Н

B. TECH. (CSE) (THIRD SEMESTER) MID SEMESTER EXAMINATION, 2018

GRAPH THEORY

Time: 1:30 Hours

Maximum Marks: 50

- Note:(i) This question paper contains two Sections.
 - (ii) Both Sections are compulsory.

Section—A

- 1. Fill in the blanks: (1×5=5 Marks)
 - (a) Total number of edges in a complete graph is
 - (b) The sum of degrees of all vertices is
 - (c) The number of labelled trees with n vertices is
 - (d) Complete bipartite graph is represented as
 - (e) A tree with *n* vertices hasedges.

P. T. O.

4. Attempt any two parts of choice from (a), (b) and (c) (5×2=10 Marks)

(3)

and (c). (3×2=10 (via ks))

(a) Prove that every tree has one or two

TCS-304

- (b) Prove that in a full binary tree with n vertices, the number of pendant vertices is $\frac{n+1}{2}$.
- (c) Find the minimal spanning for the graph given below:

- 5. Attempt any two parts of choice from (a), (b) and (c). (5×2=10 Marks)
 - (a) Prove that a non-trivial tree has two or more pendant vertices.
 - (b) Consider a tree with n₁ vertices of degree 1, 4 vertices of degree 2, 5 vertices of degree 3 and 6 vertices of degree 4. Find n₁.

P. T. O.

 $(3\times5=15 \text{ Marks})$

.

2. Attempt any five parts: (3×5=15)
 (a) Define walk, path, circuit and trail.

- (b) Draw a graph which is Euler but not Hamiltonian and Vice Versa.
- (c) Explain Travelling Salesman problem.
- (d) Draw the following graph:

K₆ and W₉.

- (e) What is a bipartite graph? Explain with example.
- (f) What are centre, radius and diameter of a tree?

Section-B

- 3. Attempt any two parts of choice from (a), (b) and (c). (5×2=10 Marks)
 - (a) Prove that a given connected graph is Euler if and only if all vertices are of even degree.
 - (b) Prove that the number of vertices of odd degree in a graph is always even.
 - (c) Find the union, intersection, ring sum and complement of the graphs given below:

F. No. : b-44

Scanned by CamScanner

(c) Find the maximum flow in the network given below:

