Cálculo de Programas

2.° ano

Lic. Ciências da Computação e Mestrado Integrado em Engenharia Informática UNIVERSIDADE DO MINHO

2020/21 - Ficha nr.º 10

O formulário desta disciplina apresenta duas definições alternativas para o functor T f de um tipo indutivo, uma como *catamorfismo* e outra como *anamorfismo*. Identifique-as e acrescente justificações à seguinte prova de que essas definições são equivalentes:

$$\begin{array}{lll} \operatorname{T} f = (\inf \operatorname{B}(f,id)) \\ & \equiv & \{ & \dots & \\ & \operatorname{T} f \cdot \operatorname{in} = \operatorname{in} \cdot \operatorname{B}(f,id) \cdot \operatorname{F}(\operatorname{T} f) \\ & \equiv & \{ & \dots & \\ & \operatorname{T} f \cdot \operatorname{in} = \operatorname{in} \cdot \operatorname{B}(id,\operatorname{T} f) \cdot \operatorname{B}(f,id) \\ & \equiv & \{ & \dots & \\ & \operatorname{out} \cdot \operatorname{T} f = \operatorname{F}(\operatorname{T} f) \cdot \operatorname{B}(f,id) \cdot \operatorname{out} \\ & \equiv & \{ & \dots & \\ & \operatorname{T} f = [(\operatorname{B}(f,id) \cdot \operatorname{out})] \\ & \Box & \end{array}$$

- 2. Mostre que o catamorfismo de listas length = $([zero, succ \cdot \pi_2])$ é a mesma função que o *anamorfismo* de naturais $[(id + \pi_2) \cdot out_{List})]$.
- 3. Mostre que o anamorfismo que calcula os sufixos de uma lista

$$suffixes = [g] \text{ where } g = (id + \langle cons, \pi_2 \rangle) \cdot \text{out}$$

é a função

$$suffixes[] = []$$

 $suffixes(h:t) = (h:t): suffixest$

4. Mostre que a função mirror da ficha nr.º 7 se pode definir como o anamorfismo

$$mirror = [(id + swap) \cdot out)]$$
 (F1)

onde out é a conversa de in. Volte a demonstrar a propriedade mirror \cdot mirror =id, desta vez recorrendo à lei de fusão dos anamorfismos.

5. Nas aulas teóricas viu-se que, sempre que um ciclo-while termina, ele pode ser definido por

while
$$p f g = \mathbf{tailr} ((g+f) \cdot (\neg \cdot p)?)$$
 (F2)

recorrendo ao combinador de "tail recursion" $\mathbf{tailr}\ f = [\![\nabla, f]\!]$, que é um hilomorfismo de base B(X, Y) = X + Y, para $\nabla = [id, id]$.

- (a) Derive a definição pointwise de while p f g, sabendo que qualquer $h = \llbracket f,g \rrbracket$ é tal que $h = f \cdot \mathsf{F} \ h \cdot g$.
- (b) Complete a demonstração da lei de fusão de tailr¹

$$(\mathbf{tailr}\ g) \cdot f = \mathbf{tailr}\ h \iff (id + f) \cdot h = g \cdot f$$

que se segue:

$$\begin{array}{lll} & & & & & \\ & & & & & \\ & & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

6. O algoritmo de "quick-sort" foi definido nas aulas teóricas como o hilomorfismo $qSort = (|inord|) \cdot (|gsep|)$ sobre árvores BTree, cujo catamorfismo recorre à função:

$$inord = [nil, f]$$
 where $f(x, (l, r)) = l + [x] + r$

Para um certo isomorfismo α , $h = (|inord \cdot \alpha|) \cdot (|qsep|)$ ordenará a lista de entrada por ordem inversa. Identifique α , justificando informalmente.

7. Mostre que o anamorfismo repeat = $[\langle id, id \rangle]$ definido pelo diagrama

é a função:

repeat
$$a = a$$
: repeat a

De seguida, recorrendo às leis dos anamorfismos mostre que, apesar de não terminar², repeat satisfaz a propriedade:³

$$\mathsf{map}\,f\cdot\mathsf{repeat}=\mathsf{repeat}\cdot f\tag{F3}$$

¹**NB**: Assume-se que (**tailr** g) · f termina.

²Por isso usamos, no diagrama, A^{∞} em vez de A^* , para incluir também as listas infinitas.

 $^{^3}$ "Verifique" este facto comparando, por exemplo, (take $10 \cdot$ map succ \cdot repeat) $1 \text{ com (take } 10 \cdot$ repeat \cdot succ) 1.