General Certificate of Education (Adv. Level) Examination, August 2020

Paper: 1

 ${f 01.}\ \ {f CH_3OH}$, ${f CH_2O}$, ${f CHO_2}^{ar{}}$ යන ඒවායේ කාබන්-ඔක්සිජන් බන්ධනයේ දිග වැඩිවන අනුපිලිවෙල වන්නේ?

(1) $CH_3OH < CH_2O < CHO_2$

(2) $CH_2O < CH_3OH < CHO_2$

(3) CHO_2 < $CH_3OH < CH_2O$

(4) $CH_2O < CHO_2^- < CH_3OH$

(5) $CH_2O = CHO_2^- < CH_3OH$

02. CH₃ - C - C - CH₂CH₂CH₃ හි IUPAC නාමය වනුයේ,

- (1) 3-oxo-2-methyl-2-propylbutanamide
- (2) 3-methyl-3-oxobutanamide
- (3) 2-methyl-3-oxo-2-propylbutanamide
- (4) 2-methyl-2,4-dioxopentanamide
- (5) 3-oxo-2-propyl-2-methylbutanamide
- 03. පහත ඒවා සලකන්න.
 - (a) ජලීය $\mathbf{CuSO}_{\!_{\boldsymbol{4}}}$ දාවණයක්

(b) දුව He වායුව

(c) ජලීය එතනෝල් දුාවණයක්

(d) ජලීය Br_2 දාවණයක්

ඉහත පද්ධතිවල ඇති අන්තර් අණුක ආකර්ෂණ බලවල පුබලතාව වැඩිවීම දැක්වෙන නිවැරදි අනුපිළිවෙල වනුයේ.

- $(1) \quad b < d < a < c \qquad (2) \quad b < d < c < a$
- (3) d < b < a < c (4) d < b < c < a < d

 $m{04.}$ $m{X}$ නමැති අකාබනික සංයෝගය ජලීය $m{NH}_3$ සමඟ අවක්ෂේපයක් ලබාදෙන අතර වැඩිපුර ජලීය $m{NH}_3$ වල දුාවා වේ. තව ද ${f NaOH}$ සමඟ අවක්ෂේපයක් ලබා දෙන අතර එය වැඩිපුර ජලීය ${f NaOH}$ වල දිය නොවේ. ${f X}$ වීමට ඉඩ ඇති ලවණය වනුයේ

- (1) MgSO₄
- (2) $ZnSO_4$
- (3) $FeSO_4$
- (4) NiSO₄
- (5) $Al_2(SO_4)_3$

D5. MgFe[Fe(CN)_e] හි IUPAC තාමය වනුයේ,

- (1) magnesiumiron hexacyanidoferrate(III)
- (2) magnesiumiron(II) hexacyanidoferrate(II)
- (3) iron(II)magnesium hexacyanidoferrate(III)
- (4) iron(II)magenesium hexacyanidoferrate(II)
- (5) iron(III)magnesium hexacyanidoferrate(II)

 ${f 06}$. පහත සඳහන් ${f A}$, ${f B}$, ${f C}$, ${f D}$ හා ${f E}$ යන සංයෝග නයිටොකරණයට භාජනය කළ හොත් නයිටො ඵලයක් ලබාදීමේ හැකියාව අඩුවන අනුපිළි වෙල පහත සඳහන් කුමක් මඟින් පෙන්නුම් කරයිද?

- (A)

- (1) A,B,C,D,E
- (2) A,D,C,E,B
- (3) B,E,C,A,D
- (4) C,D,A,E,B
- (5) D,A,C,E,B

07. පහත දුක්වෙන කාබෝකැටායනවල ස්ථායිතාව ආරෝහණය වන නිවැරදි අනුපිළිවෙල තෝරන්න.

- (1) a < b < d < c
- (2) b < a < c < d (3) a < c < d < b
- (4) a < b < c < d
- (5) c < a < d < b

 $08.~~2 ext{A} + 3 ext{B}
ightarrow 2 ext{C}$ පුතිකිුයාවේ සීසුතාව සෙවීමට කළ පරීඤණයක පුතිඵල සටහනක් පහත දැක්වේ.

	A සාන්දුණය moldm ⁻³	B සාන්දුණය moldm ⁻³	පුතිකිුයා සීඝුතාව moldm ⁻³ s ⁻¹
1	0.03	0.01	0.006
2	0.02	0.03	0.054
3	0.03	0.03	0.054

 $\mathbf{R} = \mathbf{k}[\mathbf{A}]^{\mathbf{m}} [\mathbf{B}]^{\mathbf{n}}$ නම් \mathbf{m} හා \mathbf{n} හි අගයන් පිළිවෙලින් මින් කුමක්ද?

- (1) 1,1
- (2) 0,1
- (3) 0,2
- (4) 1,2
- (5) 2,1

 $09.~~{
m CuSO}_4$ දුාවණයකට වැඩිපුර ${
m KI}$ දුාවණයක් එක් කරයි. පසුව එයට වැඩිපුර ${
m Na}_2{
m S}_2{
m O}_3$ දුාවණයක් එක් කරයි. මෙහිදී සිදුවන දෑ සම්බන්ධව අසතා වන්නේ,

(1) CuI සැලද්.

- (2) CuI_2 සැලද්.
- (3) $Na_2S_2O_3$ ඔක්සිකරණය වේ.

- (4) නිදහස් වන ${f I}_2$ ඔක්සිහරණය වේ. (5) දුාවණය පළමුව දුඹුරු පැහැ වී පසුව අවර්ණවේ.

 $oxed{10.}$ විනාකිරි දුාවණයක $oxed{10\%}$ ලෙස $oxed{\mathrm{CH}_3\mathrm{COOH}}$ ඇත. එම දුාවණයෙන් $oxed{25\mathrm{cm}^3}$ ගෙන $oxed{250\mathrm{cm}^3}$ දක්වා තනුක කර ගත් දුාවණයකින් $50\mathrm{cm}^3$ ගෙන $0.2\mathrm{moldm}^{-3}$ NaOH හා $0.1\mathrm{moldm}^{-3}$ වන $\mathrm{Ba(OH)}_2$ හි සම පරිමා මිශුණයකින් අනුමාපනය කල විට වැය වන පරිමාව? (දුාවණයේ ඝනත්වය 1.2gcm⁻³ වේ.)

- (1) 25cm^3
- (2) 37.5cm^3
- $(3) 50 \text{cm}^3$
- (4) 75cm³
- $(5) 100 \text{cm}^3$

11. හයිඩ්රජන් සහ අයඩින් පුතිකිුයා කර HI සාදයි.

 $\mathbf{H}_{\mathbf{2}(\mathbf{g})}$ + $\mathbf{I}_{\mathbf{2}(\mathbf{g})}$ \Longrightarrow $\mathbf{2}\mathbf{H}\mathbf{I}_{(\mathbf{g})}$ මේ සම්බන්ධ පරීක්ෂණ දෙකක් සිදු කරන ලදී.

පරීක්ෂණය f 1 :- $f H_{2(g)}$ සහ $f I_{2(g)}$ සීල් කරන ලද භාජනයක් තුළ තබා නියත උෂ්ණත්වයක් යටතේ දී පුතිකිුිිිිියාව සිදුවීමට ඉඩ

පරීක්ෂණය 2 :- පළමු පරීක්ෂණයම වෙනත් උෂ්ණත්වයක දී සිදුකරන ලදී.මෙම පරීක්ෂණ දෙකෙහි දී හයිඩ්රජන් අයඩයිඩ් පුමාණය වෙනස් වූ අන්දම පහතපුස්තාරයේ දුක්වේ.

මේ පුතිඵල අනුව 2 පරීක්ෂණය

- (1) පළමු පරීක්ෂණයට වඩා අඩු උෂ්ණත්වයක දී සිදු කර ඇති අතර පුතිකියාව තාප අවශෝෂක වේ.
- (2) පළමු පරීක්ෂණයට වඩා අඩු උෂ්ණත්වයක දී සිදු කර ඇති අතර පුතිකියාව තාපදායක වේ.
- (3) පළමු පරීක්ෂණයට වඩා ඉහළ උෂ්ණත්වයක දී සිදු කර ඇති අතර පුතිකිුිිියාව තාප අවශෝෂක වේ.
- (4) පළමු පරීක්ෂණයට වඩා ඉහළ උෂ්ණත්වයක දී සිදු කර ඇති අතර පුතිකිුිිිියාව තාපදායක වේ.
- (5) නිශ්චිත පිළිතුරක් දිය නොහැකි ය.
- $12. \ \ 25^0 C$ දී BaI_2 , $BaSO_4$ හා $Ba_3(PO_4)_2$ ලවණයන්හි A , B , C යන සංතෘප්ත ජලීය දාවණ තුනක් පිළියෙල කරගන්නා ලදී. $25^0 C$ දී මෙම ලවණවල දාවාතා ගුණිතයන් (K_{SP}) හා දාවණ පරිමාවන් පහත වගුවේ දැක්වේ.

<u>ද</u> ාවණය	ලවණය	ලවණයේ දාවාතා ගුණිතය (K _{SP})	පරිමාව cm³
A	BaI ₂	8.0×10 ⁻¹⁵ mol ³ dm ⁻⁹	500
В	BaSO ₄	4.0×10 ⁻¹⁰ mol ² dm ⁻⁶	200
С	Ba ₃ (PO ₄) ₂	32×10 ⁻¹⁵ mol ⁵ dm ⁻¹⁵	100

A , B , C දාවණ වල Ba^{2+} පුමාණයන්ගේ ආරෝහණ පිළිවෙල වන්නේ මින් කවරක්ද?

- (1) A,B,C
- (2) C,B,A
- (3) B,A,C
- (4) B,C,A
- (5) C,A,B
- $extbf{13.}$ $extbf{X}_{2(\mathbf{g})}$ + $3 extbf{Y}_{2(\mathbf{g})}$ \Longrightarrow $2 extbf{XY}_{3(\mathbf{g})}$ යන පුතිකිුයාවේ $\Delta extbf{H}^{ heta}$ (-) වේ. මෙම පද්ධතියේ එලදාව වැඩි කිරීම සඳහා පහත කවරක් ඉවහල් චේද?
 - (a) නියත උෂ්ණත්වය යටතේ පීඩනය ඉහළ දමීම.
 - (b) නියත පීඩනය යටතේ උෂ්ණත්වය ඉහල දමීම.
 - (c) නියත උෂ්ණත්වය යටතේ පද්ධතියේ $\mathbf{X}_{\mathbf{2}(\mathbf{g})}$ ඉවත් කිරීමට කාරකයක් යෙදීම.
 - (d) නියත පීඩනය යටතේ උෂ්ණත්වය පහත හෙලීම.
- 14. ක්ලෝරින් ටුයිෆ්ලුවොරයිඩ් පහත ආකාරයට මූලදුවාය බවට වියෝජනය වේ. මින් සතා වන්නේ,

$$2ClF_{3(g)} \rightleftharpoons Cl_{2(g)} + 3F_{2(g)} \Delta H^{\theta} = +159kJmol^{-1}$$

- (a) $\operatorname{ClF}_{3(g)}$ වල වියෝජනය රෙඩොක්ස් පුතිකිුයාවකි.
- (b) සමතුලිත මිශුණය රත් කල විට එහි වර්ණය ලා පහැයට හැරේ.
- (c) $\operatorname{ClF}_{3(g)}$ වියෝජනයට අදාල එන්ටොපි විපර්යාසය සෘණ අගයකි.
- (d) සමතුලිත මිශුණයේ පීඩනය අඩු කල විට $\operatorname{Cl}_{2(\mathbf{g})}$ වැඩිපුර සාදයි.
- 15. ධුැවණශීලතාවය සම්බන්ධව නිවැරදි පුකාශ/ය වන්නේ,
 - (a) කැටායනයේ පුමාණය විශාල වත්ම ධුැවනශීලතාවය වැඩිවේ.
 - (b) කැටායනය හා ඇනායනය යන දෙකෙහිම ආරෝපණය වැඩි වන විට ධුැවනශීලතාවය වැඩිවේ.
 - (c) ඇතායනයේ පුමාණය විශාලවත්ම ධුැවනශීලතාවය වැඩිවේ.
 - (d) AgCl හි සහසංයුජ ලක්ෂණ AgI ට වඩා වැඩිය.

4

- 16. පහත දක්වෙන පුකාශ අතරින් වැරදි වන්නේ කුමක්ද?
 - (a) ඒමයිඩයක භාෂ්මිකතාව අඩුවන්නේ ඒමයිඩයේ සම්පුයුක්ත වහුහ වල දී නයිට්රජන් පරමාණුව මත ධන ආරෝපනයක් ඇති වන බැවිනි.
 - (b) පීනෝලයක ආම්ලිකතාව වැඩිවන්නේ ඉන් සෑදෙන ෆිනොක්සයිඩ් අයනය සම්පුයුක්ත වාුහ මගින් ස්ථායීතාවක් ඇති කර ගැනීම නිසාය.
 - (c) ඇල්කොහොල වලින් සෑදෙන ඇල්කොක්සි ඇනායනයක කාබන් සංඛ්‍යාව වැඩිවන විට ඇනායනයේ ස්ථායීතාව ෆිනොක්සයිඩ් අයනයට වඩා වැඩි වේ.
 - (d) ඉහළ සාපේඤ අනුක ස්කන්ධ ඇති අල්කොහොල වලට වඩා කාබොක්සිලික් අම්ල වල ආම්ලිකතාව අඩුය.

පළමුවැනි පුකාශය

දෙවැනි පුකාශය

- 17. මූලික පියවර කිහිපයකින් සමන්විත පුතිකියාවක වැඩිම සකියන ශක්තිය ඇති පියවර සෙමින්ම සිදුවන පියවර වේ.
- වෙනස් සකුියන ශක්ති ඇති පුතිකුියා වලට එකම සීඝුතාව තිබිය නොහැක.
- 18. ෆීනෝල්වල සෝඩියම් ලවණ ජලීය මාධ්‍යයේදී පැවතිය හැකි අතර ඇල්කොහොල්වල සෝඩියම් ලවණ ජලීය මාධ්‍යයේදී පැවතිය නොහැක.
- ඇල්කොහොලවල ආම්ලිකතාවය ජලයට වඩා අඩුය.
- 19. එකම උෂ්ණත්වයේදී සමාන සකියන ශක්තියක් ඇති වෙනස් වූ ප්තිකියා 2ක ප්තිකියා එන්තැල්පි සමාන වේ.
- එකම උෂ්ණත්වයේ දී ඕනෑම පුතිකිුයාවක සකිුයන ශක්තිය ලබාගත් අංශු ගණන සමාන වේ.
- ඕනෑම ගතික සමතුලිත පද්ධතියක ඉදිරි පුතිකියාවේ සීඝුතාවය ආපසු පුතිකියාවේ සීඝුතාවයට සමාන වේ.