Black-Scholes Model - Solutions

Throughout this exercise you may use assume (where appropriate) the following results without proof

$$d_1 = \frac{\log(S/E) + \left(r - D + \frac{1}{2}\sigma^2\right)(T - t)}{\sigma\sqrt{T - t}},$$

$$d_2 = \frac{\log(S/E) + \left(r - D - \frac{1}{2}\sigma^2\right)(T - t)}{\sigma\sqrt{T - t}} \text{ and }$$

$$N(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\phi^2/2} d\phi$$

where $S \geq 0$ is the spot price, $t \leq T$ is the time, E > 0 is the strike, T > 0 the expiry date, $r \geq 0$ the interest rate, D is the dividend yield and σ is the volatility of S.

1. The Black-Scholes formula for a European call option C(S,t) is given by

$$C(S,t) = S \exp(-D(T-t))N(d_1) - E \exp(-r(T-t))N(d_2).$$

a) By differentiating with respect to S and σ show that the delta and vega are given by

$$\Delta = e^{(-D(T-t))} N(d_1), \text{ and } v = \sqrt{\frac{T-t}{2\pi}} S e^{(-D(T-t))} e^{\left(\frac{-d_1^2}{2}\right)}.$$

Note:

$$\frac{\partial d_1}{\partial S} = \frac{\partial d_2}{\partial S}$$
 and $\frac{\partial d_2}{\partial \sigma} = \frac{\partial d_1}{\partial \sigma} - \sqrt{T - t}$

So

$$\Delta = \frac{\partial C}{\partial S}$$

$$= e^{(-D(T-t))} N(d_1) + Se^{(-D(T-t))} \frac{1}{\sqrt{2\pi}} e^{\left(-\frac{d_1^2}{2}\right)} \frac{\partial d_1}{\partial S} - E \exp(-r(T-t)) \frac{1}{\sqrt{2\pi}} e^{\left(-\frac{d_2^2}{2}\right)} \frac{\partial d_2}{\partial S}$$

$$= e^{(-D(T-t))} N(d_1) + \frac{1}{\sqrt{2\pi}} \frac{\partial d_1}{\partial S} \underbrace{\left(Se^{(-D(T-t))} e^{\left(-\frac{d_1^2}{2}\right)} - Ee^{(-r(T-t))} e^{\left(-\frac{d_2^2}{2}\right)}\right)}_{S}$$

 $=e^{\left(-D\left(T-t\right) \right) }N\left(d_{1}
ight) \;\;$ because the term in the bracket above is zero.

$$\begin{array}{lcl} v & = & \frac{\partial C}{\partial \sigma} \\ & = & Se^{(-D(T-t))} \frac{1}{\sqrt{2\pi}} e^{\left(-\frac{d_1^2}{2}\right)} \frac{\partial d_1}{\partial \sigma} - Ee^{(-r(T-t))} \frac{1}{\sqrt{2\pi}} e^{\left(-\frac{d_2^2}{2}\right)} \frac{\partial d_2}{\partial \sigma} \\ & = & Se^{(-D(T-t))} \frac{1}{\sqrt{2\pi}} e^{\left(-\frac{d_1^2}{2}\right)} \left(\frac{\partial d_2}{\partial \sigma} + \sqrt{T-t}\right) - \frac{1}{\sqrt{2\pi}} Ee^{(-r(T-t))} e^{\left(-\frac{d_2^2}{2}\right)} \frac{\partial d_2}{\partial \sigma} \\ & = & \sqrt{\frac{T-t}{2\pi}} Se^{(-D(T-t))} e^{\left(-\frac{d_1^2}{2}\right)} + \frac{\partial d_2}{\partial \sigma} \frac{1}{\sqrt{2\pi}} \left[\underbrace{Se^{(-D(T-t))} e^{\left(-\frac{d_1^2}{2}\right)} - Ee^{(-r(T-t))} e^{\left(-\frac{d_2^2}{2}\right)}}_{=0}\right] \\ & = & \sqrt{\frac{T-t}{2\pi}} Se^{(-D(T-t))} e^{\left(-\frac{d_1^2}{2}\right)} & \left(=\sqrt{\frac{T-t}{2\pi}} Ee^{(-r(T-t))} e^{\left(-\frac{d_2^2}{2}\right)}\right) \end{array}$$

2. Given that S is defined by the SDE

$$dS = a(S,t) dt + b(S,t) dW$$
(2.1)

where a and b are given functions of S and t, show <u>using</u> Itô's lemma that any function V(S,t) satisfies the SDE

$$dV = \left(\frac{\partial V}{\partial t} + a\frac{\partial V}{\partial S} + \frac{1}{2}b^2\frac{\partial^2 V}{\partial S^2}\right)dt + b\frac{\partial V}{\partial S}dW$$

where we have assumed that all partial derivatives exist.

Hence derive the partial differential equation

$$\frac{\partial V}{\partial t} + \frac{1}{2}b^2 \frac{\partial^2 V}{\partial S^2} = r\left(V - S\frac{\partial V}{\partial S}\right) \tag{2.2}$$

for the fair price of an option based on a security S which satisfies (2.1) with r the risk-free interest rate.

Show (by substitution) that $V(S,t) = e^{-\alpha t}S^2$ is a solution of (2.2) provided

$$b^2 = (\alpha - r) S^2$$

and α is a constant.

The first part of this problem is trivial. Follow the derivation of the BSE as done in the notes. The only difference here is that a(S,t) and b(S,t) replace μS and σS . For the second part simply substitute $V(S,t) = e^{-\alpha t}S^2$ in (2.2); the following terms are needed

$$\frac{\partial V}{\partial t} = -\alpha e^{-\alpha t} S^2; \ \frac{\partial V}{\partial S} = 2e^{-\alpha t} S; \ \frac{\partial^2 V}{\partial S^2} = 2e^{-\alpha t}$$

$$-\alpha e^{-\alpha t} S^2 + \frac{1}{2} b^2 \times 2e^{-\alpha t} = r \left(e^{-\alpha t} S^2 - 2e^{-\alpha t} S^2 \right) -\alpha S^2 + b^2 = -rS^2 \to b^2 = (\alpha - r) S^2.$$

3. The Black–Scholes formula for a European call option C(S,t) is

$$C(S,t) = S \exp(-D(T-t))N(d_1) - E \exp(-r(T-t))N(d_2)$$

From this expression, find the Black–Scholes value of the call option in the following limits:

a. (time tends to expiry) $t \to T^-$, $\sigma > 0$ (this depends on S/E); $\exp(-r(T-t))$, $\exp(-D(T-t)) \to 1$

$$d_{12} \to \frac{\log{(S/E)}}{\sigma\sqrt{T-t}} + O\left(\sqrt{T-t}\right) \to \begin{cases} & \infty \quad S > E \\ & 0 \quad S = E \\ & -\infty \quad S < E \end{cases} \quad \text{so} \quad C \to \begin{cases} & S-E \quad S > E \\ & 0 \quad S = E \\ & 0 \quad S < E \end{cases}$$

b. (volatility tends to zero) $\sigma \to 0^+, t < T$; (this depends on $S \exp(-D(T-t))/E \exp(-r(T-t))$)

$$d_{12} \rightarrow \frac{\log(S/E) + (r-D)(T-t)}{\sigma\sqrt{T-t}} + O(\sigma)$$

$$= \frac{\log(S\exp(-D(T-t))/E\exp(-r(T-t)))}{\sigma\sqrt{T-t}} + O(\sigma)$$

$$\rightarrow \begin{cases} \infty & Se^{(-D(T-t))} > Ee^{(-r(T-t))} \\ 0 & Se^{(-D(T-t))} = Ee^{(-r(T-t))} \\ -\infty & Se^{(-D(T-t))} < Ee^{(-r(T-t))} \end{cases}$$
so $C \rightarrow \max \left[Se^{(-D(T-t))} - Ee^{(-r(T-t))}, 0 \right]$

4. Suppose S evolves according to the SDE

$$dS = \mu S dt + S^{\alpha} dW$$

where μ and α are positive constants. Given that the interest rate is zero, derive the corresponding Black–Scholes partial differential equation (PDE) for the option based upon this asset S (you are not required to solve any equation). Write this PDE in terms of the greeks.

We know that if S evolves according to the stochastic differential equation (SDE)

$$dS = a(S, t) dt + b(S, t) dW$$

and V = V(S, t) then Itô gives

$$dV = \left(\frac{\partial V}{\partial t} + \mu S \frac{\partial V}{\partial S} + \frac{1}{2} S^{2\alpha} \frac{\partial^2 V}{\partial S^2}\right) dt + S^{\alpha} \frac{\partial V}{\partial S} dW$$

Then set up a portfolio $\Pi = V - \Delta S \Rightarrow$ in one time-step (we hold Δ fixed) $d\Pi = dV - \Delta dS$.

$$d~\Pi = \left(\frac{\partial V}{\partial t} + \mu S \frac{\partial V}{\partial S} + \frac{1}{2} S^{2\alpha} \frac{\partial^2 V}{\partial S^2}\right) dt + S^{\alpha} \frac{\partial V}{\partial S} dW - \Delta \left(\mu S dt + S^{\alpha} dW\right)$$

therefore we take $\Delta = \frac{\partial V}{\partial S}$ to eliminate the risk associated with the portfolio (to cancel out terms with dX), which gives

$$d \ \Pi = \left(\frac{\partial V}{\partial t} + \frac{1}{2} S^{2\alpha} \frac{\partial^2 V}{\partial S^2}\right) dt$$

portfolio now riskless. No arbitrage tells us that we are guaranteed return at risk free rate, so

$$\left(\frac{\partial V}{\partial t} + \frac{1}{2}S^{2\alpha}\frac{\partial^2 V}{\partial S^2}\right)dt = r\Pi dt$$

and r = 0 so

$$\frac{\partial V}{\partial t} + \frac{1}{2} S^{2\alpha} \frac{\partial^2 V}{\partial S^2} = 0.$$

Using greeks $\frac{\partial V}{\partial t} = \Theta$ and $\frac{\partial^2 V}{\partial S^2} = \Gamma$ allows us to write this pde as

$$\Theta + \frac{1}{2}S^{2\alpha}\Gamma = 0.$$

5. The value of an option $V\left(S,t\right)$ satisfies the Black–Scholes equation. Write the option value in the form

$$V(S,t) = \exp(-r(T-t))q(S,t).$$
 (5.1)

Show that the function q(S,t) satisfies the equation

$$\frac{\partial q}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 q}{\partial S^2} + (r - D)S \frac{\partial q}{\partial S} = 0.$$

This is the backward Kolmogorov equation, used for calculating the expected value of stochastic quantities.

Substitute

$$\frac{\partial V}{\partial t} = \exp(-r(T-t))\frac{\partial}{\partial t}q(S,t) + rV(S,t),$$

$$\frac{\partial V}{\partial S} = \exp(-r(T-t))\frac{\partial q}{\partial S} & \&$$

$$\frac{\partial^2 V}{\partial S^2} = \exp(-r(T-t))\frac{\partial^2 q}{\partial S^2}$$

from (5.1) into the BSE, all the exponentials cancel out and the above equation is left.

Thus the value of an option can be expressed in the form

$$V(S,t) = \exp(-r(T-t)) \operatorname{E}[\operatorname{Payoff}(S)]$$

where E[x] means the expected value of x. This is not a real expectation, but taken under the risk-neutral random walk (so r replaces μ) and forms the basis of Monte Carlo methods applied to finance. More on this later.