⑩日本国特許庁(JP)

① 特許出願公開

⑫ 公 開 特 許 公 報 (A)

昭62-96327

@Int Cl.4

識別記号

庁内整理番号

匈公開 昭和62年(1987)5月2日

C 03 B 8/02 01 B 33/14 // C 03 B 20/00 7344-4G 6526-4G

審査請求 未請求 発明の数 1 (全3頁)

❷発明の名称 ゾルの調整方法

> ②特 願 昭60-235563

昭60(1985)10月22日 29出

三喜男 者 青 木 個発 明 砂発 明 者 神 戸 貞 男 眀 郎 ⑫発 森 昌 久 砂発 明 者 池 尻 Ш 正 ⑫発 明 内 者 願 セイコーエプソン株式 വെ

諏訪市大和3丁目3番5号 株式会社諏訪精工舍内 諏訪市大和3丁目3番5号 株式会社諏訪精工舎内 諏訪市大和3丁目3番5号 株式会社諏訪精工舍内 諏訪市大和3丁目3番5号 株式会社諏訪精工告内 諏訪市大和3丁目3番5号 株式会社諏訪精工舎内

東京都新宿区西新宿2丁目4番1号

会社

20代 理 弁理士 最上 務

発明の名称 ゾルの調整方法

2. 特許請求の範囲

アルキルシリケート及び敬め末シリカを主原科 として用いるソルーゲル法におけるソル調整にお いて、磁粉末シリカを前もつて水に分散させた後 アルキルシリケートを加え加水分解することを特 ぬとせるゾルの餌幣方法。

5. 発明の辞細な説明

[産業上の利用分野]

本発明は、ソルーゲル法におけるゾルの調整方 法に関する。

(発明の概要)

本苑明は、ソルーゲル法におけるソル関整にお いて、疲労末シリカを前もつて水に分散させた袋 アルキルシリケートを加え加水分解することによ り、ソルの位世を格とすに受ける超音波照射の時

間を短くし、ゾル調整に要する時間を短縮したも のである。

〔従来の技術〕

アルキルシリケートおよび微粉末シリカを主原 料として用いるゾルーゲル法による石英ガラス製 造方法は、高品質なガラスを安価に製造できるた め、非常に注目されている。

従来のソルーゲル法によるソルの調整方法は、 アルキルシリケート、 微粉末シリカ及び水を同時 に混合し、提拌、超音波照射を行いながら加水分 解を行い、加水分解終了後もゾルの粒肥がある一 定の値に下がるまで挽拌及び超音放照射を鋭けた。

(発明が解決しようとする問題点及び目的)

しかし、従来のアルキルシリケート、敬分末シ りカ及び水を同時に進合して加水分解を行うとい り方法においては、次のような理由により、ゾル の粒度を落とすための提拌、超音放照射に兴する 時間が長くかかる。アルキルシリケート及び水の 啓放中に低切求として混合された810. 粒子は、 俗板に及されると、俗板に810。粒子がなじむ前

に凝集してしまう。また、密液にアルキルシリケートが含まれているために、アルキルシリケートの粘性により、810。粒子が溶液中に分散されたくく、810。粒子のかたまりも大きなものとなり中すい。また、810。粒子が充分に分散されるり前にアルキルシリケートの加水分解が行われ、加水分解によつて生じた81ー0H分子は縮合を初から数か末として加えられた810。粒子を核にしる分散をしていく。この時点で、超音波照射による分散の分米は、810。粒子の成長によりうち消された状態になり、超音波照射に要する時間がよい。その結果機律、超音波照射に要する時間が長くなる。

また、B10。粒子が分散されにくい点から、機 終的に B10。が分散されず粘径が完全に落ちない 場合が生じてくる。その納果、アルキルシリケー ト、破粉末シリカ等の原科の無駄が生じる。

本発明は、このような問題点を解決するもので、 その目的とするところは、常に同じ状態のソルを

810. 粒子は水になじみやすく、また水の粘性が それほど高くないために、批拌、組音波照射によ り分散が容易に行たわれる。とうして得られた分 敵旅とアルキルシリケートを退合し、塩酸を触媒 に加水分解を行いゾルを得る。加水分解が行なわ れる前、810、粒子の粒径は分散被における810。 校子の粒径であり、加水分解が行われ、510、分 子の縮合が起こつても、本来の810. 粒子の粒径 が小さいために、全体の粒径もそれほど大きくな らず、短時間の撹拌、超音波照射により、望みの 粒径のゾルが得られる。また、分散液の時点での 粒径にゾルの粒径が必ず落ちる保証があるため、 分散版の段階で題みの位径にまで分散させれば容 曷にゾルが得られる。また、万が一、分散骸の段 階で粒色が落ちず、望みの分散液が得られなかつ たとしても、その損失は最小限に押さえることが 可能となる。

〔奖施例〕

破粉沫シリカ2319と水5699、さらに市 取のエチルシリケート(81(OC.H.), 800 mt, 賃産性良く得るところにある。

(問題点を解決するための手段)

本発明のソル調整方法は、 微粉末シリカを前も つて必受益の水に分散させた後、アルキルシリケートを加え加水分解をすることを特徴とする。

' (作用)

ソルの調整において、アルキルシリケート、数 初末シリカ及び水を同時に混合し、撹拌、組音放 照射を行いながら加水分解をして、その後も撹拌 超音放照射を焼けてソルを得る方法においては、 数粒子である810。粒子は、溶液に受されると緩 集しやすく、ましてアルキルシリケートにより粘 変が高まつて分散されにくくなる。その結果、 810。粒子の分散に努する時間は長く摂求され、 時には分散されずに終わつてしまり場合も生じ衆 ねない。

本発明では、とのような問題を避けるために、 あらかじめ 810。粒子を必要量の水に分散させて かく。 810。粒子は、水に受されると激初は従来 の方法と同様緩集し、粒径は大きくなる。しかし

Q 5 N の塩酸 3 0 CC を用い、次の二通りの 方法で 平均粒径 Q 1 5 μm のソルを得た。

(1) 数粉末シリカ2319を水5699に流し込み、撹拌、預音放照射を続けて平均粒径 0.15μmの分散板を得た。これにエチルシリケート(81(001He))。)800mと005N垣限30CCを加え、加水分解を行い、加水分解後、撹拌、超音放照射を繰り返し行い平均粒径 0.15μmのゾルを得た。

(2) 微粉末シリカ2319と水5699、さら にエテルシリケート(B1(OC, H,)。)800mlを 同時に混合し、これにQ05N塩酸30CCを加 え、 提押、 図音被服射を行いなから加水分解を行い、加水分解後も提押、 図音被照射を行い、 平均 粒径Q15μmのグルを得た。

(11の方法においては、像物末シリカと水の混合5分、分散液の超音波照射50分、エテルシリケート添加3分、加水分解40分、加水分解後の提供、超音波照射60分を受した。この手順の間の810。粒子の粒性は、第1図に示すような変化を示し、全工程158分で選みの粒径0.15μmの

特開昭62-96327(3)

ソルを得た。

(2)の万法においては、強動末シリカと水、エチルシリケートの進合8分、加水分解40分、加水分解6の提件、超音放照射210分を製した。またこの間の810。粒子の粒径は、第2凶に示すような変化を示し、全工程258分で望みの粒径 0.15μmのゾルを得た。

[発明の効果]

以上述べたように、本発明によるソル調整の手順にてソルの調整を行うことにより、 810 2 粒子が水に分散されやすく、 目的の粒径の分放液を容易に得ることができ、 また、 そのため加水分解後の粒径も大きくならず短時間の機伴、 超音波照射により容易に目的のソルが得られる。 したがつて、 との方法により均質のソルが散産性良くグルにより、 が可能となる。 またとのような均質なソルにより、 ジルーグル法によるガラスも均質なガラスとなり、 ジルーグル法によるガラス製造の均質化、 強強性を改めたものと言える。 とうしてできたガラスは、 一般的に広く使われているガラス器具はもちろんのと

と、高純度、高精度を必要とする光ファイバー用 ジャケット質としても応用できる。

4. 図面の簡単な説明

第1図に実施例に述べた(IIの方法(本発明の方法)にてゾル調整を行つた時の粒度の経時変化図を示す、第2図に実施例の(2Iの方法(従来の方法)にてゾル調整を行つた時の粒度の経時変化図を示す。

以上

出顧人 株式会社識訪精工会 代理人弁理士 皋 上 孩

粒度从布托时变比团

第 2 図