Stærðfræðimynstur í tölvunarfræði

Vika 6

Kafli 3: Flækjustig helmingunarleitar og insertion sort

Kafli 4: Talnafræði, mátreikningur og dulritun

Helmingunarleit (binary search)

```
Notkun: i := leita(x, a_1, a_2, ..., a_n)
Fyrir:
          x er heiltala,
            a_1, a_2, \dots, a_n eru heiltölur í vaxandi röð
Eftir:
           1 \le i \le n+1, \quad a_1, \dots, a_{i-1} < x \le a_i, \dots, a_n
stef leita( x : heiltala, a_1, a_2, ..., a_n: heiltölur )
    i := 1; \quad j := n + 1
    meðan i \neq j
        \{1 \le i \le j \le n+1, a_1, \dots, a_{i-1} < x \le a_j, \dots, a_n\}
        m := [(i+j)/2]
        ef a_m < x þá i := m + 1
        annars
                   j := m
    skila i
```


Hver er tímaflækja helmingunarleitar í versta tilfelli?

- Lausn: Teljum fjölda samanburða
 - ightharpoonup Í hverri umferð lykkjunnar helmingast (a.m.k.) fjöldi óþekktra sæta, j-i, sem í upphafi eru n talsins
 - Fjöldi umferða í lykkjunni er því í mesta lagi (fyrir n > 0)
 - \triangleright 1 + $log_2(n)$
 - lacktriangle Samanburðurinn $a_m < x$ er framkvæmdur einu sinni í hverri umferð lykkjunnar
 - ► Samtals $1 + log_2(n)$ sinnum í mesta lagi
 - Samanburðurinn $i \neq j$ er framkvæmdur einu sinni á undan hverri umferð lykkjunnar og einu sinni enn eftir að öllum umferðum er lokið
 - Samtals $2 + log_2(n)$ sinnum í mesta lagi
 - ► Heildarfjöldi samanburða er því $3 + 2\log_2(n)$
- ► Tímaflækja algrímsins er því $\Theta(\log(n))$, mun betri en línuleg leit

Röðun: Insertion sort

```
Notkun:
              raða(a_1, a_2, ..., a_n)
Fyrir:
               a_1, a_2, \dots, a_n er runa af rauntölubreytum
Eftir:
               Gildunum í rununni hefur verið umraðað
               svo gildin eru í vaxandi röð
stef raða(a_1, a_2, ..., a_n: runa af rauntölubreytum)
     i := 0
     meðan i \neq n
          \{a_1, a_2, ..., a_i \text{ er í vaxandi röð}, 0 \le i \le n\}
          i := i + 1; \quad j := i
          meðan j \neq 1 og a_i < a_{i-1}
               \{1 \leq j \leq i \leq n, a_j, a_{j+1}, ..., a_i \text{ er í vaxandi röð}, \}
               \{a_1, a_2, \dots, a_{j-1}, a_{j+1}, \dots, a_i \text{ er einnig í vaxandi röð.}
               \{ Gildið í sæti a_i er því ef til vill of aftarlega.
               m := a_j; \quad a_j := a_{j-1}; \quad a_{j-1} := m; \quad j := j-1
```


Víxlum gildunum í a_j og a_{j-1} Færir gildið framar í rununni

Hver er tímaflækja insertion sort í versta tilfelli?

- Lausn: Teljum fjölda samanburða
 - Fjöldi umferða í ytri lykkjunni er n, þar sem i hefur í byrjun hverrar umferðar gildin $i=0,1,\ldots,n-1$
 - Fyrir hverja slíka umferð ytri lykkjunnar verða í versta tilfelli farnar i umferðir innri lykkju, með i samanburðum $a_j < a_{j-1}$ auk i+1 samanburða $j \neq 1$
 - ► Heildarfjöldi: $[0 + 1 + \dots + (n 1)] + [1 + 2 + \dots + n] = n^2$
 - ightharpoonupÍ upphafi hverrar umferðar ytri lykkju og einnig eftir síðustu er framkvæmdur einn samanburður, samtals n+1 samanburður
 - ightharpoonup Heildarfjöldi samanburða er því $n^2 + n + 1$
- ightharpoonup Tímaflækja algrímsins er því $\Theta(n^2)$

Talnafræði

- Deilanleiki (divisibility) og mátreikningur (modular arithmetic)
- Framsetning heiltalna (integer representation) og algrim
- Prímtölur (primes), stærstu samdeilar (greatest common divisor, GCD) og minnstu samfeldi (least common multiple, LCM, minnstu samnefnarar)
- Lausnir mátjafna (congruences)
- Gagnsemi mátjafna
- Dulritun (cryptography)

Deiling og deilanleiki

- Skilgreining: Ef a og b eru heiltölur, $a \neq 0$, þá segjum við að a gangi upp í b ef til er heiltala c þannig að b = ac
 - Þegar a gengur upp í b segjum við að a sé þáttur í b og að b sé margfeldi a
 - ightharpoonup Rithátturinn $a \mid b$ þýðir að a gengur upp í b
 - Ef $a \mid b$ þá er b/a heiltala
 - ► Ef a gengur ekki upp í b skrifum við $a \nmid b$
- ▶ Dæmi: 3 | 12 en 5 ∤ 12

Eiginleikar deilanleika

- **Setning:** Látum a, b og c vera heiltölur, $a \neq 0$
 - 1. Ef $a \mid b$ og $a \mid c$ þá $a \mid (b + c)$
 - 2. Ef $a \mid b$ þá $a \mid bc$ fyrir allar heiltölur c
 - 3. Ef *a* | *b* og *b* | *c* þá *a* | *c*
- Sönnun á 1: Þar eð $a \mid b$ er til heiltala n þannig að b = na. Þar eð $a \mid c$ er til heiltala m þannig að c = ma. Þá fæst b + c = na + ma = (n + m)a og því er b + c margfeldi a.
- ► Fylgisetning (corollary): Ef a, b og c eru heiltölur, $a \neq 0$, þannig að $a \mid b$ og $a \mid c$, þá $a \mid (mb + nc)$ fyrir allar heiltölur n og m

Deiling, kvóti og afgangur

- ▶ **Setning:** Ef a er heiltala og d er jákvæð heiltala þá er til ein og aðeins ein heiltala q og ein og aðeins ein heiltala r, þannig að $0 \le r < d$ og a = dq + r
 - ▶ *d* er kallaður **deilirinn** (**divisor**)
 - a er kallaður deilistofn (dividend)
 - q er kallaður kvótinn (quotient)
 - r er kallaður **afgangurinn (remainder,** stundum **leif)**
- Dæmi:
 - ▶ Hver er kvótinn og afgangurinn þegar 101 er deilt með 11?
 - Svar: Kvótinn er $9 = 101 \ div \ 11$, afgangurinn er $2 = 101 \ mod \ 11$
 - ► Hver er kvótinn og afgangurinn þegar −11 er deilt með 3?
 - ▶ Svar: Kvótinn er $-4 = -11 \ div \ 3$, afgangurinn er $1 = -11 \ mod \ 3$

Föllin div og mod:

 $q = a \operatorname{div} d$

 $r = a \bmod d$

Deilanleiki og <u>mátreikningur</u>

- ▶ Skilgreining: Ef a og b eru heiltölur og m er jákvæð heiltala þá er a samleifa b mátað við m þá og því aðeins að m gangi upp í a-b
 - \blacktriangleright Á ensku segjum við "a is congruent to b modulo m"
 - Pithátturinn " $a \equiv b \pmod{m}$ " táknar að a sé samleifa b mátað við m
 - Við segjum að " $a \equiv b \pmod{m}$ " sé samleifing eða leifajafna (congruence) og að m sé leifastofn (modulus) hennar
 - lacktriangle Afleiðing skilgreiningarinnar er að tvær heiltölur eru samleifa mod m þá of því aðeins að þær hafi sama afgang þegar deilt er með m
 - ► Ef a er ekki samleifa b mátað við m þá skrifum við $a \not\equiv b \pmod{m}$

Samleifa?

- Dæmi: Ákvörðum hvort 17 er samleifa 5 mátað við 6 og hvort 24 og 14 eru samleifa mátuð við 6
- ► Svar:
 - ▶ $17 \equiv 5 \pmod{6}$ vegna þess að 6 gengur upp í 17 5 = 12
 - ≥ 24 ≠ 14 (mod 6) vegna þess að 24 14 = 10 er ekki deilanlegt með 6

Meira um samleifa

▶ Setning: Látum m vera jákvæða heiltölu. Heiltölurnar a og b eru samleifa mátað við m þá og því aðeins að til sé heiltala k þannig að a = b + km

► Sönnun:

- Ef $a \equiv b \pmod{m}$ þá (samkvæmt skilgreiningu) er $m \mid a b$. Parmeð er til heiltala k þannig að a - b = km, og þá a = b + km
- ▶ Öfugt, ef til er heiltala k þannig að a=b+km, þá er km=a-b. Þarmeð $m \mid a-b$ og $a\equiv b \pmod m$

Sambandið milli "(mod m)" og "x mod m"

- Merkingin á "mod" í " $a \equiv b \pmod{m}$ " annars vegar og í " $a \mod m = b$ " hins vegar, er ekki sama
 - ▶ Í $a \equiv b \pmod{m}$ eru notuð vensl á mengi heiltalna (þ.e. vensl frá \mathbb{Z} til \mathbb{Z})
 - ▶ Í $a \mod m = b$ er verið að nota \mod sem fall (tvíundaraðgerð)
- ► Samanber eftirfarandi setningu
- ▶ Setning: Látum a og b vera heiltölur og látum m vera jákvæða heiltölu. Þá er $a \equiv b \pmod{m}$ þá og því aðeins að $a \mod m = b \mod m$

Leifar summa og margfelda

ightharpoonup Setning: Látum m vera jákvæða heiltölu. Ef

$$a \equiv b \; (mod \; m)$$

og

$$c \equiv d \pmod{m}$$

þá

$$a + c \equiv b + c \pmod{m}$$

og

$$ac \equiv bc \pmod{m}$$

Dæmi: Par eð $7 \equiv 2 \pmod{5}$ og $11 \equiv 1 \pmod{5}$ fáum við frá setningu 5 að:

$$18 = 7 + 11 \equiv 2 + 1 = 3 \pmod{5}$$

 $77 = 7 \cdot 11 \equiv 2 \cdot 1 = 2 \pmod{5}$

Algebra (bókstafareikningur) með leifar

- Margföldun báðu megin leifajöfnu viðheldur sanngildi
 - ▶ Ef $a \equiv b \pmod{m}$ þá gildir $ca \equiv cb \pmod{m}$ fyrir hvaða heiltölu c sem er, samkvæmt setningu 5 með d = c
- Að leggja heiltölu báðu megin við leifajöfnu viðheldur sanngildi
 - ▶ Ef $a \equiv b \pmod{m}$ þá gildir $c + a \equiv c + b \pmod{m}$ fyrir hvaða heiltölu c sem er, samkvæmt setningu 5 með d = c
- Hins vegar getur deiling báðu megin valdið því að sanngildið breytist
 - ▶ Dæmi: $14 \equiv 8 \pmod{6}$ er satt, en ef við deilum báðu megin með 2 fáum við annars vegar $\frac{14}{2} = 7$ og hins vegar $\frac{8}{2} = 4$, en $7 \not\equiv 4 \pmod{6}$
 - Undir sumum kringumstæðum er hins vegar í lagi að deila án þess að hætta sé á að sanngildi breytist

Útreikningar á mod fallinu fyrir summur og margfeldi

Fylgisetning við setninguna að framan: Látum m vera jákvæða heiltölu og látum a og b vera heiltölur. Þá gildir:

```
(a+b) \bmod m = ((a \bmod m) + (b \bmod m)) \bmod m
```

og

```
ab \ mod \ m = ((a \ mod \ m)(b \ mod \ m)) \ mod \ m
```

Meiri leifareikningar

- ▶ Skilgreiningar: Fyrir jákvæða heiltölu m Látum \mathbb{Z}_m vera mengið $\{0,1,\ldots,m-1\}$
 - Tvíundaraðgerðin (binary operation) $+_m$ er skilgreind sem $a +_m b = (a + b) \mod m$. Petta er kallað **samlagning mátuð við m** (addition modulo m, **samlagning módúló** m)
 - ▶ Tvíundaraðgerðin (binary operation) \cdot_m er skilgreind sem $a \cdot_m b = (a \cdot b) \mod m$. Þetta er kallað **margföldun mátuð við m** (multiplication modulo m, **margföldun módúló** m)
 - \blacktriangleright Að reikna með þessum aðgerðum kallast að reikna mátað við m (módúló m)
- ▶ Dæmi: Reiknum $7 \cdot_{11} 9$ og $7 \cdot_{11} 9$
 - $7 +_{11} 9 = (7 + 9) \mod 11 = 16 \mod 11 = 5$
 - $7 \cdot_{11} 9 = (7 \cdot 9) \mod 11 = 63 \mod 11 = 8$

Meiri leifareikningar

- ightharpoonup Aðgerðirnar $+_m$ og \cdot_m hafa marga sömu eiginleika og venjuleg samlagning og margföldun
 - ▶ Lokun: Ef a og b eru í \mathbb{Z}_m þá eru $a +_m b$ og $a \cdot_m b$ einnig í \mathbb{Z}_m
 - ► Tengiregla: Ef a, b og c eru í \mathbb{Z}_m þá gilda $(a +_m b) +_m c = a +_m (b +_m c)$ og $(a \cdot_m b) \cdot_m c = a \cdot_m (b \cdot_m c)$
 - ▶ Víxlregla: Ef a og b eru í \mathbb{Z}_m þá gilda $a +_m b = b +_m a$ og $a \cdot_m b = b \cdot_m a$
 - ► Hlutleysur: Gildin 0 og 1 eru hlutleysur fyrir samlagningu og margföldun, þ.e. fyrir öll $a \in \mathbb{Z}_m$:
 - $\triangleright 0 +_m a = a = a +_m 0$
 - $ightharpoonup 1 \cdot_m a = a \cdot_m 1 = a$

Meiri leifareikningar

Samlagningarandhverfur: Ef $a \neq 0$ er í \mathbb{Z}_m þá er m-a samlagningarandhverfa a, mátað við m, og 0 er sín eigin samlagningarandhverfa

$$a +_m (m - a) = 0 \text{ og } 0 +_m 0 = 0$$

- ▶ **Dreifiregla:** Ef a, b og c eru í \mathbb{Z}_m þá gildir $a \cdot_m (b +_m c) = (a \cdot_m b) +_m (a \cdot_m c) (a +_m b) \cdot_m c = a \cdot_m c +_m b \cdot_m c$
- Við ræðum ekki strax um margföldunarandhverfur því þær eru ekki alltaf til, til dæmis er ekki til margföldunarandhverfa fyrir 2 mátað við 6
- ▶ [Á máli stærðfræðinga sem fjalla um algebru segjum við að \mathbb{Z}_m með $+_m$ sé víxlin grúpa (commutative group) og að \mathbb{Z}_m með bæði $+_m$ og \cdot_m sé víxlinn baugur (commutative ring)]

Margföldun með helmingun, tvöföldun og samlagningu

```
Notkun: z := margfalda(x, y)
Fyrir:
       x \ge 0
Eftir:
            z er xy þ.e. margfeldi x og y
stef margfalda(x, y: heiltölur)
   p \coloneqq 0; q \coloneqq y; r \coloneqq x
   meðan r \neq 0
      \{xy = p + qr\}
      ef r er oddatala þá
         p \coloneqq p + q; r \coloneqq r - 1
      annars
         r \coloneqq r/2; q \coloneqq q + q
   skila p
```

Trúlega elsta algrím sem þekkt er

"Reiknað" með vogarskálum á steinöld?

Var notað í gömlum örgjörvum Veldishafning með helmingun, öðru veldi og margföldun

```
Notkun: z := veldi(x, y)
Fyrir: y \ge 0
Eftir: z \operatorname{er} x^y þ.e. x í veldi y
stef veldi( x, y: heiltölur )
   p \coloneqq 1; q \coloneqq x; r \coloneqq y
   meðan r \neq 0
      \{x^y = p \cdot q^r\}
      ef r er oddatala þá
          p \coloneqq p \cdot q; r \coloneqq r - 1
       annars
          r \coloneqq r/2; q \coloneqq q^2
   skila p
```

Mátuð veldishafning

```
Notkun: z := m \acute{a}ta \acute{o}veldi(x, y, m)
Fyrir: m > 0 \text{ og } 0 \le x < m \text{ og } y \ge 0
Eftir: z \operatorname{er} x^y \operatorname{mod} m
stef mátaðveldi( x, y, m: heiltölur )
   p \coloneqq 1; q \coloneqq x \ r \coloneqq y
   meðan r \neq 0
       \{x^y = p \cdot q^r, r \ge 0, 0 \le p, q < m\}
       ef r er oddatala þá
           p \coloneqq p \cdot q \mod m; r \coloneqq r - 1
       annars
          r \coloneqq r/2; q \coloneqq q^2 \mod m
   skila p
```

Mátuð veldishafning

$$x^y \ mod \ m = egin{cases} 1 & ext{ef } y = 0 \ (x^2)^{rac{y}{2}} \ mod \ m & ext{ef } y ext{er sl\'ett tala} \ x \cdot (x^2)^{rac{y-1}{2}} \ mod \ m & ext{ef } y ext{er oddatala} \end{cases}$$

Mátuð veldishafning (endurkvæm)

```
Notkun: z := m \acute{a}ta \acute{o}veldi(x, y, m)
Fyrir: m > 0 \text{ og } 0 \le x < m \text{ og } y \ge 0
Eftir: z \operatorname{er} x^y \operatorname{mod} m
stef mátaðveldi( x, y, m: heiltölur )
   ef y = 0 þá
      skila 1
   ef y er slétt tala þá
      škila mátaðveldi(x^2 \mod m, y/2, m)
   p := \text{m\'ata\'oveldi}(x^2 \mod m, (y-1)/2, m)
   skila x \cdot p \mod m
```

Prímtölur og stærstu samdeilar

- Prímtölur (frumtölur, prime number) og eiginleikar þeirra
- Stærstu samdeilar (greater common divisor, GCD) og minnstu samfeldi (least common multiple, LCM)
- Algrim Evkliðs (the Euclidian algorithm)
- ► GCD sem línulegar samantektir (linear combinations)

Prímtölur

- Skilgreining: Jákvæð heiltala p > 1 er sögð vera **prímtala** ef einu jákvæðu þættir tölunnar eru 1 og talan sjálf. Jákvæð heiltala stærri en 1 sem ekki er prímtala er sögð vera **samsett**
- ▶ Dæmi: Heiltalan 7 er prímtala því einu jákvæðu þættirnir eru 7 og 1, en 9 er samsett því 3 gengur upp í 9.

Primbáttunarsetningin

- Frumbáttunarsetning
 Undirstöðusetning reikningslistarinnar
 Grunnsetning reikningslistarinnar
 The Fundamental Theorem of Arithmetic
- Setning: Sérhverja jákvæða heiltölu stærri en 1 má rita á einn og aðeins einn hátt sem margfeldi prímtalna, þar sem prímtölurnar eru ritaðar frá hægri til vinstri í röð sem er ekki minnkandi (hvers vegna þarf skilyrðið "stærri en 1"?)

Dæmi:

- $100 = 2 \cdot 2 \cdot 5 \cdot 5 = 2^2 \cdot 5^2$
- **▶** 641 = 641
- \triangleright 999 = 3 · 3 · 3 · 37 = 3³ · 37

Sía Eratosbenesar

TABLE 1 The Sieve of Eratosthenes. Integers divisible by 2 other than 2																					
Integers divisible by 2 other than 2 receive an underline.												Integers divisible by 3 other than 3 receive an underline.									
rec	eive a	n und	derlin	e.							rec	ceive	an ui	ıderli	ine.						
1	2	3	<u>4</u>	5	6	7	8	9	<u>10</u>		1	2	3	<u>4</u>	5	<u>6</u>	7	8	9	<u>10</u>	
11	<u>12</u>	13	<u>14</u>	15	<u>16</u>	17	<u>18</u>	19	<u>20</u>		11	<u>12</u>	13	<u>14</u>	<u>15</u>	<u>16</u>	17	<u>18</u>	19	<u>20</u>	
21	<u>22</u>	23	<u>24</u>	25	<u> 26</u>	27	<u>28</u>	29	<u>30</u>		<u>21</u>	<u>22</u>	23	<u>24</u>	25	<u>26</u>	<u>27</u>	<u>28</u>	29	<u>30</u>	
31	<u>32</u>	33	<u>34</u>	35	<u>36</u>	37	<u>38</u>	39	<u>40</u>		31	<u>32</u>	<u>33</u>	<u>34</u>	35	<u>36</u>	37	<u>38</u>	<u>39</u>	<u>40</u>	
41	<u>42</u>	43	<u>44</u>	45	<u>46</u>	47	<u>48</u>	49	<u>50</u>		41	<u>42</u>	43	<u>44</u>	<u>45</u>	<u>46</u>	47	<u>48</u>	49	<u>50</u>	
51	<u>52</u>	53	<u>54</u>	55	<u>56</u>	57	<u>58</u>	59	<u>60</u>		<u>51</u>	<u>52</u>	53	<u>54</u>	55	<u>56</u>	<u>57</u>	<u>58</u>	59	<u>60</u>	
61	<u>62</u>	63	<u>64</u>	65	<u>66</u>	67	<u>68</u>	69	<u>70</u>		61	<u>62</u>	<u>63</u>	<u>64</u>	65	<u>66</u>	67	<u>68</u>	<u>69</u>	<u>70</u>	
71	<u>72</u>	73	<u>74</u>	75	<u>76</u>	77	<u>78</u>	79	80		71	<u>72</u>	73	<u>74</u>	<u>75</u>	<u>76</u>	77	<u>78</u>	79	<u>80</u>	
81	<u>82</u>	83	<u>84</u>	85	<u>86</u>	87	<u>88</u>	89	<u>90</u>		<u>81</u>	<u>82</u>	83	<u>84</u>	85	<u>86</u>	<u>87</u>	<u>88</u>	89	<u>90</u>	
91	<u>92</u>	93	<u>94</u>	95	<u>96</u>	97	<u>98</u>	99	<u>100</u>		91	<u>92</u>	<u>93</u>	<u>94</u>	95	<u>96</u>	97	<u>98</u>	<u>99</u>	<u>100</u>	
Integers divisible by 5 other than 5											Integers divisible by 7 other than 7 receive										
Inte	egers	divisi	ble b	y 5 ot	her ti	han 5	i				In	teger	s divi	sible	by 7 c	other	than	7 rec	eive		
	egers eive a			6 - 10	her ti	han 5	i					teger: unde									
	0			6 - 10		han 5 7	<u>8</u>	9	<u>10</u>			0				in co				<u>10</u>	
reco	eive a	n und	derlin	e.	<u>6</u> <u>16</u>			<u>9</u> 19	10 20			unde	erline	; inte	gers 5			e pri	me.	10 20	
rec o	eive a 2	n und 3	derlin	ie. 5	<u>6</u>	7	<u>8</u>		<u>20</u>		an	unde	erline 3	; inte	egers	in co <u>6</u>	lor ar 7	e pri	me. <u>9</u>	<u>20</u>	
1 1	2 12	3 13	4 14	5 <u>15</u>	6 16 26	7 17	8 18	19	<u>20</u> <u>30</u>		1 11	2 12	3 13	4 14	5 15 25	in co <u>6</u> 16 26	7 17	8 18	9 19	<u>20</u> <u>30</u> <u>≡</u>	
1 11 21	eive a $ \begin{array}{r} 2 \\ \underline{12} \\ \underline{22} \end{array} $	3 13 23	4 14 24	5 15 25	<u>6</u> <u>16</u>	7 17 <u>27</u>	8 18 28	19 29	<u>20</u>		1 11 21	2 12 22 22 32	3 13 23	4 14 24	5 <u>15</u>	in co <u>6</u> 16	7 17 <u>27</u>	8 18 28	9 19 29	<u>20</u>	
1 11 21 31	2 12 22 22 32	3 13 23 <u>33</u>	4 14 24 34	5 15 25 35	6 16 26 36	7 17 <u>27</u> 37	8 18 28 38	19 29 <u>39</u>	20 30 40 50 60		1 11 21 31	2 12 22 22	3 13 23 33	4 14 24 24 34	5 15 25 35	6 16 26 36	7 17 27 37	8 18 28 38	9 19 29 39	20 30 40 50 60	
1 11 21 31 41	2 12 22 22 32 42	3 13 23 33 43	4 14 24 24 34 44	5 15 25 35 45	6 16 26 36 46	7 17 <u>27</u> 37 47	$\frac{8}{18}$ $\frac{18}{28}$ $\frac{38}{48}$	19 29 39 49	20 30 40 50 60		1 11 21 31 41	2 12 22 22 32 42	3 13 23 33 43	4 14 24 34 44	$ \begin{array}{r} 5 \\ \underline{15} \\ \underline{25} \\ \underline{35} \\ \underline{45} \end{array} $	6 16 26 36 46	7 17 27 37 47	8 18 28 38 48	9 19 29 39 49	20 30 40 50 60	
1 11 21 31 41 51	2 12 22 22 32 42 52 62	3 13 23 33 43 53	4 14 24 34 44 54	5 15 25 25 35 45 55 65	6 16 26 36 46 56	7 17 <u>27</u> 37 47 <u>57</u>	8 18 28 28 38 48 58	19 29 <u>39</u> 49 59	20 30 40 50 60		1 11 21 31 41 51	2 12 22 22 32 42 52 62	3 13 23 33 43 53	4 14 24 34 44 54	5 15 25 25 45 55 65	6 16 26 36 46 56	7 17 27 37 47 57	8 18 28 38 48 58	9 19 29 39 49	20 30 40 50 60	
1 11 21 31 41 51 61	2 12 22 22 32 42 52	3 13 23 33 43 53 63	4 14 24 34 44 54 64	5 15 25 25 45 55	\$\frac{6}{16}\$ \$\frac{26}{26}\$ \$\frac{36}{46}\$ \$\frac{56}{66}\$	7 17 27 37 47 57 67		19 29 39 49 59	20 30 40 50 60 70		1 11 21 31 41 51	2 12 22 22 32 42 52	3 13 23 33 43 53 63	4 14 24 34 44 54 64	5 15 25 25 45 55	6 16 26 36 46 56 66	7 17 27 37 47 57	8 18 28 38 48 58	9 19 29 39 49 59	20 30 40 50 60 70	

- Sía Eratosþenesar finnur prímtölur í heildsölu
- Til að athuga fyrir staka heiltölu n > 1hvort hún er prímtala má til dæmis athuga fyrir allar heiltölur i bannig að $1 < i \le \sqrt{n}$ hvort *i* gengur upp í *n* - ef ekki þá er nprímtala

Prímtölurnar eru óendanlega margar

- > Setning: Það eru til óendanlega margar prímtölur (Evklíð)
- **Sönnun:** Notum **óbeina sönnun.** Gerum ráð fyrir að prímtölurnar séu endanlega margar, p_1, p_2, \dots, p_n
- ightharpoonup Látum $q = p_1 \cdot p_2 \cdot \dots \cdot p_n + 1$
- Þá er afgangurinn þegar q er deilt með p_i alltaf 1, fyrir $i=1,\ldots,n$.
- ► Engin prímtalnanna gengur því upp í q og q getur því ekki verið samsett tala
- Þá hlýtur q að vera prímtala, en það er þá í **mótsögn** við forsenduna að hægt sé að telja upp endanlega runu p_1, p_2, \dots, p_n af öllum prímtölum

Dreifing primtalna

▶ Prímtölusetningin: Ef við skilgreinum $\pi(N)$ sem fjölda þeirra prímtalna sem eru $\leq N$ þá gildir

$$\lim_{N\to\infty}\frac{\pi(N)}{\ln(N)}=1$$

- ► Afleiðing er að fjöldi prímtalna $\leq N$ er um það bil $\ln(N)$
- Líkindin á því að slembitala $\leq N$ sé prímtala er um það bil $\frac{1}{\ln(N)}$

Stærstu samdeilar

- ▶ Skilgreining: Látum a og b vera heiltölur, ekki báðar núll. Stærsta heiltala d þannig að d | a og d | b er kölluð stærsti samdeilir a og b. Stærsti samdeilirinn er táknaður með gcd(a,b)
- Finna má stærsta samdeili smárra talna með því að prófa sig áfram
- ▶ Dæmi: Hver er stærsti samdeilir 24 og 36?
- \triangleright Svar: gcd(24,36) = 12
- ▶ Dæmi: Hver er stærsti samdeilir 17 og 22?
- **Svar:** gcd(17,22) = 1

Stærstu samdeilar

- Skilgreining: Heiltölur a og b eru sagðar vera ósamþátta (relatively prime) hvenær sem gcd(a,b) = 1
- ▶ Dæmi: 17 og 22
- ▶ **Skilgreining:** Heiltölur $a_1, a_2, ..., a_n$ eru sagðar vera **innbyrðis ósamþátta** hvenær sem $\gcd(a_i, a_j) = 1$ fyrir öll i og j þannig að $1 \le i < j \le n$
- Dæmi: Eru 10, 17 og 21 innbyrðis ósamþátta?
- **Svar:** Já, því gcd(10,17) = gcd(10,21) = gcd(17,21) = 1
- Dæmi: Eru 10, 19 og 24 innbyrðis ósamþátta?
- ► **Svar:** Nei, því gcd(10,24) = 2

Prímbáttun gefur stærsta samdeili (GCD)

ightharpoonup Gerum ráð fyrir að prímþáttanir a og b séu

$$a = p_1^{a_1} \cdot p_2^{a_2} \cdot \dots \cdot p_n^{a_n}, \qquad b = p_1^{b_1} \cdot p_2^{b_2} \cdot \dots \cdot p_n^{b_n},$$

- \blacktriangleright þar sem sérhvert veldi er ekki-neikvæð heiltala og allar prímtölur sem eru þættir í öðru af a og b eru taldar með í báðum þáttunum.
- Þá gildir:

$$\gcd(a,b) = p_1^{\min(a_1,b_1)} \cdot p_2^{\min(a_2,b_2)} \cdot \dots \cdot p_n^{\min(a_n,b_n)}$$

- Dæmi: $120 = 2^3 \cdot 3 \cdot 5$, $500 = 2^2 \cdot 5^3$ $gcd(120,500) = 2^{min(3,2)} \cdot 3^{min(1,0)} \cdot 5^{min(1,3)} = 2^2 \cdot 3^0 \cdot 5^1 = 20$
- Þetta er mjög hægvirk aðferð til að finna stærsta samdeili vegna þessa að það er ekki nein þekkt hraðvirk aðferð til að þátta heiltölur

Minnsta samfeldi (minnsti samnefnari, least common multiple, LCM)

- Skilgreining: Minnsta samfeldi jákvæðra heiltalna a og b er minnsta jákvæða heiltala sem er deilanleg með bæði a og b. Það er táknað með lcm(a,b)
- Reikna má minnsta samfeldi út frá prímþáttun $lcm(a,b) = p_1^{\max(a_1,b_1)} \cdot p_2^{\max(a_2,b_2)} \cdot \dots \cdot p_n^{\max(a_n,b_n)}$
- ▶ Dæmi: lcm(2³ · 3⁵ · 7², 2⁴ · 3³) = 2^{max(3,4)} · 3^{max(5,3)} · 7^{max(2,0)} = 2⁴ · 3⁵ · 7²
- Það er einfalt samband milli stærsta samdeilis og minnsta samfeldis
- > Setning: Látum a og b vera jákvæðar heiltölur. Þá gildir: $a \cdot b = \gcd(a,b) \cdot lcm(a,b)$

Algrim Evkliðs (Euclidean Algorithm)

- Algrim Evkliðs er aðferð til að reikna stærsta samdeili tveggja heiltalna
- ▶ Gerum ráð fyrir að a og b séu ekki-neikvæðar heiltölur, ekki báðar núll:

$$\gcd(a,b) = \begin{cases} b & ef \ a = 0 \\ \gcd(b,a) & ef \ a > b \\ \gcd(b-a,a) & ef \ a \le b \end{cases}$$

Eða, (mun hraðvirkara, oftast):

$$\gcd(a,b) = \begin{cases} b & ef \ a = 0 \\ \gcd(b,a) & ef \ a > b \\ \gcd(b \ \mathbf{mod} \ a,a) & ef \ a \le b \end{cases}$$

Algrim Evkliðs

▶ Dæmi:

```
gcd(91,287) =
gcd(287 mod 91,91) =
gcd(14,91) =
gcd(91 mod 14,14) =
gcd(7,14) =
gcd(14 mod 7,7) =
gcd(0,7) =
7
```

Algrim Evkliðs

```
Notkun: c = \gcd(a, b)
Fyrir: a \text{ og } b \text{ eru heilt\"olur}, 0 \le a < b
Eftir: c er stærsti samdeilir a og b
stef gcd( a, b: heiltölur )
    x \coloneqq a
    y \coloneqq b
    meðan x \neq 0
        \{ \gcd(a,b) = \gcd(x,y), \ 0 \le x < y \}
        r \coloneqq y \bmod x
        y \coloneqq x
        x \coloneqq r
    skila y
```

X	у		
91	287		
14	91		
7	14		
0	7		

Rökstuðningur algríms Evklíðs

► Hjálparsetning: Látum $b = a \cdot q + r$ þar sem a, b, q og r eru heiltölur. Þá er gcd(a, b) = gcd(r, a).

> Sönnun:

- ▶ Gerum ráð fyrir að d gangi upp í bæði a og b. Þá gengur d einnig upp í $b a \cdot q = r$ (samkvæmt setningu 1). Þarmeð fæst að allir samdeilar a og b eru einnig samdeilar r og a.
- ▶ Gerum ráð fyrir að d gangi bæði upp í a og r. Þá gengur d einnig upp í $a \cdot q + r = b$. Þarmeð fæst að allir samdeilar a og r eru einnig samdeilar a og b.
- ▶ Parmeð fæst að gcd(a,b) = gcd(r,a)

GCD sem linuleg samantekt

- ▶ <u>Jafna Bézouts</u>: Ef a og b eru jákvæðar heiltölur þá eru til heiltölur s og t þannig að gcd(a,b) = sa + tb
- Skilgreining: Ef a og b eru jákvæðar heiltölur þá kallast tölurnar s og t þannig að gcd(a,b) = sa + tb Bézout stuðlar a og b. Jafnan gcd(a,b) = sa + tb kallast jafna Bézouts.
- Dæmi:
 - $ightharpoonup \gcd(6,14) = (-2) \cdot 6 + 1 \cdot 14 = 2$
 - $ightharpoonup \gcd(91,287) = 19 \cdot 91 + (-6) \cdot 287 = 7$

Útvíkkað Algrím Evklíðs

```
Notkun:
                 evklíð(a, b, s, t)
Fyrir: a \text{ og } b \text{ eru heilt\"olur}, 0 \le a < b
                    s og t eru heiltölur þannig að s \cdot a + t \cdot b
Eftir:
                    er stærsti samdeilir a og b
stef gcd( a, b: heiltölur; s, t: heiltölubreytur )
      n \coloneqq 1; r_0 \coloneqq b; r_1 \coloneqq a; s_0 \coloneqq 1; s_1 \coloneqq 0; t_0 \coloneqq 0; t_1 \coloneqq 1
       meðan r_n \neq 0
             \{ n \geq 1, 0 \leq r_n < r_{n-1} \}
             \{ \gcd(a,b) = \gcd(r_{n-1},r_n) \}
             \{ r_i = s_i \cdot a + t_i \cdot b, \text{ fyrir } i = 0, ..., n \}
             q \coloneqq r_n \operatorname{div} r_{n-1}
             r_{n+1} \coloneqq r_{n-1} - q \cdot r_n
             S_{n+1} \coloneqq S_{n-1} - q \cdot S_n
             t_{n+1} \coloneqq t_{n-1} - q \cdot t_n
             n \coloneqq n + 1
      s \coloneqq s_{n-1}
       t \coloneqq t_{n-1}
```

Athugið að útvíkkað algrím Evklíðs (með fullum rökstuðningi) er sönnun á jöfnu Bézouts

n	r_n	s_n	t_n
0	287	0	1
1	91	1	0
2	14	-3	1
3	7	19	-6
4	0	X	

 $\gcd(91,287) = 19 \cdot 91 - 6 \cdot 287 = 7$

Afleiðingar jöfnu Bézouts

- ▶ **Hjálparsetning:** Ef a, b og c eru jákvæðar heiltölur þannig að gcd(a,b) = 1 og $a \mid bc$, þá gildir $a \mid c$.
- **Sönnun:** Gerum ráð fyrir að gcd(a, b) = 1 og $a \mid bc$
 - ▶ Par eð gcd(a,b) = 1 eru samkvæmt setningu Bézouts til heiltölur s og t þannig að sa + tb = 1.
 - Margföldum báðu megin með c og fáum sac + tbc = c
 - Við sjáum að a | tbc (því a | bc og tbc er margfeldi bc) og a | sac (því sac er margfeldi a) og þarmeð a | (sac + tbc)
 - Við getum því dregið þá ályktun að $a \mid c$ þar eð c = sac + tbc
- ▶ **Hjálparsetning:** Ef p er prímtala og $p \mid a_1 a_2 \cdots a_n$ þá $p \mid a_i$ fyrir eitthvert i

Lausnir leifajafna

- Línulegar leifajöfnur (linear congruences)
- Kínverska leifasetningin (The Chinese Remainder Theorem)
- ► Litla setning Fermats

Línulegar leifajöfnur

- Skilgreining: Leifajafna á sniðinu $ax \equiv b \pmod{m}$
- \blacktriangleright þar sem m er jákvæð heiltala, a og b eru heiltölur og x er breyta, er kölluð línuleg leifajafna (linear congruence).
- Lausnir leifajöfnunnar $ax \equiv b \pmod{m}$ eru allar heiltölur x sem uppfylla leifajöfnuna.
- Skilgreining: Heiltala \bar{a} þannig að $\bar{a} \cdot a \equiv 1 \pmod{m}$ er sögð vera andhverfa a mátað við m (inverse of a modulo m)
- ▶ Dæmi: 5 er andhverfa 3 mátað við 7 vegna þess að $5 \cdot 3 = 15 \equiv 1 \pmod{7}$
- Ein leið til að leysa línulegar leifajöfnur er að nota andhverfuna \bar{a} , ef hún er til. Þótt við megum ekki deila báðu megin leifajöfnu megum við margfalda með \bar{a} til að einangra x.

Andhverfa a mátað við m

- ▶ Setning: Ef a og m eru ósamþátta og m > 1 þá er til andhverfa a mátað við m. Ennfremur eru allar slíkar andhverfur jafnar, mátað við m.
 - ▶ Því er til ein og aðeins ein tala \bar{a} þannig að $0 \le \bar{a} < m$ og $\bar{a}a \equiv 1 \pmod{m}$
- Sönnun: Þar eð gcd(a, m) = 1 eru til heiltölur s og t þannig að sa + tm = 1
 - ▶ Parmeð $sa + tm \equiv 1 \pmod{m}$
 - ▶ Par eð $tm \equiv 0 \pmod{m}$ fæst að $sa \equiv 1 \pmod{m}$
 - ▶ Þar með er s andhverfa a mátað við m
 - \blacktriangleright Allar slíkar andhverfur eru jafnar, mátað við m, en það er ekki sannað hér

Útvíkkaða algrím Evklíðs reiknar andhverfur

Eftir kallið Evklíð(a,m,s,t) inniheldur s andhverfu a mátað við m

Notum andhverfu til að leysa leyfajöfnu

- Almennt getum við leyst leyfajöfnuna $ax \equiv b \pmod{m}$ með því að margfalda báðu megin með \bar{a}
 - ▶ Dæmi: Leysum $3x = 4 \pmod{m}$
 - Lausn: Við sáum framar að -3 er andhverfa 3 mátað við 7. Margföldum því báðu megin með -3 og fáum $-6x \equiv -8 \pmod{m}$, sem er jafngilt $x \equiv 6 \pmod{m}$

Kínverska leifasetningin (The Chinese Remainder Theorem)

▶ Setning (kínverska leifasetningin): Látum $m_1, m_2, ..., m_n$ vera innbyrðis ósamþátta jákvæðar heiltölur stærri en einn og látum $a_1, a_2, ..., a_n$ vera hvaða heiltölur sem er. Þá hefur leifajöfnukerfið

```
x \equiv a_1 \pmod{m_1}
x \equiv a_2 \pmod{m_2}
...
x \equiv a_n \pmod{m_n}
```

eina og aðeins eina lausn mátað við $m_1m_2\cdots m_n$, þ.e. eina og aðeins eina lausn x þannig að $0 \le x < m_1m_2\cdots m_n$

Kínverska leifasetningin

▶ Við munum ekki sanna kínversku leifasetninguna, en við skulum sjá hver lausnin er. Látum

$$m=m_1m_2\cdots m_n$$

Látum síðan $M_k=\frac{m}{m_k}$. Þar eð $\gcd(m_k,M_k)=1$ er til heiltala y_k sem er andhverfa M_k mátað við m_k , þ.e. $M_ky_k\equiv 1\ (mod\ m_k)$. Reiknum því summuna $x=a_1M_1y_1+a_2M_2y_2+\cdots+a_nM_ny_n$

▶ Þá mun $M_j \equiv 0 \pmod{m_k}$ hvenær sem $j \neq k$. Það veldur því að þetta x uppfyllir allar leifajöfnurnar á undan.

Litla setning Fermats

- Setning (litla setning Fermats): Ef p er prímtala og a er heiltala sem ekki er deilanleg með p þá er $a^{p-1} \equiv 1 \pmod{p}$. Ennfremur gildir fyrir sérhverja heiltölu a að $a^p \equiv a \pmod{p}$
- ▶ Dæmi: Reiknum 7²²² mod 11.
- Lausn: Samkvæmt litlu setningu Fermats vitum við að $7^{10} \equiv 1 \pmod{11}$. Þarmeð er $(7^{10})^k \equiv 1 \pmod{11}$ fyrir allar jákvæðar heiltölur k. Því fæst

$$7^{222} = 7^{22 \cdot 10} \cdot 7^2 \equiv 1^{22} \cdot 49 \equiv 5 \pmod{11}$$

Frumstæðar rætur (primitive root)

- Skilgreining: Frumstæð rót mátað við prímtölu p er heiltala r í \mathbb{Z}_p þannig að sérhver heiltala í \mathbb{Z}_p önnur en núll er veldi af r.
- Mikilvæg staðreynd: Það er til frumstæð rót fyrir sérhverja prímtölu.
- Dæmi: 2 er frumstæð rót mátað við prímtöluna 11
- Dæmi: 3 er ekki frumstæð rót mátað við prímtöluna 11

Stakrænir lograr (discrete logarithm)

- Látum p vera prímtölu og r vera frumstæð rót mátað við p. Ef a er heiltala milli 1 og p-1 þá er til ein og aðeins ein tala e mátað við p þannig að $r^e=a$.
- Skilgreining: Við köllum töluna e að ofan stakrænan logra a miðað við r og mátað við p. Við skrifum $\log_r(a) = e$.
- ▶ Það er engin þekkt leið til að reikna stakrænan logra á hraðvirkan hátt

Diffie-Hellman lyklaskipti (key exchange protocol)

- lacktriangle Bæði Adda (eða Alice) og Bobbi (eða Bob) og (allir aðrir) eru sammála um að nota tiltekna risastóra prímtölu p og tiltekna frumstæða rót a mátað við p
- Adda býr til risastóra leynilega slembitölu k_1 og sendir $a^{k_1} \ mod \ p$ til Bobba gegnum opinbera samskiptarás
- Bobbi býr til risastóra leynilega slembitölu k_2 og sendir $a^{k_2} \mod p$ til Öddu gegnum opinbera samskiptarás
- Adda reiknar töluna $(a^{k_2} \mod p)^{k_1} \mod p \equiv a^{k_1 \cdot k_2} \pmod p$
- ▶ Bobbi reiknar töluna $(a^{k_1} \mod p)^{k_2} \mod p \equiv a^{k_1 \cdot k_2} \pmod p$
- Þetta er sama talan og Adda og Bobbi geta notað hana sem sameiginlegan dulritunarlykil fyrir samskipti gegnum opinberu samskiptarásina, en enginn annar getur á auðveldan hátt reiknað lykilinn, jafnvel þótt hann hafi hlerað öll samskipti Öddu og Bobba
- Ef einhverjum tekst að finna aðferð til að reikna stakrænan logra á hraðvirkan hátt þá verður þessi aðferð ótraust

Dreifilyklakerfi

- RSA öryggiskerfi og fleiri (DSA, ElGamal) nota tvo lykla, lyklapör
- Dreifilykill (public key) er opinber og skal vera öllum aðgengilegur
- Einkalykill (private key) er leyndarmál og hver aðili á að halda sínum einkalykli leyndum
- Dreifilykill er notaður til að dulrita skeyti til aðila sem hefur samsvarandi einkalykil
- Einkalykill er notaður til að ráða dulrituð skeyti frá hverjum sem er
- Einkalykill er notaður til að undirrita (auðkenna) skeyti frá þeim sem á þann einkalykil
- Dreifilykill er notaður til að staðfesta undirritun skeyta frá aðila með samsvarandi einkalykil

<u>Bálkadulritunarkerfi</u> (block cipher) og <u>útdráttarkerfi</u> (message digest)

- Kerfi eins og Diffie-Helman, RSA, DSA, ElGamal, eru ekki notuð beint til að dulrita heil skeyti eða undirrita heil skeyti
- Bálkadulritunarkerfi eru mun fljótari að dulrita og ráða stór skeyti, þau nota sama lykil til að dulrita og til að ráða
 - ► AES, DES, IDEA, RC5, og mörg mörg fleiri
 - Dæmi: Sendum móttakandanum skeyti dulritað með AES ásamt AES lykli dulrituðum með RSA dreifilykli
- Útdráttarkerfi geta á fljótvirkan hátt reiknað útdrátt úr stóru skeyti sem hefur þann eiginleika að næstum ómögulegt er að finna annað skeyti sem hefur sama útdrátt
 - ► SHA-1, SHA-2, SHA-3, SHA-256, MD5, MD6 og mörg fleiri
 - Dæmi: Sendum móttakandanum skeyti ásamt SHA-256 útdrætti úr skeytinu, undirrituðum með RSA einkalykli
- Allt þetta er að gerast í sífellu í samskiptum okkar yfir Internetið