Exersise §1, 9

For any $s \in S = A - (B \cup C)$ we have $s \in A$ and $s \notin B$, as well as $s \in A$ and $s \notin B$. Therefore $s \in R = (A - B) \cap (A - C)$ and so $S \subseteq R$. For any $r \in R$ we have $r \in A - B$ as well as $r \in A - C$ so r must be in A. Also since $r \in A - B$, $r \notin B$ and similarly since $r \in A - C$, $r \notin C$. Therefore $R \subseteq S$, and so R = S

For the other law we have for any $s \in S = A - (B \cap C)$ we have $s \in A$ and s is not in both B and C. Therefore s must not be in either B or C so $s \in A - B$ or $s \in A - C$ which means $s \in R = (A - B) \cup (A - C)$. Therefore $S \subseteq R$. We also have for any $r \in R$, r is in A - B or A - C which means $r \in A$ and r is not in both B and C which means $r \in S$. Therefore $R \subseteq S$ and so R = S

Exersise §2, 1

a. For any $a \in A_0$, by definition we have $f(a) \in f(A_0)$ and therefore

$$a \in f^{-1}(f(A_0))$$

which means $A_0 \subseteq f^{-1}(f(A_0))$. If f is injective then if there exists $b \notin A_0$ with $b \in A_0 - f^{-1}(f(A_0))$ then $f(b) \in f(A_0)$ which means there exists $a \in A_0$ such that f(b) = f(a) which contradicts injectivity. Therefore $A_0 - f^{-1}(f(A_0)) = \emptyset$ and so $A_0 = f^{-1}(f(A_0))$

b. For any $b \in B_0$ we have by definition $f(f^{-1}(b)) \subseteq B_0$ and so $f(f^{-1}(B_0)) \subseteq B_0$. If f is surjective then for any $b \in B_0$ there is a $a \in A$ such that f(a) = b and therefore $a \in f^{-1}(b)$ and so $b \in f(f^{-1}(b)) \subseteq f(f^{-1}(B_0))$ and therefore $B_0 \subseteq f(f^{-1}(B_0))$. This means that $B_0 = f(f^{-1}(B_0))$

Exersise §2, 2

- a. Given any $b \in B_0$, since $B_0 \subseteq B_1$ we know $b \in B_1$. By the definition of $f^{-1}(B_1)$ we have that $f^{-1}(b) \subseteq f^{-1}(B_1)$ since $b \in B_1$. And since $f^{-1}(B_0)$ is a unioun of these preimages which are contained in B_1 , we know $f^{-1}(B_0) \subseteq f^{-1}(B_1)$
- b. Given any $a \in A$ with $a \in f^{-1}(B_0 \cup B_1)$ or equivalently $f(a) \in B_0 \cup B_1$ we know that f(a) must be in either B_0 or B_1 and so a is in either $f^{-1}(B_0)$ or $f^{-1}(B_1)$. Therefore $a \in f^{-1}(B_0) \cup f^{-1}(B_1)$ and so $f^{-1}(B_0 \cup B_1) \subseteq f^{-1}(B_0) \cup f^{-1}(B_1)$. Conversly if f(a) is in B_0 or in B_1 then $f(a) \in B_0 \cup B_1$ and so $f^{-1}(B_0) \cup f^{-1}(B_1) \subseteq f^{-1}(B_0 \cup B_1)$. Therefore we have equality

- c. Given any $a \in A$ with $a \in f^{-1}(B_0 \cap B_1)$ or equivalently $f(a) \in B_0 \cap B_1$ we know that f(a) must be in both B_0 and B_1 and so a is in $f^{-1}(B_0)$ and $f^{-1}(B_1)$. Therefore $a \in f^{-1}(B_0) \cap f^{-1}(B_1)$ and so $f^{-1}(B_0 \cap B_1) \subseteq f^{-1}(B_0) \cap f^{-1}(B_1)$. Conversly if f(a) is in B_0 and in B_1 then $f(a) \in B_0 \cap B_1$ and so $f^{-1}(B_0) \cap f^{-1}(B_1) \subseteq f^{-1}(B_0 \cap B_1)$. Therefore we have equality
- d. Given any $a \in A$ with $a \in f^{-1}(B_0 B_1)$ or equivalently $f(a) \in B_0 B_1$ we know that f(a) must be in B_0 and not B_1 and so a is in $f^{-1}(B_0)$ and $f^{-1}(B_1)$. Therefore $a \in f^{-1}(B_0) f^{-1}(B_1)$ and so $f^{-1}(B_0 B_1) \subseteq f^{-1}(B_0) f^{-1}(B_1)$. Conversly if f(a) is in B_0 and not in B_1 then $f(a) \in B_0 B_1$ and so $f^{-1}(B_0) f^{-1}(B_1) \subseteq f^{-1}(B_0 B_1)$. Therefore we have equality
- e. Given any $b \in f(A_0)$ we know there exists some $a \in A$ with f(a) = b, since $a \in A_0 \subseteq A_1$ we have that $a \in A_1$ and so $f(a) \in f(A_1)$. Therefore $f(A_0) \subseteq f(A_1)$
- f. Given any $b \in f(A_0 \cup A_1)$ we know there exists $a \in A_0 \cup A_1$ with f(a) = b and so a is either in A_0 or A_1 so $f(a) \in f(A_0) \cup f(A_1)$ and so $f(A_0 \cup A_1) \subseteq f(A_1) \cup f(A_0)$. Conversly for any $f(a) \in f(A_0) \cup f(A_1)$ we know f(a) is in either $f(A_0)$ or $f(A_1)$ and so $a \in A_0$ or $a \in A_1$ therefore $a \in A_0 \cup A_1$ and therefore $f(a) \in f(A_0 \cup A_1)$. Therefore we have equality
- g. Given any $b \in f(A_0 \cap A_1)$ we know there exists $a \in A_0 \cap A_1$ with f(a) = b and therefore since a is in A_0 and A_1 , $f(a) \in f(A_0)$ and $f(a) \in f(A_1)$ so $f(a)f(A_0) \cap f(A_1)$. Therefore $f(A_0 \cap A_1) \subseteq f(A_0) \cap f(A_1)$. If f is injective, for any $b \in f(A_0) \cap f(A_1)$ we know b is in both $f(A_0)$ and in $f(A_1)$. Therefore there exists elements $a_0 \in A_0$, $a_1 \in A_1$ such that $f(a_0) = b \in f(A_0)$ and $f(a_1) = b \in f(A_1)$. Since f is injective however $a_0 = a_1$ and we know $a = a_0 = a_1$ is in both A_0 and A_1 . Therefore $f(a) \in f(A_0 \cap A_1)$, and thus $f(A_0) \cap f(A_1) \subseteq f(A_0 \cap A_1)$ and we have equality of the sets
- h. For any $b \in f(A_0) f(A_1)$ we know b is in $f(A_0)$ and not $f(A_1)$. Since $b \in f(A_0)$ we know there exists $a \in A_0$ such that f(a) = b. Since $f(a) \notin f(A_1)$, we know $a \notin A_1$ and so $a \in A_0 A_1$, thus $f(a) \in f(A_0 A_1)$ and thus $f(A_0) f(A_1) \subseteq f(A_0 A_1)$. If f is injective, given any $b \in f(A_0 A_1)$ we know there exists $a \in A_0 A_1$ with f(a) = b and therefore since a is in A_0 and not A_1 , $f(a) \in f(A_0)$. We also have $f(a) \notin f(A_1)$ since if there exists $a_1 \in A_1$ with $f(a_1) = f(a)$ then $a = a_1$ since f is injective, but this is not possible since $a \notin A_1$ while $a_1 \in A_1$. Thus $f(a) \in f(A_0) f(A_1)$. Therefore $f(A_0 A_1) \subseteq f(A_0) f(A_1)$. Thus we have equality of the sets

Exersise §2, 4

a. For any $a \in (g \circ f)^{-1}(C_0)$ there must exist a $c \in C_0$ such that $g \circ f(a) = c$. Therefore $f(a) \in g^{-1}(c)$ and thus $a \in f^{-1}(g^{-1}(c))$. Therefore $(g \circ f)^{-1}(C_0) \subseteq f^{-1}(g^{-1}(C_0))$. Conversly if $a \in f^{-1}(g^{-1}(C_0))$ then there exists a $b \in g^{-1}(C_0)$ such that f(a) = b, and then there must exist a $c \in C_0$ such that g(b) = c. Therefore g(f(a)) = c. Therefore

- $a \in f^{-1}(g^{-1}(c))$. Thus we have $f^{-1}(g^{-1}(C_0)) \subseteq (g \circ f)^{-1}(C_0)$. Thus we have equality of the sets
- b. For any $a, \bar{a} \in A$ with $a \neq \bar{a}$ then $f(a) \neq f(\bar{a})$ since f is injective. Since $f(a) \neq f(\bar{a})$ we have $g(f(a)) \neq g(f(\bar{a}))$ since g is injective. Therefore $g \circ f(a) \neq g \circ f(\bar{a})$ and so $g \circ f$ is injective
- c. If $g \circ f$ is injective then f must be injective and g must be injective on f(A). If there exists $a, \bar{a} \in A$ with $a \neq \bar{a}$ and $f(a) = f(\bar{a})$ then we would have $g(f(a)) = g(f(\bar{a}))$ which would contradict injectivity of $g \circ f$. If there exists $b, \bar{b} \in f(A)$ with $b \neq \bar{b}$ and $g(b) = g(\bar{b})$ then since $b, \bar{b} \in f(A)$ there exists $a, \bar{a} \in A$ with $f(a) = b, f(\bar{a}) = \bar{b}$ and thus $g(f(a)) = g(f(\bar{a}))$ which contradicts injectivity of $g \circ f$
- d. If f, g are surjective then f(A) = B, g(B) = C. Therefore we have g(f(A)) = g(B) = C and thus $g \circ f$ is surjective.
- e. g must be surjective on f(A). This is because g(f(A)) = C. Not much can be said about surjectivity of f for instance we could have $A = \mathbb{Z}, B = \mathbb{Z}, C = \{1\}$ and have f = 1, g(x) = x.
- f. **Theorem:** $g \circ f$ is bijective if and only if g is bijective on f(A) and f is injective

Exersise §2, 5

- a. For any $a, \bar{a} \in A$ with $a \neq \bar{a}$, if f has a left inverse g and $f(a) = f(\bar{a})$ then we would have $g(f(a)) = g(f(\bar{a}))$ but $g(f(a)) = a \neq \bar{a} = g(f(\bar{a}))$ which is not possible, therefore $f(a) \neq f(\bar{a})$ and so f is injective.
 - For any $b \in B$, if f has a right inverse h then f(h(b)) = b which means $b \in f(A)$ therefore $B \subseteq f(A)$ and since $f(A) \subseteq B$ we have f(A) = B, so f is surjective.
- b. let $A = \{0, 1\}$ and $B = \mathbb{Z}$, and f(x) = x. We have the left inverse

$$g(x) = \begin{cases} 0 & x \le 0 \\ 1 & x \ge 0 \end{cases}$$

but f is not surjective so cannot have a right inverse

- c. let $A = \mathbb{Z}$ and $B = \{1\}$, and f(x) = 1. We have the right inverse h(x) = 1, but f is not injective so cannot have a left inverse
- d. There can be multiple left inverses and right inverses. From my answer to problem b there is another possible left inverse:

$$g(x) = \begin{cases} 0 & x \in 2\mathbb{Z} \\ 1 & x \notin 2\mathbb{Z} \end{cases}$$

This g has the right inverse f from problem b as well as the right inverse

$$f(x) = x + 2$$

e. We already know that if f has a left inverse then it is injective, and if it has a right then it is surjective. Therefore f is bijective. To show g = h, for any $b \in B$, since f is bijective we know there exists one and only one $a \in A$ with f(a) = b. Therefore $a = f^{-1}(b)$. By definition we have $g(f(a)) = g(b) = a = f^{-1}(b)$. Similarly f(h(b)) = b and so $h(b) \in f^{-1}(b) = \{a\}$ so h(b) = a. Therefore $g = h = f^1$

Exersise §3, 4

a. Checking properties:

Reflexivity: f(x) = f(x) so $x \sim x$

Symmetry: f(x) = f(y) then f(y) = f(x) so $x \sim y$ means $y \sim x$

Transitivity: f(x) = f(y) and f(y) = f(z) then f(x) = f(z), so $x \sim y$ and $y \sim z$ then

 $x \sim z$

b. We can define a mapping $f^*:A^*\to B$ with $f^*(r)=f(a)$ for any $a\in r$. This mapping is well defined since $f^*(r)=f(a)=f(b)$ for any $a,b\in r$. This mapping is surjective since for any $b\in B$, since f is surjective there is a $a\in A$ with f(a)=b, therefore letting a^* be the equivalence class of a we have $f^*(a^*)=b$. If $f^*(a^*)=f^*(b^*)$ for some $a^*,b^*\in A^*$ then for any $a\in a^*$ and $b\in b^*$ we have f(a)=f(b) and therefore a and b must be in the same equivalently class: $a^*=b^*$ so f^* is injective. Therefore f^* is a bijection