KØBENHAVNS UNIVERSITET

Det Natur- og Biovidenskabelige Fakultet

Analyse af en enkelt stikprøve: estimation og konfidensinterval

Anders Tolver Institut for Matematiske Fag

Dagens program

Dagens emne: **Analyse af en enkelt stikprøve** (one sample).

Dagens forelæsninger dækkes primært af Kap. 4.2, 4.4 og 5.3.1-5.3.3 i lærebogen.

Forelæsning:

- Intro/motivation (problemformulering)
- Egenskaber ved gennemsnit, CLT (matematik)
- Statistisk model, estimation og standard error (løsning)
- Konfidensinterval

Hjemme i det omfang vi ikke når alt i R-program (video):

- Besvarelse af Quiz
- Analyse af transformeret stikprøve illustreret ved gæt på punktplot (opfølgning på HS.11 mm).

Problemstilling, løsning og terminologi

Dagens statistiske problemstilling

- Response: kvantitativ, kontinuert variabel
- Interesseparameter: middelværdien (μ) i populationen
- Data: (tilfældig) stikprøve fra populationen (y_1, \ldots, y_n)

Hvordan bruger vi data y_1, \ldots, y_n til at udtale os om værdien af μ ?

Løsningsstrategi og udfordring

• Estimat: gennemsnittet

$$\overline{y} = \frac{y_1 + \ldots + y_n}{n}$$

er vores bedste bud på ukendt middelværdi μ

• Konfidensinterval: vil gerne finde interval

$$[q_{\mathrm{low}};q_{\mathrm{up}}]$$

omkring \overline{y} som med stor sandsynlighed indeholder μ Konfidensinterval skal afspejle usikkerheden på et gennemsnit af en stikprøve med n observationer.

Hvordan/hvornår kan vi sige noget om usikkerheden på et gennemsnit?

Afstand mellem punkter

Eksempel:

- Studerende på StatData1 2023 har forsøgt at afsætte to punkter med afstand 8 cm på en farvet seddel
- En stikprøve består af målinger af afstanden for n=25 tilfældigt udvalgte sedler

Gennemsnit i stikprøve er 7.13 cm, men hvor stor variation skal vi forvente, hvis vi trækker ny stikprøve?

Og understøtter data en påstand om, at studerende i gennemsnit afsætter punkterne i den korrekte afstand på 8.0 cm?

(ønsker at generalisere til population af alle studerende)

Ingen forklarende variable i analysen (men kunne faktisk vælge at inddrage farven på sedlen).

Notation og terminologi

Lad os kalde **populationsgennemsnittet** μ . Interesseret i at bruge data (stikprøven) til at sige noget begavet om μ :

- Estimat (punktestimat) for populationsgennemsnittet. Naturligt at bruge stikprøvegennemsnittet: $\hat{\mu} = \bar{y}$
- Usikkerhed på estimatet: **Standard error** betegnes $SE(\hat{\mu})$
- Et interval af μ-værdier der passer med data:
 konfidensinterval (intervalestimat) konstrueres som

$$\hat{\mu} - \text{noget} \cdot \text{SE}(\hat{\mu})$$

Vi har brug for at sige noget om fordelingen af et gennemsnit!

Egenskaber ved gennemsnittet

Fordeling af gennemsnit

Vi forestiller os at vi ser **mange datasæt** der hver især består af *n* observationer. For hvert datasæt beregner vi gennemsnittet.

```
Stikprøve 1 (n observationer) \rightarrow \overline{y}_1
Stikprøve 2 (n observationer) \rightarrow \overline{y}_2
\vdots \vdots Stikprøve 1000 (n observationer) \rightarrow \overline{y}_{1000}
```


Fordeling af gennemsnit

Vi forestiller os at vi ser **mange datasæt** der hver især består af *n* observationer. For hvert datasæt beregner vi gennemsnittet.

Hvordan ser histogrammet for $\bar{y}_1, \ldots, \bar{y}_{1000}$ ud?

Gennemsnit af normalfordelte variable

Infobox 4.3 Hvis Y_1, \ldots, Y_n er uafhængige og alle $Y_i \sim N(\mu, \sigma^2)$, så er gennemsnittet \bar{Y} også normalfordelt:

$$\bar{Y} = \frac{1}{n}(Y_1 + \cdots + Y_n) \sim N(\mu, \sigma^2/n)$$

Specielt gælder:

$$\operatorname{sd}(\bar{Y}) = \frac{\sigma}{\sqrt{n}}$$

Lad os prøve at illustrere det...

Fordeling af gennemsnit

Histogrammer over 1000 gennemsnit af n stk. N(0,1) variable.

Ser faktisk ud til at være **normalfordelt** som Infobox 4.3 forudsagde. Passer middelværdi og spredning?

Repetition: er data normalfordelte?

Vi ser senere, at jeres **gæt på afstande** kan beskrives ved normalfordeling.

Hvis data y_1, \ldots, y_n er normalfordelt, så vil...

- tæthed for $N(\bar{y}, s^2)$ være en god approks. til histogrammet
- punkterne i QQ-plottet ligge omkring den rette linie med skæring y
 og hældning s

Her er: \overline{y} gennemsnit og s stikprøvespredning.

Systematiske afvigelser er tegn på at data **ikke** er normalfordelte.

- Jo mindre n, jo større afvigelser kan vi acceptere
- Histogrammet dur kun for n nogenlunde stor

Model, estimation, standard error

Statistisk model

Data: y_1, \ldots, y_n . Målinger på repræsentativ stikprøve.

Statistisk model: y_1, \ldots, y_n er uafhængige og alle normalfordelte med samme middelværdi μ og samme spredning σ .

En statistisk model angiver de antagelser vi gør os om hvordan "'de mekanismer"' der har genereret data.

Statistisk model

Data: y_1, \ldots, y_n . Målinger på repræsentativ stikprøve.

Statistisk model: y_1, \ldots, y_n er uafhængige og alle normalfordelte med samme middelværdi μ og samme spredning σ .

En statistisk model angiver de antagelser vi gør os om hvordan "'de mekanismer"' der har genereret data.

Hvad betyder uafhængighed?

- Løst: Ingen information i én observation om nogle af de andre
- Eksempler på ikke-uafhængige data?

Statistisk model

Data: y_1, \ldots, y_n . Målinger på repræsentativ stikprøve.

Statistisk model: y_1, \ldots, y_n er uafhængige og alle normalfordelte med samme middelværdi μ og samme spredning σ .

En statistisk model angiver de antagelser vi gør os om hvordan "'de mekanismer"' der har genereret data.

Hvad betyder uafhængighed?

- Løst: Ingen information i én observation om nogle af de andre
- Eksempler på ikke-uafhængige data?

To ukendte parametre i modellen: Populationsgennemsnittet μ og populationsspredningen σ .

Estimation

To ukendte **parametre** i modellen: Populationsgennemsnittet μ og populationsspredningen σ .

Vores bedste gæt på parametrene er de tilhørende stikprøvestørrelser.

Estimation:

$$\hat{\mu} = \bar{y}, \quad \hat{\sigma} = s$$

Husk at \bar{y} er normalford. med middelværdi μ og spredning σ/\sqrt{n} .

Standard error

 \bar{y} normalfordelt med middelværdi μ og spredning σ/\sqrt{n}

Standard error for $\hat{\mu} = \bar{y}$ er den estimerede spredning:

$$\operatorname{SE}(\hat{\mu}) = \operatorname{SE}(\bar{y}) = \frac{s}{\sqrt{n}}$$

Vores gæt på spredningen af \bar{y} .

Standard error

 \bar{y} normalfordelt med middelværdi μ og spredning σ/\sqrt{n}

Standard error for $\hat{\mu} = \bar{y}$ er den estimerede spredning:

$$\operatorname{SE}(\hat{\mu}) = \operatorname{SE}(\bar{y}) = \frac{s}{\sqrt{n}}$$

Vores gæt på spredningen af \bar{y} .

For data vedr. afstande ml. punkter:

$$\hat{\mu} = \bar{\mu} = 7.13, \quad \text{SE}(\hat{\mu}) = \text{SE}(\bar{y}) = \frac{1.172}{\sqrt{25}} = 0.23$$

Konfidensinterval

Konfidensinterval

Har estimat \bar{y} — den værdi der "passer bedst" med vores data. Kaldes sommetider et **punktestimat**.

Ønsker et **intervalestimat** — et interval af μ -værdier der er "i overensstemmelse" med vores data. **Konfidensinterval.**

Konfidensinterval

Har estimat \bar{y} — den værdi der "passer bedst" med vores data. Kaldes sommetider et **punktestimat**.

Ønsker et **intervalestimat** — et interval af μ -værdier der er "i overensstemmelse" med vores data. **Konfidensinterval.**

"Løsningen" viser sig at være

$$\hat{\mu} \pm \mathsf{noget} \cdot \mathrm{SE}(\hat{\mu})$$

Hvad er dette *noget*?

$$ar{y} \sim \mathit{N}(\mu, \sigma^2/\mathit{n})$$
, så

$$P\Big(\mu - 1.96\frac{\sigma}{\sqrt{n}} < \bar{y} < \mu + 1.96\frac{\sigma}{\sqrt{n}}\Big) = 0.95$$

$$ar{y} \sim \mathit{N}(\mu, \sigma^2/\mathit{n})$$
, så

$$P\left(\mu - 1.96 \frac{\sigma}{\sqrt{n}} < \bar{y} < \mu + 1.96 \frac{\sigma}{\sqrt{n}}\right) = 0.95$$

Eller — hvis vi omorganiserer så μ står i midten:

$$P\left(\bar{y} - 1.96 \frac{\sigma}{\sqrt{n}} < \mu < \bar{y} + 1.96 \frac{\sigma}{\sqrt{n}}\right) = 0.95$$

$$ar{y} \sim \mathit{N}(\mu, \sigma^2/\mathit{n})$$
, så

$$P\Big(\mu - 1.96\frac{\sigma}{\sqrt{n}} < \bar{y} < \mu + 1.96\frac{\sigma}{\sqrt{n}}\Big) = 0.95$$

Eller — hvis vi omorganiserer så μ står i midten:

$$P\left(\bar{y} - 1.96 \frac{\sigma}{\sqrt{n}} < \mu < \bar{y} + 1.96 \frac{\sigma}{\sqrt{n}}\right) = 0.95$$

Hvis vi kendte populationsspredningen σ , så ville vi kunne beregne endepunkterne $\bar{y} \pm 1.96 \frac{\sigma}{\sqrt{n}}$.

Men: Vi kender ikke populationsspredningen σ . Oplagt at erstatte σ med s, men så skal 1.96 erstattes med et lidt større tal.

t-fordelingen

Standardisering

$$Z = rac{\sqrt{n}(ar{y} - \mu)}{\sigma} \sim \mathcal{N}(0, 1)$$

t-fordelingen

Standardisering

$$Z = \frac{\sqrt{n}(\bar{y} - \mu)}{\sigma} \sim N(0, 1)$$

Fordelingen ændres hvis σ erstattes med s:

$$T=rac{\sqrt{n}(ar{y}-\mu)}{\mathsf{s}}\sim t_{n-1}$$

t-fordelingen

Standardisering

$$Z = \frac{\sqrt{n}(\bar{y} - \mu)}{\sigma} \sim N(0, 1)$$

Fordelingen ændres hvis σ erstattes med s:

$$\mathcal{T} = rac{\sqrt{n}(ar{y} - \mu)}{ extsf{s}} \sim t_{n-1}$$

t-fordelingen med n-1 frihedsgrader (df = n-1)

- Bredere haler end N(0,1).
- Ligner N(0,1) mere og mere når df vokser.

For kendt σ :

$$P\left(-1.96 < \frac{\sqrt{n}(\bar{y} - \mu)}{\sigma} < 1.96\right) = 0.95$$

Husk at 1.96 er 97.5% fraktilen i N(0,1).

For kendt σ :

$$P\left(-1.96 < \frac{\sqrt{n}(\bar{y} - \mu)}{\sigma} < 1.96\right) = 0.95$$

Husk at 1.96 er 97.5% fraktilen i N(0,1).

Hvis vi i stedet indsætter estimatet s, så skal vi bruge 97.5% fraktilen i t fordelingen med n-1 frihedsgrader:

$$P\left(-t_{0.975,n-1} < \frac{\sqrt{n}(\bar{y} - \mu)}{s} < t_{0.975,n-1}\right) = 0.95$$

For kendt σ :

$$P\left(-1.96 < \frac{\sqrt{n}(\bar{y} - \mu)}{\sigma} < 1.96\right) = 0.95$$

Husk at 1.96 er 97.5% fraktilen i N(0,1).

Hvis vi i stedet indsætter estimatet s, så skal vi bruge 97.5% fraktilen i t fordelingen med n-1 frihedsgrader:

$$P\left(-t_{0.975,n-1} < \frac{\sqrt{n}(\bar{y} - \mu)}{s} < t_{0.975,n-1}\right) = 0.95$$

Vi flytter rundt så μ står i midten:

$$P\left(\bar{y} - t_{0.975, n-1} \cdot \frac{s}{\sqrt{n}} < \mu < \bar{y} + t_{0.975, n-1} \cdot \frac{s}{\sqrt{n}}\right) = 0.95$$

Foregående slide:

$$P\left(\bar{y} - t_{0.975, n-1} \cdot \frac{s}{\sqrt{n}} < \mu < \bar{y} + t_{0.975, n-1} \cdot \frac{s}{\sqrt{n}}\right) = 0.95$$

Foregående slide:

$$P\left(\bar{y} - t_{0.975, n-1} \cdot \frac{s}{\sqrt{n}} < \mu < \bar{y} + t_{0.975, n-1} \cdot \frac{s}{\sqrt{n}}\right) = 0.95$$

Altså: Intervallet

$$\bar{y} \pm t_{0.975,n-1} \cdot \frac{s}{\sqrt{n}}$$
 eller $\hat{\mu} \pm t_{0.975,n-1} \cdot \text{SE}(\hat{\mu})$

indeholder populationsmiddelværdien med 95% sandsynlighed. Intervallet kaldes et 95% konfidensinterval for μ .

R: Kommentarer

I dagens R program findes mange eksempler på beregning af konfidensintervaller for en stikprøve!

Flere metoder til bestemmelse af konfidensintervallet i situationen med en stikprøve:

- "Manuelt". Brug qt til at finde t-fraktilen
- Funktionen t.test
- Med lm og confint

Bemærk: 1m og summary giver flere ting: \bar{y} , $SE(\bar{y})$, s mm.

Analyse af en enkelt stikprøve: når data ikke er normalfordelte

Population vs stikprøve

- Vi er interesserede i populationen
- Vi har kun målinger på en repræsentativ stikprøve (n)
- Særligt interesseret i populationegennemsnittet μ (ukendt).
- Men vi tror ikke på, at data er normalfordelte!

Spørgsmål

Brug stikprøven til at sige noget om **pop.-gennemsnittet** μ :

- Estimat (punktestimat) for populationsgennemsnittet. Naturligt at bruge stikprøvegennemsnittet: $\hat{\mu} = \bar{y}$
- Usikkerhed på estimatet: Standard error
- Et interval af μ -værdier der passer med data: **konfidensinterval** (intervalestimat)

Spørgsmål

Brug stikprøven til at sige noget om **pop.-gennemsnittet** μ :

- Estimat (punktestimat) for populationsgennemsnittet. Naturligt at bruge stikprøvegennemsnittet: $\hat{\mu} = \bar{y}$
- Usikkerhed på estimatet: Standard error
- Et interval af μ -værdier der passer med data: **konfidensinterval** (intervalestimat)

Problemer forhold til tidligere analyse:

- Desværre ser data ikke normalfordelte ud
- Estimat $\hat{\mu} = \bar{y} \to \text{egenskaberne for } \mathbf{gennemsnittet}$ er vigtige, men vi kan ikke bruge Infobox 4.3

Spørgsmål

Brug stikprøven til at sige noget om **pop.-gennemsnittet** μ :

- Estimat (punktestimat) for populationsgennemsnittet. Naturligt at bruge stikprøvegennemsnittet: $\hat{\mu} = \bar{y}$
- Usikkerhed på estimatet: Standard error
- Et interval af μ -værdier der passer med data: **konfidensinterval** (intervalestimat)

Problemer forhold til tidligere analyse:

- Desværre ser data ikke normalfordelte ud
- Estimat $\hat{\mu}=\bar{y}\to$ egenskaberne for **gennemsnittet** er vigtige, men vi kan ikke bruge Infobox 4.3

To løsninger:

- Find transformation så data bliver normalfordelte (R program, øvelser, video)
- Træk på Den centrale Grænseværdisætning (CLT)

Den centrale grænseværdisætning (CLT)

I dagens R-program simuleres og beregnes gennemsnit fra population, som ikke er normalfordelt (transporttid til studie).

Overraskende: Gennemsnittet så ud til være normalfordelt uanset om "'basisfordelingen"' var en normalfordeling eller ej.

Det er præcis det **den centrale grænseværdisætning** (CLT) siger:

- Hvis: y₁,..., y_n er uafhængige og har den samme fordeling, med middelværdi μ og spredning σ
- Så: \bar{y} approksimativt normalfordelt med middelværdi μ og spredning σ/\sqrt{n}

Gælder (næsten) uanset hvordan den bagvedliggende fordeling ser ud.

Konsekvenser af CLT

- For store stikprøver vil statistiske metoder baseret på normalfordelingsmodeller give fornuftige resultater
- Gælder også selvom data ikke er normalfordelte
- Gælder ikke kun for analyser af en enkelt stikprøve men også for fx. ensidet ANOVA og lineær regression
- Udfordring: Svært at afgøre, hvornår stikprøven er stor nok til at retfærdiggøre brug af normalfordelingsmodeller.

Opsummering - eget brug (en enkelt stikprøve)

Modelfiguren: Kontinuert respons, ingen forklarende variable.

Data: y_1, \ldots, y_n

Statistisk model: y_1, \ldots, y_n er uafhængige og alle normalfordelte med samme middelværdi μ og samme spredning σ .

Estimation: $\hat{\mu} = \bar{y} \text{ og } \hat{\sigma} = s$

Standard error for $\hat{\mu}$: $SE(\hat{\mu}) = \frac{s}{\sqrt{n}}$

95% konfidensinterval for μ : $\bar{y} \pm t_{0.975,n-1} \cdot \frac{s}{\sqrt{n}}$. De værdier af μ der er i overensstemmelse med data.

Bemærk struktur af KI:

estimat $\pm t$ -fraktil · SE(estimat).

Opsummering — til eget brug

- Hvad er antagelserne i den statistiske model for en enkelt stikprøve?
- Hvordan estimeres populationsparametrene?
- Hvad er formlen for $SE(\bar{y})$?
- Hvad er formlen for 95% konfidensintervallet for μ ?
- Hvad er fortolkningen af konfidensintervallet?
- Kan du indlæse data fra en Excel og/eller tekstfil?

