Leveraging Data Science Techniques for Predictive Modeling of Global Skill Penetration Rates

Student: Roatny NUON (M080105)

M-AMS

Aug.2023

Table of contents

O1 Introduction

02 Literature Reviews

O3 Data Collection

04 Methodology

O5 Expected Result

06 References

Introduction

Background

In today's world, where decisions are increasingly guided by data-driven insights, this research search through into the practical applications of Data Science. Through techniques like data preprocessing, predictive modeling, and interpretation, the study demonstrates how Data Science turns intricate data into actionable wisdom. In parallel, the research aligns seamlessly with Cambodia's developmental vision and mirrors its Sustainable Development Goals (SDGs). Specifically, it contributes to the realization of SDG 9 – Industry, Innovation, and Infrastructure – by predicting skill usage trends across industries, propelling the adoption of innovative technologies. Additionally, it holds the potential to fortify SDG 4 – Quality Education – by spotlighting how Data Science methods amplify workforce training strategies.

Problem Statement

 Rapid technological changes

Shifting Skill Demands

Precision Gap in Workforce Planning

 Lack accuracy and agility to predict skill penetration rates effectively Data-driven approaches to forecast global skill penetration trends

> The Need for Data-Driven Precision

Impower & Contributed

- Decision Maker
- Workforce
 Planner

Research Objectives

1.Apply Data Science techniques to preprocess, transform, and analyze textbased World Bank data for predictive modeling of global skill penetration rates.

2.Develop and optimize predictive models using regression algorithms, showcasing the practical integration of machine learning in addressing real-world challenges.

3.Explore correlations between skill penetration trends, economic indicators, and SDG priorities, specifically relevant to Cambodia's development context.

4.Investigate how predictive modeling insights can contribute to the Cambodia Digital Economy and Society Policy Framework's objectives for workforce development and digital transformation.

Scope and Limitation

SCOPE

- The research will utilize the "public_use-skill-penetration" dataset from Word Bank, spanning the years 2015-2019, to predict skill penetration trends using Data Science Techniques.
- Global Perspective: The research will target industries on a global scale, encompassing diverse sectors and regions to capture broad trends in skill demand.

Scope and Limitation

LIMITATION

- **1.Generalization:** The global scope might limit the model's ability to capture nuances specific to individual countries or regions, potentially impacting prediction accuracy at a local level.
- **2.Assumption of Stationarity:** The research assumes that skill penetration trends remain relatively stable over the study period, which might not account for abrupt shifts caused by unforeseen events.
- **3.External Factors:** Economic, political, or social factors that aren't explicitly captured in the dataset might influence skill penetration rates, affecting the model's predictive capabilities.

Literature Review

Literature Reviews-4 papers

Title/Date	Objective	Methodology	Result/ Conclusion
"Developing a Machine Learning-based Job Forecasting and Trend Analysis System for Predicting Future Job Markets Using Historical Data." SENTHURVELAUTHAM, S. and SENANAYAKE, N. 2023	Address the gap in understanding of job market trends in the IT field, specifically focusing on roles and skills factors Building Auto-aggressive prediction that predict for various roles and technologies for at least the next 12 months	Data collection: Web scraping, Manually collecting data & Govern. Dataset > 522,180 job listings from the past 24 months in the software industry IF-IDF, ARIMA, LSTM, GRU, SARIMA, Prophet, DeepAR bi-directional LSTM model	Accuracy of 95.71%.
Forecasting unemployment with Google Trends: age, gender and digital divide Rodrigo Mulero and Alfredo Garcia-Hiernaux, 2022	This paper uses time series of job search queries from Google Trends to predict the unemployment in Spain Paper exploits GT time-series data from 2004 to 2018, on a collection of more than 170 search-related items, to predict unemployment figures	Jan. 2004 to Sep. 2018, for a total of 177 monthly observations The data are disaggregated by age and gender groups ARIMA & SARIMA gave result similar. Evaluate model: AIC,RMSE,	RMSE is 14.5% for the youngest unemployed

Literature Reviews-4 papers

Title/Date	Objective	Methodology	Result/Conclusion	
Dr. Padmaja Pulicherla et al 2019 J. Phys.: Conf. Ser. 1228 012056 "Job Shifting Prediction and Analysis Using Machine Learning"	Designed a predictive model to anticipate the chances of an employee leaving the job	18K data from Analytics Vidhya site Random Forest , XGBoost , CatBoost , LightGBM	CatBoost is the best model with 0.7%	
T. V. Huynh, K. V. Nguyen, N. L. T. Nguyen, and A. G. T. Nguyen, "Job Prediction: From Deep Neural Network Models to Applications," 2020	Studying the job prediction using different deep neural network models including Text CNN,Bi-GRU-LSTM-CNN, and Bi-GRU-CNN with various pretrained word embeddings on the IT job dataset. Input: Given an IT job description collected from the online finding-job sites Output: A predicted job title for this description.	Dataset 10,000 distinct job descriptions, from the online finding-job sites w/ 25 different types of IT-related job. 4 deep neural network models used: TextCNN, two combination models (Bi-GRU-CNN and Bi-GRU-LSTM-CNN) and ensemble mode	In the Bi-GRU-CNN + Glove model, the class "IT Consultant" fot largest accuracy of 91.43% and the class "Data Architect" got lowest accuracy of 44.19%	

Data Collection

Data Background

Type: Secondary Data

LinkedIn Data World Bank.ORG

SIZE

20781 x 7 Includes information about skill group penetration rates across various industries and years.

Features

year, skill group category, skill group name, ISIC section index, ISIC section name, industry name, and skill group penetration rate.

Digital Data for Development

Skill Penetration Dataset

`ontext

The LinkedIn and World Bank Group collaboration is a prime example of how technology companies can work with development institutions to bring new data and insights to developing countries to address pressing development challenges. The opportunities and challenges presented by the global economy requires the public and private sectors to join forces, share information, share resources, and work towards a common vision to make meaningful, positive and scalable impact.

The dataset underlies the metrics presented on the interactive dashboard of the World Bank Group – LinkedIn partnership. The metrics and data are a product of the partnership and cover industry employment, skill, and migration metrics for over 100 countries. Specifically, the data covers 4 metrics: 1) Industry Employment Shifts, 2) Talent Migration, 3) Industry Skills Needs, and 4) Skill Penetration. LinkedIn and the World Bank Group plan to refresh the data annually at a minimum.

This file contains Skill Penetration data

aveats

The Skill Penetration metric looks at how many skills from each of Linkedin's skill groups (see "Notes" tab) appear among the top 30 skills for each occupation in an industry. For example, if 3 of 30 skills for Data Scientists in the Information Services industry fall into the Artificial Intelligence skill group, Artificial Intelligence has a 10% penetration for Data Scientists in Information Services. These penetration rates are averaged across occupations to derive the industry averages reported. It is likely this metric is best at capturing skill penetration across tradable and knowledge-intensive sectors. For example, it may under-estimate the adoption of AI in Manufacturing, since LinkedIn members are less likely to be in this sector compared to others.

For more information on the World-Bank Group - LinkedIn Partnership, please visit linkedIndata.worldbank.org

https://linkedindata.worldbank.org/data

Data Table

,	А В	С	D	Е	F	G	Н	20750	2019 Tech Skills	Web Develor J	Information Broadcast M	0,00453
year	skill group	skill group	risic section	isic section	industry nan ski	II group p	enetration rate	20751	2019 Tech Skills	Web Develor C	Manufacturii Industrial Au	0,00435
	2015 Business S	kil Accounts Pa	M	Professional	Accounting	0,00719	_	20752	2019 Tech Skills	Web Develor K	Financial and Investment N	0,00409
	2015 Business S	kil Accounts Pa	M	Professional	Law Practice	0,00244		20753	2019 Tech Skills	Web Develor M	Professional Photography	0,00406
	2015 Business S	kil Accounts Pa	м	Professional	Executive Of	0,00222		20754	2019 Tech Skills	Web Develor R	Arts, enterta Entertainme	0,00405
	2015 Business S	kil Accounts Pa	y C	Manufacturi	Packaging &	0,00132		20755	2019 Tech Skills	Web Develor C	Manufacturii Electrical & E	0,00401
	2015 Business S	kil Accounts Pa	уВ	Mining and	Oil & Energy	0,00132		20756	2019 Tech Skills	Web Develor R	Arts, enterta Sports	0,00398
	2015 Business S	kil Accounts Pa	y C	Manufacturi	Printing	0,00128		20757	2019 Tech Skills	Web Develor C	Manufacturii Renewables	0,00356
	2015 Business S	kil Accounts Pa	y C	Manufacturi	Machinery	0,00112		20758	2019 Tech Skills	Web Develor M	Professional Accounting	0,00354
	2015 Business S	kil Accounts Pa	γK	Financial an	Venture Capi	0,00102		20759	2019 Tech Skills	Web Develor M	Professional Legal Service	0,00353
	2015 Business S	kil Accounts Pa	y C	Manufacturi	Plastics	9,40E-04		20760	2019 Tech Skills		Professional Environment	0,00311
	2015 Business S		•		Legal Service	9,20E-04		20761	2019 Tech Skills		Professional Biotechnolog	0,00309
	2015 Business S	kil Accounts Pa	y C	Manufacturi	Textiles	8,30E-04		20762	2019 Tech Skills		Professional Architecture	0,00261
	2015 Business S		•		Mining & Me	8,10E-04		20763	2019 Tech Skills		Manufacturii Aviation & A	0,00261
	2015 Business S		•		Mechanical (7,70E-04		20764	2019 Tech Skills		Manufacturii Automotive	0,00253
	2015 Business S		•		Electrical & E	7,50E-04		20765	2019 Tech Skills		Professional Law Practice	0,00247
	2015 Business S		•		Food Product	7,50E-04		20766	2019 Tech Skills		Information Semiconduct	0,0024
	2015 Business S		•		Environment	7,30E-04		20767	2019 Tech Skills		Professional Mechanical (0,00226
	2015 Business S			Manufacturi		7,10E-04		20768	2019 Tech Skills		Manufacturii Pharmaceuti	0,00198
	2015 Business S		•		Information	6,60E-04		20769	2019 Tech Skills		Information Motion Pictu	0,00194
	2015 Business S		1		Architecture	6,10E-04		20770	2019 Tech Skills		Manufacturii Textiles	0,00194
	2015 Business S		•		Industrial Au	6,00E-04		20770	2019 Tech Skills		Professional Executive Of	0,00192
	2015 Business S		•	Manufacturi		5,70E-04		20771	2019 Tech Skills			0,00184
	2015 Business S		1		Telecommur	5,50E-04		20772			Arts, enterta Museums &	
	2015 Business S		•		Computer So	5,30E-04			2019 Tech Skills		Manufacturii Machinery	0,0017
	2015 Business S		•		Outsourcing/	5,20E-04		20774	2019 Tech Skills		Mining and c Oil & Energy	0,00168
	2015 Business S		•		Marketing &	5,10E-04		20775	2019 Tech Skills		Manufacturii Packaging &	0,00159
	2015 Business S		•		Biotechnolog	5,00E-04		20776	2019 Tech Skills		Mining and c Mining & Me	0,00147
	2015 Business S		•		Health, Well	4,90E-04		20777	2019 Tech Skills		Manufacturii Food Product	0,00144
	2015 Business S	a Accounts Pa	y K	Financial an	Financial Ser	4,80E-04		20778	2019 Tech Skills	Web Develor C	Manufacturii Chemicals	0,00139

How to achieve Predictive Task

- Convert data using hybrid techniques one-hot encoding and NLP
- embedding(word2vec,

Feature Engineering

 Use the word embeddings as additional input features alongside the time series data

Data Preparing TS

• Capture trend in data

vs XGBoost

- Prepare input data for each Model
- Will Test on more

Interpretation

- Evaluate
- Interpret result to extract insight into future skill trend

Expected Result

Expected Result

References

SENTHURVELAUTHAM, S. and SENANAYAKE, N. 2023 "Developing a Machine Learning-based Job Forecasting and Trend Analysis System for Predicting Future Job Markets Using Historical Data"

Mulero and Alfredo Garcia-Hiernaux, 2022, Forecasting unemployment with Google Trends: age, gender and digital divide

Dr. Padmaja Pulicherla et al 2019 J. Phys.: Conf. Ser. 1228 012056"Job Shifting Prediction and Analysis Using Machine Learning"

T. V. Huynh, K. V. Nguyen, N. L. T. Nguyen, and A. G. T. Nguyen, "Job Prediction: From Deep Neural Network Models to Applications," 2020

Data source: https://linkedindata.worldbank.org/data

Thank You!