ak \left(ax + y\sqrt{b^2 - k^2}\right) \left(x\sqrt{b^2 - k^2} - ay\right) + (a^2 + b^2 - k^2)^2 \sqrt{b^2 - k^2} (z - k) = 0,$$

équation d'un paraboloïde hyperbolique.

OUADRATURES.

24. Calculer

$$\int \frac{dx}{x^5 \sqrt{1-x^2}}.$$

Solution. Cette intégrale se ramène à $\int \frac{d\varphi}{\sin^5 \varphi}$ en posant $x = \sin \varphi$.

25. Calculer

$$\mathbf{X} = \int \frac{dx}{v(a+bx')^3}$$

SOLUTION.

$$X = \frac{1}{2a^2\sqrt{a}} \left[\frac{\sqrt{a+bx^2} - \sqrt{a}}{\sqrt{a+bx^2} + \sqrt{a}} + \frac{1}{a^2\sqrt{a+bx^2}} + \frac{1}{3a(a+bx^2)^3} \right]$$

26. Calculer

$$\int \frac{dx}{\left(a+b\,x^2\right)^{\frac{5}{2}}}.$$

SOLUTION.

$$\mathbf{X} = \frac{1}{a^2} \left(\frac{x}{\sqrt{a+b \, x^2}} - \frac{b \, x^3}{3 \left(a + b \, x^2 \right)^{\frac{3}{2}}} \right) + \mathbf{C}.$$

27. Calculer

$$\mathbf{X} = \int \frac{dx}{(c+ex^2)\sqrt{a+bx^2}}.$$

Solution. Si be - ae est positif, on a

$$\mathbf{X} = \frac{1}{\sqrt{(bc - ae)c}} \mathbf{1} \left(\frac{\sqrt{(a + b x^2)c} + x\sqrt{bc - ac}}{\sqrt{(a + b x^2)c} + x\sqrt{bc - ae}} \right) + \mathbf{C};$$

si bc - ae est négatif, on aura

$$X = \frac{1}{2\sqrt{(ae - be)c}}$$
 arc tang $\left(\sqrt{\frac{ac - bc}{c}} \cdot \frac{x}{\sqrt{a + b x^2}}\right)$.

28. Calculer

$$\mathbf{X} = \int \frac{dx}{x\sqrt{x^2 + x + 1}},$$

donner la tangente, le sinus et le cosinus de cette intégrale. Solution.

$$\mathbf{X} = \arcsin \frac{x - 2}{x\sqrt{5}} + \mathbf{C}.$$

En supposant nulle la constante arbitraire, on a

$$\sin \mathbf{X} = \frac{x-2}{x\sqrt{5}}, \quad \cos \mathbf{X} = \frac{2\sqrt{x^2 + x - 1}}{x\sqrt{5}},$$

$$\tan \mathbf{X} = \frac{x-2}{2\sqrt{x^2 + x - 1}}.$$

29. Calculer

$$X = \int \frac{d\theta}{a + b \cos \theta}$$

Traiter à part le cus de a=b et comparer le résultat avec celui que donne la formule générale,

SOLUTION.

$$a > b \quad \mathbf{X} = \frac{2}{\sqrt{a^2 - b^2}} \arccos \frac{a \cos \theta + b}{a + b \cos \theta},$$

$$a < b \quad \mathbf{X} = \frac{1}{\sqrt{b^2 - a^2}} \log \frac{\tan \frac{1}{2} \theta + \sqrt{\frac{b + a}{b - a}}}{\tan \frac{1}{2} \theta - \sqrt{\frac{b + a}{b - a}}},$$

$$a = b \quad \mathbf{X} = \frac{1}{a} \tan \frac{1}{2} \theta.$$

30. Calculer .

$$X = \int \frac{\cos\theta \, d\theta}{(a + b\cos\theta)^2}.$$

SOLUTION.

$$(a^2 - b^2) \mathbf{X} = \frac{a \sin \theta}{a + b \cos \theta} - b \int \frac{d\theta}{a + b \cos \theta}$$

on est ramené à la question précédente. Si a = b,

$$a^2$$
 $X = \frac{1}{2} \tan g \frac{1}{2} \theta - \frac{1}{6} \tan g^3 \frac{1}{2} \theta$.

31. Calculer

$$X = \int \frac{dx}{x\sqrt{x}\,1(x-x)}$$

SOLUTION.

$$X = -\frac{2}{\sqrt{x}}I(1-x) + 2I\left(\frac{1-\sqrt{x}}{1+\sqrt{x}}\right) + C.$$

32. Démontrer que

$$\int_0^\pi \frac{\sin mx}{\sin x} \, dx = \pi \,,$$

m étant un nombre entier positif et impair.

33. Calculer l'aire que renferme la développée d'une ellipse.

Solution. $\frac{3}{8} \pi \frac{(a^2 - b^2)^2}{ab},$

2a et 2b étant les axes de l'ellipse.

34. Trouver en coordonnées polaires l'équation de la développante d'un cercle, l'expression d'un arc de cette courbe et celle du

II.

secteur compris entre cet arc et les droites menées du centre du cercle aux extrémités du même arc.

Solution. Équation de la développante

$$d\theta = \frac{\sqrt{r^2 + a^2}}{ar} dr,$$

arc de la courbe..
$$s = \frac{r^2 - a^2}{2a}$$
,

secteur.
$$\frac{1}{6a}(r^2-a^2)^{\frac{1}{2}}$$
.

L'arc de la développante, compté à partir du point de rencontre avec la circonférence, est quatrième proportionnel au diamètre et à la tangente.

35. Trouver l'aire contenue dans la portion fermée de la courbe

$$x^4 + y^4 - a^2 xy = 0$$
.

qui se trouve dans l'angle des coordonnées positives.

Solution.
$$\frac{\pi a^2}{8}$$
.

36. Trouver une courbe telle, que la somme de l'ordonnée et de la sous-normale soit constante. Construire et discuter cette courbe.

Solution.
$$c - x - y = a \log(a - y)$$
,

spirale logarithmique.

ÉQUATIONS DIFFÉRENTIELLES.

37. Intégrer l'équation

$$ay dx + bx dy + x^m y^n (cy dx + ex dy) = 0.$$

Solution. Le premier binôme devient intégrable étant multiplié par $x^{a-1}y^{b-1}\varphi(x^ay^b)$; le second, par $\frac{x^{e-1}y^{e-1}}{x^my^{a}}\psi(x^ey^e)$. Or on peut déterminer φ et ψ de manière à rendre ces facteurs égaux.

38. Trouver une courbe dans laquelle le rayon de courbure soit en raison inverse de la normale.

Solution.
$$dx + dy \sqrt{\frac{a^2}{a^2 + c + y^2}} + 1$$
.

39. Intégrer l'équation

$$\frac{(dy^2 + y^2 dx^2)^{\frac{3}{2}}}{2dy^2 dx + y^2 dx^2 - y d^2 y dx} = y,$$

où x est la variable indépendante.

SOLUTION.

$$x = c' + \frac{1}{c}\sqrt{2cy - c^2} + \arccos\frac{y - c}{y}$$

40. Intégrer l'équation

$$dx^2 dy - x ds^2 d^2 y = a dx ds \sqrt{(d^2 x')^2 + (d^2 y)^2}$$

dans laquelle $ds = \sqrt{dx^2 + dy^2}$, et s est prise pour variable indépendante.

Solution. $y = \frac{1}{2} c(x+a)^2 + r^2$

41. Déterminer la courbe dont le rayon de courbure en chaque point est égal à la distance de ce point à un point fixe.

Solution. L'équation de cette courbe en coordonnées polaires est

$$\theta = c' + \frac{1}{c} \sqrt{2cr - c^2} + \arccos \frac{r - c}{r}$$

42. Déterminer la courbe dont le rayon de courbure est proportionnel à celui de la développée.

SOLUTION.

$$r = ke^{m\theta}$$
.

43. Intégrer l'équation

$$\int y \, dx = \frac{y^5}{x}.$$

$$y = \sqrt{\frac{x^2 - c \, x^3}{2}}.$$

Solution.

44. Intégrer l'équation différentielle

$$(x^2+y^2)dx + \frac{x^3-5x^2y}{x+y}dy = 0.$$

SOLUTION.

$$\frac{x^3(y-x)^3}{(y^2-3xy-x^2)^2} \cdot \left[\frac{2y+(\sqrt{13}-3)x}{2y-(\sqrt{13}+3)x}\right]^{\sqrt{13}} - c.$$

45. Déterminer sur la surface d'un cône droit une courbe qui coupe les arêtes sous un anglé constant, et qui passe par deux points donnés.

Solution. Voir question 20°.

- 46. Trouver les trajectoires orthogonales des cercles inscrits dans un angle droit. Trouver l'asymptote sans intégrer. Prouver que les trajectoires sont semblables.
- 47. Les ovales de Descartes, représentés en coordonnées bipolaires par les équations

$$r + nr' = \alpha,$$

$$r' - nr = \delta,$$

se coupent à angle droit, quels que soient α et β .

48. Intégrer les deux équations

$$4 \frac{dy}{dx} + 9 \frac{dz}{dx} + 44 \dot{y} + 49 z = x,$$

$$3 \frac{dy}{dx} + 7 \frac{dz}{dx} + 34 y + 38 z = e^{x}.$$

SOLUTION.

$$\begin{split} y &= \frac{19}{3} \, x - \frac{56}{9} - \frac{29}{7} \, e^x + \frac{c}{5} \, e^{-6\,x} + \frac{c'}{5} \, e^{-x}, \\ z &= -\frac{17}{3} \, x + \frac{55}{9} + \frac{24}{7} \, e^x + \frac{4\,c}{5} \, e^{-6\,x} - \frac{4\,c'}{5} \, e^{-x}. \end{split}$$

49. Intégrer l'équation à différentielles partielles

$$(x - y + z)\frac{dz}{dx} + (2y - z)\frac{dz}{dy} = z.$$

$$\frac{x + y}{z} = \varphi\left(\frac{y - z}{z^2}\right).$$

SOLUTION.

50. Déterminer une surface telle, que son plan tangent en un point quelconque M rencontre une droite donnée de position en un point qui soit également distant du point M de la surface et d'un point fixe pris sur la droite donnée.

Solution. Prenant le point fixe pour origine et la droite donnée pour axe des z, l'équation de la surface est

$$x^{2} + y^{2} + z^{2} = x \varphi \left(\frac{y}{x}\right),$$

- φ désignant une fonction arbitraire.
- 51. Déterminer une surface telle, que son plan tangent en un point quelconque M rencontre une droite donnée de position en un point dont la distance à un point fixe 'pris sur cette droite soit égale à la distance de ce point fixe au point M de la surface.

Solution. Mêmes axes:

$$z + \sqrt{x^2 + y^2 + z} = \varphi\left(\frac{z}{x}\right)$$

QUESTIONS DIVERSES.

- 52. L'expression $\frac{Mdx + Ndy + Pdz}{Mx + Ny + Pz}$ est intégrable si M, N et P sont homogènes.
 - 53. Étant donnée l'équation

$$\frac{d\left(\mathbf{K}\frac{d\mathbf{V}}{dx}\right)}{dx} + \mathbf{G}\mathbf{V} \neq \mathbf{\hat{o}},$$

dans laquelle V, K et G sont des fonctions de x, K restant constamment positif, démontrer que V et $\frac{dV}{dx}$ ne peuvent pas s'annuler pour la même valeur de x.

S4. Déterminer, parmi toutes les lignes d'une longueur donnée et terminées à deux points fixes A, B, celle pour luquelle la somme des produits de chaque élément ds par le carré de sa distance à la droite AB est un maximum.

Solution. On prend AB pour axe des x et A pour origine. La question se ramène à l'intégration de l'équation

$$(a-y^2)\frac{dx}{ds} = c.$$

55. La ligne minimum sur une surface développable se trouve par des quadratures.

56. La courbe

$$x^{2m} + y^{2m} = 1$$

pour $m = \infty$ devient un carré dont le sommet, vu à la loupe, est semblable à $e^{-x} + e^{-y} = c$.

57. On sait que des droites normales à une surface sont aussi normales à une infinité d'autres surfaces, dont chacune est à une distance constante h de la première, de sorte que deux quelconques interceptent sur toutes les normales une longueur constante. Ces surfaces ont les mêmes plans des sections principales pour tous les points où elles rencontrent une même normale. Les courbes indicatrices des surfaces pour ces points, sont des coniques homofocales - ayant leurs axes parallèles, de sorte que la ligne des foyers est constante de grandeur et de direction.

58. Si l'on considère un système de lignes droites disposées dans l'espace suivant une loi analytique quelconque, et qui ne soient normales à aucune surface, en prenant un point quelconque O dans l'espace, et la droite OZ correspondante à ce point, puis portant perpendiculairement à OZ deux longueurs infiniment petites OM, OM', égales et perpendiculaires entre elles, les angles infiniment petits ψ et ψ que ferait la droite correspondante au point OM avec le plan OCM, et la droite correspondante au point OM' auront leur somme (algébrique) OP OP différente de zéro et constante, quelles que soient les directions des deux lignes OM, OM', pourvu qu'elles soient toujours égales, et perpendiculaires l'une à l'autre à OZ au même point O. La somme OP OP est nulle dans le seul cas où les droites du système sont normales à une même surface (*).

NOTE II.

SUR UN CAS PARTICULIER DE LA FORMULE DU BINOME,

par M. E. CATALAN.

(Extrait des Comptes rendus de l'Académie des Sciences, 1857, t. XLV, p. 621.)

Les ouvrages les plus estimés, par exemple le Cours d'Analyse du profond et regrettable Sturm, n'indiquent pas ce que devient la série

$$1 + \frac{m}{1}x + \frac{m(m-1)}{1.2}x^2 + \frac{m(m-1)(m-2)}{1.2.3}x^3 + \dots$$

quand on suppose $x=\pm$ 1. Cette lacune peut être aisément comblée comme il suit :

1. Lemme I. Le produit

$$\mathcal{U}_1 \, \mathcal{U}_2 \, \mathcal{U}_3 \dots \mathcal{U}_n \, \mathcal{U}_{n \, \sim \, \bullet} \dots,$$

dans lequel on suppose, pour plus de simplicité,

$$u_1 > u_2 > u_3 > \ldots > u_n > u_{n+1} \ldots > 1$$

^(*) Le lecteur trouvera un grand nombre de questions, d'un excellent choix, dans le *Recueil d'exercices sur le calcul infinitésimal*, par M. Frenet; Paris, 1856. Librairie de Mallet-Bachelier.

converge ou diverge en même temps que la série

$$lu_1 + lu_2 + \ldots + lu_n + lu_{n+1}(*).$$

2. Lemme II. m étant une quantité positive, moindre que l'unité, le produit

$$P_n = \frac{1}{m} \cdot \frac{2}{m+1} \cdot \frac{3}{m+2} \cdot \dots \cdot \frac{n}{m+n-1}$$

croît indéfiniment avec n.

En effet,

$$\lim nl \frac{n}{m+n-1} = \lim nl \left(1 + \frac{1-m}{m+n-1}\right) = 1 - m;$$

donc la série qui aurait pour terme général $t \frac{n}{m+n-1}$ est divergente (**); donc le produit P_n est divergent (Lemme I).

3. Lemme III. m étant une quantité positive, comprise entre deux nombres entiers consécutifs, p-1, p, le produit

$$\frac{p+1}{p-m} \cdot \frac{p+2}{p+1-m} \cdot \cdot \frac{n+1}{n-m}$$

croît indéfiniment avec n.

4. Théorème I. m étant une quantité positive quelconque, on a

(A)
$$\begin{cases} 2^{m} = 1 + \frac{m}{1} + \frac{m(m-1)}{1 \cdot 2} + \dots \\ + \frac{m(m-1) \cdot (m-n+1)}{1 \cdot 2 \cdot 3 \cdot \dots n} + \dots \end{cases}$$

(*) Cette proposition, qui est évidente, peut être fort utile. Elle prouve, par exemple, que les produits

$$\frac{3}{1} \cdot \frac{7}{5} \cdot \frac{13}{11} \cdot \frac{21}{19} \cdot \frac{n^{2} + n + 1}{n^{4} + n - 1} \cdot \dots,$$

$$\frac{e + 1}{e - 1} \cdot \frac{e^{2} + 1}{e^{2} - 1} \cdot \dots \cdot \frac{e^{n} + 1}{e^{n} - 1} \cdot \dots,$$

$$\sec a \sec \frac{a}{a} \cdot \dots \cdot \sec \frac{a}{a} \cdot \dots$$

sont convergents, et que les produits

$$\frac{2}{1} \cdot \frac{5}{3} \cdot \frac{10}{7} \cdots \frac{n^2 + 1}{n^2 - n + 1} \cdots,$$

$$(1 + \tan g a) \left(1 + \tan g \frac{a}{2}\right) \cdots \left(1 + \tan g \frac{a}{n}\right) \cdots$$

peuvent dépasser toute limite.

(**) Comptes rendus, tome XLIII, page 627.

Le reste de la série (A) est (*)

$$R = \frac{m(m-1)\dots(m-n)}{1\cdot 2\cdot 3\dots(n+1)} \frac{1}{(1+\theta)^{n+1-m}}$$

Soit p le nombre entier immédiatement supérieur à m : on peut écrire

$$\mathbf{R} = \pm \frac{m (m-1) \dots (m-p+1)}{1 \cdot 2 \dots \cdot p} \times \frac{p-m}{p+1} \cdot \frac{p+1-m}{p+2} \cdots \frac{n-m}{n+1} \times \frac{1}{(1+\theta)^{n+1-m}}.$$

Des trois facteurs de R, le premier est constant, le deuxième a pour limite zéro (Lemme III), le troisième ne surpasse pas l'unité; donc $\lim R = o$.

5. Théorème II. m étant une quantité positive quelconque, on a

(B)
$$\begin{cases} o = 1 - \frac{m}{1} + \frac{m(m-1)}{1 \cdot 2} & \dots \\ \pm \frac{m'(m-1) \dots (m-n+1)}{1 \cdot 2 \dots n} & \mp \dots \end{cases}$$

La démonstration ne diffère pas de la précédente, pourvu que le reste soit mis sous la forme

$$R' = \pm \frac{m(m-1) \dots (m-p+1)}{1 \cdot 2 \dots p} \times \frac{p-m}{p+1} \cdot \frac{p+1-m}{p+2} \cdots \frac{n-m}{n+1} \times (1-\theta)^{m-1} (**).$$

6. Théorème III. m étant une quantité positive, moindre que l'unité, on a

(C)
$$\begin{cases} \frac{1}{2^m} = 1 - \frac{m}{1} + \frac{m(m+1)}{1 \cdot 2} - \frac{m(m+1)(m+2)}{1 \cdot 2 \cdot 3} + \dots \\ \pm \frac{m(m+1) \cdot \dots (m+n-1)}{1 \cdot 2 \cdot \dots n} \mp \dots \end{cases}$$

Dans ce cas, l'expression du reste est

$$R^{n} = \pm \frac{m(m+1)...(m+n)}{1.2...(n+1)} \frac{1}{(1+\theta)^{m+n+1}};$$

donc (Lemme II) $\lim R'' = o$.

^(*) Tome I, page 100.

^(**) Tome I, page 102.

7. Il est évident que la série (C) cesse d'être convergente à partir de m=1, et que la série

$$1 + \frac{m}{1} + \frac{m(m+1)}{1.2} + \frac{m(m+1)(m+1)}{1.2.3} + \dots$$

est divergente pour toutes les valeurs positives de m. Les cas dont nous nous sommes occupé sont donc les seuls qui présentent quelque intérêt.

NOTE III.

SUR LES FONCTIONS ELLIPTIQUES (*),

par M. Sturm, d'après un Memoire de M. Despeyrous.

L'intégrale sous forme algébrique de l'équation

$$\frac{dx}{\sqrt{1-x^2}} + \frac{dy}{\sqrt{1-y^2}} = 0$$

s'obtient aisément, comme on sait (**), au moyen d'une intégration

$$\int_0^{\varphi} \frac{d\varphi}{\sqrt{1-c^2\sin^2\varphi}},$$

$$2^{e'}$$
 espèce.
$$\int_{0}^{2\varphi} d\varphi \sqrt{1-c^{2}\sin^{2}\varphi},$$

3e espèce.
$$\int_0^{2\varphi} \frac{d\varphi}{(1+n\sin^2\varphi)\sqrt{1-c^2\sin^2\varphi}}.$$

Si l'on pose $x = \sin \varphi$, l'intégrale de première espèce devient

$$\int_{0}^{x} \frac{dx}{\sqrt{1-x^{2}}\sqrt{1-c^{2}x^{2}}}.$$
 P.

. (**) Voir, par exemple, Lacroix, Traité du Calcul différentiel et du Calcul intégral, tome II, page 473.

^(*) Pour l'intelligence de cette Note, il est nécessaire de savoir que l'on donne le nom d'intégrales elliptiques aux intégrales suivantes dont la seconde représente la longueur d'un arc d'ellipse :

par parties. En mettant cette équation sous la forme

$$dx\sqrt{1-y^2} + dy\sqrt{1-x^2} = 0,$$

on en déduit

$$\int dx \sqrt{1-y^2} + \int dx \sqrt{1-x^2} = \text{constante.}$$

Or, en intégrant par parties, on a

$$\int dx \sqrt{1-y^2} = x\sqrt{1-y^2} + \int \frac{xydy}{\sqrt{1-y^2}}$$

ef

$$\int dy \sqrt{1 - x^2} = y \sqrt{1 - x^2} + \int \frac{xy \, dx}{\sqrt{1 - x^2}}$$

Ajoutant et observant que les termes sous le signe donnent une somme nulle en vertu de l'équation différentielle proposée, on trouve l'intégrale algébrique

$$x\sqrt{1-y^2} + y\sqrt{1-x^2} = \text{constante.}$$

La constante arbitraire qu'elle contient est la valeur de y pour x = 0. Posons

$$\int_{0}^{x} \frac{dx}{\sqrt{1-x^2}} = \alpha, \quad x = \sin \alpha, \quad \sqrt{1-x^2} = \cos \alpha,$$

et de même

$$\int_0^y \frac{dy}{\sqrt{1-y^2}} = \beta, \quad y = \sin \beta, \quad \sqrt{1-y^2} = \cos \beta.$$

Nous aurons

$$d\alpha + d\beta = 0,$$

d'où

 γ étant une constante. D'ailleurs, pour $\alpha = 0$, on a

$$x = 0$$
, $\beta = \gamma$, $\beta = \sin \gamma$.

La constante de notre intégrale est donc $\sin \gamma$. Par suite, il vient $\sin \gamma$ ou $\sin (\alpha + \beta) = \sin \alpha \cos \beta + \sin \beta \cos \alpha$.

C'est la formule fondamentale de la théorie des fonctions circulaires.

Le même procédé s'applique facilement à la recherche de l'intégrale d'Euler qui donne la formulé fondamentale de la théorie des fonctions elliptiques.

Soit, en effet,

$$\frac{dx}{\sqrt{1-x^2}\sqrt{1-c^2x^2}} + \frac{dy}{\sqrt{1-y^2}\sqrt{1-c^2y^2}} = 0.$$

En multipliant par le produit des dénominateurs et divisant par $1 - c^2 x^2 y^2$, on a

$$\int \sqrt{1-y^2\sqrt{1-c^2y^2}} \, dx + \int \frac{\sqrt{1-x^2\sqrt{1-c^2x^2}}}{1-c^2x^2y^2} \, dy = \text{constante}.$$

Or, en intégrant le premier terme par parties, on obtient

$$\int \frac{\sqrt{1-y^2}\sqrt{1-c^2y^2}}{1-c^2x^2y^2} dx = \frac{x\sqrt{1-y^2}\sqrt{1-c^2y^2}}{1-c^2x^2y^2} + \int xy\frac{(1+c^2)(1+c^2x^2y^2) - 2c^2x^2 - 2c^2y^2}{(1-c^2x^2y^2)^2} \frac{dy}{\sqrt{1-y^2}\sqrt{1-c^2y^2}} - 2c^2\int \frac{x^2y^2}{(1-c^2x^2y^2)^2}\sqrt{1-y^2}\sqrt{1-c^2y^2} dx.$$

En échangeant entre elles les deux lettres x et y_y on aura le second terme; ajoutant donc et observant que les termes sous le signe \int donnent une somme nulle en vertu de l'équation différentielle proposée, on trouvera

$$\frac{x\sqrt{1-y^2}\sqrt{1-c^2y^2}+y\sqrt{1-x^2}\sqrt{1-c^2x^2}}{1-c^2x^2y^2}=\text{constante}.$$

La constante du second membre est la valeur de y pour $x=\mathrm{o.}$ Posons

$$\begin{split} \int_0^x \frac{dx}{\sqrt{1-x^2}\sqrt{1-c^2x^2}} &= \alpha \quad (\star), \\ x &= \mathrm{S}(\alpha), \quad \sqrt{1-x^2} &= \mathrm{C}(\alpha), \quad \sqrt{1-c^2x^2} &= \mathrm{R}(\alpha), \end{split}$$

et de même

$$\int_0^y \frac{dy}{\sqrt{1-y^2}\sqrt{1-c^2y^2}} = \beta,$$

$$y = S(\beta), \quad \sqrt{1-y^2} = C(\beta), \quad \sqrt{1-c^2y^2} = R(\beta).$$

Nous aurons

$$d\alpha + d\beta = 0$$
,

^(*) Dans cette intégrale la variable x doit être prise toujours moindre que 1. Si l'on fait $x = \sin \varphi$, alors l'angle φ est appelé l'amplitude de l'intégrale α . Jacobi le désigne par am α et pose $x = \sin \alpha m \alpha$.

$$\alpha + \beta = \gamma$$
.

 γ étant une constante. D'ailleurs pour $\alpha = 0$, on a

$$x = 0$$
, $\beta = \gamma$, $y = S(\gamma)$.

La constante de notre intégrale est donc $S(\gamma)$. Par suite il vient

$$S(\gamma) \quad \text{ou} \quad S(\alpha + \beta) = \frac{S(\alpha)C(\beta)R(\beta) + S(\beta)C(\alpha)R(\alpha)}{1 - c^2S(\alpha)^2S(\beta)^2}.$$

C'est la formule fondamentale de la théorie des fonctions elliptiques.

Elle donne $S(\alpha - \beta)$ en changeant le signe de $S(\beta)$. On peut aussi en déduire $C(\alpha \pm \beta)$ et $R(\alpha \pm \beta)$.

NOTE IV.

SUR LES PROPRIÉTÉS DE QUELQUES FONCTIONS ET SUR LA REPRÉSENTATION DES RACINES DES ÉQUATIONS PAR DES INTERSECTIONS DE COURBES,

par M. E. PROUHET.

Définitions préliminaires. — Relations entre les dérivées partielles des fonctions P et Q. - Séparation des quantités réelles et des imaginaires dans les dérivées de f(z). — Différences finies et différentielles totales des fonctions P et Q. - Propriétés des courbes P, Q, P+Q, P-Q. -Démonstration d'un théorème de M. Cauchy.-Asymptotes des courbes P, Q, etc. - Théorème sur le nombre des racines des équations algébriques. — Propriétés des surfaces z = P, z = Q. — Remarques.

DÉFINITIONS PRÉLIMINAIRES.

1. Si f(z) est une fonction qui prenne la forme $P + Q\sqrt{-1}$ quand on pose $z = x + y\sqrt{-1}$, P et Q étant des fonctions réelles en x et y, l'équation

$$f(z) = P + Q\sqrt{-1} = 0$$

entrainera les suivantes

$$P = 0, Q = 0$$

et réciproquement. Il suit de là que si x et y sont les coordonnées

d'un point variable, la partie réclle et le coefficient de $\sqrt{-1}$ d'une racine de l'équation (1) seront respectivement égaux aux valeurs numériques de l'abscisse et de l'ordonnée d'un point commun aux deux courbes données par les équations P = 0, Q = 0.

Les points d'intersection de ces deux courbes peuvent donc être regardés comme formant une représentation géométrique des racines de l'équation f(z) = 0, et c'est pour rappeler cette propriété que nous les nommerons des *points-racines*.

2. On dit en général qu'une équation f(z) = 0 a n racines égales à a lorsqu'on a $f(z) = (z-a)^n f(z)$, f(z) désignant une fonction qui ne devient ni nulle, ni infinie pour z=a; or comme la fonction $f(z) = \frac{f(z)}{(z-a)^n}$ prend la forme $\frac{0}{0}$ pour z=a, si l'on cherche sa véritable valeur d'après les règles connues, on voit que pour qu'elle ne soit ni nulle ni infinie, on doit avoir

$$f(a) = 0$$
, $f'(a) = 0$, $f''(a) = 0$, ..., $f^{n-1}(a) = 0$, $f^{n}(a) \ge 0$.

Toutes les fois que l'équation f(z) aura n racines égales, le point-racine correspondant sera pour nous l'équivalent de n points-racines qui coıncideraient, et nous le nommerons, dans ce cas, point-racine de l'ordre n.

RELATIONS ENTRE LES DÉRIVÉES PARTIELLES DES FONCTIONS P ET ().

3. Relations entre les dérivées partielles du premier ordre.

Si l'on suppose que z tienne la place de $x+y\sqrt{-1}$ dans l'identité

$$f(z) = P + Q\sqrt{-1},$$

et que l'on prenne les dérivées des deux membres, d'après la règle des fonctions de fonctions, on aura

$$f'(z)\frac{dz}{dx} - f'(z) = \frac{dP}{dx} + \frac{dQ}{dx}\sqrt{-1},$$

$$f'(z)\frac{dz}{dy} = f'(z)\sqrt{-1} = \frac{dP}{dy} + \frac{dQ}{dy}\sqrt{-1},$$

$$f'(z) = \frac{dQ}{dz} - \frac{dP}{dx}\sqrt{-1}.$$

On obtient ainsi deux expressions différentes de f'(z), et en exprimant qu'elles sont identiques, on aura les relations

(2)
$$\begin{cases} \frac{dP}{dx} - \frac{dQ}{dy}, \\ \frac{dP}{dy} = -\frac{dQ}{dx}. \end{cases}$$

4. Réciproquement, si les relations (2) ont lieu entre les dérivées de deux fonctions

$$P = \Phi(x, y), \quad Q = \Psi(x, y),$$

P et Q sont la partie réelle et le coefficient de $\sqrt{-1}$ d'une fonction d'une seule variable z, dans laquelle on aurait substitué $x+y\sqrt{-1}$ à z.

En effet, posons

$$W = P + Q\sqrt{-1};$$

substituons à x dans cette expression $z-y\sqrt{-1}$, et prenons la dérivée de W par rapport à y; nous aurons

$$\frac{d\mathbf{W}}{dy} = \frac{d\mathbf{P}}{dr}\frac{dx}{dy} + \frac{d\mathbf{P}}{dy} + \left(\frac{d\mathbf{Q}}{dx}\frac{dx}{dy} + \frac{d\mathbf{Q}}{dy}\right)\sqrt{-1},$$

et comme $\frac{dx}{dy} = -\sqrt{-1}$, il en résulte

$$\frac{d\mathbf{W}}{dy} = \left(\frac{d\mathbf{P}}{dy} + \frac{d\mathbf{Q}}{dx}\right) + \left(\frac{d\mathbf{Q}}{dy} - \frac{d\mathbf{P}}{dx}\right)\sqrt{-1}.$$

Or le second membre est identiquement nul d'après l'hypothèse. On a donc $\frac{d\mathbf{W}}{dy} = \mathbf{o}$. Ainsi le résultat de la substitution est indépendant de y et par conséquent \mathbf{W} se réduit à une fonction de z, qui par la substitution de $x^*+y^*\sqrt{-1}$ devient $\mathbf{P}+\mathbf{Q}\sqrt{-1}$.

5. Relations entre les dérivées partielles du second ordre.

Les relations (2) étant identiques, on pourra prendre les dérivées des deux membres de chacune d'elles : on obtiendra ainsi

$$\begin{split} \frac{d^2 \mathbf{P}}{dx^2} &= \frac{d^2 \mathbf{Q}}{dx \, dy}, \qquad \frac{d^2 \mathbf{P}}{dx \, dy} &= \frac{d^2 \mathbf{Q}}{dy^2}, \\ \frac{d^2 \mathbf{Q}}{dx^2} &= -\frac{d^2 \mathbf{P}}{dx \, dy}, \quad \frac{d^2 \mathbf{Q}}{dx \, dy} &= -\frac{d^2 \mathbf{P}}{dy^2}; \end{split}$$

d'où résultent les relations

(3)
$$\begin{cases} \frac{d^2 P}{dx^2} = -\frac{d^2 P}{dy^2}, \\ \frac{d^2 Q}{dx^2} = -\frac{d^2 Q}{dy^2}. \end{cases}$$

RÉCIPROQUEMENT, si l'une des relations (3) est vérifiée par une fonction P, il sera possible de trouver une seconde fonction Q telle,

que P et Q résultent de la substitution de $x + y\sqrt{-1}$ à la place de z dans une certaine fonction $\varphi(z)$.

En effet, si l'on pose $Q = \int \frac{dP}{dx} dy$, on aura

$$\frac{dQ}{dy} = \frac{dP}{dx}, \quad \frac{dQ}{dx} = \int \frac{d^2P}{dx^2} dy = -\int \frac{d^2P}{dy^2} dy = -\frac{dP}{dy}.$$

Ainsi les relations (2) sont vérifiées par les fonctions P et Q, et par suite il existe une fonction $\varphi(z)$ telle, que l'on a identiquement

$$\varphi(x+y\sqrt{-1}) = P + Q\sqrt{-1}.$$

6. Relations générales entre les dérivées particlles de P et celles de Q.

On tire des équations (2) en les différentiant k-1 fois par rapport à x, et n-k+1 fois par rapport à γ

$$\begin{cases}
\frac{d^n \mathbf{P}}{dx^k dy^{n-k}} = \frac{d^n \mathbf{Q}}{dx^{k-1} dy^{n-k+1}}, \\
\frac{d^n \mathbf{Q}}{dx^k dy^{n-k}} = -\frac{d^n \mathbf{P}}{dx^{k-1} dy^{n-k+1}}.
\end{cases}$$

7. Relations entre les dérivées partielles de P ou de Q. On tire des équations (3) par la différentiation

(5)
$$\begin{cases} \frac{d^{n}P}{dx^{k}dy^{n-k}} = -\frac{d^{n}P}{dx^{k-2}dy^{n-k-2}}, \\ \frac{d^{n}Q}{dx^{k}dy^{n-k}} = -\frac{d^{n}Q}{dx^{k-2}dy^{n-k-2}}. \end{cases}$$

Ces équations expriment une propriété commune aux deux fonctions P et Q. En y faisant successivement k=n, n-2, n-4... puis k=n-1, n-3, n-5..., on obtient:

$$\begin{pmatrix} \frac{d^{n}P}{dx^{n}} = -\frac{d^{n}P}{dx^{n-2}dy^{2}} = \frac{d^{n}P}{dx^{n-4}dy^{4}} = -\frac{d^{n}P}{dx^{n-6}dy^{6}} \cdots y \\ \frac{d^{n}P}{dx^{n-1}dy} = -\frac{d^{n}P}{dx^{n-3}dy^{3}} = \frac{d^{n}P}{dx^{n-3}dy^{5}} = -\frac{d^{n}P}{dx^{n-7}dy^{7}} \cdots \\ \frac{d^{n}Q}{dx^{n}} = -\frac{d^{n}Q}{dx^{n-2}dy^{2}} = \frac{d^{n}Q}{dx^{n-4}dy^{4}} = -\frac{d^{n}Q}{dx^{n-6}dy^{5}} \cdots y \\ \frac{d^{n}Q}{dx^{n-4}dy} = -\frac{d^{n}Q}{dx^{n-3}dy^{3}} = \frac{d^{n}Q}{dx^{n-5}dy^{5}} = -\frac{d^{n}Q}{dx^{n-7}dy^{7}} \cdots y \end{pmatrix}$$

Ainsi Tontes les dérivées partielles de P ou de Q d'un même ordre, dans lesquelles l'indice de différentiation relatif à une

méme variable est en méme temps pair ou impair, sont égales en valeurs absolucs.

Et si l'on range ces dérivées suivant un ordre de grandeur de cet indice, les signes + et - se succéderont alternativement.

SÉPARATION DES QUANTITÉS RÉELLES ET DES IMAGINAIRES DANS LES DÉRIVÉES DE f(z).

8. En différentiant par rapport à x les deux membres de l'identité $f(z) = P + Q\sqrt{-1}$, nous avons trouvé

$$f'(z) = \frac{d\mathbf{P}}{dx} + \frac{d\mathbf{Q}}{dx}\sqrt{-1}.$$

Cette formule fait voir que pour obtenir la partie réelle et le coefficient de $\sqrt{-1}$ de la dérivée d'une fonction, il suffit de prendre les dérivées par rapport à x des parties analogues de cette fonction. En prenant n fois de suite la dérivée par rapport à x, on trouve

$$f^{n}(z) = \frac{d^{n} P}{dx^{n}} + \frac{d^{n} Q}{dx^{n}} \sqrt{-1}.$$

On peut donner à cette expression deux autres formes et n'y employer que la fonction P ou la fonction Q. Il suffit d'y remplacer $\frac{d^n Q}{dx^n}$ par $\frac{d^n P}{dx^{n-1}dy}$, ou $\frac{d^n P}{dx^n}$ par $\frac{d^n Q}{dx^{n-1}dy}$, ce qui est permis d'après les relations (4). On aura ainsi

(7)
$$\begin{cases} f^{n}(z) - \frac{d^{n} \mathbf{P}}{dx^{n}} - \frac{d^{n} \mathbf{P}}{dx^{n-1}dy} \sqrt{-1}, \\ f^{n}(z) = \frac{d^{n} \mathbf{Q}}{dx^{n-1}dy} + \frac{d^{n} \mathbf{Q}}{dx^{n}} \sqrt{-1}. \end{cases}$$

DIFFÉRENCES FINIES ET DIFFÉRENTIELLES TOTALES DES FONCTIONS P et Q.

9. Les propriétés précédentes permettent de développer les accroissements des fonctions P et Q suivant les accroissements de leurs variables.

Si dans f(z) on change z en $(z + \Delta x + \Delta y \sqrt{-1})$, on aura

$$\Delta f(z) = \sum_{i=1}^{n} \frac{\left(\Delta x + \Delta \right) \sqrt{-1}\right)^{n}}{1 \cdot 2 \cdot 3 \cdot \ldots n} f^{n}(z) + R.$$

En posant

$$\Delta x + \Delta y \sqrt{-1} = r(\cos\theta + \sqrt{-1}\sin\theta)$$
.

nous aurons, par la formule de Moivre,

$$(\Delta x + \Delta y \sqrt{-1})^n = r^n (\cos n\theta + \sqrt{-1} \sin n\theta).$$

D'ailleurs la première formule (7) donne

$$f^{n}(x+\gamma\sqrt{-1}) = \frac{d^{n}P}{dx^{n}} - \frac{d^{n}P}{dx^{n-\frac{1}{2}}d^{\frac{n}{2}}}\sqrt{-1}:$$

donc on a

$$\Delta f(z) = \Delta P + \Delta Q \sqrt{-1}$$

$$= \sum_{n=1}^{\infty} \frac{r^n}{1 \cdot 2 \cdot \dots \cdot n} \left(\cos n\theta + \sqrt{-1} \sin n\theta \right) \left(\frac{d^n P}{dx^n} - \frac{d^n P}{dx^{n-1} dy} \sqrt{-1} \right)$$

$$+ R_1 + R_2 \sqrt{-1},$$

et en séparant les parties réelles et les parties imaginaires

(8)
$$\Delta P = \sum_{i=1}^{n} \frac{r^{n}}{1 \cdot 2 \cdot 3 \cdot \dots \cdot n} \left(\frac{d^{n} P}{dx^{n}} \cos n\theta + \frac{d^{n} P}{dx^{n-1} dy} \sin n\theta \right) + R_{i},$$

$$\Delta Q = \sum_{i=1}^{n} \frac{r^{n}}{1 \cdot 2 \cdot 3 \cdot \dots \cdot n} \left(\frac{d^{n} P}{dx^{n}} \sin n\theta - \frac{d^{n} P}{dx^{n-1} dy} \cos n\theta \right) + R_{i}.$$

10. Si l'on suppose Δx et Δy infiniment petits, le terme général de chaque développement devient la différentielle totale du n^{teme} ordre de P ou de Q, divisée par le produit 1:2.3....n. On aura donc, en appelant ω la limite de l'angle θ et en observant que

$$r = \sqrt{dx^2 + dy^2} = dy\sqrt{1 + \cot^2\omega} = \frac{dy}{\sin\omega}$$

(9)
$$\begin{cases} d^{n}P = \frac{\frac{d^{n}P}{dx^{n}}\cos n\omega + \frac{d^{n}P}{dx^{n-1}dy}\sin n\omega}{\sin^{n}\omega}dy^{n}, \\ d^{n}Q = \frac{\frac{d^{n}P}{dx^{n}}\sin n\omega - \frac{d^{n}P}{dx^{n-1}dy}\cos n\omega}{\sin^{n}\omega}dy^{n}. \end{cases}$$

propriétés des courbes P.et Q. — points multiples.

41. Pour abréger, nous appellerons courbe P, courbe Q, les courbes représentées par les équations P = . o. Q = o. Nous suppo-

II.

serons que le système d'axes auquel on les rapporte est rectangulaire.

Une propriété remarquable de ces courbes est d'avoir chacune un point multiple de l'ordre n, toutes les fois que l'équation primitive f(z) = 0, a n racines égales entre elles. Pour le démontrer, il faut faire voir : 1° que les fonctions P et Q s'annulent avec leurs dérivées partielles jusqu'à l'ordre n-1 inclusivement quand on y subtitue les coordonnées d'un point-racine de l'ordre n; 2° que chaque courbe a en ceopoint n tangentes distinctes.

12. Premièrement, quand f(z) a n racines égales à $x+\gamma\sqrt{-1}$, on doit avoir, i désignant un nombre au plus égal à n,

$$f^{i}(x+y\sqrt{-1}) = \frac{d^{i}\mathbf{P}}{dx^{i}} \cdot \frac{d^{i}\mathbf{P}}{dx^{i-1}dy}\sqrt{-1} = 0,$$

cette équation entraîne les deux autres :

$$\frac{d^{i}\mathbf{P}}{dx^{i}} = \mathbf{o}, \quad \frac{d^{i}\mathbf{P}}{dx^{i-1}d\gamma} = \mathbf{o}.$$

Il résulte de là et des relations (6) que toutes les dérivées de P de l'ordre i sont nulles, et comme i est compris entre o et n-1, il est donc démontré, qu'en un point-racine de l'ordre n, toutes les dérivées partielles de P s'annulent jusqu'à l'ordre n-1 inclusivement. — Même démonstration pour la fonction Q.

13. En second lieu, les courbes P et Q ont chacune, au point (x, y), n tangentes distinctes.

Considérons d'abord la courbe P.

On obtiendra le coefficient angulaire $\frac{d\gamma}{dx}$ - tang ∞ d'une tangente

à la courbe au point (x, y), en égalant à o la différentielle totale du n^{em} ordre. D'après la formule (9), l'équation qu'il faudra poser sera donc :

$$\frac{d^{n} P}{dx^{n}} \cos n\omega + \frac{d^{n} P}{dx^{n-1} dy} \sin n\omega = 0.$$

Le dénominateur de cette équation n'est jamais supérieur à l'unité, et il ne peut devenir nul en même temps que le numérateur qu'autant qu'on a

$$\frac{d^n \mathbf{P}}{dx^n} = \mathbf{o}.$$

Mais ce cas peut être écarté, car il suffit, pour l'éviter, de changer la direction des axes de coordonnées. Si donc en suppose

 $\frac{d^n P}{dx^n} \gtrsim 0$, on aura toutes les solutions de cette équation en posant

(10)
$$\tan g \, n \, \omega = -\frac{\frac{d^n \mathbf{P}}{dx^n}}{\frac{d^n \mathbf{P}}{dx^{n-1} dy}},$$

et si l'on fait

$$\tan \mu = -\frac{\frac{d^n P}{dx^n}}{\frac{d^n P}{dx^{n-1} dy}},$$

on aura

$$n\omega = \mu + k\pi$$
;

d'où

$$\omega = \frac{\mu}{n} + k \frac{\pi}{n}.$$

Pour avoir toutes les tangentes à la courbé P; il suffit de donner à n les valeurs $0, 1, 2, \ldots, n-1$, et l'on obtient n valeurs de ω , formant une progression arithmétique dont la raison est $\frac{\pi}{n}$. Donc la courbe P a n tangentes distinctes et tellement disposées, que deux tangentes consécutives comprennent un angle égal à la n^{ieme} partie de deux angles droits.

14. Il importe de remarquer qu'un point-racine de l'ordre n ne peut être un point d'arrêt ou un point isolé, pour aucune branche de la courbe P, du moins dans le cas où la fonction P est continue. En effet, l'équation qui donne tang o ayant toutes ses racines inégales, on voit facilement, en développant P par la série de Taylor, que P changera de signe quand on y substituera successivement les coordonnées de deux points suffisamment rapprochés du point N et situés de part et d'autre d'une même tangente.

45. Un calcul analogue à celui que nous avons fait pour la courbe P assignerait aussi à la courbe Q, en un point-racine de l'ordre n, n tangentes distinctes et tellement disposées, que deux tangentes consécutives comprennent un angle égal à $\frac{\pi}{n}$. On peut déjà en conclure qu'entre deux tangentes consécutives à la courbe P il y a tonjours une tangente à la courbe Q. Mais je dis de plus que :

Les tangentes à la courbe Q sont les bissectrices des angles formés par les tangentes à la courbe P. Pour le démontrer, rappelons-nous la formule

(10)
$$\tan n \omega = -\frac{\frac{d^n P}{dx^n}}{\frac{d^n P}{dx^{n-1} dx}}$$

En appelant \circ l'angle qu'une tangente à la courbe Q fait avec l'axe des x, nous aurons de même

(12)
$$\tan g \, n \, v = -\frac{\frac{d^n \mathbf{Q}}{dx^n}}{\frac{d^n \mathbf{Q}}{(dx^{n-1})(1)}}$$

Or, d'après les relations (4)

$$\frac{d^n \mathbf{Q}}{dx^n} = -\frac{d^n \mathbf{P}}{dx^{n-1} d\gamma}, \quad \frac{d^n \mathbf{Q}}{dx^{n-1} d\gamma} = \frac{d^n \mathbf{P}}{dx^n};$$

done

$$tangn\omega tangnv = -1$$
,

d'où

$$n\omega - n\upsilon = \pm \frac{\pi}{2}$$

(13)
$$\omega = \upsilon = \pm \frac{1}{2} \frac{\pi}{n}.$$

 $\omega - \omega$ est l'angle compris entre une tangente à la courbe P et une tangente à la courbe Q la plus voisine, et l'équation (13) montre que cet angle, abstraction faite du signe, est la moitié de l'angle $\frac{\pi}{n}$ compris entre deux tangentes consécutives à la courbe P.

-46. Les résultats précédents comprennent le cas particulier d'un point-racine simple. En un point de cette espèce, l'angle $\frac{1}{2}\frac{\pi}{n}$ formé par la tangente à la courbe P, et la tangente à la courbe Q se réduit à $\frac{\pi}{2}$. On peut d'ailleurs l'établir directement. Ainsi :

En un point-racine du premier ordre les courbes P et Q se coupent à angle droit.

Cette propriété appartiendrait encore aux courbes représentées par les équations

$$P = A$$
, $Q = B$,

A et B étant deux constantes quelconques.

PROPRIÉTÉS DES COURBES DONNÉES PAR LES ÉQUATIONS

$$P - Q = o$$
, $P + Q = o$.

47. La courbe qui a pour équation P-Q=o est le lieu de tous les points dont les coordonnées, substituées dans les fonctions P et Q, donnent des résultats égaux et de mème signe. En chaque point de cette courbe le rapport $\frac{P}{Q}$ est égal à r.

La courbe qui a pour équation $P+Q=\sigma$ est le lieu de tous les points dont les coordonnées, substituées dans les fonctions P et Q, donnent des résultats égaux et de signes contraires. Le rapport $\frac{P}{Q}$ y est constamment égal à -1.

Les courbes $P-Q,\,P+Q$ jouissent des mèmes propriétés que les courbes P et $Q,\,$ et il suffit pour le démontrer d'observer que les fonctions

$$p = P - Q, \quad q = P + Q,$$

sont la partie réelle et le coefficient de $\sqrt{-1}$ de la fonction

$$\begin{aligned} \left(\mathbf{1} + \sqrt{-\mathbf{1}}\right) f(z) &= \left(\mathbf{1} + \sqrt{-\mathbf{1}}\right) \left(\mathbf{P} + \mathbf{Q}\sqrt{-\mathbf{1}}\right) \\ &= \mathbf{P} - \mathbf{Q} + \left(\mathbf{P} + \mathbf{Q}\right)\sqrt{-\mathbf{1}}. \end{aligned}$$

D'ailleurs p et q s'annulent éyidemment avec leurs dérivées jusqu'à l'ordre n exclusivement, quand on y substitue les coordonnées d'un point racine de l'ordre n; d'où il suit que:

En un point racine de l'ordre n;

- 1°. La courbe P Q a n tangentes distinctes dont chacune fait avec celle qui la suit un angle égal à $\frac{\pi}{n}$;
- 2°. La courbe P+Q a aussi n tangentes distinctes qui sont les bissectrices des angles formés par les tangentes a la courbe P-Q.
- 48. Pour construire les tangentes à nos deux nouvelles courbes, il suffit de connaître l'angle qu'une tangente à l'une d'elles fait avec une tangente à la courbe P.

Soit tang $n\varepsilon$ le coefficient angulaire d'une tangente à la courbe P-Q: on a trouvé plus haut

(10)
$$\tan g n \omega = -\frac{\frac{d^n P}{dx^n}}{\frac{d^n P}{dx^{n-1} dy}};$$

à cause de la symétrie du calcul, on aura aussi

(14)
$$\tan n s = -\frac{\frac{d^n p}{dx^n}}{\frac{d^n p}{dx^{n-1} dy}};$$
 mais

mais

$$\frac{d^{n} P}{dx^{n}} = \frac{d^{n} P}{dx^{n}} - \frac{d^{n} Q}{dx^{n}} = \frac{d^{n} P}{dx^{n}} + \frac{d^{n} P}{dx^{n-1} dy},$$

$$\frac{d^{n} P}{dx^{n-1} dy} = \frac{d^{n} P}{dx^{n-1} dy} - \frac{d^{n} Q}{dx^{n-1} dy} = \frac{d^{n} P}{dx^{n-1} dy} - \frac{d^{n} P}{dx^{n}}.$$

Donc

$$\tan n \varepsilon = -\frac{\frac{d^n P}{dx^n} + \frac{d^n P}{dx^{n-1} dy}}{\frac{d^n P}{dx^{n-1} dy} - \frac{d^n P}{dx^n}} = \frac{-(\tan n \omega + 1)}{-1 - \tan n \omega} = \tan \left(n \omega - \frac{\pi}{4}\right)$$

d'où

(15)
$$\varepsilon = \omega - \frac{1}{4} \frac{\pi_{\circ}}{n}$$

De la résulte que si l'on construit, comme au nº 14, les tangentes aux courbes P et Q, et que si l'on désigne respectivement les angles consécutifs formés par ces tangentes, par les nombres

les bissectrices des angles de rang pair seront les tangentes à la courbe P + Q. Les bissectrices des angles de rang impair seront les tangentes à la courbe P - Q.

DÉMONSTRATION D'UN THÉORÈME DE M. CAUCHY.

19. Traçons autour d'un point-racine N, de l'ordre n, un cercle assez petit pour que dans son intérieur les courbes P, Q, P = Q, P+Q se confordent sensiblement avec leurs tangentes, et, par suite, ne puissent s'y couper mutuellement ailleurs qu'au point N. Un point mobile M qui parcourra la circonférence dans le sens direct de rotation, c'est-à-dire en allant des x positifs aux y positifs. devra rencontrer 2n fois chacune des quatre courbes et toujours dans l'ordre suivant :

...
$$P - Q$$
, P , $P + Q$, Q , $P - Q$, P ,...

Concevons qu'à chaque position du point mobile on substitue ses coordonnées dans le rapport $\frac{P}{Q}$. De la courbe P - Q, où $\frac{P}{Q}$ est positif (47), le poințM passe sur la courbe P où $\frac{P}{O}$ s'annule, et de là immédiatement sur la courbe P+Q, où $\frac{P}{Q}$ est négatif. Donc chaque fois que le point M traverse la courbe P, le rapport $\frac{P}{Q}$ passe du positif au négatif. Ce rapport passe au contraire du négatif au positif chaque fois que le point M traverse la courbe Q.

Donc lorsque le point mobile sera revenu à sa position initiale après avoir rencontré 2n fois la courbe P et 2n fois la courbe Q, le rapport $\frac{P}{Q}$ aura passé 2n fois du positif au négatif en s'évanouissant, et 2n fois du négatif au positif en devenant infini.

Si au lieu d'un cercle ou d'un contour convexe on trace une courbe fermée très-petite, qui présente des sinuosités, le point mobile pourra traverser plusieurs fois chaque portion de la courbe P, mais il devra la traverser une fois de plus dans le sens direct que dans le sens rétrograde, puisqu'il doit revenir à sa position initiale. Donc, pour chaque portion de la courbe P, le rapport $\frac{P}{Q}$ passera une fois de plus du positif au négatif que du négatif at positif, et quand le point mobile sera revenu au point de départ, ce rapport aura passé en s'évanouissant 2 n fois de plus du positif au négatif que du négatif au positif. Au contraire, ce rapport aura passé en devenant infini 2 n fois de plus du négatif au positif que du positif au négatif.

Ainsi se trouve démontré, pour un cas particulier, un théorème remarquable dû à M. Cauchy, et dont voici l'énoncé:

Le nombre des points-racines situés dans l'intérieur d'un contour fermé, en supposant qu'il ne s'en trouve aucun sur ce contour même, est égal à la demi-différence entre le nombre des variations (*) descendantes et celui des variations ascendantes du rapport $\frac{P}{Q}$, pour toute l'étendue du contour supposé parcouru dans le sens direct de rotation,

20. Du cas particulier que nous venons d'examiner, on s'élève au cas général par les considérations suivantes, empruntées à un Mémoire de MM. Sturm et Liouville (Journal de Mathématiques, tome I, page 278):

« Soit Δ l'excès du nombre de variations descendantes sur le nombre des variations ascendantes du rapport $\frac{P}{O}$ pour un contour qui

^(*) J'appelle variation ascendante le changement de signe d'une quantité qui passe du négatif au positif en s'évanouissant. Une variation descendante est le contraire.

renferme μ racines. Il faut démontrer que l'on a $\mu = \frac{1}{2} \Delta$. Or,

- » 1°. Le théorème est évident pour un contour quelconque ABC, lorsque dans l'intérieur de ce contour et sur le contour même on n'a jamais P=o; alors en effet les deux nombres μ et Δ sont tous les deux nuls, et par suite l'équation $\mu=\frac{I}{o}\Delta$ est satisfaite.
- » Elle est satisfaite encore lorsque dans l'intérieur du contour ABC, et sur ce contour même, on n'a jamais $Q=\sigma$; le nombre $\dot{\rho}$ est alors encore égal à zéro, et je vais prouver que l'on a aussi $\Delta=\sigma$. En effet la fraction $\frac{P}{Q}$, quand on aura fait un tour entier pour revenir au point de départ A, devra se retrouver en ce point affectée du même signe que d'apord elle possédait, quand le mouvement a commencé : donc cette fraction doit changer de signe un nombre pair de fois, toujours en s'évanouissant, puisque son numérateur seul peut devenir nul, et en passant alternativement du positif au négatif et du négatif au positif : donc enfin l'excès Δ du nombre de fois où elle va du au en s'évanouissant, est égal à zéro, ce qu'il fallait prouver.
- » 2°. Quand le théorème de M. Cauchy a·lieu pour deux contours ABCA, ACDA qui ont une partie commune AC, il a lieu également pour le contour total ABCDA formé par leur réunion. En effet, l'excès Δ du nombre de fois où $\frac{\mathrm{P}}{\mathrm{O}}$ s'évanouissant passe du \pm au +sur le nombre de fois où cette fraction en s'évanouissant passe du au + est le même, soit qu'on parcoure le contour total ABCDA, soit qu'on parcourre successivement les deux contours ABCA, ACDA, puisqu'à chaque passage du + aù - ou du - au +, qui a lieu quand on va sur le côté AC de C en A, répond un passage inverse du au + ou du + au -, quand on va sur le même côté de A en C. Or en supposant que le nombre des racines soit égal à v' dans le contour ABCA, et à μ'' dans le contour ACDA, on a $\Delta = 2\mu'$ pour le premier de ces contours, et $\Delta = 2\mu''$ pour le second, puisque le théorème de M. Cauchy est supposé applicable à l'un et à l'autre : d'après ce qu'on vient de voir, il résulte de là que, pour le contour total ABCDA, on a $\Delta = 2(\mu' + \mu'')$; donc le théorème de M. Cauchy est vrai pour le contour ABCDA qui renferme $\mu' + \mu''$ racines,
- » Si l'on considère un nombre quelconque de contours juxtaposés, pour chacun desquels ce théorème ait lieu, il aura lieu également pour le contour total formé par la réunion de ces deux-là : c'est ce qu'on verra en réunissant ces contours successivement deux à deux, comme on peut le faire d'après ce qui vient d'être démontré.

- » 3°. Étant donné un contour quelconque ABC, on peut toujours le concevoir divisé : I. En contours convexes tracés autour de chaque racine contenue dans l'intérieur de ABC, et assujettis aux conditions énoncées n° 19; Il. En contours semblables à ceux dont on a parlé (1°), c'est-à-dire pour lesquels on n'a jamais à la fois $P=\sigma$, $Q=\sigma$. Le théorème de M. Cauchy ayant lieu pour les diverses parties dans lesquelles on divise le contour ABC aura lieu pour ce contour même ABC, dont la forme est arbitraire.
 - » Ce théorème est donc entièrement démontré:
- » Toutefois, nous excluons formellement le cas particulier où , pour quelque point de la courbe ABC, on aurait à la fois $P=\sigma$, $Q=\sigma$; ce cas particulier ne jouit d'aucune propriété régulière, et ne peut donner lieu à aucun théorème : car dès qu'on l'admet l'excès Δ peut varier avec la forme du contour sans que le nombre μ varie; de sorte qu'il n'existe alors entre ν et Δ aucune relation constante. »

asymptotes des courbes P , Q , P — Q , P + Q , dans le cas ou P et Q sont des fonctions algébriques et entières. — théorème sur le nombre des racines d'une équation algébrique.

21. Soit une équation algébrique et entière de degré m,

$$f(z) = \left(\mathbf{A}_0 + \mathbf{B}_0 \sqrt{-1}\right) z^m + \left(\mathbf{A}_1 + \mathbf{B}_1 \sqrt{-1}\right) z^{m-1} + \dots + \left(\mathbf{A}_m + \mathbf{B}_m \sqrt{-1}\right) = 0;$$

si nous posons

$$z = x + y\sqrt{-1} = r\left(\cos\omega + \sqrt{-1}\sin\omega\right),$$

$$A_n + B_n\sqrt{-1} = \rho_n\left(\cos\alpha_n + \sqrt{-1}\sin\alpha_n\right),$$

nous aurons

$$\begin{split} &f\left(x+\gamma\sqrt{-1}\right) = P + Q\sqrt{-1} = \rho r^{m} \left[\cos\left(\alpha + m\omega\right)\right. \\ &+ \sqrt{-1}\sin\left(\alpha + m\omega\right)\right] + \rho_{1}r^{m-1}\cos\left[\alpha_{1} + (m-1)\omega\right] \\ &+ \sqrt{-1}\sin\left[\alpha_{1} + (m-1)\omega\right] + \dots, \end{split}$$

d'où

$$\begin{split} \mathbf{P} &= \rho \, r^m \cos \left(\alpha + m \omega\right) + \rho_1 \, r^{m-1} \cos \left[\alpha_1 + (m-1) \, \omega\right] \\ &+ \rho_2 \, r^{m-2} \cos \left[\alpha_2 + (m-2) \, \omega\right] + \dots, \\ \mathbf{Q} &= \rho \, r^m \sin \left(\alpha + m \, \omega\right) + \rho_1 \, r^{m-1} \sin \left[\alpha_1 + (m-1) \, \omega\right] \\ &+ \rho_2 \, r^{m-2} \sin \left[\alpha_1 + (m-2) \, \omega\right] + \dots. \end{split}$$

Les polynômes P et Q ainsi définis, nous allons chercher les asymptotes des courbes données par les équations P = 0, Q = 0.

22. Les coefficients angulaires des asymptotes d'une courbe algébrique de degré m, s'obtiennent en égalant à o la somme des

termes de son équation du m^{ieme} degré, après y avoir fait $x=r\cos \omega,$ $y=r\sin \omega.$

Or, les termes du m^{ieme} degré des polynômes P et Q proviennent évidemment de la substitution de $x+y\sqrt{-1}$ à la place de z dans le terme $(A_0+B_0\sqrt{-1})z^m$ de l'équation f(z)=0. Donc, si réservant ω pour désigner l'angle qu'une asymptote à la courbe P fait avec l'axe des x, on appelle ω l'angle analogue relatif à la courbe Q, on obtiendra ω et ω en posant

$$\rho r^m \cos(\alpha + m\omega) = 0$$
, $\rho r^m \cos(\alpha + m\omega) = 0$,

d'où l'on tire

$$\begin{cases} \omega = -\frac{\alpha}{m} + k \frac{\pi}{m} + \frac{1}{2} \frac{\pi}{m}, \\ \omega = -\frac{\alpha}{m} + k \frac{\pi}{m} = \omega - \frac{1}{2} \frac{\pi}{m}. \end{cases}$$

23. Quand l'équation d'une courbe de degré m est telle, qu'on puisse faire disparaître les termes du $(m-1)^{lome}$ degré en posant $x = x' + x_1$, $y = y' + y_1$, on sait que toutes les asymptotes de cette courbe passent par le point (x_1, y_1) .

Les courbes P et Q sont dans ce cas.

En effet si dans l'équation f(z) = 0 on fait $z = z' + x_1 + y_1 \sqrt{-1}$, il suffira, pour faire disparaître le termes en z'^{m-1} , de poser

$$x_1 + y_1 \sqrt{-1} = -\frac{1}{m} \cdot \frac{A_1 + B_1 \sqrt{-1}}{A_0 + B_0 \sqrt{-1}}$$

ou bien séparément,

$$x_{\rm t} = -\frac{{\rm i}}{m} \frac{{\rm A_0 \, A_1 + B_0 \, B_1}}{{\rm A_0^2 + B_0^2}}, \quad \mathcal{F}_{\rm t} = -\frac{{\rm i}}{m} \frac{{\rm A_0 \, B_1 - A_1 \, B_0}}{{\rm A_0^2 + B_0^2}}.$$

La transformée en z' n'ayant pas de termes du $(m-1)^{\hat{c}mc}$ degré, les polynômes P_i , Q_i , analogues à P et à Q, que l'on en déduit en posant $z'=x'+y'\sqrt{-1}$, n'auront pas non plus de termes de ce degré.

Mais il est évident que P_1 et Q_1 sont ce que deviennent P et Q quand on y fait $x = x' + x_1$, $y = y' + y_1$. Ainsi, les polynômes P et Q perdent leurs termes du degré m-1 par ce changement de variables, et, par suite, toutes les asymptotes des courbes P et Q passent par le point (x_1, y_1) .

24. Des formules (16) il résulte i 1° que les deux courbes P et Q ont chacune m asymptotes distinctes; 2° que deux asymptotes

consécutives de l'une d'elles comprennent un angle égal à $\frac{\pi}{2m}$, dont la bissectrice est une asymptote de l'autre courbe (*).

La construction des asymptotes est donc la même que celle des tangentes en un point-racine de l'ordre n.

Les équations qui donnent tang ω et tang υ n'ayant que des racines inégales, les asymptotes ainsi obtenues sont bien réelles et s'approchent indéfiniment des courbes P et Q, tant du côté de l'infini positif que du côté de l'infini négatif.

25. Les courbes P-Q, P+Q ont aussi chacune m asymptotes qui passent par le point (x_i, y_i) . Leur position par rapport aux asymptotes des courbes P et Q est la même que celles des tangentes au n^o 18. Il résulte de là que si du point (x_i, y_i) on décrit un cercle assez grand pour que, près de sa circonférence, les courbes se confondent sensiblement avec leurs asymptotes, un point mobile, parcourant ce cercle dans le sens direct de rotation, rencontrera 2m fois chacune des quatre courbes et toujours dans l'ordre suivant :

...,
$$P - Q$$
, P , $P + Q$, Q , $P - Q$,...

Par conséquent, la différence entre les nombres des variations descendantes et ascendantes du rapport $\frac{P}{Q}$ sera égale pour ce contour à 2m. Le nombre des points-racines qu'il renferme est donc égal à m, et comme au delà les courbes ne peuvent pas se couper, on en conclut que toute équation algébrique et entière, de degré m, à coefficients quelconques, admet m racines de la forme $2+\beta\sqrt{-1}$.

propriétés des surfaces données par les équations $z=\mathrm{P},\ z=\mathrm{Q}.$

26. Si dans l'intégrale définie (475)

$$\int_0^{2\pi} f(u) d\theta = 2\pi f(0),$$

où u tient la place de $x+y\sqrt{-1}=r(\cos\theta+\sqrt{-1}\sin\theta)$, on sup-

^(*) Ces propriétés des asymptotes ont été remarquées par M. Gauss et publiées par lui, en 1799, dans une thèse intitulée: Demonstratio nova theorematis omnem functionem algebraicam rationalem integram unius variabilis in factores reales primi vel secundi gradus resolvi posse. Helmstadii.

pôse f(u) de la forme $\Phi(u) + \Psi(u)\sqrt{-1}$, $\Phi(u)$ et $\Psi(u)$ étant des fonctions réelles de u, on aura séparément :

$$\int_{0}^{2\pi} \mathbf{P} d\theta = 2\pi\Phi(\mathbf{0}), \quad \int_{0}^{2\pi} \mathbf{Q} d\theta = 2\pi\Psi(\mathbf{0}),$$

P et Q ayant toujours la même signification, mais devant être considérées comme des fonctions réelles de $r\sin\theta$ et de $r\cos\theta$.

Voici une conséquence remarquable de ces formules :

Soit V le volume d'un corps compris entre la surface z = P, le plan xy, et un cylindre droit de rayon r et ayant pour axe l'axe des z. On aura :

$$\mathbf{V} = \int\!\!\int r \mathbf{P} dr d\theta = \int_0^r r d\theta \int_0^{2\pi} \mathbf{P} d\theta = 2\pi\Phi\left(\mathbf{o}\right) \int_0^r r dr,$$

et enfin

$$V = \pi r^2 \Phi(\sigma)$$
.

Ainsi le volume considéré est égal à celui d'un cylindre ordinaire, de même base et ayant pour hauteur Φ (σ).

En appelant U un volume analogue, dans lequel la surface z = Q remplacerait la surface z = P, on aurait de même

$$\mathbf{U} = \pi \, r^2 \, \Psi(\mathbf{o}).$$

Dans le cas où la fonction f(u) est réelle, ce volume est constamment nul.

REMARQUES.

27. Les courbes données par les équations P=o, Q=o, ne sont pas les seules qui puissent servir à représenter par leurs intersections les racines de l'équation f(z)=o. En effet, on ne change pas les racines de cette équation en multipliant son premier membre par une constante réelle ou imaginaire. Or, le premier membre de l'équation

$$(a+b\sqrt{-1})f(z) = 0$$

se changera pour $z=x+y\sqrt{-1}$ en

$$aP-bQ+(bP+aQ)\sqrt{-1}$$

et les courbes données par les équations

$$P_1 = aP - bQ = 0$$
, $Q_1 = bP + aQ = 0$

se couperont aux points-racines de la proposée.

Les courbes P, et Q, jouissent des mêmes propriétés que les courbes P et Q, et si on ajoute à cette remarque, qu'en chaque

point de la courbe P_1 le rapport $\frac{P}{Q}$ est égal à $\frac{b}{a}$, on aura deux théorèmes, qui pourront s'énoncer d'une manière abrégée comme il suit :

Le rapport $\frac{\dot{P}}{\dot{Q}}$ a la même valeur à tous les sommets d'un polygone régulier infiniment petit de 2n côtés, dont le centre est un point-racine de l'ordre n.

Le rapport $\frac{P}{Q}$ a la même valeur à tous les sommets d'un polygone régulier infiniment grand de 2m côtés dont le centre est le point de concours des asymptotes. — Le dernier théorème n'a lieu que dans le cas où P et Q sont des fonctions algébriques et entières de degré m.

28. Tous les théorèmes démontrés dans cette Note ne s'appliquent qu'aux fonctions que M. Liouville appelle bien déterminées, c'est-à dire à celles qui ne prennent qu'une seule valeur pour chaque valeur de la variable $z = x + y \sqrt{-1}$, et qui varient d'une manière continue quand le point (x, y) se déplace suivant une courbe quelconque.

NOTE V.

EXERCICES SUR LA RECTIFICATION DES COURBES PLANES,

Par M. E. PROUHET.

Formule pour la rectification des arcs. — Approximation des arcs. — Transformation des arcs de courbe. — Courbes rectifiables.

FORMULE POUR LA RECTIFICATION DES ARCS DE COURBE PLANE.

- 1. Soient AB une courbe plane, O un point pris dans son plan, OP une perpendiculaire à la tangente menée à la courbe AB par un de ses points M: La normale à la courbe, lieu des points P, s'obtient en joignant le point P au milieu de la droite OM.
- 2. Si l'on désigne par p la perpendiculaire OP et par « l'angle que cette droite fait avec un axe fixe, on aura

$$PM - \pm \frac{dp}{dw}$$
.

Cela résulte de ce que PM est égale à la sous-normale de la podaire (c'est ainsi qu'on nomme le lieu des points P), quand on considère p et ω comme des coordonnées polaires.

3. Si du point (1) on abaisse une perpendiculaire OQ sur la normale CM à la courbe AB, C étant le centre de courbure, on aura

$$CQ = \pm \frac{d^2p}{d\omega^2},$$

car le point Q appartient à la podaire de la développée de la courbe AB.

4. Si l'on désigne l'arc AB par s, et par α et β les angles que les normales aux points A et B font avec un axe fixe, on aura

(I)
$$s = \int_{\alpha}^{\beta} p d\omega + \left(\frac{dp}{d\omega}\right)_{\beta} - \left(\frac{dp}{d\omega}\right)_{\alpha}.$$

En effet, p étant le rayon de courbure, on a

$$s = \int_{\alpha}^{\beta} \rho d\omega = \int_{\alpha}^{\beta} (OP \pm CQ) d\omega = \int_{\alpha}^{\beta} \left(p + \frac{d^{2}p}{d\omega^{2}} \right) d\omega.$$

5. Quand le point 0 est le point de concours des normales extrémes et plus généralement quand les extrémités de l'arc AB sont également distantes des points correspondants de la podaire, on a

(II)
$$s = \int_{\alpha}^{\beta} p dk.$$

Conséquence de (2) et de (4).

6. La formule (I) ne change pas quand on change p en

$$p + a\cos\omega + b\sin\omega$$
.

Analytiquement cela résulte de ce que

$$z = a\cos\omega + b\sin\omega$$

est l'intégrale générale de l'équation

$$3 + \frac{d^2z}{dm^2} = 0;$$

géométriquement cette transformation revient à déplacer le point O d'où l'on abaisse des perpendiculaires sur les tangentes à la courbe.

APPROXIMATION DES ARCS DE COURBE.

7. Soient AB un arc convexe, O'un point pris dans la concavité de cette courbe, ϖ l'angle des normales extrêmes, en désignant par $\rho_0, \ \rho_1, \ \rho_2, \ldots, \rho_{2n}$ les rayons de courbure qui font avec la normale au point A les angles $o, \frac{\varpi}{2n}, \frac{2\varpi}{2n}, \frac{3\varpi}{2n}, \cdots$, on aura

$$\begin{split} AB > \varpi \, &\frac{\frac{1}{2}\rho_0 + \rho_2 + \frac{\rho_4}{\rho_4} + \ldots + \frac{1}{2} \acute{\rho}_{2n}}{n}, \\ AB < \varpi \, &\frac{\rho_4 + \frac{\rho_3}{\rho_3} + \ldots + \frac{\rho_{2n-1}}{\rho_{2n-1}}}{n}. \end{split}$$

si d'ailleurs $\frac{d^2 \rho}{d \omega^2}$ est négatif pour les valeurs de ω comprises entre o et ϖ .

Ces deux inégalites résultent de ce que $\int \phi d\omega$ peut être considérée comme l'aire d'une courbe convexe dont ϕ et ω seraient les coordonnées rectangulaires.

8. Si O est le point de concours des normales extrêmes, et p_0 , p_1 , p_2 , ..., p_{2n} les perpendiculaires abaissées sur les côtés d'un polygone équiangle circonscrit à la courbe AB, on aura

$$\begin{aligned} \mathbf{A}\mathbf{B} &= \lim \varpi^{\frac{1}{2}p_0 + p_2 + p_3 + \cdots + p_{2n}} \quad \text{pour} \quad n = \infty \,. \\ \mathbf{A}\mathbf{B} &= \lim \varpi^{\frac{p_1 + p_2 + \cdots + p_{2n + 1}}{n}} \quad \text{pour} \quad n = \infty \,. \end{aligned}$$

9. Soit CD une droite partagée au point E en deux segments, CE = a, CD = b. Si l'on partage en 2n parties égales la demicirconférence décrite sur CD comme diamètre et que l'on désigne par p_0 , p_1 , ... p_{2n} , les droites menées du point E aux divers points de division, le périmètre de l'ellipse ayant 2a et 2b pour axes sera compris entre deux circonférences ayant pour rayons la première

$$\frac{\frac{1}{2}p_0 + p_2 + p_3 + \ldots + \frac{1}{2}p_{2n}}{n}$$

et la seconde

$$p_1 + p_3 + \ldots + p_{2n-1}$$

Le théorème aurait encore lieu si le point E était pris sur le prolongement de CD et que l'on eût encore EC = a, ED = b.

10. La moyenne des distances d'un point pris dans le plan d'un

cercle, aux sommets d'un polygone régulier d'une infinité de côtés inscrits dans le cercle, est égale au périmètre d'une ellipse ayant pour demi-axes la plus grande et la plus courte distance du point à la circonférence, divisé par 2π : — Cas où le point est pris sur la circonférence

Conséquence de (9).

11. Le périmètre d'une ellipse ayant pour axes 2a et 2b, a > b, étant désigné par E, on a

$$\begin{split} & E > 2\pi b, & E < 2\pi a, \\ & E > 2\pi \cdot \frac{a+b}{2}, & E < 2\pi \cdot \frac{\sqrt{2 a^2 + 2 b^2}}{2}, \\ & E > 2\pi \cdot \frac{a+b+\sqrt{2 a^2 + 2 b^2}}{4}, & E < 2\pi \cdot \frac{\sqrt{a^2 + b^2 + \frac{1}{2} \sqrt{2 a^4 + 12 a^2 b^2 + 2 b^4}}}{2}. \end{split}$$

Conséquence de (9).

12. Si AB et A'B' sont deux droites parallèles, et a, b, des points pris sur les droites AA', BB', de telle sorte que

$$\frac{\mathbf{A}a}{\mathbf{A}'a} = \frac{\mathbf{B}b}{\mathbf{B}'b} = \frac{m}{n},$$

on aura

$$ab = \frac{n \operatorname{AB} \pm m \operatorname{A'B'}}{m+n}.$$

On prendra le signe + si les droites AB, A'B' sont dirigées dans le même sens, et le signe - dans le cas contraire.

43. Si plusieurs polygones ABCD..., A'B'C'D'..., A''B''C'D''..., ont leurs côtés respectivement parallèles, si a est le centre de gravité des sommets homologues A, A', A''...; b celui des sommets B, B', B''..., et ainsi de suite, le polygone abcd... aura ses côtés parallèles à ceux des premiers polygones, et son périmètre sera égal à la moyenne arithmétique des périmètres des polygones proposés.

Se démontrera d'abord pour deux polygones, puis pour trois, et ainsi de suite, au moyen du théorème 12.

44. Soient C, C', C",... plusieurs courbes, A, A', A",... des points appartenant respectivement à ces courbes et tels, que les tangentes en ces points soient parallèles. Soit a le centre de gravité des points A, A', A",... considérés comme des points matériels de poids égaux. Si les points A, A',... se meuvent sur lèurs courbes respectives en remplissant toujours les conditions précédentes, Parc de

courbe décrit par le point a sera égal à la moyenne arithmétique des arcs décrits par les points A, A',..., en prenant avec le même signe les arcs décrits dans le même sens.

15. Étant donné un arc AB, le transformer en un arc d'espèce différente et de même longueur.

Soient OA et OB les normales menées aux extrémités de l'arc AB. Soit A'B' ce que devient AB quand on fait tourner la figure autour de la bissectrice OC de l'angle AOB. En appliquant le théorème 14, on aura une courbe ab égale à la demi-somme des arcs AB et A'B', et par conséquent égale à chacun de ces arcs.

. La courbe ab est symétrique par rapport à OC. En doublant les dimensions d'une de ses moitiés, on aura une courbe a'c' égale à AB, mais dont les normales extrèmes feront un argle égal à la moitié de l'angle AOB.

En opérant sur a'c' comme sur AB et répétant indéfiniment cette suite d'opérations, on transformera l'arc primitif en arcs égaux dont les normales extrêmes feront un angle de plus en plus petit et qui, par conséquent, différeront de moins en moins d'une ligne droite.

46. Dans la transformation précédente, on a changé un arc AB en un autre arc de même ouverture ou d'une ouverture moitié moindre, c'est-à-dire dans lequel les normales extrêmes faisaient le même angle ou un angle moitié moindre. Soit ϖ l'ouverture d'un certain arc AB, posons $p=f(\omega)$: on a

$$s = \int_0^{\infty} [f(\omega) + f^n(\omega)] d\omega.$$

On aurait encore

$$s = \alpha \int_0^{\frac{\omega}{\alpha}} [f(\alpha \omega) + f''(\alpha \omega)] d\omega.$$

Soit $p_i = f_i(\omega)$ l'équation de la podaire d'une certaine courbe dont l'arc serait représenté par la formule précédente : on doit avoir

$$f_{i}(\omega) + f''_{i}(\omega) = f(\alpha\omega) + f''(\alpha\omega).$$

La fonction f_1 est donc donnée par une équation différentielle linéaire du second ordre, en général difficile à intégrer.

COURBES RECTIFIABLES.

17. Trouver une courbe connaissant sa podaire. Si $p = f(\omega)$ est l'équation de la podaire, r le rayon vecteur de la \mathbf{H}_i . courbe cherchée et θ l'angle de ce rayon vecteur avec l'axe fixe auquel la podaire est rapportée, il faudra éliminer ω entre les deux équations

$$\operatorname{tang}\left(\mathbf{0}-\mathbf{\omega}\right) = \frac{\mathbf{I}}{p} \frac{dp}{d\mathbf{\omega}}, \quad r^2 = p^2 + \frac{dp^2}{d\mathbf{\omega}^2}.$$

18. Si l'on prend $f(\omega)$ égal à la dérivée d'une certaine fonction $F(\omega)$, l'élimination précédente donnera une équation

$$\varphi(r, \theta) = 0,$$

qui représentera une courbe rectifiable.

19. On obtiendra encore une courbe rectifiable si l'on trouve une fonction M de x telle, que l'on puisse trouver en termes finis les intégrales

 $\int M dx, \quad \int \frac{1}{M} dx.$

Il suffira de poser

$$y = \frac{1}{2} \int \frac{dx}{M} - \frac{1}{2} \int M dx.$$

En prenant M de la forme $\mathbf{M} = ax^n$, on aura une courbe algébrique. Si M est une fraction algébrique rationnelle, la rectification de la courbe dépendra généralement des arcs de cercle et des logarithmes.

NOTE VI.

SUR LA RÉDUCTION DES SOMMES AUX INTÉGRALES,

Par M. E. PROUNET.

Formule fondamentale. — Application de cette formule aux fonctions entières, — aux fonctions fractionnaires, — aux fonctions transcendantes. — Théorèmes à démontrer.

FORMULE FONDAMENTALE.

1. Soit f(x) une fonction quelconque et n un nombre entier positif. Proposons-nous de trouver une fonction $\varphi(n)$ telle, que l'on ait

(i)
$$\varphi(n) = f(x) + f(x+h) + f(x+2h) + \dots + f(x+n-1h).$$

Posons

(2)
$$\psi(n) = f'(x) + f'(x+h) + f'(x+2h) + \dots + f'(x+n-1h).$$

Il en résultera

(3)
$$\varphi(n+1) - \varphi(n) = f(x+nh),$$

(4)
$$\psi(n+1) - \psi(n) = f'(x+nh).$$

La fonction γ doit satisfaire à l'équation (3) pour des valeurs entières de n; mais il est clair que cette condition sera remplie à plus forte raison, si l'on obtient une fonction γ telle, que l'équation (3) soit satisfaite pour toutes les valeurs que l'on mettrait à la place de n. Alors l'équation (3) est identique. On pourra donc prendre les dérivées des deux membres par rapport à n, et l'on aura

(5)
$$\varphi'(n+1) - \varphi'(n) = hf'(x+nh),$$

et, en comparant avec l'équation (4),

(6)
$$\varphi'(n+1) - \varphi'(n) = h\psi(n+1) - h\psi(n).$$

Si maintenant nous changeons successivement n en n+1, n+2,..., n+k, nous aurons, en ajoutant les résultats,

$$\varphi'(n+k) - \varphi'(n) = h \psi(n+k) - h \psi(n),$$

ou bien

(7)
$$\varphi'(n) - h\psi(n) = \varphi'(n+k) - h\psi(n+k).$$

Le premier membre de cette égalité est indépendant de k; donc il doit en être de même du second : mais ce dernier est une fonction de n + k, et il ne peut pas être indépendant de k sans l'être de n. Donc l'égalité (7) sera satisfaite si l'on pose

(8)
$$\varphi'(n) - h\psi(n) = c,$$

c désignant une constante, c'est-à-dire un nombre indépendant de n. En désignant $\varphi(n)$ par $\mathbf{S}f(x)$ et $\psi(n)$ par $\mathbf{S}f'(x),$ on aura

$$\frac{d}{dn}Sf(x) = hSf'(x) + \epsilon,$$

et en intégrant,

(1)
$$Sf(x) = h \int Sf'(x) dn + cn,$$

formule qui fait dépendre la sommation de la fonction f(x) de la sommation de sa dérivée. On n'ajoute pas de nouvelle constante, parce que Sf(x) doit être nulle pour n=0.

APPLICATION AUX FONCTIONS ENTIÈRES.

2. Supposons que f(x) soit une fonction entière du degré m; alors $f^m(x)$ est une constante A, et l'on a tout d'abord

$$Sf^m(x) = An,$$

d'où l'on tire successivement, en appliquant la formule (I),

$$Sf^{m-1}(x) = \frac{A hn^{2}}{1 \cdot 2} + \frac{B_{1} n}{1},$$

$$Sf^{m-1}(x) = \frac{A h^{2} n^{3}}{1 \cdot 2 \cdot 3} + \frac{B_{1} hn^{2}}{1 \cdot 2} + \frac{B_{2} n}{1},$$

$$Sf^{m-3}(x) = \frac{A h^{3} n^{4}}{1 \cdot 2 \cdot 3 \cdot 4} + \frac{B_{1} h^{2} n^{3}}{1 \cdot 2 \cdot 3} + \frac{B_{2} hn^{2}}{1 \cdot 2} + \frac{B_{3} n}{1},$$

et enfin

$$Sf(x) = \frac{A h^{m} n^{m+1}}{1 \cdot 2 \cdot 3 \cdot \dots \cdot m \cdot (m+1)} + \frac{B_{1} h^{m-1} n^{m}}{1 \cdot 2 \cdot \dots \cdot m} + \frac{B_{2} h^{m-2} n^{m-1}}{1 \cdot 2 \cdot \dots \cdot (m-1)} + \dots + \frac{B_{m-1} h n^{2}}{1 \cdot 2} + \frac{B_{m} n}{1}.$$

 B_1, B_2, \ldots, B_m sont des constantes dont la valeur se déterminera successivement, à chaque intégration, en faisant n = 1.

3. On trouvera très-facilement par ce moyen les sommes des puissances des n premiers nombres. En désignant ces sommes par S_{*}, S_{*}, etc., on aura, en général,

(II)
$$S_{m} = m \int_{0}^{n} S_{m-1} dn + c;$$

on a d'abord

$$S_0 = n$$

et en intégrant,

$$S_{i} = \frac{n^{2}}{2} + cn.$$

Pour déterminer c, on fera n=1, ce qui réduit le premier membre à a: on aura donc $a=\frac{1}{2}+c$, d'où $c=\frac{1}{2}$ et

$$S_i = \frac{n^2}{2} + \frac{n}{2}$$

On aura de la même manière

$$S_2 = \frac{n^3}{3} + \frac{n^2}{2} + cn = \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6}$$

et ainsi de suite.

On voit que la formule (II) présente un grand avantage sur la formule du n° 743 qui fait dépendre chaque somme de toutes les sommes d'un indice moindre. En partant de la valeur de S₁, donnée au numéro cité, on trouvera facilement

$$\begin{split} \mathbf{S}_{s} &= \frac{n^{6}}{9} + \frac{n^{5}}{2} + \frac{5}{12} \frac{n^{4}}{12}, \\ \mathbf{S}_{8} &= \frac{n^{7}}{7} + \frac{n^{6}}{2} + \frac{n^{7}}{2} - \frac{n^{7}}{6} + \frac{n}{42}, \\ \mathbf{S}_{7} &= \frac{n^{2}}{8} + \frac{n^{7}}{2} + \frac{7}{12} - \frac{7}{24} + \frac{n^{2}}{12}, \\ \mathbf{S}_{8} &= \frac{n^{9}}{9} + \frac{n^{8}}{2} + \frac{2}{3} - \frac{7}{15} + \frac{2}{2} \frac{n^{3}}{9} - \frac{n}{30}, \\ \mathbf{S}_{9} &= \frac{n^{10}}{10} + \frac{n^{9}}{2} + \frac{3}{4} - \frac{7}{10} + \frac{n^{4}}{2} - \frac{3}{20} \frac{n^{2}}{20}, \\ \mathbf{S}_{10} &= \frac{n^{11}}{11} + \frac{n^{10}}{2} + \frac{5}{6} - n^{7} + n^{5} - \frac{n^{3}}{2} - \frac{5}{66}, \\ \mathbf{S}_{11} &= \frac{n^{12}}{12} + \frac{n^{11}}{2} + \frac{11}{2} \frac{n^{10}}{12} - \frac{11}{8} \frac{n^{8}}{8} + \frac{11}{6} \frac{n^{6}}{6} - \frac{11}{8} \frac{n^{4}}{4} + \frac{5}{12}. \end{split}$$

APPLICATION AUX FONCTIONS FRACTIONNAIRES.

4. Posons

$$f(x) = \frac{1}{x(x+1)}$$
, d'où $f'(x) = -\frac{2x+1}{x^2(x+1)^2}$

On a trouvé (741)

$$Sf(x) = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n(n+1)} = 1 - \frac{1}{n+1}$$

On aura donc

$$\frac{d}{dn}\mathrm{S}f(x) = \frac{1}{(n+1)^2}.$$

De là résulte

$$\frac{1}{(n+1)^2} = S\dot{f}'(x) + c.$$

Pour déterminer la constante, faisons c = 1: le premier membre se

réduit à $\frac{1}{4}$ et Sf'(x) à $-\frac{3}{4}$; donc c=1, et, par suite,

$$\frac{1}{(n+1)^2} = 1 - \frac{3}{1^2 \cdot 2^2} - \frac{5}{2^2 \cdot 3^2} - \dots - \frac{2n+1}{n^2(n+1)^2},$$

ou bien

$$1 + \frac{3}{1^2 \cdot 2^2} + \frac{5}{2^2 \cdot 3^2} + \ldots + \frac{2n+1}{n^2(n+1)^2} = 2 - \frac{1}{(n+1)^2}$$

APPLICATION AUX FONCTIONS TRANSCENDANTES.

S. Soit

$$f(x) = e^x,$$

 $y = \S f(x) = 1 + e + e^2 + e^3 + \dots + e^{n-t},$

la formule (I) donnera, en remarquant que $f'(x) = e^x = y$,

$$\frac{dy}{du} = y + c,$$

équation dont l'intégrale est

$$y = c'e^n - c$$

Les constantes se déterminent en faisant n = 0, n = 1, ce qui donne

$$0 = c' - c,$$

$$1 = c'c \quad c;$$

d'où l'on tire $c = c' = \frac{1}{c-1}$, et, par conséquent,

$$1+c+c'+\ldots+e^{n-1}=\frac{e^n-1}{e-1}$$

formule connue.

- 6. Comme dernière application, nous allons faire voir comment on peut, par le moyen de la formule (I), ramener à une question de calcul intégral ordinaire la sommation d'une classe très-étendue de fonctions transcendantes.
 - 1°. Soient

$$y = Sue^{ax}, \quad y_i = Su'e^{ax},$$

u' étant la dérivée de u. La formule (I) donne immédiatement

$$\frac{dy}{dn} = ay + y_1 + c,$$

équation différentielle du premier ordre qui râmène Sue^{ax} à $Su^{c}e^{ax}$. Si donc u est une fonction algébrique et entière de x, alors y dé-

pendra, en dernière analyse, d'une équation de la forme

$$\frac{dz}{dn} = az + c,$$

qui s'intègre immédiatement.

2º. Soient

$$y = Su \sin bx$$
, $z = Su \cos bx$,
 $y_1 = Su' \sin bx$, $z_1 = Su' \cos bx$:

on aura, en différentiant deux fois de suite,

$$\frac{dy}{dn} = bz + y_1 + c,$$

$$\frac{d^2y}{dx^2} = -b^2y + bz_1 + y_1' + c_{12}$$

Cette seconde équation, linéaire et du second ordre, ramène donc $Su\sin bx$ à $Su'\sin bx$ et à $Su'\cos bx$. On pourra donc trouver $Su\sin bx$, par une suite de semblables réductions, quand u sera une fonction de x algébrique et entière.

3°. Soient

$$y = Sue^{ax} \sin bx$$
, $z = Sue^{ax} \cos bx$, $y_i = Su'e^{ax} \sin bx$, $z_i = Su'e^{ax} \cos bx$,

on aura

$$\frac{dy}{dn} = y_1 + bz + ay + c,$$

$$\frac{d^2y}{dn^2} = y_1' + b(z_1 + by + uz + c_1) + a\frac{dy}{dn};$$

l'élimination de z entre ces deux équations donnera une équation du second ordre et fera dépendre γ de γ_1 et de z_1 . Il sera donc possible d'obtenir les intégrales demandées quand u sera une fonction algébrique et entière.

Si maintenant on se rappelle que les puissances de $\sin hx$ et de $\cos hx$ peuvent s'expriment a sommes de sinus ou de cosinus des multiples de hx, on conclura des reas que nous venons d'examiner, la possibilité d'obtenir

$$Sf(x, \sin bx, \cos bx, e^{ax}),$$

lorsque la fonction f sera algébrique et entière.

THÉORÈMES A DÉMONTRER.

7. Si m est un nombre impair, on aura

$$S_m = n^2 (n+1)^2 \varphi [n(n+1)],$$

o désignant une fonction entière.

8. Si m est un nombre pair, on aura

$$S_m = n(n+1)(2n+1)\varphi[n(n+1)],$$

o désignant une fonction entière.

9. Soient s_m la somme des m^{lemes} puissances des nombres entiers premiers à l'entier n et inférieurs à ce nombre ; c la constante qui entre dans la formule (Π) ; P(i) l'expression

$$(1-a^i)(1-b^i)\dots(1-l^i),$$

 a, b_j, \ldots, l étant les facteurs premiers de n; on aura

$$s_m = m \int_0^n s_{m-1} du + c \mathbf{P}(n-1) \times n.$$

On conclut de là que pour obtenir s_n , il suffirait de multiplier les termes du développement de S_n , ordonné par rapport aux puissances décroissantes de n, respectivement par P(-1), P(0), P(1).... On aurait ainsi, en observant que P(0) = 0,

$$\begin{split} s_0 &= n \, P(-1), \\ s_1 &= \frac{n^2}{2} \, P(-1), \\ s_2 &= \frac{n^3}{3} \, P(-1) + \frac{n}{6} \, P(1), \\ s_3 &= \frac{n^4}{4} \, P(-1) + \frac{n^2}{4} \, P(1), \end{split}$$

et ainsi de suite. (Voir pour cette dernière question un article de M. Thacker dans le Journal de Crelle, tome XL, ou les Nouvelles Annales de Mathématiques, tome X, page 324.)

FIN DU SECOND VOLUME.

MASTER CARD

O-910106 36019

UNIVERSITY OF ARIZO

