Valentinno Cruz Homework Assignment 2 Feb. 22nd, 2021

1. Logical Identities

1.
$$\neg(p \to (q \to p))$$

• Solution

- 1. $\neg(p \rightarrow (q \rightarrow p))$ 2. $\neg(\neg p \lor (\neg q \lor p)) - Implication$ 3. $\neg(\neg p) \land \neg(\neg q \lor p) - Demorgan$ 4. $\neg(\neg p) \land \neg(\neg q) \land \neg p - Demorgan$ 5. $p \land q \land \neg p - Double.Negation$ 6. $p \land \neg p \land q - rearranged$ We know $\neg p \land p \equiv False$ also $False \land q$ $\therefore False \equiv q$
- 2. $\neg((p \land q) \rightarrow (q \lor p))$

• Solution

- $\begin{array}{l} 1. \ \neg((p \wedge q) \rightarrow (q \vee p)) \\ 2. \neg(p \wedge q) \vee (q \vee p) Implication \\ 3. \neg p \vee \neg q \vee (q \vee p) Demorgan \\ 4. (\neg p \vee p) \vee (\neg q \vee q) Associative \\ \text{We know p} \vee \neg p \equiv T \end{array}$
- $\therefore True \equiv True$

2. Logical Consequence

1. Jimmy is smart Smart people are rich

Jimmy is rich

• Solution

- 1. Jimmy is smart
- 2. Jimmy $\rightarrow Smart$
- 3. Smart people are rich
- 4. $Smart \rightarrow Rich$
- 5. $Jimmy \rightarrow Rich$

2. Islands are surrounded by water Puerto Rico is surrounded by water

Puerto Rico is an island

• Solution

- 1. Islands are surrounded by water
- 2. Island $\rightarrow Surrounded$ by water
- 3. Puerto Rico is surrounded by water
- 4. $PuertoRico \rightarrow Surroundedbywater$
- 5. $PuertoRico \rightarrow Island$

3. Translating English Sentences into Formulas

S(x): x is a student in CSE015

M(x): x plays a musical instrument

Domain: Set of all people

1. Not every student in CSE015 plays a musical instrument.

Solution: $\neg(\forall x(S(x) \to M(x)))$

2. A person is either a student in CSE015 or plays a musical instrument, but not both..

Solution: $\exists x (S(x) \oplus M(x))$

3. There exists at least one student in CSE015 who does not play a musical instrument..

Solution: $\exists ((S(x) \land \neg M(x)))$

4. Logical Equivalence

$$\forall x (A(x) \land B(x)) \equiv \forall x (A(x) \rightarrow B(x))$$

Solution

$$\begin{vmatrix} A(x) & B(x) & A(x) \wedge B(x) & A(x) \rightarrow B(x) \\ T & T & T & T \\ T & F & F & F \\ F & T & F & T \\ F & F & F & T \end{vmatrix}$$

$$A(x) \land B(x) \neq A(x) \rightarrow B(x)$$

5. Nested Quantifiers

A(x,y) is the statement xy=0; B(x,y) is the statement x+y=0.

a. $\exists x \forall y A(x,y)$

Solution:

 $if \ x = 0$ $then \ \forall y A(x, y) \equiv True$ $\therefore True$

b. $\exists x \forall y A(x,y)$

Solution:

 $\exists x \exists y B(x, y)$ for y=-x if y = 2, then x = -2 then $B(x,y)\equiv True$

c. $\forall x \exists y A(x,y)$

Solution:

if y = 0then $\forall x A(x,y) \equiv True$ $\therefore True$

d. $\exists x \forall y (A(x,y) \land B(x,y))$

Solution:

A(x,y) is true true, when x=0, y=0 or x and y=0 B(x,y) is true true, when x=0, y=0 or x=-y however when x=-y, A(x,y) \neq true but this is not \forall y $\therefore \exists x \forall y (A(x,y) \land B(x,y)) \equiv False$

e.
$$\exists x \forall y (A(x,y) \land \neg B(x,y))$$

Solution:

for x or y = 0, then A(x,y) and
$$\neg$$
B(x,y) \equiv True $\therefore \exists x \forall y (A(x,y) \land \neg B(x,y)) \equiv True$