

Outline of the Course

Ch 1: The Nature of Probability and Statistics

Ch 2: Frequency Distributions and Graphs

Ch 3: Data Description

Ch 4: Probability and Counting Rules

Ch 5: Discrete Probability Distributions

Ch 6: The Normal Distribution

Ch 7: Confidence Intervals and Sample Size

Ch 8: Hypothesis Testing

Ch 9: Testing the Difference Between Two Means

Ch 10: Correlation and Regression

© 2019 McGraw-Hill Education

ASSESSMENT						
Work	Description	Max. Points				
Homework	5	100				
In-class quizzes	5	100				
Final Exam	Comprehensive	200				
Extra Credit	Attendance and class participation	20				
© 2019 McGraw-Hill Education						

3

The Final Exam

- This exam will be cumulative, covering information from **Chapters 1 through 10**.
- Scheduled in Week 13 (27 May 14:00-16:00)
- You may bring a calculator, dictionary and two sheets of A4-sized paper with handwritten (not typed or photocopied) information on both sides.
- It will be a mixture of short Multiple-Choice Questions and a longer calculation problems.

© 2019 McGraw-Hill Education

FINAL EXAM						
Your name and signature indicate your assent to Oklahoma State's Commitment to Academic Integrity: "I will respect OSU's commitment to academic integrity and uphold the values of honesty and responsibility that preserve our academic community."						
Name:	Student ID:					
Signature:						

5

EXAMPLES

© 2019 McGraw-Hill Education

What is the value of the mode when all values in the data set are different?

- A. 0
- B. 1
- C. There is no mode
- D. It cannot be determined unless the data values are given

© 2019 McGraw-Hill Educatio

7

Example

When data are categorized as, for example, places of residence (rural, suburban, urban), the most appropriate measure of central tendency is the

- A. mean
- B. median
- C. mode
- D. midrange

D 2019 McGraw-Hill Education

Which is not part of the five-number summary?

- A. Q1 and Q3
- B. Mean
- C. Median
- D. The minimum and maximum data values

9

Example

A statistic that tells the number of standard deviations a data value is above or below the mean is called

- A. Quartile
- B. Coefficient of variation
- C. Percentile
- D. Z-score

© 2019 McGraw-Hill Education

When a distribution is bell-shaped, approximately what percentage of data values will fall within 1 standard deviation of the mean?

A. 50% B. 68%

C. 95%

D. 99.7%

11

Example

If a person's score on an exam corresponds to the 75th percentile, then that person obtained 75 correct answers out of 100 questions.

TRUE FALSE

© 2019 McGraw

The probability that an event happens is 0.42. What is the probability that the event won't happen?

- A. -0.42
- B. 0.58
- C. 0
- D. 1

© 2019 McGraw-Hill Educatio

13

Example

When a meteorologist says that there is a 30% chance of showers, what type of probability is the person using?

- A. Classical
- B. Empirical
- C. Relative
- D. Subjective

© 2019 McGraw-Hill Education

The sample space for tossing 3 coins consists of how many outcomes

- A. 2
- B. 4
- C. 6
- D. 8

HHH HTT
HHT THT
HTH TTH
THH TTT

© 2019 McGraw-Hill Education

15

Example

The complement of guessing 5 correct answers on a 5question true/false exam is

- A. Guessing 5 incorrect answers
- B. Guessing at least 1 incorrect answer
- C. Guessing at least 1 correct answer
- D. Guessing no incorrect answers

© 2019 McGraw-Hill Education

When two dice are rolled, the sample space consists of how many events?

A. 6

B. 12

C. 36

D. 54

	Die 2						
Die 1	1	2	3	4	5	6	
1	(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1, 5)	(1, 6)	
2	(2, 1)	(2, 2)	(2, 3)	(2, 4)	(2, 5)	(2, 6)	
3	(3, 1)	(3, 2)	(3, 3)	(3, 4)	(3, 5)	(3, 6)	
4	(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)	(4, 6)	
5	(5, 1)	(5, 2)	(5, 3)	(5, 4)	(5, 5)	(5, 6)	
6	(6, 1)	(6, 2)	(6, 3)	(6, 4)	(6, 5)	(6, 6)	

© 2019 McGraw-Hill Educatio

17

Example

The number of students taking Elementary Statistics course this semester is an example of a continuous random variable

TRUE FALSE

It is a discrete random variable

© 2019 McGraw-Hill Educatio

How many outcomes are there in a binomial experiment?

- A. 0
- B. 1
- C. 2
- D. It varies

© 2019 McGraw-Hill Education

19

Example

The number of trials for a binomial experiment

- A. Can be infinite
- B. Is unchanged
- C. Is unlimited
- D. Must be fixed

difference?

© 2019 McGraw-Hill Educatio

If 40% of all workers ride to work in carpools, find the probability that if 8 workers are selected, 5 will ride in carpools.

 $\mathbf{P}(\mathbf{X}) = \frac{\mathbf{n}!}{(\mathbf{n} - \mathbf{X})! \cdot \mathbf{X}!} \cdot \mathbf{p}^{\mathbf{X}} \cdot \mathbf{q}^{\mathbf{n} - \mathbf{X}}$

A. 0.248

B. 0.124

C. 0.216

D. 0.400

n=8, p=0.4, X=5

21

Example

If 80% of the applicants are able to pass a driver's proficiency road test, find the mean of the number of people who pass the test in a sample of 300 applicants

A. 240

B. 150

C. 60

D. 300

n=300, p=0.8

Thus, $\mu = n^*p = 300^*0.8 = 240$

Three out of four American adults under age 35 have eaten pizza for breakfast. If a random sample of 20 adults under age 35 is selected, find the probability that exactly 16 have eaten pizza for breakfast.

- A. 0.81
- B. 0.19
- C. 0.80
- D. 0.20

n = 20, p = 0.75, X = 16

P(16 have eaten pizza for breakfast) =

 $\frac{20!}{4! \cdot 16!} (0.75)^{16} (0.25)^4 = 0.1897 \text{ or } 0.190$

© 2019 McGraw-Hill Education

23

Example

The total area under a normal distribution is infinite

TRUE

FALSE

The total area is equal to 1

© 2019 McGraw-Hill Educatio

The area under the standard normal distribution to the left of z=0 is negative.

TRUE

FALSE

The area is positive.

25

Example

Interval estimates are preferred over point estimates since a confidence level can be specified

TRUE

FALSE

© 2019 McGraw-Hill Educati

An estimator is consistent if as the sample size decreases, the value of the estimator approaches the value of the parameter estimated

TRUE

FALSE

It is consistent if, as sample size **increases**, the estimator approaches the parameter being estimated.

© 2019 McGraw-Hill Educatio

27

Example

When a 99% confidence interval is calculated instead of a 95% confidence interval with 'n' being the same, the margin of error will be

- A. Smaller
- B. Larger
- C. The same
- D. It cannot be determined

$$E = z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$$

For a 95% confidence interval: $z_{\alpha/2} = 1.96$

For a 99% confidence interval: $z_{\alpha/2} = 2.58$

© 2019 McGraw-Hill Education

Example When the value of $\boldsymbol{\alpha}$ is increased, the probability of committing a type I error is H₀ true H₀ false A. decreased B. increased Error Correct C. the same Reject Type I D. None of the above Error Correct not reject H₀ decision Type II

The degrees of freedom for the t test are

- A. n
- B. n+1
- C. n-1
- D. n²

© 2019 McGraw-Hill Educatio

31

Example

If the same diet is given to two groups of randomly selected individuals, the samples are considered to be dependent

TRUE

FALSE

The samples are independent

© 2019 McGraw-Hill Education

When the t test is used for testing the equality of two means, the populations must be

- A. known
- B. normal
- C. binomial
- D. very large

© 2019 McGraw-Hill Educatio

33

Example

A negative relationship between two variables means that for the most part, as the x variable increases, the y variable increases

TRUE

FALSE

False, the y variable would decrease

© 2019 McGraw-Hill Education

A correlation coefficient of -1 implies a perfect linear relationship between the variables

TRUE

FALSE

35

Example

When the correlation coefficient is significant, you can assume x causes y

TRUE

FALSE

The relationship may be affected by another variable, or by chance

© 2019 McGraw-Hi

The equation of the regression line used in statistics is

A.
$$x = a + by$$

B.
$$y = bx + a$$

C.
$$y' = a + bx$$

D.
$$x = ay + b$$

© 2019 McGraw-Hill Education

37

Example

The coefficient of determination is

- A. r
- B. r^2
- C. a
- D. b

© 2019 McGraw-Hill Education

Even if the correlation coefficient is high (near +1) or low (near -1), it may not be significant

TRUE

FALSE

39

Example

The number of ads on a one-hour television show is what type of data?

- A. nominal
- B. qualitative
- C. discrete
- D. continuous

© 2019 McGraw-Hill Educatio

A researcher divided subjects into two groups according to gender and then selected members from each group for her sample. What sampling method was the researcher using?

- A. cluster
- B. random
- C. systematic
- D. stratified

© 2019 McGraw-Hill Educatio

41

Example

A variable that interferes with other variables in the study is called

- A. Confounding variable
- B. Explanatory variable
- C. Outcome variable
- D. Interfering variable

Confounding variable is a variable that influences the outcome variable but cannot be separated from the other variables that influence the outcome variable (p.19)

© 2019 McGraw-Hill Education

43

End of Revision! Good luck!