Licence Math 2ème année

Épreuve du Mars 2017

(Les calculatrices et les documents sont interdits. Les téléphones portables doivent être éteints)

Exercice 1 (Questions de cours)

- 1. Soient (E, N) et (E', N') deux espaces vectoriels normés, A un sous ensemble de E, a un point de A et $f: A \to E'$ une application continue en a. Montrer que pour toute suite $(a_n)_n$ de A convergeant vers a, la suite $(f(a_n))_n$ converge vers f(a).
- 2. Soit (E, N) un espace vectoriel normé et A un sous-ensemble compact de E. Montrer que si B est un fermé, $B \subset A$, alors B est compact.

Exercice 2

On munit \mathbb{R}^2 de l'une quelconque des normes équivalentes $\|\cdot\|_1, \|\cdot\|_2, \|\cdot\|_{\infty}$.

- 1. Soit $A = \{(x, y) \in \mathbb{R}^2; x^2 + y^2 \le 1 \text{ et } x \ne 0\}.$
 - (a) Dessiner A.
 - (b) L'ensemble A est-il ouvert? Est-il fermé? Justifier.
 - (c) Déterminer l'adhérence de A.
 - (d) L'ensemble A est-il compact?
 - (e) L'ensemble A est-il connexe par arcs?
- 2. (a) On note pour tout n dans \mathbb{N}^* , U_n la boule ouverte de centre $(\frac{1}{n}, 0)$ de rayon 2^{-n} . Est-ce que $U = \bigcup_{n=1}^{+\infty} U_n$ est ouvert? Justifier.
 - (b) On note pour tout n dans \mathbb{N}^* , F_n la boule fermée de centre $(\frac{1}{n}, 0)$ de rayon $\frac{1}{2n}$. Est-ce que $F = \bigcup_{n=1}^{+\infty} F_n$ est fermé? Justifier.

Exercice 3

Soient U l'ouvert de \mathbb{R}^2 donné par $U=\mathbb{R}^2-\{(0,y);y\in\mathbb{R}\}$ et f la fonction $f:\mathbb{R}^2\to\mathbb{R}$ définie par

$$f(x,y) = x \operatorname{Arctg}\left(\frac{y}{x}\right)$$
, si $x \neq 0$ et $f(0,y) = 0$.

- 1. Montrer que f est continue sur U.
- 2. Est-ce que f est continue sur \mathbb{R}^2 ? Justifier.

3. On définit pour (x,y) dans $V=U-\{(x,0);x\in\mathbb{R}\},\ g(x,y)=\frac{x}{y}\mathrm{Arctg}\left(\frac{y}{x}\right)$. Soit $A=V\cup\{(0,0)\}$. Peut-on trouver $\lambda\in\mathbb{R}$ tel que la fonction h définie sur A par h(x,y)=g(x,y) si $(x,y)\in V,\ h(0,0)=\lambda$ soit continue en (0,0)? Justifier.

Exercice 4

Soient a, b, c trois points sur \mathbb{R}^p et N une norme sur \mathbb{R}^p . On considère l'application suivante $f: \mathbb{R}^p \to \mathbb{R}$, définie par

$$f(x) = N(x - a) + N(x - b) + N(x - c).$$

- 1. Soit B la boule fermée de centre a de rayon f(a). Montrer que f admet un minimum en un point x_0 de B.
- 2. Montrer que pour tout x dans le complémentaire de B, on a $f(x) \ge f(a)$.
- 3. En déduire que f admet un minimum sur \mathbb{R}^p en x_0 .