Convex Hulls in Practice

Dhruv Mehta
Department of Computer Science
University of Maryland
College Park, MD 20904
dhruvnm2@gmail.com

December 3, 2020

Abstract

This paper presents an empirical analysis of several planar convex hull algorithms on various point distributions. The results of the experiments show that reducing the number of floating point operations is very important to runtime. Among the algorithms tested, SymmetricHull was the fastest on the distributions tested.

1 Introduction

The convex hull of a set of points in two dimensions is the smallest convex polygon that contains all of the points in the set. This problem has been studied for a long time and algorithms for computing the convex hull have been published reaching back to 1970. From a theoretical standpoint, there is not much more to learn about convex hulls. It has already been proven that the lower bound of the asymptotic runtime of any convex hull is $\Omega(n \log n)$ [Yao81]. If an output sensitive algorithm is used, and the number of points on the hull h is less than the total number of points, then there is a known lower bound of $\Omega(n \log h)$. Thus, it is well known that no asymptotically faster convex hull algorithms exist.

However, it is still useful for us to know which algorithms are fastest in practice. Convex hulls are applied in many different scenarios in the real world, most notably in computer vision and computer graphics. In these scenarios, it is not enough to just use an asymptotically fast algorithm. We ideally want to use the algorithm that runs the fastest in real time. This leads into the motivation for this paper: which convex hull algorithm is fastest in practice? To answer this question, I implemented several convex hull algorithms and timed them against point sets generated by different distributions.

2 Algorithms

I implemented seven different algorithms and one heuristic for calculating the convex hull. In this section, I will briefly describe each algorithm and how it works. A common primitive used for convex hulls and in other problems in computational geometry is the *orientation test* [BCKO08]. Intuitively, given 3 points, an orientation test determines if the three points form a left turn or right turn in constant time. I will make references to this primitive throughout this section.

2.1 Graham's Scan

Graham's Scan was published by R. Graham in 1972. The first step of the algorithm is to determine the point p with the lowest y-coordinate. Then all points should be sorted based on the the angle they form with the horizontal line from p. This allows us to iterate over the the points counter clockwise starting from p. We start with the first three points in this new order including p as our initial hull in a stack. Then we attempt to add each new point to the hull in counter clockwise order. If the a new point forms a left turn with the top two points in the stack, it is added to the hull. If it forms a right turn, we pop off the stack until it forms a left turn. Once we iterate through all of the points, the stack will contain the full hull. This algorithm is dominated by the intial sort and runs in $\mathcal{O}(n \log n)$ time [Gra72].

2.2 Andrew's Monotone Chain

Andrew's Monotone Chain was published by A. M. Andrew in 1979. This algorithm is really just a variant of Graham's Scan. Instead of sorting by angle, we sort the points by x-coordinate. Then starting from the leftmost point, we can calculate the upper-hull by looking for right turns and the lower-hull by looking for left turns using the same stack method described above. Finally we concatenate the upper and lower hulls to get the final answers. This algorithm is also dominated by the initial sort and runs in $\mathcal{O}(n \log n)$ time [And79].

2.3 Divide and Conquer

The Divide and Conquer algorithm was published by F. P. Preparata and S. J. Hong in 1977. This is a recursive algorithm that splits the points in half and calculates the hull on the left and right side. The upper and lower hulls are calculated separately similar to Andrew's Monotone Chain. The base case is when you see three or fewer points in which case you can return 2-3 of the points as the upper/lower hull depending on the orientation. To merge the two hulls we find a line that is tangent to both hulls and has all of the points of both hulls on one side of the line. Once again after recursively calculating the upper and lower hulls, we can concatenate them to get the final hull. This algorithm has a similar recurrence to the mergesort recurrence, and thus runs in $\mathcal{O}(n \log n)$ time [PH77].

2.4 Jarvis March

The Jarvis March, otherwise known as gift-wrapping, was created independently by Chand Kapur in 1970 and R. A. Jarvis in 1973. The idea behind this algorithm is to start at the bottom most point and then search through all of the points until the next point on the hull is found. We find the next point on the hull by looking for the point that causes the least amount of "turning" as we move counter-clockwise. This can be computed with two orientation tests. One to make sure the candidate point turns less than the current best candidate. This is an output sensitive algorithm that run in $\mathcal{O}(nh)$ time where h is the number of points on the hull [Jar73].

2.5 Chan's Algorithm

Chan's Algorithm was published by T. M. Chan in 1996. This algorithm combines using an $\mathcal{O}(n \log n)$ algorithm with the Jarvis March. This algorithm guess a value for the number of points on the hull h and then computes n/h mini-hulls by using Graham's Scan or some other algorithm

with the same time complexity. These mini-hulls are then combined into a single hull by using a modified version of the Jarvis March where each mini-hull is treated as a "fat" point. If the we have found h points and the hull is still not complete, we stop and restart the algorithm with a greater value of h. It turns out that repeatedly squaring the guess for h leads to $\mathcal{O}(n \log h)$ time where h is the number of points on the final hull. I also tested a variation of Chan's Algorithm where the interior points of each mini-hull are discarded with every iteration since those points can never be on the final hull anyway [Cha96].

2.6 Quickhull

Quickhull was created independently by W. Eddy in 1977 and A. Bykat in 1978. The first step of the algorithm is to find the leftmost (P) and rightmost (Q) points. The pointset is then divided into points above and below \overline{PQ} . The upper and lower hulls are then computed separately by calling the recursive portion of Quickhull with the \overline{PQ} and the correct set of points. Within a recursive call of Quickhull, the algorithm searches for the point C which is furthest the line. This point must be on the hull and is added in. The algorithm then divides the points into points above \overline{PC} and \overline{CQ} and then makes two recursive calls of Quickhull for each partition. After the upper and lower hulls are computed they are concatenated together. Much like Quicksort, this algorithm runs in $\mathcal{O}(n \log n)$ time in the average case but degenerates to quadratic time in the worst case [Edd77].

2.7 Symmetric Hull

Symmetric Hull was published by A. Beltrán and S. Mendoza in 2018. This algorithm takes advantage of the geometric properties of the Akl-Toussaint heuristic to compute the hull in 4 separate quadrants without using any orientation tests. Points are sorted lexicographically and then 4 most extreme points in each cardinal direction is found. When solving for one of the quadrant hulls (say between the leftmost and topmost point), one can determine the next point by comparing its slope with the last point on the hull with the slope of the last two points on the hull. A stack is used to push and pop off values similar to other algorithms described above. Since calculating a slope is fewer floating point operations than an orientation test, the authors claim this algorithm runs faster than traditional convex hull algorithms. The asymptotic runtime is still $\mathcal{O}(n \log n)$ due to the initial sort [BM18].

2.8 Akl-Toussaint Heuristic

This is a heuristic published in 1981 by L. Devroye and G. T. Toussaint which was based on the algorithm devloped by S. Akl and G. T. Toussaint in 1978. The heuristic says to calculate the four most extreme points in each cardinal direction and then discard all points that lie within the quadrilateral since they clearly cannot be on the final hull. This can clearly be done in linear time, so running this heuristic before running any of the above algorithms will not increase their asymptotic complexity. For my experiment, I tested every algorithm both with and without this heuristic [DT81].

3 Tested Distributions

I ran every algorithm on 11 different distributions to test if certain algorithms performed better than others depending on the distribution. Refer to Figure 1 for an image of each distribution.

Figure 1: Distributions used for the experiment

4 Results

I implemented every algorithm described in Section 2 in Python 3.7.4 ¹. The algorithms were timed on an Intel i5-6300HQ CPU @ 2.30 GHz. In Tables 1, 2, and 3, I present the average runtime of for each algorithm with and without the Akl-Toussaint heuristic over five runs on each distribution. Within each table, the fastest three times for each distribution are **bolded**. The largest improvement due to the Akl-Toussaint heuristic is *italicized*. Each successive table increases the number of points by an order of magnitude. "N/A" in certain entries signifies that I did not test the algorithm on that distribution with that number of points because the previous test was already slow.

Firstly, the obvious result here is that SymmetricHull is significantly faster than all of the other algorithms. This algorithm averages well under half a second on even 10⁶ points for every distribution. For any practical case of computing a convex hull, SymmetricHull is the clear choice compared to any of these other algorithms.

The next thing to notice is how the Akl-Toussaint heuristic affected the runtimes of various algorithms. Notably, it did not improve the runtime of most of the algorithms. For SymmetricHull this makes sense considering the entire idea behind the algorithm was to eliminate the orientation test to minimize the amount of floating point computation. The Akl-Toussaint heuristic reintroduces the orientation test to the algorithm and thus slows it down. For the other algorithms it was more surprising since they all use the orientation test. In general, it seems that the Jarvis March, Chan's Algorithm, and Quickhull benifited from the heuristic while it affected the others negatively. Jarvis seems to benefit the most in terms of pure speedup, but this is also due to the fact that Jarvis has the worst initial running time of all of the algorithms on all of the tested distributions.

Chan's algorithm, which is asymptotically the fastest of all of the algorithms presented, did not come close to SymmetricHull. However, when combined with the Akl-Toussaint heuristic, it did seem to show performance comparable to the all of the other algorithms. For the original runs, I used Graham's Scan to compute the mini-hulls in Chan's algorithm. Since Chan's algorithm can make use of any $\mathcal{O}(n\log n)$ algorithm, I wanted to see if using SymmetricHull instead would speed it up.

Tables 4, 5, and 6 show the result of this follow up experiment. I also added two rows for SymmetricHull itself to see the comparison against the best algorithm. Once again, I have bolded the top 3 times for each distribution tested. In general, using SymmetricHull instead of Graham's Scan seemed to trend towards better performance. For example, on a uniform disk, using SymmetricHull seems to significantly improve performance. For other distributions the change is less pronounced. Using SymmetricHull was worse on uniform circle and using both SymmetricHull and the Akl-Toussaint heuristic with the modified version of Chan's algorithm seemed to be worse than using Graham's Scan version. Regardless, none of the variations of Chan's was able to come close to SymmetricHull.

5 Conclusion and Future Work

After evaluating the algorithms presented in this paper, it is clear that SymmetricHull is the best choice for computing convex hulls in practice for $n \leq 10^6$. SymmetricHull will definitely outperform all of the $\mathcal{O}(n \log n)$ algorithms for larger n as well since the experimental data suggests that SymmetricHull has a smaller constant. It would be interesting to see if some variation of Chan's algorithm could achieve similar or even better performance than SymmetricHull given a large

¹Implentation hosted here: https://github.com/dhruvnm/convex

enough input size. Given more time and resources, this would be an interesting experiment to run, but considering SymmetricHull was running at least 5 times faster than any variation of Chan's algorithm even at 10^6 points, I hypothesize SymmetricHull will be faster for quite a few orders of magnitude beyond 10^6 .

	Unif Disk	U:	nif Circle	Un	if 3-gon	Uni	f 4-gon	Unif 6	-gon	Gaussian
Graham	0.009649	0.	00576	0.0	0867	0.0	08723	0.009111		0.005599
Graham w/A-T	0.01533	0.	014174	0.0	12496	0.0	11891	0.0134	3	0.007094
Andrew	0.013083	0.	009456	0.0	12134	0.0	12202	0.0123	64	0.007327
Andrew w/A-T	0.01545	0.	017431	0.0	12319	0.012284		0.014793		0.007707
Div+Conq	0.015418	0.	010452	0.013851		0.01402		0.013954		0.008755
Div+Conq w/A-T	0.016372	0.01819		0.012637		0.01234		0.015331		0.007283
Jarvis	0.184523	6.293434		0.1	04806	0.13	11553	0.1526	64	0.038498
Jarvis w/A-T	0.089413	6.	306596	0.0	27964	0.02	23137	0.0742	71	0.011996
Chan	0.15736	0.	480714	0.1	13563	0.13	1832	0.1212	27	0.040911
Chan w/A-T	0.053571	0.	459062	0.0	17637	0.0	2105	0.0456	643	0.009738
Chan Mod	0.084854	0.	421134	0.0	86167	0.08	8289	0.0813	73	0.043045
Chan Mod w/A-T	0.050682	0.	482962	0.0	24873	0.02	24117	0.0511	58	0.011641
Quickhull	0.041641	0.	229173	0.0	27751	0.03	32947	0.0408	17	0.027132
Quickhull w/A-T	0.027375	0.	163608	0.0	0.014341		15182	0.024845		0.009512
SymmetricHull	0.002024	0.	003042	0.0	0.00229		02212	0.002116		0.001573
SymmetricHull w/A-T	0.012322	0.	010353	0.0	0.012143		11348	0.011017		0.006737
	Unif Annul	us	Exponen		Lognor		Johnson		Extreme Value	
Graham	0.008561		0.00517	4	0.005476		0.009092		0.009737	
Graham w/A-T	0.014425		0.008505		0.00770	2	0.0117	8	0.01	2528
Andrew	0.012085		0.00726		0.00759		0.012494		0.01	2089
Andrew w/A-T	0.015894		0.009453		0.00811	2	0.011804		0.012738	
Div+Conq	0.013938		0.009639		0.00908	55	0.01364	16	0.01	4098
Div+Conq w/A-T	0.016299		0.009924		0.00828	37	0.01195	0.01		2712
Jarvis	0.22276		0.050296		0.03619	0.04338		36 0.09		2115
Jarvis w/A-T	0.132671		0.033587		0.01561	9	0.01371	7	0.02	3627
Chan	0.10225		0.046474		0.04780	4	0.05742	29	0.06	0484
Chan w/A-T	0.060462		0.025129		0.01370	6	0.01274	14	0.01	7469
Chan Mod	0.11415		0.049532		0.04787	' 8	0.07258	3	0.08	417
Chan Mod w/A-T	0.063254		0.023339		0.01308	38	0.01262	44	0.02	1619
Quickhull	0.059286		0.039045		0.03581	7	0.03722	27	0.02	7104
Quickhull w/A-T	0.033884		0.016916	ĵ	0.01143	3	0.01224	19	0.01	5096
SymmetricHull	0.002233		0.00149	1	0.0016	12	0.0018	35	0.00	1998
SymmetricHull w/A-T	0.010801		0.00692	2	0.0070	68	0.01185	53	0.01	211

Table 1: Average time in seconds on 10^4 points

	Unif Disk	U:	nif Circle	Un	if 3-gon	Uni	if 4-gon	Unif 6	-gon	Gaussian
Graham	0.098999	0.	077456	0.1	19417	0.1	08702	0.098574		0.064943
Graham w/A-T	0.157455	0.	138312	0.1	1537	0.1	12109	0.1335	54	0.077445
Andrew	0.127166	0.	100595	0.13	35386	0.15	2632	0.1241	14	0.082593
Andrew w/A-T	0.179345	0.	175926	0.1	14428	0.111687		0.145935		0.082283
Div+Conq	0.165363	0.108508		0.1	0.153522		4741	0.142036		0.105916
Div+Conq w/A-T	0.149335	0.178044		0.122377		0.135677		0.157259		0.068674
Jarvis	3.985723	N/A		1.2	91311	1.33	3936	1.9790	21	0.492064
Jarvis w/A-T	1.636059	N	/A	0.1	45752	0.1	55862	0.7078	376	0.078485
Chan	1.090195	4.	629648	1.0	01763	0.90	60337	0.9875	9	0.440343
Chan w/A-T	0.518169	4.	400622	0.1	4062	0.13	36956	0.4482	4	0.081611
Chan Mod	0.862825	4.	348852	0.7	88255	0.83	34802	0.8435	27	0.408744
Chan Mod w/A-T	0.463924	4.	372306	0.13	3882	0.13	32573	0.4129	36	0.081353
Quickhull	0.300867	2.	092958	0.2	1892	0.25	22211	0.2829	14	0.17751
Quickhull w/A-T	0.278187	2.	135659	0.1	0.130551		2465	0.240774		0.077808
SymmetricHull	0.028441	0.	036393	0.0	0.025652		25731	0.025411		0.019999
SymmetricHull w/A-T	0.116143	0.	111238	0.121886		0.1	18083	0.114799		0.072971
	Unif Annul	us	Exponen		Lognor		Johnson			reme Value
Graham	0.127858		0.05988		0.0589	78	0.0949	59		9287
Graham w/A-T	0.148259		0.075153		0.07558	3	0.12257	77	0.12	6316
Andrew	0.171235		0.10337		0.08140)7	0.140029		0.12	7023
Andrew w/A-T	0.199004		0.09682		0.08796	64	0.122894		0.121586	
Div+Conq	0.151169		0.092176		0.09023	89	0.14172	24	0.13	5995
Div+Conq w/A-T	0.173387		0.077663		0.07908	32	0.1104	36	0.11	15137
Jarvis	4.878911		0.66702		0.50799		0.34513	35	0.80	4169
Jarvis w/A-T	2.665971		0.149403	}	0.13328	89 0.11623		37 0.15		6387
Chan	1.099122		0.509636		0.41749		0.41203	3		9262
Chan w/A-T	0.652603		0.140989		0.12849)4	0.12097	74	0.13	974
Chan Mod	0.907298		0.451488		0.39865	51	0.40719)2	0.64	5533
Chan Mod w/A-T	0.584919		0.132766		0.12552		0.1177		0.13	
Quickhull	0.330158		0.195804		0.20112		0.20922			0111
Quickhull w/A-T	0.325875		0.101113		0.11011		0.11714			1249
SymmetricHull	0.024934		0.01806		0.0170		0.0252			23004
SymmetricHull w/A-T	0.109815		0.07188	5	0.0723	08	0.11627	79	0.11	8256

Table 2: Average time in seconds on 10^5 points

	Unif Disk	U:	nif Circle	Un	if 3-gon	Uni	if 4-gon	Unif 6	-gon	Gaussian
Graham	1.095789	0.	783676	1.0	96937	1.0	99022	1.086	555	0.718688
Graham w/A-T	1.443012	1.	545065	1.1	87467	1.1	60641	1.4159	3	0.716805
Andrew	1.333447	1.	048083	1.4	76658	1.38	8179	1.3405	74	0.853012
Andrew w/A-T	1.515785	1.	852827	1.2	49764	1.16	69353	1.5321	08	0.716035
Div+Conq	1.502333	1.	132524	1.9			92417	1.50803		0.961925
Div+Conq w/A-T	1.584914	1.904875		1.2	1.206434		74092	1.591325		0.721565
Jarvis	91.2689	N/A		15.	15.14653		50658	24.282	71	5.363527
Jarvis w/A-T	35.92466	N	/A	1.3	1.319085 1		99456	9.3354	136	0.820929
Chan	12.85858	81	.02195	8.8	8.820718 9.0		12595	10.129	24	4.770879
Chan w/A-T	6.515399	82	2.03259	1.2	65462	1.24	4395	4.7399	71	0.79344
Chan Mod	9.587833	81	.55107	7.7	01913	8.70	0033	9.3797	71	4.662617
Chan Mod w/A-T	5.543736	82	2.73623		42253	1.23	3921	4.2352	08	0.784204
Quickhull	2.990062	27	7.21007		27607		41164	2.7184		1.773051
Quickhull w/A-T	2.901514	28	3.46199	1.2	1.21426		92682	2.355108		0.764131
SymmetricHull	0.346876	0.	489063		$\boldsymbol{42821}$		9136	0.328	705	0.234634
SymmetricHull w/A-T	1.217069	1.	276877	1.2	1.205508		99868	1.403	314	0.730052
	Unif Annul	us	Exponen		Lognor		Johnson	n's SU Ext		reme Value
Graham	1.093555		0.72737		0.7272		1.0777			17844
Graham w/A-T	1.480208		0.809693		0.90894		1.14573	3	1.2	
Andrew	1.406805		0.855042		0.86311	2	1.34975	53	1.39	0386
Andrew w/A-T	1.631363		0.838189		0.98837	'1	1.158485		1.21	9887
Div+Conq	1.502106		0.976608		0.97113	31	1.47808	34	1.48	3789
Div+Conq w/A-T	1.691314		0.864024		1.03370	8	1.15297	'3	1.23	5454
Jarvis	99.15347		7.549983		4.96529		2.70819	8.9		6097
Jarvis w/A-T	49.70838		2.092856		2.66889		1.18113			32366
Chan	13.73066		5.813109		4.60539		3.60655	51	7.85	3224
Chan w/A-T	7.762465		2.146377		2.52800	7	1.17274	Ŀ	1.46	8046
Chan Mod	11.31171		5.574911		4.61768	34	3.75392	27	7.70	4738
Chan Mod w/A-T	6.697954		1.697647		2.42391	7	1.16712		1.45	4568
Quickhull	3.294849		2.259551		2.16725		2.05420)1	2.31	4305
Quickhull w/A-T	3.560901		1.273497		1.69163		1.1319			5554
SymmetricHull	0.323596		0.27650	6	0.4181	72	0.4325		0.34	10725
SymmetricHull w/A-T	1.17218		0.73117	8	0.7578	35	1.18726	66	1.31	8459

Table 3: Average time in seconds on 10^6 points

	Unif Disk	TT.	nif Circle	II.	if 3-gon	IIn:	if 4-gon	Unif 6	con	Gaussian
Chan w/GS	0.17522		405504		74074		87852	0.0939		0.040704
Chan w/GS+A-T	0.096073	0.4	423661	0.0	17034	0.02	20116	0.0497	1	0.010604
Chan w/SH	0.08036	0.4	458335	0.0	7751	0.0	72847	0.0776	16	0.036927
Chan w/SH+A-T	0.046744	0.4	422112	0.0	17257	0.0	18905	0.0437	24	0.010603
Chan Mod w/GS	0.086213	0.	372278	0.0	68449	0.07	77772	0.0822	86	0.03814
Chan Mod w/GS+A-T	0.049301	0.3	383399	0.0	16908	0.0	19438	0.0427	63	0.010287
Chan Mod w/SH	0.075325	0.4	415031	0.0	70253	0.07	71445	0.0722	6	0.036792
Chan Mod w/SH+A-T	0.046868	0.4	425942	0.0	18185	0.0	19252	0.041	266	0.010778
SymmetricHull	0.002198	0.	003974	0.0	02687	0.0	02428	0.002	023	0.001636
SymmetricHull w/A-T	0.013036	0.010567		0.012279		0.0	11604	0.01083		0.007127
	Unif Annul	110	Exponen	tial	Lognor	m o 1	Johnson	n'a CII	Dt.	reme Value
		us	Exponen	ulai	Lognor	шаі	Johnso.	11880	L LXU	teme varue
Chan w/GS	0.09992	us	0.04647	.6121	0.03820		0.07508			7717
Chan w/GS Chan w/GS+A-T		. 4.5		.01a1		8		38		7717
, , , , , , , , , , , , , , , , , , ,	0.09992		0.04647		0.03820	08 26	0.07508	38	0.10	7717
Chan w/GS+A-T	0.09992 0.060454		0.04647 0.02135		0.03820	08 26 89	0.07508 0.01205	66	0.10 0.01 0.05	7717 782
Chan w/GS+A-T Chan w/SH	0.09992 0.060454 0.079531	lus	0.04647 0.02135 0.044587		0.03820 0.01582 0.03693	98 96 89 86	0.07508 0.01205 0.0425	38 56 22	0.10 0.01 0.05 0.0 1	7717 782 4461
Chan w/GS+A-T Chan w/SH Chan w/SH+A-T	0.09992 0.060454 0.079531 0.054919		0.04647 0.02135 0.044587 0.020316		0.03820 0.01582 0.03693 0.01618	08 26 39 36 75	0.07508 0.01205 0.0425 0.0119	38 56 22 5	0.10 0.01 0.05 0.0 1 0.05	7717 782 4461 1 7596
Chan w/GS+A-T Chan w/SH Chan w/SH+A-T Chan Mod w/GS	0.09992 0.060454 0.079531 0.054919 0.08699		0.04647 0.02135 0.044587 0.020316 0.043292	9	0.03820 0.01582 0.03693 0.01618 0.03707	08 26 39 36 75 37	0.07508 0.01205 0.0425 0.0119 0.04211	38 56 22 5 5	0.10 0.01 0.05 0.01 0.05 0.01	7717 782 4461 1 7596 8085
Chan w/GS+A-T Chan w/SH Chan w/SH+A-T Chan Mod w/GS Chan Mod w/GS+A-T	0.09992 0.060454 0.079531 0.054919 0.08699 0.057645		0.04647 0.02135 0.044587 0.020316 0.043292 0.01985	9	0.03820 0.01582 0.03693 0.01618 0.03707 0.0155	8 66 69 66 75 37	0.07508 0.01205 0.0425 0.0119 0.04211 0.0119	38 56 22 5 5 57	0.10 0.01 0.05 0.01 0.05 0.01 0.05	7717 782 4461 1 7596 8085 8121
Chan w/GS+A-T Chan w/SH Chan w/SH+A-T Chan Mod w/GS Chan Mod w/GS+A-T Chan Mod w/SH	0.09992 0.060454 0.079531 0.054919 0.08699 0.057645 0.075792		0.04647 0.02135 0.044587 0.020316 0.043292 0.01985 0.043479	9	0.03820 0.01582 0.03693 0.01618 0.03707 0.0155 0.03815	08 26 39 36 75 37 57	0.07508 0.01205 0.0425 0.0119 0.04211 0.0119	38 56 5 5 57 64 92	0.10 0.01 0.05 0.01 0.05 0.01 0.05	7717 782 4461 1 7596 8085 8121 4063

Table 4: Average time in seconds on 10^4 points

	Unif Disk	U	nif Circle	Un	if 3-gon	Uni	f 4-gon	Unif 6	-gon	Gaussian
Chan w/GS	1.022499		329926		$\frac{3}{44371}$		93385	0.9567		0.42269
Chan w/GS+A-T	0.510449	4.	585392	0.13	38197	0.13	38857	0.4440	88	0.083544
Chan w/SH	0.833755	4.	862556	0.7	89763	0.7	72015	0.7732	88	0.384185
Chan w/SH+A-T	0.4753	4.	926181	0.13	381	0.13	35982	0.4058	72	0.082725
Chan Mod w/GS	0.851632	4.	277343	0.73	2674	0.80	06218	0.8294	07	0.39099
Chan Mod w/GS+A-T	0.457973	4.	349176	0.1	36712	0.13	37456	0.4140	57	0.079596
Chan Mod w/SH	0.732645	5.	194565	0.7	76968	0.73	38274	0.7336	71	0.392188
Chan Mod w/SH+A-T	0.449589	4.	880574	0.13	37291	0.1	3509	0.388	236	0.081222
SymmetricHull	0.026624	0.035431		0.0	0.02258 0.		23832	0.025316		0.017899
SymmetricHull w/A-T	0.111361	0.107022		0.117942		0.1	15213	0.112515		0.071009
	Unif Annul	us	Exponen	tial	Lognor	mal	Johnson	n's SU	Exti	reme Value
Chan w/GS	1.129867		0.508219)	0.46981	.8	0.79763	34	0.72	88
Olaran /OC + A T										
Chan w/GS+A-T	0.667624		0.207604		0.17325	9	0.11772	26		0808
Chan w/GS+A-T Chan w/SH	0.667624 0.916285		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.17325 0.41095				0.19	0808 6435
,				1		53	0.11772	31	0.19 0.59	
Chan w/SH	0.916285		0.461546		0.41095	53 27	0.11772 0.44878	31 16	0.19 0.59 0.19	6435
Chan w/SH Chan w/SH+A-T	0.916285 0.618948		$\begin{array}{c} 0.461546 \\ 0.200546 \end{array}$		0.41095 0.17482	53 27 86	0.11772 0.44878 0.1161	31 16 79	0.19 0.59 0.19	6435 2757 5776
Chan w/SH Chan w/SH+A-T Chan Mod w/GS Chan Mod w/GS+A-T Chan Mod w/SH	0.916285 0.618948 0.893029		0.461546 0.200546 0.466509	4	0.41095 0.17482 0.41068	53 27 36 56	0.11772 0.44878 0.1161 0.47267	31 16 79 39	0.19 0.59 0.19 0.64 0.1 9	6435 2757 5776
Chan w/SH Chan w/SH+A-T Chan Mod w/GS Chan Mod w/GS+A-T Chan Mod w/SH Chan Mod w/SH+A-T	0.916285 0.618948 0.893029 0.568446		0.461546 0.200546 0.466509 0.19153	4	0.41095 0.17482 0.41068 0.1631	53 27 66 56 .7	0.11772 0.44878 0.1161 0.47267 0.1172	31 16 79 39	0.19 0.59 0.19 0.64 0.19 0.61	6435 2757 5776 922
Chan w/SH Chan w/SH+A-T Chan Mod w/GS Chan Mod w/GS+A-T Chan Mod w/SH	0.916285 0.618948 0.893029 0.568446 0.834474		0.461546 0.200546 0.466509 0.19153 0.455272	4	0.41095 0.17482 0.41068 0.1631 0.40931	53 27 36 56 7	0.11772 0.44878 0.1161 0.47267 0.1172 0.45447	31 16 79 39 75 85	0.19 0.59 0.19 0.64 0.19 0.61 0.20	6435 2757 5776 922 5736

Table 5: Average time in seconds on 10^5 points

	Unif Disk	Uı	nif 3-gon	Uni	f 4-gon	Uni	f 6-gon	Gaussi	an	
Chan w/GS	1.07409	0.8	878722	0.99	98325	1.04	5219	0.4219	24	
Chan w/GS+A-T	0.527773	0.1	145791	0.14	12237	0.46	64863	0.0826	42	
Chan w/SH	0.873434	0.8	809012	0.80	9064	0.78	88248	0.3989	47	
Chan w/SH+A-T	0.489393	0.	139632	0.1	40602	0.40	08987	0.0816	356	
Chan Mod w/GS	0.891718	0.'	7802	0.84	10499	0.86	60629	0.4019	07	
Chan Mod w/GS+A-T	0.478857	0.1	141513	0.14	1415	0.42	26564	0.0827	49	
Chan Mod w/SH	0.751675	0.8	803085	0.75	55989	0.75	51915	0.4041	61	
Chan Mod w/SH+A-T	0.544502	0.3	147172	0.14	1839	0.42	26637	0.0889	4	
SymmetricHull	0.024359	0.	023643	0.0	24229	0.02	24575	0.0167	745	
SymmetricHull w/A-T	0.113339	0.	121618	0.1	18151	0.1	15967	0.0697	771	
SymmetricHull w/A-T	0.113339 Unif Annul		121618 Exponer		18151 Lognor			0.0697 on's SU		treme Value
SymmetricHull w/A-T Chan w/GS				ntial		mal		n's SU	Ext	treme Value 75934
,	Unif Annul		Exponer	ntial	Lognor	mal 56	Johnso	on's SU 26	Ext	
Chan w/GS	Unif Annul 1.117635		Exponer 0.521302	ntial	Lognor 0.40745	mal 56 58	Johnson 0.45672	on's SU 26 81	Ext	75934
Chan w/GS Chan w/GS+A-T	Unif Annul 1.117635 0.667244		Exponer 0.521302 0.194103	ntial	Lognor 0.40745 0.14715	rmal 56 58 48	Johnso 0.45672 0.12128	on's SU 26 81	0.6° 0.1° 0.6°	75934 55597
Chan w/GS Chan w/GS+A-T Chan w/SH	Unif Annul 1.117635 0.667244 0.945644		Exponer 0.521302 0.194103 0.470657	ntial	Lognor 0.40745 0.14715 0.41434	rmal 56 58 48	Johnson 0.45672 0.12128 0.43218	on's SU 26 81 59	0.65 0.15 0.65 0.1	75934 55597 20597
Chan w/GS Chan w/GS+A-T Chan w/SH Chan w/SH+A-T	Unif Annul 1.117635 0.667244 0.945644 0.644071		Exponer 0.521302 0.194103 0.470657 0.185991	ntial	Lognor 0.40745 0.14715 0.41434 0.14739	rmal 56 58 48 94 72	Johnson 0.45673 0.12123 0.43213 0.1186	26 81 59 349	0.6 0.1 0.6 0.1 0.6	75934 55597 20597 . 53699
Chan w/GS Chan w/GS+A-T Chan w/SH Chan w/SH+A-T Chan Mod w/GS	Unif Annul 1.117635 0.667244 0.945644 0.644071 0.949496		Exponer 0.521302 0.194103 0.470657 0.185991 0.461746	ntial 2	Lognor 0.40745 0.14715 0.41434 0.14739 0.41427	rmal 566 58 48 94 72	Johnson 0.45673 0.12120 0.43214 0.1186 0.44133	on's SU 226 81 59 649 88	0.66 0.10 0.69 0.11 0.66 0.11	75934 55597 20597 . 53699 49226
Chan w/GS Chan w/GS+A-T Chan w/SH Chan w/SH+A-T Chan Mod w/GS Chan Mod w/GS+A-T	Unif Annul 1.117635 0.667244 0.945644 0.644071 0.949496 0.592008		Exponer 0.521302 0.194103 0.470657 0.185991 0.461746 0.17523	ntial 2	Lognor 0.40748 0.14718 0.41434 0.14739 0.41427	rmal 566 58 48 94 72 153	Johnso 0.45673 0.12123 0.43213 0.1186 0.44133 0.11913	n's SU 26 81 59 349 88 57	0.66 0.16 0.66 0.11 0.66 0.17	75934 55597 20597 53699 49226 54651

Table 6: Average time in seconds on 10^6 points

0.018154

0.070209

0.024532

0.110179

0.018588

0.070735

0.025565

0.118637

0.023965

0.127264

SymmetricHull

SymmetricHull w/A-T

References

- [And79] A. M. Andrew. Another efficient algorithm for convex hulls in two dimensions. *Inf. Process. Lett.*, 9:216–219, 1979.
- [BCKO08] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. *Computational Geometry: Algorithms and Applications*. Springer-Verlag TELOS, Santa Clara, CA, USA, 3rd ed. edition, 2008.
- [BM18] A. Beltrán and Sonia Mendoza. Symmetrichull: A convex hull algorithm based on 2d geometry and symmetry. *IEEE Latin America Transactions*, 16:2289–2295, 2018.
- [Cha96] T. M. Chan. Optimal output-sensitive convex hull algorithms in two and three dimensions. *Discrete Computational Geometry*, 16:361–368, 1996.
- [DT81] L. Devroye and G. Toussaint. A note on linear expected time algorithms for finding convex hulls. *Computing*, 26:361–366, 1981.
- [Edd77] W. Eddy. A new convex hull algorithm for planar sets. ACM Trans. Math. Softw., 3:398–403, 1977.
- [Gra72] R. Graham. An efficient algorithm for determining the convex hull of a finite planar set. *Inf. Process. Lett.*, 1:132–133, 1972.
- [Jar73] R. Jarvis. On the identification of the convex hull of a finite set of points in the plane. Inf. Process. Lett., 2:18–21, 1973.
- [PH77] F. Preparata and S. J. Hong. Convex hulls of finite sets of points in two and three dimensions. *Commun. ACM*, 20:87–93, 1977.
- [Yao81] A. Yao. A lower bound to finding convex hulls. J. ACM, 28:780–787, 1981.