Vorlesung Analysis I im Wintersemester 2012/13

Wilhelm Singhof

1. Die reellen Zahlen

Mathematische Objekte (z.B. Zahlen, Funktionen, Punkte oder Geraden in der Ebene, ...) können zu Mengen zusammengefasst werden. Ist M eine Menge und a ein mathematisches Objekt, so schreibt man $a \in M$, wenn a zu M gehört und nennt a ein Element von M; andernfalls schreibt man $a \notin M$.

Beispiel: Sei M die Menge, die aus den beiden natürlichen Zahlen 1 und 2 besteht. Man schreibt $M = \{1, 2\}$. Es ist $1 \in M$, $3 \notin M$.

Sind M und N zwei Mengen und ist jedes Element von N auch Element von M, so nennt man N eine Teilmenge von M und schreibt $N \subseteq M$. Zwei Mengen M und N heißen gleich (in Zeichen M = N), wenn sie dieselben Elemente enthalten, also genau dann, wenn $M \subseteq N$ und $N \subseteq M$ ist.

Die Menge, die keine Elemente enthält, nennt man die leere Menge; sie wird mit \emptyset bezeichnet. Für jede Menge M ist $\emptyset \subseteq M$.

Die reellen Zahlen sind eine Menge \mathbb{R} zusammen mit zwei Rechenvorschriften, die je zwei Elementen $x,y\in\mathbb{R}$ ein Element $x+y\in\mathbb{R}$ und ein Element $x\cdot y\in\mathbb{R}$ zuordnen, wobei ferner eine Teilmenge $\mathbb{R}_{>0}$ von \mathbb{R} ausgezeichnet ist, deren Elemente die positiven Zahlen heißen (wir schreiben x>0 für $x\in\mathbb{R}_{>0}$), so dass die folgenden drei Gruppen I, II, III von Axiomen erfüllt sind:

I. Algebraische Axiome:

- I.a) Kommutativgesetze: x + y = y + x und $x \cdot y = y \cdot x$.
- I.b) Assoziativgesetze: (x + y) + z = x + (y + z) und (xy)z = x(yz).
- I.c) Null und Eins: Es gibt Elemente $0, 1 \in \mathbb{R}$ mit $0 \neq 1$ und x + 0 = x und $x \cdot 1 = x$ für alle $x \in \mathbb{R}$.
- I.d) Inverse Elemente: Zu jedem $x \in \mathbb{R}$ gibt es eine Zahl $-x \in \mathbb{R}$ mit x + (-x) = 0; zu jedem $x \in \mathbb{R}$ mit $x \neq 0$ gibt es eine Zahl $x^{-1} \in \mathbb{R}$ mit $x \cdot x^{-1} = 1$.
- I.e) **Distributivgesetz:** x(y+z) = xy + xz.

Statt ,, \mathbb{R} erfüllt die Axiome I.a) - I.e)" sagt man kurz: ,, \mathbb{R} ist ein Körper".

II. Anordnungsaxiome:

II.a) Ist $x \in \mathbb{R}$, so gilt genau eine der folgenden 3 Möglichkeiten:

$$x > 0$$
, $x = 0$, $-x > 0$.

II.b) Ist x > 0 und y > 0, so ist x + y > 0 und xy > 0.

Bevor wir III formulieren können, müssen wir einige Bemerkungen zu den Axiomengruppen I und II machen:

(1) 1 > 0.

Bew.: Nach I.c) ist $1 \neq 0$. Nach II.a) ist daher entweder 1 > 0 oder -1 > 0. Angenommen, es wäre -1 > 0, so wäre $(-1) \cdot (-1) > 0$ nach II.b), also, da $(-1) \cdot (-1) = 1$ nach I., auch 1 > 0. Damit wäre gleichzeitig 1 > 0 und -1 > 0, im Widerspruch zu II.a). Deswegen ist die Annahme -1 > 0 falsch, und es gilt 1 > 0.

(2) Die Elemente $x \in \mathbb{R}$ mit -x > 0 heißen negativ. Sind $x, y \in \mathbb{R}$, so schreiben wir x < y oder y > x, falls y - x > 0. Insbesondere bedeutet x < 0, dass -x > 0, also dass x negativ ist. Sind $x, y \in \mathbb{R}$, so gilt nach II.a) genau eine der folgenden Möglichkeiten:

$$x > y$$
, $x = y$, $x < y$.

- (3) Ist x < 0 und y < 0, so ist xy > 0.
- (4) Ist $x \in \mathbb{R}$ und $x \neq 0$, so ist $x^2 > 0$.
- (5) Sind $x, y, z \in \mathbb{R}$ mit x < y und y < z, so ist x < z.
- (6) Ist x < y und z > 0, so xz < yz. Ist x < y und z < 0, so xz > yz.
- (7) Ist x < 0 und z > 0, so ist xz < 0.
- (8) Ist x > 0, so ist $x^{-1} > 0$.
- (9) Ist x < y und $z \in \mathbb{R}$ beliebig, so ist x + z < y + z.
- (10) Ist 0 < x < y, so ist $y^{-1} < x^{-1}$.
- (11) Sind $x, y \in \mathbb{R}$, so schreiben wir $x \leq y$, falls x < y oder x = y. Für $x \leq y$ schreiben wir auch $y \geq x$.
- (12) Ist 0 < x < y, so ist $x^2 < y^2$. Sind x, y > 0 und ist $x^2 < y^2$, so ist x < y.

Def. Ist $x \in \mathbb{R}$, so sei

$$\mid x \mid := \left\{ \begin{array}{ccc} x & , & \text{falls } x \ge 0, \\ -x & , & \text{falls } x < 0. \end{array} \right.$$

- |x| heißt der Absolutbetrag von x.
- (13) Ist $x \in \mathbb{R}$, so ist $|-x|=|x| \ge 0$; ist $x \ne 0$, so ist |x| > 0. |x-y| ist, anschaulich gesprochen, der Abstand zwischen x und y.
- $(14) \ x \le |x|.$
- (15) Sind $x, y \in \mathbb{R}$, so ist $|xy| = |x| \cdot |y|$.
- (16) Dreiecksungleichung: $|x+y| \le |x| + |y|$.
- $(17) \mid |x| |y| \mid \le |x y|.$
- (18) Es ist $0 < 1 < 2 = 1 + 1 < 3 = 2 + 1 < \dots$ Diese Zahlen sind also alle voneinander verschieden. Die Menge $\{1, 2, 3, \dots\}$ wird mit \mathbb{N} bezeichnet; ihre Elemente heißen natürliche Zahlen. $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$.

Die Menge $\mathbb{Z} := \mathbb{N} \cup \{0\} \cup \{x \in \mathbb{R} \mid -x \in \mathbb{N}\}$ heißt die Menge der ganzen Zahlen, und $\mathbb{Q} := \{\frac{x}{y} \mid x \in \mathbb{Z}, y \in \mathbb{N}\}$ heißt die Menge der rationalen Zahlen. \mathbb{Q} erfüllt die Axiome I und II.

Kommentar hierzu: Sind M und N zwei Mengen, so sei $M \cup N$ die Menge, die aus allen Elementen besteht, die in M oder in N (oder in beiden) liegen. $M \cup N$ heißt die Vereinigung von M und N.

 $M \cap N$ sei die Menge, die aus allen Elementen besteht, die in M und in N liegen. $M \cap N$ heißt der Durchschnitt von M und N.

 $\{x \in \mathbb{R} \mid -x \in \mathbb{N}\}\$ ist die Menge aller $x \in \mathbb{R}$, für die gilt: $-x \in \mathbb{N}$. Also $\{x \in \mathbb{R} \mid -x \in \mathbb{N}\} = \{-1, -2, -3, \ldots\} = \{-n \mid n \in \mathbb{N}\}.$

Def. Sei $M \subseteq \mathbb{R}$. Dann heißt M nach oben beschränkt, wenn es ein $c \in \mathbb{R}$ gibt mit $x \leq c$ für alle $x \in M$. Ein solches c heißt eine obere Schranke von M.

M heißt nach unten beschränkt, wenn es ein $d \in \mathbb{R}$ gibt mit $x \geq d$ für alle $x \in M$. Ein solches d heißt eine untere Schranke von M.

M heißt beschränkt, wenn es nach oben und unten beschränkt ist.

Wenn es eine kleinste obere Schranke c von M gibt (d.h. c ist obere Schranke und jedes $c' \in \mathbb{R}$ mit c' < c ist keine obere Schranke von M), so heißt c das Supremum von M; schreibe $c =: \sup M$. Wenn es eine größte untere Schranke d von M gibt, so heißt d das Infimum von M; schreibe $d =: \inf M$.

III. Vollständigkeitsaxiom: Ist M eine nicht-leere nach oben beschränkte Menge, so besitzt M ein Supremum.

Satz 1: Ist $a \in \mathbb{R}$, so existiert ein $n \in \mathbb{N}$ mit $n \geq a$.

Satz 2: Ist $b \in \mathbb{R}$ und b > 0, so existiert ein $n \in \mathbb{N}$ mit $\frac{1}{n} \leq b$.

Def. Sei $M \subseteq \mathbb{R}$. Wenn es ein $x_o \in M$ gibt mit $x \leq x_o$ für alle $x \in M$, so heißt x_o das Maximum von M; schreibe $x_o =: \max M$. Entsprechend definiert man das Minimum min M.

Bem. a) Wenn max M existiert, so ist M nach oben beschränkt, und max $M = \sup M$.

b) Wenn M nach oben beschränkt ist und sup $M \in M$ gilt, so ist sup M das Maximum von M.

Bez. Seien $a, b \in \mathbb{R}$ mit a < b.

$$[a,b] := \{x \in \mathbb{R} \mid a \le x \le b\}$$
 (abgeschlossenes Intervall)
$$[a,b[:= \{x \in \mathbb{R} \mid a < x < b\}$$
 (offenes Intervall)
$$[a,b[:= \{x \in \mathbb{R} \mid a \le x < b\}$$
 (halboffenes Intervall)
$$[a,b] := \{x \in \mathbb{R} \mid a < x \le b\}$$
 (halboffenes Intervall)

Bem. Wir werden in $\S 4$ sehen: Ist $a \in \mathbb{R}$, $a \ge 0$ und $n \in \mathbb{N}$, so gibt es genau ein $b \ge 0$ mit $b^n = a$. Wir schreiben

$$b=:\sqrt[n]{a}:=a^{\frac{1}{n}}\ .$$

Nach (4) gilt: Ist a < 0 und ist n gerade, so gibt es kein $b \in \mathbb{R}$ mit $b^n = a$. Ist a > 0 und ist n ungerade, so ist

$$(-\sqrt[n]{a})^n = -a.$$

2. Folgen und ihre Grenzwerte

Def. Sind X und Y Mengen, so ist eine Abbildung von X in Y eine Vorschrift f, die jedem Element $x \in X$ ein Element $f(x) \in Y$ zuordnet. Man schreibt dafür

$$f: X \to Y$$
.

Def. Ist Y eine Menge, so ist eine Folge in Y eine Abbildung $a: \mathbb{N} \to Y$; man schreibt oft a_n statt a(n) und spricht von der "Folge (a_n) " statt von der Folge a.

Statt ,, Folge in \mathbb{R} " sagen wir kurz ,, Folge".

Gelegentlich lassen wir auch zu, dass eine Folge a auf einer Teilmenge

 $\{n_0, n_0 + 1, n_0 + 2, \ldots\}$ von \mathbb{Z} statt auf \mathbb{N} definiert ist und reden dann von der Folge $(a_n)_{n \geq n_0}$.

Def. Sei (a_n) eine Folge reeller Zahlen und sei $b \in \mathbb{R}$. Die Folge heißt konvergent gegen b, falls gilt:

Zu jedem $\epsilon > 0$ existiert ein $N \in \mathbb{N}$, so dass $|a_n - b| < \epsilon$ für alle $n \geq N$.

Man nennt dann b den *Grenzwert* oder den *Limes* der Folge (a_n) und schreibt $\lim_{n\to\infty} a_n = b$ oder $, a_n \to b$ für $n\to\infty$ ".

Eine Folge, die nicht konvergent ist, heißt divergent.

Satz 1. Eine Folge besitzt höchstens einen Grenzwert.

Beispiel (1): Sei $a \in \mathbb{R}$ und $a_n := a \ \forall \ n \in \mathbb{N}$. Dann heißt (a_n) eine konstante Folge. Es ist $\lim_{n \to \infty} a_n = a$.

Beispiel (2): $\lim_{n\to\infty} \frac{1}{n} = 0.$

Beispiel (3): Sei $a_n := (-1)^n$. Dann konvergiert (a_n) nicht.

Beispiel (4): $\lim_{n\to\infty} \frac{n}{2^n} = 0.$

Def. Eine Folge (a_n) heißt beschränkt, wenn die Menge $\{a_n \mid n \in \mathbb{N}\}$ beschränkt ist.

Bem. Genau dann ist (a_n) beschränkt, wenn es ein $M \in \mathbb{R}$ gibt mit $|a_n| \leq M \ \forall \ n \in \mathbb{N}$.

Satz 2. Jede konvergente Folge ist beschränkt.

Def. Eine Folge (a_n) mit $\lim_{n\to\infty} a_n = 0$ heißt eine Nullfolge.

Bem. Sei (a_n) eine Folge. Genau dann ist $a_n \to a$, wenn $(a_n - a)$ eine Nullfolge ist.

Satz 3. Ist (a_n) Nullfolge und (b_n) beschränkte Folge, so ist (a_nb_n) Nullfolge.

Satz 4. (Rechenregeln für Grenzwerte) (a_n) und (b_n) seien Folgen mit $a_n \to a, b_n \to b$.

- 1) $a_n + b_n \to a + b$, $a_n b_n \to a b$.
- 2) $a_n b_n \to ab$.
- 3) Ist $b \neq 0$, so ist $b_n \neq 0$ für fast alle n, und $\frac{a_n}{b_n} \to \frac{a}{b}$.

Beispiel (5):
$$a_n = \frac{n^2 - 2n + 3}{3n^2 + 1} = \frac{1 - \frac{2}{n} + \frac{3}{n^2}}{3 + \frac{1}{n^2}} \to \frac{1}{3}$$

Satz 5. Seien $(a_n), (b_n)$ konvergente Folgen, $a_n \to a$, $b_n \to b$. Falls $a_n \ge b_n$ für fast alle n, so ist $a \geq b$.

Satz 6. (Bernoullische Ungleichung) Sei $x \ge -1$. Dann gilt:

$$(1+x)^n \ge 1 + nx$$
 für alle $n \in \mathbb{N}$.

Satz 7. Für |a| < 1 ist $\lim_{n \to \infty} a^n = 0$, und für |a| > 1 divergiert die Folge (a^n) .

Def. Eine Folge (a_n) heißt monoton wachsend, wenn $a_n \leq a_{n+1} \, \forall n$. Sie heißt streng monoton wachsend, wenn $a_n < a_{n+1} \ \forall \ n$. Entsprechend: (streng) monoton fallend

Satz 8. Ist (a_n) monoton wachsend und beschränkt, so ist (a_n) konvergent und $\lim_{n \to \infty} a_n = \sup\{ a_n \mid n \in \mathbb{N} \}.$

Beispiel: Neuer Beweis für $\lim_{n\to\infty}x^n=0$, falls $0\le x<1$: Sei $a_n:=x^n$. Dann ist (a_n) eine monoton fallende beschränkte Folge, die nach Satz 8 gegen ein a konvergiert. Für jedes n ist $a_{n+1} = x \cdot a_n$. Übergang zum Limes liefert $a = x \cdot a$, also a = 0.

Def. Sei $(n_k)_{k>1}$ eine streng monoton wachsende Folge natürlicher Zahlen. Ist $(a_n)_{n\geq 1}$ eine Folge in einer Menge X, so erhält man durch $k\mapsto a_{n_k}$ eine neue Folge $(a_{n_k})_{k\geq 1}$ in X, die eine Teilfolge von (a_n) heißt.

Bem. a) Eine Teilfolge einer beschränkten Folge ist beschränkt.

b) Wenn (a_n) gegen a konvergiert, so auch jede Teilfolge von (a_n) .

Satz 9. Jede Folge (a_n) reeller Zahlen enthält eine monotone Teilfolge.

Beweisidee: Wir nennen eine natürliche Zahl m eine Gipfelstelle, wenn $a_n <$ a_m für alle n > m. Wenn es unendlich viele Gipfelstellen gibt, so bilden diese eine monoton fallende Teilfolge. Wenn es nur endlich viele Gipfelstellen gibt, so gibt es eine monoton wachsende Teilfolge.

Satz 10. (Bolzano-Weierstraß) Jede beschränkte Folge besitzt eine konvergente Teilfolge.

(Satz 10 folgt sofort aus Satz 8 und Satz 9.)

Satz 11. (Konvergenzkriterium von Cauchy)

Sei (a_n) eine Folge. Dann sind äquivalent:

- (1) (a_n) ist konvergent.
- (2) Zu jedem $\epsilon > 0$ existiert $N \in \mathbb{N}$, so dass $|a_m a_n| < \epsilon$ für alle $m, n \in \mathbb{N}$ mit $m \geq N$ und $n \geq N$.

(Die Implikation $(1)\Rightarrow(2)$ ist ganz leicht. Ist umgekehrt (2) erfüllt, so zeigt man zuerst, dass die Folge beschränkt ist und wendet dann den Satz von Bolzano-Weierstraß an, um die Konvergenz zu folgern.)

3. Reihen

Das Summenzeichen: Ist $n \in \mathbb{N}$ und sind $a_1, \ldots, a_n \in \mathbb{R}$, so schreibt man

$$\sum_{k=1}^{n} a_k := a_1 + \ldots + a_n \ .$$

Statt k darf man auch jeden anderen Buchstaben (außer a und n) nehmen.

Allgemeiner: Sind $m, n \in \mathbb{Z}$ mit $m \leq n$ und sind $a_m, a_{m+1}, \ldots, a_n \in \mathbb{R}$, so schreibt man

$$\sum_{k=m}^{n} a_k := a_m + a_{m+1} + \ldots + a_n .$$

Noch allgemeiner: Ist M eine endliche Menge und ist für jedes $k \in M$ eine reelle Zahl a_k gegeben, so ist $\sum_{k=1}^{\infty} a_k$ die Summe aller Zahlen a_k mit $k \in M$.

Def. Sei (a_n) eine Folge reeller Zahlen und $s_n := a_1 + \ldots + a_n$. Wenn die Folge (s_n) konvergiert, so sagt man, dass die Reihe $\sum_{n=1}^{\infty} a_n$ konvergiert und schreibt

 $\sum\limits_{n=1}^{\infty}a_n$ für ihren Grenzwert. Wenn (s_n) divergiert, so sagt man, dass die Reihe $\sum\limits_{n=1}^{\infty}a_n$ divergiert. Die Zahlen s_n heißen die Partialsummen von $\sum\limits_{n=1}^{\infty}a_n$. Hat man allgemeiner eine Folge $(a_n)_{n\geq n_0}$ reeller Zahlen, so spricht man von der

Reihe $\sum_{n=n_0}^{\infty} a_n$

Satz 1. Wenn $\sum_{n=1}^{\infty} a_n$ konvergiert, so ist (a_n) eine Nullfolge.

Konvention: Wir setzen $x^0 := 1$ für alle $x \in \mathbb{R}$, insbesondere auch für x = 0.

Beispiel (1): Die geometrische Reihe $\sum_{n=0}^{\infty} x^n$ konvergiert für $\mid x \mid < 1$ und divergiert für $|x| \ge 1$. Denn für $x \in \mathbb{R}, \ x \ne 1$ ist

$$\sum_{n=0}^{k} x^n = \frac{1 - x^{k+1}}{1 - x}.$$

Deswegen gilt für $\mid x \mid < 1$:

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

Beispiel (2): Die harmonische Reihe $\sum_{n=1}^{\infty} \frac{1}{n}$ divergiert, denn

$$1 + \frac{1}{2} + \underbrace{\frac{1}{3} + \frac{1}{4}}_{> \frac{1}{2}} + \underbrace{\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}}_{> \frac{1}{2}} + \frac{1}{9} + \cdots$$

Beispiel (3): $\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots = 1$. Denn $\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$.

Satz 2. (Kriterium von Leibniz) Sei $(b_n)_{n\geq n_0}$ eine monoton fallende Nullfolge. Dann konvergiert $\sum_{n=0}^{\infty} (-1)^n b_n$.

Der Beweis geht folgendermaßen: Ist s_n die n-te Partialsumme, so überlegt man, dass

$$s_1 \le s_3 \le s_5 \le \ldots \le s_6 \le s_4 \le s_2 \le s_0$$
.

Daraus folgert man, dass die Folge der s_n konvergiert und dass sie den Grenzwert einschachteln.

Beispiel (4): $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$ konvergiert nach Satz 2.

Def. Eine Reihe $\sum_{n=1}^{\infty} a_n$ heißt absolut konvergent, wenn $\sum_{n=1}^{\infty} |a_n|$ konvergiert.

Satz 3. Eine absolut konvergente Reihe ist konvergent.

(Dies folgt aus dem Konvergenzkriterium von Cauchy.)

Bem.1. $\sum a_n$ konvergiert genau dann absolut, wenn die Folge der Partialsummen von $\sum \mid a_n \mid$ beschränkt ist.

Bem.2. Wenn $\sum a_n$ absolut konvergiert, so ist $|\sum a_n| \leq \sum |a_n|$.

Satz 4. (Majorantenkriterium) Seien (a_n) und (c_n) Folgen mit $|a_n| \le c_n \ \forall \ n$. Wenn $\sum_{n=1}^{\infty} c_n$ konvergiert, so konvergiert $\sum_{n=1}^{\infty} a_n$ absolut. (Man nennt dann $\sum_{n=1}^{\infty} c_n$ eine konvergente Majorante von $\sum_{n=1}^{\infty} a_n$.)

Beispiel (5): Die Reihe $\sum_{n=1}^{\infty} \frac{1}{n^2}$ konvergiert, denn die Reihe aus Beispiel (3) ist eine konvergente Majorante.

Beispiel (6): Sei $k \in \mathbb{N}$ fest mit $k \geq 2$. Dann konvergiert $\sum_{n=1}^{\infty} \frac{1}{n^k}$.

Satz 5. (Quotientenkriterium) Es gebe ein $q \in \mathbb{R}$ mit 0 < q < 1, so dass $a_n \neq 0$ und $\frac{|a_{n+1}|}{|a_n|} \leq q$ für fast alle n. Dann ist $\sum_{n=1}^{\infty} a_n$ absolut konvergent.

Beispiel (7): Für $n \in \mathbb{N}$ setzt man $n! := 1 \cdot 2 \cdot \ldots \cdot n$ (gelesen: n-Fakultät) und 0! := 1. Die Reihe $\sum_{n=0}^{\infty} \frac{1}{n!} x^n$ konvergiert nach Satz 5 absolut für jedes $x \in \mathbb{R}$.

$$\exp(x) := \sum_{n=0}^{\infty} \frac{1}{n!} x^n$$

Bem.3. Sind $\sum a_n$ und $\sum b_n$ konvergent, so ist $\sum (a_n + b_n)$ konvergent und $\sum (a_n + b_n) = \sum a_n + \sum b_n$.

Ist $\sum a_n$ konvergent und $\lambda \in \mathbb{R}$, so ist $\sum (\lambda a_n)$ konvergent und $\sum (\lambda a_n) = \lambda \sum a_n$.

Beispiel (8): $\frac{1}{2} - \frac{1}{2} + \frac{1}{3} - \frac{1}{3} + \frac{1}{4} - \frac{1}{4} + \cdots$ ist konvergent und hat die Summe 0. Die Umordnung

$$\frac{1}{2} + \frac{1}{3} + \underbrace{\frac{1}{4} - \frac{1}{2}}_{-\frac{1}{4}} + \frac{1}{5} + \underbrace{\frac{1}{6} - \frac{1}{3}}_{-\frac{1}{6}} + \frac{1}{7} + \underbrace{\frac{1}{8} - \frac{1}{4}}_{-\frac{1}{8}} + + - \cdots$$

ist nach dem Leibniz- Kriterium ebenfalls konvergent, hat aber eine Summe, die $> \frac{1}{2}$ ist. Und die Umordnung

$$\frac{1}{2} + \underbrace{\frac{1}{3} + \frac{1}{4}}_{\ge \frac{1}{2}} - \underbrace{\frac{1}{5} + \dots + \frac{1}{8}}_{\ge \frac{1}{2}} + \underbrace{\frac{1}{9} + \dots + \frac{1}{16}}_{\ge \frac{1}{2}} - \underbrace{\frac{1}{3} + \frac{1}{17} + \dots}_{\ge \frac{1}{2}}$$

ist divergent.

Def. Seien X und Y Mengen und sei $f: X \to Y$ eine Abbildung.

- a) f heißt surjektiv oder Abbildung von X auf Y, wenn es für jedes $y \in Y$ ein $x \in X$ gibt mit f(x) = y.
- b) f heißt *injektiv* oder *eineindeutig*, wenn gilt: Sind $x, x' \in X$ mit $x \neq x'$, so ist $f(x) \neq f(x')$.
- c) f heißt bijektiv, wenn f injektiv und surjektiv ist, wenn es also für jedes $y \in Y$ genau ein $x \in X$ gibt mit f(x) = y.

Satz 6. (Kommutativität absolut konvergenter Reihen) Sei $\sum_{n=1}^{\infty} a_n$ eine absolut konvergente Reihe und σ eine Bijektion von \mathbb{N} auf sich. Setze $b_n := a_{\sigma(n)}$. Dann ist $\sum_{n=1}^{\infty} b_n$ absolut konvergent und $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} b_n$.

Bem. Man kann beweisen: Ist $\sum a_n$ eine Reihe, die konvergiert, aber nicht absolut konvergiert, so gilt:

- a) Es gibt eine Bijektion $\sigma: \mathbb{N} \to \mathbb{N}$, so dass $\sum a_{\sigma(n)}$ divergiert.
- b) Ist $w \in \mathbb{R}$ beliebig, so gibt es eine Bijektion $\sigma : \mathbb{N} \to \mathbb{N}$, so dass $\sum a_{\sigma(n)} = w$

Bem. Man kann für absolut konvergente Reihen auch Assoziativität und Distributivität zeigen; siehe etwa W. Walter: Analysis I. Wir brauchen im Augenblick nur einen Spezialfall (Satz 8).

Binomialkoeffizienten: Man definiert für $n, k \in \mathbb{Z}$ mit $n \ge k$ und $0 \le k \le n$ den Binomialkoeffizienten $\binom{n}{k}$ durch

$$\binom{n}{k} := \frac{n!}{k!(n-k)!}$$

Bem. a)
$$\binom{n}{0} = 1$$
, $\binom{n}{n} = 1$, $\binom{n}{k} = \binom{n}{n-k}$.

b) Für
$$k > 0$$
 ist $\binom{n}{k} = \frac{n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot (n-k+1)}{1 \cdot 2 \cdot 3 \cdot \ldots \cdot k}$.

c)
$$\binom{n}{1} = n$$
, $\binom{n}{2} = \frac{n(n-1)}{2}$.

- d) Für $n, k \in \mathbb{Z}$ und $0 < k \le n$ gilt $\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$. Insbesondere ist $\binom{n}{k} \in \mathbb{Z}$. Pascalsches Dreieck!
- e) $\binom{n}{k}$ ist die Anzahl der k-elementigen Teilmengen einer n-elementigen Menge.

Satz 7. (Binomischer Lehrsatz) Für $n \in \mathbb{N} \cup \{0\}$ und $x, y \in \mathbb{R}$ gilt:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}.$$

(Auch richtig, wenn x, y in einem beliebigen Körper liegen.)

Satz 8. (Ausmultiplizieren absolut konvergenter Reihen) Seien $\sum_{n=0}^{\infty} a_n$ und $\sum_{n=0}^{\infty} b_n$ absolut konvergent, und sei

$$c_n := \sum_{k=0}^n a_k b_{n-k}.$$

Dann ist auch die Reihe $\sum_{n=0}^{\infty} c_n$ absolut konvergent und

$$\sum_{n=0}^{\infty} c_n = \left(\sum_{n=0}^{\infty} a_n\right) \cdot \left(\sum_{n=0}^{\infty} b_n\right).$$

Satz 9. (Additionstheorem für die Exponentialfkt.)

$$\exp(x+y) = \exp x \exp y \ \forall \ x, y \in \mathbb{R}.$$

Dies folgt aus Satz 7 und Satz 8.

4. Stetige Funktionen

Allgemeines über Abbildungen:

- I. Bezeichnungen:
 - Ist X eine Menge, so bezeichnet man mit id_X oder id die Abbildung $x\mapsto x$ von X in sich (identische Abbildung von X).
 - Sind X,Y,Z Mengen und $f:X\to Y,\ g:Y\to Z$ Abbildungen, so erhält man eine Abbildung $g\circ f:X\to Z$ durch $g\circ f(x):=g(f(x)).$

• Sind X, Y Mengen und ist $f: X \to Y$ eine Bijektion, so bezeichnet man das Element von X, das von f auf y abgebildet wird, mit $f^{-1}(y)$. Damit erhält man eine Bijektion $f^{-1}: Y \to X$. Es gilt

$$f^{-1} \circ f = \mathrm{id}_X,$$

$$f \circ f^{-1} = \mathrm{id}_Y,$$

$$(f^{-1})^{-1} = f.$$

II. Seien X, Y Mengen und $f: X \to Y$ eine Abbildung.

Ist $A \subseteq X$, so sei $f(A) := \{f(x) | x \in A\} = \{y \in Y | \text{es gibt ein } x \in A \text{ mit } f(x) = y\}.$

Ist $U \subseteq Y$, so sei $f^{-1}(U) := \{x \in X | f(x) \in U\}.$

Ist $y \in Y$, so sei $f^{-1}(y) := f^{-1}(\{y\}) = \{x \in X | f(x) = y\}.$

Das schreibt man auch, wenn f nicht bijektiv ist!

• Sind $U, V \subseteq Y$, so ist

$$f^{-1}(U \cap V) = f^{-1}(U) \cap f^{-1}(V),$$

$$f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V).$$

• Sind $A, B \subseteq X$, so ist

$$f(A \cap B) \subseteq f(A) \cap f(B),$$

 $f(A \cup B) = f(A) \cup f(B).$

- Ist $U \subseteq Y$, so ist $f(f^{-1}(U)) \subseteq U$. Ist f surjektiv, so gilt Gleichheit.
- Ist $A \subseteq X$, so ist $f^{-1}(f(A)) \supseteq A$. Ist f injektiv, so gilt Gleichheit.

III. Sind X, Y Mengen, so ist

$$X \times Y := \{(x, y) | x \in X, y \in Y\}.$$

Man schreibt $X^2:=X\times X$. Insbesondere ist $\mathbb{R}^2=\mathbb{R}\times\mathbb{R}$ die Ebene.

Ist $D \subseteq X$ und $f: D \to Y$ eine Abbildung, so heißt

$$Graph(f) := \{(x, f(x)) | x \in D\} \subset X \times Y$$

der Graph von f.

Ist $D \subseteq \mathbb{R}$, so heißt eine Abbildung $f: D \to \mathbb{R}$ eine auf D definierte Funktion.

Def. Sei $f: D \to \mathbb{R}$ eine Funktion und $x_0 \in D$. Dann heißt f stetig in x_0 , wenn es zu jedem $\epsilon > 0$ ein $\delta > 0$ gibt, so dass gilt: Ist $x \in D$ und $|x - x_0| < \delta$, so ist $|f(x) - f(x_0)| < \epsilon$. Die Funktion f heißt stetig, wenn sie in jedem Punkt von D stetig ist.

Bem. f ist genau dann in x_0 stetig, wenn gilt: Zu jedem $\epsilon > 0$ gibt es ein $\delta > 0$ mit folgender Eigenschaft:

$$| f(x_0 + h) - f(x_0) | < \epsilon$$

für alle $h \in \mathbb{R}$, für die $|h| < \delta$ und $x_0 + h \in D$.

Beispiel (1): Ist $c \in \mathbb{R}$ eine feste Zahl und $f : \mathbb{R} \to \mathbb{R}$ definiert durch $f(x) = c \ \forall x \in \mathbb{R}$, so ist f stetig.

Beispiel (2): Ist $f = id_{\mathbb{R}}$, also $f(x) = x \,\forall x \in \mathbb{R}$, so ist f stetig.

Bezeichnung: Sei $f: D \to \mathbb{R}$ eine Funktion, $x_0 \in D$ und $a \in \mathbb{R}$. Wir schreiben $\lim_{x \to x_0} f(x) = a$, wenn für jede Folge (x_n) in D mit $\lim_{n \to \infty} x_n = x_0$ gilt, dass $\lim_{n \to \infty} f(x_n) = a$.

Satz 1. Sei $f: D \to \mathbb{R}$ eine Funktion, $x_0 \in D$. Dann sind äquivalent:

- (a) f ist stetig in x_0 .
- (b) $\lim_{x \to x_0} f(x) = f(x_0)$.

Beispiel (3): Definiere $f: \mathbb{R} \to \mathbb{R}$ durch $f(x) := \left\{ \begin{array}{ll} 0 & \text{für } x \leq 0 \\ 1 & \text{für } x > 0 \end{array} \right.$. Dann ist f nicht stetig in 0.

Bez. Seien $f, g: D \to \mathbb{R}$ zwei Funktionen. Dann definiert man $f+g: D \to \mathbb{R}$ durch (f+g)(x) := f(x) + g(x); entsprechend f-g, fg, $\frac{f}{g}$ (letzteres, falls $g(x) \neq 0$ $\forall x \in D$).

Satz 2. Sei $D \subseteq \mathbb{R}$ und seien $f, g: D \to \mathbb{R}$ stetige Funktionen. Dann sind f+g, f-g, fg und, falls g keine Nullstellen in D hat, auch $\frac{f}{g}$ stetig.

Beispiel (4): Sind $a_0, \ldots, a_n \in \mathbb{R}$ feste Zahlen und definiert man $f : \mathbb{R} \to \mathbb{R}$ durch $f(x) := a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$, so ist f stetig. Eine solche Funktion heißt Polynom(funktion).

Beispiel (5): Sind a_0, \ldots, a_n und $b_0, \ldots, b_m \in \mathbb{R}$ fest und ist $D := \{x \in \mathbb{R} \mid b_0 + b_1 x + \ldots + b_m x^m \neq 0\}$, so erhält man durch

$$f(x) := \frac{a_0 + a_1 x + \dots + a_n x^n}{b_0 + b_1 x + \dots + b_m x^m}$$

eine stetige Funktion $f: D \to \mathbb{R}$. Sie heißt gebrochen-rationale Funktion.

Beispiel (6): Die Funktion $\exp:\mathbb{R} \to \mathbb{R}$ mit $\exp x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ ist stetig.

Dafür benutzen wir:

Satz 3. Ist $R_{N+1}(x) := \exp x - \sum_{n=0}^{N} \frac{x^n}{n!}$, so ist

$$\mid R_{N+1}(x) \mid \leq 2 \frac{\mid x \mid^{N+1}}{(N+1)!}$$
 für alle x mit $\mid x \mid \leq 1 + \frac{N}{2}$.

Def. $e := \exp(1)$.

Aus Satz 3. folgt: $|e-\sum_{n=0}^N\frac{1}{n!}|\leq \frac{2}{(N+1)!}$ für alle $N\in\mathbb{N}\cup\{0\}$. Damit kann man e mit gewünschter Genauigkeit berechnen:

$$e = 2,71828...$$

Satz 4. Seien $D, E \subseteq \mathbb{R}$ und $f: D \to \mathbb{R}$, $g: E \to \mathbb{R}$ stetige Funktionen mit $f(x) \in E$ für alle $x \in D$. Definiert man $h: D \to \mathbb{R}$ durch h(x) := g(f(x)), so ist h stetig.

Satz 5. (Zwischenwertsatz) Seien $a, b \in \mathbb{R}$ mit a < b und sei $f : [a, b] \to \mathbb{R}$ stetig. Sei γ eine reelle Zahl, die zwischen f(a) und f(b) liegt. Dann gibt es ein $c \in [a, b]$ mit $f(c) = \gamma$.

Bezeichnungen: Außer den bisher betrachteten (offenen, abgeschlossenen oder halboffenen) Intervallen, die wir auch als *eigentliche Intervalle* bezeichnen, betrachtet man auch *uneigentliche Intervalle*, nämlich die Mengen der Form (mit $a \in \mathbb{R}$):

```
 \begin{array}{l} [\ a,\infty[\ :=\mathbb{R}_{\geq a}:=\{x\in\mathbb{R}\ |\ a\leq x\} \\ ]-\infty,a]:=\mathbb{R}_{\leq a}:=\{x\in\mathbb{R}\ |\ x\leq a\} \\ ]\ a,\infty[\ :=\mathbb{R}_{\geq a}:=\{x\in\mathbb{R}\ |\ a< x\} \\ ]\ a,\infty[\ :=\mathbb{R}_{>a}:=\{x\in\mathbb{R}\ |\ a< x\} \\ ]-\infty,a[\ :=\mathbb{R}_{< a}:=\{x\in\mathbb{R}\ |\ x< a\} \\ ]-\infty,\infty[:=\mathbb{R} \end{array} , \quad \text{offenes uneigentliches Intervall}
```

Als *Intervall* bezeichnen wir ein eigentliches oder ein uneigentliches Intervall. Ein eigentliches abgeschlossenes Intervall heißt *kompaktes Intervall*.

Der folgende Satz ist eine Umformulierung des Zwischenwertsatzes:

Satz 6. Sei I ein Intervall und $f:I\to\mathbb{R}$ stetig. Dann ist f(I) ein Intervall oder eine einpunktige Menge.

Satz 7. Ist I ein kompaktes Intervall und $f: I \to \mathbb{R}$ eine stetige Funktion, so nimmt f auf I sein Maximum und sein Minimum an. (D.h.: Es gibt $x_0, x_1 \in I$ mit $f(x_0) \le f(x) \le f(x_1)$ für alle $x \in I$.

Def. Sei $D \in \mathbb{R}$ und $f: D \to \mathbb{R}$ eine Funktion. Dann heißt f monoton wachsend, wenn gilt: Sind $x_1, x_2 \in D$ mit $x_1 < x_2$, so ist $f(x_1) \leq f(x_2)$. Entsprechend definiert man monoton fallende, streng monoton wachsende und streng monoton fallende Funktionen.

Bem. Eine streng monotone Funktion ist injektiv. Ist I ein Intervall und $f:I\to\mathbb{R}$ stetig und streng monoton, so ist J:=f(I) ein Intervall nach Satz 6. Die Abbildung $x\mapsto f(x)$ ist eine Bijektion von I auf J. Die Umkehrabbildung ist eine Abbildung $f^{-1}:J\to I$. Schreibe $g(x):=f^{-1}(x)$, $g:J\to\mathbb{R}$. Graph(g) entsteht aus Graph(f) durch Spiegeln an der Geraden $\{(x,x)\in\mathbb{R}^2\mid x\in\mathbb{R}\}$. Ist f streng monoton wachsend (fallend), so auch g.

Satz 8. Die Umkehrfunktion einer auf einem Intervall definierten streng monotonen stetigen Funktion ist stetig.

Beispiel (7): a) Ist n eine ungerade natürliche Zahl, so ist die Abbildung $f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^n$, streng monoton wachsend und stetig. Sie nimmt beliebig große und kleine Werte an, ist also bijektiv. Die Umkehrabbildung $g: \mathbb{R} \to \mathbb{R}$ ist nach Satz 8 stetig. Schreibe: $g(x) =: \sqrt[n]{x} =: x^{\frac{1}{n}}$.

b) Ist n eine gerade natürliche Zahl, so ist die Abbildung $f:[0,\infty[\to [0,\infty[$, $f(x)=x^n$ streng monoton wachsend, stetig und bijektiv. Die Umkehrabbildung $x\mapsto \sqrt[n]{x}=x^{\frac{1}{n}}$ ist stetig.

Beachte: Für gerades n ist $\sqrt[n]{x}$ nur für $x \ge 0$ definiert, und dann ist $\sqrt[n]{x} \ge 0$.

5. Die komplexen Zahlen

Auf $\mathbb{R}^2 = \{(x,y) \mid x,y \in \mathbb{R}\}$ definiert man eine Addition und eine Multiplikation durch

$$(x,y) + (u,v) := (x+u, y+v)$$

$$(x,y)\cdot(u,v) := (xu - yv, xv + yu)$$

Damit wird \mathbb{R}^2 zu einem Körper, den man mit \mathbb{C} bezeichnet und dessen Elemente die komplexen Zahlen heißen.

Bemerkungen und Bezeichnungen:

- (1) Es ist (x,0) + (u,0) = (x+u,0) und $(x,0) \cdot (u,0) = (xu,0)$. Indem man x mit (x,0) identifiziert, wird \mathbb{R} zu einem Teilkörper von \mathbb{C} . Schreibe von nun an immer x statt (x,0) für $x \in \mathbb{R}$.
- (2) Ist i := (0,1), so ist $i^2 = (-1,0) = -1$. Für $y \in \mathbb{R}$ ist $i \cdot y = (0,1) \cdot (y,0) =$ (0,y). Daher gilt für $(x,y) \in \mathbb{C}: (x,y) = (x,0) + (0,y) = x + iy$. Schreibe von nun an immer x + iy statt (x, y).
- (3) Man stellt sich die Punkte von C als die Punkte der Ebene vor.
- (4) Ist $z \in \mathbb{C}$, z = x + iy mit $x, y \in \mathbb{R}$, so schreibe

$$\begin{split} \operatorname{Re}(z) &:= x \qquad (Realteil \ \operatorname{von} z) \\ \operatorname{Im}(z) &:= y \qquad (Imagin\"{a}rteil \ \operatorname{von} z.) \end{split}$$

Beachte: Der Imaginärteil einer komplexen Zahl ist eine reelle Zahl! Ist $z \in \mathbb{C}$, so gilt: $z \in \mathbb{R} \Leftrightarrow \operatorname{Im}(z) = 0 \Leftrightarrow \operatorname{Re}(z) = z$.

- (5) Ist $z = x + iy \in \mathbb{C}$ mit $x, y \in \mathbb{R}$, so heißt $\overline{z} := x iy$ die zu z konjugiert komplexe Zahl. Sie entsteht aus z durch Spiegeln an der reellen Achse. Eigenschaften:

 - $\begin{array}{ll} (a) & \quad \overline{\overline{z}}=z \\ (b) & \quad \overline{z+w}=\overline{z}+\overline{w} \\ (c) & \quad \overline{z\overline{w}}=\overline{z}\;\overline{w} \\ (d) & \quad \operatorname{Re}(z)=\frac{1}{2}(z+\overline{z}),\; \operatorname{Im}(z)=\frac{1}{2i}(z-\overline{z}) \\ \end{array}$
- (6) Ist $z = x + iy \in \mathbb{C}$ mit $x, y \in \mathbb{R}$, so ist

$$z\overline{z} = (x+iy)(x-iy) = x^2 - i^2y^2 = x^2 + y^2$$

eine nicht-negative reelle Zahl. Sei

$$|z| := \sqrt{z\bar{z}} = \sqrt{x^2 + y^2} = \sqrt{(\text{Re}(z))^2 + (\text{Im}(z))^2}$$

Dann heißt |z| der Absolutbetrag von z; er ist der Abstand zwischen 0 und z.

Für
$$z \neq 0$$
 ist $|z| > 0$ und $z \cdot \frac{\overline{z}}{|z|^2} = \frac{z\overline{z}}{|z|^2} = \frac{|z|^2}{|z|^2} = 1$, also

$$z^{-1} = \frac{\overline{z}}{\mid z \mid^2}$$

13

Insbesondere gilt: Ist |z|=1 (das heißt, dass z auf dem Kreis mit Radius 1 um 0 liegt), so ist $z^{-1}=\overline{z}$.

Für jedes $z \in \mathbb{C}$ ist $|\bar{z}| = |z|$.

Satz 1: Für $z, w \in \mathbb{C}$ gilt:

- a) $|zw| = |z| \cdot |w|$
- b) $|z+w| \le |z| + |w|$ (Dreiecksungleichung).

Def. Sei (z_n) eine Folge komplexer Zahlen und $z_0 \in \mathbb{C}$. Dann heißt (z_n) konvergent gegen z_0 , falls es zu jedem $\epsilon > 0$ ein $N \in \mathbb{N}$ gibt mit $|z_n - z_0| < \epsilon$ für alle $n \geq N$. Schreibe dann $\lim_{n \to \infty} z_n = z_0$ oder $z_n \to z_0$.

Satz 2. Sei (z_n) eine Folge in \mathbb{C} . Genau dann ist (z_n) konvergent, wenn die reellen Folgen $(\operatorname{Re}(z_n))_n$ und $(\operatorname{Im}(z_n))_n$ konvergieren, und dann gilt:

$$\lim_{n \to \infty} z_n = \lim_{n \to \infty} \operatorname{Re}(z_n) + i \lim_{n \to \infty} \operatorname{Im}(z_n).$$

Satz 3. (Cauchy-Kriterium für Folgen komplexer Zahlen)

Für eine Folge (z_n) in \mathbb{C} sind äquivalent:

- (1) (z_n) ist konvergent.
- (2) Zu jedem $\epsilon > 0$ ex. $N \in \mathbb{N}$ mit $|z_n z_m| < \epsilon \ \forall \ n, m \ge N$.

Bem. Die Rechenregeln für Grenzwerte reeller Folgen ($\S 2$, Satz 4) gelten für komplexe Folgen unverändert.

Def. Sei (a_n) eine Folge in \mathbb{C} und $s_N := a_1 + \ldots + a_N$.

- a) Wenn die Folge $(s_N)_N$ konvergiert, so heißt die Reihe $\sum_{n=1}^{\infty} a_n$ konvergent.
- b) Wenn die Reihe $\sum_{n=1}^{\infty} |a_n|$ konvergiert, so heißt die Reihe $\sum_{n=1}^{\infty} a_n$ absolut konvergent.

Bem. Auch in $\mathbb C$ gilt: Absolut konvergente Reihen sind konvergent. Majorantenkriterium, Quotientenkriterium und die Sätze 6 (Komm.) und 7 (Ausmult.) von §3 bleiben unverändert richtig. Insbesondere ist für jedes $z \in \mathbb C$ die Reihe $\sum\limits_{n=0}^{\infty} \frac{1}{n!} z^n$ absolut konvergent; durch $\exp(z) := \sum\limits_{n=0}^{\infty} \frac{1}{n!} z^n$ erhält man eine Abbildung exp: $\mathbb C \to \mathbb C$. Für $z,w \in \mathbb C$ ist

$$\exp(z+w) = \exp(z) \cdot \exp(w).$$

Def. Sei $D \subseteq \mathbb{C}$ und $x_0 \in D$. Sei $f: D \to \mathbb{C}$ eine Funktion. f heißt stetig in z_0 , wenn es zu jedem $\epsilon > 0$ ein $\delta > 0$ gibt, so dass gilt:

Ist
$$z \in D$$
 und $|z - z_0| < \delta$, so ist $|f(z) - f(z_0)| < \epsilon$.

f heißt stetig, wenn es in jedem Punkt von D stetig ist.

Beispiel: Definiere $f: \mathbb{C} \to \mathbb{C}$ durch $f(z) := \overline{z}$. Dann ist fstetig.

Satz 4. Für eine Funktion $f: D \to \mathbb{C}$ und $z_0 \in D$ sind äquivalent:

- (1) f ist stetig in z_0 .
- (2) $\lim_{z\to z_0} f(z) = f(z_0)$.

D.h.: Für jede Folge (z_n) in D mit $z_n \to z_0$ ist $\lim_{n\to\infty} f(z_n) = f(z_0)$.

Bem. Die Rechenregeln für stetige Funktionen (§4, Sätze 2 und 4) bleiben im Komplexen richtig. Insbesondere sind Polynomfunktionen (mit komplexen Koeffizienten) stetige Funktionen auf ganz C, und gebrochen-rationale Funktionen sind überall dort stetig, wo sie definiert sind.

Der Beweis der Stetigkeit der Exponentialfunktion zeigt, dass auch exp: $\mathbb{C} \to \mathbb{C}$ stetig ist.

6. Die wichtigsten Funktionen

Bezeichnungen: a) Sei (x_n) eine Folge in \mathbb{R} .

 $\lim_{n\to\infty} x_n = \infty : \Leftrightarrow \text{ Zu jedem } C \in \mathbb{R} \text{ ex. } N \in \mathbb{N} \text{ mit } x_n \ge C \text{ für alle } n \ge N.$

 $\lim_{n\to\infty} x_n = -\infty : \Leftrightarrow \text{ Zu jedem } C \in \mathbb{R} \text{ ex. } N \in \mathbb{N} \text{ mit } x_n \leq C \text{ für alle } n \geq N.$

b) Sei D eine Teilmenge von \mathbb{R} , die nicht nach oben beschränkt ist, und sei $f: D \to \mathbb{R}$ eine Funktion. Ist $a \in \mathbb{R} \cup \{\infty, -\infty\}$, so sei

 $\lim_{x \to \infty} f(x) = a : \Leftrightarrow \text{ Für jede Folge } (x_n) \text{ in } D \text{ mit } \lim_{n \to \infty} x_n = \infty \text{ ist } \lim_{n \to \infty} f(x_n) = a.$

Entsprechend definiert man, was $\lim_{x \to -\infty} f(x) = a$ bedeutet.

Bem. Ist $a \in \mathbb{R}$, so bedeutet $\lim_{x \to \infty} f(x) = a$, dass es für jedes $\epsilon > 0$ ein $M \in \mathbb{R}$ gibt, so dass $|f(x) - a| < \epsilon$ für alle $x \in D$ mit $x \ge M$.

 $\lim_{x\to\infty}f(x)=\infty \text{ bedeutet, dass es für jedes }C\in\mathbb{R}\text{ ein }M\in\mathbb{R}\text{ gibt, so dass }f(x)\geq C\text{ für alle }x\in D\text{ mit }x\geq M.$

6.1. Die Exponentialfunktion. Die Abb. $\exp: \mathbb{C} \to \mathbb{C}$ ist def. durch

$$\exp(z) = \sum_{n=0}^{\infty} \frac{1}{n!} z^n.$$

Wir wissen bereits:

Diese Reihe konvergiert absolut;

$$\exp(z+w) = \exp(z) \cdot \exp(w) \ \forall z, w \in \mathbb{C};$$

exp ist stetig;

$$e := \exp(1) = \sum_{n=0}^{\infty} \frac{1}{n!} = 2,718\dots$$

Durch Einschränkung erhält man eine ebenfalls mit exp bezeichnete Funktion $\exp : \mathbb{R} \to \mathbb{R}$.

- (1) $\exp(0) = 1$.
- (2) Für $z \in \mathbb{C}$ ist $\exp(z) \neq 0$ und $\exp(-z) = \frac{1}{\exp(z)}$.
- (3) Für $x \in \mathbb{R}$ ist $\exp(x) > 0$.
- (4) $\exp : \mathbb{R} \to \mathbb{R}$ ist streng monoton wachsend.

- (5) $\exp(\mathbb{R}) =]0, \infty[.$
- (6) $\lim_{x \to \infty} \frac{\exp(x)}{x^m} = \infty$ für alle $m \in \mathbb{N}$.
- (7) $\lim_{x \to -\infty} x^m \exp(x) = 0$ für alle $m \in \mathbb{N}$.
- (8) Für $z \in \mathbb{C}$ ist $\overline{\exp z} = \exp \overline{z}$.
- (9) Ist $x \in \mathbb{R}$, so ist $|\exp(ix)| = 1$.

Also liegt $\exp(ix)$ für $x \in \mathbb{R}$ auf der Kreislinie K mit Radius 1 und Mittelpunkt 0.

Wir werden später sehen: Legt man auf K von 1 aus im Gegenuhrzeigersinn einen Weg mit der Länge x zurück, so endet man im Punkt $\exp(ix)$.

6.2. Der Logarithmus

Da exp : $\mathbb{R} \to \mathbb{R}$ streng monoton wachsend und stetig ist mit $\exp(\mathbb{R}) =]0, \infty[$, so ex. nach §4 die Umkehrfunktion log : $]0, \infty[\to \mathbb{R}]$; sie ist ebenfalls stetig.

- (1) Für $x \in \mathbb{R}$ ist $\log(\exp(x)) = x$; für x > 0 ist $\exp(\log(x)) = x$.
- (2) $\log(0, \infty) = \mathbb{R}$.
- (3) log ist streng monoton wachsend.
- (4) Für x, y > 0 ist $\log(xy) = \log(x) + \log(y)$.
- $(5) \log(1) = 0$
- (6) Für x > 0 ist $\log(\frac{1}{x}) = -\log(x)$.
- (7) $\lim_{x \to \infty} \log x = \infty$ und $\lim_{x \to 0} \log x = -\infty$.
- (8) $\lim_{x \to \infty} \frac{\log x}{x} = 0.$

6.3. Die allgemeine Potenz. Sei a > 0 eine feste Zahl.

- (1) Für $n \in \mathbb{N}$ ist $\exp(n \log a) = \exp(\log(a^n)) = a^n$.
- (2) Für $n \in \mathbb{N}$ ist $\exp(-n \log a) = \exp(n \log \frac{1}{a}) = (\frac{1}{a})^n = a^{-n}$.
- (3) Sei $x \in \mathbb{Q}$, also $x = \frac{n}{m}$ mit $n \in \mathbb{Z}, m \in \mathbb{N}$.

Dann ist $(\exp(x \log a))^m = \exp(mx \log a) = \exp(n \log a) = a^n = (a^x)^m$. Weil die Funktion $t \mapsto t^m$ von $[0, \infty[$ in sich streng monoton wachsend ist, folgt:

$$\exp(x\log a) = a^x \ \forall \ x \in \mathbb{Q}.$$

Def. Sei a > 0. Für $z \in \mathbb{C}$ sei $a^z := \exp(z \log a)$.

- (4) Für $z \in \mathbb{C}$ ist $e^z = \exp(z \log e) = \exp z$.
- (5) Ist a > 0 und sind $x, y \in \mathbb{R}$, so ist $(a^x)^y = a^{xy}$ und $a^{x+y} = a^x a^y$.
- (6) Sind a, b > 0 und ist $x \in \mathbb{R}$, so ist $(ab)^x = a^x b^x$ und $(\frac{1}{a})^x = a^{-x}$.

6.4. Die trigonometrischen Funktionen.

Def. Für $x \in \mathbb{R}$ sei $\cos x := \operatorname{Re}(e^{ix})$ und $\sin x := \operatorname{Im}(e^{ix})$.

- $(1) e^{ix} = \cos x + i\sin x$
- (2) $\cos x = \frac{1}{2}(e^{ix} + e^{-ix})$

 $\sin x = \frac{1}{2i} (e^{ix} - e^{-ix}).$

Weil die Exponentialfunktion im Komplexen stetig ist, sind die Funktionen $\cos : \mathbb{R} \to \mathbb{R}$ und $\sin : \mathbb{R} \to \mathbb{R}$ stetig.

(3) Für $x \in \mathbb{R}$ ist $\sin^2 x + \cos^2 x = 1$

(Dabei schreibt man $\sin^2 x := (\sin x)^2$ usw.)

- (4) $\cos(-x) = \cos x$ und $\sin(-x) = -\sin x$.
- (5) Additionstheoreme für Sinus und Cosinus:

$$\cos(x+y) = \cos x \cdot \cos y - \sin x \cdot \sin y ,$$

$$\sin(x+y) = \sin x \cdot \cos y + \cos x \cdot \sin y .$$

(6) Für alle $x \in \mathbb{R}$ gilt:

$$\cos x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - + \dots ,$$

$$\sin x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - + \dots$$

(7) **Restgliedabschätzung:** Ist $0 \le x \le 2$, so ist

$$\left| \sin x - \sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{(2k+1)!} \right| \le \frac{x^{2n+3}}{(2n+3)!} \text{ für } n \ge 0,$$

$$\left| \cos x - \sum_{k=0}^{n} (-1)^k \frac{x^{2k}}{(2k)!} \right| \le \frac{x^{2n+2}}{(2n+2)!} \quad \text{für } n \ge 1.$$

Beispiel (1) Für $0 < x \le 2$ ist $|\sin x - x| \le \frac{x^3}{6}$, also insbes. $\sin x \ge x - \frac{x^3}{6} = x(1 - \frac{x^2}{6}) \ge x(1 - \frac{4}{6}) = \frac{1}{3}x > 0$.

Beispiel (2) Für $0 \le x \le 2$ ist $|\cos x - (1 - \frac{x^2}{2})| \le \frac{x^4}{24}$, also insbes. $|\cos 2 + 1| \le \frac{16}{24} = \frac{2}{3} \Rightarrow \cos 2 \le -\frac{1}{3}$.

(8) Die Funktion cos hat im Intervall [0, 2] genau eine Nullstelle.

Dies folgt mit Beispiel (1) und (2) aus dem Zwischenwertsatz und aus der Tatsache, dass cos in [0,2] streng monoton fallend ist. Diese Tatsache ergibt sich aus dem folgenden Lemma.

Lemma. Für $x, y \in \mathbb{R}$ ist $\cos x - \cos y = -2\sin\frac{x+y}{2} \cdot \sin\frac{x-y}{2}$.

Def. Die Zahl $\pi \in \mathbb{R}$ ist dadurch definiert, das $\frac{\pi}{2}$ die Nullstelle von cos im Intervall [0,2] ist. $(\pi=3,14...)$

17

- (9) $\sin \frac{\pi}{2} = 1$, $\cos \pi = -1$, $\sin \pi = 0$, $\cos 2\pi = 1$, $\sin 2\pi = 0$.
- (10) $\cos(x+2\pi) = \cos x$ und $\sin(x+2\pi) = \sin x \ \forall x \in \mathbb{R}$. ,,cos und sin haben die $Periode\ 2\pi$ ".
- (11) $\cos(x+\pi) = -\cos x$ und $\sin(x+\pi) = -\sin x \ \forall x \in \mathbb{R}$.
- (12) $\cos x = \sin(\frac{\pi}{2} x)$ und $\sin x = \cos(\frac{\pi}{2} x) \ \forall x \in \mathbb{R}$.
- (13) $\{x \in \mathbb{R} \mid \sin x = 0\} = \{k\pi \mid k \in \mathbb{Z}\}.$
- (14) $\{x \in \mathbb{R} \mid \cos x = 0\} = \{k\pi + \frac{\pi}{2} \mid k \in \mathbb{Z}\}.$

Def. Für $x \in \mathbb{R} \setminus \{k\pi + \frac{\pi}{2} \mid k \in \mathbb{Z}\}$ sei $\tan x := \frac{\sin x}{\cos x}$.

Für $x \in \mathbb{R} \setminus \{k\pi \mid k \in \mathbb{Z}\}\ \text{sei cot } x := \frac{\cos x}{\sin x}.$

6.5. Die Umkehrfunktionen der trigonometrischen Funktionen.

- (1) Die Funktion cos ist im Intervall $[0,\pi]$ streng monoton fallend und bildet dieses Intervall bijektiv auf [-1,1] ab. Sei arccos : $[-1,1] \to \mathbb{R}$ die Umkehrfunktion.
- (2) Die Funktion sin ist im Intervall $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ streng monoton wachsend und bildet dieses Intervall bijektiv auf [-1,1] ab. Sei arcsin : $[-1,1] \to \mathbb{R}$ die Umkehrfunktion.
- (3) Die Funktion tan ist im Intervall $]-\frac{\pi}{2},\frac{\pi}{2}[$ streng monoton wachsend und bildet dieses Intervall bijektiv auf $\mathbb R$ ab. Sei arctan : $\mathbb R\to\mathbb R$ die Umkehrfunktion.

6.6. Noch einmal die Exponentialfunktion.

- (1) $\exp(2\pi i) = 1$, $\exp(\pi i) = -1$, $\exp(\frac{1}{2}\pi i) = i$, $\exp(\frac{3}{2}\pi i) = -i$.
- (2) Für alle $z \in \mathbb{C}$ ist $\exp(z + 2\pi i) = \exp(z)$. ,exp hat die Periode $2\pi i$."
- (3) Ist $x \in \mathbb{R}$, so gilt: $\exp(ix) = 1 \Leftrightarrow x = 2\pi k \text{ mit } k \in \mathbb{Z}$.
- (4) Ist $z \in \mathbb{C}$, so existieren $\varphi \in \mathbb{R}$ und $r \geq 0$ mit

$$z = re^{i\varphi}$$
.

(5) Seien $r, s \geq 0$ und $\varphi, \psi \in \mathbb{R}$. Setzt man

$$z := re^{i\varphi}, w := se^{i\psi},$$

so ist $zw = rse^{i(\varphi + \psi)}$. Das heißt: "Komplexe Zahlen werden multipliziert, indem ihre Beträge multipliziert und ihre Winkel addiert werden."

- (6) $\exp(\mathbb{C}) = \mathbb{C} \setminus \{0\}.$
- (7) Ist $z \in \mathbb{C} \setminus \{0\}$ und $n \in \mathbb{N}$, so gibt es genau n verschiedene Zahlen $w \in \mathbb{C}$ mit $w^n = z$.
- (8) Insbesondere gibt es für jedes $n \in \mathbb{N}$ genau n Zahlen w mit $w^n = 1$. Sie heißen die n-ten Einheitswurzeln und sind von der Form

$$e^{\frac{2\pi ik}{n}}$$
, $k = 0, 1, \dots, n-1$.

Sie bilden die Ecken eines regelmäßigen n-Ecks.

7. Differenzialrechnung

Def. Eine Teilmenge D von \mathbb{R} heißt offen, wenn es zu jedem $x \in D$ ein $\varepsilon > 0$ gibt mit $|x - \varepsilon|, x + \varepsilon| \subseteq D$.

Beispiele. Ein offenes Intervall ist eine offene Teilmenge von \mathbb{R} . Ist A eine endliche Teilmenge von \mathbb{R} , so ist $\mathbb{R} \setminus A$ offen.

Bem. Eine Teilmenge D von \mathbb{R} ist genau dann offen, wenn D die Vereinigung von offenen Intervallen ist.

Def. Sei D eine offene Teilmenge von $\mathbb{R}, x_0 \in D$ und $f: D \to \mathbb{R}$ eine Funktion. Wenn

$$\lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{f(x) - f(x_0)}{x - x_0}$$

existiert (in \mathbb{R}), so heißt f im Punkt x_0 differenzierbar; man schreibt $f'(x_0)$ für diesen Grenzwert und nennt ihn die Ableitung von f im Punkt x_0 . Manchmal schreibt man $\frac{df}{dx}(x_0)$ oder $\dot{f}(x_0)$ o.ä. statt $f'(x_0)$.

Ist f in jedem Punkt von D differenzierbar, so heißt f differenzierbar in D. Dann ist $f':D\to\mathbb{R}$ eine Funktion.

Beispiel (1) Sei $c \in \mathbb{R}$ fest und $f : \mathbb{R} \to \mathbb{R}$ die konstante Funktion mit dem Wert c. Dann ist f differenzierbar und f'(x) = 0.

Beispiel (2) Sei $f: \mathbb{R} \to \mathbb{R}$ definiert durch f(x) = x. Dann ist f differenzierbar und f'(x) = 1.

Beispiel (3) $\exp' x = \exp x$.

Beispiel (4) $\cos' x = -\sin x$.

Satz 1. Wenn f in x_0 differenzierbar ist, so ist f in x_0 stetig.

Satz 2. (Rechenregeln für das Ableiten) Sei D offen in \mathbb{R} , und $f, g : D \to \mathbb{R}$ seien differenzierbar.

- a) f + g ist differenzierbar und (f + g)' = f' + g'.
- b) fg ist differenzierbar und (fg)' = f'g + fg'.
- c) Ist $c \in \mathbb{R}$, so ist cf differenzierbar und (cf)' = cf'.
- d) Ist $g(x) \neq 0 \ \forall \ x \in D$, so ist $\frac{f}{g}$ differenzierbar und $\left(\frac{f}{g}\right)' = \frac{gf' fg'}{g^2}$.

Beispiel (5) Für $n \in \mathbb{Z}$ sei $p_n : D_n \to \mathbb{R}$ definiert durch $p_n(x) := x^n$, wobei $D_n = \mathbb{R}$ für $n \geq 0$, $D_n = \mathbb{R} \setminus \{0\}$ für n < 0.

Dann ist p_n differenzierbar und $p_n'(x) = nx^{n-1}$.

Folgerung. Polynome sind differenzierbar. Gebrochen rationale Funktionen sind überall, wo sie definiert sind, differenzierbar.

Satz 3. (Kettenregel) Seien D, E offen in \mathbb{R} und seien $f: D \to \mathbb{R}$ und $g: E \to \mathbb{R}$ Funktionen mit $f(D) \subseteq E$, so dass man $g \circ f: D \to \mathbb{R}$ bilden kann. Sei f differenzierbar in x_0 und g differenzierbar in $f(x_0)$. Dann ist $g \circ f$ in x_0 differenzierbar, und

$$(g \circ f)'(x_0) = g'(f(x_0)) \cdot f'(x_0).$$

Beispiel (6) $\sin' x = \cos x$

Beispiel (7)
$$\tan'(x) = \frac{1}{\cos^2(x)} = 1 + \tan^2(x)$$

Satz 4. (Ableitung der Umkehrfunktion) Sei D ein offenes Intervall und $f:D\to\mathbb{R}$ stetig und streng monoton. Sei $x_0\in D$, sei f in x_0 differenzierbar und $f'(x_0) \neq 0$. Sei g die Umkehrfunktion von f. Dann ist g in $y_0 := f(x_0)$ differenzierbar und

$$g'(y_0) = \frac{1}{f'(g(y_0))}.$$

Beispiel (8) $\log'(x) = \frac{1}{x}$ für x > 0.

Folgerung.
$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$$
.

Beweis:
$$1 = \log'(1) = \lim_{n \to \infty} \frac{\log(1 + \frac{1}{n})}{\frac{1}{n}} = \lim_{n \to \infty} \log(1 + \frac{1}{n})^n$$

$$\Rightarrow e = \exp(1) = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n.$$

$$\Rightarrow e = \exp(1) = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n.$$

Beispiel (9)
$$\arctan'(x) = \frac{1}{1+x^2}$$
.

Beispiel (10)
$$\arcsin'(x) = \frac{1}{\sqrt{1-x^2}} \text{ für } -1 < x < 1.$$

Beispiel (11) Sei $\alpha \in \mathbb{R}$ fest und $f:]0, \infty[\to \mathbb{R}$ definiert durch $f(x) := x^{\alpha} = \exp(\alpha \log x)$. Dann ist $f'(x) = (\exp(\alpha \log x)) \cdot \frac{\alpha}{x} = x^{\alpha} \cdot \frac{\alpha}{x} = x^{\alpha} \cdot \frac{\alpha}{x}$ $\alpha \cdot x^{\alpha-1}$

Beispiel (12) Ist $f: D \to \mathbb{R}$ differenzierbar mit $f(x) > 0 \ \forall x \in D$. Definiert man $g: D \to \mathbb{R}$ durch $g(x) = \log(f(x))$, so ist $g'(x) = \frac{f'(x)}{f(x)}$. Man nennt $\frac{f'}{f}$ die logarithmische Ableitung von f.

Def. Sei D offen in \mathbb{R} , $x_0 \in D$. Ist f differenzierbar in D und f' differenzierbar in x_0 , so heißt f zweimal differenzierbar in x_0 ; schreibe $f''(x_0) := (f')'(x_0)$. Und

$$f^{(0)} = f,\, f^{(1)} = f',\, f^{(2)} = f'',\, \dots \,.$$

8. Anwendungen der Differenzialrechnung

Def. Sei $D \subseteq \mathbb{R}$, $f: D \to \mathbb{R}$ eine Funktion und $x_0 \in D$. Wir sagen, dass f in x_0 ein lokales Maximum hat, wenn es ein $\epsilon > 0$ gibt, so dass gilt: Ist $x \in D$ mit $|x-x_0| < \epsilon$, so ist $f(x_0) \ge f(x)$.

Entsprechend: f hat in x_0 ein lokales Minimum.

Wenn f in x_0 ein lokales Maximum oder ein lokales Minimum hat, so sagen wir, dass f in x_0 ein lokales Extremum besitzt.

Satz 1. Sei $f: a, b \mapsto \mathbb{R}$ eine Funktion und sei $x_0 \in a, b$ eine Stelle, an der fdifferenzierbar ist und ein lokales Extremum besitzt. Dann ist $f'(x_0) = 0$.

Def. Ist D offen in \mathbb{R} , $f: D \to \mathbb{R}$ differenzierbar, $x_0 \in D$ und $f'(x_0) = 0$, so heißt x_0 eine kritische Stelle von f.

Bem. Satz 1. besagt also: Wenn f an der Stelle x_0 ein lokales Extremum besitzt, so ist x_0 eine kritische Stelle von f. Die Umkehrung gilt nicht: Ist $f(x) = x^3$, so ist f'(0) = 0, aber f hat in 0 kein lokales Maximum oder Minimum.

Satz 2. (Satz von Rolle) Sei $f: [a,b] \to \mathbb{R}$ eine stetige Funktion, die auf]a,b[differenzierbar ist, und sei f(a)=f(b). Dann gibt es ein $x \in]a,b[$ mit f'(x)=0.

Satz 3. (Mittelwertsatz) Sei $f : [a, b] \to \mathbb{R}$ stetig; f sei differenzierbar auf [a, b[. Dann gibt es ein $x \in]a, b[$ mit

$$f'(x) = \frac{f(b) - f(a)}{b - a}.$$

Satz 4. Sei $f:]a, b[\to \mathbb{R}$ differenzierbar und $f'(x) = 0 \ \forall x \in]a, b[$. Dann ist f konstant.

Anwendung: Sei $f: \mathbb{R} \to \mathbb{R}$ differenzierbar mit f'(x) = f(x) für alle $x \in \mathbb{R}$. Dann gibt es ein $c \in \mathbb{R}$ mit $f(x) = c \cdot e^x$ für alle $x \in \mathbb{R}$.

Beweis: Sei $g(x) := \frac{f(x)}{e^x}$. Dann ist g'(x) = 0; daher gibt es ein $c \in \mathbb{R}$ mit g(x) = c.

Satz 5. Sei $f: a, b \rightarrow \mathbb{R}$ differenzierbar. Dann gilt:

- a) $f'(x) > 0 \ \forall x \in]a,b[\Rightarrow f \text{ ist streng monoton wachsend.}]$
- b) $f'(x) \ge 0 \ \forall x \in \ a, b \ \Leftrightarrow f$ ist monoton wachsend.

Satz 6. Sei $f: a, b \to \mathbb{R}$ differenzierbar. Sei $x \in a, b$, und sei f zweimal differenzierbar in f mit

$$f'(x) = 0, f''(x) > 0$$
 [bzw. $f''(x) < 0$].

Dann besitzt f in x ein lokales Minimum [bzw. lokales Maximum].

Def. Eine Teilmenge M von \mathbb{R}^2 heißt konvex, wenn gilt:

Sind $P,Q \in M$, so ist die Verbindungsstrecke von P und Q eine Teilmenge von M.

Def. Sei I ein Intervall. Eine Funktion $f:I\to\mathbb{R}$ heißt konvex, wenn die Menge

$$M_f := \{(x, y) \in \mathbb{R}^2 \mid x \in I, y \ge f(x)\}$$

konvex ist.

Beispiel: Sei $f(x) = |x| \ \forall x \in \mathbb{R}$. Dann ist f konvex.

Satz 7. Sei $f:[a,b] \to \mathbb{R}$ stetig und zweimal differenzierbar auf]a,b[. Genau dann ist f konvex, wenn $f''(x) \ge 0 \ \forall x \in]a,b[$.

Satz 8. (Verallgemeinerter Mittelwertsatz) Seien $f, g : [a, b] \to \mathbb{R}$ stetig; beide seien differenzierbar in]a, b[. Dann existiert $x \in]a, b[$ mit

$$(f(b) - f(a)) \cdot g'(x) = (g(b) - g(a)) \cdot f'(x).$$

Bem. Ist $g(x) = x \, \forall x$, so erhält man den gewöhnlichen Mittelwertsatz.

Satz 9. (1. Regel von l'Hôpital) Seien $f, g:]a, b[\to \mathbb{R}$ zwei stetige Funktionen, $x_0 \in]a, b[$ und $f(x_0) = 0 = g(x_0)$. f und g seien in $]a, b[\setminus \{x_0\}$ differenzierbar, und es sei $g'(x) \neq 0$ für $x \in]a, b[\setminus \{x_0\}$.

Wenn $\lim_{x\to x_0} \frac{f'(x)}{g'(x)}$ existiert, so existiert auch $\lim_{x\to x_0} \frac{f(x)}{g(x)}$, und die beiden Grenzwerte stimmen überein.

Bem. Dabei ist auch $\lim_{x\to x_0}\ldots=\pm\infty$ zugelassen. Ein entsprechender Satz gilt für $\lim_{x\to\infty}\ldots$ und $\lim_{x\to-\infty}\ldots$

Ähnliche Bemerkungen gelten für den folgenden Satz.

Satz 10. (2. Regel von l'Hôpital) Sei $x_0 \in]a,b[$, und seien $f,g:]a,b[\setminus \{x_0\} \to \mathbb{R}$ differenzierbar mit $\lim_{x\to x_0} g(x) = \infty$. Ferner sei $g'(x) \neq 0 \ \forall x \in]a,b[\setminus \{x_0\}.$

Wenn $\lim_{x\to x_0} \frac{f'(x)}{g'(x)}$ existiert, so existiert auch $\lim_{x\to x_0} \frac{f(x)}{g(x)}$, und die beiden Grenzwerte stimmen überein.

9. Integral rechnung

Def. Seien $a,b \in \mathbb{R}$ mit a < b. Sei $f : [a,b] \to \mathbb{R}$ eine Funktion. Wenn es ein $n \in \mathbb{N}$ und Zahlen x_0, x_1, \ldots, x_n mit $a = x_0 < x_1 < \ldots < x_n = b$ gibt, so dass f auf jedem Intervall $]x_{k-1}, x_k[, k = 1, \ldots, n]$, konstant ist, so heißt f eine Treppenfunktion auf [a,b]. Mit $\mathcal{T}[a,b]$ bezeichnen wir die Menge aller Treppenfunktionen auf [a,b].

Bem.1. a) Ist $f \in \mathcal{T}[a, b]$ und $c \in \mathbb{R}$, so ist $cf \in \mathcal{T}[a, b]$.

b) Sind $f, g \in \mathcal{T}[a, b]$, so ist $f + g \in \mathcal{T}[a, b]$.

Daher ist $\mathcal{T}[a,b]$ ein Untervektorraum des \mathbb{R} -Vektorraums aller Abbildungen von [a,b] in \mathbb{R} .

Def. Ist $f \in \mathcal{T}[a,b]$, ist $a=x_0 < x_1 < \ldots < x_n = b$ und f konstant auf $]x_{k-1},x_k[$ mit dem Wert c_k für $k=1,\cdots,n$, so schreibt man $\int_a^b f(x) dx :=$

$$\sum_{k=1}^{n} c_k \cdot (x_k - x_{k-1}).$$

Bem.2. a) Ist $f \in \mathcal{T}[a,b]$ und $c \in \mathbb{R}$, so $\int_a^b (cf)(x) dx = c \int_a^b f(x) dx$.

b) Sind
$$f, g \in \mathcal{T}[a, b]$$
, so ist $\int_a^b (f + g)(x) dx = \int_a^b f(x) dx + \int_a^b g(x) dx$.

Also ist die Abbildung $\mathcal{T}[a,b] \to \mathbb{R}$, die durch $f \mapsto \int_a^b f(x) dx$ gegeben ist, \mathbb{R} -linear.

c) Sind
$$f, g \in \mathcal{T}[a, b]$$
 mit $f \leq g$ (d.h. $f(x) \leq g(x) \ \forall x \in [a, b]$), so ist
$$\int_{a}^{b} f(x) dx \leq \int_{a}^{b} g(x) dx.$$

Def. Sei $f:[a,b]\to\mathbb{R}$ eine beschränkte Funktion. (Es gibt also ein $M\in\mathbb{R}$ mit $|f(x)|\leq M$ für alle $x\in[a,b]$.)

$$\int_{a}^{b} f(x) dx := \inf \left\{ \int_{a}^{b} \psi(x) dx \mid \psi \in \mathcal{T}[a, b], f \leq \psi \right\},$$

$$\int_{a}^{b} f(x) dx := \sup \left\{ \int_{a}^{b} \varphi(x) dx \mid \varphi \in \mathcal{T}[a, b], \varphi \leq f \right\}.$$

Diese beiden Zahlen heißen das Ober- bzw. Unterintegral von f.

Bem.3. Die Menge $\mathcal{T}_f := \{ \psi \in \mathcal{T}[a,b] \mid \psi \geq f \}$ ist nicht leer, z.B. enthält sie die konstante Funktion mit Wert M. Für jedes $\psi \in \mathcal{T}_f$ ist $\psi \geq -M$. Daher ist $\left\{ \int\limits_a^b \psi(x) \, dx \mid \psi \in \mathcal{T}[a,b], \, \psi \geq f \right\} \neq \emptyset$, und nach Bem.2.c) ist $\int\limits_a^b \psi(x) \, dx \geq -M(b-a) \, \forall \, \psi \in \mathcal{T}_f$.

Daher existiert $\int_{a}^{b} f(x) dx = \inf \left\{ \int_{a}^{b} \psi(x) dx \mid \psi \in \mathcal{T}_{f} \right\}.$

Ebenso existiert $\int_{a}^{b} f(x) dx$.

Def. Eine beschränkte Funktion $f:[a,b]\to\mathbb{R}$ heißt (Riemann-)integrierbar, wenn $\int_a^b f(x)\,dx=\int_a^b f(x)\,dx$. Den gemeinsamen Wert bezeichnet man mit $\int_a^b f(x)\,dx$ und nennt ihn das (bestimmte) Integral von f (über [a,b]). Statt x kann jeder andere Buchstabe (außer f,d,a,b) verwendet werden.

Bem.4. Eine Funktion $f:[a,b]\to\mathbb{R}$ ist genau dann integrierbar, wenn es zu jedem $\epsilon>0$ Treppenfunktionen $\varphi,\psi\in\mathcal{T}[a,b]$ gibt mit $\varphi\leq f\leq\psi$ und

$$\int_{a}^{b} (\psi(x) - \varphi(x)) \, dx \le \epsilon.$$

Satz 1. Seien $f, g : [a, b] \to \mathbb{R}$ integrierbar und sei $c \in \mathbb{R}$.

a) cf ist integrierbar und

$$\int_{a}^{b} (cf)(x) dx = c \int_{a}^{b} f(x) dx.$$

b) f + g ist integrierbar und

$$\int_{a}^{b} (f+g)(x) \, dx = \int_{a}^{b} f(x) \, dx + \int_{a}^{b} g(x) \, dx.$$

c) Ist
$$f \leq g$$
, so ist $\int_{a}^{b} f(x) dx \leq \int_{a}^{b} g(x) dx$.

Satz 2. Seien $f, g: [a, b] \to \mathbb{R}$ integrierbar.

- a) $\max\{f,g\}$ ist integrierbar.
- b) f^2 ist integrierbar.
- c) $f \cdot g$ ist integrierbar.

Satz 3. Sei $f:[a,b]\to\mathbb{R}$ integrierbar und $M:=\sup\{|f(x)|\ \big|a\leq x\leq b\}$. Dann ist |f| integrierbar und

$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| dx \le M \cdot (b - a).$$

Satz 4. Sei a < c < b und sei $f : [a, b] \to \mathbb{R}$.

Genau dann ist f integrierbar, wenn f|[a,c] und f|[c,b] integrierbar sind, und dann ist

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{a}^{b} f(x) \, dx.$$

Bez. Man setzt $\int_{a}^{a} f(x) dx := 0$ und für a < b:

$$\int_{a}^{a} f(x) dx := -\int_{a}^{b} f(x) dx.$$

Satz 5. Jede monotone Funktion $f:[a,b]\to\mathbb{R}$ ist integrierbar.

Def. Sei $D \subseteq \mathbb{R}$ und $f: D \to \mathbb{R}$ eine Funktion. Sie heißt gleichmäßig stetig, wenn gilt: Zu jedem $\epsilon > 0$ existiert ein $\delta > 0$, so dass $|f(x) - f(y)| < \epsilon$ für alle $x, y \in D$ mit $|x - y| < \delta$.

Bem. Eine gleichmäßig stetige Funktion ist stetig.

Die Funktion $f:]0, \infty[\to \mathbb{R}, f(x) := \frac{1}{x}$ ist stetig, aber nicht gleichmäßig stetig.

Satz 6. Eine auf einem kompakten Intervall stetige Funktion $f:[a,b] \to \mathbb{R}$ ist gleichmäßig stetig.

Dieser Satz wird benutzt, um zu zeigen:

Satz 7. Jede stetige Funktion $f:[a,b] \to \mathbb{R}$ ist integrierbar.

Satz 8. Sei $f:[a,b]\to\mathbb{R}$ integrierbar und $c\in[a,b]$. Definiere $F:[a,b]\to\mathbb{R}$ durch

$$F(x) := \int_{a}^{x} f(t) dt.$$

Dann ist F stetig.

Satz 9. Sei I ein offenes Intervall und $f:I\to\mathbb{R}$ stetig. Ist $c\in I$ und definiert man $F:I\to\mathbb{R}$ durch

$$F(x) := \int_{c}^{x} f(t) dt$$

(was nach Satz 7. möglich ist), so ist F differenzierbar und F' = f.

Def. Sei I ein offenes Intervall und $f: I \to \mathbb{R}$. Eine differenzierbare Funktion $F: I \to \mathbb{R}$ heißt Stammfunktion oder unbestimmtes Integral von f, wenn F' = f.

 $\bf Bem.$ Nach §8, Satz 4. unterscheiden sich zwei Stammfunktionen von fum eine Konstante.

Satz 10. (Hauptsatz der Differenzial- und Integralrechnung)

Sei I ein offenes Intervall, $f:I\to\mathbb{R}$ stetig und F eine Stammfunktion von f. Dann gilt für alle $a,b\in I$:

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

Bez. Ist F eine Stammfunktion von f, so schreibt man $\int f(x) dx = F(x)$.

Satz 11. (Partielle Integration) Sei I ein offenes Intervall, $a, b \in I$. Seien $f, g : I \to \mathbb{R}$ differenzierbar und f', g' stetig. Dann ist

$$\int_{a}^{b} f(x)g'(x) dx = f(b)g(b) - f(a)g(a) - \int_{a}^{b} f'(x)g(x) dx,$$

$$\int fg' = fg - \int f'g.$$

Beispiele:

$$\int x e^x dx = (x - 1) e^x$$
$$\int \log x dx = x \log x - x$$
$$\int \sin^2 x dx = \frac{1}{2} (x - \sin x \cos x)$$

Satz 12.(Substitutionsregel) Seien I, J offene Intervalle, $f: I \to \mathbb{R}$ sei stetig. Sei $\varphi: J \to I$ differenzierbar und φ' sei stetig.

- a) Ist F eine Stammfunktion von f, so ist die Funktion $F \circ \varphi$ Stammfunktion von $x \mapsto f(\varphi(x)) \cdot \varphi'(x)$.
- b) Sind $a, b \in J$, so gilt:

$$\int_{a}^{b} f(\varphi(t))\varphi'(t) dt = \int_{\varphi(a)}^{\varphi(b)} f(x) dx.$$

Wichtiger Spezialfall: Ist $\varphi: I \to \mathbb{R} \setminus \{0\}$ differenzierbar, φ' stetig, so

$$\int \frac{\varphi'(x)}{\varphi(x)} dx = \log |\varphi(x)|.$$

Beispiel: $\int \tan x \, dx = -\log|\cos x|$.

Beispiel:
$$\int \frac{xdx}{x^2 + 1} = \frac{1}{2} \log(x^2 + 1).$$

Beispiel: Ist
$$n \in \mathbb{N}$$
, $n > 1$, so $\int \frac{xdx}{(x^2 + 1)^n} = \frac{1}{2(1 - n)} \frac{1}{(x^2 + 1)^{n-1}}$

Beispiel:
$$\int \sqrt{1-x^2} \, dx = \frac{1}{2}(x\sqrt{1-x^2} - \arccos x)$$
.
Deswegen hat ein Halbkreis vom Radius 1 die Fläche $\frac{\pi}{2}$.

Beispiel: Wir wollen $\int \frac{dx}{(x^2+1)^n}$ für n>1 bestimmen. Es ist

$$\frac{1}{(x^2+1)^n} = \frac{1}{(x^2+1)^{n-1}} - \frac{x^2}{(x^2+1)^n} \ .$$

Wir nehmen induktiv an, dass wir schon eine Stammfunktion von $\frac{1}{(x^2+1)^{n-1}}$ kennen; dann müssen wir noch eine Stammfunktion von $\frac{x^2}{(x^2+1)^n}$ finden. Mit partieller Integration finden wir

$$\int \frac{x^2 dx}{(x^2+1)^n} = \frac{1}{2(1-n)} \frac{x}{(x^2+1)^{n-1}} - \frac{1}{2(1-n)} \int \frac{dx}{(x^2+1)^{n-1}} \, dx$$

und wir sind fertig nach Induktion

Durch solche Überlegungen sieht man: Ist f eine gebrochen-rationale Funktion und kann man die Nullstellen des Nenners finden, so findet man eine Stammfunktion von f. Sie setzt sich zusammen aus gebrochen-rationalen Funktionen und den Funktionen log und arctan.

10. Uneigentliche Integrale

Def. 1. Seien $a,b \in \mathbb{R}$ mit a < b, und sei $f:]a,b] \to \mathbb{R}$ stetig. Ist $0 < \delta < \delta$ b-a, so kann man $\int_{a+\delta}^{b} f(x) dx$ bilden. Wenn $\lim_{\delta \searrow 0} \int_{a}^{b} f(x) dx$ in \mathbb{R} existiert,

so schreibt man $\int_{a}^{b} f(x) dx$ für den Grenzwert und sagt, dass das uneigentliche Integral $\int_a^b f(x) dx$ konvergiert. Andernfalls sagt man, dass $\int_a^b f(x) dx$ divergiert.

Beispiel: Für $c \ge 1$ divergiert $\int_{0}^{1} \frac{dx}{x^{c}}$; für 0 < c < 1 konvergiert $\int_{0}^{1} \frac{dx}{x^{c}}$ und ist

Def. 2. Ist $f:[a,b[\to\mathbb{R} \text{ stetig, so schreibt man } \int_a^b f(x) dx := \lim_{\delta \searrow 0} \int_a^{b-\delta} f(x) dx$, wenn dieser Grenzwert existiert.

Def. 3. Ist $f:]a, b[\to \mathbb{R}$ stetig, so schreibt man $\int_a^b f(x) dx := \lim_{\epsilon, \delta \searrow 0} \int_{a+\epsilon}^{b-\delta} f(x) dx$, wenn dieser Grenzwert existiert.

Dies ist genau dann der Fall, wenn für ein (und damit jedes) $c \in]a,b[$ gilt, dass $\int_{a}^{c} f(x) dx$ und $\int_{c}^{b} f(x) dx$ im Sinne von Def.1 und Def.2 existieren; es ist dann

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx.$$

Wenn $\int_{a}^{b} f(x) dx$ konvergiert, so ist es $=\lim_{\delta \searrow 0} \int_{a+\delta}^{b-\delta} f(x) dx$, aber dieser Grenzwert

kann existieren, ohne dass $\int_{a}^{b} f(x) dx$ konvergiert.

Beispiel: Für -1 < x < 1 ist $\int \frac{2x}{x^2 - 1} dx = \log(1 - x^2)$.

Für $0 < \delta < 1$ ist also $\int\limits_{-1+\delta}^{1-\delta} \frac{2x}{x^2-1} \, dx = 0$, aber $\int\limits_{-1}^{1} \frac{2x}{x^2-1} \, dx$ existiert nicht.

Def. 4. Ist $f: [a, \infty[\to \mathbb{R} \text{ stetig, so schreibt man } \int_{a}^{\infty} f(x) dx := \lim_{b \to \infty} \int_{a}^{b} f(x) dx$, wenn dieser Grenzwert existiert.

Beispiel:
$$\int e^{-x} dx = -e^{-x}$$
. Also $\int_{0}^{b} e^{-x} dx = -e^{-b} + 1$ und $\int_{0}^{\infty} e^{-x} dx = \lim_{b \to \infty} (-e^{-b} + 1) = 1$.

Def. 5. Ist $f:]a, \infty[\to \mathbb{R}$ stetig, so schreibt man

$$\int_{a}^{\infty} f(x) dx := \lim_{\substack{\delta \searrow 0 \\ b \to \infty}} \int_{a+\delta}^{b} f(x) dx,$$

wenn dies existiert.

Def. 6. Ist $f: \mathbb{R} \to \mathbb{R}$ stetig, so schreibt man $\int_{-\infty}^{\infty} f(x) dx := \lim_{\substack{a \to -\infty \\ b \to \infty}} \int_{a}^{b} f(x) dx$, wenn dies existiert.

Beispiel: Für a > 0 ist $\int_{-a}^{a} x \, dx = 0$, also $\lim_{a \to \infty} \int_{-a}^{a} x \, dx = 0$, aber $\int_{-\infty}^{\infty} x \, dx$ konvergiert nicht.

 $\mbox{\bf Satz 1. Sei } f: [a, \infty[\rightarrow \mathbb{R} \mbox{ stetig. Genau dann konvergiert } \int\limits_a^\infty f(x) \, dx \, , \mbox{ wenn gilt:}$ Zu jedem $\epsilon > 0$ gibt es ein $M \geq a$, so dass $|\int\limits_s^t f(x) \, dx| < \epsilon$ für alle s, t mit $M \leq s < t$.

Beispiel: $\int_{0}^{\infty} \frac{\sin x}{x} dx$ konvergiert.

(Wegen $\lim_{x\to 0}^{\circ} \frac{\sin x}{x}=1$ ist dieses Integral an der unteren Grenze nicht uneigentlich. Später: $=\frac{\pi}{2}$.)

Def.7. Das Integral $\int_{a}^{\infty} f(x)dx$ heißt absolut konvergent, wenn $\int_{a}^{\infty} |f(x)|dx$ konvergiert.

Satz 2. Wenn $\int_{a}^{\infty} f(x)dx$ absolut konvergiert, so konvergiert es.

Beispiel: $\int_{0}^{\infty} \frac{\sin x}{x} dx$ konvergiert nicht absolut.

Satz 3. (Majorantenkriterium) Seien $f,g:[a,\infty[\to\mathbb{R} \text{ stetig mit } |g(x)|\le f(x)$ für alle $x\in[a,\infty[$. Wenn $\int\limits_a^\infty f(x)dx$ konvergiert, so konvergiert $\int\limits_a^\infty g(x)dx$ absolut.

Beispiel: Aus dem Beispiel nach Def.4 folgt mit dem Majorantenkriterium, dass $\int_{-\infty}^{\infty} e^{-x^2} dx$ konvergiert. Wir werden später sehen, dass es den Wert $\sqrt{\pi}$ hat.

Bem. Bei der Definition von $\int_a^\infty f(x)dx$ muss man nicht die Stetigkeit von f voraussetzen. Es genügt, dass f für jedes b mit b>a über [a,b] integrierbar ist. Dies ist z.B. dann erfüllt, wenn f monoton ist.

Satz 4. (Integralkriterium für Reihen) Sei $f: [1, \infty[\to \mathbb{R} \text{ eine monoton}]$ fallende Funktion mit $f(x) \ge 0 \ \forall x$. Dann sind äquivalent:

- (1) $\sum_{n=1}^{\infty} f(n)$ konvergiert.
- (2) $\int_{1}^{\infty} f(x) dx$ konvergiert.

Beispiel: Für c>0 konvergiert $\int_{1}^{\infty} \frac{dx}{x^c}$ genau dann, wenn c>1. Nach Satz 2

konvergiert $\sum_{n=1}^{\infty} \frac{1}{n^c}$ genau dann, wenn c > 1.

11. Gleichmäßige Konvergenz von Funktionenfolgen

Def. Sei D eine Menge und seien $f_n: D \to \mathbb{R}$ Funktionen, $n \in \mathbb{N}$. Ist $f: D \to \mathbb{R}$ eine Funktion mit $\lim_{n \to \infty} f_n(x) = f(x)$ für jedes $x \in D$, so sagen wir, dass die Funktionenfolge (f_n) punktweise gegen fkonvergiert.

Def. Sei D eine Menge und seien f und f_n Funktionen von D nach \mathbb{R} , $n \in \mathbb{N}$. Die Funktionenfolge (f_n) konvergiert gleichmäßig gegen f, wenn es zu jedem $\epsilon > 0$ ein $N \in \mathbb{N}$ gibt, so dass für alle $x \in D$ und alle $n \geq N$ gilt: $|f_n(x) - f(x)| < \epsilon$.

Satz 1. Sei $D \subseteq \mathbb{R}$ und sei (f_n) eine gleichmäßig konvergente Folge stetiger Funktionen $f_n : D \to \mathbb{R}$. Dann ist die Grenzfunktion f von (f_n) stetig.

Beispiel: Definiere $f_n:[0,1]\to\mathbb{R}$ durch $f_n(x):=x^n$. Die f_n sind stetig und konvergieren punktweise gegen die Funktion $f(x)=\begin{cases} 0 & \text{für } x<1\\ 1 & \text{für } x=1 \end{cases}$, die nicht stetig ist.

Def. Seien f_n Funktionen, die auf einer Menge D definiert sind. Für $x \in D$ sei $s_n(x) := \sum_{k=1}^n f_n(x)$. Wenn die Folge (s_n) gleichmäßig konvergiert, so sagen wir, dass die Reihe $\sum_{k=1}^{\infty} f_k$ gleichmäßig konvergiert.

Folgerung aus Satz 1. Eine gleichmäßig konvergente Reihe stetiger Funktionen hat eine stetige Summe.

Satz 2. Seien f_n auf der Menge D definierte Funktionen, $n \in \mathbb{N}$. Für jedes n gebe es ein $a_n \in \mathbb{R}$ mit $|f_n(x)| \leq a_n$ für alle $x \in D$. Wenn $\sum_{n=1}^{\infty} a_n$ konvergiert, so konvergiert $\sum_{n=1}^{\infty} f_n$ gleichmäßig.

Satz 3. Für $n \in \mathbb{N}$ sei $f_n : [a, b] \to \mathbb{R}$ integrierbar. Die Folge (f_n) konvergiere gleichmäßig gegen $f : [a, b] \to \mathbb{R}$. Dann ist f integrierbar und

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x) dx.$$

Satz 4. Für $n \in \mathbb{N}$ sei $f_n :]a, b[\to \mathbb{R}$ differenzierbar, und $f'_n :]a, b[\to \mathbb{R}$ sei stetig. Die Folge (f_n) konvergiere punktweise gegen die Funktion $f :]a, b[\to \mathbb{R}$, und die Folge (f'_n) sei gleichmäßig konvergent. Dann gilt:

- a) Die Folge (f_n) konvergiert gleichmäßig.
- b) f ist differenzierbar.
- c) $f'(x) = \lim_{n \to \infty} f'_n(x) \quad \forall x \in]a, b[.$

Beispiel: Definiere $f_n: \mathbb{R} \to \mathbb{R}$ durch $f_n(x) := \frac{1}{n} \sin(nx)$. Dann ist $|f_n(x)| \leq \frac{1}{n} \ \forall \ x \in \mathbb{R}$, d.h. (f_n) konvergiert gleichmäßig gegen 0. Alle f_n sind differenzierbar; es ist $f'_n(x) = \cos nx$. Insbesondere ist $f'_n(\pi) = \cos(n\pi) = (-1)^n$. Daher konvergiert (f'_n) nicht punktweise gegen 0.

12. Potenzreihen und die Taylor-Formel

Def. Sei I ein offenes Intervall, $f: I \to \mathbb{R}$ und $n \in \mathbb{N}$. Dann heißt f *n-mal stetig differenzierbar* oder *von der Klasse* \mathbb{C}^n , wenn f *n*-mal differenzierbar und $f^{(n)}$ stetig ist.

Ist f unendlich oft differenzierbar, so sagt man, dass f von der Klasse C^{∞} ist. Man sagt: f ist von der Klasse C^{0} , wenn f stetig ist.

Satz 1. (Taylor-Formel) Sei I ein offenes Intervall und $f: I \to \mathbb{R}$ von der Klasse \mathbb{C}^{n+1} . Sind $a, x \in I$, so gilt:

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + R_{n+1}(x),$$

wobei
$$R_{n+1}(x) := \frac{1}{n!} \int_{a}^{x} (x-t)^n f^{(n+1)}(t) dt.$$

Def. Unter einer komplexen Potenzreihe verstehen wir eine Funktion der Form

$$z \longmapsto \sum_{n=0}^{\infty} c_n (z-a)^n$$
,

wobei a, c_0, c_1, c_2, \ldots feste komplexe Zahlen sind. Der Definitionsbereich dieser Funktion ist die Menge aller $z \in \mathbb{C}$, für die diese Reihe konvergiert.

Bez. Für $a \in \mathbb{C}$ und $r \geq 0$ sei

$$B_r(a) := \{ z \in \mathbb{C} | |z - a| < r \},$$

$$\overline{B}_r(a) := \{ z \in \mathbb{C} | |z - a| \le r \}.$$

Ferner sei $B_{\infty}(a) := \mathbb{C}$ und $\overline{B}_{\infty}(a) := \mathbb{C}$

Def. Sei $\sum_{n} c_n (z-a)^n$ eine komplexe Potenzreihe. Dann heißt

$$r := \sup \{|z - a| \mid \sum_{n} c_n (z - a)^n \text{ ist konvergent}\}$$

der Konvergenzradius der Potenzreihe.

(Dabei sind auch r=0 und $r=\infty$ zugelassen. Letzteres bedeutet, dass $\{\ldots\}$ nach oben unbeschränkt ist.)

Satz 2. Sei r der Konvergenzradius von $\sum_{n} c_n (z-a)^n$. Dann gilt:

- a) Die Potenzreihe $\sum_n c_n (z-a)^n$ konvergiert absolut auf $B_r(a)$. Für $z \in B_r(a)$ sei $f(z) := \sum_n c_n (z-a)^n$.
- b) Ist $0 \le \rho < r$, so konvergiert die Potenzreihe gleichmäßig auf $\overline{B}_{\rho}(a)$.
- c) Sie konvergiert für kein z, das nicht in $\overline{B}_r(a)$ liegt.
- d) Auf $B_r(a)$ ist die Funktion f stetig.

Satz 3. Sei $\sum_{n} c_n(z-a)^n$ eine komplexe Potenzreihe mit $c_n \neq 0$ für fast alle n.

Wenn $r:=\lim_{n\to\infty}\left|\frac{c_n}{c_{n+1}}\right|$ existiert, so ist r der Konvergenzradius der Potenzreihe. (Dabei ist auch $r=\infty$ zugelassen.)

Def. Unter einer reellen Potenzreihe verstehen wir eine Funktion der Form

$$x \longmapsto \sum_{n=0}^{\infty} c_n (x-a)^n$$
,

wobei a, c_0, c_1, c_2, \ldots feste reelle Zahlen sind. Der Definitionsbereich dieser Funktion ist die Menge aller $x \in \mathbb{R}$, für die diese Reihe konvergiert.

Man kann eine solche reelle Potenzreihe auch als komplexe Potenzreihe auffassen. Sei r ihr Konvergenzradius. Die reelle Potenzreihe konvergiert, falls $x \in]a-r,a+r[$; sie divergiert, falls $x \notin [a-r,a+r]$.

Satz 4. Sei $f(x) := \sum_{n=0}^{\infty} c_n (x-a)^n$ eine reelle Potenzreihe mit dem Konvergenzradius r > 0.

a) Auf]a - r, a + r[ist f unendlich oft differenzierbar und

$$f'(x) = \sum_{n=1}^{\infty} n c_n (x-a)^{n-1}$$
.

("Potenzreihen dürfen gliedweise differenziert werden.")

b)
$$c_n = \frac{1}{n!} f^{(n)}(a) \quad \forall n \in \mathbb{N} \cup \{0\}.$$

Satz 5. Für -1 < x < 1 gilt:

$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$$

Satz 6. (Abelscher Grenzwertsatz) Gegeben sei eine reelle Potenzreihe $\sum_{n=0}^{\infty}a_nx^n \text{ mit dem Konvergenzradius 1. Ferner sei } \sum_{n=0}^{\infty}a_n \text{ konvergent. Definiert}$ $\max f:]-1,1] \to \mathbb{R} \text{ durch } f(x):=\sum_{n=0}^{\infty}a_nx^n, \text{ so ist } f \text{ auch an der Stelle 1 stetig.}$

Folgerung.
$$\log(2) = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$

Satz 7. Für $-1 \le x \le 1$ gilt:

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$$

Insbesondere ist

$$\frac{\pi}{4} = \arctan 1 = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + - \dots$$

Satz 8. (Binomische Reihe) Für $\alpha \in \mathbb{R}$ und -1 < x < 1 ist

$$(1+x)^{\alpha} = \sum_{n=0}^{\infty} {\alpha \choose n} x^{n}.$$

Dabei setzt man
$$\binom{\alpha}{0}:=1$$
 und $\binom{\alpha}{n}:=\frac{1}{n!}\,\alpha\,(\alpha-1)\dots(\alpha-n+1)\ \forall\,n\in\mathbb{N}.$

Spezialfälle: Für -1 < x < 1 ist

$$\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \dots,$$
$$\frac{1}{\sqrt{1+x}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2 + \dots.$$

Für den Beweis von Satz 8 benutzen wir

Satz 9. (Satz von Bernstein) Sei r > 0 und sei $f :]-r, r[\to \mathbb{R}$ von der Klasse C^{∞} . Es gebe ein $K \in \mathbb{N}$, so dass gilt:

$$f^{(n)}(x) \ge 0$$
 für alle $x \in]-r,r[$ und alle $n \ge K$.

Dann gilt für alle $x \in]-r, r[:$

$$f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(0) x^{n}.$$