Manly High School

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

1999 MATHEMATICS

3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON)

Time Allowed - Two hours (Plus 5 minutes reading time)

DIRECTIONS TO CANDIDATES

- Attempt ALL questions.
- ALL questions are of equal value.
- Write your student Name / Number on every page of the question paper and your answer sheets.
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Standard integrals are supplied.
- Board approved calculators may be used.
- The answers to the seven questions are to be handed in separately clearly marked Question 1, Question 2, etc..
- The question paper must be handed to the supervisor at the end of the examination.

Question 1 (Start a new page)

Marks

- Two dice are rolled. If you know that at least one of the dice is a 5, what is the probability of getting a total of 8?
- 2

- b, Consider the parabola with equation $y^2 = 4(x - 3)$.
 - Find the coordinates of the vertex of the parabola.

2

- Find the coordinates of the focus of the parabola. (ii)
- c. The point C(-1, -4) divides the interval AB externally in the ratio 3:1. If the coordinates of A are (3, 2), find the coordinates of B.
 - 2
- Evaluate $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \sin x \cos^3 x \, dx$ using the substitution $u = \cos x$ d.
- 3

Find the exact value of $\int_0^{\frac{\pi}{4}} \cos^2 \frac{1}{2} x \, dx$ e.

3

Question 2 (Start a new page)

Solve $\frac{1}{x+1} \ge 1 - x$ a.

3

3

Find $\int_0^{\frac{2}{5}} \frac{dx}{\sqrt{16 - 25x^2}}$ b.

3

The points $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ lie on the parabola C. $x = 2at, y = at^2$.

- i. Find M, the midpoint of PQ.
- ii. Show that, if the gradient of PQ is constant, the locus of M is a line parallel to the y-axis.
- In the diagram, UZY, d. XZV, VYW and UXW are all straight lines. Given ZW bisects ∠XWY and $\angle WUZ = \angle WVZ$, prove that XW = YW.

3

Question 3 (Start a new page)

Marks

a. Show that
$$\frac{2x+1}{x+2} = 2 - \frac{3}{x+2}$$

3

Hence or otherwise, find the exact value of $\int_{0}^{1} \frac{2x+1}{x+2} dx$

b. Solve
$$\cos x - \sqrt{3} \sin x + 1 = 0$$
 for $0 \le x \le 2\pi$

3

c. i. Show that the solution of
$$x \ln x - 1 = 0$$
 lies between $x = 1$ and $x = 2$.

ii. Using x = 2 as a first approximation, apply Newton's method once to obtain a better approximation. Give your answer to one decimal place.

- d. Beginning in 1960, Ranger Smith planted 1 000 trees at the start of each year. Initially the 3 average mass of each tree is 5 kilograms. This increased at the rate of 20% pa. The trees should not be harvested until their average mass reaches 3 000 kilograms.
 - (i) Find the minimum number of years that the first trees must be left before harvesting, correct to the nearest year.
 - (ii) After the initial waiting time, calculated in (i), the trees are harvested at the rate of 1 000 per year, in the same order as the trees were planted. Find the total tonnage harvested in the 40th year.

Question 4 (Start a new page)

Two circles, C_1 and C_2 , are members of the set of circles defined by the equation $x^2 + y^2 - 6x + 2ky + 3k = 0$, where k is real. a.

4

The centre of C_1 lies on the line x - 3y = 0 and C_2 touches the x-axis.

Find the equations of C_1 and C_2 .

b. The acceleration, a, of a particle is given in terms of its position, x, by the equation $a = 2x^3 + 2x$.

i. If
$$v = 2$$
 when $x = 1$, show that $v^2 = (1 + x^2)^2$

ii. Show that, if $x = \frac{1}{\sqrt{3}}$ when t = 0, then $t = \frac{\pi}{6}$ when $x = \sqrt{3}$

Prove by Mathematical Induction that $5^{2n} - 1$ is divisible by 6 when n is C. a positive integer

Question 5 (Start a new page)

Marks

a. At 9 am, an ultralight aircraft flies directly over Daryl's head at 500 metres. It maintains a constant speed of 20 ms⁻¹ and a constant altitude.

5

If x is the horizontal distance travelled by the plane and θ is the angle of elevation from Daryl to the plane,

- i. show that $\frac{dx}{d\theta} = -500 \csc^2 \theta$.
- ii. Hence show that $\frac{d\theta}{dt} = -\frac{1}{25} \sin^2 \theta$.
- iii. Find the rate of change of the angle of elevation at 9:01 am.
- b. Two groups of terrorists are 150 metres from their target.

7

The first group, Group A, is on the same horizontal level as the target and can fire their missiles in any direction at a speed of 50 ms⁻¹.

i. Show that Group A can hit the target and calculate the angle(s) at which their missiles are to be fired. [Use $g = 10 \text{ ms}^{-2}$]

The second group, Group B, is positioned in a building 30 metres above the horizontal level of the target and can fire their missile only horizontally through a small window and at 55 ms⁻¹.

ii. Determine whether Group B can hit their target. [Use $g = 10 \text{ ms}^{-2}$]

4

Question 6 (Start a new page)

Marks

a. The displacement, x cm, of an object from the origin is given by $x = 2 \sin t - 3 \cos t$, $t \ge 0$ where time, t, is measured in seconds.

5

7

- i. Show that the object is moving in Simple Harmonic Motion.
- ii. Find the amplitude of the motion.
- iii. At what time does the object first reach its maximum speed?
- b. A cup of soup at temperature $T^{\circ}C$ loses heat when placed in the lounge room. It cools according to the law:

$$\frac{dT}{dt} = k(T - T_0)$$

where t is the elapsed time in minutes and T_0 is the temperature of the room in degrees centigrade.

- i. Show that the equation $T = T_0 + A e^{kt}$ satisfies the above law of cooling.
- ii. A cup of soup at 95°C is placed in the freezer at -10°C for 5 minutes and cools to 65°C. Find the exact value of k
- iii. The same cup, at 65° C, is then taken into the lounge room where the surrounding temperature is 26° C. Assuming k remains the same, find, to the nearest degree, the temperature of the soup after another 5 minutes.

Question 7 (Start a new page)

Marks

a. Find the constant term in the expansion of $\left(3x - \frac{1}{x^2}\right)^6$

- 3
- b. i. Solve the equation $x^4 + x^2 1 = 0$, giving your answer(s) to two decimal places.
- 9
- ii. On the same axes, draw the graphs of $y = \tan^{-1} x$ and $y = \cos^{-1} x$, showing all important features. Mark the point, P, where the curves intersect.
- iii. Show that, if $\tan^{-1} x = \cos^{-1} x$, then $x^4 + x^2 1 = 0$. Hence find the coordinates of P.
- iv. Find to two decimal places the area enclosed by the curves and the y-axis.