Proposition 0.0.1

Let A be an open subset of \mathbb{R}^n , and let ω be a 1-form defined on A.

For k-manifold $M \subseteq A$, the followings are equivalent:

- 1. $\mathcal{I}_{\vec{p}}(M) \subseteq \ker(\omega(\vec{p}))$ for all $\vec{p} \in M$
- 2. $\alpha^*\omega = 0$ for all coordinate patches α for M
- 3. $\int_C \omega = 0$ for all 1-manifold $C \subseteq M$.

Let ω be a 1-form defined on an open subset A of \mathbb{R}^n , for k-manifold $M \subseteq A$, M is called an integral manifold for ω provided that $\int_C \omega = 0$ for all 1-manifold $C \subseteq M$. Integral manifolds for ω are also integral manifold for $g\omega$ where g is a scalar function, because we have $\alpha^*(g\omega) = (\alpha^*g)(\alpha^*\omega)$.

Lemma 0.0.2

Let $f \in C^1(A,\mathbb{R})$ where A is an open subset of \mathbb{R}^n , with $df \neq 0$ on A.

Then, for $c \in \mathbb{R}$, the level set $f^{-1}(c)$ is an (n-1)-manifold without boundary.

Let $f \in C^1(A,\mathbb{R})$ where A is an open subset of \mathbb{R}^n , with $df \neq 0$ on A.

Each level set of f is an integral manifold for df.

Let A be an open subset of \mathbb{R}^n , let $f:A\to\mathbb{C}$. $Y_\alpha\subseteq A$, we define $\int_{Y_\alpha}f\,dV=\int_{Y_\alpha}u\,dV+i\int_{Y_\alpha}v\,dV$. Let $A\subseteq\mathbb{R}^n$ be open, let $\omega:A\to\mathbb{C}^n_{row},\,\omega=\omega_1+i\omega_2$, be a \mathbb{C} -valued 1-form. $\int_{Y_\alpha}\omega:=(\int_{Y_\alpha}\omega_1)+(i\int_{Y_\alpha}\omega_2)$. Let A be an open subset of \mathbb{R}^n , let $f:A\to\mathbb{C}$ with f=u+iv for functions u and v. Define $D_jf:=D_ju+iD_jv$.

If f = u + iv, then f dz = (u + iv)(dx + idy) = (u + iv)dx + (iu - v)dy. If the 1-form f dz is closed, we have $D_1(if) = D_2(f)$, or the Cauchy-Riemann equation holds: $D_1u=D_2v$, $D_2u=-D_1v$. A function $f:\mathbb{C}\to\mathbb{C}$ is holomorphic provided that $f\,dz$ is closed, or the Cauchy-Riemann Equations hold for the function f.

Proposition 0.0.3

Let A be an open subset of \mathbb{R}^n , let $f: A \to \mathbb{C}$. we have $\left| \int_A f \right| \leq \int_A |f|$

Theorem 0.1

Let f be a holomorphic on open $A \subseteq \mathbb{C}$. If A is diffeomorphic to a convex set, then f dz is exact.

Corollary 0.1.1 (Cauchy Integral Theorem)

Given a holomorphic function f defined on an open subset A of \mathbb{C} , where A is diffeomorphic to a convex set, and given $\alpha:[a,b] \to A$ being a piecewise C^1 function with $\alpha(a)=\alpha(b)$, we have $\int_{Y_{\alpha}} f \, dz = 0$.

Let f and g be holomorphic functions. Then $f \cdot g$, $g \circ f$, $\frac{1}{g}$ and $\frac{f}{g}$ are holomorphic functions.

If f is holomorphic diffeomorphism, then f^{-1} is holomorphic.

Theorem 0.2 (Cauchy Integral Theorem)

Let C_1 and C_2 be disjoint circles in $\mathbb C$ with C_2 lying inside C_1 , let A be an open set of points lying inside C_1 and outside of C_2 , let U be an open subset of $\mathbb C$ containing $A \cup C_1 \cup C_2$, and let f be a holomorphic function on U, then we have $\int_{C_1} f \, dz = \int_{C_2} f \, dz$

Corollary 0.2.1

Let U be an open subset of \mathbb{C} with some $z_0 \in U$, let f be a holomorphic function defined on $U \setminus \{z_0\}$, then for $K = \{z \in \mathbb{C} \mid ||z - z_0|| = r\} \subseteq U$, we have $\frac{1}{2\pi i} \int_K f \, dz$ being independent of r.

Let U be an open subset of \mathbb{C} with some $z_0 \in U$, let f be a holomorphic function defined on $U \setminus \{z_0\}$, then for $K = \{z \in \mathbb{C} \mid ||z - z_0|| = r\} \subseteq U$. The residue of f dz at z_0 is $Res(f dz, z_0) := \frac{1}{2\pi i} \int_K f dz$

Let U be an open subset of \mathbb{C} , let D be a closed disc in U with $z_0 \in Int(D)$, and let f be a holomorphic function defined on $U \setminus \{z_0\}$. We have $\int_{Bd(D)} f dz = 2\pi i \operatorname{Res}(f dz, z_0)$

Let g be a holomorphic function defined on an open subset U of $\mathbb C$ with $z_0 \in U$.

We have the following holds:

$$Res\left(\frac{g(z)}{z - z_0} dz, z_0\right) = \frac{1}{2\pi i} \int_{||z - z_0|| = r} \frac{g(z)}{z - z_0} dz = g(z_0)$$

Let $Y_{\alpha} \subseteq \mathbb{R}^n$ be a parametrized 1-manifold parametrized by $\alpha: [a,b] \to Y_{\alpha}$. Let ω be a 1-form defined on an open subset of \mathbb{R}^n containing Y_{α} . Then $\left| \left| \int_{Y_{\alpha}} \omega \right| \right| \le \left(\sup_{\vec{v} \in Y_{\alpha}} ||\omega(\vec{v})|| \right) \cdot length(Y_{\alpha})$

Theorem 0.4 (ML-estimate in \mathbb{C})

Let $Y_{\alpha} \subseteq \mathbb{C}$ be a parametrized 1-manifold parametrized by $\alpha: [a,b] \to Y_{\alpha}$. Let $f: A \to \mathbb{C}$ be a continuous function with $A \subseteq \mathbb{C}$ being an open and contains Y_{α} . Then $\left| \left| \int_{Y_{\alpha}} f \, dz \right| \right| \leq \left(\sup_{z \in Y_{\alpha}} |f(z)| \right) \cdot length(Y_{\alpha})$

Definition 0.4.0.0.1

Let U be an open subset of \mathbb{C} , let $f:U\to\mathbb{C}$ be a function. f is said to be differentiable in real sense at $t\in U$ provided that $u:U\to\mathbb{R}$ $z\mapsto\Re(f(z))$ and $v:U\to\mathbb{R}$ $z\mapsto\Im(f(z))$ are both differentiable at t. Here we consider $\mathbb{C}\cong\mathbb{R}^2$ when evaluating the differentiability of u and v.

Let f be a function of C^1 type defined on U, where U is an open subset of \mathbb{C} . f is said to be complex differentiable, denoted as \mathbb{C} -differentiable, at $z_0 \in U$ provided that $\frac{\partial f}{\partial \overline{z}}(z_0) = 0$. If f is \mathbb{C} -differentiable, $f'_{\mathbb{C}}(z_0) = \frac{\partial f}{\partial z}(z_0)$ is called the derivative of fat z_0 .

Theorem 0.5

Let f be a function defined on U, where U is an open subset of \mathbb{C} . The followings are equivalent:

- 1. f is holomorphic on U
- 2. f is of C^1 type on U, and $\frac{\partial f}{\partial \bar{z}} = 0$
- 3. f is \mathbb{C} -differentiable at each point in U, and $f'_{\mathbb{C}}$ is continuous.

${\bf Corollary\ 0.5.1\ (Differentiated\ Cauchy\ Integral\ Formula)}$

Let U be an open subset of \mathbb{C} , let $D \subseteq U$ be a closed disc with $z_0 \in Int(D)$, and let g be a holomorphic function defined on $U \setminus \{z_0\}$. Then we have:

$$g_{\mathbb{C}}^{(m)}(z_0) = \frac{m!}{2\pi i} \int_{z \in Bd(D)} \frac{g(z) dz}{(z - z_0)^{m+1}}$$

The function g is infinitely \mathbb{C} -differentiable. Here 0! = 1

${\bf Theorem} \ {\bf 0.6} \ ({\bf Taylor's} \ {\bf Theorem})$

Let $z_0 \in \mathbb{C}$, let f be a holomorphic function defined on an open subset Ω of \mathbb{C} that contains z_0 . For all $z \in \mathbb{C}$ that satisfies $|z - z_0| < \rho$ for some $d(z_0, Bd(\Omega)) > \rho > 0$, we have:

$$f(z) = \sum_{k=0}^{\infty} \frac{f_{\mathbb{C}}^{(k)}(z_0)}{k!} (z - z_0)^k$$

Here we denote $f^{(0)} := f$, 0! := 1, and $(z - z_0)^0 := 1$ for $z = z_0$.

Theorem 0.7

Let f be a holomorphic function defined on a open subset Ω of \mathbb{C} . Denote $E := \bigcap_{k=0}^{\infty} (f_{\mathbb{C}}^{(k)})^{-1}(0)$. If we have Ω being connected, then we have either $E = \emptyset$ or f(z) = 0 for all $z \in \Omega$.

Let Ω be a connected open subset of $\mathbb C$ that contains z_0 , let f_1 and f_2 be holomorphic functions on Ω , with $f_1^{(k)}(z_0) = f_2^{(k)}(z_0)$ for all k. Then we have $f_1(z) = f_2(z)$ for all $z \in \Omega$.

Corollary 0.7.2

Let Holo(A) denote the set of holomorphic functions defined on a set A. Let V be an open connected subset of \mathbb{C} , let U be a nonempty open proper subset of V. The restriction map from Holo(V) to Holo(U) is injective.

For $z_0 \in \mathbb{C}$, consider the following power series $f(z) = \sum_{k=0}^{\infty} a_k (z-z_0)^k$. If $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ converges pointwise on $|z-z_0| < r$ for some r > 0. Then the function f is holomorphic on the set $\{z \in \mathbb{C} \mid |z-z_0| < r\}$.

Theorem 0.9

Let $z_0 \in \mathbb{C}$, let Ω be a connected open subset of \mathbb{C} that contains z_0 , let f be a holomorphic function defined on Ω and being not all zero on Ω . Then there exists $m \in \mathbb{N} \cup \{0\}$ such that, for $z \in \Omega$, $f(z) = (z - z_0)^m h(z)$ with some holomorphic function h defined on Ω and $h(z_0) \neq 0$.

In the settings of Theorem 0.9, m is called the order of f at z_0 , denoted as $\operatorname{ord}_{z_0} f := m$.

Corollary 0.9.1

Let $z_0 \in \mathbb{C}$, let Ω be a connected open subset of \mathbb{C} that contains z_0 , let f be a holomorphic function defined on Ω with $f(z) \neq 0$ for some $z \in \Omega$. Then there exists r > 0 such that $f(z) \neq 0$ for all $z \in \Omega$ that satisfies $0 < |z - z_0| < r$.

Let K be a compact set that is contained in some connected open subset of \mathbb{C} , let f be a holomorphic function defined on Ω with $f(z) \neq 0$ for some $z \in \Omega$. Then $\#(K \cap f^{-1}(0)) < \infty$.

Corollary 0.9.3

Let f_1 and f_2 be holomorphic functions on an open connected subset Ω of \mathbb{C} with $f_1 = f_2$ on some infinite subset of a compact subset of Ω . Then $f_1 = f_2$ on Ω .

Corollary 0.9.3.1 (Persistence of Relations)

Let f_1 and f_2 be holomorphic functions defined on an open connected subset Ω of \mathbb{C} that satisfies $\Omega \cap \mathbb{R} \neq \emptyset$. If with $f_1(z) = f_2(z)$ for all $z \in \Omega \cap \mathbb{R}$, then we have $f_1 = f_2$ on Ω .

Definition 0.9.3.1.1

A sequence on functions (f_j) defined on $\Omega \subseteq \mathbb{C}$ is said to converge almost uniformly to a function f defined on Ω provided that the sequence (f_j) converges uniformly to f on each compact subset K of Ω .

Theorem 0.10 (Weierstrass Convergence Theorem)

The limit of a almost uniformly convergent sequence of holomorphic functions is holomorphic.

Definition 0.10.0.0.1

A k-tensor f defined on a vector space V is symmetric provided that $f(\vec{v}_1, \dots, \vec{v}_{i+1}, \vec{v}_i, \dots, \vec{v}_k) = f(\vec{v}_1, \dots, \vec{v}_i, \vec{v}_{i+1}, \dots, \vec{v}_k)$ A k-tensor f defined on a vector space V is alternating provided that $f(\vec{v}_1, \dots, \vec{v}_{i+1}, \vec{v}_i, \dots, \vec{v}_k) = -f(\vec{v}_1, \dots, \vec{v}_i, \vec{v}_{i+1}, \dots, \vec{v}_k)$

Theorem 0.11

Let V be an n-dimensional vector space with a basis $(\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_n)$. Let $I = (i_1, i_2, \cdots, i_k)$ be a k-tuple of integers from the set $\{1, 2, \dots, n\}$. There exists a unique k-tensor Φ_I on V such that for every k-tuple $M = (m_1, m_2, \dots, m_k)$ of integers from the set $\{1,2,\cdots,n\}$, we have $\Phi_I\left(\vec{a}_{m_1},\vec{a}_{m_2},\cdots,\vec{a}_{m_k},\right)=1$ if and only if I=M, and $\Phi_I\left(\vec{a}_{m_1},\vec{a}_{m_2},\cdots,\vec{a}_{m_k},\right)=0$ otherwise. For $f\in\mathcal{L}^k(V)$, we have $f=\sum_I f(\vec{a}_I)\Phi_I$, where we write $\vec{a}_I\coloneqq(\vec{a}_{m_1},\vec{a}_{m_2},\cdots,\vec{a}_{m_k},)$.

For $f \in \mathcal{L}^k(V)$ and $g \in \mathcal{L}^l(V)$, $f \otimes g : V^{k+l} \to \mathbb{R}$ $(\vec{v}_1, \vec{v}_2, \cdots \vec{v}_{k+l}) \mapsto f(\vec{v}_1, \vec{v}_2, \cdots, \vec{v}_k) \cdot g(\vec{v}_{k+1}, \vec{v}_{k+2}, \cdots, \vec{v}_{k+l})$ For $f \in \mathcal{L}^k(V)$, $h \in \mathcal{L}^m(V)$, and $g \in \mathcal{L}^l(V)$, and $c \in \mathbb{R}$, we have $(f \otimes g) \otimes h = f \otimes (g \otimes h)$, $(c \cdot f) \otimes g = c \cdot (f \otimes g) = f \otimes (c \cdot g), \ (f + g) \otimes h = f \otimes h + g \otimes h, \ f \otimes (g + h) = f \otimes g + f \otimes h.$

Let V and W be vector spaces, let $T: V \to W$ be a linear transformation. For $f \in \mathcal{L}^k(W)$, and $\vec{v}_1, \vec{v}_2, \cdots, \vec{v}_k \in V$, we define $T^*f: V^k \to \mathbb{R} \quad (\vec{v}_1, \vec{v}_2, \cdots, \vec{v}_k) \mapsto f(T(\vec{v}_1), T(\vec{v}_2), \cdots, T(\vec{v}_k)).$ $T^*(f \otimes g) = T^*f \otimes T^*g$ for all $f, g \in \mathcal{L}^k(W)$. $(S \circ T)^*f = T^*(S^*f)$ for all $f \in \mathcal{L}^k(W)$

Theorem 0.12

Let V be a vector space, there exists a function $W: \mathcal{A}^k(V) \times \mathcal{A}^l(V) \to \mathcal{A}^{k+l}(V)$ $(f,g) \mapsto f \wedge g$ such that $f \wedge g \in \mathcal{A}^{k+l}(V)$ for $f \in \mathcal{A}^k(V)$, $g \in \mathcal{A}^l(V)$, and satisfies all of the followings:

- 1. For $f \in \mathcal{A}^k(V)$, $g \in \mathcal{A}^l(V)$, and $h \in \mathcal{A}^m(V)$, we have $f \wedge (g \wedge h) = (f \wedge g) \wedge h$
- 2. For $f \in \mathcal{A}^k(V)$, $g \in \mathcal{A}^l(V)$, and scalar c, we have $(c \cdot f) \land g = c \cdot (f \land g) = f \land (c \cdot g)$
- 3. For $f, g \in \mathcal{A}^k(V)$ and $h \in \mathcal{A}^l(V)$, we have $h \wedge (f+g) = h \wedge f + h \wedge g$, and $(f+g) \wedge h = f \wedge h + g \wedge h$ 4. For $f \in \mathcal{A}^k(V)$ and $g \in \mathcal{A}^l(V)$, we have $g \wedge f = (-1)^{kl} \cdot f \wedge g$
- 5. Given a finite basis of V, let $(\Phi_i \mid 1 \leq i \leq n)$ be the corresponding dual basis for V^* , and let $(\Psi_I \mid I \text{ is an ascending } k\text{-tuple of integers in } \{1, 2, \cdots, n\})$ be the corresponding family of elementary alternating tensors. For ascending k-tuple $I=(i_1,i_2,\cdots,i_k)$ of integers in $\{1,2,\cdots,n\}$, we have $\Psi_I=\Phi_{i_1}\wedge\Phi_{i_2}\wedge\cdots\wedge\Phi_{i_k}$.
- 6. Let $T:V \to W$ be a linear transformation with W being a vector space, let f and g be alternating tensors on W, then we have $T^*(f \wedge g) = T^*f \wedge T^*g$.

Let [I] denote the set of ascending k-tuples of integers from $\{1, 2, \dots, n\}$. A k-form defined on an open subset U of \mathbb{R}^n is a continuous function $\omega: U \to \mathcal{A}^k(\mathbb{R}^n)$ $\vec{x} \mapsto \sum_{I \in [I]} b_I(\vec{x}) \Psi_I$ where b_I are continuous functions from U to \mathbb{R} . The degree of a k-form is k, denoted as $deg(\omega)$.

Let U be a subset of \mathbb{R}^n and let V be a subset of \mathbb{R}^l , let $\Phi: U \to V$ be a C^1 function, let ω be a k-form defined on V, then $\Phi^*\omega$ is a k-form defined on U given by $\Phi^*\omega: U \to \mathcal{A}^k(U)$ $\vec{x} \mapsto (D\Phi(\vec{x}))^*\omega(\Phi(\vec{x}))$ where we have $(D\Phi(\vec{x}))^*\omega(\Phi(\vec{x})): U^k \to U^k$ $\mathbb{R} \quad (\vec{u}_1, \vec{u}_2, \cdots, \vec{u}_k) \mapsto \omega(\Phi(\vec{x}))(D\Phi(\vec{x})(\vec{u}_1), D\Phi(\vec{x})(\vec{u}_2), \cdots, D\Phi(\vec{x})(\vec{u}_k)).$

$$d\left(\alpha \, dx_1 + \beta \, dx_2\right) = \left(\frac{\partial \beta}{\partial x_1} - \frac{\partial \alpha}{\partial x_2}\right) dx_1 \wedge dx_2 \qquad \qquad d\left(\sum_j b_j(\vec{x}) dx_j\right) = \sum_{j < k} \left(\frac{\partial b_j}{\partial x_j} - \frac{\partial b_j}{\partial x_k}\right) dx_j \wedge dx_k$$

A k-form ω is sad to be closed provided that we have $d\omega = 0$.

Let U be a subset of \mathbb{R}^k that is open in either \mathbb{R}^k or \mathbb{H}^k , and let ω be a k-form defined on an open subset U of \mathbb{R}^k given by $\omega: U \to \mathscr{A}^k(\mathbb{R}^k)$ $\vec{x} \mapsto f(\vec{x}) \, dx_1 \wedge dx_2 \wedge \cdots \wedge dx_k$, with f being continuous function on U. Then $\int_U \omega := \int_U f$ whenever $\int_U f$ exists. Let Y be a parametrized k-manifold in \mathbb{R}^n parametrized by $\alpha: U \to Y$, let ω be a k-form defined on open subset of \mathbb{R}^n containing Y, we define $\int_{Y_\alpha} \omega := \int_U \alpha^* \omega$.

Lemma 0.12.1

Let U be a subset of \mathbb{R}^l and let V be a subset of \mathbb{R}^n , let $\Phi: U \to V$ be a C^1 function, let ω be a k-form defined on V given by equation (W), we have $d(\Phi^*\omega) = \Phi^*d\omega$.

Let M be a k-manifold in \mathbb{R}^n . Given coordinate path $\alpha_i: U_i \to V_i$ on M for i = 0, 1, we say α_1, α_0 overlap if $V_0 \cap V_1 \neq \emptyset$. We say α_1, α_0 overlap positively provided that the transition function $\alpha_1^{-1} \circ \alpha_0$ is orientation preserving. Let M be a k-manifold in \mathbb{R}^n . M is said to be orientable provided that M can be covered by a collection of coordinate patches such that each pair of coordinate patches overlap positively, if they overlap at all. M is said to be non-orientable if it cannot be covered by such collection of coordinate patches. Given a collection of coordinate patches covering M that overlap positively, adjoin to this collection all other coordinate patches on M that overlap these patches positively, denote such collection as O. O is called an orientation on M. A coordinate patch α on M is said to be orientation preserving provided that α overlaps any one of the coordinate patches in O positively. Otherwise α is said to be orientation reversing.

Let M be an oriented 1-manifold in \mathbb{R}^n . Choose a coordinate patch $\alpha_{\vec{p}}:U\to V$ on M about \vec{p} belonging to the given orientation of $M, \vec{T}: M \to \mathbb{R}^n \times \mathbb{R}^n$ $\vec{p} \mapsto (\vec{p}; \frac{D\alpha_{\vec{p}}(t_0)}{||D\alpha_{\vec{p}}(t_0)||})$, where $\alpha_{\vec{p}}(t_0) = \vec{p}$. \vec{T} is called the unit tangent field corresponding to the orientation of M.

Let M be an oriented (n-1)-manifold in \mathbb{R}^n , let $\vec{p} \in M$, let $\alpha: U \to V$ be a coordinate patch on M about \vec{p} belonging to the given orientation of M, denote $\alpha(\vec{x}) = \vec{p}$. Let $(\vec{p}; \vec{n}(\vec{p}))$ be a unit vector in the n-dimensional vector space $\mathcal{T}_{\vec{p}}(\mathbb{R}^n)$ that is orthogonal to the (n-1)-dimensional linear subspace $\mathcal{T}_{\vec{p}}(M)$ such that the matrix $[\vec{n}(\vec{p}) \quad D\alpha(\vec{x})]$ has positive determinant. $\vec{N}: M \mapsto \mathbb{R}^n \times \mathbb{R}^n \quad \vec{p} \mapsto (\vec{p}; \vec{n}(\vec{p}))$ is called the unit normal field to M corresponding to the orientation of M.

Let M be an n-manifold in \mathbb{R}^n . The natural orientation of M consists of all coordinate patches α on M for which $\det(D\alpha(\vec{x})) > 0$ for all \vec{x} in the definition of domain of α .

Let M be an orientable k-manifold with nonempty manifold boundary ∂M . If k is even, the corresponding induced orientation of ∂M is the orientation obtained by restricting coordinate patches belonging to O. If k is odd, the corresponding induced orientation of ∂M is the opposite of the orientation of ∂M obtained by restricting coordinate patches belonging to O.

Let M be an oriented k-manifold in \mathbb{R}^n , let $\alpha: U \to V$ be a coordinate patch on M belonging to the given orientation, with $\alpha(\vec{q}) = \vec{p} \in M$, let ω be a k-form defined on an open subset of \mathbb{R}^n containing M. We can write $\alpha^*\omega = f(\vec{x}) dx_1 \wedge dx_2 \wedge \cdots \wedge dx_k$ for some 0-form f defined on the definition of domain of ω . ω is said to be positive for M at \vec{p} provided that $f(\vec{p}) > 0$, ω is said to be negative for M at \vec{p} provided that $f(\vec{p}) < 0$, and ω is said to be integral for M at \vec{p} provided that $f(\vec{p}) = 0$. M is integral manifold for ω provided that ω is integral for M at \vec{p} for all $\vec{p} \in M$.

Theorem 0.13 (Theorem 36.2 on Munkres)

Let M be a compact oriented k-manifold in \mathbb{R}^n , let ω be a k-form defined in a open subset of \mathbb{R}^n containing M, and let λ $\vec{p} \mapsto \omega(\vec{p})((\vec{p}; \vec{a}_1), (\vec{p}; \vec{a}_2), \cdots, (\vec{p}; \vec{a}_k))$ where, for $\vec{p} \in M$, the family be the scalar function on M defined by $\lambda: M \to \mathbb{R}$ $((\vec{p}; \vec{a}_1), (\vec{p}; \vec{a}_2), \cdots, (\vec{p}; \vec{a}_k))$ forms an orthonormal frame in the linear space $\mathcal{T}_{\vec{p}}(M)$ belonging to the given orientation of M. Then λ is continuous, and we have $\int_M \omega = \int_M \lambda \, dV$.

Lemma 0.13.1 (Lemma 25.2 on Munkres)

Let M be a compact k-manifold in \mathbb{R}^n of class C^r . Given a covering \mathscr{C} of M by coordinate patches, there exists a finite collection of C^{∞} functions from \mathbb{R}^n to \mathbb{R} , denoted as $P = \{\phi_1, \phi_2, \cdots, \phi_l\}$, such for each $1 \leq i \leq l$, ϕ_i has compact support and there exists a coordinate patch $\alpha_i: U_i \to V_i$ in the collection $\mathscr C$ such that we have $supp(\phi_i) \cap M \subseteq V_i$, $\phi_i(\vec{x}) \geq 0$ for all $\vec{x} \in \mathbb{R}^n$, and $\sum_{i=1}^l \phi_i(\vec{x}) = 1$ for all $\vec{x} \in M$.

Definition 0.13.1.0.1

Let M be a compact oriented k-manifold in \mathbb{R}^n , along with orientation O on M. Take \mathscr{C} to be a finite collection of coordinate patches in O that cover M, denoted as $C = \{\alpha_1, \alpha_2, \cdots, \alpha_N\}$. One can use partition of unity to write $\omega = \sum_{j=1}^N \omega_j$ such that the support of each ω_j is a subset of V_j , where V_j is the codomain of a coordinate patch $\alpha_j : U_j \to V_j$ in C. Here we define $\int_M \omega = \sum_{j=1}^N (\int_{(V_j)_{\alpha_j}} \omega_j)$

Theorem 0.14 (The Generalized Stokes' Theorem)

Let k > 1, let M be a compact oriented k-manifold in \mathbb{R}^n , with ∂M having the induced orientation if ∂M is not empty, let ω be a (k-1)-form defined in an open set of \mathbb{R}^n containing M, then we have $\int_M d\omega = \int_{\partial M} \omega$ if ∂M is not empty, and we have $\int_{\partial M} \omega = 0$ if ∂M is empty.

Exterior Calculus	Vector Calculus
Exterior derivative operator d	Del operator $\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)$
0-form k define on \mathbb{R}^2	Scalar field k of C^1 type defined on \mathbb{R}^2
1-forms $\omega = \alpha dx + \beta dy$	Vector field \vec{F}
2-forms $f dx \wedge dy$ defined on \mathbb{R}^2	Scalar field f
1-form ω wedged with 1-form η	Scalar field det $([\vec{F}_1\vec{F}_2])$ with \vec{F}_1, \vec{F}_2 being vector fields
$df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$	Gradient of f , grad $(f) := \nabla f = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right) f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$
$d(\alpha dx + \beta dy) = \left(\frac{\partial \beta}{\partial x} - \frac{\partial \alpha}{\partial y}\right) dx \wedge dy$	Curl of \vec{F} , curl $(\vec{F}) \coloneqq \left(\frac{\partial \beta}{\partial x} - \frac{\partial \alpha}{\partial y}\right)$
$\int_{M_1} \omega$	$\int_{M_1} \left\langle \vec{F}, d \vec{l} \right angle = \int_{M_1} \left\langle \vec{F}, \vec{T} \right angle dV$
$\int_{M_1} df = \Delta_{M_1} f$	$\int_{M_1} \left\langle abla f, ec{T} ight angle = \Delta_{M_1} f$
$\int_{M_2} f dx \wedge dy = \int_{M_2} f$	$\int_{M_2} f$
$\int_{M_2} f dx \wedge dy = \int_{M_2} f$ $\int_{\partial M_2} \omega = \int_{M_2} d\omega$	Circulation of \vec{F} along ∂M_2 , $\int_{M_2} \operatorname{curl}(\vec{F})$

¹ Here we define: $d\vec{l} := (dx, dy)$. Since we have $\vec{F}(\vec{x}) = (\alpha(\vec{x}), \beta(\vec{x}))$, so we have $d\vec{l} = \vec{T} dV$.

Lemma 0.14.1 (Lemma 38.1 on Munkres)

Let M be a compact oriented 1-manifold in \mathbb{R}^n , and let \vec{T} be the unit tangent vector to M corresponding to the given orientation of M. Let \vec{F} be a vector field defined in \mathbb{R}^n and let ω be the 1-form corresponds to \vec{F} . Then $\int_M \omega = \int_M \left\langle \vec{F}, \vec{T} \right\rangle dV$

Lemma 0.14.2 (Lemma 38.5 on Munkres)

Let M be a compact oriented (n-1)-manifold in \mathbb{R}^n , and let \vec{N} be the corresponding unit normal vector field, let \vec{F} be a vector field defined on open $A \subseteq \mathbb{R}^n$ that contains M, and let ω be the (n-1)-form corresponds to \vec{F} , then $\int_M \omega = \int_M \left\langle \vec{F}, \vec{N} \right\rangle dV$

Lemma 0.14.3 (Lemma 38.6 on Munkres)

Let M be a compact n-manifold in \mathbb{R}^n , oriented naturally, and let $\omega = h dx_1 \wedge dx_2 \wedge \cdots \wedge dx_n$ be an n-form defined on an open set of \mathbb{R}^n containing M, with h being the scalar field corresponds to ω , then $\int_M \omega = \int_M h dV$

Theorem 0.15 (The Divergence Theorem)

Let M be a compact n-manifold in \mathbb{R}^n , let \vec{N} e the unit normal vector field to ∂M that points outwards from M, and let \vec{F} be a vector field defined on an open subset of \mathbb{R}^n containing M, then we have $\int_M div(\vec{F}) \, dV = \int_{\partial M} \left\langle \vec{F}, \vec{N} \right\rangle \, dV$

Theorem 0.16 (Stokes' Theorem for 2-manifold in \mathbb{R}^3)

Let M be a compact oriented 2-manifold in \mathbb{R}^3 , let \vec{N} be a unit normal field to M corresponding to the orientation of M, and let \vec{F} be a vector field of C^{∞} type defined on an open subset of \mathbb{R}^3 containing M. If ∂M is empty, then $\int_M \left\langle \operatorname{curl}(\vec{F}), \vec{N} \right\rangle dV = 0$. If ∂M is nonempty, let \vec{T} be the unit tangent vector field to ∂M chosen such that $\vec{N}(\vec{p}) \times \vec{T}(\vec{p})$ points into M from $\vec{p} \in \partial M$, then $\int_M \left\langle \operatorname{curl}(\vec{F}), \vec{N} \right\rangle dV = \int_{\partial M} \left\langle \vec{F}, \vec{N} \right\rangle dV$

Proposition 0.16.1

Let ω be an alternating k-tensor with k being an odd number. Show that for any alternating l-tensor $\hat{\omega}$, we have $\omega \wedge \hat{\omega} \wedge \omega = 0$.

Theorem 0.17 (Cauchy's Estimate)

Let $z_0 \in \mathbb{C}$ be given, let r > 0 be given, let f be a holomorphic function defined on $D = \{z \in \mathbb{C} \mid |z - z_0| < r\}$ with |f(z)| < M for all $z \in D$. Then we have $|f'_{\mathbb{C}}(z_0)| \leq \frac{M}{r}$.

${\bf Theorem~0.18~(Liouville's~Theorem)}$

Let f be a holomorphic function on \mathbb{C} . If $f(\mathbb{C})$ is a bounded set, then f is a constant function.

1-form ω	Integrating factor $B(x,y)$
$-\alpha(x)\beta(y)dx + dy$	$1/\beta(y)$
$-(\beta(x)y + \gamma(x)) dx + dy$	$\exp(-\int \beta(x) dx)$
$-\beta(y/x)dx + dy$	$1/(y-x\beta(y/x))$