Table of Contents

roreworu to	the Second Edition
Foreword to	o the First Edition
Preface	li
Acknowledg	gments
Nomenclatu	re lvii
Chapter 1.	Introduction
1.1	Propulsion
1.2	Units and Dimensions
1.3	Operational Envelopes and Standard Atmosphere
1.4	Airbreathing Engines
1.5	Aircraft Performance
1.6	Rocket Engines
	Problems
Chapter 2.	Review of Fundamentals 65
2.1	Introduction
2.2	Equations of State and Conservation of Mass 65
2.3	Steady Flow Energy Equation
2.4	Steady Flow Entropy Equation
2.5	Steady Flow Momentum Equation
2.6	Perfect Gas
2.7	Compressible Flow Properties
2.8	One-Dimensional Gas Dynamics—Finite Control Volume
	Analysis and the <i>H-K</i> Diagram
2.9	Nozzle Design and Nozzle Operating Characteristics
2.10	One-Dimensional Gas Dynamics—Differential Control
	Volume Analysis
2.11	Chemical Reactions
	Problems

3.1 Introduction 161 3.2 Rocket Propulsion Requirements and Capabilities 166 3.3 Rocket Propulsion Engines 176 3.4 Types of Rocket Nozzles 189 3.5 Parameters for Chemical Rockets 194 Problems 228 Chapter 4. Aircraft Gas Turbine Engine 233 4.1 Introduction 233 4.2 Thrust Equation 233 4.3 Note on Propulsive Efficiency 243 4.4 Gas Turbine Engine Components 244 4.5 Brayton Cycle 252 4.6 Aircraft Engine Design 257 4.6 Aircraft Engine Design 257 4.7 Problems 258 Chapter 5. Parametric Cycle Analysis of Ideal Engines 261 5.1 Introduction 262 5.2 Notation 262 5.3 Design Inputs 264 5.4 Steps of Engine Parametric Cycle Analysis 264 5.5 Assumptions of Ideal Cycle Analysis 265 5.6	Chapter 3.	Rocket Propulsion	161
3.2 Rocket Propulsion Requirements and Capabilities. 166 3.3 Rocket Propulsion Engines 176 3.4 Types of Rocket Nozzles 189 3.5 Parameters for Chemical Rockets 194 Problems. 228 Chapter 4. Aircraft Gas Turbine Engine 233 4.1 Introduction 233 4.2 Thrust Equation 233 4.3 Note on Propulsive Efficiency 243 4.4 Gas Turbine Engine Components 244 4.5 Brayton Cycle 252 4.6 Aircraft Engine Design 257 Problems 258 Chapter 5. Parametric Cycle Analysis of Ideal Engines 261 5.1 Introduction 261 5.2 Notation 262 5.3 Design Inputs 264 5.4 Steps of Engine Parametric Cycle Analysis 264 5.5 Assumptions of Ideal Cycle Analysis 264 5.5 Assumptions of Ideal Cycle Analysis 265 5.6 Ideal Turbojet with Afterburner 291 <	-		161
3.3 Rocket Propulsion Engines 176 3.4 Types of Rocket Nozzles 189 3.5 Parameters for Chemical Rockets 194 Problems. 228 Chapter 4. Aircraft Gas Turbine Engine 233 4.1 Introduction 233 4.2 Thrust Equation 233 4.3 Note on Propulsive Efficiency 243 4.4 Gas Turbine Engine Components 244 4.5 Brayton Cycle 252 4.6 Aircraft Engine Design 257 Problems 258 Chapter 5. Parametric Cycle Analysis of Ideal Engines 261 5.1 Introduction 262 5.2 Notation 262 5.3 Design Inputs 264 5.4 Steps of Engine Parametric Cycle Analysis 264 5.5 Assumptions of Ideal Cycle Analysis 266 5.6 Ideal Ramjet 266 5.7 Ideal Turbojet with Afterburner 291 5.9 Ideal Turbojet with Afterburner 291 5.9 Ideal Turbofan wit	3.2		166
3.4 Types of Rocket Nozzles 189 3.5 Parameters for Chemical Rockets 194 Problems 228 Chapter 4. Aircraft Gas Turbine Engine 233 4.1 Introduction 233 4.2 Thrust Equation 233 4.3 Note on Propulsive Efficiency 243 4.4 Gas Turbine Engine Components 244 4.5 Brayton Cycle 252 4.6 Aircraft Engine Design 257 Problems 258 Chapter 5. Parametric Cycle Analysis of Ideal Engines 261 5.1 Introduction 261 5.2 Notation 262 5.3 Design Inputs 264 5.4 Steps of Engine Parametric Cycle Analysis 264 5.5 Assumptions of Ideal Cycle Analysis 266 5.6 Ideal Ramjet 266 5.7 Ideal Turbojet with Afterburner 291 5.9 Ideal Turbojet with Afterburner 291 5.9 Ideal Turbofan with Optimum Bypass Ratio 325 5.11 Ide	3.3		176
3.5 Parameters for Chemical Rockets 194 Problems. 228 Chapter 4. Aircraft Gas Turbine Engine 233 4.1 Introduction. 233 4.2 Thrust Equation 233 4.3 Note on Propulsive Efficiency 243 4.4 Gas Turbine Engine Components 244 4.5 Brayton Cycle 252 4.6 Aircraft Engine Design 257 Problems. 258 Chapter 5. Parametric Cycle Analysis of Ideal Engines 261 5.1 Introduction 262 5.2 Notation 262 5.3 Design Inputs 264 5.4 Steps of Engine Parametric Cycle Analysis 264 5.5 Assumptions of Ideal Cycle Analysis 264 5.6 Ideal Ramjet 266 5.7 Ideal Turbojet with Afterburner 291 5.9 Ideal Turbojet with Afterburner 291 5.9 Ideal Turbofan with Optimum Bypass Ratio 325 5.11 Ideal Pulse Detonation Engine 341 5.12	3.4		189
Problems. 228 Chapter 4. Aircraft Gas Turbine Engine 233 4.1 Introduction 233 4.2 Thrust Equation 233 4.3 Note on Propulsive Efficiency 243 4.4 Gas Turbine Engine Components 244 4.5 Brayton Cycle 252 4.6 Aircraft Engine Design 257 Problems 258 Chapter 5. Parametric Cycle Analysis of Ideal Engines 261 5.1 Introduction 261 5.2 Notation 262 5.3 Design Inputs 264 5.4 Steps of Engine Parametric Cycle Analysis 264 5.5 Assumptions of Ideal Cycle Analysis 264 5.5 Assumptions of Ideal Cycle Analysis 266 5.6 Ideal Ramjet 266 5.7 Ideal Turbojet 278 5.8 Ideal Turbojet with Afterburner 291 5.9 Ideal Turbofan with Optimum Bypass Ratio 325 5.11 Ideal Turbofan with Optimum Byass Ratio 332 5.12 <t< td=""><td>3.5</td><td></td><td>194</td></t<>	3.5		194
4.1 Introduction 233 4.2 Thrust Equation 233 4.3 Note on Propulsive Efficiency 243 4.4 Gas Turbine Engine Components 244 4.5 Brayton Cycle 252 4.6 Aircraft Engine Design 257 Problems 258 Chapter 5. Parametric Cycle Analysis of Ideal Engines 5.1 Introduction 261 5.2 Notation 262 5.3 Design Inputs 264 5.4 Steps of Engine Parametric Cycle Analysis 264 5.4 Steps of Engine Parametric Cycle Analysis 264 5.5 Assumptions of Ideal Cycle Analysis 266 5.6 Ideal Ramjet 266 5.7 Ideal Turbojet 278 5.8 Ideal Turbojet with Afterburner 291 5.9 Ideal Turbofan 302 5.10 Ideal Turbofan with Optimum Bypass Ratio 325 5.11 Ideal Turbofan with Optimum Pan Pressure Ratio 332 5.12 Ideal Pulse Detonation Engine 341 Problem	-		228
4.1 Introduction 233 4.2 Thrust Equation 233 4.3 Note on Propulsive Efficiency 243 4.4 Gas Turbine Engine Components 244 4.5 Brayton Cycle 252 4.6 Aircraft Engine Design 257 Problems 258 Chapter 5. Parametric Cycle Analysis of Ideal Engines 5.1 Introduction 261 5.2 Notation 262 5.3 Design Inputs 264 5.4 Steps of Engine Parametric Cycle Analysis 264 5.4 Steps of Engine Parametric Cycle Analysis 264 5.5 Assumptions of Ideal Cycle Analysis 266 5.6 Ideal Ramjet 266 5.7 Ideal Turbojet 278 5.8 Ideal Turbojet with Afterburner 291 5.9 Ideal Turbofan 302 5.10 Ideal Turbofan with Optimum Bypass Ratio 325 5.11 Ideal Turbofan with Optimum Pan Pressure Ratio 332 5.12 Ideal Pulse Detonation Engine 341 Problem	Chanter 4	Aircraft Gas Turbine Engine	233
4.2 Thrust Equation 233 4.3 Note on Propulsive Efficiency 243 4.4 Gas Turbine Engine Components 244 4.5 Brayton Cycle 252 4.6 Aircraft Engine Design 257 Problems 258 Chapter 5. Parametric Cycle Analysis of Ideal Engines 261 5.1 Introduction 261 5.2 Notation 262 5.3 Design Inputs 264 5.4 Steps of Engine Parametric Cycle Analysis 264 5.5 Assumptions of Ideal Cycle Analysis 266 5.6 Ideal Ramjet 266 5.7 Ideal Turbojet 278 5.8 Ideal Turbojet with Afterburner 291 5.9 Ideal Turbofan 302 5.10 Ideal Turbofan with Optimum Bypass Ratio 325 5.11 Ideal Turbofan with Optimum Fan Pressure Ratio 332 5.12 Ideal Pulse Detonation Engine 341 Problems 344 Chapter 6. Component Performance 355 6.1 Intr	-		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		*	
4.5 Brayton Cycle			
4.6 Aircraft Engine Design. 257 Problems. 258 Chapter 5. Parametric Cycle Analysis of Ideal Engines 261 5.1 Introduction. 261 5.2 Notation. 262 5.3 Design Inputs. 264 5.4 Steps of Engine Parametric Cycle Analysis. 264 5.5 Assumptions of Ideal Cycle Analysis. 266 5.6 Ideal Ramjet 266 5.7 Ideal Turbojet. 278 5.8 Ideal Turbojet with Afterburner 291 5.9 Ideal Turbofan 302 5.10 Ideal Turbofan with Optimum Bypass Ratio 325 5.11 Ideal Turbofan with Optimum Fan Pressure Ratio 332 5.12 Ideal Pulse Detonation Engine 341 Problems. 344 Chapter 6. Component Performance 355 6.1 Introduction. 355 6.2 Variation in Gas Properties 355 6.3 Component Performance. 357 6.4 Inlet and Diffuser Pressure Recovery 358 6.5 Compressor and Turbine Efficiencies 360 6.6 Burner Efficiency and Pressure Loss 370 6.7 Exhaust Nozzle Loss 371 6.8 Mechanical Efficiency of Power Shaft 371 6.9 Summary of Component Figures of Merit (Constant c_p Values) 373		• •	
Problems. 258 Chapter 5. Parametric Cycle Analysis of Ideal Engines 261 5.1 Introduction. 261 5.2 Notation. 262 5.3 Design Inputs. 264 5.4 Steps of Engine Parametric Cycle Analysis. 264 5.5 Assumptions of Ideal Cycle Analysis. 266 5.6 Ideal Ramjet 266 5.7 Ideal Turbojet. 278 5.8 Ideal Turbojet with Afterburner 291 5.9 Ideal Turbofan 302 5.10 Ideal Turbofan with Optimum Bypass Ratio 325 5.11 Ideal Turbofan with Optimum Fan Pressure Ratio 332 5.12 Ideal Pulse Detonation Engine 341 Problems. 344 Chapter 6. Component Performance 355 6.1 Introduction 355 6.2 Variation in Gas Properties 355 6.3 Component Performance 357 6.4 Inlet and Diffuser Pressure Recovery 358 6.5 Compre		· · · · · · · · · · · · · · · · · · ·	
Chapter 5.Parametric Cycle Analysis of Ideal Engines2615.1Introduction2615.2Notation2625.3Design Inputs2645.4Steps of Engine Parametric Cycle Analysis2645.5Assumptions of Ideal Cycle Analysis2665.6Ideal Ramjet2665.7Ideal Turbojet2785.8Ideal Turbojet with Afterburner2915.9Ideal Turbofan3025.10Ideal Turbofan with Optimum Bypass Ratio3255.11Ideal Turbofan with Optimum Fan Pressure Ratio3325.12Ideal Pulse Detonation Engine341Problems344Chapter 6.Component Performance3556.1Introduction3556.2Variation in Gas Properties3556.3Component Performance3576.4Inlet and Diffuser Pressure Recovery3586.5Component Performance Loss3706.7Exhaust Nozzle Loss3706.7Exhaust Nozzle Loss3716.8Mechanical Efficiency of Power Shaft3716.9Summary of Component Figures of Merit (Constant c_p Values)3716.10Component Performance with Variable c_p 373	4.6		
5.1 Introduction 261 5.2 Notation 262 5.3 Design Inputs 264 5.4 Steps of Engine Parametric Cycle Analysis 264 5.5 Assumptions of Ideal Cycle Analysis 266 5.6 Ideal Ramjet 266 5.7 Ideal Turbojet 278 5.8 Ideal Turbojet with Afterburner 291 5.9 Ideal Turbofan 302 5.10 Ideal Turbofan with Optimum Bypass Ratio 325 5.11 Ideal Turbofan with Optimum Fan Pressure Ratio 332 5.12 Ideal Pulse Detonation Engine 341 Problems 344 Chapter 6. Component Performance 355 6.1 Introduction 355 6.2 Variation in Gas Properties 355 6.3 Component Performance 357 6.4 Inlet and Diffuser Pressure Recovery 358 6.5 Compressor and Turbine Efficiencies 360 6.6 Burner Efficiency and Pressure Loss 371 6.8 Mechanical Efficiency of Power Shaft		Problems	258
5.2 Notation 262 5.3 Design Inputs. 264 5.4 Steps of Engine Parametric Cycle Analysis 264 5.5 Assumptions of Ideal Cycle Analysis. 266 5.6 Ideal Ramjet 266 5.7 Ideal Turbojet. 278 5.8 Ideal Turbojet with Afterburner 291 5.9 Ideal Turbofan 302 5.10 Ideal Turbofan with Optimum Bypass Ratio 325 5.11 Ideal Turbofan with Optimum Fan Pressure Ratio 332 5.12 Ideal Pulse Detonation Engine 341 Problems 344 Chapter 6.Component Performance 355 6.1 Introduction 355 6.2 Variation in Gas Properties 355 6.3 Component Performance 355 6.4 Inlet and Diffuser Pressure Recovery 358 6.5 Compressor and Turbine Efficiencies 360 6.6 Burner Efficiency and Pressure Loss 370 6.7 Exhaust Nozzle Loss 371 6.8 Mechanical Efficiency of Power Shaft 371 6.9 Summary of Component Figures of Merit (Constant c_p Values) 371 6.10 Component Performance with Variable c_p 373	Chapter 5.	Parametric Cycle Analysis of Ideal Engines	261
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.1	Introduction	261
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.2	Notation	262
5.5Assumptions of Ideal Cycle Analysis.2665.6Ideal Ramjet2665.7Ideal Turbojet.2785.8Ideal Turbojet with Afterburner2915.9Ideal Turbofan3025.10Ideal Turbofan with Optimum Bypass Ratio3255.11Ideal Turbofan with Optimum Fan Pressure Ratio3325.12Ideal Pulse Detonation Engine341Problems.344Chapter 6. Component Performance3556.1Introduction3556.2Variation in Gas Properties3556.3Component Performance3576.4Inlet and Diffuser Pressure Recovery3586.5Compressor and Turbine Efficiencies3606.6Burner Efficiency and Pressure Loss3706.7Exhaust Nozzle Loss3716.8Mechanical Efficiency of Power Shaft3716.9Summary of Component Figures of Merit (Constant c_p Values)3716.10Component Performance with Variable c_p 373	5.3		264
5.5Assumptions of Ideal Cycle Analysis.2665.6Ideal Ramjet2665.7Ideal Turbojet.2785.8Ideal Turbojet with Afterburner2915.9Ideal Turbofan3025.10Ideal Turbofan with Optimum Bypass Ratio3255.11Ideal Turbofan with Optimum Fan Pressure Ratio3325.12Ideal Pulse Detonation Engine341Problems.344Chapter 6. Component Performance3556.1Introduction3556.2Variation in Gas Properties3556.3Component Performance3576.4Inlet and Diffuser Pressure Recovery3586.5Compressor and Turbine Efficiencies3606.6Burner Efficiency and Pressure Loss3706.7Exhaust Nozzle Loss3716.8Mechanical Efficiency of Power Shaft3716.9Summary of Component Figures of Merit (Constant c_p Values)3716.10Component Performance with Variable c_p 373	5.4	Steps of Engine Parametric Cycle Analysis	264
5.6Ideal Ramjet2665.7Ideal Turbojet2785.8Ideal Turbojet with Afterburner2915.9Ideal Turbofan3025.10Ideal Turbofan with Optimum Bypass Ratio3255.11Ideal Turbofan with Optimum Fan Pressure Ratio3325.12Ideal Pulse Detonation Engine341Problems344Chapter 6.Component Performance3556.1Introduction3556.2Variation in Gas Properties3556.3Component Performance3576.4Inlet and Diffuser Pressure Recovery3586.5Compressor and Turbine Efficiencies3606.6Burner Efficiency and Pressure Loss3706.7Exhaust Nozzle Loss3716.8Mechanical Efficiency of Power Shaft3716.9Summary of Component Figures of Merit (Constant c_p Values)3716.10Component Performance with Variable c_p 373	5.5		266
5.7Ideal Turbojet.2785.8Ideal Turbojet with Afterburner2915.9Ideal Turbofan3025.10Ideal Turbofan with Optimum Bypass Ratio3255.11Ideal Turbofan with Optimum Fan Pressure Ratio3325.12Ideal Pulse Detonation Engine341Problems344Chapter 6.Component Performance3556.1Introduction3556.2Variation in Gas Properties3556.3Component Performance3576.4Inlet and Diffuser Pressure Recovery3586.5Compressor and Turbine Efficiencies3606.6Burner Efficiency and Pressure Loss3706.7Exhaust Nozzle Loss3716.8Mechanical Efficiency of Power Shaft3716.9Summary of Component Figures of Merit (Constant c_p Values)3716.10Component Performance with Variable c_p 373	5.6		266
5.8Ideal Turbojet with Afterburner2915.9Ideal Turbofan3025.10Ideal Turbofan with Optimum Bypass Ratio3255.11Ideal Turbofan with Optimum Fan Pressure Ratio3325.12Ideal Pulse Detonation Engine341Problems344Chapter 6.Component Performance3556.1Introduction3556.2Variation in Gas Properties3556.3Component Performance3576.4Inlet and Diffuser Pressure Recovery3586.5Compressor and Turbine Efficiencies3606.6Burner Efficiency and Pressure Loss3706.7Exhaust Nozzle Loss3716.8Mechanical Efficiency of Power Shaft3716.9Summary of Component Figures of Merit (Constant c_p Values)3716.10Component Performance with Variable c_p 373		· ·	
5.9Ideal Turbofan3025.10Ideal Turbofan with Optimum Bypass Ratio3255.11Ideal Turbofan with Optimum Fan Pressure Ratio3325.12Ideal Pulse Detonation Engine341Problems344Chapter 6.Component Performance3556.1Introduction3556.2Variation in Gas Properties3556.3Component Performance3576.4Inlet and Diffuser Pressure Recovery3586.5Compressor and Turbine Efficiencies3606.6Burner Efficiency and Pressure Loss3706.7Exhaust Nozzle Loss3716.8Mechanical Efficiency of Power Shaft3716.9Summary of Component Figures of Merit (Constant c_p Values)3716.10Component Performance with Variable c_p 373			
5.10Ideal Turbofan with Optimum Bypass Ratio3255.11Ideal Turbofan with Optimum Fan Pressure Ratio3325.12Ideal Pulse Detonation Engine341Problems344Chapter 6.Component Performance3556.1Introduction3556.2Variation in Gas Properties3556.3Component Performance3576.4Inlet and Diffuser Pressure Recovery3586.5Compressor and Turbine Efficiencies3606.6Burner Efficiency and Pressure Loss3706.7Exhaust Nozzle Loss3716.8Mechanical Efficiency of Power Shaft3716.9Summary of Component Figures of Merit (Constant c_p Values)3716.10Component Performance with Variable c_p 373			
5.11Ideal Turbofan with Optimum Fan Pressure Ratio3325.12Ideal Pulse Detonation Engine341Problems344Chapter 6.Component Performance3556.1Introduction3556.2Variation in Gas Properties3556.3Component Performance3576.4Inlet and Diffuser Pressure Recovery3586.5Compressor and Turbine Efficiencies3606.6Burner Efficiency and Pressure Loss3706.7Exhaust Nozzle Loss3716.8Mechanical Efficiency of Power Shaft3716.9Summary of Component Figures of Merit (Constant c_p Values)3716.10Component Performance with Variable c_p 373			
5.12Ideal Pulse Detonation Engine341Problems.344Chapter 6.Component Performance3556.1Introduction.3556.2Variation in Gas Properties3556.3Component Performance.3576.4Inlet and Diffuser Pressure Recovery.3586.5Compressor and Turbine Efficiencies3606.6Burner Efficiency and Pressure Loss3706.7Exhaust Nozzle Loss3716.8Mechanical Efficiency of Power Shaft3716.9Summary of Component Figures of Merit (Constant c_p Values)3716.10Component Performance with Variable c_p 373			
Problems.344Chapter 6.Component Performance3556.1Introduction.3556.2Variation in Gas Properties3556.3Component Performance.3576.4Inlet and Diffuser Pressure Recovery3586.5Compressor and Turbine Efficiencies3606.6Burner Efficiency and Pressure Loss3706.7Exhaust Nozzle Loss3716.8Mechanical Efficiency of Power Shaft3716.9Summary of Component Figures of Merit (Constant c_p Values)3716.10Component Performance with Variable c_p 373			
Chapter 6.Component Performance3556.1Introduction3556.2Variation in Gas Properties3556.3Component Performance3576.4Inlet and Diffuser Pressure Recovery3586.5Compressor and Turbine Efficiencies3606.6Burner Efficiency and Pressure Loss3706.7Exhaust Nozzle Loss3716.8Mechanical Efficiency of Power Shaft3716.9Summary of Component Figures of Merit (Constant c_p Values)3716.10Component Performance with Variable c_p 373	5.12		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		riodicins.	344
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.1		355
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6.2		355
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6.3		357
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6.4	Inlet and Diffuser Pressure Recovery	358
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6.5		360
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6.6	Burner Efficiency and Pressure Loss	370
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6.7		371
6.9 Summary of Component Figures of Merit (Constant c_p Values)	6.8		371
(Constant c_p Values)	6.9		_
6.10 Component Performance with Variable c_p	0.5		371
	6 10		_
	5		

:
ı
i

Chapter 7.	Parametric Cycle Analysis of Real Engines	381
7.1	Introduction	381
7.2	Turbojet	381
7.3	Turbojet with Afterburner	399
7.4	Turbofan—Separate Exhaust Streams	404
	Problems	427
Chapter 8.	Engine Performance Analysis	437
8.1	Introduction	437
8.2		447
8.2 8.3	Gas Generator	
	Turbojet Engine	464
8.4	Turbojet Engine with Afterburning	486
8.5	Turbofan Engine—Separate Exhausts and	
	Convergent Nozzles	499
	Problems	524
Chapter 9.	Turbomachinery	537
9.1	Introduction	537
9.2	Euler's Turbomachinery Equations	537
9.3	Axial-Flow Compressor Analysis	539
9.4	Centrifugal-Flow Compressor Analysis	600
9.5	Axial-Flow Turbine Analysis	607
9.6	Centrifugal-Flow Turbine Analysis	668
2.0	Problems	674
	Troolems	0/4
C) . 10		60 =
Chapter 10.	Inlets, Nozzles, and Combustion Systems	685
10.1	Introduction to Inlets and Nozzles	685
10.2	Inlets	685
10.3	Subsonic Inlets	686
10.4	Supersonic Inlets	695
10.5	Exhaust Nozzles	726
10.6	Introduction to Combustion Systems	744
10.7	Main Burners	757
10.8	Afterburners	769
	Problems	779
Appendix A.	Altitude Tables	785
appendix 11	rational labels	705
Annondiy D	Cas Turbina Engina Data	793
Appendix D.	Gas Turbine Engine Data	193
Appendix C.	Data for Some Liquid-Propellant Rocket Engines	801
Appendix D.	Air and $(CH_2)_n$ Properties at Low Pressure	803
Appendix E.	Turbomachinery Stresses and Materials	821
	•	_

xiv

Appendix F. About the Software	835
Appendix G. Answers to Selected Problems	841
References	845
Index	851