JAiO lato 2024

Rozwiązania zadań z serii II

Konrad Kaczmarczyk

7 May 2024

§1 Zadanie

Zadanie 1.1. Dla języka $L \in \Sigma^*$ definiujemy:

$$\sqrt{L} := \{ w \in \Sigma \ ww \in L \}$$

- (a) Czy język L jest bezkontekstowy, to język \sqrt{L} jest bezkontekstowy?
- (b) Czy jesli język \sqrt{L} jest bezkontekstowy, to język L jest bezkontekstowy?
- (c) Czy odpowiedzi zmieniają się, gdy ograniczymy się do alfabetów dwu- lub jednoliterowych?
- (a) Nie, weźmy za przykład $L=a^nb^na^*b^ma^m$ (który jest bezkontekstowy jako konkatenacja języków a^nb^n , a^* , b^ma^m które są oczywiscie bezkontekstowe), dla którego język \sqrt{L} to

$$\sqrt{L} = a^n b^n a^n$$

który już bezkontekstowy nie jest (z lematu o pompowaniu dla języków bezkontekstowych).

(b) Nie, weźmy za przykład $L=\{a^p\mid p\in\mathbb{P}\}$ (który oczywiscie nie jest bezkontekstowy), ale za to

$$\sqrt{L} = \{\varepsilon, a\}$$

jest bezkontekstowy, co zaprzecza.

(c) Widzimy że dla ograniczając się do automatów jedno- i dwuliterowych teza w podpunkcie (b) pozostaje taka sama, oraz że dla dwuliterowych w podpunkcie (a) też. Pozostaje zatem pokazać że dla jednoliterowych teza pierwszego się zmieni.

1

Zatem, korzystając z tw. Parikh'a mamy i że nasz alfabet jest jednoliterowy mamy że dowolny język bezkontekstowy L jest regularny, ale wtedy język \sqrt{L} też jest regularny (fakt ten pojawił się na ćwiczeniach https://www.mimuw.edu.pl/~lk406698/teaching/JAiO2O24/tutorial3.pdf), a więc bezkontekstowy, co kończy dowód.