C2000 DSP教学实验箱使用说明书 (DEC2812实验套件)

北京闻亭科技发展有限责任公司

第1章 概述

在使用本产品前,请仔细阅读本使用说明书。

本说明书是TMS320F2812嵌入式DEC2812实验套件的硬件使用说明书,详细描述了DEC2812硬件构成、原理,以及它的使用方法。

1. DEC2812板的原理框图

2. DEC2812的外扩展资源和扩展接口

- ◆ DSP_JTAG接口(JP1): 通过本接口与DSP仿真器连接,用户可进行 在线仿真
- ◆ CPLD_JTAG接口(JP2):通过本接口与PC机连接,可改变CPLD内容 (用户一般不能修改)
- ◆ USB接口(JP3):标准USB接口,通过本接口可与PC机进行数据交换
- ◆ RS232/RS485接口(JP4): 通过本接口可与RS232/RS485设备连接
- ◆ CAN接口(JP5): 通过本接口可与CAN设备连接
- ◆ FIFO_I/O接口(JP9):外接FIFO存储器接口,通过本接口用户可读写 FIFO数据
- ◆ I/O接口(JP10):外扩10路开出(PWM)接口,8路开入接口

- ◆ LCD接口 (JP11): 240*128 LCD接口
- ◆ 键盘接口(JP12): 19键非标自定义键盘接口
- ◆ 模拟信号输入接口(INPUT1、INPUT2): 片内12bit ADC
- ◆ 模拟信号输出接口(OUT2、OUT3): 片外16bit DAC
- ◆ 同步信号接口(OUT1): 模拟输出的同步信号,一般接示波器外触发端

第2章 入门

1. 特点

- ◆ 采用32位定点DSP TMS320F2812(150MHz)
- ♦ 片上存储器
 - ➤ FLASH 128K*16位
 - ➤ SRAM 18K*16位
 - ➤ BOOT ROM 4K*16 位
 - ➤ OPT ROM 1K*16位

其中FLASH、OPT ROM和8K*16位SRAM受口令保护,可保护用户程序。

- ◆ 片上外设
 - ➤ PWM 12路
 - ➤ QEP 6通道
 - ▶ ADC 2*8通道, 12位, 80ns转换时间, 0~3V输入量程
 - ➤ SCI异步串口2通道
 - ➤ MCBPS同步串口1通道
 - ➤ CAN 1通道
 - ➤ SPI同步串口1通道
- ◆ 外扩SRAM, 256K*16位
- ♦ 外扩双端口SRAM, 4K*16位
- ◆ 外扩FIFO存储器, 64K*8位
- ◆ 外扩USB接口,符合USB2.0接口规范
- ◆ 外扩CAN接口,符合CAN2.0接口规范
- ♦ 外扩两路DAC
- ◆ 8只数码管、6只LED
- ◆ 外扩图形LCD接口, 240*128
- ♦ 外扩键盘, 19键
- ◆ 外扩1路RS232接口, 1路RS485接口

- ◆ 外扩10路开出(PWM)接口,8路开入接口
- ◆ 提供上电复位、手动复位、电源检测、看门狗,系统可靠、稳定
- ◆ 标准的JTAG接口, 方便调试

2. 概述

在DEC2812的系统中主要集成了DSP、SRAM、ADC、DAC、FIFO、PWM、UART、SPI、CAN、USB、LCD、LED以及键盘电路等,这样能够完成如下实验内容:

- ♦ DSP对片外SRAM/FIFO操作实验
- ◆ ADC/DAC实验
- ◆ 定时器实验
- ♦ 数字I/O实验
- ♦ SPI实验
- ♦ FFT实验
- ♦ FIR/IIR实验
- ◆ SCI (UART) 实验
- ♦ CAN实验
- ♦ USB实验
- ◆ LED跑马灯实验
- ♦LCD、数码管、键盘实验

3. 技术指标

- ◆ 主处理器: TMS320F2812, 主频150MHz
- ◆ SRAM 片内: 18K*16位,0等待 片外SRAM: 256K*16位,15ns 片外双端口SRAM: 4K*16位,15ns 片外FIFO: 64K*8位,25ns
- ◆ FLASH 片内: 128K*16位, 36ns
- ◆ ROM 片内: BOOT ROM 4K*16位

片内: OPT ROM 1K*16位, 36ns

- ◆ ADC: 2通道, 12位分辨率, 80ns转换速率, ±2Vph输入量程
- ◆ DAC: 2通道, 16位分辨率, 30ns转换速率, ±2V_{PP}输出
- ◆ SCI异步串口1通道RS232, 1通道RS485,
- ◆ CAN总线1通道,符合CAN2.0规范,最高传输速率1Mbps
- ◆ USB 1通道,符合USB2.0规范,最高传输速率480Mbps
- ◆ 扩展输入(8路)输出(10路PWM)接口,接口电平+5.0V
- ◆ 供电: 220V/50Hz
- **→** 工作温度: 0~70℃

第3章 TMS320F2812的基本系统

1. 时钟电路

DEC2812用30MHz外部晶体给DSP提供时钟,并使能F2812 片上PLL电路。PLL倍频系数由PLL控制寄存器PLLCR的低4位控制,可由软件动态的修改。外部复位信号(RS)可将此4位清零(CCS中的复位命令将不能对这4位清零)。F2812的CPU最高可工作在150MHz的主频下,也即是对30MHz输入频率进行5倍频。

2. 存储空间的配置

F2812为哈佛结构的DSP, 在逻辑上有4M*16位的程序空间和4M*16位数据空间, 但在物理上已将程序空间和数据空间统一成一个4M*16位的空间。

F2812片上有128K*16位的FLASH,18K*16位的SRAM,4K*16位的BOOT ROM,1K*16位的OTP ROM。

DEC2812的模板上还外扩了256K*16位SRAM、4K*16位双端口SRAM和64K*8位FIFO存储器,另外还外扩了若干个控制状态接口。这些存储体在存储空间中的映射如下表所示。

地址范围	数据空间	程序空间	备注
0x00,0000	1K×16位	1K×16位	
0x00,03FF	片上 M0 SARAM	片上 M0 SARAM	
0x00,0400	1K×16位	1K×16位	
0x00,07FF	片上 M1 SARAM	片上 M1 SARAM	
0x00,0800 0x00,0FFF	2K×16位 片上外设寄存器块 0	2K×16 位 保留	片上外设寄存器块0的具 体 定 义 参 见 F2812 的 Data Sheet
0x00,1000	4K×16 位	4K×16 位	
0x00,1FFF	保留	保留	
0x00,2000	16K×16位	16K×16位	占 Z one0和1
0x00,5FFF	外扩控制/状态寄存器	外扩控制/状态寄存器	
0x00,6000	4K×16位	4K×16位	片上外设寄存器块1的具体 定义参见 F2812 的DataSheet
0x00,6FFF	片上外设寄存器块 1	保留	
0x00,7000 0x00,7FFF	4K×16位 片上外设寄存器块 2	4K×16 位 保留	片上外设寄存器块2的具 体 定 义 参 见 F2812 的 DataSheet
0x00,8000	4K×16位	4K×16位	受密码保护
0x00,8FFF	片上 L0 SARAM	片上 L0 SARAM	
0x00,9000	4K×16位	4K×16位	受密码保护
0x00,9FFF	片上 L1 SARAM	片上 L1 SARAM	
0x00,A000	512K-40K×16位	512K-40K×16位	
0x07,FFFF	保留	保留	
0x08,0000	4K×16位	4K×16位	占Zone 2
0x08,0FFF	外扩 双口SRAM	外扩 双口SRAM	
0x10,0000	256K×16位	256K×16位	占Zone 6
0x13,FFFF	外扩 SRAM	外扩 SRAM	
0x14,0000	64K×16位	64K×16位	占Zone 6
0x14,FFFF	外扩 FIFO	外扩 FIFO	
0x18,0000	2M+350K×16位	2M+350K×16位	
0x3D,77FF	保留	保留	
0x3D,7800	1K×16位	1K×16位	受密码保护
0x3D,7BFF	片上 OTP ROM	片上 OTP ROM	
0x3D,7C00	1K×16位	1K×16 位	
0x3D,7FFF	保留	保留	

0x3D,8000	128K×16 位	128K×16 位	受密码保护
0x3F,7FFF	片上 FLASH	片上 FLASH	
0x3F,8000	8K×16位	8K×16位	
0x3F,9FFF	片上 H0 SARAM	片上 H0 SARAM	
0x3F,A000	8K×16位	8K×16位	
0x3F,BFFF	保留	保留	
0x3F,C000	12K×16 位	12K×16 位	当MP/MC = 0
0x3F,EFFF	保留	保留	
0x3F,F000	4K×16位	4K×16位	当MP/MC = 0
0x3F,FFFF	片上 Boot ROM	片上 Boot ROM	
0x3F,C000	16K×16位	16K×16位	占Zone 7,当MP/MC=1,
0x3F,FFFF	外扩 SRAM	外扩 SRAM	占外扩SRAM的高16K

这些存储体的访问速度如下表所示。

地址范围	存储体	等待时间	备注
0x00,0000 0x00,07FF	片上M0、M1 SARAM	0等待	不可编程
0x00,0800 0x00,0FFF	片上外设寄存器块 0	0等待	不可编程
0x00,2000 0x00,5FFF	外扩控制/状态寄存器	可编程 最少1个等待	由XTINMING0或1寄存器 编程
0x00,6000 0x00,6FFF	片上外设寄存器块 1	0等待(写) 2等待(读)	
0x00,7000 0x00,7FFF	片上外设寄存器块 2	0等待(写) 2 等待(读)	不可编程
0x00,8000 0x00,9FFF	片上 L0、L1 SARAM	0	不可编程
0x08,0000 0x08,0FFF	外扩双端口SRAM	15ns 最少 2 个等待	由XTINMING2寄存器编程
0x10,0000 0x13,FFFF	外扩 SRAM	15ns 最少 2 个等待	由XTINMING6寄存器编程
0x14,0000 0x14,FFFF	外扩 FIFO	25ns 最少 4 个等待	由XTINMING6寄存器编程

0x3D,7800 0x3D,7BFF	片上 OTP ROM	可编程 最少1个等待	通过FLASH寄存器编程
0x3D,8000 0x3F,7FFF	片上 FLASH	可编程 最少0个等待	通过 FLASH 寄存器编程
0x3F,8000 0x3F,9FFF	片上 H0 SARAM	0等待	不可编程
0x3F,F000 0x3F,FFFF	片上 Boot ROM	1等待	当MP/MC=0 不可编程
0x3F,C000 0x3F,FFFF	外扩 SRAM	15ns 最少2个等待	当MP/MC = 1 由XTINMING7寄存器编程

F2812外部存储器接口包括: 19位地址线,16位数据线,3个片选控制线及读写控制线。这3个片选线映射到5个存储区域,Zone0、Zone1、Zone2、Zone6和Zone7。其中,Zone0和Zone1共用1个片选线XCS0&1,Zone6和Zone7共用1个片选线XCS6&7。这5个存储区域可分别设置不同的等待周期。

Zone0 存储区域: 0X002000~0X003FFF, 8K*16位

Zone1 存储区域: 0X004000~0X005FFF, 8K*16位

Zone2 存储区域: 0X080000~0X0FFFFF, 512K*16位

Zone6 存储区域: 0X100000~0X17FFFF, 512K*16位

Zone7 存储区域: 0X3FC000~0X3FFFFF, 16K*16位

F2812的外部存储器接口XINTF的详细说明和编程操作请参考《TMS320F28X External Interface(XINTF) Reference Guide》

3. 外部扩展的控制/状态寄存器

DEC2812上配置有LED、USB接口、LCD、DAC接口、控制寄存器和状态寄存器等,它映射在F2812的Zone0&1存储空间中,具体的定义如下:

功能/名称	地址/区域	操作	访问周期
LED8	0х002000Н	8位,只写	Ts=6.67ns,Tw=10ns,Th=0ns
LED7	0x002100H	8位,只写	Ts=6.67ns,Tw=10ns,Th=0ns
LED6	0х002200Н	8位,只写	Ts=6.67ns,Tw=10ns,Th=0ns

LED5	0х002300Н	8位,只写	Ts=6.67ns,Tw=10ns,Th=0ns
LED4	0x002400H	8位,只写	Ts=6.67ns,Tw=10ns,Th=0ns
LED3	0x002500H	8位,只写	Ts=6.67ns,Tw=10ns,Th=0ns
LED2	0x002600H	8位,只写	Ts=6.67ns,Tw=10ns,Th=0ns
LED1	0х002700Н	8位,只写	Ts=6.67ns,Tw=10ns,Th=0ns
USB	0x002800~0x0028FFH	16位,读/写	Ts=10ns,Tw=50ns,Th=70ns
DAC1	0х002900Н	16位,只写	Ts=10ns,Tw=10ns,Th=5ns
LCD	0x002A00H、0x002A01H	8位,读/写	Ts=10ns,Tw=50ns,Th=70ns
LED数据更新	0x002C00H	写任意数	Ts=6.67ns,Tw=10ns,Th=0ns
状态寄存器	0x002D00H	8位,只读	Ts=6.67ns,Tw=10ns,Th=0ns
控制寄存器	0x002D00H	8位,只写	Ts=6.67ns,Tw=10ns,Th=0ns
FIFO复位	0x002E00H	写任意数	Ts=6.67ns,Tw=10ns,Th=0ns

注: Ts为建立时间; Tw为读/写宽度; Th为保持时间。 LED为8段数码管; DAC1为16bit高速DAC。

4. 外部扩展输入输出

a. 外扩10路开出(PWM)和8路开入

输入信号	DSP_GPIO	输出信号	DSP_GPIO
DIN0	GPIOA8	DOUT0	GPIOA00
DIN1	GPIOA9	DOUT1	GPIOA01
DIN2	GPIOA10	DOUT2	GPIOA02
DIN3	GPIOA11	DOUT3	GPIOA03
DIN4	GPIOA12	DOUT4	GPIOB0
DIN5	GPIOA13	DOUT5	GPIOB1
DIN6	GPIOA14	DOUT6	GPIOB2
DIN7	GPIOA15	DOUT7	GPIOB3
		DOUT8	GPIOB4
		DOUT9	GPIOB5

b. 发光二极管

6只发光二极管对应连接(低电平有效):

I1	I2	I3	I 4	I5	I 6
GPIOF8	GPIOF9	GPIOF10	GPIOF11	GPIOF12	GPIOF13

c. 数码管

LED1~LED8分别对应0x002700H、0x002600H、0x002500H、0x002400H、0x002300H、0x002200H、0x002100H和0x002000H地址,将数据通过BCD译码后,送入上述地址,然后发出更新命令(在0x002C00H写任意数)即可。

5. SRAM存储空间映射

DEC2812上有3个外扩的SRAM/15ns、双口SRAM/15ns和FIFO/25ns,配置分别为256K*16位、4K*16位和64K*8位,分别被映射到F2812的Zone6和Zone7存储空间和Zone2存储空间。F2812的Zone6的空间大小为512K*16位,当配置SRAM的容量小于512K*16位,在逻辑上将以SRAM的容量在Zone6空间上反复映射,而在物理上只有SRAM的容量大小,同时逻辑上SRAM也被映射到Zone7的存储空间上,F2812Zone7存储空间大小为16K*16位,对应的地址范围为0X3FC000H~0X3FFFFFH。所以当SRAM逻辑上被映射到Zone7存储空间上时,实际上将寻址SRAM的高16K*16位物理存储空间。

6. SPI

DEC2812上有一个SPI同步串口,在DEC2812板上板内和串行 EEPROM AT25080作无缝接口。

7. SCI

DEC2812上有两个SCI异步串口,经RS485和RS232电平转换芯片连接到JP4,提供外部使用。 RS485接F2812的SCI_B,收发由GPIOB6引脚控制,GPIOB6=0,发送,GPIOB6=1,接收;RS232接F2812的SCI_A。

8. CAN

DEC2812上有一个增强型的CAN总线控制器,符合CAN2.0接口规范,数据传输

率高达1Mbps,经CAN收发器驱动后连接到JP5,提供外部使用。

9. 复位与中断

F2812复位时,终止所有的当前操作,使CPU进入已知的初始状态,刷新流水线操作,复位所有的CPU寄存器,复位相关的信号的状态。复位完成后,CPU 从 0x3FFFC0H处取复位向量到PC寄存器中,然后开始执行程序。如果XMP/MC引脚为低电平,则程序空间高16K*16位映射为片上Boot ROM,片上Boot ROM在 0x3FFFC0H单元中存放0x3FFC00H,也即程序将从片上Boot ROM的0x3FFC00H处开始执行,片上Boot ROM 中0x3FFC00H起始的1K*16位存储空间中存放的是 Boot Loader程序。如果XMP/MC引脚为高电平,则程序空间高16K*16位映射为片外 Zone7,用户应该在Zone7的0x3FFFC0H处存放CPU中断向量表。

在JP6上插上短路块,F2812则工作在MC方式,上电从片内Boot ROM中执行程序,GPIOF04/SCI_TXDA片内已上拉,则选中Jump to Flash Boot方式,程序将跳转到片内Flash的0x3F7FF6H 处,在0x3F7FF6H存放跳转指令,跳转到实际的应用程序中,应用程序首先初始化PIE中断向量表,然后使能 PIE。注意用Jump to Flash Boot方式时,没有停止片内看门狗电路,所以应在规定的时间内刷新看门狗电路,否则将导致看门狗溢出,产生复位。

在DEC2812板上有四个复位源:上电复位、手动复位(按键K1)、看门狗电路与电源监测。 任何一个复位有效,将导致整个系统复位。

F2812有3个中断引脚: XINT1, XINT2和XNMI_INT13, 每个中断可配置为上升沿或下降沿触发, 也可以被使能或禁止。DEC2812板上只用到XINT2, 为USB中断。

10. F2812工作方式的配置

DEC2812由JP6选择DSP工作模式,JP6按上"短路块",将MP/MC接地,F2812工作在微计算机MC方式;去掉"短路块",MP/MC上拉电阻,F2812工作在微处理器MP方式。在MC方式,DEC2812将SCITXDA接上拉电阻,则F2812工作在"Jump to Flash"上电自举方式。

11. JTAG

F2812的仿真接口为JTAG形式,它能与各种形式的JTAG仿真器连接进行仿真与调试,DEC2812板上的JTAG接口为JP1。

12. USB接口

DEC2812模板上采用Cypress公司的CY7C68001芯片实现USB 2.0接口。CY7C68001上集成了USB 2.0收发器(物理层)、USB 2.0串行接口引擎SIE(链路层,实现底层通信协议)。CY7C68001 则作为F2812 的外设,USB 的应用层协议由F2812编程实现。CY7C68001采用并行异步存储器接口与F2812相连接,主机可以唤醒F2812,亦可以配置 USB。在DEC2812模板上占用F2812的Zone0空间,地址为0x002800~0x0028FF。地址分配如下表:

访问空间类型	FIFOADR[2:0]	F2812地址
FIFO2	000	0x002800
FIFO4	001	0x002801
FIFO6	010	0x002802
FIFO8	011	0x002803
命令口	100	0x002804
保留	101	0x002805
保留	110	0x002806
保留	111	0x002807

CY7C68001除了存储器接口外,还有1个中断信号USB_INT 和4个状态信号(READY、FLAGA、FLAGB和FLAGC)。中断信号USB_INT占用F2812 的外部中断XINT2,状态信号READY、FLAGA、FLAGB和FLAGC 配置在DEC2812的状态寄存器(USB STS)中,可由F2812 查询。状态寄存器(0x002D00H,只读)为:

D7	D6	D5	D4	D3	D2	D1	D0
保留	保留	FIFO_EF	USB_INT	USB_RDY	FLAGC	FLAGB	FLAGA

FIFO EF: 外扩FIFO标志, 低电平表示有数据

USB_INT: USB 中断信号,低电平有效

USB_RDY: USB 的 READY 的状态

0: USB 未就绪

1: USB 已就绪

FLAGC: USB 的 FLAGC 的状态

0: 有效

1: 无效

FLAGB: USB 的 FLAGB 的状态

0: 有效

1: 无效

FLAGA: USB 的 FLAGA 的状态

0: 有效

1: 无效

F2812还可以通过控制寄存器将USB唤醒,控制寄存器(0x002D00H,只写)为:

D7	D6	D5	D4	D3	D2	D1	D0
保留	保留	USB_WKUP	LCD_LIGHT	保留	FFT_P1	FFT_P0	DA11

USB_WKUP: CY7C68001 唤醒, 复位为0

0: 休眠

1: 唤醒

LCD_LIGHT: LCD 背光灯控制

0: 关

1: 开

FFT_P1、FFT_P0: FFT运算点控制

00:256点

01:512点

10: 1024点

11: 2048点

DA11: 双端口SRAM上、下两部分切换

- 0: 上半部分
- 1: 下半部分

CY7C68001有EEPROM和DSP两种自举方式,均可以使用,一般采用EEPROM来进行USB的初始化。详细资料和有关技术指标可阅读"CY7C68001 Datasheet"。

13. 实时时钟

DEC2812模板上配置有I²C串口的实时时钟RTC + NvSRAM,可以产生年、月、日、星期、时、分、秒等实时时间信息以及56×8位NvRAM,可以用来存储数据。I²C串口有2个信号SDA和SCL,分别接到GPIOE2/NMI_INT13和GPIOF14/XF_PLLDIS引脚上。详细资料和有关技术指标可阅读"X1226 Datasheet"。

14. 模拟输入

DEC2812上有2路模拟量输入,由BNC座(INPUT1、INPUT2)输入,此模拟电压信号经过前端的低通滤波器,滤除不必要的高频噪声信号,以及将模拟输入信号范围由±3V_{PP}变换成F2812的ADC所能接受的信号范围0~3V。前端每一路的模拟调理电路均带有保护电路,防止烧毁DSP。INPUT1通过模拟调理电路送到F2812的ADCINAO; INPUT2通过模拟调理电路送到F2812的ADCINBO。

15. 模拟输出

DEC2812上有2路模拟量输出,通过BNC座(OUT2、OUT3)输出。DEC2812 板上有2路ADI公司的16bit/30ns DAC芯片(AD768),1路DSP通过端口地址(0x002900H)直接输出,主要用于FIR、IIR运算数据流输出,对应OUT2模拟输出口。另1路DAC通过双端口存储器(0x080000H~0x080FFFH,4K*16位)输出,主要用于FFT等运算数据块输出,对应OUT3模拟输出口,该双端口存储器组成乒乓结构,由F2812控制切换。也就是说,F2812将最新运算结果送到双端口存储器上半部分,然后切换地址(控制寄存器0x002D00中的D0=1),将该部分存储器数据,通过DAC输出,与此同时,F2812接管双端口存储器下半部分,将当前运算结果送到存储器,然后再切换地址(控制寄存器0x002D00中的D0=0),循环操作。DEC2812上还有模拟输出的同步信号(BNC座,OUT1),可接至示波器外触发端。

16. 人机接口

DEC2812模板上提供一个点阵LCD液晶显示接口,用于接口符合Intel读/写时序的240*128点阵LCD模块,以显示图形和字符等信息。另外,还提供4×5键盘接口,可接受19个按键输入。

LCD接口:

信号线	功能	说明
LCD_D[7: 0]	8位数据总线	F2812最低8位数据总线
LCD_CE	片选信号	0x002A00H(数据)、0x002A01H(命令)
LCD_I/D	命令/数据选择信号	0: 数据; 1: 命令
LCD_RD	读信号	F2812的RD
LCD_WE	写信号	F2812的WE
LCD_RST	复位信号	F2812的RESET
LCD_LIGHT	背光控制信号	控制寄存器(0x002D00H)的D4

对于点阵LCD液晶(采用T6963C控制器)显示接口来说,对其的读/写访问通过 1 个 8位的命令口和1个8位的数据口进行。在DEC2812中,将LCD液晶显示接口分配在F2812的Zone0空间中,占用2个地址单元: 0x002A00H,LCD 液晶显示接口的数据口; 0x002A01H,LCD液晶显示接口的命令口。

键盘接口:

DEC2812模板上,设计有4×5键盘接口,用F2812的GPIOB[15:12]作为4根键盘扫描输出线,用F2812的GPIOB[11:7]作为5根键盘扫描回读线,最多可组成20个(在此用19键)按键的键盘。 键盘的扫描、回读、去抖等时序由软件编程实现。

键盘的连线和定义如下图所示:

KS0	KS1	KS2	KS3	KD4	KD3	KD2	KD1	KD0	空
GPIOB									
12	13	14	15	11	10	09	08	07	

第4章 外扩接插件管脚定义

1. F2812仿真器接口JP1

1	2	3	4	5	6	7	8	9	10	11	12	13	14
TMS	TRST	TDI	GND	VCC	*	TDO	GND	TCK	GND	TCK	GND	EMU0	EMU1

其中"*"为定位销,防止JTAG口插错,烧毁仿真器。

2. CPLD下载电缆接口JP2

1	2	3	4	5	6	7	8	9	10
TCK	GND	TDO	VCC	TMS	空	空	空	TDI	GND

3. USB接口JP3

1	2	3	4	5
空	USB-	USB+	空	GND

4. RS232、RS485接口JP4

2	3	5	7	8	1, 4, 6, 9
TXD	RXD	GND	A	В	空

5. CAN接口JP5

CAN+	1	2	CAN-
------	---	---	------

6. 外扩的FIFO存储器输入输出接口JP9

DI0	1	2	DI1
DI2	3	4	DI3
DI4	5	6	DI5
DI6	7	8	DI7
GND	9	10	GND
DO0	11	12	DO1
DO2	13	14	DO3
DO4	15	16	DO5
DO6	17	18	DO7
GND	19	20	GND
FIFO_WE	21	22	FIFO_RST
FIFO_FF	23	24	FIFO_RD
FIFO_EF	25	26	GND

其中,DI₀~DI₇为输入信号,DO₀~DO₇为输出信号,FIFO_WE、FIFO_RD、FIFO_RST、FIFO_FF、FIFO_EF为控制信号。

7. 外扩的扩展输入输出接口JP10

DIN0	1	2	DIN1
DIN2	3	4	GND
DIN3	5	6	DIN4
DIN7	7	8	GND
DIN6	9	10	DIN7
GND	11	12	GND
DOUT0	13	14	DOUT1
DOUT2	15	16	GND
DOUT3	17	18	DOUT4
DOUT5	19	20	GND
DOUT6	21	22	DOUT7
DOUT8	23	24	GND
DOUT9	25	26	GND
GND	27	28	GND
VCC	29	30	VCC

其中, $DIN_0 \sim DIN_7$ 为输入信号, $DOUT_0 \sim DOUT_9$ 为输出信号。

8. 外接LCD (240*128) 接口JP11

GND	1	2	+5V
V0	3	4	LCD_WE
LCD_RD	5	6	LCD_CS
LCD_C/D	7	8	LCD_RST
LCD_D0	9	10	LCD_D1
LCD_D2	11	12	LCD_D3

LCD_D4	13	14	LCD_D5
LCD_D6	15	16	LCD_D7
VEE	17	18	FS
LED+	19	20	LED-

9. 外接键盘(19键)接口JP12

1	2	3	4	5	6	7	8	9	10
KS0	KS1	KS2	KS3	KD4	KD3	KD2	KD1	KD0	空

注: 焊盘形状为正方形的管脚为第一脚。

10. 复位按键K1

按下K1,则DEC2812系统全部复位。

第5章 测试程序

1. 外部SRAM的测试

DEC2812板上配置有256K*16位外扩SRAM,测试程序只对其中的0x0000H~0xFFFFH存储空间进行测试。测试方法如下:从0x0100000H地址开始连续写入0x0000H~0xFFFFH数据,查看结果是否正确。SRAM的测试操作过程如下:

在CCS中用File→Load Program...命令,加载EXTRAM目录下的 DEC2812_ EXTRAM1.out,按F5运行,按Shift+F5停止,查看0x0100000H~0x010FFFFH地址 数据是否正确;也可以通过CCS的图形功能查看外扩SRAM的数据波形是否递增。

2. ADC的测试

DEC2812板上配置有2路模拟量输入,模拟输入信号范围为±2V_{PP}, 模拟输入信号经调理后,变成2路0~3V的信号直接加到F2812片内ADC的ADCINA0和ADCINB0端。ADC测试过程如下:

在CCS中用File→Load Program...命令,加载ADC目录下的DEC2812_ ADC.out,在CCS中用View→Watch Window 命令,打开变量观察窗,点击Watch 1页面, 在Name项中键入变量名a1。按F5运行程序,按Shift+ F5停止。观察Watch窗中变量a1的变化,a1[0]~a1[15]对应16个ADC通道模拟输入值。a1[0]对应ADCINA0、a1[1]对应ADCINB0应为1.5左右,其余应为0。

3. 外部SRAM2和DAC的测试

DEC2812板上配置有4K*16位外扩双端口SRAM和2路16bit DAC。1路接到双端口SRAM上做乒乓存储器的输出,用于如FFT数据块输出;另1路直接接到F2812总线上,用于如FIR、IIR数据流输出,其操作同存储器操作一样,分配地址为0x002900H。测试程序对双端口SRAM的0x080000H地址开始连续写入0x0000H~0xFFF0H共4096个数据,查看数据是否正确。SRAM的测试操作过程如下:

在CCS中用File→Load Program...命令,加载EXTRAM_DAC目录下的 EXTRAM_DAC.out,按F5运行,按Shift+ F5停止,查看0x080000H~0x080FFFH地 址数据是否正确,也可以通过CCS的图形功能查看外扩双端口SRAM的数据波形是 否递增。

将板上模拟输出端"OUT2"用电缆接到示波器的通道1(CH1);"OUT1"接到示波器的外触发端(EXT_TRIG)。在CCS中,用Edit→Memory→Fill将0x002D00H填入0x0006H,则在示波器上可看到-2V~0V的锯齿波形;填入0x0007H,则在示波器上可看到0V~2V的锯齿波形,这说明外扩双端口SRAM和DAC1都是正确的。

将板上模拟输出端"OUT3"用电缆接到示波器的通道1(CH1)。在CCS中,用Edit→Memory→Fill将0x002900H填入0x0000H,则在示波器上可看到-2V直流信号;填入0xFFFFH,则在示波器上可看到2V直流信号;填入0x8000H,则在示波器上可看到0V直流信号,这说明DAC2都是正确的。

4. 串行EEPROM测试

DEC2812板上配置有8K SPI串行EEPROM,测试操作过程如下:

在CCS中用File→Load Program...命令,加载EEPROM目录下的DEC2812_ EEPROM.out,按F5运行程序,按Shift+F5停止。可以看见MEMORY空间 0x3F91C0H~0x3F9223H出现写入的0到99递增的数据。

5. RTC实时时钟的测试

DEC2812板上集成了1片 I^2 C接口的RTC芯片—X1226,用来为DEC2812提供实时时钟。RTC测试操作过程如下:

在CCS中用File→Load Program...命令,加载RTC目录下的DEC2812_RTC. out,按F5运行程序,按Shift+F5停止。在CCS中用View→Watch Window 命令,打开变量视窗,点击 Watch1页面,输入RTC_timer_data,RTC_timer_data是一个数组,用来保存实时时钟。或查看存储器0x3F9101H~0x3F910AH的数据,查看0x3F9140H~0x3F9337H的数据是否从0递增到503(1F7H)。

6. LCD的测试

DEC2812板上有1个Intel读/写时序的LCD液晶显示接口,配备以T6963C为控制器的240*128 LCD模块。LCD的测试过程如下:

在CCS中,用Edit→Memory→Fill将0x002D00H填入0x00FFH,打开LCD的背光灯,若填入0x0000H,则关灯。然后用File→Load Program...命令,加载LCD目录下的DEC2812_LCD.out,按F5运行程序,按Shift+ F5停止,可以在液晶上看见液晶两个字。

7. 数码管的测试

DEC2812板上配备有8只数码管, 其测试过程如下:

在CCS中,用File→Load Program...命令,加载LED目录下的DEC2812_LED.out,按F5运行程序,按Shift+F5停止,可以看到8只数码管分别显示: 1、2、3、4、5、6、7、8。