

 $\beta_{\frac{1}{2}}\left(2\,\,\mathcal{R}^{\alpha\beta}_{\quad \ \alpha}\,\,\mathcal{R}^{\,\,\chi}_{\beta\,\,\chi} - 4\,\,\mathcal{R}^{\,\,\chi}_{\alpha\,\,\chi}\,\,\partial_{\beta}f^{\,\alpha\beta} + 4\,\,\mathcal{R}^{\,\,\chi}_{\beta\,\,\chi}\,\,\partial^{\beta}f^{\,\alpha}_{\quad \alpha} - 2\,\,\partial_{\beta}f^{\,\,\chi}_{\quad \, \chi}\,\partial^{\beta}f^{\,\alpha}_{\quad \, \alpha} - 2\,\,\partial_{\beta}f^{\,\,\alpha\beta}\,\partial_{\chi}f^{\,\,\chi}_{\quad \, \alpha} + 4\,\,\partial^{\beta}f^{\,\,\alpha}_{\quad \, \alpha}\,\partial_{\chi}f^{\,\,\chi}_{\quad \, \beta} - 2\,\,\partial_{\alpha}f^{\,\,\chi}_{\beta\,\,\chi}\,\partial^{\chi}f^{\,\,\alpha\beta} - \partial_{\alpha}f^{\,\,\chi}_{\lambda\,\beta}\,\partial^{\chi}f^{\,\,\alpha\beta} + \partial_{\beta}f^{\,\,\alpha\beta}\,\partial^{\chi}f^{\,\,\alpha\beta} + \partial_{\chi}f^{\,\,\alpha\beta} + \partial_{\chi}f^{$

$^{1^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$

 $0 \qquad 0 \qquad \boxed{\alpha_{\stackrel{\cdot}{0}} - 4 \beta_{\stackrel{\cdot}{1}} + 2 \alpha_{\stackrel{\cdot}{3}} k^2}$

 $^{0^{+}}\tau^{\parallel} +$

 $^{0^+}\tau^{\perp}$ †

 ${\stackrel{\scriptscriptstyle{0}^{-}}{\cdot}}\sigma^{\parallel}$ †

<u>Saturated</u> propagator

PSALTer results panel

$^{1^{+}}\sigma^{\perp}\uparrow^{lphaeta}$	$\frac{2\sqrt{2}}{\left(\alpha_{0}-4\beta_{1}\right)\left(1+k^{2}\right)}$	$-\frac{2}{\left(\alpha_{\bullet}-4\beta_{\bullet}\right)(1+k^2)^2}$	$-\frac{2 k k}{\left(\alpha_{\bullet} - 4 \beta_{\bullet}\right) \left(1 + k^{2}\right)^{2}}$	0	0	0	0			
$\frac{1}{2} \tau^{\parallel} + \frac{\alpha \beta}{2}$	$-\frac{2 i \sqrt{2} k}{\left(\alpha_{0} - 4 \beta_{1}\right) \left(1 + k^{2}\right)}$	$\frac{2 i k}{\left(\alpha_{0}^{-4} \beta_{1}\right) \left(1+k^{2}\right)^{2}}$	$-\frac{2 k^2}{\left(\alpha_{0} - 4 \beta_{1}\right) \left(1 + k^2\right)^2}$	0	0	0	Θ			
¹-˙σ" †α	Θ	0	0	0	$-\frac{2\sqrt{2}}{\left(\alpha_{\bullet}-4\beta_{1}\right)\left(1+2k^{2}\right)}$	0	$-\frac{4 i k}{\left(\alpha \cdot -4 \beta \cdot 1\right) \left(1+2 k^2\right)}$			
1- σ ¹ † α	0	0	0	$-\frac{2\sqrt{2}}{\left(\alpha_{0}-4\beta_{1}\right)\left(1+2k^{2}\right)}$	$-\frac{2}{\left(\alpha_{0}-4\beta_{1}\right)\left(1+2k^{2}\right)^{2}}$	0	$-\frac{2 i \sqrt{2} k}{\left(\alpha_{0}-4 \beta_{1}\right) \left(1+2 k^{2}\right)^{2}}$			
1- ₇ † ^α	0	0	0	Θ	Θ	0	Θ			
¹ r [⊥] † ^α	Θ	0	0	$\frac{4 i k}{\left(\alpha_{0}^{-4} \beta_{1}\right) \left(1+2 k^{2}\right)}$	$\frac{2 i \sqrt{2} k}{\left(\alpha_0 - 4 \beta_1\right) \left(1 + 2 k^2\right)^2}$	0	$-\frac{4 k^2}{\left(\alpha_{.}-4 \beta_{.}\right) \left(1+2 k^2\right)^2}$	$^{2^{+}}\sigma^{\parallel}_{\alpha\beta}$	$2^+_{\bullet} \tau^{\parallel}_{\alpha\beta}$	$^{2^{-}}\sigma^{\parallel}_{\alpha\beta\chi}$
							$^{2^{+}}\sigma^{\parallel}$ † lphaeta	$-\frac{16\beta_{1}}{\alpha_{0}^{2}-4\alpha_{0}\beta_{1}}$	$\frac{2 i \sqrt{2}}{\alpha k_0}$	Θ
							$^{2^{+}}_{\bullet}\tau^{\parallel}\uparrow^{lphaeta}$	$-\frac{2 i \sqrt{2}}{\alpha_{\bullet} k}$	$\frac{2}{\alpha_{\bullet} k^2}$	0
							${\stackrel{2^-}{\cdot}}\sigma^{\parallel} \uparrow^{\alpha\beta\chi}$	0	0	$\frac{1}{-\frac{\alpha}{4}+\beta}$
Source constraints	<u>s</u>									
										-

Covariant form Spin-parity form

$\begin{array}{c} 0^+ \tau^{\perp} == 0 \\ \end{array} \qquad \qquad \partial_{\beta} \partial_{\alpha} \tau$	$\alpha \tau \left(\Delta + \mathcal{K}\right)^{\alpha \beta} == 0$	1
$2 i k \frac{1}{\cdot} \sigma^{\perp}^{\alpha} + \frac{1}{\cdot} \tau^{\perp}^{\alpha} == 0 \partial_{\chi} \partial_{\beta} \partial_{\beta}$	$\partial^{\alpha}_{\tau} (\Delta + \mathcal{K})^{\beta \chi} = \partial_{\chi} \partial^{\chi} \partial_{\beta \tau} (\Delta + \mathcal{K})^{\alpha \beta} + 2 \partial_{\sigma} \partial^{\delta} \partial_{\chi} \partial_{\beta} \sigma^{\beta \alpha \chi}$	3
$\left\ \frac{1}{\tau} \right\ ^{\alpha} = 0$ $\partial_{\chi} \partial_{\beta} \partial_{\gamma}$	$\partial^{\alpha} \tau \left(\Delta + \mathcal{K} \right)^{\beta \chi} = \partial_{\chi} \partial^{\chi} \partial_{\beta} \tau \left(\Delta + \mathcal{K} \right)^{\beta \alpha}$	3
$i k i \cdot \sigma^{\perp} \alpha^{\beta} + i \cdot \tau^{\parallel} \alpha^{\beta} = 0 \partial_{\chi} \partial^{\alpha} \tau$	$ {}^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\beta \chi} + \partial_{\chi} \partial^{\beta}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \alpha} + \partial_{\chi} \partial^{\chi}_{\tau} \left(\Delta + \mathcal{K} \right)^{\alpha \beta} + 2 \ \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\chi \beta \delta} + 2 \ \partial_{\delta} \partial^{\delta}_{\chi} \sigma^{\chi \alpha \beta} = \partial_{\chi} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \beta} + \partial_{\chi} \partial^{\beta}_{\tau} \left(\Delta + \mathcal{K} \right)^{\alpha \chi} + \partial_{\chi} \partial^{\chi}_{\tau} \left(\Delta + \mathcal{K} \right)^{\beta \alpha} + 2 \ \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\chi \alpha \delta} = \partial_{\chi} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \beta} + \partial_{\chi} \partial^{\beta}_{\tau} \left(\Delta + \mathcal{K} \right)^{\alpha \chi} + \partial_{\chi} \partial^{\chi}_{\tau} \left(\Delta + \mathcal{K} \right)^{\beta \alpha} + 2 \ \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\chi \alpha \delta} = \partial_{\chi} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \beta} + \partial_{\chi} \partial^{\beta}_{\tau} \left(\Delta + \mathcal{K} \right)^{\gamma \chi} + \partial_{\chi} \partial^{\chi}_{\tau} \left(\Delta + \mathcal{K} \right)^{\gamma \chi} + \partial_{\chi} \partial^{\chi}_{\tau} \left(\Delta + \mathcal{K} \right)^{\gamma \chi} + \partial_{\chi} \partial^{\chi}_{\tau} \left(\Delta + \mathcal{K} \right)^{\gamma \chi} + \partial_{\chi} \partial^{\chi}_{\tau} \left(\Delta + \mathcal{K} \right)^{\gamma \chi} + \partial_{\chi} \partial^{\chi}_{\tau} \left(\Delta + \mathcal{K} \right)^{\gamma \chi} + \partial_{\chi} \partial^{\chi}_{\tau} \left(\Delta + \mathcal{K} \right)^{\gamma \chi} + \partial_{\chi} \partial^{\chi}_{\tau} \left(\Delta + \mathcal{K} \right)^{\gamma \chi} + \partial_{\chi} \partial^{\chi}_{\tau} \left(\Delta + \mathcal{K} \right)^{\gamma \chi} + \partial_{\chi} \partial^{\chi}_{\tau} \left(\Delta + \mathcal{K} \right)^{\gamma \chi} + \partial_{\chi} \partial^{\chi}_{\tau} \left(\Delta + \mathcal{K} \right)^{\gamma \chi} + \partial_{\chi} \partial^{\chi}_{\tau} \left(\Delta + \mathcal{K} \right)^{\gamma \chi} + \partial_{\chi} \partial^{\chi}_{\tau} \left(\Delta + \mathcal{K} \right)^{\gamma \chi} + \partial_{\chi} \partial^{\chi}_{\tau} \left(\Delta + \mathcal{K} \right)^{\gamma \chi} + \partial_{\chi} \partial^{\chi}_{\tau} \left(\Delta + \mathcal{K} \right)^{\gamma \chi} + \partial_{\chi} \partial^{\chi}_{\tau} \left(\Delta + \mathcal{K} \right)^{\gamma \chi} + \partial_{\chi} \partial^{\chi}_{\tau} \left(\Delta + \mathcal{K} \right)^{\gamma \chi} + \partial_{\chi} \partial^{\chi}_{\tau} \left(\Delta + \mathcal{K} \right)^{\gamma \chi} + \partial_{\chi} \partial^{\chi}_{\tau} \left(\Delta + \mathcal{K} \right)^{\gamma \chi} + \partial_{\chi} \partial^{\chi}_{\tau} \left(\Delta + \mathcal{K} \right)^{\gamma \chi} + \partial_{\chi} \partial^{\chi}_{\tau} \left(\Delta + \mathcal{K} \right)^{\gamma \chi} + \partial_{\chi} \partial^{\chi}_{\tau} \left(\Delta + \mathcal{K} \right)^{\gamma \chi} + \partial_{\chi} \partial^{\chi}_{\tau} \left(\Delta + \mathcal{K} \right)^{\gamma \chi} + \partial_{\chi} \partial^{\chi}_{\tau} \left(\Delta + \mathcal{K} \right)^{\gamma \chi} + \partial_{\chi} \partial^{\chi}_{\tau} \left(\Delta + \mathcal{K} \right)^{\gamma \chi} + \partial_{\chi} \partial^{\chi}_{\tau} \left(\Delta + \mathcal{K} \right)^{\gamma \chi} + \partial_{\chi} \partial^{\chi}_{\tau} \left(\Delta + \mathcal{K} \right)^{\gamma \chi} + \partial_{\chi} \partial^{\chi}_{\tau} \left(\Delta + \mathcal{K} \right)^{\gamma \chi} + \partial_{\chi} \partial^{\chi}_{\tau} \left(\Delta + \mathcal{K} \right)^{\gamma \chi} + \partial_{\chi} \partial^{\chi}_{\tau} \left(\Delta + \mathcal{K} \right)^{\gamma \chi} + \partial_{\chi} \partial^{\chi}_{\tau} \left(\Delta + \mathcal{K} \right)^{\gamma \chi} + \partial_{\chi} \partial^{\chi}_{\tau} \left(\Delta + \mathcal{K} \right)^{\gamma \chi} + \partial_{\chi} \partial^{\chi}_{\tau} \left(\Delta + \mathcal{K} \right)^{\gamma \chi} + \partial_{\chi} \partial^{\chi}_{\tau} \left(\Delta + \mathcal{K} \right)^{\gamma \chi} + \partial_{\chi} \partial^{\chi}_{\tau} \left(\Delta + \mathcal{K} \right)^{\gamma \chi} + \partial_{\chi} \partial^{\chi}_{\tau} \left(\Delta + \mathcal{K} \right)^{\gamma \chi} + \partial_{\chi} \partial^{\chi}_{\tau} \left(\Delta + \mathcal{K} \right)^{\gamma \chi} + \partial_{\chi} \partial^{\chi}_{\tau} \left(\Delta + \mathcal{K} \right)^{\gamma \chi} + \partial_{\chi} \partial^{\chi}_{\tau} \left(\Delta + \mathcal{K} \right)^{\gamma \chi} + \partial_{$	3
Total expected gauge ge	generators:	10

Multiplicities

<u>Massless</u> <u>spectrum</u>

Polarisations:

(Not yet implemented in PSALTer)

<u>Unitarity</u> conditions

<u>Gauge symmetries</u>

 $\alpha_{0} > 0 \&\& \alpha_{1} < 0 \&\& \beta_{1} < \frac{\alpha_{0}}{4}$

<u>Validity</u> <u>assumptions</u> (Not yet implemented in PSALTer)